Framing Rules

Henry Blanchette

1 Definitions

Note: in this document "formula" refers to "precise formula," however gradual formulas will eventually be supported.

A **permission** is to either access a field, written access(e.f), or to assume a predicate holds of its arguments, written $assume(\alpha_C(\overline{e}))$.

A formula ϕ requires a permission π if ϕ contains an access or assumption that π premits. The set of all permissions that ϕ requires (the set of permissions required to frame ϕ) is called the requirements of ϕ .

A formula ϕ grants permission π if it contains an adjuct that yields π .

A set of permissions Π frames a formula ϕ if and only if ϕ requires only permissions contained in Π , written

$$\Pi \vDash_I \phi$$
.

The **footprint** of a formula ϕ is the smallest permission mask that frames ϕ , written

$$|\phi|$$
.

A formula ϕ is **self-framing** if and only if for any set of permissions ϕ , $\Pi \vDash_I \phi$, written

$$\vdash_{\mathsf{frm}I} \phi$$
.

In other words, ϕ is self-framing if and only if it grants all the permissions that it requires.

2 Deciding Framing without Aliasing

For this section framing desicions do not consider aliasing, for the sake of an introduction.

The following algorithm decides $\Pi \vDash_{I} \phi$ for a given set of permissions Π and formula ϕ .

The following algorithm collects the set of permissions granted by a given formula ϕ .

2.1 Notes

- The conditional expression e in a formula of the form (if e then ϕ_1 else ϕ_2) is considered indeterminant for the purposes of statically deciding framing.
- The body formula ϕ in a formula of the form (unfolding $acc_C(\overline{e})$) in ϕ) does not have to make use of the $assume(acc_C(\overline{e}))$ required by the structure.

2.2 Deciding Self-Framing without Aliasing

The following algorithm decides $\vdash_{\mathsf{frm}I} \phi$ for a given formula ϕ .

$$\vdash_{\mathsf{frm} I} \phi \iff \varnothing \vDash_I \phi$$

3 Aliasing

The alias status of a set of identifiers $\{x_{\alpha}\}$ is exactly one of the following: aliases, non-aliases, undetermined-aliases.

- The x_{α} are aliases if each x_{α} refers to the same memory in the heap.
- The x_{α} are non-aliases if each x_{α} refers to distinct memory in the heap.
- The x_{α} are undermined-aliases if they may be aliases or non-aliases.

An alias class is a pair [S, I] where S is an alias status and I is a set of identifiers where the identifiers of I have alias status S. identifiers $(\{[S_{\alpha}, I_{\alpha}]\}) := \bigcup I_{\alpha}$ is the set of identifiers of a set of alias classes. It is possible to keep track of undermined-aliases classes. However, for the sake of efficiency, some give identifiers are considered undermined-aliases if no subset of them are asserted as aliases nor non-aliases by any alias class.

A set of alias classes $\{[S_{\alpha}, I_{\alpha}]\}$ is **overlapping** if and only if

$$\bigcup I_{\alpha} \neq \emptyset$$
.

A set of alias statuses $\{S_{\alpha}\}$ is **compatible** if and only if

$$\forall S \in \{S_{\alpha}\} : \forall \alpha : S_{\alpha} = S$$

A set of alias classes A is **compatible** if and only if

$$\forall \{[S_{\alpha}, I_{\alpha}]\} \subset A : \{[S_{\alpha}, I_{\alpha}]\} \text{ is overlapping } \Longrightarrow \{S_{\alpha}\} \text{ is compatible}$$

This is to say that a set of compabile alias classes must not assert that a pair of identifiers are both aliases and non-aliases — every overlapping set of alias classes is compatible.

Given two compatible sets of alias classes A, A', the compatibility of $A \cup A'$ can be considered, written $A \uplus A'$. Deciding $A \uplus A'$ reduces to computing simplify $(A \cup A')$ which either preserves compatibility or raises an exception, where

For each set of overlapping alias classes, simplify either combines then or throws an exception.

3.1 Deciding Alias Class Compatibility

A set of alias classes A is **compatible** with a formula ϕ if and only if A is compatible with the aliasing assertions yielded by ϕ , written $A \uplus \phi$. The following algorithm decides $A \uplus \phi$.

where

$$\neg A := \left\{ \left[\neg S_\alpha, I_\alpha \right] \ \middle| \ \left[S_\alpha, I_\alpha \right] \in A \right\},$$

$$\neg \text{ aliases} := \text{non-aliases},$$

$$\neg \text{ non-aliases} := \text{aliases}.$$

The following algorithm collects the set of alias classes asserted by a given formula ϕ .

The following algorithm collects the set of identifiers in a given set of alias classes A.

$$identifiers(\{[S_{\alpha},I_{\alpha}]\}) := \bigcup I_{\alpha}$$

4 Deciding Framing with Aliasing

For this section framing desicions do consider aliasing. A set of permissions Π and a set of alias classes A frames a formula ϕ if and only if ϕ requires only permission contained in Π and alias-classes (A, ϕ) is compatible.

The following algorithm decides $\Pi \vDash_I \phi$ for a given set of permissions Π and formula ϕ .

The following algorithm collects the set of permissions granted by a given formula ϕ .

4.1 Notes

- The conditional expression e in a formula of the form (if e then ϕ_1 else ϕ_2) is considered indeterminant for the purposes of statically deciding framing.
- The body formula ϕ in a formula of the form (unfolding $acc_C(\overline{e})$) in ϕ) does not have to make use of the $assume(acc_C(\overline{e}))$ required by the structure.

4.2 Deciding Self-Framing with Aliasing

The following algorithm decides $\vdash_{\mathsf{frm}I} \phi$ for a given formula ϕ .

$$\vdash_{\mathsf{frm} I} \phi \iff \varnothing \vDash_I \phi$$