LAGRANGEANO AUMENTADO

P: min f(x)s.a. h(x)=0, g(x)<0

1) PENALIZAÇÃO COM DESLOCAMENTO

2) CONTROLE DE ADMISSIBILIDADE

AGORA TEMOS ESTIMATIVAS À E JE PARA OS AULTIPLICADORES.

PADAS PELO MÉTODO, QUEREMOS CONTROLAR OS PRODUTOS

μjgj(x*)

ALEM DA VIABILIDADE.

DEFINIMOS

$$V_{j}^{\kappa} = \min \left\{ -g_{j}(\alpha^{\kappa}), \, \overline{\mu_{j}}^{\kappa} \right\}, \quad \forall j$$

OBSERVE QUE

$$V_{j}^{*}=0\iff g_{j}(x^{*})\leq 0 \in \bar{\mu}_{j}^{*}g_{j}(x^{*})=0.$$
(considerando que lo método Já temos $\bar{\mu}_{j}^{*}\geqslant 0$).

COMPROLE DE ADMISSIBILIDADE + CONPLEMENTARIDADE:

SE $\max_{\text{max}} \|h(x^{*})\|_{\infty}$, $\|V^{*}\|_{\infty} \le \mathbb{Z} \max_{\text{max}} \|h(x^{*})\|_{\infty}$, $\|V^{*}\|_{\infty} \le \mathbb{Z}$ that $p_{\text{km}} = p_{\text{k}}$. Caso contrarso, $p_{\text{km}} = p_{\text{k}}$. $(\mathbb{Z} \in [0,1) \in \mathbb{Z})$.

CRITÉRIO DE PARADA

QUEREMOS KKT PE P... VAMOS PARAR QUANDO XX

É KKT APROXIMADO:

$$\left\| \nabla_{j}(\alpha^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla_{h_{i}}(\alpha^{*}) + \sum_{j=1}^{p} \mu_{j}^{*} \nabla_{g_{j}}(\alpha^{*}) \right\| \leq \mathcal{E}_{opt}$$

$$\|h(\alpha^{\kappa})\| \leq \mathcal{E}_{\text{feas}}$$
, $\|g(\alpha^{\kappa})_{+}\| \leq \mathcal{E}_{\text{feas}}$

$$|\min \} - g_j(x^*), \mu^*_j$$
 $\leq \mathcal{E}_{comp}$

AQUI, M'> O E 05 E'S SAU PEQUENOS.

(E opt 1 E seas, E comp ESTAO EM ALGENCAN).

SUBPROBLENA

$$SP(\rho_{\kappa}, \overline{\lambda}_{\kappa}, \overline{\mu}_{\kappa}) : \min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \overline{\lambda}_{\mu}^{\kappa}) = f(\mathbf{x}) + \frac{\rho_{\kappa}}{2} \left[\left\| h(\mathbf{x}^{\kappa}) + \overline{\lambda}_{\mu}^{\kappa} \right\|^{2} + \left\| (g(\mathbf{x}) + \overline{\mu}_{\kappa}^{\kappa}) + \right\|^{2} \right]$$

$$CRITERIO DE PARADA DE SP :$$

$$\|\nabla L_{\rho}(x^{*}, \bar{\lambda}^{*}, \bar{\mu}^{*})\| \leq \mathcal{E}_{\kappa}$$

(COMPLETO) - ALGENCAN LAGRANGEANO AUNENTADO PARIMETROS: $G \in [0,1)$, $\gamma > 1$, $\lambda_{min} < \lambda_{max}$, $\mu_{max} > 0$, $\rho_{o}>0$, $\chi^{o}\in\mathbb{R}^{m}$, $\bar{\lambda}_{i}^{o}\in[\lambda_{min},\lambda_{max}]$, $\forall i$, $\bar{\mu}_{j}^{o}\in[0,\mu_{max}]$, $\forall j$ FAZER K = 0PARE can xx K ← K+1 CRITERIO DE PARADA SATISFEITO ? SE K=0 máx } | | h(a*)| , | V* | , | < C máx } | h(a*-1)| , | | V*-1 | o { NAD FAFA PRM = PK RESOLVA APROXIMADAMENTE CASO CONTRARIO, FAGA PK+1 = ppx O SUBPROBLEMA SP(px, \subseteq \backsquare\nu\nu\nu): X' E' TAL QUE $\|\nabla L_{p}(x^{*}, \overline{\lambda}^{*}, -x)\| \leq \varepsilon_{k}$ ESTIME NOVOS MULTIPLICADORES

OBS.: A PRECISÃO EX PARA O SUBPROBLEMA PEVE TEMPER
À ZERO.

