TALLER 3.09- DISTRIBUCIONES CONJUNTAS 300MAE005 - PROBABILIDAD y ESTADÍSTICA

Profesor Daniel Enrique González Gómez

- f(x, y) es función de densidad de probabilidad conjunta de dos variables discretas si:
 - $f(x,y) \ge 0$ • $\sum_{R_X} \sum_{R_Y} f(x,y) = 1$
- g(x) corresponde a la función de densidad marginal de la variable discreta X, la cual se puede hallar a partir de f(x,y)

$$g(x) = \sum_{R_V} f(x, y)$$

• h(y), corresponde al función de densidad marginal de la variable discreta Y, que se puede hallar a partir de f(x,y)

$$h(y) = \sum_{R_X} f(x, y)$$

 $\,\blacksquare\,$ Si Xy Y son variables aleatorias independientes, entonces

$$f(x,y) = g(x).h(y)$$

f(x|y) es la función de distribución condicional de que ocurra y dado x y la cual define como:

$$f(x|y) = \frac{f(x,y)}{h(y)}$$

 \blacksquare Valor esperado de la variable discreta X se define como:

$$E[X] = \sum_{R_X} x.g(x)$$

Análogamente se puede obtener el valor esperado de Y

$$E[Y] = \sum_{R_Y} x.h(y)$$

- $V[X] = E[X^2] E[X]^2$
- $E[X^2] = \sum_{R_X} x^2 g(x), \quad E[Y^2] = \sum_{R_Y} x^2 h(y)$
- Valor esperado de la variable conjunta como:

$$E[XY] = \sum_{R_X} \sum_{R_Y} x.y.f(x,y)$$

• Covarianza entre las variables X,Y

$$COV[X, Y] = E[XY] - E[X]E[Y]$$

 \blacksquare Correlación entre las variables X,Y

$$\rho = \frac{COV[XY]}{\sqrt{V[X].V[Y]}}$$

La correlación es una medida que mide el grado de asociación lineal entre dos variables. $0 \le \rho \le 1$

En el caso de las variables continuas se reemplaza la sumatoria por integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1, \quad f(x, y) \ge 0$$

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad h(y) = \int_{-\infty}^{\infty} f(x, y) dx,$$

$$\bullet E[X] = \int_{-\infty}^{\infty} x \ g(x) dx, \quad E[Y] = \int_{-\infty}^{\infty} y \ h(y) \, dy$$

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x.y.f(x,y) \, dx \, dy$$

											2	
-1	-0-90	-75	-0.50	-0.25	-0.10	0	0.10	0.25	0.50	0.75	0.90	1.0
Negativa	Negativa	Negativa	Negativa	Negativa	Negativa	No existe	Positiva	Positiva	Positiva	Positiva	Positiva	Positiva
perfecta	muy fuerte	considerable	media	debil	muy debil	correlación	muy debil	debil	media	considerable	muy fuerte	perfecta

PROBLEMAS PROPUESTOS

1. Considere como X el número que falla una máquina de control numérico $(R_X=\{0,1,2\})$ al día y Y el número de veces en que se llama a un ingeniero para restaurar el proceso $(R_Y=\{0,1,2\})$. Su función de distribución conjunta esta dada por :

x y	0	1	2
0	0.15	0.05	0
1	0	0.20	0.35
2	0	0.10	0.15

- (a.) Detarmine: $P(X \ge 1; Y \ge 1)$; P(X = 1); $P(Y \le 1)$
- (b.) Encuentre P(Y = 1|X = 2), exprese en palabras el resultado
- (c.) Determine si existe dependencia entre estas dos variables (calcule el valor de $\rho_{_{XY}}$), analice el resultado obtenido
- Un restaurante de comidas rápidas opera tanto en un local que da servicio en automovil (autoservicio) como en un segundo local que atiende a clientes que llegan caminando. En un dia cualquiera, la proporción del tiempo en servicio del autoservicio se

representa por X, mientras que Y representa la proporción del tiempo en que el segundo local esta en servicios. La función de densidad conjunta que representa el comportamiento de estas dos variables está dado por :

$$f(x,y) = \left\{ \begin{array}{ccc} \frac{2}{3}(x+2y) & \text{si} & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ \\ 0 & \text{en cualquier otro caso} \end{array} \right.$$

