EE 112 Mid-Sem Exam (MBP) (Feb. 23, 2017)

- 1. In the circuit shown in the figure, assume that the diodes have $V_{\rm on} = 0.7 \, \rm V.$
 - (a) Find the range of V_i for which (i) only D_1 conducts, (ii) only D_2 conducts, (iii) both D_1 and D_2 conduct, (iv) neither D_1 nor D_2 conducts.
 - (b) Calculate the slope $\frac{dV_o}{dV_i}$ in each of the above regions.
 - (c) Plot V_o versus V_i for $-10\,\mathrm{V} < V_i < 10\,\mathrm{V}$, showing clearly the voltage levels, break points, and slopes. [6]

- 2. Consider a logical function X of four variables A_3 , A_1 , A_2 , A_0 . Let d be the decimal number corresponding to the binary number $A_3A_1A_2A_0$. X is 1 if either of the following conditions is met. (i) $d \leq 7$, (ii) The number of 1's in the input variables is odd.
 - (a) Write the truth table for X.
 - (b) Write X in the standard product-of-sums form.
- 3. Implement the function $Y = A \overline{B} C + \overline{C} D$ using
 - (a) an 8-to-1 MUX,
 - (b) only 2-input NAND gates,
 - (c) only 2-input NOR gates.

[6]

[4]

- 4. We want to design a synchronous counter with the state transition table given in the figure.
 - (a) Write the transition table for a JK flip-flop (i.e., a table showing J, K, Q_{n+1}).
 - (b) From the above table, construct a table showing Q_n , Q_{n+1} , J, K, where the J and K values for all possible transitions (from Q_n to Q_{n+1}) are listed. Explain how you obtained *one* of the entries.
 - (c) Using the above table and the counter state transition table, prepare K-maps for J_1 and K_1 (K-maps for J_0 , K_0 , J_2 , K_2 , J_3 , K_3 are not required).

[8]

(d) From the K-maps, obtain minimal expressions for J_1 and K_1 .

(No marks for writing the answers by any other method.)

- 5. The capacitor in the figure is initially uncharged, and a pulse $V_s(t)$ shown in the figure is applied. Assume that the diodes have $V_{\text{on}} = 0.7 \,\text{V}$.
 - (a) Sketch $V_o(t)$ to scale, showing all salient features, including time points and voltage levels. Justify your answer with calculations.
 - (b) What is V_o at t = 2 msec?
 - (c) What is V_o at t = 15 msec? [6]

