Inteligência Artificial – ACH2016 Aula 19 – Redes Neurais

Norton Trevisan Roman (norton@usp.br)

23 de maio de 2019

Inspiração

O neurônio biológico

Inspiração

- O neurônio biológico
 - Um neurônio recebe sinais através de inúmeros dendritos, podendo ou não seguir adiante

Inspiração

- O neurônio biológico
 - Um neurônio recebe sinais através de inúmeros dendritos, podendo ou não seguir adiante
 - Se o sinal for superior a um certo limite (threshold), segue em frente; caso contrário, é bloqueado

Axon from another cell Dendrite Nucleus Cell body or Soma Fonte: AIMA, Russell & Norvig.

Inspiração

- O neurônio biológico
 - Um neurônio recebe sinais através de inúmeros dendritos, podendo ou não seguir adiante
 - Se o sinal for superior a um certo limite (threshold), segue em frente; caso contrário, é bloqueado
 - Na passagem por um neurônio, um sinal pode ser amplificado ou atenuado, dependendo do dendrito de origem

Perceptron

Fonte: Adaptado de de ML. Mitchell.

Perceptron

• É a unidade básica da rede neural

Fonte: Adaptado de de ML. Mitchell.

Perceptron

- É a unidade básica da rede neural
 - A mais simples

Perceptron

- É a unidade básica da rede neural
 - A mais simples
 - Um nó em um grafo dirigido (a rede neural)

Perceptron

- É a unidade básica da rede neural
 - A mais simples
 - Um nó em um grafo dirigido (a rede neural)

 Cada aresta serve para propagar a ativação de um nó a outro na rede

Perceptron

- É a unidade básica da rede neural
 - A mais simples
 - Um nó em um grafo dirigido (a rede neural)

- Cada aresta serve para propagar a ativação de um nó a outro na rede
 - Possui um peso associado, determinado a força e polaridade da conexão

Perceptron

 Cada unidade calcula a soma ponderada de suas entradas

Perceptron

- Cada unidade calcula a soma ponderada de suas entradas
 - E aplica então uma função de ativação para obter a saída

Fonte: Adaptado de ML. Mitchell.

Perceptron

- Cada unidade calcula a soma ponderada de suas entradas
 - E aplica então uma função de ativação para obter a saída

Perceptron

- Cada unidade calcula a soma ponderada de suas entradas
 - E aplica então uma função de ativação para obter a saída Note que já definimos uma

Fonte: Adaptado de ML. Mitchell.

Perceptron

- Cada unidade calcula a soma ponderada de suas entradas
 - E aplica então uma função de ativação para obter a saída Note que já definimos uma

Fonte: Adaptado de ML. Mitchell.

O aprendizado em um perceptron envolve escolher valores para os pesos

Perceptron – Função de Ativação

• Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas

- Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas
 - Deve "desativar" o neurônio (próximo de 0) quando as entradas "erradas" forem dadas

- Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas
 - Deve "desativar" o neurônio (próximo de 0) quando as entradas "erradas" forem dadas
- Ou seja, o perceptron devolve 1 se o resultado é maior que algum limiar e 0 (ou -1) se não

- Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas
 - Deve "desativar" o neurônio (próximo de 0) quando as entradas "erradas" forem dadas
- Ou seja, o perceptron devolve 1 se o resultado é maior que algum limiar e 0 (ou -1) se não
 - No exemplo anterior, o limiar é zero

- Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas
 - Deve "desativar" o neurônio (próximo de 0) quando as entradas "erradas" forem dadas
- Ou seja, o perceptron devolve 1 se o resultado é maior que algum limiar e 0 (ou -1) se não
 - No exemplo anterior, o limiar é zero
- Deve ser não-linear

- Deve "ativar" o neurônio (valor perto de 1) quando as entradas corretas forem dadas
 - Deve "desativar" o neurônio (próximo de 0) quando as entradas "erradas" forem dadas
- Ou seja, o perceptron devolve 1 se o resultado é maior que algum limiar e 0 (ou -1) se não
 - No exemplo anterior, o limiar é zero
- Deve ser não-linear
 - Evitando que uma rede de neurônios resulte em uma única função linear

Perceptron – Função de Ativação

Possíveis escolhas:

Perceptron – Função de Ativação

Possíveis escolhas:

Fonte: Adaptado de Slides de AIMA. Russell & Norvig

Perceptron – Função de Ativação

Possíveis escolhas:

Fonte: Adaptado de Slides de AIMA. Russell & Norvig

Perceptron – Função de Ativação

Possíveis escolhas:

Fonte: Adaptado de Slides de AIMA. Russell & Norvig

• A sigmóide tem a vantagem de ser diferenciável

Perceptron – Função de Ativação

Possíveis escolhas:

Fonte: Adaptado de Slides de AIMA. Russell & Norvig

- A sigmóide tem a vantagem de ser diferenciável
- Importante para o algoritmo de aprendizado dos pesos

Perceptron – Função de Ativação

 Em ambas funções há um limiar em zero

Perceptron – Função de Ativação

 Em ambas funções há um limiar em zero

• O valor real desse limiar é determinado pelo peso de viés ω_0 dado ao neurônio

Perceptron – Função de Ativação

 Em ambas funções há um limiar em zero

- O valor real desse limiar é determinado pelo peso de viés ω_0 dado ao neurônio
 - A unidade é ativada caso a soma das entradas x_0 "reais" (ou seja, sem x_0) exceder ω_0 :

$$y = \left(\sum_{j=1}^{n} \omega_j x_j\right) \ge \omega_0$$

ω (threshold)

Perceptron – Função de Ativação

 Em ambas funções há um limiar em zero

- O valor real desse limiar é determinado pelo peso de viés ω_0 dado ao neurônio
 - A unidade é ativada caso a soma das entradas x_0 "reais" (ou seja, sem x_0) exceder ω_0 :

$$y = \left(\sum_{j=1}^{n} \omega_j x_j\right) \ge \omega_0$$

Mudar o peso de viés muda a localização do limiar

ω (threshold)

