

Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses

Haipeng Luo, **Chen-Yu Wei**, Chung-Wei Lee University of Southern California

Policy Optimization

collect data using
$$\pi_{\theta}$$
 repeat
$$\theta \leftarrow \theta - \eta \nabla_{\theta} \hat{V}(\theta)$$
 estimated loss of π_{θ}

Wide empirical success

Theoretically less understood

in contrast to model-based (UCBVI) or value-based (UCB-Q) approaches

Policy Optimization

Benefit: directly optimizes policies → less prone to modeling error (compared to model- or value-based methods)

In fact, standard policy optimization is based on the mirror descent framework, which can even handle adversarial losses.

Drawback: perform local policy search and lack exploration → slow/unable to find global optimum

Can Policy Optimization perform global exploration under adversarial losses?

Contributions

- A new general way of constructing exploration bonuses for policy optimization (suitable for adversarial loss + function approximation + bandit feedback)
- Applications to several settings:

Tabular MDP

 $\mathsf{regret} = \tilde{\mathcal{O}}(\sqrt{T})$

Linear-Q MDP + simulator

 $regret = \tilde{\mathcal{O}}(T^{2/3})$

Linear MDP + exploratory policy

 $\mathsf{regret} = \tilde{\mathcal{O}}(T^{6/7})$

Linear MDP

 $\mathsf{regret} = \tilde{\mathcal{O}}(T^{14/15})$

improving Efroni et al.'s $\tilde{\mathcal{O}}(T^{2/3})$ bound

matching Neu & Olkhovskaya's, but removing their requirement of an exploratory policy first sublinear regret

(only appearing in our arxiv version)

Setting and Algorithm

Finite-horizon MDP with horizon length H, state space S, action space A, and an unknown transition kernel p(s'|s,a)

```
For episode t = 1, 2, \dots, T:
       Adversary chooses a loss function \ell_t(\cdot,\cdot): \mathcal{S} \times \mathcal{A} \to [0,1]
       Learner chooses a policy \pi_t
       For step h = 0, 1, ..., H - 1:
             Learner observes s_h, and chooses a_h \sim \pi_t(\cdot|s_h)

Q function under policy

\pi_t and loss \ell_t
              Learner observes \ell_t(s_h, a_h)
       Learner generates \hat{Q}_t(\cdot,\cdot) (an estimator of Q^{\pi_t}(\cdot,\cdot;\ell_t))
       and perform mirror descent update \pi_{t+1}(a|s) \propto \pi_t(a|s) \exp\left(-\eta \hat{Q}_t(s,a)\right)
```

Deriving Exploration Bonus for Policy Optimization

$$\begin{aligned} \operatorname{regret} &= \sum_{t=1}^{T} \left(V^{\pi^{\star}}(s_0; \ell_t) - V^{\pi_t}(s_0; \ell_t) \right) \\ &= \sum_{s} \mu^{\pi^{\star}}(s) \underbrace{\sum_{t=1}^{T} \sum_{a} \left(\pi_t(a|s) - \pi^{\star}(a|s) \right) Q^{\pi_t}(s, a; \ell_t)}_{} \end{aligned}$$

Performance difference lemma

A bandit problem on state s

$$\leq \sum_{s} \mu^{\pi^{\star}}(s) \left(\frac{\log A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a} \pi^{\star}(a|s) b_{t}(s, a) \right)$$
$$= \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi^{\star}}(s_{0}; b_{t})$$

Mirror descent analysis $b_t(s,a) \approx \frac{c}{\mu^{\pi_t}(s,a)}$

$$\sum_{s} \mu^{\pi^*}(s) \pi^*(a|s) b_t(s,a) = V^{\pi^*}(s_0; b_t)$$

$$\sum_{t=1}^{T} \left(V^{\pi_t}(s_0; \ell_t) - V^{\pi^*}(s_0; \ell_t) \right) = \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi^*}(s_0; b_t) \qquad b_t(s, a) \approx \frac{c}{\mu^{\pi_t}(s, a)}$$

involves distribution mismatch coefficient $\kappa = \sup_{s,a,t} \frac{\mu^{\pi^\star}(s,a)}{\mu^{\pi_t}(s,a)}$ that is hard to handle (so standard analysis of PO assumes that κ is bounded)

