(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月28 日 (28.07.2005)

PCT

(10) 国際公開番号 WO 2005/068588 A1

(51) 国際特許分類⁷: C10M 105/68, 105/00, B22F 3/02, C10M 105/00 // (C10M 105/24, 105:68), C10N 10:04, 20:06, 30:02, 30:06, 40:20, 50:08

(21) 国際出願番号: PCT/JP2005/000945

(22) 国際出願日: 2005年1月19日(19.01.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2004-011475 2004年1月20日(20.01.2004) JF

(71) 出願人 (米国を除く全ての指定国について): 株式会 社神戸製鋼所 (KABUSHIKI KAISHA KOBE SEIKO SHO) [JP/JP]; 〒6518585 兵庫県神戸市中央区脇浜町2 丁目10番26号 Hyogo (JP). 日本精化株式会社 (NIPPON FINE CHEMICAL CO., LTD.) [JP/JP]; 〒5410051 大阪 府大阪市中央区備後町2丁目4番9号 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 鈴木 浩則 (SUZUKI, Hironori) [JP/JP]; 〒6768670 兵庫県高砂市 荒井町新浜2丁目3番1号 株式会社神戸製鋼所 高砂製作所内 Hyogo (JP). 藤沢 和久 (FUJISAWA, Kazuhisa) [JP/JP]; 〒6512271 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研究所内 Hyogo (JP). 藤浦 貴保 (FUJIURA, Takayasu) [JP/JP]; 〒6512271 兵庫県神戸市西区高塚台1丁目5番5号株式会社神戸製鋼所神戸総合技術研究所内 Hyogo (JP). 堀江清 (HORIE, Kiyoshi) [JP/JP]; 〒6750011 兵庫県

/続葉有]

(54) Title: LUBRICANT FOR POWDER METALLURGY, POWDERY MIXTURE FOR POWDER METALLURGY, AND PROCESS FOR PRODUCING SINTER

(54) 発明の名称: 粉末冶金用潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法

$$R^{1}CON \underset{R^{3}}{\overset{2}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\stackrel{}}}} \qquad (1)$$

(57) Abstract: A lubricant for powder metallurgy which contains a polyhydroxycarboxamide represented by the following formula (1): (wherein R^1 represents C_{2-10} alkyl substituted by two or more hydroxy groups; R^2 represents a C_{8-30} hydrocarbon group; and R^3 represents hydrogen or a C_{1-30} hydrocarbon group). Use of the lubricant for powdery metallurgy can impart both flowability and lubricity regardless of whether a complicated pretreatment step

is conducted or not.

(57) 要約:

粉末冶金用潤滑剤は、下記式(1)で示されるポリヒドロキシカルボン酸アミドを含有する。

$$R^1CON < R^2$$
 (1)

(式中、 R^1 は複数のヒドロキシル基が置換した炭素数 $2 \sim 1$ 0 のアルキル基を示し、 R^2 は炭素数 $8 \sim 3$ 0 の炭化水素基を示し、 R^3 は水素原子又は炭素数 $1 \sim 3$ 0 の炭化水素基を示す)

前記粉末冶金用潤滑剤を使用すれば、煩雑な予備処理工程の有無を問わず、流動性と潤滑性の両方を向上できる。

加古川市野口町北野377 日本精化株式会社 研究所内 Hyogo (JP). 小島 昌樹 (KOJIMA, Masaki) [JP/JP]; 〒6750011 兵庫県加古川市野口町北野377 日本精化株式会社 研究所内 Hyogo (JP). 吉原 剛 (YOSHIHARA, Takeshi) [JP/JP]; 〒6750011 兵庫県加古川市野口町北野377 日本精化株式会社 研究所内 Hyogo (JP).

- (74) 代理人: 植木 久一, 外(UEKI, Kyuichi et al.); 〒 5300003 大阪府大阪市北区堂島2丁目1番16号 フジタ東洋紡ビル9階 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,

- SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 一 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受領の際には再公開される。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

粉末冶金用潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法

5 技術分野

本発明は金属粉末を成形・焼結して焼結体を製造する技術に関し、より詳細には金属粉末の成形に利用する粉末冶金用潤滑剤、該潤滑剤と金属粉末とを混合した粉末冶金用混合粉末、及びこの粉末冶金用混合粉末を用いた焼結体の製造方法に関するものである。

10

15

20

25

背景の技術

鉄粉や鋼粉等の金属粉末を主原料として用いる粉末冶金においては、前記主原料粉末に焼結体の物性(強度特性や加工特性)を改善するための成分として合金成分や黒鉛粉等の粉末を添加混合し、これに潤滑剤を加えた後、圧縮成形して圧粉体を形成し、引き続いて圧粉体を焼結して焼結体としている。こうした粉末冶金法において混合粉末を貯蔵ホッパーから排出する際、または金型に混合粉末を充填する際に、混合粉末の流れ性が重要な特性の一つとなる。すなわち、混合粉末の流れ性が悪いとホッパーの排出口上部でブリッジングを起こして排出不良となったり、ホッパーからシューボックスまでのホース内で閉塞するなどの問題がおきる。また、流れ性の悪い混合粉末は、ホースから強制的に流れ出したとしても、金型、特に薄肉部分の金型に充填されずに健全な成形体が作製できないこともある。従って流れ性の優れた混合粉末の要求は強い。

この混合粉末の流れ性は、使用する金属粉末の粒径や形状、物性 改善添加元素の種類や添加量、粒径、形状によっても左右されるが 、最も影響を受けるのは潤滑剤の種類と添加量であると考えられて

いる。潤滑剤は、通常、添加量 0.1質量%をピークにして添加するほど流れ性が悪くなるため、流れ性の面からは潤滑剤の添加量は下げるほうが好ましい。しかし、潤滑剤の添加量を下げると潤滑性が著しく低下し、成形体を抜出す際に成形体と金型面との摩擦係数が増加し、型かじりや金型を損傷させる原因となる。従って、潤滑性と流れ性を両立させることは困難であった。

5

10

15

20

25

また、潤滑剤の種類や融点の面から考えても流れ性と潤滑性の両立は困難である。即ち、一般に融点の低いステアリン酸やステアリン酸アミドなどは潤滑性に優れているが、これら低融点の潤滑剤では凝集が生じて流れ性が悪くなる場合がある。特に、環境温度が高いときにその不具合は顕著に表れる。逆に融点の高い金属石鹸やエチレンビスアミドなどは、環境温度を高くしても良好な流れ性を維持できる反面、潤滑性は前記低融点のステアリン酸アミド等に比べると劣る。

流れ性と潤滑性の両立を目的としたものとして、例えば、特開平 1 0 − 3 1 7 0 0 1 号公報がある。この公報では、金属粉末粒子の表面を高温領域(2 0 0 ℃程度)まで安定な有機化合物(オルガノアルコキシシラン、オルガノシラザン、チタネート系またはフッ素系カップリング剤など)で被覆することにより、摩擦抵抗を低減し、接触帯電を抑制して流動性を向上させており、また該化合物によって潤滑性も向上するとしている。またこの公報には、前記オルガノアルコキシシラン等は、金属粉末表面に存在する水酸基と縮合反応して化学結合を形成し、表面改質するとしている。しかし、この公報の方法では、予め有機化合物を噴霧して金属粉末粒子の表面を被覆しておくための煩雑な工程(予備処理)を必要とする方法であり、また被覆(噴霧)のために用いた溶媒を乾燥除去しておく必要がある方法であり、量産化には適していない。

2

なお前記特開平10-317001号公報では、潤滑剤として脂肪酸モノアミド (エチレンステアリン酸モノアミドなど)、脂肪酸ビスアミド (エチレンステアリン酸ビスアミドなど) なども併用している。しかしこれら潤滑剤は、上述したように、流動性の向上効果が不十分である。

5

15

20

発明の開示

本発明は上記の様な事情に着目してなされたものであって、その目的は、煩雑な予備処理工程の有無を問わず、流動性と潤滑性の両10 方を向上できる粉末冶金用潤滑剤、及び該潤滑剤と金属粉末を混合した粉末冶金用混合粉末、並びに該粉末冶金用混合粉末を用いた焼結体の製造方法を提供することにある。

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ポリヒドロキシカルボン酸アミドは、煩雑な予備処理工程の有無を問わず、流動性と潤滑性の両方を向上できることを見出し、本発明を完成した。

すなわち、本発明に係る粉末冶金用潤滑剤は、下記式(1)で示されるポリヒドロキシカルボン酸アミドを含有する点に要旨を有するものである。

[式中、 R^1 は複数のヒドロキシル基が置換したアルキル基を示す。ただし該アルキル基の炭素数は、(a)2~10であるか又は(b) n以上、 $5 \times n$ 以下の範囲から選択される整数(nは置換ヒドロキシル基の数を示す)である。 R^2 は炭素数 $8 \sim 3$ 0の炭化水素基を示し、 R^3 は水素原子又は炭素数 $1 \sim 3$ 0の炭化水素基を示す

٦

前記ポリヒドロキシカルボン酸アミド(1)としてはアルドン酸アミドが好ましく、 R^1 の炭素数は 5 であるのが好ましく、 R^3 は水素原子であるのが好ましい。平均粒径は、例えば、 $1\sim300~\mu$ m程度である。

本発明の粉末冶金用潤滑剤は、さらに補助潤滑剤を含有していて もよい。該補助潤滑剤としては、金属石鹸、アルキレンビス脂肪酸 アミド、及び下記式(2)で示される脂肪酸アミドなどが挙げられ る。

10

20

25

5

$$R^4CON < R^5$$
 (2)

(式中、 R^4 は炭素数 $7 \sim 2$ 9 の炭化水素基を示す。 R^5 は水素原子 15 又は炭素数 $1 \sim 3$ 0 の炭化水素基を示す)

