MPC for Group Reconstruction Circuits

Lúcás Críostóir Meier

June 8, 2022

Abstract

In this paper, we present a thing.

1 Introduction

Write the introduction

2 Background

Throughout this paper, we let \mathbb{G} denote a group of prime order q, with generators G and H. Let \mathbb{F}_q denote the scalar field associated with this group, and let $\mathbb{Z}/(q)$ denote the additive group of elements in this field.

We make heavy use of group homomorphisms throughout this paper. We let

$$\varphi(P_1,\ldots,P_m):\mathbb{A}\to\mathbb{B}$$

denote a homomorphism from \mathbb{A} to \mathbb{B} , parameterized by some public values P_1, \ldots, P_m . Commonly \mathbb{A} will be a product of several groups $\mathbb{G}_1, \ldots, \mathbb{G}_n$, in which case we'd write:

$$\varphi(P_1,\ldots,P_m)(x_1,\ldots,x_n)$$

to denote the application of φ to an element (x_1, \ldots, x_n) of the product group. We also often leave the public values P_i implicit.

2.1 Pedersen Commitments

2.2 Sigma Protocols

2.3 Maurer's φ -Proof

In [Mau09], Maurer generalized Schnorr's sigma protocol for knowledge of the discrete logarithm [Sch90] to a much larger class of relations. In particular, Maurer provided a sigma protocol for proving knowledge of the pre-image of a group homomorphism φ . We denote this protocol as a " φ -proof", and recapitulate the scheme here.

Given a homomorphism $\varphi : \mathbb{A} \to \mathbb{B}$, and a public value $X \in \mathbb{B}$, the prover wants to demonstrate knowledge of a private value $x \in \mathbb{A}$ such that $\varphi(x) = X$. The prover does this by means of Protocol 2.1:

Protocol 2.1:
$$\varphi$$
-Proof

Prover
 $k \text{nows } x \in \mathbb{A}$

Verifier
 $k \text{nows } x \in \mathbb{A}$

public $X \in \mathbb{B}$

$$k \overset{R}{\leftarrow} \mathbb{A}$$

$$K \leftarrow \varphi(k)$$

$$\overset{K}{\rightarrow} \qquad c \overset{R}{\leftarrow} \mathbb{Z}/(p)$$

$$\overset{c}{\leftarrow} \qquad s \leftarrow k + c \cdot x$$

$$\overset{s}{\rightarrow} \qquad \varphi(s) \overset{?}{=} K + c \cdot X$$

Here, p is chosen such that $\forall B \in \mathbb{B}$. $p \cdot B = 0$. In practice, we'll set p = q, which will work perfectly for the groups we use, which are all products of \mathbb{G} or $\mathbb{Z}/(q)$.

Claim 2.1. Protocol 2.1 is a valid sigma protocol.

Completeness follows directly from the fact that φ is a homomorphism.

For the HVZK property, the simulator S(X, c) works by generating a random $s \stackrel{R}{\leftarrow} \mathbb{A}$, and then setting $K := \varphi(S) - c \cdot X$.

Finally, we prove 2-extractability. Given two verifying transcripts (K, c, s) and (K, c', s') sharing the first message, we extract a value \hat{x} satisfying $\varphi(\hat{x}) = X$ as follows:

$$\varphi(s) - c \cdot X = K = \varphi(s') - c' \cdot X$$

$$\varphi(s) - \varphi(s') = c \cdot X - c' \cdot X$$

$$\frac{1}{c - c'} \cdot \varphi(s - s') = X$$

$$\varphi\left(\frac{s - s'}{c - c'}\right) = X$$

Thus, defining $\hat{x} := (s-s')/(c-c')$, we successfully extract a valid pre-image.

We conclude that the protocol is a valid sigma protocol.

Maurer's protocol can also work even in the case where the order of the groups are not known, but this makes the challenge generation a bit more complicated, and we don't need this functionality in this work.

- 2.4 UC Security and the Hybrid Model
- 2.5 Ideal Functionalities for Sigma Protocols
- 2.6 Broadcast Functionalities
- **3 Group Reconstruction Circuits**
- 3.1 Formal Definition
- 3.2 Normalized Form
- 4 MPC Protocol for GRCs
- **5** Security Analysis
- 6 Applications
- 7 Limitations and Further Work
- 8 Conclusion

References

- [Mau09] Ueli Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In *AFRICACRYPT 2009*, volume 5580 of *LNCS*, pages 272–286. Springer, Berlin, Heidelberg, 2009.
- [Sch90] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO 1989, volume 435 of LNCS, pages 239–252, New York, NY, 1990. Springer.