

Lower Mississippi Region Comprehensive Study

Appendix C, Volume I Regional Climatology Hydrology & Geology 1974

This appendix is one of a series of 22 documents comprising the complete Lower Mississippi Region Comprehensive Study. A list of the documents is shown below.

Main Report

Appendixes

Appendix	Description	Appendix	Description
A	History of Study	K	M and I Water Supply
В	Economics	L	Water Quality and Pollution
С	Regional Climatology Hydrology & Geology	M	Health Aspects
D	Inventory of Facilities	N	Recreation
Е	Flood Problems	0	Coastal and Estuarine Resources
F	Land Resources	Р	Archeological and Historical Resources
G	Related Mineral		mistorical resources
	Resources	Q	Fish and Wildlife
Н	Irrigation	R	Power
I	Agricultural Land Drainage	S	Sediment and Erosion
T		T	Plan Formulation
J	Navigation	U	The Environment

REGIONAL CLIMATOLOGY, HYDROLOGY AND GEOLOGY.

SER RODUCTIONS WILL SEE IN SECTION OF THE PROPERTY OF THE PROP

LOWER MISSISSIPPI REGION
COMPREHENSIVE STUDY

Appendix C. Volume I. c

Approved for public release;
Distribution Unlimited

PREPARED UNDER THE SUPERVISION OF
THE LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY
COORDINATING COMMITTEE

4/0 262

This report was prepared at field level by the Lower Mississippi Region Comprehensive Study Coordinating Committee and is subject to review by interested Federal agencies at the departmental level, by Governors of the affected States, and by the Water Resources Council prior to its transmittal to the President of the United States for his review and ultimate transmittal to the Congress for its consideration.

TABLE OF CONTENTS

APPENDIX C REGIONAL CLIMATOLOGY, HYDROLOGY, AND GEOLOGY

<u>į</u>	Page No.
List of Figures	х
List of Tables	XXXV
Photographs	Lii
INTRODUCTION	1
Purpose and Scope	1
Definition of "Present Conditions"	1
Relationship to Other Appendixes	
Description of the Region	2 2 2 5
Location and Drainage	2
General Geology	5
Physiography	6
Water Resources	9
Land Use	9
Land ose	9
REGIONAL SUMMARY	11
Climate	11
General Introduction	11
Climatic Character of the Region	12
Climatic Controls	12
Geography and topography	12
Semipermanent anticyclone	13
Middle latitude storms and storm tracks	14
Air streams (air masses)	14
	16
Linear systems	16
Precipitation	16
Introduction	16
Annual, seasonal, monthly	17
Days with various precipitation thresholds	19
Thunderstorms	32
Short period maximum precipitation	32
Diurnal variation of precipitation	32
Rainfall frequency-depth-duration studies and atlases .	36
Precipitation probabilities	36
Snow, sleet, glaze	36
Temperature	40
Introduction	40
Annual, seasonal, and monthly temperatures	40

<u>Pa</u>	ge No.
Temperature extremes	44
Days with various temperature thresholds	44
Freezes, average dates and frequencies	48
Degree days (heating, cooling, growing)	48
Humidity	53
Introduction	53
Relative humidity	53
Dew points	53
Winds	53
Seasonal direction and speed patterns	53
Extreme winds	59
Evaporation and Evapotranspiration	59
Evaporation	59
Evapotranspiration	59
Other Elements	63
Sunshine and solar radiation	63
Clouds and fog	63
Atmospheric pressure	66
Climatic Hazards	67
Tropical Cyclones (Hurricanes)	67
Introduction	67
Frequencies	70
Tropical cyclone rainfall	72
Beneficial aspects of tropical cyclones	77
Deficient Precipitation	77
Introduction.	77
Palmer index	80
Tornadoes	83
Introduction	83
Regional occurrences	93
urface Water	96
Quantity	96
Present Utilization	100
Stream Management	101
Diversions	102
Channel modification and flood-control works	102
Forecasts	103
Streamflow	104
Measurement facilities	104
Average discharge for the region	106
Average discharge for selected stations	106
Variation in precipitation and discharge	108
Flow Velocities	109
River Profiles	109
Water Quality	111
Introduction.	111
Temperature	112

<u> </u>	Page No.
Sedimentation	112
Sediment in Streams	114
Reservoir Sedimentation	114
Geology and Ground Water	118
Geology	118
Precambrian and Paleozoic Rocks	118
Mesozoic Rocks	122
Cenozoic Rocks	122
Occurrence of Ground Water	122
Movement of Ground Water	125
Aquifers	126
Paleozoic Aquifers	128
Cretaceous Aquifers	128
Tertiary Aquifers	133
Quaternary Aquifers	145
Estimated Yield Under Specified Conditions	148
Interrelation of Ground and Surface Water	152
Management Considerations	153
Needs for Additional Data	157
Climatology	157
Ground Water	158
Streamflow and Stage	159
Water Use	161
Flow Velocity Studies	161
Drainage Areas	161
WRPA 1	163
Introduction	163
Surface Water	166
Quantity	166
Present Utilization	166
Stream Management	167
Flood control	167
The project design flood	167
Levees	168
Floodways	168
Channel improvement and stabilization	170
Results of flood-control works	171
Navigation	172
Streamflow	172
Measurement facilities	173
Average discharge for WRPA 1	173
Average discharge for selected stations	173
Variations in precipitation and discharge	175
Flow Velocities	176
River Profile	176
Quality	176

Page N	No.
WRPA 2	
Introduction	
Surface Water	1
Quantity	1
Present Utilization)
Stream Management 200)
Impoundments)
Channel modification	
Streamflow	
Measurement facilities	
Average discharge for WRPA 2 203	
Average discharge at selected stations	
0	
Quality	
Ground Water	
Paleozoic Aquifers	
Cretaceous Aquifers	
McNairy and Nacatoch Sand 234	
Tertiary Aquifers	1
Lower Wilcox Aquifer	1
Carrizo Sand	,
Cane River Formation	,
Memphis Aquifer)
Sparta Sand)
Cockfield Formation	
Quaternary Aquifers	
Mississippi River Valley Alluvial Aquifer	
Effects of Ground Water	
Withdrawals and Management Considerations	2
withdrawars and management considerations	,
WRPA 3	
Introduction	
Surface Water	
(minute),	
Stream Management	
Impoundments	
Channel modification	
Streamflow	
Measurement facilities 244	
Average discharge for WRPA 3 244	
Average discharge for selected stations	
Flow Velocities	
River Profiles	3

Page 1	No.
Quality	8 4 4 4 4 6 6 6 7 7
Effects of Ground Water Withdrawals and Management Considerations	8
WRPA 4	1
Introduction. 28. Surface Water 28. Quantity. 28. Present Utilization 28. Stream Management 28. Impoundments. 28. Channel modification. 28. Streamflow. 28. Average discharge for WRPA 4. 28. Average discharge for selected stations 28. Variation in precipitation and discharge 29. Flow Velocities 29. River Profile 29. Quality 29. Ground Water 31. Cretaceous Aquifers 31. Tertiary Aquifers 31. Lower Wilcox Aquifer 31. Minor Wilcox Aquifers 31. Minor Wilcox Aquifers 31. Meridian-Upper Wilcox Aquifer 32. Tallahatta Formation and Winona Sand 32. Sparta Sand 32.	1 4 4 4 4 4 5 5 5 6 7 7 8 8 8 0 0 0 0 7 7 9 9 9 9 9 0 0 0 0 0 0 0 0 0
Cockfield Formation	
Vicksburg Group, and Catahoula Sandstone	2 2

						Page No.
WRPA 5						325
Introduction						325
Surface Water						329
						329
Quantity			Ĭ.			329
Stream Management			ij			330
Impoundments	•	• •	•	•	٠.	330
Diversions	•	• •	•	•	٠.	331
Channel modification	•	• •	•	•		332
Navigation						333
Streamflow	•		•	•		333
Measurement facilities	•		•	•		333
Average discharge for WRPA 5	•		•	•		333
Average discharge for selected stations .			•	•		335
Variations in precipitation and discharge						337
Flow Velocities			•	•		337
River Profile						338
Quality				•		338
Ground Water						392
Paleozoic Aquifers						392
Cretaceous Aquifers						392
Tokio Formation						392
Nacatoch Sand						394
Tertiary Aquifers						394
Wilcox Group						394
Carrizo Sand						395
Sparta Sand						395
Cockfield Formation						396
Miocene Deposits	•	•	•	•	• •	397
Quaternary Aquifer	•		•	•	٠.	397
Effects of Ground Water	•		•	•	٠.	337
Withdrawals and Management Considerations						398
withdrawars and management constderations	• •		•	•		390
WRPA 6						399
Introduction						399
Surface Water						402
Quantity						402
Present Utilization						402
Stream Management						403
Impoundments						403
Diversions						403
Channel modification						403
Streamflow	•		•	•	• •	404
Measurement facilities			•	•		404
Average discharge for WRPA 6						405
Average discharge for with 0						403

									Page No.
Average discharge for selected stations Flow Velocities									405 407
River Profile									407
Quality									407
Ground Water									423
Tertiary Aquifers	٠	٠	٠	٠	٠	•	•	٠	423
Sparta Sand									423
Cockfield Formation									425
Miocene Deposits	•	•	•	•	•	•	•	•	425
Quaternary Aquifers	•	•	•	•	•	•	•	•	425
Mississippi River Valley Alluvial Aquifer	•	٠	•	•	•	•	•	•	425
Effects of Ground Water									
Withdrawals and Management Considerations .	•	•	•		•	•	•	•	426
L. TANDA									127
WRPA 7	•	•	•	•	•	•	•	•	427
Introduction									427
Introduction	•	•	•	•	•	•	•	•	431
Surface Water									431
Quantity									431
Present Utilization									431
Stream Management									432
Impoundments	•	•		•	•	•	•	•	432
Diversions									432
									432
Streamflow	•	•	•	•	•	•	•	•	433
Average discharge for WRPA 7	•	•	•	•	•	•	•	•	433
									435
Average discharge for selected stations									435
Flow Velocities									436
River Profile									436
Quality	•	•	•	•	•	•	•	•	450
Ground Water									452
Cretaceous Aquifers	•	•	•	•	•	•	•	•	452
									454
Tertiary Aquifers	•	•	•	•	•	•	•	•	454
Lower Wilcox Aquifer	•	•	•	•	•	•	•	•	454
Meridian-Upper Wilcox Aquifer									454
									455
Sparta Sand	•	•	•	•	•	•	•	•	455
Cockfield Formation	•	•	•	•	•	•	•	•	
Forest Hill Sand and Vicksburg Group									456
Catahoula Sandstone	•	•	•	•	•	•	•	•	456
Upper Miocene Aquifers	٠	•	•	•	•	•	•	•	456
Citronelle Formation									457
Quaternary Aquifers	•	٠	•	•	•	•	•	•	457
Mississippi River Valley Alluvial Aquifer	•	٠	•	•	•	•	•	•	457
Effects of Ground Water Withdrawals and Management Considerations.									458
withdrawals and Management Considerations.									430

	Page No.
WRPA 8	459
Introduction	459
Surface Water	461
Quantity	461
Present Utilization	461
Stream Management	461
Impoundments	461
Diversions	461
Channel modification	461
Navigation	463
Streamflow	463
Measurement facilities	463
Measurement facilities	463
Average discharge for WRPA 8	463
Average discharge for selected stations	465
Flow Velocities	465
River Profiles	466
Hurricane Overflow	466
Quality	
Ground Water	477
Tertiary Aguifers	477
Quaternary Aquifers	479
Pleistocene Aquifers	479
Mississippi River Valley Alluvial Aquifer Effects of Ground Water	480
Withdrawals and Management Considerations	480
WRPA 9	483
Introduction	483
Surface Water	485
Quantity	485
Present Utilization	485
Stream Management	485
Impoundments	485
Diversions	485
Channel modifications	
Channel modifications	
Navigation	486
Streamflow	486
Measurement facilities	486
Average discharge for WRPA 9	
Average discharge for selected stations	492
Flow Velocities	492
River Profiles	
Hurricane Overflow	493
Quality	493
Ground Water	506

Page 1	No.
Tertiary Aquifers	8
Withdrawals and Management Considerations 50	9
WRPA 10	1
Introduction. 51 Surface Water 51 Quantity. 51 Present Utilization 51 Stream Management 51 Impoundments 51 Diversions 51 Channel modification 51 Navigation 51 Streamflow 51 Measurement facilities 51 Average discharge for WRPA 10 51 Average discharge for selected stations 51 Flow Velocities 51 River Profiles 51 Hurricane Overflow 51 Quality 52 Ground Water 52 Tertiary Aquifers 52 Quaternary Aquifers 53 Mississippi River Valley Alluvial Aquifer 53	3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 7 7 7 7
Effects of Ground Water	
Withdrawals and Management Considerations	

LIST OF FIGURES

No.		Page No.
1	Regional Map, 1973	3
2	Physiographic Map	7
3	North American Air Masses	15
4	Normal Annual Total Precipitation, Inches, 1931-1960	18
5	Normal January Total Precipitation, Inches, 1931-1960	20
6	Normal April Total Precipitation, Inches, 1931-1960	21
7	Normal July Total Precipitation, Inches, 1931-1960	22
8	Normal October Total Precipitation, Inches, 1931-1960	23
9	Hyetographs of Monthly Normal Precipitation in Inches for Selected Stations, 1931-1960	24
10	Number of Days with Precipitation Greater than or Equal to 0.01 Inch	27
11	Normal Number of 24-Hour Periods with 0.50 Inch or More of Precipitation, January, 1931-1960	28
12	Normal Number of 24-Hour Periods with 0.50 Inch or More of Precipitation, April, 1931-1960	29
13	Normal Number of 24-Hour Periods with 0.50 Inch or More of Precipitation, July, 1931-1960	30
14	Normal Number of 24-Hour Periods with 0.50 Inch or More of Precipitation, October, 1931-1960	31
15	Mean Annual Number of Days with Thunderstorms, Period of Record Through 1964	33
16	Diurnal Distributions of Measurable Precipitation, by Months, New Orleans, Louisiana, and Memphis, Tennessee, 1951-1960	35
17	Isopluvial Map of Fifty-Year One-Hour Rainfall, Inches	37

No.		Page	No.
18	Isopluvial Map of Fifty-Year Twelve-Hour Rainfall, Inches		38
19	Mean Annual Snowfall, Inches, Period of Record Through 1960		39
20	Normal Annual Temperature, °F, 1931-1960		41
21	Normal Daily Maximum, Minimum, and Average Temperatures, °F, January, 1931-1960		42
22	Normal Daily Maximum, Minimum, and Average Temperatures, °F, July, 1931-1960		43
23	Mean Annual Number of Days with Maximum Temperature 90°F and Above, and Minimum Temperature 32°F and Below, Period of Record Through 1964	•	47
24	Mean Date of First Freezing (32°F) Temperature in Fall, 1921-1950		49
25	Mean Date of Last Freezing (32°F) Temperature in Spring, 1921-1950		50
26	Mean Length of 32°F Freeze-Free Period (Days), 1921-1950		51
27	Normal Annual Heating and Cooling Degree Days (Base 65°F), 1931-1960		52
28	Mean Dew Point Temperature, °F (1946-1965), and Maximum Persisting 12-Hour 1000-Millibar Dew Point, °F, January and July		55
29	Seasonal Wind Roses, New Orleans, Louisiana, 1951-1960 .		56
30	Seasonal Wind Roses, Lake Charles, Louisiana, 1951-1960		57
31	Seasonal Wind Roses, Memphis, Tennessee, 1951-1960		58
32	Wind: Annual Extreme Fastest Mile (Standardized 30 Feet Above Ground), 100-Year Mean Recurrence Interval		61

No.		Page	No.
33	Evaporation: Mean Annual Class A Pan and Lake, Inches; Mean Warm-Season (May-October) as Percent of Annual Total, 1946-1955	. 6	2
34	Mean Percentages of Possible Sunshine and Mean Daily Solar Radiation, Langleys, Period of Record Through 1963 and 1964, January and July	. 6	4
35	Portrait of a Hurricane, as Seen by Satellite, Radar, and Illustrator	. 6	9
36	Summary of Tropical Cyclone Occurrences	. 7	1
37	Some Significant Hurricanes Making Landfall in the Lower Mississippi Region	. 7	3
38	Some Examples of Tropical Cyclone Precipitation Patterns in the Lower Mississippi Region	. 7	5
39-A	Appolo 7 View of Hurricane Gladys at 1531 G.M.T., 17 October 1968	. 7	6
39-В	Example of Plan Position Indicator Radar Composite Echoes Superimposed upon Cloud Pattern Derived from Appolo 7 Pictures	. 7	6
40-A	Tropical Cyclones Which Have Terminated Drought in the United States	. 7	8
40-B	Details of Hurricane Cindy, September 1963	. 7	8
41	Tropical Cyclone Precipitation, by Months Average for the Period 1931-1960, Shown as Percentage of Total Monthly Precipitation	. 7	9
42	Mean Monthly Precipitation 1931-1960 for Houma, Louisiana, and Jonesboro, Arkansas, with Tropical Cyclone Precipitation Indicated by Shading. Changes in Probabilities of Receipt of Various Threshold Amounts when Tropical Cyclone Precipitation Removed from Monthly Distribution	. 7	79
43	Palmer Index: Climatological Divisions	. 8	34
44	Palmer Index: Value for Driest Month and Duration in Months of Longest Dry Spell, 1931-1970	. 8	35

No.		Page No.
45	Palmer Index: Value for Wettest Month and Duration in Months of Longest Wet Spell, 1931-1970	86
46-A	Palmer Index: 1931-1970	
46-B	Palmer Index: 1931-1970	88
46-C	Palmer Index: 1931-1970	89
47	Some Phases in the Life Cycle of a Tornado	91
48	Schematic Illustration of Factors Involved in Development of Severe Local Storms	92
49	Initial Points of Ground Contact of 624 Verified Tornadoes in Counties Making up the Lower Mississippi Region During the Years 1951-1970	95
50	Watershed Area and Runoff Diagram	97
51	Mean Annual Rumoff in Inches, 1973	98
52	Seven-Day Low Flows at Selected Sites for Recurrence Intervals of 10 and 30 Years	105
53	Low Flow Velocities of Streams	110
54	Ranges in Temperature of Water in Selected Streams for Periods Indicated	113
55	Geologic Map	119
56	Structural Map of the Lower Mississippi Region	120
57	Generalized Geologic Sections in the Lower Mississippi Region	121
58	Map Showing Altitude of the Base of Fresh Water in Coastal Plain Aquifers	127
59	Geohydrologic Map of the Coffee Sand and Gordo Formation	130
60	Geohydrologic Map of the Ripley Formation, McNairy Sand, and Nacatoch Sand	132

No).		Page No.
	61	Geohydrologic Map of the Wilcox Group	134
	62	Geohydrologic Map of the Carrizo Sand and the Meridian-Upper Wilcox Aquifer	137
	63	Geohydrologic Map of the Sparta Sand and the Memphis Aquifer	138
	64	Geohydrologic Map of the Cockfield Formation	141
	65	Geohydrologic Map of the Mio-Pliocene Aquifers	143
	66	Quaternary Deposits	146
	67	Potential Yield of Aquifers	151
	68	Streamflow Gaging Stations, WRPA 1	164
	69	Project Design Flood	169
	70	Monthly Discharge - Mississippi River at Tarbert Landing, Miss	174
	71	Frequency Curve of Annual Peak Flows Mississippi River at Hickman, Ky	178
	72	Frequency Curve of Annual Peak Flows Mississippi River at Memphis, Tenn	178
	73	Frequency Curve of Annual Peak Flows Mississippi River at Helena, Ark	178
	74	Frequency Curve of Annual Peak Flows Mississippi River at Vicksburg, Miss	178
	75	Frequency Curve of Annual Peak Flows Mississippi River at Tarbert Landing, Miss	179
	76	Low Flow Frequency Curves, Mississippi River at Hickman, Ky.	180
	77	Low Flow Frequency Curves, Mississippi River at Memphis, Tenn	180

No.		Page No.
78	Low Flow Frequency Curves, Mississippi River at Helena, Ark	180
79	Low Flow Frequency Curves, Mississippi River at Arkansas City, Ark.	180
80	Low Flow Frequency Curves, Mississippi River at Vicksburg, Miss	181
81	Low Flow Frequency Curves, Mississippi River at Tarbert Landing, Miss	181
82	Duration Curve, Mississippi River at Hickman, Ky	182
831	Duration Curve, Mississippi River at Memphis, Tenn	182
84	Duration Curve, Mississippi River at Helena, Ark	182
85	Duration Curve, Mississippi River at Arkansas City, Ark	182
86	Duration Curve, Mississippi River near Vicksburg, Miss	183
87	Duration Curve, Mississippi River at Tarbert Landing, Miss	183
88	Long-Term Variation in Precipitation and Streamflow	184
89	Lower Mississippi River Profile, Cairo, Ill., to Gulf of Mexico	185
90	Mean Annual Runoff in Inches, WRPA 2, 1973	202
91	Monthly Discharge from WRPA 2	204
92	Frequency Curve of Annual Peak Flows, St. Francis River-Patterson, Mo	214
93	Frequency Curve of Annual Peak Flows, St. Francis River-Wappapello, Mo	214
94	Frequency Curve of Annual Peak Flows, St. Francis River-St. Francis Ark.	214

No.		Page No.
95	Frequency Curve of Annual Peak Flows, St. Francis River-Lake City, Ark	. 214
96	Frequency Curve of Annual Peak Flows, Right Hand Chute Little River-Rivervale, Ark	. 215
97	Frequency Curve of Annual Peak Flows, Tyronza River- Tyronza, Ark	. 215
98	Frequency Curve of Annual Peak Flows, St. Francis River-Latitude of Wittsburg, Ark	. 215
99	Frequency Curve of Annual Peak Flows, L'Anguille River-Palestine, Ark	. 215
100	Frequency Curve of Annual Peak Flows, Cache River- Patterson, Ark	. 216
101	Frequency Curve of Annual Peak Flows, Bayou DeView-Morton, Ark	. 216
102	Frequency Curve of Annual Peak Flows, White River-Clarendon, Ark	. 216
103	Frequency Curve of Annual Peak Flows, Arkansas River- Little Rock, Ark	. 216
104	Frequency Curves, St. Francis River near Patterson, Missouri	. 217
105	Frequency Curves, St. Francis River at St. Francis, Arkansas	. 217
106	Frequency Curves, St. Francis River at Lake City, Arkansas	217
107	Frequency Curves, Right Hand Chute Little River at Rivervale, Arkansas	217
108	Frequency Curves, Tyronza River near Tyronza, Arkansas	. 218
109	Frequency Curves, St. Francis River at Latitude of Wittsburg, Arkansas	218

No.		Page No.
110	Frequency Curves, L'Anguille River at Palestine, Arkansas	218
111	Frequency Curves, Cache River at Patterson, Arkansas	218
112	Frequency Curves, Bayou DeView at Morton, Arkansas	219
113	Frequency Curves, White River at Clarendon, Arkansas	219
114	Duration Curve, St. Francis River near Patterson, Missouri	220
115	Duration Curve, St. Francis River at Wappapello, Missouri	220
116	Duration Curve, St. Francis River at St. Francis, Arkansas	220
117	Duration Curve, St. Francis River at Lake City, Arkansas	220
118	Duration Curve, Right Hand Chute of Little River, Rivervale, Arkansas	221
119	Duration Curve, Tyronza River near Tyronza, Arkansas	221
120	Duration Curve, St. Francis River at Latitude of Wittsburg, Arkansas	221
121	Duration Curve, L'Anguille River at Palestine, Arkansas	221
122	Duration Curve, Cache River at Patterson, Arkansas	222
123	Duration Curve, Bayou DeView at Morton, Arkansas	222
124	Duration Curve, White River at Clarendon, Arkansas	222
125	Duration Curve, Arkansas River at Little Rock, Arkansas	222

No.		Page No.
126	Profile, St. Francis River	229
127	Profile, White River	. 229
128	Profile, Arkansas River	. 229
129	Geologic Sources of Ground Water, WRPA 2, 1973	233
130	Mean Annual Rumoff in Inches, WRPA 3, 1973	245
131	Monthly Discharge from WRPA 3	246
132	Frequency Curve of Annual Peak Flows, Mayfield Creek-Lovelaceville, Ky	255
133	Frequency Curve of Annual Peak Flows, South Fork Obion River-Greenfield, Tenn	255
134	Frequency Curve of Annual Peak Flows, North Fork Obion River-Union City, Tenn	255
135	Frequency Curve of Annual Peak Flows, Obion River, Obion, Tenn	255
136	Frequency Curve of Annual Peak Flows, South Fork Forked Deer River-Jackson, Tenn	256
137	Frequency Curve of Annual Peak Flows, South Fork Forked Deer River-Halls, Tenn	256
138	Frequency Curve of Annual Peak Flows, North Fork Forked Deer River-Dyersburg, Tenn	256
139	Frequency Curve of Annual Peak Flows, Hatchie River-Bolivar, Tenn	256
140	Frequency Curve of Annual Peak Flows, Hatchie River-Rialto, Tenn	257
141	Frequency Curve of Annual Peak Flows, Loosahatchie River-Brunswick, Tenn	257
142	Frequency Curve of Annual Peak Flows, Wolf River, Rossville, Tenn	257

No.		Page No	٥.
143	Frequency Curve of Annual Peak Flows, Wolf River, Raleigh, Tenn	257	
144	Frequency Curves, Mayfield Creek near Lovelaceville, Ky	258	
145	Frequency Curves, South Fork Obion River near Greenfield, Tennessee	258	
146	Frequency Curves, North Fork Obion River near Union City, Tennessee	258	
147	Frequency Curves, Obion River at Obion, Tennessee	258	
148	Frequency Curves, South Fork Forked Deer River at Jackson, Tennessee	259	
149	Frequency Curves, South Fork Forked Deer River near Halls, Tennessee	259	
150	Frequency Curves, North Fork Forked Deer River at Dyersburg, Tennessee	259	
151	Frequency Curves, Hatchie River at Bolivar Tennessee	259	
152	Frequency Curves, Hatchie River at Rialto, Tennessee	260	
153	Frequency Curves, Loosahatchie River at Brunswick, Tennessee	260	
154	Frequency Curves, Wolf River at Rossville, Tennessee	260	
155	Frequency Curves, Wolf River at Raleigh, Tennessee	260	
156	Duration Curve, Mayfield Creek near Lovelaceville, Kentucky	261	
157	Duration Curve, South Fork, Obion River near Greenfield, Tennessee	261	
158	Duration Curve, North Fork, Obion River near Union City, Tennessee	261	
159	Duration Curve, Obion River at Obion, Tennessee	261	

No.		Page No.
160	Duration Curve, South Fork, Forked Deer River at Jackson, Tennessee	262
161	Duration Curve, South Fork, Forked Deer River near Halls, Tennessee	262
162	Duration Curve, North Fork, Forked Deer River near Dyersburg, Tennessee	262
163	Duration Curve, Hatchie River at Bolivar, Tennessee	262
164	Duration Curve, Hatchie River at Rialto, Tennessee	263
165	Duration Curve, Loosahatchie River at Brunswick, Tennessee	263
166	Duration Curve, Wolf River at Rossville, Tennessee	263
167	Duration Curve, Wolf River at Raleigh, Tennessee	263
168	Profile, Obion River	270
169	Profile, Hatchie River	270
170	Profile, Loosahatchie River	270
171	Profile, Wolf River	270
172	Geologic Sources of Ground Water, WRPA 3, 1973	275
173	Mean Annual Runoff in Inches, WRPA 4, 1973	282
174	Monthly discharge from WRPA 4	289
175	Frequency Curve of Annual Peak Flows Cane Creek at New Albany, Miss	300
176	Frequency Curve of Annual Peak Flows Little Tallahatchie River at Etta, Miss	300
177	Frequency Curve of Annual Peak Flows Clear Creek near Oxford, Miss	300

No.		Page No.
178	Frequency Curve of Annual Peak Flows Yocona River at Oxford, Miss	300
179	Frequency Curve of Annual Peak Flows Tallahatchie River at Swan Lake, Miss	301
180	Frequency Curve of Annual Peak Flows Yalobusha River at Calhoun City, Miss	301
181	Frequency Curve of Annual Peak Flows Skuna River at Bruce, Miss	301
182	Frequency Curve of Annual Peak Flows Yazoo River at Greenwood, Miss	301
183	Frequency Curve of Annual Peak Flows Sumflower River at Sumflower, Miss	302
184	Low Flow Frequency Curves, Cane Creek at New Albany, Miss	303
185	Low Flow Frequency Curves, Little Tallahatchie River at Etta, Miss	303
186	Low Flow Frequency Curves, Clear Creek near Oxford, Miss	303
187	Low Flow Frequency Curves, Yocona River at Oxford, Miss	303
188	Low Flow Frequency Curves, Yalobusha River at Calhoun City, Miss	304
189	Low Flow Frequency Curves, Skuna River at Bruce, Miss	304
190	Low Flow Frequency Curves, Yazoo River at Greenwood, Miss	304
191	Low Flow Frequency Curves, Sunflower River at Sunflower, Miss	304
192	Duration Curve, Cane Creek near New Albany, Miss	305

No.		Page No.
193	Duration Curve, Little Tallahatchie River at Etta, Miss	305
194	Duration Curve, Clear Creek near Oxford, Miss	305
195	Duration Curve, Little Tallahatchie River at Sardis Dam near Sardis, Miss	305
196	Duration Curve, Yocona River near Oxford, Miss	306
197	Duration Curve, Yocona River at Enid Dam near Enid, Miss	306
198	Duration Curve, Coldwater River at Arkabutla Dam near Arkabutla, Miss	306
199	Duration Curve, Tallahatchie River near Lambert, Miss	306
200	Duration Curve, Tallahatchie River at Swan Lake, Miss	307
201	Duration Curve, Yalobusha River at Calhoun City, Miss	307
202	Duration Curve, Skuna River at Bruce, Miss	307
203	Duration Curve, Yalobusha River at Grenada Dam near Grenada, Miss	307
204	Duration Curve, Yazoo River at Greenwood, Miss	308
205	Duration Curve, Sunflower River at Sunflower, Miss	308
206	Long-Term Variation in Precipitation and Streamflow	313
207	Stream Profile, Yazoo River, Mississippi	314
208	Geologic Sources of Ground Water, WRPA 4, 1973	318
209	Mean Annual Rumoff in Inches, WRPA 5, 1973	326
210	Monthly Discharge from WRPA 5	336
211	Frequency Curve of Annual Peak Flows Ouachita River pear Mt. Ida. Ark.	355

No.		Page No.
212	Frequency Curve of Annual Peak Flows South Fork Ouachita River near Mt. Ida, Ark	355
213	Frequency Curve of Annual Peak Flows Ouachita River near Malvern, Ark	355
214	Frequency Curve of Annual Peak Flows Caddo River near Alpine, Ark	355
215	Frequency Curve of Annual Peak Flows Ouachita River near Arkadelphia, Ark	356
216	Frequency Curve of Annual Peak Flows Little Missouri River near Murfreesboro, Ark	356
217	Frequency Curve of Annual Peak Flows Ozan Creek near McCaskill, Ark	356
218	Frequency Curve of Annual Peak Flows Antoine River at Antoine, Ark	356
219	Frequency Curve of Annual Peak Flows Little Missouri River near Boughton, Ark	357
220	Frequency Curve of Annual Peak Flows Ouachita River at Camden, Ark	357
221	Frequency Curve of Annual Peak Flows Smackover Creek near Smackover, Ark	357
222	Frequency Curve of Annual Peak Flows Saline River at Benton, Ark	357
223	Frequency Curve of Annual Peak Flows Saline River at Rye, Ark	358
224	Frequency Curve of Annual Peak Flows Bayou Bartholomew near McGehee, Ark	358
225	Frequency Curve of Annual Peak Flows Bayou Bartholomew near Jones, La	358
226	Frequency Curve of Annual Peak Flows Chemin-A-Haut Bayou near Beekman, La	358

No.		Page No.
227	Frequency Curve of Annual Peak Flows Bayou DeLoutre near Laran, La	359
228	Frequency Curve of Annual Peak Flows Bayou D'Arbonne near Dubach, La	359
229	Frequency Curve of Annual Peak Flows Middle Fork Bayou D'Arbonne near Bernice, La	359
230	Frequency Curve of Annual Peak Flows Cornie Bayou near Three Creeks, Ark	359
231	Frequency Curve of Annual Peak Flows Three Creek near Three Creeks, Ark	360
232	Frequency Curve of Annual Peak Flows Little Cornie Bayou near Lillie, La	360
233	Frequency Curve of Annual Peak Flows Ouachita River at Monroe, La	360
234	Frequency Curve of Annual Peak Flows Castor Creek at Grayson, La	360
235	Frequency Curve of Annual Peak Flows Garrett Creek at Jonesboro, La	361
236	Frequency Curve of Annual Peak Flows Dugdemona River at Winnfield, La	361
237	Frequency Curve of Annual Peak Flows Little River near Rochelle, La	361
238	Frequency Curve of Annual Peak Flows Bayou Funny Louis near Trout, La	361
239	Frequency Curve of Annual Peak Flows Big Creek at Pollock, La	362
240	Frequency Curve of Annual Peak Flows Red River at Alexandria, La	362
241	Low Flow Frequency Curves, Ouachita River near Mt. Ida, Ark	363

No.		Page No.
242	Low Flow Frequency Curves, South Fork, Ouachita River at Mt. Ida, Ark	363
243	Low Flow Frequency Curves, Ouachita River near Malvern, Ark	363
244	Low Flow Frequency Curves, Caddo River near Alpine, Ark	363
245	Low Flow Frequency Curves, Ouachita River at Arkadelphia, Ark	364
246	Low Flow Frequency Curves, Little Missouri River near Murfreesboro, Ark	364
247	Low Flow Frequency Curves, Little Missouri River near Boughton, Ark	364
248	Low Flow Frequency Curves, Ouachita River at Camden, Ark	364
249	Low Flow Frequency Curves, Saline River near Rye, Ark	365
250	Low Flow Frequency Curves, Saline River at Benton, Ark	365
251	Low Flow Frequency Curves, Bayou Bartholomew near McGehee, Ark	365
252	Low Flow Frequency Curves, Bayou Bartholomew near Jones, La	365
253	Low Flow Frequency Curves, Chemin-A-Haut Bayou near Beekman, La	366
254	Low Flow Frequency Curves, Bayou DeLoutre near Laran, La	366
255	Low Flow Frequency Curves, Bayou D'Arbonne near Dubach, La	366
256	Low Flow Frequency Curves, Middle Fork, Bayou D'Arbonne near Bernice, La	366

No.		Page No.
257	Low Flow Frequency Curves, Little Corney Bayou near Lillie, La	367
258	Low Flow Frequency Curves, Castor Creek near Grayson, La	367
259	Low Flow Frequency Curves, Dugdemona River near Winnfield, La	367
260	Low Flow Frequency Curves, Little River near Rochelle, La	367
261	Low Flow Frequency Curves, Bayou Funny Louis near Trout, La	368
262	Low Flow Frequency Curves, Big Creek at Pollock, La	368
263	Low Flow Frequency Curves, Red River at Alexandria, La	368
264	Duration Curve, Ouachita River near Mt. Ida, Ark	369
265	Duration Curve, South Fork Ouachita River at Mt. Ida, Ark	369
266	Duration Curve, Ouachita River at Blakely Mt. Dam near Hot Springs, Ark	369
267	Duration Curve, Ouachita River near Malvern, Ark	369
268	Duration Curve, Caddo River near Alpine, Ark	370
269	Duration Curve, Ouachita River at Arkadelphia, Ark	370
270	Duration Curve, Little Missouri River at Narrows Dam near Murfreesboro, Ark	370
271	Duration Curve, Little Missouri River near Murfreesboro, Ark	370
272	Duration Curve, Ozan Creek near McCaskill, Ark	371

No.		Page No.
273	Duration Curve, Antoine River at Antoine, Ark	371
274	Duration Curve, Little Missouri River near Boughton, Ark	371
275	Duration Curve, Ouachita River at Camden, Ark	371
276	Duration Curve, Smackover Creek near Smackover, Ark	372
277	Duration Curve, Saline River at Benton, Ark	372
278	Duration Curve, Hurricane Creek near Sheridan, Ark	372
279	Duration Curve, Saline River near Rye, Ark	372
280	Duration Curve, Bayou Bartholomew near McGehee, Ark	373
281	Duration Curve, Bayou Bartholomew near Jones, La	373
282	Duration Curve, Chemin-A-Haut Bayou near Beekman, La	373
283	Duration Curve, Bayou DeLoutre near Laran, La	373
284	Duration Curve, Bayou D'Arbonne near Dubach, La	374
285	Duration Curve, Middle Fork Bayou D'Arbonne near Bernice, La	374
286	Duration Curve, Cornie Bayou near Three Creeks, Ark	374
287	Duration Curve, Three Creek near Three Creeks, Ark	374
288	Duration Curve, Little Cornie Bayou near Lillie, La	375
289	Duration Curve, Ouachita River at Monroe, La	375
290	Duration Curve, Castor Creek near Grayson, La	375
291	Duration Curve Garrett Creek at Jonesboro La	375

No.		Page No.
292	Duration Curve, Dugdemona River near Winnfield, La	376
293	Duration Curve, Little River near Rochelle, La	376
294	Duration Curve, Bayou Funny Louis near Trout, La	376
295	Duration Curve, Big Creek at Pollock, La	376
296	Duration Curve, Red River at Alexandria, La	377
297	Long-Term Variation in Precipitation and Streamflow	386
298	Long-Term Variation in Precipitation and Streamflow	387
299	Stream Profile, Ouachita and Black Rivers, Arkansas and Louisiana	388
300	Geologic Sources of Ground Water, WRPA 5, 1973	393
301	Mean Annual Rumoff in Inches, WRPA 6, 1973	400
302	Monthly Discharge from WRPA 6	406
303	Frequency Curve of Annual Peak Flows Boeuf River near ArkLa. State Line	412
304	Frequency Curve of Annual Peak Flows Boeuf River near Girard, La	412
305	Frequency Curve of Annual Peak Flows Big Colewa Bayou near Oak Grove, La	412
306	Frequency Curve of Annual Peak Flows Bayou LaFourche near Crew Lake, La	412
307	Frequency Curve of Annual Peak Flows Tensas River at Tendal, La	413
308	Frequency Curve of Annual Peak Flows Bayou Macon near Kilbourne, La	413
309	Frequency Curve of Annual Peak Flows Bayou Macon near Delhi, La	413

No.		Page No.
310	Low Flow Frequency Curves, Boeuf River near ArkLa. Line	414
311	Low Flow Frequency Curves, Boeuf River near Girard, La	414
312	Low Flow Frequency Curves, Bayou LaFourche near Crew Lake, La	414
313	Low Flow Frequency Curves, Tensas River at Tendal, La	414
314	Low Flow Frequency Curves, Bayou Macon near Delhi, La	415
315	Duration Curve, Boeuf River near ArkLa. State Line	416
316	Duration Curve, Boeuf River near Girard, La	416
317	Duration Curve, Big Colewa Bayou near Oak Grove, La	416
318	Duration Curve, Bayou LaFourche near Crew Lake, La	416
319	Duration Curve, Tensas River near Tendal, La	417
320	Duration Curve, Bayou Macon near Kilbourne, La	417
321	Duration Curve, Bayou Macon near Delhi, La	417
322	Stream Profile, Boeuf River, Arkansas and Louisiana	420
323	Geologic Sources of Ground Water, WRPA 6, 1973	424
324	Mean Annual Rumoff in Inches, WRPA 7, 1973	428
325	Monthly Discharge from WRPA 7	434
326	Frequency Curve of Annual Peak Flows Big Black River at Pickens, Miss	441
327	Frequency Curve of Annual Peak Flows Big Black River near Bovina, Miss	441

No.		Page No.
328	Frequency Curve of Annual Peak Flows Bayou Pierre near Willows, Miss	. 441
329	Frequency Curve of Annual Peak Flows Homochitto River at Eddiceton, Miss	. 441
330	Frequency Curve of Annual Peak Flows Homochitto River at Rosetta, Miss	. 442
331	Frequency Curve of Annual Peak Flows Buffalo River near Woodville, Miss	. 442
332	Low Flow Frequency Curves, Big Black River at Pickens, Miss	. 443
333	Low Flow Frequency Curves, Big Black River at Bovina, Miss	. 443
334	Low Flow Frequency Curves, Homochitto River at Eddiceton, Miss.	. 443
335	Low Flow Frequency Curves, Homochitto River at Rosetta, Miss.	. 443
336	Low Flow Frequency Curves, Buffalo River near Woodville, Miss.	. 444
337	Duration Curve, Big Black River at Pickens, Miss	. 445
338	Duration Curve, Big Black River near Bovina, Miss	. 445
339	Duration Curve, Bayou Pierre near Willows, Miss	. 445
340	Duration Curve, Homochitto River at Eddiceton, Miss	. 445
341	Duration Curve, Homochitto River at Rosetta, Miss	. 446
342	Duration Curve, Buffalo River near Woodville, Miss	. 446
343	Stream Profile. Big Black River, Mississippi	449

No.		Page No.
344	Geologic Sources of Ground Water, WRPA 7, 1973	453
345	Mean Annual Rumoff in Inches, WRPA 8, 1973	462
346	Monthly Discharge, Amite River near Denham Springs, La	469
347	Monthly Discharge, Tickfaw River near Holden, La	469
348	Monthly Discharge, Natalbany River at Baptist, La	469
349	Monthly Discharge, Tangipahoa River at Robert, La	469
350	Frequency Curve of Annual Peak Flows Amite River near Denham Springs, La	470
351	Frequency Curve of Annual Peak Flows Tickfaw River at Holden, La	470
352	Frequency Curve of Annual Peak Flows Natalbany River at Baptist, La	470
353	Frequency Curve of Annual Peak Flows Tangipahoa River at Robert, La	470
354	Low Flow Frequency Curves, Amite River near Denham Springs, La	471
355	Low Flow Frequency Curves, Tickfaw River at Holden, La	471
356	Low Flow Frequency Curves, Natalbany River at Baptist, La	471
357	Low Flow Frequency Curves, Tangipahoa River at Robert, La	471
358	Duration Curve, Amite River near Denham Springs, La	472
359	Duration Curve, Tickfaw River at Holden, La	472
360	Duration Curve, Natalbany River at Baptist, La	472
361	Duration Curve, Tangipahoa River at Robert, La	472

No.		Page No.
362	Stream Profile, Amite, La	474
363	Stream Profile, Tickfaw River, La	474
364	Stream Profile, Natalbany River, La	474
365	Stream Profile, Tangipahoa River, La	474
366	Limits of Hurricane Overflow, WRPA 8, 1973	475
367	Geologic Sources of Ground Water, WRPA 8, 1973	478
368	Mean Annual Rumoff in Inches, WRPA 9, 1973	487
369	Monthly Discharge, Calcasieu River near Kinder, La	496
370	Monthly Discharge, Bayou Nezpique near Basile, La	496
371	Monthly Discharge, Bayou Teche at Arnaudville, La	496
372	Monthly Discharge, Atchafalaya River at Simmesport, La	496
373	Frequency Curve of Annual Peak Flows Calcasieu River near Kinder, La	497
374	Frequency Curve of Annual Peak Flows Bayou Nezpique near Basile, La	497
375	Frequency Curve of Annual Peak Flows Bayou Teche at Arnaudville, La	497
376	Frequency Curve of Annual Peak Flows Atchafalaya River at Krotz Springs, La	497
377	Low Flow Frequency Curves, Calcasieu River near Kinder, La	. 498
378	Low Flow Frequency Curves, Bayou Nezpique near Basile, La	498
379	Low Flow Frequency Curves, Bayou Teche at Arnaudville, La	498

No.		Page No
380	Low Flow Frequency Curves, Atchafalaya River at Krotz Springs, La	. 498
381	Duration Curve, Calcasieu River near Kinder, La	. 499
382	Duration Curve, Bayou Nezpique near Basile, La	. 499
383	Duration Curve, Bayou Teche at Arnaudville, La	. 499
384	Duration Curve, Atchafalaya River at Krotz Springs, La	. 499
385	Stream Profile, Calcasieu River, La	. 501
386	Stream Profile, Mermentau River, La	. 501
387	Stream Profile, Vermilion River, La	. 501
388	Stream Profile, Bayou Teche, La	. 501
389	Stream Profile, Atchafalaya River, La	. 502
390	Limits of Hurricane Overflow, WRPA 9, 1973	. 503
391	Geologic Sources of Ground Water, WRPA 9, 1973	. 507
392	Mean Annual Runoff in Inches, WRPA 10, 1973	. 515
393	Monthly Discharge, Bayou LaFourche at Donaldsonville, La	. 520
394	Monthly Discharge, Tchefuncta River near Folsom, La	. 520
395	Frequency Curve of Annual Peak Flows Bayou LaFourche at Donaldsonville, La	. 521
396	Frequency Curve of Annual Peak Flows Tchefuncta River near Folsom, La	. 521
397	Low Flow Frequency Curves, Bayou LaFourche at Donaldsonville, La	. 522
398	Low Flow Frequency Curves, Tchefuncta River near Folsom, La	. 522

No.		Page No.
399	Duration Curve, Bayou LaFourche at Donaldsonville, La	. 523
400	Duration Curve, Tchefuncta River near Folsom, La	. 523
401	Stream Profile, Bayou LaFourche, La	. 525
402	Stream Profile, Tchefuncta River	. 525
403	Limits of Hurricane Overflow, WRPA 10, 1973	. 526
404	Geologic Sources of Ground Water, WRPA 10, 1973	. 529

LIST OF TABLES

No.		Pa	age No.
1	Monthly and Annual Normal Precipitation in Inches at Selected Stations, 1931-1960		25
2	Observed 5-Minute - 24-Hour Maximum Precipitation in Inches (Period of Record Through 1970)	•	34
3	Monthly and Annual Normal Temperatures at Selected Stations, °F, 1931-1960		45
4	Average Number of Hours Per Year with Temperatures Above and Below Specified Threshold Values		48
5	Percentage Frequencies of Relative Humidity Observations at 6 a.m. and 3 p.m. During Midseason Months, 1951-1960		54
6	Seasonal Percentage Frequencies of Wind Speeds (mph) Within Specified Classes		60
7	Monthly Averages of Percentage Frequencies of Cloud Cover, Based on Summaries of Hourly Observations, 1951-1960 .		65
8	Mean Monthly Sea Level Pressure in Millibars		66
9	Total Number of Tropical Cyclones Affecting Portions of th Lower Mississippi Region, 1901-1970		70
10	Tropical Cyclone Frequencies in the Northern Gulf of Mexico, 1886-1969		72
11	Some Heavy Rainfall Totals in Connection with Tropical Cyclones Affecting the Lower Mississippi Region		74
12	Descriptive Terms for Weather Conditions Represented by Ranges of Palmer Index		82
13	Some Outstanding Lower Mississippi Region Tornado Outbreaks, 1901-1971	•	93
14	Mean Annual Discharge for the Lower Mississippi Region, 1973 Conditions		99
15	Water Use in 1970. Lower Mississippi Region (c.f.s.)		101

No.		Page No.
16	Summary of Measured Suspended Sediment Loads at Main River Stations Lower Mississippi River at Baton Rouge and Red River Landing, Louisiana	115
17	Summary of Measured Suspended Sediment Loads at Main River Stations Atchafalaya River at Simmesport, Louisiana	115
18	Summary of Measured Suspended Sediment Loads at Main River Stations Red River at Alexandria, Louisiana	116
19	Summary of Measured Suspended Sediment Loads in Atchafalaya Basin Outlets Wax Lake Outlet at Calumet, Louisiana	116
20	Summary of Measured Suspended Sediment Loads in Atchafalaya Basin Outlets Lower Atchafalaya River at Morgan City, Louisiana	116
21	Sedimentation Data for Selected Reservoirs in Lower Mississippi Region	117
22	Correlation Chart	123
23	Availability of Fresh Ground Water in the Lower Mississippi Region	150
24	Streamflow Summary for Selected Sites, WRPA 1	173
25	Observed Mean Discharge, Thousands of c.f.s., Sta 7-0242, Miss. River at Hickman, Ky	186
26	Observed Mean Discharge, Thousands of c.f.s., Sta 7-0320, Miss. River at Memphis, Tenn	186
27	Observed Mean Discharge, Thousands of c.f.s., Sta 7-0479.7, Miss. River at Helena, Ark	187
28	Observed Mean Discharge, Thousands of c.f.s., Sta 72654.5, Miss. River at Arkansas City, Ark.	100
29	Observed Mean Discharge, Thousands of c.f.s., Sta 72890.00, Miss. River at Vicksburg, Miss	189

No.		Page No.
30	Observed Mean Discharge in Thousands of c.f.s., Sta 01100, Miss. River at Tarbert Landing, Miss	190
31	Observed Mean Discharge in Thousands of c.f.s., Lower Old River near Torras, La	191
32	Observed Mean Discharge in Thousands of c.f.s., Sta 02100, Old River Outflow Channel near Knox Landing, La	191
33	Dependable Yield at Sta 7-0242, Miss. River at Hickman, Ky	192
34	Dependable Yield at Sta 7-0320, Miss. River at Memphis, Tenn	192
35	Dependable Yield at Sta 7-0479.7, Miss. River at Helena, Ark.	192
36	Dependable Yield at Sta 72654.50, Miss. River at Arkansas City, Ark.	193
37	Dependable Yield at Sta 72890.00, Miss. River at Vicksburg Miss	193
38	Dependable Yield at Sta 0112012, Miss. River at Red River Landing, La	193
39	Chemical Analyses of Water in WRPA 1 from the Mississippi River in the Lower Mississippi Region, Milligrams Per Liter	194
40	Reservoirs Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 5	200
41	Streamflow Summary for Selected Sites, WRPA 2	201
42	Observed Mean Discharge, in c.f.s., St. Francis River at Patterson, Mo., Sta 7-0375	206
43	Observed Mean Discharge, in c.f.s., St. Francis River at Wappapello, Mo., Sta 7-0395	207
44	Observed Mean Discharge, in c.f.s., St. Francis River, St. Francis, Ark., Sta 7-0401	207

No.		Page No.
45	Observed Mean Discharge, in c.f.s., St. Francis River, Lake City, Ark., Sta 7-0404.5	208
46	Observed Mean Discharge, in c.f.s., Right Hand Chute of Little River at Rivervale, Ark., Sta 7-0466	208
47	Observed Mean Discharge, in c.f.s., Tyronza River near Tyronza, Ark., Sta 7-0476	209
48	Observed Mean Discharge, in c.f.s., St. Francis River at Latitude of Wittsburg, Ark., Sta 7-0479.02	209
49	Observed Mean Discharge, in c.f.s., L'Anguille River at Palestine, Ark., Sta 7-0479.5	210
50	Observed Mean Discharge, in c.f.s., Cache River at Patterson, Ark., Sta 7-0775	210
51	Observed Mean Discharge, in c.f.s., Bayou DeView at Morton, Ark., Sta 7-0777	211
52	Modified Mean Discharge, in c.f.s., White River at Clarendon, Ark., Sta 7-0778	212
53	Observed Mean Discharge, in c.f.s., Arkansas River at Little Rock, Ark., Sta 7-2635	213
54	Dependable Yield, St. Francis River near Patterson, Mo., Sta 7-0375	223
55	Dependable Yield, St. Francis River at Wappapello, Mo., Sta 7-0395	223
56	Dependable Yield, St. Francis River at St. Francis, Ark., Sta 7-0401	224
57	Dependable Yield, St. Francis River at Lake City, Ark., Sta 7-0404.5	224
58	Dependable Yield, Right Hand Chute of Little River at Rivervale, Ark., Sta 7-0466	225
59	Dependable Yield, Tyronza River near Tyronza, Ark., Sta 7-0476	225

No.		Page No.
60	Dependable Yield, St. Francis River at the Latitude of Wittsburg, Ark., Sta 7-0479.02	226
61	Dependable Yield, L'Anguille River at Palestine, Ark., Sta 7-0479.5	226
62	Dependable Yield, Cache River at Patterson, Ark., Sta 7-0775	227
63	Dependable Yield, Bayou DeView at Morton, Ark., Sta 7-0777	227
64	Dependable Yield, White River at Clarendon, Ark., Sta 7-0778	228
65	Dependable Yield, Arkansas River at Little Rock, Ark., Sta 7-2635	228
66	Chemical Analyses of Low-Flow Surface Waters in WRPA 2 in the Lower Mississippi Region, Milligrams Per Liter .	230
67	Reservoir Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 3	244
68	Streamflow Summary for Selected Sites, WRPA 3	247
69	Observed Mean Discharge, in c.f.s., Mayfield Creek at Lovelaceville, Ky., Sta 7-0230	249
70	Observed Mean Discharge, in c.f.s., South Fork Obion River near Greenfield, Tenn., Sta 7-0245	249
71	Observed Mean Discharge, in c.f.s., North Fork Obion River near Union City, Tenn., Sta 7-0255	250
72	Observed Mean Discharge, in c.f.s., Obion River at Obion, Tenn., Sta 7-0260	250
73	Observed Mean Discharge, in c.f.s., South Fork of Forked Deer River at Jackson, Tenn., Sta 7-0275	251
74	Observed Mean Discharge, in c.f.s., South Fork of Forked Deer River near Halls, Tenn., Sta 7-0281	251

No.		Page No.
75	Observed Mean Discharge, in c.f.s., North Fork of Forked Deer River at Dyersburg, Tenn., Sta 7-0291	252
76	Observed Mean Discharge, in c.f.s., Hatchie River at Bolivar, Tenn., Sta 7-0295	252
77	Observed Mean Discharge, in c.f.s., Hatchie River at Rialto Sta 7-0300.5	253
78	Observed Mean Discharge, in c.f.s., Loosahatchie River at Brunswick, Tenn., Sta 7-0302.8	253
79	Observed Mean Discharge, in c.f.s., Wolf River at Rossville, Tenn., Sta 7-0305	254
80	Observed Mean Discharge, in c.f.s., Wolf River at Raleigh, Tenn., Sta 7-0317	254
81	Dependable Yield, Mayfield Creek at Lovelaceville, Ky., Sta 7-0230	264
82	Dependable Yield, South Fork Obion River near Greenfield, Tenn., Sta 7-0245	264
83	Dependable Yield, North Fork Obion River near Union City, Tenn., Sta 7-0255	265
84	Dependable Yield, Obion River at Obion, Tenn., Sta 7-0260	265
85	Dependable Yield, South Fork of Forked Deer River at Jackson, Tenn., Sta 7-0275	266
86	Dependable Yield, South Fork of Forked Deer River near Halls, Tenn., Sta 7-0281	266
87	Dependable Yield, North Fork of Forked Deer River at Dyersburg, Tenn., Sta 7-0291	267
88	Dependable Yield, Hatchie River, Bolivar, Tenn., Sta 7-0295	267
89	Dependable Yield, Hatchie River at Rialto, Tenn., Sta 7-0300.5	268

No.		Page No.
90	Dependable Yield, Loosahatchie River at Brunswick, Tenn., Sta 7-0302.8	268
91	Dependable Yield, Wolf River at Rossville, Tenn., Sta 7-0305	269
92	Dependable Yield, Wolf River at Raleigh, Tenn., Sta 7-0317	269
93	Chemical Analyses of Low-Flow Surface Waters in WRPA 3 in the Lower Mississippi Region, Milligrams Per Liter	271
94	Reservoirs Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 4	285
95	Streamflow Summary for Selected Sites, WRPA 4	287
96	Observed Mean Discharge in c.f.s., Sta 72660.00, Cane Creek near New Albany, Miss., 1950-1969	293
97	Observed Mean Discharge in c.f.s., Sta 72680.00, Tallahatchie River at Etta, Miss., 1939-1969	293
98	Observed Mean Discharge in c.f.s., Sta 72710.00, Clear Creek near Oxford, Miss., 1951-1969	294
99	Observed Mean Discharge in c.f.s., Sta 72725.00, Tallahatchie River at Sardis Dam near Sardis, Miss., 1941-1970	294
100	Observed Mean Discharge in c.f.s., Sta 72740.00, Yocona River near Oxford, Miss., 1952-1969	295
101	Observed Mean Discharge in c.f.s., Sta 72750.00, Yocona River at Enid Dam, near Enid, Miss., 1952-1970	295
102	Observed Mean Discharge in c.f.s., Sta 72785.00, Coldwater River at Arkabutla Dam, near Arkabutla, Miss., 1944-1970	296
103	Observed Mean Discharge in c.f.s., Sta 72800.00, Tallahatchie River near Lambert, Miss., 1943-1970	296
104	Observed Mean Discharge in c.f.s., Sta 72810.00, Tallahatchie River at Swan Lake, Miss., 1952-1970	297

No.		Page No.
105	Observed Mean Discharge in c.f.s., Sta 72820.00, Yalobusha River at Calhoum City, Miss., 1951-1969	297
106	Observed Mean Discharge in c.f.s., Sta 72830.00, Skuna River at Bruce, Miss., 1948-1969	298
107	Observed Mean Discharge in c.f.s., Sta 72850.00, Yalobusha River at Grenada Dam, near Grenada, Miss., 1954-1970	298
108	Observed Mean Discharge in c.f.s., Sta 72870.00, Yazoo River at Greenwood, Miss., 1954-1970	299
109	Observed Mean Discharge in c.f.s., Sta 72885.00, Sunflower River at Sunflower, Miss., 1936-1967	299
110	Dependable Yield at Sta 72660.00, Cane Creek near New Albany, Miss.	309
111	Dependable Yield at Sta 72680.00, Tallahatchie River at Etta, Miss	309
112	Dependable Yield at Sta 72710.00, Clear Creek near Oxford, Miss	309
113	Dependable Yield at Sta 72725.00, Tallahatchie River at Sardis Dam near Sardis, Miss	309
114	Dependable Yield at Sta 72740.00, Yocona River near Oxford, Miss	310
115	Dependable Yield at Sta 72750.00, Yocona River at Enid Dam, near Enid, Miss	310
116	Dependable Yield at Sta 72785.00, Coldwater River at Arkabutla Dam, near Arkabutla, Miss	310
117	Dependable Yield at Sta 72800.00, Tallahatchie River near Lambert, Miss	310
118	Dependable Yield at Sta 72810.00, Tallahatchie River at Swan Lake, Miss	311

No.		Page No.
119	Dependable Yield at Sta 72820.00, Yalobusha River at Calhoun City, Miss	311
120	Dependable Yield at Sta 72830.00, Skuna River at Bruce, Miss.	311
121	Dependable Yield at Sta 72850.00, Yalobusha River at Grenada Dam, near Grenada, Miss	311
122	Dependable Yield at Sta 72870.00, Yazoo River at Greenwood, Miss., 1955-1970	312
123	Dependable Yield at Sta 72885.00, Sunflower River at Sunflower, Miss	312
124	Chemical Analyses of Low-Flow Surface Waters in WRPA 4 in the Lower Mississippi Region, Milligrams Per Liter	315
125	Reservoirs Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 5	331
126	Streamflow Summary for Selected Sites, WRPA 5	334
127	Observed Mean Discharge in c.f.s., Sta 73560.00, Ouachita River near Mount Ida, Ark., 1942-1970	340
128	Observed Mean Discharge in c.f.s., Sta 73565.00, South Fork Ouachita River at Mount Ida, Ark., 1949-1970	340
129	Observed Mean Discharge in c.f.s., Sta 73575.01, Ouachita River at Blakely Mountain Dam near Hot Springs, Ark., 1953-1970	341
130	Observed Mean Discharge in c.f.s., Sta 73595.00, Ouachita River near Malvern, Ark., 1954-1969	341
131	Observed Mean Discharge in c.f.s., Sta 73598.00, Caddo River near Alpine, Ark., 1939-1970	342
132	Observed Mean Discharge in c.f.s., Sta 73600.00, Ouachita River at Arkadelphia, Ark., 1954-1970	342
133	Observed Mean Discharge in c.f.s., Sta 73605.01, Little Missouri River at Narrows Dam near Murfreesboro, Ark., 1950-1970	343

No.		Page No.
134	Observed Mean Discharge in c.f.s., Sta 73610.00, Little Missouri River near Murfreesboro, Ark., 1952-1969	343
135	Observed Mean Discharge in c.f.s., Sta 73612.00, Ozan Creek near McCaskill, Ark., 1962-1969	343
136	Observed Mean Discharge in c.f.s., Sta 73615.00, Antoine River at Antoine, Ark., 1955-1969	344
137	Observed Mean Discharge in c.f.s., Sta 73616.00, Little Missouri River near Boughton, Ark., 1952-1970	344
138	Observed Mean Discharge in c.f.s., Sta 73620.00, Ouachita River at Camden, Ark., 1953-1970	345
139	Observed Mean Discharge in c.f.s., Sta 73621.00, Smackover Creek near Smackover, Ark., 1962-1970	345
140	Observed Mean Discharge in c.f.s., Sta 73630.00, Saline River at Benton, Ark., 1951-1969	345
141	Observed Mean Discharge in c.f.s., Sta 73633.00, Hurricane Creek near Sheridan, Ark., 1962-1969	346
142	Observed Mean Discharge in c.f.s., Sta 73635.00, Saline River near Rye, Ark., 1938-1969	346
143	Observed Mean Discharge in c.f.s., Sta 73641.00, Ouachita River near ArkLa. State Line, 1959-1969	347
144	Observed Mean Discharge in c.f.s., Sta 73641.50, Bayou Bartholomew near McGehee, Ark., 1957-1969	347
145	Observed Mean Discharge in c.f.s., Sta 73642.00, Bayou Bartholomew near Jones, La., 1958-1969	347
146	Observed Mean Discharge in c.f.s., Sta 73643.00, Chemin-A-Haut Bayou near Beekman, La., 1956-1969	348
147	Observed Mean Discharge in c.f.s., Sta 73647.00, Bayou De Loutre near Laran, La., 1956-1968	348
148	Observed Mean Discharge in c.f.s., Sta 73650.00, Bayou D'Arbonne near Dubach, La., 1941-1968	349

No.		Page No.
149	Observed Mean Discharge in c.f.s., Sta 73655.00, Middle Fork Bayou D'Arbonne near Bernice, La., 1941-1957	349
150	Observed Mean Discharge in c.f.s., Sta 73658.00, Cornie Bayou near Three Creeks, Ark., 1956-1969	350
151	Observed Mean Discharge in c.f.s., Sta 73659.00, Three Creek near Three Creeks, Ark., 1956-1969	350
152	Observed Mean Discharge in c.f.s., Sta 73662.00, Little Cornie Bayou near Lillie, La., 1956-1968	350
153	Observed Mean Discharge in c.f.s., Sta 73670.00, Ouachita River at Monroe, La., 1953-1969	351
154	Observed Mean Discharge in c.f.s., Sta 73705.00, Castor Creek near Grayson, La., 1941-1968	351
155	Observed Mean Discharge in c.f.s., Sta 73710.00, Garrett Creek at Jonesboro, La., 1953-1969	352
156	Observed Mean Discharge in c.f.s., Sta 73720.00, Dugdemona River near Winnfield, La., 1940-1968	352
157	Observed Mean Discharge in c.f.s., Sta 73722.00, Little River near Rochelle, La., 1958-1968	353
158	Observed Mean Discharge in c.f.s., Sta 73725.00, Bayou Funny Louis near Trout, La., 1939-1968	353
159	Observed Mean Discharge in c.f.s., Sta 73730.00, Big Creek at Pollock, La., 1942-1968	354
160	Observed Mean Discharge in c.f.s., Sta 7-3555, Red River at Alexandria, La., 1929-1970	354
161	Dependable Yield at Sta 73560.00, Ouachita River near Mount Ida, Ark	378
162	Dependable Yield at Sta 73565.00, South Fork Ouachita River at Mount Ida, Ark	378
163	Dependable Yield at Sta 73575.01, Ouachita River at Blakely Mountain Dam, near Hot Springs, Ark	378

No.		Page No.
164	Dependable Yield at Sta 73595.00, Ouachita River near Malvern, Ark., 1954-1969	378
165	Dependable Yield at Sta 73598.00, Caddo River near Alpine, Ark.	379
166	Dependable Yield at Sta 73600.00, Ouachita River at Arkadelphia, Ark., 1954-1970	379
167	Dependable Yield at Sta 73605.01, Little Missouri River at Narrows Dam, near Murfreesboro, Ark	379
168	Dependable Yield at Sta 73610.00, Little Missouri River near Murfreesboro, Ark., 1952-1969	379
169	Dependable Yield at Sta 73615.00, Antoine River at Antoine, Ark.	380
170	Dependable Yield at Sta 73616.00, Little Missouri River near Boughton, Ark., 1952-1970	380
171	Dependable Yield at Sta 73620.00, Ouachita River at Camden, Ark., 1953-1970	380
172	Dependable Yield at Sta 73630.00, Saline River at Benton, Ark.	380
173	Dependable Yield at Sta 73635.00, Saline River near Rye, Ark.	381
174	Dependable Yield at Sta 73641.50, Bayou Bartholomew near McGehee, Ark.	381
175	Dependable Yield at Sta 73642.00, Bayou Bartholomew near Jones, La	381
176	Dependable Yield at Sta 73643.00, Chemin-A-Haut Bayou near Beekman, La	381
177	Dependable Yield at Sta 73647.00, Bayou DeLoutre near Laran, La	382
178	Dependable Yield at Sta 73650.00, Bayou D'Arbonne near Dubach, La	382

No.				Pa	ge No.
179	Dependable Yield at Sta D'Arbonne near Bernic				382
180	Dependable Yield at Sta Three Creeks, Ark.	73658.00,	Cornie Bayou near		382
181	Dependable Yield at Sta Three Creeks, Ark.	73659.00,	Three Creek near		383
182	Dependable Yield at Sta near Lillie, La	73662.00,	Little Cornie Bayou		383
183	Dependable Yield at Sta Monroe, La		Ouachita River at		383
184	Dependable Yield at Sta Grayson, La	73705.00,	Castor Creek near		383
185	Dependable Yield at Sta Jonesboro, La	73710.00,	Garrett Creek at		384
186	Dependable Yield at Sta Winnfield, La				384
187	Dependable Yield at Sta Rochelle, La	73722.00,	Little River near		384
188	Dependable Yield at Sta Trout, La		Bayou Funny Louis near		384
189	Dependable Yield at Sta Pollock, La		Big Creek at		385
190	Dependable Yield at Sta Alexandria, La				385
191	Chemical Analyses of Wat Lower Mississippi Reg		reams in WRPA 5 in the igrams Per Liter		389
192	Streamflow Summary for S	Selected Si	ites, WRPA 6		404
193	Observed Mean Discharge River near ArkLa. S				408

No.		Page No.
194	Observed Mean Discharge in c.f.s., Sta 73680.00, Boeuf River near Girard, La., 1955-1969	408
195	Observed Mean Discharge in c.f.s., Sta 73685.00, Big Colewa near Oak Grove, La., 1950-1970	409
196	Observed Mean Discharge in c.f.s., Sta 73690.00, Bayou LaFourche near Crew Lake, La., 1955-1969	409
197	Observed Mean Discharge in c.f.s., Sta 73695.00, Tensas River at Tendal, La., 1936-1969	410
198	Observed Mean Discharge in c.f.s., Sta 73697.00, Bayou Macon near Kilbourne, La., 1958-1968	410
199	Observed Mean Discharge in c.f.s., Sta 73700.00, Bayou Macon near Delhi, La., 1936-1969	411
200	Dependable Yield at Sta 73677.00, Boeuf River near ArkLa. State Line	418
201	Dependable Yield at Sta 73680.00, Boeuf River near Girard, La	418
202	Dependable Yield at Sta 73685.00, Big Colewa near Oak Grove, La	418
203	Dependable Yield at Sta 73690.00, Bayou LaFourche near Crew Lake, La., 1955-1969	418
204	Dependable Yield at Sta 73695.00, Tensas River at Tendal, La	419
205	Dependable Yield at Sta 73697.00, Bayou Macon near Kilbourne, La	419
206	Dependable Yield at Sta 73700.00, Bayou Macon near Delhi, La	419
207	Chemical Analyses of Water from Streams in WRPA 6 in the Lower Mississippi Region, Milligrams Per Liter	421
208	Streamflow Summary for Selected Sites, WRPA 7	433

No.		Page No.
209	Observed Mean Discharge in c.f.s., Sta 72895.00, Big Black River at Pickens, Miss., 1937-1967	438
210	Observed Mean Dishcarge in c.f.s., Sta 72900.00, Big Black River near Bovina, Miss., 1936-1969	438
211	Observed Mean Discharge in c.f.s., Sta 72906.50, Bayou Pierre near Willows, Miss., 1961-1969	439
212	Observed Mean Discharge in c.f.s., Sta 72910.00, Homochitto River at Eddiceton, Miss., 1939-1969	439
213	Observed Mean Discharge in c.f.s., Sta 72925.00, Homochitto River at Rosetta, Miss., 1952-1967	440
214	Observed Mean Discharge in c.f.s., Sta 72950.00, Buffalo River near Woodville, Miss., 1942-1969	440
215	Dependable Yield at Sta 72895.00, Big Black River at Pickens, Miss.	447
216	Dependable Yield at Sta 72900.00, Big Black River near Bovina, Miss	447
217	Dependable Yield at Sta 72910.00, Homochitto River at Eddiceton, Miss.	447
218	Dependable Yield at Sta 72925.00, Homochitto River at Rosetta, Miss.	447
219	Dependable Yield at Sta 72950.00, Buffalo River near Woodville, Miss.	448
220	Chemical Analyses of Water from Streams in WRPA 7 in the Lower Mississippi Region, Milligrams Per Liter	450
221	Streamflow Data for Water Resources Planning Area 8, East Atchafalaya, Amite, Tickfaw, Natalbany, and Tangipahoa River Basins	464
222	Observed Mean Discharge in c.f.s., Sta 7-3785, Amite River near Denham Springs, La., 1938-1970	467
223	Observed Mean Discharge in c.f.s., Sta 7-3760, Tickfaw River at Holden, La., 1941-1970	467

No.		Page No.
224	Observed Mean Discharge in c.f.s., Sta 7-3765, Natalbany River at Baptist, La., 1943-1970	468
225	Observed Mean Discharge in c.f.s., Sta 7-3755, Tangipahoa River at Robert, La., 1939-1970	468
226	Dependable Yield at Sta 7-3785, Amite River near Denham Springs, La.	473
227	Dependable Yield at Sta 7-3760, Tickfaw River at Holden, La	473
228	Dependable Yield at Sta 7-3765, Natalbany River at Baptist, La	473
229	Dependable Yield at Sta 7-3755, Tangipahoa River at Robert, La	473
230	Chemical Analyses of Water from Streams in WRPA 8 in the Lower Mississippi Region, Milligrams Per Liter	476
231	Reservoirs Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 9	486
232	Streamflow Data for Water Resources Planning Area 9	488
233	Observed Mean Discharge in c.f.s., Sta 8-0155, Calcasieu River near Kinder, La., 1922-1970	494
234	Observed Mean Discharge in c.f.s., Sta 8-0120, Bayou Nezpique near Basile, La., 1939-1970	494
235	Observed Mean Discharge in c.f.s., Sta 7-3855, Bayou Teche at Arnaudville, La., 1949-1970	495
236	Observed Mean Discharge in 1,000 c.f.s., Sta 0304512, Atchafalaya River at Simmesport, La., 1928-1970	495
237	Dependable Yield at Sta 8-0155, Calcasieu River near Kinder, La	500
238	Dependable Yield at Sta 7-3855, Bayou Teche at Arnaudville, La.	500

No.		Page No.
239	Dependable Yield at Sta 8-0120, Bayou Nezpique near Basile, La	500
240	Dependable Yield at Sta 0304512, Atchafalaya River at Simmesport, La	500
241	Chemical Analyses of Surface Waters in WRPA 9 in the Lower Mississippi Region, Milligrams Per Liter	504
242	Streamflow Data for Water Resources Planning Area $10\ldots$	516
243	Observed Mean Discharge in c.f.s., Sta 7-3804, Bayou LaFourche at Donaldsonville, La., 1958-1970	519
244	Observed Mean Discharge in c.f.s., Sta 7-3750, Tchefuncta River near Folsom, La., 1944-1970	519
245	Dependable Yield at Sta 7-3804, Bayou LaFourche at Donaldsonville, La	524
246	Dependable Yield at Sta 7-3750, Tchefuncta River near Folsom, La	524
247	Specific Conductance (Micromhos at 25°C) of Surface Waters in WRPA 10 in the Lower Mississippi Region, Sta 07381200 Bayou LaFourche at Valentine, La., January 1970 to September 1971	527

PHOTOGRAPHS

The photographs included in this appendix were furnished by:

Page No.

