

# **SAR TEST REPORT**

**REPORT NO.:** SA990526E01

MODEL NO.: CDP-PCK2005

FCC ID: UXX-PCK2005

**RECEIVED:** May 26, 2010

**TESTED:** Jul. 16 ~ Jul. 20, 2010

**ISSUED:** Jul. 29, 2010

APPLICANT: Cradlepoint, Inc.

ADDRESS: 1199 shoreline Ln. Suite 301, Boise Idaho, USA

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou

Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

**TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 49 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.



Report No.: SA990526E01 1 Report Format Version 3.0.1



# **TABLE OF CONTENTS**

|     | 02.12.0.2.11.0.11.0.11.0.11.0.11                       |    |
|-----|--------------------------------------------------------|----|
| 2.1 | GENERAL DESCRIPTION OF EUT                             | 4  |
| 2.2 | GENERAL DESCRIPTION OF APPLIED STANDARDS               | 7  |
|     | GENERAL INOFRMATION OF THE SAR SYSTEM                  |    |
|     | TEST EQUIPMENT                                         |    |
| 2.5 | GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION |    |
| 3.  |                                                        |    |
| 4.  | RECIPES FOR TISSUE SIMULATING LIQUIDS                  |    |
| 5.  | SYSTEM VALIDATION                                      |    |
|     | TEST PROCEDURE                                         |    |
| 5.2 | VALIDATION RESULTS                                     | 20 |
| 5.3 | SYSTEM VALIDATION UNCERTAINTIES                        |    |
| 6.  | 802.16E/WIMAX DEVICE AND SYSTEM OPERATING PARAMETERS   |    |
| 7.  | WIMAX/802.16E DEVICE SPECIFICATION                     |    |
|     | WIMAX ZONE TYPES                                       |    |
|     | POWER MEASUREMENT                                      |    |
| _   | DUTY FACTOR                                            |    |
| 7.4 | SCALING FACTOR                                         |    |
| 8.  | TEST SETUP                                             | 39 |
| -   | TEST RESULTS                                           | _  |
|     | TEST PROCEDURES                                        |    |
|     | MEASURED SAR RESULTS                                   |    |
|     | POWER DRIFT TABLE                                      |    |
|     | SAR LIMITS                                             |    |
|     | SAR ERROR CONSIDERATION                                |    |
|     | INFORMATION ON THE TESTING LABORATORIES                | 49 |
|     | PENDIX A: TEST CONFIGURATIONS AND TEST DATA            |    |
|     | PENDIX B: ADT SAR MEASUREMENT SYSTEM                   |    |
|     | PENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION             |    |
| APF | PENDIX D: SYSTEM CERTIFICATE & CALIBRATION             |    |



# **CERTIFICATION**

**PRODUCT:** Portable WiFi WiMAX Router

MODEL NO.: CDP-PCK2005

**BRAND**: Cradlepoint

**APPLICANT:** Cradlepoint, Inc.

**TESTED:** Jul. 16 ~ Jul. 20, 2010

**TEST SAMPLE:** Engineering Sample

STANDARDS: FCC Part 2 (Section 2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

**RSS-102** 

The above equipment (model: CDP-PCK2005) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

TECHNICAL

ACCEPTANCE : Mason Chang / Enginee , DATE : Jul. 29, 2010

APPROVED BY : Gary Chang / Assistant Vanager , DATE : Jul. 29, 2010



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF EUT

# **FOR WiMAX function**

| FOR WiMAX function     |                                                                |                                    |  |  |  |
|------------------------|----------------------------------------------------------------|------------------------------------|--|--|--|
| EUT                    | Port                                                           | able WiFi WiMAX Router             |  |  |  |
| MODEL NO.              | CDP-PCK2005                                                    |                                    |  |  |  |
| FCC ID                 | UXX                                                            | Z-PCK2005                          |  |  |  |
| POWER SUPPLY           | DC                                                             | 5V from adapter and car charger or |  |  |  |
| TOWER GOLLE            | DC 3                                                           | 3.7V from battery                  |  |  |  |
|                        | UL                                                             | QPSK: 1/2, 3/4                     |  |  |  |
| CODED TYPE/MODULATION/ |                                                                | 16QAM: 1/2, 3/4                    |  |  |  |
| CODING RATE            |                                                                | QPSK: 1/2, 3/4                     |  |  |  |
| CODING RAIL            | DL                                                             | 16QAM: 1/2, 3/4                    |  |  |  |
|                        |                                                                | 64QAM: 1/2, 2/3, 3/4, 5/6          |  |  |  |
| MULTIPLE ACCESS METHOD | TDMA                                                           |                                    |  |  |  |
| MODULATION TECHNOLOGY  | OFD                                                            | DMA                                |  |  |  |
| DUPLEX METHOD          | TDD                                                            |                                    |  |  |  |
| TX / RX FUNCTION       | 1TX                                                            | / 2RX , supports TX diversity      |  |  |  |
| OPERATING FREQUENCY    | 5MHz: 2498.5MHz ~ 2687.5MHz                                    |                                    |  |  |  |
|                        | 10MHz: 2501MHz ~ 2685MHz                                       |                                    |  |  |  |
| CHANNEL BANDWIDTH      | 5MH                                                            | Iz, 10MHz                          |  |  |  |
| AVERAGE SAR (1g)       | 0.46                                                           | 7W/kg                              |  |  |  |
| ANTENNA TYPE           | Plea                                                           | se see note 2                      |  |  |  |
| DATA CABLE             |                                                                | Micro USB cable (Shielded, 1.0m)   |  |  |  |
| DATA GABLE             |                                                                | Micro USB cable (Unshielded, 1.0m) |  |  |  |
| I/O PORTS              | Refer to user's manual                                         |                                    |  |  |  |
| ACCESSORY DEVICES      | Adapter x 1, Battery x 1. Micro USB cable x 1, Car charger x 1 |                                    |  |  |  |
| MAX DL :UL ratio       | 29:1                                                           | 8                                  |  |  |  |



