

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação Ket com fins educacionais e de pesquisa

Tipo: Ação de Extensão

Forma de Extensão: Projeto de Extensão

Número: 202123813 Data de 24/11/2021

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Dados Gerais

Resumo:

Computação quântica é um paradigma computacional emergente que viabiliza e/ou melhora a solução de alguns problemas computacionais. Todavia, para isso é necessário um computador que use fenômenos da mecânica quântica para computar. Apesar de haver computadores quânticos disponíveis, eles ainda são rudimentares, o que dificulta e/ou inviabiliza a execução de diversos algoritmos e métodos quânticos. Além disso, existem restrições primordiais da física que impedem o acompanhamento passo a passo de uma computação quântica. Nesse contexto, mesmo sem a vantagem computacional de um computador quântico, simular uma execução quântica é uma ferramenta útil no estudo e desenvolvimento de novas aplicações quânticas. Com este projeto de extensão, temos o objetivo de fornecer para a comunidade acadêmica e geral acesso a um simulador quântico gratuitamente através da nuvem, a fim de auxiliar a pesquisa e desenvolvimento da computação quântica e formar mão de obra para este novo mercado de trabalho que atualmente movimenta bilhões de dólares no mundo todo. O simulador será acessado e programado a partir da linguagem de programação híbrida clássica-quântica Ket.

Palavras Chave:

computação quântica, simulação quântica, programação quântica, simulador quântico portátil;

Período:

01/12/2021 até 01/12/2022

Público Alvo:

Alunos e professores da educação básica ao ensino superior interessados em pesquisar, aprender e ensinar computação quântica. Além do público geral.

Projeto/Programa tem sigilo ou confidencialidade?

Sim

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação ...

Número: 202123813

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Participantes								
Nome / CPF / Email	Função	Período de Participação	Depto/Curso	Tipo	Valor Mensal (Bolsa, RPA, CLT)	Carga Hora.	Paad	Situação
003.513.789-44 Eduardo Inácio Duzzioni eduardo.duzzioni@ufsc .br	Professor (Coordenador) Coordenador	01/12/2021 à 01/12/2022	FSC/CFM - DEPARTAMENTO DE FÍSICA / FSC/CFM		Mensal: R\$ 0,00 Total: R\$ 0,00	20212: 2.00h / 20221: 2.00h / 20222: 2.00h	Sim	Aprovado
026.208.419-84 Jerusa Marchi jerusa.marchi@ufsc.br	Professor (Delegação para alterar)	01/12/2021 à 01/12/2022	INE/CTC - DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA / INE/CTC		Mensal: R\$ 0,00 Total: R\$ 0,00	20212: 1.00h, 20221: 2.00h / 20222: 2.00h	Sim	Aprovado
102.274.439-93 Gabriel Medeiros Lopes Carneiro gabriel.mlc@grad.ufsc. br	Aluno Graduação	01/12/2021 à 01/12/2022	CIÊNCIAS DA COMPUTAÇÃO	Voluntário	Mensal: R\$ 0,00 Total: R\$ 0,00	20212: 4.00h / 20221: 4.00h / 20222: 4.00h		
9878630960 Evandro Chagas Ribeiro Da Rosa ev.crr97@gmail.com	Participante (Externo)	01/12/2021 à 01/12/2022	Autônomo	Voluntário	Mensal: R\$ 0,00	20212: 4.00h / 20221: 4.00h / 20222: 4.00h		

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação ...

Número: 202123813

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Caracterização

Área Temática Principal:

Educação

Área Temática Secundária:

Tecnologia e Produção

Grande Área do conhecimento:

CIENCIAS EXATAS E DA TERRA

Linha de Extensão:

Educação profissional

Está vinculado a um programa?

Não

Entidades envolvidas:

Perssoa física Evandro Chagas Ribeiro da Rosa

Carga Horária:

250.0

Locais de Atuação

País	Estado	Município
Brasil	Santa Catarina	Florianópolis

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação ...

