Homework: Conditional Statements

This document defines the homework assignments from the "C Programming" Course @ Software University. Please submit as homework a single zip / rar / 7z archive holding the solutions (source code) of all below described problems.

Problem 1. Exchange If Greater

Write an if-statement that takes two integer variables a and b and exchanges their values if the first one is greater than the second one. As a result print the values **a** and **b**, separated by a space. Examples:

а	b	result
5	2	2.0 5.0
3	4	3.0 4.0
5.5	4.5	4.5 5.5

Problem 2. Bonus Score

Write a program that applies bonus score to given score in the range [1...9] by the following rules:

- If the score is between 1 and 3, the program multiplies it by 10.
- If the score is between 4 and 6, the program multiplies it by 100.
- If the score is between 7 and 9, the program multiplies it by 1000.
- If the score is 0 or more than 9, the program prints "invalid score".

Examples:

score	result
2	20
4	400
9	9000
-1	invalid score
10	invalid score

Problem 3. Check for a Play Card

Classical play cards use the following signs to designate the card face: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K and A. Write a program that enters a string and prints "yes" if it is a valid card sign or "no" otherwise. Examples:

character	Valid card sign?
5	yes
1	no
Q	yes
q	no
Р	no
10	yes

Problem 4. Multiplication Sign

Write a program that shows the sign (+, - or 0) of the product of three real numbers, without calculating it. Use a sequence of if operators. Examples:

а	b	С	result
5	2	2	+
-2	-2	1	+
-2	4	3	-
0	-2.5	4	0
-1	-0.5	-5.1	-

Problem 5. The Biggest of 3 Numbers

Write a program that finds the biggest of three numbers. Examples:

а	b	С	biggest
5	2	2	5.0
-2	-2	1	1.0
-2	4	3	4.0
0	-2.5	5	5.0
-0.1	-0.5	-1.1	-0.1

Problem 6. The Biggest of Five Numbers

Write a program that finds the **biggest of five numbers** by using only five **if** statements. Examples:

а	b	С	d	е	biggest
5	2	2	4	1	5.0
-2	-22	1	0	0	1.0
-2	4	3	2	0	4.0
0	-2.5	0	5	5	5.0
-3	-0.5	-1.1	-2	-0.1	-0.1

Problem 7. Sort 3 Numbers with Nested Ifs

Write a program that enters **3 real numbers** and prints them sorted in descending order. Use nested **if** statements. Don't use arrays and the built-in sorting functionality. Examples:

а	b	С	result
5	1	2	5.0 2.0 1.0
-2	-2	1	1.0 -2.0 -2.0
-2	4	3	4.0 3.0 -2.0
0	-2.5	5	5.0 0.0 -2.5

-1.1	-0.5	-0.1	-0.1 -0.5 -1.1
10	20	30	30.0 20.0 10.0
1	1	1	1.0 1.0 1.0

Problem 8. Digit as Word

Write a program that asks for a **digit** (0-9), and depending on the input, **shows the digit as a word** (in English). Print "not a digit" in case of invalid inut. Use a **switch** statement. Examples:

d	result
2	two
1	one
0	zero
5	five
-0.1	not a digit
hi	not a digit
9	nine
10	not a digit

Problem 9. Play with Int, Double and String

Write a program that, depending on the user's choice, inputs an **int**, **double** or **string** variable. If the variable is **int** or **double**, the program increases it by one. If the variable is a **string**, the program appends "*" at the end. Print the result at the console. Use **switch** statement. Example:

program	user
Please choose a type: 1> int 2> double 3> string	3
Please enter a string:	hello
hello*	

program	user
Please choose a type: 1> int 2> double 3> string	2
Please enter a double:	1.5
2.5	

Problem 10.* Beer Time

A beer time is after 1:00 PM and before 3:00 AM. Write a program that **enters a time** in format "**hh:mm tt**" (an hour in range [01...12], a minute in range [00...59] and AM / PM designator) and prints "**beer time**" or "**non-beer time**" according to the definition above or "**invalid time**" if the time cannot be parsed. Note that you may need to learn how to parse dates and times. Examples:

time	result
1:00 PM	beer time
4:30 PM	beer time
10:57 PM	beer time
8:30 AM	non-beer time
02:59 AM	beer time

03:00 AM	non-beer time
03:26 AM	non-beer time

Problem 11.* Number as Words

Write a program that converts a number in the range [0...999] to words, corresponding to the English pronunciation. Examples:

numbers	number as words
0	Zero
9	Nine
10	Ten
12	Twelve
19	Nineteen
25	Twenty five
98	Ninety eight
273	Two hundred and seventy three
400	Four hundred
501	Five hundred and one
617	Six hundred and seventeen
711	Seven hundred and eleven
999	Nine hundred and ninety nine

Problem 12. Zero Subset**

We are given 5 integer numbers. Write a program that finds all subsets of these numbers whose sum is 0. Assume that repeating the same subset several times is not a problem. Examples:

numbers	result
3 -2 1 18	-2 + 1 + 1 = 0
3 1 -7 35 22	no zero subset
1 3 -4 -2 -1	1 + -1 = 0 1 + 3 + -4 = 0 3 + -2 + -1 = 0
1 1 1 -1 -1	1 + -1 = 0 1 + 1 + -1 + -1 = 0 1 + -1 + 1 + -1 = 0
00000	0 + 0 + 0 + 0 + 0 = 0

Hint: you may check for zero each of the 32 subsets with 32 **if** statements.

