Sequence Listing

<110> Henry B. Lowman, Leonard G. Presta, Paula M. Jardieu, John Lowe 5 <120> Anti-IgE Antibodies and Method of Improving Polypeptides <130> P1123R1 <140> US 09/109,207 10 <141> 1998-06-30 <150> US 60/051,554 <151> 1997-07-03 15 <160> 44 <210> 1 <211> 6127 <212> DNA 20 <213> Artificial <220> <221> Artificial <222> 1-6127 25 <223> Expression plasmid <400> 1 gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50 30 tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcgaat 100 gaactgtgtg cgcaggtaga agctttggag attatcgtca ctgcaatgct 150 tcgcaatatg gcgcaaaatg accaacagcg gttgattgat caggtagagg 200 35 gggcgctgta cgaggtaaag cccgatgcca gcattcctga cgacgatacg 250 gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300 40 aaaagttaat cttttcaaca gctgtcataa agttgtcacg gccgagactt 350 atagtcgctt tgtttttatt ttttaatgta tttgtaacta gaattcgagc 400 teggtaeeeg gggateetet egaggttgag gtgattttat gaaaaagaat 450 45 atcgcatttc ttcttgcatc tatgttcgtt ttttctattg ctacaaacgc 500 gtacgctgat atccagctga cccagtcccc gagctccctg tccgcctctg 550 50 tgggcgatag ggtcaccatc acctgccgtg ccagtcagag cgtcgattac 600 gaaggtgata gctacctgaa ctggtatcaa cagaaaccag gaaaagctcc 650 gaaactactg atttacgcgg cctcgtacct ggagtctgga gtcccttctc 700 55 gcttctctgg atccggttct gggacggatt tcactctgac catcagcagt 750 ctgcagccag aagacttcgc aacttattac tgtcagcaaa gtcacgagga 800 60 tccgtacaca tttggacagg gtaccaaggt ggagatcaaa cgaactgtgg 850 ctgcaccatc tgtcttcatc ttcccgccat ctgatgagca gttgaaatct 900

10

15

20

25

30

35

40

45

50

55

60

ggaactgctt ctgttgtgtg cctgctgaat aacttctatc ccagagaggc 950 caaagtacag tggaaggtgg ataacgccct ccaatcgggt aactcccagg 1000 agagtgtcac agagcaggac agcaaggaca gcacctacag cctcagcagc 1050 accetgaege tgageaaage agaetaegag aaacaeaaag tetaegeetg 1100 cgaagtcacc catcagggcc tgagctcgcc cgtcacaaag agcttcaaca 1150 ggggagagtg ttaagctgat cetetacgce ggacgcateg tggccctagt 1200 acgcaagttc acgtaaaaag ggtatctaga ggttgaggtg attttatgaa 1250 aaagaatatc gcatttcttc ttgcatctat gttcgttttt tctattgcta 1300 caaacgcgta cgctgaggtt cagctggtgg agtctggcgg tggcctggtg 1350 cagccagggg gctcactccg tttgtcctgt gcagtttctg gctactccat 1400 cacctccgga tacagctgga actggatccg tcaggccccg ggtaagggcc 1450 tggaatgggt tgcatcgatt acgtatgacg gatcgactaa ctataaccct 1500 agegteaagg geegtateae tataagtege gaegatteea aaaacaeatt 1550 ctacctgcag atgaacagcc tgcgtgctga ggacactgcc gtctattatt 1600 gtgctcgagg cagccactat ttcggtcact ggcacttcgc cgtgtggggt 1650 caaggaaccc tggtcaccgt ctcctcggcc tccaccaagg gcccatcggt 1700 cttcccccta gcaccctcct ccaagagcac ctctgggggc acagcggccc 1750 tgggetgeet ggteaaggae taetteeeeg aaeeggtgae ggtgtegtgg 1800 aactcaggcg ccctgaccag cggcgtgcac accttcccgg ctgtcctaca 1850 gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg ccctccagca 1900 gcttgggcac ccagacctac atctgcaacg tgaatcacaa gcccagcaac 1950 accaaggtgg acaagaaagt tgagcccaaa tcttgtgaca aaactcacac 2000 ctagagtggc ggtggctctg gttccggtga ttttgattat gaaaagatgg 2050 caaacgctaa taagggggct atgaccgaaa atgccgatga aaacgcgcta 2100 cagtctgacg ctaaaggcaa acttgattct gtcgctactg attacggtgc 2150 tgctatcgat ggtttcattg gtgacgtttc cggccttgct aatggtaatg 2200 gtgctactgg tgattttgct ggctctaatt cccaaatggc tcaagtcggt 2250 gacggtgata attcaccttt aatgaataat ttccgtcaat atttaccttc 2300 cctccctcaa tcggttgaat gtcgcccttt tgtctttagc gctggtaaac 2350 catatgaatt ttctattgat tgtgacaaaa taaacttatt ccgtggtgtc 2400 tttgcgtttc ttttatatgt tgccaccttt atgtatgtat tttctacgtt 2450

10

15

20

25

30

35

40

45

50

55

60

tgctaacata ctgcgtaata aggagtctta atcatgccag ttcttttggc 2500 tagegeegee ctatacettg tetgeeteee egegttgegt egeggtgeat 2550 ggagccgggc cacctcgacc tgaatggaag ccggcggcac ctcgctaacg 2600 gattcaccac tccaagaatt ggagccaatc aattcttgcg gagaactgtg 2650 aatgcgcaaa ccaaccettg gcagaacata tecategegt cegecatete 2700 cagcageege aegeggegea tetegggeag egttgggtee tggeeaeggg 2750 tgcgcatgat cgtgctcctg tcgttgagga cccggctagg ctggcggggt 2800 tgccttactg gttagcagaa tgaatcaccg atacgcgagc gaacgtgaag 2850 cgactgctgc tgcaaaacgt ctgcgacctg agcaacaaca tgaatggtct 2900 teggttteeg tgtttegtaa agtetggaaa egeggaagte agegeeetge 2950 accattatgt teeggatetg categeagga tgetgetgge taccetgtgg 3000 aacacctaca tetgtattaa egaagegetg geattgaeee tgagtgattt 3050 ttetetggte eegeegeate catacegeea gttgtttaee etcacaaegt 3100 tccagtaacc gggcatgttc atcatcagta acccgtatcg tgagcatcct 3150 ctctcgtttc atcggtatca ttacccccat gaacagaaat tcccccttac 3200 acggaggcat caagtgacca aacaggaaaa aaccgccctt aacatggccc 3250 gctttatcag aagccagaca ttaacgcttc tggagaaact caacgagctg 3300 gacgcggatg aacaggcaga catctgtgaa tcgcttcacg accacgctga 3350 tgagctttac cgcaggatcc ggaaattgta aacgttaata ttttgttaaa 3400 attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 3450 aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg 3500 agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc 3550 caacgtcaaa gggcgaaaaa ccgtctatca gggctatggc ccactacgtg 3600 aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta 3650 aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc 3700 ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 3750 gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc 3800 gcgcttaatg cgccgctaca gggcgcgtcc ggatcctgcc tcgcgcgttt 3850 cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 3900 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg 3950 tcagcgggtg ttggcgggtg tcggggcgca gccatgaccc agtcacgtag 4000

