```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
DATA EXPLORATION
In [4]:
df = pd.read csv("D:\EXCLER solution\Project Files\Fraud.csv")
df
Out[4]:
        step
                  type
                         amount
                                   nameOrig oldbalanceOrg newbalanceOrig
                                                                         nameDest oldbalanceDest newbala
                         9839.64 C1231006815
     0
          1 PAYMENT
                                                170136.00
                                                             160296.36 M1979787155
                                                                                           0.00
          1 PAYMENT
                         1864.28 C1666544295
                                                21249.00
                                                              19384.72 M2044282225
                                                                                           0.00
      1
     2
          1 TRANSFER
                         181.00 C1305486145
                                                  181.00
                                                                  0.00
                                                                       C553264065
                                                                                           0.00
          1 CASH_OUT
                         181.00
                                C840083671
                                                  181.00
                                                                  0.00
                                                                        C38997010
                                                                                       21182.00
          1 PAYMENT
                         11668.14 C2048537720
                                                 41554.00
                                                              29885.86 M1230701703
                                                                                           0.00
     ---
          ...
                                                                   ...
                                                                                            ...
6362615 743 CASH_OUT 339682.13 C786484425
                                                                  0.00 C776919290
                                                                                           0.00
                                                339682.13
6362616 743 TRANSFER 6311409.28 C1529008245
                                               6311409.28
                                                                  0.00 C1881841831
                                                                                           0.00
6362617
        743 CASH_OUT 6311409.28 C1162922333
                                               6311409.28
                                                                  0.00 C1365125890
                                                                                       68488.84
                                                                                                    63
6362618 743 TRANSFER 850002.52 C1685995037
                                               850002.52
                                                                  0.00 C2080388513
                                                                                           0.00
6362619
       743 CASH_OUT 850002.52 C1280323807
                                               850002.52
                                                                  0.00
                                                                       C873221189
                                                                                     6510099.11
                                                                                                    73
6362620 rows × 11 columns
                                                                                                   •
In [5]:
#Shape of the data
df.shape
Out[5]:
(6362620, 11)
In [6]:
#Information of data
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6362620 entries, 0 to 6362619
Data columns (total 11 columns):
                      Dtype
 # Column
 0 step
                      int64
   type
 1
                       object
   amount
 2
                       float64
   nameOrig
 3
                       object
     oldbalanceOrg float64
 4
 5
    newbalanceOrig float64
     nameDest
                       object
```

+1~~+*&*1

aldhalanaaDaat

In [3]:

```
newbalanceDest float64
newbalanceDest float64
sisFraud int64
float64(5), int64(3), object(3)
memory usage: 534.0+ MB
```

In [7]:

```
#Description of data df.describe()
```

Out[7]:

	step	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isFlagge
count	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.3626
mean	2.433972e+02	1.798619e+05	8.338831e+05	8.551137e+05	1.100702e+06	1.224996e+06	1.290820e-03	2.5146
std	1.423320e+02	6.038582e+05	2.888243e+06	2.924049e+06	3.399180e+06	3.674129e+06	3.590480e-02	1.5857
min	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.0000
25%	1.560000e+02	1.338957e+04	0.000000e+00	0.000000e+00	0.000000e+00	0.00000e+00	0.000000e+00	0.0000
50%	2.390000e+02	7.487194e+04	1.420800e+04	0.000000e+00	1.327057e+05	2.146614e+05	0.000000e+00	0.0000
75%	3.350000e+02	2.087215e+05	1.073152e+05	1.442584e+05	9.430367e+05	1.111909e+06	0.000000e+00	0.0000
max	7.430000e+02	9.244552e+07	5.958504e+07	4.958504e+07	3.560159e+08	3.561793e+08	1.000000e+00	1.0000
4								· ·

EXPLORATORY DATA ANALYSIS (EDA)

In [8]:

```
#Checking for Null values
print('Null Values:',df.isnull().values.any())
```

Null Values: False

Distribution of the Transaction Type column

In [9]:

```
#Visualization
fig, ax=plt.subplots(1,1, figsize=(8,8))
sns.countplot(x=df.type, palette="Set2",ax=ax).set_title("Transaction Type")
ax.bar_label(ax.containers[0])
plt.show()
```


Fraud Dataset And Valid Dataset

In [10]:

```
#Fraud and non-Fraud Distribution
fraud = df[df['isFraud']==1]
valid = df[df['isFraud']==0]
print("Fraud:", fraud.shape)
print("Valid:", valid.shape)
```

Fraud: (8213, 11) Valid: (6354407, 11)

Relation between the Fraud Transaction and the Transactions Flagged by the system

In [11]:

```
# chart for label class
plt.figure(figsize=(8,6))

plt.subplot(121)
ax = sns.countplot(data=df, x='isFraud',palette="husl")
ax.bar_label(ax.containers[0])

plt.subplot(122)
ax = sns.countplot(data=df, x='isFlaggedFraud',palette="Set2")
ax.bar_label(ax.containers[0])

plt.suptitle('COUNT PLOT OF ISFRAUD AND ISFLAGGEDFRAUD')
plt.show()
```

COUNT PLOT OF ISFRAUD AND ISFLAGGEDFRAUD

Fraud Transactions and Transaction types

In [12]:

```
plt.figure(figsize=(8,6))
ax=sns.countplot('type', data=fraud,palette="rocket")
for i in range(len(ax.containers)):
    ax.bar_label(ax.containers[i])
plt.title('Fraud Distribution')
plt.show()
```


INFERENCES:¶

From the above graph we can see that the Fraudulent transfers are from TRANSFER(4097) and CASH_OUT(4116), transaction types.

Flagged As Fraud per transaction

In [13]:

```
# Count of the type feature
plt.figure(figsize=(8,6))
ax = sns.countplot(data=df, x='type', hue='isFlaggedFraud',palette="viridis")
for i in range(len(ax.containers)):
    ax.bar_label(ax.containers[i])
plt.title("Transaction which are flagged as fraud per transaction type")
plt.show()
```


INFERENCES:

From the above graph we can see that the money transfers that are flagged fraud are from TRANSFER Transaction type. So out of 4097 only 16 were Flagged Fraud by the system.

However, only 16 out of 6 million transactions were flagged by the system. It is safe to say that the system uses an unreasonable parameter to detect fraud transactions.

Dealing with Account Ids 'nameOrig' and 'nameDest'

```
In [14]:
```

```
print("All Transactions ID:", df['nameOrig'].size)
print("Unique Transactions ID:", df['nameOrig'].unique().size)
print('Transactions from existing accounts: ',df['nameOrig'].size-df['nameOrig'].unique().size)

All Transactions ID: 6362620
Unique Transactions ID: 6353307
Transactions from existing accounts: 9313
In [15]:
```

```
print("All Transactions ID:", df['nameDest'].size)
print("Unique Transactions ID:", df['nameDest'].unique().size)
print("Unique Transactions form swinting accounts." df['nameDest'] size df['nameOnight']
```

print("Transactions from existing accounts:", df['nameDest'].size-df['nameOrig'].unique()
.size)

All Transactions ID: 6362620 Unique Transactions ID: 2722362

Transactions from existing accounts: 9313

CONCLUSION:

We do not get any beneficial information from the nameOrig or nameDest, so we'll be dropping these columns.

