Introduction to (zk)SNARKs

Le Trong Anh Tu

Nanyang Technological University, Singapore

July 05, 2025

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

Let's prove a statement

Untrusted prover P convinces V to know w satisfying some property.

• A preimage w for an output y of a cryptographic hash function h, i.e. h(w) = y.

$$\langle P(h, y; w), V(h, y) \rangle$$

• A private key w corresponding to a public key y for discrete log, i.e. $y = g^w \pmod{p}$ where g is a generator of a group.

$$\langle P(y,g,p;w),V(y,g,p)\rangle$$

Let's prove a statement

Untrusted prover P convinces V to know w satisfying some property.

• A preimage w for an output y of a cryptographic hash function h, i.e. h(w) = y.

$$\langle P(h, y; w), V(h, y) \rangle$$

• A private key w corresponding to a public key y for discrete log, i.e. $y = g^w \pmod{p}$ where g is a generator of a group.

$$\langle P(y,g,p;w),V(y,g,p)\rangle$$

Trivial proof: P sends w to V, and V checks if it satisfies the property.

- ullet We don't pay attention to the privacy o Do not have the term "zk".
 - V only "check", not "recompute" from witness w.
- \Rightarrow A SNARK proof achieves the same, but better cost to V.

SNARK = \underline{S} uccinct \underline{N} on-interactive \underline{AR} gument of \underline{K} nowledge.

- The proof π must be shorter than the witness w.
- Checking π is faster than checking $w \to$ "work-saving" for V.

 $SNARK = \underline{S}uccinct \underline{N}on-interactive \underline{AR}gument of \underline{K}nowledge.$

- The proof π must be shorter than the witness w.
- Checking π is faster than checking $w \to$ "work-saving" for V.

In some papers, "succinct" might mean constant, logarithm, or sublinear with the length of the witness w (and, also the statement).

SNARK = \underline{S} uccinct \underline{N} on-interactive \underline{AR} gument of \underline{K} nowledge.

- The proof π must be shorter than the witness w.
- Checking π is faster than checking $w \to$ "work-saving" for V.

In some papers, "succinct" might mean constant, logarithm, or sublinear with the length of the witness w (and, also the statement).

In practice, proof size is hundred bytes or several KBs, and checking SNARK proof π is around 1 second.

SNARK = \underline{S} uccinct \underline{N} on-interactive \underline{AR} gument of \underline{K} nowledge.

- The proof π must be shorter than the witness w.
- Checking π is faster than checking $w \to$ "work-saving" for V.

In some papers, "succinct" might mean constant, logarithm, or sublinear with the length of the witness w (and, also the statement).

In practice, proof size is hundred bytes or several KBs, and checking SNARK proof π is around 1 second.

zk-SNARK: the proof π reveals nothing about m (privacy for m).

• In this talk, we only mention about SNARKs, not zk-SNARKs.

Trivial proof is not a SNARK proof

Trivial proof: P sends w to V, and V checks if it satisfies the property.

- w might be long, and not shorter than w (straightforward).
- Checking w is just "recompute", not "verify".
- (Optional) w might be secret, P might not want to reveal w to V.

Applications of SNARKs (Mainly in blockchain)

- Outsourcing computation (no need for zero knowledge).
 - zkRollup: An off-chain service processes a batch of transactions by generating a succinct proof that the transactions were processed correctly. This proof is then sent to the L1 chain for verification.
 - **zkBridge:** Provide a SNARK proof that enables transfer of assets from one chain to another.

Applications of SNARKs (Mainly in blockchain)

- 1. Outsourcing computation (no need for zero knowledge).
 - **zkRollup:** An off-chain service processes a batch of transactions by generating a succinct proof that the transactions were processed correctly. This proof is then sent to the L1 chain for verification.
 - **zkBridge:** Provide a SNARK proof that enables transfer of assets from one chain to another.
- 2. Verifying private information (need zero knowledge)
 - Tornado, Zcash, ...: Prove a private transaction is valid on a public blockchain.
 - **Espresso:** Generate proof that a private transaction is compliant with banking regulations.

And non-blockchain applications

Blockchain drives the development of SNARKs, but their advancement has led to many non-blockchain applications (e.g. zkML, ...).

