Lained ja võnkumised Saskia, 2022

1 Harmoonilised võnkumised

 $x = x_m cos(\omega t + \phi)$

Selle valemi manipuleerimisel saab kiiruse, kiirenduse jms.

$$\frac{d^2x}{dt^2} - \omega^2 x = 0$$

 ω on nurksagedus, selle kaudu $T=\frac{2\pi}{\omega}$

1.1 Rippuv ketas

Vandi otsas ripub ketas. Ketta äärele mõjuv jõud on $F=-\frac{\kappa\theta}{R}$ kus κ on väändetegur. Läbi nurkkiirenduse avaldub jõud kui $F_{RES}=\frac{1}{2}MR\alpha$. Leia ketta võnkeperiood ning sagedus.

1.2 Pendel

Tuleta valem pendli võnkeperioodiks. P.S Pendlite puhul eeldatakse enamasti üsna väikest amplituudi.

2 Keeled

Lained ning võnkumised on peaaegu alati sinusoidaalsed, seda ka pikilained. Siinuslaine on ka võnkuv pillikeel. Pillidel on harmoonikud... $y(x,t)=y_m sin(kx-\omega t)$ Lainearv $k=\frac{2\pi}{\lambda}$

3 Seisulained

Peegeldunud laine liitumisel tekib seisulaine, milles sõlmed on liikumatud, ent paisud käivad üles-alla. $L=n\frac{\lambda}{2}$

4 Helid

Pillides levib õhurõhu muutus pikilainena $\Delta p = \Delta p_m sin(kx - \omega t)$ Lahtistest otstest peegelduvad paisud

 $L=n\frac{\lambda}{4},$ kus 1 lahtise otsaga pillil n=1,3,5,... ning 2 lahtise otsaga n=2,4,6,...

Helitugevus on logaritmiline ning sõltub intensiivsusest $\beta=10dB~log\frac{I}{I_0},$ kus $I_0=10^{-12}\frac{W}{m^2}$

5 Doppleri efekt

$$f' = f \frac{v \pm v_D}{v \pm v_S}$$

6 Faasorid ja lainete liitmine

Kui meil on kaks samasugust lainet, lihtsalt eri faasides: $y'(x,t) = y_1(x,t) + y_2(x,t)$ Lihtsaim viis on kasutada faasordiagrammi.

6.1 Tuiklemine

Milline helilaine tekib 432Hz ja 440Hz liitumisel. Millest sõltub selle laine amplituud, kui mõlemal sagedusel on amplituud y_m

Physics Brawl 2020

Meil on kaks identset rõngast raadiusega R=1m ning massidega m=1kg. Neid ühendavad nöörid on pikkusega l=2m ning massitud. Kui pöörata alumist rõngast ning seejärel lahti lasta, mis on rõnga võnkeperiood?

EstFin 2004

Paks klaasplaat on kaetud õhukese läbipaistva kilega. Süsteemi läbilaskespekter on toodud juuresoleval graafikul (valgus langeb risti plaadile). Kile murdumisnäitaja n \approx 1.3. Milline on kile paksus d?

