Álgebra Linear e Geometria Analítica

Espaços Vetoriais

Departamento de Matemática Universidade de Aveiro

Definição de espaço vetorial

Ao longo deste capítulo considera-se um conjunto não vazio \mathcal{V} , com uma operação \oplus definida para cada $X \in \mathcal{V}$ e para cada $Y \in \mathcal{V}$,

e uma operação \odot definida para cada $\alpha \in \mathbb{R}$ e para cada $X \in \mathcal{V}$,

$$\alpha \odot X$$
.

Diz-se que o conjunto $\mathcal V$ está munido com as operações \oplus e \odot .

As operações \oplus e \odot são usualmente designadas por

adição e multiplicação por escalar,

(respectivamente) porque, como se verá a seguir, estas operações têm muitas propriedades em comum com outras operações de adição e multiplicação por escalar conhecidas, tais como a adição e a multiplicação por escalar de vetores de \mathbb{R}^n e de matrizes $m \times n$.

Espacos Vetoriais ALGA 🛱 2/21

Definição de espaço vetorial

O conjunto \mathcal{V} , munido das operações \oplus e \odot , é um espaço vetorial (e.v.) real se, $\forall X, Y, Z \in \mathcal{V}$ e $\forall \alpha, \beta \in \mathbb{R}$,

1. V é fechado relativamente a ⊕

$$X \oplus Y \in \mathcal{V}$$

2. ⊕ é comutativa

$$X \oplus Y = Y \oplus X$$

3. ⊕ é associativa

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$$

4. existe (único) o el. neutro $0_{\mathcal{V}} \in \mathcal{V}$ (zero de \mathcal{V}) para \oplus

$$0_{\mathcal{V}} \oplus X = X$$

5. existe (único) o simétrico $\ominus X \in \mathcal{V}$ de X em relação a \oplus

$$\ominus X \oplus X = 0_{\mathcal{V}}$$
$$\alpha \odot X \in \mathcal{V}$$

6. V é fechado relativamente a ⊙7. ⊙ é distributiva em relação a ⊕

$$\alpha\odot(X\oplus Y)=\alpha\odot X\oplus\alpha\odot Y$$

8. \odot é "distributiva" em relação a +

$$(\alpha+\beta)\odot X = \alpha\odot X \oplus \beta\odot X$$

9. os produtos (o de \mathbb{R} e \odot) são "associativos"

$$(\alpha\beta)\odot X=\alpha\odot(\beta\odot X)$$

10. o escalar 1 é o "elemento neutro" para \odot

$$1 \odot X = X$$

Daqui em diante, designaremos os espaços vetoriais reais apenas por espaços vetoriais (e.v.)

Exemplos de espaços vetoriais

- 1. \mathbb{R}^n munido das operações adição e multiplicação por escalar usuais.
- 2. R⁺ munido das operações:

$$\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \mathbf{v}$$

$$\alpha \odot x = x^{\alpha}$$

$$x \oplus y = xy$$
 e $\alpha \odot x = x^{\alpha}$, $\forall x, y \in \mathbb{R}^+, \ \forall \alpha \in \mathbb{R}$.

- 3. O conjunto $\mathbb{R}^{m \times n}$ das matrizes $m \times n$ munido das operações adição de matrizes e multiplicação de uma matriz por um escalar real.
- 4. O conjunto de todas as funções reais de variável real, com o mesmo domínio, munido da adição de funções e multiplicação de uma função por um escalar real.
- 5. O conjuntos \mathcal{P} de todos os polinómios (de qualquer grau) e o conjunto \mathcal{P}_n dos polinómios de grau menor ou igual a n (incluindo o polinómio nulo), com as operações usuais.

O conjunto dos polinómios de grau n, com as operações usuais, não é e.v.

Mais algumas propriedades dos espaços vetoriais

Proposição: Seja ${\mathcal V}$ um e.v. Então

- (a) $0 \odot X = 0_{\mathcal{V}}, \forall X \in \mathcal{V};$
- **(b)** $\alpha \odot 0_{\mathcal{V}} = 0_{\mathcal{V}}, \forall \alpha \in \mathbb{R};$
- (c) $\alpha \odot X = 0_{\mathcal{V}} \Rightarrow \alpha = 0$ ou $X = 0_{\mathcal{V}}$;
- (d) $(-1) \odot X = \ominus X$ é o simétrico de X em relação a \oplus , $\forall X \in \mathcal{V}$.

