Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Комп'ютерна арифметика Розрахункова робота по курсу «КЛ-2»

Виконав: студент групи ІО-44

Онищенко Артемій Олександрович

Керівник: Клименко І.А.

3MICT

Обгрунтування варіанту	6
1 .Операція множення чисел	6
1.1 Перший спосіб множення	6
1.1.1 Теоретичне обгрунтування способу	6
1.1.2 Операційна схема	7
1.1.3 Змістовний мікроалгоритм	7
1.1.4 Таблиця станів регістрів	8
1.1.5 Функціональна схема пристрою	9
1.1.6 Закодований мікроалгоритм	9
1.1.7 Граф управляючого автомата	10
1.1.8 Обробка порядків	10
1.1.9 Форма подання результату в пам'ятті	10
1.2 Другий спосіб множення	11
1.2.1 Теоретичне обгрунтування способу	11
1.2.2 Операційна схема	11
1.2.3 Змістовний мікроалгоритм	12
1.2.4 Таблиця станів регістрів	12
1.2.5 Функціональна схема пристрою	13
1.2.6 Закодований мікроалгоритм	13
1.2.7 Граф управляючого автомата	14
1.2.8 Обробка порядків	15
1.2.9 Форма подання результату в пам'ятті	15
1.3 Третій спосіб множення	16
1.3.1 Теоретичне обгрунтування способу	16
1.3.2 Операційна схема	16
1.3.3 Змістовний мікроалгоритм	17
1.3.4 Таблиця станів регістрів	17

	1.3.5 Функціональна схема пристрою	18
	1.3.6 Закодований мікроалгоритм	19
	1.3.7 Граф управляючого автомата	.19
	1.3.8 Обробка порядків	.19
	1.3.9 Форма подання результату в пам'ятті	.20
1.4 Четверт	ий спосіб множення	20
	1.4.1 Теоретичне обгрунтування способу	20
	1.4.2 Операційна схема	20
	1.4.3 Змістовний мікроалгоритм	21
	1.4.4 Таблиця станів регістрів	21
	1.4.5 Функціональна схема пристрою	22
	1.4.6 Закодований мікроалгоритм	22
	1.4.7 Граф управляючого автомата	23
	1.4.8 Обробка порядків	.24
	1.4.9 Форма подання результату в пам'ятті	.24
2 Операція	ділення чисел	.24
2.1 П	ерший спосіб ділення	.24
	2.1.1 Теоретичне обгрунтування способу	.24
	2.1.2 Операційна схема	.24
	2.1.3 Змістовний мікроалгоритм	.25
	2.1.4 Таблиця станів регістрів	.25
	2.1.5 Функціональна схема пристрою	27
	2.1.6 Закодований мікроалгоритм	.27
	2.1.7 Граф управляючого автомата	.28
	2.1.8 Обробка порядків	.28
	2.1.9 Форма подання результату в пам'ятті	.29
2.2 Д	ругий спосіб ділення	29
	1.1.1 Теоретичне обгрунтування способу	29

1.1.2 Операційна схема	9
1.1.3 Змістовний мікроалгоритм30)
1.1.4 Таблиця станів регістрів)
1.1.5 Функціональна схема пристрою)
1.1.6 Закодований мікроалгоритм32	
1.1.7 Граф управляючого автомата	
1.1.8 Обробка порядків	
1.1.9 Форма подання результату в пам'ятті	
3 Операція додавання чисел	1
3.1 Теоретичне обґрунтування способу	ļ
3.2 Операційна схема	
3.3 Змістовний мікроалгоритм	
3.4 Таблиця станів регістрів	
3.5 Функціональна схема пристрою	5
3.6 Закодований мікроалгоритм	
3.7 Граф управляючого автомата	
3.8 Обробка порядків	1
3.9 Форма подання результату в пам'ятті	
4 Операція добування кореня	
4.1 Теоретичне обґрунтування способу	}
4.2 Операційна схема	
4.3 Змістовний мікроалгоритм	
4.4 Таблиця станів регістрів	
4.5 Функціональна схема пристрою	
4.6 Закодований мікроалгоритм	
4.7 Граф управляючого автомата	
4.8 Обробка порядків	
 4.9 Форма подання результату в пам'ятті	

5 Синтез управляючого автомата для операційного пристрою	3
5.1 Таблиця співвідношення управляючих входів операційного автома виходів управляючого автомата	
5.2 Мікроалгоритм в термінах управляючого автомата	43
5.3 Структурна таблиця автомата	44
5.4 Синтех функцій виходів і переходів	. 44
5.5 Функціональна схема пристою	46
Висновок	.47

Обгрунтування варіанту

Номер залікової книжки: 4419₁₀=1000101000011₂

 X_2 =- 10110101,0000111 Y_2 = +10110,1010000111

Виконання роботи

Завдання 1

В прямому коді:

В прямому коді:

 X_2 : 3H.P P=+0001000₂ 3H.M M= -,101101010000111

 Y_2 : 3н.Р $P=+0000101_2$ 3н.М M=+,101101010000111

 $E=P+2^{8}$

 X_2 : 3н.Е $E=10001000_2$ 3н.М M=-,101101010000111

 Y_2 : 3H.P $E=10000101_2$ 3H.M M=+,101101010000111

Завдання 2

1. Операція множення чисел.

