LECTURE NOTES 2-2: THE LIMIT OF A FUNCTION

Things to Know:

- The intuitive definitions of a *limit* and a *one-sided limit*.
- How to find a (one-sided) limit using a calculator or the graph of the function, including infinite limits.
- How to find limits for piecewise-defined

functions.

- How to distinguish between the various ways a limit may *not* exist.
- Understand how using a calculator can give an incorrect answer when evaluating a limit.

Intuitive Idea and Introductory Examples

(Note that this is motivated by our discussion of tangent lines and instantaneous velocity.)

Say: "the limit of f(x), as x approaches a is L"

Write:

It means:

EXAMPLE 1: Use calculation to guess $\lim_{x\to 2} \frac{x-2}{x^2-x-2}$.

What does the table above tell you about the *graph* of $y = \frac{x-2}{x^2-x-2}$?

EXAMPLE 2: [Why do all the calculation? Just pick a number really close to "a," right???!!]

Use calculation to guess
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

Let's just pick numbers super-close to a=0, say ± 0.000001 : $\left|\begin{array}{c|c} t & -0.000001 & 0 & 0.000001 \\ \hline f(t) & DNE \end{array}\right|$

Hint: Always be skeptical! Why can't this be right and what went wrong?

EXAMPLE 3: [Sample points may not illustrate the big picture. Theory will be useful.]

Use calculation to guess
$$\lim_{\theta \to 0} \sin\left(\frac{\pi}{\theta}\right)$$
.

x	-0.1	-0.001	-0.0001	0	0.0001	0.001	0.01	Do you believe your answer?
f(x)								

Practice Problems

1. For each problem below, fill out the chart of values, then use the values to *guess* the value of the limit. Finally rate your confidence level on a 0 to 3 scale where (0 = I'm sure this is wrong) and (3 = I'm sure this is right.)

(b) $\lim_{x\to 2} f(x) = \square$ where $\begin{cases} |x-1| & x \le 2 \\ x+1 & x > 2 \end{cases}$ confidence? _____

(c) $\lim_{x\to 0} \frac{e^{2x}-1}{x} =$ _____ confidence? _____ f(x)

DEFINITIONS:

Say: "the limit as x approaches a on the left is L";

Write:

It means

Say: "the limit as x approaches a on the right is L";

Write:

It means

Practice Problems

2. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^{-}} f(x) =$$

(b)
$$\lim_{x \to 4^+} f(x) =$$

(c)
$$\lim_{x \to 4} f(x) =$$

(d)
$$f(4) =$$

(e)
$$\lim_{x \to 8} f(x) =$$

(f)
$$f(8) =$$

3. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^{-}} f(x) =$$

(b)
$$\lim_{x \to 4^+} f(x) =$$

(c)
$$\lim_{x \to 4} f(x) =$$

(d)
$$f(4) =$$

(e)
$$\lim_{x \to 8} f(x) =$$

(f)
$$f(8) =$$

Write the equation of any vertical asymptote:

4. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3$$

$$\lim_{x \to 4^+} f(x) = 0 \quad f(0) = -2 \qquad f(4) = 1$$

5. Determine the limit. Explain your answer.

(a)
$$\lim_{x \to 5^+} \frac{2+x}{x-5}$$

(b)
$$\lim_{x \to 5^+} \frac{2+x}{5-x}$$

(c)
$$\lim_{x \to (\pi/2)^+} \frac{\sec x}{x}$$