

Sommaire:

I – Data Description

II – Analyse Exploratoire

III - Le sujet

IV – Modélisation

V – Conclusion

Les séismes

I - Data Description:

Champ	Format	Description
time	Long Integer	Temps de l'événement en millisecondes depuis l'époque (1970-01-01T00:00:00.000Z), sans inclure les secondes intercalaires. Dans certains formats de sortie, la date est formatée pour la lisibilité.
place	String	Description textuelle de la région géographique nommée près de l'événement. Il peut s'agir du nom d'une ville ou d'une région de la classification de Flinn-Engdahl.
status	String	Indique si l'événement a été examiné par un être humain.
tsunami	Integer	Il s'agit d'une série de grandes vagues océaniques généralement causées par une perturbation sous-marine, souvent associée à des tremblements de terre.
significance	Integer	Indique l'importance ou le niveau d'impact de l'événement, qui peut être utilisé pour évaluer les conséquences potentielles.
data_type	String	Type d'événement sismique.
magnitudo	Decimal	Magnitude de l'événement.
state	String	Représente la division administrative ou l'État où l'événement s'est produit, souvent applicable à des pays spécifiques.
latitude / longitude	Decimal	Degrés décimaux de latitude. Valeurs négatives pour les latitudes sud, et degrés décimaux de longitude. Valeurs négatives pour les longitudes ouest.
depth	Decimal	Profondeur de l'événement en kilomètres.
date	String	Date et heure de l'évènement

Rapide synthèse:

Nombre d'enregistrements (lignes) : 3445751

Nombre de caractéristiques (colonnes) : 12

Nombre d'entrées dupliquées : 16869 (a supprimer)

Nombre de valeurs manquantes : 0

Nombre de valeurs mag > 10 : 0

Valeurs de profondeur négatives Anomalie magnitude négatives (-5 et -9,99)

NB Modalit	NB Modalité par variable				
Variable	Nb modalité				
place	531130				
status	6				
data_type	25				
state	858				

Moyenne et médiane par année

a) Magnitude

2 groupes : avant 2007 et après 2009

- Présence de séismes puissants
- Tendance stable au fur et à mesure des années

a) Magnitude

Magnitude par Mois

Top 20 des séismes

- Janvier, Février, Novembre et Décembre : mag puissants
- Avril et Septembre : mag plus faible

- Pays : Alaska, Japon, Chili, Indonésie, Pérou et Russie.
- Localisation : île et bordure de mer (mer d'Okhotsk)

b) Carte des séismes selon leur magnitude

c) Nb de tremblement de terre

Top 10 des lieux les plus exposés

Top 20 états / pays les plus exposés

- Exposition sur les états américains : Californie, Alaska et Washington
 - 2 états américains très affectés : Californie et Alaska

c) Nb de tremblement de terre

- Augmentation continue
- 2021 : plus de séisme
- 1991 : moins de séisme
- 2023 n'est pas à prendre en compte

d) Tsunami

e) Significativité

- Séismes dévastateurs sont très rares
- Corrélation mag et significance : 0,9473

III – Le sujet

Feature engineering:

- Aspect temporel numérique (année, mois, jours et heure)
- Pays / états encodé en One Hot Encoding (Alaska et Californie)
- Points cardinaux présent dans la variable place

Sujets de série temporelle possibles

- I. Prédiction de la magnitude
- 2. Prédiction des tsunamis suite à un séisme
- 3. Prédiction de l'impact des séismes
- 4. Prédiction du nombre de séisme

Le sujet I a été tenté mais aucun bon résultat => Sujet 4 avec agrégation par mois et focus sur l'Alaska

a) ARIMA

$$X_{t} = \sum_{k=1}^{p} a_{k} X_{t-k} - \sum_{j=1}^{q} b_{j} \epsilon_{t-j} + \epsilon_{t}$$

