Introduction to Embedded Microcomputer Control

Topics

- Number Systems (decimal, binary, octal, hexidecimal)
- Assembly Language Programming
 - Instruction Set [Reduced Instruction Set Computer (RISC)]
- Code Simulation and Debugging
- Exercises
- Microcontrollers from MicroChip Inc.
- Microcontroller Architecture
 - Central Processing Unit (CPU)
 - Arithmetic Logic Unit (ALU)
 - Memory Organization
 - Input / Output (I/O)
 - Interrupts

Decimal Number System

- Decimal 10 digits \Rightarrow 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Each place (left to right) corresponds to a power of 10.
 - Read left to right
 - Can call the leftmost digit the most significant digit

$$8*10^5 + 7*10^4 + 4*10^3 + 0*10^2 + 3*10^1 + 1*10^0 = 874,031_{dec}$$

Binary Number System

- Binary -2 digits $\Rightarrow 0, 1$
 - Each place corresponds to a power of 2.
 - Read left to right

There are 10 kinds of people in this world - - those that understand binary and those that don't.

$$11010011_{\text{bin}} = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 211_{\text{dec}}$$

Octal

- Octal -8 digits $\Rightarrow 0, 1, 2, 3, 4, 5, 6, 7$
 - Each place corresponds to a power of 8.
 - Each octal digit is equivalent to 3 binary digits.

2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^3	2^2	21	2^0	
256	128	64	32	16	8	4	2	1	
1	1	1	0	1	0	0	1	1	
82				81			80		
64				8		1			
	7			2			3		

$$723_{\text{oct}} = 7*8^2 + 2*8^1 + 3*8^0 = 467_{\text{dec}}$$

Hexidecimal (Hex)

• Hexidecimal – 16 digits \Rightarrow

- Each place corresponds to a power of 16.
- Each hex digit is equivalent to 4 binary digits.

2^{15}	2^{14}	2^{13}	2^{12}	211	2^{10}	29	28	27	2^{6}	25	24	2^3	2^2	21	2^0
65536	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
1	0	0	1	1	1	1	1	1	1	0	1	0	0	1	1
	16 ³			16^{2}				10	6 ¹			16	5 0		
	4096			256			16				1				
	9			F			C			3					

$$9FC3_{hex} = 9*16^{3} + F*16^{2} + C*16^{1} + 3*16^{0} + 2*8^{1} + 3*8^{0} = 40,899_{dec}$$
$$= 9*4096 + 15*256 + 13*16 + 3*1$$

Microsoft Windows Calculator

Does number system conversion (programmer view)

Note: digits are grayed

Data Storage

- In the microcontroller, data is stored in an 8 bit binary register
- Terminology
 - One digit \Rightarrow bit (**B**inary dig**IT**)
 - Four bits \Rightarrow nibble
 - Eight bits \Rightarrow byte (**B**inar**Y** Tupl**E**)
 - Sixteen bits \Rightarrow word (2 registers)
 - MSB (Most Significant Bit) \Rightarrow left most bit in register $2^7 = 128$
 - LSB (Least Significant Bit) \Rightarrow right most bit in register $2^0 = 1$

Data Interpretation

Binary data in a register can mean different things depending on the use in the program.

In Assembly programming, you (the programmer) supply the meaning.

- Numeric (binary number)
 - Unsigned
 - Sign Magnitude
 - 2's Complement
- Logical
 - Bitwise $0 \Rightarrow$ False $1 \Rightarrow$ True $110010001 \Rightarrow$ TTFFTFFFT
 - Register 00000000 ⇒ False non-zero ⇒ True
- ASCII (character representation) 7 bits 128 characters
 - 01000001 \Rightarrow A 01110101 \Rightarrow u 01001110 \Rightarrow N

Aside: in C, you tell the

compiler the meaning by

a declaration. There is

nothing equivalent to

this in Assembly.

Numeric Data

- Unsigned
 - Range $0 \leftrightarrow 255$

27	2^{6}	25	24	2^3	2^2	21	2^0
1	1	0	1	0	0	1	1

211

- 83

- Sign Magnitude
 - Typically not used
 - Range $-127 \leftrightarrow +127$

sign bit	26	25	24	23	22	21	20
1	1	0	1	0	0	1	1

sign bit: $1 \Rightarrow$ negative

 $0 \Rightarrow positive$

- 2's Complement
 - Most often used
 - Positive & negative numbers
 - Range -128 ↔ **+127**

ind	26	25	24	2^3	2^2	21	2^{0}
1	1	0	1	0	0	1	1

- 45

Making a Number Negative

To represent a negative number in 2's complement form:

take the positive number in binary $45 \Rightarrow 00101101$ complement it (change 0 to 1 & 1 to 0) 11010010 add 1 $11010011 \Rightarrow -45$

take the positive number in binary $1 \Rightarrow 0000001$ complement it (change 0 to 1 & 1 to 0) $111111111 \Rightarrow -1$

To determine what the negative number in 2's complement form is:

Be careful with the Windows calculator & negative numbers. It assumes much more than 8 bits.

