1 Probability and Stochastic Process

1.1 Probability

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}X)^2. \operatorname{Var}(aX + b) = a^2 \operatorname{Var} X.$$

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \operatorname{Cov}(aX + b, Y) = a \operatorname{Cov}(X, Y).$$

$$\operatorname{Cov} \operatorname{Matrix} \text{ for } X = (X_1, \dots, X_n)^T: \operatorname{Cov}(X) = (\operatorname{Cov}(X_i, X_j))_{i,j}.$$

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var} X \operatorname{Var} Y}}$$

矩母函数 Moment generating function: For rv X, MGF is $M_X(t) = \mathbb{E}[e^{tX}]$. For vec-valued rv \mathbf{X} , $M_X(\mathbf{t}) = \mathbb{E}[e^{(\mathbf{t},\mathbf{X})}]$. 可以生成n阶矩 $\mathbb{E}[X^n] = \frac{d^n}{dt^n} M_X\Big|_{t=0}$. 矩母函数相同说明分布相同. 特征函数 Ch.f.: For rv X, $\varphi_X(t) = \mathbb{E}[\exp(itX)]$. For vec-valued rv \mathbf{X} , $\varphi_X(\mathbf{t}) = \mathbb{E}[e^{i\langle \mathbf{t}, \mathbf{X} \rangle}]$.

一些分布

- Binomial(p, n): $P_X(k) = C_n^k p^k (1-p)^{n-k}$. 期望np, Var np(1-p).
- Poisson(λ): $P_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$. 期望 λ , Var λ .
- Normal (μ, σ^2) : $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$. 偏度为0, 峰度为3. MGF: $\exp(\frac{1}{2}u^2t)$.
- Exponential(λ): $f_X(x) = \lambda e^{-\lambda x} (x \ge 0)$. High_{λ} , $\text{Var } \lambda^2$.

Multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$

定义: Random vec X是d维Gaussian Vec 若对任意 $t \in \mathbb{R}^d$, $\langle t, X \rangle$ 都是Gaussian.

Note that n个正态分布拼起来不一定是Gaussian vec, 但n个独立正态分布拼起来一定是.

给定vec μ 和半正定对称阵 Σ , 存在Gaussian Vector X with mean μ and Cov Σ . 如果 Σ 是满秩的, 则存在density $f(\mathbf{x}) = (2\pi)^{-d/2} \det(\mathbf{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$,

MGF
$$\exp\left(\mu^T t + \frac{1}{2}t^T \Sigma t\right)$$
. ChF $\exp\left(i\mu^T t - \frac{1}{2}t^T \Sigma t\right)$.

条件概率:
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
. 贝叶斯公式: $\mathbb{P}(A|B) = \mathbb{P}(B|A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)}$.

条件期望: $\mathbb{E}[X|\mathcal{F}]$ 是一个随机变量使得 (1)是 \mathcal{F} 可测的; (2) $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]1_A] = \mathbb{E}[X1_A], \forall A \in \mathcal{F}$.

对两个rv X,Y, 有joint density $f_{X,Y}(x,y)$, 则Marginal density $f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,v) dv$. 条

件密度
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
, 条件期望 $\mathbb{E}[X|y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$. $\mathbb{E}[g(X)|Y] = h(Y)$ where $h(y) = \frac{\int g(x) f_{X,Y}(x,y) dx}{f_Y(y)}$.

 $h(y)=rac{\int g(x)f_{X,Y}(x,y)dx}{\int f_{X,Y}(x,y)dx}.$ 独立性引理。若X,Y独立,则 $\mathbb{E}[\varphi(X,Y)|Y]=h(Y)$ where $h(y)=\mathbb{E}[\varphi(X,y)]$. 更一般地, X_1,\ldots,X_k 是 \mathcal{G} 可测的, Y_1,\ldots,Y_l 独立于 \mathcal{G} ,则 $\mathbb{E}[f(X_1,\ldots,X_k,Y_1,\ldots,Y_l)|\mathcal{G}]=g(x_1,\ldots,x_k)$ where $g(x_1,\ldots,x_k)=\mathbb{E}[f(x_1,\ldots,x_k,Y_1,\ldots,Y_l)].$

一些命题

- F递增+右连续+[0,1],即可定义一个分布函数. 如果存在非负f使 $F(t) = \int_{-\infty}^{t} f(x)dx$, 则分布有density.
- X有pdf f_X , Y = g(X)其中g可微且严格单调, 则 $f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$.
- $X \sim \mathcal{N}(\mu, \sigma^2)$, 则 $\mathbb{E}[|X|] = \mu \left[2\Phi\left(\frac{\mu}{\sigma}\right) 1 \right] + \frac{2\sigma}{\sqrt{2\pi}} \exp\left\{ -\frac{\mu^2}{2\sigma^2} \right\}$. 其中 Φ 为std norm CDF.
- $\alpha = \frac{n}{n+1}$ $\alpha = \frac{n}{n+1}$
- Distribution of X+Y when $X \sim f, Y \sim g$ are independent: $\mathbb{P}(X+Y \leq z) = \int \mathbb{P}(x \leq z-y)g(y)f(y)dy$, density of X+Y is $h(z) = \int f(z-y)g(y)dy$.
- 顺序统计量 kth order statistic: the kth smallest value in a sample of n from a random distribution. There is $\mathbb{P}(X_{(k)} \leq x) = \sum_{j=k}^{n} F(x)^{j} (1 F(x))^{n-j}$.