Modèle	MA(q)	AR(p)	ARMA(p,q)
Covariance	$cov(h) = 0, \forall h > q$	$\lim_{h \to \infty} cov(h) = 0$	$\lim_{h \to \infty} cov(h) = 0$
Corrélation	$\rho(h) = 0, \forall h > q$	$\lim_{h\to\infty}\rho(h)=0$	$\lim_{h \to \infty} \rho(h) = 0$
Corr partielle	$\lim_{h \to \infty} r(h) = 0$	$r(h) = 0, \forall h > p.r(p) = a_p$	

a) ARIMA

Volatilité présente

- Test de Dickey-Fuller: p-value = 0,01
- ⇒ Série stationnaire

a) ARIMA

- Q=1
- P = 8

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{8}Y_{t-8} + \epsilon_{t} - \theta_{1}\epsilon_{t-1}$$

- Recherche grille :
- ARIMA(6,1,10) : AIC (L-jung Box : p-value non significative)
- ARIMA(1,1,1) : BIC (L-jung Box : p-value significative)
- ARIMA(0,1,3) : auto.arima() (L-jung Box : p-value **significative**)

a) ARIMA

a) ARIMA

- ARIMA(8,1,1) ; RMSE : 34,36
- ARIMA(6,1,10); RMSE: 38,17

Ne capture pas la volatilité

b) GARCH

$$X_{t} = \sum_{k=1}^{p} a_{k} X_{t-k} - \sum_{j=1}^{q} b_{j} \epsilon_{t-j} + \epsilon_{t}$$

$$\varepsilon_t \sigma_t^2 = \sigma_t \eta_t$$

$$\sigma_t^2 = \omega + \alpha \sum_{i=1}^p \varepsilon_{t-i}^2 + \beta \sum_{j=1}^q \sigma_{t-j}^2$$

b) GARCH

- Méthode grille search:
- ordre p et q GARCH de 1 à 10
- ordre p et q ARMA de 1 à 3
- AIC : GARCH(8,10) ARMA(2,3)
- Expérimental : GARCH(3,2) ARMA(9,2)
- P=9 pacf() sans différenciation
- Q=2 ordre petit comme ARIMA
- Ordre GARCH choisi arbitrairement

b) GARCH

RMSE:

- GARCH(3,2) ARMA(9,2) : 25,9
- GARCH(8,10) ARMA(2,3) : 64,075
- Ajustement meilleur que ARIMA
- Difficulté à prédire sur le long terme

Boosting:

c) Light GBM

- Combinaison de plusieurs modèles faibles
- Correction des erreurs des précédents modèles

Gradient Boosting:

- Ajusté sens opposé du gradient de la fonction de perte
- ⇒ Réduire les erreurs de prédictions

Optimisation basé sur l'histogramme :

- Light GBM <> Boosting
- Construire les arbres sur les intervalles
- ⇒ Réduction du nombre de point de coupure

(Arbre: utilise les valeurs uniques)

Seuil de coupure light GBM : basé sur les gradients

Leaf-wise Splitting:

- Choisir le nœud avec la perte la plus élevée
- ⇒ Arbres plus profond mais plus performant

Échantillonnage basé sur le gradient d'un côté:

- Construction de l'arbre : donner un poids aux observations qui contribue le plus aux erreurs en fonction du gradient (fort)
- ⇒ Efficacité de l'entraînement

c) Light GBM

Paramètre par défaut :

Data Spliting: train et test

Puis convertir dans un format adapté pour Light GBM:

lgb.Dataset()

Data Test : 12 derniers mois de la série temporelle jusqu'à

juillet 2023

Nombre d'itération de boosting à fixer : 1000

RMSE: 23,1048

Recherche aléatoire (Random Search):

Grille de paramètre avec recherche aléatoire (nb max de feuille, nb total d'arbre et taux d'apprentissage)

- nb max de feuille : 20 à 50 pas de 5 (optimal : 35)
- nb total d'arbre : 50 à 300 pas de 50 (optimal : 50)
- taux d'apprentissage : 0,01 à 0,2 pas de 0,05 (optimal : 0,11)

RMSE: 22,9547

Méthode bayésienne :

Prend en compte les évaluations passées en fonction des hyperparamètres.