# **FOR WLAN function**

| EUT                                 | Porta                             | Portable WiFi WiMAX Router                                                                            |                                                                |                       |                   |          |                         |
|-------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|-------------------|----------|-------------------------|
| MODEL NO.                           | CDP-                              | PCK2005                                                                                               |                                                                |                       |                   |          |                         |
| FCC ID                              | UXX-                              | PCK2005                                                                                               |                                                                |                       |                   |          |                         |
| POWER SUPPLY                        |                                   | / from adapto                                                                                         |                                                                | narger o              | or                |          |                         |
| MODULATION TYPE                     |                                   | DQPSK, DB<br>M, 16QAM, 0                                                                              |                                                                |                       | -DM               |          |                         |
| MODULATION TECHNOLOGY               | DSSS                              | S, OFDM                                                                                               |                                                                |                       |                   |          |                         |
| TRANSFER RATE                       | 802.1<br>802.1<br>/ 39 /<br>802.1 | 1b: 11 / 5.5 /<br>1g: 54 / 48 / ;<br>1n (20MHz, 8<br>26 / 19.5 / 13<br>1n (40MHz, 8<br>/ 81 / 54 / 40 | 36 / 24 / 18 /<br>300ns GI):13<br>3 / 6.5Mbps<br>300ns GI): 27 | 0 / 117 .<br>70 / 243 | / 104 / 78        |          |                         |
| OPERATING FREQUENCY                 | 2412                              | ЛНz ~ 2462N                                                                                           | ИHz                                                            |                       |                   |          |                         |
| NUMBER OF CHANNEL                   |                                   | 802.11b, 802<br>302.11n (40M                                                                          | •                                                              | 1n (20M               | 1Hz)              |          |                         |
|                                     |                                   |                                                                                                       | AN                                                             | T 1                   |                   |          |                         |
|                                     |                                   | 802.11b                                                                                               |                                                                |                       | 802.11g           |          |                         |
|                                     | СН                                | Peak (dBm)                                                                                            | Avg (dBm)                                                      | Peak                  | (dBm)             |          | Avg (dBm)               |
|                                     | 2412                              | 14.0                                                                                                  | 11.5                                                           | 17.4                  |                   | <u> </u> | 7.2                     |
|                                     | 2437                              | 14.3                                                                                                  | 12.0                                                           | 17.4                  |                   |          | 7.3                     |
|                                     | 2462                              | 14.0                                                                                                  | 11.7                                                           | 16.8                  |                   | 7.6      |                         |
|                                     |                                   | 802.11n (20N                                                                                          | /IHz)                                                          | 802.11n (40MHz)       |                   |          |                         |
|                                     | СН                                | Peak (dBm)                                                                                            | Avg (dBm)                                                      | СН                    | Peak (dB          | m)       | Avg (dBm)               |
|                                     | 2412                              | 16.7                                                                                                  | 7.5                                                            | 2422                  | 16.3              |          | 7.3                     |
| CHANNEL FREQUENCIES                 | 2437                              | 16.4                                                                                                  | 7.3                                                            | 2437                  | 16.3              | _        | 7.1                     |
| UNDER TEST AND ITS CONDUCTED OUTPUT | 2462                              | <b>2462</b> 16.0 7.6 <b>2452</b> 16.1 7.2                                                             |                                                                |                       |                   |          |                         |
| POWER                               |                                   |                                                                                                       | AN                                                             | IT 2                  |                   |          |                         |
|                                     |                                   | 802.11b                                                                                               |                                                                |                       | 802.              |          |                         |
|                                     | СН                                | Peak (dBm)                                                                                            | Avg (dBm)                                                      |                       | (dBm)             | <u> </u> | Avg (dBm)               |
|                                     | 2412                              | 13.24                                                                                                 | 10.7                                                           |                       | 6.58              | $\vdash$ | 6.4                     |
|                                     | 2437                              | 13.51                                                                                                 | 11.3                                                           |                       | 6.64              | <u> </u> | 6.5                     |
|                                     | 2462                              | 13.32                                                                                                 | 11.0                                                           | 16                    | 6.03              | (40N*    | 6.8                     |
|                                     | СН                                | 802.11n (20N                                                                                          |                                                                | СН                    | 802.11n           | Ì        |                         |
|                                     | 2412                              | Peak (dBm)<br>15.88                                                                                   | <b>Avg (dBm)</b><br>6.7                                        | 2422                  | Peak (dB<br>15.45 |          | <b>Avg (dBm)</b><br>6.5 |
|                                     | 2412                              | 15.61                                                                                                 | 6.5                                                            | 2422                  | 15.45             |          | 6.4                     |
|                                     | 2437                              |                                                                                                       |                                                                |                       |                   |          |                         |
|                                     | 2462                              | 15.2                                                                                                  | 6.8                                                            | 2452                  | 15.26             | l l      | 6.4                     |



| AVERAGE SAR (1g)  | 0.070W/kg                                                           |  |  |
|-------------------|---------------------------------------------------------------------|--|--|
| ANTENNA TYPE      | Please see note 2                                                   |  |  |
| DATA CABLE        | Micro USB cable (Shielded, 1.0m) Micro USB cable (Unshielded, 1.0m) |  |  |
| I/O PORTS         | Refer to user's manual                                              |  |  |
| ACCESSORY DEVICES | Adapter x 1, Battery x 1. Micro USB cable x 1, Car charger x 1      |  |  |

#### NOTE:

1. There are two sets of antennas provided to this EUT, please refer to the following table:

| Set 1 for V | Set 1 for WiMAX antenna |                      |            |                     |                       |                       |  |  |  |
|-------------|-------------------------|----------------------|------------|---------------------|-----------------------|-----------------------|--|--|--|
| Antenna     | Antenna Type            | Antenna<br>Connector | Gain (dBi) | Cable<br>Length(cm) | Frequency range (MHz) | Diversity<br>Function |  |  |  |
| 1           | PCB                     | I-PEX                | 4.5        | 3                   | 2500~2700             | YES                   |  |  |  |
| 2           | PCB                     | I-PEX                | 5          | 9                   | 2500~2700             | YES                   |  |  |  |
| Set 2 for V | /IFI antenna            |                      |            |                     |                       |                       |  |  |  |
| Antenna     | Antenna Antenna Type    |                      |            |                     |                       |                       |  |  |  |
| 1           | Printed PCB             | NA                   | 2.7        | -                   | 2412~2472             | YES                   |  |  |  |
| 2           | Printed PCB             | NA                   | 1.7        | -                   | 2412~2472             | YES                   |  |  |  |

2. The EUT could be supplied with 3.7V battery, car charger or the following power adapter which will be sold together with the EUT:

| Item          | Brand   | Model No.                        | Spec.                                                 |
|---------------|---------|----------------------------------|-------------------------------------------------------|
| Adapter 1     | TenPao  | S005SU0500070                    | AC I/P: 100-240V, 50/60Hz, 150mA<br>DC O/P: 5V, 700mA |
| Adapter 2     | Maxtela | MUC-5EJ1                         | AC I/P: 100-240V, 50/60Hz, 0.15A<br>DC O/P: 5V, 1A    |
| Battery       | ETI CA  | 0340-1371080001<br>(BP08-000720) | DC 3.7V, 1900mAh                                      |
| Car charger 1 | Atech   | CC615-0510A21                    | AC I/P: 12-24V, 1A MAX<br>DC O/P: 5V, 1A              |
| Car charger 2 | Maxtela | MCC-5K                           | AC I/P: 12-24V, 600mA<br>DC O/P: 5V, 1A               |

3. The EUT must be supplied with a USB cable and following two different USB cable could be chosen:

| Cable   | Description                        |
|---------|------------------------------------|
| Cable 1 | Micro USB cable (Shielded, 1.0m)   |
| Cable 2 | Micro USB cable (Unshielded, 1.0m) |

- 4. The EUT incorporates a SIMO function with 802.11b, 802.11g, 802.11n. Physically, the EUT provides one completed transmitter and two receivers.
- 5. The EUT is 1 \* 2 spatial SIMO without beam forming function. The antenna configuration is one transmitter antenna and two receiver antennas, as there are 2 Printed PCB antennas.



- 6. The EUT complies with 802.11n standards and backwards compatible with 802.11b, 802.11g products.
- 7. The EUT, operates in the 2.4GHz frequency range, lets you connect IEEE 802.11g or IEEE 802.11b and 802.11n technique devices to the network.
- 8. The EUT embedded a firmware for testing that needs to control from Notebook computer to let EUT with different DL/UL ration.
- 9. The device has different DL/UL ration in normal operation. It was tested with (DL:UL= 29:18) duty cycle mode for 5MHz and 10MHz, which is the worse mode, and controlled by software. (The detail duty cycle refer to appendix A).
- 10. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

# 2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093)
FCC OET Bulletin 65, Supplement C (01- 01)
RSS-102
IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

# 2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY5 (software 5.2 Build 162) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY5 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.



# **EX3DV4 ISOTROPIC E-FIELD PROBE**

CONSTRUCTION Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

FREQUENCY 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

**DIRECTIVITY**  $\pm$  0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

**DYNAMIC RANGE** 10  $\mu$  W/g to > 100 mW/g

Linearity:  $\pm$  0.2 dB (noise: typically < 1  $\mu$  W/g)

**DIMENSIONS**Overall length: 330 mm (Tip: 20 mm)
Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

APPLICATION
High precision dosimetric measurements in any exposure scenario

(e.g., very strong gradient fields). Only probe which enables

compliance testing for frequencies up to 6 GHz with precision of better

30%.

#### NOTE

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.

3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

#### TWIN SAM V4.0

**CONSTRUCTION** The shell corresponds to the specifications of the Specific

Anthropomorphic Mannequin (SAM) phantom defined in IEEE

1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points with the robot.