大数定律: X_1, \ldots, X_n 是 iid rv 序列, 期望 μ 有限. 令 $S_n = X_1 + \cdots + X_n$, 则 (弱) $\frac{S_n}{n} \to \mu$ in probability i.e. $\lim_{n \to \infty} \mathbb{P}(|\frac{S_n}{n} - \mu| > \varepsilon) = 0$. (强) Almost surely $\lim_{n \to \infty} \frac{S_n}{n} = \mu$. 中心极限定理 Central Limit Theorem: X_1, \ldots, X_n 是 iid rv 序列, 期望 μ 和方差 σ^2 有限, 令 $S_n = X_1 + \cdots + X_n$, 则 $Y_n = \frac{S_n - \mu n}{\sigma \sqrt{n}}$ converges in distribution to std norm.

1.2 Stochastic Process

鞅和停时

 (X_n) or (X_t) 是鞅, T是停时, 则 $(X_{n\wedge T})$ or $(X_{t\wedge T})$ 是鞅.

[Optional Stopping Thm] (X_n) u.i. sub-mtg, $S \leq T$ 是停时,则 $\mathbb{E}[X_T | \mathcal{F}_S] \geq X_S$. (X_t) u.i. mtg, $S \leq T$ 是停时,则 $\mathbb{E}[X(T) | \mathcal{F}(S)] = X(S)$.

Rk. 一致可积u.i.即 $\forall \varepsilon, \exists K \text{ s.t. } \mathbb{E}[|X_n|1_{|X_n|\geq K}] < \varepsilon(\forall n)$. 对离散sub-mtg, 一致可积 \Leftrightarrow convergence a.s. and in $L^1 \Leftrightarrow$ convergence in L^1 . 对连续mtg, 一致可积 \Leftrightarrow convergence in $L^1 \Leftrightarrow \exists Y \in L^1, X(t) = \mathbb{E}[Y|\mathcal{F}(t)]$.

Brownian Motion 性质

- Scaling invariance: $\frac{1}{a}B(a^2t)$ 是BM. 可得first passage time $T_a=a^2T_1$ in distr.
- Time inversion: $X(t) = tB(\frac{1}{t})(t > 0), X(0) = 0$ 是BM. 可得 $\lim_{t \to \infty} \frac{B(t)}{t} = 0$ a.s.
- Reflection Principle: T是停时, $B_t 1_{t \le T} + (2B_T B_t) 1_{t > T}$ 是BM.
- $B(t), B(t)^2 t$ 是鞅. 指数鞅 $X(t) = \exp(\lambda B(t) \frac{1}{2}\lambda^2 t)$ 对 $\lambda \in \mathbb{R}$.
- Arcsine law: $L = \sup\{t \in [0,1] : B(t) = 0\}$ is distributed as $\mathbb{P}(L \le x) = \frac{2}{\pi} \arcsin \sqrt{x}$.

• Wald's Lemma: \emptyset $\mathbb{E}[B(T)] = 0$, $\mathbb{E}[B(T)^2] = \mathbb{E}[B(T)^2] = \mathbb{E}[B(T)^2$

• Law of the Iterated Logarithm:
$$\limsup_{t\to\infty} \frac{B(t)}{\sqrt{2t\log\log(t)}} = 1$$
 a.s.

Stochastic Calculus

二次变差
$$[f,f](T) = \lim_{|\Pi| \to 0} \sum_{j=0}^{n-1} (f(t_{j+1}) - f(t_j))^2$$
. 有 $[W,W](t) = t$ a.s.

Ito Isometry: $\mathbb{E}\left[\left(\int_0^T X_t dW_t\right)\left(\int_0^T Y_t dW_t\right)\right] = \mathbb{E}\left[\int_0^T X_t Y_t dt\right]$.

 $\mathbb{E}[W_t^2] = t$, $\mathbb{E}[W_t^4] = 3t^2$. $\int_0^t W_s ds \sim \mathcal{N}(0, \frac{1}{3}t^2)$, $\int_0^t f(s)dW_s \sim \mathcal{N}\left(0, \int_0^t f(s)^2 ds\right)$.

 $\int_0^T W_t dW_t = \frac{1}{2}(W_T^2 - T)$ (apply Ito's lemma to W_t^2).

Ito过程:
$$X(t)$$
满足 $dX(t) = \Delta(t)dW(t) + \Theta(t)dt$. 有 $[X,X](t) = \int_0^t \Delta(u)^2 du$.

Ito Lemma: $df(W(t)) = f'(W_t)dW_t + \frac{1}{2}f''(W_t)dt$. 对Ito过程 X_t , 有 $df(t,X_t) = f_t(t,X_t)dt + \frac{1}{2}f''(W_t)dt$. $f_x(t, X_t)dX_t + \frac{1}{2}f_{xx}(t, X_t)dX_tdX_t.$ Stock Price S_t following log-normal Brownian motion: $dS_t = \alpha S_t dt + \sigma S_t dW_t$, $d \log S_t = \frac{1}{2}f_{xx}(t, X_t)dX_tdX_t$

 $(\alpha - \frac{1}{2}\sigma^2)dt + \sigma dW_t.$

Girsanov Thm. 定义 $Z(t) = \exp\left(-\int_0^t \Theta(u)dW(u) - \frac{1}{2}\int_0^t \Theta(u)^2d\right)$ 作为Radon-Nikodym导 数得到 $\tilde{\mathbb{P}}(A) = \int_{A} Z(\omega) d\mathbb{P}(\omega)$. 则 $\tilde{W}(t) = W(t) + \int_{0}^{t} \Theta(u) du$ 在 $\tilde{\mathbb{P}}$ 下是BM.

