

ChaP Test

Name	:		
Batch Code	:	Date of Practice:	
Enroll. No.	:		

Subject: Maths Class: XII Q. P Code: 614080.0

Definite Integral and Area - 3

Important Instructions

Attempt all the Questions of Section - I, Section - II & Section - III.

Section - I has Two Parts. Part - A and Part - C.

- Part A has 10 Single choice and 15 multiple choice questions with one or more than one correct option.
- Part C has **10 Integer type** questions.

Section - II has Three Parts. Part - A, Part - B and Part - C.

- Part A has **2 Comprehension** type questions. Each comprehension describes an experiment, a situation or a problem. Three multiple choice questions will be asked based on this comprehension.
- Part B has **2 Match the following** type questions and you will have to match entries in Column I with the entries in Column II.
- Part C has **10 Integer type** questions. The answer to each question is a single digit integer ranging from 0 to 9.

Section - III has Three Parts. Part - A, Part - B and Part - C.

- Part A has 5 multiple choice questions with one or more than one correct option and 1 Comprehension type
 questions. Each comprehension describes an experiment, a situation or a problem. Three multiple choice
 questions will be asked based on this comprehension.
- Part B has 1 Match the following type questions and you will have to match entries in Column I with the entries in Column - II.
- Part C has **10** Integer type questions. The answer to each question is a single digit integer ranging from 0 to 9.

MARKING SCHEME:

Single choice: +3 for correct answer, 0 if not attempted and −1 in all other cases.

Multiple choice: +4 for correct answer, 0 if not attempted and −2 in all other cases.

Comprehension: **+4** for correct answer, **0** if not attempted and **-2** in all other cases.

Match the following: For each entry in Column I, +2 for correct answer, 0 if not attempted and -1 in all other cases.

Integer type: +4 for correct answer and **0** in all other cases.

All the best

SECTION I

PART A Single Answer Questions

		08.07	,4405010110	
1.	If $k \in N$ and $I_k = \int_{-2k\pi}^{2k\pi} \left \sin x \right [\sin x] dx$,			K-1
	(A) -10100	(B) -40400	(C) 20200	(D) None of these
2.	If $f(x)$ is an integrable function in $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and $I_1 = \int_{\pi/6}^{\pi/3} \sec^2 \theta f$	$(2\sin 2\theta) d\theta$ and $I_2 = \int_{\pi/6}^{\pi/3} d\theta$	$\cos ec^2\theta f(2\sin 2\theta) d\theta$, then
	(A) $I_1 = 2I_2$	(B) $I_1 = 3I_2$	(C) $2I_1 = I_2$	(D) None of these
3.	Area enclosed by the curve y=f9x) of	lefined narametrically as	$x = \frac{1 - t^2}{1 + t^2}$ $y = \frac{2t}{1 + t^2}$ is e	gual to
0.				
	(A) π sq units	(B) $\pi/2$ sq units	(C) $3\pi/2$ sq units	(D) $3\pi/4$ sq units
4.	4. The value of $\int_{-6}^{6} \max(2- x , 4- x , 3) dx$ is			
	(A) 40	(B) 50	(C) 60	(D) 30
5.	Area of the rectangle formed by asy	mntates of the hyperbals	3v - 3v - 2v = 0 and cc	n-ordinate aves is
Ο.	(A) 2 sq. units	(B) 6 sq. units	(C) 4 sq. units	(D) none of these
6.	 A square ABCD is inscribed in a circle of radius 4. A point P moves inside the circle such that d(P,AB) ≤ min (d (P,BC), d (P,CD), d(P,DA)) where d(P,AB) is the distance of a point P from line AB. The area of region covered by moving point P is (A) 4π (B) 8π (C) 8π-16 (D) none of these 			
				, ,
7.	7. Let $f(x)$ be a real valued function defined by $f(x) = x^2 + x^2 \int_{-1}^{1} tf(t)dt + x^3 \int_{-1}^{1} f(t)dt$ then the value of $\int_{-1}^{1} f(x)dx$ is equal			
	to 10	5	, 1	2
	(A) $\frac{10}{11}$	(B) $\frac{5}{11}$	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$
8.	The value of $\int_{0}^{2\pi} \frac{x \tan^{3} x}{\tan^{3} x + \cot^{3} x} dx$ is o	equal to		
	(A) $\frac{\pi^2}{2}$	(B) $\frac{\pi^2}{4}$	(C) π ²	(D) 2π ²
9.	If $k = \int_0^1 \frac{e^t}{1+t} dt$, then $\int_0^1 e^t \ln(1+t) dt$ is	equal to		
	(A) <i>k</i>	(B) 2k	(C) e. $ln 2 - k$	(D) None of these
10.	The value of the definite integral $\int\limits_{t+2}^{t+\frac{5}{2}}$	$\int_{\pi}^{\frac{\pi}{2}} (\sin^{-1}(\cos x) + \cos^{-1}(\sin x))$	x))dx is equal to	
	(A) $\frac{\pi^2}{2}$	(B) $\frac{\pi^2}{8}$	(C) $\frac{\pi^2}{4}$	(D) None of these