 $Z=Y\times X$, де Y-множене, X-множник.

1.1 Перший спосіб множення.

1.1.1 Теоретичне обгрунтування.

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення двох чисел Y та X може бути реалізоване шляхом виконання визначеного циклічного процесу, характер якого залежить від конкретної форми заданого виразу. Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Під час множення першим способом в першому такті і-го циклу аналізується значення RG2(n) — молодшого пго розряду регістру RG2, в якому знаходиться чергова цифра множника. Вміст RG3 додається до суми часткових добутків, що зняходяться в регістрі RG1, якщо RG2(n)=1, або не додається, якщо RG2(n)=0. В другому такті здійснюється правий зсув у регістрах RG1 і RG2, що еквівалентно множенню їх вмісту на 2(-1). За зсуву цифра молодшого розряду регістру RG1 записується у вивільнюваний старший розряд регістру RG2. Після виконання п циклів молодші розряди 2n-розрядного добутку будуть записані в регістр RG2, а старші — в RG1. Час множення, якщо не застосовуються методи прискорення операції, визначається виразом:

$$t_m = n(t_{\scriptscriptstyle \Pi} + t_3) \,,$$

де t_Π і t_3 — тривалості тактів підсумовування і зсуву відповідно.

Добуток двох чисел представляється у вигляді:

 $Z = \left(\left(...\left((0+Y\cdot x_n)\cdot 2^{-1}+Y\cdot x_{n-1}\right)\cdot 2^{-1}...\right)+Y\cdot x_1\right)\cdot 2^{-1}.$ Отже, сума часткових добутків в i-му циклі, де $i=\overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = (Z_{i-1} + Y \cdot x_{n-i+1}) \cdot 2^{-1}.$$

1.1.2 Операційна схема.

Рисунок 1.1- Операційна схема.

1.1.3 Змістовний мікроалгоритм.

Рисунок 1.2- Змістовний мікроалгоритм.

1.1.4 Таблиця станів регістрів. *Таблиця 1.1-Таблиця станів регістрів.*

Nº	DC1	DC3	DC3	СТ
ц.	RG1	RG2	RG3	СТ
П.С.	000000000000000000	101101010000111	10110101000011	1111
1 ->	00010110101000011	110110101000011		1110
	+	011011010100001		
2 >	00101101010000111			
	1000011111001010			
	0100001111100101			1101
	+	001101101010000		
3 →	00101101010000111			
	10011111001101100			1100
<u>4</u> →	0100111100110110	000110110101000		1100
	0010011110011011	000110110101000		1011
5 →	0001001111001101	100011011010100		1010
6 →	0000100111100110	110001101101010		1001
7 →	0000010011110011	011000110110101		1000
8 →	+	001100011011010		
	00101101010000111			
	0101111101111010			0111
0.	0010111110111101	100110001101101		0111
9 >	0001011111011110	100110001101101		0110
10->	+ 00101101010000111	110011000110110		
	01110010011101010101			
	00111001001100101			0101
11→	00011100100110010	011001100011011		0100
11 /	+	0011001100011011		0100
12 >	00101101010000111	001100110001101		
12)	0111011100100000			
	0011101110010000			0011
13 >	+	100110011000110		
	00101101010000111			
	1001011000010111			
	0100101100001011			0010
14 →	0010010110000101	110011001100011		0001
	+	011001100110001		
15 →	00101101010000111			
	1000000000001100			
	0100000000000110			0000

1.1.5 Функціональна схема з відображенням управляючих сигналів.

Рисунок 1.3- Функціональна схема.

1.1.6 Закодований мікроалгоритм.

Таблиця 1.2-Таблиця кодування операцій і логічних умов.

Таблиця кодування мікрооперацій								
MO	УС							
RG1:=0	R							
RG2:=X	W2							
RG3:=Y	W3							
CT:=15	W_{CT}							
RG1:=RG1+RG3	W1							
RG1:=0.r(RG1)	SR1							
RG2:=RG1(n).r(RG2)	SR2							
CT:=CT-1	D							

Таблиця кодування	логічних умов
ЛУ	Позначення
RG2(n)	X1
CT=0	X2

Рисунок 1.4-Закодований мікроалгоритм.

1.1.7 Граф управляючого автомата Мура з кодами вершин.

1.1.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

$$M_Z$$
= , 100000000001100 $P_z = 1101$.