And non-blockchain applications

Blockchain drives the development of SNARKs, but their advancement has led to many non-blockchain applications (e.g. zkML, ...).

Zero-knowledge machine learning (zkML):

- Enable the verification of ML model computations while preserving model privacy.
- The inference process is treated as a function F, where either the model input or the model weights serve as the secret input.

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- 3 Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

General-Purpose SNARKs: Standard Paradigm

In practice, a computer program written in a high-level programming language (Java, Python, ...) is preferred.

General-Purpose SNARKs: Standard Paradigm

Computer program:

• Hash pre-image example: Program takes w and y as inputs, applies a hash function h to w, and checks that output equal y.

 $\underline{\text{Step 1}}$: Transform the program into an equivalent model (R1CS, circuit-satisfiability, ...) amenable to probabilistic checking.

• We often call this step as the Front End (FE).

 $\frac{\text{Step 2}}{\text{step as the Back End (BE)}}$. Run a SNARK for R1CS or circuit-satisfiability. We often call this

• E.g.: Groth16, PlonK (2017), Ligero (2022), Polymath (2024), ...

FE ensures that P claims a witness w for R1CS or circuit-satisfiability is equivalent to claiming a witness w for the computer program.

Remarks on Standard Paradigm of SNARKs

- A witness w can be extended with auxiliary elements for applying general-purpose SNARKs.
- Not all programs are "good" for generating "efficient" circuit.
 Without careful design, the circuit may contain million of gates, degrading protocol performance.

Back-End Goals

We want a SNARK for R1CS or circuit-SAT for which:

- P: linear time.
- Proof π : as small as possible (few hundred bytes).
 - $len(\pi) = sublinear(|w|)$.
- V: as fast as possible (milliseconds to a few seconds).
 - time(V) = $\mathcal{O}_{\lambda}(|x|, \text{sublinear}(|C|))$.
- Strongly succinct: logarithm instead of sublinear.

Back-End Goals

We want a SNARK for R1CS or circuit-SAT for which:

- P: linear time.
- Proof π : as small as possible (few hundred bytes).
 - $len(\pi) = sublinear(|w|)$.
- V: as fast as possible (milliseconds to a few seconds).
 - time(V) = $\mathcal{O}_{\lambda}(|x|, \text{sublinear}(|C|))$.
- Strongly succinct: logarithm instead of sublinear.

Also consider (with specific application):

- Transparent: no "harmful" parameters produced in a trusted setup.
- Plausibly post-quantum secure: if P* has a quantum computer, he can find w for false statement (since we only consider "argument").

Key Paradigm for BE Design

- 1. Give a polynomial IOP for R1CS or circuit-satisfiability.
- 2. Combine with **polynomial commitment scheme** \rightarrow succinct interactive argument.
- 3. Fiat-Shamir transformation \rightarrow non-interactive scheme.

Key Paradigm for BE Design

- 1. Give a polynomial IOP for R1CS or circuit-satisfiability.
- 2. Combine with **polynomial commitment scheme** \rightarrow succinct interactive argument.
- 3. Fiat-Shamir transformation \rightarrow non-interactive scheme.

Another paradigm: Linear-PCP based (Groth16, Pinocchio, ...).

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- 3 Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

Arithmetic Circuits

Arithmetic circuit \mathcal{C} : $\mathbb{F}^n \to \mathbb{F}$.

- Directed acyclic graph (DAG) where internal nodes are labeled as operation $(+, \times)$, and inputs are labeled as $(2, x_1, ..., x_n)$.
- Wires carrying values and connect to addition and multiplication of gates.
- $|\mathcal{C}| = \#$ gates in \mathcal{C} .

Some of the input/output wires specify a statement x and the rest of the wires define a witness w.

 \rightarrow A binary relation $\mathcal{R} = \{(x; w) \mid \mathcal{C}(x, w) = 0\}$ consists of statement wires and witness wires that satisfy the arithmetic circuit.

Arithmetic Circuits (cont.)

- We do not care about the fan-in of the gates.
- |C| = 3.

