Lecture 2: Exploratory data analysis

BTBI30081

統計應用方法Applied Methods in Statistics

2025/2/26

分析流程

你的目的為何? 你想預測或估計什麼?

相關的資料在那裡? 資料是如何取樣(sample)的? 有沒有隱私權的問題?

資料視覺化 有沒有反常資料? 資料的pattern?

建立模型 模型參數估計 模型驗證

獲得什麼新知識? 結果合理嗎? Can we tell a story?

Exploratory data analysis (EDA)

- An approach to analyzing data sets to summarize their main characteristics, often with visual methods, and a statistical model can be used or not. [Wikipedia]
- Seeing what the data can tell us beyond the formal modeling or hypothesis testing task. [Wikipedia]

Data visualization

"The greatest value of a picture is when it forces us to notice what we never expected to see."

-John Tukey (1915 - 2000)

- Data visualization is a powerful approach to detecting mistakes, biases, systematic errors and unexpected variability that are commonly found in data regardless of applications.
- Data visualization can provide a powerful way to communicate a data-driven finding.

Anscombe's quartet

Same mean, variance, correlation, and linear regression line

	Anscombe's Quartet: Raw Data											
	I		1	II	III		1	\mathbf{V}				
	x	y	x	\mathbf{y}	x	\mathbf{y}	x	y				
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58				
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76				
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71				
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84				
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47				
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04				
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25				
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50				
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56				
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91				
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89				
mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5				
var.	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75				
corr.	(0.816	(0.816	(0.816	(0.816				

Anscombe's quartet

Same mean, variance, correlation, and linear regression line

Measurement scales

- Nominal (Categorical) (N)
 Are = or ≠ to other values
 Apples, Oranges, Bananas,...
- Ordinal (O)
 Obey a < relationship
 Small, medium, large
- Quantitative (Q)
 Can do arithmetic on them
 10 inches, 23 inches, etc.

Measurement scales

Q - Interval (location of zero arbitrary)
 Cannot compare directly. Only differences (i.e., intervals) can be compared
 Dates: Jan 19; Location: (Lat, Long)

Q - Ratio (zero fixed)
 Origin is meaningful, can measure ratios & proportions

Measurements: Length, Mass, Temp, ...

Data types

Measurement scale	Statistic	:S	Computer programming	
interval scale	continuo	us data	floating point	
ratio scale	Continuo	us data	floating-point	
ratio scale		count	integer	
nominal/ordinal	discrete	binary	boolean	
scale	data	Diriary		
nominal scale	Juala	nominal	into gov/shovo stov	
ordinal scale		ordinal	integer/character	

Example: Gene expression microarray data

- Data from a study using gene expression profiling to predict breast cancer outcomes (http://www.nature.com/nature/journal/v415/n6871/full/415530a.html)
- 78 breast cancer: 44 remained disease-free for an interval of at least five years after their initial diagnosis (good prognosis group), while 34 patients had developed distant metastases within five years (poor prognosis group).

samplexprs.csv

Variable	Description
id	An unique identification number
age	Age at diagnosis of breast cancer (year)
metastases	Developing distant metastases: 0=no
	(good prognosis group), I=yes (poor
	prognosis group)
followup	Follow-up time (year)
ERp	ER-α expression level
J00129	log ₁₀ gene expression intensity ratios
Contig29982_RC	log ₁₀ gene expression intensity ratios

