1 Kernel Machines

Consider a linear model

$$Y_i = x_i^T \beta^0 + \varepsilon_i, i = 1, \dots, n, x_i \in \mathbb{R}^p$$
 fixed

where $\mathbb{E}\varepsilon = 0$, $Var(\varepsilon) = \sigma^2 I_n$. We have

$$\hat{\beta}^{\text{ols}} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - x_i^T \beta)^2$$

$$= \operatorname{argmin}_{\beta \in \mathbb{R}^p} ||Y - X\beta||^2$$

$$= (X^T X)^{-1} X^T Y.$$

Classical theory:

• $\hat{\beta}^{\text{ols}}$ unbiased,

$$Var(\hat{\beta}^{ols}) = \sigma^2 (X^T X)^{-1} = i^{-1} (\beta^0)$$

Where i is the Fisher information.

• Cramér-Rao lower bound: if an estimator $\tilde{\beta}$ is unbiased then

$$\operatorname{Var}(\tilde{\beta}) - i^{-1}(\beta^0) \underset{\text{positive semi-definite}}{\geq} 0.$$

• If $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, then $\hat{\beta}^{\text{ols}}$ is the MLE of β^0 . Furthermore $\sqrt{n}(\hat{\beta}^{\text{ols}} - \beta^0) \sim \mathcal{N}(0, n\sigma^2(X^TX)^{-1})$. From this we can derive confidence intervals, hypothesis test, etc.

In a general model with parameter $\theta \in \mathbb{R}^p$, n independent observations, under regularity, we have asymptotic normality, i.e $\sqrt{n}(\hat{\theta}^{\text{MLE}} - \theta^0) \xrightarrow{d} \mathcal{N}(0, I^{-1}(\theta^0))$ (with p fixed).

Question: what happens when p is large relative to n?

- If p > n, $\hat{\beta}^{ols}$ is not even defined.
- If $p \approx n$, $Var(\hat{\beta}^{ols})$ explodes since X^TX is near singular.
- More generally, if $p, n \to \infty$ then asymptotic normality can break down.

Recall the bias-variance decomposition:

$$\operatorname{mse}(\tilde{\beta}) = \mathbb{E}_{\beta^{0},\sigma^{2}} \left[(\tilde{\beta} - \beta^{0})(\tilde{\beta} - \beta^{0}) \right]$$
$$= \mathbb{E}_{\beta^{0},\sigma^{2}} \left\| \tilde{\beta} - \mathbb{E}\tilde{\beta} + \mathbb{E}\tilde{\beta} - \beta^{0} \right\|$$
$$= \operatorname{Var}(\tilde{\beta}) + \left\| \mathbb{E}(\tilde{\beta}) - \beta^{0} \right\|^{2}.$$

We introduce bias to reduce the variance.

1.1 Ridge regression

Define

$$(\hat{\mu}_{\lambda}^{R}, \hat{\beta}_{\lambda}^{R}) = \operatorname{argmin}_{(\mu,\beta) \in \mathbb{R} \times \mathbb{R}^{p}} \left[||Y - \mu \mathbf{1} - X\beta||^{2} + \underbrace{\lambda ||\beta||^{2}}_{\text{penalty for large } \beta} \right].$$

 λ is called a *regularisation* or *tuning* parameter. We shall assume the columns of X have been standardised (mean 0, variance 1).

After standardisation, we can show that

$$\hat{\mu}_{\lambda}^{R} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} = \bar{Y}.$$

Hence, if we replace Y with $Y - 1\bar{Y}$ we can write

$$\hat{\beta}_{\lambda}^{R} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \left[\|Y - X\beta\|^{2} + \lambda \|\beta\|^{2} \right]$$

$$= \underbrace{(X^{T}X + \lambda I_{p})^{-1}}_{\text{always invertible}} X^{T}Y.$$

Theorem 1.1. For $\lambda > 0$ sufficiently small,

$$\operatorname{mse}(\hat{\beta}^{ols}) - \operatorname{mse}(\hat{\beta}_{\lambda}^{R}) = \mathbb{E}\|\hat{\beta}^{ols} - \beta^{0}\|^{2} - \mathbb{E}\|\hat{\beta}_{\lambda}^{R} - \beta^{0}\|^{2} > 0. \tag{*}$$

Proof. We have

$$Y = X\beta^0 + \varepsilon.$$

The bias of $\hat{\beta}_{\lambda}^{R}$ is

$$\mathbb{E}(\hat{\beta}_{\lambda}^{R} - \beta^{0}) = (X^{T}X + \lambda I)^{-1}X^{T}X\beta^{0} - \beta^{0}$$

$$= (X^{T}X + \lambda I)^{-1}(X^{T}X + \lambda I - \lambda I)\beta^{0} - \beta^{0}$$

$$= -\lambda(X^{T}X + \lambda I)^{-1}\beta^{0}.$$

While we have variance

$$\begin{aligned} \operatorname{Var}(\hat{\beta}_{\lambda}^{R}) &= \mathbb{E} \left\| (X^{T}X + \lambda I)^{-1} X^{T} \varepsilon \right\|^{2} \\ &= \sigma^{2} \left[(X^{T}X + \lambda I)^{-1} X^{T} X (X^{T}X + \lambda I)^{-1} \right]. \end{aligned}$$

