Indiana University

Interpreting regression models using Stata

Scott Long

August 13, 2013

Long-StataCorp-2013-08-11.docx

Interpreting regression models

1980s	Interpreting log-linear and multinomial models to support substantive research
1991	Markov: A Statistical Environment for GAUSS
1996	change.ado and genpred.ado in Stata 4
1997	Regression Models for Categorical and Limited Dependent Variables
1997	Markov 2.5, ineffectively supporting the book

Working with StataCorp

1998	Bill Sribney on post-estimation Bill Gould on e(sample)
1999	SPost with Jeremy Freese
2000	David Drukker and StataPress
2001	Regression Models for Categorical Dependent Variables with Stata with Jeremy Freese

Continuing work...

2005	Regression Models with Stata, 2nd
2005	SPost9 20,000 downloads
2008	The Workflow of Data Analysis using Stata
	Learning how people compute
2009	Stata 11 with margins and factor variables.
2011	Stata 12 with marginsplot
2012	SPost13 for 3rd edition
2013	Stata 13

Stata at Indiana

My students appeared in class wearing...

Goals for visiting StataCorp

Demo SPost13 wrappers for margins

- o Did we miss something? Are there better ways to do things?
- O Do our new methods of interpretation make sense?
- O We want to be "Stata-like"

Other SPost13 commands

- Why we wrote them
- Why we hope they become obsolete.

Things I (we) would like to see in Stata

Interpretation using predictions

With multiple outcomes and K predictors...

Interpreting nonlinear models

- 1. Requires functions of parameters.
- 2. Requires the **observed data**.

Ways to use predictions

Tables: Predictions at multiple levels of regressors.

Marginal effects: Changes in predictions.

Graphs: Predictions at many levels of regressors.

The tools for interpretation

Official Stata

margins: a remarkable program.

marginsplot: making margins accessible to typical users.

SPost13 wrappers for margins and lincom

mtable: tables of predictions.

mchange: marginal effects.

mgen: predictions to plot.

mlistat: compact listing of at() matrix.

mlincom: tables of linear combinations (wrapper for lincom)

Why aren't margins and marginsplot and sufficient?

Tables of predictions

Predictions at substantively informative values of regressors.

Binary outcome

```
sysuse binlfp4, clear logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
```

Question

How does the number of children and a woman's education affect labor force participation?

margins

```
. margins, atmeans at(wc=(0 1) k5=(0 1 2 3))
Adjusted predictions
                                                    Number of obs
                                                                               753
Model VCE
              : OIM
Expression
             : Pr(lfp), predict()
1._at
                                             0
              : WC
               k5
                                             0
               k618
                                      1.353254 (mean)
               1.agecat
                                      .3957503 (mean)
               2.agecat
                                      .3851262 (mean)
               3.agecat
                                      .2191235 (mean)
                                =
               0.hc
                                      .6082337 (mean)
               1.hc
                                      .3917663 (mean)
                                      1.097115 (mean)
               lwg
                                      20.12897 (mean)
               inc
2._at
                                             0
              : WC
                                =
               k5
                                             1
               k618
                                      1.353254 (mean)
               1.agecat
                                      .3957503 (mean)
               2.agecat
                                      .3851262 (mean)
                                      .2191235 (mean)
               3.agecat
               0.hc
                                      .6082337 (mean)
                                =
                                      .3917663 (mean)
               1.hc
                                      1.097115 (mean)
               lwg
                                      20.12897 (mean)
               inc
                                =
```

```
0
3._at
              : WC
    :::snip:::
4. at
                                                0
              : WC
                                  =
    :::snip:::
5. at
                                                1
              : WC
                                  =
    :::snip:::
                                                1
6. at
              : WC
                                  =
    :::snip:::
                                                1
7._at
              : WC
                                  =
   :::snip:::
                                                1
8._at
              : WC
    :::snip:::
```

Delta-method P > |z|Margin Std. Err. [95% Conf. Interval] Z _at 0.000 1 .6035431 .0256741 23.51 .5532229 .6538633 2 0.000 .2746181 .0359919 7.63 .2040752 .3451609 3 .0860471 .0280757 3.06 0.002 .0310198 .1410744 4 0.060 -.0009566 .0228776 .0121605 1.88 .0467119 5 .0349691 0.000 .7031668 .771705 22.07 .8402432 6 .4567078 0.000 .0566536 8.06 .3456687 .5677469 .0532296 3.25 0.001 7 .1729059 .0685779 .277234 8 .049419 .025671 1.93 0.054 -.0008953 .0997333

mtable: compact output

. mtable, atmeans at(wc=(0 1) k5=(0 1 2 3)) <= pass through to margins

Expression: Pr(lfp)

	wc	k 5	pr
1	0	0	0.604
2	0	1	0.275
3	0	2	0.086
4	0	3	0.023
5	1	0	0.772
6	1	1	0.457
7	1	2	0.173
8	1	3	0.049

Constant values of at() variables

k618	2. agecat	3. agecat	1. hc	lwg	inc
1.353	0.385	0.219	0.392	1.097	20.129

Other statistics could be included in the table.

mtable: combined results

```
. qui mtable, atmeans at(wc=0 k5=(0 1 2 3)) estname(NoCol)
. qui mtable, atmeans at(wc=1 k5=(0 1 2 3)) estname(College) ///
> atvars(_none) right
. mtable, atmeans dydx(wc) at(k5=(0 1 2 3)) estname(Diff) ///
> stats(est p) atvars(_none) names(columns) right
```

