RICOH

RP101x SERIES

0.6% ACCURACY LOW NOISE 300mA LDO REGULATOR

NO.EA-167-111020

OUTLINE

The RP101x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the RP101x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are SOT-23-5 and DFN(PLP)1612-4 (t=0.6mm type) or DFN(PLP)1612-4B (t=0.4mm type), therefore high density mounting of the ICs on boards is possible.

FEATURES

Supply Current	Typ. 18μA
Standby Current	Typ. 0.1μA
Dropout Voltage	Тур. 0.13V (Іоит=150mA, Vоит=2.8V)
Ripple Rejection	Typ. 75dB (f=1kHz)
Temperature-Drift Coefficient of Output Voltage	Typ. ±30ppm/°C
Line Regulation	Typ. 0.02%/V
Output Voltage Accuracy	±0.6%
Packages	DFN(PLP)1612-4, DFN(PLP)1612-4B, SOT-23-5
Input Voltage Range	1.7V to 5.25V
Output Voltage Range	1.2V to 3.3V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be used w	ith this IC 1.0μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
- Power source for home appliances.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

Product Name Package		Quantity per Reel	Pb Free	Halogen Free
RP101Kxx1*-TR	DFN(PLP)1612-4 (t=0.6mm)	5,000 pcs	Yes	Yes
RP101Kxx2*-TR DFN(PLP)1612-4B (t=0.4mm)		5,000 pcs	Yes	Yes
RP101Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range from 1.2V(12) to 3.3V(33) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

- * : CE pin polarity and auto discharge function at off state are options as follows.
 - (B) "H" active, without auto discharge function at off state
 - (D) "H" active, with auto discharge function at off state

PIN CONFIGURATIONS

• DFN(PLP)1612-4, DFN(PLP)1612-4B

PIN DESCRIPTIONS

• DFN(PLP)1612-4, DFN(PLP)1612-4B

Pin No	Symbol	Pin Description			
1	Vouт	Output Pin			
2	GND	Ground Pin			
3	CE	Chip Enable Pin ("H" Active)			
4	V _{DD}	Input Pin			

^{*)} Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

• SOT-23-5

Pin No	Symbol	Pin Description			
1	V_{DD}	Input Pin			
2	GND	Ground Pin			
3	CE	Chip Enable Pin ("H" Active)			
4	NC	No Connection			
5	Vouт	Output Pin			

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.0	V
Vce	Input Voltage (CE Pin)	6.0	V
Vouт	Output Voltage	-0.3 to V _{IN} +0.3	V
louт	Output Current	310	mA
	Power Dissipation (DFN(PLP)1612-4) *	610	
P _D	Power Dissipation (DFN(PLP)1612-4B) *	580	mW
	Power Dissipation (SOT-23-5) *	420	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

RP101xxxxB/D

VIN=Set Vout+1V, Iout=1mA, CIN=Cout=1µF, unless otherwise noted.