Perceptron

• Toda função booleana pode ser representada:

Perceptron

Toda função booleana pode ser representada:

~(v) =	1,	$\left(y = \sum_{j=1}^{n} \omega_j x_j\right)$	$\geq \omega_0$
$g(y) = \langle$	0,	$\left(y = \sum_{j=1}^{n} \omega_j x_j\right)$	$<\omega_0$

-				
<i>x</i> ₁	<i>X</i> ₂	У	saída	
1	1	2	1	
1	0	1	0	
0	1	1	0	
0	0	0	0	

Fonte: Adaptado de AIMA. Russell & Norvig

Perceptron

• Toda função booleana pode ser representada:

<i>x</i> ₁	<i>X</i> ₂	У	saída
1	1	2	1
1	0	1	0
0	1	1	0
0	0	0	0

00			
<i>x</i> ₁	<i>x</i> ₂	У	saída
1	1	2	1
1	0	1	1
0	1	1	1
0	0	0	0
E . A A			

Fonte: Adaptado de AIMA. Russell & Norvig

-()	1,	$\left(y = \sum_{j=1}^{n} \omega_j x_j\right)$	$\geq \omega_0$
$g(y) = \langle$	0,	$\left(y = \sum_{j=1}^{n} \omega_j x_j\right)$	$<\omega_0$

Perceptron

• Toda função booleana pode ser representada:

OU			
<i>x</i> ₁	<i>x</i> ₂	У	saída
1	1	2	1
1	0	1	1
0	1	1	1
0	0	0	0
Easter Adaptede de AIMA			

 $g(y) = \begin{cases} 1, & \left(y = \sum_{j=1}^{n} \omega_j x_j \right) \ge \omega_0 \\ 0, & \left(y = \sum_{j=1}^{n} \omega_j x_j \right) < \omega_0 \end{cases}$ $W_1 = -1$ NÃO

<i>x</i> ₁	y	saída
1	-1	0
0	0	1

Fonte: Adaptado de AIMA. Russell & Norvig

Perceptrons em rede

 Uma rede neural é uma rede de perceptrons conectados

- Uma rede neural é uma rede de perceptrons conectados
 - As unidades de saída dão a saída do programa

- Uma rede neural é uma rede de perceptrons conectados
 - As unidades de saída dão a saída do programa
- Geralmente organizadas em camadas

- Uma rede neural é uma rede de perceptrons conectados
 - As unidades de saída dão a saída do programa
- Geralmente organizadas em camadas
 - Cada unidade recebe entrada somente de unidades da camada imediatamente anterior

Perceptrons em rede

 Possuem uma ou mais camadas de unidades escondidas:

- Possuem uma ou mais camadas de unidades escondidas:
 - Unidades que não estão conectadas à saída da rede

- Possuem uma ou mais camadas de unidades escondidas:
 - Unidades que não estão conectadas à saída da rede
- As camadas escondidas recebem sinal da entrada (ou de outra camada)

- Possuem uma ou mais camadas de unidades escondidas:
 - Unidades que não estão conectadas à saída da rede
- As camadas escondidas recebem sinal da entrada (ou de outra camada)
 - Sua saída, contudo, não é observada (por isso escondida)

Tipos de redes

Feed-forward networks

- Feed-forward networks
 - Possuem conexões em uma única direção

- Feed-forward networks
 - Possuem conexões em uma única direção
 - Formam um grafo dirigido acíclico

- Feed-forward networks
 - Possuem conexões em uma única direção
 - Formam um grafo dirigido acíclico
 - Sua saída é uma função direta de sua entrada

$$\begin{array}{ll} s_5 &=& g(\omega_{3,5}s_3 + \omega_{4,5}s_4) \\ &=& g(\omega_{3,5}g(\omega_{1,3}x_1 + \omega_{2,3}x_2) + \\ && \omega_{4,5}g(\omega_{1,4}x_1 + \omega_{2,4}x_2)) \end{array}$$

- Feed-forward networks
 - Possuem conexões em uma única direção
 - Formam um grafo dirigido acíclico
 - Sua saída é uma função direta de sua entrada
 - Não há outro estado interno que não os próprios pesos da rede

$$\begin{array}{ll} s_5 &=& g(\omega_{3,5}s_3 + \omega_{4,5}s_4) \\ &=& g(\omega_{3,5} g(\omega_{1,3}x_1 + \omega_{2,3}x_2) + \\ && \omega_{4,5} g(\omega_{1,4}x_1 + \omega_{2,4}x_2)) \end{array}$$

- Feed-forward networks
 - Possuem conexões em uma única direção
 - Formam um grafo dirigido acíclico
 - Sua saída é uma função direta de sua entrada
 - Não há outro estado interno que não os próprios pesos da rede
 - Mudando os pesos, muda a função
 → aprende

$$\begin{array}{ll} s_5 &=& g(\omega_{3,5}s_3 + \omega_{4,5}s_4) \\ &=& g(\omega_{3,5} g(\omega_{1,3}x_1 + \omega_{2,3}x_2) + \\ && \omega_{4,5} g(\omega_{1,4}x_1 + \omega_{2,4}x_2)) \end{array}$$

Tipos de redes

Redes recorrentes

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo
 - Pode estabilizar, oscilar, ou apresentar comportamento caótico

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo
 - Pode estabilizar, oscilar, ou apresentar comportamento caótico
 - Sua saída leva em consideração a entrada atual e o que aprendeu das entradas anteriores

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo
 - Pode estabilizar, oscilar, ou apresentar comportamento caótico
 - Sua saída leva em consideração a entrada atual e o que aprendeu das entradas anteriores
 - A saída é copiada e realimentada na rede

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo
 - Pode estabilizar, oscilar, ou apresentar comportamento caótico
 - Sua saída leva em consideração a entrada atual e o que aprendeu das entradas anteriores
 - A saída é copiada e realimentada na rede
 - Aqui, c(t) é o valor de b no passo t-1

