

## planetmath.org

Math for the people, by the people.

## differential propositional calculus : appendix 4

Canonical name Differential Propositional Calculus Appendix 4

Date of creation 2013-03-22 18:09:25 Last modified on 2013-03-22 18:09:25 Owner Jon Awbrey (15246) Last modified by Jon Awbrey (15246)

Numerical id 7

Author Jon Awbrey (15246)

Entry type Application
Classification msc 53A40
Classification msc 39A12
Classification msc 34G99
Classification msc 03B44
Classification msc 03B05
Classification msc 03B42

Related topic DifferentialLogic

Related topic MinimalNegationOperator Related topic PropositionalCalculus Related topic ZerothOrderLogic

## Contents

0.1 Detail of Calculation for the Difference Map

## Detail of Calculation for D f = E f + f

|                              | $\mathrm{E} f _{\mathrm{d} x \mathrm{d} y}$                                                  | $\mathrm{E} f _{\mathrm{d} x \ (\mathrm{d} y)}$                                                                    | $\mathrm{E} f _{(\mathrm{d} x) \ \mathrm{d} y}$                                                                      | $\mathrm{E} f _{(\mathrm{d} x)(\mathrm{d} y)}$                                                                                                           |
|------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | $+ f _{\mathrm{d}x \ \mathrm{d}y}$                                                           | $+ f _{\mathrm{d}x} (\mathrm{d}y)$                                                                                 | $+ f _{(\mathrm{d}x)} \mathrm{d}y$                                                                                   | $+ f _{(\mathrm{d} x)(\mathrm{d} y)}$                                                                                                                    |
|                              | $= Df _{\mathrm{d}x \ \mathrm{d}y}$                                                          | $= Df _{\mathrm{d}x} (\mathrm{d}y)$                                                                                | $= D f _{(\mathrm{d}x)}  \mathrm{d}y$                                                                                | $= Df _{(\mathrm{d}x)(\mathrm{d}y)}$                                                                                                                     |
| <i>c</i>                     |                                                                                              |                                                                                                                    |                                                                                                                      | $-J(\alpha x)(\alpha y)$                                                                                                                                 |
| $  f_0  $                    | 0 + 0 = 0                                                                                    | 0 + 0 = 0                                                                                                          | 0 + 0 = 0                                                                                                            | 0 + 0 = 0                                                                                                                                                |
|                              | x y dx dy                                                                                    | x (y) dx (dy)                                                                                                      | (x) y (dx) dy                                                                                                        | $(x)(y) (\operatorname{d} x) (\operatorname{d} y)$                                                                                                       |
| $  f_1  $                    | + (x)(y) dx dy                                                                               | + (x)(y) dx (dy)                                                                                                   | + (x)(y) (dx) dy                                                                                                     | + (x)(y) (dx) (dy)                                                                                                                                       |
|                              | = ((x,y)) dx dy $x (y) dx dy$                                                                | $ = (y) \operatorname{d} x (\operatorname{d} y) $ $ x y \operatorname{d} x (\operatorname{d} y) $                  |                                                                                                                      | $ \begin{array}{c c} = & 0 & (\operatorname{d} x) & (\operatorname{d} y) \\ \hline & (x) & y & (\operatorname{d} x) & (\operatorname{d} y) \end{array} $ |
| $  f_2  $                    | (x) y dx dy<br>+ $(x) y dx dy$                                                               | +(x) y dx (dy)                                                                                                     | + (x)(y) (dx) dy                                                                                                     | +(x) y (dx) (dy)                                                                                                                                         |
|                              | = (x,y) dx dy                                                                                | = y dx (dy)                                                                                                        | = (x) (dx) dy                                                                                                        | $= 0 (\operatorname{d} x) (\operatorname{d} y)$                                                                                                          |
|                              | (x) $y$ $dx$ $dy$                                                                            | (x)(y) dx (dy)                                                                                                     | x y (dx) dy                                                                                                          | x (y) (dx) (dy)                                                                                                                                          |
| $  f_4  $                    | + x (y) dx dy                                                                                | + x (y) dx (dy)                                                                                                    | + x (y) (dx) dy                                                                                                      | + x (y) (dx) (dy)                                                                                                                                        |
|                              | = (x,y) dx dy                                                                                | $ = \underbrace{(y)  \mathrm{d} x  (\mathrm{d} y)}_{(x)  y  \mathrm{d} x  (\mathrm{d} y)} $                        | $ = x (\operatorname{d} x) \operatorname{d} y  x (y) (\operatorname{d} x) \operatorname{d} y $                       | $ = 0  (\operatorname{d} x) \ (\operatorname{d} y) $ $ x \ y \ (\operatorname{d} x) \ (\operatorname{d} y) $                                             |
| $  f_8  $                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                       | $\begin{pmatrix} x & y & dx & (dy) \\ + & x & y & dx & (dy) \end{pmatrix}$                                         | $\begin{pmatrix} x & (y) & (\mathrm{d} x) & \mathrm{d} y \\ + & x & y & (\mathrm{d} x) & \mathrm{d} y \end{pmatrix}$ | $\begin{array}{c c} x & y & (\operatorname{d} x) & (\operatorname{d} y) \\ + x & y & (\operatorname{d} x) & (\operatorname{d} y) \end{array}$            |
