- Packets can be created with small boxes taped to toilet paper tubes. Tubes should be big enough to allow easy loading on string
- "Payload" (may candy reward?) can be placed in box.
- Nodes can be desks, tables, spots on the ground anything that can be connected with strings
- Links can go down by cutting string.
- Nodes can be subjected to a Distributed Denial of Service (DDoS) attack by sending packets from mulitiple source nodes

Note: Not all routes are included in routing tables. More can be added if desired.

^{*}Internet of Strings first introduced by Dakota State University

Node 1 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
2	1	2
2	2	4
3	2	2
3	3	4
4	1	4
5	2	4
6	3	2
7	1	7
8	3	4
9	3	7
10	2	7
11	3	7
12	2	7

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 2 Routing Table

Network ID	<u>Cost</u>	Next Hop
1	1	1
3	1	3
4	1	4
5	2	4
6	2	3
7	3	4
7	2	1
8	3	4
9	4	4
10	2	4
11	5	3
12	4	3
12	5	1

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 3 Routing Table

Network ID	<u>Cost</u>	Next Hop
1	2	2
2	1	2
4	2	5
5	1	5
5	2	6
6	1	6
7	3	5
8	2	5
9	2	6
9	3	5
10	3	2
11	4	6
12	3	6

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 4 Routing Table

Network ID	<u>Cost</u>	Next Hop
1	1	1
2	1	2
3	2	5
5	1	5
6	2	5
7	2	1
8	2	5
9	3	5
9	4	10
10	1	10
10	3	1
11	2	10
12	3	10

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number ${\bf 3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 5 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	2	4
2	2	4
3	1	3
4	1	4
6	1	6
6	3	8
7	2	8
8	1	8
9	2	8
10	3	8
10	2	4
11	4	8
12	3	8

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 6 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	3	3
2	2	3
3	1	3
4	2	5
5	1	5
7	3	9
7	4	3
8	2	9
9	1	9
10	3	9
10	5	3
11	2	9
12	2	9

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 7 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	1	1
2	2	1
2	6	10
3	4	10
4	2	10
5	2	8
6	3	8
6	4	1
8	1	8
9	2	8
10	1	10
11	2	11
12	1	12

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 8 Routing Table

Network ID	<u>Cost</u>	Next Hop
1	2	7
2	3	5
3	2	5
3	4	7
4	3	7
5	1	5
6	2	9
7	1	7
7	4	5
9	1	9
10	3	9
11	3	7
12	2	7

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 9 Routing Table

Network ID	<u>Cost</u>	Next Hop
1	4	3
1	3	7
2	4	6
3	2	6
4	3	6
5	2	8
6	1	6
7	2	8
8	1	8
10	2	11
11	1	11
11	4	8
12	1	12

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce **"bad route"** and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number ${\bf 3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 10 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	2	7
2	2	4
3	3	4
3	4	11
4	1	4
5	2	4
6	4	11
7	1	7
8	2	7
9	2	11
11	1	11
12	2	11
12	5	4

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number ${\bf 3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 11 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	2	7
2	2	4
3	3	4
3	4	11
4	1	4
5	2	4
6	4	11
7	1	7
8	2	7
9	2	11
11	1	11
12	2	11
12	5	4

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number $\boldsymbol{3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again

Node 12 Routing Table

<u>Network ID</u>	<u>Cost</u>	Next Hop
1	3	10
2	4	9
3	3	9
4	2	10
5	3	9
5	4	10
6	3	12
7	3	9
8	2	9
8	3	7
9	1	9
10	1	10
12	1	12

Example Packet Header (Post-it Note)

Source: Node message started at

Destination: Node message needs to go to

Next Hop: Next hop in transmission

Process for Internet of Strings Routing

If you are originating message

- 1. Receive message and place in packet payload
- 2. Refer to your node's routing table and select the least cost route to final destination
- 3. Build packet header on post-it note (see example) and place on packet
- 4. Pace packet on link and move to the next hop

When you arrive at a node

- 1. Remove packet from link, review packet header and determine if message is for the node you are at.
 - If message is for this node, remove payload, verify it is at the right node, and announce results, either,
 - "message recevied" or "message misrouted"
 - If message is not for this node, hand packet to next individual and continue with step 2 below
- 2. Refer to the current node's routing table and select the least cost route to final destination
 - If there is no route to final destination announce "bad route" and go to the end of the line for that node
 - If there is a route but the link you need is not available
 - a. Check to see if there is a higher cost route available
 - b. If there is a higher cost route use it and continue with number ${\bf 3}$
 - c. If there is not a higher cost route announce "link down"
- 3. Build new packet header by adding a new next hop (see example below) and place on packet
- 4. Place packet on link and move to next hop

- 1. Return to the node you came from
- 2. Pick a number between 1 and 10 and then wait that many seconds before going to the next hop again