CONVERGÊNCIA A PONTOS KKT

OBJETIVO: MOSTRAR QUE O MÉTODO DE L.A. É

CAPAZ DE ELCONTRAR POUTOS KKT DE P.

VAMOS "ESQUECER" O CRITÉRIO DE PARADA, E CONSIDERAR QUE O MÉTODO "GERA" UMA SEQUÊNCIA INFINITA 32° (.

QUEREMOS SABER SE UM POLTO DE ACUMULAÇÃO X* DE 32 5

1) O MÉTOPO CUMPRE A COMPLEMENTARIDADE Mj g;(x) = 0:

TEOREMA: SESA $3x^{\kappa}$ A SEQUÊNCIA GERAPA PELO MÉTODO

E x^* UM PONTO DE ACUMULAÇÃO SEU. SE $g_j(x^*) < O$ ENTÃO $\mu_j^{\kappa+1} = \left(\bar{\mu}_j^{\kappa} + \rho_{\kappa} g_j(x^*)\right)_+ = O$,

PARA TODO K SUFICIENTEMENTE GRANDE (4κ) 1).

 $\frac{PROVA:}{\frac{C_{ASO} 1:}{C_{OMO}}} \rho_{\kappa} \rightarrow \infty$ $\frac{\Gamma_{ASO} 1:}{\Gamma_{COMO}} \rho_{\kappa} \rightarrow \infty$ $\frac{\Gamma_{COMO} 1:}{\Gamma_{COMO}} \rho_{\kappa} \rightarrow \infty$ $\frac{\Gamma_{COMO} 1:}{\Gamma_{COMO}} \rho_{\kappa} \rightarrow \infty$ $\frac{\Gamma_{COMO} 1:}{\Gamma_{COMO}} \rho_{\kappa} \rightarrow \infty$

$$g_{j}(x^{*}) \leq g_{j}(x^{*}) < 0 , \forall x \gg 1, \text{ TEMOS}$$

$$\bar{\nu}_{j}^{k} + \rho_{x} g_{j}(x^{*}) \leq \bar{\mu}_{j}^{k} + \rho_{x} g_{j}(x^{*}) \longrightarrow -\infty.$$

$$Assim, \quad \mu^{***} = (\bar{\mu}_{j}^{k} + \rho_{x} g_{j}(x^{*}))_{+} = 0 , \forall x \gg 1.$$

$$CASO 2 : \begin{cases} \rho_{k} \end{cases} \leq cimitada.$$

$$LESTE \ CASO, \ O \ CONTROCE \ DE \ ADMISSIBILIDADE \ DEU \ CERTO$$

$$\forall x \gg 1 \cdot \text{ Em } PARTICULAR, \quad \|V^{***}\|_{\infty} \leq Z \|V^{*}\|_{\infty}, \forall x \gg 1, \quad \varepsilon \ Loco$$

$$V^{k} \longrightarrow O \ DATO \ QUE \ Z < 1 \cdot LEMBRANDO \ QUE$$

$$V^{k}_{j} = \min_{j} -g_{j}(x^{*}), \quad \bar{\mu}_{j}^{k} \leq 1, \quad \text{TEMOS} \quad \bar{\mu}_{j}^{k} \longrightarrow O \cdot PAi,$$

$$\bar{\mu}_{j}^{*} + \rho_{x}g_{j}(x^{*}) < 0 \quad \forall x \gg 1 \implies \mu^{***} = 0, \forall x \gg 1 \implies 0$$