National Oceanic and Atmospheric Administration

69, 91

INTRODUCTION

PURPOSE AND SCOPE

The purpose of this appendix is to assemble climatologic, hydrologic, and geologic information in a summarized form for use in the planning and development of the water and related land resources of the Lower Mississippi Region. Detailed information on the present quantity, quality, availability, and use of surface water and ground water in each of the 10 Water Resources Planning Areas (WRPA) of the region is presented in this appendix. This information was obtained primarily from published sources or from computer analysis of measured parameters. →Included in the regional summary or in each WRPA section are a general hydrologic and geologic description of the area; a detailed description of the climate; and a discussion of water use, stream management practices, water rights, and streamflow characteristics in the area. The total quantity of water generated in each WRPA (except WRPA 1, the Mississippi River, and WRPA's 8, 9, and 10, which are influenced by tidal action) was computed and is discussed in the surface water sections of each WRPA section. >Streamflow data for selected streams were analyzed and summarized as follows: (1) observed mean discharge for the period of record available at the site; (2) annual peak discharge frequency curves; (3) low flow frequency curves; (4) duration curves of daily flows; (5) lowest mean flows for from 1 to 10 consecutive years during the period of record of streamflow at each station; and (6) seasonal and annual variations in discharge and precipitation. A general summary of ground water resources of the region is presented and discussed in this appendix. Descriptions of the geologic units that form major aquifers and the hydrologic characteristics of the aquifers are included. Potential yield data and data regarding the chemical quality of ground water in the region are presented and discussed in each WRPA section through the use of maps and tables.

DEFINITION OF "PRESENT CONDITIONS"

The discharge values presented for various streamflow gaging stations in this appendix are flows which are representative of the hydrologic conditions in the Lower Mississippi Region under 1973 levels of development. These hydrologic conditions are referred to throughout the appendix as "present conditions."

Flows representing "present conditions" at sites where streamflow has not been regulated are given for the entire period of record available at the site. At sites where the streamflow patterns have been changed due to channel improvement, reservoirs, or diversion projects,

only the flows for the period of record since completion of the projects are presented. At sites where improvement works have been recently completed, the frequency and duration curves from recorded preimprovement data were modified to reflect streamflow patterns which are expected with the projects in operation.

RELATIONSHIP TO OTHER APPENDIXES

One of the major goals of the Lower Mississippi Region Comprehensive Study is to analyze the potential resources available in the region in terms of surface water, ground water, and land. This appendix provides basic information concerning the quantity and quality of both surface water and ground water for use in defining present conditions with respect to the availability of water in other supporting appendixes. This water resources information will be used in conjunction with data on future water use presented in other supporting appendixes to determine deficiencies and excesses of water for each alternative plan of water resources development in the plan formulation phase. Data from Appendix C were also used in the formulation of the present water situation in the Summary Report of the Lower Mississippi Region Comprehensive Study. Other basic data documents are the Land Resources, Mineral Resources, and Economics Appendixes.

DESCRIPTION OF THE REGION

Location and Drainage

The Lower Mississippi Region, an area of abundant natural resources, lies chiefly in the Gulf Coastal Plain and is roughly bisected by the Mississippi River. The region is composed of about 102,400 square miles of land and water, which is equivalent to about 4 percent of the conterminous United States. It extends from the confluence of the Ohio and Mississippi Rivers to the Gulf of Mexico. About 4,800 square miles, or 4.7 percent of the region, are covered with water, and the remaining 97,900 square miles are land areas.

The region includes all of the drainage area of the Lower Mississippi River below Cairo, Ill., except for that portion of the White, Arkansas, and Red River Basins which lie above the effects of backwater from the Mississippi River. It also includes the Louisiana Coastal Area between the watershed boundaries of the Pearl and Sabine Rivers, and the small flood-protected area at Cairo, Ill. The region encompasses most of Louisiana, about half of Arkansas and Mississippi, parts of Missouri, Tennessee, and Kentucky, and a small area in Illinois. Figure 1 is a map of the Lower Mississippi Region showing the regional, WRPA, and

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

REGIONAL MAP

FIGURE 1

State boundaries; the major cities; the major streams and lakes; and other pertinent data.

Drainage from about 49,740 square miles, or roughly half of the area within the Lower Mississippi Region, flows into the Mississippi River from its major tributary streams. The remainder of the region, which lies within the coastal area, is drained by southeastern Louisiana streams that flow through Lake Pontchartrain to the Gulf of Mexico and by southwestern Louisiana streams that drain directly into the Gulf.

The Mississippi River has made major contributions to the physical and economic growth of the Lower Mississippi Region. It has given the region a tremendous potential for meeting water supply and water transportation needs for industrial and agricultural development. It is of great importance to the ever-growing commerce of the Nation as the main stem of a major network of over 12,000 miles of navigable inland waterways. It is one of the Nation's greatest industrial attractions and is the chief supplier of water for the many industries which have located along its banks. It serves as the major drainage outlet for runoff from over 41 percent of the 48 contiguous states of the United States. The entire Mississippi drainage basin covers more than 1,245,000 square miles and includes all or parts of 31 States and two Canadian provinces. Water from as far east as New York and as far west as Montana contributes to flows in the lower river [122]. 1/

Major tributary streams to the Lower Mississippi River are the St. Francis River in Arkansas and Missouri, the White and Arkansas Rivers in Arkansas, and the Yazoo River in Mississippi. Other major streams in the region that are not tributaries to the Mississippi River are the Ouachita-Black River in Arkansas and Louisiana and the Red River in Louisiana. Flow from the Black and Red Rivers, combined with flow diverted from the Mississippi River through the Old River Control Structure, forms the Atchafalaya River in southern Louisiana. The Atchafalaya, Calcasieu, and Mermentau Rivers are major coastal area streams which flow into the Gulf of Mexico. Other coastal area streams such as the Amite and Tchefuncta Rivers flow to the Gulf by way of Lake Pontchartrain. The Arkansas, White, and Red Rivers contribute a considerable amount of flow into the Lower Mississippi Region from other regions, whereas the flows from all the other tributary streams mentioned above are generated within the region.

The Lower Mississippi Region includes the Mississippi Alluvial Plain, uplands in the Gulf Coastal Plain, and areas outside the coastal plain in the Ouachita Mountains in Arkansas and the Ozark Plateaus in Missouri. About one-third of the region is in the low, relatively flat

^{1/} Numbers in brackets refer to reference numbers of publications listed in References.

alluvial valley of the Mississippi River. The coastal plain uplands are gently rolling to hilly, and the areas outside the coastal plain exhibit considerable variation in topography.

A distinct characteristic of the Mississippi River and other alluvial valley streams is the formation of natural levees along the banks and the pattern of parallel drainage which results from these levees. When the Mississippi River overflows, it deposits a part of the sediment it has been transporting. This sediment, most of which is deposited adjacent to the river, forms low natural levees along the stream with smaller deposits of sediment away from the stream. As a result, the banks of the river are usually 10 to 15 feet above the adjacent low-lands. The formation of these levees occurred for the most part before the present levee system was built. Because of the natural levees, drainage is usually away from and parallel to the Mississippi River except where tributary streams join the river. This pattern of drainage has been a great advantage in the construction of flood-control works, since it permits the building of long, unbroken levee lines without interfering with drainage.

General Geology

The Lower Mississippi Region has been characterized by subsidence accompanied by cyclic transgressions and regressions of the sea since the end of the Paleozoic Era about 225 million years ago. The subsidence resulted in the formation of the Mississippi embayment syncline, a structural trough now filled with sedimentary rocks (figure 56). Rocks of Precambrian age are exposed in the Lower Mississippi Region only in areas outside the embayment in Missouri. Rocks of Paleozoic age are exposed in Missouri and Arkansas.

During the subsequent Cretaceous Period, 136 million to 65 million years ago, cyclic marine invasions extended farther northward than previously as subsidence continued. During the Tertiary Period, 65 million to 2 or 3 million years ago, each marine invasion stopped successively farther to the south. The oldest units in the Gulf Coastal Plain (of Cretaceous age) crop out roughly parallel to the periphery of the Mississippi embayment. The younger units exhibit less arcuate outcrop belts and the exposures of the Miocene and Pliocene units nearly parallel the axis of the Gulf Coast Geosyncline (figures 55 and 56).

Pleistocene glaciation caused a lowering of sea level which resulted in changes in drainage and the entrenchment of the Mississippi River Valley into Tertiary and Cretaceous rocks. The enormous volumes of water from melting glaciers were discharged southward to the Gulf of Mexico, and the valley was entrenched more than 100 feet deeper than the present surface of the alluvial plain. As sea level rose, stream gradients decreased and the entrenched valley was filled with sediment.

Erosion of the Coastal Plain deposits, the partial replacement of the eroded strata by the deposits now underlying the Mississippi Alluvial Plain, and the continuing differential erosion of the upland strata have resulted in the diverse topography of the region.

Physiography

The Mississippi Alluvial Plain is the most extensive physiographic district in the region (figure 2). The plain is a flat to slightly undulating surface underlain by Pleistocene and Recent alluvial and terrace deposits. Included is the present floodplain of the Mississippi River, underlain by Holocene alluvium, and areas west of the river and above the floodplain that are underlain by Pleistocene alluvial deposits. The alluvial plain comprises the St. Francis, Tensas, and Yazoo Flood Basins [32] and the Deltaic Plain [33]. Crowley's Ridge, a narrow segmented ridge about 200 miles long, is an erosional remnant of the Gulf Coastal Plain uplands. The strata forming the ridge are similar to strata in the bluffs forming the eastern boundary of the alluvial plain. The ridge is as much as 250 feet higher than the alluvial plain. All other topographic features in the alluvial plain are developed on Quaternary deposits.

Physiographic districts in the Gulf Coastal Plain uplands are developed on Cretaceous and younger sediments. Physiographic districts in the uplands have resulted from differential erosion of unconsolidated sand, clay, and chalk strata and, in some areas, loess.

The Black Belt district is developed on the easily erodible Cretaceous chalk and clay in the northeastern part of the region. The Black Belt is a gently rolling terrain characterized by dark soil and intermittent streams. The Pontotoc Ridge, which borders the Black Belt on the west, owes its rough topography to the resistant sandstone and limestone of the Ripley and Clayton Formations. In the western part of the region, resistant Cretaceous strata, mostly sand and gravel, underlie the Saratoga Wold. The wold is a discontinuous ridge, or cuesta, that trends northeast-southwest and merges into the Ouachita Mountains at the Fall Line.

In northern Mississippi, the Flatwoods District is a low, moderately rolling terrain underlain by the Porters Creek Clay. The district narrows northward and gradually becomes indistinguishable from the North Central Plateau in southern Tennessee.

The North Central Plateau is the dominant upland physiographic district in northern Mississippi and western Tennessee. The plateau is the result of erosion of an area where blanket deposits of Quaternary sand and gravel overlie sand and clay strata of the Wilcox and Claiborne Groups. Much of the region in the past was also covered by Quaternary

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

PHYSIOGRAPHIC MAP

FIGURE 2

loess. The North Central Plateau, underlain by several belts of permeable strata, is an area of recharge for aquifers and the source area for most of the eastern tributaries of the Mississippi River in the region.

In central Mississippi, the outcrop of the Jackson Group forms the Jackson Prairie, a district characterized by gently rolling terrain developed on nearly impermeable clay. Southern Mississippi and northeastern Louisiana are in the Southern Pine Hills District, a predominantly sandy terrain underlain by geologic units of Oligocene, Miocene, Pliocene, and Quaternary age. The highest areas in the district are hills and ridges where blanket deposits generally referred to the Citronelle Formation have not been completely eroded.

Extending from Louisiana to Kentucky, the Loess Hills District borders the eastern side of the Mississippi River Alluvial Plain. The district is an area where loess deposits have not been completely removed by erosion and the terrain is characterized by steep slopes.

The uplands in the western part of the region are mostly in the East Texas Timber Belt, a district developed on the sand and clay strata of the Claiborne and Jackson Groups and, in some areas, on overlying Quaternary deposits. The district, an area of recharge for aquifers in the Claiborne Group, is bordered on the northwest by the Sulphur Wold, a ridge developed on the outcrop of the Wilcox Group.

In southern Louisiana, the Pine Flats, Pine Meadows, and Coastal Prairies and Marshes are low, gently sloping to nearly flat terrain underlain by Quaternary deposits. The Pine Flats and Pine Meadows are recharge areas for some of the most prolific artesian aquifers in the region, and the flow of streams is sustained by large quantities of ground water discharged in the areas.

The Coastal Prairie and Marsh Zone forms a gently sloping to flat belt about $50\ \mathrm{miles}$ wide bordering the Gulf of Mexico.

Three areas in the Lower Mississippi Region are outside the Gulf Coastal Plain. The Ozark Plateaus in Missouri form a maturely dissected rolling upland developed on gently uplifted rocks ranging in age from Precambrian to Pennsylvanian; however, in the region of study, most of the rocks are of Precambrian, Cambrian, and Ordovician age. The oldest rocks exposed in the region are the Precambrian felsitic volcanic and basic intrusive rocks that form the St. Francois Mountains. Taum Sauk Mountain (altitude 1,772 feet) in Iron County, Mo., is one of the highest points in the Lower Mississippi Region.

In southwestern Arkansas, the study includes a part of the Ouachita Mountains. The principal physiographic districts are the Athens Piedmont Plateau and the Novaculite Uplift. The entire area has been

considerably disturbed by uplift, folding, and faulting. The highest point in the Lower Mississippi Region, 2,211 feet above sea level, is in the Ouachita Mountains in western Montgomery County, Ark. The Arkansas Valley, a synclinal feature lying north of and parallel to the Ouachita Mountains, is underlain by Pennsylvanian sandstone and shale.

Water Resources

The region is "water rich," but the water resources are not unlimited nor is the distribution of water uniform. The largest and most prolific aquifer, the Mississippi River Valley alluvial aquifer, is perhaps the largest single source of fresh ground water in the Nation. This shallow source of water is underlain by a complex system of artesian aquifers in Paleozoic, Cretaceous, Tertiary, and Quaternary rocks, some of which contain fresh water at depths of more than 3,000 feet. A few areas, chiefly lowlands bordering the Gulf of Mexico, are not underlain by fresh-water aquifers. Surface-water resources include the Nation's largest source of surface water, the Mississippi River, several large streams tributary to the Mississippi (St. Francis and Yazoo Rivers, for example), and several streams draining directly into the Gulf of Mexico, of which the Atchafalaya River is the largest.

Land Use

The present utilization of land reflects the agricultural economy of the region. About 86 percent of the land is used for crops or pasture or is forested. Urban and built-up areas occupy about 4 percent of the region and large water areas (over 40 acres) about 4 percent. Federal land and small water areas account for the remainder of the region.

REGIONAL SUMMARY

REGIONAL SUMMARY

CLIMATE

General Introduction

Climate is a synthesis of the weather. Weather is the total condition of the atmosphere at any instant in time; climate is the collective of all weather conditions for a given long period of time.

Weather and climate form a regional matrix within which other physical processes operate. They may be viewed as a natural resource, and are of considerable consequence to everyone, directly affecting health, living habits, and prosperity of individuals, communities, and regions. Usually a valuable asset underlying agricultural productivity and adaptation, industrial development and transportation systems, indeed all economic pursuits, weather in its extremes can produce seriously detrimental effects as well.

The broad and diverse balance of natural resources found in the Lower Mississippi Region includes abundant water resources provided by weather patterns acting both within the region and beyond. The substantial agricultural and forestry resources of the region have been developed in response to man's needs and the general regional climatic controls. Activities in the unique coastal zone, richly diverse in its biota and with significant extractive industries, commercial fisheries and extensive primary and secondary processing activities, are influenced strongly by its climate. The region's bounty of aesthetic, recreational, and wildlife resources is also closely related to the climatic pattern.

Man's primary activities during the many generations of occupancy of the region have adjusted through time to the climatic normals and extremes. Man has already learned to temper those unfavorable aspects of the natural climate--albeit on a restricted scale--through efficient heating and cooling devices for home, office, and factory; through irrigation and drainage of farmlands and developed areas; and through other ameliorative techniques.

The scientific study of weather and climate is of recent origins. Tremendous advances have been made during the past half-century in observing, describing, and understanding the extremely complex interrelations of the thermodynamic and hydrodynamic systems which produce weather. Although ever-increasing interest in these important fields has developed, significant applied problems are still unresolved. Sophisticated research continues as it must in the face of increasing demands for agricultural products, industrial development, and

recreational facilities. Further understanding will assist in future rational comprehensive planning, and some prospects are now gradually emerging that may, in the future, make possible significant beneficial weather modification programs (69, 173).

The following sections are designed to provide some limited insights into the varied aspects of the climatic patterns in the Lower Mississippi Region. This material has been prepared on local and regional bases, without specific regard to river basin or WRPA boundaries. Previously published material has been used for most of the information base, although some sections are based on previously unsummarized material. Numerous routine and special weather data publications are listed and format examples shown in the "Selective Guide to Climatic Data Sources" (144).

Climatic Character of the Region

Climatic Controls

The climate of the entire Lower Mississippi Region is classified basically as humid subtropical with abundant precipitation (116). Many interrelated factors in the general circulation of the atmosphere, acting in various spatial and temporal combinations, are of significance in producing the observed values and changes in the climatic elements found at specific places. These climatic controls include, in addition to the basic geographic and topographic setting, the locations and intensities of semipermanent features of circulation; the types and frequencies of air masses; the effects of linear weather systems (fronts, squall lines, easterly waves); and the locations, paths, and intensities of tropical and middle latitude cyclones. Also, the several climatic elements themselves can function as controls. The major climatic controls acting in the Lower Mississippi Region are discussed below.

Geography and topography. The Lower Mississippi Region is a south-central sector of eastern North America, with latitudinal extent roughly 29°N to 37°N. Bounded on the south by the Gulf of Mexico, the region is one of very minor elevational relief throughout much of its extent. This location, near the northern limits of the astronomical tropics, controls the receipt of solar radiation, which supplies energy for both the hydrologic cycle and for photosynthesis in plants.

The coastal areas of Louisiana, encompassing the delta of the Mississippi River and extensive zones of marshes and swamps, grade northward into the broad main alluvial valley bounded by upland areas of modest relief. The highest elevation in Louisiana is only 535 feet, and elevations near the Mississippi in the eastern portion of Arkansas and western Tennessee are in the 200- to 300-foot range. Although this

relatively minor relief is negligible in its direct influence on the climate, the location of the Lower Mississippi Region, positioned between major air mass source regions, and the openness of the country with no significant barriers to air mass movements combine to produce both dynamic variety and remarkable uniformity of the climate, contrasting features found in combination in few, if any, other regions of the world.

Semipermanent anticyclone. The climate of the Lower Mississippi Region is controlled to a large degree by the seasonal changes in the location and strength of the semipermanent high-pressure anticyclone of the southern North Atlantic Ocean and by connected variations in the patterns of development, movement, and intensities of cyclonic storms in subtropical and middle latitudes.

In winter, when the anticyclone is located, on average, in the far southern and eastern sections of the ocean, polar and arctic air masses which develop over northern North America periodically penetrate into the Lower Mississippi Region and beyond. The lack of terrain barriers allows surges of cold air behind middle latitude cyclones to move rapidly southward, with little modification of their bitter properties. During this portion of the year, the region experiences extreme minimum temperatures lower than those in any other comparable area of the world (115). Even in winter, however, southerly flows of warm, moist air are present a large part of the time.

With the retreat northward in spring of the preferred storm track and the expansion into the region of the Atlantic anticyclone, persistent southerly winds flowing around the western margin of the high become the dominant weather pattern by May of most years.

Warm, moist, conditionally unstable maritime tropical air moves in a convergent pattern over southern portions of the region throughout the summer season.

The air is made increasingly unstable by its passage over the warmer land surface, and local showers and thunderstorms are a common afternoon occurrence. North of the anticyclone axis, however, the basic wind flow pattern is slightly divergent. The weak axis, oriented usually almost east and west, fluctuates in location from day to day from central Louisiana and central Mississippi northward. The divergence tends to reduce both the frequency and intensity of the thundershowers since it must be overcome before convective activity proceeds.

During late summer and autumn, periods of transitory higher pressure over the continent modify the wind flow patterns over the region to easterly or northeasterly, and break the constancy of the Atlantic subtropical anticyclone control. Precipitation over the region

between late September and early November reaches the annual minimum in both frequency and amount as the air flow in the weak but extensive transitional continental high-pressure region restricts the availability of moisture.

Middle latitude storms and storm tracks. The influences of extratropical cyclones on the region are manifold. Sharp short-term variations in temperature during winter; the location, amounts, and intensity of cool season precipitation; patterns of cloudiness; the occurrence of thunderstorms and other severe weather; occurrence of extreme temperatures--both hot and cold--even the persistence of humid tropical conditions throughout much of the warm season can all be related to the presence of cyclonic activity and its location and intensity, or to the absence of this factor.

The region is situated near, but generally southward of, the most preferred tracks of cool season middle latitude storms which develop over the Great Plains and move northeastward across the Midwestern States into the Great Lakes-St. Lawrence River regions.

During some winter and spring seasons, cyclone development is active in Texas and the northern Gulf of Mexico. In these periods, the regional weather patterns are highly variable as the interplay of cold and warm air associated with these storms occurs over the region. At other seasons, cyclonic activity is infrequent over the region and high-pressure anticyclones are the dominant surface circulation feature. They provide extended periods of only slowly varying weather conditions. Klein (55) portrays and discusses the principal tracks and frequencies of both cyclones and anticyclones during each month.

Air streams (air masses). An air mass is an extensive section of the atmosphere in which the air is horizontally homogeneous, or possesses basically similar physical characteristics. In order for this to occur, air must remain for some time in a source region, which itself must have homogeneous surface conditions. Large land and water areas with evenly distributed insolation are good source regions. A second condition is necessary for the development of distinctive air masses: large-scale subsidence and divergence (and an absence of convergence and mixing). These conditions are best developed in the semi-permanent high-pressure areas of the atmosphere. Where development of high pressure is seasonal (continental high latitudes in winter), the source region will also be seasonal.

The primary air masses affecting the Lower Mississippi Region are (figure 3) maritime tropical (developed in the Atlantic high-pressure anticyclone); continental polar (developed in winter over the prairie provinces of Canada); and maritime polar (developed over the eastern Pacific).

Figure 3. North American Air Masses

<u>Linear systems</u>. The Lower Mississippi Region is affected by three types of linear weather systems: fronts, squall lines, and easterly waves. The characteristics of these systems are described below:

Fronts are the dynamic boundaries between air masses of contrasting properties. Cold fronts (cold air replacing warm air at the surface) are zones of 'weather.' Enhanced convection due to the physically forced ascent of warm moist air produces abundant cumuliform clouds and in many instances short periods of heavy thunderstorm rainfall. Warm fronts (warmer air replacing cold air at the surface), in contrast, are more extensive but usually contain stratoform clouds and more extended periods of steady, lighter, nonconvective, rainfall.

Squall lines (instability lines) often develop 50 to 150 miles in advance of surface cold fronts moving across the Lower Mississippi Region. These extensive but narrow belts of heavy convection produce strong surface winds and heavy but usually brief rainfall. Unlike true fronts, they are transitory, ordinarily developing to maximum intensity in a few hours and then dissipating.

Easterly waves are perturbations in the deep summer current of tropical air flowing around the subtropical anticyclone (88). Waves of this type, moving from east to west, affect the southern sections of the Lower Mississippi Region once or twice per week during most summers. They are not present between late autumn and late spring. The easterly wave, although described by its wind field, consists of a weak trough of low pressure. Through changes in the direction of air flow, the easterly wave both enhances and depresses local convective processes. Consequently, during their passage, exceptionally clear, fine weather is followed by cloudiness and heavy precipitation, accompanied by moderate to strong winds and some squalls. This then is followed again by clearing and settled weather. The easterly wave may serve as an initial mechanism in the development of tropical cyclones.

Climatic Elements

Precipitation

Introduction. Several physical mechanisms combine in the atmosphere to produce condensation and precipitation of moisture (96). All these processes serve to cause the vertical lifting of moist air. As air rises, it expands in response to reduced atmospheric pressure and concurrently cools. The moisture capacity of air is a function of temperature, so condensation of minute water droplets or sublimation of ice crystals occurs when the air reaches saturation, and a cloud results. Precipitation does not necessarily follow immediately. For moisture to fall from clouds, the water forms must grow to sizes which cannot be supported by the buoyancy of the air. In ways not yet fully

understood, coalescence of cloud droplets through collision, sublimation, or electrical attraction produces droplets which are too massive to remain aloft. Thus, precipitation is defined (52) as any or all of the forms of water particles, whether liquid or solid, that fall from the atmosphere and reach the ground.

The main features of the patterns of precipitation in the Lower Mississippi Region include the following:

(1) Annual normal precipitation exceeds surface water losses through evaporation and evapotranspiration.

(2) Seasonal variations in average total precipitation display

marked contrasts from north to south over the region.

(3) Precipitation is highly variable, both temporally and spatially, in the same time period.

Annual, seasonal, monthly. Precipitation is usually abundant and well distributed throughout the Lower Mississippi Region. Generalized patterns of normal annual precipitation are shown in figure 4, adapted from Climatic Atlas of the United States (141). The areas of highest precipitation are along the southeastern coastal sections of Louisiana and over much of central Louisiana (both more than 60 inches), and in the higher elevations of the Ouachita Mountains in west central Arkansas (more than 56 inches). Minimum annual precipitation (less than 50 inches) is found in the extreme northern portions of the region.

On a seasonal basis, northern sections of the region have precipitation maxima during winter (or spring) and the southern portions during summer. Trewartha (115) considers the winter maximum an outstanding anomaly in the climatic pattern. In comparable latitudinal and geographic settings on the other continents, no cool season precipitation maximum is experienced, and in those areas, the summer maximum is usually quite strong.

During winter and spring, intrusions of polar air into the region are usually accompanied by widespread and persistent cloudiness and general rainfall, plus some thunderstorm activity within the frontal zone. On the other hand, the land surface is cooler than moist tropical air moving into the region, so this air is cooled in its layers near the surface, and its stability is increased. Only when the tropical air becomes involved in convergence in cyclonic storms or is forced aloft along frontal systems does significant precipitation occur. These storms and fronts most frequently move across the northern portions of the region, so during the cooler months rainfall is more frequent and intense there.

NORMAL ANNUAL TOTAL PRECIPITATION, INCHES 1931-1960

Autumn brings the least precipitation to the entire region as the atmospheric flow patterns move through a transitional period during which the availability of atmospheric moisture and the occurrence of precipitation-inducing mechanisms are both at annual minima.

Figures 5 through 8 (141) show the average patterns of normal (1931-1960) monthly precipitation for January, April, July, and October, respectively. These midseason months show the characteristics of the seasonal variations referred to above.

Figure 9 (149) shows monthly hyetographs for selected stations. The seasonal variations discussed above--winter rainfall maxima in northern portions, summer maxima in southern areas, dry autumns throughout the region--are further delineated here.

Table 1 shows the monthly and annual normal precipitation for selected sites in each WRPA, further illustrating the variations in seasonal precipitation.

The data used in figures 5 through 8 and table 1 are for the 30-year climatological standard normal period 1931 through 1960. All areas of the region usually receive measurable precipitation amounts during each month. Quite rarely, however, during the standard period covered, no rain has occurred during a few summer and autumn periods exceeding one month in duration at most places in the region. The most recent month with widespread occurrence of no measurable precipitation was October 1963 (146).

Days with various precipitation thresholds. Figure 10 (141) shows the average number of days per year with measurable precipitation in the Lower Mississippi Region. Remarkable uniformity is the basic feature of the annual pattern. The range of rainy days is only from nearly 100 along the western boundary of the region to less than 120 over southeastern Louisiana and the extreme northern portion of the region.

Figure 10 also shows the average number of "rainy days" for each midseason month (January, April, July, October). The principal features of these patterns are: (a) uniformity in January; (b) maximum rainy days in the northern sections of the region and a minimum number in southern Louisiana in April; (c) a strong maximum in southeastern Louisiana in July; and (d) a minimum centered over the central portions of the region in October.

Figures 11 through 14, from Miller and Frederick (63), again for the midseason months, depict the average number of days with precipitation equal to or greater than 0.50 inch. For January, the occurrences of rains of this intensity are a maximum over the central portions of the region. In April, heavy rains are less frequent but maxima are still in the central portions. In July, a strong gradient exists in the

NORMAL JANUARY TOTAL PRECIPITATION, INCHES 1931-1960

NORMAL APRIL TOTAL PRECIPITATION, INCHES

1931-1960

NORMAL JULY
TOTAL PRECIPITATION, INCHES

1931-1960

NORMAL OCTOBER TOTAL PRECIPITATION, INCHES

1931-1960

HYETOGRAPHS OF MONTHLY
NORMAL PRECIPITATION IN INCHES
FOR SELECTED STATIONS

1931-1960

Table 1 - Monthly and Annual Normal Precipitation in Inches at Selected Stations, 1931-1960

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annua1
WRPA 2													
Arcadia, Mo.	2.94	2.60	3.81	4.43	5.04	4.82	3.56	3.20	3.32	3.44	3.82	2.62	43.60
Dexter, Mo.	4.47	3.84	4.83	4.34	4.59	4.35	3.22	3.44	3.74	3.25	3.87	3.62	47.56
Fredericktown, Mo.	3.23	2.78	3.64	4.33	4.86	4.53	3.71	3.07	3.60	3.36	3.39	2.58	43.08
Greenwille 4 NNW, Mo.	3.60	2.93	4.11	4.26	5.00	4.41	3.46	3.53	3.37	3.36	3.78	3.05	44.86
Marble Hill, Mo.	3.78	2.96	4.10	4.51	5.06	4.54	3.17	3.91	3.38	3.36	3.48	3.11	45.36
Morehouse, Mo.	4.48	3.55	4.73	4.28	4.42	4.19	2.86	3.13	3.43	3.15	4.06	3,62	45.90
New Madrid, Mo.	4.56	4.24	5.05	4.14	4.90	5.99	3.79	3.09	3.42	3.07	4.28	3,93	48.46
Parma, Mo.	4.65	3.98	4.85	4.07	4.70	4.06	3.45	3.30	3.36	2.78	4.16	3,67	47.03
Sikeston SE Mo. Research	4.67	3.86	4.99	4.40	4.44	4.16	3.12	2.92	3.79	3.00	4.18	3,71	47.24
Williamsville, Mo.	3.93	3.32	4.09	4.54	4.72	4.37	3.35	3.93	3.30	3.65	3.85	3,30	46.35
Blytheville, Ark.	5.45	4.33	5.00	4.01	4.17	3.29	3,66	3,38	3.21	2.80	3.93	4.24	47.47
Corning, Ark.	4.37	4.03	4.52	4.27	5.03	3.91	4,06	2,95	2.93	3.43	3.98	3.60	47.05
Georgetown, Ark.	5.10	4.40	5.19	4.71	4.79	3.93	3,65	2,88	2.95	3.16	4.56	4.20	49.52
Helena, Ark.	6.05	4.87	5.35	5.10	4.22	3.35	3,94	2,79	2.95	2.80	4.53	4.73	50.68
Jonesboro, Ark.	4.95	4.39	5.09	4.12	4.22	3.70	3,55	2,93	3.10	3.43	4.13	4.27	47.88
Marianna 2 S, Ark.	5.65	4.66	4.90	4.63	4.24	3.11	5.67	2.84	2.89	3.18	4.05	4.61	48.43
Marked Tree, Ark.	5.63	4.48	5.28	4.96	4.51	3.59	3.87	3.06	3.03	3.02	4.26	4.25	49.94
Newport, Ark.	4.92	4.27	4.90	4.69	5.04	4.09	5.71	3.36	2.87	3.44	4.33	4.11	49.73
St. Francis, Ark.	4.85	4.22	4.99	4.26	4.37	3.90	3.76	5.17	3.37	3.05	4.24	3.91	48.09
Searcy, Ark.	5.21	4.57	5.27	4.80	5.33	3.99	3.69	3.55	2.87	3.53	4.43	4.60	51.84
Stutgart, Ark.	5.86	4.93	5.56	5.02	4.84	3.91	4.16	3.05	3.23	2.99	4.43	4.73	52.71
Little Rock WSO, Ark.	5.22	4.33	4.81	4.93	5.28	3.61	3.34	2.82	3.23	2.88	4.12	4.09	48.66
WRPA 3													
Lovelaceville, Ky.	4.92	4.13	5.14	4.36	4.26	3.74	3.32	3.25	3.08	3.13	4.00	4.01	47.34
Bolivar 2, Tenn.	6.57	5.10	5.36	4.65	3.63	3.98	4.29	3.50	3.92	2.75	4.53	4.70	52.98
Brownsville, Tenn.	6.52	4.89	5.43	4.67	4.19	3.91	4.18	2.88	3.55	2.63	4.52	4.62	51.99
Covington, Tenn.	6.21	4.72	5.56	4.66	4.56	3.83	3.76	2.96	3.25	2.99	4.52	4.58	51.60
Dresden, Tenn.	5.76	4.46	5.29	4.36	4.40	4.01	3.87	2.84	3.12	2.83	4.22	4.47	49.63
Jackson ES, Tenn. Memphis WSO, Tenn. Milan. Tenn.	6.42 6.07 6.38 6.01 5.40	4.82 4.69 4.65 5.36 4.41	5.26 5.07 5.81 5.45 5.24	4.60 4.63 4.65 4.56 4.13	4.03 4.25 4.29 4.11 4.13	4.18 3.68 4.22 4.30 4.03	4.56 3.54 4.45 3.85 3.95	3.36 2.97 3.51 3.44 2.95	3.40 2.82 3.48 3.39 3.15	2.56 2.72 2.96 2.71 2.93	4.28 4.38 4.37 4.38 4.13	4,39 4,95 4,60 5,08 4,33	51.86 49.73 53.37 52.64 48.78
Samberg WLR, Tenn.	5.14	4.34	5.06	4.17	4.59	3.93	3.90	2.72	3.17	3.08	4.17	4.26	48.53
Selmer, Tenn.	6.30	5.42	5.34	4.59	3.81	4.31	3.88	3.22	3.37	2.88	4.29	4.80	52.21
Union City, Tenn.	5.13	4.29	5.18	4.46	4.41	3.95	4.00	2.86	3.39	3.05	4.30	4.34	49.36
Corinth, Miss.	6.23	5.38	5.35	4.72	4.02	3.77	3.95	3.40	3.16	2.77	4.56	4.84	52.15
WRPA 4													
Batesville, Miss.	6.05	4.92	5.85	5.21	3.97	3.57	4.05	3.32	3.14	2.65	4.57	5.30	52.60
Relzoni, Miss.	5.55	5.12	5.53	5.09	3.66	3.77	3.78	2.75	2.61	2.53	4.69	5.31	50.39
Clarksdale, Miss.	5.89	5.17	5.47	4.82	4.24	3.84	3.83	2.25	2.78	2.44	4.58	5.05	50.36
Cleveland, Miss.	5.88	4.93	6.34	5.05	4.28	3.97	4.65	2.53	3.32	2.82	4.64	5.22	53.63
Greenville, Miss.	6.43	5.22	5.70	5.41	4.03	3.24	4.42	2.62	3.21	2.38	4.64	5.25	52.55
Greenwood FAA, Miss.	5.62	5.04	5.70	4.81	4.06	3.75	4.45	3.06	3.12	2.39	4.70	5.41	52.11
Grenada, Miss.	5.63	5.14	6.47	4.43	4.00	3.61	4.21	3.23	3.13	2.40	4.89	5.16	52.30
Holly Springs 2 NE, Miss.	6.43	5.48	5.71	4.79	4.26	3.72	4.60	3.19	3.79	2.91	4.68	5.03	54.59
Moorhead, Miss.	5.48	4.77	5.76	5.16	3.59	3.81	4.58	2.81	3.10	2.44	4.53	4.85	50.88
Pontotoc, Miss.	5.66	5.17	6.23	5.06	3.70	4.05	4.87	3.28	3.43	2.45	4.57	5.16	53.63
Scott, Miss.	5.98	4.94	5.92	4.97	4.29	3.41	3.78	2.55	2.83	2.51	4.60	4.97	50.75
Stoneville ES, Miss.	5.59	4.98	5.56	4.96	4.21	3.87	4.03	2.55	2.99	2.61	4.23	5.28	50.86
Swan Lake, Miss.	5.77	4.91	5.89	4.83	3.87	4.03	4.54	2.75	3.03	2.46	4.73	5.03	51.84
University, Miss.	5.97	5.29	5.76	5.05	4.02	3.88	4.04	2.91	3.53	2.83	4.84	5.09	53.21
Vicksburg WSO, Miss.	5.13	5.31	5.73	4.92	4.13	3.46	3.90	3.01	2.50	2.04	4.43	4.94	49.50
Water Valley, Miss.	5.64	5.14	6.23	5.20	3.92	3.86	4.57	3.09	3.57	2.69	4.60	5.25	53.76
Yazoo City 5 NNE, Miss.	5.06	5.19	5.49	4.83	3.97	3.99	4.29	2.98	2.36	2.51	4.47	5.10	50.24

Table 1 - Monthly and Annual Normal Precipitation in Inches at Selected Stations, 1931-1960 $(\mathcal{C}\text{cm.})$

			at	Selecte	o ocara	,							
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annua l
ann. 7													
Arkadelphia, Ark. Camden 1, Ark. Crossett 7 S, Ark. Eldorado EAA, Ark. Fulton, Ark.	5.27 4.93 6.15 5.43 5.18	4.36 4.58 4.82 4.68 4.28	5.13 5.19 5.50 5.30 4.89	5.68 5.10 5.31 5.47 5.01	5.24 4.46 4.38 4.55 5.14	3.96 3.36 3.43 3.13 4.01	3.85 4.36 5.08 4.18 3.61	2.81 2.73 3.37 3.05 3.06	3.36 3.12 2.89 2.49 2.90	3.44 3.09 2.71 2.95 3.22	4.52 5.13 4.29 4.76 4.31	4.58 5.14 5.65 5.55 4.48	52.20 51.19 53.58 51.54 50.09
Hope 3 NE, Ark. Hot Springs 1 NNE, Ark. Mount Idn. Ark. Fine Bluff, Ark. Fine Ridge, Ark.	5.21 5.25 4.67 5.58 4.53	4.46 4.74 4.33 5.10 4.40	5.01 5.24 5.18 5.33 4.93	5.60 5.94 5.44 5.36 5.46	5.16 6.10 6.13 5.28 6.22	3.76 4.31 3.75 3.38 4.13	4.09 4.21 4.44 3.84 4.36	3.26 3.24 3.46 2.42 3.51	2.93 3.83 3.82 3.10 3.74	3.17 3.46 3.62 3.28 5.54	4.57 4.57 4.45 4.63 4.09	4.46 4.59 4.61 4.83 4.12	51.68 55.48 53.90 52.13 53.03
Portland, Ark. Prescott, Ark. Calhoun ES, La. Urania, La.	5.75 5.34 5.72 6.12	4.95 4.64 4.75 5.55	5.50 4.92 4.72 6.18	4.99 5.36 4.94 5.99	3.92 5.09 5.12 5.92	3.39 3.89 3.54 3.79	4.02 4.36 4.08 5.52	2.69 2.79 2.69 3.50	2.89 3.22 2.71 2.83	2.83 3.42 2.88 2.73	4.41 4.41 4.38 4.59	4.93 4.39 5.66 5.94	50.27 51.83 51.19 58.66
WRPA 6									7 33	2 02	4,45	5.17	53.60
Arkansas City, Ark. Dumas 1 ESI, Ark. Saint Joseph ES, La. Tallulah, La. Winnsboro, La.	6.18 5.47 5.37 5.27 5.79	4.99 4.75 5.41 5.01 5.00	6.21 6.66 5.98 5.72 5.68	5.15 5.00 5.16 4.89 4.34	4.48 4.55 5.02 4.52 4.66	3.43 3.26 3.79 3.55 4.01	4.73 4.79 4.70 4.46 4.68	2.77 3.08 5.30 3.20 3.42	3,22 3,08 2,40 2,49 2,82	2.82 2.68 2.20 2.59 2.06	4,44 4,38 4,58 4,66	5.26 5.37 5.14 5.47	52.02 53.08 51.42 52.59
WRPA 7													
Canton, Miss. Eupora, Miss. Jackson WSO, Miss. Kosciusko, Miss. Natchez, Miss.	5.21 5.72 4.94 5.54 5.52	4.95 5.10 4.88 5.52 4.94	5.75 5.88 5.57 5.82 6.24	4.73 4.44 4.51 4.96 5.08	4.26 3.67 4.16 4.08 5.98	3.52 4.06 3.85 3.72 4.03	4.78 4.96 4.64 5.36 4.18	3.40 3.35 3.34 3.21 3.86	2.29 2.77 2.48 2.98 2.83	2.03 2.53 1.94 2.43 2.21	4.02 3.96 3.79 4.33 4.46	5.37 4.98 5.32 5.12 5.64	50.31 51.42 49.33 53.07 54.97
Port Gibson, Miss. Utica, Miss.	5.60 5.39	5.47 5.05	6.09 5.90	5.67 5.50	4.95 4.71	4.44	4.88 4.85	3.87 3.24	2.86 2.81	2.41 2.16	4.47 3.98	5.41 5.21	56.12 52.80
WRPA 8													
Baton Rouge, La. Cinclare, La. Donaldsonville, La.	4.78 5.52 4.76	4.42 4.85 5.09	4.91 5.04 5.05	4.77 5.17 5.14	4.80 5.31 5.66	4.09 4.26 4.62	6.27 6.99 6.22	5.26 5.15 5.74	3.52 4.41 5.40	2.45 2.61 2.73	4.09 4.22 4.33	5.10 5.28 5.13	54.46 58.81 59.87
WRPA 9													
Bunkie, La. Crowley ES, La. Elizabeth 1 NW, La. Jeanerette EF, La.	6.09 5.42 5.60 4.51 5.69	4.73 4.49 4.94 4.34 4.87	5.52 4.15 5.24 4.58 4.49	5.78 4.48 5.32 4.15 4.87	6.67 5.12 6.15 4.82 5.87	4.81 5.08 4.39 5.57 5.24	5.64 6.25 5.72 8.13 6.51	4.83 6.11 4.48 6.24 5.77	3.67 4.00 4.02 4.53 4.71	3.35 2.80 3.47 2.85 3.07	4.97 4.22 4.92 3.90 4.16	6.21 5.71 5.99 5.10 6.65	62.27 57.83 60.24 58.72 60.90
Jennings, La. Lafayette, La. Lake Arthur 10 SW, La. Lake Charles WSO, La. Melville, La. Simmesport, La.	5.08 5.39 4.44 5.96 6.01	4.51 4.56 4.51 5.04 5.02	4.47 4.11 4.24 5.31 5.75	4.69 3.97 4.37 4.85 5.53	5.04 5.02 4.61 6.03 7.01	5.08 4.36 4.72 4.57 4.76	6.93 6.86 7.29 5.28 5.42	5.88 6.57 4.80 4.54 4.42	4.17 4.38 4.02 3.64 3.20	3.04 3.11 3.06 2.55 2.99	4.07 4.43 4.22 4.47 4.97	5.51 4.97 5.76 5.90 6.40	58.47 57.73 56.04 58.14 61.48
Ville Platte 2 SW, La.	5.31	4.95	4.88	4.67	5.21	4.87	5.88	4,63	3.79	3.30	4.37	6.29	58.15
WRPA 10													
Burrwood WSO, La. Covington 4 NNW, La. Houma 1 SW, La. Morgan City, La. New Orleans WS City, La.	4.08 4.54 4.11 4.72 4.42	4.31 4.84 4.09 5.12 4.69	4.22 6.18 5.27 4.91 6.22	4.01 5.26 4.48 4.54 5.41	4.08 5.19 4.81 4.76 5.11	4.25 5.31 6.39 5.41 5.49	6.69 6.89 8.43 8.32 7.92	7.52 5.82 7.62 7.57 6.34	7.67 5.41 6.63 6.76 5.99	3.40 3.04 3.76 3.42 3.22	4.15 3.85 3.99 4.22 3.74	3.97 6.64 4.81 5.50 4.70	58.35 61.97 64.39 65.25 63.25
New Orleans WS Moisant, La. New Orleans WS Audubon, La. Paradis, La. Pearl River, La. Reserve, La.	3.84 4.29 4.84 4.64 4.49	3.99 4.35 5.23 4.84 5.16	5.34 5.91 6.21 6.43 5.64		4.38 4.86 5.36 4.96 4.90	4.43 5.59 6.01 5.68 5.31	6.72 8.02 7.44 7.71 7.00	5.34 6.64 6.50 6.42 5.74	5.03 6.41 5.96 5.59 5.14	2,84 3,15 3,35 2,88 2,96	3.34 3.51 4.07 4.33 3.77	4.10 4.59 5.54 4.90 5.54	53.90 62.96 65.58 63.83 60.57

NUMBER OF
DAYS WITH PRECIPITATION
≥0.01 INCH

NORMAL NUMBER OF 24-HOUR PERIODS WITH 0.50 INCH OR MORE OF PRECIPITATION

JANUARY, 1931-1960

NORMAL NUMBER OF 24-HOUR PERIODS WITH 0.50 INCH OR MORE OF PRECIPITATION

APRIL, 1931-1960

NORMAL NUMBER OF 24-HOUR PERIODS WITH 0.50 INCH OR MORE OF PRECIPITATION

JULY, 1931-1960

NORMAL NUMBER OF 24-HOUR PERIODS WITH 0.50 INCH OR MORE OF PRECIPITATION

OCTOBER, 1931-1960

number of occurrences of 0.50-inch rains from a maximum in the coastal regions of southeastern Louisiana both westward along the coast and inland over the Lower Mississippi Region. In October, the occurrences of heavy rains are rare throughout the region, but are most frequent along the northwestern borders.

Thunderstorms. A significant portion of the precipitation received over the region is the result of convective thundershower or thunderstorm activity. Figure 15 (143) shows that these convective storms are observed and thunder heard on more than 50 to 60 days per year at points in northern sections of the region and on more than 60 to 70 days from southeastern Arkansas and the lower delta area of Mississippi southward to the Gulf of Mexico. Thunderstorms are less frequent during the winter months. The largest average numbers occur during June, July, and August.

Although thunderstorms are common throughout the region, the occurrence of hail of sufficient size to damage property and crops over large areas is relatively rare. Hail does occur in all sections of the region, producing considerable crop damage, as well as roof, window, and automobile damage. Large hail tends to be associated with squall line activity. Summer air mass thunderstorms only rarely contain hail larger than "pea-size" at the surface, if indeed any at all.

Short period maximum precipitation. The Lower Mississippi Region, because of the convective, frontal, and tropical cyclone influences which operate from time to time, has relatively high precipitation amounts during short time periods. Maximum observed 5-minute through 24-hour precipitation totals for several of the first-order Weather Service stations in and near the region are shown in table 2 (53, 145, 151). Intense rains, 2/3 inch within 5 minutes, 2-1/2 to more than 4-1/2 inches within 1 hour, and 7-1/2 to 16 inches within 24 hours, have been observed throughout the region. Several parts of Weather Bureau Technical Paper No. 15 (151) give similar data for numerous points in the region.

Diurnal variation of precipitation. The variability of precipitation occurrence extends not only through seasonal and monthly patterns but to daily patterns as well: certain hours of the day normally have more frequent rainfall than others at the same place. Regional variations also exist. These patterns result from the combined activity of the various precipitation mechanisms discussed earlier.

Figure 16 illustrates, for New Orleans and Memphis, the diurnal variations in the occurrence of precipitation during each month of the year. Abscissas of the graphs are hours of the day, and ordinates are the percentages of total hours with measurable precipitation during the years 1951 through 1960 (148). Outstanding differences between these

MEAN ANNUAL NUMBER OF DAYS WITH THUNDERSTORMS

PERIOD OF RECORD THROUGH 1964

Table 2 - Observed 5-Minute - 24-Hour Maximum Precipitation in Inches (Period of Record Through 1970)

		M	inutes					lours		
	5	10	15	30	60	2	3	6	12	24_
Little Rock	0.63 7/2 1939	1.01 5/10 1930	1.35 5/10 1930	2.07 6/25 1946	3.00 5/26 1955	4.60 5/26 1955	5/26	7.68 5/26 1955	8.19 4/9 1913	9.58 4/8 1913
Cairo	0.65 5/29 1945	1.13 6/12 1958	1.45 8/11 1952	2.08 8/11 1952	3.15 6/28 1905	4.65 8/11 1952	8/11	7.29 8/11 1952	7.39 8/11 1952	7.56 8/11 1952
Baton Rouge	0.67 4/13 1966	1.20 7/2 1966	1.57 8/1 1959	2.07 7/11 1967	2.76 3/3 1970	3.80 4/27 1962	4/14	8.28 4/14 1967	11.31 4/14 1967	12.08 4/14 1967
Lake Charles	0.70 5/13 1966	1.34 4/29 1960	1.72 4/29 1960	2.40 7/2 1968	3.95 6/19 1947	6.52 6/19 1947	6/19	15.38 6/19 1947	15.79 6/19 1947	16.01 6/18 1947
New Orleans	1.00 2/5 1955	1.48 4/25 1953	1.90 4/25 1953	3.18 4/25 1953	4.71 4/25 1953	5.87 4/25 1953	4/15	8.62 9/6 1929	12.76 4/15 1927	14.01 4/15 1927
Shreveport	0.76 6/25 1932	1.29 6/25 1932	1.74 6/25 1932	2.28 8/28 1940	3.15 5/13 1908	5.19 7/23 1905	7/23	7.54 7/23 1905	8.52 7/24 1933	12.44 7/24 1933
Jackson	0.77 3/3 1964	1.54 3/3 1964	2.00 3/3 1964	2.26 8/10 1966	2.56 8/10 1966	3.43 5/1 1954	12/27	4.87 12/27 1942	5.60 12/27 1942	7.50 12/26 1942
Vicksburg	0.83 4/12 1909	1.20 5/12 1923	1.41 8/19 1918	2.44 8/22 1960	3.44 8/22 1960	4.17 2/17 1927	2/17	7.10 7/13 1907	8.73 4/29 1953	9.97 3/27 1951
Memphis	0.78 3/9 1901	1.27 7/16 1929	1.71 7/16 1929	2.80 7/16 1929	3.25 7/16 1929	4.70 7/16 1929	7/16	7.03 11/21 1934	9.67 11/21 1934	10.48 11/20 1934

Figure 16. Diurnal Distributions of Measurable Precipitation, by Months, New Orleans, Louisiana, and Memphis, Tennessee, 1951-1960

northern and southern locations in the Lower Mississippi Region are (1) the strong afternoon maximum of rainfall during the warmer months at New Orleans, reflecting the occurrence of the common airmass thundershowers there; this aspect is strongly damped at Memphis; (2) the relative diurnal uniformity of cool season precipitation at both locations, although the frequency is substantially higher at Memphis, reflecting more frequent frontal and cyclonic rainfall; and (3) the paucity of precipitation occurrences at Memphis during August, September, and October--displaced in time at New Orleans to October and November, reflecting variations in the duration of the autumn transitional period.

Riley (89) has examined the diurnal precipitation patterns in the delta area of Mississippi.

Rainfall frequency-depth-duration studies and atlases. Statistical analyses of rainfall data for the primary purpose of presenting them in a manner convenient for hydrologic analysis, engineering design and economic analysis have long been the task of the Office of Hydrology, National Weather Service. Numerous technical papers have been prepared to disseminate this important specialized information (44, 62, 68, 152, 153, 154, 155, 156, 157). Figures 17 and 18 (44) are samples of these analyses. The probability (expressed as a return period) of the depth of precipitation, in inches, which can be expected to occur within a specified duration in hours is shown in these figures. These charts are for point rainfalls, and values may be interpolated. According to these analyses, the heaviest rainfalls on all time scales occur in the coastal regions. The seasonal variations of the probable maximum precipitation, defined as the depth-duration-area rainfall relationships that could result if meteorological conditions experienced during an actual storm in a certain area were maximized to the fullest extent probable, are shown in U. S. Weather Bureau Hydrometeorological Report No. 33 (157).

Precipitation probabilities. Probabilities of receiving specific monthly amounts of precipitation in standard Weather Service climatological divisions in the eastern United States, using the gamma probability function (112), have been developed (109). The entire Lower Mississippi Region is included. Some State studies (59, 83) have also been completed.

Snow, sleet, glaze. Snow and sleet are minor climatic elements over most of the Lower Mississippi Region. Figure 19, adapted from the Climatic Atlas of the United States (141), shows that the mean annual total snowfall ranges from 6 to 12 inches in southeastern Missouri to nearly 2 inches along the Louisiana-Arkansas border, to less than 1 inch from central Louisiana southward. Snow falls in measurable amounts annually in northern portions of the region, and in almost 80 percent of all record years in Louisiana. Snow is much less frequent

ISOPLUVIAL MAP OF FIFTY-YEAR ONE-HOUR RAINFALL, INCHES

ISOPLUVIAL MAP OF FIFTY-YEAR TWELVE-HOUR RAINFALL, INCHES

MEAN ANNUAL SNOWFALL, INCHES
PERIOD OF RECORD THROUGH 1960

in southern Louisiana, but the largest single-storm 1-day amounts for the entire Lower Mississippi Region occurred during mid-February 1895 in southwest Louisiana. Snow depths reached 24 inches at Rayne and 22 inches at Lake Charles. Snow seldom remains on the ground for more than a week in northern sections or for more than a day or two in southern areas.

Freezing rain (glaze), which forms a coating of clear ice on exposed objects, occurs over the region with about the same frequency as snow. These ice storms reach damaging intensity over some northern portions of the region once in 3 to 6 years, and have extended southward to Louisiana coastal sections on rare occasions.

Temperature

<u>Introduction</u>. Temperature is probably the most discussed climatic element. It is also the most popular indicator of climate. Differences in temperature are also the ultimate cause for the air motions which bring about the various states of weather.

Defined in general rather than physical terms, temperature is the degree of hotness or coldness as measured on some definite temperature scale by means of any of several types of thermometers (52).

Annual, seasonal, and monthly temperatures. The normal or mean annual temperature pattern over the Lower Mississippi Region is shown in figure 20 (from 141). This pattern is basically latitudinal, with some modification due to microclimatic effects and the regional distributions of land and water. The annual temperature really tells little about the actual climate of a region, since measurement of the seasonal variations or the ranges of temperature is not possible.

Normal daily maximum, minimum, and average temperatures for January and July (141) are shown in figures 21 and 22. Winters are usually relatively mild in the region, with January temperatures that average between 40° and 55° F. The daily range of temperature exceeds 20° F in the central sections of the region, and varies between 15° and 20° F both to the north and to the south. These averages, too, are somewhat deceptive, for even in January the region is covered for considerable periods with warm, humid maritime tropical air flowing northward from the Gulf of Mexico and the tropical Atlantic. During shorter periods, the region is also dominated by very cold, dry continental arctic air. These sharp airmass contrasts make winter a season of strong temperature variability. The "typical" winter day is consequently difficult to characterize, because it is not simply specified by the average maximum and minimum temperatures for the month.

