Additions and Corrections

1999, Volume 42

Gary L. Grunewald,* Timothy M. Caldwell, Qifang Li, and Kevin R. Criscione: Synthesis and Evaluation of 3-Trifluoromethyl-7-substituted-1,2,3,4-tetrahydroisoquinolines as Selective Inhibitors of Phenylethanolamine N-Methyltransferase versus the α_2 -Adrenoceptor.

Pages 3320, 3321. The C-F coupling constants in the following ¹³C NMR spectra were reported incorrectly. The values given below are the corrected coupling constants.

page	compd	C-F coupling	C-F coupling
3320	18	148.7 (q, $J = 32$ Hz, CO)	120.4 (q, $J = 274$ Hz, CF ₃)
3320	20	125.6 (q, $J = 284$ Hz, CF ₃)	54.1 (q, $J = 30$ Hz, C-3)
3321	15 ⋅HCl	124.7 (q, $J = 281$ Hz, CF ₃)	52.9 (q, J = 32 Hz, C-3)
3321	16 ·HCl	124.7 ($\hat{\mathbf{q}}$, $J = 280 \text{ Hz}$, CF ₃)	53.2 (\hat{q} , $J = 32$ Hz, C-3)

JM0201161

10.1021/jm0201161 Published on Web 04/20/2002

Gary L. Grunewald,* Timothy M. Caldwell, Qifang Li, Meri Slavica, Kevin R. Criscione, Ronald T. Borchardt, and Wen Wang: Synthesis and Biochemical Evaluation of 3-Fluoromethyl-1,2,3,4-tetrahydroisoquinolines as Selective Inhibitors of Phenylethanolamine N-Methyltransferase versus the α_2 -Adrenoceptor.

Pages 3595-3598. The C-F coupling constants in the following 13 C NMR spectra were reported incorrectly. The values given below are the corrected coupling constants.

page	compd	C-F coupling	C-F coupling	C-F coupling
3595	28·1/2H2SO4	81.7 (d, $J = 170 \text{ Hz}$, CH_2F)	52.9 (d, J=19 Hz, C-2)	34.5 (d, $J = 5$ Hz, C-3)
3595	29	83.8 (d, $J = 171$ Hz, CH_2F)	52.8 (d, $J = 19$ Hz, C-2)	
3595	30	84.4 (d, $J = 174$ Hz, CH_2F)	51.0 (d, $J = 20$ Hz, C-3)	29.3 (d, $J = 5$ Hz, C-4)
3595	13 ·HCl	83.1 (d, $J = 169$ Hz, CH_2F)	53.0 (d, $J = 19$ Hz, C-3)	
3595	31	84.8 (d, $J = 171 \text{ Hz}$, CH_2F)	50.4 (d, J = 20 Hz, C-3)	
3596	16 ·HCl	83.0 (d, $J = 172 \text{ Hz}, \text{CH}_2\text{F}$)	52.6 (d, $J = 19$ Hz, C-3)	27.0 (d, $J = 5$ Hz, C-4)
3597	36	85.0 (d, $J = 171 \text{ Hz}, \text{CH}_2\text{F}$)	50.2 (d, J = 20 Hz, C-3)	29.3 (d, $J = 5$ Hz, C-4)
3597	37	85.1 (d, $J = 171$ Hz, CH_2F)	50.2 (d, J = 20 Hz, C-3)	29.5 (d, $J = 5$ Hz, C-4)
3597	19 ·HCl	82.9 (d, $J = 169 \text{ Hz}$, CH_2F)	52.4 (d, J = 19 Hz, C-3)	27.2 (d, $J = 6$ Hz, C-4)
3597	20 ·HCl	82.9 (d, $J = 169 \text{ Hz}, \text{CH}_2\text{F}$)	52.5 (d, $J = 19$ Hz, C-3)	27.2 (d, $J = 6$ Hz, C-4)
3598	21 ·HCl	83.0 (d, $J = 169 \text{ Hz}, \text{CH}_2\text{F}$)	52.7 (d, $J = 19$ Hz, C-3)	26.5 (d, $J = 6$ Hz, C-4)
3598	38	84.3 (d, $J = 175 \text{ Hz}, \text{CH}_2\text{F}$)	50.8 (d, J = 20 Hz, C-3)	29.0 (d, $J = 6$ Hz, C-4)
3598	22 ·HCl	83.0 (d, $J = 170 \text{ Hz}, \text{CH}_2\text{F}$)	52.7 (d, $J = 19$ Hz, C-3)	26.5 (d, $J = 6$ Hz, C-4)
3598	24 ·HCl	82.3 (d, $J = 172 \text{ Hz}, \text{CH}_2\text{F}$)	53.9 (d, J = 19 Hz, C-3)	25.9 (d, $J = 6$ Hz, C-4)

JM020117T

10.1021/jm020117t Published on Web 04/20/2002