Bases de Datos I Unidad VI

Lenguajes de consulta en el modelo relacional y el álgebra relacional

¿Qué es una consulta?

 Una consulta intenta responder una pregunta sobre un hecho en particular, que puede o no existir en la base de datos.

 Por ejemplo, en una base de datos que contiene datos acerca de automotores:

- ¿Cuales son los automotores de marca Ford, que se dieron de alta en el año 2014?

Preguntas y respuestas

¿Cómo preguntamos?

- De igual forma que para darle instrucciones a una computadora, codificamos en un lenguaje de programación.
- Para realizar una consulta a nuestra base de datos, debemos codificarla en un lenguaje de consulta.

¿Cómo se nos responde?

 El resultado de ejecutar una consulta en una base de datos relacional es, ni más ni menos, que una relación.

Lenguajes de consulta

 Dentro del modelo relacional existen varios lenguajes de consulta.

Podemos categorizarlos utilizando distintos criterios:

- Por la forma en que operan
- Por su naturaleza

Por la forma en que operan

- Procedimentales o procedurales
 - Requieren que se detalle la forma en que se debe obtener la respuesta (Cómo).
 - Por ejemplo, el álgebra relacional.
- No procedimentales o no procedurales
 - Se debe indicar que se busca, pero no como hacerlo (Qué).
 Por ejemplo, el cálculo relacional, tanto de tuplas como de dominios.

Por su naturaleza

Formales o puros

 Son lenguajes teóricos, basados en fundamentos matemáticos, raramente utilizados en sistemas para realizar consultas en SGBDs.
 Por ejemplo, el álgebra y el cálculo relacional.

De implementación

Son lenguajes utilizados para realizar consultas en SGBD.
 Generalmente están basados en lenguajes formales, pero ofrecen extensiones para brindar mayor simplicidad o potencia.
 Por ejemplo, SQL.

¿Que vamos a hacer nosotros?

- En la primera parte de los lenguajes de consulta, vamos a ver los lenguajes formales del modelo relacional.
 - Vamos a ver y practicar con álgebra relacional.
 - Vamos a mencionar el cálculo relacional.
- En la segunda parte, vamos a trabajar con bases de datos reales.
 - Vamos a trabajar con el lenguaje de manipulación y consulta más utilizado: SQL.

Compatibilidad

 Es posible redefinir cualquier consulta expresada mediante álgebra relacional con cálculos relaciones de tuplas o dominios.

 Además, cualquier expresión segura de estos cálculos puede expresarse también mediante álgebra relacional.

Nos ayuda a abstraernos del SGBD relacional.

¿Qué es el Álgebra Relacional?

 Es un conjunto de operaciones que describen paso a paso (procedimental) la forma de transformar una serie de relaciones en otras, para así obtener la respuesta de una consulta.

 Cada operación de álgebra relacional toma una serie de relaciones de entrada y genera una relación de salida.

¿Cómo funciona el Álgebra Relacional?

- Estamos acostumbrados en aritmética a operar con números.
- Existe un conjunto de operadores u operaciones, que podemos combinar y formar expresiones.
- Cada operador u operación aplicada sobre uno o más números, da como resultados un número.
 - 1) 5 + (10 * 2) 12 =
 - 2) 5 + 20 12 =
 - 3) 25 12 =
 - 4) 13
- En álgebra, hemos trabajado de igual forma con vectores y matrices.

¿Cómo funciona el Álgebra Relacional?

- El álgebra relacional es similar.
- Existe un conjunto de operadores u operaciones, unarias y binarias.
- Operan sobre relaciones (conjuntos de tuplas).
- El resultado de aplicar un operador u operación, es una relación.
- Pueden combinarse para formar expresiones y utilizar ().

Operaciones básicas

- Operaciones unarias:
 - Proyección (π)
 - Selección (σ)
 - Renombramiento (ρ)
- Operaciones binarias:
 - Producto cartesiano (x)
 - Unión (∪)
 - Diferencia (-)

Proyección π (pi)

• Sea R(a₁, a₂, ... a_n) una relación de grado n.

- Definida como: $\pi_{a1,a2,...an}(R)$
- La proyección π $a_1, a_2, ... a_k(R)$, produce como resultado una relación de grado k, a partir de la relación R, eliminando los atributos no proyectados.

Si el resultado contiene tuplas duplicadas, estas se suprimen.

