Modelli longitudinali su poche wave – Parte 2

- Autocorrelazione e correlazione tra variabili nel tempo
- Codice lavaan e summary dei modelli
- Qualche estensione dei modelli
- Esempi applicati
- Mixed-models

autoregressione

N = 5000, residual σ = 1.0

al passare del tempo, l'osservazione iniziale è sempre meno correlata (c'è sempre meno legame) con l'osservazione al tempo t

autoregressione con intercetta variabile (tratto)

N = 5000, residual σ = 1.0 σ intercept = 1.0

al passare del tempo, la correlazione tra l'osservazione iniziale e quella al tempo t si abbassa fino al punto che dipende solo dall'intercetta random (tratto individuale stabile)

autoregressione con intercetta variabile (tratto) e slope variabile

N = 5000, residual σ = 1.0 σ intercept = 1.0, σ slope = 0.2

rispetto a prima, qui vi c'è un continuo abbassamento della correlazione dovuto al drift/slope random che allontana progressivamente l'osservazione iniziale da quella al tempo t

autoregressione con intercetta variabile (tratto) e slope variabile

N = 5000, residual σ = 1.0 σ intercept = 1.0, σ slope = 0.2

rispetto a prima, qui vi c'è un continuo abbassamento della correlazione dovuto al drift/slope random che allontana progressivamente l'osservazione iniziale da quella al tempo t

CLPM, solo autoregressivo

N = 5000, residual SD = 1.0

nessuna correlazione tra variabili: iniziano indipendentemente, ciascuna ha il suo effetto autoregressivo (ma nessun effetto incrociato)

CLPM, con cross-lagged

N = 5000, residual σ = 1.0

la dipendenza cross-lagged rende le due variabili, inizialmente indipendenti, più simili nel tempo, fino a un limite forse dato dalla stazionarietà

lavaan code

```
autoreg = "
    x1 ~ x0
    x2 ~ x1
    x3 ~ x2
```

semplice processo autoregressivo univariato

```
x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3
```

```
fit = sem(model=autoreg, data=df)
summary(fit, standardized=T)
fitmeasures(fit, fit.measures=c("rmsea", "cfi"))
```

lavaan summary

lavaan code

```
lgm = "
   # DEFINISCO LATENTI LGM
     X int = ~1*x0 + 1*x1 + 1*x2 + 1*x3
     X slo = ~0*x0 + 1*x1 + 2*x2 + 3*x3
   # SPECIFICO CORRELAZIONE INT-SLO
   # (non necessario perché di solito già implicato)
     X int ~~ X slo
11
fit = growth(model=lgm, data=df)
summary(fit, standardized=T)
fitmeasures(fit, fit.measures=c("rmsea", "cfi"))
```

Latent Growth Model

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
X_int =~						
x 0	1.000				2.973	0.824
x1	1.000				2.973	0.772
x2	1.000				2.973	
x 3	1.000				2.973	0.700
X_slo =~						
x 0	0.000				0.000	0.000
x1	1.000				0.389	0.101
x 2	2.000				0.778	0.194
x 3	3.000				1.166	0.274
Covariances:		G. 1 5	,	5/2 12	Q . 1 . 1	Q. 1 11
	Estimate	Sta.Err	z-value	P(> z)	Std.lv	Std.all
X_int ~~	0 617	0 105	2 1 6 1	0 000	0 504	0.504
X_slo	0.617	0.195	3.161	0.002	0.534	0.534
Intercepts:						
incercepts.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x0	0.000	264.211	2 varae	1 (7 2 7	0.000	0.000
.x1	0.000				0.000	
.x2	0.000				0.000	
. x3	0.000				0.000	
X int	9.898	0.154	64.337	0.000	3.329	
_ X slo	1.040		23.375	0.000	2.676	2.676
_						
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x0	4.190	0.474	8.849	0.000	4.190	0.322
.x1	4.610	0.369	12.508	0.000	4.610	0.311
.x2	4.217	0.364	11.573	0.000	4.217	0.261
.x3	4.159	0.510	8.162	0.000	4.159	0.230
X_int	8.839		11.192	0.000	1.000	1.000
X_slo	0.151	0.096	1.574	0.115	1.000	1.000

