

 $0 - \pi i = \frac{\pi}{z} \frac{2}{\pi} \frac{\pi}{z} = \frac{\pi}{z} \frac{2}{\pi} \frac{\pi}{z} = \frac{\pi}{z} \frac{2}{z} = \frac{\pi}{z} \frac{\pi}{z} \frac{\pi}{z} = \frac{\pi}{z} \frac{\pi}{z} \frac{\pi}{z} = \frac{\pi}{z} \frac{\pi}{z} \frac{\pi}{z} = \frac{\pi}{z} \frac{\pi}{z$

2 CO 01 = 1) 11 - 60 => x = 20 1 - 21

internials,

Calculus

1- 1 10 = ore = 1

Fundamental branches of Math

Fundamental branches of Math

Algebra

Geometry

Calculus

Let us 'Change' this outlook about Change today

Understanding Functions

Salt (in Pinches)	Taste (in %)
1	10
5	40
9	95
12	90
15	50
20	0.3

Understanding Derivatives

Understanding Derivatives

Limits

Let's eat Pizza

Slices

Second Derivatives

Derivatives

Common Derivatives

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2}$$

$$\frac{d}{dx}(a^{x}) = a^{x} \ln(a)$$

$$\frac{d}{dx}(\mathbf{e}^{x}) = \mathbf{e}^{x}$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, \quad x \neq 0$$

$$\frac{d}{dx}(\log_{a}(x)) = \frac{1}{x \ln a}, \quad x > 0$$

Differentiation Rules

Constant Rule	$\frac{d}{dx}[C] = 0$
Power Rule	$\frac{d}{dx} x^n = nx^{n-1}$
Product Rule	$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$
Quotient Rule	$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$
Chain Rule	$\frac{d}{dx} [f(g(x))] = f'(g(x)) g'(x)$

Partial derivatives

Multivariable Function: $f(x,y) = x^2y$

$$rac{\partial f}{\partial x} = egin{array}{c} rac{\partial}{\partial x} x^2 y \end{array} = 2xy$$

Treat y as constant; take derivative.

$$\frac{\partial f}{\partial y} = \underbrace{\frac{\partial}{\partial y} x^2 y}_{} = x^2 \cdot 1$$

Treat x as constant; take derivative.

Chain Rule

If h(x) = f(g(x)), then:

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Given:
$$h(x) = (2x + 3)^4$$

Let
$$f(u) = u^4$$
 and $g(x) = 2x + 3$.

Find f'(u) and g'(x):

$$f'(u) = 4u^3$$

$$g'(x)=2$$

Now, using the chain rule $h'(x) = f'(g(x)) \cdot g'(x)$:

$$h'(x) = 4(2x+3)^3 \cdot 2$$

$$h'(x) = 8(2x+3)^3$$

Gradient Descent

$$egin{aligned}
abla f = egin{bmatrix} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \ dots \end{bmatrix} \end{aligned} \qquad egin{bmatrix}
abla f(x_0,y_0) = egin{bmatrix} rac{\partial f}{\partial x}(x_0,y_0) \ rac{\partial f}{\partial y}(x_0,y_0) \end{bmatrix} \end{aligned}$$

Integration

How much total water flowed in the time interval dt?

Integration

Total water flowed from t=0 to t=10:

Total Water =
$$\int_0^{10} f(t) dt$$

Sum over all intervals from t=0 to t=10:

$$\int_0^{10} f(t) dt \approx \sum$$
 (flow rate in each interval) $\times dt$

Integration

Given: Water flow rate as a function of time f(t).

Total water flowed from t = 0 to t = 10:

Total Water =
$$\int_0^{10} f(t) dt$$

In the diagram, if $f(t) \approx 25$ liters/min at a specific interval dt:

Water in interval =
$$f(t) \cdot dt \approx 25 \cdot dt$$

Sum over all intervals from t=0 to t=10:

$$\int_0^{10} f(t) dt \approx \sum$$
 (flow rate in each interval) $\times dt$

Recap

- Fundamental concept of Derivatives
- Understanding Types of Slopes and the insights they give
- Second Derivatives
- Partial Derivatives
- Rules of Differentiation
- Chain Rule
- Gradient Descent
- Integration