Week 11 Challenge

Code ▼

API Link: https://api.covidactnow.org/v2/states.timeseries.json? apiKey=af425098c233446aa11a347a9dbd4d6a (https://api.covidactnow.org/v2/states.timeseries.json? apiKey=af425098c233446aa11a347a9dbd4d6a)

Hide

library(httr)
library(jsonlite)
library(tidyverse)

Hide

historic_state_data_url <- "https://api.covidactnow.org/v2/states.timeseries.json?api
Key=af425098c233446aa11a347a9dbd4d6a"</pre>

raw_data <- GET(historic_state_data_url)</pre>

##Step2: Extracting data

1. json format to data-frame

Hide

data <- fromJSON(rawToChar(raw_data\$content))</pre>

##Step3: Exploring data

Hide

glimpse(data)

```
Rows: 53
Columns: 25
                                                                              <chr> "02", "01", "05", "04", "06", "08", "09", "1
$ fips
1", "10", "12", "13", "15", "19", "16", "17", "18"...
                                                                              <chr> "US", "
S", "US", "US", "US", "US", "US", "US", "US", "US"...
                                                                              <chr> "AK", "AL", "AR", "AZ", "CA", "CO", "CT", "D
C", "DE", "FL", "GA", "HI", "IA", "ID", "IL", "IN"...
$ county
                                                                              $ hsa
$ hsaName
                                                                              <chr> "state", "state", "state", "state",
$ level
"state", "st
                                                                              <chr> "iso1:us#iso2:us-ak", "iso1:us#iso2:us-al", "i
$ locationId
so1:us#iso2:us-ar", "iso1:us#iso2:us-az", "iso1:...
$ long
                                                                              $ population
                                                                              <int> 731545, 4903185, 3017804, 7278717, 39512223, 5
758736, 3565287, 705749, 973764, 21477737, 10617...
                                                                              $ hsaPopulation
$ metrics
                                                                              <df[,14]> <data.frame[45 x 14]>
$ riskLevels
                                                                              <df[,6]> <data.frame[45 x 6]>
$ cdcTransmissionLevel
                                                                              <int> 2, 4, 3, 3, 1, 4, 4, 1, 4, 4, 2, 3, 4, 3, 2,
3, 3, 3, 2, 1, 2, 2, 3, 4, 4, 1, 2, 3, 4, 3, ...
                                                                              <df[,2]> <data.frame[45 x 2]>
$ communityLevels
$ actuals
                                                                              <df[,19]> <data.frame[45 x 19]>
$ annotations
                                                                              <df[,30]> <data.frame[45 x 30]>
                                                                              <chr> "2023-10-30", "2023-10-30", "2023-10-30", "202
$ lastUpdatedDate
3-10-30", "2023-10-30", "2023-10-30", "2023-1...
                                                                              <chr> "https://covidactnow.org/us/alaska-ak", "http
$ url
s://covidactnow.org/us/alabama-al", "https://covi...
$ metricsTimeseries
                                                                              <lar</pre><lar</pre>(data.frame[1334 x 14]>), [<data.frame[1330</pre>
\times 14]>], [<data.frame[1332 x 14]>], [<data.fra...
$ actualsTimeseries
                                                                              <list> [<data.frame[1334 x 20]>], [<data.frame[1330</pre>
x 20]>], [<data.frame[1332 x 20]>], [<data.fr...
$ riskLevelsTimeseries
                                                                             (data.frame[1334 x 3]), [<data.frame[1330 x</pre>
3]>], [<data.frame[1332 x 3]>], [<data.frame...
$ cdcTransmissionLevelTimeseries <list> [<data.frame[1334 x 2]>], [<data.frame[1330 x
2]>], [<data.frame[1332 x 2]>], [<data.frame[137...
$ communityLevelsTimeseries
                                                                      <list> [<data.frame[1334 x 3]>], [<data.frame[1330 x</pre>
3]>], [<data.frame[1332 x 3]>], [<data.frame[137...
```

##Step5: Mapping Variables to Questions

Hide

time_series <- data %>% unnest(actualsTimeseries)

data %>% select(state, population)

	state <chr></chr>							ķ	opu	lation <int></int>
1	AK								7	31545
2	AL								49	03185
3	AR								30	17804
4	AZ								72	78717
5	CA								395	12223
6	CO								57	58736
7	СТ								35	65287
8	DC								7	05749
9	DE								9	73764
10	FL								214	77737
1-10 of 53	3 rows		Previou	s 1	2	3	4	5	6	Next

ii. What fraction of the population was infected?

Hide

sum(actuals_unnested\$cases) / sum(data\$population)

- [1] 0.3154839
 - iii. What fraction of infected persons recovered?

Hide

n_recovered <- sum(actuals_unnested\$cases) - sum(actuals_unnested\$deaths)
percent_recovered <- n_recovered / sum(actuals_unnested\$cases)
percent_recovered</pre>

- [1] 0.9891648
 - iv. What fraction of the population is currently vaccinated?

