Using Genetic Algorithms To Solve The Graph Coloring Problem

Ahmed M. Zarie The Computer Science and Engineering Department The American University in Cairo Cairo, Egypt zare3@aucegypt.edu

1- Introduction

The graph coloring problem is the trial to color each node U in a graph G with a certain color Ki, such that no two adjacent nodes have the same color Ki. Also, the number of total number of colors, |K| should be minimal.

This problem is a very interesting one because it can model several different problems, and is regarded to be an NP-complete problem.

For my approach, I will be using Genetic Algorithms to find the solution for this problem. Also, I will be introducing a new approach (The Helper) to minimize population saturations.

2- Genetic Parameters

For this section of the paper, I will be talking about all the algorithms and parameters used for the training.

2- a- Chromosome

Each chromosome in my population represents the nodes in the graph. i.e. Each gene g = chromosome[i] is the value of the color assigned to node n = graph[i]

2-b- Population Initialization

Each chromosome in the population is assigned to have all of its genes of the same value (color)

2-c- Crossover

```
Crossover(parent p1, parent p2)

pivot = RAND_IDX%p1.length()

child1 = upperLeftParent1TillPivot

+ bottomRightParent2TillPivot

child2 = bottomLeftParent1TillPivot

+ upperRightParent1TillPivot

return pair (child1,child2)
```

2-d-Mutation

```
Mutate(Chromosome ch)

For each edge connecting gene[u]->gene[v]

If (gene[u] == gene[v])

C = RANDCOLOR

such that C!= gene[v]

gene[u] = C
```

2-e-Genetic Parameters

Population size: 200 Maximum Fitness: -0.1 UpperMutation Rate: 100% LowerMutationRate: 50%

Maximum Number of Iterations: 5000

Patience Time: 70 MaxUselessCount: 5

Upper Mutation Rate: for each two new children, what is the possibility of mutating at least one of them?

Lower Mutation Rate: for each two new children, given that Upper Mutation Rate has been met, each child gets a possibility of 50% of being the child to be mutate

```
Patience Time:
for each new generation
    if (currentMaxChromosome==PrevMaxChromosome)
        patienceCnt++
    if (patienceCnt>=Patience Time)
        Helper()
        UselessCount++
```

Helper and Useless Count will be explained later in the paper

```
if (UselessCount >= MaxUselessCount)
     EndTraining()
```

2-f- Helper

Before explaining the Helper, lets denote:

- The most fit chromosome found so far, as *maxCh*
- The max chromosome in the current generation (the generation at which Helper was called), as *currentGenMaxCh*.
- The fitness of maxCh as f
- The fitness of currentGenMaxCh as f'

Helper ()

For each gene g in currentGenMaxCh For each gene g' in maxCh change g to g' *if (f' gets improved)* keep changes else

revert changes

then:

- repeat popSizeTimes*0.4newChild = mutate(currentGenMaxCh) add newChild to population

2-g- Fitness Function

Let's denote:

- Each edge that connects two nodes of the same color as a bad edge
- N = Number of nodes in the graph

fitness = (100 * number of bad edges) +(50 * number of colors used - 1))/N

3- Results

For this section, I will compare the results:

- With and without using the helper function
- With another paper with the same problem, An Efficient Hierarchical Parallel Genetic Algorithm for Graph Coloring Problem **HPGAGCP**

this data was collected based on the DIMACS

dataset for graph clique numbers

	V	[Ε	Act- ual Ans- wer	GA Answer W/o Helper	GA Ans With Help- er
david.col	87	812	11	56	11
fpsol2.i.1.col	496	11654	65	404	65
games120.col	120	1276	9	85	9
homer.col	<mark>561</mark>	3258	13	423	15
huck.col	74	602	11	46	11
jean.col	80	508	10	49	10
miles250.col	128	<mark>774</mark>	8	<mark>78</mark>	10
miles1000.col	128	<mark>6432</mark>	<mark>42</mark>	<mark>101</mark>	<mark>45</mark>
anna.col	138	986	11	85	11

	V	E	Act-	HPGAGCP	Helper
			ual		GA
			Ans- wer		
david.col	87	812	11	11	11
fpsol2.i.1.col	496	11654	65	65	65
games120.col	120	1276	9	9	9
homer.col	561	<mark>3258</mark>	13	13	15
huck.col	74	602	11	11	11
jean.col	80	508	10	10	10
miles250.col	128	<mark>774</mark>	8	8	10
miles1000.col	128	<mark>6432</mark>	<mark>42</mark>	<mark>42</mark>	<mark>45</mark>
anna.col	138	986	11	11	11

4- Further Work

- Improving the *UselessCount* to be based on an estimate for solution correctness based on the output of the helper function.
- Improving the helper function to give better results.
- Experimenting more with the genetic parameters.
- Parallelizing the algorithm to run on the GPU instead of the CPU
- Experiment with the algorithm on more constraint optimization problems.
- Experiment with more methods for crossover

5- References

Abbasian, Reza, and Malek Mouhoub, "A Hierarchical Parallel Genetic Approach For The Graph Coloring Problem". Applied Intelligence 39.3 (2013): 510-528. Web.