HMNT Tryout - LHS Math Team

Monday October 15, 2012

- 1. [3] Isosceles triangle ABC, with AB = AC = 10, is inscribed in a circle. Triangle DAB is drawn with point D on the circle closer to point A than B. Triangle PAC, congruent to triangle DAB, is drawn with point P on the circle closer to point C than A. What is the length of \overline{DP} ?
- 2. [3] Let a_1, a_2, a_3 be elements of the set $L = \{1, 2, 3, ..., 14\}$ such that $a_2 a_1 \ge 3$ and $a_3 a_2 \ge 3$. How many such ordered triplets (a_1, a_2, a_3) are there?
- 3. [4] Let $A = 666 \dots 666$, where there are 2012 6's. Let $B = 333 \dots 333$, where there are 2013 3's. What digits are in the number $A \times B$?
- 4. [4] Compute the largest positive integer n such that $\frac{(2012!)^n}{2012^{n!}}$ is an integer.
- 5. [4] Balls labeled from 1 through 9, inclusive, are seated equally around a table. The absolute differences between pairs of consecutive balls are written down. Given that the sum of these differences is a minimum, how many possible placements of the balls are there?
- 6. [5] In right triangle ABC, which has an area of 4, AB = AC. Let \mathcal{S} be the set of all points \underline{P} where the sum of the distances from P to sides \overline{AB} and \overline{AC} is equal to the distance from P to side \overline{BC} . The set \mathcal{S} divides the triangle into two pieces. What is the area of the smaller piece?
- 7. [6] Find a triple (x, y, z) that satisfies

$$x + y + z = 5$$
$$x(y+z)^{2} + y(x+z)^{2} + z(x+y)^{2} = -14$$
$$x^{2}(y+z) + y^{2}(x+z) + z^{2}(x+y) = 34.$$

- 8. [6] Find the coefficient of x^5 in the polynomial of minimal degree with leading coefficient 1 and integer coefficients that has $2^{1/2} + 3^{1/3}$ as a root.
- 9. [7] In triangle ABC, $\angle ABC$ is obtuse. Point D lies on side \overline{AC} such that $\angle ABD$ is right, and point E lies on side \overline{AC} between A and D such that \overline{BD} bisects $\angle EBC$. Find CE, given that AC=35, BC=7, and BE=5.
- 10. [8] How many 13-element subsets are there of the set $\{1, 2, 3, ..., 26\}$ where the sum of the elements is divisible by 13?