

(30) Priority Data:

MI97A001349

-- INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY_(PCT)

(51) International Patent Classification 6:		(11) International Publication Number	WO 98/56834
C08F 10/00, 4/642	A1	(43) International Publication Date:	17 December 1998 (17.12.98)

(21) International Application Number: PCT/EP98/03289 (81) Designated States: AU, BR, CA, CN, JP, KR, MX, NO, RU,
TR, European patent (AT, BE, CH, CY, DE, DK, ES, FI,

(22) International Filing Date: 2 June 1998 (02.06.98) FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

IT

(71) Applicant: MONTELL TECHNOLOGY COMPANY B.V. [NL/NL]; Hoeksteen 66, NL-2132 MS Hoofddorp (NL).

9 June 1997 (09.06.97)

(72) Inventors: MORINI, Giampiero; Via Giotto, 36, I-35100 Padova (IT). BALBONTIN, Giulio; Via Ugo Bassi, 17A, I-44100 Ferrara (IT). CHADWICK, John; Via Croce Bianca, 17, I-44100 Ferrara (IT). CRISTOFORI, Antonio; Corso Berlinguer, 9, I-45030 S.M. Maddalena (IT). ALBIZZATI, Enrico; Via Roma, 64, I-28041 Arona

(74) Agent: ZANOLI, Enrico; Montell Italia S.p.A., Via Pergolesi, 25, I-20124 Milano (IT).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS

$$\begin{array}{c}
C & OR_3 \\
C & OR_4
\end{array}$$
(1)

(57) Abstract

The present invention relates to a solid catalyst component for the polymerization of olefins CH₂=CHR is which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on an Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I), wherein R_I is a C_1 - C_2 0 linear or branched alkyl, C_3 - C_2 0 alkenyl, C_3 - C_2 0 aryl, arylalkyl or alkylaryl group; R₂ is a C_1 - C_2 0 linear alkenyl, C_3 - C_2 0 linear alkenyl, C_3 - C_2 0 aryl, arylalkyl or alkylaryl group; R₃ and R₄ are independently selected from the group consisting of C_1 - C_3 alkyl, cyclopropyl, with the proviso that when R₁ is C_1 - C_4 linear or branched alkyl or alkenyl, R₂ is different from R₁. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.

(19)日本国特許庁(JP)

(12) 公表特許公報(A)

_(11)特許出願公表番号 特表2000-516989 (P2000-516989A)

(43)公表日 平成12年12月19日(2000.12.19)

(51) Int.Cl.7

酸別記号

FΙ

テーマコード(参考)

COSF 4/654

C08F 4/654

審査請求 未請求 予備審査請求 未請求(全 21 頁)

(21)出願番号 特願平11-501489

(86) (22)出願日 平成10年6月2日(1998.6.2) (85)翻訳文提出日 平成11年2月2日(1999.2.2) (86)国際出願番号 PCT/EP98/03289

(87)国際公開番号 WO98/56834

(87)国際公開日 平成10年12月17日(1998.12.17)

(31) 優先権主張番号 MI97A001349 (32) 優先日 平成9年6月9日(1997,6.9)

(32) 優先日 平成9年6月9日

(33) **仮**先権主張国 イタリア (IT)

(81)指定国 EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), AU, BR, CA, CN, JP, KR, MX, NO, RU, TR

(71)出願人 モンテル テクノロジー カンパニー ビ

ープイ オランダ、エムエス ホッフッドルプ エ

ヌエルー2132、フークスティーン 66

(72)発明者 モリーニ ジャンピエロ

イタリア、パドヴァ アイー35100、ヴィ

ア ジオット、36

(72)発明者 パルポンティン ジュリオ

イタリア、フェラーラ アイー44100、ヴ

ィア ユーゴ パッシ、17エー

(74)代理人 弁理士 野河 信太郎

最終頁に続く

(54) 【発明の名称】 オレフィンの重合用成分および触媒

(57)【要約】

この発明は、ハロゲン化ぬ上に支持され、少なくともTi ーハロゲン結合を有するチタン化合物と、電子供与性化 合物とからなる、オレフィンCH2=CHR [式中、R は水素または1~12の炭素原子を有するヒドロカルビ ル基である〕の重合用固形触媒成分に関する。その電子 供与性化合物は、式(1)[式中、R1はC1~C10直鎖 状もしくは分岐状アルキル、Ca~Czoアルケニル、Ca ~Czoシクロアルキル、Co~Czoアリール、アリール アルキルまたはアルキルアリール基であり:R:はCi~ C10直鎖状アルキル、C1~C20直鎖状アルケニル、C0 ~C20アリール、アリールアルキルまたはアルキルアリ ール基であり;R₁およびR₄はC₁~C₃アルキル、シク ロプロピルからなる群から独立して選択される、ただし R1がC1~C4直鎖状もしくは分岐状アルキルまたはア ルケニルのときR1はR1とは異なる]のマロン酸エステ ル類から選択される。オレフィン、特にプロピレンの重 合のとき使用されるその触媒成分は、キシレン中で高い 不溶性を有するポリマーを高収率で与えることができ る。

