YouTube Recommendations

overview

Scale Freshness Noise

- Recommendation as classification
- Model Architecture
- Heterogeneous Signals
- Label and Context Selection
- Experiments with Features and Depth

Ranking

- Feature Representation
- Modeling Expected Watch Time
- Experiments with Hidden Layers

user와 관련된 백단위의 후보군 영상으로 줄이는 과정

user의 이전 watches를 embedding한 network ---- non-linear generalization한 matrix fatorization rank loss에 의해 학습되는 matrix fatorization

Recommendation as Classification

"extreme multiclass classification"

$$P(w_t = i | U, C) = \frac{e^{v_i u}}{\sum_{j \in V} e^{v_j u}}$$

특정 시간(t)에 사용자(U)가 C(context)를 가지고 있을 때, 수백만 개의 비디오(i)를 볼 확률

training data

pair(user, context) / candidate videos — vector embedding

implicit feedback[영상 끝까지 본 경우 -> positive]

Heterogeneous signals

example age ...

Recommendation as Classification

To train

```
문제 the number of Classes ↑ in Softmax Classification ── 계산량 증가
```

≒ hierarchical softmax

연관없는 class끼리도 분류하려 노력 비슷한 것 끼리 분류하기 어려워짐

cross-entropy loss: true label과 negative class에 의해 minimized

Recommendation as Classification

In Serving Time

- 해결책! hashing ----- nearest neighbor class search

Heterogenous Signals

Demographic Feature => 새로운 고객 유치에 중요

user's 위치, 기기 -> embedding user's gender/log-in state/age -> real value로 input

Example age Feature

fresh videos 중요(새로운거보고싶으니까) 그것의 viral 유무 파악도 중요(영상 추천에 어려움 주기때문) training 할때 example's age도 feature로 포함. 학습 마지막에 영향 주도록 0이나 negative로

Model Architecture

watch history

embeded해서 average vector network는 정해진 크기의 input을 필요로 함 (다양한 길이x)

search history

watch history와 비슷 query → unigram/bigram token → embedded → vector average

Label and Context Selection

IMPORTANT

- → Transferring classes to a particular context
- → Solving surrogate problem(in A/B testing) <간소화된 대리 데이터들에 의해 정확도 하락>

→ highly active user들의 취향이 bias & 추천에 의한 추천 막기 위해

average vector

Label and Context Selection

radom data sampling

<과거 데이터를 사용> user's history를 rollback해서 sampling

CF: randomly hold-out data로 label/context 정함

→ 영상 시청 패턴 규칙적X , 의미없음

=> only input actions the user took

ex) series videos, videos about 특정 artist 연속적으로 볼 때 그냥 아무거나 보고 싶은 거 볼 때

Experiments with Features and depth

(video, search token) 1M개, 256float로 embed

-> softmax 결과가 256 float로 1M class이기 때문

수렴할 때까지 feature/depth 추가

많은 Feature + 깊은 network depth -> 정확도 높 & 수렴

- Recommendation as classification
- Model Architecture
- Heterogeneous Signals
- Label and Context Selection
- Experiments with Features and Depth

Ranking

- Feature Representation
- Modeling Expected Watch Time
- Experiments with Hidden Layers

Ranking standard: score of expected watch time

video corpus

video corpus

candidate generation

video ther candidate sources

video features

candidate data — 계속 교정&전문화 impression data — expected watch time about impression by logistic regression + DL simple function

live A/B test result constantly tunes ranking

Feature Representation

Categorical Feature

Continuous Feature

여기서, 또 영향을 미친 value의 양에 따라 분류됨

single value(univalent) scored impression video ID(categorical)

>set of value(multivalent) → bag of the last N video IDs watched by user(continuous)

- impression : property of item(video) // item이 scored때 마다 계산

➤ query : property of user/context // 요청에 따라 계산

Feature Representation

Feature Enginnering

직접 engineering한 data들 DL에 input

IMPORTANT

→ user들의 행동 패턴 파악 & 그 행동과 scored video data 어떻게 연관되어있는지 영상 <->사용자, 다른 비슷한 영상<->사용자 상호작용 어떤 source로 영상이 ranking에 포함되었는지

ex)

유저가 특정 채널에서 얼마나 많은 영상을 봤는지, 유저가 특정 토픽의 동영상을 본 지 얼마나 지났는지, 영상의 과거 시청 여부

Feature Representation

Embedding Categorical Features

unique ID space(vocabulary)

분리한 embedding 사용

large ID spaces(video IDs/search query terms)

길이를 줄임─→클릭 빈도수로 sort해서 top N 추출함으로

top N이 아니면 zero embedding

average해서 network에 input

speed up

← 같은 ID space를 가진 경우 embedding 공유
memory down

but, network안에서 각각의 feature는 구분됨

Feature Representation

Normalizing Continuous Features

적절한 scaling 필요 -> 수렴 때문에 중요행

scaling :
$$ilde{x} = \int_{-\infty}^x \mathrm{d}f$$
 // f = 누적분포 함수, x = continuous feature

integral ≒ 선형 보간법

결과 값의 제곱과 루트값도 같이 넣어준다. -> 모델이 복잡한 feature들의 관계를 쉽게 학습

Modeling Expected Watch Time

GOAL: expected watch time 예측 (이걸로 ranking하니까!)

training example - > positive(clicked) video impression: watch time 저장됨
negative(unclicked) video impression
weighted logistic regression : positive는 watch time으로 weight
negative는 unit weight

=> abusing

Modeling Expected Watch Time

GOAL: expected watch time 예측 (이걸로 ranking하니까!)

serving -> odd = e^x

closely estimate expected watch time

Experiments with Hidden Layers

Hidden layers	weighted,
	per-user loss
None	41.6%
$256 \mathrm{ReLU}$	36.9%
$512 \mathrm{ReLU}$	36.7%
$1024 \; \mathrm{ReLU}$	35.8%
$512~{ m ReLU} ightarrow 256~{ m ReLU}$	35.2%
$1024~{\rm ReLU} \rightarrow 512~{\rm ReLU}$	34.7%
$1024~{\rm ReLU} \rightarrow 512~{\rm ReLU} \rightarrow 256~{\rm ReLU}$	34.6%

wider & deeper ReLu layers —— lower loss