

## Fall 2019, CSE6250 Project, Team 1

# **Building Deep Learning Models to Predict Mortality** in ICU Patients

Yuanfei Bi

## **Project Overview**



**Goal**: To identify adult patients death risk in the ICU based on the MIMIC-III (v1.4) data accumulated by the first 48 hours into the first ICU stay.





**Risks**: MIMIC-III (v1.4) datasets have lots of erroneous entries due to noise, missing values, outliers, duplicate and clerical mistakes etc. And feature selection and extraction is critical for project success.



**Payoffs**: The project will allow us to apply many aspects of the BD4H course and explore sophisticated deep learning techniques.



**Impacts**: This project shed light to empower deep learning models into health-related project.

## **Data Statistics**

#### MIMIC-III (v1.4)

| 46520      |
|------------|
| 38597      |
| 65.8 years |
| 11.5%      |
| 58976      |
| 61532      |
| 53423      |
| 53133      |
| 38418      |
| 4.17 days  |
| 4.14 days  |
| 4.07 days  |
|            |

<sup>&</sup>lt;sup>a</sup>Adults:  $\geq$  16 years old.

### **Features**

| Features                | ItemID | Item Name                            | Table       |
|-------------------------|--------|--------------------------------------|-------------|
| glasgow coma scale      | 723    | GCSVerbal                            | chartevents |
|                         | 454    | GCSMotor                             | chartevents |
|                         | 184    | GCSEyes                              | chartevents |
|                         | 223900 | Verbal Response                      | chartevents |
|                         | 223901 | Motor Response                       | chartevents |
|                         | 220739 | Eye Opening                          | chartevents |
| systolic blood pressure | 51     | Arterial BP [Systolic]               | chartevents |
|                         | 442    | Manual BP [Systolic]                 | chartevents |
|                         | 455    | NBP [Systolic]                       | chartevents |
|                         | 6701   | Arterial BP # 2 [Systolic]           | chartevents |
|                         | 220179 | Non Invasive Blood Pressure systolic | chartevents |
|                         | 220050 | Arterial Blood Pressure systolic     | chartevents |
| heart reate             | 211    | Heart Rate                           | chartevents |
|                         | 220045 | Heart Rate                           | chartevents |
| body temperature        | 678    | Temperature F                        | chartevents |
|                         | 223761 | Temperature Fahrenheit               | chartevents |
|                         | 676    | Temperature C                        | chartevents |
|                         | 223762 | Temperature Celsius                  | chartevents |
| pao2 / fio2             | 50821  | PO2                                  | labevents   |
|                         | 50816  | Oxygen                               | labevents   |
|                         | 223835 | Inspired O2 Fraction (FiO2)          | chartevents |
|                         | 3420   | FiO2                                 | chartevents |
|                         | 3422   | FiO2 (Meas)                          | chartevents |
|                         | 190    | FiO2 set                             | chartevents |

urine output, serum urea nitrogen level, white blood cells count, serum bicarbonate level, sodium level, potassium level, bilirubin level, age, immunodeficiency syndrome, hematologic malignancy, metastatic cancer, admission type.

## **Data Cleaning**



## **Models**



v.s. logistic regression

 $<sup>^</sup>b$ Long ICU stays: ≥ 4 hours.

## **Experiments Setup**

- Data statistics: PostgreSQL
- Feature selection and extraction: Spark
- LSTM ensemble model and logistic regression model: Python/Pytorch

## **Prediction Results**

| Model               | Precision | Recall | F1    | AUC   |
|---------------------|-----------|--------|-------|-------|
| RNN-LSTM model      | 0.620     | 0.711  | 0.662 | 0.600 |
| Logistic Regression | 0.610     | 0.650  | 0.620 | 0.560 |



#### **Conclusions & Discussion**

- The RNN-LSTM model consistently outperforms the baseline logistic regression model. Particularly, the AUC of the RNN-LSTM model is higher than logistic regression by 4%. Able to take advantage of sequential nature of time-series features.
- It is important to perform sequential analysis of clinical data. The RNN-LSTM model implemented in this work has only three layers which lacks capability to efficiently capture both sequential and non-sequential features.
- It is worthwhile to mention that identifying efficient features to predict ICU survival is not trivial. Some other data which are available from the MIMIC-III dataset, such as fluid balance and monitor data, have not been incorporated in this work.

#### **Future Work**

- More sophisticated data preprocessing steps and deep learning models will be conducted to capture the characteristics of the massive MIMIC-III datasets.
- More extensive ICU datasets will be employed to evaluate and improve the models.
- Aggregate additional features and quantifying their impact on prediction accuracy.