Latent Growth Model

Intercetta media: 9.898

Slope media: 1.040

Dev.std. dell'intercetta: $\sqrt{(8.839)} = 2.973$ Dev.std. della slope: $\sqrt{(0.151)} = 0.389$


```
altsr uni = "
    # DEFINISCO LATENTI PARTE LGM
      X int = ~1*x0 + 1*x1 + 1*x2 + 1*x3
      X slo = ~0*x0 + 1*x1 + 2*x2 + 3*x3
    # RESIDUI WITHIN-SUBJECT
      wx0 = \sim 1*x0
      wx1 = \sim 1*x1
      wx2 = \sim 1*x2
      wx3 = ~1*x3
    # PARTE AUTOREGRESSIVA (SU RESIDUI WITHIN)
      wx1 \sim wx0
      wx2 \sim wx1
      wx3 \sim wx2
    # SPECIFICO CORRELAZIONE INTERCETTA-SLOPE
      X int ~~ X slo
    # SPECIFICO VALORI MEDI INTERCPT E SLOPE
      X int \sim 1
      X slo \sim 1
    # SPECIFICO VARIANZE INTERCETTE E SLOPE
      X int ~~ X int
      X slo ~~ X slo
    # SPECIFICO VARIANZE DEI RESIDUI
      wx0 ~~ wx0
      wx1 ~~ wx1
      wx2 ~~ wx2
      wx3 ~~ wx3
```

ALT-SR (univariato)

uso la funzione «lavaan», che richiede di
 ⇒ specificare tutti i parametri (al contrario di «sem» o «growth») ma è più flessibile

fit = lavaan(model=altsr uni, data=df)

```
altsr bi = "
    # (...) TUTTO IL RESTO GIA' VISTO PER X e Y
    # PARTE AUTOREGRESSIVA E CROSS-LAGGED
      wx1 \sim wx0 + wy0
      wx2 \sim wx1 + wy1
      wx3 \sim wx2 + wv2
      wy1 \sim wy0 + wx0
      wy2 \sim wy1 + wx1
      wy3 \sim wy2 + wx2
    # CORRELAZIONI INTERCETTE E SLOPE TRA VARIABILI
      X int ~~ Y int
      X_int ~~ Y_slo
    (\ldots)
    # alternativa con eventuali constraints temporali
       wx1 \sim arx*wx0 + clyx*wy0
       wx2 ~ arx*wx1 + clyx*wy1
       wx3 \sim arx*wx2 + clyx*wy2
       wy1 \sim ary*wy0 + clxy*wx0
       wy2 ~ ary*wy1 + clxy*wx1
       wy3 \sim ary*wy2 + clxy*wx2
```


STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 2021, VOL. 28, NO. 4, 638–648 https://doi.org/10.1080/10705511.2020.1784738

TEACHER'S CORNER

Three Extensions of the Random Intercept Cross-Lagged Panel Model

Jeroen D. Mulder n and Ellen L. Hamaker

Utrecht University

ABSTRACT

The random intercept cross-lagged panel model (RI-CLPM) is rapidly gaining popularity in psychology and related fields as a structural equation modeling (SEM) approach to longitudinal data. It decomposes observed scores into within-unit dynamics and stable, between-unit differences. This paper discusses three extensions of the RI-CLPM that researchers may be interested in, but are unsure of how to accomplish: (a) including stable, person-level characteristics as predictors and/or outcomes; (b) specifying a multiple-group version; and (c) including multiple indicators. For each extension, we discuss which models need to be run in order to investigate underlying assumptions, and we demonstrate the various modeling options using a motivating example. We provide fully annotated code for *lavaan* (R-package) and Mplus on an accompanying website.

KEYWORDS

Random-Intercept Cross-Lagged Panel Model; panel data; within-person dynamics; longitudinal modeling

Between-level N_i affecting the random intercepts

Qui c'è un predittore (N_i) che varia between-subject e influenza le intercette dei soggetti (BS_i e BA_i)

nell'esempio: il tratto di Nevroticismo (N) influenza sia i livelli stabili (di tratto) del Sonno (S) che dell'Ansia (A)

Between-level N_i affecting the observations

come prima, ma il predittore between-subject stavolta influenza *direttamente* le variabili osservate a ciascun tempo

probabilmente non ha molto senso in questo caso, ma lo potrebbe avere in ambito evolutivo (es. un predittore può avere effetti più o meno differenziati sul fenomeno osservato a diverse età)

classico RI-CLPM, ma anziché usare i *sum score* come variabili osservate, si usano gli item e si fa un modello di misura per l'osservazione a ogni tempo

è formalmente più corretto che usare i *sum score*, e coi LGM può evitare problemi artefatti tipo correlazioni intercetta-slope (cf. slide AIP) **MA** richiede di stimare enormemente più parametri

ESEMPI APPLICATI

ESEMPIO – Come gestiamo un LGM in cui una parte delle osservazioni viene da controlli e una parte da casi con una diagnosi?

