行列式の定義

ある正方行列の行列式は、

- 1. 各列から 1 つずつ、行に重複がないように成分を選ぶ
- 2. それらをかけ合わせる
- 3. 符号をつけて足す

という手順で定まる値である

 $rac{1}{2}$ 行列式 $rac{1}{2}$ 次正方行列 $rac{1}{2}$ ($rac{1}{2}$) に対して、

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

で定められる値を A の行列式と呼び、|A| あるいは $\det(A)$ と表 記する

三角行列の行列式

三角行列の場合、各列から 1 つずつ、0 でない成分を重複なく選び出す方 法は、対角成分をすべて選ぶしかない

🕹 三角行列の行列式 三角行列の行列式は、対角成分の積で

ref: 長岡亮介 線形代数 入門講義 p111~112 ref: 行列と行列式の基

ref: 行列と行列式の基

ref: 長岡亮介 線形代数 入門講義 p107~108

礎 p159

礎 p160

ある

≥ 証明

行列式において、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}=0$$

となる項は、和をとったときに消えてしまうしたがって、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}\neq 0$$

すなわち

$$a_{1,\sigma(1)} \neq 0, \ldots, a_{n,\sigma(n)} \neq 0$$

となるような選び方を考える

上三角行列の場合

上三角行列の定義より、i>j ならば $a_{ij}=0$ である $a_{ij}\neq 0$ とするには、 $i\leq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \leq \sigma(i)$$

である必要がある

そして、この条件を満たす置換は、恒等置換しか存在しない ので、

$$\sigma(i) = i$$

より、 a_{ii} の積によって行列式の値が構成されるまた、恒等置換は O (偶数) 回の互換で構成されるので、各項の符号は正となる

下三角行列の場合

下三角行列の定義より、i < j ならば $a_{ij} = 0$ である $a_{ij} \neq 0$ とするには、 $i \geq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \ge \sigma(i)$$

である必要がある

そして、この条件を満たす置換も、恒等置換しか存在しない ので、上三角行列の場合と同様の結果が得られる ■

対角行列は、上三角行列でもあり下三角行列でもあるので、上の定理の特別な場合として次が成り立つ

・ 対角行列の行列式 対角行列の行列式は、対角成分の積である

特に、対角成分がすべて 1 の場合が単位行列である

🕹 単位行列の行列式 単位行列の行列式は 1 である

|E| = 1