1/31 **FIG.**1

FIG.2

14

10

11 12

FIG.3

11

26

27

24

24

25

30

10

16

28

29

20

3/31

4/31

5/31 **FIG.6**

6/31 **FIG.7**

FIG.8

Color of Soil and Color-Causing Substances

Soil Color	Main Coloring Substances	Soil
Black	* Organic Matter • Humus Iron Sand Black Scoria [Manganese Speckling, Sulfides]	Muck Soil •E Peat Soil, Gley Andisol Dark-Colored Andisol (Humus Volcanic Ash Soil, Andisol) Sandy Soil Containing Large Amount of Iron Sand(Immature) Basalt Volcanic Ejector(Raw Soil)
Red ~ Brown ~ Yellow	* Ferric Oxide Minerals (Iron Oxide) Manganese [Speckled Iron]	Red Soil Light-Colored Andisol (Volcanic Ash Soil, Light-Colored Andisol) Brown Forest Soil, Yellow Soil Dark Red Soil
Blue ~ Green	* Ferrous Compounds (Reduced Iron) [Iron Sulfide, Pyrite, Etc.]	Gley Soil(Blue Soil Having Poor Drainage) Strong Gley Soil(Wet Rice Field), Gley Soil (Semi-Wet Rice Field)
Gray ~ White	* Extremely Small Iron Oxide Content *Oxidization Process of Blue Muddy Layer *Accumulation of Salts	Podzol Soil (Gray Soil), Degraded Ferro-Deficient Paddy Field Decomposed Granite Soil, Silas, Sandy Soil(White Sand) Gray Lowland Soil(Dry Rice Field) Salty Soil

(Source: Agricultural Technology System Compiled Soil Fertilizers, Vol.1 Rural Culture Association)

		Input		Output	
Name of Measurement Object Property	Water Content Ratio	Type of Soil	. Measurement Method	Model	Measurement Conditions
NO ₃ -N Concentration	Low (3~26%db) Note 1)	Kanto Loam (SILT 28%, CLAY 20%, SAND 52%)	Method 1: White light is shone onto surface of soil made even by a soil flattening blade, and the reflected light spectrum is measured	NO ₃ -N Concentration= $A+\Sigma$ Bi·exp (Ci·Xi) Where A, Bi, Ci are coefficients. The value of each coefficient is as follows. Yi=dXi / d λ A=3.96 B1=6.16 E-3 B2=0.241 B3=4.67 E-4 C1=6.27 C2=1.56 C3=6.48	The amount of reflected light Xi is measured for each of the following wavelengths. (1)824nm (2)1280nm (3)1768nm
NO3-N Concentration	High (72~120% db)	Kanto Loam (SILT 28%, CLAY 20%, SAND 52%)	Same as above	Where A, Bi, Ci are coefficients. A=0.31 B1=0.243 B2=3.31 E-5	The amount of reflected light Xi is measured for each of the following wavelengths. (1)1286nm (2)2014nm (3)2290nm

Note 1) db is the abbreviation of dry basis, and is the proportion of the weight of water with respect to the weight of solids in the soil.

		Input		Output	
Name of Measurement Object Property	Water Content Ratio	Type of Soil	Measurement Method	Model	Measurement Conditions
Electric Conductivity	Low (2~26%db)	Upland Field	Method 1	Electric Conductivity= $A+\Sigma (Bi-Xi)$ $Yi=dXi/d\lambda$ Where A, Bi are coefficients. $A=128.07$ $B1=-7.15$ $B2=-16.29$ $B3=-7.40$	The amount of reflected light Xi is measured for each of the following wavelengths. (1)2074nm (2)1948nm (3)1776nm
Accurate Water Content Ratio	Low (0~26%db)	Upland Field	Method 1	Y is the second-order derivative of X which is related to λ . The value obtained by subtracting the average from y is divided by the standard deviation to give a value which forms the standardized value W. Accurate Water Content Ratio= 5.55 • W+13.2	The amount of reflected light X is measured for each of the following wavelengths. (1)1450nm
Accurate Water Content Ratio	High (72~120% db)	Upland Field	Method 1	Y=dX / d \(\lambda \) The value obtained by subtracting the average from y is divided by the standard deviation to give a value which forms the standardized value W. Accurate Water Content Ratio=-0.096 • W+9.16	The amount of reflected light X is measured for each of the following wavelengths. (1)1850nm

