Code explanations are added in the comments of the code.

Q1.

RowVectorFloat class was created . _str_ method was added so that class can be printed as we want it . len , add , multiplication method was also added .

Set and get methods were also added.

Q2.

SquareMatrixFloat class was created which contains methods like -

sample symmetric - which will create a random symmetric matrix using radom function on each point of matrix

toRowechelonForm – converts a matrix into row echelon form.

isDRDominant - which checks if a matrix is row dominant or not .

Jsolve - which applies jacobi method for a given B,and m iterations,also simultaneously calculates deviation .

gsSolve - applies gauss seidel method ,also simultaneously calculates deviation .

Since sampling a diagonally row dominant matrix directly is difficult, so i do sampling until i find it.

Q3.

This question involved all classes of previous question just a extra plotting method was needed to be made such that , the err values we return for each iteration of each convergence method can be plotted.

Q4.

A polynomial class was created , _str_ method was added in case someone does print on the class .methods , to add , subtract two polynomial were added . also to multiply a constant to polynomial a method was added for such action .

The get method was added in class that returns value of polynomial at a particular point. show method will plot the values of the polynomial in a range.

Fitvia matrix method was added which solves the polynomial, given some points using linear equations, i used numpy.linalg module for that .it also plots the value of this polynomial in a certain range.

fitvialagrangePoly method was added which uses points given to compute the lagrange polynomial, also plots the points in the max,min range of points.

Q5.

As shown in the link we had to do 3 interpolations: Akima, barycentric and cubicsplinter. And compare them to original values after each iteration we had to increase the number of points from the range.

Library's i used were scipy.interpolate, matplotlib.animation's funcanimation.