A simple trick to avoid this factor: using $\ell_t(s,a) - \eta b_t(s,a)$ as loss, instead of $\ell_t(s,a)$

$$\sum_{t=1}^{T} \left(V^{\pi_t}(s_0; \underline{\ell_t} - \eta b_t) - V^{\pi^\star}(s_0; \underline{\ell_t} - \eta b_t) \right) \lesssim \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi^\star}(s_0; b_t) \quad \text{assuming we can get the same bound for now}$$

$$\Rightarrow \sum_{t=1}^{T} \left(V^{\pi_t}(s_0; \ell_t) - V^{\pi^\star}(s_0; \ell_t) \right) \lesssim \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi_t}(s_0; b_t) \quad \text{rearranging}$$

Change of measure: $V^{\pi^*}(s_0; b_t) \longrightarrow V^{\pi_t}(s_0; b_t)$

(no longer involving distribution mismatch coefficient)

Standard bonus (e.g., UCBVI)

Constructed from Hoeffding's bound

To compensate the loss estimation error

Find the optimal policy under the modified loss

Our bonus

Constructed from the regret analysis of mirror descent

To compensate the stability penalty (≈ variance of the loss estimator)

Perform policy optimization over the modified loss

Dilated Bonus?

Recall that we made the following assumption in the previous derivation:

$$\sum_{t=1}^{T} \left(V^{\pi_t}(s_0; \ell_t) - V^{\pi^*}(s_0; \ell_t) \right) \leq \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi^*}(s_0; b_t)$$

Really? Close, but not exactly.

$$\sum_{t=1}^{T} \left(V^{\pi_t}(s_0; \underline{\ell_t} - \underline{\eta b_t}) - V^{\pi^*}(s_0; \underline{\ell_t} - \underline{\eta b_t}) \right) \lesssim \tilde{\mathcal{O}}\left(\frac{H}{\eta}\right) + \eta \sum_{t=1}^{T} V^{\pi^*}(s_0; b_t)$$

In fact, without modification, almost the same bounds (only slightly worse) can be achieved for tabular MDPs and linear MDPs.

Dealing with Linear Models

Linear-Q MDP: for any policy π , $Q^{\pi}(s, a; \ell_t)$ can be represented as $\phi(s, a)^{\top} w_t^{\pi}$ for some w_t^{π} (unknown to the learner)

Linear MDP: $\ell_t(s, a) = \phi(s, a)^{\top} \theta_t$ and $p(s'|s, a) = \phi(s, a)^{\top} \nu(s')$ for some θ_t and $\nu(\cdot)$ (both unknown to the learner)

Bonus in LSVI-UCB (Jin et al.)

$$\|\phi(s,a)\|_{\Lambda_t^{-1}}$$

$$\Lambda_t = \lambda I + \sum_{\tau=1}^{t-1} \phi(s_\tau, a_\tau) \phi(s_\tau, a_\tau)^\top$$

Our bonus

$$\eta \|\phi(s,a)\|_{\Sigma_t^{-1}}^2$$

$$\Sigma_t = \lambda' I + \mathbb{E} \Big[\phi(s, a) \phi(s, a)^\top \ \Big| \ (s, a) \sim \pi_t \Big] \Big]$$

Summary

- A new general way of constructing exploration bonuses for policy optimization (suitable for adversarial loss + function approximation + bandit feedback)
- Applications to several settings:

Tabular MDP

 $\mathsf{regret} = \tilde{\mathcal{O}}(\sqrt{T})$

Linear-Q MDP + simulator

 $regret = \tilde{\mathcal{O}}(T^{2/3})$

Linear MDP + exploratory policy

 $\mathsf{regret} = \tilde{\mathcal{O}}(T^{6/7})$

Linear MDP

 $\mathsf{regret} = \tilde{\mathcal{O}}(T^{14/15})$

improving Efroni et al.'s $\tilde{\mathcal{O}}(T^{2/3})$ bound

matching Neu & Olkhovskaya's, but removing their requirement of an exploratory policy first sublinear regret

(only appearing in our arxiv version)