Set Theory and Maps

Sets

$$\mathbb{N} = \{0, 1, 2, \ldots\} \qquad natural \ numbers$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \qquad integers$$

$$\mathbb{Q} = \left\{\frac{k}{n} \mid k, n \in \mathbb{N}, n \neq 0\right\} \qquad rational \ numbers$$

$$\mathbb{R} = \qquad real \ numbers$$

$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\} \qquad complex \ numbers$$

$$i \ is \ the \ imaginary \ unit, \ characterized \ by \ i^2 = -1.$$

$$\mathbb{R}^d = \{(a_1, \ldots, a_d) \mid a_i \in \mathbb{R}\} \qquad d\text{-}dimensional \ space}$$

$$\mathbb{R}^{\infty} = \{(a_0, a_1, a_2, \ldots) \mid a_i \in \mathbb{R}\} \qquad space \ of \ infinite \ sequences \ of \ reals$$

Set Operations

$$\begin{split} A \cup B &= \{c \mid c \in A \text{ or } c \in B\} \qquad union \\ A \cap B &= \{c \mid c \in A \text{ and } c \in B\} \qquad intersection \\ A \setminus B &= \{c \in A \mid c \notin B\} \qquad difference \\ A \Delta B &= (A \cup B) \setminus (A \cap B) \qquad symmetric \ difference \end{split}$$

Indexed Families of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an indexed family of sets (index set I).

Examples:

1.
$$I = \mathbb{N}, A_{\alpha} = \{\alpha, \alpha + 1\}$$
 2. $I = \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}, A_{\alpha} = [\alpha, \infty)$

Operations on indexed families:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \} \qquad union$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \} \qquad intersection$$

Maps

Definition: A map $f: A \to B$ is an assignment that assigns to each element $a \in A$ a unique element $b \in B$, denoted by f(a).

* Domain: A * Target Space: B

Restriction: If $A' \subseteq A$, then the map $f': A' \to B$, $a' \to f'(a') = f(a')$ is called the restriction of f to A' (denoted by $f' = f|_{A'}$).

Examples:

1. $f: \mathbb{R} \to \mathbb{R}$, $x \to \sin(x)$ 2. $f: \mathbb{R}^+ \to \mathbb{R}$, $x \to \sqrt{x}$ 3. $g: \mathbb{R} \to \mathbb{R}$, $x \to \frac{1}{x}$ if $x \neq 0$, $x \to 0$ if x = 0 4. $f: V \to \text{set of subspaces of } V$, $v \to \text{span}(v)$ (where V is a vector space) 5. $D: P(\mathbb{R}) \to P(\mathbb{R})$, $p(x) \to p'(x)$ (the derivative)