Possibili quesiti di ricerca su *casi* vs *controlli*:

- Il valore medio di tratto di x è diverso? *
- La variabilità dei valori medi è diversa?
- Il valore medio delle traiettorie/slope è diverso? *
- La variabilità delle traiettorie/slope è diversa?
- La variabilità dei residui osservati è diversa?
- La correlazione tra intercetta e slope è diversa?
- * Solo le domande con l'asterisco possono essere facilmente risolte con l'**Opzione Diagnosi predittore**.

Tutte le domande possono invece essere risolte con l'**Opzione Multigruppo**, che però deve stimare molti più parametri

Opzione Diagnosi predittore

Opzione Multigruppo

ESEMPI APPLICATI

Opzione Diagnosi predittore

```
lgm = "
    X_int =~ 1*x0 + 1*x1 + 1*x2 + 1*x3
    X_slo =~ 0*x0 + 1*x1 + 2*x2 + 3*x3
    X_int ~ Diagn
    X_slo ~ Diagn
"
fit = growth(model=lgm, data=df)
```


Opzione Multigruppo

```
lgm = "
    X_int =~ 1*x0 + 1*x1 + 1*x2 + 1*x3
    X_slo =~ 0*x0 + 1*x1 + 2*x2 + 3*x3
"
fit = growth(model=lgm, data=df, group="Diagn")
```


Eventuale modello constrained (per test di invarianza/confronto tra gruppi)

POSSO FARLO COI MIXED-MODEL?

Posso riscrivere un Latent Growth Model come un Linear Mixed-Model?

Ha indiscutibilmente potenziali vantaggi:

- Facilità interpretazione per chi non è familiare coi SEM ma conosce bene LMM
- Meno problemi nella gestione dei dati mancanti
- Possibilità di gestire il «tempo» eventualmente come un continuo (long dataset)
- Più facilità nel modellare eventuali effetti non-lineari del tempo

La parte «random» (dei soggetti) nel LMM corrisponde alla parte di variabilità delle *intercette* e *slope* latenti del LGM

Ma è davvero la stessa cosa?

POSSO FARLO COI MIXED-MODEL?

Latent Growth Model

```
# FIT MODELLO

model = "
Intercept =~ 1*x0 + 1*x1 + 1*x2 + 1*x3
Slope =~ 0*x0 + 1*x1 + 2*x2 + 3*x3
"

fitLav = growth (model=model, data=dW)
summary (fitLav, standardized=T)
```

Linear Mixed Model

```
# PREPARO DATASET PER LONG
dL = reshape(dW,
   varying=c("x0", "x1", "x2", "x3"),
   v.names="x", timevar="time",
   times=0:3, direction="long")
dL = dL[order(dL$id),]
head (dL)
# FIT MODELLO
fitLmm = lmer(x \sim 1 + time +
                      (1 + time \mid id),
                                data=dL)
summary(fitLmm)
```

POSSO FARLO COI MIXED-MODEL?

time 0.078

1 1

Latent Variables:	<u>Latent Growth Model</u>								
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all			
Intercept =~									
x0	1.000				3.016	0.949			
x1	1.000				3.016	0.892			
x2	1.000				3.016	0.837			
x3	1.000				3.016	0.779			
Slope =~									
x0	0.000				0.000	0.000			
x1	1.000				0.483	0.143			
x2	2.000				0.965	0.268			
х3	3.000				1.448	0.374			
Covariances:									
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all			
Intercept ~~	0.466	0 000	4 706	0 000	0 200	0.200			
Slope	0.466	0.099	4.726	0.000	0.320	0.320			
Intercepts:									
-	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all			
.x0	0.000				0.000	0.000			
.x1	0.000				0.000	0.000			
.x2	0.000				0.000	0.000			
.x3	0.000	0.110			0.000	0.000			
Intercept	9.915	0.140		0.000	3.288	3.288			
Slope	1.029	0.029	34.982	0.000	2.132	2.132			
Variances:									
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all			
.x0	0.994	0.140	7.090	0.000	0.994	0.099			
.x1	1.179	0.100	11.850	0.000	1.179	0.103			
.x2	1.077	0.100	10.799	0.000	1.077	0.083			
.x3	0.978	0.153	6.386	0.000	0.978	0.065			
Intercept	9.096	0.625	14.544	0.000	1.000	1.000			
Slope	0.233	0.035	6.696	0.000	1.000	1.000			