р	Diff	College	NoCol	k5
0.000	0.168	0.772	0.604	0
0.001	0.182	0.457	0.275	1
0.013	0.087	0.173	0.086	2
0.085	0.027	0.049	0.023	3

Categorical outcomes

- . sysuse ordwarm4, clear
- . tab warm

Working mom can have warm relations w child?	 Freq.	Percent	Cum.
1_SD 2_D 3_A 4_SA	297 723 856 417	12.95 31.53 37.33 18.19	12.95 44.48 81.81 100.00
Total	 2,293	100.00	

. ologit warm i.yr89 i.male i.white age i.edcat prst

Question

How do age and gender affect support for working women as mothers?

margins

```
. foreach iout in 1 2 3 4 {
 2. margins, at(yr89=(0 1) male=(0 1)) atmeans predict(outcome(`iout'))
 3. }
Adjusted predictions
                                          Number of obs =
                                                               2293
Model VCE : OIM
Expression : Pr(warm==1), predict(outcome(1))
1._at : yr89
:::snip:::
                      Delta-method
                Margin Std. Err. z > |z| [95% Conf. Interval]
       _at
              .0981207 .0074061 13.25 0.000 .083605 .1126365
        1
        2
              .1868221 .0117184 15.94 0.000 .1638545 .2097897
        3
              .0604381 .0053787 11.24 0.000 .049896 .0709802
                       .0095217 12.56 0.000
                                                 .1009293
              .1195914
                                                            .1382536
```

Adjusted predictions Number of obs = 2293

Model VCE : OIM

Expression : Pr(warm==2), predict(outcome(2))

1. at : yr89 = 0

:::snip:::

Delta-method Margin Std. Err. z P>|z| [95% Conf. Interval] _at 1 .3069102 .0125571 24.44 0.000 .2822987 .3315216 .4029306 .0127015 31.72 0.000 .378036 .4278251 3 .2265499 .0119914 18.89 0.000 .2030473 .2500525 .3398556 .0137531 24.71 0.000 .3129002 .3668111

:::snip:::

:::snip:::

mtable: combine multiple outcome

. mtable, $at(yr89=(0\ 1)\ male=(0\ 1))$ atmeans

Expression: Pr(warm)

	yr89	male	1 SD	2 D	3 A	4 SA
1	,	0	0.098	0.307	0.415	0.180
2	_	1	0.187	0.403	0.316	0.094
3	1	0	0.060	0.227	0.442	0.271
4	1	1	0.120	0.340	0.391	0.150

Constant values of at() variables

	4.	3.	2.		1.
prst	edcat	edcat	edcat	age	white
39.585	0.171	0.196	0.341	44.935	0.877

mtable: table making with discrete changes

- . qui mtable, at(yr89=0 male=1) atmeans rowname(Men) clear roweq(1977)
- . qui mtable, at(yr89=0 male=0) atmeans rowname(Women) below roweq(1977)
- . qui mtable, dydx(male) at(yr89=0) atmeans rowname(M-W) below roweq(1977)
- . qui mtable, at(yr89=1 male=1) atmeans rowname(Men) below roweq(1989)
- . qui mtable, at(yr89=1 male=0) atmeans rowname(Women) below roweq(1989)
- . qui mtable, dydx(male) at(yr89=1) atmeans rowname(M-W) below roweq(1989)
- . qui mtable, dydx(yr89) at(male=1) atmeans rowname(77to89) below roweq(Men)
- . mtable, dydx(yr89) at(male=0) atmeans rowname(77to89) below roweq(Women)

	1 SD	2 D	3 A	4 SA
1055	+ '			
1977				
Men	0.187	0.403	0.316	0.094
Women	0.098	0.307	0.415	0.180
M-W	0.089	0.096	-0.099	-0.086
1989	ĺ			
Men	0.120	0.340	0.391	0.150
Women	0.060	0.227	0.442	0.271
M-W	0.059	0.113	-0.051	-0.121
Men				
77to89	-0.067	-0.063	0.075	0.055
Women				
77to89	-0.038	-0.080	0.027	0.091

SUGGESTION

1.margins: joint estimation over outcomes, not just looping.

2.margins: compact, table-like results.

Marginal effects

Mathematically, ...

Marginal change

$$\frac{\partial \Pr(y=1 \mid \mathbf{x})}{\partial x_k} = f(\mathbf{x}\boldsymbol{\beta})\beta_k$$

Discrete change

$$\frac{\Delta \Pr(y=1 \mid \mathbf{x})}{\Delta x_k} = \Pr(y=1 \mid \mathbf{x}^*, \mathbf{End} \ x_k) - \Pr(y=1 \mid \mathbf{x}^*, \mathbf{Start} \ x_k)$$

Binary outcome

sysuse binlfp4, clear logit lfp k5 k618 i.agecat i.wc i.hc lwg inc

Question

How to assess the magnitudes of the effects?

mchange: results from dozen's of margins' estimates

. mchange

logit: Changes in Pr(lfp) | N = 753

		Change	P> z
1.wc	-		
		0 1 6 0 4	0 0000
	to 1	0.1624	0.0002
k5			
+1 (cntr	-0.2818	0.0000
+SD o	cntr	-0.1503	0.0000
Marg	inal	-0.2888	0.0000

k618			
	+1 cntr	-0.0136	0.3354
	+SD cntr	-0.0180	0.3353
	Marginal	-0.0136	0.3354
1.hc		1	
	0 to 1	0.0282	0.5076
lwg			
_	+1 cntr	0.1260	0.0000
	+SD cntr	0.0742	0.0000
	Marginal	0.1266	0.0000
inc			
	+1 cntr	-0.0073	0.0000
	+SD cntr	-0.0845	0.0000
	Marginal	-0.0073	0.0000
agecat			
40-49	vs 30-39	-0.1242	0.0017
50+	vs 30-39	-0.2624	0.0000
50+	vs 40-49	-0.1382	0.0024

