

IDSC 4444 (004) Association Rules

Zihong Huang Information & Decision Sciences Carlson School of Management

huanO7O7@umn.edu

Agenda

- ☐ Supervised vs. Unsupervised
- Basic Definitions of Association Rules
- ☐ Measurement of Association Rules
 - Support
 - Confidence
 - o Lift
- ☐ How to find association rules?
 - Apriori Algorithm

Tentative Schedule

☐ Check it out on Canvas

Week	Date	Topic	HW/Quiz Posted	HW/Quiz Due By 11:59 pm
1	10/26/2021 (Tu)	Lec - Course Introduction & Visualization	HW1	
1	10/28/2021 (Th)	Lab - Working in R - Tutorial		
2	11/02/2021 (Tu)	Lec - Descriptive Analysis 1: Association Rules	Quiz 1 (Association Rule)	
2	11/04/2021 (Th)	Lab - Association Rules	HW 2	HW 1
2	11/05/2021 (Fri)			Quiz 1 (Association Rule)
3	11/9/2021 (Tu)	Lec - Descriptive Analysis 2: Cluster Analysis	Quiz 2 (Cluster Analysis)	
3	11/11/2021 (Th)	Lab - Cluster Analysis	HW 3	HW 2

An Overview

Two Types of Learning

Unsupervised Learning

- O <u>Unlabeled Data:</u> there is no outcome variable to predict or classify
- Data is mined for patterns in the hopes of discovering useful patterns
- Methods we will cover: Association Rules, Cluster Analysis

☐ Supervised Learning

- Labeled Data: known outcomes like purchase decisions, price of goods, etc.
- O Model can be tested against known outcomes for performance.
- O Methods we will cover: Classification, Numeric Prediction

Supervised vs. Unsupervised Problems

- ☐ Will this customer purchase service?
- What services are commonly purchased together by the customers?
- $oldsymbol{\square}$ Which service package (S1, S2, or none) will a customer likely to purchase?
- ☐ How much money will this customer spend on the service?
- Are there groups of similar customers within the data?

Supervised vs. Unsupervised Problems

Question	Unsupervised	Supervised	Technique
Will this customer purchase service?		٧	Classification (binary target variable)
What services are commonly purchased together by the customers?	٧		Association analysis (No target variable)
Which service package (S_1 , S_2 , or none) will a customer likely to purchase?		V	Classification (three valued target variable)
How much money will this customer spend on the service?		V	Regression (numeric target variable)
Are there groups of similar customers within the data?	٧		Clustering (No target variable)

What is Association Rules Mining?

- Discovering interesting relationships among items/events/variables
- Affinity Analysis

 Affinity Analysis
 - Popular in Marketing, used to find out which products tend to be purchased together
 - O Also applied in many domains, e.g., healthcare, bio-informatics,...
- It is a type of **exploratory** data analytics

An Example

Software

The parable of the beer and diapers

Never let the facts get in the way of a good story

By Mark Whitehorn 15 Aug 2006 at 13:20

SHARE V

Basic Definitions

- Let **U** be the universal set of **Items** in a given domain
 - O E.g., U = {Milk, Eggs, Bread, Coke, Beer,...} or all items in a grocery store
- \Box An Itemset, X, is any subset of U
 - E.g., X = {Bread, Milk} is a 2-items itemset
- A **Transaction** is an instance of consumption by one consumer
 - Multiple transactions comprise a dataset

Each row is a transaction

#	İtems
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

Basic Definitions

- \Box An Association Rule describes relationship between two itemsets: $X \rightarrow Y$
 - This association rule reads "if X then Y"
 - O X and Y are two **non-overlapping** itemsets (they don't share any item in common)
 - O X is called **antecedent** (or left-hand-side, or body)
 - O Y is called **consequent** (or right-hand-side, or head)
 - O In the shopping context, this means: "customers who buy X are also likely to buy Y"
 - ✓ Consider an association rule {Bread} \rightarrow {Milk}
 - ✓ It means customers who buy Bread are likely to buy Milk too