Interesting Arithmetic Circuits

- $C_{SHA}(y; w)$ outputs 0 if SHA256(w) = y, and \neq 0 otherwise. $\rightarrow C_{hSHA}(y; w) = (y - SHA256(w)), |C_{hSHA}| \approx 20 \text{K gates}.$
- $C_{\text{sig}}(pk, m, \sigma; sk) = 0$ if σ is a valid ECDSA signature on m with respect to a key-pair (pk, sk).

Interactive Proofs (IPs)

$$P(x) \xrightarrow{\qquad \qquad \qquad } V$$

$$\vdots \qquad \qquad \vdots$$

$$\longleftarrow \qquad \qquad \downarrow$$

Transcript of the protocol includes proof and messages during interaction.

(P, V) is a **multi-round** interactive proof system if the following two properties are satisfied:

• Completeness:
$$Pr[\langle P, V \rangle(x) = 1] \ge \frac{2}{3}$$
.

• Soundness:
$$Pr[\langle P^*, V \rangle(x) = 1] \leq \frac{1}{3}$$
.

Can be transformed into non-interactive via **Fiat-Shamir transformation**.

Argument Systems

Definition (Argument Systems)

An argument system is an interactive proof in which the soundness condition is only required to hold against prover strategies that run in polynomial time.

- Often called as computational soundness.
- The soundness for interactive proofs against computationally unbounded provers P*, and is referred to as statistical soundness or information-theoretic soundness.

Proofs do not exist for false statements, arguments for false statements are only infeasible to find.

Non-interactive ARgument of Knowledge (NARK)

Public arithmetic circuit $C(x, w) \to \mathbb{F}$, where x is a public statement, and w is a secret witness.

- Setup S(C) generates public parameters (pp, vp).
 - Trusted setup per circuit.
 - Trusted but universal (updatable) setup.
 - Transparent setup: do not use secret data (no trusted setup).

Non-interactive ARgument of Knowledge (NARK) (cont.)

Requirements:

- **Completeness:** If *P* is honest, then V can accept with high prob.
- Knowledge soundness: If V accepts, then P knows witness w s.t. $\mathcal{C}(x, w) = 0$, then exist an extractor \mathcal{E} that can extract w.
- (Optional) **Zero knowledge:** (pp, vp, x, π) reveals nothing about w.

SNARK: Succinct NARK

SNARK: a NARK (completeness and knowledge soundness) that is succinct.

zk-SNARK: a SNARK that is also zero-knowledge.

Recall: SNARK = PIOP + PCS.

Polynonial-IOP (PIOP)

The "pre" definition:

- P's message is a polynomial h(x).
- V is permitted to evaluate h(x) at one point x_0 , i.e. $h(x_0)$, and check some constraints.
- Goal: Prove an initial polynomial satisfies some constraints.
- Example: Sum-check protocol, ...

PIOP Example: Sum-check protocol

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\omega \in H^{\ell}} p(\omega_1, ..., \omega_{\ell}) = u$

 $\ell \cdot \deg(p)$ elements of \mathbb{F}

 $\sum_{\omega_{\ell} \in H} q_{\ell}(\omega_{\ell}) = q_{\ell-1}(r_{\ell-1})$

Evaluates p to check that $p(r_1, \dots, r_\ell) = q_\ell(r_\ell)$

Soundness: If $\sum_{\omega \in H^{\ell}} p(\omega_1, ..., \omega_{\ell}) \neq u$ then V accepts with probability at most $\frac{\ell \cdot \deg(p)}{|y|}$.

- H is often considered as a binary set {0, 1}.
- V needs oracle access to p for the final check (if p is not available).
- Do not require a trusted setup.

Polynomial-IOP (PIOP) (cont.)

So, what does a letter "O" (oracle) in PIOP mean?

- Challenge: P should not send the full polynomial (as large as the circuit), but V needs to know in a clear for evaluation.
 → How to achieve succinct (a proof smaller than a polynomial) while
- work-saving for V (allow to evaluate without reading full polynomial).

 An **oracle** is a "mysterious" function: it takes input, returns output,
- An **oracle** is a "mysterious" function: it takes input, returns output, but reveals nothing about how the output is computed.
- Instead of sending full polynomial, we send **polynomial oracle**. E.g.: In sum-check protocol, we send an oracle of polynomial q_1 , not q_1 itself \to The challenge in practice is (i) how we define an oracle, and (ii) how V can compute $q_1(\omega_1)$ without knowing q_1 .
- \bullet To implement such an oracle \to Polynomial Commitment Scheme.

