Household Electricity Consumption Data Analysis Report

Overview

This report presents a detailed analysis of household electricity consumption data, focusing on anomaly detection, correlation analysis, and consumption pattern analysis. The analysis was performed on Week 4 of the dataset, examining various electrical measurements including power consumption, voltage, and current intensity.

1. Anomaly Detection and Data Preprocessing

1.1 Data Preprocessing

The initial phase involved handling missing values in the dataset through linear interpolation. This method was chosen because:

- It preserves the temporal relationship between data points
- It provides reasonable estimates for missing values based on adjacent known values
- It maintains the overall trend of the time series data

The implementation used R's approx() function within a custom interpolate_na() function that handles both numeric and non-numeric columns appropriately.

1.2 Anomaly Detection Methodology

Point anomalies were detected using Z-score analysis, which measures how many standard deviations a data point is from the mean. The process involved:

- Calculating Z-scores for each numeric feature using the scale() function
- Identifying points where |Z-score| > 3 as anomalies
- Computing anomaly percentages per feature and for the entire dataset

1.3 Results

The following results summarize the total anomalies detected for each feature and their percentage of total data points:

Feature	Anomalies Detected	Percentage of Anomalies	
Global Active Power	8,718	1.66%	
Global Reactive Power	5,606	1.07%	
Voltage	2,890	0.55%	
Global Intensity	9,623	1.83%	
Sub-Metering 1	14,925	2.84%	
Sub-Metering 2	14,868	2.83%	
Sub-Metering 3	23	0.004%	

Complete Dataset Anomalies

- Total anomalies detected across all features: 56,653
- Overall anomaly percentage (across all features and observations): 1.539818% = 1.54%
 (Approximately)

2. Pearson's Correlation Calculation

2.1 Methodology

Pearson correlation coefficients were calculated for all pairs of variables using the cor() function with method="pearson". This analysis focused on Week 4 data to understand relationships between different electrical measurements.

2.2 Key Findings

The correlation analysis helps identify relationships between variables such as:

- Global active power and global intensity
- Sub-metering relationships
- Voltage relationships with other measurements

There is a strong positive correlation between **Global Intensity** and **Global Active Power**, indicating that as power consumption increases, so does the current drawn.

Additionally, there is a strong negative correlation between **Voltage** and both **Global Active Power** and **Global Intensity**, suggesting that higher power consumption tends to cause a drop in voltage levels.

	А	В	С	D	Е	F	G
А	1.00	0.17	-0.65	0.91	0.32	0.41	0.53
В	0.17	1.00	-0.14	0.20	0.09	0.15	0.07
С	-0.65	-0.14	1.00	-0.68	-0.21	-0.25	-0.39
D	0.91	0.20	-0.68	1.00	0.38	0.44	0.52
E	0.32	0.09	-0.21	0.38	1.00	0.08	0.17
F	0.41	0.15	-0.25	0.44	0.08	1.00	0.14
G	0.53	0.07	-0.39	0.52	0.17	0.14	1.00

3. Global Intensity Pattern Analysis

3.1 Time Window Analysis

The analysis separated data into four distinct categories:

- Weekday Daytime (7:30 AM 5:00 PM)
- Weekday Nighttime (6:00 PM 12:00 AM)
- Weekend Daytime (7:30 AM 5:00 PM)
- Weekend Nighttime (6:00 PM 12:00 AM)

3.2 Regression Analysis

Two types of regression were performed:

- Linear Regression (First-Order)
- Polynomial Regression (Third-Order)

3.3 Pattern Analysis Results

Linear Regression Findings

From the linear regression plot:

- Weekday daytime shows a declining trend in intensity
- Weekend daytime shows an increasing trend
- Both nighttime periods show moderate upward trends

Weekend consumption generally shows higher intensity levels

Polynomial Regression Findings

The polynomial regression reveals more complex patterns:

- Weekday daytime shows a curved decline with some stabilization
- Weekend daytime shows a pronounced peak in the middle of the day
- Nighttime patterns show more nuanced variations compared to linear regression
- The curves better capture the natural fluctuations in power usage

3.4 Interpretation

The regression analysis reveals several important patterns:

- Clear differences between weekday and weekend consumption
- Different patterns between day and night usage
- Non-linear relationships in actual usage patterns
- Higher variability during daytime hours
- More stable patterns during nighttime hours

4. Conclusions

The analysis reveals several key insights about household electricity consumption:

- The data contains identifiable anomalies that may represent unusual usage patterns
- Strong correlations exist between certain electrical measurements
- Clear distinctions exist between weekday and weekend consumption patterns
- Polynomial regression better captures the nuanced patterns of electricity usage
- Time-of-day significantly influences consumption patterns

5. Technical Implementation Notes

The analysis was implemented in R using several key functions and packages:

- Data manipulation: base R function
- Statistical analysis: cor(), lm()
- Visualization: base R plotting functions
- Time series handling: POSIXct and POSIXIt classes