Índice general

1.		Formulación Lagrangiana y Hamiltoniana de la Relatividad General							
	1.1.	.1. Formulación Lagrangiana							
	1.2.	2. Formulación Hamiltoniana (ADM o 3+1)							
		1.2.1. Descomposición (3+1)	8						
		1.2.2. Foliación de la frontera							
		1.2.3. Acción gravitacional en el formalismo (3+1)	1.						
		1.2.4. Hamiltoniano Gravitacional							
		1.2.5. Ecuaciones del campo gravitacional							
		1.2.6. Espacio Fase							
2.	Rela	Relatividad General en Variables de Conexión							
	2.1.	Espacio fase	19						
	2.2.	Transformación Canónica	2						
3.	Variables de Ashtekar para modelos homogéneos y modelos isotrópicos								
	3.1.	Antecedentes	2!						
		3.1.1. Clasificación de Haces Principales simétricos	2!						
		3.1.2. Clasificación de Conexiones invariantes	2!						
	3.2.	Modelos Homogéneos	20						
	3.3.	Modelos Isotrópicos	2						
Α.	Con	exiones y Curvatura en Haces Vectoriales	29						
	A.1.	Conexiones	29						
		Curvatura							
В.	Can	npo de Marcos	3:						

Introducción

La Relatividad General áes la teoría moderna de la gravedad, postulada por Albert Einstein a finales de 1915 [?]. En esta teoría la gravedad no es una fuerza como los es en física Newtoniana, sino la *curvatura* del espacio-tiempo. Citando a John A. Wheeler "la materia le dice al espacio-tiempo cómo curvarse, y el espacio-tiempo le dice a la materia cómo moverse". hablar un poco más de la relatividad general, contar sobre sus predicciones y sus límites, pero conforme vaya avanzando en la tesis para ser coherente con el contenido de la misma.

En ésta tesis supondremos que el lector está familiarizado con la teoría de Relatividad General y conceptos básicos de Geometría Diferencial.

El propósito de esta tesis es encontrar la forma que toman las variables de Ashtekar para los casos de cosmologías homogeneas e isotrópicas. Para ello, es importante entender las distintas formulaciones de la Relatividad General, principalmente en la formulación de variables de conexión hecha por A. Ashtekar [?, ?] así que en el primer capítulo se presentará la formulación Lagrangiana y Hamiltoniana de la Relatividad General (siguiendo de cerca la discusión que se lleva acabo en [?]), y en el segundo veremos la formulación en variables de conexión de la Relatividad General, tomando como principales referencias el libro de Baez [?], el artículo de Barbero [?] y la tesis de J. Vega [?]. continuar mencionando sobre lo que se hablará/discutirá en cada capítulo

En esta tesis usaremos la convención de signos de Misner, Thorne, y Wheeler con una métrica de signatura (-,+,+,+). Los índices griegos α , β ... serán utilizados para las componentes espacio-temporales, es decir, corren de 0 a 3; los índices latinos a, b, c, d corren de 1 a 3, están asignados para las componentes espaciales; las letras latinas mayúsculas a partir de la mitad del abecedario, I, J, K..., serán usadas para los índices internos mientras que las letras latinas mayúsculas al inicio del abecedario A, B, C..., representan *índices abstractos* (ver [?]).

ÍNDICE GENERAL

Capítulo 1

Formulación Lagrangiana y Hamiltoniana de la Relatividad General

1.1. Formulación Lagrangiana

En la formulación Lagrangiana de la Relatividad General, el funcional de acción S está definido como la integral de una densidad lagrangiana sobre una región 4-dimensional Ω , de una variedad diferenciable \mathcal{M} con la topología del espacio-tiempo, delimitada por una hipersuperficie cerrada $\partial\Omega$. Dicho funcional de acción S está formado por dos partes, la asociada al campo gravitacional $g_{\mu\nu}$, es decir la geometría, denotado por $S_G[g]$ y la parte correspondiente a los campos de materia, $S_M[\phi; g]$, esto es

$$S[g;\phi] = S_G[g] + S_M[\phi;g]. \tag{1.1}$$

El campo dinámico es la métrica del espacio-tiempo $g_{\mu\nu}$, cuyas componentes dependen de las coordenadas x^{α} en la región Ω . Así, para obtener las ecuaciones de campo gravitacional vía el Principio de Mínima Acción, se introduce la variación arbitraria $\delta g_{\mu\nu}(x^{\alpha})$ en Ω con la condición de que dicha variación sea nula en la frontera $\partial\Omega$,

$$\delta g_{\mu\nu}\Big|_{\partial\Omega} = 0. \tag{1.2}$$

Esto quiere decir que la métrica inducida $h_{\alpha\beta}$ en la hipersuperficie $\partial\Omega$ se mantiene fija.

El funcional de acción del campo de materia, S_M , está dada por

$$S_M[\phi;g] = \int_{\Omega} \mathcal{L}(\phi, \partial_{\alpha}\phi; g, \partial_{\alpha}g_{\mu\nu})\sqrt{-g} \,d^4x. \tag{1.3}$$

Por otro lado, la parte gravitacional de la acción $S_G[g]$, para facilitar los cálculos, se divide en tres términos; a saber,

$$S_G[g] = \frac{1}{16\pi} (I_{EH}[g] + 2I_B[g] + 2I_0), \tag{1.4}$$

el término de Einstein-Hilbert $I_{EH}[g]$, un término de frontera $I_B[g]$ y un término no dinámico I_0 , que únicamente influye en el valor numérico de la acción mas no en las ecuaciones de movimiento, donde

$$I_{EH}[g] = \int_{\Omega} R\sqrt{-g} \, d^4x, \quad I_B[g] = \oint_{\partial\Omega} \varepsilon K\sqrt{|h|} d^3y, \quad I_0[g] = \oint_{\partial\Omega} \varepsilon K_0\sqrt{|h|} d^3y.$$

Aquí, las coordenadas x^{μ} se utilizarán en Ω mientras que las coordenadas y^{α} en $\partial\Omega$. R es el escalar de Ricci, g es el determinante de la métrica g_{AB} , h es el determinante de la métrica inducida h_{AB} y $\varepsilon \equiv n^{\mu}n_{\mu} = \pm 1$ es el módulo

¹La forma fundamental de la métrica inducida en $\partial\Omega$ es $h_{\alpha\beta} = g_{\mu\nu} \frac{\partial x^{\mu}}{\partial y^{\alpha}} \frac{\partial x^{\nu}}{\partial y^{\beta}} = g_{\mu\nu} e^{\mu}_{\alpha} e^{\nu}_{\beta}$, donde $e^{\mu}_{\alpha} = \frac{\partial x^{\mu}}{\partial y^{\alpha}}$.

del normal unitario² n_{μ} a $\partial\Omega$. K es la traza de la curvatura extrínseca $K_{\alpha\beta}$ de $\partial\Omega$ y K_0 es la traza de la curvatura extrínseca de $\partial\Omega$ encajada en el espacio-tiempo plano.

Al variar la acción $S[g;\phi]$ con respecto a $g_{\mu\nu}$, usando el hecho de que $\delta g = gg^{\mu\nu}\delta g_{\mu\nu}$ y $g^{\mu\nu}\delta g_{\mu\nu} = -g_{\mu\nu}\delta g^{\mu\nu}$, se obtiene, primero para la parte asociada a materia, que

$$\delta S_{M} = \int_{\Omega} \delta(\mathcal{L}\sqrt{-g}) d^{4}x$$

$$= \int_{\Omega} \left(\frac{\partial \mathcal{L}}{\partial g^{\mu\nu}} \delta g^{\mu\nu} \sqrt{-g} + \mathcal{L}\delta\sqrt{-g}\right) d^{4}x$$

$$= \int_{\Omega} \left(\frac{\partial \mathcal{L}}{\partial g^{\mu\nu}} - \frac{1}{2}\mathcal{L}g_{\mu\nu}\right) \delta g^{\mu\nu} \sqrt{-g} d^{4}x$$

$$= -\frac{1}{2} \int_{\Omega} T_{\mu\nu} \delta g^{\mu\nu} \sqrt{-g} d^{4}x, \qquad (1.5)$$

definiendo el tensor de energía-momento como

$$T_{\mu\nu} := \mathcal{L}g_{\mu\nu} - 2\frac{\partial \mathcal{L}}{\partial a^{\mu\nu}}.$$
 (1.6)

Mientras que, para la parte correspondiente a la parte gravitacional $S_G[g]$, comenzando con el término de Einstein-Hilbert I_{EH} , se tiene que

$$\delta I_{EH} = \int_{\Omega} \delta(R\sqrt{-g}) d^4x$$

$$= \int_{\Omega} (\delta g^{\mu\nu}) R_{\mu\nu} \sqrt{-g} d^4x + \int_{\Omega} g^{\mu\nu} (\delta R_{\mu\nu}) \sqrt{-g} d^4x + \int_{\Omega} g^{\mu\nu} R_{\mu\nu} (\delta \sqrt{-g}) d^4x$$

$$= \int_{\Omega} R_{\mu\nu} (\delta g^{\mu\nu}) \sqrt{-g} d^4x + \int_{\Omega} g^{\mu\nu} (\delta R_{\mu\nu}) \sqrt{-g} d^4x - \int_{\Omega} \frac{1}{2} R \sqrt{-g} g_{\mu\nu} \delta g^{\mu\nu} d^4x. \tag{1.7}$$

Ahora bien, considerando un marco de referencia inercial local donde los símbolos de Christoffel sean cero, lo que implica que $\partial_{\sigma} = \nabla_{\sigma}$, entonces,

$$\delta R_{\mu\nu} = \partial_{\lambda} \delta \Gamma^{\lambda}_{\mu\nu} - \partial_{\nu} \delta \Gamma^{\lambda}_{\mu\lambda} = \nabla_{\lambda} \delta \Gamma^{\lambda}_{\mu\nu} - \nabla_{\nu} \delta \Gamma^{\lambda}_{\mu\lambda}. \tag{1.8}$$

Tomando en cuenta que $\nabla_{\sigma}g^{\mu\nu}=0$, al multiplicar (1.8) por $g^{\mu\nu}$ se tiene que

$$g^{\mu\nu}\delta R_{\mu\nu} = g^{\mu\nu}\nabla_{\lambda}\delta\Gamma^{\lambda}_{\mu\nu} - g^{\mu\nu}\nabla_{\nu}\delta\Gamma^{\lambda}_{\mu\lambda} = \nabla_{\lambda}(g^{\mu\nu}\delta\Gamma^{\lambda}_{\mu\nu} - g^{\mu\lambda}\Gamma^{\nu}_{\mu\nu}), \tag{1.9}$$

y definiendo

$$v^{\lambda} := g^{\mu\nu} \delta \Gamma^{\lambda}_{\mu\nu} - g^{\mu\lambda} \delta \Gamma^{\nu}_{\mu\nu}, \tag{1.10}$$

la expresión (1.9) se reescribe como $g^{\alpha\beta}\delta R_{\alpha\beta} = \nabla_{\lambda}v^{\lambda}$. Aplicando el teorema de Gauss se obtiene

$$\int_{\Omega} g^{\mu\nu} \left(\delta R_{\mu\nu} \right) \sqrt{-g} d^4x = \int_{\Omega} \nabla_{\mu} v^{\mu} \sqrt{-g} d^4x = \oint_{\partial\Omega} \varepsilon v^{\mu} n_{\mu} \sqrt{|h|} d^3y \,. \tag{1.11}$$

Recordando la condición de frontera (1.2), la variación de los símbolos de Christoffel en $\partial\Omega$ es

$$\delta\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\sigma\lambda}(\partial_{\mu}\delta g_{\nu\lambda} + \partial_{\nu}\delta g_{\lambda\mu} - \partial_{\lambda}\delta g_{\mu\nu}), \tag{1.12}$$

entonces sustituyendo (1.12) en (1.10) se llega a que

$$n^{\lambda}v_{\lambda}\Big|_{\partial\Omega} = n^{\lambda}g^{\mu\nu}(\partial_{\mu}\delta g_{\lambda\nu} - \partial_{\lambda}\delta g_{\mu\nu})$$

$$= n^{\lambda}(\varepsilon n^{\mu}n^{\nu} + h^{\mu\nu})(\partial_{\mu}\delta g_{\lambda\nu} - \partial_{\lambda}\delta g_{\mu\nu})$$

$$= n^{\lambda}h^{\mu\nu}(\partial_{\mu}\delta g_{\lambda\nu} - \partial_{\lambda}\delta g_{\mu\nu}). \tag{1.13}$$

 $^{^2 \}mathrm{El}$ módulo ε de n_μ es +1 donde $\partial \Omega$ es tipo-tiempo y -1 donde es tipo-espacio.

En (1.13) se uso la relación de completez $g^{\mu\nu} = \varepsilon n^{\mu}n^{\nu} + h^{\mu\nu}$. Ahora, por la condición de frontera (1.2), las derivadas tangentes $e^{\alpha}_{\beta}\partial_{\alpha}\delta g_{\mu\nu}$ a $\partial\Omega$ deben anularse, sin embargo las derivadas normales de $\delta g_{\mu\nu}$ en $\partial\Omega$ no necesariamente se anulan, por lo que

$$n^{\mu}v_{\mu} = -n^{\mu}h^{\alpha\beta}\partial_{\mu}\delta g_{\alpha\beta}.\tag{1.14}$$

Reemplazando (1.14) en (1.11), se llega a

$$\int_{\Omega} g^{\mu\nu} (\delta R_{\mu\nu}) \sqrt{-g} d^4 x = -\oint_{\partial\Omega} \varepsilon n^{\mu} h^{\alpha\beta} \partial_{\mu} \delta g_{\alpha\beta} \sqrt{|h|} d^3 y, \tag{1.15}$$

y finalmente, sustituyendo (1.15) en (1.7) se obtiene que la variación del término de Einstein-Hilbert I_{EH} está dada por

$$\delta I_{EH} = \int_{\Omega} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) \sqrt{-g} \delta g^{\mu\nu} d^4x - \oint_{\partial\Omega} \varepsilon n^{\mu} h^{\alpha\beta} \partial_{\mu} \delta g_{\alpha\beta} \sqrt{|h|} d^3y.$$
 (1.16)

Ahora se hace la variación de I_B . Nótese que la única cantidad que varía es la traza de la curvatura extrínseca, i.e. K, pues la métrica inducida en $\partial\Omega$ se mantiene fija, es decir, $\delta\sqrt{|h|}=0$, así que sólo es necesario calcular la variación de K en $\partial\Omega$. Puesto que,

$$K = \nabla_{\mu} n^{\mu} = (\varepsilon n^{\mu} n^{\nu} + h^{\mu\nu}) \nabla_{\mu} n_{\nu}$$

= $h^{\mu\nu} \nabla_{\mu} n_{\nu} = h^{\mu\nu} (\partial_{\mu} n_{\nu} - \Gamma^{\lambda}_{\mu\nu} n_{\lambda}),$ (1.17)

usando lo que ya se conoce, (1.12) y que las derivadas tangentes $e^{\alpha}_{\beta}\partial_{\alpha}\delta g_{\mu\nu}$ se anulan, se llega a que

$$\delta K = -h^{\mu\nu} \delta \Gamma^{\lambda}_{\mu\nu} n_{\lambda} = \frac{1}{2} n^{\alpha} h^{\mu\nu} \partial_{\alpha} \delta g_{\mu\nu}. \tag{1.18}$$

De esta manera se obtiene la variación del término de frontera δI_B ,

$$2\delta I_B[g] = \oint_{\partial\Omega} \varepsilon n^{\mu} h^{\alpha\beta} \partial_{\mu} \delta g_{\alpha\beta} \sqrt{|h|} d^3y. \tag{1.19}$$

El término I_0 se escribe para tener un funcional de acción bien definido. Considerando un espacio-tiempo asintóticamente plano, no compacto y vacío, sin el término I_0 el funcional de acción S tendrá un valor numérico

$$S = \frac{1}{8\pi} \oint_{\partial\Omega} \varepsilon K \sqrt{|h|} \, d^3 y, \tag{1.20}$$

el cual diverge como I_0 para espacios asintóticamente planos, aún y cuando Ω esté acotado por dos hipersuperficies espacialoides, entonces S no estaría bien definido. Sin embargo, al escribir el término I_0 , se asegura que el funcional de acción para espacios asintóticamente planos sí esté bien definido.

