

Content

- Data types-organization-modality
- Increasing complexity, added benefit
- Curse of dimensionality
- Exploring data with a purpose

Data Comes in Many Forms, Shapes and Sizes!

Velocity: Speed

Volume: Size

Variety: Type

Veracity: Data quality

and data value

Data Types

Numeric – a *quantifiable* number

Type – integer (e.g. age), floating (e.g. price), time, date, ...

Stats - min/max/median/mean/...

Units – (C/F), (KG/Lb), (Meter/Feet), (Sec/Min/Hrs),

Distributions – exponential/uniform/...

Data Types

)[

Ordinal – not quantifiable but ordered

Data Types

Symbolic – neither quantifiable, nor ordered

E.g. color = red/green/blue/...

E.g. state/country/region/...

E.g. weather = rainy/cloudy/windy/...

Data Organization

MULTIVARIATE (rows (**examples**) of columns (**features**))

	feaure-1	feature-2	feature-3	feature-4	feature-5
example-1					
example-2					
example-3					
example-4					
example-5					
example-6					
example-7					

Low Dimensional and Dense

Data Organization

BASKET

(**sets** of things) market basket, keyword list

	item-1	item-2	Item-3	Item-4	item-10M
example-1	1		1		
example-2				1	1
example-3					
example-4	1	1			
example-5				1	
example-6		1		1	
example-7			1		1

High Dimensional and Sparse

Data Organization

BAG (weighted sets of things) Bag-of-Words, Bag-of-Visual Words

	item-1	item-2	Item-3	Item-4	item-100M
example-1	10		5		
example-2				13	11
example-3					
example-4	18	12			
example-5				21	
example-6		4		51	
example-7			1		32

High Dimensional and Sparse

Data Structure

STRUCTURED – fixed columns in a table

Multivariate data

Mix of numeric and symbolic features

Data Structure

UNSTRUCTURED -- Arbitrary size data points

SEQUENCE: biological, speech, ...

SERIES: stock market, etc.

TEXT: pages, queries, tweets, ads, blogs, news, ...

IMAGE: regular, medical, remote sensing,...

VIDEO: regular, movies, security, surveillance,...

Mixture of Feature Types: Is More Better?

Numeric + Categorical features → Distance function???

Numeric features -> Distance function is well defined.

Categorical features → Distance function is not defined

Numeric + Categorical + *Text features* → Modeling???

Structured data
Unstructured data

Collections Case Study

Application data

Payment History

Call Center Notes

Curse of Dimensionality

][

As variables get added data space becomes very sparse Establishing causality and prediction accuracy become difficult

Curse of Dimensionality

Examples:

Construct an investment portfolio out of 200 stocks

Determine rankings (university, movie, candidate for election, ___) based on available information on different measures

Decide who to serve an ad based on different attributes (wealth, income, cars, preferences, sites visited, marital status, health, age,)

Potential remedies

Detect small variation in data for some features

Combine features because they correlate highly

Cluster so that features nearly same and eliminate

Domain Knowledge

Others: Debate whether feature detection and model development be done together. Domain experts might argue one way Deep Learning proponents the other.

Data Exploration With a Purpose

A Picture is Worth a Million Numbers!

"Often the most effective way to **describe**, **explore**, and **summarize** a set of **numbers** – even a very large set – is to **look at pictures** of those numbers"

Edward R. Tufte

Different Ways of Visualizing Data

Histograms / Distributions

Density Estimation

Covariance Analysis

Scatter Plots

Different Ways of Visualizing Data

)[

Principal Components Analysis

(Fisher) Discriminant Analysis*

Multi-Dimensional Scaling

Self-Organizing Maps

Manifold Learning

Discriminant analysis models the difference between the classes of data. PCA does not take into account difference in classes.

Iris Data – the "Original" Dataset...

How does the data look in various 2-D views?

