EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

Methods of Analysis

Nodal Analysis

- Provide a general procedure for analyzing circuit using node voltages
- In nodal analysis, determine node voltages
- Steps to determine node voltages:
 - \Box Select a node as the reference node. Assign voltages $v_1, v_2, \ldots, v_{n-1}$ to the remaining n-1 nodes. The voltages are referenced with respect to the reference node.
 - □ Apply KCL to each of the n-1 nonreference nodes. Use Ohm's law to express the branch currents in terms of node voltages.
 - Solve the resulting simultaneous equations to obtain the unknown node voltages.

Nodal Analysis

TO THE TOTAL TO TH

- Choosing a reference (datum) node.
- Reference node: ground node (zero potential)

For the circuit shown below, express the branch currents in terms of node voltages.

$$ext{KCL: } \sum i_{in} = \sum i_{out}$$

At node 1:
$$I_1 = I_2 + i_1 + i_2$$

At node 2:
$$I_2 + i_2 = i_3$$

Ohm's law:
$$v = iR \Rightarrow i = \frac{v}{R}$$

$$i_1 = \frac{v_1 - 0}{R_1}$$
 or $i_1 = G_1 v_1$

$$i_2 = \frac{v_1 - v_2}{R_2}$$
 or $i_2 = G_2(v_1 - v_2)$

$$i_3 = \frac{v_2 - 0}{R_2}$$
 or $i_3 = G_3 v_2$

$$I_1 = I_2 + \frac{v_1}{R_1} + \frac{v_1 - v_2}{R_2}$$

$$\frac{v_1}{R_2} + \frac{v_1 - v_2}{R_2} = \frac{v_2}{R_2}$$

Current flows from higher potential (+) to lower potential (-) in a resistor

$$i = \frac{v_{higher} - v_{lower}}{R}$$

$$G = \frac{1}{R}$$

$$I_1 = I_2 + \frac{v_1}{R_1} + \frac{v_1 - v_2}{R_2}$$
 or $I_1 = I_2 + G_1 v_1 + G_2 (v_1 - v_2)$

$$I_2 + \frac{v_1 - v_2}{R_2} = \frac{v_2}{R_3}$$
 or $I_2 + G_2(v_1 - v_2) = G_3 v_2$

• Determine the voltages at the nodes in the circuit shown below

At node 1:
$$3 = i_1 + i_x$$
 $i_1 = \frac{v_1 - v_3}{4}$ $i_3 = \frac{v_2}{4}$

At node 2: $i_x = i_2 + i_3$ At node 3: $i_1 + i_2 = 2i_x$ $i_2 = \frac{v_2 - v_3}{8}$ $i_x = \frac{v_1 - v_2}{2}$

$$i_1 = \frac{v_1 - v_3}{4}$$

$$i_3 = \frac{v_2}{4}$$

$$i_2 = \frac{v_2 - v_3}{Q}$$

$$i_x = \frac{v_1 - v_2}{2}$$

$$3 = \frac{v_1 - v_3}{4} + \frac{v_1 - v_2}{2} \Rightarrow 3v_1 - 2v_2 - v_3 = 12 \longrightarrow Eq \ 1$$

$$\frac{v_1 - v_2}{2} = \frac{v_2 - v_3}{8} + \frac{v_2}{4} \Rightarrow 4v_1 - 7v_2 + v_3 = 0 \longrightarrow Eq \ 2$$

$$\frac{v_1 - v_3}{4} + \frac{v_2 - v_3}{8} = 2\left(\frac{v_1 - v_2}{2}\right) \Rightarrow 6v_1 - 9v_2 + 3v_3 = 0 \longrightarrow Eq \ 3$$

$$v_1 = 4.8 V$$

3 equation and $v_2 = 2.4 V$ 3 unknowns

$$v_2 = 2.4 V$$

$$v_3 = -2.4 V$$

Nodal Analysis with Voltage Sources

TO THE TOTAL TOTAL

- How voltage sources affect nodal analysis. There are two cases.
- Case I: If a voltage source is connected between reference node and nonreference node, set the voltage at nonreference node equal to the voltage of the voltage source.

