Prvi međuispit (grupa B) - 30. ožujka 2010.

1. Totalna energija vremenski kontinuiranog signala $x(t) = e^{-3t} (\mu(t-1) - \mu(t-2))$ je:

a) $\frac{1}{3}(e^{-3}-e^{-6})$ **b)** $\frac{1}{3}(e^{-6}-e^{-3})$ **c)** $\frac{1}{6}(e^{-6}-e^{-12})$ **d)** $\frac{1}{6}(e^{-12}-e^{-6})$ **e)** $\frac{1}{6}(e^{-3}-e^{-6})$

2. Totalna srednja snaga vremenski kontinuiranog signala $x(t) = 4e^{j3\pi t}$ je:

b) 0 **c)** $\frac{48}{2}$ **d)** 16 **e)** $\frac{12}{2}$

3. Totalna energija vremenski diskretnog signala $x(n) = 5^{-n} \mu(n)$ je:

b) $\frac{25}{24}$

c) $\frac{1}{24}$

d) $\frac{1}{25}$

4. Totalna srednja snaga vremenski diskretnog signala $x(n) = (8 + 2^{-n}) \mu(n)$ je:

b) 8

c) $\frac{64}{2}$ d) 64 e) ∞

5. Koji od navedenih signala JE periodičan (n je cijeli broj, t je realan broj)?

a) $x(n) = \sin(2n)$ **b)** $x(t) = \sin(3t) + \sin(3\pi t)$ **c)** $x(n) = \sin(\frac{3}{4}\pi n^2)$ **d)** $x(t) = \cos(\frac{3}{4}\pi t^2)$ **e)** $x(n) = e^{jn}$

6. Nađi generaliziranu derivaciju signala $x(t) = \cos(\frac{\pi}{2}t)(\mu(t-1) - \mu(1-t))!$

a) $-\frac{\pi}{2}\sin(\frac{\pi}{2}t)(\mu(t-1)-\mu(1-t))+\delta(t-1)+\delta(1-t)$ b) $-\frac{\pi}{2}\sin(\frac{\pi}{2}t)(\mu(t-1)-\mu(1-t))$ c) $-\frac{\pi}{2}\sin(\frac{\pi}{2}t)(\mu(t-1)-\mu(1-t))+\delta(t-1)-\delta(1-t)$ d) $-\sin(\frac{\pi}{2}t)(\mu(t-1)-\mu(1-t))$ e) $\cos(\frac{\pi}{2}t)+\delta(t-1)-\delta(1-t)$

7. Jedini koeficijenti razvoja u Fourierov red uz $\omega_0 = \frac{\pi}{3}$ su X_3 i X_{-3} . Ako je poznato da je $|X_3| = 2$, $\angle X_3 = \frac{\pi}{4}$ i $|X_{-3}| = 2$, $\angle X_{-3} = -\frac{\pi}{4}$ radi se o razvoju signala:

a) $4j\sin(\pi t + \frac{\pi}{4})$ b) $2\cos(\pi t + \frac{\pi}{4})$ c) $2\cos(\pi t)$ d) $4e^{j(\pi t + \frac{\pi}{4})}$ e) $4\cos(\pi t + \frac{\pi}{4})$

8. Totalna srednja snaga signala iz prethodnog zadatka je:

b) 4

c) 8

d) $\frac{4}{\pi}$

9. Zadan je kontinuirani signal $x(t) = 20\sin(4\pi t) + 4\cos(\pi t)$. Koliko članova faznog spektra je različito od nule?

a) niti jedan

b) jedan c) dva

10. Za periodički kontinuirani signal zadan slikom nulti i treći član rastava u Fourierov red uz $T_0=6$ su:

d) četiri

e) svi

a) $(X_0, X_3) = (\frac{1}{3}, 0)$ **b)** $(X_0, X_3) = (\frac{1}{3}, \frac{2}{3})$ **c)** $(X_0, X_3) = (\frac{2}{3}, 0)$ **d)** $(X_0, X_3) = (\frac{1}{3}, \frac{\sqrt{3}}{3})$ **e)** $(X_0, X_3) = (\frac{2}{3}, \frac{\sqrt{3}}{\pi})$

