

1. CLASE PRINCIPAL

Se crea la clase principal con el nombre de PacmanPractica1.java, la cùal será la única que contendrá todo el código del programa PACMAN.

```
public static void main(String[] args) {
    //altura
    int fila = 0;
    //ancho
    int colum = 0;

    //Inicializador de contador de jugadores
    int contJugador = 0;
    //Vectores de Datos a guardar
    String nombre[] = new String[10];
    String edad[] = new String[10];
    int punteo[] = new int[10];
    int movi[] = new int[10];
    //Scanner global de cadena de String
    Scanner scg = new Scanner(System.in);
    //Scanner globar de enteros
    Scanner scgd = new Scanner(System.in);

boolean menu = false;
    boolean entrada = false;
    String valor;
```

Tendrá el método MAIN el cual iniciará con la aplicación mostrando los comentarios en cada variable declarada.

2. MENU

El menú principal estará dentro de un DO WHILE que validará siempre que la opción sea falsa para mantenerse en ejecución y al momento de ésta ser verdadera la aplicación terminará.

```
case 1:
    //Recibiendo los datos del jugador
    System.out.print("Ingrese Nombre del Jugador: ");
    nombre[contJugador] = scg.nextLine();
    System.out.print("Ingrese Edad del Jugador: ");
    edad[contJugador] = scg.nextLine();

    //Recibiendo las dimensiones del tablero de juego
    System.out.println("Ingrese las dimensiones del tablero mayor a %x%...");

    do {
        System.out.print("alto: ");
        fila = scgd.nextInt();
        System.out.print("ancho: ");
        colum = scgd.nextInt();
        if (fila < % || colum < %) {
            System.out.println("Las dimensiones son muy pequeñas ingrese nuevamente...");
        } else if (fila < colum) {
            colum = fila;
        } else {
            System.out.print("Iniciando Juego...");
        }
}</pre>
```

En la opción 1 del case, se iniciara la solicitud de datos para la partida a ejecutar. Esta validará que las opciones sean las requeridas por el programa y de no serlo volverá a solicitar las correctas.

```
} while (fila < 8 || colum < 8);
System.out.println(" alto: " + fila + " ancho: " + colum);

//Inicializando Juego
punteo[contJugador] = 10;
movi[contJugador] = 0;
//matriz de tablero
int tablero[][] = new int[fila + 1][colum + 1];

//Posición de obtaculos
//posición de pared fila
int paredy = (int) (Math.random() * (fila / 2) + 2);
//posición de pared columna
int paredx = (int) (Math.random() * (colum / 2) + 2);
//posición de pared fila
int pared2y = (int) (Math.random() * (fila / 2) + 2);</pre>
```

Se iniciará con la validación de datos y configuración de variables dentro de un DO WHILE.

```
do {
    System.out.println("\t Nombre: " + nombre[contJugador]);
    System.out.println("\t Punteo: " + punteo[contJugador]);
    System.out.println("\t Movimientos: " + movi[contJugador]);

//Dibujando Matriz
for (int i = 0; i < tablero.length; i++) {
    if (tablero[i] == tablero[posy] & tablero[j] == tablero[posx]) {
        System.out.print(" V ");
    } else if (tablero[i] == tablero[hashy] & tablero[j] == tablero[hashx]) {
        System.out.print(" # ");
    } else if (tablero[i] == tablero[dolary] & tablero[j] == tablero[dolarx]) {
        System.out.print(" # ");
    } else if (tablero[i] == tablero[arrobay] & tablero[j] == tablero[arrobax]) {
        System.out.print(" @ ");

        //IMPRESION DE OBTACULOS
    } else if (tablero[i] == tablero[paredy] & tablero[j] == tablero[paredx]) {
        System.out.print(" # ");
        //System.out.print(" # ");
        /
```

Dentro del DO WHILE se ejecutará la impresión del tablero y cada celda será verificada por condicionales que al cumplirse ejecutar la impresión del carácter correspondiente.

```
//IMPRESION DE OBTACULOS
} else if (tablero[i] == tablero[pared4y] & tablero[j] == tablero[pared4x]) {
    System.out.print(" * ");
} else if (tablero[i] == tablero[pared4y] & tablero[j] == tablero[pared4x+1]) {
    System.out.print(" * ");
} else if (tablero[i] == tablero[pared4y] & tablero[j] == tablero[pared4x+2]) {
    System.out.print(" * ");
} else if (tablero[i] == tablero[pared4y] & tablero[j] == tablero[pared4x+3]) {
    System.out.print(" * ");
}
```

Se imprime las opciones de obstáculos desde el código mostrado.

```
if (valor.equalsIgnoreCase("m") || punteo[contJugador] < 1 || punteo[contJugador] > 99) {
    System.out.println("\t ;;;;;GAME OVER!!!!!");
    entrada = true;
} else if (valor.equalsIgnoreCase("w")) {
    posy--;
    movi[contJugador]++;
} else if (valor.equalsIgnoreCase("s")) {
    posy++;
    movi[contJugador]++;
} else if (valor.equalsIgnoreCase("a")) {
    posx--;
    movi[contJugador]++;
} else if (valor.equalsIgnoreCase("d")) {
    posx++;
    movi[contJugador]++;
} else {
    System.out.println("Movimiento incorrecto...");
}
```

Para la validación de la tecla ingresando mediante el teclado se utilizan las condicionales IF y ELSE IF, las cuales validan el movimiento del PACMAN.

```
//Validación punteo hashta
if (tablero[posy] == tablero[hashy] & tablero[posx] == tablero[hashx]) {
    punteo[contJugador] = punteo[contJugador] - 10;
    hashy = (int) (Math.random() * fila + 1);
    hashx = (int) (Math.random() * colum + 1);
} else if (tablero[posy] == tablero[dolary] & tablero[posx] == tablero[dolarx]) {
    punteo[contJugador] = punteo[contJugador] + 15;
    dolary = (int) (Math.random() * fila + 1);
    dolarx = (int) (Math.random() * colum + 1);
} else if (tablero[posy] == tablero[arrobay] & tablero[posx] == tablero[arrobax]) {
    punteo[contJugador] = punteo[contJugador] + 10;
    arrobay = (int) (Math.random() * fila + 1);
    arrobax = (int) (Math.random() * colum + 1);
}
```

Para la validación de los punteos se realizan unas condicionales que ejecutan la sumatoria de los movimientos y la respectiva operación en el marcador del punteo, éste puede ser suma o resta dependiendo el valor del ITEM.

En el case 2: Se ejecuta el código mostrado para la impresión de los datos almacenados de todas las partidas ejecutadas mientras el programa no haya sido cerrado.

```
case 3:
    System.out.println("Saliendo de la aplicación...");
    menu = true;
    break;
default:
    System.out.println("Opción no encontrada....");
    break;
```

En la opción del case 3: únicamente se validara que la variable menú cambie a su estado booleano true, para que éste de salida al programa y se finalice.

Adicional se agrega una opción default, la cual muestra el mensaje descrito en el código, para notificar de una opción incorrecta.

```
} catch (Exception e) {
    System.out.println("INGRESE UNA OPCIÓN CORRECTA!!");
}
```

Se agrega una excepción de errores, para que evite que la aplicación finalice por una recepción incorrecta de parámetros por teclado.

```
} while (!menu);
}
```

Por último, sí la opción de menú cambia a verdadera el DO WHILE finalizara, por lo que dará por cerrado la aplicación y eliminando los datos de las partidas guardadas.