Abdel-Hamid, Tarek, 4, 10, 25, 27, 47, 51,	Brooks, Fred, 16, 20, 47, 426, 428, 441
221, 265, 362, 374, 378, 392, 460,	Brooks's Law, 10, 16, 426
474, 496, 531, 533–535, 556	model, 17, 152, 153, 154, 215, 259, 260,
Abdel-Hamid's integrated project dynamics	264, 382, 464, 465, 565, 567
model, see Integrated project	model behavior, 19
dynamics model	model equations, 18
Acuña, Silvia, 221, 260, 265, 267, 273, 362,	team partitioning, 464, 465
482, 531, 535	Burnout, 224. See also Exhaustion
Acquisition models, 490	Business processes, 395, 490. See also
Agile and hybrid processes, 235, 482, 488.	Software business case analysis
See also Hybrid process model	
Agile methods, 37	Capabilities of people, 260, 267
Agile team size, 235	Capability maturity models, 41, 327. See also
Architecting, see Software architecting	Software process improvement
Artificial intelligence, 474	Capability Maturity Model-Integrated
Attribute averaging, 187	(CMMI), 41, 220, 364
Attribute tracking, 186	key process areas, 42
Attrition, 257	FAA-iCMM, 41
Auxiliaries 15, 57, 159	key process area modeling, 354
examples, 59, 159	level five and employee motivation, 252
model formulation, 89	model example for, 343-362
	People Capability Maturity Model, 41, 220
Balancing feedback model infrastructure, 175	simulation uses at CMM levels, 43
Barros, Márcio, 28, 157, 473, 476, 478, 491,	Software Acquisition Capability Maturity
535, 536–539	Model (SA-CMM), 41
Boehm, Barry, 20, 25, 30, 32, 33, 35, 47, 140,	Software Capability Maturity Model
212, 218, 236, 238, 243, 245, 280,	(CMM or SW-CMM), 7, 41, 220
282, 311, 327, 331, 337, 366, 396,	Causal (loop) diagram, 79
397, 399, 410, 422, 460, 474, 476,	Causal relations, 81
479, 480, 481, 482, 484, 485, 486,	Change
487, 490, 491, 494, 496, 499, 535,	deferral, 241
550	organizational, 462

Change (continued)	Conserved versus nonconserved product
traffic, 239	flow, 194
rapid, 239, 479	Construction iterations in the modeling
Christie, Alan, 28, 261, 262, 268, 542	process, 104
Closed system, 12	Continuous model improvement, 131
Coincident flows (coflows), 96, 164	Continuous systems modeling, see System
effort expenditure, 187	dynamics
defects, 196, 397	Control and operational management
Collaboration, 261, 268	applications, 28
Constructive Cost Model (COCOMO)	Control systems theory, 11
calibration for inspection model, 277, 288	COTS and process concurrence, 437
cost driver derivation from simulation	COTS glue code development and COTS
model, 285	integration application model (Kim,
detailed, 285	Wook), 310–317
dynamic, 125, 239, 243, 397	application development, 315
dynamic modeling vs. COCOMO for	COTS component factors, 314
learning, 263	glue code development, 312
experience factors in Brooks's Law model,	model overview, 311
20	test results, 316
experience factors and learning curves, 231	COTS-based systems (CBSs), 309, 366
job size for integrated project dynamics	COTS-Lifespan Model (COTS-LIMO), 317
model, 386	Cybernetics, 10–11
people factors, 218	Cyclic modeling process, 70
platform volatility factor, 243	
process and product factors, 270	Data collection, 134
project and organization factors, 370	Decision structures, 188
reliability factor in value-based product	Defect analysis for process improvement,
model, 399	327
reuse model, 300	Defect coflows, 196, 397
static modeling vs. dynamic modeling, 25,	Defects and quality, 327
218	Defects as levels, 158
system dynamics and, 551	Defect dynamics example application model
Constructive Quality Model (COQUALMO),	(Abdel-Hamid), 328–330
331, 365	Defect chain model infrastructures, 196, 327
