Final

Remote Proctoring Instructions.

- On questions 1-14: You need only give the answers on the "Final (Short Answers)" gradescope assignment within the 3 hour time period of the exam. (No justification is required.)
- On questions 15-20, the answers should be written on one side of one page per question including all subparts. Therefore, you will need to scan 6 sheets of paper to a separate gradescope assignment called Final (PDF and long answers.). You are welcome to write directly on a copy of the exam for questions 15-20 if your restrictions are short, so but page per question is a hard limit.
- The short answer assignment contains the questions. For the long answer questions download the PDF from the Final (PDF and long answers) gradescope assignment.
- Both grades Specifical for the experimental field and the partition of the experimental field and the partition of the experiment of the
- There will be no clarifications. If a problem part has an error, we will remove it from the exam.
- You are \$40 minutes with include the time till before the tipel (Short Answers) gradescope assignment and then an extra twenty minutes to scan your paper solutions to the Final (PDF for long answers) assignment.
- For long ans of the Soxes, the any credit.
- For individual emergencies, email fa20@eecs70.org or please use the disruption form at: "https://bit.ly/70disrupt"

Advice.

Add WeChat powcoder

- The questions vary in difficulty. In particular, some of the long answers at the end are quite accessible, and even those are in not necessarily in order of difficulty. Also points (pts) are indicated in each problem heading in the pdf. So do really scan over the exam a bit.
- The question statement is your friend. Reading it carefully is a tool to get you to your "rational place".
- You may consult only *three sheet of notes on both sides*. Apart from that, you may not look at books, notes, etc. Calculators, phones, computers, and other electronic devices are NOT permitted.
- You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture, unless otherwise stated.

Major Gradescope Issues. If there is a global issue and it is not affecting you, please continue. If you are experiencing difficulties with gradescope, you may check your email, we will post a global message on piazza and bypass email preferences to inform you of what to do.

In particular, if the short answer gradescope becomes widely problematic we will ask you to scan one page per question with your answers so keep paper available, one page for each of 13 short answer questions in addition to the 6 pages for the long questions or 19 pages in total.

Please do not email in this global crash as we will not be able to deal with individual issues, just continue with your exam and write your answers on paper; one question per page for short answers, and one part per page for long answers.

CS 70, Fall 2020, Final

Some Latex Commands for Gradescope.

You can (if you choose) use latex. It is fairly easy and satisfying.

Surround an expression by "\$\$... \$\$" on gradescope and you will be in latex.

Examples: "\$\$ A+B*D \$\$" will give: A + B*D.

There are useful commands:

- 1. "\$\$ A^2 \$\$" yields A^2
- 2. \$\$ \frac{a}{b} \$\$ yields $\frac{a}{b}$.
- 3. "\max" yields max.
- 4. "a \b" yields $a \ge bhttps://powcoder.com$
- 5. "\$\$ (q^ {-1} \pmod{p})\$\$" yields $(q^{-1} \pmod{p})$.
- 6. "In \cho Assignment Project Exam Help
- 7. Grouping with " $\{ \}$ ": "\$\$6 $\{ G * H \}$ \$\$" yields 6^{G*H} .

Assign And the Spanning Assign Assign And the Spanning Assign Assign And the Spanning Assign Assign

https://powcoder.com

1. Pledge.

Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

In particular, I acknowlege that:

- I alone am taking this exam. Other than with the instructor and GSI, I will not have any verbal, written, or electronic communication about the exam with anyone else while I am taking the exam or while others are taking the exam.
- I will not have any other browsers open while taking the exam.
- I will not refer to any books, notes, or online sources of information while taking the exam, other than what the instructor has allowed.
- I will not take screen short, physics, of phenyse make to be pf examinations to share with others.

