Uniwersytet Jagielloński w Krakowie

Wydział Matematyki i Informatyki

Pola Kyzioł

Nr albumu: 1092406

Tytuł pracy dyplomowej

Praca magisterska na kierunku Informatyka Analityczna

Praca wykonana pod kierunkiem dr hab. Tomasz Krawczyk Instytut Informatyki Analitycznej

Oświadczenie autora pracy

Kraków, dnia

Świadom odpowiedzialności prawnej oświadczan pisana przeze mnie samodzielnie i nie zawiera trwiązującymi przepisami.	· · · · · · · · · · · · · · · · · · ·
Oświadczam również, że przedstawiona praca nie zanych z uzyskaniem tytułu zawodowego w wyż	v
Kraków, dnia	Podpis autora pracy
Oświadczenie kierującego pracą	
Potwierdzam, że niniejsza praca została przygoto do przedstawienia jej w postępowaniu o nadanie	-

Podpis kierującego pracą

Spis treści

1	Dek	kompozycja drzewowa	3
	1.1	Definicja dekompozycji i szerokości drzewowej	3
	1.2	Ładna dekompozycja drzewowa	3
	1.3	Obliczanie dekompozycji drzewowej	4
2 Klasyczne algorytmy dynamiczne		7	
	2.1	Drzewo Steinera	7

Rozdział 1

Dekompozycja drzewowa

1.1 Definicja dekompozycji i szerokości drzewowej

Dekompozycją drzewową grafu G nazywamy parę $\mathcal{T} = (T, \{X_t : t \in V(T)\})$, gdzie T jest drzewem, a $\{X_t : t \in V(T)\}$ zawiera zbiory wierzchołków grafu G i spełnia następujące warunki:

- Dla każdej krawędzi $\{u,v\} \in E(G)$, istnieje węzeł $t \in V(T)$, taki że $u \in X_t$ i $v \in X_t$.
- Dla każdego wierzchołka $v \in V(G)$, zbiór $\{t \in V(T) : v \in X_t\}$ jest poddrzewem drzewa T.

Od tej pory wierzchołki grafu wyjściowego G będą nazywane po prostu wierzchołkami, natomiast węzły drzewa T będą nazywane kubełkami.

Szerokość drzewowa dekompozycji drzewowej \mathcal{T} jest zdefiniowana następująco: $sd_{\mathcal{T}} = max_{t \in V(T)}|X_t - 1|$. Natomiast szerokość drzewowa grafu G jest minimalną szerokością drzewową wziętą po wszystkich możliwych dekompozycjach drzewowych G: $sd_G = min\{sd_{\mathcal{T}} : \mathcal{T} \text{ jest dekompozycją drzewową } G\}$.

1.2 Ładna dekompozycja drzewowa

Dla uproszczenia posługiwania się dekompozycją drzewową przy definiowaniu algorytmów dynamicznych, będziemy używać tzw. *ładnej dekompozycji drzewowej*, która została po raz pierwszy wprowadzona przez Kloks [1].

 $Ladna\ dekompozycja\ drzewowa\ \mathcal{T}=(T,\{X_t\}_{t\in V(T)})$ musi spełniać następujące warunki:

- T jest ukorzenione.
- Każdy kubełek T ma co najwyżej dwoje dzieci.
- Jeśli kubełek t
 ma dwoje dzieci p i q, wtedy $X_t = X_p = X_q$.

• Jeśli kubełek t ma jedno dziecko p, to $|X_t| = |X_p| + 1$ oraz $X_p \subset X_t$ albo $|X_t| = |X_p| - 1$ oraz $X_t \subset X_p$.

Ponieważ w ładnej dekompozycji drzewowej, kubełki różnią się od siebie o co najwyżej jeden wierzchołek, każde przejście między jednym a drugim kubełkiem odpowiada dokładnie jednej operacji na grafie wyjściowym G. Każdy kubełek ma jeden z następujących pięciu typów:

- WPROWADZAJĄCY v kubełek ten ma o jeden wierzchołek więcej niż jego jedyne dziecko: $X_p \cup \{v\} = X_t$. Każdy wierzchołek $v \in V(G)$, ma co najmniej jeden kubełek wprowadzający.
- ZAPOMINAJĄCY v kubełek o jednym wierzchołku mniej niż jedgo jedyne dziecko: $X_t \cup \{v\} = X_p$. Jego specjalnym reprezentantem jest korzeń. Dla każdego wierzchołka $v \in V(G)$, istnieje dokładnie jeden kubełek zapominający.
- SCALAJĄCY jedyny kubełek posiadający dwoje dzieci: $X_t = X_p = X_q$, scala dwa podgrafy o przecięciu X_t .
- LIŚĆ dla t będącego liściem: $X_t = \emptyset$.
- UZUPEŁNIAJĄCY uv kubełek, który nie pojawił się w pierwotnej definicji ładnej dekompozycji drzewowej, ale ułatwia definiowanie algorytmów operujących na dekompozycjach drzewowych. Kubełek uzupełniający wprowadza krawędź $uv \in E(G)$ (uzupełnia krawędziami reprezentację grafu G w drzewie T). Kubełek t UZUPEŁNIAJĄCY uv zawiera oba wierzchołki krawędzi: $u \in X_t$ i $v \in X_t$. Dla każdego uv istnieje dokładnie jeden kubełek uzupełniający i - przyjmując bez straty ogólności t(u) jest przodkiem t(v)(gdzie t(v) to najwyższy kubełek, taki że $v \in X_{t(v)}$) - znajduje się on pomiędzy t(v) a ZAPOMINAJĄCY v.

daj tu przykład

1.3 Obliczanie dekompozycji drzewowej

Problem obliczania dekompozycji drzewowej należy do klasy problemów FPT. Odkąd Robertson i Seymour [3] wprowadzili w latach osiemndziesiątych definicję dekompozycji drzewowej i jako pierwsi podali parametryzowany algorytm znajdowania dekompozycji drzewowej rozmiaru O(k) (dla pewnej stałej k) o czasie działania $O(n^{f(k)})$ na grafie n-wierzchołkowym (f(k) nigdy nie obliczyli), zostało opublikowanych wiele nowych, wielomianowych algorytmów parametryzowanych o znacznie lepszych złożonościach czasowych. Jednakże Bodlaender [2] jako pierwszy podał liniowy algorytm znajdowania dekompozycji drzewowej o szerokości k (o ile taka dekompozycja istnieje).

Theorem 1 (Bodlaender). Dla wszystkich $k \in N$ istnieje algorytm działający w czasie liniowym, który dla danego grafu G = (V, E) sprawdza, czy szerokość drzewowa tego grafu wynosi co najwyżej k oraz - jeśli tak - oblicza dekompozycję drzewową G o szerokości drzewowej co najwyżej k.

Ponadto Kloks [1] pokazał, że dla każdego grafu o szerokości drzewowej k istnieje ładna dekompozycja drzewowa, którą można skonstruować w czasie liniowym od ilości wierzchołków grafu wyjściowego G.

Lemma 1 (Kloks). Każdy graf G o szerokości drzewowej k posiada ładną dekompozycję drzewową o szerokości k. Ponadto, jeśli G jest grafem n-wierzchołkowym, to istnieje ładna dekompozycja drzewowa grafu G o co najwyżej 4n kubełkach.

Dowód indukcyjny. Graf G ma szerokość drzewową k, wobec czego ma co najmniej k+1 wierzchołki. Ponadto każdy graf o szerokości drzewowej k da się striangulować do postaci k-drzewa. Triangulacja grafu G do k-drzewa opiera się na znalezieniu zrównoważonej dekompozycji drzewowej $\mathcal{T}=(T,\{X_t\}_{t\in V(T)})$, w której dla każdego $t\in V(T)$: $|X_t|=k+1$ oraz dla każdej krawędzi $(t,p)\in E(T)$: $|X_t\cap X_p|=k$, a następnie na dodaniu do G krawędzi między każdą parą wierzchołków (u,v), dla której istnieje kubełek nowo powstałej dekompozycji $t:u\in X_t\wedge v\in X_t$. Algorytm równoważenia dekompozycji drzewowej został przedstawiony przez Bodlaender [2] i działa on w czasie liniowym. Niech H będzie striangulowanym grafem G o n wierzchołkach. Indukcyjnie można pokazać, że istnieje ładna dekompozycja grafu H o szerokości drzewowej k (w tym twierdzeniu ładna dekompozycja nie zakłada, że liście są puste).