Collofello, James, 28, 263, 338, 475,	amplification, 199, 365
540–541, 556, 558, 560	categories, 200
Commercial off-the-shelf (COTS) software,	chain examples, 200, 329
38, 238, 309, 484. <i>See also</i> COTS	coflows, 196
Communication overhead, 17, 303	detection (filters), 197
Abdel-Hamid's integrated project model	generation and propagation, 196, 365
and, 382	multiplication, 199
Brooks's Law model and, 17, 19, 464, 465	rework, 197
COCOMO model and, 218	Defect removal techniques and Orthogonal
Component-based model development, 476	Defect Classification (ODC)
Confidence intervals, 525	application model (Madachy),
calculation, 527	330–337
Connectors and feedback loops, 160. See also	Defect rework policies, 191
Information links	Defense Modeling and Simulation Office
Conserved flows, 55	(DMSO), 8, 472, 473, 476

Delays, 93, 169	Ford, David, 237, 322, 423, 424, 466
cascaded, 173	Forrester, Jay, 4, 6, 47, 53, 54, 61, 118, 119
higher-order, 173	134, 142, 145, 203, 488, 496
hiring, 172	Fourth-generation languages, 39, 301
model structures, 93	
DeMarco, Tom, 219, 227, 255, 258, 261, 265, 267, 268, 499, 531, 542	Game playing, 475, 479. <i>See also</i> training Generic flow processes, 155, 160
Desired staff model structure, 188	adjustment process, 163
Discrete event simulation, 24, 55, 469, 471	coflow process, 164
inspections, 275	compounding process, 162
product attributes, 269, 273	cyclic loop, 165
Distributed global development, 480	draining process, 163
Dynamic COCOMO, 125, 239, 243, 397	flow chain, 161
=	
Dynamic process models, 7	production process, 163
Dynamics, 5	rate and level system, 160
E	split flow process, 165
Earned value, 442	stock and flow, 160
general project procedures, 449	Global (process) feedback, 13, 291
Earned value application model (Madachy),	Glue code, see COTS Glue code
450–460, 466 Litton applications, 460	Goal–question–metric (GQM) framework, 135, 477
testing, 452	application to inspection modeling, 138
usage, 456	Goal-seeking behavior, 61
Effort expenditure instrumentation, 187	Goodness-of-fit tests, 521
Empirical data collection for simulation	
models, 493	Heuristics, 60
Empirical research and theory building, 492	modeling heuristic summary, 148
Endogenous view, 79	Hiring delays, 256
Error detection rate, 330	Hybrid process (agile and plan-driven)
Evolutionary development, 31	application model (Madachy et al.),
Exhaustion model, 222-227, 567	235–252
Experimental design, 523	model overview, 240
Exponential decay, 172	scalable spiral model, 238
Exponential growth, 166. See also Positive	scenarios and test results, 246
feedback	software value, 249 tradeoff functions, 243
Feedback loops, 11, 132	Houston, Dan, 27, 341, 473, 544–545
Feedback opportunities in organizations, 371	Humphrey, Watts, 220, 253, 258, 265
Feedback systems	
	Hybrid modeling, 24, 469, 491, 551
concepts applied to software process, 10	Hypotheses in the modeling process, 132
Fernández-Ramil, Juan, 238, 488. <i>See also</i> Ramil, Juan	Hypothesis testing, 525
Fifth Discipline, 5, 9	Incremental development, 30, 239
Flight simulation, 5, 23, 263	Information links 15, 58, 160
-	
Flow, see Rate Flow chains, 156	equations, 90 examples, 58, 160
generic flows in model formulation, 85	model formulation, 89
identification of in modeling process, 84	nonconservation of, 58
infrastructures, 192	Information smoothing, 63, 180
11111a5tt uctu1C5, 172	mormanon smooning, 05, 160

Infrastructures, 155	Iterative development, 32
examples, 59	compared to waterfall life-cycle process,
Infrastructures and behaviors, 166–192	39
