Математические заметки

том 50 выпуск 1 июль 1991

краткие сообщения

ОЛНА ТЕОРЕМА О МИНИМАКСЕ

О. Ю. Боренштейн, В. С. Шульман

Теорема фон Неймана о минимаксе [1] устанавливает равенство
$$\inf_{t \in T} \sup_{x \in X} f(t,x) = \sup_{x \in X} \inf_{t \in T} f(t,x) \tag{1}$$

для непрерывной функции f на произведении выпуклых компактов, удовлетворяющей условиям выпуклости по $t \in T$ и вогнутости по $x \in X$. Мы докажем, что в случае, когда T — отрезок, равенство (1) сохраняет силу, если Xсчитать произвольным метризуемым компактом, а условие вогнутости заменить более слабым условием «глобальности максимума». В качестве приложения будет получено обобщение теоремы Асилунда и Птака [2] об операторном минимаксе.

 $\overline{\mathrm{B}}$ дальнейшем T — отрезок, (X, ρ) — метрический компакт. Для G \subset $\subset T \times X$ определим X-сечения G(t) и T-сечения G^{x} :

$$G(t) = \{x \in X : (t, x) \in G\}, \qquad G^x = \{t \in T : (t, x) \in G\}.$$

Следующий результат, по существу, установлен в [3].

JIEMMA 1. Если замкнутое подмножество $F \subset T \times X$ имеет непустые и выпуклые T-сечения, то любая его окрестность содержит график непрерывного отображения пространства X в T.

Будем называть подмножество $G \subset T \times X$ правильным, если его X-сечения непусты и плотны в сечениях множества \overline{G} . Отображение $\phi \colon T \to X$ называется ε -непрерывным, если любая точка $t_0 \in T$ обладает окрестностью V, для которой diam $\varphi(V) < \varepsilon$.

 $\Pi EMMA 2$. Если открытое подмножество $G \subset T \times X$ правильно,

при любом $\epsilon>0$ оно содержит график ϵ -непрерывного отображения. До казательство. Покажем, вначале, что любая точка $t_0 \Subset T$ обладает такой окрестностью V, для которой

$$\bigcup_{t \in V} G(t) \subset (\bigcap_{t \in V} G(t))_{\varepsilon} \tag{2}$$

(мы полагаем $A_{\varepsilon}=\bigcup_{x\in A}\{y\in X\colon \ \rho\ (y,\,x)<\varepsilon\}$ для любого $A\subset X$). Если это неверно, то, взяв последовательность $\delta_n \searrow 0$ и полагая $V_n = \{t: \mid t-t_0 \mid < < \delta_n \}$, можно найти такие $(t_n, x_n) \in G$, что $t_n \in V_n$, $\operatorname{dist}(x_n, \bigcap_{t \in V_n} G(t)) \geqslant \varepsilon$.

С другой стороны, $\bigcup_{n=0}^{\infty} (\bigcap_{t \in V_n} G(t)) \supset G(t_0)$ ввиду открытости G. Следовательно, $\lim \rho(x_n, x) \geqslant \varepsilon$ при $x \in G(t_0)$. Это означает, что предельные точки последовательности (t_n, x_n) содержатся в $\overline{G}(t_0)$, но не в $\overline{G(t_0)}$, противоречие с правильностью G.

Выберем теперь конечное покрытие $\{V_j\}_{j=1}^n$ отрезка T окрестностями удовлетворяющими (2). Можно считать, что $V_i \cap V_j = \varnothing$ при $\mid i-j \mid > 1$. Пусть $x_1 \in \bigcap_{t \in V_1} G(t)$; так как $V_1 \cap V_2 \neq \varnothing$, то $x_1 \in \bigcup_{t \in V_2} G(t)$ п, следовательно, найдется такой элемент $x_2 \in \bigcap_{t \in V_2} G(t)$, что $\bigcap_{t \in V_2} G(t) = \bigcap_{t \in V_2} G(t)$ от такие, что $\bigcap_{t \in V_2} G(t) = \bigcap_{t \in V_2} G(t)$ от такие, что $\bigcap_{t \in V_2} G(t) = \bigcap_{t \in V_2} G(t)$ $< \varepsilon$. Легко видеть, что отображение $\varphi \colon T \to V$, определенное условием $\varphi (t) =$

 $= x_k$ при $t \in V_k \setminus V_{k+1}$, ε -непрерывно. Будем говорить, что функция на топологическом пространстве удовлетворяет условию глобальности максимума (GM), если ее значения в точках локального максимума совпадают с ее точной верхней гранью. Аналогично

определяется условие глобальности минимума (Gm).