Assignment Project Exam Help

Assign And the Spanning Assign And Assign An

https://powcoder.com

2. Long Ago. Pts: 2/2/2/3/3/3		
1. $A \lor \neg (B \land C) \equiv A \lor (\neg B \lor \neg C)$		
	○ True	○ False
2. $\neg \forall x, \exists y, Q(x,y) \equiv \exists x, \exists y, \neg Q(x,y)$		
	○ True	○ False
3. $P \Longrightarrow Q$ is logically equivalent to $\neg Q \lor P$.		
	○ True	○ False
4. Consider a stable marting prance where we the definal can project propose matching algorithm, where one candidate c rejects a job j that it step. That is, c recieves an offer from j and j' and chooses j' instead of j , their preference list. Let P be the resulting pairing entry P Project E X am	hey should not ha when <i>j</i> was ahea Help	we in one d of j' in
(a) For every instance, job <i>j</i> cannot do better in <i>P</i> than in <i>S</i> . (Better mean prefer more.) Assignated type of the property of the proper	-	who they OFalse
(b) Every candidate other than c does as well or better in P than in S .		
https://powcoder.com (c) Every job other than j does as well or better in P than in S .	○ True	○ False
Add WeChat powcoder	○ True	○ False

3. Gra	phs: Pts: 3/3/3/2
1.	Consider a graph on n vertices with exactly one cycle and m edges. What is the number of connected components? (Hint: $m \le n$.)
2.	For a tree on n vertices, what is the expected number of connected components if each edge is deleted with probability $1/3$?
3.	If we delete every edge with probability $1/2$ from an Eulerian graph on n vertices, what is the expected number of odd degree vertices of the remaining graph $CCOM$
4.	Every simples signment Project Exam Help
	○ True ○ False
	Assign Add Wegbet Exmodelp
	https://powcoder.com

4. Mostly Modular.Pts: 2/2/2/3/3/3/3/3/3/3

1. \forall nonzero $x, y \in \mathbb{N}$ $gcd(x, y \mod x) = gcd(x, y)$.

○ True ○ False

2. \forall nonzero $x, y \in \mathbb{N}$, $gcd(x, x \mod y) = gcd(x, y)$.

○ True ○ False

3. Give an example of positive integers for a and n where

$$\underbrace{\text{n:}}_{n:} \frac{(1 \cdot 2 \cdots (n-1))a^{n-1} \neq (1 \cdot 2 \cdots (n-1)) \pmod{n}}{\text{powcoder.com}}$$

- 4. Let $S = \{x: x \in \{1, ..., 34\} \text{ and } gcd(x, 35) = 1\}$? ject Exam Help
 - DARSIGNARDINE DAMONETP
 - (c) What is a https://powcoder.com
- 5. What is 18⁻¹ And We Chat powcoder
- 6. If $x = 1 \pmod{13}$ and $x = 0 \pmod{18}$ then what is $x \pmod{234}$? (Note: $234 = 18 \times 13$)
- 7. For primes, p and q, where $e = d^{-1} \pmod{(p-1)(q-1)}$?
 - (a) What is $a^{ed} \pmod{q}$? (Answer cannot use e or d, but may use numbers, a, p or q.)
 - (b) Find an $x \le pq$, where $p|(a^{ed}-x)$. (Answer is an expression that may use a, p, and q.)

5.	Polynomials.Pts:	3/3/3
----	-------------------------	-------

1. Given a polynomial, $x^3 + a_2x^2 + a_1x + a_0$ modulo 7 with roots at 3, 1, and 6. What is a_0 ? (Notice that the coefficient of x^3 is 1.)

2. Working $\pmod{5}$, find a polynomial modulo 5 of degree 2 that has roots at 0 and 3, and goes through point (2,3)

https://powcoder<mark>.com</mark>

3. Consider that one encodes a message of n numbers \pmod{m} , by forming a degree n-1 polynomial using the numbers as coefficients, and sending 2n-1 points. If each point is erased with probability 1/2, what is the probability that the original message can be reconstructed? (Hint: each pattern of erasures is equally probable.)