- (a.) Determine si $f_{XY}(x,y)$ es una función de densidad de probabilidad conjunta
- (b.) Determine $P(X \le 0.5; Y \le 0.3), P(X \le 0.80), P(Y \ge 0.60)$
- (c.) Determine ρ_{XY} , interprete su resultado

SOLUCION PROBLEMA 1

(fo	nción de	DISTRIBUCU	Función de DISTRIBUCION MARGINAL			
	txy (x,y)	0		2	9(n)	BE X
-	0	0,15	0.05	0	0.20	
1	1	0	0.20	0.35	0.55	
	2	0	0.10	0.15	0.25	
- h(y)		0.15	0,35	0.50	1.00	

función de DISTPIBUCIÓN

fxy (d,y) dele complir:

$$\begin{array}{c} \ddot{u}) \ \ \, \sum_{PX} \ \, PY \ \, PY \end{array} = 1 \quad \rightarrow \quad \begin{array}{c} 0.15 + 0.05 + 0 + \\ 0 + 0.20 + 0.35 + \\ 0 + 0.10 + 0.15 = 1 / \end{array}$$

OK

$$9(0) = \begin{cases} 0.20, & \text{si } 2 = 0 \\ 0.55, & \text{si } 2 = 1 \\ 0.25, & \text{si } 2 = 2 \\ 0, & \text{en other case} \end{cases}$$

$$g(x) = \sum_{ky} f(x,y)$$

FUNCTION MARGINAL DE Y

$$h(y) = \begin{cases} 0.15, & \text{if } y=0 \\ 0.35, & \text{if } y=1 \\ 0.50, & \text{if } y=2 \\ 0, & \text{on other case} \end{cases}$$

(a)
$$P(X \ge 1; Y \ge 1) = \sum_{x=1}^{2} \sum_{y=1}^{2} f(x,y) = 0.20 + 0.35 + 0.10 + 0.15 = 0.80$$

y						
		0	1	2		
	0	0.15	0.05	0		
1		0	0.20	0.35		
, -	2	0	0.10	0.15		
		1			1	

c)
$$Q = \frac{\text{QU(XY)}}{\text{V(X) V(Y)}}$$
 $\frac{\text{QU(XY)} = \text{E(XY)} - \text{E(X) E(Y)}}{\text{V(X)} = \text{E(XY)} - \text{E(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$ $\frac{\text{QQ(X)}}{\text{QQ(X)}}$

2	9 (n) \	2941	2000	$V(x)=1.55-1.05^{2}$
0	0.20	0	0	= 0.4475
1	0,55	0.55	1.00	2 0. H 10 //
2	0,25	0.50	1.00	
		1.05	, 1.55 //	
		GEO) LECYP)	

u l	h(y) \	y h(y) \	y2 h(y)	7.7
0	0.15	0	0.35	$V(y) = 2.35 - (135)^2$ = 0.5275
1	0.35	0.35	2,00	
	3 4	1.35%	2,35,,	
		S ECY	$)$ (y^2)	

$$P(X=1) = 0.55,$$
 $0 \mid 1 \mid 2 \mid 9(a)$
 $0 \mid 0.20$
 0.55
 $0 \mid 1 \mid 2 \mid 0.25$

$$P(4 \le 1) = 0.15 + 0.35$$

= 0.50,

$$f(y|x=2) = \begin{cases} 0 & \text{si } y=0 \\ 0.40 & \text{si } y=1 \\ 0.60 & \text{si } y=2 \\ 0 & \text{en other caso} \end{cases}$$

$$\frac{2}{f(y|x=2)} \begin{vmatrix} 0 & 0.10 & 0.15 & 0.25 \\ 0.40 & 0.66 \end{vmatrix}$$