Dado que I_0 depende únicamente de la métrica inducida h_{AB} , la variación respecto a $g_{\mu\nu}$ es cero, por lo que I_0 no influye en las ecuaciones de campo al ser un término no dinámico. Como resultado de esto, la variación del funcional de acción correspondiente a la gravedad, $S_G[g]$ es la suma de (1.16) más (1.19), por lo tanto

$$\delta S_G[g] = \frac{1}{16\pi} \int_{\Omega} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) \sqrt{-g} \delta g^{\mu\nu} d^4 x.$$
 (1.21)

Ya que el funcional de acción en Relatividad General está formado por dos partes, S_G y S_M , la variación es la suma $\delta S = \delta S_G + \delta S_M$ (ecuaciones (1.5) y (1.21)), finalmente queda

$$\delta S = \int_{\Omega} \left(\frac{1}{16\pi} (R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu}) - \frac{1}{2} T_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g}.$$
 (1.22)

Y dado que la acción es extremizada, i.e. $\delta S=0$, y $\delta g_{\mu\nu}$ son variaciones arbitrarias excepto por la condición (1.2), las ecuaciones del campo gravitacional son

$$G_{\mu\nu} = 8\pi T_{\mu\nu},\tag{1.23}$$

donde $G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}$ es el tensor de Einstein.

1.2. Formulación Hamiltoniana (ADM o 3+1)

Las ecuaciones de campo de Einstein (1.23) para la gravedad están escritas de manera covariante, por lo que tiempo y espacio son tratados en igualdad de condiciones. Sin embargo, para estudiar la gravedad como una teoría de campo y definir una formulación Hamiltoniana, donde el espacio evolucione en el tiempo. Para esto, se debe romper la covariancia, esto es el formalismo ADM o descomposición (3+1) de Relatividad General.

1.2.1. Descomposición (3+1)

La descomposición (3+1) consiste en hacer una foliación del espacio-tiempo con una familia de hipersuperficies espacialoides, cada una definiendo un instante de tiempo (figura ??). Para realizar la foliación, se considera que el espacio-tiempo de interés es globalmente hiperbólico, esto es que tienen una superficie de Cauchy. Se puede identificar la foliación con el conjunto de superficies de nivel de un campo escalar $t(x^{\alpha})$ (t = constante), correspondientes a una familia de hipersuperficies espacialoides, que serán denotadas por Σ_t . Esta función de tiempo es completamente arbitraria; salvo porque t sea simplemente valuada de x^{α} , y $n_{\alpha} \propto \partial_{\alpha} t$, el normal unitario a la hipersuperficie Σ_t , sea un campo vectorial tipo tiempo con dirección al futuro.

Figura 1.1: Foliación del espacio-tiempo en hipersuperficies espacialoides.

En cada hipersuperficie Σ_t se usarán las coordenadas y^a , que se relacionarán mediante una congruencia de curvas γ parametrizadas por la función de tiempo t y vector tangente (tipo tiempo) $t^{\alpha} = dx^{\alpha}/dt$ a la curva. Estas curvas intersectan a las hipersuperficies Σ_t , pero no necesariamente de manera ortogonal ni tampoco se debe asumir que son geodésicas.

Una curva en particular γ_q de la congruencia, define un mapeo de un punto q en Σ_t a un punto q' en $\Sigma_{t'}$, y también a un punto q'' en $\Sigma_{t''}$, y así sucesivamente (figura ??). Para fijar las coordenadas de q' y q'', dadas las coordenadas $y^a(q)$ en Σ_t , simplemente se impone que $y^a(q) = y^a(q') = y^a(q'')$. De esta manera, y^a se mantiene constante sobre cada una de las curvas γ .

Figura 1.2: Curva γ relacionando puntos de distintas hipersuperficies.

Nótese que por construcción se definió un sistema coordenado (t, y^a) en Ω . Así que existe una transformación entre éste y el sistema coordenado x^{α} , lo que permite expresar las coordenadas originales en términos de las nuevas, esto es: $x^{\alpha} = x^{\alpha}(t, y^{\alpha})$. Entonces,

$$dx^{\alpha} = \left(\frac{\partial x^{\alpha}}{\partial t}\right)_{y^{a}} dt + \left(\frac{\partial x^{\alpha}}{\partial y^{a}}\right)_{t} dy^{a}$$
$$= t^{\alpha} dt + e_{a}^{\alpha} dy^{a}, \tag{1.24}$$

donde $t^{\alpha} = \partial x^{\alpha}/\partial t$ es el vector tangente a γ y $e^{\alpha}_{a} = \partial x^{\alpha}/\partial y^{a}$ son los vectores tangentes a Σ_{t} . El vector tangente t^{α} a la curva γ en general no es ortogonal a Σ_{t} (i.e., no es paralelo al vector normal n^{α}). Ahora bien, el normal unitario es $n_{\alpha}=-N\partial_{\alpha}t$, donde N es conocida como la función de lapso que se encarga de normalizar, así que N es la proyección de t^{α} sobre el normal unitario³. También nótese que t^{α} va a tener una proyección sobre los vectores tangentes e^{α}_a , estas proyecciones forman un vector tipo espacio N^a tangente a Σ_t y conocido como vector de corrimiento.

Así, el vector t^{α} se descompone como,

$$t^{\alpha} = Nn^{\alpha} + N^a e^{\alpha}_a. \tag{1.25}$$

Sustituyendo (1.25) en (1.24) y tomando en cuenta que el elemento de línea está dado por $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$, se sigue que en el nuevo sistema coordenado

$$ds^{2} = (-N^{2} + N_{a}N^{a})dt^{2} + 2N_{a}dtdy^{a} + h_{ab}dy^{a}dy^{b}.$$
(1.26)

Vale la pena recordar que h_{ab} es la métrica en Σ_t

³Ya que $t^{\alpha}\partial_{\alpha}t = 1$.

Se puede mostrar que

$$\sqrt{-g} = N\sqrt{h}. ag{1.27}$$

Las ecuaciones (1.25), (1.26) y (1.27) son los resultados fundamentales de la descomposición (3+1).

1.2.2. Foliación de la frontera

Considérese una región Ω del espacio-tiempo foleada por hipersuperficies espacialoides Σ_t cuya frontera son superficies (bidimensionales) cerradas S_t . $\partial\Omega$ es la unión de las hipersuperficies Σ_{t_1} , Σ_{t_2} y \mathcal{B} (la unión de todas las superficies S_t).

Figura 1.3: Región Ω , frontera $\partial\Omega$ y la foliación.

Las superficies cerradas S_t están descrita por las relaciones paramétricas $y^a(\theta^w)$, donde θ^w son las coordenas en S_t . Se denota a r_a como el vector normal a S_t y se define un 4-vector asociado $r^\alpha = r^a e^\alpha_a$, que es ortogonal a n_α y satisface $r^\alpha r_\alpha = 1$.

Los vectores $e_w^a = \partial y^a/\partial \theta^w$ tangentes a S_t expresados como 4-vectores se ven de la siguiente manera,

$$e_w^{\alpha} = e_a^{\alpha} e_w^a = \frac{\partial x^{\alpha}}{\partial \theta^w}.$$
 (1.28)

La ecuación (1.28) ayuda a ver que las componentes de la métrica σ_{vw} inducida en S_t están dadas por

$$\sigma_{vw} = h_{ab}e_v^a e_w^b = (g_{\alpha\beta}e_a^{\alpha}e_b^{\beta})e_v^a e_w^b = g_{\alpha\beta}e_v^{\alpha}e_w^{\beta}. \tag{1.29}$$

Y su inversa es denotada por σ^{vw} . Las relaciones de completez son $h^{ab}=r^ar^b+\sigma^{vw}e^a_ve^b_w$ y $g^{\alpha\beta}=-n^\alpha n^\beta+h^{ab}e^\alpha_ae^\beta_b$. Está última puede reescribirse como

$$g^{\alpha\beta} = -n^{\alpha}n^{\beta} + r^{\alpha}r^{\beta} + \sigma^{vw}e_{v}^{\alpha}e_{w}^{\beta}. \tag{1.30}$$

La curvatura extrínseca de S_t encajada en Σ_t está definida por

$$k_{vw} = e_v^{\alpha} e_w^{\beta} k_{\alpha\beta} = e_v^{\alpha} e_w^{\beta} \nabla_{\beta} r_{\alpha}. \tag{1.31}$$

La traza de k_{vw} no es más que $k = \sigma^{vw} k_{vw}$.

De manera similar a lo hecho en la sección 1.2.1, para relacionar las coordenadas θ^w de una superficie S_t con las de otra superficie S_t' , se considera una congruencia de curvas β en \mathcal{B} que intersecten las superficies S_t ortogonalmente, es decir, que vayan a lo largo de n^{α} . Después se pide que si la curva β_q intersecta S_t en q con coordenada θ^w , entonces la misma coordenada se asignada en la intersección de β_q con $S_{t'}$ y así sucesivamente.

La hipersuperficie \mathcal{B} está foleada por las superficies S_t . En principio, se puede ajustar a \mathcal{B} un sistema coordenado arbitrario, sin embargo conviene escoger: $z^f = (t, \theta^w)$. En éstas coordenadas $dx^\alpha = Nn^\alpha dt + e_w^\alpha d\theta^w$, así para desplazamientos dentro de \mathcal{B} el elemento de línea es

$$ds_{\mathcal{B}} = g_{\alpha\beta} (Nn^{\alpha} dt + e_v^{\alpha} d\theta^v) (Nn^{\beta} dt + e_w^{\beta} d\theta^w)$$

= $-N^2 dt^2 + \sigma_{vw} d\theta^v d\theta^w.$ (1.32)

Por otro lado, la métrica inducida γ_{fg} en $\mathcal B$ tiene componentes

$$\gamma_{fg} = g_{\alpha\beta} \left(\frac{\partial x^{\alpha}}{\partial z^f} \right) \left(\frac{\partial x^{\beta}}{\partial z^g} \right) = g_{\alpha\beta} e_f^{\alpha} e_g^{\beta} \tag{1.33}$$

y la inversa se denota por γ^{fg} . La relación de completes toma la forma⁴

$$g^{\alpha\beta} = r^{\alpha}r^{\beta} + \gamma^{fg}e_f^{\alpha}e_g^{\beta}. \tag{1.34}$$

Ahora, de (1.32) se sigue que

$$\gamma_{fg}dz^fdz^g = -N^2dt^2 + \sigma_{vw}d\theta^v d\theta^w, \tag{1.35}$$

por lo que implica $\sqrt{-\gamma} = N\sqrt{\sigma}$.

Por último, la curvatura extrínseca \mathcal{K}_{fg} de \mathcal{B} dentro del espacio-tiempo está dada por

$$\mathcal{K}_{fg} = e_f^{\alpha} e_g^{\beta} \nabla_{\beta} r^{\alpha}, \tag{1.36}$$

y su traza por $\mathcal{K} = \gamma^{fg} \mathcal{K}_{fg}$.