【特許請求の範囲】

1. ハロゲン化Mg上に支持され、少なくともTiーハロゲン結合を有するチタン 化合物と、

式(I):

[式中、 R_1 は C_1 ~ C_2 0直鎖状もしくは分岐状アルキル、 C_3 ~ C_2 0アルケニル、 C_3 ~ C_2 0シクロアルキル、 C_6 ~ C_2 0アリール、アリールアルキルまたはアルキルアリール基であり; R_2 は C_1 ~ C_2 0直鎖状アルキル、 C_3 ~ C_2 0直鎖状アルケニル、 C_6 ~ C_2 0アリール、アリールアルキルまたはアルキルアリール基であり; R_3 および R_4 は C_1 ~ C_3 アルキル、シクロプロピルからなる群から独立して選択される、ただし R_1 が C_1 ~ C_4 直鎖状もしくは分岐状アルキルまたはアルケニルのとき R_2 は R_1 とは異なる]のマロン酸エステル類から選択される電子供与性化合物とからなる、

オレフィン CH_2 =CHR [式中、Rは水素または $1\sim12$ の炭素原子を有する ヒドロカルビル基である] の重合用固形触媒成分。

2. R_2 が C_1 ~ C_{20} 直鎖状アルキル、直鎖状アルケニル、シクロアル

キル、アリール、アリールアルキルまたはアルキルアリール基であり、 R_1 が R_2 と異なる C_1 \sim C_4 \sim C_4

- 3. 少なくとも R_1 または R_2 が第1級 C_6 ~ C_{20} アリールアルキル基である請求項1の固形触媒成分。
- 4. 式(I)の電子供与性化合物が2,2-ジベンジルマロン酸ジエチル、2-n-ブチル-2-イソプチルマロン酸ジメチル、n-ブチル-2-イソプチルマロン酸ジエチル、2-メチ

ルー2ーイソプロピルマロン酸ジエチル、2ーメチルー2ーイソブチルマロン酸 ジエチル、2ーイソブチルー2ーベンジルマロン酸ジエチルからなる群から選択 される請求項1の固形触媒成分。

- 5. ハロゲン化マグネシウムが活性型のMgCl2である請求項1の固形触媒成分
- 6. チタン化合物がTiCl4またはTiCl3である請求項1の固形触媒成分。
- 7. 球形、 $20\sim500\text{m}^2/\text{g}$ の表面積および $0.2\text{cm}^3/\text{g}$ より高い全多孔度を有する請求項1の固形触媒成分。
- 8. (i) 請求項1の固形触媒成分と、
- (ii) アルキルアルミニウム化合物と、
- (iii) 1種類またはそれ以上の電子供与性化合物(外部供与体)との

反応生成物からなる、

オレフィン CH_2 =CHR [式中、Rは水素または $1\sim12$ の炭素原子を有する ヒドロカルビル基である] の重合用触媒。

- 9. アルキルアルミニウム化合物 (ii) がトリアルキルアルミニウム化合物である請求項8の触媒。
- 10. トリアルキルアルミニウム化合物がトリエチルアルミニウム、トリイソプチルアルミニウム、トリーnーブチルアルミニウム、トリーnーペキシルアルミニウム、トリーnーオクチルアルミニウムからなる群から選択される請求項9の触媒。
- 11. 外部供与体 (iii) が一般式 (II):

$$R^{II} \qquad C \qquad R^{III}$$

$$R^{II} \qquad C \qquad OR^{VII}$$

$$R^{IV} \qquad C \qquad R^{VI}$$

$$R^{IV} \qquad R^{VI}$$

$$R^{VI} \qquad R^{VI}$$

[式中、Rおよび $R^{
m I}$ 、 $R^{
m III}$ 、 $R^{
m IV}$ および $R^{
m V}$ は互いに同一または異なって、水素または $1\sim$ 18の炭素原子を有する炭化水素基であり、 $R^{
m VI}$ および $R^{
m VII}$

は、互いに同一または異なって、R \sim R $^{\rm I}$ と同じ意味を有する、ただしそれらは、水素ではない;R \sim R $^{\rm VII}$ 基の1またはそれ以上は結合して環を形成してもよい

の1,3-ジエーテル類から選択される請求項8の触媒。

- 12. 外部供与体 (iii) が、式 $Ra^5Rb^6Si(0R^7)c$ [式中、a およびb は $0\sim2$ の整数で、c は $1\sim4$ の整数で、 (a+b+c) の合計は4 であり; R^5 、 R^6 および R^7 は $1\sim18$ の炭素原子を有するアルキル、シクロアルキルまたはアリール基である] のケイ素化合物である請求項8の触媒。
- 13. aが1で、bが1でかつCが2である請求項12の触媒。
- 14. R_5 および/または R_6 が3~10の炭素原子を有する分岐状アルキル、シクロアルキルまたはアリール基であり、 R_7 が C_1 ~ C_{10} アルキル基、特にメチル基である請求項13の触媒。
- 15. aが0で、cが3で、 R^6 が分岐状アルキルまたはシクロアルキル基で、 R^7 がメチルである請求項12の触媒。
- 16. ケイ索化合物がメチルシクロヘキシルジメトキシシラン、ジフェニルジメトキシシラン、メチルーtープチルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルトリメトキシシラン、tープチルトリメトキシシランおよびテキシルトリメトキシシランからなる群から選択される請求項14または15の触媒。
- 17. 請求項8の触媒存在下に行なわれるオレフィン CH_2 =CHR [式中、Rが水素または1~12の炭素原子を有するヒドロカルビル基である] の(共) 重合方法。

