Planche d'Exercices n°4 : Applications Linéaires, Bases

Partie I : Révisions et pré-Requis.

Exercice 1. Parmi les applications suivantes, lesquelles sont linéaires?

- 1. $tr: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}, tr(A) = \sum_i a_{ii} \text{ si } A = (a_{ij})_{ij};$
- 2. $ev : \mathbb{R}^{\mathbb{R}} \longrightarrow \mathbb{R}, ev(f) = f(1);$
- 3. $\Delta: \mathbb{R}_2[X] \longrightarrow \mathbb{R}, \ \Delta(aX^2 + bX + c) = b^2 4ac;$
- 4. $\pi: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ \pi(x,y) = xy;$
- 5. $\sigma: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ \sigma(x,y) = x + y;$
- 6. $\tau: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}, \ \tau(x,y) = (x+y,x.y);$
- 7. $T: \mathcal{C}^0(\mathbb{R}) \longrightarrow \mathcal{C}^0(\mathbb{R}), f \longmapsto T(f)$ où, pour tout x, T(f)(x) = f(x+1);
- 8. $\mathcal{E}: \mathcal{C}^2(\mathbb{R}_+^*) \longrightarrow \mathcal{C}^0(\mathbb{R}_+^*), y \longmapsto \mathcal{E}(y) = y'' 3y' + 2y;$
- 9. $c: \mathcal{C}^{\infty}(\mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R}), c(f) = f \circ \exp$;
- 10. $Q: \mathbb{R}^{\mathbb{R}} \longrightarrow \mathbb{R}^{\mathbb{R}}, Q(f) = f^2.$

Le cas échéant, préciser : endomorphisme? Isomorphisme? Forme linéaire? ...

Exercice 2. Soit $E = F \oplus G$, une décomposition en somme directe d'un e.v E. Soit aussi l'application $\omega : F \times G \to E$, définie par $\omega(x,y) = x + y$.

- 1. Vérifier la linéarité de ω .
- 2. L'application ω est-elle un isomorphisme?

Exercice 3. Ici, les ensembles E_i sont des espaces vectoriels réels.

- 1. Donner un exemple d'une famille libre de $E_1 = \mathbb{R}^3$ qui ne soit pas génératrice.
- 2. Donner un exemple d'une famille génératrice de $E_2=\mathbb{R}^4$ qui ne soit pas libre.
- 3. Rappeler qui est la base canonique de $E_3 = \mathbb{M}_2(\mathbb{R})$.
- 4. Trouver une base pour $E_4 = 0$ (l'espace nul).

Exercice 4. Pour tout espace vectoriel E et tout scalaire λ , nous avons une application $H_{\lambda}: E \longrightarrow E$, définie par $H_{\lambda}(x) = \lambda.x$.

- 1. Montrer que H_{λ} est linéaire.
- 2. H_{λ} est-elle bijective? Auquel cas, préciser l'isomorphisme réciproque H_{λ}^{-1} .

Exercice 5. Fixons une matrice $A \in \mathbb{M}_n(\mathbb{R})$. Interpréter le noyau de l'application $\kappa : \mathbb{M}_n(\mathbb{R}) \longrightarrow \mathbb{M}_n(\mathbb{R})$, $\kappa(B) = AB - BA$ (vérifier au préalable la linéarité de κ).

Partie II: Entraînement.

Exercice 6. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, l'application : f(x, y, z) = (x + y + z)(1, 1, 1).

- 1. Montrer que f est linéaire. En donner la matrice.
- 2. Préciser les dimensions des noyau et image de f.
- 3. Rappeler le Théorème du Rang. Avons-nous $\mathbb{R}^3 = Im(f) \oplus Ker(f)$?

Exercice 7. Tous les espaces vectoriels sont réels.

- 1. Existe-t-il une application linéaire non injective $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$?
- 2. Existe-t-il une application linéaire non surjective $\mathbb{R}^4 \longrightarrow \mathbb{R}^3$?
- 3. Existe-t-il une application linéaire $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ surjective mais non injective?

