Demographic models SSA 200

Applications to SSAs

- Models are designed to output useful metrics on future resiliency and redundancy.
 - Metrics like future abundance, future extinction probability, future population growth rate
 - Output metrics are determined by available input data and what metrics will be most useful to decision makers
- Models allow us to predict future condition of the populations and characterize uncertainties in future condition.
 - We will focus on environmental variation and observation/parametric uncertainties

Lecture outline

- We will look at simple model construction
 - From conceptual to quantitative
- We will look at incorporating environmental covariates and density dependence
- We will look at parametric uncertainty

- Two life stages
 - Adults
 - Young of the year

Young of the year

Adults reproduce

Young of the year survive and transition to adults

Adults survive and remain adults

Quantitative model

$$N_{t+1}^a = N_t^a S_t^a + N_t^a F_t^a S_t^Y$$

Matrix formulation

$$\begin{bmatrix} N_{t+1}^Y \\ N_{t+1}^a \end{bmatrix} = \begin{bmatrix} 0 & F_t^a \\ S_t^Y & S_t^a \end{bmatrix} \times \begin{bmatrix} N_t^Y \\ N_t^a \end{bmatrix}$$

Integrated population models

• IPM

- Combine demographic data with counts
- Use the model to make projections

Matrix projections

$$\begin{bmatrix} N_{t+1}^{Y} \\ N_{t+1}^{a} \end{bmatrix} \neq \begin{bmatrix} 0 & F_{t}^{a} \\ S_{t}^{Y} & S_{t}^{a} \end{bmatrix} \times \begin{bmatrix} N_{t}^{Y} \\ N_{t}^{a} \end{bmatrix}$$

$$A * N_{t} \qquad \longrightarrow \qquad N_{t+1} \neq \lambda * N_{t}$$

Sensitivity and elasticity

$$\begin{bmatrix} N_{t+1}^Y \\ N_{t+1}^A \end{bmatrix} = \begin{bmatrix} f_{1,1} & f_{1,2} \\ s_{2,1} & s_{2,2} \end{bmatrix} \times \begin{bmatrix} N_t^Y \\ N_t^A \end{bmatrix}$$

$$Sensitivity = \frac{\delta\lambda}{\delta s_{2,2}}$$

Sensitivity is the rate of change in population growth (λ) with respect to a change in any element of the matrix.

$$Elasticity = \frac{s_{2,2}}{\lambda} \frac{\delta \lambda}{\delta s_{2,2}}$$

Elasticity analysis estimates the effect of a **proportional** change in the demographic rates on population growth (λ).

How to estimate sensitivity and elasticity

Program R – Package 'PopBio'

Population matrix
$$\rightarrow \begin{bmatrix} 0 & F_t^A \\ S_t^Y & S_t^A \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1.2 \\ 0.3 & 0.8 \end{bmatrix}$$

Sensitivity matrix
$$\rightarrow \begin{bmatrix} 0.222 & 0.208 \\ 0.832 & 0.777 \end{bmatrix}$$

Elasticity matrix
$$\rightarrow \begin{bmatrix} 0 & 0.222 \\ 0.222 & 0.554 \end{bmatrix}$$

Simple future condition assessments

- Using sensitivity and/or elasticity output
 - Results indicate population growth is most sensitive to adult survival
 - Conceptual modeling and literature review suggest that adult survival is negatively affected by drought frequency
 - Climate change predictions suggest that drought frequency will increase over the next 50 years
 - We therefore expect adult survival to decrease and in turn population growth will decrease
 - We conclude that if climate predictions are accurate, future resiliency will decrease

Forms of uncertainty

- Partial controllability
- Observational uncertainty
- Environmental variation
- Ecological uncertainty
- Demographic stochasticity

Incorporating uncertainty

- Environmental stochasticity
 - Survival parameters typically drawn from a beta distribution
 - Convert estimated mean and variance to beta shape parameters
 - Continuous but restricted between 0 and 1
 - Really useful to species with high or low survival
 - Productivity parameters have two typical methods
 - Log-normal, bounded by 0 and infinity
 - Convert estimated mean and variance to log-normal distribution
 - Poisson distribution summed over all the individuals in the population

Histogram of rbeta(10000, 5.787, 2.363)

• S = 0.71, S.D. = 0.15 \rightarrow Beta1 =5.787 Beta2 =2.363 \rightarrow

Histogram of rbeta(10000, 3.843, 12.866)

• S = 0.23, S.D. = 0.1 \rightarrow Beta1 =3.843 Beta2 =12.866 \rightarrow Beta1 =3.843 Beta2 =12.866

Productivity rates

Histogram of rlnorm(10000, 0.824, 0.016)

Histogram of rlnorm(10000, -1.256, 0.105)