- Redes recorrentes
 - Redirecionam as saídas de algumas unidades à entrada de outras, formando um ciclo
 - Pode estabilizar, oscilar, ou apresentar comportamento caótico
 - Sua saída leva em consideração a entrada atual e o que aprendeu das entradas anteriores
 - A saída é copiada e realimentada na rede
 - Aqui, c(t) é o valor de b no passo t-1
 - Podem simular memória de curto prazo (como um flip-flop)

- Redes recorrentes (cont.)
 - Podem ser vistas como se desdobrando no tempo

- Redes recorrentes (cont.)
 - Podem ser vistas como se desdobrando no tempo
 - Em que cada instante t dá o momento em que um exemplo de treino foi apresentado

- Redes recorrentes (cont.)
 - Podem ser vistas como se desdobrando no tempo
 - Em que cada instante t dá o momento em que um exemplo de treino foi apresentado
 - Implementam uma relação de recorrência, na qual b representa o histórico das entradas

- Redes recorrentes (cont.)
 - Podem ser vistas como se desdobrando no tempo
 - Em que cada instante t dá o momento em que um exemplo de treino foi apresentado
 - Implementam uma relação de recorrência, na qual b representa o histórico das entradas
 - Várias topologias podem ser usadas.
 Essa é só um exemplo

Redes de Camada Única

• Cada entrada se conecta diretamente à saída

Fonte: Slides de AIMA. Russell & Norvig

Redes de Camada Única

• Cada entrada se conecta diretamente à saída

Fonte: Slides de AIMA. Russell & Norvig

Redes de Camada Única

• Não representam todas as funções

Redes de Camada <u>Única</u>

- Não representam todas as funções
 - Apenas as linearmente separáveis (pontos em que g(y) = 0 estão separados daqueles em que g(y) = 1 por uma reta)

Redes de Camada Única

- Não representam todas as funções
 - Apenas as linearmente separáveis (pontos em que g(y) = 0 estão separados daqueles em que g(y) = 1 por uma reta)

Perceptron Learning Rule

Perceptron Learning Rule

 Regra para atualização dos pesos na rede, que garantidamente converge para uma solução

Perceptron Learning Rule

- Regra para atualização dos pesos na rede, que garantidamente converge para uma solução
 - Um separador linear que classifica os dados perfeitamente, se eles forem linearmente separáveis e η pequeno

Perceptron Learning Rule

- Regra para atualização dos pesos na rede, que garantidamente converge para uma solução
 - Um separador linear que classifica os dados perfeitamente, se eles forem linearmente separáveis e η pequeno
- $\omega_i \leftarrow \omega_i + \Delta \omega_i$, com $\Delta \omega_i = \eta(t s)x_i$, onde:
 - η taxa de aprendizagem (*learning rate*)
 - t saída desejada da rede para o exemplo corrente
 - s saída do perceptron (g(y)) para o exemplo corrente
 - (t-s) Erro
 - x_i cada atributo no exemplo corrente

Redes de Camada Única: Treinamento

Redes de Camada Única: Treinamento

Iniciamos com pesos aleatórios

Redes de Camada Única: Treinamento

- Iniciamos com pesos aleatórios
- Aplicamos o perceptron iterativamente a cada exemplo de entrada

Redes de Camada Única: Treinamento

- Iniciamos com pesos aleatórios
- Aplicamos o perceptron iterativamente a cada exemplo de entrada
 - Mudando os pesos toda vez que ele errar

Redes de Camada Única: Treinamento

- Iniciamos com pesos aleatórios
- Aplicamos o perceptron iterativamente a cada exemplo de entrada

- Mudando os pesos toda vez que ele errar
- Os pesos são modificados de acordo com a regra de treinamento do perceptron, que revisa os pesos ω_i :

$$\omega_i \leftarrow \omega_i + \Delta \omega_i$$
, com $\Delta \omega_i = \eta(t-s)x_i$

Redes de Camada Única: Treinamento

- Iniciamos com pesos aleatórios
- Aplicamos o perceptron iterativamente a cada exemplo de entrada

- Mudando os pesos toda vez que ele errar
- Os pesos são modificados de acordo com a regra de treinamento do perceptron, que revisa os pesos ω_i :

$$\omega_i \leftarrow \omega_i + \Delta \omega_i$$
, com $\Delta \omega_i = \eta(t-s)x_i$

(aprende pelo ajuste dos pesos de modo a reduzir o erro no conjunto de treino)

Perceptron Rule: Taxa de Aprendizagem

Modera o grau com que os pesos são mudados em cada passo

- Modera o grau com que os pesos são mudados em cada passo
 - Geralmente baixa (0,1 por exemplo) e algumas vezes decai à medida que o número de iterações aumenta

- Modera o grau com que os pesos são mudados em cada passo
 - Geralmente baixa (0,1 por exemplo) e algumas vezes decai à medida que o número de iterações aumenta
- Ideia básica:

- Modera o grau com que os pesos são mudados em cada passo
 - Geralmente baixa (0,1 por exemplo) e algumas vezes decai à medida que o número de iterações aumenta
- Ideia básica:
 - Se o resultado (s) foi abaixo do desejado (t), temos que aumentar os pesos, pois a saída é proporcional à sua soma

- Modera o grau com que os pesos são mudados em cada passo
 - Geralmente baixa (0,1 por exemplo) e algumas vezes decai à medida que o número de iterações aumenta
- Ideia básica:
 - Se o resultado (s) foi abaixo do desejado (t), temos que aumentar os pesos, pois a saída é proporcional à sua soma
 - Fazemos $\Delta \omega_i > 0$, numa tentativa que o resultado da somatória dê maior que o *threshold*, gerando um 1