1.1.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

,	Зн.	P		P=	=+1	3 ₁₀)		7	Вн.М	1							M							
(0.	0	0	0	1	1	0	1		1,	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0

1.2 Другий спосіб множення

1.2.1 Теоретичне обгрунтування

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою. Перед початком множення другим способом множник X записують у регістр RG2, а множене Y — в молодші розряди регістру RG3(тобто в регістрі RG3

установлюють $Y_0 = Y2^{-n}$). В кожному і-му циклі множення додаванням кодів RG3 і RG1 керує цифра RG2(n), а в регістрі RG3 здійснюється зсув вліво на один розряд, у результаті чого формується величина $Y_i = 2Y_{i-1}$. Оскільки сума часткових добутків у процесі множення нерухома, зсув у регістрі RG3 можна сполучити в часі з підсумовуванням (як правило, $t_{\Pi} > t_{3}$). Завершення операції множення визначається за нульовим вмістом регістру RG2, що також приводить до збільшення швидкодії, якщо множник ненормалізований. Вираз:

$$Z=Y\cdot x_n\cdot 2^{-n}+Y\cdot x_{n-1}\cdot 2^{-n+1}+\cdots +Y\cdot x_1\cdot 2^{-1}$$
, подамо у вигляді $Z=\left(\left(...\left((0+Y\cdot 2^{5n}\cdot x_n)+Y\cdot 2^{-n+1}\cdot x_{n-1}\right)+\cdots\right)+Y\cdot 2^{-1}x_1\right)$. Отже, сума часткових добутків в і-му циклі, де $i=\overline{1,n}$, зводиться до обчислення

виразу:

$$Z_i = Z_{i-1} + 2Y_{i-1} \cdot x_{n-i+1}.$$
 з початковими умовами $Z_0 = 0$, $Y_0 = Y2^{-n}$, $i = I$.

1.2.2 Операційна схема

Рисунок 1.6-Операційна схема

1.2.3 Змістовний мікроалгоритм

Рисунок 1.7-Змістовний мікроалгоритм

1.2.4 Таблиця станів регістрів

Таблиця 1.3- Таблиця станів регістрів

№ц.	RG1	RG2→	RG3←
П.С.	000000000000000000000000000000000000000	101101010000111	
11.C.			0000000000000000111111
1	000000000000000101101010000111	010110101000011	000000000000001011010100001110
2	+	001011010100001	000000000000010110101000011100
	0000000000000001011010100001110		
	00000000000001111110010101		
3	+	000101101010000	000000000000101101010000111000
	000000000000010110101000011100		
	000000000000100111100110110001		
4	000000000000100111100110110001	000010110101000	000000000001011010100001110000
5	000000000000100111100110110001	000001011010100	000000000010110101000011100000
6	000000000000100111100110110001	000000101101010	000000000101101010000111000000
7	000000000000100111100110110001	000000010110101	000000001011010100001110000000
8	+	000000001011010	000000010110101000011100000000
	000000001011010100001110000000		
	000000001011111011110100110001		
9	00000001011111011110100110001	00000000101101	000000101101010000111000000000
10	+	00000000010110	000001011010100001110000000000
	0000000101101010000111000000000		
	000000111001001100101100110001		
11	000000111001001100101100110001	000000000001011	0000010110101000011100000000000
12	+	000000000000101	0000101101010000111000000000000
	00000101101010000111000000000000		
	000011101110010000001100110001		
13	+	000000000000010	00010110101000011100000000000000

	000010110101000011100000000000000000000		
	001001011000010111001100110001		
14	001001011000010111001100110001	000000000000001	00101101010000111000000000000000
15	+	000000000000000	010110101000011100000000000000000
	001011010100001110000000000000000000000		
	10000000000110011001100110001		

1.2.5 Функціональна схема з відображенням управляючих сигналів \uparrow^{x_2}

0 Y Рисунок 1.8- Функціональна схема

1.2.6 Закодований мікроалгоритм

Таблиця 1.4 – Таблиця кодування мікрооперацій.

Таблиця кодування мікрооперацій						
MO	УС					
RG1:=0	R					
RG2:=X	W2					
RG3:=Y	W3					
RG1:=RG1+RG3	W1					
RG2:=0.r(RG2)	SR					
RG3:=l(RG3).0	SL					

Таблиця кодування логічних умов						
ЛУ	Позначення					
RG2(n)	X1					
RG2=0	X2					

Рисунок 1.9- Закодований мікроалгоритм.

1.2.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.10- Граф автомата Мура

1.2.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

$$M_Z$$
= , 100000000001100

$$P_z = 1101$$
.

1.2.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

M

Зн.	.P		P=	=+1	3_{10}			3	3н.М				M									
0.	0	0	0	1	1	0	1		1,	1	0	0	0	0	0	0	0	0	0	0	0	

1.3 Третій спосіб множення

1.3.1 Теоретичне обгрунтування

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення третім способом здійснюється зі старших розрядів множника, сума часткових добутків зсувається вліво, а множене нерухоме. Під час множення третім способом вага молодшого розряду RG3 дорівнює 2^{-2n} , тому код у регістрі RG3 являє собою значення $Y2^{-n}$. На початку кожного циклу множення здійснюється лівий зсув у регістрах RG1 і RG2, а потім виконується додавання, яким керує RG1(1). У результаті підсумовування вмісту RG3 і RG1 може виникнути перенос у молодший розряд регістру RG1. У старшій частині суматора, на якому здійснюється підсумовування коду RG2 з нулями, відбувається поширення переносу. Збільшення довжини RG2 на один розряд усуває можливість поширення переносу в розряди множника. Після виконання п циклів молодші розряди добутку будуть знаходитися в регістрі RG2, а старші — в регістрі RG1. Час множення третім способом визначається аналогічно першому способу і дорівнює t_m = $n(t_\Pi$ + t_3).

