

Bibliografía:

[Kurose11] Secciones 1.6, 8.1, 8.2 (excepto la introducción) y 8.2.1

- Describir los fundamentos de seguridad en un sistema de redes de computadores
 - Explicar las aplicaciones de la criptografía, más allá de la confidencialidad
 - Explicar las técnicas para proteger la integridad de los mensajes
 - Cómo conseguir autenticación
- Seguridad en la práctica: sockets seguros

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
- 3. Integridad de los mensajes
- 4. Autenticación de terminal
- 5. Conexiones TCP seguras: SSL

- Propiedades deseables en una comunicación segura:
 - Confidencialidad: el contenido del mensaje disponible únicamente para el emisor y el receptor
 - Solución: mediante cifrado
 - El emisor cifra el mensaje
 - El receptor descifra el mensaje
 - Autenticación: emisor y receptor quieren confirmar la identidad de la otra parte
 - Solución: mediante técnicas criptográficas

- Integridad del mensaje: contenido del mensaje inalterado durante la transmisión (accidental o intencionadamente)
 - Solución: técnicas adicionales al control de errores empleado en los niveles de transporte y enlace de datos
- Control de acceso y disponibilidad: recursos de la red accesibles y disponibles solo para los usuarios legítimos
 - Solución: restricción en el control de acceso con mecanismos de autenticación, cortafuegos, etc.

- Ana y Bob desean comunicarse de "forma segura"
- Ana y Bob pueden ser:
 - 2 routers que quieren intercambiar sus tablas de encaminamiento
 - Dos servidores DNS
 - Un cliente y un servidor que quieren establecer una conexión de transporte segura:
 - Transacciones bancarias on-line
 - Comercio electrónico
 - •

Intruso pasivo

 Puede escuchar y recoger información que circula por la red: contraseñas, información sobre tarjetas de crédito, etc.

Intruso activo

Puede modificar mensajes, eliminarlos y/o añadir otros

- Examen de paquetes (Packet sniffing)
 - Una interfaz de red lee/graba todos los paquetes (incluyendo passwords!) que van por el medio

 El software Wireshark utilizado en la prácticas es un husmeador de paquetes (sw libre)

- Suplantación IP (IP spoofing)
 - Mandar un paquete con una dirección fuente falsa

¿Qué puede hacer un tipo malo?

- Espiar: interceptar mensajes
- Inserción de mensajes en la conexión
- Suplantación: puede falsear (spoof) la dirección origen en paquetes (o cualquier campo en el paquete)
- Secuestro (hijacking): "hacerse cargo" de la conexión mediante la eliminación del emisor o receptor, insertándose él mismo en su lugar
- Denegación de servicio: impedir que el servicio sea utilizado por otros (por ejemplo, por sobrecarga de los recursos)

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autenticación del punto terminal
- 5. Conexiones TCP seguras: SSL

- Criptografía: ciencia y arte de modificar los datos para que solo puedan ser conocidos por su emisor y el receptor deseado
 - Datos modificados → texto cifrado
 - Texto sin modificar → texto nativo o texto en claro

Para cifrar o descifrar se requiere un algoritmo y una o más claves (K_A, K_B)

- Cifrados de sustitución: sustituir una cosa por otra
 - Cifrado monoalfabético: sustituye una letra por otra

Texto plano: abcdefghijklmnopqrstuvwxyz

Texto cifrado: mnbvcxzasdfghjklpoiuytrewq

Ejemplo: Texto en claro: hola bob.alice

Texto cifrado: akgm nkn.mgsbc

- ¿K?
- Caso particular: cifrado de César
 - Sustitución cíclica de las letras del alfabeto
 - − ¿K?

