諸定義

定義 1. $f_1,...,f_k$ を s-t 点素パスの集合とする。 $U=(u_1,...u_k)$ および $W=(w_1,...,w_k)$ を $(f_1,...,f_k)$ に関するスライスとし、すべての $1 \le i \le k$ について、 u_i は f_i における w_i の前者または $u_i=w_i$ とする。この時 U は W より S に近いと言い、 $U \preceq W$ と書く。もし $1 \le i \le k$ に対して、さらに $u_i \ne w_i$ ならば、U は W より厳密に S に近いと言い、 $U \prec W$ と書く。同様に、S は S は S に近いと言う。便宜上、S で、S が、S についても同様に上記を定義。したがって、例えば、S が、S はどのスライスよりも S に近いと言える。" S " は一般的な順序の合計を定義するものではない。

定義 2. U を任意のカットとする。s を含む $G[V \setminus U]$ の連結成分の頂点セットとして $V_s(U)$ を定義し、t を含む $G[V \setminus U]$ の連結成分の頂点セットとして $V_t(U)$ を定義し、 V_r を $G[V \setminus U]$ の残りの連結成分の頂点集合の和集合として 定義する。すなわち、s も t も含まないものである(したがって、 $V_r(U)$ は空であり得る)。

定義 3. $(f_1,...,f_k)$ に関して U をスライスとする。 $U \preceq X$ であり、かつ $U \preceq X' \prec X$ を満たすカット X' が存在しないようなカットを X とする。この時 $U^+ := X$ を定義する。

上記のような X が存在しない場合は、 $U^+ := (t, t, ..., t)$ とする。

同様に、 $Y \preceq U$ かつ $U \preceq Y' \prec Y$ を満たすカット Y' が存在しないようなカットを Y とする。この時、 $U^- := Y$ を定義する。

上記のような Y が存在しない場合は $U^- := (s, s, ..., s)$ とする

アルゴリズム1

Algorithm 1 U^+ の計算

```
初期設定:
点素 s-t パス f_1, ..., f_k
スライス U = (u_1, ..., u_k)
集合 X = \{\}, x \in X
w_i := u_i
 1: for i = 1tok do
        w_i の前にあるノードをすべて X に入れる \triangleright X は V_s(U^+) の候補
 3: end for
 4: Y := V \setminus (X \cup U), y \in Y
 5: while \{x,y\}\in \overset{\leftarrow}{E} がなくなるまで do 6: if y=t then
 7:
           return (t, t, ..., t)
       else if y が f_i に属している then X に f_i 上で y より前にある頂点を加える Y から X に加えた頂点を削除
 8:
 9:
10:
11:
           w_i = y
12:
        else
            頂点yをXにを入れてYから削除する
13:
        end if
14:
15: end while
16: return (w_1, ..., w_k)
```

 U^+ と U^- の計算時間は O(m)

分散案1

- 1. 各 u_i は $w_i := u_i$ としてパスに沿って s 方向に送信
- 2. ノードsから w_i のインデックスをブロードキャスト
- 3. 受信するノードが s-t パス上にある時、そのノードは w_i の値を更新してパスに沿って s 方向にのみ送信
- 4. 受信した w_i の値がパス上の自身のインデックスと等しいとき、 w_i をグラフ全体にブロードキャスト (u_i の時は除外)
- 5. t が値を受信したとき、 $w_i := t$ としてグラフ全体にブロードキャスト

O(kn) ラウンドで実行可能(?)