				P/C	Ψ
		,	y		
	1	0		2	
	0	0.15	0.05	0	
1	T	0	0.20	0.35	
,0	2	0	0.10	0,15	,

$$\sum_{x=0}^{2} \sum_{y=0}^{2} xy \left\{ (x,y) \right\}$$

 $= 0 \times 0 \times 0.15 + 0 \times 1 \times 0.05 + 0 \times 2 \times 0 + 1 \times 0 \times 0 + 1 \times 2 \times 0.35 + 1 \times 0 \times 0 + 1 \times 2 \times 0.35 + 2 \times 0 \times 0 + 1 \times 0.10 + 2 \times 2 \times 0.15$

$$= 0 + 0 + 0 + 0 + 0.70 + 0.20 + 0.60 = 1.70$$

$$000(XY) = E(XY) - E(X)E(Y)$$

 $1.70 - 1.05 \times 1.35 = 0.2825$

$$P_{XY} = \frac{0.2825}{\sqrt{0.4475 \times 0.5275^{7}}} = 0.5814$$

DEUNCUM) POSITIUM DE MAGNITUD MEDIA.

JOULUN PROBLEM 2

(a)
$$\int_{0}^{\infty} \int_{0}^{\infty} f \alpha y dx dy = 1$$

$$\int_{0}^{1} \int_{0}^{1} \frac{2}{3} (x + 2xy) dx dy$$

$$\int_{0}^{1} \left(\frac{2}{3} \left(\frac{x^{2}}{2} + 2xy \right) \Big|_{0}^{1} \right) dy$$

$$\int_{0}^{1} \frac{2}{3} \left(\frac{1}{2} + 2y \right) dy$$

$$\frac{2}{3} \left(\frac{y}{2} + 2\frac{y^{2}}{2} \right)_{0}^{1} = \frac{2}{3} \left(\frac{1}{2} + 1 \right) = \frac{2}{3} \left(\frac{3}{2} \right) = 1$$
(b) $P(X \le 0.5)$ $Y \le 0.30$

$$\int_{0}^{0.30} \int_{0}^{0.50} \frac{1}{3} (x + 2y) dx dy$$

$$\int_{0}^{0.30} \frac{1}{3} (x + 2y) dx dy = \int_{0}^{0.30} \frac{1}{3} (0.125 + y) dy$$

$$\frac{1}{3} (0.125 + y) dy = \int_{0}^{0.30} \frac{1}{3} (0.125 + y) dy$$

$$\frac{1}{3} (0.125 + y) dy = \int_{0}^{0.30} \frac{1}{3} (0.125 + y) dy$$

$$g(x) = \int_{-\infty}^{\infty} f(xy) dy$$

$$g(x) = \int_{0}^{1} \frac{1}{3}(x+2y) dy = \frac{1}{3}(xy + \frac{2y^{2}}{2}) \Big|_{0}^{1}$$

$$= \frac{1}{3}(x+1)$$

$$g(x) = \begin{cases} \frac{2}{3}(x+1), & 6 \le x \le 1 \\ 0, & \text{en other case} \end{cases}$$

Alwa:

$$\int_{0.80}^{0.80} g(x) dx = \int_{0.3}^{2} (2t) dx = \frac{2}{3} (\frac{2}{2} + 2t) \Big|_{0}^{0.80}$$

$$= 0.7467$$

P(4 > 0.60)

delemos hallor la función MARGINAL de Y

$$h(y) = \int_{-\infty}^{\infty} f(xy) dx$$

$$h(y) = \int_{0}^{1} \frac{2}{3}(x+2y) dx = \frac{2}{3}(\frac{x^{2}+2yy}{2})\Big|_{0}^{1}$$
$$= \frac{2}{3}(\frac{1}{2}+2y)$$

