A Brief Document for ama

This document describes the commands available in ama.R.

- 1. Behrens: Performs Behrens test for equality of two mean vectors
 - input:
 - x1 and x2: two data matrices for population 1 and 2.
 - output: Test statistic and its p-value
- 2. BoxM: Perform Box test for equal covariance matrices of multiple populations
 - input:
 - x: data matrix (n-by-p) with n observations and p variables
 - nv: a vector of sample sizes for each population (n1, n2, ...). The first n1 rows of data are for population 1, data from (n1+1) to (n1+n2) are for population 2, etc.
 - output:
 - Box.M: contains the test statistics and their p-values
 - Test.Stat: test statistics
 - p.value: p values
- 3. **BoxCox**: Obtain the Box-Cox power transformation
 - input:
 - da: data matrix
 - interval: The interval for which lambda is to be computed.
 - output: estimate of the power of transformation
- 4. classify 56: Classification using Equation (11.56) of the textbook.
 - input:
 - da: data matrix
 - size: a vector of sample sizes of the populations (n1,n2,..,ng) with n1 being the obsevrations from population 1, etc.
 - eqP: switch for prior equal probabilities, default is TRUE

- pr: prior probabilities if not equal.
- newdata: new data to test the efficiency of classification. If newdata = NULL,
 then the original data (da) is used to perform in-sample classification.
- output: results of classification for the new data.
- 5. Cmeans: compare mean vectors of two populations
 - input:
 - da: data matrix (one population on top of the other)
 - size: two-dimensional vector of sample sizes
 - eqV: indicator for equal covariance matrices. Default is TRUE
 - alpha: tail probability
 - output: various summary and test statistics. Also, confidence interval for difference of the two means.
- 6. **confreg**: compute various confidence regions for a mean vector
 - input:
 - da: data matrix
 - alpha: tail probability, default is 0.05.
 - length: indicator for computing lengths of confidence intervals.
 - output: five types of confidence intervals (simultaneous, T^2 , individual t, Bonferroni, and asymptotic)
- 7. **contrast**: For a given contrast matrix, compute Hotelling test and confidence intervals.
 - input:
 - da: data matrix
 - cmtx: contrast matrix
 - output: results of test and confidence intervals.
- 8. **confreg.s**: Same as confreg but inputs are sample mean and covariance matrix, not data
 - input:

- sm: sample mean
- s: sample covariance matrix
- nr: sample size
- alpha: tail probability, default is 0.05.
- output: See confreg command.
- 9. discrim: perform discriminant analysis
 - input:
 - da: data matrix
 - size: vector of sample sizes for all populations
 - eqP: indicator for equal prior probabilities, deafult is TRUE
 - eqV: indicator for equal covariance matrices, default is TRUE
 - newdata: new data matrix for discrimination, deafult is NULL.
 - output: results of discriminant analysis and classification for new data, if any.
- 10. eigTest: perform chi-square test for no correlations
 - input:
 - Sigma: covariance matrix
 - p, q: dimensions of each vector (X and Y)
 - n: sample size
 - output
 - values: eigenvalues
 - Xvectors: xcoef matrix
 - Yvectors: ycoef matrix
- 11. EMmiss: perform EM to fill missing values
 - input:
 - da: data matrix
 - fix: matrix of indicator for missing values. fix[imj] = 0 means missing
 - iter: number of iterations
 - output: resulting sample mean and covariance

- 12. growth: Growth curve analysis
 - input:
 - da: data matrix
 - nv: vector of sample sizes of the groups
 - tp: time vector
 - q: order of time polynomial
 - output: print of results
- 13. Hotelling: perform Hotelling test
 - input:
 - da: data matrix
 - mu: mean vector under the null hypothesis
 - output: results of the test
- 14. qqchi2: perform QQ-plot
 - input:
 - da: data matrix
 - output: QQ-plot
- 15. **t2chart**: compute t2 control chart
 - input:
 - da: data matrix
 - output: plot
- 16. **t2future**: compute t2 future chart
 - input:
 - da: data matrix
 - ini: starting point to compute future chart
 - output: plot