Package 'dupiR'

March 21, 2024

Type Package

Title Bayesian Inference from Count Data using Discrete Uniform Priors
Version 1.2.1
Date 2024-03-17
Depends R ($>= 2.15.1$), methods
Author Federico Comoglio [aut, cre], Maurizio Rinaldi [aut]
Maintainer Federico Comoglio <federico.comoglio@gmail.com></federico.comoglio@gmail.com>
Description We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. This package implements a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or with out replacement. This can be used for a variety of statistical problems involving absolute quantification under uncertainty. See Comoglio et al. (2013) <doi:10.1371 journal.pone.0074388="">.</doi:10.1371>
License GPL-2
LazyLoad yes
RoxygenNote 7.3.1
Encoding UTF-8
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Imports graphics, plotrix, stats, utils
NeedsCompilation no
Repository CRAN
Date/Publication 2024-03-21 16:20:05 UTC
R topics documented:
dupiR-package

2 dupiR-package

compute_normalization_constant	3
compute_posterior	4
compute_posterior_with_replacement	5
compute_sum	6
compute_term	6
Counts-class	7
gamma_poisson_clough	10
get_counts	10
get_fractions	11
get_posterior_param	11
initialize,Counts-method	12
new_counts	13
plot,Counts-method	13
plot_posterior	14
set_counts<	15
set_fractions<	15
show,Counts-method	16
summary,Counts-method	16
	17

dupiR-package

Bayesian inference from count data using discrete uniform priors

Description

Index

This package allows to infer population sizes using a binomial likelihood and least informative discrete uniform priors.

Author(s)

Federico Comoglio <federico.comoglio@gmail.com>

Maurizio Rinaldi

References

Comoglio F, Fracchia L, Rinaldi M (2013) Bayesian Inference from Count Data Using Discrete Uniform Priors. PLoS ONE 8(10): e74388

compute_ecdf 3

compute_ecdf

Compute ECDF (empirical cumulative distribution function)

Description

Compute ECDF (empirical cumulative distribution function)

Usage

```
compute_ecdf(posterior)
```

Arguments

posterior

numeric vector of posterior probabilities over the prior support

Value

numeric vector with empirical cumulative distribution function (cumulative sum of posterior)

```
compute_normalization_constant
```

Compute normalization constant

Description

Compute normalization constant

Usage

```
compute_normalization_constant(counts, n_start, n_end, f_product)
```

Arguments

counts integer vector of counts

n_start start of prior support range

n_end end of prior support range

f_product product of (1-fractions)

Value

normalization constant to compute posterior density

4 compute_posterior

 $\begin{array}{c} {\it compute_posterior} & {\it Compute\ the\ posterior\ probability\ distribution\ of\ the\ population\ size} \\ {\it for\ an\ object\ of\ class\ Counts} \end{array}$

Description

Compute the posterior probability distribution of the population size using a discrete uniform prior and a binomial likelihood ("dup" algorithm, Comoglio et al.). An approximation using a Gamma prior and a Poisson likelihood is used when applicable ("gamma" algorithm) method (see Clough et al. for details)

Usage

```
compute_posterior(
  object,
  n_start,
  n_end,
  replacement = FALSE,
  b = 1e-10,
  alg = "dup"
)
```

Arguments

object of class Counts
n_start start of prior support range
n_end end of prior support range

replacement was sampling performed with replacement? Default to FALSE

b prior rate parameter of the gamma distribution used to compute the posterior

with Clough. Default to 1e-10

algorithm to be used to compute posterior. One of Default to "dup"

Value

an object of class Counts

Author(s)

Federico Comoglio

References

Comoglio F, Fracchia L and Rinaldi M (2013) Bayesian inference from count data using discrete uniform priors. PLoS ONE 8(10): e74388

Clough HE et al. (2005) Quantifying Uncertainty Associated with Microbial Count Data: A Bayesian Approach. Biometrics 61: 610-616

