Soluciones # 10

Bases Ortogonales

Problema 10.1 Sólo es ortogonal el conjunto (b).

Problema 10.2 En \mathbb{R}^3 , de dimensión 3, basta con ver que los 3 vectores son linealmente independientes, es decir, que $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0$ implica que $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Además, podemos expresar x como combinación de u_1, u_2, u_3 de la forma:

a)
$$x = \frac{5}{2}u_1 - \frac{3}{2}u_2 + 2u_3$$
.

b)
$$x = \frac{4}{3}u_1 + \frac{1}{3}u_2 + \frac{1}{3}u_3$$
.

Problema 10.3 Para ver que son linealmente independientes ovservemos que $\alpha_1 u_1 + \alpha_2 u_2 = 0$ implica que $\alpha_1 = \alpha_2 = 0$. Además:

- a) $B' = ((3,0,-1)^t,(-1,5,-3)^t)$ es una base ortogonal. $B'' = \left(\frac{1}{\sqrt{10}}(3,0,-1)^t,\frac{1}{\sqrt{35}}(-1,5,-3)^t\right)$ es la correspondiente base ortonormal.
- b) $B' = ((1, -4, 0, 1)^t, (5, 1, -4, -1)^t)$ es una base ortogonal. $B'' = \left(\frac{1}{\sqrt{18}}(1, -4, 0, 1)^t, \frac{1}{\sqrt{43}}(5, 1, -4, -1)^t\right)$ es la correspondiente base ortonormal.

c) $B' = ((0,4,2)^t, (5,4,-8)^t)$ es una base ortogonal. $B'' = \left(\frac{1}{\sqrt{5}}(0,4,2)^t, \frac{1}{\sqrt{105}}(5,4,-8)^t\right)$ es la correspondiente base ortonormal.

d)
$$B' = ((3, -1, 2, -1)^t, (4, 6, -3, 0)^t)$$
 es una base ortogonal.
$$B'' = \left(\frac{1}{\sqrt{15}}(3, -1, 2, -1)^t, \frac{1}{\sqrt{61}}(4, 6, -3, 0)^t\right)$$
 es la correspondiente base ortonormal.

Problema 10.4 *W* tiene dimensión 2 (es un plano) y está generado por los vectores $v_1 = (2,1,0)^t$ y $v_2 = (-3,0,1)^t$. Usando Gram-Schmidt y dividiendo por la norma de cada vector, obtenemos: $B_W = \left(\frac{1}{\sqrt{5}}(2,1,0)^t, \frac{1}{\sqrt{70}}(-3,6,5)^t\right)$.

Para obtener una base ortonormal de \mathbb{R}^3 , buscamos un vector linealmente independiente de v_1 y v_2 (o simplemente que no esté en W); por ejemplo tomamos $v_3 = (1, -2, 3)^t$, el vector normal al plano x - 2y + 3z = 0. En nuestro caso particular no es necesario usar Gram-Schmidt (porque v_3 ya es ortogonal a v_1 y v_2); dividiendo por su norma obtenemos la base ortonormal de \mathbb{R}^3 : $B_{\mathbb{R}^3} = \left(\frac{1}{\sqrt{5}}(2,1,0)^t, \frac{1}{\sqrt{70}}(-3,6,5)^t, \frac{1}{\sqrt{14}}(1,-2,3)^t\right)$.

Problema 10.5 Tenemos que:

1) No preserva la longitud; por ejemplo: $1 = ||e_1|| \neq ||T(e_1)|| = \sqrt{2}$.

2)
$$\ker(T) = \{0\}; \quad \operatorname{nul}(T) = 0; \quad \operatorname{Im}(T) = \mathbb{R}^2 \quad \text{y} \quad \operatorname{rg}(T) = 2.$$

Problema 10.6 Todas las matrices tienen columnas linealmente independientes, por lo que aplicando Gram-Schmidt a dichas columnas se obtiene:

a)
$$B_{\mathcal{C}(A)} = ((3,1,-1,3)^t, (1,3,3,-1)^t, (-3,1,1,3)^t).$$

b)
$$B_{\mathcal{C}(A)} = ((1, -1, -1, 1, 1)^t, (1, 0, 1, -1, 1)^t, (1, 0, 1, 1, -1)^t).$$

c)
$$B_{\mathcal{C}(A)} = ((-1,3,1,1)^t, (3,-1,1,-1)^t, (-1,-1,3,-1)).$$

d)
$$B_{\mathcal{C}(A)} = ((1, -1, 0, 1, 1)^t, (-1, 1, 2, 1, 1)^t, (1, 1, 0, -1, 1)^t).$$

