NEDNOZI

4 tycolom 29. TEOREM SREDNJE

f(b) - f(a) = e'(c)(b-a)oro ce biti ali to je veletor

gradijent bece biti stalanni
produkt

TM Lagrange

Neha je $f: U \to \mathbb{R}$ diferenc funkcija na $U \subseteq \mathbb{R}^n$. Je neka

ru à i b e U to je spojnica tocale à i b također u U

Inda na toj spojinici postoji c takarda f(6)-f(a) = Vf(2).(6-a) malan 2. matan 1: skalani produkt

(i c

$$\frac{1}{2}$$
 ne dyclih sa $(5^{2}-\overline{a})$

DOKAZ: 1) Paramodriziranno apojnice od à i to: à + (tó-à), + E[0,1]

2) Poyledgimo fiju g(t) = parennetnizaciju vrotimo u f: $g(t) = f(\vec{a} + t(t - \vec{a}) \Rightarrow du ferencijalilna, (per je f, a je lineama)$ * L7. fija jedne vanjable! - Moženo KORISTITI LTSU za luar

=> postop 5 E [0, 1] tid g(1) - g(0) = g(s)(1-0)

* g'(+) = TH o lang, deriv. = Vf. (0+1.(15-a)) = Vf (15-a)

Korolar: Neka je U konvelsan skup te neka su f i g dif na u a) Also ju $\nabla f = \vec{0}$, $\forall \vec{x} \in U$ = \vec{x} toda je \vec{p} tomotomina funccija konversan nije konversan DOKAZIĆ: Za Inlo koje dvije tocke a i b e U, mpojmica će Onti unutar u i možemo istoristihi LTSV pa imamo:

f(な) -f(な)=な(b-な)=0 $f(\vec{b}) = f(\vec{a}) \quad \text{if } = 7 \text{ fija je konstautma}$

xb) Also arrije fije imaju istu derivaciju, omda se rozlikuju za konstantu.
$$L$$
 Also je $\nabla f = \nabla g$, tada z f i g rozlikuju za konstantu C ,

Ly Alo ge
$$Vf = \nabla g$$
, tade & f i g constituy 20 constants C
Ly: $f(\vec{x}) = g(\vec{x}) + C$

DOKATIĆ:
$$\nabla f = \nabla g \rightarrow \nabla (f - g) = \vec{\sigma}$$

* ∇ je operator - ima mojstv

DOKATIĆ.
$$\nabla f = \nabla g \rightarrow \nabla (f - g) = \vec{o}$$
 $\forall \quad \forall \quad j \in \text{operator - ima mojet}$
 $\forall f - \nabla g = \vec{o}$
 $\Rightarrow \forall f - g = c$

 $0 = 4t^2 - 8t + 8t^2 = > (2t^2 - 8t) = 0$

t(3t-2)=0 $T_{1}(1,0,1) = A$ $t_{1}=0$ $t_{2}=\frac{2}{3}$ $T_{2}(\frac{1}{3}, \frac{4}{3}, 1)$ $tocka A ma 43 od te projnice

b) <math>\nabla f(x_{1}y) = \frac{2}{3} + 2x_{1}^{2} \longrightarrow f(x_{1}y) = x + y^{2} + C$ derrivacya ji uz se dinicini vector

2 2ad

 $3+^2-2+=0$