1.2.3. Acción gravitacional en el formalismo (3+1)

Para construir el Hamiltoniano gravitacional se realizará la descomposición (3+1) del funcional de acción gravitacional S_G . Por ahora sólo se considerarán los términos I_{EH} e I_B , más adelante se reincorporará I_0 .

$$S_G = \frac{1}{16\pi} \left(\int_{\Omega} R\sqrt{-g} \, d^4x + 2 \oint_{\partial\Omega} \varepsilon K \sqrt{|h|} \, d^3y \right). \tag{1.37}$$

Como en la sección (1.2.2), Ω tiene por frontera a $\partial\Omega$ que es la unión de dos hipersuperficies espacialoides Σ_{t_1} y Σ_{t_2} , y la hipersuperficie tipo tiempo \mathcal{B} (figura ??), esto es,

$$\partial\Omega = -\Sigma_{t_1} \cup \Sigma_{t_2} \cup \mathcal{B}. \tag{1.38}$$

Con lo que el término de frontera toma la forma,

$$2\oint_{\partial\Omega} \varepsilon K \sqrt{|h|} d^3y = 2\int_{\Sigma_{t_1}} K \sqrt{|h|} d^3y - 2\int_{\Sigma_{t_2}} K \sqrt{|h|} d^3y + 2\int_{\mathcal{B}} \mathcal{K} \sqrt{-\gamma} d^3z. \tag{1.39}$$

La región Ω es foleada por las hipersuperficies espacialoides Σ_t , sobre las cuales el escalar de Ricci está dado por

$$R = {}^{(3)}R + K^{ab}K_{ab} - K^2 - 2\nabla_{\alpha}(n^{\beta}\nabla_{\beta}n^{\alpha} - n^{\alpha}\nabla_{\beta}n^{\beta}), \tag{1.40}$$

donde ${}^{(3)}R$ es el escalar de Ricci construido a partir de h_{ab} . De esta forma, el término de Einstein-Hilbert queda reescrito como

$$\int_{\Omega} R\sqrt{-g} d^4x = \int_{t_2}^{t_1} dt \left[\int_{\Sigma_t} (^{(3)}R + K^{ab}K_{ab} - K^2)N\sqrt{h} d^3y - 2 \oint_{\partial\Omega} (n^{\beta}\nabla_{\beta}n^{\alpha} - n^{\alpha}\nabla_{\beta}n^{\beta}) d\Sigma_{\alpha} \right], \tag{1.41}$$

⁴Como r^{α} es ortogonal a S_t , también lo es a \mathcal{B} .

donde se usó la expresión (1.27), (1.40) y el teorema de Gauss. Como la frontera es la unión de varias hipersuperficies, ecuación (1.38), la integral sobre $\partial\Omega$ se descompone en integrales sobre Σ_{t_1} , Σ_{t_2} y \mathcal{B} . El trato de la integral sobre Σ_{t_1} y Σ_{t_2} es el mismo (salvo por un signo global), así que solamente es necesario mostrar uno de estos cálculos,

$$-2\int_{\Sigma_{t_1}} (n^{\beta} \nabla_{\beta} n^{\alpha} - n^{\alpha} \nabla_{\beta} n^{\beta}) d\Sigma_{\alpha} = -2\int_{\Sigma_{t_1}} (\nabla_{\beta} n^{\beta}) \sqrt{h} d^{3}y$$
$$= -2\int_{\Sigma_{t_1}} K \sqrt{h} d^{3}y. \tag{1.42}$$

La integral sobre Σ_{t_2} da el mismo resultado pero con signo contrario. Ambos resultados se cancelan con las integrales sobre Σ_{t_1} y Σ_{t_2} de (1.39). Por otro lado, la integral sobre \mathcal{B} contribuye con

$$-2\int_{\mathcal{B}} (n^{\beta} \nabla_{\beta} n^{\alpha} - n^{\alpha} \nabla_{\beta} n^{\beta}) d\Sigma_{\alpha} = -2\int_{\mathcal{B}} (n^{\beta} \nabla_{\beta} n^{\alpha}) r_{\alpha} \sqrt{-\gamma} d^{3}z$$
$$= 2\int_{\mathcal{B}} n^{\alpha} n^{\beta} \nabla_{\beta} r_{\alpha} \sqrt{-\gamma} d^{3}z. \tag{1.43}$$

Juntando los resultados, el funcional de acción gravitacional (aún sin el término I_0) queda de la siguiente manera

$$S_G = \frac{1}{16\pi} \int_{t_1}^{t_2} dt \left[\int_{\Sigma_t} (^{(3)}R + K^{ab}K_{ab} - K^2)N\sqrt{h} \, d^3y + 2 \int_{\mathcal{B}} (\mathcal{K} + n^{\alpha}n^{\beta}\nabla_{\beta}r_{\alpha})\sqrt{-\gamma} \, d^3z \right]. \tag{1.44}$$

Ahora bien, a partir de las relaciones de completez (1.34) y (1.30) se manipula $(\mathcal{K} + n^{\alpha}n^{\beta}\nabla_{\beta}r_{\alpha})$. Primero,

$$\mathcal{K} = \gamma^{fg} \mathcal{K}_{fg} = \gamma^{fg} (e_f^{\alpha} e_g^{\beta} \nabla_{\beta} r_{\alpha}) = (g^{\alpha\beta} - r^{\alpha} r^{\beta}) \nabla_{\beta} r_{\alpha}, \tag{1.45}$$

que al sumar $n^{\alpha}n^{\beta}\nabla_{\beta}r_{\alpha}$, se obtiene

$$(g^{\alpha\beta} - r^{\alpha}r^{\beta})\nabla_{\beta}r_{\alpha} + n^{\alpha}n^{\beta}\nabla_{\beta}r_{\alpha} = \sigma^{vw}e_{v}^{\alpha}e_{w}^{\beta}(\nabla_{\beta}r_{\alpha}) = \sigma^{vw}k_{vw} = k.$$
(1.46)

Sustituyendo (1.46) en (1.44) y además, tomando en cuenta que \mathcal{B} está foleada por las superficies cerradas S_t (así que $\sqrt{-\gamma}d^3z = N\sqrt{\sigma}dtd^2\theta$), entonces,

$$S_G = \frac{1}{16\pi} \int_{t_1}^{t_2} dt \left[\int_{\Sigma_t} (^{(3)}R + K^{ab}K_{ab} - K^2) N\sqrt{h} \, d^3y + 2 \oint_{S_t} (k - k_0) N\sqrt{\sigma} \, d^2\theta \right]. \tag{1.47}$$

Nótese que ahora sí se incluyó I_0 al escribir el término k_0 en la integral sobre S_t . La elección de k_0 como la curvatura extrínseca de S_t encajada en el espacio plano previene que la integral diverja en el límite $S_t \to \infty$, asegurando que S_G esté bien definido para cualquier espacio-tiempo asintóticamente plano.

1.2.4. Hamiltoniano Gravitacional

En el formalismo (3+1) el sistema es descrito por h_{ab} y por cómo ésta cambia a lo largo del flujo de tiempo, es decir, del campo vectorial $t^{\alpha} = Nn^{\alpha} + N^{\alpha}$. Las variables fundamentales son pues, la métrica h_{ab} y su momento canónicamente conjugado p^{ab} ,

$$p^{ab} = \frac{\partial \mathcal{L}_G}{\partial \dot{h}_{ab}}. (1.48)$$

Aquí, $16\pi\mathcal{L}_G=(^{(3)}R+K^{ab}K_{ab}-K^2)N\sqrt{h}$, y \dot{h}_{ab} es el cambio de la métrica a través del flujo de tiempo, esto es,

$$\dot{h}_{ab} = \pounds_t h_{ab}. \tag{1.49}$$

Recordando que $h_{ab} = g_{\alpha\beta}e_a^{\alpha}e_b^{\beta}$, se calcula la derivada de Lie de la métrica $g_{\mu\nu}$ a lo largo del campo vectorial t, después se proyecta en la hipersuperficie Σ_t y se obtiene que

$$\dot{h}_{ab} = 2NK_{ab} + D_bN_a + D_aN_b, \tag{1.50}$$

donde D_a es la derivada covariente en Σ_t combatible con h_{ab} . Luego se despeja la curvatura extrínseca de (1.50), para poder ver la dependencia en \dot{h}_{ab} del funcional de acción gravitacional, entonces,

$$K_{ab} = \frac{1}{2N} \left(\dot{h}_{ab} - D_b N_a - D_a N_b \right). \tag{1.51}$$

De la ecuación anterior, (1.51), nótese que solamente la parte de volumen de la densidad Lagrangiana de gravedad depende de \dot{h}_{ab} (ver (1.47)), así que para facilitar las cosas, se analizará sólo esa parte, entonces

$$(16\pi)p^{ab} = \frac{\partial K_{mn}}{\partial \dot{h}_{ab}} \frac{\partial}{\partial K_{mn}} (16\pi \mathcal{L}_G)$$

$$= \frac{\partial K_{mn}}{\partial \dot{h}_{ab}} \frac{\partial}{\partial K_{mn}} \left([^{(3)}R + (h^{ac}h^{bd} - h^{ab}h^{cd})K_{ab}K_{cd}]N\sqrt{h} \right)$$

$$= \sqrt{h}(K^{ab} - Kh^{ab}). \tag{1.52}$$

Haciendo la transformación de Legendre $\mathcal{H}_G = p^{ab}\dot{h}_{ab} - \mathcal{L}_G$, la parte de volumen de la densidad Hamiltoniana es

$$16\pi \mathcal{H}_{G} = \sqrt{h}(K^{ab} - Kh^{ab})(2NK_{ab} + D_{b}N_{a} + D_{a}N_{b})$$

$$- (^{(3)}R + K^{ab}K_{ab} - K^{2})N\sqrt{h}$$

$$= (K^{ab}K_{ab} - K^{2} - ^{(3)}R)N\sqrt{h} + 2(K^{ab} - Kh^{ab})D_{b}N_{a}\sqrt{h}$$

$$= (K^{ab}K_{ab} - K^{2} - ^{(3)}R)N\sqrt{h} + 2D_{b}[(K^{ab} - Kh^{ab})N_{a}]\sqrt{h}$$

$$- 2D_{b}(K^{ab} - Kh^{ab})N_{a}\sqrt{h}.$$
(1.53)

El Hamiltoniano gravitacional lo obtenemos integrando \mathcal{H}_G sobre Σ_t y sumando los términos de frontera,

$$16\pi H_{G} = \int_{\Sigma_{t}} 16\pi \mathcal{H}_{G} d^{3}y - 2 \oint_{S_{t}} (k - k_{0}) N \sqrt{\sigma} d^{2}\theta$$

$$= \int_{\Sigma_{t}} \left[N(K^{ab}K_{ab} - K^{2} - {}^{(3)}R) - 2N_{a}D_{b}(K^{ab} - Kh^{ab}) \right] \sqrt{h} d^{3}y$$

$$+ 2 \oint_{S_{t}} (K^{ab} - Kh^{ab}) N_{a} dS_{b} - 2 \oint_{S_{t}} (k - k_{0}) N \sqrt{\sigma} d^{2}\theta$$

$$= \int_{\Sigma_{t}} \left[N(K^{ab}K_{ab} - K^{2} - {}^{(3)}R) - 2N_{a}D_{b}(K^{ab} - Kh^{ab}) \right] \sqrt{h} d^{3}y$$

$$- 2 \oint_{S_{t}} \left[(k - k_{0})N - (K^{ab} - Kh^{ab})N_{a}r_{b} \right] \sqrt{\sigma} d^{2}\theta, \tag{1.54}$$

donde $dS_b = r_b \sqrt{\sigma} d^2 \theta$.

En el Hamiltoniano, ecuación (1.54), K^{ab} representa a las funciones h^{ab} y p^{ab} , explícitamente

$$\sqrt{h}K^{ab} = 16\pi(p^{ab} - \frac{1}{2}ph^{ab}). \tag{1.55}$$

 $con p := h_{ab}p^{ab}.$

1.2.5. Ecuaciones del campo gravitacional

Para obtener las ecuaciones de campo gravitacional en forma Hamiltoniana se hace la variación de la acción $^5S = S_G$, con S_G escrita en forma canónica

$$S_G = \frac{1}{16\pi} \int_{t_1}^{t_2} dt \left[\int_{\Sigma_t} p^{ab} \dot{h}_{ab} d^3 y - H_G \right], \tag{1.56}$$

 $^{^5 \}mathrm{Por}$ el momento estamos considerando que estamos en vacío, i.e. $S_M = 0.$

14CAPÍTULO 1. FORMULACIÓN LAGRANGIANA Y HAMILTONIANA DE LA RELATIVIDAD GENERAL

respecto a las variables independientes N, N^a , h_{ab} , y p^{ab} , sujetas a las condiciones

$$\delta N \Big|_{S_t} = \delta N^a \Big|_{S_t} = \delta h_{ab} \Big|_{S_t} = 0, \tag{1.57}$$

y sin condición sobre δp^{ab} de anularse en la frontera S_t . La variación da

$$\delta S_G = \frac{1}{16\pi} \int_{t_2}^{t_1} dt \left[\int_{\Sigma_t} (p^{ab} \delta \dot{h}_{ab} + \dot{h}_{ab} \delta p^{ab}) d^3 y - \delta H_G \right]. \tag{1.58}$$

Comenzaremos calculando la variación del Hamiltoniano gravitacional H_G . Iniciamos con la variación con respecto a las funciones no dinámicas, $N y N^a$:

$$16\pi\delta_N H_G = \int_{\Sigma_t} (-\hat{\mathcal{C}}\delta N - 2\hat{\mathcal{C}}_a \delta N^a) d^3 y, \qquad (1.59)$$

donde

$$\hat{\mathcal{C}} := ({}^{(3)}R + K^2 - K^{ab}K_{ab})\sqrt{h}, \qquad \hat{\mathcal{C}}_a := [D_b(K_a^b - K\delta_a^b)]\sqrt{h}. \tag{1.60}$$

Para hacer la variación de H_G respecto a p^{ab} y h_{ab} hay que expresar el Hamiltoniano en términos de p^{ab} y h_{ab} , para ello se usa (1.55) en (1.54), de este modo,

$$16\pi H_G = \int_{\Sigma_t} \left[Nh^{-1/2} (\hat{p}_{ab}\hat{p}^{ab} - \frac{1}{2}\hat{p}^2) - Nh^{1/2} {}^{(3)}R - 2N_a h^{1/2} D_b (h^{-1/2}\hat{p}^{ab}) \right] d^3y$$

$$-2 \oint_{S_t} \left[N(k - k_0) - N_a h^{-1/2} \hat{p}^{ab} r_b \right] \sqrt{\sigma} d^2\theta.$$
(1.61)

Aquí se definió $\hat{p}^{ab}=16\pi p^{ab}$ ($\hat{p}_{ab}=16\pi p_{ab}$). Haciendo la variación con respecto a \hat{p}^{ab} , se tiene

$$(16\pi)\delta_{p}H_{G} = \int_{\Sigma_{t}} Nh^{-1/2}\delta_{p}(\hat{p}_{ab}\hat{p}^{ab} - \frac{1}{2}\hat{p}^{2}) d^{3}y - 2\delta_{p} \int_{\Sigma_{t}} N_{a}h^{1/2}D_{b}(h^{-1/2}\hat{p}^{ab}) d^{3}y$$

$$+ 2 \oint_{S_{t}} N_{a}h^{-1/2}\delta\hat{p}^{ab}r_{b}\sqrt{\sigma} d^{2}\theta$$

$$= \int_{\Sigma_{t}} 2\left[Nh^{-1/2}(\hat{p}_{ab} - \frac{1}{2}\hat{p}h_{ab}) + D_{(b}N_{a)}\right]\delta\hat{p}^{ab} d^{3}y$$

$$= \int_{\Sigma_{t}} \mathcal{H}_{ab}\delta\hat{p}^{ab} d^{3}y. \tag{1.62}$$

Ahora, se hace la variación de H_G con respecto a h_{ab} . Lo haremos por partes, primero el término de volumen⁶

$$(16\pi)\delta_{h}H_{\Sigma} = \int_{\Sigma_{t}} \left[-Nh^{-1}(\hat{p}^{ab}\hat{p}_{ab} - \frac{1}{2}\hat{p}^{2})\delta_{h}h^{1/2} + Nh^{-1/2}\delta_{h}(\hat{p}^{ab}\hat{p}_{ab} - \frac{1}{2}\hat{p}^{2}) -N\delta_{h}(h^{1/2})^{(3)}R + 2\delta_{h}(\hat{p}^{ab}D_{b}N_{a}) \right] d^{3}y - 2\delta_{h} \oint_{S_{t}} N_{a}h^{-1/2}\hat{p}^{ab}r_{b}\sqrt{\sigma} d^{2}\theta.$$

$$(1.63)$$

Por la condición de frontera (1.57), la variación de la integral sobre S_t se anula. Usando $^{(3)}R = R_{ab}h^{ab}$ y las relaciones $\delta h^{ab} = -h^{ac}h^{db}\delta h_{cd}$ y $\delta_h h^{1/2} = \frac{1}{2}h^{1/2}h^{ab}\delta h_{ab}$, es posible mostrar que

$$\delta_h(h^{1/2})^{(3)}R = -h^{1/2}(R^{ab} - \frac{1}{2})^{(3)}Rh^{ab}\delta h_{ab} + h^{1/2}D_c(h^{ab}\delta \Gamma^c_{ab} - h^{ac}\delta \Gamma^b_{ab})$$
$$= -h^{1/2}G^{ab}\delta h_{ab} + h^{1/2}D_cv^c.$$

⁶La integral sobre S_t viene de aplicar el teorema de Gauss al término $2N_ah^{1/2}D_b(h^{-1/2}\hat{p}^{ab})$ en la ecuación (1.61).

