Temporal Difference

Konpat Preechakul Chulalongkorn University August 2019

Monte Carlo prediction cons

• Needs a "whole episode" to make progress

 Is there a better way? Get a feedback after each step

Do we need a whole trajectory?

• Can we start learning as soon as there is a "surprise"?

We adjust our belief to the reality

Reality and beliefs

Belief = Current state value (v) Reality = Sum of reward

How many rewards do we need to get a surprise? Just one.

One step reality

Temporal views

$$v(s_5) = 0$$

 $v(s_4) = r_5 = r_5 + v(s_5)$
 $v(s_3) = r_4 + r_5 = r_4 + v(s_4)$
 $v(s_2) = r_3 + r_4 + r_5 = r_3 + v(s_3)$
 $v(s_1) = r_2 + r_3 + r_4 + r_5 = r_2 + v(s_2)$
 $v(s_0) = r_1 + r_2 + r_3 + r_4 + r_5 = r_1 + v(s_1)$
• Is it? $v(s_t) = r_{t+1} + v(s_{t+1})$

Retersive relationship

Bellman equation for v_{π}

$$v(s_t) = \sum_{a_t} \pi(a_t|s_t) \left[\sum_{r_{t+1}} p(r_{t+1}|s_t, a_t) r_{t+1} + \gamma \sum_{s_{t+1}} v(s_{t+1}) \right]$$
Some short hands
$$r(s_t, a_t)$$

Expected immediate reward

$$r(s,a) = \sum_{r} p(r|s,a)r$$

TD is a "sampling" version of Bellman

Some notes

$$p(r|s,a)$$
 $p(s',r|s,a)$ $p(s'|s,a)$

All are inside the environment

We don't know anyway

We write the more convenient one!

Temporal difference (TD)

$$v(s_t) \leftarrow r_{t+1} + v(s_{t+1})$$

- Sampling based Bellman equation
- Either environment or policy is stochastic, this will give a wrong result
- We need to average out the randomness

TD with running average

$$v(s_t) \leftarrow v(s_t) + \alpha \left[r_{t+1} + v(s_{t+1}) - v(s_t) \right]$$

$$\delta_t = \text{TD error}$$

• α learning rate (or running average)

Shorthand:

$$v(s_t) \stackrel{\alpha}{\leftarrow} r_{t+1} + v(s_{t+1})$$

Action value TD q_{π}

$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha [r(s_t, a_t) + v(s_{t+1}) - q(s_t, a_t)]$$

Shorthand:

$$q(s_t, a_t) \stackrel{\alpha}{\leftarrow} r(s_t, a_t) + v(s_{t+1})$$

State	Reward	Next V	R + V'	V
0	0			0
1	0			0
2	0			0
3	1	-		0

State	Reward	Next V	R + V'	V
0	0			0
1	0			0
2	0			0
3	1	-		1

State	Reward	Next V	R + V'	V
0	0			0
1	0			0
2	0			1
3	1	-		1

State	Reward	Next V	R + V'	V
0	0			0
1	0			1
2	0			1
3	1	-		1

- The "correctness" is propagated backwards in time
 - From the terminal to beginning states
 - State by state
 - One-step TD
- At first, TD has high bias
- During training, it gets closer to the real value
- When there is nothing to update, TD has no bias

Sweeping direction

State	Reward	Next V	R + V'	V
0	0			0
1	0			0
2	0			0
3	1	-		0

The "Right" sweep direction

- It is not obvious what is the right sweep direction in more complex environments
 - Many branches
- If we need to sweep from terminal, what are states before terminals?
- We usually don't know what are preceding states

TD is a bootstrapping technique

- Bootstrap = prediction on prediction
- Given a transition (s, a, r, s')
- Return is not available

$$\sum_{t=0} r_{t+1}$$

• We estimate

$$\sum_{t=0} r_{t+1} \approx r_1 + v(s_1)$$

• It is not correct but better than $v(s_0)$

How to store v and q values

With tables

We use the term "tabular" to this family of algorithms

Example: gridworld 2D

Example: gridworld 2D

Comparing TD and MC for prediction

TD with moving average

$$v^{TD}(s) \leftarrow v(s) + \alpha [r + v(s') - v(s)]$$

MC with moving average

$$v^{MC}(s_t) \leftarrow v(s_t) + \alpha \left[\sum_{\tau=t} r_{\tau+1} - v(s_t) \right]$$
Petern

TD with discount factor

$$v^{TD}(s) \leftarrow v(s) + \alpha [r + \gamma v(s') - v(s)]$$

$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha [r(s_t, a_t) + \gamma v(s_{t+1}) - q(s_t, a_t)]$$

Bias and variance trade-off

Definition

Bias = Inaccuracy of prediction on average

$$\mathbb{E}\left[X-\mathbb{E}\left[X
ight]
ight]$$

Variance = Fluctuations of the prediction

Low bias, low variance the best

High variance

Bias and variance trade-off

- Low bias low variance is best
- TD = high bias + low variance
- MC = low bias + **high** variance
- A dilemma in RL
- You cannot excel in both
- Better algorithm gives a better trade-off
- Something in between is available
- Med bias + med variance?

TD could give a different result from MC

Problem statement

Limited Experience

A 1 B 1

B 1

B 1

Bo

What are the state value of MC and TD?