	cgatagcgga	gtgtatactg	gcttaactat	gcggcatcag	agcagattgt	4050
	actgagagtg	caccatatgc	ggtgtgaaat	accgcacaga	tgcgtaagga	4100
	gaaaataccg	catcaggcgc	tcttccgctt	cctcgctcac	tgactcgctg	4150
	cgctcggtcg	ttcggctgcg	gcgagcggta	tcagctcact	caaaggcggt	4200
	aatacggtta	tccacagaat	caggggataa	cgcaggaaag	aacatgtgag	4250
	caaaaggcca	gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	4300
	tttttccata	ggctccgccc	ccctgacgag	catcacaaaa	atcgacgctc	4350
	aagtcagagg	tggcgaaacc	cgacaggact	ataaagatac	caggcgtttc	4400
	cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	gccgcttacc	4450
	ggatacctgt	ccgcctttct	cccttcggga	agcgtggcgc	tttctcatag	4500
	ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaagctgg	4550
	gctgtgtgca	cgaacccccc	gttcagcccg	accgctgcgc	cttatccggt	4600
	aactatcgtc	ttgagtccaa	cccggtaaga	cacgacttat	cgccactggc	4650
	agcagccact	ggtaacagga	ttagcagagc	gaggtatgta	ggcggtgcta	4700
	cagagttctt	gaagtggtgg	cctaactacg	gctacactag	aaggacagta	4750
	tttggtatct	gcgctctgct	gaagccagtt	accttcggaa	aaagagttgg	4800
	tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	ggttttttg	4850
	tttgcaagca	gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	·4900
	ttgatctttt	ctacggggtc	tgacgctcag	tggaacgaaa	actcacgtta	4950
	agggattttg	gtcatgagat	tatcaaaaag	gatcttcacc	tagatccttt	5000
	taaattaaaa	atgaagtttt	aaatcaatct	aaagtatata	tgagtaaact	5050
	tggtctgaca	gttaccaatg	cttaatcagt	gaggcaccta	tctcagcgat	5100
	ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	gtgtagataa	5150
	ctacgatacg	ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	5200
	cgagacccac	gctcaccggc	tccagattta	tcagcaataa	accagccagc	5250
	cggaagggcc	gagcgcagaa	gtggtcctgc	aactttatcc	gcctccatcc	5300
	agtctattaa	ttgttgccgg	gaagctagag	taagtagttc	gccagttaat	5350
	agtttgcgca	acgttgttgc	cattgctgca	ggcatcgtgg	tgtcacgctc	5400
•	gtcgtttggt	atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	5450
	ttacatgatc	ccccatgttg	tgcaaaaaag	cggttagctc	cttcggtcct	5500
	ccgatcgttg	tcagaagtaa	gttggccgca	gtgttatcac	tcatqqttat	5550

	5	5 5 1155 1545 11 HILLIAN HILLIANS COLGANIANCE GEGLACIES	,050
		cgaccgagtt gctcttgccc ggcgtcaaca cgggataata ccgcgccaca 5	700
		tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa 5	750
	10	aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 5	800
		cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg 5	850
	15	gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 5	900
		cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc 5	950
		atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta 6	000
1	20	gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac 6	050
·I		ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 6	100
	25	cgtatcacga ggccctttcg tcttcaa 6127	
		<210> 2 <211> 121	
Ī	•	<212> PRT <213> Mus musculus	
<u>_</u>	30	<400> 2	
± ±		Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro S	Ser 15
	35	Gln Ser Leu Ser Leu Ala Cys Ser Val Thr Gly Tyr Ser Ile 7	Thr 30
		Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn I	ևys 45
	40	Leu Glu Trp Met Gly Ser Ile Thr Tyr Asp Gly Ser Ser Asn T	Tyr 60
	45	Asn Pro Ser Leu Lys Asn Arg Ile Ser Val Thr Arg Asp Thr S	Ser 75
		Gln Asn Gln Phe Phe Leu Lys Leu Asn Ser Ala Thr Ala Glu A	
		80 85	90
	50	Thr Ala Thr Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly H 95 100 1	His 105
		Trp His Phe Ala Val Trp Gly Ala Gly Thr Thr Val Thr Val S	Ser

ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 5600

ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg 5650

<210> 3 60 <211> 121 <212> PRT <213> Artificial

Ser

55

	5	<220> <221> Artificial <222> 1-121 <223> F(ab) sequence derived from MAE11														
	10	<pre><400> 3 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 1 5 10 15</pre>														
		Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr 20 25 30														
	15	Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly 35 40 45														
		Leu Glu Trp Val Ala Ser Ile Thr Tyr Asp Gly Ser Thr Asn Tyr 50 55 60														
	20	Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser 65 70 75														
	25	Lys Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90														
		Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His 95 100 105														
	30	Trp His Phe Ala Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser 110 115 120														
4		Ser														
	35	<210> 4 <211> 121 <212> PRT <213> Homo sapiens														
	40	<220> <221> unsure <222> 30, 104-108 <223> unknown amino acid														
	45	<400> 4 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 1 5 10 15														
	50	Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Xaa 20 25 30														
		Ser Asp Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 35 40 45														
	55	Leu Glu Trp Val Ala Val Ile Ser Asn Gly Ser Asp Thr Tyr Tyr . 50 55 60														
	60	Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser 65 70 75														
	50	Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 80 85 90														

	Thr Al	a Val	Tyr	Tyr 95		Ala	Arg	Asp	Ser 100	Arg	Phe	Phe	Xaa	Xaa 105
5	Xaa Xa	ıa Xaa	Asp	Val 110		Gly	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120
	Ser													
10	<210> 5													
	<211> 1 <212> P	11 PRT	1 -											
15	<213> M		sculi	ıs										
	<400> 5 Asp Il 1		Leu	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ala	Val	Ser	Leu 15
20	Gly Gl	n Arg	Ala	Thr 20	Ile	Ser	Cys	Lys	Ala 25	Ser	Gln	Ser	Val	Asp 30
25	Tyr As	p Gly	Asp	Ser 35	Tyr	Met	Asn	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45
. 23 !	Gln Pr	o Pro	Ile	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Tyr	Leu	Gly	Ser 60
30	Glu Il	e Pro	Ala	Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75
	Thr Le	u Asn	Ile	His 80	Pro	Val	Glu	Glu	Glu 85	Asp	Ala	Ala	Thr	Phe 90
35	Tyr Cy	s Gln	Gln	Ser 95	His	Glu	Asp	Pro	Tyr 100	Thr	Phe	Gly	Ala	Gly 105
40	Thr Ly	s Leu	Glu	Ile 110	Lys									
.0	<210> 6 <211> 11 <212> PI	RT												
45	<213> Ai	rtific	cial					•						
	<221> At <222> 1-	-111		1-						-				
50	<223> F	(ab) I	.1gnt	cna	ıın s	eque	nce	aerı	vea	irom	1 MAE	11		
	<400> 6 Asp Ile 1	e Gln	Leu	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
55	Gly Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Val .	Asp 30
60	Tyr Asp	Gly	Asp	Ser 35	Tyr	Met	Asn	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45
	Lys Ala	Pro	Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Tyr	Leu	Glu :	Ser 60

