Yani's cheap plastic handout on transmission line parameters.

All conductors are assumed to be stranded.

Configuration & example diagram	L (H/m)	C (F/m)
Single conductor per phase & symmetric alignment:	$2\times 10^{-7}\ln\left(\frac{D}{D_s}\right)$	$\frac{2\pi\varepsilon}{\ln\left(\frac{D}{r}\right)}$
D D D	D_s : conductor GMR. [Table A.3 or A.4]	r : conductor radius.
Single conductor per phase & asymmetric alignment, transposed: $D_{xy} \qquad D_{yz}$ D_{xz} Equivalent GMD: $D_{eq} = \sqrt[3]{D_{xy} \cdot D_{yz} \cdot D_{xz}}$	$2 \times 10^{-7} \ln \left(\frac{D_{eq}}{D_s} \right)$	$\frac{2\pi\varepsilon}{\ln\left(\frac{D_{eq}}{r}\right)}$
Bundled Conductors:		2πε
	$2 \times 10^{-7} \ln \left(\frac{D_{eq}}{D_{SL}} \right)$	$\frac{2R\epsilon}{\ln\left(\frac{D_{eq}}{D_{SC}}\right)}$
D _{xy}	D_SL defined below.	D _{sc} defined below.
D_{eq} as defined before. D_{xy} , D_{yz} , D_{xz} defined as the distance between bundle centers.		

2C bundle	d	$D_{SL} = \sqrt{D_S \cdot d}$	$D_{sc} = \sqrt{r.d}$
3C bundle	d v	$D_{SL} = \sqrt[3]{D_s. d^2}$	$D_{SC} = \sqrt[3]{r \cdot d^2}$
4C bundle	d O	$D_{SL} = 1.091 \sqrt[4]{D_S. d^3}$	$D_{SC} = 1.091 \sqrt[4]{r. d^3}$

- $\bullet \quad \varepsilon = 8.854 \times 10^{-12} \ F/m$
- For bundled conductors (or single conductors for that matter), you can think of symmetric alignment as a special case of transposed asymmetric alignment in which: $D_{xy} = D_{yz} = D_{xz} = D \rightarrow D_{eq} = \sqrt[3]{D^3} = D$