好ましい脂肪酸アミド(2)は、(N-オクタデセニル)へキサデカン酸アミド又は(<math>N-オクタデシル)ドコセン酸アミドである。ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤との質量比(前者/後者)は、例えば、30/70以上、<math>100/0未満程度である。

また本発明の粉末冶金用潤滑剤は、脂肪酸を、前記補助潤滑剤と 共に含有していてもよい。脂肪酸としては、炭素数16~22の飽 和脂肪族モノカルボン酸が好ましい。脂肪酸を用いる場合、ポリヒ ドロキシカルボン酸アミド(1)の使用量の一部を差し引き、この 差し引いた量と同質量の脂肪酸を使用することが推奨される。なお ポリヒドロキシカルボン酸アミド(1)と脂肪酸との質量比(前者 /後者)は、20/80以上、100/0未満であってもよい。

本発明には上記粉末冶金用潤滑剤と金属粉末とを混合した粉末冶金用混合粉末が含まれる。

前記金属混合粉末を圧縮成形し、次いで焼結することによって焼結体を製造できる。

5

10

15

20

25

図面の簡単な説明

図1はポリヒドロキシカルボン酸アミド (1) の炭素数mと限界 流出径又は抜き出し圧力との関係を示すグラフである。

発明を実施するための最良の形態

本発明の粉末冶金用潤滑剤は、ポリヒドロキシカルボン酸アミドを含有している。このポリヒドロキシカルボン酸アミドは、形式的にはポリヒドロキシアルキルカルボン酸と、長鎖の炭化水素基を有する1級又は2級アミンとで形成される化合物とみなすことができる化合物であり、このようなポリヒドロキシカルボン酸アミドは、金属粉末(鉄粉、鋼粉などの鉄基粉末など)と混合して一旦ホッパーに貯蔵し、該ホッパーから金型に混合粉末(成形用粉末)を排出する際に、混合粉末の流れ性を高めることができる。しかも金型で成形した後、成形体を抜き出す際の潤滑性をも高めることができる

ポリヒドロキシカルボン酸アミドがこのような作用を有しているのは、おそらく、金属粉末と混合した状態で又は金型で成型した状態で、ポリヒドロキシアルキル基の部分が金属粉末又は金型と相互作用(水素結合と推察される)し、親油性を有するアミノ基側の長鎖炭化水素基が外側を向くように配列し、層状構造を形成しているためと思料される。そして層状となった長鎖炭化水素基によって、流動性と潤滑性とが向上するものと思料される。なお従来の潤滑剤

(金属石鹸、ステアリン酸アミドなど)も長鎖炭化水素基の層状構造を形成可能であるが、本発明のポリヒドロキシカルボン酸アミドがこれらに比べて流動性と潤滑性を両立できるのは、層状構造が確実に形成されているためではないかと思料される。

層状構造を確実に形成するためには、ポリヒドロキシカルボン酸アミドと、金属粉末又は金型との親和性が重要であり、この観点からポリヒドロキシアルキル基部分におけるヒドロキシル基の数、アルキル基の炭素数などが重要となる。またN側の炭化水素基で構成される層の厚さ又は該炭化水素基の配列性なども重要となると思料され、これの観点から炭化水素基の炭素数が重要となる。従って本発明では、下記式(1)で示されるポリヒドロキシカルボン酸アミドを使用する。

5

10

15

25

$$R^{1}CON < \frac{R^{2}}{R^{3}} \qquad (1)$$

(式中、 R^1 は複数のヒドロキシル基が置換したアルキル基を示す。 R^2 は炭素数 $8 \sim 3$ 0 の炭化水素基を示し、 R^3 は水素原子又は炭素数 $1 \sim 3$ 0 の炭化水素基を示す)

なお該式(1)のポリヒドロキシカルボン酸アミドは、形式的に 20 は R^1 C O O H と R^2 R^3 N H との脱水生成物とみなすことができるが、他の方法で製造されたものであってもよい。

 R^1 のアルキル基の炭素数は、例えば、 $2\sim10$ (好ましくは炭素数 $4\sim6$ 、特に 5)程度である。また R^1 のアルキル基の炭素数は、該アルキル基に置換するヒドロキシル基の数 n に応じて定めてもよく、例えば、n 以上、 $5\times n$ 以下(好ましくは $3\times n$ 以下、特に $2.5\times n$ 以下)の範囲の整数から選択でき、特に好ましくは置換ヒドロキシル基の数 n と等しい。

前記ヒドロキシル基の数 n は、例えば、2 以上(好ましくは 3 以上、さらに好ましくは 4 以上)である。該ヒドロキシル基の数 n の上限は R^1 の炭素数によって自ずと限定されるが、例えば、1 0 以下(好ましくは 8 以下、さらに好ましくは 6 以下)程度であり、5 であってもよい。

5

15

25

ヒドロキシル基の数 n が多くなるほど、またヒドロキシル基の数 n に比べて R^1 の炭素数が相対的に少なくなるほど、 R^1 部分と金属 粉との相互作用が強くなる。

好ましいR¹COOHとしては、アルドン酸が挙げられる。アル 10 ドン酸はアルドースのアルデヒド基を酸化してカルボキシル基とした化合物に相当するポリヒドロキシカルボン酸であり、例えば下記式(3)に示すような化合物が挙げられる。

(式中、mは自然数を示し、好ましくは $1\sim9$ 、さらに好ましくは $3\sim5$ 、特に4である)

上記アルドン酸としては、例えば、グリセリン酸、エリトロン酸
20 、トレオン酸、リボン酸、アラビノン酸、キシロン酸、リキソン酸
、アロン酸、アルトロン酸、グルコン酸、マンノン酸、グロン酸、
インドン酸、ガラクトン酸、タロン酸などが挙げられる。

R²を形成する炭化水素基としては、飽和炭化水素基(アルキル基など)、不飽和炭化水素基(アルケニル基、アルキニル基など)が挙げられる。不飽和炭化水素基における不飽和結合の数は1つでもよく、複数(例えば2~6程度、好ましくは2~3程度)でもよく、複数の場合は不飽和二重結合と不飽和三重結合の両方を含んで

いてもよい。好ましい炭化水素基はアルキル基である。これら炭化水素基は、直鎖状であるのが望ましいが、直鎖(主鎖)を構成する炭素原子に1つ又は複数の低級アルキル基(例えば、炭素数1~6、特に炭素数1~3程度のアルキル基;ただしこれら低級アルキル基の炭素数は、主鎖の炭素数よりも少ない)が置換していてもよい。炭化水素基の炭素数は、好ましくは12以上(特に16以上)、24以下(特に22以下)である。なお低級アルキル基が置換している場合、主鎖の炭素数は、例えば5以上、好ましくは8以上、さらに好ましくは10以上である。炭素数が長くなるほど、層状構造を形成したときに該層状部分の親油性が高まるためか、流動性や潤滑性が向上する。しかし炭素数が長すぎると、炭化水素基が折れ曲がりやすくなるためか、流動性や潤滑性が低下する。

5

10

15

20

流動性や潤滑性の向上は、主としてR²によって達成されるため、R³はR²よりも幅広い範囲から選択でき、例えば直鎖状炭化水素基及び分岐鎖状炭化水素基から幅広く選択でき、さらには水素原子であってもよく、好ましくは水素原子である。該R³を形成する炭化水素基としては、飽和炭化水素基(アルキル基)、不飽和炭化水素基(アルケニル基、アルキニル基など)などが挙げられ、好ましくはアルキル基である。炭素数は、好ましくは26以下、特に24以下程度である。

R²R³NHとしては、例えば、以下のような化合物が挙げられる。

 $[R^2 = 直鎖状アルキル基、R^3 = 水素原子のとき]$

例えば、オクチルアミン、ノニルアミン、デシルアミン、ウンデ 25 シルアミン、ドデシルアミン、トリデシルアミン、テトラデシルア ミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルア ミン、オクタデシルアミン、ノナデシルアミン、イコシルアミン、

ヘンイコシルアミン、ドコシルアミン、トリコシルアミン、テトラ コシルアミンなどが挙げられる。

[R^2 =低級アルキル基が置換したアルキル基、 R^3 =水素原子のとき]

例えば、低級アルキル基が1つ置換したものとしては、2-エチ 5 ルヘキシルアミン、4-プロピルペンチルアミン、4-エチルペン チルアミン、2-メチルデシルアミン、3-メチルデシルアミン、 4-メチルデシルアミン、5-メチルデシルアミン、6-メチルデ シルアミン、7-メチルデシルアミン、9-メチルデシルアミン、 6-エチルノニルアミン、5-プロピルオクチルアミン、3-メチ 10 ルウンデシルアミン、6-プロピルノニルアミン、2-メチルドデ シルアミン、3-メチルドデシルアミン、4-メチルドデシルアミ ン、5-メチルドデシルアミン、11-メチルドデシルアミン、7 -プロピルデシルアミン、2-メチルトリデシルアミン、12-メ チルトリデシルアミン、2-メチルテトラデシルアミン、4-メチ 15 ルテトラデシルアミン、13-メチルテトラデシルアミン、14-メチルペンタデシルアミン、2-エチルテトラデシルアミン、15 -メチルヘキサデシルアミン、2-プロピルテトラデシルアミン、 2-エチルヘキサデシルアミン、14-エチルヘキサデシルアミン 、14-メチルヘプタデシルアミン、15-メチルヘプタデシルア 20 ミン、16-メチルヘプタデシルアミン、2-ブチルテトラデシル アミン、2-メチルオクタデシルアミン、3-メチルオクタデシル アミン、4ーメチルオクタデシルアミン、5ーメチルオクタデシル アミン、6-メチルオクタデシルアミン、7-メチルオクタデシル アミン、8-メチルオクタデシルアミン、9-メチルオクタデシル 25 アミン、10-メチルオクタデシルアミン、11-メチルオクタデ

