Physics 12 Formulas

Fundamental Constants and Equations

1 Physics Formulas

1.1 CH1,2,3: Kinematics

$$\vec{v} = \vec{v}_0 + \vec{a}t \qquad \qquad \vec{v} = \frac{\vec{v} + \vec{v}_0}{2} \qquad \qquad v^2 = v_0^2 + 2\vec{a} \cdot \vec{d}$$

$$\vec{d} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2 \qquad \qquad d = \left(\frac{v_f + v_i}{2}\right) t \qquad \qquad v_x = v \cos \theta$$

$$v_y = v \sin \theta \qquad \qquad v = \sqrt{v_x^2 + v_y^2} \qquad \qquad \theta = \tan^{-1} \left(v_y / v_x\right)$$

$$h = \frac{v_{0y}^2}{2g} \qquad \qquad R = \frac{v_0^2 \sin 2\theta_0}{g} \qquad \qquad (\text{max when } \theta_0 = 45^\circ)$$

1.2 CH4,5,9: Dynamics

$$\begin{split} \vec{F}_{\rm net} &= m\vec{a} & \vec{F}_{\rm net} = \vec{F}_{\rm applied} - \vec{F}_{\rm against} & \vec{F}_g = m\vec{g} \\ \vec{F}_{\rm fr} &= \mu \vec{F}_N & T &= \frac{F_\perp}{2\sin(\theta)} & \Delta L &= \frac{1}{Y}\frac{F}{A}L_0 \\ w_\parallel &= w\sin(\theta) = mg\sin(\theta) & w_\perp &= w\cos(\theta) = mg\cos(\theta) & F_{\rm D} &= \frac{1}{2}{\rm C}\rho A v^2 \\ {\rm MA} &= \frac{F_0}{F_{\rm i}} &= \frac{l_{\rm i}}{l_0} & \tau = rF\sin\theta \end{split}$$

1.3 CH6: Circular Motion and Gravity

$$\Delta\theta = \frac{\Delta s}{r} \qquad v = r\omega \text{ or } \omega = \frac{v}{r}$$

$$a_{\rm c} = \frac{v^2}{r} = r\omega^2 \qquad F_{\rm c} = ma_{\rm c} = m\frac{v^2}{r} = mr\omega^2$$

$$F = G\frac{mM}{r^2} \qquad \frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}, \ T^2 = \frac{4\pi^2}{GM}r^3$$

1.4 CH7: Work, Energy, and Power

$$W = \vec{F} \cdot \vec{d}$$
 $E_p = mgh$ $E_k = \frac{1}{2}mv^2$
$$P = \frac{W}{t}$$

$$\Delta E = E_f - E_i$$

1.5 CH8: Momentum

$$\vec{p} = m\vec{v} \qquad \Delta \vec{p} = \vec{F}\Delta t \qquad m_T \vec{V}_T = m_1 \vec{v}_1 + m_2 \vec{v}_2$$

$$a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g \qquad v = v_e \ln \frac{m_0}{m_r}$$

1

1.6 CH18: Electrostatics - Electric Forces and Fields

$$ec{F}_E = k rac{|q_1 q_2|}{r^2} \hat{r}$$
 $ec{E} = rac{ec{F}}{q} = k rac{|Q|}{r^2} \hat{r}$

1.7 CH19: Electric Potential and Capacitance

$$E_p = \frac{kq_1q_2}{r}, \quad \Delta PE = q\Delta V \qquad \qquad V = \frac{kQ}{r}, \quad V_{AB} = Ed \text{ (uniform field)}$$

$$\vec{E} = -\frac{\Delta V}{\Delta s}\hat{r} \qquad \qquad C = \frac{Q}{V} = \varepsilon_0 \frac{A}{d} \text{ (parallel)} = \kappa \varepsilon_0 \frac{A}{d} \text{ (dielectric)}$$

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots, \quad C_p = C_1 + C_2 + \cdots \qquad \qquad E_{cap} = \frac{QV}{2} = \frac{CV^2}{2} = \frac{Q^2}{2C}$$

1.8 CH20: Current and Resistance

$$I = \frac{\Delta Q}{\Delta t}, = nqAv_d$$
 Ohm's Law: $I = \frac{V}{R}, \quad V = IR$
$$R = \frac{\rho L}{A}, \quad \rho = \rho_0(1 + \alpha \Delta T), \quad R = R_0(1 + \alpha \Delta T)$$

$$P = IV = I^2R = \frac{V^2}{R}, \quad E = Pt$$

$$AC: V = V_0 \sin 2\pi f t, \quad I = I_0 \sin 2\pi f t$$

$$V_{\text{rms}} = \frac{V_0}{\sqrt{2}}, \quad I_{\text{rms}} = \frac{I_0}{\sqrt{2}}, \quad P_{\text{ave}} = I_{\text{rms}}V_{\text{rms}}$$

