

CS-C2160 Theory of Computation

Lecture 11: Rice's Theorem, General Grammars

Pekka Orponen
Aalto University
Department of Computer Science

Topics:

- Rice's Theorem
- Unrestricted grammars
- ... and their relationship to Turing machines
- Context-sensitive grammars
- * A glimpse beyond: Computational complexity

Recap

- *Church–Turing thesis:* Intuitive notion of algorithms ≡ Turing machines.
- A language is semi-decidable (also called recursively) enumerable) if it can be recognised by some Turing machine.
- A language is decidable (also called recursive) if it can be recognised by some machine that halts on all inputs.
- A language is undecidable if it is not decidable.
- An undecidable language may still be semi-decidable.

- The "acceptance" decision problem for Turing machines is Given a Turing machine M and a string w. Does M accept w?
- The formal language representing this is the universal language

$$U = \{c_M w \mid M \text{ is a TM and } M \text{ accepts } w\}.$$

• The language *U* is semi-decidable but not decidable.

Rice's Theorem

11.1 Rice's theorem

- Rice's Theorem states that all decision problems concerning the languages recognised by Turing machines¹ are undecidable.
- Let us denote the family of all semi-decidable (i.e. recursively enumerable) languages by RE.
- A semantic property² S of Turing machines is any family of semi-decidable languages, i.e. S ⊆ RE.
- A machine M has property S if $L(M) \in S$.
- Examples of semantic properties:
 - ▶ **NE** = $\{L \subseteq \{0,1\}^* \mid L \neq \emptyset\}$
 - ► ALLSTRINGS = $\{L \subseteq \{0,1\}^* \mid L = \{0,1\}^*\} = \{\{0,1\}^*\}$
 - ▶ **EVEN** = $\{L \subseteq \{0,1\}^* \mid |x| \text{ is even for all } x \in L\}$
 - ▶ **ONLY**_w = $\{L \subseteq \{0,1\}^* \mid x \in L \Leftrightarrow x = w\} = \{\{w\}\}$
 - ► **EMPTYSET** = $\{L \subseteq \{0,1\}^* \mid L = \emptyset\} = \{\emptyset\}$

¹i.e. the input-output behaviours of computer programs ²or "specification"

- A semantic property is trivial if
 - $S = \emptyset$ (no machine has this property) or
 - $ightharpoonup \mathbf{S} = \mathbf{RE}$ (all machines have this property)
- A property S is decidable if the language

$$\mathsf{codes}(\mathbf{S}) = \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in \mathbf{S}\}$$
 is decidable.

 In other words: A semantic property is decidable if one can algorithmically decide whether a given Turing machine has the property.³

Theorem 11.1 (Rice 1953)

All non-trivial semantic properties of Turing machines are undecidable.

³equivalently "a given computer program matches the specification"

Example:

 Let us consider the non-emptiness problem for Turing machines from Lecture 10:

Given a Turing machine M.

Does the machine accept any strings?

- The corresponding semantic property is $NE = \{L \in RE \mid L \neq \emptyset\}.$
- The property is non-trivial because:
 - ▶ **NE** \neq ∅ (witness any semi-decidable language $L \neq$ ∅)
 - ▶ $NE \subsetneq RE$ (since $\emptyset \in RE \setminus NE$)
- Thus by Rice's theorem, the language

$$\begin{aligned} \operatorname{codes}(\mathbf{NE}) &= \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in \mathbf{NE}\} \\ &= \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \neq \emptyset\} \end{aligned}$$

is undecidable. (Note that this is precisely the result in Lemma 10.5.)

Theorem 11.1

All non-trivial semantic properties of Turing machines are undecidable.

Proof

- A simple generalisation of the proof of Lemma 10.5.
- Let S be any non-trivial semantic property.
- We can assume that ∅ ∉ S; in other words, machines that recognise the empty language do not have the property.^a
- As S is non-trivial, there is a Turing machine M_S that has the property S, i.e. one for which $\mathcal{L}(M_S) \neq \emptyset$ and $\mathcal{L}(M_S) \in S$ hold.

^aIf $\emptyset \in S$, we can first show that the property $\bar{S} = RE \setminus S$ is undecidable and then conclude that also S is undecidable; this is because $codes(\bar{S}) = \{0,1\}^* \setminus codes(S)$.

