CHAPTER 1: Atomic Structure

- 1.1 Inside the Atom
- 1.2 Isotopes

Learning outcomes:

- (a) identify and describe protons, neutrons and electrons in terms of their relative charges and relative masses.
- (b) deduce the behaviour of beams of protons, neutrons and electrons in electric fields.
- (c) describe the distribution of mass and charges within an atom.
- (d) deduce the numbers of protons, neutrons and electrons present in both atoms and ions given proton and nucleon numbers (and charge).
- (e) (i) describe the contribution of protons and neutrons to atomic nuclei in terms of proton number and nucleon number.
 - (ii) distinguish between isotopes on the basis of different numbers of neutrons present
 - (iii) recognise and use the symbolism ${}_{y}^{\times} A$ where x is the nucleon number and y is the proton number.

1.1 Inside the Atom

Sub-atomic particles

- 1) Electrons revolve around in region of space called orbitals.
- 2) Electrons **do not** move in fixed orbits.
- 3) The nucleus is made up of **protons and neutrons** which contains almost all the mass of the atom. This is because the mass of electrons is very small compared to others.
- 4) The nucleus is positively-charged because of the protons. Electrons, being negatively-charged, surround the nucleus.

Particles	Relative mass	Relative Charge	Charge / C
Protons, p	1	+1	+1.6 x 10 ⁻¹⁹
Neutron, n	1	0	0
Electron, e	1 1836	-1	-1.6 x 10 ⁻¹⁹

Behaviour of sub-atomic particles in electric field

- 1) Proton will be deflected towards the **negative plate** because it is **positively-charged**.
- electric field

 +

 n

 p
- 2) Electron will be deflected towards the **positive plate** because it is **negatively-charged**.
- 3) Neutron will **not** be deflected and continue in their direction of motion because it is **neutral**(not charged).
- 4) **Angle of deflection of electron > Angle of deflection of proton** because the mass of electron is smaller than proton. (angle of deflection is inversely proportional to charge/mass ratio)
- 5) Conclusion:
 - i. Protons are positively-charged
 - ii. Electrons are negatively-charged
 - iii. Neutrons are neutral
 - iv. Protons are much heavier than electron

Nucleon number and proton number

- 1) Proton number is the total number of protons in an atom.
- 2) Nucleon number is the total number of protons and neutrons in an atom.
- 3) Proton number is also known as atomic number while nucleon number is also known as mass number.
- 4) In a neutral atom, the total number of protons **equals** to the total number of electrons.

- 5) When an atom gains or loses electrons, a cation or anion will be formed.
- 6) *Cation* is a positively-charged ion. It is formed when an atom **loses** electron(s). In cation, the number of protons is more than the number of electrons.
- 7) *Anion* is a negatively-charged ion. It is formed when an atom **gains** electron(s). In anion, the number of electrons is more than the number of protons.
- 8) An atom or ion is said to be
 - i. isoelectronic if they have the same number of electrons.
 - ii. **isotonic** if they have the same number of neutrons.
 - iii. isotopic if they have the same number of protons.

To deduce the number of protons, neutrons and electrons in an atom/ion

Atom/Ion	no. of protons	no. of neutrons	no. of electrons
16 O	8	16 - 8 = 8	8 + 0 = 8
17 O	8	17 – 8 = 9	8 + 0 = 8
18 O	8	18 - 8 = 10	8 + 0 = 8
16 O 2− 8 O 2−	8	16 – 8 – 8	8+2-10
35 C <i>l</i>	17	35 – 17 = 18	17 + 0 = 17
37 C <i>l</i>	17	37 – 17 – 20	17 + 0 - 17
35 Cl -	17	35 - 17 = 18	17 + 1 = 18
¹⁴ ₇ N	7	14 – 7 = 7	7+0=7
¹⁴ ₇ N ³⁻	7	14 - 7 = 7	7 + 3 = 10
73Li *	3	7 – 3 = 4	3-1=2
23 Na +	11	23 – 11 = 12	11-1-10
²⁷ ₁₃ AI ³⁺	13	27 – 13 = 14	13 – 3 = 10
63 Cu +	29	63 – 29 = 34	29 – 1 = 28

1.2 Isotopes

<u>Isotopes</u>

1) *Isotopes* are atoms of the same element with the same number of proton but different number of neutron.

Example:

- 2) Isotopes have the **same**:
 - i. number of protons and electrons
 - ii. electronic configuration
 - iii. chemical properties(because they have the same number of electrons)
- 3) Isotopes have **different**:
 - i. number of neutrons and nucleon number
 - ii. mass
- iii. density
- iv. molecular speed
- 4) Isotopes can be stable or unstable. Unstable isotopes are called radioactive isotopes(radioisotopes).

Isotopic symbol	1 H	² H	3 H
Name	Protium	Deuterium	Tritium
Proton	1	1	1
Neutron	0	1	2
Electron	1	1	1