Taking note of the Step Feature

In [16]:

```
#Time Patterns
sns.set_theme(style="darkgrid")
bins = 50
valid.hist(column="step", color="thistle", bins=bins)
plt.xlabel("1 hour of time step")
plt.ylabel("Transactions")
plt.title("VALID TRANSACTIONS OVER TIME")

fraud.hist(column="step", color="purple", bins=bins)
plt.xlabel("1 hour of time step")
plt.ylabel("Transactions")
plt.title("FRAUD TRANSACTIONS OVER TIME")

plt.tight_layout()
plt.show()
```


INFERENCE:

- 1.A lot of VALID TRANSACTIONS occur during 0 to 60 hours and then again 120 to 400 hours.
- 2. The FRAUD TRANSACTIONS don't change much throughout the time frame.

Feature Engineering and Data Cleaning

As We know Dataset is totally Biased, 8231 are fraud transactions(minority class) where as remainings are non fraud transactions(majority class). However We are trying to make content small so that we could balanced the dataset. Hence we are going to take 12000 data from each type(Payment,Transfer,Cash_out,Debit,Cash_in) which is non fraud and will make one dataframe of fraud data i.e 8231 and we will combine all the dataframe to perform further steps.

```
In [17]:
```

```
fraud = df[df['isFraud']==1]
fraud
```

Out[17]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbala
2	1	TRANSFER	181.00	C1305486145	181.00	0.0	C553264065	0.00	
3	1	CASH_OUT	181.00	C840083671	181.00	0.0	C38997010	21182.00	
251	1	TRANSFER	2806.00	C1420196421	2806.00	0.0	C972765878	0.00	
252	1	CASH_OUT	2806.00	C2101527076	2806.00	0.0	C1007251739	26202.00	
680	1	TRANSFER	20128.00	C137533655	20128.00	0.0	C1848415041	0.00	
•••									
6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C776919290	0.00	3
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	
6362617	743	CASH OUT	6311409 28	C1162922333	6311409 28	0.0	C1365125890	68488 84	63

<u> |</u>

In [18]:

transfer = df[(df['type'] == 'TRANSFER') & (df['isFraud'] == 0)]
transfer1 = transfer.head(12000)
transfer1

Out[18]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalan
19	1	TRANSFER	215310.30	C1670993182	705.00	0.00	C1100439041	22425.00	
24	1	TRANSFER	311685.89	C1984094095	10835.00	0.00	C932583850	6267.00	271!
58	1	TRANSFER	62610.80	C1976401987	79114.00	16503.20	C1937962514	517.00	1
78	1	TRANSFER	42712.39	C283039401	10363.39	0.00	C1330106945	57901.66	24
79	1	TRANSFER	77957.68	C207471778	0.00	0.00	C1761291320	94900.00	2:
•••									
142949	11	TRANSFER	689978.77	C1207589610	166088.00	0.00	C1005856130	10870.00	700
142964	11	TRANSFER	216388.35	C942594959	462358.00	245969.65	C778384023	0.00	210
142966	11	TRANSFER	2130918.93	C188286369	745503.96	0.00	C2018751567	0.00	2130
142997	11	TRANSFER	2023924.17	C1540907040	545456.09	0.00	C173961721	2178730.76	420:
143009	11	TRANSFER	408034.79	C1738964594	12457.00	0.00	C1408588829	568134.84	970
140003		IIIANOI EN	T0000T.13	01700304034	12437.00	0.00	0170000029	300134.04	,

12000 rows × 11 columns

4

In [19]:

payment = df[(df['type'] == 'PAYMENT') & (df['isFraud'] == 0)]
payment1=payment.head(12000)
payment1

Out[19]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceD
0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M1979787155	0.0	
1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2044282225	0.0	
4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M1230701703	0.0	
5	1	PAYMENT	7817.71	C90045638	53860.00	46042.29	M573487274	0.0	
6	1	PAYMENT	7107.77	C154988899	183195.00	176087.23	M408069119	0.0	
24108	8	PAYMENT	13802.70	C1653572480	56710.00	42907.30	M2087721404	0.0	
24110	8	PAYMENT	1942.96	C1427144523	274.00	0.00	M1260221930	0.0	
24112	8	PAYMENT	6402.51	C1299972350	99926.00	93523.49	M465622077	0.0	
24113	8	PAYMENT	11738.52	C1003638922	17829.85	6091.33	M1830688100	0.0	
24114	8	PAYMENT	12550.45	C1078494153	6091.33	0.00	M1572128449	0.0	

Tn [201•

```
cash_out = df[(df['type']=='CASH_OUT') & (df['isFraud']==0)]
cash_out1 = cash_out.head(12000)
cash_out1
```

Out[20]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalance
15	1	CASH_OUT	229133.94	C905080434	15325.00	0.0	C476402209	5083.00	515
42	1	CASH_OUT	110414.71	C768216420	26845.41	0.0	C1509514333	288800.00	24
47	1	CASH_OUT	56953.90	C1570470538	1942.02	0.0	C824009085	70253.00	641
48	1	CASH_OUT	5346.89	C512549200	0.00	0.0	C248609774	652637.00	64534
51	1	CASH_OUT	23261.30	C2072313080	20411.53	0.0	C2001112025	25742.00	
•••									
45560	9	CASH_OUT	398135.92	C1956662442	0.00	0.0	C1423983240	549002.09	9471
45561	9	CASH_OUT	173296.72	C1399983549	11961.00	0.0	C685786661	150393.07	3236
45562	9	CASH_OUT	134749.83	C735655415	0.00	0.0	C1102319340	10388343.43	105230
45564	9	CASH_OUT	260556.81	C1533020913	4846.00	0.0	C397672119	0.00	2605
45566	9	CASH_OUT	316468.08	C1368163464	51686.00	0.0	C168639687	0.00	3164

12000 rows × 11 columns

```
In [21]:
```

```
debit = df[(df['type'] == 'DEBIT') & (df['isFraud'] == 0)]
debit1 = debit.head(12000)
debit1
```

Out[21]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDes
9	1	DEBIT	5337.77	C712410124	41720.0	36382.23	C195600860	41898.00	40348.7
10	1	DEBIT	9644.94	C1900366749	4465.0	0.00	C997608398	10845.00	157982.1
21	1	DEBIT	9302.79	C1566511282	11299.0	1996.21	C1973538135	29832.00	16896.7
22	1	DEBIT	1065.41	C1959239586	1817.0	751.59	C515132998	10330.00	0.0
41	1	DEBIT	5758.59	C1466917878	32604.0	26845.41	C1297685781	209699.00	16997.2
1832908	163	DEBIT	34791.71	C1495384278	22309.0	0.00	C1623181854	404097.91	438889.6
1833413	163	DEBIT	5359.39	C1366381782	102439.0	97079.61	C1351586913	32459.15	37818.5
1833577	163	DEBIT	6476.81	C374254767	3835.0	0.00	C1778727790	996802.90	1003279.7
1833583	163	DEBIT	13872.04	C383929568	16070.0	2197.96	C352914906	5254379.71	5268251.7
1834393	163	DEBIT	18043.70	C682436441	13557.0	0.00	C2129359968	2914259.43	2952848.8

12000 rows × 11 columns

```
In [22]:
```

```
cash_in = df[(df['type']=='CASH_IN') & (df['isFraud']==0)]
cash_in1 = cash_in.head(12000)
cash_in1
```

Out[22]:

step type amount nameOrig oldbalanceOrg newbalanceOrig nameDest oldbalanceDest newbalanceDe

