

Figure 2E

PNAS Online

VISIT
SCIENCE Online

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVES SEARCH

Institution: PC43PT0608040 Sign In as Member / Individual

SEARCH [advanced]
 Author: Keyword(s):
 J. Vol. Page
 Year:

▶ Full Text of this Article

Supporting Information for Szyperski *et al.* (2002) *Proc. Natl. Acad. Sci. USA*
 99 (12), 8009–8014. (10.1073/pnas.122224599).

Supporting Figure 10

Fig. 10. Experimental scheme for the 3D HCCH-TOCSY experiment. Rectangular 90° and 180° pulses are indicated by thin and thick vertical bars, respectively, and phases are indicated above the pulses. Where no rf phase is marked, the pulse is applied along x . The scaling factor k for ^1H chemical shift evolution during t_1 is set to 1.0. The high power 90° pulse lengths were: 5.8 ms for ^1H and 15.4 ms for ^{13}C , and 38 ms for ^{15}N . ^{13}C decoupling during $t_1(^1\text{H})$ is achieved using a (90_x 180_y 90_x) composite pulse. The lengths of the ^1H spin-lock purge pulses are: first SL_x , 5.7 ms; second SL_x , 0.9 ms; SL_y , 4.3 ms. SEDUCE is used for decoupling of ^{13}CO during t_1 and t_2 (rf field strength = 1 kHz), and GARP is employed for decoupling of ^{13}C during acquisition (rf = 2.5 kHz). The ^1H rf carrier is placed at the position of the solvent line at 0 ppm before the start of the first semiconstant-time ^1H evolution period, and then switched to the water line at 4.78 ppm after the second 90° ^1H pulse. The $^{13}\text{C}^a$ and ^{15}N rf carriers are set to 38 and 120.9 ppm, respectively. The length of ^{13}C spin-lock purge pulses denoted SL_x are of 2 ms duration. ^{13}C isotropic mixing is accomplished using the DIPSI-2 scheme (rf = 8.5 kHz). The duration and strengths of the pulsed z-field gradients (PFGs) are: G1 (100 ms, 16 G/cm); G2 (2 ms, 15 G/cm); G3 (300 ms, 8 G/cm); G4 (500 ms, 30 G/cm); G5 (100 ms, 16 G/cm). All PFG pulses are of rectangular shape. A recovery delay of at least 100 ms duration is inserted between a PFG pulse and an rf pulse. The delays are: $t_1 = 850$ ms, $t_2 = 3.2$ ms. ^1H -frequency labeling in t_1 is achieved in a semiconstant-time fashion with $t_1^a(0) = 1.7$ ms, $t_1^b(0) = 1$ ms, $t_1^c(0) = 1.701$ ms, $Dt_1^a = 33.3$ ms, $Dt_1^b = 19.3$ ms, and $Dt_1^c = -14$ ms. ^{13}C -frequency labeling in t_2 is achieved in a semiconstant-time fashion with $t_2^a(0) = 1120$ ms, $t_2^b(0) = 62.5$ ms, $t_2^c(0) = 995$ ms, $Dt_2^a = 160$ ms, $Dt_2^b = 125$ ms, and $Dt_2^c = -35$ ms. These delays ensure that a 90° first-order phase correction is obtained along $w_2(^{13}\text{C})$. The fractional increases of the semiconstant-time period in t_1 equals to $1 = 1 + Dt_2^c / Dt_2^a = 0.58$, and in t_2 equals to $1 = 1 + Dt_2^c / Dt_2^a = 0.78$. Phase cycling: $f_1 = x$; $f_2 = x, -x$; $f_3 = x$; $f_4 = 2(x), 2(-x)$; $f_5(\text{receiver}) = x, -x$. Quadrature detection in $t_1(^{13}\text{C}/^1\text{H})$ and $t_2(^{13}\text{C})$ is accomplished by altering the phases f_2 and f_3 , respectively, according to States-TPPI. For acquisition of central peaks derived from ^{13}C steady state magnetization, a second data set with $f_1 = -x$ is collected. The sum and the difference of the two resulting data sets generate subspectra II and I, respectively, containing the central peaks and peak pairs.

▶ Full Text of this Article

Figure 10