$12n_{0597} (K12n_{0597})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 6.48488 \times 10^{68} u^{54} + 2.22735 \times 10^{69} u^{53} + \dots + 3.01163 \times 10^{67} b - 4.54938 \times 10^{69}, \\ &- 7.79191 \times 10^{69} u^{54} + 2.67697 \times 10^{70} u^{53} + \dots + 6.02326 \times 10^{67} a - 5.52191 \times 10^{70}, \ u^{55} + 4u^{54} + \dots - 32u - I_2^u &= \langle 1742938 u^{19} + 1162593 u^{18} + \dots + 1826407 b + 1460687, \\ &- 147076 u^{19} + 1158 u^{18} + \dots + 166037 a - 623712, \ u^{20} + u^{19} + \dots - 4u + 1 \rangle \\ I_3^u &= \langle -a^3 + b + 2a + 1, \ a^4 - a^3 - 4a^2 + 2a + 5, \ u - 1 \rangle \\ I_4^u &= \langle b - 1, \ a - 1, \ u - 1 \rangle \\ I_5^u &= \langle b - u + 1, \ u^2 + a - 2u + 1, \ u^3 - u^2 + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 83 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 6.48 \times 10^{68} u^{54} + 2.23 \times 10^{69} u^{53} + \dots + 3.01 \times 10^{67} b - 4.55 \times 10^{69}, \ 7.79 \times 10^{69} u^{54} + \\ 2.68 \times 10^{70} u^{53} + \dots + 6.02 \times 10^{67} a - 5.52 \times 10^{70}, \ u^{55} + 4u^{54} + \dots - 32u - 4 \rangle \end{matrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -129.364u^{54} - 444.439u^{53} + \dots + 5697.58u + 916.764 \\ -21.5328u^{54} - 73.9584u^{53} + \dots + 941.610u + 151.061 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 3.94666u^{54} + 13.1180u^{53} + \dots - 136.672u - 18.8314 \\ -20.4560u^{54} - 70.0814u^{53} + \dots + 894.192u + 143.944 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -4.54849u^{54} - 15.8254u^{53} + \dots + 226.873u + 38.8130 \\ -28.9511u^{54} - 99.0248u^{53} + \dots + 1257.74u + 201.588 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -172.432u^{54} - 590.262u^{53} + \dots + 7505.58u + 1199.19 \\ 40.4434u^{54} + 139.041u^{53} + \dots - 1788.25u - 286.747 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -20.9960u^{54} - 71.3826u^{53} + \dots + 880.148u + 137.913 \\ 66.7999u^{54} + 229.120u^{53} + \dots - 2923.17u - 468.173 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -109.774u^{54} - 377.006u^{53} + \dots + 4820.14u + 775.762 \\ -15.4249u^{54} - 52.9241u^{53} + \dots + 670.322u + 107.355 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 190.838u^{54} + 654.783u^{53} + \dots + 8370.59u - 1338.55 \\ -44.5724u^{54} - 152.962u^{53} + \dots + 1958.63u + 314.711 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -139.838u^{54} - 480.350u^{53} + \dots + 6148.79u + 989.017 \\ -45.4892u^{54} - 156.268u^{53} + \dots + 1998.97u + 320.610 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-41.4839u^{54} 141.696u^{53} + \cdots + 1753.72u + 276.705$