2's Complement Arithmetic

,	_							
3	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0
- 1	1	1	1	1	1	1	1	1
-2	1	1	1	1	1	1	1	0
2								

increment

decrement

Rules

addition

$$0+0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$1 + 1 = 0$$
 carry 1

subtraction

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$0 - 1 = 1$$
 borrow 1

$$1 - 1 = 0$$

Care must be taken to insure values are within range.

Logical Data Representation

Bitwise

- Each bit in a register can represent a logical true or false
- Interpret each bit $0 \Rightarrow \text{False} \quad 1 \Rightarrow \text{True}$
- Terminology: $0 \Rightarrow$ say bit is "cleared"

 $1 \Rightarrow \text{ say bit is "set"}$

Register

- If the result of any numeric or logical operation in the microcontroller is zero, a bit in a special internal register is set.
- Special register is called the STATUS register
- Bit is called the zero bit (abbreviated "z") (bit # 2 in register)
- 0 result \Rightarrow STATUS,z = 1 (STATUS,2 = 1)

Logical Operations

- The microcontroller can perform all standard logical operations
 - AND, OR, XOR (Exclusive OR), NOT (called "complement")
- Operations are preformed bitwise

Aspects of Embedded Programming

There are several aspects to programming an embedded MicroChip microcontroller which makes it different from other programming.

- Program and Data are in separate memory locations
- Input / Output pins have multiple uses which can be changed within a program (by manipulating special function registers)
- Limited memory addressing
 - Program memory is split into pages
 - Data memory is split into banks
- Data memory is memory mapped so the same instructions used for internal memory are used for input / output
- Program execution cannot halt the processor must always be doing something
- Use of interrupts

MicroChip PIC16F74 Harvard Architecture

Program Memory

Data Memory

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 16

Program Memory Use

- Holds the program that runs the microcomputer.
- Typically changed only if the program does not work or to upgrade the program.
- You would typically program memory locations sequentially.
- When the device resets or powers up, execution starts at program memory location 000h
- Requires a programmer to program (a device that connects to the PC serial port into which you insert the chip) - you typically say that you "burn the chip"
- Flash memory has to be erased electronically before being reprogrammed. This is done automatically.
- The EPROM part (PIC16C74 device in the lab with a window in the top) has to be erased under a UV light before being reprogrammed.

Data Memory Use

- Data memory is written to and read from under program control typically many times during program execution
- General Purpose Registers (GPR) hold your data. You typically assign a name to the GPR which indicates the data stored there (for better program readability).
- Data stored in the Special Function Registers (SFR) determines how the microcomputer behaves. Typically the first thing that a program does is write the proper data to the SFR - called "initialization"
- When the device is reset or powered up, all data memory is set to some initial default value
 - GPR is set equal to all zeroes
 - Different SFR have different initial values
 - It is poor programming practice to rely on the initial values of data memory.
 You typically set it to the proper value even if this is the default.
- There are 2 additional banks of data memory used for in-circuit programming of the Flash memory. We will not use these.

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 20

Determine the Function of the Digital Port Pins

- For general purpose digital I/O on Ports B, C & D you have to set the data direction - input or output
- Set data direction in TRIS registers (tri-state)
 - Writing a 1 in a TRIS bit location indicates that the corresponding port pin is an input
 - Writing a 0 in a TRIS bit location indicates that the corresponding port pin is an output

PORTB ⇔ TRISB
PORTC ⇔ TRISC
PORTD ⇔ TRISD

Determine the Function of the Analog / Digital Ports

- For Ports A & E you have to determine if the pins are analog or digital and if digital, set the data direction - input or output (analog is only input)
- Determine Analog or Digital using the register

ADCON1

• If Analog, determine the operation of the A/D using register

ADCONO

• If Digital, set the data direction in TRIS registers

PORTA ⇔ TRISA PORTE ⇔ TRISE

Port Block Diagrams

Port D

This is a "tri-state" buffer. Digital signals pass from input to output when the control is enabled. Otherwise, the output "floats" (like an open switch).

Port A

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 23

Digital Data Direction

- In TRISA, TRISB, TRISC & TRISD registers, all bits set the digital data direction.
- A "1" in a bit means that that bit is an input.
- A "0" in a bit means that that bit is an output.

