# SCL 0.18µm (Analog) PDK **User Guide** Advanced VLSI Design Lab IIT Kharagpur

# **Revision History**

| Rev. | Author      | Last updated on            |
|------|-------------|----------------------------|
| 1.0  | Samiran Dam | 6 <sup>th</sup> Nov., 2015 |

# 1. Basic Setup

## 1.1. Setup your working directory

**Step 1:** Copy the working directory from the following path into your home directory -

Command:

cp ~design\_installer/scl/scl180\_analog.zip .

**Step 2:** Unzip the **scl180\_analog.zip** and enter into **scl180\_analog** directory (it is the working directory **<WORKING\_DIR>**).

### 1.2. Working directory structure

```
<WORKING_DIR>
--> cdl_netlists
   L-> scale.cdl
-> DEMO
--> Docs
--> physical_verification
       |--> drc
           --> rsf
              --> drc.rsf
              L-> DRC.header
           L-> temp
        -> antenna
           --> rsf
              --> antenna.rsf
              L-> ANTENNA.header
           L-> temp
       --> lvs
           |--> rsf
              --> lvs.rsf
              L-> LVS.header
           |--> temp
        > pex
           --> rsf
               --> pex.rsf
               L-> RCX 4LM.header
           L-> temp
--> simulation
    --> spice_files
       L-> inverter_testcase.sp
    L-> results
 -> cds.lib
 -> .cdsinit
--> .bashrc
L-> user_guide.pdf
```

Description of the above items are as follows.

• **cdl\_netlist** directory contains the cdl netlists which will be required for LVS. It also contains *scale.cdl* file which is used during LVS and PEX run.

DEMO is a a user design library. It is used to demonstrate various steps throughout this
document.

• **Docs** contains two documents which are -

DR2\_0018SL\_SCL\_Rev1.pdf >> Design Rules for TS18 Standard Logic Process for SCL
DRS2\_0018SL\_SCL\_manual.pdf >> SPICE Models for TS18 Standard Logic Process

• **physical\_verification** contains four separate directories for DRC, antenna, LVS and PEX run using **Calibre**.

simulation contains two directories – **spice\_files** and **results**. **spice\_files** contains one sample spice netlist for a CMOS inverter circuit (which is inside the DEMO library). This spice netlist (*inverter\_testcase.sp*) is used to run the post-layout simulation using Synopsis's **HSPICE** simulator. **results** directory is used to store the simulation output files.

# 1.3. Change the paths

Replace the string <WORKING\_DIR> with the actual path in the following files *antenna.rsf*, *drc.rsf*, *lvs.rsf* and *pex.rsf*.

### 1.4. About "cds.lib"

cds.lib file contains

- SCL 0.18um PDK library (ts018\_scl\_prim)
- 1.8V I/O library (**CIO150**)
- 3.3V I/O library (**CIO250**)
- HSPICE compatible analogLib (analogLib hspice)

### 2. Schematic simulation

### 2.1. Launch cadence

**Step-1: O**pen a terminal window in <WORKING\_DIR>.

**Step-2:** run .bashrc [command >> source .bashrc]

**Step-3:** run virtuoso [command >> **virtuoso**]

### 2.2. Simulate in ADE-L

**Step-1:** Open **Tools > Library Manager**. Go to the **DEMO** library and open **testinv\_testbench** schematic.

Step-2: Launch ADE-L.

### 2.2.1. Add model file path

**Step-1:** Open **Setup** > **Model Libraries** 

**Step-2:** Enter the following path of the model files.

/designPackages/design\_installer/scl/scl\_pdk/design\_kit/models/hspice/ts18sl\_scl.lib

**Step-3:** Choose appropriate *Section* from the drop-down list. For this demo example, choose **tt\_hv**.



### 2.2.2. Change scale factor

In SCL process, dimensions of the devices are assumed to be in *micrometer* scale. However, in by default the HSPICE simulator assumes all the dimension to be in *meter*. Therefore, it is necessary to change the default setting.

