kai Technical Documentation

KAI Manufacturing Security - Technical Overview

프로젝트 개요

기간: 2017.02 ~ 2018.10 (1년 9개월) 소속: ㈜엠티데이타 역할: 서버·시스템 엔지니어 프로젝트: 한국항공우주산업(KAI) 제조 보안 인프라 운영 규모: Linux 서버 50대 이상, 방화벽·IDS 통합 관제

시스템 아키텍처

제조망 보안 인프라

물리적 망분리 구조

특징: - 제조망-개발망 물리적 분리 (Air-Gap) - One-way 데이터 전송 (제조망 → 개발망) - 승인된 USB만 제조망 반입 가능 - 출입 통제 및 CCTV 모니터링

성과: - 내부 정보 유출사고 0건 (21개월 연속) - 제조 데이터 무결성 100% 보장 - 산업 스파이 차단 100%

주요 시스템

1. Linux 서버 운영 (50대 이상)

서버 구성

- **OS**: RHEL (Red Hat Enterprise Linux) 6.x/7.x
- 용도:

- 제조 실행 시스템 (MES)
- 생산 계획 시스템 (APS)
- 품질 관리 시스템 (QMS)
- 창고 관리 시스템 (WMS)

운영 업무

1. 보안 패치 관리

- ㅇ 월간 보안 패치 적용
- 사전 테스트 (개발망 → 제조망)
- 롤백 계획 수립

2. 시스템 모니터링

- CPU/메모리/디스크 사용률 모니터링
- 로그 분석 (syslog, audit.log)
- ㅇ 성능 튜닝

3. 백업/복구

- ㅇ 일일 증분 백업
- ㅇ 주간 전체 백업
- 분기별 DR 테스트

2. 방화벽 정책 관리

방화벽 구성

- **외부-DMZ 방화벽**: 외부 트래픽 차단
- DMZ-제조망 방화벽: 엄격한 화이트리스트 정책
- 내부 세그먼트 방화벽: 제조 구역별 격리

정책 최적화

문제: 방화벽 룰 3,000개, 중복 및 사용하지 않는 룰 다수

분석: - 6개월간 로그 분석 - 사용하지 않는 룰 식별 (Hit Count = 0) - 중복 룰 탐지 (동일한 Source/Destination) - 정책 우선순위 재조정

최적화: - 중복 룰 30% 제거 (3,000개 → 2,100개) - 정책 검색 시간 40% 단축 - 정책 관리 복잡도 감소

성과: - 방화벽 성능 10% 향상 (Throughput) - 정책 변경 시간 50% 단축 - 보안 정책 가독성 향상

3. IDS (Intrusion Detection System)

운영 범위

- **네트워크 IDS**: 비정상 트래픽 탐지
- 호스트 IDS: 파일 무결성 검사, 루트킷 탐지
- 로그 분석: 실시간 이벤트 모니터링

주요 탐지 시그니처

- SQL Injection 시도
- Port Scanning
- Brute Force 공격
- 알려진 Exploit 시도
- 비정상 프로토콜 사용

성과: - 월 평균 50건 위협 탐지 - False Positive 40% 감소 (시그니처 튜닝) - 평균 탐지 시간 3분 이내

4. DB 접근제어 솔루션

초기 구성

- **DB 보안**: Oracle, MS-SQL 접근 제어
- **감사 로깅**: 모든 쿼리 기록
- **권한 관리**: 역할 기반 접근 제어 (RBAC)

기능: 1. 모든 DB 쿼리 감사 로그 저장 2. 민감 테이블 접근 시 알림 3. DML(INSERT/UPDATE/DELETE) 승인 프로세스 4. 개인정보 마스킹

성과: - DB 무단 접근 차단 100% - 감사 추적(Audit Trail) 100% 기록 - 컴플라이언스 준수 (개인정보보호법)

