Relational Colour Refinement for Non-Relational Signatures

Theodor Jurij Teslia

September 5, 2025

RWTH Aachen University

Introduction

- Colour Refinement is an important and interesting algorithm
- Applied in modern isomorphism solvers
- Can be characterised logically and combinatorially
- Extension to more than graphs seems desirable
- Scheidt and Schweikardt bibliography introduced Relational Colour Refinement
- Conceptually similar to classical Colour Refinement
- Also has a logical and a combinatorial characterisation

Contents of this presentation

- 1. Classical Colour Refinement
- 2. Relational Colour Refinement
- 3. Relational Colour Refinement for Structures With Functions
- 4. RCR on Subclasses of Relational Structures
- 5. Sketch of a Proof
- 6. Conclusion

Classical Colour Refinement

Colour Refinement

- Also called CR or 1-dimensional Weisfeiler-Leman algorithm
- Iterative graph algorithm
- Constructs colour for every vertex, based on colours of neighbours

Definition (Colour Refinement)

For graph G = (V, E), for every $v \in V$ and $i \in \mathbb{N}$:

- Initial colour: $C_0(v) := 0$
- Next rounds:

$$C_{i+1}(v) := (C_i(v), \{\!\!\{ C_i(u) : \{v,u\} \in E \}\!\!\})$$

Example for CR

G:

•
$$C_0(a) = C_0(b) = C_0(c) = C_0(d) = 0$$

- $C_1(a) = C_1(b) = (0, \{0, 0\})$
- $C_1(c) = C_1(d) = (0, \{0, 0, 0\})$

Distinguished graphs

- CR distinguishes two graphs G and H, if
- there exists $C_i(v)$ in colouring of G or H, such that the number of vertices with colour $C_i(v)$ is different in G than in H

Distinguished graphs

- CR distinguishes two graphs G and H, if
- there exists $C_i(v)$ in colouring of G or H, such that the number of vertices with colour $C_i(v)$ is different in G than in H

H:

- Colours in first round equal
- $C_1(b') = (0, \{0\})$ does not appear in G
- \Rightarrow Colour Refinement distinguishes G and H

Characterisations of CR

- There are equivalent characterisations for CR
- Due to bibliography:
 CR distinguishes G and H if, and only if, there exists φ ∈ C₂, such that G ⊨ φ and H ⊭ φ
- Due to bibliography:
 CR distinguishes G and H if, and only if, there exists tree T, such that hom(T, G) ≠ hom(T, H)

Application of Characterisations to Example

G: a b c c d

- Used existence of colour $(0, \{0\})$ in colouring of H to distinguish G and H
- From colour it follows that vertex with degree 1 exists
- $\exists^{\geq 1} x . \exists^{=1} y . E(x, y)$ distinguishes G and H

Application of Characterisations to Example

- Used existence of colour $(0, \{0\})$ in colouring of H to distinguish G and H
- From colour it follows that vertex with degree 1 exists
- $\exists \geq 1 x . \exists = 1 y . E(x, y)$ distinguishes G and H

- There are 5 edges in G but only 4 in H
- Tree $T \coloneqq (\{v,u\},\{\{v,u\}\})$ has 10 homomorphisms to G and 8 to H

Relational Colour Refinement

Relational Colour Refinement

- Called RCR for short
- Applies variant of classical Colour Refinement on tuples of structure
- Uses atomic type as part of initial colouring
- Uses pairs of indices as edges to mark shared elements of tuples
- Formally:

$$\mathsf{atp}(\mathbf{a}) = \{ R \in \sigma : \mathbf{a} \in R \}$$

and

$$\mathsf{stp}(\mathbf{a},\mathbf{b}) = \{(i,j) \in [n] \times [m] : a_i = b_j\}$$

The Algorithm

- For relational structure $\mathfrak A$ and all tuples $\mathbf a \in \mathbf A$:
- Initial colour: $\varrho_0(\mathbf{a}) = (\operatorname{atp}(\mathbf{a}), \operatorname{stp}(\mathbf{a}, \mathbf{a}))$
- For the next rounds: $\varrho_{i+1}(\mathbf{a}) = (\varrho_i(\mathbf{a}), \{\{(\operatorname{stp}(\mathbf{a}, \mathbf{b}), \varrho_i(\mathbf{b})) : \operatorname{set}(\mathbf{a}) \cap \operatorname{set}(\mathbf{b}) \neq \emptyset\}\}$