MC and TD solution

A 1 B 1	MC solution	TD solution
B 1	State values	State values
B 1	A = 2	A = 7/4
Во	B = 3/4	B = 3/4

MC Solution

- Doesn't assume MDP
- It gives a solution as-is
- It converges to minimum squared error on training data
- With limited experience, it seems too naive

TD solution

- TD assumes MDP
- It infers the most likely MDP
 - By constructing states, transitions
 - Learning their transition probabilities and rewards
- TD usually gives a favorable result with limited experience
 - If the underlying problem is MDP
- Both TD and MC converge to the same solution with unlimited data

Using TD for policy iteration

Recap what is policy iteration

```
for until \pi is stable do prediction improvement end for
```

TD for predicting action-value

```
for until \pi is stable do prediction improvement end for
```

- We will work on action value function q
- It is useful for policy improvement

TD for predicting action-value

$$q(s_t, a_t) \leftarrow$$

$$q(s_t, a_t) + \alpha \left[r(s_t, a_t) + q(s_{t+1}, a_{t+1}) - q(s_t, a_t) \right]$$

$$q(s_t, a_t) \stackrel{\alpha}{\leftarrow} r(s_t, a_t) + q(s_{t+1}, a_{t+1})$$

- We need (s, a, r, s', a') to update
- Hence the name **SARSA**

SARSA Algorithm

```
for until \pi is stable do collect experience (s, a, r, s', a') using \pi q(s, a) \leftarrow q(s, a) + \alpha [r + q(s', a')] for s in S do \pi(s) \leftarrow \underset{a}{\operatorname{argmax}} q(s, a) end for end for
```

SARSA

- One-step TD prediction + policy improvement
- SARSA is on-policy
- On-policy = experience must come from itself
- Off-policy will alleviate this constraint!

Exploration vs Exploitation

Problem with no exploration

- If you never try an environment
- If you never go a different path
- How would you know what's better?
- So... philosophical

More concrete example

No reward, no learning

- We learn nothing from zero reward!
- Learning algorithm might not be a bottleneck

$$v^{TD}(s) \leftarrow v(s) + \alpha [r + v(s') - v(s)]$$

• Problem then is not with an algorithm but with the exploration

Epsilon greedy

- Once in a while, try something different
- It might turn out to be a new high

```
z \sim Uniform(0,1)

if z < \epsilon then

random action

else

a \sim \pi(s,a)

end if
```

Epsilon greedy problems

- It could prevent learning optimal policy
- If an environment has "low tolerance" for errors, epsilon greedy is not likely to reach very far
- Annealing epsilon

Environment with low tolerance

Efficient exploration is a grand challenge

- Better exploration could speed up learning
- It could decide whether an environment is solvable
- Orders of magnitude faster!
- Some environments are just hard to explore thoroughly

We trained DQN with novelty-based rewards.

Atari Games on Atari 2600 Montezuma's Revenge

. All	exploration	me thods
· 17111	Explosion (left	

	All exploration methods					
Rank	Method	Score	Paper Title	Year		
1	RND	8152	Exploration by Random Network Distillation	2018		
2	A2C+CoEX	6635	Contingency-Aware Exploration in Reinforcement Learning	2018		
3	DQN-PixelCNN	3705.5	Count-Based Exploration with Neural Density Models	2017		
4	DDQN-PC	3459	Unifying Count-Based Exploration and Intrinsic Motivation	2016		
5	Sarsa-φ-EB	2745.4	Count-Based Exploration in Feature Space for Reinforcement Learning	2017		
6	DQN+SR	1778.8	Count-Based Exploration with the Successor Representation	2018		
7	Sarsa-ε	399.5	Count-Based Exploration in Feature Space for Reinforcement Learning	2017		
8	A3C-CTS	273.7	Unifying Count-Based Exploration and Intrinsic Motivation	2016		

Conclusions

RL is trial, remember, get better

Trial

• Explore a lot

Remember

- Some states are good (high reward)
- Some are bad (low reward)

Get better

- Using Bellman equation to propagate high and low reward
- Avoid low rewards, gravitate to high rewards

Get better

Assignments

- Ex 3.0 Interface
- Ex 3.1 Chula RL
- Ex 3.2 MC
- Ex 3.3 SARSA

A tour ...

Last assignment ...

Resources

General RL discussions

• Facebook group "Thailand Reinforcement Learning"

Temporal credit assignment

The problem

- Many actions in sequence lead to a reward
- How do we know which one contributes, which one hinders?
- How do we know what to change to improve?

RL approach

A/S	0	1	2	3
0	1 \ T~	0	O	-1
1	In 2	1	O	O
2	0	-1	-2	-3

Backpropagation approach

Psychology and Neuroscience

RL and psychology

- Pavlov's classical conditioning
- Thorndike's Law of effect

Classical conditioning

Classical conditioning

Law of effect

"Responses that produce a satisfying effect become more likely to occur, and responses that produce a discomforting effect become less likely to occur..."

Thorndike, paraphrased

Animals learn policies that maximizes satisfactory

RL and neuroscience

- Dopamine is a neurotransmitter
- Dopamine involves in motivation, learning, action-selection, addiction
- It had been suggested that dopamine activity signals reward
- Recent research suggests that dopamine activity signals reward prediction error
- Just like when |reality belief| > 0 (surprise)
- It suggests that humans utilize some kind of TD