SENTRY GUN - Autonomous Turret

Project members

RA1811018010133(rk8115@srmist.edu.in)

Faculty Incharge - Dr. Madhavan Shanmugavel

Project Guide: Dr. S. Fouziya Sulthana

Project

- Problem statement:
- during border protection many lives of a country's soldiers are lost so to prevent that
- a sentry gun is needed to be developed to keep the terrorists and intruders away from the countries borders
- List of Objectives :

For a sentry gun, the following things are needed to be made:

- 1.A physical frame that can holster a airsoft gun needs to be designed and constructed(STRUCTURE1)
- 2. (A structure 2) which can rotate and manage the whole (STRUCTURE 1)
- 3. A base which can support the (STRUCTURE 2)
- 3. a distribution board for servo
- 4. Electronics to control the speed of the gun to shoot perfectly

As the software part is outsourced

I chose a software with following features:

Manual Control

Autonomus mode

Git link: https://github.com/sentryGun53/Project-Sentry-Gun

List of solutions

- List of possible solutions The airsoft gun directly mounted inbetween the two supports with two bolts
- Servos ae directly connected without gear mechanism
- unique mount for the gun is made and mounted inbetween the two supports with bolts
- Here servos are connected to a spur gear to reduce the inertia
- Using a swivel bearing bearing instead of castor wheels
- Making separate power distribution board for servos

- List of criteria for evaluating the solutions cost
- Easy assembly and disassembly
- Easy maintenance
- Less inertia when the gun comes to a quick stop
- Reduucing the load stress on Arduino and servo

Selected solution

- Criteria based on the solution is selected
- "unique mount for the gun is made and mounted in between the two supports with rods
- Here servos are connected to a spur gear to reduce the inertia"
- This solution was chosen as its easy to remove the gun from the mount and using the spur gears between the rods and the servos greatly reduce the inertia

- Tools used and analysis done on
- I tested the following by directly making a model:
- Using a futaba servo with plastic gears "plastic gears not able to withstand the inertia so they broke"

Level 1 System Block Diagram

BUCK CONVERTER

smps

LM2596 DC-DC Buck Converter Adjustable Step Down Power Supply Module

Specifications

Input Voltage - 3.2V -40V DC Output Voltage - 1.25V -35V DC Size - 43mm x 20mm x 15mm Output Current - 2A, Max 3A

ARDUINO UNO R3

Microcontroller ATmega328

Operating Voltage 5V Input Voltage (recommended) 7-12V Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins

DC Current per I/O Pin 40 mA DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by

bootloader

SRAM 2 KB EEPROM 1 KB

Clock Speed 16 MHz

ACTUATORS

MG995 High Speed Servo Actuator

Specifications

- Weight: 55 g
- Dimension: 40.7 x 19.7 x 42.9 mm approx.
- Stall torque: 8.5 kgf·cm (4.8 V), 10 kgf·cm (6 V)
- Rotation Angle: 120deg. (+- 60 from center)
- Operating speed: 0.2 s/60° (4.8 V), 0.16 s/60° (6 V)
- Operating voltage: 4.8 V to 7.2 V
- Dead band width: 5 μs
- Stable and shock proof double ball bearing design
- Metal Gears for longer life
- Temperature range: 0 °C 55 °C

Castor wheel

Spur gear

Specifications

- •Base plate diameter: 38.2mm
- •Wheel height: 23mm
- •Mounting hole Three, 120 Degree apart, 3.4mm diameter
- No. of Teeths =25.
- Diameter=40 mm.
- Center Shaft Diameter=6 mm.
- Teeth Face Width=12.5 mm.

Custom power supply unit for fast deployment

Project status

Work breakdown structure

REVIEW 0 Brainstorming ideas and refining and devoloping and submitting the project proposal Procuring materials and cutting the materials cutting the parts and making the model **REVIEW 1** assembling the hardware and electronics together compiling and submiting the project report and journal(first round) calibraing the gun and the camera **REVIEW 2** testing the sentry gun making changes to the sentry gun for smooth operation submiting final report and journal REVIEW 3 Final presentation

Work responsibility matrix

1:arun kumar

TASK	ASSIGNED TO	consulted
Phase 1 Title		
Brainstorming ideas and	Name	
refining and devoloping and submitting the project proposal	MEMBER 1	member 1
Procuring materials and cutting the materials	MEMBER 1	member 1
cutting the parts and making the model	MEMBER 1	
Phase 2 Title		
assembling the hardware and electronics together	MEMBER 1	member 1
compiling and submiting the project report and journal(first round)	MEMBER 1	mamber 1
calibraing the gun and the camera	MEMBER 1	member 1
Phase 3 Title		
testing the sentry gun	MEMBER 1	member 1
making changes to the sentry gun for smooth operation	MEMBER 1	member 1
submiting final report and journal	MEMBER 1	member 1
Final presentation	MEMBER 1	member 1

Gantt chart

member 1:arun kumar

TASK	ASSIGNED	START	END	 ·		·	·	-,	-,	·	-,	1	,-	,	,	
Brainstorming	Name	7-20-21	7-27-21									l				
ideas and												l				
refining and	MEMBER 1											l				
devoloping and	MEMBER 1											 				
submitting the																
Procuring		7-27-21	8-3-21													
materials and	MEMBER 1	8-3-21	8-10-21									i I				
cutting the												i				
cutting the parts	MEMBER 1	8-10-21			i I							i i				
and making the		8-17-21	8-24-21													
Phase 2 Title					 											
assembling the	MEMBER 1	8-24-21	8-31-21		 											
hardware and					 							 				
electronics compiling and		8-31-21	9-7-21		l							<u> </u>				
submiting the	MEMBER 1	0 31 21	3 / 21									l I				
project report and					! !											
calibraing the					 							l I				
gun and the	MEMBER 1	9-7-21	9-14-21		 							i I				
camera					I I							I I				
Phase 3 Title					l							l				
					l											
testing the sentry	MEMBER 1	9-14-21	9-21-21		 											
gun					I I											
making changes		9-21-21	0-28-21		! 											
to the sentry gun	MEMBER 1	5-21-21	5-20-21		i I											
for smooth	WEINIDEK 1	0.00.04	40.5.04		i I											
operation		9-28-21	10-5-21		 											
submiting final					l I							I I				
report and	MEMBER 1	10-5-21	10-12-21		l I							l I				
iournal					l L							l L				
Final presentation	MEMBER 1	10-12-21	10-19-21		l L							l L				

7/27

7/20

8/3

8/10

8/17

8/24

8/31

9/7

9/14

9/21

9/28

10/5

10/12

10/19