SHELL THICKNESS 2 ± 0.2mm

FILLING VOLUME Approx. 25liters

**DIMENSIONS** Height: 810mm; Length: 1000mm; Width: 500mm



#### **SYSTEM VALIDATION KITS:**

**CONSTRUCTION** Symmetrical dipole with I/4 balun enables measurement of

feedpoint impedance with NWA matched for use near flat

phantoms filled with brain simulating solutions. Includes distance holder and tripod adaptor

**CALIBRATION** Calibrated SAR value for specified position and input power at

the flat phantom in brain simulating solutions

FREQUENCY 2450, 2600MHz

**RETURN LOSS** > 20dB at specified validation position

**POWER CAPABILITY** > 100W (f < 1GHz); > 40W (f > 1GHz)

**OPTIONS** Dipoles for other frequencies or solutions and other calibration

conditions upon request

### **DEVICE HOLDER FOR SAM TWIN PHANTOM**

# CONSTRUCTION

The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$  =3 and loss tangent  $\delta$  =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

Report No.: SA990526E01 9 Report Format Version 3.0.1



#### **DATA ACQUISITION ELECTRONICS**

#### CONSTRUCTION

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No.: SA990526E01 10 Report Format Version 3.0.1



# 2.4 TEST EQUIPMENT

# FOR SAR MEASURENENT

| ITEM | NAME              | BRAND                | TYPE         | SERIES NO. | DATE OF CALIBRATION | DUE DATE OF CALIBRATION |
|------|-------------------|----------------------|--------------|------------|---------------------|-------------------------|
| 1    | SAM Phantom       | S&P                  | QD000 P40 CA | TP-1485    | NA                  | NA                      |
| 2    | Signal Generator  | Agilent              | E8257C       | MY43320668 | Feb. 23, 2010       | Feb. 22, 2011           |
| 3    | E-Field Probe     | S&P                  | EX3DV4       | 3504       | Jan. 26, 2010       | Jan. 25, 2011           |
| 4    | DAE               | S&P                  | DAE 4        | 510        | Dec. 16, 2009       | Dec. 15, 2010           |
| 5    | Robot Positioner  | Staubli<br>Unimation | NA           | NA         | NA                  | NA                      |
| 6    | Validation Dinale | C o D                | D2450V2      | 737        | Feb. 19, 2010       | Feb. 18, 2011           |
| 7    | Validation Dipole | S&P                  | D2600V2      | 1020       | Jan. 27, 2010       | Jan. 26, 2011           |

**NOTE:** Before starting the measurement, all test equipment shall be warmed up for 30min.

### FOR TISSUE PROPERTY

| ITEM | NAME                | BRAND   | TYPE   | SERIES NO. |               | DUE DATE OF CALIBRATION |
|------|---------------------|---------|--------|------------|---------------|-------------------------|
| 1    | Network<br>Analyzer | Agilent | E8358A | US41480538 | Dec. 03, 2009 | Dec. 02, 2010           |
| 2    | Dielectric Probe    | Agilent | 85070D | US01440176 | NA            | NA                      |

# NOTE:

- 1. Before starting, all test equipment shall be warmed up for 30min.
- 2. The tolerance (k=1) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually ±2.5% and ±5% for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than ±2.5% (k=1). It can be substantially smaller if more accurate methods are applied.



#### 2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY5 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm<sub>i</sub>, a<sub>i0</sub>, a<sub>i1</sub>, a<sub>i2</sub>

 $\begin{array}{ll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{dcp}_i \end{array}$ 

Device parameters: - Frequency F

- Crest factor Cf

Media parameters: - Conductivity  $\sigma$ 

- Density  $\rho$ 

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

 $V_i$  =compensated signal of channel i (i = x, y, z)  $U_i$  =input signal of channel I (i = x, y, z)

Cf =crest factor of exciting field (DASY parameter) dcp<sub>i</sub> =diode compression point (DASY parameter)



From the compensated input signals the primary field data for each channel can be evaluated:

E-fieldprobes: 
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

H-fieldprobes: 
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

 $V_i$  =compensated signal of channel I (i = x, y, z)

Norm<sub>i</sub> = sensor sensitivity of channel i  $\mu V/(V/m)2$  for (i = x, y, z)

E-field Probes

ConvF = sensitivity enhancement in solution

a<sub>ii</sub> = sensor sensitivity factors for H-field probes

F = carrier frequency [GHz]

E<sub>i</sub> = electric field strength of channel i in V/m H<sub>i</sub> = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR = local specific absorption rate in mW/g

 $E_{tot}$  = total field strength in V/m

 $\sigma$  = conductivity in [mho/m] or [Siemens/m]

 $\rho$  = equivalent tissue density in g/cm3



Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.



The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

# 3. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.



# 4. RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used:

• WATER- Deionized water (pure H20), resistivity \_16 M - as basis for the liquid

• DGMBE- Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH,

CAS # 112-34-5 - to reduce relative permittivity

# THE RECIPES FOR 2450MHz SIMULATING LIQUID TABLE

| INGREDIENT                          | BODY SIMULATING LIQUID 2450MHz<br>(MSL-2450)           |
|-------------------------------------|--------------------------------------------------------|
| Water                               | 69.83%                                                 |
| DGMBE                               | 30.17%                                                 |
| Dielectric<br>Parameters at<br>22°C | f= 2450MHz<br>ε= 52.7 ± 5%<br>$\sigma$ = 1.95 ± 5% S/m |

# THE RECIPES FOR 2600MHz SIMULATING LIQUID TABLE

| Ingredient                          | Muscle Simulating Liquid<br>2600MHz (MSL-2600)         |
|-------------------------------------|--------------------------------------------------------|
| Water                               | 69.83%                                                 |
| DGMBE                               | 30.17%                                                 |
| Salt                                | NA                                                     |
| Dielectric<br>Parameters at<br>22°C | f= 2600MHz<br>ε= 52.5 ± 5%<br>$\sigma$ = 2.16 ± 5% S/m |



Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D. The testing procedure is following as

- 1. Turn Network Analyzer on and allow at least 30min. warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature (±1°).
- 4. Set water temperature in Agilent-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness  $\epsilon$ '=10.0,  $\epsilon$ "=0.0). If measured parameters do not fit within tolerance, repeat calibration (±0.2 for  $\epsilon$ ': ±0.1 for  $\epsilon$ ").
- 7. Conductivity can be calculated from  $\varepsilon''$  by  $\sigma = \omega \varepsilon_0 \varepsilon'' = \varepsilon'' f [GHz] / 18.$
- 8. Measure liquid shortly after calibration. Repeat calibration every hour.
- 9. Stir the liquid to be measured. Take a sample (~ 50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY5 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900MHz) and press 'Option'-button.
- 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900MHz).



# FOR SIMULATING LIQUID

| LIQUID T               | YPE              | MSL-2450          |                      |                            |          |  |
|------------------------|------------------|-------------------|----------------------|----------------------------|----------|--|
| SIMULATI               | ING LIQUID TEMP. |                   | 21                   | .4                         |          |  |
| TEST DAT               | ΓE               |                   | Jul. 20              | ), 2010                    |          |  |
| TESTED E               | зү               |                   | Sam                  | Onn                        |          |  |
| FREQ. LIQUID PARAMETER |                  | STANDARD<br>VALUE | MEASUREMENT<br>VALUE | ERROR<br>PERCENTAGE<br>(%) | LIMIT(%) |  |
| 2437                   | Permitivity      | 52.70             | 54.80                | 3.98                       |          |  |
| 2450                   | (ε)              | 52.70             | 54.60                | 3.61                       | ±5       |  |
| 2437                   | Conductivity     | 1.94              | 1.98                 | 2.06                       | _5       |  |
| 2450                   | ( $\sigma$ ) S/m | 1.95              | 2.00                 | 2.56                       |          |  |

| LIQUID T       | YPE                           | MSL-2600          |          |         |            |  |  |  |
|----------------|-------------------------------|-------------------|----------|---------|------------|--|--|--|
| SIMULAT        | ING LIQUID TEMP.              |                   | 21.8     |         |            |  |  |  |
| TEST DATE      |                               |                   | Jul. 16  | 5, 2010 |            |  |  |  |
| TESTED I       | вү                            |                   | Sam      | Onn     |            |  |  |  |
| FREQ.<br>(MHz) | LIQUID<br>PARAMETER           | STANDARD<br>VALUE | LIMIT(%) |         |            |  |  |  |
| 2587           | Pormitivity                   | 52.50             | 53.80    | 2.48    |            |  |  |  |
| 2593           | Permitivity ( $\varepsilon$ ) | 52.50             | 53.80    | 2.48    |            |  |  |  |
| 2600           | ( )                           | 52.50             | 53.80    | 2.48    | ±5         |  |  |  |
| 2587           | Conductivity $(\sigma)$ S/m   | 2.14              | 2.16     | 0.93    | <u>±</u> 3 |  |  |  |
| 2593           |                               | 2.15              | 2.16     | 0.47    |            |  |  |  |
| 2600           | (0 ) 0/111                    | 2.16              | 2.17     | 0.46    |            |  |  |  |



# 5. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

#### 5.1 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.

- 1. The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ±0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ±0.02dB.
- 2. The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid.



