1.In response to the issue of insufficient quantitative experiments raised by the reviewers, we tested and compared several advanced methods on the DICM, LIME, NPE, and MEF datasets. The details are shown in the table below:

TABLE VII

OUR METHOD IS IN AN ADVANTAGEOUS POSITION IN COMPARING MUSIQ, DBCNN, AND TRES INDICATORS ON FOUR UNPAIRED DATASETS: DICM,
LIME, NPE, AND MEF.Red is the best, green comes second, and blue comes third.

Method	DICM			LIME			NPE		MEF			
	MUSIQ↑	DBCNN↑	TRES↑	MUSIQ	DBCNN	TRES	MUSIQ	DBCNN	TRES	MUSIQ	DBCNN	TRES
RUAS	47.4793	0.3349	47.5408	55.4249	0.4815	61.5105	49.2164	0.3960	52.8164	55.5759	0.4874	67.3862
LLformer	56.4798	0.4198	59.6249	59.1557	0.4381	61.7582	60.2655	0.4597	67.8456	59.2560	0.4469	69.5133
SGRDR	53.4054	0.4243	61.6343	54.8332	0.5182	68.5986	57.4498	0.5068	69.9917	60.4999	0.5648	77.8791
SCI	53.8715	0.4828	59.2528	59.1134	0.5387	67.4468	56.9149	0.5260	67.2868	62.5313	0.5762	74.2538
EnlightenGAN	57.4258	0.4658	64.3612	59.2464	0.5333	71.0170	59.9291	0.5316	70.4285	62.3360	0.5459	75.9656
ours	57.6152	0.4331	63.4235	63.4894	0.5737	78.3176	60.3305	0.4999	69.5850	63.2980	0.5474	80.1557

2. In response to reviewer 067D's proposal to test our method using the DeltaE indicator to verify its good ability in color restoration, we selected ten methods to compare with our method. It can be seen that our method has achieved the best performance:

TABLE VIII

QUANTITATIVE PERFORMANCE COMPARISONS ON IMAGES FROM LOL

DATASET (RED: BEST; GREEN: THE SECOND BEST; BLUE: THE THIRD BEST)

Method	PSNR(↑)	SSIM(↑)	LPIPS(↓)	DeltaE(↓)
LIME	17.1690	0.5592	0.2159	14.8479
RetinexNet	16.7347	0.4013	0.5049	15.9330
EnlightenGAN	17.6079	0.6694	0.3342	14.6331
Kind	20.4340	0.8386	0.1561	9.5590
TBEFN	17.4226	0.7915	0.2219	13.2722
Zero-DCE	14.8789	0.5595	0.3573	18.7785
RUAS	16.4395	0.5093	0.2562	16.8025
SCI	14.7714	0.5208	0.3617	19.4929
URetinexNet	21.4313	0.8440	0.1348	9.4074
LLformer	23.9062	0.8360	0.1622	7.7470
ours	24.4223	0.8571	0.1335	7.7020

3.Regarding the suitability of reviewer 3E15 for evaluating the output results of the MSRFE module with VGG, we visualized the output results of the three MSRFE modules, and it can be seen that their brightness is close to the normal light image. Therefore, the VGG module can be used to evaluate the output results of the MSRFE module, among them, (1), (2), and (3) are the output results of the three MSRFE blocks, and (4) are the output results of the CA block:

