

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Студент	Сергеева Диана Константиновна						
Группа	РК6-56Б						
Тип задания	лабораторная работа						
Тема лабораторной работы	Интерполяция в условиях с измерений с не-						
	определенностью						
Студент		_Сергеева Д.К					
	подпись, дата	фамилия, и.о.					
Преподаватель		_Соколов А.П					
	подпись, дата	фамилия, и.о.					

Оглавление

Зада	ание на лабораторную работу	3
Цел	ъ выполнения лабораторной работы	5
Выі	полненные задачи	5
1.	Реализация функции для вычисления коэффициентов естественного кубического сплайна	.6
2.	Реализация функции для вычисления значений кубического сплайна и его первой производной	В
точ	ке	8
3.	Построение аппроксимации кубическим сплайном	.8
4.	Реализация функции для вычисления значения интерполяционного полинома Лагранжа в точке 10	;
	Анализ для выявления влияния погрешности при измерении координат по оси абсциссы и инаты на интерполяцию полиномом Лагранжа	11
	Анализ для выявления влияния погрешности при измерении координат по оси абсциссы и инаты на интерполяцию кубическим сплайном	15
Зак.	лючение	18
Спи	сок использованных источников	19

Задание на лабораторную работу

Интерполяция, вероятно, является самым простым способом определения недостающих значений некоторой функции при условии, что известны соседние значения. Однако, за кадром зачастую остается вопрос о том, насколько точно мы знаем исходные данные для проведения интерполяции или любой другой аппроксимации. К примеру, исходные данные могут быть получены путем снятия показаний с датчиков, которые всегда обладают определенной погрешностью. В этом случае всегда возникает желание оценить влияние подобных погрешностей и неопределенностей на аппроксимацию. В этом задании на простейшем примере мы познакомимся с интерполяцией в целом (базовая часть) и проанализируем, как неопределенности влияют на ее предсказания (продвинутая часть).

Требуется (базовая часть):

- 1. Разработать функцию qubic_spline_coeff(x_nodes, y_nodes), которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна.
- 2. Написать функции qubic_spline(x, qs_coeff) и d_qubic_spline(x, qs_coeff), которые вычисляют соответственно значение кубического сплайна и его производной в точке x (qs_coeff обозначает матрицу коэффициентов).
- 3. Используя данные в таблице 1, требуется построить аппроксимацию зависимости уровня поверхности жидкости h(x) от координаты x. С помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами.

Таблица 1 Значения уровня поверхности вязкой жидкости

эначения уровня пове							рапости вазкои жидкости				
x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
h_i	3.37	3.95	3.73	3.59	3.15	3.15	3.05	3.86	3.60	3.70	3.02

Требуется (продвинутая часть):

- 1. Разработать функцию l_i(i, x, x_nodes), которая возвращает значение i-го базисного полинома Лагранжа, заданного на узлах с абсциссами x_nodes, в точке x.
- 2. Написать функцию L(x, x_nodes, y_nodes), которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами y_nodes, в точке x.
- 3. Известно, что при измерении координаты *х* всегда возникает погрешность, которая моделируется случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 0,01. Требуется провести следующий анализ, позволяющий выявить влияние этой погрешности на интерполяцию:
 - а) Сгенерировать 1000 векторов значений $[\tilde{x}_1, \dots, \tilde{x}_{11}]^T$, предполагая, что $\tilde{x}_i = x_i + Z$, где x_i соответствует значению в таблице 1, и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 0,01.
 - b) Для каждого из полученных векторов построить интерполянт Лагранжа, предполагая, что в качестве абсцисс узлов используются значения $\tilde{\mathbf{x}}_{i}$, а ординат h_{i} из таблицы 1. В результате вы должны иметь 1000 различных интерполянтов.
 - с) Предполагая, что все интерполянты представляют собой равновероятные события, построить такие функции $h_l(x)$ и $h_u(x)$, где $h_l(x) < h_u(x)$, для любого $x \in [0; 1]$, что вероятность того, что значение интерполянта в точке будет лежать в интервале $[h_l(x); h_u(x)]$, равна 0.9.
 - d) Отобразить на едином графике функции $h_l(x)$ и $h_u(x)$, усредненный интерполянт и узлы из таблицы 1.
 - е) Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?
- 4. Повторить анализ, описанный в предыдущем пункте, в предположении, что координаты вам известны точно, в то время как измерения уровня по-

- верхности h имеют ту же погрешность, что и в предыдущем пункте. Изменились ли выводы вашего анализа?
- 5. Повторить два предыдущие пункта для случая интерполяции кубическим сплайном. Какие выводы вы можете сделать, сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном?

