THU-70250043-0, Pattern Recognition (Spring 2021)

Homework: 2

Density Estimation

Lecturer: Changshui Zhang zcs@mail.tsinghua.edu.cn

Hong Zhao vzhao@tsinghua.edu.cn

Student: Jingxuan Yang yangjx20@mails.tsinghua.edu.cn

Maximum likelihood and Bayesian parameter estimation

1. Let x have an exponential density

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x}, & x \geqslant 0\\ 0, & \text{otherwise.} \end{cases}$$
 (1)

1.1 Plot $p(x|\theta)$ versus x for $\theta = 1$. Plot $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$ for x = 2.

解: 分别如图 1 和图 2 所示.

1.2 Suppose that n samples x_1, \dots, x_n are drawn independently according to $p(x|\theta)$. Calculate the maximum likelihood estimate for θ .

 \mathbf{R} : θ 的最大似然估计应该是下面方程的解

$$\nabla_{\theta} H(\theta) = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k | \theta) = 0$$
 (2)

由指数分布可知

$$\ln p(x_k|\theta) = \ln \theta - \theta x_k, \quad \forall \ k = 1, 2, \cdots, n$$
(3)

其梯度为

$$\nabla_{\theta} \ln p(x_k | \theta) = \frac{1}{\theta} - x_k, \quad \forall \ k = 1, 2, \cdots, n$$
(4)

因此 θ 的最大似然估计满足

$$\sum_{k=1}^{n} \left(\frac{1}{\hat{\theta}} - x_k \right) = 0 \tag{5}$$

故 θ 的最大似然估计为

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} x_k} \tag{6}$$

2. The purpose of this problem is to derive the Bayesian classifier for the d-dimensional multivariate Bernoulli case. Let x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution.

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i}, \qquad (7)$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)^T$ is an unknown parameter vector, θ_i being the probability that $x_i = 1$. Let \mathcal{D} be a set of n samples $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$ independently drawn according to $p(\boldsymbol{x}|\boldsymbol{\theta})$. Denote $P(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n|\boldsymbol{\theta})$ as $P(\mathcal{D}|\boldsymbol{\theta})$.

2.1 Calculate the maximum likelihood estimate for θ .

 \mathbf{M} : $\boldsymbol{\theta}$ 的最大似然估计应该是下面方程的解

$$\nabla_{\boldsymbol{\theta}} H(\boldsymbol{\theta}) = \sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{x}_k | \boldsymbol{\theta}) = \mathbf{0}$$
(8)

由分布函数可知

$$\ln p(\boldsymbol{x}_k|\boldsymbol{\theta}) = \sum_{i=1}^d \left[x_{k,i} \ln \theta_i + (1 - x_{k,i}) \ln(1 - \theta_i) \right], \quad \forall \ k = 1, 2, \dots, n$$
(9)

其对 θ_i 的梯度为

$$\nabla_{\theta_i} \ln p(\boldsymbol{x}_k | \boldsymbol{\theta}) = \frac{x_{k,i}}{\theta_i} - \frac{1 - x_{k,i}}{1 - \theta_i}, \quad \forall k = 1, 2, \dots, n, \ \forall i = 1, 2, \dots, d$$
(10)

因此

$$\sum_{k=1}^{n} \left(\frac{x_{k,i}}{\theta_i} - \frac{1 - x_{k,i}}{1 - \theta_i} \right) = 0, \quad \forall i = 1, 2, \dots, d$$
 (11)

故 θ_i 的最大似然估计满足

$$(1 - \hat{\theta}_i) \sum_{k=1}^n x_{k,i} = \hat{\theta}_i \sum_{k=1}^n (1 - x_{k,i}) = \hat{\theta}_i \left(n - \sum_{k=1}^n x_{k,i} \right), \quad \forall i = 1, 2, \cdots, d$$
(12)

化简得

$$\hat{\theta}_i = \frac{1}{n} \sum_{k=1}^n x_{k,i}, \quad \forall i = 1, 2, \dots, d$$
 (13)

写成向量形式为

$$\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{x}_k \tag{14}$$

2.2 Assuming a uniform a priori distribution for θ , $0 \le \theta_i \le 1$, and using the identity

$$\int_0^1 \theta^m (1 - \theta)^n d\theta = \frac{m! n!}{(m+n+1)!},$$
(15)

calculate the probability $p(\boldsymbol{\theta}|\mathcal{D})$.

