Linear Algebra Notes

Alex Feng

June 2023

1 Linear Equations

Definition: Echelon Form

A rectangular matrix is in echelon form (or row echelon form/REF) if it has the following properties:

- 1. All nonzero rows are above any rows of all zeros
- 2. Each leading entry of a row is in a column to the right of a leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

A matrix is in reduced echelon form (or reduced row echelon form/RREF) if it also satisfies the additional conditions:

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

$$\begin{bmatrix} 0 & 1 & 3 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

This is an example of a matrix in RREF form

Theorem 1: Uniqueness of the RREF

Each matrix is row equivalent to one and only one reduced echelon matrix.

Definition: Pivot Position

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

Convention: Free variables

Parametric descriptions of solutions should be written in terms of free variables (variables corresponding to non-pivot columns). Basic variables correspond to pivot columns.

Theorem 2: Existence and Uniqueness Theorem

A linear system is consistent iff the rightmost column of the augmented matrix is not a pivot column. A consistent system will have either a unique solution (no free variables) or infinitely many solutions (at least one free variable).

Definition: Span

If $\vec{v}_1, \ldots, \vec{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\vec{v}_1, \ldots, \vec{v}_p$ is denoted by $\operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\vec{v}_1, \ldots, \vec{v}_p$.

Definition: Matrix Multiplication

If A is an $m \times n$ matrix, with columns $\vec{a}_1, \ldots, \vec{a}_n$, and if \vec{x} is in \mathbb{R}^n , then the product of A and \vec{x} , denoted by $A\vec{x}$, is the linear combination of the columns of A using the corresponding entries in \vec{x} as weights.

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

Theorem 3: Matrix Equation Solutions

If A is an $m \times n$ matrix, with columns $\vec{a}_1, \dots, \vec{a}_n$, and if \vec{b} is in \mathbb{R}^n , the matrix equation

$$A\vec{x} = \vec{b}$$

has the same solution set as the vector equation

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b}$$

which also has the same solutions set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n & \vec{b} \end{bmatrix}$$

Theorem 4: Logically Equivalent Matrix Statements

Let A be an $m \times n$ coefficient matrix. Then the following statements are either all true or all false for a particular A.

- a. For each \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = \vec{b}$ has a solution.
- b. Each \vec{b} in \mathbb{R}^m is a linear combination of the columns of A
- c. The columns of A span \mathbb{R}^m
- d. A has a pivot position in every row.

Theorem 5: Matrix Product Properties

If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{R}^n , and c is a scalar, then:

$$A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$$

$$A(c\vec{u}) = c(A\vec{u})$$

Theorem 6: Homogeneous Equation Solutions

For a consistent equation $A\vec{x} = \vec{b}$, let \vec{p} be a solution. The solution set of $A\vec{x} = \vec{b}$ is the set of all vectors of the form $\vec{w} = \vec{p} + \vec{v}_h$, where \vec{v}_h is any solution of the homogeneous equation $A\vec{x} = 0$

Definition: Linear Dependence

An indexed set of vectors $\{\vec{v}_1,\ldots,\vec{v}_p\}$ in \mathbb{R}^n is said to be linearly independent if the vector equation

$$x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_p \vec{v}_p = 0$$

has only the trivial solution. The set $\{\vec{v}_1, \dots, \vec{v}_p\}$ is said to be linearly dependent if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = 0$$

Theorem 7: Characterization of Linearly Dependent Sets

An indexed set $S = \{\vec{v}_1, \dots, \vec{v}_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.

Theorem 8: Number of Entries and Vectors for Linear Dependence

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\vec{v}_1, \ldots, \vec{v}_p$ in \mathbb{R}^n is linearly dependent if p > n.

Theorem 9: Zero Vector and Linear Dependence

If a set $S = \vec{v}_1, \dots, \vec{v}_p$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Definition: Linear Transform

A transformation (or mapping) T is linear if

- (i) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u}, \vec{v} in the domain of T;
- (ii) $T(c\vec{u}) = cT(\vec{u})$ for all scalars c and all \vec{u} in the domain of T.

Theorem 10: Unique Matrix for Linear Transformation

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation. then there exists a unique matrix A such that

$$T(\vec{x}) = A\vec{x}$$
 for all \vec{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\vec{e_j})$, where $\vec{e_j}$ is the jth column of the identity matrix in \mathbb{R}^n :

$$A = \begin{bmatrix} T(\vec{e}_1) & \cdots & T(\vec{e}_n) \end{bmatrix}$$

Definition: Onto

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at least one \vec{x} in \mathbb{R}^n .