Œ
:
=
Ţ
j
Ų
I
::
===
-
à
4

		Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 65 70 75
	5	Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr 80 85 90
	10	Tyr Cys Gln Gln Ser His Glu Asp Pro Tyr Thr Phe Gly Gln Gly 95 100 105
	10	Thr Lys Val Glu Ile Lys 110
	15	<210> 7 <211> 111 <212> PRT <213> Homo sapiens
	20	<220> <221> unsure <222> 33-34 <223> unknown amino acid
	25	<pre><400> 7 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val</pre>
_	30	Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Asp 20 25 30
<u>.</u>		Ile Ser Xaa Xaa Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly 35 40 45
hal that than	35	Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser 50 55 60
=		Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 65 70 75
	40	Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr 80 85 90
	45	Tyr Cys Gln Gln Tyr Asn Ser Leu Pro Tyr Thr Phe Gly Gln Gly 95 100 105
	45	Thr Lys Val Glu Ile Lys 110
	50	<210> 8 <211> 114 <212> PRT <213> Artificial
	55	<220> <221> Artificial <222> 1-114 <223> Light chain sequence derived from MAE11
	60	<pre><400> 8 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 1 5 10 15</pre>

	Gly	Asp	Arg	Val	Thr 20		Thr	Cys	arç	y Ala 25		. Lys	s Pro) Val	l Asp 30
5	Gly	Glu	Gly	Asp	Ser 35		Leu	ı Asr	1 Trp	40		ı Glr	Lys	; Pro	Gly 45
	Lys	Ala	Pro	Lys	Leu 50	Leu	Ile	Tyr	: Ala	Ala 55		Туг	Leu	ı Glu	Ser 60
10	Gly	Val	Pro	Ser	Arg 65	Phe	Ser	Gly	Ser	Gly 70		Gly	Thr	. Asp	Phe 75
15	Thr	Leu	Thr	Ile	Ser 80	Ser	Leu	Gln	. Pro	Glu 85		Phe	Ala	Thr	90
	Tyr	Cys	Gln	Gln	Ser 95	His	Glu	Asp	Pro	Tyr 100		Phe	Gly	Gln	Gly 105
20	Thr	Lys	Val	Glu	Ile 110	Lys	Arg	Thr	Val						
25	<210><211><211><212><213>	• 114 • PR7	ľ	cial											
30	<220><221><222><223>	Art 1-1	14		ı seç	quenc	e de	erive	ed fi	com I	MAE1:	1			
35	<400> Asp 1	Ile			5					10					15
	Gly .	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30
40	Tyr	Glu	Gly	Asp	Ser 35	Tyr	Leu	Asn	Trp	m	Gln	Gln	Lys	Pro	Gly
	T.ve								L	40					45
	Lys 1	Ala	Pro	Lys	Leu 50	Leu	Ile	Tyr		40				Glu	
45	Gly V				50				Ala	40 Ala 55	Ser	Tyr	Leu		Ser 60
45 50		Val	Pro	Ser	50 Arg 65	Phe .	Ser	Gly	Ala Ser	40 Ala 55 Gly 70	Ser Ser	Tyr Gly	Leu Thr	Asp	Ser 60 Phe 75
	Gly '	Val Leu	Pro Thr	Ser Ile	50 Arg 65 Ser 80	Phe s	Ser Leu	Gly Gln	Ala Ser Pro	40 Ala 55 Gly 70 Glu 85	Ser Ser Asp	Tyr Gly Phe	Leu Thr Ala	Asp Thr	Ser 60 Phe 75 Tyr 90
	Gly Y	Val Leu '	Pro Thr Gln (Ser Ile Gln	50 Arg 65 Ser 80 Ser: 95	Phe Ser I	Ser Leu Glu	Gly Gln Asp	Ala Ser Pro	Ala 55 Gly 70 Glu 85 Tyr	Ser Ser Asp	Tyr Gly Phe	Leu Thr Ala	Asp Thr	Ser 60 Phe 75 Tyr 90
50	Gly v Thr I	Val Cys (Lys (10 114 PRT	Pro Thr Gln (Ser Ile Gln	50 Arg 65 Ser 80 Ser : 95	Phe Ser I	Ser Leu Glu	Gly Gln Asp	Ala Ser Pro	Ala 55 Gly 70 Glu 85 Tyr	Ser Ser Asp	Tyr Gly Phe	Leu Thr Ala	Asp Thr	Ser 60 Phe 75 Tyr 90

	<221> Artificial <222> 1-114 <223> Light chain sequence derived from MAE11														
5	As	0> 1 p Il 1		n Le	u Thi		n Se:	r Pr	o Se	r Se 1		u Se	r Ala	a Sei	val 15
10	Gl;	y As	p Ar	g Va	l Thi 20		e Th:	r Cy	s Ar	g Al		r Gl:	n Sei	r Val	Asp 30
	Ту	r As	p Gl	y Ası	Ser 35		Met	: As:	n Trj	р Ту: 4		n Gl	n Lys	s Pro	Gly 45
15	Lys	s Ala	a Pro	o Lys	Leu 50		ı Ile	∋ Ту:	r Ala	a Ala 5!		т Ту	r Lei	ı Glu	Ser 60
20	Gly	y Val	l Pro	o Sei	Arg		e Sei	Gly	y Sei	r Gly		Gly	7 Thr	Asp	Phe 75
20	Thi	Lei	ı Thi	: Ile	Ser 80	Ser	Leu	ı Glr	n Pro	Glu 85) Phe	e Ala	Thr	Tyr 90
25	Туг	Cys	s Glr	ı Glr	ser 95		Glu	ı Asp	Pro	Туі 100		Phe	e Gly	Gln	Gly 105
	Thr	Lys	8 Val	. Glu	11e	Lys	Arç	Thr	. Val	-					
30	<210 <211 <212 <213	> 11 > PR	.4	cial											
35	<222	> Ar > 1-			n se	quen	ce d	eriv	ed f	rom	MAE1	1			
40	<400 Glu 1			Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10		Val	Gln	Pro	Gly 15
45	Gly	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Val	Ser 25	Gly	Tyr	Ser	Ile	Thr
	Ser	Gly	Tyr	Ser	Trp 35	Asn	Trp	Ile	Arg	Gln 40	Ala	Pro	Gly	Lys	Gly 45
50 .	Leu	Glu	Trp	Val	Ala 50	Ser	Ile	Lys	Tyr	Ser 55	Gly	Glu	Thr	Lys	Tyr 60
نغ ج	Asn	Pro	Ser	Val	Lys 65	Gly	Arg	Ile	Thr	Ile 70	Ser	Arg	Asp	Asp	Ser 75
55	Lys	Asn	Thr	Phe	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
60	Thr	Ala	Val	Tyr	Tyr 95	Cys	Ala	Arg	Gly	Ser 100	His	Tyr	Phe	Gly	His 105
	Trp	His	Phe	Ala	Val	Trp	Gly	Gln	Gly						

30

110

	<210>	12
	<211>	114
5	<212>	PRT
	<213>	Artificial
	<220>	

<221> Artificial

10 <222> 1-114 <223> Heavy chain sequence derived from MAE11

<400> 12

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
15 1 5 10 15

Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr 20 25 30

Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly 35 40 45

Leu Glu Trp Val Ala Ser Ile Thr Tyr Asp Gly Ser Thr Asn Tyr
50 55 60

Asn Pro Ser Val Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser
65 70 75

Lys Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
80 85 90

Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His
95 100 105

35 Trp His Phe Ala Val Trp Gly Gln Gly 110

<210> 13 <211> 218

40 <212> PRT <213> Artificial

<220>

<221> Artificial

45 <222> 1-218

<223> Light chain sequence derived from MAE11

<400> 13

Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 1 5 10 15

Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Asp 20 25 30

55 Tyr Asp Gly Asp Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly
35 40 45

Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Tyr Leu Glu Ser
50 55 60

60.

Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
65 70 75

	Th	r Le	eu T	'hr	Ile	Ser 80		. Lei	ı Gl:	n Pr	o Glu 89) Phe	e Ala	a Thi	r Tyr 90
5	Ту	r Cì	/s G	ln	Gln	Ser 95		Gl:	ı Ası	o Pr	0 Tyı 100		Phe	e Gly	/ Gli	n Gly 105
10	Th	r Ly	rs V	al	Glu	Ile 110		arg	g Thi	r Va	l Ala 115		Pro	Sei	. Val	Phe 120
	Ile	e Ph	ıe P	ro	Pro	Ser 125		Glu	ı Glı	ı Lei	u Lys 130		Gly	Thr	Ala	ser 135
15	Val	l Va	ıl C	ys	Leu	Leu 140	Asn	Asr	ı Phe	э Туг	r Pro 145		Glu	Ala	Lys	Val 150
						155					160)				Glu 165
20						170					175					Ser 180
25						185					190					195
						200					205	Ser	Ser	Pro	Val	Thr 210
30				ne	Asn	Arg 215	Gly	Glu	Cys							
35	<210 <211 <212 <213	> 4 > P	51 RT	ic	ial											
40	<220 <221 <222 <223	> A:	-451	-		. sec	rueno	ce do	eriv	ed f	rom 1	MAE1	L			
45	<400 Glu 1			n 1	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
	Gly	Sei	c Le	u A	Arg	Leu 20	Ser	Cys	Ala	Val	Ser 25	Gly	Tyr	Ser	Ile	Thr 30
50	Ser	Gly	ту Ту	r S	Ser	Trp 35	Asn	Trp	Ile	Arg	Gln 40	Ala	Pro	Gly	Lys	Gly 45
	Leu	Glu	Tr	I q	/al /	Ala 50	Ser	Ile	Thr	Tyr	Asp 55	Gly	Ser	Thr	Asn	Tyr 60
55	Asn	Pro	Se	r V	/al i	Lys 65	Gly	Arg	Ile	Thr	Ile 70	Ser	Arg	Asp	Asp	Ser .75
60	Lys	Asn	. Th:	r F	he '	Гуr : 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
	Thr	Ala	Va:	1 T	'yr :	Tyr (95	Cys .	Ala	Arg	Gly	Ser 100 12	His	Tyr	Phe	Gly	His 105

	Trp	His	Phe	Ala	Val 110	Trp	Gly	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120
5	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser	Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135
10	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala	Ala 145	Leu	Gly	Cys	Leu	Val 150
10	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160	Ser	Trp	Asn	Ser	Gly 165
15	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala	Val	Leu	Gln	Ser 180
	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val	Pro	Ser	Ser 195
20	Ser	Leu	Gly	Thr	Gln 200	Thr	Tyr	Ile	Cys	Asn 205	Val	Asn	His	Lys	Pro 210
-25	Ser	Asn	Thr	Lys	Val 215	Asp	Lys	Lys	Val	Glu 220	Pro	Lys	Ser	Cys	Asp 225
25	Lys	Thr	His	Thr	Cys 230	Pro	Pro	Cys	Pro	Ala 235	Pro	Glu	Leu	Leu	Gly 240
30	Gly	Pro	Ser	Val	Phe 245	Leu	Phe	Pro	Pro	Lys 250	Pro	Lys	Asp	Thr	Leu 255
	Met	Ile	Ser	Arg	Thr 260	Pro	Glu	Val	Thr	Cys 265	Val	Val	Val	Asp	Val 270
35	Ser	His	Glu	Asp	Pro 275	Glu	Val	Lys	Phe	Asn 280	Trp	Tyr	Val	Asp	Gly 285
40	Val	Glu	Val	His	Asn 290	Ala	Lys	Thr	Lys	Pro 295	Arg	Glu	Glu	Gln	Tyr 300
40	Asn	Ser	Thr	Tyr	Arg 305	Val	Val	Ser	Val	Leu 310	Thr	Val	Leu	His	Gln 315
45	Asp	Trp	Leu	Asn	Gly 320	Lys	Glu	Tyr	Lys	Cys 325	Lys	Val	Ser	Asn	Lys 330
	Ala	Leu	Pro	Ala	Pro 335	Ile	Glu	Lys	Thr	Ile 340	Ser	Lys	Ala	Lys	Gly 345
50	Gln	Pro	Arg	Glu	Pro 350	Gln	Val	Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Glu 360
55	Glu	Met	Thr	Lys	Asn 365	Gln	Val	Ser	Leu	Thr 370	Cys	Leu	Val	Lys	Gly 375
55	Phe	Tyr	Pro	Ser	Asp 380	Ile	Ala	Val	Glu	Trp 385	Glu	Ser	Asn	Gly	Gln 390
60	Pro	Glu	Asn	Asn	Tyr 395	Lys	Thr	Thr	Pro	Pro 400	Val	Leu	Asp	Ser	Asp 405
	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg

					410)				415	5				420
5	Trp	Glı	n Glr	n Gly	425		l Ph∈	e Sei	Cys	s Sei 430		L Met	t His	s Gli	1 Ala 435
J	Leu	ı His	s Asr	n His	Tyr 440		Gln	Lys	s Sei	Let 445		. Lei	ı Sei	r Pro	Gly 450
10	Lys	5													
15	<211 <212)> 15 .> 21 !> PF !> Ar	L8	.cial											
20	<222	> Ar	tifi 218 ght			quen	.ce d	eriv	ed f	rom	MAE1	.1			
25	<400 Asp	Ile		Leu	Thr 5		. Ser	Pro	Ser	Ser		Ser	Ala	Ser	Val
	Gly	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Lys	Pro	Val	Asp 30
30	Gly	Glu	Gly	Asp	Ser 35	Tyr	Leu	Asn	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45
	Lys	Ala	Pro	Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Tyr	Leu	Glu	Ser 60
35	Gly	Val	Pro	Ser	Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75
40	Thr	Leu	Thr	Ile	Ser 80	Ser	Leu	Gln	Pro	Glu 85	Asp	Phe	Alạ	Thr	Tyr 90
40	Tyr	Cys	Gln	Gln	Ser 95	His	Glu	Asp	Pro	Tyr 100	Thr	Phe	Gly	Gln	Gly 105
45	Thr	Lys	Val	Glu	Ile 110	Lys	Arg	Thr	Val	Ala 115	Ala	Pro	Ser	Val	Phe 120
	Ile	Phe	Pro	Pro	Ser 125	Asp	Glu	Gln	Leu	Lys 130	Ser	Gly	Thr	Ala	Ser 135
50	Val	Val	Cys	Leu	Leu 140	Asn	Asn	Phe	Tyr	Pro 145	Arg	Glu	Ala	Lys	Val 150
EE	Gln	Trp	Lys	Val	Asp 155	Asn	Ala	Leu	Gln	Ser 160	Gly	Asn	Ser	Gln	Glu 165
55	Ser	Val	Thr	Glu	Gln 170	Asp	Ser	Lys	Asp	Ser 175	Thr	Tyr	Ser	Leu	Ser 180
60	Ser	Thr	Leu	Thr	Leu 185	Ser	Lys	Ala	Asp	Tyr 190	Glu	Lys	His	Lys	Val 195
	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser	Ser	Pro	Val	Thr