$$h(y) = \begin{cases} \frac{2}{3}(2y + \frac{1}{2}) &, & 0 \le y \le 1 \\ 0 &, \text{ en otro caso} \end{cases}$$

$$P(P \ge 0.60) = 1 - P(X < 0.60)$$

$$1 - \int_{0}^{0.60} \frac{2}{3} (2y + \frac{1}{2}) dy = 1 - \left(\frac{2}{3} (\frac{2y^2}{2} + \frac{y}{2})\right)_{0}^{0.60}$$

$$1 - \left(\frac{2}{3} (0.60^2 + 0.60)\right) = 0.56$$

$$(C) \qquad \begin{cases} xy = 0 \text{ (CV)} \\ y(x) = E(x^{2}) - E(x) \end{cases} = E(xy) - E(x)E(y)$$

$$(U(x) = E(x^{2}) - E(x)$$

$$(U(x) = E(x^{2}) - E(x^{2})$$

$$(U(x)$$

$$V(X) = \frac{7}{18} - \left(\frac{5}{9}\right)^2 = \frac{13}{162}$$

$$E(Y) = \int_{0}^{1} y \frac{2}{3}(2y+\frac{1}{2}) dy = \int_{0}^{1} \frac{2}{3}(2y^{2}+\frac{y}{2}) dy$$

$$= \frac{2}{3}(2y^{3}+\frac{y^{4}}{4}) \Big|_{0}^{1}$$

$$= \frac{2}{3}(\frac{2}{3}+\frac{1}{4}) = \frac{2}{3}(\frac{11}{12}) = \frac{11}{18}$$

$$E(y^{2}) = \int_{0}^{1} y^{2} \frac{1}{3} (2y^{4} + \frac{1}{2}) dy = \int_{0}^{1} \frac{1}{3} (2y^{3} + \frac{1}{2}) dy$$

$$= \frac{1}{3} \left(\frac{2y^{4}}{4} + \frac{y^{3}}{6} \right) \Big|_{0}^{1} = \frac{1}{3} \left(\frac{1}{2} + \frac{1}{6} \right) = \frac{1}{3} \left(\frac{1}{4} + \frac{1}{6} \right) = \frac{1}{3} \left(\frac{1}{4$$

$$V(Y) = \frac{4}{9} - \left(\frac{11}{19}\right)^2 = \frac{23}{324}$$

$$\begin{aligned} &(JOV(XY)) = E(XY) - E(X)E(Y) \\ &= E(XY) = \int_{0}^{1} \int_{0}^{1} xy \frac{2}{3}(x+2y) dx dy = \int_{0}^{1} \int_{0}^{2} \frac{2}{3}(x^{2}y + 2xy^{2}) dx dy \\ &= \int_{0}^{1} \frac{2}{3} \left(yx^{3} + \frac{2y^{2}x^{2}}{3} \right) \Big|_{0}^{1} \int_{0}^{1} dy = \int_{0}^{1} \frac{2}{3} \left(\frac{y}{3} + y^{2} \right) dy \\ &= \frac{2}{3} \left(\frac{y^{2}}{6} + \frac{y^{3}}{3} \right) \Big|_{0}^{1} = \frac{2}{3} \left(\frac{1}{6} + \frac{1}{3} \right) = \frac{x}{3} \left(\frac{x}{3} \right) = \frac{1}{3} \end{aligned}$$

$$\frac{(0)(XY) = E(XY) - E(X)E(Y)}{\frac{1}{3} - \frac{5}{9} \times \frac{11}{18} = -\frac{1}{162} = -0.00617}$$

$$P_{XY} = \frac{\text{COU}(XY)}{\text{U(X)}} = \frac{-0.00617}{\sqrt{\frac{13}{162} \times \frac{23}{324}}} = \frac{2 - 0.0817}{\sqrt{\frac{162}{324}}} = \frac{2 - 0.0817}{\sqrt{\frac{162}{324}}} = \frac{23}{\sqrt{\frac{162}{324}}} = \frac{23}{\sqrt{$$