

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출원 번호

10-2002-0069646

Application Number

출 원 년 월 일 Date of Application 2002년 11월 11일

NOV 11, 2002

돌 전 Applicant(s) 인 : 주식회사 포스코

POSCO

2003 년 11 월 06 일

특

허

청

COMMISSIONER

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0001

【제출일자】 2002.11.11

【국제특허분류】 H01F 1/04

【발명의 명칭】 고규소 강판 제조방법

【발명의 영문명칭】 Method for manufacturing a high-silicon steel sheet

【출원인】

【명칭】 주식회사 포스코

【출원인코드】 1-1998-004076-5

【대리인】

【성명】 손원

【대리인코드】 9-1998-000281-5

【포괄위임등록번호】 1999-047186-5

【대리인】

【성명】 김성태

[대리인코드] 9-1999-000487-4

【포괄위임등록번호】 2000-032383-6

【발명자】

【성명의 국문표기】 최규승

【성명의 영문표기】 CHOI, Kyu Seung

【주민등록번호】 520108-1273919

【우편번호】 790-785

【주소】 경상북도 포항시 남구 괴동동1번지 (주)포스코내

【국적】 KR

【발명자】

【성명의 국문표기】 우종수

【성명의 영문표기】 WOO, Jong Soo

【주민등록번호】 551003-1042715

【우편번호】

790-785

【주소】

경상북도 포항시 남구 괴동동1번지 (주)포스코내

【국적】

KR

3

0

【취지】

특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인

손원 (인) 대리인

1

김성태 (인)

【수수료】

【기본출원료】

20 면

29,000 원

【가산출원료】

면

3,000 원

【우선권주장료】

건

0 원

【심사청구료】

0 항

0 원

[합계]

32,000 원

[첨부서류]

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

고규소 강판 제조방법이 제공된다.

본 발명은, 강판의 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 함유하는 Fe-Si계소성분말을 슬러리 형태로 도포한후 건조시키는 단계; 그리고 상기 건조된 강판을 1050~1200℃, 20%이상의 수소함유 질소가스 분위기하에서 확산소둔처리하는 단계;를 포함하는 고규소강판 제조방법에 관한 것이다.

【색인어】

고규소강판, Fe-Si계 분말, 분위기가스

【명세서】

【발명의 명칭】

고규소 강판 제조방법{Method for manufacturing a high-silicon steel sheet}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 자기적 특성, 특히 고주파수에서의 자기적 특성이 우수한 고규소 강판 제조방법에 관한 것으로, 보다 상세하게는 Si을 2.0~3.3%범위로 함유하고 있는 강판의 표면에 Fe-Si계합금분말을 함유한 침규확산용 피복조성물의 슬러리용액을 도포한후 확산소둔함으로써 고Si강판을 제조할 수 있는 방법에 관한 것이다.
 - > 일반적으로, Fe-Si합금에서 규소함량이 증가할수록 철손중에서 이력손, 자왜, 보자력, 자기이방성이 감소하고 최대투자율이 증가하므로 고규소강제품은 우수한 연자성재료라 말할 수 있다. 이때 자왜의 감소 및 최대투자율의 증대는 규소함량의 증가에 따라 무한정 증가하는 것이 아니고 6.5%Si강에서 최고치를 보이며 또한 6.5%Si강은 상용주파수 뿐 만 아니라 고주파영역에서도 자기적 특성이 최고상태에 도달한다는 것은 잘 알려진 사실이다. 그리고 이러한 고규소강의 우수한 고주파수대의 자기적특성을 이용하여 가스터빈용 발전기, 전차전원, 유도가열장치, 무정전 전원장치등의 고주파 리액터와 도금전원, 용접기, X-선 전원등의 고주파변압기등에 주로 적용되어 주로 방향성규소강판의 대체재로 사용되고 있으며, 그 외에도 모터의 소모전력을 줄이고 효율을 높이는 용도로도 적용이 가능하다.

- > 그런데 Fe-Si강에서 규소함량이 증가할수록 강판의 연신율은 급격히 작아지므로, 3.5%이상의 규소를 함유하는 규소강판을 냉간압연법으로 제조하는 것은 거의 불가능한 것으로 알려져 있다. 따라서 규소함량이 높을수록 우수한 자기적 특성을 얻을 수 있다는 사실을 알고 있음에도 불구하고 냉간압연의 제한 때문에 냉간압연법으로 고규소강판을 제조하지 못하는 실정이므로, 냉간압연법의 한계를 극복 할 수 있는 새로운 대체기술에 대한 연구가 오래 전부터 시도되고 있다.
- 지금까지 고규소강판을 제조 할 수 있는 방법으로 알려진 기술들은 일특개소 56-3625호 등의 단롤 또는 쌍롤을 이용한 고규소강의 직접주조법이 있고, 일 특개소 62-103321호등의 적 정온도의 가열상태에서 압연하는 온간압연법, 일특개평 5-171281호등의 내부에 고규소강을 넣고 외부에 저규소강을 넣은 상태에서 압연하는 크래드압연법이 알려져 있으나 이러한 기술들은 아직까지 상용화되지는 못하고 있는 실정이다.
- 현재 고규소화 제품으로서 양산중인 기술은 3%급 무방향성제품을 SiCl4가스를 이용한 화학증착법(CVD법)으로 규소성분을 소재표면에 부화시킨 후 확산소둔시켜 고규소강을 제조하는 기술로서, 이 기술은 일특개소 62-227078 및 미국 USP 3423253등으로 잘 알려져 있다. 그러나화학중착후 확산소둔처리법은 화학증착기술 자체의 어려움으로 인해 기존 3%Si강 제품에 비해약5배 이상의 고가격 판매가 불가피하여 우수한 자기적 특성을 갖고 있는 제품임에도 불구하고대중화 및 실용화에 어려움을 겪고 있다.

