

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDII NUMBE		

574774145

COMPUTER SCIENCE

9608/31

Paper 3 Advanced Theory

October/November 2015

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

- 1 In a particular computer system, real numbers are stored using floating-point representation with:
 - 8 bits for the mantissa, followed by
 - 8 bits for the exponent

Two's complement form is used for both mantissa and exponent.

(a) (i) A real number is stored as the following two bytes:

			Man	tissa					Exponent							
0	0	1	0	1	0	0	0		0	0	0	0	0	0	1	1
		Calcu	ulate t	he dei	nary v	alue c	of this	numb	er. Sh	ow yo	our wo	rking.				
																[3
	(ii)	Expla	ain wh	y the f	floatin	g-poir	nt num	iber ir	n part	(a)(i)	is not	norm	alised			
																[2
	(iii)	Norm	nalise	the flo	ating-	point	numb	er in I	oart (a	a)(i).						
Mantissa								Exponent								

[2]

(b)	(i)			arges this fo	t posi rmat.	tive	numb	er 1	that	can	be	wr	ritten	as a	norma	alised	floatii	ng-poi	int
			Man	tissa										Ехро	nent				
																			[2]
	(ii)			smalle this fo	st pos rmat.	sitive	numl	ber	tha	it ca	n be	W	ritten	as a	norma	alised	floati		
			Man	tissa										Ехро	onent				
			1		ı	ı			'					I		ı		[[2]
	(iii)	If a p	ositive	numl	oer is	adde	ed to th	he r	num	nber	in p a	ırt	(b)(i)	explai	n wha	t will h	nappe	n.	
																		[[2]
(c)	A st	udent	writes	a pro	gram	to o	utput r	num	nbei	rs us	ing t	he	follow	ing co	ode:				
		X ←		0 50	100	0													
		X	< ← :	X + C	100	U													
		O ENDF	UTPU 'OR	ТХ															
	The	stude	nt is s	surpris	ed to	see 1	that th	ne p	rog	ram	outp	uts	the fo	ollowir	ng sec	uence	∋:		
	0.0	0.1	0.2	0.299	9999	0.3	39999	99 .											
	Exp	lain wl	hy this	s outpi	ut has	occi	urred.												
			,																
								•••••											••••
	•••••							•••••											••••
								••••											
																		[[3]

- 2 A compiler uses a keyword table and a symbol table. Part of the keyword table is shown below.
 - Tokens for keywords are shown in hexadecimal.
 - All the keyword tokens are in the range 00 5F.

Keyword	Token
←	01
+	02
=	03
IF	4A
THEN	4B
ENDIF	4C
ELSE	4D
FOR	4E
STEP	4F
ТО	50
INPUT	51
OUTPUT	52
ENDFOR	53

Entries in the symbol table are allocated tokens. These values start from 60 (hexadecimal).

Study the following piece of code:

```
Counter ← 1.5
INPUT Num1
   // Check values
IF Counter = Num1
   THEN
     Num1 ← Num1 + 5.0
ENDIF
```

(a) Complete the symbol table below to show its contents after the lexical analysis stage.

Cymbol	Token							
Symbol	Value	Туре						
Counter	60	Variable						
1.5	61	Constant						

	una	ysis.				I	I				ı			1	1	
60	0	1														
c)	This	line	of co	ode is	to be	comp	oiled:									
		A ←	- B	+ C	+ D											
			-		-	s stag hown		-	iler g	enera	tes ob	ject co	ode. T	he eq	uivale	nt code,
		LDD	234	4	//]	Loads	val	ue B								
		ADD				adds										
		STO								_	_	loca				
		LDD ADD				idaus adds			LOIII (.empo	orary	loca	ICTOI	L		
		STO	233	3				sult	in A	A						
	(i)	Nam	e th	e fina	al stac	e in th	ne cor	npilati	on pro	cess	that fo	llows	this co	ode a	enerat	ion stag
	()															
	(ii)				-	ent co	de giv	en ab	ove to	show	the e	ffect o	f it be	ing pr	ocess	ed throu
		this f	inal	stage	Э.											
				•••••												
(iii)	 State														
(iii)		e tw	 o ber	nefits	of the	comp	ilation	proce	ess pe	rformi	ng this	s final	stage).	
(iii)		e tw	 o ber	nefits	of the	comp	ilation	proce	ess pe	rformi	ng this	s final	stage).	
(iii)		 e tw e	o ber	nefits	of the	comp	ilation	proce	ess pe	rformi	ng this	s final	stage).	
(iii)	Bene	• tw e	o ber	nefits	of the	comp	ilation	proce	ess pe	rformi	ng this	s final	stage). 	
(iii)	Bene	• tw e	o ber	nefits	of the	comp	ilation	proce	ess pe	rformi	ng this	s final	stage). 	

An	email is sent from one email server to another using packet switching.
(a)	State two items that are contained in an email packet apart from the data.
	1
	2[2]
(b)	Explain the role of routers in sending an email from one email server to another.
	[3]
(c)	Sending an email message is an appropriate use of packet switching.
	Explain why this is the case.
	[2]
(d)	Packet switching is not always an appropriate solution.
	Name an alternative communication method of transferring data in a digital network.
	[1]

(e)	Name an application for which the method identified in part (d) is an appropriate solution Justify your choice.
	Application
	Justification

(a) Three descriptions and two types of processor are shown below.

Draw a line to connect each description to the appropriate type of processor.

	Description		Type of processor	
	Makes extensive use of general purpose registers		RISC	
	Many addressing modes are available		CISC	
	Has a simplified set of instructions			[3]
(b)	•	tructions (A followed by B, follo	owed by C) are proce	
	pipelining.			
	The following table shows the executed.	e five stages that occur whe	n instructions are fe	etched and
	(i) The 'A' in the table indicate	tes that instruction A has been	fetched in time interv	al 1.

Complete the table to show the time interval in which each stage of each instruction (A, B, C) is carried out.

				Tim	e inte	rval			
Stage	1	2	3	4	5	6	7	8	9
Fetch instruction	Α								
Decode instruction									
Execute instruction									
Access operand in memory									
Write result to register									

[3]

The completed table shows how pipelining allows instructions to be carried out more rapidly. Each time interval represents one clock cycle.
Calculate how many clock cycles are saved by the use of pipelining in the above example.
Show your working.
[3]

© UCLES 2015 9608/31/O/N/15

(ii)

5 (a) (i) Complete the Boolean function that corresponds to the following truth table.

	INPUT										
Α	В	С	Х								
0	0	0	0								
0	0	1	0								
0	1	0	0								
0	1	1	1								
1	0	0	0								
1	0	1	0								
1	1	0	1								
1	1	1	1								

$$X = \overline{A} \cdot B \cdot C + \dots$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

		AB					
		00	01	11	10		
С	0						
	1						

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

	OUTPUT			
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

X =[2]

A n	umber of processes are being executed in a computer.
(a)	Explain the difference between a program and a process.
	[2]
Арі	rocess can be in one of three states: running, ready or blocked.
(b)	For each of the following, the process is moved from the first state to the second state Describe the conditions that cause each of the following changes of the state of a process:
	From running to ready
	From ready to running
	From running to blocked
	[6]

` ,	Explain why a process cannot be moved from the blocked state to the running state.	
		[3]
(d)	Explain the role of the high-level scheduler in a multiprogramming operating system.	
		[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.