

Informe Nº7 **Lab**oratorio de Máquinas: Ensayo Ventilador radial.

Eduardo Suazo Campillay¹

¹Escuela de Ingeniería Mecánica Pontificia Universidad Católica de Valparaíso suazocamp@hotmail.com

04 de Diciembre de 2020

Índice

1.	Introducción 1.1. Objetivos generales	1
2.	Instrumentos de midición empleados.	2
3.	Valores medidos y calculados.	4
4.	Curva presión v/s caudal.	4
5.	Tipo de ventilador estudiado.	6
6.	Curva Potencia v/s caudal. 6.1. Posible potencia en el eje	6 7
7.	Rendimiento v/s caudal.	7
8.	Conclusión	7
9.	Bibliografía	8

1. Introducción

1.1. Objetivos generales

Se procede a analizar un ventilador presente en el laboratorio de la escuela de ingeniería mecánica de a PUCV.

2. Instrumentos de midición empleados.

Los instrumentos de medición empleados en la realización de este ensayo son:

• Manómetro de tubo inclinado: Tipo de manómetro que se usa para medir presiones manométricas que son inferiores a las 250 mm de columna de agua. Se inclina la rama de un manómetro de tintero para alargar la escala, o bien las dos ramas de un tubo en U.

Figura 1: Manómetro de tubo inclinado.

• Wattmetro de candado: Instrumento utilizado para medir potencias.

Figura 2: Medidor de potencia.

■ Tacómetro digital: Es un instrumento que mide la velocidad de rotación de un elemento rotatorio en [rpm], tiene la particularidad de que puede medir sin la necesidad de tener contacto físico con el elemento a medir.

Figura 3: Tacómetro digital.

■ Termómetro: Instrumento empleado para medir las temperaturas tanto de entrada como de salida del aire del ventilador.

Figura 4: Termómetro digital.

■ Amperímetro: Instrumento el cual es empleado para medir la intensidad de corriente de los cables que se encuentran conectados.

Figura 5: Amperímetro.

3. Valores medidos y calculados.

VALORES MEDIDOS											
	nx	Pe4			ta	td	W1	W2	Patm		
	[rpm]	[mmca]	[Pa]	[atm]	[°C]	[°C]	[kW]	[kW]	[mmHg]	[Pa]	[atm]
1	1831	5	49	0,00048	21	23	0,44	0,82	758,8	101165	0,99
2	1845	30	294	0,00290	22	23	0,34	0,7	758,8	101165	0,99
3	1867	45	441	0,00435	22	23	0,19	0,56	758,8	101165	0,99
4	1867	48,5	475,3	0,00469	21	23	0,14	0,52	758,8	101165	0,99
5	1871	57	558,6	0,00551	21,5	23	0,11	0,49	758,8	101165	0,99
media	1856,2										

	Valores Calculados										
	Caudal	dal Presión Velocidad		med	Pot. Ele.	Pot. Hidr.	Rend. gl.				
	qvm	P	V1	(00+04)/2	Ne	Nh	Ngl				
	[m3/s]	[Pa]	[m/s]	[kg/m3]	[kW]	[kW]	%				
1	0,3337	51,66	4,72	0,91	1,26	0,017	1,36				
2	0,2805	308,52	11,02	0,91	1,04	0,086	8,32				
3	0,1509	462,32	13,34	0,91	0,75	0,07	9,3				
4	0,0879	498,25	13,82	0,914	0,66	0,044	6,63				
5	0	558,6	0	0,913	0,6	0	0				

4. Curva presión v/s caudal.

Figura 6: Presión v/s caudal.

Figura 7: Curvas de presión v/s caudal, fuente: Apuntes Profesora Maria Torres.

Comparando la curva obtenida con las que se hayan en la literatura, se ve aprecia claramente que se semejan bastante, dando a entender que el procedimiento empleado es correcto

5. Tipo de ventilador estudiado.

El tipo de ventilador estudiado es uno de tipo radial con sus alabes curvados hacia adelante. Es apto para caudales altos y bajas presiones. Para un mismo caudal y diámetro, gira a menos vuelta con menor nivel sonoro. Por lo regular suele usarse en instalaciones de ventilación, calefacción y aire acondicionado a bajas presiones.

Figura 8: Ventilador radial.

6. Curva Potencia v/s caudal.

Figura 9: Potencia v/s caudal.

Del gráfico, se aprecia que la mayor potencia consumida por el ventilador es de 1,26 [Kw], y ocurre cuando se emplea el disco de 300 [mm].

6.1. Posible potencia en el eje.

El motor empleado en este ensayo posee una potencia de 0.75 [HP], lo que equivale a 0.559 [Kw] de potencia. Considerando un rendimiento del motor del 80% y un rendimiento del 95% en la transmisión según el rango del autor Bernard Hamrock [2] .

$$P_{eje} = 0.559 \cdot 0.8 \cdot 0.95 = 0.425[Kw] \tag{1}$$

7. Rendimiento v/s caudal.

El punto óptimo de rendimiento será el valor mas alto de la curva de rendimiento global v/s caudal. En el caso del ventilador ensayado, el rendimiento máximo corresponde al 9.3% correspondiente a un caudal de $0.151 \text{ [m}^3\text{]}$.

Figura 10: Rendimiento v/s caudal.

8. Conclusión

En este ensayo se procedió a corregir la primera lectura mostrada de mmH2O, ya que debido a la inestabilidad del fluido se produjo un error de lectura. El valor que se modifico fue de 3 mmH2O a 4 mmH2O, debido a que el primero era un valor muy bajo y afectaba directamente a la composición de los gráficos obtenidos. Es por esta razón que se empleo el valor de 4 mmH2O, valor que se obtuvo por otro grupo que ensayo el mismo ventilador.

9. Bibliografía

Referencias

- [1] Documento de Ventiladores, Profesora Maria Josefina Torres
- [2].
e
lementos de maquinas, Bernard Hamrock".