Polynomial Commitment Scheme (PCS)

Why is PCS suitable for securing a PIOP? Consider a "cheating" PIOP:

- P encodes a polynomial f as an oracle and sends to V.
- V samples x and querys an evaluation f(x).
- However, after seeing x, P changes a polynomial f to f', and sends f'(x) instead of f(x).
- And, how V can verify the correctness of f(x) associated with an oracle without knowledge of f.

Polynomial Commitment Scheme (PCS) (cont.)

High-level idea:

- P **binds** itself to a polynomial f by sending a short string Com(f).
- V chooses x and asks P to evaluate f(x).
- P sends y and a proof π s.t. y is consistent with Com(f) and x.

Goals:

- P cannot produce a valid proof for an incorrect evaluation.
- Com(h) and π are short and easy to generate, π is easy to check.

Polynomial Commitment Scheme (PCS) (cont.)

Choose a family of function $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y}\}.$

• A family of polynomial f of bounded degree d over a field \mathbb{F} , i.e. $f \in \mathbb{F}^{\leq d}[X]$.

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- 3 Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

Taxonomy of SNARKs

Recall (again) that SNARK = PIOP + PCS.

- There are several different PIOP and PCS in literature.
- Can mix-and-match to get different tradeoffs (P time, proof size, etc.) for specific application.
- The properties of SNARK (transparent, plausible post-quantum) is determined by PCS.

Taxonomy of SNARKs (cont.)

Figure: A taxonomy of SNARK design taken from a book "Proofs, Arguments, and Zero-Knowledge" by Justin Thaler.

Taxonomy of PIOP (3 classes)

- Based on interactive proofs (IPs).
 - Hyrax (2017), vSQL (2017), Libra (2019), Virgo (2019), ...
- Based on multi-prover interactive proofs (MIPs).
 - Spartan (2019), Brakedown (2021), Xiphos (2020), ...
- Based on constant-round polynomial IOPs (PIOPs).
 - Marlin (2019), PlonK (2019), ...

List in increasing P cost, and decreasing proof length and V cost.

Taxonomy of PCS (4 classes)

	Transparent	PQ	E.g.
Pairing			KZG10, PST13, ZGKPP18
Discrete Log	✓		BCCGP16, Bulletproofs, Hyrax
IOPs + Hash	✓	√	Ligero, FRI, Brakedown
Unknown order	/		DARK, Dew
group	V		DAINI, Dew

(PQ: Post-quantum)

- Pairing schemes have constant size evaluation proof for y = f(x).
- The red-name schemes are popular.

Remarks

- So many SNARKs (at least $4 \times 3 = 12$).
- Choosing the suitable PIOP and PCS can depend on more than two properties listed above, i.e. the choice of field to work, ...
 - ECDSA works over elliptic curve groups, which are not FFT-friendly.
 Many SNARKs require P to perform FFTs.
 - DL-based and pairing-based PCS must use a field of size equal to the order of the cryptographic group. In contrast, IOP-based SNARKs avoid this limitation by using hash function working over arbitrary data.
- Again, we only mention SNARKs, but not zk-SNARKs.

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- 3 Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

SNARKs based on Linear-PCPs

E.g.: Groth16 (application in ZCash).

- Pros: Shortest proof (3 group elements), fastest V.
- Cons: Circuit-specific trusted setup, slow and space-intensive P, not post-quantum.

Technique: Arithmetic circuit \rightarrow Rank 1 Constraint System (R1CS) \rightarrow Quadratic Arithmetic Program (QAP) for prove system.

Introduction to R1CS

Goal: Generate a system of equations of the form

$$La \circ Ra = Oa$$

where L, R, O are public matrices and a is a witness vector.

- A witness vector contains input variables, output variable(s), and the intermediate values.
- L, R, O represent an arithmetic circuit.
- Every circuit can be represented as a R1CS.

Step-by-step from circuit to R1CS

<u>Step 1</u>: Define all equations (fan-in 2) for an arithemtic circuit \rightarrow The number of rows in L, R, O.