An Example for RCR

- Structure $\mathfrak{A} = (A, R^{\mathfrak{A}}, T^{\mathfrak{A}})$
- $A = \{a, b, c, d\}, R^{\mathfrak{A}} = \{(a, b)\}, T^{\mathfrak{A}} = \{(a, c, d), (b, c, d)\}$

- $\varrho_0((a,b)) = (\{R\}, \{(1,1), (2,2)\})$ and $\varrho_0((a,c,d)) = \varrho_0((b,c,d)) = (\{T\}, \{(1,1), (2,2), (3,3)\})$
- $\varrho_1((a,c,d)) = (\varrho_0((a,c,d)), \{\{(\{(1,1)\}, \varrho_0((a,b))), \dots\}\})$ and $\varrho_1((b,c,d)) = (\varrho_0((b,c,d)), \{\{(\{(1,2)\}, \varrho_0((a,b))), \dots\}\})$

Distinguishing Relational Structures with RCR

RCR distinguishes, if some colour appears differently often in the structures

• $\varrho_1((a,c,d))$ appears in colouring of left structure but not in right

Relational Colour Refinement

Logical Characterisation of RCR

Guarded Fragment of Counting Logic

- C₂ characterises CR on graphs
- Guarded fragment of counting logic GF(C) characterises RCR

Guarded Fragment of Counting Logic

- Everything except for quantifiers defined as in classical counting logic
- For atomic formula $\Delta \in GF(C)$ and formula $\varphi \in GF(C)$, we call Δ a guard for φ , if $free(\Delta) \supseteq free(\varphi)$
- Quantifiers appear only in form $\exists^{\geq i} \mathbf{v} . (\Delta \wedge \varphi)$, where Δ is guard for φ and $\mathsf{set}(\mathbf{v}) \subseteq \mathsf{free}(\Delta)$
- Examples:
 - $\exists \geq 2(x,y).(E(x,y) \land T(y)) \in \mathsf{GF}(\mathsf{C})$
 - $\exists \geq 3(x,y,z).(E(x,y) \land E(y,z) \land E(z,x)) \notin GF(C)$

Characterising RCR Using Logic

Theorem B from bibliography

Let ${\mathfrak A}$ and ${\mathfrak B}$ be two relational structures. Then the two following statements are equivalent.

- 1. RCR distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists a sentence in GF(C) that is satisfied by ${\mathfrak A},$ but not by ${\mathfrak B}$

Example for Logical Characterisation of RCR

- We have seen RCR distinguishes the structures
- Formula $\exists^{\geq 1}(x,y,z).$ $(T(x,y,z) \land \exists^{\geq 1}(y).(R(x,y)))$ satisfied by left and not by right structure

Relational Colour Refinement

Combinatorial Characterisation of RCR

Acyclic Structures

- Counting homomorphisms from trees characterises CR on graphs
- Abstraction from trees to relational structures is needed: α -acyclic structures (in the following only acyclic structures)

Acyclic Structures

- Let
 C be relational structure
- Join tree J for $\mathfrak C$ is tree with $V(J)=\mathbf C$ and fulfils join-tree-property:
 - For every $e \in C$, the set $\{x \in V(J) : e \in set(x)\}$ induces a connected subtree
- We call $\mathfrak C$ acyclic, if it has a join tree

Examples for Acyclic Structures

No:

Examples for Acyclic Structures

Yes:

Characterising RCR Using Homomorphism Counting

Theorem A from bibliography

Let ${\mathfrak A}$ and ${\mathfrak B}$ be relational structures. Then the two following statements are equivalent.

- 1. RCR distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists an acyclic relational structure $\mathfrak C$, such that it has a different number of homomorphisms to $\mathfrak A$ than to $\mathfrak B$

Example for Combinatorial Characterisation of RCR

- Right tree is join tree for middle structure, therefore middle structure is acyclic
- Identity is homomorphism, so middle structure has at least one homomorphism to itself
- Middle structure has no homomorphisms to left structure

Relational Colour Refinement for

Structures With Functions

Relational Colour Refinement for Structures With Functions

- Many interesting structures use functions
- Colour Refinement algorithm for such structures seems desirable
- Will use the results of Scheidt and Schweikardt bibliography and investigate how robust they are
- Following structure:
 - 1. Presentation of two approaches for Colour Refinement for non-relational signatures
 - 2. Logical characterisation of both approaches
 - 3. Discussion on combinatorial characterisation