Then (*) becomes

$$\begin{split} \mathbb{E} \| \hat{\beta}^{\text{ols}} - \beta^{0} \|^{2} - \mathbb{E} \| \hat{\beta}_{\lambda}^{R} - \beta^{0} \|^{2} \\ &= \sigma^{2} (X^{T}X)^{-1} - \sigma^{2} (X^{T}X + \lambda I) X^{T} X (X^{T}X + \lambda I)^{-1} \\ &- \lambda^{2} (X^{T}X + \lambda I)^{-1} \beta^{0} (\beta^{0})^{T} (X^{T}X + \lambda I)^{-1} \\ &= \vdots \\ &= \lambda (X^{T}X + \lambda I)^{-1} \left[\sigma^{2} \left\{ 2I_{p} + \lambda (X^{T}X)^{-1} \right\} - \lambda \beta^{0} (\beta^{0})^{T} \right] (X^{T}X + \lambda I)^{-1}. \end{split}$$

We want to show this is positive definite. This is equivalent to

$$\sigma^{2} \left[2I + \lambda (X^{T}X)^{-1} \right] - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2}I - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2} ||z||^{2} - \lambda (z^{T}\beta^{0})^{2} > 0 \quad \forall z \in \mathbb{R}^{p}.$$

$$(\dagger)$$

We also have $(z^T\beta^0)^2 \le ||z||^2||\beta^0||^2$ by Cauchy-Schwarz. Hence (†) holds for all $\lambda < \frac{2\sigma^2}{||\beta^0||^2}$.

Singular value decomposition

Suppose n > p, so we can always write $X \in \mathbb{R}^{n \times p}$ as

$$X = UDV^T$$
 ("thin SVD")

where $U \in \mathbb{R}^{n \times p}, V \in \mathbb{P}^{p \times p}$, with orthonormal columns, $D \in \mathbb{R}^{p \times p}$ diagonal with $D_{11} \geq D_{22} \geq \ldots \geq D_{pp} \geq 0$.

The fitted values in ridge regression are

$$\begin{split} \hat{Y}_{\lambda}^{R} &= X \hat{\beta}_{\lambda}^{R} = X (X^{T}X + \lambda I)^{-1}X^{T}Y \\ &= UDV^{T}(VD^{2}V^{T} + \lambda I)^{-1}VDU^{T}Y \quad \text{(using } VV^{T} = V^{T}V = I) \\ &= UD(D^{2} + \lambda I)^{-1}DU^{T}Y \\ &= \sum_{i=1}^{p} U_{j} \frac{D_{jj}^{2}}{D_{jj}^{2} + \lambda} U_{j}^{T}Y \end{split}$$

where U_i denotes the jth column of U. For reference, in OLS regression

$$\hat{Y}^{ols} = X\hat{\beta}^{ols} = X(X^TX)^{-1}X^TY = \sum_{i=1}^p U_i U_i^T Y.$$

So ridge "projects" onto columns of U, but it shrinks jth component by a factor

$$\frac{D_{jj}^2}{D_{jj}^2 + \lambda}.$$

Hence it shrinks small singular values to 0 rapidly.

Note. The matrix $X(X^TX)^{-1}X^TY$ is known as the "hat matrix" and it represents an orthogonal projection onto the column space of X.

The SVD of X is related to principal component analysis.

Definition. The kth principal component $U^{(k)}$ of X and principal direction $v^{(k)}$ of X are defined recursively by

$$v^{(k)} = \mathrm{argmax}_{v \in \mathbb{R}^p} \, ||Xv||^2$$
 subject to $||v|| = 1, \ (v^{(j)})^T X^T X v = 0 \ \forall j < k$

and

$$u^{(k)} = X v^{(k)}$$
.

Lemma 1.2. If $D_{ij} > 0$ for all $j \in \{1, ..., p\}$ then $v^{(k)} = V_k$, $u^{(k)} = D_{kk}U_k$.

Message: ridge is good when the signal (β^0) is large for the top principal components of X.

Computation: we can compute \hat{Y}_{λ}^{R} for any value of λ quickly after doing an SVD, which has cost $\mathcal{O}(np^{2})$.