- 또한, EP1052043A2, JP2000192204, JP2000144248, JP200045025등에서는 분말야금법을 이용하여 고규소강판을 제조하는 기술도 알려져 있으나, 이 기술 또한 고Si함량 때문에 냉간압연함에 제약이 있어 원하는 두께를 갖는 강판을 제조할 수 없다는 문제가 있었다.
- 그리고 EP 1052043A2, USP 33634148 및 USP4073668등에서는 Fe-Si 합금분말단독 또는 바인더에 혼합하여, 그 혼합분말을 도포 후 5%이내의 압하율로 압연후 저온에서 장시간소둔법을 제안하고 있으나, 도포후 압연 및 저온 장시간소둔법등의 적용등 대량생산이 대량생산에 적합하지 않다.

【발명이 이루고자 하는 기술적 과제】

따라서 본 발명은 상술한 종래기술을 해결하기 위하여 마련된 것으로서, 통상의 냉간압 연공정을 통하여 제조된 강판 표면에, 소정의 입도와 Si함량을 갖도록 조성된 Fe-Si 복합화합 물분말을 슬러리형태로 도포한후 고온확산소둔함으로써 자기적 특성이 우수한 고Si강판을 대량 으로 생산할 수 있는 고규소강판 제조방법을 제공함을 그 목적으로 한다.

【발명의 구성 및 작용】

- ❤ 상기 목적을 달성하기 위한 본 발명은,
- 고 강판의 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 함유하는 Fe-Si계 소성 분말을 슬러리 형태로 도포한후 건조시키는 단계; 그리고 상기 건조된 강판을 1050~1200℃, 20%이상의 수소함유 질소가스 분위기하에서 확산소둔처리하는 단계;를 포함하는 고규소강판 제조방법에 관한 것이다.
- :11> 또한 본 발명은,

- Si 2.0~3.3중량%를 함유한 강판 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 포함하는 Fe-Si계 소성분말을 슬러리 형태로 도포한후 건조시키는 단계; 그리고 그 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0중량% 이상 확산 침투되도록 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 고온확산소둔시키는 단계;를 포함하는 고규소강판 제조방법에 관한 것이다.
- 3> 이하, 본 발명을 설명한다.
- Si금속을 통상 950℃이상의 고온의 수소 또는 질소분위기하에서 Fe금속과 접촉하면 Si성분은 Fe금속 소재내부로 확산해 들어가고, Fe금속은 초기 Si금속부로 확산해 들어가는 상호확산반응이 일어나서 양 농도를 균일하게 하려는 성질을 갖고 있다. 따라서 Si 금속분말을 강판의 표면에 접촉시켜 고온에서 소둔하면, Si농도차이 때문에 분말중 Si는 강판내로 이동하고 강판중 Fe가 분말쪽으로 이동하는 상호 확산반응이 진행된다.
- Fe와 Si의 상호확산속도를 비교하면, Si 확산속도가 Fe에 비해 1050~1200℃ 온도영역에서 거의 2배정도 빠르며, 이에 따라, 상호 불균일한 확산상태인 크켄달 이펙트(Kirkendall Effect)라는 현상이 발생한다. 그런데 이러한 불균일한 확산상태는 확산반응부 계면에 불균일상태의 결함을 만들거나 반응부 표면에 FeSi₂, FeSi, Fe₅Si₃ 및 Fe₃Si등과 같은 여러가지 화합물이 생성시켜 제조된 소재의 자기적 특성을 열화시키는 요인으로 작용한다. 따라서 상술한 Si함유 분말을 고온확산을 통하여 표면결함이 없는 균일한 조성의 고규소 강판제품을 생산하는 것은 사실상 불가능한 상태였다.

