UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS I INFORME No. 4

TEOREMA DE THÉVENIN

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 3E.

Fecha de entrega: 14 de Mayo del 2024.

1. Cálculos previos

Pre-informe

1) Encuentre el equivelente Thévenin pere el circuito de la figura, vista desde les terminales A-B. Registre los resultados en la tabla.

- 2) Mediente simulación encuentre el equivalente Thévenin del circuito visto desde les terminales A-B. Registre los resultados en la tabla.
- 3) Encuentre los velores de VI e II en el circuito de la figura, para velores de la resistencia de carga RI=500 [B] y 1[KB]. Registro los resultados en la tabla.

- 4) Mediente simulación, encuentre los valores de VI e II en el circuito de la figura, para valores de la resistencia de carga RI = 500 [80] y 1 [80]. Registro los resultados en la tabla.
- 5) Mediante simulación, encuentre los valores de Vi e II en el circuito de la figura, para valores de la resistencia de carga RI= 500 [86] y 1[68]; emplee los valores de VTH y RTH obtenidos en la pregunta 2. Registre los resultados en la tabla.

2. Simulación

Se utilizó el software *Quite Universal Circuit Simulator*. para simular los circuitos, estos pueden verse en la figura (1), (2) y (3).

Figura 1: Simulación para el calculo del equivalente de *Thévenin*.

Figura 2: Simulación del circuito de practica.

Figura 3: Simulación del circuito con el equivalente de *Thévenin*.

3. Tablas y mediciones

En la figura (4), se adjunta la hoja de resultados provista en la guía de laboratorio, rellenada con la información teórica, simulada y las mediciones realizadas en laboratorio.

PRÁCTICA 4	MART ES	15 :02	3E Grupo	30 104 124 Fecha	5 / ZU Gestión	
CABALLERO BURGOA		CARLOS	EDU	ARDO		
			No	ombre(s)		VoBo Docente Laboratoria

	V ₁	Rasso	Riona	R _{1KO}	RL	V.	l,	V _{TH}	R _{TH}
TEÓRICO 120 V					500 Ω	36.923	0.074	80	583.33
	120 V	250 Ω	500 Ω	1000 Ω	1000 Ω	50.526	0.05	80	000.00
SIMULACIÓN 120 V					500 Ω	36.9	0.0738	9m =	583,33
	120 V	250 Ω	500 Ω	1000 Ω	1000 Ω	50.5	0.05 05	80	

Tabla 4.1.

R ₂₅₀₀	R _{soup}	R _{tiko}	V ₁	R _L	V _L	l.
248	521	1042	120	528 500	37.4	70.9
			120	1041 ^{1k}	48.5	52.6

Tabla 4.3.

El voltaje de Thévenin es el voltaje de circuito abierto (V., visto desde las terminales A-B	V _{TH} =	80.1
Sustituyendo la fuente de voltaje por un corto circuito la resistencia de Thévenin es la resistencia vista desde A-B	R _{TH} =	597

Tabla 4.4.

	R _L	V _t	1
LABORATORIO	521 ⁵⁰⁰	38.7	73.2
LABORATORIO	1042 1k	49.9	53.9

Tabla 4.5.

Figura 4: Tabla de resultados.

4. Cuestionario

1. A partir del equivalente *Thévenin* obtenido en el laboratorio y utilizando la transformación de fuentes, encuentre el equivalente de *Norton*.

$$I_N = \frac{V_{TH}}{R_{TH}} = \frac{80.1[V]}{597[\Omega]} = 0.13[A]$$

2. Determine el equivalente *Thévenin* viste desde las terminales A-B del circuito mostrado en la figura a continuación. Trabaje con la fuente V_0 y su resistencia interna R_0 en forma literal.

