CAPE INSTITUTE OF

TECHNOLOGY

LEVENGIPURAM

IBM PROJECT REPORT

WEB PHISHING DETECTION

Team ID:PNT2022TMID3422

Team Members

Aishwarya.V

Amisha.G

Nanthini.K

Ponvijaya.P

TABLE OF CONTENTS

1. INTRODUCTION

- a. Project Overview
- b. Purpose

2. LITERATURE SURVEY

- a. Existing problem
- b. References
- c. Problem Statement Definition

3. IDEATION& PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming
- c. Proposed Solution
- d. Problem Solution fit

4. REQUIREMENT ANALYSIS

- a. Functional requirement
- b. Non-Functional requirements

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECTPLANNING & SCHEDULING

- a. Sprint Planning & Estimation
- b. Sprint Delivery Schedule
- c. Reports from JIRA

7. CODING & SOLUTIONING (Explain thefeatures added in the project along with code)

- a. Feature 1
- b. Feature 2
- c. Database Schema (if Applicable)

8. TESTING

- a. Test Cases
- b. User Acceptance Testing

9. **RESULTS**

a. Performance Metrics

10.ADVANTAGES& DISADVANTAGES

- 11.CONCLUSION
- 12.FUTURE SCOPE
- 13.**APPENDIX**

Source code

GitHub & Project Demo Link

ABSTRACT

Phishing is the most commonly used social engineering and cyber attack. Through such attacks, the phisher targets naive online users by tricking them into revealing confidential information, with the purpose of using it fraudulently. In order to avoid getting phished, Users should haveawareness of phishing websites. Have a blacklist of phishing websites which requires the knowledge of website being detected as phishing.

Detect them intheir early appearance, using machine learning and deep neuralnetwork algorithms. Of the above three, the machine learningbased method is provento be most effective than the other methods. A phishing website is a commonsocial method mimics trustful uniformresource engineering that locators (URLs) and webpages. The objective of this project is to train machine learning models anddeep neural nets on the dataset created to predict phishing websites. Both phishing and benign URLs of websites are gathered to form a dataset and from them required URL and website content-based features are extracted. The performance level of each model is measured and compared.

Keywords: Deep learning, Machine learning, Phishing website attack, Phishing website detection, Anti-phishing website, Legitimate website, Phishingwebsite datasets, Phishingwebsite features.

1.INTRODUCTION

a.PROJECT OVERVIEW

There are a number of users who purchase products online and make payments through e-banking. There are ebanking websites that ask users to provide sensitive data such as username, password & credit card details, etc., often for malicious reasons. This type of e-banking website is known as a phishing website. Web service is one of the key communications software services for the Internet. Web phishing is one of many security threats to web services on the Internet. Common threats of web phishing are

- a. Web phishing aims to steal private information, such as usernames, passwords, and credit card details, by way of impersonating a legitimate entity.
- b. It will lead to information disclosure and property damage.
- c. Large organizations may get trapped in different kinds of scams.
- d. This Guided Project mainly focuses on applying a machine-learning algorithm to detect Phishing websites.

In order to detect and predict e-banking phishing websites, we proposed an intelligent, flexible and effective system that is based on using classification algorithms. We implemented classification algorithms and techniques to extract the phishing datasets criteria to classify their legitimacy. The e-banking phishing website can be detected based on some important characteristics like URL and domain identity, and security and encryption criteria in the final phishing detection rate. Once a user makes a transaction online when he makes payment through an e-banking website our system will use a data mining algorithm to detect whether the e-banking website is a phishing website or not.

b. PURPOSE

As technology is growing, phishing methods have started to progress briskly and this should be avoided by making use of anti-phishing techniques to detect phishing. Machine learning is a authoritative tool that can be used to aim against phishing assaults. There are several methods or approaches to identify phishing websites.

The purpose of Phishing Domain Detection is **detecting phishing domain names**. Therefore, passive queries related to the domain name, which we want to classify as phishing or not, provide useful information to us.

A measurement for phishing detection is **the number of suspicious e-mails reported to the security team**. This measurement is designed to evaluate the number of employees who followed the proper procedure for reporting suspicious messages.

2.LITERATURE SURVEY

a. EXISTING PROBLEM

Phishing attacks are one of the most common security challenges that both individuals and companies face in keeping their information secure. Whether it's getting access to passwords, credit cards, or other sensitive information, hackers are using email, social media, phone calls, and any form of communication they can to steal valuable data. Businesses, of course, are a particularly worthwhile target.