- > 그러므로 본 발명자는 상기 문제점을 해결하기 위하여 Si분말과 Fe분말을 이용한 확산 원리등에 대한 연구를 거듭하였으며, 상술한 확산반응부에서의 결함들이 Fe대비 Si의 빠른 확 산속도에 기인함에 착안하여 본 발명을 제안하는 것이다.
- 즉, 본 발명은 가능한 한 Fe에 대하여 Si의 확산을 상대적으로 억제할 수 있도록 침규제로 이용되는 Si함유 분말제의 입도 및 조성을 제어함과 아울러, 그 제조조건을 설정함을 특징으로 한다. 다시 말하면, 본 발명은 강판 표면의 확산 반응부에 Fe와 Si가 결합된 복합화합물을 형성함이 거의 없이 Si원자가 Fe원자와 상호 동일량씩 치환되는 확산이 가능하도록 Si함유분말의 입도와 조성을 제어하고, 그 제조조건을 설정함을 특징으로 한다.
- 본 발명에서 Si원자의 확산량 제어를 위하여 채용한 단위기술을 구체적으로 설명하면 다음과 같다.
- . 첫째, 본 발명에서는 Si성분의 확산속도를 보다 늦추기 위해, Si금속 단독분말을 침규학 산용 도포제로 사용하지 않고 Si금속이 Fe금속과 결합된 화합물형태인 FeSi₂, FeSi 또는 Fe₅Si₃상태의 Fe-Si계 소성분말물을 만들어 이를 침규확산용 도포제의 기본성분으로 이용한다. 더 나아가 이러한 Fe-Si계 소성분말이 Fe-Si계 화합물형태로 존재할 수 있도록 그 분말중 Si함량을 70중량%이하로 제한하고 있다.
- 둘째, 본 발명에서는 Si원자의 확산을 억제하기 위해 Fe-Si계 소성분말의 입경을 미세화한 후, 이를 강판 표면에 도포함으로서 소재와 금속분말과의 표면 접촉면적, 즉 상호 반응면적을 판 접촉시 보다 10~30%이하로 축소시킬 수 있었고 이 미세한 침규 확산용 조성물이 소재 표

면에 견고하게 부착시킬 수 있도록 하였다. 구체적으로 본 발명에서는 상기 Fe-Si계 소성분말의 입도를 -25mesh로 한정한다.

- /i> 셋째, 본 발명에서는, 상기와 같이 마련된 Fe-Si계 소성분말을 슬러리상태로 강판 표면에 도포한 후, 고온 확산소둔시킬 때 그 강판 표면부에 얇은 산화막이 형성될 수 있도록 분위기가스를 제어한다. 이러한 표면산화물층은 상호확산반응의 방해막으로 작용하므로 Si원자가소재로 확산하는 것을 축소 억제할 수 있게 한다.
- 22> 이하, 본 발명의 고규소강판 제조방법을 상세히 설명한다.
- 23> 먼저, 본 발명에서 침규소화를 위해 강판에 도포되어질 Fe-Si계 소성분말 제조공정을 설명한다.
- 본 발명의 Fe-Si계 소성분말은 Fe분말과 Si분말을 상호 혼합하여 질소나 수소 또는 수소 와 질소의 혼합가스 하에서 1000~1200℃의 온도에서 3~7시간 소성하여 제조할 수 있다. 그러나 이는 단순한 예시로써 본 발명은 이에 제한되는 것은 아니며, 여러 다양한 방법으로 이러한 분말을 제조할 수 있다.
- 이때, Fe 분말과 Si 분말의 배합량에 따라 소성분말의 화합물성분이 변화되며, 이론적으로는 50%Si+50%Fe시의 경우 FeSi₂의 화합물이 생성되며, 34%Si+66%Fe시에는 FeSi의 화합물이, 25%Si+75%Fe시에는 Fe₅Si₃의 화합물, 그리고 14%Si+86%Fe시에는 Fe₃Si의 화합물로 존재하게 된다. 그러나 실제 소성시에는 초기 혼합상태에 따라 여러 화합물이 조금씩 혼재되어 있을 수 있다. 특히, Fe와 Si 분말의 혼합에 의한 소성반응시 Si분말과 Fe분말이 접촉되는 표면으로부터

상호확산하여 침입하는 상태로 반응이 진행된다. 그러므로 다소 Si 배합량이 많아도 대부분의 소성분말 표면은 Fe가 확산된 상태인 FeSi₂ 화합물이나 FeSi 화합물이 존재하고 그 내부에 순 Si가 존재하는 상태가 되므로, 그 표면에는 대부분 Fe성분과 결합된 Fe-Si계 화합물이 존재하게 된다.

