Машинное обучение в экономике Логистическая регрессия и метод опорных векторов

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Логистическая регрессия Интуиция

• 123

Логистическая регрессия

Интуиция

• Предположим, что условные вероятности могут быть оценены как линейные комбинации признаков (регрессоров):

$$P(Y_i = 1 | X_i = x_i) = g(X_i \beta)$$

- Коэффициенты β часто называют **весами**, а функция g() принимает значения от 0 до 1, поскольку отражает условные вероятности.
- В качестве функции g() удобно взять функцию распределения некоторого распределения с носителем на R. Наиболее популярным в машинном обучении является логистическое распределение, при котором мы получаем логит модель:

$$g(t) = \frac{1}{1 + e^{-t}}$$

• В эконометрике не менее популярной является функция распределения стандартного нормального распределения $g(t) = \Phi(t)$, при которой мы получаем **пробит модель**.

Логистическая регрессия

Интуиция

• Для оценивания условных вероятностей достаточно оценить параметры β методом максимального правдоподобия:

$$L(\beta; X, Y) = \prod_{i:y_{i=1}} P(Y_i = 1 | X_i) \prod_{i:y_{i=0}} P(Y_i = 0 | X_i) = \prod_{i:y_{i=1}} g(X_i \beta) \prod_{i:y_{i=0}} 1 - g(X_i \beta) = \prod_{i:y_{i=1}} \frac{1}{1 + e^{-X_i \beta}} \prod_{i:y_{i=0}} 1 - \frac{1}{1 + e^{-X_i \beta}}$$

$$\ln L(\beta; X, Y) = \sum_{i:y_{i=1}} -\ln(1 + e^{-X_i \beta}) + \sum_{i:y_{i=0}} X_i \beta - \ln(1 + e^{-X_i \beta})$$

- Можно показать, что логарифм функции правдоподобия является вогнутой функцией по β при любых x_i , а значит ее максимум является единственным.
- В отличие от линейного МНК, в данном случае не существует аналитического выражения для $\hat{\beta}$, что мотивирует максимизацию численными методами.

Численная оптимизация

Мотивация и классификация

Численная оптимизация позволяет находить приблизительный максимум или минимум функции без необходимости искать аналитическое решение.

- Методы локальной оптимизации (BFGS, градиентный спуск) как правило работают достаточно быстро, но позволяют находить лишь локальные экстремумы. Методы глобальной оптимизации (генетический алгоритм, метод отжига – SA) позволяют найти несколько экстремумов, один из которых может оказаться глобальным.
 Однако, глобальная оптимизация обычно крайне затратна по времени.
- Методы локальной оптимизации часто опираются на Градиент (градиентный спуск, ADAM) или Гессиан функции (BFGS, BHHH). В последнем случае число итераций алгоритма, как правило, оказывается меньше, но время каждой итерации больше, особенно, при большом числе оцениваемых параметров.

Поскольку число оцениваемых параметров в эконометрических моделях, как правило, относительно невелико (в сравнении с моделями машинного обучения), то чаще используются алгоритмы, использующие информацию о Гессиане (BFGS, BHHH).

Численная оптимизация

Пример с использованием градиентного спуска

Алгоритм **градиентного спуска** является одним из простейших численных методов нахождения минимума функции.

- Выбираем произвольную начальную точку x_0 .
- Считаем градиент функции в этой точке $\nabla f(x_0)$.
- Переходим в новую точку $x_1 = x_0 \alpha \nabla f(x_0)$, где α малая положительная константа.
- Повторяем процедуру до тех пор, пока не будут соблюдены условия остановки (termination conditions), например, о том, что $|\nabla f(x_0)| < \varepsilon$, где ε маленькое положительное число.

