Author: Bao Vinh Nguyen

INTRODUCTION

The model that we are estimating is Investment & Demand. According to Bernt, ER (1991), since investment expenditure is so volatile, it is important to understand the causes of variations in investment. A few potential variables are productive capacity, employment demand, personal income, and balance of payments. If we can better predict the volatility in investment, we can be better informed in terms of implementing government fiscal or monetary policies. One of the important variables is demand. Demand affects goods produced and sold, affecting investment as a result.

Specifically, we are focusing on the flexible accelerator model. An important feature of the accelerator model is that it is based on the assumption of a fixed capital/ output ratio. That means that such factors as prices, wages, taxes, and interest rates have direct impact on capital spending. Also, we will use the log form of investment, as levels of investment depends on changes in output.

To explain investment, we also need to be aware that a change in output in period t does not only affect investment in the same period. Its effect is distributed over an infinite number of future time periods, which is why we include dynamics in the model.

Dixit, A (1989) explains that "hysteresis" is an important feature that needs to be taken into account. That is defined as the failure of an effect to reverse itself when its underlying cause is reversed. For instance, the foreign firms entering U.S. market when the U.S. dollars appreciated did not exit then the dollars fell back to the original levels. Also, an investment entails some levels of sunk cost, which creates inertia in investment decisions (Dixit, A 1992).

The model that we are using in this paper is:

$$lnI_{t} = \alpha_{0} + \sum_{i=0}^{8} \gamma_{i} lnY_{t-i} + \sum_{i=0}^{8} \rho_{j} lnI_{t-j} + u_{t}$$

DATA DESCRIPTION

The variables used are defined as follow.

Variable name	Description
I	U.S. gross private domestic fixed business investment in billions of chained
	(2005) dollars. 8 lags of its log value are also included in the model.
Y	U.S. gross domestic business product in billions of chained (2005) dollars.
	This means product demand, which is a determinant for investment. 8 lags of
	its log value are also included in the model.

The time period of the analysis is from 1957 quarter 1 to 2000 quarter 4. The data are quarterly. Here is the summary statistics.

variable	mean	median	sd	min	max
I	778.63	699.20	406.63	229.30	1926.30
Y	4278.81	4091.70	1853.46	1705.60	8575.90

On average, between 1957 and 2000, U.S. gross private domestic fixed business investment is \$778.63 billions of chained (2005) dollars. On average, between 1957 and 2000, U.S. gross domestic business products is \$4278.81 billions of chained (2005) dollars.

Table 1 – Time Trends Regression

In terms of time trends, we find that dependent variable is has a quadratic time trend over the period of analysis. The average quarterly change in U.S. gross domestic business products over the period 1957:1 to 2000:4 was \$7.47 billion (2005 dollars).

Figure 1 – Quadratic Time Trend of Investment

To test for Granger causality, first, we need to determine the number of lags included in the model. We decided to remain the model specification by including 8 lags. Also, as data are quarterly, 8 lags are reasonable to reflect the frequency of data.

Table 2 – Regression for Granger Causality

When conducting Granger causality test from I to Y, we found that the p-value is smaller than 1% significance level. Therefore, we can reject the null hypothesis that I causes Y. When conducting Granger causality test from Y to I, we found that the p-value is much larger than then 1% significance level. Therefore, we cannot reject the null hypothesis that Y causes I. Combining results from two hypothesis tests, we can conclude that there is unidimensional Granger causality from Y to I.

The causal structure of the model is consistent with my result. The model assumes that demand causes investment, and my results reflect that relationship. A possible explanation is that as demand increases, businesses have bigger markets to product more goods, leading to better sales. That would be an important indicator of investment.

To test for ARCH/GARCH, we first start with 4 lags of the dependent variable investment, as well as 4 lags of the ARCH and GARCH variables. After that, we identify the lag length for the ARCH and GARCH components of the model. The estimation has 20 iterations.

Table 3 - ARCH/ GARCH Regression Results

I	L.I	1.167 (0.078)***	1.165 (0.085)***	1.096 (0.084)***	1.079 (0.085)***
	L2.I	-0.076 (0.109)	-0.089 (0.126)	0.038 (0.144)	0.071 (0.143)
	L3.I	-0.094 (0.088)	-0.079 (0.103)	-0.114 (0.145)	-0.126 (0.139)
	L4.I	0.016 (0.067)	0.018 (0.079)	-0.006 (0.102)	-0.010 (0.101)
	_cons	-1.481 (4.018)	-2.350 (4.176)	-0.780 (4.535)	-0.595 (4.663)

ARCH	L.arch	0.257 (0.130)**	0.277 (0.135)**	0.140 (0.097)	0.154 (0.070)**
	L2.arch	-0.097 (0.202)	0.219 (0.089)**	0.214 (0.091)**	
	L3.arch	-0.395 (0.128)***	-0.211 (0.155)		
	L4.arch	0.230 (0.153)			
	L.garch	0.809 (0.666)	-0.270 (0.343)	-0.009 (0.428)	0.813 (0.086)***
	L2.garch	0.923 (0.387)**	0.673 (0.085)***	0.568 (0.416)	
	L3.garch	-0.450 (0.450)	0.292 (0.276)		
	L4.garch	-0.276 (0.404)			
	_cons	-0.348 (36.072)	49.141 (47.201)	102.089 (91.013)	37.919 (37.824)
R-					
Squared					
N		172	172	172	172
SER		•	•	•	•

* *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

The result is that quarterly investment is modeled as a 4th order autoregressive process with 2nd order ARCH and 1st order GARCH. As the coefficient estimates for the ARCH terms are positive, the squared errors are positively correlated. This implies that a large disturbance in investment in the last two periods (quarter t-1 and t-2) implies a larger variance in investment today (time t).

Figure 2 - GARCH Variances: 1957:1 – 2000:4

The graph shows that investment is volatile the most around 1976 and between 1980 and 1989. Indeed, 1980s is considered as one of the most volatile decades in investment. Silber, K (2008) explains that there were numerous causes to the volatility, including weakening dollar values, Wall Street insider trading and illegal dealings scandals, and dampened market sentiment due to Iranian missiles hitting a US-flagged oil tanker.

EMPIRICAL ANALYSIS

First, we decided to test to see if the dependent variable or the independent variables should be first-differenced using the Dickey-Fuller test. The null hypothesis is that a unit root is present in the autoregressive model. The alternative hypothesis is that the model is stationary.

For the dependent variable, as p-value is 0.9335, which is not statistically significant at the 1% significance level, we fail to reject the null hypothesis. Therefore, the null hypothesis is true. A unit root is present. When it comes to the independent variable, p-value for the Dickey-Fuller test is 0.9556, which is much larger than the 1% significance level. Therefore, we also fail to reject the null hypothesis. The conclusion here is that we need to first-difference both dependent and independent variables.

However, after first-differencing, we need to further test that if the model needs another first-difference. P-values from 2 Dickey-Fuller tests of first-differenced dependent and independent variables are smaller than 1% significance level; therefore, we can conclude that we do not need to further first-difference.

Moving forward, we will continue the following tests with the first-differenced dependent and independent variables. The model becomes:

$$\Delta lnI_{t} = \theta_{0} + \sum_{i=0}^{8} \gamma_{i} \Delta lnY_{t-i} + \sum_{i=0}^{8} \rho_{j} \Delta lnI_{t-j} + \epsilon_{t}$$

Now, we will test for cointegration and then determine if an error correction model is appropriate. First, we regress the first-differenced dependent variable on the first-differenced independent variable. Then, we find the residual from the regression. After that, we conduct a Dickey-Fuller test on the error term. The p-value is much smaller than the 1% significance level; therefore, we do reject the null hypothesis that there is not a unit root in the residual. Also, the null hypothesis of no cointegration is also rejected. Therefore, the first-differenced dependent variable

and its predicted value is cointegrated with parameter β . Because β is unknown, we need to include the predicted residual term in the model.

Therefore, moving forward, the model becomes:

$$\Delta lnI_t = \theta_0 + \sum_{i=0}^{8} \gamma_i \ \Delta lnY_{t-i} + \sum_{i=0}^{8} \rho_j \ \Delta lnI_{t-j} + \delta \hat{s}_{t-1} + \epsilon_t$$

Table 4 - Error Correction Model

The error correction term is negative and significant (1%). If U.S. gross private domestic fixed business investment is larger than its predicted value by 1 unit (\$1 billion), then change in U.S. gross private domestic fixed business investment decreases by \$0.269 billion of chained (2005) dollars in the next period, on average.

Next, we will test for serial correlation in the model.

Table 5 - Test for 1st and 4th-order Serial Correlation

The p-value for the 1st-order serial correlation test 0.564, which is much larger than the 1% significance level; therefore, we can conclude that there is no 1st-order serial correlation. The p-value for the 4st-order serial correlation test 0.995, which is much larger than the 1% significance level; therefore, we can conclude that there is no 4st-order serial correlation.

Regarding time trend, when regressing the updated dependent variable on both linear and quadratic time variables, we do not find any sign that there is linear or quadratic time trend. The p-value for the hypothesis test on linear time trend is 0.589, and the p-value for the quadratic time trend is 0.508. Both are not statistically significant at the 1% significance level. Therefore, we can conclude that there is no need to include time trend in the model.

For seasonality, the p-value for the F-test is 0.599, which is not statistically significant at

the 1% significance level. Therefore, we can conclude that there is no seasonality effect in this model, and we do not need to include seasonality in the model.

Table 6- Test for Lag Length

Finally, we will test for lag length. We choose the number of lag lengths to start with is 8. This is because the data are quarterly, and 8 is a large enough lag length to start the testing process. The results show that none of the lags are significant for both dependent and independent variables. Therefore, we can conclude that the model needs no lags. However, we decide to keep the first lag for the dependent variable even it is not significant.

Moving forward, the model becomes:

$$\Delta lnI_{t} = \theta_{0} + \gamma \Delta lnY_{t} + \sum_{i=0}^{1} \rho_{j} \Delta lnI_{t-j} + \delta \hat{s}_{t-1} + \epsilon_{t}$$

This is also the final model (a.k.a. Model 2) that we will be using in the upcoming sections. Here are the regression results for Model 2.

Table 7 – Regression Results for Model 2

	I_fd
L.I_fd	0.036
	(0.054)
Y_fd	3.204
_	(0.175)***
ect	-0.237
	(0.093)**
cons	-0.018
_	(0.003)***
R-Squared	0.692
N	174
SER	0.03

^{*} *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

The short-run impact multiplier is 3.20. That means a temporary, one period \$1 billion of

chained (2005) dollars increase in U.S. gross domestic business products will lead to \$3.20 billions of chained (2005) dollars increase in U.S. gross private domestic fixed business investment in the same period, on average.

The long-run propensity is 3.32. That means on average, a permanent \$1 billion of chained (2005) dollars increase in U.S. gross domestic business products will lead to \$3.32 billions of chained (2005) dollars increase in U.S. gross private domestic fixed business investment in the long-run.

In terms of short-run elasticity, one period 1% increase in U.S. gross domestic business products will lead to a 3.20% increase in U.S. gross private domestic fixed business investment in the same period, on average.

For long-run elasticity, a permanent 1% increase in U.S. gross domestic business products will lead to a 3.32% increase in U.S. gross private domestic fixed business investment in the long-run, on average. Both of the short-run and long-run elasticities are smaller than 20%; therefore, they are not economically significant.

Figure 3 - First-differenced Log of Investment Over Time

Looking at the graph of the actual values of the dependent variable and the sample regression line, we can see that the dependent variable values are centered around 0 as it is already first-differenced.

Now, we will move to dynamic forecasting for the last four periods. First, we estimate an AR(4) model for the independent variable using the following equation:

$$\Delta lnY_t = \delta_0 + \delta_1 \Delta lnY_{t-1} + \delta_2 \Delta lnY_{t-2} + \delta_3 \Delta lnY_{t-3} + \delta_4 \Delta lnY_{t-4} + \nu_t$$

After that, we obtain the predicted value of the independent variable for periods n+1, n+2, n+3, and n+4, then replace the independent variable with the predicted values. We re-estimate Model 2 and generate the dynamic forecast. Here is the comparison between actual dependent variables and its predicted ones. We can see that the model tends to over-predict the dependent variable.

Time	ΔlnI_t	$\widehat{\Delta lnI}_t$
2001q1	0059357	.0036152
2001q2	0157375	.0130963
2001q3	0106668	.0190771
2001q4	0256343	.0190701

The final test is the Predictive Accuracy test. The purpose of this test is to see if Model 2 is correctly specified or not. First, we find the sum of squares of the residuals from the forecast. Then, using the provided equation, PA is 5.32. However, the chi-square value is 13.23. Therefore, we do not reject the null hypothesis that the model is correctly specified. The conclusion is that the model is correctly specified.

REFERENCES

Bernt, E. (1991). The Practice of Econometrics. Reading MA: Addison-Wesley Publishing Co., pp.224-239.

Dixit, A. (1989). Entry and Exit Decisions under Uncertainty. Journal of Political Economy, 97(3), pp.620-638.

Dixit, A. (1992). Investment and Hysteresis. Journal of Economic Perspectives, 6(1), pp.107-132.

Silber, K. (2008). The Roaring 80s. [online] Think Advisor. Available at: https://www.thinkadvisor.com/2008/07/01/the-roaring-80s/?slreturn=20191115145443 [Accessed 14 Dec. 2019].

TABLES & GRAPHS

Table 1 - Time Trends Regression

	I
time	1.387
	(0.537)**
time2	0.040
	(0.003)***
cons	338.910
_	(17.627)***
R-Squared	0.935
$\stackrel{\cdot}{N}$	176
SER	104.23

* *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

Figure 1 - Quadratic Time Trend of Investment

Table 2 – Regression for Granger Causality

	I	Y
L.I	0.697	0.013
	(0.124)***	(0.196)
L2.I	0.094	-0.270
	(0.150)	(0.239)
L3.I	0.228	0.221
	(0.152)	(0.241)
L4.I	-0.194	-0.042
	(0.154)	(0.244)
L5.I	0.141	0.135
	(0.160)	(0.254)
L6.I	0.171	0.242
	(0.161)	(0.256)
L7.I	-0.131	-0.250
	(0.160)	(0.254)
L8.I	-0.057	-0.060
	(0.125)	(0.199)
L.Y	0.354	1.190
	(0.078)***	(0.124)***
L2.Y	-0.134	0.109
	(0.103)	(0.163)
L3.Y	-0.232	-0.246
	(0.107)**	(0.170)
L4.Y	0.130	0.030
	(0.114)	(0.181)
L5.Y	-0.223	-0.182
	(0.122)*	(0.193)
L6.Y	0.041	-0.037
	(0.124)	(0.197)
L7.Y	-0.032	-0.024
	(0.125)	(0.198)
L8.Y	0.108	0.170
	(0.093)	(0.147)
_cons	-13.171	-2.323
	(7.911)*	(12.547)
R-Squared	0.995	0.999
N	168	168
SER	28.55	45.28

* *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

Note: The p-value for the first hypothesis test (I causes Y) is 0.0003, and the p-value for the second hypothesis test (Y causes I) is 0.7819.