Para simplificar as notações, daqui em diante, escreve-se

- i. X + Y em vez de $X \oplus Y$, para $X, Y \in \mathcal{V}$;
- ii. αX em vez de $\alpha \odot X$, para $\alpha \in \mathbb{R}$ e $X \in \mathcal{V}$;
- iii. -X em vez de $\ominus X$, para $X \in \mathcal{V}$.

Definição de subespaço

O subconjunto não vazio $\mathcal{S}\subseteq\mathcal{V}$ é um subespaço (vetorial) do e.v. \mathcal{V} se, munido das mesmas operações de \mathcal{V} , for ele próprio um e.v.

Teorema: $S \subseteq V$ é um subespaço do e.v. V se e só se

- 1. $0_{\mathcal{V}} \in \mathcal{S}$, onde $0_{\mathcal{V}}$ representa o elemento neutro de \mathcal{V} em relação à adição;
- **2.** \mathcal{S} é fechado em relação à adição em \mathcal{V} :

$$X + Y \in \mathcal{S}$$
, para $X, Y \in \mathcal{S}$;

3. $\mathcal S$ é fechado em relação à multiplicação por escalar em $\mathcal V$:

$$\alpha X \in \mathcal{S}$$
, para $\alpha \in \mathbb{R}, X \in \mathcal{S}$.

Espaços Vetoriais ALGA 🖽 6/21

Exemplo:

- 1. $V \in \{0_V\}$ são os subespaços triviais de V;
- **2.** $\{(0, y, z) : y, z \in \mathbb{R}\}$ é um subespaço de \mathbb{R}^3 ;
- **3.** $\{(1,y): y \in \mathbb{R}\}$ <u>não</u> é um subespaço de \mathbb{R}^2 ;
- **4.** o espaço nulo da matriz $A m \times n$,

$$\mathcal{N}(A) = \{ X \in \mathbb{R}^n : AX = 0 \},$$

é um subespaço de \mathbb{R}^n .

Subespaço gerado por um conjunto

Dados os elementos X_1, \ldots, X_k de \mathcal{V} e os escalares $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, o elemento $X \in \mathcal{V}$ tal que

$$X = \alpha_1 X_1 + \dots + \alpha_k X_k$$

é uma combinação linear dos elementos X_1, \ldots, X_k .

Teorema:

Seja $\mathcal V$ um e.v., $K = \{X_1, \dots, X_k\} \subset \mathcal V$ e S o conjunto das combinações lineares de elementos de K, ou seja, $S = \{\alpha_1 X_1 + \dots + \alpha_k X_k : \alpha_1, \dots, \alpha_k \in \mathbb R\}$. O conjunto S é um subespaço de $\mathcal V$.

O subespaço S designa-se por subespaço gerado por K, e escreve-se

$$S = \langle K \rangle$$
 ou $S = \langle X_1, \dots, X_k \rangle$.

Diz-se, também, que K gera o subespaço S ou é um conjunto gerador do subespaço S.

Espaços Vetoriais ALGA 🖽 8/21

Subespaço gerado por um conjunto

Exercício: Confirme que se $X_1, \cdots, X_k \in \mathcal{V}$, então $S = \langle X_1, \dots, X_k \rangle$ é um subespaço de \mathcal{V} .

Exemplo: Dados os vetores não colineares $X_1, X_2 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$,

- 1. $\langle X_1 \rangle$ é a reta que passa pela origem e tem vetor director X_1 ;
- **2.** $\langle X_1, X_2 \rangle$ é o plano que passa pela origem e que contém X_1 e X_2 .

Espaços Vetoriais ALGA 🖽 9/21

Espaço das linhas e espaço das colunas de uma matriz

Seja A uma matriz $m \times n$ com linhas $L_1, \ldots, L_m \in \mathbb{R}^n$ e colunas $C_1, \ldots, C_n \in \mathbb{R}^m$

$$A = \begin{bmatrix} L_1^T \\ \vdots \\ L_m^T \end{bmatrix} = \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix}$$

ightharpoonup O espaço das linhas de A é o subespaço de \mathbb{R}^n

$$\mathcal{L}(A) = \langle L_1, \ldots, L_m \rangle \subseteq \mathbb{R}^n.$$

ightharpoonup O espaço das colunas de A é o subespaço de \mathbb{R}^m

$$C(A) = \langle C_1, \ldots, C_n \rangle \subseteq \mathbb{R}^m.$$

Espaços Vetoriais ALGA 💾 10/21

Espaço das linhas e espaço das colunas de uma matriz

Lema: Dados
$$X_1, \ldots, X_k \in \mathcal{V}$$
 e $i, j \in \{1, \ldots, k\}$, com $i \neq j$,