シルアミン、14-メチルオクタデシルアミン、15-メチルオク

タデシルアミン、16-メチルオクタデシルアミン、17-メチルオクタデシルアミン、15-エチルペンタデシルアミン、3-メチルノナデシルアミン、2-エチルオクタデシルアミン、2-メチルイコシルアミン、2-プロピルオクタデシルアミン、2-ブチルオクタデシルアミン、2-メチルドコシルアミン、2-メチルトリコシルアミン、2-メチルトリコシルアミン、2-メチルトリコシルアミン、2-メチルトリコシルアミン、20-エチルドコシルアミン、18-プロピルへキサイコシルアミン、2-ヘキシルオクタデシルアミン、12-ヘキシルオクタデシルアミンなどが挙げられる。

5

10

低級アルキル基が複数置換したものとしては、2-ブチル-5-メチルペンチルアミン、2-イソブチル-5-メチルペンチルアミ ン、2,3-ジメチルノニルアミン、4,8-ジメチルノニルアミ ン、2-ブチル-5-メチルヘキシルアミン、4,4-ジメチルデ シルアミン、2-エチル-3-メチルノニルアミン、2,2-ジメ 15 チルー4-エチルオクチルアミン、2-プロピルー3-メチルノニ ルアミン、2,2-ジメチルドデシルアミン、2,3-ジメチルド デシルアミン、4,10-ジメチルドデシルアミン、2-ブチルー 3-メチルノニルアミン、2-ブチル-2-エチルノニルアミン、 3-エチル-3-ブチルノニルアミン、4-ブチル-4-エチルノ 20 ニルアミン、3,7,11-トリメチルドデシルアミン、2,2-ジメチルテトラデシルアミン、3,3-ジメチルテトラデシルアミ ン、4,4-ジメチルテトラデシルアミン、2-ブチルー2-ペン チルヘプチルアミン、2,3-ジメチルテトラデシルアミン、4, 8, 12-トリメチルトリデシルアミン、14, 14-ジメチルペ 25 ンタデシルアミン、3-メチル-2-ヘプチルノニルアミン、2, 2-ジペンチルヘプチルアミン、2,2-ジメチルヘキサデシルア

ミン、2-オクチル-3-メチルノニルアミン、2,3-ジメチル ヘプタデシルアミン、2,2-ジメチルオクタデシルアミン、2, 3-ジメチルオクタデシルアミン、2,4-ジメチルオクタデシル アミン、3,3-ジメチルオクタデシルアミン、2-ブチル-2-ヘプチルノニルアミン、20,20-ジメチルヘンイコシルアミン などが挙げられる。

 $[R^2 = T \mu$ ケニル基、 $R^3 =$ 水素原子のとき]

5

不飽和結合が1つのものとしては、例えば、2-オクテニルアミ ン、3-オタテニルアミン、2-ノネニルアミン、2-ノネニルア ミン、2-デセニルアミン、4-デセニルアミン、9-デセニルア 10 ミン、9-ヘンデセニルアミン、10-ヘンデセニルアミン、2-ドデセニルアミン、3-ドデセニルアミン、5-ドデセニルアミン 、11-ドデセニルアミン、2-トリデセニルアミン、12-トリ デセニルアミン、4-テトラデセニルアミン、5-テトラデセニル アミン、9-テトラデセニルアミン、2-ペンタデセニルアミン、 15 14-ペンタデセニルアミン、2-ヘキサデセニルアミン、7-ヘ キサデセニルアミン、9-ヘキサデセニルアミン、2-ヘプタデセ ニルアミン、6-オクタデセニルアミン、9-オクタデセニルアミ ン、11-オクタデセニルアミン、9-イコセニルアミン、11-イコセニルアミン、11-ドコセニルアミン、13-ドコセニルア 20 ミン、15-テトラコセニルアミンなどが挙げられる。

不飽和結合が複数のものとしては、例えば、 t r a n s - 8, t r a n s - 1 0 - オクタデカジエニルアミン、 c i s - 9, c i s - 1 2 - オクタデカジエニルアミン、 t r a n s - 9, t r a n s - 1 1 - オクタデカジエニルアミン、 c i s - 9, t r a n s - 1 1 - オクタデカジエニルアミン、 t r a n s - 1 0, c i s - 1 2 - オクタデカジエニルアミン、 c i s - 9, c i s - 1 2 - オクタデカジエニルアミン、 c i s - 9, c i s - 1 2 - オクタ

デカジエニルアミン、cis-10, cis-12-オクタデカジ エニルアミン、trans-10, trans-12-オタクデカ ジエニルアミン、trans-9, trans-11-オクタデカ ジエニルアミン、trans-8, trans-10-オクタデカ ジエニルアミン、trans-9, trans-11-オクタデカ 5 ジエニルアミン、cis-9, trans-11, trans-13-オクタデカトリエニルアミン、trans-9, trans-11、trans-13-オクタデカトリエニルアミン、cis-9, cis-12, cis-15-オクタデカトリエニルアミン、trans-9, trans-12, trans-15-オクタデ 10 カトリエニルアミン、trans-10, trans-12, tr5-オクタデカテトラエニルアミン、2,2-ジメチルcis-9 , c i s - 1 2 - オクタデカジエニルアミン、8, 11, 14 - イコサトリエニルアミン、12,20-ヘンイコサジエニルアミン、 15 9, 13-ドコサジエニルアミン、4, 8, 12, 15, 19-ド コサペンタエニルアミン、 2, 2 -ジメチル-c i s - 1 1, c is-14-イコサジエニルアミン、9, 15-テトラコサジエニル アミン、5,8,11-イコサトリエニルアミン、7,10,13 ードコサトリエニルアミン、8,11,14ードコサトリエニルア 20 ミン、4,8,11,14-ヘキサデカテトラエニルアミン、6, 9. 12. 15-ヘキサデカテトラエニルアミン、4,8,12, 15-オクタデカテトラエニルアミン、9,11,13,15-オ クタデカテトラエニルアミン、4,8,12,16-イコサテトラ エニルアミン、5,8,11,14-イコサテトラエニルアミン、 25 4, 7, 10, 13-ドコサヘキエニルアミン、4, 8, 12, 1 5、18-イコサペンタエニルアミン、4,8,12,15,19

- ドコサペンタエニルアミンなどが挙げられる。

低級アルキル基が置換したものとしては、例えば、 2 - メチルー 2 - ヘプテニルアミン、 3 - メチルー 2 - 'ノネニルアミン、 5 - メチルー 2 - 'ノネニルアミン、 5 - メチルー 2 - ノネニルアミン、 5 - メチルー 2 - トリデセニルアミン、 5 - メチルー 2 - トリデセニルアミン、 2 - メチルー 9 - オクタデセニルアミン、 2 - エチル 9 - オクタデセニルアミン、 2 - プロピルー 9 - オクタデセニルアミン、 2 - メチルー 2 - デセニルアミン、 2, 5 - ジメチルー 2 - ヘプタデセニルアミン、 2, 2 - ジメチルー 1 - イコセニルアミンなどが挙げられる。

 $[R^2 = T ルキニル基、R^3 = 水素原子のとき]$

不飽和結合は1つでも複数でもよく、低級アルキル基が置換して いてもよく、例えば、2-オクチニルアミン、7-オクチニルアミ ン、2-ノニニルアミン、2-デシニルアミン、2-ウンデシニル アミン、6-ウンデシニルアミン、9-ウンデシニルアミン、10 15 - ウンデシニルアミン、6 - ドデシニルアミン、7 - ドデシニルア ミン、8-トリデシニルアミン、9-トリデシニルアミン、7-テ トラデシニルアミン、7-ヘキサデシニルアミン、2-ヘプタデシ ニルアミン、5-オクタデシニルアミン、6-オクタデシニルアミ ン、7-オクタデシニルアミン、8-オクタデシニルアミン、9-20 オクタデシニルアミン、10-オクタデシニルアミン、11-オク タデシニルアミン、9-ノナデシニルアミン、12-ノナデシニル アミン、12-オクタデシニルアミン、13-ドコシニルアミン、 11, 16-ドコサジイニルアミン、7, 15-ドコサジイニルア ミン、8,15-ドコサジイニルアミン、21-トリコシニルアミ 25 ン、22-トリコシニルアミンなどが挙げられる。

特に好ましいポリヒドロキシカルボン酸アミド(1)としては、

(N-長鎖状アルキル)アルドン酸アミド、例えば下記式(4)で示される化合物が挙げられる。

$$CH_{2}(OH) \leftarrow \begin{pmatrix} OH \\ CH \\ D \end{pmatrix}_{p} CONH \leftarrow CH_{2} \rightarrow CH_{3}$$
 (4)

[式中、pは $1\sim9$ (好ましくは $1\sim4$) の整数を示し、qは $7\sim29$ (好ましくは $11\sim23$ 、さらに好ましくは $15\sim21$) の整数を示す]

前記ポリヒドロキシカルボン酸アミド(1)は、種々の方法によって製造できるが、 R^1COOH 又はその等価体と R^2R^3NH を原料とするアミド化反応を利用するのが簡便である。 R^1COOH と R^2R^3NH とは、例えば、脱水縮合することによってアミド化できる。また等価体としては、酸ハロゲン化物、エステル類(ラクトン体を含む)などが利用でき、特に R^1COOH がアルドン酸の場合には閉環体(ラクトン体)を利用することが比較的多い。該アルドン酸のラクトン体としては、例えば、 $\gamma-$ グルコノラクトン、 $\delta-$ グルコノラクトン、 $\gamma-$ ガラクトラクトンなどが挙げられる。