Вираз

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}, \quad no \partial amo \ y \ вигля \partial i$$

$$Z = \left(\left(\dots \left((0 + Y \cdot 2^{-n} \cdot x_1) \cdot 2 + Y \cdot 2^{-n} \cdot x_2 \right) \cdot 2 + \dots + Y \cdot 2^{-n} x_k \right) \cdot 2 + \dots + Y \cdot 2^{-n} x_n \right).$$

Отже, сума часткових добутків в i-му циклі, де $i = \overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = 2Z_{i-1} + Y \cdot x_i \cdot 2^{-n}$$
.
3 початковими умовами $Z_0 = 0$, $i = 1$.

1.3.2 Операційна схема

Рисунок 1.11-Операційна схема

1.3.3 Змістовний мікроалгоритм

Рисунок 1.12-Змістовний мікроалгоритм

1.3.4 Таблиця станів регістрів

Таблиця 1.5- Таблиця станів регістрів

	аолиця 1.5- Гаоли	<i>ця станів регістрів</i>		
№ Ц.	RG1	RG2	RG3	СТ
П.С.	001101010000111	000000000000000000000000000000000000000	10110101000011	1111
1	01101010000111	00000000000000111010100001110	10110101000011	1111
				1110
				1110
2	110101000011100	000000000000010110101000011100		1101
3	101010000111000	+		
		0000000000000000101101010000111		1100
		00000000000011100010010100011		1100
		00000000000111000100101000110		
4←	010100001110000	+		
		0000000000000000101101010000111		
		00000000000111110001111001101		1011
		00000000001111100011110011010		
5	101000011100000	00000000011111000111100110100		1010
6	010000111000000	+		
		0000000000000000101101010000111		1001
		00000000011111110100110111011		
7	10000111000000	00000000111111101001101110110		1000
7 8 ←	100001110000000	0000000011111111010011011101100		1000
85	000011100000000	+ 00000000000000000101101010000111		
		000000000000000000000000000000000000000		0111
		0000001000000000000101110011		
9←	000111000000000	0000010000000000001011100110		0110
10	0011100000000	0000100000000000010111001100		0110
11	0111000000000	00010000000000000101110011000		0101
12	11100000000000	00100000000000001011100110000		0011
12	11100000000000000	001000000000001011100110000		0011

13←	1100000000000000	+	
		000000000000000101101010000111	
		001000000000001000100011100111	0010
		010000000000010001000111001110	0010
14 ←	1000000000000000	+	
		0000000000000000101101010000111	
		010000000000010110110001010101	0001
		100000000000101101100010101010	0001
15	0000000000000000	+	
		000000000000000101101010000111	0000
		10000000000110011001100110001	

1.3.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 1.13-Функціональна схема

1.3.6 Закодований мікроалгоритм

Таблиця 1.6- Таблиця кодування мікрооперацій

Таблиця кодуван	ня мікрооперацій
MO	УС
RG1:=0	R
RG2:=X	W2
RG3:=Y	W3
CT:=15	W_{CT}
RG1:=RG1+RG3	W1
RG1:=l(RG1).RG2(1)	SL1
RG2:=l(RG2).0	SL2
CT:=CT-1	D

Таблиц	я кодування логічних умов
ЛУ	Позначення
RG1(0)	X1
CT=0	X2

Рисунок 1.14- Закодований мікроалгоритм

1.3.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.15- Граф автомата Мура

1.3.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

$$\begin{aligned} M_{Z} &= \text{, } 1000000000001100 \\ P_{z} &= 1101. \end{aligned}$$

1.3.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н	ı.P		P=	Р=+13 ₁₀ Зн.М							M													
0.	0	0	0	1	1	0	1		1,	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0

1.4 Четвертий спосіб множення

1.4.1 Теоретичне обгрунтування

Числа множаться у прямих кодах. Під час множення чисел у прямих кодах знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення виконується зі старших розрядів множника, сума часткових добутків залишається нерухомою, а множене зсувається вправо. Перед множенням четвертим способом множник записують у регістр RG2, а множене – в старші розряди регістру RG3(тобто в RG3 установлюють $Y_0=Y2^{-1}$). У кожному циклі цифра RG2(1), що знаходиться в старшому розряді регістру RG2, керує підсумовуванням, а в RG3 здійснюється правий зсув на один розряд, що еквівалентно множенню вмісту цього регістра на 2⁻¹. Час виконання множення четвертим способом складає t_M = nt_Π , визначається аналогічно до другого способу. Запишу четвертий спосіб в аналітичні формі. Вираз $Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}$, подамо у вигляді $Z = \left(\left(\dots \left((0 + Y \cdot 2^{-1} \cdot x_1) + Y \cdot 2^{-2} \cdot x_2 \right) + \dots + Y \cdot 2^{-k} x_k \right) + \dots + Y \cdot 2^{-n} x_n \right).$ Отже, сума часткових добутків в i-му циклі, де $i = \overline{1,n}$, зводиться до обчислення