Nodal Analysis with Voltage Sources

INVERSITY 1773

- Case II: If the voltage source (dependent or independent) is connected between two nonreference nodes, the two nonreference nodes form a **supernode**.
- Nodes 2 and 3 form a supernode

$$ext{KCL: } \sum i_{in} = \sum i_{out}$$

At supernode node: $i_1 + i_4 = i_2 + i_3$

$$i_1 = \frac{v_1 - v_2}{2}$$
, $i_2 = \frac{v_2}{8}$, $i_3 = \frac{v_3}{6}$, $i_4 = \frac{v_1 - v_3}{4}$

$$\frac{v_1 - v_2}{2} + \frac{v_1 - v_3}{4} = \frac{v_2}{8} + \frac{v_3}{6}$$
 where $v_1 = 10 \text{ V}$

KVL:
$$\sum_{m=1}^{M} V_m = 0$$
, $-v_2 + 5 + v_3 = 0 \Rightarrow v_2 - v_3 = 5$

KCL must be satisfied at the supernode. KCL not only applies to node but also closed surface

Supernode requires the application of both KCL and KVL

• For the circuit shown below, find the node voltages.

Apply KCL at supernode:

$$2 = i_1 + i_2 + 7 \Rightarrow i_1 + i_2 = -5$$

$$i_1 = \frac{v_1}{2}, \quad i_2 = \frac{v_2}{4}$$
 $\frac{v_1}{2} + \frac{v_2}{4} = -5$

$$\frac{v_1}{2} + \frac{v_2}{4} = -5 \Rightarrow 2v_1 + v_2 = -20 \longrightarrow Eq \ 1$$

Apply KVL at supernode:

$$-v_1 - 2 + v_2 = 0 \Rightarrow -v_1 + v_2 = 2 \longrightarrow Eq 2$$

2 eqs and 2 unknows:

$$2v_1 + v_2 = -20$$
 $v_1 = -7.333 V$ $v_2 = -5.333 V$

• Find the node voltages in the circuit shown below

• Node 1 and 2 as well as node 3 and 4 form a supernode:

Apply KCL at supernode 1 and 2:

$$i_3 + 10 = i_1 + i_2$$

$$\frac{v_3 - v_2}{6} + 10 = \frac{v_1 - v_4}{3} + \frac{v_1}{2}$$

or

$$5v_1 + v_2 - v_3 - 2v_4 = 60$$

Apply KCL at supernode 3 and 4:

$$i_1 = i_3 + i_4 + i_5$$
 \Rightarrow $\frac{v_1 - v_4}{3} = \frac{v_3 - v_2}{6} + \frac{v_4}{1} + \frac{v_3}{4}$ or

$$4v_1 + 2v_2 - 5v_3 - 16v_4 = 0$$

 $3v_{\rm y}$

Apply KVL at loop 1:

$$-v_1 + 20 + v_2 = 0$$
 \Rightarrow $v_1 - v_2 = 20$

Apply KVL at loop 2:

$$-v_3 + 3v_x + v_4 = 0$$

$$v_x = v_1 - v_4$$

$$3v_1 - v_3 - 2v_4 = 0$$

Apply KVL at loop 3:

$$v_x - 3v_x + 6i_3 - 20 = 0$$

$$6i_3 = v_3 - v_2$$
 and $v_x = v_1 - v_4$

$$-2v_1 - v_2 + v_3 + 2v_4 = 20$$

$$v_1 = 26.67 \text{ V}$$

$$v_2 = 6.667 \text{ V}$$

$$v_3 = 173.33 \text{ V}$$

$$v_4 = -46.67 \text{ V}$$

 6Ω

 3Ω

20 V

Mesh Analysis

- Provide a procedure for analyzing circuit using mesh currents
- Mesh analysis is also known as loop analysis or the mesh-current method
- In mesh analysis, apply KVL to find unknown currents
- Mesh analysis can only be applied to a planar circuit.
- Planar circuit: drawn in a plane with no branches crossing one another. Otherwise it nonplanar.

