ORFE 526: Probability Theory Homework 1

Zachary Hervieux-Moore

Tuesday $27^{\rm th}$ September, 2016

Exercise 1: Let \mathcal{E} be a σ -algebra and consider a sequence $(A_n)_n \subset \mathcal{E}$. Prove that $\bigcap_{n\geq 1} A_n \in \mathcal{E}$.

Answer: We know by De Morgan's law that $\bigcap_{n\geq 1} A_i = \left(\bigcup_{n\geq 1} A_i^c\right)^c$. As well, σ -algebras are closed under complementation and union:

$$(A_n)_n \subset \mathcal{E} \implies (A_n^c)_n \subset \mathcal{E}$$
 Since closed under complementation
$$\implies \bigcup_{n \geq 1} A_i^c \in \mathcal{E}$$
 Since closed under union
$$\implies \Big(\bigcup_{n \geq 1} A_i^c\Big)^c \in \mathcal{E}$$
 Since closed under complementation
$$\implies \bigcap_{n \geq 1} A_i \in \mathcal{E}$$
 By De Morgan's

Exercise 2: Let \mathcal{D} be a d-system on E. Fix D in \mathcal{D} and define

$$\widehat{\mathcal{D}} = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \}$$

Prove that $\widehat{\mathcal{D}}$ is a d-system.

Answer: To show that something is a d-system, we must show the following 3 properties:

- 1. $E \in \mathcal{D}$
- 2. if $A, B \in \mathcal{D}$ and $A \subseteq B$, then $B \setminus A \in \mathcal{D}$
- 3. if $A_1, A_2, A_3, \ldots \in \mathcal{D}$ and $A_n \subseteq A_{n+1}, n \ge 1$, then $A_n \nearrow A \in \mathcal{D}$ Proof of these properties for $\widehat{\mathcal{D}} = \{A \in \mathcal{D} : A \cap D \in \mathcal{D}\}$:
- 1. Let $A = E \in \mathcal{D}$, then $A \cap D = E \cap D = D$ since the intersection of a set and the universe is just the set. Note that $D \in \mathcal{D}$ by definition. So, $E \cap D \in \mathcal{D}$ which implies $E \in \widehat{\mathcal{D}}$
- 2. Let $A, B \in \widehat{\mathcal{D}}$ and $A \subseteq B$, then Since $A, B \in \widehat{\mathcal{D}}$, then $(B \cap D) \in \mathcal{D}$ and $(A \cap D) \in \mathcal{D}$ Since \mathcal{D} is a d-system, then $(B \cap D) \setminus (A \cap D) \in \mathcal{D}$ Note that $(B \cap D) \setminus (A \cap D) = (B \setminus A) \cap D$ So, $(B \setminus A) \cap D \in \mathcal{D}$

Thus, $B \setminus A \in \widehat{\mathcal{D}}$

3. Let $A_1, A_2, A_3, \ldots \in \widehat{\mathcal{D}}$ and $A_n \subseteq A_{n+1}, n \ge 1$, then Since $A_1, A_2, A_3, \ldots \in \widehat{\mathcal{D}}$, then $A_n \cap D \in \mathcal{D}, n \ge 1$ Since \mathcal{D} is a d-system, then $\bigcup_{n \ge 1} (A_n \cap D) \in \mathcal{D}$

Distributing the union we have, $(\bigcup_{n\geq 1} A_n) \bigcap (\bigcup_{n\geq 1} D) = A \cap D$

Where $\bigcup_{n\geq 1} A_n = A$ since \mathcal{D} is a d-system

So, $A \cap D \in \mathcal{D}$

Thus, $A \in \widehat{\mathcal{D}}$

All 3 properties hold, thus $\widehat{\mathcal{D}}$ is a d-system.

Exercise 3: Let E be a set and (F, \mathcal{F}) a measurable space. Consider a function $f: E \to F$. Define $f^{-1}(\mathcal{F}) = \{f^{-1}(B) : B \in \mathcal{F}\}$. Prove that:

- (i) $f^{-1}(\mathcal{F})$ is a σ -algebra.
- (ii) $f^{-1}(\mathcal{F})$ is the smallest σ -algebra on E such that f is measurable relative to it and \mathcal{F} .

