Dynamic programming

Longest Common Subsequence

Longest Common Subsequence

- A subsequence of a sequence is the same sequence with 0 or more elements left out (deleted)
- **Substring** is different from subsequence, substring is consecutive string.
- X= {A G G G C T}
 Subsequences of X = A C, G G G, G C T, G T,
 G T is subsequence of X but it is not substring of X

Longest Common Subsequence

• Common Subsequence: A common subsequence of 2 DNA sequences is a subsequence present in both sequences

X = A G C G T A G

Y = G T C A G A

Common subsequences of X and Y = GT, GTA, G A, A G, G C A,

• Longest Common subsequence is the longest sequence among common subsequences.

X = A G C G T A G

Y = GTCAGA

LCS = GCGA

```
String 1= a b c d e f g h i j
```

```
String 1= a b c d e f g h i j

String 2 = c d g i
```

$$LCS = cdgi$$

 $|LCS| = 4$

We are not looking for exact match. String 2 is present in the string 1. The characters are not together but are in same order as they are in string 2.

```
String 1= a b c d e f g h i j
```

String
$$2 = e c d g i$$

[egi] is a common subsequence. But its not the longest common subsequence.

This intersection (red line) is not allowed. Characters should be in same order in string 1 as they are in string 2.

String 1= a b d a c e

String 2 = b a b c e

```
String 1= a b d a c e

String 2 = b a b c e
```

LCS – Brute Force Algorithm

• Brute force algorithm would compute all subsequences of both sequences and find the common and print the longest.

OR

• Compute all subsequences of one sequence and check if it is also present in the other sequence. Print the longest common sequence.

LCS – Brute Force Algorithm

- How many subsequences are there in a sequence of n elements?
- Think about the definition of a subsequence
- A subsequence is same sequence with 0 or more elements left out.
- For each of the n elements, we have an option, delete it or keep it.
- 2 possibilities for each of the n elements so total subsequences =
- $2 * 2 * 2 * 2 = 2^n$

LCS – Brute Force Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is O(n 2^m) The brute force algorithm will take exponential time since computing all subsequences of any one sequence will take exponential time.

- LCS problem has *optimal substructure*: optimal solutions of subproblems are parts of the final solution.
- Sub-problems: "find LCS of pairs of prefixes of X and Y"
- If $X = \langle x_1, ..., x_m \rangle$ and if $Y = \langle y_1, ..., y_n \rangle$ are sequences, let $Z = \langle z_1, ..., z_k \rangle$ be some LCS of x and y.
- 1. If $x_m = y_n$ then $z_k = x_m$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y
- 3. If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}

1. If
$$x_m = y_n$$
 then $z_k = x_m$

$$X = \langle x_1, x_2, ..., x_{m-2}, x_{m-1}, x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_{n-2}, y_{n-1}, y_n \rangle$

1. If
$$x_m = y_n$$
 then $z_k = x_m$

$$X = \langle x_1, x_2, x_{m-2}, x_{m-1}, x_m \rangle$$

 $Y = \langle y_1, y_2,, y_{n-2}, y_{n-1}, y_n \rangle$

Proof by Contradiction:

If $z_k \neq x_m$ then we could add $x_m = y_n$ to Z to get an LCS of length k + 1. By contradiction it must be that $z_k = x_m = y_n$.

1. If $x_m = y_n$ then $z_k = x_m$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

$$X = < x_1, x_2, x_{m-2}, x_{m-1, x_m} >$$

$$Y = \langle y_1, y_2, ..., y_{n-2}, y_{n-1}, y_n \rangle$$

Proof by Contradiction:

If $z_k \neq x_m$ then we could add $x_m = y_n$ to Z to get an LCS of length k + 1.

By contradiction it must be that $z_k = x_m = y_n$.

 $|Z_{k-1}| = k - 1$ and it is an LCS of X_{m-1} and Y_{n-1} .

It is an LCS, if not then suppose W is LCS of X_{m-1} and Y_{n-1} with |W| > k-1 and so by appending $x_m = y_n$ to W we get a LCS of X and Y of length greater than k, a contradiction.