本発明の粉末冶金用潤滑剤は、ポリヒドロキシカルボン酸アミド (1)を単独で含有していてもよいが、さらに補助潤滑剤を含有していてもよい。該補助潤滑剤としては、公知(例えば汎用)の粉末冶金用潤滑剤や他の粉末冶金用潤滑剤など(但し、後述の脂肪酸を除く)が使用できる。公知の粉末冶金用潤滑剤(本発明では補助潤滑剤)は、通常、ポリヒドロキシカルボン酸アミド(1)に比べて流動性向上作用や潤滑性向上作用が劣っているが、実害を与えない範囲でポリヒドロキシカルボン酸アミド(1)の性能(流動性ー潤滑性バランス)を微調整するのに有用である。また他の粉末冶金用

20

25

潤滑剤(補助潤滑剤)には、流動性向上作用はないものの、潤滑性向上作用に優れているものがあり、このような補助潤滑剤を用いた場合にもポリヒドロキシカルボン酸アミド(1)の性能を微調整するのに有用である。

公知の粉末冶金用潤滑剤(補助潤滑剤)としては、例えば、金属石鹸、アルキレンビス脂肪酸アミドなどが挙げられる。前記金属石鹸には、脂肪酸塩、例えば、炭素数12以上(好ましくは14~24程度)の脂肪酸塩が含まれ、通常、ステアリン酸亜鉛が使用できる。前記アルキレンビス脂肪酸アミドには、例えば、 C_{2-6} アルキレンビス C_{12-24} カルボン酸アミドが含まれ、通常、エチレンビスステアリルアミドが使用できる。

潤滑性向上の為に併用される他の粉末冶金用潤滑剤(補助潤滑剤)としては、例えば、下記式(2)で示される脂肪酸アミドが使用できる。

15

25

10

5

$$R^4CON < R^5H$$
 (2)

(式中、R 4 は炭素数 $7\sim2$ 9 の炭化水素基を示す。 R 5 は、水素原子又は炭素数 $1\sim3$ 0 の炭化水素基を示す)

 R^4 は、好ましくは前記 R^2 と同様の範囲から選択できる。ただし炭素数は R^2 に比べて 1 少ない方にシフトする。 R^4 C O O H としては、例えば、以下のような化合物が挙げられる。

 $[R^4 = 直鎖状アルキル基のとき]$

例えば、オクタン酸(カプリル酸)、ノナン酸、デカン酸(カプ

リン酸)、ウンデカン酸、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、ヘンイコサン酸、ドコサン酸、トリコサン酸、テトラコサン酸などが挙げられる。

[R⁴=低級アルキル基が置換したアルキル基のとき]

5

例えば、低級アルキル基が1つ置換したものとしては、2-エチ ルヘキサン酸、4-プロピルペンタン酸、4-エチルペンタン酸、 2-メチルデカン酸、3-メチルデカン酸、4-メチルデカン酸、 5-メチルデカン酸、6-メチルデカン酸、7-メチルデカン酸、 10 9-メチルデカン酸、6-エチルノナン酸、5-プロピルオクタン 酸、3-メチルウンデカン酸、6-プロピルノナン酸、2-メチル ドデカン酸、3-メチルドデカン酸、4-メチルドデカン酸、5-メチルドデカン酸、11-メチルドデカン酸、7-プロピルデカン 酸、2-メチルトリデカン酸、12-メチルトリデカン酸、2-メ 15 チルテトラデカン酸、4-メチルテトラデカン酸、13-メチルテ トラデカン酸、14-メチルペンタデカン酸、2-エチルテトラデ カン酸、15-メチルヘキサデカン酸、2-プロピルテトラデカン 酸、2-エチルヘキサデカン酸、14-エチルヘキサデカン酸、1 4-メチルヘプタデカン酸、15-メチルヘプタデカン酸、16-20 メチルヘプタデカン酸、2-ブチルテトラデカン酸、2-メチルオ クタデカン酸、3-メチルオクタデカン酸、4-メチルオクタデカ ン酸、5-メチルオクタデカン酸、6-メチルオクタデカン酸、7 -メチルオクタデカン酸、8-メチルオクタデカン酸、9-メチル オクタデカン酸、10-メチルオクタデカン酸、11-メチルオク 25 タデカン酸、14-メチルオクタデカン酸、15-メチルオクタデ カン酸、16-メチルオクタデカン酸、17-メチルオクタデカン

酸、15-エチルペンタデカン酸、3-メチルノナデカン酸、2-エチルオクタデカン酸、2-メチルイコサン酸、2-プロピルオク タデカン酸、2-ブチルオクタデカン酸、2-メチルドコサン酸、 10-メチルドコサン酸、2-ペンチルオクタデカン酸、2-メチ ルトリコサン酸、3-メチルトリコサン酸、22-メチルトリコサン酸、20-エチルドコサン酸、18-プロピルヘキサイコサン酸 、2-ヘキシルオクタデカン酸、12-ヘキシルオクタデカン酸な どが挙げられる。

5

低級アルキル基が複数置換したものとしては、2ーブチルー5ー メチルペンタン酸、2-イソブチル-5-メチルペンタン酸、2, 10 3-ジメチルノナン酸、4,8-ジメチルノナン酸、2-ブチルー 5-メチルヘキサン酸、4,4-ジメチルデカン酸、2-エチルー 3-メチルノナン酸、2,2-ジメチル-4-エチルオクタン酸、 2-プロピル-3-メチルノナン酸、2,2-ジメチルドデカン酸 、2,3-ジメチルドデカン酸、4,10-ジメチルドデカン酸、 15 2-ブチル-3-メチルノナン酸、2-ブチル-2-エチルノナン 酸、3-エチル-3-ブチルノナン酸、4-プチル-4-エチルノ ナン酸、3,7,11-トリメチルドデカン酸、2,2-ジメチル テトラデカン酸、3,3-ジメチルテトラデカン酸、4,4-ジメ チルテトラデカン酸、2-ブチル-2-ペンチルヘプタン酸、2, 20 3-ジメチルテトラデカン酸、4,8,12-トリメチルトリデカ ン酸、14、14ージメチルペンタデカン酸、3一メチルー2ーへ プチルノナン酸、2,2-ジペンチルヘプタン酸、2,2-ジメチ ルヘキサデカン酸、2-オクチル-3-メチルノナン酸、2,3-ジメチルヘプタデカン酸、2,2-ジメチルオクタデカン酸、2, 25 3-ジメチルオクタデカン酸、2,4-ジメチルオクタデカン酸、 3,3-ジメチルオクタデカン酸、2-ブチル-2-ヘプチルノナ

不飽和結合が1つのものとしては、例えば、2ーオクテン酸、3 ーオクテン酸、2ーノネン酸、3ーノネン酸、2ーデセン酸、4ー 5 デセン酸、9ーデセン酸、9ーヘンデセン酸、10ーヘンデセン酸 、2ードデセン酸、3ードデセン酸、5ードデセン酸、11ードデセン酸、2ートリデセン酸、12ートリデセン酸、4ーテトラデセン酸、5ーテトラデセン酸、9ーテトラデセン酸、2ーペンタデセン酸、14ーペンタデセン酸、2ーヘキサデセン酸、7ーヘキサデセン酸、14ーペンタデセン酸、2ーヘプタデセン酸、6ーオクタデセン酸、9ーイコセン酸、11ーイコセン酸、11ードコセン酸、13ードコセン酸、15ーテトラコセン酸などが挙げられる。

不飽和結合が複数のものとしては、例えば、trans-8, tra ns - 12 - オクタデカジエン酸、 ci s - 9 , ci s - 12 15 ーオクタデカジエン酸、trans-9, trans-12-オク タデカジエン酸、cis-9, trans-11-オクタデカジエ ン酸、 t r a n s - 1 0 , c i s - 1 2 - オクタデカジエン酸、 cis-9, cis-12-オクタデカジエン酸、<math>cis-10, cis-12-オクタデカジエン酸、trans-10, trans 20 -12-オクタデカジエン酸、trans-9, trans-11 ーオクタデカジエン酸、trans-8, trans-10-オク タデカジエン酸、trans-9, trans-11-オクタデカ ジエン酸、 c i s-9 , t r a n s-1 1 , t r a n s-1 3 - オ クタデカトリエン酸、trans-9, trans-11, tra 25 ns-13-オクタデカトリエン酸、cis-9, cis-11,trans-13-オクタデカトリエン酸、cis-9, cis-

12, cis-15-オクタデカトリエン酸、trans-9, t rans-12, trans-15-オクタデカトリエン酸、tr ans-10, trans-12, trans-14-オクタデカ トリエン酸、9,11,13,15-オクタデカテトラエン酸、2 , 2 - ジメチルcis- 9 , cis- 1 2 - オクタデカジエン酸、 5 8, 11, 14-イコサトリエン酸、12, 20-ヘンイコサジエ ン酸、9,13-ドコサジエン酸、4,8,12,15,19-ド コサペンタエン酸、 2 , 2 -ジメチルー c i s-1 1 , c i s-14-イコサジエン酸、9,15-テトラコサジエン酸、5,8,1 1-イコサトリエン酸、7,10,13-ドコサトリエン酸、8, 10 11, 14-ドコサトリエン酸、4, 8, 11, 14-ヘキサデカ テトラエン酸、6,9,12,15-ヘキサデカテトラエン酸、4 , 8, 12, 15-オクタデカテトラエン酸、9, 11, 13, 1 5-オクタデカテトラエン酸、4,8,12,16-イコサテトラ エン酸、5,8,11,14-イコサテトラエン酸、4,7,10 15 , 13-ドコサヘキエン酸、4,8,12,15,18-イコサペ ンタエン酸、4,8,12,15,19-ドコサペンタエン酸など が挙げられる。