解: 令 s 表示 n 个样本的和, 即

$$s = \sum_{k=1}^{n} x_k \tag{16}$$

则 $P(\mathcal{D}|\boldsymbol{\theta})$ 可以计算为

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{k=1}^{n} p(\boldsymbol{x}_{k}|\boldsymbol{\theta})$$

$$= \prod_{k=1}^{n} \prod_{i=1}^{d} \theta_{i}^{x_{k,i}} (1 - \theta_{i})^{1 - x_{k,i}}$$

$$= \prod_{i=1}^{d} \theta_{i}^{s_{i}} (1 - \theta_{i})^{n - s_{i}}$$

$$(17)$$

所以 $p(\mathcal{D})$ 为

$$p(\mathcal{D}) = \int_{[0,1]^d} P(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \int_0^1 \int_0^1 \cdots \int_0^1 \prod_{i=1}^d \theta_i^{s_i} (1 - \theta_i)^{n - s_i} d\theta_1 d\theta_2 \cdots d\theta_d$$

$$= \prod_{i=1}^d \frac{s_i! (n - s_i)!}{(n+1)!}$$
(18)

所以由 Bayes 公式可得概率 $p(\theta|D)$ 为

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\boldsymbol{\theta}, \mathcal{D})}{p(\mathcal{D})}$$

$$= \frac{P(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

$$= \prod_{i=1}^{d} \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1-\theta_i)^{n-s_i}$$
(19)

2.3 Integrate the product $p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})$ over $\boldsymbol{\theta}$ to obtain the desired probability $p(\mathbf{x}|\mathcal{D})$.

解: 注意到 $x_i \in \{0,1\}$ 则有

$$p(\boldsymbol{x}|\mathcal{D}) = \int_{[0,1]^d} p(\boldsymbol{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

$$= \int_{[0,1]^d} \prod_{i=1}^d \theta_i^{x_i} (1 - \theta_i)^{1-x_i} \prod_{i=1}^d \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1 - \theta_i)^{n-s_i} d\boldsymbol{\theta}$$

$$= \int_0^1 \int_0^1 \cdots \int_0^1 \prod_{i=1}^d \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i+x_i} (1 - \theta_i)^{n+1-s_i-x_i} d\theta_1 d\theta_2 \cdots d\theta_d$$

$$= \prod_{i=1}^d \frac{(n+1)!}{s_i!(n-s_i)!} \frac{(s_i+x_i)!(n+1-s_i-x_i)!}{(n+2)!}$$

$$= \prod_{i=1}^d \frac{1}{n+2} \frac{(s_i+x_i)!}{s_i!} \frac{(n+1-s_i-x_i)!}{(n-s_i)!}$$

$$= \prod_{i=1}^d \frac{1}{n+2} (s_i+x_i)^{x_i} (n+1-s_i-x_i)^{1-x_i}, \quad x_i \in \{0,1\}$$

$$= \prod_{i=1}^d \frac{1}{n+2} (s_i+1)^{x_i} (n+1-s_i)^{1-x_i}, \quad x_i \in \{0,1\}$$

$$= \prod_{i=1}^d \frac{1}{n+2} (s_i+1)^{x_i} (n+1-s_i)^{1-x_i}, \quad x_i \in \{0,1\}$$

$$= \prod_{i=1}^d \frac{1}{n+2} (s_i+1)^{x_i} (1 - \frac{s_i+1}{n+2})^{1-x_i}$$

2.4 If we think of obtaining $p(\boldsymbol{x}|\mathcal{D})$ by substituting an estimate $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}$ in $p(\boldsymbol{x}|\boldsymbol{\theta})$, what is the effective Bayesian estimate for $\boldsymbol{\theta}$?

解: 已知

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} \left(1 - \theta_i\right)^{1 - x_i}$$
(21)

且由上题有

$$p(\boldsymbol{x}|\mathcal{D}) = \prod_{i=1}^{d} \left(\frac{s_i+1}{n+2}\right)^{x_i} \left(1 - \frac{s_i+1}{n+2}\right)^{1-x_i}$$
(22)

根据以上两式,不难看出参数 θ 的 Bayes 估计为

$$\hat{\theta}_B = \frac{s+1}{n+2} = \frac{1}{n+2} \left(\sum_{k=1}^n x_k + 1 \right)$$
 (23)

2.5 When do maximum likelihood estimation and Bayesian estimation methods differ. (Describe in your own words, not limited to the above examples.)

解: 当训练样本数无穷多的时候, 最大似然估计与 Bayes 估计的结果是一样的, 否则, 他们的结果是不同的.