NORMAL ANNUAL TEMPERATURE, °F 1931-1960

NORMAL DAILY MAXIMUM, MINIMUM, AND AVERAGE TEMPERATURES, °F

JANUARY, 1931-1960

NORMAL DAILY MAXIMUM, MINIMUM, AND AVERAGE TEMPERATURES, °F

JULY, 1931-1960

Summers in the Lower Mississippi Region are distinctly hot; average July temperatures usually range between 78° and 82° F. The daily range of summer temperatures exceeds 20° F in the northern half of the region, and scales downward to nearly 10° F along the immediate coast of Louisiana. Absolute and relative humidity are also high. This combination of heat and humidity produces periods of oppressive sultry weather with little cooling power. The usual summer heat in much of the region resembles that of the tropical wet climates.

Table 3 shows monthly and annual normal temperatures for selected sites in each WRPA. The data (from 149) are for the 30-year climatological standard normal period, 1931 through 1960.

Temperature extremes. All portions of the Lower Mississippi Region exhibit strong continentality relative to extreme minimum temperatures (142). Readings below -20° F have been noted as far south as Tennessee and adjacent sections of Arkansas; temperatures of 0° F or lower have extended into northern Louisiana and central Mississippi; and all sections along the immediate Gulf Coast have experienced minimum temperatures of 10 to 20° F.

The extreme maximum temperature range over the region is 100 to 120° F. The coastal region, with a stronger marine influence, has the lower extremes.

The occurrence of both unusually high and low temperatures is possible only when anomalies in the usual circulation patterns allow the intrusion of: (1) dry continental air with marked subsidence in summer, and (2) massive outbreaks of rapidly moving and unmodified arctic air in winter. These situations are rare.

Days with various temperature thresholds. Figure 23 shows the mean number of days per year with a maximum temperature of 90° F and above and a minimum temperature of 32° F and below (141). The moderating influence of the Gulf of Mexico and the effects of latitude are reflected in the low frequency of high temperatures in the coastal area; in the rapid increase in the number of freezes inland from the coast; and in the maximum of days above 90° F over interior Louisiana and Mississippi.

The data in table 4 amplify these observations. Table 4 gives the average number of hours per year with temperatures exceeding various threshold temperatures (148). The interior stations exhibit substantially greater numbers of both higher and lower temperatures than those nearer the coast.

Table 3 - Monthly and Annual Normal Temperatures at Selected Stations, $^{\rm o}{\rm F.}$, 1931-1960

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
WREA 2													
Arcadia, Mo. Greenville 4 NAW, Mo. Marble Hill, Mo. Sikeston SE Mo. Research Blytheville, Ark.	33.5 36.0 35.6 36.8 40.0	36.5 39.0 38.8 39.4 43.0	44.0 46.3 46.4 47.2 50.4	55.7 57.4 57.7 58.4 61.2	64.1 65.4 66.0 67.9 70.2	73.0 74.3 74.9 77.1 78.6	77.0 78.2 78.6 80.2 81.3	76.1 77.3 77.7 79.0 80.3	68.5 69.7 70.1 71.8 73.5	57.8 58.7 59.1 61.0 63.1	44.7 45.8 45.8 47.1 49.9	36.1 37.7 37.1 38.5 41.9	55.6 57.2 57.3 58.7 61.1
Brinkley, Ark. Corning, Ark. Helena, Ark. Jonesboro, Ark. Marianna 2 S, Ark.	42.6 38.7 43.5 40.4 42.4	45.4 41.6 46.4 43.3 45.1	52.5 49.6 53.2 50.7 52.3	62.2 60.4 62.8 61.3 62.0	70.3 68.9 70.9 69.7 70.4	78.4 77.6 78.7 78.3 78.5	81.3 81.0 81.5 81.4 81.0	80.8 80.0 81.1 80.6 80.2	74.1 72.7 75.1 73.7 73.8	63.4 61.6 65.0 63.1 63.4	50.9 48.6 52.4 50.1 51.2	43.8 40.4 45.1 42.1 44.0	62.1 60.1 63.0 61.2 62.0
Marked Tree, Ark. Newport, Ark. Searcy, Ark. Stutgart, Ark. Little Rock WSO, Ark.	39.3 41.2 41.6 43.7 40.6	41.9 44.1 44.5 46.4 44.4	49.6 51.6 51.6 53.4 51.8	60.5 61.9 61.8 63.0 62.4	69.5 70.2 69.8 71.0 70.5	78.0 78.6 78.0 79.1 78.9	80.9 81.8 81.7 82.3 81.9	79.9 81.0 81.3 81.9 81.3	72.8 73.9 74.5 75.5 74.3	62.0 63.2 63.6 64.8 63.1	48.8 50.4 49.4 52.3 49.5	41.1 42.9 43.2 45.3 41.9	60.4 61.7 61.8 63.2 61.7
WRPA 3													
Bolivar 2, Tenn. Brownsville, Tenn. Covington, Tenn. Jackson ES, Tenn. Memphis WSO, Tenn.	41.3 41.5 41.1 40.6 41.5	43.9 44.1 43.7 43.2 44.1	50.9 51.4 50.6 50.1 51.1	61.0 61.6 60.8 60.2 61.4	68.8 69.8 69.6 68.4 70.3	76.8 77.9 78.0 76.7 78.5	79.9 80.6 80.8 79.5 81.3	79.2 79.8 79.9 78.8 80.5	72.7 73.0 73.1 72.1 73.9	61.6 63.0 62.7 61.5 63.1	49.6 50.8 50.3 49.2 50.1	42.7 43.2 42.7 42.2 42.5	60.7 61.4 61.1 60.2 61.5
Milan, Tenn. Moscow, Tenn. Newbern, Tenn. Samberg, Tenn. Union City, Tenn.	40.4 42.0 39.7 38.3 37.6	43.1 44.6 42.4 40.9 39.9	50.4 51.6 49.8 48.8 47.3	60.5 61.4 60.6 59.9 58.4	68.8 69.2 69.4 69.0 67.8	77.1 76.9 77.7 77.5 76.6	80.0 80.0 80.4 80.6 79.6	79.2 79.4 79.7 79.6 78.9	72.5 72.7 73.0 72.2 71.6	61.8 62.2 62.6 61.3 60.3	49,5 50.3 49,5 48.3 47.4	40.7 43.4 41.6 40.1 39.4	60.3 61.1 60.5 59.7 58.7
Corinth, Miss.	43.2	45.6	52.5	62.6	71.0	78.9	81.7	81.2	74.9	64.1	51.5	44.6	62.7
WRPA 4					70.0	70 5	01.2	80.7	74.5	63.7	51.8	45.0	62.7
Ratesville, Miss. Belzoni, Miss. Clarksdale, Miss. Greenville, Miss. Greenwood FAA, Miss.	43.8 46.9 45.2 46.2 46.4	46.6 49.9 48.1 48.9 49.2	53.2 56.4 55.1 55.5 55.7	62.9 65.1 65.0 64.5 64.7	70.9 73.1 73.4 72.6 72.9	78.5 80.2 81.1 79.9 80.2	81.2 82.4 83.4 82.3 82.5	82.0 83.0 82.0 82.1	76.1 76.9 76.2 76.0	66.0 66.5 66.4 65.5	54.1 53.7 54.1 53.4	48.1 46.5 47.3 47.3	65.0 64.8 64.7 64.7
Holly Springs 2N, Miss. Moorhead, Miss. Pontotoc, Miss. Scott, Miss. Stoneville, ES, Miss.	42.7 46.1 44.5 44.2 46.1	45.1 48.9 47.0 47.1 48.7	52.0 55.4 53.7 53.8 55.1	61.9 64.5 63.0 63.4 64.0	69.9 72.6 70.8 71.8 71.9	77.8 80.0 78.4 79.3 79.3	80.7 82.3 80.8 81.6 81.7	80.2 81.3 80.6 81.1 81.2	73.9 75.6 74.8 75.1 75.5	63.6 64.9 64.7 62.8 65.2	51.3 53.3 52.4 52.5 53.5	44.1 47.3 45.6 45.6 47.2	61.9 64.4 63.0 63.2 64.1
University, Miss. Vicksburg, Miss. Water Valley, Miss. Yazoo City 5 NNE, Miss.	44.2 49.0 44.8 47.6		53.7 57.6 53.7 56.7	63.3 65.7 62.9 65.3	70.9 73.4 70.4 73.0	78.6 79.7 78.2 80.0	81.0 81.8 81.1 82.3	81.0 81.7 80.7 82.0	75.0 76.6 74.7 76.7	64.7 67.5 64.4 66.5	52.3 56.2 52.8 54.6	45.6 50.3 46.0 48.7	63.1 65.9 63.1 65.2
WRPA 5													
Canden 1, Art Crossett 7 S, Ark Eldorado FAA, Ark Hope 3 NE, Ark Hot Springs 1 NNE, Ark	44.7 46.3 46.5 43.7 44.2	49.2 49.4 46.6	54.5 55.5 55.6 53.2 54.1	63.9 63.8 64.5 62.8 64.0	70.7	79.4 78.7 80.0 78.8 79.4	82.0	81.3 82.5 82.0	75.5 75.9 76.6 75.6 76.3	65.6 66.2 64.9	53.7 54.1 52.0	46.0 47.3 47.6 45.2 45.7	64.2 64.8 63.1 63.9
Mount Ida, Ark. Pine Bluff, Ark. Pertland, Ark. Prescott, Ark. Calhoun, La.	41.4 45.1 46.0 44.6 49.0	48.0 48.7 47.7	50.5 54.8 55.1 54.7 57.6	64.5 63.9 64.1	72.0 71.6 71.9	76.4 79.9 79.1 79.8 80.2	83.1 81.7 83.1	83.2 81.2 82.8	72.7 76.9 75.2 76.4 77.1	66.3 65.0 66.0	53.7 53.6 53.0	42.7 46.6 47.5 46.0 50.1	64.5 64.1 64.2
Urania, La.	50.0	52.8	58.6	66.1	73.2	80.2	82.6	82.4	77.2	67.2	56.3	50.8	66.5

Table 3 - Monthly and Annual Normal Temperatures at Selected Stations, ${}^{\circ}\text{F.}$, 1931-1960 (con.

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annua
45.3	47.8	54.6	63.8	71.9	80.1	83.0	82.4	75.9	65.2	53.0	46.3	64.1
49.9	52.6	58.1	65.5	72.8	79.4	81.5	81.1	76.1	66.4	55.9	50.9	65.9
48.6	51.5	57.4	65.1	72.0	78.8	80.9	80.4	75.1	65.1	54.6	49.4	64.9
49.6	52.1	58.2	65.9	73.3	80.3	82.7	82.6	77.2	67.3	56.1	50.6	66.3
48.3	50.7	56.5	64.5	72.2	79.2	81.5	81.2	76.0	66.0	54.7	49.3	65.0
46.1	48.5	54.5	63.1	70.8	78.3	80.7	80.2	74.7	64.7	53.0	46.7	63.4
48.0	50.7	56.4	64.4	72.5	79.4	81.6	81.3	76.2	66.5	54.9	49.0	65.1
46.3	48.7	55.1	63.5	71.4	78.6	80.9	80.7	75.2	65.3	53.5	47.3	63.9
51.0	53.8	59.0	66.5	73.5	80.1	82.0	81.9	77.3	68.0	57.2	52.2	66.9
48.5	51.5	57.3	64.7	72.1	78.7	81.0	80.6	75.4	65.5	54.4	49.2	64.9
50.0	52.6	58.0	65.6	73.1	80.0	82.1	81.9	77.2	67.6	56.5	51.0	66.3
52.9	55.4	60.7	68.2	74.8	80.9	82.7	82.4	77.9	69.1	58.9	53.7	68.1
54.1	56.6	61.3	68.3	75.0	80.9	82.3	82.1	78.2	69.6	59.4	55.0	68.6
55.6	57.7	62.3	69.0	75.7	81.2	82.4	82.5	79.1	71.0	69.9	56.5	69.5
51.8	54.5	59.5	67.1	74.2	80.6	82.4	82.0	77.4	68.5	57.8	52.8	67.4
51.8	54.5	59.8	67.3	74.5	80.8	82.6	82.7	78.1	69.3	58.2	53.0	67.7
54.2	56.7	61.4	68.4	75.2	81.3	82.7	82.5	78.8	70.6	60.0	55.2	68.9
53.6	56.2	60.9	68.1	74.9	80.8	82.2	82.0	78.1	69.6	59.3	54.8	68.4
53.7	56.3	61.1	67.9	75.6	81.2	82.3	82.2	78.7	70.5	59.6	54.6	68.6
53.3	55.9	60.9	67.9	74.5	80.6	82.2	82.0	77.6	68.9	58.8	54.3	68.1
52.8	55.5	60.3	67.6	74.8	80.9	82.5	82.3	77.9	69.2	58.7	53.9	68.0
57.5	58.7	62.0	68.4	75.6	81.6	83.2	85.8	81.5	74.8	65.1	59.7	71.0
53.6	55.8	60.3	67.2	74.1	79.9	81.3	81.0	77.3	68.9	58.8	54.3	67.7
56.5	58.6	62.4	68.9	75.1	80.2	81.6	81.6	78.3	70.4	61.0	57.2	69.3
56.0	58.3	62.4	69.0	75.6	81.1	82.2	82.2	78.9	71.0	61.0	56.8	69.5
56.0	58.2	62.8	69.7	76.8	82.3	83.4	83.5	80.2	72.6	62.0	57.1	70.4
54.6	57.1	61.4	67.9	74.4	80.1	81.6	81.9	78.3	70.4	60.0	55.4	68.6
55.5	57.7	62.1	68.9	75.7	81.1	82.6	82.5	78.9	71.1	61.0	56.6	69.5
53.8	55.9	60.6	67.8	75.1	81.0	82.5	82.3	78.7	70.4	59.8	54.6	68.5
	45.3 49.9 48.6 49.6 48.3 46.1 48.0 46.3 51.0 48.5 50.0 52.9 54.1 55.6 51.8 51.8 51.8 51.8 51.8 53.6 53.7 53.6 53.7 53.6 55.5 56.0 56.0 56.0 56.0 56.0 56.0 56	45.3 47.8 49.9 52.6 48.6 51.5 49.6 52.1 48.3 50.7 46.1 48.5 48.0 50.7 46.3 48.7 51.0 53.8 48.5 51.5 50.0 52.6 52.9 55.4 54.1 56.6 55.6 57.7 51.8 54.5 54.2 56.7 53.3 55.9 52.8 55.5 57.5 58.7 56.6 58.3 56.0 58.3 56.0 58.3 56.0 58.3 56.0 58.3 56.0 58.3 56.0 58.3 56.0 58.3 56.0 58.3	45.3 47.8 54.6 49.9 52.6 58.1 48.6 51.5 57.4 49.6 52.1 58.2 48.3 50.7 56.5 46.1 48.5 54.5 48.0 50.7 56.4 46.3 48.7 55.1 51.0 53.8 59.0 48.5 51.5 57.3 50.0 52.6 58.0 52.9 55.4 60.7 54.1 56.6 61.3 55.6 57.7 62.3 51.8 54.5 59.8 51.8 54.5 59.8 51.8 54.5 59.8 51.8 54.5 59.8 51.8 54.5 59.8 52.9 55.4 60.7 53.6 56.2 60.9 53.7 56.3 61.1 53.3 55.9 60.9 52.8 55.5 60.3	45.3 47.8 54.6 63.8 49.9 52.6 58.1 65.5 48.6 51.5 57.4 65.1 49.6 52.1 58.2 65.9 48.3 50.7 56.5 64.5 40.1 48.5 54.5 63.1 48.0 50.7 56.4 64.4 46.3 48.7 55.1 63.5 51.0 53.8 59.0 66.5 48.5 51.5 57.3 64.7 50.0 52.6 58.0 65.6 52.9 55.4 60.7 68.2 54.1 56.6 61.3 68.3 55.6 57.7 62.3 69.0 51.8 54.5 59.8 67.3 54.2 56.7 61.4 68.4 53.6 56.2 60.9 68.1 53.7 56.3 61.1 67.9 52.8 55.5 60.3 67.6 57.5 58.7 62.0 68.4 53.6 55.8 60.3 67.6 57.5 58.7 62.0 68.4 56.0 58.3 62.4 68.9 56.0 58.3 62.4 68.9 56.0 58.3 62.4 68.9 56.0 58.2 62.8 69.7 54.6 57.1 61.4 67.9 54.6 57.1 61.4 67.9	45.3 47.8 54.6 63.8 71.9 49.9 52.6 58.1 65.5 72.8 48.6 51.5 57.4 65.1 72.0 49.6 52.1 58.2 65.9 73.3 48.3 50.7 56.5 64.5 72.2 40.1 48.5 54.5 63.1 70.8 48.0 50.7 56.4 64.4 72.5 46.3 48.7 55.1 63.5 71.4 51.0 53.8 59.0 66.5 73.5 48.5 51.5 57.3 64.7 72.1 50.0 52.6 58.0 65.6 73.1 52.9 55.4 60.7 68.2 74.8 54.1 56.6 61.3 68.3 75.0 55.6 57.7 62.3 69.0 75.7 51.8 54.5 59.8 67.1 74.2 51.8 54.5 59.8 67.3 74.5 52.9 55.4 60.7 68.2 74.8 53.3 55.9 60.9 67.9 75.6 53.3 55.9 60.9 68.1 74.9 53.7 56.5 61.1 67.9 75.6 53.3 55.9 60.9 67.9 74.5 52.8 55.5 60.3 67.6 74.8	45.3 47.8 54.6 65.8 71.9 80.1 49.9 52.6 58.1 65.5 72.8 79.4 48.6 51.5 57.4 65.1 72.0 78.8 49.6 52.1 58.2 65.9 73.3 80.3 48.3 50.7 56.5 64.5 72.2 79.2 40.1 48.5 54.5 63.1 70.8 78.3 48.0 50.7 56.4 64.4 72.5 79.4 46.3 48.7 55.1 63.5 71.4 78.6 51.0 53.8 59.0 66.5 73.5 80.1 48.5 51.5 57.3 64.7 72.1 78.7 50.0 52.6 58.0 65.6 73.1 80.0 52.9 55.4 60.7 68.2 74.8 80.9 54.1 56.6 61.3 68.3 75.0 80.9 55.6 57.7 62.3 69.0 75.7 81.2 51.8 54.5 59.8 67.3 74.5 80.8 54.2 56.7 61.4 68.4 75.2 81.3 55.6 56.2 60.9 68.1 74.9 80.8 53.7 56.3 61.1 67.9 75.6 81.2 53.3 55.9 60.9 67.9 74.5 80.6 52.8 55.5 60.3 67.6 74.8 80.9 52.8 55.5 60.3 67.6 74.8 80.9 55.6 55.8 60.3 67.6 74.8 80.9 56.5 58.6 62.4 68.9 75.1 80.2 56.0 58.3 62.4 68.9 75.1 80.2 56.0 58.2 62.8 69.7 76.8 82.3 54.6 57.1 61.4 67.9 74.4 80.1 55.5 57.7 62.1 68.9 75.7 81.1	45.3 47.8 54.6 65.8 71.9 80.1 83.0 49.9 52.6 58.1 65.5 72.8 79.4 81.5 48.6 51.5 57.4 65.1 72.0 78.8 80.9 49.6 52.1 58.2 65.9 75.3 80.3 82.7 48.6 52.1 58.2 65.9 75.3 80.3 82.7 48.0 50.7 56.4 64.4 72.5 79.4 81.6 46.3 48.7 551. 63.5 71.4 78.6 80.9 51.0 53.8 59.0 66.5 73.5 80.1 82.0 48.5 51.5 57.3 64.7 72.1 78.7 81.0 50.0 52.6 58.0 65.6 73.1 80.0 82.1 55.6 57.7 62.3 69.0 75.7 81.2 82.4 51.8 54.5 59.8 67.3 74.5 80.9 82.7 55.6 56.2 60.9 68.1 74.9 80.8 82.6 54.2 56.7 61.4 68.4 75.2 81.3 82.7 53.6 55.8 55.5 60.5 67.0 74.8 80.9 82.5 53.7 56.3 61.1 67.9 75.6 81.2 82.3 55.6 55.8 60.5 67.9 74.5 80.8 82.2 53.7 56.3 61.1 67.9 75.6 81.2 82.3 56.5 58.6 62.4 69.9 68.1 74.9 80.8 82.2 53.6 55.8 55.5 60.5 67.2 74.1 79.9 81.3 56.5 58.6 62.4 68.9 75.1 80.2 81.6 65.5 58.6 62.4 68.9 75.1 80.2 81.6 56.0 58.3 62.4 68.9 75.1 80.2 81.6 56.0 58.3 62.4 68.9 75.1 80.2 81.6 56.0 58.3 62.4 68.9 75.1 80.2 81.6 56.0 58.5 62.4 69.9 75.6 81.2 82.5 56.0 58.5 62.4 69.9 75.6 81.2 82.5 56.0 58.5 62.4 69.9 75.6 81.1 82.2 56.0 58.2 62.8 69.9 75.6 81.1 82.2 56.0 58.2 62.8 69.9 75.6 81.1 82.2 56.0 58.2 62.8 69.9 75.6 81.1 82.2 56.0 58.2 62.8 69.9 75.6 81.1 82.2 56.0 58.2 62.8 69.7 76.8 82.3 83.4 54.6 57.1 61.4 67.9 74.4 80.1 81.6 55.5 57.7 62.1 68.9 75.7 81.1 82.6	45.3 47.8 54.6 65.8 71.9 80.1 83.0 82.4 49.9 52.6 58.1 65.5 72.8 79.4 81.5 81.1 48.6 51.5 57.4 65.1 72.0 78.8 80.9 80.4 49.6 52.1 58.2 65.9 73.3 80.3 82.7 82.6 65.9 73.3 80.3 82.7 82.6 65.9 73.3 80.3 82.7 82.6 65.9 73.3 80.3 82.7 82.6 65.9 73.3 80.3 82.7 80.2 48.0 50.7 56.4 64.4 72.5 79.4 81.6 81.5 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 81.0 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 82.6 82.7 82.4 82.5 82.6 82.7 82.4 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5	45.3 47.8 54.6 63.8 71.9 80.1 83.0 82.4 75.9 49.9 52.6 58.1 65.5 72.8 79.4 81.5 81.1 76.1 48.6 51.5 57.4 65.1 72.0 78.8 80.9 80.4 75.1 49.6 52.1 58.2 65.9 73.3 80.3 82.7 82.6 77.2 46.1 48.5 54.5 63.1 70.8 78.3 80.7 80.2 74.7 48.0 50.7 56.4 64.4 72.5 79.4 81.6 81.3 76.2 74.7 48.0 50.7 56.4 64.4 72.5 79.4 81.6 81.3 76.2 75.1 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 48.5 51.5 57.3 64.7 72.1 78.7 81.0 80.6 75.4 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 77.2 52.9 55.4 60.7 68.2 74.8 80.9 82.7 82.4 77.9 54.1 56.6 61.3 68.5 75.0 80.9 82.3 82.1 78.2 55.6 57.7 62.3 69.0 75.7 81.2 82.4 82.5 79.1 51.8 54.5 59.8 67.5 74.5 80.8 82.6 82.7 78.1 52.9 55.6 56.2 60.9 68.1 74.9 80.8 82.6 82.7 78.1 53.7 56.5 61.1 67.9 75.6 81.2 82.3 82.1 77.9 52.8 53.6 56.2 60.9 68.1 74.9 80.8 82.2 82.0 77.4 53.7 56.5 60.3 67.6 74.8 80.9 82.5 82.0 77.6 53.8 55.6 55.8 60.3 67.6 74.8 80.9 82.5 82.0 77.6 53.3 55.9 60.9 67.9 74.5 80.6 82.2 82.0 77.6 53.3 55.9 60.9 67.9 74.5 80.6 82.2 82.0 77.6 53.3 55.9 60.3 67.6 74.8 80.9 82.5 82.3 82.2 78.7 56.5 58.6 62.4 68.9 75.1 80.2 81.6 81.6 78.3 56.5 58.6 62.4 68.9 75.1 80.2 81.6 81.6 78.3 56.0 58.3 62.4 62.8 69.7 76.6 81.1 82.2 82.2 78.9 56.0 58.2 62.8 69.7 76.8 82.3 83.4 83.5 80.2 54.6 57.1 61.4 67.9 75.6 81.1 82.2 82.2 78.9 56.0 58.2 62.8 69.7 76.8 82.3 83.4 83.5 80.2 54.6 57.1 61.4 67.9 75.6 81.1 82.2 82.2 78.9 56.0 58.2 62.8 69.7 76.8 82.3 83.4 83.5 80.2 55.5 57.7 62.1 68.9 75.7 81.1 82.6 82.5 78.9	45.3 47.8 54.6 63.8 71.9 80.1 83.0 82.4 75.9 65.2 49.9 52.6 58.1 65.5 72.8 79.4 81.5 81.1 76.1 66.4 48.6 51.5 57.4 65.1 72.0 78.8 80.9 80.4 75.1 65.1 49.6 52.1 58.2 65.9 75.3 80.3 82.7 82.6 77.2 67.5 64.1 48.5 54.5 63.1 70.8 78.3 80.7 80.2 74.7 64.7 48.0 50.7 56.4 64.4 72.5 79.4 81.6 81.3 76.2 66.5 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 68.0 48.5 51.5 57.3 64.7 72.1 78.6 80.9 80.7 75.2 65.5 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 68.0 48.5 51.5 57.3 64.7 72.1 78.7 81.0 80.6 75.4 65.5 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 77.2 67.6 67.6 67.3 67.2 67.5 67.7 62.3 69.0 75.7 81.2 82.4 77.9 69.1 51.8 54.5 59.8 67.3 74.5 80.8 82.6 82.7 82.4 77.9 69.1 52.9 55.4 60.7 68.2 74.8 80.9 82.7 82.4 77.9 69.1 52.9 55.4 60.7 68.2 74.8 80.9 82.7 82.4 77.9 69.1 52.9 55.4 60.7 68.3 75.0 80.9 82.7 82.4 77.9 69.1 52.9 55.6 57.7 62.3 69.0 75.7 81.2 82.4 82.5 79.1 71.0 67.6 67.9 75.6 81.2 82.5 82.1 78.2 69.6 53.7 56.5 61.1 67.9 75.6 81.2 82.3 82.7 82.7 78.1 69.5 53.6 56.2 60.9 68.1 74.9 80.8 82.6 82.7 78.1 69.5 53.7 56.5 61.1 67.9 75.6 81.2 82.3 82.2 78.7 70.5 53.3 55.9 60.9 67.9 74.5 80.8 82.2 82.0 77.6 68.9 52.8 55.5 60.3 67.6 74.8 80.9 82.5 82.3 77.9 69.2 57.5 58.7 62.4 68.9 75.1 80.2 81.6 81.6 77.3 68.9 52.8 55.5 60.3 67.2 74.1 79.9 81.5 81.0 77.3 68.9 52.8 55.5 60.3 67.2 74.1 79.9 81.5 81.0 77.3 68.9 56.5 58.6 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 77.3 68.9 56.5 58.6 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.3 62.4 68.9 75.1 80.2 81.6 81.6 78.3 70.4 56.0 58.2 62.8 69.7 76.8 82.3 83.4 83.5 80.2 72.6 56.0 58.5 62.4 68.9 75.7 88.1 82.2 82.2 78.9 71.0 56.0 58.5 57.7 62.1 68.9 75.7 8	45.3 47.8 54.6 63.8 71.9 80.1 83.0 82.4 75.9 65.2 53.0 49.9 52.6 58.1 65.5 72.8 79.4 81.5 81.1 76.1 66.4 55.9 48.6 51.5 57.4 65.1 72.0 78.8 80.9 80.4 75.1 65.1 54.6 49.6 52.1 58.2 65.9 73.5 80.5 82.7 82.6 77.2 67.3 56.1 49.6 52.1 58.2 65.9 73.5 80.5 82.7 82.6 77.2 67.3 56.1 48.0 50.7 56.4 64.4 72.5 79.4 81.6 81.3 76.2 66.5 54.9 46.3 48.7 55.1 63.5 71.4 78.6 80.9 80.7 75.2 65.5 53.5 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 68.0 57.2 48.5 51.5 57.3 64.7 72.1 78.7 81.0 80.6 75.4 65.5 54.4 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 77.2 67.6 56.5 54.9 54.1 56.6 61.3 68.5 75.0 82.1 81.9 77.2 67.6 56.5 54.9 54.1 56.6 61.3 68.5 75.0 82.9 82.7 82.4 77.9 69.1 58.9 54.1 56.6 61.3 68.5 75.0 80.9 82.7 82.4 77.9 69.1 58.9 54.1 56.6 61.3 68.5 75.0 80.9 82.3 82.1 78.2 69.6 59.4 55.6 57.7 62.3 69.0 75.7 81.2 82.4 82.5 79.1 71.0 69.9 54.1 56.6 61.3 68.4 75.2 81.3 82.7 82.5 78.1 69.3 58.2 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.1 69.3 58.2 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.1 69.3 58.2 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.1 69.3 58.2 54.5 56.5 60.5 67.6 74.8 80.9 82.2 82.0 77.6 68.9 58.2 53.7 56.3 61.1 67.9 75.6 81.2 82.3 82.2 78.7 70.5 59.6 57.5 58.7 62.0 68.4 75.9 81.2 82.3 82.2 78.7 70.5 59.6 57.5 58.6 62.4 69.9 67.2 74.1 79.9 81.3 81.0 77.3 68.9 58.8 52.8 55.5 60.3 67.6 74.8 80.9 82.5 82.3 77.9 69.2 58.7 55.5 58.6 62.4 69.9 75.6 81.2 82.3 82.2 82.0 77.6 68.9 58.8 52.8 55.5 60.3 67.6 74.8 80.9 82.2 82.0 77.6 68.9 58.8 52.8 55.5 60.3 67.6 74.8 80.9 82.5 82.3 77.9 69.2 58.7 55.5 58.6 62.4 69.9 75.6 81.6 83.2 82.2 82.0 77.6 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 69.9 75.1 80.2 81.6 81.0 77.3 68.9 58.8 56.5 58.6 62.4 68.9 75.1 80.2 81.6 81.0 77.3 6	45.3 47.8 54.6 65.8 71.9 80.1 83.0 82.4 75.9 65.2 53.0 46.3 49.9 52.6 58.1 65.5 72.8 79.4 81.5 81.1 76.1 66.4 55.9 50.9 48.6 51.5 57.4 65.1 72.0 78.8 80.9 80.4 75.1 65.1 54.6 49.4 49.6 52.1 58.2 65.9 73.3 80.3 82.7 82.6 77.2 67.3 56.1 50.6 49.4 49.6 52.1 58.2 65.9 73.3 80.3 82.7 82.6 77.2 67.3 56.1 50.6 49.4 49.6 52.1 58.2 65.9 73.3 80.3 82.7 82.6 77.2 67.3 56.1 50.6 49.4 49.6 52.1 58.2 66.5 54.5 65.1 70.8 78.3 80.7 80.2 74.7 64.7 53.0 46.7 49.3 46.1 48.5 54.5 65.1 70.8 78.3 80.7 80.2 74.7 64.7 53.0 46.7 49.3 46.3 48.7 55.1 63.5 71.4 78.6 80.9 80.7 75.2 66.5 53.5 54.9 49.0 46.3 48.7 55.1 63.5 71.4 78.6 80.9 80.7 75.2 66.5 53.5 54.7 51.0 53.8 59.0 66.5 73.5 80.1 82.0 81.9 77.3 68.0 57.2 54.5 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 77.2 67.6 56.5 51.0 50.0 52.6 58.0 65.6 73.1 80.0 82.1 81.9 77.2 67.6 56.5 51.0 55.6 57.7 62.3 69.0 75.7 81.2 82.4 82.5 79.1 71.0 69.9 56.5 51.8 54.5 59.8 67.3 74.5 80.8 82.6 82.7 78.1 69.5 59.4 55.0 55.6 57.7 62.3 69.0 75.7 81.2 82.4 82.5 79.1 71.0 69.9 56.5 51.8 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 61.4 68.4 75.2 81.3 82.7 82.5 78.8 70.6 60.0 55.2 53.0 54.2 56.7 60.9 68.1 74.9 80.8 82.2 82.0 77.6 68.9 58.8 54.5 59.5 60.3 67.6 74.8 80.9 82.5 82.3 77.9 69.2 58.7 53.9 55.8 55.5 60.3 67.6 74.8 80.9 82.5 82.3 77.9 69.2 58.7 53.9 55.6 55.8 60.3 67.2 74.1 79.9 81.3 81.6 77.3 68.9 58.8 54.5 56.0 58.8 60.3 67.2 74.1 79.9 81.3 81.6 77.3 68.9 58.8 54.3 56.5 58.6 62.4 69.9 75.7 81.1 82.2 82.5 78.9 71.0 61.0 56.8 56.0 58.2 62.8 69.7 76.8 82.3 83.3 83.4 83.5 80.2 72.6 62.0 57.1 56.0 58.6 62.4 69.9 75.8 82.3 83.1 82.5 78.9 71.0 61.0 56.8 56.0 58.2 62.8 69.7 76.8 82.3 83.1 82.5 7

LOWER COMPREHENSIVE REGION COMPREHENSIVE STUDY

MEAN ANNUAL NUMBER OF DAYS WITH MAXIMUM TEMPERATURE 90° F AND ABOVE, AND MINIMUM TEMPERA-TURE 32° F AND BELOW

PERIOD OF RECORD THROUGH 1904

Table 4 - Average Number of Hours Per Year with Temperatures Above and Below Specified Threshold Values

	Average	Number		rs Per Y low Thre			atures	Above
Site	≥100°F	≥95°F		285°F	≤34°F	≤29°F	≤24°F	≤19°F
Little Rock	25	132	445	950	514	251	79	29
Memphis	18	120	428	917	683	309	113	39
Shreveport	26	149	543	1,126	303	103	31	18
Jackson	14	113	402	1,092	379	155	52	11
Baton Rouge	1	47	401	1,001	166	49	11	4
Lake Charles	1	38	348	992	94	22	5	3
New Orleans		12	241	862	58	11	2	2

Freezes, average dates and frequencies. The occurrence of freezing temperatures has adverse effects on many industrial and commercial activities, and freezes are one of the significant hazards faced by agriculture. Figures 24 and 25 (adapted from 141) show mean dates of the initial 32°F day in autumn and the final 32°F day in spring; figure 26 depicts the duration of the freeze-free period. The "growing season" is long, i.e., from 6 to 7 months in northern portions of the region and from 8 to almost 12 months in southern sections. As indicated, in some years northern and central Louisiana and the area southward may be freeze-free. Although below-freezing temperatures can occur during a period of several months each season, during the average winter, they are actually observed on from 5 nights in the southern part of the region to 70 nights in the northern part of the region.

Degree days (heating, cooling, growing). The degree day is defined as a measure of the departure of the mean daily temperature from a given standard: one degree day for each degree of departure above (or below) the standard during one day (52). Degree days are accumulated over a "season" at any point during which the total can be used as an index of past temperature effect upon some quantity, such as plant growth, fuel consumption, power usage, etc.

Figure 27, adapted from the <u>Climatic Atlas of the United States</u> (141), shows normal annual heating and cooling degree day totals for the Lower Mississippi Region. Comparison of normal seasonal heating degree days in different locations gives an estimate of seasonal fuel consumption, since the relationship between these is linear. For example, it would require more than twice as much fuel to heat a building in Memphis, where the annual total heating degree day total is 3232, than to heat a similar building in New Orleans, where the degree day total is less than 1400. The cooling degree day concept is used in a similar fashion to estimate the power requirements for air-conditioning equipment.

LOWER COMPREHENSIVE REGION COMPREHENSIVE STUDY

MEAN ANNUAL NUMBER OF DAYS WITH MAXIMUM TEMPERATURE 90° F AND ABOVE, AND MINIMUM TEMPERA-TURE 32° F AND BELOW

PERIOD OF RECORD THROUGH 1904

MEAN DATE OF FIRST FREEZING (32° F) TEMPERATURE IN FALL

1921-1950

MEAN DATE OF LAST FREEZING (32° F) TEMPERATURE IN SPRING

1921-1950

MEAN LENGTH OF 32° F FREEZE-FREE PERIOD (DAYS)

1921-1950

NORMAL ANNUAL HEATING AND COOLING DEGREE DAYS (BASE 65°F) 1931-1960

Humidity

Introduction. Humidity is the expression of the water vapor content of air. Humidity is measured and defined in several similar but different ways. The most common expression is relative humidity, defined (52) as the dimensionless ratio of the actual water vapor in the air at a certain temperature to the saturation vapor pressure of air at the same temperature. Relative humidity is usually given as a percentage. The moisture-holding capacity of air is a function of temperature, i.e., relative humidity decreases as temperature increases when the amount of water vapor remains the same.

Another, more conservative, expression of the moisture present in the atmosphere is the dew point, defined (52) as the temperature to which a given parcel of air must be cooled at constant pressure in order for the parcel to reach saturation. With a given moisture content, the dew point would remain constant with temperature changes.

Relative humidity. Table 5 shows the seasonal and diurnal variations of relative humidity at New Orleans, Lake Charles, and Memphis. Data are from the Weather Bureau series, "Summary of Hourly Observations, 1951-1960" (148). The table covers the four midseason months of January, April, July and October, and the approximate times-6 a.m. and 3 p.m.--of the diurnal maximum and minimum of the non-conservative, temperature-sensitive relative humidity.

Dew points. Figure 28, from the Climatic Atlas of the United States (141), shows mean dew point temperatures for January and July and maximum persisting 12-hour, 1000-millibar dew points for the same months. The persisting dew points have been used in hydrologic studies as indices of the maximum precipitable water in the atmosphere.

Relatively large latitudinal gradients of dew point temperature are characteristic in January, but the uniformity of the moisture regime of the region in July is strikingly evident from the almost gradientless pattern.

Winds

Seasonal direction and speed patterns. Seasonal wind roses for New Orleans, Lake Charles, and Memphis are shown in figures 29, 30, and 31, respectively. These roses indicate the percentage of time with wind from the various directions (N, NNE, NE, etc.). The data used are observations of wind speed and direction taken once per hour during the years 1951 through 1960, compiled from the Weather Bureau's "Summary of Hourly Observations, 1951-1960" series (148). Seasons are December, January, February - winter; March, April, May - spring, etc. The mean scalar wind speed for each direction and the percentage of the total observations showing calms (speed less than 0.5 mile per hour) are indicated.

Table 5 - Percentage Frequencies of Relative Humidity Observations at 6 a.m. and 3 p.m. During Midseason Months, 1951-1960

	Relative Humidity		6 a.	m.			3 p.	m.	
	%	Jan	Apr	Jul	Oct	Jai	n Apr	Ju1	Oct
Memphis	0-29 30-49 50-69 70-79 80-89 90-100	0 3 24 17 29 27	0 3 21 23 30 23	0 0 4 21 40 35	0 2 9 17 38 33	6 29 29 13 13	18 43 24 7 4	3 49 35 6 5 2	20 47 19 6 3 5
New Orleans	0-29 30-49 50-69 70-79 80-89 90-100	0 2 12 14 22 51	0 2 9 7 22 59	0 0 1 2 20 77	0 2 9 7 33 49	4 25 42 12 9 8	6 30 44 9 6 4	+ 12 48 20 11 8	6 33 41 9 5
Lake Charles	0-29 30-49 50-69 70-79 80-89 90-100	0 1 12 10 20 57	0 + 6 6 22 65	0 0 + 3 25 72	0 + 8 7 26 58	6 25 27 19 13 9	9 28 40 13 6 3	+ 22 53 10 11 4	12 41 34 7 4 2

+ Less than 0.5

MEAN DEW POINT TEMPERATURE, °F (1946-1965) AND MAXIMUM PERSISTING 12-HOUR 1000 MB DEW POINT, °F

JANUARY AND JULY

Figure 29. Seasonal Wind Roses, New Orleans, Louisiana, 1951-1960

Figure 30. Seasonal Wind Roses, Lake Charles, Louisiana, 1951-1960

Figure 31. Seasonal Wind Roses, Memphis, Tennessee, 1951-1960

Table 6 gives seasonal percentage frequencies of the hourly wind observations in various speed classes.

Extreme winds. The maximum winds occurring in the lower Mississippi Region have little influence on the long-term wind averages because the extreme winds, often associated with hurricanes, intense middle latitude storms, and squall lines, rarely affect any particular location and because extreme wind speeds are seldom maintained at one place for more than a few minutes to a few hours.

Thom (113) has analyzed the series of annual fastest-mile wind speeds observed at first-order Weather Service stations. Figure 32 shows the standardized extreme one-mile wind expected on a 100-year mean recurrence interval over the Lower Mississippi Region. The more frequent influences of hurricanes in south Louisiana and of intense middle latitude storms in the northern sections combine to produce a latitudinal distribution of extreme winds with maxima in the northern and southern extremities of the region.

Evaporation and Evapotranspiration

Evaporation. Evaporation is the process by which water is transformed from the liquid state to the gaseous vapor state. The rates of natural evaporation from the oceans, lakes, and other water bodies are strongly affected by temperature, humidity, and wind. Measurements of evaporation are made at a network of selected stations equipped with evaporation pans. The mean annual total pan evaporation, in inches, over the Lower Mississippi Region is shown in figure 33, adapted from Weather Bureau Technical Paper No. 37 (56). Studies have shown that this pan evaporation exceeds natural evaporation of larger water bodies. Coefficients have been developed relating pan to lake evaporation, and range from 0.73 to 0.77 over the area of the region. The mean annual total lake evaporation is indicated in figure 33. The maximum amount, in excess of 50 inches per year, occurs in southwestern Louisiana.

High temperatures have a pronounced effect on the evaporation rate. Figure 33 shows the percentages of the total annual evaporation that occur during the warmer half of the year (May through October). In southern Louisiana, two-thirds of the annual total evaporation occurs during the six warmer months. In extreme northern areas of the region, this amount may range to as high as three-quarters of the total evaporation.

Evapotranspiration. The combination of evaporation from the ground surface and transpiration from plants when the landscape is completely covered with vegetation and when supplies of soil moisture are adequate is called potential evapotranspiration. Thornthwaite, Mather, and Carter (114) give estimates of annual averages of potential evapotranspiration ranging from nearly 30 inches in some northern sections of the region to more than 40 inches throughout most of

Table 6 - Seasonal Percentage Frequencies of Wind Speeds (mph) Within Specified Classes

		0-3	Speed 4-12	, mph 13-24	>25
New Orleans	winter	11	55	32	2
	spring	11	58	29	2
	summer	21	68	11	0
	autumn	20	55	24	1
		0-3	Speed 4-12	l, mph 13-24	>25
Lake Charles	winter	13	57	27	2
	spring	13	56	29	2
	summer	25	63	12	0
	autumn	22	61	16	1
		0-3	Speed 4-12	, mph 13-24	>25
Memphis	winter	10	56	33	1
	spring	9	57	33	1
	summer	17	71	12	0
	autumn	20	59	21	0

WIND: ANNUAL EXTREME FASTEST MILE (STANDARDIZED 30 FEET ABOVE GROUND), 100 YEAR MEAN RECURRENCE INTERVAL

EVAPORATION: MEAN ANNUAL CLASS A PAN AND LAKE, INCHES; MEAN WARM-SEASON (MAY-OCTOBER) AS PERCENT OF ANNUAL TOTAL, 1946-1955

Louisiana. Actual evapotranspiration over a long period averages only 70 to 90 percent of the potential value, since periods of limited moisture availability occur from time to time.

Other Elements

Sunshine and solar radiation. Figure 34, from the Climatic Atlas of the United States (141), shows analyses of percentage of possible sunshine (ratio of duration of actual sunshine to the astronomically possible sunshine) over the Lower Mississippi Region during the months of January and July. In January, the amounts of actual sunshine are less than one-half of the total possible throughout the region with the exception of the "bird's foot" of the Mississippi delta. General and persistent stratoform clouds associated with the passage of low pressure areas and frontal systems reduce sunshine.

In spite of the abundant and frequent precipitation during July over the southern section of the region, the percentages of possible sunshine there are relatively high, and increase northward so that most of the region in Arkansas, Mississippi, Tennessee, Kentucky, and Missouri receives more than 70 percent of total possible sunshine. The nature of the convective processes through which clouds form, precipitate, and dissipate during this warm season precludes skies being cloudy all day.

Figure 34 also shows the mean daily total solar radiation in Langleys (gram-calories per square centimeter) for January and July. The patterns, controlled by solar angle, day length, and daylight cloudiness, are latitudinal in January (increasing from north to south) and longitudinal in July (increasing from east to west (141)).

Clouds and fog. Mean sky cover or average cloudiness is given in the Climatic Atlas of the United States (141). For the region, annual averages range between 50 and 60 percent sky cover. The fallacy of utilizing one such "average" number to represent many climatic distributions is illustrated by table 7. The detailed data shown in table 7, taken from the Weather Bureau's "Summaries of Hourly Observations, 1951-1960"(148), indicate that cloudiness follows a U-shaped frequency distribution, with both clear (0 to 30 percent sky cover) or cloudy (80 to 100 percent sky cover) conditions much more frequent than partly cloudy (40 to 70 percent sky cover) conditions in all seasons. Partly cloudy skies resulting from cumulus clouds during the warmer months are reflected in increased PC values, but clear or cloudy skies are still significantly more frequent. However, when all observations are averaged to obtain a single "average cloudiness," the resultant figure falls in the middle of the least frequent condition.

MEAN PERCENTAGES OF POSSIBLE SUNSHINE AND MEAN DAILY SOLAR RADIATION, LANGLEYS, PERIOD OF RECORD THROUGH 1963 AND 1964

JANUARY AND JULY

Table 7 - Monthly Averages of Percentage Frequencies of Cloud Cover, Based on Summaries of Hourly Observations, 1951-1960

	Tenths Cloud												
Memphis, Tenn.	Cover	Jan	Feb	Mar	Apr	May	Jun	<u>Jul</u>	Aug	Sep	0ct	Nov	Dec
Clear	0-3	31	33	35	39	41	47	42	53	58	56	48	40
Partly cloudy	4-7	8	10	11	13	18	21	25	21	14	12	11	9
Cloudy	8-10	61	57	54	48	42	32	34	26	28	32	41	52
Little Rock, A	rk.												
Clear	0-3	34	36	38	39	39	49	43	54	60	56	50	42
Partly cloudy	4-7	8	9	10	12	17	21	24	21	14	12	10	8
Cloudy	8-10	58	55	52	49	44	31	34	25	26	32	40	50
Shreveport, La	<u>.</u>												
Clear	0-3	34	36	38	38	40	54	51	56	59	59	50	42
Partly cloudy	4-7	8	9	10	11	17	18	20	19	13	10	9	8
Cloudy	8-10	57	55	52	50	43	28	29	25	28	31	42	50
Jackson, Miss.													
Clear	0-3	32	34	35	42	43	47	39	51	52	57	46	39
Partly cloudy	4-7	11	11	14	15	21	25	28	23	15	13	12	10
Cloudy	8-10	57	55	50	43	37	28	33	26	32	30	42	51
Lake Charles,	La.												
Clear	0-3	33	32	34	36	39	46	38	44	49	57	41	37
Partly cloudy	4-7	11	11	12	14	22	27	27	25	19	14	13	10
Cloudy	8-10	57	57	54	49	38	27	35	31	32	29	46	53
Baton Rouge, La	a.												
Clear	0-3	35	34	37	40	43	46	38	47	47	58	45	40
Partly cloudy	4-7	12	11	13	14	21	23	24	20	17	12	12	9
Cloudy	8-10	53	55	50	47	36	31	38	33	36	30	43	51
New Orleans, La	a.												
Clear	0-3	36	35	36	42	49	50	39	47	48	60	47	39
Partly cloudy	4-7	13	14	14	19	21	24	26	23	17	14	12	12
Cloudy	8-10	51	51	50	40	30	26	35	29	35	27	41	50

Fog is a visible aggregate of minute water droplets suspended in the atmosphere near the earth's surface. It differs from clouds only in that the base is at the surface, while clouds are above the surface (52). In the region, the average number of days per year with heavy fog (visibility restricted to 1/4 mile or less) ranges from less than 15 at some interior locations to nearly 50 in some coastal sections of Louisiana. Light fogs are considerably more frequent. Since fog formation through radiational cooling and advection of warm air over cool surfaces involves small-scale micrometeorological processes, considerable variations in frequency within short distances are possible.

Atmospheric pressure. Atmospheric pressure and its variations received considerable attention during the early development of meteorology beginning in the nineteenth century. In recent years, however, the importance of pressure as an indicator of future weather conditions and as a climatic element has declined.

Monthly sea level pressure averages for four stations in the Lower Mississippi Region (158) are shown in table 8. Highest averages are for late autumn and winter; lowest averages are for early summer.

Table 8 - Mean Monthly Sea Level Pressure in Millibars

	Jan	Feb	Mar	Apr	May	Jun	Ju1	Aug	Sep	Oct	Nov	Dec
New Orleans	20.4	18.6	17.0	16.0	15.4	15.0	16.8	15.4	15.0	17.1	19.9	20.9
Vicksburg	20.6	18.6	16.9	16.3	15.0	14.0	16.5	15.9	15.8	17.9	20.7	20.1
Memphis	20.5	18.8	16.8	15.4	14.9	14.6	15.9	15.7	16.5	18.5	20.3	20.9
Little Rock	20.7	18.7	16.8	15.1	14.6	14.3	15.9	15.2	16.5	18.6	20.2	20.8
1000 mb	to be	e adde	ed:	20.4 =	= 1020	0.4						

Annual average sea level pressure for all four stations listed in table 8 is essentially the same, i.e., 1017.3 or 1017.4 millibars. Extremes of pressure in the region have been associated with tropical cyclones along the coast and with middle latitude storms in the interior areas (minima); and with massive continental anticyclones (maxima). Pressures near 950 mb have been recorded in coastal hurricanes, and pressures near 980 mb have been recorded in interior storms. The range of the maxima, occurring in massive continental anticyclones during winter, is 1044 to 1050 mb.

Climatic Hazards

Tropical Cyclones (Hurricanes)

Introduction. In the two and one-half centuries since Europeans first settled in the Lower Mississippi Valley, scores of hurricanes and tropical storms have swept inland from the Gulf of Mexico to pass over the region. Some have been mild--even beneficial--bringing no more than brief, gusty winds and locally heavy rainfall. Others have been accompanied by violent winds well in excess of 100 miles per hour (30), massive inundations of broad sections of the coastal area reaching 10 to 15 feet above mean gulf level (42), and torrential rainfalls of 10 to more than 20 inches within 24 hours (97), which produced extensive flooding of interior areas.

Within the past decade, two extremely intense hurricanes have caused total damages in the United States of almost \$1.5 billion each (145). Both Betsy in September 1965 and Camille in August 1969 struck the central Gulf coast and affected much of the Lower Mississippi Region.

The details of tropical cyclone formation are not yet completely known. These storms are the results of complex interactions in the warm moist tropical atmosphere. In the tropical Atlantic, Caribbean and Gulf of Mexico, vast amounts of water vapor, evaporated from the ocean surface, are converted by convection back to liquid water and, in the process, heat is released. Convective clouds are a daily phenomenon of the tropics; they sometimes develop into thunderstorms, sometimes not. Infrequently, some outside mechanism, such as an easterly wave, an eddy from an active intertropical convergence area, or a polar disturbance intruding into the tropics tends to structure the convection. Once organized, the heat released by small-scale convective clouds can supply energy to larger scales of motion and assist in maintaining a center of low pressure. As the wind begins to circle the low pressure area, friction enhances a spiraling inflow toward the center. Momentum is conserved and the wind blows faster as it nears the center. Increased convergence at low levels maintains convection by supplying moisture and vertical motion at the center; the clouds in turn produce more heat, thereby lowering the pressure and increasing the winds, which again increases friction and inflow.

This situation will not persist, however, unless another mechanism at high levels in the atmosphere is present to remove air which accumulates through convergence at low levels. The interaction of low-level and high-altitude wind systems determines the intensity that a tropical cyclone will attain. If less air diverges aloft than converges at the surface, the incipient storm will "fill up" or dissipate. If more air is pumped out than flows in, the central pressure will decrease and the storm will intensify.

Thus, the tropical cyclone can be viewed as a simple heat engine. Fuel is water vapor, evaporated from the ocean surface. Combustion occurs in the towering convective cumulonimbus clouds as latent heat is released when water vapor condenses. An exhaust system is provided by an upper level wind circulation which removes air from the top of the storm. The starter is some "outside influence" which acts to organize the convection.

As with any engine, the storm will falter and stop when any of the necessary components fail. The tropical cyclone decays as it moves inland or recurves northward over colder water and its supply of water vapor "fuel" is reduced. Occasionally tropical cyclones moving into higher latitudes may modify into nontropical storms.

The hurricane is not a very good engine--the efficiency with which it converts thermal to mechanical energy is only about 3 percent. However, the condensation heat energy released by a mature hurricane in one day is often sufficient--if it were converted to electrical energy-to supply the power requirements of the United States for more than 6 months.

Figure 35 (139) shows a mature tropical cyclone in schematic, as it appears on radar and in satellite photographs. The calm eye and the spiral rainbands are unique features of the tropical cyclone.

Eye diameters average about 15 miles, with a range from less than 5 miles to more than 50 miles. This center is surrounded by a region of very intense convection (the eye wall) where the strongest winds are concentrated.

Dunn and Miller (30) describe four stages of tropical cyclone development:

- 1. Tropical disturbance: circulation slight or absent at surface, sometimes better developed aloft, no closed isobars (lines of equal atmosphere pressure), no strong winds.
- 2. Tropical depression: one or more closed isobars and some rotary circulation at surface, maximum wind speed less than 39 miles per hour (34 knots).
- 3. Tropical storm: closed isobars; distinct rotary circulation, maximum wind speed 39 to 73 miles per hour (34 to 63 knots).
- 4. Hurricane: closed isobars, pronounced rotary circulation, wind speed 74 miles per hour (64 knots) or higher.

Less than half the tropical circulations reaching storm intensity in the Atlantic region ever attain hurricane intensity.

(Courtesy of National Oceanic and Atmospheric Administration)

Figure 35. Portrait of a Hurricane, as Seen by Satellite, Radar, and Illustrator

Frequencies. Figure 36 (top), adapted from "Atlantic Hurricane Frequencies along the United States Coastline" (100), shows total numbers of tropical cyclone coastal crossings during the period 1886 through 1970 in 50-mile segments along the Gulf Coast, outlined in the bottom section of the figure. The assumption has been made that hurricane-force storms crossing the coastline in one of the segments also affected the segment toward the right (east) of the path.

Great hurricanes are defined as those cyclones with sustained winds 125 miles per hour or higher. Simpson and Lawrence (100) noted that:

"(this) maximum wind threshold carries with it the likelihood of severe structural damage to residences and small industrial plants where building codes specifically designed to protect against a mature hurricane have not been enforced. The central pressure of approximately 950 millibars, which normally accompanies this wind value, can be associated with storm surge heights as high as 12 to 15 feet...."

Figure 36 (center), adapted from Weather Bureau Technical Paper No. 55 (20), shows the year-by-year number of tropical cyclones passing over portions of the Lower Mississippi Region during the 20th Century. Table 9, prepared from data in reference 20, plus recent information from Climatological Data, National Summary (145) shows a frequency summary by month of tropical cyclones which have affected the Lower Mississippi Region.

Table 9 - Total Number of Tropical Cyclones Affecting Portions of the Lower Mississippi Region, 1901-1970

May	Jun	Jul	Aug	Sep	Oct	Nov
1	11	10	16	35	11	1

Hope and Neumann (47) have recently presented detailed information on the seasonal distributions, speed and direction of movement, and prior and subsequent locations of tropical cyclones passing through 2-1/2° latitude/longitude areas of the North Atlantic region. Table 10 summarizes some of their results pertinent to the coastal sections of the Lower Mississippi Region.

Figure 36. Summary of Tropical Cyclone Occurrences

Table 10 - Tropical Cyclone Frequencies in the Northern Gulf of Mexico, 1886-1969

	12 (7) 15	Number	Entering		Poisson Probability
Area	Total No.	Hurricane	Tropical Storm	Tropical Depression	of at Least One Storm in any Year
27.5°N-30°N 95°W-97.5°W	36	15	15	6	0.30
27.5°N-30°N 92.5°W-95°W	42	15	22	5	0.36
27.5°N-30°N 90°W-92.5°W	54	18	32	4	0.45
27.5°N-30°N 87.5°W-90°W	55	19	32	4	0.46
27.5°N-30°N 85°W-87.5°W	58	22	29	7	0.46

Cry and Haggard (22) and Alaka (1) show that during the early part of the hurricane season (June), the Gulf of Mexico is a preferred region of storm development. During July and August, formation most often occurs in the Atlantic, east of the Lesser Antilles. However, the August storms often move on paths which bring them into the Gulf of Mexico. September is the peak of hurricane activity. A majority of the month's tropical cyclones form in the Atlantic, but a substantial number have developed in the Gulf of Mexico. Storm development in October tends to be concentrated in the western Caribbean area. Figure 37 (20, 145) displays the paths of several recent significant tropical cyclones.

Tropical cyclone rainfall. The rainfall associated with tropical cyclones normally is quite intense, and storm totals may sometimes reach torrential proportions (table 11). Considerable variability in amounts over relatively short distances is also usual. The amount of rain associated with a tropical cyclone is dependent on several factors (30). The most important factors are the rate of progression of the storm system, the nature of the topography or surface over which it moves, and the source and trajectory of the inflowing air at low levels. The inflow pattern plays a major role in dissipation of storms over land. Surface roughness or friction is greater over land so winds tend to be retarded and blow more directly toward the center of the storm. This increases low-level convergence and the rate of rainfall. However, the increased convergence and the removal of the storm's moisture source are

Figure 37. Some Significant Hurricanes Making Landfall in the Lower Mississippi Region

the beginning of dissipation, and the increased rainfall rate is temporary, unless outside, nontropical influences enter to enhance it.

Table 11 - Some Heavy Rainfall Totals in Connection with Tropical Cyclones Affecting the Lower Mississippi Region

33.71 inches	Crowley, La.	August 6-10, 1940 (5 days)
29.65 inches	Lafayette, La.	August 6-10, 1940 (5 days)
21.30 inches	Logansport, La.	July 22-25, 1933 (3 days)
21.40 inches	Alexandria, La.	June 15-16, 1886 (1 day)
19.76 inches	Crowley, La.	August 8-9, 1940 (1 day)
12.44 inches	Shreveport, La.	July 24, 1933 (1 day)

Figure 38 illustrates that the intensity (i.e., the wind speed) of the tropical cyclone circulation and the amounts of rainfall produced are not closely related. Betsy was a large and intense storm (a great hurricane), but the precipitation pattern was relatively light. Camille was also a great hurricane but the size of the circulation was extremely small. The resulting rainfall from Camille was much heavier than in Betsy, but fell over a smaller area mostly very near and to the east of the track. The tropical cyclone of August 1940 was barely of hurricane intensity as it moved inland, and the area of hurricane winds was only about 20 miles wide. A slow movement of the center westward just off the Louisiana coastline, with almost half of the circulation over land, produced more than 30 inches of rain in 5 days at a few points in south Louisiana, with almost 20 inches in a single day. The tropical storm of July 1933 was never of hurricane force, entered the central Texas coast, and had no strong surface circulation remaining in the regions where the heaviest raintall occurred. Schoner and Molansky (97) present similar analyses for numerous hurricanes and tropical storms which have affected the Lower Mississippi Region.

Tropical cyclone rainfall results from intense convection and is usually intermittent. Rainfall is concentrated within the eye wall and in the convective element in the spiraling band of inflow, which may extend outward several hundred miles from the eye. Figure 39-A, adapted from Gentry, Fujita, and Sheets (35), shows Hurricane Gladys (1968) photographed from Apollo 7. The photographed cloud patterns have been schematized and radar precipitation echoes superimposed in figure 39-B. The areas between spiral bands often appear cloud-covered in satellite photographs, but radar shows these to be free of heavy precipitation.

HURRICANE: AUGUST 6-9, 1940

HURRICANE BETSY SEPTEMBER 9 10, 1965

HURRICANE CAMILLE: AUGUST 17-18, 1969

ISOHYETS IN INCHES

Figure 38. Some Examples of Tropical Cyclone Precipitation Patterns in the Lower Mississippi Region

Figure 39-A. Apollo 7 View of Hurricane Gladys at 1531 G.M.T., 17 October 1968

Figure 39-B. Example of Plan Position Indicator Radar Composite Echoes Superimposed upon Cloud Pattern Derived from Apollo 7 Pictures

Beneficial aspects of tropical cyclones. Rainfall from some tropical cyclones has been beneficial in breaking extended periods of drought (110). Numerous other cyclones have ameliorated short-term moisture deficiencies. The potential economic value of this rainfall is great. Benefits must be measured against offsetting destruction, but they usually extend over a much broader region.

Figure 40-A shows tracks of several drought-ending tropical cyclones, and the effects of Cindy (1963) are shown in detail in Figure 40-B. The substantial rainfall over southwestern Louisiana returned moisture conditions to nearly normal from extreme drought (as measured by the Palmer Index).

The overall climatic effects of tropical cyclone rainfall are farreaching. Cry (21) has shown that tropical cyclones contribute significant amounts to the total precipitation in the southern and eastern United States. Figure 41 shows tropical cyclone rainfall as a percentage of monthly total rainfall. The area is expanded for September to show that tropical cyclones contribute up to 45 percent of the normal monthly rainfall as far north as New Jersey. Percentages for the Lower Mississippi Region range from about 5 to 12 for June-July; from 5 to 25 in August; from 5 to more than 30 in September; and from 5 to more than 20 in October. Details of monthly data for a northern and a southern location in the region are shown in figure 42.

With the possibility of man's future capability of hurricane modification and control directed toward the reduction of severe wind and storm surge damage (34, 51), Sargent (94) has posed an intriguing series of questions relative to tropical cyclone rainfall:

"If tropical storms were dissipated, mitigated, or diverted, from whence would this moisture come?"

"Does the risk of a water shortage on the East Coast outweigh the biological damage and the socio-economic losses from storm and flood?"

"If the hurricane's course could be directed by a given amount in a given direction, who would make the decision to change the course so that instead of striking Florida (Louisiana), it would be diverted toward Georgia or the Carolinas (Mexico)?"

"On what basis would the decision be made?"

Deficient Precipitation

Introduction. In any area of the world with copious rainfall, such as the Lower Mississippi Region, drought is not often considered to be a significant climatic factor. Drought is a relative condition, however, and rainfall that would be abundant for one region may result in disaster in another. The variability of precipitation on all time

Figure 40-A. Tropical Cyclones Which Have Terminated Drought in the United States

Figure 40-B. Details of Hurricane Cindy, September 1963

Figure 41. Tropical Cyclone Precipitation, by Months Average for the Period 1931-1960, Shown as Percentage of Total Monthly Precipitation

Figure 42. Mean Monthly Precipitation 1931-1960 for Houma, Louisiana, and Jonesboro, Arkansas, with Tropical Cyclone Precipitation Indicated by Shading (Top). Changes in Probabilities of Receipt of Various Threshold Amounts when Tropical Cyclone Precipitation Removed from Monthly Distribution (Bottom)

scales is relatively large--extended periods of drier and of wetter weather occur from time to time in all areas.

Further complicating an objective assessment of drought is a basic definition of the problem: the meaning and perception of drought is dependent on the point of view--agricultural, hydrologic, economic, etc. (78,165).