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — изучение интерполяции кубическим сплайном и полиномом Лагранжа. Изучение влияния неопределённостей на предсказание интерполяции.

Выполненные задачи

- 1. Разработана функция для вычисления коэффициентов естественного кубического сплайна посредством решения матричного уравнения.
- 2. Разработаны функции для вычисления значений кубического сплайна и его первой производной в точке.
- 3. Построена аппроксимация с помощью кубического сплайна.
- 4. Разработана функция для вычисления значения интерполяционного полинома Лагранжа в точке, заданного на узлах.
- 5. Произведён анализ для выявления влияния погрешности при измерении координат по оси абсциссы и ординаты на интерполяцию полиномом Лагранжа.
- 6. Произведён анализ для выявления влияния погрешности при измерении координат по оси абсциссы и ординаты на интерполяцию кубическим сплайном.

1. Реализация функции для вычисления коэффициентов естественного кубического сплайна

Реализуем функцию qubic_spline_coeff(x_nodes, y_nodes), на вход которой подаются координаты точек соответственно по оси абсцисс и ординат.

Кубический сплайн кусочно задан кубическими многочленами S_i , которые имеют вид:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3.$$
 (1)

Требуется найти коэффициенты: a_i, b_i, c_i, d_i .

Для кубического сплайна верно, что значения в его интерполяционных узлах равны значениям функции в этих узлах: $S_i(x_i) = f(x_i)$. При подстановке x_i в выражение (1) получаем:

$$a_i = f(x_i). (2)$$

По условию второй производной для кубического сплайна имеем выражение: $S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$. Расписываем его и выражаем из него коэффициент d_i :

$$d_i = \frac{c_{i+1} - c_i}{3h_i} \,. \tag{3}$$

Используя равенство первых производных $S'_i(x_{i+1}) = S'_{i+1}(x_{i+1})$ и подставляя найденные выражения для коэффициентов, получаем:

$$b_i = \frac{1}{h_i}(a_{i+1} - a_i) - \frac{h_i}{3}(c_{i+1} + 2c_i),\tag{4}$$

где $h_i = x_{i+1} - x_i$.

Для нахождения коэффициента c_i запишем матричное уравнение:

$$\begin{bmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ h_1 & 2(h_2 + h_1) & h_2 & 0 & \cdots & 0 \\ 0 & h_2 & 2(h_3 + h_2) & h_3 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & \cdots & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \end{bmatrix}$$

$$(5)$$

Решив его относительно матрицы: $\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ \vdots \\ c_m \end{bmatrix},$ найдём коэффициенты c_i :

$$\begin{bmatrix}
c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n
\end{bmatrix} = \begin{bmatrix}
3 \\ h_2(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & \cdots & \cdots & \cdots & 0 \\ h_1 & 2(h_2 + h_1) & h_2 & 0 & \cdots & 0 \\ 0 & h_2 & 2(h_3 + h_2) & h_3 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & \cdots & \cdots & 1
\end{bmatrix}$$

$$(6)$$

Матрицу транспонируем с помощью встроенной функции в модуль numpy: numpy.linalg.inv(). Найдя коэффициенты c_i , найдём все остальные: a_i , b_i , d_i .

2. Реализация функции для вычисления значений кубического сплайна и его первой производной в точке

Реализуем функцию qubic_spline(x, qs_coeff, x_nodes), на вход которой подаются: массив точек, в которых требуется найти значения кубического сплайна, массив коэффициентов каждого сплайна, координаты точек по оси абсцисс.