Linear Mixed Model

```
Linear mixed model fit by REML ['lmerMod']
Formula: x \sim 1 + time + (1 + time | id)
  Data: dL
REML criterion at convergence: 7984
Scaled residuals:
   Min 10 Median
                            30
                                  Max
-3.3722 -0.5249 -0.0015 0.5212 2.8246
Random effects:
                     Variance Std.Dev. Corr
Groups
         Name
         (Intercept) 9.056
 id
                             3.0093
                                      0.35
         time
                     0.218
                             0.4669
                    1.086
                             1.0419
Residual
Number of obs: 2000, groups: id, 500
Fixed effects:
           Estimate Std. Error t value
(Intercept) < 9.9137
                      0.1401
                                70.75
             1.0296
                                34.90
time
Correlation of Fixed Effects:
     (Intr)
```

Opzione 1: Multigroup SEM (massima «complicazione»)

```
model = "
   intercept =~ 1*x0 + 1*x1 + 1*x2 + 1*x3
   slope =~ 0*x0 + 1*x1 + 2*x2 + 3*x3
"

fit = growth(model=model, data=df, group="diagn")
summary(fitLav, standardized=T)
```


Group 1 [Control]:	Opzione	: 1: Multis	group SEN	/I (massim	a «comp	licazione»)	Group 2 [Patient]:	<u> </u>					
Latent Variables:			,	,			Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Intercept =~							Intercept =~						
x0	1.000				2.987	0.948	x 0	1.000				4.297	0.971
x1	1.000				2.987	0.891	x1	1.000				4.297	0.921
x2	1.000				2.987	0.821	x2	1.000				4.297	0.880
x3	1.000				2.987	0.748	x3	1.000				4.297	0.834
Slope =~							Slope =~						
хO	0.000				0.000	0.000	x0	0.000				0.000	0.000
x1	1.000				0.578	0.172	x1	1.000				0.647	0.139
x2	2.000				1.156	0.318	x2	2.000				1.294	0.265
x 3	3.000				1.734	0.434	x 3	3.000				1.940	0.377
Covariances:							Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Intercept ~~							Intercept ~~						
Slope	0.482	0.099	4.885	0.000	0.279	0.279	Slope	0.526	0.217	2.424	0.015	0.189	0.189
Intercepts:							Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv			Estimate	Std.Err	z-value	P(> z)	Std.lv	
.x0	0.000				0.000	0.000	.x0	0.000				0.000	0.000
.x1	0.000				0.000	0.000	.x1	0.000				0.000	0.000
.x2	0.000				0.000	0.000	.x2	0.000				0.000	0.000
.x3	0.000				0.000	0.000	.x3	0.000				0.000	0.000
Intercept	9.948	0.127	78.503	0.000	3.331	3.331	Intercept	8.351	0.254	32.890	0.000	1.943	1.943
Slope	1.054	0.030	34.935	0.000	1.823	1.823	Slope	0.733	0.047	15.715	0.000	1.133	1.133
Variances:							Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x0	1.015	0.129	7.842	0.000	1.015	0.102	.x0	1.126	0.266	4.240	0.000	1.126	0.057
.x1	1.014	0.083	12.212	0.000	1.014	0.090	.x1	1.843	0.198	9.316	0.000	1.843	0.085
.x2	1.047	0.091	11.516	0.000	1.047	0.079	.x2	1.623	0.191	8.508	0.000	1.623	0.068
.x3	1.113	0.152	7.328	0.000	1.113	0.070	.x3	1 130	0.285	4.000	0.000	1.139	0.043
Intercept	8.921	0.560	15.933	0.000	1.000	1.000	Intercept	18.465	1.587	11.635	0.000	1.000	1.000
Slope	0.334	0.037	9.050	0.000	1.000	1.000	Slope	0.418	0.068	6.140	0.000	1.000	1.000

Opzione 2: SEM con diagnosi a predittore

```
model = "
  intercept =~ 1*x0 + 1*x1 + 1*x2 + 1*x3
  slope =~ 0*x0 + 1*x1 + 2*x2 + 3*x3
  intercept ~ diagn
  slope ~ diagn
"

fit = growth(model=model, data=df)
summary(fitLav, standardized=T)
```


