Tools Used

- 1. Programming language: Python
- 2. *Libraries*: pandas, numpy, matplotlib, statsmodels, sklearn, seaborn
- 3. Jupyter notebook
- 4. Git bash and Github

Introduction

<u>Different Types of data</u> -

- <u>Cross-sectional data</u>: Cross sectional data can obtained by taking multiple observation from multiple individuals at same point in time.
- <u>Timeseries data</u>: Timeseries data can obtained by taking multiple observations from same source at different points of time.
- <u>Panel data</u>: Panel data is collection of multiple observations over multiple points in time. It is combination of cross-sectional data and Time-series data.

Introduction of dataset:

- The Nifty50 data that used is Time series data from APR-2010 to MAR-2018.
- In this dataset we have
 - DatetimeIndex
 - 6 columns
 - 1987 entries in each column
 - No null values

Internal structure of time series

A Time series is a combination of General trend, Seasonality, Cyclic movements and Unexpected variations.

• A timeseries can be expressed as $x_t = f_t + s_t + c_t + e_t$

Where,

- f_t is Trend component
- st is Seasonal component
- c_t is cyclic component
- e_t is irregular component
- t is the time index at which observations about the series have been taken

• <u>General Trend</u>: When there is Upward or downward movement present in data in a long run, is Known as general trend.

- <u>Seasonality</u>: If repetitive patterns present in data which occurs over known periods of time are known as seasonality. Mostly, presence of seasonality can be reveals by exploratory data analysis.
- <u>Cyclical movements</u>: If there are movements observes after every few units of time and do not have fixed periods of variations are known as cyclic movements.
- <u>Unexpected variations</u>: Occurance of sudden changes in time series which are rarely repeted. This component also known as residuals.

Stationary time series

A timeseries is known as stationary when it is free from Trend and seasonility. Its statistical properties like mean, variance, autocorrelation etc are constant over time.

- check stationarity of timeseries : To check stationarity of timeseries we can
 - i. Plot Rolling statistics of timeseries
 - ii. Apply Augmented Dickey Fuller test

• By plotting Rolling statistics we can easily identify trend component.

 Augmented Dickey fuller test is statistical test to check the stationarity of timeseries. It uses null hypothesis testing where H₀ rejected if p-value is greater than 0.05.

```
Test Statistic -0.371803
p-value 0.914701
#Lags Used 1.000000
Number of Observations Used 1985.000000
Critical Value (1%) -3.433649
Critical Value (5%) -2.862997
Critical Value (10%) -2.567546
dtype: float64
Time Series is not stationary
```

Methods to detrending data

- 1. Differencing
- 2. Regression
- 3. Statistical function
- <u>Differencing</u>: Differencing is processs of taking difference original timeseries with itself by lag.
 example of time series with lag 1 -

$$\Delta x_t = x_t - x_{t-1}$$

Where, Δx_t is stationary time series.

x_t is original time series.

 x_{t-1} is time series with lag 1.

 <u>Regression</u>: Regression is useful to find trend line and to remove trend component, take difference between original time series and trend line.

• After removing trend we will get Residuals.

• <u>Statistical function</u>: In python a function named seasonal_decompose is present in library statsmodels.tsa.seasonal which separate Observed data(i.e. original data), trend component, seasonal component and residuals.

Remove seasonality

- While removing trend by using differencing, seasonality was also removed.
- seasonal_decompose() function return seasonal component also that can be access by Result.seasonal.
- To remove seasonality, if regression is used to detrending data, take average of detrended data for specific season.

Forecasting

There are many Statistical models for timeseries forecasting. Among them ARIMA is widely used model which is combination of Autoregressive,Integration(differencing) and Moving average models.

- <u>Autoregression</u>: This model gives output which depends on its own previous values.
- <u>Differencing</u>: Integration or differencing makes series sattionary.
- <u>Moving Average</u>: This model analyze data points by creating series of averages of subsets of data.

- ARIMA models are generally denoted by ARIMA(p,d,q) where,
- p is order(no. of time lags) of Autoregressive term.
- d is the order of differencing(the number of times the data have had past values subtracted).
- q is the order of moving average model.

Value of p and q is selected by autocorrelation plot partial autocorrelation plot.

- The value of p will be the lag value where the PACF chart crosses the upper confidence interval for the first time.
- The value of q will be the lag value where the ACF chart crosses the upper confidence interval for the first time.

• After fitting model .forecast() method is used.

- The accuracy of ARIMA model depends on the value of r².
- In statistics r^2 is known as cofficient of determination which is square of correlation Coefficient.
- Best possible r² can be 1.0
- r² can be negative because the model can be worse.
- In python r² can be calculated usong .r2_score() method which is present in sklearn.metrics package.