1.2 *v*-fold cross-validation

We assume that (x_i, Y_i) , i = 1, ..., n is iid from some distribution (random design matrix). Let (x^*, Y^*) be another independent observation from this distribution. We may wish to pick λ minimising the mean-squared prediction error (MSPE) conditional on (X, Y):

$$\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2 | (X, Y)\}.$$

A less ambitious goal is to minimise the MSPE

$$\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2\} = \mathbb{E}\left[\mathbb{E}\{(Y^* - (x^*)^T \hat{\beta}_{\lambda}^R(X, Y))^2 | (X, Y)\}\right]. \quad (\ddagger)$$

We can try to estimate this quantity for different values of λ , using data splitting.

- Let $(X^{(1)}, Y^{(1)}), \ldots, (X^{(v)}, Y^{(v)})$ be groups of data points of roughly equal size. These are called *folds*.
- Let $(X^{(-k)}, Y^{(-k)})$ denote all the folds except the kth.
- Let $\kappa(i)$ be the fold to which sample i (i.e (X_i, Y_i)) belongs.

Our estimator of (‡) is

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_i - x_i^T \underbrace{\hat{\beta}_{\lambda}^R(X^{(-\kappa(i))}, Y^{(-\kappa(i))})}_{\text{using all folds except the ones containing } (x_i, Y_i)} \right\}^2.$$

Then define

$$\lambda_{\text{CV}} = \operatorname{argmin}_{\lambda \in \{l_1, \dots, l_m\}} \text{CV}(\lambda).$$

We use the estimator

$$\hat{\beta}_{\lambda_{\text{CV}}}^{R}(X,Y).$$

How to choose v?

Note.

- The expectation of each summand in $CV(\lambda)$ is almost the same as ‡, which is what we want to estimate. The only difference is the size of the training set. Hence the bias of $CV(\lambda)$ is small when v is large [the extreme of this is v = n, called "leave one out" cross-validation].
- When v is large, the estimator $\hat{\beta}_{\lambda}^{R}(X^{(-k)}, Y^{(-k)})$ is similar for different values of k, which leads to positively correlated summands in $CV(\lambda)$, leading to high variance.
- A common choice is v = 5 or v = 10.

1.3 Kernel trick

We have

$$\hat{Y}_{\lambda}^{R} = X(X^{T}X + \lambda I)^{-1}X^{T}Y.$$

Note that

$$\begin{split} X^T(XX^T + \lambda I) &= (X^TX + \lambda I)X^T \\ &\implies (X^TX + \lambda I)^{-1}X^T = X^T(XX^T + \lambda I)^{-1} \\ &\implies X\underbrace{(X^TX + \lambda I)}_{p \times p}^{-1}X^TY = XX^T\underbrace{(XX^T + \lambda I)}_{n \times n}^{-1}Y. \end{split}$$

The computation cost of the LHS is $\mathcal{O}(np^2 + p^3)$ while the RHS is $\mathcal{O}(pn^2 + n^3)$.

- When $p \gg n$, the 2nd expression is cheaper to compute;
- The fitted values in ridge regression only depend on X through the "Gram matrix" $K = XX^T$, with entries $K_{ij} = \langle x_i, x_j \rangle$.

Suppose we wish to fit a quadratic model:

$$Y_i = x_i^T \beta + \sum_{k,l} x_{ik} x_{il} \theta_{kl} + \varepsilon_i.$$

This can be done with a linear model where we replace the predictors $x_i \in \mathbb{R}^p$ with a new "feature" vector:

$$\phi(x_i) = (x_{i1}, x_{i2}, \dots, x_{ip}, x_{i1}x_{i1}, x_{i1}x_{i2}, \dots, x_{ip}x_{ip}) \in \mathbb{R}^{p+p^2}.$$

We call ϕ a "feature map". Now we have $\mathcal{O}(p^2)$ predictors. If $p^2 \gg n$, to compute ridge fitted values, we want to use the 2nd expression, with cost $\mathcal{O}(p^2n^2+n^3)$.

However, the part that scales as $\mathcal{O}(p^2n^2)$ is just the computation of the Gram matrix with entries $K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$.

The kernel trick offers a shortcut for computing K.

Idea:

$$\left(\frac{1}{2} + x_i^T x_j\right)^2 - \frac{1}{4} = \left(\frac{1}{2} + \sum_k x_{ij} x_{jk}\right)^2 - \frac{1}{4}$$
$$= \sum_k x_{ik} x_{jk} + \sum_{k,l} x_{ik} x_{il} x_{jk} x_{jl}$$
$$= \langle \phi(x_i), \phi(x_j) \rangle = K_{ij}.$$

The LHS can be computed in $\mathcal{O}(p)$ iterations, so we can obtain K in $\mathcal{O}(n^2p)$ iterations, and we can compute the fitted values in ridge regression in $\mathcal{O}(n^2p+n^3)$, which is not worse than the linear model!

Notes.

- For many feature maps ϕ , there are similar shortcuts.
- Instead of focusing on ϕ , we can directly think of the function $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ as a measure of "similarity" between inputs x_i, x_j .