- 3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- 4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY5 system is less than ±0.1mm.

$$SAR_{tolerance}[\%] = 100 \times (\frac{(a+d)^2}{a^2} - 1)$$

As the closest distance is 10mm, the resulting tolerance SAR<sub>tolerance</sub>[%] is <2%.

# **5.2 VALIDATION RESULTS**

| SYSTEM VALIDATION TEST OF SIMULATING LIQUID |           |      |       |                        |               |  |  |  |
|---------------------------------------------|-----------|------|-------|------------------------|---------------|--|--|--|
|                                             |           |      |       | SEPARATION<br>DISTANCE | TESTED DATE   |  |  |  |
| MSL 2450                                    | 13.1 (1g) | 12.8 | -2.29 | 10mm                   | Jul. 20, 2010 |  |  |  |
| MSL 2600                                    | 13.9 (1g) | 13.2 | -5.04 | 10mm                   | Jul. 16, 2010 |  |  |  |

**NOTE:** Please see Appendix for the photo of system validation test.



# **5.3 SYSTEM VALIDATION UNCERTAINTIES**

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

| Error Description                       | Tolerance (±%)   | Probability<br>Distribution |                   |          | (C <sub>i</sub> ) |       | Standard<br>Uncertainty<br>(±%) |     |
|-----------------------------------------|------------------|-----------------------------|-------------------|----------|-------------------|-------|---------------------------------|-----|
|                                         |                  |                             |                   | (1g)     | (10g)             | (1g)  | (10g)                           |     |
| Measurement System                      |                  |                             |                   |          |                   |       |                                 |     |
| Probe Calibration                       | 5.50             | Normal                      | 1                 | 1        | 1                 | 5.50  | 5.50                            | ∞   |
| Axial Isotropy                          | 0.25             | Rectangular √3              |                   | 0.7      | 0.7               | 0.10  | 0.10                            | 8   |
| Hemispherical Isotropy                  | 1.30             | Rectangular                 | √3                | 0.7      | 0.7               | 0.53  | 0.53                            | 8   |
| Boundary effects                        | 1.00             | Rectangular                 | √3                | 1        | 1                 | 0.58  | 0.58                            | 8   |
| Linearity                               | 0.30             | Rectangular                 | √3                | 1        | 1                 | 0.17  | 0.17                            | 8   |
| <b>System Detection Limits</b>          | 1.00             | Rectangular                 | √3                | 1        | 1                 | 0.58  | 0.58                            | 8   |
| Readout Electronics                     | 0.30             | Normal                      | 1                 | 1        | 1                 | 0.30  | 0.30                            | 8   |
| Response Time                           | 0.80             | Rectangular                 | √3                | 1        | 1                 | 0.46  | 0.46                            | ∞   |
| Integration Time                        | 2.60             | Rectangular                 | √3                | 1        | 1                 | 1.50  | 1.50                            | 8   |
| RF Ambient Noise                        | 3.00             | Rectangular                 | √3                | 1        | 1                 | 1.73  | 1.73                            | 9   |
| RF Ambient Reflections                  | 3.00             | Rectangular                 | √3                | 1        | 1                 | 1.73  | 1.73                            | 9   |
| Probe Positioner                        | 0.40             | Rectangular                 | √3                | 1        | 1                 | 0.23  | 0.23                            | 8   |
| Probe Positioning                       | 2.90             | Rectangular                 | √3                | 1        | 1                 | 1.67  | 1.67                            | 8   |
| Max. SAR Eval.                          | 1.00             | Rectangular                 | √3                | 1        | 1                 | 0.58  | 0.58                            | 8   |
|                                         |                  | Test sample                 | related           |          |                   |       |                                 |     |
| Sample positioning                      | 1.90             | Normal                      | 1                 | 1        | 1                 | 1.90  | 1.90                            | 4   |
| Device holder                           | 2.80             | Normal                      | 1                 | 1        | 1                 | 2.80  | 2.80                            | 4   |
| Output power variation-SAR drift        | 4.42             | Rectangular                 | √3                | 1        | 1                 | 2.55  | 2.55                            | 1   |
|                                         |                  | Dipole Re                   | elated            |          |                   |       |                                 |     |
| Dipole Axis to Liquid                   | 1.60             | Rectangular                 | √3                | 1        | 1                 | 0.92  | 0.92                            | 4   |
| Distance<br>Input Power Drift           | 3.94             | Rectangular                 | √3                | 1        | 1                 | 2.27  | 2.27                            | 1   |
| input i ower britt                      | J.J <del>T</del> |                             |                   |          |                   | 2.21  | 2.21                            |     |
| Phantom Uncortainty                     | 4.00             | Phantom and Tiss            | ue paramete<br>√3 | ers<br>1 | 1                 | 2 21  | 2 24                            |     |
| Phantom Uncertainty Liquid Conductivity | 4.00             | Rectangular                 |                   |          |                   | 2.31  | 2.31                            | - ' |
| (target)                                | 5.00             | Rectangular                 | √3                | 0.64     | 0.43              | 1.85  | 1.24                            | 8   |
| Liquid Conductivity (measurement)       | 2.56             | Normal                      | 1                 | 0.64     | 0.43              | 1.64  | 1.10                            | 9   |
| Liquid Permittivity (target)            | 5.00             | Rectangular                 | √3                | 0.6      | 0.49              | 1.73  | 1.41                            | 8   |
| Liquid Permittivity (measurement)       | 3.98             | Normal                      | 1                 | 0.6      | 0.49              | 2.39  | 1.95                            | 9   |
| Combined Standard Uncertainty           |                  |                             |                   |          |                   |       | 8.99                            |     |
| Coverage Factor for 95%                 |                  |                             |                   |          |                   |       | Kp=2                            |     |
| Expanded Uncertainty (K=2)              |                  |                             |                   |          |                   | 18.67 | 17.98                           |     |