i.
$$\langle X_1, \ldots, X_i, \ldots, X_j, \ldots, X_k \rangle = \langle X_1, \ldots, X_j, \ldots, X_i, \ldots, X_k \rangle$$
;

ii.
$$\langle X_1,\ldots,X_i,\ldots,X_k\rangle=\langle X_1,\ldots,\alpha X_i,\ldots,X_k\rangle,\ \alpha\in\mathbb{R}\setminus\{0\};$$

iii.
$$\langle X_1, \ldots, X_i, \ldots, X_k \rangle = \langle X_1, \ldots, X_i + \beta X_j, \ldots, X_k \rangle, \ \beta \in \mathbb{R}.$$

Como consequência deste resultado, conclui-se o seguinte:

Teorema: Se as matrizes A e B são equivalentes por linhas, $\mathcal{L}(A) = \mathcal{L}(B)$.

Espaços Vetoriais ALGA 💾 11/21

Independência linear

Um subconjunto não vazio $\mathcal{K} = \{X_1, \dots, X_k\}$ de um e.v. \mathcal{V} diz-se linearmente independente (l.i.) se

$$\alpha_1 X_1 + \dots + \alpha_k X_k \, = \, 0_{\mathcal{V}} \qquad \Rightarrow \quad \alpha_1 = \dots = \alpha_k = 0,$$

caso contrário, \mathcal{K} é linearmente dependente (l.d.) em \mathcal{V} .

Nota: $0_{\mathcal{V}} \in \mathcal{K} \Rightarrow \mathcal{K}$ é linearmente dependente.

Exemplos:

- ightharpoonup Dois vetores não nulos de \mathbb{R}^2 ou \mathbb{R}^3 são colineares se e só se são l.d.
- ightharpoonup Três vetores não colineares de \mathbb{R}^3 definem um plano se e só se são l.d.

ALGA 12/21

Independência linear

Seja $\mathcal{K} = \{X_1, \dots, X_k\}$ um subconjunto de um e.v. \mathcal{V} .

 \mathcal{K} é linearmente dependente se e só se o sistema que se obtém da equação

$$\alpha_1 X_1 + \cdots + \alpha_k X_k = 0_{\mathcal{V}}$$

é possível e indeterminado, isto é, se tem uma solução com os escalares $\alpha_1,\ldots,\alpha_k\!\in\!\mathbb{R}$ não todos nulos.

Se existe $1 \le j \le k$ tal que $\alpha_i \ne 0$, então

$$X_{j} = \frac{\alpha_{1}}{\alpha_{j}} X_{1} + \dots + \frac{\alpha_{j-1}}{\alpha_{j}} X_{j-1} + \frac{\alpha_{j+1}}{\alpha_{j}} X_{j+1} + \dots + \frac{\alpha_{k}}{\alpha_{j}} X_{k}$$

concluindo-se que X_j pertence ao subespaço gerado por $\mathcal{K} \setminus \{X_j\}$.

Espaços Vetoriais ALGA 💾 13/21

Geradores e independência linear

Sejam \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

Lema: Seja $X \in \mathcal{K}$. Então X é combinação linear dos elementos de $\mathcal{K} \setminus \{X\}$ se e só se $\langle \mathcal{K} \setminus \{X\} \rangle = \langle \mathcal{K} \rangle$.

Teorema: K é um conjunto linearmente

- ▶ dependente \iff existe $X \in \mathcal{K}$ tal que $X \in \mathcal{K} \setminus \{X\}$, ou seja, $\langle \mathcal{K} \setminus \{X\} \rangle = \langle \mathcal{K} \rangle$;
- ▶ independente \iff para cada $X \in \mathcal{V} \setminus \langle \mathcal{K} \rangle$, o conjunto $\mathcal{K} \cup \{X\}$ é l.i.

Espacos Vetoriais ALGA 🖽 14/21

Geradores e independência linear

Corolário:

Seja \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

- ▶ Se \mathcal{K} gera \mathcal{V} mas não é l.i., é possível retirar um elemento de \mathcal{K} , obtendo-se ainda um conjunto gerador de \mathcal{V} .
- ▶ Se \mathcal{K} é l.i. mas não gera \mathcal{V} , é possível acrescentar um elemento de \mathcal{V} a \mathcal{K} , obtendo-se ainda um conjunto l.i.

Corolário:

Se $\mathcal V$ é um e.v. gerado por um número finito de elementos ($\mathcal V$ é finitamente gerado), então $\mathcal V$ tem um conjunto gerador que é linearmente independente.