• RMD_example 2.1

id	age	metastases	followup	ERp	J00129	Contig29982_RC	Contig42854	Contig42014_RC
FG80	52	0	7.35	100	-0.795	-0.38/	0.199	-0.247
SF58	50	1	1.15	0	-0.509	0.459	-0.257	-0.065
DE72	54	0	12.12	100	١.	/ariable na	mos	-0.153
DE65	40	0	6.25	0		al lable Ha	11162	0.032
HG87	53	0	5.18	0	-0.426	-0.406	-0.355	0.429
HG88	37	1	1.09	100	-0.566	-0.596	-0.352	-0.336
AB22	37	0	5.8	90	-0.42	-0.286	-0.09	-0.048
HG91	30	1	1.03	0	-0.499	-0.402	0.181	0.143
HG92	39	1	3.36	80	-0.465	-0.533	-0.019	0.019
KH11	45	1	1.62	50	-0.189	-0.309	-0.152	0.918
KH20	30	1	4.7	70	-0.739	0.093	-0.214	-0.025
SF67	48	1	1.98	0	-0.601	-0.177	-0.2	0.108
LD44	33	1	1.4	0	0.786	-0.164	-0.144	0.027
AA04	41	0	13	50	-0.819	-0.267	0.023	-0.23
AA01	43	0	12.53	80	-0.448	-0.296	-0.1	-0.177
GL73	52	1	2.13	0	1.206	-0.353	-0.039	-0.006
AA10	49	0	11.16	80	-0.391	-0.31	-0.06	-0.164
HG86	54	0	5.89	50	-0.234	-0.404	-0.214	0.421
DE62	40	0	6.97	50	-0.75	-0.316	-0.021	-0.041
AB26	41	0	8.17	10	-0.299	-0.137	-0.214	0.031
SF57	41	1	2	0	-0.455	-0.288	-0.241	-0.032
DE61	45	0	13.42	100	-1.173	-0.887	-0.058	0.021

Example: Gene expression microarray data (samplexprs.csv)

id	age	metastases	followup	ERp	J00129	Contig29982_RC	Contig42854	Contig42014_RC
FG80	52	0	7.35	100	-0.795	-0.387	0.199	-0.247
SF58	50	1	1.15	0	-0.509	0.459	-0.257	-0.065
DE72	54	0	12.12	100	-0.961	-0.631	0.037	-0.153
DE65	40	0	6.25	0	-0.749	0.699	-0.346	0.032
HG87	53	0	5.18	0	-0.426	-0.406	-0.355	0.429
HG88	37	1	1.09	100	-0.566	-0.596	-0.352	-0.336
AB22	37	0	5.8	90	-0.42	-0.286	-0.09	-0.048
HG91	30	1	1.03	0	-0.499	0.402	0.181	0.143
HG92	39	1	3.36	80	-0.465	-0.533	-0.019	0.019
KHII	45	1	1.62	50	-0.189	-0.309	-0.152	0.918
KH20	30	1	4.7	70	-0.739	0.000	0.014	-0.025
SF67	48	1	1.98	0	-0.601	Iten	n l	0.108
LD44	33	1	1.4	0	0.786	-0		0.027
AA04	41	0	13	50	-0.819	-0.267	0.023	-0.23
AA01	43	0	12.53	80	-0.448	-0.296	-0.1	-0.177
GL73	52	1	2.13	0	1.206	-0.353	-0.039	-0.006
AA10	49	0	11.16	80	-0.391	-0.31	-0.06	-0.164
HG86	54	0	5.89	50	-0.234	-0.404	-0.214	0.421
DE62	40	0	6.97	50	-0.75	-0.316	-0.021	-0.041
AB26	41	0	8.17	10	-0.299	-0.137	-0.214	0.031
SF57	41	1	2	0	-0.455	-0.288	-0.241	-0.032
DE61	45	0	13.42	100	-1.173	-0.887	-0.058	0.021

Example: Gene expression microarray data (samplexprs.csv)

id	age	metastases	followup	ERp	J 00129	Contig29982_RC	Contig42854	Contig42014_RC
FG80	52	0	7.35	100	-0.795	-0.387	0.199	-0.247
SF58	50	1	1.15	0	-0.509	0.459	-0.257	-0.065
DE72	54	0	12.12	100	-0.961	A		-0.153
DE65	40	0	6.25	0	-0.749	Attribu	ute	0.032
HG87	53	0	5.18	0	-0.426	Баадии		0.429
HG88	37	1	1.09	100	-0.566	Featu	re	-0.336
AB22	37	0	5.8	90	-0.42	- Variab	Jo	-0.048
HG91	30	1	1.03	0	-0.499	Vallat	ne	0.143
HG92	39	1	3.36	80	-0.465	-0.533	-0.019	0.019
KH11	45	1	1.62	50	-0.189	-0.309	-0.152	0.918
KH20	30	1	4.7	70	-0.739	0.093	-0.214	-0.025
SF67	48	1	1.98	0	-0.601	-0.177	-0.2	0.108
LD44	33	1	1.4	0	0.786	-0.164	-0.144	0.027
AA04	41	0	13	50	-0.819	-0.267	0.023	-0.23
AA01	43	0	12.53	80	-0.448	-0.296	-0.1	-0.177
GL73	52	1	2.13	0	1.206	-0.353	-0.039	-0.006
AA10	49	0	11.16	80	-0.391	-0.31	-0.06	-0.164
HG86	54	0	5.89	50	-0.234	-0.404	-0.214	0.421
DE62	40	0	6.97	50	- 0.75	-0.316	-0.021	-0.041
AB26	41	0	8.17	10	-0.299	-0.137	-0.214	0.031
SF57	41	1	2	0	-0.455	-0.288	-0.241	-0.032
DE61	45	0	13.42	100	-1.173	-0.887	-0.058	0.021

Example: Gene expression microarray data (samplexprs.csv) – 78 items (patients), 4746 variables

id	age	metastases	followup	ERp	J00129	Contig29982_RC	Contig42854	Contig42014_RC
FG80	52	0	7.35	100	-0.795	-0.387	0.199	-0.247
SF58	50	1	1.15	0	-0.509	0.459	-0.257	-0.065
DE72	54	0	12.12	100	-0.961	-0.631	0.037	-0.153
DE65	40	0	6.25	0	-0.749	0.699	-0.346	0.032
HG87	53	0	5.18	0	-0.426	-0.406	-0.355	0.429
HG88	37	1	1.09	100	-0.566	-0.596	-0.352	-0.336
AB22	37	0	5.8	90	-0.42	-0.286	-0.09	-0.048
HG91	30	1	1.03	0	-0.499	-0.402	0.181	0.143
HG92	39	1	3.36	80	-0.465	-0.533	-0.019	0.019
KH11	45	1	1.62	50	-0.189	-0.309	-0.152	0.918
KH20	30	1	4.7	70	-0.739	0.093	-0.214	-0.025
SF67	48	1	1.98	0	-0.601	-0.177	-0.2	0.108
LD44	33	1	1.4	0	0.786	-0.164	-0.144	0.027
AA04	41	0	13	50	I - I = 0	Continuo	is (into	rval)
AA01	43	0	12.53	80			us (IIILE	i vai)
GL73	52	1	2.13	0	1 2 = F	Binary		
AA10	49	0	11.16	80	_	-		
HG86	54	0	5.89	50	-3 = (Ordinal		
DE62	40	0	6.97	50	_			
AB26	41	0	8.17	10	4 = [Vominal		
SF57	41	1	2	0	-0.400	- U.200	-U.Z41	- U.U32
DE61	45	0	13.42	100	-1.173	-0.887	-0.058	0.021

Example: Gene expression microarray data (samplexprs.csv)

Resources for R Graphics

 CRAN Task View: Dynamic Visualizations and Interactive Graphics

```
https://CRAN.R-
project.org/view=DynamicVisualizations
```

- R Graphics 2nd Edition
 https://www.stat.auckland.ac.nz/~paul/RG2e/
- ggplot2 https://ggplot2.tidyverse.org/
- Cookbook for R graphs
 http://www.cookbook-r.com/Graphs/

Univariate data (I dimension)

Distributions

- The most basic statistical summary of a list of numbers is it's distribution.
- The simplest way to think of a distribution is as a compact description of many numbers.
 - For example, we have measured gene expression intensities of all patients in the study.

