Université Badji Mokhtar, Annaba Faculté des Sciences Mathématiques et Informatique

T. C. M. I.Semestre 22019/2020

Corrigé série 2

Exercice 1 a) La population : 1600 élèves d'un lycée.

Le caractère : la langue vivante étudiée. Nature du caractère : qualitatif nominal.

- b) Ce caractère peut être représenté graphiquement par :
- $Diagramme \ à \ bandes$

- Diagramme circulaire

Exercice 2 1. Nature du caractère : quantitatif discret.

2. On commence d'abord par ordonner la série statistique dans l'ordre croissant : $5_{(4)}$; $6_{(6)}$; $7_{(12)}$; $8_{(6)}$; $9_{(5)}$; $10_{(9)}$; $11_{(12)}$; $12_{(10)}$; $13_{(7)}$; $14_{(9)}$; $15_{(7)}$; $16_{(3)}$. Tableau statistique :

Notes	Effectifs	Fréquences	Eff. cum.	Eff. cum.	Fréq. cum.	
		_	croissants	décroissants	croissants	$n_i x_i$
X	n_i	f_{i}	$n_i \uparrow$	$n_i\downarrow$	$f_i \uparrow$	
5	4	0.04	4	90	0.04	20
6	6	0.07	10	86	0.11	36
7	12	0.13	22	80	0.24	84
8	6	0.07	28	68	0.31	48
9	5	0.06	33	62	0.37	45
10	9	0.10	42	57	0.47	90
11	12	0.13	54	48	0.60	132
12	10	0.11	64	36	0.71	120
13	7	0.08	71	26	0.79	91
14	9	0.10	80	19	0.89	126
15	7	0.08	87	10	0.97	105
16	3	0.03	90	3	1	48
Total	90	1				945

a) Représentation des effectifs par le diagramme en bâtons

b) Courbe des fréquences cumulées :

4. Le mode est l'observation qui a le plus grand effectif, la série statistique possède deux modes :

 $Mo_1 = 7$ et $Mo_2 = 11$. On dit alors que la série statistique est bimodale.

La moyenne arithmétique $\overline{X} = \frac{1}{n} \sum_{i=1}^{12} n_i x_i = \frac{945}{90} = 10, 5.$

5. On a $n=90=2\times p$ où p=45 alors la médiane $Me=Q_2=\frac{x_p+x_{p+1}}{2}=\frac{x_{45}+x_{46}}{2}=\frac{11+11}{2}=11.$

Graphiquement nous pouvons déterminer la médiane on déterminant le point d'intersection de la droite d'équation y=0.5 avec la courbe des fréquences cumulées croissantes.

Exercice 3

1. La population : les 31 jours du mois de janvier

Le caractère étudié : la température journalière (en °C)

Nature du caractère : quantitatif continu

2. Etendue de la série : pour le déterminer il faut d'abord ordonner la série dans le sens croissant

$$8.8 - 9.1 - 9.4 - 9.9 - 10.0 - 10.2 - 10.4 \|\ 10.7 - 10.8 - 11.4 - 11.8 - 11.9 \|$$

$$12.5 - 12.6 - 12.9 - 13.3 - 13.6 - 13.6 \| 14.2 - 14.2 - 14.3 - 14.5 - 14.9 - 14.0 -$$

$$15.3 - 15.6 - 15.6 - 15.8 \|\, 16.2 - 16.8 - 17.0 - 17.6$$

 $D'où e = x_{max} - x_{min} = 17.6 - 8.8 = 8.8.$

Nombre de classes : $K = \sqrt{31} \simeq 5.57$. On opte pour 5 classes.

Amplitude : $a = \frac{8.8}{5} \simeq 1.76 \simeq 1.8$.

