Luminosity Calculation -- River Huang, Vasiliy Morozov

Define the following parameters:

- φ_x is the angle between the projection of the beam1 trajectory on the (x, s) plane and the s-axis.
- φ_y is the angle between the projection of the trajectory on the (y, s) plane and the s-axis.
- offset $\delta x = \Delta x_2 \Delta x_1$ and offset $\delta y = \Delta y_2 \Delta y_1$.

and also define
$$\sigma_x^* = \frac{1}{\sqrt{2}} \sqrt{{\sigma_{1x}^*}^2 + {\sigma_{2x}^*}^2}$$
, $\sigma_y^* = \frac{1}{\sqrt{2}} \sqrt{{\sigma_{1y}^*}^2 + {\sigma_{2y}^*}^2}$, $\sigma_S = \frac{1}{\sqrt{2}} \sqrt{{\sigma_{1s}^2} + {\sigma_{2s}^2}}$

1) Analytic solution 1

Condition: $\varphi_y = 0$, $\delta x = 0$, $\delta y = 0$, $\beta_{1x}^* \gg (\sigma_{1s} + \sigma_{2s})$, $\sigma_{1x}^* \gg \sigma_{2x}^*$

let
$$a = \frac{\sin^2 \varphi_x}{\sigma_x^{*2}} + \frac{\sec^2 \varphi_x}{\sigma_s^2}$$
, $B = \left(\frac{\sigma_{1y}^{*2}}{\beta_{1y}^{*2}} + \frac{\sigma_{2y}^{*2}}{\beta_{2y}^{*2}}\right) \frac{1}{2\sigma_y^{*2}}$

the luminosity is

$$L = L_0 \sqrt{2 - \cos^2 \varphi_x} \frac{1}{\sqrt{\pi} \sigma_s \sqrt{B}} e^{\frac{a}{2B}} K_0 \left(\frac{a}{2B}\right)$$

where K_0 is the modified Bessel function.

2) Analytic solution 2

Condition: $\delta x < \sigma_{1x}^* \text{ or } \delta x < \sigma_{2x}^*$, $\beta_{1x}^* \gg (\sigma_{1s} + \sigma_{2s})$, $\beta_{1y}^* \gg (\sigma_{1s} + \sigma_{2s})$, $\sigma_{1x}^* \gg \sigma_{2x}^*$, $\sigma_{1y}^* \gg \sigma_{2y}^*$

Let
$$a = \frac{\sin^2 \varphi_x}{{\sigma_x^*}^2} + \frac{\sin^2 \varphi_y}{{\sigma_y^*}^2} + \frac{1 + \tan^2 \varphi_x + \tan^2 \varphi_y}{{\sigma_s^2}}$$
, $b = \frac{(\delta x) \sin \varphi_x}{{\sigma_x^*}^2} + \frac{(\delta y) \sin \varphi_y}{{\sigma_y^*}^2}$, $c = \frac{(\delta x)^2}{4{\sigma_x^*}^2} + \frac{(\delta y)^2}{4{\sigma_y^*}^2}$,

the luminosity is

$$L = L_0 \sqrt{2 - \cos^2 \varphi_x} \frac{1}{\sqrt{a}\sigma_s} e^{\frac{b^2}{4a} - c}$$

3) Analytic solution 3

Let
$$a = \frac{\sin^2 \varphi_x}{{\sigma_x^*}^2} + \frac{\sec^2 \varphi_x}{{\sigma_s^2}}$$
, $b = \frac{(\delta x) \sin \varphi_x}{{\sigma_x^*}^2}$, $c = \frac{(\delta x)^2}{4{\sigma_x^*}^2} + \frac{(\delta y)^2}{4{\sigma_y^*}^2}$,

the luminosity is

$$L = L_0 \sqrt{2 - \cos^2 \varphi_x} \frac{1}{\sqrt{a}\sigma_s} e^{\frac{b^2}{4a} - c}$$

If φ_x is small enough, the luminosity is

$$L = L_0 \left(1 + \frac{\sigma_s^2}{{\sigma_x^*}^2} \tan^2 \varphi_x \right)^{-1/2} \exp \left[-\left(\frac{\delta x}{2} \right)^2 \left(\frac{1}{{\sigma_x^*}^2 \cos^2 \varphi_x + \sigma_s^2 \sin^2 \varphi_x} \right) - \left(\frac{\delta y}{2 \sigma_y^*} \right)^2 \right]$$