ANNUAL EXAMINATION 2020

(Only for Regular Students)

Centre No. 135

Centre Name- Disha College, Raipur (C.G.)

Class-B.Sc.-I

Subject- Mathematics

Paper No-III

Paper Name- Vector Analysis & Geometry

Time- 3 hrs.

M.M.-50

Note – Attempt all units. Solve any two from each units. Each question carries equal marks.

Unit-I

Q1. ; fn
$$r^2=x^2+y^2+z^2$$
 rc r^n dk eku Kkr dlft,A
If $r^2=x^2+y^2+z^2$ then find grad r^n

Q2. ; fn
$$\vec{V} = e^{xyz}(-\hat{\imath} + \hat{\jmath} + \hat{k})$$
 rks \vec{V} Kkr dlft,A

If $\vec{V} = e^{xyz}(-\hat{\imath} + \hat{\jmath} + \hat{k})$ find curl \vec{V}

Q3. ; fn
$$\vec{a} = \hat{\imath} + 2\,\hat{\jmath} + 3\hat{k}$$
 , $\vec{b} = 2\,\hat{\imath} - \hat{\jmath} + \hat{k}$ rFkk $\vec{c} = 3\,\hat{\imath} + 2\hat{\jmath} - 5\hat{k}$ rks I R; kfir dlft , fd $\vec{a}x(\vec{b}x\vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ If $\vec{a} = \hat{\imath} + 2\,\hat{\jmath} + 3\hat{k}$, $\vec{b} = 2\,\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{c} = 3\,\hat{\imath} + 2\hat{\jmath} - 5\hat{k}$ then verify that $\vec{a}x(\vec{b}x\vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

Unit-II

Q1. lery eaxhu çeş dk l R; ki u
$$I = \oint c[(x+2y)dx + (y+3x)dy]$$
 dsfy, dlft, tgkWC oRr $x^2+y^2=1$ gN

Use green's theorem in plane to evaluate $I = \oint c[(x + 2y)dx + (y + 3x)dy]$ where C is the circle $x^2+y^2=1$.

Q2. eku Kkr dhth,
$$\int_c \vec{F} \cdot \overrightarrow{dr}$$
, $\vec{F} = (x^2 + y^2)i - 2xyj$ odz C, xy ry ea, d vk; r g\$ tks y=0, x=a, y=b, x=0 | s f?kjk g\$.

Evaluate
$$\int_{c} \vec{F} \cdot \vec{dr}$$
 where $\vec{F} = (x^2 + y^2)i - 2xyj$ and

C is the rectangle in the xy plone bounded by y=0, x=a, y=b, x=0.

Q3. **xkml Mkbotšil dk l R**; **kiu dlft**,
$$\iint_{S} [(x^3 - yz)\hat{\imath} - 2x^2y\hat{\jmath} + 2\hat{k}] . \hat{n}ds$$

tgkllS funkkad lerykao lery x = y = z = a lsifjc) ?ku dk i B gA

Verify gauss divergenc theorem over the surface of cube bounded by co-ordinate planes and the planes x = y = z = a, $\iint_S \left[(x^3 - yz)\hat{\imath} - 2x^2y\hat{\jmath} + 2\hat{k} \right] \cdot \hat{n} ds$

Unit-III

Q1. Trace the parabola. $9x^2 + 24xy + 16y^2 - 2x + 14y + 1 = 0$ and find the coordinates of its focus and the equation to its directrix.

ijoy; $\%9x^2+24xy+16y^2-2x+14y+1=0$ dk vuj $\{k.k$ dhft, rFkk bl ds ukfhk ds fun $\{kkxl vkj\}$ fu; rk dk lehdj.k çkir dhft, A

Q2. n'kkb; s fd $j\{kk \frac{l}{r} = Acos\theta + Bsin\theta 'kkado \frac{l}{r} = 1 + ecos\theta dks Li'kl djskk ds fy, çfrcl/k <math>(A-e)^2 + B^2 = 1g\}$

Show that the condition that the line $\frac{l}{r} = A\cos\theta + B\sin\theta$ may touch the conic $\frac{l}{r} = 1 + e\cos\theta$ is $(A-e)^2 + B^2 = 1$

Q3. fl) dhft, fd nh?kbRr $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ dsfcUnqls[khpsx, vfoijoy; dk lehdj.k ftldk mRdHnz dksk' \propto ' g\$vkj tksnh?kbRr lslaukflk $\frac{x^2}{cos^2 \propto}-\frac{y^2}{sin^2 \propto}=a^2-b^2$ g\$.

Prove that the equation to the hyperbola drawn though point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose eccentric angle is $' \propto '$ and which is confocal with the ellipse is $\frac{x^2}{\cos^2 \propto} - \frac{y^2}{\sin^2 \propto} = a^2 - b^2$

Unit-IV

Q1. Ijy j{kkvk $a\frac{x-3}{+3} = \frac{y-8}{-1} = \frac{z-3}{1}$ rFkk $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ ds chp dh U; wre nigh dh eki rFkk U; wre nigh dh Ijy j{kk dk I ehdj.k Kkr dhft, A

Find length and equation to the shortest distance between the lines $\frac{x-3}{+3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

Q2. ml 'kadqdk lehdj.k Kkr dhft, ftldk 'kh"kl (α, β, γ) vkj vk/kkj o ℓ 0 ax 2 + by 2 =1, z = 0 gl3.

Find the equation of the cone whose vertex is (α, β, γ) and base curve $ax^2 + by^2 = 1$, z = 0

Q3. ml csyu dk lehdj.k Kkr dhft, ftldstud $x = \frac{y}{-2} = \frac{z}{3}$ ds lekrj g\$rFkk vk/kkj oØ $x^2 + 2y^2 = 1$, z = 3 g\$

Find the equation of the cylinder whose generators are parallel to the line $x = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3

Unit-V

Q1. Find the equation to the generators of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Which pass through the point (a $\cos \propto$, bsin \propto ,0) vfrijoy; t $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ ds fclinq (a $\cos \propto$, bsin \propto ,0) I s thus okys tudka ds I ehdj.k Kkr dlft, A

- Q2. 'kkadot $ax^2 + by^2 + cz^2 = 1$ dsfcllnq $((\alpha, \beta, \gamma)$ ij Li'klrt dk lehdj.k Kkr dhft, A Find equation of tangent plane at $((\alpha, \beta, \gamma)$ to the conicoid $ax^2 + by^2 + cz^2 = 1$
- Q3. fl) dlft, fd fdlh fLFkj fcUnqls, d ijoy; t ij ikp vflkyEc [kkhpstk l drsg%].

 Prove that five normals can be drawn from a fixed point to the paraboloid.