1.9 CH21: Circuits

Series:
$$R_s = R_1 + R_2 + \cdots$$
, $I_1 = I_2 = \cdots$ Parallel: $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$, $V_1 = V_2 = \cdots$ Terminal voltage: $V = \text{emf} - Ir$ Kirchhoff's Rules: $\sum I_{\text{in}} = \sum I_{\text{out}}$, $\sum \Delta V = 0$ $V = \text{emf}(1 - e^{-t/\tau})$ (chrg), $V = V_0 e^{-t/\tau}$ (dischrg) RC Circuits: $V = RC$

1.10 CH22: Magnetism

$$\vec{F} = Q\vec{v} \times \vec{B} = I\vec{L} \times \vec{B}$$
 $F = qvB\sin\theta$ $\vec{B} = \frac{\mu_0 I}{2\pi r}\hat{\phi}$ $B_{\text{loop}} = \frac{\mu_0 I}{2r}$ $F = qvB\sin\theta$ $F = qv$

1.11 CH23: Electromagnetic Induction

$$\Phi = \vec{B} \cdot \vec{A} = BA \cos \theta \qquad \qquad \mathcal{E} = -N \frac{d\Phi}{dt}$$

$$\vec{\mathcal{E}} = \vec{v} \times \vec{B} \qquad \qquad \text{emf} = Bl\nu$$

$$\text{emf}_0 = NAB\omega \qquad \qquad V_{\text{back}} = \mathcal{E} - Ir$$

$$\frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$$

2 Mathematical Formulas

2.1 Right-angled Triangles

Figure 1: Right-angled triangle

$$a^2 + b^2 = c^2$$
 $\sin \theta = \frac{b}{c}$ $\cos \theta = \frac{a}{c}$ $\tan \theta = \frac{b}{a}$ $\operatorname{area} = \frac{1}{2}ab$

2.2 All Triangles

Figure 2: Non-Right-angled triangle

area = $\frac{1}{2}$ base × height Sine Law: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Cosine Law: $c^2 = a^2 + b^2 - 2ab\cos C$

2.3 Circle and Sphere

Circle circumference: $2\pi r$ Circle area: πr^2 Sphere surface area: $4\pi r^2$ Sphere volume: $\frac{4}{3}\pi r^3$

2.4 Quadratic Equation

For $ax^2 + bx + c = 0$: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

3 Metric Prefixes and Cardinal Directions

Figure 3: Cardinal directions: North, South, East, and West

Prefix	Symbol	Numerical	Exponential
mega	M	1000000	10^{6}
kilo	k	1000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
		1	10^{0}
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}

4 Fundamental Constants and Physical Data

Gravitational constant: $G = 6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2$

Coulomb's Law constant: $k = 8.99 \times 10^9 \text{Nm}^2/\text{C}^2$

Elementary charge: $e = 1.60 \times 10^{-19}$ C

Electron mass: $m_e = 9.11 \times 10^{-31} \text{kg}$

Proton mass: $m_p = 1.67 \times 10^{-27} \text{kg}$

Avogadro's Number: $N_A = 6.022 \times 10^{23} \text{kg}$

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{Tm/A}$

Permittivity of free space: $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$

Speed of light: $c = 3.00 \times 10^8 \text{m/s}$

Density of air: $\rho = 1.21 \text{ kg/m}^3$

Boltzmann constant: $k_B = 1.38 \times 10^{-23} \text{J/K}$

4.1 Earth

Radius: $6.38 \times 10^6 \text{m}$ Mass: $5.98 \times 10^{24} \text{kg}$

Surface gravity: $g = 9.81 \text{m/s}^2$ Rotation period: $8.61 \times 10^4 \text{s}$

Orbit radius (Sun): $1.50 \times 10^{11} \text{m}$ Orbit period (Sun): $3.16 \times 10^7 \text{s}$

4.2 Moon

Radius: $1.74 \times 10^6 \text{m}$ Mass: $7.35 \times 10^{22} \text{kg}$

Rotation period: $2.36 \times 10^6 \text{s}$ Orbit radius (Earth): $3.84 \times 10^8 \text{m}$

Orbit period (Earth): 2.36×10^6 s

4.3 Sun

Mass: 1.98×10^{30} kg