Table 4 - Error Correction Model

	I_fd
Y fd	3.040
_	(0.195)***
oL.Y_fd	0.000
	(0.000)
L2.Y_fd	0.253
	(0.327)
L3.Y_fd	0.073
	(0.329)
L4.Y_fd	0.785
	(0.332)**
L5.Y_fd	-0.227
	(0.324)
L6.Y_fd	-0.005
	(0.325)
L7.Y_fd	-0.212
_	(0.326)
L8.Y_fd	-0.435
_	(0.330)

L.I_fd	0.034
	(0.059)
L2.I_fd	-0.097
	(0.081)
L3.I_fd	-0.081
	(0.081)
L4.I fd	-0.182
_	(0.080)**
L5.I fd	-0.064
_	(0.080)
L6.I_fd	0.044
_	(0.079)
L7.I_fd	-0.001
_	(0.079)
L8.I fd	-0.043
_	(0.080)
ect	-0.269
	(0.097)***
cons	-0.014
_	(0.006)**
R-Squared	0.726
N	167
SER	0.03

^{*} *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

Table 5 - Test for 1st and 4th-order Serial Correlation

	cresid2	cresid2
L.cresid2	-0.045	-0.051
	(0.078)	(0.081)
L2.cresid2		0.001
		(0.081)
L3.cresid2		0.018
		(0.080)
L4.cresid2		-0.076
		(0.081)
Y_fd		-0.088
		(0.182)
L.Y_fd		0.105
_		(0.184)
L2.Y_fd		0.028
		(0.185)
L3.Y_fd		-0.049
_		(0.183)

L4.Y_fd		-0.006
_		(0.176)
cons		0.000
_		(0.003)
R-Squared	0.002	0.011
N	166	163
SER	0.02	0.02

* *p*<0.1; ** *p*<0.05; *** *p*<0.01 Standard errors in parentheses

Table 6 - Test for Lag Length

	I_fd							
Y_fd	3.040	3.086	3.138	3.154	3.219	3.161	3.188	3.204
	(0.195)* **	(0.192)* **	(0.191)* **	(0.187)* **	(0.186)* **	(0.180)* **	(0.178)* **	(0.175)* **
oL.Y	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
_fd								
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
L2.Y	0.253	0.219	0.159	0.148	0.098	0.139	0.156	
_fd								
	(0.327)	(0.334)	(0.334)	(0.316)	(0.318)	(0.321)	(0.311)	
L3.Y	0.073	-0.035	-0.113	-0.108	-0.162	-0.306		
_fd	(0.220)	(0.225)	(0.220)	(0.217)	(0.210)	(0.215)		
T 4 37	(0.329)	(0.335)	(0.320)	(0.317)	(0.319)	(0.315)		
L4.Y	0.785	0.726	0.676	0.683	0.549			
_fd	(0.332)*	(0.323)*	(0.323)*	(0.320)*	(0.315)*			
	(0.332)	(0.323)	(0.323)	(0.320)	(0.313)			
L5.Y	-0.227	-0.328	-0.358	-0.324				
_fd								
	(0.324)	(0.331)	(0.331)	(0.320)				
L6.Y	-0.005	-0.038	-0.153					
_fd								
	(0.325)	(0.332)	(0.325)					
L7.Y	-0.212	-0.391						
_fd	(0.22()	(0.225)						
	(0.326)	(0.325)						
L8.Y	-0.435							
_fd	(0.330)							
116	0.034	0.054	0.060	0.059	0.060	0.052	0.040	0.036
L.I_f d	0.034	0.034	0.000	0.039	0.000	0.032	0.040	0.030
u	(0.059)	(0.060)	(0.060)	(0.059)	(0.056)	(0.057)	(0.056)	(0.054)
L2.I	-0.097	-0.090	-0.057	-0.062	-0.044	-0.035	-0.052	(0.057)
fd	-0.077	-0.070	-0.037	-0.002	-0.077	-0.033	-0.032	
_10	(0.081)	(0.083)	(0.081)	(0.079)	(0.079)	(0.080)	(0.077)	

L3.I	-0.081	-0.024	-0.013	-0.016	-0.008	0.035		
_fd								
_	(0.081)	(0.081)	(0.080)	(0.078)	(0.079)	(0.078)		
L4.I	-0.182	-0.165	-0.149	-0.152	-0.146			
fd								
_	(0.080)*	(0.080)*	(0.080)*	(0.079)*	(0.078)*			
	*	*	0.004	0.024				
L5.I	-0.064	-0.030	-0.024	-0.034				
_fd	(0,000)	(0.001)	(0.001)	(0.070)				
	(0.080)	(0.081)	(0.081)	(0.078)				
L6.I	0.044	0.053	0.056					
_fd	/a a=a)		/a a=a;					
	(0.079)	(0.081)	(0.079)					
L7.I	-0.001	0.008						
_fd	/a a=a)	/a a=a)						
	(0.079)	(0.079)						
L8.I	-0.043							
_fd								
	(0.080)							
ect	-0.269	-0.247	-0.253	-0.257	-0.254	-0.264	-0.256	-0.237
	(0.097)* **	(0.099)*	(0.099)*	(0.098)*	(0.095)*	(0.096)*	(0.096)*	(0.093)*
		•	•					
_con	-0.014	-0.016	-0.018	-0.019	-0.021	-0.016	-0.019	-0.018
S	(0.006)*	(0.006)*	(0.005)*	(0.005)*	(0.004)*	(0.004)*	(0.003)*	(0.003)*
	(0.000)	(0.000)	(0.003)	(0.003)	(0.004) · **	(0.004) ¹	(0.003)	(0.003)
R-	0.726	0.709	0.705	0.707	0.697	0.690	0.694	0.692
Squa	0.720	0.705	0.702	0.707	0.057	0.000	0.051	0.052
red								
N	167	168	169	170	171	172	173	174
SER	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
~	3.02	3.02	3.02	3.02	3.02	3.02	3.02	3.03

* p<0.1; ** p<0.05; *** p<0.01 Standard errors in parentheses

Figure 3 - First-differenced Log of Investment Over Time

APPENDIX 1 - CALCULATIONS

- 1. Average quarterly growth rate of investment over the time period: $1.387 + 0.040 * [2 * \overline{time} + 1] = 7.47$
- 2. Test for Unit Root

$$\begin{split} \Delta lnI_t = & \ \alpha_0 + \theta lnI_{t-1} + \epsilon_t \\ H_0 \colon \theta = & \ 0 \\ H_1 \colon \theta < & \ 0 \end{split}$$
 Reject H_0 if $p - value \left(t = \frac{\widehat{\theta}}{se(\widehat{\theta)}} \right) < \alpha$

2.1.Test for Unit Root of log(I)

Dickey-Fuller test for unit root Number of obs = 175 ----- Interpolated Dickey-Fuller -----1% Critical 5% Critical 10% Critical Statistic Value -0.241 -3.485 Z(t) -2.885 MacKinnon approximate p-value for Z(t) = 0.93352.2.Test for Unit Root of log(Y) $\Delta lnY_t = \alpha_0 + \theta lnY_{t-1} + \epsilon_t$ $H_0: \theta = 0$ $H_1: \theta < 0$ Reject H_0 if p – value $\left(t = \frac{\widehat{\theta}}{se(\widehat{\theta})}\right) < \alpha$ Dickey-Fuller test for unit root Number of obs = 175 ----- Interpolated Dickey-Fuller -----Statistic 1% Critical 5% Critical 10% Critical Value Value MacKinnon approximate p-value for Z(t) = 0.95562.3. Test for Unit Root of first-differenced log(I) Dickey-Fuller test for unit root Number of obs = 174 ----- Interpolated Dickey-Fuller -----Test 1% Critical 5% Critical 10% Critical Statistic Value Value -11.562 -3.485 -2.885 Z(t) MacKinnon approximate p-value for Z(t) = 0.0000

2.4.Test for Unit Root of first-differenced log(Y)

Dickey-Fuller test for unit root

Number of obs = 174

----- Interpolated Dickey-Fuller -----Test 1% Critical 5% Critical 10% Critical Statistic Value Value Z(t) -9.920 -3.485 -2.885 ______

MacKinnon approximate p-value for Z(t) = 0.0000

2.5. Test for Unit Root of Residual term

Dickey-Fuller test for unit root

Number of obs = 174

Statistic Value Value Value Value		Inte	rpolated Dickey-F	uller
Z(t) -16.140 -3.485 -2.885 -2.57				10% Critical Value
	 -16.140	-3.485	-2.885	-2.575

MacKinnon approximate p-value for Z(t) = 0.0000

3. Test for Serial Correlation

3.1.1st-order Serial Correlation

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

Reject
$$H_0$$
 if $|t_0| = \frac{\hat{\rho}}{se(\hat{\rho})} > z_{\alpha/2}$. $|t_0| = |\frac{-.044899}{.0777568}| = 0.58$.

3.2.4th -order Serial Correlation

$$H_0: \rho_1 = \rho_2 = \cdots \rho_8 = 0$$

 $H_1: not (\rho_1 = \rho_2 = \cdots \rho_8 = 0)$

$$H_0: \rho_1 = \rho_2 = \cdots \ \rho_8 = 0$$

$$H_1: not \ (\rho_1 = \rho_2 = \cdots \ \rho_8 = 0)$$
Reject if $F = \frac{(R_u^2 - R_r^2)/q}{(1 - R_u^2)/(n - 2q - k - 1)} > F_{n - 2q - k - 1, \alpha}.$

F(9, 153) = 0.19. Prob > F = 0.9948. P-value from F-test is 0.9948, which is not statistically significant.

4. Test for time trend

$$\Delta lnI_t = \alpha_0 + \theta time_t + \epsilon_t$$

$$H_0: \theta = 0$$

$$H_1: \theta \neq 0$$

Reject
$$H_0$$
 if $|t_0| = \frac{\hat{\theta}}{se(\hat{\theta})} > z_{\alpha/2}$. $|t_0| = |\frac{-.0001359}{.0002508}| = 0.54$.

5. Test for seasonality

$$H_0: \beta_{q1} = \beta_{q2} = \beta_{q3} = \beta_{q4} = 0$$

 $H_1: not \ (\beta_{q1} = \beta_{q2} = \beta_{q3} = \beta_{q4} = 0)$

Reject if F =
$$\frac{(R_u^2 - R_r^2)/4}{(1 - R_u^2)/(n - k - 1)} > F_{3, n - k - 1, \alpha}$$
.

F(3, 171) = 0.63. Prob > F = 0.5989. P-value from F-test is 0.5989, which is not statistically significant.

6. Test for lag length

Note: only the test for the 8^{th} lag length of the independent variable is shown, other lag length tests are similar.

$$H_0: \rho_8 = 0$$

$$H_1: \rho_8 \neq 0$$

Reject
$$H_0$$
 if $|t_0| = \frac{\widehat{\rho_9}}{se(\widehat{\rho_9})} > z_{\alpha/2}$. $|t_0| = |\frac{-.4346998}{.3296194}| = 1.32$

7. Calculate the long-run propensity

$$LRP = \frac{\gamma_0}{1 - \pi_1} = \frac{3.2035105}{1 - .03556114} = 3.3216317$$

8. Test for Predictive Accuracy

$$PA = \frac{\sum_{j=1}^{4} \widehat{u}_{n+j|n}^{2}}{\widehat{\sigma}^{2}} = \frac{-.0095508^{2} + -.0288338^{2} + -.029744^{2} + -.0447044^{2}}{.00071593} = 5.3159027 < \text{Chi-square value} = 13.227.$$