Proyección π (pi): Ejemplo

VEHÍCULO			
marca	modelo	color	
Ford	Ka	verde	
Toyota	Corolla XL	blanco	
Fiat	Siena	gris	
Toyota	Corolla XL	blanco	
Ford	Ka	rojo	
	marca Ford Toyota Fiat Toyota	marcamodeloFordKaToyotaCorolla XLFiatSienaToyotaCorolla XL	

π patente, marca (VEHÍCULO)

VEHÍCULO		
patente	marca	
MBO34L	Ford	
LDA75K	Toyota	
ADA89A	Fiat	
LBF78G	Toyota	
XSA67D	Ford	

π marca, modelo, color (VEHÍCULO)

VEHÍCULO			
marca	modelo	color	
Ford	Ka	verde	
Toyota	Corolla XL	blanco	
Fiat	Siena	gris	
Toyota	Corolla XL	blanco	
Ford	Ka	rojo	

Selección σ (sigma)

Sea R(a₁, a₂, ... a_n) una relación de grado n.

• Definida como:
$$\sigma_p(R) = \{t/t \in R \land p(t)\}$$

- La selección σ predicado(R), produce como resultado una relación de grado n, con las tuplas de R que cumplen con el predicado.
- El predicado es una expresión lógica que puede contener los operadores =, <, >, \neq , \leq , \geq , \neg , \uparrow , \lor .

Selección o (sigma): Ejemplo

Dada la relación

```
persona(apellido, nombre)
```

Y su extensión

```
{(perez, jorge),(perez, nadia),
  (martinez, maria), (martinez, alberto)}
```

Un ejemplo de proyección:

```
σ apellido='perez'(persona)
El resultado es {(perez, jorge),(perez, nadia)}
```

Selección σ (sigma): Ejemplo

VEHÍCULO		
marca modelo color		color
Ford	Ka	verde
Toyota	Corolla XL	blanco
Fiat	Siena	gris
Toyota	Corolla XL	blanco
Ford	Ka	rojo

 $\sigma_{\text{ marca='Ford'}} \text{ VEHÍCULO}$

VEHÍCULO		
marca	modelo	color
Ford	Ka	verde
Ford	Ka	rojo

VEHÍCULO		
marca	modelo	color
Ford	Ka	verde
Toyota	Corolla XL	blanco
Fiat	Siena	gris
Toyota	Corolla XL	blanco
Ford	Ka	rojo

 $\sigma_{\text{ marca='Ford'} \, \smallfrown \, \text{color='rojo'}} \, \, VEHÍCULO$

VEHÍCULO		
marca	modelo	color
Ford	Ka	rojo

Componiendo expresiones

 La idea es ir componiendo operaciones a los resultados previos, formando expresiones, que respondan la pregunta planteada.

 La evaluación es de derecha a izquierda, pudiendo agrupar con paréntesis.

Ejemplo: obtener el nombre de la personas de apellido 'Perez':

 Π nombre(σ apellido='Perez'(PERSONA))

Ejemplo: esquema

- cliente(<u>dni</u>, nombre, calle, ciudad)
- sucursal(<u>nombre</u>, ciudad)
- cuenta(<u>numero</u>, <u>sucursal</u>, saldo)
- prestamo(<u>numero</u>, <u>sucursal</u>, monto)
- cliente-cuenta(<u>cliente</u>, <u>cuenta</u>)
- cliente-prestamo(<u>cliente, prestamo</u>)

Ejemplo: consultas

Obtener todos los préstamos de más de \$120.000:

 Obtener el número de préstamo, para todos los préstamos de un monto superior a \$150.000:

Ejemplo: consultas

Obtener todos los préstamos de más de \$120.000:

```
\sigma monto > 120000(prestamo)
```

 Obtener el número de préstamo, para todos los préstamos de un monto superior a \$150.000:

```
\Pi numero (\sigma monto > 150000 (prestamo))
```

Renombramiento ρ (rho)

 El operador de renombramiento, puede utilizarse para renombrar dos elementos:

Renombramiento de relaciones

Renombramiento de atributos

Renombramiento ρ (rho) de relaciones

Sea R(a₁, a₂, ... a_n) una relación de grado n.

- Definida como:
$$ho_{\scriptscriptstyle X}(R)$$

• Para renombrar la relación R se utiliza ρ nuevo (R), lo que produce como resultado una relación como R (tanto en su esquema como en su contenido) pero de nombre "nuevo".

Renombramiento ρ (rho) de atributos

Sea R(a₁, a₂, ... a_n) una relación de grado n.

