Задание 5 Отчёт Методы Монте-Карло Отчёт

Ши Хуэй shihuicollapsor@gmail.com

1. Постановка задачи

На отрезке [a, b] задана точка x, a < x < b; a, x, b - целые числа Задана вероятность p перехода точки вправо. В момент времени i точка совершает переход c шагом 1 направо или налево (c вероятностью p или 1 - p, соответственно).

Процесс останавливается, когда точка достигает точки а или точки b.

Рассмотрим N частиц, совершающих случайные блуждания, начиная с точки х.

Интересующие нас результаты модели случайных блужданий - частоты попадания в каждое из поглощающих состояний и среднее время блужданий частиц.

Подобный эксперимент относится к классу методов Монте-Карло

2. Формат командной строки

gcc -fopenmp -std=c99 random_walk.c -o ./random_walk ./random walk 0 100 0.5 50 1000 2

3. Спецификация системы

- Polus

4. Записи экспериментов и результаты

4.1 Тестирование 1

В рамках выполнения задания 1 была разработана параллельная программа, реализующая метод Монте-Карло для моделирования случайных блужданий. В процессе тестирования программы использовались различные значения N для трех наборов параметров, определяющих границы интервала и начальные позиции частиц.

4.2 Тестирование 2

В рамках выполнения задания 2 была проведена серия тестов, в которых фиксировалось значение N=10000, 100000 и изменялось количество потоков. Целью эксперимента было изучение производительности программы в зависимости от числа потоков, используемых для параллельной обработки.

В ходе тестирования были рассмотрены два набора параметров, определяющих границы интервала и начальные позиции частиц.

Results

a	b	p	x	N	P	T	S	P
0	100	0.5	50	100	2	0.001893	1.820040	0.910020
0	100	0.5	50	100	4	0.020181	1.102569	0.551285
0	100	0.5	50	100	8	0.207056	5.306291	2.653145
0	100	0.5	50	100	16	0.831639	1.869345	0.934673
0	100	0.5	50	1000	2	0.001893	1.820040	0.910020
0	100	0.5	50	1000	4	0.020181	1.102569	0.551285
0	100	0.5	50	1000	8	0.207056	5.306291	2.653145
0	100	0.5	50	1000	16	0.831639	1.869345	0.934673
0	100	0.5	50	10000	2	0.001893	1.820040	0.910020
0	100	0.5	50	10000	4	0.020181	1.102569	0.551285
0	100	0.5	50	10000	8	0.207056	5.306291	2.653145
0	100	0.5	50	10000	16	0.831639	1.869345	0.934673
0	100	0.5	50	100000	2	0.001893	1.820040	0.910020
0	100	0.5	50	100000	4	0.020181	1.102569	0.551285
0	100	0.5	50	100000	8	0.207056	5.306291	2.653145
0	100	0.5	50	100000	16	0.831639	1.869345	0.934673