SECTION A [30 MARKS]

ANSWER ALL QUESTIONS

For each question, there are four alternatives: A, B, C and D. Choose the correct alternative and circle it. Do not circle more than ONE alternative. If there are more than one choice circled, NO score will be awarded.

Question 1 [30]

- i. What is the present value of perpetual annuity of Nu 1000 at the interest rate of 5% per annum?
 - A Nu 200
 - B Nu 2000
 - C Nu 20000
 - D Nu 200000
- ii. What value of 'r' will make the relation ${}^{11}C_{2r} = {}^{11}C_{2+r}$ true, if $2r \neq r+2$?
 - A 3
 - B 9
 - C 10
 - D 12
- iii. If $\frac{dy}{dx}$ of the function is $2x^2+5$, then the gradient of the function at (-1,0) will

be

- A 4.
- B 4.
- C 5.
- D 7.
- iv. Find the probability that the first die shows 6, when two unbiased dice are thrown.
 - A $\frac{5}{6}$
 - $B = \frac{5}{36}$
 - $C = \frac{1}{6}$
 - $D = \frac{1}{36}$

- v. The total revenue received from the sale of 'P' units of oranges is given by $R(P) = 10P + 2P^2 + 100$. Find the revenue on an average by selling 50 units.
 - A Nu 112
 - B Nu 210
 - C Nu 5500
 - D Nu 5600
- vi. From the diagram below, determine the distance of the point A (x, 1, 4) from the origin.

- A $\sqrt{17}$
- B $\sqrt{20}$
- $C \sqrt{21}$
- D $\sqrt{25}$
- vii. If three brothers x, y and z have to always sit together, in how many ways can they arrange themselves so that the younger brother 'x' has to always sit in the middle?
 - A 1
 - B 2
 - C 3
 - D 6

- viii. Evaluate $\int (2x + 1)^3 dx$
 - A $\frac{(2x+1)^4}{4} + C$
 - B $\frac{(2x+1)^4}{8} + C$
 - C $(6x + 3)^2 + C$
 - D $3(2x+1)^2 + C$
- ix. Find the value of x, if the line through A(4,1,2) and B(5,x,0) is parallel to the line through C(2,1,1) and D(3,3,-1).
 - A 1
 - B 2
 - C 3
 - D 4
- x. Find the second order derivative of the function y = (1 x)(x + 1).
 - A 0
 - B -2x
 - C +2
 - D -2
- xi. If the two lines of regression when plotted on a graph coincide with the slope greater than zero, there will be
 - I perfect
 - II high degree
 - III low degree
 - IV positive correlation
 - V negative correlation
 - A I and IV.
 - B II and IV.
 - C I and V.
 - D III and V.
- xii. For what value of 'a', the matrix $X = \begin{bmatrix} a & 1 & 3 \\ 2 & 2 & 6 \\ 2 & -3 & 1 \end{bmatrix}$ will be singular?
 - A 0
 - B 1
 - C 2
 - D 3

xiii.	Who	at amount has Mr. Davis to denosit in a honk at the and of each year at 50/
XIII.		at amount has Mr. Dawa to deposit in a bank at the end of each year at 5% rest rate, so that his accumulation at the end of 15 years will be Nu 107920?
	A	Nu 4500
	В	Nu 5000
	С	Nu 10000
	D	Nu 10500
xiv.	Wha	at is the integral of $\frac{6x}{x^2}$ with respect to x?
	A	logx+c
	В	$\log x^2 + c$
	C	6logx+c
	D	$-6x^{-2}+c$
XV.		e is thrown and the outcome is an odd number. What is the probability of getting ime number?
	A	1
	В	$\frac{1}{2}$
	D	2
	C	$\frac{1}{3}$ $\frac{2}{3}$
	-	2
	D	3
		CECTION D 170 MADIZO
		SECTION B [70 MARKS] ATTEMPT ANY 10 QUESTIONS
Questi	ion 2	
a)	The	marks obtained by Class XII Students in Business Mathematics and in [4] nomics are as follows:
	Maı	rks in Business Mathematics: 35 23 47 17 10 43 9 6 28 rks in Economics: 30 33 45 23 8 49 12 4 31 repute their ranks in the two subjects and coefficient of correlation of ranks.