Definition: One-to-one

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at most one \vec{x} in \mathbb{R}^n .

Theorem 11: Linear Transformation Trivial Solution

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(\vec{x}) = 0$ has only the trival solution.

Theorem 12: Conditions for One-to-one Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. then:

a. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m :

b. T is one-to-one iff the columns of A are linearly independent.

2 Matrix Algebra

Theorem 1: Matrix Arithmetic

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

b.
$$(A+B) + C = A + (B+C)$$

c.
$$A + 0 = A$$

$$d. r(A+B) = rA + rB$$

e.
$$(r+s)A = rA + sA$$

f.
$$r(sA) = (rs)A$$

Definition: Matrix Composition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\vec{b}_1, \ldots, \vec{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\vec{b}_1, \ldots, A\vec{b}_p$. That

$$AB = A \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_p \end{bmatrix} = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \cdots & A\vec{b}_p \end{bmatrix}$$

Theorem 2: Properties of Matrix Multiplication

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- a. A(BC) = (AB)C (associative law of multiplication)
- b. A(B+C) = AB + AC (left distributive law)
- c. b + CA = BA + CA (right distributive law)
- d. r(AB) = (rA)B = A(rB) for any scalar r
- e. $I_m A = A = A I_n$ (identity for matrix multiplication)

Theorem 3: Transpose Properties

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$
d. $(AB)^T = B^TA^T$

$$d. (AB)^T = B^T A^T$$

Theorem 4: Two by Two Invertible Matrix

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

Theorem 5: Invertible Matrix Solutions

If A is an invertible $n \times m$ matrix, then for each \vec{b} in \mathbb{R}^n , the equation $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$

Theorem 6: Properties of Invertible Matrix

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

Theorem 7: Conditions for Matrix Invertibility

An $n \times n$ matrix A is invertible iff A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduced A to I_n also transforms I_n into A^{-1} .

Theorem 8: The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\vec{x} = 0$ only has the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.
- g. The equation $A\vec{x} = \vec{b}$ has at least one solution for each \vec{b} in \mathbb{R}^n .
- h. the columns of A span \mathbb{R}^n .
- i. The linear transformation $\vec{x} \mapsto A\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- l. A^T is an invertible matrix.

Theorem 9: Invertible Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible iff A is an invertible matrix. In that case, the linear transformation S given by $S(\vec{x}) = A^{-1}\vec{x}$ is the unique function satisfying $S(T(\vec{x})) = \vec{x}$ for all \vec{x} in \mathbb{R}^n and $T(S(\vec{x})) = \vec{x}$ for all \vec{x} in \mathbb{R}^n

Theorem 10: Column-Row Expansion of AB

If A is $m \times n$ and B is $n \times p$, then

$$AB = \begin{bmatrix} \operatorname{col}_1(A) & \operatorname{col}_2(A) & \cdots & \operatorname{col}_n(A) \end{bmatrix} \begin{bmatrix} \operatorname{row}_1(B) \\ \operatorname{row}_2(B) \\ \vdots \\ \operatorname{row}_n(B) \end{bmatrix}$$

$$= \operatorname{col}_1(A)\operatorname{row}_1(B) + \dots + \operatorname{col}_n(A)\operatorname{row}_n(B)$$

3 Determinants

Definition: Determinant

For $n \geq 2$, the determinant of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j} \det A_{1j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols,

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

Theorem 1: Cofactor

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactors in $C_{ij} = (-1)^{i+j} \det A_{ij}$ is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the *j*th column is

$$\det A = a_{1i}C_{1i} + a_{2i}C_{2i} + \dots + a_{ni}C_{ni}$$

Theorem 2: Determinant of Triangular Matrix

If A is a triangular matrix, then $\det A$ is the product of the entries on the main diagonal of A.

Theorem 3: Row Operations for Determinants

Let A be a square matrix

- a. If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- b. If two rows of A are interchanged to produce B, then $\det B = -\det A$
- c. If one row of A is multiplied by k to produce B, then $\det B = k \det A$

Theorem 4: Determinants and Invertibility

A square matrix A is invertible iff $\det A \neq 0$

Theorem 5: Determinant of a Transpose

If A is an $n \times n$ matrix, then $\det A^T = \det A$

Theorem 6: Multiplicative Property

If A and B are $n \times n$ matrices, then $\det AB = (\det A)(\det B)$

4 Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \vec{u} , \vec{v} , and \vec{w} in V and for all scalars c and d.