FEATURES:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

4

- 50
- 50
- 50

Source: R.A. Fisher

Iris Setosa

© 2011 Radomil / CC BY-SA 3.0 / https://bit.ly/2vhLYQk

Iris Versicolour

© 2005 Dlanglois / CC BY-SA 3.0 / https://bit.lv/2KQOo30

Iris Virginica

© 2010 Frank Mayfield / CC BY-SA 2.0 / https://bit.ly/2XCKcWd

Iris – Scatter Plots

Source: R.A. Fisher

Iris - Scatter Plots + Class Labels

Source: R.A. Fisher

Iris – More Scatter Plots

Source: R.A. Fisher

Scatter Plots

Simple and Powerful Visualization

Limited to 2 or 3 dimensions at a time

Limited to dimensions from among given

What if many dimensions (e.g. 100+)

We need to see O(10,000) pairs of features

Solution? **Projections**

Different Ways of Visualizing Data

Histograms / Distributions

Density Estimation (later)

Covariance Analysis

Scatter Plots

Principal Components Analysis

Discriminant Analysis

Multi-Dimensional Scaling

Self-Organizing Maps

Manifold Learning

Orthogonal Bases - 101

 \prod

UNORDERED – all bases equally important!

ORDERED – bases have decreasing importance

$$3528 = 3 \times 10^3 + 5 \times 10^2 + 2 \times 10^1 + 8 \times 10^0$$

Which is the "Best" Projection?

How do we "measure" the "goodness" of a projection?

The one that "preserves" the maximum "information"

Projection: Spherical Data Cloud

Which "Measure" Do We Use Here?

Which is the "Best" projection?

How do we "measure" the "goodness" of a projection?

The one that "preserves" the maximum "information"

Which is the Best/Worst Projection?

Complete and Orthogonal

Complete Set of Orthogonal Projections Capture All Information

Complete Projection

Capture the most Then the next Then the next Until complete

Rattle example

PCA on University Data

Download instructions given in University_Data_Downloader-1.2_updated.pdf

Variable	Description	
Univ	University name	
SAT	Average SAT scores of new	freshmen
Top10	% new freshmen in top 10%	of highschool class
Accept	% of applicants accepted	
SFRatio	Student-to-faculty ratio	
Expenses	Estimated annual expenses	
GradRate	Graduation rate (%)	■ Data Viewer

Download from
http://users.stat.umn.
edu/~kb/classes/8401
/files/data/JWData5.t
xt

	University	SAT	Top10	Accept	SFRatio	Expenses	Grad
1	Harvard	14.00	91	14	11	39.525	97
2	Princeton	13.75	91	14	8	30.220	95
3	Yale	13.75	95	19	11	43.514	96
4	Stanford	13.60	90	20	12	36.450	93
5	MIT	13.80	94	30	10	34.870	91
6	Duke	13.15	90	30	12	31.585	95
7	Cal Tech	14.15	100	25	6	63.575	81

PCA in Rattle

ource:	File O ARFF	ODEC O	R Dataset	O RData Fi	ile 🔾 Lib
lename:	university_ak_a4	Separato	or: , Dec	imal: .	Header
Partition	70/15/15 Seed:	42	Ç	Edit	
	- N				
nput (gnore Weight Ca	alculator:			Target D
Input	gnore Weight Ca	alculator:	Risk	Ident	
No. Variable			Risk	Ident	Au
No. Variable 1 University	Data Type Input		Risk	1032033	Au
No. Variable 1 University	Data Type Input		Risk O	1032033	Au
No. Variable 1 University 2 SAT	Data Type Input y Categoric Numeric		0	•	Ignore
No. Variable 1 University 2 SAT 3 Top10	Data Type Input y Categoric Numeric Numeric Numeric Numeric Numeric		0	OO	Ignore