Nodal analysis applies KCL to find unknows voltages (For supernode: apply both KCL & KVL) Mesh analysis applies KVL to find unknown currents (For supermesh: apply both KVL & KCL)

Mesh Analysis

- What is a mesh?
 - □ A loop which does not contain any other loops within it.
 - □ Path abefa: mesh (only one loop)
 - □ Path bcdeb: mesh (only one loop)
 - □ Path abcdefa: not a mesh (two loops)
- The current through a mesh is known as mesh current
- Steps to determine mesh current:
 - \square Assign a mesh current $i_1, i_2, ..., i_n$ to the n meshes.
 - □ Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh current
 - □ Solve the resulting n simultaneous equations to get the mesh currents

 i_1 and i_2 : mesh currents I_1 , I_2 , and I_3 : branch currents

- Obtain branch currents using mesh analysis
- 1st: assign mesh currents $(i_1 \text{ and } i_2)$ to meshes 1 and 2
- Direction of mesh currents is chosen arbitrarily (clockwise)
- 2nd: apply KVL to mesh 1:

$$-V_1 + R_1 i_1 + R_3 (i_1 - i_2) = 0$$

$$(R_1 + R_3) i_1 - R_3 i_2 = V_1 \longrightarrow Eq 1$$

Apply KVL to mesh 2:

$$R_2 i_2 + V_2 + R_3 (i_2 - i_1) = 0$$

 $-R_3 i_1 + (R_2 + R_3) i_2 = -V_2 \longrightarrow Eq 2$

Last step is to solve for the mesh currents:

Equations in matrix form:

$$\begin{bmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ -V_2 \end{bmatrix}$$

$$I_1 = i_1, \qquad I_2 = i_2, \qquad I_3 = i_1 - i_2$$

• For the circuit shown below, find the branch currents using mesh analysis.

- 1st: assign mesh currents
- 2nd: apply KVL to mesh 1:

$$-15 + 5i_1 + 10(i_1 - i_2) + 10 = 0$$

 $3i_1 - 2i_2 = 1 \longrightarrow Eq 1$

• Apply KVL to mesh 2:

$$6i_2 + 4i_2 + 10(i_2 - i_1) - 10 = 0$$

 $i_1 = 2i_2 - 1 \longrightarrow Eq 2$

• Substitute *Eq* 2 into *Eq* 1:

$$6i_2 - 3 - 2i_2 = 1 \implies i_2 = 1 \text{ A}$$

 $i_1 = 2i_2 - 1 = 2 - 1 = 1 \text{ A}$
 $I_1 = i_1 = 1 \text{ A}, \qquad I_2 = i_2 = 1 \text{ A}, \qquad I_3 = i_1 - i_2 = 0$

• Use mesh analysis to find the current I_0 in the circuit shown below

- Apply KVL to three meshes
- For mesh 1:

$$-24 + 10(i_1 - i_2) + 12(i_1 - i_3) = 0$$
$$11i_1 - 5i_2 - 6i_3 = 12 \longrightarrow Eq 1$$

• For mesh 2:

$$24i_2 + 4(i_2 - i_3) + 10(i_2 - i_1) = 0$$
$$-5i_1 + 19i_2 - 2i_3 = 0 \longrightarrow Eq 2$$

For mesh 3:

$$4I_0 + 12(i_3 - i_1) + 4(i_3 - i_2) = 0$$

• At node A, KCL: $I_o = i_1 - i_2$ $4(i_1 - i_2) + 12(i_3 - i_1) + 4(i_3 - i_2) = 0$ $-i_1 - i_2 + 2i_3 = 0 \longrightarrow Eq 3$

Equations in matrix form:

$$\begin{bmatrix} 11 & -5 & -6 \\ -5 & 19 & -2 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$

• Cramer's rule

$$i_1 = \frac{\Delta_1}{\Delta}$$
 $i_2 = \frac{\Delta}{\Delta}$

$$i_3 = \frac{\Delta_3}{\Delta}$$

$$i_1 = \frac{\Delta_1}{\Delta}$$
 $i_2 = \frac{\Delta_2}{\Delta}$ $i_3 = \frac{\Delta_3}{\Delta}$ where Δ is determinant
$$\begin{bmatrix} 11 & -5 & -6 \\ -5 & 19 & -2 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$

$$\Delta_{1} = \begin{vmatrix} 12 & -5 & -6 \\ 0 & 19 & -2 \\ -12 & -5 & -6 \\ -19 & -2 & + \\ -10 & -2 & + \\ -10 & -2$$

$$i_1 = \frac{\Delta_1}{\Delta} = \frac{432}{192} = 2.25 \text{ A}, \qquad i_2 = \frac{\Delta_2}{\Delta} = \frac{144}{192} = 0.75 \text{ A},$$

$$i_3 = \frac{\Delta_3}{\Delta} = \frac{288}{192} = 1.5 \text{ A}$$

$$I_o = i_1 - i_2 = 1.5 \text{ A}.$$

Mesh Analysis with Current Sources

- How current sources affect mesh analysis. There are two cases.
- Case I: when a current source exists only in one mesh
- Set $i_2 = -5$ A
- Write mesh equation for the other mesh

