

CONTRÔLE PÉRIODIQUE 1 H2022

SOLUTIONNAIRE

Exercice 1 (2 points)

Soit l'univers des animaux. Formalisez les affirmations suivantes en utilisant les fonctions propositionnelles indiquées.

C(x): x est un carnivore

R(x): x rôde dehors la nuit

L(x): x aime contempler la lune

a) (1 point) Aucun animal n'est carnivore, à moins qu'il n'aille rôder dehors la nuit.

Réponse:

$$\forall x (\neg C(x) \rightarrow \neg R(x))$$

 $\forall x (R(x) \rightarrow C(x))$

b) (1 point) Les animaux qui vont rôder dehors la nuit aiment toujours contempler la lune.

Réponse:

$$\forall x (R(x) \rightarrow L(x))$$

Exercice 2 (2 points)

a) (1 point) Montrez que : $(P \rightarrow (Q \lor R)) \equiv ((P \rightarrow Q) \lor (P \rightarrow R))$

Réponse:

• Méthode 1 : Dérivons l'expression de gauche

```
(P \rightarrow (Q \lor R)) \equiv (\neg P) \lor (Q \lor R) Transformation de l'implication en disjonction (P \rightarrow (Q \lor R)) \equiv (\neg P \lor Q) \lor (\neg P \lor R) Distributivité de V (P \rightarrow (Q \lor R)) \equiv ((P \rightarrow Q) \lor (P \rightarrow R)) Transformation de la disjonction en implication CQFD
```

• Méthode 2 : Dérivons l'expression de droite

```
 \begin{array}{ll} ((P \rightarrow Q) \vee (P \rightarrow R)) \equiv (\neg \ P \vee Q) \vee (\neg \ P \vee R) & \text{Transformation des implications en disjonction} \\ ((P \rightarrow Q) \vee (P \rightarrow R)) \equiv (\neg \ P \vee Q \vee (\neg \ P) \vee R) & \text{Associativit\'e de V} \\ ((P \rightarrow Q) \vee (P \rightarrow R)) \equiv ((\neg \ P \vee (\neg \ P)) \vee (Q \vee R)) & \text{Simplification de } (\neg \ P \vee (\neg \ P)) \\ ((P \rightarrow Q) \vee (P \rightarrow R)) \equiv (\neg \ P) \vee (Q \vee R) & \text{Simplification de la disjonction en implication} \\ CQFD & \text{Transformation de la disjonction en implication} \\ \end{array}
```

• Méthode 3 : Table de vérité

Р	Q	R	QVR	$P \rightarrow Q$	$P \rightarrow R$	P→(QVR)	$((P \rightarrow Q) \lor (P \rightarrow R))$	$((P \rightarrow Q) \lor (P \rightarrow R)) \longleftrightarrow (P \rightarrow (Q \lor R))$
V	V	V	V	V	V	V	V	V
V	٧	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	٧	V	V	V	V	V	V	V
F	٧	F	V	V	V	V	V	V
F	F	V	V	V	V	V	V	V
F	F	F	F	V	V	V	V	V

b) (1 point) Montrez que:

$$((P \land Q) \rightarrow R) \equiv ((P \rightarrow R) \lor (Q \rightarrow R))$$

Réponse:

• Méthode 1 : Dérivons l'expression de gauche

```
 \begin{array}{ll} ((P \land Q) \rightarrow R) \equiv (\neg (P \land Q) \lor R) & \text{Transformation de l'implication en disjonction} \\ ((P \land Q) \rightarrow R) \equiv (((\neg P) \lor (\neg Q)) \lor R) & \text{Loi de De Morgan} \\ ((P \land Q) \rightarrow R) \equiv (\neg P \lor (\neg Q) \lor R) & \text{Associativit\'e de V} \\ ((P \land Q) \rightarrow R) \equiv ((\neg P \lor (\neg Q)) \lor R) & \text{Distributivit\'e de V} \\ ((P \land Q) \rightarrow R) \equiv (\neg P \lor R) \lor ((\neg Q) \lor R) & \text{Distributivit\'e de V} \\ ((P \land Q) \rightarrow R) \equiv ((P \rightarrow Q) \lor (Q \rightarrow R)) & \text{Transformation des disjonctions en implications} \\ \text{CQFD} \end{array}
```