低級アルキル基が置換したものとしては、例えば、2ーメチルー20 2 - ヘプテン酸、3ーメチルー2ーノネン酸、5ーメチルー2ーノネン酸、5ーメチルー2ードデセン酸、5ーメチルー2ードデセン酸、5ーメチルー2ートリデセン酸、2ーメチルー9ーオクタデセン酸、2ーエチル9ーオクタデセン酸、2ープロピルー9ーオクタデセン酸、2ーメチルー2ーイコセン酸、2ーメチルー2ーヘキルコセン酸、3,4ージメチルー3ーペンテン酸、5,9ージメチルー2ーデセン酸、2,5ージメチルー2ーヘプタデセン酸、2,2ージメチルー11ーイコセン酸などが挙げられる。

 $[R^4 = アルキニル基のとき]$

不飽和結合は1つでも複数でもよく、低級アルキル基が置換していてもよく、例えば、2ーオクチン酸、7ーオクチン酸、2ーノニン酸、2ーデシン酸、2ーウンデシン酸、6ーウンデシン酸、9ーランデシン酸、10ーウンデシン酸、6ードデシン酸、7ードデシン酸、8ートリデシン酸、2ーヘプタデシン酸、5ーオクタデシン酸、6ーオクタデシン酸、7ーオクタデシン酸、8ーオクタデシン酸、9ーオクタデシン酸、10ーオクタデシン酸、11ーオクタデシン酸、12ーノナデシン酸、12ーオクタデシン酸、13ードコシン酸、11、16ードコサジイン酸、7、15ードコサジイン酸、8,15ードコサジイン酸、21ートリコシン酸、22ートリコシン酸などが挙げられる。

 R^5 は、好ましくは前記 R^3 と同様の範囲から選択できる。特に好 t ましい t ましい t ましい t ない t に 可能の範囲から選択できる。 t t としては、例えば、以下のような化合物が挙げられる。

 $[R^5 = 直鎖状アルキル基のとき]$

例えば、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルア
20 ミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、ノナデシルアミン、イコシルアミン、
ヘンイコシルアミン、ドコシルアミン、トリコシルアミン、テトラコシルアミンなどが挙げられる。

[R⁵=低級アルキル基が置換したアルキル基のとき]

25 例えば、低級アルキル基が1つ置換したものとしては、例えば、 2-エチルヘキシルアミン、4-プロピルペンチルアミン、4-エ チルペンチルアミン、2-メチルデシルアミン、3-メチルデシル

アミン、4ーメチルデシルアミン、5-メチルデシルアミン、6-メチルデシルアミン、7-メチルデシルアミン、9-メチルデシル アミン、6-エチルノニルアミン、5-プロピルオクチルアミン、 3-メチルウンデシルアミン、6-プロピルノニルアミン、2-メ チルドデシルアミン、3-メチルドデシルアミン、4-メチルドデ 5 シルアミン、5-メチルドデシルアミン、11-メチルドデシルア ミン、7-プロピルデシルアミン、2-メチルトリデシルアミン、 12-メチルトリデシルアミン、2-メチルテトラデシルアミン、 4-メチルテトラデシルアミン、13-メチルテトラデシルアミン 、14-メチルペンタデシルアミン、2-エチルテトラデシルアミ 10 ン、15-メチルヘキサデシルアミン、2-プロピルテトラデシル アミン、2-エチルヘキサデシルアミン、14-エチルヘキサデシ ルアミン、14-メチルヘプタデシルアミン、15-メチルヘプタ デシルアミン、16-メチルヘプタデシルアミン、2-ブチルテト ラデシルアミン、2-メチルオクタデシルアミン、3-メチルオク 15 タデシルアミン、4-メチルオクタデシルアミン、5-メチルオク タデシルアミン、6-メチルオクタデシルアミン、7-メチルオク タデシルアミン、8-メチルオクタデシルアミン、9-メチルオク タデシルアミン、10-メチルオクタデシルアミン、11-メチル オクタデシルアミン、14-メチルオクタデシルアミン、15-メ 20 チルオクタデシルアミン、16-メチルオクタデシルアミン、17 - メチルオクタデシルアミン、15-エチルペンタデシルアミン、 3-メチルノナデシルアミン、2-エチルオクタデシルアミン、2 ーメチルイコシルアミン、2ープロピルオクタデシルアミン、2ー ブチルオクタデシルアミン、2-メチルドコシルアミン、10-メ 25 チルドコシルアミン、2-ペンチルオクタデシルアミン、2-メチ ルトリコシルアミン、3-メチルトリコシルアミン、22-メチル

トリコシルアミン、20-エチルドコシルアミン、18-プロピル ヘキサイコシルアミン、2-ヘキシルオクタデシルアミン、12-ヘキシルオクタデシルアミンなどが挙げられる。

低級アルキル基が複数置換したものとしては、例えば、2-ブチ ルー5-メチルペンチルアミン、2-イソブチルー5-メチルペン 5 チルアミン、2,3-ジメチルノニルアミン、4,8-ジメチルノ ニルアミン、2-ブチル-5-メチルヘキシルアミン、4,4-ジ メチルデシルアミン、2-エチル-3-メチルノニルアミン、2, 2-ジメチル-4-エチルオクチルアミン、2-プロピル-3-メ チルノニルアミン、2,2-ジメチルドデシルアミン、2,3-ジ 10 メチルドデシルアミン、4,10-ジメチルドデシルアミン、2-ブチルー3-メチルノニルアミン、2-ブチルー2-エチルノニル アミン、3-エチル-3-ブチルノニルアミン、4-ブチル-4-エチルノニルアミン、3,7,11-トリメチルドデシルアミン、 2, 2-ジメチルテトラデシルアミン、3, 3-ジメチルテトラデ 15 シルアミン、4,4-ジメチルテトラデシルアミン、2-ブチルー 2-ペンチルヘプチルアミン、2,3-ジメチルテトラデシルアミ ン、4,8,12-トリメチルトリデシルアミン、14,14-ジ メチルペンタデシルアミン、3-メチル-2-ヘプチルノニルアミ ン、2,2-ジペンチルヘプチルアミン、2,2-ジメチルヘキサ 20 デシルアミン、2-オクチル-3-メチルノニルアミン、2,3-ジメチルヘプタデシルアミン、2,2-ジメチルオクタデシルアミ ン、2,3-ジメチルオクタデシルアミン、2,4-ジメチルオク タデシルアミン、3,3-ジメチルオクタデシルアミン、2-ブチ ルー2-ヘプチルノニルアミン、20,20-ジメチルヘンイコシ 25

 $[R^{5}= T ルケニル基のとき]$

ルアミンなどが挙げられる。

不飽和結合が1つのものとしては、例えば、2-オクテニルアミ ン、3-オタテニルアミン、2-ノネニルアミン、2-ノネニルア ミン、2-デセニルアミン、4-デセニルアミン、9-デセニルア ミン、9-ヘンデセニルアミン、10-ヘンデセニルアミン、2-ドデセニルアミン、3-ドデセニルアミン、5-ドデセニルアミン 5 、11-ドデセニルアミン、2-トリデセニルアミン、12-トリ デセニルアミン、4ーテトラデセニルアミン、5ーテトラデセニル アミン、9-テトラデセニルアミン、2-ペンタデセニルアミン、 14-ペンタデセニルアミン、2-ヘキサデセニルアミン、7-ヘ キサデセニルアミン、9-ヘキサデセニルアミン、2-ヘプタデセ 10 ニルアミン、6-オクタデセニルアミン、9-オクタデセニルアミ ン、11-オクタデセニルアミン、9-イコセニルアミン、11-イコセニルアミン、11-ドコセニルアミン、13-ドコセニルア ミン、15-テトラコセニルアミンなどが挙げられる。

不飽和結合が複数のものとしては、例えば、trans-8,t 15 -12 - オクタデカジエニルアミン、 trans - 9, trans-12 - オクタデカジエニルアミン、cis - 9, trans - 1 1-オクタデカジエニルアミン、trans-10, cis-12 ーオクタデカジエニルアミン、cis-9, cis-12-オクタ 20 デカジエニルアミン、cis-10, cis-12-オクタデカジ エニルアミン、trans-10, trans-12-オタクデカ ジエニルアミン、trans-9, trans-11-オクタデカ ジエニルアミン、trans-8, trans-10-オクタデカ ジエニルアミン、trans-9, trans-11-オクタデカ 25 ジエニルアミン、 c i s-9, t rans-1 1, t rans-13-オクタデカトリエニルアミン、trans-9, trans-

11, trans-13-オクタデカトリエニルアミン、cis-9, cis-12, cis-15-オクタデカトリエニルアミン、trans-9, trans-12, trans-15-オクタデ カトリエニルアミン、trans-10, trans-12, trans-14-オタタデカトリエニルアミン、9, 11, 13, 1 5 5-オクタデカテトラエニルアミン、2,2-ジメチルcis-9 コサトリエニルアミン、12,20-ヘンイコサジエニルアミン、 9, 13-ドコサジエニルアミン、4,8,12,15,19-ド コサペンタエニルアミン、2, 2-ジメチル-cis-11, ci 10 s-14-イコサジエニルアミン、9,15-テトラコサジエニル アミン、5,8,11-イコサトリエニルアミン、7,10,13 ードコサトリエニルアミン、8,11,14ードコサトリエニルア ミン、4,8,11,14-ヘキサデカテトラエニルアミン、6, 9, 12, 15-ヘキサデカテトラエニルアミン、4, 8, 12, 15 15-オクタデカテトラエニルアミン、9,11,13,15-オ クタデカテトラエニルアミン、4,8,12,16-イコサテトラ エニルアミン、5,8,11,14-イコサテトラエニルアミン、 4, 7, 10, 13-ドコサヘキエニルアミン、4, 8, 12, 1 5, 18-イコサペンタエニルアミン、4, 8, 12, 15, 19 20

