Tecniche di Machine Learning per la Selezione della Terapia nei casi di Malaria Severa

Candidato: Luca Dal Zotto

Relatore: Prof. Francesco Rinaldi

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA" CORSO DI LAUREA IN MATEMATICA

27 Settembre 2019

Contenuti

- 1 Introduzione
 - Presentazione del problema
 - Preparazione dei dati
- 2 Apprendimento supervisionato
 - Support Vector Machine e Random Forest
 - Implementazione e risultati
- 3 Feature selection
 - Feature ranking
 - Miglioramento dei classificatori
- 4 Apprendimento non supervisionato
 - K-Means e Spectral Clustering
 - Risultati e commenti finali

Alcuni dati sulla malaria

- è tra le più importanti malattie infettive al mondo per diffusione e mortalità
- circa 3,3 miliardi di persone vivono in aree endemiche
- nel 2016 i casi accertati accertati sono stati 216 milioni

Alcuni dati sulla malaria

- è tra le più importanti malattie infettive al mondo per diffusione e mortalità
- circa 3,3 miliardi di persone vivono in aree endemiche
- nel 2016 i casi accertati accertati sono stati 216 milioni

Complicazione: malaria severa

Possibili terapie: orale o endovenosa

Presentazione del problema

Fonte: Istituto Nazionale Malattie Infettive Lazzaro Spallanzani-IRCCS-Roma

Dati: 259 pazienti, di cui 119 casi di malaria severa

Presentazione del problema

Fonte: Istituto Nazionale Malattie Infettive Lazzaro Spallanzani-IRCCS-Roma

Dati: 259 pazienti, di cui 119 casi di malaria severa

Criteri ufficiali WHO	Valori ematici all'atto del ricovero	Altro
cerebral malaria/coma	PLT	età
convulsions	Hb	sesso
acute renal failure	creat	comorbidità
respiratory failure	bil	provenienza
hypoglycaemia	AST	zona in cui si è
shock	ALT	contratta l'infezione
spontaneous bleeding	Na	pregressa malaria
acidosis	parassitemia baseline	durata permanenza
jaundice		nel paese endemico
liver function test		ritardo diagnosi
>3 time normal range		ritardo accesso cure
anemia		chemioprofilassi
hyperparasitemia		

Tabella: Elenco completo delle feature considerate per ogni paziente.

Preparazione dei dati

Strumento usato per l'analisi: libreria Python $\operatorname{Scikit-Learn}$

Preparazione dei dati

Strumento usato per l'analisi: libreria Python $\operatorname{Scikit-Learn}$

■ organizzazione dei dati in **feature matrix** e **target vector**

Università degli Studi di Padova

Preparazione dei dati

Strumento usato per l'analisi: libreria Python Scikit-Learn

- organizzazione dei dati in feature matrix e target vector
- gestione dei missing values

Università degli Stud di Padova

Preparazione dei dati

Strumento usato per l'analisi: libreria Python Scikit-Learn

- organizzazione dei dati in **feature matrix** e **target vector**
- gestione dei missing values
- codifica **one-hot** per le feature categoriche

Università degli Studi di Padova

Preparazione dei dati

Strumento usato per l'analisi: libreria Python Scikit-Learn

- organizzazione dei dati in feature matrix e target vector
- gestione dei missing values
- codifica **one-hot** per le feature categoriche
- normalizzazione dei dati

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Support Vector Machine

Apprendimento supervisionato

Decision Tree e Random Forest

Decision Tree: suddivisione ricorsiva del dataset

Decision Tree e Random Forest

Decision Tree: suddivisione ricorsiva del dataset

Problema: overfitting

Decision Tree e Random Forest

Decision Tree: suddivisione ricorsiva del dataset

Problema: overfitting

Soluzione

Random Forest: combinazione di più decision tree

Implementazione e risultati

Selezione Iperparametri

Valori che regolano il processo di addestramento del modello

Implementazione e risultati

Selezione Iperparametri

Valori che regolano il processo di addestramento del modello

lacksquare SVM: C=5 e $\gamma=0,005$

Selezione Iperparametri

Valori che regolano il processo di addestramento del modello

■ SVM: $C = 5 \text{ e } \gamma = 0,005$

■ Random Forest: n_estimators=250 e max_depth=90

Selezione Iperparametri

Valori che regolano il processo di addestramento del modello

- SVM: C = 5 e $\gamma = 0,005$
 - \Rightarrow Cross validation accuracy = 86,15 %
- Random Forest: n_estimators=250 e max_depth=90
 - \Rightarrow Cross validation accuracy = 87,69 %

