vsis	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
	Aufgabenzettel	6		
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 1: B-Bäume

[11 P.]

[5 P.]

[6 P.]

Die B-Bäume sind im Folgenden stets gemäß der vereinfachten Darstellungsart aus der Vorlesung abgebildet.

a) Nehmen Sie den (Standard-)Split-Faktor 1 an und fügen Sie in den unten abgebildeten **B-Baum** der Klasse $\tau(1,h)$ die Datensätze mit den Schlüsselwerten **42**, **6**, **12** und **25** in dieser Reihenfolge ein. Nennen Sie jeweils die durchgeführten Maßnahmen (Splitten, einfaches Einfügen) und zeichnen Sie den Baum nach jedem Split-Vorgang neu.

b) Löschen Sie aus dem unten abgebildeten **B-Baum** der Klasse $\tau(2,h)$ die Datensätze mit den Schlüsselwerten **17**, **29**, **49**, **7** und **4** (in dieser Reihenfolge). Geben Sie jeweils kurz an, welche konkrete Maßnahme Sie durchgeführt haben (Mischen, Ausgleichen, einfaches Löschen) und zeichnen Sie den Baum nach jedem Mischen und Ausgleichen neu. Für Ausgleichs- und Mischoperationen sollen nur direkt benachbarte Geschwisterknoten (bevorzugt der rechte) herangezogen werden.

Aufgabe 2: Berechnungen in B-Bäumen

[10 P.]

a) Gegeben ist ein B-Baum der Klasse $\tau(2,2)$.

[4 P.]

- i) Wieviele Einträge kann der B-Baum minimal und wieviele maximal enthalten?
- ii) Wieviele Knoten (Seiten) müssen durchschnittlich (d.h. im Erwartungswert) gelesen werden, um einen Eintrag zu finden, wenn der Baum maximal belegt ist (Anmerkung: die Lösung darf als Bruch angegeben werden)?
- b) Gegeben ist ein B-Baum der Klasse $\tau(3, h)$ mit 100 Datensätzen.

[6 P.]

i) Bestimmen Sie, welche Höhe h der B-Baum mindestens haben muss, um alle 100 Datensätze fassen zu können. (Tipp: Berechnen Sie die maximale Belegung von Bäumen dieser Klasse mit unterschiedlicher Höhe h. Betrachten Sie h aufsteigend und beginnend bei h=1).

vsis	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
	Aufgabenzettel	6		
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

ii) Bestimmen Sie, welche Höhe h der B-Baum maximal haben kann (Tipp: Berechnen Sie die minimale Belegung von Bäumen dieser Klasse mit unterschiedlicher Höhe h. Betrachten Sie h aufsteigend und beginnend bei h=1).

Aufgabe 3: B*-Bäume

[12 P.]

Die B*-Bäume sind im Folgenden stets gemäß der vereinfachten Darstellungsart aus der Vorlesung abgebildet.

a) Nehmen Sie den (Standard-)Split-Faktor 1 an und fügen Sie in den unten abgebildeten **B*-Baum** der [6 P.] Klasse $\tau(1,2,h)$ die Datensätze mit den Schlüsselwerten **64**, **3**, **6** und **80** in dieser Reihenfolge ein. Nennen Sie jeweils die durchgeführten Maßnahmen (Splitten, einfaches Einfügen) und zeichnen Sie den Baum nach jedem Split-Vorgang neu.

b) Löschen Sie aus dem unten abgebildeten **B*-Baum** der Klasse $\tau(1,1,h)$ die Datensätze mit den Schlüsselwerten **14**, **38**, **12** und **44** (in dieser Reihenfolge). Nennen Sie jeweils die durchgeführten Maßnahmen (Mischen, Ausgleichen, einfaches Löschen) und zeichnen Sie den Baum nach jedem Löschvorgang neu. Für Ausgleichs- und Mischoperationen sollen nur direkt benachbarte Geschwisterknoten (bevorzugt der rechte) herangezogen werden.

vsis	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
	Aufgabenzettel	6		
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 4: Normalformenlehre

[7 P.]

Gegeben ist die Relation R mit den Attributen A, B, C, D und E, sowie der Menge F an funktionalen Abhängigkeiten

$$F = \{FA_1, FA_2, FA_3, FA_4, FA_5\}.$$

Die Wertebereiche der Attribute sind alle atomar.

$$\mathsf{FA}_1 = \mathsf{B} \to \mathsf{E}$$

$$FA_2=B\to D$$

$$FA_3 = B \rightarrow A$$

$$FA_4 = A,D \to C$$

$$FA_5 = A,D \to B$$

i) Bestimmen Sie die Schlüsselkandidaten von R bezüglich F.

[2 P.]

ii) Bestimmen Sie die Nicht-Primärattribute (Nicht-Schlüsselattribute) von R bezüglich F.

[2 P.]

iii) Nehmen Sie an, dass einer der in Aufgabenteil i) ermittelnden Schlüsselkandidaten als Primärschlüssel [3 P.] verwendet wird. In welchen Normalformen befindet sich das Relationenschema R bezüglich F? Begründen Sie Ihre Antwort, indem Sie darlegen, warum sich das Relationenschema in genau diesen Normalformen befindet und warum die anderen Normalformen nicht vorliegen.

(Anmerkung: Betrachten Sie dabei lediglich die 1., 2. und 3. Normalform.)