فرآيندهاي تصادفي

نيم سال اول ٢٠-٠٠ دكتر ربيعي

دانشكده مهندسي كامييوتر

دورهی احتمال و سیگنال و سیستم ها زمان تحويل: ٢٠ آبان ماه تمرين اول

- ۱. علی بیشتر وقت خود را صرف تایپ و ارسال ایمیل می کند. زمان ارسال ایمیلهای وی از توزیع پواسون با پارامتر λ_A در ساعت پیروی می کند. الف. احتمال اینکه وی در بازهی زمانی [1,2] دقیقاً ۳ ایمیل ارسال کند، چقدر است؟ ب. فرض كنيم Y_1,Y_2 زمان ارسال ايميل اول و دوم باشد.
 - را محاسه کنید. $E[Y_2|Y_1]$ مقدار (آ)
 - (ب) PDF مربوط به Y_1^2 را محاسبه کنید.
 - (ج) جا مربوط به توزیع تجمعی Y_1 و Y_2 را محاسبه کنید.
 - ج. شما در زمان ۱ مشاهده مي كنيد كه على دقيقاً يك ايميل تا الان تايب كردهاست.
 - (آ) امید ریاضی Y_2 به شرط اطلاعات بالا چقدر است.
 - (\cdot) امید ریاضی Y_1 به شرط اطلاعات بالا چقدر است.
- د. محمد در زمان ۱ به علی ملحق می شود و شروع به تایپ ایمیل می کند؛ زمان ارسال ایمیل های وی از توزیع پواسون با پارامتر λ_B در ساعت پیروی می کند.
 - جمع ارسالهای این دو نفر در بازهی زمانی [0,2] چقدر است? PMF (آ)
- (ب) امید ریاضی زمان کل تایپ توسط علی در زمانی که محمد به علی می پیوندد چقدر است (منظور از زمان کل، زمان قبل و بعد از آمدن
 - (7) با فرض اینکه در مجموع ۱۰ ایمیل در بازه [0,2] ارسال شده، احتمال اینکه ۴ ایمیل توسط علی فرستاده شده باشد، چقدر است؟
- ه. فرض کنیم $\lambda_A=4$ باشد، از نامساوی چبی شف استفاده کنید تا یک حد بالا برای احتمال اینکه علی حداقل ۵ ایمیل در بازه [0,1] ارسال كرده باشد، مشخص كنيد. آيا نامساوى ماركوف يك حد بهتر مشخص مي كند؟
- و. دلایلی داریم که نشان می دهد λ_A یک عدد بزرگ است. اگر N تعداد ایمیل های ارسال شده در بازه ی [0,1] باشد، ثابت کنید که چرا قضیه حد مرکزی قابل اعمال کردن به N می باشد و یک عبارت دقیق راجع به قضیه حد مرکزی در این مورد ارائه کنید.
 - ز. با فرض اینکه λ_A یک توزیع نمایی با پارامتر ۲ باشد، $E[N^2]$ را محاسبه کنید.
 - ۲. حاصل کانولوشن های زیر را محاسبه کنید. $x(t) = e^{-at}u(t); h(t) = e^{-bt}u(t) \ b \neq a$
 - $x(t) = e^{-at}u(t) \ a \neq 0; \ h(t) = u(t) .$
 - $x(t) = u(t); h(t) = u(t) . \tau$
- ۳. موارد زیر پاسخ ضربه مربوط به یک سیستم گسسته یا پیوسته LTI هستند. از بین آنها مشخص کنید کدام علّی و کدام پایدار stable هستند. دلیل خود را برای هر مورد مشخص کنید (به تفکیک علّی و پایدار)
 - $h[n] = \left(\frac{1}{5}\right)^n u[n]$ الف.
 - $h[n] = .8^n u[n+2]$... $h[n] = (\frac{1}{2})^n u[-n]$...

$$h[n] = 5^n u[3-n] \; ..$$

$$h(t) = e^{-4t} u(t-2) \; ..$$

$$h(t) = e^{-6t} u(3-t) \; ..$$

$$t(t) = e^{-2t} u(t+50) \; ..$$

۴. در هر یک از موارد زیر، خطی بودن، علّی بودن، تغییرناپذیری بازمان، پایدار بودن و بی حافظه بودن را با دلیل مشخص کنید.

$$y(t) = x(t-2) + x(2-t)$$
 الف.

$$y(t) = \cos(3t)x(t)$$
 . ب

$$y(t) = \int\limits_{-\infty}^{2t} x(t)dt$$
 .

$$y(t) = x(\frac{t}{3}) ...$$

$$y(t) = x(t-2) + x(2-t)$$

$$y(t) = \cos(3t)x(t) ...$$

$$y(t) = \int_{-\infty}^{2t} x(t)dt ...$$

$$y(t) = x(\frac{t}{3}) .s$$

$$y(t) = \begin{cases} x(t) + x(t-2), & \text{if } t \ge 0 \\ 0, & \text{otherwise} \end{cases}.$$

$$y(t) = \begin{cases} x(t) + x(t-2), & if \ x(t) \ge 0 \\ 0, & otherwise \end{cases}$$

. تابع اتوکوریلیشن $R_X(au)$ متناظر با هر یک از PSDهای زیر را مشخص کنید.

$$delta(\omega - \omega_0) + \delta(\omega + \omega_0)$$
. الف

$$e^{-\omega_0/2}$$
ب. ب $e^{-|\omega|}$ ج