Limites des langages rationnels

Est ce que tout langage est rationnel? Existe-t-il des langages non rationnels?

Hypothèse: tout est rationnel

 Les langages rationnels sont reconnaissables : ils sont en bijection avec les automates.

Un automate peut être décrit par un texte

 Ce texte correspond (codage ASCII) à un nombre binaire

 D'où que les langages reconnaissables sont en bijection avec N.

Hypothèse: tout est rationnel

- On énumère les automates finis sur un alphabet à une lettre et on les ordonne dans une liste :
 - \blacksquare A_0 le premier automate
 - A₁ le second automate
 - •••
- On énumère les langages rationnels sur un alphabet à un seul lettre :
 - L₀ reconnu par A₀
 - L₁ reconnu par A₁
 - •

Tableau mots/langages

D n'est pas dans T

- Si D était dans le tableau, il existerait j tel que D=L_j.
- Puisque D=L_i, si
 - $w_j \in L_j$ alors, par définition de D, $w_j \notin D \Rightarrow$ contradiction
 - $w_j \not\in L_j$ alors, par définition de D, $w_j \in D \Rightarrow$ contradiction
- l'ensemble des langages est infini, mais non dénombrable

D n'est pas dans T

■ Il existe des langages qui ne sont pas rationnels

Preuve par technique de diagonalisation due à Cantor.

Très utile pour montrer qu'un ensemble infini n'est pas dénombrable.

Un langage qui n'est pas rationnel

Le langage L= {0k1k | k≥0}

- Supposons L rationnel; il existe A un AFD à n états qui le reconnaît. Choisissons w un mot de L de longueur ≥ n (par exemple w=0ⁿ1ⁿ). Que se passe-t'il lors de la lecture de w?
- En lisant les n premiers 0, un état p de A est visité plusieurs fois (on passe par n+1 états pour lire n symboles).

Le langage L= {0k1k | k≥0}

- Puisque w=xyz∈L, xz∈L ainsi que xyyz et, ∀i≥0, xyiz. Mais chacun de ces mots possède plus ou moins de 0 que de 1, une contradiction.
- application simple
 - du principe des pigeons pour les anglo-saxons
 - des tiroirs de Dirichlet chez nous
 - ou aussi tiroirs et chaussettes ...

Principe des pigeons

Principe des pigeons

Principe des pigeons

Si on cherche à mettre n pigeons dans m cages (n>m), une cage contiendra plus d'un pigeon

Ce qu'on vient de faire

 On a montré qu'il existe au moins un langage non rationnel, le langage

```
L = \{0^k 1^k : k \ge 0\}
```

- But : trouver une technique pour montrer la non rationalité d'un langage, i.e. pour décider le problème :
 - Donnée : L un langage
 - Question: L est-il non rationnel?

Le lemme de la pompe

Technique de démonstration

- On utilise un résultat sur les langages rationnels: le lemme de la pompe.
- Il exprime une propriété particulière des rationnels.
- Si un langage ne possède pas cette propriété, il n'est pas rationnel.
- Propriété: Tout mot (suffisamment long) d'un langage rationnel contient un facteur qui peut être itéré autant que l'on veut de telle sorte que le mot résultant est toujours dans la langage.

Le lemme de la pompe

- Si L est rationnel, alors il existe un nombre n tel que pour tout mot w de L, |w|≥ n, w peut être factorisé en w=xyz de telle sorte que
 - 1. Pour tout i≥0, xyⁱz ∈L
 - 2. |y|>0
 - 3. |xy|≤n
- Quand w est factorisé en xyz, soit x soit z peut être ε mais la condition 2 assure que y≠ ε.
- La condition 3 assure que le préfixe xy est de longueur au plus n. Cette condition est utile pour certains langages.