Question: for which similarities k is there a feature map ϕ such that

$$k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
?

1.4 Kernels

Definition. An *inner product space* is a real vector space \mathcal{H} endowed with a map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ satisfying:

- (i) Symmetry: for all $u, v \in \mathcal{H}$ we have $\langle u, v \rangle = \langle v, u \rangle$;
- (ii) Bilinearity: for all $a, b \in \mathbb{R}$ and all $u, v, w \in \mathcal{H}$ we have

$$\langle au + bv, w \rangle = a\langle u, w \rangle + b\langle v, w \rangle.$$

(iii) Positive-definiteness: we have $\langle u, u \rangle \geq 0$ for all $u \in \mathcal{H}$, with equality if and only if u = 0.

Suppose that regression inputs x_1, \ldots, x_n take values in an abstract set \mathcal{X} (so far we've had $\mathcal{X} = \mathbb{R}^p$, but the x_i 's could be functions; images; graphs; etc.).

Goal: characterise similarity functions $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ for which there is an inner product space \mathcal{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \quad \forall x, x' \in \mathcal{X}.$$

Definition. A (positive-definite) kernel k is a symmetric map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for all $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, the matrix K with entries $K_{ij} = k(x_i, x_j)$ is positive semi-definite.

Remark. A kernel is not an inner product on \mathcal{X} in general. Indeed, \mathcal{X} does not even need to be a vector space, and k need not be bilinear. However, we do have a version of the Cauchy-Schwarz inequality for kernels.

Proposition 1.3. Let k be a kernel on X. Then

$$k(x, x')^2 \le k(x, x)k(x', x') \quad \forall x, x' \in \mathcal{X}.$$

Proof. Since k is a kernel,

$$\begin{pmatrix} k(x,x) & k(x,x') \\ k(x',x) & k(x',x') \end{pmatrix} \ge 0.$$

Hence this has non-negative determinant and $k(x,x)k(x',x')-k(x,x')^2 \geq 0$.

Proposition 1.4. Any similarity k defined by

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \quad \forall x, x' \in \mathcal{X}$$

is a kernel.

Proof. Symmetry of k is clear. Let $x_1, \ldots, x_n \in \mathcal{X}$ be arbitrary and take any vector $\alpha \in \mathbb{R}^n$. We need to show $\alpha^T K \alpha \geq 0$. Indeed

$$\alpha^T K \alpha = \sum_{i,j} \alpha_i K_{ij} \alpha_j$$

$$= \sum_{i,j} \alpha_i \langle \phi(x_i), \phi(x_j) \rangle \alpha_j$$

$$= \langle \sum_{i=1}^n \alpha \phi(x_i), \sum_{j=1}^n \alpha_j \phi(x_j) \rangle \qquad \text{(linearity of } \langle \cdot, \cdot \rangle \text{)}$$

$$\geq 0. \qquad \text{(positive-definiteness of } \langle \cdot, \cdot \rangle \text{)}$$

Examples of kernels

Proposition 1.5 (Closure property). Suppose $k_1, k_2, ...$ are kernels on \mathcal{X} . Then

- (i) If $\alpha_1, \alpha_2 \geq 0$, then $\alpha_1 k_1 + \alpha_2 k_2$ is a kernel. If $k(x, x') := \lim_{m \to \infty} k_m(x, x')$ exists for all $x, x' \in \mathcal{X}$, then k is a kernel.
- (ii) The pointwise product $k(x, x') = k_1(x, x')k_2(x, x')$ is a kernel.

Some examples of kernels are:

- Linear kernel: $k(x, x') = x^T x'$ (for $\mathcal{X} = \mathbb{R}^p$);
- Polynomial kernel: $k(x, x') = (1 + x^T x')^d$, $d \in \mathbb{N}$ $(\mathcal{X} = \mathbb{R}^p)$. Note $(x, x') \mapsto 1$ is a kernel so this is a kernel by the previous proposition;
- Gaussian kernel: $k(x, x') = \exp\left(-\frac{||x-x'||^2}{2\sigma^2}\right)$, $\sigma^2 > 0$ the bandwidth of the kernel. Indeed note

$$\exp\left(-\frac{||x-x'||^2}{2\sigma^2}\right) = \underbrace{\exp\left(-\frac{||x||^2}{2\sigma^2}\right)}_{:=k_1(x,x')} \exp\left(-\frac{||x'||^2}{2\sigma^2}\right) \underbrace{\exp\left(\frac{x^Tx'}{\sigma^2}\right)}_{:=k_2(x,x')}.$$

It suffices to show k_1, k_2 are kernels. For k_1 we have $k_1(x, x') = \langle \phi(x), \phi(x') \rangle$ where $\phi : \mathbb{R}^p \to \mathbb{R}$ is defined by

$$\phi(x) = \exp\left(-\frac{||x||^2}{2\sigma^2}\right).$$

For k_2 we have that $(x, x') \mapsto x^T x'$ is a kernel and k_2 can be Taylor expanded so is the limit of kernels;

