Final Exam

Python

For the portion of the exam, you will be using the flight dataset. The questions are aimed toward data analysis of flight delay for NYC in 2013. Pleaes download the flight_data.csv from the submission folder. This file contains dataset information about all the flights that departed from NYC (e.g. EWR, JFK and LGA) in 2013 which is 336,776 flights in total. Please submit the completed jupyter notebook file to D2L.

Question 8

- · Get the summary statistics of the data
- Get the number of rows and columns
- Find out the number of scheduled departures planned by carriers

```
In [1]: # import libraries
import pandas as pd
import numpy as np
import seaborn as sns #import Seaborn
from matplotlib import pyplot as plt
%matplotlib inline
```

```
In [2]: # Read the dataset
    flight_data = pd.read_csv('flight_data.csv')
    flight = pd.DataFrame(flight_data)
    flight.head(5)
```

Out[2]:

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay
0	2013	1	1	517.0	515	2.0	830.0	819	11.0
1	2013	1	1	533.0	529	4.0	850.0	830	20.0
2	2013	1	1	542.0	540	2.0	923.0	850	33.0
3	2013	1	1	544.0	545	-1.0	1004.0	1022	-18.0
4	2013	1	1	554.0	600	-6.0	812.0	837	- 25.0
		-	-	_					

In [4]: # Summary statistics data of dataset
flight.describe()

Out[4]:

	year	month	day	dep_time	sched_dep_time	dep_delay
count	336776.0	336776.000000	336776.000000	328521.000000	336776.000000	328521.000000
mean	2013.0	6.548510	15.710787	1349.109947	1344.254840	12.639070
std	0.0	3.414457	8.768607	488.281791	467.335756	40.210061
min	2013.0	1.000000	1.000000	1.000000	106.000000	-43.000000
25%	2013.0	4.000000	8.000000	907.000000	906.000000	-5.000000
50%	2013.0	7.000000	16.000000	1401.000000	1359.000000	-2.000000
75%	2013.0	10.000000	23.000000	1744.000000	1729.000000	11.000000
max	2013.0	12.000000	31.000000	2400.000000	2359.000000	1301.000000
4						•

In [8]: # Number of row and column from dataset: 19 columns, 336776 rows
flight.info

Out[8]:		method Data			ye	ear mont	h day	dep_tir	ne sch	ed_de
	p_time		_		,	F1F		2.0	020.0	
	0	2013	1 1	517.6		515		2.0	830.0	
	1 2	2013	1 1	533.6		529		4.0	850.0	
	3	2013	1 1	542.6		540		2.0	923.0	
	4	2013	1 1 1 1	544.6		545		-1.0	1004.0	
	4	2013		554.6		600 	•	-6.0 	812.0	
	336771	2013	9 30	NaN		1455		NaN	NaN	
	336772	2013	9 30	NaN	J	2200		NaN	NaN	
	336773	2013	9 30	NaN		1210		NaN	NaN	
	336774	2013	9 30	NaN		1159		NaN	NaN	
	336775	2013	9 30	NaN		840		NaN	NaN	
		sched_arr	time ar	r delav	carrier	flight ⁻	tailnum	origin	dest	\
	0	501104 <u></u> 411.	819	11.0	UA	1545	N14228	EWR	IAH	`
	1		830	20.0	UA	1714	N24211	LGA	IAH	
	2		850	33.0	AA	1141	N619AA	JFK	MIA	
	3		1022	-18.0	В6	725	N804JB	JFK	BQN	
	4		837	-25.0	DL	461	N668DN	LGA	ATL	
			• • •			• • •				
	336771		1634	NaN	9E	3393	NaN	JFK	DCA	
	336772		2312	NaN	9E	3525	NaN	LGA	SYR	
	336773		1330	NaN	MQ	3461	N535MQ	LGA	BNA	
	336774		1344	NaN	MQ	3572	N511MQ	LGA	CLE	
	336775		1020	NaN	MQ	3531	N839MQ	LGA	RDU	
		air_time	distance	hour	minute	t	ime_hou	r		
	0	2 27.0	1400		15		013 5:00			
	1	227.0	1416		29	1/1/20	013 5:00	9		
	2	160.0	1089		40	1/1/20	013 5:00	9		
	3	183.0	1576	5	45	1/1/20	013 5:00	9		
	4	116.0	762		0	1/1/2	013 6:00	9		
								•		
	336771	NaN	213	14	55	30-09-20	13 14:00	9		
	336772	NaN	198	22	0	30-09-20	13 22:00	9		
	336773	NaN	764		10	30-09-20				
	336774	NaN	419	11	59	30-09-20	13 11:00	9		
	336775	NaN	431	8	40	30-09-20	13 08:00	9		

[336776 rows x 19 columns]>

```
# The number of scheduled departures planned by carriers
In [9]:
        flight['carrier'].value_counts()
Out[9]: carrier
        UA
               58665
        В6
               54635
        ΕV
               54173
        DL
               48110
        AΑ
               32729
        ΜQ
               26397
        US
               20536
        9E
               18460
        WN
               12275
        VX
                5162
        FL
                3260
        AS
                 714
        F9
                 685
        YV
                 601
        HΑ
                 342
        00
                  32
        Name: count, dtype: int64
```

Question 9

Define the total number of unique airline headed to BOS from NYC and print out this sentence: "Total number of carrier headed to 'BOS' from 'NYC' is ? "

```
In [23]: # Query data of flight from NYC to BOS
to_bos = flight[flight['dest'] == 'BOS']
# Get unique carriers for flights from 'NYC' to 'BOS'
uni_carriers = to_bos['carrier'].nunique()
# print sentence
print(f"Total number of carrier headed to 'BOS' from 'NYC' is {uni_carriers}")
```

Total number of carrier headed to 'BOS' from 'NYC' is 7

Question 10

Display top 10 destination flights from NYC in a bar graph, add title and labels for axes

```
In [25]: # Create frequency table of top 10 destination flights from NYC
top_flight = flight["dest"].value_counts().head(11)
top_flight
```

```
Out[25]: dest
          ORD
                  17283
          ATL
                  17215
          LAX
                  16174
          BOS
                  15508
          MCO
                  14082
          CLT
                  14064
          SF0
                  13331
          FLL
                  12055
          MIA
                  11728
          DCA
                   9705
          DTW
                   9384
```

Name: count, dtype: int64

```
In [28]: # Display top 10 destination flights from NYC in a bar graph
top_flight.plot(kind='bar', color='blue')
plt.title("Top 10 destinations from NYC")
plt.xlabel("Destinations")
plt.ylabel("Frequency of Occurence")
plt.show()
```


Question 11

Show the bar graph for average departure delay by origin, add title and labels for axes