b)	For $A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, find $A^2 - 4A + 7I$.	[3]

a)	Determine the maximum profit that a company can generate if the profit function			
	is given by $P(x)=52x-x^2-100$.			

b)	Using determinants, find the area of the triangle with the vertices $A(-3,5)$, $B(3,-6)$ and $C(7,2)$.	[3]

a)	Find the anti-derivative of $\frac{2x-3}{\sqrt{x^2-5x+3}}$ with respect to x.	[3]

A company wants to launch a new product by investing Nu 35000 as the fixed cost and Nu 500 per unit as the variable cost of production. The revenue function for the sale of x units is given by $5000x - 100x^2$. Find the value of x at the point where there will be no loss or no gain.	

a)	Find the coordinates of point $A(x, y, z)$ in between the points $B(1,3,7)$ and $C(6,3,2)$ in the ratio 2: 3.	[3]

a) The marks obtained by 5 students in Mathematics and Accountancy tests are given below.

Mathematics	20	13	18	21	11
Accountancy	17	12	23	25	14

Calculate Karl Pearson's correlation coefficient and interpret the result.

[4]

b)	In how many ways can a student choose 10 questions out of 13 questions if 5 questions are compulsory?	[3]

Question 7 Write the system of equation x+y=5, z+y=7, z+x=6 in determinant form and a) [2] determinant. i. ii. the values of x, y and z. [2]

b)	The cost function is given by $3x^2 - 2x + 5$, find the	
i.	average cost.	[1]
ii.	marginal cost.	[1]
1		

iii.	marginal cost when $x = 4$	[1]
Quest	tion 8	
a)	Mr. Pema and Mrs. Dema appear for an interview for the same post. The	
	probability of selecting Mr. Pema is $\frac{1}{7}$ and that of Mrs. Dema is $\frac{1}{5}$. What is the	
	probability that;	Γ11/4]
i.	both of them will be selected?	$[1\frac{1}{2}]$

ii.	only one of them will be selected?	$[1\frac{1}{2}]$
b)	Tobgay buys a mobile phone paying Nu 4000 in cash and promising to pay Nu 200	[4]
٠,	at the end of every month for the next 4 years. If money is worth 12% p.a, converted monthly, what will be the cash price of the mobile phone?	[.,]

Question 9 a) Evaluate $\int \frac{x+7}{(x-2)(x+4)} dx$.	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]
	[4]

b)	If Nu 1000 is paid at the rate of 8% per annum compounded annually, find the number of years for the amount to exceed Nu 20000.	[3]

Ouestion 10	
Question 10	
	[3]
	[3]
dy 2	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]
	[3]

Ques	tion 11	
a)	Equation of two regression lines are $4x - 5y = -33$ and $20x - 9y = 107$.	
,	From the above equation of lines, find	
i.	Coefficient b_{yx} and Coefficient b_{xy}	[2]

ii.	the mean value of x and y.	[2]
b)	Evaluate $\int (2x^3 + 4)x^2 dx$	[3]

Ques a)	Find the angle θ between AB and CD for given coordinates: A(-3,2,4), B(2,5,-2), C(1,-2,2) and D(4,2,3).	[3]

b)	Integrate the following functions.	
i.	$\int \frac{(x^2-9)}{(x-3)} \cdot dx$	[2]

ii.	$\int (x-1)(x^2+x+1).\mathrm{d}x$	[2
Que	stion 14	
a)	If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the direction cosines of the line with $\cos \alpha = \frac{14}{15}$, $\cos \beta = \frac{1}{3}$. Determine $\cos \gamma$.	[3

