CSE-303: COMPUTER GRAPHICS

PROFESSOR DR. SANJIT KUMAR SAHA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAHANGIRNAGAR UNIVERSITY, SAVAR, DHAKA

COLOR AND SHADING MODELS

VIEWING MODELS

Need for different models

- Light models: to take care of light, its intensity and effect on different textures.
- Shading models: to take care of type of surface its shape, texture etc. And rendering the intensity at every point of the surface.
- Colour models: various colour schemes present to represent the calculated intensities on your computer.

SHADING MODELS

- Shading models: we have an illumination model for given point on a surface and every point on the surface is *unique*.
- Should we calculate intensity of light at all points of the object?
- If our surface is defined as mesh of polygons, which point should be used?

SHADING MODELS

- Keep in mind:
 - It's a fairly expensive calculation

Several possible answers, each with different implications for the visual quality of the result

- Three common techniques are
 - Constant shading (no shading)
 - Faceted shading
 - Gouraud shading
 - Phong shading
- Shading models dictate how often the color computation is performed.

SHADING METHODS POLYGON RENDERING METHODS

CONSTANT SHADING FACETED SHADING

No Shading

Is used for objects defined as polyhedral.

INTERPOLATION SHADING

Used for polyhedron-mesh approximation of curved surfaces

GOURAUD SHADING Interpolate intensity

PHONG SHADING
Interpolate surface normal

Effects of different shading techniques

FACETED SHADING

INTERPOLATION SHADING

GOURAUD SHADING

SHADING MODELS

- We will start to look at shading or rendering methods commonly used in computer graphics
 - Constant surface shading/rendering
 - Faceted surface shading/rendering
 - Gouraud surface shading/rendering
 - Phong surface shading/rendering

CONSTANT INTENSITY SHADING

- Constant intensity shading also refer to as no shading.
- It is done by giving same color to every polygon in the object.
- Thus entire object is painted with the same color.
- It is the simplest, but not realistic.

- Also known as *flat shading or fast shading* it is an extension to constant intensity shading.
- The entire object is divided into number of polygons surfaces called *facets*.
- Determine the orientation of each facet and does one color computation for each polygon or facet.
- It is simple, fast (?) and produce better results than no shading.

• Just add lots and lots of polygons – however, this is SLOW!

- Still it is not realistic as
 - For point sources, the direction to light varies across the facet
 - For specular reflectance, direction to eye varies across the facet
- We have to determine the orientation of each facet we have to find the normal for each facet. This approximation effect the result.

- To determine the orientation of each facet we introduce *vertex normal* at each vertex
 - Usually different from facet normal
 - Used *only* for shading
 - Think of as a better approximation of the *real* surface that the polygons approximate

- Vertex normals may be
 - Approximated by averaging the normals of the facets that share the vertex
 - Provided with the model

- It is very useful for quickly displaying the general appearance of surfaces
- It is more applicable when
 - The object must be polyhedron and not an approximation of an object with a curved surface.
 - All light sources illuminating the object are sufficiently far from the surface so that n.l and the attenuation functions are constant over the surface.
 - The viewing position is sufficiently far from the surface so that v.r is constant over the surface.

- Gouraud surface shading was developed in the 1970s by Henri Gouraud while working at the University of Utah along with Ivan Sutherland and David Evans
- Often also called intensity-interpolation surface rendering
- This is the most common approach
 - Intensity levels are calculated at each vertex
 - Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines

- To render a polygon, gouraud surface rendering proceeds as follows:
 - 1.Determine the average unit normal vector at each vertex of the polygon
 - 2. Apply an illumination model at each polygon vertex to obtain the light intensity at that position
 - 3.Linearly interpolate the vertex intensities over the projected area of the polygon

Step 1: Determine the average unit normal vector at each vertex of the polygon

• The average unit normal vector at *v* is given as:

$$N_{v} = \frac{N_{1} + N_{2} + N_{3} + N_{4}}{|N_{1} + N_{2} + N_{3} + N_{4}|}$$

• Or more generally:

$$N_{v} = \frac{\sum_{i=1}^{n} N_{i}}{\left|\sum_{i=1}^{n} N_{i}\right|}$$

Step 2: Apply an illumination model at each polygon vertex

- You have to apply the illumination model to take of
 - Ambient light
 - Diffuse reflection
 - Specular reflection
 - Transparency (refraction)

Step 3: Linearly interpolate the vertex intensities over the projected area of the polygon along edges and along scan lines

$$I_4 = \frac{y_4 - y_2}{y_1 - y_2} I_1 + \frac{y_1 - y_4}{y_1 - y_2} I_2$$

$$I_5 = \frac{y_5 - y_2}{y_3 - y_2} I_3 + \frac{y_3 - y_5}{y_3 - y_2} I_2$$

$$I_p = \frac{x_5 - x_p}{x_5 - x_4} I_4 + \frac{x_p - x_4}{x_5 - x_4} I_5$$

21

- Objects shaded with gouraud shading often appears dull, chalky
- Lacks accurate specular component
 - If included, will be averaged over entire polygon

Gouraud shading can introduce anomalies known as mach
 bands

Mach banding

Artifact at discontinuities in intensity or intensity slope

- A more accurate interpolation based approach for rendering a polygon was developed by Phong Bui Tuong
- Basically the phong surface rendering model interpolates normal vectors instead of intensity values and then compute the actual intensity value using *phong lighting model*.
- Often also called normal or vector interpolation surface
 rendering

- *Phong shading* is <u>not</u> the same as phong lighting, though they are sometimes mixed up
 - Phong lighting: the empirical model we've been discussing to calculate illumination at a point on a surface
 - Phong shading: linearly interpolating the surface normal across the facet, applying the phong lighting model at every pixel

$$I_{total} = k_a I_{ambient} + \sum_{i=1}^{\# lights} I_i \left(k_d \left(\hat{N} \cdot \hat{L}_i \right) + k_s \left(\hat{V} \cdot \hat{R}_i \right)^{n_{shiny}} \right)$$
26

- To render a polygon, phong surface rendering proceeds as follows:
 - 1. Determine the average unit normal vector at each vertex of the polygon
 - 2. Linearly interpolate the vertex normals over the projected area of the polygon
 - 3. Apply an illumination model at positions along scan lines to calculate pixel intensities using the interpolated normal vectors

Interpolating normal

- Phong shading accept the same input as gouraud shading and produce very smooth-looking results.
- Phong shading is considerably more expensive.
- Phong shading is much slower than gouraud shading as the lighting model is revaluated so many times
- However, there are fast phong surface rendering approaches that can be implemented iteratively.

PHONG SHADING EXAMPLES

PHONG SHADING EXAMPLES

SUMMARY

- For realistic rendering of polygons we need interpolation methods to determine lighting positions
- Flat shading is fast, but unrealistic
- Gouraud shading is better, but does not handle specular reflections very well
- Phong shading is better still, but can be slow