Hardware Trojan Detection Using Graph Neural Networks AST-based Analysis with GCN Architecture

Md Omar Faruque

May 8, 2025

Outline

- 1 Introduction
- 2 AST Generation
- **3** GCN Architecture
- 4 Experimental Results

Hardware Trojans: A Significant Threat

- Hardware Trojans: Malicious modifications to circuit designs
- Often inserted during third-party manufacturing or through IP cores
- Can lead to:
 - Information leakage
 - Denial of service
 - Functional changes
- Challenge: Detection is difficult at RTL level
- Our approach: Use Graph Neural Networks on code representations

Verilog RTL & Graph Representations

Abstract Syntax Tree (AST)

- Represents code structure
- Language constructs as nodes
- Parent-child relationships
- Captures programming patterns

Our approach: Using AST representation for more effective trojan detection

What is an Abstract Syntax Tree (AST)?

Simple definition:

- AST is a tree representation of code's structure
- Every line of code becomes a branch in the tree
- Similar to how sentences have grammar structure

Advantages for trojan detection:

- Preserves programming patterns
- Shows suspicious control flow
- Captures language-specific features

Simple AST for:

if
$$(x == 0) \{y = 1;\}$$

AST Generation: A Simple Example

Original Verilog Code:

```
module counter(
  input clk,
  output reg [3:0]
count
);
  always @(posedge
clk) begin
     count <= count
+ 1;
  end
endmodule
```

Simplified AST:

AST Node Types Discovered

- Our system discovered many Verilog constructs:
- Common node types:
- moduledef (module definitions)
- always (always blocks)
- senslist (sensitivity lists)
- if/case (conditionals)
- blocking/nonblocking (assignments)
- Found 45+ unique node types across all samples

- rvalue/lvalue (values)
- pointer (variable references)
- eq/and/xor (operators)
- partselect (bit selection)
- concat (concatenation)

Md Omar Faruque

Sample Type Dictionary from Processing

- 0: source
- 1: description
- 2: moduledef
- 3: paramlist
- 4: portlist
- 5: decl
- 6: instancelist
- 7: ioport
- 8: input
- 9: width
- 10: intconst

- 19: block
- 20: sens
- 21: if
- 22: eq
- 23: nonblocking
- 24: Ivalue
- 25: rvalue
- 26: pointer
- 27: xor
- 28: land

Experimental Results

AST Feature Extraction

Our system creates rich node features from AST:

Process: Verilog Code \rightarrow Parse into AST \rightarrow Convert to Graph \rightarrow Extract Features

- **Type encoding**: One-hot encoding of node type (50 dimensions)
- Structural features:
 - Depth in AST (hierarchical position)
 - Number of children (node complexity)
 - Average child type ID (contextual information)
- **Edge information**: Parent-child relationships
- These features capture both:
 - Local code structure
 - Global program patterns

Training Features: How We Represent AST Nodes

Example Node Feature Vector:

Feature Type	Value	
Type: moduledef	1 (one-hot: [0,0,1,0,])	
Depth in AST	2	
Number of children	5	
Average child type ID	8.2	

One-hot encoding example:

Why these features work:

- Type encoding captures node function
- Depth shows position in hierarchy
- Number of children indicates complexity
- Average child type provides context

Full feature vector size:

- 50 dimensions for type (one-hot)
- 3 dimensions for structural info

What is a Graph Convolutional Network (GCN)?

Simple definition:

- Neural network designed for graph data
- Learns patterns in connected data
- Like CNNs for images, but for graphs

Main operations:

- Message passing between nodes
- Neighborhood aggregation
- Feature transformation

Node A updates by receiving messages from neighbors B and C

GCN: A Working Example

Initial features:

- Node A: [1, 0]
- Node B: [0, 1]
- Node C: [1, 1]
- Node D: [0, 0]

GCN layer computation:

- Each node collects neighbor features
- 2 Apply weight matrix transformation
- 3 Add non-linearity (ReLU)

Example for Node A:

- Initial feature: [1, 0]
- Neighbors: B, C
- Collect: [1, 0] + [0, 1] + [1, 1]
- Average: [0.67, 0.67]
- Apply weights: $W \cdot [0.67, 0.67]^T$
- Apply ReLU: max(0, result)
- New feature: [0.8, 1.2]
 Hardware Troian Detection Using Graph Neural Network

GNN Implementation: Complete Architecture

GCNConv Layer Operations:

- Calculate normalized adjacency matrix
- 2 Aggregate features from neighbors
- 3 Apply weight matrix transformation
- 4 Add non-linearity (ReLU)

Dropout (0.5): Randomly zeroes 50% of features during training to prevent overfitting

Global Mean Pooling: Averages all node features to get a single graph representation

Loss Function: Binary Cross Entropy with class weighting (0.26) to handle imbalance

Dataset Statistics

- **Dataset**: TJ-RTL-toy benchmark
- Total circuits: 43
 - 34 Trojan-infected (79%)
 - 9 Trojan-free (21%)
- Class imbalance: 0.26:1 (Clean:Trojan)
- Circuits processed:
 - AES. RC5. RC6. PIC16F84. RS232. VGA. XTEA. etc.
- Node types discovered: 45+

Experimental Setup

- Cross-validation: 2-fold stratified
- **Oversampling**: Random oversampling of minority class
- Training:
 - 100 epochs
 - Adam optimizer (lr=0.001)
 - BCELoss with class weighting
 - Batch size: 32
- Model: GCN with 2 layers (64 hidden units)
- Random seed: 42 (for reproducibility)

Implementation Details

Key Libraries:

- **PyTorch** (v1.10+)
- PyTorch Geometric (PyG)
- PyVerilog parser
- **NetworkX** for graphs
- NumPy/Scikit-learn
- Matplotlib

GNN Components:

- GCNConv (primary)
- global_mean_pool

Hardware/Runtime:

- **GPU**: NVIDIA RTX 3060 mobile
- Training Time: 30s
- Codebase: Python 3.9

Performance Metrics

Metric	Fold 1	Fold 2	Average
Accuracy	0.5909	0.9048	0.7478
Precision	0.9000	1.0000	0.9500
Recall	0.5294	0.8824	0.7059
F1 Score	0.6667	0.9375	0.8021

Table 1: Performance metrics across folds

Average Confusion Matrix Predicted Clean Trojan 2*Actual Clean 4.0 0.5 Trojan 5.0 12.0

Key Findings

- **High precision** (95%): Few false positives
- Good F1 score (80.2%): Balanced performance
- Improvement across folds: Fold 2 significantly better

Strengths:

- High precision few false positives
- Effective at capturing code-level trojans

Limitations

- Small dataset (43 circuits)
- Class imbalance (more trojans than clean)
- Fold variation indicates potential overfitting
- Future work: Larger datasets, more complex architectures

Conclusions: What We've Learned

Key achievements:

- Used code structure (AST)
- Achieved 75% accuracy, 95% precision

Next steps:

- Larger, more diverse datasets
- Hyperparameter optimization
- Hybrid architecture (GNN+MLP)
- Neural architecture search

Thank You!

Questions?