• F = 0.3, S.d. = 0.1
$$\rightarrow$$
 S1= -1.256, S2 = 0.105 \rightarrow

For loops in simulation models

 Programmers utilize loop functions that tell a program to execute the following set of functions over and over again a specified number of times:

```
for(i in 1:1000){
#Tells the computer to repeat a function
#1000 times
}
```

- With in those loops we can choose randomized parameter values and project populations
 - Typically use 2 loops to project time and replicate the simulations

Annual Loop

Select survival

fecundity values from statistical

distributions

No. yrs x's

Density dependence

Model parameters are a function of population density

Applying density dependence

Incorporated a density dependent function on juvenile survival

$$N_{t+1} = N_t F_{A,t} S_{j,t} + N_t S_{a,t}$$

$$S_{j,t} = \frac{exp \left(\alpha - \beta (N_t + N_t F_{A,t})\right)}{1 + \left(\exp \left(\alpha - \beta (N_t + N_t F_{A,t})\right)\right)}$$

Ceiling type density dependence

Threshold Density dependence

- o "If the population exceeds a ceiling threshold, fecundity is equal to zero"
- \circ if (n[i,j] > ncrit) F[i,j] = 0

Or

- "As the population approaches some ceiling threshold, fecundity gets smaller and smaller"
- o F[i,j] = F[i,j]*(1-n[i,j]/ncrit)

Conceptual models environmental effects

Quantitative model

Environmental covariates

- Conditionally linked events:
 - Use "If → then" statements to link a demographic parameter to some other randomized event
 - E.g., if a Bernoulli trial for drought returns a 1, then mean fecundity is 1.1 offspring per female, but if it returns a 0 then mean fecundity is 2.3 offspring per female

Logit link for population parameters

- Based on logit link functions
- Correlation parameter estimates from survival estimates or occupancy analyses are on the logit scale
 - You can use the logit function to predict the survival rate for any give value of the measured covariates

Environmental covariates

- Adult survival (Sa) can be a function of some other environmental parameter/variable
 - ("op" for other parameter,e.g., stream length)

Environmental covariates

 Adult survival (Sa) can be a function of "op" but it has variability

op

Parametric uncertainty

- Parameters values are not precisely known
 - Variance or standard deviation estimates for parameters estimated over years conflate environmental variation with sampling variance
 - Sampling variance is the result of only using a specific number of individuals or locations to study a phenomenon
 - Happens with every wildlife study because we can't study every individual in every location

Methods to partition variance

- Link and Nichols, 1994, Oikos
- Gould and Nichols, 1998, Ecology

•
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(\hat{A}_i - \hat{\bar{A}} \right)^2$$

•
$$\hat{\tau}^2 = S^2 - \frac{1}{n} \sum_{i=1}^n \left[Var(\hat{A}_i) \right]$$

Great, so what do we do about it?

- Most models will discard sampling variance
- Not always a good idea!
 - Pretending that we know system parameters with precision
 - Less variation in the model predictions
 - Could affect assessment of management choices

Projection without sampling variance

Projection with sampling variance

How do we model these uncertainties?

Hierarchical loop structure: parametric and environmental uncertainty

Modeling uncertainty in adult survival

Double for loops

- for(i in 1:1000){
 - #Select mean parameter values a replicate
- for(j in 1:50){
 - #Select values for each year until you reach50 years then move on to
 - o #the next replicate

 #save and summarize output from a replicate until you reach 1000 #replicates

Inputting scenarios

Use the conceptual model and sensitivity analysis to guide scenarios

 i.e., what ecological facts affect the most sensitive parameters?

• Design scenarios to explore the expected range of future variation in

important covariates

Using this structure to build GLMs

- Generate lots of output values (e.g. abundance, p(ex), etc.) with lots of corresponding input values
- Use a multi-variate GLM to assess the importance of each variable of interest:
 - $\circ p(extinction) \sim b_1(Initial\ N) + b_2(drought\ freq) + b_3(fecundity) \dots$
 - This is a binomial GLM

What factors most effect the output metric of interest?

Sonora desert tortoise example

• $P(Qe100) = -5.602 + (18.42 \times MDR) - (5.363e - 6x NAI) - (1.797e - 6x MaxPop)$

- MDR = mean drought rate
- NAI = Initial Number of adults
- MaxPop = habitat based maximum population size
 - You could input different values of MDR, NAI or MaxPop to predict the corresponding P(Qe100), i.e., input alternative future scenarios.

Hierarchical loop structure

Initial population size, habitat quantity and quality, drought

Incorporating posterior observation uncertainty

- What we observe will differ from model predictions
- Could be an issue for recovery planning or delisting decisions
- Use estimates of detectability to adjust abundance outputs
 - Estimates of detection from empirical studies
 - Literature, directed research for the SSA

$$N_t^{Obs} = N_t^{Act} \times E_t$$

Where *E* is the counting error

Abundance projections

Questions?

