

ivy output csv files and the ivy output csv file loader Excel tool

2016-03-30

Allart Ian Vogelesang ian.vogelesang@hds.com +1 408 396 6511

About this presentation

- Prerequisite
 - "introduction to ivy" PowerPoint material.
- Please go over this presentation to learn how to explore the ivy demo output.
- The "programming ivy reference" presentation has full details and can actually be read standalone, but it's recommended to go through this presentation and review the demo video series first.

ivy engine control statements

- The [hosts] statement specifies the test hosts (I/O driver hosts) to use, and the [select] clause in that statement is used to filter "all discovered LUNs" to arrive at "available test LUNs".
- The [CreateWorkload] sets up I/O driver threads on test LUNs.
- The [CreateRollup] statement sets up two-way structures used to centrally roll up detail data from test host workloads, and to send out I/O driver parameter updates to those workloads.
- The [Go] statement runs a subinterval sequence.

[hosts] statement - configuration discovery

"All discovered LUNS"


```
Host, LUN, HDS Product, LDEV, PG
testhost1, /dev/sdxy, VSP, 00:00, 1-1
testhost2, /dev/sdxy, VSP, 00:01, 1-2
testhost3, /dev/sdxy, VSP, 00:02, 1-3
```

- The "showluns.sh" csv files from all the test hosts are combined
- Each data line is loaded into a "LUN" object where for each column in the csv file, we file
 the data value into the LUN under the attribute name taken from the corresponding
 header line column.
- Later on, if we find out more information about this LUN, using a command device, we may fill in more attribute values.
- KEY ivy CONCEPT: ivyscript [select] clauses operate on LUN attributes.

Available test LUNs

Augmenting SCSI Inquiry data using cmd. dev.

- For every Available Test LUN that is mapped to a Hitachi RAID subsystem LDEV for which we have a command device:
- We augment the Available Test LUN SCSI Inquiry attributes with the RMLIB API attributes of the underlying LDEV
 - Enables things like [select] "drive_type = \"NFH1B-P3R2SS\""
- Using the RMLIB API configuration data and using static tables of relationships for the specific subsystem model, we further augment the LUN with "indirect" attributes.
 - Tagging the LUN with the names of the associated subsystem configuration elements of different types enables us to filter real-time RMLIB API performance data by the workload LUNs which comprise a rollup instance.

Setting up test host workload threads

The [go] statement launches a "test step"

- [go] starts the workload threads running a series of "subintervals", typically each 5 seconds long.
- At the end of each subinterval, data are rolled up to the ivy master host.
 - Test host workload data
 - Command device data, if a command device was discovered
- The master host examines the data, optionally sends out real-time I/O generator updates to the workload threads, and then decides whether to continue for another subinterval or not.

For each subinterval within a test step ...

- You get a csv line in each csv file within the test step subfolder
- Within the test step subfolder
 - There is a subfolder for each rollup with a csv file for each rollup instance.
 - For example, for a rollup by host, you might have csv files for testhost1, testhost2, and testhost3, in the host subfolder.
 - There is a subfolder for each subsystem we have a command device for, and within that there is a subfolder for each type of command device resource type for which we collect data.
 - E.g., a csv file for 00:00 in the LDEV folder in the 410034 subfolder.

Test step "success" vs. "failure"

- A test step may run for a fixed number of "warmup_seconds" and
 "measure seconds", in which case the test step is always a "success".
- However, if "measure=on" is specified on the [Go] statement, warmup_seconds and measure_seconds specify minimum times. After that, ivy keeps running more subintervals until it has "seen enough" to make a statistically valid measurement to the required accuracy (success), or until timeout seconds have been reached (failure).
- If the test step is a "success", a summary csv result line is written describing the rollup over the measurement subintervals, otherwise an error message line is written to the summary csv files.
 - Note: Even if a statistically valid measurement was observed, the test step may still be marked a failure if other test configuration validity criteria are not met.

Success = warmup, measure, cooldown

- For each test step, there is one "measurement" csv line in the "summary" csv files.
- For each rollup, there is a "summary" subfolder in the root test output folder containing a csv file for each rollup instance.
 - The equivalent of the summary.html file in vdbench is the "all=all" csv file in the "all" rollup subfolder.
 - There is always an "all" rollup that has one instance "all" covering all workload threads.
 - With a command device, there are no measurement summary csv files for RMLIB API data like there are for by-subinterval RMLIB API data within a test step subfolder, but some RMLIB API data is filtered by rollup instance, and there are filtered RMLIB API columns within workload csv files.

Now we are ready to look at ivy output

ivy output folder structure

Files in the test output folder itself

Subfolders of the ivy test output folder

Ivy records the subsystem configuration

... if there is a command device present

Ivy records subsystem performance data

Config thumbnails for each rollup instance

There's a tool to automatically load ivy output csv files into an Excel spreadsheet

load_ivy_output.xlsm

✓ Load ivyscript program	TRUE										
Load "available test LUNs" csv file			V	Load "available_test_config.txt":			ary	TRUE			
RMLIB config csv files											
Load RMLIB config csv files	FALSE	✓ LDEV	MP_core	RMLIB	SM	Cache	✓ Port	Slot	Subsyter	m	
		TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE		
✓ Load measurement summary csv files	TRUE	Load per ins	tance measur	ement summa	ry csv files	FALSE					
✓ Load test overall PID csv file	TRUE	Load step P	ID csv files			FALSE					
Load measurement summary data validity csv files	FALSE										
Detail by subinterval by test step											
○ Test step number		0)	step0000							
All test steps	2										
Each test stp											-
☐ By-subinterval rmlib perf csv files	FALSE	NOTE: There can	be a large	number o	f RMLIB AP	I data csv f	iles, so yo	u may wish	to load on	ie type at a	time
		CLPR	LDEV	☐MP busy	MP_core	Пмр∪	□PG	✓ subsyste	m		
		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE			
by-subinterval rollup csv files	FALSE										
		Select the root folder of the output from your test run. For xxxxx.ivyscript, the default output root folder is /scripts/ivy/ivyoutput/xxxxx.									
Select an ivy test output root folder		S:\Scripts\ivy\iv								time Dr I	by ID
Select an ivy test output root folder		3. (3ci ipts (ivy (iv	youtput(se	impie_out	put (uemoa	_auto_fai	igirig_uriv	e_10P3_VS_	response_	unie_Dr_k	Jy_LD

Makes it easy to look at the data you want to see

Loads both .txt as well as .csv files.

Use this to explore the ivy demo output.

Questions and Discussion

Thank You

HITACHI Inspire the Next