DataCraft Trio

Debnath Kundu (MT22026), Pijush Bhuyan (MT22049), Snehal Buldeo (MT22074)

Data Description

- <u>Dataset URL UCI Repository</u>
 [detection_of_loT_botnet_attacks_N_BaloT]
- This public dataset contains real-time network traffic data recorded from nine commercial IOT devices that were infected with common botnet malware - BASHLITE and MIRAI to carry out ten types of network-based attacks.
- Types of IOT devices: Thermostat, Baby Monitor, Webcam, Doorbells, and Security Cameras.

Types of Attacks

1. BASHLITE MALWARE-MIRAI MALWARE -

- **Scan:** Scanning the network for vulnerable devices
- **Junk:** Sending spam data packets
- **UDP:** Flooding the network with UDP packets
- **TCP:** Flooding the network with TCP packets
- Combo: Sending spam data and opening a connection to a specified IP address and

2. MIRAI MALWARE -

- **Scan:** Automatic scanning for vulnerable devices
- Ack: Flooding the network with Ack packets
- **Syn:** Flooding the network with Syn packets
- **UDP:** Flooding the network with UDP packets
- **UDP Plain:** UDP flooding with fewer options, optimized for higher PPS

Plan of Action and Progress So Far

Hypothesis Formulations

1. Bashlite:

Scan attacks have similar packet flow across all devices

i.e.
$$\mu_1 = \mu_2 = \dots \mu_q$$
 [Don't Reject]

2. Mirai:

- a. Scan attacks have similar packet flow for **Danmini Doorbell** and **Philips Baby**Monitor i.e. $\mu_1 = \mu_2$ [Don't Reject]
- b. Scan attacks have similar packet flow for both the **Provision camera models** i.e. $\mu_1 = \mu_2$ [Don't Reject]
- Scan attacks have similar packet flow across the SimpleHome cameras and Ecobee thermostat devices

i.e.
$$\mu 1 = \mu 2 = \mu 3$$
 [Don't Reject]

Further Tasks

1. Unsupervised: IOT Network Stream Anomaly Detection

2. Supervised: IOT Malware Attack Classification

Unsupervised Anomaly Detection in IOT Network Streams

- Autoencoders to learn & regenerate benign traffic with minimal error
- AE will not be able to regenerate malignant traffic with same error threshold. If error > threshold, flag as malignant.
- Benign and malignant traffic are well separated in the AE embedding feature space as shown in the t-SNE plot. [Rest also, separable]

Unsupervised Anomaly Detection in IOT Network Streams (Contd)

 Accuracy of AE trained on <u>Danmini Doorbell</u> for benign traffic and evaluated on mirai attacks. [Similarly, for others]

traffic type : Mirai-scan
Detected anomalies: 100.0%

traffic type : Mirai-ack
Detected anomalies: 100.0%

traffic type : Mirai-syn
Detected anomalies: 100.0%

traffic type : Mirai-udp
Detected anomalies: 100.0%

traffic type : Mirai-udp-plain
Detected anomalies: 100.0%

Classical ML Approach (SVMs)

- Device used : Danmini Doorbell
- Classes: 6 i.e. 1 Benign + 5 types of mirai attacks
- Explored linear, polynomial and RBF kernels
- Used AE for feature extraction and dimensionality reduction (115 to 28 features)

Kernel Type	Linear	Polynomial	RBF
Accuracy	0.51	0.43	0.56
Precision	0.51	0.49	0.47
Recall	0.52	0.44	0.57

Multi-Class Classification of Attacks

Classes

• Benign:: 1, Bashlitte attack:: 4, Mirai Attack:: 5

To study

- 1. Models trained to detect botnet attacks on various brands of **security cameras** are equally effective in detecting anomalies in **webcams**.
- 2. Models trained to detect botnet attacks on various brands of **security cameras** are not effective in detecting anomalies in other devices.

Training of Artificial Neural Network (ANN)

Device: Provision_PT_737E_Security_Camera

Test and Results on the same device

- Number of classes : 10
- 1 Benign and 9 malicious classes
- Device : Provision_PT_737E_Security_Camera

Accuracy: 82.61 %

Test and Results on different device (same brand)

Device: Provision_PT_838_Security_Camera

Accuracy : 65.53 %

Test and Results on different device

Device: **Ecobee_Thermostat**

Accuracy: 44.39%

Inference & Future Scope

- If we want to just <u>detect an anomaly</u> in the device, then unsupervised **AutoEncoder** based techniques perform well enough!
- However, if we need <u>multi-class classification</u> of each type of attack, then **ANNs** are more effective compared to classical ML models.
- Future Scope involves exploring sequential models (RNNs, LSTMs, etc.) for multi-class classification.

Thank You