• Definida como:
$$\rho_{x1\leftarrow a1,x2\leftarrow a2,...xn\leftarrow an}(R)$$

Para renombrar atributos de la relación R se utiliza ρ n₁←a₁
 (R), lo que produce como resultado una relación como R
 (tanto en su esquema como en su contenido) pero con el atributo a₁ renombrado a n₁.

Ejemplo: Renombramiento ρ (rho)

Dada la relación

```
persona(apellido, nombre)
```

Renombrando la relación

```
ρ empleado(persona)
```

El resultado es empleado(apellido, nombre)

Renombrando atributos:

```
ρ gracia←nombre(persona)
```

El resultado es persona(apellido, gracia)

Producto cartesiano ×

 Sea R(a₁, a₂, ... a_n) una relación de grado n, y Q(b₁, b₂, ... bm) una relación de rado m.

• Definido como: $R \times Q = \{ts/t \in R \land s \in Q\}$

• El producto cartesiano $R \times Q$, es una relación de grado n+m formada por todas las posibles tuplas en las que los m primeros elementos surgen de una tupla de R y los n últimos de una tupla de Q.

Ejemplo: Producto cartesiano ×

Dada las relaciones

```
persona(documento)
mascota(nombre)
```

Y sus extensiones

```
persona = {(27024277), (25743553)}
mascota = {(bobi), (mancha)}
```

- persona × mascota:
 - El esquema resultante resultado(documento, nombre)
 - Y el contenido {(27024277, bobi), (27024277, mancha), (25743553, bobi), (25743553, mancha)}

Ejemplo: Producto cartesiano ×

R		
patente	marca	
ADA89A	Fiat	
LBF78G	Toyota	
XSA67D	Ford	

Q		
marca	modelo	color
Fiat	Siena	gris
Toyota	Corolla XL	blanco
Ford	Ka	rojo

VEHÍCULO				
patente	marcaR	marcaQ	modelo	color
ADA89A	Fiat	Fiat	Siena	gris
ADA89A	Fiat	Toyota	Corolla XL	blanco
ADA89A	Fiat	Ford	Ka	rojo
LBF78G	Toyota	Fiat	Siena	gris
LBF78G	Toyota	Toyota	Corolla XL	blanco
LBF78G	Toyota	Ford	Ka	rojo
XSA67D	Ford	Fiat	Siena	gris
XSA67D	Ford	Toyota	Corolla XL	blanco
XSA67D	Ford	Ford	Ka	rojo

Utilidad del producto cartesiano ×

- El operador productor cartesiano (X), en combinación con el operador de selección (σ) nos permite realizar reuniones de relaciones.
- Las reuniones nos permiten combinar la extensión de dos relaciones de forma lateral.
- Es principalmente utilizada para combinar una relación con una clave foránea, y la relación a la que referencia.

Ejemplo: uso del producto cartesiano para reunión

Dada las relaciones

```
persona(documento, nombre) mascota(apodo, dueño)
```

Y sus extensiones

```
persona = {(1, pepe), (2, pedro), (3, maria)}
mascota = {(bobi, 1), (laica, 2)}
```

σ documento=dueño(persona × mascota):

```
Y el resultado {(1, pepe, bobi, 1), (2, pedro, laica, 2)}
```

Ejercicios

 Obtener el nombre de los clientes que viven en la misma ciudad que Gómez:

 Obtener el dni de los clientes que tienen una cuenta en alguna sucursal de la ciudad de Río Grande:

Ejercicios

 Obtener el nombre de los clientes que viven en la misma ciudad que Gómez:

```
\Pi cliente.nombre(\sigma cliente.ciudad = DireccionGomez.ciudad(cliente x \rho DireccionGomez (\Pi ciudad(\sigma nombre = 'Gomez'(cliente)))))
```

Obtener el dni de los clientes que tienen una cuenta en alguna sucursal de la ciudad de Río Grande:

```
\Pi cliente(\sigma cliente-cuenta.cuenta = R2.numero(cliente-cuenta x \rho R2((\Pi numero(\sigma cuenta.sucursal = R1.nombre(cuenta x \rho R1((\Pi nombre (\sigma nombre = 'Río Grande'(sucursal)))))))
```

Unión ∪

Sea R(a₁, a₂, ... a_n) una relación de grado n, y Q(b₁, b₂, ... b_n) una relación de grado n.

· Definida como: $R \cup Q = \{t/t \in R \lor t \in Q\}$

La unión de R ∪ Q, es una relación con las tuplas de R y las tuplas de Q.

