Video explanation of solution is provided below the problem.

Truth Tables

16/16 points (ungraded)

Given the CMOS circuit with pulldown shown here, and assuming that the pullup is drawn correctly, fill in the truth table for this circuit.

1	0	0	1	0	✓ Answer: 0
1	0	1	0	0	✓ Answer: 0
1	0	1	1	0	✓ Answer: 0
1	1	0	0	1	✓ Answer: 1
1	1	0	1	0	✓ Answer: 0
1	1	1	0	0	✓ Answer: 0
1	1	1	1	0	✓ Answer: 0

Explanation

From the pulldown circuit, we can generate the corresponding function that the CMOS circuit represents. The pulldown tells us that $\overline{F}=(A+B)\,C+D$. So

$$F = \overline{((A+B)C+D)}.$$

We can then plug in the given input values to determine the value of F for each combination. When A=0 B=0 C=0 and D=0, then (A+B)C=0 that ORed with D=0, and finally the entire thing is negated, so F=1.

For A=0 B=0 C=0 and D=1, (A+B)C = 0 + D=1 gives us 1 and the whole thing negated is F=0. In the same way, we can complete the rest of the truth table, and we get 1 0 1 0 0 0 1 0 0 0 for the remaining entries.

Submit

1 Answers are displayed within the problem

Truth Tables

1 point possible (ungraded)

Can the function F defined by the following truth table be implemented as a single CMOS gate?

\boldsymbol{A}	B	C	$oldsymbol{F}$
0	0	0	1

0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Can F be implemented as a single CMOS gate?

O NO			
YES			

Submit

Truth Tables

Video

▲ Download video file

Transcripts

- <u>♣ Download SubRip (.srt) file</u>

Discussion

Hide Discussion

Topic: 4. Combinational Logic / WE4.1

Add a Post