389	step	CASItiy play	14 3076.06	C18629045426	oldbalance 000	newbal aneson g	C166300410684	oldba fantest2est	newbalana93
390	1	CASH_IN	228451.89	C1614133563	143236.26	371688.15	C2083562754	719678.38	1186556
391	1	CASH_IN	35902.49	C839771540	371688.15	407590.65	C2001112025	49003.30	0
392	1	CASH_IN	232953.64	C1037163664	407590.65	640544.28	C33524623	1172672.27	1517262
393	1	CASH_IN	65912.95	C180316302	640544.28	706457.23	C1330106945	104198.26	24044
63673	9	CASH_IN	60925.49	C569900309	8611069.67	8671995.16	C456930332	145527.37	18246
63674	9	CASH_IN	46388.49	C697840884	8671995.16	8718383.65	C352211689	81999.93	35611
63675	9	CASH_IN	122487.44	C258282341	8718383.65	8840871.10	C1910963690	204940.81	0
63676	9	CASH_IN	327979.11	C248222613	8840871.10	9168850.21	C459857341	329646.12	320251
63677	9	CASH_IN	666052.56	C273336332	9168850.21	9834902.77	C1703466391	773325.04	0

[4]

In [23]:

data = pd.concat([transfer1,payment1,cash_out1,debit1,cash_in1,fraud], axis=0)
data

Out[23]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbala
19	1	TRANSFER	215310.30	C1670993182	705.00	0.0	C1100439041	22425.00	
24	1	TRANSFER	311685.89	C1984094095	10835.00	0.0	C932583850	6267.00	27
58	1	TRANSFER	62610.80	C1976401987	79114.00	16503.2	C1937962514	517.00	
78	1	TRANSFER	42712.39	C283039401	10363.39	0.0	C1330106945	57901.66	1
79	1	TRANSFER	77957.68	C207471778	0.00	0.0	C1761291320	94900.00	:
6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C776919290	0.00	3
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	
6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C1365125890	68488.84	63
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	
6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C873221189	6510099.11	73

68213 rows × 11 columns

In [24]:

#We do not get any beneficial information from the nameOrig or nameDest. Hence, we'll be dropping these columns. data1 = data.drop(['nameOrig','nameDest'],axis=1)

data

Out[24]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbala
19	1	TRANSFER	215310.30	C1670993182	705.00	0.0	C1100439041	22425.00	
24	1	TRANSFER	311685.89	C1984094095	10835.00	0.0	C932583850	6267.00	27
58	1	TRANSFER	62610.80	C1976401987	79114.00	16503.2	C1937962514	517.00	
78	1	TRANSFER	42712.39	C283039401	10363.39	0.0	C1330106945	57901.66	
79	1	TRANSFER	77957.68	C207471778	0.00	0.0	C1761291320	94900.00	

6362615	step 743	CASH_OUT	amount 339682.13	nameOrig C786484425	oldbalanceOrg 339682.13	newbalanceOrig 0.0	nameDest C776919290	oldbalanceDest 0.00	newbala 3
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C1881841831	0.00	
6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C1365125890	68488.84	63
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C2080388513	0.00	
6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C873221189	6510099.11	73

•

Taking note of the balances before and after transactions

As most of the transactions has errors in showing the account balances before and after transaction, we calculate the error

```
In [25]:
```

```
zero_balance = list(data.loc[(data1.oldbalanceOrg == 0) & (data1.newbalanceOrig == 0) &
  (data1.amount != 0)].type.values)

print('Number of transcation where oldbalanceorig & newbalanceorig is zero but amount of
  transaction is not zero :{}'.format(len(zero_balance)))
```

Number of transcation where oldbalanceorig & newbalanceorig is zero but amount of transaction is not zero :17098

In [26]:

number of recipients who have newbalanceDest and oldbalanceDest is zero :16831

Taking note of the balances before and after transactions

As most of the transactions has errors in showing the account balances before and after transaction, we calculate the error

In [27]:

```
data1['origin_bal_change'] = data1['oldbalanceOrg'] - data1['newbalanceOrig']
data1['dest_bal_increase'] = data1['newbalanceDest'] - data1['oldbalanceDest']
data1
```

Out[27]:

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isFlaggedF
19	1	TRANSFER	215310.30	705.00	0.0	22425.00	0.00	0	
24	1	TRANSFER	311685.89	10835.00	0.0	6267.00	2719172.89	0	
58	1	TRANSFER	62610.80	79114.00	16503.2	517.00	8383.29	0	
78	1	TRANSFER	42712.39	10363.39	0.0	57901.66	24044.18	0	
79	1	TRANSFER	77957.68	0.00	0.0	94900.00	22233.65	0	
6362615	743	CASH_OUT	339682.13	339682.13	0.0	0.00	339682.13	1	
6362616	743	TRANSFER	6311409.28	6311409.28	0.0	0.00	0.00	1	
6362617	743	CASH_OUT	6311409.28	6311409.28	0.0	68488.84	6379898.11	1	
6362618	743	TRANSFER	850002.52	850002.52	0.0	0.00	0.00	1	

- Control of the state of the s

√

Converting the step feature from hours into days

```
In [28]:
```

```
num_days = 7
num_hours = 24
fraud_days = fraud.step % num_days
fraud_hours = fraud.step % num_hours
valid_days = valid.step % num_days
valid_hours = valid.step % num_hours
```

In [29]:

```
# plotting scatterplot of the days of the week,
plt.subplot(1, 2, 1)
fraud_days.hist(bins=num_days,color="firebrick")
plt.title('Fraud transactions by Day')
plt.xlabel('Day of the Week')
plt.ylabel("# of transactions")

plt.subplot(1,2,2)
valid_days.hist(bins=num_days,color="lightcoral")
plt.title('Valid transactions by Day')
plt.xlabel('Day of the Week')
plt.ylabel("# of transactions")

plt.tight_layout()
plt.show()
```


In [30]:

```
# plotting scatterplot of the hours of days, identifying the fraudulent transactions (red
) from the valid transactions (green)
plt.subplot(1, 2, 1)
fraud_hours.hist(bins=num_hours, color="palegreen")
plt.title('Fraud transactions by Hour')
plt.xlabel('Hour of the Day')
plt.ylabel("# of transactions")

plt.subplot(1, 2, 2)
valid_hours.hist(bins=num_hours, color="darkseagreen")
plt.title('Valid transactions by Hour')
plt.xlabel('Hour of the Day')
plt.ylabel("# of transactions")
```


INFERENCE:

From the graphs above, there is strong evidence to suggest that from hour 0 to hour 9, valid transactions very rarely occur. On the other hand, fraudulent transactions still occur at similar rates to any hour of the day outside of hours 0 to 9.

