Relatório Final de Projeto

Plácido Francisco de Assis Andrade placido.andrade@ufca.edu.br

Ikaro Ruan Penha Costa ikaroruan@outlook.com

Identificação de Projeto

Título

Análise Quantitativa de PPC's

Edital de Referência PIBIC Edital XXXXXX

Área do Conhecimento Predominante

Ciência da Computação

Resumo

É certo que as Diretrizes Curriculares Nacionais regem os conteúdos que constituem os PPC's das Instituições de Ensino Superior do Brasil. Sendo assim, não é viável uma análise da pertinência de conteúdos de um curso de ensino superior, mas é possível proceder-se com um estudo do quão extenso ou profundo é a estrutura de um PPC. Logo, dois índices são propostos, os quais quantificam a complexidade e a possível retenção de alunos provenientes dos pré-requisitos da matriz curricular de um curso. Ainda, alguns parâmetros para construção dos índices são calculados e podem ser usados para a análise quantitativa do PPC, os quais foram indicados como sub-índices. Foi desenvolvido um aplicativo computacional de distribuição gratuita intitulado AnálisePPC como suporte para realização de simulações e comparação de matrizes curriculares semelhantes. Portanto, este

projeto possibilitar tais índices com problemas acadêmicos enfrentados em diversos cursos, como evasão, abandono, repetência ou tracamento e simular possíveis simulações para diminuição da complexidade e retenção causada por pré-requisitos.

Palavras-chave: Estrutura curricular. Análise quantitativa. PPC. IES. AnálisePPC.

Introdução

No processo de criação de um Projeto Político de Curso (PPC) a atenção prioritária é posta nos conteúdos a serem integralizados, sendo os maiores parâmetros observados as Diretrizes Curriculares Nacionais estabelecidas pelo Conselho Nacional de Educação (CNE) do Ministério da Educação. Esta é uma postura natual e não cabe, assim, observar a conveniência dos conteúdos propostos, mas torna-se interessante a análise quantitativa de fatores como a extensão do curso, a profundidade e a quantidade de cominhos de pré-requisitos da estrutura curricular, as cargas horárias complementares e de estágio obrigatório.

Para tal análise são propostos parâmetros, sub-índices, para a construção do dois índices propostos neste trabalho: Índice de Retenção e Índice de Complexidade. Tomando-se um turno de um estudante com carga horária diária de oito horas, sendo quatro horas despendidas em aulas teóricas e práticas e outras quatro em estudo individual, pode-se compor o sub-índice dos Turnos Efetivos como a quantidade de turnos exigidos por semestre em um PPC. A ideia principal do sub-índice do Peso dos Pré-requisitos considera a extensão dos caminhos de pré-requisitos e se estes estão em semestres consecutivos, visto que quanto mais longo um caminho e mais concentrado em semestre consecutivos, maior é o seu peso visando a integralização do curso. Ainda, quantificando a recorrência de um pré-requisito e diferentes caminhos, pode-se formar os Pré-requisitos Acumulados. Ao se unir tais parâmetos, pode-se construir o Índice de Complexidade, o qual considera os três parâmetros anteriores, e o Índice de Retenção que contempla a disposição das disciplinas ao longo dos semestres.

Como ferramenta para o cálculo de tais índices foi desenvolvido um programa computacional intitulado AnálisePPC. O seu algoritmo interpreta o PPC como um Grafo Acíclico Direcionado (*DAG*, sigla em inglês), em que cada vértice é tido como uma disciplina e cada aresta indica a necessidade de integralizar uma disciplina para se poder cursar a disciplina subsequente. Dessa forma, pode-se percorrer o grafo em busca dos caminhos de pré-requisitos possíveis e, então, calcular os índices propostos.

