数理統計

箱

2025年5月5日

概要

数理統計の基礎を解説する. 統計モデルを定義したあと, 推定と仮説検定のそれぞれについて, 基本的な 定義や定理を述べる.

目次

1	統計モデル	2
1.1	統計モデル	2
1.2	十分性	2
1.3	完備性	5
1.4	指数型分布族	Ē
2	推定	8
2.1	不偏推定量	8
2.2	Fisher 情報量	6
2.3	最尤推定量	12
3	。 仮説検定	13
3.1		13
3.2	一様最強力検定の存在....................................	14
3.3	一様最強力不偏検定の存在・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18

記号と用語

- $0\cdot\infty=\infty\cdot 0=0,\ a\cdot\infty=\infty\cdot a=\infty\ (a\in\overline{\mathbb{R}}_{\geq 0})$ とする.
- 集合 \mathcal{X} を考えるとき、その部分集合 \mathcal{A} の特性関数を、 $1_{\mathcal{A}}$ と書く.
- T を集合 $\mathcal X$ から可測空間 $\mathcal Y$ への写像とするとき,T を可測にする $\mathcal X$ 上の可測構造の中で最小のもの を, $\sigma[T]$ と書く.
- 位相空間 $\mathcal X$ におけるその部分集合 $\mathcal A$ の内部を, $\mathrm{int}_{\mathcal X}(\mathcal A)$ と書く.

1 統計モデル

1.1 統計モデル

定義 1.1(統計モデル) 可測空間 \mathcal{X} とその上の確率測度の族 $(P_{\theta})_{\theta \in \Theta}$ との組 $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を,**統計モデル** (statistical model) という. \mathcal{X} をこの統計モデルの標本空間(sample space)といい, Θ をこの統計モデルのパラメータ空間(parameter space)という.

 $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとするとき、次の記号と用語を用いる.

- \mathcal{X} から集合 \mathcal{Y} への写像 $\phi: \mathcal{X} \to \mathcal{Y}$ を、統計量(statistic)という.
- 各 $\theta \in \Theta$ に対して,確率空間 $(\mathcal{X}, P_{\theta})$ 上の確率変数としての期待値,条件付き期待値,分散,共分散 を,それぞれ $E_{\theta}[\phi]$, $E_{\theta}[\phi]$, $\operatorname{Var}_{\theta}[\phi]$, $\operatorname{Cov}_{\theta}[\phi, \psi]$ などと書く(ϕ と ψ は有限次元実線型空間に値をと る可測統計量であり, \mathfrak{F} は \mathcal{X} の可測構造の部分 σ -代数である).
- 有限次元実線型空間に値をとる可測統計量 ϕ が $(P_{\theta})_{\theta \in \Theta}$ -可積分であるとは,任意の $\theta \in \Theta$ に対して, ϕ が P_{θ} -可積分であることをいう.
- 部分集合 $\mathcal{N} \subseteq \mathcal{X}$ が $(P_{\theta})_{\theta \in \Theta}$ -無視可能であるとは、任意の $\theta \in \Theta$ に対して、 \mathcal{N} が P_{θ} -無視可能であることをいう、 $\lceil (P_{\theta})_{\theta \in \Theta}$ -ほとんどすべての」、 $\lceil (P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に」などの用語も、同様に用いる.

1.2 十分性

定義 1.2 (十分性) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする.

- (1) \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} がこの統計モデルに対して**十分**(sufficient)であるとは,任意の可測集合 $\mathcal{A} \subseteq \mathcal{X}$ に対して, \mathfrak{F} -可測関数 $1_{\mathcal{A},\mathfrak{F}} \colon \mathcal{X} \to [0,1]$ であって,任意の $\theta \in \Theta$ に対して条件付き期待値 $E_{\theta}[1_{\mathcal{A}}|\mathfrak{F}]$ の代表元であるものがとれることをいう.
- (2) \mathcal{Y} を可測空間とし, $T: \mathcal{X} \to \mathcal{Y}$ を可測統計量とする.T がこの統計モデルに対して**十分**であるとは, σ -代数 $\sigma[T]$ がこの統計モデルに対して十分であることをいう.

命題 1.3 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} に対して,次の条件は同値である.

- (a) \mathfrak{F} は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (b) 任意の有限次元実線型空間 \mathcal{V} と $(P_{\theta})_{\theta \in \Theta}$ -可積分な可測写像 $\phi: \mathcal{X} \to \mathcal{V}$ に対して、 \mathfrak{F} -可測写像 $1_{A,\mathfrak{F}}: \mathcal{X} \to \mathcal{V}$ であって、任意の $\theta \in \Theta$ に対して条件付き期待値 $E_{\theta}[\phi|\mathfrak{F}]$ の代表元であるものがとれる.

証明 $(b) \Longrightarrow (a)$ 条件 (b) が成り立つとする.このとき,任意の可測集合 $A \subseteq \mathcal{X}$ に対して,条件付き期待値 $E_{\theta}[1_{\mathcal{A}}|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元 $1_{\mathcal{A},\mathfrak{F}} \colon \mathcal{X} \to \mathbb{R}$ がとれる.任意の $\theta \in \Theta$ に対して,条件付き期待値の順序保存性より, P_{θ} -ほとんど確実に $0 \le 1_{\mathcal{A},\mathfrak{F}} \le 1$ である.そこで, $1_{\mathcal{A},\mathfrak{F}}$ の 0 以下の値は 0 に,1 以上の値は 1 に修正して得られる関数を改めて $1_{\mathcal{A},\mathfrak{F}}$ と書くと,これも条件付き期待値 $E_{\theta}[1_{\mathcal{A}}|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元である.よって, \mathfrak{F} は統計モデル $(\mathcal{X},(P_{\theta})_{\theta \in \Theta})$ に対して十分である.

 $(a) \Longrightarrow (b)$ \mathfrak{F} が統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分であるとする. 任意の有限次元実線型空間 \mathcal{V} と

 $(P_{\theta})_{\theta \in \Theta}$ -可積分な可測写像 $\phi: \mathcal{X} \to \mathcal{V}$ に対して,条件付き期待値 $E_{\theta}[\phi|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元がとれることを示したい. \mathcal{V} の基底を一つ固定して成分ごとに考えることにより,一般性を失わず, $\mathcal{V} = \mathbb{R}$ であると仮定する.さらに,正の部分と負の部分への分解を考えることにより,一般性を失わず, $\phi \geq 0$ であると仮定する.

 \mathcal{X} 上の可測単関数の増加列 $(\phi_n)_{n\in\mathbb{N}}$ であって, ϕ に各点収束するものをとる. \mathfrak{F} の十分性より,各 $n\in\mathbb{N}$ に対して,条件付き期待値 $E_{\theta}[\phi_n|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元 $\phi_{n,\mathfrak{F}}\colon\mathcal{X}\to\mathbb{R}_{\geq 0}$ がとれる.条件付き期待値 に対する Lebesgue の収束定理より,任意の $\theta\in\Theta$ に対して, $(E_{\theta}[\phi_n|\mathfrak{F}])_{n\in\mathbb{N}}$ は $E_{\theta}[\phi|\mathfrak{F}]$ に P_{θ} -概収束する.そこで,関数 $\phi_{\mathfrak{F}}\colon\mathcal{X}\to\mathbb{R}_{\geq 0}$ を

$$\phi_{\mathfrak{F}}(x) = \begin{cases} \limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) & (\limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) < \infty) \\ 0 & (\limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) = \infty) \end{cases}$$

と定めると、これは $E_{\theta}[\phi|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元である.これで、主張が示された.

 \mathfrak{F} が統計モデル $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ に対して十分であるとき, $(P_{\theta})_{\theta\in\Theta}$ -可積分な可測写像 $\phi\colon\mathcal{X}\to\mathcal{V}$ (\mathcal{V} は有限 次元実線型空間)に対して,条件付き期待値 $E_{\theta}[\phi|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元を,単に $E[\phi|\mathfrak{F}]$ と書く.これは, $(P_{\theta})_{\theta\in\Theta}$ -ほとんど確実に一意に定まる.

補題 1.4 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の σ -有限測度とし,各 P_{θ} は μ -絶対連続であるとする. このとき,パラメータの列 $(\theta_n)_{n\in\mathbb{N}_{>0}}$ を適当に選んで $Q=\sum_{n=1}^{\infty}2^{-n}P_{\theta_n}$ と置けば,各 P_{θ} は Q-絶対連続となる.

証明 $\mu(\mathcal{X})=\infty$ ならば、 \mathcal{X} の分割 $(\mathcal{X}_i)_{i\in\mathbb{N}_{>0}}$ であって任意の $i\in\mathbb{N}_{>0}$ に対して $0<\mu(\mathcal{X}_i)<\infty$ を満たすものをとり、可測集合 $A\subseteq\mathcal{X}$ に対して

$$\mu'(\mathcal{A}) = \sum_{i=1}^{\infty} 2^{-i} \mu(\mathcal{X}_i)^{-1} \mu(\mathcal{A} \cap \mathcal{X}_i)$$

と定めることにより, μ と同値な有限測度 μ' が得られる. そこで, 一般性を失わず, μ は有限であると仮定する.

各 $\theta \in \Theta$ に対して,Radon–Nikodym 微分 $dP_{\theta}/d\mu$ の代表元 f_{θ} を一つ固定し, $\mathcal{S}_{\theta} = \{x \in \mathcal{X} \mid f_{\theta}(x) > 0\}$ と置く. μ は有限だから,パラメータの列 $(\theta_n)_{n \in \mathbb{N}_{>0}}$ を,

$$\mu\left(igcup_{n=1}^{\infty}S_{\theta_n}
ight)=\sup\left\{\mu\left(igcup_{ heta\in\Theta'}S_{ heta}
ight) \ \middle|\ \Theta'$$
 は Θ の可算部分集合 $ight\}$

を満たすようにとれる. $Q=\sum_{n=1}^{\infty}2^{-n}P_{\theta_n}$ と置き,各 P_{θ} が Q-絶対連続であることを示す。可測集合 $A\subseteq\mathcal{X}$ であって $Q(\mathcal{A})=0$ を満たすものを任意にとる。Q の定義より,任意の $n\in\mathbb{N}_{>0}$ に対して, $P_{\theta_n}(\mathcal{A})=0$ だから, $\mu(\mathcal{A}\cap\mathcal{S}_{\theta_n})=0$ である。また, $(\theta_n)_{n\in\mathbb{N}_{>0}}$ のとり方より, $\mu(\mathcal{S}_{\theta}\setminus\bigcup_{n=1}^{\infty}\mathcal{S}_{\theta_n})=0$ である.したがって,

$$\mu(\mathcal{A} \cap \mathcal{S}_{\theta}) \leq \sum_{n=1}^{\infty} \mu(\mathcal{A} \cap \mathcal{S}_{\theta_n}) + \mu\left(\mathcal{S}_{\theta} \setminus \bigcup_{n=1}^{\infty} \mathcal{S}_{\theta_n}\right) = 0$$

だから, $P_{\theta}(A) = 0$ である. よって, P_{θ} は Q-絶対連続である.

定理 1.5(因子分解定理) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の σ -有限測度とし,各 P_{θ} は μ -絶対連続であるとする. このとき, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} に対して,次の条件は同値である.

