# Algorithm Design and Analysis (Fall 2022) Assignment 3

## Xiangyuan Xue (521030910387)

- 1. We have following intuitions:
  - Job i with larger  $p_i$  should be processed later, because it will delay other jobs' completion time, thus making the result worse.
  - Job i with larger  $w_i$  should be processed earlier, because its completion time will be delayed by other jobs, thus making the result worse.

Therefore, we define the priority of job i as  $\frac{p_i}{w_i}$  and preferentially process those jobs with smaller priority. A greedy algorithm is described in following pseudo-codes:

### Algorithm 1 Average Weighted Completion Time Minimization

**Input:** Set of jobs  $S = \{(p_i, w_i) | i = 1, 2, ..., n\}$ 

**Output:** Minimum average weighted completion time  $t^* = \min \frac{1}{n} \sum_{i=1}^n w_i C_i$ 

1: Sort the jobs S by priority  $\frac{p_i}{w_i}$ 

2:  $C \leftarrow 0, t^* \leftarrow 0$ 

3: for  $i \in S$  do

4:  $C \leftarrow C + p_i$ 

5:  $t^* \leftarrow t^* + w_i C$ 

6:  $t^* \leftarrow \frac{t^*}{n}$ 

7: return  $t^*$ 

Consider its time complexity. Obviously, the real bottleneck is sort. Therefore, we claim that its time complexity is  $O(n \log n)$  using merge sort or heap sort, etc.

Now we prove its correctness. For a good arrangement, we should first agree that there is no gap between jobs. Otherwise, we can make things better by simply cancelling the gaps.

Then consider arbitrarily two adjacent jobs k and k+1 such that  $\frac{p_k}{w_k} > \frac{p_{k+1}}{w_{k+1}}$ , or equivalently:

$$w_{k+1}p_k > w_k p_{k+1}$$

The total weighted completion time can be written as:

$$S = \sum_{i=1}^{n} \left( w_i \sum_{j=1}^{i} p_j \right)$$

Now just swap k and k+1, and the total weighted completion time becomes:

$$S' = \sum_{i=1}^{k-1} \left( w_i \sum_{j=1}^i p_j \right) + \sum_{i=k+2}^n \left( w_i \sum_{j=1}^i p_j \right)$$

$$+ w_{k+1} (p_1 + p_2 + \dots + p_{k-1} + p_{k+1})$$

$$+ w_k (p_1 + p_2 + \dots + p_{k-1} + p_{k+1} + p_k)$$

Consider the difference between S and S':

$$S - S' = w_k(p_1 + p_2 + \dots + p_k) + w_{k+1}(p_1 + p_2 + \dots + p_{k+1})$$

$$- w_{k+1}(p_1 + p_2 + \dots + p_{k-1} + p_{k+1})$$

$$- w_k(p_1 + p_2 + \dots + p_{k-1} + p_{k+1} + p_k)$$

$$= w_{k+1}p_k - w_kp_{k+1} > 0$$

Thus S > S', namely S can be **reduced** by swapping such k and k + 1. After finite steps of swapping, jobs will be sorted in ascending priority, namely the optimal solution.

Therefore, this greedy algorithm can always find the correct answer.

- 2. This greedy algorithm is correct. We will prove its correctness from two aspects:
  - The *profit* given by the algorithm corresponds to an available plan.

    Just re-explain this algorithm in a more straightforward way:
    - For specific day i, we are not clear whether to do something, so we first push  $p_i$  into the heap, meaning that buying at day i is to be determined.
    - Then we fetch the minimized value q in the heap. Suppose q is the price at day j. If  $q < p_i$ , we decide to buy at day j and sell at day i, which brings  $p_i q$  profit.
    - At the same time, we pop q to avoid buying twice and push  $p_i$  again. What is different is that this  $p_i$  means we sell at day i, and cancelling is to be determined. When we pop this  $p_i$  later, we decide to sell at day i' instead of day i. Therefore, buying cancels selling at day i and nothing happens.
    - Now the behavior of this algorithm is given practical significance. Therefore, an
      available plan is constructed corresponding to the profit given by the algorithm.
  - The *profit* given by the algorithm is the maximized profit. Prove this by induction:
    - At day 1, we can't afford anything, so profit = 0 is certainly maximized.
    - Suppose the profit is maximized at day k.
    - At day k+1, the *profit* won't decrease. Assume that there is a better choice. It must be selling at day k+1. That required buying at some day before. However, the lowest price available has been chosen by the algorithm, so a better choice is impossible. So the *profit* is also maximized at day k+1.

Thus, the *profit* given by the algorithm is maximized.