【発明の詳細な説明】

オレフィンの重合用成分および触媒

この発明は、オレフィンの重合用触媒成分、それから得られる触媒およびオレフィンCH2=CHR [式中、Rは水素または1~12の炭素原子を有するヒドロカルビル基である] の重合におけるその触媒の使用に関する。特にこの発明は、ハロゲン化Mg上に支持され、少なくともTiーハロゲン結合を有するチタン化合物と、特定な式を有するマロン酸エステルから選択される電子供与性化合物とからなるオレフィンの立体特異性重合に適した触媒成分に関する。オレフィン、特にプロピレンの重合に使用されると、その触媒成分は高収率でキシレン高不溶性で表わされた高いアイソタクチック指数を有するポリマーを与えることができる

マロン酸のいくつかのエステル類をプロピレン重合用の触媒中で内部電子供与体として使用することが当該分野で既に知られている。

欧州特許出願第45977号において、オレフィン重合用の触媒の内部供与体としてマロン酸のエステル (ジイソブチルマロン酸ジエチル) を使用することが開示されている。欧州特許出顧第86473号には、(a)アルキル化合物と、(b)MgCl2に対し一定の反応性特性を有する電子供与性化合物と、(c)MgCl2上に支持され、ハロゲン化Tiとマロン酸エステルを含む多くの種類のエステル化合物から選択された電子供与体とからなる固形触媒成分、とからなるオレフィン重合用の触媒が開示されている。特に、プロピレン重合用の触媒中に内部供与体としてアリルマロン酸ジエチルおよびマロン酸ジーnーブチルの使用が挙げられている。欧州特許出願第86644号より、Mg支持されたプロピレン重合用の触媒中の内部供与体としてのnーブチルマロン酸ジエチルおよびイソプロピル

マロン酸ジェチルの使用が知られている。そのうち、外部供与体はヘテロ環化合物またはケトンである。欧州特許第125911号には、(コ)ポリマーの製造方法が開示されている。その製造方法は、(a)ポリカルボン酸のエステルから選択された電子供与性化合物、MgおよびTiを含有する固形触媒成分と、(b)周期表のI~III族から選択された金属の有機金属化合物と、(c)Si-O-CまたはSi-N-C結合を

有する有機ケイ素化合物とからなる触媒の存在下に少なくとも1種類のオレフィンを、任意にジオレフィンと、(共)重合することからなる。好ましいエステル化合物の例としては、メチルマロン酸ジエチル、ブチルマロン酸ジエチル、フェニルマロン酸ジエチル、ジエチルマロン酸ジエチルおよびジブチルマロン酸ジエチルが挙げられる。フェニルマロン酸ジエチルを含有する触媒の使用のみがポリプロプロピレンの製造において挙げられている。

しかし、上述のマロン酸エステルを使用すると経験する共通の欠点は、重合収率が低くかつ/または最終ポリマーのアイソタクチック指数が適当でないことが 指摘されていた。

特開平8-157521号は、マグネシウム化合物、チタン化合物およびハロゲン化合物の反応により製造される固形触媒成分と、一般式:

[式中、RcおよびRdは、1~10の炭素原子を有する直鎖状または分

岐状炭化水素基からなる群から独立して選択され、RaおよびRbは1またはそれ以上の第2級または第3級炭素と3~20の炭素原子を有する脂肪族または環式 飽和炭化水素基から独立して選択される]

で表わされる1またはそれ以上の電子供与性化合物とを接触させることを特徴とするオレフィン重合用の固形触媒成分の製造方法に関している。この特許によれば、置換基RaおよびRbが分岐状であることが非常に重要である。

ここに、マロン酸の別の種類のエステル類 [式中、2位の一つの置換基が直鎖 状アルキル、アルケニル、アリール、アリールアルキルまたはアルキルアリール 基から選択される]を内部電子供与体として使用すれば、非常に高い立体特異性 を依然保ちつつ、先行技術の電子供与体を使用することで得られるものと比べて 、より高い重合収率を得ることができることを驚いたことに見出した。このこと...... はこの種類の化合物を排除した特開平8-157521号の直接的な教義を考慮 すると、特に驚くべきことである。

この発明の目的は、ゆえに、ハロゲン化Mg上に支持され、少なくともTiーハロゲン結合を有するチタン化合物と、式(I):

