Ch 5.1.4-5: More Cross-Validation Lecture 12 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Oct 7, 2022

Announcements

Last time:

k-fold CV

This lecture:

- More k-fold CV
- Bias-Variance Tradeoff
- CV for classification

Announcements:

- Homework #4 is posted, Due Monday
- •

Section 1

k-fold CV

Approximations of Test Error

Definition of k-fold CV

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(\mathsf{x}_i, \mathsf{y}_j) \in U_i} (\mathsf{y}_j \hat{\mathsf{y}}_j)^2$
- Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

Dr. Munch (MSU-CMSE)

Comparison with simulated data: Ex 3

Comparison with simulated data: Ex 1

Comparison with simulated data: Ex 2

Takeaways from the examples

Dr. Munch (MSU-CMSE) Fri, Oct 7, 2022

Bias-Variance Tradeoff: Bias

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

r. Munch (MSU-CMSE) Fri, Oct 7, 2022

Bias-Variance Tradeoff: Variance

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

r. Munch (MSU-CMSE) Fri, Oct 7, 2022

Coding - Build a plot for train/test scores vs flexibility

Or. Munch (MSU-CMSE) Fri, Oct 7, 2022

Section 2

CV for Classification

r. Munch (MSU-CMSE) Fri, Oct 7, 2022

Setup: LOOCV

- Remove *i*th point (x_i, y_i) and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \operatorname{I}(y_j \neq \hat{y}_j)$
- Rinse and repeat

Return

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Setup: *k*-fold

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \frac{1}{\ell} \sum_{(x_i, y_i) \in U_i} \operatorname{I}(y_j \neq \hat{y}_j)$
- Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE

Example on simulated data: Linear

Degree=1

- Purple: Bayes decision boundary.
 - ► Error rate: 0.133
- Black: Logistic regression
 - $\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
 - ► Error rate: 0.201

Example on simulated data: Quadratic logistic regression

Purple: Bayes decision boundary.

► Error rate: 0.133

• Black: Logistic regression

▶
$$\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2$$

17 / 23

► Error rate: 0.197

Example on simulated data: all the polynomials!

 Purple: Bayes decision boundary.

► Error rate: 0.133

• Black: Logistic regression

Deg 1 Error rate: 0.201Deg 2 Error rate: 0.197

▶ Deg 3 Error rate: 0.160

▶ Deg 4 Error rate: 0.162

Decide degree based on CV

- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)

19 / 23

. Munch (MSU-CMSE) Fri, Oct 7, 2022

Similar game for KNN

- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)

20 / 23

r. Munch (MSU-CMSE) Fri, Oct 7, 2022

Coding - k-fold for Classification section

r. Munch (MSU-CMSE) Fri, Oct 7, 2022

TL;DR

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

Use k = 5 or 10 usually

k-fold CV for classification

$$\mathrm{Err}_i = \mathrm{I}(y_j \neq \hat{y}_j)$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Next time

10	М	Oct 3	Leave one out CV	5.1.1, 5.1.2	
11	W	Oct 5	k-fold CV	5.1.3	
12	F	Oct 7	More k-fold CV, k-fold CV for classification	5.1.4-5	
13	М	Oct 10	Resampling methods: Bootstrap	5.2	HW #4 Due
14	W	Oct 12			
15	F	Oct 14	Subset selection	6.1	
16	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
17	W	Oct 19	Shrinkage: Lasso	6.2.2	
18	F	Oct 21	Dimension Reduction	6.3	
	М	Oct 24	No class - Fall break		
19	W	Oct 26	More dimension reduction; High dimensions	6.4	
20	F	Oct 28	Polynomial & Step Functions.	7.1,7.2	HW #6 Due
	М	Oct 31	Review		
	W	Nov 2	Midterm #2		

Dr. Munch (MSU-CMSE) Fri, Oct 7, 2022