Stochastic Differential Equation

线性SDE求解 考虑
$$\begin{cases} dX(t) = (c(t) + d(t)X(t))dt + (e(t) + f(t)X(t))dW(t) \\ X(0) = X_0 \end{cases}$$
 非随机. 结论: 解为 $X_1(t) \cdot \left(X_0 + \int_0^t (c(s) - f(s)e(s)) (X_1(s))^{-1} ds + \int_0^t e(s) (X_1(s))^{-1} dW(s)\right),$ 其中 $X_1(t) = \exp\left(\int_0^t f(s)dW(s) - \int_0^t (d(s) - \frac{1}{2}f(s^2))ds\right).$ 解法: Duhamel原理.
先得到
$$\begin{cases} dX_1(t) = d(t)X_1(t)dt + f(t)X_1(t)dW(t) \\ X_1(0) = 1 \end{cases}$$
 的解 $X_1(t)$ (对 $d(\ln X_1(t))$ 用Ito即可).

再分离变量, 设 $X(t) = X_1(t) \cdot X_2(t)$ 其中 X_2 满足 $\begin{cases} dX_2(t) = A(t)dt + B(t)dW(t) \\ X_2(0) = X_0 \end{cases}$

程的解, A(t), B(t)待定. 写开dX(t)代回原方程, 有 $\begin{cases} A(t) = (c(t) - f(t)e(t))(X_1(t))^{-1} \\ B(t) = e(t)(X_1(t))^{-1} \end{cases}$, 积分即 得 X_2 . 从而有原方程解 $X_1 \cdot X_2$.

2 OLS 4

Feynman Kac Theorem 考虑方程 $dX(u) = \beta(u,X(u))du + \gamma(u,X(u))dW(u)$, 记 $g(t,x) = \beta(u,X(u))du + \gamma(u,X(u))dW(u)$, $g(t,x) = \beta(u,X(u))du + \gamma(u,X(u))du + \gamma(u$ $\mathbb{E}^{t,x}[h(X(T))]$, 其中X是初值X(t) = x下的解. 则 $g_t + \beta g_x + \frac{1}{2}\gamma^2 g_{xx} = 0$.

OLS $\mathbf{2}$

 $y = X\beta + \varepsilon$, G-M假设 $Cov(e) = \sigma^2 I_n$.

估计 $\hat{\beta} = (X^T X)^{-1} X^T y$. 满足 $\mathbb{E}[\hat{\beta}] = \beta, \operatorname{Var}(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$. 是BLUE最佳线性无偏估计.

X已知非随机, y已知随机, β 未知非随机, $\hat{\beta}$ 随机, e未知随机(σ^2 未知). 每个 y_i 都有一个对应的 总体 $N(\beta^T x_i, \sigma^2)$

记 $H = X(X^TX)^{-1}X^T$,有 $\hat{y} = Hy$. H对称幂等,HX = X,迹为k + 1.

 $\mathbb{E}[\hat{y}] = y, \operatorname{Var}(\hat{y}) = \sigma^2 H.$ 残差 $e = y - \hat{y}$ (注意区别于误差向量 ε)有 $\mathbb{E}[e] = 0, \operatorname{Var}(e) = \sigma^2 (I - I)$ H).

 $SSR = \sum \hat{\varepsilon_i}^2, SSE = \sum (\hat{y_i} - \bar{y})^2, SST = \sum (y_i - \bar{y})^2.$ 有SST = SSE + SSR.定义 $R^2 = \sum (\hat{y_i} - \bar{y})^2$.

 $Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_i(1-R_i^2)},$ 其中 $SST_j = \sum_i (x_{ij} - \bar{x_j})^2, R_j^2$ 为 x_j 关于其他自变量含截距回归 的 R^2 .

MLE: $\hat{\sigma^2} = \frac{RSS}{n}$ 是有偏的, 无偏估计为 $\hat{\sigma^2} = \frac{RSS}{n-k-1}$ (或写为 se^2). $\hat{\beta_j}$ 标准误(标准化残差) $se(\hat{\beta_j}) = \frac{\hat{\sigma}}{(SST_j(1-R_i^2))^{1/2}}.$ $SE(\hat{\beta_j})$ 是 $Cov(\hat{\beta})$ 对应对角元的开根. T化残差为原始残差除以估计的标准差.

t检验统计量 $t_{\hat{\beta}_j} = \hat{\beta}_j/se(\hat{\beta}_j)$. 整体回归F统计量 $F = \frac{R^2/k}{(1-R^2)/(n-k-1)}$. 衡量多重共线性 $VIF_j = \frac{1}{1-R_j^2}$, 大于10认为严重. 有 $SE(\beta_j) = \frac{\sigma^2}{(n-1)\hat{Var}(X_j)}VIF_j$.

y对x做一元回归,回归系数 $\hat{\beta}_{yx} = \frac{Cov(x,y)}{Var(x)}$. 回归 R^2 的分布 $\sim Beta(\frac{k-1}{2},\frac{n-k}{2})$. $Beta(\alpha,\beta)$ 的 期望为 $\frac{1}{1+\beta/\alpha}$.

