1 Famille orthogonale/orthonormée

Définition 1

Soient (E, <, >) préhilbertien réel et $X = \{x_1, ..., x_n\} \subset E$

On dit que X est une famille orthogonale de E si pour tout $(i, j) \in \{1, \dots, n\}^2$,

$$i \neq j \Longrightarrow \langle x_i, x_i \rangle = 0$$

On dit que X est une famille orthonorm'ee si pour tout $(i,j) \in \{1,\ldots,n\}^2$,

$$\langle x_i, x_i \rangle = \delta_{ij}$$

où
$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Proposition 1

Soient (E, <, >) euclidien et $\mathscr{B} = (e_1, ..., e_n)$ une base orthonormée de E. Alors pour tout $x \in E$,

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Proposition 2

Toute famille orthogonale de vecteurs non nuls d'un espace préhilbertien réel est libre.

1.1 Théorème de Gram-Schmidt

Théorème 1 (Gram-Schmidt)

Soient (E, <, >) un espace euclidien et $\mathscr{B} = (e_1, ..., e_n)$ une base de E.

Alors il existe une base orthogonale $\mathscr{O} = (\varepsilon_1, ..., \varepsilon_n)$ de E telle que $\forall k \in \{1, ..., n\}, \ \varepsilon_k \in \text{Vect}(e_1, ..., e_k)$.