- Para que la unión sea posible las relaciones deben ser compatibles.
- Se debe tener en cuenta que si el resultado de la unión contiene tuplas duplicadas, estas se suprimen.

Ejemplo: Unión ∪

Dada las relaciones

```
persona(apellido, nombre)
empleado(apellido, nombre)
```

Y sus extensiones

```
persona = {(perez, jorge), (perez, nadia)}
empleado = {(martinez, maria), (perez, nadia)}
```

persona ∪ empleado:

```
El resultado es {(perez, jorge), (perez, nadia), (martinez, maria)}
```

Ejemplo: Unión ∪

EMPLEADO		
CÉDULA NOMBRE		
9.644.667	Pedro Pérez	
10.133.212	Gabriel Mendoza	
11.332.334	Luís Colina	
12.562.884	Andrés Rojas	
20.126.112	Gilberto Zapata	

PERSONA		
CÉDULA NOMBRE		
8.347.223	Héctor Redondo	
9.644.667	Pedro Pérez	
10.133.212	Gabriel Mendoza	
11.332.334	Luís Colina	
12.123.231	Diego Dávila	

CÉDULA	NOMBRE
8.347.223	Héctor Redondo
9.644.667	Pedro Pérez
10.133.212	Gabriel Mendoza
11.332.334	Luís Colina
12.123.231	Diego Dávila
12.562.884	Andrés Rojas
20.126.112	Gilberto Zapata

Diferencia -

• Sea R(a₁, a₂, ... a_n) una relación de grado n, y Q(b₁, b₂, ... b_n) una relación de grado n.

• Definida como: $R-Q=\{t/t\in R \land t\notin Q\}$

 La diferencia de R - Q, es el conjunto de tuplas de R que no pertenecen a Q.

Para que la diferencia sea posible las relaciones deben ser compatibles.

Ejemplo: Diferencia -

Dada las relaciones

```
persona(apellido, nombre)
empleado(apellido, nombre)
```

Y sus extensiones

```
persona = {(perez, jorge), (perez, nadia)}
empleado = {(martinez, maria), (perez, nadia)}
```

persona - empleado:

El resultado es {(perez, jorge)}

Ejercicios

 Mostrar el dni de los clientes que tienen, una cuenta, un préstamo o ambos productos bancarios:

 Obtener el dni de los clientes que no tienen préstamo en ninguna sucursal del Banco:

Solución

 Mostrar el dni de los clientes que tienen, una cuenta, un préstamo o ambos productos bancarios:

 Π cliente(cliente-prestamo) $\cup \Pi$ cliente(cliente-cuenta)

 Obtener el dni de los clientes que no tienen préstamo en ninguna sucursal del Banco:

 Π dni(cliente) - Π cliente(cliente-prestamo)

Operaciones adicionales

 Estos operadores no añaden ninguna funcionalidad nueva al álgebra relacional, pero facilitan la construcción de consultas (pueden ser construidos combinando los operadores básicos):

- Asignación (=, ←)
- Intersección (∩)
- División (/)
- Reunión natural (⋈)
- Reunión externa (⋈, ⋈, ⋈)

Asignación =, ←

Sea R(a₁, a₂, ... a_n) una relación de grado n.

- · Definida como: $R \leftarrow Q \lor R = Q$
- La operación de asignación A ← R, produce como resultado una relación como R (tanto en su esquema como en su contenido) pero con el nombre A.
- Es utilizada para almacenar los resultados temporales de los cálculos en relaciones nombradas.

Ejemplo: Asignación =, ←

 Se utiliza principalmente para descomponer una consulta compleja, en varias pequeñas.

```
\Pi saldo(cuenta) – \Pi cuenta.saldo(\sigma cuenta.saldo < d.saldo (cuenta x \rho d (cuenta)))
```

Obtener el valor del mayor saldo entre las cuentas del banco:

```
d ← cuenta

r1 ← \sigma cuenta.saldo < d.saldo (cuenta \mathbf{x} d)

\Pi saldo(cuenta) – \Pi saldo(r1)
```

Intersección ∩

 Sea R(a₁, a₂, ... a_n) una relación de grado n, y Q(b₁, b₂, ... b_n) una relación de grado n.

- · Definida como: $R\cap Q = \{t/t \in R \land t \in Q\}$
- La intersección de R \cap Q, es una relación con las tuplas que pertenecen tanto a R como a Q.
- Para que la intersección sea posible las relaciones deben ser compatibles.
- Se debe tener en cuenta que si el resultado de la intersección contiene tuplas duplicadas, estas se suprimen.

