Alternative Models for IR

D. Thenmozhi
Associate Professor
SSNCE

Alternative Models for IR

- Set-Based Model
- Extended Boolean Model
- Fuzzy Set Model
- The Generalized Vector Model
- Latent Semantic Indexing
- Neural Network for IR
- Cluster Model

Cluster Model

- This model is an attempt to reduce the number of matches during retrieval.
- Hypothesis: Closely associated documents tend to be relevant to the same clusters.
- Instead of matching the query with every documents in the collection, it is matched with representatives of the class.

Cluster Model - Algorithm

- Let D={d1,d2,...,dm} finite set of documents
- Let E=(eij)n,n similarity matrix (or distance matrix)
- Let T be the threshold
- Any pair of documents di and dj (i ≠ j) whose similarity measures exceeds T or whose distance is less than T is grouped to form a cluster
- The remaining document form a single cluster.
- A representative vector of each class is constructed by computing the centroid of the document vector (mean)
- During retrieval, the query is compared with the cluster vectors based on similarity or distance

Steps with Examples

• Let term-document matrix

The similarity matrix

	d1	d2	d3
d1	1.0		
d2	0.9	1.0	
d3	0.4	0.4	1.0

Steps with Examples

- Threshold T = 0.7
- We get two clusters

$$C1 = \{d1, d2\}$$
 $C2 = \{d3\}$

• The cluster vectors (representatives) for C1 and C2

```
r1=(1 0.5 1 0 1)
r2=(0 0 1 1 0)
```

 Retrieval is performed by matching the query vector with r1 and r2

Exercise

 Given term-document matrix, find document cluster which is relevant for the query "to do"

		d_1	d_2	d_3	d_4
1	to	3	2	-	-
2	do	0.830	-	1.073	1.073
2 3	is	4	-	-	-
4	be	-	-	-	-
5	or	-	2	-	-
6	not	-	2	-	-
7	I	-	2	2	-
8	am	-	2 2 2 2 2	1	-
9	what	-	2	-	-
10	think	-	-	2 2	-
11	therefore	-	-	2	-
12	da	-	-	-	5.170
13	let	-	-	-	4
14	it	-	-	-	4

wt(to) - 1, wt(do) - 0.415

Fuzzy Model

- In fuzzy model, the document is represented as a fuzzy set of terms [ti, μ (ti)] where μ is the membership function
- µ assigns a membership degree to each term of the document
- The membership degree expresses the significance (weights) of term to the information contained in the documents

Fuzzy Model - Algorithm

- Each term ti is represented by a fuzzy set fi
- Fuzzy set operators are applied to obtain the desired result
- For single term query q=tq, documents from the fuzzy set fq are retrieved
- For AND query q=tq1 ^ tq2
 - Fuzzy sets fq1 and fq2 are obtained
 - Fuzzy intersection operator is used to obtain the resultant set fq1 ^ fq2 = min{(dj,wq1), (dj,wq2)}
 - The documents in this set are returned
- For OR query q=tq1 V tq2
 - Fuzzy sets fq1 and fq2 are obtained
 - Fuzzy intersection operator is used to obtain the resultant set fq1 V fq2 = max{(dj,wq1), (dj,wq2)}
 - The documents in this set are returned

Example

- D1={information, retrieval, query}
- D2={retrieval, query, model}
- D3={information, retrieval}
- Vocabulary = {information, model, query, retrieval}
- The fuzzy sets induced by these terms are

```
f1={(d1, 1/3), (d2,0), (d3, ½)}

f2={(d1, 0), (d2,1/3), (d3, 0)}

f3={(d1, 1/3), (d2,1/3), (d3, 0)}

f4={(d1, 1/3), (d2,1/3), (d3, ½)}

Try: q=t1 v t4
```

- Query q= t2 ^ t4 (model retrieval)
 - Fuzzy sets f2 and f4 are considered
 - Min(f2(d1), f4(d1)), Min(f2(d2), f4(d2)), Min(f2(d3), f4(d3))
 - = {(d1, 0), (d2,1/3), (d3, 0)}
 - d2 is returned