Average predictions

not in LF in LF Pr(y|base) 0.4316 0.5684

1: Predictions averaged over the sample.

mchange with from to options (edited)

. mchange, stats(from to change pvalue)

logit: Changes in Pr(lfp) | N = 753

	From	То	Change	P> z
1.wc				
0 to 1	0.5251	0.6875	0.1624	0.0002
k5				
+1 cntr	0.7040	0.4222	-0.2818	0.0000
+SD cntr	0.6420	0.4917	-0.1503	0.0000
Marginal	•	•	-0.2888	0.0000
inc				
+1 cntr	0.5720	0.5648	-0.0073	0.0000
+SD cntr	0.6101	0.5257	-0.0845	0.0000
Marginal	•	•	-0.0073	0.0000
agecat				
40-49 vs 30-39	0.5521	0.6764	-0.1242	0.0017
50+ vs 30-39	0.4139	0.6764	-0.2624	0.0000
50+ vs 40-49	0.4139	0.5521	-0.1382	0.0024

margins and lincom do the computations

```
margins, at(k5=gen(k5-.5)) at(k5=gen(k5+.5)) post
    lincom b[2. at] - b[1. at]
    est restore blm
margins, at(k5=gen(k5-.2619795189419575)) ///
         at(k5=gen(k5+.2619795189419575)) post
    lincom b[2. at]- b[1. at]
    est restore blm
margins, dydx(k5)
margins, at(k618=gen(k618-.5)) at(k618=gen(k618+.5)) post
    lincom b[2. at] - b[1. at]
    est restore blm
margins, at(k618=gen(k618-.6599369652141052)) ///
         at(k618=gen(k618+.6599369652141052)) post
    lincom b[2. at] - b[1. at]
    est restore blm
margins, dydx(k618)
margins, at(wc=(0 1)) post
    lincom b[2. at]- b[1. at]
    est restore blm
margins, at(hc=(0 1)) post
    lincom b[2. at] - b[1. at]
    est restore blm
```

```
margins, at(lwg=gen(lwg-.5)) at(lwg=gen(lwg+.5)) post
    lincom b[2. at]- b[1. at]
    est restore blm
margins, at(lwg=gen(lwg-.2937782125573122)) ///
         at(lwg=gen(lwg+.2937782125573122)) post
    lincom b[2. at] - b[1. at]
    est restore blm
margins, dydx(lwg)
margins, at(inc=gen(inc-.5)) at(inc=gen(inc+.5)) post
    lincom b[2. at]- b[1. at]
    est restore blm
margins, at(inc=gen(inc-5.817399266696214)) ///
         at(inc=gen(inc+5.817399266696214)) post
    lincom b[2. at]- b[1. at]
    est restore blm
margins, dydx(inc)
margins agecat, pwcompare
```

Ordinal outcomes

- . sysuse ordwarm4, clear
- . ologit warm i.yr89 i.male i.white age ed prst

mchange: multiple outcomes combined

. mchange

ologit: Changes in Pr(warm) | N = 2293

	1 SD	2 D	3 A	4 SA
1.yr89				
0 to 1	-0.0532	-0.0642	0.0423	0.0751
pvalue	0.0000	0.0000	0.0000	0.0000
1.male				
0 to 1	0.0787	0.0873	-0.0657	-0.1003
pvalue	0.0000	0.0000	0.0000	0.0000
1.white				
0 to 1	0.0375	0.0480	-0.0264	-0.0591
pvalue	0.0003	0.0015	0.0000	0.0021

age				
+1 cntr	0.0023	0.0025	-0.0018	-0.0030
pvalue	0.0000	0.0000	0.0000	0.0000
+SD cntr	0.0387	0.0420	-0.0300	-0.0507
pvalue	0.0000	0.0000	0.0000	0.0000
Marginal	0.0023	0.0025	-0.0018	-0.0030
pvalue	0.0000	0.0000	0.0000	0.0000
ed				
+1 cntr	-0.0071	-0.0078	0.0056	0.0094
pvalue	0.0000	0.0000	0.0000	0.0000
+SD cntr	-0.0226	-0.0246	0.0176	0.0296
pvalue	0.0000	0.0000	0.0000	0.0000
Marginal	-0.0071	-0.0078	0.0056	0.0094
pvalue	0.0000	0.0000	0.0000	0.0000
prst				
+1 cntr	-0.0006	-0.0007	0.0005	0.0008
pvalue	0.0661	0.0648	0.0668	0.0649
+SD cntr	-0.0094	-0.0102	0.0073	0.0123
pvalue	0.0662	0.0647	0.0666	0.0649
Marginal	-0.0006	-0.0007	0.0005	0.0008
pvalue	0.0661	0.0648	0.0668	0.0649

1: Predictions averaged over the sample.

