МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики» Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине
"Программирование"
вариант №311902

Выполнил:

Студент группы Р3119

Бардин Петр Алексеевич

Преподаватель:

Пашнин Александр Денисович

Санкт-Петербург

Содержание

Задание	2
Код программы	3
Результат работы программы	4
Вывод	5

Задание

- 1. Создать одномерный массив у с типа int. Заполнить его числами от 5 до 18 включительно в порядке возрастания.
- 2. Создать одномерный массив х типа double. Заполнить его 13-ю случайными числами в диапазоне от -7.0 до 8.0.
- 3. Создать двумерный массив г размером 14х13. Вычислить его элементы по следующей формуле (где x = x[i]):

$$r[i][j] = \left(\frac{2}{3} / \left(\left(\arcsin\left(\frac{x + 0.5}{15} + 1\right) / 2 \right)^2 - 0.25 \right) \right)^{\left(\left(\frac{x}{2}\right)^2 \right)^{\left(x(3+x)\right)^3 + \frac{3}{4}}}$$
b. echyy[i] $\in \{6, 8, 9, 10, 12, 15, 17\}$ to

b. если
$$y[i] \in \{6, 8, 9, 10, 12, 15, 17\}$$
, то

b. если y[i]
$$\in \{6, 8, 9, 10, 12, 15, 17\}$$
, то $r[i][j] = \arctan(1/e^{\sqrt{\arccos((x+0.5)/15)}})$

с. для остальных значений у[i]:

$$r[i][j] = \left(\frac{e^{((2x)^x/3)^3}}{2}\right)^2$$

4. Напечатать полученный в результате массив в формате с четырьмя знаками после запятой.

Код программы

Исходный код программы размещен в системе контроля версий Git на сервисе Github. https://github.com/BardinPetr/itmo-labs/tree/main/programming/year_1/lab_1

Информация о запуске находится в readme.

Результат работы программы

Простой вывод

Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 0.0000 0.0000 NaN 0.0000 NaN 0.0000 NaN 0.0000 NaN 0.0000 NaN 0.0000 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity 0.3054 0.3005 0.3276 0.2509 0.3322 0.2745 0.2922 0.3546 0.2699 0.3075 0.2645 0.2814 0.3318 Infinity Infinity Infinity NaN Infinity NaN 26.9400 Infinity NaN Infinity NaN NaN Infinity N

Стилизованный вывод

I	x=-6.67	x=-1.34	x=0.68	x=-6.33	x=2.44	x=-1.82	x=1.41	x=-0.50	x=2.43	x=3.73	x=1.43	x=-2.55	x=7.80
y=05	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity
y=06	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=07	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity
y=08	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=09	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=10	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=11	NaN	NaN	0.0000	NaN	0.000	0 NaN	0.0000	NaN	0.0000	0.0000	0.0000	NaN	0.0000
y=12	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=13	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity
y=14	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity
y=15	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=16	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity
y=17	0.2389	0.2723	0.2867	0.2410	0.300	4 0.2691	0.2922	0.2781	0.3003	0.3114	0.2924	0.2643	0.3551
y=18	NaN	NaN	0.0718	NaN	Infinit	y NaN	20.6920	NaN	Infinity	Infinity	56.7537	NaN	Infinity

Результаты выполнения в оригинальном виде находятся в директории output.

Вывод

В ходе лабораторной работы мною были отработаны основные приемы по написанию программ на языке Java, были рассмотрены утилиты, входящие в JDK. Изучены основные инструкции и типы языка, стандартная библиотека математики, работа с потоками вывода. Знания, полученные в данной работе будут полезны при дальнейшем изучении языка и реализации более сложных задач.