Maths Primer

≡ Contents

<u>Functions</u>

Matrix algebra

Print to PDF

This list of exercises has the objective of reviewing some of the preliminary requirements for the topics that will be covered during the *Maths for Biologists* module. Textbook content for these topics can be found on the module's main reference:

• Calculus for biology and medicine

Neuhauser, Claudia

Copies of this book are available at the Silwood Library and also as ebooks through the Imperial College Library.

Functions

- 1. Suppose that a fungal disease originates in the middle of an orchard, initially affecting only one tree. The disease spreads out radially at a constant speed of 3 meters per day. What area will be affected after 2 days, 4 days, and 8 days? Write an equation that expresses the affected area as a function of time, measured in days, and show that this function is a polynomial of degree 2. If time is measured in weeks, how will your equation for the affected area be written?
- 2. In the problems below, use *Python* or *R* to sketch each scaling relation (K. J. Niklas (1994). Plant Allometry: The Scaling of Form and Process. University of Chicago Press).
 - (a) In a sample based on 46 species, leaf area was found to be proportional to $(stem\ diameter)^{1.84}$. On the basis of your graph, as stem diameter increases, does leaf area increase or decrease?
 - (b) In a sample based on 28 species, the volume fraction of spongy mesophyll was found to be proportional to $(leaf\ thickness)^{-0.49}$ (the spongy mesophyll is part of the internal tissue of a leaf blade). On the basis of your graph, as leaf thickness increases, does the volume fraction of spongy mesophyll increase or decrease?
- 3. I. Simplify the following expressions:
 - (a) $3^{4 \log_3 x}$
 - (b) $4^{-\log_{1/2} x}$
 - (c) $\log_{1/2} 4^x$
 - (d) $\log_3 9^{-x}$
 - II. Show that the function $y=(1/2)^x$ can be written in the form $y={\rm e}^{-\mu x}$, where μ is a positive constant. Determine μ .

Remember the following identities:

$$\log_a x^r = r \log_a x$$
 $\log_a a^x = x$ $a^{\log_a x} = x$ $a^{-r} = \frac{1}{a^r}$ $(a^r)^s = a^{rs},$

assuming a positive and different from 1)

4. Using *Python* or *R*, plot the following graphs:

```
(a) y=sin(x) and y=cos(x), with -2\pi \leq x \leq 2\pi.

(b) y=2sin(x) and y=4sin(x), with -2\pi \leq x \leq 2\pi. What changes in comparison to y=sin(x)?

(c) y=cos(2x) and y=cos(4x), with -2\pi \leq x \leq 2\pi. What changes in comparison to y=cos(x)?

(d) y=cos(x+\frac{\pi}{4}) and y=cos(x+\frac{\pi}{2}), with -2\pi \leq x \leq 2\pi. What changes in comparison to y=cos(x)?
```


On the reference $\underline{\text{textbook}}$, a short review on trigonometry is presented on section 1.1.4. Exponentials and logarithms are found on section 1.1.5. Section 1.3.4 on verbal description of graphs is also worth reviewing.

Matrix algebra

1. Let

$$A=\left(egin{array}{ccc} 1 & 3 \ 0 & -2 \end{array}
ight) \ \ ext{ and } \ B=\left(egin{array}{ccc} 1 & 2 & 0 & -1 \ 2 & 1 & 3 & 0 \end{array}
ight)$$

- (a) If possible, compute ${\cal AB}$
- (b) If possible, compute BA
- 2. Let

$$A = \begin{pmatrix} 1 & 4 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$

- (a) Compute AB
- (b) Compute BA
- 3. Let

$$A=\left(egin{array}{cc} 2 & 1 \ -1 & -3 \end{array}
ight)$$

Find A^2 , A^3 , and A^4

4. Suppose that

$$A=\left(egin{array}{cc} 2 & 4 \ 3 & 6 \end{array}
ight) \ \ ext{ and } \ B=\left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight)$$

- (a) Compute det(A). Is A invertible? If yes, find the inverse of A.
- (b) Compute $\det(B)$. Is B invertible? If yes, find the inverse of B.

Review

Be sure to review matrix operations. Sections 9.2.1-9.2.3 cover the basics.

By The Jupyter Book community

© Copyright 2020.