诚信关乎个人一生,公平竞争赢得尊重。

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

中国矿业大学_2023-2024 学年第二学期课程考试试卷

考试科目	ŧ	概率论与数理统计			试卷类型	A 卷
课程代码	M10856	考试时长	100	分钟	考试方式	闭卷
开课学院	数学学院	年级专业				
学院				学号		
不限于手机、 资料等放置出 2.已按要求 考生本人); 3.已知晓并 中自觉遵守以	智能手表、智能 监考老师指定位置 清理干净整个座位 理解《中国矿业大 以上规定,服从监	带有拍照、摄像、 眼镜,平板电脑、 ; 立(包括考生邻座) 、学学生违纪处分管 考教师的安排,自 国矿业大学学生违	无线耳机 桌面和 管理规定 觉遵守	l),或关 抽屉里的/ 》等与考ì 考试纪律,	机与其它禁止 所有物品(无论 式相关规定,承 诚信考试,不	携带物品、 是否属于 诺在考试 违规、不
1171 0 74117	E.A., H./III.A. (1)				签名	
可能用的数据	昼: Φ (1) = 0.8413	$3, \Phi(2) = 0.9772,$	$t_{0.025}(1$	6) = 2.11	199, $t_{0.025}(17)$	= 2.1098
$t_{0.05}(17) = 1.7$	$t_{0.05}(16) =$	=1.7459.				
一、填空题	(共5题,每小	题 4 分,满分 20)分)			
l、己知 <i>P(A)</i> :	= 0.7, P(A-B) =	$=0.3$, $\mathbb{M}P(\overline{A}\bigcup$	\overline{B}) =		<u>.</u>	
2、己知离散型	随机变量 X 的所在	有可能取值为-2,0,	$,2,\sqrt{5}$	相应的概义	率依次为 $\frac{1}{a}$, $\frac{3}{2a}$	$,\frac{5}{4a},\frac{7}{8a}$,则
$P\{ X \le 2 X$	≥0}=	- :				
3、设随机变量	(X服从参数为 2 的	的指数分布,则 P	$X > \sqrt{D}$	$\overline{(X)}$ =	·	
4、已知每次试	验中事件 A 发生的	的概率等于 0.5,试	利用切出	北雪夫不等	等式,求在 1000) 次独立试验
中事件 A 发生的	的次数在 450 至 5	50 之间的概率为_				
5、设总体 X ~		σ^2 已知,试求样才 国矿业大学				能保证μ的

置信度 $1-\alpha$ 的置信区间长度不大于 d.

二、单项选择题(共5题,每小题4分,满分20分)

- 6、设 A,B 为任意 2 个随机事件,且 $A \subset B, P(B) > 0$,则下列结论中**一定成立**的是()
 - (A) P(A) < P(A|B);
- (B) $P(A) \le P(A|B)$;
- (C) P(A) > P(A|B);
- (D) $P(A) \ge P(A|B)$.
- 7、设随机变量 *X* 的分布函数为 $F(x) = \begin{cases} a + be^{-x^2}, & x > 0 \\ 0, & x \le 0 \end{cases}$,则 a, b 的值分别为(
 - (A) a = 1, b = -1;
- (B) a = 1, b = 0;
- (C) a = -1, b = 1;
- (D) a = -1, b = 0.
- 8、设二维随机变量 $(X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;
 ho)$,则下列结论中**不一定成立**的是
 - (A) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$;
- (B) $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$;
- (C) X与 Y相互独立的充要条件是 $\rho = 0$; (D) $E(X + Y) = \mu_1 + \mu_2$.
- 9、设总体X的概率密度为 $f(x;\theta) = \begin{cases} \frac{c^{\frac{1}{\theta}}}{\theta}x^{-(1+\frac{1}{\theta})}, & x > c, \\ \frac{c^{\frac{1}{\theta}}}{\theta}x^{-(1+\frac{1}{\theta})}, & x > c, \end{cases}$ 其中参数 $0 < \theta < 1, c$ 为已知常数
- 且c>0,设 X_1,X_2,\cdots,X_n 为来自总体X的一个样本,则参数 θ 的矩估计量为(
 - (A) $\hat{\theta} = 1 \frac{2c}{V}$; (B) $\hat{\theta} = 2 \frac{c}{V}$; (C) $\hat{\theta} = 1 \frac{c}{V}$; (D) $\hat{\theta} = 1 \frac{c}{2V}$.

- 10、设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_9 为来自总体 X 的一个样本,记 $Y_1 = \frac{1}{6} \sum_{i=1}^{6} X_i$,
- $Y_2 = \frac{1}{3} \sum_{i=1}^{9} X_i$, $S^2 = \frac{1}{2} \sum_{i=1}^{9} (X_i Y_2)^2$, $Z = \frac{\sqrt{2}(Y_1 Y_2)}{S}$, 则下列**正确**的是(

 - (A) $Y_1 \sim N(0,1)$; (B) $Y_2 \sim N(0,\frac{1}{3})$; (C) $S^2 \sim \chi^2(2)$; (D) $Z \sim t(2)$.

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

三、解答题(共6题,每小题10分,满分60分)

- 11、某种仪器由3个部件组装而成,设3个部件的质量互不影响,其优质品率分别为0.8,0.7,
- 0.9. 已知当3个部件都是优质品时,组装的仪器一定合格;如果有一个部件不是优质品,则仪器的不合格率为0.2;如果有2个部件不是优质品,则仪器的不合格率为0.6;如果3个部件都不是优质品,则仪器的不合格率为0.9,求:
- (1) 仪器的不合格率;
- (2) 已知一台仪器不合格,该仪器上有一个部件不是优质品的概率是多少?
- **12、**设 G 表示平面上的区域,它是由抛物线 $y = x^2$ 和直线 y = x 所围城的区域,二维随机变量 (X,Y) 服从 G 上的均匀分布,求:
- (1) (X,Y) 的联合概率密度; (2) 边缘概率密度 $f_{X}(x)$, $f_{Y}(y)$.
- **13、**在一个罐子中,装有 10 个编号分别为 0 至 9 的同样的球. 现从罐中有放回的抽取了 100 次,每次抽取一个,试利用中心极限定理计算 0 号球出现 7 至 13 次的概率.
- 14、设X,Y是两个相互独立且均服从正态分布 $N \sim N(0,0.5)$ 的随机变量,
- 求 (1) Z = X Y 的分布; (2) D(|Z|).
- 15、已知总体 X 的分布律如下

X	0	1	2
p_{i}	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	1 - θ_1 - θ_2

其中 $0 < \theta_i < 1$ (i = 1, 2) 为未知参数, X_1, X_2, \dots, X_6 为来自总体 X 的一个样本,现得到样本的一组观测值为 1, 0, 2, 0, 0, 2,求 θ_1, θ_2 的最大似然估计值.

16、按规定在 100g 番茄汁罐头中,维生素 C 的平均含量不得少于 21(单位: mg/g). 现从某工厂的该产品中抽取 17 瓶罐头,测维生素 C 的含量,记录数据如下:

16 25 21 20 23 21 19 15 13 23 17 20 29 18 22 16 22 设维生素含量服从正态分布 $X\sim N(\mu,\sigma^2)$, σ^2 未知,问这批罐头是否符合要求? ($\alpha=0.05$)