Feature selection

Strumenti coinvolti:

- Selezione delle Feature Univariata (UFS)
- Random Forest

Feature selection

Strumenti coinvolti:

- Selezione delle Feature Univariata (UFS)
- Random Forest

Feature Ranking tramite UFS

- 1. celebral malaria/coma (WHO)
- 2. jaundice (WHO)
- 3. hyperparasitemia (WHO)
- 4. parassitemia baseline %
- 5. anemia (WHO)
- 6. acute renal failure (WHO)
- 7. after 24 hr parassitemia baseline %
- 8. bil 1° giorno
- 9. creat 1° giorno
- 10. AST 1° giorno
- 11. shock (WHO)
- 12. comorbitiy
- 13. hypoglycaemia (WHO)
- 14. respiratory failure (WHO)
- 15. liver function test >3 time normal range (WHO)

Feature Ranking tramite Random Forest

- 1. bil 1° giorno
- 2 cerebral malaria/coma
- 3. parassitemia baseline %
- 4. PLT 1°giorno
- 5. Hb 1° giorno
- 6. ALT 1° giorno
- 7. età
- 8 after 24 hr parassitemia baseline %
- 9. AST 1° giorno
- 10. Na 1° giorno
- 11. durata permanenza (giorni)
- 12. creat 1° giorno
- 13. comorbitiy
- 14. ritardo diagnosi (gg)
- 15. ritardo accesso cure (gg)

Feature selection

Miglioramento dei classificatori

Risultato dei classificatori dopo la feature selection:

Classificatore	Feature Ranking	Feature considerate	Valore degli Iperparametri	Accuracy
SVM	UFS	7	$C=1 \ ext{gamma} = 0.25$	92,31 %
SVM	Random Forest	7	C=2 gamma = 0,0625	89,23 %
Random Forest	UFS	17	n_estimators = 200 max_depth = 50	89,23 %
Random Forest	Random Forest	5	n_estimators = 200 max_depth = 50	90,77 %

K-Means e Spectral Clustering

Apprendimento non supervisionato

Si cerca di individuare una struttura intrinseca al dataset, senza considerare il target vector

K-Means e Spectral Clustering

Apprendimento non supervisionato

Si cerca di individuare una struttura intrinseca al dataset, senza considerare il target vector

Clustering: partizione del dataset in gruppi (cluster) in base alle analogie tra i campioni

K-Means e Spectral Clustering

Apprendimento non supervisionato

Si cerca di individuare una struttura intrinseca al dataset, senza considerare il target vector

Clustering: partizione del dataset in gruppi (cluster) in base alle analogie tra i campioni

K-Means

K-Means e Spectral Clustering

Apprendimento non supervisionato

Si cerca di individuare una struttura intrinseca al dataset, senza considerare il target vector

Clustering: partizione del dataset in gruppi (cluster) in base alle analogie tra i campioni

K-Means

K-Means e Spectral Clustering

Apprendimento non supervisionato

Si cerca di individuare una struttura intrinseca al dataset, senza considerare il target vector

Clustering: partizione del dataset in gruppi (cluster) in base alle analogie tra i campioni

Risultati clustering

Algoritmo di Clustering	K-Means	Spectral Clustering	K-Means	Spectral Clustering
Strumento di Feature Selection	PCA	PCA	sPCA	sPCA
Numero di pazienti nel cluster più grande	95	67	114	74
di cui con terapia orale	60	44	65	46
Numero di pazienti nel cluster più piccolo	24	52	5	45
di cui con terapia orale	9	25	4	23

Tabella: Risultati Clustering preceduto da una feature selection.

Risultati e commenti finali

■ Costruzione di classificatori con buoni livelli di accuratezza con cui scegliere la terapia nei casi futuri

Risultati e commenti finali

- Costruzione di classificatori con buoni livelli di accuratezza con cui scegliere la terapia nei casi futuri
- Individuazione delle feature più rilevanti ai fini della selezione della terapia

Risultati e commenti finali

- Costruzione di classificatori con buoni livelli di accuratezza con cui scegliere la terapia nei casi futuri
- Individuazione delle feature più rilevanti ai fini della selezione della terapia
- Studio delle sovrapposizioni tra i cluster ottenuti per un'analisi più dettagliata da parte dei medici

Vi ringrazio per l'attenzione