- Modera o grau com que os pesos são mudados em cada passo
 - Geralmente baixa (0,1 por exemplo) e algumas vezes decai à medida que o número de iterações aumenta
- Ideia básica:
 - Se o resultado (s) foi abaixo do desejado (t), temos que aumentar os pesos, pois a saída é proporcional à sua soma
 - Fazemos $\Delta \omega_i > 0$, numa tentativa que o resultado da somatória dê maior que o *threshold*, gerando um 1
 - ullet η irá regular o tamanho desse aumento

Delta Rule

 A Perceptron rule é válida apenas para a função degrau

- A Perceptron rule é válida apenas para a função degrau
- Para a sigmóide, a saída g(y) é linear, e não binária

- A Perceptron rule é válida apenas para a função degrau
- Para a sigmóide, a saída g(y) é linear, e não binária

•
$$g(y) = \sigma(y) = \frac{1}{1 + e^{-y}}$$
, com $y = \sum_{i=0}^{n} \omega_i x_i$

- A Perceptron rule é válida apenas para a função degrau
- Para a sigmóide, a saída g(y) é linear, e não binária

•
$$g(y) = \sigma(y) = \frac{1}{1 + e^{-y}}$$
, com $y = \sum_{i=0}^{n} \omega_i x_i$

- Aplicamos então a Delta Rule:
 - $\omega_i \leftarrow \omega_i + \Delta \omega_i$, com $\Delta \omega_i = \eta(t g(y))g'(y)x_i$

- A Perceptron rule é válida apenas para a função degrau
- Para a sigmóide, a saída g(y) é linear, e não binária

•
$$g(y) = \sigma(y) = \frac{1}{1 + e^{-y}}$$
, com $y = \sum_{i=0}^{n} \omega_i x_i$

- Aplicamos então a Delta Rule:
 - $\omega_i \leftarrow \omega_i + \Delta \omega_i$, com $\Delta \omega_i = \eta(t g(y))g'(y)x_i$
 - Onde g'(y) é a derivada da função de ativação:

$$g(y) = \frac{1}{1 + e^{-y}} \quad \Rightarrow \quad g'(y) = \frac{d}{dy}g(y) = g(y)(1 - g(y))$$

Redes de Camada Única: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural repita

para cada
$$e \in Exemplos$$
 faça
$$y \leftarrow \sum_{j=0}^{n} \omega_{j} x_{j}[e]$$
$$Erro \leftarrow t[e] - g(y)$$
$$\omega_{j} \leftarrow \omega_{j} + \eta \times Erro \times g'(y) \times x_{j}[e]$$

Redes de Camada Única: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural

para cada $e \in Exemplos$ faça

$$y \leftarrow \sum_{j=0}^{n} \omega_j x_j[e]$$

Conjunto de exemplos, cada um com entrada $\vec{x} = \{x_1, \dots, x_n\}$ e saída \vec{t}

Erro
$$\leftarrow t[e] - g(y)$$

 $\omega_j \leftarrow \omega_j + \eta \times Erro \times g'(y) \times x_j[e]$

Redes de Camada Única: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural

repita

para cada $e \in Exemplos$ faça

$$y \leftarrow \sum_{j=0}^{n} \omega_j x_j[e]$$
 $rede = \{\omega_1, \omega_2, \dots, \omega_k, g(y)\},$ inicialmente com ω_i aleatórios $Erro \leftarrow t[e] - g(y)$

 $\omega_j \leftarrow \omega_j + \eta \times Erro \times g'(y) \times x_j[e]$

Redes de Camada Única: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural repita

para cada
$$e \in Exemplos$$
 faça

$$y \leftarrow \sum_{j=0}^{n} \omega_{j} x_{j}[e] \leftarrow x_{j}[e] \rightarrow \text{j-ésimo atributo do exemplo } e$$

$$Erro \leftarrow t[e] - g(y)$$

$$\omega_j \leftarrow \omega_j + \eta \times Erro \times g'(y) \times x_j[e]$$

Redes de Camada Única: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural repita

para cada $e \in Exemplos$ faça

$$y \leftarrow \sum_{j=0}^{n} \omega_j x_j[e]$$

Note que podemos passar várias vezes pelo conjunto de treino

$$Erro \leftarrow t[e] - g(y)$$

$$\omega_j \leftarrow \omega_j + \eta \times Erro \times g'(y) \times x_j[e]$$

Redes de Camada Unica: Algoritmo

Função PERCEPTRON(Exemplos, Rede): rede neural repita

para cada $e \in Exemplos$ faça

$$y \leftarrow \sum_{j=0}^{n} \omega_{j} x_{j}[e]$$

$$\textit{Erro} \leftarrow t[e] - g(y)$$

 $\omega_j \leftarrow \omega_j + \eta \times \textit{Erro} \times g'(y) \times x_j[e]$

até Até que algum critério de parada seja satisfeito retorna A nova rede

A cada passada pelo con-

junto de treino damos o nome de **época** (epoch)

Derivação da Delta Rule

Derivação da Delta Rule

 Partimos do gradiente negativo do erro → Gradient Descent

Derivação da Delta Rule

- Partimos do gradiente negativo do erro → Gradient Descent
 - O gradiente do erro dará um vetor que aponta para o sentido de maior crescimento dessa função no espaço

Derivação da Delta Rule

- Partimos do gradiente negativo do erro → Gradient Descent
 - O gradiente do erro dará um vetor que aponta para o sentido de maior crescimento dessa função no espaço

 Ou seja, o negativo do gradiente do erro dará o sentido da sua maior redução

Derivação da Delta Rule

• Usamos então o negativo do gradiente do erro $E(\vec{\omega})$ para atualizar os pesos, de modo a minimizar esse erro

Derivação da Delta Rule

• Usamos então o negativo do gradiente do erro $E(\vec{\omega})$ para atualizar os pesos, de modo a minimizar esse erro

$$egin{cases} ec{\omega} \leftarrow ec{\omega} + \Delta ec{\omega} \ \Delta ec{\omega} = -\eta
abla E(ec{\omega}) \end{cases}$$