Crossings	u-Polynomials at each crossing
c_1	$u^{55} + 84u^{54} + \dots - 72u + 1$
c_2, c_6	$u^{55} - 2u^{54} + \dots + 22u - 1$
c_3	$u^{55} - 8u^{54} + \dots - 120u + 25$
c_4, c_7	$u^{55} - 4u^{54} + \dots - 32u + 4$
C ₅	$u^{55} - 3u^{54} + \dots + 75901u - 173113$
c ₈	$u^{55} + 10u^{54} + \dots - 1715u - 229$
<i>c</i> 9	$u^{55} - u^{54} + \dots - 216467u + 35417$
c_{10}	$u^{55} - 4u^{54} + \dots - 936251u - 118509$
c_{11}	$u^{55} + 2u^{54} + \dots + 4u - 24$
c_{12}	$u^{55} - u^{54} + \dots + 3199358u - 321516$

Crossings	Riley Polynomials at each crossing
c_1	$y^{55} - 212y^{54} + \dots + 10440y - 1$
c_{2}, c_{6}	$y^{55} - 84y^{54} + \dots - 72y - 1$
c_3	$y^{55} + 20y^{54} + \dots - 800y - 625$
c_4, c_7	$y^{55} - 36y^{54} + \dots - 200y - 16$
<i>C</i> ₅	$y^{55} + 35y^{54} + \dots + 119306470953y - 29968110769$
<i>c</i> ₈	$y^{55} + 20y^{54} + \dots - 2180589y - 52441$
<i>c</i> ₉	$y^{55} + 91y^{54} + \dots + 50901662647y - 1254363889$
c_{10}	$y^{55} + 58y^{54} + \dots - 129372587591y - 14044383081$
c_{11}	$y^{55} - 6y^{54} + \dots - 12656y - 576$
c_{12}	$y^{55} + 85y^{54} + \dots + 3623181372652y - 103372538256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.228394 + 0.930097I		
a = -0.355410 + 0.174211I	2.63763 - 2.19314I	0.766014 + 1.147808I
b = -0.216207 - 0.780987I		
u = -0.228394 - 0.930097I		
a = -0.355410 - 0.174211I	2.63763 + 2.19314I	0.766014 - 1.147808I
b = -0.216207 + 0.780987I		
u = -0.061115 + 1.061790I		
a = 0.121223 - 0.494313I	1.55867 - 3.48219I	0. + 3.47906I
b = 0.396675 + 1.163810I		
u = -0.061115 - 1.061790I		
a = 0.121223 + 0.494313I	1.55867 + 3.48219I	0 3.47906I
b = 0.396675 - 1.163810I		
u = 1.013150 + 0.429080I		
a = -2.09376 - 0.07084I	-8.91481 - 6.34317I	0
b = -1.30226 - 1.21278I		
u = 1.013150 - 0.429080I		
a = -2.09376 + 0.07084I	-8.91481 + 6.34317I	0
b = -1.30226 + 1.21278I		
u = -1.079130 + 0.236177I		
a = 1.53166 - 0.57910I	-1.46530 + 4.21934I	0
b = 0.77564 - 1.31217I		
u = -1.079130 - 0.236177I		
a = 1.53166 + 0.57910I	-1.46530 - 4.21934I	0
b = 0.77564 + 1.31217I		
u = -1.113000 + 0.147678I		
a = -1.55961 - 0.95086I	-12.12370 + 4.63839I	0
b = -0.546370 + 1.079590I		
u = -1.113000 - 0.147678I		
a = -1.55961 + 0.95086I	-12.12370 - 4.63839I	0
b = -0.546370 - 1.079590I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.398648 + 0.764365I		