COMMON TYPES OF PHISHING ATTACKS AGAINST BUSINESSES

Company Impersonation

One of the most common forms of phishing is where attackers impersonate your brand. This is typically done with an email connected to a domain very similar to the target company (e.g., "first.name@amazon-support"). It's also a difficult attack for companies to look out for due to the fact that you won't know until someone falls for it or alerts you.

Spear phishing

This type of scheme involves using a fake company name (impersonation) but also key details about the target. Muck like in sales, a rep finds the name, position and other personalization and includes that in a pitch email. Attackers find those same tokens and use it to compel more victims into their trap. It's an especially dangerous ploy.

Email Account Takeover

All members of your executive and management team are vulnerable. If a phishing scammer acquires the email credentials of high-profile leadership, it's likely they'll target anyone they can using that very email address. Potential targets would be: colleagues, team members and even customers (if they've already obtained this information via hack).

Phishing Emails

Similar to the email account takeover scam, this phishing attack is done via email. The difference is the phishing scammer uses an email address that resembles a legitimate email address, person or company. The email will include a request to click a link, change a password, send a payment, respond with sensitive information, or open a file attachment.

Phone Phishing or Voice Phishing

Using Voice over Internet Protocol (VoIP) technology, scammers, again, impersonate companies. This technique also employs the other types of phishing including using personal details about targets and impersonating individuals of the company (e.g., the CEO) in order to get a higher take on the overall scam.

b. REFERENCES

- a. Routhu Srinivasa Rao1 , Alwyn Roshan Pais :Detection of phishing websites using anefficient feature-based machine learning framework :In Springer 2018. Volume 3, Issue 7, September-october-2018 | http://ijsrcseit.com Purvi Pujara et al. Int J S Res CSE & IT. 2018September-October-2018; 3(7): 395-399 399
- b. Chunlin Liu, Bo Lang :Finding effective classifier for malicious URL detection :
- c. InACM,2018
- d. Sudhanshu Gautam, Kritika Rani and Bansidhar Joshi: Detecting Phishing Websites Using Rule-Based Classification Algorithm: A Comparison: In Springer, 2018.

- e. M. Amaad Ul Haq Tahir, Sohail Asghar, Ayesha Zafar, Saira Gillani : A Hybrid Model to Detect Phishing-Sites using Supervised Learning Algorithms :In International Conference on Computational Science and Computational Intelligence IEEE ,2016.
- f. Hossein Shirazi, Kyle Haefner, Indrakshi Ray: Fresh-Phish: A Framework for Auto- Detection of Phishing Websites: In (International Conference on Information Reuse and Integration (IRI)) IEEE, 2017.
- g. Ankit Kumar Jain, B. B. Gupta: Towards detection of phishing websites on client-sideusing machine learning based approach: In Springer Science+Business Media, LLC, part of Springer Nature 2017
- h. Bhagyashree E. Sananse, Tanuja K. Sarode: Phishing URL
 Detection: A MachineLearning and Web Mining-based Approach:
 In International Journal of ComputerApplications, 2015
- i. Mustafa AYDIN, Nazife BAYKAL : Feature Extraction and Classification PhishingWebsites Based on URL : IEEE,2015
- j. Priyanka Singh, Yogendra P.S. Maravi, Sanjeev Sharma: Phishing Websites Detectionthrough Supervised Learning Networks: In IEEE,2015
- k. Pradeepthi. K V and Kannan. A: Performance Study of Classification Techniques for Phishing URL Detection: In 2014 Sixth International Conference on Advanced Computing(ICoAC) IEEE,2014
- Luong Anh Tuan Nguyen†, Ba Lam To†, Huu Khuong Nguyen† and Minh Hoang Nguyen: Detecting Phishing Web sites: A Heuristic URL-Based Approach: In The 2013International Conference on Advanced Technologies for Communications (ATC'13)
- m. Ahmad Abunadi, Anazida Zainal ,Oluwatobi Akanb: Feature Extraction Process: APhishing Detection Approach: In IEEE, 2013.

c.PROBLEM STATEMENT DEFINITION

3.IDEATION& PROPOSED SOLUTION

a.EMPATHY MAP CANVAS

b.IDEATION& BRAINSTORMING

c.PROPOSED SOLUTION

S.N O.	PARAMETER	DESCRIPTON			
1.	Problem	Web phishing aims to steal private information,			
	Statement(Probl	such as usernames, passwords, and credit card			
	em to be solved)	details, by way of impersonating a legitimate			
		entity.			
		• It will lead to information disclosure and			
		property damage.			
		 Large organizations may get trapped in different kinds of scams. 			