balancing feedback, 175	Iterative modeling process, 68
delays, 169	
exponential growth, 166	Johnson, Margaret, 265, 267, 373, 394, 395,
integrated production structure, 183	477, 545, 567, 568
oscillation, 177	
personnel learning curve, 183	Kellner, Marc, 22, 23, 24, 26, 28, 29, 47
production and rework, 182	Knowledge diffusion example model, 169
smoothing, 180	Knowledge-based simulation, 474
S-shaped growth and S-curves, 167	
Inspection model (Madachy), 195, 196, 199,	Learning, 227
200, 202, 203, 210, 279, 365, 413	Learning curves, 229, 267, 302
calibration, 277	comparison with COCOMO experience
demonstration and evaluation, 281	data, 231
derivation of detailed cost driver, 285	fixed learning functions, 234
industrial data collection and analysis for,	language levels and, 302
276	models, 231
modification for walk-throughs, 289	Lehman, Manny, 13, 27, 29, 210, 291, 292,
overview, 277	293, 295, 488, 535, 540, 546,
validation, 287	547–548, 561
Inspection process data calibration, 289	Levels (stocks) 15, 57, 157
Inspection-based process, modeling, 275	examples, 58, 157
Integrated measurement and simulation,	initialization and equilibrium, 101
136	model formulation, 86
Integrated project dynamics model (Abdel-	oscillation and, 86
Hamid), 109, 152, 182, 195, 199, 200,	state variables, 59
202, 203, 205, 217, 221, 234, 255,	Lin, Chi, 234, 393, 394, 550
264, 281, 328, 341, 372, 373–395,	Litton, 209, 263, 276, 277, 288, 460
414, 424, 450, 461, 462, 465, 466,	
477, 489, 567, 568	Madachy, Raymond, 28, 32, 47, 136, 138,
control sector, 385	195, 235, 263, 264, 273, 274, 275,
exhaustion model, 222-227	276, 277, 281, 282, 284, 285, 287,
follow-ons to Abdel-Hamid's work, 393	288, 327, 363, 365, 474, 475, 483,
human resources sector, 374, 567	535, 549-550. See also Inspection
insights and implications, 392-393	model
manpower allocation sector, 378	Martin, Robert, 24, 27, 553
personnel sector 222-224, 267	Mental models, 9, 10, 118
planning sector, 375	Meta-models (general modeling techniques),
quality assurance and rework sector, 328,	491–492
382	Metamodels (system dynamics), 478, 491
software development productivity	Mission control centers, analysis, and training
subsector, 380	facilities, 494, 500
software development sector, 379	Model analysis, 473
software production sector, 378	Model assessment, 116
system testing sector, 384	Model building principles, 101
ISO 9000, 44	Model conceptualization, 75
ISO/IEC 15504, 44	endogenous view, 79

Model elements, 155, 157	Model sensitivity analysis, 121
auxiliaries, 159	Model structures, see also Infrastructures
connectors, 160	and general behaviors, 65
feedback loops, 160	and component-based model development
flows, 159	476
levels, 157	Model types, 7
sources and sinks, 159	Model validation, 117
rates, 159	tests, 119, 120, 121
stocks, 157	Modeling communication, 139
Model formulation and construction, 83	Modeling documentation and presentation,
accuracy, 99	141
addition and multiplication of effects, 95	Modeling heuristics, see Heuristics
assigning parameter values, 99	Modeling tools, 142
auxiliaries, 89	Model-Based Systems Architecting and
basic patterns, 90	Software Engineering (MBASE), 32,
bounds, 100	36, 70, 319, 466
coincident flows (coflows), 96	Monte Carlo analysis, 125, 262, 474, 515
connectors, 90	inverse transform, 515
feedback loops, 90	Motivation, 252
generic flows, 85	overtime function, 253
graph and table functions, 96	Motorola, 45, 263, 327
overtime multiplier function, 97	,,,,
level initialization and equilibrium, 101	NASA, 234, 330, 331, 343, 346, 393
levels, 86	Negative feedback, see also Balancing