a = 0.490007 + 1.105910I	-10.69800 + 3.28061I	-4.43813 - 2.05243I
b = -0.751133 - 0.461027I		
u = -0.398648 - 0.764365I		
a = 0.490007 - 1.105910I	-10.69800 - 3.28061I	-4.43813 + 2.05243I
b = -0.751133 + 0.461027I		
u = -0.818436 + 0.220706I		
a = -0.462335 - 0.757558I	1.02370 + 2.96901I	6.22160 - 5.57360I
b = -0.258171 - 1.314110I		
u = -0.818436 - 0.220706I		
a = -0.462335 + 0.757558I	1.02370 - 2.96901I	6.22160 + 5.57360I
b = -0.258171 + 1.314110I		
u = 0.823693		
a = 2.96416	-0.453310	-12.4430
b = 1.33894		
u = 0.629407 + 1.015120I		_
a = -0.124519 + 0.360519I	-0.865641 - 0.009239I	0
b = 0.354817 - 0.497624I		
u = 0.629407 - 1.015120I		_
a = -0.124519 - 0.360519I	-0.865641 + 0.009239I	0
b = 0.354817 + 0.497624I		
u = 0.056692 + 1.212890I		
a = -0.103950 - 0.233463I	-8.74789 + 8.87696I	0
b = -0.682228 + 1.128040I		
u = 0.056692 - 1.212890I	0.54500 0.050005	
a = -0.103950 + 0.233463I	-8.74789 - 8.87696I	0
b = -0.682228 - 1.128040I		
u = 0.354907 + 0.697158I	2.01000 2.101507	0.00007 - 5.507007
a = -0.098793 - 0.883310I	2.01009 - 2.16153I	2.20037 + 5.52786I
b = 0.155774 + 1.110550I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.354907 - 0.697158I		
a = -0.098793 + 0.883310I	2.01009 + 2.16153I	2.20037 - 5.52786I
b = 0.155774 - 1.110550I		
u = 0.388472 + 0.676966I		
a = 0.392074 + 0.586948I	-7.10371 + 2.13418I	-1.61598 - 0.45444I
b = -0.77671 + 1.19630I		
u = 0.388472 - 0.676966I		
a = 0.392074 - 0.586948I	-7.10371 - 2.13418I	-1.61598 + 0.45444I
b = -0.77671 - 1.19630I		
u = 1.169370 + 0.406827I		
a = 0.160942 - 0.680261I	-2.81126 - 1.20544I	0
b = 0.558665 - 1.106950I		
u = 1.169370 - 0.406827I		
a = 0.160942 + 0.680261I	-2.81126 + 1.20544I	0
b = 0.558665 + 1.106950I		
u = -1.256970 + 0.280156I		
a = 1.366380 + 0.304132I	-6.24743 + 2.95707I	0
b = 1.164040 + 0.121414I		
u = -1.256970 - 0.280156I		
a = 1.366380 - 0.304132I	-6.24743 - 2.95707I	0
b = 1.164040 - 0.121414I		
u = 1.247720 + 0.445260I		
a = -1.217490 - 0.284802I	-1.00747 - 2.30946I	0
b = -0.241125 - 0.911262I		
u = 1.247720 - 0.445260I		
a = -1.217490 + 0.284802I	-1.00747 + 2.30946I	0
b = -0.241125 + 0.911262I		
u = 1.283620 + 0.343428I		
a = -1.33294 + 0.59936I	-15.4853 - 6.9210I	0
b = -1.55960 + 0.59836I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.283620 - 0.343428I		
a = -1.33294 - 0.59936I	-15.4853 + 6.9210I	0
b = -1.55960 - 0.59836I		
u = 1.318640 + 0.262440I		
a = 1.39643 + 0.81108I	-3.05878 - 4.93696I	0
b = 0.598048 + 0.736018I		
u = 1.318640 - 0.262440I		
a = 1.39643 - 0.81108I	-3.05878 + 4.93696I	0