If the meteorological aspect is regarded as basic--and other aspects as effects--a single generalized definition may be formulated that will allow study and evaluation of frequency, duration, and severity of drought. This should be accomplished through a quantitative parameter capable of evaluating the various meteorological phenomena characterizing prolonged and abnormal moisture deficiencies. Comparison of these index values with effects provides a basis for classification of drought by severity. Such an index has recently been developed (78). The Palmer Index is universal in that persistently normal temperature and precipitation produce an index of zero in all seasons in all climates. Further, the extended period of greatest abnormal dryness of long record produces an index around -6, regardless of the degree of aridity or wetness of the climatic averages of the region being studied.

Palmer index. Meteorological drought is defined as a prolonged and abnormal moisture deficiency. How long is "prolonged?" Usually several months. What is "abnormal?" Abnormality implies deviation from some established norm or average. "Deficiency" indicates a demand which exceeds the available supply. Consequently, a drought period is an interval of time, generally on the order of months or even years in duration, during which the actual moisture supply at a given place consistently talls short of the climatically expected or suitable supply. The severity of drought depends on both the duration and the magnitude of the moisture deficiency.

The Palmer index was designed to allow spatial comparisons as well as temporal evaluations. The index is based on the concept that the amount of precipitation required for the nearly normal functioning of the established regional economy depends on the long-term climate and on the prevalent meteorological conditions both during and preceding the period of interest. The characteristics of recent and past weather are both taken into account. From time to time, droughts of similar severity occur in two regions which have very dissimilar climates—the Lower Mississippi Region as opposed to eastern Oregon, for instance. In effect, the climates in both areas will have been temporarily more arid than usual. Each area, in its own way, becomes disrupted by the unusual dryness. For example, extreme drought in the Lower Mississippi Region might well lead to reports of low water tables, deficient streamflow, depleted reservoirs, and serious shortages of soil moisture. On the other hand, extreme drought in eastern Oregon would

produce complaints of dry ranges, critical fire danger, and a shortage of water for irrigation and livestock. Thus, the many and varied effects of a prolonged period of abnormally dry weather depend on the climatic averages and the established activities in the affected areas.

Palmer's method requires a climatological analysis of a long record in order to derive five constants which define certain moisture characteristics of the climate of the area of interest. Therefore, the first thing required is a month-by-month water balance accounting for a long record, such as 30 years or more. Palmer used a two-layer soil model and the Thornthwaite method of computing potential evapotranspiration; however, other methods could be substituted. Potential values were also derived for runoff, moisture recharge, and moisture loss. Next, the results of the water balance accounting must be summarized to produce the five constants for each of the 12 calendar months. One constant, alpha, is the coefficient of evapotranspiration, the ratio of the computed mean monthly evapotranspiration (ET) to the mean monthly potential evapotranspiration (PE). This ratio is nearly 1.0 in humid climates, but approaches 0 in very arid regions. Another constant, beta, the coefficient of recharge, is the ratio of the mean monthly moisture gain (R) to the mean maximum possible gain (PR). The coefficient of loss, delta, is the ratio of mean moisture loss (L) to mean potential loss (PL), where potential loss is the amount of evapotranspiration that would have occurred if no precipitation had fallen during the month. The coefficient of runoff, gamma, is the ratio of computed mean runoff (RO) to mean potential runoff (PRO).1/ An additional constant, K, is an empirically derived weighting factor which depends on a number of measures of the moisture supply and demand characteristics of the climate in question.

Having developed these coefficients, it is possible to compute the amount of precipitation (P) that should have occurred during a particular month to sustain the evapotranspiration, runoff, and moisture storage that could be considered as "normal" and appropriate for the climate, having taken account of antecedent moisture conditions. The equation is

$$P = \alpha PE + \beta PR + \gamma PRO - \delta PL, \qquad (Eq. 1)$$

where the potential values are those that apply to the particular period in question.

The computed precipitation is, in fact, an adjusted normal precipitation, the adjustment being dependent on the antecedent weather as reflected by the computed moisture storage and on the anomaly of the

^{1/} Palmer used PRO = Available Water Capacity - PR, but indicated that PRO could be defined as $\overline{3P}$ - PR, where \overline{P} = normal monthly precipitation.

potential evapotranspiration during the month in question. Over the long term, the mean of the computed precipitation is equal to the mean of the actual precipitation. However, for a particular month the actual precipitation minus the computed precipitation provides a measure, d, of the degree to which the month was abnormally wet or abnormally dry. When multiplied by the weighting factor K, the moisture anomaly index

$$Z = Kd, (Eq. 2)$$

provides a measure which is comparable in space and time.

Inasmuch as a succession of months, most of which were abnormally dry, produces a drought of gradually increasing severity, the final drought index (X) depends on the sequence of Z values. These can be combined by the empirical equation

$$X_{c} = 0.897 X_{D} + Z_{c}/3.0,$$
 (Eq. 3)

where the subscript c refers to the current month in question and p refers to the previous month.

Results of the analysis of a long record provide a series of monthly drought index values which, in general, range from around 6 to -6. The positive values are more or less incidental to Palmer's basic purpose, but, importantly, they do provide realistic measures of the degree of unusualness of extended periods of abnormally wet weather. The completed analysis breaks the meteorological record into separate periods of drought, abnormally wet, or nearly normal. Table 12 lists the descriptive terms which have been assigned to describe the character of the weather represented by various intervals of the Palmer index.

Table 12 - Descriptive Terms for Weather Conditions Represented by Ranges of Palmer Index

Index	Character of Recent Weather
4.00 or more	Very much wetter than normal
3.00 to 3.99	Much wetter than normal
2.00 to 2.99	Moderately wetter than normal
1.00 to 1.99	Slightly wetter than normal
0.50 to 0.99	Incipient wet spell
0.49 to -0.49	Nearly normal
0.50 to -0.99	Incipient drought
-1.00 to -1.99	Mild drought
-2.00 to -2.99	Moderate drought
-3.00 to -3.99	Severe drought
-4.00 or less	Extreme drought

Palmer's technique has been widely used in the United States and in some other areas of the world. Results are reported as being realistic in all areas. The technique is mathematically simple, but it is involved and tedious. When done by hand, it is slow and time-consuming, but where computers are available, results can be attained quickly. The method is better suited for climatological analysis than for operational use. However, during periods when a major drought is developing and spreading, it affords a useful means for routinely assessing the areal distribution of the various degrees of drought severity. In the United States, this is done on a weekly basis during critical situations. Of course, some of the original constants and equations are modified in order to treat weekly rather than monthly data.

Palmer's technique has been applied to the climatic data accumulated since 1931 for each standard climatological division comprising the region. These divisions are shown in figure 43. The regional variations in maximum drought intensity and duration are shown in figure 44. All sections have recorded "extreme" drought with the exception of the southwest and west central divisions of Louisiana. Inspection of figure 44 reveals that durations of the longest "dry" spell range from 21 months in south-central Louisiana to 63 months in northeast Arkansas. Over most southern sections of the region, maximum duration of drought conditions has been 2 to 4 years; in most of the northern sections, 3 to nearly 5 years.

Figure 45 shows the regional "wet" experience. All sections have been "very much wetter than normal" on one or more occasions, while the greatest durations of the longest periods of wet conditions range upward from nearly 20 months in southern Arkansas, the upper Mississippi Delta, and southeast Louisiana to more than 40 months in the extreme northern divisions.

Additional details of the climatic variability indicated by the Palmer Index are displayed in figures 46-A, 46-B, and 46-C. The patterns of monthly moisture anomaly show an irregular alternation of wet and dry periods. Extended periods of severe or extreme drought are uncommon, and region-wide occurrences very rare. The droughts of 1936-37, 1941-42, 1954-55, and 1964 are prominent in northern portions of the region, and those of 1952 and 1963 are outstanding in several southern sections. The wet spells centered in 1945-46, 1950, 1957-58, and 1961-62 are outstanding over substantial areas.

Tornadoes

Introduction. Tornadoes are the most violent storms in nature. Local storms of short duration, tornadoes are characterized by an intense vortex in which air spirals, usually in a counter-clockwise direction, around a central, nearly vertical, core. Tornado destructive forces are a combination of high winds and a partial vacuum at the center of the vortex.

Figure 43. Palmer Index: Climatological Divisions

Figure 44. Palmer Index: Value for Driest Month and Duration in Months of Longest Dry Spell, 1931-1970

Figure 45. Palmer Index: Value for Wettest Month and Duration in Months of Longest Wet Spell, 1931-1970

Figure 46-A. Palmer Index: 1931-1970

Figure 46-B. Palmer Index: 1931-1970

Figure 46-C. Palmer Index: 1931-1970

As a tornado passes over a structure, winds twist and rip at the outside while the abrupt atmospheric pressure reduction produces explosive overpressure inside. Walls collapse or topple outward, windows explode, and debris is driven through the air in a dangerous barrage.

The duration of most tornadoes is brief and their destructive paths are small but often terribly complete. The extreme danger associated with tornadoes is simply that they strike swiftly with terrible force so that warning time allowing evasive action is very short or impossible.

Some phases in the life cycle of a tornado are illustrated in figure 47, a set of photographs taken near Enid, Oklahoma (147). The grayish funnel-shaped cloud characteristic of tornadoes, extends downward from the parent thunderstorm. Often this funnel cloud remains aloft, and the full fury of the storm does not reach the ground. The funnel cloud is produced by the condensation of moisture in the zone of sharply reduced atmospheric pressure. This pressure reduction may be one-sixth to one-quarter of the total pressure.

Tornado paths average less than one-quarter mile in width and are seldom more than 15 miles long. Tornadoes are always associated with parent thunderstorms. When strong squall lines move through a region, several individual tornadoes, a tornado "family," may form in different intense thunderstorm cells. At least four tornadoes moved through the delta region of Mississippi on February 21, 1971, and more than 10 swept Arkansas, Missouri, Tennessee, and Mississippi in the great outbreak of March 21, 1952.

The precise formative mechanisms of tornadoes are unknown. The basic physical processes leading to severe thunderstorms combine to produce thermal instability in the atmosphere, e.g., cold, dense, dry air at higher levels and warm, lighter, moist air at the surface. In this situation, the cold air must descend and the warmer air must rise. This regional atmospheric overturning often results in thunderstorms. More rarely, several meteorological factors combine in exactly the right combination to produce extreme instability, severe thunderstorms, and tornadoes. Such combination is schematized in figure 48. Cold, dry, continental polar air moving southward encounters warm, moist, maritime tropical air along a surface cold front. Aloft, a zone of high-speed winds--a jet stream--overlies the frontal zone of sharp thermal contrast between the air masses. Dry continental tropical air is drawn into the upper level circulation through the jet and acts as the starter for enhancing the instability. Severe weather is most probable within the region indicated by the box in figure 48.

The formation of tornadoes in this basic synoptic flow pattern involves complex transformations of potential energy into kinetic

Figure 47. Some Phases in the Life Cycle of a Tornado

Figure 48. Schematic Illustration of Factors Involved in Development of Severe Local Storms

energy. In some special circumstances, small but intense low pressure areas (micro-lows) form, and the surrounding air begins a spiraling radial inflow. Once the inflow is established, if momentum is conserved, the flow must increase as it approaches the vortex center. The strong convective activity will then sustain the vortex until the kinetic energy is dissipated by friction (150).

While the occurrence of tornadoes has been reported on all the continents except Antarctica, the meteorological conditions necessary to produce the destructive storms are maximized in the Great Plains - Mississippi Valley Region during spring. During the period 1955-1967, an average of more than 600 tornadoes per year was reported in the United States (140). About one-half occur during April, May, and June. Occurrences are most frequent during the warmer part of day due to the convective processes involved. Approximately 23 percent of total tornado activity occurs between 4:00 and 6:00 p.m.; 82 percent occurs between noon and midnight. Wolford (172) provides additional details for the years 1916-1958.

Regional occurrences. The Lower Mississippi Region, located just south and east of the most tornado-prone section in the world, has had numerous tornado disasters. A few of the outstanding tornadoes or tornado families that have occurred in the region during the 20th Century are listed in table 13.

Table 13 - Some Outstanding Lower Mississippi Region Tornado Outbreaks, 1901-1971

Year	Date	Location	Time	Lives Lost	Number Injured	Est. Property Damage
1908	Apr $24^{1/}$	C. and EC. La., S. Miss.	5 a.m	100	649	\$ 880,000
1923	Apr 4	Alexandria- Pineville, La.	5 p.m.	14		750,000
1942	Mar $16\frac{1}{}$	C. to NE. Miss.	4 p.m.	75	525	1,400,000
1952	Mar $21^{1/2}$	Ark., W. Tenn., N. Miss., SE. Mo.	3 p.m mdnt.	204	1184	13,800,000
1953	Dec 5	Vicksburg, Miss.	5:35 p.m.	. 38	270	25,000,000
1964	Oct 3 ² /	Larose, La.	6:30 a.m.	. 22	165	500,000
1971	Feb 21 ¹ /	NE. La. to WC. and NW. Miss.	3:10~ 7:30 p.m.	113	2003	19,000,000

^{1/} Tornado families.

^{2/} In circulation of Hurricane Hilda.

Figure 49 shows the initial points of reported tornado touchdowns in the Lower Mississippi Region during the years 1951 through 1970 (145). Approximately 5 percent of the total number of United States tornadoes have occurred in the region. Indications of some demographic bias may be noted in this figure. The only positive identification of the tornado is human visual sighting. The maxima noted near centers of population and in areas of intensive rural settlement reflect to an unknown degree the greater numbers of potential observers and reporters in these areas.

Figure 49. Initial Points of Ground Contact of 624 Verified Tornadoes in Counties Making up the Lower Mississippi Region During the Years 1951-1970

SURFACE WATER

The surface water supply of the Lower Mississippi Region is principally derived from precipitation and runoff within the region, streamflow from sources outside the region, and ground water sources recharging both within and outside the region. Much of the water is stored in ground water aquifers, lakes, surface reservoirs, and streams before flowing to the sea. Water not consumed within the region ultimately flows into the Gulf of Mexico or returns to the atmosphere by evaporation or transpiration.

The streamflow system within the region is composed chiefly of the Mississippi River and its tributary streams between Cairo, Ill., and the Gulf of Mexico and the coastal area streams of southern Louisiana. The total drainage area of streams within the region is about 102,400 square miles, 40,740 square miles of which contribute flow to the Mississippi River. The remaining 52,660 square miles of the region are drained by the Atchafalaya River and other streams which flow into the Gulf of Mexico. A schematic diagram of the pattern of streamflow within the region and the drainage area and mean flows at the mouths of many of the major streams are shown in the area runoff diagram in figure 50. Figure 51 is a regional map showing major lakes and streams, WRPA boundaries, State boundaries, major cities, and other pertinent features. It also presents isopleths of the mean annual runoff generated in the Lower Mississippi Region.

Quantity

The mean annual discharge generated within the Lower Mississippi Region under 1973 levels of development is about 117,380 c.f.s. This is equivalent to about 15.5 inches of runoff or about 85 million acrefeet of runoff per year. About 47 percent of this flow is discharged into the Mississippi River through its tributaries, with the remainder flowing through other routes to the Gulf. About one-half of the flows generated within the region originate in WRPA's 9, 5, and 2. The flows produced in these and the remaining WRPA's are shown in table 14, a tabulation of annual discharges for the Lower Mississippi Region. The Mississippi River and coastal streams in the region collectively discharge an average of about 671,100 c.f.s., or 485 million acre-feet, per year into the Gulf of Mexico. These figures include flows passing into and through the region as well as those generated within the region. About 453,000 c.f.s. are discharged through the Mississippi River, 186,500 c.f.s. through the Atachafalaya River, and the remaining 31,600 c.f.s. through coastal streams in WRPA's 8, 9, and 10.

Major inflow into the Lower Mississippi Region is from the Ohio and Upper Mississippi Regions, which contribute a mean annual flow of

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

MEAN ANNUAL RUNOFF IN INCHES

FIGURE 51

Table 14 - Mean Annual Discharge for the Lower Mississippi Region, 1973 Conditions

	Area Square Mean		Mean Flows in Area (c.f.s.) Exceedence in Percent of Time					
WRPA	Mile	Annual	80	90	95			
1	2,435	453,000 1/	260,000 1/	200,000 1/	170,000 1/			
2	16,723	19,770 2/	5,898 2/	4,635 2/	3,999 <u>2</u> /			
3	10,653	13,810	2,412	1.996	1,761			
4	13,355	17,670	5,550	3,590	2,490			
5	20,413	20,440 3/	2,750 <u>3/</u>	1,690 3/	1,245 3/			
6	5,520	6,350	580	349	255			
7	6,574	7,740	870	677	596			
8	5,705	5,700	1,700	1,500	1,400			
9	13,297	14,500 <u>4/</u>	4,600 4/	3,300 <u>4</u> /	2,600 4/			
Atchafalaya River Outlets		186,500	72,800	52,000	41,600			
10	7,729	11,400	2,600	1,400	800			
The Region	102,404	Flows Generated 117,380	26,960	19,137	15,146			
		Flows Thru Region 671,100	341,700	258,200	216,400			

 $[\]frac{1}{2}$ Flow for Mississippi River at mouth including inflows into the area from other areas.

3/ Does not include flows from WRPA 6.

approximately 452,000 c.f.s. into the region. Additional inflows to the region average 25,500 c.f.s. from the White River Basin, 40,000 c.f.s. from the Arkansas River Basin, and 31,000 c.f.s. from the Red River Basin.

The mean annual discharge values discussed in the preceding paragraphs represent the ultimate quantity of water from the region that can be made available for use. However, this quantity can never be realistically obtained for use because of the physical limitations of available storage sites and increases in natural losses that occur with

^{2/} Does not include contributions from Arkansas and White River Basins above backwater effects of Mississippi River.

^{4/} Does not include flows generated within Atchafalaya Floodway.

development. The availability of surface water within the region can be defined on a percentage basis, such as the flow equaled or exceeded for various periods of time. For general planning purposes, dependable yields at potential reservoir sites should be considered as the lowest mean annual flow for the period of record, or about the 90 percent duration flow. Flows for durations of 80 and 95 percent should also be considered. In the Lower Mississippi Region, a discharge of about 341,700 c.f.s. can be expected to occur about 80 percent of the time, 258,200 c.f.s. about 90 percent of the time, and 216,400 c.f.s. about 95 percent of the time. These flows include inflows from outside the region. These duration figures and those for each WRPA are given in table 14.

Present Utilization

Withdrawals from surface water sources in the Lower Mississippi Region during 1970 averaged about 22,265 c.f.s. and were equivalent to about 19 percent of the mean annual flow generated within the region (117,380 c.f.s.). Surface water withdrawals constituted about 74 percent of the total withdrawals in the region, with the remainder coming from ground water sources.

Major surface water withdrawals were from WRPA 10, which withdrew 40 percent (8,765 c.f.s.) of all the surface water withdrawn in the area. The coastal areas, WRPA's 8, 9, and 10, together accounted for about three-fourths of the region's total surface water withdrawal, with most of the water being used in the rapidly expanding basic metal and petrochemical industries in the New Orleans-Baton Rouge, La., area. Major purposes of surface water withdrawals were for industrial uses (7,120 c.f.s.), power production (6,915 c.f.s.), and fish and wildlife enhancement (4,870 c.f.s.).

Ground water withdrawals in the region during 1970 averaged about 8,290 c.f.s. About 45 percent of these withdrawals were from WRPA 2 and were used for irrigation of crops. Irrigation was also the leading use of ground water withdrawals in the entire region, averaging 5,390 c.f.s. during 1970. Industrial and municipal withdrawals totaled 1,280 and 625 c.f.s., respectively.

About 12,120 c.f.s., or 40 percent of the total ground and surface water withdrawals from the Lower Mississippi Region, were consumed. The remaining 18,435 c.f.s. that were withdrawn were released and returned to streamflow. These releases resulted in a net decrease in streamflow in the region of about 3,830 c.f.s.

The areas consuming the largest quantities of water were WRPA's 10, 2, and 9, which together accounted for over 75 percent of the total consumption of water in the region. Major consumptions were for irrigation (5,260 c.f.s.), fish and wildlife enhancement (4,245 c.f.s.), and industrial uses (1,310 c.f.s.).

Additional information on the withdrawals of ground and surface water in the Lower Mississippi Region during 1970 is given in table 15. Also presented are pertinent data on the consumption of water in each area and in the entire region.

Table 15 - Water Use in 1970, Lower Mississippi Region (c.f.s.)

WRPA 1/	Municipal	Industrial		Irrigation	Other Agriculture		Mineral Industry	Fish and Wildlife	Rural Domestic	Total c.f.s.
				Surface	Water Withdr	awn				
2 3	3.26	7.9	610.7	412.3	1.6	2.3	5.6	809.1	0	1852.8
3	0.0	5.4	666.5	38.1	5.1	.9	1.1	134.9	0	852.0
4	0.0	58.1	424.6	193.4	8.4	21.7	1.2	24.0	0	731.3
5	26.0	135.5	1659.6	183.5	7.4	10.4	14.7	374.1	0	2411.1
0	.9	51.3	0.0	57.3	3.7	4.0	1.2	98.7		217.1
7	0.0	.8	0.0	1.2	3.7	1.7	.7	3.9	0	12.0
8	1.0		899.0	0			43.4 2/	3.1	0	3044.2
9	10.9	1647.4 2/	508.4	1176.5	.0	51.2	421.6 2/	562.7	0	4378.8
10	277.3	$3118.7 \ \overline{2}/$	2146.8 2/	0		7.8	358.1 2/	2856.7	0	8765.3
	320.0	7120.7	6915.6	2062.3	29.9	101.6	847.6	4867.2	0	22264.6
				Ground W	ater Withdraw	11				
2	50.7	52.2	7.8	3441.0	6.2	13.2	.6	90.0	38.3	3700.0
3	207.7	146.6	0	6.8	7.6	4.8	.5	15.5	29.9	419.4
4	83.4	76.1	48.2	267.0	5.6	87.9	.5	24.0	33.6	626.3
S	58.1	184.9	.5	385.4	5.0	24.3	70.6	19.7	24.9	773.4
6	11.6	44.0	.5	181.4	2.5	9.5	9.8	5.2	10.4	274.8
7	18.6	113.3	1.5	11.2	2.5	7.0	4.9	3.9	8.0	170.9
8	85.3	251.1 2/	14.0 2/	4.7 1081.9	7.8	1.6	0	1.6	7.00	372.8
9	100.8	368.9	14.0	1081.9	10.9	52.7	0	187.6	26.0	1843.0
10	9.0	40.8	33.2	7.8	1.6	4.7	0	3.1	5.4	107.0
	625.2	1277.9	119.7	5387.2	49.7	205.7	86.9	350.6	183.5	8287.6
				Wat	er Consumed					
2	20.0	24.0	3.9	2808.6	7.8	1.6	0	181.4	38.3	3085.0
3	77.2	22.6	9.3	31.9	12.7	.6	. 0	29.5	29.9	214.0
4	31.0	11.0	4.2	341.0	14.0	104.0	.8	48.1	33.6	587.7
5	31.3	105.7	15.2	440.5	12.4	33.0	13.7	393.7	25.0	1070.4
6	4.7	10.1	.5	179.0	6.2	12.9	3.2	103.9	10.4	330.6
7	7.0	9.3	.9	10.5	6.2	8.2	5.5	7.8	8.1	63.4
8	32.6	598.3	58.9	3.1	7.8	3.1	12.4	3.1	2.5	721.7
9	41.9		34.1	1441.5	10.9	99.2	12.4	618.5	9.2	2625.7
10	107.0	172.1 2/	130.2 2/	4.7	1.6	12.4	133.3 2/	2858.2	2.0	3420.9
	352.7	1311.2	257.2	5260.8	79.6	275.0	181.3	4244.2	159.0	1212.0

Withdrawals from WRPA ${\bf l}$ were allocated to adjacent WRPA. Include withdrawals from brackish water sources.

Stream Management

Stream management practices include the measurement, regulation, and conservation of the water resources within the region. Considerable progress has been made in making these practices more efficient for the benefit of all the various water users. This progress has been mainly through the development of means to physically control the streamflow, through the development of criteria for use in planning the regulation of streamflow, and through work on the legal aspects involved in controlling streamflow.

The physical control and management of the streams involve the construction and operation of storage and diversion facilities, such as flood-control reservoirs and locks and dams on the major navigation channels, and channel modification and maintenance to control drainage.

The operation of reservoirs for flood control usually follows a pattern of discharging excess water in the early months of the fall, then maintaining active capacity during the winter months to allow for the storage of runoff from heavy winter and spring rains. The stored water is then released as needed for power generation, water supply, pollution abatement, and other purposes in the channels downstream. Frequently, the releases needed to supplement low flows in the summer months may lower the reservoirs to the point that no excess water will have to be released to maintain active storage prior to the flood season. These releases during the low flow season are based on predictions of reservoir levels through use of rainfall data, reservoir inflow and release rates, river stage data, and minimum release rates allowable at the site. Maximum releases during flood periods are usually restricted by the ability of the downstream channel to carry the flows. On the power generating reservoirs, a rule curve and method of operation have been developed which allow the most advantageous use of the streamflow available at each of the respective sites. The water used for power generation is also used for other purposes downstream. Releases for the generation of power during flood periods are limited to prevent their possible contribution to excess discharges which could result in flooding downstream.

Diversions. The major diversions of water in the region are for irrigation and for fish and wildlife enhancement. Many of the main agricultural areas rely on stream diversions to augment a deficient water supply during the growing season. The largest irrigation withdrawals are made in WRPA's 9, 2, 4, and 5 (table 15). Major crops irrigated are cotton and rice. The use of water for fish and wildlife enhancement involves the diversion of water into temporary impoundments during the fall and winter to serve as feeding areas for migratory waterfowl and the diversion of water for fish ponds and commercial fish hatcheries.

Channel modification and flood-control works. Channel modification and related projects have a significant effect on the discharge of various streams in the region. Most of the modifications involve flood control, navigation, and conservation, and include levees, revetments, dikes, channel shortening and enlargement, and dredging. This work is undertaken only when the project is proved to be justified from an economic standpoint.

Principal channel modification works in the region include improvements along the entire length of the Lower Mississippi River for navigation and flood protection. The work on the main stem consists of cutoffs to shorten the river and reduce flood stages, revetments to stabilize the channel and stop the river's meandering, dikes to direct flow and regulate channel alignment, and dredging to realign the

channel and provide necessary depths for navigation. These improvements are discussed in detail in the channel improvement section of WRPA 1.

Major tributary improvements consist of levees, floodwalls, pumping stations, storage reservoirs, channel enlargements, and floodways to provide flood protection, navigation, recreation, and water supply within the tributary basins. Work in the upper part of the region consists of the operation and maintenance of the Wappapello Dam and Lake and levee and channel improvement works in the St. Francis River Basin in Arkansas and Missouri, the Obion and Forked Deer Basins in Tennessee, and the White River Basin in Arkansas. The White River Backwater Levee and Graham Burke Pumping Plant serve to protect about 145,000 acres of alluvial farmland from annual flooding [122]. A navigation channel is maintained on the White River from the mouth to the vicinity of Augusta, Ark.

On the streams of the central part of the region, principal works include the maintenance and operation of the Ouachita and Black Rivers 9-foot navigation project, the multipurpose Blakely Mountain Dam on the Ouachita River, Narrows Dam (Lake Greeson) on the Little Missouri River, and DeGray Dam and Lake on the Caddo River. Work in the Yazoo Basin in Mississippi consists of the maintenance and operation of four flood-control lakes--Arkabutla, Enid, Sardis, and Grenada, and downstream flood-control and channel improvements works on the Yazoo River and its tributaries. Extensive drainage improvements have also been completed or are under construction in the Boeuf and Tensas Basins in Arkansas and Louisiana and the Big Sunflower Basin in Mississippi.

Principal works in the lower part of the region include construction of a system of flood-control features, such as levees, revetments, and floodways, below the Old River which are capable of safely passing flood flows through the area. This system is discussed in the Project Design Flood and Floodways sections of WRPA 1. Numerous small flood-control works are under construction along with four large hurricane protection projects in the coastal areas. Navigation work is maintained on the various passes of the Mississippi River at the mouth, along the Gulf Intracoastal Waterway, and on the Calcasieu River below Lake Charles in southwestern Louisiana.

Forecasts. The River Forecast Center (RFC) of the National Weather Service at Slidell, La., provides comprehensive river forecasting and warnings services for the Lower Mississippi Region. The RFC daily processes meteorological and hydrological information through a computerized model, obtaining stage and crest forecasts at many points. Crest forecasts range from a few hours in advance for small drainage areas to two to three weeks in advance for downstream points on the major streams. Weather Service River District Offices (RDO's) in Cairo, Ill., Memphis, Tenn., Little Rock, Ark., Jackson, Miss., and Shreveport, Lake Charles, and New Orleans, La., are responsible for the preparation of

preliminary flood warnings and the dissemination of forecasts and warnings supplied by the RFC; for data collection for the RFC; and for liaison with other agencies to keep abreast of forecast needs and changes in reservoirs, flood-control works, etc., that may affect river stages.

Streamflow

Various periods of flow at selected gaging sites within the Lower Mississippi Region are presented in this report because of the availability of discharge data at the sites. The streamflow for the available period of record at each site was considered to be representative of the various drainage and hydrologic conditions which exist in the surrounding area and reflect regulation and use under 1973 levels of development. At sites which have been recently regulated and at which streamflow data were obtained from a period of record too short to be statistically sound, the flows were adjusted based on routings of the past flows at the sites under regulated conditions.

The selected sites were chosen to assist the various agencies who prepare the fundamental appendices of this report by providing detailed data on each of the streams of interest. This information was also compiled to serve as a guide to plan formulation in satisfying the projected water needs in each part of the region.

Measurement facilities. Streamflow data at 102 sites in the region were selected for presentation in this appendix. The specific locations of these sites are shown on the map of low flows at selected sites in the region in figure 52 and on the mean annual runoff maps in each WRPA section and are identified by the U. S. Geological Survey station numbers which are commonly used in the USGS annual publications. The stations are numbered in a downstream direction along the main stem of the streams. The full station number may contain eight digits, the first of which, or first two if greater than nine, represents the part number (a number which is assigned to a large area covered by one volume of the Water Supply Paper series published by the USGS) and the remaining six, the last two of which are usually decimals, represent the specific gaging location. In cases where the two decimal digits are zeros, one or both of them may be dropped. The names of the respective sites, along with the station numbers, controlling agencies, gage data, drainage areas, period of records, mean flows, extremes of stage and discharge, and other pertinent hydrologic data, are given in the "Streamflow Summary for Selected Sites" in each WRPA section. The mean annual flow values are average flows for the base period at the selected sites and reflect regulation and use under 1973 levels of development. The extreme stage and discharge values are observed values for the entire period of record available at the gaging stations, and, for certain cases, may be affected by regulation. The discharge values usually correspond to the crest stage obtained by use of a recording gage or a nonrecording gage read at the time of the crest. All elevations given throughout this report are in feet referred to mean sea level.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

SEVEN DAY LOW FLOWS AT SELECTED SITES

FOR RECURRENCE INTERVALS OF 10 AND 30 YEARS (7 DAY $\mathbf{Q}_{\mathbf{10}}$ AND 7 DAY $\mathbf{Q}_{\mathbf{30}}$)

FIGURE 52

Pertinent data on the drainage area and mean annual discharge for each WRPA are shown in table 14 and on the area-runoff diagram in figure 50. Isopleths of mean annual runoff for the region are shown in figure 51. The discharge for each WRPA represents the flow which is generated within that area, or the outflow of the WRPA minus the inflow. Also shown in this table are the approximate flows that would be available 80, 90, and 95 percent of the time under 1973 levels of development and utilization.

Average discharge for the region. The mean annual discharge generated within the Lower Mississippi Region is 117,380 c.f.s. The major portion of this flow is generated within WRPA's 9, 5, and 2. The mean annual flow which passes through the region and is discharged into the Gulf of Mexico is about 671,100 c.f.s. About 453,000 c.f.s. is discharged through the Mississippi River, 186,500 through the Atchafalaya River, and the remaining 31,500 c.f.s. through the tributary streams of WRPA's 8, 9, and 10.

In each WRPA section (except WRPA's 8, 9, and 10) a figure showing the monthly discharge generated within the WRPA is presented. This figure presents the mean monthly discharge generated within the area for the maximum, mean, and minimum months, and for monthly flows exceeded 20 and 80 percent of the time. These flows were derived by taking the respective discharge data at key stations in each area and adjusting the data to apply to the area as a whole. For estimating purposes, the high or low water flows for probable occurrences other than 20 or 80 percent of the time may be obtained from curves drawn through plots of the maximum (0 percent), 20 percent, mean (approximately 50 percent), 80 percent, and minimum (100 percent duration) discharges.

Average discharge for selected stations. Detailed data on the average discharge at each of the selected sites are presented in the WRPA sections of this report. Tables of mean flows by months for each site are given in the surface water sections. These flows are based on observed flows and are given for a period of record which reflects regulation and utilization under 1973 levels of development. A streamflow summary in each WRPA section presents a list of the selected gaging sites, the controlling agency and station number at the site, the drainage area above the site, the period of record for which discharge data were available, and pertinent stage and flow data at the site.

Specific details regarding the use of the data common to each WRPA are discussed below rather than in each of the individual WRPA sections of this report. Much of the discharge information given in the surface water sections was calculated by computer analysis using discharge data on magnetic tapes. The U. S. Geological Survey was responsible for most of the data collection and the preparation of the magnetic tapes. Both USGS and Corps of Engineers computer programs were used to analyze this data.

Peak flow frequency curves for many of the selected sites in the area are shown in the WRPA sections. These curves are a reflection of the annual peak discharge at the stations and were computed using the log Pearson Type III procedure [6]. No peak flow frequency curves were computed at stations immediately downstream from reservoir sites because of the effect of regulation on peak flows. Curves were not computed at some sites because the periods of record were too short to give a true statistical representation of the peak flows at the sites.

Low flow frequency curves were computed for most of the selected sites in the region and are shown in the WRPA sections. These curves are a statistical representation of the lowest mean flows for periods of 3 to 120 consecutive days which can be expected to occur at the sites for recurrence intervals from 1 to 50 years. No low flow frequency curves were computed at sites directly below the reservoirs because of the large variations in low flow due to regulation of the reservoirs. At certain sites on streams regulated by locks and dams, accurate low flow measurements were difficult to obtain; hence, no low flow frequency curves were computed at these sites. A summary of the seven-day low flows for 10- and 30-year recurrence intervals at selected sites is presented in figure 52.

The low flow frequency curves can be used to determine the dependable supply of surface water without storage in a stream. The slope of the low flow frequency curves is a reflection of the geologic and hydraulic characteristics of the drainage area. The slope and magnitude of flows on the seven-day curves, which are usually affected by ground water flows, indicate the amount of ground water storage available to sustain streamflow. A flat slope indicates that a relatively large amount of ground water is available, and a steep slope indicates that either a small amount or no ground water discharge is available [104].

Duration curves for daily flows at many of the selected sites within the region are shown in each of the WRPA sections. These curves are essentially cumulative frequency curves that show the percentage of time that specified discharges were equaled or exceeded at the site during given periods of record. These curves indicate flow characteristics of a stream throughout its entire range of discharges, without regard to the sequence of occurrence. The maximum daily flows are listed on the curves due to lack of space required to extend the curves to the zero percent exceedence point.

Future long-term flow patterns for a stream can be reliably predicted from discharge duration curves if no unusual climatological or manmade changes occur. The curves can be used for direct comparison of flow characteristics of different streams or of different points on the same stream on a flow per square mile of drainage area basis. The curves are commonly used by water resources planners as a guide to define the water availability at a specified site on a stream.

The slope of the duration curve is a quantitative measure of the variability of the discharge in a particular stream. A flat slope on the lower end depicts a well sustained flow or a stream with a relatively high yield. The overall slopes of the curves for streams having large low flow yields are usually flatter than those for streams having small low flow yields [105].

The duration curves can also reflect characteristics of regulation in a stream. Regulation can be detected on the duration curves by the flattening of the curves in the middle (30-70 percent) exceedence ranges. The reservoirs produce this change in flow characteristics by reducing the peak flows and by increasing low flows at the site for a large percent of the time. This is illustrated by the duration curves for sites below the reservoirs in WRPA's 4 and 5.

Dependable yield characteristics of streams in the Lower Mississippi Region are presented in tables in the WRPA sections of this appendix. The tables give the lowest recorded mean flows for periods of 1 to 10 consecutive years, both in absolute numbers and as a percentage of the mean flow for the period of record. In general, the minimum mean annual discharge on Mississippi River tributaries averaged about 34 percent of the mean annual flow and ranged from a high of 84 percent to a low of 9 percent of the mean annual flow at most of the stations. These percentages do not reflect conditions on streams with short periods of record or small drainage areas.

The mean annual discharge is the ultimate quantity of water available for use in a basin. However, physical limitations of available storage sites and increases in natural losses that occur with development make it impossible to obtain this quantity of water. In most of the basins of the Lower Mississippi Region, potential storage sites which could approach ultimate storage development do not exist. The dependable yield data presented in the WRPA sections and the preceding paragraphs indicate that the use of the mean annual flow to determine the total quantity of water available is not realistic. Instead, dependable yields from potential reservoir sites for preliminary planning purposes should be considered as the lowest mean annual flow which occurred in the period of record at the site or about the 90 percent duration flow. These figures give a more practical measure of the total quantity of water that could consistently be made available for use at a given site.

Variation in precipitation and discharge. Variations in precipitation causes both long-term and seasonal variations in discharge on all the streams within the region. Long-term variations in precipitation and discharge at several of the major selected sites in the region are shown in the WRPA sections. The mean and 5-year moving averages of both precipitation and discharge are presented in the figures. The 5-year moving averages were computed to illustrate the general trend of the

relationship between precipitation and discharge at the selected sites.

Seasonal variations in runoff and streamflow are caused directly by variations in rainfall. The monthly discharge hydrograph for the region and those for each WRPA depict this variation. The larger seasonal flows in the area usually occur during the months of February to May. This is caused by the heavy winter and spring rains over the immediate area and the increased flow from meltwater in the neighboring regions. Low streamflow usually occurs during July to November. This is generally attributable to the small amount of rainfall over the immediate area at this time of year.

Flow Velocities

Information concerning the rate at which water passes through a reach of a stream is important in determining the capacity of the stream to assimilate waste. This information is essential to water resources planners and industrial developers who are responsible for the economic use of the water in the stream and to agencies concerned with the safeguarding of the well-being of the public. The flow velocity data are important in regard to both domestic and industrial pollution, thermal pollution, and water quality factors related to pesticides, dissolved oxygen content, and sediment transport.

Time of travel studies have been made in WRPA's 1, 5, 7, 8, and 9 on a total of eleven streams in the region. Travel times were determined by timing the maximum concentration of a dye injection as it moved downstream through a specific subreach of a stream at flows which were equaled or exceeded 50 to 99 percent of the time. These travel time studies were used to compute the average velocity in the subreach of the stream for intermediate and low flow conditions. In WRPA 1, hydrographic surveys were used on the Mississippi River near Rosedale and Vicksburg, Miss., to determine the average velocities. A summary of the data derived from the time of travel studies is shown in figure 53. The approximate reach of stream for which the study was made, the length of the reach, the velocity of flow in miles per hour, the average flow in the subreach at the time of study, and the duration of flow are presented in the figure. The velocities shown in figure 53 are for a specific discharge, and since velocity varies with discharge, the user should be cautious in applying these data to any other condition of flow. The velocities represent the average velocity through a subreach; however, velocities can vary from point to point within a subreach. The velocities given for WRPA's 1, 5, 8, and 9 were derived from preliminary studies and are subject to revision, whereas those for WRPA 7 were obtained from published reports [74]. No low flow velocity data were available for streams in any of the other WRPA's.

River Profiles

River profiles of selected streams in the Lower Mississippi Region are presented in the WRPA sections. These profiles were constructed

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

LOW FLOW VELOCITIES OF STREAMS

FIGURE 53

from topographic maps and data from available reports [101, 136, 138]. On most of the profiles, the 50 percent duration flow line was plotted from duration data at various stations along the streams. Profiles of regulated streams also show the navigation locks and dams and their respective pool stages.

Water Quality

Introduction

Large quantities of surface water of good quality are available regionally; however, significant water quality problems exist in some places in the region. The dissolved-solids concentration of water from most streams generally is less than 500 mg/l (milligrams per liter), and only three streams sampled contained dissolved solids greater than 1,000 mg/l.

The extent of salt-water intrusion in all streams discharging into the Gulf of Mexico has not been precisely determined; however, measurements on the Mississippi River since 1929 show that the maximum extent of salt-water intrusion occurred in October 1939. The intrusion extended 120 river miles from the Gulf to a point approximately 15 miles upstream from New Orleans, La. During this period the river discharge was low, ranging from 75,000 to 90,000 c.f.s. for 30 consecutive days.

Water temperatures of the Mississippi River near St. Francisville, La., range from 34° to 88° F. Since 1954, the temperature was equal to or less than 82° F 95 percent of the time, and equal to or less than 64° F 50 percent of the time.

Water in streams during periods of low flow is mainly ground water discharge. Consequently, the chemical quality of surface water at low flow is similar to the chemical quality of the ground water. The chemical characteristics of this water are related to the chemical composition and solubility of the rocks in the drainage basins and the length of time that the water has been in contact with the rocks.

Use and reuse of water for irrigation in some areas has resulted in a general downstream increase in the dissolved-solids concentration of some streams. Deterioration of the chemical quality of surface water supplies occurs in and around major industrial and municipal complexes.

Sediment is a water quality problem in many parts of the region and adversely affects uses of water for municipal, industrial, agricultural, fishery, recreational, and aesthetic uses. Additional information on water quality and sediment and erosion can be obtained in Appendix L and Appendix S, respectively.

Temperature

Streams of the Lower Mississippi Region exhibit a characteristic seasonal curve following closely the mean air temperature seasonal variation, with the highest mean monthly water temperature of 80° to 85° F usually in August, and the lowest means of 40° to 58° F occurring in January. For the region near the Gulf, mean temperature may be slightly higher, and, for the northern part of the region, slightly lower than those stated. Figure 54 shows ranges in water temperature in selected streams. In general, summer water temperatures on small streams, sift streams, and those shaded by vegetation and woods, will be lower than the temperatures which prevail on the larger, slower flowing streams well exposed on the valley floor. Much of a stream temperature gain is caused by solar radiation, and high values of turbidity cause this heat gain to be localized in the near-surface layers. In slow moving or stagnant streams, these high temperatures stimulate the growth of taste-and odor-producing organisms which compound water use problems.

Drastically changed temperatures in streams below newly installed dams can be a considerable problem for fish and water oriented wildlife managers. To compensate for this, some method of temperature control for outflows must be planned in the design stage, such as multilevel ported intake towers on outlet conduits which allow a mixing in order to obtain beneficial temperatures in the channels and streams below the outlet works.

Cold water temperatures are seldom a problem, especially in the lower part of the region where below freezing temperatures are of such short duration that flowing streams rarely are frozen. Below Cairo, Ill., ice floes from the upper rivers impede river traffic only infrequently.

Sedimentation

The rate of erosion and the amount of sediment carried by streams have been influenced by changes in land use and agricultural practices in the Lower Mississippi Region. The rate of sedimentation can be controlled and decreased to a certain extent by the use of wise land and water management practices, but can never be eliminated.

The overall problem of sedimentation in the Lower Mississippi Region is a closely related derivative of the problems of land surface erosion, channel bank erosion, and channel scouring. The problem of land surface erosion is considered to be a land-resources related problem and is discussed in further detail in Appendix S, Sediment and Erosion. Problems relating to sediment transported by streams and sediment in reservoirs are discussed in the following topics.

Figure 54. Ranges in Temperature of Water in Selected Streams for Periods Indicated

Sediment in Streams

Sediment is transported in streams as suspended load or as bed load. The suspended load is composed of very fine clay, silt, or sand particles which are held in suspension by colloidal suspension or by the turbulence of the flowing water. The coarser particles may also be carried along as suspended material or may be moved along the bottom and transported as bed load. The bed load of the stream is composed of particles which are removed from the streambed by the friction of the flowing water and are rolled or skipped downstream along the bottom of the stream. The size, shape, and density of the streambed material, stream velocity and turbulence, and water temperature are factors which determine the amount of bed load which a stream may be capable of carrying.

Flow conditions in a stream have a significant effect on the amount or concentration of sediment carried by the stream. During periods of low flow, sediment concentrations are usually low and change little from day to day. However, during periods when streamflows are increased by the addition of surface runoff containing newly eroded material, the sediment concentration may increase rapidly.

One of the major sedimentation problems in the region is the formation of bars or "crossings" on the Mississippi River, which often results in impeded river traffic. These "crossings" occur where the stream current crosses from one side of the river to the other and deposits sand to form the bars. The depth at the crossing determines the navigation depth available on the river. These crossings are dredged in order to maintain a 9-foot navigation channel between Cairo, Ill., and Baton Rouge, La. The required dredging in this reach of the river usually ranges from about 30 million to 70 million cubic yards per year [132].

Due to the large variations in sediment concentration and bed load, the collection of sediment data over a long period of record is often required to define the average annual sediment yield from a basin. However, data covering only a few years of record are often useful in predicting a value for the long-term sediment yield in basins where sedimentation is a problem. Shown in tables 16 through 20 are sediment data which were available for stations along the Mississippi, Atchafalaya, and Red Rivers. No sediment data were readily available for any of the other major streams in the region.

Reservoir Sedimentation

A major purpose of many of the major reservoirs or man-made lakes in the Lower Mississippi Region is the storage of flood waters during the wet season and release of the water during critical dry periods. When a lake is constructed to store the water of a flowing stream, the immediate destruction of its storage capacity by means of sediment deposition begins. As the muddy waters of the flowing stream enter the reservoir and the velocity decreases, the sediment-carrying capacity of the

Table 16 - Summary of Measured Suspended Sediment Loads at Main River Stations Lower Mississippi River at Baton Rouge and Red River Landing, Louisiana 1/

Water Year							Average Sediment
(October- September)	Sediment Load (in 1,000 tons)	Sand (in 1,000 tons)	Per- cent	Silt (in 1,000 tons)	Per- cent	Discharge (1,000 dsf)	Concentration (in ppm)
1949-50	548,330	107,770	20	440,560	80	245,200	828
1950-51	575,280	67,600	12	507,680	88	224,810	947
1951-52	408,390	73,820	18	334,570	8.2	200,660	754
1952-53	212,580	28,920	14	183,660	86	142,200	552
1953-54	107,730	14,090	1.3	93,650	87	88,660	449
1954-55	211,490	39,930	19	171,550	81	137,460	570
1955-56	161,220	25,920	16	135,300	84	127,530	468
1956-57	291,388	53,043	18	238,345	82	172,875	624
1957-58	325,774	95,203	29	230,571	71	195,653	616
1958-59	230,504	78,693	34	151,811	66	129,253	660
1959-60	318,234	77,219	24.	241,015	76	163,856	718
1960-61	231,754	71,471	31	160,283	69	168,133	510
1961-62	264,031	94,037	36	169,994	64	191,007	512
1962-63	100,397	23,770	24	76,627		105,125	353
1963-64	125,189	17,836	14	107,353	86	122,965	377
1964-65	201,653	43,683	22	157,970	7.8	150,152	497
1965-66	148,341	38,159	26	110,182	74	123,918	443
1966-67	112,283	16,986	1.5	95,297	85	131,861	336
1967-68	158,132	39,490	25	119,642	75	162,971	362
1968-69	165,527	38,959	24	126,568	76	167,999	365
1969-70	149,408	49,979	33	99,429	67	151,448	365
Averages	240,364	52,218	22	188,193	78	157,321	538

Note: The sand fraction is the material retained on the No. 230 sieve (0.062 mm). The silt fraction includes all of the fine material passing the No. 230 sieve.

1/ Sampling at Red River Landing after 1 January 1958, and Tarbert's Landing after 1 October 1963.

Table 17 - Summary of Measured Suspended Sediment Loads at Main River Stations Atchafalaya River at Simmesport, Louisiana

water Year	Total Measured		and-Si	It Ratio	Water Year	Average Sediment	
(October- September)	Sediment Load (in 1,000 tons)	Sand (in 1,000 tons)	Per- cent	Silt (in 1,000 tons)	Per- cent	Discharge (1,000 dsf)	Concentration (in ppm)
1951-52	196,460	48.890	25	147,570	75	80,800	
1952-53	135,230	28,440	21	106,790	79	56,969	880
1953-54	54,130	13,110	24	41,020	76	31,980	627
1954-55	93,360	24,080	26	69,280	7.4	50,425	686
1955-56	67,175	15,540	23	51,730	77	49,080	507
1956-57	225,474	55,700	25	169,774		74.059	1,126
1957-58	214,390	48,082	22	166,308	78	89,413	887
1958-59	83,230	20,944	25	62,286	75	55,729	553
1959-60	131,878	24,153	18	107,725	8.2	69,333	704
1960-61	133,372	40,524	30	92,848	70	76,814	643
1961-62	151,913	57,675	38	94,238	62	88,881	633
1962-03	44.876	8,610	19	36,266	81	47,060	353
1963-64	58,132	11,358	20	46,774	80	33,112	650
1964-65	109,971	28,777	26	81,194	74	66,448	619
1965-66	83,689	19,554	23	64,134	77	51,024	607
1966-67	54,451	7,195	13	47,255	87	57,327	352
1967-68	110,513	19,566	18	90,947	8.2	80,176	510
1968-69	119,904	27,444	23	92,460	77	83,292	533
1969-70	76,883	20,606	27	56,276	73	74,539	382
Averages	112,896	27,381	24	85,520	76	64,025	640

Table 18 - Summary of Measured Suspended Sediment Loads at Main River Stations Red River at Alexandria, Louisiana

Water Year	Total Measured		Sand-Si	It Ratio		Water Year	Average Sediment
(October- September)	Sediment Load (in 1,000 tons)	Sand (in 1,000 tons)	Per- cent	Silt (in 1,000 tons)	Per- cent	Discharge (1,000 dsf)	Concentration (in ppm)
1951-52	39,560	6,450	16	33,110	84	8,460	1,730
1952-53	43.760	11,900	27	31,860	73	12,550	1,290
1953-54	16,490	3,130	19	13,360	81	5,910	1,030
1954-55	21,830	3,590	16	18,240	84	7,340	1,102
1955-56	13,400	2,210	17	11,190	83	4,380	1,132
1956-57	82,385	16,950	21	65,432	79	16,779	1,817
1957-58	95,623	15,279	16	80,344	84	18,473	1,915
1958-59	13,565	4,164	31	9,401	-69	6,832	735
1959-60	31,939	6,231	20	25,708	80	9,821	1,204
1960-61	46,957	12,199	26	34,758	7.4	12,735	1,365
1961-62	45,582	10,906	24	34,676	76	12,515	1,349
1962-63	9,818	2,574	26	7,244	7.4	4,992	728
1963-64	11,445	1,930	17	9,516	83	4,201	1,008
1964-65	20,620	3,939	19	16,681	81	6,856	1,818
1965-66	32,063	6,805	21	25,257	79	8,048	1,476
1966-67	15,378	2,654	17	12,724	83	6,795	838
1967-68	70,312	20,990	30	49,322	7.0	16,184	1,608
1968-69	59,887	16,654	28	43,234	72	14,815	1,497
1969-70	32,354	7,834	24	24,520	76	8,693	1,377
Average	36,998	8,230	22	28,767	78	9,809	1,317

Table 19 - Summary of Measured Suspended Sediment Loads in Atchafalaya Basin Outlets Wax Lake Outlet at Calumet, Louisiana

Water Year	Total Measured	Sand-Silt Ratio				Water Year	Average Sediment	
(October-	Sediment Load	Sand (in	Per-	Silt (in	Per-	Discharge	Concentration	
September)	(in 1,000 tons)	1,000 tons)	cent	1,000 tons)	cent	(1,000 dsf)	(in ppm)	
1965-66	12,477	539	4	11,938	96	15,307	302	
1966-67	11,851	633	5	11,218	95	17,194	255	
1967-68	22,571	1,779	8	20,792	92	24,048	348	
1968-69	22,892	2,016	9	20,876	91	24,984	339	
1969-70	15,651	1,162	7	14,489	93	22,113	262	
Average	17,088	1,226	7	15,863	93	20,729	301	

Table 20 - Summary of Measured Suspended Sediment Loads in Atchafalaya Basin Outlets Lower Atchafalaya River at Morgan City, Louisiana

Water Year	Total Measured	S	and-Si	lt Ratio		Water Year	Average Sediment
(October-	Sediment Load	Sand (in	Per-	Silt (in	Per-	Discharge	Concentration
September)	(in 1,000 tons)	1,000 tons)	cent	1,000 tons)	cent	(1,000 dsf)	(in ppm)
1965-66	32,442	1,080	3 3	31,362	97	35,716	336
1966-67	29,625	905		28,720	97	40,119	273
1967-68	63,076	4,339	7 9	58,737	93	56,072	417
1968-69	61,958	5,750		56,208	91	58,331	393
1969-70	44,942	5,161 3,447	11	39,781	93	52,000	320

water decreases, and the sediment begins to settle to the bottom of the lake. A continual accumulation of the sediment deposits tends to decrease the capacity of the lake for storing water. The sediment continues to distribute itself evenly throughout the lakebed and, therefore, is not visible from the surface of the lake. Hence, much of the capacity of the lake for storing water can be lost to sediment accumulation although no problems may seem to be apparent. For this reason, the need for frequent reservoir sedimentation surveys is apparent.

Table 21 shows current data on the sediment studies made on four flood-control lakes in WRPA 4. These studies were made to determine the degree of storage capacity lost due to sediment deposition in the lakes. Additional data for other lakes in the region were not readily available for publication in this appendix.

Table 21 - Sedimentation Data for Selected Reservoirs in Lower Mississippi Region

		Lake		
Item	Arkabutla	Sardis	Enid	Grenada
Drainage area (square miles)	1,000	1,545	560	1,320
Drainage area excluding reservoir (square miles)	948	1,454	516	1,219
Total sediment deposited (acre-feet)	12,238	20,564	2,829	17,377
Total years of operation $\underline{1}/$	21	21	10	12
Estimated 50-year sediment deposition (acre-feet)	29,500	50,000	5,400	73,450
Volume of sediment per year (acre-feet)	590	998	287	1,470
Volume of sediment per year per square mile (acre-feet)	0.62	0.69	0.56	1.21
Percent of total storage lost	2.33	1.31	0.43	1.30

^{1/} At time of study (1966).

GEOLOGY AND GROUND WATER

Geology

The geologic units exposed in the Lower Mississippi Region range in age from Precambrian to Holocene; however, most of the region is blanketed by Quaternary deposits. Immediately underlying the Quaternary deposits in the northern part of the region are scattered subcrops of rocks of Paleozoic age and limited areas of Cretaceous sediments; elsewhere, the underlying sediments are of Tertiary age (figure 55).

In the northern part of the region, the dip of the beds generally is toward the axis of the Mississippi embayment syncline. In the central part of the region, the direction of dip of the beds changes gradually as a result of the regional structure, and in southern Mississippi and Louisiana the dip is toward the axis of the Gulf Coast geosyncline (figure 56). Structural features such as the Monroe uplift and Jackson dome have affected the dip, thickness, and physical character of the beds. Generally, the beds thicken down the dip and attain their maximum thickness in the areas of greatest subsidence. The stratigraphic and structural relations of the geologic units are shown in figure 57 and table 22.

Sediments of Jurassic age, which occur only in the subsurface of the southern part of the region, are the oldest known post-Paleozoic rocks in the region. As subsidence continued, sediments of Cretaceous age were deposited successively farther north to a point above the present confluence of the Mississippi and Ohio Rivers. During the Tertiary and Quaternary Periods, subsidence in the area that had become the Mississippi embayment diminished, subsidence of the Gulf Coast geosyncline began, and the cyclic advances of the sea terminated progressively farther southward. The last major advance of the sea into the northern part of the Mississippi embayment probably occurred during the late Eocene.

Since the beginning of the Miocene, tremendous quantities of sediments have been deposited in the subsiding Gulf Coast geosyncline. During Pleistocene and Holocene time, the Mississippi River Valley was entrenched and alluviated. The Quaternary deposits now filling the Mississippi River Valley are underlain by the subcrop of the older rocks. On the west side of the valley, Paleozoic rocks and sediments of Cretaceous age underlie the Quaternary deposits near the periphery of the Coastal Plain. Elsewhere, the Quaternary deposits are underlain mostly by Paleocene, Eocene, and Miocene rocks.

Precambrian and Paleozoic Rocks

The Mississippi embayment of the Gulf Coastal Plain was formed in a subsiding trough in the rocks of Paleozoic age which now bound the

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

GEOLOGIC MAP

FIGURE 55

STRUCTURAL MAP OF THE LOWER MISSISSIPPI REGION

Figure 57 GENERALIZED GEOLOGIC SECTIONS IN THE LOWER MISSISSIPPI REGION

coastal plain at the fall line. In the area included in this report, Paleozoic rocks are exposed only in Arkansas and Missouri; however, these rocks are the "basement rocks" underlying the northern part of the region (figure 55). In the parts of Arkansas and Missouri that are outside the Gulf Coastal Plain, the exposed rocks range from Cambrian to Pennsylvanian in age. Precambrian rocks are exposed in the St. Francois Mountains in Missouri [159].

Mesozoic Rocks

The oldest known Mesozoic rocks occur in the subsurface of the Lower Mississippi River Region, are of Jurassic age, and underlie southern Arkansas, central and southern Mississippi, and Louisiana. Overlying the Jurassic rocks and extending somewhat farther north are rocks of the Lower Cretaceous Series. Lower Cretaceous rocks are exposed only in Pike County, Ark.

The Upper Cretaceous Series underlies most of the region. Although there are extensive exposures of Upper Cretaceous rocks in the Mississippi embayment, exposures in the study area are restricted to a few counties near the boundaries of the area in Arkansas, Mississippi, Missouri, and Tennessee.

Cenozoic Rocks

Most of the sediments now exposed in the Lower Mississippi Region were deposited during the Tertiary and Quaternary Periods. The Tertiary Period was characterized by repeated invasions and regressions by the sea and the sediments are on alternating series of sand and clay strata of continental, deltaic, and marine origin. Tertiary rocks comprise the Paleocene, Eocene, Oligocene, Miocene, and Pliocene Series. The most extensive deposits belong to the Eocene and Miocene Series.

Occurrence of Ground Water

Fresh ground water in the Lower Mississippi Region occurs principally in the unconsolidated sediments composing the Cretaceous, Tertiary, and Quaternary units; however, water is available from Paleozoic aquifers where they are exposed or underlie younger rocks in the northern part of the region. In those parts of the study region outside the Gulf Coastal Plain, the Paleozoic aquifers are the principal source of ground water.

Large volumes of fresh 1/ ground water are stored in permeable rocks underlying the Lower Mississippi Region. The average volume in

Water containing less than 1,000 mg/l of dissolved solids is classified as fresh.

KA	matex	un pu		SALEDES		DATE		Marian.		(minut)		STATES		TRACES		KI MISSIP	
		MUNICIPAL AND PLACEMENT OF THE COMMENT OF THE COMME		Allorial deposits, andifferentiated		Attestal Assetts, undifferentiated		All wish deposits.		Alloyial deposits, smallferentiated		Allevial deposits, unlifferentiated		Mindal separity, and Turnstated		Allerial depo	
	QUATE REPORT	PLAISTOCKE AND PLINCER		Deman Terrare depositor spatifrementiates (itroselle Formation		Leens Terrous Separits, pullTerrentiated		Local former deposits, empliformer a test		Terran deposits,	Locus Terrus deposits, undifferentiates Thiosems(1) gravel			toris Darmon deposits, unifferentlyied		Terrana depos andifferent Ditrocella P	
		NO PERSONAL PROPERTY OF THE PERSONAL PROPERTY		Floring Elemention											Par criss 1 For Alexander of the Control of the Con		
		Liscon		Number Tensily											Taketery Dress	oring time	
			Jackson Greup	State Cay	Zackeen Sreap	Paliffarentiabed									Jedon Seng	Men	
canadi	NATION	EXCEP	Clathorne Group	Constitute Permittee Constitute Permittee Constitute Permittee Constitute Permittee Constitute Permittee	Chalbarres Strong	Controls from the Cook Mountain from the Cook Mountain from Frontier Cook Nove Frontier Corrier Stand	Claiforne Group	Undifferential et and	/		Chatherae Sesap	Constraint Strength Furkame Furnation, attribute Costs Negation Furnation System Level	Chathorne brings	Dook and a home formation from the formation from the formation formation for the formation formation for the formation formation for the	Tatherne leng	For many states of the San Bank Otty	
			Allega Smage	main'i arentante	William Graup	West.Promostates		Vilos Peredies	Allow Greap	Sell Chrosolated		William Fernation	William Greek	Finar (stant Fernation Nest Villay Sant CA Semanteric Fernation	Will box Telestr	Tell(Cerent	
		ASSERT	Milesy broug	Scholist Permitte Scholist Permitte Person Streek Stax	Michelly Group	Deptary Creek Stay Stayton Portestin	Attent Seets	Parters Oresic Stay Staylor Fictivation	Michael Smith	Fortens Creek Clay Digram Fortskilvin	Michael Series	Parties Ores Clay Clayton McCAlles	Michigan Smith	Surface Creat Clay (Supplied Formation)	Michael Grengs	For Creation Section Por	
dom/pi	251747334	779.7		Annahijaka Dadi Kumatan Dadi Parataya Clay Merimmak Meri Angana Dadi Annahi wa Mari		Example Net Emotion Red Malfred Net Emotion Shix Son Frentin Stoom Net		No frank possible milety book		Addition and					Section Seconds	Simpley For Simpley For Simpley Simpley Simple Simp	
				Tokic Pomation Engls Pomation Uncline Formation		Tokio Yermation Vocibine Yermation						Topostonia Pomastico		Solar Frontiss Constant Emelin	Tank dinna tenu	Smiliffere	
		LOWER CONTACTOR		aditionentiated		UnitfFerentiated		midle Parent Laked		Tudifferentiated		Tell (Yewat) Kint		THE PERSON NAMED IN COLUMN NAM		Teres	
				Optimizated									-				

No served building call.

Evilor Group (Score Saries), unlifferentiated, willow Group (Palescene Series), upper part unlifferentiated; Polet Hills and Saleston Espections are lower two units.

