AI - PROJECT

AI-POWERED PREDICTION SYSTEM FOR CHRONIC KIDNEY DISEASE

MACHINE LEARNING - CLASSIFICATION ALGORITHM

AUTHOR: SUBRAMANI SURESH

1. PROBLEM STATEMENT / REQUIREMENT

- The hospital management requested a predictive model to detect Chronic Kidney Disease
 (CKD) based on several patient parameters.
- A dataset was provided for model development.

2. DATASET

File: CKD.csv

• Size: 399 rows × 25 columns

Columns include:

```
['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu',
'sc', 'sod', 'pot', 'hrmo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
'appet', 'pe', 'ane', 'classification']
```

3. DOMAIN PREDICTION: MACHINE LEARNING

- Predicted Value: Yes/No (1 or 0)
- Input: Numerical & Categorical Data.

4. LEARNING PREDICTION: SUPERVISED LEARNING

- Requirement clear.
- Both input and output data are available

5. ALGORITHM PREDICTION: CLASSIFICATION

- Prediction is Yes/No → Classification Problem
- Inputs: 24 features
- Output: 1 target

CLASSIFICATION ALGORITHMS USED

- 1. Logistic Regression
- 2. Support Vector Classification (SVM)
- 3. Decision Tree Classification
- 4. Random Forest Classification

Best Model → Weighted F1-score = 0.9917, ROC-AUC Score = 1.0

- 5. K-Nearest Neighbour Classification
- 6. Naive Bayes (GaussianNB)

6. DATA COLLECTION

```
#importing the Libraies
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#data collection
dataset=pd.read_csv("CKD.csv")
print(dataset.columns)
print(dataset)
Index(['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu',
      'sc', 'sod', 'pot', 'hrmo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
      'appet', 'pe', 'ane', 'classification'],
     dtype='object')
                      bp sg al su rbc
                                                               pcc \
          age
                                                    рс
     2.000000 76.459948 c 3.0 0.0 normal abnormal notpresent
0
```

7. DATA PREPROCESSING

• Categorical Data: Nominal - Converted into numbers using One-Hot Encoding.

Column	Original Values	Encoded
sg	a, b, c, d, e	1/0
rbc	normal, abnormal	1/0
рс	normal, abnormal	1/0
рсс	present, notpresent	1/0
ba	present, notpresent	1/0
htn	yes, no	1/0
dm	yes, no	1/0
cad	yes, no	1/0
appet	yes, poor	1/0
ре	yes, no	1/0
ane	yes, no	1/0
classification	yes, no	1/0

7. DATA PREPROCESSING

Python Coding

age	bp	o al	su	bgr	bu	sc	sod	pot	hrmo	 pc_normal	pcc_present	ba_present	htn_yes	dm_yes	cad_yes	appet_yes	pe_yes	ane_yes	classification_yes
2	76	6 3	0	148	57	3	137	4	12	 0	0	0	0	0	0	1	1	0	1
3	76	6 2	0	148	22	0	137	4	10	 1	0	0	0	0	0	1	0	0	1
4	76	6 1	0	99	23	0	138	4	12	 1	0	0	0	0	0	1	0	0	1

399 rows × 28 columns

7. DATA PREPROCESSING

Split input & output:

- X input: independent=dataset[['age', 'bp', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hrmo', 'pcv', 'wc', 'rc', 'sg_b', 'sg_c', 'sg_d', 'sg_e', 'rbc_normal', 'pc_normal', 'pcc_present', 'ba_present', 'htn_yes', 'dm_yes', 'cad_yes', 'appet_yes', 'pe_yes', 'ane_yes']]
- y Output: dependent=dataset[['classification yes']]
- Python Coding

```
#input output split
independent=dataset[['age', 'bp', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hrmo', 'pcv','wc',
dependent=dataset[['classification_yes']]
print(independent.shape)
print(dependent.shape)

(399, 27)
(399, 1)
```

8. TRAIN-TEST SPLIT

• Training set: 70%

• Testing set: 30%

```
#Train Test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split(independent, dependent, test_size=0.30, random_state=0)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(279, 27)
(120, 27)
(279, 1)
(120, 1)
```

- Training done using 70% dataset (X_train, y_train) with the following algorithms.
- Hyperparameter tuning performed with GridSearchCV

Models Tested:

