Reconstruction and Representation of 3D Objects with Radial Basis Functions

¹Applied Research Associates NZ Ltd, ²Dept. Mathematics & Statistics, University of Canterbury, NZ.

Mesh repair

Implicit surface modeling

RBF surface modeling

The problem

To find an interpolant s such that

$$s(x_i) = 0,$$
 $i = 1,...,n$ (known surface point $s(x_i) = d_i \neq 0,$ $i = n+1,...,N$ (off-surface point

Our method

- Form a signed-distance distribution
- Interpolate distance field (fit an RBF)
- Iso-surface RBF

Generating off-surface data

Ensure a consistent distance-to-surface field

Validate normal lengths

Forming a signed-distance function

Outward
normal
points
On-surface
points

Inward normal points

 Off-surface points are projected along surface normals

Minimal energy interpolants

We want to find the *smoothest* function which fits our distance-surface data.

$$\begin{aligned} & \text{minimize} \int_{\mathbb{R}^3} \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial x^2} \right)^2 + \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial y^2} \right)^2 + \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial z^2} \right)^2 \\ & + 2 \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial x \partial y} \right)^2 + 2 \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial x \partial z} \right)^2 + 2 \left(\frac{\partial^2 s(\boldsymbol{x})}{\partial y \partial z} \right)^2 d\boldsymbol{x}. \end{aligned}$$

i.e., minimize the 2nd derivative

Thin-plate spline in 3D

The minimizing interpolant has the form:

Linear polynomialar weight

$$s(oldsymbol{x}) = p(oldsymbol{x}) + \sum_{i=1}^{N} \lambda_i |oldsymbol{x} - oldsymbol{x}_i|,$$

How far is x from x_i

Radial Basis Functions

This is a specific example of an RBF

$$s(\boldsymbol{x}) = p(\boldsymbol{x}) + \sum_{i=1}^{N} \lambda_i \phi(|\boldsymbol{x} - \boldsymbol{x}_i|),$$

Whoices $f\phi(r)\varphi = |r|$ Minimizes 2^{nd} derivative in 3D

$$\left| \begin{array}{c} \phi(r) = r^3 \text{Minimizes } 2^{\text{nd}} \text{ derivative in } 3D \end{array} \right|$$

How do we find the weights λ_i ?

Form & solve the linear system:

$$\begin{pmatrix} A & P \\ P^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{c} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ 0 \end{pmatrix}$$

Matrix dependent nonvirsation x_i locations of the data values at x_i

where
$$A_{i,j}=\phi(|oldsymbol{x}_i^{ extsf{oints}}oldsymbol{x}_j|), \qquad i,j=1,\ldots,N, \ P_{i,j}=p_j(oldsymbol{x}_i), \qquad i=1,\ldots,N, \quad j=1,\ldots,\ell.$$

Fast solution

$$N+4 \times N+4$$

$$\begin{pmatrix} A & P \\ P^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{c} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ 0 \end{pmatrix}$$

Direct methods Fast methods

storage flops

storage
$$N(N+1)$$

$$N^3/6 + O(N^2)$$
 $O(N \log N)$

E.g. dragon: 3,0000p6s(Me 872,000,51:00 (P) III

Fast evaluation

$$s(oldsymbol{x}) = p(oldsymbol{x}) + \sum_{i=1}^N \lambda_i \phi(|oldsymbol{x} - oldsymbol{x}_i|)$$

Direct methods Fast methods

flops per evaluation

O(N)

O(1) + O(N log N) setup

Centre reduction

Greedy algorithm

- Fit an RBF to a subset of the x_i
- Evaluate $\varepsilon_i = f_i s(x_i)$ at all the nodes
- If $\max |\varepsilon_i| < \varepsilon_{fit_acc}$ stop
- else add centres where ε_i is large
- re-fit RBF

Iso-surfacing

- Surface-following minimizes RBF evaluations
- RBF centres are used as seeds
- The RBF gradient assists seeding and mesh optimisation

Results

Buddha

Original mesh 543 652 points

1 086 798 triangles

RBF representation 80 518 centres

80 522 coefficients

19.6MB

1.6MB

3.5MB

New mesh

96 766 points

193 604 triangles

interpolation points: 1,086,194

Fit time: 4:03:26 Eval time: 0:04:07 (500MHz PIII)

Interpolating noisy data

Spline smoothing

Look for the function s^* that minimizes

$$ho \|s\|^2 + rac{1}{N} \sum_{i=1}^{N} \left(s(m{x}_i) - f_i
ight)^2$$

 s^* is also any REF with the coefficients given by

$$||s||^{2} = \int_{\mathbb{R}^{3}} P(x) |x|^{2} dx + P(x$$

Spline smoothing

Look for the function s^* that minimizes

$$\|
ho\|s\|^2 + rac{1}{N} \sum_{i=1}^N \left(s(m{x}_i) - f_i
ight)^2$$

Rearranging:

Deviation at each data point

$$egin{pmatrix} A & P \ P^{\mathsf{T}} & 0 \end{pmatrix} egin{pmatrix} oldsymbol{\lambda} \ oldsymbol{c} \end{pmatrix} = egin{pmatrix} oldsymbol{f} - 8N\pi
ho\lambda \ 0 \end{pmatrix}$$

 ρ determines amount of

Spline smoothing with RBFs

Exact fit $(\rho = 0)$

Increasing ρ

Increasing smoothness

Interpolating irregular, noisy, non-uniformly sampled range data from NASA's NEAR spacecraft

Surfacing examples

Mesh optimisation

Gridconstrained mesh Optimised mesh Mesh vertices constrained to lie on parallel planes

Conclusions

- A functional representation of a complex object is possible i.e. f(x)
- Smooth RBF interpolation is ideal for mesh repair
- The smoothest surface, most consistent with the input data, is produced
- Gradients are determined analytically, i.e. $\nabla f(x)$
- Fast evaluation is essential

Email: j.carr@aranz.com

1. Hieraasti ea la paarti bioneixegne fle pace

2. App Compatte facet and clogistic little by the clogistic lit

Computenopium bation fatalopaniels simperation propins de la compute de

Fitting & evaluation parameters

1D interpolation example

RBF fitting

Results

Dragon

Original mesh	437	645	points	15.4MB
	847	414	triangles	
New mesh	126	998	points	4.5MB
	254	016	triangles	4.5111
RBF representation	32	461	centres	0.6MB
	32	465	coefficients	

interpolation points: 872,487 Fit time: 2:51:09

Eval time: 0:04:40

Acknowledgements

- Hand, statue & mannequinn data courtesy of Polhemus corporation
- LIDAR data courtesy of Allen Instruments & Supplies, 1474 Theresa St, Carpinteria, CA93013, USA
- Eros data courtesy NASA & Cornell university
- Buddha & dragon data courtesy of Stanford Computer Graphics laboratory
- All other data courtesy Georgia Institute of Technology