b = 0.598048 - 0.736018I		
u = -1.254450 + 0.537906I		
a = -1.361600 + 0.016121I	-0.61529 + 7.55097I	0
b = -0.644516 + 0.771416I		
u = -1.254450 - 0.537906I		
a = -1.361600 - 0.016121I	-0.61529 - 7.55097I	0
b = -0.644516 - 0.771416I		
u = 0.543362 + 0.279828I		
a = -0.184351 + 0.678862I	-1.238630 - 0.333157I	-8.21440 + 1.77959I
b = 0.386325 + 0.158096I		
u = 0.543362 - 0.279828I		
a = -0.184351 - 0.678862I	-1.238630 + 0.333157I	-8.21440 - 1.77959I
b = 0.386325 - 0.158096I		
u = -0.532879 + 0.265595I		
a = -1.87909 - 0.15769I	1.53458 - 0.08260I	8.02360 - 0.70539I
b = -0.496585 + 0.280323I		
u = -0.532879 - 0.265595I		
a = -1.87909 + 0.15769I	1.53458 + 0.08260I	8.02360 + 0.70539I
b = -0.496585 - 0.280323I		
u = -1.211180 + 0.728080I		
a = -0.875893 - 0.683728I	-12.79060 + 2.58251I	0
b = -0.631732 + 1.072700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.211180 - 0.728080I		
a = -0.875893 + 0.683728I	-12.79060 - 2.58251I	0
b = -0.631732 - 1.072700I		
u = 1.25664 + 0.67520I		
a = 1.073550 - 0.367845I	-3.21944 - 6.43186I	0
b = 0.700106 + 0.896451I		
u = 1.25664 - 0.67520I		
a = 1.073550 + 0.367845I	-3.21944 + 6.43186I	0
b = 0.700106 - 0.896451I		
u = -0.568585 + 0.002353I		
a = 2.93796 + 2.07601I	-10.21720 + 3.48231I	-4.98199 + 0.62812I
b = -0.463493 + 0.346007I		
u = -0.568585 - 0.002353I		
a = 2.93796 - 2.07601I	-10.21720 - 3.48231I	-4.98199 - 0.62812I
b = -0.463493 - 0.346007I		
u = -1.34385 + 0.51761I		
a = 1.43449 - 0.18164I	-2.54819 + 9.08466I	0
b = 0.60052 - 1.30971I		
u = -1.34385 - 0.51761I		
a = 1.43449 + 0.18164I	-2.54819 - 9.08466I	0
b = 0.60052 + 1.30971I		
u = 1.37774 + 0.58999I		
a = -1.49234 - 0.04356I	-12.9172 - 15.1751I	0
b = -0.87943 - 1.33400I		
u = 1.37774 - 0.58999I		
a = -1.49234 + 0.04356I	-12.9172 + 15.1751I	0
b = -0.87943 + 1.33400I		
u = -1.50431 + 0.07352I		
a = -0.364764 - 1.062760I	-13.50180 + 0.32367I	0
b = -0.507231 - 0.684175I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.50431 - 0.07352I		
a = -0.364764 + 1.062760I	-13.50180 - 0.32367I	0
b = -0.507231 + 0.684175I		
u = -1.60007 + 0.48099I		
a = -0.249894 - 0.427368I	-14.0455 - 2.4232I	0
b = -0.631921 - 0.689866I		
u = -1.60007 - 0.48099I		
a = -0.249894 + 0.427368I	-14.0455 + 2.4232I	0
b = -0.631921 + 0.689866I		
u = -0.080542 + 0.193890I		
a = 2.61995 - 1.69033I	1.26586 + 2.57084I	-0.85088 - 2.32793I
b = 0.228619 - 1.091470I		
u = -0.080542 - 0.193890I		
a = 2.61995 + 1.69033I	1.26586 - 2.57084I	-0.85088 + 2.32793I
b = 0.228619 + 1.091470I		

II.
