Income_Expenditure

Dataset Exploration

```
In [1]:
         # Importing libraries
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
In [2]:
         df = pd.read_csv('income.csv')
         df.head()
```

Out[2]:		Age	Income	SpendingScore	Savings
	0	58	77769	0.791329	6559.829923
	1	59	81799	0.791082	5417.661426
	2	62	74751	0.702657	9258.992965
	3	59	74373	0.765680	7346.334504
	4	87	17760	0.348778	16869.507130

```
In [3]:
         df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 505 entries, 0 to 504
Data columns (total 4 columns):
```

#	Column	Non-Null Count	Dtype
0	Age	505 non-null	int64
1	Income	505 non-null	int64
2	SpendingScore	505 non-null	float64
3	Savings	505 non-null	float64
dtyp	es: float64(2),	int64(2)	

memory usage: 15.9 KB

Clustering or Dimensionality Reduction

This project is focused towards clustering for the given dataset

Data Description and Attributes

- Dataset has four features Age, Income, Spending Score, Savings
- Age Integer data
- Income Salary data in Interger
- Spending Score Expenditure data in Float
- Savings Float data

```
In [4]:
          df.shape
        (505, 4)
Out[4]:
In [5]:
          df.describe()
```

	Age	Income	SpendingScore	Savings
count	505.000000	505.000000	505.000000	505.000000
mean	59.019802	75513.291089	0.505083	11862.455867
std	24.140043	35992.922184	0.259634	4949.229253
min	17.000000	12000.000000	0.000000	0.000000
25%	34.000000	34529.000000	0.304792	6828.709702
50%	59.000000	75078.000000	0.368215	14209.932802
75%	85.000000	107100.000000	0.768279	16047.268331
max	97.000000	142000.000000	1.000000	20000.000000

Data Cleaning and Exploration

Out[5]:

```
In [6]:
         # Check for Null Values
         df.isna().sum()
        Age
                          0
Out[6]:
        Income
                          0
        SpendingScore
                          0
        Savings
        dtype: int64
In [7]:
         df.dtypes
                            int64
        Age
Out[7]:
        Income
                            int64
                          float64
        SpendingScore
        Savings
                          float64
        dtype: object
In [8]:
         # Studying the correlations between features using Heat Map!
         corr_matrix = df.corr()
         for x in range(corr_matrix.shape[0]):
              corr_matrix.iloc[x,x] = 0.0
         fig, ax = plt.subplots(figsize=(16, 10))
         ax = sns.heatmap(corr matrix,
                           annot=True,
                           linewidths=0.5,
                           fmt=".2f",
                           cmap="YlGnBu");
         bottom, top = ax.get_ylim()
         ax.set ylim(bottom + 0.5, top - 0.5)
```



```
In [9]: # The correlation matrix
    corr_mat = df.corr()

# Strip out the diagonal values for the next step
    for x in range(corr_mat.shape[0]):
        corr_mat.iloc[x,x] = 0.0

corr_mat
```

```
Out[9]:
                                      Income SpendingScore
                              Age
                                                               Savings
                    Age
                          0.000000
                                   -0.828457
                                                    -0.329116
                                                               0.412337
                 Income -0.828457
                                    0.000000
                                                    0.196111 -0.410774
          SpendingScore -0.329116
                                    0.196111
                                                    0.000000 -0.915379
                          0.412337 -0.410774
                                                               0.000000
                Savings
                                                    -0.915379
```

Out[10]:		Feature_one	Feature_two	correlation
	0	SpendingScore	Savings	0.915379
	1	Savings	SpendingScore	0.915379
	2	Age	Income	0.828457
	3	Income	Age	0.828457

Feature Engineering

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
df_scaled = sc.fit_transform(df)
```

In [12]:	df				

Out[12]:	Age	Income	SpendingScore	Savings
0	58	77769	0.791329	6559.829923
1	59	81799	0.791082	5417.661426
2	62	74751	0.702657	9258.992965
3	59	74373	0.765680	7346.334504
4	87	17760	0.348778	16869.507130
•••	•••	•••		
500	28	101206	0.387441	14936.775389
501	93	19934	0.203140	17969.693769
502	90	35297	0.355149	16091.401954
503	91	20681	0.354679	18401.088445
504	89	30267	0.289310	14386.351880

505 rows × 4 columns

Model Creation

1. K-Means

```
In [13]:
    from sklearn.cluster import KMeans
    # Create and fit a range of models
    km_list = list()

for clust in range(1,21):
    km = KMeans(n_clusters=clust, random_state=42)
```

c:\Users\shankesh\AppData\Local\Programs\Python\Python310\lib\site-packages\pan
das\core\indexes\base.py:6999: FutureWarning: In a future version, the Index co
nstructor will not infer numeric dtypes when passed object-dtype sequences (mat
ching Series behavior)

return Index(sequences[0], name=names)

1. Agglomerative Algorithm

```
In [15]:
    from sklearn.cluster import AgglomerativeClustering
    ag = AgglomerativeClustering(n_clusters=7, linkage='ward', compute_full_tree=Tr
    ag = ag.fit(df_scaled)
In [16]:
    from scipy.cluster import hierarchy
```


1. DBSCAN Algorithm

```
In [17]:
    from sklearn.cluster import DBSCAN
    dbs = DBSCAN(eps=0.5, min_samples=11, metric='euclidean')
    dbs = dbs.fit(df_scaled)
```

```
In [18]: np.unique(dbs.labels_)
```

Out[18]: array([0, 1, 2, 3, 4], dtype=int64)

```
In [19]:
    df_old = pd.DataFrame(df_scaled, columns = ['Age','Income','Expenditure','Savin
    df = pd.DataFrame(dbs.fit_predict(df_scaled), columns = ['Group'])
    df_new = pd.concat([df_old, df], axis = 1)
    df_new
```

Out[19]:		Age	Income	Expenditure	Savings	Group
	0	-0.042287	0.062733	1.103593	-1.072467	0
	1	-0.000821	0.174811	1.102641	-1.303473	0
	2	0.123577	-0.021200	0.761727	-0.526556	0
	3	-0.000821	-0.031712	1.004705	-0.913395	0
	4	1.160228	-1.606165	-0.602619	1.012686	1
	•••			•••		
	500	-1.286268	0.714535	-0.453557	0.621787	4
	501	1.409024	-1.545704	-1.164109	1.235201	1

502	1.284626	-1.118447	-0.578054	0.855313	1
503	1.326092	-1.524929	-0.579866	1.322452	1
504	1 243160	-1 258335	-0.831890	0 510463	1

505 rows × 5 columns

```
In [20]: df_new.groupby(['Group']).count()
```

Out[20]:		Age	Income	Expenditure	Savings
	Group				
	0	157	157	157	157
	1	147	147	147	147
	2	50	50	50	50
	3	25	25	25	25
	4	126	126	126	126

Best Model

For the given dataset both K-Means and DBScan performs similar with 5 clusters seems to be the best fit

Key Findings and Insights