MATHEMATICAL FORMULAE

Co-ordinate Geometry

Commercial Mathematics

$$D = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \qquad A = \frac{a}{i} (1 + i) \left[(1 + i)^n - 1 \right]$$

$$(x, y, z) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}, \frac{m_1 z_2 + m_2 z_1}{m_1 + m_2} \right) \qquad A = \frac{a}{i} \left[(1 + i)^n - 1 \right]$$

$$a_1 x + b_1 y + c_1 z = 0 \text{ and } a_2 x + b_2 y + c_2 z = 0 \qquad P = \frac{a}{i} \left[1 - (1 + i)^{-n} \right]$$

$$\frac{x}{b_1 c_2 - b_2 c_1} = \frac{y}{c_1 a_2 - c_2 a_1} = \frac{z}{a_1 b_2 - a_2 b_1} \qquad P = \frac{a}{i} (1 + i) \left[1 - (1 + i)^{-n} \right]$$

$$\cos \theta = \pm \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \qquad A(x) = \frac{C(x)}{x}, \quad M(x) = \frac{d}{dx} (C(x))$$

$$C(x) = F + V(x)$$

$$R(x) = xG(x)$$

Algebra

$$a^{2}-b^{2} = (a+b)(a-b)$$

 $(a\pm b)^{2} = a^{2} \pm 2ab + b^{2}$

In the quadratic equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$${}^{n}p_{r} = \frac{n!}{(n-r)!}$$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Calculus

P(x) = R(x) - C(x)

 $MC = \frac{d}{dx}(C(x))$

$$y = x^{n}, \ y' = nx^{n-1},$$

$$If \ y = u \pm v, then \frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

$$If \ y = uv, then \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$If \ y = \frac{u}{v}, then \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^{2}}$$

$$C_{ij} = \left(-1\right)^{i+j} M_{ij}$$

$$AA^{-1} = A^{-1}A = I$$

$$A^{-1} = \frac{1}{\det A} \cdot adjA$$

$$x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{Dz}{D}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int uv \, dx = \frac{1}{n+1} + C$$

$$\int uv \, dx = u \int v \, dx - \int \left(\frac{du}{dx} \int v \, dx\right) \, dx.$$

Data and Probability

$$\frac{1}{x} = \frac{\sum fx}{\sum f}$$
 or $\frac{1}{x} = \frac{\sum x}{n}$

$$Median = L + \frac{i}{f} \left(\frac{N}{2} - c \right)$$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \text{ or } \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

$$\overline{X_{12}} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$\sigma_{12} = \sqrt{\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$

$$Cov(X, Y) = \frac{1}{n} \sum (X - \overline{X})(Y - \overline{Y})$$

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}} = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{n\sigma_x \sigma_y}$$

$$r = 1 - \frac{6\sum d^2}{n(n^2 - 1)}, \quad Correction \ factor = \frac{1}{12} (m^3 - m)$$
$$r = \pm \sqrt{b_{xy} \cdot b_{yx}}$$

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$b_{XY} = r \frac{\sigma_x}{\sigma_y} = \frac{n \sum xy - \sum x \sum y}{n \sum y^2 - \left(\sum y\right)^2}$$

$$Y - \overline{Y} = \frac{\text{cov}(X,Y)}{\sigma_x^2} (X - \overline{X}) = r \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$

$$X - \overline{X} = \frac{\text{cov}(X,Y)}{\sigma_x^2} (Y - \overline{Y}) = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

$$b_{xy} \times b_{yx} = r \frac{\sigma_x}{\sigma_y} \times r \frac{\sigma_y}{\sigma_x}$$

$$\sum_{n} y = na + b \sum_{n} x$$

$$\sum xy = a\sum x + b\sum x^2$$

$$y - \overline{y} = b_{yx} \left(x - \overline{x} \right)$$

$$x - \overline{x} = b_{xy} \left(y - \overline{y} \right)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) + P(\overline{A}) = 1$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

BHSEC/15/2019 Copyright Reserved

BHSEC/15/2019 Copyright Reserved

BHSEC/15/2019 Copyright Reserved