- 1. Logistic Regression
- 2. Support Vector Classification (SVM)
- 3. Decision Tree Classification
- 4. Random Forest Classification
- 5. K-Nearest Neighbour Classification
- 6. Naive Bayes (GaussianNB)

1. LOGISTIC REGRESSION

Python Coding

2. SUPPORT VECTOR CLASSIFICATION(SVM)

3. DECISION TREE CLASSIFICATION

Python Coding

```
#Model creation
from sklearn.tree import DecisionTreeClassifier
#Model creation using Grid
from sklearn.model selection import GridSearchCV
param_grid = {
    'criterion': ['gini', 'entropy', 'log_loss'],
    'max features': [None, 'sqrt', 'log2'],
    'splitter': ['best', 'random']
classifier = GridSearchCV(DecisionTreeClassifier(),
                          param grid,
                          refit = True,
                          verbose = 3,
                          n_jobs=-1,
                          scoring='f1 weighted')
# fitting the model for grid search
classifier.fit(X_train, y_train)
Fitting 5 folds for each of 18 candidates, totalling 90 fits
```

4. RANDOM FOREST CLASSIFICATION

```
#Model creation
from sklearn.ensemble import RandomForestClassifier
#Model creation using Grid
from sklearn.model selection import GridSearchCV
param_grid = {'criterion':['gini','entropy'],
              'max features': ['auto', 'sqrt', 'log2'],
              'n_estimators':[10,100]}
classifier = GridSearchCV(RandomForestClassifier(),
                          param_grid,
                          refit = True,
                          verbose = 3,
                          n jobs=-1,
                          scoring='f1 weighted')
# fitting the model for grid search
classifier.fit(X_train, y_train)
Fitting 5 folds for each of 12 candidates, totalling 60 fits
```

5. K-NEAREST NEIGHBOUR

Python Coding

```
#Model creation
from sklearn.neighbors import KNeighborsClassifier
#Model creation using Grid
from sklearn.model_selection import GridSearchCV
param grid = {
    'n_neighbors': [3, 5, 7, 9, 11],  # Different K values
    'weights': ['uniform', 'distance'], # Uniform = equal weight, Di
    'metric': ['euclidean', 'manhattan', 'minkowski'] # Different distant
classifier = GridSearchCV(KNeighborsClassifier(),
                         param_grid,
                         refit = True,
                         verbose = 3,
                         n jobs=-1,
                         scoring='f1 weighted')
# fitting the model for grid search
classifier.fit(X_train, y_train)
Fitting 5 folds for each of 30 candidates, totalling 150 fits
```

6. NAIVE BAYES (GAUSSIANNB)

```
#Model creation
from sklearn.naive_bayes import GaussianNB
#Model creation using Grid
from sklearn.model selection import GridSearchCV
param_grid = {
    'var smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5]
classifier = GridSearchCV(GaussianNB(),
                          param grid,
                          refit = True,
                          verbose = 3,
                          n jobs=-1,
                          scoring='f1 weighted')
# fitting the model for grid search
classifier.fit(X_train, y_train)
Fitting 5 folds for each of 5 candidates, totalling 25 fits
```

10. EVALUATION METRICS

 Each model will be evaluated on the 30% test set (X_test, y_test) using the following metrics:

Confusion Matrix (Best Model – Random Forest):

True Positives (TP) = 45 False Negatives (FN) = 0 False Positives (FP) = 1 True Negatives (TN) = 74

Classification Report Metrics:

- **Precision:** Degree of Correctness $0 \rightarrow 0.98$ $1 \rightarrow 1.00$
- **Recall:** Degree of Completeness $0 \rightarrow 1.00$ $1 \rightarrow 0.99$
- **F1-Score:** Balance between Precision and Recall. $0 \rightarrow 0.99 \ 1 \rightarrow 0.99$
- Macro Average: Average metric across all classes equally. F1→ 0.99
- Weighted Average: (better when classes are imbalanced).
 Average metric weighted by class size. F1→ 0.9917
- Accuracy Score: Overall proportion of correct predictions. F1→ 0.99

```
#Evaluation Matrix: Confusion matrix
re=classifier.cv results
y pred = classifier.predict(X test)
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
#Evaluation Matrix: calculate P R F
from sklearn.metrics import classification report
clf report = classification report(y test, y pred)
print(clf_report)
[[45 0]
 [ 1 74]]
              precision
                           recall f1-score
                                               support
                   0.98
                             1.00
                                        0.99
                                                    45
                   1.00
                             0.99
                                        0.99
                                                    75
                                        0.99
                                                   120
    accuracy
   macro avg
                   0.99
                             0.99
                                        0.99
                                                   120
weighted avg
                                        0.99
                                                   120
                   0.99
                              0.99
```

