

Parallélisation d'une méthode d'éléments finis pour la résolution de l'équation de la chaleur

Calcul parallèle scientifique - Soutenance de Projet Master 2 Analyse Modélisation Simulation

Pierre-Emmanuel Emeriau & Gaétan Facchinetti

Université Paris-Saclay
Ecole Nationale Supérieure des Techniques Avancées
Ecole Normale Supérieure Paris-Saclay

24 novembre 2016

1. Introduction du problème

L'équation de la chaleur La métode des éléments finis

2. Méthode de travail

Découpage du problème sur les processeurs Le découpage en pratique

3. Parallélisation des solveurs

Méthode de Jacobi Méthode de Gauss-Seidel

Introduction du problème L'équation de la chaleur La métode des éléments finis

Méthode de travail Découpage du problème sur les processeurs Le découpage en pratique

3. Parallélisation des solveurs Méthode de Jacobi Méthode de Gauss-Seidel

1. Introduction du problème 1. L'équation de la chaleur

On considère un domaine Ω de \mathbb{R}^2 .

Nous ne nous interessons qu'au problème stationnaire.

- ▶ $u(\mathbf{x})$ la température au point $\mathbf{x} \in \Omega$.
- ▶ $\mathbf{j}(\mathbf{x})$ le flux de chaleur au point $\mathbf{x} \in \Omega$.
- $f(\mathbf{x})$ Energie produite par unité de surface au point $\mathbf{x} \in \Omega$.
- \triangleright λ conductivité termique, constante pour un matériaux uniforme.

La conservation de l'energie et la loi de Fourier donnnent alors :

$$\operatorname{div}(\mathbf{j}) = f \quad \text{et} \quad \mathbf{j} = -\lambda \nabla u \tag{1}$$

D'où, l'équation de la chaleur en régme stationnaire :

$$\begin{cases} \Delta u = f & \text{dans } \Omega \\ u = g & \text{sur } \partial \Omega \end{cases}$$
 (2)

1. Introduction du problème 2. La métode des éléments finis

On considère un relèvement u_0 de $g \in H^{1/2}(\Omega)$ dans $H^1(\Omega)$. On pose $\tilde{u} = u - u_0$. Le problème (2) se réécrit :

Trouver $\tilde{u} \in H_0^1(\Omega)$ tel que

$$\forall v \in H_0^1 \quad \int_{\Omega} \nabla \tilde{u} \nabla v = \int_{\Omega} f v \tag{3}$$

On effectue une résolution par éléments finis de Lagrange P_1 . Soit $T = \{\tau_l\}_l$ une famille de triangulation de Ω . Soit $V_h^0 = \{v \in \mathcal{C}^0(\Omega) \mid \forall l \quad v_{|\tau_l} \in P_1(\tau_l)\}$. Soit $(\phi_j)_{1 \leq j \leq N_l}$ une base de V_h^0 avec $N_i = dim(V_h^0)$.

On décompose \tilde{u} sur cette base : $\tilde{u} = \sum_{j=1}^{N_i} \tilde{u}_j \phi_j$.

$$\text{Ainsi,} \quad (3) \Rightarrow \forall k \in \llbracket 1, N_i \rrbracket \quad \sum_{j=1}^{N_i} \tilde{u}_j \int_{\Omega} \nabla \phi_j \nabla \phi_k = \int_{\Omega} f \phi_k \quad (4)$$

1. Introduction du problème 2. La métode des éléments finis

Ceci permettrait de réécrire le problème sous forme matricielle :

On pose
$$\forall (p,q) \in \llbracket 1, N_i \rrbracket$$
 $\tilde{\mathbb{K}}_{p,q} = \int_{\Omega} \nabla \phi_p \nabla \phi_q$.
Ainsi que $\forall p \in \llbracket 1, N_i \rrbracket$ $\tilde{f}_p = \int_{\Omega} f \phi_p$.
On écrit $\tilde{\mathbf{u}} = (\tilde{u}_1, \dots, \tilde{u}_N)^T$.