APPENDIX 2 - DO & LOG FILE

2.1. DO FILE

log using empiricalproject02.txt, t replace

infile I Y using "/Users/baovinhnguyen/Desktop/invest2.txt"

```
gen time = q(1957q1) + n - 1
format time %tq
tsset time
"""C. Section 2: Data Description"""
** 1. Summav Information
drop if time >= q(2001q1)
global var "I Y"
tabstat $var, columns(statistics) statistics(mean median sd min max)
format(%8.2f)
**2. Trends
*Test for quadratic time trend
// gen time2 = time^2
// gen time3 = time^3
reg I time time2 //The quarterly change investment over the period 1957:1 to
2001:4 \text{ was } (.9548261 + .0441438 * [2 * time+1]) \text{ billion } (2005 \text{ dollars}).
outreg using TableO, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5 1)
note("Standard errors in parentheses") replace
egen meantime = mean(time)
gen change = 1.387 + 0.040 * [2 * meantime+1]
// The average quarterly change in consumption over the period 1957:1 to 2001:4
was $7.47 billion (2005 dollars).
*Graph for time trend
label var I "Investment"
label var time "Time"
graph twoway (tsline I, ms(o)) (qfit I time), title("Quadratic Time Trend for
Investment")
                  play(stata gphformat)
**3. Test for Granger causality
reg I L(1/8).I L(1/8).Y
testparm 1(1/8)Y // p-value = 0.0003
outreg using granger, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
                                                                           1)
note("Standard errors in parentheses") replace
reg Y L(1/8).I L(1/8).Y
testparm 1(1/8)I // p-value = 0.7819
outreg using granger, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5 1)
note("Standard errors in parentheses") merge
// Is the causal structure of the model consistent with your result? - Yes, the
model assumes that demand causes investment and my model results reflect that
relationship.
**4. Test for ARCH and GARCH
arch I L(1/4)I, arch(1/4) garch(1/4) iter(20)
```

```
outreq using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5 1)
note("Standard errors in parentheses") replace
arch I L(1/4)I, arch(1/3) garch(1/3) iter(20)
outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
note("Standard errors in parentheses") merge
arch I L(1/4)I, arch(1/2) garch(1/2) iter(20)
outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
                                                                 (10
note("Standard errors in parentheses") merge
arch I L(1/4)I, arch(1) garch(1) iter(20)
outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
note("Standard errors in parentheses") merge
predict gvar, v // predict variance
label var time "Time"
graph twoway (line gvar time), title("GARCH Variances: 1957:1 - 2000:4")
play(stata gphformat) name(garchconvar, replace)
"""D. Section 3: Empirical Analysis"""
**1. Using Model 1, carry out A-F:
/*E. Test to see if the dependent variable or the independent variables should
be first- differenced using the Dickey-Fuller test (only use "dfuller x" where
"x" is the variable name, do not add a trend or lags to t his command).*/
gen lnI = log(I)
gen lnY = log(Y)
dfuller lnI // p-value = 0.8848 > 0.001 -> DO NOT reject
dfuller lnY // p-value = 0.9084 > 0..01 -> DO NOT reject
// DO NOT reject -> HAS evidence of unit root -> NEED TO DIFFERENCE.
gen I fd = lnI - L.lnI
gen Y fd = lnY - L.lnY
dfuller I_fd // p-value = 0.0000 -> DO reject
dfuller Y_fd // p-value = 0.0000 -> DO reject
// DO reject --> DON'T NEED to further difference.
// From now, we will use first-differenced variables. The model becomes I fd
L(0/8).Y fd L(1/8).I fd
/*F. Given that the data need to be first-differenced, test for cointegration
and then determine if an error correction model is appropriate. Interpret the
error correction parameter in Model 2.*/
// Check for resid cointegration
reg I fd Y fd
predict cresid, resid
dfuller cresid // p-value = 0.0000 -> I fd - 3.210239 * Y fd IS cointegrated -
> NEED to do error correction term model.
// Error correction term model
gen ect = L.cresid
reg I_fd L(0/8).Y_fd L(1/8).I_fd ect
outreg using ect, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
note("Standard errors in parentheses") replace
```

```
// From now, we need to include the error correction term in the model. The
model becomes I_fd L(0/8).Y_fd L(1/8).I fd ect
/*B. Test for 1st -order and 4th-order serial correlation in the residuals using
Durbin's Alternative Test*/
// First, re-run the updated model:
reg I fd L(0/8).Y fd L(1/8).I fd ect
predict cresid2, resid
// 1st-order:
reg cresid2 L.cresid2, noc // p-value = 0.564 so we DO NOT reject the null
hypothesis at the 1% level --> there is NO 1st-order serial correlation
                  serialcorrelation,
                                       bdec(3)
                                                 se
                                                        title("Regression")
summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
(10 5 1) note("Standard errors in parentheses") replace
// 4th-order:
reg cresid2 L(1/4).cresid2 L(0/4).Y fd
testparm L(1/4).cresid2 L(0/4).Y fd // p-value = 0.9948 so we DO NOT reject
the null hypothesis --> there is NO 4th-order serial correlation.
         usina
                  serialcorrelation,
                                       bdec(3)
                                                  se
                                                         title("Regression")
summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
(10 5 1) note("Standard errors in parentheses") merge
/*D. Determine if a linear time trend should be included in the model (don't
include a quadratic if the linear term is significant). */
reg I fd time time2 // p-value = 0.965 , so we DO NOT need to include time trend
in the model.
outreg using timetrend, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
note("Standard errors in parentheses") replace
/*C. Test for seasonality. If there is seasonality, include the seasonal
indicators in the model.*/
gen quarter = mod(time, 4)+1
reg I fd i.quarter
testparm i.quarter // p-value = 0.5780 - there is no evidence of seasonality
/* A. Test for lag length */
reg I fd L(0/8).Y fd L(1/8).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2)
                                                   starlevels
                                                                (10 5
note("Standard errors in parentheses") replace
reg I fd L(0/7).Y fd L(1/7).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
                                                                         1)
note("Standard errors in parentheses") merge
reg I fd L(0/6).Y fd L(1/6).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\mbox{rmse})
summtitle("R-Squared"\"N"\"SER")
                                 summdec(3 0
                                               starlevels
                                                                (10 5
                                                                         1)
note("Standard errors in parentheses") merge
reg I fd L(0/5).Y fd L(1/5).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels
                                                               (10
note("Standard errors in parentheses") merge
reg I_fd L(0/4).Y_fd L(1/4).I_fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
note("Standard errors in parentheses") merge
```

```
reg I fd L(0/3).Y fd L(1/3).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\mbox{rmse}) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5 1)
note("Standard errors in parentheses") merge
reg I fd L(0/2).Y fd L(1/2).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0
                                                    starlevels
note("Standard errors in parentheses") merge
reg I fd L(0/1).Y fd L(1/1).I fd ect
outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3)
                                                 0 2) starlevels (10 5
note("Standard errors in parentheses") merge
//The final model:
reg I fd L.I fd Y fd ect
outreg using finalmodel, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5
note("Standard errors in parentheses") replace
**2. Calculate the short-run impact multiplier and the long-run propensity for
each independent variable included in Model 2
// Impact Multiplier:
gen IM = b[Y fd] // 3.20
// Long-run propensity:
gen LRP = b[Y fd] / (1-b[L.I fd]) // 3.3216317
**3. Include a graph of the actual values of the dependent variable and the
sample regression line.
predict yhat, xb
label var I fd "First-differenced Log of Investment"
graph twoway (scatter I_fd time, ms(o)) (line yhat time), title("First-differenced Log of Investment Over Time") ytitle("First-differenced Log of Investment") subtitle("Quarterly, 1957-2000") play(stata_gphformat)
**4. Calculate dynamic forecasts for the last four periods.
arima Y fd L(1/4).Y fd if time < q(2001q1) // Estimate equation 9
predict xhatd, dynamic(g(2001g1)) // predict xhat
replace Y fd = xhatd if time>=q(2001q1) // replace the final four observations
for lnINC with xhatd
arima I fd L.I fd Y fd ect if time < q(2001q1)
predict yhatd, dynamic(q(2001q1))
list time I fd yhatd if time>=q(2001q1), noobs
**5. Carry out the Predictive Accuracy test.
gen uhat = I fd - yhatd if time>=q(2001q1)
gen uhat2 = uhat^2
reg I fd L.I fd Y fd ect
gen sigmahat = e(rmse)
gen sigmahat2 = sigmahat^2
di sigmahat2 // .00071593
egen sumuhat2 = sum(uhat2)
```

```
di sumuhat2 // .0038058
gen PA = (sumuhat2)/(sigmahat2)
di PA //5.3159027
2.2. LOG FILE
_____
     name: <unnamed>
     log: /Users/baovinhnguyen/Documents/1. STUDY /1. EC 207/Homework
3/empiricalproject02.txt
 log type: text
opened on: 16 Dec 2019, 12:37:01
. infile I Y using "/Users/baovinhnguyen/Desktop/invest2.txt"
(180 observations read)
• gen time = q(1957q1) + _n - 1
. format time %tq
. tsset time
      time variable: time, 1957q1 to 2001q4
             delta: 1 quarter
"""C. Section 2: Data Description"""
" is not a valid command name
r(199);
. ** 1. Summay Information
. drop if time \geq q(2001q1)
(4 observations deleted)
. global var "I Y"
. tabstat $var, columns(statistics) statistics(mean median sd min max)
format(%8.2f)
   variable | mean
                      p50 sd min
______
         I 778.63 699.20 406.63 229.30 1926.30
         Y | 4278.81 4091.70 1853.46 1705.60 8575.90
. **2. Trends
. *Test for quadratic time trend
. gen time2 = time^2
. reg I time time2
```

df

MS

Number of obs =

Source | SS

176

Model Residual Total	27055871.1 1879448.95 	2 173	13527935.6 10863.8668 165344.686	Frob R-squ Adj I	> F [°] aared R-squared	= = = =	1245.22 0.0000 0.9350 0.9343 104.23
	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
time time2 _cons	1.387455 .0404482 338.9097	.53664 .0034032 17.62684	2.59 11.89 19.23	0.011 0.000 0.000	.3282506 .0337311 304.1184	L	2.44666 .0471652 373.7011

. outreg using Table0, bdec(3) se title("Regression") summstat($r2\N\rmse$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (1 > 0 5 1) note("Standard errors in parentheses") replace

	Reg	ression
		I
	time	1.387 (0.537)**
	time2	0.040 (0.003)***
	_cons	338.910
(17.627)***	R-Squared N SER	0.935 176 104.23
	* p<0.1; **	p<0.05; ***
p<0.01	- ·	errors in
parentheses		

- . egen meantime = mean(time)
- gen change = 1.387 + 0.040 * [2 * meantime+1]
- . // The average quarterly change in consumption over the period 1957:1 to 2001:4 was \$7.47 billion (2005 dollars). / is not a valid command name r(199);
- . *Graph for time trend
- . label var I "Investment"

- . label var time "Time"
- . graph twoway (tsline I, ms(o)) (qfit I time), title("Quadratic Time Trend for Investment") ytitle("Investment") name(quadratic, repla
- > ce) play(stata_gphformat)

recording stata_gphformat not found in either PERSONAL or working directory r(601);

- . **3. Test for Granger causality
- . reg I L(1/8).I L(1/8).Y

Source	ss s	df	MS		ber of obs 6, 151)	=	168 2034.22
Model	26527840.7	16	1657990.0	•	b > F	_	
Residual	123072.27	151		_	-	=	
Residual	1230/2.2/	131	815.04814		quared	=	0.000
	1 26650012	167	150506 20	_	R-squared t MSE	=	
Total	26650913	10/	159586.30	5 ROO	C MSE	_	28.549
- I	Coef.	Std. Err.	+	P> t	105% Co.	n f	Interval
Ι.	COE1.	sta. EII.	L	P/ C	[33% CO.	111 •	Intervari
-	,						
I							
L1.	.6971081	.1237227	5.63	0.000	.45265	7	.9415593
L2.	.0935436	.1504443	0.62	0.535	203704	1	.3907914
L3.	.2283944	.1520463	1.50	0.135	072018	5	.5288074
L4.	194279	.1538323	-1.26	0.209	498220	7	.1096627
L5.	.1405867	.1598976	0.88	0.381	175338	8	.4565123
L6.	.1708438	.1611245	1.06	0.291	147505	8	.4891933
L7.	1310879	.1599263	-0.82	0.414	447070	1	.1848943
L8.	0571425	.1254491	-0.46	0.649	305004		.1907197
Y	İ						
L1.	.3538586	.078156	4.53	0.000	.199438	1	.5082791
L2.	1339318	.1026334	-1.30	0.194	336714		.0688512
L3.	2322235	.1073619	-2.16	0.032	444348	9	020098
L4.	.1302026	.1141754	1.14	0.256	095385	1	.3557903
L5.	2227242	.1216996	-1.83	0.069	463178	2	.0177297
L6.	.0407378	.1239474	0.33	0.743	204157		.285633
L7.	0322844	.1245514	-0.26	0.796	27837		.2138042
L8.	.1083901	.0925868	1.17	0.244	074542		.2913229
_0.		- 33 - 2 3 3 0	,	3.2.1		•	
_cons	-13.17139	7.910805	-1.66	0.098	-28.8015	5	2.458774

[.] testparm l(1/8)Y // p-value = 0.0003
'/' not allowed in varlist
r(198);

Regression

[.] outreg using granger, bdec(3) se title("Regression") summstat(r2\N\rmse)

summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (
> 10 5 1) note("Standard errors in parentheses") replace

					I
				L.I	0.697
(0.124)***				L2.I	0.094 (0.150)
				L3.I	0.228 (0.152)
				L4.I	-0.194 (0.154)
				L5.I	0.141 (0.160)
				L6.I	0.171 (0.161)
				L7.I	-0.131 (0.160)
				L8.I	-0.057 (0.125)
				L.Y	0.354
(0.078)***				L2.Y	-0.134
				L3.Y	(0.103) -0.232
				L4.Y	(0.107)** 0.130
				L5.Y	(0.114) -0.223
				L6.Y	(0.122)* 0.041
				L7.Y	(0.124) -0.032
				L8.Y	(0.125) 0.108
				_cons	(0.093) -13.171
				R-Squared	(7.911)* 0.995
				N SER	168 28.55
				* p<0.1; **	p<0.05: ***
p<0.01					errors in
parentheses				Standard e	ilois in
. reg Y L(1/8)	.I L(1/8).Y				
Source	SS	df	MS	Number of obs	= 168
Model Residual	547793219 309581.507		34237076.2 2050.20865	F(16, 151) Prob > F R-squared	= 16699.31 = 0.0000 = 0.9994

Total	+ 548102801	167	3282052 .	_	R-squared =	0.9994 45.279
- Y	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
- I						
L1.	.0131997	.1962261	0.07	0.946	3745036	.400903
L2.	2702161	.238607	-1.13	0.259	7416556	.2012234
L3.	.2208631	.2411478	0.92	0.361	2555964	.6973227
L4. L5.	0421071 .1350201	.2439804 .2536001	-0.17 0.53	0.863 0.595	5241632 3660428	.4399491 .6360829
L6.	.1350201	.2555459	0.95	0.345	2630593	.7467554
L7.	2500221	.2536459	-0.99	0.345	7511747	.2511305
L8.	0604384	.1989642	-0.39	0.320	4535516	.3326749
шо.	0004304	• 1909042	-0.50	0.702	4333310	• 3320749
Y						
L1.	1.190348	.1239566	9.60	0.000	.9454344	1.435261
L2.	.108522	.1627782	0.67	0.506	213095	.4301389
L3.	2461862	.1702776	-1.45	0.150	5826205	.090248
L4.	.030327	.181084	0.17	0.867	3274586	.3881125
L5.	1821391	.1930174	-0.94	0.347	5635027	.1992246
L6.	0369066	.1965826	-0.19	0.851	4253142	.351501
L7.	023576	.1975405	-0.12	0.905	4138762	.3667243
L8.	.1695904	.146844	1.15	0.250	1205438	.4597247
_cons	 -2.322636	12.54666	-0.19	0.853	-27.11231	22.46704

[.] testparm l(1/8)I // p-value = 0.7819
'/' not allowed in varlist
r(198);

. outreg using granger, bdec(3) se title("Regression") summstat($r2\N\mbox{rmse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (> 10 5 1) note("Standard errors in parentheses") merge

		Regression	
		I	У
	L.I	0.697 (0.124)***	0.013
(0.196) 0.270	L2.I	0.094	-
(0.239)	L3.I	(0.150) 0.228	0.221
(0.241) 0.042	L4.I	(0.152) -0.194	-

(0.244)		(0.154)	
	L5.I	0.141 (0.160)	0.135
(0.254)	L6.I	0.171 (0.161)	0.242
(0.256)	L7.I	-0.131	_
0.250		(0.160)	
(0.254)	L8.I	-0.057	_
0.060		(0.125)	
(0.199)	L.Y	0.354 (0.078)***	1.190
(0.124)***	L2.Y	-0.134	0.109
(0.162)	112 • 1	(0.103)	0.109
(0.163)	L3.Y	-0.232	-
0.246		(0.107)**	
(0.170)	L4.Y	0.130 (0.114)	0.030
(0.181)	L5.Y	-0.223	_
0.182		(0.122)*	
(0.193)	L6.Y	0.041	_
0.037		(0.124)	
(0.197)	L7.Y	-0.032	_
0.024	_,	(0.125)	
(0.198)	L8.Y	0.108 (0.093)	0.170
(0.147)	gong	-13.171	
2.323	_cons		_
(12.547)	D. G	(7.911)*	0.005
0.999	R-Squared		0.995
	N SER	168 28.55 	168 45.28
	* p<0.1;	** p<0.05	; ***
p<0.01	Standard	_	in
parentheses			

. **4. Test for ARCH and GARCH . arch I L(1/4)I, arch(1/4) garch(1/4) iter(20) (setting optimization to BHHH) Iteration 0: log likelihood = -833.05802log likelihood = -827.09586Iteration 1: log likelihood = -822.80119Iteration 2: log likelihood = -818.61032Iteration 3: log likelihood = -818.09343Iteration 4: (switching optimization to BFGS) Iteration 5: log likelihood = -817.47189Iteration 6: $log\ likelihood = -816.15529$ Iteration 7: log likelihood = -816.02545 (backed up) Iteration 8: log likelihood = -815.63856log likelihood = -815.56041 (backed up) Iteration 9: Iteration 10: log likelihood = -815.31156 Iteration 11: log likelihood = -815.06192 Iteration 12: log likelihood = -815.04087 (backed up) Iteration 13: log likelihood = -814.93174Iteration 14: log likelihood = -814.83449 (switching optimization to BHHH) Iteration 15: log likelihood = -814.80548 Iteration 16: log likelihood = -814.79981 (backed up) Iteration 17: log likelihood = -814.64371 (backed up) Iteration 18: log likelihood = -814.34158 (backed up) Iteration 19: log likelihood = -814.06632 (backed up) (switching optimization to BFGS) Iteration 20: log likelihood = -813.61453 (backed up) convergence not achieved ARCH family regression Sample: 1958q1 - 2000q4 Number of obs = 172Wald chi2(4) = 46545.47Distribution: Gaussian Log likelihood = -813.6145Prob > chi2 = 0.0000 OPG I Coef. Std. Err. $z \rightarrow |z|$ [95% Conf. Interval] _____+___+ Ι I 1.167333 .0777944 15.01 0.000 1.014858 1.319807 -.0760843 .1087901 -0.70 0.484 -.289309 .1371404 L1. L2. -.0938417 .0881654 -1.06 0.287 -.2666427 L3. .0789593 L4. .0158818 .0666499 0.24 0.812 -.1147496 .1465131 _cons | -1.480626 4.018424 -0.37 0.713 -9.356592 6.39534 ______ ARCH arch

.257 .1300882 1.98 0.048 .0020317 .5119683

L1.

