ESERCITAZIONI DI FINE CORSO

ESERCIZIO: PROGETTAZIONE DEL REGOLATORE

Dati del problema: A, B, C

- Verifica che il problema sia ben posto (autovalori nascosti con ${
 m Re} < 0$)
 - Autovalori non controllabili con $\mathrm{Re} < 0$ per capire F
 - Autovalori non osservabili con $\mathrm{Re} < 0$ per capire L
 - Attraverso il polinomio di controllo e il polinomio osservabile
 - $(sI-A)^{-1}B$ da cui si deriva $arphi_{
 m c}(s)$ e $arphi_{
 m nc}(s)$
 - $C(sI-A)^{-1}$ da cui si deriva $arphi_{
 m o}(s)$ e $arphi_{
 m no}(s)$
 - Quindi in ogni caso devo trovare $(sI-A)^{-1}$, poi vedo se moltiplicando per B o C si cancella qualche autovalore

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \varphi(s) = \det(sI-A) = \det(s$$

Nella moltiplicazione per B non ci sono semplicifazioni (completamente controllabile quindi posso trovare F: andiamo a progettarla calcolando A-BF e poi $\det(sI-A+BF)$)

$$(sT-A)^{T}B = \frac{1}{(s+1)(s-1)} \begin{bmatrix} s & 1 \\ s & s \end{bmatrix} \begin{bmatrix} s & 1 \\ s & s$$

• abbiamo scelto due valori di F casuali, purché rispettino le condizioni

Nella moltiplicazione per C c'è una semplificazione (scompare l'autovalore in -1): controllo quindi che gli autovalori non osservabili hanno $\mathrm{Re} < 0$ per avere completa osservabilità e trovare quindi un possibile guadagno L: andiamo a progettarlo calcolando A-LC e poi $\det(sI-A+LC)$, e verifico fattorizzando che la parte stabile di $\varphi(s)$ (che è non osservabile) rimane fissa. Si può modificare invece la parte instabile, e quindi regolando gli ℓ_i si può rendere stabile

$$C(sFA)^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \frac{1}{(s+1)(s-1)} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix} = \frac{1}{(s+1)(s-1)} \begin{bmatrix} s+1 \\ s+1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1} \\ \frac{1}{s-1} \end{bmatrix}$$

$$V_{0}(s) = s-1 \qquad V_{no}(s) = \frac{V(s)}{V_{0}(s)} = \frac{(s+1)(s-1)}{s-1} = s+1$$

$$V_{0}(s) = s+1 \qquad \text{ outurbre non onerwhile } \qquad \text{ onerwhile }$$

- si rende quindi anche il secondo fattore con radice con ${
 m Re} < 0$, scegliendo ad esempio $egin{cases} \ell_1 = 100 \\ l_2 = 1 \end{cases}$
 - In questo modo si rende l'errore di stima tendente a 0 e quindi $\hat{x} pprox x$

olet (
$$sT-A+LC$$
) = ($s+1$) ($s+l_1+l_2-1$) $\dot{\varepsilon}=(A-LC)\dot{\varepsilon}$ or intoticemente stehilo per $l_1+l_2-1>0$ and example $l_1+l_2-1>0$ $l_1+l_2-1=100$ $l_1=100$ $l_2=1$

Mettendo tutto insieme (esplicitando $\varphi^*(s)$ [polinomio caratteristico in ciclo chiuso]):

Calcolo infine la funzione di trasferimento in ciclo chiuso (che non dipende dal regolatore):

E quindi poi si trova anche H per soddisfare la specifica 2

$$G_{y^{\circ}y}(s) = \frac{F_{2}(s)}{\text{old}(sT-P+BT-)}H$$

$$F_{2}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{3}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{4}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{5}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{5}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{5}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{6}(s) = C \text{ Adj}(sT-P+BT-)H$$

$$F_{7}(s) = C \text{ Adj}(sT$$

Studia anche sul perché si fanno le procedure (per parte orale)

Anche come son fatte le strutture di controllo (schemi, proprietà etc..)

