Linear classification

Perceptron

$$f(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0, \ \hat{y} = \begin{cases} 1, & \text{if } f(x) \ge 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

Decision boundary, a hyperplane in \mathbb{R}^d :

$$H = \{ \mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0 \} = \{ \mathbf{x} \in \mathbb{R}^d : \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = 0 \}$$

 θ is the **normal** of the hyperplane,

 θ_0 is the **offset** of the hyperplane from origin,

 $-\frac{\theta_0}{\|\boldsymbol{\theta}\|}$ is the **signed distance** from the origin to hyperplane.

Perceptron algorithm,

```
Input: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}
while some y_i \neq \operatorname{sign}(\boldsymbol{\theta} \cdot \mathbf{x}_i)
          pick some misclassified (\mathbf{x}_i, y_i)
         \theta \leftarrow \theta + y_i \mathbf{x}_i
```

Given a linearly separable data, perceptron algorithm will take no more than $\frac{R^2}{\gamma^2}$ updates to **converge**, where $R = \max_i \|\mathbf{x}_i\|$ is the radius of the data, $\gamma = \min_i \frac{y_i(\boldsymbol{\theta} \cdot \mathbf{x}_i)}{\|\boldsymbol{\theta}\|}$ is the margin.

Also, $\frac{\theta \cdot \mathbf{x}}{\|\boldsymbol{\theta}\|}$ is the signed distance from H to \mathbf{x} in the direction $\boldsymbol{\theta}$.

 $\pmb{\theta} = \sum_i \alpha_i y_i \mathbf{x}_i,$ thus any inner product space will work, this is a kernel.

Gradient descent view of perceptron, minimize margin cost function $J(\boldsymbol{\theta}) = \sum_{i} (-y_i(\boldsymbol{\theta} \cdot \mathbf{x}_i))_+$ with $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla J(\boldsymbol{\theta})$

Support Vector Machine

Hard margin SVM,

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2$$
, such that $y_i \boldsymbol{\theta} \cdot \mathbf{x}_i \geq 1 (i = 1, \dots, n)$

Soft margin SVM,

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^{n} (1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i)_+$$

Regularization and SVMs: Simulated data with many features $\phi(\mathbf{x})$; C controls trade-off between margin $1/\|\boldsymbol{\theta}\|$ and fit to data; Large C: focus on fit to data (small margin is ok). More overfitting. Small C: focus on large margin, less tendency to overfit. Overfitting increases with: less data, more features.

$$\boldsymbol{\theta} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}, \ \alpha_{j} \neq 0$$
 only for support vectors.

 $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$, K is called a kernel. Solve α_j to determine $\sum_j \alpha_j y_j \phi(\mathbf{x}_j)$.

Compute the classifier for a test point \mathbf{x} via

$$\boldsymbol{\theta} \cdot \phi(\mathbf{x}) = \sum_{j} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x})$$

degree-m polynomial kernel: $K_m(\mathbf{x}, \tilde{\mathbf{x}}) = (1 + \mathbf{x} \cdot \tilde{\mathbf{x}})^m$ radial basis function kernel: $K_{rbf}(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\gamma ||\mathbf{x} - \tilde{\mathbf{x}}||^2)$