Physique – Mécanique Chapitre 2 – Lois de Newton

SOMMAIRE

- Système matériel et centre d'inertie
- Lois de Newton
- Forces
- Exemples d'étude
- Référentiel non galiléen

Système matériel

Définition : Ensemble de points matériels

Système matériel

Deux types de systèmes :

- Système indéformable : Points fixes
- Système déformable : Points non fixes

Suivant les forces:

- Système isolé : Aucune force extérieure
- Système pseudo-isolé : Forces extérieures compensées
- Système non isolé : Forces extérieures non compensées

Masse et centre d'inertie

Point matériel ou masse ponctuelle : on associe à un point M_1 , une masse m_1

Système discret de point M_i :

Barycentre :
$$\sum_{i} m_{i} \overline{GM}_{i} = 0$$
$$\overline{OG} = \frac{\sum_{i} m_{i} \overline{OM}_{i}}{\sum_{i} m_{i}}$$

$$m = \sum_{i}^{l} m_{i}$$

→ On a défini le centre d'inertie

Système continu : Passage $\sum \rightarrow \int$

Masse: caractéristique invariable du système Défini la quantité de matière du système Unité: le kilogramme (kg)

Quantité de mouvement

Définition : La quantité de mouvement est le produit de la masse par la vitesse.

$$\vec{p} = m\vec{v}$$

Pour un point matériel M_1 de masse m_1 : $\vec{p}_1 = m_1 \vec{v}_1$

Pour le système :

$$\sum_{i} \vec{p}_{i} = \sum_{i} m_{i} \vec{v}_{i} = m \vec{v}_{G}$$

Système = point matériel G + masse totale $\vec{p} = m \vec{v}_G$

Première loi de Newton : le principe d'inertie

Première loi de Newton : le principe d'inertie

« Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare. »

« Tout corps persévère dans l'état de repos ou de mouvement uniforme ligne droite dans lequel il se trouve, à moins que quelques forces n'agissent sur lui et ne le contraignent à changer d'état »

Newton – Philosophiae naturalis principia mathematica – 1687

Attention : seulement vrai dans les référentiels galiléens

Référentiel galiléen ?

Définition : Référentiel dans lequel est vérifié le principe d'inertie

$$\vec{a}_{G/R} = \vec{a}_{G/R'} + \vec{a}_{O'/R} + \vec{\Omega} \wedge (\vec{\Omega} \wedge \overrightarrow{O'G}) + \frac{d\vec{\Omega}}{dt} \wedge \overrightarrow{O'G} + 2\vec{\Omega} \wedge \vec{v}_{G/R'}$$

Dans R:
$$\vec{v}_{G/R} = \text{constante} \Rightarrow \frac{d \vec{v}_{G/R}}{dt} = \vec{a}_{G/R} = 0$$

Dans R':
$$\vec{v}_{G/R'}$$
 = constante $\Rightarrow \frac{d\vec{v}_{G/R'}}{dt} = \vec{a}_{G/R'} = 0$

$$\vec{a}_{O'/R} = \vec{0}$$
 et $\vec{\Omega} = \vec{0}$

Tout référentiel en translation uniforme est un système galiléen

Deuxième loi de Newton : le PFD

Notion de force

- Pas d'interaction → système au repos
- Déviation → Interaction → force

Principe fondamental de la dynamique (PFD)

« Les changements qui arrivent dans le mouvement sont proportionnels à la force motrice ; et se font dans la ligne droite dans laquelle cette force a été imprimée. »

Newton

Variation quantité de mouvement = force ext. x temps

$$d\vec{p} = \vec{F} dt$$

PFD:

$$m\vec{a} = \sum \vec{F}_{ext}$$

Troisième loi de Newton : le principe de réaction

« L'action est toujours égale à la réaction ; c'est-à-dire que les actions de deux corps l'un sur l'autre sont toujours égales et de sens contraires. »

— Newton

$$\vec{F}_{2/1} = -\vec{F}_{1/2}$$

Ce principe s'applique quelque soit le référentiel

Où l'on revient sur la notion de force...

Force == action subit par un système

- acteur / receveur
- Direction : axe acteur receveur
- Sens : <0 (acteur vers receveur) si attractive et >0 si répulsive
- Point d'application : centre d'inertie

→ Une force est un vecteur

2 types de forces :

- interactions à distance == les 4 forces fondamentales
 Forces gravitationnelles, de Lorentz, faibles et fortes
 Décroîts lorsque la distance augmentes
- de contact == résultantes macroscopiques des 4 forces fondamentales Forces de contact, frottements, tension... etc...