KVL for mesh 1:

$$-10 + 4i_1 + 6(i_1 - i_2) = 0$$

$$-10 + 4i_1 + 6i_1 - 6i_2 = 0$$

$$10i_1 - 6i_2 = 10 \Rightarrow i_1 = -2 A$$

Mesh Analysis with Current Sources

Case II: When a current source exists between two meshes, create a supermesh
by excluding the current source and any elements connected in series with it

- Supermesh results when two meshes have a (dependent or independent) current source in common.
- If a circuit has two or more supermeshes that intersect, they should be combined to form a larger supermesh

Mesh Analysis with Current Sources

A Supermesh requires the application of both KVL and KCL

Apply KVL to the supermesh:

$$-20 + 6i_1 + 10i_2 + 4i_2 = 0$$
$$6i_1 + 14i_2 = 20$$

 Apply KCL to node zero (intersection of two meshes):

$$i_2 = i_1 + 6$$

 $i_1 = -3.2 A \& i_2 = 2.8 A$

• For the circuit shown below, find i_1 to i_4 using mesh analysis.

- Two supermeshes:
 - 1st one is between mesh 1 & 2
 - 2nd one is between mesh 2 & 3
- Combine them and exclude both current sources
- Apply KVL to the larger supermesh:

$$2i_1 + 4i_3 + 8(i_3 - i_4) + 6i_2 = 0$$
$$i_1 + 3i_2 + 6i_3 - 4i_4 = 0 \longrightarrow Eq 1$$

• For independent current source, apply KCL to node P:

$$i_2 = i_1 + 5 \longrightarrow Eq 2$$

 For dependent current source, apply KCL to node Q:

$$i_2 = i_3 + 3I_o$$
 $I_o = -i_4$
 $i_2 = i_3 - 3i_4 \longrightarrow Eq 3$

• Apply KVL in mesh 4:

$$2i_4 + 8(i_4 - i_3) + 10 = 0$$

$$5i_4 - 4i_3 = -5 \longrightarrow Eq 4$$

$$i_1 + 3i_2 + 6i_3 - 4i_4 = 0$$
 $i_2 = i_1 + 5$
 $i_2 = i_3 - 3i_4$
 $5i_4 - 4i_3 = -5$

$$i_1 = -7.5 \text{ A}, \qquad i_2 = -2.5 \text{ A}, \qquad i_3 = 3.93 \text{ A}, \qquad i_4 = 2.143 \text{ A}$$

Nodal versus Mesh Analysis

- Both methods provide a systematic way of analyzing a complex network.
- How do we know which method is better or more efficient?
- The choice of the better method is dictated by two factors.
- First factor: the nature of the particular network
 - Mesh analysis: more suitable if network contains many series-connected elements, voltage sources, or supermeshes
 - Nodal analysis: more suitable if network contains parallel-connected elements, current sources, or supernodes
 - Better to use nodal analysis for a circuit with fewer nodes than meshes
 - Better to use mesh analysis for a circuit with fewer meshes than nodes
- Second factor: Based on required information
 - If node voltages are required, apply node analysis
 - If branch or mesh currents are required, apply mesh analysis
- You must learn both methods!

• Transistors play essential role for the design of integrated circuits (IC).