Displaying distributions

- Stem-and-leaf plot
- q-q plot
- Histogram
- Box plot
- Bar chart
- Pie chart

Stem-and-leaf plot

For data x_1, x_2, \dots, x_n ,

- 1. Divide each number x_i into two parts: a **stem**, consisting of one or more of the leading digits and a **leaf**, consisting of the remaining digit.
- 2. List the stem values in a vertical column.
- 3. Record the leaf for each observation beside its stem.
- **4.** Write the units for stems and leaves on the display.
- Displaying the relative density and shape of the data, giving the reader a quick overview of distribution.
- Retain (most of) the raw numerical data. Also useful for highlighting outliers and finding the mode.

J00129 age 52 -0.79550 -0.50954 -0.96140 -0.749-0.42653 37 -0.56637 -0.4230 -0.49939 -0.46545 -0.18930 -0.73948 -0.60133 0.786 41 -0.81943 -0.4481.206 52 49 -0.39154 -0.23440 -0.7541 -0.299-0.45545 -1.17348 -0.72148 -0.41644 -0.68838 -0.35251 -0.73448 -0.112-0.91936

Stem-and-leaf plot

```
The decimal point is 1 digit(s) to the right of the |
   88
   00234
   677788889999
   001111111112333444
   55555666678888888999
                             age
   001222222333444444444
The decimal point is at the |
-1 I
    321000
    444444433221
    01
                             100129
    689
```

RMD_example 2.2

Quantile

• The $(\frac{p}{100})$ -th quantile (or the p-th percentile) of a list of a distribution x is defined as the number q that is bigger than p% of numbers

$$\Pr(x \le q) = \frac{p}{100}$$

For example, the 50-th percentile is the median.

q-q plot

- "q" stands for quantile
- A graphical method for comparing two probability distributions by plotting their quantiles against each other

 If the two distributions being compared are similar, the points in the q-q plot will approximately lie on the line y = x

q-q plot

age J00129

RMD_example 2.3

Histogram

To construct a histogram for continuous data, we must divide the range of the data into intervals, which are usually called class intervals, cells, or bins. If possible, the bins should be of equal width to enhance the visual information in the histogram.

Data visualization with ggplot2

- ggplot2 is a powerful data exploration and visualization package that can create graphics in R.
- ggplot2 = grammar of graphics
- ggplot2 cheat sheet:

https://rstudio.github.io/cheatsheets/html/data-visualization.html

- The idea of the "Grammar of Graphics" is to break the graph into components and handle the components of a graph separately.
- The ggplot2 package contains a set of functions that allow us to build the features of the graph in a series of layers for versatility and control.

- The main plotting functions in ggplot2:
 - ggplot() = create a "grammar of graphics" (gg) plot object
- Compared to functions in base R, the ggplot2
 package can create elegant and complex plots. It
 can highly improve the quality and aesthetic of your
 graphs.

Learning ggplot2

• Example:

```
samplexprs %>%
ggplot(aes(x=J00129)) +
geom_histogram(aes(y=after_stat(density)), binwidth=0.05) +
geom_density(col="#00BFC4") +
xlab("J00129 gene expression intensity ratios") +
ggtitle("Histogram of J00129 gene expression")
```

- The first step in learning ggplot2 is to be able to break a graph apart into components.
- The main three components to note are:
 - I. Data: The samplexprs in the example. We refer to this as the data component.
 - 2. **Geometry**: The plot in the example is a histogram. This is referred to as the **geometry** component. Other possible geometries are scatter plots, smooth densities, qq-plots, and boxplots.
 - 3. Aesthetic mapping: The J00129 values and plot attributes (x and y variables) are used to display the histogram. These are the aesthetic mappings component. How we define the mapping depends on what geometry we are using.

- We also note that:
 - 4. Labels: a title, a legend, and the style.

