合	肥	工	业	大	学	试	卷	(A)	共 1	页第	1 页	此	页	答	题	无	效
---	---	---	---	---	---	---	---	-------	-----	----	-----	---	---	---	---	---	---

2016~2017 学年第_一_学期 课程代码 _1400091B_ 课程名称_概率论与数理统计_学分_3.5_课程性质:必修☑、选修□、限修□考试形式:开卷□、闭卷
专业班级(教学班)考试日期 <u>2017.1.13</u>
一、填空题(每小题 3 分,共 15 分)
(1) 设 A, B 为两个随机事件, $P(AB) = P(AB) > 0$,则 $P(B A) =$.
(2) 设随机变量 X 服从参数为 1 的指数分布,则 $P\{ X-EX <\sqrt{DX}\}=$
(3) 设随机变量 X 和 Y 相互独立, X 服从 $[-3,3]$ 上的均匀分布, Y 服从参数为 1 的泊松分布,则
$E[(XY)^2] = \underline{\hspace{1cm}}.$
(4) 设随机变量 $X \sim B(100,0.5)$,则由中心极限定理计算得 $P\{X \le 45\} = $
$(\Phi(1) = 0.8413$,其中 $\Phi(x)$ 为标准正态分布的分布函数.)
(5) 设 (X_1, X_2, \cdots, X_n) 为来自总体 $X \sim N(\mu, 1)$ 的一个简单随机样本. 如果 μ 的置信度为 90% 的置信区间
为 (9.765,10.235),则样本容量 $n=$ ($U_{0.05}=1.645$,其中 U_{α} 为标准正态分布的上侧 α 分为点.)
二、选择题(每小题 3 分,共 15 分) (1) 下列结论正确的是(
(2) 设样本空间 $\Omega = \{1, 2, 3, 4\}$,且每个样本点出现的概率相等,令 $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$, $A_4 = \{2, 3\}$,则下列结论正确的是(). (A) A_1, A_2, A_3 两两独立, A_1, A_2, A_4 两两独立 (B) A_1, A_2, A_3 相互独立, A_1, A_2, A_4 两两独立 (C) A_1, A_2, A_3 两两独立, A_1, A_2, A_4 相互独立, A_1, A_2, A_4 相互独立, A_1, A_2, A_4 相互独立, A_1, A_2, A_4 相互独立, A_1, A_2, A_4 相互独立
(3) 设随机变量 X,Y 相互独立,分布函数均为 $F(x)$,则 $\max\{X,2Y\}$ 的分布函数为().
(A) $2F^2(x)$ (B) $\frac{1}{2}F^2(x)$ (C) $F(x)F(2x)$ (D) $F(x)F(\frac{x}{2})$
(4) 设随机变量 X 和 Y 的方差均大于零,则 X 与 Y 不相关的充分必要条件为(). (A) X 与 Y 相互独立 (B) X 与 Y 的相关系数为1 (C) $E[(X+Y)^2] = E[(X-Y)^2]$ (D) $D(X+Y) = D(X-Y)$
(5) 设 $(X_1, X_2, \cdots, X_n)(n > 1)$ 为来自总体 X 的一个简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,且 $EX = 0$, $DX = \sigma^2 > 0$,则在下列估计量中,()不是 σ^2 的无偏估计.

肥 工 业 大 学 试 卷 (A) 共 1 页第 1 页 此 页 答 题 无 效

2016~2017 学年第 一 学期 课程代码 <u>1400091B</u> 课程名称 概率论与数理统计 学分 3.5 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑ 专业班级(教学班)______ 考试日期_2017.1.13 命题教师 集体 系 (所或教研室) 主任审批签名

(A) X_1^2

(B)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2$$
 (C) \overline{X}^2 (D) S^2

三、(本题满分10分)

设随机变量 X 的密度函数为 $f(x) = \begin{cases} 6x(1-x), & 0 \le x \le 1, \\ 0, & \text{其它}. \end{cases}$ (1) 计算概率 $P\{X < \frac{1}{2}\}$; (2) 对 X 进行

3 次独立重复观测,记Y 表示 3 次观测中出现 X 的观测值小于 $\frac{1}{2}$ 的次数,求Y 的分布律。

四、(本题满分 14 分) 设随机变量 $X \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $Y \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, 且 $P\{X + Y = 0\} = \frac{1}{3}$,

(1) 求 X 和 Y 的联合分布律; (2) 求 X 和 Y 的相关系数 ρ ; (3) 记 U = X, V = XY, 求 U 和 V 的联合分布律,并问 U 和 V 是否相互独立?

五、(本题满分 16 分)设二维随机变量(X,Y)的密度函数 $f(x,y) = \begin{cases} k(x^2 + xy), 0 \le x \le 1, > 0 \le y \le 2, \\ 0, & \text{其它.} \end{cases}$

(1) 求常数 k ; (2) 求 $P\{X+Y\leq 1\}$; (3) 求边缘密度 $f_{Y}(y)$ 和条件密度函数 $f_{X|Y}(x|1)$.

六、(本题满 14 分)设 (X_1, X_2, X_3, X_4) 为来自总体 $X \sim N(0,1)$ 的一个简单随机样本.

(1) 指出 $U = X_1 + X_2$ 所服从的分布,写出U 的密度函数 $f_U(u)$; (2) 指出 (X_3, X_4) 所服从的分布,写出 (X_3, X_4) 的密度函数 $f(x_3, x_4)$; (3) 问 $\frac{X_1 + X_2}{\sqrt{X_2^2 + X_2^2}}$ 服从何分布?给出理由.

 \dots, X_n) 为来自总体 X 的一个简单随机样本. (1) 求 θ 的矩估计量 θ_M ; (2) 求 θ 的极大似然估计量 θ_L .

八、(本题满分 4 分)设随机变量 $X \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{z} & \frac{1}{z} \end{pmatrix}$, Y 的密度函数为 $f(y) = \begin{cases} 2y, & 0 \le y \le 1, \\ 0, &$ 其它.