5. Двигатель может совершать работу за счет внутренней энергии окружающей среды и внутренней энергии воды.

Работа льда при его замерзании и расширении определяется по формуле $A = P \Delta V$, (1)

где $\Delta V = M(\frac{1}{\rho_{_{\!\scriptscriptstyle R}}} - \frac{1}{\rho_{_{\!\scriptscriptstyle G}}})$ - увеличение его объема при замерзании, M - масса

льда, $\rho_{_{\!\it I}}$, $\rho_{_{\!\it G}}$ - плотности льда и воды, соответственно.

Массу льда, которую можно заморозить найдем из уравнения теплового баланса

$$M\lambda = mL \implies M = m\frac{L}{\lambda},$$
 (2)

где m - масса имеющегося в нашем распоряжении жидкого азота, L - удельная теплота парообразования азота, λ - удельная теплота кристаллизации воды. Максимальное давление льда опреляется прочностью стенок цилиндра двигателя.

Выделим на поверхности цилиндра узкую полоску длиной l и видимую с оси цилиндра под малым углом α . Сила давления льда

$$F = PS_0 = Pl\alpha R \tag{3}$$

уравновешивается силами механического напряжения в стенках цилиндра

$$T = \sigma_{nn} S_l = \sigma_{nn} lh. \tag{4}$$

В формулах (3)-(4) обозначено: R - радиус цилиндра, h - толщина его стенок, $\sigma_{np.}$ - предел прочности стали, S_0 - площадь выделенной полоски, S_1 - площадь ее боковых торцов. Записывая условие равновесия выделенного элемента в проекции на радиальное направление, получим

$$F = 2T \sin \frac{\alpha}{2}$$
, $\Rightarrow F = T\alpha$, $\Rightarrow PlR\alpha = \sigma_{np} lh\alpha$. (5)

При выводе последнего соотношения учтена малость угла α . Из уравнения (5) определяем максимально возможное давление льда

$$P = \frac{\sigma_{np.}h}{R} \,. \tag{6}$$

Таким образом, максимальная работа, которую может совершить двигатель, рассчитывается по формуле

$$A = \frac{\sigma_{np.}h}{R} m \frac{L}{\lambda} (\frac{1}{\rho_{n}} - \frac{1}{\rho_{n}}) \approx 280 \, \text{Дж} \,. \tag{7}$$

Коэффициент полезного действия определяется отношением совершенной работы к количеству полученной теплоты, которая в данном случае равна количеству теплоты, которое требуется на плавление льда ($Q=M\lambda$)

$$\eta = \frac{A}{Q} = \frac{\sigma_{np.}h}{R\lambda} \left(\frac{1}{\rho_n} - \frac{1}{\rho_e}\right) \approx 1.4 \cdot 10^{-3} \,. \tag{8}$$

Схема оценивания.

Номер	Содержание	баллы	в том числе за
пункта		всего	подпункты
1	Источник энергии	1	
2	Максимальное давление	3	
	- выделение узкой полоски		1
	- напряжение в стенке (4)		1
	- условие равновесия		1
2	Работа льда	4	
	- формула (1)		1
	- изменение объема		1
	- тепловой баланс		1
	- численное значение		1
3	Расчет КПД	2	//
	- определение кпд и расчет теплоты		1
	- численное значение		1
	итого	10	