El resto de las variaciones son:

$$\delta_h(\hat{p}^{ab}\hat{p}_{ab} - \frac{1}{2}\hat{p}^2) = 2(\hat{p}_c^a\hat{p}^{cb} - \frac{1}{2}\hat{p}\hat{p}^{ab})\delta h_{ab},$$

$$\delta_h D_b N_a = (D_b N^c)\delta h_{ac} + h_{ac} N^d \delta \Gamma^c_{bd}.$$

Con esto se sigue que

$$(16\pi)\delta_{h}H_{\Sigma} = \int_{\Sigma_{t}} \left[-\frac{1}{2}Nh^{-1/2}(\hat{p}^{cd}\hat{p}_{cd} - \frac{1}{2}\hat{p}^{2})h^{ab} + 2Nh^{-1/2}(\hat{p}_{c}^{a}\hat{p}^{bc} - \frac{1}{2}\hat{p}\hat{p}^{ab}) + Nh^{1/2}G^{ab} + 2\hat{p}^{c(a}D_{c}N^{b)} \right] \delta h_{ab} d^{3}y + \int_{\Sigma_{t}} \left(-Nh^{1/2}D_{c}v^{c} + 2\hat{p}_{c}^{b}N^{d}\delta\Gamma^{c}_{bd} \right) d^{3}y.$$

$$(1.64)$$

Ahora bien, conviene analizar la segunda integral por separado. Primero,

$$\begin{split} -\int_{\Sigma_t} Nh^{1/2}D_c v^c \, d^3y &= \int_{\Sigma_t} (\partial_c N) v^c h^{1/2} \, d^3y - \oint_{S_t} Nv^c r_c \sqrt{\sigma} \, d^2\theta \\ &= \int_{\Sigma_t} (\partial_c N) v^c h^{1/2} \, d^3y + \oint_{S_t} Nh^{ab} \delta(\partial_c h_{ab}) r^c \sqrt{\sigma} d^2\theta \\ &= -\int_{\Sigma_t} (h^{ab} \partial^d N - h^{bd} \partial^a N) (D_d \delta h_{ab}) h^{1/2} \, d^3y \\ &+ \oint_{S_t} Nh^{ab} (\partial_c \delta h_{ab}) r^c \sqrt{\sigma} d^2\theta \\ &= \int_{\Sigma_t} (h^{ab} D_d D^d - D^b D^a N) \delta h_{ab} h^{1/2} \, d^3y \\ &+ \oint_{S_t} Nh^{ab} (\partial_c \delta h_{ab}) r^c \sqrt{\sigma} d^2. \end{split}$$

Para obtener la segunda línea se usó la versión tridimensional de la ecuación (1.14) mientras que para obtener la tercer línea se recurrió a la expresión (1.12), también en su forma tridimensional, y así tener: $v^c = 1/2(h^{ab}h^{cd} - h^{ac}h^{bd})[D_b(\delta h_{da}) + D_a(\delta h_{db}) - D_d(\delta h_{ab})]$. Después multiplicando por $\partial_c N$ se explota la antisimetría en a y d, y entonces,

$$\begin{split} \int_{\Sigma_t} 2\hat{p}_c^b N^d \delta \Gamma^c_{bd} \, d^3y &= \int_{\Sigma_t} h^{1/2} \hat{p}^{ab} N^d D_d (\delta h_{ab}) h^{-1/2} \, d^3y \\ &= -\int_{\Sigma_t} D_d (h^{-1/2} \hat{p}^{ab} N^d) \delta h_{ab} h^{1/2} \, d^3y, \end{split}$$

donde también se consideró la forma tridimensional de (1.12)) y depués al integrar por partes se utilizó la condición (1.57). Así,

$$(16\pi)\delta_h H_{\Sigma} = \int_{\Sigma_t} \hat{\mathcal{P}}^{ab} \delta h_{ab} d^3 y + \oint_{S_t} N h^{ab} (\partial_c \delta h_{ab}) r^c \sqrt{\sigma} d^2.$$
 (1.65)

Donde

$$\begin{split} \hat{\mathcal{P}}^{ab} &:= h^{1/2} N G^{ab} - \frac{1}{2} N h^{-1/2} (\hat{p}^{cd} \hat{p}_{cd} - \frac{1}{2} \hat{p}^2) h^{ab} + 2 N h^{-1/2} (\hat{p}_c^a \hat{p}^{bc} - \frac{1}{2} \hat{p} \hat{p}^{ab}) \\ &- h^{1/2} (D^a D^b N - h^{ab} D_c D^c N) - h^{1/2} D_c (h^{-1/2} \hat{p}^{ab} N^c) + 2 \hat{p}^{c(a} D_c N^b). \end{split}$$

Pasando al término de frontera, al hacer la variación con respecto a h_{ab} se obtiene,

$$(16\pi)\delta_h H_S = -2 \oint_{S_t} N \delta k \sqrt{\sigma} \, d^2 \theta = -\oint_{S_t} N h^{ab} (\partial_c \delta h_{ab}) r^c \sqrt{-\sigma} \, d^2 \theta. \tag{1.66}$$

Haciendo la suma de (1.65) con (1.66) se llega a que la variación con respecto a h_{ab} de H_G es

$$(16\pi)\delta_h H_G = \int_{\Sigma_t} \hat{\mathcal{P}}^{ab} \delta h_{ab} \, d^3 y \tag{1.67}$$

Finalmente juntando los resultados (1.59), (1.62) y (1.67) se obtiene que la variación del Hamiltoniano gravitacional, bajo las condiciones (1.57), está dada por,

$$\delta H_G = \int_{\Sigma_t} \left(\mathcal{P}^{ab} \delta h_{ab} + \mathcal{H}_{ab} \delta p^{ab} - \mathcal{C} \delta N - 2 \mathcal{C}_a \delta N^a \right) d^3 y, \tag{1.68}$$

con $\mathcal{P}^{ab} := \hat{\mathcal{P}}^{ab}/(16\pi)$, $\mathcal{C} := \hat{\mathcal{C}}/(16\pi)$ y $\mathcal{C}^a := \hat{\mathcal{C}}^a/(16\pi)$.

Regresando a la variación del funcional de acción gravitacional, ecuación (1.58), integrando por partes se obtiene como resultado

$$\delta S_G = \int_{t_1}^{t_2} dt \int_{\Sigma_t} \left[(\dot{h}_{ab} - \mathcal{H}_{ab}) \delta p^{ab} - (\dot{p}^{ab} + \mathcal{P}^{ab}) \delta h_{ab} + \mathcal{C} \delta N + 2 \mathcal{C}_a \delta N^a \right] d^3 y. \tag{1.69}$$

Imponiendo que la acción sea estacionaria implica

$$\dot{h}_{ab} = \mathcal{H}_{ab}, \quad \dot{p}^{ab} = -\mathcal{P}^{ab}, \quad \mathcal{C} = 0, \quad \mathcal{C}^a = 0. \tag{1.70}$$

Estas son las ecuaciones de Einstein (en vacío) en la forma Hamiltoniana. Las primeras dos rigen la evolución de las variables conjugadas h_{ab} y p^{ab} ; las últimas dos se conocen como constricciones Hamiltoniana y de difeomorfismos (o momento) de la Relatividad General, respectivamente. Explícitamente las constricciones son

$$(3)R + K^2 - K^{ab}K_{ab}\sqrt{h} = 0, [D_b(K^{ab} - Kh^{ab})]\sqrt{h} = 0. (1.71)$$

Entonces, en la formulación Hamiltoniana para encontrar una solución a las ecuaciones de Einstein se hace una foliación del espacio-tiempo escogiendo la función de lapso N y el vector de corrimiento N^a , después se escogen los valores iniciales para h_{ab} y K_{ab} de tal manera que satisfagan las constricciones (1.71) y entonces se determina la evolución de los valores iniciales usando las ecuaciones Hamiltonianas $\dot{h}_{ab} = \mathcal{H}_{ab}$ y $\dot{p}^{ab} = -\mathcal{P}^{ab}$, que equivalentemente se pueden escribir como

$$\dot{h}_{ab} = 2NK_{ab} + \pounds_N h_{ab} \tag{1.72}$$

у

$$\dot{K}_{ab} = D_b D_a N - N(R_{ab} + K K_{ab} - 2K_a^c K_{bc}) + \pounds_N K_{ab}. \tag{1.73}$$

1.2.6. Espacio Fase

La formulación Hamiltoniana permite hacer un estudio del espacio fase de la Relatividad General. Habiendo hecho las descomposición 3+1, se tiene que las variables independientes son N, N^a (éstas dos no dinámicas) y h_{ab} que respectivamente cada una tiene como momento conjugado a

$$\Pi = \frac{\partial \mathcal{L}_G}{\partial \dot{N}} = 0, \tag{1.74}$$

$$\Pi_a = \frac{\partial \mathcal{L}_G}{\partial \dot{N}_a} = 0, \tag{1.75}$$

$$p^{ab} = \frac{\partial \mathcal{L}_G}{\partial \dot{h}_{ab}} = \frac{\sqrt{h}}{16\pi} (K^{ab} - Kh^{ab}). \tag{1.76}$$

De esta manera, el espacio fase coordenado por $(N, N^a, h_{ab}, \Pi, \Pi_a, p^{ab})$, tiene la siguiente estructura simpléctica,

$$\{N(t,y),\Pi(t,y')\} = \delta(y-y'),\tag{1.77}$$

$$\{N^a(t,y), \Pi_b(t,y')\} = \delta_b^a \delta(y-y'),$$
 (1.78)

$$\{h_{ab}(t,y), p^{cd}(t,y')\} = \delta^c_{(a}\delta^d_{b)}\delta(y-y'),$$
 (1.79)

y el resto de los paréntesis de Poisson son nulos.

Ahora bien, dado que S_G contiene derivadas temporales de h_{ab} por medio de los términos que dependen de la curvatura extrínseca, pero no hay derivadas temporales de N ni de N^a , implica que el Lagrangiano sea singular y en consecuencia hay constricciones primarias. Las constricciones limitan la evolución del sistema a una región restringida del espacio fase, definen una superficie de constricción y además las constricciones primarias generan transformaciones de norma sobre la superficie de constricción.

De la definición para los momentos conjugados se obtiene que las constricciones primarias son las siguientes,

$$C = \Pi = 0$$
$$C_a = \Pi_a = 0.$$

Es importante remarcar que Π y Π_a no son cero en todo el espacio fase, únicamente en la superficie de constricción. Así, la parte de la acción S_G que va como $N\mathcal{C} + N^a\mathcal{C}_a$ es cero y la dinámica es pura norma. Por lo tanto, la descripción del sistema en el espacio fase tiene como variables fundamentales h_{ab} y p^{ab} , mientras que la función de lapso y el vector de corrimiento juegan el papel de multiplicadores de Lagrange.

18 <i>CAPÍTULO 1</i> .	FORMULACIÓN I	LAGRANGIANA	Y HAMILTONI	ANA DE LA REI	LATIVIDAD GEI	NERAL

Capítulo 2

Relatividad General en Variables de Conexión

Al realizar la formulación Hamiltoniana a través del formalismo ADM se obtienen las variables canónicas h_{ab} y p^{ab} que están sujetas a cuatro constricciones C = 0 y $C^a = 0$ (a = 1, 2, 3) (1.71). Estas constricciones tienen una complicada dependencia no polinomial de las variables canónicamente conjugadas, lo que ha hecho prácticamente imposible construir la representación de momento en los intentos de cuatización con estas variables. Sin embargo, a mediados de los 80's A. Ashtekar notó que el espacio fase gravitacional podría reformularse en términos de un nuevo par de variables canónicas que simplifican las constricciones [?, ?]. Estas variables son ciertas conexiones de espín modificadas de aquellas construidas por A. Sen para los espinores $SL(2, \mathbb{C})$ [?, ?] y su momento canónicamente conjugado. En esta nueva formulación de la Relatividad General, en términos de la conexión modificada y de su momento conjugado, se simplifica notablemente la forma de las constricciones y con ello la búsqueda de una teoría cuántica de la Relatividad General. Además, algo muy importante por destacar de esta nueva formulación Hamiltoniana, es que la estructura matemática de la teoría de Einstein se ve como una teoría tipo Yang-Mills.

Aunque en esta formulación las constricciones tienen una forma más sencilla de manejar, las variables fundamentales son complejas, lo que generó problemas con la implementación de las condiciones de realidad. Para lidiar con esto, J. F. Barbero propuso una variante en la cual la conexión es real [?], y es conocida como la conexión de Ashtekar-Barbero. La relación entre las variables reales y complejas es en cierta medida clarificada por el parámetro de Barbero-Immirzi, β ; las nuevas variables corresponden a las (anti-)auto-duales para $\beta = \pm i$ y a las reales para cualquier $\beta \in \mathbb{R}$ [?, ?].

2.1. Espacio fase

Comencemos considerando un campo de cotriadas e_a^I (I=1,2,3 y a=1,2,3) sobre la variedad tridimensional Σ_t (sección 1.2.1). La métrica h_{ab} en Σ_t como¹

$$h_{ab} = \delta_{IJ} e_a^I e_b^J. (2.1)$$

Donde se observa que (2.1) es invariante bajo transformaciones de SO(3), ya que $\delta_{IJ}e_a^{\prime I}e_b^{\prime J}=\delta_{IJ}e_a^Ie_b^J$ donde $e_a^{\prime I}=O_J^Ie_a^J$ y O_J^I es un elemento de matriz de SO(3). Las triadas y cotriadas densitizadas, E_I^a y E_a^I , son (respectivamente):

$$E_I^a = \sqrt{h}e_I^a$$
 y $E_a^I = e_a^I/\sqrt{h}$.