To many numbers to absorb, so plot them...

dcplot: marginal effects plot (p-value can be added)

dcplot, mcolor(rainbow)

margins and lincom do the heavy lifting

```
foreach iout in 1 2 3 4 {
   margins, at(yr89=(0 1) ) post predict(outcome(`iout'))
        lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, at(male=(0 1) ) post predict(outcome(`iout'))
        lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, at(white=(0 1) ) post predict(outcome(`iout'))
        lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, at(age=gen(age - .5) ) at(age=gen(age + .5) ) ///
       post predict(outcome(`iout'))
       lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, at(age=gen(age - 8.389516848965164)) ///
       at(age=gen(age + 8.389516848965164) ) post predict(outcome(`iout'))
       lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, dydx(age) predict(outcome(`iout'))
   margins, at(ed=gen(ed - .5) ) at(ed=gen(ed + .5) ) ///
       post predict(outcome(`iout'))
       lincom b[2. at] - b[1. at]
       estimate restore olm
   margins, at(ed=gen(ed - 1.58041337227172) ) ///
       at(ed=gen(ed + 1.58041337227172)) post predict(outcome(`iout'))
       lincom b[2. at] - b[1. at]
```

```
estimate restore olm
margins, dydx(ed) predict(outcome(`iout'))
margins, at(prst=gen(prst - .5) ) at(prst=gen(prst + .5) ) ///
    post predict(outcome(`iout'))
    lincom _b[2._at] - _b[1._at]
    estimate restore olm
margins, at(prst=gen(prst - 7.24612929840372) ) ///
    at(prst=gen(prst + 7.24612929840372) ) post predict(outcome(`iout'))
    lincom _b[2._at] - _b[1._at]
    estimate restore olm
margins, dydx(prst) predict(outcome(`iout'))
```

What logit output might look like

Marginal effects have many advantages over standard logit output.

Is it time to re-evaluate standard output?

	Coef	OR	P> z	AME	P> z
lfp	+ 				
k5	-1.392	0.249	0.000	-0.150	0.000
k618	-0.066	0.936	0.336	-0.018	0.335
wc	0.798	2.220	0.001	0.162	0.000
hc	0.136	1.146	0.508	0.028	0.508
lwg	0.610	1.840	0.000	0.074	0.000
inc	-0.035	0.966	0.000	-0.084	0.000
40-49vs30-39	1.481	4.396	0.000	-0.124	0.002
50+vs30-39	0.854	2.349	0.005	-0.262	0.000
50+vs40-49	0.202	1.224	0.500	-0.138	0.002
Constant	1.014	2.757	0.000		

AME and MEM

A sometimes less than fruitful debate...

MEM

$$MCM: \frac{\partial \Pr(y=1|\overline{\mathbf{x}})}{\partial x_k} = f(\overline{\mathbf{x}}\boldsymbol{\beta})\beta_k \qquad DCM: \frac{\Delta \Pr(y=1|\overline{\mathbf{x}})}{\Delta x_k}$$

AME

$$AMC = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \Pr(y=1 | \mathbf{x}_i)}{\partial x_{ik}} \qquad ADC = \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \Pr(y=1 | \mathbf{x}_i)}{\Delta x_{ik}}$$

Should you replace one mean with another?

- O What is the question you are trying to answer?
- o Maddala's 1980 advice was pretty good, but his insights forgotten.
- o The distribution of effects is important, but <u>largely</u> overlooked.

Distribution of ME's

Marginal change for income

Discrete change for woman attending college

Compute marginal effects (not recommended)

```
predict double prhat if e(sample)
gen double mcinc = prhat * (1-prhat) * _b[inc]
label var mcinc "Marginal change of inc on Pr(LFP)"
```

Compute effects: with mgen (not recommended)

```
mgen, dydx(wc) over(caseid) stub(wc) nose
label var wcdydx "Discrete change of wc on Pr(LFP)"
```

Compute effects with predict (not recommended)

```
gen wc_orig = wc
replace wc = 0
predict double prhat0
replace wc = 1
predict double prhat1
replace wc = wc_orig
drop wc_orig
gen double dcwc = prhat1 - prhat0
label var dcwc "Discrete change of wc on Pr(LFP)"
```

SUGGESTION

- 1.predict: predict anything margins can compute.
- 2.margins: Add gen() option to save variables with its predictions.

Linked marginal effects

- 1. "Strongly linked" variables which are handled elegantly by factor variables.
- 2. "Weakly linked" variables can be handed with at (x=gen())

Start with strongly linked variables...

Age and age-squared are strongly linked

Leading to

- A marginal effect of x automatically adjusts for x-squared.
- O Does this make sense for weakly linked variables?

Height and weight are weakly linked

Modeling arthritis

logit arthritis age female i.ed3cat height weight

The question

Does height "by itself" increase the probability of arthritis?

The problem

- 1. Height and weight are correlated about .5.
- 2. Increasing height, holding weight constant is not the question since it changes the BMI.
- 3. Allow height to increase and let weight increase a corresponding amount.
 - This type of problem has many applications when multiple indicators are used.