- \bullet We now prove that ${\rm codes}(\mathbf{S})$ is undecidable by reducing the undecidable language U to it.
- Let (M, w) be any instance of the Turing machine acceptance problem, encoded as the string $c_M w$.
- From input $c_M w$ construct (the code for) a Turing machine M^w that on any input string x works as follows:
 - First run machine *M* on string *w*, and then:
 - if M accepts w, run M_S on x
 - if M rejects w (or doesn't halt), reject x (or don't halt)
- Now M^w recognises the language

$$\mathcal{L}(M^w) = \left\{ \begin{array}{ll} \mathcal{L}(M_\mathbf{S}) & \text{if } w \in \mathcal{L}(M) \\ \emptyset & \text{if } w \notin \mathcal{L}(M) \end{array} \right.$$

- Thus M accepts w if and only if M^w has the property S. That is, $c_M w \in U$ if and only if $c_{M^w} \in \text{codes}(S)$.
- Therefore, codes(S) is an undecidable language.

General Grammars

11.2 Unrestricted grammars

- A generalisation of context-free grammars.
- The left-hand sides of rules can now include multiple symbols.
- As will be shown, can generate all semi-decidable languages.

Definition 11.1

An unrestricted grammar is a quadruple

$$G = (V, \Sigma, R, S),$$

where

- V is a finite set of variables;
- Σ is a finite set, disjoint from V, of *terminals*;
- $R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ is a finite set of *rules* (also called productions), where $(V \cup \Sigma)^+ = (V \cup \Sigma)^* \setminus \{\epsilon\}$;
- $S \in V$ is the *start variable*.

A rule $(\omega, \omega') \in R$ is usually written as $\omega \to \omega'$.

• A string $\gamma \in (V \cup \Sigma)^*$ *yields* a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar G, denoted by

$$\gamma \Rightarrow \gamma'$$

if

- the grammar contains a rule $\omega \to \omega'$ such that $\gamma = \alpha \omega \beta$ and $\gamma' = \alpha \omega' \beta$ for some $\alpha, \beta \in (V \cup \Sigma)^*$.
- A string $\gamma \in (V \cup \Sigma)^*$ derives a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar G, denoted by

$$\gamma \underset{G}{\Rightarrow}^* \gamma'$$

if there is a sequence of strings $\gamma_0, \gamma_1, \dots, \gamma_n$ for some $n \geq 0$ such that

$$\gamma = \gamma_0, \qquad \gamma_0 \underset{G}{\Rightarrow} \gamma_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \gamma_n, \qquad \gamma_n = \gamma.$$

• If the grammar G is clear from the context, we can simply write $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$ instead of $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$, respectively.

Example:

An unrestricted grammar for the non-context-free language $\{a^kb^kc^k\mid k\geq 0\}$:

$$S \rightarrow LT \mid \varepsilon$$
 $LA \rightarrow a$
 $T \rightarrow ABCT \mid ABC$ $aA \rightarrow aa$
 $BA \rightarrow AB$ $aB \rightarrow ab$
 $CB \rightarrow BC$ $bB \rightarrow bb$
 $CA \rightarrow AC$ $bC \rightarrow bc$
 $cC \rightarrow cc$

A derivation of string *aabbcc* in the grammar:

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it can be recognised with a Turing machine.

Proof

Let $G=(V,\Sigma,R,S)$ be an unrestricted grammar generating language L. We can design a two-tape nondeterministic Turing machine M_G recognising L as follows:

- On tape 1 the machine stores a copy of the input string.
- Tape 2 holds the current string that the machine tries to rewrite to match the one on tape 1.
- In the beginning, the machine writes the start variable S on tape 2.

The computation of machine M_G is composed of stages. In each stage, the machine:

- 1. Moves the read/write-head of tape 2 *nondeterministically* to *some* position on the tape.
- 2. Chooses *nondeterministically* a rule in G that it tries to apply at the selected position. (The rules of G are encoded in the transitions of M_G .)
- 3. If the left-hand side of the chosen rule matches the symbols on the tape, M_G rewrites these symbols with the ones in the right-hand side of the rule. Otherwise M_G rejects.
- 4. At the end of the stage, M_G compares the strings on tapes 1 and 2. If they are the same, the machine acceps and halts. Otherwise, the machine executes the next stage (loops back to step 1).

