Ensaio de aquecimento em cabos de energia eléctrica

Projecto executado pelos alunos:

João Carlos G. Soares e Silva Sérgio Clemente Tavares

Orientação :

Professor Doutor Carlos Fernando Ramos Lemos Antunes Professor Doutor António Paulo Mendes Breda Dias de Coimbra

Objectivo do projecto

Estudar o fenómeno associado ao aquecimento em cabos de enrgia eléctrica

Estudo realizado para:

- Cabos enterrados
- Cabos aéreos

Métodos aplicados

- Simulação através de modelos reduzidos (ensaios experimentais)
- Simulação e validação dos resultados experimentais em computador utilizando um programa de elementos finitos
- Simulação para cabos reais em computador utilizando o mesmo programa de elementos finitos

Modelos reduzidos

Montagem da bancada de ensaios

Elementos físicos a simular:

- Cabos de transporte de energia eléctrica
- No caso de cabos enterrados:
 A camada de terra próxima e circundante aos cabos
- No caso de cabos aéreos:
 Suspensão dos cabos

Equipamento necessário à medição dos fénomenos térmicos: Aquisição e armazenamento dos valores de temperatura

Aquisição e armazenamento dos valores de temperatura

Estudo de cabos enterrados

Pré-preparação dos ensaios

- Graduação do depósito de fibrocimento
- Criação de varetas com medidas apropriadas para colocar os sensores e resistências nos pontos escolhidos

Pré-ensaio com configuração 1

- Limitação da corrente na *resistência* (controlo da temperatura no *sistema*)
- Placa adicional (medida preventiva)

Total de sete ensaios com configuraçõs diferentes Regime estacionário: variação da temperatura menor ou igual a 1 °C

Programa de elementos finitos QuickField 4.3.1.4 Demo

simetria

$$K (Cu) = 397 (W/m/{}^{\circ}K)$$

T(lateral da caixa) = 298+0,23y(K)

$$q = 723348 (W/m^3)$$

Mapa de malhas para configuração 1

Configuração 1

Dados obtidos por medição directa

Temperaturas obtidas pelo método dos elementos finitos

Configuração ₁	Tensão (Vrms)	Corrente (Arms)	Potência (W)	Temperatura máxima registada (°C)
Resistência B	52,2	0,25	13,05	98,25
				371,25 (K)

Configuração 2 e 3

Valores medidos (regime permanente)

Configuração 2 distancia=4 cm	Tensão (Vrms)	Corrente (Arms)	Potência (W)	Temperatur a máxima registada (°C)
Resistência A	23.8	0.17	4.05	71.99
Resistência B	29.1	0.13	3.78	345 (K)
Resistência C	29.3	0.13	3.81	

Configuração 3 distancia=8cm	Tensão (Vrms)	Corrente (Arms)	Potência (W)	Temperatura máxima registada (°C)
Resistência A	23.8	0.17	4.05	67.21
Resistência B	29.1	0.13	3.78	340,21 (K)
Resistência C	29.3	0.13	3.81	

Temperaturas obtidas pelo método dos elementos finitos

Temperatura na resistência = 347,2 K

Configurações 4 e 5

Valores medidos(regime permanente)

Configuração 4 distancia=4 cm	Tensão (Vrms)	Corrente (Arms)	Potênci a (W)	Temperatura máxima registada (°C)
Resistência A	23.9	0.17	4.06	74.58
Resistência B	28.9	0.13	3.76	347,58 (K)
Resistência C	29.1	0.13	3.78	

Configuração 5 distancia=8cm	Tensão (Vrms)	Corrent e (Arms)	Potência (W)	Temperatura máxima registad a (°C)
Resistência A	24.1	0.17	4.10	72.14
Resistência B	29.3	0.13	3.81	345,14 (K)
Resistência C	29.8	0.13	3.87	

Temperatura(resistência B) = 348,2 K

Configurações 6 e 7

(Não foi possivel a simulação por elementos finitos)
Valores medidos(regime permanente)

Configuração 6	Tensão (Vrms)	Corrente (Arms)	Potência (W)	Temperatura máxima registada (°C)
Resistência A	23.9	0.17	4.06	66.71
Resistência B	29	0.13	3.77	339,71 (K)
Resistência C	29.5	0.13	3.84	

Configuração 7	Tensão (Vrms)	Corrente (Arms)	Potência (W)	Temperatura máxima registada (°C)
Resistência A	23.8	0.17	4.05	59.14
Resistência B	28.9	0.13	3.76	
Resistência C	29.3	0.13	3.81	

Simulação para cabos reais

Determinação da escala a utilizar

$$\frac{r_{cabo \, real}}{r_{resist \hat{e}ncia}} = escala \qquad \frac{A_{real}}{A_{m.red}} = escala^2$$

Densidade de potência dissipada

$$d_{real} = \frac{d_{m.red}}{escala^2}$$

Simulação para cabos reais

Dados de simulação:

Escala : 4,7

Densidade de potencia no cabo = 33215 (W/m^3)

Temperatura ambiente = 298 K

K(cobre)=397 W/m/K

Raio(cabo) =1,75 cm

k(areia)=0,24 W/m/K

Largura(vala)= 140 cm

Profundidade(vala) = 140 cm

Temperatura (cabo) = 372 K

Temperaturas para diferentes densidades de potência

Influencia da condutibilidade térmica do meio

Influencia da condutibilidade do meio na temperatura do cabo

K = [0,04 e 0,4]

Distancia ao eixo do cabo (cm)

Cabos aéreos

O resultado obtido não foi o desejado

Causas prováveis

- Flutuações na tensão da rede
- Codições laboratoriais pouco favoráveis