2.	Idea /Solution	a. In order to detect and predict e-banking
	description	phishing websites, we proposed an intelligent,
		flexible and effective system that is based on
		using classification algorithms. We
		implemented classification algorithms and
		techniques to extract the phishing datasets
		criteria to classify their legitimacy.

3.	Novelty /Uniqueness	b. The e-banking phishing website can be detected based on some important characteristics like URL and domain identity, and security and encryption criteria in the final phishing detection rate. Once a user makes a transaction online when he makes payment through an e-banking website our system will use a data mining algorithm to detect whether the e-banking website is a phishing website or not.
4.	Social Impact /Customer Satisfaction	c. The feasibility of implementing this idea is moderate neither easy nor tough because the system needs to satisfy the basic requirements of the customer as well as it should act as a bridge towards achieving high accuracy on predicting and analysing the detected websites or files to protect our customer to the fullest.

5.	Business Model	d. People buy subscription annually,to protect their files both locally and at remote location
	(Revenue Model)	with the help of our cloud integrated flask app for web phishing detection.

6. Scalability of the Solution

a. By implementing this system, the people can efficiently and effectively to gain knowledge about the web phishing techniques and ways to eradicate them by detection. This system can also be integrated with the future technologies.

d.PROBLEM SOLUTION FIT

4.REQUIREMENT ANALYSIS

a.FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Verifying input	User inputs an URL (Uniform Resource
		Locator) in necessary field to check its
		validation.
FR-2	Website Evaluation	Model evaluates the websiteusing Blacklist
		and Whitelist approach
FR-3	Extraction and Prediction	It retrieves features based on heuristics and
		visual similarities. The URL is predicted by
		the model using Machine Learning methods
		such as Logistic Regression and KNN.
FR-4	Real Time monitoring	The use of Extension plugin should provide
		a warning pop-up when they visit a website
		that is phished.
		Extension plugin will have the capability to
		also detect latest and new phishing websites
FR-5	Authentication	Authentication assures secure site, secure
		processes and enterprise information
		security.

b.NONFUNCTIONAL REQUIREMENTS

FR	Non-Functional	Description
No.	Requirement	

NFR-1	Usability	Analysis of consumers' product usability in the design process with user experience as the core may certainly help designers better grasp users' prospective demands in web phishing detection, behaviour, and experience.
NFR-2	Security	It guarantees that any data included within the system or its components will be safe from malware threats or unauthorised access. If you wish to prevent unauthorised access to the admin panel, describe the login flow and different user roles as system behaviour or user actions.
NFR-3	Reliability	It specifies the likelihood that the system or its component will operate without failure for a specified amount of time under prescribed conditions.
NFR-4	Performance	It is concerned with a measurement of the system's reaction time under various load circumstances.
NFR-5	Availability	It represents the likelihood that a user will be able to access the system at a certain moment in time. While it can be represented as an expected proportion of successful requests, it can also be defined as a percentage of time the system is operational within a certain time period.
NFR-6	Scalability	It has access to the highest workloads that will allow the system to satisfy the performance criteria. There are two techniques to enable the system to grow as workloads increase: Vertical and

	horizontal scaling.	

5.PROJECT DESIGN

a.DATAFLOW DIAGRAM

b.SOLUTION & TECHNICAL ARCHITECTURE Solution Architecture

Technical architecture

c.USER STORIES

Use the below template to list all theuser stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard					
Customer (Web user)	User input	USN-1	As a user i can input the particular URL in the required field and waiting for validation.	I can go access the website without any problem	High	Sprint-1
Customer Care Executive	Feature extraction	USN-1	After i compare in case if none found on comparison then we can extract feature using heuristic and visual similarity approach.	As a User i can have comparison between websites for security.	High	Sprint-1
Administrator	Prediction	USN-1	Here the Model will predict the URL websites using Machine Learning algorithms such as Logistic Regression, KNN	In this i can have correct prediction on the particular algorithms	High	Sprint-1
	Classifier	USN-2	Here i will send all the model output to classifier in order to produce final result.	I this i will find the correct classifier for producing the result	Medium	Sprint-2