виразу:

$$Z_i = Z_{i-1} + 2^{-1}Y_{i-1} \cdot x_i$$
, з початковими значеннями $i=1, Y_0=2^{-1}Y, Z_0=0$.

1.4.2 Операційна схема

Рисунок 1.16-Операційна схема

1.4.3 Змістовний мікроалгоритм

Рисунок 1.17-Змістовний мікроалгоритм

1.4.4 Таблиця станів регістрів

Таблиця 1.7- Таблиця станів регістрів

№ ц.	RG1	RG2←	RG3→
П.С.	000000000000000000000000000000000000000	001101010000111	001011010100001110000000000000000
1	00101101010000111000000000000000	011010100001110	000101101010000111000000000000000
2	00101101010000111000000000000000	110101000011100	00001011010100001110000000000000
3	+	101010000111000	0000010110101000011100000000000
	000010110101000011100000000000000000000		
	0111000100101000110000000000000		
4	+	010100001110000	0000001011010100001110000000000
	000001011010100001110000000000000000000		
	011111000111100110100000000000		
5	011111000111100110100000000000	101000011100000	0000000101101010000111000000000
6	+	010000111000000	0000000010110101000011100000000
	0000000101101010000111000000000		
	011111110100110111011000000000		
7	011111110100110111011000000000	100001110000000	000000001011010100001110000000
8	+	000011100000000	000000000101101010000111000000
	000000001011010100001110000000		
	10000000000001011100110000000		
9	10000000000001011100110000000	000111000000000	000000000010110101000011100000
10	10000000000001011100110000000	0011100000000000	000000000001011010100001110000
11	10000000000001011100110000000	0111000000000000	000000000000101101010000111000
12	100000000000001011100110000000	1110000000000000	0000000000000010110101000011100

13	+	1100000000000000	0000000000000001011010100001110
	000000000000010110101000011100		
	10000000000100010001110011100		
14	+	1000000000000000	0000000000000000101101010000111
	0000000000000001011010100001110		
	100000000000101101100010101010		
15	+	00000000000000000	000000000000000010110101000011
	000000000000000101101010000111		
	10000000000110011001100110001		

1.4.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 1.18-Функціональна схема

1.4.6 Закодований мікроалгоритм

Таблиця 1.8- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій										
MO	УС									
RG1:=0	R									
RG2:=X	W2									
RG3:=0.Y	W3									
RG1:=RG1+RG3	W1									
RG3:=0.r(RG3)	SR									
RG2:=l(RG2).0	SL									

Таблиця кодування логічних умов										
ЛУ	Позначення									
RG2(1)	X1									
RG2=0	X2									

Рисунок 1.19- Закодований мікроалгоритм

1.4.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.20- Граф автомата Мура

1.4.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

$$\begin{aligned} M_{Z} &= \text{, } 1000000000001100 \\ P_{z} &= 1101. \end{aligned}$$

1.4.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3	н.]	P		P	=+1	310)		7	3н.М	M						M								
0).	0	0	0	1	1	0	1		1,	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0

2. Операція ділення чисел

Z=X: Y, X-ділене, Y – дільник.

2.1 Перший спосіб ділення

2.1.1 Теоретичне обгрунтування

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Такий спосіб називається діленням із зсувом залишку. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записаний X), дільник Y знаходиться в регістрі RG1. Виходи RG2 підключені до входів SM безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt - тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву. Результат формується в регістрі RG3.

2.1.2 Операційна схема

Рисунок 2.1-Операційна схема

2.1.3 Змістовний мікроалгоритм

Рисунок 2.2-Змістовний мікроалгоритм

2.1.4 Таблиця станів регістрів

Таблиця 2.1- Таблиця станів регістрів

	D.G.2	D.G.2	D.G.1
№ ц.	RG3	RG2	RG1
П.С.	000000000000000000	00101101010000111	00101101010000111
1	000000000000000000000000000000000000000	0101101010000111	00101101010000111
1	000000000000000000000000000000000000000	+	
		11101001010111101	
		01000011111001011	
2	0000000000000011	10000111110010110	
		+	
		000101101010000111	
		10110101000011101	
3	0000000000000110	01101010000111010	
		+	
		<u>11101001010111101</u>	
		01010011011110111	
4	000000000001101	10100110111101110	
		+	
		000101101010000111	
		11010100001110101	
5	000000000011010	10101000011101010	
		+	
		000101101010000111	
		11010101101110001	