- 한 한편, 본 발명에서는 상기와 같이 마련된 Fe-Si계 소성분말이 Fe-Si계 화합물형태로 존재할 수 있도록 그 분말중 Si함량을 70중량%이하로 제한할 것이 요구된다. 왜냐하면 상기 Fe-Si계 분말중 Si 함량이 70%를 초과하면 분말의 주성분이 FeSi2이외에도 과잉의 금속 Si상의 혼합물속에 존재하므로 금속 Si성분이 소재표면에 접촉되어 확산소든시 표면에 결함부 생성가 능성이 크며, 아울러 침규량의 제어가 어려워질 수 있다.
- 또한 Si함량이 20%미만이면, Si 자체함량이 너무 적어 확산속도가 너무 느려질 수 있으며, 또한 자체밀도가 커서 이러한 소성분말을 슬러리 형태로 만들어 현장에서 소재표면에 도포시 분산성이 저조할 수 있으므로, 상기 Fe-Si계 소성분말중 Si함량을 20~70%로 제한함이 바람 직하다.
- 》 상기와 같이 제조된 Fe-Si계 소성분말을 강판의 침규제로 사용하는 경우, 이러한 소성분말을 슬러리상태로 만들어 이를 롤코타를 이용하여 강판표면에 코팅함이 생산현장에서 가장 경제적이다. 그런데 Fe-Si계 소성분말 입도가 가능한 한 미세하여야 현장에서의 코팅작업시 도포작업성이 우수해지고 확산반응시의 소재의 표면형상 관리측면에서도 유리하다.
- 29> 따라서 본 발명에서는 소성반응 후 제조된 Fe-Si계 소성분말은 고온장시간 반응에서 다소 상호 융착된 반덩어리 상태로 있으므로, 그 입도를 미세화함이 바람직하며, 이러한 분말의

입도크기가 미세화 될수록 현장 도포작업성 측면등에서 유리하다. 다만 미립 분말화 작업 생산성을 고려하여 그 입도를 -25mesh로 한정하는 보다 바람직하다.

- № 한편 본 발명에서는 상기와 같이 그 조성과 입도가 제어된 Fe-Si 소성분말을 물과 혼합된 슬리러리 형태로 만든 후, 이를 강판의 표면에 도포한다.
- 본 발명은 이러한 슬러리를 형성함에 있어서, 구체적인 용매성분등에 제한되는 것은 아니며, 바람직하게는, 물에서의 분상성이 극히 우수한 콜로이달입자 크기의 극미립 실입자인 콜로이달 실리카용액이나 졸상태의 알루니졸 입자 또는 초미립 실리카입자등을 상기 Fe-Si계 소성분말과 배합하여 슬러리를 제조할 수 있다.
- 보 발명은 또한 상기 Fe-Si계 소성분말이 도포될 강판에 특히 제한되는 것은 아니며, 통상적인 냉간압연법을 이용한 방향성 규소강판이나 무방향성 규소강판 제조공정을 통하여 제조될 수 있는 강판을 이용할 수 있다. 예컨데, 강슬라브 제조, 재가열한후 열간압연, 열연판소문 및 냉간압연으로 두께조정, 탈탄소둔, 선택적으로 질화소둔, 2차재결정을 위한 고온소둔 및 최종 절연코팅공정을 통하여 제조되는 통상적인 방향성 규소강판을 이용할 수도 있으며, 통상적인 무방향성 규소강판 제조공정에서 얻어지는 냉연강판등을 이용할 수도 있다.
- 33> 본 발명은 또한 상기 슬러리가 도포될 강판 조성에 제한되는 것은 아니나, 적어도 상기 강판은 Si을 2.0~3.3%로 함유하고 있는 것이 바람직하다. 왜냐하면 그 Si함량이 2.0%미만이면 침규소 확산제인 Fe-Si계 분말을 이용한 침규확산반응시 너무 장시간이 소요될 뿐 만 아니라

경제성측면에서도 불리하며, 3.3%를 초과하는 경우 강이 취약해져 냉간압연성이 극히 나빠질수 있기 때문이다.

- 다음으로, 본 발명에서는 상기 슬러리가 도포된 강판을 건조시킨 후 대형코일로 권취한다. 이때, 건조온도를 200~700℃로 제한함이 바람직한데, 이는 그 건조온도 200℃미만에서는건조시간이 너무 길어져 생산성이 좋지 않으며, 700℃를 초과하면 소재 표면에 산화물 생성 우려가 있기 때문이다.
- 》 이어, 상기 건조된 강판을 소둔로에 장입하여 고온 확산소둔시키며, 이때, 그 분위기가 스를 20%이상의 수소를 함유한 나머지를 질소가스 분위기로 제어할 것이 필요하다. 왜냐하면 그 수소함량이 20%미만시에는 소재표면에 다소 두껍고 불균일한 파이어라이트(Fayalite) 성분의 산화막층이 형성되어 소재내부로의 침규확산반응이 불균일해지고, 또한 소재 성분증의 일부라도 A1성분이 존재시 소둔후 냉각과정 중에서 A1N 석출물을 형성하여 철손이 급격히 열화 될수 있기 때문이다.
- 36> 또한 이러한 확산소둔으로 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0~6.5중량%범위로 확산침투되도록 충분한 소둔온도와 시간에서 상기 Fe-Si계 소성분말이 도 포된 강판을 확산소둔함이 바람직하다.
- 7체적으로 본 발명에서는 상기 소둔온도를 1050~1200℃로 제한함이 바람직하다. 만일 그 소둔온도가 1050℃이하이면 침규속도가 너무 느려 확산에 장시간 소요될 뿐만 이니라 침규 반응 경계면의 표면형상이 조악하게 될 수 있어 자성이 열화 될 가능성이 있다. 그리고 1200℃

를 초과하면 반응속도가 너무 빠름과 아울러, 권취코일의 표면끼리 판붙음현상이 나타나서 이후 분리작업시 작업성이 나빠질 수 있다.