3. Prove the invariance property of maximum likelihood estimators, i.e., that if $\hat{\theta}$ is the maximum likelihood estimate of θ , then for any differentiable function $\tau(\cdot)$, the maximum likelihood estimate of $\tau(\theta)$ is $\tau(\hat{\theta})$.

证明: 对 $\tau(\theta)$, 文献 [1] 基于似然函数 $L(\theta|x)$ 定义导出似然函数 (induced likelihood function) L^* 为

$$L^*(\eta|x) = \sup_{\{\theta: \tau(\theta) = \eta\}} L(\theta|x)$$
 (24)

令 η̂ 表示使得导出似然函数取到最大值的变量, 即

$$\hat{\eta} = \underset{\eta}{\operatorname{argmax}} L^*(\eta|x) \tag{25}$$

所以由导出似然函数的定义和最大似然估计的定义可得

$$L^*(\hat{\eta}|x) = \sup_{\eta} \sup_{\{\theta: \tau(\theta) = \eta\}} L(\theta|x)$$

$$= \sup_{\theta} L(\theta|x)$$

$$= L(\hat{\theta}|x)$$
(26)

又由 $\hat{\theta}$ 是 θ 的最大似然估计可得

$$L(\hat{\theta}|x) = \sup_{\{\theta:\tau(\theta)=\tau(\hat{\theta})\}} L(\theta|x)$$

$$= L^*[\tau(\hat{\theta})|x]$$
(27)

则

$$L^*(\hat{\eta}|x) = L^*[\tau(\hat{\theta})|x]$$
(28)

因此 $\tau(\hat{\theta})$ 是 $\tau(\theta)$ 的最大似然估计.

Nonparametric density estimation

4. Consider a normal $p(x) \sim N(\mu, \sigma^2)$ and Parzen-window function $\varphi(x) \sim N(0, 1)$. Show that the Parzen-window estimate

$$p_n(x) = \frac{1}{nh_n} \sum_{i=1}^n \varphi\left(\frac{x - x_i}{h_n}\right)$$
 (29)

has the following properties for small h_n :

4.1 $\bar{p}_n(x) \sim N(\mu, \sigma^2 + h_n^2)$.

解: 令

$$\theta^{2} \triangleq \frac{1}{\frac{1}{h_{n}^{2}} + \frac{1}{\sigma^{2}}} = \frac{h_{n}^{2} \sigma^{2}}{h_{n}^{2} + \sigma^{2}}$$
(30)

且

$$\alpha \triangleq \theta^2 \left(\frac{x}{h_n^2} + \frac{\mu}{\sigma^2} \right) \tag{31}$$