20 5,18-イコサペンタエニルアミン、4,8,12,15,19 ードコサペンタエニルアミンなどが挙げられる。 低級アルキル基が置換したものとしては、例えば、2-メチル

(本版) ルギル基が値換したものとしては、パスは、コースをはなり、10年間によった。 10年間によった。 10年間によった

アミン、2-メチルー2-イコセニルアミン、5, 9-ジメチルー 2-デセニルアミン、2, 5-ジメチルー2-ヘプタデセニルアミン、2, 2-ジメチルー11-イコセニルアミンなどが挙げられる。

 $[R^4 = アルキニル基のとき]$

不飽和結合は1つでも複数でもよく、低級アルキル基が置換して いてもよく、例えば、2-オクチニルアミン、7-オクチニルアミ ン、2-ノニニルアミン、2-デシニルアミン、2-ウンデシニル アミン、6-ウンデシニルアミン、9-ウンデシニルアミン、10 - ウンデシニルアミン、6 - ドデシニルアミン、7 - ドデシニルア 10 ミン、8-トリデシニルアミン、9-トリデシニルアミン、7-テ トラデシニルアミン、7-ヘキサデシニルアミン、2-ヘプタデシ ニルアミン、5-オクタデシニルアミン、6-オクタデシニルアミ ン、7-オクタデシニルアミン、8-オクタデシニルアミン、9-オクタデシニルアミン、10-オクタデシニルアミン、11-オク 15 タデシニルアミン、9-ノナデシニルアミン、12-ノナデシニル アミン、12-オクタデシニルアミン、13-ドコシニルアミン、 11,16-ドコサジイニルアミン、7,15-ドコサジイニルア ミン、8,15-ドコサジイニルアミン、21-トリコシニルアミ ン、22-トリコシニルアミンなどが挙げられる。 20

特に好ましい脂肪酸アミド(2)は、炭素数16~22程度のアルカン又はアルケンカルボン酸と、炭素数16~22程度(特に炭素数18程度)のモノアルカン又はモノアルケンアミンとからなるアミドであり、さらに好ましくはカルボン酸由来の炭化水素基及びアミン由来の炭化水素基のうち一方が飽和炭化水素基であって、他方が不飽和炭化水素基となるアミド[特に(N-オクタデセニル)ヘキサデカン酸アミド、(N-オクタデシル)ドコセン酸アミドな

ど] である。

5

15

25

ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤との質量比(前者/後者)は、補助潤滑剤の特性に応じて適宜設定できる(以下、この質量比を第1の質量比と称する場合がある)。この第1の質量比は、例えば、30/70以上(好ましくは40/60以上、さらに好ましくは60/40以上)、100/0未満(好ましくは95/5以下、さらに好ましくは90/10以下)の範囲から選択できる。

また粉末冶金用潤滑剤が前記補助潤滑剤を含む場合、さらに脂肪 10 酸も併用してもよい。ポリヒドロキシカルボン酸アミド(1)、補 助潤滑剤、及び脂肪酸を含有する粉末冶金用潤滑剤は、潤滑性と流 れ性の両方を著しく改善できる。

該脂肪酸としては、例えば、前記 R^4 C O O H として例示される 化合物が使用でき、これら化合物は単独で又は 2 種以上組み合わせ て使用できる。脂肪酸の好ましい範囲も前記 R^4 C O O H と同様であり、特に好ましい脂肪酸は、炭素数が $1.6 \sim 2.2$ 程度の脂肪酸である。また特に好ましい脂肪酸は、脂肪族飽和モノカルボン酸である。

脂肪酸を用いる場合、ポリヒドロキシカルボン酸アミド(1)の 20 使用量の一部を差し引き、この差し引いた量と同質量の脂肪酸を使 用することが推奨される。すなわちポリヒドロキシカルボン酸アミ ド(1)と脂肪酸の合計と、補助潤滑剤との質量比(前者/後者) が、前記第1の質量比として示される数値と等しいことが望ましい

なおポリヒドロキシカルボン酸アミド(1)と脂肪酸との質量比 (前者/後者)は、例えば、20/80以上(好ましくは30/7 0以上、特に35/65以上)、100/0未満(好ましくは90

/10以下、特に80/20以下)であってもよい。

粉末冶金用潤滑剤がポリヒドロキシカルボン酸アミド(1)の他 に、前記補助潤滑剤、脂肪酸などを含む場合、これらの配合手順は 特に限定されない。例えば、粉末冶金用潤滑剤がポリヒドロキシカ ルボン酸アミド(1)及び補助潤滑剤の両方を含む場合、金属粉末 と混合する前にポリヒドロキシカルボン酸アミド(1)と補助潤滑 剤を混合して混合潤滑剤としておいてもよく、予め混合することな く、ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤を、適当 な順で金属粉末と混合してもよい。また粉末冶金用潤滑剤がポリヒ ドロキシカルボン酸アミド(1)、補助潤滑剤、及び脂肪酸を含む 10 場合、金属粉末と混合する前にポリヒドロキシカルボン酸アミド(1)と補助潤滑剤と脂肪酸を混合して混合潤滑剤としておいてもよ く、予め混合することなく、ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤と脂肪酸とを、適当な順で金属粉末と混合してもよ 15 V)

本発明の粉末冶金用潤滑剤は実質的に粉末状の形態を有しており、その平均粒径は、例えば 1μ m以上、好ましくは 5μ m以上、さらに好ましくは $1 0 \mu$ m以上程度であるのが推奨される。平均粒径を所定値以上とすることによって、金属粉間の隙間に潤滑剤が入り込むのを防止でき、潤滑性を十分に向上させることができる。一方、平均粒径が大きくなると、潤滑性や流動性の向上には効果的であるが、成形体表面に肌荒れが発生し易くなり、健全な成形体や焼結品の作製が難しくなる。従って平均粒径は、例えば、 $3 0 0 \mu$ m以下(好ましくは $1 0 0 \mu$ m以下、さらに好ましくは $5 0 \mu$ m以下)程度であるのが推奨される。

20

25

なお粉末冶金用潤滑剤として、ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤との混合粉(混合潤滑剤)を使用する場合、補

助潤滑剤の平均粒径 $R_{(y)}$ は、ポリヒドロキシカルボン酸アミド(1)の平均粒径 $R_{(x)}$ よりも小さくてもよいが、該平均粒径 $R_{(x)}$ よりも大きくすることが推奨される [ただし、平均粒径 $R_{(x)}$ 、 $R_{(y)}$ は、いずれも上記所定範囲内となっていることが望まれる]。補助潤滑剤の平均粒径 $R_{(y)}$ が、ポリヒドロキシカルボン酸アミド(1)の平均粒径 $R_{(x)}$ よりも大きくすると、単に混合するだけで、該補助潤滑剤の表面にポリヒドロキシカルボン酸アミド(1)が付着した複合体を形成できる。なお全てのポリヒドロキシカルボン酸アミド(1)が複合体を形成するのではなく、通常、その一部が複合体となる。

5

10

20

25

なお前記平均粒径は、積算粒度分布曲線の50%粒径(累積平均径)を意味しており、例えばマイクロトラック粒度分布装置(日機装製X-100)を用いて測定できる。測定条件としては、「サンプルの光の透過の有無」を有とし、「球形の有無」を無(非球形)とし、屈折率:1.81、使用溶媒:水とすることが推奨される。また試料の前処理としては、試料0.2gを純水50mlで希釈し、界面活性剤を数滴添加して試料を分散させておくことが推奨される。通常、2回測定し、その平均値を採用する。

本発明の粉末冶金用潤滑剤は、金属粉末(鉄基粉末など)、及び必要に応じて合金化用金属粉(例えば、銅粉、ニッケル粉、燐合金粉、黒鉛粉など)、特性改善添加材(被削性改善の為に使用する硫化マンガンの他、タルク、フッ化カルシウムなど)と混合して粉末冶金用混合粉末(成形用粉末)とする。さらに偏析や発塵防止のためにバインダを併用してもよい。該混合粉末は、通常、ホッパーに貯蔵され、この貯蔵ホッパーから金型に排出して成形体を形成する。本発明の粉末冶金用潤滑剤は、ポリヒドロキシカルボン酸アミド(1)を含有しているため、ホッパーからの排出の際の流動性を改

善でき、また成形後に型抜きする際の潤滑性をも改善できる。しか も該粉末冶金用潤滑剤は、煩雑な予備処理工程なしでも、すなわち 単純に金属粉末等と混合しただけでも、流れ性と潤滑性の両方を改 善できる。

本発明の粉末冶金用潤滑剤の使用量は、粉末冶金用混合粉末全体 に対して、例えば、0.01質量%以上(好ましくは0.1質量% 以上、さらに好ましくは0.3質量%以上)、2質量%以下(好ま しくは1.5質量%以下、さらに好ましくは1.0質量%以下)程 度である。粉末冶金用潤滑剤の使用量が不足すると、潤滑性が不足 する。一方、過剰に使用しても、潤滑性が飽和するだけでなく、流 10 動性や圧縮性が低下する。

5

15

20

なお粉末冶金用潤滑剤は、上述したように金属粉末と一緒に混合 するのが一般的であるが、成形前に金型に直接該潤滑剤を吹き付け ることによって(金型潤滑成形方法と称されている)、金属粉末と 混合する潤滑剤を低減してもよい。

上記のようにして得られる成形体を焼結することによって、焼結 体を得ることができる。

以上、詳述したように、本発明の粉末冶金用潤滑剤はポリヒドロ キシカルボン酸アミド(1)を含有しているため、煩雑な予備処理 工程の有無を問わず、粉末冶金において流動性と潤滑性を両立でき る。

実施例

以下、実施例を挙げて本発明をより具体的に説明するが、本発明 はもとより下記実施例によって制限を受けるものではなく、前・後 25 記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿 論可能であり、それらはいずれも本発明の技術的範囲に包含される

