赋值

王捍贫

北京大学信息科学技术学院软件研究所

等值演算

例35 证明:
$$(p_0 \rightarrow (p_1 \rightarrow p_2)) \iff (p_0 \land p_1) \rightarrow p_2$$
.

证: $\exists p_0 \rightarrow p_1 \iff (\neg p_0) \lor p_1$, 故:

$$p_0 \rightarrow (p_1 \rightarrow p_2)$$

$$\iff (\neg p_0) \lor (p_1 \rightarrow p_2) \qquad (定理20)$$

$$\iff (\neg p_0) \lor ((\neg p_1) \lor p_2) \qquad (定理21)$$

$$\iff (\neg p_0 \lor \neg p_1) \lor p_2 \qquad (结合律)$$

$$\iff \neg (p_0 \land p_1) \lor p_2 \qquad (否定律)$$

$$\iff (p_0 \land p_1) \rightarrow p_2 \qquad (定理20)$$

范式

公式在等值意义下的一种标准形式。

定义23 — 简单合取式和简单析取式:

- 由命题符号或命题符号的否定利用合取词∧组成 的公式称为简单合取式.
- 由命题符号或命题符号的否定利用析取词∨组成 的公式称为简单析取式.

单个命题符号或它们的否定 — 简单析(合)取式. $p, \neg q, p \land (\neg q), (p \land (\neg q) \land (\neg p))$ — 简单合取式. $\neg \neg p, \neg (p \land (\neg q))$ — 不是简单析(合)取式.

析取范式和合取范式

- 由简单合取式的析取构成的公式称为析取范式.
- 由简单析取式的合取构成的公式称为合取范式.

单个简单析(合)取式既是合取范式也是析取范式. $p \lor (\neg q) \lor (p \land (\neg q))$ 是析取范式但不是合取范式. $\neg \neg p$ 既不是析取范式也不是合取范式

简单析(合)取式的性质

定理24 (重言式(矛盾式)情形)

- (1) 一个简单析取式是重言式当且仅当 它同时包含一个命题符号及其否定式.
- (2) 一个简单合取式是矛盾式当且仅当 它同时包含一个命题符号及其否定式.

证: 只证(1)

简单析(合)取式的性质的证明

(\Leftarrow)

设 α 为一个简单析取式,且 α 中包含命题符号p及其否定式 $\neg p$ 。

由交換律和结合律知:可假设 α 中含有 $p \vee (\neg p)$ 。

把 α 中除 $p \vee (\neg p)$ 之外的部分记为 α' ,则由交换律和结合律知: $\alpha \longleftrightarrow \alpha' \vee (p \vee (\neg p))$.

由排中律知: $(p \lor (\neg p)) \iff 1$ 。

故 α 是一个重言式.

简单析(合)取式的性质的证明(续)

 (\Rightarrow)

设 α 为永真的简单析取式.

若它不同时包含一个命题符号和它的否定, 考虑 α 中命题变元符号的如下指派:

给 α 中不带¬号的命题变元符号p指派值0. 给 α 中带¬号的命题变元符号q指派值1.

则 α 在此指派下取值0,与 α 为重言式矛盾. 故 α 中同时包含一个命题变元符号及其否定.

非重言(矛盾)的简单析(合)取式

定理25 对于命题符号组 q_1, q_2, \cdots, q_n ,

- (1) 所含命题符号仅为 q_1, q_2, \dots, q_n 的任意非矛盾的简单合取式有且仅有一个关于它们的成真指派.
- (2) 所含命题符号仅为 q_1, q_2, \dots, q_n 的任意非永真的简单析取式有且仅有一个关于它们的成假指派.

例如:

 $\neg q_1 \land q_2 \land q_3$ 关于 (q_1, q_2, q_3) 的唯一成真指派是(0, 1, 1).

 $\neg q_1 \lor q_2 \lor q_3$ 关于 (q_1, q_2, q_3) 的唯一成假指派是(1, 0, 0).

非重言(矛盾)的简单析(合)取式(续)

定理26 对于命题变元符号组 q_1, q_2, \dots, q_n 的任意指派 σ ,

- (1) 一定有一个非永真的简单析取式 α 以 σ 为成假指派,且 α 中所含的命题符号有且仅有 q_1, q_2, \dots, q_n .
- (2) 也一定有一个非矛盾的简单合取式 β 以 σ 为成真指派. 且 α 中所含的命题符号有且仅有 q_1, q_2, \dots, q_n . 例如:

以(1,0,1)为唯一成假指派的简单析取式为 $\neg q_1 \lor q_2 \lor \neg q_3$,

以(1,0,1)为唯一成真指派的简单合取式为 $q_1 \land \neg q_2 \lor q_3$.

析(合)取式的性质

定理27 对P中公式 $\alpha_1, \alpha_2, \cdots, \alpha_n$,

- (1) 合取式 $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 的成真指派集为各个 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的成真指派集的交集, 合取式 $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 的成假指派集为各个 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的成假指派集的并集.
- (2) 析取式 $\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n$ 的成假指派集为各个 α_1 , α_2 , \cdots , α_n 的成假指派集的交集, 析取式 $\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n$ 的成真指派集为各个 α_1 , α_2 , \cdots , α_n 的成真指派集的并集.