So I will add a new feature hour_of_day which is just the [(step column) %24]

In [31]:

```
data1['HourOfDay'] = np.nan # initializing feature column
data1.HourOfDay = data1['step'].apply(lambda i: i/24)
data1
```

Out[31]:

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isFlaggedf
19	1	TRANSFER	215310.30	705.00	0.0	22425.00	0.00	0	
24	1	TRANSFER	311685.89	10835.00	0.0	6267.00	2719172.89	0	
58	1	TRANSFER	62610.80	79114.00	16503.2	517.00	8383.29	0	
78	1	TRANSFER	42712.39	10363.39	0.0	57901.66	24044.18	0	
79	1	TRANSFER	77957.68	0.00	0.0	94900.00	22233.65	0	
6362615	743	CASH_OUT	339682.13	339682.13	0.0	0.00	339682.13	1	
6362616	743	TRANSFER	6311409.28	6311409.28	0.0	0.00	0.00	1	
6362617	743	CASH_OUT	6311409.28	6311409.28	0.0	68488.84	6379898.11	1	
6362618	743	TRANSFER	850002.52	850002.52	0.0	0.00	0.00	1	
6362619	743	CASH_OUT	850002.52	850002.52	0.0	6510099.11	7360101.63	1	

68213 rows × 12 columns

•

Heat Map

In [32]:

```
import matplotlib.pyplot as plt
import seaborn as sns
corrmat = datal.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(10,10))
```

sns.heatmap(data1[top_corr_features].corr(),annot=True,cmap="YlGnBu")

Out[32]:

<AxesSubplot:>

DATA PREPARATION

We apply Label_encoding to convert string datatype into float datatype

In [33]:

```
#Converting string datatypes into float datatypes
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
data1['type'] = label_encoder.fit_transform(data1['type'])
data1
```

Out[33]:

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud
19	1	4	215310.30	705.00	0.0	22425.00	0.00	0	0
24	1	4	311685.89	10835.00	0.0	6267.00	2719172.89	0	0
58	1	4	62610.80	79114.00	16503.2	517.00	8383.29	0	0
78	1	4	42712.39	10363.39	0.0	57901.66	24044.18	0	0
79	1	4	77957.68	0.00	0.0	94900.00	22233.65	0	0

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud
6362615	743	1	339682.13	339682.13	0.0	0.00	339682.13	1	0
6362616	743	4	6311409.28	6311409.28	0.0	0.00	0.00	1	0
6362617	743	1	6311409.28	6311409.28	0.0	68488.84	6379898.11	1	0
6362618	743	4	850002.52	850002.52	0.0	0.00	0.00	1	0
6362619	743	1	850002.52	850002.52	0.0	6510099.11	7360101.63	1	0

-

In [34]:

```
import matplotlib.pyplot as plt
import seaborn as sns
corrmat = data1.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(10,10))
sns.heatmap(data1[top_corr_features].corr(),annot=True,cmap="YlGnBu")
```

Out[34]:

<AxesSubplot:>

In [35]:

data1.type.value_counts()

Out[35]:

```
Y = data1.isFraud
In [38]:
Χ
Out[38]:
                  amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFlaggedFraud origin_bal_chan
         type
      19
                215310.30
                                 705.00
                                                    0.0
                                                               22425.00
                                                                                   0.00
                                                                                                     0
                                                                                                                  705.
      24
            4
                311685.89
                               10835.00
                                                    0.0
                                                                6267.00
                                                                             2719172.89
                                                                                                     0
                                                                                                                10835.
                                                16503.2
                                                                                8383.29
     58
            4
                 62610.80
                               79114.00
                                                                 517.00
                                                                                                     0
                                                                                                                62610.
      78
            4
                 42712.39
                               10363.39
                                                    0.0
                                                               57901.66
                                                                               24044.18
                                                                                                     0
                                                                                                                10363.
                                                                               22233.65
      79
            4
                 77957.68
                                    0.00
                                                    0.0
                                                               94900.00
                                                                                                     0
                                                                                                                    0.
                339682.13
6362615
                              339682.13
                                                    0.0
                                                                   0.00
                                                                              339682.13
                                                                                                     0
                                                                                                               339682.
6362616
            4 6311409.28
                             6311409.28
                                                    0.0
                                                                   0.00
                                                                                   0.00
                                                                                                     0
                                                                                                              6311409.
6362617
               6311409.28
                              6311409.28
                                                    0.0
                                                               68488.84
                                                                             6379898.11
                                                                                                              6311409.
6362618
                850002.52
                              850002.52
                                                    0.0
                                                                   0.00
                                                                                   0.00
                                                                                                     0
                                                                                                               850002.
6362619
                850002.52
                              850002.52
                                                    0.0
                                                             6510099.11
                                                                             7360101.63
                                                                                                               850002.
68213 rows × 10 columns
In [39]:
Υ
Out[39]:
19
              0
24
              0
58
              0
78
              0
79
              0
6362615
              1
6362616
              1
6362617
              1
6362618
6362619
              1
Name: isFraud, Length: 68213, dtype: int64
In [40]:
x train, x test, y train, y test = train test split(X,Y, test size=0.2, random state=42)
```

1

4

3

2

0

In [36]:

In [37]:

16116

16097

12000

12000 12000

Name: type, dtype: int64

from random import seed, sample

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X = data1.drop(["isFraud", "step"], axis=1)

#Importing Packages

```
In [41]:
```

```
#Normalizing data so that all variables follow the same scale (0 to 1)
scaler = StandardScaler()

#Fit only to the training data
scaler.fit(x_train)

#Now apply the transformations to the data:
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
```

In [42]:

```
print("Shape of x_train:", x_train.shape)
print("Shape of x_test:", x_test.shape)
print("Shape of y_train:", y_train.shape)
print("Shape of y_test:", y_test.shape)
```

Shape of x_train: (54570, 10) Shape of x_test: (13643, 10) Shape of y_train: (54570,) Shape of y_test: (13643,)

In [43]:

```
pd.Series(Y).value_counts().plot(kind='bar',title='COUNT OF FRAUDULENT VS NON-FRAUDULENT
TRANSACTIONS', xlabel='isFraud')
```

Out[43]:

<AxesSubplot:title={'center':'COUNT OF FRAUDULENT VS NON-FRAUDULENT TRANSACTIONS'}, xlabe
l='isFraud'>

COUNT OF FRAUDULENT VS NON-FRAUDULENT TRANSACTIONS

MODEL SELECTION

Model1: LOGISTIC REGRESSION

In [44]:

```
#Importing Libraries
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import average_precision_score
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, roc_
curve, auc, precision_score
classifier=LogisticRegression()
classifier.fit(x_train,y_train)
```

Out[44]:

LogisticRegression()

Tn [451:

```
______.
#Predicting on Train data
predt log = classifier.predict(x train)
#Accuracy on Train data
print("Train data Accuracy is:", np.mean(predt log==y train))
Train data Accuracy is: 0.9840388491845337
In [46]:
#Predicting on test data
preds1 = classifier.predict(x test)
#Accuracy on Test data
print("Test data Accuracy is:", np.mean(preds1==y test))
Test data Accuracy is: 0.9843143003738181
In [47]:
# Evaluating model
CM log = confusion matrix(y test,preds1)
CM log
Out[47]:
array([[11966,
                 22],
       [ 192, 1463]], dtype=int64)
In [48]:
CR_log=classification_report(preds1,y_test)
print(CR log)
              precision recall f1-score
                                              support
                   1.00
                             0.98
                                       0.99
                                                12158
                             0.99
                                       0.93
                   0.88
                                                 1485
                                       0.98
                                                13643
   accuracy
                 0.94 0.98
                                     0.96
                                                13643
   macro avg
                            0.98
                                      0.98
                                                13643
weighted avg
                  0.99
Model 2: Decision Tree
In [49]:
#Importing packages
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
#Train Model
DT = DecisionTreeClassifier()
model1 = DecisionTreeClassifier(criterion = 'entropy', max depth=10)
model1.fit(x_train,y_train)
Out[49]:
DecisionTreeClassifier(criterion='entropy', max depth=10)
In [50]:
#PLot the Decision Tree
tree.plot tree(model1);
```

print("No. Of Leaves:", model1.get_n_leaves())