则期望值为

$$\begin{split} \bar{p}_{n}(x) &= \mathbb{E}[p_{n}(x)] \\ &= \frac{1}{nh_{n}} \sum_{i=1}^{n} \mathbb{E}\left[\varphi\left(\frac{x-x_{i}}{h_{n}}\right)\right] \\ &= \frac{1}{h_{n}} \int_{-\infty}^{\infty} \varphi\left(\frac{x-v}{h_{n}}\right) p(v) dv \\ &= \frac{1}{h_{n}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-v}{h_{n}}\right)^{2}\right] \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{v-\mu}{\sigma}\right)^{2}\right] dv \\ &= \frac{1}{2\pi h_{n}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x^{2}}{h_{n}^{2}} + \frac{\mu^{2}}{\sigma^{2}}\right)\right] \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2}\left[v^{2}\left(\frac{1}{h_{n}^{2}} + \frac{1}{\sigma^{2}}\right) - 2v\left(\frac{x}{h_{n}^{2}} + \frac{\mu}{\sigma^{2}}\right)\right]\right\} dv \\ &= \frac{1}{2\pi h_{n}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x^{2}}{h_{n}^{2}} + \frac{\mu^{2}}{\sigma^{2}}\right) + \frac{1}{2}\frac{\alpha^{2}}{\theta^{2}}\right] \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2}\left(\frac{v-\alpha}{\theta}\right)^{2}\right] dv \\ &= \frac{\sqrt{2\pi}\theta}{2\pi h_{n}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x^{2}}{h_{n}^{2}} + \frac{\mu^{2}}{\sigma^{2}} - \frac{\alpha^{2}}{\theta^{2}}\right)\right] \\ &= \frac{1}{\sqrt{2\pi}h_{n}\sigma} \frac{h_{n}\sigma}{\sqrt{h_{n}^{2} + \sigma^{2}}} \exp\left[-\frac{1}{2}\left(\frac{x^{2}\sigma^{2} + h_{n}^{2}\mu^{2}}{h_{n}^{2}\sigma^{2}} - \frac{h_{n}^{2}\sigma^{2}}{h_{n}^{2}\sigma^{2}} \frac{(x\sigma^{2} + h_{n}^{2}\mu)^{2}}{(h_{n}^{2}\sigma^{2})^{2}}\right)\right] \\ &= \frac{1}{\sqrt{2\pi}\sqrt{h_{n}^{2} + \sigma^{2}}} \exp\left[-\frac{1}{2}\frac{(x^{2}\sigma^{2} + h_{n}^{2}\mu^{2})(h_{n}^{2} + \sigma^{2}) - (x\sigma^{2} + h_{n}^{2}\mu^{2})}{h_{n}^{2}\sigma^{2}(h_{n}^{2} + \sigma^{2})}\right] \\ &= \frac{1}{\sqrt{2\pi}\sqrt{h_{n}^{2} + \sigma^{2}}} \exp\left[-\frac{1}{2}\frac{x^{2}\sigma^{2}h_{n}^{2} + \mu^{2}h_{n}^{2}\sigma^{2} - 2x\mu h_{n}^{2}\sigma^{2}}{h_{n}^{2}\sigma^{2}(h_{n}^{2} + \sigma^{2})}\right] \\ &= \frac{1}{\sqrt{2\pi}\sqrt{h_{n}^{2} + \sigma^{2}}} \exp\left[-\frac{1}{2}\frac{x^{2}\sigma^{2}h_{n}^{2} + \mu^{2}h_{n}^{2}\sigma^{2} - 2x\mu h_{n}^{2}\sigma^{2}}{h_{n}^{2}\sigma^{2}(h_{n}^{2} + \sigma^{2})}\right] \\ &= \frac{1}{\sqrt{2\pi}\sqrt{h_{n}^{2} + \sigma^{2}}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sqrt{h_{n}^{2} + \sigma^{2}}}\right)^{2}\right] \end{aligned}$$

因此

$$\bar{p}_n(x) \sim N(\mu, \sigma^2 + h_n^2) \tag{33}$$

4.2 $\operatorname{Var}[p_n(x)] \simeq \frac{1}{2nh_n\sqrt{\pi}}p(x)$.

解:由 4.1 可知,当 h_n 充分小时,有

$$\bar{p}_n(x) \sim N(\mu, \sigma^2)$$
 (34)

即有

$$\frac{1}{h_n} \mathbb{E}\left[\varphi\left(\frac{x-v}{h_n}\right)\right] \simeq p(x) \tag{35}$$

则当 h_n 充分小时, 利用上述结论以及 x_1, x_2, \cdots, x_n 的独立性可得方差为

$$\operatorname{Var}[p_{n}(x)] = \operatorname{Var}\left[\frac{1}{nh_{n}}\sum_{i=1}^{n}\varphi\left(\frac{x-x_{i}}{h_{n}}\right)\right]$$

$$= \frac{1}{n^{2}h_{n}^{2}}\sum_{i=1}^{n}\operatorname{Var}\left[\varphi\left(\frac{x-x_{i}}{h_{n}}\right)\right]$$

$$= \frac{1}{nh_{n}^{2}}\operatorname{Var}\left[\varphi\left(\frac{x-v}{h_{n}}\right)\right]$$

$$= \frac{1}{nh_{n}^{2}}\left\{\mathbb{E}\left[\varphi^{2}\left(\frac{x-v}{h_{n}}\right)\right] - \mathbb{E}^{2}\left[\varphi\left(\frac{x-v}{h_{n}}\right)\right]\right\}$$

$$= \frac{1}{nh_{n}^{2}}\left\{\frac{1}{\sqrt{2\pi}}\mathbb{E}\left[\varphi\left(\frac{x-v}{h_{n}/\sqrt{2}}\right)\right] - \mathbb{E}^{2}\left[\varphi\left(\frac{x-v}{h_{n}}\right)\right]\right\}$$

$$= \frac{1}{2nh_{n}\sqrt{\pi}}\frac{1}{h_{n}/\sqrt{2}}\mathbb{E}\left[\varphi\left(\frac{x-v}{h_{n}/\sqrt{2}}\right)\right] - \frac{1}{n}\left\{\frac{1}{h_{n}}\mathbb{E}\left[\varphi\left(\frac{x-v}{h_{n}}\right)\right]\right\}^{2}$$

$$\simeq \frac{p(x)}{2nh_{n}\sqrt{\pi}}\left[1 - 2\sqrt{\pi}h_{n}p(x)\right]$$

$$\simeq \frac{p(x)}{2nh_{n}\sqrt{\pi}}$$
(36)

$$4.3 \ p(x) - \bar{p}_n(x) \simeq \frac{1}{2} \left(\frac{h_n}{\sigma} \right)^2 \left[1 - \left(\frac{x - \mu}{\sigma} \right)^2 \right] p(x).$$