6.PROJECT PLANNING & SCHEDULING a.SPRINT PLANNING & ESTIMATION

b.SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

c. Reports from JIRA

7.CODING& SOLUTIONING

a. **Feature 1**

#app.py

importing requiredlibraries

```
from feature import FeatureExtraction
from flask import Flask, request, render_template
import numpy asnp
import pandasas pd
from sklearn import metrics
importwarnings
import pickle
warnings.filterwarnings('ignore')
file = open("model.pkl", "rb")
gbc = pickle.load(file)
file.close()
app = Flask( name )
@app.route("/", methods=["GET", "POST"])
def index():
  if request.method == "POST":
    url=request.form["url"]
    obj = FeatureExtraction(url)
    x = np.array(obj.getFeaturesList()).reshape(1, 30)
```

```
y_pred = gbc.predict(x)[0]
#1 is safe
#-1 is unsafe
y_pro_phishing = gbc.predict_proba(x)[0, 0]
y_pro_non_phishing = gbc.predict_proba(x)[0, 1]#
if(y_pred ==1):
pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100)
return render_template('index.html', xx=round(y_pro_non_phishing, 2), url=url)
return render_template("index.html", xx=-1)

if __name___ == " main ":
    app.run(debug=True, port=2002)
```

b. **Feature 2**

```
#feature.py
import ipaddress
import re
import urllib.request
from bs4 import BeautifulSoup
import socket
import requests
from googlesearch importsearchimport
whois
from datetime importdate, datetime
importtime
```

from dateutil.parser importparse as date_parse

from urllib.parse import urlparse

```
class FeatureExtraction:
 features = []
 def __init_(self, url):
    self.features = []
    self.url = url
    self.domain = ""
    self.whois_response = ""
    self.urlparse = ""
    self.response = ""
    self.soup = ""
    try:
      self.response = requests.get(url)
      self.soup = BeautifulSoup(response.text,
    'html.parser')except:
      pass
    try:
      self.urlparse = urlparse(url)
      self.domain = self.urlparse.netloc
    except:
      pass
```

```
try:
  self.whois_response = whois.whois(self.domain)
except:
  pass
self.features.append(self.UsingIp())
self.features.append(self.longUrl())
self.features.append(self.shortUrl())
self.features.append(self.symbol())
self.features.append(self.redirecting())
self.features.append(self.prefixSuffix())
self.features.append(self.SubDomains())
self.features.append(self.Hppts())
self.features.append(self.DomainRegLen())
self.features.append(self.Favicon())
self.features.append(self.NonStdPort())
self.features.append(self.HTTPSDomainURL())
self.features.append(self.RequestURL())
self.features.append(self.AnchorURL())
self.features.append(self.LinksInScriptTags())
self.features.append(self.ServerFormHandler())
self.features.append(self.InfoEmail())
self.features.append(self.AbnormalURL())
self.features.append(self.WebsiteForwarding())
self.features.append(self.StatusBarCust())
```

```
self.features.append(self.DisableRightClick())
  self.features.append(self.UsingPopupWindow())
  self.features.append(self.IframeRedirection())
  self.features.append(self.AgeofDomain())
  self.features.append(self.DNSRecording())
  self.features.append(self.WebsiteTraffic())
  self.features.append(self.PageRank())
  self.features.append(self.GoogleIndex())
  self.features.append(self.LinksPointingToPage())
  self.features.append(self.StatsReport())
# 1.UsingIp
def UsingIp(self):
  try:
    ipaddress.ip_address(self.url)
    return -1
  except:
       return 1
# 2.longUrl
def longUrl(self):
  if len(self.url) <54:
    return 1
  if len(self.url) >= 54 and len(self.url) <=75:
    return 0
```

```
return -1
    #3.shortUrl
  def shortUrl(self):
    match = re.search('bit\.ly|goo\.gl|shorte\.st|go2l\.ink|x\.co|ow\.ly|t\.co|tinyurl|tr\.im|is\.gd|cli\.gs|'
'yfrog\.com|migre\.me|ff\.im|tiny\.cc|url4\.eu|twit\.ac|su\.pr|twurl\.nl|snipurl\.com|'
'short\to|BudURL\com|ping\tm|post\ty|Just\tas|bkite\com|snipr\com|fic\tkr|loopt\tus|'
'doiop\.com|short\.ie|kl\.am|wp\.me|rubyurl\.com|om\.ly|to\.ly|bit\.do|t\.co|lnkd\.in|'
                'db\.tt|qr\.ae|adf\.ly|goo\.gl|bitly\.com|cur\.lv|tinyurl\.com|ow\.ly|bit\.ly|ity\.im|'
'q\.gs|is\.gd|po\.st|bc\.vc|twitthis\.com|u\.to|j\.mp|buzurl\.com|cutt\.us|u\.bb|yourls\.org|'
'x\co|prettylinkpro\com|scrnch\com|filoops\info|vzturl\com|qr\net|1url\com|tweez\label{eq:com} weez\label{eq:com}
d|tr\.im|link\.zip\.net', self.url)
     if match:
       return -1
     return 1
  # 4.Symbol@def
  symbol(self):
    if re.findall("@", self.url):
       return -1
     return 1
  # 5.Redirecting// def
  redirecting(self):
```

```
if self.url.rfind('//') > 6:
    return -1
  return 1
# 6.prefixSuffix
def prefixSuffix(self):
  try:
    match = re.findall('\-', self.domain)if
    match:
       return -1
    return 1
  except:
    return -1
#7.SubDomains
def SubDomains(self):
  dot_count = len(re.findall("\.", self.url))
  if dot_count == 1:
    return 1
  elif dot_count == 2:
    return 0
  return -1
#8.HTTPS
def Hppts(self):
  try:
```

```
https = self.urlparse.schemeif
    'https' in https:
      return 1
    return -1
  except:
    return 1
#9.DomainRegLen
def DomainRegLen(self):
  try:
    expiration_date = self.whois_response.expiration_date
    creation_date = self.whois_response.creation_date try:
      if(len(expiration_date)): expiration_date
         = expiration_date[0]
    except:
      pass
    try:
      if(len(creation_date)): creation_date
         = creation_date[0]
    except:
      pass
    age = (expiration_date.year-creation_date.year)*12 + \
      (expiration_date.month-creation_date.month)
    if age >= 12:
      return 1
    return -1
```

```
except:
     return -1
# 10. Favicon
def Favicon(self):
  try:
    for head in self.soup.find_all('head'):
       for head.link in self.soup.find_all('link', href=True):
          dots = [x.start(0)]
              for x in re.finditer('\.', head.link['href'])]
         if self.url in head.link['href'] or len(dots) == 1 or domain in head.link['href']:
            return1
     return -1
  except:
     return -1
#11. NonStdPort
def NonStdPort(self):
  try:
     port = self.domain.split(":")if
    len(port) > 1:
       return -1
     return 1
  except:
     return -1
```

#12. HTTPSDomainURL

```
def HTTPSDomainURL(self):
  try:
     if 'https' in self.domain:
       return -1
     return 1
  except:
     return -1
# 13. RequestURL
def RequestURL(self):
  try:
     for img in self.soup.find_all('img', src=True):
       dots = [x.start(0)forx in re.finditer('\.', img['src'])]
       if self.url in img['src'] or self.domain in img['src'] or len(dots) == 1:success
          = success+ 1
       i = i+1
     for audio in self.soup.find_all('audio', src=True):
       dots = [x.start(0)forx in re.finditer('\.', audio['src'])]
       if self.url in audio['src'] or self.domain in audio['src'] or len(dots) == 1:
          success= success + 1
       i = i+1
     for embed in self.soup.find_all('embed', src=True):
       dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', embed['src'])}]
       if self.urlin embed['src'] or self.domain in embed['src'] or len(dots) == 1:
```

```
success= success + 1
       i = i+1
     for iframe in self.soup.find_all('iframe', src=True):
       dots = [x.start(0)for xin re.finditer('\.', iframe['src'])]
       if self.urlin iframe['src'] or self.domain in iframe['src'] or len(dots) == 1:
         success= success + 1
       i = i+1
     try:
       percentage = success/float(i) * 100if
       percentage < 22.0:
         return 1
       elif((percentage >= 22.0) and (percentage < 61.0)):
         return 0
       else:
         return -1
     except:
       return 0
  except:
     return -1
#14. AnchorURL
def AnchorURL(self):
  try:
     i, unsafe = 0, 0
     for a in self.soup.find_all('a', href=True):
       if "#" in a['href'] or "javascript" in a['href'].lower() or "mailto" in a['href'].lower() or not (urlin
```

```
a['href'] or self.domain in a['href']):
            unsafe = unsafe + 1i
          = i + 1
       try:
          percentage = unsafe / float(i)* 100
          if percentage < 31.0:
            return 1
          elif ((percentage >= 31.0)and (percentage < 67.0)):
            return 0
          else:
            return -1
       except:
          return -1
     except:
       return -1
  # 15. LinksInScriptTags
  def LinksInScriptTags(self):
     try:
       i, success= 0, 0
       for link in self.soup.find_all('link', href=True):
          dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', link['href'])}]
          if self.url in link['href'] or self.domain in link['href'] or len(dots) == 1:
```

```
success= success + 1
       i = i+1
     for script in self.soup.find_all('script', src=True):
       dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', script['src'])}]
       if self.url in script['src'] or self.domain in script['src'] or len(dots) == 1:
          success= success + 1
       i = i+1
     try:
       percentage = success/ float(i) * 100
       if percentage < 17.0:
         return 1
       elif((percentage >= 17.0)and (percentage < 81.0)):
         return 0
       else:
          return -1
     except:
       return 0
  except:
     return -1
#16. ServerFormHandler
def ServerFormHandler(self):
  try:
     if len(self.soup.find_all('form', action=True)) == 0:return
```

```
1
    else:
       for forminself.soup.find_all('form', action=True):
         if form['action'] == "" or form['action'] == "about:blank":
            return-1
         elif self.url not in form['action'] and self.domain not in form['action']:return
           0
         else:
              return 1
  except:
    return -1
#17. InfoEmail
 def InfoEmail(self):
  try:
    if re.findall(r"[mail\(\)|mailto:?]", self.soap):
       return -1
    else:
       return 1
  except:
    return -1
# 18. AbnormalURL
def AbnormalURL(self):
  try:
    if self.response.text == self.whois_response:
```

```
return1
     else:
       return -1
  except:
     return -1
# 19. WebsiteForwarding
def WebsiteForwarding(self):
  try:
     if len(self.response.history) <= 1:</pre>
       return1
     elif len(self.response.history) <= 4:</pre>
       return0
     else:
       return -1
  except:
     return -1
# 20. StatusBarCust
def StatusBarCust(self):
  try:
     if \ re.find all ("<\!script>.+onmouse over.+<\!/script>",self.response.text): \ return\ 1