Derivação da Delta Rule

• Usamos então o negativo do gradiente do erro $E(\vec{\omega})$ para atualizar os pesos, de modo a minimizar esse erro

$$\begin{cases} \vec{\omega} \leftarrow \vec{\omega} + \Delta \vec{\omega} \\ \Delta \vec{\omega} = -\eta \nabla E(\vec{\omega}) \end{cases}$$

Onde
$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n}\right]$$

Derivação da Delta Rule

• Considere uma unidade linear com saída s = g(y)

Derivação da Delta Rule

- Considere uma unidade linear com saída s = g(y)
 - Onde $y = \sum_{i=0}^{n} \omega_i x_i$

Derivação da Delta Rule

- Considere uma unidade linear com saída s = g(y)
 - Onde $y = \sum_{i=0}^{n} \omega_i x_i$
- Vamos aprender os ω_i que minimizam o **erro quadrático**:

$$E(\vec{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - s_d)^2$$

onde $s_d = g(y_d)$ e D é o conjunto de exemplos de treino

Derivação da Delta Rule

- Considere uma unidade linear com saída s = g(y)
 - Onde $y = \sum_{i=0}^{n} \omega_i x_i$
- Vamos aprender os ω_i que minimizam o **erro quadrático**: Fator de

$$E(\vec{\omega}) = \frac{1}{2} \sum_{d \in D} (t_d - s_d)^2$$
 escala do erro

onde $s_d = g(y_d)$ e D é o conjunto de exemplos de treino

Derivação da Delta Rule

O gradiente do erro será

$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n} \right]$$

Derivação da Delta Rule

O gradiente do erro será

$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n} \right]$$

$$\frac{\partial E}{\partial \omega_i} = \frac{\partial}{\partial \omega_i} \left(\frac{1}{2} \sum_{d \in D} (t_d - s_d)^2 \right)$$

Derivação da Delta Rule

O gradiente do erro será

$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n} \right]$$
$$\frac{\partial E}{\partial \omega_i} = \frac{\partial}{\partial \omega_i} \left(\frac{1}{2} \sum_{d \in D} (t_d - s_d)^2 \right)$$
$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial \omega_i} (t_d - s_d)^2$$

Derivação da Delta Rule

• O gradiente do erro será

$$\nabla E(\vec{\omega}) = \left[\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_n} \right]$$

$$\frac{\partial E}{\partial \omega_i} = \frac{\partial}{\partial \omega_i} \left(\frac{1}{2} \sum_{d \in D} (t_d - s_d)^2 \right)$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial \omega_i} (t_d - s_d)^2$$

$$\frac{\partial E}{\partial \omega_i} = \sum_{l \in D} (t_d - s_d) \frac{\partial}{\partial \omega_i} (t_d - s_d)$$

Derivação da Delta Rule

• Como o valor esperado t_d independe de ω_i , então

$$\frac{\partial E}{\partial \omega_i} = -\sum_{d \in D} (t_d - s_d) \frac{\partial}{\partial \omega_i} s_d$$

Derivação da Delta Rule

• Como o valor esperado t_d independe de ω_i , então

$$\frac{\partial E}{\partial \omega_i} = -\sum_{d \in D} (t_d - s_d) \frac{\partial}{\partial \omega_i} s_d$$

• Se $s_d = \sum_i \omega_i x_i$, então

Derivação da Delta Rule

• Como o valor esperado t_d independe de ω_i , então

$$\frac{\partial E}{\partial \omega_i} = -\sum_{d \in D} (t_d - s_d) \frac{\partial}{\partial \omega_i} s_d$$

• Se $s_d = \sum_i \omega_i x_i$, então

$$\frac{\partial}{\partial \omega_i} E = -\sum_{d \in D} (t_d - s_d) x_{i,d}$$

Derivação da Delta Rule

• Como o valor esperado t_d independe de ω_i , então

$$\frac{\partial E}{\partial \omega_i} = -\sum_{d \in D} (t_d - s_d) \frac{\partial}{\partial \omega_i} s_d$$

• Se $s_d = \sum_i \omega_i x_i$, então

$$\frac{\partial}{\partial \omega_i} E = -\sum_{d \in D} (t_d - s_d) x_{i,d}$$

e
$$\Delta \omega_i = \eta \sum_{d \in D} (t_d - s_d) x_{i,d}$$
 (perceptron rule)

Derivação da Delta Rule

• Já se
$$s_d = \sigma(y_d)$$
, então $\frac{\partial s_d}{\partial \omega_i} = \frac{d s_d}{dy} \frac{\partial y}{\partial \omega_i} = s_d (1 - s_d) x_i$

Redes de Camada <u>Única</u>

Derivação da Delta Rule

• Já se
$$s_d = \sigma(y_d)$$
, então $\frac{\partial s_d}{\partial \omega_i} = \frac{d s_d}{dy} \frac{\partial y}{\partial \omega_i} = s_d (1 - s_d) x_i$

$$\frac{\partial}{\partial \omega_i} E = -\sum_{d \in D} (t_d - s_d) s_d (1 - s_d) x_{i,d}$$

Derivação da Delta Rule

• Já se
$$s_d = \sigma(y_d)$$
, então $\frac{\partial s_d}{\partial \omega_i} = \frac{d \, s_d}{dy} \frac{\partial y}{\partial \omega_i} = s_d (1 - s_d) x_i$

$$\frac{\partial}{\partial \omega_i} E = -\sum_{d \in D} (t_d - s_d) s_d (1 - s_d) x_{i,d}$$
e $\Delta \omega_i = \eta \sum_{d \in D} (t_d - s_d) s_d (1 - s_d) x_{i,d}$ (delta rule)

Derivação da Delta Rule

• Já se
$$s_d = \sigma(y_d)$$
, então $\frac{\partial s_d}{\partial \omega_i} = \frac{d \, s_d}{dy} \frac{\partial y}{\partial \omega_i} = s_d (1 - s_d) x_i$

$$\frac{\partial}{\partial \omega_i} E = -\sum_{d \in D} (t_d - s_d) s_d (1 - s_d) x_{i,d}$$
e $\Delta \omega_i = \eta \sum_{d \in D} (t_d - s_d) s_d (1 - s_d) x_{i,d}$ (delta rule)