Нетрудно показать аналитически, что функция $f(x)=x^2-2x$ достигает минимума в точке $x^*=1$. В качестве альтернативы аналитическому решению попробуем приблизиться к минимуму с помощью 10 итераций описанного алгоритма, произвольным образом полагая $x_0=3$ и $\alpha=0.2$.

i	0	1	2	3	4	5	6	7	8	9	10
Xi	3	2.20	1.72	1.43	1.26	1.16	1.09	1.06	1.03	1.02	1.01
$\nabla f(x_i)$	4	2.40	1.44	0.86	0.52	0.31	0.19	0.11	0.07	0.04	0.02
$f(x_i)$	3	0.44	-0.48	-0.81	-0.93	-0.98	-0.99	-1.00	-1.00	-1.00	-1.00

<u>Численная оптимизация</u>

Упрощенная графическая иллюстрация локальной численной оптимизации

Логистическая регрессия

Нелинейная спецификация

- **Проблема** на первый взгляд линейная форма условных вероятностей $X_i\beta$ снижает гибкость модели.
- Решение можно добавить нелинейность в модель, например, взяв не только сами признаки, но и некоторые нелинейные функции от них.
- Например, вместо возраста age_i можно взять его полином третьей степени просто добавив в число признаков age_i^2 и age_i^3 .
- Другой пример: чтобы учесть взаимодействие между возрастом age_i и доходом $income_i$ можно добавить в число признаков их произведение $age_i \times income_i$.
- Оптимальная спецификация логистической регрессии может быть подобрана, например, с помощью кросс-валидации.

Мультиномиальная логистическая регрессия

Определение

- Мультиномиальная логистическая регрессия используется в случае, когда необходимо предсказать значение одной из K взаимоисключающих альтернатив.
- Например, необходимо спрогнозировать, какое мороженое предпочтет индивид: шоколадное, ванильное или эскимо. В данном случае K=3.
- Влияние признаков x_i на полезность (склонность к выбору) k-й альтернативы описывается как:

$$u(k, x_i) = X_i \beta_k + \varepsilon_{ki}, \qquad \varepsilon_{ki} \sim \text{extreme error value distribution, i.i.d.}$$

- Индивид выбирает альтернативу, приносящую ему наибольшую полезность.
- Можно показать, что условные вероятности выбора k-й альтернативы записываются при помощи **softmax** функции:

$$P(Y_i = k | X_i = x_i) = e^{-x_i \beta_k} / \sum_{i=1}^K e^{-x_i \beta_i}$$
 $k \in \{1, ..., K\}, \beta_1 = (0, ...0).$

ullet Параметры eta_i оцениваются с помощью метода максимального правдоподобия.

Качство прогнозирования категориальных переменных

- В случае с категориальными переменными, принимающими более, чем два значения, цены ошибок прогнозов могут различаться в зависимости от того, какую с какой категорией мы перепутали.
- Например, в задаче кридитного скоринга мы можем рассматривать три случая: дефолт,

Графическая иллюстрация идеи на примере дефолта

Случай с наличием разделяющей гиперплоскости

- **Предположение** существуют линии, которые можгут полностью разграничить два класса в зависимости от значений признаков.
- Проблема какую из линий выбрать, если их бесконечно много?
- Решение выбираем линию таким образом, чтобы максимизировать перпендикулярное расстояние от нее до ближайшего наблюдения. Этой расстояние именуется отступом (margin).
- После того, как мы выбрали линию, наблюдения, имеющие наименьшее перпендикулярное расстояние до этой линии, именуются опорными векторами.
- Разделяющая линия задается уравнением $\beta_0 + x\beta = 0$, где β и β_0 подбираются из соображений минимизации отступа.
- ullet Следуя традиции и для удобства класс 0 будем обозначать как -1.

