Kuliah Aljabar Linear

Pertemuan 4 dan 5 Afriyanti Dwi Kartika, S.Pd., M.T.

Pertemuan 1:

Konsep matriks

Jenis-jenis matriks

Matriks identitas

Transpose matriks

Ordo matriks

Materi Pertemuan 1-7

Pertemuan 2 dan 3:

Penjumlahan matriks

Pengurangan matriks

Perkalian matriks

Perkalian matriks dengan scalar linear

Pertemuan 4 dan 5:

Determinan matriks

Inverse matriks

Sifat-sifat matriks

Pertemuan 6 dan 7

Sistem persamaan linear

Operasi baris elementer

Eliminasi Gauss-Jordann

Penerapan sistem persamaan linear

Inverses;
Algebraic
Properties of
Matrices

 The following theorem lists the basic algebraic properties of the matrix operations

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

(a)
$$A + B = B + A$$

[Commutative law for matrix addition]

(b)
$$A + (B + C) = (A + B) + C$$
 [Associative law for matrix addition]

(c)
$$A(BC) = (AB)C$$

[Associative law for matrix multiplication]

$$(d)$$
 $A(B+C) = AB + AC$

[Left distributive law]

$$(e) \quad (B+C)A = BA + CA$$

[Right distributive law]

$$(f)$$
 $A(B-C) = AB - AC$

$$(g)$$
 $(B-C)A = BA - CA$

(h)
$$a(B+C) = aB + aC$$

(i)
$$a(B-C) = aB - aC$$

$$(j)$$
 $(a+b)C = aC + bC$

$$(k)$$
 $(a-b)C = aC - bC$

$$(l)$$
 $a(bC) = (ab)C$

$$(m)$$
 $a(BC) = (aB)C = B(aC)$

EXAMPLE Associativity of Matrix Multiplication

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix}$$

$$BC = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 9 \\ 4 & 3 \end{bmatrix}$$

$$BC = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 9 \\ 4 & 3 \end{bmatrix}$$

$$A(BC) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 & 9 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 18 & 15 \\ 46 & 39 \\ 4 & 3 \end{bmatrix}$$

$$(AB)C = A(BC)$$

EXAMPLE Order Matters in Matrix Multiplication

Consider the matrices

$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

$$AB = \begin{bmatrix} -1 & -2 \\ 11 & 4 \end{bmatrix}$$

$$BA = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$$

$$AB \neq BA$$

Zero Matrices

• A matrix whose entries are all zero is called a zero matrix.19

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad [0]$$

It should be evident that if A and O are matrices with the same size, then

THEOREM 1.4.2 Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be perforned, then:

(a)
$$A + 0 = 0 + A = A$$

(b)
$$A - 0 = A$$

(c)
$$A - A = A + (-A) = 0$$

(*d*)
$$0A = 0$$

(e) If
$$cA = 0$$
, then $c = 0$ or $A = 0$.

Identity Matrices

• A square *matrix with 1's on the main diagonal* and *zeros elsewhere* is called an identity matrix.

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

An identity matrix is denoted by *the letter I*.

If it is important to emphasize the size, we will write I_n for the $n \times n$ identity matrix.

if A is any $m \times n$ matrix, then

$$AI_n = A$$
 and $I_m A = A$

EXAMPLE

$$AI_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

$$I_2 A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

Inverse of a Matrix

In real arithmetic every nonzero number a has a reciprocal a^{-1} (= 1/a) with the property. The number a^{-1} is sometimes called the *multiplicative inverse* of a.

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be found such that AB = BA = I, then A is said to be *invertible* (or *nonsingular*) and B is called an *inverse* of A. If no such matrix B can be found, then A is said to be *singular*.

EXAMPLE An Invertible Matrix

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$BA = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Thus, A and B are invertible and each is an inverse of the other

Properties of Inverses

If B and C are both inverses of the matrix A, then B = C.

Proof

Since B is an inverse of A, we have BA = I. Multiplying both sides on the right by C gives (BA)C = IC = C. But it is also true that (BA)C = B(AC) = BI = B, so C = B.