解: 偏差为

$$p(x) - \bar{p}_n(x) = p(x) \left[1 - \frac{\bar{p}_n(x)}{p(x)} \right]$$

$$= p(x) \left\{ 1 - \frac{\sigma}{\sqrt{\sigma^2 + h_n^2}} \exp\left[-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2 + h_n^2} + \frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right] \right\}$$

$$= p(x) \left\{ 1 - \frac{1}{\sqrt{1 + (h_n/\sigma)^2}} \exp\left[\frac{1}{2} \frac{h_n^2}{\sigma^2} \frac{(x - \mu)^2}{\sigma^2 + h_n^2} \right] \right\}$$
(37)

当 h_n 充分小时,有

$$\frac{1}{\sqrt{1 + (h_n/\sigma)^2}} \simeq 1 - \frac{1}{2} \frac{h_n^2}{\sigma^2} \tag{38}$$

和

$$\exp\left[\frac{1}{2}\frac{h_n^2}{\sigma^2}\frac{(x-\mu)^2}{\sigma^2+h_n^2}\right] \simeq 1 + \frac{1}{2}\frac{h_n^2}{\sigma^2}\frac{(x-\mu)^2}{\sigma^2+h_n^2}$$
(39)

所以

$$p(x) - \bar{p}_n(x) \simeq p(x) \left[1 - \left(1 - \frac{1}{2} \frac{h_n^2}{\sigma^2} \right) \left(1 + \frac{1}{2} \frac{h_n^2}{\sigma^2} \frac{(x - \mu)^2}{\sigma^2 + h_n^2} \right) \right]$$

$$\simeq p(x) \left[1 - 1 + \frac{1}{2} \frac{h_n^2}{\sigma^2} - \frac{1}{2} \frac{h_n^2}{\sigma^2} \frac{(x - \mu)^2}{\sigma^2 + h_n^2} \right]$$

$$= \frac{1}{2} \frac{h_n^2}{\sigma^2} p(x) \left[1 - \frac{(x - \mu)^2}{\sigma^2 + h_n^2} \right]$$

$$\simeq \frac{1}{2} \left(\frac{h_n}{\sigma} \right)^2 \left[1 - \left(\frac{x - \mu}{\sigma} \right)^2 \right] p(x)$$
(40)

5. Consider classifiers based on samples from the distributions

$$p(x|\omega_1) = \begin{cases} 3/2, & \text{for } 0 \leq x \leq 2/3\\ 0, & \text{otherwise} \end{cases}$$
 (41)

and

$$p(x|\omega_2) = \begin{cases} 3/2, & \text{for } 1/3 \leqslant x \leqslant 1\\ 0, & \text{otherwise.} \end{cases}$$
 (42)

5.1 What is the Bayes decision rule and the Bayes classification error?

解: 假定 $P(\omega_1) = P(\omega_2)$, 则边界点

$$t \in \left[\frac{1}{3}, \frac{2}{3}\right] \tag{43}$$

取定 t, 则 Bayes 决策为

$$x \in (0, t) \to x \in \omega_1$$

$$x \in (t, 1) \to x \in \omega_2$$
(44)

Bayes 决策错误率为

$$P_{B}(e) = P(\omega_{1}) \int_{t}^{1} p(x|\omega_{1}) dx + P(\omega_{2}) \int_{0}^{t} p(x|\omega_{2}) dx$$

$$= \frac{1}{2} \int_{t}^{2/3} \frac{3}{2} dx + \frac{1}{2} \int_{1/3}^{t} \frac{3}{2} dx$$

$$= \frac{1}{2} \times \frac{3}{2} \times \frac{1}{3}$$

$$= \frac{1}{4}$$
(45)

图 3: 从两个类别中取出的采样点构成的区域

5.2 Suppose we randomly select a single point from ω_1 and a single point from ω_2 , and create a nearest-neighbor classifier. Suppose too we select a test point from one of the categories (ω_1 for definiteness). Integrate to find the expected error rate $P_1(e)$.