[式中、 R_1 は C_1 ~ C_{20} 直鎖状もしくは分岐状アルキル、 C_3 ~ C_{20} ア

ルケニル、 $C_3\sim C_{20}$ シクロアルキル、 $C_6\sim C_{20}$ アリール、アリールアルキルまたはアルキルアリール基であり; R_2 は $C_1\sim C_{20}$ 直鎖状アルキル、 $C_3\sim C_{20}$ 直鎖状アルケニル、 $C_6\sim C_{20}$ アリール、アリールアルキルまたはアルキルアリール基であり; R_3 および R_4 は $C_1\sim C_3$ アルキル、シクロプロピルからなる群から独立して選択される、ただし R_1 が $C_1\sim C_4$ 直鎖状もしくは分岐状アルキルまたはアルケニルのとき R_2 は R_1 とは異なる; R_2 が第1級直鎖状 $C_1\sim C_{20}$ アルキルまたは第1級 $C_6\sim C_{20}$ アリールアルキル基であるのが好ましい〕のマロン酸エステル類から選択される電子供与性化合物とからなる、オレフィン $CH_2=CHR[$ 式中、Rは水素または $1\sim 1$ 2の炭素原子を有するヒドロカルビル基である]の重合用固形触媒成分である。

これら新規な電子供与体によると、当該分野で公知のマロン酸エステルを含有する触媒に関して、重合方法における収率がより高いものを得ることができる。

好ましいジ置換されたマロン酸エステル化合物の特定な例は、2,2-ジベンジルマロン酸ジエチル、2-n-ブチルー2-イソブチルマロン酸ジメチル、2-n-ブチルー2-イソプロピルー2-n-ブチルマロン酸ジエチル、2-メチルー2-イソプロピルマロン酸ジエチル、2-メ

チルー 2 ーイソブチルマロン酸ジエチル、2 ーイソブチルー 2 ーベンジルマロン 酸ジエチルである。

ハロゲン化マグネシウムは、チーグラーーナッタ触媒用の支持体として特許文献から広く公知である活性型のMgCl2が好ましい。米国特許第4,298,718号および第4,495,338号は、チーグラーーナッタ触媒においてこれらの化合物を使用することを記載した最初のものである。これらの特許から、オレフィン重合用の触媒の成分中に支持体または共支持体として使用される活性型のニハロゲン化マグネシウムは、非活性なハロ

ゲン化物のスペクトラムに現れる最も強い回折線はその強度が減少し、その強度がより強い線のそれに関してより低い角度の方向へ移動したハローによりその回 折線が置き換えられたX線スペクトルに特徴がある。

この発明の触媒成分中で使用される好ましいチタン化合物は $TiCl_4$ および $TiCl_3$ である; さらに式 $Ti(OR)_{n-y}$ Xy[式中、nはチタンの原子価で、yは $1 \sim n$ の数字である]のTi-ハロアルコレートも使用できる。

固形触媒成分の製造は幾つかの方法に従い行なうことができる。

これらの一つに従い、無水状態の二塩化マグネシウム、チタン化合物および式(I)の電子供与性化合物を一緒に、二塩化マグネシウムの活性化が起こるような条件下で粉砕する。そのようにして得られた生成物は80~135℃の温度で過剰のTiCl₄で1またはそれ以上の回数処理してもよい。この処理のあと、塩化物イオンが消失するまで炭化水素溶媒で洗浄する。

さらにある方法に従えば、無水状態の塩化マグネシウム、チタン化合物および式(I)の電子供与性化合物を共粉砕して得られる生成物を1、2ージクロロエタン、クロロベンゼン、ジクロロメタン等のようなハロゲン化炭化水素類で処理する。この処理は1~4時間の間、40℃~ハロゲン化炭化水素の沸点の温度で行なわれる。得られた生成物は次いで一般にヘキサンのような不活性炭化水素溶媒で洗浄される。

他の方法に従うと、二塩化マグネシウムは広く公知な方法に従い前もって活性 化され、次いで、式(I)の電子供与性化合物を含有する過剰のTiCl₄溶液で80 ~135℃で処理される。TiCl4での処理を繰り返し、未反応のTiCl4を除くために_ その固形物をヘキサンで洗浄する。

さらにある方法は、マグネシウムアルコラートまたはクロロアルコラート(特に米国特許出願第4,220,554号により製造したクロロアルコラート)と、式(I)の電子供与性化合物を含有する過剰のTiCl4溶液と

の約80~120℃の温度における反応からなる。

好ましい方法に従い、固形触媒成分は式Ti(OR)n-yXy[式中、nはチタンの原子 価で、yは1~nの数字である]のチタン化合物、このましくはTiCl4を式MgCl2 ・pROH [式中、pは0.1~6であり、Rは1~18の炭素原子を有する炭化水索基 である]の付加物の脱アルコール化反応により得られる二塩化マグネシウムと反 応させることにより製造することができる。その付加物は、付加物と非混和性な 不活性炭化水素の存在下にアルコールと塩化マグネシウムを付加物の融点(100~ 130℃) で攪拌下に混合することにより球(spherical)形で適当に製造されること ができる。ついで、その乳濁液をすばやく冷却し、それにより球形粒子状の付加 物を固形化させる。この方法により製造された球形の付加物の例は米国特許第4, 399,054号に記載されている。そのようにして得られた付加物は直接Ti化合物と 反応させることができ、またアルコールのモル数が一般に2.5より低く、好まし くは0.1~1.5である付加物を得るために、熱的に調整された脱アルコール化反応 (80~130℃)に前もって付してもよい。Ti化合物との反応は、付加物(脱アルコ ール化されたかまたはそれ自体として)を冷TiCl4(一般に0℃)中に懸濁させ ることにより行なうことができる:その混合物は80~130℃まで加熱し、この温 度で0.5~2時間保つ。TiCl4での処理は1またはそれ以上の回数行なうことがで きる。式(I)の電子供与性化合物をTiCl4での処理中に添加してもよい。電子 供与性化合物での処理は1またはそれ以上の回数行なうことができる。