Exercice 8. (Sujet de CC2 2018) Soit $\mathcal{C} = (c_1, c_2, c_3)$, la base canonique de \mathbb{R}^3 ; soit α , l'endomorphisme de \mathbb{R}^3 défini par : $\alpha(x, y, z) = (3x - 8y - 28z, -2x + 5y + 18z, x - 2y - 8z)$.

- 1. Vérifier que les vecteurs $c_1' = (4, -2, 1)$, $c_2' = (3, -2, 1)$ et $c_3' = (-8, 5, -2)$ forment une famille libre $\mathcal{C}' = (c_1', c_2', c_3')$; en déduire que \mathcal{C}' est une autre base de \mathbb{R}^3 .
- 2. Donner la matrice A de α dans la base \mathcal{C} . Si A' est la matrice de α dans la base \mathcal{C}' , rappeler la formule la reliant à A (on notera P la matrice de passage).
- 3. Expliciter la matrice A'.

Exercice 9. Soit φ l'endomorphisme de \mathbb{R}^3 , défini par : $\varphi(1,0,0) = (1,0,0)$, $\varphi(0,1,0) = (2,1,0)$ et $\varphi(0,0,1) = (3,2,1)$.

- 1. Expliciter φ et en donner la matrice Φ . L'application φ est-elle bijective?
- 2. Pour $\psi = \varphi id$, montrer que nous avons $\psi^3 = 0$; l'endomorphisme ψ est-il bijectif?
- 3. De $\psi^3=0$, déduire la formule $\Phi^3-3\Phi^2+3\Phi-I_3=0$.

Exercice 10. Soit une application linéaire $f: E \longrightarrow F$ et soit $\mathcal{B} = \{b_1, b_2, ..., b_n\} \subset E$.

- 1. Montrer que si f est injective et \mathcal{B} est libre, alors $f(\mathcal{B})$ est une partie libre (de F).
- 2. Montrer que si f est surjective et \mathcal{B} génère E, alors $f(\mathcal{B})$ génère F.
- 3. En déduire des hypothèses pour que $f(\mathcal{B})$ soit une base de F.

Exercice 11. La trace d'une matrice réelle $A = (a_{ij})_{ij}$, carrée d'ordre n, est le nombre $tr(A) = \sum_{i=1}^{n} a_{ii}$ (somme des éléments diagonaux).

- 1. Définir précisément l'application trace tr; montrer qu'elle est linéaire.
- 2. Si $B = (b_{ij})_{ij}$ est une autre matrice carrée d'ordre n, a-t-on tr(AB) = tr(A)tr(B)?
- 3. Comparer les deux nombres tr(AB) et tr(BA).

Exercice 12. Soit l'espace vectoriel des polynômes réels $E = \mathbb{R}[X]$ et soit l'endomorphisme D de E, défini par D(P) = P' (la dérivation).

- 1. Décrire le noyau de D. L'endomorphisme D est-il injectif?
- 2. Décrire l'image de D: l'endomorphisme D est-il surjectif? Un isomorphisme?
- 3. Pourquoi n'avons-nous pas "injectif⇔surjectif" ici?
- 4. Reprendre ces questions avec l'endomorphisme $I: I(\sum_{i=0}^n a_i X^i) = \sum_{i=1}^{n+1} \frac{a_{i-1}}{i} X^i$.
- 5. Montrer que nous avons $D \circ I = id$. Qu'en penser?

Exercice 13. Soit l'endomorphisme u de \mathbb{R}^2 : u(x,y)=(-x,0).

- 1. Pour le polynôme $P(X) = X^2 + X$, vérifier la formule P(u) = 0.
- 2. Si v = id + u, quel polynôme Q(X) de degré 2 vérifie Q(v) = 0?
- 3. Combien de matrices $A \in \mathbb{M}_2(\mathbb{R})$ vérifient P(A) = 0? (systèmes non linéaires)
- 4. Montrer qu'il existe une infinité d'endomorphismes w de \mathbb{R}^2 , tels que P(w) = 0.

Exercice 14. Pour un entier $n \geq 1$, soit $E = \mathbb{R}_n[X]$ (polynômes réels de degré $\leq n$).

- 1. E est-il un e.v? $F = \mathbb{R}_{n-1}[X]$ est-il s.e.v de E?
- 2. Soit l'ensemble $F' = X\mathbb{R}_{n-1}[X]$ $(F' = \{X.P|P \in \mathbb{R}_{n-1}[X]\})$: vérifier qu'il s'agit d'un s.e.v de E. En préciser la dimension.
- 3. Avons-nous F' = F? Avons-nous F' isomorphe à F?

Exercice 15. Soit un espace vectoriel réel E et soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$.

- 1. Donner un exemple non nul d'un tel endomorphisme u pour $E = \mathbb{R}^2$ (et $E = \mathbb{R}^3$).
- 2. Montrer, en toute généralité, l'équivalence suivante : $u^2 = 0 \iff Im(u) \subset Ker(u)$.
- 3. Pour E de dimension 2 et $u \neq 0 = u^2$, vérifier que nous avons Ker(u) = Im(u).
- 4. Pour E de dimension 3 et $u^2 = 0$, l'égalité Ker(u) = Im(u) est-elle possible?

Exercice 16. Soient un espace vectoriel E (de dimension finie n > 0) et $u \in \mathcal{L}(E)$, tels que $u^d = 0$ pour un certain entier d.

- 1. Montrer que l'endomorphisme u ne saurait être bijectif.
- 2. Montrer que l'endomorphisme v=1-u est bijectif, de réciproque $v^{-1}=\sum_{i=0}^d u^i$.

Exercice 17. Pour l'espace vectoriel $E = \mathbb{R}^3$, soit $u \in \mathcal{L}(E) : u(x, y, z) = (z, x, y)$.

- 1. Donner la matrice de u relativement à la base canonique de E.
- 2. Pour $P(X) = X^3 1$, montrer que P(u) = 0.
- 3. En déduire que u est inversible.
- 4. Expliciter l'endomorphisme $(u+id)^{2019}$.

Exercice 18. Soient des polynômes réels non nuls $P_0, P_1, ..., P_n$, de degrés distincts.

- 1. Montrer que la famille $\mathcal{P} = (P_i)_{0 \le i \le n}$ est libre dans l'espace vectoriel $\mathbb{R}[X]$.
- 2. Préciser qui est le s.e.v $Vect(\mathcal{P})$, si \mathcal{P} vérifie : $\forall i, d^{\circ}(P_i) = i$.

Exercice 19. Soit le polynôme $P(X) = X^3 - 7X^2 - X + 1$; soit aussi un endomorphisme ε d'un e.v E, tel que $P(\varepsilon) = 0$.

- 1. Montrer que ε est inversible dans l'algèbre $\mathcal{L}(E)$ (on explicitera l'inverse ε^{-1}).
- 2. Vérifier que le polynôme P(X)P(-X) est pair et l'expliciter.
- 3. En déduire un polynôme Q(X), tel que : $d^{\circ}Q(X) = 3$ et $Q(\varepsilon^2) = 0$.

Exercice 20. Soit une application linéaire $f: E \longrightarrow F$.

- 1. Pour des s.e.v E_1 et E_2 de E, montrer la formule $f(E_1 + E_2) = f(E_1) + f(E_2)$.
- 2. Soit l'application linéaire $\varphi : \mathbb{K}^2 \longrightarrow \mathbb{K}^2$, définie par $\varphi(x,y) = (x+y,x+y)$ et soient les s.e.v $G_1 = \mathbb{K}(1,0)$ et $G_2 = \mathbb{K}(0,1)$. Calculer $\varphi^{-1}(G_1)$, $\varphi^{-1}(G_2)$ et $\varphi^{-1}(G_1+G_2)$.
- 3. Pour des s.e.v F_1 et F_2 , la formule $f^{-1}(F_1 + F_2) = f^{-1}(F_1) + f^{-1}(F_2)$ est-elle vraie?

Partie III: Approfondissement.

Exercice 21. Rappel : tout \mathbb{R} -espace vectoriel réel est naturellement un \mathbb{Q} -espace vectoriel. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$, une fonction additive : pour tous x, x', f(x + x') = f(x) + f(x').