- (a) \mathfrak{F} は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (b) 可測関数 $g: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と \mathfrak{F} -可測関数の族 $(h_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0})_{\theta \in \Theta}$ が存在して,任意の $\theta \in \Theta$ に対して, μ -ほとんどいたるところで $dP_{\theta}/d\mu = gh_{\theta}$ が成り立つ.

証明 補題 1.4 より、パラメータの列 $(\theta_n)_{n\in\mathbb{N}_{>0}}$ を適当に選んで $Q=\sum_{n=1}^{\infty}2^{-n}P_{\theta_n}$ と置けば、各 P_{θ} は Q-絶対連続となる. 以下、条件 (a) と (b) が、ともに次の条件 (c) と同値であることを示す.

- (c) 任意の $\theta \in \Theta$ に対して、Radon-Nikodym 微分 dP_{θ}/dQ の代表元として、 \mathfrak{F} -可測であるものがとれる.
- $(a) \Longrightarrow (c)$ $\mathfrak F$ が統計モデル $(\mathcal X, (P_{\theta})_{\theta \in \Theta})$ に対して十分であるとする.可測集合 $\mathcal A \subseteq \mathcal X$ に対して,条件付き期待値 $E_{\theta}[1_{\mathcal A}|\mathfrak F]$ の $\theta \in \Theta$ によらない代表元 $1_{\mathcal A,\mathfrak F}\colon \mathcal X \to [0,1]$ をとる. $\mathcal B \in \mathfrak F$ とすると,任意の $\theta \in \Theta$ に対して

$$\int_{\mathcal{B}} 1_{\mathcal{A},\mathfrak{F}} dP_{\theta} = \int_{\mathcal{B}} 1_{\mathcal{A}} dP_{\theta}$$

だから、上式で $\theta = \theta_n$ として両辺に 2^{-n} を掛けたものの $n \in \mathbb{N}_{>0}$ にわたる和をとれば、

$$\int_{\mathcal{B}} 1_{\mathcal{A},\mathfrak{F}} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} dQ$$

を得る. したがって、 $1_{A,\mathfrak{F}}$ は確率測度 Q に関する条件付き期待値 $E_Q[1_A|\mathfrak{F}]$ の代表元でもある.

 $\theta \in \Theta$ とし、可測空間 $(\mathcal{X},\mathfrak{F})$ 上の確率測度 $P_{\theta}|_{\mathfrak{F}}$ と $Q|_{\mathfrak{F}}$ を考える。 P_{θ} が Q-絶対連続であることより $P_{\theta}|_{\mathfrak{F}}$ は $Q|_{\mathfrak{F}}$ -絶対連続だから、Radon-Nikodym 微分 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ が定まる。 \mathfrak{F} -可測関数 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ (の一つの代表元) が dP_{θ}/dQ の代表元であることを示す。 $A \subseteq \mathcal{X}$ を可測集合とすると、 $1_{A,\mathfrak{F}}$ が条件付き期待値 $E_{\theta}[1_{A}|\mathfrak{F}]$ や $E_{Q}[1_{A}|\mathfrak{F}]$ の代表元であることより、

$$\int_{\mathcal{A}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ = \int_{\mathcal{X}} 1_{\mathcal{A}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A},\mathfrak{F}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A},\mathfrak{F}} dP_{\theta}$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A}} dP_{\theta}$$

$$= P_{\theta}(\mathcal{A})$$

が成り立つ. よって、 $(dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}})\cdot Q=P_{\theta}$ だから、 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ は dP_{θ}/dQ の代表元である.

 $(c) \Longrightarrow (a)$ 条件 (c) が成り立つとして, dP_{θ}/dQ を \mathfrak{F} -可測関数とみなす. $\mathcal{A} \subseteq \mathfrak{X}$ を可測集合とすると,任意の $\theta \in \Theta$ と $\mathcal{B} \in \mathfrak{F}$ に対して

$$\int_{\mathcal{B}} E_Q[1_{\mathcal{A}}|\mathfrak{F}] dP_{\theta} = \int_{\mathcal{B}} E_Q[1_{\mathcal{A}}|\mathfrak{F}] \frac{dP_{\theta}}{dQ} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} \frac{dP_{\theta}}{dQ} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} dP_{\theta}$$

だから, $E_Q[1_A|\mathfrak{F}]$ は条件付き期待値 $E_\theta[1_A|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元である.よって, \mathfrak{F} は統計モデル $(\mathcal{X},(P_\theta)_{\theta\in\Theta})$ に対して十分である.

 $(b)\Longrightarrow (c)$ 条件 (b) を満たす可測関数 $g\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ と \mathfrak{F} -可測関数の族 $(h_{\theta}\colon \mathcal{X}\to\mathbb{R}_{\geq 0})_{\theta\in\Theta}$ がとれたとする.このとき, $k_1=\sum_{n=1}^{\infty}2^{-n}gh_{\theta_n}$ は $\overline{\mathbb{R}}_{\geq 0}$ に値をとる \mathfrak{F} -可測関数であり, μ -ほとんどいたるところで $dQ/d\mu=gk_1$ が成り立つ. gk_1 は μ -ほとんどいたるところで有限だから, k_1 の値 ∞ を 0 に修正して得られる \mathfrak{F} -可測関数を $k\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ と置くと,これも μ -ほとんどいたるところで $dQ/d\mu=gk$ を満たす.

各 $\theta \in \Theta$ に対して、可測関数 $\phi_{\theta} : \mathcal{X} \to \mathbb{R}_{>0}$ を、

$$\phi_{\theta}(x) = \begin{cases} h_{\theta}(x)/k(x) & (k(x) > 0) \\ 0 & (k(x) = 0) \end{cases}$$

と定める. すると.

$$\phi_{\theta} \cdot Q = \phi_{\theta} g k \cdot \mu = 1_{k>0} g h_{\theta} \cdot \mu = 1_{k>0} \cdot P_{\theta}$$

が成り立つ. さらに、 μ -ほとんどいたるところで $dQ/d\mu=gk$ であることより $\{k=0\}$ は Q-無視可能だから、 P_{θ} が Q-絶対連続であることより P_{θ} -無視可能であり、したがって、 $1_{k>0}\cdot P_{\theta}=P_{\theta}$ である. よって、 dP_{θ}/dQ の代表元として、 \mathfrak{F} -可測関数 ϕ_{θ} がとれる.

 $(c) \Longrightarrow (b)$ 条件 (c) が成り立つとして, dP_{θ}/dQ を \mathfrak{F} -可測関数とみなす.任意の $\theta \in \Theta$ に対して, $P_{\theta} = (dQ/d\mu)(dP_{\theta}/dQ) \cdot \mu$ だから, $g = dQ/d\mu$, $h_{\theta} = dP_{\theta}/dQ$ と置けばよい.

系 1.6 $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする. μ を \mathcal{X} 上の σ -有限測度とし,各 P_{θ} は μ -絶対連続であるとする. このとき,可測空間 \mathcal{Y} と可測統計量 $T: \mathcal{X} \to \mathcal{Y}$ に対して,次の条件は同値である.

- (a) T は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (b) 可測関数 $g: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と可測関数の族 $(h_{\theta}: \mathcal{Y} \to \mathbb{R}_{\geq 0})_{\theta \in \Theta}$ が存在して、任意の $\theta \in \Theta$ に対して、 μ -ほとんどすべての $x \in \mathcal{X}$ に対して $(dP_{\theta}/d\mu)(x) = g(x)h_{\theta}(T(x))$ が成り立つ.

П

証明 因子分解定理(定理 1.5)と Doob-Dynkin の補題から従う.

1.3 完備性

定義 1.7 (完備性) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする.

(1) \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} がこの統計モデルに対して**完備**(complete)であるとは,任意の \mathfrak{F} -可測統計量 $\phi: \mathcal{X} \to \mathbb{R}$ に対して,

任意の $\theta \in \Theta$ に対して ϕ が P_{θ} -可積分かつ $E_{\theta}[\phi] = 0 \implies (P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に $\phi = 0$ が成り立つことをいう.

(2) \mathcal{Y} を可測空間とし, $T: \mathcal{X} \to \mathcal{Y}$ を可測統計量とする.T がこの統計モデルに対して**完備**であるとは, σ -代数 $\sigma[T]$ がこの統計モデルに対して完備であることをいう.

1.4 指数型分布族

定義 1.8(指数型分布族) \mathcal{X} を可測空間とする. \mathcal{X} 上の測度 μ , 可測写像 $g: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と $T: \mathcal{X} \to \mathcal{V}$ (\mathcal{V} は 有限次元実線型空間), 写像 $a: \Theta \to \mathcal{V}^*$ と $b: \Theta \to \mathbb{R}$ (Θ は集合)を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\langle a(\theta), T(x) \rangle - b(\theta))$$

と表せる確率測度の族 $(P_{\theta})_{\theta \in \Theta}$ を、 \mathcal{X} 上の指数型分布族(exponential family)という。さらに、 Θ が \mathcal{V}^* の部分集合で $a: \Theta \to \mathcal{V}^*$ が包含写像である場合には、 $(P_{\theta})_{\theta \in \Theta}$ を、 \mathcal{X} 上の自然パラメータの指数型分布族 (exponential family with natural parameters) という。

定義 1.8 の状況で, $\mathcal{V}=\mathbb{R}^d$ である場合には,しばしば \mathbb{R}^d 上の標準内積が定める線型同型写像によって $(\mathbb{R}^d)^*$ を \mathbb{R}^d と同一視する.

注意 1.9 定義 1.8 の状況を考える.

(1) 任意の $\theta \in \Theta$ に対して, P_{θ} が \mathcal{X} 上の確率測度であることより, \mathcal{X} 上の関数 $x \mapsto h(x) \exp(\langle a(\theta), T(x) \rangle)$ は μ -可積分であり,

$$b(\theta) = \log \left(\int_{\mathcal{X}} g(x) \exp(\langle a(\theta), T(x) \rangle) d\mu(x) \right)$$

が成り立つ.

(2) $g \cdot \mu$ を改めて μ と置くことで,g は定数関数 1 であると仮定できる.

命題 1.10 $\mathcal X$ を可測空間とする. $\mathcal V$ を有限次元実線型空間, Θ を $\mathcal V^*$ の開集合とし, $\mathcal X$ 上の測度 μ , 可測写像 $g\colon \mathcal X\to\mathbb R_{>0}$ と $T\colon \mathcal X\to\mathcal V$, 関数 $b\colon \Theta\to\mathbb R$ を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\langle \theta, T(x) \rangle - b(\theta))$$

と表せる自然パラメータの指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える. W を有限次元実線型空間とし, $\phi: \mathcal{X} \to W$ を $(P_{\theta})_{\theta \in \Theta}$ -可積分な可測統計量とする.

- (1) 任意の多項式関数 $p: \mathcal{V} \to \mathbb{R}$ に対して、 $\phi \cdot p(T)$ は $(P_{\theta})_{\theta \in \Theta}$ -可積分である.
- (2) Θ 上の関数 b と $\theta \mapsto E_{\theta}[\phi]$ は無限階微分可能であり、任意の $k \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_k \in \mathcal{V}^*$, $\theta \in \Theta$ に対して、

$$D_{\theta}^{k}(e^{b(\theta)} E_{\theta}[\phi])(\alpha_{1}, \dots, \alpha_{k}) = e^{b(\theta)} E_{\theta}[\phi \cdot \alpha_{1} \cdots \alpha_{k}(T)]$$

が成り立つ(上式の右辺における $\alpha_1 \cdots \alpha_k$ は、 ν 上の多項式関数 $v \mapsto \alpha_1(v) \cdots \alpha_k(v)$ を表す. (1) より、上式の右辺における期待値が定義される)。特に、任意の $\alpha \in \mathcal{V}^*$ と $\theta \in \Theta$ に対して、

$$D_{\theta}(E_{\theta}[\phi])(\alpha) = E_{\theta}[\phi \cdot \alpha(T)] - E_{\theta}[\phi] E_{\theta}[\alpha(T)]$$

が成り立つ.

