

ADVERSARIAL MACHINE LEARNING

ATTACK MODELS: JSMA

- Saliency Map based greedy approach Modify the pixel who will impact the classifier output most
- Saliency Map is defined as:

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2016, March). The limitations of deep learning in adversarial settings.

 $S(x,\ell)[i] = \begin{cases} 0 \text{ if } \frac{\partial \mathcal{P}_l(\mathbf{x})}{\partial \mathbf{x}_i} < 0 \text{ or } \sum_{j \neq t} \frac{\partial \mathcal{P}_j(\mathbf{x})}{\partial \mathbf{x}_i} > 0 \\ \left(\frac{\partial \mathcal{P}_l(\mathbf{x})}{\partial \mathbf{x}_i}\right) \left| \sum_{j \neq t} \frac{\partial \mathcal{P}_j(\mathbf{x})}{\partial \mathbf{x}_i} \right| \text{ otherwise} \end{cases}$

ATTACK MODEL: JSMA ALGORITHM

Algorithm 1 Crafting adversarial samples

x is the benign sample, ℓ is the target network output, \mathcal{F} is the function learned by the network during training, Υ is the maximum distortion, and θ is the change made to features.

```
Input: \mathbf{x}, \ell, \mathcal{F}, \Upsilon, \theta
```

- 1: $\mathbf{x}^* \leftarrow \mathbf{x}$
- 2: $\Gamma = \{1 ... |\mathbf{x}|\}$
- 3: while $\mathcal{F}(\mathbf{x}^*) \neq l$ and $||\delta_{\mathbf{x}}|| < \Upsilon \mathbf{do}$
- 4: Compute forward derivative $\nabla \mathcal{P}(\mathbf{x}^*)$
- 5: $S = \mathtt{saliency_map}(\nabla \mathcal{P}(\mathbf{x}^*), \Gamma, l)$
- 6: Modify $\mathbf{x}_{i_{max}}^*$ by θ s.t. $i_{max} = \arg \max_i S(\mathbf{x}, l)[i]$
- 7: $\delta_{\mathbf{x}} \leftarrow \mathbf{x}^* \mathbf{x}$
- 8: end while
- 9: $\mathbf{return} \ \mathbf{x}^*$

ATTACK MODELS: JSMA

- Saliency Map based greedy approach
- Modify the pixel who will impact the classifier output most
- Saliency Map is defined as:

$$S(x,\ell)[i] = \begin{cases} 0 \text{ if } \frac{\partial \mathcal{P}_l(\mathbf{x})}{\partial \mathbf{x}_i} < 0 \text{ or } \sum_{j \neq t} \frac{\partial \mathcal{P}_j(\mathbf{x})}{\partial \mathbf{x}_i} > 0 \\ \left(\frac{\partial \mathcal{P}_l(\mathbf{x})}{\partial \mathbf{x}_i}\right) \left| \sum_{j \neq t} \frac{\partial \mathcal{P}_j(\mathbf{x})}{\partial \mathbf{x}_i} \right| \text{ otherwise} \end{cases}$$