MSP - xdokou14

December 11, 2022

0.1 1. Úkol

```
[1]: # zadáni 4
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats as stats
import statsmodels.api as sm
from matplotlib import cm
```

Import dat, kde poslední sloupec tvoří mnou zjištěné hodnoty.

Pro zjištění rovnosti procentuálního zastoupení obyvatel měst použijeme test dobré shody. $H_0: p_1 = p_2... = p_8$

```
[3]: def chi_test(str, cat, count, dof=1):
    #print("got: ", cat.astype(int), "\nexp: ", (([cat.sum() / count.sum()] *_U
    →len(count)) * count).astype(int), '\n')
    print(str, stats.chisquare(cat, f_exp=([cat.sum() / count.sum()] *_U
    →len(count)) * count, ddof=dof))

chi_test("winter", winter, count)
    chi_test("summer", summer, count)
    chi_test("change", change, count)
    print("critical value: ", stats.chi2.ppf(0.95, 6))
```

```
winter Power_divergenceResult(statistic=21.310706163566906,
pvalue=0.001613039676565202)
summer Power_divergenceResult(statistic=7.299595273038772,
pvalue=0.2940271928800054)
change Power_divergenceResult(statistic=12.346058276016716,
pvalue=0.05467923612892293)
critical value: 12.591587243743977
```

Pro zimní čas zamítamé H_0 (p < 0.05), tudíž se percentuální zastoupení mezi městy liší. Pro změnu času a letní čas H_0 nezamítamé.

Pro zjištění rovnosti procentuálního zastoupení mezi různě velkými městy (velké, střední, malé) použijeme obdobný test nad seskupenými daty.

```
[4]: # group by city

city_group = pd.DataFrame({'city': city, 'count': count, 'winter': winter,

→'indifferent': indifferent})

city_group = city_group.groupby('city').sum()

chi_test("group_winter", city_group['winter'], city_group['count'])

chi_test("group_indifferent", city_group['indifferent'], city_group['count'])
```

```
group_winter Power_divergenceResult(statistic=15.616786433175259,
pvalue=7.756296276494824e-05)
group_indifferent Power_divergenceResult(statistic=20.57102536251306,
pvalue=5.745922029341851e-06)
```

 ${\cal H}_0$ zamítáme jak pro zimní čas, tak pro nerozhodnuté obyvatele.

Pro odhadnutí z které skupiny student pocházi (velké, střední, malé) použijeme opět χ^2 test. Očekávané hodnoty pro příslušnost studenta tvoři bodový odhad z daných skupin.

```
chi_test("student=medium city", student, city_group.loc['medium'].values, dof=0)
chi_test("student=small city", student, city_group.loc['small'].values, dof=0)
```

```
student=big city Power_divergenceResult(statistic=2.369349379132745,
pvalue=0.49936572713839256)
student=medium city Power_divergenceResult(statistic=1.0717291713049328,
pvalue=0.7839027804135497)
student=small city Power_divergenceResult(statistic=2.261937024132146,
pvalue=0.5198519535559099)
```

Ze získaných dat nelze vyvodit příslušnost studenta do kterékoliv skupiny (p>0.05 pro každou skupinu). Závěr nejde vyvodit nejspíše kvůli podobnosti kategorii a malému vzorku mých dat, avšak největší podobnost se ukazuje ke středně velkým městům.

