Лабораторная работа 3. Исследование среднего времени наработки до отказа и среднего времени восстановления живучих распределенных вычислительных систем

Имеется живучая распределенная вычислительная система (ВС) укомплектованная N одинаковыми элементарными машинами (ЭМ). Заданы минимально допустимое число nработоспособных ЭМ. λ – интенсивность любой потока отказов ИЗ N элементарных машин $([\lambda] = 1/4),$ m – количество восстанавливающих **устройств** восстанавливающей системы и ц – интенсивность потока восстановления элементарных машин одним восстанавливающим устройством ($[\mu] = 1/4$).

В инженерной практике при анализе функционирования живучих ВС рассматривают вектор $\boldsymbol{\theta}$ среднего времени безотказной работы и вектор \boldsymbol{T} среднего времени восстановления вычислительной системы

$$\boldsymbol{\theta} = \{\theta_n, \theta_{n+1}, ..., \theta_N\}, \boldsymbol{T} = \{T_n, T_{n+1}, ..., T_N\}.$$

Для расчета компонент векторов рекомендуется использовать "частотный метод" (см. лабораторную работу \mathfrak{N} 1).

В рамках лабораторной работы требуется выполнить нижеследующие задания.

1. Написать программу расчета частотным методом компонентов вектора θ среднего времени безотказной работы и вектора T среднего времени восстановления живучей вычислительной системы

2. Заполнить нижеследующую таблицу

Параметры:
$$N = 65536$$
; $\lambda \in \{10^{-6}, 10^{-7}, 10^{-5}\}$; $\mu \in \{1, 10, 100, 1000\}$, $m \in \{1, 2, 3\}$; $n \in \{65527, 65528, ..., 65536\}$.

№	λ	μ	m	n	$\mathbf{\theta} = \{\theta_n, \theta_{n+1}, \dots, \theta_N\}$	$T = \{T_n, T_{n+1},, T_N\}$

По таблице построить графики, отражающие зависимость значений компонентов векторов θ и T от значений параметров λ , μ , m и n.

3. Выполнить нижеследующие задания

- 1. Дать определение живучей ВС.
- 2. Объяснить отличие структурной живучести ВС от потенциальной?
- 3. Дать определение основных показателей живучести ВС.
- 4. Перечислить параметры, варьирование значений которых позволяет изменить значения компонентов векторов $\boldsymbol{\theta}$ и \boldsymbol{T} ?