Expresando el determinante de h como $|\det(E)|$, la variable canónica h_{ab} de la formulación ADM queda como

$$h_{ab} = |\det(E)|\delta_{IJ}E_a^I E_b^J \tag{2.2}$$

¹Dado que aquí el espacio interno es \mathbb{R}^3 , la métrica interna es δ_{IJ} .

y su inverso

$$h^{ab} = |\det(E)|^{-1} \delta^{IJ} E_I^a E_J^b. \tag{2.3}$$

Ahora, para reescribir el momento canónicamente conjugado p^{ab} de la formulación ADM (1.52) en términos de las triadas, se debe considerar la curvatura extrínseca K_{ab} de Σ_t . Sea la una 1-forma K_{aI} en Σ_t tal que

$$K_{ab} = K_{aI}e_b^I, (2.4)$$

con lo que se sigue que el momento canónicamente conjugado en (1.52) se expresa como

$$(16\pi)p^{ab} = 2|\det(E)|^{-1}\delta^{IJ}E_I^a E_J^d K_{[d}^K \delta_{c]}^b E_K^c.$$
(2.5)

Además, como $K_{ab} = K_{ba}$, se tienen tres constricciones:

$$G_{ab} \equiv K_{[ab]} = K_{[aI}e_{b]}^{I} = 0.$$
 (2.6)

Si se contrae G_{ab} con e_I^a y e_J^b se llega a que

$$G_{ab}e_{I}^{a}e_{J}^{b} = \frac{1}{2}(K_{aK}e_{b}^{K} - K_{bK}e_{a}^{K})e_{I}^{a}e_{J}^{b} = \frac{1}{2}(K_{aK}e_{I}^{a}\delta_{J}^{K} - K_{bK}e_{J}^{b}\delta_{I}^{K})$$
$$= \frac{1}{2}(K_{aJ}e_{I}^{a} - K_{bI}e_{J}^{b}) = K_{a[J}e_{I]}^{a}$$
$$\Longrightarrow K_{a[J}e_{I]}^{a} = 0,$$

es decir, las constricciones (2.6) se pueden reescribir como $h^{-1/2}K_{a[J}E^a_{I]}=0$ o de mejor manera

$$G_{JI} \equiv K_{a[J} E_{I]}^a = 0.$$
 (2.7)

Usando las expresiones (2.2) y (2.5), las constricciones Hamiltoniana y de difeormorfismos (1.71), quedan como

$$C = \frac{-1}{16\pi} [|\det(E)|^{-1/2} (K_a^I K_b^J - K_a^J K_b^I) E_I^a E_J^b + |\det(E)|^{1/2} {}^{(3)}R]$$
(2.8)

$$C_a = -2D_b(K_a^J E_J^b - \delta_a^b K_c^J E_J^c), \tag{2.9}$$

donde ${}^{(3)}R$ es considerado como una función de las triadas densitizadas $E^a_I.$

En la formulación Hamiltoniana ADM, hay seis variables de configuración (h_{ab}) y sus seis respectivos momentos canónicos (p^{ab}) , sujetos a cuatro constricciones, una Hamiltoniana $(\mathcal{C}=0)$ y tres de difeormorfismos $(\mathcal{C}^a=0)$; dando un total de dos grados físicos de libertad². Sin embargo, al extender el espacio fase con las nuevas variables (K_a^I, E_J^b) , el número de grados de libertad aumentó de 12 a 18, pero el número de grados físicos de libertad debe seguir siendo el mismo así que se toman en cuenta las tres constricciones $G_{IJ}=0$ más las cuatro ya mencionadas; conservando los dos grados físicos de libertad.

Lo siguiente por hacer, es revisar la estructura simpléctica del espacio fase extendido (K_a^I, E_J^b) .

$$\{E_I^a(y), K_b^J(y')\} = \frac{1}{2} \delta_b^a \delta_J^I \delta(y - y')$$
 (2.10)

$$\{E_I^a(y), E_J^b(y')\} = \{K_a^I(y), K_b^J(y')\} = 0.$$
(2.11)

Así, siempre que se cumpla la condición $G_{IJ}=0$, los paréntesis de Poisson de las variables canónicas (h_{ab},p^{ab}) como funciones de K_a^I y E_J^a en el espacio fase extendido dan

$$\{h_{ab}(y), p^{ab}(y')\} = \delta^c_{(a}\delta^d_{b)}\delta(y - y')$$
 (2.12)

²Conteo de grados físicos de libertad:

²⁽núm. de grados físicos de libertad) = (núm. de variables canónicas) - 2 (núm. de constricciones de primera clase).

$$\{h_{ab}(y), h_{cd}(y')\} = \{p^{ab}(y), p^{cd}(y')\} = 0, \tag{2.13}$$

que son los paréntesis de Poisson del espacio fase ADM. Por lo tanto, si la condición $G_{IJ} = 0$ se satisface entonces, las variables canónicas ADM expresadas como funciones de las variables (K_a^I, E_J^b) del espacio fase extendido generan los mismos paréntesis de Poisson.

Ahora consideremos la constricción (2.7) de la forma siguiente

$$G(\Lambda) = \int_{\Sigma_t} \Lambda^{IJ} K_{aI} E_J^a d^3 y, \qquad (2.14)$$

con Λ^{IJ} siendo las componentes de una matriz antisimétrica que genera rotaciones SO(3). Calculando el paréntesis de Poisson consigo mismo se llega a que

$$\{G(\Lambda), G(\Lambda')\} = \frac{1}{2}G([\Lambda, \Lambda']), \tag{2.15}$$

que es igual al álgebra de rotaciones espaciales SO(3). Y dado que las variables canónicas de ADM son invariantes bajo SO(3), cualquier paréntesis de Poisson entre ellas y $G(\Lambda)$ se anula.

En términos de las nuevas variables, la acción gravitacional es

$$S_G[K, E] = \frac{1}{16\pi} \int_{t_1}^{t_2} dt \int_{\Sigma_A} \left[2\dot{K}_a^K E_K^a - (\Lambda^{IJ} G_{IJ} + \mathcal{C}_a N^a + \mathcal{C}N) \right] d^3y$$
 (2.16)

donde las constricciones están dadas por (2.7), (2.8) y (2.9). Nótese que esta acción es equivalente a la del formalismo 3+1 siempre y cuando se cumpla la constricción $G_{IJ}=0$.

2.2. Transformación Canónica

Como ya se mencionó, al extender el espacio fase se ganan más grados de libertad pero para conservar el número de grados físicos de libertad también aparecieron más constricciones. El propósito a continuación es escribir estas constricciones (ecuación (2.7)) como una ley de Gauss, análogamente a como es en electromagnetismo y la teoría de Yang-Mills, que es justo lo que se desea al formular la Relatividad General en términos de variables de conexión. Esto es escribir $G_{IJ} = 0$ como $(\partial_a E^a + [A_a, E^a])_{IJ}$ donde A es alguna conexión con valores en el álgebra de Lie de SO(3). Para ello se realiza una transformación canónica en el espacio fase (K_a^I, E_J^b) .

Antes de continuar se introducirán unos conceptos que serán de ayuda.

Se define la derivada covariente D_a en la hipersuperficie Σ_t sobre un objeto v_I como

$$D_a v_I = \partial_a v_I + w_{aI}^K v_K \tag{2.17}$$

donde w_{aI}^{K} son las componentes de la conexión de espín w del álgebra de Lie de SO(3). Así se tiene que la acción sobre las triadas está dada por

$$D_a e_I^b = \partial_a e_I^b + \Gamma_{ac}^b e_I^c + w_{aI}^K e_K^b. \tag{2.18}$$

Observando que $w_{aI}^{K}y^{a} \in SO(3)$, el potencial w_{aI}^{K} es una 1-forma de conexión valuada en el álgebra de Lie de SO(3), lo que implica que $w_{a(I}^{K)} = 0$.

Ahora, a partir de la identidad $e_I^a e_h^J = \delta_I^J$ se tiene que

$$0 = D_a(e_I^b e_b^J) = (D_a e_I^b) e_b^J + e_I^b (D_a e_b^J)$$
$$\Longrightarrow e_I^b (D_a e_b^J) = -(D_a e_b^J) e_b^J$$

Contrayendo con e_c^I y tomando en cuenta la ecuación (2.18) se llega a que

$$D_{a}e_{c}^{J} = -(D_{a}e_{I}^{b})e_{c}^{I}e_{b}^{J}$$

$$= -(\partial_{a}e_{I}^{b} + \Gamma_{ac}^{b}e_{I}^{c} + w_{aI}^{K}e_{K}^{b})e_{c}^{I}e_{b}^{J}$$

$$= -(\partial_{a}e_{I}^{b})e_{c}^{I}e_{b}^{J} - \Gamma_{ac}^{b}e_{b}^{J} - w_{aI}^{J}e_{c}^{K}.$$

Y de las igualdades $\partial_a(e_c^I) = \partial_a(e_K^b e_c^K e_b^I) = \partial_a(e_K^b) e_c^K e_b^I + 2\partial_a(e_c^I)$ se sigue que

$$D_{a}e_{c}^{J} = \partial_{a}e_{c}^{J} - \Gamma_{ac}^{b}e_{b}^{J} - w_{aK}^{J}e_{c}^{K}. \tag{2.19}$$

Finalmente, esto lleva a que la derivada covariante espacial sobre un objeto \boldsymbol{v}^I es

$$D_a v^I = \partial_a v^I - w_{aK}^I v^K = \partial_a v^I + w_a^I K^K.$$
 (2.20)

Ahora bien, la transformación canónica a realizar consiste de un rescalamiento y una transformación afín. Considerando el rescalamiento

$$(K_a^I, E_J^b) \longmapsto (\tilde{K}_a^I, \tilde{E}_I^b) = (\beta K_a^I, \beta^{-1} E_J^b), \tag{2.21}$$

donde $\beta \in \mathbb{R}/\{0\}$ es el parámetro de Barbero-Immirzi, las tres constricciones $G_{IJ}=0$, que conviene reescribirlas como $G_K=\epsilon_{KIJ}\delta^{JL}K_a^IE_L^a$, se mantienen invariantes bajo el rescalamiento,

$$G_K = \epsilon_{KI}{}^J \tilde{K}_a^I \tilde{E}_J^a. \tag{2.22}$$

Continuemos con la transformación afín. Recurriendo a la ecuación (2.18) pero densitizada y dado que D_a debe ser compatible con h_{ab} por lo que $D_a e^b_I = 0$ y $D_a \sqrt{h} = 0$; tenemos que la divergencia de E^a_I es

$$\begin{split} D_a E_I^a &= \sqrt{h} \partial_a e_I^a + \Gamma_{ac}^a E_I^c + w_{aJ}^K E_K^a \\ &= \sqrt{h} \partial_a e_I^a + \frac{1}{\sqrt{h}} (\partial_c \sqrt{h}) e_I^c + w_{aI}^K E_K^a \\ &= \partial_a E_I^a + w_{aI}^K E_K^a. \end{split}$$

Por otro lado, de $D_a e_b^I = 0$, la conexión de espín se puede escribir como

$$w_{aK}{}^{I} = e_K^b (\partial_a e_b^I - \Gamma_{ab}^c e_c^I), \tag{2.23}$$

pero recordando que $\Gamma^c_{ab} = 1/2h^{cd}(\partial_a h_{bd} + \partial_b h_{da} - \partial_d h_{ab}), h_{ab} = \delta_{IJ}e^I_a e^J_b$ y $h^{ab} = \delta^{IJ}e^a_I e^b_J$, después de varias cuentas, la expresión (2.23) se reescribe como

$$w_{aK}^{I} = 2e_{[K}^{d}\partial_{[a}e_{d]}^{I]} + e_{a}^{J}e_{K}^{d}e^{bI}\partial_{[b}e_{d]J}$$

$$= e^{d[I}\partial_{d}e_{aK]} - e^{d[I}\partial_{a}e_{dK]} + e_{a}^{J}e_{[K}^{d}e^{bI]}\partial_{b}e_{dJ}.$$
(2.24)

La cual puede reducirse bajando el índice I y usando las identidades

$$\begin{split} e^d_{[I}\partial_d e_{aK]} &= \frac{1}{2}\epsilon_{JKI}\epsilon^{JMN}e^d_N\partial_d e_{aM} \\ e^d_{[I}\partial_a e_{dK]} &= \frac{1}{2}\epsilon_{JKI}\epsilon^{JMN}e^d_N\partial_a e_{dM} \\ e_{aJ}e^d_{[K}e^l_{I]}\partial_b e^J_d &= \frac{1}{2}\epsilon_{LKI}\epsilon^{LMN}e^d_M e^b_N e_{aJ}\partial_b e^J_d, \end{split}$$

entonces (2.24) queda como

$$w_{aKI} = \frac{1}{2} \epsilon_{JKI} \epsilon^{JMN} e_N^d (\partial_d e_{aM} - \partial_a e_{dM} + e_M^b e_{aR} \partial_d e_b^R). \tag{2.25}$$

Luego si se define

$$w_a^J := -\frac{1}{2} \epsilon^{JMN} e_N^d (\partial_d e_{aM} - \partial_a e_{dM} + e_M^b e_{aR} \partial_d e_b^R), \tag{2.26}$$

la conexíon de espín es

$$w_{aKI} = -\epsilon_{JKI} w_a^J. (2.27)$$

Substituyendo (2.27) en en la divergencia de E_I^a se tiene que

$$D_{a}E_{I}^{a} = \partial_{a}E_{I}^{a} - \epsilon_{JI}{}^{K}w_{a}^{J}E_{K}^{a} = \partial_{a}E_{I}^{a} + \epsilon_{IJ}{}^{K}w_{a}^{J}E_{K}^{a}. \tag{2.28}$$

Dando seguimiento a la transformación canónica, ahora se expresa a w_a^J en términos de las triadas y cotriadas densitizadas (E's) ya que hasta ahora está en función de las triadas y cotriadas (e's).

$$w_a^J = -\frac{1}{2} \epsilon^{JIK} E_K^b [\partial_b E_{aI} - \partial_a E_{bI} + E_I^c E_{aL} \partial_b E_c^L]$$

$$-\frac{1}{4|\det(E)|} \epsilon^{JIK} E_K^b [2E_{aI} \partial_b (|\det(E)|) - E_{bI} \partial_a (|\det(E)|)].$$
(2.29)