Lembre que a cada iteração atualizamos os pesos:

$$\begin{cases} \vec{\omega} \leftarrow \vec{\omega} + \Delta \vec{\omega} \\ \Delta \vec{\omega} = -\eta \nabla E(\vec{\omega}) \end{cases} \quad \text{ou} \quad \begin{cases} \omega_i \leftarrow \omega_i + \Delta \omega_i \\ \Delta \omega_i = -\eta \frac{\partial E}{\partial \omega_i} \end{cases}$$

Redes Multicamadas

Redes Multicamadas

• Possuem camadas em geral totalmente conectadas

Redes Multicamadas

- Possuem camadas em geral totalmente conectadas
 - O número de unidades escondidas é tipicamente escolhido à mão

Redes Multicamadas

- Possuem camadas em geral totalmente conectadas
 - O número de unidades escondidas é tipicamente escolhido à mão

Redes Multicamadas – E o viés?

• 2 possibilidades:

Redes Multicamadas – E o viés?

2 possibilidades:
 Introduzido em cada célula

Compartilhado na camada

Fonte: https://www.forexmt4indicators.com/ wp-content/uploads/2014/10/NN1__1.gif

Medindo o erro

• A adição de camadas escondidas traz um problema:

- A adição de camadas escondidas traz um problema:
 - Não sabemos qual a saída esperada de cada uma delas, pois os dados de treino não nos dizem isso

- A adição de camadas escondidas traz um problema:
 - Não sabemos qual a saída esperada de cada uma delas, pois os dados de treino não nos dizem isso
 - Por conseguinte, n\u00e3o conseguimos medir o erro

- A adição de camadas escondidas traz um problema:
 - Não sabemos qual a saída esperada de cada uma delas, pois os dados de treino não nos dizem isso
 - Por conseguinte, n\u00e3o conseguimos medir o erro
- Contudo, podemos retro-propagar o erro da camada de saída para as escondidas

<u>Medindo</u> o erro

- A adição de camadas escondidas traz um problema:
 - Não sabemos qual a saída esperada de cada uma delas, pois os dados de treino não nos dizem isso
 - Por conseguinte, n\u00e3o conseguimos medir o erro
- Contudo, podemos retro-propagar o erro da camada de saída para as escondidas
 - Calculamos a partir do gradiente de erro geral

- A adição de camadas escondidas traz um problema:
 - Não sabemos qual a saída esperada de cada uma delas, pois os dados de treino não nos dizem isso
 - Por conseguinte, n\u00e3o conseguimos medir o erro
- Contudo, podemos retro-propagar o erro da camada de saída para as escondidas
 - Calculamos a partir do gradiente de erro geral
 - Processo de back-propagation

Back-Propagation

• Calcule os valores de $\delta_i = g'(y_i) \times (t_i - g(y_i))$ para as unidades de saída, usando o erro observado

- Calcule os valores de $\delta_i = g'(y_i) \times (t_i g(y_i))$ para as unidades de saída, usando o erro observado
- Começando da camada de saída, repita o seguinte processo para cada camada na rede, até que a primeira camada escondida seja atingida

- Calcule os valores de $\delta_i = g'(y_i) \times (t_i g(y_i))$ para as unidades de saída, usando o erro observado
- Começando da camada de saída, repita o seguinte processo para cada camada na rede, até que a primeira camada escondida seja atingida
 - ullet Propague os valores de δ para a camada anterior

- Calcule os valores de $\delta_i = g'(y_i) \times (t_i g(y_i))$ para as unidades de saída, usando o erro observado
- Começando da camada de saída, repita o seguinte processo para cada camada na rede, até que a primeira camada escondida seja atingida
 - ullet Propague os valores de δ para a camada anterior
 - Atualize os pesos entre as duas camadas

- Calcule os valores de $\delta_i = g'(y_i) \times (t_i g(y_i))$ para as unidades de saída, usando o erro observado
- Começando da camada de saída, repita o seguinte processo para cada camada na rede, até que a primeira camada escondida seja atingida
 - ullet Propague os valores de δ para a camada anterior
 - Atualize os pesos entre as duas camadas
 (A maioria dos neurocientistas nega que essa propagação ocorra no cérebro)

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                   y_j \leftarrow \sum \omega_{i,j} a_i a_j \leftarrow g(y_j)
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                                                                              Conjunto de exemplos,
                 para cada nó i na camada c faça
                                                                              cada um com entrada
                   y_j \leftarrow \sum_i \omega_{i,j} a_i \qquad a_j \leftarrow g(y_j)
                                                                        \vec{x} = \{x_1, \dots, x_n\} e saída \vec{t}
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                                                                              rede = \{\omega_{i,i}, g(y)\}
                   y_j \leftarrow \sum \omega_{i,j} a_i \qquad a_j \leftarrow g(y_j)
                                                                                com C camadas
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in \textit{Rede} faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                                                                          Propaga adiante as entradas
                   y_j \leftarrow \sum \omega_{i,j} a_i \qquad a_j \leftarrow g(y_j)
                                                                        na rede para calcular as saídas
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                                                                         a_i é a saída do perceptron j
                   y_j \leftarrow \sum \omega_{i,j} a_i a_j \leftarrow g(y_j)
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
        para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
        para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                                                                       Propaga os deltas da camada
                   y_j \leftarrow \sum \omega_{i,j} a_i a_j \leftarrow g(y_j) de saída para a de entrada
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                  \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
        para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
        para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                   y_j \leftarrow \sum \omega_{i,j} a_i a_j \leftarrow g(y_j)
                                                                        Regra de propagação do erro
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,i} + \eta \times \delta_i \times a_i
```

até Até que algum critério de parada seja satisfeito

retorna a nova rede

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
        para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
        para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                 para cada nó i na camada c faça
                                                                             Atualiza todos os pesos
                   y_j \leftarrow \sum \omega_{i,j} a_i \qquad a_j \leftarrow g(y_j)
                                                                            da rede usando os deltas
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                 para cada nó i na camada c faça
                   \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,j} + \eta \times \delta_i \times a_i
```