• Addition is free, but not for multiplication.

<u>Step 2</u>: Define a witness vector contains input, output variables and some of the intermediate values.

- Witness is often in the form [1, out[:], in[:], ...].
- The size of witness is the number of columns in L, R, O.

Step 3: Define matrix L, R, O by looking at the equation in step 1.

$$z = xy$$
.

- 1 equation $\rightarrow n = 1$.
- A witness vector $a = [1, z, x, y] \rightarrow m = 4$.

$$\begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} = \begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} \circ \begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix}$$

$$z = xy$$
.

- 1 equation $\rightarrow n = 1$.
- A witness vector $a = [1, z, x, y] \rightarrow m = 4$.

$$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \end{bmatrix}$$

$$t_1 = xy$$
$$t_2 = uv$$
$$z = t_1t_2$$

- 3 equations $\rightarrow n = 3$.
- A witness vector $a = [1, z, x, y, u, v, t_1, t_2] \rightarrow m = 8$.

$$t_1 = xy$$
$$t_2 = uv$$
$$z = t_1t_2$$

$$\begin{bmatrix} 1 \\ z \\ x \\ y \\ u \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ z \\ x \\ y \\ u \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ z \\ x \\ y \\ u \\ t_1 \\ t_2 \end{bmatrix}$$

$$t_1 = xy$$
$$t_2 = uv$$
$$z = t_1t_2$$

$$t_1 = xy$$
$$t_2 = uv$$
$$z = t_1t_2$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ - & - & - & - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ - & - & - & - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ v \\ t_1 \\ t_2 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ - & - & - & - & - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ v \\ t_1 \\ t_2 \end{bmatrix}$$

$$t_1 = xy$$
$$t_2 = uv$$
$$z = t_1t_2$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ v \\ t_1 \\ t_2 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ y \\ u \\ v \\ t_1 \\ t_2 \end{bmatrix}$$

$$t_1 = xy$$
$$z = t_1 + 2$$

- 2 equations $\rightarrow n = 2$.
- A witness vector $a = [1, z, x, y, t_1] \rightarrow m = 5$.

$$-2 + z = xy$$

- 1 equation $\rightarrow n = 1$.
- A witness vector $a = [1, z, x, y] \rightarrow m = 4$.

$$\begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} = \begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} \circ \begin{bmatrix} - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix}$$

$$-2 + z = xy$$

- 1 equation $\rightarrow n = 1$.
- A witness vector $a = [1, z, x, y] \rightarrow m = 4$.

$$\begin{bmatrix} - & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix}$$

$$-2 + z = xy$$

- 1 equation $\rightarrow n = 1$.
- A witness vector $a = [1, z, x, y] \rightarrow m = 4$.

$$\begin{bmatrix} -2 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ y \end{bmatrix}$$

Example 4: $z = x^3 + x + 5$ into R1CS

$$t_1 = xx$$
$$-5 - z - x = t_1x$$

- 2 equations $\rightarrow n = 2$.
- A witness vector $a = [1, z, x, t_1] \rightarrow m = 4$.

$$\begin{bmatrix} - & - & - & - \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix} = \begin{bmatrix} - & - & - & - \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix} \circ \begin{bmatrix} - & - & - & - \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix}$$

Example 4: $z = x^3 + x + 5$ into R1CS

$$t_1 = xx$$
$$-5 - z - x = t_1x$$

- 2 equations $\rightarrow n = 2$.
- A witness vector $a = [1, z, x, t_1] \rightarrow m = 4$.

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 1 & 0 \\ - & - & - & - \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix}$$

Example 4: $z = x^3 + x + 5$ into R1CS

$$t_1 = xx$$
$$-5 - z - x = t_1x$$

- 2 equations $\rightarrow n = 2$.
- A witness vector $a = [1, z, x, t_1] \rightarrow m = 4$.

