, Ficha 1	a
/ Especilicações	0
11 a) 6 algoritmo c, colora q o quociente La divisão do valares inficiais de ce ; y e em n o resto	
b) O algoritamo e, coloca em 2 o valor do nosto da devesar dos valores iniciais de ce; y, caso ele exista	
el la algaitance, coloca em ce o maximo des valores indicais de ce e y.	
d) ? (raiz qua dra da de ce com mar gem de euro eo)	
el 10 algoritmo c coloca em p o indice da elemento de memo vala lontaial do array emicial.	
2 4 (pré-condição: ce==co n y = = 40	
D) (pri condição) == 40 x ceo	
() (pré-condiçõe y== y0 70 n ce== ce0 n 2 == y0 ce0	
el (pri-comd°cpic: Vosin A [i] == a? A B[i] == bi poi-comdicat: OSRIN A (az # bx V x=N) A	
poi - comdicat : O S R (N A (a x # b x V x = N) A) Vosica a ? = = b?	
B (pré-condicae Voxien A [i] == ai A B [i] == bi	
po condição (∀osico aî≠bi Λ n=-1) V	
$\left(E_{0\leq i < N} a^{?} == b \cdot \Lambda \pi = i\right)$	
Diritalianda anno Cana Cana Cana Cana	

3) &	(pré-comdição V S1 [i] = 31? 1 S2 G] = 32; pos-comdição V S1 [i] = 31? 1 S2:=32; pos-comdição V S2:=32;
5)	(put - comdicate de la Salide » S1 [i] == >> 1: 1 2 == >
	poi - condicais 951 (lem (51)) S1 [1] == 52 [1-lem (51)] lem (51) (1 clem (51) + lem (52))
	pos-condicac : ociclement S1 [i] == >1: 1 Vocilement S2 [i] - 32: pos-condicac : ociclement (lem (s1), lem (s2)) A [
	poi condicace e m = min (lem(s1), lem(s2)) Λ [$\forall o_{cir} m D : i = = D : \Lambda (m-1) = = i \Lambda lem(s1) \neq lem(s2) \Lambda$ $\lambda = = 9 - lem(D1)$
sac Egerais -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(pré-condicate: Vozi (1em(s)) SI [i] == SII 1 Voçi (1em(s)) S2 [i]==121'
	(Pos-condicae: Vosi(len(st)) VP(K (1+len(sz)) S1 (1+k) = S2 [H-i] 1 1=-1)
	$ \begin{array}{c} \sqrt{\exists (1+k)==50 \ [R-i]} \\ \sqrt{\exists (1+k)=50 \ [R-i]} \\ \exists (1+k)=50 \ [R-$
	Digitalizada com CamScannor

						6						
		3										
	Ы	a _	(I	200000000000000000000000000000000000000		دا						51
	4 4 4 4	355884	ii.	Y 16 8 4 2 1 0	U4:11	Prese		10 10 10				Estab
	1 4 9	10 15 20 25	Y > 0	7 0 0 0 0 0 0 0	Sade	oliamento vação	5 50	\$ 0 4 10 3 20 2 30	yz			e lo cine m-lo
	P 1 3 5 7 9	1 2 3 4 5	8 3		{ ± 83	S I			(I			En:
	Tz	T=	n : ce	10 20 40 80 160	7503	98 ys			= (e =:			- com li cão
		Ce == (00	y + n	15 7 3 1		2 / 71	7		ceo 98			7 7=0
Digitalizada	x = f 88 (. 88 A		A 0 10 30 70 150	i pos con	(y:21=0) = ua; y:	\$ 5 7 3		044 < 40	9 pos - con	(e) y = y-	5 13
a com CamSca	p = 2 i + 1 i = = (a = 1) x =	= 3/0 81				(y==-1, x . x + 0			88 n= (Yo		1 13	
anner	(a ²)	o.1 s (a)				1:1813			-4)×(0)			(3)
			1									1

Digitalizada com CamScanner

Digitalizada com CamScanner