Options

3.1Pricing

Binomial Model. 风险中性概率 $\tilde{p}=\frac{1+r-d}{u-d},$ $\tilde{q}=\frac{u-1-r}{u-d}.$ $V_n(\omega)=\frac{1}{1+r}[\tilde{p}V_{n+1}(\omega H)+\tilde{q}V_{n+1}(\omega T)].$ $\Delta_n(\omega)=\frac{V_{n+1}(\omega H)-V_{n+1}(\omega T)}{S_{n+1}(\omega H)-S_{n+1}(\omega T)}.$ Put option value wrt Strike price 应该是凸的.

当total variance $\sigma^2 T$ 较小, ATM put 价值有近似 $P_{ATM} \simeq 0.4 \sigma S_0 \sqrt{T}$. ATM Call 和 Put 都 有 $\Delta \simeq 0.5$.

Put-Call Parity $C(t) - P(t) = S(t) - Ke^{-r(T-t)}$.

3 OPTIONS 5

BS equation: 假设股价符合几何布朗运动 $dS = \mu S dt + \sigma S dW$, 即 $S_t = S_0 \exp((r - \frac{1}{2}\sigma^2)t + \sigma W(t))$. $\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$ (推导: 对 $e^{-rt}V(t,S(t))$ 用Ito). BSM formula: $c = S_0 N (d_1) - K e^{-rT} N (d_2)$, $p = K e^{-rT} N (-d_2) - S_0 N (-d_1)$, 其中 $d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$, $d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$.

3.2 Greeks

Delta: 标的资产价格变化引起的期权价格变化. Gamma: 标的资产价格变化引起的Delta值变化. Vega: 隐含波动率变化引起的期权价格变化. Theta: 期权的时间价值随时间流逝损耗的速度.

Delta & Gamma

- Call的Delta是正的, Put的Delta是负的. Call和Put的Gamma都是正的.
- 对Call, 随着Vol下降, ITM Delta上升(范围从50到100), OTM Delta下降; 随着到期日临近, ITM Delta上升, OTM Delta下降. 波动率下降/到期日临近下, Delta-标的价格变化图像为Fig1左.
- 对Put, 随着波动率上升, OTM Delta下降(范围从0到-50), ITM Delta上升; 随着到期日临近, ITM Delta下降, OTM Delta上升.
- Gamma在ATM最大.ATM的Gamma与Strike负相关.
- 随波动率下降/到期日临近下, 期权的Gamma值变化图像为Fig1右.

图 1: Fig1

Theta

- Theta通常是负的.
- Theta值在平值时绝对值最大,深度实值或深度虚值时绝对值较小.
- 期权价值与—Theta—在临近到期时的变化见Fig2.

3 OPTIONS 6

图 2: Fig2

• 平值期权的Theta与波动率成比例变化.

Vega

- Vega在平值时最大, 深度实值或深度虚值时较小.
- 期权价值与Vega在不同波动率下的情况见Fig3.

图 3: Fig3

• Vega值随到期日临近的变化见Fig4.

图 4: Fig4

3 OPTIONS 7

3.3 Structure

对称策略

以下默认期权多头. 价指Strike Price.

跨式期权 Straddle: Long 同价的Call+Put. \/ 形. Neutral Delta, Long Gamma, Long Vega, Short Theta.

宽跨式期权 Strangle: Long 高价Call + 低价Put. _ / 形. Neutral Delta, Long Gamma, Long Vega, Short Theta.

蝶式期权 Fly: Long 低价Call + 高价Call, Short 2 中间价Call. _ / _ 形. Neutral Delta, Short Gamma, Short Vega, Long Theta.

鷹式期权 Iron Condor: Long 低价Call + 高价Call, Short 中低价Call+中高价Call. _ / - _ 形. Neutral Delta, Short Gamma, Short Vega, Long Theta.

时间价差

时间价差多头: 买入长期期权, 卖出短期期权.(因为长期期权通常更贵) 使用平值期权1:1构成Delta中性.

时间价差多头是Short Gamma的, 因为若标的价格不变, 随时间流逝, 短期期权价值减少是多于长期期权的.

时间价差多头是Long Vega的, 因为波动率变化(上升)对长期期权有更大影响(增加更多时间价值).

图 5: Fig5

策略选择:如果隐含波动率低,要 Long Vega. 当隐含波动率很低但被认为会升高时,时间价差多头可能获利.

垂直价差

买入与卖出相同类型、同时到期、行权价格不同的期权. 牛市价差 Call Spread: 买低, 卖高. (Call:牛市看涨, Put:牛市看跌). 熊市价差 Put Spread: 卖低, 买高. (Call:熊市看涨, Put:熊市看跌). 跌).

买低卖高, 无论是Call还是Put都具有牛市特征, 即具有正的Delta值. 两个行权价之间差距越大, 牛市特征越明显(价差的Delta越大).

Call Spread Collar: CS + underwrite. Put Spread Collar: PS + overwrite.

Risk reversal: Buy downside put, partially funded by selling an upside call, or vice versa.

4 LINEAR ALGEBRA 8

图 6: Fig5

3.4 其他

美式期权

看涨期权价值=内在+波动率+利率-股利. 因此美式看涨若提前行权, 只可能在股利支付前一天. 看跌期权价值=内在+波动率-利率+股利. 因此美式看跌若提前行权, 要距离除息日足够远, 且波动率价值较小. 无论看涨看跌, 越是实值, 美式与欧式价格差越大; 波动率越小, 美式与欧式价格差越大.

