Цель лекции:

Цель лекции:

рассмотреть три задачи, тесно связанные между собой:

Цель лекции:

рассмотреть три задачи, тесно связанные между собой:

- задача о независимом множестве;

Цель лекции:

рассмотреть три задачи, тесно связанные между собой:

- задача о независимом множестве;
- задача о поиске клики;

Цель лекции:

рассмотреть три задачи, тесно связанные между собой:

- задача о независимом множестве;
- задача о поиске клики;
- задача о вершинном покрытии.

Definition

Независимым множеством вершин графа называется любое множество попарно не смежных вершин, т.е. множество вершин, порождающее пустой подграф.

Definition

Независимым множеством вершин графа называется любое множество попарно не смежных вершин, т.е. множество вершин, порождающее пустой подграф.

Definition

Независимое множество называется наибольшим, если оно содержит наибольшее количество вершин.

Definition

Независимым множеством вершин графа называется любое множество попарно не смежных вершин, т.е. множество вершин, порождающее пустой подграф.

Definition

Независимое множество называется наибольшим, если оно содержит наибольшее количество вершин.

Definition

Число вершин в наибольшем независимом множестве графа G обозначается через lpha(G) и называется числом независимости графа.

Definition

Независимым множеством вершин графа называется любое множество попарно не смежных вершин, т.е. множество вершин, порождающее пустой подграф.

Definition

Независимое множество называется наибольшим, если оно содержит наибольшее количество вершин.

Definition

Число вершин в наибольшем независимом множестве графа Gобозначается через lpha(G) и называется числом независимости графа.

Задача о независимом множестве состоит в нахождении наибольшего независимого множества.

Definition

Кликой графа называется множество вершин, порождающее полный подграф, т.е. множество вершин, каждые две из которых смежны.

Definition

Кликой графа называется множество вершин, порождающее полный подграф, т.е. множество вершин, каждые две из которых смежны.

Definition

Число вершин в клике наибольшего размера называется кликовым числом графа G и обозначается через $\omega(G)$.

Definition

Кликой графа называется множество вершин, порождающее полный подграф, т.е. множество вершин, каждые две из которых смежны.

Definition

Число вершин в клике наибольшего размера называется кликовым числом графа G и обозначается через $\omega(G)$.

Задача о независимом множестве преобразуется в задачу о клике и, наоборот, переходом от графа G к его дополнениню \overline{G} .

Definition

Кликой графа называется множество вершин, порождающее полный подграф, т.е. множество вершин, каждые две из которых смежны.

Definition

Число вершин в клике наибольшего размера называется кликовым числом графа G и обозначается через $\omega(G)$.

Задача о независимом множестве преобразуется в задачу о клике и, наоборот, переходом от графа G к его дополнениню \overline{G} .

При этом,
$$\alpha(G) = \omega(\overline{G})$$

Definition

Вершинное покрытие графа – это такое множество вершин, что каждое ребро графа инцидентно хотя бы одной из этих вершин.

Definition

Вершинное покрытие графа — это такое множество вершин, что каждое ребро графа инцидентно хотя бы одной из этих вершин.

Definition

Наименьшее число вершин в вершинном покрытии графа G обозначается через $\beta(G)$ и называется числом вершинного покрытия графа.

Definition

Вершинное покрытие графа — это такое множество вершин, что каждое ребро графа инцидентно хотя бы одной из этих вершин.

Definition

Наименьшее число вершин в вершинном покрытии графа G обозначается через $\beta(G)$ и называется числом вершинного покрытия графа.

Задача о вершинном покрытии состоит в нахождении наименьшего вершинного покрытия.

Между задачами о независимом множестве и о вершинном покрытии имеется следующая связь:

Между задачами о независимом множестве и о вершинном покрытии имеется следующая связь:

 $\alpha(G)+\beta(G)=n$ для любого графа G с n вершинами.

Между задачами о независимом множестве и о вершинном покрытии имеется следующая связь:

$$\alpha(G) + \beta(G) = n$$
 для любого графа G с n вершинами.

Эта связь следут из следующего факта.

Между задачами о независимом множестве и о вершинном покрытии имеется следующая связь:

$$\alpha(G) + \beta(G) = n$$
 для любого графа G с n вершинами.

Эта связь следут из следующего факта.

Fact

Подмножество U множества вершин V(G) графа G=(V,E) является вершинным покрытием тогда и только тогда, когда множество $\overline{U}=V(G)\setminus U$ является независимым множеством.

Таким образом:

- все три задачи тесно связаны друг с другом;

Таким образом:

- все три задачи тесно связаны друг с другом;
- все три задачи NP-полны.

Таким образом:

- все три задачи тесно связаны друг с другом;
- все три задачи NP-полны.

Эффективные алгоритмы решения таких задач неизвестны.

Таким образом:

- все три задачи тесно связаны друг с другом;
- все три задачи NP-полны.

Эффективные алгоритмы решения таких задач неизвестны.

Мы рассмотрим переборные алгоритмы, в частности:

- стратегию перебора для задачи о независимом множестве;

Таким образом:

- все три задачи тесно связаны друг с другом;
- все три задачи NP-полны.

Эффективные алгоритмы решения таких задач неизвестны.

Мы рассмотрим переборные алгоритмы, в частности:

- стратегию перебора для задачи о независимом множестве;
- перебор максимальных независимых множеств.