# ЛЕКЦИЯ 8. Оценка регрессионной модели: что показывает R<sup>2</sup> и как понять, хорошая ли у вас модель

# Введение

#### На предыдущих занятиях вы научились:

строить простую, полиномиальную и множественную регрессию, использовать F-тест для проверки значимости,

добавлять качественные переменные,

интерпретировать коэффициенты.

Вы уже умеете получать формулу, но теперь пора научиться оценивать, насколько она действительно полезна.

Потому что регрессия — это не математика ради уравнения.

Это инструмент предсказания и объяснения. И нам важно знать:

Насколько хорошо эта модель объясняет данные?

## Основной вопрос лекции:

"Модель построена. А она вообще работает?"

# Что такое R<sup>2</sup> (коэффициент детерминации)?

Это главный показатель качества линейной модели.

Он показывает, **какую долю колебаний зависимой переменной** у **модель объясняет**.



 $R^2 = SSR / SST$ 

Где:

SSR — сумма квадратов, объяснённых моделью (Regression)

SST — общая сумма квадратов (Total variation)

#### Проще:

 ${\sf R^2}$  = Насколько хорошо модель "приближается" к реальности

# Интерпретация R<sup>2</sup>

| Значение R <sup>2</sup> | Что это значит                             |
|-------------------------|--------------------------------------------|
| 0.9 – 1.0               | Модель объясняет почти всё. Очень сильная. |
| 0.7 - 0.89              | Хорошо объясняет. Рабочая модель.          |
| 0.4 - 0.69              | Средняя. Возможно, чего-то не хватает.     |
| 0.1 - 0.39              | Слабая. Проверьте переменные и гипотезу.   |
| < 0.1                   | Почти не объясняет. Возможно, связи нет.   |

#### Важно:

#### R<sup>2</sup> всегда от 0 до 1

- Не может быть отрицательным
- Но может быть **высоким даже у плохой модели**, если есть мультиколлинеарность
- Или низким у модели, которая всё объясняет, если в данных высокий шум

## Пример

Гипотеза: Стресс влияет на успеваемость.

Построили модель:

 $R^2 = 0.62$ 

#### Вывод:

- 62% колебаний в оценках можно объяснить уровнем стресса
- Остальные 38% связаны с другими факторами (сон, преподаватель, мотивация и т.д.)

# Как получить R<sup>2</sup> в Excel и Google Sheets

#### **Google Sheets:**

=LINEST(B2:B10, A2:A10, TRUE, TRUE)

 $R^2$  будет в **четвёртом столбце второй строки** результата.

#### **Excel (русский):**

**=**ЛИНЕЙН(B2:B10; A2:A10; ИСТИНА; ИСТИНА)

Также вернёт массив, где R<sup>2</sup> отображается ниже коэффициентов.

Подводные камни:

X R<sup>2</sup> ≠ "насколько точна модель"

Он не показывает, насколько хорошо она предсказывает новые данные

X R<sup>2</sup> ≠ p-value

Он не говорит, **значима ли модель** — за это отвечает F-тест

💢 R² всегда растёт при добавлении переменных

Даже если переменная не влияет — R² будет расти!



Поэтому используйте корректированный R<sup>2</sup> (adjusted R<sup>2</sup>)

# Что такое Adjusted R<sup>2</sup>?

Это улучшенная версия R<sup>2</sup>, которая

- учитывает количество переменных
- "штрафует" модель за добавление слабых признаков

Часто используется при множественной регрессии.

## Сравнение R<sup>2</sup> и Adjusted R<sup>2</sup>

| Показатель              | Значение                                   |
|-------------------------|--------------------------------------------|
| R <sup>2</sup>          | Общая объясняющая сила модели              |
| Adjusted R <sup>2</sup> | Объясняющая сила с учётом числа переменных |

## Использование ИИ

| Инструмент            | Для чего использовать                                      |
|-----------------------|------------------------------------------------------------|
| Excel Copilot         | Автоматически выдает R <sup>2</sup> , визуализации         |
| ChatGPT               | Помогает интерпретировать R <sup>2</sup> и сравнить модели |
| Google Sheets Explore | Показывает объяснённую дисперсию сразу на графике          |

## Запрещено:

- Говорить: "модель хорошая", основываясь только на R<sup>2</sup>
- Не проверять F-тест и p-valueОставлять переменные ради "повышения  $R^2$ "
- Игнорировать Adjusted R<sup>2</sup> при множественной регрессии

### Вывод

- R<sup>2</sup> это не про красоту формулы.
- Это про то, насколько близко ваша модель к реальности.
- Вы научились не просто строить модель, а **оценивать её качество**, и это ключевой навык аналитика.