结构化

Down and out + Down and in = Vanilla Call.

Knock-in: Structure is activated after being knocked in (before that coupon is protected).

Knock-out: Immediate termination of structure.

雪球是什么: FCN-KI autocallable (fixed coupon note kick-in variant)

4 Linear Algebra

4.1 矩阵性质

- $|AB| = |A||B|, |kA| = k^n|A|$
- $(k\mathbf{A})^{-1} = k^{-1}\mathbf{A}^{-1}, |\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$
- $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}), \operatorname{tr}(\boldsymbol{A}\boldsymbol{A}') \ge \operatorname{tr}(\boldsymbol{A}^2).$
- 若 A 是 n 阶实矩阵, 则 $\operatorname{tr}(AA') \ge 0$, 等号成立 $\Leftrightarrow A = O$
- $r(AB) < \min\{r(A), r(B)\};$
- $r(A + B) \le r(A) + r(B), r(A B) \le r(A) + r(B);$
- Sylvester不等式. 设A是 $m \times n$ 矩阵,B是 $n \times t$ 矩阵,则 $r(AB) \ge r(A) + r(B) n$.
- 设 \mathbf{A} 是 $m \times n$ 阶实矩阵,则 $r(\mathbf{A}'\mathbf{A}) = r(\mathbf{A}\mathbf{A}') = r(\mathbf{A})$
- 设 \mathbf{A} 是 $m \times n$ 矩阵,则:
 - (1)若 $r(\mathbf{A}) = n$,即 \mathbf{A} 列满秩,则必存在秩等于n的 $n \times m$ 矩阵 \mathbf{B} 使 $\mathbf{B}\mathbf{A} = \mathbf{I}_n$;

4 LINEAR ALGEBRA 9

(2)若 $r(\mathbf{A}) = m$,即 \mathbf{A} 行满秩,则必存在秩等于m的 $n \times m$ 矩阵 \mathbf{C} 使 $\mathbf{A}\mathbf{C} = \mathbf{I}_m$.

• 满秩分解. 设 \mathbf{A} 是秩为r的 $m \times n$ 矩阵,则有满秩分解 $\mathbf{A} = \mathbf{B}\mathbf{C}$,其中 \mathbf{B} 是秩为r的 $m \times r$ 矩阵, \mathbf{C} 是 秩为r的 $m \times n$ 矩阵.

• 设A是n阶幂等矩阵,则存在n阶非异阵P,使得 $P^{-1}AP = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 其中r = r(A)

4.2 特征值

- 任一复方阵必相似于一上三角阵,且主对角线上元素为特征值.
- 若A特征值为 $\lambda_1, \dots, \lambda_n, \mathbb{M}$ f(A)的特征值为 $f(\lambda_1), \dots, f(\lambda_n)$. 若A适合多项式 $g(x), \mathbb{M}$ A的任意特征值适合g(x).
- 特征值降阶公式. 设A是 $m \times n$ 矩阵,B是 $n \times m$ 矩阵,且 $m \ge n$.则 $|\lambda I_m AB| = \lambda^{m-n} |\lambda I_n BA|$
- 可对角化判定方法

充分条件: 有n个不同的特征值, 相似于实对称阵

充要条件:有n个线性无关的特征向量,极小多项式无重根,初等因子都是一次多项式或Jordan块都是一阶矩阵

• Jordan标准型求法

 $\lambda I - A$ 相抵于diag $\{1, \ldots, 1, d_1(\lambda), \ldots, d_k(\lambda)\}$,对角元 $d_i | d_{i+1} \ldots d_1, \ldots, d_k$ 的准素因子全体(初等因子)对应Jordan块拼起来即为Jordan标准型.

- $J = J_r(\lambda)$ 为Jordan块.则f(J)主对角线上元素均为 $f(\lambda)$,上次对角线上元素均为 $f'(\lambda)$. 距离主对角线j位的对角平行线上的元素均为 $\frac{1}{i!}f^{(j)}(\lambda)$. 对 $\lambda \neq 0$,则 $J_r(\lambda)^m$ 的Jordan标准型为 $J_r(\lambda^m)$
- A^k 求法: 先求出Jordan标准型J, 根据AP = PJ解方程得P, 求 J^k 再乘过渡矩阵即可.

4.3 二次型

- 设A为n阶实对称阵,则以下结论等价:
 - (1)A正定 (2)A合同于 I_n (3)存在非异实矩阵C, A = C'C (4)A的主子式都大于0
 - (5)A的顺序主子式都大于0 (6)A的特征值都大于0.
- $\mathbf{A} = (a_{ij})$ 是n阶半正定实对称矩阵,则 $|\mathbf{A}| \le a_{11}a_{22}\cdots a_{nn}$, 等号成立当且仅当 \mathbf{A} 是对角矩阵 或某个 $a_{ii} = 0$.
- 设A为n阶实对称矩阵,则A半正定或半负定 \Leftrightarrow 对任意 α 满足 $\alpha'A\alpha=0$, 均有 $A\alpha=0$.
- 若实矩阵A满足 $A' = A^{-1}$,则称A为正交阵. A为正交阵/酉阵的充要条件为A的n个行向量构成一组标准正交基.

