Previous lectures: Classification of scheduling models

 $(\alpha |\beta| \gamma)$

- Machines
- Jobs
- Objective functions

$$C_{\text{max}}, \Sigma C_{j}, \Sigma w_{j}C_{j}$$

$$L_{\text{max}}, \Sigma T_{i}, \Sigma W_{i}T_{i}, \Sigma U_{i}, \Sigma w_{i}U_{i}$$

This lecture:

Single machine problems

Single machine models

M_1

Why single machine models?

- arise in practice when there is one service point (production facility);
- special case of all other environments;
- multi-machine systems can often be decomposed into a number of single stage systems;
- provide a basis for design of exact and approximation procedures for more complicated machine environments

 $1 || \sum C_j$

Best solution. How to find it?

Job	p _i
1	7
2	2
3	5

$1 || \sum C_j$

Take the jobs in any order 1, 2, ..., n.

Job	p _i
1	7
2	2
3	5

p ₁ p ₂			p _{n-1}	p _n
$C_1 = p_1$				
$C_2 = p_1 + p_2$				
:				
$C_{n-1} = p_1 + p_2 +$	 +	p_{n-1}		
$C_n = p_1 + p_2 +$	 +	<i>p</i> _{<i>n</i>-1} +	p_n	

$$\sum C_j = np_1 + (n-1)p_2 + \dots + 2p_{n-1} + p_n$$

Thus, job 1 contributes np_1 , job 2 contributes $(n-1)p_2$, and so on.

If we want to minimize $\sum C_j$, we want p_1 to be the smallest, p_2 the second smallest, etc.

$$1 || \sum C_j$$

Job	p _i
1	7
2	2
3	5

- The problem is solved by ordering jobs in SPT order
- As any other sorting, this takes

$1 || \sum w_j C_j$

Consider 1|| $\sum w_i C_i$.

 \mathbf{w}_{i} - the importance of job \mathbf{j} ,

 $\Sigma w_j C_j$ - indication of total holding, or inventory costs incurred by the schedule.

Consider first the special case of the problem above:

$$1| p_j = 1 | \Sigma \mathbf{w}_j \mathbf{C}_j.$$

$$1| p_j=1| \sum w_jC_j$$

Job	p _j	W _j
1	1	7
2	1	2
3	1	5

Find an optimal job sequence _____

and the optimal value of the objective function _____

$$1 | p_j = 1 | \sum w_j C_j$$

Job	p _j	W _j
1	1	7
2	1	2
3	1	5

 In an optimal schedule the jobs have to be ordered in decreasing (non-increasing) order of their weights.

• As any other sorting, this takes
$$O(n \log n)$$

$$1|p_j = 1|\sum w_j C_j$$

$$1 \mid \sum w_j C_j$$

- If $w_1 = w_2 = \dots = w_n$, then "smaller" jobs go first
- If $p_1 = p_2 = \dots = p_n$, then "more expensive" jobs go first

2. WSPT (Smith's rule)

Consider now 1|| $\sum w_j C_j$ with arbitrary p_j .

Weighted Shortest Processing Time first (WSPT) rule:

the jobs are sequenced in nondecreasing order of p_i/w_i .

W.E. Smith: Various optimizers for single-stage production.

Naval Research Logistics Quarterly 3, 59-66, 1956

2. WSPT (Smith's rule)

Theorem 1.

For $1 || \sum w_i C_i$ the WSPT rule is optimal.

Proof. Adjacent pairwise interchange:

Suppose a schedule **S**, which is not WSPT, is optimal.

In this schedule there must be at least two adjacent jobs i and k such that

$$\frac{p_i}{w_i} > \frac{p_k}{w_k}$$

We assume that i precedes k and i starts at time t.

Swapping jobs *i* and *k* leads to a schedule **S**' such that

$$F(S) = \sum_{i \neq j,k} w_i C_i + w_j C_j + w_k C_k = \sum_{i \neq j,k} w_i C_i + w_j (t + p_j) + w_k (t + p_j + p_k)$$

$$F(S') = \sum_{i \neq j,k} w_i C_i + w_j C_j' + w_k C_k' = \sum_{i \neq j,k} w_i C_i + w_k (t + p_k) + w_j (t + p_j + p_k)$$

$$F(S') - F(S) = w_j p_k - w_k p_j < 0$$

3. Preemption:

$1|Pmtn| \Sigma C_i$

3. Preemption:

$1|Pmtn| \Sigma C_j$

$$p_1 = 3$$
; $p_2 = 13$; $p_3 = 4$; $p_4 = 2$; $p_5 = 5$

Suppose job **j** is processed with preemption.

Modify the schedule by moving all parts of job **j** just before its last part and processing job **j** contiguously.

Those jobs that are processed before the last part of job *j* are shifted to the left.

3. Preemption:

$1|Pmtn| \Sigma C_j$

$$p_1 = 3$$
; $p_2 = 13$; $p_3 = 4$; $p_4 = 2$; $p_5 = 5$

For problem $1|Pmtn|F(C_1,...,C_n)$ there exists an optimal schedule without preemption.

McNaugton: Scheduling with deadlines and loss functions.

Management Science 6, 1-12, 1959

Consider 1 $| r_j |$, Pmtn $| \Sigma C_j |$

Shortest Remaining Processing Time first (SRPT) rule:

each time that a job is completed, or at the next release date, the job to be processed next has the smallest remaining processing time among the available jobs.

K.R. Baker: Introduction to Sequencing and Scheduling.

John Wiley & Sons, 1974

	r _j	p _j
J_1	0	13
\boldsymbol{J}_2	3	6
\boldsymbol{J}_3	14	8
$oldsymbol{J}_4$	18	3
\boldsymbol{J}_{5}	22	5
\boldsymbol{J}_6	25	3
J_7	30	4
J_8	33	1

Shortest Remaining Processing Time first (SRPT) rule:

Shortest Remaining Processing Time first (SRPT) rule:

Shortest Remaining Processing Time first (SRPT) rule:

Shortest Remaining Processing Time first (SRPT) rule:

Shortest Remaining Processing Time first (SRPT) rule:

Theorem 2. For $1 \mid r_j$, **Pmtn** $\mid \Sigma C_j$ the SRPT rule is optimal.

We have obtained a 'better' schedule **S**':

$$C_i' < C_i$$

$$C_k' = C_k$$

$$\sum C_j' - \sum C_j = (C_i' + C_k') - (C_i + C_k) < 0$$