- 3. Sachant que f est un polynôme de degré 3 et que la courbe de f passe par le point A(0; 1), déterminer f(x).
- 4. Montrer que le point d'abscisse 1 est un point d'inflexion de C_f.

Chapitre 3 : FONCTIONS LOGARITHME NEPERIEN ET EXPONENTIELLES

2.4. RESUME DU COURS

2.4.1. Fonction logarithme népérien

Domaine de définition et dérivée

- Soit *u* une fonction; lnu(x) existe ssi u(x) existe et u(x) > 0.
- ➤ Si *u* est une fonction strictement positive et dérivable sur un intervalle I, alors la fonction x oup ln[u(x)] est dérivable sur I et $[lnu(x)]' = \frac{u'(x)}{u(x)}$

Remarque : $[ln|u(x)|]' = \frac{u'(x)}{u(x)}$.

Propriétés Soit $a, b \in \mathbb{R}_+^*$ et $r \in \mathbb{Q}^*$.

- \triangleright lnab = lna + lnb; $ln\frac{1}{a} = -lna$; $ln\frac{a}{b} = lna lnb$.
- \blacktriangleright $ln\sqrt{a} = \frac{1}{2} lna$; $ln a^r = r lna$; ln1 = 0; lne = 1.

- \rightarrow lna = lnb ssi a = b;
- \blacktriangleright lna < lnb ssi a < b; lna > lnb ssi a > b.
- $\ln x < 0 \text{ ssi } 0 < x < 1 ; \ln x > 0 \text{ ssi } x > 1.$

Limites

$$\lim_{x \to 0} \underbrace{lnx = -\infty ; \lim_{x \to 0}}_{x = 0} \underbrace{x lnx = 0}_{x = 0}.$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

$$\lim_{x \to +\infty} \frac{\ln x = +\infty}{x} : \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

Fonction logarithme décimal

La fonction logarithme décimal est la fonction notée log et définie sur $]0, +\infty[$ par $: logx = \frac{lnx}{ln \cdot 10}$.

2.4.2. Fonctions exponentielles

Domaine de définition et dérivée

- Soit u une fonction; $e^{u(x)}$ existe ssi u(x) existe.
- Si u est dérivable sur un intervalle I, alors e^u est dérivable sur I et [$e^{u(x)}$]'=u'(x) $e^{u(x)}$.

Propriétés Soit $a, b \in \mathbb{R}$ et $r \in \mathbb{Q}^*$

$$e^{a+b} = e^a \cdot e^b$$
; $e^{-a} = \frac{1}{e^a}$; $e^{a-b} = \frac{e^a}{e^b}$; $(e^a)^r = e^{ar}$; $e^0 = 1$; $e^1 = e$.

- $ightharpoonup e^a = e^b \text{ ssi a} = b.$
- $ightharpoonup e^a < e^b \text{ ssi } a < b ; \quad e^a > e^b \text{ ssi } a > b.$
- $\triangleright \quad \forall x \in \mathbb{R}. \ e^x > 0.$
- $\triangleright \quad \forall x \in \mathbb{R}, \ lne^x = x ; \ \forall x > 0, \ e^{lnx} = x .$

- $\triangleright \quad \forall a > 0 \ et \ \forall x \in \mathbb{R}, \ a^x = e^{x \ln a}.$
- $y = e^x \operatorname{ssi} x = \ln y$.

Limites

$$\lim_{x \to -\infty} e^{x} = 0 \; ; \; \lim_{x \to -\infty} x e^{x} = 0.$$

$$\lim_{x \to +\infty} e^{x} = +\infty; \lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty.$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1.$$

Racine n.ieme Soit $x, y \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$ -{1}.

$$\rightarrow$$
 $\sqrt[n]{x} = x^{\frac{1}{n}};$ $(\sqrt[n]{x})' = (x^{\frac{1}{n}})' = \frac{1}{n}x^{1-\frac{1}{n}}.$

$$\rightarrow$$
 $\sqrt[n]{x} = \sqrt[n]{y}$ ssi $x = y$.

$$\Rightarrow$$
 y = $\sqrt[n]{x}$ ssi $x = y^n$.

$$ightharpoonup \lim_{x \to +\infty} \sqrt[n]{x} = +\infty.$$

Fonctions puissances

On appelle fonction puissance, toute fonction f_{α} définie sur]0; $+\infty$ [par $f_{\alpha}(x) = x^{\alpha} = e^{\alpha lnx}$, $\alpha \in \mathbb{R}$.

Croissance comparée

 \triangleright Soit α un nombre rationnel strictement positif

$$\bullet \quad \lim_{x \to +\infty} \frac{e^x}{x^\alpha} = +\infty .$$

•
$$\lim_{x \to +\infty} \frac{x^{\alpha}}{\ln x} = +\infty$$
.

•
$$\lim_{x\to 0^+} x^{\alpha} lnx = 0$$
.

> Soit n un entier naturel non nul; $\lim_{x \to -\infty} x^n e^x = 0$.

Remarque: Pour les quotients dont on a calculés la limite à $+\infty$, la limite de leurs inverses à $+ \infty$ est égale à 0;

en particulier $\lim_{x\to +\infty} x^{\alpha} e^{-x} = 0$.

EXERCICES D'APPLICATION 2.5.

Exercice 1

Résoudre:

1)
$$ln(2x-5) + ln(1+x) = 2ln2$$
. 2) $2lnx + 3 = 0$.

3)
$$(\ln x)^3 - \ln x^3 = -2$$
. 4) $\ln x - \ln(2-x) \ge 0$. 5) $\ln(\frac{x+1}{x-1}) \le 0$.

6)
$$(\ln x)^2 - 2\ln x - 3 > 0$$
. 7) $e^2 e^{-x} - e^{x^2 - 4} = 0$.

8)
$$e^x - 2e^{-x} = -1$$
. 9) $(e^{x-1})^4 \ge e^{x^2}$.

8)
$$e^{x} - 2e^{-x} = -1$$
. 9) $(e^{x-1})^{4} \ge e^{x^{2}}$.
10)
$$\begin{cases} 2lnx - 3lny = 5 \\ lnx + 2lny = -1 \end{cases}$$
. 11)
$$\begin{cases} e^{x} \cdot e^{y} - e^{5} = 0 \\ lnx + lny = ln6 \end{cases}$$
.

Exercice 2

Déterminer D_f l'ensemble de définition de f, les limites aux bornes de D_f , la dérivée f'(x) et le tableau de variation de f.

1)
$$f(x) = x \ln x - x$$
. 2) $f(x) = \ln(\frac{1+x}{1-x})$. 3) $f(x) = \frac{\ln x + 1}{\ln x - 1}$.

4)
$$f(x) = \frac{1+e^x}{1-e^x}$$
. 5) $f(x) = -2x+1 + \ln\left|\frac{x+1}{x}\right|$. 6) $f(x) = x + e^{-x}$.