Math and probability

S320/520

Trosset chs. 2 & 3

Note: These are part of my personal notes for the lectures. They are *not* complete. Math you need to do probability:

- Sets
- Counting
- Functions
- (Limits and calculus)

Sets

- Sample space, S: The set of possible outcomes. Exactly one of the possible outcomes happens.
- **Event**, E: A subset of the sample space. It may consist of some, all, or none of the possible outcomes.
- Countable set: A set that can be placed in a counting order.
 - e.g. The set {red, white, blue} is countable.
 - e.g. The integers are countable: We can order them as $\{0, 1, -1, 2, -2, ...\}$ and we'll eventually reach any integer you specify.
 - e.g. The real numbers are *not* countable. There's no way of putting them into one-to-one correspondence with the counting numbers.
- Intersection: The intersection of sets A and B, which we write $A \cap B$, is the set of outcomes that are in both A and B.
 - **Disjoint:** Sets are disjoint if their intersection is empty. A collection of sets is *pairwise disjoint* if any pair of the sets is disjoint.
- Union: The union of sets A and B, which we write $A \cup B$, is the set of outcomes that are in either A or B (or both.)
- Complement: The complement of set A, which we write A^c , is the set of all outcomes in the sample space that are *not* in A.

The three axioms of probability

Mathematical probability is a way of attaching numbers to sets that is consistent with certain axioms.

Let P(E) be the probability that event E happens. Kolmogorov's axioms:¹

- 1. If E is an event, then $0 \le P(E) \ge 1$.
- 2. P(S) = 1.
- 3. If $\{E_1, E_2, E_3 ...\}$ is a countable collection of pairwise disjoint events,

$$P(\cup E_i) = \sum P(E_i).$$

Some more rules quickly follow from these axioms:

$$P(A) + P(A^c) = P(A \cup A^c) = P(S) = 1$$

 $\implies P(A^c) = 1 - P(A).$

This is the *complement rule* or *subtraction rule*.

$$P(A) = P(A \cap B^{c}) + P(A \cap B)$$

$$P(B) = P(B \cap A^{c}) + P(A \cap B)$$

$$P(A) + P(B) = P(A \cap B^{c}) + P(A \cap B) + P(B \cap A^{c}) + P(A \cap B)$$

$$= P(A \cup B) + P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(B \cap A^{c})$$

Addition rule: The probability of A or B is the probability of A plus the probability of B minus the probability of both.

How to come up with probabilities

- Classical probability: Equally likely outcomes

 Roll a six-sided die. Assuming all six sides are equally likely, the probability of a three is 1/6.
- Frequentist probability: Repeated experiments

 Roll the die a thousand times. The probability of a three is the proportion of times a three comes up.
- Subjective probability: Represent your strength of belief with a number

 I believe the following bet is fair: I give you a sixth of a dollar, then you give a dollar back if
 I roll a three.

¹In a slightly different form from the original.

Classical probability and counting

We can solve many probability problems by correctly identifying the equally likely outcomes. Then we reduce them to counting problems:

$$P(A) = \frac{\#(A)}{\#(S)}$$

where # means we count the number of outcomes in that set.

Example. I toss two coins. What are the equally likely outcomes? How many are there?

- Wrong answer: Three: two heads, two tails, one head one tail.
- Right answer: Four: $\{H, H\}, \{H, T\}, \{T, H\}, \{T, T\}.$

If you don't believe me, toss a pair of coins a hundred times.

We can use the **multiplication principle** to help our counting:

Suppose we do two experiments. If the first experiment has n_1 equally likely outcomes, and for each of those outcomes, the second experiment has n_2 equally likely outcomes, then the two experiments considered together have $n_1 \times n_2$ equally likely outcomes.

Example. If I roll two six-sided dice, there are 36 equally likely outcomes, each with probability 1/36. If I roll ten six-sided dice, there are 6^{10} equally likely outcomes, each with probability $1/6^{10}$.

Example. There are 3 starter Pokemon: Bulbasaur, Squirtle, and Charmander. I choose one starter at random, and my opponent chooses one at random. What is the probability we both choose Squirtle?

Factorial notation

I have all three starter Pokemon and need to put them in an order. If I order them randomly, what's the probability the order is 1. Bulbasaur 2. Charmander 3. Squirtle?

Permutations

There are 150 Pokemon. I choose six different Pokemon, in order and at random, for my team. How many equally likely outcomes are there, and what's the probability of each of them?

Combinations

There are 150 Pokemon. I choose six different Pokemon, but order doesn't matter. How many equally likely outcomes are there, and what's the probability of each of them?

More examples

Next: Probability trees, conditional probability, independence, random variables.