Estimate the model

sysuse svyhrs3, clear
svyset secu [pweight=kwgtr], strata(stratum) ///
vce(linearized) singleunit(missing)
svy: logit arthritis c.age i.female i.ed3cat height weight
estimates store lgt

Predict weight from height

```
. svy: reg weight height
. local a = _b[_con]
. local b = _b[height]
```

Compute std. dev. of height

```
. svy: mean height
. estat sd
. local sd = el(r(sd),1,1)
. estimates restore lgt
```

Compute predicted probabilities

```
. mtable, ///
> /// predict at OBSERVED
> at( height=gen(height) ///
> weight=gen(weight)) ///
> ///
> /// change HEIGHT ONLY
> at( height=gen(height+`sd') ///
> weight=gen(weight)) ///
> ///
> /// change HEIGHT & WEIGHT
> at( height=gen(height+`sd') ///
         weight=gen(`a'+`b'*(height +`sd')) ) post
Expression: Pr(arthritis)
        1 0.570
        2 | 0.538
            0.589
```

Discrete changes: simplify specification and build tables

- . lincom _b[2._at] _b[1._at]
- . mlincom 2 1, rowname(height_only)

- . qui mlincom 3 1, rowname(and_weight) add
- . mlincom 3 2, rowname(2nd_difference) add

	lincom	pvalue	11	ul
height_only	-0.031	0.000	-0.046	-0.017
and_weight	0.020	0.008	0.005	0.034
2nd_differnce	0.051	0.000	0.046	0.056

Global and local means

- **1. As observed** and **at means** are part of a continuum.
- **2.** When changing a variable to make predictions, there are limitations with:
 - a. Holding other variables at the mean.
 - b. Keeping other variables at their observed values.
- **3.** Local means deals with being **off the support** with using **atmeans**.

Global means: the foundation of spost9!

- . sysuse binlfp4, clear
- . logit lfp i.wc k5 k618 i.agecat i.hc lwg inc
- . qui mtable, atmeans at(wc=0 k5=(0 1 2 3)) estname(NoCol)
- . qui mtable, atmeans at(wc=1 k5=(0 1 2 3)) estname(College) ///
- > atvars(_none) right
- . mtable, atmeans dydx(wc) at(k5=(0 1 2 3)) estname(Diff) ///
- > stats(est p) atvars(none) names(columns) right

 k5	NoCol	College	Diff 	p
 0	0.604	0.772	0.168	0.000
1	0.275	0.457	0.182	0.001
2	0.086	0.173	0.087	0.013
3	0.023	0.049	0.027	0.085

Constant values of at() variables

	2.	3.	1.		
k618	agecat	agecat	hc	lwg	inc
1.353	0.385	0.219	0.392	1.097	20.129

Local means

. mtable, over(k5) at(wc=0) estname(NoCol) atmeans atvars(k5) Expression: Pr(lfp) 2. 3. k5 k618 WC agecat agecat hc 1.28 .436 .269 .358 1 2 .212 .0169 1.75 .517 3 .0385 0 1.31 .538 0 1.33 4 0 0 5 1.28 .436 .269 .358 6 .0169 1.75 .212 .517 2 7 1.31 .0385 0 .538 8 1.33 0 0 1 lwg inc pr 1.11 20 0.583 1 1.03 20.8 0.337 2 3 1.18 17.6 0.154 4 1.08 46.1 0.017 5 20 1.11 0.757 1.03 20.8 0.530 6 1.18 7 17.6 0.288 8 1.08 46.1 0.037

Predictions with local means

 k5	NoCol	College	Diff	p
0	0.583	0.757	0.173	0.000
1	0.337	0.530	0.193	0.000
2	0.154	0.288	0.134	0.003
3	0.017	0.037	0.020	0.070

Comparing the results...

Comparing global and local means

	Global	- Loca	1	Global			Local		
'				NoCol		'			
							-		
0	-0.02	-0.02	0.01	0.60	0.77	0.17	0.58	0.76	0.17
1	0.06	0.07	0.01	0.27	0.46	0.18	0.34	0.53	0.19
2	0.07	0.11	0.05	0.09	0.17	0.09	0.15	0.29	0.13
3	-0.01	-0.01	-0.01	0.02	0.05	0.03	0.02	0.04	0.02

Plots with global and local means

If time permits...

Predictions with global means

- . sysuse binlfp4, clear
- . logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
- . mgen, at(inc=(0(10)100)) atmeans stub(global_) predlabel(Global means)

Variables computed by the command:

. margins , at(inc=(0(10)100)) atmeans

Variable	Obs	Unique	Mean	Min	Мах 	Label
global_pr global_ll global_ul global_inc	11 11 11 11	11	.2708139	0156624	.6641427 .8056643	Global means 95% lower limit 95% upper limit Family income exclud

Predictions with local means

- . gen incl0k = trunc(inc/10) // income in 10K categories
- . mtable, over(inc10k) atmeans stat(est 11 ul)

Expression: Pr(lfp)

	k5	k618	2. agecat	3. agecat	1. wc	1. hc
1 2		1.43 1.29	.303 .363	.222 .215	.121 .212	.0808

:::snip:::

	 lwg				
1	.922 1.08	7.25	0.641	0.584	0.698

:::snip:::

- . matrix tab = r(table)
- . matrix tab = tab[1...,8..11]
- . matrix colnames tab = local_inc local_pr local_ll local_ul
- . svmat tab, names(col)
- . label var local_pr "Local means"
- . label var local_ll "95% lower limit"
- . label var local_ul "95% upper limit"
- . label var local inc "Family income excluding wife's"

Beyond the parameters

Ordinal models are very restrictive

lcda13lec-orm-anderson-ordinalmodel scott long 2013-04-27

Party identification

- . use partyid01, clear
- . tab party5, miss

party5	Freq.	Percent	Cum.
1_SD	266	19.25	19.25
2 D	427	30.90	50.14
3_I	151	10.93	61.07
4_R	369	26.70	87.77
5_SR 	169 1,382	12.23 100.00	100.00