L2. L3. L4.	0971101 394563 .2300496	.2017355 .1281523 .1527516	-0.48 -3.08 1.51	0.630 0.002 0.132	4925044 6457369 069338	.2982841 143389 .5294371
garch						
L1.	.8090278	.6660582	1.21	0.224	4964224	2.114478
L2.	.9225303	.3870574	2.38	0.017	.1639116	1.681149
L3.	4503995	.4496755	-1.00	0.317	-1.331747	.4309484
L4.	2763097	.4041264	-0.68	0.494	-1.068383	.5157634
_cons	 3476376	36.07243	-0.01	0.992	-71.04829	70.35302

. outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starleve > ls (10 5 1) note("Standard errors in parentheses") replace

		ARCH/ GARCH Tests	
	I	L.I	1.167
(0.078)***		T 2 T	
0.076		L2.I	_
(0.109)		L3.I	
0.094		пЭ•т	_
(0.088)		L4.I	0.016
(0.067)		_cons	_
1.481		_005	
(4.018)	ARCH	L.arch	0.257
(0.130)**		L2.arch	_
0.097		22.01011	
(0.202)		L3.arch	_
0.395			
(0.128)***		L4.arch	
0.230			
(0.153)		L.garch	
0.809		_ : 5	
(0.666)			

```
L2.garch
0.923
(0.387)**
                                                               L3.garch
0.450
(0.450)
                                                               L4.garch
0.276
(0.404)
                                                               cons
0.348
(36.072)
                                                    R-Squared
                                                                             172
                                                    SER
_____
                                                     * p<0.1; ** p<0.05;
p < 0.01
                                                     Standard
                                                                   errors
                                                                              in
parentheses
• arch I L(1/4)I, arch(1/3) garch(1/3) iter(20)
(setting optimization to BHHH)
Iteration 0:
               log likelihood = -833.37608
Iteration 1:
               log likelihood = -833.18781
               log likelihood = -823.96114
Iteration 2:
               log likelihood = -818.85302
Iteration 3:
Iteration 4:
               log likelihood = -817.42037
(switching optimization to BFGS)
Iteration 5:
               log\ likelihood = -816.77912
Iteration 6:
               log likelihood = -816.22659
               log likelihood = -815.67374
Iteration 7:
                                             (backed up)
Iteration 8:
               log likelihood = -815.64736
                                             (backed up)
Iteration 9:
               log likelihood = -815.5753
               log likelihood = -815.50344
Iteration 10:
Iteration 11:
               log likelihood = -815.50064
               log likelihood = -815.50064
Iteration 12:
                                             (backed up)
Iteration 13:
               log likelihood = -815.36148
Iteration 14:
               log likelihood = -815.36148
                                             (backed up)
(switching optimization to BHHH)
Iteration 15:
               log\ likelihood = -815.26582
Iteration 16:
               log\ likelihood = -814.59395
Iteration 17:
               log\ likelihood = -814.54513
               log\ likelihood = -814.33885
Iteration 18:
Iteration 19:
               log likelihood = -814.22119
(switching optimization to BFGS)
Iteration 20: log likelihood =
                                  -814.078
convergence not achieved
```

ARCH family regression

Sample: 1958q1 - 2000q4
Distribution: Gaussian
Log likelihood = -814.078

Number of obs = 172 Wald chi2(4) = 47461.35 Prob > chi2 = 0.0000

_							
			OPG				
	I	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
		r					
I							
	I						
	L1.	1.164965	.0854851	13.63	0.000	.9974174	1.332513
	L2.	0892048	.126013	-0.71	0.479	3361858	.1577762
	L3.	079365	.1028537	-0.77	0.440	2809546	.1222246
	L4.	.0183923	.0786078	0.23	0.815	1356762	.1724608
	_cons	-2.349661	4.175558	-0.56	0.574	-10.5336	5.834282
		r					
ARCH							
	arch						
	L1.	.2773826	.1350589	2.05	0.040	.0126719	.5420932
	L2.	.2190909	.089457	2.45	0.014	.0437583	.3944235
	L3.	2111917	.1549176	-1.36	0.173	5148247	.0924413
	garch						
	L1.	2698223	.342731	-0.79	0.431	9415627	.4019181
	L2.	.6728628	.0852249	7.90	0.000	.505825	.8399005
	L3.	.2924548	.2756612	1.06	0.289	2478312	.8327408
	_cons	49.14073	47.20096	1.04	0.298	-43.37145	141.6529

[.] outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat($r2\N\mbox{rmse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starleve > ls (10 5 1) note("Standard errors in parentheses") merge

		ARCH/ GARCH Tests		
	I	L.I	1.167	
1.165			(0.078)***	
(0.085)***		L2.I	-0.076	
-0.089			(0.109)	
(0.126)		L3.I	-0.094	
-0.079		2011	(0.088)	
(0.103)		L4.I	0.016	
0.018		T.4.T	(0.067)	
(0.079)			(0.007)	

```
_cons
                                                                      -1.481
-2.350
                                                                  (4.018)
(4.176)
                                            ARCH
                                                        L.arch
                                                                       0.257
0.277
                                                                 (0.130)**
(0.135)**
                                                                      -0.097
                                                      L2.arch
0.219
                                                                  (0.202)
(0.089)**
                                                      L3.arch
                                                                      -0.395
-0.211
                                                                 (0.128)***
(0.155)
                                                                   0.230
                                                      L4.arch
                                                                  (0.153)
                                                      L.garch
                                                                       0.809
-0.270
                                                                  (0.666)
(0.343)
                                                                       0.923
                                                      L2.garch
0.673
                                                                 (0.387)**
(0.085)***
                                                                      -0.450
                                                      L3.garch
0.292
                                                                  (0.450)
(0.276)
                                                      L4.garch
                                                                   -0.276
                                                                  (0.404)
                                                                      -0.348
                                                      cons
49.141
                                                                  (36.072)
(47.201)
                                            R-Squared
                                                                         172
                                            N
172
                                            SER
                                           _____
_____
                                                   * p<0.1; ** p<0.05; ***
p < 0.01
                                                  Standard
                                                               errors
                                                                          in
parentheses
• arch I L(1/4)I, arch(1/2) garch(1/2) iter(20)
(setting optimization to BHHH)
Iteration 0:
              log likelihood = -829.55709
              log\ likelihood = -822.12074
Iteration 1:
Iteration 2:
              log likelihood = -821.15222
              log likelihood = -819.75662
Iteration 3:
Iteration 4:
              log\ likelihood = -819.70336
```

```
(switching optimization to BFGS)
Iteration 5:
               log\ likelihood = -819.62313
               log likelihood = -819.48152
Iteration 6:
BFGS stepping has contracted, resetting BFGS Hessian (0)
Iteration 7:
               log\ likelihood = -819.45228
Iteration 8:
               log likelihood = -819.45225
                                            (backed up)
               log likelihood = -819.45017
Iteration 9:
                                            (backed up)
Iteration 10:
               log likelihood = -819.44713
                                            (backed up)
Iteration 11:
               log\ likelihood = -819.44551
                                            (backed up)
               log likelihood = -819.44526
Iteration 12:
Iteration 13:
               log likelihood = -819.4437
               log likelihood = -819.44268
Iteration 14:
(switching optimization to BHHH)
Iteration 15: log likelihood = -819.44108
Iteration 16:
              log likelihood = -819.43878
Iteration 17: log likelihood = -819.43809
Iteration 18: log likelihood = -819.43793
Iteration 19: log likelihood = -819.4342
(switching optimization to BFGS)
Iteration 20: log likelihood = -819.4342
convergence not achieved
ARCH family regression
```

Sample: 1958q1 - 2000q4	Number of obs	=	172
Distribution: Gaussian	Wald chi2(4)	=	44246.04
Log likelihood = -819.4342	Prob > chi2	=	0.0000

_							
			OPG				
	I	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
		+					
I		I					
_	I						
	L1.	1.0959	.084402	12.98	0.000	.9304754	1.261325
	L2.	.0384566	.1439935	0.27	0.789	2437655	.3206787
	L3.	114007	.1448829	-0.79	0.431	3979722	.1699582
	L4.	0064911	.101605	-0.06	0.949	2056331	.192651
	_cons	7802429	4.535202	-0.17	0.863	-9.669076	8.10859
		+					
- ARCH		I					
ARCI	arch						
	L1.	.1399264	.097268	1.44	0.150	0507153	.3305681
	L2.	.2136591	.0905534	2.36	0.018	.0361777	.3911405
					0.020		
	garch						
	L1.	0090347	.4281303	-0.02	0.983	8481546	.8300852
	L2.	.5680319	.4162285	1.36	0.172	2477609	1.383825
	_cons	102.0891	91.01313	1.12	0.262	-76.29336	280.4716

_

. outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starleve > ls (10 5 1) note("Standard errors in parentheses") merge

				ARCH/ GARCH	Tests
		I	L.I	1.167	1.165
1.096				(0.078)***	
(0.085)*** (0	.084)***		L2.I	-0.076	_
0.089 0.0	38			(0.109)	
(0.126) (0	.144)		L3.I	-0.094	_
0.079 -0.	114			(0.088)	
(0.103) (0	.145)		L4.I	0.016	0.018
-0.006			D4.I		0.010
(0.079) (0	.102)			(0.067)	
2.350 -0.	780		_cons	-1.481	-
(4.176) (4	.535)		_ ,	(4.018)	
0.140		ARCH	L.arch	0.257	0.277
(0.135)**	0.097)			(0.130)**	
0.214			L2.arch	-0.097	0.219
(0.089)** (0	.091)**			(0.202)	
0.211			L3.arch	-0.395	-
(0.155)				(0.128)***	
,			L4.arch	0.230 (0.153)	
0.270 -0.	009		L.garch	0.809	-
(0.343) (0				(0.666)	
0.568	• 420)		L2.garch	0.923	0.673
	0.416)			(0.387)**	
	0.416)		L3.garch	-0.450 (0.450)	0.292
(0.276)			L4.garch	-0.276	
			_cons	(0.404) -0.348	49.141
102.089				(36.072)	
(47.201) (9	1.013)				

```
R-Squared
                                                                 172
                                                                             172
172
                                        SER
                                                      * p<0.1; ** p<0.05; ***
p<0.01
                                                     Standard errors
                                                                            in
parentheses
. arch I L(1/4)I, arch(1) garch(1) iter(20)
(setting optimization to BHHH)
               log\ likelihood = -827.89443
Iteration 0:
Iteration 1:
               log likelihood = -824.81799
Iteration 2:
               log likelihood = -821.00987
Iteration 3:
               log\ likelihood = -820.03245
               log likelihood = -819.94187
Iteration 4:
(switching optimization to BFGS)
               log likelihood = -819.92524
Iteration 5:
               log likelihood = -819.90521
Iteration 6:
               log likelihood = -819.90409
Iteration 7:
Iteration 8:
               log likelihood = -819.90365
               log\ likelihood = -819.90357
Iteration 9:
Iteration 10: \log likelihood = -819.90356
Iteration 11: log likelihood = -819.90356
ARCH family regression
Sample: 1958q1 - 2000q4
                                                   Number of obs =
                                                   Number 5-
Wald chi2(4) = chi2 =
                                                                   = 42420.35
Distribution: Gaussian
Log likelihood = -819.9036
                                                                         0.0000
______
                                OPG
              Coef. Std. Err. z P>|z| [95% Conf. Interval]
Ι
           Ι

    1.078732
    .0848873
    12.71
    0.000
    .9123558
    1.245108

    .0708052
    .1431755
    0.49
    0.621
    -.2098136
    .351424

    -.1263202
    .1393596
    -0.91
    0.365
    -.3994601
    .1468197

         L1.
         L2.
         L3.
         L4.
                -.0099881 .1014887 -0.10 0.922 -.2089023
                                                                       .1889261
       _cons | -.5945724 4.662975 -0.13 0.899 -9.733836
                                                                       8.544691
ARCH
        arch
         L1.
                 .1544529 .0698861 2.21 0.027 .0174786 .2914271
       garch
```

L1.	.8129311	.085807	9.47	0.000	.6447525	.9811097
_cons	37.9188	37.82445	1.00	0.316	-36.21576	112.0533

_

[.] outreg using arch, bdec(3) se title("ARCH/ GARCH Tests") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starleve > ls (10 5 1) note("Standard errors in parentheses") merge

				ARCH/ GA	ARCH Tests
1.096	1.079	 I	L.I	1.167	1.165
(0.084)***				(0.078)***	(0.085)***
,	, ,		L2.I	-0.076	-0.089
0.038	0.071			(0.109)	(0.126)
	(0.143)		L3.I	-0.094	-0.079
-0.114	-0.126			(0.088)	(0.103)
(0.145)	(0.139)		L4.I	0.016	0.018
-0.006	-0.010			(0.067)	(0.079)
(0.102)	(0.101)		cons	-1.481	-2.350
-0.780	-0.595		_cons		
(4.535)	(4.663)		_	(4.018)	, ,
0.140	0.154	ARCH	L.arch	0.257	
(0.097)	(0.070)**			(0.130)**	(0.135)**
0.214			L2.arch	-0.097	0.219
(0.091)**				(0.202)	(0.089)**
(0.051)			L3.arch	-0.395	
			L4.arch	(0.128)***	(0.155)
			L.garch	(0.153) 0.809	-0.270
-0.009	0.813			(0.666)	(0.343)
(0.428)	(0.086)***		L2.garch	0.923	0.673
0.568			-	(0.387)**	(0.085)***
(0.416)			L3.garch	-0.450	0.292
			L4.garch	(0.450) -0.276 (0.404)	(0.276)

			_cons	-0.34	8	49.141
102.089	37.919			(36.072))	(47.201)
(91.013)	(37.824)	R-Squared				•
•		N		17	2	172
172	172	SER				
•	•			· 	, 	·
			*	p<0.1; *	* n<0	05• ***
p<0.01				tandard	-	•
parentheses			5	tandard	erro.	rs in
. predict g	var, v					
. label var	time "Time"					
<pre>play(stata_ recording s r(601);</pre>	oway (line gvar gphformat) name(gatata_gphformat not	archconvar, rep t found in eith	lace)			•
		ar Anarysis				
. gen lnI =						
. gen lnY =	log(Y)					
. dfuller l	nI					
Dickey-Full	er test for unit	root	Nui	mber of obs	s =	175
	Test Statistic	I 1% Critical Value	- 5% C:	ritical Value	10%	Critical Value
	-0.241	-3.485		-2.885		-2.575
_	pproximate p-value					
. dfuller l	nY					
Dickey-Full	er test for unit	root	Nui	mber of obs	s =	175
	Test Statistic	I 1% Critical Value	5% C:	ritical Value	10%	Critical Value
Z(t)	-0.034	-3.485		-2.885	- — -	-2.575