- <u>Sobolev kernel</u>: let $\mathcal{X} = [0, 1]$ and set $k(x, x') = \min(x, x') = \operatorname{Cov}(Wx, Wx')$ where $(W_t)_{t>0}$ a Brownian motion (positive definite as a covariance);
- Jaccard similarity kernel: let $\mathcal{X} = \mathcal{P}(\{1, \dots, p\})$ and set

$$k(x, x') = \begin{cases} \frac{|x \cap x'|}{|x \cup x'|} & \text{if } x \cup x' \neq \emptyset \\ 0 & \text{otherwise} \end{cases}.$$

(For proof this is a kernel see Example Sheet 1.)

Remark. There is no finite-dimensional feature map $\phi : \mathbb{R}^p \to \mathbb{R}^m$ respresenting the Gaussian kernel.

Theorem 1.6 (Moore-Aronzajn Theorem). For every kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, there exists a feature map ϕ taking values in some inner product space \mathcal{H} such that $k(x, x') = \langle \phi(x), \phi(x') \rangle$ for all $x, x' \in \mathcal{X}$.

Proof. Take \mathcal{H} to be the vector space of functions from \mathcal{X} to \mathbb{R} of the form

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}.$$

In other words, \mathcal{H} is the linear span of functions of the form $f(\cdot, x)$ for $x \in \mathcal{X}$. Our feature map $\phi : \mathcal{X} \to \mathcal{H}$ will be $\phi(x) = k(\cdot, x)$. We now define the inner product $\langle \cdot, \cdot \rangle$ on \mathcal{H} . Let

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}$$

and

$$g(\cdot) = \sum_{j=1}^{m} \beta_j k(\cdot, x_j').$$

Then define

$$\langle f, g \rangle := \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x'_j) = \sum_{i=1}^{n} \alpha_i g(x_i) = \sum_{j=1}^{m} \beta_j f(x'_j).$$

In particular, the final two expressions show $\langle \cdot, \cdot \rangle$ is well-defined (it doesn't matter how we represent f, g as these linear combinations).

We observe directly from the definition that $\langle \phi(x), \phi(x') \rangle = \langle k(\cdot, x), k(\cdot, x') \rangle = k(x, x')$ as required. We must show $\langle \cdot, \cdot \rangle$ is indeed an inner product. It is certainly bilinear and symmetric. So we show it is positive-definite. Note that

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i k(x_i, x_j) \alpha_j \ge 0$$
 (‡)

since k is a kernel. It remains to show $\langle f, f \rangle$ implies f(x) = 0 for all $x \in \mathcal{X}$.

Note that $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a kernel. Indeed, given functions f_1, \ldots, f_m and $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_i \langle f_i, f_j \rangle \gamma_j = \langle \sum_{i=1}^{n} \gamma_i f_i, \sum_{j=1}^{n} \gamma_j f_j \rangle \ge 0$$

by (‡).

Now note that

$$f(x)^2 = \langle f, k(\cdot, x) \rangle^2 \leq \langle f, f \rangle \langle k(\cdot, x), k(\cdot, x) \rangle$$

by the Cauchy-Schwarz property for kernels. Hence $\langle f, f \rangle = 0$ implies f(x) = 0 for all $x \in \mathcal{X}$.

Remark. The space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ constructed in the proof has the property that

$$f(x) = \langle f, \underbrace{k(\cdot, x)}_{\phi(x)} \rangle.$$

As a consequence

$$|f(x) - g(x)| = |\langle f - g, k(\cdot, x) \rangle| \le ||f - g||_{\mathcal{H}} k(x, x)^{1/2}.$$

Hence convergence in $(\mathcal{H}, \|\cdot\|)$ implies pointwise convergence.

Lemma 1.7. Let \mathcal{H} be a Hilbert space and $\mathcal{V} \subseteq \mathcal{H}$ a closed subspace. Then $\mathcal{H} = \mathcal{V} \oplus \mathcal{V}^{\perp}$, i.e for any $f \in \mathcal{H}$ we have f = u + v where $u \in \mathcal{V}$ and $v \in \mathcal{V}^{\perp}$ and u, v are unique.

Proof. See Part II Linear Analysis.

Definition. A Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ is a reproducing kernel Hilbert space (RKHS) if for all $x \in \mathcal{X}$, there exists $k_x \in \mathcal{H}$ such that $f(x) = \langle k_x, f \rangle$ for all $f \in \mathcal{H}$.

The function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by $(x, x') \mapsto \langle k_x, k_{x'} \rangle = k_x(x')$ is known as the reproducing kernel of \mathcal{H} .