$\it 3. \ Tableau \ statistique$

Classes	Centre	Effectif	Fréquences	Pourcentage	$n_i^c \uparrow$	$n_i^c \downarrow$
[8.8; 10.6[9.7	7	0.2258	22.58	7	31
[10.6; 12.4[11.5	5	0.1613	16.13	12	24
[12.4; 14.2[13.3	6	0.1936	19.36	18	19
[14.2; 16[15.1	9	0.2903	19.35	27	13
[16; 17.8[16.9	4	0.1290	19.35	31	4
Total		31	1	100		

4. Représentations graphiques

Histogramme des températures du mois de jaurder

5. La classe modale est [14.2; 16] et Mo = 15.1.

La moyenne :
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{5} n_i x_i = \frac{408.7}{31} = 13.18$$
°C.

La médiane : On a $\frac{n}{2} = 15.5 \le n_i^c = 18$ alors $Me \in [12.4; 14.2[$. À l'aide d'une interpolation on obtient :

$$\frac{Me - 12.4}{14.2 - 12.4} = \frac{15.5 - 12}{18 - 12}$$

Alors $Me = 12.4 + 1.8 \cdot 0.5833 = 12.5 + 1.0499 \approx 13.45$ °C.

Exercice 4 1. Tableau statistique

Teneur	Effectif	$n_i^c \uparrow$	$n_i x_i$
7	1	1	7
8	2	3	16
9	3	6	27
10	4	10	40
11	2	12	22
12	3	15	36
13	2	17	26
14	1	18	14
15	1	19	15
17	1	20	17
Total	20		220

2. Représentation graphique des effectifs

Représentation graphique des effectifs cumulés croissants

1. Le mode est Mo = 10.

La moyenne est
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{10} n_i x_i = \frac{220}{20} = 11$$
.

Les quartiles : On a
$$n = 20 = 2 \times p$$
 alors la médiane $Me = Q_2 = \frac{x_p + x_{p+1}}{2} = \frac{10 + 11}{2} = 10.5$.

Le premier quartile
$$Q_1 = \frac{x_5 + x_6}{2} = \frac{9+9}{2} = 9$$
.

Le troisième quartile
$$Q_3 = \frac{x_{15} + x_{16}}{2} = \frac{12 + 13}{2} = 12.5$$
.

2. En rajoutant la valeur 12 on obtient le tableau statistique suivant

Teneur	Effectif	$n_i^c \uparrow$	$n_i x_i$	$n_i x_i^2$
7	1	1	7	49
8	2	3	16	128
9	3	6	27	243
10	4	10	40	400
11	2	12	22	242
12	4	16	48	576
13	2	18	26	338
14	1	19	14	196
15	1	20	15	225
17	1	21	17	289
Total	21		232	2686

La série devient bimodale et les modes sont $Mo_1 = 10$ et $Mo_2 = 12$.

La moyenne est $\overline{X} = \frac{1}{n} \sum_{i=1}^{10} n_i x_i = \frac{232}{21} = 11.05$.

Les quartiles : On a $n=21=2\times p$ alors la médiane $Me=Q_2=x_{11}=11.$

Le premier quartile $Q_1 = \frac{x_5 + x_6}{2} = \frac{9+9}{2} = 9$.

Le troisième quartile $Q_3 = \frac{x_{16} + x_{17}}{2} = \frac{12 + 13}{2} = 12.5$.

3. L'écart-type
$$\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^{10} n_i x_i^2 - \overline{X}^2} = \sqrt{\frac{2686}{21} - 122.1025} = \sqrt{5.8} \simeq 2.41.$$

Le coefficient de variation $CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{2.41}{11.05}100 = 21.81\%$. L'écart interquartile $IQR = Q_3 - Q_1 = 12.5 - 9 = 3.5$.

4. Interprétation des résultats.

 $50\%\,des$ observations sont inférieures à Me et 50% sont supérieures Me ;

25% des observations sont inférieures à Q_1 et 75% sont supérieures à Q_1 ;

75% des observations sont inférieures à Q_3 et 25% sont supérieures à Q_3 ;

 $CV_X = 21.81\%$ alors, la série statistique est homogène, les données sont faiblement dispersées.