Base de um espaço vetorial

Uma base de um e.v. $\mathcal{V} \neq \{0_{\mathcal{V}}\}$ é um

- conjunto linearmente independente,
- conjunto gerador de \mathcal{V} .

Nota:

- Por convenção, o e.v. trivial $\{0_{\mathcal{V}}\}$ tem como base o conjunto vazio.
- Um conjunto l.i. é base do subespaço por ele gerado.

Exemplos:

- **1.** Sejam $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$ Então $\mathcal{C}_n = \{e_1, e_2, \dots, e_n\}$ é a base canónica de \mathbb{R}^n .
- **2.** Seja E_{ii} a matriz $m \times n$ que tem a entrada (i,j) igual a 1 e todas as outras iguais a 0. Então $\mathcal{C}_{m \times n} = \{E_{ii} : i = 1, \dots, m, j = 1, \dots, n\}$ é a base canónica de $\mathbb{R}^{m \times n}$.
- **3.** A base canónica do e.v. \mathcal{P}_n dos polinómios na variável x de grau menor ou igual a n (incluindo o polinómio nulo) é $\mathcal{P}_n = \{1, x, \dots, x^n\}$.
- **4.** O e.v. \mathcal{P} de todos os polinómios não admite uma base com um número finito de elementos. O conjunto $\{1, x, x^2, \dots\}$ é uma base de \mathcal{P} .

ALGA 🖽 17/21 Espaços Vetoriais

Base de um espaço vetorial

Sejam \mathcal{V} um e.v. e $\mathcal{K} = \{X_1, \dots, X_k\} \subset \mathcal{V}$.

Proposição:

- \triangleright Se \mathcal{K} gera \mathcal{V} , então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de \mathcal{K} , de pelo menos uma maneira.
- \triangleright Se \mathcal{K} é l.i., então qualquer elemento de \mathcal{V} pode escrever-se como combinação linear dos elementos de K, de no máximo uma maneira.

Proposição:

Se \mathcal{K} é uma base de \mathcal{V} , então

cada elemento de $\mathcal V$ escreve-se de forma única como combinação linear dos elementos de $\mathcal K$.

ALGA Ħ 18/21

Dimensão de um espaço vetorial

Teorema: Seja $\mathcal V$ um e.v. com uma base que contém n elementos e $\mathcal K\subset\mathcal V$ um subconjunto com r elementos.

- i. \mathcal{K} é l.i. $\Rightarrow r \leq n$ Neste caso, existe uma base de \mathcal{V} que contém \mathcal{K} .
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow r \geq n$ Neste caso, existe uma base de \mathcal{V} que é um subconjunto de \mathcal{K} .

Corolário:

Todas as bases de ${\cal V}$ possuem o mesmo número de elementos.

A dimensão de um e.v. \mathcal{V} é o número de elementos de uma base de \mathcal{V} e denota-se por dim \mathcal{V} .

Espaços Vetoriais ALGA 💾 19/21

Dimensão de um espaço vetorial

Consequência do teorema anterior:

Seja $\mathcal V$ um espaço vetorial com dimensão n e $\mathcal K$ um subconjunto de $\mathcal V$ com r elementos.

- i. $r > n \Rightarrow \mathcal{K} \in I.d.$
- ii. $r < n \Rightarrow \mathcal{K}$ não gera \mathcal{V}
- iii. $r = n \Rightarrow \mathcal{K}$ é uma base de \mathcal{V} se e só se \mathcal{K} é l.i., se e só se \mathcal{K} gera \mathcal{V} .

Se \mathcal{B} é um e.v. com dimensão n e \mathcal{K} é um subconjunto de \mathcal{V} com n elementos, para verificar se \mathcal{B} é uma base de \mathcal{V} é suficiente verificar uma das condições:

- (i) \mathcal{B} é linearmente independente, ou,
- (ii) \mathcal{B} gera \mathcal{V} .

Espaços Vetoriais ALGA 💆 20/21

Exemplos

Exemplos:

- 1. $\dim\{0_{\mathcal{V}}\}=0$,
- 2. dim $\mathbb{R}^n = n$,
- 3. dim $\mathbb{R}^{m \times n} = mn$,
- **4.** dim $P_n = n + 1$.

Teorema:

Se $\mathcal{K} = \{X_1, \dots, X_n\} \subset \mathcal{V}$ e dim $\mathcal{V} = n$, então

- i. \mathcal{K} l.i. $\Rightarrow \mathcal{K}$ é base de \mathcal{V} ;
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow \mathcal{K}$ é base de \mathcal{V} .