- 그리고 상기 소둔시간은 1~10시간으로 제한함이 바람직한데, 이는 그 소둔시간이 1시간 미만에서는 침규량이 적고 또한 균일관리에 어려움이 있고, 10시간을 초과하면 침규량이 너무 과다하여 적정관리가 어렵고 과잉의 장시간 반응으로 소재표면의 형상을 악화시킬 수 있기 때문이다.
- 한편, 본 발명에서는 상기와 같이 침규확산소둔처리된 강판의 표면에 다시 절연코팅층을 형성할 수도 있다. 예컨데, 상기 강판이 방향성 규소강판인 경우, 마그네슘, 알미늄 및 칼슘 의 혼합인산염과 콜로이달실리카성분에 미량의 무수크롬산으로 구성된 절연코팅제를 도포하여 형성하거나, 타발성 향상을 위해 크롬산염과 아크릴계수지중심의 유무기 복합코팅제를 도포하여 여 형성될 수도 있으나, 본 발명은 이러한 절연코팅제의 구체적인 조성등에 제한되는 것은 아 니다. 그리고 상기 강판이 무방향성 규소강판이면, 크롬산염 및 아크릴계수지를 주성분으로 하 는 유무기복합코팅제를 도포함으로써 절연코팅층을 형성할 수도 있을 것이다.
- 40> 이하, 실시예를 통하여 본 발명을 상세히 설명하나, 이러한 실시예는 발명의 가능한 일실시예를 나타내는 것으로서 본 발명의 이러한 구체적인 실시예의 기재내용에 의해 제한되는 것은 아니다.
- 41> (실시예 1)

출력 일자: 2003/11/10[°]

▷ 통상의 방향성 규소강판제조공정을 통하여, 중량%로 Si 3.05%, Mn 0.12%, Cu 0.025%, Cr 0.13%, P 0.013%, 잔여 철 및 불가피한 불순물을 포함하여 이루어진 0.23mm두께의 방향성 규소 강판제품을 마련하였다. 그리고 이렇게 제조된 강판표면의 절연피막충을 제거한후, 하기 표 1 과 같이 그 입도와 조성을 달리하는 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 그 표면에 도포하였다.

한편, 여기에서 이용된 용매 콜로이달 실리카용액은 시중에서 유통되는 통상의 30% 콜로이달 실리카용액 제품이며, 이때의 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하였다.

● 이렇게 Fe-Si계 분말이 도포된 강판을 400℃의 온도에서 건조한 후, 그 표면의 도포상태를 육안으로 관찰 후 권취하여 대형코일로 만들었다. 그리고 권취된 강판에 대하여 50%수소 함유 질소분위기에서 1125℃에서 4시간동안 확산소둔하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한후, 표면의 확산소둔후의 상태를 관찰한 다음, 마그네슘, 알미늄 및 칼슘의 혼합인산염과 콜로이달실리카성분에 미량의 무수크롬산으로 구성된 코팅제를 도포하여 절연코팅층이 형성된 방향성 규소강판을 제조하였다.

15> 이렇게 제조된 제품들의 소재Si함량과 자기적특성을 조사하였으며, 자기적 특성은 단판 측정기로 철손값 및 자속밀도(B8)값을 조사하여 그 결과를 표 1에 나타냈다. 여기서 철손값 $\mathbb{W}_{10/50}$ 은 50Hz, 1.0Tesla에서의 철심손실을, $\mathbb{W}_{10/400}$ 은 400Hz, 1.0Tesla에서, $\mathbb{W}_{5/1000}$ 은 1000Hz, 0.5Tesla에서의 철심손실을 나타내며, 자속밀도값 B8은 800A-turn/m의 자화력을 받았을 때 발생하는 단위면적당의 자속수를 Tesla로 나타며, 그리고 소재 Si량은 습식분석 결과치이다.

