Solució al problema 4 I

a) Hem de veure que podem aplicar el teorema de la funció implícita. Anomenem

$$F(x,y,\lambda) = \begin{pmatrix} F_1(x,y) \\ F_2x,y \end{pmatrix} = \begin{pmatrix} x^3 + y^2 + x + y - \lambda \\ xy^2 + x^2 + x - y \end{pmatrix}.$$

Aleshores

$$D_{(x,y)}F(0,0,0)=\left(\begin{array}{cc}1&1\\1&-1\end{array}\right).$$

per tant, $\det D_{(x,y)}F(0,0.0)=2\neq 0$ el que vol dir que existeix la funció demanada.

b) Si derivem $F(x(\lambda), y(\lambda)) = 0$ respecte de λ obtenim

$$\frac{\partial F_1}{\partial x}x'(\lambda) + \frac{\partial F_1}{\partial y}y'(\lambda) + \frac{\partial F_1}{\partial \lambda} = 0,$$

Solució al problema 4 II

$$\frac{\partial F_2}{\partial x}x'(\lambda) + \frac{\partial F_2}{\partial y}y'(\lambda) + \frac{\partial F_2}{\partial \lambda} = 0,$$

i si fem $\lambda = 0$:

$$x'(0) + y'(0) - 1 = 0$$

 $x'(0) - y'(0) = 0$

Per tant, $x'(0) = \frac{1}{2}$, $y'(0) = \frac{1}{2}$.

c) Fent desenvolupament de Taylor a primer ordre tenim:

$$x(\lambda) \approx \frac{1}{2}\lambda, \qquad y(\lambda) \approx \frac{1}{2}\lambda,$$

i si $\lambda = 0.01$, $x(\lambda) \approx 0.005$, i $y(\lambda) \approx 0.005$.

b) El resultat és (4.975001545345481e-03,4.999876554618971e-03) i s'arriba en 2 iterats en el primer cas i en 3 en el segon.