証明 一般性を失わず,g は定数関数 1 であると仮定する(注意 1.9 (2))。また,一般性を失わず, $\mathcal{V}=\mathbb{R}^d$ であると仮定し, \mathbb{R}^d 上の標準内積が定める線型同型写像によって (\mathbb{R}^d)* を \mathbb{R}^d と同一視する.

(1) $\theta=(\theta_1,\ldots,\theta_d)\in\Theta$ として、 $\epsilon>0$ を $\prod_{i=1}^d[\theta_i-\epsilon,\theta_i+\epsilon]\subseteq\Theta$ を満たすようにとる。 $p\colon\mathcal{V}\to\mathbb{R}$ は多項式関数だから、適当な定数 $C\in\mathbb{R}_{>0}$ をとれば、任意の $v\in\mathcal{V}$ に対して

$$|p(v)| \leq C \max_{s \in \{\pm 1\}^d} \exp(\langle s\epsilon, v \rangle)$$

となる. したがって,

$$\int_{\mathcal{X}} |\phi(x)p(T(x))| dP_{\theta}(x) = \int_{\mathcal{X}} |\phi(x)p(T(x))| \exp(\langle \theta, T(x) \rangle - b(\theta)) d\mu(x)$$

$$\leq Ce^{-b(\theta)} \int_{\mathcal{X}} |\phi(x)| \left(\max_{s \in \{+1\}^d} \exp(\langle s\epsilon, T(x) \rangle) \right) d\mu(x)$$

であり、任意の $s\in\{\pm 1\}^d$ に対して ϕ が $P_{\theta+s\epsilon}$ -可積分であることから、この式の最も左辺は有限である. よって、 $\phi\cdot p(T)$ は P_{θ} -可積分である. (2) 前半の主張を示す. 任意の $\theta \in \Theta$ に対して

$$e^{b(\theta)} E_{\theta}[\phi] = \int_{\mathcal{X}} \phi(x) \exp(\langle \theta, T(x) \rangle) d\mu(x)$$

であり、任意の $k \in \mathbb{N}$ 、 $\alpha_1, \ldots, \alpha_k \in \mathbb{R}^d$ 、 $\theta \in \Theta$ に対して

$$D_{\theta}^{k}(\exp(\langle \theta, T(x) \rangle))(\alpha_{1}, \dots, \alpha_{k}) = \alpha_{1} \cdots \alpha_{k}(T(x)) \exp(\langle \theta, T(x) \rangle) \qquad (x \in \mathcal{X})$$

である. よって,(1) と積分記号下の微分に関する定理より, Θ 上の関数 $\theta \mapsto e^{b(\theta)} E_{\theta}[\phi]$ は無限階微分可能であり,任意の $k \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_k \in \mathbb{R}^d$, $\theta \in \Theta$ に対して

$$D_{\theta}^{k}(e^{b(\theta)} E_{\theta}[\phi])(\alpha_{1}, \dots, \alpha_{k}) = \int_{\mathcal{X}} \phi(x)\alpha_{1} \cdots \alpha_{k}(T(x)) \exp(\langle \theta, T(x) \rangle) d\mu(x)$$
$$= e^{b(\theta)} E_{\theta}[\phi \cdot \alpha_{1} \cdots \alpha_{k}(T)]$$

が成り立つ. ϕ を定数関数 1 とすれば、 Θ 上の関数 e^b が無限階微分可能であることがわかり、したがって、 Θ 上の関数 b と $\theta \mapsto E_{\theta}[\phi]$ が無限階微分可能であることもわかる.

後半の主張を示す. 任意の $\alpha \in \mathbb{R}^d$ と $\theta \in \Theta$ に対して, 前半の主張より,

$$D_{\theta}(e^{b(\theta)} E_{\theta}[\phi])(\alpha) = e^{b(\theta)} E_{\theta}[\phi \cdot \alpha(T)]$$

であり、一方で

$$D_{\theta}(e^{b(\theta)} E_{\theta}[\phi])(\alpha) = D_{\theta}(e^{b(\theta)})(\alpha) E_{\theta}[\phi] + e^{b(\theta)} D_{\theta}(E_{\theta}[\phi])(\alpha)$$
$$= e^{b(\theta)} E_{\theta}[\alpha(T)] E_{\theta}[\phi] + e^{b(\theta)} D_{\theta}(E_{\theta}[\phi])(\alpha)$$

である. これらの二つの式を比較して, 主張の等式を得る.

定理 1.11 \mathcal{X} を可測空間とする. \mathcal{X} 上の測度 μ , 可測写像 $g: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と $T: \mathcal{X} \to \mathcal{V}$ (\mathcal{V} は有限次元実線型空間), 写像 $a: \Theta \to \mathcal{V}^*$ と $b: \Theta \to \mathbb{R}$ (Θ は集合)を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\langle a(\theta), T(x) \rangle - b(\theta))$$

と表せる指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える.

- (1) μ が σ -有限であるとする. このとき, T は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (2) $a(\Theta)$ が \mathcal{V}^* において内点をもつとする. このとき, T は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して完備である.

証明 (1) 因子分解定理(定理 1.5) から従う.

(2) 一般性を失わず、g は定数関数 1 であると仮定する (注意 1.9 (2)).

Doob-Dynkin の補題より、 $\mathcal X$ から $\mathbb R$ への任意の $\sigma[T]$ -可測統計量は、可測写像 $T: \mathcal V \to \mathbb R$ を用いて $\phi \circ T$ と表せる.任意の $\theta \in \Theta$ に対して、 $\phi \circ T$ は P_{θ} -可積分で $E_{\theta}[\phi \circ T] = 0$ を満たすと仮定する.任意の $\theta \in \Theta$ に対して、

$$E_{\theta}[\phi \circ T] = \int_{\mathcal{X}} \phi(T(x)) \exp(\langle a(\theta), T(x) \rangle - b(\theta)) d\mu(x)$$
$$= e^{-b(\theta)} \int_{\mathcal{V}} \phi(v) \exp(\langle a(\theta), v \rangle) dT_* \mu(v)$$

だから、上記の仮定は、任意の $\alpha \in a(\Theta)$ に対して

$$\int_{\mathcal{V}} \phi(v) \exp(\langle \alpha, v \rangle) dT_* \mu(v) = 0$$

であることを意味する。 さらに, $\beta \in \mathcal{V}^*$ とすると,関数 $v \mapsto \phi(v) \exp(\langle \alpha, v \rangle)$ が $T_*\mu$ -可積分であることからこれと絶対値が等しい関数 $v \mapsto \phi(v) \exp(\langle \alpha - i\beta, v \rangle)$ も $T_*\mu$ -可積分であり,積分記号下の微分に関する定理を用いて確かめられるように, $\inf_{\mathcal{V}^*}(a(\Theta))+i\mathcal{V}^*$ 上の関数 $\alpha-i\beta\mapsto\int_{\mathcal{V}}\phi(v)\exp(\langle \alpha-i\beta, v \rangle)\,dT_*\mu(v)$ は正則である。ところが, $\beta=0$ のときはこの積分は 0 だから,一致の定理より,任意の $\alpha-i\beta\in \operatorname{int}_{\mathcal{V}^*}(a(\Theta))+i\mathcal{V}^*$ に対して

$$\int_{\mathcal{V}} \phi(v) \exp(\langle \alpha - i\beta, v \rangle) dT_* \mu(v) = 0$$

が成り立つ. $\alpha \in \operatorname{int}_{\mathcal{V}^*}(a(\Theta))$ を固定すると、上式の左辺を $\beta \in \mathcal{V}^*$ の関数とみなしたものは、 \mathcal{V} 上の有限 Borel 測度 $\phi \exp(\langle \alpha, - \rangle) \cdot T_*\mu(v)$ の Fourier 変換である. したがって、Fourier 変換の単射性より

$$\phi \exp(\langle \alpha, - \rangle) \cdot T_* \mu(v) = 0$$

だから, $T_*\mu$ -ほとんどいたるところで $\phi=0$ である.すなわち, μ -ほとんどいたるところで $\phi\circ T=0$ である.特に, $(P_{\theta})_{\theta\in\Theta}$ -ほとんど確実に $\phi\circ T=0$ である.以上より,T は統計モデル $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ に対して完備である.

2 推定

2.1 不偏推定量

定義 2.1(不偏推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、 \mathcal{V} を有限次元実線型空間、 $g\colon\Theta\to\mathcal{V}$ を写像とする。可測統計量 $\delta\colon\mathcal{X}\to\mathcal{V}$ が $g(\theta)$ の**不偏推定量** (unbiased estimator) であるとは、任意の $\theta\in\Theta$ に対して、 δ が P_{θ} -可積分かつ $E_{\theta}[\delta]=g(\theta)$ を満たすことをいう。

定義 2.2 (一様最小分散不偏推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、 \mathcal{V} を有限次元実内積空間、 $g\colon\Theta\to\mathcal{V}$ を写像とする。 $g(\theta)$ の一様最小分散不偏推定量 (uniformly minimum-variance unbiased estimator, UMVUE) とは、 $g(\theta)$ の不偏推定量 $\delta_0\colon\mathcal{X}\to\mathcal{V}$ であって、 $g(\theta)$ の任意の不偏推定量 $\delta:\mathcal{X}\to\mathcal{V}$ と $\theta\in\Theta$ に対して

$$E_{\theta}[\|\delta_0 - g(\theta)\|^2] \le E_{\theta}[\|\delta - g(\theta)\|^2]$$

を満たすものをいう.

定理 2.3(Rao-Blackwell の定理) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} はこれに対して十分であるとする. \mathcal{V} を有限次元実線型空間, $g\colon\Theta\to\mathcal{V}$ を写像とし, $\delta\colon\mathcal{X}\to\mathcal{V}$ を $g(\theta)$ の不偏推定量とする.

- (1) $E[\delta|\mathfrak{F}]$ は $q(\theta)$ の不偏推定量である.
- (2) $w: \Theta \times \mathcal{V} \to \mathbb{R}_{\geq 0}$ は関数であり、任意の $\theta \in \Theta$ に対して $w(\theta, -)$ は凸であるとする.このとき、任意の $\theta \in \Theta$ に対して、

$$E_{\theta}[w(\theta, E[\delta|\mathfrak{F}])] \le E_{\theta}[w(\theta, \delta)]$$

が成り立つ. 特に、 $\mathcal V$ が有限次元実内積空間ならば、 $g(\theta)$ の任意の不偏推定量 $\delta': \mathcal X \to \mathcal V$ と $\theta \in \Theta$ に対して、

$$E_{\theta}[\|E[\delta|\mathfrak{F}] - g(\theta)\|^2] \le E_{\theta}[\|\delta - g(\theta)\|^2]$$

が成り立つ.

