Московский государственный технический университет им. Н.Э. Баумана

Факультет ИУ "Информатика и системы управления"

Кафедра ИУ-3 "Информационные системы и телекоммуникации"

Методические указания к семинарскому занятию

по курсу "Цифровая обработка изображений"

№1. Аффинные преобразования

Для данной фигуры в декартовой системе координат рассчитать ее координаты после всех преобразований.

Для выполнения данного задания понадобятся следующие формулы:

• Параллельный перенос:

$$x' = x + a$$
$$y' = y + b$$

 Γ де а – смещение по оси X, b – смещение по оси Y

• Поворот против часовой стрелки относительно начала координат:

$$x' = x\cos\varphi - y\sin\varphi$$
$$y' = y\sin\varphi + y\cos\varphi$$

 Γ де φ — угол поворота.

• Растяжение/сжатие:

$$x' = ax$$
$$y' = by$$

Где a – коэффициент сжатия(растяжения) по оси X, b – коэффициент сжатия(растяжения) по оси Y.

• Отражение относительно оси X:

$$x' = -x$$

$$y' = y$$

• Отражение относительно оси Y:

$$x' = x$$

$$y' = -y$$

Треугольники:

- 1. A(1, 1); B(2, 4); C(5, 2)
- 2. A(1, 2); B(4, 4); C(3, -2)
- 3. A(-6, 0); B(-3, 4); C(-1, 1)
- 4. A(-2, 1); B(-1, 4); C(3, 3)
- 5. A(-2, -1); B(2, 1); C(-1, -3)

Преобразования А:

- Поворот на 90 радиан по часовой стрелке относительно точки А
- Сдвиг вправо на 5 единиц
- Растяжение в 2 раза по обеим осям
- Отражение относительно оси Ү

Преобразования Б:

- Отражение относительно обеих осей
- Сдвиг вниз на 3 единицы
- Растяжение в 1.5 раза по обеим осям
- Поворот на 90 радиан против часовой стрелки относительно точки В

Преобразования В:

- Сдвиг влево на 3 единицы
- Растяжение в 2 раза относительно оси У
- Поворот на 180 радиан по часовой стрелке относительно точки С
- Отражение относительно обеих осей

Преобразования Г:

- Растяжение в 2 раза относительно оси Х
- Отражение относительно оси Ү
- Поворот на 180 радиан против часовой стрелки относительно точки А
- Сдвиг вправо и вверх на 2 единицы

№	Треугольник	Преобразования
1	1	A
2	1	Б
3	1	В
4	1	Γ
5	2	A
6	2	Б
7	2	В

8	2	Γ
9	3	A
10	3	Б
11	3	В
12	3	Γ
13	4	A
14	4	Б
15	4	В
16	4	Γ
17	5	A
18	5	Б
19	5	В
20	5	Γ

№2. Lookup Table (LUT)

Для придания оттенков картинкам в серой гамме используют специальные таблицы – lookup tables. Для этого переведем картинку в оттенки серого по формуле:

$$Grey = \frac{R + G + B}{3}$$

Тогда, для таблицы вида [0, 1, 0] значение пикселя будет следующим:

Округляем до целых.

Ответом будет являться пересчитанная матрица изображения в формате RGB

Варианты изображений будут представлены в конце файла.

Таблицы:

1. Красная: [1, 0, 0]

2. Желтая: [1, 1, 0]

3. Сине-зеленая: [0, 1, 1]

4. Маджента: [1, 0, 1]

5. Синяя: [0, 0, 1]

N₂	Таблица	Изображение
1	1	A
2	1	Б
3	1	В
4	1	Γ
5	2	A
6	2	Б
7	2	В
8	2	Γ
9	3	A
10	3	Б
11	3	В
12	3	Γ
13	4	A
14	4	Б
15	4	В
16	4	Γ
17	5	A
18	5	Б
19	5	В
20	5	Γ

№3. Переводы в цветовые схемы

Общая схема перевода из RGB в определенную цветовую схему (для пикселя):

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{21} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Где А – матрица перевода в определенную цветовую схему.