Support

- \square Consider the following association rule: $X \rightarrow Y$
 - \bigcirc X = {Milk, Diapers}, Y = {Coke}
- ☐ Support: a measure of how frequently X and Y occur together
 - **Support Count (\sigma)**: raw count of transactions containing both X and Y $\sigma(X \rightarrow Y) = \text{Count}(X \text{ and } Y) = \sigma(\{\text{Milk, Diapers, Coke}\}) = 2$

Basket	ltems
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

O Support Percentage (S): Fraction of transactions containing both X and Y

✓
$$S(X \rightarrow Y) = S(\{Milk, Diapers, Coke\}) = \frac{\sigma(X \rightarrow Y)}{\#Transactions} = 2/5 = 0.4$$

- ✓ **Note:** Support metrics are **NOT directional**, i.e., $S(X \rightarrow Y)$ is equivalent to $S(Y \rightarrow X)$
- Support of individual itemsets:

$$\checkmark \sigma(X) = \sigma(\{Milk, Diapers\}) = 3$$
, $S(X) = \sigma(\{Milk, Diapers\}) / \#Transactions = 3/5 = 0.6$

$$\checkmark \sigma(Y) = \sigma(\{Coke\}) = 2$$
, $S(Y) = \sigma(\{Coke\}) / \#Transactions = 2/5 = 0.4$

Confidence

- "Among all transactions containing X, how many also have Y?"
 - \bigcirc X \rightarrow Y: X = {Milk, Diapers}, Y = {Coke}
- Confidence: a measure of how often Y appears with transactions that contain X

$$\bigcirc \quad \text{Conf} (X \to Y) = \frac{S(X \to Y)}{S(X)} = \frac{\sigma(X \to Y)}{\sigma(X)} = \frac{\sigma(\{\text{Milk, Diapers, Coke}\})}{\sigma(\{\text{Milk, Diapers}\})} = \frac{2}{3} = 0.67$$

- \circ Conceptually related to conditional probability Pr(Y|X)
- O When a customer buys milk and diapers, 67% of the time also buys coke
- ☐ Important: this measure is directional
 - o i.e., Conf $(X \rightarrow Y)$ is **not necessarily equivalent** to Conf $(Y \rightarrow X)$

$$\bigcirc \quad \text{Conf}(Y \to X) = \frac{\sigma(Y \to X)}{\sigma(Y)} = \frac{\sigma(\{\text{Milk, Diapers, Coke}\})}{\sigma(\{\text{Coke}\})} = \frac{2}{2} = 1$$

O When a customer buys coke, 100% of the time buys milk and diapers

Basket	Items
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

Lift

- Support and Confidence: both are measures of how strong a rule is.
- Consider the following situation: in a supermarket, **90%** of all customers buy milk, and **95%** of all customers buy toilet paper.
 - OBy pure chance, 85% (O.9 * O.95) of all customers buy milk and toilet paper
 - Real association between them or just coincidence?
- Lift: a measure of how much more likely X and Y co-occur than pure chance

$$\bigcirc \text{ Lift } (X \rightarrow Y) = \frac{S(X \rightarrow Y)}{S(X) * S(Y)} = \frac{\text{Conf } (X \rightarrow Y)}{S(Y)}$$

- O Here, we must use the support percentage in calculation
- \circ S(X) * S(Y) is the probability of seeing X co-occurring with Y by pure chance, i.e., X and Y are independent
- ☐ Note: Lift has no direction

Lift

- \square Consider the following association rule: $X \rightarrow Y$
 - O X = {Milk, Diapers}, Y = {Beer}
- \square S({Milk, Diapers, Beer}) = 2/5 = 0.4
- \Box S({Milk, Diapers}) = 3/5 = 0.6
- \Box S({Beer}) = 3/5 = 0.6

	Lift $(X \rightarrow Y) =$	0.4	1.11
ш	LITT (0.6*0.6	T•T T
		0.0 * 0.0	

O Customers who buy Milk and Diapers are 1.11x more likely to buy Beer than other customers

Basket	İtems
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

Lift

When Lift > 1 means that customers who buy X are more likely to buy Y than other customers

When Lift = 1 means that customers who buy X are as likely to buy Y than any other customers

