DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Yongming Rao*,¹, Wenliang Zhao*,¹, Guangyi Chen^{2,3}, Yansong Tang⁴, Zheng Zhu¹, Guan Huang⁵, Jie Zhou¹, Jiwen Lu^{†,1}

¹Tsinghua University, ²MBZUAI, ³CMU, ⁴University of Oxford, ⁵PhiGent Robotics

Learning Representation

(a) Conventional Pre-training + Fine-tuning Paradigm

(b) DenseCLIP: CLIP Pre-training + Language-Guided Fine-tuning

(1) Contrastive pre-training

(1) Contrastive pre-training

(1) Contrastive pre-training


```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
               - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T f = text encoder(T) #[n, d t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
      = (loss_i + loss_t)/2
```


- Dataset
 - 400 million pairs (image, text)
 - Collected from Internet
- Training
 - 32 epochs
 - minibatch size of 32,768
 - 18 days on 592 V100 GPUs (RN50x64)
 - 12 days on 256 V100 GPUs (ViT-L/14)

Dense Clip

- Motivation
 - Clip, image-text problem
 - Dense clip, pixel-text matching problem

Dense Clip - pipeline

Dense Clip - Context-Aware Prompting

- Improve the text features
 - Instead of predefined templates, like "a photo of a [CLS]"
 - Use learnable textual contexts
- Pipeline
 - Dog (word) tokenize \rightarrow [Dog] (vector) encoder \rightarrow t (embedding)
- Classes
 - ADE20K, 150 categories, 150 * t

Dense Clip - Context-Aware Prompting

1. Pre-language-model prompting

- K&V: vision feat, Q: learned queries
- Output: text feat

2. Post-language-model prompting

- K&V: vision feat, Q: text feat
- Output: text feat
- text feat = text feat + γ * text feat

(b) Post-model prompting

Dense Clip - Context-Aware Prompting

1. Pre-language-model prompting

- K&V: vision feat, Q: learned queries
- Output: text feat

2. Post-language-model prompting

- K&V: vision feat, Q: text feat
- Output: text feat
- text feat = text feat + γ * text feat

Table 2. **Ablation study.** We demonstrate that performing post-model vision-to-language prompting can yield the better performance with fewer extra FLOPs and parameters.

Pre-train	Language Prompt	V→L Prompt			FLOPs	Params
The train		pre	post	(%)	(G)	(M)
ImageNet				38.6	227	31.0
CLIP				39.6(+1.0)	249	31.0
CLIP	✓			42.1 _(+3.5)	269	46.5
CLIP	1	1		42.9(+4.3)	368	116.9
CLIP	✓	579	✓	43.5(+4.9)	269	50.2

Dense Clip - Score map

- Pipeline
 - TE, K-class embedding, [K, C]
 - VE, Pixel embedding, [H*W, C]
 - S, Score map = $VE * TE^T$, [H*W, K]
- 1. Auxiliary loss
- 2. Concat as language priors
 - Reshape(Cat([VE, S])), [K + C, H, W]

Dense Clip - Loss

Auxiliary loss, Score map

$$\mathcal{L}_{aux}^{seg} = CrossEntropy(Softmax(\mathbf{s}/\tau), \mathbf{y}),$$

- Task Loss
 - $[K + C, H, W] Decoder \rightarrow Pred, [K, H, W]$
 - Cross Entropy Loss

Dense Clip - Training

- Dataset, ADE20K
 - 150 categories
 - 20K training images, 2K val images
- Train setting
 - 80,000 iters
 - 32 minibatch size
 - 8 GPU
- Key modifications
 - AdamW
 - 0.1x lr

Table 1. Semantic segmentation results on ADE20K. We compare the performance of DenseCLIP and existing methods when using the same backbone. We report the mIoU of both single-scale and multi-scale testing, the FLOPs and the number of parameters. The FLOPs are measured with 1024×1024 input using the fvcore library. The results show that our DenseCLIP outperforms other methods by large margins with much lower complexity. Our models and our baselines that are trained using identical settings are highlighted in gray.

Backbone	Method	Pre-train	mIoU (SS)	mIoU (MS)	GFLOPs	Params (M)
ResNet-50	FCN [31] EncNet [55] PSPNet [57] CCNet [20] DeeplabV3+ [8] UperNet [47] DNL [52] Semantic FPN [21] CLIP + Semantic FPN DenseCLIP + Semantic FPN	ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet CLIP CLIP	36.1 40.1 41.1 42.1 42.7 42.1 41.9 38.6 39.6 43.5	38.1 41.7 41.9 43.1 43.8 42.8 43.0 40.6 41.6 44.7	793.3 565.6 716.2 804.0 711.5 953.2 939.3 227.1 248.8 269.2	49.6 36.1 49.1 49.9 43.7 66.5 50.1 31.0 31.0 50.3
ResNet-101	FCN [31] EncNet [55] PSPNet [57] CCNet [20] DeeplabV3+ [8] UperNet [47] OCRNet [54] DNL [52] Semantic FPN [21] CLIP + Semantic FPN DenseCLIP + Semantic FPN	ImageNet CLIP CLIP	39.9 42.6 43.6 44.0 44.6 43.8 45.3 44.3 40.4 42.7 45.1	41.4 44.7 44.4 45.2 46.1 44.8 45.8 42.3 44.3 46.5	1104.4 876.8 1027.4 1115.2 1022.7 1031.0 923.9 1250.5 304.9 326.6 346.3	68.6 55.1 68.1 68.9 62.7 85.5 55.5 69.1 50.0 50.0 67.8
ViT-B	SETR-MLA-DeiT [58] Semantic FPN [21] Semantic FPN [21] CLIP + Semantic FPN DenseCLIP + Semantic FPN	ImageNet ImageNet ImageNet-21K CLIP CLIP	46.2 48.3 49.1 49.4 50.6	47.7 50.9 50.4 50.3 51.3	1037.4 1037.4 1037.4 1043.1	100.8 100.8 100.8 105.3

Dense Clip - Result

Table 5. **Applying DenseCLIP to** *any* **backbone.** Image backbones (such as ImageNet pre-trained ResNet [18] and Swin [29]) equipped with our DenseCLIP benefit from the language priors and enjoy significant performance boost. We report mIoU on ADE20K dataset for both single-scale (SS) and multi-scale (MS) testing.

Decoder	Method	mIoU (SS) (%)	mIoU (MS) (%)
Semantic	RN50 [18]	38.6	40.6
	RN50 + DenseCLIP	41.0 _(+2.4)	43.0 _(+2.4)
FPN [21]	RN101 [18]	40.4	42.3
	RN101 + DenseCLIP	43.0 _(+2.6)	45.2 _(+2.9)
UperNet [47]	Swin-T [29]	44.5	45.8
	Swin-T + DenseCLIP	45.4 _(+0.9)	46.5 _(+0.7)
epen (et [17]	Swin-S [29]	47.6	49.5
	Swin-S + DenseCLIP	48.3 _(+0.7)	49.7 _(+0.2)

Figure 5. **Qualitative results on ADE20K.** We visualize the segmentation results on ADE20K validation set of our DenseCLIP based on ResNet-101 and two baseline models.