解: 设从 ω_1 中取出的点为 x_1 , 从 ω_2 中取出的点为 x_2 , 则最近邻法的分类边界点为

$$t = \frac{x_1 + x_2}{2} \tag{46}$$

 x_1 与 x_2 的取值范围构成的区域如图 **3** 所示, 根据 x_1 与 x_2 之间的大小关系和边界点 t 所处的不同区间可以分成4个子区域, 下面分类讨论.

在区域1中, $x_1 \geqslant x_2$, 且 $t \in [1/3, 2/3]$, 所以该区域的错误率可以计算为

$$P_1(e_1) = \frac{1}{8} \left(\frac{1}{2} \int_0^t \frac{3}{2} dx + \frac{1}{2} \int_t^1 \frac{3}{2} dx \right) = \frac{3}{32}$$
 (47)

在区域2中, $x_1 \leq x_2$, 且 $t \in [1/3, 2/3]$, 所以该区域的错误率可以计算为

$$P_1(e_2) = \frac{5}{8} \left(\frac{1}{2} \int_t^{2/3} \frac{3}{2} dx + \frac{1}{2} \int_{1/3}^t \frac{3}{2} dx \right) = \frac{5}{32}$$
 (48)

在区域3中, $x_1 \leq x_2$, 且 $t \in [0, 1/3]$, 所以该区域的错误率可以计算为

$$P_1(e_3) = \frac{9}{4} \int_0^{1/3} \int_{1/3}^{2/3 - x_1} \left(\frac{1}{2} \int_t^{2/3} \frac{3}{2} dx \right) dx_2 dx_1 = \frac{7}{192}$$
 (49)

在区域4中, $x_1 \leq x_2$, 且 $t \in [2/3, 1]$, 所以该区域的错误率可以计算为

$$P_1(e_4) = \frac{9}{4} \int_{1/3}^{2/3} \int_{4/3 - x_1}^{1} \left(\frac{1}{2} \int_{1/3}^{t} \frac{3}{2} dx\right) dx_2 dx_1 = \frac{7}{192}$$
 (50)

故总错误率为

$$P_1(e) = \sum_{k=1}^{4} P_1(e_k) = \frac{3}{32} + \frac{5}{32} + \frac{7}{192} + \frac{7}{192} = \frac{31}{96} \approx 0.3329$$
 (51)

5.3 With the limit of the training sample number $n \to \infty$, compare the expected error $P_n(e)$ with the Bayes error.

解: 当 $n \to \infty$ 时, 只有位于区间 [1/3, 2/3] 之内的测试点会被错分, 且错分概率为 0.5, 则错误率为

$$P_{\infty}(e) \triangleq \lim_{n \to \infty} P_n(e)$$

$$= \frac{1}{2} P(\omega_1) P\left(\frac{1}{3} \leqslant x \leqslant \frac{2}{3} \middle| \omega_1\right) + \frac{1}{2} P(\omega_2) P\left(\frac{1}{3} \leqslant x \leqslant \frac{2}{3} \middle| \omega_2\right)$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{4}$$

$$(52)$$

因此 $P_{\infty}(e) = P_B(e)$, 即误差率相等.

5.4 What are the factors that affect the classification error rate?

解: 在本题中, 影响误差率的因素主要是两类条件概率密度的重合区间长度, 重合区间越长, 则错误率越大.

Programming: Parzen Window

6. Assume $p(x) \sim 0.2 \mathcal{N}(-1,1) + 0.8 \mathcal{N}(1,1)$. Draw n samples from p(x), for example,

$$n = 5, 10, 50, 100, \dots, 1000, \dots, 10000.$$
 (53)

Use Parzen-window method to estimate $p_n(x) \approx p(x)$. (Hint: use randn() function in matlab to draw samples.)

(a) Try window-function

$$K(x) = \begin{cases} \frac{1}{a}, & -\frac{a}{2} \leqslant x \leqslant \frac{a}{2} \\ 0, & \text{otherwise.} \end{cases}$$
 (54)

Estimate p(x) with different window width a. Please draw $p_n(x)$ under different n and a and p(x) to show the estimation effect.

图 4: 方窗估计

解: 取 n = 5, 10, 50, 100, 1000, 5000, a = 0.25, 0.5, 1, 2, 4, 8, 使用方窗函数进行估计, 结果如图 4 所示, 图中红色曲线表示 p(x). 由图可知, 固定 a 时, 随着 n 的增大, 估计效果逐渐变好; 固定 n 时, 随着 a 的增大, 估计效果先变好后变差, 可知存在适当的 a 使得估计效果达到最好.

