Antiderivatives of ~1/x

Consider the antiderivatives of functions on x^a where a is equal to values close to -1, comparing with that of a = -1. Now basic calculus gives us:

$$\int x^a \cdot dx = 1/(a+1) \cdot x^{a+1} + c$$
 (where $a \neq -1$)

and of course:

$$\int x^{-1} \cdot dx = \ln x + c$$

Which leads us to wonder how the first expression compares with the second as *a* approaches -1. Plotting some values produces the following graphs –

Here the yellow curve is the iconic natural logarithm and the others represent various antiderivatives for exponents about the -1 value. Now these all represent the case where c in the intergrand above is zero – as can be seen in the graphs, where the exponent is close to -1 the *shape* of the curve closely resembles the ln(x) graph; whereas its *position* is greatly displaced.

KDT CONJECTURE

Now this displacement can be countered by choosing an appropriate value for c. We can normalise antiderivative function 1/(a+1). $x^{a+1}+c$ at the x=1 value by setting $c=1/(a\pm 1)$; the sign depending on whether a is less than -1 (plus) or greater than -1 (minus). This produces –

Here we have the antiderivative functions (solid lines) plotted against their unintegrated counterparts (dashed lines) where the exponent a varies from 1 by ± 0.25 , as well as the comparable $\ln(x)$ and 1/x functions (green). Now, closing in to 1 ± 0.1 gives –

And for $1 \pm 0.05 -$

So, as we would expect, the antiderivative of the x^a function closely aligns with the $\ln(x)$ function as a approaches -1, provided we adjust the integral constant by the appropriate amount, namely –

$$c = 1/(a \pm 1)$$

* * *

Taking the antiderivative function arrived at above:

$$1/(a+1) \cdot x^{a+1} + 1/(a\pm 1)$$

Re-expressing this by letting $\alpha = a + 1$, and considering just the case where α is positive (i.e. where a approaches -1 from the high side), we get:

$$(1/\alpha)$$
. $x^{\alpha} - 1/\alpha$

$$=\frac{x^{\alpha}-1}{\alpha}$$

Which leads to the conjecture -

$$\lim_{\alpha \to 0+} \frac{x^{\alpha} - 1}{\alpha} = \ln x$$