Vivian Joseph (20BCE0777) **Machine Learning** Lab Da-3 **Single Layer Perceptron** and KNN Classifier

Dataset:

	Year	Model	Price	buy
0	2010	1.10	120	no
1	2011	1.20	150	no
2	2011	1.80	160	no
3	2012	2.00	145	no
4	2012	2.10	150	no
5	2012	2.40	160	no
6	2013	2.60	190	no
7	2013	2.80	210	no
8	2014	2.90	220	no
9	2014	3.00	200	no
10	2015	3.10	210	no
11	2015	3.20	215	yes
12	2016	3.30	220	yes
13	2016	3.40	260	no
14	2017	3.50	270	no
15	2017	3.70	280	no
16	2018	4.00	250	yes
17	2018	4.20	264	yes
18	2018	4.40	270	yes
19	2019	4.60	282	no
20	2019	4.70	295	no
21	2020	4.80	303	no
22	2020	4.82	312	no
23	2020	4.90	323	yes
24	2021	4.95	337	yes
25	2021	5.00	300	yes
26	2022	5.10	315	yes
27	2022	5.20	340	yes
28	2022	5.40	360	no
29	2023	5.80	399	yes

Q1) Apply KNN classification on the dataset and visualize the same

Making a function to check the distances of an input point from all points in the dataset

```
def knn(year,price):
    df['diff1']=df['Year']-year
    df['diff2']=df['Price']-price
    df['d1sqr']=df['diff1']**2
    df['d2sqr']=df['diff2']**2
    df['dist']=np.sqrt(df['d2sqr']+df['d1sqr'])
    print(df)
```

eg:

knn(2017,340)

```
diff2 d1sqr
                                                                dist
    Year
         Model Price
                             diff1
                                                   d2sqr
                        buy
                                     -220
    2010
           1.10
                   120
                         no
                                -7
                                               49
                                                  48400
                                                          220.111335
1
    2011
          1.20
                   150
                                -6
                                     -190
                                                  36100
                                                          190.094713
                                               36
                         no
2
    2011
          1.80
                   160
                         no
                                -6
                                     -180
                                              36 32400
                                                          180.099972
3
                                -5
    2012
           2.00
                   145
                                     -195
                                               25 38025
                                                          195.064092
                         no
                                     -190
4
                   150
                                -5
                                               25 36100
                                                          190.065778
    2012
           2.10
5
                                -5
    2012
           2.40
                   160
                                     -180
                                              25 32400
                                                          180.069431
                         no
6
                                               16 22500
    2013
           2.60
                   190
                         no
                                -4
                                     -150
                                                          150.053324
                                -4
                                    -130
                                              16 16900
    2013
          2.80
                   210
                                                          130.061524
8
    2014
           2.90
                                -3 -120
                                              9 14400
                                                          120.037494
                   220
                         no
9
    2014
           3.00
                   200
                                -3
                                               9 19600
                                                          140.032139
                                     -140
                         no
                                -2
                                               4 16900
10
    2015
           3.10
                   210
                         no
                                     -130
                                                          130.015384
    2015
          3.20
                   215 yes
                                -2
                                     -125
                                               4 15625
                                                          125.015999
11
12
    2016
           3.30
                   220 yes
                                -1
                                     -120
                                               1 14400
                                                          120.004167
                                -1
13
    2016
          3.40
                   260
                                      -80
                                                    6400
                                                           80.006250
                         no
14
    2017
           3.50
                   270
                                0
                                      -70
                                               0
                                                    4900
                                                           70.000000
                         no
                                 0
                                               0
                                                    3600
15
    2017
           3.70
                   280
                                      -60
                                                           60.000000
                         no
    2018
           4.00
                   250 yes
                                 1
                                      -90
                                                    8100
                                                           90.005555
17
    2018
          4.20
                   264 yes
                                 1
                                      -76
                                                1
                                                    5776
                                                           76.006579
          4.40
18
    2018
                   270 yes
                                 1
                                      -70
                                                1
                                                    4900
                                                           70.007142
                                 2
19
    2019
          4.60
                   282
                                      -58
                                                4
                                                    3364
                                                           58.034473
                         no
                                 2
20
    2019
          4.70
                   295
                                      -45
                                               4
                                                    2025
                                                           45.044423
                         no
    2020
          4.80
                   303
                                      -37
                                               9
                                                    1369
                                                           37.121422
21
                         no
22
    2020
          4.82
                   312
                                 3
                                      -28
                                               9
                                                     784
                                                           28.160256
                         no
    2020
                                 3
                                               9
                                                     289
23
           4.90
                   323 yes
                                      -17
                                                           17.262677
24
    2021
          4.95
                   337 yes
                                 4
                                      -3
                                               16
                                                      9
                                                            5.000000
    2021
          5.00
                                      -40
                                              16
                                                    1600
                                                           40.199502
25
                   300 yes
                                 5
                                      -25
                                               25
                                                     625
                                                           25.495098
26
    2022
           5.10
                   315
                        yes
27
    2022
           5.20
                                 5
                                     0
                                               25
                                                            5.000000
                   340 yes
                                                       0
28
    2022
           5.40
                   360
                                 5
                                       20
                                               25
                                                     400
                                                           20.615528
                         no
29
    2023
           5.80
                   399 yes
                                 6
                                       59
                                               36
                                                    3481
                                                           59.304300
```