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can be generated with an unrestricted grammar.

Proof

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm acc},q_{\rm rej})$ be a (deterministic one-tape) Turing machine recognising language L. We can design an unrestricted grammar G_M generating L based on the following idea.

- The variables of G_M include (among others) symbols for all the states $q \in Q$ of M.
- A configuration (q, uav) of M will be represented as a string [uqav].
- Based on the transitions of M, G_M will have rules that ensure $[uqav] \Rightarrow [u'q'a'v']$ if and only if $(q,u\underline{a}v) \vdash_M (q',u'\underline{a'}v')$.
- Thus M accepts the input x if and only if for some $u, v \in \Sigma^*$:

$$[q_0x] \underset{G_M}{\Rightarrow}^* [uq_{\mathsf{acc}}v]$$

The rules in G_M comprise three types:

- 1. Rules with which one can derive from the start variable S any string of form $x[q_0x]$, where $x \in \Sigma^*$ and '[', ' q_0 ' and ']' are variables in G_M .
- 2. Rules that allow one to derive from the string $[q_0x]$ a string $[uq_{acc}v]$ if and only if M accepts x.
- 3. Rules that enable one to rewrite any string of form $[uq_{\rm acc}v]$ to the empty string.

Deriving a string $x \in \mathcal{L}(M)$ can then be done as follows:

$$S \stackrel{(1)}{\Rightarrow^*} x[q_0x] \stackrel{(2)}{\Rightarrow^*} x[uq_{\mathrm{acc}}v] \stackrel{(3)}{\Rightarrow^*} x$$

Let us thus define the grammar $G = (V, \Sigma, R, S)$, where

$$V = (\Gamma \setminus \Sigma) \cup Q \cup \{S, T, [,], E_L, E_R\} \cup \{X_a \mid a \in \Sigma\}$$

and the rules in *R* include the following three sets:

1. Producing the initial configuration string:

2. Simulating the transitions of M ($a,b \in \Gamma$, $c \in \Gamma \cup \{ [\})$:

Transitions:

Rules:

3. Erasing an accepting configuration string:

$$egin{array}{lll} q_{
m acc} &
ightarrow & E_L E_R \ q_{
m acc} [&
ightarrow & E_R \ a E_L &
ightarrow & E_L \ [E_L &
ightarrow & \epsilon \ E_R a &
ightarrow & E_R \ [a \in \Gamma) \ E_R] &
ightarrow & \epsilon \end{array}$$

11.3 Context-sensitive grammars

- An unrestricted grammar is context-sensitive if all its rules are of form $\omega \to \omega'$, where $|\omega'| \ge |\omega|$, or $S \to \varepsilon$, where S is the start variable.
- In addition, it is required that if the grammar contains the rule $S \rightarrow \varepsilon$, then the start variable S does not occur on the right-hand side of any rule.
- A language L is context-sensitive if it can be generated with some context-sensitive grammar.
- A normal form for context-sensitive grammars: Each context-sensitive language can be generated with a grammar whose rules are of form $S \to \varepsilon$ and $\alpha A\beta \to \alpha \omega \beta$, where A is a variable and $\omega \neq \varepsilon$.
- A rule $\alpha A\beta \rightarrow \alpha \omega \beta$ can be interpreted as the application of a rule $A \rightarrow \omega$ "in the context" α β .

Theorem 11.4

A language L is context-sensitive if and only if it can be recognised with a non-deterministic Turing machine that does not use more tape space than was already allocated for the input.

- The machines in Theorem 11.4 are called *linear bounded* automata.
- It is an open problem whether the non-determinism in Theorem
 11.4 is necessary or not. (The "LBA ?= DLBA" problem.)

11.4 Recap: The Chomsky hierarchy

A classification of grammars, languages generated by grammars and recogniser automata classes:

Type-0: unrestricted grammars / semi-decidable languages / Turing machines

Type-1: context-sensitive grammars / context-sensitive languages / linear bounded automata

Type-2: context-free grammars / context-free languages / pushdown automata

Type-3: right and left linear grammars / regular languages / finite automata

* A Glimpse Beyond: Computational Complexity

* Computational complexity

- So far: only what is decidable (solvable with computers) and what is not.
- But some problems are "more decidable than others".
- For instance, finding a smallest element in an array is/seems much easier than solving sudokus.

