Determine weather the given map ϕ is a homomorphism.

13.07 Let $\phi_i: G_i \to G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_R$ be given by $\phi_i(g_i) = (e_1, e_2, \dots, g_i, \dots, e_R)$, where $g_i \in G_i$ and e_j is the identity element of G_j Let $a, b \in G_i$. Observe.

$$\phi(ab) = (e_1, e_2, \dots, ab, \dots, e_r)
= (e_1, e_2, \dots, a, \dots, e_r)(e_1, e_2, \dots, b, \dots, e_r)
= \phi(a)\phi(b)$$

Thus, a homomorphism

13.08 Let G be any group and let $\phi: G \to G$ be given by $\phi(g) = g^{-1}$ for $g \in G$ If G is abelian, let $a, b \in G$. Notice.

$$\phi(ab) = (ab)^{-1} = b^{-1}a^{-1} = \phi(b)\phi(a)$$

Thus, a homomorphism if G is abelian.

13.12 Let M_n be the additive group of all $n \times n$ matrices with real entries, and let \mathbb{R} be the additive group of real numbers. Let $\phi(A) = \det(A)$, the determinant of A, for $A \in M_n$

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ Then,

$$\phi(A+B) = \det(A+B) = 4$$

but

$$\phi(A) + \phi(B) = \det(A) + \det(B) = 1 + 1 = 2$$

Thus, not a homomorphism.

13.13 Let M_n and \mathbb{R} be as in Exercise 12. Let $\phi(A) = \operatorname{tr}(A)$ for $A \in M_n$, where the trace $\operatorname{tr}(A)$ is the sum of the elements on the main diagonal of A, from the upper-left to the lower-right corner.

Let $A = (a_{ij})$ and $B = (b_{ij})$. Observe.

$$\phi(A+B) = \operatorname{tr}(A+B)$$

$$= \sum_{i=1}^{n} (a_{ii} + b_{ii})$$

$$= \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$

$$= \operatorname{tr}(A) + \operatorname{tr}(B)$$

$$= \phi(A) + \phi(B)$$

Thus, a homomorphism.

13.14 Let $GL(n, \mathbb{R})$ be the multiplicative group of invertible $n \times n$ matrices, and let \mathbb{R} be the additive group of real numbers. Let $\phi : GL(n, \mathbb{R}) \to \mathbb{R}$ be given by $\phi(A) = \operatorname{tr}(A)$, where $\operatorname{tr}(A)$ is defined in Exercise 13.

Notice, $\phi(I_nI_n) = \phi(I_n) = \operatorname{tr}(I_n) = n$ and $\phi(I_n) + \phi(I_n) = \operatorname{tr}(I_n) + \operatorname{tr}(I_n) = n + n = 2n$ Thus, not a homomorphism.

- 13.30 A homomorphism is a map such that $\phi(xy) = \phi(x)\phi(y)$ A homomorphism is a map from a group G into a group G' such that $\phi(xy) = \phi(x)\phi(y)$
- 13.31 Let $\phi: G \to G'$ be a homomorphism of groups. The *kernel* of ϕ is $\{x \in G | \phi(x) = e'\}$ where e' is the identity in G' Correct as stated.
- 13.44 Let $\phi: G \to G'$ be a group homomorphism. Show that if |G| is finite, then, $|\phi[G]|$ is finite and is a divisor of |G|Note that $\phi[G] := \{\phi(x) | x \in G\}$ and we have $|\phi[G]| \le |G|$, thus $\phi[G]$ must also be finite. By Theorem 13.15, we have $|\phi[G]| = |G|/\ker(\phi)|$ and thus $\phi[G]$ is a divisor of |G|
- 13.45 Let $\phi: G \to G'$ be a group homomorphism. Show that if |G'| is finite, then, $|\phi[G]|$ is finite and is a divisor of |G'|Note that $\phi[G] := \{\phi(x) | x \in G\}$ and we have $\phi[G] \subseteq G'$, thus $\phi[G]$ must also be finite. By Lagrange's Theorem we have that $|\phi[G]|$ is a divisor of |G'|
- 13.48 The sign of an even permutation is +1 and the sign of an odd permutation is -1. Observe that the map $\operatorname{sgn}_n: S_n \to \{1, -1\}$ defined by $\operatorname{sgn}_n(\sigma) = \operatorname{sign}$ of σ is a homomorphism of S_n onto the multiplicative group $\{1, -1\}$ What is the Kernel? The $\ker(\operatorname{sgn}_n) = \{\sigma \in S_n | \sigma \text{ is an even permutation.}\}$
- 13.50 Let $\phi: G \to H$ be a group homomorphism. Show that $\phi[G]$ is abelian if and only if for all $x, y \in G$, we have $xyx^{-1}y^{-1} \in \text{Ker}(\phi)$ Assume $\phi[G]$ is abelian. Let $x, y \in G$. Observe.