なお以下の実験例では、下記に示す潤滑剤を使用した。

- (1) n-C₂H₃(OH)₂-CONH-n-C₆H₁₃(N-ヘキシル)グリセリン酸アミド(日本精化株式会社製)
- (2) n-C₂H₃(OH)₂-CONH-n-C₈H₁₇
 (N-オクチル)グリセリン酸アミド(日本精化株式会社製)
 - (3) n-C₂H₃(OH)₂-CONH-n-C₁₈H₃₇(N-オクタデシル)グリセリン酸アミド(日本精化株式会社製)
- (4) n-C₂H₃(OH)₂-CONH-n-C₈H₃₅
 (N-オクタデセニル) グリセリン酸アミド(日本精化株式会 社製)
 - (5) n-C₂H₃(OH)₂-CONH-n-C₂₂H₄₅(N-ドコシル)グリセリン酸アミド(日本精化株式会社製)
- (6) n-C₂H₃(OH)₂-CONH-n-C₂₄H₄₉
 (N-テトラコシル) グリセリン酸アミド(日本精化株式会社製)
 - (7) n-C₅H₆(OH)₅-CONH-n-C₆H₁₃(N-ヘキシル)グルコン酸アミド(日本精化株式会社製)
- (8) n-C₅H₆(OH)₅-CONH-n-C₈H₁₇
 (N-オクチル)グルコン酸アミド(日本精化株式会社製)

)

- (9) n-C₅H₆(OH)₅-CONH-n-C₁₈H₃₇(N-オクタデシル)グルコン酸アミド(日本精化株式会社製
- (10) n-C₅H₆(OH)₅-CONH-n-C₁₈H₃₅
 (N-オクタデセニル) グルコン酸アミド(日本精化株式会社 製)

(11) n-C₅H₆(OH)₅-CONH-n-C₂₂H₄₅(N-ドコシル) グルコン酸アミド(日本精化株式会社製)

(12) n-C₅H₆(OH)₅-CONH-n-C₂₄H₄₉
 (N-テトラコシル) グルコン酸アミド(日本精化株式会社製

(13)n-C₁₇H₃₅-COO-Zn-OCO-n-C₁₇H₃₅ ステアリン酸亜鉛 (大日化学社製)

($1\,$ 4) $\,$ n - C $_{17}H_{\,35}-$ C O N H - C H $_2$ C H $_2-$ N H C O - n - C $_{17}H_{\,35}$

10 エチレンビスステアリルアミド (大日化学社製)

 $(15) C_{15}H_{31}-CONH-C_{18}H_{35}$ (N-オクタデセニル) ヘキサデカン酸アミド

実験例1~14

V型混合機(筒井理化学機器株式会社製)において、純鉄粉(株 15 式会社神戸製鋼所製 商品名「アトメル300M」)と、0.75 質量%(粉末冶金用混合粉末全体を100質量%とする)の下記表 1に示す潤滑剤1を30分間混合した。得られた粉末冶金用混合粉 末の見掛け密度、流動度、限界流出径を下記の方法によって測定し た。また、この混合粉末を用いて成形したときの成形体密度と抜出 20 し圧力を下記の方法によって測定した。

(1) 見掛け密度 (g/c m³)

J I S Z 2 5 0 4 (金属粉-見掛け密度試験方法) に従って測定した。

(2) 流動度(s/50g)

25 JIS Z 2502 (金属粉の流動度試験法)に準拠した。すな わち2.63 m m φ のオリフィスを50 g の混合粉末が流れ出るま での時間を測定し、この時間を混合粉末の流動度とした。

(3) 限界流出径 (mm)

5

15

内径114mm φ、高さ150mmの円筒状であって、底に排出径を変えることのできる排出孔を設けた容器に、該排出孔を閉じた状態で2kgの混合粉末を充填した。10分間保持したあと、排出孔を徐々に開き混合粉末を排出できる最小径を測定し、この最小径を限界流出径とした。限界流出径が小さいほど、流れ性に優れていることを意味する。

(4) 成形体密度 (g/cm³)

圧力490.3MPa (5 T / c m²)、常温 (25℃)で直径 10 25 m m φ、長さ15 m m の円柱状成形体を作製し、JSPM標準 1-64 (金属粉の圧縮試験法)に従って成形体密度を測定した。

(5) 抜出し圧力 (MPa)

前記(4)成形体密度の測定の際に得られた成形体を金型から抜 出すのに必要な荷重を、金型と成形体との接触面積で除することに よって抜き出し圧力を求めた。

実験例15~19

下記表1に示す潤滑剤1と潤滑剤2の混合粉(混合潤滑剤)を合計で0.75質量%(粉末冶金用混合粉末全体を100質量%とする)使用する以外は、前記実験例1~14と同様にした。

20 実験例 1 ~ 1 9 の結果を下記表 2 に示す。また実験例 1 ~ 6 及び 実験例 7 ~ 1 2 の結果を整理して図 1 に示す。

14 14 14 14 14 14 14 14			(質量比)		1	1	ı	I	l	ı	1	I	1	I	ı	1	ı	90/10	70/30	20/80	70/30	70/30
14 14 14 14 14 14 14 14	5		平均粒径R _(y) (μ m)	I	1	1	1	1	ı	1	1	1	Į.	1	[]	Ī	1	30	30	30	15	10
第音剤1 = 1				1	1	I ,	1	I	1	I	1	ı	1	I	1	1		C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅	C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅	C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅	n-C ₁₇ H ₃₅ -C00-Zn-0C0- <i>n</i> -C ₁₇ H ₃₅	n-C ₁₇ H ₃₅ -CONH-CH ₂ CH ₂ -NHCO-C ₁₇ H ₃₅
第一次	15		平均粒径R _(x) (<i>μ</i> m)	12	14	11	13	14	13	12	14	14	14	12	13	15	10	14	14	14	14	14
				n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₆ H ₁₃	n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₈ H ₁₇	n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₁₈ H ₃₇	n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₁₈ H ₃₅	n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₂₂ H ₄₅	n-C ₂ H ₃ (OH) ₂ -CONH-n-C ₂₄ H ₄₉	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₆ H ₁₃	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₈ H ₁₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₅	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₂₂ H ₄₅	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₂₄ H ₄₉	n-C ₁₇ H ₃₅ -COO-Zn-OCO-n-C ₁₇ H ₃₅	7-C ₁₇ H ₃₅ -CONH-CH ₂ CH ₂ -NHCO- <i>n</i> -C ₁₇ H ₃₅	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇
- 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	20	<u>#</u>	、觀麼	,	2	ဗ	4	2	9	7	ω	6	유	=	12	13	14	15	16	17	18	19

表2

実験例	見かけ 密度 (g/cm ³)	流動度 (s/50g)	限界 流出径 (mm)	成形体 密度 (g/cm ³)	抜出 圧力 (MPa)
1	3.44	30.6	35.0	6.87	15.3
2	3.39	25.6	15.0	6.88	13.0
3	3.41	21.4	12.5	6.89	9.8
4	3.40	22.0	12.5	6.90	9.6
5	3.35	22.4	12.5	6.88	11.3
6	3.36	23.2	15.0	6.87	12.4
7	3.42	29.4	35.0	6.88	14.7
8	3.43	25.3	12.5	6.89	12.8
9	3.40	22.0	10.0	6.90	9.5
10	3.38	21.8	10.0	6.90	10.1
11	3.40	22.2	12.5	6.88	11.0
12	3.40	23.0	12.5	6.88	12.4
13	3.32	25.8	15.0	6.90	13.6
14	3.16	26.7	25.0	6.88	15.8
15	3.36	22.0	10.0	6.90	8.6
16	3.33	22.3	12.5	6.90	8.0
17	3.28	28.9	25.0	6.89	7.5
18	3.38	25.3	12.5	6.88	10.2
19	3.20	25.5	10.0	6.89	10.4

25

20

5

10

15

実験例13~14から明らかなように、従来の潤滑剤(ステアリン酸亜鉛、エチレンビスステアリルアミドなど)を単独で使用して

も、流動性(限界流出径)及び潤滑性(抜き出し圧力)を高いレベルで両立させることはできない。

実験例15~16及び18~19より明らかなように、補助潤滑 15 剤(潤滑剤2)を併用することによって、本発明に悪影響を与えない範囲で流動性(限界流出径)及び潤滑性(抜き出し圧力)を調整できる。特に実験例15~16と実験例9との対比から明らかなように、脂肪酸アミド(2)を併用した場合には潤滑性(抜き出し圧力)の改善効果が顕著であり、とりわけ実験例15では流動性(限20 界流出径)に全く悪影響を与えることなく潤滑性(抜き出し圧力)を高めることができる。

実験例20~22

25

下記表3に示す潤滑剤1、潤滑剤2、及び脂肪酸の混合粉(混合潤滑剤)を合計で0.75質量%(粉末冶金用混合粉末全体を100質量%とする)使用する以外は、前記実験例16と同様にした。結果を表3に示す。

3 5

			実験例20	実験例21	実験例22
		混合潤滑剤			
		潤滑剤1	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇	n-C ₅ H ₆ (OH) ₅ -CONH-n-C ₁₈ H ₃₇
	ļ 	潤滑剤2	C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅	C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅	C ₁₅ H ₃₁ -CONH-C ₁₈ H ₃₅
		脂肪酸	ステアリン酸	ステアリン酸	ステアリン酸
-		潤滑剤1/潤滑剤2/脂肪酸	50/30/20	30/30/40	30/20/50
_	質量比	(潤滑剤1+脂肪酸)/潤滑剤2	70/30	70/30	80/20
		潤滑剤1/潤滑剤3	71/29	43/57	38/62
		試験結果			
		見かけ密度(g/cm³)	3. 29	3. 33	3.35
·		流動度 (s/50g)	20. 2	19. 0	19. 6
		限界流出径 (mm)	10.0	7.5	7.5
		成形体密度 (g/cm³)	6.93	6.91	6.90
		抜出圧力 (MPa)	6 · 9	6.6	7. 2

