Charotar University of Science and Technology Faculty of Technology and Engineering

Devang Patel Institute of Advance Technology & Research Computer Engineering Department

Subject Name & Code: INTERNALS OF OPERATING SYSTEM	Semester: 6
(CE347)	

Index Page

Sr. No.	Name of Practical	Page Number	Lab Instructor Signature
1	Write a C program to read 4 int numbers from user and find the sum, product and average of those numbers.		
2	Write programs using the following system calls of UNIX operating system: fork, exec, getpid, exit, wait, stat, readdir, opendir.		
	Task-01 Write a program to execute fork() and find out the process id by getpid() system call.		
	Task-02 Write a program to execute following system call fork(), execl(), getpid(), exit(), wait() for a process.		
	Task-03 Write a program to find out status of named file (program of working stat() system call).		
	Task-04 Write a program for "ls" command implementation using opendir() & readdir() system call.		
3	IMPLEMENTATION OF I/O SYSTEM CALL		
	Task-01 Write a program to implement open, close, read and write System Call.		
	Task-02 Write a program to opens a particular file twice, write once and read once via two different file descriptors.		
	Task-03 Using system calls write line of texts in a file.		
	Task-04 Write a program to open, read and write files and perform file copy operation.		
4	IMPLEMENTATION OF STRUCTURE OF BUFFER STRUCTURE		
	Task-01 Write a program to create a doubly link list of n buffer.		
	Task-02 Write a program to implement LRU algorithm.		
	Task-03 Write a program to divide doubly link list of n nodes into n/4 sub list of hash queue. (value of n must be even and greater than 15).		
5	IMPLEMENTATE SYSTEM CALL FOR FILE SYSTEM		

	Task-01 Write a program to implement lseek() system call. A process seeks to 1024 bytes beyond the end of the file mapped by fd (file descriptor).	
	Task-02 Write a program in which, the child process waits for the user input and once an input is entered, it writes into the pipe. And the parent process reads from the pipe.	
	Task-03 Write a program in which, open a file's once and read it twice. Use duplicate system call.	
6	INTERPROCESS COMMUNICATION	
	Task-01 Inter process communication (POSIX-IPC) using shared memory Study system calls: mmap(), shm_open(), shm_unlink()	
	Task-02 Inter process communication (POSIX-IPC) using pipe Study system call: pipe()	
7	NETWORK COMMUNICATION	
	Task-01 Write a program to perform client server communication using TCP.	
	Task-02 Write a program to perform client server communication using UDP.	
8	Case study: RTOS(Real Time Operating System)	
9	Case study: Network Operating System	
10	Case study: a Distributed File System for very large files	