		1	T	- Company		ASEARCAS		Microsoftia.		themore	ESTUCKI			7001534		MCSELSCOPY		
ERA	arctes	SPATES	-	LE TELESA	-	ASTRACAS	-		-	ALL LANCES	-	ELECTRICAL STREET	-					
		MALCONE AND PLATERY- CHAR		allurial deposits, undifferentiated		Allowial deposits, untifferentiated		Alturial deposits, unlifferentiated		Alievial deposits, unnifferentiated	Allovial deposito, unilizarentialei			Alloyal tenesits, mairresentlated		Allorial deposits sodifferentiates		
		1											Linear		Lorin			
	STREET													Nervo asperto,		terrare deposits.		
				Terrane deposits. Builfreestiated		Dermon Sportfo. Gallffermilated		Service deposits,		Terrace sycultr, undifferentiated		Terror deposits; antifferentiates		undifferentiated		uninterentiated		
		PLEASURED AND PLEASURED	1													Discoulie Fernation		
			-															
						7		7			\	7		/		Percagnal's From these Fort Adam Sensor Economics Scaler		
					1		1		1		1		1			Resentation Member		
		lg scissi												\ /		Catalogia Casistone		
													X					
				Thistory Formalist						\/		V			draw	Nyrus Formation Successful Day Medier Models twee tender		
								\wedge				A			Zastk	Marie Liver Los Bester		
															Yeah	Met Cyrles ford finder		
					/			/ \					/			Present PULL Paral		
			The same	Sum Eq	9900										draw	There day Should Nester Thinks Not Select		
			25 9000		terns Oz										do hos	Paints Not Nether Union Said Nether Song Delitared Creek Restor		
			780	Marille around Permitting	(Jac)			\			/			, Technology	Jac.	Manage Press Freediles		
				Southern Formation		Special Properties				7\		Dourteld Derugh Judica Frankling addition		cosetals,		lookiel i ressiles		
				losa montala Formation		Sank Houstwis Zemani (vo.				/		Cook Structure Francisco		Dock Restale Personalists and Chemistated		los tratela frencia		
			No.	Sparts (Wo)		tyarte tani	Group					Sports Stati	Mount		100	Specia Sent		
North I		xxon.	4475eyrs				Thorne						Sorra	Neophile State	borne	Single Char Single Char		
			8	Sea West Frenchis		Same Signer Personalium	f				B	Saturate President	CIAL		Tall	Milesto President		
				Garrian Juni		Carrier Sund				\						Saridian but Tenter Saridian but Tenter		
														Figur Island Formation				
				emiliterentiated 2	drawn	hall/ferentle:00		Vilory FremUsy		MailPferentiated			drow	Tort Filling Sans	9	Indifferentiated		
			th say		412 avx				dreax 9				Clear	Ital Invasionies Personalies	Albert .			
			Tron.						3									
			*	telat tilla Firmities														
		FALSE RESERVE		Date of the Car	255025	terrain creat Cay		Parkers Greek Clay		Northern Street Stay				Personal Proof Clay	910			
			7		Day.	Copies Pirentics	Den C	Depter Semaking	Michigan in	Claylon Formation	Strang in		20.00	Digital Formation	DANY B			
			100		100		N.				*		J.		M			
			1	arkadelinia Med		Arketelinia Set		No Crack Portation	-					No. (red Pressure)		N. Cour Personal		
				Autotasi seed		Sacronic Med												
				Saratoga Clar														
				Marketon Mark America Challe		Marinesia Mari Amora Chalk									1	Marin Colle		
						Seek Fronklin										Della Marrilla Dal Arrola Ulon-		
conc	2012201	RETAINING !		productive Seri		Investigati Nati												
				Touls Formation		Youks Formation												
				Orgin Ford State											9	WATER COST		
												Tomatora Presiden			Ma (775)	Dardy President		
				Woodbine Portstion		Routhine Fernalism									and here	ministed Color Freedom Manager Steel		
		1.0500				0.0000										cultiverentiated		
	LOSCIA CONTROL DE LOS			mitfferentiate1		Indifferentiated	_		-		-			Testifferentiated		Palifrerentiated		
		PALESTON		mutifferentiated				Unitifierentiated		Ondifferentiated	Colliformatical							

Win sentral feutriess only.

 $[\]mathscr{U}_{\text{Wilsox Group}}$ (Score Derive), unifferentiated. Wilsox Group (Falcours Deriva), upper part unifferentiated; Dolet Hills and Naborton Formations are lower two units.

storage in aquifers is estimated to be about 75,000 acre-feet per square mile, or a total of about 7,500 million acre-feet, a quantity sufficient to cover the 100,000-square-mile area to a depth of about 120 feet. An even larger volume of water is stored in fine-grained sediments (clay and silt) which have high porosity but very low permeability. Only a small part of this stored water can be withdrawn using conventional methods.

Aquifers are classified as confined and unconfined aquifers. Confined (artesian) aquifers are bounded above and below by beds of lower permeability than that of the aquifer itself. Unconfined (water table) aquifers are characterized by a free water table and are not confined under pressure.

The more prolific and extensive aquifers are the permeable sand and gravel beds in the unconsolidated sediments. Water from precipitation moves into the subsurface where these beds are exposed. Except in the outcrop areas, the water is confined in these aquifers under artesian conditions. The altitude of the water table in the upland outcrop areas provides sufficient hydraulic head to move water through some of the aquifers to depths as great as 3,500 feet, thereby displacing or "flushing" the connate saline water.

The unconsolidated aquifers are irregular in thickness and lithology, exhibiting extreme variations in the capability of storing and transmitting water. Some individual aquifers underlie many thousands of square miles, and water-bearing characteristics vary according to changes in thickness and permeability. Hydraulic interconnection of aquifers is not uncommon, and groups of aquifers may form aquifer systems that are not necessarily restricted to a single geologic unit.

Consolidated rocks forming the Paleozoic aquifers are water bearing due to primary porosity or secondary porosity. Where rocks have not been subjected to extensive compaction or deformation, as in the Ozark Mountains of Missouri, ground water occurs in permeable zones and in solution openings (secondary porosity). Tectonic disturbances may result in compaction of consolidated rock to the degree that primary porosity is destroyed and ground water commonly occurs in joints and fractures, as in the Ouachita Mountains of Arkansas.

With the exception of some aquifers having solution openings, consolidated-rock aquifers are generally lower yielding than aquifers in unconsolidated rocks.

Movement of Ground Water

Ground water moves from points of recharge to points of discharge. In water table aquifers, the direction of movement is generally related

to topography. The movement in artesian aquifers, more complex, is controlled by the strike and dip of the aquifer, changes in permeability in the aquifer, and the locations of recharge and discharge areas. Generally in the Lower Mississippi Region, the deeper aquifers in a given locality crop out farther inland and at higher altitudes than do the shallower aquifers; as a result, they commonly have higher artesian heads.

In the northern part of the Lower Mississippi Region, the natural movement of ground water in the Cretaceous and Tertiary aquifers was toward the axis of the Mississippi embayment. Water moved from upland recharge areas to areas of natural discharge in the Mississippi Alluvial Plain. In Louisiana and southwestern Mississippi, the regional ground-water movement was southward toward the Gulf of Mexico. Hydraulic gradients originally were low, probably less than 2 feet per mile.

The regional movement of water in the Mississippi River Valley Alluvial aquifer was and is southward except in the vicinity of larger streams. The hydraulic gradient was probably 1 foot per mile or less, or about the same as the slope of the surface of the alluvial plain.

The historic direction of movement in many aquifers is now altered considerably, even reversed, in areas where large quantities of ground water are being withdrawn.

Aquifers

Aquifers in the Lower Mississippi Region are in rocks ranging in age from Cambrian to Holocene. Generally, the high yielding aquifers are in the Cretaceous and younger deposits in the Gulf Coastal Plain. Aquifers in the uplands of Arkansas and Missouri, outside the Coastal Plain, are in consolidated rocks that range in age from Precambrian to Pennsylvanian. In the Coastal Plain, water is obtained from Paleozoic rocks where they underlie Cretaceous rocks at shallow depths.

The highest yields of ground water are obtained from sand and gravel aquifers, especially the alluvial and terrace deposits of Quaternary age. Some limestone, dolomite, and chert aquifers of Paleozoic age are capable of large yields to wells; however, much of the region outside the coastal plain is underlain by low yielding sandstone and shale.

Aquifers containing fresh ground water underlie the entire region except in part of the coastal area of Louisiana and a small area in central Louisiana. In some areas, fresh water extends to depths of more than 3,000 feet and in other areas to less than 100 feet (figure 58). It is not uncommon for saline water to occur at intermediate depths, underlain by fresh-water aquifers. Two or more major aquifers underlie most localities in the region, offering a choice for meeting requirements of quantity or quality.

MAP SHOWING ALTITUDE OF THE BASE
OF FRESH WATER IN COASTAL PLAIN AQUIFERS

Paleozoic Aquifers

Water-bearing Paleozoic rocks underlie those areas of the Lower Mississippi Region outside the Gulf Coastal Plain. The areas are in the Arkansas Valley and Ouachita Mountains in Arkansas, and in the Ozark Plateau in Missouri.

In the Arkansas Valley, rocks of Pennsylvanian age are capable of yielding only a few gallons per minute (gpm) to small wells. Water quality varies considerably from place to place.

Ground water in the Ouachita Mountains occurs in joints, fractures, and bedding-plane separations, principally in sandstone units. Wells commonly yield less than 10 gpm and are capable of meeting requirements for domestic and stock water.

In Missouri, that part of the Ozark Plateaus included in the Lower Mississippi Region is underlain by several aquifers in Cambrian and Ordovician rocks [159]. The only aquifer capable of large yields is the Potosi Dolomite, capable of yielding more than 1,000 gpm to large, deep wells in some localities. The Potosi generally yields good quality hard water that has a dissolved-solids content of less than 300 mg/l.

Areas where wells tap rocks of Paleozoic age that underlie Coastal Plain deposits are Jackson, Lonoke, and White Counties, Ark.; Alcorn County, Miss.; and all or part of Bollinger, Butler, Cape Girardeau, Scott, and Stoddard Counties, Mo. In Alcorn County, Miss., a chert of Paleozoic age yields about 3 mgd for municipal and industrial supplies [72]; elsewhere in the Coastal Plain, the Paleozoic aquifers are characterized by low yields.

The Paleozoic chert in Alcorn County, Miss., yields as much as 800 gpm to municipal and industrial wells at Corinth. Results of aquifer tests show coefficients of transmissibility 2/ ranging from 15,000 to 40,000 gpd per foot [71]. Water from the aquifer is a moderately hard sodium bicarbonate type containing about 300 mg/l of dissolved solids.

Cretaceous Aquifers

Aquifers of Cretaceous age underlie the northern part of the Lower Mississippi Region. Of the Cretaceous units, only the Ripley Formation and its equivalents (the McNairy Sand and Nacatoch Sand) form a major aquifer. Other cretaceous aquifers are significant because they are the best or the only sources of significant supplies of ground water in some

^{2/} The U. S. Geological Survey now uses the term transmissivity as an index of the ability of an aquifer to transmit water. Transmissivity, expressed in cubic feet per day per foot, is equivalent to transmissibility divided by 7.481, the number of gallons in a cubic foot.

areas. The Cretaceous aquifers are not utilized extensively due to the availability of ground water in shallower aquifers.

The Cretaceous aquifers in the region are the Gordo and Eutaw Formations, Coffee Sand, and the Ripley Formation. The Eutaw yields highly mineralized water in part of WRPA 4 and the present trend is to develop water supplies at greater depth in the Gordo Formation, which contains fresher water.

The Gordo Formation (figure 59) is a source of ground water in the northeastern part of WRPA 4 where it is the only aquifer capable of yielding enough fresh water for public or industrial supplies. The urgent need for water has resulted in wells being drilled to depths of over 2,000 feet in Calhoun and Webster Counties, Miss. [10].

The yields of wells made in the sand and gravel of the Gordo Formation range from about 100 to 500 gpm. In the Lower Mississippi Region, transmissibilities range from low to about 14,000 gpd per foot and the average permeability 3/ is about 500 gpd per square foot.

Water from the Gordo is of fair to poor quality in the region. The dissolved-solids content ranges from 300 to 1,000 mg/1; however, the water generally does not require treatment.

The Coffee Sand (figure 59) contains fresh water in the northeastern part of WRPA 4 and the southeastern part of WRPA 3. The formation, composed of varying proportions of sand and clay, is generally a low-yielding aquifer. Permeabilities as high as 300 gpd per square foot and transmissibilities as high as 30,000 gpd per foot have been reported in Alcorn County, Miss. [72]. The largest reported yield for a well made in the aquifer is about 600 gpm, but most public water-supply wells yield about 250 gpm.

Water from the Coffee Sand generally contains iron and is a calcium bicarbonate type in and near the outcrop. As the water moves down the dip, it becomes a sodium bicarbonate type, commonly suitable for general use without treatment.

In Tippah County, Miss., and in several counties in Tennessee, the Coffee Sand is the best source of ground water. It is the only

Permeability has been replaced by the term hydraulic conductivity; both express the rate of flow of water through a 1-foot-square section of the aquifer under unit hydraulic gradient. Permeability is expressed in gallons per day per square foot. Hydraulic conductivity is expressed in feet per day. These parameters are obtained by dividing transmissibility or transmissivity by aquifer thickness in feet.

GEOHYDROLOGIC MAP OF THE COFFEE SAND AND GORDO FORMATION

significant source of ground water in some areas where the underlying Eutaw Formation is thin or where Paleozoic rocks are not aquifers.

The Ripley Formation (figure 60) and its equivalents or members, the McNairy Sand and the Nacatoch Sand, contain fresh ground water in an area of nearly 20,000 square miles. The McNairy Sand is the most extensive Cretaceous aquifer in the area. The unit crops out in Alcorn and Tippah Counties, Miss.; Carroll, Chester, and McNairy Counties, Tenn.; and immediately to the east of the study area in the remainder of the Gulf Coastal Plain in Tennessee and Kentucky. The McNairy Sand is exposed in Missouri on Crowleys Ridge and subcrops beneath the Mississippi River alluvium. The Nacatoch Sand crops out in southwestern Arkansas.

In Mississippi and Tennessee, the McNairy Sand is underlain by older units of the Ripley Formation. In Kentucky, the McNairy Sand (of formational rank) is underlain by rocks of Paleozoic age. It is overlain by the Owl Creek Formation in Mississippi, Missouri, and Tennessee.

According to Pryor [86], the McNairy Sand is a deltaic unit comprising a lower sand, a medial clay, and an upper sand. The upper sand is the principal aquifer.

In the south part of WRPA 3, the McNairy Sand dips westward at a rate of about 35 feet per mile. The direction of dip gradually changes to southwest in Kentucky. Most of the present utilization of the aquifer is in or near the outcrop, and wells are seldom more than a few hundred feet in depth. The maximum depth for fresh-water wells in the aquifer ranges from about 2,000 feet in western Kentucky at the axis of the embayment syncline to about 2,300 feet in the Memphis area.

The McNairy Sand in Missouri crops out on the northern part of Crowleys Ridge. It underlies and is hydraulically connected to the Mississippi River Valley alluvial aquifer to the west and north of Crowleys Ridge.

Withdrawals from the Ripley Formation and its equivalents have generally been restricted to areas where the aquifers occur at shallow to moderate depths. The regional potentiometric surface is nearly unaffected by pumping, and the artesian pressure is high enough that wells made in the Mississippi alluvial plain and in the lowlands along streams in western Tennessee and Kentucky will flow.

Results of aquifer tests in Kentucky and Tennessee show coefficients of transmissibility of 32,000 gpd per foot and 25,000 gpd per foot [13]. Based on these results, large wells in the McNairy Sand may be expected to yield as much as 1,500 gpm (with 100 feet of drawdown) at favorable locations in the area.

GEOHYDROLOGIC MAP OF THE RIPLEY FORMATION, MCNAIRY SAND, AND NACATOCH SAND

Water from present areas of use in the McNairy Sand is low in dissolved solids and is generally a calcium bicarbonate type. The dissolved-solids content of the water increases to the west and south, becoming slightly saline southwest of a line extending from Craighead County, Ark., through Memphis, Tenn., to Calhoun County, Miss.

The Nacatoch Sand in southwest Arkansas crops out in Clark, Hempstead, and Nevada Counties and dips to the southeast at a rate of about 30 feet per mile. Although most wells in the formation are for domestic and stock use, some municipal water-supply wells are reported to yield as much as 300 gpm.

The results of one pumping test made in Hempstead County, Ark. [12], show a coefficient of transmissibility of 3,600 gpd per foot. This value is probably representative for the rather limited area in which the aquifer contains fresh water (figure 60).

Tertiary Aquifers

The Tertiary System includes several major aquifers in the Eocene, Miocene, and Pliocene Series. These aquifers are separated from the Cretaceous aquifers by several hundred feet of clay in the Midway Group and are themselves separated in most places into two large groups by a thick Late Eocene clay (the Jackson Group).

The oldest Tertiary aquifers are in the Wilcox Group, which crops out in the uplands in WRPA's 3, 4, and 7 and in small areas in the northern part of WRPA 5. The Claiborne Group includes the Meridian-upper Wilcox aquifer, Carrizo Sand, Sparta Sand, Cockfield Formation, and minor aquifers in or equivalent to the Cane River Formation. The Forest Hill Sand and Vicksburg Group, of Oligocene age, are minor aquifers that are limited in areal extent and water-bearing capacity. The Miocene Series includes the Catahoula Sandstone and the Hattiesburg, Pascagoula, and Fleming Formations (for this study, all except the Catahoula Sandstone are classified as undifferentiated Miocene or Upper Miocene deposits). Miocene aquifers crop out in the southern part of WRPA's 4 and 7 and in a small area in WRPA 9. Much of the Miocene outcrop is covered by Quaternary deposits. The Pliocene Series overlies the Miocene in Louisiana and is in turn overlain by Quaternary deposits.

The Wilcox Group includes the lower Wilcox aquifer and minor aquifers in the middle and upper parts (figure 61). The lower Wilcox aquifer contains fresh water in WRPA's 2, 3, 4, and 7. Irregular sand beds in the middle and upper parts of the group contain fresh water in WRPA's 2, 4, 5, and 7.

The lower Wilcox aquifer includes in Tennessee the Fort Pillow Sand [65], which is correlative with the "1,400-foot" sand of the Memphis area and eastern Arkansas. As a result of overlap by the Claiborne Group, the lower Wilcox aquifer is exposed at the surface only in a

GEOHYDROLOGIC MAP OF THE WILCOX GROUP

narrow belt in Kentucky, northern Mississippi, and Tennessee. The aquifer subcrops in Arkansas and Missouri beneath the Quaternary alluvium.

Recharge to the lower Wilcox aquifer is by precipitation on the outcrop, by infiltration of water from overlying Quaternary terrace and alluvial deposits, and by leakage from the overlapping sands of the Claiborne Group. Ground water movement is toward the axis of the Mississippi embayment.

About 10 percent of the water supply at Memphis is derived from the lower Wilcox. The aquifer is the primary source of ground water at West Memphis, Ark., and Jackson, Tenn., and at several smaller municipalities in northeastern Arkansas and northwestern Mississippi. Presently in northwestern Mississippi there is a trend toward developing the lower Wilcox for public and industrial water supplies because water from shallower sources requires treatment. The aquifer contains fresh water at depths of more than 2,000 feet in parts of WRPA's 2 and 4.

An excellent aquifer, the lower Wilcox in much of the area is capable of yielding 500 gpm or more to large wells. The largest yield reported is 2,000 gpm at West Memphis, Ark., and a well at Memphis yields 1,600 gpm [19]. Although the aquifer thins to the north and south of the Memphis area, it is capable of yielding as much as 600 gpm to wells at many locations in Arkansas, Kentucky, Mississippi, and Missouri. Results of pumping tests indicate coefficients of transmissibility ranging up to about 160,000 gpd per ft. The coefficient of permeability exceeds about 500 gpd per square foot in the Memphis area [19].

Water in the lower Wilcox aquifer is generally soft and is a sodium bicarbonate type. The most troublesome chemical constituent is iron, which occurs in concentrations of more than 0.3~mg/1 in some areas. The dissolved-solids content of the water is less than 500~mg/1.

The ground water withdrawa's from the lower Wilcox aquifer are estimated to total about 50 mgd. The aquifer is capable of yielding at least 150 mgd without serious consequences.

Irregular sand beds of limited areal extent and thickness occur in the middle and upper parts of the Wilcox Group in WRPA's 2, 4, 5, and 7. In some places, these minor aquifers are capable of yielding several hundred gallons per minute. These aquifers are important because they are good sources of ground water in some localities where the lower Wilcox aquifer is not capable of meeting water requirements. In other localities, the irregular Wilcox sands, though low yielding, contain water of excellent quality. Ground water withdrawals from these sources are estimated to total about 5 mgd in the Lower Mississippi Region.

The Claiborne Group in Arkansas and Louisiana includes, in ascending order, the Carrizo Sand, Cane River Formation, Sparta Sand, Cook

Mountain Formation, and Cockfield Formation. The Cane River and Cook Mountain Formations, composed mostly of clay in southern Arkansas and Louisiana, become sandy northward and the Cane River merges into the lower part of the Memphis aquifer. In Mississippi, the Claiborne Group comprises, in ascending order, the Tallahatta Formation (which includes the Meridian Sand Member at the base), Winona Sand, Zilpha Clay, Sparta Sand, Cook Mountain Formation, and Cockfield Formation. The Meridian Sand Member and the uppermost irregular sand beds in the Wilcox Group, hydraulically connected, form the Meridian-upper Wilcox aquifer. The remainder of the Tallahatta Formation and the Winona Sand, equivalent to part of the Cane River Formation, are minor aquifers in most of Mississippi; however, in northern Mississippi the proportion of sand increases and the units merge into the Memphis aquifer (figure 63). The Memphis aquifer (recently renamed Memphis Sand in Tennessee) is equivalent to all strata from the base of the Claiborne Group to the top of the Sparta Sand.

The Carrizo Sand consists of fine to coarse gray micaceous sand. In that part of the Lower Mississippi Region where it contains fresh water (figure 62), the Carrizo ranges from less than 100 to more than 300 feet in thickness and commonly is composed of more than 80 percent sand. The aquifer has not been used extensively in Arkansas, and the few aquifer-test data available do not reflect the hydraulic characteristics that probably characterize the downdip areas. Based on aquifer test results from the Meridian-upper Wilcox aquifer in northwestern Mississippi [71], the Carrizo Sand in eastern Arkansas would have a coefficient of permeability in the magnitude of 200 to 500 gpd per square foot and transmissibilities ranging from 10,000 to over 100,000 gpd per foot. Wells yielding several hundred to several thousand gallons per minute from the Carrizo are feasible. Water from the Carrizo in the Lower Mississippi Region commonly contains more than 500 mg/l of dissolved solids and is a sodium bicarbonate or sodium chloride type. In the Lower Mississippi Region, withdrawals from the Carrizo presently amount to less than I mgd. The aquifer is capable of yielding 40 to 50 mgd without an excessive decline in water levels.

In northwestern Mississippi, the Meridian-upper Wilcox aquifer (figure 62) comprises the Meridian Sand Member of the Tallahatta Formation and hydraulically connected sand in the upper part of the Wilcox Group. The Meridian Sand Member is the stratigraphic equivalent of the Carrizo Sand; the units have hydraulic continuity and both merge into the lower part of the Memphis aquifer. The Meridian-upper Wilcox aquifer is extremely irregular in thickness and lithology, being made up of irregular sand beds representing different geologic units. The irregularity of the aquifer contributes to the wide variation in hydraulic characteristics. Coefficients of transmissibility ranging from less than 10,000 gpd per foot to nearly 90,000 gpd per foot have been determined, and the average permeability is about 400 gpd per square foot. Well yields of more than 2,000 gpm have been reported, but in many places the

GEOHYDROLOGIC MAP OF THE CARRIZO SAND AND THE MERIDIAN-UPPER WILCOX AQUIFER

GEOHYDROLOGIC MAP OF THE SPARTA SAND AND THE MEMPHIS AQUIFER

aquifer is capable of only low yields. Water from the Meridian-upper Wilcox is generally of good quality but in some places requires treatment for iron removal or pH adjustment. In the Lower Mississippi Region, withdrawals in 1970 amounted to about 25 mgd, only a small part of a potential yield estimated at nearly 90 mgd.

In the Lower Mississippi Region, the Tallahatta Formation (exclusive of the Meridian Sand Member) is composed of irregular beds of fine to medium sand, clay, and siltstone. The formation is overlain by and hydraulically connected locally to the Winona Sand, a marly, glauconitic sand. Both formations merge northward into the Memphis aquifer. The irregular sand beds in the Tallahatta are sources of water for many low yielding wells; however, in a few localities the formation is capable of yielding several hundred gallons per minute to wells. The Winona Sand is a common source of water for small wells and is capable of only low yields. Both aquifers contain water that is generally suitable for domestic use without treatment; however, the water is generally more highly mineralized than water from either the underlying Meridian-upper Wilcox aquifer or the Sparta Sand, the next overlying aquifer.

Cropping out on the east and west sides of the Mississippi embayment and underlying the entire central part of the Lower Mississippi Region, the Sparta Sand (figure 63) is exceeded in areal extent only by the Mississippi River Valley alluvial aquifer. The Sparta ranges in thickness from a few feet where erosional remnants underlie the Mississippi River alluvium to more than 900 feet in Arkansas and more than 1,000 feet in Louisiana and Mississippi in areas near the downdip limit of fresh water. The Sparta is composed of irregular beds of sand and clay, some of which persist over very large areas. Although the Sparta forms a single regional aquifer system, at some localities the formation may contain three or more separate zones. The transmissibilities determined from pumping tests using wells screened in the Sparta range from less than 20,000 gpd per foot to 140,000 gpd per foot; however, these tests generally are indicative of the characteristics of one zone, and the aggregate transmissibility in many areas could exceed 300,000 gpd per foot. The average permeability of the Sparta is about 500 gpd per square foot [71].

Wells for public and industrial water supplies made in the Sparta Sand commonly yield 1 mgd or more. Yields of over 2,000 gpm have been reported and larger yields are feasible. Water from the Sparta is of good quality, suitable in many areas for general use without treatment. In other localities, treatment for iron removal or pH adjustment is needed and in some areas the water is highly colored by organic material in the aquifer. In a small area in Arkansas and in extreme downdip locations, the Sparta contains saline water. In 1970, the estimated withdrawal of water from the Sparta in the Lower Mississippi Region was about 200 mgd, about half of the estimated potential yield of slightly more than 400 mgd under moderate drawdown conditions. A recent report

on the Sparta Sand [87] indicates that the Sparta, now overdeveloped in some places, has experienced an average water level decline of about 70 feet during a period of 80 years in the Lower Mississippi Region. Because the average pumping rate during the period was much lower than the present 200 mgd, increases in withdrawals from the Sparta should be carefully planned.

The Memphis aquifer (figure 63) is second only to the Mississippi River Valley alluvial aquifer as a potential source of large quantities of ground water in the northern part of the Lower Mississippi Region. Because the aquifer not only underlies the alluvial plain but also underlies much of the coastal plain parts of Kentucky and Tennessee, it is perhaps the most important source of ground water in the northern part of the region. Recharge to the Memphis aquifer is mostly by precipitation on the outcrop in Western Kentucky and Tennessee; however, in the future additional recharge will occur through leakage from shallower sources, particularly the Mississippi River Valley alluvial aquifer.

The Memphis aquifer, composed of interbedded sand and clay, ranges from less than 400 feet to more than 800 feet thick. The principal direction of ground water movement is westward from the recharge area in the western part of Kentucky and Tennessee; however, a large cone of depression has developed as a result of withdrawals in the Memphis area [87].

Aquifer test results indicate coefficients of transmissibility ranging from 20,000 gpd per foot to 410,000 gpd per foot. Tests in the Memphis area showed an average transmissibility of 250,000 gpd per foot and the highest value reported, 410,000 gpd per foot, was for a well at Memphis [19]. Assuming average hydraulic conditions, wells yielding more than 1,500 gpm might be constructed at many localities underlain by the Memphis aquifer. In Kentucky, the Tallahatta Formation and Sparta Sand, partial equivalents of the Memphis aquifer, yield as much as several hundred gallons per minute to wells [27].

Water from the Memphis aquifer is generally of good quality. In some areas, treatment is required for iron removal, pH adjustment, or hardness.

The present pumpage from the Memphis aquifer is estimated to be about 200 mgd, of which about 180 mgd is withdrawn in the Memphis area. The aquifer has the capability of transmitting large quantities of water, and the estimated potential yield is about 1,050 mgd.

The Cockfield Formation crops out on both the east and west sides of the Mississippi embayment and underlies much of the Mississippi River alluvium in the central part of the Lower Mississippi Region (figure 64). In the area where it contains fresh water, the Cockfield is composed of fine to medium quartz sand, silt, and clay ranging in thickness from

GEOHYDROLOGIC MAP OF THE COCKFIELD FORMATION

less than 100 feet in the north to about 600 feet in the Vicksburg, Miss., area. Sand beds are discontinuous throughout and commonly contain carbonaceous material. The Cockfield is similar in hydraulic characteristics to the Sparta Sand, having an average permeability in Mississippi of about 500 gpd per square foot [71], and transmissibilities as high as 160,000 gpd per foot have been reported [111]. However, the hydraulic characteristics vary and values of less than 10,000 gpd per foot would not be unusual. The largest yields reported for wells tapping the Cockfield are at Greenville, Miss., where wells commonly yield more than 1,000 gpm and the largest reported yield is 2,100 gpm. In most of the region, however, much lower yields are usual. Water in the Cockfield is generally of good chemical quality; however, in much of the region the water is colored by organic material in the aquifer. In some places, treatment for iron removal or softening is required. The estimated withdrawal of water from the Cockfield for public and industrial use in 1970 was estimated to be about 35 mgd. The largest withdrawals, about 14 mgd, were made in the Greenville-Leland, Miss., area. The estimated potential yield of the aquifer is about 75 mgd.

Aquifers of Oligocene age in the Forest Hill Sand and the Vicksburg Group are very limited in yield and in areal extent. These aquifers are significant primarily because they are the only sources of fresh ground water between the top of the Claiborne Group (generally more than 500 feet deeper) and the base of aquifers in the Miocene Series. Both units include sand beds capable of yielding good quality water in quantities sufficient for domestic and stock wells. In a few places, the aquifers are capable of furnishing small community or industrial supplies. In the Lower Mississippi Region, utilization of these aquifers is limited to parts of Claiborne, Warren, and Yazoo Counties, Miss.

Miocene deposits underlie about the southern one-third of the Lower Mississippi Region, roughly southward from the latitude of Vicksburg, Miss. (figure 65). The beds dip southward and are overlain by Pliocene deposits south of the 31st parallel. Both sequences are overlapped by Quaternary deposits and, except for small Miocene outcrops in west-central Louisiana and southwestern Mississippi, are not exposed at the surface.

Lithologically, the Miocene and Pliocene deposits are virtually identical; the boundary between the two is established on the basis of paleontologic evidence. Together, they form a gulfward-thickening wedge of interfingering sand, silt, and clay beds many thousands of feet thick at the southern limit of the area. The sands are fine to medium grained, discontinuous, and interconnected to varying degrees. Collectively, they are considered a hydrologic unit in Louisiana in this report and are referred to as the Mio-Pliocene aquifer. In Mississippi, the Miocene is divided into the Catahoula Sandstone and the Hattiesburg and Pascagoula Formations. The Hattiesburg and Pascagoula Formations have

GEOHYDROLOGIC MAP OF THE MIO-PLIOCENE AQUIFERS

not been satisfactorily differentiated in the subsurface and are here considered undifferentiated upper Miocene aquifers.

The Catahoula Sandstone is the only artesian aquifer capable of yielding large quantities of ground water in the northern one-half of the southern part of WRPA 7. In the remainder of the southern part of the area, the Catahoula is overlain by undifferentiated upper Miocene strata of similar lithologic and hydrologic characteristics. The units comprise a thick section of irregular sand and clay beds that are hydraulically connected in varying degrees. The water-bearing capacity of the aquifers increases southward due to the thickening of the units and the increase in the number of aquifers. Aquifer tests indicate transmissibilities for individual sand beds ranging up to about 100,000 gpd per foot. Although the highest yield reported for a well in the southern part of WRPA 7 is about 800 gpm, much higher yields can be obtained, especially in areas underlain by two or more sand beds.

Water from the Catahoula Sandstone and the undifferentiated upper Miocene aquifers is generally a sodium bicarbonate type. In present areas of use, the water is low in dissolved solids but commonly requires treatment for iron removal or acidity.

In 1970, about 17 mgd of ground water was withdrawn from the Miocene aquifers in WRPA 7. Yield of the Miocene aquifers is conservatively estimated to be at least 70 mgd.

Individual sand beds in the Mio-Pliocene dip and thicken somewhat to the south. Thickness varies, as sands pinch out as well as coalesce with other sands; but most of the thicker and more extensive sand beds are in the 50- to 200-foot thickness range. Coalescence of sand beds results in locally massive sand beds several hundred feet thick. The sands are uniformly graded, and coefficients of permeability are generally in the 250- to 1,000-gpm-per-square-foot range. Because of the variation in sand thickness, coefficients of transmissibility vary over a wide range; however, most are on the order of 100,000 to 300,000 gpd per foot. Well yields are high, and yields of 1,000 to 3,000 gpm are obtainable in most of the area; even higher yields have been obtained by screening all or nearly all available sands.

Except for declines caused by concentrated pumpage in the Baton Rouge area, water levels are still high. Flowing wells may be obtained in WRPA's 8 and 10, and large yields are common, the largest being 3,200 gpm.

Water in the Mio-Pliocene aquifer is a soft sodium bicarbonate type where it is fresh, but the quality may be affected locally by water movement from overlying deposits. It is generally low in iron content and may be corrosive. Downdip, the water becomes salty. A so-called "ridge" of salty water occurs in south-central Louisiana where sands

beneath the Quaternary deposits do not contain fresh water. East and west of this "ridge," the Miocene and Pliocene sands contain fresh water to rapidly increasing depths. The maximum depth of fresh water is about -3,000 feet msl west of the "ridge" in WRPA 9 and about -3,500 feet msl east on the "ridge" in WRPA's 8 and 10.

Nearly 200 mgd is withdrawn from the Mio-Pliocene aquifer, and more than half of this amount is pumped in the Baton Rouge area. Almost all the water is used for municipal and industrial purposes. An additional 15 to 20 mgd flows to waste from uncapped flowing wells in southeastern Louisiana. On a regional basis, the aquifer is relatively undeveloped. Properly planned development can produce many times the present pumpage.

Quaternary Aquifers

South of a line projected through the east-west boundary between Louisiana and Mississippi, the Quaternary deposits form a gulfward-thickening wedge of alternating sand and clay beds. Quaternary deposits also occur as stream terrace and alluvial valley fill in most of the Lower Mississippi Region. Both the deltaic wedge and the thinner alluvium contain fresh water-bearing aquifers (figure 66).

The Citronelle Formation (considered by the U. S. Geological Survey to be of Pliocene age in Mississippi) includes beds of sand and gravel that are here considered part of the Quaternary aquifers in the Lower Mississippi Region. The Citronelle in Mississippi caps hills and ridges and thickens southward. In Louisiana, equivalent strata are included with Pleistocene deposits. The Citronelle in Mississippi, dissected and drained by streams, is generally a water table aquifer. In Louisiana, the aquifer dips beneath younger strata and becomes artesian.

Water from the Citronelle Formation is soft and low in dissolved solids. It is generally not satisfactory without treatment for most uses due to the low pH and high iron content.

In many areas, the saturated thickness of the Citronelle is 50 to 100 feet and the aquifer is capable of yielding several hundred gallons per minute to large-diameter wells.

The Pleistocene terrace deposits thicken rapidly south of the 31st parallel and form a thick wedge of interfingering sand and clay beds. The sands are characteristically discontinuous and are interconnected to varying degrees. They constitute a large aquifer system that extends throughout approximately the southern one-third of Louisiana. The sands are fine- to coarse-grained and graveliferous and are somewhat coarser in southwestern Louisiana, where they are called the Chicot-Atchafalaya aquifer. The Pleistocene aquifer is better developed in southwestern than in southeastern Louisiana, and fresh water occurs deeper and farther downdip to the south.

QUATERNARY DEPOSITS

Transmissibilities of the aquifer east of the Mississippi River are generally less than 200,000 gpd per foot; however, larger wells produce as much as 1,500 gpm. West of the river transmissibilities are much higher, as much as 1,000,000 gpd per foot for individual sand beds, and larger wells yield 1,000 to 4,000 gpm.

The quality of water in the Pleistocene aquifer is also different in southeastern and southwestern Louisiana. In southeastern Louisiana the water is generally soft, low in dissolved-solids content, and corrosive, except where affected by movement of hard water from the alluvial aquifer. In southwestern Louisiana, however, the water is generally a hard, calcium magnesium bicarbonate type, and high in iron content. In both areas, the water becomes salty downdip and with depth.

Sediments of Pleistocene and Holocene age comprise the Mississippi River Valley alluvial aquifer, which is a depositional feature of the Mississippi River system. The older Pleistocene alluvium is terraced, forming dissected surfaces higher than the present floodplains of major streams. The Pleistocene alluvium generally contains coarse sand or graveliferous sand at its base and grades finer upward; Holocene alluvium is composed of very fine-grained sand, silt, and clay. The Holocene sands are water bearing and are part of the Mississippi River Valley alluvial aquifer, but the Pleistocene alluvium is the major and most productive part of the aquifer.

The terrace deposits are dissected, and many segments are isolated and act as individual aquifers. The alluvial aquifer is also divided on a regional scale. Crowleys Ridge and the Mississippi River are boundaries that separate the aquifer into three major hydraulically independent units.

Ground water in the alluvium contributes to the base flow of streams it underlies. The natural direction of movement of water toward the streams is temporarily reversed during periods of high river stage. Seasonal reversals generally do not represent significant recharge to the aquifer, as most of the stored water is discharged to the stream as the stage lowers. Recharge from streams has been induced locally, such as along the White River in Arkansas, where heavy withdrawals have sufficiently lowered water levels adjacent to major streams. Most of the recharge to the aquifer is from precipitation. However, many portions of the aquifer are recharged by underflow where fine-grained surficial deposits inhibit direct recharge.

Thickness of the aquifer is highly variable, partly because the Quaternary sediments were deposited on an eroded, irregular Tertiary surface; thickness ranges from less than 50 feet to more than 250 feet. In addition, texture of the aquifer material ranges from very fine sand to gravel. Because of these large differences in thickness and texture, aquifer characteristics also vary over a wide range. Coefficients of

permeability range from less than 500 to more than 3,000 gpd per square foot, and coefficients of transmissibility range from less than 40,000 to about 600,000 gpd per foot. Well yields as high as 5,000 gpm are obtainable, and yields of 2,000 gpm are common.

Water from the Mississippi River Valley alluvial aquifer is generally hard, a calcium bicarbonate type, and high in iron content. Where the older alluvial or terrace deposits are exposed, the water may be soft, low in dissolved-solids content, and corrosive. Temperature ranges from about 59° F in the northern part of the region to about 70° F in the southern part; seasonal variations occur in the vicinity of major streams where they are hydraulically connected to the aquifer.

The alluvial aquifer of the Red River Valley merges with and is very similar to the Mississippi River Valley alluvial aquifer.

Most of the ground water withdrawn in the Lower Mississippi Region is pumped from Quaternary aquifers. The chief uses are agricultural and industrial. The most widespread water level declines brought about by pumping have occurred in eastern Arkansas and southwestern Louisiana. Surficial clays in eastern Arkansas prevent direct recharge in a large area where rice irrigation makes large seasonal demands on the ground water supply. Heavy pumping by industry as well as agriculture has produced a large cone of depression in southwestern Louisiana where nearly 1,000 mgd is withdrawn. In spite of large present withdrawals, Quaternary aquifers have good regional potential for further development. Some areas along major streams are especially favorable where the stream is in direct hydraulic connection with the alluvial aquifer; in such areas, large supplies can derive most of their pumpage from direct stream recharge without producing far-reaching effects on the remainder of the aquifer.

Estimated Yield Under Specified Conditions

The estimated yield of an aquifer may be based on the ability of an aquifer to yield water under stated conditions and with acceptable consequences. Estimates of the yields of aquifers in the Lower Mississippi Region are based on methods used by Boswell in a study of ground water availability in the same area [11]. Basically, these methods describe yields that might result while lowering water levels in artesian aquifers an average of 100 feet in 50 years and lowering water levels in Quaternary alluvial aquifers 40 feet during the same period. For this study, the yield resulting from an average lowering of 200 feet in each artesian aquifer is added, and the more pronounced consequences of the additional lowering are considered.

One of the economic consequences of declining water levels is the increase in the cost of power for pumping water. One of the reasons

for limiting the average lowering of water levels to 200 feet is that average pumping lifts would be nearly 500 feet (assumptions: original level, 100 feet underground; 60-psi head at land surface; 35 feet of drawdown in pumping well). The cost of electric power to pump one million gallons of water is approximately five dollars for each 100 feet of lift (at 1 cent per kwh).

Other considerations involved in determining acceptable water level declines include land subsidence, updip movement of saline water, and the effects of lowered water levels in the recharge (outcrop) area.

Water level declines in response to increasing withdrawals are accompanied by steeper hydraulic gradients, which result in an increase in the quantity of water moving through the aquifers. The increase in quantity will continue until either the maximum possible gradient is obtained without decreasing the saturated thickness or until discharge equals potential recharge plus change in storage.

The yield of water table aquifers is directly related to recharge. The Quaternary alluvial aquifers in the Lower Mississippi Region are recharged mostly by precipitation on the surface. Rates of recharge for areas in the region where surficial materials are sufficiently permeable to permit direct recharge are estimated to range from 2 to 5 inches annually; however, surficial deposits in some very large areas (the Grand Prairie Region, for example) apparently are relatively impermeable.

The estimates for yields of aquifers in the Lower Mississippi are given in table 23. It is acknowledged that some areas now yield more ground water than the quantities shown; however, these areas already are experiencing the problems of local overdevelopment.

The ground water yield at any site is the total combined yield of all aquifers underlying the site. The yield at any site in the Lower Mississippi Region can be estimated by referring to figure 67. Other maps showing areas where each individual aquifer can be utilized are included for each WRPA.

The highest yielding aquifer in the region is the Mississippi River Valley alluvial aquifer. In much of the alluvial valley, older artesian aquifers underlie the alluvial aquifer, adding to the potential yield and allowing a choice of sources on the basis of water quality or other considerations.

Estimated yield in this study is based on a uniform distribution of ground water withdrawal over the entire area. In practice, most water will be withdrawn in concentrated areas and ground water will move toward the area of withdrawal. As a result, water produced at some places may be partly derived from other WRPA's; for example, water pumped in the Memphis area is derived from WRPA's 2, 3, and 4.

			3																			1
		-	10,24										-									15,810
			10,80			210																11,138
	-		3			1	1	1	1	1	- 1	1	1		1		-	;	-	-	1	18
			3			1	1	1	1	1	1)	;	1	1		1)	1 7)	1	18
			200	1			1,2%	1	1		1	1	1	1	1	-	-	1	1	1	1	2,100
	0	-1	8	1				1	1	1	1	1	- 1	-	1	1	,	1	1	1	1	8
		18	4			1	1	1	1	1	1	1	-	1	1	1	-	t	1	1	1	g
	20	1	d			1	1	1	1	1	1	1	-	1	1	1	1	1	;	-	1	2000
Armen (1)	-	1	2	1	1	1	1					1		1				1	1		1	I.
Planning d. in need		A.	126	1	1	1	1	8	9			1	1	1		1		1			1	5
Self-res		(II)	86	1	1	-	1		-			-	-			1				-		198
Atter Description	9	N.	25		1				-				1		1	1		1		-		
		-	2,495		-													-			1	1
		A	E		1								1									2,098 2,0
			N.									-		,							-	
		Y	1					1											ľ			965 2.04
																			8		1 20	2
				-	1	1	1	1	1	1										-		
		10		1	1							1			1					1		2
			3	1	1	1	1	1	1										1	- 1		787
		y	25	1	1	1	1	1	1			-			1				**	ï		7,811
	Agazzer		Miter als appliers (indicate Willer willow all child applier, either thanhal applier, either thinking deposite), and appliers in dermon deposite).		Mo-Willeman		Chilory-Atchafalaya	Mission, and Characterists				cars Alver Fernation and equivalents				William from, multitassulated						etal priests state

POTENTIAL YIELD OF AQUIFERS

The estimated yield of ground water from the Mississippi River Valley alluvial aquifer and other Quaternary aquifers is based on well fields located away from streams. The yield of the aquifer can be increased by installing lines of wells parallel to and in the vicinity of streams where recharge can be induced; however, this additional water will be subtracted from the surface water resource.

Interrelation of Ground and Surface Water

The hydrologic system in the Lower Mississippi Region is typical of that in a humid region. Precipitation is reasonably distributed through the year, and an abundance of water is available to sustain surface runoff and to replenish aquifers. Much of the region is underlain by permeable terrain where aquifers crop out and are replenished. Regionally, the aquifers are kept full by precipitation.

Generally, more water may be available to aquifers than can move into the artesian zone. Part of the surplus ground water is dissipated by evapotranspiration and part is discharged to streams.

Water in water table aquifers (or the water table part of artesian aquifers) in the region commonly moves toward streams and is discharged. During dry periods, streamflow is derived from this source. Streams originating in areas underlain by permeable water-bearing material may be perennial and the volume of low flow is dependent in part on the hydraulic characteristics of the aquifer material. The water table aquifer acts as a reservoir, temporarily storing precipitation and releasing it gradually to streams.

Streams flood during storm periods and the potentiometric surface in water table aquifers rises. Commonly, there is little movement of water from the stream into the aquifer; rather, the stream has a blocking effect on the discharge of ground water. When flooding subsides, water held in "bank storage" is soon released and the water table aquifer gradually releases the temporarily stored water to the stream.

The volume of water stored in the water table aquifer decreases as a result of (1) evapotranspiration, (2) movement into deeper aquifers, and (3) discharge to streams. As the volume diminishes, the discharge decreases and a recession of streamflow occurs.

One natural factor influencing the low flow characteristics of streams is the relation of the water table to the water surface in the stream; either may adjust to changes in the other. For example, a lowering of the stream surface will result in temporary increase in ground water discharge during a period while the water table adjusts to a lower level; conversely, if the stream level is raised, as by a dam, the water table will rise to accommodate the new condition. The depth to which a

channel is incised into the saturated part of a water-bearing geologic unit determines the quantity of water that can be intercepted by a stream.

Streams lying entirely within the alluvial plain are, under natural conditions, perennial if the channel is incised below the dry season water table; otherwise, the streams are intermittent. The Sunflower River in the Yazoo Basin is an example of a perennial stream whose low flow is sustained by ground water discharge.

Upland streams generally are gaining streams in areas underlain by predominately sandy deposits and are losing streams (to evapotranspiration) where reaches cross relatively impermeable deposits of clay.

Changes in the regimen result in changes in the ground water-surface water relation. Large withdrawals of ground water may lower the water table below the water surface in the streams, thereby reversing the direction of movement on a local or regional basis. Impoundments, by reversing the direction of movement, may have the same effect. Deepening stream channels will temporarily increase ground water discharge to streams, provided the water surface in the streams is lowered.

In summary, water movement in the Lower Mississippi Region is normally from aquifers into streams. During floods, the direction of movement is reversed, but the effect on water table aquifers is temporary and local.

Management Considerations

The primary source of ground water in the Lower Mississippi Region is the Mississippi River Valley alluvial aquifer because (1) it underlies about one-third of the region, and (2) it is the source of more than two-thirds of the potential ground water supply. The estimated yield of the aquifer, about 10,000 mgd, is conservative and does not take into account the large ground water withdrawals that may be made where well fields are proximate to streams.

The Mississippi River Valley alluvial aquifer, like all aquifers, can be overdeveloped and is now overdeveloped in some areas (the Grand Prairie Region in Arkansas, for example). The large potential yield of the aquifer can be attained only by distribution of withdrawals with attention given to variations in hydraulic characteristics. The optimum yield of the aquifer, except in localities where recharge may be induced from surface sources, is directly related to the recharge by precipitation on the surface. Lowering the water table by pumping will increase the storage space in the aquifer. The aquifer will be replenished during the wet season up to the limit of the unsaturated zone to transmit recharge. Hence, the ground water supply in a unit area is limited to

the recharge that might occur in the area if the aquifer is partly dewatered. The maximum recharge rate in the alluvial plain is unknown but is probably in the range of 2 to 6 inches; hence, the ground water yield of the aquifer is approximately 100,000 to nearly 300,000 gpd per square mile. Withdrawals exceeding the recharge rate will reduce the thickness of the saturated zone. The zone of saturation must be kept thick enough to allow for well construction and operation.

Although the Mississippi River alluvial aquifer under natural conditions is generally artesian, water table conditions prevail in some areas. In other areas, water table conditions occur seasonally as a result of pumping for irrigation and, in some areas, water table conditions are permanent as a result of continuous pumping.

Artesian aguifers underlie most of the region and are capable of supplying about one-third of the total ground water resource in the region. Unlike the Mississippi River Valley alluvial aquifer, the artesian aquifers cannot be managed in a manner similar to that used to manage a surface reservoir. The artesian aquifers act as conduits, transmitting water from the outcrop (recharge) area into the subsurface. The quantity of water available from an artesian aquifer is related primarily to the ability of the aquifer to transmit water (a function of physical properties of the aquifer and the hydraulic gradient) and the availability of recharge to meet requirements that may result from increased withdrawals. Some additional water is made available from storage as a result of decreasing pressure. Larger quantities may result from capture of water lost to evapotranspiration, leakage from other aquifers, or water released from pore spaces of fine-grained material during compaction; however, except for leakage these sources of water are temporary.

In this report, the yield of artesian aquifers is estimated for pumping rates that might result from an average drawdown of 100 feet and 200 feet during a 50-year period (table 23). It is felt that an average drawdown of 100 feet throughout most artesian aquifers will not result in serious consequences (dewatering, subsidence, increased pumping lift, and reduction in streamflow) in the Lower Mississippi Region and that the consequences of a 200-foot decline might be acceptable. Larger drawdowns in artesian aquifers would not significantly increase the total yield of the region and the consequences probably would not be acceptable.

The effect of withdrawals on artesian aquifers was demonstrated in a study of the Sparta Sand [87]. During a period of about 80 years, the water level decline in the Sparta averaged about 70 feet throughout the region for an average withdrawal rate of much less than 200 mgd. In several places (Pine Bluff, El Dorado, and Magnolia, Ark., for example), the aquifer is near the point of overdevelopment and alternate sources of water must be found to meet future needs. Similar conditions in the

same or other aquifers at other places may be avoided or minimized by planning.

Water quality is a critical consideration in the utilization of ground water. Ground water suitable for public or special uses without treatment needs to be reserved for these uses. Generally, water of poor quality is available for use where quality is not a consideration. Ground water may be conserved by utilizing water of the poorest quality that may be compatible with any use.

Ground water in the Lower Mississippi Region generally is of good quality, needing treatment only for softening, iron removal, or pH adjustment to meet standards for most uses. Most of the aquifers gradually become saline with increasing depth. The degree of salinity at any location can be estimated, and withdrawals can be made accordingly. One consideration will be in locating withdrawals so as to minimize the updip movement of saline water. Salt-water intrusion in coastal areas is another threat that can be avoided or minimized.

Most of the present overdevelopment of ground water can be alleviated by developing alternate sources of water and reducing ground water withdrawals. Areas where large ground water withdrawals have not yet resulted in overdevelopment should be given careful study to determine optimum development. In the future, large ground water developments might be located in the most favorable parts of the region. These areas include: (1) The Mississippi alluvial plain (except in the area in WRPA 2 south and west of Crowleys Ridge); (2) western Kentucky, northwestern Mississippi, and western Tennessee, specifically, the area underlain by the Memphis aquifer and its equivalents; (3) WRPA 8 except the Baton Rouge area; and (4) WRPA 9 except the coastal area and the Lake Charles area.

Considering the projected needs for ground water in the region, it is essential that all potable water be protected from pollution. The principal source of pollution in the southern part of the region is oilfield wastes. These wastes are commonly discharged into surface pits and allowed to infiltrate into water table aquifers. Brine is commonly injected into subsurface saline zones by injection wells. There should be assurance that injection wells are properly constructed and that the receiving stratum is a saline zone. The practice of injecting through open bore holes below shallow or surface casing does not guarantee against pollution of the fresh water zone. Abandoned wells need to be completely plugged to preclude the movement of water between zones or aquifers, a condition that will be intensified as water levels in fresh water zones decline and hydrostatic head differences become larger. Other sources of pollution are industrial waste, agricultural chemicals, and sanitary land fills.

Management considerations include planned areal distribution of

ground water withdrawals to achieve optimum yield; continued studies of the potential for artificial recharge; reservation of good quality ground water for highest priority uses; better delineation of shallow and intermediate saline water bodies; better delineation of the downdip extent of fresh water; and the utilization of saline water.

NEEDS FOR ADDITIONAL DATA

Climatology

A need exists in climatology of the Lower Mississippi Basin for a better definition of small scale or microscale variations of the many parameters that collectively determine the climate. The required instrumentation and data acquisition efforts should be responsive to indicated or potential needs of specific areas as it would not be economically feasible nor essential that the entire Lower Mississippi Study Region receive this attention to detail. Our very large urban areas, in particular, present gradual climatic changes in temperature and rainfall and other indices such as solar insolation, radiation, air pollution, etc., that are not well enough documented presently to permit reasonable projections.

It should also be recognized that the Arkansas-Mississippi delta area and to a lesser degree the deltas of North Louisiana and the Missouri bootheel section comprise a very important land area that is manipulated by man through extensive crop management procedures and irrigation practices, and this is being done with a very minimum of instrumental monitoring, which is a prerequisite to meaningful research.

For river and flood forecasting, more data and research are required relative to evapotranspiration and soil moisture, and additional solar radiation measurements are desirable to increase the output accuracy of the Hydrologic Conceptual Model being adopted by the National Weather Service.

The developing awareness of our ecology and the ramifications of environmental conservation programs dictate added study and research. Maximum land and water resource utilization becomes increasingly important and attention needs to be devoted to a higher degree of resolution of diurnal changes and to statistical analysis of these short term effects on plant and animal life. Further use of satellite imagery is required to permit better documentation of current land and estuarine uses and to develop optimum practices in the future.

One other area of concern, in terms of geological history, is that our climatic records are extremely short. Additional benchmark stations, at sites relatively unaffected by man-made modifications of any sort, are required to assure a continuum of basic data acquisition that will constitute authentic, correlative climatic records. A step in this direction is the recently authorized climatic benchmark station to be established in the near future in the vicinity of Jackson, Tenn., which will complement data from the other LMR benchmark station established in 1968 at the Calhoun Experiment Station near Calhoun, La. The importance of this program is brought into sharper focus when we consider

that geological records indicate past climate has varied cyclically over time, with glacial periods of 120,000 years long, and warm intervals of interglacial periods lasting about 12,000 years. Which way are we presently headed--have we reached our peak warming in this interlude and are we now advancing toward a new Ice Age?

Many of the data requirements for climatology have a parallel need in the meteorology field, and this is to be expected because much of our meteorological forecast techniques, the dynamic models, and the procedures utilized in the state and zone forecasts, the severe weather warnings, tornado, hurricane, and flood forecast models that serve the Lower Mississippi study area have been dependent to a very considerable degree on climate data.

There is a need for satellite imagery with a higher degree of resolution for severe weather and hurricane monitoring and forecasting. More sophisticated radars with improved rainfall intensity evaluation are a requirement, and research is essential for greater accuracy in quantitative precipitation forecasts. Automation of data acquisition networks, both for land and by offshore data buoys, is needed for timely acquisition of data that will permit prompt severe weather, tropical storm, and hurricane warnings to be issued. Additional tide gages as well as wave recorders for coastal areas and for inland bodies of water such as Lake Pontchartrain are definitely needed to furnish data for research and study leading to development of more accurate storm surge and storm tide forecasts for the coastal areas of the LMR study area.

As resources become available, regional studies need to be instituted in the field to better define the parameters, the orographic and geophysical or areal effects, and other pertinent factors that make up the "weather" in the Lower Mississippi Basin under similar synoptic and upper air systems. This is a requirement that takes resources but can definitely result in a better meteorological service to the public.

Ground Water

Ground water investigations are needed throughout the region to define accurately the potential yield of all aquifers. Although present ground water withdrawals in most areas can be increased, the practical limits of development must be determined for better planning and management. Reconnaissance studies are needed to better define the areal extent, hydraulic characteristics, potential yield, quality of water, and the effects of withdrawals on all aquifers. Detailed studies are needed in present and potential areas of large withdrawal to avoid the problems of local overdevelopment.

Studies are needed for a better understanding of the ground

water/surface water relationship to permit evaluation of the effects of the changing environment.

Changes in vegetation resulting from urbanization and land clearing for farming will directly affect the potential water yield in the region. The effects of these changes on evapotranspiration, infiltration, runoff, and ground water discharge need to be studied.

Some work has been done relating to the practicability of artificial ground water recharge to shallow aquifers. These studies should be expanded in scope to include all aquifers. Investigations should include methods of recharge by flooding as well as injection through wells.

Saline ground water in enormous quantities is available in the Lower Mississippi Region. Investigations to determine the potential yield of saline ground water should be continued in more detail in those areas where initial studies have been made and studies are needed for the remainder of the region. The feasibility of mixing saline and fresh water to increase the supply of potable water should be determined.

The Quaternary alluvial and terrace deposits warrant special attention as the primary source of ground water in the region, accounting for about two-thirds of the potential supply. The aquifers in the Quaternary deposits are adaptable to an annual cycle of withdrawal and replenishment. Withdrawals may be made up to the limit of the average annual recharge. Investigations are needed to define the recharge rate (including variations by area and conditions of precipitation), the effects of withdrawals on streamflow, and the effects on the ecology of the region.

Streamflow and Stage

The hydrologic data stations in the Lower Mississippi Region shown in figure 52 are used to obtain the stage and discharge information required for water resources planning and the development of projects required to solve water related problems. The network of gaging stations in the region is sufficient to furnish a key to the general coverage of hydrologic conditions over the entire region. However, additional stations are needed to more completely define the streamflow and runoff characteristics of many of the subbasins within the region. One of the greatest deficiencies in streamflow data is on the tributary streams with small drainage areas, most of which are located in the upper reaches of the main tributary streams. Runoff characteristics of both large and small basins should be gaged to define the low, mean, and peak flows under various climatologic and topographic conditions in the region.

Mean discharge data for monthly flows at streamflow gaging stations located throughout the Lower Mississippi Region are presented in this appendix. The average period for which discharge data were available for the stations is 25 years. It should be noted, however, that 19 stations had periods of record less than 15 years in length. This period was considered sufficient in computing frequency and duration data; however, a longer period of record is desired to obtain more reliable information. At several streamflow gaging stations located at or near the reservoir sites, a sufficient period of record of flow was not available for computing statistical data.

In order to achieve a better understanding of the principles of flow patterns in the coastal area, more streamflow gaging stations should be developed. Very few discharge stations are included in the coastal areas, and determination of mean flows generated within the coastal Water Resources Planning Areas was a particular problem in the preparation of data for this appendix.

The data collected at gaging stations where discharge records are obtained by use of a water-stage recorder and a stage-discharge relationship, combined with intermittent discharge measurements, are sufficient for use in computing peak flow and low flow frequency data and duration data. However, data collected at crest-stage gage and peak flow measurement stations are insufficient for computing low flow or duration data. In general, there was a definite lack of low flow data for gaging stations in many parts of the region, especially in the smaller drainage basins where changes in land-use patterns and climate could appreciably affect the low flows. The low flow frequency information is of particular importance in providing a basis for the design of water supply reservoirs, waste-disposal systems, for supplemental irrigation, and for fish and wildlife propagation.

The U. S. Geological Survey has originated a system of putting most of the records of daily discharge data in digital storage and computing specific statistical information from this data. Expansion of this system to include all of the streamflow and stage gaging stations within the Lower Mississippi Region would be a worthwhile task. Additional studies should be made using this data to determine the effect of climatic, topographic, and man-made changes on the streamflow characteristics of the major basins. The effect of changing land-use patterns, cultural practices, methods of watershed protection, and urbanization on the streamflow characteristics and natural basin runoff should also be evaluated.

More detailed studies of the effects of changes in streamflow patterns on the sedimentation of streams in the region should be made. The chief sources of erosion should be identified, and estimates of the quantities of sediment yields from each source should be derived. This information will be of great value in forming measures to reduce or

control sediment and erosion in streams and in the planning of future channel modification, flood control, and navigation projects.

Water Use

Adequate information on water use is basic in the planning and management of water resources in the region. The use of water has a pronounced effect on the supply and demand relationship because some of the various uses deplete the supply while others do not. The amount of water diverted from the streams is of great importance, but of equal importance is the amount of water which is returned directly or indirectly to the source of supply.

Inventories of the amount of water diverted from the streams and the amount consumed should be made by more systematic and standardized methods. The responsibility for the collection of the water-use data should be delegated to one agency to avoid misinterpretation of the data and duplication of effort.

Flow Velocity Studies

Few time of travel studies have been undertaken and completed on streams in the Lower Mississippi Region. Of those studies completed, results from streams in WRPA 7 are the only ones published to date. The remainder of the data were derived from preliminary sources. On some of the streams, the flow velocities were derived for rather high flows. The most important time of travel data should be derived for conditions of low flow.

Time of travel information should be derived for the Mississippi River and all the main tributary streams. Investigations should also be undertaken on small streams which may be affected by pollution from any source. The time of travel studies should be made at various river stages and at various stations along the stream so that a realistic evaluation of the capacity of the stream to carry effluent at all ranges of flow can be established. Time of travel studies during periods of flooding would be useful in determining the effect that channel improvement projects have on stream velocities and times of concentration, and on peak flows generated in the basins.

Drainage Areas

One of the basic parameters in making a hydrologic study regarding low or flood frequency analysis, rainfall-runoff correlations, or design of structures to retard or control flows is the size of the drainage area of the basin being studied. The drainage areas of most of the streams in the Lower Mississippi Region are derived only at gaging stations along the streams, and can be obtained from stage or discharge publications printed by the Corps of Engineers and the U. S. Geological Survey. These drainage areas at the gaging sites, however, are not

always suitable for hydrologic studies on certain ungaged reaches of streams on which a project is to be considered.

In 1971, a publication entitled "Drainage Area of Louisiana Streams" was completed by the U. S. Geological Survey and the Louisiana Department of Public Works. The drainage area information presented in this publication is a great aid in alleviating the problems of establishing drainage areas mentioned in the preceding paragraph. Additional drainage area publications such as the above are needed to cover the remaining areas of the Lower Mississippi Region.

W R P A

WRPA 1

INTRODUCTION

WRPA 1 consists of the main stem of the Mississippi River from the mouth of the Ohio River to the Gulf of Mexico. It includes the main stem levees and extends to the top bank where no levees exist. WRPA 1 is composed of 2,435 square miles of land and water and occupies 2.4 percent of the Lower Mississippi Region. About 575 square miles, or 24 percent of the area, are covered with water and the remaining 1,860 square miles are land. The area is about 1,000 miles in length, averages less than 10 miles in width, and includes parts of seven states - Missouri, Illinois, Tennessee, Kentucky, Arkansas, Mississippi, and Louisiana. Elevations in the area within the levees or top bank vary from mean sea level in the area south of New Orleans, La., to above elevation 300 in the vicinity of Cairo, Ill. Figure 68 shows the WRPA boundaries, stream patterns, state lines, major cities, and other pertinent features of WRPA 1.

The entire area of WRPA 1 lies within the alluvial valley of the Mississippi River. This valley is a broad, gently sloping lowland which begins near the upper end of the region and extends to the Gulf of Mexico. This lowland varies in width from 30 to 125 miles and has an average width of 45 miles. Soils in the valley are truly alluvial from a geological point of view and consist mainly of sands and silts, grading progressively to very fine sands and silts in the lower portion of the area. Scattered through these sand and silt deposits are extensive deposits of clay. As is typical of streams flowing through alluvial valleys, the Lower Mississippi River has developed a highly sinuous course, creating numerous meander loops and bends. It has also shifted its channel from time to time so that parts of the alluvial plain have been reworked many times, thus contributing to the complexity of the soil structure of the area.

A well-defined characteristic of alluvial water courses is the formation of natural levees of heavy sediments near the stream banks. This results in drainage away from the stream to low ground near the valley walls, and bottomland drainage by streams running parallel to the main stream and joining it through major tributaries or at points where the main stream meanders close to the valley wall. This pattern of parallel drainage is well developed in the alluvial valley of the Mississippi River.

Another distinct physiographic feature of WRPA 1 is the Loess Hills which follow the Mississippi River from the vicinity of Cairo, Ill., to below Natchez, Miss. These hills, which are the results of aggradation

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

STREAMFLOW GAGING STATIONS WRPA 1

FIGURE 68

of the soil by the forces of wind, can be recognized by their almost vertical bluffs.