Examples

```
counts <- new_counts(counts = c(20,30), fractions = c(0.075, 0.10))

# default parameters ("dup" algorithm, sampling without replacement, default prior support)
posterior <- compute_posterior(counts)

# custom prior support ("dup" algorithm)
posterior <- compute_posterior(counts, n_start = 0, n_end = 1e3)

# gamma prior ("gamma" algorithm)
posterior <- compute_posterior(counts, alg = "gamma")

# sampling with replacement
posterior <- compute_posterior(counts, replacement = TRUE)</pre>
```

compute_posterior_with_replacement

Compute posterior probability with replacement

Description

Compute posterior probability with replacement

Usage

```
compute_posterior_with_replacement(n, counts, f_product, denominator)
```

Arguments

n integer for which to compute the posterior

counts integer vector of counts f_product product of (1-fractions)

denominator normalization constant returned by compute_normalization_constant

Value

posterior probability of n

See Also

compute_normalization_constant

6 compute_term

compute_sum

Compute sum of terms (function F, Comoglio et al.)

Description

Compute sum of terms (function F, Comoglio et al.)

Usage

```
compute_sum(counts, n, f_product)
```

Arguments

counts integer vector of counts n number of objects

Value

sum of terms in function F

compute_term

Compute single term (function F, Comoglio et al.)

Description

Compute single term (function F, Comoglio et al.)

Usage

```
compute_term(counts, n, f_product, t)
```

Arguments

counts integer vector of counts n number of objects

 $\label{eq:fproduct} \texttt{f_product} \quad \quad \mathsf{product} \; of \, (1\text{-}\mathsf{fractions})$

t index vector

Value

single term of function F

Counts-class 7

Counts-class

An S4 class to store measurements (count data, sampling fractions), prior support and posterior parameters

Description

An S4 class to store measurements (count data, sampling fractions), prior support and posterior parameters

Usage

```
## S4 method for signature 'Counts'
get_counts(object)
## S4 method for signature 'Counts'
get_fractions(object)
## S4 replacement method for signature 'Counts'
set_counts(object) <- value</pre>
## S4 replacement method for signature 'Counts'
set_fractions(object) <- value</pre>
## S4 method for signature 'Counts'
compute_posterior(
  object,
  n_start,
  n_end,
  replacement = FALSE,
  b = 1e-10,
  alg = "dup"
## S4 method for signature 'Counts'
get_posterior_param(object, low = 0.025, up = 0.975, ...)
## S4 method for signature 'Counts'
plot_posterior(object, low = 0.025, up = 0.975, xlab, step, ...)
```

Arguments

object of class Counts

value numeric vector of sampling fractions

n_start start of prior support rangen_end end of prior support range

replacement was sampling performed with replacement? Default to FALSE

8 Counts-class

b	prior rate parameter of the gamma distribution used to compute the posterior with Clough. Default to 1e-10
alg	algorithm to be used to compute posterior. One of Default to "dup"
low	1 - right tail posterior probability
up	left tail posterior probability
	additional parameters to be passed to curve
xlab	x-axis label. Default to 'n' (no label)
step	integer defining the increment for x-axis labels (distance between two consecutive tick marks)

Value

counts vector from a Counts object fractions vector from a Counts object an object of class Counts no return value, called for side effects

Methods (by generic)

- get_counts(Counts): Returns counts from a Counts object
- get_fractions(Counts): Returns fractions from a Counts object
- set_counts(Counts) <- value: Replaces counts of a Counts object with the provided values
- set_fractions(Counts) <- value: Replaces fractions of a Counts object with the provided values
- compute_posterior(Counts): Compute the posterior probability distribution of the population size
- get_posterior_param(Counts): Extract statistical parameters (e.g. credible intervals) from a posterior probability distribution
- plot_posterior(Counts): Plot posterior probability distribution and posterior parameters

Slots

counts integer vector of counts (required)

fractions numeric vector of sampling fractions (required)

n_start start of prior support range. If omitted and total counts greater than zero, computed as 0.5 * mle, where mle is the maximum likelihood estimate of the population size

n_end end of prior support range. If omitted and total counts greater than zero, computed as 2 * mle, where mle is the maximum likelihood estimate of the population size

f_product product of (1-fractions)