Portanto, o programa AnálisePPC pode servir como uma útil ferramenta para os conselhos de cursos e de criação de PPC's das Instituições de Ensino Superior do Brasil. Possibilitando simulações por diversas alterações na estrutura curricular de curso de ensino superior, o AnálisePPC embasa as mudanças em complexidade e retenção do curso, afetando diretamente o discente, em decorrência da criação ou modificação de PPC's. Sendo assim, este projeto pode servir para busca de melhorias quanto aos problemas de evasão, repetência, abandono ou trancamento.

Justificativa

Os autores do trabalho não têm ciência quanto a análises semelhantes da estrutura curricular de um PPC ou quanto ao programa em trabalhos prévios. Logo, a sua execução justifica-se por possibilitar além da análise quantitativa como ferramenta para criação e modificação de PPC's, mas também pode-se atribuir uma linha de pesquisa relacionada à ensino-aprendizagem na educação superior brasileira.

Referencial Teórico

Como mencionado anteriormente, os autores não tem conhecimento de um trabalho anterior com análise semelhante de um PPC. Assim, os índices a serem apresentados a seguir foram propostos e refinados refinados pelos autores até a sua consolidação.

Por sua essencialidade na construção dos índices, os sub-índices Turnos Efe-

tivos, Peso dos Pré-requitos e Pré-requisitos Acumulados terão sua formulação matemática apresentada. Em seguida, os Índices de Complexidade e Retenção serão definidos.

Turnos Efetivos (\mathcal{T}_{ppc})

Toma-se por aluno padrão aquele referente a interpretação de um estudante como um profissinal engajado em numa carga horária de 8 horas por dia, sendo 4 horas despendidas em aulas teróricas e práticas e 4 horas de estudo individual. Considera-se, ainda, que o aluno padrão tem carga horária semestral de $T_0 = 320h$ de aulas teóricas e práticas distribuídas em 100 dias letivos.

Para a definição do Turno Efetivo serão utilizadas as gradezas apresentadas a seguir:

- 1. n: número de semestres propostos para integralização.
- 2. M_{ppc} : carga horária de integralização do PPC.
- 3. M_{ac} : carga horária de integralização das atividades complementares.
- 4. M_{est} : carga horária de estágio supervisionado.
- 5. s_i : semestre letivo i.
- 6. M_i : soma das cargas horárias das disciplinas alocadas no semestre s_i .

Definição 1. A quantidade de turno efetivo do semestre s_i de um PPC com uma proposta de n semestres de integralização é

$$\tau_i = 2\frac{M_i}{T_0} + \frac{\frac{M_{ac} + M_{est}}{n}}{T_0}$$

Definição 2. A quantidade de turnos efetivos do PPC com n semestres letivos de integralização é

$$\mathcal{T}_{ppc} = \sum_{i=1}^{n} au_i$$

Peso dos Pré-requisitos (\mathcal{P}_{ppc})

Inicialmente, deve-se conceituar um caminho de pré-requisitos. Dá-se à sequência $\alpha = \{(m_i, s_i)\}_{i=1}^k$ a designação de um caminho de pré-requisitos sendo m_i a carga horária e s_i o semestre proposto da disciplina d_i . Atenta-se, pois, que a disciplina (m_i, s_i) é um pré-requisito para (m_{i+1}, s_{i+1}) .

O julgamento da dificuldade de uma disciplina é um processo subjetivo, não cabendo aqui a sua utilização. Logo, não é justo afirmar que uma disciplina de maior carga horária é de maior complexidade. Por outro lado, é possível assumir que uma disciplina alocada em um semestre mais avançado terá maior peso no tempo integralização previsto, haja vista que a perda de tal disciplina por algum motivo acarreta em menor tempo para recuperação do atraso causado. Sendo assim, atribui-se o maior peso de um caminho α o valor do semestre s_k .

Ainda considerando o tempo necessário para recuperação do atraso causado pela perda de uma disciplina, considera-se que disciplinas consecutivas tenha o mesmo peso, pois a perda de uma delas resulta em uma reação em cadeia incrementando o valor dos seus semestres. Atribui-se, então, que todas as disciplinas consecutivas tem peso igual ao maior valor de semestre entre elas.

Isto significa que para duas disciplinas (m_i, s_i) e (m_j, s_j) presentes em um caminho α , se $s_i - s_j = i - j$ então as duas disciplinas terão peso equivalentes de valor igual a max $\{s_i, s_j\}$.

Seja $S_{\alpha} = s_1, s_2, \dots, s_k$ o conjunto constituído pelos semestres do caminho α . Define-se a relação de equivalência em S_{α} ,

$$s_i \equiv s_j$$
 se, e somente se, $s_i - s_j = i - j$.

Para a definição do Peso dos Pré-requisitos, toma-se $Q_{\alpha} = \{Q_{i_1}, Q_{i_2}, \dots, Q_{i_p}\}$ de modo que $i_1 < i_2 < \dots < i_p$ como o conjunto das classes de equivalências de \mathcal{S}_{α} e $s_{i_j} = \max Q_{i_j}$ para todo j tal que $1 \le j \le p$.

Com efeito, sendo $\#Q_{i_j}$ a cardinalidade do conjunto Q_{i_j} e $\log x$ o logaritmo na base 10, verifica-se

Definição 3. Seja α um caminho de pré-requisitos, o Peso dos Pré-requisitos das disciplinas do caminho α é

$$\mathcal{P}_{\alpha} = \sum_{j=1}^{p} (\#Q_{i_j} \log s_{i_j})$$

Pré-requisitos Acumulados (\mathcal{R}_{ppc})

Um mesmo pré-requisito pode aparecer diversas caminhos de pré-requisitos diferentes, em que isso é causado pelas bifurcações causadas por disciplinas que são pré-requisitos para mais de uma disciplina posterior. Isto indica que as disciplinas antes das bifurcações são essenciais para a integralização do curso no tempo proposto no PPC.

Procurando-se contabilizar a importância de tais disciplinas presentes em diversos caminhos, conta-se a quantidade de pré-requisitos em cada caminho do PPC. Sendo α um caminho de pré-requisitos, $||\alpha||$ é número de disciplinas do caminho. Seja Γ o conjunto de todos os caminhos do PPC, define-se:

Definição 4. O número de pré-requisitos presentes no caminho α , denotado por \mathcal{R}_{α} , é

$$\mathcal{R}_{\alpha} = ||\alpha|| - 1$$

Definição 5. O número de pré-requisitos acumulados presentes no PPC é

$$\mathcal{R}_{ppc} = \sum_{lpha \in \Gamma} \mathcal{R}_lpha$$

Índice de Complexidade (Δ_{ppc})

Pode-se considerar que a quantidade de horas requeridas de estudo por um curso de ensino superior, a composição das disciplinas e seus pré-requisitos, assim como a influência que exercem os pré-requisitos na integralização proposto na grade curricular são fatores que contribuem para maior ou menor complexidade de um PPC. Sendo assim, define-se:

Definição 6. O índice de complexidade de um PPC, denotado por Δ_{ppc} , é a soma de turnos efetivos, peso dos pré-requisitos e pré-requisitos acumulados, ou seja,

$$\Delta_{ppc} = \mathcal{T}_{ppc} + \mathcal{P}_{ppc} + \mathcal{R}_{ppc}$$

Índice de Retenção (γ_{ppc})

Cabe à administração do curso a programação semestral das disciplinas do curso, assim como a disposição de cada disciplina na grade de horário semanal. O Índice de Complexidade não considera questões como reprovação, oferta de disciplina e tempo de conclusão. Duas hipóteses sobre a administração do curso são feitas visando modelar tais questões.

- As disciplinas são ofertadas anualmente com semestralidades indicadas no PPC.
- 2. O aluno terá sucesso ao cursar pela segunda vez uma disciplina.