Lys Ser Phe Asn Arg Gly Glu Cys 5 <210> 16 <211> 451 <212> PRT <213> Artificial 10 <220> <221> Artificial <222> 1-451 <223> Heavy chain sequence derived from MAE11 15

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly

20 Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr

Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly

Leu Glu Trp Val Ala Ser Ile Thr Tyr Asp Gly Ser Thr Asn Tyr

Asn Pro Ser Val Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser

Lys Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp

35 Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His 100 105

Trp His Phe Ala Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser 115

Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser 125 130 135

Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 150

Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly 155 160 165

50 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser 175

Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 185 190 195

Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 215 225

Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly

25

30

40

45

55

					230	ı				235					240
5	Gly	Pro	Ser	Val	Phe 245		. Phe	Pro	Pro	Lys 250		Lys	a Asp	Thr	Leu 255
J	Met	Ile	Ser	Arg	Thr 260	Pro	Glu	Val	Thr	Cys 265		Val	Val	Asp	Val 270
10	Ser	His	Glu	Asp	Pro 275		Val	Lys	Phe	Asn 280	Trp	Tyr	Val	Asp	Gly 285
	Val	Glu	Val	His	Asn 290	Ala	Lys	Thr	Lys	Pro 295	Arg	Glu	Glu	Gln	Tyr 300
15	Asn	Ser	Thr	Tyr	Arg 305	Val	Val	Ser	Val	Leu 310	Thr	Val	Leu	His	Gln 315
20	Asp	Trp	Leu	Asn	Gly 320	Lys	Glu	Tyr	Lys	Cys 325	Lys	Val	Ser	Asn	Lys 330
	Ala	Leu	Pro	Ala	Pro 335	Ile	Glu	Lys	Thr	Ile 340	Ser	Lys	Ala	Lys	Gly 345
25	Gln	Pro	Arg	Glu	Pro 350	Gln	Val	Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Glu 360
	Glu	Met	Thr	Lys	Asn 365	Gln	Val	Ser	Leu	Thr 370	Cys	Leu	Val	Lys	Gly 375
30	Phe	Tyr	Pro	Ser	Asp 380	Ile	Ala	Val	Glu	Trp 385	Glu	Ser	Asn	Gly	Gln 390
35	Pro	Glu	Asn	Asn	Tyr 395	Lys	Thr	Thr	Pro	Pro 400	Val	Leu	Asp	Ser	Asp 405
	Gly	Ser	Phe	Phe	Leu 410	Tyr	Ser	Lys	Leu	Thr 415	Val	Asp	Lys	Ser	Arg 420
40	Trp	Gln	Gln	Gly	Asn 425	Val	Phe	Ser	Cys	Ser 430	Val	Met	His	Glu	Ala 435
	Leu	His	Asn	His	Tyr 440	Thr	Gln	Lys		Leu 445	Ser	Leu	Ser		Gly 450
45	Lys														
50	<210><211><211><212><213>	218 PRT		ial											
55	<220><221><222><223>	Art 1-2	18		seq	uenc	e de	rive	d fr	om M.	AE11				
60	<400> Asp 1		Gln :	Leu '	Thr (Gln	Ser :	Pro :	Ser S	Ser :	Leu :	Ser	Ala :	Ser V	Val 15
	Gly 2	Asp 1	Arg '	Val '	Thr :	Ile '	Thr (Cys I	Arg A	Ala s	Ser :	Гàз	Pro '	Val A	4sp

					20)				25	5				3 (
5	Gly	y Gl	u Gl	y Ası	Ser 35		Leu	ı Asr	Trp	Tyr 40		ı Glı	n Ly:	s Pro	o Gly 45
J	Lys	s Al	a Pro	o Lys	Leu 50		ı Ile	Tyr	` Ala	Ala 55		туз	r Lei	ı Glı	ı Ser 60
10	GlΣ	/ Va	l Pro	o Ser	Arg 65		: Ser	Gly	Ser	Gly 70		Gly	y Thi	Asp	Phe 75
	Thr	Le	u Thi	r Ile	Ser 80		Leu	Gln	Pro	Glu 85		Phe	e Ala	a Thi	Tyr 90
15	Туг	Cy:	s Glr	n Glr	Ser 95		Glu	Asp	Pro	Tyr 100		Phe	e Gly	glr Glr	105
20	Thr	Ly	s Val	l Glu	Ile 110	Lys	Arg	Thr	Val	Ala 115		Pro	Ser	Val	Phe 120
	Ile	Phe	e Pro	Pro	Ser 125	Asp	Glu	Gln	Leu	Lys 130	Ser	Gly	Thr	· Ala	Ser 135
25	Val	Va]	l Cys	Leu	Leu 140	Asn	Asn	Phe	Tyr	Pro 145	Arg	Glu	Ala	Lys	Val 150
	Gln	Trp	Lys	Val	Asp 155	Asn	Ala	Leu	Gln	Ser 160	Gly	Asn	Ser	Gln	Glu 165
30	Ser	Val	. Thr	Glu	Gln 170	Asp	Ser	Lys	Asp	Ser 175	Thr	Tyr	Ser	Leu	Ser 180
35	Ser	Thr	Leu	Thr	Leu 185	Ser	Lys	Ala	Asp	Tyr 190	Glu	Lys	His	Lys	Val 195
	Tyr	Ala	Cys	Glu	Val 200	Thr	His	Gln	Gly	Leu 205	Ser	Ser	Pro	Val	Thr 210
40	Lys	Ser	Phe	Asn	Arg 215	Gly	Glu	Cys							
45	<210: <211: <212: <213:	> 45 > PR	1 T	cial											
50	<220 x <221 x <222 x <223 x <	> Ar	451		ı seq	uenc	e de	rive	d fr	om M	IAE11				
~~	<400> Glu 1		Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
55	Gly	Ser	Leu	Arg	Leu 20	Ser	Cys .	Ala	Val :	Ser 25	Gly	Tyr	Ser	Ile	Thr 30
60	Ser	Gly	Tyr	Ser	Trp 2	Asn '	Trp	Ile .	Arg (Gln /	Ala	Pro	Gly	Lys	
	Leu	Glu	Trp	Val .	Ala s	Ser :	Ile 1	Lys '	Tyr s	Ser (Gly (Glu	Thr	Lys	