⇒ Moins d'itérations

nb max de feuille : 27

nb total d'arbre : 50

taux d'apprentissage: 0,02057

RMSE: 19,83

Algorithme génétique:

Générer une population initiale

Evaluer et sélectionner les meilleurs

Opérations de croisement et de mutation => évoluer vers

des configurations optimales au fil des générations.

nb max de feuille : 24 nb total d'arbre : 64

taux d'apprentissage : 0,015

RMSE: 20,13

c) Light GBM

Light GBM Bayésien				
Métrique	Valeur			
MSE	393,33			
RMSE	19,83			
MAE	14,83			
MAPE	12,25%			

d) RNN

Réseau de neurones récurrent :

ht : sortie xt: données d'entrées

Données séquentielles (langage, données temporelles)

Capture les informations au fur et à mesure

Limites : atténuations du passé lointain

Mauvais sur des données avec dépendance complexe

d) LSTM

Cellule Ct et Porte de l'oubli:

- Cellule Ct (vecteur): stocker les informations [0,1]
- Porte de l'oubli : examine xt et ht-1 et attribue un nombre entre 0 et 1 pour chaque élément de Ct-1

$$f_t = \sigma \big(W_f x_t + U_f h_{t-1} \big)$$

Avec:

- f_t est le vecteur de port d'oubli à l'instant t
- σ est la fonction d'activation sigmoïde $\sigma(z) = \frac{1}{1+e^{-z}}$
- W_f est la matrice de poids porte de l'oubli (f_t)
- U_f est la matrice de poids porte de l'oubli (f_t)

d) LSTM

Porte d'entrée:

- Décide quelles unités cellulaires doit être mis à jour

$$i_t = \sigma(W_i x_i + U_i h_{t-1})$$

Porte d'état :

- Régule la mise à jour de l'état de la cellule

$$\widetilde{C}_t = tanh(W_c x_t + U_c h_{t-1})$$

Mise à jour:

$$C_t = f_t \times C_{t-1} + i_t \times \widetilde{C}_t$$

Rappel: Tanh

$$f(x) = \frac{\left(e^x - e^{-x}\right)}{\left(e^x + e^{-x}\right)}$$

d) LSTM

Porte de sortie :

 Contrôle la sortie de l'état de la cellule pour l'étape actuelle.

$$o_t = \sigma(W_o x_t + U_o h_{t-1})$$

Calcul de la prédiction :

$$h_t = o_t \times tanh(C_t)$$

d) LSTM

			${\bf Forme\ de}$	Paramètre
Couche	\mathbf{Type}	Neurones	sortie	\mathbf{s}
$lstm_363$	LSTM	50	(None, 12, 50)	10 400
$lstm_364$	LSTM	200	(None, 12, 200)	200 800
$dropout_25$				
9	Dropout	0		0
$lstm_365$	LSTM	150	(None, 12, 150)	210 600
dropout_26				
0	Dropout	0		0
$lstm_366$	LSTM	100	(None, 100)	100 400
dropout_26				
1	Dropout	0		0
$_{\rm dense_166}$	Dense	1	(None, 1)	101

Nombre de paramètre:

522 301 paramètres

Couche:

Dropout : éviter le surapprentissage (20%)

Test:

BatchNormalization : normaliser les sorties des modèles

GaussianNoise (0,005; 0,01 et 0,015)

Compilateur Adam:

Ajuste les poids et les biais lors de l'entraînement

Paramètre entraînement:

50 épochs : nb de fois où le modèle parcourt l'intégralité

des train data

Batch_size=32 : nb d'échantillon lors d'une itération

Métriques:

RMSE: 15,22

MAE: 12,09

MAPE: 9,62%

d) LSTM

- Suit les tendances générales
- Capture les structures de données complexes

d) LSTM

- Bonne adéquation sur les données de test
- Modèle avec une approche conservatrice (volatilité faible)
- Meilleur modèle (robuste, efficace)

Conclusion

- LSTM a surpassée nos attentes (performances, robustesse, rapidité et efficacité)
- Limites de notre approches : focus sur Alaska (extrapolation) => reproduire l'analyse sur les autres pays / états
- Amélioration des résultats en utilisant des variables exogènes (nature des sols, données sur les plaques)
- Essais sur la création d'une app streamlit pour utiliser le modèle (problème de version avec streamlit et tensorflow)
- D'autres approches, telles que le modèle FARIMA, auraient pu être évaluées