De (2.29), se debe notar que w_a^J es invariante bajo el rescalamiento, así que

$$\tilde{w}_a^J = w_a^J(\tilde{E}) = w_a^J(E).$$
 (2.30)

Retomando que la derivada covariante espacial debe ser compatible con la métrica de Σ_t , implica $D_a(E_I^b) = 0$. Entonces $D_a(\tilde{E}_I^a) = 0$, pues β es un escalar. Por lo tanto de la divergencia (2.28) se sigue que

$$D_a \tilde{E}_I^a = \partial_a \tilde{E}_I^a + \epsilon_{IJ}^K w_a^J \tilde{E}_K^a = 0 \tag{2.31}$$

Con esto se escribe la constricción $G_I = 0$ como

$$G_{I} = \partial_{a}\tilde{E}_{I}^{a} + \epsilon_{IJ}^{K}(w_{a}^{J} + \tilde{K}_{a}^{J})\tilde{E}_{K}^{a}$$

$$\equiv \partial_{a}\tilde{E}_{I}^{a} + \epsilon_{IJ}^{K}\tilde{A}_{a}^{J}\tilde{E}_{K}^{a}.$$
(2.32)

El término \tilde{A}_a^J es la conexión de Ashtekar-Barbero y (2.32) es justamente la forma que se buscaba, que es análoga a una constricción de Gauss de una teoría de norma SU(2). Explícitamente

$$G_I = \tilde{D}_a \tilde{E}_I^a = \partial_a \tilde{E}_I^a + \epsilon_{IJ}^K \tilde{A}_a^J \tilde{E}_K^a = 0.$$
(2.33)

Es sencillo verificar que después de la transformación

$$(K_a^I, E_J^b) \longmapsto (\tilde{A}_a^I, \tilde{E}_J^b), \tag{2.34}$$

los paréntesis de Poisson son

$$\{\tilde{E}_{J}^{b}(y), \tilde{A}_{a}^{I}(y')\} = \frac{1}{2}\delta_{a}^{b}\delta_{J}^{I}\delta(y-y')$$
 (2.35)

$$\{\tilde{E}_{I}^{a}(y), \tilde{E}_{J}^{b}(y')\} = \{\tilde{A}_{a}^{I}(y), \tilde{A}_{b}^{J}(y')\} = 0.$$
(2.36)

Por último, nos queda expresar las constricciones (2.8) y (2.9) en términos de las nuevas variables $(\tilde{A}_a^I, \tilde{E}_J^b)$ para concluir con la formulación de la Relatividad General en variables de conexión.

Introduciendo las curvaturas asociadas a w_b^J y a A_b^I respectivamente

$$R_{ab}^{J} = 2\partial_{[a}w_{b]}^{J} + \epsilon^{J}{}_{KL}w_{a}^{K}w_{b}^{L}$$
(2.37)

$$\tilde{F}_{ab}^{I} = 2\partial_{[a}\tilde{A}_{b]}^{I} + \epsilon^{I}_{KL}\tilde{A}_{a}^{K}\tilde{A}_{b}^{L}. \tag{2.38}$$

Y escribiendo \tilde{F}_{ab}^J en términos de w_b^J y βK_b^J se obtiene una expresión que es posible relacionar más facilmente con las constricciones (2.8) y (2.9). Ésta es de la forma

$$\tilde{F}_{ab}^{J} = R_{ab}^{J} + 2\beta D_{[a}K_{b]}^{J} + \beta^{2}\epsilon^{J}{}_{IK}K_{a}^{I}K_{b}^{K}.$$

Si se contrae con \tilde{E}_J^b se obtiene

$$\begin{split} \tilde{F}_{ab}^{J}\tilde{E}_{J}^{b} &= R_{ab}^{J}\tilde{E}_{J}^{b} + 2\beta D_{[a}K_{b]}^{J}\tilde{E}_{J}^{b} + \beta^{2}\epsilon^{J}{}_{IK}K_{a}^{I}K_{b}^{K}\tilde{E}_{J}^{b} \\ &= R_{ab}^{J}\tilde{E}_{J}^{b} + 2\beta D_{[a}K_{b]}^{J}\tilde{E}_{J}^{b} + \beta K_{a}^{K}G_{K}. \end{split}$$

Es posible mostrar que el primer término se anula; mientras que si se cumple la constricción de Gauss el tercer término también se anula, entonces

$$\tilde{F}_{ab}^J \tilde{E}_J^b = 2\beta D_{[a} K_{b]}^J \tilde{E}_J^b.$$

Que es simplemente una manera de reescribir (2.9), por lo tanto

$$C_a = \tilde{F}_{ab}^J \tilde{E}_I^b. \tag{2.39}$$

Análogamente, haciendo la contracción $\tilde{F}^J_{ab}\epsilon_J{}^{IK}\tilde{E}^a_I\tilde{E}^b_K$ y recurriendo al hecho de que $G_I=0$, se obtiene

$$C = \frac{\epsilon_J^{IK} \tilde{E}_I^a \tilde{E}_K^b}{\sqrt{|\det(\beta \tilde{E})|}} \left[\beta^2 \tilde{F}_{ab}^J - (\beta^2 - 1) \epsilon^J_{IK} \tilde{K}_a^I \tilde{K}_b^K \right]. \tag{2.40}$$

Viendo (2.35), es decir, el par $(\tilde{A}_a^I, \tilde{E}_J^b)$ son efectivamente variables canónicamente conjugadas y considerando como se reescribieron las constricciones (2.32), (2.39) y (2.40); la acción de Relatividad General en variables de conexión queda como

$$S_{EH} = \frac{1}{16\pi} \int_{t_1}^{t_2} dt \int_{\Sigma_t} \left[2\dot{\tilde{A}}_a^I \tilde{E}_I^a - (\Lambda^J G_J + N^a C_a + NC) \right] d^3 y. \tag{2.41}$$

La gran ventaja de esta formulación se muestra en el aspecto cuántico, ya que es *independiente de fondo*. Esto, la ha llevado a ser considerada como el punto de partida para una teoría cuántica de la gravedad independiente de la métrica.

Capítulo 3

Variables de Ashtekar para modelos homogéneos y modelos isotrópicos

3.1. Antecedentes

3.1.1. Clasificación de Haces Principales simétricos

Sea un haz principal $\pi: P \longrightarrow \mathcal{M}$ con grupo compacto de estructura G y sea $S < \operatorname{Aut}(P)$ un grupo compacto de simetría actuando en el haz principal P, el cual, a través del mapeo de proyección π , induce una S-acción en la base \mathcal{M} . Dado que el grupo de simetría es compacto existe una subvariedad densa y abierta $\mathcal{M}_{(J)} \subset \mathcal{M}$, que localmente está foliada por las órbitas de S. Esto es, $\mathcal{M}_{(J)} \cong \mathcal{M}_{(J)}/S \times S/J$ para un subgrupo compacto $J \subset S$. El espacio base \mathcal{M} se puede descomponer de la siguiente forma,

$$\mathcal{M} = \tilde{\mathcal{M}} \times S/J,$$

donde $\tilde{\mathcal{M}}$ es una variedad conexa, y la acción de S en \mathcal{M} es tal que las órbitas están dadas por $S(m) \cong S/J$ para todo $m \in \mathcal{M}$.

Teorema 3.1. A partir de las suposiciones anteriores, el haz principal $\pi: P \longrightarrow \mathcal{M}$, con grupo de estructura G, simétrico bajo la acción del grupo S, está clasificado por un homomorfismo $\lambda: J \longrightarrow G$ y un haz principal $\tilde{\pi}: \tilde{Q} \longrightarrow \tilde{\mathcal{M}}$ con grupo de estructura Z, donde Z es el centralizador del subgrupo $\lambda(J) \subset G$.

El haz principal \tilde{Q} es subhaz de P tal que

$$\tilde{Q} = \{ p \in P |_{\tilde{\mathcal{M}}} : \lambda_p = \lambda \},$$

donde el homomorfismo λ_p es un mapeo asignado a cada punto $p \in \pi^{-1}(m)$ que va del subgrupo de isotropía J al grupo de estructura G definido por $p \cdot j = p \cdot \lambda_p(j)$. Gracias a la conmutatividad de la acción de J con la acción derecha de G en P, el homomorfismo $\lambda_p : J \longrightarrow G$ obedece la relación $\lambda_{p'} = \operatorname{Ad}_{g^{-1}} \circ \lambda_p$ para algún punto $p' = p \cdot g$ en la misma fibra,

$$p' \cdot \lambda_{p'}(j) = (p \cdot g) \cdot j = (p \cdot j) \cdot g = (p \cdot \lambda_p(j)) \cdot g = p' \cdot \mathrm{Ad}_{g^{-1}}(\lambda_p(j)).$$

3.1.2. Clasificación de Conexiones invariantes

Sea ω una conexión invariante en el haz principal P, clasificado por el par (λ, \tilde{Q}) , bajo la acción de S, i.e. $s^*(\omega) = \omega$ para todo $s \in S$. De la restricción, la conexión ω induce una conexión $\tilde{\omega}$ en el subhaz \tilde{Q} con valores en el álgebra de Lie del grupo de estructura Z. Esto es,

$$j^*(\omega_p(v)) = \omega_{p \cdot j}(j_*(v)) = \omega_{p \cdot \lambda_p(j)}(\lambda_p(j)_*(v))$$
$$= \lambda_p(j)^*(\omega_p(v)) = \operatorname{Ad}_{\lambda(j)^{-1}*}(\omega_p(v)),$$

pero ω es invariante bajo la acción de S y $J \subset S$, entonces $\mathrm{Ad}_{\lambda(j)^{-1}*}(\omega_p(v)) = \omega_p(v)$ para todo $j \in J$ y para un vector $v \in T_pP$, tal que $\pi_*(v) \in \varrho_*(T_{\pi(p)}\tilde{\mathcal{M}})$ donde ϱ es el encaje de $\tilde{\mathcal{M}}$ en \mathcal{M} . Lo que muestra efectivamente que $\omega_p(v) \in T_eZ$ y ω puede ser restringida a una conexión en el haz \tilde{Q} con grupo de estructura Z [?].

Teorema 3.2. Sea $\pi: P \longrightarrow \mathcal{M}$ un haz principal S-simétrico con grupo de estructura G clasificado por el par (λ, \tilde{Q}) (teorema 3.1) y sea ω una conexión invariante en P bajo la acción de S. Entonces ω está clasificada de manera única por una conexión $\tilde{\omega}$ en \tilde{Q} y un mapeo lineal $\tilde{\phi}$ que va de T_eJ_{\perp} , el complemento de $T_eJ \subset T_eS$, a T_eG . El mapeo lineal ϕ está restringido a la relación

$$Ad_{\lambda(i)} \circ \tilde{\phi}(X) = \tilde{\phi} \circ Ad_i(X), \tag{3.1}$$

para todo $j \in J$ y $j \in T_e J_{\perp}$.

Con lo anterior, la conexión ω puede ser reconstruida a partir de la clasificación dada por el par $(\tilde{\omega}, \tilde{\phi})$. De la descomposición $\mathcal{M} = \tilde{\mathcal{M}} \times S/J$ se tiene

$$\omega = \tilde{\omega} + \omega_{S/J},\tag{3.2}$$

donde $\omega_{S/J}$, usando la forma de Maurer-Cartan $\theta_{(MC)}$ en S y el encaje $\iota: S/J \hookrightarrow S$, se puede escribir como

$$\omega_{S/J} = \phi \circ \iota^* \theta_{MC}. \tag{3.3}$$

3.2. Modelos Homogéneos

Una conexión homogénea A, es una uno-forma en el grupo de simetría S que toma valores en el álgebra de Lie T_eG del grupo de estructura G, el cual para las variables de Ashtekar-Barbero es G = SU(2). Considérense los modelos de Bianchi clase A, ya que constituyen todos los modelos homogéneos con una acción libre del grupo de simetría S y como S actúa libremente en el espacio base \mathcal{M} , entonces \mathcal{M} puede ser identificado con S de manera local.

Ahora, se denota a los tres generadores de $T_e S$ como $T_{\hat{I}}$, $\hat{I}=1,2,3,$ tal que $\left[T_{\hat{I}},T_{\hat{J}}\right]=C_{\hat{I}\hat{J}}^{\hat{K}}T_{\hat{K}}$, donde $C_{\hat{I}\hat{J}}^{\hat{K}}$ son las constantes de estructura de $T_e S$ que satisfacen $C_{\hat{I}\hat{K}}^{\hat{K}}=0$ (para modelos clase A por definición). La forma de Maurer-Cartan en S está dada por $\theta_{\rm MC}=\omega^{\hat{I}}\otimes T_{\hat{I}}$ con $\omega^{\hat{I}}=\omega_a^{\hat{I}}dx^a$ uno-formas invariantes por la izquierda en S que cumplen las ecuaciones de Maurer-Cartan

$$d\omega^{\hat{I}} = -\frac{1}{2}C^{\hat{I}}_{\hat{J}\hat{K}}\omega^{\hat{I}} \wedge \omega^{\hat{J}}. \tag{3.4}$$

Por la acción libre el grupo de isotropía se tiene $J=\{e\}$, lo que implica que todos los homomorfismos $\lambda:J\to G$ están dados por $e^{(F)}\longmapsto e^{(G)}$, y es posible usar el encaje $\iota=\mathrm{id}:S/J\hookrightarrow S$. De este modo, una conexión invariante toma la forma

$$A = \tilde{\phi} \circ \theta_{\rm MC} = \tilde{\phi}_{\hat{J}}^I \tau_I \omega^{\hat{J}} = \tilde{\phi}_{\hat{J}}^I \omega_a^{\hat{J}} \tau_I dx^a = A_a^I \tau_I dx^a, \tag{3.5}$$

con $\tau_I = -i\sigma_I/2$ generando $T_e\mathrm{SU}(2)$ (σ_I son las matrices de Pauli). Para $J = \{e\}$ la condición (3.1) está vacía, entonces el mapeo lineal está dado por $\tilde{\phi}: T_eJ_\perp = T_eS \longrightarrow T_e\mathrm{SU}(2), T_{\hat{I}} \longmapsto \tilde{\phi}(T_{\hat{I}}) =: \tilde{\phi}_{\hat{I}}^J\tau_J$. Las componentes del momento canónicamente conjugado a $A_a^I = \phi_{\hat{K}}^I\omega_a^{\hat{K}}$ son

$$E_I^a = \sqrt{g_0} \tilde{p}_I^{\hat{K}} X_{\hat{K}}^a, \tag{3.6}$$

con $\tilde{p}_I^{\hat{K}}$ canónicamente conjugado a $\tilde{\phi}_{\hat{K}}^I$, $g_0 = \det(\omega_a^{\hat{K}})^2$ es el determinante de la métrica invariante por la izquierda que densitiza a E_I^a , y $X_{\hat{I}}$ campos vectoriales invariantes por la izquierda tal que $\omega^{\hat{I}}(X_{\hat{J}}) = \delta_{\hat{J}}^{\hat{I}}$ y con $[X_{\hat{I}}, X_{\hat{J}}] = C_{\hat{I}\hat{I}}^{\hat{K}} X_{\hat{K}}$.

$$^{1}(g_0)_{ab} := \sum_{\hat{k'}} \omega_a^{\hat{K}} \omega_b^{\hat{K}}.$$

La estructura simpléctica se calcula de

$$\frac{1}{8\pi\gamma\kappa} \int_{\mathcal{M}} d^3x \dot{A}_a^I E_I^a = \frac{1}{8\pi\gamma\kappa} \int_{\mathcal{M}} d^3x \sqrt{g_0} \dot{\tilde{\phi}}_{\hat{K}}^I \tilde{p}_I^{\hat{J}} \omega^{\hat{K}}(X_{\hat{J}}) = \frac{V_0}{8\pi\gamma\kappa} \dot{\tilde{\phi}}_{\hat{J}}^I \tilde{p}_I^{\hat{J}}, \tag{3.7}$$

y se obtiene

$$\{\tilde{\phi}_{\hat{K}}^{I}, \tilde{p}_{L}^{\hat{J}}\} = 8\pi \gamma \kappa V_0 \delta_L^I \delta_{\hat{K}}^{\hat{J}}, \tag{3.8}$$

con κ la constante gravitacional, γ como el parámetro de Immirzi y volumen $V_0 := \int\limits_{\mathcal{M}} d^3x \sqrt{g_0}$. Es conveniente definir $\phi^I_{\hat{J}} := V_0^{1/3} \tilde{\phi}^I_{\hat{J}}$ y $p^{\hat{I}}_{\hat{J}} := V_0^{2/3} \tilde{p}^{\hat{I}}_{\hat{J}}$ para hacer la estructura simpléctica independiente de V_0 y así respetar la independencia de fondo.

