The bound on the magnitude of $g'_4(x)$ is much smaller than the bound (found in (c)) on the magnitude of $g'_3(x)$, which explains the more rapid convergence using g_4 .

(e) The sequence defined by

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

converges much more rapidly than our other choices. In the next sections we will see where this choice came from and why it is so effective. \Box

From what we have seen,

• Question: How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

might have

Answer: Manipulate the root-finding problem into a fixed point problem that satisfies the
conditions of Fixed-Point Theorem 2.4 and has a derivative that is as small as possible
near the fixed point.

In the next sections we will examine this in more detail.

Maple has the fixed-point algorithm implemented in its *NumericalAnalysis* package. The options for the Bisection method are also available for fixed-point iteration. We will show only one option. After accessing the package using *with(Student[NumericalAnalysis])*: we enter the function

$$g := x - \frac{(x^3 + 4x^2 - 10)}{3x^2 + 8x}$$

and Maple returns

$$x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Enter the command

FixedPointIteration(fixedpointiterator = g, x = 1.5, tolerance = 10^{-8} , output = sequence, maxiterations = 20)

and Maple returns

1.5, 1.373333333, 1.365262015, 1.365230014, 1.365230013

EXERCISE SET 2.2

1. Use algebraic manipulation to show that each of the following functions has a fixed point at p precisely when f(p) = 0, where $f(x) = x^4 + 2x^2 - x - 3$.

a.
$$g_1(x) = (3 + x - 2x^2)^{1/4}$$
 b. $g_2(x) = \left(\frac{x + 3 - x^4}{2}\right)^{1/2}$

$$\mathbf{c.} \quad g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{1/2}$$

d.
$$g_4(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$$

- **2. a.** Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let $p_0 = 1$ and $p_{n+1} = g(p_n)$, for n = 0, 1, 2, 3.
 - **b.** Which function do you think gives the best approximation to the solution?
- **3.** The following four methods are proposed to compute $21^{1/3}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

$$\mathbf{a.} \quad p_n = \frac{20p_{n-1} + 21/p_{n-1}^2}{21}$$

b.
$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$$

c.
$$p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$$

d.
$$p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$$

4. The following four methods are proposed to compute $7^{1/5}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

a.
$$p_n = p_{n-1} \left(1 + \frac{7 - p_{n-1}^5}{p_{n-1}^2} \right)^3$$

b.
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$$

c.
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$$

d.
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$$

- 5. Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^4 3x^2 3 = 0$ on [1, 2]. Use $p_0 = 1$.
- **6.** Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^3 x 1 = 0$ on [1, 2]. Use $p_0 = 1$.
- 7. Use Theorem 2.3 to show that $g(x) = \pi + 0.5 \sin(x/2)$ has a unique fixed point on $[0, 2\pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2} . Use Corollary 2.5 to estimate the number of iterations required to achieve 10^{-2} accuracy, and compare this theoretical estimate to the number actually needed.
- 8. Use Theorem 2.3 to show that $g(x) = 2^{-x}$ has a unique fixed point on $[\frac{1}{3}, 1]$. Use fixed-point iteration to find an approximation to the fixed point accurate to within 10^{-4} . Use Corollary 2.5 to estimate the number of iterations required to achieve 10^{-4} accuracy, and compare this theoretical estimate to the number actually needed.
- 9. Use a fixed-point iteration method to find an approximation to $\sqrt{3}$ that is accurate to within 10^{-4} . Compare your result and the number of iterations required with the answer obtained in Exercise 12 of Section 2.1.
- 10. Use a fixed-point iteration method to find an approximation to $\sqrt[3]{25}$ that is accurate to within 10^{-4} . Compare your result and the number of iterations required with the answer obtained in Exercise 13 of Section 2.1.
- 11. For each of the following equations, determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and perform the calculations.

a.
$$x = \frac{2 - e^x + x^2}{3}$$

b.
$$x = \frac{5}{x^2} + 2$$

c.
$$x = (e^x/3)^{1/2}$$

d.
$$x = 5^{-1}$$

e.
$$x = 6^{-3}$$

- $f. \quad x = 0.5(\sin x + \cos x)$
- 12. For each of the following equations, use the given interval or determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and perform the calculations.

a.
$$2 + \sin x - x = 0$$
 use [2, 3]

b.
$$x^3 - 2x - 5 = 0$$
 use [2, 3]

c.
$$3x^2 - e^x = 0$$

$$\mathbf{d.} \quad x - \cos x = 0$$

13. Find all the zeros of $f(x) = x^2 + 10 \cos x$ by using the fixed-point iteration method for an appropriate iteration function g. Find the zeros accurate to within 10^{-4} .