that is, $f(\ldots, x_i, x_{i+1}, \ldots) = -f(\ldots, x_{i+1}, x_i, \ldots)$.

(2) If $x_i = x_j$ and i and j are not adjacent, we can interchange x_i and x_{i+1} , and then x_i and x_{i+2} , etc, until x_i and x_j become adjacent. By (1),

$$f(\ldots, x_i, \ldots, x_j, \ldots) = \epsilon f(\ldots, x_i, x_j, \ldots),$$

where $\epsilon = +1$ or -1, but $f(\ldots, x_i, x_j, \ldots) = 0$, since $x_i = x_j$, and (2) holds.

(3) follows from (2) as in (1). (4) is an immediate consequence of (2). \Box

Proposition 7.3 will now be used to show a fundamental property of alternating multilinear maps. First we need to extend the matrix notation a little bit. Let E be a vector space over K. Given an $n \times n$ matrix $A = (a_{ij})$ over K, we can define a map $L(A): E^n \to E^n$ as follows:

$$L(A)_1(u) = a_{11}u_1 + \dots + a_{1n}u_n,$$

 \dots
 $L(A)_n(u) = a_{n1}u_1 + \dots + a_{nn}u_n$

for all $u_1, \ldots, u_n \in E$ and with $u = (u_1, \ldots, u_n)$. It is immediately verified that L(A) is linear. Then given two $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, by repeating the calculations establishing the product of matrices (just before Definition 3.12), we can show that

$$L(AB) = L(A) \circ L(B).$$

It is then convenient to use the matrix notation to describe the effect of the linear map L(A), as

$$\begin{pmatrix} L(A)_1(u) \\ L(A)_2(u) \\ \vdots \\ L(A)_n(u) \end{pmatrix} = \begin{pmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n\,1} & a_{n\,2} & \dots & a_{n\,n} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Lemma 7.4. Let $f: E \times ... \times E \to F$ be an n-linear alternating map. Let $(u_1, ..., u_n)$ and $(v_1, ..., v_n)$ be two families of n vectors, such that,

$$v_1 = a_{11}u_1 + \dots + a_{n1}u_n,$$

$$\dots$$

$$v_n = a_{1n}u_1 + \dots + a_{nn}u_n.$$

Equivalently, letting

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$