10/31 FIG.11

FIG.12

FIG.13

13 / 31 **FIG. 14**

14/31 **FIG.15** ST9 Input name of measurement object property and data of measurement method **ST10** Have the measurements Yes been completed? **END** ,No **ST11 ST12** Has a mode for automatically Execute automatic measuring the water content ratio measurement of the water Yes been established? content ratio No **ST14 ST13** Process output images from a Has a mode for automatically color television camera measuring the type of soil Yes installed in the soil sensor, and been established? automatically measure the type No of soil **ST15** Access the soil measurement data storage portion based on the type of soil, the water content ratio, the name of the measurement object property, and data of the measurement method, and then read out measurement conditions and a model **ST16** Measure the properties of the soil **ST17** Measure the current position of the soil sensor by GPS, and create a map corresponding to the soil properties and the current position

15/31 **FIG.16**

^{16/31} FIG.17

17/31 **FIG.18**

^{18/31} **FIG.19**

Definitions based on the International Soil Institute Method

Kind	Definitions: Based on Particle Diameter
Clay	Soil Particles Having a Particle Diameter below 0.002 mm
Silt	Soil Particles Having a Particle Diameter of 0.002 ~ 0.02 mm
Sand	Soil Particles Having a Particle Diameter of 0.02 ~ 2 mm

FIG.21

		ı -	1	Ι-	Γ	Ι	Ι]		i I	<u> </u>	Γ
Definitions	Clay Content above 45%	Sand above 55%	Sand below 55%+Silt below 45%	Silt above 45%	Sand above 80%	Sand of 55 ~ 85%	Sand below 55% (Silt above 45%)	Sand above 85%+Clay Content above 5%	Sand below 85%+Clay Content below 5%	Sand of 65 ~ 85%	Sand below 65%+Silt below 45%	Silt above 45%
Type of Soil (Subdivided Types)	Heavy Clay Soil	Sandy Clay Soil	Light Clay Soil	Silty Clay Soil	Sandy Clay Loamy Soil	Clay Loamy Soil	Silty Clay Loamy Soil	Loamy Sandy Soil	Sandy Soil	Sandy Loamy Soil	Loamy Soil	Silty Loamy Soil
Definitions	Clay Content above 45%		Clay Content of $25 \sim 45\%$			Clay Content of $15 \sim 25\%$				Clay Content below 15%		
Type of Soil (Main Types)	Heavy Clay Type		Clay Type			Loamy Soil Type				Sandy Soil Type		

Contained Substances	Substances	Effect on Color	Specific Example
	Free Iron	Red, Brown and Yellow become strong	Red, Brown and Yellow become strong Soil with good exposure to air, such as upland field soil, etc.
Iron Compounds	Reduced Iron	Blue and Green become strong (Clay of the Gley Layer)	Oxygen Deficient Soil, such as paddy field soil
	Small Amount of Iron Compounds	Color becomes Gray, Light Gray	Deposits of volcanic ash and sand (Pyroclastic pumice flow sediment)
Manganese Compounds Free Man	Free Manganese	Black, Brown and Purple are supplied	For a paddy field with good drainage, the purple layer in the substrate of the surface soil will be visible
Humus Content	Content	Black becomes deep to a large extent	Soil containing a large amount of organic matter, such as Andisol containing a amount of compost, etc.

Soil Attributes: The color tone becomes stronger when the amount of clay becomes larger.

Water Content: The color tone becomes lighter when the soil becomes drier.

Soil Formation Effects: Brown Woody Soil →Surface layer becomes brown ~ blackish brown(Warm Heavy Rain broad-leaved trees)

Podzol Soil→Bleaching causes color to become white ~ light gray(Cold Needle-leaved trees) Laterite→Red soil rich in iron and alumina (tropical rain forest)

Andisol→Black ~ blackish brown (volcanic ash)

Peat · Muck→Black ~ blackish brown

^{22/31} FIG.23

23/31 FIG.24

^{24/31} FIG.25

^{25/31} FIG.26

IG.27

Type of Soil C	Water Content	Weather	Type Water Weather Information of Soil Content Conditions (Control Data + Soil Measurement Model)	Advertisèment Information	Cultivation Recipe + Actual Harvest Results Presentation	Farmland Location Information	Soil Working Instructions Information
Small	=	Hot	m1 C1	Seed Advertisements http:// Agricultural Chemical Advertisements http://	S1 (Cultivation Recipe + Actual Harvest Results) S2	P1 (Location, Area, Owner, Farmer, Address) P2, P3	Ū
Large	υ	Cold	m2 C2	Fertilizer Advertisements http://	S3	P4	U2
Small		Dry	m3 C3	Information on Soil Judgment Services	S4	P5	U3
Clay Large		Heavy Rain	m4 C4	Advertisements on crop field Lending and Borrowing	S5	P6	U4

26/31

27 / 31

^{30/31} **FIG.3**1

31/31

