IN THE CLAIMS:

Please amend claims 1-10, prior to examination on the merits as follows:

- 1. (Original) A binuclear, oxygen-bridged, bimetallic complex of the general formula I:
 - (I) $[(LM^1R^1)(Cp_2M^2R^2)](\mu-O)$

where:

 $M^1 = AI$, Ge, Zr or Ti;

 $M^2 = Zr$, Ti or Hf;

Cp= cyclopentadienyl;

 R^1 , R^2 = H; C(1-6)alkyl; halogen; aryl; SiMe₃ and alkylaryl where aryl = C_6H_{5-n} X_n X = halogen, C(1-6)alkyl, aryl, NO₂, SO₃H, NR³₂, where R³ = C(1-6)alkyl or H and n = 0 to 5; and

L = a bidentate, doubly heteroatom-coordinated organochemical ligand which together

with the metal M¹ forms a 5- or 6-membered ring.

- (Original) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim
 1, in which R¹, R² = methyl, ethyl, i-propyl, t-butyl, halogen, phenyl alkylphenyl,
 SiMe₃, and L is a bidentate, doubly nitrogen-coordinated organochemical ligand
 which together with the metal M¹ forms a 5- or 6-membered ring.
- 3. (Currently Amended) The bimetallic complex as claimed in claim 1 or 2, characterized in that it is a heterobimetallic complex, preferably one in which M^1 = aluminum and M^2 = zirconium, more preferably a complex of the formula [(LA1Me] [Cp₂ZrR²)] (-O), where R² is Me or CI.

4. (Currently Amended) The bimetallic complex as claimed in any one of claims 1 to 3, claim 1, characterized in that the ligand L has the following composition (formula II):

(II)
$$R^{b}-\underline{N}=X(R^{a})_{n}-HC=X(R^{a})_{n}-\underline{N}-R^{b}$$

where: X = C or P;

 R^{a} , $R^{b} = R^{1}$, R^{s} ; n = 1 when X = C; n=-2 when X = P.

5. (Original) The bimetallic complex as claimed in claim 4, characterized in that the ligand L has the following composition:

$$Ar-N=C(CH_3)-HC=C(CH_3)-N-Ar$$
,

in particular with $Ar = 2,6-iPr_2C_6H_3$.

6. (Currently Amended) A process for preparing a binuclear, oxygen-bridged, bimetallic

complex as claimed in any of claims 1 to 5, claim 1, characterized in that a precursor complex of the formula $LM^1R^1(OH)$ is reacted with a metallocene precursor complex $Cp_2M^2(R^2)_2$ or $Cp_2M^2MeR^2$ or Cp_2M^2HX , where x = halogen, preferably in an inert solvent.

- 7. (Currently Amended) A catalyst preparation for the polymerization of olefins which comprises at least one complex as claimed in any of claims 1 to 5, claim 1, and at least one cocatalyst.
- 8. (Original) The catalyst preparation as claimed in claim 7, characterized in that the cocatalyst is an alkyl-aluminoxane, preferably methylaluminoxane (MAO).
- 9. (Currently Amended) The use of binuclear, oxygen-bridged, bimetallic complexes comprising a transition metallocene and an organic AI, Ge, Zr or Ti compound which does not contain a cyclopentadienyl group, in particular complexes as claimed in any of claims 1 to 5, claim 1, as polymerization catalysts.
- 10. (Original) The use as claimed in claim 9, characterized in that at least one heterobimetallic complex is used.
- 11. (Currently Amended) The use as claimed in claim 9 or 10, characterized in that the catalyst is used in combination with a cocatalyst of the [MeA10]x type, trialkylaluminum or alkylhaloaluminum, in particular in combination with methylaluminoxane (MAO).