- 証明 (1) 条件付き期待値の性質より、任意の $\theta \in \Theta$ に対して、 $E[\delta|\mathfrak{F}]$ は P_{θ} -可積分であり $E_{\theta}[E[\delta|\mathfrak{F}]] = E_{\theta}[\delta] = g(\theta)$ が成り立つ、よって、 $E[\delta|\mathfrak{F}]$ は $g(\theta)$ の不偏推定量である.
- (2) 前半の主張は,条件付き期待値に対する Jensen の不等式から従う.前半の主張において $w(\theta,v)=\|v-g(\theta)\|^2$ とすれば,後半の主張が従う. \square
- 定理 2.4(Lehmann–Scheffé の定理) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} はこれに対して完備かつ十分であるとする. \mathcal{V} を有限次元実線型空間とし, $g:\Theta\to\mathcal{V}$ を写像とする.
 - (1) $g(\theta)$ の不偏推定量が存在するとする.このとき, \mathfrak{F} -可測な $g(\theta)$ の不偏推定量が, $(P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に一意に存在する.
 - (2) δ_0 , δ : $\mathcal{X} \to \mathcal{V}$ を $g(\theta)$ の不偏推定量とし, δ_0 は \mathfrak{F} -可測であるとする.w: $\Theta \times \mathcal{V} \to \mathbb{R}_{\geq 0}$ は関数であり,任意の $\theta \in \Theta$ に対して $w(\theta, -)$ は凸であるとする.このとき,任意の $\theta \in \Theta$ に対して,

$$E_{\theta}[w(\theta, \delta_0)] \le E_{\theta}[w(\theta, \delta)]$$

が成り立つ. 特に、 $\mathcal V$ が有限次元実内積空間ならば、 δ_0 は $g(\theta)$ の一様最小分散不偏推定量である.

- 証明 (1) <u>存在</u> $\delta: \mathcal{X} \to \mathcal{V}$ を $g(\theta)$ の不偏推定量とすると,Rao-Blackwell の定理(定理 2.3 (1))より, $E[\delta|\mathfrak{F}]$ は \mathfrak{F} -可測な $g(\theta)$ の不偏推定量である.
- 一意性 δ_0 , δ_0' : $\mathcal{X} \to \mathcal{V}$ がともに \mathfrak{F} -可測な $g(\theta)$ の不偏推定量であるとする. このとき,任意の $\theta \in \Theta$ に対して $E_{\theta}[\delta_0 \delta_0'] = g(\theta) g(\theta) = 0$ だから, \mathfrak{F} の完備性より, $(P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に $\delta_0 \delta_0' = 0$ が成り立つ.
- (2) Rao-Blackwell の定理(定理 2.3 (1))より, $E[\delta|\mathfrak{F}]$ は \mathfrak{F} -可測な $g(\theta)$ の不偏推定量だから,(1) の一意性より, $(P_{\theta})_{\theta\in\Theta}$ -ほとんど確実に $\delta_0=E[\delta|\mathfrak{F}]$ である.よって,主張は,Rao-Blackwell の定理(定理 2.3 (2))から従う.

2.2 Fisher 情報量

- 定義 2.5(Fisher 情報量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は有限次元実線型空間 \mathcal{V} の 部分集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}:\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. $\theta_{0}\in\mathrm{int}_{\mathcal{V}}(\Theta)$ とし、次の条件が満たされるとする.
- (FI1) μ -ほとんどすべての $x \in \mathcal{X}$ に対して、関数 $\theta \mapsto f_{\theta}(x)$ は、 θ_0 のある近傍において正であり、 θ_0 において微分可能である(したがって、微分($D_{\theta} \log f_{\theta}(x)$) $|_{\theta=\theta_0}$ が定義される).
- (FI2) \mathcal{X} 上 μ -ほとんどいたるところで定義され \mathcal{V}^* に値をとる写像 $x\mapsto (D_{\theta}\log f_{\theta}(x))|_{\theta=\theta_0}$ は, P_{θ_0} -2 乗可積分である.

このとき,

$$I(\theta_0) = E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta = \theta_0} \otimes (D_\theta \log f_\theta)|_{\theta = \theta_0}]$$

と定め、これを統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ の θ_0 における **Fisher 情報量** (Fisher information) という.

定義 2.5 の状況で、Fisher 情報量 $I(\theta_0)$ は、正値対称テンソルである。すなわち、 \mathcal{V} 上の双線型形式 $(v,w)\mapsto \langle I(\theta_0),v\otimes w\rangle$ は対称であり、任意の $v\in\mathcal{V}$ に対して $\langle I(\theta_0),v\otimes v\rangle\geq 0$ である。

注意 2.6 定義 2.5 の状況を考える. パラメータ θ_0 の下での $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ の期待値 (いま, $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ は P_{θ_0} -2 乗可積分であると仮定しているから,この期待値が定義される)は,

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}] = \int_{\mathcal{X}} (D_\theta \log f_\theta(x))|_{\theta=\theta_0} f_{\theta_0}(x) d\mu(x)$$
$$= \int_{\mathcal{X}} (D_\theta f_\theta(x))|_{\theta=\theta_0} d\mu(x)$$

と表せる. ここで、微分と積分の順序交換ができると仮定すると、

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}] = \left(D_\theta \int_{\mathcal{X}} f_\theta(x) \, d\mu(x)\right)\Big|_{\theta=\theta_0} = (D_\theta 1)|_{\theta=\theta_0} = 0$$

となる. これが成り立つとき, Fisher 情報量は,

$$I(\theta_0) = \operatorname{Var}_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta = \theta_0}]$$

とも書ける.

積分記号下の微分に関する定理より, μ -可積分関数 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$, μ -無視可能な集合 $\mathcal{N} \subseteq \mathcal{X}$, θ_0 の近傍 $\Xi \subseteq \Theta$ が存在して次の条件を満たす場合には,前段で述べた微分と積分の順序交換を正当化できる.

- (i) 任意の $x \in \mathcal{X} \setminus \mathcal{N}$ に対して、関数 $\theta \mapsto f_{\theta}(x)$ は Ξ 上で微分可能である.
- (ii) 任意の $\theta_1 \in \Xi$ に対して、 μ -ほとんどすべての $x \in \mathcal{X} \setminus \mathcal{N}$ に対して $\|(D_{\theta}f_{\theta}(x))|_{\theta=\theta_1}\|_{\mathcal{V}} \leq h(x)$ が成り立つ.

ここで,V上のノルム $\|-\|_V$ を一つ固定した(有限次元実線型空間上のノルムはすべて同値だから,上記の条件を成否は,このノルムのとり方には依存しない).

 \mathcal{V} を(可換体上の)有限次元線型空間, $T \in \mathcal{V}^* \otimes \mathcal{V}^*$ を非退化対称テンソルとするとき,T は線型同型写像 $\Phi: \mathcal{V} \to \mathcal{V}^*$ を定める.T を $\Phi^{-1} \otimes \Phi^{-1}$ で移して得られる非退化対称テンソル $T^{\vee} = (\Phi^{-1} \otimes \Phi^{-1})(T) \in \mathcal{V} \otimes \mathcal{V}$ を,T の**逆形式**(inverse form)という.

定理 2.7(Cramér–Rao の不等式) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は有限次元実線型空間 \mathcal{V} の部分集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}:\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. \mathcal{W} を有限次元実線型空間、 $g:\Theta\to\mathcal{W}$ を写像とし、 $\delta:\mathcal{X}\to\mathcal{W}$ を可測統計量とする. $\theta_0\in\mathrm{int}_{\mathcal{V}}(\Theta)$ とし、次の条件が満たされるとする(条件 (FI1) と (FI2) は、定義 2.5 のものと同一である).

- (FI1) μ -ほとんどすべての $x \in \mathcal{X}$ に対して,関数 $\theta \mapsto f_{\theta}(x)$ は, θ_0 のある近傍において正であり, θ_0 において微分可能である(したがって,微分 $(D_{\theta} \log f_{\theta}(x))|_{\theta=\theta_0} \in \mathcal{V}^*$ が定義される).
- (FI2) \mathcal{X} 上 μ -ほとんどいたるところで定義され \mathcal{V}^* に値をとる写像 $x\mapsto (D_{\theta}\log f_{\theta}(x))|_{\theta=\theta_0}$ は, P_{θ_0} -2 乗可積分である.
- (FI3) Fisher 情報量 $I(\theta_0)$ は非退化である(したがって、逆形式 $I(\theta)^{\vee} \in \mathcal{V} \otimes \mathcal{V}$ が定義される).

(FI4) g は θ_0 において微分可能であり(したがって、微分 $Dg(\theta_0) \in \operatorname{Hom}(\mathcal{V}, \mathcal{W})$ が定義される), δ は P_{θ_0} -2 乗可積分であり,

$$E_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}] = 0,$$

$$E_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0} \otimes \delta] = Dg(\theta_0)$$

が成り立つ(いま, $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ と δ は 2 乗可積分であると仮定しているから,上式の左辺の期待値が定義される).

このとき、 $W \otimes W$ 上の対称テンソルの間の不等式

$$\operatorname{Var}_{\theta_0}[\delta] \ge (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

が成り立つ.

証明 $I(\theta_0)$ が定める \mathcal{V} から \mathcal{V}^* への線型同型写像を $\Phi: \mathcal{V} \to \mathcal{V}^*$ と書き, $u(x) = \Phi^{-1}((D_\theta \log f_\theta(x))|_{\theta=\theta_0}) \in \mathcal{V}$ と置く. $(D_\theta \log f_\theta(x))|_{\theta=\theta_0}$ は μ -ほとんどすべての $x \in \mathcal{X}$ に対して定義され x の関数として P_{θ_0} -2 乗可積分だから, u(x) も同様である. また, 条件 (ii) より,

$$E_{\theta_0}[u] = \Phi^{-1}(E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta = \theta_0}]) = 0, \tag{*}$$

$$E_{\theta_0}[u \otimes \delta] = (\Phi^{-1} \otimes \mathrm{id}_{\mathcal{W}})(E_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta = \theta_0} \otimes \delta]) = (\Phi^{-1} \otimes \mathrm{id}_{\mathcal{W}})(Dg(\theta_0)) \tag{**}$$

かつ

$$\operatorname{Var}_{\theta_0}[u] = (\Phi^{-1} \otimes \Phi^{-1})(\operatorname{Var}_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}])$$

$$= (\Phi^{-1} \otimes \Phi^{-1})(I(\theta_0))$$

$$= I(\theta_0)^{\vee} \tag{***}$$

である.

