Evaluation of the Eppler 1210 Airfoil

January 18, 2020

1 Introduction

- 1. show airfoil
- 2. table of freestream conditions and Re
- 3. xfoil estimates of:
 - $\bullet\,$ max L/D ratio, and AoA at which this occurs
 - max C_l , and AoA at which this occurs
 - Note: take both of the above directly from airfoiltools.com, at the closest reynolds number available

Figure 1: Eppler 1210 Airfoil shown in Pointwise

Quantity	Value
Pressure	103,000 Pa
Temperature	298 K
Velocity	17.88 ms^{-1}
Viscosity	$1.789e-05 \text{ kgm}^{-1}\text{s}^{-1}$
Re #	1,224,315

Table 1: Operating conditions for all cases

	Value	AoA
Max L/D	117.1309	8
$\operatorname{Max} C_L$	1.8542	16

Table 2: XFoil Predictions, Re = 1e9, ncrit = 9 (clean wind tunnel)

2 Methodology

- 1. 4 shots of grid: 1. LE 2. TE 3. near-field for entire shape 4. the entire grid domain. Note: should show T-rex feature that was used
- 2. table 1: cell count and normal-to-wall spacing used, list BC, list reference values, list submodels chosen (i.e. viscous model), provide numerical scheme and spacial accuracy

2.1 Screenshots of grid

Figure 2: Farfield

Figure 3: Nearfield

Figure 4: Leading edge

Figure 5: Trailing edge

	Value
Cell count	inner mesh:
	outer mesh
Normal-to-wall dist	1e-5 (UNITS?)
Boundary condition	airfoil surface: wall, $\Delta s=1e-5$
	(might have to specify at inlet and such, check)
Reference values	A bunch of different ones here, 1.789e-05 kgm ⁻¹ s ⁻¹
Submodels	viscous: transitional SST
Numerical Schemes	gradient: least-squares cell based
	pressure: second order
	momentum: second order upwind
	turbulent kinetic energy: first order upwind
	specific dissipation rate: first order upwind
	specific dissipation rate: first order upwind
	intermittency: first order upwind
	momentum thickness Re: first order upwind

Table 3: General grid information

3 Results

- 1. plot lift and drag coeff histories for proof of convergence history for ALL Runs (appendix)
- 2. Table of C_l , C_d , L/D, C_m

- 3. plots of the items in the table and compared against Xfoil data at the closest Re # (take directly from airfoiltools.com)
- 4. streamlines and pressure contours to depict flow near airfoil
 - 1 plot for each case
 - ullet use the same contour levels
- 5. y+ curves (for 0° AoA case)
- 6. plot showing turbulent boundary layer development (0° AoA case)

4 Discussion

Is the agreement between your CFD model and XFOIL within this same tolerance level for lift and drag? (10% error bar)

Appendix A

AoA = -7

(a) C_l for AoA = -7

(b) C_d for AoA = -7