Assign And the Spanning Assign And Assign An

https://powcoder.com

1.	For every pair of distinct rational numbers there is a rational number in between	veen them.	
		\bigcirc True	○ False
2.	The rational numbers are uncountable.		
		○ True	○ False
3.	There is a program that takes a program P , an input x , and a number n and on input x ever writes to memory location n .	determines whet	her P rui
	https://powgodor.com	\bigcirc True	○ False
4.	There is a program that takes a program P , an input x , and a number n and on input x ever writes to any memory location $i \ge n$.	determines whet	her P rur
	Assignment Project Exam	Help	○ False
5.	A program "knows" a real number if it takes an integer n and outputs the n (Note: positive values of n signify to the left of the decimal point, and negative the state of the significant point in the significant point is a significant point.	nth bit of the reative ones to the ri	
	1 15512 HHEMUT POJECE EXCHAPA	○True	○ False
	(b) For every real number x, there is a program that knows x. **Proposition** (b) For every real number x, there is a program that knows x. **Proposition** **Proposition**	○ True	○ False
	tle counting.PtsA3/3/B/3 WeChat powcoder		
1.	What is the number of ways to have k strictly positive numbers that add up	to n?	
2.	What is the number of ways to produce a sequence of numbers $0 < x_1 < x_2$	$< \cdots < x_k < n?$	
3.	What is the number of ways to produce a sequence of numbers $0 \le x_1 \le x_2$	$\leq \cdots \leq x_k < n?$	
4.	What is the number of poker hands that have at least 1 ace? (Recall that a part a 52 card deck.)	poker hand is 5 c.	ards fron

6. Countability/Computability Pts: 2/2/2/2/2

8. Probability Pts: 3/3/3/2/2/2/2/4/2/2/2/2

1. Consider rolling two six sided fair dice. (a) What is the probability that exactly one die is 6?

(b) What is the probability that the sum of the two dice is 6?

- (c) What is the probability that the sum is 6 given that at least one die is at least 3?
- https://powcoder.com

 (d) The event of rolling a 5 on the first die is independent of the event that the dice sum to 7.
- O False (e) The event of round at least one tis Independent of the Event that the lice sum to p
 - True ○ False
- Pepability that the first
 - (a) If the process stops after 2020 tosses, what is the probability that the first and last coin are the same? https://powcoder.com
 - (b) If the process stops after 2021 tosses, what it the probability that the first and last coin are the WeChat powcoder same?
 - (c) What is the probability that the first coin is the same as the last coin in the entire sequence of flips?
- 3. Which of the following are always true.
 - (a) E[10X] = 10E[X]

○ True ○ False

(b) $E[X^2] = E[X]^2$

○ True ○ False

(c) $E[(X-Y)^2] = E[X^2] + E[Y^2] - 2E[X]E[Y]$

○ True ○ False

(d) Var(X+Y) = Var(X) + Var(Y)

○ True ○ False

Consider two bags of marbles, the "majority red" bag has 6 red marbles and 4 blue marbles blue" bag has 3 red marbles and 7 blue marble, and each bag is chosen with probability 1	
1. If you draw a blue marble where each marble in the bag is equally likely, what is t the bag is the "majority blue" bag.	the probability that
2. What is the probability that the next marble is blue?	
https://powcoder.com Variance, covariance, tail bounds.Pts: 3/3/3/3	
1. If $E[X] = A$ and $E[X] = A$ and $E[X] = P[X] = P[X] = P[X]$ what is $P[X] = P[X] =$	elp
2. A student earns one sandard deviation above the mean proofs examinate X and X as the solid of a random proofs and X and X as the solid of a random proofs and X and X and X are X and X and X and X are X and X and X are X are X and X are X and X are X are X and X are X are X and X are X and X are X are X and X are X are X and X are X and X are X are X and X are X are X and X and X are X and X are X and X are X and X are X are X and X are X are X and X are X and X are X and X are X are X and X are X are X and X are X and X are X and X are X and X are X are X and X are X	e the mean did the
3. For a random variable, X , where $X \ge -1$, $E[X] = 5$, and $E[X^2] = 26$. Give an uppe (It should be tight with respect to the appropriate in quality) $COCCT$	r bound $Pr[X \ge 6]$.
4. For a random variable, X , where $E[X] = 5$, and $E[X^2] = 26$, give an upper bound Pr be tight with respect to the appropriate inequality.)	$[X \ge 9]$. (It should
5. Let X be $E[X] = 10$ and $Var[X] = \sigma^2$. Let $Y = \frac{X_1 + \dots + X_n}{n}$ where X_i are i.i.d samples o of n is $Pr[Y - E[X] \ge 1.0] \le .05$? (Provide a bound that is as tight as possible inequality.)	f X, for what value using Chebyshev's