     else:
       return -1
  except:
     return -1
```

```
#21. DisableRightClick
def DisableRightClick(self):
  try:
    if re.findall(r"event.button ?== ?2", self.response.text):
       return1
    else:
       return -1
  except:
    return -1
# 22. UsingPopupWindow
def UsingPopupWindow(self):
  try:
    if re.findall(r"alert\(", self.response.text):
       return 1
    else:
       return -1
  except:
    return -1
#23. IframeRedirection
defIframeRedirection(self):
  try:
    if re.findall(r"[<iframe>|<frameBorder>]", self.response.text):
       return 1
    else:
```

```
return -1
  except:
    return -1
# 24. AgeofDomain def
AgeofDomain(self):
  try:
    creation_date = self.whois_response.creation_date
    try:
      if(len(creation_date)): creation_date
         = creation_date[0]
    except:
      pass
    today = date.today()
    age = (today.year-creation_date.year) * \
      12+(today.month-creation_date.month)
    if age >= 6:
      return 1
    return -1
  except:
    return -1
#25. DNSRecording
def DNSRecording(self):
  try:
    creation_date = self.whois_response.creation_date
```

```
try:
         if(len(creation_date)):
           creation_date = creation_date[0]
       except:
         pass
      today = date.today()
       age = (today.year-creation_date.year) * \
         12+(today.month-creation_date.month)
       if age >= 6:
         return 1
       return -1
    except:
       return -1
  # 26. WebsiteTraffic def
  WebsiteTraffic(self):
    try:
       rank = BeautifulSoup(urllib.request.urlopen(
         "http://data.alexa.com/data?cli=10&dat=s&url=" + url).read(),
"xml").find("REACH")['RANK']
       if (int(rank) < 100000):
         return 1
       return 0
    except:
       return -1
```

```
# 27. PageRank
def PageRank(self):
  try:
    prank_checker_response = requests.post(
       "https://www.checkpagerank.net/index.php", {"name": self.domain})
    global_rank = int(re.findall(
      r"Global Rank: ([0-9]+)", rank_checker_response.text)[0])
    if global_rank > 0 and global_rank < 100000:
      return 1
    return -1
  except:
    return -1
# 28. GoogleIndex
def GoogleIndex(self):
  try:
    site = search(self.url, 5)
    if site:
      return 1
    else:
      return -1
  except:
    return 1
#29. LinksPointingToPage def
LinksPointingToPage(self):
  try:
```

```
number_of_links = len(re.findall(r"<a href=", self.response.text))if</pre>
                                 number_of_links == 0:
                                           return 1
                                 elif number of links <= 2:
                                           return 0
                                 else:
                                            return -1
                      except:
                                 return -1
           #30. StatsReport
           def StatsReport(self):
                      try:
                                 url match = re.search(
'at\.ua|usa\.cc|baltazarpresentes\.com\.br|pe\.hu|esy\.es|hol\.es|sweddy\.com|myjino\.ru|96\.lt
|ow\.ly', url)
                                 ip_address = socket.gethostbyname(self.domain)
                                 ip match =
re.search ('146 \.112 \.61 \.108 \| 213 \.174 \.157 \.151 \| 121 \.50 \.168 \.88 \| 192 \.185 \.217 \.116 \| 78 \.46 \.21
  1\.158|181\.174\.165\.13|46\.242\.145\.103|121\.50\.168\.40|83\.125\.22\.219|46\.242\.145\.98
'107 \setminus .151 \setminus .148 \setminus .44 \mid 107 \setminus .151 \setminus .148 \setminus .107 \mid 64 \setminus .70 \setminus .19 \setminus .203 \mid 199 \setminus .184 \setminus .144 \setminus .27 \mid 107 \setminus .151 \setminus .148 \setminus .108 \mid 109 \setminus .184 \setminus .108 \setminus .108
7\.151\.148\.109|119\.28\.52\.61|54\.83\.43\.69|52\.69\.166\.231|216\.58\.192\.225|'
'118\.184\.25\.86|67\.208\.74\.71|23\.253\.126\.58|104\.239\.157\.210|175\.126\.123\.219|141\
  .8\.224\.221|10\.10\.10\.10|43\.229\.108\.32|103\.232\.215\.140|69\.172\.201\.153|'
'216\.218\.185\.162|54\.225\.104\.146|103\.243\.24\.98|199\.59\.243\.120|31\.170\.160\.61|213
\.19\.128\.77|62\.113\.226\.131|208\.100\.26\.234|195\.16\.127\.102|195\.16\.127\.157|'
```