- 1. The sum of \vec{u} and \vec{v} , denoted by $\vec{u} + \vec{v}$, is in V.
- 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- 3. $(\vec{u} + \vec{v}) + w = \vec{u} + (\vec{v} + \vec{w})$.
- 4. There is a zero vector 0 in V such that $\vec{u} + 0 = \vec{u}$.
- 5. For each u in V, there is a vector -u in V such that $\vec{u} + (-\vec{u}) = 0$.
- 6. $c\vec{u}$ is in V
- 7. $c(\vec{u} + \vec{v}) = c\vec{u} + d\vec{u}$
- 8. $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
- 9. $c(d\vec{u}) = (cd)\vec{u}$
- 10. $1\vec{u} = \vec{u}$

Definition: Subspace

A subspace of a vector space V is a subset H of V that has three properties:

- a. The zero vector of V is in H.
- b. H is closed under vector addition. That is, for each \vec{u} and \vec{v} in H, the sum $\vec{u} + \vec{v}$ is in H.
- c. H is closed under multiplication by scalars. That is, for each \vec{u} in H and each scalar c, the vector $c\vec{u}$ is in H.

Theorem 1: Subspace and Span

If $\vec{v}_1, \ldots, \vec{v}$ are in vector space V, then $\mathrm{Span}\{\vec{v}_1, \ldots, \vec{v}_P\}$ is a subspace of V

Definition: Null Space

The null space of an $m \times n$ matrix A, written as NulA or $\mathcal{N}(A)$, is the set of all solutions of the homogeneous equation $A\vec{x} = 0$. In set notation,

$$\mathcal{N}(A) = \{\vec{x} : \vec{x} \text{ is in } \mathbb{R}^n \text{ and } A\vec{x} = 0\}$$

Theorem 2: Null Space Subspace

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\vec{x} = 0$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Definition: Column Space

The column space of an $m \times n$ matrix A, written as ColA or C(A), is the set of all linear combinations of the columns of A. If $A = \begin{bmatrix} \vec{a}_1 & \cdots & \vec{a}_n \end{bmatrix}$, then

$$C(A) = \operatorname{Span}\{\vec{a}_1, \dots, \vec{a}_n\}$$

Theorem 3: Column Space Subspace

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m

Definition: Linear Transformation

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \vec{x} in V a unique vector $T(\vec{x})$ in W, such that

- (i) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- for all \vec{u} , \vec{v} in V, and
- (ii) $T(c\vec{u}) = cT(\vec{u})$

for all \vec{u} in V and all scalars c.

Theorem 4: Linear Dependence

An indexed set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of two or more vectors, with $\vec{v}_1 \neq 0$, is linearly dependent iff some \vec{v}_j (with j > 1) is a linear combination of the preceding vectors, $\vec{v}_1, \ldots, \vec{v}_{j-1}$.

Definition: Basis

Let H be a subspace of vector space V. A set of vectors β in V is a basis for H if

- (i) β is a linearly independent set, and
- (ii) the subspace spanned by β coincides with H; that is,

$$H = \operatorname{Span}\beta$$

Theorem 5: The Spanning Set Theorem

Let $S = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a set in a vector space V, and let $H = \text{Span}\{\vec{v}_1, \dots, \vec{v}_p\}$. a. If a vector $\vec{v}_k \in S$ is a linear combination of the remaining vectors in S,

$$\operatorname{Span}(S - \{\vec{v}_k\}) = \operatorname{Span}H$$

b. If $H \neq \{0\}$, some subset of S is a basis for H.

Theorem 6: Basis of Column Space

The pivot columns of a matrix A form a basis for C(A).