**NOTE:** About the system validation uncertainty assessment, please reference the section 7.



# 6. 802.16e/WiMax DEVICE AND SYSTEM OPERATING PARAMETERS

| C. CCL.:CO/IIIIIAX DET                                      | 1                                                         | <u> </u>                                       | ATTION ANAMETERS                                                                                   |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Description                                                 | Parar                                                     | meter                                          | Comment                                                                                            |  |  |
| FCC ID                                                      | UXX-PCK2005                                               |                                                | Identify all related FCC ID                                                                        |  |  |
| Radio Service                                               | Part                                                      | 27M                                            | Rule parts                                                                                         |  |  |
| Transmit Frequency Range (MHz)                              | 5 MHz BW: 2498.5 – 2687.5 MHz<br>10MHz BW:2501 - 2685 MHz |                                                | System parameter                                                                                   |  |  |
| System/Channel Bandwidth (MHz)                              | 5MHz/                                                     | 10MHz                                          | System parameter                                                                                   |  |  |
| System Profile                                              | Revisio                                                   | on 1.7.0                                       | Defined by WiMAX Forum                                                                             |  |  |
| Modulation Schemes                                          | QPSK1/2,<br>16QAM1/2,                                     | QPSK3/4<br>16QAM3/4                            | Identify all applicable UL<br>modulations                                                          |  |  |
| Sampling Factor                                             | 28                                                        | /25                                            | System parameter                                                                                   |  |  |
| Sampling Frequency (MHz)                                    |                                                           | V:5.6MHz<br>V:11.2MHz                          | (Fs)                                                                                               |  |  |
| Sample Time (ns)                                            |                                                           | 10 MHz<br>s / 5MHz                             | (1/Fs)                                                                                             |  |  |
| FFT Size (NFFT)                                             |                                                           | 10MHz<br>5 MHz                                 | (NFFT)                                                                                             |  |  |
| Sub-Carrier Spacing (kHz)                                   | 10.937                                                    | 75KHz                                          | (Δf)                                                                                               |  |  |
| Useful Symbol time (µs)                                     | 91.4                                                      | 13us                                           | (Tb=1/Δf)                                                                                          |  |  |
| Guard Time (µs)                                             | 11.4                                                      | l3us                                           | (Tg=Tb/cp); cp = cyclic prefix                                                                     |  |  |
| OFDMA Symbol Time (μs)                                      | 102.8                                                     | 357us                                          | (Ts=Tb+Tg)                                                                                         |  |  |
| Frame Size (ms)                                             | 5r                                                        | ns                                             | System parameter                                                                                   |  |  |
| TTG + RTG (µs or number of symbols)                         | 165.7                                                     | 143us                                          | Idle time, system parameter                                                                        |  |  |
| Number of DL OFDMA Symbols per Frame                        |                                                           | x:29                                           | Identify the allowed & maximum symbols,                                                            |  |  |
| Number of UL OFDMA Symbols per<br>Frame                     | Max                                                       | x:18                                           | including both traffic & control symbols                                                           |  |  |
| DL:UL Symbol Ratio                                          | Max                                                       | 29:18                                          | For determining UL duty factor                                                                     |  |  |
| Rated Power Class (dBm) Identify power                      |                                                           | class 2                                        | Identify power class and tolerance                                                                 |  |  |
| Wave1 / Wave2                                               | Wave2: Two antenna<br>ANT1 and ANT2                       | m+/-0.5 s for TX/RX diversity. cannot transmit | Describe antenna diversity info and MIMO requirements separately                                   |  |  |
| UL Zone Types (FUSC, PUSC, OFUSC, OPUSC, AMC, TUSC1, TUSC2) | PUSC only.                                                |                                                | Describe separately the symbol and sub-carrier/sub-channel structures applicable to each zone type |  |  |
| Manifester Number (11, 2, 1, 2, 1,                          | 10 MHz BW                                                 | 5 MHz BW                                       |                                                                                                    |  |  |
| Maximum Number of UL Sub-Carriers                           | 841                                                       | 409                                            | Identify the allowed and tested / to be tested                                                     |  |  |
|                                                             | ANT 1 ( Main)                                             | ANT 2 (AUX)                                    | parameters; include separate explanations                                                          |  |  |
| Rated UL Burst Maximum Average Power                        | 24dBm @ 10MHz                                             | 24dBm @ 10MHz                                  | on the types of control symbols and how the<br>power levels are determined                         |  |  |
| (dBm)                                                       | 24dBm @ 5MHz                                              | 24dBm @ 5MHz                                   | power levels are determined                                                                        |  |  |
| Number and type of UL Control Symbols                       | 3pusc symbols (used                                       | d for ranging, CQICH                           |                                                                                                    |  |  |
|                                                             |                                                           | 2,                                             | •                                                                                                  |  |  |



|                                                   | ANT 1(Main)                                                                                                                                                                                                                                                                                                                                                                                                                  | Calculation      |                                                                                                                                                                                 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | 36.89mW for 10MHz /<br>QPSK                                                                                                                                                                                                                                                                                                                                                                                                  | 258.23mW x 5/35  |                                                                                                                                                                                 |
|                                                   | 36.89mW for 10MHz /<br>16QAM                                                                                                                                                                                                                                                                                                                                                                                                 | 258.23mW x 5/35  |                                                                                                                                                                                 |
|                                                   | 75.95mW for 5MHz /<br>QPSK                                                                                                                                                                                                                                                                                                                                                                                                   | 258.23 mW x 5/17 |                                                                                                                                                                                 |
| UL Control Symbol Maximum Average                 | 75.95mW for 5MHz /<br>16QAM                                                                                                                                                                                                                                                                                                                                                                                                  | 258.23 mW x 5/17 |                                                                                                                                                                                 |
| Power                                             | ANT 2 (AUX)                                                                                                                                                                                                                                                                                                                                                                                                                  | Calculation      |                                                                                                                                                                                 |
|                                                   | 36.89mW for 10MHz /<br>QPSK                                                                                                                                                                                                                                                                                                                                                                                                  | 258.23mW x 5/35  |                                                                                                                                                                                 |
|                                                   | 36.89mW for 10MHz /<br>16QAM                                                                                                                                                                                                                                                                                                                                                                                                 | 258.23mW x 5/35  |                                                                                                                                                                                 |
|                                                   | 75.95 mW for 5MHz /<br>QPSK                                                                                                                                                                                                                                                                                                                                                                                                  | 258.23 mW x 5/17 |                                                                                                                                                                                 |
|                                                   | 75.95 mW for 5MHz /<br>16QAM                                                                                                                                                                                                                                                                                                                                                                                                 | 258.23 mW x 5/17 |                                                                                                                                                                                 |
| UL Burst Peak-to-Average Power Ratio<br>(PAR)     | With DL:UL ra<br>PAR is between 6                                                                                                                                                                                                                                                                                                                                                                                            | *                | Identify the expected range and measured/tested PAR; explain separately the methods used / to be used to address SAR probe calibration and measurement error issues             |
| Frame Averaged UL Transmission Duty<br>Factor (%) | The duty cycle is 31.25%.  15/48 = 0.3125 Crest factor is 1/0.3125=3.2 with 29:18 DL:UL ratio. Control symbols are accounted by S.F. (scaling factor) S.F. = (CCP x 3 control symbols + MOP x 15 Traffic symbols) / (actual_OP x 15)  CCP: Control Channel Power  MOP: Maximum Rated Output Power. Note the MOP is the higher among max rated output power and actual measured max.  Actual_OP: Actual Output Power measured |                  | Show calculations separately and explain how the applicable CF (crest factor) used / to be use in the SAR measurements is derived and how the control symbols are accounted for |



# 7. WIMAX/802.16e DEVICE SPECIFICATION

# 7.1 WIMAX ZONE TYPES

The device and its system are both transmitting using only PUSC zone type. This enables multiple users to transmit simultaneously within the system. FUSC, AMC and other zone types are not used by the test device for uplink transmission. The maximum DL:UL symbol ratio can be determined according to the PUSC requirements. The system transmit an odd number of symbols using DL-PUSC consisting of even multiples of traffics and control symbols plus one symbol for the preamble. Multiples of three symbols are transmitted by the device using UL-PUSC. The OFDMA symbol time allows up to 48 downlink and uplink symbols in each 5 ms frame. TTG and RTG are also included in each frame as DL/UL transmission gaps; therefore, the system can only allow 47 or less symbols per frame.

# 7.2 POWER MEASUREMENT

Set the transmitter under transmission condition continuously at specific mode with maximum output. The power meter was used to read the response of the power sensor. Record the power level and PK to AV ratio.

The maximum conducted output power is measured for the uplink burst at DL:UL ratio=29:18 that is measured for the uplink bursts through triggering and gating.

An Anritus wideband power meter was used for measuring this item. The power was taken during the burst-on period (exclude 3 control symbols) by means of triggering and gating function.



