Opera	tions:								1.0
(insut)	enque	re (s	L)			5	ን	3	(A)
remove)	deque	In)						Coonte
	front (()							
	isEmpl								_
	real L	_		back					
	0	1	2	3	4	5			
	10	20	30	40	50	60			
		1				1			
	fs	Cont			J	lal			

Of Given K. Series is made up of 1,2. Return Kth nom. 1234567 Series => 1 2 11 12 21 22 111 112 k=7 ans= 111 k=4 ans= 12 Brote Iterate from 1. check if rum has only 1,2. If yes, count ++.
when count =k, end. First 2 no-s are 1,2 From I, what all run we can get 1 3 11 3 1112 directly > $2 \frac{3}{9} \frac{21}{221}$

21 22 111 112 121 122

10 x + 1 Code 10242 queue <int> 9 + 23 4 q. enque (1) 9. enque (2) 21 22 111 112 121 122 Cut = 1 while (cut != k) C int x = q, front ω 9. deque () Cnt ++ 9. enque (10x+1) 9. enque (10x+2) return q-front ()

MMT

03 Implement Overes vsing	stacks (only)
Idea: Use 2 stacks	
60	
40	
20	
S, floort	Sz
enqueve -> Just put on	topof S,
deque - Need to semon	e boltom
elem.	
1) Remove all elem 4	put in Sz
2) S2. pop()	
3) Put all contents of Sz	back in Si


```
Void enque (x) X

SI. push (x)

y
```

```
void deque CJ C

(if (Si. embty ())

(puint ("Essos")

(while (!Si. empty ())

(Sr. push CSi. top C))

(Si. pop ()
```

S2. pop () while (! Sz. Empty ()) C (SI. bush (Sz. top()) S2. pop() enque $\rightarrow 0(1)$ deque $\rightarrow 0(n)$ TC Doubly ended queve Deque float

Sliding window maximum Deque CRED VVV Imp Adobe GS Amazon Microsoft Array of size N. Find max elem of every subarray of size K. 10 1 4 9,7 6 5 11 8 k=3 and $\Rightarrow <10999711117$ Brute Check all subalrays of size K & find max. TC: O(n2) k=3 10 1 8 9 7 6 5 11 3 front

#	access		last elem		n	stack			
#			fust	elen	em qu			eve	
	Deq	ul	(Dove	bly t	nded	L 9	vene	()	
	_			·					R=4
3	15	6 1	5 12	L 4	2	10	9	18	
		15	15	15	15	1	2	10	18
	!			18					
Fiss	t p	repa	se H			fo	r t	ist	
				ndou					
		n	ew_	elen	1				
	6					7			
rea	L < n	lu _6	elem			Sla	u 7	new.	-elem
(lemo	ne .	leas			in	sert	atr	eal
C	sepe	at							

remove elem
check with front
if equal if not
remove from do nothing
front
• • • • • • • • • • • • • • • • • • •
Man => front element

Code Deque < int > dq for Li=O; iKk; i++)K while (!dq.empty() & & dy. rear () < arr [i]) dg. pop_rear () dg. pyh sear (arr (i)) ans. insert (dg. front ()) int s=1 e=kTC: O(n) while (e < n)h SC: On) while (!dq.empty() & & dy. rear () < arr [e]) dg. pop_rear () dg. pyh sear (ars (e)) if Ldg. front == arr Ld-12) dq. pop - front () ans. insert (dq. front ())

Stt ett Ldone y front