Exemple pour L= {0k1k | k≥0}

- Supposons L rationnel. Alors par le lemme, il existe n tel que pour tout mot w=xyz, $y\neq\epsilon$, $|xy|\leq n$ et $\forall i$, $xy^iz\in L$.
- En particulier pour $w=0^n1^n$. Comme $|xy| \le n$, y ne contient que des zéros. Alors pour i=0, le mot $xz \notin L$. Une contradiction
- L n'est pas rationnel

Remarques

Observons que le lemme dit
 L rationnel ⇒ L satisfait le lemme

Mais on ne sait rien pour la réciproque:

 Si L satisfait le lemme, on ne sait pas si L est rationnel

Utilisation du lemme

- 1. On suppose que L est rationnel
- Le lemme ⇒ tout mot de longueur ≥n du langage peut être « gonflé »
- 3. Trouver w (|w| ≥ n) qui ne peut pas être gonflé, quelle que soit sa factorisation.
- 4. Une contradiction pour chaque factorisation
- 5. L n'est donc pas rationnel

Point délicat

Le point 3. est le plus délicat

3. Trouver $w(|w| \ge n)$ qui ne peut pas être gonflé, quelle que soit sa factorisation.

Il faut:

trouver un mot qui, pour toute factorisation, permet de trouver une valeur de i (la valeur de répétition) qui nous mène à un mot qui n'est pas de L. On contredit ainsi le lemme

Pour toute factorisation

Pourquoi faut-il trouver un mot qui, pour toute factorisation, permet de trouver une valeur de i (la valeur de répétition) qui nous mène à un mot qui n'est pas dans L?

Pour toute factorisation

- On fait un raisonnement par l'absurde :
 - On utilise le fait
 - L rationnelle > "L vérifie le lemme"
 - Équivalent à
 - P = "L non rationnelle" v "L vérifie le lemme"
 - Par l'absurde : il faut nier P
- $\neg P \equiv "L rationnelle" \land "L ne satisfait pas le lemme"$
- Que veut dire que L ne satisfait pas le lemme?

Exemple $L=\{w \in \{0,1\}^*: |w|_0 = |w|_1\}$

- Supposons L rationnel et soit n la valeur fixée par le lemme.
- On choisit w=0ⁿ1ⁿ. On peut alors factoriser w en accord avec le lemme

y ne contient que des 0 et xy²z n'est plus dans le langage; une contradiction

Une présentation comme jeu

- L'utilisation du lemme peut être présenté comme un jeu entre deux joueurs (vous et un adversaire) :
 - Votre but est de prouver que L n'est pas rationnel.
 - Les correspondances des quantificateurs :

```
vous ~ ∀ et adversaire ~ ∃
```

- 1. Vous choisissez L.
- 2. L'adversaire choisit n.
- 3. Vous choisissez w∈L, |w|≥n.
- 4. L'adversaire choisit x,y,z. w=xyz, $|xy| \le n$, $|y| \ge 1$.
- 5. Vous choisissez i tel que xyiz ∉ L.
- Chaque choix peut dépendre des précédents.

Une présentation comme jeu - exemple

```
1. L=\{w\in(a+b)^*: |w|_a\leq |w|_b\}
2. n
3. w=a^nb^n
4. w=xyz, x=a^{j}, y=a^{k}, z=a^{n-j-k}b^{n}, j\ge 0, k>0, j+k\le n
                      (|xy|=j+k\leq n, |y|=k>0)
5. i=2:
                 xy^2z=a^ja^ka^ka^{n-j-k}b^n=a^{n+k}b^n\notin L
```

Conclusion: L n'est pas rationnel!

Prouver la non rationalité

- Pour montrer que L n'est pas rationnel : on fait un raisonnement par l'absurde.
 - On utilise le raisonnement avec des AFD
 - On utilise le lemme de la pompe
- Autre méthode : on utilise les propriétés de clôture

Union Intersection Etoile Concatenation Substitution

Oui Oui Oui

Exemple $L=\{w \in \{0,1\}^*: |w|_0 = |w|_1\}$

Autre méthode:

- Supposons $L=\{w \in \{0,1\}^*: |w|_0 = |w|_1\}$ rationnel
- Par les propriétés de clôture, L∩0*1* doit être rationnel (0*1* est rationnel)
- $L \cap 0*1*= \{0^n1^n : n \ge 0\}$
- Comme $\{0^n1^n : n \ge 0\}$ n'est pas rationnel, L ne peut être rationnel.