Construct the ggplot2 plot piece by piece:
 RMD_example 2.5

Histogram

Display a smooth density estimate

RMD_example 2.4

Quartile

- First quartile (QI) = 25-th percentile
- Second quartile (Q2) = 50-th percentile
- Third quartile (Q3) = 75-th percentile
- Interquartile range (IQR) = |Q3 − Q1|

Boxplot

The boxplot describes center, spread, departure from symmetry, and identification of observations that lie unusually far from the bulk of the data.

Boxplot

• RMD_example 2.5

ERp

Bar chart

For categorical data

Pie chart

For categorical data with proportions

Bivariate data (2 dimensions)

Example

- In a jar, we have 4 green balls, 3 blue balls and 2 red balls.
- We draw 2 balls from the jar.
- When sampling with and without replacement, what are the probabilities obtaining two green balls?

Multiple random variables

- We always consider multiple random variables at once.
- The ball drawing example
 - $X_1 = 1, 2 \text{ or } 3$ if the first ball is green, blue or red, respectively. X_2 represents the color for the second ball.
 - We are interested in $Pr(X_1 = 1, X_2 = 1)$.

Joint and marginal distributions

- Let X and Y be discrete random variables.
 - Joint distribution:

$$P_{X,Y}(x,y) = \Pr(X = x \text{ and } Y = y)$$

$$\Pr(a \le X \le b, c \le Y \le d) = \sum_{x=a}^{b} \sum_{y=c}^{d} P_{X,Y}(x,y)$$

• Marginal distributions:

$$P_X(x) = \Pr(X = x) = \sum_{y} P_{X,Y}(x,y)$$

$$P_Y(y) = \Pr(Y = y) = \sum_{x} P_{X,Y}(x,y)$$

Ball drawing example

 When sampling with replacement, the joint and marginal distributions of X_1 and X_2

	P_{X_1,X_2}		P_{X_1}		
	I	0.19849	0.14713	0.09815	0.44377
X_1	2	0.14865	0.10986	0.07527	0.33378
	3	0.09882	0.07388	0.04975	0.22245
	P_{X_2}	0.44596	0.33087	0.22317	

• When sampling without replacement, the joint and marginal distributions of X_1 and X_2

	P_{X_1,X_2}		P_{X_1}		
		0.16810	0.16719	0.10972	0.44501
X_1	2	0.16609	0.08259	0.08424	0.33292
	3	0.11083	0.08274	0.02850	0.22207
	P_{X_2}	0.44502	0.33252	0.22246	

Independence

• Random variables X and Y are independent if:

$$P_{X,Y}(x,y) = P_X(x)P_Y(y)$$

In other words/symbols:

$$Pr(X = x \text{ and } Y = y) = Pr(X = x) Pr(Y = y)$$

Define the conditional probability

$$P_{X|Y}(x|y) = \Pr(X = x|Y = y)$$

If X and Y are independent, then

$$P_{X|Y}(x|y) = P_X(x)$$

Ball drawing example

 When we sample with replacement, two balls' results are independent.

		X_2				
	$P_{X_1} \times P_{X_2}$		2	3		
X_1		0.19790	0.14683	0.09904		
	2	0.14885	0.11044	0.07449		
	3	0.09920	0.07360	0.04964		

 In sampling without replacement, two balls' results are not independent.

		X_2				
	$P_{X_1} \times P_{X_2}$		2	3		
X_1		0.19804	0.14797	0.09900		
	2	0.14816	0.11070	0.07406		
	3	0.098826	0.07384	0.04940		

Continuous random variables

• Continuous random variables have joint density function, say $f_{X,Y}(x,y)$, and

$$\Pr(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x, y) dy dx$$

The marginal density functions are obtained by integration:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Functions of independent random variables

• Let X_1, \dots, X_N be independent random variables with means $E(X_i) = \mu_i$ and variances $var(X_i) = \sigma_i^2, i = 1, \dots, N$. Then the linear combination $Y = a_1 X_1 + \dots + a_N X_N$

has mean

$$E(Y) = a_1 \mu_1 + \dots + a_N \mu_N$$

variance

$$var(Y) = a_1^2 \sigma_1^2 + \dots + a_N^2 \sigma_N^2$$

What if the random variables are not independent?

