Correction 13.8

Hasard 2 Math

Si vous voyez une coquille, n'hésitez pas à la signaler par mail.

1 Indication

Si $f(x_0) > x_0$, justifier qu'il existe un intervalle $[\alpha, \beta]$ tel que $f(\alpha) = \alpha$, $f(\beta) = \beta$ et $\forall x \in]\alpha, \beta[$, f(x) > x. Montrer que cette intervalle est stable (Par l'absurde) par f puis considerer la suite récurrente induite par f initialisé par x_0 . Aboutir à une contradiction.

2 Correction

Supposons par l'absurde que $f \neq \text{id}$. On peux donc trouver $x_0 \in [0,1]$ tel que $f(x_0) \neq x_0$. Supposons pour le moment que $f(x_0) > x_0$. Notons $\alpha = \sup\{x < x_0 \mid f(x) = x\}$ et $\beta = \inf\{x > x_0 \mid f(x) = x\}$ (existent car non vide par le TVI). Ainsi, on a $f(\alpha) = \alpha$, $f(\beta) = \beta$ et $\forall x \in]\alpha, \beta[, f(x) > x$ (Pour la dernière affirmation, c'est encore le TVI).

Supposons que $[\alpha, \beta]$ ne soit pas stable par f. On dispose donc de $x_1 \in]\alpha, \beta[$ tel que $f(x_1) \notin [\alpha, \beta]$, or $f(x_1) > x_1 \ge \alpha$ donc $f(x_1) > \beta$. D'après le TVI, on dispose de $x_2 \in [\alpha, x_1]$ tel que $f(x_2) = \beta$. Par hypothèse, on dispose de $n \in \mathbb{N}$ tel que $f^n(x_2) = x_2$ donc

$$f^{n-1}(f(x_2)) = f^n(x_2) = x_2 = f^{n-1}(\beta) = \beta$$

Donc $x_2 = \beta$ ce qui est absurde car $x_2 < \beta$. Ainsi f est stable par $[\alpha, \beta]$.

Soit $u_n = f^n(x_0)$, par stabilité de f, on a $f^n(x_0) > f^{n-1}(x_0)$ donc (u_n) est croissante. De plus (u_n) est majorée par β donc elle converge. Par hypothèse, on peut trouver $m \in \mathbb{N}$ tel que $u_m = f^m(x_0) = x_0$ puis par récurrence,

$$\forall k \in \mathbb{N}^*, u_{km} = f^{km}(x_0) = x_0$$

Ainsi, la suite $(u_{km})_{k\in\mathbb{N}^*}$ converge vers x_0 donc x_0 est valeur d'adérence de (u_n) . Or cette suite converge donc a une seule valeur d'adhérence. Ainsi,

$$\lim_{n \to \infty} u_n = x_0$$

On en deduit que x_0 est un point fixe de f. En effet, $u_{n+1} \to x_0$ et $u_{n+1} = f(u_n) \to f(x_0)$ par continuité. Donc, par unicité de la limite, $f(x_0) = x_0$ ce qui est absurde. Donc f = id.

Supposons que $f(x_0) < x_0$, on pose g(x) = 2x - f(x). On a $g(x_0) > x_0$. Le cas précédent s'applique donc sur g. On a donc $g = \operatorname{id}$ puis $f = \operatorname{id}$ par définition de g. Ce qui conlut.

1