球形の触媒成分の製造は例えば欧州特許出願第395083号、第553805号、第5538 06号に記載されている。

上述の方法により得られる固形触媒成分は、一般に20~500m²/g、好ましくは50~400m²/gの表面積 (B.E.T. 法による) および0. 2cm³/gよ

… り高い、好ましては0.2~0.6cm³/gの全多孔度(B.E.T.法による)を示す。

この発明の固形触媒成分を製造するためのさらなる方法は、マグネシウムジアルコキシドまたはジアリールオキシドのようなマグネシウムジヒドロカルビルオキシド化合物をTiCl4の芳香族炭化水素(トルエン、キシレン等のような)溶液で80~130℃の温度でハロゲン化することからなる。TiCl4の芳香族炭化水素溶液での処理は、1またはそれ以上の回数繰り返すことができ、式(I)の電子供与性化合物を1またはそれ以上の回数のこれらの処理中に添加してもよい。

これらの製造方法のいずれにおいても、式 (I) の望ましい電子供与性化合物はそれ自体として添加してもよく、または別の方法として、例えばエステル化、エステル交換等のような公知の化学反応により望ましい電子供与性化合物に変換可能な適当な前駆体を使用することによりその場で得られることもできる。一般に、式 (I) の電子供与性化合物はMgCl₂に関して0.01~1、好ましくは0.05~0.5のモル比で使用される。

この発明による固形触媒成分は、それらを公知の方法により有機アルミニウム 化合物と反応させることによりオレフィン重合用触媒に変換される。

特に、この発明の目的は、

(i)活性型のハロゲン化Mg上に支持された、少なくともTiーハロゲン結合を有するチタン化合物と、

:(1) :

$$\begin{array}{c|c}
C & OR_{1} \\
C & OR_{4}
\end{array}$$

$$\begin{array}{c|c}
C & OR_{4} \\
O & OR_{4}
\end{array}$$

[式中、 R_1 は C_1 ~ C_2 0直鎖状もしくは分岐状アルキル、 C_3 ~ C_2 0アルケニル、 C_3 ~ C_2 0シクロアルキル、 C_6 ~ C_2 0アリール、アリールアルキルまたはアルキルアリール基であり; R_2 は C_1 ~ C_2 0直鎖状アルキル、 C_3 ~ C_2 0直鎖状アル

ケニル、 $C_6\sim C_{20}$ アリール、アリールアルキルまたはアルキルアリール基であ」り; R_3 および R_4 は $C_1\sim C_3$ アルキル、シクロプロピルからなる群から独立して選択される、ただし R_1 が $C_1\sim C_4$ 直鎖状もしくは分岐状アルキルまたはアルケニルのとき R_2 は R_1 とは異なる; R_2 が第 1 級直鎖状 $C_1\sim C_{20}$ アルキルまたは第 1 級 $C_6\sim C_{20}$ アリールアルキル基であるのが好ましい」のマロン酸エステル類から選択される電子供与性化合物とからなる固形触媒成分と、

- (ii) アルキルアルミニウム化合物と、
- (iii) 1種類またはそれ以上の電子供与性化合物(外部供与体)との反応生成物からなる、オレフィン $CH_2 = CHR$ [式中、Rは水素または $1 \sim 1$ 2の炭素原子を有するヒドロカルビル基である]の重合用の触媒である。

アルキルーAl化合物 (ii) は例えばトリエチルアルミニウム、トリイソブチルアルミニウム、トリーnーブチルアルミニウム、トリーnーヘキシルアルミニウム、トリーnーオクチルアルミニウムのようなトリ

アルキルアルミニウム化合物から選択されるのが好ましい。トリアルキルアルミニウムとハロゲン化アルキルアルミニウム、アルキルアルミニウムヒドリドまたはAlEt₂ClおよびAl₂Et₃Cl₃のようなアルキルアルミニウムセスキクロライドとの混合物を使用することも可能である。

外部供与体(iii) は式(I) の内部供与体と同じ種類でも、異なっていてもよい。適当な外部電子供与性化合物にはエーテル類、エステル類、アミン類、ヘテロ環式化合物、特に2,2,6,6-テトラメチルピペリジン、ケトン類および一般式(II):

$$\begin{array}{c|c}
R^{I} & C & R^{III} \\
\hline
R & C & OR^{VII} \\
\hline
R^{IV} & C & R^{V} \\
\end{array}$$
(II)