Remark. By the Riesz Representation Theorem, it is equivalent to define an RKHS as a Hilbert space where the evaluation operator $E_x: f \mapsto f(x)$ is a continuous linear operator.

The Moore-Aronzajn Theorem says that whenever k is a kernel, there is an inner product space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$ where $f(x) = \langle f, k(\cdot, x) \rangle$ and thus $k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle$.

This implies that if $(f_n)_{n\geq 1}$ is Cauchy in \mathcal{H} ,

$$|f_n(x) - f_m(x)| \le \sqrt{k(x,x)} ||f_n - f_m||_{\mathcal{H}} \to 0.$$

Hence $(f_n)_{n\geq 1}$ has a pointwise limit $f^*: \mathcal{X} \to \mathbb{R}$ by completeness of \mathbb{R} . So we can complete \mathcal{H} by including all limits of Cauchy sequences (Hausdorff completion) to obtain a Hilbert space $\overline{\mathcal{H}}$. By construction, $\overline{\mathcal{H}}$ is a RKHS with reproducing kernel k.

Proposition 1.8. If \mathcal{G} is a RKHS of functions $f: \mathcal{X} \to \mathbb{R}$ such that $\mathcal{G} \supseteq \mathcal{H}$, then $\overline{\mathcal{H}} = \mathcal{G}$.

Proof. Example Sheet 1.
$$\Box$$

Notation: from now on the RKHS is \mathcal{H} (i.e $\mathcal{H} = \overline{\mathcal{H}}$).

Examples.

- <u>Linear kernel</u>: $k(x, x') = x^T x'$. Then $\mathcal{H} = \{f : f(x) = x^T \beta, \ \beta \in \mathbb{R}^p\}$. If $f(x) = x^T \beta$ then $||f||_{\mathcal{H}}^2 = ||\beta||$.
- Sobolev kernel: $k(x, x') = \min(x, x')$ with $\mathcal{X} = [0, 1]$. Then \mathcal{H} is the space of continuous functions $f : [0, 1] \to \mathbb{R}$ with f(0) = 0, for which

$$\int_0^1 |f'(x)|^2 \mathrm{d}x < \infty$$

where f' is the weak derivative.

The Representer Theorem

If \mathcal{H} is the RKHS of the linear kernel, we can express ridge regression as

$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} \left\{ \sum_{i=1}^{n} (Y_i - \underbrace{f(x_i)}_{x_i^T \beta})^2 + \lambda \underbrace{||f||_{\mathcal{H}}^2}_{||\beta||^2} \right\}.$$

In kernel ridge regression, we solve this problem in a more general RKHS with kernel k, e.g the Gaussian kernel.

Theorem 1.9 (Representer Theorem). Let:

- $c: \mathbb{R}^n \times \mathcal{X}^n \times \mathbb{R}^n \to \mathbb{R}$ be an arbitrary loss;
- $J:[0,\infty)\to\mathbb{R}$ be strictly increasing;
- $x_1, \ldots, x_n \in \mathcal{X}, Y \in \mathbb{R}^n$;
- \mathcal{H} an RKHS with representing kernel k;
- $K_{ij} = k(x_i, x_j), i, j \in [n].$

Then \hat{f} minimises

$$Q_1(f) = c(Y, x_1, \dots, x_n, f(x_1), \dots, f(x_n)) + J(||f||_{\mathcal{H}}^2)$$

over $f \in \mathcal{H}$ if and only if $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_{i} k(\cdot, x_{i})$ and $\hat{\alpha}$ minimises Q_{2} over $\alpha \in \mathbb{R}^{n}$ where

$$Q_2(\alpha) = c(Y, x_1, \dots, x_n, K\alpha) + J(\alpha^T K\alpha).$$

Example. In kernel ridge regression we just need to solve the quadratic program

$$\hat{\alpha} = \operatorname{argmin}_{\alpha \in \mathbb{R}^n} \|Y - K\alpha\|^2 + \lambda \alpha^T K\alpha = (K + I\lambda)^{-1}.$$

Then the fitted values are given by $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, x_i)$.

Intuition: to make a prediction at "test" point x^* the terms in $\hat{f}(x^*)$ that contribute the most are those for training points x_i with similarity $k(x^*, x_i)$ large.

Proof of the Representer Theorem. Note $V = \text{span}\{k(\cdot, x_1), \dots, k(\cdot, x_n)\}$ is a closed (as its finite dimensional) subspace of \mathcal{H} . Hence any $f \in \mathcal{H}$ can be written as f = u + v for $u \in \mathcal{V}$ and $v \in \mathcal{V}^{\perp}$.