$$I_2^u = \langle 1.74 \times 10^6 u^{19} + 1.16 \times 10^6 u^{18} + \dots + 1.83 \times 10^6 b + 1.46 \times 10^6, \ 147076 u^{19} + 1158 u^{18} + \dots + 166037 a - 623712, \ u^{20} + u^{19} + \dots - 4u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.885803u^{19} - 0.00697435u^{18} + \cdots - 0.332149u + 3.75646 \\ -0.954299u^{19} - 0.636547u^{18} + \cdots + 2.12930u - 0.799760 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.167149u^{19} - 0.371082u^{18} + \cdots - 4.30841u + 3.40433 \\ -0.378146u^{19} - 0.145836u^{18} + \cdots - 2.54026u + 0.496680 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.946799u^{19} - 0.655425u^{18} + \cdots - 2.35244u + 2.96809 \\ -1.15780u^{19} - 0.430180u^{18} + \cdots - 0.584292u + 0.0604367 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.36020u^{19} - 0.734061u^{18} + \cdots + 6.88680u - 0.210030 \\ -1.50970u^{19} - 0.927327u^{18} + \cdots + 5.68923u - 1.07153 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0662196u^{19} - 0.397076u^{18} + \cdots + 1.44845u + 1.51392 \\ 0.193160u^{19} + 0.171997u^{18} + \cdots + 1.73103u - 0.520690 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.22425u^{19} - 0.993563u^{18} + \cdots - 2.60396u + 3.83553 \\ -1.23184u^{19} - 1.39082u^{18} + \cdots - 0.124812u - 0.151619 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.119859u^{19} + 0.185423u^{18} + \cdots - 1.51911u + 2.97387 \\ 0.588138u^{19} + 0.846974u^{18} + \cdots - 1.40998u - 0.239062 \end{pmatrix}$$

$$\begin{pmatrix} -0.807363u^{19} - 0.0873266u^{18} + \cdots - 1.05289u + 3.44587 \\ -0.814955u^{19} - 0.484584u^{18} + \cdots + 1.42626u - 0.541284 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{3759113}{1826407}u^{19} + \frac{9918792}{1826407}u^{18} + \dots + \frac{33892975}{1826407}u - \frac{13352398}{1826407}u^{18} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{20} - 22u^{19} + \dots - 3u + 1$
c_2	$u^{20} + 2u^{19} + \dots - u + 1$
c_3	$u^{20} + 5u^{19} + \dots + 5u + 1$
c_4	$u^{20} + u^{19} + \dots - 4u + 1$
c_5	$u^{20} - u^{19} + \dots + 5u + 1$
c_6	$u^{20} - 2u^{19} + \dots + u + 1$
c_7	$u^{20} - u^{19} + \dots + 4u + 1$
c_8	$u^{20} + 6u^{19} + \dots + u + 1$
<i>c</i> ₉	$u^{20} - u^{19} + \dots + 9u + 1$
c_{10}	$u^{20} + 6u^{19} + \dots + 62u + 25$
c_{11}	$u^{20} + u^{19} + \dots - 24u + 23$
c_{12}	$u^{20} - u^{19} + \dots + 3u + 1$
·	10

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} - 38y^{19} + \dots + 97y + 1$
c_{2}, c_{6}	$y^{20} - 22y^{19} + \dots - 3y + 1$
c_3	$y^{20} + 13y^{19} + \dots + 3y + 1$
c_4, c_7	$y^{20} - 15y^{19} + \dots - 14y + 1$
<i>C</i> ₅	$y^{20} + 3y^{19} + \dots - 17y + 1$
c ₈	$y^{20} + 8y^{19} + \dots + y + 1$
<i>c</i> ₉	$y^{20} + 15y^{19} + \dots - 15y + 1$
c_{10}	$y^{20} + 20y^{19} + \dots - 794y + 625$
c_{11}	$y^{20} + y^{19} + \dots - 1220y + 529$
c_{12}	$y^{20} + 13y^{19} + \dots - 5y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.533776 + 0.839429I		
a = 0.082187 + 0.976957I	1.33087 - 1.27262I	-3.32667 - 0.25948I
b = -0.161143 - 1.107230I		
u = 0.533776 - 0.839429I		
a = 0.082187 - 0.976957I	1.33087 + 1.27262I	-3.32667 + 0.25948I
b = -0.161143 + 1.107230I		
u = -1.000530 + 0.259540I		
a = -1.06090 - 1.21552I	-1.40774 + 1.89082I	-2.02415 - 6.71944I
b = -1.23287 - 1.38392I		
u = -1.000530 - 0.259540I		
a = -1.06090 + 1.21552I	-1.40774 - 1.89082I	-2.02415 + 6.71944I
b = -1.23287 + 1.38392I		
u = -0.191181 + 0.929591I		
