

In the Claims

1. **(currently amended)** A process for the production of polyolefin hollow articles, which comprises
charging the polyolefin with a stabilizer combination, comprising
 - (a) at least one compound from the group of the organic phosphites and phosphonites,
 - (b) one or more compounds selected from the group consisting of
 - i.) hydroxylamine derivatives and
 - ii.) amine oxide derivatives and
 - (c) at least one compound from the group of the hindered amine stabilizers,

filling this mixture into a mold, heating this mold in an oven to above 280°C, such that the stabilized polyolefin fuses,

rotating the mold around at least 2 axes, the plastic material spreading to the walls,

cooling the mold while still rotating,

opening it, and

taking the resultant hollow article out.
2. **(original)** A process according to claim 1 wherein the organic phosphites and phosphonites of component (a) are selected from the group consisting of formulae (1), (2), (3), (4), (5), (6) and (7)

in which the indices are integral and

n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; r is 4 to 12; y is 1, 2 or 3; and z is 1 to 6;

A_1 , if n is 2, is C_2-C_{18} alkylene; C_2-C_{12} alkylene interrupted by oxygen, sulfur or $-NR_4-$; a radical of

the formula , or phenylene;

A_1 , if n is 3, is a radical of the formula $-C_rH_{2r-1}-$;

A₂ is as defined for A₁ if n is 2;

B is a direct bond, -CH₂-, -CHR₄-, -CR₁R₄-, sulfur, C₅-C₇ cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C₁-C₄ alkyl radicals in position 3, 4 and/or 5;

D₁, if p is 1, is C₁-C₄ alkyl and, if p is 2, is -CH₂OCH₂-;

D₂, if p is 1, is C₁-C₄ alkyl;

E, if y is 1, is C₁-C₁₈ alkyl, -OR₁ or halogen;

E, if y is 2, is -O-A₂-O-,

E, if y is 3, is a radical of the formula R₄C(CH₂O-)₃ or N(CH₂CH₂O-)₃;

Q is the radical of an at least z-valent alcohol or phenol, this radical being attached via the oxygen atom to the phosphorus atom;

R₁, R₂ and R₃ independently of one another are C₁-C₁₈ alkyl which is unsubstituted or substituted by halogen, -COOR₄, -CN or -CONR₄R₄; C₂-C₁₈ alkyl interrupted by oxygen, sulfur or -NR₄-; C₇-C₉ phenylalkyl; C₅-C₁₂ cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C₇-C₉ phenylalkyl; or a radical of the formula $-(\text{CH}_2)_m-$

 in which m is an integer from the range 3 to 6;

R₄ is hydrogen, C₁-C₁₈ alkyl, C₅-C₁₂ cycloalkyl or C₇-C₉ phenylalkyl,

R₅ and R₆ independently of one another are hydrogen, C₁-C₈ alkyl or C₅-C₆ cycloalkyl,

R₇ and R₈, if q is 2, independently of one another are C₁-C₄ alkyl or together are a 2,3-dehydropentamethylene radical; and

R₇ and R₈, if q is 3, are methyl;

R₁₄ is hydrogen, C₁-C₉ alkyl or cyclohexyl,

R₁₅ is hydrogen or methyl and, if two or more radicals R₁₄ and R₁₅ are present, these radicals are identical or different,

X and Y are each a direct bond or oxygen,

Z is a direct bond, methylene, -C(R₁₆)₂- or sulfur, and

R₁₆ is C₁-C₈ alkyl.