Make function that take input values and k value and gives the classification of that point according to k nearest neighbours

```
def knn_classify(year,price,k):
    df['diff1']=df['Year']-year
    df['diff2']=df['Price']-price
    df['d1sqr']=df['diff1']**2
    df['d2sqr']=df['diff2']**2
    df['d2sqr']=df['diff2']**0
    top_k = df.nsmallest(k, 'distance')
    prediction = top_k['buy'].value_counts().head(1).index[0]
    return prediction
```

returns yes/no

knn_classify(2017,340,5)

```
knn_classify(2017,340,5)

✓ 0.1s

'yes'

knn_classify(2023,420,5)

✓ 0.1s

'yes'

knn_classify(2016,200,5)

✓ 0.1s

'no'

knn_classify(2016,200,7)

✓ 0.2s

'no'
```

Plotting the dataset and plotting regions according to what classification they would give

```
k=5
xx, yy = np.meshgrid(np.arange(2009, 2024, 0.5), np.arange(100, 450, 1))
zz = np.array([knn_classify(x, y,k)=='yes' for x, y in zip(xx.ravel(), yy.ravel())])
zz = zz.reshape(xx.shape)
# print(zz)
fig, ax = plt.subplots()
ax.contourf(xx, yy, zz, cmap='coolwarm', alpha=0.5)

colors = {'yes': 'red', 'no': 'blue'}
markers = {'yes': 'o', 'no': 's'}
for i, row in df.iterrows():
    ax.scatter(row['Year'], row['Price'], c=colors[knn_classify(row['Year'], row['Price'],k)], s=30)
plt.show()
```

plot the contour

Make contours according to classification and color them accordingly

Red="Yes" Blue="No"

Q2) Pass the dataset through a single layer perceptron to find the weights of each feature and the bias

Converting class labels "yes" and "no" to ordinal 0 and 1

df['ifBuy']=(df['buy'].map({'yes':1,'no':0}))

	Year	Model	Price	buy	ifBuy
0					
0	2010	1.10	120	no	0
1	2011	1.20	150	no	0
2	2011	1.80	160	no	0
3	2012	2.00	145	no	0
4	2012	2.10	150	no	0
5	2012	2.40	160	no	0
6	2013	2.60	190	no	0
7	2013	2.80	210	no	0
8	2014	2.90	220	no	0
9	2014	3.00	200	no	0
10	2015	3.10	210	no	0
11	2015	3.20	215	yes	1
12	2016	3.30	220	yes	1
13	2016	3.40	260	no	0
14	2017	3.50	270	no	0
15	2017	3.70	280	no	0
16	2018	4.00	250	yes	1
17	2018	4.20	264	yes	1
18	2018	4.40	270	yes	1
19	2019	4.60	282	no	0
20	2019	4.70	295	no	0
21	2020	4.80	303	no	0
22	2020	4.82	312	no	0
23	2020	4.90	323	yes	1
24	2021	4.95	337	yes	1
25	2021	5.00	300	yes	1
26	2022	5.10	315	yes	1
27	2022	5.20	340	yes	1
28	2022	5.40	360	no	0
29	2023	5.80	399	yes	1

Running a single layer perceptron with all weights starting at 1, alpha as 0.005 an for 10000 epochs

```
w0=1
             initial weights
w1 = 1
w2 = 1
w3 = 1
alpha=0.005
epochs=10000
for i in range(0,epochs):
    for j in range(0,df.shape[0]):
       sum=w0*(-100)+w1*df['Year'][j]+w2*df['Model'][j]+w3*df['Price'][j]
       if sum>=0:
                                    Activation function
           pred=1
       else:
       delta=alpha*(df['ifBuy'][j]-pred)
       w0=w0-delta
       w1=w1+delta*df['Year'][j]
       w2=w2+delta*df['Model'][j]
       w3=w3+delta*df['Price'][j]
df['preds']=w0+w1*df['Year']+w2*df['Model']+w3*df['Price']
df['preds']=(df['preds'] >=0).astype(int)
print(df)
print(w0,w1,w2,w3)
```

	Year	Model	Price	buy	ifBuy	preds	
0	2010	1.10	120	no	0	0	
1	2011	1.20	150	no	0	0	
2	2011	1.80	160	no	0	0	
3	2012	2.00	145	no	0	0	
4	2012	2.10	150	no	0	0	
5	2012	2.40	160	no	0	0	
6	2013	2.60	190	no	0	0	
7	2013	2.80	210	no	0	0	
8	2014	2.90	220	no	0	0	
9	2014	3.00	200	no	0	0	
10	2015	3.10	210	no	0	0	
11	2015	3.20	215	yes	1	0	
12	2016	3.30	220	yes	1	0	
13	2016	3.40	260	no	0	0	
14	2017	3.50	270	no	0	0	
15	2017	3.70	280	no	0	0	
16	2018	4.00	250	yes	1	0	
17	2018	4.20	264	yes	1	0	
18	2018	4.40	270	yes	1	0	
19	2019	4.60	282	no	0	0	
20	2019	4.70	295	no	0	0	
21	2020	4.80	303	no	0	0	
22	2020	4.82	312	no	0	0	
23	2020	4.90	323	yes	1	0	
24	2021	4.95	337	yes	1	0	
25	2021	5.00	300	yes	1	0	
26	2022	5.10	315	yes	1	0	
27	2022	5.20	340	yes	1	0	
28	2022	5.40	360	no	0	0	
29	2023	5.80	399	yes	1	1	
1.0	349999	9999999	93 -2.3	54999	99999773	373 32.2	8059999998488 11.83000000001
		٥		₩,			W_{Σ}

Clearly, a single layer perceptron provides a very bad fit for the given dataset even after 10000 epochs, as it has 3 features and 30 samples.

More layers would be required to get any substantial fit in a neural network.