major flow chains, 84	feedback
model sectors, 84	as balancing feedback, 175
negative (balancing) feedback, 94	general behavior, 62, 63, 67
oscillation, 86	in personnel hiring, 172
parameters and validity, 100	model structure, 63, 94, 175
plumbing, 85	Negotiation, 261
positive (reinforcing) feedback growth or	Networked simulations, 475, 498
decline, 92	Nonconserved information, 55
rate equations, 90	
constant rate with a level, 91	Object-oriented
variable rate with a level, 91	framework for model structures, 156
rates, 89	methods, 478
snapshot test, 87	Open source software development, 486
sources and sinks, 88	Open system, 11, 12
time delays, 93	Open-source software, 38, 486–488
time horizon considerations, 87	Opportunity trees, 212
top-level, 84	people, 219
Model infrastructures, see Infrastructures	process and product, 271
Model integration, 103, 489	project and organization, 370
common unified models, 489	Orthogonal defect classification (ODC), 200,
meta-model integration, 491	328, 330
related disciplines and business processes,	example model for, 330–333
490	Oscillation, 61, 177
Model refinement, when to stop, 133	and multiple levels, 86
Model response surface, 524	model structures for, 178

Osiei weii, Leoli, 22, 23, 24, 23, 47	Flobability distributions, 303
Overtime, 253, 267	empirical, 513
multiplier, 97, 253	gamma, 511
•	interpreting, 505
Peer reviews, 274, 276. See also Inspections,	lognormal, 509
Walk-throughs	measures of location, variability, and
People, see also Personnel	symmetry, 506
applications, 217–268	normal, 509
COCOMO cost model factors, 218–219	PERT, 509
model infrastructures for, 200–203	triangular, 508
	uniform, 508
People maturity model, 41, 220	
People subsystem, 352	Problem definition, 73
Peopleware, 219, 258, 261, 265, 268	Process and product modeling applications,
Perceived quality, 181	269
Personnel chain model infrastructures, 200	Process and product opportunity tree, 271
chain examples, 203	Process concurrence, 322, 423–442, 466
Personnel hiring and retention, 256	architecting, 322
Personnel learning curve, 183	COTS, 437
Personnel pools, 201	external process concurrence, 428
Personnel (resource) allocation, 15, 411	internal process concurrence, 426
allocation policy, 411	phase leverage analysis with process
contention models, 411	concurrence, 432
dynamic resource allocation with initially	RAD example of external process
fixed levels, 413	concurrence, 432
parameterized allocation profiles, 413	systems engineering staffing
project contention, 414	considerations, 433
squeaky wheel gets the grease, 411	trying to accelerate software development,
Personnel sector model (Abdel-Hamid),	425
222–223, 267	Process flight simulation, see Flight
	simulation
Personnel talent supply and demand, 488. See also Workforce	
	Process improvement, see also Software
Personnel training, simulation for, 263. See	process improvement
also Software manager training,	capability maturity models, 41
Training	ISO 9000, 41
Pfahl, Dietmar, 27, 28, 137, 138, 263, 273,	ISO/IEC 15504, 41
337, 346, 475, 476, 477, 535,	overview, 40
551–554, 561	Six Sigma, 41
Planning applications, 26	technology adoption applications and, 28
Policy analysis, 126	Process improvement model, 274
Policy parameter changes, 127	Process life-cycle models, 29
Policy structural changes, 128	Process model types, 23
Policy suitability and feasibility, 130	Process performance, 213
Policy validity and robustness, 129	Process and product applications, 269–368
Positive feedback	Production structure, 182–183
exponential growth, 92, 166	Product(s), see Software product(s)
