# Chương 4: Nội dung

- 4.1 Giới thiệu
- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của bộ định tuyến
- 4.4 IP: Internet Protocol
  - Định dạng gói tin
  - Định địa chỉ IPv4
  - ICMP
  - IPv6

# 4.5 Các giải thuật định tuyến

- Link state
- Distance vector
- Hierarchical routing
- 4.6 Định tuyến trong mạng Internet
  - RIP
  - OSPF
  - BGP

Tầng mạng 4-97

### Hierarchical routing (Định tuyến phân cấp)

Những vấn đề định tuyến được học cho đến lúc này là với môi trường lý tưởng hóa

- Tất cả các bộ định tuyến là đồng nhất
- Mạng "phẳng"
- ... không đúng trong thực tế!

# Quy mô: với 600 triệu đích:

- Không thể lưu tất cả các đích trong các bảng định tuyến!
- Việc trao đổi bảng định tuyến sẽ làm tràn các liên kết!

#### Tự quản

- Internet = mang của các mạng
- Mỗi nhà quản trị mạng có thể muốn điều hành định tuyến riêng trong mạng của họ

## Hierarchical routing

- Các router được tập hợp lại thành các vùng, "hệ thống tự trị" (autonomous systems - AS)
- Các router trong cùng AS sẽ chạy cùng giao thức định tuyến
  - Giao thức định tuyến "nội vùng-AS" (intra-AS)
  - Các router trong các AS khác nhau có thể chạy các giao thức định tuyến intra-AS khác nhau

#### Gateway router:

- Tại "cạnh" của AS riêng của nó
- Có liên kết tới router trong AS khác



### Nhiệm vụ của Inter-AS

- Giả sử router trong AS1 nhận datagram có đích ở bên ngoài AS1:
  - Router nên chuyển tiếp gói tin đến gateway router, nhưng mà là cái nào?

#### AS1 phải:

- Học xem có thể đến được đích nào qua AS2, và AS3
- Lan truyền thông tin này đến tất cả các router trong AS1

Đây là nhiệm vụ của định tuyến inter-AS!



Tầng mạng 4-101

### Ví dụ: thiết lập bảng chuyển tiếp trong router 1d

- Giả sử AS1 học (qua giao thức inter-AS) được là subnet x có thể đến được qua AS3 (gateway 1c), nhưng không qua AS2
  - Giao thức inter-AS lan truyền thông tin đi được cho tất cả các router nội mạng
- Router 1d biết được từ thông tin định tuyến intra-AS là giao diện / của nó thuộc đường đi có chi phí thấp nhất tới 1c
  - Đưa giá trị (x,l) vào bảng chuyển tiếp



### Ví dụ: lựa chọn giữa nhiều AS

- Bây giờ, giả sử AS1 học từ giao thức inter-AS là subnet x có thể đến được từ AS3 và từ AS2.
- Để cấu hình bảng chuyển tiếp, router 1d cần phải xác định gateway nào mà nó nên chuyển tiếp các gói tin đến để tới được đích x
  - Đây là nhiệm vụ của giao thức định tuyến inter-AS!



## Ví dụ: lựa chọn giữa nhiều AS

- Bây giờ, giả sử AS1 học từ giao thức inter-AS là subnet x có thể đến được từ AS3 và từ AS2.
- Để cấu hình bảng chuyển tiếp, router 1d cần phải xác định gateway nào mà nó nên chuyển tiếp các gói tin đến để tới được đích x
  - Đây là nhiệm vụ của giao thức định tuyến inter-AS!
- Định tuyến hot potato: gửi gói tin đến router gần nhất trong hai router



# Chương 4: Nội dung

- 4.1 Giới thiệu
- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của bộ định tuyến
- 4.4 IP: Internet Protocol
  - Định dạng gói tin
  - Định địa chỉ IPv4
  - ICMP
  - IPv6

- 4.5 Các giải thuật định tuyến
  - Link state
  - Distance vector
  - Hierarchical routing
- 4.6 Định tuyến trong mạng Internet
  - RIP
  - OSPF
  - BGP

Tầng mạng 4-105

# Định tuyến Intra-AS

- Còn được gọi là các giao thức cổng nội mạng (interior gateway protocols - IGP)
- Các giao thức định tuyến intra-AS phổ biến nhất:
  - RIP: Routing Information Protocol
  - OSPF: Open Shortest Path First
  - IGRP: Interior Gateway Routing Protocol (Cisco độc quyền)

### RIP (Routing Information Protocol)

- Được công bố trong BSD-UNIX distribution năm 1982
- Giải thuật distance vector
  - Độ đo khoảng cách: số hop (lớn nhất = 15 hop), mỗi liên kết có chi phí là 1
  - Các DV được trao đổi giữa các điểm lân cận sau mỗi 30s bằng một thông điệp đáp ứng (còn được gọi là thông báo (advertisement))
  - Mỗi thông báo: danh sách lên đến 25 subnet đích