MacKinnon approximate p-value for Z(t) = 0.9556. gen I fd = lnI - L.lnI (1 missing value generated) . gen Y fd = lnY - L.lnY(1 missing value generated) . dfuller I fd Dickey-Fuller test for unit root Number of obs = ----- Interpolated Dickey-Fuller -----1% Critical 5% Critical 10% Critical Test Statistic Value Value -11.562 -3.485 -2.885 _____ MacKinnon approximate p-value for Z(t) = 0.0000. dfuller Y fd Number of obs = 174 Dickey-Fuller test for unit root Test 1% Critical 5% Critical 10% Critical Statistic Value Value ______ -9.920 -3.485 -2.885 MacKinnon approximate p-value for Z(t) = 0.0000. reg I fd Y fd Source SS df MS Number of obs = | Model | .266015344 | 1 .266015344 | Prob > F | = 0.0000 |
| Residual | .127550048 | 173 .000737284 | R-squared | = 0.6759 _____ I fd | Coef. Std. Err. t P>|t| [95% Conf. Interval] Y_fd | 3.234851 .1703014 18.99 0.000 2.898715 3.570987 cons | -.0178262 .0025594 -6.97 0.000 -.0228778 -.0127746

. predict cresid, resid

(1 missing value generated)

. dfuller cresid

Dickey-Fuller test for unit root

Number of obs = 174

	Test Statistic	Inte 1% Critical Value	erpolated Dickey-F 5% Critical Value	uller 10% Critical Value
Z(t)	-16.140	-3.485	-2.885	-2.575

MacKinnon approximate p-value for Z(t) = 0.0000

- . gen ect = L.cresid
 (2 missing values generated)
- . reg I_fd L(0/8).Y_fd L(1/8).I_fd ect note: L.Y_fd omitted because of collinearity

Source	ss	df	MS		ber of obs 7, 149)	=	167 23.27
Model	.263180661	17	.01548121	•	b > F	=	0.0000
Residual	.099134495	149	.00066533		quared	=	0.7264
	+				R-squared	=	0.6952
Total	.362315156	166	.00218262		t MSE	=	.02579
	,						
_ I_fd	Coef.	Std. Err.	t	P> t	[95% Co	nf.	<pre>Interval]</pre>
	+						
- Y fd	I						
	3.040279	.194724	15.61	0.000	2.65550	2	3.425056
L1.	0	(omitted)					
L2.	.2533246	·.3265832	0.78	0.439	392008	1	.8986573
L3.	.0726045	.3287765	0.22	0.826	577062		.7222711
L4.	.785034	.3321703	2.36	0.019	.128661	1	1.441407
L5.	2274536	.3244434	-0.70	0.484	86855	8	.4136508
L6.	0045289	.3247762	-0.01	0.989	64629	1	.6372332
L7.	2117834	.3257483	-0.65	0.517	855466	3	.4318994
L8.	4346998	.3296194	-1.32	0.189	-1.08603	2	.2166326
I fd							
L1.	.0336483	.0591367	0.57	0.570	083206	6	.1505031
L2.	0969644	.0810282	-1.20	0.233	257077		.0631484
L3.	0807527	.0811315	-1.00	0.321	241069		.0795641
L4.	1818905	.0798491	-2.28	0.024	339673	3	0241076
L5.	0636355	.0796243	-0.80	0.425	220974	2	.0937033
L6.	.0436412	.0791553	0.55	0.582	112770	7	.2000531
L7.	001038	.0792908	-0.01	0.990	157717	6	.1556416
L8.	0432127	.0796399	-0.54	0.588	200582	2	.1141568
ect	 2689016	.0973058	-2.76	0.006	461179	2	076624
cons	0144616	.0060017	-2.76 -2.41	0.008	461179		0026022
_cons	0144010	.000001/	-2.41	0.01/	02032	т	0020022

-

. outreg using ect, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels (10 5 > 1) note("Standard errors in parentheses") replace

	Regression	
		I_fd
	Y_fd	3.040
40.105		
(0.195)***	or v 4d	0 000
	oL.Y_fd	0.000 (0.000)
	L2.Y_fd	0.253
	12.1_14	(0.327)
	L3.Y_fd	0.073
	2011_14	(0.329)
	L4.Y_fd	0.785
		(0.332)**
	L5.Y_fd	-0.227
	_	(0.324)
	L6.Y_fd	-0.005
	_	(0.325)
	L7.Y_fd	-0.212
		(0.326)
	L8.Y_fd	-0.435
		(0.330)
	L.I_fd	0.034
		(0.059)
	L2.I_fd	-0.097
	-0 - 51	(0.081)
	L3.I_fd	-0.081
	T 4 T 6 1	(0.081)
	L4.I_fd	-0.182
	TE T 62	(0.080)**
	L5.I_fd	-0.064
	T6 T fd	(0.080) 0.044
	L6.I_fd	(0.079)
	L7.I_fd	-0.001
	ш/•т_та	(0.079)
	L8.I_fd	-0.043
	10.1_14	(0.080)
	ect	-0.269
		0.203
(0.097)***		
\	_cons	-0.014
	· · · ·	(0.006)**
	R-Squared	0.726
	N	167
	SER	0.03

42

p<0.01
parentheses

. reg I_fd L(0/8).Y_fd L(1/8).I_fd ect note: L.Y_fd omitted because of collinearity

Source	SS	df	MS		ber of obs	=	167 23.27
Model	.263180661	17	.01548121	,	b > F	=	0.0000
Residual	.099134495	149	.000665332		quared	=	0.7264
	•0551 5 1155 				R-squared	=	0.6952
Total	.362315156	166	.00218262		t MSE	=	.02579
10001	1 00000000000				0 110_		0020,5
_							
I_fd	Coef.	Std. Err.	t	P> t	[95% Con	f.	<pre>Interval]</pre>
	+						
- Y fd							
- 	3.040279	.194724	15.61	0.000	2.655502		3.425056
L1.	0	(omitted)					
L2.	.2533246	.3265832	0.78	0.439	3920081		.8986573
L3.	.0726045	.3287765	0.22	0.826	5770621		.7222711
L4.	.785034	.3321703	2.36	0.019	.1286611		1.441407
L5.	2274536	.3244434	-0.70	0.484	868558		.4136508
L6.	0045289	.3247762	-0.01	0.989	646291		.6372332
L7.	2117834	.3257483	-0.65	0.517	8554663		.4318994
L8.	4346998	.3296194	-1.32	0.189	-1.086032		.2166326
I_fd							
L1.	.0336483	.0591367	0.57	0.570	0832066		.1505031
L2.	0969644	.0810282	-1.20	0.233	2570773		.0631484
L3.	0807527	.0811315	-1.00	0.321	2410696		.0795641
L4.	1818905	.0798491	-2.28	0.024	3396733		0241076
L5.	0636355	.0796243	-0.80	0.425	2209742		.0937033
L6.	.0436412	.0791553	0.55	0.582	1127707		.2000531
L7.	001038	.0792908	-0.01	0.990	1577176		.1556416
L8.	0432127	.0796399	-0.54	0.588	2005822		.1141568
_ ,	2600016	0072050	2.76	0 005	4611500		076604
ect	2689016	.0973058	-2.76	0.006	4611793		076624
_cons	0144616	.0060017	-2.41	0.017	026321		0026022

. predict cresid2, resid
(9 missing values generated)

. reg cresid2 L.cresid2, noc

Source	SS	df	MS	Number of obs	=	166
 +				F(1, 165)	=	0.33
Model	.000199763	1	.000199763	Prob > F	=	0.5644
Residual	.098855772	165	.000599126	R-squared	=	0.0020
 				Adj R-squared	=	-0.0040
Total	.099055535	166	.00059672	Root MSE	=	.02448

- cresid2	Coef.	Std. Err.		P> t	[95% Conf	. Interval]
cresid2		.0777568	-0.58	0.564	1984256	.1086276
_						
<pre>. outreg summstat(r2\N' > arlevels (10)</pre>		le("R-Squar	ced"\"N"\"	SER") su	ummdec(3 0 2)	
					Regre	ssion
-						cresid2
_						
					L.cresid2	-0.045 (0.078)
					R-Squared	0.002
					N SER	166 0.02
_				*	p<0.1; ** p	<0.05; ***
p<0.01				S+ a	andard er	rors in
p<0.01 parentheses				Sta	andard er	rors in
_				Sta	andard er	rors in
parentheses	L(1/4).cresid	2 L(0/4).Y_	_fd	Sta	andard er	rors in
parentheses . reg cresid2 Source	ss	df	MS	Numk	per of obs	= 163
parentheses . reg cresid2 Source	ss +	df	MS	Numk - F(9,	per of obs	= 163 = 0.19
parentheses . reg cresid2 Source Model	ss	df 9	MS 	Numk - F(9, 9 Prok 8 R-sc	per of obs , 153) p > F quared	= 163 = 0.19 = 0.9948 = 0.0111
parentheses reg cresid2 Source Model Residual	SS + .001061004 .094153134 +	df 9 153	MS .00011788 .0006153	Numb - F(9, 9 Prob 8 R-so - Adj	per of obs , 153) o > F quared R-squared	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470
parentheses . reg cresid2 Source Model	SS + .001061004 .094153134 +	df 9 153	MS .00011788 .0006153	Numb - F(9, 9 Prob 8 R-so - Adj	per of obs , 153) p > F quared	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470
parentheses . reg cresid2 Source Model Residual Total	SS 	df 9 153 162	MS .00011788 .0006153	Numk - F(9, 9 Prok 8 R-so - Adj 2 Root	per of obs 153) > F quared R-squared MSE	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses reg cresid2 Source Model Residual	SS 	df 9 153 162	MS .00011788 .0006153	Numk - F(9, 9 Prok 8 R-so - Adj 2 Root	per of obs , 153) o > F quared R-squared	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses . reg cresid2 Source Model Residual Total cresid2	SS 	df 9 153 162	MS .00011788 .0006153	Numk - F(9, 9 Prok 8 R-so - Adj 2 Root	per of obs 153) > F quared R-squared MSE	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses . reg cresid2 Source Model Residual Total cresid2 cresid2	SS 	df 9 153 162 Std. Err.	MS .00011788 .0006153 .00058774	Numb - F(9, 9 Prob 8 R-sc - Adj 2 Root 	per of obs , 153) > F quared R-squared : MSE	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses . reg cresid2 Source Model Residual Total cresid2 cresid2 L1.	SS 	df 9 153 162 Std. Err.	MS .00011788 .0006153 .00058774	Numb - F(9, 9 Prob 8 R-sc - Adj 2 Root P> t	per of obs , 153) p > F quared R-squared MSE [95% Conf	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses . reg cresid2 Source Model Residual Total cresid2 cresid2 L1. L2.	SS 	df 9 153 162 Std. Err.	MS .00011788 .0006153 .00058774 t	Numb - F(9, 9 Prob 8 R-sc - Adj 2 Root P> t 0.527 0.986	per of obs , 153) o > F quared R-squared MSE [95% Conf	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481 . Interval] .1083332 .161097
parentheses . reg cresid2 Source Model Residual Total cresid2 cresid2 L1.	SS 	df 9 153 162 Std. Err. .0807366 .0808483	MS .00011788 .0006153 .00058774	Numb - F(9, 9 Prob 8 R-sc - Adj 2 Root P> t	per of obs , 153) p > F quared R-squared MSE [95% Conf	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481
parentheses . reg cresid2 Source Model Residual Total cresid2 L1. L2. L3. L4.	SS 	df 9 153 162 Std. Err. .0807366 .0808483 .0802303	MS .00011788 .0006153 .00058774 t -0.63 0.02 0.23	Numb - F(9, 9 Prob 8 R-se - Adj 2 Root P> t 0.527 0.986 0.822	per of obs , 153) o > F quared R-squared MSE [95% Conf 2106717 1583491 1403724	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481 . Interval] .1083332 .161097 .1766319
parentheses . reg cresid2 Source Model Residual Total cresid2 cresid2 L1. L2. L3.	SS 	df 9 153 162 Std. Err. .0807366 .0808483 .0802303	MS .00011788 .0006153 .00058774 t -0.63 0.02 0.23	Numb - F(9, 9 Prob 8 R-se - Adj 2 Root P> t 0.527 0.986 0.822	per of obs 153) > F quared R-squared MSE [95% Conf 2106717 1583491 1403724 2354298	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481 . Interval] .1083332 .161097 .1766319
parentheses . reg cresid2 Source Model Residual Total cresid2 L1. L2. L3. L4. Y_fd	SS 	df 9 153 162 Std. Err. .0807366 .0808483 .0802303 .0808303	MS .00011788 .0006153 .00058774 t -0.63 0.02 0.23 -0.94	Numb - F(9, 9 Prob 8 R-so - Adj 2 Root P> t 0.527 0.986 0.822 0.350	per of obs 153) > F quared R-squared MSE [95% Conf 2106717 1583491 1403724 2354298	= 163 = 0.19 = 0.9948 = 0.0111 = -0.0470 = .02481 . Interval] .1083332 .161097 .1766319 .0839454

					4105253 3542361	
_cons	4.25e-06	.0033474	0.00	0.999	0066089	.0066174

- . testparm L(1/4).cresid2 L(0/4).Y_fd
- (1) L.cresid2 = 0 (2) L2.cresid2 = 0 (3) L3.cresid2 = 0 (4) L4.cresid2 = 0 (5) Y_fd = 0

- (6) $L.Y_fd = 0$
- $(7) L2.\overline{Y}_fd = 0$
- $(8) L3.Y_fd = 0$
- (9) L4.Y fd = 0

$$F(9, 153) = 0.19$$

 $Prob > F = 0.9948$

outreg using serial correlation, bdec(3) se title("Regression") summstat(r2 Nrmse) summtitle("R-Squared" N"\"SER") summdec(3 0 2) st > ar levels (10 5 1) note("Standard errors in parentheses") merge

	Regression		
		cresid2	
cresid2			
	L.cresid2	-0.045 -	
0.051			
(0.081)	L2.cresid2	(0.078)	
(0.081)	L3.cresid2	0.018	
(0.080)	L4.cresid2	_	
0.076			
(0.081)	Y_fd	_	
0.088			
(0.182)	L.Y_fd	0.105	
(0.184)	L2.Y_fd	0.028	
(0.185)			

0.049				L3.	_fd			-
(0.183)								
0.006				L4.Y	_fd			-
(0.176)				_cor	ıs		0.0	000
(0.003)								
				R-So N	_	16		163
				SER		0.0	2 0.	.02
				* p	<0.1;	** p<	0.05;	***
p<0.01				_		erro		in
parentheses				5041	raar a	011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
rog T fd tim	no timo?							
. reg I_fd tim								
Source +			MS	- F(2,	172)	=	0.	.27
Model Residual	.001246402 .39231899	2 172	.000623201	l Prob l R-squ	> F	=	0.76	513 032
+ Total	.393565391			- Adj E	R-squar	ed =	-0.00	084
· 								
- I fd	Coef.	S+d Frr	+	ן + כּת	r 0 5 9	Conf	Interv	a 1 1
+								
time	0001359	.0002508	-0.54	0.589	00	00631	.00035	592
time2 _cons	1.05e-06 .0128122	1.58e-06 .0082788	0.66 1.55		-2.07 003		4.17e- .02915	
-								
. outreg using summtitle("R-S" > (10 5 1) no	Squared"\"N"\"	SER") summ	dec(3 0 2)	starleve	els	nmstat(1	:2\N\rms	se)
						Regress	sion	
-							I_fd	

	I_fd
time	-0.000
	(0.000)
time2	0.000
	(0.000)
_cons	0.013
	(0.008)

