

# **Autonomous Vehicle Simulation (AVS) Laboratory**

## **AVS-Sim Technical Memorandum**

Document ID: AVS-SIM-inertial3D

#### **GUIDANCE MODULE TO PERFORM AN INERTIALLY FIXED POINTING**

| Prepared by | M. Cols |
|-------------|---------|
|-------------|---------|

Status: Initial Version

#### Scope/Contents

Generate the reference attitude trajectory for a general 3D inertial pointing. A corrected body frame will align with the desired reference frame.

| Rev:  | Change Description | Ву      |
|-------|--------------------|---------|
| Draft | initial copy       | M. Cols |

Doc. ID: AVS-Sim-inertial3D Page 1 of 2

### **Contents**

| 1 | Module Input and Output    | 1 |
|---|----------------------------|---|
| 2 | Introduction               | 1 |
| 3 | Reference Frame Generation | 1 |

### 1 Module Input and Output

Table 2 shows the input Configuration Data of the module Inertial 3D Point.

Table 2: Input Configuration Data

| Name             | Туре      | Length | Description                                     |
|------------------|-----------|--------|-------------------------------------------------|
| $\sigma_{R_0/N}$ | double [] | 3      | MRP attitude set of the desired reference frame |
|                  |           |        | with respect to the inertial frame .            |

Table 3 shows the Attitude Reference output message of the module Inertial 3D Point.

Table 3: Output Attitude Reference Message

| Name                               | Туре      | Length | Description                                         |
|------------------------------------|-----------|--------|-----------------------------------------------------|
| $\sigma_{R/N}$                     | double [] | 3      | MRP attitude set of the reference frame with        |
|                                    |           |        | respect to the inertial frame.                      |
| $\mathcal{N}_{\omega_{R/N}}$       | double [] | 3      | Angular rate vector of the reference frame with     |
| ,                                  |           |        | respect to the inertial expressed in inertial frame |
|                                    |           |        | components.                                         |
| $\mathcal{N}_{\dot{\omega}_{R/N}}$ | double [] | 3      | Angular acceleration vector of the reference        |
| ,                                  |           |        | frame with respect to the inertial expressed in     |
|                                    |           |        | inertial frame components.                          |

Doc. ID: AVS-Sim-inertial3D Page 2 of 2

### 2 Introduction

This technical note discusses the guidance mathematics to compute a reference frame  $\mathcal{R}$  that is aligned the with an inertially fixed frame  $\mathcal{R}_0$ , as shown in Figure 1.



**Fig. 1:** Illustration of the input inertially fixed frame  $\mathcal{R}_0:\{\hat{e}_1,\hat{e}_2,\hat{e}_3\}$ , the generated reference frame  $\mathcal{R}:\{\hat{r}_1,\hat{r}_2,\hat{r}_3\}$  and the inertial frame  $\mathcal{N}:\{\hat{n}_1,\hat{n}_2,\hat{n}_3\}$ 

#### 3 Reference Frame Generation

The modules requires the desired reference orientation in terms of the MRP set  $\sigma_{R_0N}$ . This input is only set once and does not have to be changed. Let us designate  $\mathcal{R}$  as the output generated reference frame. Since the fixed-pointing is inertial:

$$\sigma_{RN} = \sigma_{R_0N} \tag{1}$$

$$\omega_{RN} = \dot{\omega}_{RN} = 0 \tag{2}$$

### **REFERENCES**