以下,

$$Var_{\theta_0}[\delta - Dg(\theta_0) \circ u]$$

$$= Var_{\theta_0}[\delta] - Cov_{\theta_0}[\delta, Dg(\theta_0) \circ u] - Cov_{\theta_0}[Dg(\theta_0) \circ u, \delta] + Var_{\theta_0}[Dg(\theta_0) \circ u]$$
 (****)

の左辺の各項を計算する. まず、(***) より、

$$Var_{\theta_0}[Dg(\theta_0) \circ u] = (Dg(\theta_0) \otimes Dg(\theta_0))(Var_{\theta_0}[u])$$
$$= (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

である. 次に、(*)と(**)より、

$$\operatorname{Cov}_{\theta_0}[Dg(\theta_0) \circ u, \delta] = (Dg(\theta_0) \otimes \operatorname{id}_{\mathcal{W}})(\operatorname{Cov}_{\theta_0}[u, \delta])
= (Dg(\theta_0) \otimes \operatorname{id}_{\mathcal{W}})(E_{\theta_0}[(u - E_{\theta_0}[u]) \otimes (\delta - E_{\theta_0}[\delta])])
= (Dg(\theta_0) \otimes \operatorname{id}_{\mathcal{W}})(E_{\theta_0}[u \otimes \delta])
= (Dg(\theta_0) \Phi^{-1} \otimes \operatorname{id}_{\mathcal{W}})(Dg(\theta_0))
= (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

である(最後の等号は,両辺とも $I(\theta_0)^\vee \in \mathcal{V} \otimes \mathcal{V}$ と二つの $Dg(\theta_0) \in \mathcal{V}^* \otimes \mathcal{W}$ の縮約であることから成り立つ). これらを (****) に代入すると

 $\operatorname{Var}_{\theta_0}[\delta - Dg(\theta_0) \circ u]$

$$= \operatorname{Var}_{\theta_0}[\delta] - (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee}) - (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee}) + (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

$$= \operatorname{Var}_{\theta_0}[\delta] - (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

となり、 $Var_{\theta_0}[\delta - Dg(\theta_0) \circ u] \ge 0$ であることと合わせて、主張の不等式を得る.

注意 2.8 定理 2.7 の状況で,条件 (FI1) と (FI2) が成り立ち,さらに, μ -可積分関数 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$, μ -無視可能な集合 $\mathcal{N} \subseteq \mathcal{X}$, θ_0 の近傍 $\Xi \subseteq \Theta$ が存在して次の条件を満たすとする.

- (i) 任意の $x \in \mathcal{X} \setminus \mathcal{N}$ に対して、関数 $\theta \mapsto f_{\theta}(x)$ は Ξ 上で微分可能である.
- (ii) 任意の $\theta_1 \in \Xi$ に対して、 μ -ほとんどすべての $x \in \mathcal{X} \setminus \mathcal{N}$ に対して $\|(D_{\theta}f_{\theta}(x))|_{\theta=\theta_1}\|_{\mathcal{V}}$, $\|(D_{\theta}(f_{\theta}(x)\delta(x)))|_{\theta=\theta_1}\|_{\mathrm{Hom}(\mathcal{V},\mathcal{W})} \leq h(x)$ が成り立つ.
- (iii) δ は P_{θ_0} -2 乗可積分な $g(\theta)$ の不偏推定量である.

ここで,V上のノルム $\|-\|_V$ と $\operatorname{Hom}(V,W)$ 上のノルム $\|-\|_{\operatorname{Hom}(V,W)}$ を一つずつ固定した(有限次元実線型空間上のノルムはすべて同値だから,上記の条件を成否は,これらのノルムのとり方には依存しない).このとき,条件 (FI4) が成り立つことを示そう.

 δ が P_{θ_0} -2 乗可積分であることは条件 (iii) に含まれており、条件 (i) と (ii) より $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}]=0$ が成り立つ(注意 2.6). 次に、 $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}\otimes\delta]$ について考える.この期待値は、

$$E_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0} \otimes \delta] = \int_{\mathcal{X}} (D_{\theta} \log f_{\theta}(x))|_{\theta=\theta_0} f_{\theta_0}(x) \otimes \delta(x) d\mu(x)$$

$$= \int_{\mathcal{X}} (D_{\theta} f_{\theta}(x))|_{\theta=\theta_0} \otimes \delta(x) d\mu(x)$$

$$= \int_{\mathcal{X}} (D_{\theta} (f_{\theta}(x) \delta(x)))|_{\theta=\theta_0} d\mu(x)$$
(*)

と表せる. 一方で、 δ が $g(\theta)$ の不偏推定量であること(条件 (iii))より

$$g(\theta) = E_{\theta}[\delta] = \int_{\mathcal{X}} f_{\theta}(x)\delta(x) d\mu(x)$$

だから、条件 (i), (ii) と積分記号下の微分に関する定理より、g は θ_0 において微分可能であり、

$$Dg(\theta_0) = \int_{\mathcal{X}} (D_{\theta}(f_{\theta}(x)\delta(x)))|_{\theta=\theta_0} d\mu(x)$$
 (**)

が成り立つ. (*) と (**) を比較して, $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}\otimes\delta]=Dg(\theta_0)$ を得る.これで,主張が示された.

2.3 最尤推定量

定義 2.9(最尤推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の測度とし,各 P_{θ} は可測関数 $f_{\theta}\colon\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. 写像 $\delta\colon\mathcal{X}\to\Theta$ が θ の最尤推定量(maximum likelihood estimator,MLE)であるとは,任意の $x\in\mathcal{X}$ に対して, Θ 上の関数 $\theta\mapsto f_{\theta}(x)$ が $\theta=\delta(x)$ において最大値をとることをいう.

3 仮説検定

3.1 検定

定義 3.1 (検定) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとし、 (Θ_0, Θ_1) をパラメータ空間 Θ の分割とする.

- (1) **検定**(test)とは、可測統計量 ϕ : $\mathcal{X} \to [0,1]$ のことをいう.
- (2) 検定 ϕ : $\mathcal{X} \to [0,1]$ に対して, $\sup_{\theta \in \Theta_0} E_{\theta}[\phi]$ を,この検定の (Θ_0, Θ_1) に対する**大きさ** (size) という. $\alpha \in [0,1]$ とするとき,大きさ α 以下の検定を, (Θ_0, Θ_1) に対する**有意水準** (significance level) α の 検定という.
- (3) 検定 ϕ : $\mathcal{X} \to [0,1]$ と $\theta \in \Theta_1$ に対して, $E_{\theta}[\phi]$ を,この検定の θ における**検出力**(power)という.

定義 3.2(一様最強力検定) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, (Θ_0,Θ_1) をパラメータ空間 Θ の分割とする. $\alpha\in[0,1]$ とするとき, (Θ_0,Θ_1) に対する有意水準 α の一様最強力検定(uniformly most powerful test,UMP test)とは, (Θ_0,Θ_1) に対する有意水準 α の検定 $\phi_0\colon\mathcal{X}\to[0,1]$ であって, (Θ_0,Θ_1) に対する任意の有意水準 α の検定 $\phi\colon\mathcal{X}\to[0,1]$ と $\theta\in\Theta_1$ に対して

$$E_{\theta}[\phi_0] \ge E_{\theta}[\phi]$$

を満たすものをいう.

定義 3.3 (不偏検定) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, (Θ_0,Θ_1) をパラメータ空間 Θ の分割とする. $\alpha\in[0,1]$ とするとき, (Θ_0,Θ_1) に対する有意水準 α の**不偏検定** (unbiased test) とは, (Θ_0,Θ_1) に対する有意水準 α の検定 $\phi\colon\mathcal{X}\to[0,1]$ であって, 任意の $\theta\in\Theta_1$ に対して

$$E_{\theta}[\phi] \geq \alpha$$

を満たすものをいう.

定義 3.4(一様最強力不偏検定) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, (Θ_0,Θ_1) をパラメータ空間 Θ の分割とする。 $\alpha\in[0,1]$ とするとき, (Θ_0,Θ_1) に対する有意水準 α の一様最強力不偏検定(uniformly most powerful unbiased test)とは, (Θ_0,Θ_1) に対する有意水準 α の不偏検定 $\phi_0\colon\mathcal{X}\to[0,1]$ であって, (Θ_0,Θ_1) に対する任意の有意水準 α の不偏検定 $\phi\colon\mathcal{X}\to[0,1]$ と $\theta\in\Theta_1$ に対して

$$E_{\theta}[\phi_0] \ge E_{\theta}[\phi]$$

を満たすものをいう.

有意水準 α の一様最強力検定 ϕ_0 : $\mathcal{X} \to [0,1]$ は,任意の $\theta \in \Theta_1$ に対して $E_{\theta}[\phi_0] \geq E_{\theta}[\alpha] = \alpha$ を満たすから(定数関数 α が有意水準 α の検定であることを用いた),有意水準 α の不偏検定であり,したがって,一様最強力不偏検定である.

3.2 一様最強力検定の存在

補題 3.5(一般化された Neyman-Pearson の補題) (\mathcal{X},μ) を測度空間とし, $f_1,\ldots,f_n,g:\mathcal{X}\to\mathbb{R}$ を μ -可積分関数とする. $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ とし,

$$\begin{split} &\varPhi_{\alpha} = \bigg\{\phi \colon \mathcal{X} \to [0,1] \ \bigg| \ \phi \text{ は可測}, \ \text{ 各 } i \in \{1,\dots,n\} \text{ に対して } \int_{\mathcal{X}} \phi f_i \, d\mu = \alpha_i \bigg\}, \\ &\varPhi_{\leq \alpha} = \bigg\{\phi \colon \mathcal{X} \to [0,1] \ \bigg| \ \phi \text{ は可測}, \ \text{ 各 } i \in \{1,\dots,n\} \text{ に対して } \int_{\mathcal{X}} \phi f_i \, d\mu \leq \alpha_i \bigg\} \end{split}$$

と置く.

(1) $\phi_0 \in \Phi_\alpha$ とし、ある $c_1, \ldots, c_n \in \mathbb{R}$ が存在して

$$\phi_0(x) = \begin{cases} 0 & (g(x) < \sum_{i=1}^n c_i f_i(x)) \\ 1 & (g(x) > \sum_{i=1}^n c_i f_i(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

が満たされているとする.このとき, $\phi\in \Phi_{\alpha}$ に対する値 $\int_{\mathcal{X}}\phi g\,d\mu$ は, $\phi=\phi_0$ のときに最大値をとる.

(2) (1) において、さらに、 $c_1, \ldots, c_n \in \mathbb{R}_{\geq 0}$ ととれるとする.このとき、 $\phi \in \Phi_{\leq \alpha}$ に対する値 $\int_{\mathcal{X}} \phi g \, d\mu$ は、 $\phi = \phi_0$ のときに最大値をとる.

証明 $\phi_0 \in \Phi_\alpha$ が (1) または (2) の条件を満たすとすると、任意の $\phi \in \Phi_\alpha$ または $\phi \in \Phi_{<\alpha}$ に対して、

$$\int_{\mathcal{X}} \phi_0 g \, d\mu - \sum_{i=1}^n c_i \alpha_i = \int_{\mathcal{X}} \phi_0 \left(g - \sum_{i=1}^n c_i f_i \right) d\mu$$
$$\geq \int_{\mathcal{X}} \phi \left(g - \sum_{i=1}^n c_i f_i \right) d\mu$$
$$= \int_{\mathcal{X}} \phi g \, d\mu - \sum_{i=1}^n c_i \alpha_i$$

である. ここで、最後の不等号は、(1) の場合は $\phi \in \Phi_{\alpha}$ から(より強く等号が)成り立ち、(2) の場合は $\phi \in \Phi_{<\alpha}$ と $c_1, \ldots, c_n \in \mathbb{R}_{>0}$ から成り立つ. よって、

$$\int_{\mathcal{X}} \phi_0 g \, d\mu \ge \int_{\mathcal{X}} \phi g \, d\mu$$

が成り立つ.

定理 3.6(Neyman–Pearson の補題) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は 2 元集合 $\{\theta_0,\theta_1\}$ であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. $\alpha\in[0,1]$ とする.

