Faculty of Science and Engineering

ELEC4844/8844 Practical Class – Week 1, 2024 Review of MATLAB

TASK 1

Write MATLAB functions to generate the following matrix with input *N*:

$$\begin{bmatrix} 0 & N & \cdots & N(N-1) \\ 1 & N+1 & \cdots & N(N-1)+1 \\ \vdots & \vdots & \ddots & \vdots \\ N-1 & 2N-1 & \cdots & N^2-1 \end{bmatrix}$$

- a) using loop;
- b) by reshaping a matrix;
- c) based on matrix computation.

Verify your functions using N = 6.

TASK 2

- a) Generate 1000 normally distributed random numbers ε_i , i = 1, ..., 1000, with mean of 0 and standard deviation of 2. Verify the mean and standard deviation.
- b) Generate 1000 uniformly distributed random numbers x_i in the interval (0, 10), and compute $y_i = 2.4x_i + \varepsilon_i$.
- c) Plot the data points (x_i, y_i) . Find the 10th largest number in y_i , i = 1, ..., 1000, and its corresponding x_i .
- d) For an overdetermined system of equations

$$\beta \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$
, or simply $\mathbf{x}^T \beta = \mathbf{y}$ in the matrix notation,

the method of least squares finds the best estimate of β as $\hat{\beta} = (\mathbf{x}\mathbf{x}^{\mathrm{T}})^{-1}\mathbf{x}\mathbf{y}$. Use this method to fit the data x_i and y_i generated above to the curve $y = \beta x$. Plot the fitted curve, and compare the estimate $\hat{\beta}$ with the true value β (= 2.4).

- e) Make sure x_i and y_i are column vectors. Compute $\mathbf{x}\setminus\mathbf{y}$. What result do you get?
- f) Now, re-compute $y_i = 1.3 + 1.6x_i 0.5x_i^2 + \varepsilon_i$. Use the method of least squares to fit the data x_i and y_i to the curve $y = \beta_1 + \beta_2 x + \beta_3 x^2$, and compare the obtained coefficients with their true values.

TASK 3

Recall that the roots of a real polynomial (whose coefficients are all real-valued) are either real-valued or complex-conjugated pairs. Therefore, any real polynomial can be represented in the factored form, of which all the factor polynomials are real polynomials of degree 1 or 2.

Use MATLAB functions <u>roots</u> and <u>poly</u> to convert the following polynomials to factored forms:

$$p_1(x) = 1 - x^4$$

$$p_2(x) = 1 - 6x + 11x^2 - 6x^3$$

$$p_3(x) = 1 + 2.8x + 1.7x^2 + 0.9x^3 + 2.3x^4 + 2.3x^5 + x^6$$

TASK 4

A point object at the coordinates (0, 2) is casted at speed v and angle θ (measured from positive x-axis), aiming at a target at (x_t, y_t) . Assume no friction in the air, and gravity of Earth $g = 10 \text{ m/s}^2$.

- a) Draw the trajectory for v = 5 m/s and $\theta = 45^{\circ}$;
- b) If $x_t = 10$ m, $y_t = 3.5$ m, and $\theta = 45^{\circ}$, what is the speed that the casted object can hit the target?
- c) Find the minimum speed v_{min} that allow the object to hit the target, and the corresponding angle;
- d) For the minimum speed and corresponding angle above, make a movie to show the cast in action. Refer to the following example on how to record and play movie using MATLAB. https://au.mathworks.com/help/matlab/ref/movie.html

TASK 5

Consider the following difference equation

$$x[k+1] - x[k] = rx[k](1 - x[k]),$$
 $k = 0, 1, 2, ...$ and $x[0] = 0.1.$

- a) For the cases r = 0.3, 1.8, 2.2, 2.5 and 2.7, respectively, compute x[k] up to k = 50.
- b) Assume x[k] reach equilibrium \tilde{x} when k is large. One will have

$$0 = r\tilde{x}(1 - \tilde{x})$$

Since r is non-zero, either $\tilde{x} = 0$ or $\tilde{x} = 1$. Investigate whether these two equilibrium points are stable (i.e. convergent) or not (divergent), for the cases r = 0.3, 1.8 and 2.2, by using a small perturbation (e.g. for $\tilde{x} = 0$, starting with x[0] = 0.001 to see if x[k] converges to 0 as k increases).

c) When r = 2.5 and 2.7, with x[0] = 0.1, x[k] will never converge to any equilibrium point (this is mathematically related to "bifurcation" and "chaos"). Use MATLAB to visualise x[k] for k = 101, 102, ..., 200, with respect to r between 1.5 and 3.0. Think about how you are going to illustrate your results to clearly explain your findings.