					50)				55	5				60
5	Ası	n Pro	o Se	r Val	Lys 65		/ Arg	, Il∈	e Thi	r Ile 70		arç	J Asp	Asp	Ser 75
J	Lys	s Ası	n Thi	r Phe	80		. Gln	Met	. Ası	n Ser 85		ı Arg	g Ala	Glu	Asp 90
10	Thi	Ala	a Val	l Tyr	Tyr 95		Ala	Arg	Gl3	y Ser 100		s Туг	Phe	Gly	His
	Trp	His	s Phe	e Ala	Val 110		Gly	Gln	Gly	7 Thr 115		ı Val	. Thr	Val	Ser 120
15	Ser	Ala	a Ser	Thr	Lys 125		Pro	Ser	Val	Phe 130		Leu	Ala	Pro	Ser 135
20	Ser	Lys	s Ser	Thr	Ser 140		Gly	Thr	Ala	145	Leu	Gly	Cys	Leu	Val 150
	Lys	Asp	Туг	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160	Ser	Trp	Asn	Ser	Gly 165
25	Ala	Let	ı Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala	Val	Leu	Gln	Ser 180
	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val	Pro	Ser	Ser 195
30					200					Asn 205					210
35		•			215					Glu 220					225
					230					Ala 235					240
40					245					Lys 250					255
					260					Cys 265					270
45					275					Asn 280					285
50					290					Pro 295					300
					305					Leu 310					315
55					320					Cys 325		-			330
					335					Ile 340					345
60	Gln	Pro	Arg	Glu	Pro 350	Gln	Val	Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Glu 360

	Glu Met	Thi	Lys	Asn 365		ı Val	. Ser	: Lei	ı Thi		s Lei	ı Val	L Ly:	s Gly 375
5	Phe Tyr	Pro	Ser	380		Ala	val	. Glu	1 Trp 385		ı Sei	c Asr	n Gly	y Gln 390
	Pro Glu	ı Asr	a Asn	. Tyr 395		Thr	Thr	Pro	9 Pro		Lei	ı Asp	Sei	405
10	Gly Ser	Phe	Phe	Leu 410		Ser	Lys	Lev	Thr 415		. Asp	Lys	s Sei	Arg 420
15	Trp Gln	Gln	Gly	Asn 425		Phe	Ser	Cys	Ser 430		. Met	His	Glı	1 Ala 435
	Leu His	Asn	His	Tyr 440	Thr	Gln	Lys	Ser	Leu 445		Leu	. Ser	Pro	Gly 450
20	Lys													
25	<210> 19 <211> 21 <212> PR <213> Ar	8 T	cial											
	<220> <221> Ar <222> 1-	218		·	nh\ .	7.0 <i>0</i> 111	22.00	dow	:	6		.		
30	<223> Li	ght	cnaıı	1 F (aD) s	seque	ence	der	rvea	iro	m MA	EII		
30	<400> 19 Asp Ile			Thr					Ser				Ser	Val
30	<400> 19	Gln	Leu	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala		15 Asp
	<400> 19 Asp Ile 1	Gln Arg	Leu Val	Thr 5 Thr 20	Gln Ile	Ser Thr	Pro Cys	Ser Arg	Ser 10 Ala 25	Leu Ser	Ser Lys	Ala Pro	Val	15 Asp 30
35	<400> 19 Asp Ile 1 Gly Asp	Gln Arg Gly	Leu Val Asp	Thr 5 Thr 20 Ser 35	Gln Ile Tyr	Ser Thr Leu	Pro Cys Asn	Ser Arg Trp	Ser 10 Ala 25 Tyr 40	Leu Ser Gln	Ser Lys Gln	Ala Pro Lys	Val Pro	15 Asp 30 Gly 45
35	<400> 19 Asp Ile 1 Gly Asp Gly Glu	Gln Arg Gly Pro	Leu Val Asp Lys	Thr 5 Thr 20 Ser 35 Leu 50	Gln Ile Tyr Leu	Ser Thr Leu Ile	Pro Cys Asn Tyr	Ser Arg Trp Ala	Ser 10 Ala 25 Tyr 40 Ala 55	Leu Ser Gln Ser	Ser Lys Gln Tyr	Ala Pro Lys Leu	Val Pro Glu	15 Asp 30 Gly 45 Ser 60
35 40 45	<400> 19 Asp Ile 1 Gly Asp Gly Glu Lys Ala	Gln Arg Gly Pro	Leu Val Asp Lys Ser	Thr 5 Thr 20 Ser 35 Leu 50 Arg 65	Gln Ile Tyr Leu Phe	Ser Thr Leu Ile Ser	Pro Cys Asn Tyr	Ser Arg Trp Ala Ser	Ser 10 Ala 25 Tyr 40 Ala 55 Gly 70	Leu Ser Gln Ser	Ser Lys Gln Tyr	Ala Pro Lys Leu	Val Pro Glu Asp	15 Asp 30 Gly 45 Ser 60 Phe 75
35 40	<400> 19 Asp Ile 1 Gly Asp Gly Glu Lys Ala Gly Val	Gln Arg Gly Pro Pro	Leu Val Asp Lys Ser	Thr 5 Thr 20 Ser 35 Leu 50 Arg 65 Ser 80	Gln Ile Tyr Leu Phe Ser	Ser Thr Leu Ile Ser	Pro Cys Asn Tyr Gly	Ser Arg Trp Ala Ser Pro	Ser 10 Ala 25 Tyr 40 Ala 55 Gly 70 Glu 85	Leu Ser Gln Ser Ser	Ser Lys Gln Tyr Gly	Ala Pro Lys Leu Thr	Val Pro Glu Asp	15 Asp 30 Gly 45 Ser 60 Phe 75 Tyr 90
35 40 45	<400> 19 Asp Ile 1 Gly Asp Gly Glu Lys Ala Gly Val Thr Leu	Gln Arg Gly Pro Thr Gln	Leu Val Asp Lys Ser Ile Gln Glu	Thr 5 Thr 20 Ser 35 Leu 50 Arg 65 Ser 80 Ser 95	Gln Ile Tyr Leu Phe Ser	Ser Thr Leu Ile Ser Leu Glu	Pro Cys Asn Tyr Gly Gln Asp	Ser Arg Trp Ala Ser Pro	Ser 10 Ala 25 Tyr 40 Ala 55 Gly 70 Glu 85 Tyr 100	Leu Ser Gln Ser Ser Asp	Ser Lys Gln Tyr Gly Phe	Ala Pro Lys Leu Thr Ala	Val Pro Glu Asp Thr	15 Asp 30 Gly 45 Ser 60 Phe 75 Tyr 90 Gly 105
35404550	<400> 19 Asp Ile 1 Gly Asp Gly Glu Lys Ala Gly Val Thr Leu Tyr Cys	Gln Arg Gly Pro Thr Gln Val	Leu Val Asp Lys Ser Ile Gln Glu	Thr 5 Thr 20 Ser 35 Leu 50 Arg 65 Ser 80 Ser 95 Ile 110	Gln Ile Tyr Leu Phe Ser His	Ser Thr Leu Ile Ser Leu Glu Arg	Pro Cys Asn Tyr Gly Gln Asp	Ser Arg Trp Ala Ser Pro Pro	Ser 10 Ala 25 Tyr 40 Ala 55 Gly 70 Glu 85 Tyr 100 Ala 115	Leu Ser Gln Ser Ser Asp Thr	Ser Lys Gln Tyr Gly Phe Phe	Ala Pro Lys Leu Thr Ala Gly Ser	Val Pro Glu Asp Thr Gln Val	15 Asp 30 Gly 45 Ser 60 Phe 75 Tyr 90 Gly 105 Phe 120