|'

```
url_match:
    return -1 elif
    ip_match:
    return -1
    return 1
    except:
    return 1

def getFeaturesList(self):
    returnself.features
```

8.TESTING a.TEST CASES

						1							
				Date	15-Nov-22								
				Team ID	PNT2022TMID34222								
				Project Name	Project - Web Phishing Detection								
				Maximum Marks	4 marks								
Test case ID	Feature	Componen	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected	Actual Result	Status	Comments	TC for Automation(Y/N)	BUG	Executed By
	Type						Result						
			Verify user is able to see		1.Enter URL and click go		Should Display the						
LoginPage_TC_ OO1	Functional	Home	the Landing Page when user can type the URL in		2.Type theURL 3.Verify whetherit is processing	https://phishing- shield.herokuapp.com/	Webpage	Working as expected	Pass		N		V.Aishwarya
		Page	thebox		or not.								
					1.Enter URLand click go		Should Wait for Response and						
LoginPage_TC_			Verifythe UI		2.Typeor copy pastethe URL 3.Check whether the button is responsive or	https://phishing-	thengets	Working as					
002	UI	Home Page	elements is Responsive		not	shield.herokuapp.com/	Acknowledge	expected	Pass		N		G.Amisha
		1 ugc	Responsive		4.Reload and Test Simultaneously								
							User should						
					Enter URL and click go		observe whether thewebsite is						
LoginPage_TC_ OO3	Functional	Home	Verify whether the link islegitimate		Typeor copy pastethe URL Check the website is legitimateor not	https://phishing- shield.herokuapp.com/	legitimate or not.	Working as expected	Pass		N		K.Nanthini
		page	or not		Observe the results								
		l											
		l											
		l											
							Application						
					Enter URLand click go		shouldshow that SafeWebpageor						
LoginPage_TC_			Verify user is able to access		Typeor copy pastethe URL Check the website is legitimateor not	https://phishing-	Unsafe.	Working as					
004	Functional	Home Page	the legitimate website or not		Continue if the website is	https://phishing- shield.herokuapp.com/		expected	Pass		N		V.Aishwarya
		rage	not		legitimate or be cautious if it is not legitimate.								