Número: 202123813

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Descrição

Contexto:

Ket é uma linguagem desenvolvida para programação híbrida clássica-quântica, onde temos um computador clássico (desktop ou notebook) coordenando a execução de um computador quântico em nuvem [1]. Para simular a execução de um computador quântico, Ket oferece o simulador KBW baseado na representação Bitwise [2]. Esse simulador abstrai o tempo de simulação da quantidade de qubits, expandindo as possibilidades do que podemos simular em um computador clássico. Por exemplo, o KBW já foi utilizado para simular 42 qubits em um notebook, uma execução que mesmo supercomputadores teriam dificuldades utilizando outros simuladores quânticos [3]. Porém, a representação Bitwise como implementado no KBW não possibilita a execução paralela da simulação. Essa limitação foi superada pelo PBW, simulador que oferece vantagens similares ao KBW, mas é otimizado para executar em GPUs, o que reduz consideravelmente o tempo de simulação quando comparado com o KBW. O simulador PBW está sendo desenvolvido por Evandro Chagas e Claudio Lima dentro de uma nova startup de computação quântica que tem como objetivo inicial oferecer produtos e serviços de simulação quântica.

Justificativa:

A simulação de uma computação quântica é uma ferramenta que pode acelerar o aprendizado da programação de computadores quânticos e pesquisas em computação quântica, que por sua vez, podem resultar em novas aplicações quânticas. Porém, como a simulação quântica é uma tarefa computacionalmente complexa, utilizar um computador pessoal para esse fim pode não ser o suficiente, limitando o usuário a cerca de 10 bits quânticos. Assim, a disponibilidade de um hardware preparado para simulação de computadores quânticos pode ser de muita ajuda para diversos alunos e pesquisadores. Além disso, como o simulador utiliza um modelo de simulação que independe do número de qubits, o PBW pode viabilizar execuções não seriam possíveis em outros simuladores.

Objetivo Geral:

O objetivo principal deste trabalho é disponibilizar para a comunidade em geral, acadêmica e científica o simulador de computação quântica PBW embarcado em um NVIDIA Jetson AGX Xavier, a fim de promover a computação quântica em nossa comunidade e auxiliar no desenvolvimento de novos algoritmos, métodos e aplicações quânticas.

Objetivos Específicos

Linha	Objetivo Específico			
1	Estimular o estudo da computação quântica.			
2	Construir um site para promover o simulador e a linguagem de programação Ket.			
3	Alocar o simulador na UFSC para que estudantes, pesquisadores e o público em geral tenham acesso remoto gratuito a ele.			
4	Promover o simulador quântico junto da UFSC.			
5	Divulgar o grupo de Computação Quântica da UFSC e o Departamento de Física através da oferta deste serviço em nuvem.			

Metodologia:

O simulador, cujas dimensões são da ordem de 30cm x 30cm x 20cm, será hospedado no Departamento de Física da UFSC e será disponibilizado por acesso remoto mediante o cadastro de usuários. Para isso, além do espaço físico, será necessário alocar um IP fixo para o simulador e registrar um domínio no DNS da UFSC. Para a divulgação será criado um site explicando como acessar e configurar o simulador, além de como instalar e programar usando a linguagem Ket.

Metas e Indicadores

Linha	Meta	Indicador		
1	Site para hospedar o simulador e divulgar a linguagem de programação Ket.	O site deverá está no ar até 30/12/2021.		
2	Desenvolvimento de tutoriais para ensinar a usar o simulador PBW e a linguagem de programação Ket.	O material deverá ter uma versão inicial até 30/12/2021.		
3	Tornar a computação quântica acessível a comunidade em geral, tais como estudantes, professores e curiosos.	Número de inscritos na plataforma em nuvem para utilizar o simulador e a linguagem de programação Ket.		
4	Tornar a linguagem de programação Ket conhecida nacional e internacionalmente.	Número e localização dos inscritos plataforma.		

Resultados esperados:

Esperamos:

- tornar a computação quântica acessível a todas as pessoas interessadas no tema, tendo a oportunidade de conhecer e simular a programação de computadores quânticos;
- Formar mão de obra qualificada para trabalhar com essa tecnologia emergente e disruptiva;
- tornar a UFSC uma universidade conhecida por produzir conteúdo de alta qualidade na área de computação quântica;
- divulgar o Departamento de Física da UFSC;
- divulgar os resultados das pesquisas obtidos no Grupo de Computação Quântica da UFSC;
- divulgar a linguagem de programação Ket e o simulador PBW.