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADFM | ADCS2 | VCFG1 | VCFG0 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | • | | | | | | bit 0 |

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.

o = Left justified. Six Least Significant bits of ADRESL are read as 'o'.

bit 6 ADCS2: A/D Clock Divide by 2 Select bit

1 = A/D clock source is divided by two when system clock is used

o = Disabled

bit 5 VCFG1: Voltage Reference Configuration bit 1

0 = VREF- is connected to Vss

1 = VREF- is connected to external VREF- (RA2)

bit 4 VCFG0: Voltage Reference Configuration bit 0

0 = VREF+ is connected to VDD

1 = VREF+ is connected to external VREF+ (RA3)

bit 3-0 PCFG<3:0>: A/D Port Configuration bits

	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D

Legend: A = Analog input, D = Digital I/O

ADCON1 Register

ADCON2 Register

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	_	ACQT2	ACQT1	ACQT0	_	_	_
hit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-3 ACQT<2:0>: A/D Acquisition Time Select bits

 $000 = 0^{(1)}$

001 = 2 TAD

010 = 4 TAD

011 = 6 TAD

100 = 8 TAD

101 = 12TAD

110 = 16 TAD

111 = 20 TAD

Note 1: If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

bit 2-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON
bit 7							bit 0

ADCON0 Register

```
bit 7-6
           ADCS1:ADCS0: A/D Conversion Clock Select bits
           If ADCS2 = 0:
           000 = Fosc/2
           001 = Fosc/8
           010 = Fosc/32
           011 = FRC (clock derived from an RC oscillation)
           If ADCS2 = 1;
           00 = Fosc/4
           01 = Fosc/16
           10 = Fosc/64
           11 = FRC (clock derived from an RC oscillation)
bit 5-3
           CHS<2:0>: Analog Channel Select bits
           0000 = Channel 00 (AN0)
           0001 = Channel 01 (AN1)
           0010 = Channel 02 (AN2)
           0011 = Channel 03 (AN3)
           0100 = Channel 04 (AN4)
           0101 = Channel 05 (AN5)(1)
           0110 = Channel 06 (AN6)(1)
           0111 = Channel 07 (AN7)(1)
           1000 = Channel 08 (AN8)
           1001 = Channel 09 (AN9)
           1010 = Channel 10 (AN10)
           1011 = Channel 11 (AN11)
           1100 = Channel 12 (AN12)
           1101 = Channel 13 (AN13)
           111x = Unused
             Note 1: Selecting AN5 through AN7 on the 28-pin product variant (PIC16F737 and
                      PIC16F767) will result in a full-scale conversion as unimplemented channels are
                      connected to VDD.
bit 2
           GO/DONE: A/D Conversion Status bit
           1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is
               automatically cleared by hardware when the A/D conversion has completed.
           0 = A/D conversion completed/not in progress
bit 1
           CHS<3>: Analog Channel Select bit (see bit 5-3 for bit settings)
bit 0
           ADON: A/D Conversion Status bit
           1 = A/D converter module is operating
           0 = A/D converter is shut-off and consumes no operating current
```

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 28

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE	(1)	TRISE2	TRISE1	TRISE0
bit 7							bit 0

bit 7 Parallel Slave Port Status/Control bits:

IBF: Input Buffer Full Status bit

- 1 = A word has been received and is waiting to be read by the CPU
- o = No word has been received
- bit 6 OBF: Output Buffer Full Status bit
 - 1 = The output buffer still holds a previously written word
 - o = The output buffer has been read
- bit 5 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)
 - 1 = A write occurred when a previously input word has not been read (must be cleared in software)
 - o = No overflow occurred
- bit 4 PSPMODE: Parallel Slave Port Mode Select bit
 - 1 = Parallel Slave Port mode
 - o = General Purpose I/O mode

bit 3 Unimplemented: Read as '1'(1)

Note 1: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

Be

careful

bit 2 PORTE Data Direction bits:

TRISE2: Direction Control bit for pin RE2/CS/AN7

- 1 = Input
- o = Output
- bit 1 TRISE1: Direction Control bit for pin RE1/WR/AN6
 - 1 = Input
 - o = Output
- bit 0 TRISE0: Direction Control bit for pin RE0/RD/AN5
 - 1 = Input
 - o = Output

In TRISE, for general purpose I/O bits 3 – 7 should be set to 0.

Bits 0 – 2 set the digital data direction.

TRISE Register

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 29

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7	•	•			•		bit 0

bit 7 IRP: Register Bank Select bit (used for indirect addressing)

1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)

bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h - 1FFh)

10 = Bank 2 (100h - 17Fh)

01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh)

Each bank is 128 bytes

bit 4 **TO**: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

o = A WDT time-out occurred

bit 3 PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2 z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

STATUS

Register

Limited Memory Addressing

- Program memory is split into pages.
 - In PIC16F74, Page 0 is 2K words holding approximately 2000 Assembly instructions
 - Care must be taken if an Assembly program goes over a page boundary.
 - If your Assembly programs exceed 2000 instructions for this course, you should really try to reduce your code.
 - C compiler takes care of paging
- Data memory is split into banks.
 - When you write to a register, you have to insure that you are pointing to the correct bank (the bank in which the register is)
 - Banks are set in the STATUS register with bits RP0 & RP1
 - Assembler does not check if you are pointing to the proper bank
 but gives you a warning if you try to access a register not in bank 0
 - C compiler does bank switching

