Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 4

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{3}{2} - \frac{2}{3}\right)(3, 2 - 2, 3) + \left(\frac{1}{2}\right)^2 = \frac{5}{6} \cdot \frac{9}{10} + \frac{1}{4} =$	3p
	$=\frac{3}{4}+\frac{1}{4}=1$	2 p
2.	$f(x) = 0 \Leftrightarrow -3x^2 - x + 2 = 0$	2p
	Abscisele punctelor de intersecție a graficului funcției f cu axa Ox sunt $x = -1$ și $x = \frac{2}{3}$	3 p
3.	$16 + 3x = 5^2 \Rightarrow 16 + 3x = 25$	3 p
	x = 3, care convine	2 p
4.	Diferența dintre noile prețuri ale produselor este egală cu $\frac{40}{100}$ · x , unde x este prețul inițial al	3 p
	produselor	
	$\frac{40}{100}$ · $x = 26$, de unde obținem $x = 65$ de lei	2p
5.	$m_{AO} = -\frac{1}{2}, \ m_{BC} = \frac{7-a}{6}$	2p
	$m_{AO} = m_{BC} \Leftrightarrow -\frac{1}{2} = \frac{7-a}{6}$, de unde obţinem $a = 10$	3p
6.	$\mathcal{A}_{romb} = AB \cdot AD \cdot \sin A \Leftrightarrow 72 = 9 \cdot 9 \cdot \sin A$	3 p
	$\sin A = \frac{8}{9}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	(-1)*4 = (-1-4+1)(4+1+1) =	3p
	$=-4\cdot 6=-24$	2 p
2.	x * y = (1 + x - y)(1 + y - x) = (1 + (x - y))(1 - (x - y)) =	3p
	$=1^2 - (x - y)^2 = 1 - (x - y)^2$, pentru orice numere reale x și y	2p
3.	$x*(x-1)=1-(x-x+1)^2=$	3 p
	=1-1=0, pentru orice număr real x	2p
4.	$x*\left(-\frac{1}{2}\right)=1-\left(x+\frac{1}{2}\right)^2$, pentru orice număr real x	2p
	$1 - \left(x + \frac{1}{2}\right)^2 = \frac{3}{4} \Leftrightarrow \left(x + \frac{1}{2}\right)^2 = \frac{1}{4}$, de unde obținem $x = -1$ sau $x = 0$	3p

5.	$2^{x} * 2^{x-1} = 1 - (2^{x} - 2^{x-1})^{2} = 1 - 2^{2x-2} \cdot 1 = 1 - 2^{2x-2}$, pentru orice număr real x	3p
	$1-2^{2x-2}=1-2^{4040}$, de unde obținem $x=2021$	2p
6.	$\lg x * \lg \frac{x}{10} = 0$, $\lg \frac{x}{10} * \lg \frac{x}{100} = 0$, pentru orice număr real x , $x > 0$	2p
	$0*0=x*1$, de unde obținem $1=1-(x-1)^2$, deci $x=1$, care convine	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det A = \begin{vmatrix} 5 & 2 \\ -5 & -3 \end{vmatrix} = 5 \cdot (-3) - 2 \cdot (-5) =$	3p
	=-15+10=-5	2p
2.	$A \cdot B = \begin{pmatrix} 5 & 2 \\ -5 & -3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -5 & -5 \end{pmatrix} = \begin{pmatrix} 15 - 10 & 10 + (-10) \\ -15 + 15 & -10 + 15 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} =$	3р
	$=5\begin{pmatrix}1&0\\0&1\end{pmatrix}=5I_2$	2p
3.	$\left \det \left(A - x I_2 \right) \right = \begin{vmatrix} 5 - x & 2 \\ -5 & -3 - x \end{vmatrix} = x^2 - 2x - 5, \text{ pentru orice număr real } x$	3р
	$x^2-2x-15=0$, de unde obținem $x=-3$ sau $x=5$	2p
4.	$A \cdot B = 5I_2 \Rightarrow A \cdot \left(\frac{1}{5}B\right) = I_2 \text{ si, cum } \left(\frac{1}{5}B\right) \cdot A = I_2 \text{, obținem că } A^{-1} = \frac{1}{5}B = \begin{pmatrix} \frac{3}{5} & \frac{2}{5} \\ -1 & -1 \end{pmatrix}$	3р
	Suma elementelor matricei A^{-1} este egală cu $\frac{3}{5} + \frac{2}{5} - 1 - 1 = -1$	2p
5.	Matricea B este inversabilă și $B^{-1} = \frac{1}{5}A$	2p
	$X = -20B^{-1} \Rightarrow X = -4A$, deci $X = \begin{pmatrix} -20 & -8 \\ 20 & 12 \end{pmatrix}$	3p
6.	$A \cdot (B \cdot B - I_2) - (A \cdot A - I_2) \cdot B = A \cdot B \cdot B - A - A \cdot A \cdot B + B = 5B - A - 5A + B = 6B - 6A$	3p
	6(B-A) = x(B-A), de unde obținem $x = 6$	2p