

Placement Empowerment Program Cloud Computing and DevOps Centre

Set Up a Load Balancer in the Cloud

Configure a load balancer to distribute traffic across multiple VMs hosting your web application

Name: Harshana Perianayaki B Department: IT

INTRODUCTION

A load balancer is a crucial component in modern cloud architecture, responsible for distributing incoming traffic across multiple virtual machines (VMs) hosting a web application. By ensuring efficient traffic management, load balancers enhance the performance, availability, and reliability of applications. This guide provides a step-by-step approach to configuring a load balancer in the cloud environment.

OVERVIEW

Cloud-based applications often experience fluctuating traffic levels. Without a load balancer, a single server might become overloaded, leading to poor performance or downtime. A load balancer efficiently distributes requests across multiple servers, preventing bottlenecks and ensuring optimal resource utilization.

Load balancers can operate at different levels, such as:

- Layer 4 (Transport Layer): Distributes traffic based on IP addresses and TCP/UDP ports.
- Layer 7 (Application Layer): Routes traffic based on HTTP headers, cookies, or URLs.

Cloud providers like AWS, Azure, and Google Cloud offer managed load balancing services that simplify deployment and management.

OBJECTIVES

By the end, you will:

- Understand the purpose and benefits of load balancing in the cloud.
- Learn how to configure a cloud-based load balancer.
- Distribute traffic across multiple VMs to enhance performance and availability.
- Implement security measures such as SSL termination and health checks.

IMPORTANCE

Load balancers are critical for:

- **High Availability**: Ensuring uninterrupted service by redirecting traffic from failed instances to healthy ones.
- **Scalability**: Automatically adjusting traffic distribution as demand increases or decreases.
- Performance Optimization: Reducing response times by distributing requests efficiently.
- **Security Enhancement**: Protecting against DDoS attacks and ensuring secure connections via SSL/TLS termination.

STEP-BY-STEP OVERVIEW

Here's a step-by-step guide to setting up a load balancer in Azure:

Create a Load Balancer

1. Log in to the Azure portal.

- 2. Click on "Create a resource" and search for "Load Balancer".
- 3. Select "Load Balancer" and click on "Create".

- 4. Choose the subscription, resource group, and location for your load balancer.
- 5. Enter a name for your load balancer and select the type (e.g., "Public" or "Internal").
- 6. Click on "Create" to create the load balancer.

Create a Backend Pool

- 1. In the Azure portal, navigate to the load balancer you created.
- 2. Click on "Backend pools" and then click on "Add".

- 3. Enter a name for the backend pool and select the virtual network.
- 4. Click on "Add" to create the backend pool.

Add Virtual Machines to the Backend Pool

1. Navigate to the backend pool you created.

- 2. Click on "Virtual machines" and then click on "Add".
- 3. Select the virtual machines you want to add to the backend pool.
- 4. Click on "Add" to add the virtual machines.

Create a Health Probe

- 1. Navigate to the load balancer.
- 2. Click on "Health probes" and then click on "Add".

- 3. Enter a name for the health probe and select the protocol (e.g., "HTTP" or "TCP").
- 4. Configure the health probe settings (e.g., interval, timeout, and unhealthy threshold).
- 5. Click on "Add" to create the health probe.

Create a Load Balancing Rule

- 1. Navigate to the load balancer.
- 2. Click on "Load balancing rules" and then click on "Add".

- 3. Enter a name for the load balancing rule and select the frontend IP configuration.
- 4. Select the backend pool and health probe.
- 5. Configure the load balancing rule settings (e.g., protocol, port, and session persistence).
- 6. Click on "Add" to create the load balancing rule.

Test the Load Balancer

- 1. Navigate to the load balancer.
- 2. Click on "Frontend IP configuration" and note the public IP address.

3. Open a web browser and navigate to the public IP address.

 \leftrightarrow C 0 10.0.08 \div D | \bigstar 5 :

4. Verify that the load balancer is distributing traffic across the virtual machines.

That's it! You have now set up a load balancer in Azure to distribute traffic across multiple virtual machines hosting your web application.

OUTCOME

After successfully setting up the load balancer, your web application will:

- Distribute traffic effectively, reducing load on individual VMs.
- Improve uptime and fault tolerance.
- Enhance user experience with better response times.
- Be more resilient against traffic spikes and failures.

By leveraging cloud-based load balancing, businesses can ensure a seamless, scalable, and highly available web application infrastructure.