- (1) 次の条件を満たす検定 ϕ : $\mathcal{X} \to [0,1]$ は、 $(\{\theta_0\}, \{\theta_1\})$ に対する有意水準 α の一様最強力検定である.
 - (i) $E_{\theta_0}[\phi] = \alpha \text{ rbs.}$
 - (ii) ある $c \in \mathbb{R}_{>0}$ が存在して,

$$\phi(x) = \begin{cases} 0 & (f_{\theta_1}(x) < cf_{\theta_0}(x)) \\ 1 & (f_{\theta_1}(x) > cf_{\theta_0}(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

が成り立つ.

(2) (1) の条件を満たす検定 ϕ は、必ず存在する.

証明 (1) $c<\infty$ ならば、主張は、一般化された Neyman–Pearson の補題(補題 3.5 (2))で n=1 とすれば従う。 $c=\infty$ であるとして、 ϕ を主張の条件を満たす検定とする。条件 (ii) は

$$\phi(x) = \begin{cases} 0 & (f_{\theta_0}(x) > 0) \\ 1 & (f_{\theta_0}(x) = 0 \text{ in } f_{\theta_1}(x) > 0) \end{cases}$$
 (μ-a.e. $x \in \mathcal{X}$)

となり、このことと条件 (i) より、 $\alpha=E_{\theta_0}[\phi]=0$ となる。 $(\{\theta_0\},\{\theta_1\})$ に対する有意水準 0 の検定とは、 P_{θ_0} -ほとんど確実に(すなわち、 $\{f_{\theta_0}\neq 0\}$ 上 μ -ほとんどいたるところ)で値 0 をとる検定にほかならず、 ϕ がその中で一様最強力であることは、明らかである。

(2) 関数 $F: \mathbb{R}_{>0} \to [0,1]$ を

$$F(c) = P_{\theta_0}(\{f_{\theta_1} \le cf_{\theta_0}\})$$

と定めると、F は増加かつ右連続で、 $\lim_{c\to\infty}F(c)=1$ を満たす。 したがって、 $c\in\overline{\mathbb{R}}_{\geq 0}$ を $F(c-)\leq 1-\alpha\leq F(c)$ を満たすようにとれ、これに対して、 $\gamma\in[0,1]$ を $F(c-)+\gamma(F(c)-F(c-))=1-\alpha$ を満たすようにとれる(F(0-)=0、 $F(\infty)=F(\infty-)=1$ とみなす). これらを用いて、検定 $\phi\colon\mathcal{X}\to[0,1]$ を

$$\phi(x) = \begin{cases} 0 & (f_{\theta_1}(x) < cf_{\theta_0}(x)) \\ \gamma & (f_{\theta_1}(x) = cf_{\theta_0}(x)) \\ 1 & (f_{\theta_1}(x) > cf_{\theta_0}(x)) \end{cases}$$

と定めれば、これは(1)の条件を満たす.

注意 3.7 検定 ϕ : $\mathcal{X} \to [0,1]$ が Neyman–Pearson の補題(定理 3.6 (1))の条件を満たすとして,条件 (ii) における $c \in \mathbb{R}_{\geq 0}$ をとる.Neyman–Pearson の補題(定理 3.6 (1))の証明からわかるように, $c = \infty$ となりうるのは, $\alpha = 0$ の場合だけである.

命題 3.8 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は 2 元集合 $\{\theta_0,\theta_1\}$ であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. $\alpha\in[0,1]$ とし、 $\phi\colon \mathcal{X}\to[0,1]$ を $\{\{\theta_0\},\{\theta_1\}\}$ に対する有意水準 α の一様最強力検定とする. ある $c\in\mathbb{R}_{\geq 0}$ が存在して、

$$\phi(x) = \begin{cases} 0 & (f_{\theta_1}(x) < cf_{\theta_0}(x)) \\ 1 & (f_{\theta_1}(x) > cf_{\theta_0}(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

が成り立つ.

証明 Neyman-Pearson の補題(定理 3.6 (1))の条件を満たす検定 $\phi_0: \mathcal{X} \to [0,1]$ をとり(定理 3.6 (2)),条件 (ii) における $c \in \mathbb{R}_{\geq 0}$ をとる. ϕ と ϕ_0 はともに ($\{\theta_0\}, \{\theta_1\}$) に対する有意水準 α の一様最強力検定であり,条件 (i) より $E_{\theta_0}[\phi] = \alpha$ だから,

$$\int_{\mathcal{X}} (\phi_0 - \phi) f_{\theta_0} d\mu = E_{\theta_0} [\phi_0] - E_{\theta_0} [\phi] \ge 0, \tag{*}$$

$$\int_{\mathcal{X}} (\phi_0 - \phi) f_{\theta_1} d\mu = E_{\theta_1} [\phi_0] - E_{\theta_1} [\phi] = 0$$
 (**)

である.

 $c < \infty$ であるとする. このとき, (*) と (**) より,

$$\int_{\mathcal{X}} (\phi - \phi_0)(f_{\theta_1} - cf_{\theta_0}) \le 0$$

である. 一方で、 ϕ_0 は条件 (ii) を満たすから、 μ -ほとんどいたるところで $(\phi-\phi_0)(f_{\theta_1}-cf_{\theta_0})\geq 0$ である. このことと上式より、 μ -ほとんどいたるところで $(\phi-\phi_0)(f_{\theta_1}-cf_{\theta_0})=0$ である. すなわち、

$$\phi(x) = \begin{cases} 0 & (f_{\theta_1}(x) < cf_{\theta_0}(x)) \\ 1 & (f_{\theta_0}(x) > cf_{\theta_0}(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

が成り立つ.

 $c=\infty$ であるとする.このとき, ϕ_0 は $\{f_{\theta_0}>0\}$ 上 μ -ほとんどいたるところで 0 だから,(*) より, ϕ も $\{f_{\theta_0}>0\}$ 上 μ -ほとんどいたるところで 0 である.また,このことと (**) より

$$\int_{\{f_{\theta_0}=0\}} (\phi_0 - \phi) f_{\theta_1} \, d\mu = 0$$

であり、 ϕ_0 は $\{f_{\theta_0}=0$ かつ $f_{\theta_1}>0\}$ 上 μ -ほとんどいたるところで 1 だから、 ϕ も $\{f_{\theta_0}=0$ かつ $f_{\theta_1}>0\}$ 上 μ -ほとんどいたるところで 1 である.よって, $c=\infty$ の場合にも,(***) が成り立つ.

注意 3.9 命題 3.8 の状況で、 $(\{\theta_0\}, \{\theta_1\})$ に対する有意水準 α の一様最強力検定 $\phi: \mathcal{X} \to [0,1]$ が $E_{\theta_0}[\phi] = \alpha$ を満たすとは限らない.

定義 3.10(単調尤度比) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は全順序集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}:\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. \mathcal{Y} を全順序集合とし、 $T:\mathcal{X}\to\mathcal{Y}$ を統計量とする. 統計モデル $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ が μ と T に関して**単調尤度比** (monotone likelihood ratio) をもつとは、次の条件が満たされることをいう.

 $\xi < \eta$ を満たす任意の $\xi, \eta \in \Theta$ に対して、増加写像 $r_{\eta,\xi} \colon \mathcal{Y} \to \mathbb{R}_{\geq 0}$ が存在して、 $\mathcal{X} \perp \mu$ -ほとんどいた るところで $f_{\eta} = (r_{\eta,\xi} \circ T)f_{\xi}$ が成り立つ.

注意 3.11 定義 3.10 の状況で、単調尤度比をもつかどうかは、 μ のとり方には依存するが、 μ を固定した上での各 f_{θ} のとり方には依存しない.

定理 3.12 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は全順序集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}\colon \mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. \mathcal{Y} を全順序集合、 $T\colon \mathcal{X}\to\mathcal{Y}$ を統計量とし、統計モデル $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ は μ と T に関して単調尤度比をもつとする. $\theta_{0}\in\Theta$ とし、 $\Theta_{0}=\{\theta\in\Theta\mid\theta\leq\theta_{0}\},\ \Theta_{1}=\{\theta\in\Theta\mid\theta>\theta_{0}\}$ と置く. $\alpha\in[0,1]$ とする.

- (1) 次の条件を満たす検定 $\phi: \mathcal{X} \to [0,1]$ は、 (Θ_0,Θ_1) に対する有意水準 α の一様最強力検定である.
 - (i) $E_{\theta_0}[\phi] = \alpha \text{ rbs.}$
 - (ii) ある $t \in \mathcal{Y}$ が存在して,

$$\phi(x) = \begin{cases} 0 & (T(x) < t) \\ 1 & (T(x) > t) \end{cases}$$
 (μ -a.e. $x \in \mathcal{X}$)

が成り立つ.

- (2) T は $\mathcal{Y} = [-\infty, \infty)$ に値をとる可測統計量であり、 $\alpha \in (0,1]$ であるとする.このとき、(1) の条件を満たす検定 ϕ は、必ず存在する.
- 証明 (1) 単調尤度比の仮定より, $\xi < \eta$ を満たす任意の ξ , $\eta \in \Theta$ に対して,増加写像 $r_{\eta,\xi} \colon \mathcal{Y} \to \mathbb{R}_{\geq 0}$ が存在して, $\mathcal{X} \perp \mu$ -ほとんどいたるところで $f_{\eta} = (r_{\eta,\xi} \circ T) f_{\xi}$ が成り立つ.以下,この $r_{\eta,\xi}$ を用いる.検定 ϕ が主張の条件を満たすとして,条件 (ii) における $t \in \mathcal{Y}$ をとる.

まず、 $\xi,\eta\in\Theta$ が $\xi<\eta$ を満たすとして、 ϕ が $(\{\xi\},\{\eta\})$ に対する有意水準 $E_{\xi}[\phi]$ の一様最強力検定であることを示す。 μ -ほとんどすべての $x\in\mathcal{X}$ に対して $f_{\eta}(x)=r_{\eta,\xi}(T(x))f_{\xi}(x)$ であり、このような x に対しては、 $f_{\eta}(x)< r_{\eta,\xi}(t)f_{\xi}(x)$ ならば T(x)< t であり、 $f_{\eta}(x)> r_{\eta,\xi}(t)f_{\xi}(x)$ ならば T(x)> t である。よって、条件 (ii) と合わせて

$$\phi(x) = \begin{cases} 0 & (f_{\eta}(x) < r_{\eta, \xi}(t) f_{\xi}(x)) \\ 1 & (f_{\eta}(x) > r_{\eta, \xi}(t) f_{\xi}(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

を得るから、Neyman–Pearson の補題(定理 3.6 (1))より、 ϕ は ($\{\xi\}$, $\{\eta\}$) に対する有意水準 $E_{\xi}[\phi]$ の一様最強力検定である.

次に,定理の主張を示す. $\theta \in \Theta_0$ とすると,前段の結果より, ϕ は $(\{\theta\}, \{\theta_0\})$ に対する有意水準 $E_{\theta}[\phi]$ の一様最強力検定であり,特に不偏検定だから, $E_{\theta}[\phi] \leq E_{\theta_0}[\phi] = \alpha$ である.また, $\theta \in \Theta_1$ とすると, ϕ は $(\{\theta_0\}, \{\theta\})$ に対する有意水準 $E_{\theta_0}[\phi] = \alpha$ の一様最強力検定である.よって, ϕ は (Θ_0, Θ_1) に対する有意水準 α の一様最強力検定である.