LoginPage_TC OO5	Functional	Home Page	Testing the website with multiple URLs	Type or copy paste the URL totest Check the website is legitimateor not Continue if the website is secure or be cautious if it is notsecure	1_ https://avhalajee.github.io /welcom 2_totalpad.com https://www.kince.edu salescript.info 5_ https://www.google.com/6_ delgets.com	User can able to identify thewebsites whether it is secure ornot	Working as expected	Pass	N	G.Amisha

b.USER ACCEPTANCE TESTING

User Acceptance Testing

UAT Execution & Report Submission

Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [Web Phishing Detection] project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolvedor closed bugs at each severity level, and howtheywere resolved

1.Test Case Analysis

This reportshows the number of test cases that have passed, failed, and untested

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
ByDesign	10	4	2	3	20
Duplicate	1	0	3	0	4

External	2	3	0	1	6
Fixed	10	2	4	20	36
NotReproduc ed	0	0	1	0	1

Test Case Analysis

This report shows the number of testcases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	10	0	0	10
Client Application	50	0	0	50
Security	5	0	0	4
Outsource Shipping	3	0	0	3
Exception Reporting	10	0	0	9
Final Report Output	10	0	0	10
Version Control	4	0	0	4

9.RESULTS a.PERFORMANCE METRICES

S.No.	Parameter	Values	Screenshot			
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	to 700, monopolity the constituents elected of the main processors as a section of the main processors as a section of the main processors as a section of the section of t			
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wichouse Spendiger had [In Tay Windows Service American State The Company of the			

1. METRICS:

CLASSIFICATION REPORT:

In [52]: #computing the classification report of the model

print(metrics.classification_report(y_test, y_test_gbc))

	precision	recall	f1-score	support
2	0.99	0.96	0.97	976
	0.97	0.99	0.98	1235
accurac	y		0.97	2211
macro av	0.98	0.97	0.97	2211
weighted av	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model selection import cross val score, KFold
         # Load the dataset
         X = load_iris().data
         y = load iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n_estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined ftest 5x2cv
          from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
          from sklearn.ensemble import GradientBoostingClassifier
          from mlxtend.data import iris_data
          # Prepare data and clfs
         X, y = iris_data()
         clf1 = GradientBoostingClassifier()
clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                     estimator2=clf2,
                                     X=X, y=y,
                                     random_seed=1)
          print('f-value:', f)
          print('p-value:', p)
          f-value: 1.727272727272733
          p-value: 0.2840135734291782
```

10.ADVANTAGES & DISADVANTAGES

Advantages of web phishing detection

i. Improve on Inefficiencies of SEG and Phishing Awareness Training

- ii. It Takesa Load off the SecurityTeam
- iii. It Offers a Solution, Not a Tool
- iv. Separate You from Your Competitors
- v. Thissystem can be used by many e-commerce websites in order to have goodcustomer relationships.
- vi. If internetconnectionfails this system will work

Disadvantages of web phishing detection

- 1. All website related data will be stored in one place.
- 2. It is a very time-consuming process.

11.CONCLUSION

It is outstanding that a decent enemy of phishing apparatus ought to anticipate the phishing assaults in a decent timescale. We accept that the accessibility of a decent enemy of phishing device at a decent time scale is additionally imperative to build the extent of anticipating phishing sites. This apparatus ought to be improved continually through consistent retraining. As a matter of fact, the accessibility of crisp and cutting-edge preparing dataset which may gained utilizing our very own device [30, 32] will help us to retrain our model consistently and handle any adjustments in the highlights, which are influential in deciding the site class. Albeit neural system demonstrates its capacity to tacklea wide assortment of classification issues, the procedure of finding the ideal structure is verydifficult, and much of the time, this structure is controlled by experimentation.

Our model takes care of this issue via computerizing the way toward organizing a neural system conspire; hence, on the off chance that we construct an enemy of phishing model and for any reasons we have to refresh it, at that point our model will encourage this procedure, that is, since our model will mechanize the organizing procedure and will request scarcely any client definedparameters.

12.FUTURE SCOPE

There is a scope for future development of this project. We will implement this using advanced deep learning method to improve the accuracy and precision. Enhancements can be done in an efficient manner. Thus, the project is flexible and can be enhanced at any timewith more advanced features.

13.APPENDIX

- 1. Application Building
- 2. Collection of Dataset
- 3. Data Pre-processing
- 4. Integration of Flask App with IBM Cloud
- 5. Model Building
- 6. Performance Testing
- 7. Training the model on IBM
- 8. User Acceptance Testing
- 9. Ideation Phase
- 10. Preparation Phase
- 11. Project Planning
- 12. Performance Testing
- 13. User Acceptance Testing

Project Link:https://github.com/IBM-EPBL/IBM-Project-50534-1660915255

Project Demo Link:https://drive.google.com/file/d/1yjxSQQdXFSFi2F-N1cwtyjYZOH_AAVS9/view?usp=drivesdk