6	000000000110100	10101011011100010	
		+	
		000101101010000111	
		11011000101101001	
7	0000000001101000	10110001011010010	
		+	
		000101101010000111	
		11011110101011001	
8	0000000011010000	10111101010110010	
		+	
		000101101010000111	
0	0000000110100000	11101010100111001	
9	0000000110100000	11010101001110010	
		+	
		000101101010000111 00000010011111001	
10	0000001101000001	0000010011111001	
10	0000001101000001	+	
		11101001010111101	
		1110111001010111101	
11	0000011010000010	1101110010101111	
11	0000011010000010	+	
		000101101010000111	
		00001001111100101	
12	0000110100000101	00010011111001010	
		+	
		<u>111010010101111101</u>	
		11111101010000111	
13	0001101000001010	11111010100001110	
		+	
		000101101010000111	
		00100111110010101	
14	0011010000010101	01001111100101010	
		+	
		<u>111010010101111101</u>	
		00111000111100111	
15	0110100000101011	01110001111001110	
		+	
		11101001010111101	
	110100000101011	01011011010001011	
16	1101000001010111	10110110100010110	
		+	
		000101101010000111	
		11100011110011101	

2.1.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.3-Функціональна схема

2.1.6 Закодований мікроалгоритм

Таблиця 2.2- Таблиця кодування мікрооперацій

Таблиця кодування мік	рооперацій
MO	УС
RG3:=0	R
RG2:=X;	W1
RG1:=Y;	W2
$RG1:=l(RG1).\overline{RG2(1)}$	SL1
RG2:=l(RG2).0	S2
$RG2:=RG2+\overline{RG1}+1$	W3
RG2:=RG2+RG1	W4

Таблиця кодування логічних умов									
ЛУ	Позначення								
RG2(1)	X1								
M	X2								

Рисунок 2.4- Закодований мікроалгоритм

2.1.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.5- Граф автомата Мура

2.1.8 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 8 - 5 = 3_{10} = 11_2.$$

Нормалізація мантиси не потрібна.

 M_Z = , 1101000001010111 Знак мантиси: 1 \oplus 0 = 1.

2.1.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

Зн.	.P		P=	=+1	1_2			7	Вн.М	1		M												
0.	0	0	0	0	0	1	1		1,	1	1	0	1	0	0	0	0	0	1	0	1	0	1	1

2.2 Другий спосіб ділення

2.2.1 Теоретичне обгрунтування

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.2.2 Операційна схема

Рисунок 2.6-Операційна схема

2.2.3 Змістовний мікроалгоритм

Рисунок 2.7-Змістовний мікроалгоритм

2.2.4 Таблиця станів регістрів

Таблиця 2.3- Таблиця станів регістрів

№			
Ц.	RG1	RG2	RG3
П.С.	00000000000000001	0101101010000111000000000000000	0001011010100001110000000000000
			0
1	0000000000000011	0101101010000111000000000000000	000010110101000011100000000000
		+	0
		<u>11101001010111110010000000000000</u>	
		0100001111100101010000000000000	
2	0000000000000110	01000011111001010100000000000000	000001011010100001110000000000
		+	0
		<u>1111010010101111100100000000000</u>	
		001110001001010001100000000000	
3	0000000000001101	001110001001010001100000000000	000000101101010000111000000000
		+	0
		<u>1111101001010111110010000000000</u>	
		0011001011101011111110000000000	
4	0000000000011010	0011001011101011111110000000000	00000010110101000011100000000
		+	0
		<u>1111110100101011111001000000000</u>	
		001100000001011110111000000000	
5	0000000000110100	001100000001011110111000000000	000000001011010100001110000000
		+	0
		<u>1111111010010101111100100000000</u>	
		001011101010110110011100000000	

6	0000000001101000	001011101010110110011100000000	00000000101101010000111000000
	000000001101000	+	0
		1111111101001010111110010000000	
		00101101111111000100011110000000	
7	0000000011010000	001011011111100010001110000000	00000000010110101000011100000
'	000000011010000	+	0
		1111111110100101011111001000000	U
		001011011001111000000111000000	
	0000000110100000		000000000001011010100001110000
8	0000000110100000	0010110110011111000000111000000	00000000001011010100001110000
		+	0
		1111111111010010101111100100000	
		001011010111000011000011100000	
9	0000001101000001	001011010111000011000011100000	00000000000101101010000111000
		+	0
		<u>11111111111101001010111110010000</u>	
		001011010101101000100001110000	
10	0000011010000010	001011010101101000100001110000	00000000000010110101000011100
		+	0
		<u>11111111111110100101011111001000</u>	
		001011010100111011010000111000	
11	0000110100000101	001011010100111011010000111000	00000000000001011010100001110
		+	0
		<u>11111111111111010010101111100100</u>	
		001011010100100100101000011100	
12	0001101000001010	001011010100100100101000011100	000000000000000101101010000111
		+	0
		<u>11111111111111101001010111110010</u>	
		001011010100011001010100001110	
13	0011010000010101	001011010100011001010100001110	00000000000000010110101000011
		+	1
		11111111111111110100101011111001	
		001011010100010011101010000111	
14	0110100000101011	001011010100010011101010000111	00000000000000001011010100001
	0110100000101011	+	1
		11111111111111111010010101111101	
		001011010100010000110101000100	
15	1101000001010111	001011010100010000110101000100	00000000000000000101101010000
1.5	11010000010101111	+	1
		111111111111111111101001010111111	_
		00101101010000111101101010011	
		001011010100001111011010100011	

