2.1.5 Исследование термических эффектов при упругих деформациях

Анна Назарчук Б02-109

1 Аннотация

В работе измеряется изменение температуры резины в адиабатическом расширении при быстром изменении длины и экстраполяции медленных изменений, изучается деформация резины от силы.

Цель работы: экспериментально получить закон упругой деформации резины при постоянной температуре в зависимости от растягивающей силы; измерить нагрев резины при адиабатическом растяжении и определить её теплоёмкость.

В работе используются: образец резины (тонкая полоса), закреплённый в теплоизолированном кожухе; набор грузов; термопара; цифровой осциллограф.

2 Теоретические сведения

2.1 Общие сведения

Работа образца:

$$\delta A = -fdl + PdV \tag{1}$$

P - атмосферное давление. Так как коэффициент Пуассона резины близок к 1/2, то относительное изменение объема значительно меньше изменения длины. Поэтому:

$$dU \approx TdS + fdl \tag{2}$$

Для свободной энергии:

$$\Delta F|_T = \Delta U - T\Delta S = A_{\text{BHeIII}} \tag{3}$$

Отсюда:

$$f = (\frac{\partial F}{\partial l})_T,$$
 $S = (\frac{\partial F}{\partial T})_l$ (4)

Соотношение Гиббса-Гельмгольца:

$$U(T,l) = F(T,l) - T(\frac{\partial F}{\partial T})_l \tag{5}$$

Связь теплового эффекта с уравнением состояния:

$$\delta Q|_{T} = TdS|_{T} = -T\frac{\partial f}{\partial T}|_{l}dl|_{T}$$

$$\tag{6}$$

Откуда получим:

$$f = \frac{\partial U}{\partial l})_T - T \frac{\partial S}{\partial l})_T \tag{7}$$

2.2 Термодинамика резины

Упрощенная модель: U = U(T) - идеальная резина

$$f = -T\frac{\partial S}{\partial l})_T = T\frac{\partial f}{\partial T})_l \tag{8}$$

Отсюда однозначно выполнено:

$$f(T,l) = \frac{T}{T_0} f(\tilde{l}l_0) \tag{9}$$

Откуда модуль Юнга резины должен быть прямо пропорционален абсолютной температуре.

Для адиабатического расширения резины:

$$du = fdl = C_l dT (10)$$

Для малых изменений температуры:

$$\Delta T = \frac{A_{\text{внеш}}}{C_l} \tag{11}$$

2.3 Закон растяжения резины

Для модели иделаьной полимерной сетки:

$$\Delta S(\lambda) \approx -const \cdot (\lambda^2 + \frac{2}{\lambda}), \qquad \lambda = ll_0$$
 (12)

$$f(T,\lambda) = s_0 E \cdot \frac{1}{3} (\lambda - \frac{1}{\lambda^2}) \tag{13}$$

где s_0 - площадь поперечного сечения нефеформированного образца, $E=E_0\frac{T}{T_0}$ - модуль Юнга резины

2.4 Адиабатическое расширение в общем случае

$$\frac{\partial T}{\partial l})_S = -\frac{\partial T}{\partial S})_l \frac{\partial S}{\partial l})_T = \frac{T}{C_l} \frac{\partial f}{\partial T})_l = -\frac{T}{C_l} \frac{\partial l}{\partial T})_f \frac{\partial f}{\partial l})_T = -\frac{\alpha K_T T}{C_l},\tag{14}$$

где K_T - изотермический модуль упругости, α - коэффициент теплового расширения

3 Экспериментальная установка

Схема установки представлена на рис. 1. Внутри резиновой полосы 1 расположен один из спаев термопары, второй находится внутри кожуха 2 вблизи стенки, выводы термопары через усилитель подключены к осциллографу. Измерять изменение температуры при адиабатическом растяжении можно двумя способами: быстро растянуть резину и измерить скачок (возможно возникновение необратимых эффектов) и медленно растягивать резину и экстраполировать резину к начальному моменту (возникает ошибка неизвестная ошибка экстраполяции).

Рис. 1: Схема экспериментальной установки

Рис. 2: Измерение термического эффекта от растяжения по зависимости от времени

4 Измерения и обработка данных

Начальные размеры образца представлены в таблице 1.

Таблица 1: Начальные параметры установки

l_0 , см	d_0 , MM	h_0 , мм	ρ , Γ/cm^3
10.7 ± 0.1	12.0 ± 0.5	1.80 ± 0.05	1.2

Растяжение резины от нагрузки

Результаты измерений растяжения при разных нагрузках представлены в таблице 2 и на графике 3.