4 LINEAR ALGEBRA 10

- 实对称阵与Hermite阵特征值全为实数,反对称阵特征值全为0或纯虚数.
- 实对称阵与Hermite阵合同于diag $\{I_p, -I_q, 0\}$. 实对称阵(Hermite阵)正交相似(酉相似)于实对角阵.
- 复正规阵酉相似于复对角阵,对角元模长都为1.实反对称阵酉相似于复对角阵.
- Gram-Schmidt正交化方法. $\{u_1, \ldots, u_m\}$ 为一组线性无关的向量, 令

$$v_{k+1} = u_{k+1} - \sum_{i=1}^{k} \frac{(u_{k+1}, v_i)}{\|v_i\|^2} v_i$$

则 $\{v_1,\ldots,v_m\}$ 为一组正交向量.

4.4 一些分解

• QR分解

设A为n阶实/复矩阵,则A = QR,其中Q为正交/酉阵,R为主对角元均 ≥ 0 的上三角阵.若A非异,则分解唯一.

• Jordan-Chevalley分解

设A为n阶复方阵,则有分解A = B + C,满足:

- (1)B可对角化 (2)C为幂零阵 (3)BC = CB (4)B,C可表示为A的多项式 并且满足前三条的分解唯一.
- Cholesky分解

设A为n阶实对称阵/Hermite阵,若A正定,则存在对角元均为正实数的下三角(或上三角)实矩阵L使得 $A = LL'/A = L\overline{L'}$,并且分解唯一.若A为半正定阵,则对角元均为非负数,且分解不一定唯一.

• 极分解

 $\varphi \in \mathcal{L}(V)$,则 $\varphi = \omega \psi$.其中 ω 保积, ψ 半正定自伴随.若 φ 可逆,则分解唯一.

 $A \in M_n(R)$,则A = OS,其中O为正交阵,S为半正定实对称阵.

 $A \in M_n(C)$,则A = UH,其中U为酉阵,H为半正定Hermite阵.

• 奇异值分解

 $A \in M_{m \times n}(R)$,则 $A = P \operatorname{diag}\{S, 0\}Q'$. 其中P, Q为m, n阶正交阵, $S = \operatorname{diag}\{\sigma_1, \cdots, \sigma_r\}, \sigma_1 \ge \cdots \ge \sigma_r > 0$ 为A的所有奇异值,即 $\sigma_1^2, \cdots, \sigma_r^2$ 为A'A的非零特征值全体.

5 CALCULUS 11

5 Calculus

5.1 一元微积分

Please see 数分2 notes attached.

5.2 多元微分

Hessian matrix: f为 $\mathbb{R}^n \to \mathbb{R}$ 函数, $H(f) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{n \times n}$ Jacobi matrix: f为 $\mathbb{R}^n \to \mathbb{R}^m$ 向量值函数, $J(f) = \left(\frac{\partial f_i}{\partial x_j}\right)_{m \times n}$

Prop. $H(f(x)) = J(\nabla f(x))^T$.

Hessian矩阵正定的极值点是极小值点, 负定是极大值点.

隐函数存在定理: 对多元函数 $F(x_1,\ldots,x_n,y)=0$, 在周围闭矩形连续且有连续偏导, $F_y\neq 0$, 有 $\frac{\partial y}{\partial x_i}=-\frac{F_{x_i}}{F_y}$. 多元向量值函数 $F(x_0,y_0,u_0,v_0)=0$, $G(x_0,y_0,u_0,v_0)=0$, Jacobi行列式 $\frac{\partial (F,G)}{\partial (u,v)}\neq 0$, 则有 $\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}=-\frac{\partial (F,G)}{\partial (u,v)}^{-1}\frac{\partial (F,G)}{\partial (x,y)}$.

几.何应用

1.曲线 Γ : x = x(t), y = y(t), z = z(t), 在 $P_0(x_0, y_0, z_0)$ 处切向量 $\vec{\tau} = (x', y', z')|_{P_0}$, 法平面为 $x'(x - x_0) + y'(y - y_0) + z'(z - z_0) = 0$.

 $2.曲线\Gamma: \left\{ \begin{array}{l} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{array} \right., \ \Delta P_0(x_0,y_0,z_0)$ 处切向量 $\vec{\tau} = (\frac{\partial(F,G)}{\partial(y,z)}, \frac{\partial(F,G)}{\partial(z,x)}, \frac{\partial(F,G)}{\partial(x,y)}) \mid_{P_0}$,法平面为grad $F(P_0)$, grad $G(P_0)$ 张成的平面.

3.曲面F(x,y,z) = 0在 $P_0(x_0,y_0,z_0)$ 处法向量 $\vec{n} = (F_x,F_y,F_z)\mid_{P_0}$,切平面为 $\frac{x-x_0}{F_x(P_0)} = \frac{y-y_0}{F_y(P_0)} = \frac{z-z_0}{F_z(P_0)}$.

4.曲面
$$x = x(u, v), y = y(u, v), z = z(u, v)$$
,法向量 $\vec{n} = (\frac{\partial(y, z)}{\partial(u, v)}, \frac{\partial(z, x)}{\partial(u, v)}, \frac{\partial(x, y)}{\partial(u, v)})$.

5.3 重积分

重积分变量代换: 映射T: $\begin{cases} x=x(u,v) \\ y=y(u,v) \end{cases}$, $D\to T(D)$ 有连续偏导且 $\frac{\partial(x,y)}{\partial(u,v)}\neq 0$. f(x,y)在T(D)连续, 则 $\iint_{T(D)} f(x,y) \mathrm{d}x \mathrm{d}y = \iint_{D} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \mathrm{d}u \mathrm{d}v$ 常用变量代换:

极坐标变换 $x = r\cos\theta, y = r\sin\theta \operatorname{Fd}x \operatorname{d}y = r\operatorname{d}r \operatorname{d}\theta.$

柱坐标变换 $x = r\cos\theta, y = r\sin\theta, z = z$ 下 $dxdydz = rdrd\theta dz$.