Assembly Language Programming

- Assembly language programs a microcomputer at the lowest possible level
 - Each Assembly language instruction corresponds to one machine instruction
- Requires software called an "Assembler"
 - The Assembler converts the Assembly instruction into the binary code that is actually entered into the microcomputer's program memory
- Microcomputer Assembly programs typically has 3 parts
 - 1. Directives to tell the assembler what to do
 - 2. Initialization code which sets up the registers to perform specific functions
 - 3. Code that is executed to perform a task

Assembler Directives

- Used to tell the Assembler what to do
- Not programmed onto the chip

ORG \implies sets the next program location in program memory

EQU \Rightarrow defines a constant for the Assembler

 \Rightarrow defines the end of the program

 $_$ CONFIG \Rightarrow determines the configuration fuses

Example of a Directive

Tells the Assembler software that whenever it sees the word "Count", replace it with the number 15.

The assembler is case sensitive, register names & instructions should be upper case (like **EQU** above).

For easier readability, I recommend that constants you define have upper case & lower case letters.

Radix Specification

Туре	Syntax	Example
Decimal	D' <digits>'</digits>	D'100' 100
Hexadecimal	H' <hex_digits>' 0x<hex_digits></hex_digits></hex_digits>	H'9f' 9fh 0x9f
Octal	O' <octal_digits>'</octal_digits>	0'777'
Binary	B' <binary_digits>'</binary_digits>	B'00111001'
ASCII	' <character>' A'<character>'</character></character>	'C' A'C'

Hexadecimal	<hex_digits>h</hex_digits>	02h or 0FDh	+	
Decimal	digits	2 or 253	—	

Assembly Language Instruction

For readability, the label is usually placed on a separate line.

The Assembler ignores whitespace.

The label, opcode and operand can be separated by 1 or more spaces.

Assembly Instruction Set

The total number of Assembly instructions is 35, but they fall into certain categories.

Description	Mnemonic, Operands					14-Bit	14-Bit Opcode		Status Affected	Notes
ADDWF			Description		MSb			LSb		
ANDWF			BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
CLRF	ADDWF	f, d	Add W and f	1	0.0	0111	dfff	ffff	C,DC,Z	1,2
CLRW	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
COMF	CLRF	f	Clear f	1	0.0	0001	lfff	ffff	Z	2
DECF	CLRW	-	Clear W	1	0.0	0001	0xxx	xxxx	Z	
DECF	COMF	f, d	Complement f	1	0.0	1001	dfff	ffff	Z	1,2
NCF	DECF	f, d	Decrement f	1	0.0	0011	dfff	ffff	Z	
INCF	DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1.2.3
Inclusive OR W with f	INCF	f, d	Increment f	1	0.0	1010	dfff	ffff	Z	
Inclusive OR W with f	INCFSZ	f. d	Increment f. Skip if 0	1(2)	00	1111	dfff	ffff		1.2.3
MOVF	IORWF	,			00	0100	dfff	ffff	Z	
MOVWF f Move W to f 1 00 0000 1fff ffff NOP - No Operation 1 00 0000 0xx0 0000 0xx0 0000 RIFF ffff NOP - No Operation 1 00 0000 0xx0 0000 0xx0 0000 RIFF ffff Fill Fill	MOVF	f, d	Move f	1	00	1000	dfff	ffff		
RLF	MOVWF	f	Move W to f	1	0.0	0000	lfff	ffff		-,-
RLF	NOP	_	No Operation	1	0.0	0000	0xx0	0000		
RRF	RLF	f. d		1	00	1101	dfff	ffff	С	1.2
SUBWF f, d Subtract W from f 1 00 0010 dfff ffff C,DC,Z 1,2 1,2 XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2 1,2	RRF	f. d		1	00	1100	dfff	ffff	С	
SWAPF f, d Swap nibbles in f 1 00 1110 dfff ffff Z 1,2				1	0.0	0010	dfff	ffff	C.DC.Z	
BUT-ORIENTED FILE REGISTER OPERATIONS	SWAPF	,	Swap nibbles in f	1	0.0	1110	dfff	ffff	_,,_	
BCF	XORWF	,	Exclusive OR W with f	1	0.0	0110	dfff	ffff	Z	
BSF		-	BIT-ORIENTED FILE REGIST	ER OPER	ATION	IS				
BSF	BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BTFSC f, b Bit Test f, Skip if Clear 1 (2) 01 10bb bfff ffff 3 3	BSF		Bit Set f	1	01	01bb	bfff	ffff		
BTFSS f, b Bit Test f, Skip if Set 1 (2) 01 11bb bfff ffff 3	BTFSC	,	Bit Test f. Skip if Clear	1 (2)	01	10bb	bfff	ffff		
ADDLW k	1	,			l					
ANDLW k AND literal with W 1 11 1001 kkkk kkkk kkkk Z CALL k Call subroutine 2 10 0kkk kkkk Z MOVLW K Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW K Move literal to W 1 11 1000 kkkk kkkk Z Move literal with With literal in With literal with literal in With literal with liter		,	1 - 1		IONS					
CALL k Call subroutine 2 10 0kkk kkkk kkkk CLRWDT - Clear Watchdog Timer 1 00 0000 0110 0100 TO,PD GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 000xx kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETURN - Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into Standby mode 1 1 11 110x kkkk kkkk C,DC,Z	ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 0100 TO,PD GOTO k Go to address 2 10 1kkk kkkk kkkk kkkk kkkk Z IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 000xx kkkk kkkk Kkkk Z RETIBE - Return from interrupt 2 00 0000 0000 1001 Return Return with literal in W 2 11 01xx kkkk kkkk kkkk Return Return from Subroutine 2 00 0000 0000 1000 TO,PD TO,PD SUBLW k Subtract W from literal 1 1 11 110x kkkk kkkk C,DC,Z	ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
GOTO k Go to address 2 10 1kkk kkkk kkkk kkkk Z IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk kkkk Z MOVLW k Move literal to W 1 11 00xx kkkk kkkkk	CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
IORLW K	CLRWDT	-	Clear Watchdog Timer	1	0.0	0000	0110	0100	TO,PD	
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into Standby mode 1 00 0000 011 TO,PD SUBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC,Z	GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into Standby mode 1 00 0000 011 TO,PD SUBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC,Z	IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
RETLW k Return with literal in W 2 11 01xx kkkk kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into Standby mode 1 00 0000 0110 0011 TO,PD SUBLW k Subtract W from literal 1 11 110x kkkk kkkk kkkk C,DC,Z	MOVLW	k	Move literal to W	1	11	xx00	kkkk	kkkk		
RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into Standby mode 1 00 0000 0110 0011 TO,PD SUBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC,Z	RETFIE	-	Return from interrupt	2	0.0	0000	0000	1001		
SLEEP Go into Standby mode 1 00 0000 0110 0011 TO,PD	RETLW	k	Return with literal in W		11	01xx	kkkk	kkkk		
SUBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC,Z	RETURN	-	Return from Subroutine	2	0.0	0000	0000	1000		
	SLEEP	-	Go into Standby mode	1	0.0	0000	0110	0011	TO,PD	
	SUBLW	k		1	11	110x	kkkk	kkkk	C,DC,Z	
	XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk		