10		16			12				15				4	5	
	11		14	13			5	10				16			Г
			12									11			Г
	1		9			7	4			11	8	13		12	Г
5	10	14				11				9		3		4	Г
		9	7		4	6					15	1	11	13	1
				16		5	3						2	15	Г
			6				7	2							Г
14		13		1		2		9		16		8	6		Г
16				7	14	9		8	1		2	5			Г
2		8			6	4		13	3		5	14		1	Г
			4								7				Г
		Ē	16	14		Ē	П			1		12			Г
			11						14	5					Г
		2			10		6	11	7		13	9	5		Г
3		12	15									2		10	Г

- In fact, the set of decidable problems can be divided in many smaller complexity classes:
 - P problems that can be solved in polynomial time (≈ always efficiently) with deterministic Turing machines / algorithms.
 - NP problems that can be solved in polynomial time with non-deterministic Turing machines.
 - PSPACE problems that can be solved with a polynomial amount of extra space (possibly in exponential time).
 - EXPTIME problems that can be solved in exponential time.
 - and many more...

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$,

 $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$,

 $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$,

 $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

- 1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.
- 2. Solving the resulting MAXFLOW instance.
- 3. The reduction is linear-time and Edmonds-Karp alg. works in $O(VE^2)$.

Example: a not-so efficiently solvable problem

Definition (propositional satisfiability, SAT)

INSTANCE: A Boolean formula $\boldsymbol{\varphi}$ in conjunctive normal form.

QUESTION: Is there a truth assignment that satisfies ϕ ?

Example

$$(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$$
 is satisfiable with $\{x \mapsto \mathbf{true}, y \mapsto \mathbf{true}, z \mapsto \mathbf{false}\}.$

$$(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor z)$$
 is unsatisfiable.

- Even the best known SAT algorithms, with sophisticated pruning techniques can perform very badly on some instances (although they can solve many relevant problems efficiently).
- No polynomial-time algorithm for SAT is known despite several decades of effort in trying to find one.

Problem class NP (Non-deterministic Polynomial time)

Two alternative ways to characterise problems in **NP**:

- 1. Problems that can be solved in *polynomial time* with *non-deterministic* Turing machines (\approx algorithms that can guess perfectly).
- Problems whose solutions (when they exist) are
 - reasonably small (i.e., of polynomial size), and
 - easy to check (i.e., in polynomial time).

but not necessarily easy to find (or prove non-existent)!

NP-complete problems

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if R(x) has a solution in A.

NP-complete problems

 A problem A in NP is NP-complete if every other problem B in NP can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if R(x) has a solution in A.

NP-complete problems are the *most difficult ones* in NP!

We *do not know*(!!!) whether **NP**-complete problems can be solved efficiently or not.

13

The Cook-Levin theorem

Theorem (S. A. Cook 1971, L. Levin 1973)

SAT is NP-complete.

Stephen Cook (1939–)

Leonid Levin (1948–)

Richard Karp (1935–)

- R. Karp soon (1972) listed the next 21 **NP**-complete problems.
- Since then, 1000's of problems have been shown **NP**-complete.
- E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS etc. are NP-complete.
- Classic text: Garey and Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce *A to your problem C*.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce *A to your problem C*.

Polynomial time reductions compose: any B in **NP** reduces to C! Your problem C is **NP**-complete.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce *A to your problem C*.

Polynomial time reductions compose: any *B* in **NP** reduces to *C*!

- Your problem C is **NP**-complete.
- If your problem C can be solved in polynomial time, then so can A and all the problems in **NP**.

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Is there an independent set $I \subseteq V$ with |I| = K?

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

The corresponding graph G with K = 3:

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

The corresponding graph G with K = 3:

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

The corresponding graph G with K = 3:

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

The corresponding graph G with K = 3:

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

NP-completeness: Significance

Can NP-complete problems be solved in polynomial time?

One of the seven 1M\$ Clay Mathematics Institute Millenium Prize problems, see

http://www.claymath.org/millennium-problems/

- What to do when a problem is NP-complete?
 - Attack special cases that occur in practice
 - Develop backtracking search algorithms with efficient heuristics and pruning techniques
 - Develop approximation algorithms
 - Apply incomplete local search methods
 - **...**

Some further courses:

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4340 Cryptography
- and so on...