- 1. Si $\varphi:\mathbb{Q}\longrightarrow\mathbb{R}$ est une application additive, montrer que φ est \mathbb{Q} -linéaire.
- 2. Si f est supposée continue et additive, en déduire que f est \mathbb{R} -linéaire. Indication : utiliser la densité de \mathbb{Q} dans \mathbb{R} et la linéarité de la restriction $f|_{\mathbb{Q}}$.

Exercice 22. Soit E un espace vectoriel réel de dimension n et $a \in \mathcal{L}(E)$.

- 1. Construire un isomorphisme $E \longrightarrow \mathbb{M}_n(\mathbb{R})$. En déduire la formule : $dim(E) = n^2$.
- 2. Soit une matrice $A \in \mathbb{M}(\mathbb{R})$. Montrer que la famille $\mathcal{A} = (I, A, A^2, ..., A^{n^2})$ est liée.
- 3. En déduire un polynôme non nul P(X), tel que : P(a) = 0 et $d^{\circ}P(X) \leq n^2$.

Exercice 23. Soient : un e.v E, un vecteur $e \in E$ et une forme linéaire f sur E.

- 1. Considérons l'application $F: E \longrightarrow E$, F(x) = f(x)e: vérifier qu'elle est linéaire.
- 2. Décrire l'image et le noyau de F, lorsque $e \neq 0_E$.
- 3. Pour le polynôme $P(X) = X^2 f(e)X$, vérifier que nous avons P(F) = 0.

Exercice 24. Pour $\lambda \in \mathbb{R}$, nous avons une fonction $e_{\lambda} : \mathbb{R} \to \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$, par $e_{\lambda}(x) = e^{\lambda x}$. On considère la famille (infinie) $\mathcal{E} = (e_{\lambda})_{\lambda \in \mathbb{R}}$ de l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$.

- 1. Expliquer l'écriture $f(x) = \sum_{i=1}^{n} a_i e^{\lambda_i x}$ (λ_i distincts), pour tout $f \in Vect(\mathcal{E})$.
- 2. Montrer que la famille \mathcal{E} est libre.
- 3. Soit $f \in Vect(\mathcal{E}), f \neq 0$: $f(x) = \sum_{i=1}^{n} a_i e^{\lambda_i x}$ (λ_i distincts). Calculer $\lim_{x \to \pm \infty} f(x)$, attention: if y a plusieurs cas suivant $\max_i(\lambda_i)$ et $\min_i(\lambda_i)$, positifs ou négatifs.
- 4. En déduire que la famille \mathcal{E} n'est pas génératrice.

Exercice 25. Soit une application linéaire $f: E \longrightarrow F$. Si G est un s.e.v de E, montrer la formule : $f^{-1}(f(G)) = G + Ker(f)$.

Exercice 26. Pour tous espaces vectoriels E et F, soit $\mathcal{L}(E,F)$ l'ensemble des applications linéaires $E \longrightarrow F$. Tout $e \in E$ définit une application $\Psi_e : \mathcal{L}(E,F) \longrightarrow F$, $\Psi_e(f) = f(e)$.

- 1. Montrer que $\mathcal{L}(E,F)$ est naturellement un espace vectoriel.
- 2. Pour tout vecteur $e \in E$, vérifier que Ψ_e est linéaire.
- 3. En déduire un isomorphisme $\mathcal{L}(E,F)\cong F$ lorsque E est une droite vectorielle.

Exercice 27. Soit l'espace vectoriel $E = E_1 \times E_2$, produit d'espaces vectoriels E_1 et E_2 . Soient les applications $\pi_1 : E \to E_1$ et $\pi_2 : E \to E_2$, avec $\pi_1(x_1, x_2) = x_1$ et $\pi_2(x_1, x_2) = x_2$.

- 1. Montrer leur linéarité. Sont-elles toujours injectives? Toujours surjectives?
- 2. Mêmes questions avec les applications $\iota_1: E_1 \to E$ et $\iota_2: E_2 \to E$, définies par $\iota_1(x) = (x,0)$ et $\iota_2(y) = (0,y)$.
- 3. Quels liens entretiennent les s.e.v $Ker(\pi_1)$, $Ker(\pi_2)$, $Im(\iota_1)$ et $Im(\iota_2)$?
- 4. Expliciter les circonstances où π_1 et ι_1 sont des isomorphismes réciproques.