

§ 2.1 简单模型

问题1

将形状质量相同的砖块一一向右往外叠放,欲尽可能地延伸到远方,问最远可以延伸多大距离。

设砖块是均质的,长度与重量均为1,其重心在中点1/2砖长处,现用归纳法推导。

由第 n块砖受到的两个力的力矩相等,有:

$$1/2 - Z_n = (n-1) Z_n$$

故 $Z_n = 1/(2n)$,从而上面 n块砖向右推出的 总距离为,

$$\sum_{k=1}^{n} \frac{1}{2k}$$

$$n \to +\infty$$
 时, $\sum_{k=1}^{n} \frac{1}{2k} \to \sum_{n=1}^{\infty} \frac{1}{2n} = +\infty$

- 故砖块向右可叠至 任意远,这一结果多少有点出人意料。
- 为什么?

问题2

某人平时下班总是按预定时间到达某处,然后他妻子开车接他回家。有一天,他比平时提早了三十分钟到达该处,于是此人就沿着妻子来接他的方向步行回去并在途中遇到了妻子,这一天,他比平时提前了十分钟到家,问此人共步行了多长时间?

■ 条件似乎不够?

解答

- 换一种想法,问题就迎刃而解了。假如他的妻子遇到他后仍载着他开往会合地点,那么这一天他就不会提前回家了。提前的十分钟时间从何而来?
- 显然是由于节省了从相遇点到会合点,又从会 合点返回相遇点这一段路的缘故,故由相遇点 到会合点需开5分钟。而此人提前了三十分钟 到达会合点,故相遇时他已步行了二十五分 钟。

■ 上述解答隐含了哪些假设?

■思考题

问题3

■ 某人住在某公交线附近,该公交线路为在A、B两地间运行,每隔 10分钟A、B两地各发出一班车,此人常在离家最近的 C点等车,他发现了一个令他感到奇怪的现象: 在绝大多数情况下,先到站的总是由 B去A的车,难道由 B去A的车次多些吗?请你帮助他找一下原因。

A C B

解答

由于距离不同,设A到C行驶31分钟,B 到C要行驶 30分钟, 考察一个时间长度 为10分钟的区间,例如,可以从 A方向 来的车驶 离C站时开始, 在其后的 9分钟 内到达的乘客见到先来的车均为B开往A 的, 仅有最后1分钟到达的乘客才见到 由A来的车先到。由此可见,如果此人 到C站等车的时间是随机的,则他先遇 上B方向来的车的概率为 90%。

一问题4

将一张四条腿的方桌放在不平的地面上,不允许将桌子移到别处,但允许其绕中心旋转,是否总能设法使其四条腿同时落地?

- ■地面为连续曲面
- 方桌的四条腿长度相同
- 相对于地面的弯曲程度而言,方桌的腿 是足够长的
- 方桌的腿只要有一点接触地面就算着 地。

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

• 椅子位置 一利用正方形(椅脚连线)的对称性

用 θ (对角线与x轴的夹角)表示椅子位置

• 四只脚着地 椅脚与地面距离为零

距离是的函数

四个距离 (四只脚)

正方形 对称性

两个距离

A,C 两脚与地面距离之和 $\sim f(\theta)$

B,D 两脚与地面距离之和 $\sim g(\theta)$

正方形ABCD 绕O点旋转

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

地面为连续曲面

 \Box $f(\theta), g(\theta)$ 是连续函数

椅子在任意位置 至少三只脚着地 Arr 对任意 $\theta, f(\theta), g(\theta)$ 至少一个为0

数学问题

已知: $f(\theta)$, $g(\theta)$ 是连续函数;

对任意 θ , $f(\theta) \cdot g(\theta) = 0$;

且 g(0)=0, f(0)>0.

证明: 存在 θ_0 , 使 $f(\theta_0) = g(\theta_0) = 0$.

模型求解

给出一种简单、粗糙的证明方法

将椅子旋转90°,对角线AC和BD互换。

由g(0)=0, f(0)>0, 知 $f(\pi/2)=0$, $g(\pi/2)>0$.

 $\diamondsuit h(\theta) = f(\theta) - g(\theta),$ 则h(0) > 0和 $h(\pi/2) < 0$.

由f,g的连续性知h为连续函数,据连续函数的基本性

质, 必存在 θ_0 , 使 $h(\theta_0)=0$, 即 $f(\theta_0)=g(\theta_0)$.

因为 $f(\theta) \cdot g(\theta) = 0$,所以 $f(\theta_0) = g(\theta_0) = 0$.

评注和思考

建模的关键 ~ θ 和 $f(\theta)$, $g(\theta)$ 的确定

■ 若方桌改为长方形桌子,结论如何?

■ 若地面为球面的一部分,结论如何?