The covariance between random variables X and Y is defined as

$$cov(X, Y) = E\{ [X - E(X)][Y - E(Y)] \}$$

• The (Pearson) correlation between X and Y is

$$\rho = \operatorname{corr}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}$$

• If $Pr(X = x_i, Y = y_i) = 1/N$ (each value takes equal probability), the correlation is

$$r = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

which is the sample correlation.

ullet ho (and r) measures the strength of the **linear** relationship between X and Y

- ρ (and r) assumes values between -1 and 1:
 - \bullet -1: perfect negative linear relationship
 - 0: no linear relationship
 - +1: perfect positive linear relationship
- The value of ρ (and r) is independent of the units used to measure the variables.
- ρ^2 (and r^2) is not a measure of the magnitude of the slope of the regression line for example,

- Notice that when two random variables X and Y are independent, then corr(X,Y)=0. However, for two random variables with corr(X,Y)=0, it's not necessarily true that X and Y are independent.
- The Pearson correlation is meaningful when the random variables are continuous. For discrete random variables, other measurements (e.g., Chisquare statistic, Kendall's tau) are used.

Functions of non-independent random variables

The linear combination

$$Y = a_1 X_1 + \dots + a_N X_N$$

has mean

$$E(Y) = a_1 \mu_1 + \dots + a_N \mu_N$$

variance

$$\operatorname{var}(Y) = a_1^2 \sigma_1^2 + \dots + a_N^2 \sigma_N^2 + 2 \sum_{i < i} \sum a_i a_j \operatorname{cov}(X_i, X_j)$$

Random sample

• Independent random variables X_1, \dots, X_N with the same distribution (i.e., $E(X_i) = \mu$, $var(X_i) = \sigma^2, \forall i$) are called **i.i.d.** (**i**ndependently and **i**dentically **d**istributed) or a **random sample**.

Displaying correlations

- Scatterplot
- Box plots
- Stacked bar chart
- Faceting bar charts
- Stacked area chart
- Time series plot

-0.919

-0.704

J00129

0

exprs_sig.csv

4741 items (genes), 78 variables (patients)

	FG80	SF58	DE72	DE65
J00129	-0.795	-0.509	-0.961	-0.749
Contig29982_RC	-0.387	0.459	-0.631	0.699
Contig42854	0.199	-0.257	0.037	-0.346
Contig42014_RC	-0.247	-0.065	-0.153	0.032
Contig27915_RC	0.176	0.129	0.144	0.3
Contig20156_RC	-0.129	0.009	-0.202	-0.025
Contig50634_RC	-0.111	0.021	0.192	-0.067
Contig42615_RC	0.119	0	-0.19	-0.226
Contig56678_RC	0.231	-0.649	-0.086	-0.018
Contig48659_RC	0.118	0.058	-0.052	-0.278
Contig49388_RC	0.035	-0.038	0.055	0.13
Contig1970_RC	-0.482	-0.105	0.013	-0.338
Contig26343_RC	0.015	0.053	-0.123	0.038
Contig53047_RC	-1.389	-0.601	-1.378	-0.007
Contig43945_RC	-0.011	0.005	0.113	-0.277
Contig19551	-0.092	0.295	-0.806	-1.106