Naive RCR

- Goal: Encode non-relational structures and signatures as relational ones
- Functions can directly be interpreted as relations:

$$f(\mathbf{x}) = y \iff (\mathbf{x}y) \in R_f$$

- For non-relational signature σ define relational signature σ' :
 - Relation symbol $R \in \sigma$ of arity $n \to \text{introduce } R \in \sigma'$ of arity $n \to \text{introduce } R \in \sigma'$
 - Function symbol $f \in \sigma$ of arity $n \to \text{introduce } R_f \in \sigma'$ of arity n+1
- Encode σ -structure $\mathfrak A$ as σ' -structure $\mathfrak A'$:
 - For relation symbol $R \in \sigma$: $R^{\mathfrak{A}'} := R^{\mathfrak{A}}$
 - For function symbol $f \in \sigma$: $R_f^{\mathfrak{A}'} := \{(\mathbf{x}y) : f^{\mathfrak{A}}(\mathbf{x}) = y\}$
- ullet We say naive RCR distinguishes ${\mathfrak A}$ and ${\mathfrak B}$, if RCR distinguishes the encodings

Idea of the Transitive Expansion

- Approach is only defined for unary function symbols
- Encoding emulates the nesting of function applications
- Encode function f as family of relations R_{f^1}, R_{f^2}, \ldots , where $(x, y) \in R_{f^i}$ if $\underbrace{f(f(\ldots f(x)))}_{i \text{ times}} = y$
- In the following: $f^{i}(x)$ written for $\underbrace{f(f(...f(x)))}_{i \text{ times}}$
- ullet For multiple functions, also encode alternations, for example R_{fg} or $R_{g^2f^3}$

Transitive Expansion i

Alternations of Function Applications

- ullet Let σ be signature with unary function symbols
- Define set of all allowed function application alternations Alters_n^k as Alters_n⁰(σ) = {id} and

$$\mathsf{Alters}_n^k(\sigma) := \mathsf{Alters}_n^{k-1}(\sigma) \cup \{f_1^{m_1} \dots f_k^{m_k} : f_1, \dots, f_k \in \sigma_{\mathsf{Func}} \\ \land \forall i \in [k] \cdot m_i \in [n] \\ \land \forall i \in [k-1] \cdot f_i \neq f_{i+1}\}.$$

- Example:
 - $\sigma = \{f/1, g/1\}$
 - $\bullet \ \operatorname{Alters}_2^2(\sigma) = \underbrace{\{\operatorname{id}\}}_{k=0} \cup \underbrace{\{f,f^2,g,g^2\}}_{k=1} \cup \underbrace{\{fg,fg^2,f^2g,f^2g^2,gf,\ldots\}}_{k=2}$

Transitive Expansion ii

Transitive Expansion

- For alternation depth k and σ -structure $\mathfrak A$ with $|\mathfrak A|=n$ define transitive expansion $\widetilde{\mathfrak A}$ as a $\widetilde{\sigma}$ -structure
- For $\alpha, \beta, \alpha_1, \dots, \alpha_\ell \in \mathsf{Alters}^k_n(\sigma)$ and relation symbol $R \in \sigma$ of arity ℓ , insert relation symbol $\mathsf{Eq}_{\alpha_1, \dots, \alpha_\ell}$ of arity ℓ into $\widetilde{\sigma}$
- Define $\mathsf{Eq}_{\alpha,\beta}^{\widetilde{\mathfrak{A}}} \coloneqq \{(x,y) : \alpha^{\mathfrak{A}}(x) = \beta^{\mathfrak{A}}(y)\}$ and $R_{\alpha_{1},\dots,\alpha_{\ell}}^{\widetilde{\mathfrak{A}}} \coloneqq \{(x_{1},\dots,x_{\ell}) : (\alpha_{1}^{\mathfrak{A}}(x_{1}),\dots,\alpha_{\ell}^{\mathfrak{A}}(x_{\ell})) \in R^{\mathfrak{A}}\}$
- For $k \in \mathbb{N}$ we say that RCR_k distinguishes structures \mathfrak{A} and \mathfrak{B} , if RCR distinguishes the transitive expansions with alternation depth k

Example for the Transitive Expansion

- Structure $\mathfrak{A} = (A, R^{\mathfrak{A}}, f^{\mathfrak{A}}, g^{\mathfrak{A}})$
- k = 1 and n = 2: Alters $\frac{1}{2}(\sigma) = \{id, f, f^2, g, g^2\}$
- $\bullet \ \ \widetilde{\sigma} = \{R_{\mathsf{id}}, R_f, R_{f^2}, R_g, R_{g^2}, \mathsf{Eq}_{\mathsf{id},\mathsf{id}}, \mathsf{Eq}_{\mathsf{id},f}, \mathsf{Eq}_{\mathsf{id},f^2}, \dots, \mathsf{Eq}_{g^2,g^2}\}$
- Examples:
 - $\bullet \ \ R_f^{\widetilde{\mathfrak{A}}} = \{b\}$
 - $\mathsf{Eq}^{\widehat{\mathfrak{A}}}_{f^2,\mathsf{id}} = \{(a,a),(b,b)\}$
 - $\mathsf{Eq}_{g,f}^{\widetilde{\mathfrak{A}}} = \{(a,b),(b,a)\}$

Relational Colour Refinement for

Structures With Functions

Logical Characterisation of Naive RCR

Nesting-Free Guarded Fragment of Counting Logic

nfGF(C)

- Extends given definition of GF(C) for non-relational signatures
- Allow atomics of the following forms
 - Relation symbols and variable equations like in GF(C)
 - For function symbol f of arity ℓ and variables x_1, \ldots, x_ℓ, y : $f(x_1, \ldots, x_\ell) = y \in \mathsf{nfGF}(\mathsf{C})$
- Forbid nesting of terms, for example f(g(x), y) = z
- Informally: Usage of function symbols like relation symbols

Characterising Naive RCR Logically

Logical Characterisation of Naive RCR

Let $\mathfrak A$ and $\mathfrak B$ be structures. Then the two following statements are equivalent.

- 1. Naive RCR distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists a sentence $\varphi \in \mathsf{nfGF}(\mathsf{C})$ which is fulfilled by \mathfrak{A} , but not by \mathfrak{B}

Proof idea:

- Naive RCR distinguishes structures iff. RCR distinguishes encodings iff. there
 exists a sentence in GF(C) that distinguishes the encodings
- Define translation of sentences in GF(C) over signature σ' to and from sentences in nfGF(C) over signature σ
 - $R_f(\mathbf{x}y) \leftrightarrow f(\mathbf{x}) = y$

Relational Colour Refinement for

Structures With Functions

Logical Characterisation of RCR_k

GF(C) with alternation depth k

$GF(C)_k$

- Fixate $k \in \mathbb{N}$
- Atomics are defined like in natural extension to non-relational signatures, with one restriction
- For every formula in $GF(C)_k$ and every term t that appears in it, there must exist a $n \in \mathbb{N}$, such that $t = \alpha$ for a $\alpha \in Alters_n^k(\sigma)$
- ullet Restrict number of alternations of function applications to k
- No restriction of number of application of same function in series
- Examples:
 - $f^2(g(h^3(x))) = y \notin GF(C)_2$, but in $GF(C)_3$
 - $f^i(x) = y \in GF(C)_1$ for all $i \in \mathbb{N}$

Characterising RCR_k Logically ii

Logical Characterisation of RCR_k

Let $k \in \mathbb{N}$ and let $\mathfrak A$ and $\mathfrak B$ be two structures. Then the two following statements are equivalent.

- 1. RCR_k distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists a sentence in $GF(C)_k$ that is fulfilled by $\mathfrak A$, but not by $\mathfrak B$

Characterising RCR_k Logically iii

Proof idea

- 1. to 2.: Like, before sentence in GF(C) over signature $\widetilde{\sigma}$ can easily be translated into sentence in GF(C)_k over signature σ
- 2. to 1.:
 - Assume $n = |\mathfrak{A}| = |\mathfrak{B}|$
 - Translate and replace all atomic subformulae by formula that:
 - is equivalent for all structures with *n* elements
 - only contains terms $f^{i}(s(x))$ with $i \leq n$
 - Rearrange resulting formula to get valid GF(C)_k-sentence
 - Results in equivalent formula for structures with n elements and for every term t there exists an $\alpha \in \mathsf{Alters}_n^k(\sigma)$, such that $t = \alpha$
 - ullet Can easily be translated into sentence in GF(C) of signature $\widetilde{\sigma}$

