Математические основы информационной безопасности

Груздев Дмитрий Николаевич

Хеш-функции

Оригинальное сообщение

С	0	В	e	Щ	a	Н	И
e		c	0	c	T	0	И
T	c	Я		1	2		д
e	е к	a	6	p	R		В
	9		Ч	a	С	0	В
-		И	В	a	Н	0	В
	A	л	e	К	c	e	й
-							

-						1976	
D1	CE	E2	E5	F9	E0	ED	E8
E5	20	F1	EE	F1	F2	EE	E8
F2	F1	FF	20	31	32	20	E4
E5	EA	E0	E1	F0	FF	20	E2
20	39	20	F7	E0	F1	EE	E2
2E	20	C8	E2	E0	ED	EE	E2
20	C0	EB	E5	EA	F1	E5	E9
2E	0	0	0	0	0	0	0

Сумма: 0х29С8

Отправлено: 0хС8

Поддельное сообщение

П	p	O	Ш	у		п	e
p	e	Д	a	T	Ь		c
	K	y	p	Ь	e	p	0
M		1	0	0	0	0	0
	p	у	б	Л	e	й	1.
	И	В	a	н	o	В	
A	Л	e	К	c	e	й	

CF	F0	EE	F8	F3	20	EF	E5
F0	E5	E4	E0	F2	FC	20	F1
20	EA	F3	F0	FC	E5	F0	EE
EC	20	31	30	30	30	30	30
20	F0	F3	E1	EB	E5	E9	2E
20	C8	E2	E0	ED	EE	E2	20
C0	EB	E5	EA	F1	E5	E9	2E

Подделка: 0х27В6 - 0хВ6

Оригинал: 0хС8

Подходящая сумма

tab	П	p	0	Ш	y		п
e	p	e	Д	a	T	Ь	
С		К	y	p	ь	e	p
o	M		1	0	0	0	0
0		p	у	б	Л	e	й
		tab	И	В	a	Ĥ	o
В		A	Л	e	K	c	e
й							

09	CF	F0	EE	F8	F3	20	EF
E5	F0	E5	E4	E0	F2	FC	20
F1	20	EA	F3	F0	FC	E5	F0
EE	EC	20	31	30	30	30	30
30	20	09	F0	F3	E1	EB	E5
E9	2E	20	C8	E2	E0	ED	EE
E2	20	C0	EB	E5	EA	F1	E5
E9	2E						

Оригинальное сообщение

C	0	В	e	Щ	a	Н	И
e		c	0	c	T	0	и
Т	c	Я		1	2		Д
e	К	a	б	p	R		В
	9		Ч	a	c	0	В
		И	В	a	Н	0	В
	A	Л	e	К	c	e	й

D1	CE	E2	E5	F9	E0	ED	E8
E5	20	F1	EE	F1	F2	EE	E8
F2	F1	FF	20	31	32	20	E4
E5	EA	E0	E1	F0	FF	20	E2
20	39	20	F7	E0	F1	EE	E2
2E	20	C8	E2	E0	ED	EE	E2
20	C0	EB	E5	EA	F1	E5	E9
2E	0	0	0	0	0	0	0

429	3E2	585	592	5B5	5D2	4DC	643

Отправлено: (0x29,0xE2,0x85,0xB5,0xD2,0xDC,0x43)

Поддельное сообщение

П	p	O	Ш	y		п	e
p	e	Д	a	T	Ь		c
	К	y	p	Ь	e	p	0
M		1	0	0	0	0	0
	p	у	б	Л	e	й	
	И	В	a	Н	o	В	
A	л	e	К	c	e	й	

CF	F0	EE	F8	F3	20	EF	E5
F0	E5	E4	E0	F2	FC	20	F1
20	EA	F3	F0	FC	E5	F0	EE
EC	20	31	30	30	30	30	30
20	F0	F3	E1	EB	E5	E9	2E
20	C8	E2	E0	ED	EE	E2	20
C0	EB	E5	EA	F1	E5	E9	2E

Подделка:

3CB 582 5B0 5A3 5DA 4E9 4E3 370

Оригинал:

429 3E2 585 592 5B5 5D2 4DC 643

Хеш-функции

Хеш-функция – легко вычислимая функция, преобразующая исходное сообщение произвольной длины (прообраз) в сообщение фиксированной длины (хеш-образ).