R-Squared 0.003 175 0.05

p<0.01

parentheses

* p<0.1; ** p<0.05; ***

Standard errors in

- gen quarter = mod(time, 4)+1
- . reg I fd i.quarter

Source	SS	df	MS	Numb	er of obs	=	175
+				F(3,	171)	=	0.63
Model	.004278061	3	.00142602	Prob	> F	=	0.5989
Residual	.38928733	171	.002276534	R-sq	uared	=	0.0109
t	- 			Adj 1	R-squared	=	-0.0065
Total	.393565391	174	.00226187	Root	MSE	=	.04771
-							
I_fd	Coef.	Std. Err.	t	P> t	[95% Co	nf.	<pre>Interval]</pre>
+	·						
-	ı						
quarter							
2	0069712	.0102314	-0.68	0.497	0271673	3	.013225
3	0087589	.0102314	-0.86	0.393	028955	1	.0114373
4	0138567	.0102314	-1.35	0.177	0340528	8	.0063395
_cons	.0186524	.0072762	2.56	0.011	.0042897	7	.033015

- . testparm i.quarter
- (1) 2.quarter = 0
- (2) 3.quarter = 0
- (3) 4.quarter = 0

F(3, 171) = 0.63 Prob > F = 0.5989

. reg I_fd L(0/8).Y_fd L(1/8).I_fd ect note: L.Y_fd omitted because of collinearity

Source	SS	df	MS	Number of ob $F(17, 149)$	s = =	167 23.27
Model Residual	.263180661 .099134495	17 149	.015481215	Prob > F R-squared	=	0.0000 0.7264
Total	.362315156	166	.002182621	Adj R-square Root MSE	d = =	0.6952 .02579
	Coef.	Std. Err.	 t	 P> t [95%	Conf.	Interval]

	+					
_						
Y_fd						
	3.040279	.194724	15.61	0.000	2.655502	3.425056
L1.	0	(omitted)				
L2.	.2533246	.3265832	0.78	0.439	3920081	.8986573
L3.	.0726045	.3287765	0.22	0.826	5770621	.7222711
L4.	.785034	.3321703	2.36	0.019	.1286611	1.441407
L5.	2274536	.3244434	-0.70	0.484	868558	.4136508
L6.	0045289	.3247762	-0.01	0.989	646291	.6372332
L7.	2117834	.3257483	-0.65	0.517	8554663	.4318994
L8.	4346998	.3296194	-1.32	0.189	-1.086032	.2166326
I_fd						
L1.	.0336483	.0591367	0.57	0.570	0832066	.1505031
L2.	0969644	.0810282	-1.20	0.233	2570773	.0631484
L3.	0807527	.0811315	-1.00	0.321	2410696	.0795641
L4.	1818905	.0798491	-2.28	0.024	3396733	0241076
L5.	0636355	.0796243	-0.80	0.425	2209742	.0937033
L6.	.0436412	.0791553	0.55	0.582	1127707	.2000531
L7.	001038	.0792908	-0.01	0.990	1577176	.1556416
L8.	0432127	.0796399	-0.54	0.588	2005822	.1141568
ect	2689016	.0973058	-2.76	0.006	4611793	076624
_cons	0144616	.0060017	-2.41	0.017	026321	0026022

. outreg using laglength, bdec(3) se title("Regression") summstat($r2\N\mbox{mse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") replace

	Regre	ession
		I_fd
	Y_fd	3.040
(0.195)***		
	oL.Y_fd	0.000 (0.000)
	L2.Y_fd	0.253 (0.327)
	L3.Y_fd	0.073 (0.329)
	L4.Y_fd	0.785 (0.332)**
	L5.Y_fd	-0.227 (0.324)
	L6.Y_fd	-0.005 (0.325)
	L7.Y_fd	-0.212 (0.326)
	L8.Y_fd	-0.435 (0.330)
	L.I_fd	0.034

						(0.059)
					L2.I_fd	-0.097
						(0.081)
					L3.I_fd	-0.081
					T4 T 51	(0.081)
					L4.I_fd	-0.182
					T	(0.080)**
					L5.I_fd	-0.064
					T6 T fd	(0.080) 0.044
					L6.I_fd	(0.079)
					L7.I_fd	-0.001
					17.1_14	(0.079)
					L8.I_fd	-0.043
					2011_14	(0.080)
					ect	-0.269
						01203
(0.097)***						
(,					_cons	-0.014
					_	(0.006)**
					R-Squared	0.726
					N	167
					SER	0.03
				*	p<0.1; **	p<0.05; ***
p<0.01						
				Sta	andard e	rrors in
parentheses						
parentneses						
. reg I_fd L(0						
. reg I_fd L(0 note: L.Y_fd o	mitted becaus	se of colli	nearity	Normal		160
. reg I_fd L(0					per of obs	= 168
. reg I_fd L(0 note: L.Y_fd o	mitted becaus	se of colli df	nearity MS	- F(1	5, 152)	= 24.63
. reg I_fd L(0 note: L.Y_fd composed Source Model	ss .258053428	se of colli df 15	mearity MS 	- F(19 2 Prol	5, 152) b > F	= 24.63 = 0.0000
. reg I_fd L(0 note: L.Y_fd o	mitted becaus	se of colli df	nearity MS	F(1! Prol R-so	5, 152) o > F quared	= 24.63 = 0.0000 = 0.7085
. reg I_fd L(0 note: L.Y_fd composed Source Model Residual	ss 	df df 152	MS .017203562 .000698351	F(1! Prol R-so Adj	5, 152) o > F quared R-squared	= 24.63 = 0.0000 = 0.7085 = 0.6798
. reg I_fd L(0 note: L.Y_fd composed Source Model	ss .258053428	se of colli df 15	mearity MS 	F(1! Prol R-so Adj	5, 152) o > F quared	= 24.63 = 0.0000 = 0.7085
. reg I_fd L(0 note: L.Y_fd composed Source Model Residual	ss 	df df 152	MS .017203562 .000698351	F(1! Prol R-so Adj	5, 152) o > F quared R-squared	= 24.63 = 0.0000 = 0.7085 = 0.6798
. reg I_fd L(0 note: L.Y_fd composed Source Model Residual	ss 	df df 152	MS .017203562 .000698351	F(1! Prol R-so Adj	5, 152) o > F quared R-squared	= 24.63 = 0.0000 = 0.7085 = 0.6798
. reg I_fd L(0 note: L.Y_fd conote:	ss .258053428 .106149368 .364202796	df	MS .017203562 .000698351 .002180855	F(1! Prol R-so Adj Roo	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd composed Source Model Residual	ss .258053428 .106149368 .364202796	df df 152	MS .017203562 .000698351 .002180855	F(1! Prol R-so Adj Roo	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798
. reg I_fd L(0 note: L.Y_fd conote:	ss .258053428 .106149368 .364202796	df	MS .017203562 .000698351 .002180855	F(1! Prol R-so Adj Roo	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd of source	ss .258053428 .106149368 .364202796	df	MS .017203562 .000698351 .002180855	F(1! Prol R-so Adj Roo	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	ss .258053428 .106149368 .364202796	df	MS .017203562 .000698351 .002180855	F(1! Prol R-so Adj Roo	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .364202796	df 15 152 167 Std. Err.	MS .017203562 .000698351 .002180855	P> t	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd of source	SS .258053428 .106149368 .364202796	df 15 152 167 Std. Err192218 (omitted)	MS 	P> t	5, 152) b > F quared R-squared t MSE [95% Con:	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .364202796 .Coef3.085734 0 .2189948	df 15 152 167 Std. Err. .192218 (omitted) .3338783	MS .017203562 .000698351 .002180855	P> t 0.000	5, 152) b > F quared R-squared t MSE	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd of source	SS .258053428 .106149368 .364202796	df 15 152 167 Std. Err192218 (omitted)	MS017203562 .000698351002180855	P> t	5, 152) b > F quared R-squared t MSE [95% Con: 2.70597	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161 .3232242	MS	P> t 0.000 0.513 0.918	5, 152) b > F quared R-squared t MSE [95% Con: 2.7059744064666968151	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161	MS	P> t 0.000 0.513 0.918 0.026 0.322	5, 152) b > F quared R-squared t MSE [95% Consecution	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .106149368 .364202796	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161 .3232242 .3308438	MS	F(1) Prol R-sc Adj Roo P> t 0.000 0.513 0.918 0.026	5, 152) b > F quared R-squared t MSE [95% Consequence] 2.70597 44064666968151 .08731249821437	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .106149368 .364202796	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161 .3232242 .3308438 .3322129	MS	F(1) Prol R-sc Adj Roo No N	5, 152) b > F quared R-squared t MSE [95% Consequence] 2.70597 44064666968151 .087312498214376941457	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .106149368 .364202796	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161 .3232242 .3308438 .3322129	MS	F(1) Prol R-sc Adj Roo No N	5, 152) b > F quared R-squared t MSE [95% Consequence] 2.70597 44064666968151 .087312498214376941457	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643
. reg I_fd L(0 note: L.Y_fd conote:	SS .258053428 .106149368 .106149368 .364202796	df 15 152 167 Std. Err. .192218 (omitted) .3338783 .3351161 .3232242 .3308438 .3322129	MS	F(1) Prol R-sc Adj Roo No N	5, 152) b > F quared R-squared t MSE [95% Consequence] 2.70597 44064666968151 .087312498214376941457	= 24.63 = 0.0000 = 0.7085 = 0.6798 = .02643

L2. L3. L4. L5.	0904312 0243251 1648775 0296092 .0525083	.0825159 .0810972 .0799499 .0807777 .0809126	-1.10 -0.30 -2.06 -0.37 0.65	0.275 0.765 0.041 0.714 0.517	2534573 1845484 322834 1892013 1073503	.0725949 .1358982 006921 .129983 .2123668
L7. ect _cons	.0081161 2474393 0163138	.0793656 .0992815 .0056179	0.10 -2.49 -2.90	0.919 0.014 0.004	148686 4435893 027413	.1649182 0512893 0052146

_

[.] outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

		Regression
 I_fd		I_fd
	Y_fd	3.040 3.086 (0.195)***
(0.192)***	oL.Y_fd	0.000 0.000 (0.000)
(0.000)	L2.Y_fd	0.253 0.219 (0.327)
(0.334)	L3.Y_fd	0.073 -
0.035		(0.329)
(0.335)	L4.Y_fd	0.785 (0.332)**
(0.323)**	L5.Y_fd	-0.227 -
0.328		(0.324)
(0.331)	L6.Y_fd	-0.005 -
0.038		(0.325)
(0.332)	L7.Y_fd	-0.212 -
0.391		(0.326)
(0.325)	L8.Y_fd	-0.435
40.050)	L.I_fd	(0.330) 0.034 0.054 (0.059)
(0.060)	L2.I_fd	-0.097 -
0.090		

(0.093)								(0.08	1)		
(0.083)						L3.I_f	d		-0.0	81		-
0.024								(0.08	1)		
(0.081)						L4.I_f	d		-0.1	82		_
0.165								(0	.080)**		
(0.080)**						L5.I_f	d		-0.0	064		_
0.030						_		(0.08			
(0.081)						L6.I_f	d	0.	044 0.07	ŕ	0.0)53
(0.081)						L7.I_f	d	-0	.001 0.07		0.0	800
(0.079)						L8.I_f	d		-0.0 0.08			
0.247						ect		`	-0.2			-
								(0	.097)***	:	
(0.099)**						_cons			-0.0	14		_
0.016								(0	.006)**		
(0.006)***						R-Squa	red				0.7	726
0.709						N SER			167 .03			L68 .03
					-							
p<0.01						_	<0.1;	* *	· p<	0.05	5; *	***
parentheses						Stan	dard		err	ors		in
. reg I_fd L((
Source	SS		df	MS		Numbe:	r of o	bs	=		1	169
Model	.260692459 .109060957		13	.020053266	5	Prob	155) > F		=		0.00	000
Residual	.109060957 		155 	.000703619) -	R-squa Adj R	ared -squai	ced	=		0.70)50 303
Total	.369753415		168	.002200913	3	Root 1	MSE		=		.026	553
I_fd	Coef.	Std.	Err.	t	P>	· t	959]	È C	onf.	Int	erva	al]
- Y_fd		-			_	· — -		_		_ -		

	3.137651	.19099	16.43	0.000	2.760372	3.51493
L1.	0	(omitted)				
L2.	.159292	.3337068	0.48	0.634	4999081	.8184922
L3.	1129391	.3204387	-0.35	0.725	7459296	.5200514
L4.	.6762557	.3234599	2.09	0.038	.0372971	1.315214
L5.	3577797	.3313736	-1.08	0.282	-1.012371	.2968115
L6.	1525259	.3246796	-0.47	0.639	7938938	.488842
I_fd						
L1.	.0598896	.0595826	1.01	0.316	0578091	.1775882
L2.	0565543	.0810875	-0.70	0.487	2167335	.1036248
L3.	0133882	.079555	-0.17	0.867	1705402	.1437638
L4.	1485876	.0796729	-1.86	0.064	3059724	.0087972
L5.	0243046	.080944	-0.30	0.764	1842003	.1355911
L6.	.0558661	.0794501	0.70	0.483	1010787	.2128109
ect	2528969	.0994602	-2.54	0.012	4493694	0564244
_cons	0179883	.0051984	-3.46	0.001	0282571	0077195

_

[.] outreg using laglength, bdec(3) se title("Regression") summstat($r2\N\mbox{rmse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

		110920222011				
 I_fd		I_fd	I_fd			
3.138	Y_fd	3.040	3.086			
(0.191)***	- · · · · · · · · · · · · · · · · · · ·		(0.192)***			
0.000	oL.Y_fd	0.000	0.000			
(0.000) 0.159	L2.Y_fd	0.253	0.219			
(0.334)	L3.Y_fd	(0.327) 0.073	(0.334) -0.035			
-0.113 (0.320)	_	(0.329)				
0.676	L4.Y_fd	0.785	0.726			
(0.323)** -0.358	L5.Y_fd	-0.227	-0.328			
(0.331)	L6.Y_fd	(0.324) -0.005	(0.331) -0.038			
-0.153	10.1_1d	-0.003	-0.030			

Regression

(0. 225)		(0.325)	(0.332)
(0.325)	L7.Y_fd	-0.212 (0.326)	-0.391 (0.325)
	L8.Y_fd	-0.435	(0.323)
0.060	L.I_fd	(0.330) 0.034	0.054
0.060		(0.059)	(0.060)
(0.060)	L2.I_fd	-0.097	-0.090
-0.057		(0.081)	(0.083)
(0.081)	L3.I_fd	-0.081	-0.024
-0.013		(0.081)	(0.081)
(0.080)	L4.I_fd	-0.182	-0.165
-0.149		(0.080)**	(0.080)**
(0.080)*	L5.I_fd	-0.064	-0.030
-0.024		(0.080)	(0.081)
(0.081)	L6.I_fd	0.044	0.053
0.056	_	(0.079)	(0.081)
(0.079)	L7.I_fd	-0.001	0.008
	L8.I_fd	(0.079) -0.043	(0.079)
	_	(0.080)	0 247
-0.253	ect	-0.269	-0.247
(0.099)**		(0.097)***	(0.099)**
-0.018	_cons	-0.014	-0.016
(0.005)***			(0.006)***
0.705	R-Squared		0.709
169	N	167	168
0.03	SER	0.03	0.03
p<0.01		p<0.1; ** p	
parentheses	Sta	andard er	rors in

. reg I_fd L(0/5).Y_fd L(1/5).I_fd ect note: L.Y_fd omitted because of collinearity

