Assignment #2 CIS 427/527

Group 2

January 20, 2016

1

Since two of the men are telling the truth, we have a proposition of the form $P = (A \wedge B) \vee (A \wedge C) \vee (B \wedge C)$.

- If Adams is telling the truth, then Brown is lying $(A \implies \neg B)$.
- If Brown is telling the truth, then both Adams and Clark are lying $(B \implies (\neg A \land \neg C))$.
- If Clark is telling the truth, then Brown is lying $(C \implies \neg B)$.

If Brown were telling the truth, then P could never be satisfied, therefore Brown is lying, which makes him the killer.

2

2. Show that $((\rightarrow \notin PROP)$

Suppose $((\rightarrow \in X \text{ and } X \text{ satisfies (i), (ii), (iii) of Definition 2.1.2.}$ We claim that $Y = X \setminus \{((\rightarrow) \text{ also satisfies (i), (ii), and (iii).}$

- (i) $\perp, p_i \in Y$,
- (ii) $\varphi, \psi \in Y$ and $(\varphi \Box \psi) \neq ((\rightarrow, \text{ it is clear that } (\varphi \Box \psi) \in Y)$
- (iii) Similarly, $\varphi \in Y$ and $(\neg \varphi) \neq ((\rightarrow, \text{ so } (\neg \varphi) \in Y))$

Therefore X is not the smallest set satisfying (i), (ii), and (iii), so ($(\rightarrow \text{ cannot belong to } PROP$.

7. (a) Determine the trees of the proposition in Exercise 1

$$(\neg p_2 \to (p_3 \lor (p_1 \leftrightarrow p_2))) \land \neg p_3$$

 $(p_7 \to \neg \bot) \leftrightarrow ((p_4 \land \neg p_2) \to p_1$

 $(((p_1 \rightarrow p_2) \rightarrow p_1) \rightarrow p_2 \rightarrow p_1)$

(b) Determine the propositions with the trees given $\neg\neg\neg\bot$

$$(p_0 \to \bot) \to ((p_0 \leftrightarrow p_1) \land p_5)$$
$$\neg((\neg p_1) \to (\neg p_1))$$

9. Show that a proposition with n connectives has at most 2n+1 subformulas

Base Case A proposition P with zero connectives has $\leq 2(0) + 1 = 1$ subforumla(s).

Inductive Case Inductive Hypothesis: A proposition φ with n connectives has at most 2n+1 subformulas, where $s(\varphi)$ gives the number of subformulas.

Assume propositions p, q (where s(p) = n and $s(q) = m \le n$ connectives) have the property above. If we create a new proposition r from p and q we have:

$$s(r) = s(p) + s(q) + 1$$

$$s(r) = n + m + 1$$

$$s(r) < 2n + 1$$

Since the desired property holds for r the inductive hypothesis holds $\forall n \in \mathbb{N}$.

3

(a)

(a)				
	$(\neg \varphi \lor \psi) \iff (\psi \to \varphi)$	φ	$ \psi $	
	1	0	0	-
	0	0	1	Not a tautology.
	1	1	0	
	1	1	1	

(f) $\begin{array}{c|c}
(\varphi \lor \neg \varphi) & \varphi \\
\hline
1 & 0 \\
1 & 1
\end{array}$ Is a tautology.

(h) $\begin{array}{c|cccc}
(\bot \to \varphi) & \varphi \\
\hline
1 & 0 \\
1 & 1
\end{array}$ Is a tautology.

4

(a) $\varphi \models \varphi$

By definition of semantic entailment, $\varphi \models \varphi$ iff for all $v : \llbracket \varphi \rrbracket v = 1 \implies \llbracket \varphi \rrbracket v = 1$. Since $\llbracket \varphi \rrbracket v = 1 \implies \llbracket \varphi \rrbracket v = 1$ is a tautology, $\varphi \models \varphi$ holds.

(b) $\varphi \models \overline{\psi}$ and $\psi \models \sigma \Longrightarrow \varphi \models \sigma$

By definition of semantic entailment, we have $\llbracket \varphi \rrbracket v = 1 \ \forall v \Longrightarrow \llbracket \psi \rrbracket v = 1 \ \text{and} \ \llbracket \psi \rrbracket v = 1 \ \forall v \Longrightarrow \llbracket \sigma \rrbracket v = 1$, by the transitive property, $\llbracket \varphi \rrbracket v = 1 \ \forall v \Longrightarrow \llbracket \sigma \rrbracket v = 1$.

(c) $\models \varphi \rightarrow \psi \iff \varphi \models \psi$

Since $\models \varphi \to \psi$, we know that $\llbracket \psi \rrbracket v = 1 \ \forall v$ (because if $\llbracket \psi \rrbracket v = 0$ for some v, then $\varphi \to \psi$ is not a tautology). Therefore, we can conclude that $\llbracket \varphi \rrbracket v = 1 \to \llbracket \psi \rrbracket v = 1$, since anytime $\llbracket \varphi \rrbracket v = 1$, $\llbracket \psi \rrbracket v = 1$.

5

6

$$\# = \neg(\neg(\neg p \lor \neg q) \lor \neg(p \lor q))$$

7

A conjunctive normal form is a tautology iff every clause is also a tautology.

```
8
```

9

 $P \to Q$: True when P is false; false when P is true and Q is false.

 $P \lor Q \to P \land Q$: True when $P \iff Q$; false otherwise.

 $\neg (P \lor Q \lor R)$: True when P,Q,R are all false; false when any P,Q,R are true. $\neg (P \land Q) \land \neg (Q \lor R) \land (P \lor R)$: True when P is true, Q is false, R is false; false when P is false and R is false.