微积分(一)下第12周第二次课作业

(对坐标的曲面积分)

1.填空:

1) 设 S_1, S_2 分别是球面 $x^2 + y^2 + z^2 = R^2$ 的上半部分的下侧和下半部分的上侧,则

$$\iint_{S_1} (x^2 + y^2) dx dy = \underline{\qquad}, \qquad \iint_{S_2} (x^2 + y^2) dx dy = \underline{\qquad}.$$

- 2) 设 S_1 是球面 $x^2+y^2+z^2=R^2$ 的外则, S_2 是该球面上半部分的上侧, S_3 是该球面下半部分的下侧, $I_1=\iint_{S_1}z^2dxdy$, $I_2=\iint_{S_2}zdxdy$,则 $I_1=$ _____, I_2 和 I_3 的关系是______
 - 3) 设 S 是抛物面 $z = x^2 + y^2$ 被平面 z = R(R > 0) 所截部分的上侧,则

$$I = \iint_{S} x^2 dy dz + y^2 dz dx + z dx dy = \underline{\qquad}.$$

4) 第二类曲面积分 $\iint_S P dy dz + Q dz dx + R dx dy$ 化为第一类曲面积分是

______,其中 α , β , γ 为有向曲面 S 在点 (x,y,z) 处的方向角

- 2. 求 $I = \iint_S x^2 z dx dy$, 其中 S 是抛物面 $z = x^2 + y^2$ 与平面 z = 1 所围立体的外表面.
- 3. 求 $I = \iint_{S} (x^2 + y^2) dz dx$, 其中 S 是锥面 $z = \sqrt{x^2 + y^2}$ 上满足 $x \ge 0, y \ge 0, z \le 1$ 部分的下侧.
- **4.** 求 $I = \iint_S z dy dz + xz dz dx + yz dx dy$ 。 其 中 S 是 球 面 $z = \sqrt{R^2 x^2 y^2}$ 位 于 圆 柱 面 $x^2 + y^2 Rx = 0$ 内的部分,且取上侧.