

FACULTY OF ENGINEERING AND BASIC SCIENCES ACADEMIC PROGRAM: DATA ENGINEERING AND ARTIFICIAL INTELLIGENCE

COURSE: ETL (G01)
Workshop-1: Data Engineer

Introduction

This workshop simulates a **real job interview code challenge**. It will help you understand what companies expect in recruitment processes and allow you to create a **portfolio project** to showcase on GitHub for your future career.

Your task is to design and implement an **end-to-end ETL process**: extract data from a CSV file, transform it into a **dimensional data model (DDM)**, load it into a **Data Warehouse (DW)**, and finally build reports with KPIs and visualizations that query the DW (not the CSV).

Getting Started

Welcome to the Python Data Engineer Challenge.

You will receive a CSV file with 50,000 rows of candidate data from selection processes (randomly generated). Your goal is to:

- Design a **Dimensional Data Model (Star Schema)**.
- Load the transformed data into a Data Warehouse (DW).
- Build queries, KPIs, and visualizations directly from the DW.

Technologies

You should use:

- Python
- Jupyter Notebook
- Data Warehouse (you choose)

Diagram

Data Description

You will receive a CSV file containing 50k rows with the following fields:

- First Name
- Last Name
- Email
- Country
- Application Date
- Yoe (years of experience)
- Seniority
- Technology
- Code Challenge Score
- Technical Interview Score

A candidate is considered **HIRED** if **both scores are** \geq **7**.

You should apply this logic to get the correct information. How you will handle this data is on you.

Data Example

Please remember, all the data here is totally random; we used a public library to generate random information.

Task Breakdown

1. Dimensional Data Model (DDM)

Design a **Star Schema**:

- Fact Table.
- Dimension Tables.
- Provide the **diagram + justification** of your design.

1. ETL Process

- Extract: Load the CSV file in Python.
- Transform:
 - Apply the "HIRED" rule.
 - o Optional: create tables for dimensions and facts to simplify the Load process.
- Load: Insert the transformed data into a DW.

3. KPIs & Visualizations

Your reports **must come from the DW** (not the CSV). Expected:

- Hires by technology.
- Hires by year.
- Hires by seniority.
- Hires by country over years (focus on USA, Brazil, Colombia, Ecuador).
- **+2 additional KPIs of your choice** (e.g., % hire rate, average scores, hires by experience range, etc.).

Choose any visualization type, but it must clearly show the information.

4. Deliverables in GitHub

Your repository should include:

- **ETL Notebook** (code for Extract, Transform, Load).
- **SQL Queries** to extract KPIs from DW.
- Star Schema Diagram (image + explanation).
- **Visualizations** (in notebook or exported as screenshots).
- **README.md** explaining your project, setup instructions, and key decisions.
- .gitignore file.

V Evaluation Criteria

Item	Description	Weight
GitHub Repo Setup	Repo created, organized, clean structure	0.3
Readme	Clear documentation of approach, setup, usage	0.3
Gitignore	Properly ignores unnecessary files	0.2
Dimensional Data Model	Star schema diagram + justification	1.0
Migration to DW	Correct loading of transformed data into DW	0.4
Extracting from DW	Queries pull data from DW, not CSV	0.4
KPIs & Visualizations	Correct metrics, accurate, clear charts	1.0
Documentation	Explanation of ETL pipeline, challenges, assumptions	0.4
Presentation	Clarity and Structure, Communication and Professionalism	1.0