	Glr	ı Tr	p Lys	s Val	l Asp 155		n Ala	ı Leı	ı Glı	n Ser 160		/ Asr	ı Sei	Glr	n Glu 165
5	Sei	. Va	l Thi	Glu	170		Ser	Lys	a Asp	Ser 175		Туг	Sei	r Leu	ser 180
	Ser	Th	r Lei	ı Thr	Leu 185		Lys	s Ala	a Asp	190		Lys	His	Lys	Val 195
10	Туг	Ala	a Cys	s Glu	Val 200		His	Glr	ı Gly	7 Leu 205		Ser	Pro	Val	Thr 210
15	Lys	Se:	? Phe	e Asn	215		glu	Сув	5						
	<210 <211 <212	> 22	29												
20	<213	> Ar	tifi	cial											
	<222	> Ar > 1-				ab)	seau	ence	der	ived	fro	m MA	ច្ 1 1		
25	<400					,	Dogu		ucı	ivea	110				
		Val		Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
30	Gly	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Val	Ser 25	Gly	Tyr	Ser	Ile	Thr 30
35	Ser	Gly	Tyr	Ser	Trp 35	Asn	Trp	Ile	Arg	Gln 40	Ala	Pro	Gly	Lys	Gly 45
	Leu	Glu	Trp	Val `	Ala 50	Ser	Ile	Thr	Tyr	Asp 55	Gly	Ser	Thr	Asn	Tyr 60
40	Asn	Pro	Ser	Val	Lys 65	Gly	Arg	Ile	Thr	Ile 70	Ser	Arg	Asp	Asp	Ser 75
	Lys	Asn	Thr	Phe	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
45	Thr	Ala	Val	Tyr	Tyr 95	Cys	Ala	Arg	Gly	Ser 100	His	Tyr	Phe	Gly	His 105
50	Trp	His	Phe	Ala	Val 110	Trp	Gly	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120
	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser	Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135
55	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala	Ala 145	Leu	Gly	Cys	Lęu	Val 150
	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160	Ser	Trp	Asn	Ser	Gly 165
60	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala	Val	Leu	Gln	Ser 180

Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 200 205 210

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 215 220 225

Lys Thr His Thr

- 10 <210> 22 <211> 248 <212> PRT <213> Artificial
- <223> sFv sequence derived from MAE11 20 <400> 22 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 10 Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr 25 Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly 30 Leu Glu Trp Val Ala Ser Ile Thr Tyr Asp Gly Ser Thr Asn Tyr Asn Pro Ser Val Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser 35 Lys Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His 40 Trp His Phe Ala Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser 45 Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ser Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 50 Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Lys Pro Val 55

Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr 220 Tyr Tyr Cys Gln Gln Ser His Glu Asp Pro Tyr Thr Phe Gly Gln 5 235 Gly Thr Lys Val Glu Ile Lys Arg 10 <210> 23 <211> 248 <212> PRT <213> Artificial 15 <220> <221> Artificial <222> 1-248 <223> sFv sequence derived from MAE11 20 <400> 23 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Ser Ile Thr 25 Ser Gly Tyr Ser Trp Asn Trp Ile Arg Gln Ala Pro Gly Lys Gly 30 Leu Glu Trp Val Ala Ser Ile Lys Tyr Ser Gly Glu Thr Lys Tyr Asn Pro Ser Val Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser 35 Lys Asn Thr Phe Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His 40 Trp His Phe Ala Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser 45 Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ser Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 50

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Lys Pro Val 165

Asp Gly Glu Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro 170

Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Tyr Leu Glu 195

Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 200

60

Tyr Tyr Cys Gln Gln Ser His Glu Asp Pro Tyr Thr Phe Gly Gln 5 235

Gly Thr Lys Val Glu Ile Lys Arg

- 10 <210> 24 <211> 218 · <212> PRT <213> Artificial
- 15 <220> <221> Artificial <222> 1-218
- <223> Light chain F(ab)'2 sequence derived from MAE11 20 <400> 24 Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 10 Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Lys Pro Val Asp 25 Gly Glu Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly 30 Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Tyr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 35 Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser His Glu Asp Pro Tyr Thr Phe Gly Gln Gly 40 Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe 45 Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser

Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val 140 50 Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu 155 Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr

Lys Ser Phe Asn Arg Gly Glu Cys

5	<21;	0> 2 1> 2 2> P 3> A	33	icia]	L										
10	<222	l> A 2> 1	rtif: -233 eavy					quer	nce d	deriv	ved f	rom	MAE1	.1	
15				ı Leu	ı Val		. Ser	Gly	r GlΣ	y Gly 10		ı Val	. Gln	Pro	Gly 15
20					20					25					Thr 30
	Ser	Gly	у Туг	`Ser	Trp 35		Trp	Ile	Arg	g Gln 40		Pro	Gly	Lys	Gly 45
25	Leu	ı Glı	ı Trp	Val	Ala 50	Ser	Ile	Thr	Tyr	Asp 55		Ser	Thr	Asn	Tyr 60
	Asn	Pro	Ser	Val	Lys 65	Gly	Arg	Ile	Thr	Ile 70	Ser	Arg	Asp	Asp	Ser 75
30	Lys	Asr	1 Thr	Phe	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
	Thr	Ala	val	Tyr	Tyr 95	Сув	Ala	Arg	Gly	Ser 100	His	Tyr	Phe	Gly	His
35	Trp	His	Phe	Ala	Val 110	Trp	Gly	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120
40	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser	Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135
	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala	Ala 145	Leu	Gly	Cys	Leu	Val 150
45	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160	Ser	Trp	Asn	Ser	Gly 165
50	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala	Val	Leu	Gln	Ser 180
30	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val	Pro	Ser	Ser 195
55	Ser	Leu	Gly	Thr	Gln 200	Thr	Tyr	Ile	Cys	Asn 205	Val	Asn	His	Lys	Pro 210
	Ser	Asn	Thr		Val 215	Asp	Lys	Lys	Val	Glu 220	Pro	Lys	Ser	_	Asp 225
60	Lys	Thr	His		Cys 230	Pro	Pro	Cys							