析取范式定理

定理28 P的任一个公式 α 都等值于一个析取范式 β .

证:设 α 中的命题符号为 q_1, q_2, \dots, q_n .

对于每个 σ_i , 存在命题符含且仅含 q_1 , q_2 , ···, q_n 的一个简单合取式 α_i , 使 α_i 以 σ_i 为成真指派(定理26)

由定理25知: α_i 关于 q_1 , q_2 , \cdots , q_n 的成真指派仅为 σ_i 一个($i=1, 2, \cdots m$).

析取范式定理(续)

由定理**27**知: β 的成真指派为所有 α_1 , α_2 , \cdots , α_n 的成真指派的并集, 即为 σ_1 , σ_2 , \cdots , σ_m . 从而 $\alpha \longleftrightarrow \beta$.

合取范式定理

定理28 P的任一个公式 α 都等值于一个合取范式 β .

证:

由定理28知: $\neg \alpha$ 与某个析取范式等值, 即

$$\neg \alpha \Leftrightarrow (\alpha_1 \lor \alpha_2 \lor \cdots \lor \alpha_m)$$

其中 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 都是简单合取式.

所以
$$\neg \neg \alpha \Leftrightarrow \neg (\alpha_1 \lor \alpha_2 \lor \cdots \lor \alpha_m).$$

因¬¬
$$\alpha \Leftrightarrow \alpha$$
, 故 $\alpha \Leftrightarrow \neg (\alpha_1 \lor \alpha_2 \lor \cdots \lor \alpha_m)$.

合取范式定理

 $\neg (\alpha_1 \lor \alpha_2 \lor \cdots \lor \alpha_m) \Leftrightarrow (\neg \alpha_1) \land (\neg \alpha_2) \land \cdots \land (\neg \alpha_m).$

由于每个 $\neg \alpha_i$ 等值一个简单析取式,

故 $(\neg \alpha_1) \land (\neg \alpha_2) \land \cdots \land (\neg \alpha_m)$ 等值于一些简单析取式的合取。

即: α 等值于一些简单析取式的合取.

注: 当然也可仿定理2.28证明.

例36

求 $((\neg p_1) \lor p_2) \to p_3$ 的合取范式和析取范式.

解:范式定理的证明还指出了求范式的步骤:

(1) 列求真值表, 找出所有成真指派

p_1	p_2	p_3	$(\neg p_1) \lor p_2$	$ \alpha $	$ \neg lpha $
0	0	0	1	0	1
1	0	0	0	1	0
0	1	0	1	0	1
0	0	1	1	1	0
1	1	0	1	0	1
1	0	1	0	1	0
0	1	1	1	1	0
1	1	1	1	1	0

例36(续1)

(2) 先求析取范式.

$$((\neg p_1) \lor p_2) \rightarrow p_3$$
关于 p_1, p_2, p_3 的成真指派为 $<1,0,0>,<0,0,1>,<1,0,1>,<0,1,1>,<1,1,1>,$

相应的简单析取式分别为:

$$p_1 \wedge (\neg p_2) \wedge (\neg p_3), (\neg p_1) \wedge (\neg p_2) \wedge p_3,$$

 $p_1 \wedge (\neg p_2) \wedge p_3, (\neg p_1) \wedge p_2 \wedge p_3, p_1 \wedge p_2 \wedge p_3.$
故: $((\neg p_1) \vee p_2) \rightarrow p_3$ 的一个析取范式为:

$$(p_{1} \wedge (\neg p_{2}) \wedge (\neg p_{3})) \vee ((\neg p_{1}) \wedge (\neg p_{2}) \wedge p_{3}) \vee (p_{1} \wedge (\neg p_{2}) \wedge p_{3}) \vee ((\neg p_{1}) \wedge p_{2} \wedge p_{3}) \vee (p_{1} \wedge p_{2} \wedge p_{3}) \vee (p_{1} \wedge p_{2} \wedge p_{3}) \vee (p_{2} \wedge p_{3}) \vee (p_{2} \wedge p_{3}) \vee (p_{3} \wedge p_{2} \wedge p_{3}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4} \wedge p_{4}) \vee (p_{4} \wedge p_{4} \wedge p_{$$

例36(续2)

(3) 再求合取范式.

