

FIRST SEMESTER 2023-2024 Course Handout Part II

Date: 11/08/2023

In addition to Part I (General Handout for all courses appended to the timetable), this portion gives further details regarding the course:

Course No. : CHEM F213

Course Title : Physical Chemistry-II

Instructor-in charge : K. Sumithra

Scope and Objectives: The principles of quantum mechanics will be introduced, and application to problems in electronic structure of atoms, chemical bonding and spectroscopy will be discussed.

Text Books:

TB1: 'Quantum Chemistry', Donald A. McQuarrie, University Science Books (First Indian Edition 2003, Viva Books Private Limited).

TB2: "Quantum Chemistry", Donald A. McQuarrie, University Science Books, 2nd International Ed., 2008 **Reference Books:**

- (a) 'Quantum Chemistry', Ira N Levine, 5th ed., PHI (2008).
- (b) 'Physical Chemistry', P W Atkins & Julio de Paula, 8th ed., OUP (2006).
- (c) 'Introduction to Quantum Mechanics with applications to Chemistry', Linus Pauling and E. Bright Wilson, Jr., Dover (1962).

Course Plan:

Lect.	Topics to be covered	Learning Objectives	Chapter in the Text		
No.			Book		
	Development of Qua				
1-2	Origins of Quantum	TB1 or TB2 1.1-1.10			
	Theory	Atomic Vibration in Crystals, Line Spectra &			
	-	Bohr Model of H Atom.			
3	Wave-Particle	De Broglie's postulate, Heisenberg Uncertainty	TB1 or TB2 1.11-1.14		
	Duality	Principle			
4-5	The Wave Equation	Normal modes, superposition, Fourier series	TB1 or TB2 2.1-2.5		
6-8	Postulates of	The wave function, Operators and	TB1 3.1-3.4, 3.7,8,11,		
	Quantum	Observables, Schrodinger equation, Time	4.1-4.9 or		
	Mechanics	Evolution, and the Stationary States,	TB2 3.1-3.4, 3.7-3.9		
		Uncertainty			
	Some Exactly Solvable Problems				
9-10	Particle in a Box	Bound States, Zero Point Energy, Symmetry,	TB1 3.4-3.11, 6.1-6.2		
		Superposition States, Degeneracy in 2 and 3	or TB2 3.4-3.9		
		dimensions			
11-12	Finite Potential	The bound States in Wells, Probability	Class Notes, Ref (b)		
	Wells and Barriers	Current, Reflection, and Tunneling	12.3		

13-15	Harmonic Oscillator	Eigenstates, Molecular Vibration	TB1 5.1-5.13			
			or TB2 5.1-5.12			
16-18	Angular Momentum	Energy levels, Commutation Relations, and	TB1 6.3-6.7, 6.10			
	and Rigid Rotator	Wavefunctions, Molecular Rotation	or TB2 MathChapter			
			E, 6.8, Appendix 6			
19-20	The Hydrogen atom	Energy levels, Wavefunctions – Angular and	TB1 6.8-6.11			
		Radial Parts, Orbitals	or TB2 7.1-7.8			
	Approximation Methods					
21-23	Variation Method	Variation theorem, application including	TB1 6.12, 7.3-7.7,			
		Linear Variation	8.1,2			
			or TB2 7.9, 8.1-8.3			
24-25	Stationary State	Systematic Correction of Wavefunctions and	TB1 7.1,2, 8.2			
	Perturbation Theory	Energies, Treatment of Degenerate States	or TB2 8.4-8.5,			
			Ref (a) 9.1-7			
	Many Electron Atoms					
26-27	Many Electron	Systems of Identical Particles, Spin &	TB1 8.4-6			
	Wavefunctions	Permutation Symmetry, Pauli Principle, Slater	or TB2 9.4-9.5			
		Determinants				
28	Atomic Terms and	Addition of Angular Momenta (S.S), Spin-	TB1 8.9-8.12			
	Spectra	Orbit Interaction (S.S), Selection Rules	or TB2 9.9-9.13			
	Molecules					
29	Born-Oppenheimer	Separation of nuclear and electronic motion	TB1 9.1			
	Approximation		or TB2 10.1			
30-31	Valence Bond	Localized Electron Pair Bonds	TB1 9.2-9.5 or TB2			
	Theory – H ₂		10.2-10.3			
32-33	Molecular Orbital	Linear Combination of Atomic Orbitals,	TB1 9.6-9.8			
	Theory $-H_2^+$, H_2	Comparison to VB Picture	or TB2 10.4-10.8			
34-35	Homonuclear	Molecular Electronic Configuration, SCF-	TB1 9.9-9.15			
	Diatomic Molecules	LCAO-MO Wavefunctions, Molecular Terms	or TB2 11.1-11.2			
36-37			TB1 9.21-9.24			
		systems, energies and delocalization, charge	or TB2 11.6 -11.8			
		distribution, and bond orders				
38-40	Molecular	Vibration-Rotation Spectra, Selection Rules,	TB1 10.1-10.18			
	Spectroscopy	Electronic Spectra, and the Franck-Condon				
		Principle				

Expected Learning outcomes:

Lectures	Learning outcome			
1-2	Discuss historical developments and the need for quantum theory, Spell the mathematical			
	background for quantum theory			
3-5	Define and consolidate new concepts to be used in quantum mechanics			
6-8	Define the quantum mechanical postulates to make use of in the application			
9-10	Apply quantization of states and zero-point energy in very simple systems, like, PIAB			
11-12	Solve bound states in potential wells and Identify the working principle of STM			
13-15	Define and interpret vibrational spectroscopy of molecules.			
16-18	Define and solve rigid rotator as a model for rotating diatomic molecules			
19-20	Identify atomic orbital picture of H-atom from quantum mechanics.			

21-23	Evaluate the upper bound to the ground state energy of a system employing model systems.		
24-25	Estimate ground state energy of various systems from the unperturbed state of the system		
26	Identify spin as another coordinate.		
27-28	Examine the allowed and forbidden transition in atoms		
29	Express molecular wavefunction as a product of nuclear and electronic wavefunctions		
30-31	Demonstrate successful description of chemical bond		
32-33	Examine the application of molecular orbital theory to diatomic molecules		
34-35	Compare experimental observations along with theoretical prediction for diatomic molecules		
36-37	Explore the quantum chemical approximation of aromatic systems.		
38	Discuss quantum-mechanical approach for spectroscopy. Explain rotational and vibrational		
	spectroscopy		
39	Recognize the fundamentals of electronic spectroscopy.		
40	Formulate the allowed and forbidden transition.		

Evaluation Scheme:

Component	Duration (min)	Weightage (%)	Date and Time	Nature of
				Component
Mid-sem	90	30	11/10 9.30 - 11.00AM	Closed Book
Assignment / Class	-	30	Continuous	Open Book
Tests				_
Comprehensive	180	40	12/12 FN	Closed Book
Examination				

Note: Active and regular participation in the class discussions is expected from each student. The students are expected to work with mathematica to plot the polar plots and radial functions of the hydrogenic orbitals.

Chamber consultation hour: Consultation hour will be announced later in the class/CMS.

Make-up policy: For genuine cases only.

Notices concerning the course will be displayed in **CMS**.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge CHEM F213