Cifrado Monoalfabético

- Cifrado de César.
 - Texto claro
 - Cifrado K=11
- ab c d e f g h i j k l m n o p q r s t u v x y z mnopqrstuvxyzabcdefghij
- "Hola clase" → "Saxl nxlep"

Cifrado Polialfabético

- Combinación de cifrados monoalfabéticos con un patrón cíclico
 - Texto claro
 - Cifrado K=11
 - Cifrado K=4

- Ejemplo patrón $C_1C_2C_3C_3$: "Hola clase" \rightarrow "Saol fxlvp"

- Ataque de solo texto cifrado
 - Solo se tiene acceso al texto cifrado
 - Dos aproximaciones:
 - Fuerza bruta: búsqueda a través de todo el espacio de claves
 - Análisis estadístico

- Ataque de texto en claro conocido
 - Se tiene acceso a un texto en claro que se corresponde con el cifrado
 - En un cifrado monoalfabético pueden identificarse partes de palabras repetidas
- Ataque de texto en claro seleccionado
 - El intruso puede obtener texto cifrado para el texto en claro que elija.

- Al emplear criptografía
 - El algoritmo suele ser conocido, incluso un estándar
 - Solo las claves son secretas
- Criptografía de clave simétrica
 - Solo una clave
- Criptografía de clave pública
 - Dos claves
- Funciones hash criptográficas
 - Sin claves, ¿qué utilidad puede tener?

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autenticación de terminal
- 5. Conexiones TCP seguras: SSL

- Bob y Ana comparten la misma clave Ks
 - Ej., la clave puede ser el patrón de sustitución en un cifrado de sustitución
- Problema: ¿cómo se puede transmitir la clave de forma segura?

- Los algoritmos de clave simétrica trabajan habitualmente con bloques de tamaño fijo de k bits (por ej. 64 bits)
- Realizan una correspondencia 1-a-1: k bits de texto en claro corresponden a k bits de texto cifrado.
- Ejemplo con k=3:

Claro	Cifrado	Claro	Cifrado
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

¿Cuál sería el cifrado para 010110001111? -> 101000111001

- ¿Cuántas combinaciones hay para k=3?
 - ¿Cuántas entradas en la tabla diferentes con 3 bits?
 - ¿Cuántas permutaciones posibles para las diferentes entradas?
 - 40.320 (23!), no muchas
- En general, se emplean bloques de mayor tamaño (para k=64 bits, 2⁶⁴! permutaciones posibles)
 - Problema: Para bloques de 64 bits sería necesaria una tabla con 2⁶⁴ entradas de 64 bits
 - En su lugar, se emplean funciones que simulan la generación de tablas aleatoriamente permutadas.

Por qué n ciclos?

- Si hay un solo ciclo, un bit de entrada afecta como mucho a 8 bits de salida.
- En un segundo ciclo, los 8 bits afectados quedan diseminados e introducidos en múltiples bloques de sustitución.
- ¿Cuántas rondas?
 - ¿Cuántas veces se necesita barajar las cartas?
 - Menos eficiente conforme va aumentando n.

Evitar la repetición de bloques

- Ejemplo: "GET " ó "HTTP/1.1"
- Con el método anterior, el mismo bloque de texto en claro producirá siempre el mismo texto cifrado

CBC (Cipher Block Chaining)

- El emisor genera un IV (vector de inicialización), c(o), bloque aleatorio y lo envía al receptor (en claro).
- Antes de cifrar el primer bloque, calcula la XOR del bloque a cifrar con el vector IV :
 - $c(1)=K_s(m(1) XOR c(0))$
- Para cada bloque posterior, aplica a los datos la XOR con el anterior bloque cifrado antes de cifrarlo:
 - c(i)=K_s(m(i) XOR c(i-1))

- Vector de inicialización (VI), c(o)
 - No necesita ser secreto
 - Se cambia para cada mensaje (o sesión)
 - Se garantiza que, incluso si se envía repetidamente el mismo mensaje, el texto cifrado será completamente diferente cada vez.