No. Of Leaves: 63

In [51]:

```
#Predicting on test data
preds2= model1.predict(x_test)
#Accuracy on test data
print('Test data Accuracy is:',np.mean(preds2==y_test))
```

Test data Accuracy is: 0.9983874514402991

In [52]:

```
# Evaluating model
CM_2 = confusion_matrix(y_test,preds2)
CM_2
```

Out[52]:

```
array([[11981, 7], [ 15, 1640]], dtype=int64)
```

In [53]:

```
CR_2=classification_report(preds2,y_test)
print(CR_2)
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	11996
1	0.99	1.00	0.99	1647
accuracy			1.00	13643
macro avg	1.00	1.00	1.00	13643
weighted avg	1.00	1.00	1.00	13643

Model 3: Random Forest

In [54]:

```
# Random Forest Classification

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
```

In [55]:

```
# Train model
parametersRF = {'n_estimators':15,'class_weight': "balanced",'n_jobs':-1,'random_state':
42}
RF = RandomForestClassifier(**parametersRF)
model_3 = RF.fit(x_train, y_train)

# Predict on testing set
preds_3 = RF.predict(x_test)

fprRF, recallRF, thresholdsRF = roc_curve(y_test, preds_3)
AUC_rf = auc(fprRF, recallRF)
resultsRF = {"Area Under Curve":AUC_rf}
```

```
# showing results from Random Forest
for measure in resultsRF:
   print(measure,": \n", resultsRF[measure])
Area Under Curve :
 0.9933117659452
In [56]:
# Evaluating model
CM 3 = confusion matrix(y_test,preds_3)
CM 3
Out[56]:
array([[11987,
                   1],
       [ 22, 1633]], dtype=int64)
In [57]:
CR 3=classification_report(y_test,preds_3)
print(CR 3)
              precision
                          recall f1-score
                                              support
                   1.00
                             1.00
                                       1.00
                                                 11988
           1
                   1.00
                             0.99
                                       0.99
                                                 1655
                                       1.00
                                                13643
   accuracy
                   1.00
                             0.99
                                      1.00
                                                13643
   macro avg
weighted avg
                   1.00
                             1.00
                                       1.00
                                                13643
Model 4: XGBoost Classifier
In [58]:
from xgboost import XGBClassifier
# Training model
model4 = XGBClassifier()
model4.fit(x_train, y_train)
Out[58]:
XGBClassifier(base score=0.5, booster='gbtree', callbacks=None,
              colsample bylevel=1, colsample bynode=1, colsample bytree=1,
              early_stopping_rounds=None, enable_categorical=False,
              eval metric=None, gamma=0, gpu id=-1, grow policy='depthwise',
              importance type=None, interaction constraints='',
              learning rate=0.300000012, max bin=256, max cat to onehot=4,
              max delta step=0, max depth=6, max leaves=0, min child weight=1,
              missing=nan, monotone constraints='()', n estimators=100,
              n jobs=0, num parallel tree=1, predictor='auto', random state=0,
              reg_alpha=0, reg_lambda=1, ...)
In [59]:
#Predicting on train data
preds4= model4.predict(x test)
#Accuracy on train data
print('Test data Accuracy is:',np.mean(preds4==y test))
Test data Accuracy is: 0.9988272374111266
In [60]:
```

Evaluating model
CM_4 = confusion_matrix(y_test,preds4)
CM_4

```
Out[60]:
array([[11986,
                2],
      [ 14, 1641]], dtype=int64)
In [61]:
CR 4=classification report(preds4,y test)
print(CR 4)
              precision recall f1-score support
                 1.00 1.00 1.00 12000
0.99 1.00 1.00 1643
                                      1.00 13643
1.00 13643
   accuracy
             1.00 1.00
1.00 1.00
                                      1.00
   macro avg
                                      1.00
                                                13643
weighted avg
Model 5: Light GBM Classifier
In [62]:
import lightqbm as lqb
model5 = lgb.LGBMClassifier()
model5.fit(x_train,y_train)
Out[62]:
LGBMClassifier()
In [63]:
#Predicting on Test data
preds5 = model5.predict(x test)
#Accuracy on Test data
print('Test data Accuracy is:',np.mean(preds5==y test))
Test data Accuracy is: 0.9989005350729312
In [64]:
# Evaluating model
CM 5 = confusion matrix(y_test,preds5)
CM 5
Out[64]:
array([[11987,
                  11,
     [ 14, 1641]], dtype=int64)
In [65]:
CR 5=classification_report(preds5,y_test)
print(CR 5)
              precision recall f1-score support
                        1.00
1.00
                                              12001
           0
                   1.00
                                     1.00
                                       1.00
                                                 1642
                  0.99
                 1.00 13643
1.00 1.00 1.00 13643
1.00 1.00 1.00 13643
   accuracy
   macro avg
weighted avg
```

Model 6: K-Fold Cross Validation

```
from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score
logreg=LogisticRegression()
skf=StratifiedKFold(n_splits=5)
score=cross_val_score(logreg, X, Y, cv=skf)
print("Cross Validation Scores are {}".format(score))
print("Average Cross Validation score :{}".format(score.mean()))
```

Cross Validation Scores are [0.95316279 0.78626402 0.93835667 0.93996481 0.98966427] Average Cross Validation score :0.9214825130702433

Model 7: Gaussian Navie Bayes

```
In [67]:
```

```
#Importing Libraries
from sklearn.naive_bayes import GaussianNB as GB
classifier_gb = GB()
classifier_gb.fit(x_train,y_train)
```

Out[67]:

GaussianNB()

In [68]:

```
#Predicting on test data
preds6 = classifier_gb.predict(x_test)
#Accuracy on Test data
print("Test data Accuracy is:", np.mean(preds6==y_test))
```

Test data Accuracy is: 0.967602433482372

In [69]:

```
# Evaluating model
CM_6 = confusion_matrix(y_test, preds6)
CM_6
```

Out[69]:

```
array([[11875, 113], [ 329, 1326]], dtype=int64)
```

In [70]:

```
CR_6=classification_report(preds6,y_test)
print(CR_6)
```

	precision	recall	f1-score	support
0 1	0.99	0.97 0.92	0.98 0.86	12204 1439
accuracy macro avg weighted avg	0.90 0.97	0.95 0.97	0.97 0.92 0.97	13643 13643 13643

Model 8: K-Fold Cross Validation

In [71]:

```
from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score
logreg=LogisticRegression()
skf=StratifiedKFold(n_splits=5)
score_k=cross_val_score(logreg,x_test,y_test,cv=skf)
print("Cross Validation Scores are {}".format(score_k))
print("Average Cross Validation score :{}".format(score_k.mean()))
```

Cross Validation Scores are [0.98021253 0.98387688 0.98351044 0.98460411 0.98497067]

Model 9: AdaBoost Classification

```
In [72]:
```

```
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(random_state=96)
preds8=clf.fit(x_test,y_test)
print("Test data Accuracy:",preds8.score(x_test,y_test))
score=cross_val_score(clf,x_test,y_test)
print("Cross Validation Scores are {}".format(score))
```

Test data Accuracy: 0.9978010701458624 Cross Validation Scores are [0.9989007 0.99633565 0.99633565 0.99743402 0.99780059]

Model 9: Baggigng Classification

