第二章 基本放大电路

掌握:

- 1) 放大电路的组成,结构以及工作原理
- 2) 放大电路的分析方法
- 3) 放大电路的偏置电路
- 4) 放大电路的组态
- 5) 场效应管放大电路

一、放大电路的构成

利用基本元件和半导体器件可以实现放大信号的功能电路,<mark>那么怎么来构成放大电</mark>

路?,怎么来实现信号的放大?各个元器件的作用?

- 1) 构成原则
 - 晶体管始终处于放大工作状态(<mark>什么来保证?, 合适的静态工作点</mark>)
 - 输入信号必须能够引起三极管发射结电压的变化(判断:交流通路中,输入信号 Ui 是不是可以加到或连接到三极管的 BE 之间,如果是其它组态,则判断 Ui 能够加到两个输入电极之间)
 - 晶体管输入电流必须能够转化成电压输出(即必须有负载电阻 Rc)
 - 考虑晶体管的极限参数(比如发射结上不能加太大的电压,否则会引起管子烧坏,<mark>为什么</mark>?)
- 2) 构成

各器件的作用?信号的变化过程? 为什么可以实现信号的放大?

3) 场效应管有类似的问题

二、静态工作点

1) 静态工作点

什么是静态工作点? (IBO、ICO 、UCEO 、UBEO)

2) 静态工作点的偏置电路

什么是静态工作点的偏置电路?对偏置电路有什么要求?

分压式偏置电路中 Re 电阻的作用?该电路有什么特点? 温度补偿偏置电路稳定静态工作点的机理?

3) 失真

为什么会产生失真? (Q点不合适) 会产生什么失真?为什么? (饱和失真、截止失真)

如何来消除失真?

PNP 管和 NPN 管组成的放大电路产生的失真有何不同?

怎么来分析失真的产生? (利用直流负载线分析还是利用交流负载线来分析失

真?两者有什么区别?)

4) 静态工作点的分析

静态时电路运行情况的分析,即 ui=0 时的分析结果。也就放大电路的直流分析。 分析过程:

- 获得放大电路的直流通路(什么是直流通路?如何获得?)
- 利用图解分析或等效电路模型方法进行分析
- 获得分析结果,得到静态工作点,也可以得到各节点的直流电压、各支路 的直流电流

分析方法:

图解法(利用晶体管的输入特性曲线和输出特性曲线以及输入、输出管外<mark>直流负载线</mark>求交点获得静态工作点,然后利用静态工作点求其他节点和支路上的直流信号)

等效模型法(获得直流通路后,利用相应的三极管的**直流等效模型**来替换三极管,得到直流等效电路,然后利用基本电路理论来对该直流等效电路进行分析得到直流结果)**注意模型的应用条件**。

三、放大电路的分析

放大电路的分析是最重要的一个内容。

- 1) 直流分析(同上面静态分析)
- 2) 交流分析(动态分析)

分析内容:

通常要来分析放大电路的增益、输入电阻、输出电阻等(必须了解放大电路的性能指标定义)

分析过程:

- 获得放大电路的交流通路(什么是交流通路?如何获得?)
- 利用图解分析或等效电路模型方法进行分析
- 获得分析结果,得到各节点的交流电压、各支路的交流电流
- 将每个节点上的直流电压和交流电压叠加就得到该节点的瞬时电压,将每 条支路上的直流电流和交流电流叠加就得到该支路的瞬时电流。

分析方法:

图解法(利用晶体管的输入特性曲线和输出特性曲线以及输入、输出管外<mark>交流负载线</mark>获得动态信号)

等效模型法(获得交流通路后,利用相应的三极管的**小信号等效模型**来替换三极管,得到交流等效电路,利用静态结果求得模型参数,然后利用基本电路理论来对该交流等效电路进行分析得到交流结果)注意模型的应用条件。

交流负载线、直流负载线?一个放大电路的负载怎么来影响交流负载线?

四、放大电路的组态

有三种不同的组态(如何判断一个放大电路的组态?): CE、CC、CB。 必须清楚每种组态各自的特点

● CE 组态

具有电压、电流放大能力,反向放大电路、输入输出电阻处于居中位置,通常用作 多级放大电路中的中间级来实现信号的放大作用。输入电阻与负载无关,输出电阻 与信号源内阻无关。(在 CE 组态电路中,有旁路电容 Ce 和没有 Ce 有什么区别,对电路性能有什么影响?为什么?)

● CC 组态

不具备电压放大能力,但可以来放大电流信号。同相放大,输入电阻较高,与负载 有关;输出电阻较低,与信号源内阻有关。通常用作射随器

● CB 组态

不具有电流放大,但可以放大电压信号,同相放大。输入电阻低,与负载无关,输 出电阻高,与信号源内阻无关,通常用作电流接续器

记住各个组态基本电路的一些结果有助于加快对电路的分析。但必须注意结果跟电路的偏置也有一定的关系,不能够死记。

五、复合管

如何来构成复合管?主要满足两个条件: 1)因为必须工作在放大状态,因此两个管子的电流有合适的通路(即一个管子,包括 PNP 和 NPN,一旦它工作在放大状态,那么它的电流方向就确定,因此两个管子的电流之间不能产生矛盾),2)前一个管子的发射极或集电极必须连接到后一个管子的基极。

通常:如果两个管子构成一个复合管,则该复合管的类型应该与第一级的管子的类型相同。

六、了解场效应管类似的内容