[式中、Rおよび R^I 、 R^{II} 、 R^{IV} および R^V は互いに同一または異なって、水素または $1\sim$ 18の炭素原子を有する炭化水素基であり、 R^{VI} および R^{VII}

は、互いに同一または異なって、 $R-R^I$ と同じ意味を有する、ただしそれらは、水素ではない; $R-R^{VII}$ 基の 1 またはそれ以上は結合して環を形成してもよい 1

の1,3-ジエーテル類が含まれる。

式 Ra^5Rb^6Si (OR^7) c [式中、a およびb は $0\sim2$ の整数で、c は $1\sim4$ の整数で、(a+b+c) の合計は 4 であり; R^5 、 R^6 および R^7 は $1\sim18$ の炭素原子を有するアルキル、シクロアルキルまたはアリール基である] のケイ素化合物の中から選択された外部供与体が特に好ましい。a が 1 で、b が 1 でかつ c が 2 であるケイ素化合物が特に好ましい。この

好ましい種類の化合物の中で、 R_5 および/または R_6 が3~10の炭素原子を有する分岐状アルキル、シクロアルキルまたはアリール基で、 R_7 が C_1 ~ C_{10} アルキル基、特にメチル基である化合物が特に好ましい。そのような好ましいケイ素化合物の例としては、メチルシクロヘキシルジメトキシシラン、ジフェニルジメトキシシラン、メチルー t ープチルジメトキシシラン、ジシクロペンチルジメトキシシランが挙げられる。さらに、a が 0 で、C が 3 で R^6 が分岐状アルキルまたはシクロアルキル基で R^7 がメチルであるケイ素化合物も好ましい。そのような好ましいケイ素化合物の例はシクロヘキシルトリメトキシシラン、t ープチルトリメトキシシランおよびテキシルトリメトキシシランである。

電子供与性化合物 (iii) は有機アルミニウム化合物とその電子供与性化合物 (iii) のモル比が0.1~500、好ましくは1~300、より好ましくは3~100になるような量で使用される。先に示したように、オレフィン、特にプロピレンの (共) 重合で使用されると、この発明の触媒により、高収率で、高いアイソタクチック指数(高いキシレン不溶性X.I.で表わされる)を有するので、優れた特性の釣り合いを示すポリマーを得ることができる。この以下に報告する比較実施例から分かるとおり、当該分野で知られたマロン酸エステル化合物を内部電子供与体として使用することにより収率および/またはキシレン不溶性の観点で悪い結果を与え、それにより特性の釣り合いが非常に不十分になることから考えると、このことは特に驚くべきことである。

ゆえに、この発明のさらなる目的は、

(i) 活性型のハロゲン化Mg上に支持された、少なくともTiーハロゲン結合を有するチタン化合物と、

式(1):

$$\begin{array}{c|c}
C & OR_{3} \\
C & OR_{4} \\
O & OR_{4}
\end{array}$$

[式中、 R_1 は C_1 ~ C_20 直鎖状もしくは分岐状アルキル、 C_3 ~ C_20 アルケニル、 C_3 ~ C_20 シクロアルキル、 C_6 ~ C_20 アリール、アリールアルキルまたはアルキルアリール基であり; R_2 は C_1 ~ C_20 直鎖状アルキル、 C_3 ~ C_20 直鎖状アルケニル、 C_6 ~ C_20 アリール、アリールアルキルまたはアルキルアリール基であり; R_3 および R_4 は C_1 ~ C_3 アルキル、シクロプロピルからなる群から独立して選択される、ただし R_1 が C_1 ~ C_4 直鎖状もしくは分岐状アルキルまたはアルケニルのとき R_2 は R_1 とは異なる; R_2 が第1級直鎖状 C_1 ~ C_20 アルキルまたは第1級 C_6 ~ C_20 アリールアルキル基であるのが好ましい」のマロン酸エステル類から選択される電子供与性化合物とからなる固形触媒成分と、

- (ii) アルキルアルミニウム化合物と、
- (iii) 1種類またはそれ以上の電子供与性化合物(外部の供与体)との反応の生成物からなる触媒の存在下に行なわれるオレフィン $CH_2=CHR[式中、Rは水素または1~12の炭素原子を有するヒドロカルビル基である]の(共)重合方法である。$

その重合方法は、例えば不活性炭化水素溶媒を希釈剤として使用するスラリー 重合または反応媒体として液体モノマー (例えばプロピレン)を使用する塊重合 のような公知の技術に従い行なうことができる。さら に、1またはそれ以上の流動床または機械的に攪拌された床反応器内で行なう気 相中での重合方法を行なうことが可能である。

重合は一般に20~120℃、好ましくは40~80℃の温度で行なわれる。重合が気相で行なわれるとき、作業気圧は一般に0.5~10MPa、好ましくは1~5MPaである。塊重合において、作業圧力は一般に1~6MPa、好ましくは1.5~4MPaである。水素または連鎖移動剤として働くことのできる他の化合物をポリマーの分子量を調節するために使用してもよい。