Back-Propagation: Algoritmo

```
Função BACKPROP(Exemplos, Rede): rede neural
    repita
         para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow pequeno número aleatório
         para cada e = (\vec{x}, \vec{t}) \in Exemplos faça
             para cada nó i na camada de entrada faça a_i \leftarrow x_i
             para c = 2 até C faça
                  para cada nó i na camada c faça
                                                                               Note que \Delta \omega_{i,i} = \eta \delta_i a_i
                    y_j \leftarrow \sum \omega_{i,j} a_i a_j \leftarrow g(y_j)
             para cada nó j na camada de saída faça \delta_i \leftarrow g'(y_i) \times (t_i - a_i)
             para c = C - 1 até 1 faça
                  para cada nó i na camada c faça
                    \delta_i \leftarrow g'(y_i) \sum_i \omega_{i,j} \delta_j
             para cada peso \omega_{i,j} \in Rede faça \omega_{i,j} \leftarrow \omega_{i,j} + \eta \times \delta_i \times a_i
```

até Até que algum critério de parada seja satisfeito retorna a nova rede

Back-Propagation: Visualização

Iniciamos os pesos na rede

Back-Propagation: Visualização

Para cada exemplo de treino, entramos seus atributos nos nós de entrada, calculando a saída de cada unidade nas camadas escondida e de saída

Back-Propagation: Visualização

Para cada exemplo de treino, entramos seus atributos nos nós de entrada, calculando a saída de cada unidade nas camadas escondida e de saída

Back-Propagation: Visualização

Para cada exemplo de treino, entramos seus atributos nos nós de entrada, calculando a saída de cada unidade nas camadas escondida e de saída

Back-Propagation: Visualização

Calculamos $\delta_k \leftarrow s_k(1-s_k)(t_k-s_k)$ para cada unidade de saída, onde t_k é o valor-alvo da unidade e $s_k=g(y)$ sua saída

Back-Propagation: Visualização

Então calculamos $\delta_h \leftarrow s_h (1-s_h) \sum_{h} \omega_{h,k} \delta_k$ para cada nó escondido

Back-Propagation: Visualização

Ajustamos os pesos de todas as ligações $\omega_{j,i} \leftarrow \omega_{j,i} + \eta \delta_i x_j$, onde x_j é a ativação e η a taxa de aprendizagem

Back-Propagation: Visualização

Ajustamos os pesos de todas as ligações $\omega_{j,i} \leftarrow \omega_{j,i} + \eta \delta_i x_j$, onde x_j é a ativação e η a taxa de aprendizagem

Quando parar?

Back-Propagation: Visualização

Ajustamos os pesos de todas as ligações $\omega_{j,i} \leftarrow \omega_{j,i} + \eta \delta_i x_j$, onde x_j é a ativação e η a taxa de aprendizagem

Quando parar?

• Parar em um certo número de iterações?

Back-Propagation: Visualização

Ajustamos os pesos de todas as ligações $\omega_{j,i} \leftarrow \omega_{j,i} + \eta \delta_i x_j$, onde x_j é a ativação e η a taxa de aprendizagem

Quando parar?

- Parar em um certo número de iterações?
- Parar quando o erro for menor que um determinado valor? (Curva de treinamento)

Curva de Treinamento

 Mede o desempenho de um classificador em um conjunto de treinamento fixo enquanto o processo de aprendizado continua nesse mesmo conjunto

Curva de Treinamento

 Mede o desempenho de um classificador em um conjunto de treinamento fixo enquanto o processo de aprendizado continua nesse mesmo conjunto

Curva de Treinamento

 Mede o desempenho de um classificador em um conjunto de treinamento fixo enquanto o processo de aprendizado continua nesse mesmo conjunto

Curva de Treinamento

- Mede o desempenho de um classificador em um conjunto de treinamento fixo enquanto o processo de aprendizado continua nesse mesmo conjunto
 - Quando a soma dos erros quadráticos em uma passada inteira no conjunto de treino

(uma época) é suficientemente pequeno, podemos dizer que a rede convergiu (para esses exemplos)

Curva de Treinamento: Overfitting

 O back-propagation pode, se o treinamento for longo, se aproximar não da função desejada, mas sim dos exemplos

Curva de Treinamento: Overfitting

- O back-propagation pode, se o treinamento for longo, se aproximar não da função desejada, mas sim dos exemplos
 - Os pesos acabam sendo ajustados para representar idiossincrasias dos exemplos de treino que não são representativos da distribuição geral

Overfitting: Como contornar

 Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno

- Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno
- Criar um conjunto de validação (melhor alternativa)

- Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno
- Criar um conjunto de validação (melhor alternativa)
 - O algoritmo retorna a rede resultante do número de épocas que produzisse o menor erro no conjunto de validação

- Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno
- Criar um conjunto de validação (melhor alternativa)
 - O algoritmo retorna a rede resultante do número de épocas que produzisse o menor erro no conjunto de validação
- Resolve?

- Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno
- Criar um conjunto de validação (melhor alternativa)
 - O algoritmo retorna a rede resultante do número de épocas que produzisse o menor erro no conjunto de validação
- Resolve? Às vezes... nem sempre

- Decrescer cada peso por um fator pequeno em cada iteração, mantendo o valor dos pesos pequeno
- Criar um conjunto de validação (melhor alternativa)
 - O algoritmo retorna a rede resultante do número de épocas que produzisse o menor erro no conjunto de validação
- Resolve? Às vezes... nem sempre
 - Há o perigo dos mínimos locais...