Source	ss	df	MS		er of obs	=	170
				,	, 158)	=	34.74
Model	.264753745	11	.024068522			=	0.0000
Residual	.109472744	158	.000692865		uared	=	0.7075
					R-squared	=	0.6871
Total	.37422649	169	.002214358	8 Root	MSE	=	.02632
-							
I_fd	Coef.	Std. Err.	t	P> t	[95% Co	onf.	<pre>Interval]</pre>
	t						
Y_fd							
	3.153785	.186528	16.91	0.000	2.78537	75	3.522195
L1.	0	(omitted)					
L2.	.1481697	.3157765	0.47	0.640	475517	79	.7718574
L3.	1075455	.3172349	-0.34	0.735	734113	37	.5190226
L4.	.683043	.3200498	2.13	0.034	.050915	52	1.315171
L5.	3240154	.3196482	-1.01	0.312	9553	35	.3073193
I_fd							
$\overline{\mathtt{L}}1.$.0594143	.0585093	1.02	0.311	05614	17	.1749757
L2.	0616691	.0786421	-0.78	0.434	216994	15	.0936563
L3.	0157896	.078436	-0.20	0.841	170707	78	.1391286
L4.	1518748	.0788677	-1.93	0.056	307645	58	.0038962
L5.	0342023	.0784842	-0.44	0.664	189215	58	.1208113
ect	2567986	.0983626	-2.61	0.010	451073	39	0625233
_cons	0189131	.0046712	-4.05	0.000	028139	91	009687

[.] outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

		Regression		
		I_fd	I_fd	I_fd
I_fd			·	
	Y_fd	3.040	3.086	3.138
3.154	_	(0.195)***	((0.192)***
(0.191)*** (0.187)***	oL.Y_fd	0.000	0.000	0.000
0.000		(0.000)		(0.000)
(0.000) (0.000)	L2.Y_fd	0.253	0.219	0.159
0.148		(0.327)		(0.334)
(0.334) (0.316)	L3.Y_fd	0.073	-0.03	35 –
0.113 -0.108				

(0. 220)	(0. 217)		(0.329)		(0.335)
(0.320)	(0.31/)	L4.Y_fd	0.785	0.726	0.676
0.683			(0.332)**	(0	.323)**
,	(0.320)**	L5.Y_fd	-0.227	-0.328	_
0.358	-0.324		(0.324)		(0.331)
(0.331)	(0.320)	L6.Y_fd	-0.005	-0.038	_
0.153		_	(0.325)		(0.332)
(0.325)		17 V fd	-0.212	-0.391	(0002)
		L7.Y_fd	(0.326)		
		L8.Y_fd	-0.435 (0.330)		
0.059		L.I_fd	0.034	0.054	0.060
	(0.050)		(0.059)		(0.060)
,	(0.059)	L2.I_fd	-0.097	-0.090	_
0.057	-0.062		(0.081)		(0.083)
(0.081)	(0.079)	L3.I_fd	-0.081	-0.024	_
0.013	-0.016		(0.081)		(0.081)
(0.080)	(0.078)	L4.I_fd	-0.182	-0.165	
0.149	-0.152		(0.080)**		.080)**
(0.080)*	(0.079)*	15 T fd	-0.064	-0.030	·
0.024	-0.034	L5.I_fd			
(0.081)	(0.078)		(0.080)		(0.081)
		L6.I_fd	0.044 (0.079)	0.053	0.056 (0.081)
(0.079)		L7.I_fd	-0.001	0.008	
		L8.I_fd	(0.079) -0.043	(0.079)	
		_	(0.080)		
0.253	-0.257	ect	-0.269	-0.247	_
(0.099)**	(0.098)***		(0.097)***	(0	.099)**
0.018	-0.019	_cons	-0.014	-0.016	_
(0.005)***			(0.006)**	(0.	006)***
	(0.005)	R-Square	ed 0.726	0.709	0.705
0.707		N	167	168	169
170					

0.03	SER	0.03	0.03	0.03
		* ~ 0 1.	** p<0.05;	
p<0.01		Standard	errors	in
parentheses		Beandara	CITOID	-11

. reg I_fd L(0/4).Y_fd L(1/4).I_fd ect note: L.Y_fd omitted because of collinearity

Source	ss	df	MS		ber of obs	=	171 41.11
Model Residual	.261675648 .113855215	9 161	.029075072	Pro	b > F quared R-squared	=	0.0000 0.6968 0.6799
Total	.375530863	170	.002209005		t MSE	=	.02659
	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
_ Y_fd	1						
	3.21922	.185753	17.33	0.000	2.8523	۸ ۵	3.586047
 L1.	0	(omitted)	17.55	0.000	2.0323	74	3.300047
L2.	.0975636	.318343	0.31	0.760	53110	27	.7262299
L3.	1618133	.3192828		0.700	79233		.468709
L4.	.5493323	.3151804	1.74	0.013	073088		1.171753
I_fd							
L1.	.059694	.0564403		0.292	05176	-	.1711528
L2.	0435832	.079004		0.582	1996		.1124345
L3.	008251	.0790304	-0.10	0.917	16432		.1478189
L4.	146152	.0779462	-1.88	0.063	30008	80	.0077768
ect	2540617	.0952492		0.008	44216		0659627
_cons	0209986	.0042436	-4 . 95	0.000	0293	79 	0126183

[.] outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

			Regression		
I_fd	 I fd		I_fd	I_fd	I_fd
	_ 	 - Y_fd	3.040	3.086	3.138
3.154 (0.187)***	3.219 (0.186)***		(0.195)***	(0.192)***	(0.191)***

		T T C 1	0.000	0.000	0.000
0.000	0.000	oL.Y_fd	0.000	0.000	0.000
(0.000)	(0.000)		(0.000)	(0.000)	(0.000)
0.148	0.098	L2.Y_fd	0.253	0.219	0.159
			(0.327)	(0.334)	(0.334)
(0.316)	(0.318)	L3.Y_fd	0.073	-0.035	-0.113
-0.108	-0.162	_	(0.329)	(0.335)	(0.320)
(0.317)	(0.319)	L4.Y_fd	0.785	0.726	0.676
0.683	0.549	114.1_1u			
(0.320)**	(0.315)*		(0.332)**	(0.323)**	(0.323)**
-0.324		L5.Y_fd	-0.227	-0.328	-0.358
(0.320)			(0.324)	(0.331)	(0.331)
(33323)		L6.Y_fd	-0.005	-0.038	-0.153
		17 V fd	(0.325) -0.212	(0.332) -0.391	(0.325)
		L7.Y_fd	(0.326)	(0.325)	
		L8.Y_fd	-0.435	(0.323)	
		_	(0.330)		
		L.I_fd	0.034	0.054	0.060
0.059	0.060				
(0.050)	(0.056)		(0.059)	(0.060)	(0.060)
(0.059)	(0.056)	L2.I_fd	-0.097	-0.090	-0.057
-0.062	-0.044				
(0.079)	(0.079)		(0.081)	(0.083)	(0.081)
-0.016	-0.008	L3.I_fd	-0.081	-0.024	-0.013
(0.078)	(0.079)		(0.081)	(0.081)	(0.080)
,	,	L4.I_fd	-0.182	-0.165	-0.149
-0.152	-0.146		(0.080)**	(0.080)**	(0.080)*
(0.079)*	(0.078)*	L5.I_fd	-0.064	-0.030	-0.024
-0.034			(0.080)	(0.081)	(0.081)
(0.078)					,
		L6.I_fd	0.044	0.053	0.056
		17 T fd	(0.079) -0.001	(0.081) 0.008	(0.079)
		L7.I_fd	(0.079)	(0.079)	
		L8.I_fd	-0.043	(0.019)	
			(0.080)		
		ect	-0.269	-0.247	-0.253
-0.257	-0.254				
(0.098)***	(0.095)***		(0.097)***	(0.099)**	(0.099)**
-0.019	-0.021	_cons	-0.014	-0.016	-0.018
					

(0.005)***	(0.004)***		(0.006)**	(0.006)***	(0.005)***
,	,	R-Squared	0.726	0.709	0.705
0.707	0.697	N	167	168	169
170	171	ann.	0.00	0.02	0.00
0.03	0.03	SER	0.03	0.03	0.03
			*]	p<0.1; ** p	<0.05; ***
p<0.01			S+a	ndard er	rors in
parentheses			564	naara er	1015 111
	L(0/3).Y_fd L(1/3).I d omitted because of		У		
Sourc	e SS	df	MS Numb	er of obs	= 172
	+		F(7,	164)	= 52.19

Source	SS	df	MS	Number of obs	=	172
				F(7, 164)	=	52.19
Model	.264704742	7	.037814963	Prob > F	=	0.0000
Residual	.11883008	164	.000724574	R-squared	=	0.6902
				Adj R-squared	=	0.6769
Total	.383534822	171	.002242894	Root MSE	=	.02692

-	I_fd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_		,					
	Y_fd						
		3.161152	.1801162	17.55	0.000	2.805506	3.516797
	L1.	0	(omitted)				
	L2.	.1393297	.3207498	0.43	0.665	4940019	.7726613
	L3.	3058147	.3149064	-0.97	0.333	9276084	.3159789
	I fd						
	$\overline{\mathtt{L}}1$.	.0516347	.056969	0.91	0.366	0608526	.164122
	L2.	0354157	.0798075	-0.44	0.658	1929983	.122167
	L3.	.0346821	.0780132	0.44	0.657	1193576	.1887217
	ect	 2642588	.0962501	-2.75	0.007	4543079	0742097
	cons	0164163	.0037962	-4.32	0.007	023912	0089205
	_cons	0104103	.0037902	-4.32	0.000	023912	0009203

[.] outreg using laglength, bdec(3) se title("Regression") summstat($r2\N\mbox{rmse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

				Regression		
 I_fd	 I_fd	 I_fd	I_fd	I_fd	I_fd	

0.010	0.161	Y_fd	3.040	3.086	3.138	3.154
3.219			(0.195)***	(0.192)*	** (0.191)***
(0.187)***	,	(0.180)*** oL.Y_fd	0.000	0.000	0.000	0.000
0.000	0.000		(0.000)	(0.000) (0.	.000)
(0.000)	(0.000)	(0.000) L2.Y_fd	0.253	0.219	0.159	.148
0.098	0.139	_	(0.327)	(0.334		334)
(0.316)	(0.318)	(0.321) L3.Y fd	0.073	-0.035		_
0.108	-0.162	-0.306	(0.329)			320)
(0.317)	(0.319)	(0.315)				ŕ
0.549		L4.Y_fd	0.785			.683
(0.320)**	(0.315)*		(0.332)**	,	** (0.32	!3)**
0.324		L5.Y_fd	-0.227	-0.328	-0.358	_
(0.320)			(0.324)	(0.331) (0.	331)
,		L6.Y_fd	-0.005 (0.325)	-0.038 (0.332)		
		L7.Y_fd	-0.212 (0.326)	-0.391 (0.325)	(,	
		L8.Y_fd	-0.435 (0.330)	(01020)		
0.060	0.052	L.I_fd	0.034	0.054	0.060	.059
		(0.057)	(0.059)	(0.060) (0.	.060)
, ,	(0.056)	(0.057) L2.I_fd	-0.097	-0.090	-0.057	_
0.062	-0.044	-0.035	(0.081)	(0.083) (0.	.081)
(0.079)	(0.079)	(0.080) L3.I_fd	-0.081	-0.024	-0.013	_
0.016	-0.008	0.035	(0.081)	(0.081) (0.	.080)
(0.078)	(0.079)	(0.078) L4.I fd	-0.182	-0.165		_
0.152	-0.146	_	(0.080)**	(0.080)*		80)*
(0.079)*	(0.078)*	L5.I fd	-0.064	-0.030	·	_
0.034		13.1_1 u		(0.081		001)
(0.078)		T.C. T. C.1	(0.080)	·		.081)
		L6.I_fd	0.044 (0.079)	0.053 (0.081)	0.056 (0.079)	
		L7.I_fd	-0.001 (0.079)	0.008 (0.079)		
		L8.I_fd	-0.043 (0.080)			
0.257	-0.254	ect -0.264	-0.269	-0.247	-0.253	-

			(0.097)***	(0.099)*	* (0.099)**
(0.098)***	(0.095)***	(0.096)***				
0.010	0 001	_cons	-0.014	-0.016	-0.018	3 –
0.019	-0.021	-0.016	(0.006)**	(0.006)	*** (0	.005)***
(0.005)***	(0.004)***	(0.004)***	(0.000) **	(0.000)	(0	•005) * * *
,	` ,	`R-Squared	0.726	0.709	0.705	0.707
0.697	0.690					
		N	167	168	169	170
171	172	CED	0 02	0 03	0 02	0.03
0.03	0.03	SER	0.03	0.03	0.03	0.03
				* p<0.1;	** p<0.	05; ***
p<0.01				Ctandard	orror	- in
parentheses	5			Standard	error	s in

. reg I_fd L(0/2).Y_fd L(1/2).I_fd ect
note: L.Y_fd omitted because of collinearity

Source	ss	df	MS		per of obs		173 75.74
Model Residual	.272913643 .120351557	5 167	.05458272	9 Prob 8 R-sc	yuared R-squared	=	0.0000 0.6940
Total	.3932652	172	.00228642	_	: MSE	=	.02685
- I_fd	Coef.	Std. Err.	 t	P> t	 95% Co	onf.	Intervall
	· 						
Y_fd							
 .		.1779045	17.92	0.000	2.83665	57	3.539121
L1. L2.	0 .1561123	(omitted) .3112981	0.50	0.617	458474	15	.7706992
I fd							
L1.	.0399229	.056125	0.71	0.478	070883	31	.1507289
L2.	0522363	.0774184	-0.67	0.501	205083	13	.1006087
ect _cons	256366 0189763	.0957521	-2.68 -6.06	0.008	445406 025162	-	0673254 01279

[.] outreg using laglength, bdec(3) se title("Regression") summstat($r2\N\mbox{rmse}$) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

