(DAA!- Assignment)
Roll No:- 43 Name! - Ranth Brasun Reg. No!- 2209 6228 Q2) Discuss the applicability of DFS on the following graph-related problems: a) check for the cycles in the graph
b) check of the given graph is bifortite or not
c) To compute transitive closur for a given sparse gr DFS is a fundamental graph traversal algorithm the explores as for as forible before backtrackery. This methods highly reseatable and finds applications in numerous graph related froblems. . Check for cycles in the goven washi-The process involves traversing the graph while monting the visited vertices, of during traversal if you encounter a verten that is already societed and is not the direct farent of current menters, a cycle is detected. It works efficiently for both clinected and undirected grap Undirected Graph Directed Graft DFS(verten) DESC vertes, faunt) 1) North vertes as visited and 1) Nach wester as visited. 2) for every expount werter acts marked reconsion stack. of souten 2) For every adjacent verter adj 0) \$ (adj is not risited a) If adj is not winted and DES lad 1) Recursive call DFS(cogystety) finds a eyele setur true ii) Storscodi, verter) - Itrue 5) else if in recursion stock return Lych detected b) Else if acts is not the favent 3) Remove wester from fromsecolar a cycle is found 3) If no eyeles found, return balse 4) Return false if no cycle

Parth Prasun

check if the given graph is Refertite A britantite graph is a graph whose vertices can be diricled into 2 disjoint sets von such that every edge comments a wester in V to one in V. DES can be and no two adjoient vertices share the same color.

It starts cut any random verter and ruch! color then
it attempts to color all neighboring vertices with
afforite color and recursively applying this strategy

Algorithm_

1) use a color (Darray which stones (O/I) for every denoting offerite colors.

11) call the DES function for every node

(11) If the node wham't been resided previously then

assign! colon(v) to colon(v) and call DES again to sind nodes connected to U.

Hat any foint color (UT is equal to coloras, then I rade is not biforticle rodes not bifartite

C) Transitione closure for a given spense graph. The transitive closure of a graphis a measure of which Arerlias are reachable from other vertices through a forth of directed lodges. In other words for every four of vertices (U, V) it determines if there is a furth from

	Parth Prasun	near the last	
3)	Alain the order of :	the tree, each internal nock can beyon along with a fointer to	
٠	contain at rost (201)	keys along with a fointer to	
	Ocal child	e Av. Sames a series and a series are a series and a seri	
	Lucy Co.		
41	the there was	rout can have at most n childre	
	Each node except the root can have at most n children		
	was a star 1/2		
5)	All learns care at.	the sunce level.	
	era sum s		
6)	The next has at least 2	Schilden and contron mint of I he	
0,9_	ore sound share the second		
7)	Hm. 1 then borner	n-hu Btru of hight & and	
	min release \$2,2	n-ky Btu of hight & and AZ, log (no1)/2	
	, , , , , , , , , , , , , , , , , , ,	. , ,	
	For order 3	For order 4	
4	crean roof heys= m-1=3-102		
	cran roof chays = 1	· sun no of hugs=1	
	orlan ru of childrens order	· Man no of childrens Order = 4	
2 7 50	=3	· orin no of children = 2	
6	oran no of children = 2	Link Link	
(4.			
-	The second second	14 15 11	

Werite a divide and conquer algorithm that confutes the leftmost minimum element in lach row of an mxn Nonge array A. Illustrate with an example. A Monge anny is 2-D away of numbers where for any elements ACiJCjJ and ACUJClJ such that ick and j's the following condition holds: CYTCHIA + CYICHIA > CYICHIA + CYICHIA This property ensures that if we fick any four elevents forming a submation such that two of them are diagonally officite, the sum of the diagonal elevents is less than or equal to the sum of other Delevents one interesting property of a cronge away is the leftmost minimum elevent in any sour is no sighter than the leftmost minmelement in now below Algorithm Initialization Step! Start with Intire Array A cas your search space. Define 4 reviables to track the bounds of the current search space Jop (iniso), bottom (init m-1), left (inito) sightimita). Recursive Disrich and Conquer: Buse Kase: If the current search space is reduced to a single column (1:e=) left== right) then the left rost minm elevent for each row in this space is sinfly the risk elevent in this cal for the rows blu top and bottom.

dind these andrewen as the result.

11)	Diariding Step: - i) Find the middle column of the
	Disciding Step: - i) Find the middle column of the current search space: - mid-col= (left+ right)
	ii) Perform a linear search in this
	middle cal to find the min - elevent
	Alu rows top and bottom. det's
	denote the for of min element as
	(min-row, min-col).
	Conquering and Combining:
_1,	deft Subarray: - Reunsinely apply the algo the subney
	the lies to left of 'rid-col' (black Drid-col-1) for
	rows top through oin- row This finds the leftwest
	non elements for these rous in subarray.
	J
2)	Right Subarray: - Similar application to this carray that
	lies to right of mid-col (blu mid-col + 1 and right) for
	rows "rin-row" though bottom. In the Norge
	property, the elettrost min elevent in any our below
	fraferty, the left nost min elevent in any now below) in now can't be left to the cal 'rid-cal'.
3)	Rombining'- Combine the results from the left and
	right subaneus with the minn elevent hound in
*	Nombining! - Combine the results from the left and right subanays with the minm elevent found in the middle column.
	· ·
4	

it and the same

CIASSMATE tien: Propo:

	Pro	yo :				
	Example:					
	37 23 22 32					
	21 6 7 10					
	B= 53 34 30 31					
	32 13 9 6					
	43 21 15 8					
	Condition for monge caray:					
	B(2) + B(2+1)+1) & B(2) +1) + B(2)+1,j) +2=	1,2,3,4				
<u> </u>	71=	1,2,3				
2=1.	J=1: BC1,12+ BC2,22 &BC1,27+BC2,17 = 37+6 <23+21					
T=1,5=2 : 13(1,2)+13(2,3) & B(1,3)+13(2,2) = 23+762246 = 30 \$28						
77-1.	=3: BC1,37+BC2,47 < BC1,47+BC237= 22410 < 32+7=	32 33				
7-7	=1: B(2,17+ B(3,27 < 13(2,27+ B(3,7)=21+34 <6+53=	: 55 459				
7-2.4	2: B(2,2)+ B(3,3) < B(2,3) +B(3,2)= 6+30 < 7+34=	36541				
1203						
	All other case validate the condt, only (=	157=2)				
	All other cases radidate the condth, only (= doesn't ratinfy the constraint. The need to st	range				
	one of these turns so that this holds true.	0				
\rightarrow						
	Reducing B(1,2) by 2 will consolidate the case 7=1, 1	=1 00				
	weam't use this value. By reducing 13(2,3) by 2m	M				
	not consolidate any case. Thus by setting BC2,32 = 5	this				
	array becomes dronge					
	J					

	[caju .
4)	for q∈2 tom
5)	clo while K)O and PCH+1] = PCqJ
6)	dr KEZCIO
7)	SI PCNOID = PCQD
8)	then Kenyi
5)	Trajen
10)	return 7
- 1	
	Prendo corte for KMP Nather
	n < lingth [7]
2)	m < lingth CPI
3)_	TE computer-prefix-function
4)	9 €0
5)	for i < 1 ton
6)	do while 970 and PCq+13 + TC17
7)	do q € x CqJ
8)	St PC9+17 = TC17
3)	then 9 < 9 x1
10)	5/ 9=m
(1)	then I wint "Pettern occus with shift " 7-m
12)	9 < 7 (9)
-	A. O. 17 0 10 1
4-1-1-1	Analysis of Jime complexity:
	LPS compute function is competed in linear T.C
	som can say T. (is O(m).
	Total time complexity of our KMP algorithm is O(nim)

	Classmate
	Enample of KMP Algorithm
	T:-bacbababacaab
	T:-bacbababacaab P:-ababaca
	Dilo La tom La b
(18±),	Prefix function for p
	9 1 2 3 4 5 6 7
	9 1 2 3 4 5 6 7 b a b a b a c a M 0 0 1 2 3 0 1
0	
Soln!	fritially n= Size of 7:-15, m= size of P=7
2141-	1=1, 9=0 comparing PCIDSTCID T:- bacbabababacaab
	P!- abaca P[1] \(\forall T(7)\) Pshifted to one for right.
Stuha:	
	T:- b a c babababacaab
0	P!- Labaca Par = TC27, protshipte
Stub3!-	2=3, 9=1 Companing P(2] T(3)
	7:-3, 9:1 Companing P(2) T(3) T:- b a c b a b a b a c a a b P(2) T(3) P'- a b a c a p(2) 7(3)
	Backbacking on P. company PCID, TC32
Stup 4:	1=4,9=0 companing PC10,7(4) 7:- bacbabababacaab
	7:- bacbababaca PC17 77(47

a babac Stufs: 2=5,9=0 P(1),7(5) confenison bacbababacaabacaabacaab babaca Prizerosi Pl-

CIASSMATE	
Oate	:
Page	,

	Dote : Page :
Stub 6:-	7=6,9=1 P(2)&T(6) 7!- b a c b a b a b a c a a b P!-
	7!- bacbababacaab
	P!- 25 25 2 c a P(2)=7(6)
Step 7!	-1=7,9=2 PC37 ØTC97, PC37 matches with TC97
CLIO	
+.*u	1=8, 9=3, PC47 & 7(8), PC47 = 7(8)
Stub9:	1=9, 9=4 PC57& TC97, PC57= TC97
Stupioi-	7=10,9=5 PC6)&TC10) PC6) - TC10)
	Buchtracking on p, confaring PC 47 with TC10)
	Mecans alter mar mitch 9:3 TCC1 -7
Step11:	7=11, 9=4 Confaring PCS) &TC11)
· ·	Y I To I I I I I I I I I I I I I I I I I
Y	7:- bacbababacaab P:- Etabababacaab
	PCS)=7CV7
Slep 12:	- l'=12, 9=5 Conforing PC6) &TC12), PC6)=TC12)
Step 13!	-1=13, 9=6 confaving PC7) Ø7(13), PC7)=7(13)
	2
	Pattern P found in string 7 and total roof shifts
	1=m= 15-7=6 ships
¥	