• Méthode 2 : Dérivons l'expression de droite

```
 \begin{array}{ll} ((P \to R) \lor (Q \to R)) \equiv (\neg \ P \lor R) \lor (\neg \ Q \lor R) & \text{Transformation des implications en disjonction} \\ ((P \to R) \lor (Q \to R)) \equiv (\neg \ P \lor R \lor (\neg \ Q) \lor R) & \text{Associativit\'e de V} \\ ((P \to R) \lor (Q \to R)) \equiv ((\neg \ P \lor (\neg \ Q)) \lor (R \lor R)) & \text{Simplification de } (R \lor R) \\ ((P \to R) \lor (Q \to R)) \equiv ((\neg \ P \lor (\neg \ Q)) \lor R) & \text{Simplification de } (R \lor R) \\ ((P \to R) \lor (Q \to R)) \equiv (\neg \ (P \land Q) \lor R) & \text{Loi de De Morgan} \\ ((P \to R) \lor (Q \to R)) \equiv (P \land Q) \to R & \text{Transformation de la disjonction en implication} \\ CQFD & \text{Transformation de la disjonction en implication} \\ \end{array}
```

Méthode 3 : Table de vérité

Р	Q	R	PΛQ	Q→R	P→R	$(P \land Q) \rightarrow R$	$((P \rightarrow R) \lor (Q \rightarrow R))$	$((P \rightarrow Q) \lor (P \rightarrow R)) \longleftrightarrow (P \rightarrow (Q \lor R))$
V	V	>	V	V	V	V	V	V
V	V	F	V	F	F	F	F	V
V	F	>	F	V	V	V	V	V
V	F	F	F	V	F	V	V	V
F	V	>	F	V	V	V	V	V
F	V	F	F	F	V	V	V	V
F	F	V	F	V	V	V	V	V
F	F	F	F	V	V	V	V	V

Exercice 3 (4 points)

On considère l'univers des humains.

Soit:

enfant(x): x est un enfant ange(x): x est un ange

Traduisez en langage courant, en utilisant les fonctions propositionnelles ci-dessus, chacun des énoncés de logique des prédicats suivants :

a) (1.25 point)
$$\forall x \text{ (ange } (x) \rightarrow (\neg \text{ enfant } (x))$$

Réponse :

Formulations équivalentes :

- Aucun ange n'est un enfant
- Un ange n'est pas un enfant

b) (1.25 point) $\neg (\forall x (enfant (x) \rightarrow ange(x)))$

Réponse :

Formulations équivalentes :

- Tout enfant n'est pas un ange
- Tous les enfants ne sont pas des anges
- Il y a au moins un enfant qui n'est pas un ange
- Il y existe au moins un enfant qui n'est pas un ange
- c) (1.5 point) \neg (\forall x (ange (x) \leftrightarrow (enfant (x))

Réponse :

Formulations équivalentes :

- Un humain ne peut pas être à la fois un ange et un enfant.
- Un ange n'est pas toujours un enfant ou un enfant n'est pas toujours un ange.
- Un enfant n'est pas toujours un ange ou un ange n'est pas toujours un enfant.
- Il y a au moins un ange qui n'est pas un enfant ou il y a au moins un enfant qui n'est pas un ange
- Il existe au moins un ange qui n'est pas un enfant ou il existe au moins un enfant qui n'est pas un ange

Exercice 4 (3 points)

Soit x un réel. Montrez que si x^2 n'est pas un multiple entier de 16, alors x/2 n'est pas un entier pair.

Réponse :

• Méthode 1 : Preuve par contraposition (preuve indirecte)

La contraposée de « si x^2 n'est pas un multiple entier de 16, alors x/2 n'est pas un entier pair » est :

« si x/2 est un entier pair, alors x² est un multiple entier de 16»

Supposons que x/2 est un entier pair.

Il existe un entier k tel que x/2 = 2k.

On a donc x = 4k et $x^2 = 16 k^2$. Ce qui permet de dire que x^2 est un multiple entier de 16.

Par conséquent, la preuve « si x/2 est un entier pair, alors x^2 est un multiple entier de 16» est établie ainsi que sa contraposée « si x^2 n'est pas un multiple entier de 16, alors x/2 n'est pas un entier pair ».

• Méthode 2 : Preuve par contradiction (preuve par l'absurde)

Raisonnons par l'absurde. Supposons que x^2 n'est pas un multiple entier de 16 et x/2 n'est pas un entier pair.

x/2 est un entier pair, alors il existe un entier k tel que x/2 =2k.

x/2 est un entier pair, alors il existe un entier k tel que x = 4k.

x/2 est un entier pair, alors il existe un entier k tel que $x^2 = 16 k^2$.

 x^2 est donc un multiple entier de 16. Or par hypothèse x^2 n'est pas un multiple entier de 16. Il y a donc contradiction.

D'où « si x^2 n'est pas un multiple entier de 16, alors x/2 n'est pas un entier pair ».

Exercice 5 (2.5 points)

Soit A, B, E et F quatre ensembles. Montrez que

Si $((A \subset E) \land (B \subset F))$, alors $((A \times B) \subset (E \times F))$

Réponse:

• Méthode 1

Soit $x \in A$ et $y \in B$.

On a : $(x \in A \text{ et } y \in B) \equiv (x, y) \in A \times B$.

Si $(A \subset E)$ alors $((x \in A) \rightarrow (x \in E))$

Si $(B \subset F)$ alors $((y \in B) \rightarrow (y \in F))$

Si $((A \subset E) \land (B \subset F))$, alors $(((x \in A) \rightarrow (x \in E)) \land ((y \in B) \rightarrow (y \in F)))$

Or $[((x \in A) \rightarrow (x \in E)) \land ((y \in B) \rightarrow (y \in F))] \rightarrow [(x \in A \text{ et } y \in B) \rightarrow (x \in E \text{ et } y \in F)]$

Donc Si $((A \subset E) \land (B \subset F))$, alors $((x \in A \text{ et } y \in B) \rightarrow (x \in E \text{ et } y \in F))$

De plus, $(x \in A \text{ et } y \in B) \equiv (x, y) \in A \times B$. on a donc :

Si $((A \subset E) \land (B \subset F))$, alors $(((x, y) \in A \times B) \rightarrow (x \in E \text{ et } y \in F))$

Aussi, on a : $(x \in E \text{ et } y \in F) \equiv (x, y) \in E \times F$.

Donc, $(((x, y) \in A \times B) \rightarrow ((x, y) \in E \times F))$. On a :

Si $((A \subset E) \land (B \subset F))$, alors $[((x, y) \in A \times B) \rightarrow ((x, y) \in E \times F)]$

 $[((x, y) \in A \times B) \rightarrow ((x, y) \in E \times F)] \text{ alors } ((A \times B) \subset (E \times F))$

D'où Si ((A \subset E) \land (B \subset F)), alors ((A \times B) \subset (E \times F))

• Méthode 2

Supposons que $(A \subset E) \land (B \subset F)$.

Soit C le complémentaire de A dans E et D le complémentaire de B dans F.

On a : E = A U C et F = B U D et A \cap C = \emptyset et B \cap D = \emptyset .

 $E \times F = (A \cup C) \times (B \cup D)$

 $E \times F = (A \times (B \cup D) \cup (C \times (B \cup D)), car A \cap C = \emptyset$

 $E \times F = ((A \times B) \cup (A \times D)) \cup ((C \times B) \cup (C \times D)), car B \cap D = \emptyset$

 $E \times F = (A \times B) \cup (A \times D) \cup (C \times B) \cup (C \times D)$

On en déduit que $(A \times B) \subset (E \times F)$

Exercice 6 (3 points)

Soit la fonction f.

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = \frac{1}{1+x^2}.$$

La fonction f est-elle injective ? Justifiez votre réponse.