Exercice 5 1. L'étendue de la série est 3.2 - 0.8 = 2.4 et n = 66 > 50 alors le nombre de classes sera approximativment de $n_c = 1 + \frac{10}{3} \log 66 \simeq 7$. L'amplitude de chaque classe est donné par $a = \frac{2.4}{7} \simeq 0.34$ on prendra a = 0.4 et la première classe commencera par exemple par 0.6.

Taux de cholestérol	Centre	Effectif	Effectif cumulé croissant
[0.6; 1.0[0.8	2	2
[1.0; 1.4[1.2	14	16
[1.4; 1.8[1.6	16	32
[1.8; 2.2[2.0	13	45
[2.2; 2.6[2.4	9	54
[2.6; 3.0[2.8	8	62
[3.0; 3.4[3.2	4	66
Total		66	_

2. L'histogramme et la courbe des effectifs cumilés croisssants

1. La classe modale est [1.4; 1.8[et le mode est Mo = 1.6.

La moyenne est

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{7} n_i x_i$$

$$= \frac{1}{66} (2 \times 0.8 + 14 \times 1.2 + 16 \times 1.6 + 13 \times 2.0 + 9 \times 2.4 + 8 \times 2.8 + 4 \times 3.2)$$

$$\approx 1.92$$

On a $\frac{n}{4}=16.5$ alors le premier quartile $Q_1\in[1.4;1.8[$ et il est donné par

$$\frac{Q_1 - 1.4}{1.8 - 1.4} = \frac{16.5 - 16}{32 - 16}$$

$$\implies Q_1 = \frac{0.5}{16}0.4 + 1.4$$

$$\implies Q_1 = 1.41.$$

On a $\frac{n}{2}=33$ alors la médiane $Me \in [1.8; 2.2[$ et elle est donnée par

$$\frac{Me - 1.8}{2.2 - 1.8} = \frac{33 - 32}{45 - 32}$$

$$\Longrightarrow Me = \frac{1}{13}0.4 + 1.8$$

$$\Longrightarrow Me \simeq 1.83.$$

On a $\frac{3n}{4} = 49.5$ alors le troisième quartile $Q_3 \in [2.2; 2.6[$ et il est donné par

$$\frac{Q_3 - 2.2}{2.6 - 2.2} = \frac{49.5 - 45}{54 - 45}$$

$$\implies Q_3 = \frac{4.5}{9}0.4 + 2.2$$

$$\implies Q_3 \simeq 2.4.$$

2. L'écart-type est σ_X . on a

$$\begin{split} \sigma_X^2 &= \frac{1}{66} \sum_{i=1}^7 n_i x_i^2 - \overline{X}^2 \\ &= \frac{1}{66} \left(2 \times 0.8^2 + 14 \times 1.2^2 + 16 \times 1.6^2 + 13 \times 2.0^2 \right. \\ &\quad + 9 \times 2.4^2 + 8 \times 2.8^2 + 4 \times 3.2^2 \right) - 1.92^2 \\ &= 4.0897 - 3.6864 = 0.4033 \\ alors \ \sigma_X &= \sqrt{0.4033} \simeq 0.6351. \end{split}$$

Le coefficient de variation est

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{0.6351}{1.92}100$$

 $CV_X \simeq 33.08\%$

 $CV_X=33.08\%$ alors, la série statistique est hétérogène, les données sont assez dispersées.

Exercice 6 1. L'étendue de la série est $\alpha - 800 = 3200 \Longrightarrow \alpha = 4000$.

