Question number	Scheme	Marks
2. (a)	$6(1-\sin^2\alpha)-\sin\alpha=5$ or $6-6\sin^2\alpha-\sin\alpha=5$	M1
(b)	$6\sin^{2}\alpha + \sin\alpha - 1 = 0 *$ $\Rightarrow (2\sin\alpha + 1)(3\sin\alpha - 1) = 0 \Rightarrow \sin\alpha = \frac{1}{3}, -\frac{1}{2} \Rightarrow$ $(\alpha = 2\theta + 40)$	A1 (2) M1 A1
	$2\theta + 40 = 19.47, 160.5287, 210$ or other correct value	M1
	$\Rightarrow \theta = 60.3, 85$	A1A1 (5) [7]

(a)

M1 Eliminate $\cos^2 \alpha$ by using the Pythagorean identity. Working must be shown.

A1cso Correct **given** answer reached.

(b)

M1 Factorise the equation given in (a), before or after using a substitution eg $\alpha = 2\theta + 40$

A1 Two correct values for $\sin(2\theta + 40)^{\circ}$ or $\sin \alpha$ or A (if substitution used)

M1 Any one correct value for $(2\theta+40)^{\circ}$ (Need not lead to θ in range $0 \rightarrow 90$) Must be exact or at least 1 dp.

A1 Either correct value for θ 60.3 must be 1 dp

A1 Second correct value

NB Ignore additional answers outside the required range. Deduct one A mark (last 2 A marks only deducted) for each additional answer within the range.

3		
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.5$	B1
	$A = \pi r^2 \Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	M1A1
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} = 2\pi r \times 0.5, \implies 2\pi \times 200 \times 0.5$	M1,
	$= 200\pi = 628.3185 \approx 628 \text{ (cm}^2\text{/s)}$	Alcao (5)
		[5]

B1 Correct statement, seen explicitly or used in chain rule.

M1 Attempt the differentiation

A1 Correct derivative

M1 USE the chain rule (ie sub their derivatives, can have r)

A1cao Must be 3 sf