HOMEWORK 18

Camera Calibration

Student Name: Rohit Das Student ID: 61047086s

Objective: Calculate the equivalent distance of the real world in 1 pixel of the digital camera for each:

- Focal length
- Object Displacement
- Object Distance

Algorithm Used: Traditional Algorithm

- Find the ROI (Region of Interest)
- Get Displacement pixel values, Displacement
- Compare with the Theoretical Equation

Screenshot of the Algorithm:

Get Displacement Pixel values:

```
int getDisplacementPixel(Mat& obj, Point2i obj_loc, Mat& img)

imgSet img_dataset = getBlock(img, obj_loc, obj.rows, obj.cols);
double loss = numeric_limits<double>::max();
Point2i matchPoint;
double search_range = 600.0;

for (int i = 0; i < img_dataset.size(); ++i)
{
    double dis = img_dataset[i].first.x - obj_loc.x;
    if (dis <= search_range)
{
        Mat diff;
        absdiff(obj, img_dataset[i].second, diff);
        double current_loss = sum(diff)[0] + sum(diff)[1] + sum(diff)[2];
    if (current_loss < loss)
        {
            loss = current_loss;
            matchPoint = img_dataset[i].first;
        }
    }
    return matchPoint.x - obj_loc.x;
}</pre>
```

Theoretical Formula

```
double theoreticalFOV(int f)
{
    return 2 * atan(sensor_width / 2 / f) * 180 / M_PI;
}
double mmPrePixel(int d, int p)
{
    return (double)d / p;
}
double measuredFOV(int img_width, int d, double mm_pre_pixel)
{
    return 2 * atan(img_width * mm_pre_pixel / 2 / d) * 180 / M_PI;
}
```

The output table:

Focal	Object	Object actual	Object		FOV	FOV
length(m	distance(displacement(displacement(p	mm/pi	theoretical	measured
m)	mm)	mm)	ixel)	xel	value(deg	value(deg
					ree)	ree)
18	600	1	7	0.1428	66.0477	58.1648
				57		
18	600	5	28	0.1785	66.0477	69.617
				71		
18	600	10	56	0.1785	66.0477	69.617
				71		
18	600	20	106	0.1886	66.0477	72.6014
				79		
18	1200	1	2	0.5	66.0477	88.4516
18	1200	5	16	0.3125	66.0477	62.6271
18	1200	10	30	0.3333	66.0477	65.9582
				33		
18	1200	20	56	0.3571	66.0477	69.617
				43		
18	1800	1	3	0.3333	66.0477	46.7859
				33		
18	1800	5	9	0.5555	66.0477	71.5823
				56		
18	1800	10	19	0.5263	66.0477	68.6694
				16		
18	1800	20	45	0.4444	66.0477	59.9518
				44		
53	600	1	22	0.0454	24.8973	20.0714
				55		
53	600	5	64	0.0781	24.8973	33.836
				25		

53	600	10	134	0.0746 27	24.8973	32.4022
53	600	20	275	0.0727	24.8973	31.6191
53	1200	1	9	0.1111	24.8973	24.4097
53	1200	5	44	0.1136 36	24.8973	24.9473
53	1200	10	78	0.1282 05	24.8973	28.0264
53	1200	20	162	0.1234 57	24.8973	27.0271
53	1800	1	12	0.0833	24.8973	12.3449
53	1800	5	37	0.1351 35	24.8973	19.8942
53	1800	10	59	0.1694 92	24.8973	24.8107
53	1800	20	102	0.1960 78	24.8973	28.5537
135	600	1	61	0.0163	9.90651	7.30391
135	600	5	164	0.0304 88	9.90651	13.5386
135	600	10	268	0.0373	9.90651	16.5315
135	600	20	510	0.0392	9.90651	17.3617
135	1200	1	37	0.0270	9.90651	6.02341
135	1200	5	62	0.0806 45	9.90651	17.844
135	1200	10	151	0.0662	9.90651	14.6919
135	1200	20	317	0.0630 92	9.90651	14.0038
135	1800	1	3	0.3333	9.90651	46.7859
135	1800	5	32	0.1562	9.90651	22.9258
135	1800	10	88	0.1136 36	9.90651	16.7784
135	1800	20	212	0.0943	9.90651	13.9602