Utilisation des bascules:

(a) Bascule RS

1) La table de vérité de la bascule RS asynchrone est donnée par :

R	S	Q
0	0	Inchangé
0	1	1
1	0	0
1	1	ambigu

Compléter les chronogrammes suivants.

2) Donner la table de vérité de la bascule RS synchrone. Soit le circuit de la figure ci-dessous. On suppose qu'initialement Q=0. Tracer la forme d'onde de la sortie Q.

Si ₹		
R	S	Q
0	0	Inchangé
0	1	1
1	0	0
1	1	ambigu

n°₹	$S=ar{Q}$	C = Q	Q	Q
CI	1	0	0	1
1	0	1	1	0
2	1	0	0	1
3	0	1	1	0
4	1	0	0	1
5	0	1	1	0

(b) Bascule JK

2) Bascule JK synchrone

On donne le schéma suivant, avec initialement, $Q_1=Q_2=0$. Les entrées K_1 et K_2 sont fixées à 1.

a) Donner la table de vérité de la bascule JK et calculer les expressions de J_1 et de J_2 .

Si 🚣		
J	K	Q_{N+1}
0	0	Q_N
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_{\mathbb{N}}$

$$J_1=\overline{Q}_2 \text{ et } J_2=Q_1$$

b) Remplir le tableau suivant :

N°	J_1	K_1	J_2	K_2	Q_1	Q_2
CI	1	1	0	1	0	0
1	1	1	1	1	1	0
2	0	1	0	1	0	1
3	1	1	0	1	0	0
4	1	1	1	1	1	0
5	0	1	0	1	0	1

c) Établir le chronogramme sur cinq périodes d'horloge de ce système.

3) Bascule JK. Compléter sur la feuille le chronogramme du circuit suivant. Q est initialement à 1.

4) Compléter le chronogramme du circuit suivant. Q est initialement à 0.

5) Représenter l'allure de Q2 et donner sa fréquence.

Pour l'analyse d'un circuit séquentiel, il faut d'abord écrire les expressions logiques des entrées en fonction des sorties en utilisant le schéma.

$$J_1=\overline{Q_1}.\,Q_2$$

$$J_2 = \overline{Q_1}$$

$$K_1 = 1$$

$$K_2 = 1$$

Ensuite, en partant de l'état initial des sorties (ici $Q_1=Q_2=0$), on établit la table de transition.

n° du front d'horloge	Q1	Q2	J1	K1	J2	K2
0	0	0	0	1	1	1
(condition initiale)			Mise	e à 0	Bascul	lement
1	0	1	1 1		1	1
1			Bascul	lement	Bascul	ement
2	1	0	0	1	0	1
2			Mise à 0		Mise	e à O
3	0	0				

L'analyse s'arrête du moment où on retrouve un état déjà rencontré.

Les chronogrammes des deux sorties nous permettent de conclure :

$$T_{Q1} = T_{Q2} = 3T_H$$

 $f_{Q1} = f_{Q2} = f_H/3$

c) Bascule D

6) Représenter le signal de sortie Y en fonction du signal d'entrée D et de l'horloge H.

Les expressions des entrées D_1 et D_2 des deux bascules sont les suivantes : $D_1=D$ et $D_2=Q_1$

L'expression de la sortie Y est la suivante : Y = A. $B = Q_1$. $\overline{Q_2}$

Pour établir le chronogramme, il faut faire attention que la sortie de la bascule D est égale à son entrée avant le front de l'horloge.

d) Diviseurs de fréquence

7) Représenter l'évolution les sorties Q_x de chaque bascule indicée x. Initialement $Q_x = 0$.

Circuit 1

Initialement : Q = 0

n°♪	$D = \overline{Q}$	Q
CI	1	0
1	0	1
2	1	0
3	0	1
4	1	0
5	0	1

La fréquence du signal de la sortie Q est divisée par deux par rapport à celle du signal d'horloge.

Circuit 2

Initialement : $Q_1 = Q_2 = 0$

n°♪	$D_1 = \bar{Q}_2$	$D_2 = Q_1$	Q_1	Q_2
CI	1	0	0	0
1	1	1	1	0
2	0	1	1	1
3	0	0	0	1
4	1	0	0	0
5	1	1	1	0
6	0	1	1	1

La fréquence des signaux des sorties Q_1 et Q_2 est divisée par quatre par rapport à celle du signal d'horloge.

Circuit 3 Initialement : $Q_1 = Q_2 = Q_3 = 0$

n°♪	$D_1 = \bar{Q}_3$	$D_2 = Q_1$	$D_3 = Q_2$	Q_1	Q_2	Q_3
CI	1	0	0	0	0	0
1	1	1	0	1	0	0
2	1	1	1	1	1	0
3	0	1	1	1	1	1
4	0	0	1	0	1	1
5	0	0	0	0	0	1
6	1	0	0	0	0	0
7	1	1	0	1	0	0

La fréquence des signaux des sorties Q_1 , Q_2 et Q_3 est divisée par six par rapport à celle du signal d'horloge.

a) Compteur synchrone

On considère le système suivant :

Pour l'analyse d'un compteur, il faut d'abord écrire les expressions logiques des entrées en fonction des sorties d'après le logigramme (le circuit).

$$J_1 = Q_2$$

$$J_2=Q_3$$

$$J_3 = \overline{Q_1}$$

$$K_1 = \overline{Q_2}$$

$$K_2 = Q_1$$

$$K_3 = Q_2$$

Ensuite, en partant de l'état initial des sorties (ici $Q_1=Q_2=Q_3=0$), on établit la table de transition.

n° du front d'horloge	Q1	Q2	Q3	J1	K1	J2	K2	Ј3	К3		
0	0	0	0	0	1	0	0	1	0		
(condition initiale)				Mis	e à 0	Mémoi	risation	Mis	e à 1		
1	0	0	1	0	1	1	0	1	0		
1				Mis	e à 0	e à 0 Mise à 1		Mise à 1			
2	0	1	1	1	0	1	0	1	1		
2				Mis	Mise à 1		Mise à 1 Mise à 1		e à 1	Bascu	lement
3	1	1	0	1	0	0	1	0	1		
3				Mis	e à 1	Mise à 0		Mis	e à 0		
4	1	0	0	0	1	0	1	0	0		
4				Mis	e à 0	Mise	e à O	Mémo	risation		
5	0	0	0								

L'analyse s'arrête du moment où on retrouve un état déjà rencontré.

