(47/65)

Solving nonlinear equations

§1.4: Fixed Point Iteration

MA385 - Numerical Analysis 1

September 2019

Newton's method can be considered to be a special case of a very general approach called *Fixed Point Iteration* or *Simple Iteration*.

The basic idea is:

If we want to solve f(x) = 0 in [a, b], find a function g(x) such that, if τ is such that $f(\tau) = 0$, then $g(\tau) = \tau$. Choose x_0 and set $x_{k+1} = g(x_k)$ for $k = 0, 1, 2, \ldots$

Example 1.11

Suppose that $f(x) = e^x - 2x - 1$ and we are trying to find a solution to f(x) = 0 in [1,2]. Then we can take $g(x) = \ln(2x + 1)$.

If we take $x_0 = 1$, then we get the following sequence:

k	x_k	$ \tau - x_k $
0	1.0000	2.564e-1
1	1.0986	1.578e-1
2	1.1623	9.415e-2
3	1.2013	5.509e-2
4	1.2246	3.187e-2
5	1.2381	1.831e-2
:	:	:
10	1.2558	6.310e-4

We have to be quite careful with this method: **not every choice** is g is suitable.

For example, suppose we want the solution to $f(x) = x^2 - 2 = 0$ in [1,2]. We could choose $g(x) = x^2 + x - 2$. Then, if take $x_0 = 1$ we get the sequence:

We need to refine the method that ensure that it will converge.

Before we do that in a formal way, consider the following...

Example 1.12

Use the Mean Value Theorem to show that the fixed point method $x_{k+1} = g(x_k)$ converges if |g'(x)| < 1 for all x near the fixed point.

This example:

- introduces the tricks of using that $g(\tau) = \tau \& g(x_k) = x_{k+1}$.
- Leads us towards the **contraction mapping theorem**.

Theorem 1.13 (Fixed Point Theorem)

Suppose that g(x) is defined and continuous on [a,b], and that $g(x) \in [a,b]$ for all $x \in [a,b]$. Then there exists $\tau \in [a,b]$ such that $g(\tau) = \tau$. That is, g(x) has a *fixed point* in [a,b].

Next suppose that g is a *contraction*. That is, g(x) is continuous and defined on [a, b] and there is a number $L \in (0, 1)$ such that

$$|g(\alpha) - g(\beta)| \le L|\alpha - \beta|$$
 for all $\alpha, \beta \in [a, b]$. (8)

Theorem 1.14 (Contraction Mapping Theorem)

Suppose that the function g is a real-valued, defined, continuous, and

- (a) maps every point in [a, b] to some point in [a, b], and (b) is a contraction on [a, b]
- (b) is a contraction on [a, b], then
 - (i) g(x) has a fixed point $\tau \in [a, b]$,
 - (ii) the fixed point is unique,
- (iii) the sequence $\{x_k\}_{k=0}^{\infty}$ defined by $x_0 \in [a, b]$ and $x_k = g(x_{k-1})$ for $k = 1, 2, \ldots$ converges to τ .

Fixed points and contractions (53/65)

The algorithm generates as sequence $\{x_0, x_1, \ldots, x_k\}$. Eventually we must stop. Suppose we want the solution to be accurate to say 10^{-6} , how many steps are needed? That is, how big do we need to take k so that

$$|x_k - \tau| \le 10^{-6}$$
?

The answer is obtained by first showing that

$$|\tau - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|.$$
 (9)

Example 1.15

Suppose we are using FPI to find the fixed point $\tau \in [1,2]$ of $g(x) = \ln(2x+1)$ with $x_0 = 1$, and we want $|x_k - \tau| \le 10^{-6}$, then we can use (9) to determine the number of iterations required.

Exercises (56/65)

Exercise 1.14

Is it possible for g to be a contraction on [a,b] but not have a fixed point in [a,b]? Give an example to support your answer.

Exercise 1.15 (* Homework problem)

Show that $g(x) = \ln(2x + 1)$ is a contraction on [1, 2]. Give an estimate for L. (Hint: Use the Mean Value Theorem).

Exercises (57/65)

Exercise 1.16

Suppose we wish to numerically estimate the famous golden ratio, $\tau=(1+\sqrt{5})/2$, which is the positive solution to x^2-x-1 . We could attempt to do this by applying fixed point iteration to the functions $g_1(x)=x^2-1$ or $g_2(x)=1+1/x$ on the region [3/2,2].

- (i) Show that g_1 is *not* a contraction on [3/2, 2].
- (ii) Show that g_2 is a contraction on [3/2, 2], and give an upper bound for L.

Exercise 1.17

Consider the function $g(x) = x^2/4 + 5x/4 - 1/2$.

- (i) It has two fixed points what are they?
- (ii) For each of these, find the largest region around them such that g is a contraction on that region.

Exercises (58/65)

Exercise 1.18

(i) Prove that if $g(\tau) = \tau$, and the fixed point method given by

$$x_{k+1}=g(x_k),$$

converges to the point τ (where $g(\tau) = \tau$), and

$$g'(\tau) = g''(\tau) = \cdots = g^{(p-1)}(\tau) = 0,$$

then it converges with order p. (Hint: you don't have to prove that the method converges; you can assume that. Also, use a Taylor Series).

(ii) We can think of Newton's Method for the problem f(x) = 0 as fixed point iteration with g(x) = x - f(x)/f'(x). Use this, and Part (i), to show that, if Newton's method converges, it does so with order 2, providing that $f'(\tau) \neq 0$.