a = -0.108015 + 0.312018I	2.87685 - 3.71581I	2.69381 + 5.50994I
b = -0.397250 - 1.097980I		
u = -0.191181 - 0.929591I		
a = -0.108015 - 0.312018I	2.87685 + 3.71581I	2.69381 - 5.50994I
b = -0.397250 + 1.097980I		
u = 0.873633 + 0.175179I		
a = -0.0423713 - 0.1227380I	0.38476 - 3.13050I	-6.71544 + 6.46581I
b = -0.053990 - 1.361470I		
u = 0.873633 - 0.175179I		
a = -0.0423713 + 0.1227380I	0.38476 + 3.13050I	-6.71544 - 6.46581I
b = -0.053990 + 1.361470I		
u = -0.795716 + 0.349204I		
a = 1.94782 + 1.71456I	-10.29940 + 4.53068I	-4.78345 - 5.80170I
b = 0.680999 - 0.825877I		
u = -0.795716 - 0.349204I		
a = 1.94782 - 1.71456I	-10.29940 - 4.53068I	-4.78345 + 5.80170I
b = 0.680999 + 0.825877I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.250290 + 0.249862I		
a = -1.43958 - 0.31269I	-2.91355 - 2.89211I	-7.67752 + 2.98084I
b = -0.718556 - 0.811927I		
u = 1.250290 - 0.249862I		
a = -1.43958 + 0.31269I	-2.91355 + 2.89211I	-7.67752 - 2.98084I
b = -0.718556 + 0.811927I		
u = -1.284370 + 0.538335I		
a = -1.45575 + 0.12107I	-0.60784 + 9.10431I	-1.89591 - 7.92757I
b = -0.703474 + 1.149430I		
u = -1.284370 - 0.538335I		
a = -1.45575 - 0.12107I	-0.60784 - 9.10431I	-1.89591 + 7.92757I
b = -0.703474 - 1.149430I		
u = 1.306690 + 0.489189I		
a = 1.147690 + 0.402592I	-1.49698 - 3.77692I	-3.66921 + 4.30140I
b = 0.078049 + 0.861799I		
u = 1.306690 - 0.489189I		
a = 1.147690 - 0.402592I	-1.49698 + 3.77692I	-3.66921 - 4.30140I
b = 0.078049 - 0.861799I		
u = -1.49584 + 0.23640I		
a = -0.348081 + 0.618798I	-13.12220 - 1.74178I	-3.87046 + 2.15304I
b = 0.327314 + 0.504059I		
u = -1.49584 - 0.23640I		
a = -0.348081 - 0.618798I	-13.12220 + 1.74178I	-3.87046 - 2.15304I
b = 0.327314 - 0.504059I		
u = 0.303243 + 0.180235I		
a = 2.77701 - 1.28061I	0.581123 + 0.014308I	-1.73100 + 0.68149I
b = -0.319083 + 0.192447I		
u = 0.303243 - 0.180235I		
a = 2.77701 + 1.28061I	0.581123 - 0.014308I	-1.73100 - 0.68149I
b = -0.319083 - 0.192447I		

III.
$$I_3^u = \langle -a^3 + b + 2a + 1, \ a^4 - a^3 - 4a^2 + 2a + 5, \ u - 1 \rangle$$

a) Arc colorings
$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ a^3 - 2a - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -a^3 - 2a^2 + 3a + 6 \\ -a^3 - a^2 + 3a + 4 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a^3 - a^2 + 3a + 4 \\ -a^3 + 3a + 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -a \\ -a^3 + 2a + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a^3 - 3a - 1 \\ -a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^3 - 2a - 1 \\ 2a^3 - 5a - 2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a^3 + a^2 - 3a - 4 \\ a^3 - 3a - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a^3 - 2a - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_9	$u^4 + u^3 + 2u^2 + 1$
c_2, c_5, c_6	$u^4 - u^3 + 1$
c_4,c_7	$(u+1)^4$
c ₈	$u^4 - u^3 + 2u^2 + 1$
c_{10}, c_{11}	$u^4 - u^2 + 2u + 3$
c_{12}	u^4

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_8 c_9	$y^4 + 3y^3 + 6y^2 + 4y + 1$
c_2, c_5, c_6	$y^4 - y^3 + 2y^2 + 1$
c_4, c_7	$(y-1)^4$
c_{10}, c_{11}	$y^4 - 2y^3 + 7y^2 - 10y + 9$
c_{12}	y^4

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.246050 + 0.267489I	-1.64493	-6.00000
b = -0.175098 + 0.691825I		
u = 1.00000		
a = -1.246050 - 0.267489I	-1.64493	-6.00000
b = -0.175098 - 0.691825I		
u = 1.00000		
a = 1.74605 + 0.17255I	-1.64493	-6.00000
b = 0.675098 + 1.227920I		
u = 1.00000		
a = 1.74605 - 0.17255I	-1.64493	-6.00000
b = 0.675098 - 1.227920I		

IV.