§ 2.2量纲分析法建模

量纲

物理量大都带有量纲,其中基本量纲通常是质量(用*M*表示)、长度(用*L*表示)、时间(用 *T*表示),有时还有温度(用 *②*表示)。其他物理量的量纲可以用这些基本量纲来表示,如速度的量纲为*LT-1*,加速度的量纲为 *LT-2*,力的量纲为 *MLT-2*,功的量纲为 *ML2T-2*等。

原理

量纲分析的原理: 当度量量纲的基本单位改 变时,公式本身并不改变,例如,无论长度取 什么单位,矩形的面积总等于长乘宽,即公式 S=ab并不改变。此外,在公式中只有量纲相 同的量才能进行加减运算,例如面积与长度是 不允许作加减运算的,这些限止在一定程度上 限定了公式的可取范围,即一切公式都要求其 所有的项具有相同的量纲, 具有这种性质的公 式被称为 是"量纲齐次"的。

pp. 34-37

§ 2.3 经验模型

插值拟合方法最小二乘法

当问题的机理非常不清楚难以直接利用 其他知识来建模时,一个较为自然的方 法是利用数据进行曲线拟合,找出变量 之间的近似依赖关系即函数关系。

最小二乘法

已知:测量得到的*n*组数据(*xi* , *yi*),*i*=1,...,*n*

假设:建模者判断 这n个点很象是分布在某条直线y=ax+b附近(但yi-(axi+b)=0一般不成立)

求:该直线方程(即求参数a和b)

使得:该直线为数据的"最好"表示

"最好"的逼近准则

- 所有数据点到直线的最近距离和最小
 - 非线性问题
- 所有数据点到直线的最近距离平方和最小
 - 线性问题

$$\sum_{i=1}^{n} [y_i - (ax_i + b)]^2 \longrightarrow \mathbb{R}^{n}$$

极小问题的解

■ 由极小值求解方法可得

其中
$$\chi$$
和 y
分别为 x_i 和 y_i
的平均值
$$a = \frac{\sum_{i=1}^{n} (x_i - \vec{x})(y_i - \vec{y})}{\sum_{i=1}^{n} (x_i - \vec{x})^2}$$
$$b = \vec{y} - a\vec{x}$$

线性问题

如果建模者判断变量间的关系并非线性 关系而是其他类型的函数,则可作变量 替换使之转化为线性关系或用类似方法 拟合

例1(举重成绩的比较)

举重是一种一般人都能看懂的运动,它 共分九个重量级,有两种主要的比赛方 法: 抓举和挺举。表中给出了到1977年 底为止九个重量级的世界纪录

举重世界记录数据

重量级(上限体	成绩			
重)	抓举(公斤)	挺举(公斤)		
52	109	141		
56	120.5	151		
60	130	161.5		
67.5	141.5	180		
75	157.5	195		
82.5	170	207.5		
90	180	221		
110	185	237.5		
110以上	200	255		

问题

显然,运动员体重越大,他能举起的重量也越 大,但举重成绩和运动员体重到底是怎样关系 的,不同量级运动员的成绩又如何比较优劣 呢?运动成绩是包括生理条件、心理因素等等 众多相关因素共同作用的结果,要建立精确的 模型至少现在还无法办到。但我们拥有大量的 比赛成绩纪录,根据这些数据不妨可以建立一 些经验模型。为简单起见,我们不妨取表中的 数据为例。

模型1 (线性模型)

将数据画在直角坐标系中可以发现,运动成绩与体量近似满足线性关系,只有110公斤级有点例外,两项成绩都显得较低。应用前面叙述的方法可求出近似关 系式*L=kB+C*,其中*B*为体重,*L*为举重成绩。你在作图 时*L*轴可以放 在50公斤或52公斤处,因为没有更轻级别的比赛,具体计算留给同学们自己去完成。

模型2 (幂函数模型)

线性模型并未得到广泛的接受,要改进结果,能够想到的自然首先是幂函数模型,即令 $L=kB^a$,对此式取对数,得到 $\ln L=\ln k+a \ln B$ 。将原始数据也取对数,问题即转化了线性模型,可用最小二乘法求出参数。几十年前英国和爱尔兰采用的比较举重成绩优劣的Austin公式: $L'=L/B^{3/4}$ 就是用这一方法求得的。

模型3 (经典模型)

经典模型是根据生理学中的已知结果和比例关系推导出来的 公式,应当说,它并不属于经验公式。为建立数学模型,先 提出如下一些假设:

- (1)举重成绩正比于选手肌肉的平均横截 面积A,即 $L=k_1A$
- (2)A正比于身高 l的平方,即 $A=k_2l^2$
- (3)体重正比于身高 l的三次方, 即 $B=k_3l^3$

根据上述假设,可得

方,即
$$A=k_2l^2$$

 E 次方,即 $B=k_3l^3$
 $L=k_1k_2(B/k_3)^{\frac{2}{3}}=KB^{\frac{2}{3}}$

显然,K越大则成绩越好,故可用 L' = LB ³ 来比较选手比赛成绩的优劣。

模型4 (O' Carroll公式)