Opzione 2: SEM con diagnosi a predittore

(··· <i>)</i>	-					
Regressions:						
-	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Intercept ~ diagn	-1.599	0.254	-6.300	0.000	-0.449	-0.212
Slope ~ diagn	-0.323	0.054	-5.999	0.000	-0.521	-0.246
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.Intercept ~	~					
.Slope	0.492	0.096	5.115	0.000	0.235	0.235
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x0	0.000				0.000	0.000
.x1	0.000				0.000	0.000
.x2	0.000				0.000	0.000
.x3	0 000				0.000	0.000
.Intercept	11.547	0.359	32.174	0.000	3.243	3.243
.Slope	1.377	0.076	18.068	0.000	2.219	2.219
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x0	1.050	0.122	8.598	0.000	1.050	0.076
.x1	1.295	0.084	15.484	0.000	1.295	0.083
.x2	1.244	0.086	14.379	0.000	1.244	0.070
.x3	1.109	0.137	8.073	0.000	1.109	0.053
.Intercept	12.108	0.611	19.827	0.000	0.955	0.955
.Slope	0.362	0.033	10.915	0.000	0.940	0.940

i valori medi e l'effetto di «diagn» sono perfettamente uguali a prima, mentre altri parametri (varianze individuali, varianze residue, correlazione int-slo), sono un po' delle vie di mezzo rispetto a prima...

Opzione 3: LMM con lme4

```
dL = reshape(df, varying=c("x0", "x1", "x2", "x3"),
            v.names="x", timevar="time",
            times=0:3, direction="long")
dL = dL[order(dL$id),]
head (dL)
library(lmer)
fitLmm = lmer(x \sim time*diagn +
                           id),
                   (time |
                                   data=dL)
summary(fitLmm)
x \sim 1 + time + diagn + time: diagn + (1 + time | id)
```

```
Linear mixed model fit by REML ['lmerMod']
Formula: x \sim 1 + \text{diagn} + \text{time} * \text{diagn} + (1 + \text{time} | \text{id})
   Data: dL
REML criterion at convergence: 15081.6
Scaled residuals:
               10 Median
     Min
                                   30
                                           Max
-3.01677 -0.51842 -0.00174 0.53600 2.85042
Random effects:
                       Variance Std.Dev. Corr
 Groups
          Name
          (Intercept) 12.069
                                3.4741
 id
                        0.342
                                0.5848 0.26
          time
 Residual
                               1.1005
Number of obs: 3600, groups: id, 900
Fixed effects:
                   Estimate Std. Error t value
(Intercept)
                    9.94789
                                        67.800
diagnPatient
                  -1.59960
                               0.25413 - 6.294
                   1.05409
                               0.03120 33.780
time
diagnPatient:time -0.32418
                               0.05405 - 5.998
Correlation of Fixed Effects:
            (Intr) dqnPtn time
diagnPatint -0.577
time
             0.061 - 0.035
dignPtnt:tm -0.035 0.061 -0.577
```

Opzione 3.1: LMM con *brms*

in certi casi favorisce la convergenza, evita le singularity, facilita il fitting multi-gruppo (come qui), e se vi piace l'approccio Bayesiano ci potete mettere delle prior

```
Family: gaussian
 Links: mu = identity; sigma = identity
Formula: x ~ time * diagn + (1 + time | gr(id, by = diagn))
   Data: dL (Number of observations: 3600)
  Draws: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
                                                                            0.30
         total post-warmup draws = 10000
                                                                           18.75
Group-Level Effects:
~id (Number of levels: 900)
                                               Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS
                                                    2.97
                                                              0.09
sd(Intercept:diagnControl)
                                                                       2.80
                                                                                 3.16 1.00
                                                                                               3373
sd(time:diagnControl)
                                                   0.55
                                                              0.03
                                                                       0.49
                                                                                 0.61 1.00
                                                                                               3239
sd(Intercept:diagnPatient)
                                                   4.33
                                                              0.19
                                                                       3.98
                                                                                 4.71 1.00
                                                                                               2332
sd(time:diagnPatient)
                                                    0.65
                                                              0.04
                                                                       0.57
                                                                                0.73 1.00
                                                                                               5965
cor(Intercept:diagnControl,time:diagnControl)
                                                              0.06
                                                                                               7388
                                                                       0.21
                                                                                0.44 1.00
cor(Intercept:diagnPatient,time:diagnPatient)
                                                   0.19
                                                              0.07
                                                                       0.04
                                                                                 0.33 1.00
                                                                                               9704
```

Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS 9.70 2213 3746 Intercept 9.95 0.13 10.20 1.00 diagnPatient -1.600.29 -2.17-1.05 1.00 1555 2921 time 1.05 0.03 0.99 1.11 1.00 9975 7971 diagnPatient:time -0.32 0.06 -0.43 -0.22 1.00 10585 8437

Family Specific Parameters:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.10 0.02 1.07 1.14 1.00 3149 5968

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).