【丑 1】

구분	Fe-S	i문말	左至			표면	소재Si		
	Si (%)	입도 (mesh)	상태	B ₈ (Tesla)	₩ _{10/50} (₩/Kg)	W _{10/400} (W/Kg)	₩5/1000 (W/Kg)	상태	(%)
비교예1	12	-325	양호	1.88	0.32	7.3	8.7	양호	3.7
발명예1	25	-325	양호	1.79	0.30	6.7	7.4	양호	4.3
발명예2	45	-325	양호	1.71	0.27	6.0	6.7	양호	5.8
발명예3	62.5	-325	양호	1.69	0.26	5.8	6.4	양호	6.2
비교예2	75	-325	양호	1.57	0.35	7.9	8.6	작은Hole	7.4
मिज्ञ ली 3	85	-325	양호	1.55	0.36	8.2	9.4	Hole	7.9
비교예4	100	-325	양호	1.52	0.38	8.8	10.9	Hole	8.5
비교예5	50	+150	얇음	1.73	0.32	7.1	7.9	결함	4.9
비교예6	50	+250	불균일	1.71	0.32	6.9	7.5	결함	5.2
발명예4	50	-325	양호	1.70	0.27	6.1	6.4	양호	5.9
발명예5	50	-450	양호	1.70	0.26	6.0	6.4	양호	6.0

- 》 상기 표1에 나타난 바와 같이, Fe-Si계 소성분말에서 Si함량이 적정이 관리된 본 발명에(1~5)는 소재 Si부화량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였으며, 그 도포상태도 양호하였다.
- le> 이에 반하여, Fe-Si게 소성분말에서 Si함량이 적은 비교예(1)은 소재의 침규량이 너무 적어서 자성 개선효과가 미약하고, Si함량이 70%이상인 비교재(2~4)는 Si부화량은 많으나 소재 표면에 hole등의 결함이 생성되어 소재의 자성은 오히려 악화되었다.
- 한편 Fe-Si계 소성분말의 입도가 본 발명의 범위를 벗어난 비교예(5~6)은 슬러리상태로 도포시 그 도포두께가 얇고 불균일하였으며, 이에 따라, 소재 Si부화량이 적고 또한 소재 표면의 다수 결함이 관찰되어 자성개선정도가 미약하거나 악화되는 경향이 나타나는등 상대적으로 저조한 품질특성을 나타내었다.

io> (실시예 2)

- 중량%로 Si 2.9%, Mn 0.022, Al 0.3%, Sn 0.025%, P 0.003%, C 0.0025%, S 0.0011%, N 0.0003%, 잔부 철 및 불가피한 불순물을 포함하여 조성된 강슬라브를 1220℃에서 재가열한후 열간압연하여 2.5mm두께의 열간압연판을 제조하였다. 이어, 1000℃에서 5분간 열연판소둔하고 산세처리한 후 최종두께인 0.20mm로 냉간압연한 후, 그 표면에 부착된 압연유를 제거하였다.
- 의 이와 같이 제조된 다수의 냉연판 표면에 하기 표 2과 같이 조성된 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시켜 슬러리형태로 도포하였다. 여기서 사용한 콜로이달 실리카용액은 시중에서 유통되는 통상의 30% 콜로이달 실리카용액을 이용하였으며, 이때의 상호 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 흔합하였다.
- 이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 그 표면 도포상 태를 육안으로 관찰하였으며, 이어, 권취하여 대형코일로 만들었다. 그리고 50%수소함유 질소 분위기에서 1125℃에서 4시간동안 확산소둔하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거하고, 소재 표면의 확산소둔후의 상태를 관찰한 다음, 크롬산염 및 아크릴계수기를 주성분으로 하는 유무기복합코팅제를 도포하여 절연코팅층이 형성된 무방향성 고규소 강판을 제조하였다
- ³⁴ 이와 같이 제조된 제품들에서의 Si함량과 자기적 특성등을 조사하여 하기 표 2에 나타내었으며, 이때 그 구체적인 특성 평가기준은 실시예 1과 동일하다.

【丑 2】

구분	Fe-Si분말 도포				자기적	丑면	조재Si		
	Si (%)	입도 (mesh)	상태	B ₈ (Tesla)	W _{10/50} (W/Kg)	W _{10/400} (W/Kg)	W _{5/1000} (W/Kg)	상태	(%)
비교예1	12	-325	양호	1.46	0.80	11.45	11.06	양호	3.5
발명예1	25	-325	양호	1,38	0.72	10.24	10.01	양호	4.2
발명예2	50	-325	양호	1.32	0.64	9.14	8.98	양호	5.6
발명예3	62.5	-325	양호	1.28	0.62	8.52	8.43	양호	6.0
비교예2	75	-325	양호	1.23	0.71	11.02	11.23	작은Hole	6.8
비교예3	85	-325	양호	1.21	0.73	11.11	11.52	Hole	7.1
비교예4	100	-325	양호	1.20	0.74	11.36	12.02	Hole	7.7
비교예5	50	+150	얇음	1.36	0.70	10.12	9.96	결함	4.5
비교예6	50	+250	불균일	1.35	0.68	9.88	9.75	결함	4.8
발명예4	50	-325	양호	1.31	0.64	9.03	8.82	양호	5.7
발명예5	50	-450	양호	1.26	0.61	8.50	8.41	양호	6.1

상기 표 2에 나타난 바와 같이, 그 입도 뿐만 아니라 조성이 최적으로 제어된 Fe-Si계소성분말을 이용한 본 발명예(1~5)는 소재 Si부화량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였으며, 그 도포상태도 양호하였다.