Answer:

(i) First, note that the inverse image preserves complements and union: Complementation:

$$a \in f^{-1}(A^c) \iff f(a) \in A^c$$

$$\iff f(a) \notin A$$

$$\iff a \notin f^{-1}(A)$$

$$\iff a \in f^{-1}(A)^c$$

Union:

$$a \in f^{-1}(A \cup B) \iff f(a) \in A \cup B$$

 $\iff f(a) \in A \text{ or } f(a) \in B$
 $\iff a \in f^{-1}(A) \text{ or } a \in f^{-1}(B)$
 $\iff a \in f^{-1}(A) \cup f^{-1}(B)$

We now use these to show $f^{-1}(\mathcal{F})$ is closed under complementation and countable union:

Complementation:

$$A \in f^{-1}(\mathcal{F}) \iff A = f^{-1}(B) \text{ for some } B$$

 $\iff A^c = f^{-1}(B)^c$
 $\iff A^c = f^{-1}(B^c) \text{ , note that } B^c \in \mathcal{F} \text{ since it is } \sigma\text{-algebra}$
 $\iff A^c \in f^{-1}(\mathcal{F})$

Union:

$$A_n \in f^{-1}(\mathcal{F}) \iff A_n = f^{-1}(B_n) \text{ for some } B_n$$

$$\iff \bigcup_{n \ge 1} A_n = \bigcup_{n \ge 1} f^{-1}(B_n)$$

$$\iff \bigcup_{n \ge 1} A_n = f^{-1}(\bigcup_{n \ge 1} B_n)$$

Note that $\bigcup_{n\geq 1} B_n \in \mathcal{F}$ since it is σ -algebra

$$\iff \bigcup_{n\geq 1} A_n \in f^{-1}(\mathcal{F})$$

Also, $E \in f^{-1}(\mathcal{F})$ since $f^{-1}(F) = E$. Thus, $f^{-1}(\mathcal{F})$ is a σ -algebra.

(ii) Assume there is a smaller σ -algebra such that $\mathcal{E} \subset f^{-1}(\mathcal{F})$. But we know that f is measurable so, $f^{-1}(\mathcal{F}) \subset \mathcal{E}$. But this contradicts our assumption, therefore there does not exist a smaller σ -algebra and $f^{-1}(\mathcal{F}) = \mathcal{E}$.

Exercise 4: Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be an increasing function. Show that f is Borel measurable.

Answer: A function is Borel measurable if for every $r \in \mathbb{R}$, then $E = \{x : f(x) \le r\}$ is measurable.

Define
$$b = \sup f^{-1} \big((-\infty, r] \big)$$

If $b = \infty$, then $E = \mathbb{R}$
If $b = -\infty$, then $E = \emptyset$
If $b \in \mathbb{R}$, then $E = (-\infty, b]$ or $E = (-\infty, b)$
because $f(x) \le r$ for all $x \in E$ since f is increasing.

All of these E's are elements of the Borel set and hence Borel measurable.

Exercise 5: Let $\mathcal{C}, \mathcal{D} \subset 2^E$. Show that $\mathcal{C} \subset \mathcal{D} \implies \sigma \mathcal{C} \subset \sigma \mathcal{D}$

Answer:

By assumption and definition, $\mathcal{C} \subset \mathcal{D} \subset \sigma \mathcal{D}$

The definition of $\sigma \mathcal{C}$ is: $\bigcap \mathcal{E} = \sigma \mathcal{C}$ where \mathcal{E} is any σ -algebra containing \mathcal{C} $\sigma \mathcal{D}$ is one such \mathcal{E} . Thus, $\sigma \mathcal{C} \subset \sigma \mathcal{D}$

Exercise 6: Let (E, \mathcal{E}) be a measurable space and $f: E \to \mathbb{R}$ a Borel measurable function.

- (i) Show that |f| is measurable
- (ii) Let $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}$. Show that $|f| = f^+ + f^-$
- (iii) Use (i) and (ii) to show that f^+ and f^- are measurable

Answer:

(i) We will show that the absolute value does not change measurability

For
$$r < 0$$
, $\{x : |f(x)| \le r\} = \emptyset$
For $r = \infty$, $\{x : |f(x)| \le \infty\} = E$
For $r \ge 0$, $\{x : |f(x)| \le r\} = \{x : -r \le f(x) \le r\}$
 $= \{x : f(x) \le r\} \bigcap \{x : f(x) \le -r\}^c$

Note that the final line is the intersection of two measurable sets since f itself is measurable. Note that an intersection of two measurable set is measurable since σ -algebras are closed under countable intersection.

Thus, since for every $r \in \mathbb{R}$, $\{x : |f(x)| \le r\}$ is measurable, then |f| is measurable.

(ii) Break f into two cases, $f \ge 0$ and f < 0:

$$f \ge 0: \text{ Then } \max\{f,0\} = f \text{ and } -\min\{f,0\} = 0$$

$$f^+ + f^- = f + 0 = f$$

$$f < 0: \text{ Then } \max\{f,0\} = 0 \text{ and } -\min\{f,0\} = -f$$

$$f^+ + f^- = 0 - f = -f$$

Thus, we have $f^+ + f^-$ defined piecewise as: $f = \begin{cases} f & f \geq 0 \\ -f & f < 0 \end{cases}$ Which is the exact definition of |f|. Hence, $|f| = f^+ + f^-$ (iii) One cleverly notes that we can rewrite f^+ and f^- as follows:

$$f^{+} = \frac{|f| + f}{2}$$
$$f^{-} = \frac{|f| - f}{2}$$

And note from lecture that the sum of two measurable functions is measurable.