$$\tilde{\mathbb{K}}\mathbf{u} = \tilde{\mathbf{f}} \tag{5}$$

Prise en compte dans le code (lors de l'assemblage et de la pseudo-élimination) du fait que l'on résout sur u et non \tilde{u} . En notant u_p la valeur de u au noeud p et le vecteur $\mathbf{u} = (u_1, \dots, u_N)^T$ avec N le nombre total de points ($N = N_i + N_b$ avec N_b le nombre de points sur le bord) le système s'écrit alors :

$$\mathbb{K}_{elim}\mathbf{u} = \mathbf{f}_{elim} \tag{6}$$

universite

Introduction du problème
 L'équation de la chaleur
 La métode des éléments finis

2. Méthode de travail Découpage du problème sur les processeurs Le découpage en pratique

3. Parallélisation des solveurs Méthode de Jacobi Méthode de Gauss-Seidel

2. Méthode de travail 1. Découpage du problème sur les processeurs

Définition des variables de parallélisation

- ▶ myRank : le rank du processeur sur lequel on travaille
- \triangleright nbTask : le nombre de tâches égal au nombre de partitions + 1

C'est le processeur 0 qui s'occupe de l'interface

Organisation du découpage :

FIGURE: Schéma du découpage entre processeurs

2. Méthode de travail 2. Le découpage en pratique

Definition des vecteurs et matrices sur chaque processeur :

- ightharpoonup Définition des vecteurs de taille globale N
- \blacktriangleright Définition des matrices sparse de taille globale N

Problèmes qu'il nous a fallu résoudre au préalable :

- ▶ Construction de tableau étiquetant les noeurs sur chque proc
- ▶ Attribution à chaque processeur de ses triangles et noeuds
- ▶ Initialisation/communication des listes de noeuds à communiquer
- ▶ Pseudo-elimination sur l'ensemble des noeuds du bord
- ▶ Nettoyage des lignes incompètes de \mathbb{K}_{elim}
- ▶ Suppression des coefficients parasites de \mathbf{f}_{elim}

Introduction du problème
 L'équation de la chaleur
 La métode des éléments finis

2. Méthode de travail

Découpage du problème sur les processeurs Le découpage en pratique

3. Parallélisation des solveurs Méthode de Jacobi Méthode de Gauss-Seidel

3. Parallélisation des solveurs 1. Méthode de Jacobi

Algorithme avec communications:

```
1: M = diag(\mathbb{K}_{elim}) et N = -\mathbb{K}_{elim} + M
 2: for k = 1,1000 do
         \mathbf{u}_k = M^{-1}N\mathbf{u}_k + M^{-1}\mathbf{f}_{elim}
 3:
        MPI BCAST(p_0 \to p_{\text{mvRank} \neq 0}, \mathbf{u}_{k|\text{interface}})
 4:
         if mvRank == 0 then
 5:
               for i = 1, nbTask-1 do
 6:
                   MPI RECV(p_i \to p_0, \mathbf{u}_{k|\text{voisins interface}})
 7:
              end for
 8:
 9:
         else
               MPI SEND(p_{\text{myRank}} \rightarrow p_0, \mathbf{u}_{k|\text{voisins interface}})
10:
         end if
11:
12:
         Calcul de la norme du residu : \|\mathbf{r}_k\|
13: end for
```

14: Reconstruction de la solution sur p_0

3. Parallélisation des solveurs 1. Méthode de Jacobi

Calcul de la norme du résidu :

```
1: ...

2: \mathbf{r}_{k} = \mathbb{K}_{elim}\mathbf{u}_{k} - \mathbf{f}_{elim}

3: S = (\mathbf{r}_{k}, \mathbf{r}_{k})

4: MPI\_ALLREDUCE(p_{myRank} \rightarrow p_{0}, MPI\_SUM, S, Res : S_{t})

5: \|\mathbf{r}_{k}\| = \sqrt{S_{t}}

6: \mathbf{if} \|\mathbf{r}_{k}\| < \epsilon \|\mathbf{r}_{0}\| then

7: EXIT

8: \mathbf{end} \ \mathbf{if}

9: ...
```

Reconstruction de la solution :

```
1: ...
2: MPI REDUCE(p_{\text{mvRank}} \rightarrow p_0, MPI SUM, \mathbf{u}_{k|\text{mvRank}}, Res : \mathbf{u})
```

universitė

3. Parallélisation des solveurs2. Méthode de Gauss-Seidel

Frame de test

4. Resultats

Visualisation de la solution du ParaView

4. Resultats

Comparaison des temps de calcul sur gin :

