Machine Learning

Bias and Variance

Where does the error come from?

Review

A more complex model does not always lead to better performance on *testing data*.

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

Bias + Variance 2" 3" 4" 5" 6" 7"

 f^* is an estimator of \hat{f}

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$\operatorname{Var}[m] = rac{\sigma^2}{N}$$

 $Var[m] = \frac{\sigma^2}{N}$ Variance depends on the number of Variance depends samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \quad s = \frac{1}{N} \sum_{n} (x^n - m)^2$$

Biased estimator

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find f^*

Parallel Universes

• In different universes, we use the same model, but obtain different f^*

Variance

Large Variance

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = 5

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Bias v.s. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large variance

 Overfitting
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

What to do with large variance?

More data
 Very effective,
 but not always
 practical
 10 examples

Regularization I

May increase bias

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error
- What you should NOT do:

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Cross Validation

N-fold Cross Validation