11. Ako je CTFT $(x(t)) = e^{-2j\omega} \mu(\omega)$, koliko je CTFT(x(t-3))?

a) $e^{j\omega}\mu(\omega)$ **b)** $e^{-2j(\omega-3)}\mu(\omega)$ **c)** $e^{-2j(\omega+3)}\mu(\omega)$ **d)** $e^{-3j\omega}\mu(\omega)$ **e)** $e^{-5j\omega}\mu(\omega)$

Vremenski kontinuirana Fourierova transformacija (CTFT) signala $x(t) = \begin{cases} e^{-t}, & t \in \langle 0, 2\pi \rangle \\ 0, & \text{inače} \end{cases}$ je: a) $\frac{1}{1+j\omega}(1-e^{-2\pi(1+j\omega)})$ b) $\frac{1}{1-j\omega}(1-e^{-2\pi(1-j\omega)})$ c) $\frac{1}{1+j\omega}(e^{-2\pi(1+j\omega)}-1)$ d) $\frac{1}{1-j\omega}(e^{-2\pi(1-j\omega)}-1)$

13. Fourierova transformacija signala $x(t) = e^{-t(j+1)} \mu(t)$ je:

a) $\pi \delta(\omega + 1) + \frac{1}{i(\omega + 1)}$ **b)** $\pi \delta(\omega + 1) + \frac{1}{1 + j(\omega + 1)}$ **c)** $1 + \pi \delta(\omega + 1) + \frac{1}{1 + j(\omega + 1)}$ **d)** $\frac{1}{1 + j(\omega + 1)}$ **e)** $\frac{1}{j(\omega + 1)}$

14. Spektar vremenski diskretnog signala je $X(e^{j\Omega}) = \begin{cases} 2, & |\Omega| \le a \\ 0, & a < |\Omega| < \pi \end{cases}$. Energija tog signala je:

a) 0

b) 4 c) $\frac{4a}{\pi}$ d) $\frac{2a}{\pi}$ e) $+\infty$

15. Zadan je signal $x(n) = \begin{cases} \sin(\frac{\pi}{4}n), & -5 < n < 5 \\ 0, & \text{inače} \end{cases}$. Vremenski diskretna Fourierova transformacija signala za $\Omega = \frac{\pi}{2}$ je:

a) -2j

b) 2j **c)** 0 **d)** $-2\sqrt{2}j$ **e)** $2\sqrt{2}j$

16. Spektar vremenski diskretnog aperiodičnog signala je $X(e^{j\Omega}) = \cos(2\Omega) + \cos(5\Omega)$. Prvih pet uzoraka signala su:

a) x(0) = 0, $x(1) = \frac{1}{2}$, x(2) = 0, x(3) = 0, $x(4) = \frac{1}{2}$ **c)** x(0) = 0, x(1) = 1, x(2) = 0, x(3) = 0, x(4) = 1

b) x(0) = 0, x(1) = 0, $x(2) = \frac{1}{2}$, x(3) = 0, x(4) = 0 **d)** x(0) = 0, x(1) = 0, x(2) = 1, x(3) = 0, x(4) = 0

e) x(0) = 0, x(1) = 0, $x(2) = \frac{1}{2}$, x(3) = 0, x(4) = 1

17. Energija signala iz prethodnog zadatka je:

b) 1 **c)** 2 **d)** 3 **e)** 4

18. Spektar signala je $X_k = \cos(\frac{\pi}{2}k)$ uz N = 4. Kojem od navedenih signala odgovara taj spektar?

a) $2e^{-j\frac{\pi}{2}n}\sin(\frac{n\pi}{2})$ b) $\frac{1}{4}(1-(-1)^n)$ c) $\frac{1}{4}(1+(-1)^n)$ d) $1-(-1)^n$ e) $1+(-1)^n$

19. Izračunaj spektar periodičnog diskretnog signala čiji period je zadan slikom!

a) $2j\sin(\frac{\pi k}{2})$ b) $-2\cos(\frac{\pi k}{2})$ c) $\frac{j}{2}\sin(\frac{\pi k}{2})$ d) $-2je^{-2j\Omega}\sin(\Omega)$ e) $-\frac{1}{2}\cos(\frac{\pi k}{2})$

Koju Fourierovu transformaciju koristimo za signal $x(n) = \frac{2}{2+n+n^2}$?

a) vremenski diskretni Fourierov red (DTFS)

b) vremenski diskretnu Fourierova transformaciju (DTFT)

c) vremenski kontinuirani Fourierov red (CTFS)

d) vremenski kontinuiranu Fourierova transformaciju (CTFT)

e) nijednu od navedenih