Topt=25°C

Symbol	Itom	•	anditions.	Min.	Typ		Unit
Symbol	Item	Conditions			Тур.	Max.	
Vouт	Output Voltage		Vout > 2.0V	×0.994		×1.006	V
	-		V _{OUT} ≤ 2.0V	-12		+12	mV
І оит	Output Current			300			mA
ΔV оит/ ΔI оит	Load Regulation	1mA ≤ Ioυτ ≤ 150mA			20	40	mV
		Іоит=150mA	1.2V ≤ Vouт < 1.5V		0.40	0.50	
			1.5V ≤ Vouт < 1.7V		0.24	0.38	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Drangut Valtage		1.7V ≤ Vouт < 2.0V		0.21	0.34	
VDIF	Dropout Voltage		2.0V ≤ Vout < 2.5V		0.17	0.30	
			2.5V ≤ Vout < 2.8V		0.14	0.25	
			$2.8V \le V_{\text{OUT}} \le 3.3V$		0.13	0.23	
Iss	Supply Current	Іоит=0mA			18	25	μΑ
Istandby	Standby Current	Vce=0V	V _{CE} =0V		0.1	2.0	μΑ
ΔVουτ/ΔVιν	Line Regulation	Set V _{OUT} +0.5V ≤ V _{IN} ≤ 5.0V			0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V_{IN} =Set V_{OUT} +1V, I_{OUT} =30mA (In case that $V_{OUT} \le 2.0V$, V_{IN} =3.0V)			75		dB
Vin	Input Voltage*1			1.7		5.25	V
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$-40^{\circ}C \leq T_{opt} \leq 85^{\circ}C$			±30		ppm /°C
Isc	Short Current Limit	Vout=0V			40		mA
I PD	CE Pull-down Current				0.3		μΑ
Vсен	CE Input Voltage "H"			1.1			V
Vcel	CE Input Voltage "L"					0.3	V
en	Output Noise	BW=10Hz to 100kHz Iout=30mA			30		μVrms
RLOW	Low Output Nch Tr. ON Resistance (of D version)	V _{IN} =4.0V, V _{CE} =0V			30		Ω

^{*)} The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5V and the total operating time is within 500hrs.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATION

(External Components)

C2 1.0μF MURATA: GRM155B31A105KE15

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with $1.0\mu F$ or more capacity.

Ceramic capacitors have different temperature characteristics and bias characteristics depending on their dimensions and manufacturers. If the setting voltage is 2.5V or more and the capacitor's dimensions for Vout equal to 1.0mm by 0.5mm or smaller than that, the capacitance value might be extremely low. As a result, the capacitance might be much less than expected. In such cases, the operation might be unstable at low temperature. (–20°C or less) In that case, use a larger capacity, or a large dimensions' capacitor. (For example 1.6mm by 0.8mm)

If a tantalum capacitor is selected as an output capacitor, large ESR may be a cause of unstable operation. Evaluate the operation of PCB with considerable frequency characteristics.

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

RICOH

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (C1=1.0µF, C2=1.0µF, Topt=25°C)

2) Output Voltage vs. Input Voltage (C1=1.0 μ F, C2=1.0 μ F, Topt=25°C)

3) Supply Current vs. Input Voltage (C1=1.0 μ F, C2=1.0 μ F, Topt=25°C)

4) Output Voltage vs. Temperature (C1=1.0μF, C2=1.0μF, louτ=1mA)

RP101x33xx VIN=4.3V 3.35 3.34 2.333 5.3.32 2.3331 3.30 3.30 3.31 3.30 3.29 3.29 3.28 3.27 3.26 3.25 -40 -25 0 25 50 75 85

Temperature Topt (°C)

5) Supply Current vs. Temperature (C1=1.0μF, C2=1.0μF, Iουτ=0mA)

6) Dropout Voltage vs. Output Current (C1=1.0 μ F, C2=1.0 μ F)

7) Dropout Voltage vs. Set Output Voltage (C1=1.0 μ F, C2=1.0 μ F, Topt=25°C)

8) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=1.0μF, Ripple=0.2Vp-p, Topt=25°C)

9) Ripple Rejection vs. Frequency (C1=none, C2=1.0μF, Ripple=0.2Vp-p)

10) Input Transient Response (Iουτ=30mA, tr=tf=5μs, Topt=25°C)

11) Load Transient Response (C2=1.0μF, Topt=25°C)

12) Turn On Speed with CE pin (C1=1.0 μ F, C2=1.0 μ F, Topt=25°C)

13) Turn Off Speed with CE pin (D Version) (C1=1.0 μ F, C2=1.0 μ F, Topt=25°C)

14) Dropout Voltage vs. Temperature (C1=1.0 μ F, C2=1.0 μ F)

15) Output Voltage vs. Input Voltage (C1=1.0 μ F, C2=1.0 μ F)

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between Iout (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature : -40°C to 85°C

RP101x12xx

RP101x33xx

RP101x33xx

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.
Electronic Devices Company

● Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japar
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company

■ Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.