One or more than one correct option questions

- 11. Let $I = \int_{1}^{199\pi} \sqrt{\frac{1-\cos 2x}{2}} dx$. Then
 - (A) $I = \int_{0}^{199\pi} \sin x dx$

(B) $I = \int_{0}^{199\pi} \left| \sin x \right| dx$

(C) I = 400

- (D) $I = 198 \int_{0}^{\pi} \left| \sin x \right| dx$
- 12. If the area of the region bounded by the curves $y = x^2 + 1$, y = x and the pair of lines $x^2 + y^2 + 2xy - 4x - 4y + 3 = 0$ is k units, then the area of the region bounded by the curve $y = x^2 + 1$, $y = \sqrt{x - 1}$ and the pair of lines (x+y-2)(x+y-3)=0, is
 - (A) k

- (B) 2k
- (C) $\frac{k}{2}$
- (D) none of these

- 13. If $I_1 = \int_0^1 2^{x^2} dx$, $I_2 = \int_0^1 2^{x^3} dx$, $I_3 = \int_1^2 2^{x^2} dx$, $I_4 = \int_1^2 2^{x^3} dx$, then
 - (A) $I_1 > I_2$

- (C) $I_3 < I_4$
- (D) $I_3 = I_4$

- 14. Area bounded by the curves y = |x| and $y = \sqrt{|x|}$ is
 - (A) $\frac{1}{6}$ sq. unit

- (B) $\frac{1}{3}$ sq. unit (C) $\frac{1}{4}$ sq. unit
- (D) none of these

- 15. If $I_1 = \int_0^1 \frac{\tan^{-1} x}{x} dx$ and $I_2 = \int_0^{\frac{\pi}{2}} \frac{x}{\sin x} dx$, then $\frac{I_1}{I_2} = \frac{a}{b}$, then

- (C) a+b=3
- (D) None

- 16. $\int_{2}^{3} |1-x^{2}| dx = \frac{a}{b}$, then

- (B) b=3
- (C) a = 27
- (D) b=2
- 17. If area bounded by y = log x, y = x and $x^2 + y^2 + 2xy k^2 = 0$ is 'a' sq. units, then area bounded by $y = e^{x}$, y = log x and $x^{2} + y^{2} + 2xy - k^{2} = 0$ will be
 - (A) a sq. units

