Condições de otimalidade (Problemas sem) - Condição necessário de la ordem Seja f: Rh-oR diferenciavel no pondo x ER. Se x é un minimizador local de f, entaoi Jf(x) =0 Do monstração $f(x) = f(x^*) + \nabla f(x^*)(x - x^*) + \nu(x)$ $f(x) - f(x^*) = \nabla f(x^*) (x - x^*)$ 50 7f (x") 70 se (x-x4)70, f(x)-f(x3).70 (pode Su (x-x*)<0, f(x)-f(x*) <0 / secono f(x) - f(x*) > 0 } Nav pode f(x) - f(x*) > 0 } sev minimo Sc 7 f(x2) <0 Se (x -x+) >0, 50 (x - x) < 0, Se \(\forall \forall (x^*) = 0 f(x)-f(x*) vao de pende de (x-x*) Lo Pode ser minimo

- Condição Mccossária de Segundo orden:

Seja S.Ru-s R duas vozes difere-reiavol no ponto x° ERU. Se x° é um minimizador local de t, então a matriz Hessiana do t no ponto x° e semidelinida Positiva i isto é,

x T D2f(x*) x >0

De monotração:

 $f(x) = f(x^*) + \nabla f(x)(x-x^*) + \frac{1}{2}(x^*-x^*) \nabla f(x^*)(x-x^*)$ Pola condição no cossávia de primeira ondem:

$$f(x) - f(x) = \frac{1}{2} (x - x^*)^{\dagger} \nabla^2 f(x^*) (x - x^*).$$

Se $\nabla^2 f(x^*) > 0$ $f(x) - f(x^*) > 0 \quad | x \in \text{orinino estrito}$

2 Condições de segunda orden

Considere uma forção filla De R

duas vezes diferenciavel e x um

pondo cuídico du f (VI=0)

- 1) So $\nabla^2 f(x^*) > 0$, x^* i un minimizador occil
 2) So $\nabla^2 f(x^*) < 0$, x^* i un maximizador occil
- 3) Su $\nabla^2 f(x^4)$ i indefinida, x^* é ponto de sela. Não i mínimo local nem máximo local.
 - 4) Se $\nabla^2 f(x) > 0$, x $\leq minimo local$ ou i ponto de Sela.
- 5) So De f(x*) (o, x* é maximo local ou é ponto de sela.