

SEQUENCE LISTING

<110>	LOCATELLI, Franca BRACALE, Marcella VANNINI, Candida							
<120>	Use of Specific Myb Genes for the Production of Transgenic Plants Tolerant to Biotic and Abiotic Stresses							
<130>	3687-104							
<140> <141>	US 10/521,811 2005-04-19							
<150> <151>								
<150> <151>								
<160>	2							
<170>	PatentIn version 3.3							
<210><211><211><212><213>	1202							
<400> cagccg	1 gcctc ccttccaaga acacacaacg caagaggagc agagca	gttc agatca	agagc 60					
agggaa	aggag caagcacaat ggggagggct ccgtgctgcg agaaga	tggg gctca	agaag 120					
ggtcca	atgga cgccggagga ggacaaggtc ctcgtcgccc acatco	agcg ccacg	gccac 180					
ggcaac	ctggc gcgccctgcc caagcaagcc gggctgctgc gttgcg	gcaa gagct	gccgg 240					
ctccgg	gtgga tcaactacct gcggccggac atcaagcggg gcaact	tctc caagga	aggag 300					
gaggac	cacca tcatccatct ccacgagctg cttggcaaca ggtggt	.ccgc aattg	ccgcc 360					
aggttg	gcccg ggaggacgga caacgagatc aagaacgtgt ggcaca	.ccca cctca	agaag 420					
cgcctc	cgatg cgccggctca gggcggtcat gtcgcggcga gcggcg	gcaa gaagca	acaag 480					
aagccg	gaaga gegegaagaa geeageegee geegeegeeg egeege	cggc gtcgc	ccgag 540					
cggtcc	cgcct cgtcgtcggt gacggagtcc tcgatggcct cgtcgg	tggc ggagga	agcac 600					
ggcaac	cgccg ggatcagctc ggcgtccgcg tccgtgtgcg ccaagg	agga gagcto	ccttc 660					
acctcg	ggctt ccgaggagtt ccagatcgac gacagcttct ggtcgg	agac gctgt	cgatg 720					
ccgctg	ggacg ggtacgacgt gtccatggag cccggcgacg cgttcg	tcgc gccgc	catcc 780					

gccgacgaca	tggactactg	gctcggagtg	ttcatggagt	ccggcgaagc	gcaagacttg	840
ccgcagatct	agagaaagag	agagaatttt	accgtttctt	cggttaattg	atttgtttt	900
tctctctctg	ccgccatctt	gcaccggagg	gacatagcta	acagacaaga	gtgtccatga	960
gcgaatcatc	aagcaggaag	aacgcgaatc	atgcgatgcg	atgcgatgag	atgcacccag	1020
tagctttgat	agttaatttt	cttttttac	ctccttcctg	tatgtataga	aacagaagag	1080
atcagtgatc	gaaacctgag	atcctttctc	acaatgtgca	aactggatca	tcagaaaacg	1140
ggctctgcgt	ttctcatttg	attaattaaa	ttcaacttgc	acgctaaaaa	aaaaaaaaa	1200
aa						1202

<210> 2

_...

<211> 257

<212> PRT

<213> Oryza sativa

<400> 2

Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly Leu Lys Lys Gly Pro 1 5 10 15

Trp Thr Pro Glu Glu Asp Lys Val Leu Val Ala His Ile Gln Arg His
20 25 30

Gly His Gly Asn Trp Arg Ala Leu Pro Lys Gln Ala Gly Leu Leu Arg 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp 50 55 60

Ile Lys Arg Gly Asn Phe Ser Lys Glu Glu Glu Asp Thr Ile Ile His 65 70 75 80

Leu His Glu Leu Leu Gly Asn Arg Trp Ser Ala Ile Ala Ala Arg Leu 85 90 95

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp His Thr His Leu 100 105 110

Lys Lys Arg Leu Asp Ala Pro Ala Gln Gly Gly His Val Ala Ala Ser 115 120 125 Gly Gly Lys Lys His Lys Lys Pro Lys Ser Ala Lys Lys Pro Ala Ala 130 135 140

Ala Ala Ala Ala Pro Pro Ala Ser Pro Glu Arg Ser Ala Ser Ser Ser 145 150 155 160

Val Thr Glu Ser Ser Met Ala Ser Ser Val Ala Glu Glu His Gly Asn 165 170 175

Ala Gly Ile Ser Ser Ala Ser Ala Ser Val Cys Ala Lys Glu Glu Ser 180 185 190

Ser Phe Thr Ser Ala Ser Glu Glu Phe Gln Ile Asp Asp Ser Phe Trp 195 200 205

Ser Glu Thr Leu Ser Met Pro Leu Asp Gly Tyr Asp Val Ser Met Glu 210 215 220

Pro Gly Asp Ala Phe Val Ala Pro Pro Ser Ala Asp Asp Met Asp Tyr 225 230 235 240

Trp Leu Gly Val Phe Met Glu Ser Gly Glu Ala Gln Asp Leu Pro Gln 245 250 255

Ile

w. t = 6