Tutorial 1

Main topics: Greatest common divisors, Euclid's algorithm, arithmetic modulo m.

- 1. Write down all the common divisors of 56 and 72.
- 2. Let a, b, and c be integers. If $a \mid b$ and $a \mid c$, prove that $a^2 \mid b^2 + 3c^2$.
- 3. (a) Use Euclid's algorithm to find $d = \gcd(323, 377)$.
 - (b) Find integers x, y such that 323x + 377y = d.
- 4. Simplify the following, giving your answers in the form $a \pmod{m}$ where $0 \le a < m$.
 - (a) $14 \times 13 67 + 13^3 \pmod{10}$
 - (b) $5^3 \pmod{7}$
 - (c) $5^3 + 2 \times 4 \pmod{7}$
 - (d) $21 \times 22 \times 23 \times 24 \times 25 \pmod{20}$
- 5. (a) Calculate 3^2 , 3^4 , 3^8 , 3^{16} , 3^{32} , 3^{64} , 3^{128} and 3^{256} modulo 19.
 - (b) Use these to calculate 3^{265} modulo 19. (Hint: 265 = 256 + 8 + 1.)

[Write your answers in the form $0, 1, \ldots, 18 \pmod{19}$.]

6. (A test for divisibility by 11.)

Let $n = a_d a_{d-1} \dots a_2 a_1 a_0$ be a positive integer written in base 10, i.e.

$$n = a_0 + 10a_1 + 10^2 a_2 + \ldots + 10^d a_d,$$

where $a_0, a_1, \dots a_d$, are the digits of the number n read from right to left.

- (a) Show that $n \equiv a_0 a_1 + a_2 a_3 \dots + (-1)^d a_d \pmod{11}$. Hence n is divisible by 11 exactly when $a_0 a_1 + a_2 a_3 \dots + (-1)^d a_d$ is divisible by 11.
- (b) Use this test to decide if the following numbers are divisible by 11:
 - (i) 123537
- (ii) 30639423045.
- 7. Prove that if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 8. Write down the addition and multiplication tables for $\mathbb{Z}/7\mathbb{Z}$.

Hence write down the multiplicative inverse of 2 in $\mathbb{Z}/7\mathbb{Z}$.

(**Note:** Here we use a as an abbreviation for $[a]_m$ to simplify notation.)

- 9. Find the smallest positive integer in the set $\{6u + 15v \mid u, v \in \mathbb{Z}\}$. Justify your answer.
- 10. Prove that if a, b, c are integers with $ac \equiv bc \pmod{m}$ and $\gcd(c, m) = 1$ then $a \equiv b \pmod{m}$. Give an example to show that this result fails if we drop the condition that $\gcd(c, m) = 1$. What can you conclude if $\gcd(c, m) = d$?
- 11. (a) Show that if p is prime, then p divides the binomial coefficient

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} \quad \text{for} \quad 0 < k < p$$

(b) Deduce, using induction on n and the binomial theorem, that if p is prime then $n^p \equiv n \pmod{p}$ for all natural numbers n ("Fermat's Little Theorem").