表3から明らかなように、脂肪酸を併用した実験例20~22は、 流動性(限界流出径)及び潤滑性(抜き出し圧力)を最も優れたレベルで両立させることができる。また流動度の点でも最も優れている。

5

産業上の利用可能性

本発明は粉末冶金に極めて有利に適用できる。

請 求 の 範 囲

1. 下記式(1)で示されるポリヒドロキシカルボン酸アミドを含有する粉末冶金用潤滑剤。

5

$$R^{1}CON < \frac{R^{2}}{R^{3}} \qquad (1)$$

(式中、 R^1 は複数のヒドロキシル基が置換した炭素数 $2 \sim 1$ 0 の アルキル基を示し、 R^2 は炭素数 $8 \sim 3$ 0 の炭化水素基を示し、 R^3 10 は水素原子又は炭素数 $1 \sim 3$ 0 の炭化水素基を示す)

2. 下記式(1)で示されるポリヒドロキシカルボン酸アミドを含有する粉末冶金用潤滑剤。

$$R^{1}CON \underset{\mathbb{R}^{3}}{\overset{2}{\stackrel{}{\left(1\right)}}} \qquad (1)$$

15

20

(式中、 R^1 は複数のヒドロキシル基が置換したアルキル基を示す。ただし該アルキル基の炭素数は、置換ヒドロキシル基の数を n としたとき、n 以上、 $5 \times n$ 以下の範囲から選択される整数である。 R^2 は炭素数 $8 \sim 30$ の炭化水素基を示し、 R^3 は水素原子又は炭素数 $1 \sim 30$ の炭化水素基を示す)

- 3. 前記ポリヒドロキシカルボン酸アミド(1)がアルドン酸アミドである請求項1又は2に記載の粉末冶金用潤滑剤。
- 4. R¹の炭素数が5である請求項1又は2に記載の粉末冶金 用潤滑剤。
- 25 5. R³が水素原子である請求項1又は2に記載の粉末冶金用 潤滑剤。
 - 6. 平均粒径が1~300μmである請求項1又は2に記載の

粉末冶金用潤滑剤。

5

7. さらに補助潤滑剤を含有し、該補助潤滑剤は、金属石鹸、アルキレンビス脂肪酸アミド、及び下記式(2)で示される脂肪酸アミドから選択される少なくとも1種である請求項1又は2のいずれかに記載の粉末冶金用潤滑剤。

$$R^4CON < R^5$$
 (2)

(式中、 R^4 は炭素数 $7 \sim 2$ 9 の炭化水素基を示す。 R^5 は水素原子 10 又は炭素数 $1 \sim 3$ 0 の炭化水素基を示す)

- 8. 前記脂肪酸アミド(2)が(N-オクタデセニル)へキサデカン酸アミド又は(N-オクタデシル)ドコセン酸アミドである請求項7に記載の粉末冶金用潤滑剤。
- 9. ポリヒドロキシカルボン酸アミド(1)と補助潤滑剤との 15 質量比(前者/後者)が、30/70以上、100/0未満である 請求項7に記載の粉末冶金用潤滑剤。
 - 10. さらに脂肪酸を含有する請求項7に記載の粉末冶金用潤滑剤。
- 11. 前記脂肪酸が、炭素数16~22の飽和脂肪族モノカル 20 ボン酸である請求項10に記載の冶金用潤滑剤。
 - 12. ポリヒドロキシカルボン酸アミド(1)及び脂肪酸の合計と、補助潤滑剤との質量比(前者/後者)が、30/70以上、100/0未満であり、

ポリヒドロキシカルボン酸アミド(1)と脂肪酸との質量比(前 25 者/後者)が、20/80以上、100/0未満である請求項7に 記載の粉末冶金用潤滑剤。

13. 請求項1、2、7又は10に記載の粉末冶金用潤滑剤と

金属粉末とを混合した粉末冶金用混合粉末。

14. 請求項13に記載の粉末冶金用混合粉末を圧縮成形し、 次いで焼結する焼結体の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000945

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C10M105/68, 105/00, B22F3/02//(C10M105/00, 105:24, 105:68) C10N10:04, 20:06, 30:02, 30:06, 40:20, 50:08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C10M105/68, 105/00, 105/24, C10N10:04, 20:06, 30:02, 30:06, 40:20, 50:08, B22F3/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005

Kokai Jitsuyo Shinan Koho 1971-2004 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
JP 6-506726 A (HOGANAS AB.), 28 July, 1994 (28.07.94)	1-14
JP 10-501270 A (HOGANAS AB.), 03 February, 1998 (03.02.98)	1-14
JP 2001-342478 A (Kawasaki Steel Corp.), 14 December, 2001 (14.12.01)	1-14
JP 6-145701 A (Kawasaki Steel Corp.), 27 May, 1994 (27.05.94)	1-14
JP 10-280005 A (Kawasaki Steel Corp.), 20 October, 1998 (20.10.98)	1-14
	JP 6-506726 A (HOGANAS AB.), 28 July, 1994 (28.07.94) JP 10-501270 A (HOGANAS AB.), 03 February, 1998 (03.02.98) JP 2001-342478 A (Kawasaki Steel Corp.), 14 December, 2001 (14.12.01) JP 6-145701 A (Kawasaki Steel Corp.), 27 May, 1994 (27.05.94) JP 10-280005 A (Kawasaki Steel Corp.),

ш	Further documents are	listed in the continuation of Box C.
---	-----------------------	--------------------------------------

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search 20 April, 2005 (20.04.05)	Date of mailing of the international search report 17 May, 2005 (17.05.05)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

PCT/JP2005/000945

JP 6-506726 A	1994.07.28	BR 9205904 A	
		CA 2108370 C	2002.11.05
		DE 69219597 T2	
		EP 580681 A1	
		ES 2101094 T3	
		KR 222161 B1	
		SE 468121 B	1992.11.09
		US 5480469 A	
		WO 92/18275 A1	1992.10.29
JP 10-501270 A	1998.02.03	AU 9526871 A	
		BR 9507828 A	1997.09.16
		CN 1149846 A	
		DE 69522449 T2	
		EP 762946 A1	1997.03.19
		ES 2159640 T3	2001.10.16
		KR 97703211 A	1997.07.03
		MX 9606079 A	1998.02.01
		RU 2128100 C1	
		US 5744433 A	
		WO 95/33589 A1	1995.12.14
JP 2001-342478 A	2001.12.14	EP 1199124 A1	
		US 2001/0038802 A1	
		WO 01/72457 A1	2001.10.04
JP 6-145701 A	1994.05.27	(Family: none)	
JP 10-280005 A	1998.10.20	(Family: none)	

発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.7

C10M

(C 1 0 M

105/68, 105/00, B22F 3/02 105/00, 105:24, 105:68) 10:04, 20:06, 30:02, 30:06, 40:20, 50:08 C10N

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7

C10M 105/68, 105/00, 105/24 C10N 10:04, 20:06, 30:02, 30:06, 40:20, 50:08

B 2 2 F 3/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国実用新案登録公報 日本国登録実用新案公報 1996-2005年 1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

O. 1726		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
· A	JP 6-506726 A (ホガナス アクチボラゲット), 1994.07.28	1-14
Α	JP 10-501270 A (ホガナス アクチボラゲット), 1998.02.03	1-14

▼ C欄の続きにも文献が列挙されている。

マ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

20.04.2005

国際調査報告の発送日

1 /. 5. 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

4 V 9280

昌 広 山本

電話番号 03-3581-1101 内線 3483

C (続き)	関連すると認められる文献	-
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2001-342478 A (川崎製鉄株式会社), 2001. 12. 14	1-14
A	JP 6-145701 A (川崎製鉄株式会社), 1994.05.27	1-14
A	JP 10-280005 A (川崎製鉄株式会社), 1998. 10. 20	1-14
,		
*		,
	· · · · · · · · · · · · · · · · · · ·	2

		•		
	JP 6-506726 A	1994. 07. 28	BR 9205904 A	1994. 07. 05
			CA 2108370 C	2002. 11. 05
			DE 69219597 T2	1997. 06. 12
			EP 580681 A1	1994. 02. 02
			ES 2101094 T3	1997. 07. 01
			KR 222161 B1	1999. 10. 01
- 17	•		SE 468121 B	1992. 11. 09
-			US 5480469 A	1996. 01. 02
	0	•	WO 92/18275 A1	1992. 10. 29
	JP 10-501270 A	1998. 02. 03	AU 9526871 A	1996. 01. 04
	J. 10 001210 II	1000.00.00	BR 9507828 A	1997. 09. 16
			CN 1149846 A	1997. 05. 14
,		27.	DE 69522449 T2	2001. 10. 04
,			EP 762946 A1	1997. 03. 19
			ES 2159640 T3	2001. 10. 16
			KR 97703211 A	1997. 07. 03
			MX 9606079 A	1998. 02. 01
	•		RU 2128100 C1	1999. 03. 27
			US 5744433 A	1998. 04. 28
			WO 95/33589 A1	1995. 12. 14
	JP 2001-342478 A	2001, 12, 14	EP 1199124 A1	2002. 04. 24
			US 2001/0038802 A1	2001. 11. 08
			WO 01/72457 A1	2001. 10. 04
`				×
	JP 6-145701 A	1994. 05. 27	ファミリーなし	
	JP 10-280005 A	1998. 10. 20	ファミリーなし	
	J. 10 Bottoo 1		. • • • • • • • • • • • • • • • • • • •	