AA01 SF58 J00129 -0.448-0.509-0.2960.459 Contig299 Contig428 -0.1-0.257Contig420 -0.177-0.065 Contig279 -0.107 0.129 Contig201 -0.11 0.009 Contig506 -0.095 0.021 Contig426 -0.076-0.649Contig566 -0.134Contig486 -0.140.058 Contig493 0.006 -0.038Contig197 0.111 -0.105Contig263 -0.2360.053 Contig530 -0.866-0.601Contig439 0.126 0.005 Contig195 -0.692 0.295 0.132 0.006 Contig104 0.095 -0.25Contig472 Contig207 0.252 -0.384AL157502 0.139 -0.185-0.097 -0.775 Contig366 D31887 0.113 -0.04AB033006 -0.2090.608 AB033007 0.107 -0.13M83822 0.098 0.046 AB033025 0.11 -0.127AF114264 0.096 -0.108Contig406 0.305 -0.0080.055 -0.142Contig173

Scatterplot for big data

For large datasets with overplotting

Scatterplot for big data

- Alpha aesthetic makes the points more transparent
- Heatmap shows the density
 - RMD_example 2.10

J00129 ERp 100 -0.795-0.5090 100 -0.961-0.7490 -0.4260 -0.566100 -0.4290 -0.4990 80 -0.465-0.18950 70 -0.739-0.6010 0.786 0 50 -0.81980 -0.4481.206 0 80 -0.39150 -0.234-0.75 50 10 -0.2990 -0.455100 -1.17390 -0.721100 -0.41650 -0.68880 -0.352-0.734100 -0.11230 -0.919

Box plots for different ERp

Stacked bar chart

For proportions

RMD_example 2.12

_ - ×

factor(metastases)

Faceting bar charts

Bar charts of ERp for different metastases

Stacked area chart

For counts

For proportions

Treat ERp as continuous!

J00129 age metastases -0.79550 -0.509-0.9610 -0.7490 -0.42637 -0.566-0.420 30 -0.499-0.46545 -0.18930 -0.739-0.601J00129 0.786 0 -0.8190 43 -0.4481.206 52 0 49 -0.39154 -0.2340 -0.750 -0.2990 -0.455-1.1730 0 -0.72148 -0.4160 44 -0.68838 -0.352-0.734-0.112-0.91936

Time series plot

- Connect observations, ordered by x value
- Measurements are plotted as a time series
- See trends, cycles over time

Multivariate data (≥3 dimensions)

Displaying association

- 3d scatterplot
- Lattice in the 3rd dim
- Map the 3rd dim to colors
- Lay out panels in the 3rd dim
- Scatterplot matrices
- Heatmap

age	J00129	Contig29982_RC
52	-0.795	-0.387
50	-0.509	0.459
54	-0.961	-0.631
40	-0.749	0.699
53	-0.426	-0.406
37	-0.566	-0.596
37	-0.42	-0.286
30	-0.499	-0.402
39	-0.465	-0.533
45	-0.189	-0.309
30	-0.739	0.093
48	-0.601	-0.177
33	0.786	-0.164
41	-0.819	-0.267
43	-0.448	-0.296
52	1.206	-0.353
49	-0.391	-0.31
54	-0.234	-0.404
40	-0.75	-0.316
41	-0.299	-0.137
41	-0.455	-0.288
45	-1.173	-0.887
48	-0.721	-0.527
48	-0.416	-0.633
44	-0.688	-0.659
38	-0.352	0.088
51	-0.734	-0.493
48	-0.112	-0.67
36	-0.919	-0.704

3d scatterplot

ERp	J00129	Contig29982_RC
100	-0.795	-0.387
0	-0.509	0.459
100	-0.961	-0.631
0	-0.749	0.699
0	-0.426	-0.406
100	-0.566	-0.596
90	-0.42	-0.286
0	-0.499	-0.402
80	-0.465	-0.533
50	-0.189	-0.309
70	-0.739	0.093
0	-0.601	-0.177
0	0.786	-0.164
50	-0.819	-0.267
80	-0.448	-0.296
0	1.206	-0.353
80	-0.391	-0.31
50	-0.234	-0.404
50	-0.75	-0.316
10	-0.299	-0.137
0	-0.455	-0.288
100	-1.173	-0.887
90	-0.721	-0.527
100	-0.416	-0.633
50	-0.688	-0.659
80	-0.352	0.088
5	-0.734	-0.493
100	-0.112	-0.67
30	-0.919	-0.704