The only stream in WRPA 1 is the Mississippi River. It rises near Lake Itasca in Minnesota and flows southward about 2,350 miles into the Gulf of Mexico. The river receives drainage from parts of two Canadian Provinces and 31 states, which makes the Mississippi River Basin the third largest drainage area in the world. This basin covers more than 1-1/4 million square miles or about 41 percent of the total land area of the 48 contiguous states of the United States [127]. The main stem Mississippi River channel below Cairo, Ill., carries runoff from about 922,000 square miles of drainage area concentrated at Cairo by the upper Mississippi and Ohio Rivers, and augmented by runoff from about 324,000 square miles of intervening drainage area between Cairo and the Gulf of Mexico.

Several major cities within the Lower Mississippi Region are located adjacent to WRPA 1. The economic development of these cities can be attributed in part to the development of the Mississippi River as a major inland waterway. New Orleans has become a major seaport for international trade and has a diversified industry associated with world trade. Baton Rouge is a major shipping and receiving port for crude oil and petroleum products by pipeline, sea-going vessels, and river barges. Between New Orleans and Baton Rouge, a major industrial area is expanding at a spectacular rate. Memphis, Tenn., is now noted as the largest industrial and transportation center between St. Louis and New Orleans, having excellent water-rail-highway terminal facilities. Industry in other major centers such as Natchez, Vicksburg, and Greenville, Miss., has been limited in general to the handling and processing of agricultural products and retail service establishments [128].

SURFACE WATER

Streamflow which is generated within WRPA 1 must originate either from precipitation on the surface of the Mississippi River or from run-off from the land areas between the channel and the levees or the top bank. The accurate measurement of this interior discharge is difficult to obtain due to the large volume of water which flows into the area from outside sources and flows through the area. Therefore, only the incoming flows to the area and the total flow discharged from the area were derived for this study. These flow values are presented in the following section.

Quantity

The mean annual discharge at the mouth of the Mississippi River is about 453,000 c.f.s. This flow constitutes about 68 percent of the total flow discharged in the Lower Mississippi Region. An additional flow averaging about 120,000 c.f.s. is diverted from the Mississippi through the Old River Control Structure to the Atchafalaya River.

Inflow into WRPA 1 from other areas occurs at intervals along the Mississippi River from Cairo, Ill., to the Gulf of Mexico. The major portion of inflow into the area is from the Ohio and Upper Mississippi Rivers, which contribute a combined mean annual flow of about 452,000 c.f.s. into the area. Additional inflows from the White, Arkansas, and Red Rivers total about 25,000, 40,000, and 31,000 c.f.s., respectively.

Present Utilization

One of the United States' greatest industrial attractions is the Mississippi River, whose water has become so important to industry that it is now regarded as an indispensible raw material for both processing purposes and transportation of products. Port and terminal facilities along the Mississippi River are rapidly expanding to handle increased river commerce. Large quantities of cooling and processing water are being withdrawn by the basic metal and petrochemical industries which are still growing rapidly in the Baton Rouge to New Orleans, La., area.

Water for major agricultural uses and for irrigation is currently supplied from wells, local impoundments, and nearby lakes and streams. There are no significant agricultural or municipal diversions from the main stream Mississippi River, and no large scale diversions are expected in the near future.

The main stem of the Mississippi River, together with lakes, bayous, and tributary streams within the main stem floodway, supports a substantial commercial fishing and wildlife habitat. Timbered areas in

the main stem floodway support game which provides substantial employment for commercial trappers and guides. The coastal plains area supports widespread employment in oyster fisheries and commercial trapping of muskrats. These are both dependent to a large extent on the control of salinity and silt movement in the coastal region. The Mississippi River is also used by vacationists from all parts of the nation for fishing, boating, and water sports during the summer months.

Withdrawals and utilization of surface water sources in WRPA 1 from the Mississippi River during 1970 were allocated to the adjacent Water Resources Planning Areas for publication in this report. Therefore, no water use data are presented in this section.

Stream Management

The Mississippi River, without question America's greatest river, has made major contributions to the physical and economic growth of the nation. As a navigation artery, it is of great importance to the commerce of the nation. It is the chief supply of water for many industries located along its banks. The Mississippi is one of the United States' most outstanding assets and this is being emphasized more and more as the nation continues to grow. Uncontrolled, the river could be a great liability. For these reasons, an effective system of stream management in WRPA 1 on the Lower Mississippi River is essential.

Flood control. A comprehensive plan of stream management is in effect to provide flood protection for a large part of the alluvial valley of the Mississippi River. This flood-control plan involves the blending of a number of features including levees for containing flood flows, floodways for the passage of excess flows past critical reaches of the Mississippi River, channel improvement and stabilization to increase the flood-carrying capacity of the river, and tributary basin improvements for major drainage and flood control through use of dams, pumping plants, auxiliary channels, and other forms of flood protection.

The project design flood. A study was initiated in 1956 to determine maximum flow lines for which flood-control elements along the Mississippi River should be designed. Several combinations of severe storms in the tributary basins were studied and their position, sequence, intensity, and runoff factors were modified to produce the maximum associated runoff in the Mississippi River. Of the four hypothetical sequences selected for final study, the one which produced the maximum unregulated discharge at all key stations below the Ohio River was considered as the best estimate of the largest flood in the Lower Mississippi River for which protection should be provided.

The unregulated flows at key stations in tributary basins were modified then routed through the stream system in accordance with the planned operation of existing and prospective reservoirs to determine the

approximate cumulative effect that the reservoirs have on flow in the main stem.

The study considered a group of 107 reservoirs then existing or under construction designated as "Group E," and an additional group of 44 others designated "Group EN" whose future construction was reasonably certain.

The hypothetical flood which produced the largest unregulated flow at key stations on the main stem also produced the largest flood both with and without regulation, and was therefore selected, with "Group EN" reservoirs operating as the project design flood. The profile of the project design flood is shown in figure 89 and the associated peak discharges are shown in figure 69, a schematic diagram of the project design flood. The various diversions of flow through floodways which are to be operated during the project design flood or any other severe flood are also shown in figure 69.

Levees. The main stem levee system, consisting of levees, floodwalls, and various control structures, will be about 2,200 miles in length upon completion. About 1,600 miles lie adjacent to the Mississippi River and 600 miles lie along the south banks of the Arkansas and Red Rivers and in the Atchafalaya Basin. To date, about 1,550 miles of levee have been completed.

As a result of many years of work, the Mississippi River has been effectively confined between the levees. The levee line on the west bank begins south of Cape Girardeau, Mo., and, except for structurally controlled gaps where the St. Francis and the Arkansas-White Rivers join the Mississippi, extends unbroken to the Gulf of Mexico. There are navigation locks through this levee line at Port Allen, La., at two locations near New Orleans, and at Empire, La. On the east bank of the river, levees alternate with high bluffs to provide flood protection for areas between Cairo and the Gulf.

Floodways. If the carrying capacity of the leveed channel of the Mississippi River is exceeded during a major flood, relief outlets through the Birds Point-New Madrid Floodway, Atchafalaya Basin, and Bonnet Carre Floodways are utilized along with the storage capacity of flat lowlands at junctions of Mississippi's major tributaries. These backwater areas serve as reservoirs to store water during floods. They are usually protected from lesser floods by interior levee systems that are designed to be overtopped by major floods. A schematic diagram of the floodways showing their capacity in passing the project design flood is presented in figure 69.

The east bank bluffs and the levees on the west bank of the Mississippi River between Cairo, Ill., and New Madrid, Mo., form a narrow channel through which the river must flow at high stages. To protect

the city of Cairo and reduce flood heights, a setback levee was built about 5 miles west of the riverfront levee. The strip of land between the setback levee and the levee adjacent to the river forms the Birds Point-New Madrid Floodway (figure 69). At extremely high stages, water enters the floodway through fuseplugs at Cairo and reenters the main river above New Madrid. The floodway was operated only in 1937 and was of great aid in reducing flood heights at and above Cairo.

From the latitude of Red River Landing, the project flood is conveyed to the Gulf of Mexico via the Mississippi and Atchafalaya Rivers with each carrying approximately one-half of the total flow. Of the portion remaining in the main Mississippi Channel below Morganza Floodway, roughly one-sixth is diverted to Lake Pontchartrain and the Gulf of Mexico through the Bonnet Carre Spillway located about 25 miles above New Orleans, La. The Bonnet Carre Spillway was operated in 1937, 1945, 1950, and 1973.

That portion of the flow diverted from the Mississippi River is carried by the Atchafalaya River and West Atchafalaya Floodway (along with flow from the Red River), and by the Morganza Floodway. The West Atchafalaya Floodway is controlled by a fuseplug levee at its head and the Morganza Floodway is controlled by a gated spillway in the Mississippi River levee near Morganza, La. The Morganza and West Atchafalaya Floodways follow down on opposite sides of the Atchafalaya River until the end of the levee system along the Atchafalaya River is reached; there they merge into a single broad floodway that passes the flow to the Gulf through two outlets, Wax Lake and Berwick Bay. The West Atchafalaya Floodway has not been used. The Morganza Floodway was used in 1973 for the first time.

Channel improvement and stabilization. Work to improve and stabilize the channel of the Mississippi River consists of cutoffs to shorten the river and reduce flood heights, revetment to curtail the river's tendency to meander, dikes to direct flows in the channel, and dredging to realine the channel.

By 1942, a total of 16 cutoffs and two major chutes had been developed. It is estimated that these improvements, when made, lowered river stages about 16 feet at Arkansas City, Ark., and 10 feet at Vicksburg, Miss. These cutoffs are still intact and effective; however, channel efficiency has since diminished, raising stages by 2 to 3 feet. This is due primarily to the instability introduced by the cutoff program and the persistent tendency of the river to meander. The 16 cutoffs have reduced the river distance from Memphis, Tenn., to Baton Rouge, La., by about 114 miles [122].

An important aspect of the Mississippi River flood-control and navigation plan is the stabilization and protection of the riverbanks. Many types of protective works including willow, lumber, and asphalt

mattresses, have been used in the past. To date, the most economical and effective means of protecting the banks from caving and erosion is revetment composed of an articulated concrete mattress underwater and stone or riprap paving above the water. The concrete mattress and stone paving are both placed on graded bank. As of June 1970, revetment of the banks of the Mississippi River had extended to over 610 miles in length [122].

Dikes are used to regulate or contract the width of the Mississippi River channel during periods of low water and direct the channel into a favorable alinement. The dikes, constructed of timber piling and riprap or crushed stone, are usually placed in the convex part of bends where the channel crosses to the opposite shore. They are also used to assist in the closing of secondary channels and chutes. To date, about 115 miles of dikes have been constructed on the Mississippi River [122].

Dredging is employed on the Mississippi River to complete the permanent alinement of the channel and to clear away remaining obstructions in the channel to maintain a low water navigation channel 9 feet in depth and 300 feet in width. Cutterhead, dustpan, and hopper type dredges are used to dig and remove material from the channel and discharge it through long pipelines to deposit it away from the channel or wherever it is needed for filling dike fields or closing secondary channels.

Results of flood-control works. The effectiveness of completed flood-control works on the Mississippi River has been demonstrated on several occasions as attested by the successful operation of the Bonnet Carre Spillway (figure 69) during the 1945 flood. The peak discharge of the 1945 flood at Red River Landing was only 10 percent less than the estimated peak discharge of the 1927 flood at the same latitude. The 1927 flood, considered to be the greatest flood to occur in the Lower Mississippi Valley, inundated about 26,000 square miles, killed 214 persons, and resulted in property damage of 236 million dollars, which is equivalent to more than one billion dollars today. A repeat of that disaster would have been likely in 1945 in the absence of flood-control improvement. However, the Bonnet Carre Spillway was operated to provide protection for the city of New Orleans, and all of the main line levees held and greatly reduced the potential damage to property, crops, and human lives.

Another flood occurred on the Lower Mississippi River in 1950 when damage estimated at about 6.6 million dollars occurred in unprotected backwater areas. Those damages would have been nearly 20 times greater had not the main line levees and completed tributary works been in operation. Since 1928, the flood-control works within the Lower Mississippi Valley have prevented flood damage in excess of 8.5 billion dollars and have resulted in a vast amount of intangible benefits such as prevention

of loss of life and promotion of health, welfare, and security of the citizens of the alluvial valley [122].

Navigation. Navigation along the Mississippi River is one of the more important uses of water in the Lower Mississippi Region. The Mississippi River is the main stem of the network of inland navigable waterways which form a water transportation system of about 12,350 miles in length, not including the 1,173 miles of Gulf Intracoastal Waterway or its connecting inland and Gulf Coast streams. This giant system of waterways includes the Ohio, Missouri, Illinois, Arkansas, and Tennessee Rivers and extends to the midwest and the industrial east. Heavy commercial traffic includes grain, coal, petroleum products, nonmetallic minerals, metal products, building materials, sand and gravel, salt, sulphur, chemicals, and various other products. Also, many pleasure craft from all parts of the nation now use the Mississippi River for vacation, travel, and water sports [132].

Currently, a navigation channel of 9-foot depth and 300-foot width is maintained on the Mississippi River between Cairo, Ill., and Baton Rouge, La. The development of a navigation channel for oceangoing traffic in the reaches below Baton Rouge was authorized in 1945. Current depths and widths of the channel between Baton Rouge and New Orleans are about 40 and 500 feet, respectively. From New Orleans to Head of Passes, the channel is about 40 feet in depth and 1,000 feet wide. Depths of the various passes range from 30 to 40 feet and channel widths from 450 to 800 feet.

The navigation depths are maintained in the Lower Mississippi River by dredging. The navigable channel consists of a series of pools interrupted by bars or crossings which occur where the stream current crosses from one side of the channel to the other and deposits sand in the form of bars. The variable depths of the river at these crossings determine the available navigation depths. The number of crossings dredged and redredged and the amount of dredging required in any one low water season depend largely upon the duration of the low water season and frequency of stage fluctuations during the low water season. These factors directly affect the stability of dredge cuts in the river's sandy bed. The dredging required to maintain the 9-foot channel between Cairo and Baton Rouge ranges from 30 to 70 million cubic yards per year [132]. Dustpan-type dredges move most of the sandy material, and large cutterhead-type dredges are used to remove compacted clay or gravel.

Streamflow

Various periods of record of flow data are presented in this section because of the availability of discharge data at the selected sites. For each discharge station selected, the period of record provides reasonably good data for statistical analysis and study in this appendix, and the data are considered to be representative of flows which could occur under 1973 levels of development.

Measurement facilities. Streamflow data at eight stations along the Mississippi River and Old River were selected for presentation in this section. Locations of these stations are shown in figure 68, a map of WRPA 1, and are identified by U. S. Geological Survey station numbers. Table 24, a summary of the streamflow data at each of the selected sites, presents such data as the controlling agency, the drainage area, period of record, gage datum, extreme flows, and other pertinent hydrologic data at each site.

Stream	Station	Station No.	Gage Duties (feet m.s.1.)	Drainage Area (square mile)	Period of Record	(1,			Momentary Maximum Flow (1,000 c.f.s.)	Daily Minimum Flow (1,000 c.f.s.)	Stage I (feet a	
Mississippi River	Hickman, Ky.		264,73	922,500			056				316,2	264.3
Mississippi River	Mosphis, Tenn.		183,91	932,700	1945-70	470		263	2020 1/	78 2/	232.6	178.6
Mississippi River	Helena, Ark.			941,700	1945-70	480	708		2041 1/		201.9	138.7
Mississippi River	Arkansas City, Ark.	3-2654.5	96.66	1,108,560 9/		534	815	264	2159 3/	88	155.9	91.4
Mississippi River	Vicksburg, Miss.		46,23	1,122,160 9/	1027-70		844		2064-47	94	99.5	39.2
Mississippi River	Turbert Landing, Miss, 5/			1,128,900	1938-70 5/	453	767	243	1977	86	58.1	4.7
Lower Old River	Torras, La.				1938-63-6/		1.88			-316 8/	61.6	5.5
Old River Outflow Channel	Knox Landing, La.		0.00	1,128,700	1963-70-6/	120	164	61			47,8	1.32

Average discharge for WRPA 1. A reliable value for the average discharge generated within WRPA 1 was difficult to derive due to the tremendous volume of water which flows through the area. For this reason, values of the monthly streamflow discharged through the area are given instead of a discharge generated specifically within the area. Streamflow data measured at the Tarbert Landing, Miss., discharge range are shown by graphical representation in figure 70. This figure also presents the maximum and minimum flows as well as the mean monthly flows. The flows at this point are considered to be representative of flows discharged at the mouth of the river because very little inflow enters the main channel below the discharge station.

Average discharge for selected stations. Detailed hydrologic data at each of the eight selected gaging stations shown in table 24 are presented in this section. Tables 25 through 32 present observed mean discharges by months for each of the selected sites in WRPA 1. Also shown in these tables are the average monthly and average annual flows for the period of record at each station. These flows reflect regulation and use under 1973 levels of development in the area.

Frequency curves for peak flows at the selected gaging stations in

WRPA 1 are shown in figures 71 through 75. These curves are a reflection of the annual peak discharges at the sites and were computed using the standard method of the Corps of Engineers [6].

Low flow frequency curves at the selected sites are shown in figures 76 through 81. These curves represent the lowest mean flows for periods ranging from 3 to 160 consecutive days at certain sites.

Duration curves for daily flows at the selected sites in WRPA 1 are presented in figures 82 through 87. These curves show the percent of time that specified discharges were equaled or exceeded at the sites during given periods. The curves indicate flow characteristics of the streams throughout their entire range of discharges without regard to the sequence of occurrences. The maximum daily flows at the sites are listed on the curves because of the lack of space required to extend the curves to the zero percent exceedence point.

Data on the dependable yield characteristics at each of the selected discharge sites are presented in tables 33 through 38. These tables show the lowest mean flows for from 1 to 10 consecutive years of the period of record. The relationship of these flows to the mean flows for the period of record is also shown. The minimum annual flow for stations in WRPA 1 ranged between 49 and 56 percent and averaged 53 percent of the mean annual flow. For the 10 consecutive years of lowest mean flow, the average flows were about 90 percent of the mean annual flows at the gaging stations.

Variations in precipitation and discharge. Long-term variations in discharge in WRPA 1 are caused chiefly by long-term variations in rainfall and snowfall in the tributary streams of the Upper Mississippi River. Shown in figure 88 is a comparison of the precipitation at Vicksburg, Miss., and the discharge of the Mississippi River at Vicksburg. The mean and 5-year moving averages of both precipitation and discharge are shown to better illustrate the general trend of long-term changes in precipitation and discharge. This figure is not intended to show a definite correlation between precipitation and discharge at the site due to the large drainage area of the Mississippi River above Vicksburg. However, the curves do indicate to some degree that changes in precipitation trends at Vicksburg have some effect on flows of the Mississippi River at Vicksburg. This is due to the fact that the precipitation trends at Vicksburg usually coincide with general precipitation trends in the area's tributary to the Lower Mississippi River above Vicksburg. Hence, the precipitation curve tends to illustrate the general trends of precipitation not only at Vicksburg but also in areas above Vicksburg which contribute to flows in the Mississippi River.

Seasonal variations in streamflow of the Mississippi River are evident in the observed mean flows given in tables 25 through 32. The major flows usually occur during the months of March and April. This

tends to melt the snow in the upper areas. The spring rains usually yield a large percentage of runoff which flows through tributary streams directly to the Mississippi River.

Flow Velocities

A time of travel study was made on the Mississippi River from Baton Rouge to New Orleans, La. Travel times were measured from dye tracings for a flow of 240,000 c.f.s., which is equaled or exceeded over 70 percent of the time. These data were used to compute average velocities in the subreaches. Hydrographic surveys were used on the Mississippi River near Rosedale and Vicksburg, Miss., to determine average velocities in that reach of the river.

The velocities, which are shown in figure 53, correspond to a specific discharge, and, since velocity varies with discharge, the user should be cautious in applying these data to any other condition of flow. In general, stream velocities vary with discharge so that at higher discharges, greater velocities would be expected. The velocities represent the average velocity through a subreach; however, velocities can vary from point to point within a subreach. The velocities given for WRPA 1 were derived from preliminary studies and are subject to revision upon completion of more detailed studies.

River Profile

A profile of the Mississippi River from Cairo, Ill., to the Gulf of Mexico via Southwest Pass, as shown in figure 89, was constructed from topographic maps, hydrographic surveys, and data from available reports [136]. The profile shows the 1962-64 thalweg of the river, the average low water plane, the 1937 and 1927 highwater profile, and the Project Design Flow Line. The Project Design Flood was used to establish the required levee grades. Major stations are also shown, along with maximum and minimum discharges at the respective stations. A chart which shows pertinent data at each of the stage stations is presented. The highest and lowest stages, bankfull stages, and the average low water plane are tabulated.

Quality

Surface water in WRPA 1 is suitable for both industrial and municipal uses.

Chemical quality data collected on the Mississippi River near St. Francisville, at Luling Ferry, and New Orleans, La. (table 39), indicate that daily variations in chemical quality are small. In addition, a recent survey was made on the Lower Mississippi River, and the results indicate that the chemical quality of water in the Mississippi River changes very little from the Arkansas State line (mile 505) to Baton Rouge (mile 236). In the reach of the river between Baton Rouge (mile

236) and Belle Chasse (mile 76), the water becomes more mineralized (from about 300 to 360 mg/l of dissolved solids). Chemical constituents accounting for most of this increase were chloride, sulfate, sodium, and calcium, with chloride increasing from 28 to 47 mg/l. The increase was due to industrial and municipal waste effluents. The Mississippi River receives about 20,000 tons per day of inorganic waste and about 500 tons per day of organic wastes from industrial and municipal complexes located along the river from St. Francisville to New Orleans, La. Industrial discharge of inorganic waste has little effect on water quality during high flows; however, during low flow periods the effects are significant. Organic wastes discharged into the Mississippi River between Baton Rouge and New Orleans decrease the dissolved-oxygen concentration about 1.0 mg/l, with the largest decrease occurring during summer and low flow periods. In addition, great quantities of acidic waste are assimilated each day with very little effect on the river.

FIGURE 75
O-1120
FREQUENCY CURVE OF ANNUAL PEAK FLOWS
MISSISSIPPI RIVER AT TARBERT LANDING, MISS.

#RED RIVER LANDING, LA. PRIOR TO JULY, 1963

The Asset Teles

The state of the state of the

Table 25 - Observed Mean Discharge, Thousands of c.f.s., Sta 7-0242, Miss. River at Hickman, Ky.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua1
1945	206	163	221	521	457	1343	1129	800	848	404	248	223	547
1046	358	325	391	895	737	724	504	554	536	357	279	184	487
1947	200	373	285	672	468	4.20	910	7.80	9.02	6.4.4	228	175	
1948	144	203	221	304	630	951	1133	521	287	388	280	149	434
1949	137	282	571	888	1080	844	705	389	432	408	236	226	516
1950	275	230	438	1249	1426	837	798	7.23	632	458	353	428	656
1951	259	366	5.81	688	881	977	1013	690	554	839	3.60	407	635
1952	268	463	776	807	916	884	960	690	421	313	250	173	\$77
1053	129	138	218	346	475	6.78	611	620	404	292	220	144	356
1954	112	112	149	305	252	325	392	432	322	264	190	177	253
1985	295	204	242	429	498	1020	700	404	336	257	176	130	391
1956	199	223	189	127	821	800	643	440	352	296	277	183	379
1957	133	144	299	360	897	4.42	786	5.00	549	462	216	180	422
1958	181	483	646	515	420		576	789	416	641	634	266	508
1959	197	206	218	381	738	583	569	462	333	229	215	174	359
1960	323	272	489	588	548	484	906	604	499	441	221	223	467
1961	16.9	210	188	252	338	1109	858	1138	510	314	3.00	314	475
1962	272	420	5.3.0	567	771	1188	1055	448	446	332	212	217	538
1963	226	269	222	257	262	975	560	391	294	215	183	137	333
1964	114	132	140	224	262	8.82	719	492	298	210	151	156	315
1965	174	176	344	466	559	681	1030	588	400	347	182	383	4.14
1966	345	226	229	380	6.00	434	477	744	318	209	205	165	361
1967	183	239	470	280	375	727	5.8.9	796	484	476	293	198	4.26
1968	234	332	668	507	561	471	676	484	603	318	3.20	168	445
1969	221	290	339	495	855	415	827	631	413	672	5.0.2	226	474
1970	316	287	282	421	576	525	796	839	522	246	263	290	447
Mean	218	261	360	497	631	740	766	617	466	386	261	219	452

Table 26 - Observed Mean Discharge, Thousands of c.f.s., Sta 7-0320, Miss. River at Memphis, Tenn.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
1945	220	172	228	5.70	409	1310	1229	837	854	483	276	217	568
1946	376	329	404	960	776	767	571	545	550	391	288	193	512
1947	209	382	312	673	546	409	894	844	934	732	253	205	532
1948	154	219	234	3/2/0	607	947	1166	609	286	389	312	160	449
1949	145	291	578	887	1121	904	807	402	442	431	242	224	536
1950	275	250	446	1214	1483	9.71	857	7.8.2	643	480	383	423	6.79
1951	281	348	6.36	710	876	1054	1051	761	545	860	409	421	662
1952	29.5	461	771	8.5.2	995	900	1055	735	429	330	258	182	604
1953	132	139	227	3.40	494	712	622	677	425	314	237	153	372
1954	120	114	146	294	296	332	395	454	336	284	193	191	263
1955	277	218	234	428	464	995	810	436	348	270	188	135	400
1956	198	215	204	127	807	850	683	475	3.7.2	316	296	192	393
1957	140	146	289	347	927	470	780	603	616	486	238	180	451
1958	179	486	682	561	462	533	608	826	422	606	685	2.79	529
1959	220	215	240	361	765	628	580	469	360	238	224	177	370
1960	323	286	497	606	571	510	926	611	498	484	222	222	479
1961	172	211	191	267	305	1079	892	1121	548	318	325	304	479
1962	295	419	560	5.7.5	807	1213	1162	496	460	393	226	227	562
1963	233	266	224	286	258	900	668	3.8.7	317	214	192	151	342
1964	118	131	154	207	294	830	794	559	312	239	160	161	330
1965	181	173	381	492	587	683	1048	6.30	432	36 I	199	365	460
1966	388	250	241	415	551	477	468	796	353	226	211	176	379
1967	186	244	461	306	381	719	606	820	509	520	510	204	439
1968	243	341	642	553	604	456	725	475	638	331	339	177	460
1969	232	295	349	495	933	420	824	696	420	701	351	237	496
1970	327	290	299	456	591	562	768	904	562	298	275	275	467
Mean	228	26.5	370	512	650	755	807	652	485	411	280	224	470

Table 27 - Observed Mean Discharge, Thousands of c.f.s., Sta 7-0479.7, Miss. River at Helena, Ark.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
1945	226	174	233	601	394	1226	1263	865	866	534	295	221	575
1946	404	343	418	946	773	793	591	552	556	40.7	308	20.4	525
1947	219	379	314	667	580	414	8.76	845	911	742	252	207	534
1948	157	219	246	346	549	962	1182	659	278	386	328	167	457
1949	151	280	564	863	1164	978	863	427	466	438	264	234	558
1950	281	266	445	1196	1575	1065	880	816	652	493	393	431	708
1951	290	346	630	712	886	1070	1063	813	539	854	437	431	673
1952	296	452	810	867	996	884	1120	761	461	350	261	189	621
1953	133	141	226	335	499	727	657	709	453	327	242	160	384
1954	121	122	152	291	319	339	401	466	337	285	199	191	269
1955	268	230	234	439	446	978	888	465	365	279	198	141	411
1956	204	215	213	132	792	881	702	492	365	317	298	195	401
1957	142	149	291	350	914	502	774	614	671	506	260	194	447
1958	194	502	726	595	492	532	633	868	432		711	285	547
1959	229	213	246	342	794	669	604	489	386	248	236	184	387
1960	329	289	496	616	580	518	931	639	510	506	231	225	489
1961	179	216	208	278	301	1099	454	1198	598	325	342	293	499
1962	298	404	571	590	825	1217	1230	523	458	342	227	2.29	577
1963	236	254	217	277	257	872	703	390	324	219	197	155	342
1964	121	131	154	204	290	823	845	576	303	254	158	160	335
1965	183	176	376	493	601	675	1058	657	419	357	204	360	463
1966	400	244	236	434	564	506	461	820	370	224	214	176	387
1967	191	242	4.5.4	308	378	709	589	814		539	320	212	441
1968	238	330	635	573	632	450	755	489	670	332	348	181	468
1969	229	286	362	513	984	431	832	712	432	728	380	251	508
1970	318	281	289	436	592	573	801	945	572	283	263	266	468
Mean	232	265	375	516	661	765	833	677	497	418	291	229	480

Table 28 - Observed Mean Discharge, Thousands of c.f.s., Sta 72654.5, Miss. River at Arkansas City, Ark. $\underline{1}/$

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug \	Sep	Annual
1929	270	383	619	528	762	1069	1477	1528	1333	568	288	186	759
1930	218	448	457	872	971	881	533	522	363	215	118	144	478
1931	137	128	177	152	228	370	568	456	325	214	206	202	264
1932	179	167	606	947	1320	7.8.0	813		324	540	26.8	184	557
1933	181	227	301	749	822	771	1159	1140		270	244	228	584
1934	170	153	240	391	189	5.79	677		203	176	171	184	287
1935	189	201	351	480		856	1328		1220	882	407	250	652
1936	141	283	36.0	447	370	711	1116	548	252	1.85	114	128	388
1937	263	340	251	948	1979	916	512	870	557	402	238	210	625
1938	164	242	223	424	757	895	1125	655	861	559	491	269	555
1939	253	217	236	347	1010	1357	1133	854	450	438	258	144	559
1940		112	121	132	266	569	634	696	374	312	219	222	313
1941		138		358	387	308	506	423	473	356	179	252	313
1942		684	341	394	611	773	985	644	592	686	362	346	577
1943	305	378	501	982	654	673	981	1077	1280	606	343	213	666
1944	162		169	235	342	959	1209	1318	641	456	249	269	517
1945	265	197	288	661	458	1548	1788	1206	1121	754	327	244	
1946	562	381	463	1069	0.3.4	932	751	706	749	486	321	218	738
1947	221	456	471	726	625	429	965	1061	985	811	278	220	631
1948	169	240	284	409	592	1091	1.237	770	343	560	442		6.04
1949	168	293	598	976	1425	1107	968	571	614	519	304	197	528
1950	329	322	464	1319	1747	1237	958	954	735	590	575	264 555	651
1951	351	364	678	750	980	1201	1111	928	637	1021	531		815
1952	333	535	916	983	1083	980	1252	878	493	364	271	486	753
1953	145	149	285	357	543	802	787	863	530	344	262	207	691
1954	133	138	167	312	376	367	420		381	306	213	172	437
1955	264	245	236	480	463	983	970	524				199	299
1956	236	221	239	146	839	946	716	524	442 383	322	221 304	156	442
1957	153	158	282	362	974	597		891		3.25		208	4.24
1958	232	536	789	653	5.5.3	614	781	1032	1066	662	541	240	
1959	254	244	296	347	822	758	647		436	680	804	323	626
1960	483	348		7.04	658	591		751		300	282		4.26
1961	202	248		307	313	1116				547	270	259	558
1962	369	490	676	710	003	1335	1124	1283	762	401		359	564
1963	274	286		320	293		1341	619	495	341	255	259	657
1964	141	147	177	219	315	848	829	420	369	245	223	177	378
1965	206	199	433	552	687	832	972	666	329	280	182	189	371
1966	476	278	259	492	631	767	1131	749	506	415	247	390	524
1967	211	263	480	356	108	618	509		442	251	241	206	445
1968	278	397				728	678	858	593	637	374	250	487
1969	249	330	686	716	751	562	951	681	820	388	377	207	567
1970	370	330	488	6.4.4	1226	574		878	521	780	4.21	264	607
	3711		353	552	648	696	888	1149	666	344	310	292	549
ean	248	288	387	560	730	827	938	800	612	468	308	242	534

 $[\]underline{1}/$ Published as Mississippi River at Chicot, Arkansas, prior to 1943

Table 29 - Observed Mean Discharge, Thousands of c.f.s., Sta 72890.00, Miss. River at Vicksburg, Miss.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
1929	284	363	619	516	812		1464	1530	1523	744	340	223	785
1930	241	429	470	838	1046	933	618	553	452	266	143	147	511
1931	144	132	182	1.60	210	370	5.5.3	479	362	2.50	224	214	27.2
1932	1.8.2	165	619	924	1300	928	827	580	334	560	278	205	573
1933	193	239	329	833	864	818	1140	1160	1050	293	264	246	616
1934	182	165	249	429	204	583	7.3.5	341	216	184	172	191	305
1935	202	206	402	496	7.20	838	1357	1076	1181	942	433	281	677
1936	154	290	368	473	402	695	1093	636	264	198	125	127	402
1937	265	356	267	869	1944	1146	567	896	583	430	251	222	641
1938	175	275	237	452	759	963	1135	691	839	546	493	269	567
1939	267	214	248	3.4.9	0.58	1367	1179	936	469	476	276	160	573
1940	110	122	130	146	263	6.0.8	647	751	388	352	235	256	333
1941	134	157	280	388	113	325	495	467	454	369	197	251	327
1942	493	709	361	408	596	805	1044	716	605	711	369	346	596
1943	321	382	523	987	675	672	1040	1072	1383	677	363	228	693
1944	174	213	170	242	333		1227	1392	7.0.2	483	26.2	279	537
1945	278	200	294	698	459	1494	1848	1315	1117	831	356	287	764
1946	554	368	485	1021	080	957	792	687	783	531	329	232	6.4.2
1947	230	148	471	718	698	461	952	1088	1021	881	296	230	623
1948	174	240		418	594	1175	1331	867	356	576	471	207	560
1949	174	301	6.37	1021	1500	1241	1071	627	632	538	328	270	690
1950	331	348	447	1269	1796	1414	1061	983	780	617	604	580	844
1951	388	366	703	769	996	1241	1143	927		1010	580	484	775
1952	347	531	923	1013	1113	966	1262	929	514	375	276		705
1953	154	154	294	352	561	838	817	857	578	359	278	188	452
1954	145	142	173	296	406	373	409	583	3.80	310	216	198	302
1955	258	270	239	491	166	976	1010	567	456	332	250	166	455
1956	238	217	243	150	810	955	735	546	397	334	309	214	427
1957	158	160	286	388	0.83	644		892	1106	736	375	274	572
1958	260	574	866	715	595	627	806	1070	565	682	840	358	663
1959	304	254	313	3.3.3	823	791	681	558	476	303	3.03	216	443
1960	484	354	517	715	702	650	944	794	638	586	282	271	578
1961	215	240	272	315	315	1090	1164	1261	897	430	430	357	584
1962	377	470	681	729	988	1276	1368	729	528	385	296	280	674
1963	299	295	280	3.51	318	851	901	433	392	269	240	102	402
1964	149	152	185	221	322	821	1033	755	348	327	213	213	395
1965	230	211	472	567	695	774	1166	803	517	428	272	385	542
1966	503	287	268	504	631	675	504	982	480	270	253	225	466
1967	212	268	465	392	416	684	695	853	616	642	378	245	491
1968	275	390	675	7.64	7.67	553	1.029	701	839	416	407	236	586
1969	268	340	523	632	1233	613	917	898	525	747	438	287	615
1970	361	3.40	369	5.8.8	616	6.98	877	1158	693	380	326	288	557
Mean	259	294	401	570	745	854	965	837	645	494	328	255	553

Table 30 - Observed Mean Discharge in Thousands of c.f.s., Sta 01100, Miss. River at Tarbert Landing, Miss.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
	Name and Address of the Owner, where the Owner, which is the Ow				679	847	1001	709	702	465	422	226	512
1938	154	248	215	472	718	1060	985	826	410	392	234	144	474
1939	233	171	217	303	219	488	534	0.65	349		238	214	290
1940	96	9.7	103	124		333	428	464	416		190	220	309
1941	114	142	301	376	372			708	575	655	343	525	525
1942	417	609	333	358	469	659	853	830	1146		283	187	
1943	278	324	435	805	538	536	889		703	421	225	232	463
1044	145	168	148	218	296	801	1024	1176	1156	893	350	256	
1945	214	155	234	728	464	1457	1864	1438		464	271	189	549
1946	572	330	443	731	854	817	649	587	673		204	161	457
1047	174	357	365	550	539	3.6.5	0.61	810	714	581	370	163	421
1048	129	181	227	340	444	866	897	687	2.89	458		214	561
1949	132	240	478	756	1156	1066	915	558	515	428	273		679
1950	259	292	322	948	1372	1185	864	801	670	490	481	460	
	329	267	529		789	958	931	782	537	757	476		608
1951	270	384	680	790	851	741	961	743		279	209	100	539
1452		117	239	269	460		009	772		329	240	153	384
1955	120	105	135	224	331	293	316	524	510	2.34	170	155	243
1954	113		179	387	380	741	866	46.8	352	270	197	139	305
1955	188	215		120	645	794	601	438	298	246	256	102	342
1956	198	167	199		777	585	7.55			0.51	302	205	474
1937	122	122	214	296		481	598	862	518	519	051		
1958	211	451	718	611	3.20	0.36	557	444	391	237	247	175	350
	265	198	255	241	627	548	709	570	464	426	227	199	448
1960		276	408		581		967	892	711	351	329	259	460
1961	165	196	228	289	274	858	1050	626	3.8.2	269	205	204	525
1962	290	346		626	770	941		302	276	215	190	153	286
1963-	231	216	211	253	224	534	625		337	299	170	169	341
1964	128	135	103	182	25.5	613	839	804	387	309	210	249	412
1965	195	171	362	441	5.30	628	8.36	629		207	185	171	371
1066	253	216	217	111	6.20	673	366	740	39.2	476	287	200	360
1967	100	201	329	288	281	462	501	626	509		276	181	447
1968	215	285	482	617	594	411	792	546	661	301		215	463
1969	197	2.38	394	456	919	533	695	696	395	508	310		415
1970	263	260	273	448	430	529	652	852	536	283	239	213	
Mean	218	239	322	449	575	700	782	709	5.35	414	280	213	453

Note: Red River Landing, La., discontinued 12 July 1963. Subsequent discharges from Tarbert Landing, Miss.

Table 31 - Observed Mean Discharge in Thousands of c.f.s., Lower Old River near Torras, La.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annua1
1938	2.4	29	11	1.4	7.2	129	176	61	151	109	95	46	76
1939	4.7	3.2	4.1	3.0	135	262	192	160	5.3	9.8	5.0	2.8	9.4
1940	17	18	16	16	1.3	111		118	30	1.7	- 3	4.0	41
1941	1.8	11	- 30	- 2	26	- 7	4.4	1.4	16	3.2	2.2	35	-21
1942	7.2	107	3.7	49	99	141	185	6.1	4.3	141	6.1	5.7	8.8
1943	58	66		202	133	1.28	209	219	341	1.25	7.4	4.7	141
1944	3.4	39		2.0	2.4	152	2.39	282	6.8	89	6.0	6.2	9.2
1945	6.0	3.7	3.4	100	3.2	293	395	213	227	147	4.2	4.9	150
1946	110	5.6		187	163	148	125	9.2	127	9.7	7.2	5.2	110
1947	4.5	8.4	6.2	114	124	10	169	216	205	206	60	4.4	114
1948	3.4	40	3.4	5.8	88	224	283	163	5.8	142	120	4.4	107
1949	3.4	5.4	127		360	280	206	115	143	135	8.2	6.7	151
1950	6.5	6.6	8.5	298	470	299	228	191	153	142	134	105	186
1951	7.2	8.7	177	168	229	298	279	268	145	249	164	124	188
1052	8.8	116	213	260	275	222	323	205	105	100	7.2	58	170
1953	3.7	3.3	5.4	6.7	105	172	171	154		4.5	5.3		82
1954	31	3.0	3.2	5.2	77	8.0	8.2	9.4	61	6.5	4.8	46	5.8
1955		51	4.8	112	8.0	232	255	118	9.6	7.4	4.9	39	100
1956	4.5	4.7	5.8	3.2	163	239	181	136	104	8.7	8.4	57	103
1957	4.1	40	6.2	86	231	151	190	161	230	131	87	6.7	123
1958	5.2	7.0	175	143	1.20	121	187	228	-93	141	250	8.3	138
1959	5.8	5.2	71	66	20.5	182	153	1:3.4	114	7.6	7.5	5.5	103
1960	112		112	144	142	127	241	204	166	161	7.2	67	130
1961	5.2	5.3	3.7	3.3	3.9	261	274	317	259	8.3	9.8		133
1962	104	118	142	133	183	232	3.79	157	89	7.8	6.6	7.3	146
1963	7.6	7.6	0.6	8.2	7.4	140	126	36	31	1/			
Mean	5.5	5.8	74	103	141	180	207	158	122	111	80	59	112

Table 32 - Observed Mean Discharge in Thousands of c.f.s., Sta 02100, Old River Outflow Channel near Knox Landing, La.

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua1
1963 1964 1965 1966 1967 1968 1969 1970	24 42 126 43 66 62 98	22 34 61 56 96 82 89	30 103 56 103 165 117 100	39 (b)149 101 94 196 159	64 (b) 55 15 96 200 331 160	178 (b) 85 73 169 117 131 174	147 250 300 126 184 246 243 241	(a) 73 11 232 228 215 156 256 339	(a) 84 15 136 117 169 209 148 220	(a) 54 104 62 185 103 220 116	(a) 49 36 63 50 104 104 132 88	35 35 84 46 58 58 82 72	61 132 85 123 143 164 154
Mean	66	6.3	96	128	146	147	217	189	137	110	78	59	120

Note: (a) Barge accident resulted in emergency operation of control structure, 1 May-10 Aug. Data in this period were estimated.

(b) Barge accident caused emergency operation of gates 22 Jan-18 Mar. Mean daily flow for this period computed from design rating, records fair.

Table 33 - Dependable Yield at Sta 7-0242, Miss. River at Hickman, Ky.

Table 34 - Dependable Yield at Sta 7-0320, Miss. River at Memphis, Tenn.

Lowest Mean Flow 1,000 c.f.s.

Inclusive

Consecutive Years of Lowest Mean Flow			100	-	· un			00		101	36
Percent of 1945-1970 Mean	56.0	07.4	00,00	76.3	7.67	55.13	100	86.7	88.8	51.3	100.0
Lowest Mean Flow 1,000 c.f.s.	253	304	333	345	360	385	381	39.2	401	412	452
Inclusive	1954	1953-1954	1953-1955	1953-1956	1953-1957	1953-1958	1953-1959	1953-1960	1953-1961	1954-1963	1945-1970
Consecutive Years of Lowest Mean Flow	1	2	10	4	ın	9	-	00	6	10	26

Table 35 - Dependable Yield at Sta 7-0479.7, Miss. River at Helena, Ark.

Consecutive Years of Lowest Mean Flow	Inclusive	Lowest Mean Flow 1,000 c.f.s.	Percent of 1945-1970 Mean
	1945	269	56.1
	1953-1954	326	68.1
P/1		355	73.9
**		366	76.3
ın	1953-1957	382	79.7
9		406	84.6
		407	84.7
00		417	86.9
0		426	88.8
10		437	91.1
36		480	100.0

Table 36 - Dependable Yield at Sta 72654.50, Miss. River at Arkansas City, Ark.

Consecutive Years of Lowest Mean Flow	Inclusive	Lowest Mean Flow 1,000 c.f.s.	Percent of 1929-1970 Mean
	1931-1931	264	49.5
4 (1940-1941	213	58.6
1 14	1954-1956	388	72.7
	1953-1956	400	75.0
· u	1953-1957	431	80.8
0.42	1931-1936	100	85,3
) F	1053-1050	825	85.9
o	1934-1941	461	86.5
0 0	1934-1942	474	88.9
101	1031-1040	478	9.68
2.5	1929-1970	533	100.0

Table 37 - Dependable Yield at Sta 72890.00, Miss. River at Vicksburg, Miss.

Consecutive Years of Lowest Mean Flow	Inclusive	Lowest Mean Flow 1,000 c.f.s.	Percent of 1929-1970 Mean
	1931-1931	272	49.2
2	1940-1941	330	59.7
10		394	71.4
4	1953-1956	409	74.0
ın		441	79.9
9	1936-1941	473	85.7
7	1953-1959	475	85.7
00	1934-1941	478	86.5
av	1934-1942	491	88.9
10	1931-1940	495	89.7
42	1929-1970	5255	100.0

Table 38 - Dependable Yield at Sta 0112012, Miss. River at Red River Landing, La.

Consecutive Years of Lowest Mean Flow	Inclusive	Lowest Mean Flow 1,000 c.f.s.	Percent of 1938-1970 Mean
1	1954-1954	243	53.6
2	1940-1941	300	66.2
1 80	1952-1956	317	70.0
4	1953-1956	333	73.5
L/A	1963-1967	354	78.1
9	1968-1968	370	81.7
7	1963-1969	383	84.5
90	1953-1960	394	87.0
6	1959-1967	395	87.2
10	1959-1968	401	88,5
53	1938-1970	453	100.0

de 50 · Chemical Analyses of Water in WRPA 1 from the Mississippi River in the Lower Mississippi Region, Milligrams Per Liter

	Color		2018	818185	18218		~ 1 ~ 1 ~	8211×8	21	1:
	Н		2712	313133	19319		21213	391199	91	1 :
Specific conduct-	mhos at 25°C)		2355	ZZNANE	95225		25543		838	195
Hardness as CaCO,	Non- carbon- ate		st819	318199	19818		81918	951163	311	119
Haro as C	Calcium, Non- magne-carbon sium ate		8218	818188	12212		81919	891188	811	1.9
Dissolved	residue (residue at 180°C)		결정 1정	\$19188	18813		281 188 188 188	881188 881188	911	1 1 200
ź	(NO ₃)		3311	313135	12212		31313	981159	211	15
Fluo-	ride (F)	10.	32124	213133	19919	In.	31919	441144	211	13
Chlorida			AAIAE	sininn	12213		SIRIS	221122	511	1.82
Sulfato	(300)	Manigat Hver near St.	80109	312122	19818	below it.	X 1 X 1 S	551185	811	16
Bicar -	(HCO ₃)	pt stver	23155	818188	18818		51918	881188	311	13
	Stum (K)	Monteets	33/22	212122	13313		31315	231123	211	13
E S	(Na)		23182	018183	12218		21412	281182	211	18
Mag.	Sium (Mg)		51130	21212 ₃	1,21,		31,1,	3,113,	_ 1 1	1 3
Cal-	(Ca)		#\$ ME	£12123	13813		21312	ESILES	311	13
Lon	(Fe)		51115	211144	18818		ŞIIII	441144	911	18
Silica	(\$10,		33133	213133	13313		21312	231123	311	19
	Discharge (cfs)		11111	111111	11111		11111	111111	111	11
	para publish			HILL	\$5555 \$3337			111111		11414
	oracing station				Quaternary Terrace and Aliveral Deposits					

Table 39 - Chemical Analyses of Wator in WEQA I from the Mississippi River in the Lower Mississippi Region, Willigrams Per Liter (Con.)

	Color						12128	nnes
	Hd		01 01 01 01 01 01 01 01 01 01 01 01 01 0	333		oonen Feber	12122	
Specific conduct-	(micro- mhos at 25°C)						16131	8883
	1		888844				19188	2020
Hardness as CaCO,	Calcium, magne-ic sium		22222	988		98199	18189	2222
Dissolved	solids (residue Calcium, Non- at 180°C) magne-carbon sium ate						18188	
ź	(NO,)		222233	292		95954	15135	9100
Fluor	ride (F)		344400	-1 50 xy		32404	12124	4444
	Chloride (Cl)	Perry, la.			briegge, la.		12188	
	Sulfate (50,	Masterigel Myer at boling Porty,			nt Nov		18185	
	Bicar- bonate (HCO ₃)	opt Aver					18188	
	tas- sium (K)	Restant	234358	322		22223	13133	111
	Sodium (Na)	00/81/6/00					12122	NNA
Mag	ne- sium (Mg)		and and a	, », ¥1		32242	12108	3:11
	Cal- ctum (Ca)					93349	12183	
	Iron (Fe)		हु वृत्तव <u>स</u>	111		20448	19185	444
	Silica (SiO ₂)		45454	120		33753	1,3155	1 322
	Discharge (cfs)		11111	1 111		11111	1111	111
						11111		
						q rinery Perrace and ALLEVIAL Deposits		

W R P A

WRPA 2

INTRODUCTION

WRPA 2 consists of that part of Missouri containing the St. Francis River Basin and the St. Johns Bayou-New Madrid Floodway area; and the part of Arkansas containing the St. Francis River Basin, the White River Basin below Georgetown, and the left bank of the Arkansas River Basin below Pine Bluff. The area covers 16,723 square miles, or about 16 percent of the total area of the Lower Mississippi Region.

The area is bounded on the north by the St. Francis Basin Divide, on the west by the Southwestern Division-Lower Mississippi Valley Division boundary, on the south by the Arkansas River, and on the east by the Mississippi River. The area is about 300 miles in length with a maximum width of about 80 miles. The highest elevations in the area are found in the Ozark Highlands in the north with the highest elevation being about 1,770 feet above mean sea level (m.s.l.). The lowest elevations are found along the lower end of the White River at about 140 feet m.s.l.

About 90 percent of WRPA 2 is nearly flat alluvial valley delta land with the main physiographic feature being Crowleys Ridge which extends lengthwise through and mainly in the middle of the St. Francis Basin. The eastern slopes of the ridge are rather steep, and they grade into the alluvial plains of the river valleys.

The Sikeston Ridge and Malden-Kennett Prairie are low terraces on the alluvial plain; they lie east of Crowleys Ridge and rise 10 to 20 feet above the lowland plains. West of Crowleys Ridge, there are other small isolated terraces. The long, narrow, low drainage basins of the streams and drainage ditches are alined parallel to these low terraces.

Streams originating within this WRPA averaged about 16 inches of runoff per year, or 19,770 c.f.s., during the period of record.

Of the three major river systems in WRPA 2, the stream gradients for the St. Francis are the highest, ranging from about 3.0 feet per mile in the upper reaches to about 0.5 foot per mile in the lower reaches. The St. Francis Basin contributes about 15 inches of runoff per year in WRPA 2.

The stream gradient for the Lower White is about 0.4 foot per mile. The runoff originating in the White River Basin within WRPA 2 averages about 19 inches per year. The portion of the White Basin which is outside WRPA 2 averages about 16 inches of runoff per year.

The stream gradient for the Lower Arkansas River is about 0.6 foot per mile. The rumoff originating in the Arkansas River Basin within WRPA 2 averages about 14 inches per year, and the portion of the basin which is outside WRPA 2 averages only about 3 inches per year.

The streams in this area flow through an alluvial valley consisting of 10 to 50 feet of silts and clays underlain by sands and gravels 30 to 150 feet thick.

The largest cities in the area, with their 1970 populations, are: Blytheville, Ark. - 24,752; West Memphis, Ark. - 26,070; Jonesboro, Ark. - 27,050; and Pine Bluff, Ark. - 57,389.

SURFACE WATER

The majority of the streamflow which originates within WRPA 2 is produced by the St. Francis and White River Basins. There is some slight regulation on the St. Francis River as a result of Wappapello Dam. This structure regulates a drainage area of 1,310 square miles. The flow which originates within WRPA 2 on the White River has no regulation. The flow entering from outside WRPA 2 on the White River is partly regulated by upstream dams.

Quantity

The annual mean discharge of streams originating in WRPA 2 is 19,770 c.f.s. (14.3 million acre-feet annually). This averages 1.2 c.f.s. per square mile. This is an intermediate rate when compared with that for the rest of the region. An additional 65,500 c.f.s. flows into the area from outside.

Present Utilization

Withdrawals from surface water sources in WRPA 2 during 1970 averaged about 1,850 c.f.s., which was equivalent to less than 10 percent of the mean annual flow generated within the area. Surface water withdrawals constituted less than 34 percent of the total water withdrawn in the area, with the remainder coming from ground water sources. Major surface water withdrawals were for fish and wildlife enhancement (810 c.f.s.), thermoelectric power production (610 c.f.s.), and irrigation (410 c.f.s.).

Ground water withdrawals from WRPA 2 during 1970 were greater than those from any other WRPA in the region, averaging about 3,700 c.f.s. The major use of ground water withdrawals was for the irrigation of crops (3,440 c.f.s.). Fish and wildlife enhancement (90 c.f.s.) and municipal (50 c.f.s.) and industrial uses (52 c.f.s.) were other sources for ground water withdrawals.

About 3,085 c.f.s., or 55 percent of the total ground and surface water withdrawals from WRPA 2 during 1970, were consumed. The remaining withdrawals of 2,465 c.f.s. were released and returned to nearby streams, thus resulting in a net increase to the area's streamflow of 615 c.f.s. (due to large quantity of ground water withdrawn and released). Major consumptions of water were for irrigation (2800 c.f.s.) and for fish and wildlife enhancement (180 c.f.s.). Recreation was popular in the area and most lakes and streams were used for nonconsumptive purposes such as fishing, boating, and water sports.

Additional information on the withdrawals of ground and surface water in WRPA 2 during 1970 is given in table 15 of the Regional Summary.

This table also presents pertinent data on the consumption of water for various purposes in this area and each of the other WRPA's in the Lower Mississippi Region.

Stream Management

Competition for water among the various users necessitates efficient stream management. In WRPA 2, stream management practices include changes in stream systems by the use of dams for decreasing flood flows and supplementing low flows, the development of levees, channel improvements, and diversion of water for various uses. Some of these practices may not cause marked changes in streamflow and many subsequent years of streamflow records may be required to define their effects on the stream system.

Impoundments

Table 40 gives pertinent data on reservoirs in WRPA 2 which have a total capacity of 5,000 acre-feet or more. Lake Wappapello is the main flood-control reservoir.

Table 40 - Reservoirs Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 5

Name	Stream	Total Storage (acre-feet)	Surface Area (acres)	Purpose 1/
Wappapello Lake	St. Francis River	1,336,200 2/	35,100	F,R
Cox's Lake	Big Slough Ditch	7,200	160	In
Claypool Lake	L'Anguille River	5,200	1,300	R,F
Peckerwood Lake	Lagrue Bayou	20,000	4,000	Ir,R
Bear Creek Lake	Bear Creek	8,000	800	R
John Hampton Lake	Raney Bayou	6,408	1,068	Ir,R

^{1/} F - Flood Control, R - Recreation, Ir - Irrigation, and In - Industrial.

The operation of Lake Wappapello for flood-control purposes usually follows a pattern of discharging excess water in mid-December to allow for the storage of runoff from heavy winter and spring rains. Recreation is very popular on the lake; hence, this use of the lake requires that the water be held in the reservoir during the summer months for as long as possible.

Channel modification. Throughout WRPA 2, channel modification has taken place on many of the streams. Extensive flood-protection projects have been built in both the St. Francis Basin and the White River Basin. These projects include, in the St. Francis Basin, Wappapello Dam, levees,

^{2/} Includes surcharge and freeboard storage.

drainage structures, and channel clearing and construction. Projects in the White River Basin include levees, drainage structures, and channel clearing and construction.

Navigation projects have been built on the White and Arkansas Rivers. On the White River, this consists of channel clearing and dredging, while on the Arkansas River it consists of channel improvements and locks and dams. Both the White and the Arkansas Rivers are navigable throughout WRPA 2.

Streamflow

The base period selected for this study varies, depending upon the period of record available at each gage site. At the stations where necessary, the period of record was modified to reflect changes in the streamflow characteristics at the site due to changes in stream management, diversions, channel improvements, or regulations upstream from the site. For each of the selected gaging stations, the selected period of record provides reasonably good data for statistical analysis and study in this report, and the data are considered representative of flows which could occur under 1973 levels of development.

Measurement facilities. Streamflow data at 12 sites in WRPA 2 are considered to be representative of the various drainage and hydrologic conditions which exist in the area. Locations of these sites, identified by U. S. Geological Survey Station numbers, are shown in figure 90, which also shows the mean annual runoff for the area. Table 41 is a summary of streamflow and other pertinent data at each of the selected sites.

Table 41 - Streamflow Summary for Selected Sites, WRPA 2

		Station	Gage	Drainage Area (square	Period of	Mean	Annual Flo	w 1/	Momenta: Flow (c.	
Stream	Station	No.	Datum	miles)	Record	Mean	Maximum	Minimum	Maximum	nium
t. Francis River	Patterson, Mo.	0375	370.45	956	20-69	1,084	2,250	343	100,000	8
t. Francis River	Wappapello, Mo.	0395	324.44	1,311	20-69	1,541 3/	3,089 3/	584 3/	85,000 4/	
t. Francis River	St. Francis, Ark.	0401	270.57	1,772	30-69	2,111 3/	4,672 3/	550 3/	39,200 4/	
t. Francis River	Lake City, Ark.	0404.5	217.69	2,374	31-69	3,065 3/	6,766 3/	789 3/	36,700 4/	60
ight Hand Chute f Little River	Rivervale, Ark.	0466	213.15	2,105	47-69	2,811	6,474	844	31,400	80
yronza River	Tyronza, Ark.	0476	183.87	290	49-69	421	841	168	5,660	1.3
t. Francis River	Latitude of Wittsburg, Ark.	0479.02		6,475	35-69	7,844 3/	16,947 3/	2,533 3/	74,100 4/	250
'Anguille River	Palestine, Ark.	0479.5	166.68	786	49-69	1,186	2,618	452	15,600 5/	0
ache River	Patterson, Ark.	0775	182.90	1,041	37-69	1,391	3,014	403	13,200	0
ayou De View	Morton, Ark.	0777	187.71	422	39-69	541	1,322	141	6,700	0
hite River	Clarendon, Ark.	0778	139.91	25,497	28-69	30,040	62,100	13,100	440,000	2,900
rkansas River	Little Rock, Ark.	2635	223.61	158,201	28-69	39,820	84,780	10,820	536,000	850

Regulated values for period of record.
Observed values for period of record.
After construction of Wappapello Dam.
Before construction of Wappapello Dam.
Discharge not determined for record high gage.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

MEAN ANNUAL RUNOFF IN INCHES WRPA 2

FIGURE 90

Average discharge for WRPA 2. A graphical representation of the average monthly discharge generated within WRPA 2 and contributed to the area from outside the region is shown in figure 91. This figure presents the maximum, mean, and minimum monthly flows at the mouths of the Arkansas, White, and St. Francis Rivers, and includes inflow from outside the area.

Average discharge at selected stations. Tables 42-53 present observed mean flows at each of the selected sites in WRPA 2. The flows are representative of 1973 levels of development in the area. Figures 92-103 present peak flow frequency curves for selected sites in WRPA 2. These curves are a reflection of the annual peak discharges for the station and were computed using the standard method of the Corps of Engineers [6].

Low flow frequency curves for selected sites are shown in figures 104-113. These curves represent the lowest average flows for periods of 3, 7, 14, 30, and 120 consecutive days. Due to regulation of low flows, no curves were computed at the station immediately below Wappapello Dam or at Little Rock, Ark.

Duration curves for daily flows at selected sites in WRPA 2 are presented in figures 114-125. These curves indicate the percent of time that any given flow at the site is equaled or exceeded.

Tables 54-65 present data on the dependable yield characteristics at each of the selected discharge sites. These tables show the lowest mean flows for from one to ten consecutive years out of the period of record. The relationship of these lowest mean flows to the period of record mean is also shown. The minimum yearly flow for the stations in WRPA 2 ranges between 26 and 44 percent and averages 32 percent of the mean annual flow. For the ten consecutive years of lowest mean flow, the dependable yield averages about 82 percent of the mean annual flows for the WRPA.

Flow Velocities

No flow velocities for streams in WRPA 2 were available for publication in this report due to the lack of time of travel studies in the area.

River Profiles

Representative river profiles are presented in figures 126-128. The profiles were prepared using topographic maps and data from available reports.

Quality

Surface water in WRPA 2 is generally suitable for most uses even

though it is moderately mineralized (dissolved solids ranged from 90 to 333 mg/l) and hard (hardness greater than 120 mg/l of $CaCO_3$, table 66). The water is suitable for some uses with little or no treatment. However, for municipal and most industrial uses, most of the water requires softening, coagulation, filtration, and pH adjustment [107].

Calcium, magnesium, and carbonate are the principal constituents in waters from streams draining all formations except the Pliocene deposits (table 66). All the streams except ditch 24 at Heagy, Mo., and Big Creek near Jonesboro, Ark., drain terrace or alluvial deposits of Quaternary age.

Ditch 24 at Heagy, Mo., drains Paleozoic rocks and Cretaceous deposits. The chemical characteristics of water in this stream are similar to those of water in streams draining Quaternary deposits. This similarity is to be expected because generally the principal soluble constituents in the Paleozoic rocks and in the outcrop of the Cretaceous deposits are the carbonate salts of calcium and magnesium.

The dissolved-solids content of water in streams draining Quaternary deposits or draining Paleozoic rocks and Cretaceous deposits range from 90 to 333 mg/l. In each stream, however, the quality is fairly uniform during periods of low flow. The areal variation in dissolved solids is caused largely by differences in the composition of the deposits.

The dissolved-solids values of water from Village Creek at Newport, Ark., are much smaller than values for Village Creek at Walnut Ridge, Ark., and for other streams draining the alluvium or terrace deposits. Big Creek near Jonesboro, Ark., drains Pliocene deposits. Bicarbonate is the principal anion in water from these deposits and calcium, magnesium, and sodium are present in about equal quantities. The dissolved-solids content of water from Big Creek near Jonesboro generally is less than that in streams draining other geologic units, probably because the Pliocene deposits do not have as much soluble material as the other deposits.

