COL362/632 Introduction to Database Management Systems Database Design – Functional Dependencies

Kaustubh Beedkar

Department of Computer Science and Engineering Indian Institute of Technology Delhi

Example

Consider the following relation

ActorFilm								
id	firstname	lastname	dob	title	year	language		
1	Priyanka	Chopra	1992	Don	2006	Hindi		
1	Priyanka	Chopra	1992	Don-II	2011	Hindi		
2	Anthony	Hopkins	1937	MI-IV	2011	English		
2	Anthony	Hopkins	1937	Valkyrie	2008	English		
3	Bill	Nighty	1949	Valkyrie	2008	English		

- ▶ Problems with this design
 - 1. Redundancy
 - 2. Update Anomalies

- update ActorFilm set firstname = 'Priyankaa' where id = 1;
- ▶ insert into ActorFilm values (null, null, null, null, Avatar, 2009, English);
- delete from ActorFilm where title = 'Valkyrie';
- delete from ActorFilm where firstname = 'Anthony' and lastname = 'Hopkins';

Normalization

The process of systematically eliminating redundancy and anomalies.

A functional dependency is another kind of constraint

▶ If two tuples in a relation agree on the values of one set of attributes, then they must also agree on the values of another set of attributes

Given two attribute sets A and B with $A, B \subseteq [R]$

 $A \to B$ is called <u>functional dependency</u> (FD) if a function exists $f(a) := b \quad \forall a \in \pi_A(R), b \in \pi_B(R)$ for all possible instances of R.

▶ In other words, values of A determine the values of B

Example

ActorFilm							
id	firstname	lastname	dob	title	year	language	
1	Priyanka	Chopra	1992	Don	2006	Hindi	
1	Priyanka	Chopra	1992	Don-II	2011	Hindi	
2	Anthony	Hopkins	1937	MI-IV	2011	English	
2	Anthony	Hopkins	1937	Valkyrie	2008	English	
3	Bill	Nighty	1949	Valkyrie	2008	English	

Functional Dependencies (FDs)

- $\{$ id, firstname, lastname $\} \rightarrow \{$ dob $\}$
- $\{ \text{ title } \} \rightarrow \{ \text{ language } \}$
- $\{$ firstname, lastname $\} \rightarrow \{$ title, year $\}$

Incorrect FD!

- ▶ Important to differentiate between instance and schema
- ▶ FD defines a constraint for the possible instances of *R*
 - Instances that satisfy FD are called legal instances
- ▶ FD do not define dependencies for concrete instance
 - Single counter example is enough!

Example

ActorFilm							
id	firstname	lastname	dob	title	year	language	
1	Priyanka	Chopra	1992	Don	2006	Hindi	
1	Priyanka	Chopra	1992	Don-II	2011	Hindi	
2	Anthony	Hopkins	1937	MI-IV	2011	English	
2	Anthony	Hopkins	1937	Valkyrie	2008	English	
3	Bill	Nighty	1949	Valkyrie	2008	English	

- Functional Dependencies
 - $\{ id \} \rightarrow \{ firstname, lastname, dob \}$
 - $\{ \text{ firstname } \} \rightarrow \{ \text{ lastname } \}$ not an FD
 - $\{ dob \} \rightarrow \{ id, firstname, lastname \}$ not an FD

- Not just a theoretical DB concept!
- Play a crucial role in applications beyond DB design
 - Feature engineering and selection in ML (e.g., dimensionality reduction, feature generation)
 - Data cleaning and anomaly detection (e.g., missing value imputation, duplicate detection, data errors)
 - Causal discovery and data understanding in ML
 - Query Optimization in Data pipelines
 - Data integration and schema matching
 - Balancing data privacy and data utility

Super Keys

- A superkey is a set of one or more attributes (columns) in a relation (table) such that the values of these attributes are sufficient to uniquely identify a tuple (row) in the relation.
- ▶ Any subset $S \subseteq [R]$ for which $S \rightarrow [R]$ holds is called a **super key** of R
 - $[R] \rightarrow [R]$
 - $\exists a \in S : S \setminus \{a\} \rightarrow [R]$
- Super key functionally determines all other attributes
 - Not necessarily minimal!
- Example
 - ActorFilm(id, firstname, lastname, dob, title, year, language)
 - $S = \{ id, firsname, lastname, dob, title \}$

Candidate Key

- A candidate key is a minimal superkey
- ▶ For a superkey $S \subseteq [R]$ for which
 - $\not\exists a \in S : S \setminus \{a\} \rightarrow [R]$ or
 - $\forall a \in S : S \setminus \{a\} \not\rightarrow [R]$
 - is called the candidate key of R