$$I_4^u = \langle b-1, \ a-1, \ u-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_9	u+1
c_8	u-1
c_{10}, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	y-1	
c_{10}, c_{11}, c_{12}	y	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	-1.64493	-6.00000
b = 1.00000		

V.
$$I_5^u = \langle b - u + 1, u^2 + a - 2u + 1, u^3 - u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 2u - 1\\u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{2} + 3u - 1\\-u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{2} + 2u - 1\\-u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\-u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{2} + 3u - 1\\-u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 2u - 1\\u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{2} + 4u - 3\\-u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 3u - 1\\2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 4u + 4$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{10} \\ c_{12}$	$(u-1)^3$
c_3	$u^3 + 2u^2 + u + 1$
c_4, c_5	$u^3 - u^2 + 1$
<i>c</i> ₆	$(u+1)^3$
c_{7}, c_{9}	$u^3 + u^2 - 1$
c ₈	$u^3 + 3u^2 + 2u + 1$
c_{11}	u^3

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_{10}, c_{12}$	$(y-1)^3$
c_3	$y^3 - 2y^2 - 3y - 1$
c_4, c_5, c_7 c_9	$y^3 - y^2 + 2y - 1$
c_8	$y^3 - 5y^2 - 2y - 1$
c_{11}	y^3

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.539798 + 0.182582I	0	0.70532 - 1.67231I
b = -0.122561 + 0.744862I		
u = 0.877439 - 0.744862I		
a = 0.539798 - 0.182582I	0	0.70532 + 1.67231I
b = -0.122561 - 0.744862I		
u = -0.754878		
a = -3.07960	0	7.58940
b = -1.75488		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u+1)(u^4+u^3+2u^2+1)(u^{20}-22u^{19}+\cdots-3u+1)$ $\cdot(u^{55}+84u^{54}+\cdots-72u+1)$
c_2	$((u-1)^3)(u+1)(u^4-u^3+1)(u^{20}+2u^{19}+\cdots-u+1)$ $\cdot (u^{55}-2u^{54}+\cdots+22u-1)$
c_3	$(u+1)(u^3+2u^2+u+1)(u^4+u^3+2u^2+1)(u^{20}+5u^{19}+\cdots+5u+1)$ $\cdot (u^{55}-8u^{54}+\cdots-120u+25)$
c_4	$((u+1)^5)(u^3 - u^2 + 1)(u^{20} + u^{19} + \dots - 4u + 1)$ $\cdot (u^{55} - 4u^{54} + \dots - 32u + 4)$
c_5	$(u+1)(u^3 - u^2 + 1)(u^4 - u^3 + 1)(u^{20} - u^{19} + \dots + 5u + 1)$ $\cdot (u^{55} - 3u^{54} + \dots + 75901u - 173113)$