0.2 2. Úkol

import dat

```
[6]: # data2
            x = np.array(
                       [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.22, 2.22, 2.22, 2.22, 2.22, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.20, 2.2
              \Rightarrow22, 2.22, 4.44, 4.44, 4.44, 4.44, 4.44,
                        4.44, 4.44, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 6.67, 8.89, 8.89, 8.
              →89, 8.89, 8.89, 8.89, 11.11, 11.11,
                        11.11, 11.11, 11.11, 11.11, 13.33, 13.33, 13.33, 13.33, 13.33, 13.
              \rightarrow33, 13.33, 15.56, 15.56, 15.56, 15.56,
                        15.56, 15.56, 15.56, 17.78, 17.78, 17.78, 17.78, 17.78, 17.78, 17.78, 20.
              \rightarrow00, 20.00, 20.00, 20.00, 20.00, 20.00,
                        20.00])
            y = np.array(
                       [0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 0.00, 1.67, 3.33, 5.00, 6.67, 8.
              \rightarrow33, 10.00, 0.00, 1.67, 3.33, 5.00, 6.67,
                        8.33, 10.00, 0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 0.00, 1.67, 3.33, 5.
              \rightarrow00, 6.67, 8.33, 10.00, 0.00, 1.67,
                        3.33, 5.00, 6.67, 8.33, 10.00, 0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 0.
              \rightarrow00, 1.67, 3.33, 5.00, 6.67, 8.33,
                        10.00, 0.00, 1.67, 3.33, 5.00, 6.67, 8.33, 10.00, 0.00, 1.67, 3.33, 5.00, 6.
              \rightarrow67, 8.33, 10.00],
                      dtype='float64')
            z = np.array(
                       [3.51678419592411, 0.1849332370251, -6.99049059346124, -20.8617205435173]
              \rightarrow -42.18343555059, -64.1081000325912,
                        -97.0458957178397, 9.94388450504941, 9.8986323460927, 0.00208487443735393, 0.00208487443735393
              →-11.9988247882815, -34.3924062967239,
                         -57.8057880895009, -88.5027847946918, 27.2265088682819, 24.4284903127453, L
              →18.2145118228463, 1.94336256143575,
                         -16.7727492407465, -42.0967616131069, -71.1967634077031, 56.3446765711985, L
               \hookrightarrow52.378628730395, 44.868666552744, 4.56,
```

```
11.1141991787491, -14.9444563191628, -46.3430249668268, 92.5713346195499, 989.3713833654496, 81.3928266038351, 65.624785460706, 44.8871370272759, 23.7631895332308, -8.64772334749607, 139. 152701188226, 135.142403459449, 125.462388521822, 112.482276630433, 94.9110448098603, 67.9275602260165, 39. 4220662346769, 195.442542098054, 192.351096305394, 185.89808996746, 169.086590035809, 150.799896551493, 126. 327402037799, 95.0588038056046, 260.907635326248, 257.874160634941, 251.576673225094, 235.967305190209, 217. 589979963901, 192.992167354398, 160.733689709696, 337.506810454201, 334.670521354979, 324.663539748041, 313. 044243941327, 293.633223156008, 269.455800707765, 235.257507397646, 423.522399438186, 421.287561597445, 412. 428044955087, 397.834243660025, 382.450519904685, 355.996853248479, 322.553027375103])
```

Pomocné funkce pro vizualizaci regrese.

```
[7]: x1 = np.linspace(0, 20, 100)
     y1 = np.linspace(0, 10, 100)
     x1, y1 = np.meshgrid(x1, y1)
     def plot_3d(x, y, z, x1, y1, z1):
        plt.figure()
         ax = plt.axes(projection='3d')
         ax.plot_surface(x1, y1, z1, cmap=cm.coolwarm, linewidth=0,__
      →antialiased=False, alpha=0.5)
         # add data points
         ax.scatter(x, y, z, c='r', marker='x')
         ax.set_xlabel('x')
         ax.set_ylabel('y')
         ax.set_zlabel('z')
         # rotate view
         ax.view_init(15, 75)
         plt.show()
```

Vypočtená statistika pro obecnou kvadratickou regresi

```
[8]: # alpha = .05 is default
F = sm.add_constant(np.column_stack((x, y, x ** 2, y ** 2, x * y)))
modelres = sm.OLS(z, F).fit()
print(modelres.summary(xname=['const', 'x', 'y', 'x^2', 'y^2', 'xy']))
print()
print('R^2', modelres.rsquared)
z1 = modelres.predict(sm.add_constant(
```