We have
$$f(x_i) = \langle k(\cdot, x_i), u + v \rangle = \langle k(\cdot, x_i), u \rangle = u(x_i)$$
. Then

$$||f||_{\mathcal{H}}^2 = ||v||_{\mathcal{H}}^2 + ||u||_{\mathcal{H}}^2.$$

In the expression for Q_1 , the first term only depends on u, and the second term is $J(||f||_{\mathcal{H}}^2) \geq J(||u||_{\mathcal{H}}^2)$ with equality if and only if v = 0. Hence any minimiser

of Q_1 is contained in \mathcal{V} .

So write $f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ for the minimiser. Now note

$$(f(x_1),\ldots,f(x_n))=K\alpha$$

$$||f||_{\mathcal{H}}^2 = \sum_{i,j=1}^n \alpha_i k(x_i, x_j) \alpha_j = \alpha^T K \alpha$$

so therefore for any $f \in \mathcal{V}$, $Q_1(f) = Q_2(\alpha)$. Hence $\hat{f}(\cdot) = \sum_{i=1}^n \hat{\alpha}_i k(\cdot, x_i)$ minimises Q_1 if and only if $\hat{\alpha}$ minimises Q_2 .

Now we will assume that

$$Y_i = f^0(x_i) + \varepsilon_i, \quad \mathbb{E}\varepsilon = 0, \quad \text{Var}(\varepsilon) = \sigma^2 I$$

where $||f^0||_{\mathcal{H}} \leq 1$.

Note. This is equivalent to $cY_i = cf^0(x_i) + c\varepsilon_i$ so $||cf^0||_{\mathcal{H}} = c||f^0||_{\mathcal{H}}$, $Var(c\varepsilon_i) = \sigma^2 c^2$. So the "signal-to-noise ratio" is

$$\frac{\operatorname{Var}(c\varepsilon_i)}{||cf^0||_{\mathcal{H}}^2} = \frac{\operatorname{Var}(\varepsilon_i)}{||f^0||_{\mathcal{H}}} \ge \sigma^2.$$

Theorem 1.10. Let K have eigenvalues $d_1 \ge d_2 \ge ... \ge d_n \ge 0$. Then

$$MSPE(\hat{f}_n) = \frac{1}{n} \mathbb{E} \left\{ \sum_{i=1}^n (f^0(x_i) - \hat{f}_n(x_i))^2 \right\}$$
$$\leq \frac{\sigma^2}{n} \sum_{i=1}^n \frac{d_i^2}{(d_i + \lambda)^2} + \frac{\lambda}{4n}$$
$$\leq \frac{\sigma^2}{n} \frac{1}{\lambda} \sum_{i=1}^n \min\left(\frac{d_i}{4}, \lambda\right) + \frac{\lambda}{4n}.$$

Proof. From the Representer Theorem $(\hat{f}_n(x_1), \dots, \hat{f}_n(x_n))^T = K(K + \lambda I)^{-1}Y$. As $f^0 \in \mathcal{H}$ we have $(f^0(x_1), \dots, f^0(x_n))^T = K\alpha$ for some $\alpha \in \mathbb{R}^n$ (see Example Sheet). Moreover, $||f^0||_{\mathcal{H}}^2 \geq \alpha^T K\alpha$. Let the UDU^T be the eigen-decomposition of K, with $D_{ii} = d_i$. Define $\Theta = U^T K\alpha$. Then

$$n \text{MSPE}(\hat{f}_n) = \mathbb{E} \| K(K + \lambda I)^{-1} \underbrace{(U\Theta + \varepsilon)}_{Y} - \underbrace{U\Theta}_{(f^0(x_1), \dots, f^0(x_n))^T} \|^2$$

$$= \mathbb{E} \| UDU^T (UDU^T + \lambda I)^{-1} (U\Theta + \varepsilon) - U\Theta \|^2$$

$$= \mathbb{E} \| D(D + \lambda I)^{-1} (\Theta + U^T \varepsilon) - \Theta \|^2 \qquad (U^T U = I)$$

$$= \underbrace{\| \{D(D + \lambda I)^{-1} - I\} \varepsilon \|^2}_{:=(1)} + \underbrace{\mathbb{E} \| D(D + \lambda I)^{-1} U^T \varepsilon \|^2}_{:=(2)}. \quad (\mathbb{E}\varepsilon = 0)$$

So

$$(2) = \mathbb{E}[\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}^{T}\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}]$$

$$= \mathbb{E}[\operatorname{tr}(\{D(D+\lambda I)^{-1}U^{T}\varepsilon\}^{T}\{D(D+\lambda I)^{-1}U^{T}\varepsilon\})]$$

$$= \mathbb{E}[\operatorname{tr}(D(D+\lambda I)^{1}\varepsilon\varepsilon^{T}D(D+\lambda I)^{-1})] \qquad \text{(circular property of tr)}$$

$$= \operatorname{tr}(D(D+\lambda I)^{-1}\sigma^{2}ID(D+\lambda I)^{-1})$$

$$= \sigma^{2}\sum_{i=1}^{n}\frac{d_{i}^{2}}{(d_{i}+\lambda)^{2}}.$$

Also

$$(1) = \sum_{i=1}^{n} \frac{\lambda^2 \Theta_i^2}{(d_i + \lambda)^2}.$$

Since $\Theta = DU^T \alpha$, so if $d_i = 0$ then $\Theta_i = 0$. So let D^+ be a diagonal matrix with $D_{ii}^+ = \begin{cases} d_i^{-1} & \text{if } d_i \neq 0 \\ 0 & \text{otherwise} \end{cases}$.

