Parcours Datascientist: projet 6

Catégorisation automatique de questions

issues de la plateforme Stack Overflow

Francois BANGUI

Mission / study asumptions

MISSION: to suggest TAG from a POST

- Context: IT
- Problem class: NLP
- Problem type: Multi-label classification (1 POST / N TAGs)

To suggest appropriate TAG thanks to a classification algorithm

Data-sets organization

Benchmark global sheme

Standardization: POST --> list of TOKENS

how to use the c socket api in c++ on z/os

I'm having issues getting the C sockets API to work properly in C++ on <code>z/OS</code>.

Although I am including <code>sys/socket.h</code>, I still get compile
time errors telling me that <code>AF_INET</code> is not defined.
Am I missing something obvious, or is this related to the fact that
being on <code>z/OS</code> makes my problems much more complicated?
<hr>

Update: Upon further investigation, I discovered that there is an <code>#ifdef</code> that I'm hitting. Apparently

<code>z/0S</code> isn't happy unless I define which "type" of sockets I'm
using with:

<code>#define _OE_SOCKETS

</code>

Now, I personally have no idea what this <code>_0E_SOCKETS</code> is actually for, so if any <code>z/0S</code> sockets programmers are out there (all 3 of you), perhaps you could give me a rundown of how this all works?

TAG, : ['c++', 'c', 'sockets', 'mainframe', 'zos']

```
['c', 'socket', 'api', 'c++', 'z', 'os']
```

['m', 'issues', 'c', 'sockets', 'api', 'properly', 'c++', 'which',
'basically', 'whole', 'file', 'sure']

Data analysis over train Tokenized data-set

- TAG_p: Referenced TAG
- TAG_A: Assigned TAG issued from users
- TAG_s: Suggested TAG issued from benchmarked models
- TAG_F: Assigned TAG issued from expert process
- TOKENS : Words issued from standardization process
- N<X>: Number of elements referenced by <X>

TAG and TOKEN occurencies

Lorenz curves / GINI indexes

 TAG_R GINI index: 0.94

TAG_A GINI index: 0.91

Tokens GINI index: 0.90

Less then 15 % of TAG or TOKEN leads to \sim 90 % of POST representation

$$P(TAG_R|TAG_A) = 0.93$$
 \Rightarrow Echantillon représentatif

$$P(TAG_R|TOKEN_{Body}) = 0.18$$

$$P(TAG_R|TOKEN_{Title}) = 0.40$$

$$\Rightarrow \{POST\} = \{BODY\} \cup \{TITLE\}$$

Hypothesis about TAG_A statistics law

- TAG₄ distribution & density from 25K POST
- Shapiro / Wilk : Statistics= 0.014 / p-value ~ 0.0
- Kolmogorov / Smirnov : Statistics= 0.93 / p-value~ 0.0

Null hypothesis is not very likely : $P(x|_{HO}) \sim 0$

Study asumptions

- 'Document' used for 'POST'
 - POST = Body + Title
- No normal probabilistic law
- Bayesian asumptions :
 - Documents are independantly generated
 - Documents are identicaly distributed (same probability law)

Data-set vectorization: NLP --> Words Emb.

Vectorization process

TF-IDF: Token Frequency / Inverse Documents Frequency

- TF: The most a TOKEN is frequent in a POST, the most this Token represents the POST
- IDF: The most this TOKEN is frequent in other POST, less TF is valuated

Higher TOKEN values of TF-IDF from a POST discriminate this POST against others.