Calculando la resistencia de *Thévenin*:

Aplicando una transformación delta-estrella:

$$R_{1} = \frac{2R_{o} 4R_{o}}{2R_{o} + 4R_{o} + R_{o}} = \frac{8}{7}R_{o}$$

$$R_{2} = \frac{2R_{o} 1R_{o}}{2R_{o} + 4R_{o} + R_{o}} = \frac{2}{7}R_{o}$$

$$R_{3} = \frac{4R_{o} 1R_{o}}{2R_{o} + 4R_{o} + R_{o}} = \frac{4}{7}R_{o}$$

$$R_4 = \frac{2}{7}R_o + 3R_o = \frac{23}{7}R_o$$
$$R_5 = \frac{4}{7}R_o + 6R_o = \frac{46}{7}R_o$$

$$R_6 = \frac{\left(\frac{23}{7}R_o\right)\left(\frac{46}{7}R_o\right)}{\frac{23}{7}R_o + \frac{46}{7}R_o} = \frac{46}{21}R_o$$

$$\begin{array}{cccc}
A & & \frac{8}{7}R_o & & \frac{46}{21}R_o & & B \\
 & & & & & & & & & & B
\end{array}$$

$$R_{TH} = \frac{8}{7}R_o + \frac{46}{21}R_o = \frac{10}{3}R_o$$

Calculando el voltaje de $Th\'{e}venin$, por el método de voltajes de nodos, usando a B como voltaje de referencia:

Nodo A:

$$\frac{V_A - V_C}{2R_o} + \frac{V_A - V_D}{4R_o} = 0$$

Nodo
$$C$$
:
$$\frac{V_C}{3R_o} + \frac{V_C - V_A}{2R_o} + \frac{V_C - (V_D + V_o)}{R_o} = 0$$
 Nodo D :
$$\frac{V_D}{6R_o} + \frac{V_D - V_A}{4R_o} + \frac{(V_D + V_o) - V_C}{R_o} = 0$$

$$\begin{cases} (\frac{1}{2R_o} + \frac{1}{4R_o})V_A + (-\frac{1}{2R_o})V_C + (-\frac{1}{4R_o})V_D = 0 \\ (-\frac{1}{2R_o})V_A + (\frac{1}{3R_o} + \frac{1}{2R_o} + \frac{1}{R_o})V_C + (-\frac{1}{R_o})V_D = \frac{V_o}{R_o} \\ (-\frac{1}{4R_o})V_A + (-\frac{1}{R_o})V_C + (\frac{1}{6R_o} + \frac{1}{4R_o} + \frac{1}{R_o})V_D = -\frac{V_o}{R_o} \end{cases}$$

A partir del sistema de ecuaciones, se calcula V_A :

$$V_A = \frac{\begin{vmatrix} 0 & -1/2 & -1/4 \\ V_o & 11/6 & -1 \\ -V_o & -1 & 17/12 \end{vmatrix}}{\begin{vmatrix} 3/4 & -1/2 & -1/4 \\ -1/2 & 11/6 & -1 \\ -1/4 & -1 & 17/12 \end{vmatrix}} = \frac{0 - \frac{1}{2}V_o + \frac{1}{4}V_o - 0 + \frac{17}{24}V_o - \frac{11}{24}V_o}{\frac{187}{96} - \frac{1}{8} - \frac{1}{8} - \frac{11}{96} - \frac{17}{48} - \frac{3}{4}} = \frac{0}{\frac{23}{48}} = 0$$

Por tanto no existe una diferencia de potencial entre los puntos A y B.

3. Demuestre el teorema de Millman.

Se calcula el voltaje de *Thévenin* por medio del método de voltajes de nodo:

$$\frac{V_{TH} - V_1}{R_1} + \frac{V_{TH} - V_2}{R_2} + \frac{V_{TH} - V_3}{R_3} + \dots + \frac{V_{TH} - V_N}{R_N} = 0$$

$$\frac{V_{TH}}{R_1} - \frac{V_1}{R_1} + \frac{V_{TH}}{R_2} - \frac{V_2}{R_2} + \frac{V_{TH}}{R_3} - \frac{V_3}{R_3} + \dots + \frac{V_{TH}}{R_N} - \frac{V_N}{R_N} = 0$$

$$\frac{V_{TH}}{R_1} + \frac{V_{TH}}{R_2} + \frac{V_{TH}}{R_3} + \dots + \frac{V_{TH}}{R_N} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_N}{R_N}$$

$$V_{TH} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N} \right) = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_N}{R_N}$$

$$V_{TH} = \frac{\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_N}{R_N}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

5. Conclusiones

Se demostró experimentalmente el teorema de *Thévenin*, mediante la medición de circuitos tanto en laboratorio, como mediante una simulación.

Adicionalmente se analizó el puente de *Wheatstone* y sus condiciones de equilibrio, útil para la medición de resistencias.