Кусочно заданный кубический сплайн имеет вид:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3.$$
 (7)

Коэффициенты естественного кубического сплайна вычисляем через функцию qubic_spline_coeff, описанную в пункте 1. Находим между какими значениями x_i и x_{i+1} лежит каждый х в переданном массиве, индекс і. Подставляя эти данные в выражение (7), находим значение сплайна в точке.

Реализуем функцию d_qubic_spline (x, qs_coeff, x_nodes), на вход которой подаются: массив точек, в которых требуется найти значения первой производной кубического сплайна, массив коэффициентов каждого сплайна, координаты точек по оси абсцисс.

Первая производная кубического сплайна имеет вид:

$$S_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2.$$
 (8)

По аналогии с функцией qubic_spline(x, qs_coeff, x_nodes) вычисляем индекс і для каждого x в переданном массиве и коэффициенты, подставляем в выражение (8), находим значение первой производной в точке x.

3. Построение аппроксимации кубическим сплайном

Для построения аппроксимации кубическим сплайном воспользуемся встроенной функцией matplotlib.pyplot.plot(x, F(x)). x – массив координат по оси абсцисс. Для формирования такого массива воспользуемся функцией numpy.linspace(). F(x) – уравнение кубического сплайна, значения для каждой точки будем находить по функции qubic_spline(x, qs_coeff, x_nodes), описанной в пункте 2.

Рис. 1 — Аппроксимация естественным кубическим сплайном Также по заданию аналогично построим график первой производной кубического сплайна по функции d_qubic_spline (x, qs_coeff, x_nodes).

4. Реализация функции для вычисления значения интерполяционного полинома Лагранжа в точке

Интерполяционный полином Лагранжа имеет вид:

$$L_{n-1}(x) = \sum_{i=1}^{n} f(x_i) l_i(x), \qquad (9)$$

где $l_i(x)$ - базисный полином Лагранжа и равен:

$$l_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}.$$
 (10)

Реализуем функцию $l_i(i, x, x_nodes)$, которая будет считать базисный многочлен Лагранжа, заданный в точках x_nodes , с индексом i, в точке x, и функцию $L(x, x_nodes, y_nodes)$, которая аналогично будет считать значение интерполяционного полинома Лагранжа в точке x.

Рис. 3 – Интерполяционный полином Лагранжа

5. Анализ для выявления влияния погрешности при измерении координат по оси абсциссы и ординаты на интерполяцию полиномом Лагранжа

При измерении координаты х в реальных задачах возникает погрешность. Сгенерируем 1000 векторов значений $[\tilde{x}_1, ..., \tilde{x}_{11}]^T$, где $\tilde{x}_i = x_i + Z$. Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Для генерации 1000 векторов напишем функцию generate vectors(nodes), где nodes – массив координат точек по оси абсцисс, через которые проходит интерполяционный полином Лагранжа. Функция 1000 раз берёт точки из массива nodes и прибавляет к ним Z, случайную величину вычисленную cпомощью метода numpy.random.normal(0, 0.01), который возвращает нужную нам случайную величину. Построим 1000 интерполянтов Лагранжа (рис. 4), которые проходят через точки $[\tilde{x}_1, ..., \tilde{x}_{11}]^T$, с помощью функции matplotlib.pyplot.plot(x, F(x)), где F(x) – это значения уравнения интерполяционного полинома Лагранжа в каждой точке массива x, вычисленное через функцию L(x, x_nodes, y_nodes).

Рис. 4 — 1000 интерполяционных полиномов Лагранжа при учете погрешности координат по оси абсцисс

Предположим, что все интерполянты представляют собой равновероятные события. Построим функции $h_l(x)$ и $h_u(x)$, где $h_l(x) < h_u(x)$ для любого х \in (0; 1), что вероятность того, что значение интерполянта в точке х будет лежать в интервале [$h_l(x)$; $h_u(x)$] равна 0.9, и функцию усредненного интерполянта $h_m(x)$ (рис. 5). Для этого реализуем функцию calculate_equations(y_nodes_list), где y_nodes_list — массив значений интерполянтов Лагранжа для каждой точки х. Функция вычисляет среднее значение координаты по оси ординат для каждой точки х - $h_m(x)$ с помощью функции питру.mean() и значения для $h_l(x)$ и $h_u(x)$, где $h_l(x)$ — 49 элемент и $h_u(x)$ — 949 элемент отсортированного массива y_nodes_list.