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 38

Logical Instructions

- ANDWF bitwise logical AND of W register and another register
- IORWF bitwise logical inclusive OR (normal OR) of W register and another register
- XORWF bitwise logical exclusive OR of W register and another register
- ANDLW bitwise logical AND of W register and a literal (a number included in the instruction)
- IORLW bitwise logical inclusive OR of W register and a literal
- XORLW bitwise logical exclusive OR of W register and a literal
- COMF bitwise logical not (complement) of a register

Label	ANDWF	PORTD,F
Label2	ANDLW	B'00011000'

Example:

IORWF PORTD,W

Example:

IORLW B '01001101'

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 42

Encoding

Program Memory contains binary digits.

The Assembler
converts an
Assembly language
instruction into
binary so instruction
can be written to
Program Memory.

Assembler ⇒
each instruction has
one unique binary
representation.

Arithmetic Instructions

- → ADDWF Add the W register to another register
 - ADDLW Add a literal (a constant) the W register
- → SUBWF Subtract the W register from another register
 - 2's complement subtract
 - SUBLW Subtract the W register from a literal
 - 2's complement subtract

Increment & Decrement

- INCF Increment a register
- DECF Decrement a register
- INCFZ Increment a register & skip the next instruction if the result is zero
- DECFZ Decrement a register & skip the next instruction if the result is zero

DECFZ Instruction

next instruction after DECFZ instruction is executed

0

0

0

0

0

0

Count

Move Instructions

- MOVWF Move the W register to another register
- MOVF Move a register to the W register (or itself)
- MOVLW Move a literal to the W register
- RLF Rotate the bits of a register left through the carry bit
- RRF Rotate the bits of a register right through the carry bit
- SWAPF Swap (exchange) the nibbles (4 bits) of a register
- NOP Do nothing (except waste a clock cycle)
- SLEEP Put the microcomputer into low power mode (several things can "wake up" the microcomputer)

Bit Instructions

- BSF Set (make = 1) a bit in a register
- BCF Clear (make = 0) a bit in a register
- CLRF Clear all the bits in a register
- CLRW Clear all the bits in the W register
- BTFSC Check a bit in a register & skip the next instruction if the bit is clear (zero)
- BTFSS Check a bit in a register & skip the next instruction if the bit is set (1)