Si l'on suppose que Q1 est le MSB et Q3 est le LSB d'un nombre sur 3 bits, le cycle de ce compteur est le suivant : $000 \rightarrow 001 \rightarrow 011 \rightarrow 110 \rightarrow 100 \rightarrow 000$.

En décimal : $0 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 4 \rightarrow 0$

La longueur du cycle est égale à 5 (nombre d'états parcourus par le compteur).

Ce compteur présente un cycle « quelconque » ce qui nous oblige à observer son fonctionnement pour les états qui n'apparaissent pas dans son « cycle principal ». Pour ce faire, on initialise le compteur par un état manquant/interdit afin d'étudier l'évolution de son cycle.

Les états manquants pour ce compteur sont 2, 5 et 7, en binaire : 010 et 101 et 111. On établit une table de transition pour chacun de ces états comme état initial.

Etat manquant 010:

n° du front d'horloge	Q1	Q2	Q3	J1	K1	J2	K2	Ј3	К3
0	0	1	0	1	0	0	0	1	1
(condition initiale)	Etat manquant : 2			Mis	e à 1	Mémoi	risation	Basculement	
1	1	1	1	1	0	1	1	0	1
1	Etat manquant : 7			Mis	e à 1	Bascul	lement	Mis	e à 0
2	1	0	0						
	Etat du cycle : 4								

L'étude s'arrête car les sorties retrouvent un état qui existe déjà dans le cycle principal. L'évolution ensuite est conforme à la table de transition principale.

$CI: Q_1=0, Q_2=1 \text{ et } Q_3=0$

Etat manquant 101:

n° du front d'horloge	Q1	Q2	Q3	J1	K1	J2	K2	Ј3	К3
0	1	0	1	0	1	1	1	0	0
(condition initiale)	le) Etat manqı		nquant : 5		e à 0	Bascul	lement	Mémo	risation
1	0	1	1						
1	Etat	du cycl	e:3						

L'étude s'arrête car les sorties retrouvent un état qui existe déjà dans le cycle principal. L'évolution ensuite est conforme à la table de transition principale.

 $CI: Q_1=1, Q_2=0 \text{ et } Q_3=1$

Le cycle principal de ce compteur, ainsi que les états transitoires sont indiqués sur le schéma suivant :

Ainsi le « cycle principal » du compteur comporte 5 états et les autres états interdits/manquants rejoignent le cycle principal après quelques transitions, soit après une période de l'horloge (comme 5 et 7), soit après 2 périodes de l'horloge (comme 2).

Remarque: Un « cycle secondaire » pour un compteur serait défini par un certain nombre d'états qui forme une boucle fermée indépendamment du cycle principal. Ce compteur ne possède donc pas de cycle secondaire.

b) Compteur asynchrone

Vous ne serez pas interrogés sur les compteurs asynchrones.

c) Synthèse de compteur

Effectuer la synthèse d'un compteur binaire modulo 6 en bascules D.

Le cycle d'un compteur modulo $6: 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 0$

Pour choisir le nombre de bascules : $6<2^3 \rightarrow 3$ bascules D

Le compteur est synchrone, donc toutes les bascules utilisent le même signal d'horloge. On établit la table de transition du compteur. On prépare les entrées des bascules en utilisant cette table.

$$Q_3 Q_2 Q_1 \rightarrow \text{ état précédent}$$

$$Q_{3}^{*}Q_{2}^{*}Q_{1}^{*} \rightarrow \text{ état suivant}$$

D₃ D₂ D₁ → entrées pour obtenir « l'état suivant » à partir de « l'état précédent »

Q_3	Q_2	Q_1	Q* ₃	Q*2	Q* ₁	D_3	D_2	D_1
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	X	X	X	X	X	X
1	1	1	X	X	X	X	X	X

Les états 6 et 7 n'existent pas dans le cycle du compteur. Les X dans le tableau représentent les états qui n'ont pas d'importance. Chaque X peut être remplacé pour un 0 ou par un 1, selon les règles d'optimisation de circuit.

Les expressions logiques des entrées en fonctions des sorties de l'état précédent peuvent être obtenues soit directement du tableau comme :

$$D_1=\overline{Q_1}$$

Soit dans un cas plus compliqué, en établissant un tableau de Karnaugh, comme :

Dans ce cas particulier, on peut également regrouper de cette manière :

Q_2Q_1 Q_3	00	01	11	10
0	0	1	0	1
1	0	0	X	X

$$D_2 = \overline{Q_3}. Q_2. \overline{Q_1} + \overline{Q_3}. \overline{Q_2}. Q_1 = \overline{Q_3}. (Q_2 \oplus Q_1)$$

Q_2Q_1	00	01	11	10
0	0	0	1	0
1	1	0	X	X

D3

$$D_3 = Q_1. Q_2 + Q_3. \overline{Q_1}$$

Le logigramme du compteur modulo 6 en bascules D est le suivant (Solution avec la porte Xor)