					Regression		
			I_fd	I_fd	I_fd	I_fd	
I_fd	I_fd	I_fd					

3.219	3.161	Y_fd 3.188	3.040	3.086	3.138	3.154
			(0.195)***	(0.192)***	(0.191)***	(0.187)***
(0.186)***	(0.180)	*** (0.178) oL.Y_fd	*** 0.000	0.000	0.000	0.000
0.000	0.000	0.000				
(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	,	L2.Y_fd	0.253	0.219	0.159	0.148
0.098	0.139	0.156	(0.327)	(0.334)	(0.334)	(0.316)
(0.318)	(0.321)					
-0.162	-0.306	L3.Y_fd	0.073	-0.035	-0.113	-0.108
			(0.329)	(0.335)	(0.320)	(0.317)
(0.319)	(0.315)	L4.Y_fd	0.785	0.726	0.676	0.683
0.549		11.11_14				
(0.315)*			(0.332)**	(0.323)**	(0.323)**	(0.320)**
(0.313)		L5.Y_fd	-0.227	-0.328	-0.358	-0.324
		_	(0.324)	(0.331)	(0.331)	(0.320)
		L6.Y_fd	-0.005	-0.038	-0.153	
			(0.325)	(0.332)	(0.325)	
		L7.Y fd	-0.212	-0.391		
			(0.326)	(0.325)		
		L8.Y fd	-0.435			
		_	(0.330)			
		L.I fd	0.034	0.054	0.060	0.059
0.060	0.052	0.040				
			(0.059)	(0.060)	(0.060)	(0.059)
(0.056)	(0.057)	(0.056)	,	,	,	` ,
,		L2.I fd	-0.097	-0.090	-0.057	-0.062
-0.044	-0.035	-0.052				
			(0.081)	(0.083)	(0.081)	(0.079)
(0.079)	(0.080)	, ,	0 001	0 004	0 013	0.016
0 000	0 025	L3.I_fd	-0.081	-0.024	-0.013	-0.016
-0.008	0.035		(0.081)	(0.081)	(0.080)	(0.078)
(0.079)	(0.078)		(0.001)	(0.001)	(0.000)	(0.070)
(0.075)	(0.070)	L4.I_fd	-0.182	-0.165	-0.149	-0.152
-0.146			00101	0.0200	01213	01101
			(0.080)**	(0.080)**	(0.080)*	(0.079)*
(0.078)*			,	,	,	, ,
		L5.I fd	-0.064	-0.030	-0.024	-0.034
			(0.080)	(0.081)	(0.081)	(0.078)
		L6.I_fd	0.044	0.053	0.056	
		_	(0.079)	(0.081)	(0.079)	
		L7.I_fd	-0.001	0.008	,	
		_	(0.079)	(0.079)		
		L8.I_fd	-0.043	,		
		_	(0.080)			
		ect	-0.269	-0.247	-0.253	-0.257
-0.254	-0.264	-0.256	(0.097)***	(0.099)**	(0.099)**	(0.098)***
(0.095)***	(0.096)	*** (0.096)		,	,	, ,

		_cons	-0.014	-0.016	-0.018	-0.019
-0.021	-0.016	-0.019				
			(0.006)**	(0.006)***	(0.005)***	(0.005)***
(0.004)***	(0.004)*	** (0.003)	***			
		R-Squared	0.726	0.709	0.705	0.707
0.697	0.690	0.694				
		N	167	168	169	170
171	172	173				
		SER	0.03	0.03	0.03	0.03
0.03	0.03	0.03				
	_					
				*	p<0.1; ** p	<0.05; ***
p<0.01						
_				Sta	ndard er	rors in
parentheses						

. reg I_fd L(0/1).Y_fd L(1/1).I_fd ect note: L.Y_fd omitted because of collinearity

Source	ss 	df	MS	Number of of F(3, 170)		174 127.52
Model Residual	.12103926	_		Prob > F	=	0.0000 0.6923
Total			.002274062	Root MSE	=	.02668
_ I_fd		Std. Err.		9> t [95%	Conf.	Interval]
- Y_fd L1.		.1749742 (omitted)	18.31 0	2.85	8109	3.548913
I_fd L1.	.0355611	.0538544	0.66 0	.510070	7484	.1418706
ect _cons	2365331 018135	.0926482		.012419 .000023		0536441 0131259

[.] outreg using laglength, bdec(3) se title("Regression") summstat(r2\N\rmse) summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevels > (10 5 1) note("Standard errors in parentheses") merge

					Regression		
 I_fd	I_fd 		I_fd	I_fd	I_fd	I_fd	
3.161	Y_fd 3.188	3.040 3.204	3.086	3.138	3.154	3.219	

(0. 10C) think	(0. 100) total		(0.192)**	** (0.19	1)***	(0.187)***
		0.000	(0.175)*** 0.000	0.000	0.000	0.000
0.000	0.000	0.000 (0.000)	(0.000)	(0.000)	(0.000)	(0.000)
(0.000)	(0.000) L2.Y fd	(0.000) 0.253	0.219	0.159	0.148	0.098
0.139	0.156		(0.334)			
(0.321)	(0.311)					
0.162	L3.Y_fd -0.306		-0.035			
(0.315)			(0.335)			
	L4.Y_fd	0.785 (0.332)**	0.726 (0.323)*			
(0.315)*						
	L5.Y_fd	-0.227 (0.324)	(0.331)	-0.358 (0.331)	-0.3 (0.3)	324 20)
	L6.Y_fd	-0.005	-0.038	-0.153	,	·
			(0.332)	(0.325)		
	L7.Y_fd		-0.391			
	TO T 51		(0.325)			
	L8.Y_fd					
	T T £3	(0.330)	0.054	0.060	0 050	0 060
0.052	L.I_fd 0.040	0.034	0.054	0.060	0.059	0.060
0.032	0.040	(0.050)	(0.060)	(0.060)	(0 050)	(0.056)
(0.057)	(0.056)	(0.039)	(0.000)	(0.000)	(0.059)	(0.030)
(0.037)	L2.I fd	-0.097	-0.090	-0.057	-0.	.062 -
0.044	-0.035		0.030	0.037	0.	.002
0.011			(0.083)	(0.081)	(0.079)	(0.079)
(0.080)	(0.077)	(/	(,	(,	(,	(,
,		-0.081	-0.024	-0.013	-0.	.016 –
0.008	0.035					
		(0.081)	(0.081)	(0.080)	(0.078)	(0.079)
(0.078)						
0.446	${ t L4.I_fd}$	-0.182	-0.165	-0.149	-0.	.152 –
0.146		(0, 000) dist	(0.000)		20024	(0 070) ii
(0.078)*		(0.080)**	(0.080)**	(0.0	780)*	(0.079)*
(0.070)	L5.I fd	-0.064	-0.030	-0.024	-0.	134
	23.1_14	(0.080)	(0.081)	(0.081)	(0.0	
	L6.I_fd	0.044	0.053	0.056	(,
	_	(0.079)	(0.081)	(0.079)		
	L7.I_fd	-0.001	0.008	,		
	_	(0.079)	(0.079)			
	L8.I_fd	-0.043				
		(0.080)				
	ect	-0.269	-0.247	-0.253	-0.	.257 –
0.254	-0.264		-0.237			
40.00=	(0.005)	(0.097)***		(0.09)	9)**	(0.098)***
(0.095)***	` '	` '	•	0 010	•	0.1.0
0 021	_cons	-0.014	-0.016	-0.018	-0.	.019 –
0.021	-0.016	-0.019 -	-0.018			
		(0 0061++	(0 0061+	** (0 00	151***	(0 005)***
(0.004)***	(0.004)***		(0.006)*	*** (0.00)5)***	(0.005)***

	R-Squared	0.726	0.709	0.705	0.707	0.697		
0.690	0.694	0.692						
	N	167	168	169	170	171		
172	173	174						
	SER	0.03	0.03	0.03	0.03	0.03		
0.03	0.03	0.03						
* p<0.1; ** p<0.05; *** p<0.01 Standard errors in								
	d L.I_fd L.Y_: fd omitted bed		linearity					

Source	e SS	df	MS		ber of obs	=	174
Model Residual			.0168561	79 Pro 11 R-s	, 171) bb > F quared	= =	8.01 0.0005 0.0857
Total	. 39341267	4 173	.0022740		R-squared t MSE	=	0.0750 .04586
 - I_fd	l Coef.	Std. Err.	 t	P> t	[95% Cc	onf.	Interval]
- - I_fd L1.		.0889449	3.47	0.001	.133097	79	.4842406
Y_fd L1.	:	(omitted)					
ect _cons		.1562312 .0036187	-3.62 2.16	0.000 0.033	873457 .000655		2566771 .0149419

. outreg using finalmodel, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevel
> s (10 5 1) note("Standard errors in parentheses") replace
(note: file finalmodel.doc not found)

	Regr	ession
		I_fd
	L.I_fd	0.309
(0.089)***	oL.Y_fd	0.000 (0.000)
	ect	-0.565

(0.156)***0.008 cons (0.004)**0.086 R-Squared 174 N 0.05 SER * p<0.1; ** p<0.05; *** p<0.01 Standard errors in parentheses • gen $IM = b[Y_fd]$ [Y_fd] not found r(111); . reg I_fd L.I_fd Y_fd ect df MS Number of obs = 174 F(3, 170) = 127.52 Prob > F = 0.0000Source SS df MS 0.6923 -----'-----Adj R-squared = 0.6869 Total | .393412674 173 .002274062 Root MSE = .02668

_	I_fd	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
_		,					
	I fd						
	L1.	.0355611	.0538544	0.66	0.510	0707484	.1418706
	Y_fd	3.203511	.1749742	18.31	0.000	2.858109	3.548913
	ect	2365331	.0926482	-2.55	0.012	4194221	0536441
	_cons	018135	.0025375	-7.15	0.000	0231441	0131259

. outreg using finalmodel, bdec(3) se title("Regression") summstat(r2\N\rmse)
summtitle("R-Squared"\"N"\"SER") summdec(3 0 2) starlevel

> s (10 5 1) note("Standard errors in parentheses") replace

	Regr	ession
		I_fd
	L.I_fd	0.036 (0.054)
	Y_fd	3.204
(0.175)***	ect	-0.237

```
(0.093)**
                                                      cons
                                                                    -0.018
(0.003)***
                                                      R-Squared 0.692
                                                                    174
                                                                    0.03
                                                      SER
                                                   * p<0.1; ** p<0.05; ***
p < 0.01
                                                   Standard errors in
parentheses
• gen IM = b[Y_fd]
. di IM
3.2035105
. gen LRP = b[Y fd] / (1-b[L.I fd])
. di LRP
3.3216317
. di b[L.I fd]
.03556114
. predict yhat, xb
(2 missing values generated)
. label var I fd "First-differenced Log of Investment"
. graph twoway (scatter I_fd time, ms(o)) (line yhat time), title("First-
differenced Log of Investment Over Time") ytitle("First-differ
> enced
           Log of Investment") subtitle("Quarterly, 1957-2000")
play(stata_gphformat)
recording stata_gphformat not found in either PERSONAL or working directory
r(601);
. arima Y_fd L(1/4).Y_fd if time < q(2001q1)
(setting optimization to BHHH)
Iteration 0: log likelihood = 527.30294
              log\ likelihood = 527.30294
Iteration 1:
ARIMA regression
                                              Number of obs = 171
Wald chi2(4) = 16.49
Prob > chi2 = 0.0024
Sample: 1958q2 - 2000q4
Log likelihood = 527.3029
                            OPG
       Y_fd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
```

Y_fd								
	Y_fd L1.	 .2238327	.0729687	3.07	0.002	.08081	66	.3668488
	T ₁ 2 ₋	.2238327 .1036935	.0633934	1.64	0.102	.08081 02055	53	.2279423
	L3.	0611831	.0742126	-0.82	0.410	20663	71	.0842709
	ъ4∙	0138248	.0613896	-0.23	0.822	13414	62	.1064965
	_cons	.007116	.0011784	6.04	0.000	.00480	64	.0094256
-	/sigma	.0110804	.0004932	22.46	0.000	.01011	36	.0120471
Note:		t of the variance interval i	_			d, and th	e two	-sided
(optio	on xb ass	cd, dynamic(q(sumed; predict lues generated	ed values)					
	lace Y_fo	d = xhatd if t es made)	zime>=q(2001	q1)				
		s/baovinhnguye a", clear	n/Documents	/1. STUD	Y /1. EC	207/Emp:	irica	l Project
. ari	ma Y_fd I	L(1/4).Y_fd if	time < q(2	001q1)				
Ìtera	<pre>(setting optimization to BHHH) Iteration 0: log likelihood = 527.30294 Iteration 1: log likelihood = 527.30294</pre>							
ARIMA	regress	ion						
Sample	e: 1958	g2 - 2000g4			Number	of obs	=	171 16.49
Log l	ikelihood	d = 527.3029			Prob >	12(4) chi2	=	0.0024
-								
	Y_fd	Coef.			P> z	[95% C	onf.	Interval]
		H						
Y_fd								
_	v fd	İ						

	Y_fd	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
_							
Y_fd							
	Y_fd						
	L1.	.2238327	.0729687	3.07	0.002	.0808166	.3668488
	L2.	.1036935	.0633934	1.64	0.102	0205553	.2279423
	L3.	0611831	.0742126	-0.82	0.410	2066371	.0842709
	L4.	0138248	.0613896	-0.23	0.822	1341462	.1064965
	_cons	.007116	.0011784	6.04	0.000	.0048064	.0094256
-							
	/sigma	.0110804	.0004932	22.46	0.000	.0101136	.0120471

Note: The test of the variance against zero is one sided, and the two-sided

confidence interval is truncated at zero.

```
. predict xhatd, dynamic(q(2001q1))
variable xhatd already defined
r(110);
```

- . drop xhatd
- . predict xhatd, dynamic(q(2001q1))
 (option xb assumed; predicted values)
 (5 missing values generated)
- . replace Y_fd = xhatd if time>=q(2001q1)
 (0 real changes made)
- . arima I_fd L.I_fd Y_fd ect if time < q(2001q1)</pre>

(setting optimization to BHHH)

Iteration 0: log likelihood = 385.65521
Iteration 1: log likelihood = 385.65521

ARIMA regression

Sample: 1957q3 - 2000q4 Number of obs = 174 Wald chi2(3) = 738.26 Log likelihood = 385.6552 Prob > chi2 = 0.0000

-	I_fd 	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	. Interval]
- I_fd	T 63						
	I_fd L1.	.0356087	.050579	0.70	0.481	0635242	.1347417
	Y_fd ect	3.203511 2365807	.129634	24.71 -2.77	0.000	2.949433 4041084	3.457589 069053
	_cons	0180033 	.0024564	_7 . 33	0.000	0228178 	0131887
	/sigma	.0263748	.0013083	20.16	0.000	.0238106	.028939

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

- . predict yhatd, dynamic(q(2001q1))
 variable yhatd already defined
 r(110);
- . drop yhatd
- . predict yhatd, dynamic(q(2001q1))
 (option xb assumed; predicted values)
 (2 missing values generated)

. list time I_fd yhatd if time>=q(2001q1), noobs

-	+		+	
	time	I_fd	yhatd	
	2001q1 2001q2 2001q3 2001q4	0059357 0157375 0106668 0256343	.0036152 .0130963 .0190771 .0190701	
	2001q4 +	0236343	+	

- . gen uhat = I_fd yhatd if time>=q(2001q1)
 variable uhat already defined
 r(110);
- . gen uhat2 = uhat^2
 (176 missing values generated)
- . drop uhat
- . drop uhat2
- . gen uhat = I_fd yhatd if time>=q(2001q1)
 (176 missing values generated)
- . gen uhat2 = uhat^2
 (176 missing values generated)
- . drop sigmahat sigmahat2
 variable sigmahat not found
 r(111);
- . reg I_fd L.I_fd Y_fd ect

Source	ss	df	MS	Number o		178 126.48
Model Residual	.271653278 .124571192	3 174	.090551093 .000715926	F(3, 174 Prob > F R-square	' =	0.0000
Total	.39622447	177	.002238556	Adj R-squared Root MSE		0.6802 .02676
	Coef.	Std. Err.	t I	?> t [95% Conf.	Interval]
- I_fd L1.	.0364286	.0539998	0.67).501	0701504	.1430076
Y_fd ect _cons	3.203537 2216194 0186359	.175452 .0925934 .0025239	-2.39	0.018	2.857249 4043703 0236172	3.549825 0388686 0136546

- . gen sigmahat = e(rmse)
- . gen sigmahat2 = sigmahat2

```
di sigmahat2
.00071593

egen sumuhat2 = sum(uhat2)

di sumuhat2
.0038058

gen PA = (sumuhat2)/(sigmahat2)
variable PA already defined
r(110);

di PA

drop PA

gen PA = (sumuhat2)/(sigmahat2)

di PA

5.3159027
```