Divisão e conquista

- Divisão e conquista paradigma geral de projeto de algoritmos:
 - Divisão: divide os dados de entrada S em dois subconjuntos disjuntos S1 e
 S2
 - Recursão: resolve os subproblemas associados a S₁ e S₂
 - Conquista: combina as soluções para S_1 e S_2 em uma solução para S_2
- Caso base: recursão para subproblemas de tamanho 0 ou 1.

- Merge-sort baseado no paradigma de divisão e conquista
 - Tempo de execução proporcional a O(n log n)
 - Acessa dados de forma sequencial

Merge-Sort

- Merge-sort de uma sequência de entrada v[p..r-1] consiste de três passos:
 - Divisão: divide os dados de entrada v[p..r-1] em dois subconjuntos disjuntos v[p..q-1] e v[q..r-1]
 - Recursão: resolve os subproblemas associados aos dois subconjuntos
 - Conquista: combina as soluções para as partes em uma solução para v
- Caso base: recursão para subproblemas de tamanho 0 ou 1.

```
void mergeSort(int p, int
r, int *v){
  if (p < r-1){
    int q = (p+r)/2;
    mergeSort(p,q,v);
    mergeSort(q,r,v);
    intercala(p,q,r,v);
```

Intercalando duas sequências ordenadas (Merging)

- Conquista (junta as duas soluções)
- Intercalação das duas seq.
 ordenadas, cada uma com n/2 elementos O(n)

```
// recebe vetores crescentes v[p..q-1] e v[q..r-1]
// interacala também em ordem crescente v[p..r-1]
void intercala(int p, int q, int r, int *v){
  int i,j,k,*aux;
  aux = (int *)malloc((r-p)*sizeof(int)); i = p; j =
q; k = 0;
  while (i < q \&\& j < r)
     if(v[i] \le v[j])
        aux[k++] = v[i++];
     else
        aux[k++] = v[i++];
   while (i < q) aux[k++] = v[i++];
   while (j < r) aux[k++] = v[j++];
  for (i=p; i < r; i++) v[i] = aux[i-p];
  free(aux);
```

Intercalando duas sequências ordenadas (Merging)

- Desempenho da intercalação
- ◆ O tempo que a função consome para fazer o serviço é proporcional ao número de comparações entre elementos do vetor. Esse número é no máximo r p 1. O consumo de tempo também é proporcional ao número de movimentações, ou seja, cópias de elementos do vetor de um lugar para outro. Esse número é igual a 2(r-p). Resumindo, o consumo de tempo da função é proporcional ao número de elementos do vetor, ou seja,
 - proporcional a r p.

Merge-Sort Tree

- Uma execução do merge-sort é representada por uma árvore binária
 - Cada nó representa uma chamada recursiva do merge-sort e contém a sequência não ordenada antes da execução e suas partições, bem como a sequência ordenada no final da execução
 - A raiz é a chamada inicial
 - As folha são chamadas de subsequências de tamanho 0 ou 1.

Exemplo de execução

Particionamento

Chamada recursiva, particionamento

Merge Sort

8

Chamada recursiva, particionamento

Chamada recursiva, caso base

Chamada recursiva, caso base

◆Intercala (merge)

Chamada rec, ..., caso base, merge

Chamada recursiva, ..., merge, merge

Merge Sort

16

Análise do Merge-Sort

- \bullet Altura da árvore do merge-sort $O(\log n)$
 - A cada chamada, divide a sequência em duas
- \bullet O total de trabalho nos nós de profundidade $i \in O(n)$
- lacktriangle The overall amount of work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- lacktriangle Portanto, o tempo total do merge-sort é $O(n \log n)$

depth #seqs size

Resumo dos algoritmos de ordenação

Algoritmo	Tempo	Notas
selection-sort insertion-sort buble-sort	$O(n^2)$	♦ lento♦ in-place♦ pequenos conjuntos (< 1K)
quick-sort	$O(n \log n)$	rápidoin-placepara grandes cj (1K — 1M)
merge-sort	$O(n \log n)$	 rápido acesso sequências dos dados para cjs enormes (> 1M)