3.3. Modelos Isotrópicos

Al imponer más condiciones de simetría se introducen subgrupos de isotropía no triviales, $J\cong \mathrm{U}(1)$ para modelos simétricos rotacionalmente de manera local (LRS por sus siglas en inglés) y $J\cong \mathrm{SU}(2)$ para modelos de Bianchi tipo I y IX restringidos a métricas isotrópicas. Sin embargo, escribiendo al grupo de simetría como un producto semidirecto $S=J\rtimes_{\rho}N$, con el grupo de isotroía J y el subgrupo de traslaciones N, se puede utilizar la técnica ya discutida para encontrar la forma de la conexión invariante. La composición en este grupo está definida como $(n_1,j_1)(n_2,j_2):=(n_1\rho(j_1)(n_2),j_1j_2)$ que depende del homomorfismo $\rho:J\longrightarrow \mathrm{Aut}(N)$, mientras que el inverso está dado por $(n,j)^{-1}=(\rho(j^{-1})n^{-1},j^{-1})$.

Ahora bien, la forma de Maurer-Cartan en S está dada por

$$\begin{split} \theta_{\mathrm{MC}}^{(S)}(n,j) = & (n,j)^{-1}d(n,j) = (\rho(j^{-1})n^{-1},j^{-1})(dn,dj) \\ = & (\rho(j^{-1})n^{-1}\rho(j^{-1})dn,j^{-1}dj) = (\rho(j^{-1})(n^{-1}dn),j^{-1}dj) \\ = & \left(\rho(j^{-1})\theta_{\mathrm{MC}}^{(N)}(n),\theta_{\mathrm{MC}}^{(J)}(j)\right), \end{split}$$

aquí $\theta_{\mathrm{MC}}^{(N)}$ y $\theta_{\mathrm{MC}}^{(J)}$ denotan las forma de Maurer-Cartan en N y J respectivamente. El encaje $\iota: S/J = N \hookrightarrow S$, que se escoge es $\iota(n) = (n,1)$, así: $\iota^*\theta_{\mathrm{MC}}^{(S)} = \theta_{\mathrm{MC}}^{(N)}$. Usando los generadores $T_{\hat{I}}$ de $T_eN = T_eF_{\perp}$ y uno-formas invarinates $\omega^{\hat{I}}$ en N, se puede escribir $\theta_{\mathrm{MC}}^{(N)} = \omega^{\hat{I}} \otimes T_{\hat{I}}$ y de esta manera, la conexión toma la forma

$$A = \tilde{\phi} \circ \iota^* \theta_{MC}^{(S)} = \tilde{\phi}_{\hat{I}}^I \omega^{\hat{I}} \tau_I, \tag{3.9}$$

donde las componentes $\tilde{\phi}_{\hat{J}}^I$ están definidas por $\tilde{\phi}(T_{\hat{J}}) = \tilde{\phi}_{\hat{J}}^I \tau_I$; τ_I son los generadores de $T_e SU(2)$ que están dados en términos de las matrices da Pauli: $\tau_I = -i\sigma_I/2$ (y además forman una base en $T_e S$). Nótese que (3.9) tiene la misma forma que el modelo anterior, pero en este caso la condición (3.1) no está vacía, por lo que se obtiene un subconjunto de conexiones isotrópicas. Para encontrar la solución a está condición se debe trata al modelo LRS y al modelo isotrópico por separado. En el modelo LRS se toma como sistema generador a $T_e F = \langle \tau_3 \rangle$ mientras que en el modelo isotrópico, el sistema generador es $T_e F = \langle \tau_1, \tau_2, \tau_3 \rangle$. La ecuación (3.1) se puede escribir de forma infinitesimal como

$$\tilde{\phi}(\mathrm{ad}_{\tau_{\hat{I}}}(T_{\hat{J}})) = \mathrm{ad}_{d\lambda(\tau_{\hat{I}})}\tilde{\phi}(T_{\hat{J}}) = [d\lambda(\tau_{\hat{I}}), \tilde{\phi}(T_{\hat{J}})]$$

 $(\hat{I}=3 \text{ para LRS}, \, \hat{I}=1,2,3 \text{ para isotropía})$. El grupo de isotropía F rota los generadores $T_{\hat{I}}$ [?, ?], entonces $\mathrm{ad}_{\tau_I}(T_{\hat{J}})=\epsilon_{I\hat{J}\hat{K}}T_{\hat{K}}$.

De los posibles homomorfismos $\lambda: F \longrightarrow G$, se tiene que para LRS

$$\lambda_k : \mathrm{U}(1) \longrightarrow \mathrm{SU}(2)$$

 $\exp(t\tau_3) \longmapsto \exp(kt\tau_3),$

28CAPÍTULO 3. VARIABLES DE ASHTEKAR PARA MODELOS HOMOGÉNEOS Y MODELOS ISOTRÓPICOS

para $k \in \mathbb{N}$. Entonces (3.1) toma la forma $\epsilon_{3\hat{I}\hat{K}}\tilde{\phi}_{\hat{K}}^{J} = k\epsilon_{3LJ}\tilde{\phi}_{\hat{I}}^{L}$, la cual sólo tiene solución no trivial para k=1, que lleva a que las componentes de $\tilde{\phi}$ se pueden escribir como

$$\tilde{\phi}_1 = \frac{1}{\sqrt{2}} \left(\tilde{a}\tau_1 + \tilde{b}\tau_2 \right), \qquad \tilde{\phi}_2 = \frac{1}{\sqrt{2}} \left(-\tilde{b}\tau_1 + \tilde{a}\tau_2 \right), \qquad \tilde{\phi}_3 = \tilde{c}\tau_3, \tag{3.10}$$

con $\tilde{a},\,\tilde{b},\,\tilde{c}$ números arbitrarios. Las componentes del momento conjugado tienen la forma

$$\tilde{p}^1 = \frac{1}{\sqrt{2}} \left(\tilde{p}_a \tau_1 + \tilde{p}_b \tau_2 \right), \qquad \tilde{p}^2 = \frac{1}{\sqrt{2}} \left(-\tilde{p}_b \tau_1 + \tilde{p}_a \tau_2 \right), \qquad \tilde{p}^3 = \tilde{p}_c \tau_3,$$
(3.11)

(los factores $1/\sqrt{2}$ son constantes de normalización). Y la estructura simpléctica está dada por

$$\{\tilde{a}, \tilde{p}_a\} = \{\tilde{b}, \tilde{p}_b\} = \{\tilde{c}, \tilde{p}_c\} = 8\pi\gamma\kappa V_0,\tag{3.12}$$

y cero en cualquiera otro caso.

Para los modelos isotrópicos hay dos posibles homomorfismos $\lambda: \mathrm{SU}(2) \longrightarrow \mathrm{SU}(2)$, se tienen a λ_0 mapeando cualquier elemento del grupo de isotropía F a la identidad en G, i.e. $f \longmapsto e$, y a $\lambda_1 = \mathrm{id}$. Para el caso λ_0 , la ecuación (3.1) toma la forma $\epsilon_{I\hat{I}\hat{K}}\tilde{\phi}_K^J = 0$ y para λ_1 toma la forma $\epsilon_{I\hat{I}\hat{K}}\tilde{\phi}_K^J = \epsilon_{ILJ}\tilde{\phi}_{\hat{I}}^J$, cuya solución es

$$\tilde{\phi}_{\hat{I}}^J = \tilde{c}\delta_{\hat{I}}^J,\tag{3.13}$$

con \tilde{c} un número arbitrario. El momento canónicamente conjugado se puede escribir como

$$\tilde{p}_J^{\hat{I}} = \tilde{p}\delta_J^{\hat{I}}$$

tal que la estructura simplética es

$$\{\tilde{c}, \tilde{p}\} = 8\pi \gamma \kappa V_0. \tag{3.14}$$

Nuevamente, redefiniendo $a := V_0^{1/3} \tilde{a}$, $b := V_0^{1/3} \tilde{b}$, $c := V_0^{1/3} \tilde{c}$ y $p_a := V_0^{2/3} \tilde{p}_a$, $p_b := V_0^{2/3} \tilde{p}_b$, $p_c := V_0^{2/3} \tilde{p}_c$, $p_b := V_0^{2/3} \tilde{p}_b$, $p_c := V_0^{2/3} \tilde{p}_c$, $p_b := V_0^{2/3} \tilde{p}_b$, $p_c :$

Como se puede observar, tanto en los modelos LRS como en los modelos isotrópicos existe una única solución no trivial.

Apéndice A

Conexiones y Curvatura en Haces Vectoriales

A.1. Conexiones

Una conexión en un haz fibrado es el modo de definir la noción de transporte paralelo en el haz; esto es, una manera de conectar o identificar fibras sobre puntos cercanos. Aquí, se discutirá la conexión sobre un haz vectorial y la conexión sobre un G-haz principal.

Sea $\pi: E \to \mathcal{M}$ un haz vectorial suave sobre una variedad diferenciable \mathcal{M} . Denotemos el espacio de secciones (suaves) de E por $\Gamma(E)$. Una conexión en E es un objeto que asigna un campo vectorial $X \in \mathcal{X}(\mathcal{M})$ ($\mathcal{X}(\mathcal{M})$) denota el conjunto de campos vectoriales en \mathcal{M}) una función

$$D: \Gamma(E) \to \Gamma(E),$$
 (A.1)

tal que satisface las siguientes propiedades

$$D_X(\alpha s_1 + s_2) = \alpha D_X(s_1) + D_X(s_2),$$

$$D_{X_1 + X_2}(s) = D_{X_1}(s) + D_{X_2}(s),$$

$$D_X(fs) = fD_X(s) + X[f]s,$$

$$D_{fX}(s) = fD_X(s),$$

para todo: $s \in \Gamma(E)$, $X \in \mathcal{X}(\mathcal{M})$, $f \in C^{\infty}(\mathcal{M})$ y escalar¹ α .

En particular, la tercer propiedad, la regla de Leibniz, es lo que hace a D_X actuar como diferenciación. Dada cualquier sección s y cualquier campo vectorial X, a $D_X(s)$ se le llama derivada covariante de s en la dirección de X.

Consideremos un sistema de coordenadas local $\{x^{\mu}\}$ en un abierto $U \subseteq \mathcal{M}$, con la correspondiente base $\{\partial_{\mu}\}$ de los campos vectoriales coordenados y una base local de secciones $\{e_I\}$ del haz sobre U. Denotamos la derivada covariante en dirección ∂_{μ} como $D_{\partial_{\mu}} = D_{\mu}$. De esta manera

$$D_{X}(s) = X[s^{I}]e_{I} + s^{I}D_{X}(e_{I})$$

$$= x^{\mu}\partial_{\mu}[s^{I}]e_{I} + s^{I}D_{x^{\mu}\partial_{\mu}}(e_{I})$$

$$= x^{\mu}(\partial_{\mu}(s^{I})e_{I} + s^{I}D_{\mu}(e_{I}))$$

$$= x^{\mu}(\partial_{\mu}(s^{I})e_{I} + s^{I}A_{\mu I}^{J}(e_{J}))$$

$$= x^{\mu}(\partial_{\mu}(s^{I}) + A_{\mu J}^{I}s^{J})(e_{I})$$

$$= x^{\mu}D_{\mu}(s^{I})e_{I}, \tag{A.2}$$

¹Aquí escalar puede ser real o complejo dependerá si el haz es real o complejo.

donde $D_X(s)$ queda totalmente definido por $A_{\mu J}^I$. Pues para cuales quiera μ y I, se puede expresar $D_{\mu}(e_I)$ de manera única como una combinación lineal de secciones e_I , con funciones $A_{\mu J}^I$ en U como coeficientes,

$$D_{\mu}(e_I) = A^J_{\mu I} e_J. \tag{A.3}$$

Además, en (A.2) definimos $D_{\mu}(s^I) := \partial_{\mu}(s^I) + A^I_{\mu J} s^J$ que es la componente I de la derivada covariante de s en la base $\{e_J\}$.

Nôtese que el potencial vectorial $A_{\mu I}^J$ no es solamente una función etiquetada por los índices μ , I, J sino que es una sección. Al calcular $D_X(s)$ se obtiene el término

$$A^I_{\mu J} x^\mu s^J e_I$$

el cual es una nueva sección de E sobre U. Si se multiplica x^{μ} o s^{J} por una función $f \in C^{\infty}(U)$, se tendrá que toda la expresión anterior estará multiplicada por f ya que no aparecen derivadas; por lo que la expresión es $C^{\infty}(U)$ -lineal. Así que, el verdadero sentido del potencial vectorial $A^{I}_{\mu J}$ es operar sobre un campo vectorial y una sección de E sobre U y dar como resultado una nueva sección de E sobre U en una manera $C^{\infty}(U)$ -lineal.