为求 $((\neg p_1) \lor p_2) \to p_3$ 的合取范式,要先求它的否定式的析取范式.

$$\neg (((\neg p_1) \lor p_2) \to p_3)$$
 的成真指派为 $< 0, 0, 0 >, < 0, 1, 0 >$ 和 $< 1, 1, 0 >$ (正好为 $((\neg p_1) \lor p_2) \to p_3$ 的成假指派) 故 $\neg (((\neg p_1) \lor p_2) \to p_3)$ 的析取范式为: $((\neg p_1) \land (\neg p_2) \land (\neg p_3)) \lor ((\neg p_1) \land p_2 \land (\neg p_3)) \lor (p_1 \land p_2 \land (\neg p_3))$

例36(续3)

故
$$((\neg p_1) \lor p_2) \to p_3$$

 $\iff \neg \left(((\neg p_1) \land (\neg p_2) \land (\neg p_3)) \lor ((\neg p_1) \land p_2 \land (\neg p_3)) \lor (p_1 \land p_2 \land (\neg p_3)) \right)$
 $\iff \neg ((\neg p_1) \land (\neg p_2) \land (\neg p_3)) \land \neg ((\neg p_1) \land p_2 \land (\neg p_3)) \land \neg (p_1 \land p_2 \land (\neg p_3)) \land \neg (p_1 \lor p_2 \lor p_3) \land ((\neg p_1) \lor p_2) \lor p_3) \land ((\neg p_1) \lor (\neg p_2) \lor p_3)$
此即为 $((\neg p_1) \lor p_2) \to p_3$ 的一个合取范式.
据此得到如下求范式的过程。

复习

- (1) 公式的等值
- (2) 等值演算:
 - 基本等值式.
 - 等值替换.
- (3) 等值意义下的标准形: 范式.
 - 从范式可以很容易看出其成真和成假指派。
 - 每个公式都等价一个析取(合取)范式。

求范式的过程

- (1) 求 α 的析取范式的过程
 - 求出 α 的所有成真指派 σ_1 , σ_2 , · · · , σ_m 。
 - 对于每个 σ_i , 写出以 σ_i 为成真指派的简单合取式 α_i (1 $\leq i \leq m$)。
 - 则 $\beta = \alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_m$ 即为所求。
- (2) 求 α 的合取范式的过程 (对比(1)和例36)
 - 求出 α 的所有成假指派 σ_1 , σ_2 , · · · , σ_m 。
 - 对于每个 σ_i , 写出以 σ_i 为成假指派的简单析取式 α_i (1 $\leq i \leq m$)。
 - 则 $\beta = \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_m$ 即为所求。

用等值演算求范式

例36 求 $((\neg p_1) \lor p_2) \rightarrow p_3$ 的合取范式和析取范式.

解:
$$((\neg p_1) \lor p_2) \to p_3$$

 $\iff \neg ((\neg p_1) \lor p_2) \lor p_3$
 $\iff ((\neg \neg p_1) \land (\neg p_2)) \lor p_3$
 $\iff (p_1 \land (\neg p_2)) \lor p_3$ 析取范式
 $\iff (p_1 \lor p_3) \land ((\neg p_2) \lor p_3)$ 合取范式

用等值演算求范式的步骤

(1) 去掉→;

(2) 内移¬;

(3) 去掉¬¬;

(4) 用分配律整理成析取范式(合取范式)

例37

求 $((p \lor q) \to r) \to p$ 的合取范式和析取范式.

解:
$$((p \lor q) \to r) \to p$$

 $\iff \neg ((p \lor q) \to r) \lor p$
 $\iff \neg (\neg (p \lor q) \lor r) \lor p$
 $\iff (\neg \neg (p \lor q) \land (\neg r)) \lor p$
 $\iff ((p \lor q) \land (\neg r)) \lor p$
 $\iff ((p \lor q) \lor p) \land ((\neg r) \lor p)$ (合取范式)
 $\iff (p \lor q) \land (\neg r) \lor p)$ (合取范式)
 $\iff (p \land (\neg r)) \lor (q \land (\neg r)) \lor p \lor (q \land p)$ (析取范式)
 $\iff (p \land (\neg r)) \lor (q \land (\neg r)) \lor p$ (析取范式)

注

- (1) 范式不是唯一的。
- (2)"主范式"的唯一性*。
- (3) 卡诺图。
- (4) \与\的对偶。

^{*}参见: 耿素云,屈婉玲, 离散数学,高等教育出版社, 1998, p35

联结词完全集的另外证明

P中只含联结词¬, ∨, ∧ 的公式称为限制性公式.

每个n元真值函数都可由n元限制性命题表示.

证:

设f是一个n元真值函数,即f: {0,1} $^n \rightarrow$ {0,1}. p_1, p_2, \dots, p_n 是n个命题变元.

(1) 若f是恒为O的函数,则f可由

$$p_1 \wedge \neg p_1 \wedge p_2 \wedge \cdots \wedge p_n$$

表示.

联结词完全集的另外证明(续)

$$\sigma_1, \ \sigma_2, \ \cdots, \ \sigma_m, \ (1 \leq i \leq m)$$

对每个 α_i (1 $\leq i \leq m$), 令 α_i 是由 p_1 , p_2 , \cdots , p_n 组成的一个简单合取式, 使得 α_i 关于 p_1 , p_2 , \cdots , p_n 以 σ_i 为唯一的成真指派. 则f由限定性命题公式

$$\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_m$$

表示.

作业

```
p.509(p.102). 23 (1)(5)(7)
25 (1)(2)(3)
26
```

谢谢