第七次作业

洪艺中 12335025

2024年4月20日

0.1 149 页问题 15

题目 1. 设 $\mathbb{S}^m = \{x \in \mathbb{R}^{m+1} : \sum_i (x^i)^2 = r^2, r > 0\}$. 作球极投影

$$\phi \colon \mathbb{S}^m(r) \setminus \{(0, \cdots, 0, r)\} \to \mathbb{R}^m.$$

证明: ϕ 为共形映射, 即对于 Riemann 流形 ($\mathbb{S}^m(r)$, \tilde{g} 和 (\mathbb{R}^m , g), 有 $\tilde{g} = \phi^* g$, 这里 \tilde{g} 是 $\mathbb{S}^m(r) \subset \mathbb{R}^{m+1}$ 的诱导度量, g 为 \mathbb{R}^m 上的欧氏度量.

解答. 设 ϕ 将 \mathbb{S}^m 投影到 \mathbb{R}^{m+1} 的 $x^{n+1}=0$ 平面, 也就是 \mathbb{R}^m . 设 \mathbb{R}^m 的坐标是 (y_1,\cdots,y_m) , 那么 ϕ 可以表达为

$$\phi(y_1, \dots, y_n) = \left(\frac{2r^2y_1}{|y|^2 + r^2}, \dots, \frac{2r^2y_m}{|y|^2 + r^2}, r\frac{|y|^2 - r^2}{|y|^2 + r^2}\right),$$

计算切映射,

$$\phi^* = \frac{2r^2}{|y|^2 + r^2} \begin{bmatrix} \mathbf{I}_m & 0 \end{bmatrix} - \frac{4r^2}{(|y|^2 + r^2)^2} \begin{bmatrix} y_1^2 & y_1 y_2 & \cdots & y_1 y_m & -r y_1 \\ y_2 y_1 & y_2^2 & \cdots & y_2 y_m & -r y_2 \\ \vdots & \vdots & \ddots & \vdots \\ y_m y_1 & y_m y_2 & \cdots & y_m^2 & -r y_m \end{bmatrix}.$$

容易发现, 若 $i \neq j$, 那么 $\langle \partial_{y_i}, \partial_{y_j} \rangle_{\tilde{g}} = 0$, 这是因为内积为

$$\begin{split} &\langle \partial_{y_i}, \partial_{y_j} \rangle_{\bar{g}} \\ &= -\frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} (y_i y_j + y_j y_i) + \left(\frac{4r^2}{(|y|^2 + r^2)^2} \right)^2 \sum_{k=1}^m (y_k y_i \cdot y_k y_j) + r^2 y_i y_j \\ &= \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} (-2y_i y_j + 2y_i y_j) \\ &= 0. \end{split}$$

因此 \tilde{g} 是对角的.

$$\begin{split} &\langle \partial_{y_i}, \partial_{y_i} \rangle_{\tilde{g}} \\ &= \left(\frac{2r^2}{|y|^2 + r^2} \right)^2 - \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} 2y_i^2 + \left(\frac{4r^2}{(|y|^2 + r^2)^2} \right)^2 (\sum_{k=1}^m \left((y_k)^2 (y_i)^2 \right) - r^2 (y_i)^2) \\ &= \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} \left(\frac{1}{2} (|y|^2 + r^2) - 2(y^i)^2 + 2(y^i)^2 \right) \\ &= \frac{4r^4}{(|y|^2 + r^2)^2}. \end{split}$$

即 $\tilde{g} = \frac{4r^4}{(|y|^2 + r^2)^2} g$, 所以 \tilde{g} 是共形变换.

0.2 问题 1.2

题目 2. 在 $M = \mathbb{R}^n \setminus \{0\}$ 上配上度量 $g = (1 + \frac{m}{2\rho})^4 \delta$, 其中 m > 0 为一给定常数, $\rho(x) = \sqrt{(x_1)^2 + (x_2)^2 + (x_3)^2}$ 为点 $x = (x_1, x_2, x_3)$ 到原点的欧氏距离, δ 是三维欧氏空间 \mathbb{R}^3 上的标准欧氏度量.

- 1. 计算 (M,g) 的数量曲率;
- 2. 令 $S_r = \{x \in \mathbb{R}^3 : (x_1)^2 + (x_2)^2 + (x_3)^2 = r^2\}, r > 0$. 计算 S_r 在 Riemann 流形 (M, g) 中的面积 $|S_r|$. 并指出 r 取何值时, $|S_r|$ 最小,最小值为何?
- 3. 计算 $\frac{1}{16} \int_S (\partial_j g_{ii} \partial_i g_{ij}) n^j dx$, 其中 n^j 是 S_r 内法向量的第 j 个分量.

解答.

1. 利用共形变换的公式, $\phi = (1 + \frac{m}{2\rho})^2$,

$$\partial_i(\log \phi) = \frac{2}{1 + \frac{m}{2\rho}} \frac{mx_i}{2\rho^3} = \frac{mx_i}{(\rho^2 + \frac{m}{2})\rho}.$$

0.3 问题 1.3

题目 3. 给定 m 维 Riemann 流形 (M,g).

1. 假设 $T \in M$ 上对称的 (0,2) 型张量, $\widetilde{\nabla}$ 是共形度量 $\widetilde{g} = \phi^2 g$ (这里 $\phi \in M$ 上的光滑正函数) 的 Levi-Civita 联络. 证明: 任取 $X,Y,Z \in \mathscr{X}(m)$,

$$\widetilde{\nabla}_Z T(X,Y) - \widetilde{\nabla}_Y T(X,Z) - \nabla_Z T(X,Y) + \nabla_Y T(X,Z) = T \otimes g(V,X,Y,Z),$$

其中 $V = \nabla \log \phi$, \Diamond 为 Kulkarni-Nomizu 乘积.

2. 假设 $m \ge 3$, 证明: 任取 $X, Y, Z \in \mathcal{X}(M)$,

$$\tilde{C}(X,Y,Z) = C(X,Y,Z) + W(V,X,Y,Z),$$

其中 \tilde{C} 和 C 分别是度量 $\tilde{g} = \phi^2 g$ 和 g 确定的 Cotton 张量, W 是 Weyl 张量, $V = \nabla \log \phi$.