Relational Colour Refinement for Structures With Functions

Discussion on the Combinatorial Characterisation

Total and Functional Structures

- Let σ be a signature, σ' its naive encoding and \mathfrak{A}' a σ' -structure
- We call \mathfrak{A}' total if for every *n*-ary function symbol $f \in \sigma$ and every *n*-tuple **x** there is a y, such that $(\mathbf{x}y) \in R_f^{\mathfrak{A}'}$
- We call \mathfrak{A}' functional if for every n-ary function symbol f there are no two n+1-tuples $(\mathbf{x}y), (\mathbf{x}z) \in R_f^{\mathfrak{A}'}$

Non-Relational Acyclic Structures

• Will define acyclicity w.r.t. the naive encoding

Non-Relational Acyclic Structures

- ullet Let ${\mathfrak A}$ be a non-relational structure
- \bullet We call ${\mathfrak A}$ acyclic, if its naive encoding ${\mathfrak A}'$ is acyclic

Total and Functional Structures as Encodings

• Desired equivalence:

Non-relational, acyclic structure distinguishes ${\mathfrak A}$ and ${\mathfrak B}$ by homomorphism count

Naive RCR distinguishes ${\mathfrak A}$ and ${\mathfrak B}$

- Result: Forward direction holds, backwards does not
- First step: Reformulate first statement:

Some non-relational, acyclic structure dist. ${\mathfrak A}$ and ${\mathfrak B}$ by hom. count iff.

Some total, functional and acyclic structure dist. encodings \mathfrak{A}' and \mathfrak{B}' by hom. count

Enforcing Functionality

• We can show:

Acyclic σ' -structure dist. \mathfrak{A}' and \mathfrak{B}' by hom. count iff.

Functional and acyclic σ' -structure dist. \mathfrak{A}' and \mathfrak{B}' by hom. count

Proof idea:

- Backwards direction is obvious
- Forwards direction eliminates collisions of the form $(xy), (xz) \in R_f$ by contracting y and z
- This can be done while maintaining the homomorphisms and acyclicity and can be repeated until no collisions remain

Non-Enforceability of Totality

- There are structures that are distinguished by naive RCR, but there is no acyclic and total structure that distinguishes the encodings by homomorphism count
- Define signature $\sigma = \{E/2, f/1\}$
- Two families of σ -structures $(\mathfrak{A}_i)_{i\in\mathbb{N}_{\geq 4}}$ and $(\mathfrak{B}_i)_{i\in\mathbb{N}_{\geq 4}}$
- For all $i \in \mathbb{N}_{\geq 4}$: Naive RCR distinguishes \mathfrak{A}_i and \mathfrak{B}_i , but no acyclic and total structure can distinguish the encodings by hom. count

Structures that are distinguished by nRCR but not total structures i

Structures that are distinguished by nRCR but not total structures i

Structures that are distinguished by nRCR but not total structures ii

- Obviously distinguished by naive RCR
- If structure has R_f -loops or R_f -2-cycles, then no homomorphisms to either structure
- \bullet Because total, it has to contain larger R_f -cycles, but then cannot be acyclic

Results of combinatorial characterisation of naive RCR

We have the following results:

Naive RCR distinguishes $\mathfrak A$ and $\mathfrak B$

1

There exists acyclic structure that dist. encodings \mathfrak{A}' and \mathfrak{B}' by hom. count

1

There exists acyclic and functional structure that dist. encodings by hom. count

↑, but ∦

There exists acyclic, total and functional structure that dist. encodings by hom. count

There exists acyclic, non-relational structure that dist. $\mathfrak A$ and $\mathfrak B$ by hom. count

RCR on Subclasses of Relational

Structures

Restricting the Class of Structures

ullet For what subclass ${\cal S}$ of relational structures do we have the following equivalence:

Two structures from $\mathcal S$ get distinguished by RCR iff.