CPU Program Counter

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 49

Jumps & Subroutine Processing

- GOTO Set **Program Counter** to new address (that instruction will be executed next)
- CALL Set **Program Counter** to new address (that instruction will be executed next)
 - Put address after the CALL instruction into the **Stack** (called "Pushing the Stack")
- RETURN Set **Program Counter** to address at the top of the **Stack** (that instruction will be executed next)
 - Move all next instructions (if any) on the **Stack** up one level (called "Popping the Stack")
- RETLW –RETURN & put a byte into the W Register
- RETFIE RETURN from an interrupt subroutine (does return & re-enables the interrupt bit)

Program Memory

000h	Reset Vector	
001h	movlw 0FFh	
002h	movwf PORTD	
003h		
004h	Interrupt Vector	
005h		
006h	goto Loop	
007h		
008h	call Timer	
009h		
00Ah		
00Bh	Loop addlw 06h	
00Ch		
00Dh	Timer andwf PORTA,F	
00Eh		
00Fh	return	
010h		

Program Counter 13 bits

Start at 0 0 0 hex

Increments after executing instruction

Program Counter

Use
Assembler
ORG
directive

Stack 8 deep 13 bits wide

Program Memory

000h		Reset Ve	ctor
001h			
002h			
003h			
004h		Interrupt \	Vector
005h			
006h		goto Lo	op
007h			
008h		call Tin	ner
009h			
00Ah			
00Bh	Loop	addlw	06h
00Ch			
00Dh	Timer	andwf	PORTA,F
00Eh			
00Fh		return	

Program Counter & Stack

Loop	equ	00Bh
Timer	equ	00Fh

00B

Program Counter 13 bits

Stack 8 deep 13 bits wide

010h

Pipelining

- Instructions are fetched and executed sequentially
- Pipelined architecture overlaps fetch and execution, making single cycle instructions possible

• Any program branch such as *goto* or *call* will take 2 cycles

Microcomputer Development System

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 55

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 56

Debugging Code in a Code Simulator

- Break Points
 - Conditionally Stops Processing
- Trace Points
 - Collects Code Execution
- Stimulus
 - Simulate the Application of Signals

Microcomputer Exercise

- Learn Microcomputer Development System
 - Code Editor
 - Code Simulator & Debugger
 - Device Programmer
- Learn Assembly Programming with 3 simple programs
 - Counter counts the number of button presses
 - ADConverter reads an analog value on a potentiometer and outputs the value on a series of LEDs
 - Timer long timer which increments the LEDs slowly (once per second)
- Learn Code Development Process by doing it 3 times

Microcontroller Board normally closed Agilent +9V IN D1 5V BATTERY CR1 CR2 LCD1 J2 R20 C18 C4 pot clock CONTRAST 72 RA0 ZIF C19 PIC16F74 microcomputer R16 ÇÓ 18 PIN RS-232 0 J9 & & U5^{C7}-○--C14 28 PIN banana sockets ICD 40 PIN GND PICDEM 2 PLUS DEMO BOARD ©2002 MICROCHIP

PM3 Device Programmer

UpDown Counter Program - Initialization

```
clrf
         PORTD
                  ; Clear Port D output latches
         PORTC
clrf
                            ; Clear Port C output latches
bsf
         STATUS,RP0
                            ; Set bit in STATUS register for bank 1
         B'11111111'
                            ; move hex value FF into W register
movlw
         TRISC
                            ; Configure Port C as all inputs
movwf
         TRISD
clrf
                            ; Configure Port D as all outputs
bcf
         STATUS,RP0
                            ; Clear bit in STATUS register for bank 0
```

UpDown Counter Program - Counting

waitPress

```
btfsc
                   PORTC,0
                                       ; see if green button pressed
                   GreenPress
                                       ; green button is pressed
         goto
         btfsc
                   PORTC,1
                                       ; see if red button pressed
                   RedPress
                                       ; red button is pressed
         goto
                   waitPress
                                       ; keep checking
         goto
GreenPress
         btfss
                   PORTC,0
                                       ; see if green button still pressed
                   waitPress
                                       ; noise - keep checking
         goto
GreenRelease
         btfsc
                   PORTC,0
                                       ; see if green button released
                   GreenRelease
                                       ; no - keep waiting
         goto
         call
                   SwitchDelay
                                       ; let switch debounce
```

IncCount

goto

; increment the counter

UpDown Counter Program - Continued

RedPress

btfss PORTC,1 ; see if red button still pressed

goto waitPress ; noise - keep checking

RedRelease

btfsc PORTC,1 ; see if red button released

goto RedRelease ; no - keep waitingcall SwitchDelay ; let switch debounce

decf Count,F ; decrement count - store in register

goto outCount ; output the count on the LEDs

IncCount

incf Count,F ; increment count - store in register

OutCount

movf Count,W ; move the count to the W register

movwf PORTD ; display count on port D

goto waitPress ; wait for next button press

AtoDPolled Program - Initialization

initAD

bsf	STATUS,RP0	; select register bank 1
movlw	B'00000100'	; RA0,RA1,RA3 analog inputs, all other digital
movwf	ADCON1	; move to special function A/D register
bcf	STATUS,RP0	; select register bank 0
movlw	B'01000001'	; select 8 * oscillator, analog input 0, turn on
movwf	ADCON0	; move to special function A/D register
return		

