Lecture 1. Side A
Set Theory (1870's)
sets are the fundamental unit of all of mathematics.
A set is a collection of elements which unordered & unique.
(Fa) ossignment/definition _ elements_
F = 3 Jane, Many, Susan, Dora 3a Genotes the begin septration and enn
1 Captation and enn
denotes the begin
rns, enn
notation for the
notation for the
Sets Can have infinite elements
Eg. N = \(\frac{2}{1}, 2, 3, \cdots\) \(\frac{2}{2}, \frac{1}{2}, \cdots\)
natural numbers integers
THE GOS
Operations on Set
Jane E.F > Jane is an element of F
Jane & F = 7 Jane is mot an element of F
¿Jane, Mary 3 € F => The set or the this is a "subset" of the set on the rhs.
Def: all elements in the lhs set are E the rhs set
If A=B, then ASB&BSA
If $A \neq B$, then $n(A = B)$
Proper subset
* June, Mary 3 CF = 7 A CB = 7 A CB but A≠B
Jane3 CF Jane ¢F June3 ≠ F June € F
E, E, =, +, C, & are predicate functions which return there or false.
[Eq.] "E (Jane, F) = T
of M= 3 Bob, Joe, Max, Dova 3, then.

Lecture 1. Side 13 FUM = & June, Mary, Susan, Dova, Bob. Joe, Max} U > Union, combine all elements
"and/or" "non-exclusive or" Fn M = { Dava} n => intersection, "and" Q: ABhave infinite elements, can ANB = Q? - Yes, eq. A= {2,4,6,8...} and B = {1,3,5,...} if An 13 = \$, then A, 13 are mutually exclusive or disjoint Futhermore: Ø∉F Ø C F Set Subtraction. FIM = { Jane, Mary Susan } = 7 elements of I save the element of M. If ANB= & => ANB=A, BNA=B If A B = \$ = 7 A AB = A Mondail be true if A 1s a proper subset of B ゆ=なしか= \$ = \$ a \$ & UQ = & set builder notation E:= 12n: ne I }= 2 ...-6,-4,-2,92,84,6...} 7 & is the set of all 2n such that ne I Power Set $2^{A} = \{B: B \subseteq A\}$ $A = \{1, 2, 3\}$ $\{1, 2, 3\}$ $\{1, 2, 3\}$ $\{1, 2, 3\}$ $\{1, 3\}, A\}$ equivlent Set Size (Endinlity) [A] = 3 12^A] = 8=2 | FUM | = |F| + |M|