ECE2-Colle 10

16/12/20

1 Réduction

Tous les espaces vectoriels considérés sont de dimension finie.

Valeurs propres, vecteurs propres: valeurs propres, vecteurs propres d'un endomorphisme, d'une matrice carrée; spectre. Lien entre éléments propres d'un endomorphisme f et éléments propres d'une matrice de f dans une base. $\lambda \in \operatorname{Sp}(f) \Longleftrightarrow f - \lambda \cdot \operatorname{id}_E$ n'est pas bijective, $\lambda \in \operatorname{Sp}(A) \Longleftrightarrow A - \lambda \cdot \operatorname{I}_n$ n'est pas inversible, valeurs propres d'une matrice triangulaire. Méthode : déterminer les valeurs propres de A en trouvant la réduite de Gauss de $A - \lambda \cdot \operatorname{I}_n$

Sous-espaces propres : définition des sous-espaces propres associés aux valeurs propres d'un endomorphisme / d'une matrice carrée, cas particulier de la valeur propre 0.

Scilab: commande spec.

Polynômes annulateurs : définition d'un polynôme d'endomorphisme, de matrice ; définition de polynôme annulateur. Les valeurs propres d'un endomorphisme/matrice sont des racines de tout polynôme annulateur. Déterminer l'inverse d'un automorphisme avec un polynôme annulateur.

Famille de vecteurs propres : $\operatorname{si} \lambda_1, \ldots, \lambda_p$ sont des valeurs propres distinctes de f et pour tout $i \in [1, p]$, \mathscr{F}_i est une famille libre de $\operatorname{E}_{\lambda_i}(f)$ alors la famille $\mathscr{F} = \mathscr{F}_1 \cup \cdots \cup \mathscr{F}_p$ est une famille libre de E . Conséquence : $\operatorname{si} \operatorname{Sp}(f) = \{\lambda_1, \ldots, \lambda_p\}$ alors $\sum_{i=1}^p \dim\left(\operatorname{E}_{\lambda_i}(f)\right) \leqslant n$ et le nombre de valeurs propres est $\leqslant n$. Résultats analogue pour les matrices.

Diagonalisabilité: définition de matrice/endomorphisme diagonalisable, un endomorphisme f est diagonalisable si et seulement si il existe une base dans laquelle la matrice représentative de f est diagonale si et seulement si la matrice de f dans n'importe quelle base est diagonalisable. Critère de diagonalisabilité: f est diagonalisable \iff $\sum_{i=1}^p \dim\left(\mathbb{E}_{\lambda_i}(f)\right) = n$ (et résultat analogue pour les matrices). Condition suffisante: en dimension f0 avoir f1 valeurs propres distinctes implique être diagonalisable. Les matrices symétriques sont diagonalisables.

Exemples et applications : exemple des matrices possédant une seule valeur propre; calcul des puissances d'une matrice diagonalisable; étude du commutant d'une matrice diagonalisable.

2 Méthodes à maîtriser

- 1. Savoir déterminer les valeurs propres d'une matrice.
- 2. Savoir déterminer les valeurs propres d'un endomorphisme à l'aide de son expression ou à l'aide d'une matrice représentative.
- 3. Savoir déterminer le sous-espace propre associé à une valeur propre donnée.
- 4. Étant donné un polynôme P, savoir exprimer P(f) pour f un endomorphisme ou une matrice carrée.
- 5. Savoir déterminer le spectre à partir d'un polynôme annulateur.
- 6. Savoir déterminer l'inverse d'un automorphisme à partir d'un polynôme annulateur.
- 7. Savoir déterminer si une matrice A ou un endomorphisme est diagonalisable ou non. Le cas échéant, savoir déterminer une matrice diagonale D et une matrice inversible P telles que $D = P^{-1}AP$.

3 Questions de cours

- Valeurs propres, vecteurs propres d'un endomorphisme/ d'une matrice carrée.
- Définition de matrice diagonalisable, endomorphisme diagonalisable.
- Critère de diagonalisabilité : f est diagonalisable $\iff \sum_{i=1}^p \dim(\mathbf{E}_{\lambda_i}(f)) = n$ (et résultat analogue pour les matrices)