FreeCAD 入门教程

大家好,我是美丽心灵,这是我做的一个入门教程,欢迎加群 669185572。大家继续讨论。

目录

۱D	入门教程	1
4	约束	6
5	绘制辅助线	7
6	元素与约束的配合	7
零	学件设计(Part Design)	9
1	新建零件	9
2	创建一个拉伸特征作为零件的基础特征	. 10
岩	图设计	22
I		24
Ħ	由面设计	24
	基二123456零12%工	AD 入门教程 基础概述

第一章 基础概述

第二章 二维草图设计

2、1 进入与退出草图环境操作

草图环境是用户建立二维草图的工作界面,通过草图设计环境中建立的二维草图实体可以生成三维实体或曲面,在草图中各个实体间添加约束来限制它们的位置和尺寸。因此,建立二维草图是建立三维实体或曲面的基础。下面详细来介绍进入与退出草图环境的操作方法。

1、进入草图环境的操作方法

第一步:启动 FreeCAD 后,选择【文件】【新建】命令,新建一个文件。

第二步: Part Design V 下拉中选择 Part Design 按钮

第三步:点击 ,这个是组按钮,为我们下面的操作的一个组的名字。我们新建一个组,并起个名字,例如:零件 001.

第四步:点击 图标,新建草图。点击之后,会出现对话框,让你选择基准面,

我们选择一个基准面即可,例如,我们可以选择 XY 平面。 这样就进入了草图环境

退出草图在左侧任务栏点击 close,关闭就可以退出草图。

2、网格设置

选择【编辑】【偏好设置】【草图】的菜单中可以设置

2、2 绘制二维草图

在工具栏中有各类绘制不同曲线的工具。

用户可以尝试各种操作。

这个的使用方式还是比较简单的,通过简单摸索就可以获知。

点击工具按钮之后,在草图中选择一个点点下,再选择两一个点,点下,就可以确定这个直线。右键可以确定。如果右键不确定,则可以继续绘制,但是仍然要制定起点。

新线功能可以连续画线。当指定一个起点后,后面将以前一段的终点作为后一段的起点。

2、圆弧

圆弧有两种方式,第一种,先指定中心点然后指定两个端点。第二种,指定两个端点,再指定边缘点。

3、圆

与圆弧类似。

确定两个对角点来确定矩形。

5、其他

其他元素用户可以自行摸索。

总结,FreeCAD 的绘图是通过基本的元素和约束来共同完成的。看起来它的元素比较少,例如和 solidworks 比起来少了很多,但是基本的元素配合约束的功能是非常强大的。使用起来的方便性并不比 solidworks 差。

2、3 倒角

FreeCAD 中的倒角只有一种,就是倒圆角。但是倒斜角可以用直线和裁剪来完成。

选择两条边就可以做倒圆角,圆角可以设置半径。也就是用圆角 和半径约束 组合完成。

本质上,斜角就是一条直线。

2、4 约束

FreeCAD 给出了如上图中的一系列的约束。

并提示,括号中的快捷键 C。

第二个约束,是将点固定到一条直线上。同样也告诉我们快捷键是 shift+O。

- **,这两个,是垂直和水平约束,点击之后会让直线调整到垂直位置和水平位置。**
- 平行约束,选择两条线,会让这两条线平行。
- 垂直约束,让两条线垂直
- 相切约束,让两个元素相切
- 相等约束,让两条线、圆、或者圆弧相等
- 对称约束,让两个点相对另一条直线或另一个点对称。
- **以** 块约束,让选择的元素固定到一个块中,并固定在当前位置
- 锁定约束,将选择的点对象锁定,针对于原点。

从左至右,水平尺寸,竖直尺寸,线长度,半径,角度的约束。

2、5 绘制辅助线

这个按钮切换了实体线和辅助线。点击之后,前面的红色的图形元素的颜色换成了蓝色。其他操作与前面一致。

2、6 元素与约束的配合

我们以上图一个简单的案例来简单演示草图的绘制。

1、 绘制矩形

使用 工具,随便画一个四边形

未封闭的两个端点,选择之后使用重合点约束

2、 约束成矩形

选择对边,并约束成水平和竖直方向

, 就形成了如下的矩形。

为了让中心点在原点,我们要选择两条边,端点与两条轴对称

3、 给定尺寸

4、 绘制圆 先随意绘制 4 个圆。

然后用辅助线连接四个圆的圆心,同上方组合矩形的方式,确定一个辅助线的矩形,并标定 尺寸。将每个圆用 相等起来。

5、 关闭草图,创建凸台 关闭草图之后,界面切换到 part design

左上角有一个创建凸台按钮 , 点击,并输入拉伸长度,就生成了我们需要的零件。

第三章 零件设计(Part Design)