ТЕОРЕМА 1. Для непрерывной функции $f: T \times X \to \mathbf{R}$, выпуклой по t

и удовлетворяющей условию GM по x справедливо равенство (1).

Локазательство. Обозначим через а и в левую и правую час-Д о к а з а т е л ь с т в о. Ооозначим через a и b левую и правую части (1) и допустим, что a > b. Выберем r_1 , r_2 так, что $a > r_1 > r_2 > b$. Множество $\{(t,x): f(t,x) \leqslant r_2\} = F$ удовлетворяет условиям леммы 1, а множество $\{(t,x): f(t,x) \leqslant (r_1+r_2)/2\}$ является его окрестностью, поэтому существует такая непрерывная функция $\psi\colon X \to T$, что $f(\psi(x),x) \leqslant (r_1+r_2)/2$. Пусть $\varepsilon > 0$ таково, что $|f(t_1,x)-f(t_2,x)| \leqslant (r_1-r_2)/2$ при $|t_1-t_2| \leqslant \varepsilon$, $x \in X$. и пусть $\delta > 0$ таково, что $|\psi(x_1)-\psi(x_2)| \leqslant \varepsilon$ при $p(x_1,x_2) \leqslant \delta$. Множество $G = \{(t,x): f(t,x) > r_1\}$ — открытое и правильное. В са-

мом деле, пусть $(t_0, x_0) \in \overline{G}$ и $x_0 \notin \overline{G(t_0)}$. Тогда $f(t_0, x_0) \geqslant r_1$ и $f(t_0, x) \leqslant r_1$ для всех x из некоторой окрестности точки x_0 . Это значит, что r_1 — локальный максимум функции $f(t_0, \cdot)$, в противоречие с GM, поскольку $\sup \{f(t_0, \cdot)\}$ x): $x \in X$ > a.

Применяя лемму 2, найдем δ -непрерывную функцию $\varphi \colon T \to X$, график которой содержится в G. Функция $\hat{\psi} \circ \hat{\varphi} \colon T \to \hat{T}$ является ϵ -непрерывной, и потому $|\psi(\varphi(t_1))-t_1|<\varepsilon$ для некоторой точки $t_1\in T$. Следовательно,

$$|f(\psi(\varphi(t_1)), \varphi(t_1)) - f(t_1, \varphi(t_1))|| < (r_1 - r_2)/2,$$

что невозможно, поскольку $f(\psi(\varphi(t_1), \varphi(t_1)) < (r_1 + r_2)/2, f(t_1, \varphi(t_1)) > r_1$. Теорема доказана.

Покажем, что для функций на прямоугольнике можно и оставшееся ус-

ловие выпуклости ослабить до Gm. ТЕОРЕМА 2. Пусть T и X — отрезки, и пусть f: $T \times X \to \mathbf{R}$ — непрерывная функция, удовлетворяющая условию GM по $x \in X$ и условию Gm по $t \in T$. Тогда справедливо равенство (1).

Показательство. Предполагая противное, определим a, b, r_1 , r_2 как при доказательстве теоремы 1. Пусть $\varepsilon > 0$ таково, что $|f(t, x_1)|$

 r_2 как при доказательстве теоремы 1. Пусть $\varepsilon > 0$ таково, что $| f(t,x_1) - f(t,x_2)| < r_1 - r_2$ при $| x_1 - x_2| < \varepsilon$. Множество $\{(t,x): f(t,x) > r_1\}$ правильное, и потому существует ε -непрерывная функция $\varphi\colon T \to X$ такая, что $f(t,\varphi(t)) > r_1$. Пусть $\delta > 0$ таково, что из $| t_1 - t_2| < \delta$ следует $| \varphi(t_1) - \varphi(t_2)| < \varepsilon$. Из Gm следует, что $\{(t,x): f(t,x) < r_2\}$ — правильное множество, и значит, существует δ -непрерывная функция $\psi\colon X \to T$, для которой $f(\psi(x),x) < r_2$. Функция $\varphi \circ \psi$ ε -непрерывна, поэтому найдется такая точка $x_0 \in X$, что $| \varphi(\psi(x_0)) - x_0 | < \varepsilon$ < є. Следовательно,