Từ router A đến các subnet đích:

| subnet | hop |
|--------|-----|
| u      | 1   |
| V      | 2   |
| W      | 2   |
| Х      | 3   |
| У      | 3   |
| Z      | 2   |
|        |     |

Tầng mạng 4-107





Bảng định tuyến trong router D

|             | 0. , 0         |                 |
|-------------|----------------|-----------------|
| Subnet đích | Router kế tiếp | Số họp đến đích |
| W           | Α              | 2               |
| у           | В              | 2               |
| Z           | В              | 7               |
| x           |                | 1               |
|             |                |                 |



# RIP: Lỗi liên kết và khôi phục

Nếu không thấy có thông báo sau khoảng 180s thì lân cận/liên kết được coi là "đã chết".

- Các tuyến đường qua lân cận là không còn dùng được
- Các thông báo mới được gửi tới các lân cận
- Các lân cận tiếp tục gửi các thông báo mới (nếu các bảng bị thay đổi)
- Thông báo lỗi liên kết lan truyền nhanh chóng (?) trên toàn bộ mạng
- Poison reverse được dùng để ngăn chặn các vòng lặp ping-pong (khoảng cách vô hạn = 16 hop)

# Xử lý bảng RIP

- Các bảng định tuyến RIP được quản lý bởi tiến trình tầng ứng dụng được gọi là route-d (daemon)
- Các thông báo được gửi trong các gói tin UDP, lặp lại định kỳ



Tầng mạng 4-111

# **OSPF** (Open Shortest Path First)

- "Mở": sẵn sàng công khai
- Dùng giải thuật link state
  - Phân phối gói LS
  - Bản đồ cấu trúc mạng tại mỗi nút
  - Tính toán đường đi dùng giải thuật Dijkstra
- Thông báo OSPF mang một điểm truy nhập vào mỗi lân cân
- Các thông báo được phân phối đến toàn bộ AS (qua cơ chế flooding)
  - Các thông điệp OSPF được mang trực tiếp trên IP (chứ không phải là TCP hay UDP)
- Giao thức định tuyến IS-IS: gần giống với OSPF

### Các đặc tính "cải tiến" trong OSPF (không có trong RIP)

- Bảo mật: Tất cả các thông điệp OSPF đều được chứng thực (để ngăn chặn những xâm nhập xấu)
- Cho phép có nhiều tuyến đường đi với cùng chi phí (trong RIP chỉ có một)
- Với mỗi liên kết, có nhiều độ đo chi phí cho các TOS khác nhau. (Ví dụ: chi phí liên kết vệ tinh được thiết lập "thấp" để đạt hiệu quả tốt; "cao" cho thời gian thực).
- \* Hỗ trơ tích hợp uni- và multicast:
  - Multicast OSPF (MOSPF) dùng cơ sở dữ liệu cùng cấu trúc như OSPF
- OSPF phân cấp trong các miền lớn.



# OSPF phân cấp

- Phân cấp 2 mức: vùng cục bộ, vùng xương sống.
  - Chỉ dùng thông báo link-state bên trong vùng
  - Mỗi nút có cấu trúc vùng chi tiết; chỉ biết hướng (đường đi ngắn nhất) đến các mạng trong các vùng khác.
- Các router biên của vùng: "tổng hợp" khoảng cách đến các mạng trong vùng của nó, thông báo tới các router biên của vùng khác.
- Các router xương sống: chạy định tuyến OSPF hạn chế đến mạng xương sống
- Các router biên: kết nối tới các router biên của các AS khác.

Tầng mạng 4-115

## Định tuyến inter-AS trên Internet: BGP

- BGP (Border Gateway Protocol): Giao thức định tuyến liên miền thực tế
  - "gắn kết mọi người lại với nhau trên Internet"
- BGP cung cấp cho mỗi AS:
  - eBGP: lấy thông tin đi đến subnet từ các AS lân cận.
  - iBGP: lan truyền thông tin đến tất cả các router bên trong AS.
  - Xác định đường đi "tốt" tới các mạng khác dựa trên thông tin đường đi và chính sách
- Cho phép subnet thông báo sự tồn tại của nó đến phần còn lại của Internet.

