Геометрическая прогрессия

Геометрическая прогрессия — это ещё один вид числовой последовательности. Общее понятие последовательности мы обсудили в предыдущей статье «Арифметическая прогрессия».

Определение. Геометрическая прогрессия — это последовательность, первый член которой не равен нулю, а каждый последующий член равен произведению предыдущего члена на некоторое фиксированное ненулевое число (называемое знаменателем геометрической прогрессии).

Например, последовательность $2,6,18,54,\ldots$ является геометрической прогрессией с первым членом 2 и знаменателем 3. Последовательность $20,10,5,5/2,\ldots$ является геометрической прогрессией со знаменателем 1/2. Последовательность $1,-2,4,-8\ldots$ является геометрической прогрессией со знаменателем -2.

Эквивалентное определение: последовательность b_n , состоящая из ненулевых чисел, называется геометрической прогрессией, если частное b_{n+1}/b_n есть величина постоянная (не зависящая от n).

Формула *n*-го члена геометрической прогрессии

Геометрическая прогрессия полностью определяется первым членом и знаменателем. Выведем формулу n-го члена геометрической прогрессии.

Пусть b_n — геометрическая прогрессия со знаменателем q. Имеем:

$$b_{n+1} = b_n q$$
 $(n = 1, 2, \ldots).$

В частности:

$$b_2 = b_1 q,$$

 $b_3 = b_2 q = (b_1 q) q = b_1 q^2,$
 $b_4 = b_3 q = (b_1 q^2) q = b_1 q^3,$

и тогда ясно, что

$$b_n = b_1 q^{n-1}. (1)$$

Задача 1. Между числами 16 и 81 вставьте три числа так, чтобы получилась геометрическая прогрессия.

Peшение. Пусть q — знаменатель получившейся прогрессии. Число 81 будет её пятым членом, поэтому согласно формуле (1) имеем:

$$81 = 16q^{4},$$

$$q^{4} = \frac{81}{16},$$

$$q = \pm \frac{3}{2}.$$

Таким образом, имеются два решения: 16, 24, 36, 54, 81 и 16, -24, 36, -54, 81.

Свойство и признак геометрической прогрессии

СВОЙСТВО ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ. В геометрической прогрессии b_n для любого $n\geqslant 2$ выполнено равенство

$$b_n^2 = b_{n-1}b_{n+1}. (2)$$

Иными словами, если геометрическая прогрессия состоит из положительных чисел, то каждый её член (кроме первого) равен среднему геометрическому соседних членов: $b_n = \sqrt{b_{n-1}b_{n+1}}$. Доказательство. Имеем:

$$b_{n-1}b_{n+1} = \frac{b_n}{q} \cdot b_n q = b_n^2,$$

что и требовалось.

Более общим образом, для геометрической прогрессии b_n справедливо равенство

$$b_n^2 = b_{n-k}b_{n+k}$$

при любом $n \geqslant 2$ и любом натуральном k < n. Докажите эту формулу самостоятельно — тем же самым приёмом, что и формулу (2).

Формула (2) служит не только необходимым, но и достаточным условием того, что последовательность является геометрической прогрессией.

Признак геометрической прогрессии. Если для всех $n \geqslant 2$ выполнено равенство (2), то последовательность b_n является геометрической прогрессией.

Доказательство. Перепишем формулу (2) следующим образом:

$$\frac{b_n}{b_{n-1}} = \frac{b_{n+1}}{b_n} \,.$$

Отсюда видно, что частное b_{n+1}/b_n не зависит от n, а это как раз и означает, что последовательность b_n есть геометрическая прогрессия.

Сформулируем свойство и признак геометрической прогрессии в виде одного утверждения для трёх чисел.

ХАРАКТЕРИЗАЦИЯ ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ. Три числа a, b, c образуют геометрическую прогрессию тогда и только тогда, когда $b^2 = ac$.

Задача 2. Три числа образуют геометрическую прогрессию. Если второе число увеличить на 2, то прогрессия станет арифметической, а если после этого увеличить последнее число на 9, то прогрессия снова станет геометрической. Найти эти числа.

Решение. Обозначим данные числа x, y и z; они образуют геометрическую прогрессию. По условию, числа x, y+2, z образуют арифметическую прогрессию, а числа x, y+2, z+9— снова геометрическую. Получаем систему уравнений:

$$\begin{cases} y^2 = xz, \\ 2(y+2) = x+z, \\ (y+2)^2 = x(z+9). \end{cases}$$

(первое и третье уравнения — характеризация геометрической прогрессии, второе уравнение — характеризация арифметической прогрессии).