The measured results are as below table:

Output power table of Antenna 1

| Channel | UL zone<br>type<br>/ | Channel<br>Frequency | Conducte<br>(dE | ed Power | Peak to Average<br>ratio (dB) |            |
|---------|----------------------|----------------------|-----------------|----------|-------------------------------|------------|
| BW      | DL/UL<br>Ratio       | (MHz)                | AV              | PK       |                               | modulation |
|         |                      | 0.400.5              | 23.54           | 31.08    | 7.54                          | QPSK 1/2   |
|         |                      |                      | 23.45           | 30.73    | 7.28                          | QPSK 3/4   |
|         |                      | 2498.5               | 23.36           | 30.77    | 7.40                          | 16QAM 1/2  |
|         |                      |                      | 23.44           | 30.98    | 7.53                          | 16QAM 3/4  |
|         |                      |                      | 23.72           | 31.04    | 7.32                          | QPSK 1/2   |
| ENAL I— | PUSC                 | 2597.0               | 23.58           | 30.79    | 7.21                          | QPSK 3/4   |
| 5MHz    | /<br>29:18           | 2587.0               | 23.6            | 30.93    | 7.33                          | 16QAM 1/2  |
|         |                      |                      | 23.62           | 31.02    | 7.40                          | 16QAM 3/4  |
|         |                      | 2687.5               | 23.70           | 31.00    | 7.30                          | QPSK 1/2   |
|         |                      |                      | 23.69           | 30.84    | 7.15                          | QPSK 3/4   |
|         |                      |                      | 23.55           | 31.03    | 7.48                          | 16QAM 1/2  |
|         |                      |                      | 23.67           | 30.99    | 7.32                          | 16QAM 3/4  |
|         |                      | 2501                 | 24.04           | 31.03    | 6.99                          | QPSK 1/2   |
|         |                      |                      | 24.03           | 31.11    | 7.08                          | QPSK 3/4   |
|         |                      |                      | 23.98           | 30.93    | 6.95                          | 16QAM 1/2  |
|         |                      |                      | 23.92           | 31.08    | 7.16                          | 16QAM 3/4  |
|         |                      |                      | 24.12           | 30.98    | 6.86                          | QPSK 1/2   |
| 10MHz   | PUSC<br>/            | 2593                 | 24.06           | 31.02    | 6.97                          | QPSK 3/4   |
| TUIVITZ | 29:18                |                      | 23.88           | 30.96    | 7.08                          | 16QAM 1/2  |
|         |                      |                      | 24.00           | 31.03    | 7.03                          | 16QAM 3/4  |
|         |                      |                      | 24.11           | 30.98    | 6.86                          | QPSK 1/2   |
|         |                      | 2005                 | 23.69           | 30.94    | 7.25                          | QPSK 3/4   |
|         |                      | 2685                 | 23.66           | 30.91    | 7.26                          | 16QAM 1/2  |
|         |                      |                      | 23.66           | 30.96    | 7.30                          | 16QAM 3/4  |



#### Test plots of conducted power and PAR ratio for middle channel

#### Bandwidth 5MHz / Modulation: QPSK1/2

2587MHz



# Bandwidth 5MHz / Modulation: QPSK 3/4





#### Bandwidth 5MHz / Modulation: 16QAM 1/2

2587MHz



#### Bandwidth 5MHz / Modulation: 16QAM 3/4





#### Bandwidth 10MHz / Modulation: QPSK 1/2

2593MHz



### Bandwidth 10MHz / Modulation: QPSK 3/4





#### Bandwidth 10MHz / Modulation: 16QAM 1/2

2593MHz



#### Bandwidth 10MHz / Modulation: 16QAM 3/4





Output power table of Antenna 2

| Channel | UL zone<br>type<br>/ | Channel<br>Frequency_ | Conducted Power (dBm) |       | Peak to Average |            |
|---------|----------------------|-----------------------|-----------------------|-------|-----------------|------------|
| BW      | DL/UL<br>Ratio       | (MHz)                 | AV                    | PK    | ratio (dB)      | modulation |
|         |                      |                       | 23.49                 | 30.88 | 7.39            | QPSK 1/2   |
|         |                      | 2498.5                | 23.41                 | 30.59 | 7.18            | QPSK 3/4   |
|         |                      | 2490.5                | 23.23                 | 30.63 | 7.40            | 16QAM 1/2  |
|         |                      |                       | 23.40                 | 30.83 | 7.43            | 16QAM 3/4  |
|         |                      |                       | 23.62                 | 30.93 | 7.31            | QPSK 1/2   |
| ENAL I— | PUSC                 | 2507                  | 23.57                 | 30.72 | 7.15            | QPSK 3/4   |
| 5MHz    | 29:18                | 2587                  | 23.38                 | 30.78 | 7.40            | 16QAM 1/2  |
|         |                      |                       | 23.44                 | 30.90 | 7.46            | 16QAM 3/4  |
|         |                      | 2687.5                | 23.56                 | 30.91 | 7.36            | QPSK 1/2   |
|         |                      |                       | 23.57                 | 30.78 | 7.21            | QPSK 3/4   |
|         |                      |                       | 23.46                 | 30.94 | 7.48            | 16QAM 1/2  |
|         |                      |                       | 23.53                 | 30.91 | 7.38            | 16QAM 3/4  |
|         |                      |                       | 24.03                 | 30.90 | 6.86            | QPSK 1/2   |
|         |                      | 2501                  | 23.95                 | 30.98 | 7.04            | QPSK 3/4   |
|         |                      |                       | 23.94                 | 30.85 | 6.91            | 16QAM 1/2  |
|         |                      |                       | 23.84                 | 30.96 | 7.12            | 16QAM 3/4  |
|         |                      |                       | 24.11                 | 30.90 | 6.80            | QPSK 1/2   |
| 10MHz   | PUSC<br>/            | 2593                  | 24.03                 | 30.98 | 6.96            | QPSK 3/4   |
| TUIVITZ | 29:18                |                       | 23.87                 | 30.86 | 6.99            | 16QAM 1/2  |
|         | 20.10                |                       | 23.87                 | 30.94 | 7.07            | 16QAM 3/4  |
|         |                      |                       | 24.03                 | 30.9  | 6.80            | QPSK 1/2   |
|         |                      | 2685                  | 23.68                 | 30.83 | 7.15            | QPSK 3/4   |
|         |                      | 2000                  | 23.53                 | 30.8  | 7.27            | 16QAM 1/2  |
|         |                      |                       | 23.59                 | 30.86 | 7.27            | 16QAM 3/4  |



#### Test plots of conducted power and PAR ratio for middle channel

#### Bandwidth 5MHz / Modulation: QPSK1/2

2587MHz



# Bandwidth 5MHz / Modulation: QPSK 3/4





#### Bandwidth 5MHz / Modulation: 16QAM 1/2

#### 2587MHz



### Bandwidth 5MHz / Modulation: 16QAM 3/4





#### Bandwidth 10MHz / Modulation: QPSK 1/2

2593MHz



### Bandwidth 10MHz / Modulation: QPSK 3/4





#### Bandwidth 10MHz / Modulation: 16QAM 1/2

2593MHz



#### Bandwidth 10MHz / Modulation: 16QAM 3/4





# 7.3 DUTY FACTOR

The transmitter maximum DL/UL symbol ratio is 29:18 with 15 traffic symbol transmitting at the max. power and three control symbols are not activate nor used in the SAR measurement, the duty cycle = 15/48 = 0.3125.

Duty Factor = 1/(duty cycle)=3.2 for this periodic pulse signal device.