(2) 関数 $F: [-\infty, \infty) \to [0, 1]$ を

$$F(t) = P_{\theta_0}(\{T \le t\})$$

と定めると、F は増加かつ右連続で、 $\lim_{t\to\infty}F(t)=1$ を満たす。したがって、 $t\in[-\infty,\infty)$ を $F(t-)\leq 1-\alpha\leq F(t)$ を満たすようにとれ($\alpha\in(0,1]$ であることに注意する)、これに対して、 $\gamma\in[0,1]$ を $F(t-)+\gamma(F(t)-F(t-))=1-\alpha$ を満たすようにとれる($F((-\infty)-)=0$ とみなす)。これらを用いて、検定 $\phi\colon\mathcal{X}\to[0,1]$ を

$$\phi(x) = \begin{cases} 0 & (T(x) < t) \\ \gamma & (T(x) = t) \\ 1 & (T(x) > t) \end{cases}$$

と定めれば、これは(1)の条件を満たす.

系 3.13 $\mathcal X$ を可測空間とする. Θ を $\mathbb R$ の部分集合とし, $\mathcal X$ 上の測度 μ , 可測関数 $g\colon \mathcal X\to\mathbb R_{\geq 0}$ と $T\colon \mathcal X\to\mathbb R$, 関数 $b\colon \Theta\to\mathbb R$ を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\theta T(x) - b(\theta))$$

と表せる自然パラメータの指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える. $\theta_0 \in \Theta$ とし, $\Theta_0 = \{\theta \in \Theta \mid \theta \leq \theta_0\}$, $\Theta_1 = \{\theta \in \Theta \mid \theta > \theta_0\}$ と置く. $\alpha \in [0,1]$ とする.

- (1) 次の条件を満たす検定 $\phi: \mathcal{X} \to [0,1]$ は、 (Θ_0,Θ_1) に対する有意水準 α の一様最強力検定である.
 - (i) $E_{\theta_0}[\phi] = \alpha \text{ rbs.}$
 - (ii) ある $t \in [-\infty, \infty)$ が存在して,

$$\phi(x) = \begin{cases} 0 & (T(x) < t) \\ 1 & (T(x) > t) \end{cases} \quad (\mu\text{-a.e. } x \in \mathcal{X})$$

が成り立つ.

(2) $\alpha \in (0,1]$ であるとする. このとき、(1) の条件を満たす検定 ϕ は、必ず存在する.

証明 $\xi < \eta$ を満たす任意の $\xi, \eta \in \Theta$ に対して,

$$\frac{f_{\eta}(x)}{f_{\xi}(x)} = \exp((\eta - \xi)T(x) - (b(\eta) - b(\xi))) \qquad (x \in \mathcal{X})$$

であり、これは T(x) の増加関数として書ける.よって、統計モデル $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ は μ と T に関して単調尤度比をもつから、主張は定理 3.12 から従う.

3.3 一様最強力不偏検定の存在

補題 3.14 $\mathcal X$ を可測空間とする. Θ を $\mathbb R$ の部分集合とし, $\mathcal X$ 上の測度 μ , 可測関数 $g\colon \mathcal X\to\mathbb R_{\geq 0}$ と $T\colon \mathcal X\to\mathbb R$, 関数 $b\colon \Theta\to\mathbb R$ を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\theta T(x) - b(\theta))$$

と表せる自然パラメータの指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える. $\alpha \in [0,1]$ とする.

(1) $\theta_0 \in \operatorname{int}_{\mathbb{R}}(\Theta)$ とする.このとき,T と ϕT は P_{θ_0} -可積分であり, $(\{\theta_0\}, \Theta \setminus \{\theta_0\})$ に対する有意水準 α の不偏検定 $\phi: \mathcal{X} \to [0,1]$ は,

$$E_{\theta_0}[\phi] = \alpha, \qquad E_{\theta_0}[\phi T] = \alpha E_{\theta_0}[T]$$

を満たす.

(2) θ_0 , $\theta_1 \in \operatorname{int}_{\mathbb{R}}(\Theta)$, $\theta_0 < \theta_1$ とする. このとき, $(\Theta \cap [\theta_0, \theta_1], \Theta \setminus [\theta_0, \theta_1])$ に対する有意水準 α の不偏検 定 $\phi \colon \mathcal{X} \to [0, 1]$ は,

$$E_{\theta_0}[\phi] = E_{\theta_1}[\phi] = \alpha$$

を満たす.

証明 命題 1.10 (1) より,任意の $\theta \in \operatorname{int}_{\mathbb{R}}(\Theta)$ に対して,T と ϕT は P_{θ} -可積分である.また,関数 $F \colon \Theta \to \mathbb{R}$ を $F(\theta) = E_{\theta}[\phi]$ と定めると,命題 1.10 (2) より,F は $\operatorname{int}_{\mathbb{R}}(\Theta)$ 上で無限階微分可能であり,任意の $\theta \in \operatorname{int}_{\mathbb{R}}(\Theta)$ に対して

$$F'(\theta) = E_{\theta}[\phi T] - E_{\theta}[T] E_{\theta}[\phi]$$

である.

- (1) 仮定より, $F(\theta_0) \leq \alpha$ であり, $\theta \in \Theta \setminus \{\theta_0\}$ に対しては $F(\theta) \geq \alpha$ である.F は $\mathrm{int}_{\mathbb{R}}(\Theta)$ 上で連続だから,このことから $F(\theta_0) = \alpha$ を得る.また,F は θ_0 において最小値をとるから, $F'(\theta_0) = 0$ である.上記の F' の表式と合わせて, $E_{\theta_0}[\phi] = \alpha$ かつ $E_{\theta_0}[\phi T] = \alpha E_{\theta_0}[T]$ を得る.
- (2) 仮定より、 $\theta \in \Theta \cap [\theta_0, \theta_1]$ に対しては $F(\theta) \leq \alpha$ であり、 $\theta \in \Theta \setminus [\theta_0, \theta_1]$ に対しては $F(\theta) \geq \alpha$ である. F は $\operatorname{int}_{\mathbb{R}}(\Theta)$ 上で連続だから、このことから $F(\theta_0) = F(\theta_1) = \alpha$ 、すなわち $E_{\theta_0}[\phi] = E_{\theta_1}[\phi] = \alpha$ を得る.

補題 3.15 P を \mathbb{R} 上の確率 Borel 測度とし, $f:\mathbb{R}\to\mathbb{R}$ を P-可積分な狭義増加関数とする. $\alpha\in(0,1]$ とする.このとき,次の条件を満たす可測関数 $\chi:\mathbb{R}\to[0,1]$ が存在する.

- (i) $E[\chi] = \alpha$ かつ $E[\chi f] = \alpha E[f]$ である.
- (ii) ある $t_0, t_1 \in \mathbb{R}, t_0 \leq t_1$ と $\gamma_0, \gamma_1 \in \mathbb{R}$ が存在して、

$$\chi(t) = \begin{cases} 0 & (t_0 < t < t_1) \\ \gamma_0 & (t = t_0) \\ \gamma_1 & (t = t_1) \\ 1 & (t < t_0 \ \text{\sharp \hbar t $\ist $t > t_1)$} \end{cases}$$

が成り立つ.

証明 関数 $F \colon \overline{\mathbb{R}} \to [0,1]$ を

$$F(t) = P((-\infty, t])$$

と定めると、F は増加かつ右連続で、 $F(-\infty)=0$ かつ $F(\infty)=\lim_{t\to\infty}F(t)=1$ を満たす.これを用いて、各 $p\in[0,1]$ に対して、 $t_*(p)\in\overline{\mathbb{R}}$ と $\gamma_*(p)\in[0,1]$ を

$$t_*(p) = \inf\{t \in \overline{\mathbb{R}} \mid F(t) \ge p\},$$

$$\gamma_*(p) = \begin{cases} (p - F(t_*(p) - 1))/(F(t_*(p)) - F(t_*(p) - 1)) & (F(t_*(p) - 1) < F(t_*(p))) \\ 0 & (F(t_*(p) - 1) = F(t_*(p))) \end{cases}$$

と定めると $(F((-\infty)-)=0$ とみなす),

$$E[1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}}] = p$$

となる. そこで、各 $p \in [0, \alpha]$ に対して、可測関数 $\chi_p: \mathbb{R} \to [0, 1]$ を

$$\chi_p = 1 + (1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}}) - (1_{(-\infty,t_*(p+1-\alpha))} + \gamma_*(p+1-\alpha)1_{\{t_*(p+1-\alpha)\}})$$

$$= 1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}} + (1 - \gamma_*(p+1-\alpha))1_{\{t_*(p+1-\alpha)\}} + 1_{(t_*(p+1-\alpha),\infty)}$$

と定めると、これは $E[\chi_p] = \alpha$ を満たし、 $p \in (0,\alpha)$ ならば $-\infty < t_*(p) \le t_*(p+1-\alpha) < \infty$ だから条件 (ii) を満たす.あとは、 $E[\chi_p f] = \alpha E[f]$ を満たす $p \in (0,\alpha)$ が存在することを示せばよい.

まず, $[0,\alpha]$ 上の関数 $p\mapsto E[\chi_p f]$ が連続であることを示す.そのためには,[0,1] 上の関数 $p\mapsto E[(1_{(-\infty,t_*(p))}+\gamma_*(p)1_{\{t_*(p)\}})f]$ が連続であることを示せばよい. $p,p'\in[0,1]$ とすると, $(1_{(-\infty,t_*(p))}+\gamma_*(p)1_{\{t_*(p)\}})-(1_{(-\infty,t_*(p'))}+\gamma_*(p')1_{\{t_*(p')\}})$ は常に 0 以上または常に 0 以下であり, $[t_*(p'),t_*(p)]$ または $[t_*(p),t_*(p')]$ の外では 0 であり,その期待値は p-p' である.したがって,f が増加であること合わせて,

$$\begin{split} &|E[(1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}})f] - E[(1_{(-\infty,t_*(p'))} + \gamma_*(p')1_{\{t_*(p')\}})f]| \\ &\leq E[|(1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}}) - (1_{(-\infty,t_*(p'))} + \gamma_*(p')1_{\{t_*(p')\}})||f|] \\ &\leq E[|(1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}}) - (1_{(-\infty,t_*(p'))} + \gamma_*(p')1_{\{t_*(p')\}})|] \sup_{t \in [t_*(p'),t_*(p)]} |f(t)| \\ &= |p - p'| \max\{|f(t_*(p))|,|f(t_*(p'))|\} \end{split}$$

を得る. よって、p を固定して $p' \to p$ とするとき $E[(1_{(-\infty,t_*(p))} + \gamma_*(p)1_{\{t_*(p)\}})f] \to E[(1_{(-\infty,t_*(p'))} + \gamma_*(p')1_{\{t_*(p')\}})f]$ となる. これで、主張が示された.