球坐标变换 $x = r \sin \varphi \cos \theta, y = r \sin \varphi \sin \theta, z = r \cos \varphi, r \in [0, +\infty), \varphi \in [0, \pi], \theta \in [0, 2\pi]$ 下dxdyd $z = r^2 \sin \varphi$ drd φ d θ .

6 常微 12

广义球坐标变换 $x = ar\sin\varphi\cos\theta, y = br\sin\varphi\sin\theta, z = cr\cos\varphi \operatorname{Fd}x \operatorname{d}y \operatorname{d}z = abcr^2\sin\varphi\operatorname{d}r \operatorname{d}\varphi \operatorname{d}\theta.$ n重球坐标变换 $x_1 = r\cos\varphi_1, x_2 = r\sin\varphi_1\cos\varphi_2, \cdots, x_{n-1} = r\sin\varphi_1\cdots\sin\varphi_{n-2}\cos\varphi_{n-1}, x_n = r\sin\varphi_1\cdots\sin\varphi_{n-1}, 0 \le \varphi_1, \cdots, \varphi_{n-2} \le \pi, 0 \le \varphi_{n-1} \le 2\pi\operatorname{F}\frac{\partial\left(x_1, x_2, \cdots, x_n\right)}{\partial\left(r, \varphi_1, \cdots, \varphi_{n-1}\right)} = r^{n-1}\sin^{n-2}\varphi_1\sin^{n-3}\varphi_2\cdots\sin\varphi_{n-2}.$

5.4 曲线与曲面积分

Please see 数分3 notes attached.

6 常微

1. 分离变量

(1) 齐次方程
$$\frac{dx}{dt} = f(\frac{x}{t})$$
. 令 $\frac{x}{t} = u, \text{则} \frac{du}{dt} t = f(u) - u$.
(2) $\frac{dx}{dt} = f(at + bx + c)$. 令 $y = at + bx + c, \text{则} \frac{dy}{dt} = a + bf(y)$.

- 2. 非齐次线性方程 $\frac{dx}{dt}=P(t)x+Q(t)$ 常数变易,两边乘 $e^{-\int P(t)dt}$. 常数变易公式 $x=e^{\int P(t)dt}(\int e^{-\int P(t)dt}Q(t)dt+C)$.
- 4. 导数未解出的一阶方程 $x = f(t, \frac{dx}{dt})$ 或 $t = f(x, \frac{dx}{dt}),$ 引 $\lambda p = \frac{dx}{dt}$ 求解.
- 5. 高阶方程的降阶

$$(1) 不含x, F\left(t, x^{(k)}, \cdots, x^{(n)}\right) = 0. \quad \diamondsuit x^{(k)} = y, 则化为F\left(t, y, \cdots, y^{(n-k)}\right) = 0.$$

$$(2) 不含t, F\left(x, \frac{dx}{dt}, \cdots, \frac{d^nx}{dt^n}\right) = 0. \quad \exists | \lambda y = \frac{dx}{dt}, \forall x 为新自变量. 则x^{(k)} 可用y, \frac{dy}{dx}, \cdots, \frac{d^{k-1}y}{dx^{k-1}} 表示.$$

6. 齐次常系数线性方程 $x^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x^{(1)} + a_n x = 0$

6 常微 13

特征方程 $\lambda^n + a_1\lambda^{n-1} + \cdots + a_{n-1}\lambda + a_n = 0$. $\lambda_1, \ldots, \lambda_s$ 为不同实根,重数 $n_1, \ldots, n_s, \alpha_1 \pm i\beta_1, \ldots, \alpha_p \pm i\beta_p$ 为共轭虚根,重数为 m_1, \ldots, m_p . 则实值通解

$$x(t) = \sum_{i=1}^{s} P_i(t)e^{\lambda_i t} + \sum_{i=1}^{p} e^{\alpha_i t} (W_i(t)\cos\beta_i t + V_i(t)\sin\beta_i t)$$

其中 $P_i(t)$ 为 $n_i - 1$ 次实系数多项式, $W_i(t)$, $V_i(t)$ 为 $m_i - 1$ 次实系数多项式.

7. 非齐次常系数线性方程 $x^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x^{(1)} + a_n x = f(t)$ 解为 $x(t) = x_1(t) + x^*(t)$,其中 $x_1(t)$ 为 $x^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x^{(1)} + a_n x = 0$ 的通解, $x^*(t)$ 为 $x^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x^{(1)} + a_n x = f(t)$ 的特解. $x^*(t) = \int_0^t K(t-s) f(s) ds,$ 其中K(t)为 $x^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x^{(1)} + a_n x = 0$ 在初值条件 $K(0) = K'(0) = \cdots = K^{(n-1)}(0) = 0$, $K^{(n)}(0) = 1$ 下的解.

- 8. Euler 方程 $t^n x^{(n)} + a_1 t^{n-1} x^{(n-1)} + \dots + a_{n-1} t x^{(1)} + a_n x = 0$ 引入 $s = \ln |t|$, 记 $D_s = \frac{d}{ds}$,则 $t^n x^{(n)} = D_s(D_s 1) \cdots (D_s n + 1) x$.
- 9. 齐次常系数线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x}$

若A可对角化,则 $\vec{x}(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} \vec{p_i}, \vec{p_i}$ 为 λ_i 的特征向量.