- (B) $\frac{a}{2}$ sq. units
- (C) 2a sq. units
- (D) none of these
- 18. Let $I = \int_{-1}^{\sqrt{3}} \frac{\tan^{-1}\left(\frac{2x}{1-x^2}\right)}{1+x^2} dx$, then which of the following statements are correct
 - (A) I can be evaluated by the substituting $x = tan\theta$ only
 - (B) $I = \int_{1}^{\sqrt{3}} \frac{2 \tan^{-1} x}{1 + x^2} dx$
 - (C) $I = \int_{1}^{1} \frac{2 \tan^{-1} x}{1 + x^2} dx + \int_{1}^{\sqrt{3}} \frac{\pi 2 \tan^{-1} x}{1 + x^2} dx$
 - (D) $I = \frac{7}{72}\pi^2$

- 19. Let A(K) be the area bounded by the curves $y = x^2 3$ and y = kx + 2
 - (A) The range of A(k) is $\left| \frac{10\sqrt{5}}{3}, \infty \right|$
 - (B) The range of A(k) is $\left| \frac{20\sqrt{5}}{3}, \infty \right|$
 - (C) If function $k \to A(k)$ is defined for $k \in [-2, \infty)$, then A (k) is many-one function.
 - (D) The value of k for which area is minimum is 1.
- 20. The area enclosed by the curves $x = a \sin^3 t$ and $y = a \cos^3 t$ is
 - (A) $12a^2 \int_{0}^{2\pi} \cos^4 t \sin^2 t dt$

(B) $12a\int_{0}^{2}\cos^{2}t\sin^{4}tdt$

(C) $2\int_{0}^{a} \left(a^{2/3} - x^{2/3}\right)^{3/2} dx$

- (D) $4\int_{0}^{a} \left(a^{2/3} x^{2/3}\right)^{3/2} dx$
- $21. \text{ Given that } \lim_{n \to \infty} \sum_{r=1}^{n} \frac{log(n^2 + r^2) 2logn}{n} = log 2 + \frac{\pi}{2} 2, \text{ then } \lim_{n \to \infty} \frac{1}{n^{2m}} \left[\left(n^2 + 1^2 \right)^m \left(n^2 + 2^2 \right)^m ... \left(2n^2 \right)^m \right]^{1/n} \text{ is equal to }$ (A) $2^m e^m (\pi/2 2)$ (B) $2^m e^{m(2 \pi/2)}$ (C) $e^{m (\pi/2 2)}$ (D) $e^{2m(\pi/2 2)}$

- 22. $\int_{1}^{\frac{\pi}{2}} \left([x] + \ln \left(\frac{1+x}{1-x} \right) \right) dx =$
 - $(A) -\frac{1}{2}$

- (B) 0
- (C) 1
- (D) $2 \ln \frac{1}{2}$

- 23. $\int_{1}^{c^{2}} \left| \frac{\ln x}{x} \right| dx =$
 - (A) $\frac{3}{2}$

- (B) $\frac{5}{2}$
- (C)3
- (D) 5
- 24. If a function y = f(x) satisfying the conditions f(x) + f(y) = f(x) f(y) + f(xy) where f(1) = 0 and f'(1) = -2 are the area bounded by y = f(x) and $y = \left|\cos^{-1}(\cos x) - \sin^{-1}(\sin x)\right|$ from $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is A, then
 - (A) function y = f(x) is $1 + x^2$

(B) A = $\frac{4\sqrt{2}-3}{2}$ sq. units

(C) function y = f(x) is $1 - x^2$

- (D) A = $\frac{6 + 2\sqrt{2}}{3}$ sq. units
- 25. If $A\left(\frac{3}{\sqrt{2}}, \sqrt{2}\right)$, $B\left(\frac{-3}{\sqrt{2}}, \sqrt{2}\right)$, $C\left(\frac{-3}{\sqrt{2}}, -\sqrt{2}\right)$ and $D(3\cos\theta, 2\sin\theta)$ are four points, then value of θ for which area of quadrilateral *ABCD* is maximum is, where $\theta \in \left(\frac{3\pi}{2}, 2\pi\right)$
 - (A) maximum area is 10 sq. units