Réponse :

Soit x_1 et x_2 deux réels tel que $f(x_1) = f(x_2)$.

$$f(x_1) = f(x_2) \rightarrow \frac{1}{1+x_1^2} = \frac{1}{1+x_2^2}$$

$$f(x_1) = f(x_2) \rightarrow 1 + x_1^2 = 1 + x_2^2$$

$$f(x_1) = f(x_2) \rightarrow x_1^2 = x_2^2$$

$$f(x_1) = f(x_2) \rightarrow x_1 = x_2 \text{ ou } x_1 = -x_2$$

On a donc pas toujours $x_1 = x_2$.

En conclusion f n'est pas injective.

Exercice 7 (3.5 points)

Au sujet de la nouvelle amie qu'il vient de rencontrer, Jean fait les affirmations suivantes :

H1: Si elle déteste le jazz, alors elle aime le tango ou la salsa.

H2 : Elle a les mêmes préférences pour le tango et la rumba.

H3: Si elle déteste la salsa, alors elle aime le tango.

H4 : Elle déteste le jazz ou la salsa, ou les deux d'ailleurs.

H5: Si elle aime la salsa et pas le jazz, alors elle aime la rumba.

Après de longue réflexion il conclut :

C: Elle déteste la rumba, la salsa et le tango

Josias n'est pas convaincu de la conclusion de son ami Jean. Il décide de mettre ses connaissances en logique mathématique à profit pour vérifier la conclusion de Jean. Dans un premier temps, il procède par des définitions et des traductions comme suit :

Définitions

J: Jazz S: Salsa R: Rumba T: Tango

aime(x): Elle aime x.

Il affirme que ne pas aimer un rythme musical, c'est le détester.

Traductions

H1: $(\neg aime(J)) \rightarrow (aime(T) \lor aime(S))$ **H2**: $aime(T) \leftrightarrow aime(R)$ **H3**: $(\neg aime(S)) \rightarrow aime(T)$ **H4**: $(\neg aime(J)) \lor (\neg aime(S))$ **H5**: $(aime(S) \land (\neg aime(J))) \rightarrow aime(R)$ **C**: $(\neg aime(R)) \land (\neg aime(S)) \land (\neg aime(T))$

À partir des travaux de Josias, montrez que la conclusion de Jean n'est pas valide.

Réponse:

```
1. (¬ aime(J)) V (¬ aime(S))
                                                    Hypothèse H4
2. (\neg aime(S)) \lor (\neg aime(J))
                                                    Étape 1 et commutativité de V
                                                    transformation de la disjonction en implication
3. aime(S) \rightarrow (\neg aime(J))
4. (\neg aime(S)) \rightarrow aime(T)
                                                    Hypothèse H3:
                                                    Contraposée de l'étape 4
5. (\neg aime(T)) \rightarrow aime(S)
6. (\neg aime(T)) \rightarrow (\neg aime(J))
                                                    Étapes 3 et 5 et syllogisme par hypothèse
                                                    Contraposée de l'étape 6
7. aime(J) \rightarrow aime(T)
8. (\neg aime(J)) \rightarrow (aime(T) \lor aime(S))
                                                    Hypothèse H1
9. \neg (aime(T) \lor aime(S)) \rightarrow aime(J)
                                                    Contraposée de l'étape 8
                                                    Étapes 7 et 9 et syllogisme par hypothèse
10. \neg (aime(T) \lor aime(S)) \rightarrow aime(T)
11. (aime(T) V aime(S)) V aime(T)
                                                    Étape 10 et transformation de l'implication en disjonction
                                                    Étape 11 et associativité de V
12. aime(T) V aime(S) V aime(T)
                                                    Étape 12 et simplification
13. aime(T) V aime(S)
                                                    Étape 13 et règle de l'addition
14. aime(T) V aime(S) V aime(R)
15. aime(R) V aime(S) V aime(T)
                                                    Étape 14 et Commutativité de V
16. \neg(\neg aime(R) \land (\neg aime(S)) \land (\neg aime(T)))
                                                    Étape 15 et Loi de De Morgan
                                                    Étape 16 et C
17. ¬C
```

La conclusion de Jean n'est donc pas valide.