以下の実施例はこの発明をよりよく説明するためのもので、限定するものではない。

評価

この発明で使用される式(I)のマロン酸ジエチルは例えばJ. March("Advanced Organic Chemistry"第4版、1992年、464~468頁)により記載されているような公知化学合成に従い製造できる。R。およびR4がエチルとは異なるマロン酸エステルは、ドイツ特許第2822472号の実施例1に記載されているように相当するマロン酸ジエチルをエステル変換することにより製造することができる。プロピレンの一般的な重合方法

窒素気流で1時間70℃で浄化した4リットルのオートクレーブ中で、10mgの固形触媒成分、7mmolのAlEt3および0.35mmolのジシクロペンチルジメトキシシランを含む80mlの無水ヘキサンをプロピレン気流中へ30℃で導入した。オートクレーブを閉じ、3NLの水素を加え、次いで攪拌下に1.2Kgの液体プロピレンを供給した。温度を5分間で70℃に上昇させ、この温度で2時間重合を行なった。未反応のプロピレンを除去し、ポリマーを取り出し、真空下に3時間70℃で乾燥し、

次いで秤量し、o-キシレンで分画して25℃におけるキシレン不溶性 (X. I.) 画分の量を測定した。

X. I. の測定

2.5gのポリマーを250mlのo-キシレン中に135℃で30分間攪拌下に溶解させ、 次いで溶液を25℃に冷却し、30分後に不溶性ポリマーをろ過した。得られた溶液 を窒素気流中で蒸発させ、残渣を乾燥し秤量して溶解性ポリマーの割合、次いで 、その差によりX.I.%を測定した。

実施例

<u>実施例1~8</u>

固形触媒成分の製造

窒素で浄化した500mlの4つ口丸底フラスコ中に、225mlのTiCl₄を0℃で導入した。 攪拌中に、10.3gの微小球状(microspheroidal)の $MgCl_2 \times 2.1C_2H_5OH$ (米国特許第4,399,054号の実施例2に記載の通り、ただし10,000の代わりに3,000rpmで行なって製造した付加物の部分的熱的脱アルコール化により得られた)を添加した。フラスコは40℃に加熱し、9mmolのマロン酸エステルをそこへ加えた。温度を100℃に上昇させて2時間保持し、次いで攪拌を中止し、固形生成物を落ち着かせて上澄み液を吸い上げた。

200mlの新鮮なTiCl4を加え、その混合物を120℃で1時間反応させ、ついで上 澄み液を吸い上げた。固形物を60℃の無水へキサンで6回洗浄し(6 X 100ml)、 次いで真空下に乾燥した:使用したマロン酸エステル、固形触媒成分中に含有さ れたTi (wt%) およびマロン酸エステル (wt%) の量は、表1に報告している。重 合結果は表2に報告している。

比較実施例9、10

固形触媒成分の製造

触媒成分は実施例1~8と同じ方法で製造した。ただし式(I)とは異なるマロン酸エステルを使用した。使用したマロン酸エステル、固形触媒成分中に含有されたTi(wt%)およびマロン酸エステル(wt%)の量は、表1に報告している。 重合結果は表2に報告している。

上記から分かるように、式 (I) の電子供与性化合物を使用すると、先行技術の公知マロン酸エステルを含有する触媒成分に関して、重合方法においてより高い収率を得ることができる。特に、2,2-ジイソブチルマロン酸ジエチル(比較実施例9)から2-n-ブチル-2-イソブチルマロン酸ジエチル(実施例6)に変更すると、重合収率は20.1から39.5kgPP/gCatに変化した。

_	manufacture and the state of th		in and the left who is the wife		
1	团形触媒成分製造	固形触媒成分組成			
実施	マロン酸エステルの	Ti wt %	マロン酸エステル		
例	種類		種類	wt %	
番号	•				
1	ジエチル2-メチル	3. 2	ジエチル2ーメチル	10. 9	
	-2-イソプロピル		-2-イソプロピル		
2	ジエチル 2-メチ	4. 1	ジエチル 2ーメチ	9. 7	
	ルー2-イソプチル		ルー2-イソブチル		
3	ジエチル2-エチル	4.6	ジエチル2-エチル	12. 9	
	-2-secープチル		-2-sec-ブチル		
4	ジエチル2-イソブ	4. 0	ジエチル2-イソブ	14. 5	
	ロビルー2-n-ブ		ロピルー2-nープ		
	チル		チル		
5	ジメチル2-n-ブ	3.8	ジメチル2-n-ブ	16. 3	
	チルー 2 ーイソプチ		チルー2ーイソプチ		
	ル		ル	_	
6	ジエチル 2 - n -ブ	4.6	ジエチル2-n-ブ	15. 1	
	チルー2ーイソプチ		チルー2ーイソプチ		
<u> </u>	ル		ル		
7	ジエチル2-イソブ	4.9	ジエチル2-イソブ	14: 5	
	チルー2ーペンジル		チルー2ーペンジル		
8	ジエチル2, 2ージ	4.7	ジエチル2,2-ジ	14. 1	
	ペンジル		ベンジル		
比較	ジエチル2,2-ジ	4.5	ジエチル2,2ージ	13. 5	
実施	イソプチル		イソプチル		
例9	*****	0 0	**************************************	0 6	
比較	ジエチル2, 2ージ	3. 9	ジエチル2, 2ージ	8.6	
実施 例 10	アリル	_	アリル		
V7 10			l		