Counts-class 9

```
mle maximum likelihood estimate of the population size (ratio between total counts and total sam-
     pling fraction)
norm_constant normalization constant
posterior numeric vector of posterior probabilities over the prior support
map_p maximum of posterior probability
map_index index of prior support corresponding to the maximum a posteriori
map maximum a posteriori of population size
q_low lower bound of the credible interval
q_low_p probability of the lower bound of the credible interval
q_low_index index of the prior support corresponding to q_low
q_low_cum_p cumulative posterior probability from n_start to q_low (left tail)
q_up upper bound of the credible interval
q_up_p probability of the upper bound of the credible interval
q_up_index index of the prior support corresponding to q_high
q_up_cum_p cumulative posterior probability from q_high to n_end (right tail)
gamma logical, TRUE if posterior computed using a Gamma approximation
```

Note

The posterior slot contains either the PMF or a logical value used to compute posterior parameters with a Gamma approximation (see reference for details)

Lower and upper bounds of the credibile interval are computed at a default confidence level of 95 For more details on the normalization constant, see Corollary 1 in reference

Author(s)

Federico Comoglio

References

Comoglio F, Fracchia L and Rinaldi M (2013) Bayesian inference from count data using discrete uniform priors. PLoS ONE 8(10): e74388

See Also

```
compute_posterior, get_posterior_param
```

Examples

```
# constructor:
# create an object of class 'Counts'
new_counts(counts = c(30, 35), fractions = c(0.075, 0.1))
# same, using new
new("Counts", counts = c(30, 35), fractions = c(0.075, 0.1))
```

10 get_counts

 $\begin{tabular}{lll} {\it gamma_poisson_clough} & {\it Compute posterior probability using a Gamma-Poisson model} \\ & ({\it Clough et al.}) \end{tabular}$

Description

Compute posterior probability using a Gamma-Poisson model (Clough et al.)

Usage

```
gamma_poisson_clough(object, n_start, n_end, a = 1, b = 1e-10)
```

Arguments

object	object of class Counts
n_start	start of prior support range
n_end	end of prior support range
a	prior shape parameter of the gamma distribution used to compute the posterior with Clough. Default to 1
b	prior rate parameter of the gamma distribution used to compute the posterior with Clough. Default to $1\text{e-}10$

Value

vector of posterior probabilities

Note

if support range spans more than 100k values, the posterior is not computed

Description

Get counts slot for an object of class Counts

Usage

```
get_counts(object)
```

Arguments

object of class Counts

get_fractions 11

Value

counts vector from a Counts object

get_fractions

Get fractions slot for an object of class Counts

Description

Get fractions slot for an object of class Counts

Usage

```
get_fractions(object)
```

Arguments

object

object of class Counts

Value

fractions vector from a Counts object

get_posterior_param

Compute posterior probability distribution parameters (e.g. credible intervals) for an object of class Counts

Description

This function computes posterior parameters and credible intervals at the given confidence level (default to 95%).

Usage

```
get_posterior_param(object, low = 0.025, up = 0.975, ...)
```

Arguments

object of class Counts

1 - right tail posterior probabilityup left tail posterior probability

... additional parameters to be passed to plot_posterior

Value

an object of class Counts

12 initialize, Counts-method

Author(s)

Federico Comoglio

References

Comoglio F, Fracchia L and Rinaldi M (2013) Bayesian inference from count data using discrete uniform priors. PLoS ONE 8(10): e74388

Clough HE et al. (2005) Quantifying Uncertainty Associated with Microbial Count Data: A Bayesian Approach. Biometrics 61: 610-616

