Modeling Lexical Competition in Language Production: A Computational Approach to the Swinging Lexical Network

Louis Schiekiera^{1,2} Vincent Gruber¹ Alissa Melinger³ Rasha Abdel Rahman¹ Fritz Günther¹

¹ Institute of Psychology, Humboldt-Universität zu Berlin ² Department of Education and Psychology, Freie Universität Berlin ³ School of Humanities, Social Sciences and Law, University of Dundee

Introduction

• Swinging Lexical Network (SLN): Interplay between semantic priming (facilitation) and lexical competition (interference) (Abdel Rahman & Melinger, 2019).

Figure 1. Semantic-lexical cycle: Two-way flow between semantic priming and lexical competition.

• This study: Implement SLN as a computational spreading-activation model (Rotaru et al., 2018) and evaluate on picture—word interference data.

Data

- **Data structure**: 9 German picture-word interference studies, across 17 experiments, with 690 participants and 145,058 responses
- Word embeddings: German fastText (300D, reduced to 30K words)

Implementation

- **Transition Matrix**: Build cosine matrix, normalize rows to sum to 1, and add self-loops to form the transition matrix **TM**.
- **k-step dynamics**: Model the spreading activation by iteratively raising \mathbf{TM} to the power of k (\mathbf{TM}^k)
- Joint Activation & Cohort Sizes: For each trial and each of 5 steps, compute joint activation values $\overline{p}_k(t, d \to w) = \frac{1}{2}[p_k(t \to w) + p_k(d \to w)]$ for 30K neighbours of the target and distractor. Bin these values using τ_n thresholds from the global reference distribution \mathcal{D} , and count the values in each bin to obtain the shared-neighbour cohorts $C_{k,q}(t,d)$.

Key Findings

- 1. **Fit vs. generalization:** Overall fit, held-out trials and participants favor **Model 3**, but held-out experiments favor the simpler **Model 1**.
- 2. Cohorts are broader than expected:
 Results suggest that activation spreads
 across large parts of the vocabulary, not
 just close neighbours.

References

Abdel Rahman, R., & Melinger, A. (2019). Semantic processing during language production: An update of the swinging lexical network. *Language, Cognition and Neuroscience*, 34(9), 1176–1192.

Rotaru, A. S., Vigliocco, G., & Frank, S. L. (2018). Modeling the structure and dynamics of semantic processing. *Cognitive science*, 42(8), 2890–2917.

Model Specifications

Model 0: Covariate Model

 $\log(RT) = \beta_0 + \sum_{i=1}^{13} \gamma_i X_j + u_{0i} + v_{0j} + \varepsilon$

Model 1: Static Similarity Model

 $\log(RT) = \beta_0 + \sum_{j=1}^{13} \gamma_j X_j + \beta_1 \cos(t, d) + u_{0i} + v_{0j} + \varepsilon$

Figure 2. Overview of Predictors for Model 0 + 1.

Model 2: Directional Activation Model

 $\log(RT) = \beta_0 + \sum_{j=1}^{13} \gamma_j X_j + \beta_1 \cos(t, d) + \sum_{k=1}^{5} \beta_{2k} p_k(t \to d) + \sum_{k=1}^{5} \beta_{3k} p_k(d \to t) + u_{0i} + v_{0j} + \varepsilon$

Figure 3. Directional spreading activation between target and distractor across five time steps.

Figure 4. Transition matrices TM^k and computation of $p_k(t \to d)$ and $p_k(d \to t)$.

Model 3: Shared Lexical Cohort Model

 $\log(RT) = \beta_0 + \sum_{j=1}^{13} \gamma_j X_j + \beta_1 \cos(t, d) + \sum_{k=1}^{5} \beta_{2k} p_k(t \to d) + \sum_{k=1}^{5} \beta_{3k} p_k(d \to t) + \sum_{k=1}^{5} \sum_{q=1}^{10} \beta_{4,k,q} C_{k,q}(t, d) + u_{0i} + v_{0j} + \varepsilon_{0i}$

Figure 5. Cohort sizes $C_{k,q}(t,d)$ by deciles q and steps k, showing nr. of shared neighbours jointly activated by target and distractor.

Figure 6. Procedure for computing cohort thresholds τ_n using 10^6 samples.

Results

									M (RMSE)		
Model	n_{par}	AIC	BIC	χ^2	\mathbf{df}	p	R_C^2	R_M^2	Participant	Experiment	Trial
Model 0	17	-32825	-32662				0.438	0.234	0.237	0.278	0.206
Model 1	18	-33220	-33047	397.00	1	< .001	0.440	0.238	0.237	0.277	0.205
Model 2	28	-33911	-33643	711.42	10	< .001	0.445	0.241	0.236	0.278	0.205
Model 3	73	-35257	-34558	1436 24	45	< 001	0.452	0.249	0.235	0.278	0.203

Table 1. Model comparison between nested models with 5-fold cross-validated RMSE by CV-type.