### Các cơ sở của BGP

- Phiên BGP: Hai router BGP ("các peer") trao đổi các thông điệp BGP:
  - Thông báo đường đi tới các tiền tố (prefix) mạng đích khác nhau (giao thức "path vector" (véc-tơ đường))
  - Được trao đổi qua các kết nối TCP bán bền vững
- Khi AS3 thông báo một prefix đến AS1:
  - AS3 hứa hẹn nó sẽ chuyển tiếp các datagram hướng tới prefix đó
  - AS3 có thể tổng hợp các prefix trong thông báo của mình



Tầng mạng 4-117

### Các cơ sở của BGP: phân phối thông tin đường đi

- Dùng phiên eBGP giữa 3a và 1c, AS3 gửi thông tin đường đi (prefix) cho AS1.
  - Tiếp theo,1c có thể dùng iBGP để phân phối thông tin prefix mới cho tất cả các router trong AS1
  - Sau đó,1b có thể thông báo thông tin đường đi mới tới AS2 qua phiên eBGP từ 1b-đến-2a.
- Khi router học được prefix mới, nó sẽ tạo ra điểm truy nhập cho prefix trong bảng chuyển tiếp của nó.



### Các thuộc tính đường và định tuyến BGP

- Prefix được thông báo chứa các thuộc tính BGP
  - Prefix + các thuộc tính = "định tuyến"
- Hai thuộc tính quan trọng:
  - AS-PATH: chứa các AS qua đó thông báo prefix nào được truyền. Ví dụ: AS 67, AS 17
  - NEXT-HOP: xác định router AS nội vùng nào là AS kế tiếp. (Có thể có nhiều liên kết từ AS hiện tại tới AS kế tiếp).
- Gateway router nhận thông báo định tuyến bằng cách dùng import policy (chính sách nhập) để chấp nhận/từ chối
  - Ví dụ: không bao giờ định tuyến qua AS x
  - Định tuyến dựa trên chính sách.

Tầng mạng 4-119

# Chọn định tuyến BGP

- Router có thể học được nhiều đường đi đến AS đích,
  và việc chon tuyến đường được dựa trên:
  - 1. Thuộc tính giá trị ưu tiên cục bộ: quyết định chính sách
  - 2. AS-PATH ngắn nhất
  - 3. Router NEXT-HOP gần nhất: định tuyến hot potato
  - 4. Tiêu chuẩn bổ sung

# Các thông điệp BGP

- Các thông điệp BGP được trao đổi giữa các peer qua kết nối TCP
- Các thông điệp BGP:
  - OPEN: Mở kết nối TCP tới peer và xác thực bên gửi
  - UPDATE: thông báo đường đi mới (hoặc xóa bỏ đường cũ)
  - KEEPALIVE: giữ kết nối tồn tại khi UPDATES thiếu; cũng có thể yêu cầu ACKs OPEN
  - NOTIFICATION: báo cáo lỗi trong thông điệp trước; cũng được dùng để đóng kết nối.

Tầng mạng 4-121

# Chính sách định tuyến BGP



- A, B, C là các nhà cung cấp mạng
- X, W, Y là khách hàng (của nhà cung cấp mạng)
- X là dual-homed: được gắn vào hai mạng
  - X không muốn định tuyến từ B đến C qua X
  - ...do vậy, X sẽ không thông báo tới B về đường đi đến C

# Chính sách định tuyến BGP



- A thông báo đường đi AW đến B
- B thông báo đường đi BAW đến X
- B sẽ thông báo đường đi BAW đến C?
  - Không! B không nhận "thu thập" cho định tuyến CBAW vì W và C đều không phải là khách hàng của B
  - B muốn buộc C phải định tuyến tới w qua A
  - B chỉ muốn định tuyến từ/tới khách hàng của nó!

Tầng mạng 4-123

### Tại sao định tuyến Intra-, Inter-AS khác nhau?

#### Chính sách:

- Inter-AS: nhà quản trị muốn điều hành định tuyến lưu lượng và ai định tuyến qua mạng của họ.
- Intra-AS: Quản trị riêng, vì vậy không cần các quyết định chính sách

#### Quy mô:

 Định tuyến phân cấp tiết kiệm kích thước bảng, giảm lưu lượng cập nhật

#### Hiệu năng:

- Intra-AS: có thể tập trung vào hiệu năng
- Inter-AS: chính sách quan trọng hơn hiệu suất

## Chương 4: Hoàn thành!

- 4.1 Giới thiệu
- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của router
- 4.4 IP: Internet Protocol
  - Định dạng datagram, định địa chỉ IPv4, ICMP, IPv6
- 4.5 Các giải thuật định tuyến
  - link state, distance vector, hierarchical routing
- 4.6 Định tuyến trên Internet
  - RIP, OSPF, BGP
- Hiểu được các nguyên lý bên trong các dịch vụ tầng mạng:
  - Các mô hình dịch vụ tầng mạng, tác động qua lại giữa định tuyến và chuyển tiếp, cách router hoạt động, định tuyến (chọn đường).
- · Cài đặt, hiện thực trên mạng Internet