Theorem 7: Basis of Row Space

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Theorem 8: The Unique Representation Theorem

Let $\beta = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for a vector space V. Then for each \vec{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n$$

Definition: Basis Coordinates

Supposed $\beta = \{\vec{b}_1, \dots, \vec{b}_n\}$ is a basis for a vector space V and $\vec{x} \in V$. The coordinates of \vec{x} relative to the basis (or the β -coordinates of \vec{x}) are the weights of c_1, \dots, c_n such that $\vec{x} = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n$

Theorem 9: Coordinate Mapping One-to-One

Let $\beta = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for a vector space V. Then the coordinate mapping $\vec{x} \mapsto [\vec{x}]_{\beta}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Theorem 10: Basis and Linear Dependence

If a vector space V has a basis $\beta = \{\vec{b}_1, \dots, \vec{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 11: Entries in Basis

If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Definition: Dimension

Let V be a vector space. V is finite-dimensional if it is spanned by a finite set. The dimension of V (written as $\dim V$) is the number of vectors in a basis for V. $\dim(\{0\}) \equiv 0$. V is infinite-dimensional if it is not spanned by a finite set.

Theorem 12: Counterpart to Spanning Set Theorem

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$\dim H \leq \dim V$$

Definition: Rank and Nullity

The rank of an $m \times n$ matrix A is dim $\mathcal{C}(A)$ and the nullity of A is dim $\mathcal{N}(A)$.

Theorem 14: The Rank Theorem

Let A be an $m \times n$ matrix.

 $\operatorname{rank} A + \operatorname{nullity} A = \operatorname{number} \operatorname{of} \operatorname{columns} \operatorname{in} A$

Theorem: The Invertible Matrix Theorem (cont.)

Let A be an $n \times n$ matrix. The following statements are equivalent the the statement that A is an invertible matrix.

- m. The columns of A form a basis of \mathbb{R}^n
- n. $C(A) = \mathbb{R}^n$
- o. rank A = n
- p. nullity A = 0
- q. $\mathcal{N}(A) = \{0\}$

Theorem 15: Change of Coordinates Matrix

Let $\beta = \{\vec{b}_1, \dots, \vec{b}_n\}$ and $\gamma = \{\vec{g}_1, \dots, \vec{g}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $P_{\gamma \leftarrow \beta}$ such that

$$[\vec{x}]_{\gamma} = \underset{\gamma \leftarrow \beta}{P} [\vec{x}]_{\beta}$$

The columns of $P_{\gamma \leftarrow \beta}$ are the γ -coordinate vectors of the vectors in the basis β . That is

$$P_{\gamma \leftarrow \beta} = \begin{bmatrix} \vec{b_1} \end{bmatrix}_{\gamma} \quad [\vec{b_2}]_{\gamma} \quad \cdots \quad [\vec{b_n}]_{\gamma}$$

5 Eigenvalues and Eigenvectors

Definition: Eigenvalues and Eigenvectors

An eigenvector of an $n \times n$ matrix A is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \vec{x} of $A\vec{x} = \lambda \vec{x}$; such an \vec{x} is called an eigenvector corresponding to λ .

Theorem 1: Eigenvalues of Triangular Matrix

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 2: Eigenvalues and Linear Independence

If $\vec{v}_1, \ldots, \vec{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\vec{v}_1, \ldots, \vec{v}_r\}$ is linearly independent.

Theorem 3: Properties of Determinants

 $A, B \in M_{n \times n}$

- a. A is invertible iff $\det A \neq 0$
- b. $\det AB = \det(A) \det(B)$
- c. $\det A^T = \det A$
- d. If A is triangular, $\det A = \prod_{k=1}^n a_{kk}$
- e. A row replacement operation on A does not change $\det A$. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

Theorem: The Invertible Matrix Theorem (cont.)

 $A \in M_{n \times n}$. A is invertible iff

r. 0 is not en eigenvalue of A.

Theorem 4: Eigenvalues and Similarity

 $A, B \in M_{n \times n}$. If A and B are similar then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Theorem 5: The Diagonalization Theorem

 $A \in M_{n \times n}$. A is diagonalizable iff it has n linearly independent eigenvectors. In fact, $A = PDP^{-1}$, with D a diagonal matrix, iff the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Theorem 6: Eigenvalues and Diagonalizability

If $A \in M_{n \times n}$ has n distinct eigenvalues then it is diagonalizable.

Theorem 7: Eigenvectors and Dimension

Let $A \in M_{n \times n}$ have distinct eigenvalues $\lambda_1, \ldots, \lambda_p$

- a. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_k is less than or equal to the mulitiplicity of eigenvalue λ_k
- b. A is diagonalisable iff the sum of the dimensions of the eigenspaces equals n. c. If A is diagonalizable and β_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets β_1, \ldots, β_p forms an eigenvector basis for \mathbb{R}^n .