La génération des langages

Origine des grammaires

- Tentatives de formalisation du langage naturel
- <u>But</u>: décrire précisément les règles permettant de construire des phrases syntaxiquement correctes d'une langue
- Échec de la linguistique mais réussite pour des langues plus simples = langages informatiques

Exemple pour la linguistique

Phrase: Sujet Verbe

Sujet: Pronom

Pronom: il elle

Verbe: dort | écoute

Règles

Symboles terminaux

- Avec ces 4 règles, on peut alors construire les phrases:
 - il écoute
 - il dort
 - elle écoute
 - elle dort

En informatique

- DecimalNumeral:0NonZeroDigit Digits_{opt}
- Digits:DigitDigits Digit
- Digit:0NonZeroDigit

 NonZeroDigit: one of 123456789

définition d'un décimal java

Grammaire informatique

- Ensemble de règles de la forme
 - Digit:0NonZeroDigit
- Décrit la manière de construire le langage
- Inversement, un automate nous permet de reconnaître les mots du langage

Forme de Backus-Naur BNF

- Description analytique d'une grammaire informatique
- Utile à l'analyse syntaxique (1ere étape de compilation)
- Catégories syntaxiques : suite de mots commençant par une majuscule sans espace
 - Opérateur Additif, Non Zero Digit, Digit
- Alternatives: Une barre verticale sépare les alternatives
 - Digit: 0 | NonZeroDigit
- Mots clés : en gras
 - class, float, switch, boolean
- Éléments optionnels: Les crochets encadrent les éléments optionnels
 - DecimalNumeral: 0 | NonZeroDigit [Digits]
- Éléments répétés : encadrés par des accolades
 - Identificateur : Lettre {Lettre | Chiffre}

Flottants JAVA BNF

- ExponentPart: ExponentIndicator SignedInteger
- ExponentIndicator: e | E
- SignedInteger: [Sign] Digits
- Sign: + | -
- FloatTypeSuffix: f | F | d | D

Les grammaires formelles

- Principe de base : ensemble de règles qui engendrent les mots d'un langage
- sortes de règles de réécriture
 - Une suite de symboles peut être remplacée par une nouvelle suite de symboles
 - Les mots engendrés sont ceux obtenus en appliquant les règles à partir d'un symbole de départ

Définition

- Une grammaire G=(N,T,R,S)
 - N : ensemble des symboles non terminaux
 - T : ensemble des symboles terminaux
 - •R⊆(Nx(N∪T)*): ensemble fini de règles de réécriture, les productions
 - S∈ N : symbole de départ également appelé axiome
- Les mots engendrés sont ceux obtenus en appliquant les règles à partir du symbole de départ et qui ne contiennent plus que des symboles terminaux
- Exemple:

$$G=(N=\{S,A,B\},T=\{0,1\},R=\{S\rightarrow ASB; S\rightarrow \epsilon; A\rightarrow 0; B\rightarrow 1\},S)$$

Conventions d'écriture

- Les non terminaux sont représentés par des majuscules
- Les terminaux sont représentés par des minuscules
- Les productions $(X, \alpha) \in R$ sont notées $X \rightarrow \alpha$
- L'axiome est le plus souvent noté S (start)
- Les symboles de N∪T sont appelés les symboles grammaticaux.
- Il sont représentés par les lettres minuscules grecques : α , β , γ ,...
- Si $X \rightarrow \alpha_1$, $X \rightarrow \alpha_2$,..., $X \rightarrow \alpha_k \in R$ avec X comme partie gauche, on peut écrire

$$X \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_k|$$

Observations

- Les terminaux sont les symboles de base à partir desquels les mots sont formés; on les appelle des unités lexicales
- Les non terminaux sont des variables syntaxiques qui dénotent un ensemble de chaînes qui aident à la spécification du langage
- Exemple:
 - Lettre → A|B|C|...|Z|a|b|...|z
 - Chiffre $\rightarrow 0|1|...|9$
 - Identificateur → Lettre {Lettre | Chiffre}
- Les terminaux sont les lettres et les chiffres
- Les non terminaux sont {Lettre, Chiffre, Identificateur}
 qui aident à la compréhension du langage

Observations

- Les productions spécifient la manière dont les terminaux et les non terminaux peuvent être combinés pour former des chaînes.
- Chaque production $X \rightarrow \alpha$ consiste en

Exemple

- G=(N,T,R,S)
 - N={S,A,B}
 - T={a,b}
 - R= $\{S \rightarrow A \mid B, A \rightarrow aA \mid \epsilon, B \rightarrow bB \mid \epsilon\}$
- Définit une grammaire

Partant de S on a pu engendrer le mot aa

Une «vieille» connaissance

- G=(N,T,R,S)
 - N={S}
 - T={a,b}
 - R={S $\rightarrow \epsilon$, S $\rightarrow aSb$ }
- Définit une grammaire pour {aⁿbⁿ:n≥0} non rationnel