Mathematik I für Studierende der Informatik (Diskrete Mathematik) Thomas Andreae, Christoph Stephan

Wintersemester 2011/12 Blatt 11

B: Hausaufgaben zum 19./20. Januar 2012

1. Für die folgenden linearen Gleichungssysteme stelle man jeweils die zugehörige erweiterte Koeffizientenmatrix auf und bestimme die allgemeine Lösung mit dem Gauß-Verfahren. Falls es unendlich viele Lösungen gibt, so gebe man die allgemeine Lösung in parametrisierter Form an!

•	1		,
1 1 1 2	127	•	
0 -3 1	₹ II-I		
0 - 1/2 /2	<u>5</u> Ⅲ-3I		
1 0 0 0 - 1 d d	1/2		
0 1 - 1/3	- - (- ² / ₃)IL		
$0 - \frac{1}{2} \frac{1}{2}$	5/2	·	
기 글 글	<u>∧</u>		
$0 \sqrt{-\frac{3}{3}}$	- 1		
0 0 3	$-\frac{7}{3}$ $\frac{4}{3}$ $111 + 21$		
1 1/2 1/2	<u>~</u>		
$0 \sqrt{-\frac{3}{3}}$	$-\frac{7}{3}$		•
N 0 0	4 311		

Therous folgt x3 = 4 , x2 = -3 + 1 x3 = -3+ 1/3 =-1 and $x_1 = \frac{1}{2} - \frac{1}{2} \times_2 - \frac{1}{2} \times_3 = \frac{1}{2} + \frac{1}{2} - 2 = -1$. Also ist $x_1 = -1$, $x_2 = -1$, $x_3 = 4$ die eindentig bestimmte Löseng.

,

			-•00	
•	1 1/2 1/2	1 - 1/2 3 3	<u>4</u> I	{
	3 0 2	5 0		
	1 1/2 1/2	1 - 2		
	0 -3/2 1/2	2 2 2	エーエ	
	0 - 2 2	2	II-3-I	
	1 0 0 0 1 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	1 43 2	(- <u>2</u>)II	
	\\ \langle \la	1 - 2 - 2	$III + \frac{3}{2}II$. •

Für K) gibt es somit keine Lösung. Nun au b): Für che freie Variable X3 wählen wir einen Parameter t ER: X3=t. Es folgt $x_2 = -\frac{1}{3} + \frac{4}{3}x_3 = -\frac{1}{3} + \frac{4}{3}t_1 \times_{1} = 1 - \frac{4}{3}x_2 - \frac{4}{2}x_3 = 1$ 1-2(-3+3+)-3+=5-3+. Die Lösung lautet also x1=3-3t, xe=-3+3t, x3=t (furteR)

Für die beiden freien Variablen x_2 und x_3 wählen wir Parameter $s, t \in \mathbb{R}$: $x_3 = t$, $x_2 = s$. Es folgt $x_1 = 2 - \frac{1}{2}x_2 - \frac{1}{2}x_3 = 2 - \frac{1}{2}s - \frac{1}{2}t$. Die Lösung lautet somit

 $x_1 = 2 - \frac{1}{2}s - \frac{1}{2}t$, $x_2 = s$, $x_3 = t$ (für s, $t \in \mathbb{R}$).

3. Es seien $v_1=(1,0,0,3),\ v_2=(0,-1,1,2)$ und $v_3=(-1,4,2,1)$ Vektoren des \mathbb{R}^4 . Prüfen Sie mit Hilfe des Gauß-Verfahrens, ob die Vektoren u=(1,3,6,15) und w=(-2,2,4,1) des \mathbb{R}^4 Linearkombinationen von v_1,v_2 und v_3 sind. Falls ja, so gebe man eine entsprechende Darstellung von u und w an.

10-1 1 -2 0-1 4 3 2 01 2 6 4 3 2 1 15 1	10-1 1 -2 01-4 -3 -2 1
10-11-2 0-1432 01264	000 0 -1 12-1211
024 127 IV-3I 10-11 10-2 01-4-3:-2 (-1)II 01264	
024 127 10-1 1 -2 01-4 -3 -2	
00 6 9 6 III-II 00 12 18 11 IV-2II 10-1 1 -2	
001311	;

Es hat sich ergeben, dass w keine Linearkombination von vi, vz, vz. Dagegen ist u eine Linear kombination von vi, vz, vz. Eine Dastellung von u als Linearkombination erhält wan, indem man mer noch den Vektor et als rechte Seite betrachtet und das Gauß-Verfahren fortsetet ("Rückwärtseinsetzen"). Es erzibt sich die eindentig bestimmte Lösung

 $x_3 = \frac{3}{2}, x_2 = -3 + 4x_3 = -3 + 6 = 3, x_3 = 1 + x_3 = \frac{5}{2}$

Probe: 50,+302+303=

$$\frac{5}{2}\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \frac{3}{2}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$