Execute	New Ope	en Save	Export Sto	p Quit		
Data Explo	re Test Transf	form Cluster A	Associate Model	Evaluate Log		
,, ,	, ,		Correlation	Principal Co	mponents) Ir	nteract
_	SVD () Eig					
_) in any of	_		
		_	iables that			
-	_	modelling.	Lubico ondo	you may wi		
55 111011						
Danela	maatama: 2	020 04 21 5	21.22.42			
Rattle ti	mestamp: 2	020-04-21 2	21:23:43 ash	is ========		
	i			is 		
Standard	deviations	(1,, p=	=5):			
Standard	deviations	(1,, p=			0	
Standard [1] 2.001	deviations	(1,, p= 2254 0.4679	=5):		0	
Standard [1] 2.001	deviations .9448 0.781 (n x k) =	(1,, p= 2254 0.4679 (5 x 5):	=5): 9291 0.36944	89 0.162646		
Standard [1] 2.001	deviations .9448 0.781 (n x k) = PC1	(1,, p= 2254 0.4679 (5 x 5):	=5): 9291 0.36944 2 PC3	89 0.162646 PC4	PC5	
Standard [1] 2.001 Rotation	deviations 19448 0.781 (n x k) = PC1 0.4926464	(1,, p= 2254 0.4679 (5 x 5): PC2 -0.0995995	=5): 9291 0.36944 2 PC3 5 0.04110893	PC4	PC5 0.8574157	
Standard [1] 2.001 Rotation SAT	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955	(1,, p= 2254 0.4679 (5 x 5): PC2 -0.0995995 -0.4136308	=5): 9291 0.36944 2 PC3 5 0.04110893 3 0.20805559	PC4 -0.1026054 -0.6502525	PC5 0.8574157 -0.3964037	
Standard [1] 2.001 Rotation SAT TOP10 Accept	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995995 -0.4136308 0.4856502	=5): 9291 0.36944 2 PC3 5 0.04110893 3 0.20805559 2 0.12455255	PC4 -0.1026054 -0.6502525 -0.7108731	PC5 0.8574157 -0.3964037 0.2192424	
Standard [1] 2.00] Rotation SAT TOP10 Accept SFRatio	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.4856502 -0.4693983	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.12455255 8 0.74004643	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.00] Rotation SAT TOP10 Accept SFRatio	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.4856502 -0.4693983	=5): 9291 0.36944 2 PC3 5 0.04110893 3 0.20805559 2 0.12455255	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.485650 -0.4693983 0.6023277	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.12455255 3 0.74004643 7 0.62597194	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.485650 -0.4693983 0.6023277	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.12455255 8 0.74004643	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses Rattle ti	deviations 9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017 mestamp: 2	(1,, p= 2254 0.4679 (5 x 5): PC2 -0.0995995 -0.4136308 0.4856508 -0.4693983 0.6023277	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.12455255 3 0.74004643 7 0.62597194	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses Rattle ti	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017	(1,, p= 2254 0.4679 (5 x 5): PC2 -0.0995995 -0.4136308 0.4856508 -0.4693983 0.6023277	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.12455255 3 0.74004643 7 0.62597194	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311	PC5 0.8574157 -0.3964037 0.2192424 0.1728397	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses Rattle ti	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017 mestamp: 2	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.4856502 -0.4693983 0.6023277	2 PC3 5 0.04110893 6 0.04110893 7 0.12455255 8 0.74004643 7 0.62597194 21:23:43 ash	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311 is	PC5 0.8574157 -0.3964037 0.2192424 0.1728397 -0.1725158	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses Rattle ti	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017 mestamp: 2	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.4856502 -0.4693983 0.6023277	=5): 9291 0.36944 2 PC3 5 0.04110893 8 0.20805559 2 0.1245525 8 0.74004643 7 0.62597194 21:23:43 ash	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311 is	PC5 0.8574157 -0.3964037 0.2192424 0.1728397 -0.1725158	
Standard [1] 2.001 Rotation SAT TOP10 Accept SFRatio Expenses Rattle ti	deviations .9448 0.781 (n x k) = PC1 0.4926464 0.4534955 -0.4418402 -0.4304294 0.4137017 	(1, ., p= 2254 0.4679 (5 x 5): PC2 -0.0995999 -0.4136308 0.4856502 -0.4693983 0.6023277 020-04-21 2 nents: PC1 2.0019	2 PC3 5 0.04110893 6 0.04110893 7 0.12455255 8 0.74004643 7 0.62597194 21:23:43 ash	PC4 -0.1026054 -0.6502525 -0.7108731 0.1298208 0.2108311 is PC3 PC4 793 0.3694	PC5 0.8574157 -0.3964037 0.2192424 0.1728397 -0.1725158 PC5 0.16265	