Рис. 5 — Доверительная полоса и усредненный интерполянт Лагранжа при учете погрешности координат по оси абсцисс

Повторим анализ только при условии, что измерения уровня h_i является неточными. То есть $\tilde{h}_i = h_i + Z$, где Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Аналогично сформируем 1000 векторов значений $\left[\tilde{h}_1,\dots,\tilde{h}_{11}\right]^T$. Тем же способом построим график 1000 интерполянтов Лагранжа (рис. 6) и функций $h_l(x),h_u(x)$ и усредненного интерполянта $h_m(x)$ (рис. 7).

Рис. 6-1000 интерполяционных полиномов Лагранжа при учете погрешности координат по оси ординат

Рис. 7 – Доверительная полоса и усредненный интерполянт Лагранжа при учете погрешности координат по оси ординат

Участки ближе к концам интервала [0; 1] являются наиболее чувствительны к погрешностям, так как имею больший разброс значений h(x).

6. Анализ для выявления влияния погрешности при измерении координат по оси абсциссы и ординаты на интерполяцию кубическим сплайном

Проведём аналогичный анализ влияния погрешности, описанный в пункте 5, только будем использовать вместо интерполянта Лагранжа кубический сплайн.

Для начала формируем 1000 векторов значений $[\tilde{x}_1,...,\tilde{x}_{11}]^T$, где $\tilde{x}_i = x_i + Z$, используя функцию generate_vectors(nodes). Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Построим 1000 кубический сплайнов (рис. 8), которые проходят через точки $[\tilde{x}_1,...,\tilde{x}_{11}]^T$, с помощью функции matplotlib.pyplot.plot(x, F(x)), где F(x) – это значение уравнения кубического сплайна в каждой точке массива x, вычисленное через функцию qubic_spline(x, cubic_coeff, x_nodes). Также построим функции $h_l(x)$ и $h_u(x)$ аналогичным способом, описанным в пункте 5, где $h_l(x) < h_u(x)$ для любого $x \in (0;1)$, что вероятность того, что значение интерполянта в точке x будет лежать в интервале $[h_l(x); h_u(x)]$ равна 0.9, и функцию усредненного интерполянта $h_m(x)$ (рис. 9).

Рис. 8-1000 кубических сплайнов при учете погрешности координат по оси абсцисс

Рис. 9 — Доверительная полоса и усредненный кубический сплайн при учете погрешности координат по оси абсцисс

Также повторим анализ только при условии, что измерения уровня h_i является неточными. То есть $\tilde{h}_i = h_i + Z$, где Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Строим 1000 кубических сплайнов (рис. 10) и доверительную полосу, усредненный кубический сплайн (рис. 11) при учете погрешности координат по оси ординат.

Рис. 10-1000 кубических сплайнов при учете погрешности координат по оси ординат

Рис. 11 – Доверительная полоса и усредненный кубический сплайн при учете погрешности координат по оси ординат

Сравнив графики интерполяции двумя методами, можно заметить, что разброс значений для интерполяции Лагранжа намного больше, чем для интерполяции кубическими сплайнами.

Заключение

При интерполяция кубическим сплайном доверительная полоса оказывается более узкой чем при интерполяции Лагранжа при появлении погрешности измерения координат по оси абсцисс, то есть разброс значений намного меньше в первом случае.

При интерполяции полиномом Лагранжа на концах интервала появляются паразитные колебания, то есть этот участок оказывается наиболее чувствителен к погрешностям.

При появлении погрешности измерения координат по оси ординат что при интерполяции полиномом Лагранжа, что при интерполяции кубическим сплайном доверительная полоса остается достаточно узкой, разброс значений не та-

кой большой в сравнении с тем случаем, когда появляется погрешность по оси абсцисс.

Список использованных источников

1. Першин А.Ю. Лекции по курсу «Вычислительная математика. Москва, 2018-2021, С. 140.