| $\parallel J^8 \parallel$    | = ((x,y)) dx dy                                                                              | = y dx (dy)                                                                                                        | = x (dx) dy                                                                                                          | = 0 (dx) (dy)                                                                                                                                            |
|                              | x dxdy                                                                                       | x dx (dy)                                                                                                          | (x) (dx) dy                                                                                                          | $(x) (\operatorname{d} x) (\operatorname{d} y)$                                                                                                          |
| $\parallel f_3 \mid$         | + (x) dx dy                                                                                  | + (x) dx (dy)                                                                                                      | + (x) (dx) dy                                                                                                        | + (x) (dx) (dy)                                                                                                                                          |
| _                            | = 1 dx dy                                                                                    | = 1 dx (dy)                                                                                                        | $= 0 (\operatorname{d} x) \operatorname{d} y$                                                                        | $= 0 (\operatorname{d} x) (\operatorname{d} y)$                                                                                                          |
| $  f_{12}  $                 | (x) dx dy                                                                                    | (x) dx (dy)                                                                                                        | x (dx) dy                                                                                                            | x (dx) (dy)                                                                                                                                              |
| $\parallel J_{12} \parallel$ | $\begin{array}{ccccc} + & x & d x & d y \\ = & 1 & d x & d y \end{array}$                    | $\begin{array}{cccc} + & x & \mathrm{d} x & (\mathrm{d} y) \\ & = & 1 & \mathrm{d} x & (\mathrm{d} y) \end{array}$ | + x (dx) dy = 0 (dx) dy                                                                                              | $\begin{array}{cccc} & + x & (\operatorname{d} x) & (\operatorname{d} y) \\ & = 0 & (\operatorname{d} x) & (\operatorname{d} y) \end{array}$             |
|                              | (x,y) dx dy                                                                                  | $\frac{-1 \operatorname{d} x \operatorname{d} y}{((x,y)) \operatorname{d} x \operatorname{d} y}$                   | $\frac{- \circ (\operatorname{d} x) \operatorname{d} y}{((x,y)) (\operatorname{d} x) \operatorname{d} y}$            | (x,y) (dx) (dy)                                                                                                                                          |
| $\parallel f_6 \mid$         | + (x,y) dx dy                                                                                | + (x,y) dx (dy)                                                                                                    | + (x,y) (dx) dy                                                                                                      | + (x,y) (dx) (dy)                                                                                                                                        |
|                              | = 0 dx dy                                                                                    | = 1 $dx (dy)$                                                                                                      | $=$ 1 $(\operatorname{d} x) \operatorname{d} y$                                                                      | $= 0 (\operatorname{d} x) (\operatorname{d} y)$                                                                                                          |
| · ·                          | ((x,y)) dx dy                                                                                | (x,y) dx (dy)                                                                                                      | (x,y) $(dx)$ $dy$                                                                                                    | $((x,y)) (\operatorname{d} x) (\operatorname{d} y)$                                                                                                      |
| $  f_9  $                    | + ((x,y)) dx dy                                                                              | + ((x,y)) dx (dy)                                                                                                  | + ((x,y)) (dx) dy                                                                                                    | + ((x,y)) (dx) (dy)                                                                                                                                      |
|                              |                                                                                              |                                                                                                                    |                                                                                                                      |                                                                                                                                                          |
| $  f_5  $                    | y d x d y + (y) d x d y                                                                      | (y) dx (dy) + (y) dx (dy)                                                                                          | $\begin{pmatrix} y & (\mathrm{d}x) & \mathrm{d}y \\ + & (y) & (\mathrm{d}x) & \mathrm{d}y \end{pmatrix}$             | $\begin{pmatrix} y & (\operatorname{d} x) & (\operatorname{d} y) \\ + & (y) & (\operatorname{d} x) & (\operatorname{d} y) \end{pmatrix}$                 |
| $\parallel J_{5} \parallel$  | $= \begin{array}{cccccccccccccccccccccccccccccccccccc$                                       | = 0 dx (dy)                                                                                                        | = 1 (dx) dy                                                                                                          | = 0 (dx) (dy)                                                                                                                                            |
|                              | (y) dx dy                                                                                    | y dx (dy)                                                                                                          | $(y) (\operatorname{d} x) \operatorname{d} y$                                                                        | $y (\operatorname{d} x) (\operatorname{d} y)$                                                                                                            |