When Lift < 1 means that customers who buy X are less likely to buy Y than other customers

How to Find Association Rules

- We specify the minimum support (minsupp) and minimum confidence (minconf)
 - Find all association rules: support > = minsupp and confidence >= minconf
 - o minsupp and minconf are picked based on domain knowledge or business goals.
- Step 1: Find all itemsets with support >= minsupp
 - These are called frequent itemsets
- Step 2: Based on each frequent itemset, generate all possible association rules, then keep the ones with confidence >= minconf
 - Note: for a frequent itemset {coffee, bagel}, we need to consider two rules: {coffee} \rightarrow {bagel} and {bagel} \rightarrow {coffee}

Practical Concerns

- 3 Items, how many possible itemsets?

- $----2^3 1 = 7$ Itemsets
 - \square How about N? 2^N-1 potential itemsets (exponential)
 - O E.g., 50 items, check 1000 itemsets per second, would take ~35000 years!

Apriori Algorithm

- Apriori Algorithm(Agrawal et al., 1993): A smart way to reduce burden
 - O Key idea: if an itemset X is NOT frequent, then any larger itemsets containing X cannot be frequent
- ☐ Steps:
 - First check all 1-item itemsets, only keep the frequent ones (support >= minsupp)
 - O Then check 2-items itemsets made from frequent 1-itemsets in previous step, only keep the frequent ones
 - Keep going recursively until you have checked frequent itemsets of all sizes
 - Among all frequent itemsets, generate all possible association rules
 - Find association rules that satisfy confidence >= minconf

Apriori Algorithm: Example

 \Box Assume we want a support => 75% and confidence => 80%

Transaction	Items
Tı	K, A, D, B
T2	D, A, C, E,B
T3	С, А, В,Е
T4	B, A, D

To make things easier, we can do a tabular representation of the data:

Transaction	Α	В	С	D	Е	K
T1	1	1	0	1	0	1
T2	1	1	1	1	1	0
Т3	1	1	1	0	1	0
T4	1	1	0	1	0	0

What to do with Association Rules

- \square You find an association rule {beer} \rightarrow {diaper} and conclude it is strong enough, Now what?
- Possible Marketing Actions
 - O Put diapers next to beer in your store
 - Or, put diapers away from beer in your store (Why?)
 - O Bundle beer and diapers in a "new parent coping kit"
 - O Lower the price of diapers, raise it on beer
- Remember: Association rules are exploratory in nature
 - They provide some initial directions to work on.
 - O Setting specific business strategies requires domain expertise and careful analysis and testing

Exercise 1

Using the dataset to the right, compute the support percentage and the confidence of the association rules listed below.

Association Rule	Support (s)	Confidence (c)
${Milk, Diapers} \rightarrow {Beer}$		
${Milk, Beer} \rightarrow {Diapers}$		
${Diapers} \rightarrow {Milk, Beer}$		
$\{Beer\} \to \{Milk, Diapers\}$		
${Diapers, Beer} \rightarrow {Milk}$		
${Milk} \rightarrow {Diapers, Beer}$		

Dataset			
1	Bread, Milk		
2	Bread, Diapers, Beer, Eggs		
3	Milk, Diapers, Beer, Coke		
4	Bread, Milk, Diapers, Beer		
5	Bread, Milk, Diapers, Coke		

Exercise 2

Basket Items	
1	Bread, Milk
2	Bread, Diapers, Beer, Eggs
3	Milk, Diapers, Beer, Coke, Bread
4	Bread, Milk, Diapers, Beer
5	Bread, Milk, Diapers, Coke

- Consider the dataset above and calculate the **confidence** and the **lift** of the following association rules. What would you conclude about these association rules?
- \square {Bread} \rightarrow {Milk}

Before Next Class

- Do the 2 exercises in this slides, Quiz related
 - The solution will be posted on Canvas
- Check the additional materials on Canvas in case that you need them
 - O Relevant textbook chapters and Apriori Algorithm related materials
 - Additional links
- ☐ Download two *.zip files for Lab on Thursday
- ☐ HW1 is due on Thursday
- Quiz 1 is posted and due on Friday

Questions?

