ZIEGLER-NICHOLS DE LAZO CERRADO

Criterios de sintonización de controladores

CALCULO DE CONTROLADORES

CALCULO DE CONTROLADORES

Este método se basa en un controlador Proporcional que llevaría el sistema a una oscilación sostenida, es decir a estabilidad marginal: polo=jw La K de este caso será Ku y el periodo de w será Pu

Tipo de controlador	G _c (s)	K _p	T _i	T_d
P	K_p	0.5 K _u		
PI	$K_p\left[1+\frac{1}{T_is}\right]$	0.45 K _u	$\frac{P_u}{1.2}$	
PID	$K_p \left[1 + \frac{1}{T_i s} + T_d s \right]$	0.6 K _u	$\frac{P_u}{2}$	$\frac{P_u}{8}$

EJEMPLO ZIEGLER-NICHOLS

$$T(s) = \frac{K}{s^3 + 6s^2 + 11s + (6 + K)}$$

donde se sustituye s por $j\omega$:

$$(j\omega)^3 + 6(j\omega)^2 + 11(j\omega) + (6+K) = 0$$

La expresión anterior puede separarse en las partes imaginaria y real:

$$(j\omega)\left[(j\omega)^2 + 11\right] + \left[6(j\omega)^2 + (6+K)\right] = 0$$

EJEMPLO ZIEGLER-NICHOLS

De la parte imaginaria se obtiene la frecuencia ω_u con la que el sistema cruza el eje $j\omega$: $\omega_u = \pm j(11)^{\frac{1}{2}} = \pm 3.3166 j$, con lo cual:

$$P_u = \frac{2\pi}{\omega_u} = 1.89445$$

De la parte real sale el valor de la ganancia máxima K_u , lo que corresponde a la ganancia que requiere el sistema para que éste se comporte en forma libre oscilatoria:

$$6(j\omega)^2 + (6+K) = 0$$
 : $K = K_u = 60$

EJEMPLO ZIEGLER-NICHOLS

Tipo de controlador	K _p	T_i	K _i	T _d	K _d
P	30				
PI	27	1.5787	17.1024		
PID	36	0.9472	38.0054	0.2368	8.5261

EJERCICIO, LAZO CERRADO

$$G_p(s) = \frac{1}{(s+5)(s^2+2s+1)}$$
 $H(s) = 1$

Sintonice los controladores P, PI, PID con el método de Ziegle-Nichols de lazo cerrado

- I.- Obtenga la ecuación caracteristica del sistema al retroalimentarlo con un controlador P, Gc(s)=Kp. Es decir la T(s) para un controlador proporcional.
- 2.- Sustituya s=jw en la ecuación característica obtenida y separe la parte real de la imaginaria igualandolas a 0.
- 3.- Obtenga Ku y Pu
- 4.- Calcule los parámetros de los controladores solicitados