全国青少年信息学奥林匹克竞赛模拟赛

CCF NOI 2023 Simulation

第二试

时间: 2023 年 7 月 11 日 08:00 ~ 13:00

EE C 4.76	11D. 1-1	± w.	17 -	
题目名称	生成树	素数	杨表	
题目类型	传统型	传统型	传统型	
目录	rgb	prime	young	
可执行文件名	rgb	prime	young	
输入文件名	rgb.in	prime.in	young.in	
输出文件名	rgb.out	prime.out	young.out	
每个测试点时限	2.0 秒	2.0 秒	2.0 秒	
内存限制	1024 MiB	1024 MiB	1024 MiB	
测试点数目	10	10	10	
测试点是否等分	是	是	是	

提交源程序文件名

对于 C++ 语言 rgb.cpp	prime.cpp	young.cpp
-------------------	-----------	-----------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于 100KB。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 禁止在源代码中改变编译器参数(如使用 #pragma 命令),禁止使用系统结构相 关指令(如内联汇编)和其他可能造成不公平的方法。
- 8. 简单的题目, 既是礼物, 也是毒药。

生成树 (rgb)

【题目描述】

给定一张 n = r + g + b + 1 的点的简单连通无向图,每条边为红色、绿色或蓝色。 判断是否存在一棵包含恰好 r 条红边、g 条绿边和 b 条蓝边的生成树。

【输入格式】

从文件 rgb.in 中读入数据。

第一行四个整数 r, q, b, m,你可以自行计算 n = r + q + b + 1。

接下来 m 行, 每行两个整数 u,v 和字符 $c \in \{\mathbf{r},\mathbf{g},\mathbf{b}\}$, 表示边 (u,v) 的颜色为 c。

【输出格式】

输出到文件 rqb.out 中。

第一行一个字符串 YES 或 NO,表示是否存在合法的生成树。

若存在合法的生成树,第二行一个长度为m的 01 串,第i个字符表示你给出的生成树是否包含第i条边。如果有多解,给出任意一个即可。

【样例1输入】

```
1 2 1 1 5
2 1 2 r
3 2 3 r
4 1 3 r
5 2 4 g
6 2 5 b
```

【样例1输出】

```
1 YES
2 11011
```

【样例 2 输入】

```
1 1 1 0 2
2 1 2 r
3 2 3 r
```

【样例 2 输出】

1 NO

【数据范围】

保证 $1 \leq n \leq 250, n-1 \leq m \leq \frac{n(n-1)}{2}, 1 \leq u < v \leq n$ 。

测试点编号	特殊性质	
1	$n \le 5$	
2	$n \le 30$	
$3 \sim 4$	$n \le 100$	
5	A	
$6 \sim 7$	В	
8 ~ 10	无特殊限制	

特殊性质 A: $m = \frac{n(n-1)}{2}$,每条边颜色随机, $r = g = b = \frac{n-1}{3}$ 。 特殊性质 B: b = 0。

素数 (prime)

【题目描述】

给定 l,r,求满足不存在素数 p 使得 p 在十进制表示下视作字符串后是 x 的子序列的整数 $x \in [l,r]$ 的数量对 998 244 353 取模的值。

【输入格式】

从文件 prime.in 中读入数据。 第一行一个整数 T,表示数据组数。 接下来 T 行,每行两个整数 l,r。

【输出格式】

输出到文件 prime.out 中。

T行,每行一个整数,表示答案对998244353取模的值。

【样例输入】

1 2

2 1 4242

3 123456789 10000000000000000000

【样例输出】

1 222

2 245262832

【数据范围】

保证 $1 \le T \le 10, 1 \le l \le r \le 10^{10^5}$ 。

测试点编号	$r \leq$
1	10^{5}
$2 \sim 3$	10^{9}
$4 \sim 5$	10^{12}
$6 \sim 7$	10^{18}
8	10^{100}
9	10^{10^4}
10	10^{10^5}

杨表 (young)

【题目描述】

定义非严格递减的无限长度的非负整数序列为**杨表**。定义给杨表中的某个数增加或减少 1 为对杨表的一次**变换**,要求变换后仍为杨表。

给定两个杨表 A, B。有 q 次询问,每次给出 k,求通过 k 次变换将 A 变成 B 的方案数对 998 244 353 取模的值。

【输入格式】

从文件 young.in 中读入数据。

第一行一个整数 n。

第二行 n 个整数 a_1, a_2, \dots, a_n ,表示杨表 A 的前 n 个元素,其余元素均为 0。

第三行一个整数 m。

第四行 m 个整数 b_1, b_2, \dots, b_m ,表示杨表 B 的前 m 个元素,其余元素均为 0。

第五行一个整数 q。

接下来 q 行,每行一个整数 k。

【输出格式】

输出到文件 young.out 中。

q 行,每行一个整数,表示答案对 998 244 353 取模的值。

【样例1输入】

```
1 3 2 1 3 2 1 3 3 4 3 2 1 5 1 6 2
```

【样例1输出】

1 7

【样例1解释】

变换为 {4,2,1}/{3,3,1}/{3,2,2}/{3,2,1,1}/{2,2,1}/{3,1,1}/{3,2} 后再变换为 B。

【样例 2 输入】

```
      1
      4

      2
      4 3 2 1

      3
      4

      4
      3 3 2 2

      5
      1

      6
      4
```

【样例2输出】

1 40

【样例3输入】

```
1 10
2 20 10 7 5 4 3 3 3 3 2
3 10
4 17 10 8 8 6 4 4 1 1 1
5 1
6 1000000
```

【样例3输出】

1 750051767

【数据范围】

保证 $0 \le n, m, \sum a_i, \sum b_i \le 60, 1 \le q \le 10^5, 1 \le k \le 10^7$ 。 保证 A, B 为杨表,即 $a_1 \ge a_2 \ge \cdots \ge a_n > 0, b_1 \ge b_2 \ge \cdots \ge b_m > 0$ 。

测试点编号	$\sum a_i, \sum b_i \le$	$q \leq$	$k \le$
1	10	1	10
2	20		20
$3 \sim 4$			
$5\sim 6$	40		10^{6}
$7 \sim 8$	60		
$9 \sim 10$	00	10^{5}	10^{7}