9. Marbles: Pts: 4/4

10.

11.	Continuous:	warmup.	Pts:	2/2/2/3/3
-----	--------------------	---------	------	-----------

Consider a continuous random variable, X, with pdf f(x). (Answers below are a number or possibly expressions that involve the random variable and $E[\cdot]$ or $Var[\cdot]$.)

1. What is $\int_{-\infty}^{\infty} f(x)dx$?

 $2. \int_{-\infty}^{\infty} x f(x) dx?$

3. $\int_{-\infty}^{\infty} x^2 f(x) dx$? https://powcoder.com

- 4. Consider A-SSignment, Projectat Exam Help
 - пеф
- 5. Recall that for choosing a uniform point in a 2×2 square 1 (Answer need only state the pdf inside the 2×2 square as outside it is zero.)

https://powcoder.com

12. Distributions: continuous and discrete. Pts: 3/3/3/3/3/1/3	
1. Given $X, Y \sim Binomial(n, p)$ what is the variance of $X + Y$?	
2. What is $E[\min(X,Y,Z)]$ where $X,Y,Z \sim Geometric(p)$?	
3. What is $E[\min(X,Y,Z)]$ where $X,Y,Z \sim Expo(\lambda)$?	
4. Let $Z \sim Expo(\lambda)$ and $Y = [Z]$ (where $[x]$ is the lowest integer of value at leas	t x). Note that the
variable $Y \sim Geometric(p)$. What is the value of p in terms of λ ?	
Assignment Project Exam He	elp
5. Let $Y \sim Expo(\lambda)$, what is the conditional probability density function of Y if $Y \in [A]$	
number i in the range $\{i, i = 1\}$ $\{i \in A_i\}$ $\{i $)
6. For $X \sim Geometric(X)$ and $Y \sim Poisson(X)$, what is $E[Y]$?	
6. For $X \sim Geometric(A)$ and $Y \sim Poisson(X)$, what is $E[Y]$?	
7. Consider a random variable $X = 2 \ln Y$ where $Y \sim U[0,1]$.	
7. Consider a random variable X = 2 ln Y where Y ~ U[0, 1].(a) What is the range of X? (The range is where the pdf of X is positive.)	
(a) What is the range of A: (The range is where the put of A is positive.)	
(b) What is the pdf of X on the range defined above? (Hint: $Pr[X \in [x, x+dx]] = Pr(x)$	$[Y \in [\rho^{x/2} \ \rho^{(x+dx)/2}]$
and $e^{x+dx} \approx e^x(1+dx)$	

13. Continuous: Triangle. Pts: 2/3/3/2

Consider a right equilateral triangle of side lengths 1,1 and $\sqrt{2}$. Given a random point in the triangle, we define the random variable X as the distance from the hypotenuse as shown in the figure below.

1. What is the joint density function f(x,y) for points inside the triangle? (Again, the point is chosen uniformly inside the entire triangle. Ignore the shading in the figure for now.)

Assignment Project Exam Help

2. What is the area of the shaded triangle in terms of X? (Hint: range of X is $[0, \sqrt{2}/2]$)

Assignated type Glat Exmontelp

3. What is the cdf of *X* for the range $x \in [0, \sqrt{2}/2]$?

https://powcoder.com

4. What is the pdf of the wee to vat? powcoder

14. Markov Chain. Pts: 2/2/2/2

Consider the following Markov chain.