Ejemplo: Intersección ∩

Dada las relaciones

```
persona(apellido, nombre)
empleado(apellido, nombre)
```

Y sus extensiones

```
persona = {(perez, jorge), (perez, nadia)}
empleado = {(martinez, maria), (perez, nadia)}
```

persona ∩ empleado:

```
El resultado es {(perez, nadia)}
```

Ejemplo: Intersección ∩

EMPLEADO			
CÉDULA NOMBRE			
9.644.667	Pedro Pérez		
10.133.212	Gabriel Mendoza		
11.332.334	Luís Colina		
12.562.884	Andrés Rojas		
20.126.112	Gilberto Zapata		

PERSONA			
CÉDULA NOMBRE			
8.347.223	Héctor Redondo		
9.644.667	Pedro Pérez		
10.133.212	Gabriel Mendoza		
11.332.334	Luís Colina		
12.123.231	Diego Dávila		

CÉDULA	NOMBRE		
9.644.667	Pedro Pérez		
10.133.212	Gabriel Mendoza		
11.332.334	Luís Colina		

División /

- Dadas dos relaciones R(x, y) y S(y) donde el dominio de y en R y S, es el mismo.
- Definida como: $R \div S = \{t/t \in \pi_{R'-S'}(R) \land \forall u \in S, tu \in R\}$

- El operador división R / S retorna todos los distintos valores de x tales que para todo valor "y" en S existe una tupla (x,y) en R.
- Esta operación se utiliza para encontrar la respuesta de consultas que incluyen la frase "para todos".

Ejemplo: División /

Dada las relaciones

```
alumno(nombre, materia)
materia(materia)
```

- Y sus extensiones
 - alumno = {(jorge,BDI),(jorge,BDII),(nadia,BDI)}
 materia = {(BDI), (BDII)}
- alumno / materia:

```
El resultado es {(jorge)}
```

Ejemplo: División /

R			
DNI POYECTO			
12.345.678	PROY1		
12.345.678	PROY2		
66.688.444	PROY3		
45.345.345	PROY1		
45.345.345	PROY2		
33.444.555	PROY2		
33.444.555	PROY3		
33.444.555	PROY10		
33.444.555	PROY20		

S	
PROYECTO	
PROY1	
PROY2	

DNI12.345.678
45.345.345

Reunión natural M

- Sea A y B relaciones con esquemas A' y B' respectivamente, entonces, A ⋈ B devuelve una relación con esquema A' ∪ B' teniendo en cuenta que:
 - Dado cada par de tuplas t_a de A y t_b de B.
 - Si t_a y t_b tienen los mismos valores en cada atributo de A' \cap B', se añade la tupla t como resultado, donde:
 - t tiene los mismos valores que t_a en A
 - t tiene los mismos valores que t_b en B

Reunión natural M

• En términos de los operadores del álgebra relacional el producto natural se define como:

$$R|X|Q=\pi_{a_1,a_2,...a_n}(\sigma_{\theta}(R\times S))$$

- Las columnas por la que se hace la reunión de ambas tablas deben tener el mismo nombre y ser del mismo tipo.
- Si no hay atributos en común entre las relaciones, la reunión natural es igual a un producto cartesiano.

Ejemplo: Reunión natural 🖂

Dada las relaciones

```
persona(documento, nombre)
mascota(apodo, documento)
```

Y sus extensiones

```
persona = {(1, jorge), (2, nadia), (3, pepe)}
mascota = {(boby, 1), (toy, 2), (laica, nulo)}
```

- persona ⋈ mascota:
 - El resultado es {(1, jorge, boby), (2, nadia, toy)}

Ejemplo: Reunión natural 🖂

MARCA				
CodigoMarca NombreMarca				
T1 —	τογοια			
F1	Ford			
F2	Fial			

VEHÍCULO				
Patente CodigoMarca Modelo Color				
MINOUZI	T1	Corolla	Blanco	
KLP654	11	Etios	Rojo	
DSR159	F1	Ka	Azul	
EEP 108	F2	Siena	Gris	

Patente	CodigoMarca	NombreMarca	Modelo	Color
MNJ321	T1	Toyota	Corolla	Blanco
KLP654	T1	Toyota	Etios	Rojo
DSR159	F1	Ford	Ka	Azul
EER133	F2	Fiat	Siena	Gris

Ejemplo: Reunión natural 🖂

PROFESOR			
DNI	DPTO		
6.274.445	José Méndez	1	
7.422.114	Juan Zapata	1	
8.347.223	Héctor Redondo	2	
9.644.667	Pedro Pérez	2	
11.332.334	Luís Colina		
12.123.231	Diego Dávila	3	