- Establecidos por el NIST (National Institute of Standards and Technology)
- DES (Data Encryption Standard) (1993)
 - Bloques 64 bits, clave 56 bits.
 - Cifrado de bloques con CBC (encadenado)
 - Operación:
 - Permutación inicial y final
 - 16 vueltas idénticas aplicando una función, utilizando cada vez una clave distinta de 48 bits

- ¿Cuán seguro es DES?
 - A causa de las mejoras de los procesadores , actualmente se puede averiguar la clave en menos de un día (fuerza bruta).
- Haciendo DES más seguro:
 - 3DES:
 - Encripta 3 veces con 3 claves diferentes
 - Clave 168 bits (3x56), se usa como 3 claves de 56 bits

AES (Advanced Encryption Standard)

- Reemplaza a DES en Nov. 2001
- Procesa datos en bloques de 128 bits
- Claves de 128, 192 o 256 bits
- En 2003 el gobierno de EEUU aprueba su uso para cifrar información clasificada.
- Desencriptado con fuerza bruta:
 - Suponiendo una máquina que desencriptara DES en un segundo, para desencriptar AES tardaría 149 billones de años.

Permite:

- Conseguir confidencialidad en los mensajes que se transmiten
- Garantizar la integridad de los mensajes
- Realizar autenticación

Problema:

 Distribución de una clave común al emisor y al receptor a través de un canal inseguro

Solución:

Criptografía de clave pública

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autenticación de terminal
- 5. Conexiones TCP seguras: SSL

Clave pública: componentes

- Criptografía asimétrica
- Dos claves distintas
 - Pública: disponible para todo el mundo (K_{pub})
 - Privada: la conoce solo su dueño (K_{priv})
- Cifrado: $m' = K_{pub}(m)$
- Descifrado: $m=K_{priv}(K_{pub}(m))$

 Algunos de los algoritmos presentan una interesante propiedad:

$$K_{\text{pubB}}(K_{\text{privB}}(m)) = m = K_{\text{privB}}(K_{\text{pubB}}(m))$$

Primero la clave pública, seguido de la privada Primero la clave privada, luego la pública

- Cifrar con K_{privB} permite conseguir autenticación y no-repudiación de mensajes (no confidencialidad)
 - Firmas digitales (se verán más adelante)

- Mucho más moderna que la criptografía simétrica
 - Primera publicación Diffie-Hellman, 1976
- ... y mucho más costosa computacionalmente
 - Algoritmos basados en asimetrías de problemas matemáticos complejos:
 - RSA (Rivest, Shamir, Adelson algorithm): aritmética modular de números primos
 - El Gamal: problema del logaritmo discreto
 - •
 - Se utiliza en muchos casos para transmitir claves de sesión secretas entre dos sistemas
 - También para conseguir autenticación y no repudio de mensajes (firmas digitales)

- Un mensaje es un patrón de bits
- Un patrón de bits puede ser representado por un número entero
- Por lo tanto, cifrar un mensaje equivale a cifrar un número
- Ejemplo:
 - M=10010001 puede ser representado por el número 145
 - Para cifrar M, se cifrará el número equivalente para obtener un número nuevo (el texto cifrado)

- Se escogen p y q, números primos muy grandes (p·q del orden de 1024 bits).
- Sea $n = p \cdot q$ y $z = (p-1) \cdot (q-1)$
- Se elige e, (e<n), de forma que no contenga ningún factor común con z (e y z son coprimos, mcd(e,z)=1)
- Se elige d tal que $e \cdot d$ mod z = 1 ($e \cdot d 1$ divisible exactamente por z)
- Clave pública = (n, e)
- Clave privada = (n, d)
- Para cifrar un mensaje m: $c = m^e \mod n$
- Para descifrar c: $m = c^d \mod n$

Cifrado del mensaje m:

```
c = m^e \mod n
```

Según aritmética modular

[(a mod n) + (b mod n)] mod n = (a+b) mod n [(a mod n) - (b mod n)] mod n = (a-b) mod n [(a mod n) · (b mod n)] mod n = (a-b) mod n (a mod n)^d mod n = a ^d mod n

Descifrado del mensaje c:

```
c^d \mod n = (m^e \mod n)^d \mod n = m^{e \cdot d} \mod n = m^{e \cdot d \mod z} \mod n = m^1 \mod n = m
```

Según teoría de números

```
Si p y q son primos y

Si n = p \cdot q y

Si z = (p-1) \cdot (q-1)

entonces

x^y \mod n = x^{(y \mod z)} \mod n
```

- Para romper el cifrado, hay que averiguar p y q factorizando n.
 - No existen algoritmos conocidos para factorizar rápidamente un número.