- 57> 이에 반하여, Si함량이 너무 적은 Fe-Si계 소성분말을 이용한 비교예(1)은 소재의 침규 량이 너무 적어서 자성 개선효과가 미약하였으며, Si함량이 70%를 초과하는 비교예(2~4)는 Si 부화량은 많으나 소재 표면에 hole등의 결함이 생성되어 소재의 자성은 오히려 악화되었다.
- 한편 Fe-Si계 소성분말의 입도가 본 발명범위를 벗어난 비교예(5~6)에서는 그 도포층이 얇고 불균일하였으며, 이에 따라 소재 Si부화량이 적고 또한 소재 표면의 다수 결함이 관찰되어 자성개선정도가 미약하거나 악화되는 경향이 나타났다.
- 59> (실시예 3)
- 60> 실시예 1의 방향성 규소강판 표면에 Fe-Si계 소성분말을 콜로이달 실리카용액에 분산시 켜 슬러리형태로 도포하였다. 이때 Fe-Si계 분말의 Si함량은 50%이며, 분말의 입도는 -25mesh

33>

출력 일자: 2003/11/10

이었고, 콜로이달 실리카는 시중 유통의 30%고형분의 용액을 이용하였으며, 배합비는 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하여 슬러리상태로 만들었다.

- > 이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 대형코일로 만들었다. 그리고 권취된 강판에 대하여 하기 표 3과 같이 확산소둔온도 및 분위기가스비를 변화시켜 5시간동안 확산소둔처리를 행하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한 후, 표면의 확산소둔후의 상태를 관찰한 다음, 실시예 1의 코팅제를 도포하여절연코팅층이 형성된 최종 고규소 방향성 전기강판을 제조하였다.
- 이와 같이 제조된 제품들의 소재Si함량과 자기적 특성등을 조사하여 하기 표 3에 나타내었으며, 이때의 구체적인 평가방법등은 실시예 1과 동일하다.

【班 3】

구분	확산소	눈조건		자기적		표면	소재Si	
	온도	H ₂ /N ₂ +H ₂	В ₈	W _{10/50}	₩ _{10/400}	W ₅ /1000	상태	(%)
	(℃)	(%)	(Tesla)	(W/Kg)	(W/Kg)	(W/Kg)		
비교예1	950	50	1.76	0.34	6.8	7.7	작은hole	4.8
비교예2	1000	50	1.73	0.31	6.3	6.9	결함다수	5.4
발명예1	1050	50	1.72	0.27	6.1	6.5	양호	5.9
발명예2	1100	50	1.70	0.26	5.9	6.3	양호	6.1
발명예3	1175	50	1.70	0.26	5.8	6.3	양호	6.2
비교예3	1225	50	1.65	0.28	6.1	6.7	결함다수	6.4
비교예4	1125	0	1.85	0.30	7.3	8.9	양호	3.6
비교예5	1125	10	1.83	0.29	6.8	8.0	양호	3.8
발명예4	1125	25	1.70	0.26	5.8	6.2	양호	6.2
발명예5	1125	70	1.69	0.26	5.7	6.2	양호	6.3

64> 상기 표 3에 나타난 바와 같이, 그 확산소둔 온도 및 분위기가스조건이 적정하게 제어된 본 발명예(1~5)는 모두 소재 Si량이 증가되어 상용주파수 뿐만 아니라 고주파에서의 철손도 극히 우수하였다.

65> 이에 반하여, 소둔온도가 상대적으로 낮은 비교예(1~2)는 소재 Si량 증가량이 미미하여 철손개선 정도가 미약할 뿐만 아니라 표면결함이 발생하였다. . 그리고 소둔온도가 너무 높은 비교예(3)도 표면결함이 다수 발생하였으며, 자기특성도 좋지 않았다.

한편, 확산소둔시의 전체가스중 수소비가 너무 적은 비교예(4~5)에서는 소재내 Si량의
 변화가 거의 없어 자기특성이 우수한 고규소강을 얻을 수가 없었다.

i7> (실시예 4)

- 》 실시예 2와 같이 제조된 냉연강판 표면에 Fe-Si계 분말을 콜로이달 실리카용액에 분산시 켜 슬러리형태로 도포하였다. 이때 Fe-Si계 분말의 Si함량은 60%이며, 분말의 입도는 -25mesh이었고, 콜로이달실리카는 시중 유통의 30%고형분의 용액을 이용하였다. 그리고 그 배합비는 고형분기준 Fe-Si분말 100중량부에, 실리카가 그 고형분기준으로 20중량부가 되도록 하는 콜로이달 실리카용액을 혼합하였다.
- 이렇게 Fe-Si계 소성분말이 도포된 강판을 400℃의 온도에서 건조한 후, 대형코일로 만들었다. 그리고 권취된 강판에 대하여 하기 표 4와 같이 확산소둔온도 및 분위기가스비를 변화시켜 5시간동안 확산소둔처리를 행하였으며, 이어, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한 후, 표면의 확산소둔 후의 상태를 관찰한 다음, 실시예 2와 같은 코팅제를 도포하여 절연코팅층이 형성된 무방향성 규소강판을 제조하였다.
- 70> 이와 같이 제조된 제품들의 소재Si함량과 자기적 특성등을 조사하여 하기 표 4에 나타내었으며, 이때의 그 구체적인 평가방법등은 실시예 1과 동일하다.