Ответом будет являться пересчитанная матрица изображения в данном формате. Допускаются дробные, отрицательные и значения свыше 255. Варианты изображений будут представлены в конце файла.

Цветовые схемы:

Ветовые схемы:

1. Оттенки серого -
$$\begin{bmatrix} 0.2125 & 0.7154 & 0.0721 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
2. YUV -
$$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14714119 & -0.28886916 & 0.43601035 \\ 0.61497538 & -0.51496512 & -0.10001026 \end{bmatrix}$$
3. YIQ -
$$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.59590059 & -0.27455667 & -0.32134392 \\ 0.21153661 & -0.52273617 & 0.31119955 \end{bmatrix}$$
4. YPbPr -
$$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.168736 & -0.331264 & 0.5 \\ 0.5 & -0.418688 & -0.081312 \end{bmatrix}$$
5. YCbCr -
$$\begin{bmatrix} 65.481 & 128.553 & 24.966 \\ -37.797 & -74.203 & 112.0 \\ 112.0 & -93.786 & -18.214 \end{bmatrix}$$

№	Цветовая схема	Изображение
1	1	A
2	1	Б
3	1	В
4	1	Γ

5	2	A
6	2	Б
7	2	В
8	2	Γ
9	3	A
10	3	Б
11	3	В
12	3	Γ
13	4	A
14	4	Б
15	4	В
16	4	Γ
17	5	A
18	5	Б
19	5	В
20	5	Γ

№4. Матричные фильтры обработки изображений

Рассмотрим участок изображения и применим к нему матрицу свертки.

Так новое значение для пикселя 84 будет равно 32.

При обработке необходимо будет применить фильтр к каждому цветовому каналу.

Для корректной обработки изображения, его необходимо будет преобразовать. Так для изображения:

(11, 11, 11)	(15, 15, 15)	(13, 13, 13)
(50, 50, 50)	(10, 10, 10)	(17, 17, 17)
(13, 13, 13)	(11, 11, 11)	(11, 11, 11)

Преобразованное изображение будет получено в виде:

(11, 11, 11)	(11, 11, 11)	(15, 15, 15)	(13, 13, 13)	(13, 13, 13)
(11, 11, 11)	(11, 11, 11)	(15, 15, 15)	(13, 13, 13)	(13, 13, 13)
(50, 50, 50)	(50, 50, 50)	(10, 10, 10)	(17, 17, 17)	(17, 17, 17)
(13, 13, 13)	(13, 13, 13)	(11, 11, 11)	(11, 11, 11)	(11, 11, 11)
(13, 13, 13)	(13, 13, 13)	(11, 11, 11)	(11, 11, 11)	(11, 11, 11)

Ответом будет являться пересчитанная матрица изображения в формате RGB.

Варианты изображений будут представлены в конце файла.

Фильтры:

1. Фильтр Гаусса: -
$$\begin{bmatrix} 0.0625 & 0.125 & 0.0625 \\ 0.125 & 0.25 & 0.125 \\ 0.0625 & 0.125 & 0.0625 \end{bmatrix} div = 6$$
2. Улучшение четкости -
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} div = 6$$

2. Улучшение четкости -
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
 div = 6

3. Медианный фильтр:

4. Эрозия -
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} div = 6$$

4. Эрозия -
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{div} = 6$$
5. Наращивание -
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{div} = 6$$

№	Фильтр	Изображение
1	1	A
2	1	Б
3	1	В
4	1	Γ
5	2	A
6	2	Б
7	2	В

8	2	Γ
9	3	A
10	3	Б
11	3	В
12	3	Γ
13	4	A
14	4	Б
15	4	В
16	4	Γ
17	5	A
18	5	Б
19	5	В
20	5	Γ

№5. Кодирование кривых при помощи трехразрядного кода

Дана кривая на отрезке [a, b]. Необходимо представить ее в виде вектора при помощи трехразрядного кода.