DEPARTAMENTO			
CÓDIGO NOMBRE_D DNI			
1	Computación	6.241.445	
2	Investigación		
3	Control	12.123.231	

PROFESOR				
DNI NOMBRE DPTO CÓDIGO NOMBRE_D				NOMBRE_D
6.274.445	José Méndez	1	1	Computación
12.123.231	Diego Dávila	3	3	Control

Reunión condicional Me

 Una reunión theta (θ-Join) o producto condicional o producto con condición de dos relaciones es equivalente a:

$$R \bowtie_{\Theta} S = \sigma_{\Theta} (R \times S)$$

 Donde la condición Θ es libre. Y si Θ es una igualdad sedenomina EquiJoin.

Ejemplo: Reunión condicional 🖂 🖯

Dada las relaciones

```
docentes(documento, nombre, apellido, localidad) ciudades(codigo_postal, nombre)
```

Y sus extensiones

```
docentes = {(11222333, Sandra, Guzmán, 9410),
(22333444, Roberto, Bustos, 9420)}
ciudades = {(9410, Ushuaia), (9420, Río Grande)}
```

- docentes ⋈o ciudades:
 - El resultado es {(11222333, Sandra, Guzmán, 9410, Ushuaia),
 (22333444, Roberto, Bustos, 9420, Río Grande)}

Ejemplo: Reunión condicional ⋈_e

PROFESOR				
DNI	DNI NOMBRE			
6.274.445	José Méndez	1		
7.422.114	Juan Zapata	1		
8.347.223	Héctor Redondo	2		
9.644.667	Pedro Pérez	2		
11.332.334	Luís Colina			
12.123.231	Diego Dávila	3		

DEPARTAMENTO				
CÓDIGO NOMBRE_D DNI				
1	1 Computación			
2	2 Investigación			
3	3 Control			

M PRFESOR.DPTO = DEPARTAMENTO.CODIGO

PROFESOR				
DNI	NOMBRE_D			
6.274.445	José Méndez	1	Computación	
7.422.114	Juan Zapata	1	Computación	
8.347.223	Héctor Redondo	2	Investigación	
9.644.667	Pedro Pérez	2	Investigación	
12.123.231	Diego Dávila	3	Control	

Reunión externa

- La reunión externa es una forma ampliada de la reunión natural que evita la pérdida de información. Esta operación muestra en la relación resultado las tuplas de una relación que no tienen contraparte en la otra con el valor nulo en los demás atributos. Existe tres formas de realizar reunión externa:
 - Reunión externa izquierda (⋈)
 - Reunión externa derecha (⋈)
 - Reunión externa completa (⋈)

Reunión externa izquierda ⋈

- La reunión externa izquierda, es una forma ampliada de la reunión natural.
- Las tuplas de la relación del lado izquierdo, forman parte del conjunto resultado, por más que no estén vinculadas con ninguna tupla del lado derecho.
- Los atributos del lado derecho se completan con valores nulos.

Ejemplo: Reunión externa izquierda ⋈

Dada las relaciones

```
persona(documento, nombre)
mascota(apodo,documento)
```

Y sus extensiones

```
persona = {(1, jorge), (2, nadia), (3, pepe)}
mascota = {(boby, 1), (toy, 2), (laica, nulo)}
```

- persona ⋈ mascota:
 - El resultado es {(1, jorge, boby), (2, nadia, toy), (3, pepe, nulo)}

Ejemplo: Reunión externa izquierda ⋈

PROFESOR				
DNI	CÓDIGO_DPTO			
6.274.445	José Méndez	1		
7.422.114	Juan Zapata	1		
8.347.223	Héctor Redondo	2		
9.644.667	Pedro Pérez	2		
11.332.334	Luís Colina	NULO		
12.123.231	Diego Dávila	3		

DEPARTAMENTO				
CÓDIGO NOMBRE_D DNI				
1	Computación	6.241.445		
2	Investigación	NULO		
3	Control	12.123.231		

		PROFESOR			
DNI	NOMBRE	CÓDIGO_DPTO	CÓDIGO	NOMBRE_D	DNI
6.274.445	José Méndez	1	1	Computación	6.274.445
7.422.114	Juan Zapata	1	NULO	NULO	NULO
8.347.223	Héctor Redondo	2	NULO	NULO	NULO
9.644.667	Pedro Pérez	2	NULO	NULO	NULO
11.332.334	Luís Colina		NULO	NULO	NULO
12.123.231	Diego Dávila	3	3	Control	12.123.231

Reunión externa derecha ⋈

- La reunión externa derecha, es una forma ampliada de la reunión natural.
- Las tuplas de la relación del lado derecho, forman parte del conjunto resultado, por más que no estén vinculadas con ninguna tupla del lado izquierdo.
- Los atributos del lado izquierdo se completan con valores nulos.