(b) Derive how to compute

$$\epsilon(p_n) = \int \left[p_n(x) - p(x) \right]^2 dx \tag{55}$$

numerically.

解: 取积分区间为 [-5, 5], 将区间 N 等分, 记区间长度为 $\Delta \xi$, ξ_i 为第 j 个区间内一点, 当 N 足够大时, 有

$$\epsilon(p_n) = \int \left[p_n(x) - p(x) \right]^2 dx
\simeq \sum_{j=1}^N \left[p_n(\xi_j) - p(\xi_j) \right]^2 \Delta \xi
= \sum_{j=1}^N \left\{ \frac{1}{n} \sum_{i=1}^n K(\xi_j - x_i) - \frac{0.2}{\sqrt{2\pi}} \exp\left[-\frac{(\xi_j + 1)^2}{2} \right] - \frac{0.8}{\sqrt{2\pi}} \exp\left[-\frac{(\xi_j - 1)^2}{2} \right] \right\}^2 \Delta \xi$$
(56)

(c) Demonstrate the expectation and variance of $\epsilon(p_n)$ w.r.t different n and a.

解: 为了数值计算 $\epsilon(p_n)$ 的期望和方差, 对每一组给定的 (n,a), 进行多次重复试验, 而后对多次试验得到的 $\epsilon(p_n)$ 数组计算均值和方差, 结果分别如表 1 和表 2 所示.

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	0.0754	0.0344	0.0153	0.0051	0.0038	0.0086
n = 10	0.0377	0.0200	0.0088	0.0035	0.0025	0.0084
n = 50	0.0079	0.0038	0.0017	0.0009	0.0025	0.0083
n = 100	0.0040	0.0016	0.0009	0.0004	0.0019	0.0083
n = 1000	0.0003	0.0001	0.0001	0.0002	0.0020	0.0083
n = 5000	0.0001	0.0000	0.0000	0.0002	0.0020	0.0083

表 1: 方窗估计均方误差期望

(d) With n given, how to choose optimal a from above the empirical experiences?

解: 由以上经验, 对于给定的 n, 可以通过 $\epsilon(p_n)$ 的均值和方差来选取适当的 a 值. 固定 n 时, 随着 a 的增大, 估计效果先变好后变差, 所以 a 在适当的取值下才能最好地逼近真实概率密度函数, 因此可以将 $\epsilon(p_n)$ 的均值与 a 的函数关系绘制出来, 寻找其最小值所在区间, 并在该区间内选择 $\epsilon(p_n)$ 最小方差对应的 a.

(e) Substitute K(x) in (a) with Gaussian window. Repeat (a)-(d).

解: 取 n = 5, 10, 50, 100, 1000, 5000, a = 0.25, 0.5, 1, 2, 4, 8, 使用高斯核函数

$$K(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{x^2}{2\sigma^2}\right] \tag{57}$$

-	a = 0.25	a = 0.5	a = 1	a=2	a = 4	a = 8
n=5	0	5.2849e-05	5.0611e-05	1.1692e-05	4.3810e-06	1.6058e-07
n = 10	8.6365e-05	5.2020 e - 05	2.4856 e - 05	1.0281 e-05	5.3322 e-07	9.2295 e-08
n = 50	5.5701e-06	3.1296 e - 06	9.1607 e - 07	5.1668e-07	3.5719 e - 07	2.0359 e-08
n = 100	1.4699e-06	4.4399e-07	1.3575 e-07	4.8224 e - 08	7.9064e-08	5.5102 e-09
n = 1000	6.1293e-09	3.7063e-09	2.0755e-09	5.9962 e-09	4.8550 e - 09	$6.2758 \mathrm{e}\text{-}10$
n = 5000	0	4.8334e-41	4.8334e-41	6.9602 e-39	0	3.1676 e36

表 2: 方窗估计均方误差方差

进行估计, 其中取 $\sigma = a/\sqrt{n}$, 结果如图 5 所示, 图中红色曲线表示 p(x). 对每一组给定的 (n,a), 进行多次重复试验, 而后对多次试验得到的 $\epsilon(p_n)$ 数组计算均值和方差, 结果分别如表 3 和表 4 所示.

