LABORATORIUM PROJEKTOWANIE I OBSŁUGA SIECI KOMPUTEROWYCH I

Data wykonania ćwiczenia:	22.11.2023
Rok studiów:	3
Semestr:	5
Grupa studencka:	2
Grupa laboratoryjna:	2В

Ćwiczenie nr.	7

Temat: Packet Tracer - Routing między sieciami VLAN - wyzwanie

Osoby wykonujące ćwiczenia:

1. Igor Gawłowicz

Katedra Informatyki i Automatyki

Packet Tracer - Routing między sieciami VLAN - wyzwanie

To ćwiczenie umożliwia prezentację oraz doskonalenie Twoich umiejętności dotyczących implementowania routingu między sieciami VAN z uwzględnieniem konfiguracji adresacji IP, konfiguracji sieci VLAN, tworzenia magistral (łączy typu trunk) i podinterfejsów.

Tabela adresowania

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	G0/0	172.17.25.2	255.255.255.252	N/A
R1	G0/1.10	172.17.10.1	255.255.255.0	
R1	G0/1.20	172.17.20.1	255.255.255.0	
R1	G0/1.30	172.17.30.1	255.255.255.0	
R1	G0/1.88	172.17.88.1	255.255.255.0	
R1	G0/1.99	172.17.99.1	255.255.255.0	
S1	VLAN 99	172.17.99.10	255.255.255.0	172.17.99.1
PC1	karta sieciowa	172.17.10.21	255.255.255.0	172.17.10.1
PC2	karta sieciowa	172.17.20.22	255.255.255.0	172.17.20.1
PC3	karta sieciowa	172.17.30.23	255.255.255.0	172.17.30.1
Server	karta sieciowa	172.17.50.254	255.255.255.0	172.17.50.1

Tabela sieci VLAN i przypisania portów do VLAN

VLAN	Name	Interface
10	Faculty/Staff	F0/11-17
20	Students	F0/18-24
30	Guest(Default)	F0/6-10
88	Native	G0/1
99	Management	VLAN 99

instrukcje

Skonfiguruj urządzenia tak, aby spełniały następujące wymagania:

• Na podstawie tabeli adresacji skonfiguruj adresy na R1 oraz S1

```
R1(config)#interface GigabitEthernet0/0
R1(config-if)#no shutdown
R1(config-if)#interface GigabitEthernet0/1.10
R1(config-subif)#encapsulation dot1Q 10
R1(config-subif)#ip address 172.17.10.1 255.255.255.0
R1(config-subif)#interface GigabitEthernet0/1.20
R1(config-subif)#encapsulation dot10 20
R1(config-subif)#ip address 172.17.20.1 255.255.255.0
R1(config-subif)#interface GigabitEthernet0/1.30
R1(config-subif)#encapsulation dot10 30
R1(config-subif)#ip address 172.17.30.1 255.255.255.0
R1(config-subif)#interface GigabitEthernet0/1.88
R1(config-subif)#encapsulation dot1Q 88 native
R1(config-subif)#ip address 172.17.88.1 255.255.255.0
R1(config-subif)#interface GigabitEthernet0/1.99
R1(config-subif)#encapsulation dot1Q 99
R1(config-subif)#ip address 172.17.99.1 255.255.255.0
R1(config-subif)#end
```

S1

```
S1>enable
S1#config
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.

S1(config)#interface vlan 99
S1(config-if)#ip address 172.17.99.10 255.255.255.0
S1(config-if)#no shutdown
```

Skonfiguruj bramę domyślną na S1.

```
S1(config)#ip default-gateway 172.17.99.1
```

Zgodnie z tabelą sieci VLAN i przypisania portów do VLAN na przełączniku S1 stwórz i nazwij sieci VLAN oraz przypisz do nich porty. Porty powinny pracować w trybie dostępowym. Nazwy VLAN powinny dokładnie pasować do nazw w tabeli.

```
S1(config)#vlan 10
S1(config-vlan)#name Faculty/Staff
```

```
S1(config-vlan)#vlan 20
S1(config-vlan)#name Students
S1(config-vlan)#vlan 30
S1(config-vlan)#name Guest(Default)
S1(config-vlan)#vlan 88
S1(config-vlan)#name Native
S1(config-vlan)#vlan 99
S1(config-vlan)#
%LINK-5-CHANGED: Interface Vlan99, changed state to up
S1(config-vlan)#name Management
S1(config-vlan)#interface range f0/11 - 17
S1(config-if-range)#switchport mode access
S1(config-if-range)#switchport access vlan 10
S1(config-if-range)#interface range f0/18 - 24
S1(config-if-range)#switchport mode access
S1(config-if-range)#switchport access vlan 20
S1(config-if-range)#interface range f0/6 - 10
S1(config-if-range)#switchport mode access
S1(config-if-range)#switchport access vlan 30
```

Skonfiguruj G0/1 na S1 jako statyczny trunk i przypisz natywną sieć VLAN.

```
S1(config)#interface g0/1
S1(config-if)#switchport mode trunk
S1(config-if)#switchport trunk native vlan 88
```

Wszystkie porty nie przypisane do żadnej sieci VLAN powinny być wyłączone.

```
S1(config)#interface range f0/1-5,g0/2
S1(config-if-range)#shutdown

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to administratively down

%LINK-5-CHANGED: Interface FastEthernet0/2, changed state to administratively down

%LINK-5-CHANGED: Interface FastEthernet0/3, changed state to administratively down

%LINK-5-CHANGED: Interface FastEthernet0/4, changed state to administratively down

%LINK-5-CHANGED: Interface FastEthernet0/5, changed state to administratively down
```

%LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to administratively down

• W oparciu o tablicę adresacji skonfiguruj na routerze R1 routing między sieciami VLAN.

Możemy teraz sprawdzić i zobaczymy że połączenie pomiędzy routerem, switchem oraz wszystkimi komputerami powodzi się.

Wnioski

Ćwiczenie to pozwala zrozumieć i zaimplementować różne aspekty konfiguracji sieci VLAN, adresacji IP, trunków oraz routingu między sieciami. Jest to kluczowy krok dla zapewnienia efektywnej komunikacji w środowiskach sieciowych, zwłaszcza w większych sieciach, gdzie segmentacja sieci i kontrola ruchu są istotne.