Therefore, this greedy algorithm can always find the correct answer.

- 3. (a) The minimum size is 16. We cut the cake as follow:
  - Cut 16 at the median into 4 and 4.
  - Cut one 4 at the median into 1 and 1.
  - Cut the other 4 at the median into 1 and 1.
  - (b) The minimum size is 32. We cut the cake as follow:
    - Cut 32 into 12 and 4.
    - Cut 12 at the median into 3 and 3.
    - Cut 4 at the median into 1 and 1.
  - (c) Consider this problem in a reversed but equivalent way. Every time we choose two pieces of cake  $w_{k,x}, w_{k,y}$  and merge them into one piece  $\frac{1}{1-p}(w_{k,x}+w_{k,y})$ . Finally we get a whole cake  $S=w_n$ . We need to find a merge order to minimize S.

We can view this process as constructing a binary tree. The weight of parent node p is determined by its children l and r, namely  $w_p = \frac{1}{1-p}(w_l + w_r)$ . So the size of cake is  $S = w_{root}$ . An example is shown in Figure 1 where  $\{x_n\} = \{1, 2, 3, 7\}$  and  $p = \frac{1}{2}$ .



Figure 1: Merge Equivalent Binary Tree

Consider the contribution of every leaf node. Suppose the depth of root is 0. The leaf node  $x_i$  with depth  $d_i$  contributes  $\frac{x_i}{(1-p)^{d_i}}$ . Hence, we can reformulate the expression:

$$S = \sum_{k=1}^{n-1} \frac{1}{1-p} (w_{k,x} + w_{k,y}) = \sum_{i=1}^{n} \frac{x_i}{(1-p)^{d_i}} = \sum_{i \in C} \frac{w_i}{(1-p)^{d_i}}$$

Note that the contribution of a sub-tree can be replaced by the contribution of its root  $w'_{root}$ , so C is an arbitrary cover of the binary tree, which is consistent with the slides of the course. Then we have following properties:

• For any nodes  $w_i$  and  $w_j$  such that  $d_i = d_j$ , S remains the same if we swap  $w_i$  and  $w_j$ , which is obvious from the above expression.

• For any nodes  $w_i$  and  $w_j$  such that  $w_i < w_j$  and  $d_i < d_j$ , we have  $\frac{1}{(1-p)^{d_i}} < \frac{1}{(1-p)^{d_j}}$ . By Rearrangement Inequality[1], we have

$$\frac{w_i}{(1-p)^{d_i}} + \frac{w_j}{(1-p)^{d_j}} > \frac{w_j}{(1-p)^{d_i}} + \frac{w_i}{(1-p)^{d_j}}$$

If we swap  $w_i$  and  $w_i$ , S will become S'. Thus, following inequality holds:

$$S = \sum_{k \in C} \frac{w_k}{(1-p)^{d_k}} > \frac{w_j}{(1-p)^{d_i}} + \frac{w_i}{(1-p)^{d_j}} + \sum_{k \in C \setminus \{i,j\}} \frac{w_k}{(1-p)^{d_k}} = S'$$

Therefore, S can be reduced by swapping such  $w_i$  and  $w_j$ .

According to properties above, S will be minimized after finite steps of swapping, where nodes with smaller weight have larger depth, which promises that the minimum S can be figured out if we always merge the nodes with smallest weight.

A corresponding greedy algorithm is described in following pseudo-codes:

# Algorithm 2 Cake Size Minimization

**Input:** Set of requests  $X = \{x_n\}$  and loss factor p

Output: Minimum cake size  $S^*$ 

1: Construct a minimum heap H

2: for  $x_i \in X$  do

3: Push  $x_i$  into H

4: for  $k \leftarrow 1$  to n-1 do

5:  $w_x \leftarrow \text{minimum element in } H$ 

6: Pop  $w_x$  from H

7:  $w_y \leftarrow \text{minimum element in } H$ 

8: Pop  $w_y$  from H

9: Push  $\frac{w_x + w_y}{1-p}$  into H

10:  $S^* \leftarrow \text{minimum element in } H$ 

11: return  $S^*$ 

Consider its running time. Building the heap is O(n). Fetching and popping the minimum element in the heap is  $O(\log n)$ , which happens no more than 2n times. Therefore, its time complexity is  $O(n \log n)$ .

4. Intuitively, to decompose  $\frac{p}{q}$ , we try to find the maximum unit fraction  $\frac{1}{k}$  such that  $\frac{1}{k} < \frac{p}{q}$ . Suppose  $\frac{p}{q} = \frac{1}{k} + \frac{p'}{q'}$ . Now we just need to decompose  $\frac{p'}{q'}$ . This procedure is repeated until p' = 1, namely  $\frac{p'}{q'}$  is also a unit fraction[2].

