

Exercise 14A

$$\begin{array}{ccc} \therefore & \mathbf{x} = 40 \\ \mathbf{y} = 35 \end{array}$$

Q14

Answer:

Given:

AB CD

$$\angle BAE = 125^{\circ}$$

$$\angle CAB + \angle BAE = 180^{\circ}$$

or
$$125^{\circ} + x^{\circ} = 180^{\circ}$$

or
$$x = 55$$

$$y = 180 - x = 180 - 55 = 125$$

 $x+z=180\,^{\circ}$ (consecutive interior angles on the same side of transversal are supplementary)

z = 180 - x = 180 - 55 = 125

 $y + x = 180^{\circ}$ (consecutive interior angles on the same side of transversal are supplementary)

Q15

Answer:

(i)
$$\angle 1 + \angle 2 = 180$$
 (linear pair)
or $130^{\circ} + \angle 2 = 180^{\circ}$
or $\angle 2 = 50^{\circ} \neq 40^{\circ} = \angle 3$
 $\therefore 1 \not\parallel m$
(ii) $\angle 2 + \angle 3 = 180^{\circ}$ (linear pair)
 $35^{\circ} + \angle 3 = 180^{\circ}$
 $\angle 3 = 145^{\circ} = 145^{\circ} = \angle 1$
 $\therefore 1 \mid\mid m$
(iii) $\angle 2 + \angle 3 = 180$ (linear pair)
 $\angle 3 = 180^{\circ} - 125^{\circ} = 55^{\circ}$
 $\angle 3 = 55^{\circ} \neq 60^{\circ} = \angle 1$
 $\therefore 1 \not\parallel m$

********** END ********