Example

- ActorFilm(id, firstname, lastname, dob, title, year, language)
- $S = \{$ firstname, lastname, title, year $\}$
- A relation can have multiple candidate keys

Primary Attribute & Primary Key

- ▶ Let C be the set of all candidate keys of [R], then
- ▶ all attributes $\bigcup_i c_i$ are called **primary attributes** of [R]

Primary Key

- Any candidate key used to identify a tuple!
 - Cannot have null
 - Not change over time
 - Short as possible

Inferring FDs

- ▶ Given a set of FDs, which other FDs follow from it?
- Example
 - Given: R(A, B, C) satisfies $A \rightarrow B$ and $B \rightarrow C$
 - Inferred: $A \rightarrow C$ through **transitivity of FDs**.
 - Given: $\{aadhar\} \rightarrow \{pan\}, \{pan\} \rightarrow \{dob\}$
 - Then, $\{aadhar\} \rightarrow \{dob\}$

Inferring FDs

- ▶ Given: $A_1A_2...A_n \rightarrow B_1B_2...B_m$
- ▶ Inferred $A_1A_2...A_n \rightarrow B_i$ for i = 1, 2, ..., m through **splitting rule**

- ▶ Given $A_1A_2...A_n \rightarrow B_i$ for i = 1, 2, ..., m
- ▶ Inferred: $A_1A_2...A_n \rightarrow B_1B_2...B_m$ through **combining rule**

Equivalent FDs

- ▶ Two FDs S and T are equivalent if
 - ullet set of relation instances satisfying S is exactly the same as the set of relation instances satisfying T
- ▶ If FD S follows from FD T, if every instance that satisfies T also satisfies S
- $ightharpoonup S = T \text{ iff } S \implies T \text{ and } T \implies S$

Trivial and Non-trivial FDs

- ightharpoonup Consider R(A, B, C)
- Given FDs
 - $AB \rightarrow A$ trivial
 - $AB \rightarrow AC$ non-trivial
 - ullet AB
 ightarrow C completely non-trivial
- Trivial FD

 $X \rightarrow Y$ where $Y \subseteq X$

► Non-trivial FD

- $X \rightarrow Y$ where $Y \not\subseteq X$
- ▶ Completely non-trivial FD $X \to Y$ where $Y \cap X = \emptyset$

Armstrong's Axioms

1.
$$B \subseteq A$$

$$\implies$$
 $A \rightarrow B$

Reflexivity

2.
$$A \rightarrow B$$

$$\implies$$
 $AC \rightarrow BC$ Augmentation

3.
$$A \rightarrow B$$
, $B \rightarrow C \implies A \rightarrow C$

$$A \rightarrow C$$

Transitivity

4.
$$A \rightarrow BC$$

 \implies $A \rightarrow B$, $A \rightarrow C$ Decomposition (splitting)

5.
$$A \rightarrow B$$
, $A \rightarrow C$ \Longrightarrow $A \rightarrow BC$

$$\Rightarrow A \rightarrow BC$$

Union (combining)

6.
$$A \rightarrow B$$
, $DB \rightarrow C \implies DA \rightarrow C$

$$\Rightarrow DA \rightarrow C$$

Pseudo-transitivity

Closure of FDs

- ▶ Given: the set *S* of FDs
- \triangleright Output: S^+ , the **closure** of S containing all FDs that can be derived from S
- Example
 - Given $S = \{AB \rightarrow C, C \rightarrow ED\}$
 - Then $S^+ = \{AB \rightarrow ED, AB \rightarrow E, AB \rightarrow D, ABC \rightarrow ED, C \rightarrow E, C \rightarrow D, \dots\}$
 - HW: Find all FDs

Closure of Attributes

- ▶ Let S be a set of FDs
 - Is a new FD F derivable from S?
- Example
 - Given $S = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
 - Does the FD $AB \rightarrow D$ hold?
 - Compute { *A*, *B* } +

FD
$$\{A, B\}^+$$
 $AB \rightarrow C$ $\{A, B, C\}$
 $BC \rightarrow AD$ $\{A, B, C, D\}$
 $D \rightarrow E$ $\{A, B, C, D, E\}$

• $AB \rightarrow D$ holds!

Attribute Closure Method

Given

- set S of FDs
- ▶ candidate FD $F: A \rightarrow B$

```
Step 1: Compute A^+ A^+ = A initial set of attributes do \{ for each FD X \to Y \in S \{ if X \subseteq A^+ then A^+ \leftarrow A^+ \cup Y \} if A^+ unchanged, quit \} Step 2: Check if B \subseteq A^+
```