Definition: Eigenvector Transformation

Let V be a vector space. An eigenvector of a linear transformation $T: V \to V$ is $\vec{x} \in V, \vec{x} \neq 0$ such that $T(\vec{x}) = \lambda \vec{x}$ for some scalar λ . A scalar λ is called an eigenvalue of T if there is a nontrivial solution \vec{x} of $T(\vec{x}) = \lambda \vec{x}$; such an \vec{x} is called an eigenvector corresponding to λ .

Theorem 8: Diagonal Matrix Representation

Suppose $A = PDP^{-1}$, where $D \in M_{n \times n}$ is diagonal. If β is the basis for \mathbb{R}^n formed from the columns of P, then D is the β -matrix for the transformation $\vec{x} \mapsto A\vec{x}$.

6 Orthogonality

Theorem 1: Inner Product Properties

Let \vec{u}, \vec{v} , and $\vec{w} \in \mathbb{R}^n, c \in \mathbb{R}$.

- a. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- b. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- c. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v})$
- d. $\vec{u} \cdot \vec{u} \ge 0$, and $\vec{u} \cdot \vec{u} = 0 \iff \vec{u} = 0$

Definition: Norm

The norm (length) of \vec{v} is $||\vec{v}|| \in \mathbb{R}_{\geq 0}$ defined by

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$$

Definition: Distance

For $\vec{u}, \vec{v} \in \mathbb{R}^n$, the distance between \vec{u} and \vec{v} , written as $\operatorname{dist}(\vec{u}, \vec{v})$, is the norm of vector $\vec{u} - \vec{v}$, or

$$\operatorname{dist}(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

Definition: Orthogonal

 $\vec{u}, \vec{v} \in \mathbb{R}^n$ are orthogonal to each other if $\vec{u} \cdot \vec{u} = 0$.

Theorem 2: The Pythagorean Theorem

 $\vec{v}, \vec{u} \in \mathbb{R}^n$ are orthogonal to each other iff $\|\vec{u} + \vec{u}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$.

Theorem 3: Null Space Orthogonal Complement

Let $A \in M_{m \times n}$

$$(\operatorname{Row}(A))^{\perp} = \mathcal{N}(A) \text{ and } (\mathcal{C}(A))^{\perp} = \mathcal{N}(A^T)$$

Theorem 4: Orthogonal Set Subspace

If $S = {\vec{u}_1, ..., \vec{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition: Orthogonal Basis

An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 5: Linear Combination of Orthogonal Basis

Let $\{\vec{u}_1,\ldots,\vec{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each $\vec{y} \in W$,

$$\vec{y} = c_1 \vec{u}_1 + \dots + c_p \vec{u}_p$$

$$c_j = \frac{\vec{y} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j} \quad (j = 1, \dots, p)$$

Theorem 6: Orthonormal Columns

 $U \in M_{m \times n}$ has orthonormal columns iff $U^T U = I$

Theorem 7: Orthonormal Column Properties

 $U \in M_{m \times n}$ with orthonormal columns, $\vec{x}, \vec{y} \in \mathbb{R}^n$.

a.
$$||U\vec{x}|| = ||\vec{x}||$$

b.
$$(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$$

c.
$$(U\vec{x}) \cdot (U\vec{y}) = 0 \iff \vec{x} \cdot \vec{y} = 0$$

Theorem 8: The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Each $\vec{y} \in \mathbb{R}^n$ can be written uniquely in the form

$$\vec{y} = \hat{y} + \vec{z}$$

where $\hat{y} \in W, \vec{z} \in W^{\perp}$. In fact, if $\{\vec{u}_1, \dots, \vec{u}_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \vec{u}_p$$

and $\vec{z} = \vec{y} - \hat{y}$.

