CT303 - Digital Communications Autumn 2020

Submit by 4/10/2020, 12 noon

- 1. Let us analyze the NRZ-L scheme. Let X(t) denote the stochastic process that generates random NRZ-L code signals, with pulse-width T sec.
 - (a) Simulate the stochastic process $X(n) = X(nT_s)$ in Python, assuming independent bit stream.
 - (b) Compute the mean m_X and Auto-correlation matrix R_X , and verify (approximately) whether X(n) is wide-sense stationary or not.
 - (c) Let $d \sim U[0,T]$ be a uniformly distributed RV that models a random starting point for the PCM scheme. Let $X_1(t) = X(t-d)$ denote the same NRZ-L signal with random initial delay d (begin with 0 for $t \in [0 \ d]$). Repeat the above step with $X_1(n) = X_1(nT_s)$.
 - (d) Compute the PSD of X(n) (or/and $X_1(n)$) for different pulse-widths T.