

CPE 323 Intro to Embedded Computer Systems Number Representation

Aleksandar Milenkovic milenka@uah.edu

Admin

> Watch for 21a

 \rightarrow

Numeral Systems

- Decimal (base 10): $456_{10} = 4.10^2 + 5.10^3 + 6.10^3$
- Binary (base 2): 0110_2 = $0.2^3 + 1.2^2 + 1.2^4 + 0.2^0 = 6_{16}$
- Octal (base 8): $125_8 = 1 \times 8^2 + 2 \cdot 8^1 + 5 \cdot 8^2 = 85_{10}$

8/26/2020

Decimal to Binary Conversion

•
$$A = 27_{10}$$

$$27/2 = 13 1$$

$$13/2 = 6 1$$

$$61 2 = 3 0$$

$$31 2 = 1 1$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

$$1/2 = 0$$

© A. Milenkovic

Representing Integers, Unsigned, Binary Format

• E.g., 1 byte or 8 bits, unsigned
$$\begin{bmatrix} A_{n-1} + A_{n-2} - A_{n-1} \end{bmatrix}$$

Bit position	7 (MSB)	6	5	4	3	2	1 (0 (LSB)
Value	0	0 ر	1	0	1	0	1	0
Weights	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20

• Convert to decimal: $1.2^{5} + 1.2^{3} + 1.2^{1} = 42.10$

Convert to octal:

Convert to hex:

• Range : $[0 \div 2^{8} - 1]$

Representing Integers, Signed, Binary Format

- E.g., 1 byte or 8 bits, signed in 2's complement
- Bit 7 is sign bit (0 for positive integers, 1 for negative integers)

[tu-1 to] = - tu-12 + tu-22 + tu-32 + 7102								
Bit	7 (MSB)	6	5	4	3	2	1	0 (LSB)
position				1				
Value	1	1	1	1	1	1	0	0
Weights	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2^1	20

- Convert to decimal: -4 10
- Convert to octal:
- Convert to hex:
- Range

$$100. - - 0 = -128$$

$$2^{6} + 2^{7} + - - 2^{7} + 2^{6} = 2^{7} - 1 = 127$$

$$- A : 0000 - 0011$$

$$+ 127$$

$$0000 - 0100$$

$$= 410$$
A. Milenkovic

Representing Integers, Signed

- E.g., 1 byte or 8 bits, signed in 2's complement
- Bit 7 is sign bit (0 for positive integers, 1 for negative integers)

Bit position	7 (MSB)	6	5	4	3	2	1	0 (LSB)
Value	1	1	1	1	1	1	0	0
Weights	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

- Convert to decimal:
- Convert to octal:
- Convert to hex:
- Range

Properties of 2's complement

•
$$A = 11101000b$$
 -24

• Find –A:

$$\frac{00010111}{+ 00010000}$$

$$= 18_{16} = 1.16 + 8.16$$

$$= 24$$

$$V_{AbD} = \overline{A}_{n-1} \cdot \overline{B}_{n-1} \cdot R_{n-1}$$

$$+ A_{n-1} \cdot \overline{B}_{n-1} \cdot R_{n-1}$$

• Assume 4-bit machine

• Find A + B

2's complanent 1101

Arithmetic Operations

-b- B +1

- Addition
- Subtraction
- Multiplication
- Flags

- − Overflow (V) →
- Negative (N) $W = R_{n-1}$
- Zero (Z)

A - B = A + (B + 1)

Arithmetic Operation Examples

Fraction Numbers

Fixed-point, unsigned

Bit position	7 (MSB)	6	5	4	3	2	1	0 (LSB)
Value	1	1	1	1	1	1	0	0
Weights	24	23	22	2 ¹	20	2-1	2-2	2-3

8/26/2020 © A. Milenkovic 11

Fraction Numbers

Floating-point (IEEE 754 standard)

Туре	Sign	Exponent	Exponent bias	Significand	Total
Half (IEEE 754- 2008)	1	5	15	10	16
Single	1	8	127	23	32
Double	1	11	1023	52	64
Quad	1	15	16383	112	128

• Single-precision, normalized: (-1)^{S*}2^{E-127}1.F

Floating-point

Sign (s)	Exponent (e)	Fraction (f)	Value
0	00 00	0000	+0
0	00 00	00 01 11 11	Positive denormalized real 0.f $\times 2^{(-b+1)}$
0	00 01 11 10	xx xx	Positive normalized real 1.f $\times 2^{(e-b)}$
0	11 11	00 00	+Infinity
0	11 11	00 01 01 11	SNaN
0	11 11	10 00 11 11	QNaN
1	00 00	0000	-0
1	00 00	00 01 11 11	Negative denormalized real $-0.f \times 2^{(-b+1)}$
1	00 01 11 10	xx xx	Negative normalized real $-1.f \times 2^{(e-b)}$
1	11 11	00 00	-Infinity
1	11 11	00 01 01 11	SNaN
1	11 11	10 00 11 11	QNaN

$$88/8 = 11 \ 0$$

$$11/8 = 1 \ 13$$

$$1/8 = 0 \ 11$$

$$88_{10} = 130_8 = 18^2 + 38 + 08^0$$

= 64 + 24 + 0 = 88

Binory (oded Decimal Numbers (BCD) LaCASA