Variação

Podemos incluir momento:

- Podemos incluir momento:
 - A atualização dos pesos na n-ésima iteração depende parcialmente da atualização que ocorreu na (n-1)-ésima iteração

- Podemos incluir momento:
 - A atualização dos pesos na n-ésima iteração depende parcialmente da atualização que ocorreu na (n-1)-ésima iteração
 - $\bullet~$ Uma iteração corresponde a uma época $\rightarrow~$ uma passada completa pelo conjunto de treino

- Podemos incluir momento:
 - A atualização dos pesos na n-ésima iteração depende parcialmente da atualização que ocorreu na (n-1)-ésima iteração
 - ullet Uma iteração corresponde a uma época o uma passada completa pelo conjunto de treino
 - Usamos então uma constante $0 \le \alpha \le 1$, chamada **momento**, e

- Podemos incluir momento:
 - A atualização dos pesos na n-ésima iteração depende parcialmente da atualização que ocorreu na (n-1)-ésima iteração
 - ullet Uma iteração corresponde a uma época o uma passada completa pelo conjunto de treino
 - Usamos então uma constante $0 \le \alpha \le 1$, chamada **momento**, e

$$\Delta\omega_{i,j}(n) = \eta \delta_j x_i + \alpha \Delta\omega_{i,j}(n-1)$$

$$\delta_j = g'(y_j)(t_j - g(y_j))$$

Exemplo (Mitchell)

 Tarefa: dado o rosto de uma pessoa, dizer para que direção olha

- Tarefa: dado o rosto de uma pessoa, dizer para que direção olha
 - Usou a variação com momento

- Tarefa: dado o rosto de uma pessoa, dizer para que direção olha
 - Usou a variação com momento
 - Treinou em 260 imagens com 90% de precisão

- Tarefa: dado o rosto de uma pessoa, dizer para que direção olha
 - Usou a variação com momento
 - Treinou em 260 imagens com 90% de precisão
 - Código e detalhes em www.cs.cmu.edu/~tom/mlbook.html

- Tarefa: dado o rosto de uma pessoa, dizer para que direção olha
 - Usou a variação com momento
 - Treinou em 260 imagens com 90% de precisão
 - Código e detalhes em www.cs.cmu.edu/~tom/mlbook.html
- Entrada:

Exemplo (Mitchell)

Codificação da entrada:

- Codificação da entrada:
 - \bullet 30 imes 32 entradas (pixels)

- Codificação da entrada:
 - 30 × 32 entradas (pixels)
 - Cada pixel representado pela sua intensidade, entre [0,1]

- Codificação da entrada:
 - 30 × 32 entradas (pixels)
 - Cada pixel representado pela sua intensidade, entre [0,1]
- Rede:

- Codificação da entrada:
 - 30 × 32 entradas (pixels)
 - Cada pixel representado pela sua intensidade, entre [0,1]
- Rede:
 - 2 camadas: 3 unidades escondidas e 4 de saída

- Codificação da entrada:
 - 30 × 32 entradas (pixels)
 - Cada pixel representado pela sua intensidade, entre [0,1]
- Rede:
 - 2 camadas: 3 unidades escondidas e 4 de saída
 - Taxa de aprendizagem $\eta = 0,3$

- Codificação da entrada:
 - 30 × 32 entradas (pixels)
 - Cada pixel representado pela sua intensidade, entre [0,1]
- Rede:
 - 2 camadas: 3 unidades escondidas e 4 de saída
 - Taxa de aprendizagem $\eta = 0,3$
 - Momento $\alpha = 0.3$

Exemplo (Mitchell)

Pesos iniciais (inclusive o viés):

- Pesos iniciais (inclusive o viés):
 - Pequenos e aleatórios nas unidades de saída

- Pesos iniciais (inclusive o viés):
 - Pequenos e aleatórios nas unidades de saída
 - Zero nas unidades de entrada

- Pesos iniciais (inclusive o viés):
 - Pequenos e aleatórios nas unidades de saída
 - Zero nas unidades de entrada
- Parada:

- Pesos iniciais (inclusive o viés):
 - Pequenos e aleatórios nas unidades de saída
 - Zero nas unidades de entrada
- Parada:
 - A cada 50 passos no gradient descent compara com desempenho no conjunto de validação. Guarda os pesos do menor erro

Representatividade

• Que funções podemos representar com essas redes?

Representatividade

- Que funções podemos representar com essas redes?
 - Booleanas: representadas exatamente com redes de 2 camadas

Representatividade

- Que funções podemos representar com essas redes?
 - Booleanas: representadas exatamente com redes de 2 camadas
 - Contínuas: <u>aproximadas</u> com pequeno erro por rede com 2 camadas

Representatividade

- Que funções podemos representar com essas redes?
 - Booleanas: representadas exatamente com redes de 2 camadas
 - Contínuas: <u>aproximadas</u> com pequeno erro por rede com 2 camadas
 - Arbitrárias: <u>aproximadas</u> com precisão arbitrária por rede com 3 camadas

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice Hall. 3a ed.
 - 1 Slides do livro: aima.eecs.berkeley.edu/slides-pdf/
- http://ocw.mit.edu/OcwWeb/Electrical-Engineeringand-Computer-Science/6-034Spring-2005/LectureNotes/index.htm
- http://www.andreykurenkov.com/writing/ai/ a-brief-history-of-neural-nets-and-deep-learning/
- https://towardsdatascience.com/ recurrent-neural-networks-and-lstm-4b601dd822a5
- Mitchell, T.M.: Machine Learning. McGraw-Hill. 1997.
- https://www.researchgate.net/publication/273450589_COMBINACAO_LINEAR_DE_ REDES_NEURAIS_ARTIFICIAIS_E_MAQUINAS_DE_VETORES_DE_SUPORTE_PARA_ REGRESSAO_NAS_PREVISOES_DE_VAZOES_MENSAIS_NO_POSTO_266-ITAIPU
- Kemp, R.; Macaulay, C.; Palcic, B.(1997): Opening the Black Box: the Relationship between Neural Networks and Linear Discriminant Functions. Analytical Cellular Pathology, 14(1):19-30.