According to this intuition, we develop following greedy algorithm described in pseudo-codes:

## Algorithm 3 Unit Fraction Decomposition

**Input:** A fractional number p/q

**Output:** Denominator list  $S = \{a_i | i = 1, 2, ..., m\}$ 

- 1: **function** GCD(x, y)
- 2: **if**  $x \mod y = 0$  **then**
- 3: return y
- 4: **return**  $GCD(y, x \mod y)$
- 5: **function** Reduce $(\frac{x}{y})$

6: 
$$x' \leftarrow \frac{x}{\text{GCD}(x,y)}, \ y' \leftarrow \frac{y}{\text{GCD}(x,y)}$$

- 7: return  $\frac{x'}{y'}$
- 8: **function** Decompose  $(\frac{p}{a})$
- 9:  $\frac{p}{q} \leftarrow \text{Reduce}(\frac{p}{q})$
- 10: **if** p = 1 **then**
- 11:  $\mathbf{return} \{q\}$
- 12:  $n \leftarrow \lceil \frac{q}{p} \rceil$
- 13:  $\frac{p'}{q'} = \frac{p}{q} \frac{1}{n}$
- 14: **return**  $\{n\} \cup \text{DECOMPOSE}(\frac{p'}{a'})$
- 15: **return** DECOMPOSE $(\frac{p}{q})$

Now we prove the correctness of this algorithm from two aspects:

• Satisfaction:  $\frac{p}{q} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_m}$  and  $a_1 < a_2 < \dots < a_m$ .

The equality always holds as long as the algorithm terminates.

Consider the inequality. For any fraction  $\frac{p}{q}$  such that p < q and (p,q) = 1, we have q = sp + r, where  $s \ge 1$  and  $r \le p - 1$ . We have  $\frac{p}{q} = \frac{1}{s+1} + \frac{p'}{q'}$ , where  $\frac{p'}{q'} = \frac{p-r}{(s+1)(sp+r)}$ . From the definition above we have:

$$(s+1)p = sp + p < q + q = 2q$$

Then  $\frac{1}{s+1}$  is larger than half of  $\frac{p}{q}$ :

$$\frac{1}{s+1} = \frac{p}{(s+1)p} > \frac{p}{2q}$$

So  $\frac{p'}{q'}$  is smaller than half of  $\frac{p}{q}$ , thus smaller than  $\frac{1}{s+1}$ :

$$\frac{1}{a_{k+1}} = \frac{p'}{q'} < \frac{1}{s+1} = \frac{1}{a_k}$$

Namely  $a_k < a_{k+1}$ . Since k is arbitrary, we have  $a_1 < a_2 < \cdots < a_m$ .

• **Termination**: For any fractional number  $\frac{p}{q}$ , this algorithm terminates. Just consider an arbitrary iteration where  $\frac{p}{q} = \frac{1}{s+1} + \frac{(s+1)p-q}{(s+1)q}$ . From the definition we have:

$$0 < p' = (s+1)p - q < p$$

Thus, for the remaining term  $\frac{p'}{q'}$  in every iteration, we claim that p' is strictly decreasing. And since p' is non-negative, this algorithm will terminate after no more than p iterations.

Therefore, this algorithm always correctly decompose  $\frac{p}{q}$  into  $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_m}$ , which implies that the decomposition exists for any fractional number  $\frac{p}{q}$ .

Consider its running time. The proof has bounded the iteration times to p. In every iteration, we reduce the fraction  $\frac{p}{q}$ , which takes  $O(\log \min\{p,q\})$  time (mainly for greatest common divisor). And other operations are obviously O(1). Therefore, its total time complexity is  $O(p \cdot \log \min\{p,q\}) = O(p \log(p+q))$ .

In practice, it will run much faster than the worst case because the numerator p decays fast. Vose even proved that  $\frac{p}{q}$  has a t-term decomposition where  $t = O(\sqrt{\log q})[3]$ , which is beyond our discussion.

- 5. (a) It takes me about 8 hours to finish this assignment.
  - (b) I prefer a 4/5 score for its difficulty.
  - (c) I have no collaborators. Papers and websites referred to are listed below.

### References

- [1] Wikipedia. "Rearrangement inequality." https://en.wikipedia.org/wiki/Rearrangement\_inequality.
- [2] Wikipedia. "Egyptian fraction." https://en.wikipedia.org/wiki/Egyptian\_fraction.
- [3] Vose. "Egyptian Fractions." Bull. London Math. Soc. 17, 21, 1985.