Из графиков и начальных значений установки можно найти значение модуля Юнга резины:

Таблица 2: Растяжение резины при разных подвешенных грузах

$m_{\text{грузов}}, \Gamma$	176.7	354.8	529.6	707.7	872.7	1078.3	228.9	407
Δl , mm	6	13	26	38	58	82	8	18
$m_{\text{грузов}}$, г	581.8	759.9	924.9	1130.5	529.6	706.3	884.4	
Δl , MM	31	48	66	87	27	44	62	

Рис. 3: Зависимость силы от растяжения в двух моделях: закон Гука и модель идельной полимерной сетки

Таблица 3: Значение модуля Юнга

	Идеальная полимерная сетка	Закон Гука
Е, МПа	0.92	0.72
σ_E , M Π a	0.02	0.11
ε , %	2	15

Исходя из значений погрещности модуля Юнга (табл. 3) для закона Гука и из вида графика заметно, что резина плохо подчиняется закону Гука. При этом модель идеальной полимерной сетки достаточно точна.

Для теоретической модели растяжения резины:

$$f(T,\lambda) = s_0 E \cdot \frac{1}{3} (\lambda - \frac{1}{\lambda^2}) \tag{15}$$

Можно вычислить работу от растяжения:

$$A(\lambda) = \frac{1}{3}s_0 E(\frac{\lambda^2}{2} + \frac{1}{\lambda} - \frac{3}{2})$$
(16)

Измерения при быстром растяжении резины

Данные в таблице 4.

Таблица 4: Зависимость изменения напряжения от растяжения

Δl , mm	93	103	103	74	74	61	57	47	47	40	40	36	36	26	26
ΔV , мВ	168	206	206	126	129	90	86	60	62	48	48	40	40	22	24

Зависимость температуры от времени при абиабатическом растяжении

Зависимость напряжения от времени представлена в таблице 5. Данные собирались с графиков от осциллографа, например, 4. По полученным данным построим график логарифма приращения температуры от времени 5.

Таблица 5: Зависимость температуры от времени

$\lambda = 1.8$	$\lambda = 1.87$		6	$\lambda = 1.69$		
V, мВ	t, c	V, мВ	t, c	V, мВ	t, c	
-70	-39	-48	-39	-55	-39	
108	-34	158	-35	71	-35	
97	-30	146	-30	67	-30	
75	-20	111	-20	44	-20	
53	-10	89	-10	32	-10	
42	0	72	0	24	0	
33	10	54	10	14	10	
24	20	47	20	8	20	
19	30	33	30	4	30	
10	40	26	40			

Экстраполируем зависимость на начальный момент времени, данные в таблице 6.

Таблица 6: Экстраполяция зависимости температуры от времни на начальные значения

λ	1.87	1.96	1.69
ΔT , K	0.90	1.07	0.66
$\sigma_{\Delta T}$, K	0.03	0.03	0.03
ε , %	3.3	2.8	4.5

Вычисление параметров резины

Из таблицы 6 и 4 построим график зависимости ΔT от A, используя формулу 16. (рис. 6) Из графика найдем теплоемкость и удельную теплоемкость резины ??

В обоих методах вышли похожие значения, табличное для удельной теплоемкости: $c_l = 1886 \text{Дж/K/kr}$.

Рис. 4: Пример графика от осциллографа для $\lambda = 1.87$

Рис. 5: зависимостей логарифма приращения температуры $ln\frac{\Delta T}{T_0}$ от времени t

Рис. 6: Зависимость ΔT от A в двух моделях: закон Гука и модель идельной полимерной сетки

Таблица 7: Теплоемкость резины

	Быстрое растяжение	Экстраполяция
C_l , Дж/ K	5.66 ± 0.18	5.64 ± 0.29
ε , %	3.1	5.1
c_l , Дж/К/кг	2040 ± 66	2034 ± 105
ε , %	3.2	5.2

5 Выводы

- 1. Проверили разные модели описания растяжения резины, для модели идеальной полимерной решетки получили значение модуля Юнга: $E=0.92\pm0.02\mathrm{M}\Pi$ а, табличное значение $\sim 1\mathrm{M}\Pi$ а, что согласуется с полученным результатом.
- 2. Разными методами: экстраполяцией медленного процесса и измерением при быстром растяжении получено значение удельной теплоемкости резины $c_l = 2040 \pm 66 \text{Дж/K/kr}$, что близко к табличному значению $c_l = 1886 \text{Дж/K/kr}$.