71>

【丑 4】

구분		둔조건		자기적		표면	소재Si	
	(℃) 동	H ₂ /N ₂ +H ₂ (%)	B ₈ (Tesla)	W _{10/50} (W/Kg)	W _{10/400} (W/Kg)	W _{5/1000} (W/Kg)	상태	(%)
비교예1	950	50	1.35	0.69	10.03	9.97	작은hole	4.7
비교예2	1000	50	1.32	0.67	9.41	9.35	결함다수	5.1
발명예1	1050	50	1.28	0.62	8.59	8.38	양호	5.9
발명예2	1100	50	1.27	0.62	8.48	8.36	양호	6.0
발명예3	1175	50	1.27	0.61	8.46	8.31	양호	6.1
비교예3	1225	50	1,23	0.68	9.23	9.38	결함다수	6.3
비교예4	1125	0	1.41	0.78	10.52	10.48	양호 ·	3.5
비교예5	1125	10	1.38	0.74	9.87	9.85	양호	3.7
발명예4	1125	25	1.27	0.61	8.46	8.33	양호	6.1
발명예5	1125	70	1.27	0.60	8.43	8.29	양호	6.2

- 》 상기 표 4에 나타난 바와 같이, 그 확산소둔 온도뿐만 아니라 분위기가스조건이 적정하게 제어된 본 발명예(1~5)는 소재 Si량이 증가되어 상용주파수와 고주파에서의 철손도 극히 우수하였으며, 아울러 표면결함이 발생이 없었다.
- "
 이에 반하여, 그 소둔온도가 상대적으로 낮은 비교예(1~2)는 소재 Si량 증가량이 미미하여 철손개선 정도가 미약하였으며, 아울러 표면결함이 발생하였다. 그리고 소둔온도가 너무 높은 비교예(3)도 표면결함이 다수 발생하였으며, 자기특성도 좋지 않았다.

한편, 확산소둔시의 전체가스중의 수소비가 상대적으로 적은 비교예(4~5)에서는 소재내 Si량의 변화가 거의 없어 고규소강을 얻을 수 없었으며, 또한 자성 개선정도도 미약하였다.

【발명의 효과】

상술한 바와 같이, 본 발명은 통상의 냉간압연공정을 통하여 제조된 규소강판 표면에,
 소정의 입도와 Si함량을 갖도록 조성된 Fe-Si계 복합화합물 소성분말을 슬러리형태로 도포한후
 고온확산소둔함으로써 자기적 특성이 우수한 고Si강판을 대량으로 효과적으로 제조할 수 있다.

【특허청구범위】

【청구항 1】

강판의 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 함유하는 Fe-Si계 소성분 말을 슬러리 형태로 도포한후 건조시키는 단계 ; 그리고

상기 건조된 강판을 1050~1200℃, 20%이상의 수소함유 질소가스 분위기하에서 확산소둔 처리하는 단계;를 포함하는 고규소강판 제조방법.

【청구항 2】

제 1항에 있어서, 상기 Fe-Si계 소성분말은 Fe-Si계 복합화합물형태의 분말인 것을 특징으로 하는 고규소강판 제조방법.

【청구항 3】

제 1항에 있어서, 상기 슬러리가 도포될 강판은 Si을 2.0~3.3중량% 함유하고 있는 것을 특징으로 하는 고규소강판 제조방법.

【청구항 4】

제 1항에 있어서, 상기 슬러리가 도포된 강판을 200~700℃에서 건조시키는 것을 특징으로 하는 고규소강판 제조방법.

【청구항 5】

Si 2.0~3.3중량%를 함유한 강판 표면에, 그 입도가 -25mesh이고 Si를 20~70중량%범위로 포함하는 Fe-Si계 소성분말을 슬러리 형태로 도포한 후 건조시키는 단계 ; 그리고

그 강판내 Si이 표면결함을 발생함이 없이 실질적으로 균일하게 4.0중량% 이상 확산침투 되도록 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 고온확산 소둔시키는 단계;를 포함하는 고규소강판 제조방법.

【청구항 6】

제 5항에 있어서, 상기 Fe-Si계 소성분말은 Fe-Si계 복합화합물형태의 분말인 것을 특징으로 하는 고규소강판 제조방법.

【청구항 7】

제 5항에 있어서, 상기 건조된 강판을 1050~1200℃온도범위에서 확산소둔처리하는것을 특징으로 하는 고규소 강판 제조방법.

【청구항 8】

제 5항에 있어서, 상기 슬러리가 도포된 강판을 200~700℃에서 건조시키는 것을 특징으로 하는 고규소강판 제조방법.