(B) $\frac{7\pi}{4}$

(C) $2\pi - \sin^{-1}\left(-\frac{3}{\sqrt{85}}\right)$

(D) maximum area is 12 sq. units

PART C Integer Type

- N1. Let f be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}(y \neq 0, f(y) \neq 0) \ \forall \ x, y \in R$ and f'(1) = 2. If the smaller area enclosed by $y = f(x), x^2 + y^2 = 2$ is A, then find [A], where [.] represents the greatest integer function.
- N2. Let f(x) be a function which satisfy the equation f(xy) = f(x) + f(y) for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region bounded by the curves y = f(x), $y = \begin{vmatrix} x^3 6x^2 + 11x 6 \end{vmatrix}$ and x = 0, then find value of $\frac{28}{17}$ A.
- N3. Let the function $f:[-4,4] \to [-1,1]$ be defined implicitly by the equation $x+5y-y^5=0$. If the area of triangle formed by tangent and normal to f(x) at x=0 and the line y=5 is A, find $\frac{A}{13}$.
- N4. Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1,5]$, where $[\]$ denotes the greatest integer function, is:
- N5. Let a differentiable function f(x) satisfies $f(x).f'(-x) = f(-x) \cdot f'(x)$ and f(0) = 1. Find the value of $\int_{-2}^{2} \frac{dx}{1 + f(x)}$.
- N6. Find the number of points where $f(\theta) = \int_{-1}^{1} \frac{\sin \theta dx}{1 2x \cos \theta + x^2}$ is discontinuous where $\theta \in [0, 2\pi]$.
- N7. If $\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2-1}} = \frac{\pi}{12}$, then $x = \dots$
- N8. $\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}} [2\sin x] dx = -k\pi, \text{ then } k =$
- N9. $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx = \frac{\pi}{2} a$, then $a = \dots$
- N10. $\int_0^1 \frac{\log x}{\sqrt{1-x^2}} dx = k \frac{\pi}{a} \log b$, the k+a+b=.....

SECTION II

PART A Comprehension - I

Consider the function f(x) and g(x), both defined from $R \to R$ $f(x) = \frac{x^3}{2} + 1 - x \int_0^x g(t) dt$ and $g(x) = x - \int_0^1 f(t) dt$, then

Minimum value of f(x) is:

(A) 0

(B) 1

(C) $\frac{3}{2}$

(D) Does not exist

2. The area bounded by g(x) with co-ordinate axes is (in square units):

(A) $\frac{9}{4}$

(B) $\frac{9}{2}$

(C) $\frac{9}{8}$

(D) None of these

3. The number of points of intersection of f(x) and g(x) is/are:

(A) 0

(B) 1

(C)2

(D) 3

Comprehension - 2

Let f(x) be function defined on [0,1] such that f(1) = 0 and for any $\alpha \in (0,1]$, $\int_{a}^{a} f(x)dx - \int_{a}^{1} f(x)dx = 2f(a) + 3a + b$ where b is constant.

4. b =

(A) $\frac{3}{2e} - 3$

(B) $\frac{3}{2e} - \frac{3}{2}$ (C) $\frac{3}{2e} + 3$

(D) $\frac{3}{29} + \frac{3}{2}$

5. The length of the subtangent of the curve y = f(x) at x = 1/2 is:

(A) $\sqrt{e} - 1$

(B) $\frac{\sqrt{e}-1}{2}$ (C) $\sqrt{e}+1$

(D) $\frac{\sqrt{e} + 1}{2}$

6. $\int_{0}^{1} f(x) dx =$

(A) $\frac{1}{e}$

(B) $\frac{1}{2e}$

(C) $\frac{3}{29}$

(D) $\frac{2}{6}$

PART B Matrix Match

M1. Match the following.