$$\phi(xyx^{-1}y^{-1}) = \phi(x)\phi(y)\phi(x^{-1})\phi(y^{-1})$$

$$= \phi(y)\phi(x)\phi(x^{-1})\phi(y^{-1})$$

$$= \phi(y)\phi(xx^{-1})\phi(y^{-1})$$

$$= \phi(y)\phi(y^{-1})$$

$$= e$$

Therefore, $xyx^{-1}y^{-1} \in \ker(\phi)$

Assume $\forall x, y \in G, xyx^{-1}y^{-1} \in \ker(\phi)$. Then $\phi(xyx^{-1}y^{-1}) = e$ and $\phi(x)\phi(y)\phi(x^{-1})\phi(y^{-1}) = e$.

Note, $\phi(x)\phi(y)\phi(x)^{-1}\phi(y)^{-1} = e$.

We can rewrite $\phi(x)^{-1}\phi(y)^{-1}$ as $(\phi(y)\phi(x))^{-1}$.

Multiplying on the right by $(\phi(y)\phi(x))$ we have, $\phi(x)\phi(y) = \phi(y)\phi(x)$.

Therefore, $\phi[G]$ is abelian

- 14.06 Find the order of the factor group, $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3)\rangle$ As $|\langle (4,3)\rangle| = 6$ and $|(\mathbb{Z}_{12} \times \mathbb{Z}_{18})| = 216$ we have 216/6 = 36
- 14.16 Compute $i_{\rho_1}[H]$ for the subgroup $H = \{\rho_0, \mu_1\}$ of the group S_3 of Example 8.7 . $i_{\rho_1}(H) = \{\rho_0, \mu_2\}$
- 14.17 A normal subgroup H of G is one satisfying hG = Gh for all $h \in H$ A normal subgroup H of a group G is a subgroup satisfying gH = Hg for all $g \in G$
- 14.18 A normal subgroup H of G is one satisfying $g^{-1}hg \in H$ for all $h \in H$ and all $g \in G$ Correct as stated.
- 14.19 An automorphism of a group G is a homomorphism mapping G into G An automorphism of a group G is a isomorphism mapping G onto G
- 14.24 Show that A_n is a normal subgroup of S_n and compute S_n/A_n ; that is, find a known group to which S_n/A_n is isomorphic.

If n = 1 we have $S_1 = A_1$ which gives us that A_1 is a normal subgroup of S_1

If $n \geq 2$, we know that $|A_n| = |S_n|/2$. Thus, there are only 2 cosets of A_n , being A_n itself and the odd permutations of S_n . Then, the left and right cosets must be the same, hence A_n is a normal subgroup of S_n .

Notice, S_n/A_n has order 2, and thus is isomorphic to \mathbb{Z}_2

14.37a Show that all automorphisms of a group G form a group under function composition. Let G, G' and G'' be groups, $a, b \in G$, and let $\phi : G \to G'$ and $\gamma : G' \to G''$ be homomorphisms. Then,

$$\gamma\phi(ab) = \gamma(\phi(ab)) = \gamma(\phi(a)\phi(b)) = \gamma(\phi(a))\gamma(\phi(b)) = \gamma\phi(a)\gamma\phi(b)$$

Thus, the composition of two automorphisms of G is a homomorphism of G into G As each automorphism is a bijection, their composition also is a bijection, and then must be automorphism of G. From this, we have that compostion gives a binary operation on the set of all automorphisms of G.