| $\mid f_{10} \mid$           | + y dx dy                                                                                    | + y dx (dy)                                                                                                        | + y (dx) dy                                                                                                          | $+ y (\operatorname{d} x) (\operatorname{d} y)$                                                                                                          |
|                              | = 1 dx dy                                                                                    | = 0 dx (dy)                                                                                                        | $= 1 (\operatorname{d} x) \operatorname{d} y$                                                                        | = 0 (dx) (dy)                                                                                                                                            |
| f                            | ((x)(y)) dx dy                                                                               | ((x) y) dx (dy)                                                                                                    | (x (y)) (dx) dy                                                                                                      | $(x \ y) \ (d \ x) \ (d \ y)$                                                                                                                            |
| $  f_7  $                    | $ \begin{vmatrix} + & (x \ y) & d \ x \ d \ y \\ = & ((x,y)) & d \ x \ d \ y \end{vmatrix} $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                               | $ \begin{vmatrix} + & (x \ y) & (d \ x) \ d \ y \\ = & x & (d \ x) \ d \ y \end{vmatrix} $                           | $\begin{vmatrix} + (x \ y) & (d \ x) & (d \ y) \\ = 0 & (d \ x) & (d \ y) \end{vmatrix}$                                                                 |
|                              | $ \begin{array}{c c} - (x,y) & dx & dy \\ \hline ((x) & y) & dx & dy \end{array} $           | $\frac{-g \operatorname{d} x \operatorname{d} y}{((x)(y)) \operatorname{d} x \operatorname{d} y}$                  | $\begin{array}{c c} - x & (dx) dy \\ \hline (x y) & (dx) dy \end{array}$                                             | $\frac{-\operatorname{d}(\operatorname{d}x)\operatorname{d}y)}{(x\ (y))\ (\operatorname{d}x)\ (\operatorname{d}y)}$                                      |
| $\parallel f_{11} \parallel$ | +(x(y)) dx dy                                                                                | + (x(y)) dx (dy)                                                                                                   | + (x (y)) (dx) dy                                                                                                    | + (x (y)) (dx) (dy)                                                                                                                                      |
| , I                          | = (x,y) dx dy                                                                                | = $(y)$ $dx (dy)$                                                                                                  | = x (dx) dy                                                                                                          | $= 0  (\operatorname{d} x) (\operatorname{d} y)$                                                                                                         |
|                              | (x(y)) dx dy                                                                                 | $(x \ y) \ dx \ (dy)$                                                                                              | ((x)(y)) (dx) dy                                                                                                     | ((x) y) (dx) (dy)                                                                                                                                        |
| $  f_{13}  $                 | $ \begin{vmatrix} + ((x) \ y) \ dx \ dy \\ = (x,y) \ dx \ dy \end{vmatrix} $                 | $\begin{array}{cccc} & + & ((x) & y) & d & x & (d & y) \\ & = & y & d & x & (d & y) \end{array}$                   | $ \begin{vmatrix} + & ((x) & y) & (d & x) & d & y \\ = & (x) & (d & x) & d & y \end{vmatrix} $                       | $\begin{vmatrix} +((x) y) (dx) (dy) \\ = 0 (dx) (dy) \end{vmatrix}$                                                                                      |
| 1                            | (x y) dx dy                                                                                  | $\begin{array}{c c} - & g & dx & (dy) \\ \hline & (x & (y)) & dx & (dy) \end{array}$                               | $ \begin{array}{c c} - & (x) & (dx) & dy \\ \hline & ((x) & y) & (dx) & dy \end{array} $                             | $\begin{array}{c c} - & (\operatorname{d} x) (\operatorname{d} y) \\ \hline & ((x)(y)) (\operatorname{d} x) (\operatorname{d} y) \end{array}$            |
| $  f_{14}  $                 | + ((x)(y)) dx dy                                                                             | + ((x)(y)) dx (dy)                                                                                                 | $+((x)(y))(\mathrm{d} x)\mathrm{d} y$                                                                                | $+((x)(y))(\operatorname{d} x)(\operatorname{d} y)$                                                                                                      |
|                              | = ((x,y)) dx dy                                                                              | = (y)  dx (dy)                                                                                                     | = (x) (dx) dy                                                                                                        | $= 0 \qquad (\operatorname{d} x) \ (\operatorname{d} y)$                                                                                                 |
| $f_{15}$                     | 1 + 1 = 0                                                                                    | 1 + 1 = 0                                                                                                          | 1 + 1 = 0                                                                                                            | 1 + 1 = 0                                                                                                                                                |
| , 10                         |                                                                                              | ·                                                                                                                  |                                                                                                                      | ·                                                                                                                                                        |
|                              |                                                                                              |                                                                                                                    |                                                                                                                      |                                                                                                                                                          |