Economia Matemática: Monitoria 1

Tiago C. Botelho

FEA-USP

29 de Agosto de 2020

Objetivos de Aprendizado

Ao final da monitoria de hoje, você será capaz de:

- Manipular sequências de números reais.
- Decidir se um erro é sintático ou estático-semântico.
- 3 Entender algumas conexões entre tipos de dados no Python.

Para obtermos uma solução satisfatória, é necessário provarmos que a sequência dos termos converge para a raiz. Vamos descompactar esta sentença e entender o que isto significa.

Definição

Uma **sequência infinita** em \mathbb{R} é uma função $p : \mathbb{N} \to \mathbb{R}$.

É costumeiro representarmos a imagem de um número $n \in \mathbb{N}$ por p_n ao invés de p(n). Por abuso de notação, iremos frequentemente representar a sequência p pelos valores que ela assume, isto é, pelo conjunto $\{p_n\}_{n=0}^{\infty} \equiv \{p_n : n \in \mathbb{N}\}.$

Agora que já sabemos o que é uma sequência (infinita), vamos entender o que se quer dizer por convergência.

Definição

Dizemos que uma sequência $\{p_n\}_{n=0}^{\infty}$ converge com limite $p \in \mathbb{R}$ quando dado $\epsilon > 0$, existir $N_{\epsilon} \in \mathbb{N}$ tal que $|p_n - p| < \epsilon$ sempre que $n \geq N_{\epsilon}$.

Quando $\{p_n\}_{n=0}^{\infty}$ converge com limite p, é costumeiro escrevermos $p_n \to p$ ou $\lim_{n \to \infty} p_n = p$.

Basicamente, dada uma faixa de raio ϵ ao redor de p, é sempre possível encontrar um índice a partir do qual os pontos da sequência se acumulam nesta faixa.

No nosso método, temos uma sequência $\{g_n\}_{n=0}^{\infty}$ dada recursivamente por:

- $g_0 = 1$ (ou o número positivo que você quiser);
- $\bullet g_{n+1} = \frac{1}{2} \left(g_n + \frac{p}{g_n} \right).$

Resta provarmos a:

Proposição.

A sequência $\{g_n\}_{n=0}^{\infty}$ converge com limite \sqrt{p} .

Demonstração.

Primeiro, note que $g_n > 0$, para todo $n \in \mathbb{N}$ (use indução). Então:

$$g_{n+1}^2 = \frac{1}{4} \left(g_n + \frac{p}{g_n} \right)^2 = \frac{1}{4} \left(g_n - \frac{p}{g_n} \right)^2 + p \ge p, \ \forall n \ge 1.$$

Segue-se que:

$$g_{n+1}-g_n=\frac{g_n^2+p}{2g_n}-g_n=\frac{p-g_n^2}{2g_n}\leq 0, \ \forall n\geq 1.$$

Assim, $\{g_n\}_{n=1}^{\infty}$ é monótona decrescente e limitada inferiormente, portanto é convergente. Logo, obtemos:

$$p-g_n^2=2g_n(g_{n+1}-g_n)\to 0,$$

isto é, $g_n^2 \to p$, ou ainda, $g_n \to \sqrt{p}$.

O gargalo aqui é o item (c).

Proposição

Seja $\beta \in (0,1)$. Então a série $\sum_{t=0}^{\infty} \beta^t$ converge com limite $\frac{1}{1-\beta}$.

Demonstração.

Note que:

$$(1 - \beta) \sum_{t=0}^{n} \beta^{t} = (1 - \beta)(1 + \beta + \dots + \beta^{n})$$
$$= (1 - \beta) + (\beta - \beta^{2}) + \dots + (\beta^{n} - \beta^{n+1})$$
$$= 1 - \beta^{n+1}.$$

Logo:

$$\lim_{n\to\infty}\sum_{t=0}^n\beta^t=\lim_{n\to\infty}\frac{1-\beta^{n+1}}{1-\beta}=\frac{1}{1-\beta}.$$