Corso di Laurea in Informatica - A.A. 2017 - 2018 Esame di Fisica - 11/12/2018

Esercizio 1

Si considerino i seguenti punti in un piano cartesiano xy: P(1,1), A=(1,4) e B=(-3,1). Scrivere il vettore \vec{a} che va dal punto P al punto A, il vettore \vec{b} che va dal punto P al punto B, il vettore $\vec{d} = \vec{a} - \vec{b}$ e determinare il modulo di \vec{d} .

Esercizio 2

Consideriamo il piano xy. Nel punto (x_0, y_0) , $x_0, y_0 > 0$ vi è la particella P_1 con carica $Q_1 = q$ mentre nel punto $(-x_0, y_0)$ vi è la particella P_2 carica $Q_2 = q$. All'infinito c'è una particella P_3 con carica $Q_3 = Q$.

Calcolare:

- a) il lavoro fatto dal campo elettrico generato dalle particelle P_1 e P_2 per portare la particella P_3 dall'infinito al punto $(0, 2y_0)$ (2 punti);
- b) la forza agente su P_3 (3 punti);

Successivamente le particelle P_1 e P_2 vengono messe in moto con moto circolare uniforme attorno all'origine. La velocità di P_1 è $\vec{v}_1 = (V, -V\frac{x_0}{y_0})$ e quella di P_2 è $\vec{v}_2 = (V, V\frac{x_0}{y_0})$. Calcolare:

- a) il modulo della velocità angolare della particella P_1 (4 punti);
- b) il vettore campo magnetico nell'origine (4 punti);
- c) la forza su P_3 dovuta al campo magnetico.

Esercizio 3

Nel circuito in figura le f.e.m. valgono $\varepsilon_1 = 2V_0$ e $\varepsilon_2 = 5V_0$. Calcolare in funzione di R e V_0 :

- a) la corrente i_0 che percorre il resistore R_0 (4 punti);
- b) la corrente erogata dalla f.e.m. ε_1 (4 punti);
- c) la potenza totale dissipata nel circuito (4 punti);
- d) la differenza di potenziale $V_A V_B$ tra il punto A e il punto B (4 punti).