Then,

$$\sum_{i:d_i>0} \frac{\Theta_i^2}{d_i} = \|\sqrt{D^+}\Theta\|^2 = \alpha^T K U D^+ U^T K \alpha$$

$$= \alpha^T U D D^+ D U^T \alpha$$

$$= \alpha^T U D U^T \alpha \qquad (DD^+ D = D)$$

$$= \alpha^T K \alpha < 1.$$

Then

$$(1) = \sum_{i:d_i>0} \frac{\Theta_i^2}{d_i} \frac{d_i \lambda^2}{(d_i + \lambda)^2} \le \max_{1 \le i \le n} \frac{d_i \lambda^2}{(d_i + \lambda)^2} \sum_{i:d_i>0} \frac{\Theta_i^2}{d_i}$$
$$\le \max_{1 \le i \le n} \frac{d_i \lambda^2}{(d_i + \lambda)^2}$$
$$\le \frac{\lambda}{4}. \qquad ((a+b)^2 \ge 4ab)$$

Combining the bounds for (1) and (2) gives the first inequality. Finally, for the final inequality we note that

$$\frac{d_i^2}{(d_i+\lambda)^2} \leq \min\left\{1, \frac{d_i^2}{4d_i\lambda}\right\} = \frac{1}{\lambda}\min\left\{\lambda, \frac{d_i}{4}\right\}.$$

Question: when is the upper bound good?

Random design

Let $(\mathcal{X}, \mathcal{B}, \mathbb{P})$ be a probability space, where \mathcal{X} is a metric space, \mathcal{B} is the Borel σ -algebra on \mathcal{X} . Assume that $x_1, \ldots, x_n \sim^{\text{iid}} \mathbb{P}$.

Theorem 1.11 (Mercer's Theorem). Under mild assumptions on k, \mathbb{P} , there is an orthonormal basis (e_i) of $\mathcal{L}^2(\mathbb{P})$, i.e

$$\int_{\mathcal{X}} e_l(x)e_j(x)d\mathbb{P}(x) = \mathbb{1}\{l=j\}$$

and eigenvalues (μ_i) with $\sum_{i=1}^n \mu_i < \infty$ such that

$$\mu_j e_j(x') = \int_{\mathcal{X}} k(x, x') e_j(x) d\mathbb{P}(x).$$

Furthermore

$$k(x, x') = \sum_{l=1}^{\infty} \mu_l e_l(x) e_l(x')$$

and this series is absolutely convergent.

Proof. Not given.
$$\Box$$

Let $\hat{\mu}_1, \dots, \hat{\mu}_n$ be (random) eigenvalues of K/n. As it turns out, when n is large $\hat{\mu}_i \approx \mu_i$. Let $\gamma = \lambda/n$, then a previous theorem gives

$$MSPE(\hat{f}_{\gamma n}) \le \frac{\sigma^2}{\gamma} \frac{1}{n} \sum_{i=1}^n \min\left(\frac{\hat{\mu}_i}{4}, \gamma\right) + \frac{\gamma}{4}.$$

Then the MSPE is a random variable depending on x_1, \ldots, x_n .

Lemma 1.12.

$$\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}\min\left(\frac{\hat{\mu}_{i}}{4},\gamma\right)\right) \leq \frac{1}{n}\sum_{i=1}^{\infty}\min\left(\frac{\mu_{i}}{4},\gamma\right).$$

Proof. Not given.

This lemma means we can bound

$$\underbrace{\mathbb{E}[\mathrm{MSPE}(\hat{f}_{n\gamma})]}_{\mathrm{over}\ Y\ \mathrm{and}\ x_1,\dots,x_n} \leq \frac{\sigma^2}{\gamma} \frac{1}{n} \sum_{i=1}^n \min\left(\frac{\mu_i}{4},\gamma\right) + \frac{\gamma}{4}.$$

Theorem 1.13. Under the assumptions of Mercer's Theorem, there is a sequence $(\gamma_n)_{n\geq 1}$ such that for fixed $\sigma^2>0$,

$$\frac{1}{n}\mathbb{E}\left\{\sum_{i=1}^{n} (f^{0}(x_{i}) - \hat{f}_{\gamma n}(x_{i}))^{2}\right\} = o(n^{-1/2}) \text{ as } n \to \infty.$$