Binary Decision Diagrams (BDD)

BDD History

Original idea for Binary decision Diagram due to Lee (1959) and Akers (1978) Critical Refinement-Ordered BDDs -due to Bryant (1986)

- Refinement impose some restrictions on structure
- Restrictions needed to make result canonical representation

Terminology;

A BDD is a directed Acyclic graph

- Graph: Vertices connected by edges
- Directed: edges have direction (drawn them with an arrow)
- Acyclic: No cycles possible by following arrows in graph

(Often see this shorted to DAG)

BDD

Truth Table

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Decision Tree

- Vertex represents a decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value I
- Function value determined by leaf value.

Binary Decision Tree

Leaf nodes

Ordered Binary Decision Diagram (OBDD)

Reduction: OBDD to ROBDD

ROBDDs

Functions are equal iff ROBDDs identical

Solution using ROBDD

Equivalence Checking Example

Equivalence Checking Example