Co-occurrency: $(1,1) \rightarrow (N,M)$:

- « Expression Reguliere» \leftrightarrow TAG_R
 - Measure of likehood (2,2): $P(Reguliere | Expression) = \frac{P(Expression, Reguliere)}{P(Expression) * P(Reguliere)}$
 - Generalization: $P(MOT_M|MOT_{1,...},MOT_{M-1}) = \prod_{I=1}^{I=M-1} \frac{P(MOT_M,MOT_I)}{P(MOT_M)*P(MOT_I)}$

POST are regarded independantly from each-others

POST are digitalized independantly of TOKEN order

Benchmarking

STATISTICAL METHODS

Statistical methods

Prediction is based on statistics of features over the whole corpus.

$$P_{POST} = \frac{NTAG_{SA}}{NTAG_A} = \frac{N \{TAG_A \cap TAG_S\}}{NTAG_A}$$

$$MAX_{Sample} \{ NTAG_A \} = 6$$

TF-IDF(1,1): model selection % p_min

TF-IDF(1,1): model selection % p_max

Statistical methods: 10 % posts evaluated

Benchmarking

UNSUPERVIZED METHODS

Unsupervized method based on LDA

Mean accuracy of LDA with TF-IDF

Best LDA model: 200 topics / 1000 POSTs per model: 20 % accuracy

Mean accuracy of LDA with BOW

Best LDA model: 400 / 1000 POSTs per model: 30 % accuracy

Unsupervized methods based on clustering

TAG extraction from a Kmeans cluster

Inter-cluster inertia: 10 to 500 clusters

Kmeans / TF-IDF:

TF-IDF: min=2e-4, max=1.0

Dimension: ~4000

400 clusters / 15 %

Kmeans : Accuracy = F(Distance)

Globaly: accuracy decreases when distance from cluster center increases

Unsupervized method: W2VEC: skipgram

Mean accuracy of W2VEC / skip gram

Best W2VEC model: window=7 / 200 POSTs per model: 25% accuracy

t-SNE: 2D over W2VEC

Benchmarking

SUPERVIZED METHODS

Supervized models: classification type

Supervized algorithm: multinomial classifiers

Bayes hypothesis

I.I.D: TAG are supposed to be independent from each other

Semantic link raises from TAG combinaisons

Results will lead to Bayes hypothesis evaluation

Chained classifier

For any row: Labels correlation is saved

Global benchmark results

Conclusions & perspectives

- Résultats dépendants de la préparation des données (matching)
- Résultats dépendent de la mesure de précision
 - Alternative Extraction de TAG_s: Fuzzy-wuzzy
- Modèles supervisés : résultats compatibles avec la genèse des données.
 - Données improprement générées ⇒ classification idoine
- Mesures de similarité dans la SVM : kernel basé sur fuzzy-wuzzy
- Modèles non supervisés: insensibles aux TAG_A
 - W2VEC ou GLOVES : modèles experts
 - Qualification du benchmarking : calcul du recall, de la F-mesure
- Phases de data-preparation : la structure du texte non prise en compte (ponctuation)
- NLP : Quantité de POST utilisés limite la précision du modèle.

Annexe 1: source files organization

Notebooks: notebook

- P6_DataAnalysis.ipynb : data analysis
- P6_Standardization.ipynb : data standardization
- P6_StatisticalMethod.ipynb : baseline
- P6_SupervizedMethods.ipynb : supervized methods
- P6 UnsupervizedMethods.ipynb : unsupervized meto=hods
- P6_ModelBuilder.ipynb : classifier builder and test

Python source files: src

- P6_PostClassifier.py : classifier implementation
- p6_util.py : functions for P6 project
- p6 util plot.py : functions for plot
- p5_util.py : functions from P5 project used in P6 project
- p3_util.py : functions from P3 project used in P6 project

Report: report

- Openclassrooms_ParcoursDatascientist_P6-V1.pdf: presentation
- Rapport-P6.pdf: technical report

Annexe 2 : deployment

Classifier object:

oP6_PostClassifier.dump : dumped formated classifier

Application directory

tag_suggested

Launching Flask server:

cd .../<projet>; python3.6 views.py;

API:

- http://127.0.0.1:5000?post_id=<number>
- http://127.0.0.1:5000?* : random ID for POST