2. Le tableau statistique

Budget X	Centre	Fréquence cumulée	Fréquences
[800; 1000[900	0.08	0.08
[1000; 1400[1200	0.18	0.10
[1400; 1600[1500	0.34	0.16
$[1600; \beta[$	$\frac{\beta+1600}{2}$	0.64	0.30
$[\beta; 2400[$	$\frac{2400+\beta}{2}$	0.73	0.09
[2400; 4000[3200	1	0.27
Total		_	1

3. a) On a

$$\overline{X} = \sum_{i=1}^{6} f_i x_i$$

$$= 900 \times 0.08 + 1200 \times 0.10 + 1500 \times 0.16$$

$$+ \frac{\beta + 1600}{2} \times 0.30 + \frac{2400 + \beta}{2} \times 0.09 + 3200 \times 0.27 = 1644 + 0.195\beta = 1995$$

$$\Longrightarrow \beta = \frac{1995 - 1644}{0.195}$$

$$\Longrightarrow \beta = 1800$$

b) La médiane $Me = 1920 \in [1600; \beta[$ on utilise l'interpolation linéaire pour la déterminer.

1. On prend $\beta = 1800$.

$Budget\ X$	Centre	Fréquence cumulée	Fréquences
[800; 1000[900	0.08	0.08
[1000; 1400[1200	0.18	0.10
[1400; 1600[1500	0.34	0.16
[1600; 1800[1700	0.64	0.30
[1800; 2400[2100	0.73	0.09
[2400; 4000[3200	1	0.27
Total		_	1

Comme les amplitudes sont inégales la construction de l'histogramme nécessitera la correction des fréquences. Les plus petites amplitudes étant égales à 200 alors nous aurons le tableau suivant avec les coefficients de correction ainsi que les fréquences corrigées pour

chacune des classes

$Budget\ X$	Amplitude	Coefficient de	Fréquences	$Fr\'equences$
		correction $k_i = \frac{a_i}{200}$		$corrig\acute{e}es=rac{f_i}{k_i}$
[800; 1000[200	1	0.08	0.080
[1000; 1400[400	2	0.10	0.050
[1400; 1600[200	1	0.16	0.160
[1600; 1800[200	1	0.30	0.300
[1800; 2400[600	3	0.09	0.030
[2400; 4000[1600	8	0.27	0.034
Total		_	1	

où a_i, k_i et f_i sont respectivement l'amplitude, le coefficient de correction et la fréquence de la classe i. On a alors l'histogramme suivant :

2. La médiane est donnée par

$$\begin{split} \frac{Me - 1600}{1800 - 1600} &= \frac{0.50 - 0.34}{0.64 - 0.34} \\ \Longrightarrow Me &= \frac{0.16}{0.30} 200 + 1600 \\ \Longrightarrow Me &\simeq 1706.67. \end{split}$$

Le premier quartile $Q_1 \in [1400; 1600[$ et il est donné par

$$\frac{Q_1 - 1400}{1600 - 1400} = \frac{0.25 - 0.18}{0.34 - 0.18}$$

$$\Longrightarrow Q_1 = \frac{0.07}{0.16} 200 + 1400$$

$$\Longrightarrow Q_1 = 1487.5$$

Le troisième quartile $Q_3 \in [2400; 4000]$ et il est donné par

$$\frac{Q_3 - 2400}{4000 - 2400} = \frac{0.75 - 0.73}{1 - 0.73}$$

$$\implies Q_3 = \frac{0.02}{0.27}1600 + 2400$$

$$\implies Q_3 \simeq 2518.52$$

3. L'écart-type est σ_X . on a

$$\begin{split} \sigma_X^2 &= \sum_{i=1}^6 f_i x_i^2 - \overline{X}^2 \\ &= 900^2 \times 0.08 + 1200^2 \times 0.10 + 1500^2 \times 0.16 \\ &\quad + 1700^2 \times 0.30 + 2100^2 \times 0.09 + 3200^2 \times 0.27 - 1995^2 \\ &= 4597500 - 1995^2 = 617475 \\ alors \ \sigma_X &= \sqrt{617475} \simeq 785.80. \end{split}$$

Le coefficient de variation est

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{785.80}{1995}100$$
 $CV_X \simeq 39.39\%$

L'étendue interquartile est

$$IQR = Q_3 - Q_1 = 2518.52 - 1487.5$$

 $IQR = 1031.02$.