$$| f(\psi(x_0), \varphi(\psi(x_0))) - f(\psi(x_0), x_0) | < r_1 - r_2,$$

что противоречит условиям

$$f(\psi(x_0), \varphi(\psi(x_0))) > r_1, f(\psi(x_0), x_0) < r_2.$$

Следствие 1. Пусть Н — вещественное гильбертово пространство, A , B - ограниченные линейные операторы в H . Для любого интервала $\mathit{T} \subset \mathbf{R}$ справедливо равенство

$$\inf_{t \in T} \|A - tB\| = \sup_{\|x\| = 1} \inf_{t \in T} \|Ax - tBx\|. \tag{3}$$

Доказательство. Если пространство H конечномерно, а интервал T компактен, то (3) сразу следует из теоремы 1: выпуклость функции $(t,x)\mapsto \|Ax-tBx\|$ по t очевидна, а отсутствие неглобальных максимумов (условне GM) на единичной сфере проверяется элементарно (функцию $x\mapsto \|Ax-tBx\|^2$ в подходящей системе координат можно записать в виде $\sum \lambda_i^2 x_i^2$, где λ_i — сингулярные числа оператора A-tB). Пусть теперь T некомпактен; так как обе части (3) не меняются при замене T на \overline{T} , то можно считать T замкнутым. Пусть $a=\inf_{t\in T} \|A-tB\|$ и $t_0\in T$ — одна из точек, в ко-

торых нижняя грань достигается; пусть также $\{T_n\}_{n=1}^\infty$ — возрастающая последовательность содержащих t_0 компактных интервалов, объединение которых совпадает с T. По только что доказанному $\sup_{\|x\|=1} \inf_{t\in T_n} \|Ax-tBx\| = a$,

и, следовательно, для любого $\varepsilon > 0$ найдутся такие $x_n \in H$, что $\|x_n\| = 1$ и $\|Ax_n - tBx_n\| > a - \varepsilon$ для всех $t \in T_n$. Поэтому, если x_0 — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$, то $\|Ax_0 - tBx_0\| > a - \varepsilon$ для всех $t \in \bigcup_{n=1}^{\infty} T_n = T$. Это означает, что правая часть (3) не меньше $a - \varepsilon$, т. е. равна a.

В случае $\dim H = \infty$ положим $b = \sup_{\|x\|=1} \inf_{t \in T} \|Ax - tBx\|$. Выбирая последовательность (в несепарабельном случае — сеть) $\{P_n\}_{n=1}^{\infty}$ проекторов конечного ранга, сильно сходящуюся к единичному оператору, обозначим через A_n и B_n операторы P_nAP_n , P_nBP_n , действующие в пространствах $H_n = P_nH$. Так как

$$\sup_{\substack{x \in H_n \\ \|x\| = 1}} \inf_{t \in T} \|A_n x - tB_n x\|$$

не превосходит b, то по только что доказанному $\inf_{t \in T} \|A_n - tB_n\| \leqslant b$. Пусть $t_n \in T$ — числа, доставляющие минимум функции $\|A_n - tB_n\|$, и t_* — предельная точка последовательности $\{t_n\}_{n=1}^\infty$, тогда $\lim \|A_n - t_*B_n\| \leqslant b$ и, следовательно, $\|A - t_*B\| \leqslant b$, что и требовалось доказать.

Замечание. При $T=\mathbf{R}$ этот результат получен в [2], где получен аналогичный результат и для комплексных гильбертовых пространств. Отметим, что комплексный результат легко вывести из вещественного, используя теорему Теплица— Хаусдорфа [4]. Мы, однако, этого не делаем, поскольку стремились не к упрощению доказательства теоремы Асплунда— Птака (такое упрощение можно найти в [5], где указаны и новые приложения), а к включению ее в общетопологический контекст.

Вологодский политехнический институт

Поступило 28.10.88

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Фон Нейман Дж. // Матричные игры. М.: Физматгиз, 1961. 2. Asplund E., Ptak V. // Acta Math. 1971. V. 126. P. 53—62. 3. Kak utanis. // Duke Math. J. 1941. V. 8. P. 457—459. 4. Hausdorfff. // Math. Z. 1919. V. 3. P. 314—316. 5. Шульман В. С. // Спектральная теория операторов. Баку: Элм, 1984. С. 192—225.