CS3331 – Assignment 1 due Oct. 8, 2019 (latest to submit: Oct. 11)

- 1. (60pt) For each of the following languages, prove whether it is regular or not. If it is, then
 - construct a NDFSM for it
 - convert the NDFSM into a DFSM (Note that you do not have to include trap/dead states)
 - minimize the DFSM
 - convert one of the machines into a regular expression (whichever gives a simpler regular expression)

Show your work.

Note 1: If you can give directly a DFSM, then you don't have to provide a NDFSM. If you provide directly the minimal DFSM, you still need to argue why it is minimal.

Note 2: Horribly looking regular expressions from JFLAP are acceptable only when no obvious simpler ones can be found. Usually, JFLAP gives better looking regular expressions from "smaller" machines, deterministic or not.

- (a) $\{w^R w w^R \mid w \in \{a, b\}^*\}.$
- (b) $\{w \in \{0,1\}^* \mid w \text{ has } 1010 \text{ as substring}\}.$
- (c) $\{w \in \{0,1\}^* \mid w \text{ does not have } 1010 \text{ as substring}\}.$
- (d) $\{w \in \{a,b\}^* \mid \text{ every } b \text{ in } w \text{ is immediately preceded and followed by } a\}.$
- (e) $\{w \in \{a, b, c\}^* \mid \text{ the third and second from the last characters are } b$'s}.
- (f) $\{w \in \{a,b\}^* \mid (\#_a(w) + 2\#_b(w)) \equiv 0 \pmod{4}\}$. $(\#_a(w) \text{ is the number of } a\text{'s in } w)$.
- (g) $\{w \in \{a,b\}^* \mid \#_a(w) 2\#_b(w) = 0\}.$
- (h) $\{w \in \Sigma^* \mid w \text{ is a C comments}\}\$, where Σ is the keyboard alphabet; C comments are of two types:

```
/* ... comment ... */
// ... comment ... \n
```

Solution:

- (a) Not regular. Use pumping lemma for $a^kbba^{2k}b$.
- (b) NDFSM:

DFSM:

Minimal DFSM:

Regular expression: (0+1)*1010(0+1)* (from NDFSM).

(c) The machines are easy; just complement the minimal DFSM from (b). This gives indeed the minimal DFSM. First, it clearly gives a DFSM. Second, it is minimal, as otherwise a smaller one can be found for

For the regular expression, JFLAP's is acceptable as there is no obvious simpler one: $(0+11^*00+11^*01(11^*01)^*11^*00)^*(\varepsilon+11^*+11^*0+11^*01(11^*01)^*(\varepsilon+11^*+11^*0)).$

(d) The first machine I built turned out to be the minimal DFSM, as q_0 and q_1 clearly cannot be merged:

Regular expression: $\varepsilon + aa^* + aa * b(aa * b)^*aa^*$. (I skipped the steps of the algorithm. You have to show them.)

(e) NDFSM:

Regular expression: (a+b+c)*bb(a+b+c) (Note that JFLAP gives this from the NDFSM and something quite horrible from the DFSM.)

Minimal DFSM:

(f) The first machine I built turned out to be the minimal DFSM. The idea is essential: use one state for each possible remainder modulo 4: strings that lead the machine to q_i have $\#_a(w) + 2\#_b(w) \equiv i \pmod{4}$. Each a changes the remainder by 1 whereas each b changes it by 2.

For the regular expression, we need to work. Standardize the machine (I do not add \emptyset -transitions for simplicity):

- eliminate q_1 :

- eliminate q_2 :

- eliminate q_3 :

(aa+b)b+(ab+(aa+b)a)(bb+baa)*(a+bab)

- eliminate q_0 :

Regular expression: $((aa + b)b + (ab + (aa + b)a)(bb + baa)^*(a + bab))^*$.

- (g) Not regular. Use pumping theorem for the string $a^{2k}b^k$.
- (h) The first machine I built is the minimal DFSM because there is one way to do it:

The regular expression is (make distinction between the character * and the operation *):

$$/*(\Sigma - \{*\})^**(* + (\Sigma - \{\setminus, *\})(\Sigma - \{*\})^**)^* / + //(\Sigma - \{\setminus n\})^* \setminus n$$

(I skipped the steps of the algorithm. You have to show them.)

2. (20pt) Recall the Multi-Pattern Searching problem is: Given several patterns $p_1, p_2, \ldots, p_k \in \Sigma^*$ and a text $T \in \Sigma^*$, find all occurrences of p_i 's in T. It can be solved in linear time by constructing a DFSM for the regular expression $\Sigma^*(p_1 \cup p_2 \cup \cdots \cup p_k)$ and then run the text T through it; every time the machine is in an accepting state, we report the end of an occurrence of the patters.

Assume $\Sigma = \{i, f, n, t, x\}$ (x stands for any character different from i, f, n, t.) Construct the minimal DFSM to solve the multi-pattern searching problem for the patterns $p_1 = if$, $p_2 = int$. (This is used for keyword identification.) Show your work. You are allowed to use Thomson's construction or directly build an NDFSM.

Solution: NDFSM (much smaller than Thompson's, yet intuitively clear):

DFSM (subset construction):

Minimal DFSM; successive state partitioning:

$$\{[0,1,3],[2,4]\} \text{ - use t: } 3 \xrightarrow{\mathtt{t}} 4, \ 0 \xrightarrow{\mathtt{t}} 0, \ 1 \xrightarrow{\mathtt{t}} 0 \\ \{[0,1],[3],[2,4]\} \text{ - use n: } 1 \xrightarrow{\mathtt{n}} 3, \ 0 \xrightarrow{\mathtt{n}} 0$$

$$\{[0,1],[3],[2,4]\}$$
 - use n: $1 \xrightarrow{n} 3, 0 \xrightarrow{n} 0$

$$\{[0],[1],[3],[2,4]\}$$

States 2 and 4 have the same behaviour, they cannot be split so they will be merged:

3. (20pt) Show that the following problem is decidable:

Given $\Sigma = \{a, b\}$ and α a regular expression, is it true that $L(\alpha)$ contains only non-empty even-length strings in Σ^* and no string consisting only of b's?

You are allowed to use any of the following:

- closure properties: union, concatenation, Kleene star, complement, intersection, difference
- conversion algorithms between DFSM, NDFSM, regular expressions, and regular grammars (see the last slide of Ch.7: Conversions)
- decision algorithms: membership, emptiness, finiteness, totality, equivalence, minimality.

Explain which closure property and algorithm you have used. Any other construction or algorithm should be described in the assignment.

Solution:

- (a) Build a DFSM M_{α} for $L(\alpha)$ (regular expression to NDFSM, NDFSM to DFSM)
- (b) Build a DFSM, M_1 , for the language $\{w \in \Sigma^* \mid w \neq \varepsilon, |w| \text{ even}\}$:

- (c) Build a DFSM, M_2 , for the language $L(M_\alpha)-L(M_1)$ (difference)
- (d) If $L(M_2) \neq \emptyset$, then return **no** (emptiness)
- (e) Build a DFSM, M_2 , for the language b^* :

- (f) Build a DFSM, M_3 , for the language $L(M_\alpha) \cap L(M_2)$ (intersection)
- (g) If $L(M_3) \neq \emptyset$, then return **no** (emptiness)

(h) return **yes**

Note: Submit your solution as a single pdf file on owl.uwo.ca. Solutions should be typed but high quality hand written solutions are acceptable. Make sure you submit everything as a single pdf file.

Note: You are allowed to use JFLAP to solve the assignment. But remember that JFLAP will not be allowed during the midterm exam!