Из первого и третьего уравнений получим 4y + 4 = 9x. Выражая z из второго уравнения и подставляя в первое, получим $y^2 = 2xy + 4x - x^2$. Остаётся решить систему этих двух уравнений относительно x и y и затем найти z (сделайте это самостоятельно).

Omsem: 4, 8, 16 или $\frac{4}{25}, -\frac{16}{25}, \frac{64}{25}$.

Сумма первых n членов геометрической прогрессии

Прежде всего нам нужно решить один технический вопрос. Именно, раскроем скобки и приведём подобные в выражении

$$(q-1)(q^{n-1}+q^{n-2}+\ldots+q+1).$$

Имеем:

$$(q-1)(q^{n-1}+q^{n-2}+\ldots+q+1) = = q^n+q^{n-1}+\ldots+q^2+q-(q^{n-1}+q^{n-2}+\ldots+q+1) = q^n-1.$$

Отсюда получаем формулу:

$$1 + q + q^{2} + \ldots + q^{n-1} = \frac{q^{n} - 1}{q - 1}.$$
 (3)

Теперь для суммы первых n членов геометрической прогрессии имеем:

$$S_n = b_1 + b_2 + b_3 + \dots + b_n =$$

$$= b_1 + b_1 q + b_1 q^2 + \dots + b_1 q^{n-1} = b_1 \left(1 + q + q^2 + \dots + q^{n-1} \right),$$

и тогда формула (3) даёт

$$S_n = b_1 \frac{q^n - 1}{q - 1} \,. \tag{4}$$

Задача 3. (*МГУ*, *ВМК*, 1994) Найти $\underbrace{f(\dots(f(f(6)))\dots)}_{n}$, где $f(x) = \frac{x}{5} + 4$.

Peшение. Давайте поищем f(f(x)), f(f(f(x))) и т. д. в надежде отыскать закономерность.

$$f(f(x)) = \frac{\frac{x}{5} + 4}{5} + 4 = \frac{x}{5^2} + \frac{4}{5} + 4;$$

$$f(f(f(x))) = \frac{\frac{x}{5} + 4}{5^2} + \frac{4}{5} + 4 = \frac{x}{5^3} + \frac{4}{5^2} + \frac{4}{5} + 4;$$

$$f(f(f(f(x)))) = \frac{\frac{x}{5} + 4}{5^3} + \frac{4}{5^2} + \frac{4}{5} + 4 = \frac{x}{5^4} + \frac{4}{5^3} + \frac{4}{5^2} + \frac{4}{5} + 4.$$

Теперь ясно, что

$$\underbrace{f(\dots(f(f(f(x))))\dots)}_{x} = \frac{x}{5^{n}} + \frac{4}{5^{n-1}} + \frac{4}{5^{n-2}} + \dots + \frac{4}{5} + 4 = \frac{x}{5^{n}} + 4\left(1 + \frac{1}{5} + \dots + \frac{1}{5^{n-1}}\right).$$

Сумму в скобках найдём по формуле (3):

$$1 + \frac{1}{5} + \ldots + \frac{1}{5^{n-1}} = \frac{\frac{1}{5^n} - 1}{\frac{1}{5} - 1} = \frac{5}{4} \left(1 - \frac{1}{5^n} \right).$$

Тогда

$$\underbrace{f(\dots(f(f(6)))\dots)}_{n} = \frac{6}{5^{n}} + 5\left(1 - \frac{1}{5^{n}}\right) = 5 + \frac{1}{5^{n}}.$$

Ответ: $5 + \frac{1}{5^n}$.

Сумма убывающей геометрической прогрессии

Мы будем называть геометрическую прогрессию *убывающей*, если её знаменатель по модулю меньше единицы. Оказывается, можно говорить о сумме *всех* членов бесконечной убывающей геометрической прогрессии.

Рассмотрим в качестве примера убывающую геометрическую прогрессию

$$1, \frac{1}{2}, \left(\frac{1}{2}\right)^2, \ldots, \left(\frac{1}{2}\right)^n, \ldots$$

С помощью формулы (4) найдём сумму её первых n членов:

$$S_n = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \ldots + \left(\frac{1}{2}\right)^{n-1} = \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2\left(1 - \frac{1}{2^n}\right).$$
 (5)

Нетрудно видеть, что при увеличении числа слагаемых, то есть при возрастании n, правая часть (5) становится всё ближе и ближе к числу 2:

$$S_n \to 2$$
 при $n \to \infty$.

Это даёт основание утверждать, что соответствующая сумма *бесконечного* числа слагаемых равна 2:

$$S_{\infty} = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \ldots + \left(\frac{1}{2}\right)^n + \ldots = 2.$$

Теперь рассмотрим общий случай: геометрическую прогрессию b_1, b_2, \dots со знаменателем q, где |q| < 1. Согласно формуле (4) имеем:

$$S_n = b_1 + b_2 + \ldots + b_n = b_1 \frac{1 - q^n}{1 - q}$$
.

Если $n \to \infty$, то $q^n \to 0$, так что

$$S_n \to \frac{b_1}{1-a}$$
.

Следовательно, сумма всех членов нашей прогрессии равна

$$S_{\infty} = b_1 + b_2 + \ldots + b_n + \ldots = \frac{b_1}{1 - q}$$
 (6)

Задача 4. Периодическую десятичную дробь 1,2(3) представить в виде обыкновенной дроби. *Решение*. Обозначим данное число через x. Имеем:

$$x = 1,2333... = 1,2 + 0,03 + 0,003 + 0,0003 + ...$$

Слагаемые начиная со второго образуют бесконечную убывающую геометрическую прогрессию с первым членом 0,03 и знаменателем 0,1. Согласно формуле (6) имеем:

$$x = 1.2 + \frac{0.03}{1 - 0.1} = 1.2 + \frac{0.03}{0.9} = \frac{12}{10} + \frac{1}{30} = \frac{37}{30}$$

Omeem: $\frac{37}{30}$.

Задачи

1. Между числами 27 и 8 вставьте два числа так, чтобы получилась геометрическая прогрессия.

8 ,21 ,81 ,72

2. Между числами 2 и 18 вставьте три числа так, чтобы получилась геометрическая прогрессия.

81,
$$\overline{5}$$
, 6, 6, $\overline{6}$, 18 или 2, $-2\sqrt{3}$, 6, $-6\sqrt{3}$, 18

3. Найти четыре числа, образующих геометрическую прогрессию, у которой сумма крайних членов равна -49, а сумма средних членов равна 14.

4. Найти третий член бесконечной геометрической прогрессии со знаменателем |q| < 1, сумма которой равна 1,6, а второй член равен -0,5.

<u>8</u>

5. Представьте в виде обыкновенной дроби: а) 0,(4); б) 0,(24).

a)
$$\frac{4}{6}$$
; 6) $\frac{8}{8}$

6. Сумма трёх первых членов возрастающей арифметической прогрессии равна 15. Если от первых двух членов этой прогрессии отнять по 1, а к третьему прибавить 1, то полученные три числа составят геометрическую прогрессию. Найти сумму десяти первых членов арифметической прогрессии.

120

7. Найти четыре числа, образующих геометрическую прогрессию, у которой третий член больше первого на 9, а второй больше четвёртого на 18.

8. Знаменатель конечной геометрической прогрессии равен 1/3, четвёртый член этой прогрессии равен 1/54, а сумма всех её членов равна 121/162. Найти число членов прогрессии.

d.

9. Произведение первых трёх членов геометрической прогрессии равно 1728, а их сумма равна 63. Найти первый член и знаменатель прогрессии.

10. Три числа составляют геометрическую прогрессию. Если от третьего отнять 4, то числа составят арифметическую прогрессию. Если же от второго и третьего членов полученной арифметической прогрессии отнять по 1, то снова получится геометрическая прогрессия. Найти эти числа.

$$\frac{94}{6}$$
, $\frac{7}{6}$, $\frac{1}{6}$ nun $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{6}$

11. Найти четыре числа, первые три из которых образуют геометрическую прогрессию, а последние три — арифметическую прогрессию. Сумма крайних чисел равна 21, сумма средних чисел равна 18.

3; 6; 12; 18 или 18,75; 11,25; 6,75; 2,25

12. Три числа, из которых третье равно 12, образуют геометрическую прогрессию. Если вместо 12 взять 9, то получится арифметическая прогрессия. Найти эти числа.

31, 61, 12 или 21, 18, 12

13. Длины сторон треугольника представляют собой три последовательных члена возрастающей геометрической прогрессии. Что больше: знаменатель этой прогрессии или число 2?

число 2

14. ($M\Gamma Y$, ϕ -т психологии, 1987) Сумма первых пяти членов геометрической прогрессии на 3/2 больше, чем сумма первых трёх членов, а пятый член равен учетверённому третьему. Найти четвёртый член прогрессии, если знаменатель положителен.

<u>7</u>

15. ($M\Gamma Y$, химический ф-т, 1989) Произведение первого, третьего и одиннадцатого членов геометрической прогрессии равно 8. Найти произведение второго и восьмого её членов.

abla

16. ($M\Gamma Y$, ϕ -m почвоведения, 1995) Четвёртый член арифметической прогрессии равен половине второго, который на 36 больше, чем третий член некоторой геометрической прогрессии. Найти первый член арифметической прогрессии, если он вдвое больше первого члена геометрической прогрессии и впятеро больше второго члена геометрической прогрессии.

