NAME:

Today's worksheet consists of a few questions related to the concepts covered in Lecture 6.

- 1. Suppose there are two forces acting on our object: $\vec{F}_1 = (2, -1, 6) \ N$ and $\vec{F}_2 = (0, 2, -1) \ N$. What is the total force $\vec{F}_{\text{total}} = \vec{F}_1 + \vec{F}_2$ acting on the object?
- 2. Now that we know the total force (or net force) acting on the object, we can apply Newton's second law to find out what the acceleration \vec{a} is. Newton's second law tells us that $m\vec{a} = \vec{F}_{\text{total}}$. If the mass of the object is 2 kg, and the force being applied to it is the \vec{F}_{total} from the previous exercise, calculate \vec{a} . Write down your answer with the corresponding units.
- 3. Suppose we double the mass of the object from the previous exercise but \vec{F}_{total} remains the same. Will the acceleration increase or decrease? Calculate the new acceleration.
- 4. This exercise is about visualizing what happens when we add two vectors together. Suppose we have vector $\vec{A} = (6,2)$ and vector $\vec{B} = (4,6)$. Draw arrows corresponding to \vec{A} and \vec{B} in the figure below. Calculate $\vec{A} + \vec{B}$. Draw the arrow corresponding to $\vec{A} + \vec{B}$ in the same figure. (Note: all arrows should start at the origin (0,0))

NAME:

5. Calculate the magnitude of vector \vec{A} above.

6. If the velocity of a particle is $\vec{v} = (3, 4, -2) \ m/s$, what is its speed? Remember to add units to the result.

7. Come up with your own example of a mathematical scalar function (i.e a relationship between two scalar quantities in the form of an equation). Make it realistic and write down the symbols you are going to use to represent each quantity.

NAME:

8. Consider the following vector function describing the change in position of a particle in two dimensional space

$$\vec{x} = (1 + 2t, 3) \ m$$
 (1)

What is the independent (input) variable?

What is the dependent (output) variable?

What is \vec{x} at t = 0 s?

What is \vec{x} at t = 1 s?

What is \vec{x} at t = 2 s?

What is \vec{x} at t = 3 s?

Draw each \vec{x} on the grid below and try to guess what the path (or trajectory) of the particle is.

The particle is moving at a constant velocity. What is that velocity \vec{v} ? (The velocity is the rate of change of the position vector with respect to time, $\vec{v} = \left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}\right)$, where Δx means change in x and Δt means change in t)