Hide

mean(metrics_unnested\$vaccinationsCompletedRatio, na.rm = TRUE)

- [1] 0.6811
 - v. What was the transmission like in the various states?

data %>% select(state, cdcTransmissionLevel)

	state <chr></chr>				cdc	Trans	smis	sion	Level <int></int>
1	AK								2
2	AL								4
3	AR								3
4	AZ								3
5	CA								1
6	CO								4
7	CT								4
8	DC								1
9	DE								4
10	FL								4
1-10 o	of 53 rows	Previous	1	2	3	4	5	6	Next

Hide

time_series_transmission <- tibble(Date=time_series\$cdcTransmissionLevelTimeseries[[w
hich(data\$state=="CA")]]\$date)</pre>

time_series_transmission\$Alaska <- time_series\$cdcTransmissionLevelTimeseries[[which
(data\$state=="AK")]]\$cdcTransmissionLevel</pre>

time_series_transmission\$California <- time_series\$cdcTransmissionLevelTimeseries[[wh
ich(data\$state=="CA")]]\$cdcTransmissionLevel</pre>

time_series_transmission\$New_Jersey <- time_series\$cdcTransmissionLevelTimeseries[[wh
ich(data\$state=="NJ")]]\$cdcTransmissionLevel</pre>

time_series_transmission\$Tennessee <- time_series\$cdcTransmissionLevelTimeseries[[whi
ch(data\$state=="TN")]]\$cdcTransmissionLevel</pre>

time_series_transmission\$District_of_Columbia <- time_series\$cdcTransmissionLevelTime
series[[which(data\$state=="DC")]]\$cdcTransmissionLevel</pre>

print(head(time_series_transmission))

Date <chr></chr>	Alaska <int></int>	California <int></int>	New_Jersey <int></int>	Tennessee <int></int>	District_of_Columbia <int></int>
2020-03-01	0	0	0	0	0
2020-03-02	0	0	0	0	0
2020-03-03	0	0	0	0	0
2020-03-04	0	0	0	0	0

Date <chr></chr>	Alaska <int></int>	California <int></int>	New_Jersey <int></int>	Tennessee <int></int>	District_of_Columbia <int></int>
2020-03-05	0	0	0	0	0
2020-03-06	0	0	0	0	0
6 rows					

vi. How did the disease progress since it started?

Hide

New data-frame with dates

time_series_cases <- list(Alaska = time_series %>% filter(state=="AK") %>% select(dat
e,cases))

Cases of each state

time_series_cases\$California <- time_series %>% filter(state=="CA") %>% select(date,c ases)

time_series_cases\$New_Jersey <- time_series %>% filter(state=="NJ") %>% select(date,c ases)

time_series_cases\$Tennessee <- time_series %>% filter(state=="TN") %>% select(date,ca
ses)

time_series_cases\$District_of_Columbia <- time_series %>% filter(state=="DC") %>% sel
ect(date,cases)

##Step6: Analysing Data i.

iii.

iv.

vi.

```
data_to_plot <- tibble(Date_Alaska = time_series_cases$Alaska$date[seq(1,1300,by=10
0)],
Cases_Alaska = time_series_cases$Alaska$cases[seq(1,1300,by=100)],
Date_California = time_series_cases$California$date[seq(1,1300,by=100)],
Cases_California = time_series_cases$California$cases[seq(1,1300,by=100)],
Date_New_Jersey = time_series_cases$New_Jersey$date[seq(1,1300,by=100)],
Cases_New_Jersey = time_series_cases$New_Jersey$cases[seq(1,1300,by=100)],
Date_Tennessee = time_series_cases$Tennessee$date[seq(1,1300,by=100)],
Cases_Tennessee = time_series_cases$Tennessee$cases[seq(1,1300,by=100)],
Date_District_of_Columbia = time_series_cases$District_of_Columbia$date[seq(1,1300,by=100)],
Cases_District_of_Columbia = time_series_cases$District_of_Columbia$cases[seq(1,1300,by=100)])
data_to_plot</pre>
```

Date_Alaska <chr></chr>	_	Date_California <chr></chr>	Cases_California <int></int>	Date_New_Je <chr></chr>	ersey
2020-03-01	NA	2020-01-25	1	2020-03-01	
2020-06-09	620	2020-05-04	56333	2020-06-09	
2020-09-17	7413	2020-08-12	595097	2020-09-17	
2020-12-26	45247	2020-11-20	1096427	2020-12-26	
2021-04-05	63486	2021-02-28	3569578	2021-04-05	
2021-07-14	71539	2021-06-08	3798225	2021-07-14	
2021-10-22	132393	2021-09-16	4629146	2021-10-22	
2022-01-30	211117	2021-12-25	5291605	2022-01-30	
2022-05-10	252847	2022-04-04	9110544	2022-05-10	
2022-08-18	289203	2022-07-13	10365785	2022-08-18	
1-10 of 13 rows	1-5 of 10 columns	3		Previous 1	2 Next

Hide

install.packages("cowplot")

Error in install.packages: Updating loaded packages

Hide

library(cowplot)

Warning: Removed 2 rows containing missing values (`geom_point()`).Warning: Removed 2 rows containing missing values (`geom_point()`).Warning: Removed 2 rows containing missing values (`geom_point()`).Warning: Removed 2 rows containing missing values (`geom_point()`).

