Fall Real Analysis Willie Xie Fall 2021

CONTENTS

Contents

1	Day	1: The Real Number System	3
	1.1	Number Systems	3
	1.2	Real Number System	3
	1.3	Least Upper Bound Property	4

Least Upper Bound Property 1

1.1 Number Systems

Natural : $\mathbb{N} = \{1, 2, 3, ...\}$ Integer: $\mathbb{Z} = \{-2, -1, 0, 1, 2, ...\}$ Rational : $\mathbb{Q} = \frac{p}{q}$ where $p,q \in \mathbb{N}$

*** Q is countable, but fails to have the least upper bound property ***

Example 1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

<u>Proof</u>

Let $\alpha = \frac{p}{q}$ where p and q cannot both be even. Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A. A has no least upper bound in Q, but A has a least upper bound in R.

1.2Real Number System

 \mathbb{R} is the unique ordered field with the least upper bound property. \mathbb{R} exists and unique.

Definition 1.5

Let S be a set. An order on S is a relation < satisfying two axioms:

- Trichotomy: For all $x,y \in S$, only one holds true:
 - -x < y
 - -x = y
 - -x > y
- Transitivity: If x < y and y < z, then x < z.

Definition 1.6

An ordered set is a set with an order.

Definition 1.7

Let S be an ordered set. Let $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

Definition 1.8

Let S be an ordered set. Let $E \subset S$ be bounded from above.

Then, there exists a least upper bound α where:

- α is an upper bound for E
- If $\gamma < \alpha$, then γ is not an upper bound for E.

Then $\alpha = \sup(E)$.

*** Lower Bound: $\inf(E)$ ***

Example 1.9

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below inf(E) = 3 and sup(E) = DNE

Observations on the Least Upper Bound

If sup E exists, it may or may not exists at E.

If α exists, then α is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

1.3 Least Upper Bound Property

Definition 1.10

An ordered set of S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.1

 \mathbb{Q} doesn't have a least upper bound property. For example, $z = \sqrt{2}$.

Proof

Let
$$z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$$
, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$.
Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then y is not an upper bound for E.
- If $y^2 2 > 0$, y is an upper bound for E, but not the sup(E).

Thus, E has no least upper bound in \mathbb{Q} .

However in \mathbb{R} , $\sqrt{2}$ is in E.

REFERENCES REFERENCES

References