10. EVALUATION METRICS

Best Model: Random Forest

Weighted F1-score: 0.9917

ROC-AUC Score: 1.0

• Parameters: {criterion: 'entropy', max features: 'log2', n estimators: 100}

```
★ ○ ○ ↑ ↓ ★ 〒 ■
# print best parameter after tuning
#print(classifier.best params )
re=classifier.cv_results_
from sklearn.metrics import f1_score
f1_weighted=f1_score(y_test,y_pred,average='weighted')
print("The weighted F1-score for best parameter {}:".format(classifier.best params ),f1 weighted)
The weighted F1-score for best parameter {'criterion': 'entropy', 'max_features': 'log2', 'n_estim
ators': 100}: 0.9916844900066377
#Roc = ROC (Receiver Operating Characteristic) Curve
#AUC (Area Under the Curve)
from sklearn.metrics import roc auc score
print("ROC-AUC Score:",roc_auc_score(y_test,classifier.predict_proba(X_test)[:,1]))
table=pd.DataFrame.from_dict(re)
table
ROC-AUC Score : 1.0
```

11. MODEL COMPARISON

Best Model: Random Forest

Algorithm	Best Parameter	Weighted F1-score	ROC-AUC Score
1. Logistic Regression	{'penalty':'12','solver':'liblinear'}	0.9749	0.9979
2. Support Vector Classification (SVM)	{'C':0.1,'kernel':'linear'}	0.9916	0.9991
3. Decision Tree	<pre>{'criterion':'entropy','max_features': None,'splitter':'random'}</pre>	0.9750	0.9755
4. Random Forest	<pre>{'criterion':'entropy','max_features': 'log2','n_estimators':100}</pre>	0.9917	1.0
5. K Nearest Neighbour	{'metric':'manhattan','n_neighbors':9, 'weights':'distance'}	0.7863	0.8642
6. Naive Bayes (GaussianNB)	{'var_smoothing':1e-09}	0.9834	1.0

12. SAVE THE BEST MODEL

- Random Forest achieved the highest Weighted F1-score (0.9917) and ROC-AUC Score (1.0).
- Saved as the final deployment model.
- Python Coding

```
#save Best model
import pickle
filename="final Sav Model RF.sav"
pickle.dump(classifier,open(filename,'wb'))
load model=pickle.load(open("final Sav Model RF.sav", 'rb'))
#Check result
result=load_model.predict([[2,76,3,0,148,57,3,137,4,12,38,8408,4,0,1,0,0,1,0,0,0,0,0,0,1,1,0]])
result
C:\Anaconda3\Lib\site-packages\sklearn\utils\validation.py:2739: UserWarning: X does not have va
omForestClassifier was fitted with feature names
  warnings.warn(
array([1])
```

13. DEPLOYMENT / IMPLEMENTATION

- Load the best Random Forest model.
- Accept user inputs to predict Chronic Kidney Disease: Yes/No.

```
# Deployment

#pickle is library for save model

import pickle

#load the model from file.sav :r-read, b binary

load_model=pickle.load(open("final_Sav_Model_RF.sav","rb"))

#user input 1

result=load_model.predict([[17,60,0,0,114,50,1,135,4,14,51,7200,5,1,0,0,0,1,1,0,0,0,0,0,1,0,0]])

print("Chronic Kidney Disease: yes/No 1/0 =",result)

#user input 2

result=load_model.predict([[2,76,3,0,148,57,3,137,4,12,38,8408,4,0,1,0,0,1,0,0,0,0,0,0,1,1,0]])

print("Chronic Kidney Disease: yes/No 1/0 = ",result)

Chronic Kidney Disease: yes/No 1/0 = [0]

Chronic Kidney Disease: yes/No 1/0 = [1]
```

14. CALL TO ACTION

 The trained model can now be used by hospital management to assist in early detection of Chronic Kidney Disease (CKD) and support medical decision-making.