```
In [73]:
```

```
from sklearn.ensemble import BaggingClassifier
kfold = KFold(n_splits=10)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees)
results_bag = cross_val_score(model, x_test, y_test, cv=kfold)
print(results_bag.mean())
```

0.9973611334901659

Comparing the models: UnBalanced data

```
In [74]:
```

```
print("Accuracy of Logistic Regression:",np.mean(preds1==y_test))
print("Accuracy of Decision Tree:",np.mean(preds2==y_test))
print("Accuracy of Random Forest:",AUC_rf)
print("Accuracy of XGBoost Classifier:",np.mean(preds4==y_test))
print("Accuracy of Light GBM Classifier:",np.mean(preds5==y_test))
print("Accuracy of Gaussian Navie Bayes:",np.mean(preds6==y_test))
print("Accuracy of K-Fold Cross Validation:",format(score_k.mean()))
print("Accuracy of AdaBoost Classification:",preds8.score(x_test,y_test))
print("Accuracy of Baggigng Classification:",results_bag.mean())
```

```
Accuracy of Logistic Regression: 0.9843143003738181
Accuracy of Decision Tree: 0.9983874514402991
Accuracy of Random Forest: 0.9933117659452
Accuracy of XGBoost Classifier: 0.9988272374111266
Accuracy of Light GBM Classifier: 0.9989005350729312
Accuracy of Gaussian Navie Bayes: 0.967602433482372
Accuracy of K-Fold Cross Validation: 0.983434926696963
Accuracy of AdaBoost Classification: 0.9978010701458624
Accuracy of Baggigng Classification: 0.9973611334901659
```

Handling Imbalanced Data

```
In [75]:
```

```
from collections import Counter
from sklearn.datasets import make_classification
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=42)
x_resampled, y_resampled = ros.fit_resample(X,Y)
print("Resampled shape of X: ", x_resampled.shape)
print("Resampled shape of Y: ", y_resampled.shape)
value_counts = Counter(y_resampled)
print(value_counts)
```

```
train_x,test_x, train_y,test_y = train_test_split(x_resampled,y_resampled, test_size=0.3
, random_state=42)
Resampled shape of X: (120000, 10)
Resampled shape of Y:
                       (120000,)
Counter({0: 60000, 1: 60000})
In [76]:
print("Shape of resampled x_train:", train_x.shape)
print("Shape of resampled x_test:", test_x.shape)
print("Shape of resampled y train:", train y.shape)
print("Shape of resampled y test:", test y.shape)
Shape of resampled x train: (84000, 10)
Shape of resampled x test: (36000, 10)
Shape of resampled y train: (84000,)
Shape of resampled y_test: (36000,)
In [77]:
#Value Counts of ISFRAUD columns after resampling
print("resample y train counts:\n", train_y.value_counts())
print("resample y test counts:\n", test y.value counts())
resample y train counts:
     42160
0
     41840
Name: isFraud, dtype: int64
resample y test counts:
0
     18160
1
     17840
Name: isFraud, dtype: int64
In [78]:
```

```
pd.Series(y_resampled).value_counts().plot(kind='bar',title='CLASS DISTRIBUTION AFTER AP
PLYING OVERSAMPLING', xlabel='isFraud')
```

Out[78]:

<AxesSubplot:title={'center':'CLASS DISTRIBUTION AFTER APPLYING OVERSAMPLING'}, xlabel='i
sFraud'>

Model: Logistic Regression

In [79]:

```
#Importing Libraries
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
```

```
In [80]:
classifier=LogisticRegression()
classifier.fit(train x, train y)
Out[80]:
LogisticRegression()
In [81]:
#Predicting on Train data
predt log = classifier.predict(train x)
#Accuracy on Train data
print("Train data Accuracy is:", np.mean(predt log==train y))
Train data Accuracy is: 0.9156785714285715
In [82]:
#Predicting on test data
preds log = classifier.predict(test_x)
#Accuracy on Test data
print("Test data Accuracy is:", np.mean(preds log==test y))
Test data Accuracy is: 0.9161666666666667
In [83]:
# Evaluating model
CM_log = confusion_matrix(test_y,preds_log)
CM log
Out[83]:
array([[15603, 2557],
       [ 461, 17379]], dtype=int64)
In [84]:
CR log=classification report(preds log,test y)
print(CR log)
              precision recall f1-score
                                              support
                   0.86
                             0.97
                                       0.91
                                                16064
                   0.97
                             0.87
                                       0.92
                                                19936
                                       0.92
                                                36000
   accuracy
                                      0.92
                  0.92 0.92
                                                36000
   macro avg
                                      0.92
                                                36000
                            0.92
weighted avg
                  0.92
Model: Decision Tree
In [85]:
#Train Model
DT = DecisionTreeClassifier()
model dt = DecisionTreeClassifier(criterion = 'entropy', max depth = 10)
model_dt.fit(train_x,train_y)
Out[85]:
DecisionTreeClassifier(criterion='entropy', max depth=10)
In [86]:
#Plot the Decision Tree
tree.plot tree (model dt);
print("No. Of Leaves:", model dt.get n leaves())
```

No. Of Leaves: 89

In [87]:

```
#Predicting on test data
preds_dt = model_dt.predict(test_x)
#Accuracy on Test data
print("Test data Accuracy is:", np.mean(preds_dt==test_y))
```

Test data Accuracy is: 0.998305555555556

In [88]:

```
# Evaluating model
CM_dt = confusion_matrix(test_y,preds_dt)
CM_dt
```

Out[88]:

```
array([[18130, 30], [ 31, 17809]], dtype=int64)
```

In [89]:

```
CR_dt=classification_report(preds_dt,test_y)
print(CR_dt)
```

	precision	recall	f1-score	support
0 1	1.00 1.00	1.00	1.00	18161 17839
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	36000 36000 36000

Model: Random Forest

In [90]:

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
```

In [91]:

```
# Train model
parametersRF = {'n_estimators':15,'class_weight': "balanced",'n_jobs':-1,'random_state':
42}
RF = RandomForestClassifier(**parametersRF)
model_rf= RF.fit(train_x, train_y)

# Predict on testing set
preds_rf = RF.predict(test_x)
```

```
fprRF, recallRF, thresholdsRF = roc_curve(test_y, preds_rf)
AUC_RF = auc(fprRF, recallRF)
resultsRF = {"Area Under Curve":AUC RF}
# showing results from Random Forest
for measure in resultsRF:
   print(measure,": \n", resultsRF[measure])
Area Under Curve :
 0.9998623348017621
In [92]:
# Evaluating model
CM rf = confusion matrix(test y, preds rf)
CM rf
Out[92]:
array([[18155,
                  5],
      [ 0, 17840]], dtype=int64)
In [93]:
CR rf=classification report (preds rf, test y)
print(CR rf)
             precision recall f1-score
                                             support
                   1.00
                           1.00
                                      1.00
                                                18155
                   1.00
                             1.00
                                       1.00
                                                17845
           1
                                       1.00
                                                36000
   accuracy
                   1.00
                             1.00
                                       1.00
                                                36000
   macro avg
weighted avg
                   1.00
                             1.00
                                       1.00
                                                36000
Model: XGBoost Classifier
In [94]:
# Training model
model3 = XGBClassifier()
model3.fit(train x, train y)
Out[94]:
```

In [95]:

```
#Predicting on test data
preds_xg= model3.predict(test_x)
#Accuracy on train data
print('Test data Accuracy is:',np.mean(preds_xg==test_y))
```