ESERCIZIO: RETROAZIONE SULLO STATO

Dato il sistema LTI SISO

$$\begin{cases} \dot{x}_1 &=& 2x_2 + 2u \\ \dot{x}_2 &=& x_1 - x_2 + \alpha u \\ y &=& x_2 \end{cases}$$

- **O** Determinare il polinomio caratteristico di controllo $\varphi_c(s)$ al variare di $\alpha \in \mathbb{R}$;
- **1** Dire per quali valori di α lo stato $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ è raggiungibile;
- **1** Dire per quali valori di α esiste una legge di controllo in retroazione sullo stato $u = -Fx + Hy^{\circ}$ tale da rendere il sistema in ciclo chiuso asintoticamente stabile;
- ① Dire per quali valori di α esiste una legge di controllo in retroazione sullo stato $u=-F\,x+H\,y^\circ$ tale da posizionare gli autovalori in ciclo chiuso entrambi in -10;
- ullet Per lpha=0 progettare, se possibile, una legge di controllo in retroazione sullo stato $u=-F\,x+H\,y^\circ$ che assegni il polinomio caratteristico in ciclo chiuso in $arphi^*(s)=s^2+s+1$ e garantisca inseguimento perfetto di un riferimento costante y° ;
- Fissati F e H come al punto precedente, tracciare (anche in modo qualitativo) l'andamento nel tempo della risposta forzata in ciclo chiuso per un riferimento a gradino $y^{\circ}(t) = 2 \cdot 1(t)$.

• Scrivo le matrici di stato A, B, C (la riga i-esima di ciascuna è legata alla riga i-esima equazione di stato)

A)

$arphi_{ m c}(s)$ a variare di lpha

- Cerco subito di vedere se esistono α guardando la matrice \mathcal{R} di raggiungibilità (perché completa controllabilità \iff completa raggiungibilità)
 - Accade quando $\det\{\mathcal{R}\} \neq 0$ (rango massimo)
 - In questo modo abbiamo in generale la coincidenza tra $\varphi_c(s)$ e $\varphi(s)$, così che devo studiare solo alcuni caso particolari in cui perdo di controllabilità

$$\begin{cases} \dot{x}_1 = z \, x_1 + z \, M & \alpha \in \mathbb{R} \\ \dot{x}_2 = x_1 - x_2 + \alpha \, M \end{cases} \qquad A = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 \\ \alpha \end{bmatrix}$$

$$\dot{x}_1 = x_2 + \alpha \, M \qquad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \text{of variance di } \alpha \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad P = 0$$

$$c) \quad \varphi_c(s) \quad \varphi$$

- per quei valori di α particolari, il sistema è non completamente controllabile
 - Quindi devo calcolare $\varphi_{\rm c}(s)$ attraverso il passaggio lungo, ovvero tramite $(sI-A)^{-1}B$
 - Calcolo intanto $\varphi(s)$ e poi derivo $\varphi_c(s)$ per i casi particolari
 - (ci saranno semplificazioni perché si perde di controllabilità)

Faccio lo stesso per l'altro valore particolare di lpha, ovvero lpha=-2

$$\begin{array}{l}
(s_{1}-2) \\
(s_{1}-1) \\
(s_{2}-1) \\
(s_{3}-1) \\
(s_{4}-1) \\
(s_{4}-1)$$

B)

α tali che lo stato $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ è raggiungibile

- Si calcola la matrice di raggiungibilità R (già fatto √)
 - Verifico che lo stato è ottenibile come combinazione lineare delle colonne di ${\cal R}$
 - Sappiamo dall'esercizio A) che in molti casi abbiamo completa raggiungibilità, quindi possiamo portare lo stato dove vogliamo. Dobbiamo studiare solo i casi particolari di α (in questo caso $\alpha \neq 1, -2$)

b) Per pushi
$$\alpha$$
 b stets $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ \overline{e} noggiungisile?

 x° e^{-} noggiungisile $\langle \Rightarrow \rangle$ oppertiente alle immegine di R
 $x \neq 1$ e^{-} $x \neq -2$ det $R \neq 0$ \Rightarrow complete nogg. \Rightarrow tulti gli steti omo noggiungisile

 $x \neq 1$ e^{-} $x \neq -2$ det $x \neq 0$ \Rightarrow complete nogg. \Rightarrow tulti gli steti omo noggiungisile

 $x \neq 1$ e^{-} $x \neq -2$ det $x \neq 0$ \Rightarrow complete nogg. \Rightarrow tulti gli steti omo noggiungisile

Studio quei due casi particolari:

$$R = \begin{bmatrix} 2 & 24 \\ \alpha & 2-\alpha \end{bmatrix}$$

$$\alpha = 1 \qquad Q = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$

$$x^{\circ} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad e \quad \text{noggium public}$$

$$\text{infatti} \qquad X_{\mathcal{Q}} = \left\{ \begin{array}{c} \beta_{1} \left[\frac{2}{1} \right] + \beta_{2} \left[\frac{2}{1} \right], \quad \beta_{1}, \beta_{2} \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 2 & \beta_{1} + \beta_{2} \\ \beta_{1} \end{bmatrix}, \quad \beta \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} 2 & \beta_{1} \\ \beta_{2} \end{bmatrix}, \quad \beta \in \mathbb{R} \right\}$$

non abbiamo completa raggiungibilità ma quello specifico stato è raggiungibile
 Altro caso:

- ullet $X_{
 m r}$ composto da vettori in cui la seconda componente è uguale alla prima cambiata di segno
 - Si nota che lo stato richiesto non è raggiungibile

C)

α per avere F tale che l'azione di controllo in retroazione sullo stato è stabilizzante

- Sappiamo che esiste F stabilizzante se abbiamo autovalori non controllabili con $\mathrm{Re} < 0$
 - Facile nei casi generici
 - Nei casi particolari devo vedere $\varphi_{\rm c}(s)$ attraverso il passaggio lungo, ovvero tramite $(sI-A)^{-1}B$ ma è già stato calcolato nell'esercizio A) \checkmark

C) Per qualit of estate
$$F$$
 tole de $u=-Fx+Hy^3$ e interitariante

 $\exists F$ interitariante (=> tutti entruelli nun contr. con Re (0)

 $a \neq 1$ e $a \neq -2$
 $a \neq 1$
 a

 α per avere F per posizionare gli autovalori in ciclo chiuso in -10 (attraverso il controllo in retroazione sullo stato)

ol) Per quoli or existe F tole de

$$4*(s) = olet (sT-A+BF) = (S+10)^2$$
 con entrembe & roolici in -10

- Quindi non voglio solo stabilizzare, ma voglio anche mettere (entrambe per l'ordine del sistema è 2) le radici in -10
- Facile se abbiamo completa controllabilità (lo possiamo fare sicuro)
 - Devo verificare invece nei casi particolari lpha=1,-2
- Per $\alpha=1$ abbiamo un autovalore non controllabile in -2, quindi non si possono mettere *entrambe* le radici in -10
- Stesso ragionamento per lpha=-2

of) Per quoti or existe
$$F$$
 tole de $(4+(s))^2$ con entrembe & revisit in -10

 $(4+(s))^2 = (4+(s))^2 = (5+10)^2$ con entrembe & revisit in -10

 $(4+(s))^2 = (6+(s))^2 = (5+1)(5+2)$

complete contr. \Rightarrow poroisons energiese $(4+(s))$ as piease

 $(4+(s))^2 = (5+1)(5+2)$
 $(4+(s))^2 = (5+1)(5+2)$
 $(5+(s))^2 = (5+1)(5+2)$
 $(5+(s))^2 = (5+1)(5+2)$
 $(5+(s))^2 = (5+1)(5+2)$
 $(5+(s))^2 = (5+2)(5+2)$
 $(5+(s)$

E) [TODO]

$$\alpha = 0 \text{ progettare } F \in H$$

$$e) \quad \alpha = 0 \quad \text{Propettore} \quad F \in H \quad \text{in mode de}$$

$$\varphi^*(s) = \text{obt}(s = A + BF) = s^2 + s + 1 \quad \text{no} \quad F$$

$$G^*yyy(s) = 1$$

$$G^*yy(s) = \frac{2(s)}{\varphi^*(s)} H$$

Soluzione della funzione di trasferimento:

$$G_{y^{\mathrm{o}}y}^{st}(s) = rac{1}{s^2 + s + 1}$$

F)

Andamento nel tempo della risposta forzata con riferimento $y^{\mathrm{o}}(t)$ a gradino (si deve tracciare

• Modo 1: antitrasformata [metodo lungo :(]

$$Y_{\varphi}(s) = G_{y \circ y}^{*}(s) Y^{\circ}(s) = \frac{1}{s^{2} + s + 1} \cdot \frac{2}{s}$$

$$y_{\varphi}(t) = \chi^{-1} \left\{ Y_{\varphi}(s) \right\} - \chi^{-1} \left\{ \frac{1}{s^{2} + s + 1} \cdot \frac{2}{s} \right\}$$

Modo 2: sappiamo l'andamento della risposta forzata per segnali tipici per sistemi di I e II ordine

moto de
$$G_{yy}^{*}(s) = \frac{1}{s^{2}+s+1}$$
 e un ninteme del II moline
con polinonio $Q^{*}(s) = s^{2}+s+1 = s^{2}+2s\omega_{n}s+\omega_{m}^{2}$

(polinonio auguli)

- caso sottosmorzato (oscilla)
- posso calcolare i parametri tipici utilizzando le formule

Grafico (indicativo):