Suponha d uma disciplina a qual um aluno, por algum motivo, não realizou sua matrícula ou foi reprovado. Sendo as disciplinas do curso de oferta anual, d será deslocada dois semestres a frente. Ademais, considerando os caminhos de pré-requisitos β que contém d, todas as disciplinas a frente de d em β também

serão deslocadas em dois semestres. Logo, o caminho de pré-requisitos retificado seria na forma:

$$\beta_{ret}: (m_1, s_1 + 2) \to (m_2, s_2 + 2) \to \cdots \to (m_k, m_k + 2)$$

Seja $\Gamma(d)$ o conjunto constituído por os todos os sub-caminhos com início em d. Como definido anteriormente, \mathcal{S}_{β} e $\mathcal{S}_{\beta_{ret}}$ são os conjuntos dos semestres, assim como Q_{β} e $Q_{\beta_{ret}}$ as respectivas classes de equivalência. Observa-se que $Q_{\beta_{ret}}$ é obtido somando-se 2 a cada elemento de Q_{β} .

Definição 7. O Índice de Retenção de uma disciplina d em relação a um subcaminho $\beta \in \Gamma(d)$ é

$$\gamma_{\beta} = \sum_{j=1}^{p} (\#Q_{k_j} \log(s_{k_j} + 2))$$

Definição 8. O Índice de Retenção de uma disciplina é

$$\gamma_d = \sum_{\beta \in \Gamma(d)} \gamma_\beta$$

Definição 9. O Índice de Retenção de um PPC é

$$\gamma_{ppc} = \sum_{d} \gamma_{d}$$

onde o somatório percorre todas as disciplinas do PPC.

Objetivos

O objetivo geral consiste do desenvolvimento de um software para a análise quantitativa de PPC's. Especificamente, pode-se ressaltar:

- 1. Iniciar um estudante na construção de um aplicativo. (T)
- 2. Criar um aplicativo que seja útil aos gestores que lidam com o aspecto ensinoaprendizagem na UFCA. (T)

- 3. Fazer comparações entre PPC's dos cursos da UFCA com de outras instituições de ensino superior. (T)
- 4. Elaborar linhas de estudo sobre ensino-aprendizagem utilizando possíveis refinamentos da análise estabelecida inicialmente. (P)

Metodologia

Para armazenar o PPC e auxiliar o cálculo dos índices, foi utilizada uma estrutura de dados na forma de um Grafo. Seja G = (V, E) um conjunto, consistindo de um conjunto finito de vértices V e um conjunto finito de arestas E. Quando E é composto por pares ordenados (u, v) sendo u e $v \in V$ o grafo é chamado de directionado, logo $(u, v) \neq (v, u)$.

Define-se por caminho em um grafo G como uma sequência de vértices $\alpha = \{v_1, v_2, \dots, v_k\}$ tal que $(v_i, v_{i+1}) \in E$ para $i = 1, 2, \dots, k$. Essa definição assemelhase a de um caminho de pré-requisitos, sendo d_i a disciplina de um PPC vista como um vértice do grafo G. Com efeito, sejam d_1 e d_2 disciplinas de um PPC, o par ordernado (d_1, d_2) é uma aresta de E com $d_1, d_2 \in V$, significando que a disciplina d_1 é um pré-requisito para d_2 .

Ainda, os caminhos de um PPC são acíclicos, visto que disciplinas de semestres mais avançados não serão pré-requisitos para disciplinas de semestres anteriores. Ou seja, para qualquer caminho α de G com k vértices, este terá k-1 arestas, visto que sendo $d_i = (m_i, s_i)$ é pré-requisito para $d_j = (m_j, s_j)$, então $s_i > s_j$. Logo, o PPC toma a forma de Grafo Acíclico Direcionado (DAG, do inglês Directed Acyclic Graph).

A forma computacional para armazenamento do grafo é a de lista de adjacências. Um arranjo principal tem como elementos informações que apontam para uma lista encadeada, a qual cada nó compõe um vértice e vértices adjacentes compõem as arestas do grafo. A Figura 1 apresenta um esquema da lista de adjacências.

Figura 1: Esquema representativo de uma lista de adjacências.