Finite Automata

- → Useful model for computers having an extremely limited amount of memory.
- → Small electromechanical devices
- → Example: switch, an automatic door

Finite Automata

FIGURE 1.0 Modeling of a switch

Finite Automata (Door Automation)

FIGURE 1.1 Top view of an automatic door

Finite Automata (Door Automation)

FIGURE 1.2 State diagram for an automatic door controller

Finite Automata (Door Automation)

input signal

		NEITHER	FRONT	REAR	BOTH	
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED	- 23
	OPEN	CLOSED	OPEN	OPEN	OPEN	

FIGURE 1.3 State transition table for an automatic door controller

Finite Automata

→ Notice the following terms

- ✓ state diagram
- ✓ states
- ✓ start state
- ✓ accept state
- ✓ Transitions

Need to know

- → How many states?
- → What are the inputs?
- → What will be transition table?

- → State to remember
 - ✓ Start State
 - at the initial stage
 - ✓ Accepting State
 - if the automaton is in this state when finished, the string is accepted otherwise rejected

- → Lets design an automaton
 - \checkmark Consists of $\{0,1\}$
 - ✓ Has even length
- → '100111' -does this string belong to the language?
- → '10000' -does this string belong to the language?

Designing Finite Automata Example

FIGURE: 2-state finite automaton Mo

FIGURE 1.4 A finite automaton called **M**1 that has three states

Finite Automata

→ Deterministic

- for each input there must be one and only one state where the automaton can transition from its current state

→ Non-deterministic

- can be in several states at once
- → Deterministic Finite Automata (DFA)
- → Non-deterministic Finite Automata (NFA)

Formal Definition of Finite Automata

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- 5. $F \subseteq Q$ is the set of accept states.²

Formal Definition of Finite Automata

Let's define automaton Mo and M1 formally using 5-tuple.

 $A = \{w \mid w \text{ has even length}\}$ Language of machine Mo is A, written as L(Mo) = A, or equivalently, M1 recognizes A

 $L(M1) = L1 = A = \{w | w \text{ contains at least one 1 and an even number of 0s follow the last 1}.$

DFA 2-state (Sipser, M2)

FIGURE 1.8 State diagram of the two-state finite automaton M2

DFA 2-state (Sipser M2)

FIGURE 1.8 State diagram of the **two-state** finite automaton **M2** $L(M2) = \{w \mid w \text{ ends in a } 1\}$

DFA 2-state (Sipser, M3)

FIGURE 1.10 State diagram of the two-state finite automaton M3

DFA 2-state (Sipser, M3)

FIGURE 1.10 State diagram of the two-state finite automaton M3 $L(M3) = \{ w \mid w \text{ consists of 0,1 and } w \text{ ends in 0, that includes the empty string, } \epsilon \}$

DFA 2-state (Sipser M2)

FIGURE 1.8 State diagram of the **two-state** finite automaton **M2** $L(M2) = \{w | w \text{ ends in a } 1\}$ **w** is a set of string.

DFA 5-state (Sipser, M4)

FIGURE 1.12 Finite automaton M4

DFA 3-state (Sipser, M5)

FIGURE 1.14 Finite automaton M5

DFA 3-state (Sipser, M5)

→ Let's explore a generalization of automaton M5

DFA 3-state (Sipser, M5) -generalization

- \rightarrow For each $i \ge 1$ and alphabet $\Sigma = \{0,1,2,< RESET>\}$
- → Ai ={ w | w is the sum of the numbers is a multiple of i}
- \rightarrow Bi = $(Qi, \Sigma, \delta i, q_0, \{q_0\})$

$$\delta_i(q_j, 0) = q_j,$$

 $\delta_i(q_j, 1) = q_k,$ where $k = j + 1$ modulo $i,$
 $\delta_i(q_j, 2) = q_k,$ where $k = j + 2$ modulo $i,$ and
 $\delta_i(q_j, \langle \text{RESET} \rangle) = q_0.$

DFA 3-state (Sipser, M5) -generalization

→ What can be possible solutions for previous problem if the alphabets are as followings:

✓
$$\Sigma_1 = \{1,2,4, < RESET > \}$$

✓
$$\Sigma_2 = \{2,5,8,< RESET>\}$$

Formal Definition of Computation

Let,

 $M = (Q, \Sigma, \delta, q \ 0, F)$ be a finite automaton and $w = w_1 w_2 \cdots w_n$ be a string where each w i is a member of the alphabet Σ . Then M accepts w if a sequence of states $r \ 0, r \ 1, \ldots, r \ n$ in Q exists with three

→ Conditions:

- $\checkmark r_0 = q_0$
- ✓ $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- $\checkmark r_n \in F$.

Regular Language

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

Regular Language

→ Consider the following string **w**,

10⟨RESET ⟩22⟨RESET ⟩012.

→ $L(M5) = \{w \mid the sum of the symbols in w is 0 modulo 3, except that <math>\langle RESET \rangle$ resets the count to $0\}$.

→ We have to figure out what you need to remember about the string as you are reading it.

 \rightarrow Suppose that the alphabet is $\{x, y\}$ and that the language consists of all strings with an odd number of y's.

→ We want to construct a finite automaton E1 to recognize this language.

- → What we need to remember to design this automaton?
 - ✓ Remember whether the number of y's seen so far is even or odd for every scanned symbol
- → Who will remember?
 - ✓ States
- → Our states need to remember for E are:
 - ✓ even so far, and
 - ✓ odd so far.

FIGURE 1.18 The two states geven and godd

FIGURE 1.19 Transitions telling how the possibilities rearrange

FIGURE 1.20 Adding the start and accept states

→ Let's design a finite automaton **E2** to recognize the regular language of all strings that contain the string **001** as a **substring**

/	0010	accepted
/	1001	accepted
/	001	accepted
/	11111110011111	accepted
/	0101011010010110101	accepted
/	11 0000	not accepted
/	$oldsymbol{arepsilon}$	not accepted
/	101011101	not accepted

- → There are four possibilities:
 - ✓ haven't just seen any symbols of the pattern,
 - ✓ have just seen a 0,
 - ✓ have just seen 00, or
 - ✓ have seen the entire pattern 001.

FIGURE 1.22 Accepts strings containing 001

Designing DFA (Hopcroft, Motwani, and Ullman, Example-2.1)

- → Let us formally specify a DFA that accepts all and only the strings of 0's and 1's that have the sequence 01 somewhere in the string.
- → We can write this language L as:
 L= {w | w is of the form x01y for some strings x and y consisting of 0's and 1's only.}

Designing DFA (Hopcroft, Motwani, and Ullman, Example-2.1)

Figure 2.4: The transition diagram for the DFA accepting all strings with a substring 01

→ Design a DFA to accept the language,

 $L = \{w \mid w \text{ has both an even number of 0's and an even number of 1's}\}$

Designing DFA (Lewis and Papadimitriou, Example 2.1.2)

→ Design a DFA, M that accepts the language,

 $L(M) = \{w \in \{a,b\}^* : w \text{ does not contain three consecutive } b's\}$

Designing DFA (Lewis and Papadimitriou, Example 2.1.2)

→ Design a DFA, M that accepts the language,

 $L(M) = \{w \in \{a,b\}^* : w \text{ does not contain three consecutive } b's\}$

- → *Observation:*
 - $w \in \{a,b\}^*$ means any symbol can be used any times including 0 times
- → Remember:

Number of b's appeared one after another in any string.

Designing DFA (Lewis and Papadimitriou, Example 2.1.2)

Figure: State diagram of L(M) where w does not contain three consecutive b's.

→ Design a DFA that accepts **binary** numbers that are **divisible by three**.

→ *Observations:*

- ✓ binary numbers
- ✓ divisible by three

→ Design a DFA that accepts **binary** numbers that are **divisible by three**.

