Домашнее задание на 22.05 (Алгебра)

Емельянов Владимир, ПМИ гр №247

№1 Утверждение, что F - поле эквивалетно тому, что многочлен

$$f(z) = z^3 - z^2 + 1$$

неприводим. При этом:

$$f(z)=z^3-z^2+1$$
 неприводим $\qquad\Leftrightarrow\qquad$ у f нет корней в $\mathbb Q$

Но, так как

$$f(\pm 1) \neq 0 \implies$$
 у f — нет корней в $Q \implies f$ — неприводим

Следовательно, F — поле

Теперь нам известно, что:

$$\alpha = z + (f(z))$$

Значит, мы можем представить:

$$\frac{2\alpha^2 - 8\alpha + 9}{\alpha^2 - 3\alpha + 1} = a\alpha^2 + b\alpha + c$$

Осталось найти коэфиценты a,b,c:

$$2\alpha^2 - 8\alpha + 9 = (a\alpha^2 + b\alpha + c)(\alpha^2 - 3\alpha + 1) =$$
$$= a\alpha^4 - 3a\alpha^3 + a\alpha^2 + b\alpha^3 - 3b\alpha^2 + b\alpha + c\alpha^2 - 3c\alpha + c$$

но, так как
$$\alpha^3 - \alpha^2 + 1 = 0 \implies \alpha^3 = \alpha^2 - 1$$
, то
$$a\alpha^4 - 3a\alpha^3 + a\alpha^2 + b\alpha^3 - 3b\alpha^2 + b\alpha + c\alpha^2 - 3c\alpha + c =$$
$$= a\alpha(\alpha^2 - 1) - 3a\alpha^3 + a\alpha^2 + b\alpha^3 - 3b\alpha^2 + b\alpha + c\alpha^2 - 3c\alpha + c$$
$$= (-a - 2b + c)\alpha^2 + (-a + b - 3c)\alpha + (2a - b + c)$$

Составим систему:

$$\begin{cases}
-a - 2b + c = 2, \\
-a + b - 3c = -8, & \implies a = 3, \quad b = -2, \quad c = 1 \\
2a - b + c = 9,
\end{cases}$$

Следовательно:

$$\frac{2\alpha^2 - 8\alpha + 9}{\alpha^2 - 3\alpha + 1} = 3\alpha^2 - 2\alpha + 1$$

Ответ: $3\alpha^2 - 2\alpha + 1$

№2 По условию:

$$g = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2, \quad f = x_2^4 x_3 - 2x_1 x_2 x_3^2 + x_1 x_2^2$$

Так как

$$LT(g) = x_1^2 x_2^2$$

ТО

$$g \to g - x_1 f = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2 - (x_1 x_2^4 x_3 - 2x_1^2 x_2 x_3^2 + x_1^2 x_2^2) =$$

$$= x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 = g_1$$

Так как

$$LT(g_1) = 2x_1^2 x_2 x_3^2$$

ТО

$$g_1 \to g_1 + x_1 f = x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 + x_1 (x_2^4 x_3 - 2x_1 x_2 x_3^2 + x_1 x_2^2) =$$

$$= x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2 + x_1 x_2^4 x_3 - 2x_1^2 x_2 x_3^2 + x_1^2 x_2^2 =$$

$$= x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2 = g$$

Следовательно, мы вернулись к g, значит:

$$r = g_1 = x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2$$

Ответ: $x_2^4 x_3^5 + x_1 x_2^4 x_3 + 2x_1^2 x_2 x_3^2$

№3 Проверим, является ли множество $\{f_1, f_2, f_3\}$ системой Грёбнера:

$$f_1 = 2x_1x_2 + 4x_1x_3 + x_2x_3^2$$
, $f_2 = 4x_1x_3^2 + x_2x_3^3 + 4$, $f_3 = x_2^2x_3^3 + 4x_2 + 8x_3$

Возьмём S многочлен для f_2 и f_3 :

$$HOK(x_1x_3^2, x_2^2x_3^3) = x_1x_2^2x_3^3 \implies S_{23} = \frac{x_2^2x_3}{4} f_2 - x_1 f_3 =$$

$$= \frac{x_2^2x_3}{4} (4x_1x_3^2 + x_2x_3^3 + 4) - x_1(x_2^2x_3^3 + 4x_2 + 8x_3) =$$

$$= (x_1x_2^2x_3^3 - x_1x_2^2x_3^3) + \frac{1}{4}x_2^3x_3^4 + x_2^2x_3 - 4x_1x_2 - 8x_1x_3 =$$

$$= \frac{1}{4}x_2^3x_3^4 + x_2^2x_3 - 4x_1x_2 - 8x_1x_3 = g_1$$

Так как $LT(g_1) = -4x_1x_2$, то редуцируем g_1 с помощью f_1 :

$$g_1 \to g_1 + 2f_1 = \frac{1}{4}x_2^3x_3^4 + x_2^2x_3 + 2x_2x_3^2 = g_2$$

Так как $LT(g_2) = x_2^2 x_3$, то редуцируем g_2 с помощью f_3 :

$$g_2 \to g_2 - \frac{1}{4}x_2x_3f_3 = 0$$

Таким образом, остаток S_{23} равен нулю

Возьмём S многочлен для f_1 и f_2 :

$$S_{12} = \frac{x_3^2}{2} f_1 - \frac{x_2}{4} f_2$$

$$S_{12} = \frac{x_3^2}{2} \left(2x_1 x_2 + 4x_1 x_3 + x_2 x_3^2 \right) - \frac{x_2}{4} \left(4x_1 x_3^2 + x_2 x_3^3 + 4 \right)$$

$$= \left(x_1 x_2 x_3^2 - x_1 x_2 x_3^2 \right) + 2x_1 x_3^3 + \frac{1}{4} x_2^2 x_3^4 - x_2 x_3$$

$$= 2x_1 x_3^3 + \frac{1}{4} x_2^2 x_3^4 - x_2 x_3 = g_1$$

Поскольку $LT(g_1) = 2x_1x_3^3$, редуцируем по f_2 :

$$g_1 - \frac{1}{2}f_2 = (2x_1x_3^3 - 2x_1x_3^3) + \frac{1}{4}x_2^2x_3^4 - x_2x_3 - 2 = \frac{1}{4}x_2^2x_3^4 - x_2x_3 - 2 = g_2$$

