1. (a)

Yit = M+ Ti+ Eit, i= A,B,C, t=1,2.

note: C stands-for "control".

A stands for "drug A" & B stands for clarg B".

(C) For [Yit], i = A, B, C, t = 1, 2 $Y_{A} = \frac{-14-4}{2} = -9$ $Y_{B} = \frac{5-1}{2} = 2$ $Y_{C} = \frac{-2+6}{2} = 2$. $Y_{C} = \frac{-14-4+5-1-2+6}{6} = -\frac{5}{3}$

 $SST = 2 \times (-9 + \frac{1}{3})^2 + 2 \times (2 + \frac{1}{3})^2 + 2 \times (2 + \frac{1}{3})^2 = \frac{48^4}{3}$ $SSTOT = (-14 + \frac{1}{3})^2 + (4 + \frac{1}{3})^2 + (5 + \frac{1}{3})^2 + (-1 + \frac{1}{3})^2 + (2 + \frac{1}{3})^2 + (6 + \frac{1}{3})^2 = \frac{78^4}{3}$ SSE = SSTOT - SSE = 100

(b) $E(ABP + B) = \mu + \gamma_B = \overline{\gamma}_B = 2$. $ABP + B \sim N(2, \frac{\sigma^2}{2})$ since $\overline{\gamma}_B \sim N(2, \frac{\sigma^2}{2})$

(d) $\hat{\sigma}^2 = \frac{SSE}{n-v}$ where n=6, v=3 = $\frac{100}{6-3} = \frac{100}{3}$.

(e) $E(\Delta BP \circ fA - \Delta BP \circ fC) = (\mu_1 \Upsilon_A) - (\mu_1 \Upsilon_C) = \tilde{Y}_A - \tilde{Y}_C = -11$ $\Delta BP \circ fA - \Delta BP \circ fC \sim N(-11, \sigma^2)$ Since $\tilde{Y}_A - \tilde{Y}_C \sim N(-9-2, \frac{\sigma^2}{2} + \frac{\sigma^2}{3}) = N(-11, \sigma^2)$

- (f) When $T_A = T_C$, $(u+T_A) (u+T_C) = 0$. Then, $\hat{Y}_A - \hat{Y}_C \sim N(0, \sigma^2)$.
- (g) Let $K(\sigma) = \sigma$. Then, $\frac{\hat{Y}_{A} - \hat{Y}_{C}}{K(\sigma)} \sim N(0/\sigma^{2}, 0/\sigma^{2}) = N(0.1)$.
- $(h) \frac{SSE}{\sigma^2} = \frac{\sum_{i=1}^{\infty} (Y_{i+1} Y_{i+1})^2}{\sigma^2}$ $= \left[\frac{\sum_{i=1}^{\infty} (Y_{i+1} Y_{i+1})}{\sigma^2}\right]^2 = \sum_{i=1}^{\infty} \left(\frac{Y_{i+1} Y_{i+1}}{\sigma^2}\right)^2$

Since YH-(M+7;)~ N(0,1) where YH iid N(U+7;, 02),

(YH-(M+7i))2~ X2,

Then, $\overline{z} = \frac{1}{2} \left(\frac{Y_{i+} - (u+\gamma_i)}{\sigma} \right)^2 \sim \chi_6^2$ Now, replace $u+\gamma_i$ with Y_i , we have $\frac{SSE}{\sigma^2} = \overline{z} = \frac{1}{2} \left(\frac{Y_{i+} - Y_{i-}}{\sigma} \right)^2 \sim \chi_{6-3}^2 = \chi_3^2.$

(i) Since $\frac{SSE}{\sigma^2}$ is chi-square distribution with degree of freedom 3 and $\frac{\hat{v}_a - \hat{v}_c}{\kappa(\sigma)}$ is standard normal distribution, $\frac{(\hat{v}_a - \hat{v}_c)/\kappa(\sigma)}{NSSE/(m-v)\sigma^2]} \sim t_3$

(j) ANOVA (one-way):

Source	Deg. of Freedom	Sum of Square	Mean Square	Ratio
Treatment	3-1=2	484/3	(484/3 1/2 = 243/3	(24%)/(10%) = 2.42
Error	6-3=3	100	100/3	
Total	6-1=5	784/3		

Ho: there are no differences in mean blood pressure change between women getting any treatment.

Under null hypothesis, test statistic T* = 2,42
Test statistic is F distribution (ie. F2,3)