Statistical Methods: Lecture 5

Lecture Overview

Sampling distributions and estimators

Estimating a Population Mean

Estimating a Population Proportion

Example: file sizes

A statistics teacher has 2692 files related to Statistical Methods. What is the average file size (population mean) μ ?

Take (representative) sample of size n from population. Compute \overline{x}_n and use as estimate of μ . Is it good?

Example: Brexit

UK's referendum on June 23, 2016: stay in or leave EU? Ca. 46.5 million Britons could vote "remain" or "leave".

Population proportion p denotes proportion of Britons that votes "remain".

3 days before referendum, Survation conducted a poll: excluding undecided, out of n=893 Britons, 50.6% would vote "remain".

Sample proportion $\hat{p}_{893} = 0.506$. Is it a good estimate of population proportion p?

What if we selected some other n files, or asked some other 893 Britons?

We cannot say whether \overline{x}_n is close to μ , or whether \hat{p}_n is close to p, but we can study the distribution of all possible values of \overline{X}_n or \hat{P}_n for fixed sample size n.

Definition: Sampling distribution of the sample mean

Let the random variable \overline{X}_n denote the sample mean of a sample of size n. The sampling distribution of the sample mean consists of all possible values of \overline{X}_n , based on all possible samples of size n, and corresponding probabilities.

You don't want to compute this for n > 2. Luckily:

The Central Limit Theorem (CLT)

Independently draw a sample of size n>30 from a population with mean μ and standard deviation σ . Then \overline{X}_n has approximately a $N(\mu,\frac{\sigma^2}{n})$ -distribution.

Sampling distribution (of random variable) \neq sample distribution (of dataset).

Example: file sizes – approximating sampling distribution

File sizes of 2692 teaching files.

Left: distribution of 10 000 values of sample mean (i.e. approximation of sampling

distribution); sample size n = 5. Middle: n = 100, right: n = 500.

Sampling distribution of sample proportion

This is the probability distribution of random variable \hat{P}_n : consists of all possible values of \hat{p}_n based on all possible samples of size n and corresponding probabilities.

Sample proportion: special case of sample mean!

Population proportion p (i.e. prob. of "remain").

Individual answers: realizations of random variables X_i with values 1/0 (yes/no);

$$P(X = 1) = p$$
 and $P(X = 0) = 1 - p$, where $p =$ population proportion.

If *n* people surveyed, we get x_1, x_2, \ldots, x_n :

$$x_i = \begin{cases} 1 & \text{if subject } i \text{ said 'yes' } / \text{ has the property} \\ 0 & \text{if subject } i \text{ said 'no' } / \text{ does not have the property} \end{cases}$$

Then
$$\hat{p}_n = (x_1 + x_2 + \ldots + x_n)/n$$
.

Finding sampling distribution of sample proportion

Recall P(X = 1) = p, P(X = 0) = 1 - p.

Use CLT... need population mean and population standard deviation:

$$\mu = 1 \cdot p + 0 \cdot (1 - p) = p$$
$$\sigma = \sqrt{p(1 - p)}$$

Sampling distribution for large *n*

For large $n\ (>30)$ the sample proportion \hat{P}_n of a population with population proportion p is approximately normal with mean p and standard deviation $\sqrt{p(1-p)/n}$, i.e., approximately

$$\hat{P}_n \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Population mean: μ ; population standard deviation: σ

Sampling distribution of sample mean

For large n (> 30), the sampling distribution of \overline{X}_n is approximately normal with mean μ and standard deviation σ/\sqrt{n} .

Population proportion: p

Sampling distribution of sample proportion

For large n (> 30), the sampling distribution of \hat{P}_n is approximately normal with mean p and standard deviation $\sqrt{p(1-p)/n}$.

Sampling distribution of sample mean (estimator) approximately normally distributed. For a given sample, the estimator yields an estimate of population mean μ . Accuracy?

For any n, unbiased: $E(\overline{X}_n) = \mu$ ("targets the population mean μ ").

For one sample, we obtain only one estimate.

Standard deviation of the sampling distribution: how good is the estimate.

Recall the "files" example:

Use approximate distribution to construct confidence intervals:

95% confidence interval for μ :

range of estimator values; we are 95% confident that this interval actually contains μ .

"95% confident..."

For 100 independent samples of size n, calculate confidence intervals for each. On average, 95 of them contain μ .

Incorrect intepretation

For a given 95% confidence interval it does not mean: 95% chance that μ is in this interval, μ is fixed and unknown, interval is a realization of a random interval.

Recall: $\overline{X}_n \sim N(\mu, \sigma^2/n)$ (approx.).

If σ unknown: $\overline{X}_n \sim N(\mu, s_n^2/n)$ approx. Here, $s_n =$ sample standard deviation.

Recall: $Z=rac{\overline{X}_n-\mu}{s_n/\sqrt{n}}\sim \mathit{N}(0,1)$ (approx.) and use Table 2:

$$0.95 = P(-1.96 \le Z \le 1.96) = P\left(\mu - 1.96 \frac{s_n}{\sqrt{n}} \le \overline{X}_n \le \mu + 1.96 \frac{s_n}{\sqrt{n}}\right)$$

Exactly what we need. Why?