Problema 10.7 Como las matrices tienen columnas linealmente independientes, es posible encontrar la factorización QR en todos los casos. Se tiene:

a)
$$Q = \frac{1}{2\sqrt{5}} \begin{pmatrix} 3 & 1 & -3 \\ 1 & 3 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 3 \end{pmatrix}$$
, $R = \frac{1}{\sqrt{5}} \begin{pmatrix} 10 & -20 & 15 \\ 0 & 17 & -5 \\ 0 & 0 & 10 \end{pmatrix}$.

b)
$$Q = \begin{pmatrix} 1/\sqrt{5} & 1/2 & 1/2 \\ -1/\sqrt{5} & 0 & 0 \\ -1/\sqrt{5} & 1/2 & 1/2 \\ 1/\sqrt{5} & -1/2 & 1/2 \\ 1/\sqrt{5} & 1/2 & -1/2 \end{pmatrix}$$
, $R = \begin{pmatrix} \sqrt{5} & -\sqrt{5} & 6\sqrt{5} \\ 0 & 6 & -4 \\ 0 & 0 & 4 \end{pmatrix}$.

c)
$$Q = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1 & 3 & -1 \\ 3 & 1 & -1 \\ 1 & 1 & 3 \\ 1 & -1 & -1 \end{pmatrix}$$
, $R = \frac{1}{\sqrt{3}} \begin{pmatrix} 6 & -18 & 3 \\ 0 & 6 & 15 \\ 0 & 0 & 6 \end{pmatrix}$.

d)
$$Q = \begin{pmatrix} 1/2 & -1/\sqrt{8} & 1/2 \\ -1/2 & 1/\sqrt{8} & 1/2 \\ 0 & 2/\sqrt{8} & 0 \\ 1/2 & 1/\sqrt{8} & -1/2 \\ 1/2 & 1/\sqrt{8} & 1/2 \end{pmatrix}$$
; $R = \begin{pmatrix} 2 & 8 & 7 \\ 0 & 4/\sqrt{2} & 6/\sqrt{2} \\ 0 & 0 & 6/\sqrt{2} \end{pmatrix}$.

Problema 10.8 Basta con probar que son linealmente independientes. Además:

1) Usando Gram-Schmidt:

$$B = \left(\frac{1}{\sqrt{2}}(1,0,1)^{t}, \frac{1}{\sqrt{6}}(1,-2,-1)^{t}, \frac{1}{\sqrt{3}}(-1,-1,1)^{t}\right).$$

2) Si utilizamos las fórmulas empleadas en Gram-Schmidt y despejamos los vectores v_2 y v_3 en función de los obtenidos en el apartado (a) resulta:

$$[\nu_2]_{\rm B} = \frac{1}{\sqrt{2}} \left(3, -\sqrt{3}, 0 \right)^{\rm t},$$

 $[\nu_3]_{\rm B} = \left(3\sqrt{2}, \sqrt{6}, \sqrt{3} \right)^{\rm t}.$

3) La matriz de cambio de base es

$$T_{BS} = \begin{pmatrix} \sqrt{2} & 3/\sqrt{2} & 3\sqrt{2} \\ 0 & -\sqrt{3/2} & \sqrt{6} \\ 0 & 0 & \sqrt{3} \end{pmatrix}$$

y su inversa es

$$T_{SB} = T_{BS}^{-1} = \left(egin{array}{ccc} 1/\sqrt{2} & \sqrt{3/2} & -2\sqrt{3} \\ & 0 & -\sqrt{2/3} & 2/\sqrt{3} \\ & 0 & 0 & 1/\sqrt{3} \end{array}
ight).$$

Obviamente $T_{SB} [\nu_3]_B = T_{SB} \left(3\sqrt{2}, \sqrt{6}, \sqrt{3}\right)^t = (0, 0, 1)^t = [\nu_3]_S.$