Ejemplo: Reunión externa derecha ⋈

Dada las relaciones

```
persona(documento, nombre) mascota(apodo,documento)
```

Y sus extensiones

```
persona = {(1, jorge), (2, nadia), (3, pepe)}
mascota = {(boby, 1), (toy, 2), (laica, nulo)}
```

- persona ⋈ mascota:
 - El resultado es {(1, jorge, boby), (2, nadia, toy), (nulo, nulo, laica)}

Ejemplo: Reunión externa derecha ⋈

PROFESOR				
DNI	CÓDIGO_DPTO			
6.274.445	José Méndez	1		
7.422.114	Juan Zapata	1		
8.347.223	Héctor Redondo	2		
9.644.667	Pedro Pérez	2		
11.332.334	Luís Colina	NULO		
12.123.231	Diego Dávila	3		

DEPARTAMENTO				
CÓDIGO NOMBRE_D DNI				
1	Computación	6.241.445		
2	Investigación	NULO		
3	Control	12.123.231		

PROFESOR					
DNI NOMBRE CÓDIGO_DPTO CÓDIGO NOMBRE_D					
6.274.445	José Méndez	1	1	Computación	6.274.445
NULO	NULO	NULO	NULO	Investigación	NULO
12.123.231	Diego Dávila	3	3	Control	12.123.231

Reunión externa completa ∞

- La reunión externa completa, es una forma ampliada de la reunión natural.
- Las tuplas de ambas relaciones, forman parte del conjunto resultado, por más que no estén vinculadas con ninguna tupla de la otra relación.
- Los atributos de aquellas tuplas que no estén vincuadas, se completan con valores nulos.

Ejemplo: Reunión externa derecha ⋈

Dada las relaciones

```
persona(documento, nombre) mascota(apodo,documento)
```

Y sus extensiones

```
persona = {(1, jorge), (2, nadia), (3, pepe)}
mascota = {(boby, 1), (toy, 2), (laica, nulo)}
```

- persona ⋈ mascota:
 - El resultado es {(1, jorge, boby), (2, nadia, toy),
 (3, pepe, nulo), (nulo, nulo, laica)}

Ejemplo: Reunión externa derecha ⋈

DEPARTAMENTO					
CÓDIGO NOMBRE_D DNI					
1	Computación	6.241.445			
2	Investigación	NULO			
3	Control	12.123.231			

DNI	CÓDIGO_DPTO	
6.274.445	José Méndez	1
7.422.114	Juan Zapata	1
8.347.223	Héctor Redondo	2
9.644.667	Pedro Pérez	2
11.332.334	Luís Colina	NULO
12.123.231	Diego Dávila	3

					-
			PROFESOR		
CÓDIGO	NOMBRE_D	DNI	DNI	NOMBRE	CÓDIGO_DPTO
1	Computación	6.274.445	6.274.445	José Méndez	1
NULO	NULO	NULO	7.422.114	Juan Zapata	1
NULO	NULO	NULO	8.347.223	Héctor Redondo	2
NULO	NULO	NULO	9.644.667	Pedro Pérez	2
NULO	NULO	NULO	11.332.334	Luís Colina	
2	Investigación	NULO	NULO	NULO	NULO
3	Control	12.123.231	12.123.231	Diego Dávila	3

Ejemplo: Esquema

 Utilizaremos el siguiente esquema de base de datos para ejercitar:

```
cliente(<u>dni</u>, nombre, calle, ciudad)
sucursal(<u>nombre</u>, ciudad)
cuenta(<u>número</u>, <u>sucursal</u>, saldo)
préstamo(<u>número</u>, <u>sucursal</u>, monto)
cliente-cuenta(<u>cliente</u>, <u>cuenta</u>)
cliente-préstamo(<u>cliente</u>, <u>prestamo</u>)
```

 Clientes que tienen una cuenta en (por lo menos) las sucursales "Ush01" y "RG02":