Test data Accuracy is: 0.9998611111111111

```
In [96]:
```

```
# Evaluating model
CM xg = confusion matrix(test y, preds xg)
CM xg
Out[96]:
array([[18155,
                 5],
      [ 0, 17840]], dtype=int64)
In [97]:
CR xg=classification report(preds xg, test y)
print(CR xg)
             precision recall f1-score
                                             support
                   1.00 1.00
                                     1.00
                                                18155
           1
                   1.00
                            1.00
                                       1.00
                                                17845
                                       1.00
                                                36000
   accuracy
                        1.00
                   1.00
                                       1.00
                                                36000
   macro avg
                  1.00
                            1.00
                                       1.00
                                                36000
weighted avg
Model: Light GBM Classifier
In [98]:
import lightgbm as lgb
model4 = lgb.LGBMClassifier()
model4.fit(train x, train y)
Out[98]:
LGBMClassifier()
In [99]:
#Predicting on Train data
predt_lg = model4.predict(train_x)
#Accuracy on train data
print('Train data Accuracy is:',np.mean(predt lg==train y))
Train data Accuracy is: 1.0
In [100]:
#Predicting on Test data
preds lg = model4.predict(test x)
#Accuracy on Test data
print('Test data Accuracy is:', np.mean(preds lg==test y))
Test data Accuracy is: 0.99980555555555555
In [101]:
# Evaluating model
CM lg = confusion_matrix(test_y,preds_lg)
CM_lg
Out[101]:
array([[18153,
                  7],
       [ 0, 17840]], dtype=int64)
In [102]:
CR lg=classification report(preds lg,test y)
print(CR lg)
             precision recall f1-score support
```

```
1.00
                             1.00
                                        1.00
                                                 18153
                   1.00
                             1.00
                                        1.00
                                                 17847
                                        1.00
                                                 36000
   accuracy
                                        1.00
  macro avq
                   1.00
                             1.00
                                                 36000
                   1.00
                             1.00
                                        1.00
                                                 36000
weighted avg
```

Model: Gaussian Navie Bayes

```
In [103]:
```

```
#Importing Libraries
from sklearn.naive_bayes import GaussianNB as GB
classifier_gb = GB()
classifier_gb.fit(train_x,train_y)
```

Out[103]:

GaussianNB()

In [104]:

```
#Predicting on test data
preds_gb = classifier_gb.predict(test_x)
#Accuracy on Test data
print("Test data Accuracy is:", np.mean(preds_gb==test_y))
```

Test data Accuracy is: 0.72858333333333334

In [105]:

```
# Evaluating model
CM_gb = confusion_matrix(test_y,preds_gb)
CM_gb
```

Out[105]:

```
array([[17269, 891], [ 8880, 8960]], dtype=int64)
```

In [106]:

```
CR_gb=classification_report(preds_gb,test_y)
print(CR_gb)
```

	precision	recall	f1-score	support
0 1	0.95 0.50	0.66 0.91	0.78 0.65	26149 9851
accuracy macro avg weighted avg	0.73 0.83	0.78 0.73	0.73 0.71 0.74	36000 36000 36000

Model 6: K-Fold Cross Validation

In [107]:

```
from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score
logreg=LogisticRegression()
skf=StratifiedKFold(n_splits=5)
score1=cross_val_score(logreg,test_x,test_y,cv=skf)
print("Cross Validation Scores are {}".format(score1))
print("Average Cross Validation score :{}".format(score1.mean()))
```

Cross Validation Scores are [0.90819444 0.90541667 0.91069444 0.90277778 0.89652778] Average Cross Validation score :0.904722222222222

Model7: AdaBoost Classification

```
In [108]:
```

```
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(random_state=96)
pred_ada=clf.fit(test_x,test_y)
print("Test data Accuracy:",pred_ada.score(test_x,test_y))
score=cross_val_score(clf,test_x,test_y)
print("Cross Validation Scores are {}".format(score))
```

Model8: Baggigng Classification

```
In [109]:
```

```
from sklearn.ensemble import BaggingClassifier
kfold = KFold(n_splits=10)
cart = DecisionTreeClassifier()
num_trees = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees)
results = cross_val_score(model, test_x, test_y, cv=kfold)
print(results.mean())
```

0.9988333333333334

Comparing the models: Balanced data

```
In [110]:
```

```
print("Accuracy of Logistic Regression:",np.mean(preds_log==test_y))
print("Accuracy of Decision Tree:",np.mean(preds_dt==test_y))
print("Accuracy of Random Forest:",AUC_RF)
print("Accuracy of XGBoost Classifier:",np.mean(preds_xg==test_y))
print("Accuracy of Light GBM Classifier:",np.mean(preds_lg==test_y))
print("Accuracy of Gaussian Navie Bayes:",np.mean(preds_gb==test_y))
print("Accuracy of K-Fold Cross Validation:",format(score1.mean()))
print("Accuracy of AdaBoost Classification:",pred_ada.score(test_x,test_y))
print("Accuracy of Baggigng Classification:",results.mean())
```

From above Accuracy Comparision, We got good accuracy in all Algorithms except Logistic Regression, Gaussian Navie Bayes, K-Fold Cross Validation.

As RANDOM FOREST accuracy is very close to 100% however we finalised random forest as our Final Model.

Accuracy of Random Forest: 0.9998623348017621

True negatives: 18155

False positives: 5

False negatives: 0

True Positives: 17840

Final Model with Random Forest Classifier

```
In [111]:
```

```
from sklearn.metrics import f1 score
from sklearn.metrics import recall score
from sklearn.metrics import precision_recall_curve
RandomForest Deploy = RandomForestClassifier(class weight = 'balanced',
                                      \max depth = 7,
                                      max features = 4,
                                      min samples split = 2,
                                      n = 50,
                                      random state = 42).fit(train x, train y)
y pred = RandomForest Deploy.predict(test x)
y train pred = RandomForest Deploy.predict(train x)
RandomForest Deploy f1 = f1 score(test y, y pred)
RandomForest_Deploy_acc = accuracy_score(test_y, y_pred)
RandomForest Deploy recall = recall_score(test_y, y_pred)
RandomForest_Deploy_auc = roc_auc_score(test_y, y_pred)
RandomForest_Deploy_pre = precision_score(test_y, y_pred)
precision, recall, _ = precision_recall_curve(test_y, y_pred)
RandomForest_Deploy_recall_auc = auc(recall, precision)
print("RandomForest Deploy")
print ("----")
eval("RandomForest Deploy, train x, test x")
```