2.2.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.8-Функціональна схема

2.2.6 Закодований мікроалгоритм

Таблиця 2.4- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій										
MO	УС									
RG1:=0;	R									
RG2:=00.X	W1									
RG3:=00.Y	W2									
RG2:=RG2+RG1	W3									
$RG2:=RG2+\overline{RG1}+1$	W4									
RG1:=0.r(RG1)	SR									
RG3:=l(RG3).SM(p)	SL									

Таблиця кодування логічних умов									
ЛУ	Позначення								
RG2(1)	X1								
M	X2								

Рисунок 2.9- Закодований мікроалгоритм

2.2.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.10- Граф автомата Мура

2.2.8 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 8 - 5 = 3_{10} = 11_2.$$

Нормалізація мантиси не потрібна.

 $M_{Z}\!\!=$, 1101000001010111 Знак мантиси: 1 \oplus 0 = 1.

2.2.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н	.P		P=	=+1	12			7	Вн.М	1		M												
0.	0	0	0	0	0	1	1		1,	1	1	0	1	0	0	0	0	0	1	0	1	0	1	1

3. Операція додавання чисел

Z=X+Y.

3.1 Теоретичне обгрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповню вальних кодах, при необхідності числа у ДК переводяться в АЛП. Додавання виконується порозрядно на п-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на прозрядів вправо.

Виконання етапів вирівнювання порядків і додавання мантис:

1. Порівняння порядків.

$$P_x > P_y \rightarrow P_z = P_x = +8_{10} = +1000_2,$$

 $\Delta = P_x - P_y = 8 - 5 = 3_{10} = 11_2.$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ стане 0.

Таблиця 3.1- Таблиця зсуву мантиси на етапі вирівнювання порядків

M_Y	Δ	Мікрооперація
0,101101010101001	11	П.С.
0,010110101010100	10	$M_Y \rightarrow \Delta := \Delta - 1$
0,001011010101010	01	$M_Y \rightarrow \Delta := \Delta - 1$
0,000101101010101	00	$M_Y \rightarrow \Delta := \Delta - 1$

3. Додавання мантис у модифікованому ДК.

Таблиця 3.2-Додавання мантис

1	1,	0	1	0	0	1	0	1	0	1	1	1	1	0	0	0
0	0,	0	0	0	1	0	1	1	0	1	0	1	0	1	0	1
1	1,	0	0	1	1	0	1	0	0	0	1	0	0	1	1	1

$$M_x = 11,101101010000111_{\Pi K} = 11,0100101011111001_{JK}$$

 $M_y = 00,000101101010101_{\Pi K} = 00,000101101010101_{JK}$
 $M_z = 11,11001011110111100_{\Pi K} = 11,001101000100111_{JK}$

4. Нормалізація результату (В ПК).

3.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q= $\log_2 m$ [

Рисунок 3.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Таблиця 3.3-Визначення порушення нормалізації

Po3	эяди	регістру	Значення				
RG1	l		функцій				
Z' ₀	Z_0	Z_1	L	R			
0	0	0	0	1			
0	0	1	0	0			
0	1	0	1	1			
0	1	1	1	0			

$$L=Z_{0}, R=\overline{Z_{1}}.$$

Результат беремо по модулю, знак встановлюємо за Z'0 до нормалізації.

3.3 Змістовний мікроалгоритм

Рисунок 3.2-Змістовний мікроалгоритм

3.4 Таблиця станів регістрів

Таблиця 3.4- Таблиця станів регістрів

№ Taktv	RG2	RG1	ЛПН(L)	ППН(R)	CT	Мікрооперація
ПС	001000	00,101101010101001	0	1	1111	

3.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 3.3-Функціональна схема

3.6 Закодований мікроалгоритм

Таблиця 3.5- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій						
MO	УС					
CT:=m;	W					
RG1:=Z;	W1					
$Z'_0 Z_0 := \overline{Z'_0 Z_0}$	W2					
RG1:=RG1(1).r(RG1)	SR					
RG2:=RG2+1	inc					
RG1:=l(RG1).0	SL					
RG2:=RG2-1	D_2					
CT:=CT-1;	D					

*						
Таблиця кодування логічних						
умо	ОВ					
ЛУ	Позначення					
Z' ₀ =0	X1					
$L = Z_0$	X2					
$R = \overline{Z_1}$	X3					
CT = 0	X4					

Рисунок 3.4- Закодований мікроалгоритм

3.7 Граф управляючого автомата Мура з кодами вершин

3.8 Обробка порядків

PZ=1000

3.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

$3_{H.P}$ $P=+8_{10}$				3	Вн.1	M							M										
0.	0	0	0	1	0	0	0	1,	1	1	0	0	1	0	1	1	1	0	1	1	1	0	0

4. Операція добування кореня

$$\mathbb{Z} = \sqrt{|X|}$$

4.1 Теоретичне обгрунтування способу

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 $Z_i^2 \le X \le Z_i^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - Z_i^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

2. Якщо $R_{i+1} \ge 0$, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.

