1

(a) Claim: If d|a and d|b then d|ax + by for all $x, y \in \mathbb{Z}$.

Proof: $d|a \Rightarrow \exists k_1 \in \mathbb{Z}, a = k_1d, d|b \Rightarrow \exists k_2 \in \mathbb{Z}, b = k_2d, ax + by = k_1xd + k_2yd = (k_1x + k_2y)d$ with $k_1x + k_2y$ for all $x, y \in \mathbb{Z}$, so d|ax + by for all $x, y \in \mathbb{Z}$.

(b) Claim:If a|b and c|d, then ac|bd.

Proof: $a|b \Rightarrow \exists k_1 \in \mathbb{Z}, b = k_1 a, c|d \Rightarrow \exists k_2 \in \mathbb{Z}, c = k_2 d$, then $bd = k_1 a k_2 d = k_1 k_2 a d$ with $k_1 k_2 \in \mathbb{Z}$ by closure. So if a|b and c|d, then ac|bd.

(c) Claim: If a|b and c|d, then (a+c)|(b+d). Proof: $a|b \Rightarrow \exists k_1 \in \mathbb{Z}, b = k_1 a, c|d \Rightarrow \exists k_2 \in \mathbb{Z}, c = k_2 d$, then $b+d = (k_1 + k_2)d$ with $k_1 + k_2 \in \mathbb{Z}$.

 $\mathbf{2}$

- (a) Claim: If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $ac \equiv bd \mod m$. Proof: $a \equiv b \mod m \Rightarrow \exists k_1 \in \mathbb{Z}, (a-b) = k_1m, c \equiv d \mod m \Rightarrow \exists k_2 \in \mathbb{Z}, (c-d) = k_2m, ac - bd = (b+k_1m)(d+k_2m) - bd = bd + k_1md + k_2mb + k_1k_2m^2 - bd = k_1md + k_2mb + k_1k_2m^2 = m(k_1d + k_2b + k_1k_2m)$. Thus, $ac \equiv bd \mod m$.
- (b) Claim: If $a \equiv b \mod m$, then for any $k \in \mathbb{N}$, $a^k \equiv b^k \mod m$. **Proof:** Base case, let c = a, d = b, we have statement to be true when k = 2.

Suppose, the statement is true when $k=n,\ a^n\equiv b^n\mod m.$ Then when $k=n+1,\ \text{let}\ a=b+tm,\ a^{n+1}-b^{n+1}=(b+tm)^{n+1}-b^{n+1}=\sum_{i=0}^{n+1}\binom{n+1}{i}b^{n+1-i}y^i-b^{n+1},$ which is a multiple of m, so $m|(a^{n+1}-b^{n+1})\Rightarrow a^{n+1}\equiv b^{n+1}\mod m.$

As a result, if $a \equiv b \mod m$ and $c \equiv d \mod m$, then $ac \equiv bd \mod m$.

3

- (a) Since $347 \equiv 7 \mod 10 \Rightarrow 347^4 \equiv 1 \mod 10 \Rightarrow 347^{100} \equiv 1 \mod 10 \Rightarrow 347^{101} \equiv 7 \mod 10$, so the last decimal digit is 7.
- (b) According to Fermat's Little Theorem, $347^{101} \equiv 347 \mod 101 = 44$ since 101 is a prime.

(c) According to Fermat's Little Theorem, $2^{13} \equiv 2 \mod 13$, then $2^{100} \equiv 2^{12 \cdot 8 + 4} \equiv (2^1 2)^8 \cdot 2^4 = 3 \mod 13$.

(d)

- (i) Since $9 = 11_8$, $11^2 = 121$, $11^3 = 1331 \cdots$, so $9^{1000} = (11_8)^{1000}$ ends with 1.
 - (ii) Since $10 = 12_8$, $12^2 = 144$, $12^3 = 1750 \cdots$, 10^1000 ends with 0.
- (iii) Since $11 = 13_8$, then 13 = 13, $13^2 = 171 \cdots$, so 11^{1000} ends with 1.