RandomForest Deploy

Out[111]:

```
(RandomForestClassifier(class weight='balanced', max depth=7, max features=4,
                            n estimators=50, random state=42),
                      amount oldbalanceOrg newbalanceOrig oldbalanceDest \
 67451
             4 5016884.33 5016884.33 0.00 0.00

      81497
      4
      113829.89
      113829.89

      84310
      1
      8537861.24
      8537861.24

      100077
      1
      282500.69
      282500.69

      73476
      4
      3042111.54
      3042111.54

      ...
      ...
      ...
      ...

      110268
      1
      2479940.21
      2479940.21

      119879
      1
      458361.83
      458361.83

      103694
      1
      5489302.04
      5489302.04

      860
      4
      595846.21
      118425.71

                                                                     0.00
                                                                                            0.00
                                                                     0.00
                                                                                            0.00
                                                                     0.00
                                                                                     27806.82
                                                                     0.00
                                                                                           0.00
                                                                      . . .
                                                                                              . . .
                                                                     0.00
                                                                                            0.00
                                                                     0.00
                                                                                            0.00
                                                                     0.00
                                                                                  1356390.81
                  595846.21 5489302.04
6737.87 6867 00
              4
860
                                                                                     46257.07
15795
              3
                                                                  129.13
                                                                                            0.00
          newbalanceDest isFlaggedFraud origin_bal_change dest_bal_increase \
                                                 0 5016884.33
 67451
                         0.00
                                                                                                    0.00
                                                                 113829.89
                                                  0
                         0.00
                                                                                                    0.00
81497
                                                                8537861.24
282500.69
          8537861.24
                                                  0
84310
                                                                                         8537861.24
                                                0
                310307.51
                                                                                           282500.69
100077
73476
                       0.00
                                                                3042111.54
                                                                                                   0.00
                                                . . .
110268 2479940.21
                                                               2479940.21
                                                                                        2479940.21
                                                 0
                                                0
119879
                 458361.83
                                                                 458361.83
                                                                                           458361.83
103694
               6845692.85
                                                 0
                                                                5489302.04
                                                                                         5489302.04
860
                 642103.28
                                                 0
                                                                 118425.71
                                                                                          595846.21
15795
                         0.00
                                                  0
                                                                     6737.87
                                                                                                   0.00
```

HourOfDay 67451 28.166667 81497 3.250000 84310 29.208333

```
100077 24.166667
 73476
        11.208333
 . . .
              . . .
        5.500000
110268
119879 24.666667
103694
        2.000000
860
        0.291667
15795
        0.250000
 [84000 rows x 10 columns],
        type
                  amount oldbalanceOrg newbalanceOrig oldbalanceDest \
71787
           4
                 57466.42
                                57466.42
                                                    0.00
                                                                    0.00
67218
           1
                 119.65
                                 119.65
                                                    0.00
                                                              1183575.58
54066
           0
              202720.09
                              9242213.72
                                              9444933.80
                                                              275349.50
7168
           4 1372129.53
                                   0.00
                                                    0.00
                                                              3302288.80
           1
              37128.79
                                20354.00
                                                               905741.37
29618
                                                    0.00
 . . .
          . . .
                                                     . . .
                5520.59
                                 2593.00
 40470
           2
                                                    0.00
                                                               910091.00
 56954
           0
               500684.23
                              8042389.26
                                              8543073.48
                                                               867760.07
           0
                                               289530.28
48654
                233432.28
                               56098.00
                                                                 1891.79
65345
           4
               181104.66
                               181104.66
                                                    0.00
                                                                    0.00
           4
                               466359.63
                                                    0.00
                                                                    0.00
104868
               466359.63
        newbalanceDest isFlaggedFraud origin bal change dest bal increase \
71787
                   0.00
                                      0
                                                  57466.42
                                                                         0.00
 67218
            1183695.22
                                      0
                                                    119.65
                                                                       119.64
54066
             146802.81
                                      0
                                                -202720.08
                                                                   -128546.69
7168
            4674418.34
                                      0
                                                      0.00
                                                                   1372129.54
                                      0
                                                  20354.00
                                                                    174231.48
29618
            1079972.85
                                                   2593.00
                                                                      5520.59
40470
             915611.59
                                     0
                                                                   783276.88
56954
            1651036.95
                                     0
                                               -500684.22
                   0.00
                                     0
                                                                    -1891.79
48654
                                                -233432.28
 65345
                   0.00
                                     0
                                                                         0.00
                                                 181104.66
                                     0
                   0.00
                                                                         0.00
104868
                                                466359.63
        HourOfDay
71787
        12.375000
 67218
        27.208333
54066
         0.333333
7168
         0.416667
29618
         0.333333
 40470
         1.041667
56954
        0.375000
48654
         0.083333
 65345
        20.000000
104868
        4.875000
 [36000 rows x 10 columns])
In [112]:
train x.head()
Out[112]:
```

	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFlaggedFraud	origin_bal_chang
67451	4	5016884.33	5016884.33	0.0	0.00	0.00	0	5016884.3
81497	4	113829.89	113829.89	0.0	0.00	0.00	0	113829.8
84310	1	8537861.24	8537861.24	0.0	0.00	8537861.24	0	8537861.2
100077	1	282500.69	282500.69	0.0	27806.82	310307.51	0	282500.6
73476	4	3042111.54	3042111.54	0.0	0.00	0.00	0	3042111.5
4	4							

In [113]:

test x.head()

```
amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFlaggedFraud origin_bal_change
      type
71787
             57466.42
                          57466.42
                                                         0.00
                                                                       0.00
                                                                                      0
                                                                                                57466.42
                                            0.0
67218
               119.65
                           119.65
                                                   1183575.58
                                                                 1183695.22
                                                                                      0
                                                                                                 119.65
         1
                                            0.0
54066
            202720.09
                        9242213.72
                                       9444933.8
                                                    275349.50
                                                                  146802.81
                                                                                               -202720.08
         4 1372129.53
                                                                 4674418.34
 7168
                             0.00
                                            0.0
                                                   3302288.80
                                                                                      0
                                                                                                   0.00
29618
             37128.79
                          20354.00
                                            0.0
                                                    905741.37
                                                                 1079972.85
                                                                                      0
                                                                                                20354.00
                                                                                                    •
In [114]:
import pickle
# open a file, where you ant to store the data
# dump information to that file
random_forest_classifier = pickle.dump(RandomForest_Deploy, open('random forest model', '
wb'))
In [115]:
from pickle import dump
from pickle import load
In [116]:
# save the model to disk
random forest classifier= 'random forest model.sav'
dump(RandomForest_Deploy, open('random_forest_model', 'wb'))
In [117]:
# load the model from disk
loaded model = load(open('random forest model', 'rb'))
result = loaded model.score(test x ,test y)
print(result)
0.995972222222223
In [118]:
test y.head(50)
Out[118]:
71787
           1
67218
           1
54066
           0
7168
           0
29618
          0
101425
          1
20441
          0
2662
           0
20371
108151
           1
15315
           0
23538
           0
113198
           1
201
           0
52090
           0
15394
           0
88288
           1
46590
           0
14005
           0
13752
           0
```

Out[113]:

119830

82401

1

1

```
1749
           0
114630
           1
11203
59654
35527
           0
101797
           1
11980
           0
61754
           1
93022
           1
13664
           0
113757
           1
59279
           0
61523
           1
31154
           0
75639
           1
47217
           0
16528
           0
117741
           1
78535
           1
114609
           1
103219
           1
2619
57662
19071
           0
72648
           1
17792
           0
27053
           0
110311
          1
Name: isFraud, dtype: int64
In [119]:
test y.value counts()
Out[119]:
     18160
     17840
1
Name: isFraud, dtype: int64
In [120]:
train y.value counts()
Out[120]:
     42160
     41840
Name: isFraud, dtype: int64
In [121]:
jupyter-nbconvert --to pdfviahtml FRAUDULENT TRANSACTION PREDICTION (P-129).ipynb
  File "C:\Users\HP\AppData\Local\Temp/ipykernel_15536/508693944.py", line 1 jupyter-nbconvert --to pdfviahtml FRAUDULENT TRANSACTION PREDICTION(P-129).ipynb
SyntaxError: invalid syntax
```