- El cálculo de este cifrado es muy costoso computacionalmente, por lo que se limita a pequeños bloques de datos:
 - Intercambio de claves secretas
 - Autenticación de terminales
 - Firmas digitales
- DES es como mínimo 100 veces más rápido que RSA
 - En la práctica, se utiliza RSA para intercambiar la claves simétrica
 - Una vez intercambiada, se emplea criptografía de clave simétrica

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
- 3. Integridad de los mensajes
 - Funciones hash
 - ii. Código de autenticación (MAC)
 - iii. Firma digital
 - iv. Certificación y distribución de claves
- 4. Autenticación del punto terminal
- 5. Conexiones TCP seguras: SSL

- Aún cuando la confidencialidad no sea un requisito básico, pueden haber otras consideraciones de seguridad:
 - Integridad: Garantizar que el mensaje no se ha modificado en tránsito, accidental o intencionadamente
 - Autenticación: Verificar que el origen del mensaje es realmente quién dice ser
- Existen dos tipos de soluciones, basadas en clave secreta o basadas en clave pública

i. Resumen del mensaje. Función Hash

- Cifrar todo el mensaje puede resultar costoso (cálculo y almacenamiento)
- Solución eficiente: cifrar un bloque de bits pequeño obtenido a partir del documento (resumen del mensaje), mediante una función (función hash, H)

- Propiedades deseables de H(m)
 - Salida de longitud fija
 - Fácil de calcular (computacionalmente)
 - Irreversible
 - No se pueden encontrar
 (computacionalmente) dos
 mensajes distintos que den el
 mismo resultado (Resistencia a la
 colisión)
- Idea similar al checksum o a los CRC
- Ejemplos: MD5 (128 bits), SHA-1 (160 bits),SHA-2 (224,256,384 y 512 bits) y SHA-3

- Para garantizar además de la integridad del mensaje que su origen es veraz → Código de autenticación (MAC)
- Se basa en la existencia de una clave secreta común, s, que solo conocen emisor y receptor
- Se genera un MAC (Message Authentication Code) que se añade al mensaje
- El receptor evalúa el MAC
- Ejemplo: HMAC (Hash-based MAC)
 - Empleado por OSPF (Open Shortest Path First) (difusión de tablas de encaminamiento), IPSec y TLS (Transport Layer Security)

- HMAC (Hash-based Message Authentication Code):
 - El emisor genera un MAC como el Hash (MD5 o SHA-1) del mensaje y de la clave, y lo añade al mensaje.
- Se autentifica el emisor, se verifica la integridad del mensaje (Autenticación de mensaje)
- No hay cifrado
- Problema de difusión de la clave

- Basadas en clave pública
 muy costoso
- Permiten demostrar:
 - Quién generó la información
 - Impiden la repudiación del mensaje
 - Que la información no se ha modificado

■ Problema → Muy costoso computacionalmente

- Para aligerar el coste computacional:
 - Se aplica una función hash y se obtiene un resumen del mensaje
 - El resumen se cifra con la clave privada del emisor:

$$H(m)=K_{pubA}(K_{privA}(H(m)))$$

 Es el procedimiento más frecuente de firma digital

¿Cómo estar seguros de que una clave pública es la correcta?