3. (original) A process according to claim 1 wherein the organic phosphites and phosphonites of component (a) are selected from the group consisting of tris(2,4-di-tert-butylphenyl) phosphite, tris(nonylphenyl) phosphite and formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) and (L)

4-7. (canceled)

8. (original) A process according to claim 1 wherein the amine oxide derivatives of component (ii) are of the formula (III)

wherein

G_1 and G_2 are independently a straight or branched chain alkyl of 6 to 36 carbon atoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkycycloalkyl of 6 to 36 carbon atoms or cycloalkylalkyl of 6 to 36 carbon atoms;

G_3 is a straight or branched chain alkyl of 1 to 36 carbon atoms, aryl of 6 to 12 carbon atoms, aralkyl of 7 to 36 carbon atoms, alkaryl of 7 to 36 carbon atoms, cycloalkyl of 5 to 36 carbon atoms, alkycycloalkyl of 6 to 36 carbon atoms or cycloalkylalkyl of 6 to 36 carbon atoms; with the proviso that at least one of G_1 , G_2 and G_3 contains a \square carbon-hydrogen bond; and

wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkycycloalkyl and cycloalkylalkyl groups may be interrupted by one to sixteen -O-, -S-, -SO-, -SO₂-, -COO-, -OCO-, -CO-, -NG₄-, -CONG₄- and -NG₄CO- groups, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkycycloalkyl and cycloalkylalkyl groups may be substituted by one to sixteen groups selected from -OG₄, -SG₄, -COOG₄, -OCOG₄, -COG₄, -N(G₄)₂, -CON(G₄)₂, -NG₄COG₄ and 5- and 6-membered rings containing the -C(CH₃)(CH₂R_x)NL(CH₂R_x)(CH₃)C- group or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkycycloalkyl and cycloalkylalkyl groups are both interrupted and substituted by the groups mentioned above; and

wherein

G_4 is independently hydrogen or alkyl of 1 to 8 carbon atoms;

R_x is hydrogen or methyl;

L is a C₁₋₃₀ straight or branched chain alkyl moiety, a -C(O)R moiety wherein R is a C₁₋₃₀ straight or branched chain alkyl group, or a -OR moiety wherein R is a C₁₋₃₀ straight or branched chain alkyl group; and

wherein said aryl groups may be substituted by one to three halogen, alkyl of 1 to 8 carbon atoms, alkoxy of 1 to 8 carbon atoms or combinations thereof.

9. (original) A process according to claim **8** wherein wherein G₁ and G₂ are independently straight or branched chain alkyl groups of 6 to 22 carbon atoms and G₃ is a straight or branched chain alkyl of 1 to 22 carbon atoms.

10. (original) A process according to claim **8** in which G₃ is methyl.

11. (original) A process according to claim **8** wherein G₁ and G₂ are each independently a straight or branched chain alkyl of 12 to 22 carbon atoms and wherein G₃ is methyl.

12. (original) A process according to claim **8** wherein G₁, G₂ and G₃ are each independently a straight or branched chain alkyl of 12 to 22 carbon atoms.

13. (original) A process according to claim **8** wherein the amine oxide derivatives of component (ii) are selected from the group consisting of didecyl methyl amine oxide, tridecyl amine oxide, tridodecyl amine oxide and trihexadecyl amine oxide.

14. (original) A process according to claim **8** wherein at least one of G₁, G₂ and G₃ comprises at least one moiety of the group consisting of -O-, -S-, -SO-, -COO-, -CO- and -CONG₄₋.

15. (original) A process according to claim 1 wherein the amine oxide derivatives are poly(amine oxides).

16. (original) A process according to claim 15 wherein the poly(amine oxides) comprise at least one moiety of the group consisting of -O-, -S-, -SO-, -COO-, -CO- and -CONG₄-.

17. (original) A process according to claim 8 wherein one or more of G₁, G₂ and G₃ is substituted by one to sixteen groups of formulae (IV) and (V),

18. (original) A process according to claim 1 wherein the hindered amine stabilizers of component (c) contain at least one group of the formula (VI)

in which R_x is hydrogen or methyl.

19. (original) A process according to claim 18 wherein the hindered amine stabilizers are selected from the group consisting of formulae (H1), (H2), (H3), (H4), (H5), (H6), (H7), (H8), (H9), (H10), (H11), (H12), (H13), (H14), (H15), (H16) and (H17)

where $R' = R''$ or H

and where $R'' =$

(H17).

20. (original) A process according to claim 1, wherein the temperature reaches the range from about 200°C to 400°C.