创建零件的方式,主要是通过两个方式来完成, (1) 创建凸台 (2) 创建凹槽。本章以

图3.1.1 实体三维模型

该案例说明创建零件的基本步骤

3、1 新建零件

新建的步骤同第二章的草图的前一部分。

第一步:【文件】【新建】创建一个文档

第二步: Part Design Y 下拉中选择 Part Design 按钮

第三步:点击 ,这个是组按钮,为我们下面的操作的一个组的名字。我们新建一个组,并起个名字,例如:零件 001. 第四步:进入草图

3、2 创建一个拉伸特征作为零件的基础特征

1、绘制基本特征,菱形

2、倒角,并绘制两个圆

3、检查约束

左侧,显示约束是否完备,也就是说目前我们给的约束是否就已经可以确定这个图形的位置。 2中缺少2个约束,我们增加了两个圆的间距,及上下倒角的圆心的对称性,解决了这个问题。可以进行下一步的拉伸,也就是创建凸台。

4、创建凸台

点击,设置高度可以完成上述模型。

5、选择上面的面作为基准面圆柱绘制草图特征

在上面绘制一个圆,设定半径为60mm,并进行凸台拉伸100mm。

6、在最上面的面,绘制草图,挖去

需要选择一个挖去的程度。

7、创建一个方体 以地面为基准面继续上述过程,创建一个方体

8、创建一个半圆柱

9、创建一个圆柱,并挖去

这样就完成了模型的建立。

3、3 阵列

镜像阵列

线性阵列

环形阵列

多重变换特征

1、 镜像阵列 以下图为例

我们点击镜像阵列,

选择基准平面即可。

2、 线性阵列

线性阵列,需要设置线性的阵列的方向,同时要一个总长度,及在这个长度内阵列的次数。 3、 环形阵列

环形阵列需要选择特征,指定轴线,及角度和阵列次数。

4、 多重变换特征

多重变换,可以在变换中选择几种变换并进行组合。

3、4 长料工具 🥯 💜 🗳

凸台前面我们已经介绍过。 首先我们需要建立一个草图

只能单个的块,如果是下图的样子,那么这个凸台就建立不起来,会选择其中一个去建立。 并且在左边的树中显示一个问好。

2、旋转

这个是建立旋转体的。

同样我们需要新建一个草图,基于草图特征,指定旋转轴来建立旋转体。如下图,我们建立了一个样条曲线,并且形成一个封闭曲面。然后使用旋转工具,让其围绕坐标轴旋转。

3、放样工具 首先在一个面上画一个封闭曲线

然后,在要放样的目标地画一个曲面,这个操作可以使用参考面来完成,

在左侧的位置一栏中输入要调整到的目标位置,例如上移 200mm,

然后基于这个参考面新建一个封闭曲线。

最后点击放样工具,选择面即可。

我们获得了如下的一个放样模型。

4、轮廓扫描

我们继续在上图的基础上进行轮廓扫描。 我们已经有一个草图了,就是上面的这个长方形和半圆的组合。

我们还需要一个扫描的路径。我们绘制一个简单的扫描路径。

这样我们就可以通过扫描来完成一个基于草图的扫描。

由此我们得到了如下的模型。

3、5 基准参考

基准参考,是从已经绘制好本零件或者其他零件中选取参考位置。

说明: (1) 尤其是选择一个参考面的时候,我们可以直接在面上进行草图和特征绘制,但是,使用基准参考的一个优点就是,当我们想要调整时,比如换另一个面的时候,有基准参考面在操作上会方便很多。

也就是说这些基准参考点给了用户更多的方便性和灵活性。

(2) 当然如果是外部的参考,我们其实如果使用参考就必须要使用这个功能,除非我们使用绝对的位置定位,但凡使用相对定位,基准参考都是一个非常好的选择。

第四章 装配设计

装配设计,我们这里介绍 Assembly2Plus 组件。

首先我们要切换到这个工作台,新建一个文档,并且保存,我们命名未 A2p_001

4、1 载入零件和刷新

这三个工具是从左向右,是(1)载入一个文档,(2)从一个文档中载入一个零件,(3)刷新载入的文件。

例如我们先载入我们在阵列中做的文件

然后,再载入刚才长料工具时的文件,

细心的朋友可能已经注意到了,刚才上面载入的时候是半个,现在是整体了,我修改了文件,然后刷新了一下。马上显示了效果。

4、2 装配工具

- (1) 选择两个点重合
- (2) 选择一个点和一个线重合
- (3) 选择一个点和一个面重合
- (4) 两个球重合
- (5) 两个圆心重合
- (6) 圆柱和线或者圆柱重合

- (7) / 两个线平行
- (8) 线和平面重合
- (9) 线和面法向重合
- (10) 两个面平行
- (11) 两个面重合
- (12) 两个面给定夹角
- (13) 💆 质心重合(面和边)
- (14) 删除选择零件的所有的约束

4、3 案例

第五章 工程图设计 //To Be continued。。。 第六章 曲面设计 //To be continued ...