OLS Regression Results

OLS Regression Results								
		OLS ares 2022 9:17 70 64 5	Adj. F-st Prob			1.000 0.999 2.610e+04 1.79e-104 -180.16 372.3 385.8		
		std err			P> t	_	0.975]	
const x y x^2 y^2	4.2580 0.8635 -0.3672 1.0080 -0.9655	1.589 0.248 0.468 0.011 0.041	2 3 -0 91 -23	. 680 . 484 . 785 . 195 . 415	0.009 0.001 0.435 0.000 0.000 0.941	1.084 0.368 -1.302 0.986 -1.048 -0.036	1.359 0.568 1.030 -0.883 0.039	
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	0 -6		Jarq Prob	in-Watson: ue-Bera (JB):	======	2.220 6863.247 0.00 839.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R^2 0.9995097318397491

Pro redukci modelu využijeme T-test na nulovou hodnotu koeficientu. Koeficient můžeme při analýze zanedbat při zamítnuti nulové hypotézy rovnosti parametrů ((P>|t|)>0.05).

```
[9]: print(modelres.t_test("x5 = 0")) #xy

F = sm.add_constant(np.column_stack((x, y, x ** 2, y ** 2)))
modelres = sm.OLS(z, F).fit()

print(modelres.t_test("x2 = 0")) #y
```

Test for Constraints

	coef	std err	t	P> t	[0.025	0.975]	
c0	0.0014	0.019	0.074	0.941	-0.036	0.039	
Test for Constraints							
	coef	std err	t	P> t	[0.025	0.975]	
c0	-0.3535	0.426	-0.830	0.410	-1.204	0.497	
========	========				=======	=======	

Výsledný regresní model: $Z=B_1+B_2X+B_3X^2+B_4Y^2$. 2b) Hodnoty koeficientů jsou vyznačeny v tabulce pod sloupcem "coef". 95% interval spolehlivosti je vyznačen v posledních 2 sloupcích [0.025

0.975].

OLS Regression Results

Dan Vaniahla.		D	1 000
Dep. Variable:	У	R-squared:	1.000
Model:	OLS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	4.438e+04
Date:	Sun, 11 Dec 2022	Prob (F-statistic):	5.66e-109
Time:	16:49:18	Log-Likelihood:	-180.54
No. Observations:	70	AIC:	369.1
Df Residuals:	66	BIC:	378.1

Df Model: 3
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	3.6001	1.058	3.402	0.001	1.487	5.713
x	0.8704	0.227	3.829	0.000	0.416	1.324
x^2	1.0080	0.011	92.118	0.000	0.986	1.030
y^2	-0.9982	0.011	-88.172	0.000	-1.021	-0.976
Omnibus:		134.	606 Durbin	n-Watson:		2.195
Prob(Omnibu	ıs):	0.	000 Jarque	e-Bera (JB):		7420.478
Skew:		-6.	620 Prob(JB):		0.00
Kurtosis:		51.	671 Cond.	No.		534.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R^2 0.9995044933271784

rozptyl závislé proměnné 10.795343055493214

Pro test rovnosti na nulu dvou koeficientů zárověn jsem zvolil F-test s B_0 a B_1 . H_0 : $B_0 = B_1 = 0$

<F test: F=51.68770554193782, p=3.11091337215992e-14, df_denom=66, df_num=2>

Na hladině významnosti $\alpha=0.05$ ((P>|t|) < 0.05) zamítáme H_0 , koeficienty se tudíž zároveň liší od nuly.

Pro test rovnosti dvou koeficientů jsem zvolil T-test mezi B_0 a B_1 . H_0 : $B_0 = B_1$

Test for Constraints

	coef	std err	t	P> t	[0.025	0.975]	
c0	2.7297	1.237	2.206	0.031	0.259	5.200	

Na hladině významnosti $\alpha=0.05~((P>|t|)<0.05)$ zamítáme H_0 , koeficienty se tudíž liší.