c_6	$((u+1)^4)(u^4 - u^3 + 1)(u^{20} - 2u^{19} + \dots + u + 1)$ $\cdot (u^{55} - 2u^{54} + \dots + 22u - 1)$
c_7	$((u+1)^5)(u^3+u^2-1)(u^{20}-u^{19}+\cdots+4u+1)$ $\cdot (u^{55}-4u^{54}+\cdots-32u+4)$
c_8	$(u-1)(u^{3}+3u^{2}+2u+1)(u^{4}-u^{3}+2u^{2}+1)(u^{20}+6u^{19}+\cdots+u+1)$ $\cdot (u^{55}+10u^{54}+\cdots-1715u-229)$
c_9	$(u+1)(u^{3}+u^{2}-1)(u^{4}+u^{3}+2u^{2}+1)(u^{20}-u^{19}+\cdots+9u+1)$ $\cdot (u^{55}-u^{54}+\cdots-216467u+35417)$
c_{10}	$u(u-1)^{3}(u^{4}-u^{2}+2u+3)(u^{20}+6u^{19}+\cdots+62u+25)$ $\cdot (u^{55}-4u^{54}+\cdots-936251u-118509)$
c_{11}	$u^{4}(u^{4} - u^{2} + 2u + 3)(u^{20} + u^{19} + \dots - 24u + 23)$ $\cdot (u^{55} + 2u^{54} + \dots + 4u - 24)$
c_{12}	$u^{5}(u-1)^{3}(u^{20}-u^{19}+\cdots+3u+1)$ $\cdot (u^{55}-u^{54}+\cdots+3139358u-321516)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^4)(y^4+3y^3+\cdots+4y+1)(y^{20}-38y^{19}+\cdots+97y+1)$ $\cdot (y^{55}-212y^{54}+\cdots+10440y-1)$
c_2, c_6	$((y-1)^4)(y^4 - y^3 + 2y^2 + 1)(y^{20} - 22y^{19} + \dots - 3y + 1)$ $\cdot (y^{55} - 84y^{54} + \dots - 72y - 1)$
c_3	$(y-1)(y^3 - 2y^2 - 3y - 1)(y^4 + 3y^3 + 6y^2 + 4y + 1)$ $\cdot (y^{20} + 13y^{19} + \dots + 3y + 1)(y^{55} + 20y^{54} + \dots - 800y - 625)$
c_4, c_7	$((y-1)^5)(y^3 - y^2 + 2y - 1)(y^{20} - 15y^{19} + \dots - 14y + 1)$ $\cdot (y^{55} - 36y^{54} + \dots - 200y - 16)$
c_5	$(y-1)(y^3 - y^2 + 2y - 1)(y^4 - y^3 + 2y^2 + 1)(y^{20} + 3y^{19} + \dots - 17y + 1)$ $\cdot (y^{55} + 35y^{54} + \dots + 119306470953y - 29968110769)$
c_8	$(y-1)(y^3 - 5y^2 - 2y - 1)(y^4 + 3y^3 + 6y^2 + 4y + 1)$ $\cdot (y^{20} + 8y^{19} + \dots + y + 1)(y^{55} + 20y^{54} + \dots - 2180589y - 52441)$
<i>c</i> ₉	$(y-1)(y^3 - y^2 + 2y - 1)(y^4 + 3y^3 + 6y^2 + 4y + 1)$ $\cdot (y^{20} + 15y^{19} + \dots - 15y + 1)$ $\cdot (y^{55} + 91y^{54} + \dots + 50901662647y - 1254363889)$
c_{10}	$y(y-1)^{3}(y^{4}-2y^{3}+\cdots-10y+9)(y^{20}+20y^{19}+\cdots-794y+625)$ $\cdot (y^{55}+58y^{54}+\cdots-129372587591y-14044383081)$
c_{11}	$y^{4}(y^{4} - 2y^{3} + \dots - 10y + 9)(y^{20} + y^{19} + \dots - 1220y + 529)$ $\cdot (y^{55} - 6y^{54} + \dots - 12656y - 576)$
c_{12}	$y^{5}(y-1)^{3}(y^{20}+13y^{19}+\cdots-5y+1)$ $\cdot (y^{55}+85y^{54}+\cdots+3623181372652y-103372538256)$