general behavior, 62, 63, 67	Product quality, see Quality
model structure, 63, 92	Project and organization applications,
Powell, Anthony, 27, 237, 238, 555	369–468
Probability, 502	Project feedback (using simulation for), 13

Project management in the modeling process,	Requirements
138	evolution and volatility, 337
Project workforce modeling, 222	process inputs, 11
Project rescoping framework, 14	volatility, 333, 466
Prototyping, 36	Requirements volatility application model
Putnam, Larry, 419, 425, 466	(Ferreira), 337–343
	causal model, 340
Quality	results, 342
defects and, 327	simulation model, 341
lost, 367	Resource allocation, see also Personnel
perceived, 181, 400	resource allocation
representative attributes of, 272	model infrastructures for, 190
Quality assurance tradeoffs, 330	Reuse, 38. See also Software reuse
Quality assurance model sector, 382	Rework model structure, 182
Quality modeling and value functions, 399	Richardson, George, 53, 54, 64, 69, 74, 80, 119, 127, 142, 146, 227
Ramil, Juan, 27, 273, 291, 293, 296, 484,	Richmond, Barry, 9, 53, 64, 146, 204, 227
549, 558. See also Fernández-Ramil,	Risk analysis, 502
Juan	Risk management, 140
Raffo, David, 24, 47, 275, 475, 481, 493,	Royce, Walker, 30, 32, 36, 47, 460
551, 555	Rubin, Howard, 28, 258, 264, 265, 394,
Rates (flows) 15, 57, 159	557
equations, 90	Rus, Ioana, 27, 478, 558
examples, 58, 159	
model formulation, 89	Sample size, 525
Rational Unified Process (RUP), 32, 319,	Scacchi, Walt, 24, 487, 488, 490, 499
466	Scalable spiral model, 238
Rayleigh curve models, 366, 418-422	Scheduled completion date model structure
calibrated to COCOMO, 397	190
defect modeling, 333, 422	S-curves, 167. See also S-shaped growth
model enhancements, 422, 465, 466	Sensitivity analysis, 123
Rayleigh curve generator, 185	Simulation
Rayleigh manpower distribution model,	definition of, 8,
418	introduction, 4
system dynamics implementation, 419	knowledge-based, 474
Rayleigh curves for staffing profiles, 397,	modeling process and, 110
417, 418	networked, 475
dynamic requirements changes, 422	personnel training and, 263
incremental development, 422	statistics of, 501
Rayleigh curve versus flat staffing, 422	Simulation environments and tools, 472
Reengineering, 38	Simulation input, analysis of, 521
Reference behavior, 76, 115, 282	Simulation output, analysis of, 525
patterns, 74	Simulation report, 143
Reliability	Six Sigma, 44, 367
attribute of quality, 272	Skills, 260
required software reliability cost factor,	Slack (time), 227, 255, 267
270	Smoothing of information, 63, 180
modeling, 399, 400	Snapshot test, 87
sweet spot, 409	Software Acquisition CMM (SA-CMM), 4

Software architecting application model	Software process simulation technology,
(Fakharzadeh, Mehta), 319–327	469
empirical reference data, 320	Software process technology, 22
model overview, 321	Software product chain infrastructures, 193
Software business case analysis, 395	chain examples, 195
Software Capability Maturity Model (CMM	Software production rate, 14
or SW-CMM), 41. See also Capability	Software project management simulator, 337
Maturity Models	Software project dynamics, 4, 5, 10. See also
Software Engineering Institute (SEI), 7, 24,	Abdel-Hamid, Tarek
41, 309, 339, 343	Software Project Management Simulator
Software evolution, 291. See also Global	(SPMS) model, 338
process feedback	Software reliability, see Reliability
open-source systems and, 488	Software reuse, 299
Software evolution progressive and anti-	Software reuse and fourth-generation
regressive application model (Ramil),	languages application model (Lo),
