3		processor has one general purpose register, the Accumulator (ACC), and several special pose registers.
	(a)	Complete the following description of the role of the registers in the fetch-execute cycle b writing the missing registers.
		The holds the address of the next instruction
		to be loaded. This address is sent to the
		The holds the data fetched from this address
		This data is sent to the
		decodes the instruction's opcode.
		The is incremented.
		[5

4 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction Opcode Operand		Evalenation		
		Explanation		
LDM	#n	Immediate addressing. Load the number n to ACC		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
STO	<address></address>	Store contents of ACC at the given address		
ADD	<address></address>	Add the contents of the given address to the ACC		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX)		
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>		
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>		
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>		
JMP	<address></address>	Jump to the given address		
IN		Key in a character and store its ASCII value in ACC		
OUT		Output to the screen the character whose ASCII value is stored in ACC		
END		Return control to the operating system		
# denotes	a denary numbe	er, e.g. #123		

The current contents of the main memory and selected values from the ASCII character set are:

Address	instruction
70	IN
	GMD 100

101

102

65

100

ASCII code table (selected codes only)

ASCII code	Character
65	A
66	В
67	С
68	D

(a) Complete the trace table for the program currently in main memory when the following characters are input:

A D

Do not trace the program any further when the third input is required.

Instruction	ACC	N	lemory address	i
address	ACC	100	101	102
		68	65	100

(b) Some bit manipulation instructions are shown in the table:

Instruction		Evalenation			
Opcode	Operand	Explanation			
AND	#n	Bitwise AND operation of the contents of ACC with the operand			
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>			
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand			
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>			
OR	#n	Bitwise OR operation of the contents of ACC with the operand			
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>			

<address> can be an absolute address or a symbolic address # denotes a denary number, e.g. #123

The contents of the memory address 300 are shown:

Bit Number	7	6	5	4	3	2	1	0
300	0	1	1	0	0	1	1	0

(i)	The contents of memory address 300 represent an unsigned binary integer.
	Write the denary value of the unsigned binary integer in memory address 300.
	[1]
(ii)	An assembly language program needs to test if bit number 2 in memory address 300 is a 1.
	Complete the assembly language instruction to perform this test.
	#4
(iii)	An assembly language program needs to set bit numbers 4 , 5 , 6 and 7 to 0 , but keep bits 0 to 3 with their existing values.
	Write the assembly language instruction to perform this action.
	[2]

Set	n uses a computer for work.
(a)	Complete the following descriptions of internal components of a computer by writing the missing terms.
	The transmits the signals to coordinate events based
	on the electronic pulses of the
	The carries data to the components, while the
	carries the address where data needs to be written to
	or read from.
	The performs mathematical operations and
	logical comparisons. [5]
(b)	Describe the ways in which the following factors can affect the performance of his laptop computer.
	Number of cores
	Clock speed
	[4]

6	(a)	There are two errors	s in the following	ragietar tranefar notatio	n for the fetch-execute cycle.
v	(a)	There are two entries	s iii ule lollowing	register transfer notatio	ii ioi liie ieloii-execule cycle.

1 MAR
$$\leftarrow$$
[PC]

3 MDR
$$\leftarrow$$
 [MAR]

4 CIR
$$\leftarrow$$
 [MDR]

Complete the following table by:

- · identifying the line number of each error
- describing the error
- writing the correct statement.

Line number	Description of the error	Correct statement

ACC	omputer system is designed using the basic von Neumann model.
(i)	Describe the role of the registers in the Fetch-Execute (F-E) cycle.
	[5]
(ii)	Describe when interrupts are detected in the F-E cycle and how the interrupts are handled.
	Detected
	Handled
	[5]
	(i)

(b)	Identify one factor that can affect the performance of the computer system and state how it impacts the performance.
	Factor
	Impact
	[2]

(c) The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Instru	ıction	Explanation					
Opcode	Operand	Explanation					
AND	#n	Bitwise AND operation of the contents of ACC with the operand					
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand					
OR	#n	Bitwise OR operation of the contents of ACC with the operand					
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end					
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end					
# denotes a d	enary number	, e.g. #123					

:5 a	denary number, e.g	. #123	1								
(i)	Complete the regis	ter to	show	the re	sult at	f ter the	e instr	uction	and	#2 is executed.	
	Register before:	0	1	1	0	1	1	0	1		
	Register after:										
										•	[1]
(ii)	Complete the regis	ter to	show	the re	sult af	ter the	e instr	uction	OR #	\$8 is executed.	
	Register before:	0	1	1	0	1	1	0	1		
	Register after:										
											[4]

(iii)	Complete the regis	ster to	show	the re	sult af	ter the	e opei	ration	LSL	#4 is ex	xecute	ed.
	Register before:	0	1	1	0	1	1	0	1			
										-		
										1		
	Register after:											

[1]

(d)	The status register contains condition flags.	
	Identify three condition flags that can be set in the status register.	
	1	
	2	
	3	[3]
		[-]

6	(a)	Complete the following sentences that describe parts of a processor in a Von Neumann model for a computer system.
		There are buses that transfer data between components in a computer system.
		The width of the determines the number of directly accessible memory locations.
		The sends signals on the to direct the operation of system components.
		pulses are used to synchronise the components on the motherboard. [5]
	(b)	Describe the stages of the fetch-execute (F-E) cycle.
		[5]

- 6 A processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).
 - (a) The table gives **three** assembly language instructions for loading data into the ACC. It also identifies the addressing mode used for each instruction.

	Instruction	Addressing mode
Α	LDM #193	Immediate
В	LDD 193	Direct
С	LDX 193	Indexed

	(1)	State the contents of the Accumulator after each of the instructions A, B and C are ru	
		A	
		_	
		В	
		C	
			[3
	(ii)	Name two other addressing modes.	
		1	
		2	[2
(b)	The	ACC is a general purpose register. The IX is a special purpose register.	
(b)	lder	ACC is a general purpose register. The IX is a special purpose register. In tify two other special purpose registers used in the fetch-execute cycle and description of the cycle.	ibe
(b)	lder thei	ntify two other special purpose registers used in the fetch-execute cycle and descr	
(b)	lder thei Reg	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle.	
(b)	Ider thei Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle.	
(b)	Ider thei Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle.	
(b)	Ider thei Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle.	
(b)	Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle. gister 1	
(b)	Reg Role Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description of the cycle. In the cycle in the cycle. In the cycle in the cycle in the cycle in the fetch-execute cycle and description of the cycle.	
(b)	Reg Role	ntify two other special purpose registers used in the fetch-execute cycle and description role in the cycle. gister 1	