Projeto 3 – 2ª Etapa

Pedro de la Peña e Luigi Noronha

a)

a)			
	Embrega 2		2211/16
	Lavorege &		SSC 11 10
	a) y = Bo + Bi	Xi / yi=Bo+1	BeXi+Ei
	Ei=gi-ĝi ~	Somitais des erores Q	uedrados = SEQ
	5EQ = E = E	$(y_i - y_i)^2 = \sum_{i=1}^{\infty} (x_i)^2$	yi-βo-β, Xi)2
	ASEQ = 0	JSEQ = O	
	(A)	(B)	
	A dsfQ = - 2.	E (yi- Po - B1	Xi)
	SEQ = -2 [=		
	= -2005 41 -	m Bo Bo	· Ex] = -2.m[-B-B
			m
	=0 + Bo = -B1		•
	B d SEQ 2 2	xi (y1-130-13	(1Xi) = 0
	=-2 [Exigi- 6	1 5 1 -13, 5 2	1 = 0 (Q)
	Substituto 1 em 2 Exigi + (Pix - y). \$ xi-B1. 2	Xi =0
	Bi= JExi-Eximi		
	Bi= 4(xi-(x) H	= C X 1 4 7 7 7 7 2	Nor (V)

b)Os erros seguem distribuição Normal, com valor esperado igual a zero e com variância constante. Além disso, os erros são todos independentes entre si. Na prática, todas essas suposições podem ser verificadas através da visualização gráfica das duas variáveis.

A não rejeição de H₀ implica a ausência de relação entre as duas variáveis, enquanto sua rejeição implica a existência dessa relação.

d) É possível. O modelo para regressão múltipla fica como demonstrado na imagem abaixo e as suposições feitas para regressões simples são todas validas para ele. Entretanto, se a correlação entre as duas variáveis explicativas for muito forte, as estimativas dos parâmetros do modelo são prejudicadas. O número de testes de hipóteses que devem ser realizados corresponde ao número de variáveis explicativas do modelo, e a interpretação da rejeição ou não de H₀ continua a mesma.

$$\begin{cases}
\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2} \\
\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}
\end{cases}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} - \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{y} -$$