DO NOT FORGET TO WRITE YOUR SID NUMBER ON YOUR EXAM.

Do all 7 problems.

Problems 1-3 are worth 5 points; problems 4-7 are worth 10 points.

[1] (5 Pts.) Let $f(x) = \cos(x) - x$.

- (a) Prove that f(x) has exactly one root in the interval $[0, \frac{\pi}{2}]$.
- (b) Give a good estimate of the minimum number of bisection iterations required to obtain an approximation that is within $10^{-6} \left(\frac{\pi}{2}\right)$ of this root when the initial interval used is $\left[0, \frac{\pi}{2}\right]$.
- [2] (5 Pts.) Let I_h be the composite trapezoidal rule approximation to the integral $\int_0^1 f(s) ds$ using N panels of size h (e.g. $h = \frac{1}{N}$).
- (a) Give a derivation of the formula that combines I_h and $I_{\frac{h}{2}}$ to obtain an approximation to the integral that is fourth order accurate.
- (b) When the trapezoidal method is applied to the function $f(x) = x^{\frac{3}{2}}$ the rate of convergence is ≈ 1.7 . What is the expected rate of convergence when the formula you derived in (a) is applied to $f(x) = x^{\frac{3}{2}}$?
- [3] (5 Pts.) Let A be an n × n non-singular matrix, and consider iterative methods of the form

$$M x^{n+1} = b + N x^n$$

where A = M - N

- (a) Assuming M is non-singular, state a sufficient condition that insures convergence of the iterates to the solution of Ax=b for any starting vector x^0 .
- (b) Describe the matrices M and N for (i) Jacobi iteration and (ii) Gauss-Seidel iteration
- (c) If A is strictly diagonally dominant, prove that Jacobi's method converges.

Qualifying Exam, Winter 2005

NUMERICAL ANALYSIS

[4] (10 Pts.) Consider the following finite difference scheme for solving y' = f(y)

$$y_{n+1} = y_n + hf((1-\theta)y_n + \theta y_{n+1}),$$

where $\theta \in [0,1]$ is a parameter.

- (a) Find the order of the scheme, for $\theta \in [0, 1]$.
- (b) Determine the region of linear stability.
- (c) Determine all the values of $\theta \in [0,1]$ for which the method is A-stable.
- [5] (10 Pts.) Consider the equation

$$u_{tt} = u_{xx} + u_x$$

to be solved for t > 0, $0 \le x \le 1$.

- (a) Give initial data and boundary data that make this a well posed problem. Do not assume periodicity in x.
- (b) Give a stable and convergent finite difference approximation to this initial-boundary value problem. Justify your answers.
- [6] (10 Pts.) Consider the equation

$$u_t = u_{xx} + u_{yy} + 2au_{xy},$$

where a is real number, to be solved for $0 \le x \le 1$, $0 \le y \le 1$, $t \ge 0$, with initial data $u(x, y, 0) = u_0(x, y)$ and periodicity in x and y: $u(x + 1, y, t) \equiv u(x, t)$, $u(x, y + 1, t) \equiv u(x, y, t)$.

- (a) For which values of a would you expect good behavior of the solution?
- (b) Write a stable and convergent finite difference approximation to this problem. Justify your answers.

Qualifying Exam, Winter 2005 NUMERICAL ANALYSIS

[7] (10 Pts.) Consider the boundary value problem

$$\triangle u + u$$
 $f(x,y), (x,y) \in \Omega$ $[0,1] \times [0,1],$ u 0 for $(x,y) \in \partial \Omega, x$ $0,$ u_y 0 for $(x,y) \in \partial \Omega, y = 0, 1.$

- (a) Give a weak variational formulation of the problem.
- (b) Analyze the existence and uniqueness of the solution to this problem. Justify your answers (assume $f \in L^2(\Omega)$).
- (c) Formulate a finite element approximation of the elliptic problem using piecewise-linear elements. Discuss the form and properties of the stiffness matrix and the existence and uniqueness of the solution of the linear system thus obtained. Justify your answers.