03

17. (*МГУ*, физический ф-т, 2002) Числа a_1 , a_2 , a_3 образуют арифметическую прогрессию, а числа a_1-1 , a_2+1 , a_3+15 — геометрическую. Найти a_1 , если $a_1+a_2+a_3=24$.

82 ипи 4

18. (*МГУ*, географич. ф-т, 2002) Найти два различных корня уравнения $x^2 - 6px + q = 0$, если p, x_1, x_2, q — геометрическая прогрессия.

$$4 = 2x$$
, $4 = 1x$ ики $6 = 2x$, $4 = 1x$

19. ($M\Gamma V$, мехмат, 2003) Первый член конечной геометрической прогрессии с целочисленным знаменателем меньше последнего, но не более чем на 17, а сумма её членов со второго по последний не меньше 26. Найдите знаменатель прогрессии.

7

20. ($M\Gamma Y$, BMK, 2003) Сумма первых тридцати членов геометрической прогрессии с ненулевым первым членом и ненулевым знаменателем равна удвоенной сумме её первых десяти членов. Найдите знаменатель этой прогрессии.

 $\frac{1-\overline{5}\sqrt{\sqrt{5-1}}}{1} + \frac{1}{1}$

21. (*МГУ*, ф-т фунд. медицины, 2003) Найти все x, при которых $\sin x$, $\operatorname{tg} x$ и $\frac{1}{\cos x}$ являются последовательными членами геометрической прогрессии.

$$\mathbb{Z} \ni n , n\pi + \frac{\pi}{4}$$

22. ($M\Gamma Y$, географич. ф-т, 2003) Разность девятого и третьего членов знакочередующейся геометрической прогрессии равна её шестому члену, умноженному на 24/5. Найдите отношение десятого члена прогрессии к её пятому члену.

<u>₹</u>_9-

23. ($M\Gamma Y$, геологич. ϕ -m, 2003) Целые числа k, n и m в указанном порядке образуют геометрическую прогрессию с целым знаменателем. Известно, что число m на 39 больше, чем k, а прогрессия не является возрастающей. Чему равна сумма чисел k, n и m?

38

24. (МГУ, филологич. ф-т, 2003) Даны такие арифметическая прогрессия a_n и геометрическая прогрессия b_n , что $a_1 = b_1$, $a_4 = b_3$, $a_2a_3 - b_2^2 = 8$. Найдите разность арифметической прогрессии.

7

25. (*МГУ, социологич. ф-т., 2003*) Определите все значения параметра a, при каждом из которых три различных корня уравнения

$$x^3 + (a^2 - 9a)x^2 + 8ax - 64 = 0$$

образуют геометрическую прогрессию. Найдите эти корни.

$$8 = \xi x, t = 2x, t = 1x, t = 0$$

26. (*МГУ*, *BMK*, 2004) Четыре числа a_1 , a_2 , a_3 и a_4 образуют в указанном порядке геометрическую прогрессию. Если к ним прибавить 6, 7, 6 и 1 соответственно, то получатся числа, образующие в том же порядке арифметическую прогрессию. Найдите числа a_1 , a_2 , a_3 и a_4 .

27. (*МГУ*, социологич. ф-т, 2005) Бесконечно убывающая геометрическая прогрессия содержит член $b_n = 1/8$. Отношение суммы членов прогрессии, стоящих перед b_n , к сумме членов, стоящих после b_n , равно 14. Найдите n, если сумма всей прогрессии равна 2.

 \overline{V}

28. (Олимпиада «Ломоносов», 2007) Какие значения может принимать выражение

$$\log_{b_{11}b_{50}}(b_1b_2\dots b_{60}),$$

где b_1, b_2, \ldots — геометрическая прогрессия?

30

29. (*МГУ*, химический ф-т, 2007) Положительные числа b_1 , b_2 , b_3 , b_4 , b_5 образуют геометрическую прогрессию, а числа b_5 , $6b_3$, $27b_1$ образуют арифметическую прогрессию. Найдите все возможные знаменатели геометрической прогрессии b_1 , b_2 , b_3 , b_4 , b_5 .

ξ ;ē√

30. ($M\Gamma Y$, ϕ -т почвоведения, 2007) Сумма положительной бесконечно убывающей геометрической прогрессии в 4 раза больше её второго члена. Во сколько раз второй член меньше первого?

В 2 раза