주요 성과

1. 방화벽 정책 최적화

목표: 복잡한 방화벽 룰 정리 및 성능 향상

분석 과정: 1. 6개월간 방화벽 로그 분석 (100GB 이상) 2. Python 스크립트로 로그 파싱 및 통계 생성 3. 사용 하지 않는 룰 식별 (Hit Count = 0) 4. 중복 룰 자동 탐지 5. 정책 우선순위 최적화

결과: - 방화벽 룰 30% 제거 (3,000개 \rightarrow 2,100개) - 정책 검색 시간 40% 단축 - 정책 변경 작업 시간 50% 단축 - 방화벽 Throughput 10% 향상

2. 망분리 완벽 구축

목표: 제조망-개발망 물리적 분리로 정보 유출 방지

구현: - 제조망과 개발망 물리적 네트워크 분리 - One-way Data Transfer 솔루션 도입 - 승인된 USB만 반입 (사전 바이러스 검사) - 출입 통제 시스템 연동

성과: - 내부 정보 유출사고 0건 (21개월) - 제조 데이터 무결성 100% 보장 - 외부 침입 차단 100%

3. 취약점 관리 체계 구축

목표: 체계적인 취약점 점검 및 패치 관리

구현: 1. 월간 취약점 스캔 (Nessus) 2. 취약점 등급별 SLA 수립 - Critical: 2주 이내 조치 - High: 1개월 이내 조치 - Medium: 3개월 이내 조치 3. 패치 사전 테스트 (개발망) 4. 패치 롤백 계획 수립

성과: - Critical 취약점 2주 내 100% 조치 - 취약점 관련 침해사고 0건 - 보안 수준 지속적 향상

기술 스택

Infrastructure

• **OS**: RHEL 6.x/7.x, CentOS

• Virtualization: VMware vSphere 5.x

• **Storage**: NetApp FAS Series

Security

• Firewall: Palo Alto Networks, FortiGate

• **IDS/IPS**: Snort, Suricata

• **DB Security**: Imperva, PentaSecurity

• Vulnerability Scanner: Nessus

Monitoring & Logging

• **System Monitoring**: Nagios, Zabbix

• Log Management: Splunk, rsyslog

• SIEM: ArcSight ESM

Scripting

• **Shell**: Bash, awk, sed

• **Python**: Log parsing, automation

핵심 역량

- 1. 제조 보안: 제조망 물리적 망분리 구축 및 운영
- 2. **서버 운영**: Linux 서버 50대 이상 패치 관리 및 모니터링
- 3. 방화벽 정책 최적화: 로그 분석을 통한 방화벽 룰 30% 제거
- 4. 취약점 관리: 월간 취약점 스캔 및 SLA 기반 패치 관리
- 5. **IDS 운영**: 실시간 침입 탐지 및 로그 분석

교훈 및 인사이트

1. 제조 보안의 특수성

제조 환경은 일반 IT 환경과 다릅니다. 생산 시스템의 가용성이 최우선이며, 보안 패치도 생산 일정을 고려해야 합니다. 망분리를 통한 물리적 격리가 가장 확실한 방어책입니다.

2. 방화벽 정책 최적화의 중요성

3,000개의 방화벽 룰 중 30%가 사용하지 않는 룰이었습니다. 로그 분석을 통해 불필요한 룰을 제거하여 성능을 향상시키고 관리 복잡도를 줄였습니다.

3. 취약점 관리의 체계화

월간 취약점 스캔과 SLA 기반 패치 관리로 Critical 취약점을 2주 내 100% 조치했습니다. 체계적인 프로세스가 보안 수준을 높입니다.

4. 첫 직장에서 배운 기본기

이 프로젝트는 제 커리어의 시작이었습니다. Linux 서버 운영, 방화벽 정책 관리, 로그 분석 등 인프라·보안 엔지니어로서의 기본기를 탄탄히 다진 프로젝트입니다.

문서 작성일: 2025-10-20 작성자: 이재철 (인프라·보안 엔지니어)