Examples

```
counts <- new_counts(counts = c(20,30), fractions = c(0.075, 0.10))

# default parameters ("dup" algorithm, sampling without replacement, default prior support)
posterior <- compute_posterior(counts)

get_posterior_param(posterior)
```

initialize, Counts-method

Initialize Counts class

Description

Initialize Counts class

Usage

```
## S4 method for signature 'Counts'
initialize(.Object, counts, fractions)
```

Arguments

. Object an object of class "Counts"

counts integer vector of counts

fractions numeric vector of sampling fractions

new_counts 13

new_counts

Constructor for Counts class

Description

Constructor for Counts class

Usage

```
new_counts(counts, fractions)
```

Arguments

counts integer vector of counts

fractions numeric vector of sampling fractions

Value

An object of the Counts class

plot,Counts-method

 ${\it Plot\ method\ for\ Counts\ class}$

Description

Plot method for Counts class

Usage

```
## S4 method for signature 'Counts'
plot(x, y, ...)
```

Arguments

x object of class Counts

y none

... additional parameters to be passed to plot_posterior

Value

no return value, called for side effects

plot_posterior

plot_posterior	Plot posterior probability distribution and display posterior parameters for an object of class Counts

Description

Plot posterior probability distribution and display posterior parameters for an object of class Counts

Usage

```
plot_posterior(object, low = 0.025, up = 0.975, xlab, step, ...)
```

Arguments

object	object of class Counts
low	1 - right tail posterior probability
up	left tail posterior probability
xlab	x-axis label. Default to 'n' (no label)
step	integer defining the increment for x-axis labels (distance between two consecutive tick marks)
	additional parameters to be passed to curve

Value

no return value, called for side effects

Author(s)

Federico Comoglio

References

Comoglio F, Fracchia L and Rinaldi M (2013) Bayesian inference from count data using discrete uniform priors. PLoS ONE 8(10): e74388

Examples

```
counts <- new_counts(counts = c(20,30), fractions = c(0.075, 0.10))
# default parameters ("dup" algorithm, sampling without replacement, default prior support)
posterior <- compute_posterior(counts)
# plot posterior
plot_posterior(posterior, type = '1', lwd = 3, col = 'blue3')</pre>
```

set_counts<-

set_counts<-

Set counts slot for an object of class Counts

Description

Set counts slot for an object of class Counts

Usage

```
set_counts(object) <- value</pre>
```

Arguments

object of class Counts
value numeric vector of counts

Value

an object of class Counts

set_fractions<-

Set fractions slot for an object of class Counts

Description

Set fractions slot for an object of class Counts

Usage

```
set_fractions(object) <- value</pre>
```

Arguments

object of class Counts

value numeric vector of sampling fractions

Value

an object of class Counts

show, Counts-method

 $Print\ method\ for\ Counts\ class$

Description

Print method for Counts class

Usage

```
## S4 method for signature 'Counts'
show(object)
```

Arguments

object

object of class Counts

Value

no return value, called for side effects

summary, Counts-method Summary method for Counts class

Description

Summary method for Counts class

Usage

```
## S4 method for signature 'Counts'
summary(object, ...)
```

Arguments

object of class Counts

... additional parameters affecting the summary produced

Value

no return value, called for side effects

Index

```
* class
    Counts-class, 7
* package
    dupiR-package, 2
compute_ecdf, 3
compute_normalization_constant, 3, 5
compute\_posterior, 4, 9
compute_posterior,Counts-method
        (Counts-class), 7
compute_posterior_with_replacement, 5
compute_sum, 6
compute_term, 6
Counts-class, 7
curve, 8, 14
dupiR (dupiR-package), 2
dupiR-package, 2
gamma_poisson_clough, 10
get_counts, 10
get_counts,Counts-method
        (Counts-class), 7
get_fractions, 11
get_fractions,Counts-method
        (Counts-class), 7
get_posterior_param, 9, 11
get_posterior_param, Counts-method
        (Counts-class), 7
initialize, Counts-method, 12
new_counts, 13
plot, Counts-method, 13
plot_posterior, 11, 13, 14
plot_posterior,Counts-method
        (Counts-class), 7
set_counts<-, 15
```