AtoDPolled Program – Read AtoD

waitLoop

```
btfsc
         ADCON0,GO
                           ; check if A/D is finished
goto
         waitLoop
                            ; loop right here until A/D finished
                           : make sure A/D finished
btfsc
         ADCON0,GO
         waitLoop
                           ; A/D not finished, continue to wait
goto
movf
         ADRESH,W
                           ; get A/D value
         PORTD
                           ; display on LEDs
movwf
bsf
         ADCON0,GO
                           ; restart A/D conversion
         waitLoop
goto
                           ; return to loop
```


How to design a long counter

- Determine instruction cycle
 - Microchip instruction cycle is oscillator ÷ 4
 - Microchip instruction cycle is oscillator ÷ 4
 - We use 4 MHz oscillator \Rightarrow 1 MHz (1 μ sec) instruction cycle
 - Code **delay**

decfsz Timer0, F ; Delay loop 1 or 2 cycles goto delay 2 cycles

- Each loop = $3 \mu \text{ sec}$
- $1 \sec \Rightarrow 333,333 \text{ loops}$
- 333,333 = 5 16 15

Programmed 6 16 15

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 69

Timer Program - Timing

timeLoop

movlw	06h	; get most significant hex value + 1
movwf	Timer2	; store it in count register
movlw	16h	; get next most significant hex value
movwf	Timer1	; store it in count register
movlw	15h	; get least significant hex value
movwf	Timer0	; store it in count register

delay

decfsz	Timer0, F	; Delay loop
goto	delay	
decfsz	Timer1, F	; Delay loop
goto	delay	
decfsz	Timer2, F	; Delay loop
goto	delay	

Decimal Timer for 203,428

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 71

Decimal Timer Continued

203,399

Decimal Timer Continued

19,099 An Extra Count

Never Get Here

Loop

Columbia University Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

Microcontrollers F. R. Stolfi 75

Software Timer

Software Timer Continued

Software Timer Continued

Software Timer Continued

MicroChip Inc.

- Headquarters in Chandler, AZ (www.microchip.com)
- Went from # 20 in microcomputers in 1990 to # 2 (behind Motorola) in 2000. Now # 1 in 8-bit microcontrollers
 - Started in 1989
 - IPO in March 1993
 - 5000+ employees worldwide
 - Revenue: \$1 to \$2 billion (USD) per year
- Innovative Marketing - changed the way industry sells microcomputers
 - Sell microcomputers & give away development software
 - Give away free samples of their parts (to anyone)
 - Free, very-capable technical support
 - In-house process development, mask generation and fabrication
 - Manufacturing facilities:
 - Chandler (Tempe), Arizona
 - Gresham, Oregon
 - Chachoengsao, Thailand

MicroChip Niche

- Very broad product line mostly very low cost devices
 - Most devices have 8 bit data memory size
 - Program memory size is 12, 14 or 16 bits optimized for instruction set
 - 6 pin package 80 pin package
- Ideal Mechatronic microcomputer major application
 - Internal A/D (Analog-to-Digital) converters
 - Internal PWM (Pulse Width Modulation)
 - High speed (to minimize control phase lags)
 - Internal USART (Universal Synchronous Asynchronous Receiver Transmitter) to communicate with PCs
 - Internal counters and timers

MicroChip Product Line

MicroChip Product Line Architecture Overview

MicroChip PIC16F747 Device

High performance RISC CPU

- Only 35 single word Assembler instructions to learn
- All single cycle instructions (except program branches which are 2 cycle)
- Operating speed: DC 20 MHz clock input (we use 4 MHz initially)
 DC 200 ns instruction cycle (we use 1 msec)
- 4K x 14 words of FLASH Program Memory
- 192 x 8 bytes of Data Memory (RAM)
- Interrupt capability (for 17 different sources of interrupts)
- Eight level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- Processor can read program memory (used to remotely program device)

MicroChip PIC16F747 Device

Special PIC16F747 Features

- Power-on Reset (POR) (can reset the processor with power on)
- Power-up Timer (PWRT) (allows external circuitry to turn on before program starts)
- Oscillator Start-up Timer (OST) (allows oscillator clock to turn on and stabilize before program starts)
- Fail-Safe Clock Monitor for protecting applications against crystal failure
- Two-Speed Start-up mode for immediate code execution
- Watchdog Timer (WDT) with its own on-chip oscillator for reliable operation (protects against program bugs) [We will not use this]
- Programmable code protection (microcomputer can be set so your competitors cannot read your program from the chip) [We will not use this]
- Power saving SLEEP mode
- Several oscillator options [We use a high speed crystal oscillator]
- Brown-out detection circuitry for Brown-out Reset (BOR)
- In-Circuit Serial Programming via two pins (to update customer's program remotely)

Many of these features are set with "configuration fuses" Some are NON – REVERSABLE.