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ -5 & -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ t_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ z \\ x \\ t_1 \end{bmatrix}$$

Quadratic Arithmetic Circuit (QAP)

Rewrite the formula of R1CS for specific row q as

$$(\sum_{i=1}^{m} L_{q,i}a_i) \cdot (\sum_{i=1}^{m} R_{q,i}a_i) = \sum_{i=1}^{m} O_{q,i}a_i.$$

Sample *n* element $t_1, ..., t_n \in \mathbb{F}$, and compute $\ell_i(x), r_i(x), o_i(x)$ satisfy:

$$\ell_i(t_q) = L_{q,i}; \ r_i(t_q) = R_{q,i}; \ o_i(t_q) = O_{q,i} \ \forall i \in [m], q \in [n].$$

$$\rightarrow (\sum_{i=1}^m \ell_i(t_q) \cdot a_i) \cdot (\sum_{i=1}^m r_i(t_q) \cdot a_i) = \sum_{i=1}^m o_i(t_q) \cdot a_i.$$

Define $t(X) = \prod_{i=1}^{n} (X - t_i)$, we can have the following formula:

$$\left(\sum_{i=1}^{m} \ell_i(t_q) \cdot a_i\right) \cdot \left(\sum_{i=1}^{m} r_i(t_q) \cdot a_i\right) \equiv \sum_{i=1}^{m} o_i(t_q) \cdot a_i \pmod{t(X)}.$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Schwart-Zippel Lemma

Lemma (Schwart-Zippel Lemma)

Let \mathbb{F} be any field, and let $g: \mathbb{F}^m \to \mathbb{F}$ be a nonzero m-variate polynomial of total degree at most d. Then on any finite set $S \subseteq \mathbb{F}$,

$$Pr[g(x) = 0 \mid x \leftarrow S^m] \le \frac{d}{|S|}.$$

PCP for vanishing polynomial

Goal: Prove $f(x) = 0 \ \forall x \in H$ where $H = \{h_1, ..., h_n\}$.

Trivial solution:

• Send a set H to V and check if $f(h_i) = 0 \ \forall i \in [n]$.

PCP protocol:

• $Z_H(X) = \prod_{i=1}^n (X - h_i)$ is a vanishing polynomial. $\to f(X) = Z_H(X) \cdot t(X)$ where t(X) is a quotient polynomial.

Constant-round PIOP + KZG polynomial commitment

E.g.: Marlin, PlonK.

- Pros: Universal trusted setup.
- Cons: Proofs are 4x-6x larger and P is slower than Groth16, not post-quantum.
- Often uses for small circuit.

Technique for PlonK (high-level):

- Prove for gate constraints and wire constraints (two components of arithmetic circuit).
- Computer program \to Arithmetic circuit \to **PLONK's equations** (proportion with the number of gates) \to Polynomial equations.

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

MIPs and IPs + fast-P polynomial commitments

E.g.: Spartan, Brakedown, Xiphos, Hyrax.

- Pros: Fastest P in literature, plausibly post-quantum, transparent iff PCS.
- Cons: Bigger proof size than Groth16 and Marlin/PlonK.
- Not widely use in practice due to large proof size, which increases the verification cost (a critical factor in current SNARK applications).

Spartan's Technique

FIGURE 1—Overview of our techniques for constructing zkSNARKs.

Any PIOP + FRI polynomial commitment

E.g.: Fractal, Aurora, Virgo, Ligero++.

- Pros: Shortest proofs amongst plausibly post-quantum SNARKs.
- Cons: Slow P, proofs still large $\mathcal{O}(\lambda \log^2) > \mathcal{O}(\log) > \mathcal{O}(1)$.

Outline

- SNARKs and Their Applications
- 2 How to build SNARKs
- 3 Preliminaries
- Taxonomy of SNARKs
 - Non-transparent SNARKs
 - Transparent SNARKs
 - Proof Composition

Promised approach: Composition proof

Take "fast P, big proof" SNARK and compose with small-proof SNARK.

- P does not send "big proof" π .
- \bullet P proves knowing π using small-proof SNARK.
 - \rightarrow Need to reperesent "big proof" SNARK verifier as a circuit to apply small-proof SNARK.
- \Rightarrow Yield the proof size and V time from small-proof SNARK, and achieve the P efficiency of the big-proof SNARK.

If any of SNARK is not transparent, then the result is not transparent. Require transparent for both SNARKs to preserve this property.