As a corollary of Proposition 29.1, we have the following characterization of a nondegenerate bilinear map. The proof is left as an exercise.

Proposition 29.2. Given a bilinear map $\varphi \colon E \times F \to K$, if E and F have the same finite dimension, then the following properties are equivalent:

- (1) The map l_{φ} is injective.
- (2) The map l_{φ} is surjective.
- (3) The map r_{φ} is injective.
- (4) The map r_{φ} is surjective.
- (5) The bilinear form φ is nondegenerate.

Observe that in terms of the canonical pairing between E^* and E given by

$$\langle f, u \rangle = f(u), \quad f \in E^*, u \in E,$$

(and the canonical pairing between F^* and F), we have

$$\varphi(u,v) = \langle l_{\omega}(u), v \rangle = \langle r_{\omega}(v), u \rangle \quad u \in E, v \in F.$$

Proposition 29.3. Given a bilinear map $\varphi \colon E \times F \to K$, if φ is nondegenerate and E and F are finite-dimensional, then $\dim(E) = \dim(F) = n$, and for every basis (e_1, \ldots, e_n) of E, there is a basis (f_1, \ldots, f_n) of F such that $\varphi(e_i, f_j) = \delta_{ij}$, for all $i, j = 1, \ldots, n$.

Proof. Since φ is nondegenerate, by Proposition 29.1 we have $\dim(E) = \dim(F) = n$, and by Proposition 29.2, the linear map r_{φ} is bijective. Then, if (e_1^*, \ldots, e_n^*) is the dual basis (in E^*) of the basis (e_1, \ldots, e_n) , the vectors (f_1, \ldots, f_n) given by $f_i = r_{\varphi}^{-1}(e_i^*)$ form a basis of F, and we have

$$\varphi(e_i, f_j) = \langle r_{\varphi}(f_j), e_i \rangle = \langle e_i^*, e_j \rangle = \delta_{ij},$$

as claimed. \Box

If E = F and φ is symmetric, then we have the following interesting result.

Theorem 29.4. Given any bilinear form $\varphi \colon E \times E \to K$ with $\dim(E) = n$, if φ is symmetric (possibly degenerate) and K does not have characteristic 2, then there is a basis (e_1, \ldots, e_n) of E such that $\varphi(e_i, e_j) = 0$, for all $i \neq j$.

Proof. We proceed by induction on $n \ge 0$, following a proof due to Chevalley. The base case n = 0 is trivial. For the induction step, assume that $n \ge 1$ and that the induction hypothesis holds for all vector spaces of dimension n-1. If $\varphi(u,v) = 0$ for all $u,v \in E$, then the statement holds trivially. Otherwise, since K does not have characteristic 2, equation

$$2\varphi(u,v) = \varphi(u+v,u+v) - \varphi(u,u) - \varphi(v,v) \tag{*}$$