次に, $E[\chi_p f]=\alpha E[f]$ を満たす $p\in(0,\alpha)$ が存在することを示す.P が 1 点 $t_0\in\mathbb{R}$ に集中した Dirac 測度である場合,容易に確かめられるように,任意の $p\in(0,\alpha)$ に対して $\chi_p=\alpha 1_{\{t_0\}}$ であり,これは $E[\chi_p f]=\alpha E[f]$ を満たす.以下,P が Dirac 測度ではない場合を考える.p=0 のとき, $t_*(p)=t_*(0)=-\infty$

だから、 χ_0 は $(-\infty, t_*(1-\alpha))$ 上では 0、 $(t_*(1-\alpha), \infty)$ 上では 1 である. したがって,f が狭義増加であることと P が Dirac 測度ではないことより

$$(\chi_p - \alpha)(f - f(t_*(1 - \alpha))) \ge 0$$
 かつ $P((\chi_p - \alpha)(f - f(t_*(1 - \alpha))) > 0) > 0$

だから、 $E[\chi_p] = \alpha$ と合わせて

$$E[\chi_p f] - \alpha E[f] = E[(\chi_p - \alpha)f] = E[(\chi_p - \alpha)(f - f(t_*(1 - \alpha)))] > 0 \tag{*}$$

を得る。また, $p=\alpha$ のとき, $t_*(p+1-\alpha)=t_*(1)$ かつ $P((t_*(1),\infty))=0$ だから, χ_p は $(-\infty,t_*(\alpha))$ 上では 1, $(t_*(\alpha),\infty)$ 上では P-ほとんど確実に 0 である。したがって,f が狭義増加であることと P が Dirac 測度ではないことより

$$(\chi_p - \alpha)(f - f(t_*(\alpha))) \le 0$$
 P-a.s. かつ $P((\chi_p - \alpha)(f - f(t_*(\alpha))) < 0) > 0$

だから、 $E[\chi_p] = \alpha$ と合わせて

$$E[\chi_p f] - \alpha E[f] = E[(\chi_p - \alpha)f] = E[(\chi_p - \alpha)(f - f(t_*(\alpha)))] < 0 \tag{**}$$

を得る. 前段で示したように, $[0,\alpha]$ 上の関数 $p\mapsto E[\chi_p f]$ は連続だから,(*),(**) と中間値の定理より, $E[\chi_p f]=\alpha\,E[f]$ を満たす $p\in(0,\alpha)$ が存在する.これで,主張が示された.

定理 3.16 \mathcal{X} を可測空間とする. Θ を \mathbb{R} の部分集合とし, \mathcal{X} 上の測度 μ ,可測関数 $g\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ と $T\colon \mathcal{X}\to\mathbb{R}$,関数 $b\colon \Theta\to\mathbb{R}$ を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\theta T(x) - b(\theta))$$

と表せる自然パラメータの指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える. $\theta_0 \in \operatorname{int}_{\mathbb{R}}(\Theta)$ とし, $\alpha \in [0,1]$ とする.

- (1) 次の条件を満たす検定 ϕ : $\mathcal{X} \to [0,1]$ は, $(\{\theta_0\}, \Theta \setminus \{\theta_0\})$ に対する有意水準 α の一様最強力不偏検定である.
 - (i) $E_{\theta_0}[\phi] = \alpha$ かつ $E_{\theta_0}[\phi T] = \alpha E_{\theta_0}[T]$ である(命題 1.10 (1) より ϕT と T が P_{θ_0} -可積分であることに注意する).
 - (ii) ある $t_0, t_1 \in \mathbb{R}, t_0 \le t_1$ が存在して

$$\phi(x) = \begin{cases} 0 & (t_0 < T(x) < t_1) \\ 1 & (T(x) < t_0 \ \text{\sharp $ \ \ \, $$ $ \ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$ $ \ \, $$$

が成り立つ.

(2) $\alpha \in (0,1]$ であるとする. このとき, (1) の条件を満たす検定 ϕ は, 必ず存在する.

証明 (1) 検定 ϕ が主張の条件を満たすとして、条件 (ii) における $t_0, t_1 \in \mathbb{R}$ をとる. $\theta \in \Theta \setminus \{\theta_0\}$ を任意 にとる. これに対して、 $c_0, c_1 \in \mathbb{R}$ を適当にとれば、

$$\begin{cases} e^{(\theta-\theta_0)t} < c_0 + c_1 t & (t_0 < t < t_1) \\ e^{(\theta-\theta_0)t} > c_0 + c_1 t & (t < t_0) または t > t_1) \end{cases}$$

となる. このとき,

$$\phi(x) = \begin{cases} 0 & (e^{(\theta - \theta_0)T(x)} < c_0 + c_1 T(x)) \\ 1 & (e^{(\theta - \theta_0)T(x)} > c_0 + c_1 T(x)) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

だから、一般化された Neyman-Pearson の補題(補題 3.5(1)) より、

$$\Phi_{\alpha} = \left\{ \phi' \colon \mathcal{X} \to [0,1] \mid \phi' \text{ は可測}, \ E_{\theta_0}[\phi'] = \int_{\mathcal{X}} \phi' \, dP_{\theta_0} = \alpha, \ E_{\theta_0}[\phi'T] = \int_{\mathcal{X}} \phi' T \, dP_{\theta_0} = \alpha \, E_{\theta_0}[T] \right\}$$

と置けば、 $\phi' \in \Phi_{\alpha}$ に対する値

$$E_{\theta}[\phi'] = \int_{\mathcal{X}} \phi' \, dP_{\theta} = e^{b(\theta_0) - b(\theta)} \int_{\mathcal{X}} \phi' \exp((\theta - \theta_0)T) \, dP_{\theta_0}$$

は $\phi'=\phi$ のときに最大値をとる.特に, $(\{\theta_0\},\Theta\setminus\{\theta_0\})$ に対する任意の有意水準 α の不偏検定 ϕ' について,補題 3.14 (1) より $\phi'\in\Phi_{\alpha}$ だから, $E_{\theta}[\phi]\geq E_{\theta}[\phi']$ である.これが任意の $\theta\in\Theta\setminus\{\theta_0\}$ に対して成り立つから, ϕ は $(\{\theta_0\},\Theta\setminus\{\theta_0\})$ に対する有意水準 α の一様最強力不偏検定である.

(2) $P = T_* P_{\theta_0}$ と f(t) = t ($t \in \mathbb{R}$) に対して補題 3.15 を適用して条件を満たす可測関数 $\chi: \mathbb{R} \to [0,1]$ を とり、 $\phi = \chi \circ T$ と置けばよい.

定理 3.17 \mathcal{X} を可測空間とする. Θ を \mathbb{R} の部分集合とし, \mathcal{X} 上の測度 μ , 可測関数 $g:\mathcal{X}\to\mathbb{R}_{\geq 0}$ と $T:\mathcal{X}\to\mathbb{R}$, 関数 $b:\Theta\to\mathbb{R}$ を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = g(x) \exp(\theta T(x) - b(\theta))$$

と表せる自然パラメータの指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える. $\theta_0, \theta_1 \in \operatorname{int}_{\mathbb{R}}(\Theta), \theta_0 < \theta_1$ とし、 $\alpha \in [0,1]$ とする.

- (1) 次の条件を満たす検定 ϕ : $\mathcal{X} \to [0,1]$ は, $(\Theta \cap [\theta_0,\theta_1], \Theta \setminus [\theta_0,\theta_1])$ に対する有意水準 α の一様最強力不偏検定である.
 - (i) $E_{\theta_0}[\phi] = E_{\theta_1}[\phi] = \alpha \text{ rbs.}$
 - (ii) ある $t_0, t_1 \in \mathbb{R}, t_0 \le t_1$ が存在して,

$$\phi(x) = \begin{cases} 0 & (t_0 < T(x) < t_1) \\ 1 & (T(x) < t_0$$
 または $T(x) > t_1) \end{cases}$ (μ -a.e. $x \in \mathcal{X}$)

が成り立つ.

(2) $\alpha \in (0,1]$ であるとする. このとき, (1) の条件を満たす検定 ϕ は,必ず存在する.

証明 (1) 検定 ϕ が主張の条件を満たすとして、条件 (ii) における $t_0, t_1 \in \mathbb{R}$ をとる. $\theta \in \Theta \setminus [\theta_0, \theta_1]$ を任意にとる. これに対して、 $c_0, c_1 \in \mathbb{R}$ を適当にとれば、

$$\begin{cases} e^{(\theta-\theta_0)t} < c_0 + c_1 e^{(\theta_1-\theta_0)t} & (t_0 < t < t_1) \\ e^{(\theta-\theta_0)t} > c_0 + c_1 e^{(\theta_1-\theta_0)t} & (t < t_0 \ \sharp \ \hbar \ \sharp \ t > t_1) \end{cases}$$

となる. このとき,

$$\phi(x) = \begin{cases} 0 & (e^{(\theta - \theta_0)T(x)} < c_0 + c_1 e^{(\theta_1 - \theta_0)T(x)}) \\ 1 & (e^{(\theta - \theta_0)T(x)} > c_0 + c_1 e^{(\theta_1 - \theta_0)T(x)}) \end{cases}$$
 (\$\mu\$-a.e. \$x \in \mathcal{X}\$)

だから、一般化された Neyman–Pearson の補題(補題 3.5 (1))より、

$$\Phi_{\alpha} = \left\{ \phi' \colon \mathcal{X} \to [0,1] \;\middle|\; \phi' \; \mbox{は可測}, \;\; E_{\theta_0}[\phi'] = \int_{\mathcal{X}} \phi' \, dP_{\theta_0} = \alpha, \;\; E_{\theta_1}[\phi'] = e^{b(\theta_0) - b(\theta_1)} \int_{\mathcal{X}} \phi' \exp((\theta_1 - \theta_0)T) \, dP_{\theta_0} = \alpha \right\}$$

と置けば、 $\phi' \in \Phi_{\alpha}$ に対する値

$$E_{\theta}[\phi'] = \int_{\mathcal{X}} \phi' \, dP_{\theta} = e^{b(\theta_0) - b(\theta)} \int_{\mathcal{X}} \phi' \exp((\theta - \theta_0)T) \, dP_{\theta_0}$$

は $\phi' = \phi$ のときに最大値をとる.特に, $(\Theta \cap [\theta_0, \theta_1], \Theta \setminus [\theta_0, \theta_1])$ に対する任意の有意水準 α の不偏検定 ϕ' について,補題 3.14 (2) より $\phi' \in \Phi_\alpha$ だから, $E_\theta[\phi] \geq E_\theta[\phi']$ である.これが任意の $\theta \in \Theta \setminus [\theta_0, \theta_1]$ に対して成り立つから, ϕ は $(\Theta \cap [\theta_0, \theta_1], \Theta \setminus [\theta_0, \theta_1])$ に対する有意水準 α の一様最強力不偏検定である.

(2) $P = T_* P_{\theta_0}$ と $f(t) = e^{(\theta_1 - \theta_0)t}$ ($t \in \mathbb{R}$) に対して補題 3.15 を適用して条件を満たす可測関数 $\chi: \mathbb{R} \to [0,1]$ をとり、 $\phi = \chi \circ T$ と置けばよい.

注意 3.18 パラメータ空間の次元が 2 以上の指数型分布族についても,一様最強力不偏検定の存在に関して,定理 3.16 や定理 3.17 と同様な定理が成り立つ.詳しくは,吉田 [2, 定理 3.33] を参照のこと.

参考文献

- [1] 野田一雄, 宮岡悦良,『入門・演習 数理統計』, 共立出版, 1990.
- [2] 吉田朋広,『数理統計学』,朝倉書店,2006.