university <- read.csv("Universities.csv") # read data in R

pca_univ <- prcomp(university[,c(3:7)], center = TRUE, scale. = TRUE)

PCA model

Feature Scaling and Centering done to prevent one feature from dominating another. Feature Transformation/weights done to prevent skewed data affecting outcomes.

PCs <- pca_univ\$x # extracting the components

university_pca <- cbind(university,PCs) # saving the PCs in the dataset

summary(pca_univ) # get PCA summary

Source: Output in RStudio

Model with all five variables (without PCA)

```
model <- Im(GradRate~
SAT+Top10+Accept+SFRatio+Expenses, data =
university_pca)
summary(model)
```

Adjusted R-squared: 0.6342

Multiple R-squared: 0.7104

```
# Model with PCA - 1st component
```

```
model_pca1 <-Im(GradRate~ PC1, data = university_pca) summary(model_pca1)
```

- # Multiple R-squared: 0.5414
- # Adjusted R-squared: 0.5215

```
# Model with PCA - 2 components
```

```
model_pca2 <-lm(GradRate~ PC1+PC2, data = university_pca)
```

summary(model_pca2)

- # Multiple R-squared: 0.6705
- # Adjusted R-squared: 0.6405

We find that the Adj Rsq is even higher when we use two Principal Components instead of using the five variables.

PCA Exercise

For the PCA model analyzed using Rattle, run a linear regression (using R commands) to predict the graduation rate based on the first three principal components.

Report the Adj Rsq. It should be approximately 0.66.

Run PCA_IRIS_commented.R script

Iris data set is in R library. If you get an error keep running and it will use iris dataset in the library.

You will see the Principal Components tell a story similar to what we saw when we examined correlations!

When to Use PCA?

When the **DATA** is **MULI-VARIATE** and **NUMERIC**

When Number of **FEATURES** is **LARGE**

When Data is **Unimodal**

When **CLASS** labels are **NOT** present / ignored

When to Use PCA?

I

To **VISUALIZE** the data – top 2 or top 3 PC's.

To **REDUCE** #Dimensions/Features for next stages

To **REMOVE Noise** in features and **Outliers** in data

Some Other Methods

<u>ן</u>

Fisher Discriminant Analysis

Multi-dimensional Scaling (MDS)

t-SNE

Self Organizing Maps

Summary

Curse of dimensionality: creates issues when predicting and extending results

Data visualization comes to our help! Helps identify clusters and features for further analysis

PCA: For numeric data provides handy guidance to identifying important features

References

Dlanglois. (2005, July 9). Iris versicolor3. Wikimedia Commons. Retrieved from https://bit.ly2KQOo30

Ender005. (2016, July 3). *Big data*. Wikimedia Commons. Retrieved from https://bit.ly/2vC7akq

Fisher, R. A. Iris dataset.

Fulkerson, A. (2011, February 7). *Edware Tufte giving a class*. Wikimedia Commons. Retrieved from https://bit.ly/2Vklbk2

KMJ. (2009, April 7). Flashlight. Wikimedia Commons. Retrieved from https://bit.ly/2KS7s0V

Radomil. (2015, May 15). *Kosaciec szczecinkowaty Iris* setosa. Wikimedia Commons. Retrieved from https://bit.ly/2vhLYQk

Mayfield, F. (2007, May 28). Iris virginica. Wikimedia Commons. Retrieved from https://bit.ly/2XCKcWd

Rattle GUI / Togaware (https://rattle.togaware.com/