Lattice in the 3rd dim

Map the 3rd dim to colors

Lay out panels in the 3rd dim

Scatterplot matrices

Color in metastases
Add smooth lines

Heatmap

A graphical representation of data where the individual values contained in a matrix are represented as colors. [wikipedia]

欄1	FG80	SF58	DE72	DE65	HG87	HG88	AB22	HG91
J00129	-0.795	-0.509	-0.961	-0.749	-0.426	-0.566	-0.42	-0.499
Contig299	-0.387	0.459	-0.631	0.699	-0.406	-0.596	-0.286	-0.402
Contig428	0.199	-0.257	0.037	-0.346	-0.355	-0.352	-0.09	0.181
Contig420	-0.247	-0.065	-0.153	0.032	0.429	-0.336	-0.048	0.143
Contig279	0.176	0.129	0.144	0.3	-0.036	0.037	0.291	-0.268
Contig201	-0.129	0.009	-0.202	-0.025	0.191	-0.147	-0.166	0.849
Contig506	-0.111	0.021	0.192	-0.067	0.091	-0.081	0.264	0
Contig426	0.119	0	-0.19	-0.226	0.2	0.037	0.026	0.268
Contig566	0.231	-0.649	-0.086	-0.018	-1.23	0.383	0.253	-1.198
Contig486	0.118	0.058	-0.052	-0.278	-0.058	0.049	0.127	-0.188
Contig493	0.035	-0.038	0.055	0.13	-0.303	0.383	-0.352	-0.31
Contig197	-0.482	-0.105	0.013	-0.338	-0.465	-0.161	0.52	-0.387
Contig263	0.015	0.053	-0.123	0.038	-0.175	-0.042	-0.012	0.226
Contig530	-1.389	-0.601	-1.378	-0.007	0.63	-1.082	-1.264	0.346
Contig439	-0.011	0.005	0.113	-0.277	-0.258	-0.024	-0.333	0.331
Contig195	-0.092	0.295	-0.806	-1.106	-0.201	0.071	0.272	-0.57
Contig104	-0.058	0.006	0.132	-0.216	-0.169	-0.188	0.176	0.374
Contig472	-0.548	-0.25	0.456	-0.967	-0.544	-0.447	-0.628	-0.367
Contig207	-0.106	-0.384	0.296	-1.087	-0.054	0.093	-0.111	0.628
AL157502	0.363	-0.185	-0.179	0.33	-0.355	-0.12	-0.115	-0.61
Contig366	-0.139	-0.775	0.244	-1.806	-1.207	-0.252	-0.635	-0.958
D31887	-0.061	-0.04	0.067	-0.008	0.13	-0.069	-0.049	0.315
AB033006	0.2	0.608	-0.298	-0.118	0.09	0.27	-0.156	0.191
AB033007	0.041	-0.13	0.178	0.139	0.154	0.363	0.227	-0.037
M83822	0.037	0.046	0.023	-0.154	-0.398	-0.137	0.152	-0.351
AB033025	-0.48	-0.127	0.156	-0.567	0.294	-0.263	-0.007	-0.256
AF114264	0.091	-0.108	0.221	0.337	0.088	-0.238	0.109	-0.212
Contig406	-0.159	-0.008	0.415	-0.373	-0.47	0.525	-0.129	-0.177
Contig173	0.084	-0.142			0.04	-0.149	-0.124	0.194
AB033034		0.076	0.059	0.117	0.329	-0.112	-0.006	0.089
AB033035	0.022	-0.019	-0.044	0.029	0.583	-0.076	-0.072	0.187

Heatmap

A graphical representation of data where the individual values contained in a matrix are represented as colors. [wikipedia]

Heatmap

With different color schemes