If A is invertible, then its inverse will be denoted by the symbol A-1. Thus,

$$AA^{-1} = I$$
 and $A^{-1}A = I$

The quantity ad - bc in Theorem 1.4.5 is called the *determinant* of the 2×2 matrix A and is denoted by

$$det(A) = ad - bc$$

or alternatively by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

THEOREM 1.4.5 *The matrix*

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if $ad - bc \neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \tag{2}$$

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

EXAMPLE Calculating the Inverse of a 2 × 2 Matrix

$$A = \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix} \qquad \det(A) = (6)(2) - (1)(5) = 7$$

$$A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ -5 & 6 \end{bmatrix} = \begin{bmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{5}{7} & \frac{6}{7} \end{bmatrix}$$

confirm that
$$AA^{-1} = A^{-1}A = I$$

EXAMPLE Solution of a Linear System by Matrix Inversion

$$u = ax + by$$
$$v = cx + dy$$

let us replace the two equations by the single matrix equation

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

which we can rewrite as

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

If we assume that the 2×2 matrix is invertible (i.e., ad - bc /= 0), then we can multiply through on the left by the inverse and rewrite the equation as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

which simplifies to

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

from which we obtain

$$x = \frac{du - bv}{ad - bc}, \quad y = \frac{av - cu}{ad - bc}$$

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

EXAMPLE The Inverse of a Product

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} 7 & 6 \\ 9 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix} \qquad AB = \begin{bmatrix} 7 & 6 \\ 9 & 8 \end{bmatrix} \qquad (AB)^{-1} = \begin{bmatrix} 4 & -3 \\ -\frac{9}{2} & \frac{7}{2} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & \frac{3}{2} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & \frac{3}{2} \end{bmatrix} \qquad B^{-1}A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -\frac{9}{2} & \frac{7}{2} \end{bmatrix}$$

Thus,
$$(AB)^{-1} = B^{-1}A^{-1}$$

Powers of a Matrix

If A is a square matrix, then we define the nonnegative integer powers of A to be

$$A^0 = I$$
 and $A^n = AA \cdots A$ [n factors]

and if A is invertible, then we define the negative integer powers of A to be

$$A^{-n} = (A^{-1})^n = A^{-1}A^{-1} \cdots A^{-1}$$
 [n factors]

Because these definitions parallel those for real numbers, the usual laws of nonnegative exponents hold; for example,

$$A^r A^s = A^{r+s}$$
 and $(A^r)^s = A^{rs}$

THEOREM 1.4.7 *If A is invertible and n is a nonnegative integer, then*:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$.
- (c) kA is invertible for any nonzero scalar k, and $(kA)^{-1} = k^{-1}A^{-1}$.

EXAMPLE Properties of Exponents

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$

$$A^{-3} = (A^{-1})^3 = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 41 & -30 \\ -15 & 11 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 30 \\ 15 & 41 \end{bmatrix}$$

$$(A^3)^{-1} = \frac{1}{(11)(41) - (30)(15)} \begin{bmatrix} 41 & -30 \\ -15 & 11 \end{bmatrix} = \begin{bmatrix} 41 & -30 \\ -15 & 11 \end{bmatrix} = (A^{-1})^3$$

EXAMPLE The Square of a Matrix Sum

In *real arithmetic*, where we have a commutative law for multiplication, we can write

$$(a + b)^2 = a^2 + ab + ba + b^2 = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$$

However, in *matrix arithmetic*, where we have *no commutative law for multiplication*, the best we can do is to write

$$(A + B)^2 = A^2 + AB + BA + B^2$$

Properties of the Transpose

THEOREM 1.4.8 If the sizes of the matrices are such that the stated operations can be performed, then:

$$(a) \quad (A^T)^T = A$$

(b)
$$(A + B)^T = A^T + B^T$$

$$(c) \quad (A-B)^T = A^T - B^T$$

$$(d) (kA)^T = kA^T$$

$$(e) \quad (AB)^T = B^T A^T$$

 The following theorem establishes a relationship between the inverse of a matrix and the inverse of its transpose.

THEOREM 1.4.9 If A is an invertible matrix, then A^T is also invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

EXAMPLE Inverse of a Transpose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Since A is invertible, its determinant ad - bc is nonzero. But the determinant of A_{τ} is also ad - bc (verify), so A_{τ} is also invertible.

$$(A^{T})^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{c}{ad - bc} \\ -\frac{b}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

 $(A^T)^{-1} = (A^{-1})^T$