复旦大学研究生课程教学大纲

课程名称/Course Title: 机器人机构学

课程代码/Course Code: 暂无

任课教师/Instructor(s): 田春旭

开课院系/School/Department: 工程与应用技术研究院

1. 课程概要/Course Summary						
课程名称 (中文)	1n m 1 1n 14 24					
Course Title (Chinese)	机器人机构学					
课程名称(英文)	Robotic Mechanisms					
Course Title (English)	Robotic Mechanisms					
		 适用学科专业	计算机应用技术(硕士、博			
授课语言	中文	Discipline/Specia	士), 电子与信息(工程博			
Teaching Language		lization	士、工程硕士),机械(工			
		iizatioii	程硕士)			
学分数	2	教学周数	共 12 周			
Course Credit(s)		Weeks	/\ 12 /-\			
总学时		实验/实践学时				
Teaching Hours in	共 36 学时	Hours for Exper	共 0 学时			
Total	iments /Practice					
预修课程要求	具备微积分、线性代数、矩阵分析等数学基本理论知识; 具备应用					
Pre-requisite Course(s)	MATHMATICA 或者 MATLAB 的编程能力。					
	机器人机构学主要讲授包括串联机器人(工业机器人)、并联机器人等机器					
	人机构学的基本概念、理论和方法,是进行高端机器人及相关智能化制造装备					
	的创新设计、性能分析、系统集成等的基础。本课程首先回顾一些数学基础知					
课程简介	识与概念,如线性变换、矩阵理论、射影几何、线几何以及微分流形等。然后					
Course Introduction	讲解基础理论部分:主要是李群、李代数及旋量、旋量系理论及其在机构学中					
(150-300 字)	的应用。最后讲解应用部分:包括机构及机器人的自由度分析、构型综合、运					
	动学分析、运动性能分析、静力学与刚度问题、动力学问题等。本课程不仅涵					
	盖了传统串联式机器人、并联式机器人,而且还包括了当前机构学领域一些较					
	为热门的机构 (如折纸机构和柔性机构等)。					

2. 教学目标/Course Objective (100-200字)

机器人机构学讲授如何由机器人或智能制造装备的性能要求出发,使用相关的数学工具和设计方法进行机构设计和分析的基本原理。本课程旨在使学生熟练掌握并深刻理解以下内容: 1. 空间机器人机构的分类及组成原理; 2. 机构分析的数学工具及应用方法; 3. 机器人机构的型综合原理; 4. 机构运动分析基本原理与方法; 5. 机器人机构的性能评价指标; 6. 尺度综合方法等。通过本课程的学习,使学生掌握解决机器人机构学相关工程问题的能力。

3. 教 课次	学内容及 教学周	 作业/实验	
No.	Week	教学内容及预期效果 Content & Expected Achievement	Assignment
1	1	机器人机构学发展介绍	/
2	2	机构学的现代数学基础: 李群、李代数理论	/
3	3	机构学的现代数学基础: 旋量、旋量系理论	/
4	4	机器人机构的组成原理与拓扑结构特征	作业1
5	5	机器人自由度分析: 古典机构与现代机构	/
6	6	机器人的位置与姿态的描述	/
7	7	闭链机构运动学:解析建模与数值分析	作业 2
8	8	空间机器人的雅可比与奇异性分析	/
9	9	空间机器人机构分析:性能评价体系分析	/
10	10	机器人动力学:静力平衡与力雅可比分析	作业3
11	11	机器人动力学: 动力学建模与分析	/
12	12	机器人的轨迹生成与运动规划	/
13	13		
14	14		
15	15		
16	16		
17	17		
18	18		

4. 课程考核及成绩评定/Course Assessment & Grading

考核指标*	权重	评定标准		
Assessment Criteria	Percentage	Assessment Standard		
出勤	10%	4. 八生 4. 4. 4. 4. 4. 4. 7. 八 里 4. 4. 八		
Attendance	10%	减分制:缺勤1次扣2分,累加扣分		
课堂表现	10%	减分制:课堂随机提问,每次2分,累加扣分		
Participation	10%			
作业/实验	30%	加分制:每次作业10分,总共3次作业		
Assignment	30%	加分制: 每次作业 10 分, 忘共 3 次作业		
课程论文	30%	加入制 公文权人上以 2000		
Course Paper	30%	加分制: 论文报告占比 30%		
其他	20%	サハ 年		
Other(s)	20%	加分制: Project 汇报占比 20%		

* 各项考核指标可自由设置,总权重为100%。

5. 教材/Textbook(s) (如使用自编讲义,请在"名称"列中备注说明)

序号 No.	名称 Title	作者 Author(s)	标准书号 ISBN	出版机构 Publisher	出版日期 Publication	是否必读 Mandatory or
NO.	Tiue	Author(s)	ISDN	1 donsher	Date	Elective
1	高等空间机构学	黄真 赵永生 赵铁石	97870403939 34	高等教育出版 社	2014年5月	是
	Robot Analysis: The					
2	Mechanics of Serial	Tsai	97804713259	Wiley	1999年2月	是
4	and Parallel	Lung-Wen	32	Wiley	1999 年 2 月	英
	Manipulators					
3						
4						
5						
6						
7						

6. 教学参考资料/Reading Materials and References

序号 No.	名称 Title	作者 Author(s)	标准号码 ISBN/DIO	出版机构 Publisher	出版日期 Publication Date	是否必读 Mandatory or Elective
1	并联机器人机构学 理论及控制	黄真 孔令富 方跃法	97871110581 20	机械工业出版 社	1997年1月	否
2	机器人机构学的数 学基础	于靖军 刘辛军 丁希仑	97871115253 18	高等教育出版 社	2016年3月	否
3	机器人机构拓扑结 构学	杨廷力	97871111342 20	机械工业出版 社	2004年3月	否
4	机构学与机器人学 的几何基础与旋量 代数	戴建生	97870303197 39	高等教育出版 社	2014年7月	否
5	Kinematic Geometry of Mechanisms	Hunt Kenneth Henderson	97801985623 37	Oxford University Press, USA	1990年7月	否
6	Fundamentals of Robotic Mechanical Systems	Angeles Jorge	97833190185 08	Springer International Publishing	2013年12 月	否
7						

7. 任课教师简介/Profile of Instructor(s) (教学科研经历简介, 300 字左右)

任课教师主要致力于智能机器人的创新设计与应用、高性能混联机器人系统的深入研究。开拓性 地提出了广义并联机器人设计理论,改变了传统机器人的构型综合设计和性能分析方法,具有非常强 的创新性,其研究贡献得到了该领域内学术界的普遍认可,在国际顶级期刊上刊登了系列文章;其建 立的机器人性能评价体系,为先进机器人制造提供了一种新的思路,能从根本上突破传统机器人的发 展瓶颈,对全面提升机器人的性能具有十分重要的理论意义和实用价值;研制的智能三栖机器人系统 提升和改善了现有三栖机器人存在的承载能力和工作精度低、控制难度大与维护成本高等问题,基于 多传感融合技术,实现了智能仿生三栖机器人的主动自适应控制,如自适应降落、抓取和栖息等运动。

办公地址	新金博大厦 605 室	办公时间	周一: 8:00-10:00			
Office Add	划业 子八皮 003 主	Office Hour) H : 0.00-10.00			
联系方式	shution Ofriday adv an					
Contact Info	chxtian@fudan.edu.cn					
教师签名		日期	2023年4月4日			
Signature		Date	2023 牛 4 月 4 日			