3. Якщо
$$R_{i+1}$$
 < 0, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i - 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

$$R_{i+2} = 2R_{i+1}' + Z_i + 2^{-i-2} + 2^{-i-3}$$
, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

4.2 Операційна схема

Рисунок 4.1-Операційна схема

4.3 Змістовний мікроалгоритм

Рисунок 4.2-Змістовний мікроалгоритм

4.4 Таблиця станів регістрів Таблиця 4.1- Таблиця станів регістрів

№ ц.	олиця 4.1- Таолиця ста RG1	RG2	RG3	CT
П.С.	000000000000000	00000000000000000 00000000000000000000	101101010000111	1111
	000000000000001	000000000000000000000000000000000000000	010110101000011	1110
1		+		
		<u>111111111111111111</u>		
		000000000000000001		
	0000000000011	00000000000000111	001011010100001	1101
2	00000000000011	00000000000000111	001011010100001	1101
		+ <u>1111111111111111011</u>		
		000000000000000000000000000000000000000		
		000000000000000000000000000000000000000		
3	000000000000110	0000000000001001	000101101010000	1100
J	000000000000110	+		1100
		11111111111110011		
		1111111111111100		
		11111111111110001		
4	00000000001101	11111111111110001	000010110101000	1011
		+		
		00000000000011011		
		0000000000001100		
	00000000011010	0000000000110000	000001011010100	1010
5	00000000011010	0000000000110000	000001011010100	1010
		+		
		11111111111001011 111111111111111111		
		11111111111111011		
6	00000000110101	111111111111101100	000000101101010	1001
O		+		1001
		00000000001101011		
		00000000001010111		
		00000000101011111		
7	000000001101011	00000000101011111	000000010110101	1000
		+		
		11111111100101011		
		00000000010001010		
8	000000011010111	00000001000101010	00000001011010	0111
8	000000011010111		00000001011010	0111
		+ 11111111001010011		
		00000000001111101		
		000000001111101		
9	000000110101110	00000000111110100	00000000101101	0110
		+		
		11111110010100011		
		11111111010010111		
		111111010010111100		
10	000001101011101	111111010010111100	00000000010110	0101
		+		
		00000011010111011		

		0000000100010111		
		00000010001011100		
11	0000110101111010	00000010001011100	00000000001011	0100
		+		
		11111001010001011		
		11111011011100111		
		11101101110011100		
12	0001101011110100	11101101110011100	00000000000101	0011
		+		
		00001101011101011		
		11111011010000111		
		11101101000011100		
13	0011010111101001	11101101000011100	00000000000010	0010
		+		
		<u>00011010111010011</u>		
		00000111111101111		
		00011111110111100		
14	011010111010010	000111111110111100	000000000000001	0001
		+		
		<u>11001010001011011</u>		
		11101010000010111		
		10101000001011100		
15	110101110100101	10101000001011100	00000000000000	0000
		+		
		<u>01101011101001011</u>		
		00010011110100111		
		01001111010011100		

4.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 4.3-Функціональна схема

4.6 Закодований мікроалгоритм

Таблиця 4.2- Таблиця кодування мікрооперацій

Telesticipi ila Telesticipi ile dy delitist illi pe di tepe					
Таблиця кодування мікрооперацій					
MO	УС				
RG1:=0;	R1				
RG2:=0;	R2				
RG3:=X	W1				
CT:=15	W_{CT}				
RG2:=RG2+RG1.11	W2				
$RG2:=RG2+\overline{RG1}.11$	W3				
RG2:=L2(RG2).RG3(1).RG3(2)	SL1				
RG3:=L2(RG3).0.0	SL2				
$RG1:=L(RG1).\overline{RG2(1)}$	SL3				
CT:=CT-1	D				

Таблиця кодування логічних										
yn	умов									
ЛУ	Позначення									
RG2(1)	X1									
CT=0	X2									

Рисунок 4.4- Закодований мікроалгоритм

4.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 4.5- Граф автомата Мура

4.8 Обробка порядків

PZ=PX:2=8:2=4₁₀=100₂.

4.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н.Р	$P = +4_{10}$	3н.М	M
0. 0 0	0 0 1 0 0	0, 1 1 0 1 0 1 1	1 0 1 1 1 1 0 0