Коллизией для хеш-функции h называется пара значений x, y, x ≠ y, такая, что h(x) = h(y).

Применение хеш-функций

- ускорение поиска данных в БД;
- проверка целостности и подлинности сообщений
- для создания сжатого образа, применяемого в процедурах ЭЦП
- защита пароля в процедурах аутентификации

Требования к хеш-функциям

- Для данного значения h(x) невозможно найти значение аргумента x.
- Для данного аргумента х невозможно найти другой аргумент у такой, что h(x) = h(y).

Структура алгоритмов хеширования

- 1. Выравнивание сообщения по длине блока.
- 2. Разбиение сообщения на блоки.
- 3. Многократное применение простых преобразований к блоку.
- 4. Функция хеширования блока зависит от значения хеша предыдущего блока.
- 5. Хеш-образом сообщения является результат процедуры хеширования последнего блока.

<u>MD5</u>

Создан в 1991 г.

Размер хеша – 128 бит.

Число раундов шифрования для одного блока – 64.

SHA-1

Создан в 1995 г.

Размер хеша – 160 бит.

Число раундов шифрования для одного блока – 80.

<u>Использование функции</u> шифрования в режиме СВС

Дифференциальный криптоанализ

Дифференциальный Криптоанализ

ДК – атака с подобранным открытым текстом (злоумышленник имеет возможность шифровать произвольные тексты).

Цель атакующего – получить некоторые знания о ключе (полностью восстановить или сократить перебор).

Вероятности дифференциалов

 X_1 и X_2 – подобранные шифротексты.

 $\Delta X = X_1 \oplus X_2$ - дифференциал

Разность текстов поступающих на S-блок: $(X_1 \oplus K_1) \oplus (X_2 \oplus K_1) = X_1 \oplus X_2$

При $X_1 \oplus X_2 = 0x63$, $Y_1 \oplus Y_2 = 0x12$ возникает в 160 случаях из 256 (с вероятностью $P_1 = 5/8$).

При $Y_1 \oplus Y_2 = 0x12$, $Z_1 \oplus Z_2 = 0x49$ возникает с вероятностью $P_2 = 1/2$.

При $X_1 \oplus X_2 = 0x63$, $Z_1 \oplus Z_2 = 0x49$ возникает с вероятностью $P = P_1 * P_2 = 5/16$.

Восстановление ключа

D = { $(X_1, X_2) | X_1 \oplus X_2 = 0x63$ } - множество рассматриваемых пар шифртекстов.

Предположить $K_4 = k$.

Для каждой пары $(X_1, X_2) \in D$

- Вычислить $F(X_1) = C_1$, $F(X_2) = C_2$.
- Вычислить $\Delta Z = S_3^{-1}(C_1 \oplus k) \oplus S_3^{-1}(C_2 \oplus k)$.

Если доля ΔZ =0x49 примерно равна 5/16 от общего числа, то k – кандидат для K_4 .

Проверить для всех возможных значений К₄.

Plaintext Ciphertext

FEAL-4

Fast data Encipherment Algorithm

Опубликован в 1987 г.

Размер ключа – 64 бита.

Размер блока – 64 бита.

Количество раундов шифрования – 4.

<u>Функция Фейстеля</u>

Round Function

f – 32-битная функция.

$$G_0(a,b) = (a+b \pmod{256}) <<< 2;$$

$$G_1(a,b) = (a+b+1 \pmod{256}) <<< 2;$$

0x80800000 0x80800000 0x80800000 0x80800000 K_0x00 0x00 K_0x00 0x80800000 0x80800000 K_0x00 0x02000000 K₂0x00

Дифференциалы

Для f при $\Delta X = 0x80800000$ $\Delta Y = 0x02000000$.