Определение классификатора

- Рассмотрим eta_0 и eta такие, что $eta_0 + X_i eta = 0$ задает разделяющую линию с максимальным отступом.
- Определим классификатор следующим образом:

$$\hat{y}(x) = egin{cases} 1$$
, если $eta_0 + X_ieta \geq c_1$ (точки над отступом разделяющей линии) -1 , если $eta_0 + X_ieta \leq -(c_{-1})$ (точки под отступом разделяющей линии)

- Если $c_1>c_{-1}$, то геометрически очевидно, что отступ не является максимальным, поскольку сдвинув линию вниз мы сможем его увеличить. По аналогии невозможен случай $c_1< c_{-1}$, а значит $c_1=c_{-1}$.
- Поскольку умножении равенства $\beta_0 + X_i \beta = 0$ на константу его не изменяет, то без потери общности можно положить $c_1 = c_{-1} = 1$, откуда получаем классификатор:

$$\hat{y}(x) = egin{cases} 1$$
, если $eta_0 + X_ieta \geq 1 \ -1$, если $eta_0 + X_ieta \leq -1$

Оптимизационная задача

• Определим перпендикулярное расстояние от наблюдения X_i до линии $\beta_0 + X_i \beta = 0$:

$$d(X_i; \beta_0, \beta) = \frac{|\beta_0 + X_i\beta|}{\sqrt{\beta_1^2 + \ldots + \beta_m^2}} = \frac{|\beta_0 + X_i\beta|}{||\beta||}$$

- Обозначим через q произвольный опорный вектор, то есть наблюдение, находящееся на расстоянии отступа от разграничивающей линии $\beta_0 + X_i \beta = 0$.
- Из введенного ранее определения классификатора следует, что $|\beta_0+\beta q|=1$, а значит $d(q,\beta_0,\beta_1)=1/||\beta||$.
- Поскольку отступ определяется через опорный вектор q, то задача максимизации отступа может быть сведена к задаче максимизации $d(q, \beta_0, \beta_1)$, что эквивалентно минимизации $||\beta||$.
- При решении этой задачи важно гарантировать, что найденные β_0 и β соответствуют линии, являющейся разграничивающей линией, то есть наблюдения различных классов должны лежать по разные стороны от нее:

$$egin{cases} eta_0+X_ieta\geq 1$$
, если $Y_i=1\ eta_0+X_ieta\leq -1$, если $Y_i=-1 \end{cases} \iff Y_i\left(eta_0+X_ieta
ight)\geq 1$

Подведение итогов

• Таким образом, для удобства избавляясь от квадратного корня (строго возрастающая функция) задачу максимизации отступа можно сформулировать как следующую задачу условной минимизации (квадратичное программировнаие):

$$(\hat{eta}_0,\hat{eta})=\mathop{\mathsf{argmin}}_{(eta_0,eta)}eta_1^2+...+eta_m^2$$
 при ограничении $Y_i\left(eta_0+X_ieta
ight)\geq 1$

- Эта оптимизационная задача не имеет аналитического решения, однако минимум может быть найден численными методами.
- Напомним, что при этом классификатор определяется следующим образом:

$$\hat{y}(x) = egin{cases} 1$$
, если $eta_0 + X_ieta \geq 1 \ -1$, если $eta_0 + X_ieta \leq -1$

Мягкая граница

- Очевидно, что на практике разделяющая линия существует очень редко, а значит имеется такое наблюдение X_i , что при любых β_0 и β_1 неравенство $Y_i (\beta_0 + X_i \beta) \geq 1$ не соблюдается.
- В таком случае необхоидмо допустить возможность нарушения абсолютного разграничения, то есть наблюдения из класса 1 могут попадать в область наблюдений -1 и наоборот.
- Тогда оптимизационную задачу можно привести к виду:

$$\operatorname*{argmin}_{(eta_0,eta,\xi_1,\ldots,\xi_n)} \sum_{j=1}^m eta_j^2 + C \sum_{i=1}^n \xi_i$$
, при ограничении $Y_i\left(eta_0 + X_ieta
ight) \geq 1 - \xi_i$

• Константа C определяет вес штрафов ξ_i в оптимизационной задаче и подбирается с помощью кросс-валидации.

Ядерный трюк

- В качестве разграничивающей классы функции можно рассмотреть не линию, а более сложную функцию.
- Идея вместо самих признаков рассмотрим базисные функции от них.

Бустинг

Функция потерь

- В качестве унифицированного способа репрезентации моделей машинного обучения часто используют loss function (функция потерь).
- Рассмотрим классификатор $\hat{y}(x)$.