2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y $X = \langle x_1, x_2,, x_{m-2}, x_{m-1}, x_m \rangle$ $Y = \langle y_1, y_2,, y_{n-2}, y_{n-1}, y_n \rangle$

Proof:

If $z_k \neq x_m$ then Z is a LCS of X_{m-1} and Y.

If Z is not LCS then suppose W is LCS with of X_{m-1} and Y and |W| > k, then W would also be LCS of X and Y, a contradiction.

3. If
$$x_m \neq y_n$$
 and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}
 $X = \langle x_1, x_2, ..., x_{m-2}, x_{m-1}, x_m \rangle$
 $Y = \langle y_1, y_2, ..., y_{n-2}, y_{n-1}, y_n \rangle$

Proof: Same as proof of 2

- Define X_i, Y_i to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i & Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X₀ & Y₀ are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i & Y_j equals to the length of LCS of smaller strings X_{i-1} & Y_{j-1} , plus 1

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- Second case: *x*[*i*] ≠ *y*[*j*]
- As symbols don't match, our solution is not improved, and the length of LCS(X_i , Y_i) is the same as before (i.e. maximum of LCS(X_i , Y_{j-1}) and LCS(X_{i-1} , Y_i)

LCS – DP Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                               // for all X<sub>i</sub>
      for j = 1 to n
                                         // for all Y<sub>i</sub>
6.
7.
             if(X_i == Y_i)
                     c[i,j] = c[i-1,j-1] + 1
8.
              else c[i,j] = max(c[i-1,j], c[i,j-1])
9.
10. return c
```

• O(m*n).

1234abcd B=

$if(X_i == Y_j)$
c[i,j] = c[i-1,j-1] + 1
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

	String B j		a	b	С	d
String A		0	1	2	3	4
	0	0	0	0	0	0
b	1	0				
d	2	0				

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	Indices i, j	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0			
d	2	0				

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1		
d	2	0				

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	
d	2	0				

1 2

A = b d

1 2 3 4

B= a b c d

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0				

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0	0			

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0	0	1		

1 2

A = b d

1 2 3 4

$$\begin{split} & \text{if (} X_i \mathop{==} Y_j \text{)} \\ & \text{ } c[i,j] = c[i\text{-}1,j\text{-}1] + 1 \\ & \text{else c}[i,j] = \max(\text{ } c[i\text{-}1,j],\text{ } c[i,j\text{-}1] \text{)} \end{split}$$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0	0	1	1	

1 2

A = b d

1 2 3 4

$$if (X_i == Y_j)$$

$$c[i,j] = c[i-1,j-1] + 1$$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0	0	1	1	2

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

See where a particular entry is coming from?

Either from the previous diagonal or previous row or column

Whenever an entry is filled from previous diagonal, that character is part of LCS

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1	1	1
d	2	0	0	1	1	2

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

See where a particular entry is coming from?

Either from the previous diagonal or previous row or column

Whenever an entry is filled from previous diagonal, that character is part of LCS

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0	0	0	0
b	1	0	0	1-	-1	1
d	2	0	0	1	1	2

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

See where a particular entry is coming from?

Either from the previous diagonal or previous row or column

Whenever an entry is filled from previous diagonal, that character is part of LCS

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0	0,	0	0	0
b	1	0	0	1-	-1	1
d	2	0	0	1	1	2

b

d

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

See where a particular entry is coming from?

Either from the previous diagonal or previous row or column

Whenever an entry is filled from previous diagonal, that character is part of LCS

	String B		а	b	С	d
String A	indices	0	1	2	3	4
	0	0-	-0,	0	0	0
b	1	0	0	1-	-1	1
d	2	0	0	1	1	2

b

d

Exercise – Optimal Solution

Modify the algorithm to get the optimal solution

Exercise - dry run the DP algorithm

		Т	U	E	S	D	А	Υ
		0	0	0	0	0	0	0
S	0							
А	0							
Т	0							
U	0							
R	0							
D	0							
А	0							
Υ	0							

Slide Credits

COMP 3711H Design and Analysis of Algorithms
 Fall 2014