Table 42 - Observed Mean Discharges in c.f.s., St. Francis River at Patterson, Mo., Sta 7-0375

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua l
1921	25	45	340	840	1.050	3,000	4,600	2,300	210	125	97	274	1,070
1922	266	2,860	1,470	504	1,030	3,800	3,960	710	136	173	120	53	1,250
1923	55	263	723	1,520	3,560	3,620	1,590	3,780	1,160	117	264	226	1,400
1924	204	246	2,210	465	1,420	1,130	644	1,050	1,620	727	632	376	892
1925	132	129	432	405	1,450	770	931	483	393	727 77	68	485	471
1926	2,910	3,240	1,390	715	2,190	996	1.070	188	107	58	220	231	1,100
1927	823	1,580	699	3,250	1,150	2,850	9,220	4,200	2,610	177	333	109	2,250
1928	171	966	3,070	996	1,260	1,110	3,890	777	8,720	593	545	121	1,840
1929	189	603	1,730	2,290	1,190	1,680	3,200	4,720	1,480	562	192	131	1,500
1930	124	248	882	4,020	1,960	919	353	139	51	30	25	64	730
1931	117	122	206	118	684	1,310	1,010	727	193	75	82	89	393
1932	37	385	1,070	2,620	566	588	436	197	70	62	268	72	534
1933	155	477	2,160	2,270	700	1,100	3,740	5,620	156	146	86	393	1,430
1934	382	130	306	637	145	1,270	1,328	354	85	36	119	694	459
1935	403	1,060	1,151	2,127	723	5,333	1,272	3,819	5,309	797	215	80	1,866
1936	137	1,197	559	239	415	514	903	182	34	21	11	135	360
1937	1,550	1,580	1,002	6,430	2,266	631	2,304	2,118	448	461	57	59	1,575
1938	266	174	1,233	1,353	3,889	3,410	2,113	1,441	498	268	87	37	1,215
1939	37	99	138	1,199	2,282	3,619	3,895	411	379	597	264	58	1,071
1940	80	118	124	383	281	1,574	3,062	901	133	96	109	33	573
1941	32	138	535	1,422	447	178	836	273	94	38	52	78	343
1942	1,624	2,042	818	1,223	2,686	2,008	1,728	977	1,939	248	267	69	1,290
1943	185	1,476	2,424	585	347	1,321	1,479	7,145	1,269	141	178	99	1,399
1944	88	124	121	151	562	1,580	2,430	1,035	156	35	21	36	526
1945	36	54	89	104	2,750	6,981	7,167	1,140	7,210	340	98	687	2,200
1946	1,951	824	420	1,673	3,077	1,451	888	6,162	852	120	282	80	1,478
1947	65	1,043	1,036	806	548	623	4,248	1,330	1,251	70.3	61	59	977
1948	97	574	440	2,542	1,397	2,244	1,689	1,228	320	735	89	52	951
1949	60	381	558	5,683	2,436	3,413	971	697	1,137	607	97	278	1,358
1950	2,635	318	1,289	6,725	3,845	1,420	2,796	3,346	732	114	635	1,030	2,068
1951	155	337	445	2,038	4,577	1,975	1,448	865	884	2,465	804	1,405	1,429
1952	1,170	4,441	1,452	1,049	1,425	3.339	2,953	381	108	115	94	52	1,376
1953	49	258	483	712	677	2,437	1,162	977	108	63	19	15	581
1954	29	48	61	238	662	283	622	1,405	1,868	67	30	53	443
1955	92	103	1,140	483	1,298	3,002	1,097	754	224	185	40	15	702
1956	68	219	91	65	2,418	694	587	1,594	469	110	39	33	524
1957	34	119	417	673	1,886	1,644	7,264	5,869	2,352	2,513	285	59	1,921
1958	97	1,799	2,718	1,196	940	4,091	2,735	2,114	1,611	2,138	804	211	1,712
1959	124	1,579	483	1,663	1,704	2,199	1,783	832	350	146	103	186	922
1960	776	308	2,643	1,145	1,090	1,688	1,008	2,073	268	76	58	60	938
1961	86	556	1,047	194	1,223	3,444	2,315	3,650	853	152	97	32	1,140
1962	35	86	440	2,775	1,828	3,058	1,290	833	147	59	47	182	896
1963	174	100	290	346	125	1,948	950	2,235	308	128	284	54	585
1964	30	158	115	129	396	4,002	2,433	30.5	86	48	36	54	650
1965	43	80	149	220	7.38	652	2,000	256	540	55	19	2,103	563
1966	169	78	397	1,664	2,948	805	5,039	3,584	196	48	130	233	1,259
1967	193	245	1,469	769	1,240	1,161	852	893	144	68	55	75	595
1968	140	154	3,373	963	1,765	2,676	3,796	1,283	269	37	76	59	1,214
1969 1970	45 98	493 102	1,810 193	4,126 413	1,545 739	1,853 2,995	3,249	703	284 1,055	198 99	37 615	320 560	1,221
10/0	50	102	100	413	7.00	2,000	3,103	1,000	1,033	23	013	500	202

Table 43 - Observed Mean Discharge, in c.f.s., St. Francis River at Wappapello, Mo., Sta 7-0395

Water	Det.	Nov	Dec		Feb	Mar		May	Jun	Jul	Ang	Sep	Annual
Year	Oct	-50.72	THOC				Apr	1 11	1.41	-73.44	1145		
1942	1000	2030	1030	1120	3770		2780	1070	2390	580	440	220	1692
1943	120	1870	2520	2200		1590		3560	4900	1020	340	300	1761
1944	220	240			370		1060	3040	1550	170	140	200	805
1945	170	130	200	201	818	3040	11900	8220	3490	4870	3380	653	3089
1946	2500		622	2370	4400			8480	2310	418	513	261	2205
1947	46	1180		1030	1060	707	4510	2850	1370	1600	2.59	196	1385
1948	34	775	907	3820	1540			1410	657	1300	237	201	1418
1949	33	426		5450	7800	4690	2340	804	1680	1020	300	489	2179
	3240	466	1890	8870	6340	1980	4160		1210	441	853	1220	2988
1951	65		827	2590		5420	1920	1110	1160	3020	858	1720	1866
1952		4960		1720	1930	4400	4020	834	302	180	179	181	1889
1953	41	318	874	813	954			1330	272	211	125		829
1954		14	296	344	843	648	825	1410	2310	91	64	91	5.84
1955	91	216	1360	1450	1.240	3870	1840		600	408		34	1030
1956	3.4	305	405		2500	1420	693	1600	737	181	8.5	67	685
	40	149		804		2450	8760	6890	5860	3510	676	108	2672
1958	62				1130	4740	3960	4160		2690	1220	378	2372
1959	106	2470		1640	2230			991	865	250	178	396	1225
1960	809	521			1480		1640	2650	659		122	118	1218
1961			1480	463	1140	4210	3460		1660	320	207		1610
1962	40			2899		4317		966	491		134	434	1253
1963	242				286	2205		2068	932	233	390	103	76.3
1964	54	328		278	6.32		3240	489	162	123	115	168	1005
1965	83	243	702			1040	2850	289	5.81	152	40	2160	833
1966	582	207	783	2680	3470	1250	3420	4510	1970	224	380	445	1661
1967	362	411		873	1730	1560	804	1090	311	154	130	888	868
1968	50	48	4500	1410	2780	2860	5450		437	149	291	135	1707
1969	111	490	1830	3220		1850	4250	894	329	264	91	292	1565
Mean	405	871	1372	1845	2318	2780	31.37	2679	1477	852	421	416	1541

Note: Regulated Conditions

Table 44 - Observed Mean Discharge, in c.f.s., St. Francis River, St. Francis, Ark., Sta 7-0401

Water													
Year	Oct		Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua I
1941	95	235	910		1090	385	475		255	200	170	170	550
1942	840	2920	1757	2270	5080	4170	4430	1140	2740	830	925	351	2288
1943	160				727	2380	2460	4780	5320	1820	463	390	2199
1944			273	307	612	3180	3410	3820	2140	218	208	212	1242
1945	188	153	256	307	1430	6410	14700	11700	8030	6470	4510	1240	4616
1946	3680			4000		3730	1450			711	666	331	3205
1947	167		2740	1480	1320	835	4290	4580	1370	2360	317	296	1754
1948	165	854	1240		2300	3720	5300	1730	596	1560	361	278	1926
1949	133		1860	7020	1230	6570	4590	813	2400	1130	430	588	2280
1950	3750	1160			11700	4350	6380	7300	1940	616	953	1450	4672
1951	342		1080	4050	6030	6330	2620	1300	1320	4150	1080	1930	2619
1952	974	5380	6150	3540	3440	6570	6270	1480	525	255	265	231	2923
1953		149	1030		1120	4560		2090	453	349	212	173	1121
1954	1.35	78	254		1160	1080	1090	1960	2740	275	187	147	802
1955	168	216	1340	2080		4100	3830	1720	979	570	166	96	1358
1956	120	290	455	306	3200	2430	1130	2010	821	380	146	163	954
	92	161	735	1370	2980	2940	10230	10060	9290	4620	1330	26-3	3673
1958	176	5010	4180	3820	1950	5970	6500	5900	2380	2830	2050	518	3524
1959	211	2090	1520	1910	36.30	3260	2130	1420	1330	458	318	410	1557
1960	953	635	2770	2800	1920	2160	2370	3620	1040	324	255	159	1583
1961	127	701	1890	681	1310	6130	5330	8760	2500	591	306	187	2376
1962	112	453	1270	3490	4150	6170	4790	1650	589	30.3	263	646	1991
1963	412	253	539	706	344	3003	1690	1613	1920	342	435	304	963
1964	104	344	574	360		8100	5450	1030	338	193	218	381	1483
1965	215	229	1120	1020	2480	1700	3990	673	979	323	121	1810	1222
1966	1560	283	739	4550	4360	1990	3410	7790	2870	270	396	340	2380
1967	583	385	2490	1230	2400	2000	926	2730	445	275	222	899	1215
1968	191	139	4450	3200	3770	3500	7370	4400	820	301	472	226	2403
1969	163	494	2620	5490	8560	2320	5900	1320	482	364	189	314	2351
Mean	558	10.34	1755	2817	2953	3795	4303	3733	2131	1141	609	501	2111

Note: Regulated Conditions

Table 45 - Observed Mean Discharge, in c.f.s., St. Francis River, lake City, Ark., Sta 7-0404.5

Water													
Year	Oct	Nov	Dec	Jun	Feb	Mar	Apr	May	Juga	Jul	Aug	Sep	Annua
1941	140	260	1160	2500	2140	840						1001	MINITED.
1942	350	2910		4090	6790		830	5.70	330		180	130	789
1943	274	1370	3820	4150		6.350	6540		2640	1760	848	908	
1944	324	357	395	496		2760	3330			2640	534	441	3123
1945	294				1130	4160	5980	3670	2910	486	324	308	2607
1946	4220	4580	2430	1360	2460	9630	18200	14400	13400	6760	5300		1712
1947	384	1900		6600	7410	6410.				1140		1510	6200
948	245		4030		2160		\$560		2340	3180	1210	509	4327
949	212		1940	6060	4190	6480		2440	1250		399	267	2574
950		892	3670	10200	16300	9840	8400	1230	3170	1930	604	322	2839
951	5130	2970	4200	18200		8180	8160	8480		1560	671	561	4717
	1150	1910	2350		7730	8510	4420	1820	3620	1360	1220	2380	6766
952	1130		11000	8550		8400	75.30		1770	4880	1750	2170	3703
953	156	173		1370	2860	7000		2970	964	422	414	300	1435
984	111	114	227	1.290	1440		3920	4220	1240		373	194	1984
	162	198	956	2520	994	1480	1380	2590		764	254		990
		246	392	585		4440	6840		1710	944		144	
	1.34		553	1730	6490	4250			1420	578	296	195	1870
958	840	9580	6950		5680	4470	11910	1.3060	13100	7720	4660		1555
	497	1330		7780	4340	7660				3010		805	5382
960	809		2800	2330	5690	4650	2450	21.30		755	3610	854	5619
961	239	1210	2380	4240	3090	3420	3310	3820	2320		424	486	2095
962		511	2010	1350	1400	8010				935	578	382	2208
163	212	964	2450	4820	6540			2870	4618	1470		347	3195
	615	456	5.0.7		586	3092	2780		805	583	363	1430	3065
764	198	238	492	594		9410			3046	708		404	1255
965	832	608	2.360	2950	4230	3380		2250	694		585		2023
966		934	864	8900	5150		5080	1640	1630	1000	403	2490	2217
16	693	\$76	2350	2170	2800	3500	3880	9490	4170		1040	554	3518
768	716	507	3690	4900		3210	1540	4370	1240			917	1831
169	370	607	3100	5570	4570	3430	8220	7240		798	714	474	3127
	798	1479	2464	4330	10500	3630	8110	2960		788	571	470	
			5404	9.550	4891	5368	5951	4966	3062	1748	1013	724	3190

Note: Regulated Condition

Table 46 - Observed Mean Discharge, in c.f.s., Right Hand Chute of Little River at Rivervale, Ark., Sta 7-0406

Water													
Year	Oct	Nov	Dec	Jan		Mar	Apr	May	Jun		Aug	Sep	
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1960 1961 1961 1962 1963 1964 1965 1965 1965 1966 1966 1967 1968 1968	260 394 4940 1090 717 234 152 161 257 184 1990 692 728 1020 332 1110 214 1040 1630 886 1300 585 906	1100 1280 2410 2400 334 183 259 305 219 11600 1200 1200 1670 802 257 764 995 615 1080 656	1590 3010 3830 3310 8760 858 351 657 386 339 8250 1080 4200 4200 4200 4200 5010 5350 949 949 9260 5010 5010 5010 5010	3690 8600 19000 6850 10700 1180 450 1250 5920 2400 1150 763 381 3930 8380 2120 2620 6540	3450 14700 18400 7310 5920 6410 4660 3970 4420 5062 4170 1890 4380 4170 1890 4380 4380 4380 4380 4380 4380 4380 438	\$120 7590 7520 6540 8650 5550 1250 2650 2650 3410 2610 6530 10746 6530 10746 344 10500 1990 2970 3970 2920 5007	6 560 7 370 8 290 3 120 5 700 1 590 1 4 530 1 7 30 1 1 30 6 6 40 7 7 0 50 1 1 20 2 200 6 1 6 00 1 4 08 4 08 6 0 5 6 00 3 3 2 0 1 3 8 0 5 6 0 6 0 6 0 6 0 7 5 5 0 6 0 6 0 7 5 0 7 6 0 7 6 0 8	2150 1720 5000 1840 1980 4190 1680 2350 1610 7780 7190 2440 9050 2999 1279 1950 8620 7020 8620 7020 3729	1090 3210 2880 1610 1560 1940 1240 9360 2240 1310 2200 2340 1690 2020 906 1930 2060 2050 2060 2090 2090 1630 2290	1240 1750 1980 5860 668 887 727 6570 2310 1620 1650 1200 2460 1240 2460 2460 1430 1160	757 1050 1740 1240 860 400 381 657 390 4140 1340 1340 1010 747 740 960 541 1420 1130 696 696	611 793 2340 928 397 176 303 291 1860 926 554 1660 927 188 2600 479 788 819 794 465 903	2286 4278 6474 3343 4009 1777 844 1448 1435 3802 8028 1544 1997 2949 3453 2116 2973 2116 3111 3291

Table 47 - Observed Mean Discharge, in c.f.s., Tyronza River Near Tyronza, Ark., Sta 7-0476

Water				Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua l
Year	Oct	Sov	Dec				317	210	573	144	152	86	460
1949	115	340	420 101	1460 2340	582 2400	1110	289	1080	224	299	388	420 223	790 841
1950	674	634	490	1270	1260	412	301	175	382	954 98	145	90	465
1951	140	602	979	829	910	1060	356	261	145 178	309	82	57	484
1952 1953	54	69	204	217	868	1060	460 110	2250 327	139	43	36	37	184
1954		48	5.9	874	317	166 974	1430	451	175	273	58	49	323
1955	28	31	62	57 329	283 1710	214	379	286	210	7.2	50	66	288 463
1956	41	42 51	50 96	689	1360	127	885	1220	377	209	340 102	148	708
1957	49	2380	494	653	376	862	8.36	1600	137	396	84	74	335
1959	77	463	108	724	1360	262	131	100 287	127	251	163	97	201
1960	69	97	390	238	152	441 863	737	543	338	141	94	7.4	391
1961	104	367	395	1000	795 654	1300	806	450	491	152	69	199	667 168
1962	49	1170	1660	43	44	673	67	627	232	68	49	45 98	264
1963	66 25	31	31	34	53	1280	1030	352	75 229	86 402	105		490
1965	49	263	1050	628	993	713	816 576	107 950	113	80	132	141	310
1966	5.7	93	62	560	856	93 383	132	544	147	835	206	96	307
1967	61	1.34	699	328 403	118 121	578	1090	874	147	101	91	80	359 352
1968	114	76	628	786	797	205	791	141	102	101	207	92	421
1969 Mean	\$7 115	286 340	420	652	762	661	554	611	237	249	134	13	

Table 48 - Observed Mean Discharge, in c.f.s., St. Francis River at Latitude of Wittsburg, Ark., Sta 7-0479.02

Water Year	Oct	Nov	Dec	Jan-	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua I
						10000	13970	7560	3850	3270	1480	1730	5420
1942	540	1890	2180	6040	9850	12680	8420	2730		4520	1410	1020	4604
1943	890	1610	4770	5660	3860	6170	17400	10960		1640	1000	810	4635
1944	740	780		1240	45.70	10340		28560	28590	17740	6310	3360	13399
1945	650	690	2610	6920	6680	20460	38220 8020	14580	15640	3470	2720	1620	10394
1946	7610	9440	7150	19780	18060	16640		10510	7320	6870	1970	1120	5220
1947	1040	1970	6020	8610	4870	3800	8540		3900	3800	2270	1280	7045
1948	1090	2840	4050	10880	11470	18380	17830	6750 5040	8050	4720	2840	1940	11379
1949	880	2300	6090	20960	34390	26130	23210		10440	4840	3940	6930	16947
1950	9750	6990	9300	37920	45760	29920	20170	17400	5450	10100	5190	3500	9351
1951	3130	6050	8610	16300	17900	20300	10100	5580		1880	2020	1410	11151
1952	2810	7040	24500	25600	16600	21400	19100	7900	3550	3290	1430	845	6018
1953	041	1060	3000	3300	7660	16800	12200	16400	5290		812	460	2533
1954	652	508	877	5620	5090	3960	3840	- 5660	3460	1990		1050	5029
1955	484	480	1560	3850	3480	9170	18950	8460	6670	4090	2100	934	3345
1956	830	880	1260	2110		13610	5680	5220	3830	2400	1290	4790	11462
1957	644	559	1120	3720	14770	8700	21360	22600	31000	17350	10930	3340	15053
1958	4300	23270	29940	20260	12710	17110	24260	25960	6540	7520	5420		
1959	2150	3880	4580	6470	16640	11900	5320	3810	3760	2730	1800	1690	5394
1960	1800	2840	5020	7600	6970	8510	6760	6380	t-050	3850	2610	1980	5031
1961	1420	2510	4580	4180	5720	18160	20050	22560	12840	5045	2909	2312	8523
1962	2192	3327	6154	13830	16440	30530	22120	9510	4570	3280	1750	4390	9840
	2870	2090	1850	2151	1847	8760	5040	4740	6902	2700	1750	1399	3508
1963	749	839	1095	1290	1560	21000	19200	7.360	2630	1990	2490	2140	5195
1964	2640	2500	8960	10600	15600	10800	15500	5070	4900	3490	1740	6700	7375
1965			2460	19000	14100	8490	8020	26100	9750	3380	4760	2430	8948
1966	5330	2650	5670	6830	5240	8400	4270	13900	7090	6820	3410	2240	5646
1967	2100	1780		10910	11570	8837	19510	19720	6563	3315	2496	1801	8378
1968	2615	2065	11230	15100	31900	9340	18000	7750	4170	3440	2200	1510	8821
1969 Mean	1480 2192	1990 3327	8970 6154	10597	12408	14296	14313	11631	8171	5045	2909	2312	7844

Note: Regulated Conditons

Table 40 - Observed Mean Discharge, in c.f.s., t'Anguille River at Palestine, Ark., Sta 7-0479.5

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua I
1950 1951 1952 1953 1953 1954 1955 1956 1957 1958 1960 1961 1962 1963 1964 1965 1966 1965 1966 1965 1966 1966 1966	1670 762 214 19 32 26 604 11 140 254 411 140 254 259 823 2 409 587 151 260 426 436 447	787 1180 555 91 5 0 15 123 5580 839 138 522 1200 81 0 216 12 82 21 107 535	2890 1370 2790 574 40 40 3283 33150 391 385 581 15 56 2990 4 2010 1870 1149	65.50 333.0 2390 5.56 2400 513 98 628 2240 1140 940 3340 3340 1280 1280 1280 1550 1060 1793	7850 2740 2270 2240 711 110 4430 1490 1490 160 1060 2420 136 408 3600 3110 655 1650 5170 2788	3640 1730 3110 4200 4200 430 2030 1430 2260 1800 1950 2060 3400 1550 650 1410 1710 1010	1890 1280 1850 2590 274 8960 791 4870 2060 559 202 3540 2490 250 201 1710 860 200 1843	3240 403 372 6590 1270 747 3140 5930 45 240 1320 431 206 697 164 3220 1790 2990 214	74 643 26 366 34 1860 289 226 508 411 328 1150 66 267 216 267 216 358 449 113 358	163 1310 5 143 0 629 134 345 1160 332 1070 153 416 180 295 194 164 108 432	554 698 82 75 199 224 87 546 285 252 3463 208 175 224 1710 728 216 571 363	2130 623 161 81 67 109 182 417 1030 298 480 266 1210 266 1220 682 560 574 290 605	2618 1337 11153 1495 598 1006 956 1500 2173 924 663 1032 1777 452 795 1233 1044 830 1121 1020 1136

Table 50 - Observed Mean Discharge, in c.f.s., Cache River at Patterson, Ark., Sta 7-0775

1948 110 1949 66 1950 2850 1951 454 1952 227 1953 67 1954 59 1955 73 1956 167 1957 12	t Nov	Dec	Jan	Feb	Mar	April	May	Juga	Jul	Aug	Sep	Annual
	566 888 30 876 544 1620 27 1540 67 114 59 40 775 23 67 62 12 46 68 5300 18 1080 18 1080 18 1080 18 1080 18 20 18 33 36 851 37 0 870 37 0 870 38 0 8	0 1670 8 2220 6 2300 6 2300 1 500 1 2060 0 67 2 92 2 92 2 92 0 6170 0 1730 1 1730 1 1730 1 1730 1 1730 1 273 1 273 1 273 1 3 38 3 4 2470	2400 5650 5650 6040 943 1480 729 189 736 2820 1380 624 3220 1111 37 2530	2420 6550 3610 3060 1230 2430 1230 298 4170 1750 3070 1510 524 2270 69 172 3080	3690 4490 4170 2580 4450 4210 2290 2040 1120 2920 1730 2050 4130 5650 4283 4790 1780 1340	1970 3490 1980 1320 22650 2280 658 2240 321 4650 3040 319 290 4230 3780 430 3780 2860 1790	327 560 2340 891 643 2860 1050 1440 237 4910 1970 3690 949 261 714 261 714 261 714 5010	1130 970 1180 509 276 282 176 1090 167 5220 407 417 1010 1170 218 1151 111 747 1420 1180	631 821 628 1170 126 249 58 205 176 877 1030 197 1200 227 514 147 215 478 241	282 289 788 917 170 95 75 152 76 1170 455 176 421 212 192 192 193 1920 305	118 198 1450 495 140 67 68 81 80 381 528 189 235 1620 143 612 2210 266 311	1364 2147 3014 1462 2034 1305 467 727 861 1817 2441 7106 1385 405 914 1513 1834 710
1967 162 1968 235 1969 215	135 106	6 2060	1160 775 3170	392 1410 6400	1170 1690 1450 2756	157 2730 2870 2160	1510 2640 609 1737	826 171 810	302 322 506	163 194 405	558 169 449	1125 1454 1391

Table 51 - Observed Mean Discharge, in c.f.s., Bayou DeView at Morton, Ark., Sta 7-0777

Water													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jui	Aug	5ep	Annual
1940		9	24	34	856	157	1270	174	17	7	19	26	217
1941	6	84	384	372	158	4.4	4.35	23	4	25	83	70	141
1942	13		581		1590	923	1340	147	234	11	127	63	486
1943		140	426	340	78	1450	292	32	29	4			233
1944	8		24	96	1860	1725	1862	114	40	3	2	20	480
1945	24	51	1013	1514	1072	2658	1767	512	2173	173	61	110	927
1946	318	1172	562	2310	1240	786	609		648	43	43	- 21	809
1947			670	834		135	997	177	83	56		5	307
1948	88	931	733	721		2530	699	- 6	765	72	98	27	688
1949		942		2860	1960	1560	1230	58	508	131	113	4.3	913
	1800		1640		3630	1420	844	1030	69	120	398	884	1322
1951	385	971	896	1420	1490	591	584	92	356	676		247	692
	28	593	2270		9.35	1740	733	64	8		44	78	724
1953		32	750	670	1270	1820		1940	28	284	22	40	621
1954				1210	646	209	100		40		40	34	239
				423	400	1350	1350	510	518	209	56	55	420
1956			1.4	114	3840	467		157		65	30	13	415
		17	31	964	1098	236	1980	1650	1150	257	464	46	660
1958		2810	1490		456	1320	816	2390	44	325		265	933
	8	434	46		1610	1085	85	16	260	155	167	157	380
1960	-8	171	656	772	714	798	79.	238	279	585	357	155	407
1961	68	373	380	516	415	1650	1620	576	308	161	176	9.3	530
1962		490	1480	1320	775	1760	918	168	161	101	88	889	679
1963	68			17	3	1351	24	292	676	34	73	85	219
1964				13	173	2100	1140	289	59	99	400	386	388
1965		262	741	1000	1580	414	960	95	163	150	117	1070	554
1966	52	24	30	1800	1050	278	662	1650	80	214	1020	244	592
1967	31	13	221	406	128	704	189	872	169	682	260	248	327
1968	32	24	864	410	640	753	678	1380	193	87	183	411	472
1969	81	88	894	379	1660	521	1170	135	67	103	157	82	445
Mean	119	347	618	964	1098	1085	840	576	308	161	176	196	541

Table 52 - Modified Mean Discharge, in c.f.s., White River at Clarendon, Ark., Sta 7-0778

Year 1924 1925 1926 1927	14600 13700	Nov 16800	Dec	Jan	Feb	Mar							
1925 1926 1927		16800					Apr	May					
1926 1927	13700		35600	40600	28000	24600	25700	32500	Jun 40300	Jul	Aug	Sep 13400	Annua
1927		13300	14700	15600	19000	26000	21400	16600	13900	26200	16700		26300
	34000	58000	34700	29600	38300	36000	39600	20700	15100	12400	11100	14300	16000
	20300	24500	36700		93100	62700	112100	54100	63600	14200	18900	20100	29800
1928	58600	58400	54500	6.8500	39700	35300	75800	81100		59700	52400	60800	55100
1929	16400	18900	41700	41800	78500	78600	80600	108000	97300 91700	93500	51900	29800	62100
1930	14000	18300	20400	67000	70600	42700	21800	40100		51300	16400	13800	52900
1931	16200	16300	15900	15000	27000	37100	32100	23500	19700	14200	13600	14300	29500
1932	13100	14100	30500	67800	58600	30000	32800	15700	17200	15400	14700	12300	20200
1933	13200	13900	19300	47700	36400	28900	43800	55500	13100	14400	12500	12400	26200
1934	14600	11900	21000	20000	15100	26400	61700		47400	13500	14800	14500	29600
1935	14200	15700	17300	27900	31600	63200	71500	17000	13800	13000	13200	14500	20200
1936	14200	17000	20500	14000	14500	16700		59300	62900	58200	30200	13600	38800
1937	15500	20200	18000	72200	82100	33000	22600	14300	13400	14500	13600	14700	15800
938	17600	17500	20400	28800	56900	65000	24700	28000	20600	17200	13500	13000	29500
939	11900	16100	13700	19800	60000		65800	58300	40700	16700	15700	11600	34200
1940	11700	12000	12400	13600	18100	67100	56500	56900	42700	18400	12800	12200	32100
1941	13000	14500	18100	20300	23100	18800	30000	31100	14200	14200	14300	13400	17000
942	16000	21400	19300	31500	36100	17000	22500	15600	14500	14200	13000	13800	16600
943	14500	19200	247.00	49700		39900	48400	40300	22500	14900	17300	17800	27000
944	11700	11600	11800	13300	22400	23700	30900	43600	56500	45800	14100	11700	29800
945	11600	12800	17700	27100	24200	35800	44000	51400	17000	11800	12300	12400	21400
946	54700	44700	20200		25900	85300	138700	64200	94700	67300	46500	49800	53460
947	13800	26200	44700	51000	52400	59800	45700	51800	67400	27100	17200	14500	42100
948	13200	19400	23300	38800	22400	18300	31.000	43500	26500	15200	12900	12600	25500
949	12980	16400	26600	32600	29800	50600	41000	21400	17700	25900	14300	9400	24900
950	32800	28300		49800	110500	84800	75700	22300	25100	27000	17500	17500	40000
951	26600	27400	33300	90000	108400	78600	61600	61900	54800	38600	29500	37900	54300
952	20100	36100	20200	34700	41000	55800	48800	37100	22100	33200	37100	23800	34000
953	12400	14800	67000	69700	46800	59200	67800	45700	19100	12900	13400	12000	39200
954	11500		26200	21900	33100	52300	49000	51300	22600	13800	9900	9900	26400
955	8400	10800	10600	18200	21100	18200	19100	24500	10000	9200	8700	11200	14400
956	9800	13100	14400	19800	16700	28400	40300	26600	30400	17600	11200	11000	19800
957	9000	8800	9100	9500	52200	30700	17600	21000	14900	13800	11300	10400	17300
958		10000	11600	15100	40400	28000	67800	88700	79500	56900	54400	40700	41880
959	26100	53500	52500	34500	28400	39300	67300	91100	36000	25200	27400	17400	41600
	13600	24100	26900	21000	38100	38900	26400	15100	18000	12100	10700	10600	21300
960	13200	17100	25600	37400	32300	35200	22600	36000	41400		12400	9900	
961	8200	8500	17600	16100	19300	51000	82400	85900	46500	31200	24400		25400
962	8180	10100	29800	32500	42200	58100	49200	32500	12700	13100	10500	10100	33400
963	13000	9000	10400	9930	9.890	26800	14100	10750	23550	12130	10000	7420	26200
964	7000	7280	8070	6200	8800		59100	24300	10600	10200			13100
965	10000	8800	19200	24100	34900	29800	40800	23200	20200	15900	11200	9700	17700
966	14800	10000	11000		47000	42400	29100	79100	30300	17100	20400	18500	21600
967	10700	10200	10900	17300	18100	21100	15500	32600	19300			14700	30700
968	11800	16300	36900	41800	47900	39300	66100	78800		19500	14100	9700	16600
969	17200	21900	47200	74100	112800	60800	66600	46100	40200	26700	17300	13000	36300
970	10500	9800	12400	27700	18300	29800	28700	63900	19800	14900	12400	11000	42100
ean	16390	19250	24140	34760	41110	42160	47580	43400	21100 33250	24390	20800 18770	16600 16570	22800 30040

Note: Regulated Conditions

Table 53 - Observed Mean Discharge, in c.f.s., Arkansas River at Little Rock, Ark., Sta 7-2635

Water													
Year	Oct	Now		Jan									
	84000		15800			Mar	Apr	May					
	6410					343(0)			118000	49200	38200	10600	
		11120		41830		54900		174000				8940	60400
				7654		17620	7524	112700	12060	12380	4613		28780
				126000	40470		33480	36060	26940			5402	
	4110		27100	48600			23800				15400		38400
1934	18120					40700		102000		7580			
	18640				8532		51860		8072				18740
	13340		48540		18960		51080		268900	54850	8831	13820	65400
	54950		14060		7086		6040	1,2000				6860	
1938		14610			54240	28040		20580	60950	14490		19830	35700
1939	4207	8309				40190						8787	46590
1940	1770		5487		45390	30820	68950	38360					21770
1941		2199 10960			4919	4771			14860			18460	10820
	141400								\$8790				38350
1943	30250		4/11/50						80200			42960	77830
1944			1,7980			27870						4817	
1945	37280		7414		41570		124500					15580	58730 45240
1946												24720	
1947		17830		77830	81460	49480							84780
1948		52980	84(60)					140500			8848		49240
	5685	7444				85190			53870		74130		47590
1949				84850								14010	44710
	22800	12600	17820							80870		17480	58420
1984			8405						81330		34110		58740
	27560		40320	36400		SUSDO		47650				18430	52490
1953	2386			15240	18460					13900	4937		38730
1954	3398	6240	6.540	14090					14530		8526	4948	24940
	5344	4432				44990			36860	18270			12470
1956	25060	5584	4945	5475	42780		9238	14370	8832	4032	6271		19150
	1168		5891				135200				2789		
1958		41090			19880		86080		39830	101800	37850		71120
1959		18950	11440	10350				45-430	33080	94810	45270		49240
	167400	46810					48100				52430	15680	28900
		21420				54220	79420			39610		21640	
	53830	82910		42340		49830	47400		68870		37410	69580	
963	38060		20040				10730				14620		42870
516-4	3774	4052		2383					8323	14220	8504	8779	17000
					27480	27240				9465	5318	12860	
966					36280	18050				30860		28500	
			5381			8781		48260	14720		12560		19450
968	21410	34380	43030			77860	89340	35040	20010	49690		17580	17350
		31700				04400		92310	61800			14350	47710
			18970	28830	16940	38230		84000					54450
		24300		54200	41500	46.700						17080	
					11300			80700					39820

Note: Unregulated conditions. Future flows will be regulated.

PIGURE

88888

8----

DISCHARGE, THOUSAND CUBIC FEET PER SECOND

FIGURE 118
Duration Curve, Right Hand Chute of Little River Rivervale, Arkansas SIA, pc. 7-0466

Duration Curve, St. Francis River at Latitude of Wittsburg, Arkansas STA. St. 7-0479.02

FIGURE 119
Duration Curve, Tyronza River near
Tyronza, Arkansas STA. No. 7-0476

FIGURE 121
Duration Curve, Languille River at Palestine, Ark 233 STA. 30, 7=0479.3

FIGURE 125
Duration Curve, Arkansas River at
Little Rock, Arkansas | Elik. 141, 747531

Table 54 - Dependable Yield, St. Francis River near Patterson, Mo., Sta 7-0375

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	343	31.6
2	1940-41	458	42.2
3	1930-32	552	50.9
4	1953-56	563	51.9
5	1930-34	709	65.4
6	1962-67	758	69.9
7	1961-67	813	74.9
8	1960-67	828	76.4
9	1959-67	839	77.4
10	1959-68	876	80.8
50	1921-70	1,084	100.0

Table 55 - Dependable Yield, St. Francis River at Wappapello, Mo., Sta 7-0395 1/

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1954	584	37.9
2	1953-54	707	45.8
3	1954-56	766	49.7
4	1953-56	782	50.7
5	1952-56	1,003	65.1
6	1962-67	1,064	69.0
7	1959-65	1,130	73.3
8	1960-67	1,151	74.7
9	1959-67	1,160	75.2
10	1959-68	1,214	78.8
28	1942-69	1,541	100.0

^{1/} Regulated conditions.

Table 56 - Dependable Yield, St. Francis River at St. Francis, Ark., Sta 7-0401 1/

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	550	26.0
2	1953-54	962	45.5
3	1954-56	1,038	49.2
4	1953-56	1,059	50.1
5	1952-56	1,432	67.8
6	1962-67	1,542	73.0
7	1959-65	1,596	75.6
8	1960-67	1,652	78.2
9	1959-67	1,641	77.7
10	1959-68	1,717	81.3
29	1941-69	2,111	100.0

^{1/} Regulated conditions.

Table 57 - Dependable Yield, St. Francis River at Lake City, Ark., Sta 7-0404.5 1/

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	789	25.7
2	1954-55	1,430	46.7
3	1954-56	1,472	48.0
4	1953-56	1,600	52.2
5	1963-67	2,165	70.6
6	1959-64	2,307	75.3
7	1959-65	2,294	74.8
8	1960-67	2,412	78.7
9	1959-67	2,377	77.5
10	1959-68	2,452	80.0
29	1941-69	3,065	100.0

^{1/} Regulated conditions.

Table 58 - Dependable Yield, Right Hand Chute of Little River at Rivervale, Ark., Sta 7-0466

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record				
1	1954	844	30.0				
2	1954-55	1,146	40.8				
3	1954-56	1,242	44.2				
4	1953-56	1,376	48.9				
5	1953-57	1,861	66.2				
6	1951-56	2,143	76.2				
7	1959-65	2,230	79.3				
8	1953-60	2,234	79.5				
9	1959-67	2,302	81.9				
10	1954-63	2,369	84.3				
22	1948-69	2,811	100.0				

Table 59 - Dependable Yield, Tyronza River near Tyronza, Ark., Sta 7-0476

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record		
1	1963	168	39.9		
2	1963-64	216	51.3		
3	1954-56	265	62.9		
4	1963-66	308	73.2		
5	1963-67	308	73.2		
6	1963-68	316	75.1		
7	1963-69	321	76.3		
8	1960-67	350	83.0		
9	1959-67	348	82.6		
10	1959-68	349	82.9		
21	1949-69	421	100.0		

Table 60 - Dependable Yield, St. Francis River at the Latitude of Wittsburg, Ark., Sta 7-0479.02 $\underline{1/}$

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record				
1	1954	2,533	32.3				
2	1954-55	3,781	48.2				
3	1954-56	3,636	46.3				
4	1953-56	4,231	53.9				
5	1952-56	5,615	71.6				
6	1951-56	6,238	79.5				
7	1959-65	6,409	81.7				
8	1959-66	6,727	85.8				
9	1959-67	6,607	84.2				
10	1959-68	6,783	86.5				
28	1942-69	7,844	100.0				

^{1/} Regulated conditions.

Table 61 - Dependable Yield, L'Anguille River at Palestine, Ark., Sta 7-0479.5

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean fo Period of Record				
1	1963	452	38.1				
2	1963-64	624	52.6				
3	1963-65	827	69.7				
4	1963-66	881	74.3				
5	1963-67	871	73.4				
6	1963-68	913	76.9				
7	1963-69	928	78.2				
8	1960-67	978	82.5				
9	1959-67	972	82.0				
10	1959-68	987	83.2				
20	1950-69	1,186	100.0				

Table 62 - Dependable Yield, Cache River at Patterson, Ark., Sta 7-0775

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)					
1	1963	403	29.0				
2	1954-55	597	42.9				
3	1954-56	685	49.2				
4	1953-56	840	60.4				
5	1953-57	1,035	74.4				
6	1959-64	1,055	75.9				
7	1959-65	1,121	80.6				
8	1953-60	1,174	84.4				
9	1959-67	1,154	83.0				
10	1959-68	1,151	82.8				
22	1948-69	1,391	100.0				

Table 63 - Dependable Yield, Bayou DeView at Morton, Ark., Sta 7-0777

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record				
1	1941	141	26.1				
2	1940-41	179	33.1				
3	1940-42	281	52.0				
4	1940-43	269	49.8				
5	1940-44	311	57.6				
6	1940-45	414	76.6				
7	1963-69	428	79.2				
8	1940-47	450	83.2				
9	1959-67	453	83.8				
10	1959-68	455	84.1				
30	1940-69	541	100.0				

Table 64 - Dependable Yield, White River at Clarendon, Ark., Sta 7-0778 1/

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean fo Period of Record				
1	1963	13,100	43.6				
2	1963-64	15,400	51.3				
3	1954-56	17,170	57.1				
4	1953-56	19,480	64.8				
5	1963-67	19,940	66.4				
6	1962-67	20,980	69.8				
7	1959-65	22,670	75.5				
8	1960-67	23,090	76.8				
9	1959-67	22,890	76.2				
10	1959-68	24,230	80.6				
47	1924-70	30,040	100.0				

1/ Regulated conditions

Table 65 - Dependable Yield, Arkansas River at Little Rock, Ark., Sta 7-2635 1/

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean fo Period of Record				
1	1940	10,820	27.2				
2	1963-64	14,990	37.6				
3	1954-56	14,240	35.8				
4	1953-56	16,920	42.5				
5	1963-67	19,170	48.1				
6	1962-67	23,120	58.1				
7	1962-68	26,630	66.9				
8	1963-70	29,160	73.2				
9	1962-70	30,680	77.1				
10	1931-40	30,560	76.8				
43	1928-70	39,820	100.0				

 $[\]underline{1}$ / Unregulated conditions. Future flows will be regulated.

uble 66 - Chemical Analyses of Low-flow Surface Katers in 6654 2 in the Lower Mississippi Region, Milligrams Per Liter

	Color	1							19											
0.1	рН					7		1					S.	9		-				1
Specific conduct.	(micro, mhos	at 20 C)							9							88				
Hardness as CaCO,	(residue Calcum, Non- at 180°C) magne-carbon-	1																		
	Calcum, magne-																			
Dissolved																				
	trate (NO ₃)		2	0		3		in a						9.5 an mt	5.0		7.3 ag s	7.7		1.0
	ride (F)	35.0 sq m4)	3	O.	08,0 0		area, 51.1 og mi	3	. 7	Star foats	3	, 270 a	oy ey		3		Street, 70	9	1.0	
Chloride	(CI	Ditch 24 at Ready, 16. (draftmage ures,			Arthrens area, 62,0 mg nd.)	0.		100			2	(draftmen area, 270 sq et.)	-3		01			5.5	(dradmage aren, c	23
Sulfate	(30,	7, 76. (ar			U. No. (4ra		Jonestopre, Jens. (c	0.70			0.5	Acres .	33	acould, fee.			100 100			
Bicar.	(нсоз)				Patranas							at Newport,		ment form					Distring.	
Po-	Stum (K)		1			77		2 6			2.0				22	th 2 per				33
Sodium	(R		33			3		27					99			feterni ditch 2 peny har-		7.5	Wate eited 2 near Decring, to.	
Mag.	(Mg)												13		25	Salan 1				
Cal- cium	(Ca)																			
Tron (Fe)								38					11		¥4.					58
Silica (SiO,)			7					13					9.80		I,					
Discharge	(CIS)							19		2.6					13		0.0			
					17.00		100000			27/-77/-8					0-10-0					
				dresaled a separate,	and allyring														Quitherland allowing	

nable 66 - Chemical Analyses of Low-Thow Surface Waters in WRFA 2 in the Lower Mississippi Region, Willigrams Per Liter-Continued

	Color								
	Н		227		29		25		7.2
Specific conduct-	ance (micro- mhos at 25°C)		25 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		2.45				4,30
					G -1				0
as CaCO,	Calcium, magne - sium								8228
Dissolved	solids (residue Calcium, Non- at 180°C) magne-carbon sium ate				222		24	(pe bu	202
ž	trate (NO ₃)	(14)	949		9		54	17.0	0.4
Fluo		15.2 6	404	78.0 sq	ter ci	38.7 0	90	to smea,	0.3
	Sulfate Chloride (SO ₄) (C1)	CTOWNERS That after 2 mean Malden, No. (dreinere area, 15.2 sq mi)	63 63 63 63 65 65	Late Shough mean Galin, Mo. (drainage area, 78.0 sq at)	e w m ol	Buffello atton mear Arbyrd, No. (dreinnige area, 38.7	0.0	Pirteen Mile Tayou near West Mempids, Ark. (drainings ares, 51.0 sq ail)	0.7
	Sulfate (SO ₄)	m, No. (dr		, Mb. (drs	32	ed, 76. (dz		Mempitin,	
	tas- blear- sium (HCO ₃)	ear Malde		ear Galda	236	nar Arbyr		sear West	355
Po-	tas- sium (K)	tch 2 m	544		33	ifteh n	200	Payou r	
	Sodium (Na)	00 Matu di	446		33		0.0	fteen Mis	***
Mag	ne- sium (Mg)	Chorolo	322	07283200		07046950		PE DESTRUCTO	
	cium (Ca)								
	(Fe)		886		95.0		88		80*0
	Silica (SiO ₂)				24.8.				7.
	Discharge (cfs)				33				1
	Date				9413-10		9-15-40		10-25-00

GROUND WATER

Quaternary surface deposits of WRPA 2 are underlain by Precambrian, Paleozoic, Cretaceous, and Tertiary rocks. The Precambrian and Paleozoic rocks are exposed only in small areas in the uplands. Cretaceous and Tertiary rocks which underlie the Mississippi River alluvium and Quaternary terrace deposits are exposed in small areas along the western side of the Mississippi alluvial plain and on Crowleys Ridge.

The Quaternary deposits, principally the Mississippi River Valley alluvial aquifer, supply most of the ground water pumped for irrigation and industrial purposes in WRPA 2; the Sparta Sand and the Memphis aquifer supply most of the remainder. Other aquifers capable of yielding large quantities of ground water are the McNairy and Nacatoch Sand in the northern part of the area; the lower Wilcox aquifer in the northern and central part; the Cockfield Formation in the southern part; and the Carrizo Sand in the central and southern part (figure 129).

Most of the recharge to Quaternary aquifers is from precipitation on the surface. The underlying artesian aquifers in much of the area are recharged in the uplands to the east and northeast in WRPA 3. The movement of ground water in the artesian aquifers is westward from the uplands to areas of lower hydraulic head in the alluvial plain. Some recharge occurs in the small areas where the artesian aquifers crop out in the western part of the area. The recharge-discharge relation between the Quaternary aquifers and the underlying artesian aquifers is dependent on hydraulic head differences; the movement of ground water will be into the aquifer with the lower head.

Paleozoic Aguifers

The Potosi dolomite of Cambrian age is the only aquifer in the Ozark Plateau of Missouri that is commonly capable of large yields to wells; however, several Cambrian and Ordovician sandstone and dolomite aquifers are capable of yielding 10 to 75 gpm to individual wells [159]. Larger supplies may be obtained from wells open in several waterbearing zones.

The Cambrian and Ordovician rocks generally yield hard calcium-magnesium bicarbonate water. The dissolved-solids content of water from the Potosi dolomite is generally less than 300 mg/1, and the iron content is less than 0.3 mg/l.

In the Arkansas Valley, ground water is available in limited quantities from Paleozoic rocks of low permeability [17]. Yields of wells are mostly less than 10 gpm, and the quality of the water varies considerably from place to place.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

GEOLOGIC SOURCES OF GROUND WATER WRPA 2

FIGURE 129

Ground water in the Ouachita Mountains principally occurs in joints, fractures, and bedding plane separations [2]. The coefficient of transmissibility for aquifers in the Ouachita Mountains is generally less than 1,000 gpd per foot, and well yields are less than 10 gpm.

Cretaceous Aquifers

McNairy and Nacatoch Sand

The McNairy Sand (in Missouri) and Nacatoch Sand (in Arkansas) contain fresh water in about 40 percent of WRPA 2, or in approximately the northern one-half of the part of WRPA 2 lying in the Coastal Plain. The aquifer is used mostly in the western and northern parts of the area where it contains fresh water and occurs at shallow depths. The utilization of the aquifer is slight because sufficient water for present needs is available from shallower aquifers in Tertiary and Quanternary deposits.

On the basis of aquifer tests in Tennessee and Kentucky [13], the coefficient of transmissibility for the McNairy Sand in Missouri is probably 10,000 to 20,000 gpd per foot for thicker sands; however, in some places the formation does not include sands thick enough for even small wells. Wells made at favorable locations are reported to yield more than 1 mgd. The Nacatoch Sand in northern Arkansas is the same unit as the McNairy Sand in Missouri and is similar in hydraulic characteristics.

In Missouri, water from the McNairy Sand changes from a calcium bicarbonate type near the outcrop area to a sodium bicarbonate type down the dip. At some places in the northern part of the area, the high dissolved-solids content of water in the McNairy Sand at some localities may be the result of upward movement of water from Paleozoic rocks.

Water withdrawn from the Nacatoch and McNairy Sands in WRPA 2 is estimated to total about 3 mgd. Flowing wells probably account for most of the water withdrawn from the aquifer. The potential yield of the Cretaceous aquifers in WRPA 2 is estimated to be about 40 mgd (table 23).

Tertiary Aquifers

Lower Wilcox Aguifer

The Wilcox Group contains thick extensive beds of sand in the subsurface in the northern two-thirds of WRPA 2. A zone of interconnected sand beds in the lower part of the Wilcox Group, the lower Wilcox aquifer, attains a maximum thickness of about 400 feet in southeastern Missouri. Because of its favorable hydraulic characteristics, areal extent, and good quality water, the lower Wilcox is a large potential source of ground water.

Moderate to large yields can be expected from wells tapping the lower Wilcox aquifer in WRPA 2. The largest yield reported for such wells is 2,000 gpm at West Memphis, Ark. [50]. Results of pumping tests in Arkansas and nearby parts of Tennessee indicate coefficients of transmissibility ranging from 100,000 to more than 150,000 gpd per foot and permeabilities of the magnitude of 1,000 gpd per square foot.

The largest withdrawals from the lower Wilcox are in the Memphis, Tenn.,-West Memphis, Ark., area where about 20 mgd is withdrawn. Although Memphis is not in WRPA 2, the cone of depression in the lower Wilcox aquifer covers an appreciable area west of the Mississippi River. The total withdrawal in WRPA 2 (excluding withdrawals at Memphis) is estimated to be about 12 mgd.

Water in the lower Wilcox aquifer is generally a soft sodium bicarbonate type. The dissolved-solids content of the water is less than 500 mg/l in about 90 percent of the area where the aquifer contains fresh water, and the water is commonly suitable for general use without treatment. The estimated potential yield of the lower Wilcox aquifer in WRPA 2 is about 35 mgd.

Carrizo Sand

The Carrizo Sand is virtually undeveloped in WRPA 2. The aquifer contains fresh water in a narrow zone extending westward from the Mississippi River south of Memphis and south to Pine Bluff (figure 62). North of this area the Carrizo Sand becomes the lower part of the Memphis aquifer (figure 63).

The Carrizo Sand averages about 100 feet in thickness in WRPA 2. On the basis of aquifer tests made in the Meridian-upper Wilcox aquifer, the equivalent of the Carrizo in Mississippi, the coefficient of transmissibility for the Carrizo is estimated to be about 50,000 gpd per foot in WRPA 2.

Water in most of the Carrizo Sand in WRPA 2 is moderately mineralized (500 to 1,000 mg/1) in the downdip areas for which data are available; however, the dissolved-solids content at shallower depths in the western part of the area is less than 500 mg/1.

Withdrawals from the Carrizo Sand in WRPA 2 are negligible. The aquifer is a reserve source of water capable of yielding about 34 mgd for uses where the water quality can be tolerated.

Cane River Formation

The Cane River Formation in Arkansas is a marine clay in the southern part of WRPA 2. The unit becomes sandy northward, merging into the middle part of the Memphis aquifer.

Memphis Aquifer

The Memphis aquifer is not used extensively in WRPA 2; however, because of its excellent hydraulic characteristics, areal extent, and thickness, it has the greatest potential of any aquifer except the Mississippi River alluvial aquifer for meeting future requirements for water. The principal sources of recharge to the aquifer are precipitation on the outcrop area in the uplands in WRPA 3 and leakage from the overlying Mississippi River Valley alluvial aquifer in WRPA 2. Additional recharge occurs where the aquifer crops out in Crowleys Ridge. As water levels in the aquifer decline, the Mississippi River alluvial aquifer will become a significant source of recharge.

Results of aquifer tests made in Kentucky and Tennessee show that the average transmissibility in WRPA 2 is probably in the 200,000 gpd per foot range. In much of the area, the Memphis aquifer is capable of yielding 2,000 gpm or more to large wells.

Water from the Memphis aquifer is of good quality and low in dissolved solids and soft. In some places treatment for removal of iron and pH adjustment are needed. Softening may be required in areas where the aquifer is replenished by water from the Mississippi River alluvial aquifer.

The present withdrawals from the Memphis aquifer in WRPA 2 total about 20 mgd. A larger quantity of water, perhaps 30 to 40 mgd, moves from WRPA 2 into WRPA 3 as a result of withdrawals at Memphis, Tenn. The potential yield of the Memphis aquifer in WRPA 2 is about 400 mgd.

Sparta Sand

The Sparta Sand is the most extensive artesian aquifer in the Lower Mississippi Region. The formation crops out in Mississippi, Tennessee (where it is equivalent to the upper part of the Memphis aquifer), and Arkansas, and it forms much of the pre-Quaternary surface under the Mississippi Alluvial Plain. The hydrology of the Sparta has been studied perhaps more than any other aquifer in the region [50, 81, 87]. The Sparta is recharged by precipitation on the outcrop and by leakage from the overlying Mississippi River Valley alluvial aquifer in some areas of heavy pumping. The aquifer has been the principal source of ground water for all uses except irrigation in the southern part of WRPA 2 and water level declines have been large in some areas.

Transmissibility values for the Sparta Sand are not available for locations in WRPA 2. Based on pumping tests made in adjacent areas, the coefficient of transmissibility in WRPA 2 probably ranges from 20,000 to 50,000 gpd per foot. The Sparta Sand is generally capable of supporting well yields of 1 mgd or more.

Water from the Sparta Sand in areas where the aquifer is now used is generally a soft sodium bicarbonate type; however, in part of Monroe and Lee Counties, Ark., the water is a sodium chloride type and has a high dissolved-solids content. In some areas, the water requires treatment for iron removal.

Withdrawals from the Sparta Sand amount to about 25 mgd in WRPA 2. The potential yield of the aquifer in the area is about 96 mgd. Much of the water level decline in the Sparta in WRPA 2 is a result of withdrawals outside the area, especially at Pine Bluff, Ark.

Cockfield Formation

The Cockfield Formation does not crop out in WRPA 2 but is overlain everywhere by younger deposits. The Cockfield is composed of up to 200 feet of irregularly bedded fine sand and clay. The formation is present in its maximum thickness in the southern part of WRPA 2 where it is overlain by the Jackson Group. In the remainder of the area where it occurs, the Cockfield is overlain by and hydraulically connected to the Mississippi River alluvium.

Data describing the hydraulic characteristics of the Cockfield Formation are not available for WRPA 2. On the basis of hydraulic characteristics determined in adjoining areas, the transmissibility of the aquifer probably ranges from a maximum of about 50,000 gpd per foot in the southern part of WRPA 2 to less than 10,000 gpd per foot in the central part of the area.

Water in the Cockfield Formation in WRPA 2 is a sodium bicarbonate type except in areas where the aquifer is connected to and recharged by the Mississippi River alluvial aquifer. In these areas, the water is hard, a calcium bicarbonate type similar to water in the alluvium.

The Cockfield is important as a source of ground water for domestic, stock, and other small wells because it is the shallowest aquifer below the Mississippi River Valley alluvial aquifer in the southern part of WRPA 2. The aquifer is also capable of meeting requirements for small municipal and industrial water supplies. The total withdrawal in WRPA 2 is less than 5 mgd; however, the aquifer can supply about 20 mgd in the area.

Quaternary Aquifers

Mississippi River Valley Alluvial Aquifer

All of WRPA 2 except the Crowleys Ridge, Ozark Plateau, and Arkansas Valley areas is blanketed by Quaternary alluvium. The alluvial deposits are divided into two areas by Crowleys Ridge. South and west of Crowleys Ridge lies an area of predominately older alluvium. Both areas are parts of the Mississippi River Valley alluvial aquifer although Crowleys Ridge is a hydrologic boundary. The alluvium, averaging about 100 feet in thickness, is composed of a lower sand and gravel

unit and an upper unit of silt, clay, and, in places, fine sand.

The alluvial sand and gravel deposits form an excellent aquifer. Large wells, commonly yielding 2,000 gpm or more, can be made anywhere that a sufficient thickness of alluvium occurs. Exceptions are in areas underlain by clay "plugs" or unusually thin sand and gravel sections. The average coefficient of transmissibility for the Mississippi River alluvium in WRPA 2 is about 180,000 gpd per foot, and values range from about 70,000 gpd per foot in Jackson County to about 300,000 gpd per foot in Crittenden County.

Ground water from the Mississippi River Valley alluvial aquifer generally is a hard to very hard calcium bicarbonate or calcium magnesium bicarbonate type, moderately mineralized, and containing excessive iron. The water temperature is near the mean annual air temperature, which ranges from about 58° F in the northern part of WRPA 2 to about 64° F in the southern part.

The Mississippi River Valley alluvial aquifer is the largest potential source of ground water in WRPA 2, capable of yielding more than 3,000 mgd. In much of the area, the withdrawals are replaced each winter and spring by precipitation; however, in some areas the upper clay and silt are too impermeable to allow replacement of large withdrawals. The present pumpage from the alluvial aquifer in WRPA 2 is about 1,100 mgd, about one-half of which is used for irrigation in the Grand Prairie Region in Arkansas.

Effects of Ground Water Withdrawals and Management Considerations

Most of the major aquifers in WRPA 2 have experienced some decline in regional water levels. The aquifers affected are (1) the Mississippi River Valley alluvial aquifer in the Grand Prairie Region, (2) the Memphis aquifer in the Memphis-West Memphis area, (3) the Sparta Sand in the southwestern part of the area, and (4) the lower Wilcox aquifer in the Memphis-West Memphis area.

In the Grand Prairie Region, the upper part of the Quaternary alluvium is sufficiently impermeable that recharge from precipitation does not replenish annual withdrawals for rice irrigation. The withdrawals have produced a widespread depression in the potentiometric surface of the aquifer; however, stabilization appears to be approaching as water level declines have essentially ceased in the central part of the cone and are proceeding at a steadily decreasing rate around the periphery. The aquifer should be able to supply irrigation demands, at least at the present withdrawal rate.

A large cone of depression in the Memphis aquifer has developed as a result of withdrawals for municipal and industrial use in the Memphis, Tenn., area. Although the lowering is not serious, the water levels are now about 100 feet below the original level at the center of the affected area, and the effect is measurable in adjacent parts of Arkansas and Mississippi. A similar cone of depression has developed in the lower Wilcox aquifer.

Withdrawals from the Sparta Sand have resulted in a regional lowering of water levels in the aquifer averaging about 70 feet. The largest declines have occurred in the southwestern part of WRPA 2 as a result of pumping at Pine Bluff (in WRPA 5).

Other management considerations include planned areal distribution of ground water withdrawals to achieve optimum yield; continued studies of the potential for artificial recharge; reservation of good quality ground water for highest priority uses; better delineation of shallow and intermediate saline water bodies; better delineation of the downdip extent of fresh water; and the utilization of saline water.

W R P A

WRPA 3

INTRODUCTION

WRPA 3 occupies a small area of Illinois around Cairo, Ill.; a portion of West Kentucky containing the Mayfield Creek, Obion Creek, and Bayou du Chien Basins; a portion of Tennessee west of the Tennessee River Divide; and the extreme northwestern portion of Mississippi containing part of the Hatchie River, Nonconnah and Horn Lake Creek Basins. The area covers 10,653 square miles, or about 10 percent of the total area of the Lower Mississippi Region.

The area is bounded on the north by the Ohio River Valley Divide, on the east by the Tennessee River Valley Divide, on the south by the Vicksburg District-Memphis District boundary, and on the west by the Mississippi River. The area is about 150 miles long with a maximum width of about 90 miles.

The most distinct physiographic feature of WRPA 3 are the Loess Hills which follow the Mississippi River for the length of the area. The Loess Hills are the result of an epoch of aggradation by wind. These hills are distinguished by the almost vertical bluffs left by erosion, and they overlie the steep slopes along the eastern side of the Mississippi Alluvial Plain. The Loess Hills rise to about 500 feet above sea level at the north end and decline in elevation toward the south. Crustal movement has played an important role in creating the existing landforms in the northern end of the WRPA. The most conspicious remnant of earthquakes is Reelfoot Lake, which lies directly over a major fault in the basement rocks in the northwest corner of Tennessee.

Streams originating within this WRPA averaged about 19 inches of runoff per year, or 13,800 cubic feet per second (c.f.s.) during the period of record.

The WRPA is drained by four major river systems and by numerous lesser creeks. The major rivers are the Obion, Hatchie, Loosahatchie, and Wolf Rivers. Of the four, the stream gradients for the Obion system are the steepest, ranging from about 3.3 feet per mile in the upper reaches to about 0.4 foot per mile near the Mississippi River. The Obion Basin contributes about 21 inches of runoff per year in WRPA 3.

The stream gradient for the Hatchie ranges from about 2.4 feet per mile in the upper reaches in Mississippi to about 0.9 foot per mile in the lower portion in Tennessee. The basin contributes about 18 inches of runoff per year in WRPA 3.

The Loosahatchie has a gradient of about 2.0 feet per mile. The basin contributes about 19 inches of runoff per year in WRPA 3.

The stream gradient for the Wolf is about 2.8 feet per mile. The basin contributes about 18 inches of runoff per year in WRPA 3.

The lesser systems in the area are drained by Mayfield Creek, Obion Creek, Bayou du Chien, Reelfoot Bayou, and Nonconnah Creek.

Soils along the streambeds and banks consist of Pleistocene loams, loess, gravels, and sand. Most of the area is covered by a thin deposit of loam varying in thickness to a maximum of about 12 feet.

The largest cities in the area, with their 1970 populations, are: Memphis, Tenn. - 623,530; Jackson, Tenn. - 39,996; and Dyersburg, Tenn. - 14,523.

SURFACE WATER

The majority of the streamflow which originates within WRPA 3 is produced by the Obion and Hatchie River Basins. At the present time, there is no regulation by major dams on streams in this area. There are, however, numerous headwater retention structures on the lesser streams.

Quantity

The annual mean discharge of streams originating in WRPA 3 is 13,810 c.f.s. (10.0 million acre-feet annually). This averages 1.3 c.f.s. per square mile. This is a high yield when compared to that for the rest of the region. There is no additional discharge contributed to the area from the outside.

Present Utilization

Surface water withdrawals from streams in WRPA 3 during 1970 averaged about 850 c.f.s., and were equivalent to about 6 percent of the mean annual flow generated within the area. Surface water withdrawals constituted about 67 percent of the total water withdrawn in the area, with the remainder coming from ground water sources. Major surface water withdrawals were for thermoelectric power production (670 c.f.s.) and for fish and wildlife mitigation (135 c.f.s.).

Withdrawals from ground water sources in WRPA 3 during 1970 averaged about 420 c.f.s. The major uses of these withdrawals were for municipal water supply (210 c.f.s.) and for industrial purposes (145 c.f.s). All of the water withdrawn for municipal use in the area was taken from ground water sources.

About 215 c.f.s., or 17 percent of the total ground and surface water withdrawals from WRPA 3 during 1970, were consumed. The remaining 1,055 c.f.s. that was withdrawn was released and returned to streams. A net decrease in streamflow of 205 c.f.s. resulted from this return flow. Major consumption of water was for municipal water supply, which used an average of 78 c.f.s. Major nonconsumptive uses of water in the area were for fishing, boating, and other water sports.

Additional information on the withdrawals of ground and surface water in WRPA 3 during 1970 is given in table 15 of the Regional Summary. Also presented in this table are pertinent data on the consumption of water in this WRPA and in each of the other areas in the Lower Mississippi Region.

Stream Management

Competition for water among the various users necessitates efficient

stream management. The WRPA 3 stream management practices include changes in stream systems by the development of levees, channel improvements, and diversion of water for various uses. Some of these practices may not cause marked changes in streamflow, and many subsequent years of streamflow records may be required to define their effects on the stream system.

Impoundments. Table 67 gives pertinent data on the only reservoir in WRPA 3 which has a total capacity of 5,000 acre-feet or more. This reservoir is now under construction and will control a drainage area of about 16.2 square miles in the upper part of the Middle Fork of the Obion River watershed.

Table 67 - Reservoir Having a Total Capacity of 5,000 Acre-Feet or More, WRPA 3

Name	Stream	Total Storage (acre-feet)	Surface Area (acres)	Purpose
S.C.S. Site No. 5	Middle Fork Obion River	5,900	545	Flood control

Channel modification. Throughout WRPA 3, channel modification has taken place on many of the streams. Flood-protection projects have been built on many of the streams in the area. These projects include levees, drainage structures, and channel clearing and construction. There are no navigation projects on any of the streams in WRPA 3.

Streamflow

The base period of streamflow data for WRPA 3 varies depending upon the period of record available at each gage site. For each of the selected gaging stations, the period of record provides reasonably good data for statistical analysis and study, and the data are considered representative of flows which could occur under 1973 levels of development.

Measurement facilities. Streamflow data at 12 sites were selected for detailed study in WRPA 3. Locations of these sites are shown in figure 130, a map of the mean annual runoff for the area, and are identified by the U. S. Geological Survey station numbers. Table 68 is a summary of the streamflow data at each of the selected sites and presents pertinent data for each site.