COLUMN – I			COLUMN – II	
(A)	If $f(x) = \int_0^{g(x)} \frac{dt}{\sqrt{1+t^3}}$, where $g(x) = \int_0^{\cos x} (1+\sin t^2) dt$, then value of $f'\left(\frac{\pi}{2}\right)$ is	(P)	- 2	
(B)	If $f(x)$ is a non-zero differentiable function such that $\int_0^x f(t) dt = \{f(x)\}^2, \forall x \in R, \text{ then } f(2) \text{ is equal to}$	(Q)	2	
(C)	If $\int_a^b (2+x-x^2) dx$ is maximum, then $a+b$ is equal to	(R)	1	
(D)	If $\lim_{x\to 0} \left(\frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0$, then $3a + b$ has the value	(S)	-1	
		(T)	0	

M2. Match the following.

COLUMN – I			COLUMN – II	
(A)	The area bounded by the curve $y = x x $, $x - axis$ and the ordinates $x = 1$, $x = -1$	(P)	10/3 sq.units	
(B)	The area of the region lying between the lines $x-y+2=0, x=0$ and the curve $x=\sqrt{y}$	(Q)	64/3 sq.units	
(C)	The area enclosed between the curves $y^2 = x$ and $y = x $	(R)	2/3 sq.units	
(D)	The area bounded by parabola $y^2 = x$, straight line $y = 4$ and $y - axis$	(S)	1/6 sq.units	
		(T)	2 sq units	

PART C Integer Type

N1.
$$\int_0^{\pi/2} \!\! \left(\frac{\theta}{\sin \theta} \right)^{\!2} d\theta = \pi logb \text{ , then b=.}$$

- N2. Let $\lim_{n\to\infty} n^{\frac{1}{2}\left(1+\frac{1}{n}\right)} \cdot \left(1^1\cdot 2^2\cdot 3^3\cdotn^n\right)^{\frac{1}{n^2}} = e^{\frac{-p}{q}}$ where p and q are relative prime positive integers. Find the value of |p+q|.......
- N3. If the area enclosed by the curve $y = \sqrt{x}$ and $x = -\sqrt{y}$, the circle $x^2 + y^2 = 2$ above the x axis, is A then the value of $\frac{16}{\pi}A$ is......
- N4. The value of 'a'(a > 0) for which the area bounded by the curves $y = \frac{x}{6} + \frac{1}{x^2}$, y = 0, x = a and x = 2a has the least value is..........

N5. Let $I_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{2n}}{2n}\right) dx$. If $\lim_{n \to \infty} I_n$ can be expressed as rational $\frac{p}{q}$ in its lowest form, then find the value of $\frac{pq(p+q)}{10}$

N6. Area bounded by the relation [2x] + [y] = 5, x, y > 0, is (where [.] represents greatest integer function).

N8. The area bounded by the curve $y^2 = 1 - x$ and the lines $y = \frac{|x|}{x}$, x = -1 and $x = \frac{1}{2}$ is $\frac{3}{\sqrt{a}} - \frac{11}{b}$, then $a+b=\dots$

N9. Let $I = \int_{1}^{\pi} x^6 (\pi - x)^8 dx$, then $\frac{\pi^{15}}{(1^{15}C_0)I} = \dots$

N10. If the area bounded by the curve $y = x^2 + 1$ and the tangents to it drawn from the origin is A, then the value of 3A

SECTION III

PART A

One or more than one correct option questions

- 1. The value of $\int_0^{n\pi+v} \sin x \, dx$ is
 - (A) $2n + 1 + \cos v$

- (B) $2n + 1 \cos v$
- (C) 2n+1
- (D) $2n + \cos v$
- 2. The points of intersection of $F_1(x) = \int_2^x (2t-5)dt$ and $F_2(x) = \int_0^x 2t dt$, are
 - (A) $\left(\frac{6}{5}, \frac{36}{25}\right)$

- (B) $\left(\frac{2}{3}, \frac{4}{9}\right)$
- (C) $\left(\frac{1}{2}, \frac{1}{0}\right)$
- (D) $\left(\frac{1}{5}, \frac{1}{25}\right)$