Because for (approximately) 95 out of 100 independent samples of size n

$$\mu - 1.96 \frac{s_n}{\sqrt{n}} \le \overline{x}_n \le \mu + 1.96 \frac{s_n}{\sqrt{n}}$$

which is equivalent to

$$\overline{x}_n - 1.96 \frac{s_n}{\sqrt{n}} \le \mu \le \overline{x}_n + 1.96 \frac{s_n}{\sqrt{n}}$$

Definition: 95% confidence interval (CI) for μ

 $E=1.96rac{s_n}{\sqrt{n}}$ is called the margin of error, and the interval

$$\left[\overline{x}_n - 1.96 \frac{s_n}{\sqrt{n}}, \overline{x}_n + 1.96 \frac{s_n}{\sqrt{n}}\right]$$

is called a 95% confidence interval for μ . (If σ is known, use it instead of s_n)

Example: program files

Randomly selected n=144 files with $\overline{x}_n=150.53$ and $s_n=502.75$. 95% confidence interval for μ given by

$$\left[150.53 - 1.96 \frac{502.75}{\sqrt{144}}, 150.53 + 1.96 \frac{502.75}{\sqrt{144}}\right] = [68.41, 232.65]$$

Interpretation

Don't know whether true μ is in this particular CI or not.

If we constructed 100 confidence intervals based on 100 independent samples of size 144, approximately 95 of them would contain μ .

Slightly different than in the book

- ▶ Book uses *t-distribution* to construct CI's. We will do that later.
- $z_{\alpha/2}=1.96$ for $\alpha=0.05=1-0.95$, $z_{\alpha/2}=z$ score separating an area of $\alpha/2$ in the right tail of N(0,1):

$$P(Z \ge z_{\alpha/2}) = \alpha/2$$
 and $P(Z \le -z_{\alpha/2}) = \alpha/2$

so by properties of probability

$$P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$$

▶ Sometimes 2 is used instead of 1.96 – see rule of thumb for N(0,1).

Margin of error $E=1.96\frac{s_n}{\sqrt{n}}$. Choose n so that E as small as desired:

First, fix an estimate of standard deviation.

E.g., sample standard deviation (or Range/4).

Let us denote it by σ . Then

$$E = 1.96 \frac{s_n}{\sqrt{n}} \approx 1.96 \frac{\sigma}{\sqrt{n}} \le E_{max} \quad \Leftrightarrow \quad n \ge \left(\frac{1.96 \cdot \sigma}{E_{max}}\right)^2$$

6.2 Estimating a Population Proportion

Very similar to population mean, hence this part is more brief

Recall: $\hat{P}_n \sim N(p, p(1-p)/n)$ (approx.).

Again estimate standard deviation: $\hat{P}_n \sim N(p, \hat{p}_n(1-\hat{p}_n)/n)$ (approx.).

Definition: 95% confidence interval (CI) for *p*

 $E=1.96\sqrt{rac{\hat{
ho}_{n}(1-\hat{
ho}_{n})}{n}}$ is called the margin of error, and the interval

$$\left[\hat{\rho}_n - 1.96\sqrt{\frac{\hat{\rho}_n(1-\hat{\rho}_n)}{n}}, \hat{\rho}_n + 1.96\sqrt{\frac{\hat{\rho}_n(1-\hat{\rho}_n)}{n}}\right]$$

is called a 95% confidence interval for p.

6.2 Estimating a Population Proportion

Example: Brexit

Based on answers of n=893 Britons: sample proportion $\hat{p}_{893}=0.506$.

95% confidence interval for p:

$$\left[0.506-1.96\sqrt{\frac{0.506\cdot0.494}{893}},0.506+1.96\sqrt{\frac{0.506\cdot0.494}{893}}\right]=\left[0.473,0.539\right]$$

Interpretation?

6.2 Estimating a Population Proportion

Margin of error $E=1.96\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}$. Choose n so that E as small as we want.

Population proportion is always between 0 and 1, so $p(1-p) \le 0.25$. Then

$$E = 1.96\sqrt{\frac{\hat{\rho}_n(1-\hat{\rho}_n)}{n}} \le 1.96\sqrt{\frac{1}{4n}} \le E_{max} \quad \Leftrightarrow \quad n \ge \left(\frac{1.96}{2 \cdot E_{max}}\right)^2$$

This bound can be too conservative if the true p is far from 0.5. Alternatives?

Other percentages

If
$$Z \sim N(0, 1)$$
,

$$P(-1.96 \le Z \le 1.96) = 0.95;$$

other standard normal quantiles \rightsquigarrow other confidence levels.

90% confidence

$$P(-1.645 \le Z \le 1.645) = 0.9$$

Margins of errors are

$$..645 \frac{s_n}{\sqrt{n}}$$
 and

$$1.645 \frac{s_n}{\sqrt{n}} \qquad \text{and} \qquad 1.645 \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}$$

99% confidence

$$P(-2.575 \le Z \le 2.575) = 0.99$$

Margins of errors are

$$2.575 \frac{s_n}{\sqrt{n}}$$
 and $2.575 \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}$

Estimating Population Mean and Population Proportion: recap

Population mean

Sample mean is used to estimate population mean.

95% confidence interval is given by
$$\left[\overline{x}_n - 1.96 \frac{s_n}{\sqrt{n}}, \overline{x}_n + 1.96 \frac{s_n}{\sqrt{n}}\right]$$

For the margin of error $E=1.96\frac{s_n}{\sqrt{n}}$ to be smaller than E_{max} we need sample size

$$n \ge \left(\frac{1.96 \cdot \sigma}{E_{max}}\right)^2$$

Population proportion

Sample proportion is used to estimate population proportion.

95% confidence interval is given by
$$\left[\hat{\rho}_n-1.96\sqrt{\frac{\hat{\rho}_n(1-\hat{\rho}_n)}{n}},\hat{\rho}_n+1.96\sqrt{\frac{\hat{\rho}_n(1-\hat{\rho}_n)}{n}}\right]$$

For the margin of error $E=1.96\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}$ to be smaller than E_{max} we need sample $\frac{1.96}{n}$

size
$$n \ge \left(\frac{1.96}{2 \cdot E_{max}}\right)^2$$