Average discharge for WRPA 3. A graphical representation of the average monthly discharge generated within WRPA 3 is shown in figure 131.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

MEAN ANNUAL RUNOFF IN INCHES WRPA 3

FIGURE 130

Table 68 - Streamflow Summary for Selected Sites, WRPA 3

				Drainage Area	Period		nnual F	low 1/	Momentary Flow 2/ (c.f.s.)		
Stream	Station	Station No.	Gage Datum	(square mile)	of Record	Mean	Maxi- mun	Mini- mum	Maximum	Mini- mun	
Mayfield Creek	Lovelaceville, Ky.	0230	326.22	212	38-69	234	554	31	16,100	- 6	
South Fork Obion River	Greenfield, Tenn.	0245	300.36	383	29-69	546	1,184	136	25,600	61	
North Fork Obion River	Union City, Tenn.	0255	286.88	480	29-69	611	1,385	174	49,200	82	
Obion River	Obion, Tenn.	0260	261.48	1,851	29-69	2,420	5,023	569	99,500	230	
South Fork Forked Deer Creek	Jackson, Tenn.	0275	330.76	495	29-69	694	1,286	192	43,600	67	
South Fork Forked Deer Creek	Halls, Tenn.	0281	259.09	1,014	47-69	1,330	2,554	631	26,900	94	
North Fork Forked Deer River	Dyersburg, Tenn.	0291	244.86	939	47-69	1,327	2,918	474	22,400	85	
Hatchie River	Bolivar, Tenn.	0295	323.49	1,480	29-69	2,282	3,910	969	56,300	78	
Hatchie River	Rialto, Tenn.	0300.5	239.81	2,308	39-69	3,150	6,089	960	55,700	180	
Loosahatchie River	Brunswick, Tenn.	0302.8	227.25	506	39-69	710	1,533	141	39,700	46	
Wolf River	Rossville, Tenn.	0305	300.74	503	29-69	657	1,179	277	40,000	100	
Wolf River	Raleigh, Tenn.	0317	217.22	770	36-69	1,040	2,143	395	41,400 3/	0 4	

- Regulated values for period of record.
- Observed values for period of record. Discharge not determined for record high gage. Affected by Mississippi River backwater.

Figure 131 presents the maximum, mean, and minimum monthly flows for the area. All of the flows originate from within the WRPA with no flows entering the area from the outside.

Average discharge for selected stations. Detailed data for each of the sites listed in table 68 are presented in tables 69-80, which are self-explanatory. The tabulated flows reflect regulation and use for a period of record that is representative of 1973 levels of development in the area.

Figures 132-143 present peak flow frequency curves for selected sites in WRPA 3. These curves are a reflection of the annual peak discharges for the station and were computed using the standard method of the Corps of Engineers [6].

Low flow frequency curves for selected sites are shown in figures 144-155. These curves represent the lowest average flows for periods of 3, 7, 14, 30, and 120 consecutive days.

Duration curves for daily flows at selected sites in WRPA 3 are presented in figures 156-167. These curves indicate the percent of time that any given flow at the site is equaled or exceeded.

Tables 81-92 present data on the dependable yield characteristics

at each of the selected discharge sites. These tables show the lowest mean flows for from one to ten consecutive years of the period of record. The relationship of these lowest mean flows to the period of record mean flow is also shown. The minimum yearly flow for the stations in WRPA 3 ranges between 13 and 47 percent and averages 31 percent of the mean annual flow.

For the ten consecutive years of lowest mean flow, the dependable yield averages about 80 percent of the mean annual flows for the WRPA.

Flow Velocities

No flow velocities for streams in WRPA 3 were available for publication in this report due to a lack of travel time studies in the area.

River Profiles

Representative river profiles are presented in figures 168-171. The profiles were prepared using topographic maps and data from available reports.

Quality

The quality of surface waters in WRPA 3 is such that generally they would be excellent sources for municipal and industrial water supplies. The dissolved-solids content in samples collected at 19 sites ranged from 13 to 248 mg/l, and most samples contained less than 50 mg/l of dissolved solids (table 93). Water from streams draining most of the unconsolidated deposits is soft (0-60 mg/l hardness as CaCO₃). The water has a low dissolved-solids content and only small variations in the chemical characteristics. For most uses, it would be desirable to treat for color, for iron removal, and for pH control. The dissolved-solids content of water from streams draining terrace deposits is the highest in the area but is not excessive. Water from these deposits is very hard (more than 180 mg/l hardness) and for many uses softening would be desirable. The principal constituents of water in the streams draining terrace deposits are calcium, magnesium, and bicarbonate [108].

Table 69 - Observed Mean Discharge, in c.f.s., Mayfield Creek at Lovelaceville, Ky., Sta 7-0230

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua 1
1939	13	26	14	348	1254	483	810	29	42	27	11	14	248
1940	17	12	15	100	552	481	603	185	135	37	14	10	178
1941	9	42	55	85	27	13	20	14	16	64	19	11	31
1942	42	25	29	415	546	492	513	60	16	16	179	12	193
1943	19	76	211	34	50	763	67	440	67	16	34	23	152
1944	9	11	11	11	214	411	506	219	36	15	18	15	122
1945	11	23	63	216	757	1004	1020	477	669	17	29	53	357
1946	82	116	152	725	1063	179	33	492	28	22	102	12	246
1947	23	335	399	623	44	80	484	258	160	17	21	20	206
1948	68	75	115	185	542	963	266	43	25	43	15	3.7	197
1949	15	391	922	1211	1080	763	174	27	72	184	29	32	406
1950	307	28	569	1952	1413	655	250	284	426	185	274	351	554
1951	25	396	244	1291	735	453	320	28	213	70	26	44	318
1952	16	368	1018	843	459	989	260	77	19	21	30	30	345
1953	15	21	129	195	216	1050	157	585	27	22	20	10	205
1954	11	19	38	168	145	123	161	207	91	23	18	100	92
1955	73	18	227	37	390	642	560	201	157	111	50	44	208
1956	22	30	24	217	834	225	173	94	22	38	28	16	141
1957	13	24	26	485	552	104	511	800	481	145	95	21	269
1958	46	1706	938	393	113	856	211	372	34	66	38	43	403
1959	18	30	22	258	460	91	50	42	62	103	82	85	106
1960	63	42	286	292	221	389	242	299	132	51	23	30	173
1961	19	41	80	105	872	756	701	775	111	58	23	19	293
1962	17	118	281	702	1050	771	380	68	43	25	35	227	305
1963	70	21	38	27	34	611	57	92	22	18	137	20	97
1964	19	22	19	17	24	1864	177	28	20	17	17	91	195
1965	35	25	245	456	497	882	494	39	51	167	18	113	250
1966	19	38	22	949	572	56	754	546	40	42	27	27	256
1967	25	29	299	88	138	490	51	697	77	235	223	39	201
1968	61	66	570	194	382	662	684	291	47	140	31	29	263
Mean	39	139	235	421	508	577	356	259	111	67	56	53	234

Table 70 - Observed Mean Discharge, in c.f.s., South Fork Obion River near Greenfield, Tenn., Sta 7-0245

Water													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Agual
1930	218	424	383	2090	1000	755	309	1010	150	117	109	129	558
1931	125	163	194	203	682	715	368	178	137	198	265	131	278
1932	110	230	1060	3760	1460	679	1040	342	137	255	270	390	812
1933	198	239	605	1520	1300	1070	1360	937	1.27	342	288	180	678
1934	132	149	939	280	365	1210	238	170	191	132	127	323	356
1935	162	443	221	2850	495	1240	1070	595	694	168	111	112	682
1936	126	175	164	262	254	1350	227	121	100	243	98	129	272
1937	127	208	343	5850	370	366	405	552	515	149	131	295	784
1938	411	268	528	1150	1110	859	387	297	821	268	379	118	546
1939	102	121	137	718	2400	1100	1170	615	709	173	129	99	609
1940	103	118	159	153	580	889	681	380	166	189	147	93	304
1941	95	138	162	170	147	132	187	1.20	101	148	151	86	136
1942	111	163	188	599	967	955	1210	162	172	141	117	86	402
1943	102	143	520	274	199	1900	465	949	154	91	107	119	422
1944	85	154	145	184	938	1120	1370	406	128	119	186	247	420
1945	232	275	861	1650	1000	1210	805	885	1410	125	150	139	727
1946	289	1220	506	1940	1230	1310	387	391	140	454	167	122	677
1947	148	445	688	1880	304	400	884	877	205	201	163	123	5.30
1948	282	507	332	434	1450	1300	586	265	128	345	182	169	495
1949	129	1640	1110	1920	976	1300	660	264	771	426	347	1.74	808
1950	507	278	2114	2910	2680	1340	492	1130	347	594	540	1310	1184
1951	288	953	1100	2630	1870	740	1110	191	316	624	214	264	852
1952	166	1280	2420	1070	1170	1600	620	255	165	140	141	190	768
1953	149	194	297	384	751	2060	815	2200	176	152	107	103	618
1954	111	139	204	1530	604	475	455	380	255	99	99	91	370
1955	98	108	219	161	764	1820	1110	505	217	189	160	112	453
1956	147	235	166	926	3610	803	964	321	154	105	100	84	621
1957	90	129	149	862	1600	528	895	941	573	726	216	169	566
1958	182	2920	1370	539	446	1080	761	1030	197	704	158	165	797
1959	122	239	299	841	1220	447	276	212	295	321	219	251	389
1960	212	225	713	561	516	816	434	455	133	182	153	116	377
1961	104	225	276	318	893	1380	899	561	616	202	132	109	473
1962	134	376	2210	1060	1660	1850	1430	476	205	146	108	256	822
1963	175	155	172	157	203	1340	195	267	160	153	158	137	274
1964	97	125	144	362	349	1850	1010	468	122	285	930	139	493
1965	153	242	1590	851	1840	1130	1020	182	213	184	97	117	628
1966	97	150	135	312	966	266	254	956	122	108	99	100	293
1966	125	170	436	336	272	804	156	2020	134	481	233	106	445
	194	178	737	632	494	1563	1577	494	197	124	97	112	534
1968		219	561	539	960	369	1423	172	167	108	191	101	407
1969	132				1002	1053	730	568	293	248	194	182	546
Mean	164	394	614	1122	1002	1033	(30)	300	62.0	540	1.774	106	2.40

Table 71 - Observed Mean Discharge, in c.f.s., North Fork Obion River near Union City, Tenn., Sta 7-0255

Water													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua l
1930	149	446	653	3500	990	553	466	459	162	138	130	131	649
1931	110	121	169	166	198	309	310	175	282	143	187	156	194
1932	108	368	1250	3500	1.380	1030	972	172	126	138	337	583	832
1933	351	203	936	2490	1060	1540	2510	1920	150	1450	423	453	1127
1934	280	206	1170	266	602	1310	253	262	249	1.32	186	611	461
1935	379	1440	673	2970	463	2690	1540	690	681	171	186	117	1005
1936	153	181	221	267	308	348	321	123	107	152	101	186	205
1937	106	273	450	6740	469	291	426	919	671	110	113	115	899
1938	251	162	471	714	1300	796	298	393	270	336	339	126	451
1939	123	160	147	902	2120	1130	1310	376	665	168	116	102	598
1940	121	124	160	356	1170	953	1230	407	327	192	194	102	441
1941	100	153	209	220	144	235	184	125	113	356	151	91	174
1942	146	145	152	694	1180	1360	1250	182	127	109	699	110	509
1943	135	240	644	167	242	2020	199	312	225	98	99	118	378
1944	89	117	115	125	820	1180	1370	1060	142	119	129	139	449
1945	91	162	322	779	1290	1820	1460	1090	1840	133	215	195	777
1946	319	521	309	1600	2280	1020	268	735	138	178	155	112	627
1947	141	373	548	1300	188	238	816	872	205	144	120	153	428
1948	228	336	285	308	1300	1700	636	164	125	250	115	186	467
1949	127	1640	2070	1920	1960	1420	797	176	397	659	487	217	983
1950	1160	256	1530	4000	2760	1240	779	968	499	1310	891	1260	1385
1951	241	1240	849	2840	2120	1060	976	216	587	543	169	309	921
1952	168	846	2070	996	1010	3250	594	226	174	208	171	217	830
1953	142	183	360	544	713	2260	550	1730	204	141	112	106	590
1954	110	137	260	708	555	826	507	304	519	140	114	117	357
1955	196	119	333	188	892	1700	1000	545	321	349	178	160	496
1956	190	217	182	573	1378	698	758	255	164	253	115	102	593
1957	101	151	150	1070	1440	327	1180	1680	1430	498	324	1.53	702
1958	213	4480	2160	688	350	1480	616	941	183	521	200	201	1004
1959	132	214	186	765	1150	357	296	310	386	354	312	306	392
1960	424	330	774	787	412	674	318	584	382	267	142	135	438
1961	123	236	267	243	1930	1830	1200	749	582	250	124	119	628
1962	148	412	1100	1370	2000	2330	1380	473	211	174	148	337	834
1963	160	156	173	162	185	947	218	320	210	165	275	124	259
1964	109	142	147	178	236	3720	590	196	142	138	186	383	517
1965	161	182	936	1100	1390	1640	1220	194	178	695	117	252	668
1966	126	257	167	1390	1350	241	1160	1250	145	150	156	148	540
1967	146	178	806	348	317	1230	240	1980	219	649	364	152	558
1968	220	244	1047	505	773	1135	1579	526	196	223	132		
1969	143	266	421	1230	978	415	1947	194	237	184		134	559
Mean	198	440	622	1217	1035	1233	843	606	349	310	279	158	533
W. Carl		++0	066	Let	1,000	1500	040	000	549	210	445	221	611

Table 72 - Observed Mean Discharge, in c.f.s., Obion River at Obion, Tenn., Sta 7-0260

Water													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug 355	Sep 397	Annual
1930	525	1540	1600	13300	4520	3300	1430	3450	529	533	355	397	2622
1931	419	525	625	597	1140	1300	1410	567	498	584	740	532	742
1932	396	879	4690	14900	8960	2440	5370	1080	505	673	1010	1570	3528
1933	1340	826	1710	9680	4480	4640	11200	5170	523	2340	1990	1190	3752
1934	899	736	4890	1260	1060	7150	1560	758	680	487	635	942	1769
1935	1080	4210	1870	10700	2220	7490	6110	2410	3360	755	562	431	3444
1936	479	610	636	935	1040	1960	1690	487	323	713	277	457	800
1937	430	923	1420	26600	2020	1280	1300	3290	2860	626	492	765	35 38
1938	1750	726	1360	3520	5590	3080	2130	1310	2730	884	2310	502	2136
1939	350	441	505	2430	12400	4670	7340	2040	4400	983	540	344	2960
1940	378	452	630	894	3570	3380	4150	1450	785	832	632	339	1446
1941	315	528	754	790	543	628	678	500	337	927	465	349	569
1942	459	609	620	1730	4500	4690	4730	541	568	436	1050	306	1665
1943	325	793	1060	1500	772	7320	1620	2280	1530	310	517	489	1554
1944	249	490	495	587	2740	5690	5900	3230	545	301	481	520	1762
1945	613	718	1230	5860	3440	5310	5610	3720	8280	421	561	577	3017
1946	1230	3370	1540	7250	6640	3860	1960	1760	705	1510	644	400	2548
1947	514	1520	2020	6620	1110	1200	3090	2830	1250	526	421	421	1803
1948	665	2240	1240	1550	6370	7170	3080	668	377	793	553	717	2103
1949	408	5950	5640	8010	6830	4720	3280	904	2430	2270	1350	608	3511
1950	2910	945	6420	13300	12400	5040	3200	4010	1830	3630	2050	5040	5023
1951	932	4250	3890	11600	7370	3620	4050	813	2100	3280	677	985	3608
1952	545	3920	11100	5430	5530	10600	2820	770	508	675	494	613	3590
1953	407	700	1280	1500	2350	9210	2500	9080	603	503	364	352	2419
1954	355	474	804	3840	2520	2220	1670	1570	1310	367	371	348	1315
1955	437	372	760	837	2820	6980	4270	1580	1270	1050	522	319	1762
1956	603	651	924	788	16600	3020	3010	1200	515	664	357	264	2320
1957	270	437	520	2520	8850	2070	4910	6660	5240	3970	1100	512	3044
1958	742	15500	8760	3090	2100	5940	3120	4820	669	1980	589	708	
1959	657	1634	2371	4815	4470	4759	37.32	2584	1474	1131	744	714	4006
1960	657	1634	2371	2160	1600	2930	1210	2100	793	1020		477	2420
1961	395	890	1130	1180	4690	7200	3570	3550	2590	882	496		1450
1962	415	1580	5830	4420	5120	11480	6890	3070			573	533	2265
1963	773	561	582	580	699	4931	650	1201	811 900	600 524	411	1300	3494
1964	323	395	434	891							505	648	1046
1965	991	934	4900	4620	1140	10500	3730	1800	577	597	896	935	1852
1966	460	774	663	3810	6000	5530	5880	779	1210	2090	392	914	2853
	443	607			4920	961	2250	5230	600	717	645	430	1788
1967	814	701	2240	1440	1070	4540	806	11000	803	3240	1420	559	2375
1968		1090	3590	2450	2930	5750	8460	2420	884	8.36	485	545	2489
1969	513		2270	4620	5660	1800	8920	692	1040	580	1100	492	2398
Mean	657	1634	2371	4815	4470	4759	3732	2584	1474	1131	744	714	2420

Table 73 - Observed Mean Discharge, in c.f.s., South Fork of Forked beer River at Jackson, Tenn., Sta 7-0275

ater				Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep 199	Annual
ear	Oct	Nev	Dec			1470	553	1180	167	188	208		828
930	471	785	488	2570	1690		559	233	132	525	903	138	491
931	244		108	357	1140	1020	1060	525	200	1210	379	655	1065
932	107	331	1.890	3710	1929	798	2220	1570	170	354	290	516	984
933	341	419	958	1270	2250	1560		315	692	208	215	481	633
934	159	243	1920	491	374	2050	396	692	1200	259	140	177	921
935	214		482	3300	813	1740	1260		88	852	95	231	380
	201	275	206	543	453	994	352	198		507	206	189	803
936	206	359	455	4740	600	465	493	926	418	288	319	153	624
1937	339	290	566		820	1110	748	397	675		444	113	947
1938		246	215	1200	3540	1050	1630	785	1990	299		103	400
1939	109		248		1110	1100	667	375	185	314	221		192
1940	1.25	171		318	219	244	213	127	94	154	144	80	473
1941	107	213	389	498	715	1420	1610	175		112	192	112	
1942	137	289	279		350	1570	430	527	188	145	254	441	465
1943	140	241	881	377		1330	2410		213	124	178	225	705
1944		326	320	438	2390	1770	1120	1050	1030	190	296	330	907
1945	246	357	1260	1760	1490		564	452	221	728	432	288	1123
1946	440	1950	1080	3770	1770	1800		1050	395	177	299	298	757
1947	249	751	879	2500		7.34	1200	304	182	270	132	230	841
1948	467	826	504	949	3350	1620	1400		1770	352	419	236	1105
1949	198	2030	1660	2600	977	1400	942	674	629	365	639		1286
1950	453	368	1680	3850	3260	1860	6.39	821		458	232	218	930
	285	922	1110	2480	1980	1170	1740	289	375	153	223	366	927
1951	217	1240	2630	1540	1330	2170	744	313	181	210	123	107	708
1952		322	366	559	1640	1550	917	2380	195			93	496
1953	169		304	2440	1100	459	508	384	169	141	96	179	588
1954	116	168	221	212	848	2030	1530	777	272	583	186		650
1955	112	126	242	612	3360	854	1430	368	278	124	138	89	775
1956	195	267		1760	1900	739	1430	1130	663	515	185	538	
1957		132	304		427	1010	1010	836	187	599	150	577	782
1958	299	2360	1310	011		567	460	177	394	296	238	162	458
1959	166	324	2.36	959	1610	1030	456	472	162	238	169	161	461
1960	217	300	918	683	714		899	375	36.3	166	155	121	475
1961	156	243	337	345	1120	1470	1110	786	301	156	115	245	850
1962	119	377		2430	1710	1570		637	216	182	126	102	342
1963	173	175	204	213	354	1430	276	396	179	521	337	352	508
1964	97	149		334	440	1140	1950		535	214	127	140	858
	214	354	2030	1100	1940	1710	1700	316		154	139	152	381
1965	145	179	197	298	1100	453	403	1200	192	393	251	159	446
1966		172	475	371	340	920	250	1660	187		98	156	63
1967	133	217	1395	1018	386	1255	1428	1153	153	119		171	57
1968	246	700	1005	492	1267	470	1837	271	188	115	222	257	69
1969	212	505	790	1393	1333	1227	1014	671	400	324	243	25/	0.54

Table 74 - Observed Mean Discharge, in c.f.s., South Fork of Forked Deer River near Halls, Tenn., Sta 7-0281

Water	Cont	Van	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua I
Year 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1964 1965 1964 1965 1965 1966 1967 1966 1967 1969	0ct 400 443 271 758 427 286 222 191 147 596 421 147 596 329 353 278 235 294 167 452 225 225 225 225 225 225 225	Nov 1750 1770 1770 2840 568 1880 415 200 421 206 5650 421 206 5534 384 418 752 513 234 587 394 499	Dec 1140 856 3030 3350 2090 4300 599 502 353 444 348 3310 1050 557 3180 305 306 4190 318 688 1980 2280	5an 6130 1390 4450 6690 2300 834 4270 336 952 1450 1150 952 615 3740 327 469 2050 670 893 2100	1080 4980 2130 7550 3860 3290 2830 1990 1460 8364 3110 998 1620 469 615 1140 2550	1550 3440 1970 5240 1730 3760 4080 1030 4300 1190 2130 1190 2130 2920 2670 761 1790 2760 7761 1790 2760 2760 2760 2760 2404	1750 2540 1930 929 1630 1730 851 3320 2470 2000 706 685 2150 421 3660 421 3630 4430 561 473 3830 3430 2072	1560 468 1080 1790 710 482 5740 1060 844 836 1610 2370 935 916 1120 906 1460 2492 2640 2260 2260 492 492 493 494 494 495 496 497 497 497 497 497 497 497 497 497 497	829 366 3020 934 669 326 378 360 1190 402 2040 319 641 331 625 391 910 323 732 358 450 341 279 705	305 433 658 979 930 262 387 221 1160 284 1300 675 668 390 2336 917 635 365 937 230 158	414 298 584 1550 355 461 192 174 312 205 658 466 265 466 182 240 963 305 287 376 178 502 414	374 419 385 2310 474 549 174 172 211 147 650 669 442 251 197 298 4251 197 299 265 240 239 442	1440 1450 1862 2554 1850 1629 1465 924 1157 1384 1486 676 848 717 919 1721 1631 1063 1812 785 814 1311 1092

Table 75 - Observed Mean Discharge, in c.f.s., North Fork of Forked Deer River at Dyersburg, Tenn., Sta 7-0291

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annus
1947				4680	740	nee	70.00						/United
1948	395	1480	731	846	3610	955 3160	1920	1240	565	295	333	189	
1949	171	3240	2640	4310	2830		1410	255	160	275	168	233	1060
1950	964	446	3630	7220	6820	2660 3340	1920	723		710	389	299	1926
1951	387	2230	2050	6426	3811	1880	1620	2500		2020	1680	3770	2918
1952	245	1849	4044	2360	2910	3900	2434	527	723	1802	417	459	1929
1983	166	275	572	653	1920		1660	332	220	307	411	478	1560
1954	144	235	425	3270	1720	4550	1960	6350	400	325	1.24	137	1453
	153	156	333	265	1270	865	620	992	1080	185	157	140	819
	388	375	531	578	9260	3780	3050	657	801	957	346	151	993
	145	189	235	1080	5190	1610	1820	912	285	140	126	112	1345
1958	431	6620	3620	1510	1120	1080	2740	3190	2900	2340		269	1659
	219	418	369	1300	3480	2570	1890	3000	215	783	201	451	1868
960	374	282	924	957	732	1140	553	318	519	736	517	414	832
1961	184	414	536	529	1730	1780	546	1100	373	414	229	227	662
1962	144	799	3650	2490		3380	2250	1710	1160	404	249	231	1065
1963	210	240	191	191	2820 257	5720	3430	1250	487	233	122	6.39	1815
1964	111	144	164	288	361	2544	369	537		250	181	162	474
965	317	549	3290	1940	4040	4300	3370	1420	415	492	869	373	1026
966	237	420	402	1400		2730	3390	306	972	705	247		1583
967	145	192	625	1250	2680	604	415	2570	438	571	458	172	864
968	237	254	1510	1390	645 1440	1800	298	5450	402	1720	313	134	1081
969	196	251	1540	1860		2740	4780	1840	361	259	159	192	1264
lean	266	925	1412	2034	2650 2697	668	3240	373	264	232	473	221	997
-		7 400	1712	40.04	209	2511	1986	1633	761	702	379	433	1327

Table 76 - Observed Mean Discharge, in c.f.s., Hatchie River at Bolivar, Tenn., Sta 7-0295

Water				-				-					
Year	Oct	Nov	Dec	Jan	Feb	Mar	Ann	May					
1930	957	3840	1830	6260	3810	4350	Apr 926	2380	Jun 348	Jul	Aug	Sep	Annua
1931	363	1020	1280	1550	1930	3610	2590	1060		263	487	981	2203
1932	16.2	639	7120	12000	10000	2310	3300	1360	368	949	2680	294	1475
1933	4450	2070	4580	4720	8580	5760	7510	5640	752	5930	846	2220	3887
1934	414	603	3070	1430	829		1890		630	837	537	701	3835
1935	508	2010	2050	9260	4540	5670	3420	591	1460	968	526	460	1441
1936	1150	1980	7.41	1990	2300	3340	4200	1800	1360	6.52	315	3.80	2664
1937	1720	2030	2860	12800	2240	1540	1270	642	283	568	278	757	1519
1938	683	7.03	1090	4190	3300	3340	5280	1640	529	552	313	540	2336
1939	183	531	559	3630	8600	3880		1110	2560	945	539	3.3.5	2006
1940	283	381	682	697	2750	3140	5300 3910	3090	6320	1480	541	231	2862
1941	180	985	2260	2230	1200	1050		1240	525	797	458	298	1263
1942	482	1450	1490	1660	3180		1300	563	209	734	510	407	969
1943	182	5.3.0	1800	2430	2620	3820	3870	444	490	265	384	310	1487
1944	171	777	653	1590	6100	4720	1580	1210	334	189	227	823	1387
1945	701	490	1670	8890	3980	6900	8010	2270	317	239	344	897	2356
1946	1090	7090	4230	12500	7480	6570	3000	2570	1550	334	451	502	2559
1947	513	2800	1450	6740		4890	3550	1530	1570	1580	841	574	3910
1948	533	2010	1480	3090	2360	3020	4040	2240	1760	673	371	507	2206
1949	395	6240	4360	9180	14100	6360	4810	1990	869	944	307	528	3092
1950	862	960	3310	10700	5030	4510	5620	1660	2810	973	943	430	3513
1951	661	3220	4100		9550	6740	2480	2230	1710	854	1850	4490	3811
1952	366	1730	7810	7650 4840	9320	4660	6000	1050	787	1370	388	340	3296
1953	286	577	854		5640	6390	2880	1070	471	268	679	287	2703
1954	208	340	758	1510	8070	6610	4050	9490	509	2080	464	205	2892
1955	192	243	422	4450	4390	1710	1960	1480	612	287	193	131	1377
1956	219	553	682	555	2140	7640	6030	1270	936	2020	418	178	1837
1957	150	233	1150	661	10600	2560	4350	1860	557	400	207	127	1898
1958	797	7460		2940	11000	2810	5480	1190	2320	1380	418	1300	2531
1959	825	992	4790	2200	1760	2350	3570	5880	644	1210	453	2740	2821
1960	1120	681	883	3.290	3740	2120	2310	761	1860	482	294	347	1492
1961	654		3760	3800	3540	5190	1650	1380	653	661	471	340	1937
1962	261	667	945	1790	3980	7720	3710	1010	469	485	352	258	1837
1963	393	1620	7350	7530	5560	6250	4370	1070	1200	507	243	555	3043
1964	167	439	477	561	1320	3830	1050	3200	2520	1010	396	279	
1965	465	340	724	1450	2080	4720	6840	1370	338	550	559	280	1290
		676	4690	4320	4140	4280	4300	880	552	348	230	298	1618
1966	297	368	462	742	4940	1550	7350	2950	355	407	414		2098
1967	406	520	1440	1830	1530	3820	1100	5160	453	1170	1590	296	1678
1968	535	557	5874	6483	1561	3703	4369	3127	540	270	218	399	1002
1969	483	839	4474	1609	5781	1689	9612	910	442	277		289	2307
Mean	589	1530	2505	4394	4889	4254	3971	2059	1074		524	452	2222
							-777 A	6033	10/4	898	554	644	2282

Table 77 - Observed Mean Discharge, in c.f.s., Hatchie River at Rialto Sta 7-0300.5

Water													
Year 1939	Oct	Nov	Dec	Jan 4870	15100	Mar 6730	8320	May 3860	9160	Jul 3460	Aug 875	Sep. 480	Annua1
1940	420	495	635	905	3240	3940	3570	2710	690	1000	650	530	1565
1941	335	7.65	1455	2243	1381	1054	1118	975	394	723	511	564	960
1942	521	973	1478	2051	3059	7397	7941	927	661	430		369	2250
1943	294	662	1540	3979	2666	7717	3148	1245	799	262	3.27	706	1945
1944	310	521	639	1580	8092	6707	12546	4671	639	391	356	908	3113
		750	2729	14408	5580	11560	6820	4770	2784	697	791	823	4366
1945	681	8783	8425	18800	11785	7900	6840	2100	2390	2870	1200	709	6089
1946	1265		30.50	8810	3630	3610	4720	3250	2580	1240	574	6.7.4	2948
1947	762	2480		3800	16600	10300	6730	2460	1240	1320	875	784	4163
1948	643	3140	2060			4820	7920	2420	3910	1840	1340	733	4754
1949	712	6530	7790	12400	15800	7830	3420	3890	2590	1110	2220	7200	5545
1950	1110	1250	4520	15600		5700	8500	2120	1220	1590	692	664	4384
1951	1020	3640	5660	11000	10800				989	560	956	665	3564
1952	602	2170	7950	5870	8630	7930	4780	1670	1820	1560	1710	449	3798
1953	469	797	1280	1580	8040	9040	5530	13300		510	409	363	2090
1954	436	554	1130	6280	5700	3670	2250	2770	1010		1420		2833
1955	441	461	6.3.3	896	2850	9260	10400	2740	2110	2370		420	2779
1956	548	708	975	1530	14700	4750	4890	2660	9.47	873	442	320	
1957	3.3.2	435	1010	2410	13700	4510	7280	2780	4070	2170	1410	1440	3462
1958	1450	9190	8150	3450	3000	3640	4680	8380	962	1270	888	1570	3886
1959	2270	1350	1360	3420	7170	3650	2970	1410	2880	1230	728	654	2424
1960	1380	911	3680	4530	4730	6170	2880	2430	752	1060	711	545	2482
1961	899	973	1350	2580	3850	10000	7070	2210	1200	740	716	539	2677
1962	530	1660	8880	8890	7530	10250	5850	5030	1240	955	535	1230	4215
1963	659	674	7.0.7	787	1395	5269	1613	3149	3589	1277	703	568	1699
1964	394	508	841	1660	1970	7120	10500	4500	627	973	1160		2567
1965	918	909	6670	6420	7460	6320	15300	1350	1490	1100	518	727	4099
1966	508	563	7.0.3	1080	6140	3090	1210	4890	1310	711	746	54.5	1791
1967	629	721	1630	2340	1710	4790	1300	6280	983	1740	1710	756	2049
1968	654	737	4780	7750	3060	4760	7050	5040	1630	580	466	529	3086
1969	884	719	5260	3190	6690	2240	11100	2060	756	480	808	660	2904
Mean	732	1776	3202	5326	6880	6088	6072	3421	1852	1197	872	893	3150

Table 78 - Observed Mean Discharge, in c.f.s., Loosahatchie River at Brunswick, Tenn., Sta 7-0302.8

Vater								May	Jun	Ju1	Ane	Sep	Annua
ear	Oct	Nov	Dec	Jan	Feb	Mar 335	Apr 380	225	230	120	Aug 110	0.5	242
940	100	110	145	150			287	142	73	146	123	6.4	141
941	7.0	100	175	231	113	167		185	195	150	166	122	501
942	113	186	128	630		1340	1840		175	102	8.3	317	464
943	18.2	189	1110	155	136	2370	463	280	114	95	6.4	332	790
944	6.9	100	132	208	3260	1400	2890	804	864	119	116	725	1246
948	110	232	2820	2325	2580	2570	2042	937	182	455	109	8.5	1275
946	212	2548	1440	4210	2710	2310	534	501		289	127	8.7	874
9.4.7	131	538	1170	3460	173	698	800	1420	1590		120	128	989
948	161	649	405	5.00	4590	2860	1600	166	260	332		129	117
949	9.4	2140	1630	3680		2250	972	359	1310	180	325		1533
	409	177	1800		5180	1800	313	1010	467	369	1360	755 133	114
951	204	1120	1650	5170	2370	737	939	137	581	5.57	112		78
952	1.26	498	1950	1580	1930	1990	698	172	118	118	114		81
953	9.7	124	153	287	1650		1000	3550	121		109	96	
954	104	142	311	2510	1470	170	358	709	189	123	160	109	5.3
	138	117	164	116	781	1900	1990	571	179	501	143	125	56
956	137	128	112	471	3140	7.00	941	532	475	134	9.4	8.0	57
	8.3	95	112	2130	1620	709	1310	1250	768	280	210	422	7.5
958	305	2410	1790	643	587	1090	1360	1170	144	234	118	476	8.6
959	112	220	125	1110	1870	560	315	192	497	401	215	123	4.8
960	119	108	411	491	544	1160	317	436	217	233	487	190	3.9
	166	202	409	349	1420	1380	1410	490	245	203	121	219	5.4
961		447	1990	2193	1417	1381	805	956	238	149	108	1059	91
962	101	140	109	117	190	1660	361	930	228	146	135	9.8	3.5
963	121		113	200	307	1690	2650	350	1.5.3	312	273	164	5.3
964	8.5	98		1380	2045	1540	2434	179	267	151	140	365	86
965	113	133	1580	154	1590	300	419	1400	112	165	323	697	4.5
966	9.0	134	91		248	495	374	569	169	924	136	101	36
1967	102	103	955	224	597	1430	1860	1170	113	125	99	180	6.3
1968	8.7	95	722	1110	988	399	1790	140	123	121	348	119	5.3
1969	324	321	1160	543					346	250	205	237	71
dean	147	454	829	1406	1516	1317	1115	698	240	2.70			

Table 79 - Observed Mean Discharge, in c.f.s., Welf River at Rossville, Tenn., Sta 7-0305

Water	-												
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annua1
1930	208	791	440	2080	827	956	237	938	177	176	152	Sep 368	613
1931	317	302	380	351	716	932	509	225	237	435	546	196	428
1932	132	459	2140	3280	2130	607	884	574	389	2250	443	857	1179
1933	390	380	1320	1060	2520	1680	1620	1200	260	301	407	719	978
1934	273	264	2250	519	321	1770	386	261	432	227	193	194	596
1935	194	951	411	3110	799	931	633	607	480	213	198	248	733
1936	449	351	231	460	386	563	376	190	160	243	146	358	326
1937	644	560	771	4400	483	582	283	314	3.03	183	155	176	745
1938	241	262	295	1270	765	1280	1580	291	969	364	204	163	638
1939	150	325	232	128-	2520	976	1450	882	1460	613	198	161	841
1940	163	197	252	245	563	399	574	402	291	223	218	151	305
1941	143	232	449	408	288	286	309	271	144	191	368	225	277
1942	320	519	324	499	975	879	1640	181	191	129	143	121	488
1943	135	193	747	297	535	1890	552	581	244	133	121	267	476
1944	141	247	250	349	2120	1650	2050	528	268	165	198	506	697
1945	281	315	997	1750	1840	1780	1020	482	345	281	270	356	804
1946	367	2450	1010	3180	1650	1970	569	595	339	459	225	199	1082
1947	229	531	407	1370	542	554	804	647	810	306	203	349	562
1948	251	770	476	959	3700	1500	1060	535	327	357	274	216	
1949	226	2190	710	2240	783	1450	954	365	196	314	271	204	857 970
1950	288	246	1030	3000	2150	1650	423	400	494	252	608	572	
1951	283	794	1300	2520	1820	995	987	315	301	535	246		921
1952	241	990	1910	1250	1380	1640	615	305	243	198	231	236	856
1953	189	310	357	403	1890	1250	964	3770	247	620		204	767
1954	199	232	389	1500	1660	368	380	525	339		205	190	862
1955	211	197	247	271	871	1850	2140	274		168	175	150	450
1956	158	279	296	450	2920	556	778	412	30S 20S	438	202	166	595
1957	142	181	343	1220	2150	574	989	461	871	206	148	133	534
1958	265	1750	1160	505	396	597				300	260	469	651
1959	232	346	334	936	1060		804	1520	270	315	220	975	732
1960	325	262	934	712		750	477	257	558	193	224	224	461
1961	404				780	1170	350	434	364	181	299	181	500
		305	321	444	1610	1590	937	406	282	173	182	168	562
1962	195	563	18.5	1520	1500	1000	654	475	398	350	242	410	761
1963	250	270	285	281	456	1140	479	1070	529	213	172	165	444
1964	143	194	266	367	444	648	1920	404	158	234	257	272	440
1965	257	294	1940	1340	1600	1840	1110	339	259	198	184	199	793
1966	174	211	226	293	1530	469	336	1140	183	164	157	150	421
1967	1.78	237	407	381	362	1130	627	1450	270	1750	337	179	614
1968	185	218	973	1499	515	1243	1049	605	213	170	165	341	600
1969	541	1020	1227	520	1406	385	2079	270	225	188	336	230	694
Mean	252	530	747	1212	1274	1087	8894	623	413	360	247	291	657

Table 80 - Observed Mean Discharge, in c.f.s., Wolf River at Raleigh, Tenn., Sta 7-0317

Water													
Year 1936	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun 256	Jul 419	Aug 226	Sep 583	Annua1
1937	703	875	1077	8191	660	866	459	461	566	284	252	241	1220
1938	360	398	459	1952	1800	1660	2782	458	1075	438	379	245	1001
1939	198	358	298	1845	5146	1569	2766	1160	1716	953	283	203	1375
1940	208	227	305	330	980	550	770	560	330	440	270	230	433
1941	180	300	590	610	410	400	550	430	220	270	410	340	395
1942	410	640	460	883	1479	2097	3035	320	322	238	269	204	863
1943	208	374	930	781	722	2884	935	925	494	225	193	382	754
1944	186	294	298	488	3108	2159	3556	1025	369	216	222	628	1046
1945	306	410	1664	3216	2071	3202	1813	813	570	311	333	379	1257
1946	490	3447	1778	6510	3110	2730	1400	889	550	714	292	226	1845
1947	265	788	916	2860	701	858	1160	893	1120	498	292	373	894
1948	338	1130	671	1170	6210	3110	1770	743	402	352	377	240	1376
1949	213	2350	1440	4540	1550	2930	2080	580	2870	523	424	319	1652
1950	577	433	1760	5430	4450	2830	901	1120	709	408	1170	1320	1759
1951	408	1350	2070	4240	2990	1320	1820	454	493	935	386	299	1397
1952	295	1290	3010	1600	2680	2700	1070	402	306	253	296	222	1177
1953	217	333	393	490	2470	2220	1350	6230	296	548	257	217	1252
1954	203	281	460	2570	2780	462	500	881	532	217	255	181	777
1955	235	222	277	310	1130	2970	4230	599	472	661	325	213	970
1956	194	306	314	378	4710	874	1170	769	330	269	176	157	804
1957	149	198	395	2030	3530	1030	1770	982	1230	369	381	693	1063
1958	339	2860	2380	839	658	1220	1340	2980	336	466	293	1210	2143
1959	307	446	407	1500	1900	1200	788	427	643	423	315	274	719
1960	353	300	1230	958	1220	2060	523	738	432	278	473	273	737
1961	456	444	510	632	2190	2410	1720	689	361	299	264	245	852
1962	231	610	1820	2210	1610	1900	971	915	454	383	297	581	999
1963	290	309	301	303	556	2046	496	1614	737	468	353	381	650
1964	220	265	367	523	580	1530	3470	786	267	352	473	338	764
1965	391	395	2260	2220	3310	2630	2290	604	398	291	293	414	1291
1966	253	298	292	405	1910	814	624	2250	277	264	490	240	676
1967	259	304	573	548	460	1300	1010	2500	470	2640	528	324	910
1968	245	303	1650	2460	962	2270	2650	1100	344	229	246	485	1079
1969	759	1230	2100	744	2230	599	3630	356	312	263	497	304	1085
Mean	314	717	1017	1932	2129	1800	1679	1080	596	468	353	381	1040

Period 1930 - 1967

FIGURE 160
Duration Curve, South Fork, Forked Deer River at Jackson, Tennessee STA. 80, 7-027

FIGURE 162
Duration Curve, North Fork, Forked Deer River near
Dyersburg, Tennessee STA, 80, 7=0291

FIGURE 161
Duration Curve, South Fork Forked Deer River near
Halls, Tennessee STA, NO. 7-0261

Duration Curve, Hatchie River at Bolivar, Tennessee STA, No. 7-0295

Duration Curve, Loosahatchie River at Brunswick, Tennessee StA. NO. 2-0302.8

FIGURE 167

Duration Curve, Wolf River at Raleigh, Tennessee STA. NO. 2-0317

Table 81 - Dependable Yield, Mayfield Creek at Lovelaceville, Ky., Sta 7-0230

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	31	13.3
2	1940-41	105	44.7
3	1941-43	125	53.4
4	1941-44	125	53.4
5	1940-44	135	57.9
6	1939-44	154	65.9
7	1940-46	183	78.2
8	1940-47	186	79.4
9	1940-48	187	80.0
10	1939-48	193	82.6
30	1939-68	234	100.0

Table 82 - Dependable Yield, South Fork Obion River near Greenfield, Tenn., Sta 7-0245

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	136	24.9
2	1940-41	220	40.3
3	1940-42	281	51.4
4	1940-43	316	57.8
5	1940-44	337	61.6
6	1939-44	382	69.9
7	1938-44	406	74.2
8	1936-43	434	79.4
9	1936-44	433	79.2
10	1934-43	451	82.6
40	1930-69	546	100.0

Table 83 - Dependable Yield, North Fork Obion River near Union City, Tenn., Sta 7-0255

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	174	28.5
2	1940-41	308	50.3
3	1941-43	354	57.8
4	1940-43	376	61.4
5	1940-44	390	63.8
6	1939-44	425	69.5
7	1938-44	429	70.1
8	1936-43	457	74.7
9	1936-44	456	74.6
10	1938-47	483	79.0
40	1930-69	611	100.0

Table 84 - Dependable Yield, Obion River at Obion, Tenn., Sta 7-0260

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	569	20.6
2	1940-41	1,008	36.4
3	1940-42	1,227	44.3
4	1940-43	1,308	47.3
5	1940-44	1,399	50.6
6	1939-44	1,659	60.0
7	1938-44	1,727	62.4
8	1940-47	1,796	64.9
9	1940-48	1,830	66.1
10	1939-48	1,943	70.2
40	1930-69	2,420	100.0

Table 85 - Dependable Yield, South Fork of Forked Deer River at Jackson, Tenn., Sta 7-0275

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	192	27.7
2	1940-41	296	42.6
3	1940-42	355	51.1
4	1940-43	382	55.1
5	1940-44	447	64.4
6	1959-64	516	74.3
7	1963-69	535	77.0
8	1936-43	536	77.1
9	1959-67	531	76.4
10	1959-68	542	78.0
40	1930-69	694	100.0

Table 86 - Dependable Yield, South Fork of Forked Deer River near Halls, Tenn., Sta 7-0281

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1963	631	47.4
2	1959-60	783	58.8
3	1959-61	828	62.3
4	1960-63	997	75.0
5	1959-63	967	72.7
6	1959-64	983	73.9
7	1963-69	1,073	80.6
8	1960-67	1,058	79.5
9	1959-67	1,034	77.8
10	1959-68	1,062	79.9
23	1947-69	1,330	100.0

Table 87 - Dependable Yield, North Fork of Forked Deer River at Dyersburg, Tenn., Sta 7-0291

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1963	474	35.7
2	1959-60	747	56.3
3	1959-61	853	64.3
4	1963-66	987	74.4
5	1959-63	970	73.1
6	1959-64	979	73.8
7	1963-69	1,041	78.5
8	1959-66	1,040	78.4
9	1959-67	1,045	78.7
10	1959-68	1,067	80.4
22	1948-69	1,327	100.0

Table 88 - Dependable Yield, Hatchie River, Bolivar, Tenn., Sta 7-0295

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	969	42.4
2	1940-41	1,116	48.9
3	1940-42	1,240	54.3
4	1940-43	1,276	56.0
5	1940-44	1,492	65.4
6	1938-43	1,662	72.9
7	1937-43	1,759	77.1
8	1936-43	1,729	75.8
9	1936-44	1,798	78.8
10	1934-43	1,793	78.6
40	1930-69	2,282	100.0

Table 89 - Dependable Yield, Hatchie River at Rialto, Tenn., Sta 7-0300.5

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	960	30.5
2	1940-41	1,263	40.1
3	1940-42	1,592	50.5
4	1940-43	1,680	53.3
5	1940-44	1,967	62.4
6	1940-45	2,367	75.1
7	1963-69	2,599	82.5
8	1960-67	2,697	85.6
9	1959-67	2,667	84.7
10	1959-68	2,709	86.0
30	1940-69	3,150	100.0

Table 90 - Dependable Yield, Loosahatchie River at Brunswick, Tenn., Sta 7-0302.8

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	141	19.8
2	1940-41	192	27.0
3	1940-42	295	41.5
4	1940-43	337	47.4
5	1940-44	428	60.2
6	1963-68	533	75.1
7	1963-69	533	75.1
8	1960-67	552	77.7
9	1959-67	544	76.6
10	1959-68	553	77.9
30	1940-69	710	100.0

Table 91 - Dependable Yield, Wolf River at Rossville, Tenn., Sta 7-0305

Consecutive Years of Lowest Mean Flow	Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1	1941	277	42.2
2	1940-41	291	44.3
3	1940-42	357	54.3
4	1940-43	387	58.9
5	1940-44	449	68.4
6	1938-43	504	76.8
7	1936-42	517	78.8
8	1936-43	512	78.0
9	1936-44	533	81.1
10	1934-43	543	82.7
40	1930-69	656	100.0

Table 92 - Dependable Yield, Wolf River at Raleigh, Tenn., Sta 7-0317

Inclusive Years	Lowest Mean Flow (c.f.s.)	Percent of Mean for Period of Record
1941	395	38.0
1940-41	414	39.8
1940-42	564	54.2
1940-43	611	58.8
1940-44	698	67.1
1959-64	787	75.7
1938-44	838	80.6
1959-66	836	80.4
1959-67	844	81.2
1959-68	868	83.4
1937-69	1,040	100.0
	Years 1941 1940-41 1940-42 1940-43 1940-44 1959-64 1938-44 1959-66 1959-67 1959-68	Years Flow (c.f.s.) 1941 395 1940-41 414 1940-42 564 1940-43 611 1940-44 698 1959-64 787 1938-44 838 1959-66 836 1959-67 844 1959-68 868

ole 93 - Chemical Analyses of Low-flow Surface Waters in WEPA 3 in the Lower Mississippi Region, Milligrams Per Liter

	Color		NN		N-				10.00		95		~ 4N		22.4		th of
	Hd		10 CV		95		0.49		79		79.9		300		9.9		0.0
Specific conduct-	mhos at 25°C)		22						77		19 EN		37.52		8.8		22
	Non- arbon- ate				00												0.0
Hardness as CaCO,	Calcium, Non- magne-carbon- sium ate		200				no da		<₽ 50		80 (3)				D.		
Dissolved	(residue (at 180°C)		88		28	(1 sq st)	8.8	_	24		82	ox.)	发展式	~	57.5	11)	ara
Z	(NO ₃)	and ma	0 t	and mal	10 h	nren, 161	0 H.M.	(Im Bs (90	approx.	H-04	, appr	0 N T	(nd be n	0	E6.2 ag mil)	50
Fluo-	ride (F)	res, 26.	44	ea, 95.5	19	(drainage n	00	rea, 21.	00	uh sq mi,	10	34 sq mi, approx.)	e 0 e	area, 40.4	0	area, E	d.0
	Chloride (C1)	Crooked Creek near Burtingdon, Tenn. (drainage ares, 26.5 sq mi)	11.2	hantingdod, Tenn. (drainage area, 95.5	20.0	Tenn.	50 PK	(arainage area, 21.5	67 (6) (4)	area,	er er	dohineon Orest mear Jackson, Tenn. (drainnge area,	120	(drainage	1.28	. (drainage area,	94
	Sulfate (SO ₄)	lon, Tenn.	7.7	on, Tenn.	80 FV	r Renderson,	0.9	ray, Tems.	0 80	nm. (drainage	2.2	Tenn. (dra	0 0	Madleton, Tenn.	2.5	River near Laconia, Tenn.	22
Bicor	bonate (HCO ₃)	Hunting	27			Leer Myer near	ZZ	yeek near lurny,		Selzer, Tenn.	nn	Jackson,	12 N		27	near La	22
Po-	tas- sium (K)	rest test	0 4	beek near	0.0	d leer	33		7.6	heek at S	2.0	is mean	00 00 m	reek penr	0.N		9.0
	Sodium (Na)	Chooked Ch	2.5	Beaver Cre	2.2	Fork Forked	2.5	Middle Fork	10 10	Oggress On	r.r.	ohmon Ores	222	Porters C	24	Loosanatchie	0.90
Мад-	ne- sium (Mg)	orpushaso	30	27024300	33	O South	97 PT	07027400	9 %		9.0	00022010	956	04462070	3.6	07030200	90
	Cau- cium (Ca)	.6	2.2	-0	35	07027390	10, 01 01, c1		1.9	5	2.5	0.00	0.48		9.00	0	2.4
	Iron (Fe)		28		8.8		8.8		500		98		844		81.0		58
	Silica (SiO ₂)		10 10		8.0		10 =7		010		9.0		0,000		13		2,1
	Discharge (cfs)		0.0		57.53		20.05		an		515		2.2		ni.		34
	Dates		10-18-40		10-18-60		8-10-61		8-10-61 10- 8-62		10-19-60		10-19-60 10-19-60 10-19-60		10-19-00		15+15+00 10+ 9+00
	Geologic units in drainings basin above sampling station				Managery Sand Neathern	of Highey Formation								and ifferentiated			

Table 93 - Chemical Analyses of Low-Flow Surface Waters in WRPA 5 in the Lower Mississippi Region, Milligrams Per Liter-Continued

	Color				22		27		5,7		ş.m		5-				R-
	Ha		0.0		-0 -0 -0 -0		20		19		0.0		10 In		57		10
conduct-	micro- mhos at 25°C)		88				88		56.20		22		SE		29		32
co,	Non- arbon- ate		00				0-0						00				00
Aardness as CaCO,	Calcium, Non- magne-carbon- sium ate		*2		8.8		22.23		2.00		22		22		48		90
Dissolved	0.0		22.8		22		24		88		52.52	ox.)	RR		8.8		8.2
ž	trate (NO ₃)	(10	0	(pu be	99	(11	0.0	200 207	to ri	(Tm & bu	4.4	sq mi, approx.	E 4.	ng mit)	9.0	· XDAGG	0.0
Fluo-	ride (F)	503 sq	0.0	36.8 at	m eq.	16,9 00	0 4	nres, by 6 sq st	10	13.5	0		710	36.7	0	sq md, approx.	0
	Chloride (C1)	Tenn. (dreithage area, 503 sq ni)	W) 40	My. (drainage area, 35.8	65 to	My. (drafnage area, 15,9 sq mi)	10 m	drainsje ur	0 N	(draining area, 43.5	H	Tenn. (drainings ares,	80	(drainage sres,	2.0	gree, 27	in o
	Sulfate (SO ₄)		90	g, Ky. (dr	5.4		30.2	Creek near Focabonton, Term. (drainsje	40	Tenn.	2.0	Benn. (dra	3%	Tenn.	0 H	n. (drafinge	0.0
Bicar	bonate (HCO ₃)	Hver at Bossville,	22	Tryorsburg,	38	r Clinton,	21.8	Focationt	22	Mantingdon,	15	near Trezevant,	161	near Lathum,	N SI	near Sells, Tenn.	88
	tas- sium (K)	er at R	50.00	reek at	45.9	Creek near	5.2	ek near	10 10	sk near	10 H	near Tre	52	Creek n	10 O		6.0
	Sodium (Na)	Molf	2.5	Obton (9.4	Gane	F-96	Mosses (me	10.00	Rains Creek near	2.0	Reedy (Yeek	N 0	Oppress	4.0	Mad Creek	2.5
Mag-	ne- sium (Mg)	07030500	00	07023500	40	07024050	10 to	01/02/01/0	m aq	orselasso	0 1 1 1	orrogistico ne	011	07005350	97	04027700	0,0
	ctum (Ca)		94		F 40		90 UN 8-4		10 FT		0.10	NO.	2.5		0.8		20.0
	Iron (Fe)		38		0.0		78.		E 8		48		60.0		0.00		0.10
	Silica (SiO ₂)		2 00		0.0		9.0		7.5		-1 to		6.0		6.0		57× 60
	Discharge (cfs)		1777		88		6.0		22.23		9.0		4.5		0.P.		2
	Data		3-16-61		11-22-60		11-23-60		10-19-60		10-18-40		2018460		10-18-00		30-32-01
	Periods and a manufactural and a manufactural sampling station		untichers onto unticheratistele- contined		Parama daramitra	uniliterentiated			McMalry Sand Member of Hipley Forma-		Wilcox Group antiffer- entigted		Wilcox and Claiborne Groups undifferenti-	and a		Claiforne Group	

nable 93 - Chemical Analyses of Low-Flow Surface Waters in WRDA 3 in the Lower Mississippi Region, Milligrams Per Liter-Continued

	f Color		180		- 145	
fic et.	o. pH				1- W	
Specific conduct- ance (micro- rithos at 25°C)						
Hardness as CaCO,	Non- carbon- ate				99	
Hard as C	Calcium, magne- sium					
Dissolved	residue Calcum, Non- (micro- tresidue) (magne-carbon- nihos sium ate at 25°C)				25	
ź	trate (NO ₃) a	6.08	60	(Im he	29	
Fluo-	ride (F)	to smen,	8.0	, 2T.T	0.0	
	Chloride ride ti	CHOCADO Rest Form Particla Prest merinell, By. (drainage sree, 50.9 mg ed.)	2.5	Merland Creek near Otlon, Tenn. (drainage ures, 17.7 sq mi.)	0.0	
Sulfate (SO ₄)		r Sardwell,	31. 14.	m, Tenn. (a	4.4	
Bicar- bonate (HCO ₃)		nek nes		ess Oblo		
Po- tas- stum (K)		Ciela Pr	0	Creek n	04 04 80 -4	
	Sodium (Na)	ot Form May	2.0		93.40	
Mag-	ne- sium (Mg)	Stor Well	2.0			
	ctum (Ca)	2010	100			
	Iron (Fe)		0.23		28	
	Silica (SiO ₂)		2		10 W	3
	Discharge (cfs)		38.		24	
			11-22-60		10.20	of the of
	Desirgle units in drainage basin above sumpling station	The state of the s	ferentiated and Fil-	Centimed		n facturies equivalent of 10 mg/1 of carbonate (CO)

GROUND WATER

Cretaceous rocks crop out in the southeastern part of WRPA 3 and are overlain to the west by progressively younger Tertiary and Quaternary deposits. The oldest unit exposed at the surface is the Coffee Sand. The younger units outcropping to the west are the Demopolis Formation, McNairy Sand, Owl Creek Formation, Midway Group, Wilcox Group (or Wilcox Formation), Claiborne Group, and Jackson Formation. Much of the upland surface is blanketed by terrace deposits and loess. The narrow, irregular floodplain east of the Mississippi River is underlain by Quaternary alluvium.

The major aquifers in WRPA 3 are the McNairy Sand, lower Wilcox aquifer, and the Memphis Sand. Other aquifers underlying parts of the area are in Paleozoic rocks, the Coffee Sand, Cockfield Formation, and Mississippi River Valley alluvial aquifer (figure 172).

Paleozoic Aquifers

Paleozoic rocks underlying the eastern part of the area may be a potential source of ground water. The only large withdrawal of ground water from the Paleozoic rocks is in Alcorn County, Miss., where the municipal and industrial water supply, about 3 mgd, is obtained from Paleozoic chert in the Corinth area.

Results of aquifer tests at Corinth show coefficients of transmissibility ranging from 15,000 to 60,000 gpd per foot. Wells in the Paleozoic at Corinth average about 450 feet in depth, and yields are reported to be as high as 800 gpm [72].

Water from the Paleozoic aquifer is moderately hard. The dissolved-solids content, about 300 mg/l, is mostly bicarbonate, chloride, and sodium. The temperature is about 65° F.

Cretaceous Aquifers

Coffee Sand

The Coffee Sand is the best source of ground water in several counties in Tennessee and in Tippah County, Miss. In part of the area, the Coffee Sand is underlain by the Eutaw Formation; however, the Eutaw is too thin to yield significant quantities of water. The Coffee is not used in much of the area where it contains fresh water because the McNairy Sand is present at shallower depths.

The Coffee Sand may have permeabilities as high as 300 gpd per square foot, and the coefficient of transmissibility may be as high as

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

GEOLOGIC SOURCES OF GROUND WATER WRPA 3

FIGURE 172

30,000 gpd per foot in Alcorn County, Miss. The largest reported yield for a well in the aquifer is about 600 gpd; however, the usual yield for wells is 250 gpm or less.

Municipal and industrial pumpage from the Coffee Sand in WRPA 3 is about 2 mgd. The estimated potential yield of the Coffee Sand in the area is about 10 mgd.

McNairy Sand

The McNairy Sand is the most extensive aquifer in WRPA 3. The formation crops out in the extreme eastern part of the area and contains fresh water except in part of the Memphis area (figure 60). Most of the present withdrawals from the aquifer are in or near the outcrop, and few wells are more than a few hundred feet in depth. The maximum known depth for wells in the aquifer ranges from several hundred feet in western Kentucky to about 2,300 feet in the Memphis area.

Results of aquifer tests in Kentucky and Tennessee indicate an average coefficient of transmissibility of about 28,000 gpd per foot. Based on these results, large wells in the McNairy Sand may be expected to yield 1 mgd or more with less than 100 feet of drawdown at favorable locations in Kentucky and Tennessee.

Water from the McNairy Sand in areas where it is now used is low in dissolved solids and it is generally a calcium bicarbonate type. The dissolved-solids content of the water increases to the southwest and the water is slightly saline in extreme southwestern Shelby County, Tenn.

Water withdrawn from the McNairy Sand for all uses is estimated to be about 25 mgd in WRPA 3. The aquifer is estimated to be capable of yielding about 60 mgd in WRPA 3.

Tertiary Aquifers

Lower Wilcox Aquifer

The lower Wilcox aquifer is exposed at the surface in WRPA 3 as a narrow irregular belt in Carroll, Chester, Hardeman, and Madison Counties, Tenn. (figure 55). The aquifer contains fresh water throughout the area.

Results of pumping tests indicate an average coefficient of transmissibility of about 95,000 gpd per foot in WRPA 3. The coefficient of permeability ranges upward from about 500 gpd per square foot.

Large wells made in the lower Wilcox are commonly capable of yielding 500 gpm or more. The largest yield reported is 2,000 gpm at West Memphis, Ark., and one well at Memphis yields 1,600 gpm [19]. Yields of 600 gpm are obtained at places in western Kentucky [27].

Water in the lower Wilcox is generally a soft sodium bicarbonate type. The most troublesome chemical constituent is iron, which commonly occurs in concentrations of more than 0.3 mg/l. The dissolved-solids content of the water does not exceed 500 mg/l in WRPA 3.

Ground water withdrawals from the lower Wilcox aquifer are about 25 mgd in Tennessee and Kentucky. Presently, most withdrawals from the lower Wilcox aquifer are made at Memphis, Tenn., and in and adjacent to the outcrop area. The lower Wilcox is capable of yielding about 40 mgd in WRPA 3.

Memphis Sand

Most of the ground water now being produced in WRPA 3 is withdrawn from the Memphis Sand [32] (the Memphis Sand is equivalent to the Memphis aquifer in Arkansas, Kentucky, and Missouri). Due to its thickness, areal extent, excellent quality water, and excellent hydraulic characteristics, the Memphis Sand also has the largest potential in the area for meeting future requirements for ground water.

Aquifer test results indicate coefficients of transmissibility ranging from 20,000 to 410,000 gpd per foot. Sixty tests in the Memphis area showed an average transmissibility of 250,000 gpd per foot [19]. Assuming average hydraulic conditions, wells yielding more than 1,500 gpm might be constructed at any location underlain by the Memphis Sand.

Water from the Memphis Sand commonly contains less than 150 mg/l of dissolved solids; however, the water is generally slightly acidic and commonly contains excessive iron in solution.

The present pumpage from the Memphis Sand in WRPA 3 is about 200 mgd, of which about 180 mgd is withdrawn in the Memphis area. According to Moore [64], if the hydraulic gradient in the Memphis Sand were increased to the average dip of the aquifer, the aquifer would transmit about 650 mgd downdip from the outcrop area. Under these conditions, the total pumping lift in the Memphis area will average about 500 feet.

Quaternary Aquifers

Mississippi River Valley Alluvial Aquifer

The Mississippi Alluvial Plain ends abruptly at the foot of the bluffs on the east side of the valley. In places, the river impinges on the bluffs (as at Memphis) and in other places the alluvial deposits may extend more than 10 miles east of the river.

The hydraulic characteristics of the Mississippi River Valley alluvial aquifer vary considerably, but the coefficient of transmissibility in WRPA 3 probably is in the 100,000 to 200,000 gpd per foot range.

Due to the excellent hydraulic characteristics of the alluvium and to seasonal replenishment by precipitation, the Mississippi River Valley alluvial aquifer is a major source of ground water. The potential of the aquifer is even larger where wells are installed near the Mississippi River or other large streams where pumping might induce recharge to the aquifer from the streams.

Water from the alluvial aquifers, generally a hard calcium bicarbonate type, is more highly mineralized than water from the Memphis Sand and the lower Wilcox aquifer in WRPA 3. Although the iron content of the water varies from place to place, the alluvial water generally requires treatment for iron removal and softening when used as a municipal or industrial supply.

The potential yield of the Mississippi River Valley alluvial aquifer is large, particularly if well fields are located near the Mississippi River. Wells designed for irrigation or industrial use may be expected to yield 2,000 gpm or more.

Effects of Ground Water Withdrawals and Management Considerations

Ground water withdrawals in the Memphis area have resulted in a moderately large cone of depression in the potentiometric surface of the Memphis Sand [87]. Pumpage from the lower Wilcox aquifer has resulted in a cone of depression similar to but smaller than the cone of depression in the Memphis Sand. Withdrawals from the Mississippi River Valley alluvial aquifer are replaced through recharge from precipitation during the winter and spring, and permanent water level declines have not occurred.

Water level declines in the lower Wilcox aquifer and the Memphis Sand have been small in WRPA 3 outside the area affected by withdrawals at Memphis. Water level declines in the McNairy and Coffee Sand have been negligible in most of the area.

The largest potential for ground water development in WRPA 3 is in a zone several miles wide paralleling the Mississippi River. Most of the ground water being produced in the area is withdrawn at Memphis. More detailed studies are needed to determine the optimum yield of the Memphis Sand and lower Wilcox aquifer in the Memphis area and to determine the effect of the withdrawals on the aquifers in the remainder of WRPA 3 and adjoining parts of WRPA's 2 and 4. The McNairy Sand, a major aquifer in much of the area, is used as a source of ground water only in a small part of the area where it contains fresh water. Estimates of the potential of the McNairy Sand as an aquifer are based on extremely sparse data. A comprehensive study of this aquifer is needed.

The lowering of water levels in the Memphis aquifer will induce recharge from other sources, the most significant being the Mississippi River Valley alluvial aquifer. Investigations to determine the significance of the changes, particularly in water quality, are needed.

Although the Mississippi River Valley alluvial aquifer is available only in a small part of WRPA 3, the potential of the aquifer is enormous, particularly in areas adjacent to the Mississippi River where recharge might be induced from the stream.