经验公式的主要依据是比例关系,其假设条件非常粗糙,可信度不大,因而大多数人认为它不能令人信服。1967年,O'Carroll基于动物学和统计分析得出了一个现在被广泛使用的公式。O'Carroll模型的假设条件是:

(1) 人越大成绩越好。因而建议

(3) 根据的大小 $L' = L(B-35)^{-3}$

假设(1)、(2)是解剖学中来比较选手成绩的优劣。

Carroll将体重划分成两部分 $0^{-1}B_1$, B_0 为非肌肉重量。

根据三条假设可 得 $L=k(B-B_0)^{\beta}$,k和 β 为两个常数, $\beta=\frac{ab}{3}<\frac{2}{3}$ 此外,根据统计结果,他 得出 $B_0\approx 35$ 公斤, $\beta\approx\frac{1}{3}$

故有: $L = k(B - 35)^3$

模型5(Vorobyev公式)

这是一个前苏联使用的公式。建模者认为举重选手举起的不 光是重物,也提高了自己的重心,故其举起的总重量为 *L+B*,可以看出,他们更重视的是腿部肌肉的爆发力。应用 与模型4类似的方法,得出了按

$$L' = \frac{L + B}{B[0.45 (B - 60)/900]}$$

的大小比较成绩优劣的建议。

上述公式具有各不相同的基准,无法相互比较。为了使公式具有可比性,需要对公式稍作处理。例如,我们可以要求各公式均满足在 B=75公斤时有 L'=L,则上述各公式化为:

(1) Austin公式:

$$L' = L \left(\frac{75}{B}\right)^{3/4}$$

(2) 经典公式:

$$L' = L \left(\frac{75}{B}\right)^{7/3}$$

(3) O' Carroll公式:

$$L' = L \left(\frac{40}{B - 35}\right)^{7/3}$$

(4) Vorobyev公式:

$$L' = \frac{29250 (L+B)}{B (465-B)} - 75$$

将公式(1)—(4)用来比较1976年奥运会的抓举成绩,各一公式对九个级别冠军成绩的优劣排序如表 所示,比较结果较为一致,例如,对前三名的取法是完全一致的,其他排序的差异也较为微小。

体重(公斤)	抓举成绩 (公斤)	Austin	经典公 式	O' Carroll	Vorobyev
52	105	138.2(7)	134.0(8)	139.7(8)	138.8(7)
56	117.5	146.3(4)	142.8(6)	145.7(4)	146.6(4)
60	125	147.8(3)	145.0(3)	146.2(3)	147.7(3)
67.5	135	146.1(5)	144.8(5)	144.7(6)	145.8(5)
75	145	145.0(6)	145.0(3)	145.0(5)	145.0(6)
42.5	162.5	151.3(1)	152.2(1)	153.5(1)	152.1(1)
90	170	148.3(2)	150.5(2)	152.9(2)	150.3(2)
110	175	131.8(8)	135.6(7)	141.9(7)	138.5(8)

例2.体重与身高的关系

我们希望建立一个 体重与身高之间的关系 式,不难看出两者之间的关系不易通过 机理的分析得出,不妨可以采取 统计 方法,用数据来拟合出与实际情况较为 相符的经验公式。 为此,我们先作一番 抽样调查,测量了十五个不同高度的人 的体重, 列成了下表, 在抽样时, 各高 度的人都需经适当挑选,既不要太胖也 不要太瘦。

体重与身高数据

身高 h (米)	0.75	0.86	0.96	1.08	1.12
体重 w (公斤)	10	12	15	17	20
身高 h (米)	1.26	1.35	1.51	1.55	1.60
体重 w (公斤)	27	35	41	48	50
身高 h (米)	1.63	1.67	1.71	1.78	1.85
体重 w (公斤)	51	54	59	66	75

求解

• 将表中的数画 到h-w平面上,你会发现这些数据分布很接近某一<mark>指数曲线</mark>。为此,对h和w均取对数,令 $x=\ln h$, $y=\ln w$,将(xi, yi)再画到x-y平面中去(i=1,...,15),这次你会发现这些点几乎就分布在一条直线附近,令此直线的 方程为y=ax+b,用最小二乘法求得 $a\approx2.3$, $b\approx2.82$,故可取y=2.32x+2.84,即 $\ln w=2.32\ln h+2.84$,故有w=17.1 $h^{2.32}$

■ 必须经过数据点

- Lagrange插值法
- Newton插值法
- Spline插值法
- Radial Basis Function插值法
- ...

- **pp.** 50
 - **3**, 4, 8, 26,27,28

上机作业

- ■最小二乘法求解
 - pp. 51: 11, 12, 13, 14, 15, 19, 20
- 编程或用数学工具
- Submit deadline:
 - Sep. 20 (next Tuesday)