Алгоритм:

- 1. Точка x0 = a.
- 2. Строим квадрат 3х3 с центром в точке х0.
- 3. Находим точку с наибольшей абсцисс координатой, лежащую в пределах этого квадрата.
- 4. Смотрим номер ячейки, в которую попадает данная точка, учитывая, что ячейки нумеруются следующим образом:

5	6	7
4	•	0
3	2	1

- 5. Записываем полученную ячейку в качестве координаты вектора.
- 6. Перемещаем х0 в найденную точку.
- 7. Возвращаемся к пункту 2.

Пример:

Дана кривая $y = x^2$ на отрезке [0, 2]. Представить кривую в качестве вектора, используя трехразрядное кодирование.

Ответом будет являться вектор целых чисел.

No	Функция	Отрезок
1	$f(x) = \frac{x^2}{2} + 1$	[-2, 2.5]
2	$f(x) = \cos\left(\frac{x}{2}\right) + \frac{x}{2}$	[-2.5, 3.5]
3	$f(x) = \cos x + \frac{1}{x}$	[-5, -0.5]
4	$f(x) = \ln x + \sin 2x$	[0.5, 6]
5	$f(x) = \frac{1 - \cos x}{x - \sin^2 x}$	[-1, 4.5]
6	$f(x) = \sin x - \cos x^2$	[-1, 4]
7	$f(x) = -x * \cos x$	[-1, 4]
8	$f(x) = x * \sin x2$	[-1.5, 3.75]
9	$f(x) = \frac{x^3 + x}{x^4 + 1}$	[-2, 3.5]
10	$f(x) = \sqrt[3]{x-1}$	[-2, 4]
11	$f(x) = 1 + \frac{\cos(x)}{\sqrt[3]{x - 1}}$	[-3.5, 1), $y \ge -2.75$
12	$f(x) = 1 + \frac{\cos(x)}{\sqrt[3]{x - 1}}$	(1, 4.5] начальную точку взять у = 4, берем верхнюю часть графика

13	$f(x) = \frac{x^2}{\ln(x^2)}$	[-5, -1.25] y(-1.25) ~ 3.5
14	$f(x) = \frac{x^2}{\ln(x^2)}$	(1, 4.5] взять 1ю точку с y = 5
15	$f(x) = (x-2) * \cos x$	[-2, 3]
16	f(x) = arctg(4x - 1)	[-3, 3.4]
17	$f(x) = x^2 + \cos 2x$	[-2, 2]
18	$f(x) = x^2 * exp(3x)$	[-3, 0.7]
19	$f(x) = \sin^2\left(\frac{x^2}{2}\right)$	[-2.5, 3.5]
20	$f(x) = 3x * ln(\frac{x}{4})$	[0, 3.5]

Изображения:

A:

(190, 0, 240)	(0,0,0)	(50, 50, 50)
(190, 240, 0)	(170, 30, 12)	(12, 170, 30)
(10, 160, 240)	(255, 255, 255)	(30, 12, 170)

Б:

(0, 0, 0)	(12, 170, 30)	(170, 30, 12)
(255, 255, 255)	(30, 12, 170)	(50, 50, 50)
(17, 56, 14)	(190, 0, 240)	(84, 16, 250)

B:

(255, 255, 255)	(237, 51, 89)	(98, 100, 110)
(24, 124, 224)	(69, 69, 69)	(56, 67, 43)
(82, 98, 203)	(54, 67, 89)	(0, 0, 0)

Γ:

(50, 50, 50)	(200, 50, 80)	(255, 255, 255)
(190, 16, 16)	(64, 17, 82)	(64, 71, 200)
(0, 0, 0)	(21, 50, 90)	(37, 74, 69)

Список литературы:

Первое задание:

- https://ru.wikipedia.org/wiki/Афинное-преобразование
- https://ru.wikipedia.org/wiki/Параллельный_перенос
- https://ru.wikipedia.org/wiki/Поворот

Второе задание:

• http://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_tinting_grayscale_images.html

Третье задание:

- https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py
- https://en.wikipedia.org/wiki/YUV

Четвертое задание:

• https://habrahabr.ru/post/142818/