1. For what value of *a* does the chain have a unique invariant distribution but does not always converge to it.

2. For $a = 1/2$, what is the	ne stationary distribution?		
$\pi(1)$:	$\pi(2)$:	$\pi(3)$:	

https://powcoder.com
Assignment Project Exam Help
AssignAddtWeGbat Exampetp

https://powcoder.com

Long Answers Starting From here.

15. Small faces. Pts: 2/2/4

Given a planar graph with minimum degree 3 with e edges, v vertices and f faces we will prove there is a face of length at most 5. (The length of a face is the number of edges along it.)

1. What is the sum of the face lengths, $\sum_{i=1}^{f} s_i$ where s_i is the size of face i, in terms of e?

2. Give a lower bound on a in terms of y. (Hint: the minimum degree is 3) POWCOUCH. COM

3. Prove that there is a face of size at most 5. (Recall: Euler's formula v + f = e + 2.)

Assign And the Spanning Assign And Assign An

https://powcoder.com

Consider placing $5n$ balls into $3n$ bins uniformly at random. (Careful, the constants in front of the n 's are mportant.)
1. What is the expected number of empty bins?
2. What is the variance of the number of empty bins?
https://powcoder.com
3. What is the serious from the project Exam Help
AssignAddit PeGbat Paymortelp
4. What is the variance of the number of non-empty bins (in terms of the answer for part (1),(2) and/or
https://powcoder.com
Add WeChat powcoder

16. Balls and Bins.Pts: 3/3/2/2

17. Sequential Dice.Pts: 3/3

Consider rolling a dice repeatedly and until one gets two 6's in a row.

1. Draw a three state Markov chain where the states are labelled *A*,*B*, and *C*. Your chain should have a state *C* which is the "goal"; the previous two rolls were a 6. State *A* should indicate that one has not rolled any die or that the previous die is not 6.

https://powcoder.com Assignment Project Exam Help

Assignated types lat Exmontel p 2. What is the expected number of rolls to roll wo 6 s in a row?)
https://powcoder.com	
Add WeChat powcoder	

3. What is the probability of rolling two 6's in a row prior to rolling a 5? (Hint: add a state to your previous Markov Chain and do a computation.)

18. Bayes Rule. Pts: 5

A doctor has information that 80% of the sick children in a neighborhood *have the flu* and the other 20% of sick children have measles. He further knows that the probability of a rash with measles, is 0.95, and that the probability of a rash with flu is .10. If a sick child has a rash, what is the probability the child has measles. (Show your work here. And use the box for your final answer.)

https://powcoder.com
Assignment Project Exam Help

Assign Add WeGbet Exmontelp

https://powcoder.com

19. Close enough! Pts: 5

Given a circle (dartboard) of radius 1, choose two points at random on the dartboard uniformly, and let X and Y define the distance to the center. What is the probability that $|X - Y| \le \delta$? (Recall that the pdf of both variables is $f(x) = 2x1\{x < 1\}$)

https://powcoder.com
Assignment Project Exam Help

Assign And the Banne Help

https://powcoder.com

20. Puzzler: Pts: 3/5

Consider the following game on an $n \times m$ grid, with two cooperating players. A key is hidden under a grid square and on each square there is a single coin that is either heads or tails. Player 1 knows the key location and *must flip exactly one coin*.

Player 2 should observe the pattern of heads and tails and produce the key location.

To reiterate, from an arbitrary initial setup of heads and tails on the grid, player 1 should flip exactly one coin to make a setup where player 2 can determine the location of the hidden key.

1. What is a strategy for the players to win on a 2×1 grid? (Hint: Think about $2x + y \pmod{2}$ for $x, y \in \{0, 1\}$ and think of heads as 1 and 0 as tails.)

https://powcoder.com

Assignment Project Exam Help

Assign And the Spanning Assign And Assign An

2. What is a strategy for the players to win on a $2^k \times 2^k$ grid? (Hint: use induction to find the column and row of the coin property of the column and the column and row of the coin property of the column and row o