若A有复数特征值 $\lambda = \alpha + i\beta \pi \bar{\lambda} = \alpha - i\beta$, 则方程组实值解形如 $\vec{x} = e^{\alpha t} \{ \vec{p}(t) \cos \beta t + \vec{q}(t) \sin \beta t \}$, 其中 $\vec{p}(t) \pi \vec{q}(t)$ 是t的次数小于 λ 重数的实向量多项式,其向量系数由微分方程组确定.

对一般矩阵A,Jordan标准型为J, $P^{-1}AP = J$,则 $\vec{x}(t) = Pe^{Jt}\vec{c}$, 其中对 λ_i 的Jordan块 J_i , e^{J_it} 第一行为 $e^{\lambda_i t}$, $te^{\lambda_i t}$,..., $\frac{t^{n_i-1}}{(n-1)!}e^{\lambda_i t}$. 记 \vec{p}_i 为P的第i个列向量,则有

$$\vec{x}(t) = \sum_{i=1}^{s} \left\{ c_{i_1} e^{\lambda_i t} \vec{p}_{i_1} + c_{i_2} \left[t e^{\lambda_i t} \vec{p}_{i_1} + e^{\lambda_i t} \vec{p}_{i_2} \right] + \dots + c_{i_{n_i}} \left[\frac{t^{n_i - 1}}{(n_i - 1)!} e^{\lambda_i t} \vec{p}_{i_1} + \dots + e^{\lambda_i t} \vec{p}_{i_{n_i}} \right] \right\}.$$

$$\forall \operatorname{Re}\{\lambda_i\} < 0 \Leftrightarrow \|\vec{x}(t)\| \leq M.$$

10. 非齐次常系数线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x} + \vec{f}(t)$ 方程的解 $\vec{x}(t) = Pe^{Jt}c(\vec{t}) = Pe^{Jt}\vec{c} + \int_0^t e^{A(t-s)}\vec{f}(s)ds$ 对初值问题 $\vec{x}(t_0) = \vec{x_0}$,有 $\vec{x}(t) = e^{A(t-t_0)}\vec{x_0} + \int_0^t e^{A(t-s)}\vec{f}(s)ds$.

7 OTHERS 14

7 Others

矩阵范数 7.1

Frobenius范数
$$\|A\| = \sqrt{\sum_{i,j} a_{ij}^2}$$
 由向量范数 $\|\vec{x}\|_p = (\sum_i |x_i|^p)^{1/p}$ 诱导的矩阵范数 $\|A\|_p = \sup_{\vec{x} \neq \vec{0}} \frac{\|A\vec{x}\|_p}{\|\vec{x}\|_p}$.
$$\|A\|_1 = \max_{1 \leqslant j \leqslant n} \left\{ \sum_{i=1}^n |a_{ij}| \right\}, \|A\|_2 = \sqrt{\lambda_{\max}(A^TA)}, \|A\|_{\infty} = \max_{1 \leqslant i \leqslant n} \left\{ \sum_{j=1}^n |a_{ij}| \right\}.$$
 由向量范数诱导的矩阵范数有性质 $(1)\|A\vec{x}\| \leqslant \|A\|\cdot\|\vec{x}\|$ $(2)\|A\| = \sup_{\|\vec{x}\|=1} \|A\vec{x}\|$ $(3)\|AB\| \leqslant \|A\|\cdot\|B\|$ $(4) \left\|\int_{\alpha}^{\beta} A(s)ds\right\| \leqslant \left|\int_{\alpha}^{\beta} \|A(s)\|ds\right|$ 矩阵指数函数: $(e^{At})^{-1} = e^{-At}, e^{A(t+s)} = e^{At} \cdot e^{As}$.

矩阵求导 7.2

关于
$$t$$
求导与积分:对矩阵每个元素求导与积分.
$$\frac{d}{d}[A(t)B(t)] = A'(t)B(t) + A(t)B'(t).$$

关于t求导与积分:对矩阵每个元素求导与积分. $\frac{d}{dt}[A(t)B(t)] = A'(t)B(t) + A(t)B'(t).$ 将矩阵 $X_{m \times n}$ 按列堆栈向量化, $vec(X) = [x_{11}, \dots, x_{m1}, \dots, x_{mn}]^T$. 将矩阵函数 $F: m \times n$ $n \to p \times q$ 向量化, $vec(F(X)) = [f_{11}(X), \dots, f_{p1}(X), \dots, f_{pq}(X)]^T$. $D_X F(X) = \frac{\partial vec_{pq \times 1}(F(X))}{\partial vec_{mn \times 1}^T X} \in \mathbb{R}^{pq \times mn}.$

$$D_X F(X) = \frac{\partial vec_{pq \times 1}(F(X))}{\partial vec_{mn \times 1}^T X} \in \mathbb{R}^{pq \times mn}.$$

向量变元标量函数:
$$\frac{\partial a^T x}{\partial x} = a$$
, $\frac{\partial x^T A x}{\partial x} = Ax + A^T x$, $\frac{\partial a^T x x^T b}{\partial x} = ab^T x + ba^T x$. 矩阵变元标量函数 $\frac{\partial a^T X b}{\partial X} = ab^T$, $\frac{\partial a^T X X^T b}{\partial X} = ab^T X + ba^T X$.