. nmlab party5 age income black female highschool college

party5 Party: 1StDem 2Dem 3Indep 4Rep 5StRep age Age income Income (Thousands of dollars) Black Respondent is black female Respondent is female highschool High school is highest degree college College is highest degree

ologit of partyid

- . ologit party5 age10 income10 i.black i.female i.highschool i.college
- . listcoef, help

ologit (N=1382): Factor Change in Odds

Odds of: >m vs <=m (More Republican vs Less Republican)

party5	b	z	P> z	e^b	e^bStdX	SDofX
age10 income10	-0.06359 0.09611	-2.037 4.792	0.042	0.9384 1.1009	0.8988 1.3060	1.6783 2.7781
1.black	-1.47593	-9.824	0.000	0.2286	0.6014	0.3445
1.female	-0.15711	-1.584	0.113	0.8546	0.9244	0.5001
1.highschool	0.29417	1.943	0.052	1.3420	1.1563	0.4937
1.college	0.64204	3.543	0.000	1.9004	1.3250	0.4383

b = raw coefficient

z = z-score for test of b=0

P>|z|=p-value for z-test

e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

SDofX = standard deviation of X

OLM: Parallel regression assumption

. brant

Brant Test of Parallel Regression Assumption

Variable	chi2	p>chi2	df
All	89.84	0.000	18
age10 income10 1.black 1.female 1.highschool 1.college	42.87 2.11 12.82 6.54 2.92 12.24	0.000 0.550 0.005 0.088 0.404 0.007	3 3 3 3 3

A significant test statistic provides evidence that the parallel regression assumption has been violated.

SUGGESTION

1. Results of tests should be clearly explained (like chibar2).

OLM: AME

mchange
dcplot age10 income10, ...

OLM: Probabilities to plot

. mgen, atmeans at(`at_age') stub(olmage)

Variables computed by: margins, at(age10=(2(.5)8.5)) atmeans

Variable	Obs	Unique	Mean	Min	Max	Label
olmagepr1 olmagell1 olmageul1 olmageage10 olmageCpr1	14 14 14 14 14 14	14 14 14 14 14 14	.1773212 .1496142 .2050282 5.25 .1773212	.1484803 .1213707 .1755899 2 .1484803	.2086263 .1628012 .2544515 8.5 .2086263	pr(y=1_SD) 95% lower 95% upper Age in dec pr(y=1_SD)
olmagepr2	14	14	.338745	.316049	.3587669	pr(y=2_D)
:::snip:::						
olmageCpr4	14	14	.8989504	.8792652	.9167384	pr(y<=4_R)
olmagepr5	14	14	.1010496	.0832616	.1207348	pr(y=5_SR)
olmagel15	14	14	.082297	.0605158	.0968657	95% lower
olmageul5	14	14	.1198021	.1060074	.144604	95% upper
olmageCpr5	14	2	1	.9999999	1	pr(y<=5_SR).

[.] mgen, atmeans at(`at_inc') stub(olminc)
::: snip :::

OLM: ologit by income

OLM: ologit by age

mlogit of partyid

```
. mlogit party5 age10 income10 i.black i.female i.highschool ///
>    i.college
::: snip :::
. mlogtest age10 income10, wald
Wald tests for independent variables (N=1382)
```

Ho: All coefficients associated with given variable(s) are 0

	chi2	df	P>chi2
age10	:	4	
income10	22.985 	<u>4</u> 	0.000

. listcoef age10 income10

mlogit (N=1382): Factor Change in the Odds of party5

Variable: age10 (sd=1.6783108)

Category 1	:	Category 2	b	Z	P > z	e^b	e^bStdX
			+				
1_SD	:	2_D	0.23617	4.761	0.000	1.2664	1.4864
1_SD	:	3_I	0.31618	4.781	0.000	1.3719	1.7000
1_SD	:	4_R	0.24533	4.576	0.000	1.2780	1.5094
1_SD	:	5_SR	0.02819	0.438	0.662	1.0286	1.0484
2_D	:	1_SD	-0.23617	-4.761	0.000	0.7896	0.6728
2_D	:	3_I	0.08001	1.287	0.198	1.0833	1.1437
:::snip:::							
5_SR	:	4_R	0.21714	3.594	0.000	1.2425	1.4397

```
Variable: income10 (sd=2.7781476) :::snip:::
```

- . mchange
- . orplot, dc mcolors(`partycolor') ...

MNLM: mlogit odds ratio plot with ame's

orplot age10 income10, dc

MNLM: mlogit AME

mchange
dcplot age10 income10, std(ss) min(-.06) max(.06) gap(.02) ...

What happened with 1 and 5?

MNLM: mlogit by income

OLM: ologit by income

MNLM: mlogit by age

OLM: ologit by age

Post-estimation test & fit

brant: parallel regression test

Shown above.

mlogtest, wald or Ir

. mlogtest, lr

Likelihood-ratio tests for independent variables (N=337)

Ho: All coefficients associated with given variable(s) are 0

	chi2	df	P>chi2
white	8.095	4	0.088
ed	156.937	4	0.000
exper	8.561	4	0.073

Why I'd like this included in the mlogit output...