PIC16F747 Internal Peripherals

- 36 Digital Input / Output Pins [Ports A, B, C, D & E]
- 3 Internal Timer / Counters with Different Features
 - Timer0: 8-bit timer/counter with 8-bit prescaler
 - Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external clock
 - Timer2: 8-bit timer/counter with prescaler, postscaler & 8-bit period register
 (counts up until count matches register then resets for programmed clock)
- 3 Capture, Compare, PWM (Pulse Width Modulation) modules
 - Capture is 16-bit, max. resolution is 12.5 ns (value of Timer1 is saved in 2 registers when external digital input occurs)
 - Compare is 16-bit, max. resolution is 200 ns (when value of Timer1 equals value in 2 registers an external digital signal is output)
 - PWM max. resolution is 10-bit (used for control output)
- 10-bit, 14-channel Analog-to-Digital converter
- Supports Several Communication Protocols
 - Synchronous Serial Port (SSP) with SPI (Master mode) and I²C (Slave mode)
 - Universal Synchronous Asynchronous Receiver Transmitter (USART) to communicate with PCs (via RS232 protocol for example)
 - Parallel Slave Port (PSP), 8-bits wide with external RD (read), WR (write) and CS (chip select) controls

PIC16F747 Electrical Characteristics

- Low power, high speed CMOS (Complementary Metal Oxide Semiconductor) FLASH technology
- Fully static design (RAM does not require refresh to hold data)
- Wide operating voltage range: 2.0 V to 5.5 V
- High Sink/Source Current Capability from I / O pins: 25 mA
- Industrial temperature range: 40° C to 85° C
- Low power consumption:
 - Less than 2 mA typical @ 5V, 4 MHz
 - Less than 1 μA typical standby current (in sleep mode

Be careful of 5.5 V limit

Microcomputer Architecture

Microcomputers have one of two basic architectures for their internal memory.

- von-Neumann
 - One memory for both instruction and data memory
- Harvard
 - Two separate spaces one for instruction & one for data memory

von-Neumann

Harvard

The distinction also refers to the type of memory bus used.

MicroChip Harvard Architecture

MicroChip Mid Range

von-Neumann Architecture Features

- Traditional architecture used in microcomputers and computers
- CPU fetches instructions and data from same memory space
 - Limits operating bandwidth (CPU speed)
 - Memory bus has been called the "von-Neumann bottleneck"
 - "Caching" tries to circumvent bottleneck
- Only one type of memory is needed
 - typically RAM (Random Access Memory) since data is meant to be changed (although a PC bios is typically not RAM – limited use)
 - Compact memory use
- Program and data memory addresses are the same size
- Instructions and data can be easily brought out on I / O pins
- Since instructions and data have same length, two or more memory locations may be required for some instructions.
- Data can be executed as if it were an instruction (at the CPU level)

Harvard Architecture Features

- Newer architecture meant to alleviate von-Neumann bottleneck
- CPU fetches instructions from one memory space and data from another memory space
 - Increased throughput since instructions and data arrive simultaneously
 - Pipelining (caching) is easier
- Program and data memory can be different types
 - RAM for data memory
 - ROM (Read Only Memory) for instructions much lower cost and higher density than RAM
 - OTP (One Time Programmable) ROM parts (very low cost)
 - EPROM (Erasable Programmable Read Only Memory) program and can erase with ultraviolet light and then reprogram
 - EEPROM (Electrically Erasable Programmable Read Only Memory) or Flash Memory program and can erase electronically (by setting voltage levels) and then reprogram
- Program and data memory addresses can be different sizes
 - Can have much more program memory than data memory
 - Permits VLIW (Very Long Instruction Word)
- Instructions and data cannot be easily brought out on I / O pins

Complexity of Instruction Set

- CISC Complex Instruction Set Computer
 - One instruction is decoded and requires multiple machine cycles to execute
 - Smaller program memory size
 - Slower program execution
- RISC Reduced Instruction Set Computer
 - One instruction requires one machine cycle to execute
 - Larger program memory size
 - Faster program execution
 - Less instructions to remember

von-Neuman CISC microcomputers

Zilog Z8 45 instructions Intel 8051 40 instructions Motorola HC11 109 instructions

MicroChip Microcomputers achieve their highperformance from several advanced architectural features

- Harvard Architecture
- RISC Reduced Instruction Set Computer
- All instructions are single word
- VLIW Very Long Instruction Words
- Very Fast Single Machine Cycle Instructions (clock ÷ 4)
- Instruction Pipelining
- Multi-Purpose Registers to Store Data (RAM)
- PROM, EPROM or Flash Memory to Store Program
- Orthogonal Program Set Same Instructions Work on Any Register or Any I / O port