### INDEX OPTIONS REALIZED RETURNS DISTRIBUTION FROM PASSIVE INVESTMENT STRATEGIES

World Finance Conference/2015

José P. Dapena (UCEMA) and Julián R. Siri (UCEMA)

#### **OVERVIEW**

- Past Literature
- Options investment as an insurance company
- Proposed methodology and Data Inputs
- Data Analysis
- Conclusions

#### PAST LITERATURE

- It's not a valuation problem (Black-Scholes; more complex arbitrage-free models...)
- It's a problem of returns on passive investment strategies (holding options until expiration),
  - Benesh and Crompton (2000): historical return distribution for calls, puts and covered calls from 1986 to 1989. Holding period: 12 weeks. Extreme risks and potentially large rewards associated with *purchase* of both call and put options.
  - Summa (2003): Options held until expiration. Option sellers come out ahead even when market trend is going against their view.
  - Coval and Shumway (2000): Call option returns exceeding those of the underlying security and put option returns being below the risk-free rate.

# OPTIONS INVESTMENT AS AN INSURANCE COMPANY

- Selling options is similar to selling insurance, i.e. car insurance business.
- Right question to make is: How do you calculate the P&L?
  - Usual way: return on an option position relative to an actual portfolio, i.e. write a put and hold the strike price in cash, or write the call and buy the underlying stock.
  - Alternative way: think of margins.

- Based on Chicago Board Options Exchange (CBOE) Rulebook (CHAPTER XII Margins) calculations.
  - Establishes guidelines for both initial and maintenance requirements on margin accounts, when selling "naked" options.
  - In our specific case, we stick to broad based indices<sup>1</sup>

<sup>1</sup>Really nice discussion on whether the right word is indices or indexes (for the plural of index): <a href="http://www.nasdaqomx.com/transactions/indexes/indexesorindices/">http://www.nasdaqomx.com/transactions/indexes/indexesorindices/</a>

 Given the margin, we calculate the Internal Rate of Return (IRR) for a given option, based on different margin metrics,

✓ For call options

$$IRR_{i}^{k} = \frac{c_{i} - \left(S_{T}^{i} - K_{i}\right)_{+}}{Margin_{i}^{k}}$$

✓ For put options

$$IRR_{i}^{k} = \frac{p_{i} - \left(K_{i} - S_{T}^{i}\right)_{+}}{Margin_{i}^{k}}$$

• Where the margin can take up three different forms:

$$Margin_i^k \in \{\overline{Margin}, Margin_{initial}, Margin_{max}\}$$

• Finally, we annualize our IRR, by scaling up the period of time until one year, getting as a result an arithmetic annual rate (for comparison's sake):

Annual 
$$IRR_i^k = IRR_i^k \times \frac{365}{T}$$

- Used data:
  - ➤ Daily options prices from *OptionMetrics*, ranging from January 1996 until July 2013.
  - ➤ Indices: Dow Jones Industrial Average, the Standard and Poor's 500 and the Nasdaq 100.
  - ➤ Near at-the-money (ATM) naked call and put options. Moneyness degree between 0.95 and 1.05.
  - Maturities: around 60, 180 and 365 days (filters were applied to get a range of dates)
  - ➤ More than 10 trading days.
- Universe: around 470.000 observations.

#### **DATA ANALYSIS**

- By holding them passively until expiration, our results draw general conclusions in line with previous papers,
  - ✓ Selling put options have a greater payoff than selling calls, as well as selling shorter maturities yield a better payoff than longer maturities.
  - ✓ It's striking that, despite going "against the tide" (markets *natural* drift), selling call options in a passive way still yields a positive return (increasing as a function of time –though median turns negative-).
  - ✓ Volatility (as well as higher moments in the returns distribution) is an issue.

### **DATA ANALYSIS**

#### • Direct results (with initial margin):

| Call      | Ontion | Summary     | <b>Statistics</b> |
|-----------|--------|-------------|-------------------|
| $\sim$ un | Option | Dullillia y | Dunibucs          |

|                    | <u> </u>        |                 |                 |
|--------------------|-----------------|-----------------|-----------------|
| TTM                | 60 days         | 180 days        | 365 days        |
| Mean               | 0,0170          | 0,0278          | 0,0482          |
| Median             | 0,0376          | 0,0133          | -0,0607         |
| Standard Deviation | 0,2347          | 0,3965          | 0,4557          |
| Max                | 1,1649          | 1,7871          | 1,4633          |
| Min                | -0,9308         | -2,0958         | -0,9611         |
| Kurtosis           | 3,8049          | 3,7521          | 2,2851          |
| Skewness           | -0,1195         | 0,0704          | 0,5031          |
| Average Moneyness  | 0,9997          | 0,9999          | 0,9997          |
| Average TTM        | 59,37           | 183,11          | 347,86          |
| Observations       | 137.759         | 64.782          | 31.970          |
| Period             | Jan-96 / Jul-13 | Jan-96 / Feb-13 | Jan-96 / Sep-12 |

Daily observations

**Put Option Summary Statistics** 

| TTM                | 60 days         | 180 days        | 365 days        |
|--------------------|-----------------|-----------------|-----------------|
| Mean               | 0,0870          | 0,2162          | 0,2332          |
| Median             | 0,1369          | 0,2907          | 0,3513          |
| Standard Deviation | 0,2475          | 0,3634          | 0,4646          |
| Max                | 0,9288          | 1,2166          | 1,3094          |
| Min                | -1,1600         | -1,6267         | -1,1102         |
| Kurtosis           | 7,0743          | 5,3447          | 3,6226          |
| Skewness           | -1,6281         | -1,4860         | -1,1449         |
| Average Moneyness  | 0,9995          | 0,9997          | 0,9997          |
| Average TTM        | 59,37           | 182,96          | 347,85          |
| Observations       | 137.963         | 65.451          | 31.959          |
| Period             | Jan-96 / Jul-13 | Jan-96 / Feb-13 | Jan-96 / Sep-12 |

Daily observations

#### **DATA ANALYSIS**

• Histogram for 60-day filtered options, by index (average margin considered):



#### CONCLUSIONS

#### • Extensions:

- ✓ Link returns outcome with factors driving the risk premia? Suggestions welcome
- ✓ Straightforward active strategies: move from a passive approach into an active one,
  - Risk management control;
  - Regime identification dominating trading approach;
  - Filtering approach? Derivations from technical analysis.



### THANK YOU!