ЗАДАНИЕ ПО ТЕМЕ:

«Подбор эмпирических формул по методу наименьших квадратов.

Поиск оптимального значения однофакторной функции численными методами»

Постановка задачи. Даны парные наблюдения (x_i , y_i). Предполагается, что между значениями x_i и y_i существует корреляционная зависимость.

На основе метода наименьших квадратов (МНК) необходимо найти параметры линейной $\hat{Y} = ax + \epsilon$ и нелинейной (квадратичной) $\hat{Y} = ax^2 + \epsilon x + c$ однофакторных регрессионных моделей.

Порядок выполнения работы:

- 1. Решить систему нормальных уравнений МНК и определить параметры линейной и квадратичной однофакторных моделей.
- 2. Вычислить суммы квадратов отклонений $\sum_{j=1}^{n} \mathcal{E}_{j}^{2}$ для линейной и квадратичной моделей.
- 3. Для квадратичной зависимости вида $\hat{Y} = ax^2 + ex + c$ необходимо:
- 1) Использовать алгоритм Свенна для поиска интервала локализации [a; b] точки минимума функции \hat{Y} .
- 2) Проверить условия унимодальности функции \hat{Y} на интервале [a;b].
- 3) Найти минимальное значение функции \hat{Y} на интервале [a; b] следующими методами:
 - ✓ деления отрезка пополам,
 - ✓ пассивного поиска,
 - ✓ золотого сечения,
 - ✓ Фибоначчи, используя 10-кратное вычисление целевой функции и точность $\varepsilon = 0.001$.
- 4) Выполнить сравнительный анализ итерационных методов.
- 5) Исследовать функцию на минимум аналитически и сопоставить с численным результатом.

Номер варианта соответствует порядковому номеру в списке группы.