Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9a

Purification used in Initial Toxicology study

Cell Lysis by Shear

1

Tangential Flow Filtration, Polyethersulfone Membrane (100,000 NMWCO)

Tangential Flow Filtration,
Concentration
Polyethersulfone Membrane (5,000
NMWCO)

Anion Exchange Chromatography, Elution with Sodium Chloride

Type I, Hydroxyapatite, Elution with Sodium Phosphate

Tangential Flow Filtration, Polyethersulfone Membrane (30,000 NMWCO)

Tangential Flow Filtration, Concentration/Buffer Exchange Polyethersulfone Membrane (5,000 NMWCO)

Fig. 9b

Purification used in first cGMP Manufacturing Run

Cell Lysis by Shear

Tangential Flow Filtration, Polyethersulfone Membrane (100,000 NMWCO)

Tangential Flow Filtration, Concentration /Diafiltration Polyethersulfone Membrane (5,000 NMWCO)

Anion Exchange Chromatography, Elution with Sodium Chloride

Tangential Flow Filtration, Concentration/Buffer exchange Polyethersulfone Membrane (5,000 NMWCO)

Type I, Hydroxyapatite, Elution with Sodium Phosphate

Copper Immobilized Metal Affinity Chromatography

Filtration through SartoBind Q Anion Exchange Membrane

Tangential Flow Filtration, Concentration/Buffer Exchange Polyethersulfone Membrane (5,000 NMWCO)

Fig. 10

Fig. 11a

Fig. 11b

Fig. 12

Fig. 13a

Fig. 13b

Fig. 14a

Fig. 14b

Fig. 15

Fig. 16

Fig. 17

4 Parameters y = (a-d)/(1+(x/c)*b) + d s=1.047 b=0.9322 c=40.73 d=0.06497 R=0.9997 R*=0.9994 en=0.007885

Fig. 18

Fig. 19

Fig. 20a

1 2 3 4 5 6 7 8 9

Fig. 20b

1 2 3 4 5 6 7

Fig. 21

9

7

11

5

1

3

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

GAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTC GTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAA TGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT TCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATT GGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATC TTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAAAGAGTTT ACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCATGGGGAGACCCCACACTACCATCGGCGCTACGGCGTTTCACTTCTGAGTTC AGTCGACCTGCAGGCATGCCAGCTTCTGGTTCGTCGGCTGGGTGATGGCGTCGGTTTTGGCCGGCGGCGTCGGCGGATCGCCAGCGCGAAGCAACT TGGGATGAAAAGGCGAACTCGCCGGTGGTCTACCGCTGCCCGAAGGCGTACCTGCTCAACAGGTTCGCATCCGCGCCCTTCGTGCCCTGGCCGGACT ACACCGAGGGGGAAAGCGAGGATCTAGGTAGGGCGCTCGCAGCGGCCCTGCGGGACGCGAAAAGGTGAGAAAAGCCGGGCACTGCCCGGCTTTATT TTTGCTGCTGCGCGTTCCAGGCCGCCCACACTCGTTTGACCTGGCTCGGGCTGCATCCGACCAGCTTGGCCGTCTTGGCAATGCTCGATCCGCCGGAG TCGGCGGCCAGCTCCGACAGGTCCACCACGCCAGGCACGGCCAGCTTGGCCCCTTTGGCCCGGATCGACGCAACCAGGCGCTCGGCCTCGGCCAACG GCAAGCGGCTGATGCGGTCGATCTTCTCCGCAACGACGACTTCACCAGGTTGCAGGTCCGCGATCATGCGCAGCAGCTCGGGCCGGTCGGCCGGTGC GCCGGACGCCTTCTCGCGGTAGATGCCGGCGACGTAGTACCCGGCGGCCCGCGTGGCCGCTACAAGGCTCTCCTGGCGTTCAAGATTCTGCTCGTCCG TACTGGCGCGCAGGTAGATGCGGGCGACCTTCAACCTTCGTCCCTCCGGTTGTTGCTCTCCGCGTCGCCATTTCCACGGCTCGACGGCGTGCGGATCGG ACCAGAGGCCGACGCGCTTGCCTCGCGCCTCCTGTTCGAGCCGCAGCATTTCAGGGTCGGCCGCGGCCGTGGAAGCGATAGGCCACGCCATGCC TCGGTGTCCTTCTCGTCGACCAGGACGTGCCGGCAAAACACCATGCCGGCCAGCGCCTGGCGCACGTTCGCCGAAGGCTTGCCGCTTTTCCGGCGC GTCAATGTCCACCAGGCGCACGGCACCGGCTGCTTGTCTACCAGCACGTCGATGGTGCGCGTCGATGATGCGCACGACCTCGCCGCGCAGCTCG GCCCATGCCGGCGAGGCAACGACCAGGACGGCCAGCGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCTTCATGCGTGGCCCCATTGCTGATG ATCGGGGTACGCCAGGTGCACCACTGCATCGAAATTGGCCTTGCAGTAGCCTCCAGCGCCACCCGCGAACGCCGGCAAAGGTACTCGACC AGGGCAAGACCATTAAGCAATACGCCCTCGAACGTCTGTTCCCCGGTGACGCTGATGCCGATCAGGCATGAGGAACTGAAAACCATGCTGGGGAACCGCATCAACGATGGCGGGAACTGAAAACCATGCTGGGGAACCGCATCAACGATGGGCTTGCCGGCAACAAGAGCGTCGCGAAAATTCTTGATGAAGAACTCAGCGGGGGATCGCGCTTGACGGCCTACA GGAACAGGGCATAGCCAGGCTTGCCGCCGGCGAAGGCCCGTTTAAGGACATGAGCGAACTCTTTCCCGCGCTTGCGGATGGCCCGCTGCGAACACCAC TACGTTTTTTGCCTGCCGCGTGCGGGCGAACCCGCGTTGGTCGTGGCGATCCTGCATGAGCGCATGGACCTCATGACGCGACTTGCCGACAGGCTCAA GGGCTGATTTCAGCCGCTAAAAATCGCGCCACTCACAACGTCCTGATGGCGTACTTACCCAAAGAACAGCTAGGAGAATCATTTATGCTCAGCACAC TTCCACAAGCTCATGCAACTTTCTTGAACCGCATCCGCGATGCGGTCGCTTCCGATGTTCGCTTCCGCGCTCTTCTGATCGGCGGCTCTTACGTTCACG GAGGACTCGATGAGCACTCCGATTTGGATTTCGACATCGTTGTTGAGGACAACTGCTACGCAGATGTCTTGTCTACACGCAAGGATTTTGCCGAGGCA CTGCCCGGCTTCCTCAACGCGATAAGCTGGCTGGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTTGCTGGCGCCCT ATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGG GGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGGGGTGCTCAACGGCCTCAACCTACTGCGCTGCTTCCTAATGCAGGAGT CGCATAAGGGAGAGCGTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTAT GACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCG GCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATC ${\tt GCGGCGCATCTCGGGCCAGGGTTGGGCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTG}$ GTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTT CTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCA AGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGA CGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAAC CTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCG GGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCAC

Fig. 31

Met Ala Ala Glu Ile Cys Pro Ser Phe Gln Arg Val Ile Glu Thr Leu Leu Met Asp Thr Pro Ser Ser Tyr Glu Ala Ala Met Glu Leu Phe Ser Pro Asp Gln Asp Met Arg Glu Ala Gly Ala Gln Leu Lys Lys Leu Val Asp Thr Leu Pro Gln Lys Pro Arg Glu Ser Ile Ile Lys Leu Met Glu Lys Ile Ala Gln Ser Ser Leu Cys Asn