293–299	301–309
model overview 295	model description, 302
calibration and experimentation, 296	results, 304
Software entropy, 167, 367	Spiral model, 33
Software life-cycle phases and modeling	modeling process usage, 70
steps, 69	scalable spiral model, 238
Software manager training, 263, 264, 460	WinWin spiral model, 35
Software metrics, 134	Spreadsheets, 26
etiquette, 463	S-shaped growth and S-curves, 167
Software process, 7	Staffing, see also Personnel
Software process chain infrastructures, 192	applications, 416
Software process control system, 13	calculation parameters, 245
Software process improvement (SPI), see	desired staff model structure, 188
also Capability maturity models,	Dynamic COCOMO, 125, 243, 397
Process improvement	integrating Rayleigh curves, process
simulation in support of, 343	concurrence, and Brooks's
Software process improvement application	interpretations, 441
model (Ho), 346–362, 367	process concurrence modeling for staffing
high-level feedback, 347	profiles, 423–442. See also Process
KPA processing subsystem, 354	concurrence
life-cycle subsystem, 351	Rayleigh curves for staffing profiles, 417,
model changes, 357	418–422
people subsystem, 352	Stallinger, Friedrich, 268, 559
sensitivity analysis, 360	State variables, 6, 59
test runs, 359	Static versus dynamic modeling, 25
Xerox adaptation, 354	Steady-state behavior, 113
Software process model types, 23	Steady-state conditions, 112
Software process modeling overview, 22–26	Sterman, John, 53, 121, 146, 237, 322, 423,
characterization, 26	424, 466, 476, 502
characterization matrix, 27	Stock, see Level
discrete, 24	Stock and flow representation, 14
hybrid, 24	Strategic management applications, 26
major models, 27	Sweet spot (determination of), 405
modeling approaches, 23	System boundary, 70, 78, 148, 149

54	460
background, 54	simulation for, 4, 263
continuous view, 55	Training and learning applications, 28
heuristics, 60	Training overhead in Brooks's Law model,
mathematical formulation, 56	17, 19
structure of a model, 59	Tvedt, John, 138, 195, 196, 210, 237, 275,
model element summary, 15	341, 365, 544, 560
model elements, 56, 57	,,,
auxiliaries, 57	U.S. Defense Modeling and Simulation
information linkages, 58	Office (DMSO), 8, 472
level, 57	Usability of simulation tools, 473, 498
rate, 57	User- and people-oriented focus, 482
sources and sinks, 57	
notation, 56	Value-based product application model
numerical integration, 59	(Madachy), 396–411
potential pitfalls, 60	applications, 402
System feedback, see Feedback	model overview, 397
Systems (definition of), 6	quality modeling and value functions,
closed (closed loop), 6, 11	399
combined, 6, 7	Value-based software engineering, 396
continuous, 6, 7	
discrete, 6, 7	Walk-throughs, 288. See also Peer reviews
dynamic, 6, 7	Waterfall (life-cycle) process, 29
open (open loop), 6, 11	compared to iterative process, 39
static, 6	Weinberg, Gerry, 10, 47, 51, 152, 220, 265,
variables, 6	268, 416, 467
Systems of systems, 236, 483	Wernick, Paul, 27, 291, 292, 293, 547,
software-intensive, 235, 236, 483	561–562
Systems thinking, 3, 8, 10	WinWin spiral model, 35, 70, 262
compared to system dynamics, 9	Work breakdown structure for modeling, 142
Team communication, 260	Workforce modeling, 222
Team composition, 234	desired workforce levels, 223
Team issues, 139	Workforce shortage, 258, 268, 499
Team partitioning, 464, 465	causal loop, 259
Team size, 235	-
Test functions, 113	Xerox Corporation, 354, 357, 361
Time horizon, 87	-
Training	Yourdon, Ed, 265, 393, 563
game playing and, 475	