→ Observations:

- ✓ binary numbers
- ✓ divisible by three
- → Thumb rule of binary number:
 - $\checkmark X0 = 2 * X$
 - $\checkmark X1 = 2 * X + 1$

Designing DFA (Hopcroft, Motwani, and Ullman, Example-2.4)

Figure: DFA accepts binary number divisible by 3

The Regular Operations

- → Lets begin to investigate properties of regular languages which is recognized by some finite automaton.
- → In arithmetic: objects=numbers and the tools like + and ×
- → *In the theory of computation:*
 - ✓ objects = languages
 - ✓ Tools = operations specifically designed for manipulating them.
- → Three operations on languages, called the **regular operations**.

DEFINITION 1.23

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- **Union**: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

- \rightarrow Alphabet, $\Sigma = \{a, b, \dots, z\}$
- \rightarrow Language, $A = \{good, bad\}$
- → Language, B = {boy, girl}

Union:

 $A \cup B = \{good, bad, boy, girl\}$

Concatenation:

 $A \circ B = \{goodboy, goodgirl, badboy, badgirl\}$

Star:

 $A* = \{\varepsilon, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodbad, goodbad, goodbadgood, goodbadbad, . . . \}$

 \rightarrow N = {1, 2, 3, ...} be the set of natural numbers.

We say that N is closed under multiplication. We mean that for any x and y in N, the product $x \times y$ also is in N. In contrast, N is not closed under division. 1 and 2 are in N but 1/2 is not.

→ A collection of objects is closed under some operation if applying that operation to members of the collection returns an object still in the collection.

→ We will show that the collection of regular languages is closed under all three of the regular operations.

THEOREM 1.25

The class of regular languages is closed under the union operation.

Proof Idea:

- \rightarrow Languages are A_1 and A_2
- \rightarrow Corresponding Machine M_1 and M_2
- → Language of union is $A_1 \cup A_2$
- → To prove that $A_1 \cup A_2$ is regular, we demonstrate a finite automaton, call it M, that recognizes $A_1 \cup A_2$
- → Once the symbols of the input have been read and used to simulate M1, we can't "rewind the input tape"
- \rightarrow Simulate both M_1 and M_2 simultaneously, as the input symbols arrive one by one.
- → String is accepted if either state of pair of state is in accepting state of the individual machines.

PROOF

- → Let M_1 recognize A_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$
- **→** Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

Design of DFA:

- 1. $Q = \{(r1, r2) | r1 \in Q1 \text{ and } r2 \in Q2\}.$
- 2. Σ , the alphabet, is the same as in M1 and M2.
- 3. δ , the transition function, is defined as follows. For each $(r1, r2) \in Q$ and each $a \in \Sigma$, let $(\delta(r1, r2), a) = (\delta_1(r_1, a), \delta_2(r2, a))$
- 4. q0 is the pair (q1, q2).
- 5. $F = \{(r1, r2) | r1 \in F1 \text{ or } r2 \in F2\}.$

Thus, it is proved that $A_1 \cup A_2$ is being recognized by a DFA M. That means $A_1 \cup A_2$ is regular. - "Regular language is closed under union operation"

Design of DFA:

- 1. $Q = \{(r1, r2) | r1 \in Q1 \text{ and } r2 \in Q2\}.$
- 2. Σ , the alphabet, is the same as in M1 and M2.
- 3. δ , the transition function, is defined as follows. For each $(r1, r2) \in Q$ and each $a \in \Sigma$, let $(\delta(r1, r2), a) = (\delta_1(r_1, a), \delta_2(r2, a))$
- 4. q0 is the pair (q1, q2).
- 5. $F = \{(r1, r2) | r1 \in F1 \text{ or } r2 \in F2\}.$

Thus, it is proved that $A_1 \cup A_2$ is being recognized by a DFA M. That means $A_1 \cup A_2$ is regular. - "Regular language is closed under union operation"

Example: 1

A1 = { contains an odd number of a's }

$$A2 = \{aa\}$$

Following Machine M, recognizes $A_1 \cup A_2$

Example: 2

$$\Sigma_1 = \{a, b\}$$

L1 = { contains an even number of a's }

$$L2 = \{a, ab\}$$

Following Machine , $M_{L1\ U\ L2}$ recognizes $L_1\ U\ L_2$