There exists an acyclic structure from S that dist. the structures by hom. count

- Does not hold for class of total structures
 - Encodings of classes of structures from before are total, but no total and acyclic structure dist. them by hom. count
- Another class to investigate: Class of symmetric structures

Restriction to Symmetric Structures

• Relational Structure is symmetric, if for every k-ary relation R and for every k-tuple $\mathbf{x} \in R$, every permutation of the elements in \mathbf{x} is also in R

Restriction to Symmetric Structures

- Relational Structure is symmetric, if for every k-ary relation R and for every k-tuple $\mathbf{x} \in R$, every permutation of the elements in \mathbf{x} is also in R
- For two symmetric structures we can show
 - There exists acyclic structure dist. the structures by hom. count iff.
 - There exists acyclic, symmetric structure dist. the structure by hom. count
- From this, restriction to symmetric structures is possible

Sketch of a Proof

Description of the Lemma

- Lemma for translating $f^m(x_1) = x_2$ to a formula with a bounded number of applications of f in series
- Used in proof of logical characterisation of RCR_k

Lemma 4.6

A formula ψ of the form $f^m(x_1) = x_2 \in GF(C)_1$ can be translated to a formula $\vartheta(x_1, x_2) \in GF(C)_1$, such that:

- 1. They are equivalent for structures with n elements
- 2. There does not appear a term f^i with i > n in ϑ
- 3. ϑ is of the form $\bigvee \Phi$ and if ϑ is fulfilled, then there exists exactly one $\varphi \in \Phi$ which is satisfied

Proof Idea

- Elements $f^0(x), f^1(x), \dots, f^m(x)$ describe a path through a structure
- If m > n, there have to be $i, j \le n$ such that $f^i(x) = f^j(x)$
- Path can be decomposed into:
 - 1. Path to a cycle
 - 2. A cycle
 - 3. A last part of the cycle
- Define set $\mathcal{I}(n,m)$ as set of all such decomposition (k,ℓ,p)

Sketch of the Proof i

• Define $\vartheta(x_1, x_2) := \bigvee_{(k,\ell,p) \in \mathcal{I}(n,m)} \zeta_{(k,\ell,p)}(x_1, x_2)$ where

$$\zeta_{(k,\ell,\rho)}(x_1,x_2) := f^{k+\rho}(x_1) = x_2 \wedge f^k(x_1) = f^{k+\ell}(x_1)
\wedge f^{k-1}(x_1) \neq f^{k-1+\ell}(x_1)
\wedge \bigwedge_{0 < \ell' < \ell} f^k(x_1) \neq f^{k+\ell'}(x_1)$$

Sketch of the Proof ii

- $f^{k+p}(x_1) = x_2 \wedge f^k(x_1) = f^{k+\ell}(x_1)$ ensures that (k, ℓ, p) decomposes the path into a path to a cycle and the cycle itself
- $f^{k-1}(x_1) \neq f^{k-1+\ell}(x_1) \land \bigwedge_{0 < \ell' < \ell} f^k(x_1) \neq f^{k+\ell'}(x_1)$ ensures that only the lexicographically smallest decomposition is satisfied
- If ψ is satisfied, a smallest decomposition (k,ℓ,p) exists that decomposes the path of f
- Then it can be shown that $\zeta_{(k,\ell,p)}$ is satisfied, and because only the lexicographically smallest (k,ℓ,p) is satisfied, it is the only one

Sketch of the Proof iii

- ullet If ϑ is satisfied, some $\zeta_{(k,\ell,p)}$ is satisfied
- ullet This means that (k,ℓ,p) decomposes the path of f , therefore ψ is also satisfied

Conclusion

Conclusion

- We presented classical CR and Scheidt's and Scheikardt's RCR algorithm
- We defined two possible ways to apply their algorithm to non-relational signatures
 - Naive RCR
 - \bullet RCR_k
- We showed our results for the logical characterisations
 - Naive RCR gets characterised by the nesting free fragment of counting logic
 - RCR_k gets characterised by the natural extension of GF(C) to non-relational signatures where terms have a maximal alternation depth of k
- We disproved the characterisation by homomorphism counting
 - Functionality can be enforced
 - Totality cannot
- We showed results for the restriction to two subclasses of the relational structures
 - The restriction to total structures does not preserve the characterisation by hom.
 counting
 - The restriction to symmetric structures does preserve it

Equality between terms t and alternations α

- For a term t and a $\alpha \in \mathsf{Alters}_n^k(\sigma)$ we say $t = \alpha$, if:
- If $t = f^i(x)$, the *i*-times application of one function symbol f, and $\alpha = f^i$
- If $t = f^i(g^j(s(x)))$, where f and g are function symbols and s is a term, and $\alpha = f^i\alpha'$ and $s = \alpha'$
- Informally, if t is written using \circ , i.e. $f^i \circ g^j(x)$ instead of $f^i(g^j(x))$, the \circ are omitted and then this equals α