Dla n=k+1, możemy wziąć trywialną dekompozycję drzewową, tj. umieścić wszystkie wierzchołki w jednym kubełku.

Dla n > k+1, H posiada wierzchołek v, którego sąsiedzi tworzą klikę. Niech H' będzie grafem otrzymanym z H poprzez usunięcie wierzchołka v. Z indukcji dostajemy, że istanieje ładna dekompozycja drzewowa H' o co najwyżej 4(n-1) kubełkach. Niech S oznacza zbiór sąsiadów wierzchołka v. Ponieważ S jest kliką (rozmiaru k), musi istnieć kubełek X_t ładnej dekompozycji drzewowej, który zawiera S. Rozważmy trzy następujące przypadki dotyczące kubełka t:

- 1. t ma dwoje dzieci p i q, wobec czego $X_t = X_p = X_q$. Schodzimy w dół drzewa do dowolnego z dzieci i kontynuujemy aż nie znajdziemy się w kubełku p o co najwyżej jednym dziecku.
- 2. p jest liściem. Jeśli $X_p = S$, tworzymy nowy kubełek a: $X_a = S \cup \{v\}$, który staje się dzieckiem p. Wpp. $X_p \neq S$, niech $z \in X_p \setminus S$, p dostaje nowe dziecko a: $X_a = X_p \setminus \{z\}$. Ponieważ $S \subset X_p$ i $k = |S| \leq k + 1$, $X_a = S$. Dodajemy kolejny kubełek b jako dziecko a: $X_b = S \cup v$.
- 3. p ma jedno dziecko q. Usuwamy krawędź (p,q) z drzewa. Tworzymy nowy kubełek a: $X_a = X_p$ i dodajemy go do drzewa jako dziecko p, natomiast q podpinamy jako dziecko a. Tworzymy kolejny nowy kubełek b: $X_b = X_p$ i podpinamy b jako dziecko p (drugie dziecko). Schodzimy w dół drzewa do kubełka b, który jest liściem i postępujemy zgodnie z 2. Łatwo zauważyć, że wprowadzimy co najwyżej 4 nowe wierzchołki.

Ponieważ dekompozycja drzewowa dla H' ma co najwyżej 4(n-1) wierzchołki, dekompozycja drzewowa dla H ma co najwyżej 4n wierzchołki, co kończy dowód.

Lemma 2 (Kloks). Dla stałej k, mając daną dekompozycję drzewową grafu G o szerokości k i O(n) wierzchołkach, gdzie n jest liczbą wierzchołków grafu G, da się skonstruować ładną dekompozycję drzewową grafu G o szerokości k i co najwyżej 4n kubełkach w czasie O(n).

Dowód. Dowód opiera się na konstrukcji przedstawionej w dowodzie lematu 1. Konstrukcja ta wymaga na wejściu striangulowanego grafu G do postaci k-drzewa, triangulacja wymaga czasu liniowego. Szukanie odpowiedniej kolejności usuwania kubełków z k-drzewa H, czyli takiej w której sąsiedzi usuwanego kubełka indukują klikę, jest również liniowe. Dowód lematu wynika już teraz bezpośrednio z konstrukcji przedstawionej w dowodzie lematu 1.

Rozdział 2

Klasyczne algorytmy dynamiczne

2.1 Drzewo Steinera

Niniejszy algorytm został przedstawiony przez ... Mamy dany nieskierowany graf G oraz zbiór wierzchołków K będący podzbiorem V(G), $K \subset V(G)$. Wierzchołki te nazywane są terminalami. Naszym zadaniem jest znalezienie dla grafu G takiego jego spójnego podgrafu H, który zawiera wszystkie terminale i jego rozmiar jest minimalny. Zakładamy, że mamy daną ładną dekompozycję drzewową grafu wyjściowego $G: \mathcal{T} = (T, \{X_t\}_{t \in V(T)})$. Dodatkowo, dla uproszczenia samego algorytmu, przyjmujemy, że każdy kubełek zawiera przynajmniej jeden terminal. Możemy to łatwo osiągnąć - wybieramy dowolny wierzchołek v* będący terminalem (terminale będą dla ułatwienia dodatkowo oznaczane przez *) i dodajemy go do każdego kubełka, usuwamy WPROWADZAJĄCY v i ZAPOMINAJĄCY v, własność ładnej dekompozycji drzewowej jest zachowana z tą małą modyfikacją, że liście i korzeń nie są puste.