Теперь $LT(g_2) = \frac{1}{4}x_2^2x_3^4$, редуцируем по f_3 :

$$g_2 - \frac{1}{4}x_3 f_3 = (\frac{1}{4}x_2^2 x_3^4 - \frac{1}{4}x_2^2 x_3^4) - x_2 x_3 - 2 + 2 = -x_2 x_3 + 0 = g_3$$

Наконец, $LT(g_3) = -x_2x_3$, снова редуцируем по f_1 :

$$g_3 + \left(-\frac{1}{2}x_3\right)f_1 = \left(-x_2x_3 + x_2x_3\right) + 0 = 0$$

Таким образом, остаток S_{12} равен нулю

$$LT(f_1) = x_1x_2, \quad LT(f_3) = x_2^2x_3^3,$$

$$\text{HOK}(x_1 x_2, x_2^2 x_3^3) = x_1 x_2^2 x_3^3 \implies S_{13} = \frac{x_2 x_3^3}{2} f_1 - x_1 f_3$$

$$S_{13} = \frac{x_2 x_3^3}{2} (2x_1 x_2 + 4x_1 x_3 + x_2 x_3^2) - x_1 (x_2^2 x_3^3 + 4x_2 + 8x_3)$$

$$= (x_1 x_2^2 x_3^3 - x_1 x_2^2 x_3^3) + 2x_1 x_2 x_3^4 + \frac{1}{2} x_2^2 x_3^5 - 4x_1 x_2 - 8x_1 x_3$$

$$= 2x_1 x_2 x_3^4 + \frac{1}{2} x_2^2 x_3^5 - 4x_1 x_2 - 8x_1 x_3 = h_1$$

Редукция по f_1 ($LT(h_1) = 2x_1x_2x_3^4$):

$$h_1 - x_3^3 f_1 = (2x_1x_2x_3^4 - 2x_1x_2x_3^4) + \frac{1}{2}x_2^2x_3^5 - 8x_1x_3 + 4x_1x_3 = \frac{1}{2}x_2^2x_3^5 - 4x_1x_3 = h_2$$

Редукция по f_2 ($LT(h_2) = \frac{1}{2}x_2^2x_3^5$):

$$h_2 - \frac{1}{8}x_2 f_2 = (\frac{1}{2}x_2^2 x_3^5 - \frac{1}{2}x_2^2 x_3^5) - 4x_1 x_3 - \frac{1}{8}x_2^2 x_3^4 + 0 = -4x_1 x_3 - \frac{1}{8}x_2^2 x_3^4 = h_3$$

Редукция по f_3 ($LT(h_3) = -4x_1x_3$):

$$h_3 + \frac{1}{2}x_1 f_3 = (-4x_1x_3 + 4x_1x_3) - \frac{1}{8}x_2^2 x_3^4 + 0 = -\frac{1}{8}x_2^2 x_3^4 = h_4$$

И снова по f_3 ($LT(h_4) = -\frac{1}{8}x_2^2x_3^4$):

$$h_4 + \frac{1}{8}x_3 f_3 = \left(-\frac{1}{8}x_2^2 x_3^4 + \frac{1}{8}x_2^2 x_3^4\right) = 0$$

Таким образом, остаток S_{13} равен нулю

Получается, что любой S многочлен редуцируем к нулю, а значит это система Грёбнера.

 $\mathbb{N}_{\mathbf{Q}}\mathbf{4}(\Rightarrow)$ Пусть F — система Грёбнера.

По определению, идеал старших членов $\langle \mathrm{LT}(I) \rangle$ порождается старшими членами элементов F, то есть

$$\langle LT(F) \rangle = \langle LT(I) \rangle$$

Рассмотрим множество старших членов $\{LT(f) \mid f \in F\}$. В этом множестве должен существовать элемент с минимальным старшим членом (по лексикографическому порядку).

Обозначим такой элемент LT(f), где $f \in F$.

Так как LT(f) делит все остальные LT(g) для $g \in F$ (иначе LT(g) не принадлежал бы идеалу, порождённому LT(f)) то сам многочлен f делит каждый $g \in F$.

Это следует из того, что старший член f делит старший член g, а остальные члены g могут быть редуцированы с помощью f.

 (\Leftarrow) Пусть существует $f \in F$, который делит любой $g \in F$. Тогда старший член $\mathrm{LT}(f)$ делит $\mathrm{LT}(g)$ для всех $g \in F$. Следовательно, идеал старших членов $\langle \mathrm{LT}(F) \rangle$ порождается $\mathrm{LT}(f)$. Это означает, что $\langle \mathrm{LT}(F) \rangle = \langle \mathrm{LT}(I) \rangle$, так как все старшие члены элементов F уже содержатся в идеале, порождённом $\mathrm{LT}(f)$. По определению, F является системой Грёбнера.

Таким образом, F — система Грёбнера тогда и только тогда, когда существует $f \in F$, делящий все элементы F.