- What is a transistor?
 - □ Current **Trans**ferring res**istor**
 - □ Three terminal semiconductor device
- Two types of transistors:
 - □ Bipolar Junction Transistor (BJT)
 - □ Field-Effect Transistor (FET)

Various types of transistors

- Two types of Bipolar Junction Transistor (BJT)
 - npn
 - pnp

npn: Arrowhead pointing down

pnp: Arrowhead pointing up

• Three terminals: emitter (E), base (B), and collector (C)

Apply KCL: $\sum i_{in} = \sum i_{out}$

$$I_E = I_C + I_B$$

 I_E : emitter current

I_C: collector current

 I_B : base current

Apply KVL: $\sum_{m=1}^{M} V_m = 0$

$$V_{CE} - V_{BE} - V_{CB} = 0$$
 or $V_{CE} + V_{EB} + V_{BC} = 0$

 V_{CE} : collector-emitter voltage

 V_{EB} : emitter-base voltage

 V_{BC} : base-collector voltage

- BJT: three modes of operation
 - □ Active mode
 - Cutoff mode
 - Saturation mode
- Operation in active mode:

$$V_{BE} \approx 0.7 \ V$$
 $I_C = \alpha I_E$ $I_C = \beta I_B$

$$I_C = \alpha I_E$$

$$I_C = \beta I_B$$

$$I_E = I_C + I_B \Rightarrow I_E = \beta I_B + I_B \Rightarrow (1 + \beta) I_B \Rightarrow I_E = (1 + \beta) I_B$$

$$\alpha I_E = \beta I_B \Rightarrow \alpha \frac{I_E}{I_B} = \beta \Rightarrow \alpha \frac{(1+\beta) I_B}{I_B} = \beta \Rightarrow \alpha + \alpha \beta = \beta$$

$$\Rightarrow \alpha = \beta - \alpha \beta \Rightarrow \alpha = \beta (1-\alpha) \Rightarrow \beta = \frac{\alpha}{1-\alpha}$$

 β : common-emitter current gain (in the range of 50 to 1000)

 α and β is the transistor properties and assume constant for a given transistor

• In active mode, the BJT can be modeled as a dependent current-controlled current source:

Find the I_B , I_C , and v_0 in the transistor shown below. Assume that the transistor operates in the active mode and that $\beta = 50$.

For the input loop, KVL gives

$$-4 + I_B(20 \times 10^3) + V_{BE} = 0$$

Since $V_{BE} = 0.7 \text{ V}$ in the active mode,

$$I_B = \frac{4 - 0.7}{20 \times 10^3} = 165 \,\mu\text{A}$$

$$I_C = \beta I_B = 50 \times 165 \,\mu\text{A} = 8.25 \,\text{mA}$$

For the output loop, KVL gives

$$-v_o - 100I_C + 6 = 0$$

$$v_o = 6 - 100I_C = 6 - 0.825 = 5.175 \text{ V}$$

• For the BJT circuit shown below, $\beta=150$ and $V_{BE}=0.7~V$. Find v_0 .

Method 1: Solving with mesh analysis

1st loop:

$$-2 + 100kI_1 + 200k(I_1 - I_2) = 0$$

$$3I_1 - 2I_2 = 2 \times 10^{-5} \longrightarrow Eq 1$$

2nd loop:

$$200k(I_2 - I_1) + V_{RE} = 0$$

$$-2I_1 + 2I_2 = -0.7 \times 10^{-5} \longrightarrow Eq 2$$

$$I_1 = 1.3 \times 10^{-5} \text{A}$$
 and $I_2 = (-0.7 + 2.6)10^{-5}/2 = 9.5 \,\mu\text{A}$

Since
$$I_3 = -150I_2 = -1.425 \text{ mA}$$
 $I_3 = -I_C \text{ and } I_2 = I_B$

3rd loop:

$$-v_o + {}^{1}kI_3 + 16 = 0$$

$$v_o = -1.425 + 16 = 14.575 \text{ V}$$

2 equations and

2 unknowns

- Method 2: Solving with nodal analysis
- Replace transistor with its equivalent circuit

At node number 1: $V_1 = 0.7 \text{ V}$

Apply KCL:

$$(0.7 - 2)/100k + 0.7/200k + I_B = 0$$

$$I_B = 9.5 \,\mu\text{A}$$

At node number 2 we have:

Apply KCL:

$$150I_B + (v_o - 16)/1k = 0$$

PSpice

- What is PSpice?
 - □ Free computer software circuit analysis program
 - □ Allows you to simulate and analyze a circuit
 - □ Helpful program in determining the voltages and currents in a circuit
 - □ Use online sources (YouTube and google) for a tutorial on how to use the PSpice program