Consider $id_G: G \to G$. Let phi be in the set of all automorphisms of G. Then $\phi \circ id_G = \phi = id_G \circ \phi$.

Thus, id_G is an automorphism.

Also, notice $\phi \circ \phi^{-1} = \phi^{-1} \circ \phi = \mathrm{id}_G$

Thus, the automorphisms form a group under function composition

14.37b Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms of G under function composition.

For $a, b, x \in \mathbb{G}$, we have

$$i_a(i_b(x)) = i_a(bxb^{-1}) = a(bxb^{-1})a^{-1} = (ab)x(b^{-1}a^{-1}) = (ab)x(ab)^{-1} = i_{ab}(x)$$

Thus, the composition of two inner automorphisms is still an inner automorphism.

Notice i_e is the identity

Notice, $i_a i_{a^{-1}} = i_e$, thus $i_{a^{-1}}$ is the inverse of i_a

Thus, under function composition the set of inner automorphisms is a group. Let $a, x \in G$ and let ϕ be an automorphism of G. Observe.

$$(\phi i_a \phi^{-1})(x) = \phi(i_a(\phi^{-1}(x))) = \phi(a\phi^{-1}(x)a^{-1}) = \phi(a)\phi(\phi^{-1}(x))\phi(a^{-1}) = \phi(a)x(\phi(a))^{-1} = i_{\phi(a)}(x)$$

Then, $\phi i_a \phi^{-1} = i_{\phi(a)}$

Thus, the inner automorphisms are a normal subgroup of the automorphism group of G.

14.40a The $n \times n$ matrices with determinant 1 form a normal subgroup of $GL(n, \mathbb{R})$ Let H be the subset of $GL(n, \mathbb{R})$ consisting of $n \times n$ matrices with determinant 1. Let $A, B \in H$. Notice, $\det(AB) = \det(A) \det(B)$ and thus must be closed under matrix multiplication. Observe that $\det(I_n) = 1$ and thus is the identity element in H. The inverse of A is A^{-1} . Notice, $\det(A^{-1}) = 1/\det(A) = 1/1 = 1$. Thus $A^{-1} \in H$ Therefore, $H \leq GL(n, \mathbb{R})$

Let $A \in H$ and $B \in GL(n, \mathbb{R})$. Note, $\det(B) \neq 0$. Then, $\det(BAB^{-1}) = \det(B) \det(A) \det(A) \det(B^{-1}) = \det(B) \det(A)(1/\det(B)) = \det(A) = 1$. Thus, $BAB^{-1} \in H$. Thus H is a normal subgroup of $GL(n, \mathbb{R})$.

14.40b The $n \times n$ matrices with determinant ± 1 form a normal subgroup of $GL(n,\mathbb{R})$ Let H be the subset of $GL(n,\mathbb{R})$ consisting of $n \times n$ matrices with determinant ± 1 . Let $A, B \in H$. Notice, $\det(AB) = \det(A) \det(B)$ and thus must be closed under matrix multiplication. Observe that $\det(I_n) = 1$ and thus is the identity element in H. The inverse of A is A^{-1} . Notice, $\det(A^{-1}) = 1/\det(A)$. Which must be either 1 or -1. Thus $A^{-1} \in H$

Therefore, $H \leq GL(n, \mathbb{R})$

Let $A \in H$ and $B \in GL(n, \mathbb{R})$. Note, $\det(B) \neq 0$. Then, $\det(BAB^{-1}) = \det(B) \det(A) \det(A) \det(B^{-1}) = \det(B) \det(A)(1/\det(B)) = \det(A)$. Which must be either 1 or -1 Thus, $BAB^{-1} \in H$. Thus H is a normal subgroup of $GL(n, \mathbb{R})$.