The SAR measurement is compensated using factors is as the below list:

| Channel<br>BW | UL zone<br>type | DL/UL<br>Ratio | UL<br>duty cycle | cf<br>factor | UL<br>modulation                               |
|---------------|-----------------|----------------|------------------|--------------|------------------------------------------------|
| 5MHz          | PUSC            | 29/18          | 32%              | 3.2          | QPSK-1/2<br>QPSK-3/4<br>16QAM-1/2<br>16QAM-3/4 |
| 10MHz         | PUSC            | 29/18          | 32%              | 3.2          | QPSK-1/2<br>QPSK-3/4<br>16QAM-1/2<br>16QAM-3/4 |

Test plot of Duty cycle (Only show the plots of 5MHz / QPSK / middle channel)



#### Bandwidth 5MHz / Modulation: QPSK 1/2

2587MHz



Burst lengh = Mark4 - Mark1=8.217ms- 3.217ms = 5ms 15 symbols UL = Mark3 - Mark2 = 5.183ms-3.583ms = 1.6ms Duty cycle = 1.6 / 5 \*100 % = 32 %

Bandwidth 10MHz / Modulation : QPSK 1/2

2593MHz



Burst lengh = Mark4 – Mark1=9.117ms- 4.117ms = 5ms 15 symbols UL = Mark3 – Mark2 = 6.05ms-4.45ms = 1.6ms Duty cycle = 1.6 / 5 \*100 % = 32 %



#### 7.4 SCALING FACTOR

Step-by-step control symbols Power and scaling parameters are as the following calculation:

- a. Maximum Rated Output Power (MROP) is provided by applicant.
- b. For 5 MHz Channel BW: The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 17 slots in 5 MHz channel configuration. A maximum of two simultaneous CQICH reports are possible, which can occupy up to 2 slots. A maximum of three slots can be used for HARQ ACK/NAK by the five possible DL HARQ bursts in the DL frame. The 5 ACK/NAK bits each occupies ½ a slot. These 5 slots correspond to 5/17 of the total number of uplink slots.

#### For 5M BW

| MOP (Max output power) | Calculation      | Result CCP |
|------------------------|------------------|------------|
| 258.23 mW              | 258.23 mW x 5/17 | 75.95 mW   |

c. For 10MHz Channel BW: The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 35 slots in the 10 MHz channel configuration. A maximum of two simultaneous CQICH reports are possible, which can occupy up to 2 slots. A maximum of three slots can be used for HARQ ACK/NAK by the five possible DL HARQ bursts in the DL frame. The 5 ACK/NAK bits each occupies ½ a slot. These 5 slots correspond to 5/35 of the total number of uplink slots.

#### For 10M BW

| MOP (Max output power) | Calculation     | Antenna 1 |
|------------------------|-----------------|-----------|
| 258.23mW               | 258.23mW x 5/35 | 36.89mW   |

#### d. Scaling Factor

S.F. =  $(CCP \times 3 \text{ control symbols} + MOP \times 15 \text{ Traffic symbols}) / (actual OP \times 15)$ 

#### NOTE:

CCP: Control Channel Power MOP: Maximum Output Power

Actual OP: actual (measured) maximum power



## **CCP result**

#### For 5M BW

| MOP (Max output power) | Calculation      | Result CCP |  |
|------------------------|------------------|------------|--|
| 258.23 mW              | 258.23 mW x 5/17 | 75.95 mW   |  |

#### For 10M BW

| MOP (Max output power) | Calculation     | Antenna 1 |  |
|------------------------|-----------------|-----------|--|
| 258.23mW               | 258.23mW x 5/35 | 36.89mW   |  |

# Actual (measured) maximum power table (Actual\_OP)

| Bandwidth(MHz) | Frequency (MHz)     | Antenna 1            | Antenna 2           |
|----------------|---------------------|----------------------|---------------------|
| 5              | middle channel 2587 | 23.72 dBm (235.50mW) | 23.62dBm(230.14mW)  |
| 10             | middle channel 2593 | 24.12 dBm (258.23mW) | 24.11 dBm(257.63mW) |

S.F. = (CCP x 3 control symbols + MOP x 15 Traffic symbols) / (actual\_OP x 15)

#### 5M BW

Scaling factor for Antenna-1 5MHz middle channel QPSK 1/2 modulation = $(75.95x\ 3)+(\ 258.23\ x\ 15)/(\ 235.50\ x15)=1.161$ 

Scaling factor for Antenna-2 5MHz middle channel QPSK 1/2 modulation =(75.95x 3)+(  $258.23 \times 15$ )/(  $230.14 \times 15$ )=1.188

#### 10M BW

Scaling factor for Antenna-1 10MHz middle channel QPSK 1/2 modulation =  $(36.89 \times 3)+(258.23 \times 15)/(258.23 \times 15)=1.029$ 

Scaling factor for Antenna-2 10MHz middle channel QPSK 1/2 modulation =(36.89 x 3)+(258.23 x 15)/( 257.63 x15)=1.031



# 8. TEST SETUP

**a.** The test set-up is shown in the below picture. The USB Adapter (EUT) is plugged into the notebook computer and configured exactly as it would be in the field on a normal network.

The Beceem test tool is used on the laptop.

Beceem is used to instruct the USB dongle to go to full power. Under normal operating conditions the BS would be responsible for controlling the MS Tx power. When working with a BS, the MS cannot Tx at a power greater than the max power requested by Kannon.

On the network side, there is a vector signal generator as below:

Agilent E4438C ESG with below options:

N7613A: Signal Studio for 802.16-2004 WiMAX

N7615B: Signal studio for 802.16 WiMAX

Software is loaded into the E4438C ESG that produces an output signal that looks like a 29:18 WiMAX frame, the EUT detects the "network" and begins to transmit based on the commands from the ESG signal and the measurements are then taken on the EUT.

## **b.** Connection diagram:



#### Linking up through air interface



Output power of S.G is - 20dBm

Horn antenna has 10.6dBi gain at 2.5GHz

Distance between horn antenna and EUT is 4m

#### c. Communication Test Set Details

Modulation and channel bandwidth is controlled by the BSE, the test set details are listed bellow.

| Bandwidth   | 10MHz    | 5MHz      | 10MHz     | 5MHz | 10MHz    | 5MHz | 10MHz     | 5MHz |
|-------------|----------|-----------|-----------|------|----------|------|-----------|------|
| FFT size    | 1024     | 512       | 1024      | 512  | 1024     | 512  | 1024      | 512  |
| DL/UL ratio |          |           |           | 29:  | :18      |      |           |      |
| Up link     |          |           |           |      |          |      |           |      |
| MCS         | PUS      | PUSC PUSC |           | PUSC |          | PUSC |           |      |
| Up link     | QPSK-1/2 |           | 16QAM-3/4 |      | QPSK-3/4 |      | 16QAM-1/2 |      |



## 9. TEST RESULTS

#### 9.1 TEST PROCEDURES

The EUT plugged into the notebook. Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY5 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 standards, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan with 30mm x 30mm x 30mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.



In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 3mm and maintained at a constant distance of  $\pm 0.5$ mm during a zoom scan to determine peak SAR locations. The distance is 3mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 8mm separation distance. The cube size is 7 x 7 x 7 points consists of 343 points and the grid space is 5mm.

The measurement time is 0.5s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 3mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than  $\pm 5\%$ .



#### 9.2 MEASURED SAR RESULTS

#### **FOR WIMAX:**

#### For 5MHz / QPSK 1/2

| SAR (V  | V/ kg )       |                | Тор   |           | Back   |        | Edge   |        |  |
|---------|---------------|----------------|-------|-----------|--------|--------|--------|--------|--|
| ANTE    | NNA           |                | An    | Ant. 1 An |        | Ant. 1 |        | Ant. 1 |  |
| Channel | Freq<br>(MHz) | Scaling factor | Meas. | Scaled    | Meas.  | Scaled | Meas.  | Scaled |  |
| Middle  | 2587          | 1.161          | 0.204 | 0.237     | 0.091  | 0.106  | 0.140  | 0.163  |  |
| ANTE    | NNA           |                | An    | t. 2      | Ant. 2 |        | Ant. 2 |        |  |
| Channel | Freq<br>(MHz) | Scaling factor | Meas. | Scaled    | Meas.  | Scaled | Meas.  | Scaled |  |
| Middle  | 2587          | 1.188          | 0.393 | 0.467     | 0.245  | 0.291  | 0.339  | 0.403  |  |