Zanim przejdziemy do zdefiniowania algorytmu dynamicznego dla problemu Steinera, wprowadźmy kilka dodatkowych oznaczeń. Dla kubełka t, definiujemy:

 V_t : suma wszystkich kubełków w poddrzewie ukorzenionym w t, włączając X_t , inaczej mówiąc wszystkie wierzchołki grafu wyjściowego G, które pojawiły się w danym poddrzewie

 E_t : wszystkie krawędzie (u, v), które zostały zrealizowane w poddrzewie ukorzenionym w t, czyli dla których istnieje kubełek p: $u \in X_p \land v \in X_p$

$$G_t = (V_t, E_t)$$

Niech H będzie szukanym drzewem Steinera łączącym wszystkie terminale K, a t jednym z kubełków \mathcal{T} . Przecięcie H i G_t tworzy las F, który nigdy nie jest pusty, ponieważ zawiera przynajmniej jeden wierzchołek v* wprowadzony na początku do każdego kubełka. Szukane H jest spójne oraz X_t zawiera terminal, co implikuje, że każde drzewo należące do F musi przecinać X_t . Ponadto każdy terminal z $K \cap V_t$ musi należeć do jednego z drzew F - każdy terminal musi należeć do F od momentu pojawienia się w V_t . Żeby utrzymać powyższe niezmienniki, trzeba w każdym kubełku rozważać wszystkie możliwe przecięcia X_t z V(F): $X \subset X_t$ oraz wszystkie partycje X: \mathcal{P} odpowiadające drzewom (komponentom) F - oznaczonym jako C_1, \ldots, C_z - i wybierać tylko te, które spełniają następujące warunki:

- 1. $K \cap V_t \subseteq V(F)$, F zawiera wszystkie dotychczas wprowadzone terminale
- 2. $V(F) \cap X_t = X$, X reprezentuje w danym kubełku to, co bierzemy do drzewa Steinera
- 3. dla wierzchołków należących do przecięcia $V(F) \cap X_t$, $\mathcal{P} = \{\mathcal{P}_1, \dots, \mathcal{P}_z\}$ reprezentuje dokładnie ich przynależność do poszczególnych spójnych komponentów F, gdzie dla każdego $y \in \{1, \dots, z\}$: $P_y = V(C_y) \cap X_t$

Dla każdej trójki (t, X, \mathcal{P}) trzymamy w $c[t][X][\mathcal{P}]$ rozmiar (liczbę krawędzi) najmniejszego F w G_t , dla którego powyższe warunki są spełnione (własność optymalnej podstruktury). Jeśli dana trójka nie spełnia wszystkich warunków $c[t][X][\mathcal{P}] = \infty$. Musimy na bieżąco śledzić partycję \mathcal{P} , ponieważ może się ona zmieniać wraz z każdym nowo przetwarzanym kubełkiem. Kubełki typu SCALAJĄCY lub UZUPEŁNIAJĄCY uv mogą zepsuć wcześniej poprawną partycję, tworząc cykl. Wynik końcowy odpowiada wartości $c[r][\{v*\}][\{\{v*\}\}]$, gdzie r jest korzeniem. Poniżej prezentuję formuły rekurencyjne obliczania wartości c ze względu na typ kubełka t. Dla wszystkich nie wymienionych przypadków, c przyjmuje wartość ∞ .

LIŚĆ: $c[t][\{v*\}][\{\{v*\}\}]=0$, każdy liść odpowiada temu przypadkowi. WPROWADZAJĄCY u: LIŚĆ

LIŚĆ

LIŚĆ

Bibliografia

- [1] T. Kloks. *Treewidth. Computations and approximations*. Lecture Notes in Computer Science, 842, 1994.
- [2] H. L. Bodlaender. A linear-time algorithm for nding tree-decompositions of small treewidth. SIAM J. Comput. 25:6 (1996) 1305-1317
- [3] N. Robertson and P. D. Seymour. *Graph Minors II. Algorithmic aspects of treewidth.* J. Algorithms 7 (1986) 309-322
- [4] Knuth: Computers and Typesetting, http://www-cs-faculty.stanford.edu/~uno/abcde.html