Ahora bien, se puede pensar al potencial vectorial como una 1-forma valuada en el haz de endomorfismos $E \otimes E^* = \text{End}(E)$ sobre U, es decir, como una sección del haz

$$\operatorname{End}(E|_U) \otimes T^*U$$
.

La razón es que si definimos el potencial vectorial A de la siguiente forma

$$A = A_{\mu J}^{I}(e_{I} \otimes e^{J} \otimes dx^{\mu}), \tag{A.4}$$

la parte de la 1-forma al actuar sobre cualquier campo vectorial X en U

$$A(X) = A^{I}_{\mu J} e_{I} \otimes e^{J} \otimes dx^{\mu}(X) = A^{I}_{\mu J} x^{\mu} (e_{I} \otimes e^{J})$$

da como resultado una sección de $\operatorname{End}(E)$ sobre U. Si ahora actúa sobre una sección s de E, se tiene

$$A(X)s = A^I_{\mu J} x^{\mu} (e_I \otimes e^J) s = A^I_{\mu J} x^{\mu} s^J e_I$$

que es una sección de E sobre U con componentes $s'^I = A^I_{\mu J} x^\mu s^J e_I$.

Cuando el haz vectorial E tiene una más estructura, las conexiones que son compatibles con esta estructura son con las que se desea trabajar. Por ejemplo, en los G-haces, donde G es el grupo de norma de la teoría; aquí las conexiones más importantes son aquellas donde su potencial vectorial se vea localmente como una 1-forma valuada en el álgebra de Lie de G.

Sea $\pi:P\to\mathcal{M}$ un G-haz principal suave sobre una variedad diferenciable \mathcal{M} . Entonces, una G-conexión principal sobre P es una 1-forma diferencial en P con valores en el álgebra de Lie de G la cual es G-equivariante y reproduce los generadores del álgebra de Lie de los campos vectoriales fundamentales en P.

Decimos que D es una G-conexión, si en coordenadas locales las componentes $A_{\mu} \in \operatorname{End}(E)$ están en el álgebra de Lie de G. Aunque están definición parece depender de las coordenadas locales $\{x^{\mu}\}$ usadas para definir las componentes de $\operatorname{End}(E)$, en realidad no: si se hace un cambio de coordenadas $\{x'^{\nu}\}$, se obtienen nuevas componentes A'_{ν} dadas por

$$A_{\nu}' = \frac{\partial x'^{\mu}}{\partial x^{\nu}} A_{\mu},$$

las cuales viven en el álgebra de Lie de G si A_{μ} lo hace.

A.2. Curvatura

Consideremos un haz vectorial E sobre \mathcal{M} con una conexión D. Sean $X, Y \in \mathcal{X}(\mathcal{M})$, entonces definimos la curvatura F(X,Y) como el operador sobre secciones de E tal que

$$F(X,Y)s = [D_X, D_Y]s - D_{[X,Y]}s. (A.5)$$

A.2. CURVATURA 31

El primer término mide la falla de las derivadas covariantes de conmutar, mientras que el segundo es una corrección. Esta corrección es para cuando se tenga una conexión plana, la curvatura sea idénticamente cero. Por ejemplo, en el caso de la conexión plana estándar en un haz trivial con fibra V, donde una sección es sólo una función $f: \mathcal{M} \to V$, se tiene

$$F(X,Y)s = XYf - YXf - [X,Y]f = 0. (A.6)$$

Así, cuando una conexión tenga curvatura nula, i.e. F(X,Y)s = 0, para todos los campos vectoriales X y Y y todas las secciones s, se dirá que es plana.

Una de las propiedades de F(X,Y) es que es antisimétrica,

$$F(X,Y) = -F(Y,X).$$

Además, debido a las propiedades de D y que el paréntesis de Lie de campos vectoriales satisface

$$[X, fY] = f[X, Y] + X[f]Y,$$

para todas las funciones f. Entonces, la curvatura es lineal sobre $C^{\infty}(\mathcal{M})$ en cada uno de los argumentos, esto es

$$F(fX,Y)s = F(X,fY)s = F(X,Y)fs = fF(X,Y)s.$$

Y por la definición de D, F(X,Y) también define un mapeo $C^{\infty}(\mathcal{M})$ -lineal $\Gamma(E) \to \Gamma(E)$. De modo que F(X,Y) corresponde a una sección de $\operatorname{End}(E)$.

En coordenadas locales $\{x^{\mu}\}$ para un abierto $U \subseteq \mathcal{M}$ las componentes de la curvatura son

$$F_{\mu\nu} = F(\partial_{\mu}, \partial_{\nu}). \tag{A.7}$$

Notémos, como $[\partial_{\mu}, \partial_{\nu}] = 0$ entonces

$$F_{\mu\nu} = [D_{\mu}, D_{\nu}].$$
 (A.8)

De esta manera, se puede escribir la curvatura para cuales quiera campos vectoriales $X, Y \in U$ como

$$F(X,Y) = x^{\mu}x^{\nu}F_{\mu\nu}.\tag{A.9}$$

Si también consideramos sobre una base local $\{e_I\}$ de secciones para E sobre U, entonces tenemos definidas las componentes del potencial vectorial en esa base, i.e. $A^I_{\mu J}$. Por lo tanto, la acción de $F_{\mu\nu}$ sobre e_I es

$$\begin{split} F_{\mu\nu}e_I &= [D_{\mu},D_{\nu}]e_I \\ &= D_{\mu}(D_{\nu}e_I) - D_{\nu}(D_{\mu}e_I) \\ &= D_{\mu}(A^J_{\nu I}e_J) - D_{\nu}(A^J_{\mu I}e_J) \\ &= (\partial_{\mu}A^J_{\nu I})e_J + A^K_{\mu J}A^J_{\nu I}e_K - (\partial_{\nu}A^J_{\mu I})e_J - A^K_{\nu J}A^J_{\mu I}e_K \end{split}$$

Renombrando índices,

$$F_{\mu\nu}e_{I} = (\partial_{\mu}A_{\nu I}^{J} - \partial_{\nu}A_{\mu I}^{J} + A_{\mu K}^{J}A_{\nu I}^{K} - A_{\nu K}^{J}A_{\mu I}^{K})e_{J}$$
(A.10)

Ahora, como se ha mencionado F(X,Y) es una sección en $\operatorname{End}(E)$, así que $F_{\mu\nu}$ corresponde a una sección en $\operatorname{End}(E)$. Y dado que $e_J \otimes e^I$ forman una base local para las secciones de $\operatorname{End}(E)$, entonces se puede escribir

$$F_{\mu\nu} = F_{I\mu\nu}^J e_J \otimes e^I, \tag{A.11}$$

donde $F^J_{I\mu\nu}$ son las componentes de la sección en la base considerada. Dichas componentes son las componentes de la curvatura. Claramente,

$$F_{\mu\nu}e_I = F_{I\mu\nu}^J e_J. \tag{A.12}$$

Entonces de (A.10) y esta última ecuación, (A.12), se obtiene que las componentes de la curvatura son

$$F_{I\mu\nu}^{J} = \partial_{\mu}A_{\nu I}^{J} - \partial_{\nu}A_{\mu I}^{J} + A_{\mu K}^{J}A_{\nu I}^{K} - A_{\nu K}^{J}A_{\mu I}^{K}. \tag{A.13}$$

Apéndice B

Campo de Marcos

Consideremos una variedad diferenciable \mathcal{M} n-dimensional y orientada. Requerimos que \mathcal{M} sea paracompacta, conectada y abierta. El requisito de que la variedad sea paracompacta asegura que siempre admita una métrica con signatura Lorentziana, mientras que los otros son por consideraciones físicas.

Como \mathcal{M} es difeomorfa a \mathbb{R}^n y el haz tangente de \mathbb{R}^n es trivial, entonces el haz $T\mathcal{M}$ también lo es. Una trivilización es un isomorfismo de haces, por lo tanto una trivilización de $T\mathcal{M}$ es un isomorfismo

$$e: \mathcal{M} \times \mathbb{R}^n \to T\mathcal{M}$$
 (B.1)

tal que a cada fibra $\{p\} \times \mathbb{R}^n$ del haz trivial $\mathcal{M} \times \mathbb{R}^n$ la manda al espacio tangente $T_p \mathcal{M}$ correspondiente, con $p \in \mathcal{M}$. El inverso de e es:

$$e^{-1}: T\mathcal{M} \to \mathcal{M} \times \mathbb{R}^n.$$
 (B.2)

A la trivilización e (B.1) de TM se le conoce como campo de marcos. Si M es tridimensional o cuatro-dimensional, entonces e se llama triada o $t\acute{e}trada$ sobre M respectivamente.

Supongamos que estamos en el caso Lorentziano. Una sección de $\mathcal{M} \times \mathbb{R}^n$ es una función \mathbb{R}^n -valuada sobre \mathcal{M} , por lo que la base natural de secciones es

$$\xi_0(p) = (1, 0, ..., 0),$$

$$\xi_1(p) = (0, 1, ..., 0),$$

$$\vdots$$

$$\xi_{n-1}(p) = (0, 0, ..., 1).$$

De este modo, cualquier sección $s \in \Gamma(\mathcal{M} \times \mathbb{R}^n)$ se puede escribir como $s^I \xi_I$. A \mathbb{R}^n , que es la fibra del haz, le llamaremos espacio interno. Así, las letras mayúsculas latínas, I, J, ..., denotan índices internos asociados a la base de secciones ξ_I . Y, usaremos letras griegas, $\mu, \nu, ...$, para denotar los índices espacio-temporales de M asociados a una base coordenada ∂_{μ} dada por una carta en \mathcal{M} .

El campo de marcos $^1e: \mathcal{M} \times \mathbb{R}^n \to T\mathcal{M}$, definen un mapeo de secciones del espacio total $\mathcal{M} \times \mathbb{R}^n$ a campos vectoriales en \mathcal{M} , que denotaremos también con e,

$$e: \Gamma(\mathcal{M} \times \mathbb{R}^4) \to \Gamma(T\mathcal{M}).$$
 (B.3)

Aplicando este mapeo a las secciones ξ_I , obtenemos una base de campos vectoriales $\{e(\xi_I)\}$ sobre \mathcal{M} , y en una carta podemos escribir esto como

$$e(\xi_I) = e_I^{\mu} \partial_{\mu},\tag{B.4}$$

donde las componentes e_I^{μ} son componentes sobre \mathcal{M} . Es usual denotar $e(\xi_I)$ como e_I , y dado que los campos vectoriales e_I o las componentes e_I^{μ} son suficientes para determinar el campo de marcos es común llamar a cualquiera de ellos campo de marcos.

¹Para el caso de las triadas el espacio interno es \mathbb{R}^3 y para tetradas \mathbb{R}^4 .

Ahora bien, en el espacio total $\mathcal{M} \times \mathbb{R}^n$ hay un producto interno canónico bien definido. En otras palabras, dadas dos secciones $s, s' \in \Gamma(\mathcal{M} \times \mathbb{R}^n)$, su producto interno es

$$\eta(s,s') = \eta_{IJ}s^Is^{\prime J}.\tag{B.5}$$

 η es la métrica del espacio interno \mathbb{R}^n así que se le llama métrica interna y

$$\eta_{IJ} = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

se saca de la métrica de Minkowski.

Usando η_{IJ} o su inversa η^{IJ} , podemos subir o bajar índices internos, de esta manera mapeamos elementos del espacio interno \mathbb{R}^n al espacio interno dual, o vice versa.

Supongamos que \mathcal{M} tiene una métrica (lorentziana) g, entonces el producto interno de campos vectoriales sobre \mathcal{M} es $g(v,v')=g_{\mu\nu}v^{\mu}v'^{\nu}$. Con lo que si el producto interno de los campos vectoriales

$$g(e_I, e_J) = \eta_{IJ},\tag{B.6}$$

es decir, $\{e_I\}$ es ortonormal, decimos que el campo de marcos es ortonormal.

Si el campo de marcos es ortonormal, la métrica g en \mathcal{M} está bien relacionada a la métrica interna η :

$$g(e(s), e(s')) = g(e(s^{I}\xi_{I}), e(s^{J}\xi_{J})) = s^{I}s^{J}g(e_{I}, e_{J})$$

$$= \eta_{IJ}s^{I}s^{J} = \eta(s^{I}\xi_{I}, s^{J}\xi_{J})$$

$$= \eta(s, s')$$

$$\therefore g(e(s), e(s')) = \eta(s, s').$$
(B.7)

Para cualesquiera secciones s, s' de $\mathcal{M} \times \mathbb{R}^n$. Este resultado implica que la métrica en \mathcal{M} está dada en términos del campo de marcos inverso,

$$g(v, v') = \eta(e^{-1}(v), e^{-1}(v')).$$
 (B.8)

Ahora, por (B.6) v (B.4) tenemos que

$$\eta_{IJ} = g_{\mu\nu} e_I^{\mu} e_J^{\nu},\tag{B.9}$$

entonces

$$\delta_J^I = e_\alpha^I e_J^\alpha. \tag{B.10}$$

A e^I_{α} se le denomina co-campo de $marcos^2$. Dada una sección $s \in \Gamma(\mathcal{M} \times \mathbb{R}^n)$ tenemos que e(s) = v donde $v \in \Gamma(T\mathcal{M})$, entonces $v^{\alpha}\partial_{\alpha} = s^I e^{\alpha}_I \partial_{\alpha}$

$$\implies v^{\alpha} = s^I e_I^{\alpha}.$$
 (B.11)

Y si ahora contraemos esta igualdad (B.11) con e^{J}_{α} obtenemos que

$$s^{J} = e^{J}_{\alpha} v^{\alpha}. \tag{B.12}$$

Por otro lado, como $e^{-1}(v)=s$ entonces $s^I\xi_I=e^I_\alpha v^\alpha\xi_I=v^\alpha e^{-1}(\partial_\alpha)$

$$\implies e^{-1}(\partial_{\alpha}) = e_{\alpha}^{I} \xi_{I}.$$
 (B.13)

Utilizando estás últimas relaciones, (B.11) y (B.13), podemos demostrar que las componentes de la métrica qse expresan como:

$$g_{\mu\nu} = \eta_{IJ} e^I_{\mu} e^J_{\nu}. \tag{B.14}$$

Relación de la cual se sigue

$$\delta^{\alpha}_{\beta} = e^{\alpha}_{I} e^{J}_{\beta}. \tag{B.15}$$

² Cotriada si la dimensión es tres o cotétrada si es cuatro-dimensional.