#### For 10MHz/ QPSK 1/2

| SAR (V  | V/ kg )       |                | Тор    |        | Back   |        | Edge   |        |  |
|---------|---------------|----------------|--------|--------|--------|--------|--------|--------|--|
| ANTE    | NNA           |                | An     | Ant. 1 |        | Ant. 1 |        | Ant. 1 |  |
| Channel | Freq<br>(MHz) | Scaling factor | Meas.  | Scaled | Meas.  | Scaled | Meas.  | Scaled |  |
| Middle  | 2593          | 1.029          | 0.270  | 0.278  | 0.096  | 0.099  | 0.174  | 0.179  |  |
| ANTE    | NNA           |                | Ant. 2 |        | Ant. 2 |        | Ant. 2 |        |  |
| Channel | Freq<br>(MHz) | Scaling factor | Meas.  | Scaled | Meas.  | Scaled | Meas.  | Scaled |  |
| Middle  | 2593          | 1.031          | 0.337  | 0.347  | 0.263  | 0.271  | 0.392  | 0.404  |  |

#### NOTE:

- 1. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.
- 2. Please see the Appendix A for the data.
- 3. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

#### **FOR WIFI:**

| Stand-alone SAR (1g) |       |       |       |  |  |
|----------------------|-------|-------|-------|--|--|
|                      | BODY  |       |       |  |  |
| Position             | Тор   | Edge  |       |  |  |
| 11                   | b     |       |       |  |  |
| Ant 1: 2437MHz       | 0.030 | 0.044 | 0.027 |  |  |
| Ant 2: 2437 MHz      | 0.031 | 0.070 | 0.028 |  |  |

#### NOTE:

- 1. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.
- 2. Please see the Appendix A for the data.
- 3. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.
- 4. SAR for 802.11g/802.11n (20MHz)/802.11n (40MHz) mode is not required since max average power of 802.11g/802.11n (20MHz)/802.11n (40MHz) is less than 802.11b.
- 5. Per KDB 447498, when 1-g SAR for the highest output channel is less than 0.8 W/kg, where the transmission band. corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required



# 9.3 POWER DRIFT TABLE

# Power drift table for WiMAX test

| Topontoppo | BW    | Frequency | Position | Conducted power (dBm) |            | Dower drift (%) |  |
|------------|-------|-----------|----------|-----------------------|------------|-----------------|--|
| Tx antenna | (MHz) | (MHz)     | Position | Before test           | After test | Power drift (%) |  |
|            |       |           | TOP      | 23.72                 | 23.61      | -2.50           |  |
|            | 5     | 2587      | BACK     | 23.72                 | 23.63      | -2.05           |  |
| A t        |       |           | EDGE     | 23.72                 | 23.58      | -3.17           |  |
| Antenna 1  |       |           | TOP      | 24.12                 | 23.95      | -3.84           |  |
|            | 10    | 2593      | BACK     | 24.12                 | 23.98      | -3.17           |  |
|            |       |           | EDGE     | 24.12                 | 24.02      | -2.28           |  |
|            |       |           | TOP      | 23.62                 | 23.49      | -2.95           |  |
|            | 5     | 2587      | BACK     | 23.62                 | 23.45      | -3.84           |  |
| Antenna 2  |       |           | EDGE     | 23.62                 | 23.52      | -2.28           |  |
|            |       |           | TOP      | 24.11                 | 23.94      | -3.84           |  |
|            | 10    | 2593      | BACK     | 24.11                 | 23.96      | -3.39           |  |
|            |       |           | EDGE     | 24.11                 | 24.00      | -2.50           |  |

# Power drift table for WLAN test

| Total      | Mode | Frequency Position |          | Conducted p | Power drift (%) |                |
|------------|------|--------------------|----------|-------------|-----------------|----------------|
| Tx antenna | Mode | (MHz)              | POSITION | Before test | After test      | Power unit (%) |
|            |      |                    | TOP      | 12          | 11.87           | -2.95          |
| Antenna 1  | 11b  | 2437               | BACK     | 12          | 11.91           | -2.05          |
|            |      |                    | EDGE     | 12          | 11.85           | -3.39          |
|            |      |                    | TOP      | 11.3        | 11.18           | -2.73          |
| Antenna 2  | 11b  | 2437               | BACK     | 11.3        | 11.13           | -3.84          |
|            |      |                    | EDGE     | 11.3        | 11.17           | -2.95          |



# 10. SAR LIMITS

|                                                                        | SAR (W/kg)                                                     |                                                        |  |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| HUMAN EXPOSURE                                                         | (GENERAL POPULATION /<br>UNCONTROLLED<br>EXPOSURE ENVIRONMENT) | (OCCUPATIONAL /<br>CONTROLLED EXPOSURE<br>ENVIRONMENT) |  |  |  |
| Spatial Average<br>(whole body)                                        | 0.08                                                           | 0.4                                                    |  |  |  |
| Spatial Peak<br>(averaged over 1 g)                                    | 1.6                                                            | 8.0                                                    |  |  |  |
| Spatial Peak<br>(hands / wrists / feet / ankles<br>averaged over 10 g) | 4.0                                                            | 20.0                                                   |  |  |  |

#### NOTE:

- 1. This limits accord to 47 CFR 2.1093 Safety Limit.
- 2. The EUT property been complied with the partial body exposure limit under the general population environment.



# 11. SAR ERROR CONSIDERATION

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power level. Test conditions are as below

Test position: Bottom

Test frequency: 2593MHz for 5MHz bandwidth

2685MHz for 10MHz bandwidth

Modulation: QPSK 1/2,16QAM 1/2

By tuning different power on this EUT and measuring the relative SAR to verify the high PAR of OFDM/OFDMA is as below:

5MHz / QPSK

| SAR (W/kg) | Power (mW)   | 16.03 | 31.92 | 63.83 | 127.06 | 254.10 |
|------------|--------------|-------|-------|-------|--------|--------|
|            | Point SAR    | 0.048 | 0.097 | 0.200 | 0.404  | 0.792  |
| 5MHz       | Linear line  | 0.048 | 0.096 | 0.191 | 0.380  | 0.761  |
|            | Deviation(%) | 0.00% | 1.48% | 4.64% | 6.19%  | 4.09%  |





# 5MHz / 16QAM 1/2

| SAR (W/kg) | Power (mW)   | 16.00 | 31.99 | 64.27 | 127.94 | 254.10 |
|------------|--------------|-------|-------|-------|--------|--------|
| 5MHz       | Point SAR    | 0.046 | 0.094 | 0.192 | 0.384  | 0.745  |
|            | Linear line  | 0.046 | 0.092 | 0.185 | 0.368  | 0.731  |
|            | Deviation(%) | 0.00% | 2.21% | 3.91% | 4.40%  | 1.98%  |





10MHz / QPSK

| SAR (W/kg) | Power (mW)   | 15.96 | 31.92 | 63.53 | 127.35 | 252.40 |
|------------|--------------|-------|-------|-------|--------|--------|
| 10MHz      | Point SAR    | 0.040 | 0.086 | 0.164 | 0.332  | 0.661  |
|            | Linear line  | 0.040 | 0.080 | 0.159 | 0.319  | 0.633  |
|            | Deviation(%) | 0.00% | 7.50% | 3.00% | 4.02%  | 4.49%  |





## 10MHz / 16QAM

| SAR (W/kg) | Power (mW)   | 16.00 | 31.84 | 63.97 | 127.43 | 252.34 |
|------------|--------------|-------|-------|-------|--------|--------|
| 10MHz      | Point SAR    | 0.039 | 0.083 | 0.162 | 0.324  | 0.654  |
|            | Linear line  | 0.039 | 0.078 | 0.156 | 0.311  | 0.615  |
|            | Deviation(%) | 0.00% | 6.94% | 3.89% | 4.31%  | 6.33%  |





# 12. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <a href="www.adt.com.tw/index.5/phtml">www.adt.com.tw/index.5/phtml</a>. If you have any comments, please feel free to contact us at the following:

**Linko EMC/RF Lab**: **Hsin Chu EMC/RF Lab**: Tel: 886-2-26052180 Tel: 886-3-5935343

Fax: 886-2-26051924 Fax: 886-3-5935342

## Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---