- 3. If $f(x) = \int_{-2}^{x^2+1} e^{-t^2} dt$, then f(x) increases in
 - (A) (2, 2)

- (B) No value of
- (C) $(0, \infty)$
- (D) $(-\infty, 0)$
- 4. Let $g(x) = \int_0^x f(t)dt$ where $\frac{1}{2} \le f(t) \le 1, t \in [0,1]$ and $0 \le f(t) \le \frac{1}{2}$ for $t \in (1,2]$, then
 - (A) $-\frac{3}{2} \le g(2) < \frac{1}{2}$

- (B) $0 \le g(2) < 2$ (C) $\frac{3}{2} < g(2) \le \frac{5}{2}$
- (D) 2 < g(2) < 4

- 5. The function $L(x) = \int_1^x \frac{dt}{t}$ satisfies the equation
 - (A) L(x + y) = L(x) + L(y)
- (B) $L\left(\frac{x}{y}\right) = L(x) + L(y)$ (C) L(xy) = L(x) + L(y) (D) None of these

Comprehension - I

If the integral $I_n = \int\limits_0^{\pi/4} tan^n \, x \, dx$ is reduced to its lower integrals like I_{n-1} , I_{n-2} etc.,

6. The value of $n(I_{n-1} + I_{n+1})$ is

(A)

(B) 2

(C) $\pi/4$

(D) π

7. Then $\rm I_2 + I_4$, $\rm I_3 + I_5$ and $\rm I_4 + I_6$ are in

(A) A.P.

(B) G.P.

(C) H.P.

(D) None of these

8. The value of $\frac{I_3 + 2I_5}{I_1}$ is

(A) 1

(B) 2

(C) $\pi/4$

(D) π

PART B Matrix Match

M1. Match the following

. Match the following.				
COLUMN – I		COLUMN – II		
(A)	$\int_{-1}^{1} \frac{\mathrm{d}x}{1+x^2} = \dots$	(P)	$\frac{1}{2}\log\left(\frac{2}{3}\right)$	
(B)	$\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \dots$	(Q)	$2\log\left(\frac{2}{3}\right)$	
(C)	$\int_{2}^{3} \frac{1}{1-x^{2}} dx = \dots$	(R)	π/3	
(D)	$\int_{1}^{2} \frac{1}{x\sqrt{x^{2}-1}} dx = \dots$	(S)	π/2	
		(T)	π	

PART C Integer Type

N1. The integral value $\int_{-2}^{0} (x^3 + 3x^2 + 3x + 3 + (x+1)\cos(x+1)) dx$ is-----

N3. If the ordinate x = a divides the area bounded by the curve $y = \left(1 + \frac{8}{x^2}\right)$, x - axis and the ordinates x = 2, x = 4 into two equal parts, then $a = m\sqrt{n}$, then $m^n = \dots$

N4. If the area bounded by $y = ax^2$ and $x = ay^2$, a > 0, is 1, then $\frac{1}{a^2} = \dots$

N5. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x -axis in the 1st quadrant is -----

N6. The area bounded by the curve $y = (x+1)^2$, $y = (x-1)^2$ and the line $y = \frac{1}{4}$ is 1/k, then k=.....

N7. 4
$$\int_{0}^{\pi/2} \cos^3 x \sin x \, dx = \dots$$

N8.
$$\int_{-1/2}^{1/2} \cos x \, \ln \left(\frac{1+x}{1-x} \right) dx = \dots$$

N9.
$$\pi^2 \int_0^{\pi} \frac{x \sin 2x \sin \left(\frac{\pi}{2} \cos x\right) dx}{2x - \pi} = \dots$$

N10. Let $f: R \to R$ be a differentiable function, f(1) = 4 and f'(1) = 2. Then evaluate $\sqrt{\lim_{x \to 1} \int_4^{f(x)} \frac{2t}{x-1} dt}$.
