Problem

Show that any infinite subset of \emph{MIN}_{TM} is not Turing-recognizable.

Step-by-step solution

Step 1 of 3
Definition of MIN _{TM} =
If M is a Turing machine, then we say that the length of the description $\langle M \rangle$ of M is the number of symbols in the string description M.
$MIN_{TM} = \{\langle M \rangle M \text{ is a minimal TM}\}$
Say that <i>M</i> is minimal if there is no Turing machine equivalent to <i>M</i> that has a shorter description.
Comment
Step 2 of 3
Now we have to prove that any infinite subset of MIN _{TM} is not Turing – recognizable.
We will prove by taking contradiction.
We assume that there exists A , an infinite subset of MIN_{TM} , such that A is Turing – recognizable.
We know that
"A language is Turing – recognizable if and only if some enumerator enumerates it".
So, Let <i>E</i> be the enumerator that enumerates <i>A</i> .
By using this <i>E</i> , we construct another <i>TM</i> (Turing – machine) <i>N</i> as follows.
N = "On input w:
1. from recursion theorem. Own description $\langle c \rangle$ is obtained
2. Run the Enumerator <i>E</i> until a machine <i>P</i> is obtained with a longer
description than that of <i>N</i> .
3. Simulate <i>P</i> on input <i>w</i> ".
Comment
Step 3 of 3
As we know that $^{MIN_{TM}}$ is infinite A is infinite subset of $^{MIN_{TM}}$.
1. When A is infinite, E s list must contain a TM with longer description than N 's description. So obviously N terminates with some TM P which is longer than N . Then N simulates P and so is equivalent to P .
2. It also notify that N is shorter than P. So P cannot be minimal. But P appears on the list that is produced by E.
3. E's list must contain a TM with longer description than N's description.
From above three conditions we have a contradiction.
Thus our assumption that A is Turing – recognizable is wrong.
Therefore A is not Turing – recognizable.
Thus an infinite subset of MIN _{TM} is not Turing – recognizable.
Comment