Problem

1. Consider the following game.

	w	\boldsymbol{x}	y	z
a	4,4	1,1	0,2	0, 1
b	1, 1	1, 2	1,0	1,6
c	0,0	2,0	3, 2	0,1
d	0,0	0,5	0,2	6, 1

- (a) Find a mixed strategy for the row player to strictly dominate strategy b.
- (b) Compute the set of all Nash equilibria (including mixed strategies). Hint: In any mixed strategy Nash equilibrium, we put zero probability on strictly dominated strategies.

Solution (a)

Notice:

$$\frac{7}{18}a + \frac{7}{18}c + \frac{4}{18}d = (\frac{14}{9}, \frac{7}{6}, \frac{7}{6}, \frac{4}{3}) > (1, 1, 1, 1)$$

Solution (b)

After eliminate b:

	w	x	y	z
a	4,4	1,1	0, 2	0, 1
c	0,0	2,0	3, 2	0, 1
d	0,0	0,5	0, 2	6, 1

z is strictly dominated by y:

	w	\boldsymbol{x}	y
a	4,4	1,1	0, 2
c	0,0	2,0	3, 2
d	0,0	0,5	0, 2

d is strictly dominated by a and c:

	w	x	y
a	4,4	1,1	0, 2
c	0,0	2,0	3, 2

x is strictly dominated by y:

		w	y
	a	4,4	0, 2
•	c	0,0	3, 2

Therefore the mixed nash equilibrium:

$$\left(\left(\frac{1}{2}, 0, \frac{1}{2}, 0 \right), \left(\frac{3}{7}, 0, \frac{4}{7}, 0 \right) \right)$$

1.12

Problem

Find the mixed-strategy Nash equilibrium of the following normal-form game.

	L	R
T	2, 1	0, 2
B	1,2	3,0

Solution

We need:

$$l+2r=2l$$

$$2t + b = 3b$$

Then the nash equilibrium:

$$((\frac{1}{2},\frac{1}{2}),(\frac{2}{3},\frac{1}{3}))$$

1.13

Problem

Each of two firms has one job opening. Suppose that (for reasons not discussed here but relating to the value of filling each opening) the firms offer different wages: firm i offers the wage w_i , where $(1/2)w_1 < w_2 < 2w_1$. Imagine that there are two workers, each of whom can apply to only one firm. The workers simultaneously decide whether to apply to firm 1 or to firm 2. If only one worker applies to a given firm, that worker gets the job; if both workers apply to one firm, the firm hires one worker at random and the other worker is unemployed (which has a payoff of zero). Solve for the Nash equilibria of the workers' normal-form game. (For more on the wages the firms will choose, see Montgomery [1991].)

Solution

Pure strategy equilibrium:

Mixed strategy equilibrium:

we have:

$$rac{1}{2}w_1l + w_1r = w_2l + rac{1}{2}w_2r$$

$$rac{1}{2}w_1u + w_1d = w_2u + rac{1}{2}w_2d$$

Then we get:

$$\left(\left(\frac{2w_1-w_2}{w_1+w_2}, \frac{2w_2-w_1}{w_1+w_2}\right), \left(\frac{2w_1-w_2}{w_1+w_2}, \frac{2w_2-w_1}{w_1+w_2}\right)\right)$$