Заключительный раунд

$$L' = 0x0200000000 \oplus Z'$$

$$Y = L \oplus R$$

$$P_1 \oplus P_2 = 0x8080000080800000$$

$$C_1$$
, C_2 – известны, то

Шифр определяется ключом $K_3 - 2^{32}$ варианта.

Time-memory trade off

Вскрытие ключа шифрования

Задача:

Заранее известен открытый текст и алгоритм шифрования. Необходимо восстановить ключ шифрования по шифртексту.

Варианты решений:

- Полный перебор слишком долго.
- Заранее просчитать и сохранить пары шифротекст-ключ требуется много памяти.

Метод Хеллмана

В 1980 г Мартин Хеллман предложил метод Time-memory trade off. Метод позволяет вычислить ключ за *N*^{2/3} операций, используя *N*^{2/3} слов памяти, но требует произвести предварительные вычисления.

<u>Обозначения</u>

 $C = S_k(P_0)$

P₀ — известный открытый текст (стандартные поля документа, шаблонная фраза в заголовке).

S_k — шифрование открытого текста на ключе k.

R:C→K — «редуцирующая» функция, переводящая любой шифротекст в некоторый ключ (шифротекст длиннее ключа).

<u>Цепочки ключей</u>

$$K_i \xrightarrow{f(K_i)} K_{i+1} \xrightarrow{f(K_{i+1})} K_{i+2}$$

Заранее вычисляются m цепочек длины t.

В таблице сохраняются первые и последние элементы цепочек.

Одинаковые ключи могут появляться разных цепочках, т.к. f не является изоморфизмом. В этом случае последующие ключи в цепочках также совпадут.

Восстановление ключа

Пусть надо найти ключ шифрования К для шифротекста С.

Ищем среди сохраненных последних элементов цепочек занчения R(C), f(R(C)), $f^2(R(C))$, ..., $f^{t-1}(R(C))$.

Если fp(R(C)) совпадет с окончанием цепочки, то восстанавливаем K_{t-p-1} ключ этой цепочки.

Если $S_{Kt-p-1}(P_0) = C$, то K_{t-p-1} – искомый ключ, иначе продолжаем поиск.

Если ключ не найден, то его нет среди ключей в цепочках.

Радужные цепочки

Метод предложен в 2003 г. Филиппом Оечслин

Для каждой функции перехода следует применять новую редуцирующую функцию.

Окончания цепочек будут совпадать, только в случае, если коллизия произойдет на одной функции перехода.

$$K_{i} \xrightarrow{S_{Ki}(P_{0})} C_{i} \xrightarrow{R_{i}(C_{i})} K_{i+1} \xrightarrow{S_{Ki+1}(P_{0})} C_{i+1} \xrightarrow{R_{i+1}(C_{i})} K_{i+2}$$

$$K_{i} \xrightarrow{f_{i}(K_{i})} K_{i+1} \xrightarrow{f_{i+1}(K_{i+1})} K_{i+2}$$

Восстановление ключа

Восстановление ключа:

Дан шифротекст С, найти К – ключ шифрования.

Ищем среди сохраненных последних элементов цепочек занчения $R_{t-1}(C)$, $f_{t-1}(R_{t-2}(C))$, $f_{t-1}(f_{t-2}(R_{t-3}(C)))$, ..., $f_{t-1}(f_{t-2}(...(f_2((R_1(C)))..))$.

Затраты времени и памяти:

m – количество цепочек, t – длина цепочек, t * m ≈ N.

2*m*K_{LEN} – объем памяти для хранения цепочек.

(t-1)*t/2 – наибольшее число преобразований.

https://sesc-infosec.github.io/