	5	<21 <21 <21 <22 <22 <22	0> 1> A 2> 1	33 RT rtif: rtif: -233	icia	1	(ab) '	'2 se	equer	ice (deriv	ved 1	From	MAE	11	
		Glı	0> 20 u Va: 1		ı Le	ı Val	Glu S	ı Sei	r Gly	/ Gl	y Gly 10		ı Val	l Glr	n Pro	Gly 15
	15	Gly	y Sei	. Leu	ı Arç	g Leu 20		Cys	s Ala	ı Val	Ser 25		y Tyr	Ser	: Ile	Thr 30
	20					35					. 40					Gly 45
		Leu	ı Glu	ı Trp	Val	. Ala 50	Ser	Ile	. Lys	Tyr	Ser 55	Gly	Glu	Thr	. Lys	Tyr 60
	25	Asn	Pro	Ser	Val	Lys 65	Gly	Arg	Ile	Thr	Ile 70	Ser	Arg	Asp	Asp	Ser 75
1		Lys	Asn	Thr	Phe	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
	30	Thr	Ala	Val	Tyr	Tyr 95	Cys	Ala	Arg	Gly	Ser 100	His	Tyr	Phe	Gly	His 105
<u></u>	35 .		His	Phe	Ala	Val 110	Trp	Gly	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120
		Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser	Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135
	40	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala	Ala 145	Leu	Gly	Cys	Leu	Val 150
		Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160	Ser	Trp	Asn	Ser	Gly 165
	45	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala	Val	Leu	Gln	Ser 180
	50	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val	Pro	Ser	Ser 195
		Ser	Leu	Gly	Thr	Gln 200	Thr	Tyr	Ile	Cys	Asn 205	Val	Asn	His	Lys	Pro 210
	55	Ser	Asn	Thr	Lys	Val 215	Asp	Lys	Lys		Glu 220	Pro	Lys	Ser		Asp 225
		Lys	Thr	His '		Cys 230	Pro	Pro	Cys							
	60	<210> <211> <212>	45													

```
<213> Artificial
      <220>
      <221> Artificial
      <222> 1-45
      <223> Stop-Template Oligos for First-Round Mutagenesis
      <400> 27
       acctgccgtg ccagttaata agtctaataa gaaggtgata gctac 45
 10
      <210> 28
      <211> 46
      <212> DNA
      <213> Artificial
 15
      <220>
      <221> Artificial
      <222> 1-46
      <223> Stop-Template Oligos For First-Round Mutagenesis
 20
      <400> 28
      gccagtcaga gcgtctaata ataaggttga agctacctga actggt 46
      <210> 29
 25
      <211> 50
      <212> DNA
     <213> Artificial
     <220>
 30
     <221> Artificial
     <222> 1-50
     <223> Stop-Template Oligos For First-Round Mutagenesis
     <400> 29
35
      tgtgctcgag gcagctaata ataaggttaa tggtaattcg ccgtgtgggg 50
     <210> 30
     <211> 43
     <212> DNA
40
     <213> Artificial
     <220>
     <221> Artificial
     <222> 1-43
45
     <223> Stop-Template Oligos For First-Round Mutagenesis
      gaaactactg atttactaat aataataact ggagtctgga gtc 43
50
     <210> 31
     <211> 53
     <212> DNA
     <213> Artificial
55
    <220>
    <221> Artificial
    <222> 1-53
    <223> Stop-Template Oligos For First-Round Mutagenesis
60
    <400> 31
     cttattactg tcagcaaagt taataataac cgtaaacatt tggacagggt 50
```

```
acc 53
         <210> 32
         <211> 46
         <212> DNA
         <213> Artificial
         <220>
         <221> Artificial
    10
         <222> 1-46
         <223> Stop-Template Oligos For First-Round Mutagenesis
         <400> 32
          gtcctgtgca gtttcttaat aataataata atccggatac agctgg 46
    15
         <210> 33
         <211> 45
         <212> DNA
         <213> Artificial
    20
         <220>
<221> Artificial
·I
         <222> 1-45
4
         <223> Stop-Template Oligos For First-Round Mutagenesis
    25
<400> 33
         gcctactcca tcacctaata ataaagctga aactggatcc gtcag 45
        <210> 34
ij
   30
        <211> 53
: !
        <212> DNA
===
        <213> Artificial
=
<220>
   35
        <221> Artificial
        <222> 1-53
        <223> Stop-Template Oligos For First-Round Mutagenesis
   40
         gggttgcatc gatttaataa taaggataaa cttaatataa ccctagcctc 50
         aag 53
        <210> 35
   45
        <211> 48
        <212> DNA
        <213> Artificial
        <220>
   50
        <221> Artificial
        <222> 1-48
        <223> Stop-Template Oligos For First-Round Mutagenesis
       <400> 35
  55
        aagccggtcg acaggtaata agattaatac taaaactggt atcaacag 48
       <210> 36
       <211> 45
       <212> DNA
  60
       <213> Artificial
       <220>
```

```
<221> Artificial
         <222> 1-45
         <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
         <220>
         <221> unsure
         <222> 16-17, 19-20, 25-26, 28-29
         <223> unknown base
    10
        <400> 36
          acctgccgtg ccagtnnsnn sgtcnnsnns gaaggtgata gctac 45
         <210> 37
         <211> 45
    15
         <212> DNA
         <213> Artificial
         <220>
         <221> Artificial
    20
         <222> 1-45
         <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
         <220>
        <221> unsure
25
        <222> 16-17, 19-20, 22, 28-29
         <223> unknown base
       <400> 37
ij
         gccagtcaga gcgtcnnsnn snssggtnns agctacctga actgg 45
    30
33
        <210> 38
===
        <211> 50
, mile
        <212> DNA
<213> Artificial
   35
        <220>
        <221> Artificial
        <222> 1-50
        <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
   40
        <220>
        <221> unsure
        <222> 16-17, 19-20, 22-23, 28-29, 34-35
        <223> unknown base
   45
        <400> 38
         tgtgctcgag gcagcnnsnn snnsggtnns tggnnsttcg ccgtgtgggg 50
        <210> 39
   50
        <211> 43
        <212> DNA
        <213> Artificial
        <220>
        <221> Artificial
   55
        <222> 1-43
        <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
       <220>
       <221> unsure
   60
        <222> 17-18, 20-21, 23-24, 26-27
        <223> unknown base
```

```
<400> 39
          gaaactactg atttacnnsn nsnnsnnsct ggagtctgga gtc 43
         <210> 40
         <211> 53
         <212> DNA
         <213> Artificial
    10
         <220>
         <221> Artificial
         <222> 1-53
         <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
    15
         <220>
         <221> unsure
         <222> 21-22, 24-25, 27-28, 33-34
         <223> unknown base
    20
        <400> 40
         cttattactg tcagcaaagt nnsnnsnnsc cgnnsacatt tggacagggt 50
acc 53
        <210> 41
        <211> 46
        <212> DNA
        <213> Artificial
1
    30
::
        <220>
        <221> Artificial
==
        <222> 1-46
==
        <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
1
---
   35
        <220>
        <221> unsure
        <222> 17-18, 20-21, 23-24, 26-27, 29-30
        <223> unknown base
   40
        <400> 41
         gtcctgtgca gtttctnnsn nsnnsnnsnn stccggatac agctgg 46
        <210> 42
        <211> 51
   45
        <212> DNA
        <213> Artificial
        <220>
        <221> Artificial
   50
        <222> 1-51
        <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
        <220>
        <221> unsure
   55
        <222> 22-23, 25-26, 28-29, 34-35
        <223> unknown base
        <400> 42
        gtttctggct actccatcac cnnsnnsnns agcnnsaact ggatccgtca 50
   60
```

g 51

```
<211> 53
          <212> DNA
          <213> Artificial
      5
          <220>
          <221> Artificial
          <222> 1-53
          <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
     10
          <220>
          <221> unsure
          <222> 15-16, 18-19, 21-22, 27-28, 33-34
          <223> unknown base
     15
          <400> 43
          gggttgcatc gattnnsnns nnsggannsa ctnnstataa ccctagcgtc 50
          aag 53
    20
<210> 44
         <211> 48
         <212> DNA
         <213> Artificial
    25
         <220>
         <221> Artificial
         <222> 1-48
Ħ
         <223> Library-Specific, Degenerate Oligos For Second Round Mutagenesis
    30
::
         <220>
=
         <221> unsure
=
         <222> 16-17, 19-20, 25-26, 31-32
<u>_</u>
         <223> unknown base
    35
         <400> 44
```

aagccggtcg acaggnnsnn sgatnnstac nnsaactggt atcaacag 48

<210> 43