Theorem 9: The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$, $\hat{y} = \text{proj}_W \vec{y}$

$$\forall \vec{v} \in W, \vec{v} \neq \hat{y} \implies \|\vec{y} - \hat{y}\| < \|\vec{y} - \vec{v}\|$$

Theorem 10: Projection onto a Subspace

If $\{\vec{u}_1,\ldots,\vec{u}_p\}$ is an orthonormal basis for the subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \vec{y} = (\vec{y} \cdot \vec{u}_{1}) \vec{u}_{1} + (\vec{y} \cdot \vec{u}_{2}) \vec{u}_{2} + \dots + (\vec{y} \cdot \vec{u}_{p}) \vec{u}_{p}$$

Theorem 11: The Gram-Schmidt Process

Given a basis $\{\vec{x}_1,\ldots,\vec{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\vec{v}_1 = \vec{x}_1$$

$$\vec{v}_2 = \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1$$

$$\vec{v}_3 = \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2$$

$$\vdots$$

$$\vec{v}_p = \vec{x}_p - \frac{\vec{x}_p \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_p \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 - \dots - \frac{\vec{x}_p \cdot \vec{x}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$$

Then $\{\vec{v}_1,\ldots,\vec{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\} = \operatorname{Span}\{\vec{x}_1,\ldots,\vec{x}_k\} \quad \text{ for } 1 \ge k \ge p$$

Theorem 12: The QR Factorization

If $A \in M_{m \times n}$ with linearly independent columns, then A can be factored as A = QR, where $Q \in M_{m \times n}$ matrix whose columns form an orthonormal basis for $\mathcal{C}(A)$ and $R \in M_{n \times n}$ is an upper triangluar invertible matrix with positive entries on its diagonal.

Definition: Least-Squares Solution

If $A \in M_{m \times n}$, $\vec{b} \in \mathbb{R}^m$, a least-squares solution of $A\vec{x} = \vec{b}$ is an $\hat{x} \in \mathbb{R}^n$ such that

$$\forall \vec{x} \in \mathbb{R}^n, \|\vec{b} - \hat{Ax}\| \le \|\vec{b} - A\vec{x}\|$$

Theorem 13: Least-Squares Solution Set

The set of least-squares solutions of $A\vec{x} = \vec{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A\vec{x} = A^T \vec{b}$.

Theorem 14: Least-Squares Statments

 $A \in M_{m \times n}$. The following statements are logically equivalent:

- a. The equation $A\vec{x} = \vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^m$.
- b. The columns of A are linearly independent.
- c. The matrix $A^T A$ is invertible

When these statements are true, the least-squares solution \hat{x} is given by

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

Theorem 15: QR Factorization and Least-Squares Solution

Given $A \in M_{m \times n}$ with linearly independent columns, let A = QR be a QR factorization of A as in Theorem 12. Then, for each $\vec{b} \in \mathbb{R}^m$, the equation $A\vec{x} = \vec{b}$ has a unique least-squares solution, given by

$$\hat{x} = R^{-1} Q^T \vec{b}$$

Definition: Inner Product Space

An inner product on a vector space V is a function that, to each pair of vectors $\vec{u}, \vec{v} \in V$, associates a real number $\langle \vec{u}, \vec{v} \rangle$ and satisfies the following axioms, $\forall \vec{u}, \vec{v}, \vec{w} \in V, \forall c \in \mathbb{R}$:

- 1. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
- 2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$
- 3. $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$
- 4. $\langle \vec{u}, \vec{u} \rangle \ge 0$ and $\langle \vec{u}, \vec{u} \rangle = 0 \iff \vec{u} = 0$

A vector space with an inner product is called an inner product space.

Theorem 16: The Cauchy-Schwarz Inequality

$$\forall \vec{u}, \vec{v} \in V, |\langle \vec{u}, \vec{v} \rangle| \le ||\vec{u}|| ||\vec{v}||$$

Theorem 17: The Triangle Inequality

$$\forall \vec{u}, \vec{v} \in V, \|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

7 Symmetric Matrices and Quadratic Forms

Theorem 1: Orthogonal Eigenvectors

If A is symmetric, then any two eigenvectors form different eigenspaces are orthogonal.

Theorem 2: Orthogonal Diagonalizability

 $A \in M_{n \times n}$ is orthogonally diagonalizable iff A is a symmetric matrix.

Theorem 3: The Spectral Theorem for Symmetric Matrices

If $A \in M_{n \times n}$ is symmetric:

- a. A has n real eigenvalues, counting multiplicities
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
 - c. The eigenspaces are mutually orthogonal
 - d. A is orthogonally diagonalizable.

Theorem 4: The Principal Axes Theorem

Let $A \in M_{n \times n}$ be symmetric. Then there is an orthogonal change of variable, $\vec{x} = P\vec{y}$, that transforms the quadratic form $\vec{x}^T A \vec{x}$ into a quadratic form $\vec{y}^T D \vec{y}$ with no cross-product term.