Градиент.

Любую функцию от n переменных можно считать функцией из \mathbb{R}^n в \mathbb{R} . Пусть у нас есть величина $q(\mathbf{u})$, зависящая от вектора $\mathbf{u} \in \mathbb{R}^n$. Будем говорить, что $q(\mathbf{u}) = o(\mathbf{u})$ (читается " $q(\mathbf{u})$ есть о маленькое от \mathbf{u} "), если для любой последовательности векторов $\mathbf{u}_1, \mathbf{u}_2, \ldots \in \mathbb{R}$ такой, что $\|\mathbf{u}_i\| \to 0$, последовательность $q(\mathbf{u}_i)$ стремится к нулю.

 Φ ункция f om n переменных $\frac{\partial u \phi \phi}{\partial t}$ еренцируема в точке \mathbf{x} , если существует такой век $mop \ \nabla f(\mathbf{x}) \in \mathbb{R}^n$, что для любого $v \in \mathbb{R}^n$

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \langle \mathbf{v}, \nabla f(\mathbf{x}) \rangle + o(\mathbf{v})$$

Вектор $\nabla f(\mathbf{x})$ называется **градиентом** функции f в точке \mathbf{x} .

Задача 1. Убедитесь, что для n=1 новое определение дифференцируемости совпадает с уже знакомым определением дифференцируемости функции из \mathbb{R} в \mathbb{R} .

Задача 2. Пусть f и g – дифференцируемые функции из \mathbb{R} в \mathbb{R} и из \mathbb{R}^n в \mathbb{R} соответственно. Докажите, что $f(g(\mathbf{x}))$ – дифференцируемая функция из \mathbb{R}^n в \mathbb{R} .

Задача 3. Пусть f и g – дифференцируемые функции из \mathbb{R}^n в \mathbb{R} . Докажите, что следующие функции дифференцируемы (и выразите их градиенты, через градиенты f и g):

- a) f+g
- $\mathbf{6}$) $f \cdot q$
- **в**) f/g (в точках **x**, где $g(\mathbf{x}) \neq 0$)

Задача 4. Докажите, что $f(g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))$ – всюду дифференцируемая функция из \mathbb{R}^n в \mathbb{R} , если $q_i:\mathbb{R}^n\to\mathbb{R}$ и $f:\mathbb{R}^m\to\mathbb{R}$ всюду дифференцируемы.

Задача 5. Докажите, что следующие функции $\mathbb{R}^n \to \mathbb{R}$ дифференцируемы по **х**:

- a) $x_1 \cdot \ldots \cdot x_n$
- б) $\sin(x_1 + \ldots + x_n)$
- в) $\log(\sigma(\langle \mathbf{x}, \mathbf{w} \rangle))$, где $\sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x}$. г) И эта функция $\mathbb{R}^n \to \mathbb{R}^n$: softmax $(\mathbf{x}) = \frac{(e^{x_1}, \dots, e^{x_n})}{e^{x_1} + \dots + e^{x_n}}$ Частная производная функции $f: \mathbb{R}^n \to \mathbb{R}$ по i-той переменной в точке \mathbf{x} это:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{f(x_1, \dots, x_i + \varepsilon, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\varepsilon}$$

Иными словами мы фиксируем все переменные кроме i-той, рассматриваем f как функцию от одной переменной и берем ее производную в точке x_i .

Задача 6. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке **х**. Докажите что:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right).$$

Задача 7. Пусть мы находимся в точке \mathbf{a} , $\nabla f(\mathbf{a}) = \mathbf{g} \neq \overrightarrow{\mathbf{0}}$ и $\|\mathbf{v}\|$. Предроло $= \delta \rightarrow 0$.

- а) Убедитесь что: $f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + \langle \mathbf{v}, \mathbf{g} \rangle + o(\delta)$
- **б)** Для любого вектора $\mathbf v$ обозначим через $\mathbf v_\delta$ вектор $\delta \cdot \frac{\mathbf g}{\|\mathbf g\|}$ (шаг в направлении $\mathbf v$ длины δ). Попробуем сдвинуться на δ так, чтобы функция f возросла как можно больше. Докажите, что для любого направления ${\bf v}$, непропорционального градиенту ${\bf g}$, для достаточно маленького δ $f(\mathbf{a} + \mathbf{v}_{\delta}) < f(\mathbf{a} + \mathbf{g}_{\delta})$. Таким образом градиент указывает направление вдоль которого функция возрастает максимально быстро.

Задача 8. Докажите, что в локальном оптимуме градиент равен $\overline{0}$.

Определение 1. Градиентный спуск – это процесс "жадной" минимизации функции, действующий по правилу вида $\mathbf{x_{t+1}} = \mathbf{x_t} - \lambda \cdot \nabla f(\mathbf{x_t})$. Здесь λ – это параметр называемый learning rate. Он как правило меняется от точки к точке (в зависимости от конкретной реализации).

Задача 9^* . Докажите, что f дифференцируема в точке \mathbf{x} , если ее частные производные определены в некоторой окрестности ${\bf x}$ и непрерывны в ${\bf x}$.