

Sentiment Analysis on Movie Reviews: A predictive model with pre-trained Bert by PyTorch

Huaye Zhan¹

¹ Artificial Intelligence - Software engineer technology, Centennial College

content

- 1. Introduction
- 2. Dataset
- 3. EDA
- 4. Training
- 5. Model Deployment
- 6. Conclusion

Introduction

Dataset: Kaggle API

Multiclass Classification

Categorization Accuracy

The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis, originally collected by Pang and Lee [1]. In their work on sentiment treebanks, Socher et al. [2] used Amazon's Mechanical Turk to create

fine-grained labels for all parsed phrases in the corpus. This competition presents a chance to benchmark your sentiment-analysis ideas on the Rotten Tomatoes dataset. You are asked to label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, Dostitive. Obstacles like sentence negation, sarcasm,

EDA

	Phraseld	Sentenceld	Phrase	Sentiment
0	1	1	A series of escapades demonstrating the adage	1
1	2	1	A series of escapades demonstrating the adage	2
2	3	1	A series	2
3	4	1	А	2
4	5	1	series	2

EDA

Training: Pre-trained model BERT

checkpoints.

AI & ML interests

BERT community

Expand 15 models

Training: Result

Training: Result

Class	Precision	Recall	F1-Score	Support	Accuracy
0	0.57	0.39	0.47	365	
1	0.57	0.64	0.60	1310	
2	0.80	0.80	0.80	4027	
3	0.62	0.65	0.64	1628	
4	0.66	0.49	0.56	473	
					0.70

Model Deployment: Live Demo

Conclusion: limitation and Improvement

- Data binning and Data processing: bin 0 into 1, bin 3 into 4, to make the data less imbalanced and applied SMOTE in preprocessing data.
- Model comparison: compared with other pre-training models
- Fine tune parameter of networks

Thank you!