Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Highlight

Beispiel: Hash Kollision

Beim Hashing werden zufällig $k \leq n$ Daten auf n Speicherplätze verteilt. Bezeichnen wir mit $A_{k,n}$ die Möglichkeiten der Mehrfachbelegungen von Feldern, so ist das Komplementäre Ereignis $A_{k,n}^c = Perm_k^n(\Omega, o.W.)$, wobei Ω die Menge der Verfügbaren Speicherplätze Darstellt.

Figure: Quelle: Wikipedia

Beispiel: Hash Kollision

$$P(A_{k,n}^{c}) = \frac{\#Perm_{k}^{n}(\Omega, o.W.)}{\#Perm_{k}^{n}(\Omega, m.W.)} = \frac{n_{k}}{n^{k}} = \prod_{i=0}^{k-1} (1 - \frac{i}{n})$$

$$= \exp(\sum_{i=0}^{k-1} \ln(1 - \frac{i}{n})) \le \exp(\sum_{i=0}^{k-1} (-\frac{i}{n}))$$

$$(\ln(1 - x) \le -x \text{ für } x < 1)$$

$$= \exp(-\frac{(k-1)k}{2n})$$

Beispiel: Hash Kollision (Geburtstags-Paradoxon)

Für n=365 und k=23 ist damit $P(A_{k,n})>\frac{1}{2}$. Die Wahrscheinlichkeit, dass bei einer Gruppe von mehr als 23 Leuten zwei Leute am gleichen Tag Geburtstag haben, ist also größer als $\frac{1}{2}$.

Axiome von Kolmogorov

σ -Algebra

Es sei Ω eine Menge und $\mathcal{A} \subset \mathcal{P}(\Omega)$ ein System von Teilmengen. \mathcal{A} heißt σ -Algebra (Ereignis-Algebra) falls gilt:

(i)
$$\Omega \subset \mathcal{A}$$

(ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
(iii) $A_i \in \mathcal{A} \Rightarrow \bigcup_i A_i \in \mathcal{A}$

$$(A^c = \Omega - A)$$

Interpretation

Die Grundmenge Ω ist ein Ereignis. Das nicht-Eintreffen eines Ereignisses ist ein Ereignis. Die Vereinigung von Ereignissen ist ein Ereignis.

Axiome von Kolmogorov

Axiome von Kolmogorov

Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, \mathcal{A}, P) bestehend aus der Grundmenge Ω , einer σ -Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ und einer Abbildung $P: \mathcal{A} \to [0,1]$

$$(i) \ P(\Omega) = 1$$

$$(ii) \ P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i}), \ \mathsf{mit} \ A_{i} \cap A_{j} = \emptyset \ \mathsf{für} \ i \neq j$$

Die Elemente von Ω werden elementare Ereignisse und die von \mathcal{A} Ereignisse genannt. Mengen mit P(M)=0 werden Nullmengen genannt.

Interpretation

Die Grundmenge ist ein sicheres Ereignis. Die Wahrscheinlichkeit von überschneidungsfreien Ereignissen addiert sich.

Diskrete Wahrscheinlichkeitsverteilung

Ein diskreter Wahrscheinlichkeitsraum ist ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) , bei dem die Grundmenge Ω albzählbar ist.

Beispiel: Laplace Wahrscheinlichkeit

$$\Omega$$
 endlich $\mathcal{A} = \mathcal{P}(\Omega)$, und $P(A) = \frac{\#A}{\#\Omega}$.

Lemma

Sei (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum. Dann ist für $\mathcal{A} \subset \mathcal{A}$

$$P(A) = \sum_{\omega \in A} P(\{\omega\})$$

$$P(A^c) = 1 - P(A)$$

$$P(\emptyset) = 0$$

Herleitung der bedingten Wahrscheinlichkeit

$$\tilde{\Omega} := B$$

$$\tilde{\mathcal{A}} := \{ C \cap B \mid C \in \mathcal{A} \}$$

$$\tilde{P} = \frac{P}{P(B)}$$

Bedingte Wahrscheinlichkeit

Für $A, B \subset \mathcal{P}(\Omega)$ und P(B) > 0 heißt

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

die bedingte Wahrscheinlichkeit (von A unter B).

Figure: Quelle: Wikipedia

Satz der totalen Wahrscheinlichkeit

Für eine Zerlegung $\Omega = \bigcup_{j=1}^n B_j$, mit $B_i \cap B_k = \emptyset$ für $i \neq k$

$$P(A) = \sum_{i=1}^{n} P(A \mid B_j) \cdot P(B_j)$$

Satz von Bayes

Für $A, B \subset \mathcal{P}(\Omega)$ mit P(B) > 0 gilt

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Beweis

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{P(A \cap B) \cdot P(A)}{P(A)}}{P(B)} = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Stochastische Unabhängigkeit

Zwei Ereignisse A, B heißen stochastisch Unabhängig, falls

$$P(A \cap B) = P(A) \cdot P(B)$$

gilt. Gleichbedeutend damit ist P(A|B) = P(A) und P(B|A) = P(B).

Highlight

Naiver Bayes'scher Spam Filter

Gegeben ist eine E-Mail E. Wir möchten anhand des Vorkommens bestimmter Wörter $A_1, \ldots A_n$ in der Mail entscheiden, ob es sich um eine erwünschte Mail H oder eine unerwünschte Mail S (Ham or Spam) handelt. (Typische Wörter wären zum Beispiel "reichwerden", "onlinecasino" ...)

Naiver Bayes'scher Spam Filter

Aus einer Datenbank kann man das Vorkommen dieser Wörter in Spam und Ham Mails zählen und damit empirisch die Wahrscheinlichkeiten $P(A_i|S)$ und $P(A_i|H)$ des Vorkommens dieser Wörter in Spam und Ham Mails ermitteln. Wir gehen davon aus, dass es sich bei der Mail prinzipiell mit Wahrscheinlichkeit $P(E=S)=P(E=H)=\frac{1}{2}$ um eine erwünschte Mail H oder eine unerwünschte Mail S handeln kann.

Naiver Bayes'scher Spam Filter

Wir machen zudem die (naive) Annahme, dass das Vorkommen der Wörter stochastisch unabhängig ist, also

$$P(A_1 \cap \cdots \cap A_n | S) = P(A_1 | S) \cdots P(A_n | S)$$

$$P(A_1 \cap \cdots \cap A_n | H) = P(A_1 | H) \cdots P(A_n | H)$$

gilt.

Naiver Bayes'scher Spam Filter

Mit der Formel von Bayes und der totalen Wahrscheinlichkeit können wir somit berechnen

$$P(E = S|A_1 \cap \dots \cap A_n) = \frac{P(A_1 \cap \dots \cap A_n|S) \cdot P(S)}{P(A_1 \cap \dots \cap A_n)}$$

$$= \frac{P(A_1|S) \cdots P(A_n|S) \cdot P(S)}{P(A_1 \cap \dots \cap A_n|H) + P(A_1 \cap \dots \cap A_n|S)}$$

$$= \frac{P(A_1|S) \cdots P(A_n|S) \cdot P(S)}{P(A_1|H) \cdots P(A_n|H) + P(A_1|S) \cdots P(A_n|S)}$$

Bemerkung: $P(E = H|A_1 \cap \cdots \cap A_n) = 1 - P(E = S|A_1 \cap \cdots \cap A_n)$