Force de gravitation

Sur terre...

$$g = G \frac{M}{R^2} = 9.80665 \,\mathrm{m \cdot s}^{-2}$$

$$\vec{P} = m\vec{g}$$

Considérée comme localement uniforme

Forces de Lorentz

Forces de Lorentz = Forces électriques + forces magnétiques Seulement pour les particules chargées

> forces gravitationnelle (~10⁴⁰ fois plus)

Forces électriques seules pour les particules au repos

Forces magnétiques en plus pour les particules en mouvement

Forces électriques

Signes opposés

Champ électrique :

$$\vec{F}_{q_1 \to q_2} = q_2 \vec{E}$$
avec
$$\vec{E} = \frac{1}{4\pi \epsilon_0} \frac{q_1}{r^2} \vec{u}_{q_1/q_2}$$

Forces magnétiques

$$\vec{F} = q \vec{v} \wedge \vec{B}$$

avec \vec{B} = champ magnétique (en Tesla)

Forces nucléaires faibles

Propriété:

- Courte portée (échelle atomique) (~10⁻¹⁷m)
- Intensité faible (environ 10 000 x moins que la force électromagnétique)
- Interaction entre matière et neutrino

Responsable de :

- Désintégration radioactive de particules subatomiques
- Origine de la fusion nucléaire dans les étoiles
- Elle permet la datation au carbone 14

Forces nucléaires fortes

Propriété:

- Courte portée (échelle atomique) (~10⁻¹⁵m)
- Intensité forte (100 x plus grande que l'interaction EM)

Responsable de :

Assure la cohésion du noyau

Forces de tensions

- Ressort de longueur à vide ℓ_0
- Raideur k $(N.m^{-1})$
- Masse négligeable
- S'oppose à la déformation ℓ $\ell_{\scriptscriptstyle 0}$

$$\vec{F} = -k(l - l_0)\vec{u}$$

Tension d'un fil

- Fil inextensible
- Masse négligeable
- Force dirigée suivant le fil
- Norme dépend des autres forces

$$\vec{T} = T \vec{u}$$

 \vec{u} vecteur unitaire dirigé de M vers O |T| > 0 le fil reste tendu

Réaction du support

Forces en présence :

- Poids de la masse m appliqué au CI ightarrow
- Réaction du support $\hat{m{R}}_N$

A l'équilibre :

$$\vec{P} + \vec{R}_N = 0 \Rightarrow \vec{P} = -\vec{R}_N$$

Forces frottements solides

Apparaît lorsque l'on cherche à faire glisser un corps sur un support

Matériaux	μ
Acier-acier	0,2
Bois-bois	0,3
Garniture frein - acier	0,45
Caoutchouc - bitume	0,6

Forces de frottements

Frottements visqueux:

→ apparition d'une force qui s'oppose au mouvement

avec $\gamma > 0$

Conditions d'équilibre avec :

- 1. Fil non élastique et sans frottement ?
- 2. Fil élastique de raideur k et sans frottement ?
- 3. Sans fil et avec frottement solide de coefficient μ ?

Tir balistique sans frottement

Objet M de masse m lancée à la vitesse $\overrightarrow{v_0}$ depuis le point O

Exemple 3 – Pendule simple

Pendule de Foucault

Déplacement du plan d'oscillation lié à la rotation de la Terre

Loi de la dynamique dans un référentiel non galiléen

– Référentiel galiléen : PFD

- Référentiel non galiléen :

Rappel sur l'accélération

Loi de composition :

$$\vec{a}_{M/R} = \vec{a}_{M/R} + \vec{a}_e + \vec{a}_c$$

Accélération d'entraînement :

$$\vec{a}_e = \vec{a}_{O'/R} + \vec{\Omega} \wedge \left(\vec{\Omega} \wedge \overrightarrow{O'M}\right) + \frac{d\vec{\Omega}}{dt} \wedge \overrightarrow{O'M}$$

Accélération de Coriolis:

$$\vec{a}_c = 2\vec{\Omega} \wedge \vec{v}_{M/R'}$$

D'où on modifie le PFD...

Dans un référentiel galiléen :

$$\sum \vec{F}_{\text{ext}} = m \vec{a}_{M/R}$$

Dans un référentiel non galiléen :

$$m\vec{a}_{M/R'} = \sum \vec{F}_{\text{ext}} - m\vec{a}_e - m\vec{a}_c$$

Pseudo-force:

 Force d'inertie d'entraînement (projection lors d'une accélération)

$$\vec{f}_{ie} = -m\vec{a}_e$$

Force de Coriolis

$$\vec{f}_{ic} = -m\vec{a}_{c}$$