 Clientes que tienen una cuenta en (por lo menos) las sucursales "Ush01" y "RG02":

```
R1 \leftarrow \rho cuenta\leftarrownumero(cuenta)

R2 \leftarrow \rho cliente\leftarrowdni,ncliente\leftarrownombre(cliente)

R3 \leftarrow \sigma nombre = "Ush01"(cliente-cuenta \bowtie R1)

R4 \leftarrow \sigma nombre = "RG02"(cliente-cuenta \bowtie R1)

R5 \leftarrow \Pi cliente(R3 \bowtie R2)

R6 \leftarrow \Pi cliente(R4 \bowtie R2)

Resultado \leftarrow R5 \cap R6
```

 Clientes con cuentas en todas las sucursales de la ciudad de Ushuaia:

 Encontrar todos los clientes que tienen un préstamo con el banco y mostrar la ciudad de residencia:

- Clientes con cuentas en todas las sucursales de la ciudad de Ushuaia:
 - R1 ← ρ cuenta←numero, nombre←sucursal(cuenta)
 R2 ← Π cliente,nombre(cliente-cuenta ⋈ R1)
 R3 ← Π nombre(σ ciudad = "Ush"(sucursal))
 Resultado ← R2 / R3
- Encontrar todos los clientes que tienen un préstamo con el banco y mostrar la ciudad de residencia:

```
R1 ← ρ cliente←dni(cliente)
Π nombre, ciudad(cliente-prestamo ⋈ R1)
```

 Mostrar el capital y el nombre de todas las sucursales que tienen clientes con cuentas y viven en Trelew.

 Mostrar el capital y el nombre de todas las sucursales que tienen clientes con cuentas y viven en Trelew.

```
R1 ← Π dni(σ ciudad = "Trelew"(cliente))
R2 ← ρ cliente←dni,ncliente←nombre(R1)
R3 ← ρ sucursal←numero(sucursal)
R4 ← R2 ⋈ cliente-cuenta ⋈ R3
Resultados ← Π nombre,saldo(R4)
```

¿Cómo modificamos el conjunto de tuplas?

- Hasta ahora se ha centrado la atención en la consulta de la base de datos.
- Vamos a abordar la manera de añadir, modificar y eliminar datos de la base de datos.
- Las modificaciones de la base de datos se expresan mediante la operación asignación.

Inserción

- Para insertar datos en una relación hay que especificar la tupla que se va a insertar o escribir una consulta cuyo resultado sea el conjunto de tuplas que se van a insertar.
- Evidentemente, el valor de los atributos de las tuplas insertadas debe ser miembro del dominio de cada atributo.
- De manera parecida, las tuplas insertadas deben tener el grado correcta.
- El álgebra relacional expresa las inserciones mediante:

$$R \leftarrow R \cup E$$

Inserción: Ejemplo

- Dada la relación persona(apellido, nombre)
- Y su extensiónpersona = {(perez, jorge), (perez, nadia)}
- Realizamos la inserción:
 - persona ← persona ∪ {(martinez, maria)}

Modificación

 Se puede usar el operador proyección generalizada para llevar a cabo la modificación de algunos atributos de todas las tuplas de la relación:

$$R \leftarrow \Pi f_1, f_2, ...f_n(R)$$

 Si se desea seleccionar varias tuplas de r y actualizar sólo esas tuplas, se puede usar la expresión siguiente, donde P denota la condición de selección que escoge las tuplas que hay que actualizar:

$$R \leftarrow \Pi f_1, f_2, ...f_n(\sigma p(R)) \cup (R - \sigma p(R))$$

Modificación: Ejemplo

- Dada la relación persona(apellido, nombre)
- Y su extensiónpersona = {(perez, jorge), (perez, nadia)}

Realizamos la modificación:
 persona ← ∏ f1(apellido), f2(nombre)(persona)

Eliminación

- Las solicitudes de borrado se expresan básicamente igual que las consultas.
- Sin embargo, en lugar de mostrar las tuplas al usuario, se eliminan de la base de datos las tuplas seleccionadas.
- Sólo se pueden borrar tuplas enteras; no se pueden borrar valores de atributos concretos.
- En el álgebra relacional los borrados se expresan mediante:

$$R \leftarrow R - E$$

Eliminación: Ejemplo

 Dada la relación persona(apellido, nombre)

Y su extensiónpersona = {(perez, jorge), (perez, nadia)}

- Realizamos la eliminación:
 - persona ← persona {(perez, jorge)}

Bibliografía

 Elmasri R. y Navathe Sh. (2000). Sistemas de Bases de Datos. Conceptos Fundamentales. Segunda Edición. Addison Wesley Longman de México, S. A.