Fouriertransformen

Defenition $F[f(t)] = $	$\int_{-\infty}^{\infty} f(x) \cdot e^{-i\omega t} dt$	Beteckning fouriertransfe	orm: $F[f(t)], \hat{f}(\omega)$
Räkneregel	f(t)	$\hat{f}(\omega)$	
Fourierintergral	f(t)	$\int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$	F1
Inversformel	$\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t}$	$\hat{f}(\omega)$	F2
Linearitet	$a \cdot f(t) + b \cdot g(t)$	$a\cdot\hat{f}(\omega)+b\cdot\hat{g}(\omega)$	F3
Skalning	$f(at), (a \neq 0)$	$\frac{1}{ a } \cdot \hat{f}\left(\frac{\omega}{a}\right)$	F4
Teckenbyte	f(-t)	$\hat{f}(-\omega)$	F5
Komplexkonjugat	$\overline{f(t)}$	$\widehat{f}(-\omega)$	F6
Tidsförskjutning	f(t-T)	$\hat{f}(\omega)e^{-i\omega T}$	F7
Frekvensförskjutning	$f(t)e^{i\Omega t}$	$\hat{f}(\omega - \Omega)$	F8
Ampl.modulering	$f(t)\cos(\Omega t)$	$\frac{\hat{f}(\omega - \Omega) + \hat{f}(\omega + \Omega)}{2}$	F9a
Ampl.modulering	$f(t)\sin(\Omega t)$	$\frac{\hat{f}(\omega - \Omega) - \hat{f}(\omega + \Omega)}{2i}$	F9b
Symmetri	$\hat{f}(t)$	$2\pi f(-\omega)$	F10
Tidsderivering	D[f(t)]	$i\omega\hat{f}\left(\omega ight)$	F11
Frekvensderivering	$-it \cdot f(t)$	$D[\;\hat{f}\left(\omega ight)\;]$	F12
Tidsfaltning	f(t) * g(t)	$\hat{f}(\omega) \cdot \hat{g}(\omega)$	F13
Frekvensfaltning	$f(t) \cdot g(t)$	$\frac{\hat{f}(\omega) * \hat{g}(\omega)}{2\pi}$	F14
Transformpar			
Deltafunktion	$\delta(t)$	1	F15
Derivatan av delta.funk	$D^{(n)}[\;\delta(t)\;]$	$(i\omega)^n$	F16
Exponential	$\theta(t)e^{-at}$	$\frac{1}{a+i\omega},(a>0)$	F17
Exponential	$(1-\theta(t))e^{at}$	$\frac{1}{a-i\omega}, (a>0)$	F18
Exponential	$e^{-a t }$, $(a>0)$	$\frac{2a}{a^2 + \omega^2}$	F19
Stegfunktion	$\Theta(t)$	$\pi \delta(\omega) + \frac{1}{i \omega}$	F20
Konstant	1	$2\pi\delta(\omega)$	F21
-	$\frac{\sin(\Omega t)}{\pi t}$	$\theta(\omega+\Omega){-}\theta(\omega{-}\Omega)$	F22
Gaussfunktion	$\frac{e^{-\hat{c}'/4A}}{\sqrt{4\pi A}}$	$e^{-A\omega^2}$, $(A>0)$	F23