Problem Set 5 due November 14

1. True, False, or Uncertain and Explain

Assume throughout that x_t is 0 mean, second order stationary, finite variance.

- The fundamental moving average coefficients must obey $\sum_{i=0}^{\infty} \alpha_{i} < \infty$ since the i. process has finite variance.
- Suppose that x_t is filtered so that the spectral density is unchanged except at ii. frequencies $\bar{\omega}$ and $-\bar{\omega}$. The original and filtered series must have the same variance.
- iii. The spectral density of the sum of two time series equals the sum of the spectral densities.

uncertain all you need to check if autocovar func of X+Y equals sum of autocovar funcs it's not -- look at the summation

Cov[X1 + Y1, X2 + Y2] neq Cov[X1, X2] + Cov[Y1, Y2]

unless Cov[X1, Y2] = Cov[X2, Y1] = 0

2. Measurement error and spectral densities

Suppose x_t is an AR(1) process. Suppose that we only have data on $x_t^* = x_t + \eta_t$ where η_t is white noise such that $\text{cov}(x_t, \eta_{t-k}) = 0 \ \forall k$. Is x_t^* also an AR(1) process? Interpret your answer.

1