Задание 2

Линейным отображением векторного пространства L_K над полем K в векторное пространство M_K (линейным оператором из L_K в M_K) над тем же полем называется отображение $f: L_K \to M_K$,

удовлетворяющее yсловию линейности

$$f(x + y) = f(x) + f(y),$$

$$f(\alpha x) = \alpha f(x)$$
.

для всех $x,y\in L_K$ и $\alpha\in K$.

Если определить операции сложения и умножения на скаляр из основного поля K как

- $(f+g)(x) = f(x) + g(x) \forall \in L_K$.
- $(kf)(x) = kf(x) \forall x \in L_K, \forall k \in K$

множество всех линейных отображений из L_K в M_K превращается в векторное пространство, которое обычно обозначается как $\zeta(L_K, M_K)$

Если векторные пространства L_K и M_K являются линейными топологическими пространствами, то есть на них определены топологии, относительно которых операции этих пространств непрерывны, то можно определить понятие ограниченного оператора: линейный оператор называется ограниченным, если он переводит ограниченые множества в ограниченые (в частности, все непрерывные операторы ограничены). В частности, в нормированных пространствах множество ограничено, если норма любого его элемента ограничена, следовательно, в этом случае оператор называется ограниченным, если существует число N такое что $\forall \mathbf{x} \in L_K$, $\|\mathbf{A}\mathbf{x}\|_{M_K} \leq \mathbf{N} \|\mathbf{x}\|_{L_K}$. Можно показать, что в случае нормированных пространств непрерывность и ограниченность операторов эквивалентны. Наименьшая из постоянных N, удовлетворяющая указанному выше условию, называется нормой оператора:

$$\|A\| = \sup_{\|x\| \neq 0} \frac{\|A_x\|}{\|x\|} = \sup_{\|x\| = 1} \|A_x\|$$

Введение нормы операторов позволяет рассматривать пространство линейных операторов как нормированное линейное пространство (можно проверить выполнение соответствующих аксиом для введенной нормы). Если пространство M_K — банахово, то и пространство линейных операторов тоже банахово.

Оператор ${\rm A}^{-}1$ называется обратным линейному оператору ${\rm A}$, если выполняется соотношение: ${\rm A}^{-}1A=AA^{-}1=1$

Оператор A^{-1} , обратный линейному оператору A, также является линейным непрерывным оператором. В случае если линейный оператор действует из банахового пространства в другое банахово пространство, то по теореме Банаха обратный оператор существует.

Унитарный оператор — оператор, область определения и область значений которого — всё пространство, сохраняющий скалярное произведение (Ax,Ay)=(x,y), в частности, унитарный оператор сохраняет норму любого вектора $\|\mathbf{A}\|=\sqrt{\mathbf{A},\mathbf{A}}=\sqrt{\mathbf{x},\mathbf{x}}=\|\mathbf{x}\|$; оператор, обратный унитарному,

совпадает с сопряжённым оператором $A^-1=A^*$; норма унитарного оператора равна 1; в случае вещественного поля K унитарный оператор называют *ортогональным*;