表 2

実施例	収率	X. I.		
	KgPP/gCat	%		
1	35.5	96.8		
2	35.8	96.6		
3	38.6	96.8		
4	35.8	96.5		
5	35.3	96.7		
6	39.5	97.0		
7	39.0	96.0		
8	45.2	96.4		
比較実施例 9	20.1	96.7		
比較実施例10	17.7	93.9		

【国際調査報告】

INTERNATIONAL SEARCH REPORT al Application No PCT/EP 98/03289 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C08F10/00 C08F4/642 According to International Patent Classification (IPC) or to both national dissification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by electrication symbols) IPC 6 C08F Documentation searched other then minimum documentation to the extent that such documents are included in the fields searched Electionic data base consulted during the Informational search (mame of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, at the selevant passages Relevant to claim No. Α JP 08 157521 A (SHOWA DENKO KK) 1-17 18 June 1996 cited in the application see page 3, right-hand column, line 17 to page 4, right-hand column, line B EP 0 125 911 A (MITSUI PETROCHEMICAL IND) 1,2,4-9, A 21 November 1984 11-16 cited in the application see claims; page 14, lines 6-9 and 22-26; page 20, lines 27-30; page 23, line 16 to page 24, line 33 EP 0 086 644 A (MITSUI PETROCHEMICAL IND) A 1.2.4.5 24 August 1983 cited in the application see claims; page 10, lines 29-34 -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents : "I" later document published after the International liting state or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which to not correlated to be of particular relevance. "E" audier document but published on or after the informational filling date "X" document of particular relevance; the claimed invertion careact be considered novel or carenot be considered to involve an inventive step when the document is taken along "L" document which may livrow doubte on priority delin(s) or which is cried to establish the publication date of emotive chation or other special reason (as special). document of particular relovance; the claimed invertion cannot be considered in threft on an invertibly stop when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a perion skilled in the st. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent tomily Outs of the actual completion of their ternational search Date of mailing of the international search report 5 October 1998 20/10/1998 Name and making address of the ISA Authorized afficer European Patent Office, P.B. 5618 Pelentiaan 2 NL - 2260 HV Rijswijk Tel. (+01-70) 340-2040, Ts. 31 051 epo ni, Fac (+31-70) 340-3016 Mergoni, M

Form PCT/ISAC210 (second sheet) Likly 1992)

INTERNATIONAL SEARCH REPORT

Intern: at Application No....
PCT/EP 98/03289

:/Continu	stion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 98/03289
alegary *		Relevant to claim No.
\	LOCATELLI P: "ZIEGLER-NATTA CATALYSTS: NO END IN SIGHT TO INNOVATION" TRENDS IN POLYMER SCIENCE, vol. 4, no. 10, October 1996, pages 326-329, XP000625975 see page 326, table 1, last compound; page 326, right-hand column	1,2,4,5
A	EP 0 360 491 A (NITSUI PETROCHEMICAL IND) 28 March 1990 see claims; page 5, lines 6-10, 17-19 and 27-29; page 8, line 23 t opage 9, line 32; page 6, lines 47-51	1,2,4-9, 11-16

Form PCDISA/210 (continuation of second sheet) Like 1909

...domaton on patent family members

Inters and Application No PCT/EP 98/03289

					I TO IZET	70/ 03209
	stant document d in search report	ł	Publication date		Patent family member(s)	Publication data
JP	08157521	A	18-06-1996	NONE	<u> </u>	<u> </u>
EP 0125911	A	21-11-1984	JP	1705121 C	27-10-1992	
				JP	3072091 B	15-11-1991
				JP	59207904 A	26-11-198
				CA	1231799 A	19-01-198
EP	EP 0086644	A	24-08-1983	JP	1688891 C	11-08-1998
				JP	3054122 B	19~08~199
				JP	58138706 A	17-08-198
•	•			AU .	559240 B	05-03-198
				AU	1131683 A	18-08-198
				CA	1201107 A	25-02-19 86
				U\$	5583188 A	10-12-199
EP 0360	0360491	Α	28-03-1990	JP	2077407 A	16-03-199
				JP	2677395 B	17-11-199
			CA	1334841 A	21-03-199	
			CN	1042156 A,B	16-05-199	
			DE	68911812 D	10- 02-199	
		•	DE	68911812 T	14-04-1994	
			ES	2062025 T	16-12-199	
			มร	4990477 A	05-02-199	
			US	5247031 A	21-09-199	
			JP	2167312 A	27-06-199	
			JP	2795476 B	10-09-1998	

- (72)発明者 チャドウィック ジョン イタリア、フェラーラ アイ―44100、ヴィア クロース ビアンカ、17
- (72)発明者 クリストフォリー アントニオ イタリア、エス、エム、マドレーナ アイ -45030、コルソ ベルリンギュー、9
- (72)発明者 アルビツァティ エンリコ イタリア、アローナ アイ―28041、ヴィ ア ローマ、64