- Sirven para resolver el problema de administrar las claves públicas y para que la identidad del dueño no pueda ser falsificada
 - La identidad del usuario es asegurada por un tercero: la autoridad certificadora (AC)
- Partes:
 - Una clave pública
 - La identidad de un implicado
 - La autoridad certificadora

Certificados digitales

Certificados de un navegador

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
- 3. Integridad de los mensajes
- 4. Autenticación de terminal
- 5. Conexiones TCP seguras: SSL

- ¿Cómo es posible saber que el otro extremo es quién afirma ser?
 - Ataques por reproducción
 - Ataques por interposición
- Reproducción:
 - Enviar copia de mensajes válidos anteriores
 - Solución: números distintivos
- Interposición
 - Suplantación de personalidad
 - Solución: certificados digitales

Ataque por reproducción

Números distintivos

Enviar copia de mensajes válidos anteriores

Autenticación por MAC con números distintivos

- R (número distintivo) se genera aleatoriamente para cada conexión.
- El MAC se genera como *Hαsh* del mensaje **m**, la clave secreta s y el nº distintivo R.

Autenticación por clave pública

Ana calcula

 $K_{\text{pubB}}(K_{\text{privB}}(R)) = R$ Y sabe que solamente Bob puede tener la clave privada, que ha encriptado R

 $K_{\text{pubB}}(K_{\text{privB}}(R)) = R$

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
- 3. Integridad de los mensajes
- 4. Autenticación de terminal
- 5. Conexiones TCP seguras: SSL

Secure Sockets Layer (SSL)

- Protocolo de seguridad ampliamente utilizado
 - Soportado por la mayoría de los navegadores, servidores web y lectores de correo
 - Empleado en la mayoría de los sitios de comercio electrónico
- Diseñado originalmente por Netscape (1993)
- Versión actual 3.0
- Muy parecido a TLS (*Transport Layer Security*),
 RFC 5246, estandarizada por IETF (*Internet Engineering Task Force*)

TCP mejorado con SSL

- Agrega confidencialidad, integridad y autenticación (de servidor y cliente) a TCP
 - Con clases y librerías para trabajar en C y en Java de forma similar al API de los sockets
 - Se definen puertos estándar diferentes de los habituales
 - Ejemplos: HTTP: 443 en lugar del 80, IMAP: 993 en vez del 143

Fase de acuerdo

- Autenticación de Cliente (opcional) y Servidor mediante certificados
- Acuerdo acerca de los algoritmos de clave simétrica, de clave pública y código MAC
- Deducción de las claves: a partir de un secreto compartido (clave maestra) generan un conjunto de claves de sesión
- Transferencia de datos
 - Divididos en registros
- Cierre de la conexión
 - De forma segura

Fase de acuerdo

- Establecimiento de la conexión TCP
- El cliente envía su número distintivo (R) y sus cifrados permitidos.
- El servidor envía su número distintivo (R') y selecciona de entre ellos:
 - Un cifrado simétrico (para cifrar el tráfico) (confidencialidad)
 - Uno de clave pública (para cifrar la clave común del cifrado simétrico)
 - Un algoritmo MAC (Message Authentication Code) (integridad)

- El servidor envía su certificado (autenticación)
- El cliente verifica el certificado y extrae la clave pública del servidor
- El cliente genera una clave pre-maestra (PMS, Pre-Master Secret) y la envía cifrada (clave pública del servidor) al servidor.

Deducción de claves:

- A partir de la PMS y de los nº distintivos (R y R') se obtiene la clave maestra (MS) en cada extremo de forma independiente
- La MS genera cuatro claves distintas:
 - Dos claves de cifrado E_c y E_s
 - Dos claves de MAC: M_c y M_s
 - En caso de CBC (Cipher Block Chaining), dos IV
- El cliente envía un MAC de todos los mensajes de acuerdo.
- El servidor envía un MAC de todos los mensajes de acuerdo.

Registros SSL

 SSL divide el flujo de datos en registros y añade un MAC por registro (comprobación de integridad)

- El MAC se calcula sobre los 4 campos anteriores, la clave MAC M (M_c o M_s) y un número de secuencia que se incrementa en cada registro
- El campo tipo (fase de acuerdo, datos de aplicación o cierre)
 - Permite cerrar la conexión de forma segura.
 - Aunque va sin cifrar, está cubierto por el MAC.