universität freiburg

Motivation

- ▶ We give a short introduction to risk measurement of our goals and of the possible application
- risk as we see it here is an unwanted, unsure event in the future which (for simplicity) is associated with monetary losses

Risk measures

Our application

The key question is how to generate the loss distribution which we will have to estimate.

Exploitation and exploration

- Now the above example simply showed some data points, but I think in our situation the case is more complex:
- I think of the kitchen application. We know what happens when we open Microwave of type 1. But there are also other types, say n_1 . We know what happens when we open fridge of type 1. But there are also other types, say n_2 ...
- So overall we have a certain space of Elements which we call E_1, \ldots, E_N which contains Microwave of type 1 (element E_1), fridge of type 1 (element E_{n_1+1}) and so on.
- For some we have data (maybe small, but still) for others we do not
- ▶ Besides the elements there are unknowns U_1, \ldots, U_M which we did not test on. We have no information on these.
- Besides those we have unknown unknowns we also have no information on the unknown unknowns.
- Our goal is to build up understanding and modelling from the bottom up.

Expert information

- ▶ I currently see two ways to enhance our datasets: transfer and experts.
- Transfer means we estimate for our robot the risk from other data sets (which we currently also do not have)
- Expert means we have a number of experts which give us information on (Simones work is the basis for this)
 - \blacktriangleright How to transfer from E_1 to E_2, \ldots, E_{n_1}
 - and similar from the others.
 - ▶ How to asses the unknown scenarios and the associated risk
- We then follow Schmidt & Voeneky to adaptively gather information on the run and update on the expert estimates with incoming data in a Bayesian way.

What we need for now

- ▶ We need data on scenarios possibly a full picture of your experiments.
- ➤ You are possibly also the experts if we have estimates from you on how risky you estimate say the transfer from Microwave of type 1 to that of other types before you test and then test, we could gather some distribution on the quality of your estimation (and document this for later on)
- Also simulated experiments could serve as a basis for risk assessment (Joschka: autonomous cars, what are other projects where this is necessary)
- ► Any other ideas ?

Many thanks