**Step-1:** Open <u>Simulation</u> > **Options** > **Analog** > **Commonly Used...** It will open a window (HSPICE Options)

**Step-2:** In **HPICE Options** window, change the default value of the parameter, **Scale** from **1** to to **1u**.



# 3. Physical verification

Open the testinv schematic from the DEMO library. Launch Layout-XL.

### 3.1. DRC

**Step-1:** Launch **Calibre** > **DRC** 

**Step-2:** Go to **File > Load Runset** and browse to the *drc.rsf* file.

Step-3: Run DRC

### 3.2. Antenna rule check

**Step-1:** Launch **Calibre** > **DRC** 

**Step-2:** Go to **File > Load Runset** and browse to the *antenna.rsf* file.

Step-3: Run DRC

### 3.3. LVS

**Step-1:** Create the **CDL netlist** of the schematic.

- Go to the **CIW** window.
- Go to File > Export > CDL
- In the window that appears, click on the button "**Library Browser**" and browse to the schematic of the **testinv** cell.



In the Output section of the window, specify the "Run Directory" as the cdl\_netlist directory in the <WORKING\_DIR>. And specify the "Output CDL Netlist File" as the name of the cell, which for this example is testinv.cdl.

### **Step-2:** Launch **Calibre** > **LVS**

**Step-3:** Go to **File > Load Runset** and browse to the *lvs.rsf* file.

**Step-4:** In the **"Inputs"** section of the LVS window, select the **Netlist** tab. And in the Files section browse to the **cdl\_netlist** directory and select the **testinv.cdl** and **scale.cdl** files and add them in the list of files.

### Step-5: Run LVS



### 3.4. PEX

- **Step-1:** Launch **Calibre** > **PEX**
- **Step-2:** Go to **File > Load Runset** and browse to the *pex.rsf* file.
- **Step-3:** In the "**Inputs**" section of the PEX window, select the **Netlist** tab. And in the Files section browse to the **cdl\_netlist** directory and select the **testinv.cdl** and **scale.cdl** files and add them in the list of files.
- **Step-4:** Go to the **"Outputs"** section of the PEX window and choose **"Format"** as **HSPICE** and change the **"File"** name to *testinv.sp*. This file will be saved in -
- <WORKING\_DIR>/physical\_verification/pex/temp/testinv.sp path



**Step-5:** Go the "PEX Options" and then select the tab "LVS Options" and enter vdd in the field Power nets and vss in the field Ground nets.



Step-6: Run PEX

# 4. Post-layout simulation

Post-layout simulation is done using HSPICE in command-mode. A sample spice netlist for transient simulation of the our example inverter is saved in -

<WORKING\_DIR>/simulation/spice\_files/inverter\_testcase.sp

**Before starting the simulation, modify the** *inverter\_testcase.sp* to include the extracted netlist .include <WORKING\_DIR>/physical\_verification/pex/temp/testinv.sp

### 4.1. Simulation using HSPICE

**Execute the following command to run HSPICE on the spice netlist.** 

hspice64 -mt 2 -i <WORKING\_DIR>/simulation/spice\_file/inverter\_testcase.sp -o <WORKING\_DIR>/simulation/results/testinv\_sim &

**Note:** <<u>WORKING\_DIR</u>>/simulation/spice\_file/inverter\_testcase.sp is the path of the spice netlist of the testbench <<u>WORKING\_DIR</u>>/simulation/results/testinv\_sim is the path of the simulation result directory

# 4.2. Viewing simulated waveforms

Run the following command to open the waveform window.

wv &

Browse to the simulation result directory (**File > Import Waveform File**) and select *inverter\_testcase.tr0* file.

# 5. Monte-Carlo simulation

...to be updated in the next revision.

# 6. I/O Library

...to be updated in the next revision.