Base BlueCol: 0 significant coefficients

		e^b	P> z
WhiteCol:	BlueCol	1.3978	0.720
Prof :	BlueCol	1.7122	0.501
Craft :	BlueCol	0.4657	0.227
Menial :	BlueCol	0.2904	0.088

Base Craft: 1 significant coefficient

		e^b	P > z
BlueCol:	Craft	2.1472	0.227
WhiteCol:	Craft	3.0013	0.179
Prof :	Craft	3.6765	0.044
Menial :	Craft	0.6235	0.434

Base Menial: 1 significant coefficient

			e^b	P> z
Craft	:	Menial	1.6037	0.434
BlueCol	:	Menial	3.4436	0.088
WhiteCol	:	Menial	4.8133	0.082
Prof	:	Menial	5.8962	0.019

Base Prof: 2 significant coefficients

	e^b	P> z
WhiteCol: Prof	0.8163	0.815
BlueCol : Prof	0.5840	0.501
Craft : Prof	0.2720	0.044
Menial : Prof	0.1696	0.019

Base WhiteCol: 0 significant coefficients

		+	e^b	P> z	
		WhiteCol		0.815	_
BlueCol	:	WhiteCol	0.7154	0.720	
Craft	:	WhiteCol	0.3332	0.179	
Menial	:	WhiteCol	0.2078	0.082	

mlogtest, combine

Testing if outcome categories are significantly differentiated.

mlogtest, iia

Various not very useful but highly requested IIA tests.

countfit: borrowed by SAS for countreg

countfit art fem mar kid5 phd ment, gen(cfeg) replace ///
inflate(fem mar kid5 phd ment) maxcount(6)

Variable	Base_PRM	Base_NBRM	Base_ZIP
art			
Gender: 1=female 0=male	0.799	0.805	0.811
	-4.11	-2.98	-3.30
Married: 1=yes 0=no	1.168	1.162	1.109
	2.53	1.83	1.46
Number of children < 6	0.831	0.838	0.866
	-4.61	-3.32	-3.02
PhD prestige	1.013	1.015	0.994
	0.49	0.42	-0.20
Article by mentor last 3 yrs	1.026	1.030	1.018
-	12.73	8.38	7.89
Constant	1.356	1.292	1.898
į	2.96	1.85	5.28
+			
lnalpha			
Constant		0.442	
j		-6.81	

And so on for all models...

Comparison of Mean Observed and Predicted Count

Maximum Difference	At Value	Mean Diff 	
0.091	0	0.026	
-0.015	3	0.006	
0.054	1	0.015	
-0.019	3	0.008	
	Difference 0.091 -0.015 0.054	Difference Value 0.091 0 -0.015 3 0.054 1	Difference Value Diff 0.091

PRM: Predicted and actual probabilities

Count	Actual	Predicted	Diff	Pearson
				26 400
0	0.301	0.209	0.091	36.489
1	0.269	0.310	0.041	4.962
2	0.195	0.242	0.048	8.549
3	0.092	0.135	0.043	12.483
4	0.073	0.061	0.012	2.174
5	0.030	0.025	0.005	0.760
6	0.019	0.010	0.009	6.883
7	0.013	0.004	0.009	17.815
8	0.001	0.002	0.001	0.300
9	0.002	0.001	0.001	1.550
Sum	0.993	0.999	0.259	91.964

Tests and Fit Statistics

PRM	BIC= 3343.026	AIC= 3314.113	Prefer Over	Evidence
vs NBRM	BIC= 3169.649 AIC= 3135.917 LRX2= 180.196		NBRM PRM	Very strong p=0.000
vs ZIP	AIC= 3233.546	dif= 51.653 dif= 80.567 prob= 0.000		Very strong p=0.000
vs ZINB	BIC= 3188.628 AIC= 3125.982		ZINB PRM ZINB PRM	Very strong
NBRM	BIC= 3169.649	AIC= 3135.917	Prefer Over	Evidence
vs ZIP	BIC= 3291.373 AIC= 3233.546	dif= -121.724 dif= -97.629		Very strong
vs ZINB	AIC= 3125.982	dif= -18.979 dif= 9.935 prob= 0.012	NBRM ZINB ZINB NBRM ZINB NBRM	-
ZIP	BIC= 3291.373	AIC= 3233.546	Prefer Over	Evidence
vs ZINB	BIC= 3188.628 AIC= 3125.982 LRX2= 109.564		ZINB ZIP ZINB ZIP ZINB ZIP	Very strong p=0.000 2013-08-13 Page 74

fitstat

These are generally not very useful, so don't waste time computing them...

. fitstat

Measures of Fit for logit of lfp

Log-Lik Intercept Only:	-514.873	Log-Lik Full Model:	-452.724
D(744):	905.447	LR(8):	124.299
		Prob > LR:	0.000
McFadden's R2:	0.121	McFadden's Adj R2:	0.103
ML (Cox-Snell) R2:	0.152	Cragg-Uhler(Nagelkerke) R2:	0.204
McKelvey & Zavoina's R2:	0.215	Efron's R2:	0.153
Tjur's Discrimination Coef:	0.153		
Variance of y*:	4.192	Variance of error:	3.290
Count R2:	0.676	Adj Count R2:	0.249
AIC:	923.447	AIC/N:	1.226
BIC:	965.064	k:	9.000

ic compare

- . logit lfp i.wc k5 k618 age i.hc lwg inc
- . fitstat, ic saving(nofv)
- . logit lfp i.wc k5 k618 i.agecat i.hc lwg inc
- . fitstat, ic using(nofv) dif

	Current	${\tt nofv}$	Difference
Model:	logit	logit	
N:	753	753	0
AIC	923.447	921.266	2.181
AIC/N	1.226	1.223	0.003
BIC	965.064	958.258	6.805
k	9.000	8.000	1.000
BIC (deviance)	-4022.857	-4029.663	6.805
BIC'	-71.307	-78.112	6.805

Difference of 6.805 in BIC provides strong support for saved model.

SUGGESTION

1. A "lrtest" like command for use with IC measures.

Listing coefficients

. listcoef, help

X

zip (N=915): Factor Change in Expected Count

Observed SD: 1.926069

Count Equation: Factor Change in Expected Count for Those Not Always 0

art	b	Z	P> z	e^b	e^bStdX	SDofX
fem	-0.20914	-3.299	0.001	0.8113	0.9010	0.4987
mar	0.10375	1.459	0.145	1.1093	1.0503	0.4732
kid5	-0.14332	-3.022	0.003	0.8665	0.8962	0.7649
phd	-0.00617	-0.199	0.842	0.9939	0.9939	0.9842
ment	0.01810	7.886	0.000	1.0183	1.1872	9.4839

b = raw coefficient

z = z-score for test of b=0

P>|z|=p-value for z-test

e^b = exp(b) = factor change in expected count for unit increase in

e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X

Binary Equation: Factor Change in Odds of Always 0

Always0	b	z	P> z	e^b	e^bStdX	SDofX
fem	0.10975	0.392	0.695	1.1160	1.0563	0.4987
mar	-0.35401	-1.115	0.265	0.7019	0.8458	0.4732
kid5	0.21710	1.105	0.269	1.2425	1.1806	0.7649
phd	0.00127	0.009	0.993	1.0013	1.0013	0.9842
ment	-0.13411	-2.964	0.003	0.8745	0.2803	9.4839

b = raw coefficient

z = z-score for test of b=0

P>|z| = p-value for z-test

e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

SDofX = standard deviation of X

Suggestion

margins related

- 1. More compact output.
- 2. Multiple outcomes in same estimation.
- 3. Save predictions for individual observations.
- 4. Let predict predict everything that margins can estimate
- 5.at(x=gen(x+sd(x)): egen() for at()
- **6. autopost**: automatically save current estimation command if it is in memory; if not in memory, load the one that was autoposted.
- **7.** Better ways to incorporate local means?

Data analysis

- 1. A unified method for collecting results.
- **2.1rtest** type command for ic
- **3. vuong** function to compare models.
- **4.** datasignature option to detect all changes.
- 5.datasignature controlled by save and use.
- 6. sem: LCA

Useful things that **seem** easy

- 1. tab with variable name and variable label; values with value labels.
- 2.svy: means for fv's
- 3.reallyclearall
- 4.c in fasted by Nick Winter

Programming

- 1. Better tools for factor variables (or let Jeff make house calls)
 - Factor variables greatly increase the barrier to user written commands.
- 2.r(table) for all commands with all key results (e.g., lincom)
- **3.** Stronger restrictions on value labels.

Graphics

1. 3d wireframe graphics

Move the best functions of SPost into Stata

In general, user written commands challenge reproducible results.

Stata and reproducible results

How can Stata change to support this movement.

Thank you

- 1. For the files, **findit scottlong** and follow the links.
- 2. In Stata, run spost13update

Contents

INTERPRETING REGRESSION MODELS	1
Working with StataCorp	2
CONTINUING WORK	3
Stata at Indiana	4
GOALS FOR VISITING STATACORP	5
Demo SPost13 wrappers for margins Other SPost13 commands Things I (we) would like to see in Stata	5
Interpretation using predictions	6
Interpreting nonlinear models	
THE TOOLS FOR INTERPRETATION	8
Official Stata SPost13 wrappers for margins and lincom	8
TABLES OF PREDICTIONS	9
Binary outcome	9
Categorical outcomes	14

MARGINAL EFFECTS	20
Marginal change	21
Discrete change	
Binary outcome	22
Question	22
mchange with from to options (edited)	24
Ordinal outcomes	27
WHAT LOGIT OUTPUT MIGHT LOOK LIKE	32
AME AND MEM	33
MEM	33
AME	33
Should you replace one mean with another?	33
DISTRIBUTION OF ME'S	34
Marginal change for income	34
Discrete change for woman attending college	
LINKED MARGINAL EFFECTS	37
Age and age-squared are strongly linked	38
Leading to	
Height and weight are weakly linked	40
Modeling arthritis	
The question	40

The problem	40
Estimate the model	41
Predict weight from height	
Compute std. dev. of height	41
GLOBAL AND LOCAL MEANS	44
Global means: the foundation of spost9!	45
Local means	46
Predictions with local means	47
Comparing global and local means	
PLOTS WITH GLOBAL AND LOCAL MEANS	49
Predictions with global means	50
Predictions with local means	51
BEYOND THE PARAMETERS	52
Ordinal models are very restrictive	52
Party identification	
ologit of partyid	54
OLM: Parallel regression assumption	
OLM: AME	
OLM: Probabilities to plot	57
OLM: ologit by income	
OLM: ologit by gae	59

mlogit of partyid	60
MNLM: mlogit odds ratio plot with ame's	62
MNLM: mlogit AME	63
MNLM: mlogit by income	64
OLM: ologit by income	65
MNLM: mlogit by age	66
OLM: ologit by age	67
POST-ESTIMATION TEST & FIT	68
brant: parallel regression test	68
mlogtest, wald or lr	68
mlogtest, combine	70
mlogtest, iia	70
countfit: borrowed by SAS for countreg	71
fitstat	75
ic compare	76
Listing coefficients	77
Suggestion	79
margins related	79
Data analysis	
Useful things that seem easy	80
Programming	81
Graphics	81

Move the best functions of SPost into Stata	8
Stata and reproducible results	8
THANK YOU	8