Planos de disseminação de resultados:

apresentação em evento; publicação de artigo; outros;

Referências Bibliográficas:

[1] DA ROSA, Evandro Chagas Ribeiro; DE SANTIAGO, Rafael. Ket Quantum Programming. J. Emerg. Technol. Comput. Syst., Association for Computing Machinery, New York, NY, USA, v. 18, n. 1, Oct. 2021. ISSN 1550-4832. DOI: 10.1145/3474224.

[2] DA ROSA, Evandro Chagas Ribeiro; TAKETANI, Bruno G. QSystem: bitwise representation for quantum circuit simulations. 2020. arXiv: 2004.03560 [quant-ph].

[3] PIRES, Otto Menegasso; SANTIAGO, Rafael de; MARCHI, Jerusa. Two Stage Quantum Optimization for the School Timetabling Problem. In: 2021 IEEE Congress on Evolutionary Computation (CEC). 2021. P. 2347–2353. DOI: 10.1109/CEC45853.2021.9504701.

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação ...

Tipo: Ação de Extensão Forma de Extensão: Projeto de Extensão

Número: 202123813 Data de 24/11/2021

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Financeiro

Não recebe aporte financeiro.

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação ...

Número: 202123813

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Check-List					
Aba	Item	Sim / Não / Não se Aplica	Fundamento Jurídico		
Participantes	2/3 da equipe executora é da UFSC? Obs: docentes e TAE´s não podem estar afastados ou em gozo de licença no período do projeto.	Sim	Decreto nº 7423/2010, Art. 6º, § 3º Resolução 13/CUn/11, Art. 10º, IV, § 4º Resolução 88/CUn/16, Art. 22º		
	Foi incentivada a participação de estudantes?	Sim	Decreto nº 7423/2010, Art. 6º, § 7º		
	Este projeto produz Resíduos de Serviços de Saúde (RSS)?	Não se Aplica			
	Este projeto produz Resíduos de Construção Civil (RCC)?	Não se Aplica			
	Você está ciente das orientações da Coordenadoria de Gestão Ambiental da UFSC sobre descarte de RSS e RCC?	Não se Aplica	Resolução Anvisa RDC nº 222/2018 Resolução CONAMA nº 348/2004 Resolução CONAMA nº 370/2002 Gestão e Gerenciamento de Resíduos na UFSC		
	A utilização de recursos humanos e materiais da instituição (laboratórios e equipamentos) prejudica ou conflita diretamente com as atividades fins (ensino, pesquisa e extensão)?	Não	Art. 4°, Lei n. 8.958/94Art. 8°, § 1° e § 4°; Art. 17; Art. 20 RN n. 88/CUn/2016Art. 5°, § 1°, RN n. 13/CUn/2011		

Declaro que as informações acima foram por mim conferidas e são verdadeiras.

Eduardo Inácio Duzzioni

Eduardo macio Duzzioni

Coordenador(a) do Projeto

SIGPEX

Projeto de Extensão

Simulador quântico portátil para a linguagem de programação Ket com fins educacionais e de pesquisa

Tipo: Ação de Extensão

Forma de Extensão: Projeto de Extensão

Número: 202123813 Data de 24/11/2021

Situação: Aprovado (16/12/2021 - Colegiado do Departamento)

Movimentações				
Data	Responsável	Ação	Notificados	Comentários
24/11/2021 - 09:17h	Eduardo Inácio Duzzioni	Criou a atividade de extensão		
29/11/2021 - 09:18h	Eduardo Inácio Duzzioni	Enviou a atividade de extensão para aprovação	Jerusa Marchi, Juliana Eccher	
16/12/2021 - 15:43h	Juliana Eccher	Aprovou a atividade de extensão	Roberto Willrich	
17/12/2021 - 15:34h	Roberto Willrich	Todos os participantes foram aprovados		
21/12/2021 - 11:27h	Adriana Passarella Gerola	Aprovou a atividade de extensão	Eduardo Inácio Duzzioni	