	0.05		-			
	a = 0.25	a = 0.5	a = 1	a=2	a=4	a = 8
n = 5	0.0440	0.0186	0.0088	0.0055	0.0041	0.0095
n = 10	0.0330	0.0168	0.0062	0.0022	0.0025	0.0065
n = 50	0.0147	0.0077	0.0031	0.0017	0.0007	0.0015
n = 100	0.0110	0.0052	0.0024	0.0011	0.0005	0.0007
n = 1000	0.0035	0.0019	0.0009	0.0004	0.0002	0.0001
n = 5000	0.0011	0.0007	0.0003	0.0002	0.0001	0.0000

表 3: 高斯估计均方误差期望

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	8.8794e-05	3.5598e-05	3.2554e-05	5.0078e-05	2.1877e-06	1.0487e-07
n = 10	6.2303e-05	3.7369 e - 05	6.7287 e - 06	2.0091e-06	1.9361e-06	1.2545 e-07
n = 50	7.7749e-06	9.8888e-06	1.4582 e-06	8.6869 e-07	1.8728e-07	1.7556e-07
n = 100	9.5059e-06	2.0828e-06	5.2320 e-07	3.1134e-07	9.8478e-08	1.1429 e - 07
n = 1000	5.2851e-07	9.1313e-08	5.3496 e - 08	1.0761e-08	5.6957e-09	1.6131e-09
n = 5000	6.6818e-38	7.0530e-38	1.6240 e-38	7.4242e-39	5.7711e-39	5.6068e-39

表 4: 高斯估计均方误差方差

(f) Try different window functions and parameters as many as you can. Which window function/parameter is the best one? Demonstrate it numerically.

解: 取 n = 5, 10, 50, 100, 1000, 5000, a = 0.25, 0.5, 1, 2, 4, 8,使用三角形核函数

$$K(x) = \begin{cases} \frac{1}{a} \left(1 - \left| \frac{x}{a} \right| \right), & -a \leqslant x \leqslant a \\ 0, & \text{otherwise.} \end{cases}$$
 (58)

图 5: 高斯估计

进行估计, 结果如图 6 所示, 图中红色曲线表示 p(x). 对每一组给定的 (n,a), 进行多次重复试验, 而后对多次试验得到的 $\epsilon(p_n)$ 数组计算均值和方差, 结果分别如表 5 和表 6 所示.

	a = 0.25	a = 0.5	a = 1	a=2	a = 4	a = 8
n=5	0.0456	0.0231	0.0085	0.0038	0.0045	0.0092
n = 10	0.0250	0.0113	0.0049	0.0021	0.0038	0.0094
n = 50	0.0050	0.0024	0.0009	0.0011	0.0037	0.0092
n = 100	0.0020	0.0011	0.0005	0.0008	0.0038	0.0092
n = 1000	0.0002	0.0001	0.0001	0.0006	0.0036	0.0092
n = 5000	0.0000	0.0000	0.0001	0.0006	0.0036	0.0092

表 5: 三角估计均方误差期望

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	7.1407e-05	1.3686e-04	2.7454e-05	9.2369e-06	1.8634e-06	1.6729e-07
n = 10	4.9860e-05	2.2354 e - 05	7.8718e-06	4.1982 e-06	6.1847 e - 07	1.9638e-07
n = 50	3.1465e-06	1.1115e-06	2.8525 e - 07	3.0190 e - 07	1.1315e-07	1.1064 e-08
n = 100	3.4641e-07	1.4459 e - 07	1.6658 e-07	7.9556e-08	7.8658e-08	1.0195 e-08
n = 1000	3.8268e-09	2.1874e-09	1.6549 e - 09	4.0677 e - 09	$6.4841 \mathrm{e}\text{-}09$	8.1923 e-10
n = 5000	1.3256e-39	8.1878e-40	3.6360e-38	1.1693 e-37	1.0988e-36	7.7607e-36

表 6: 三角估计均方误差方差

取 n = 5, 10, 50, 100, 1000, 5000, a = 0.25, 0.5, 1, 2, 4, 8, 使用余弦核函数

$$K(x) = \begin{cases} \frac{\pi}{4a} \cos\left(\frac{\pi x}{2a}\right), & -a \leqslant x \leqslant a\\ 0, & \text{otherwise.} \end{cases}$$
 (59)

进行估计, 结果如图 7 所示, 图中红色曲线表示 p(x). 对每一组给定的 (n,a), 进行多次重复试验, 而后对多次试验得到的 $\epsilon(p_n)$ 数组计算均值和方差, 结果分别如表 7 和表 8 所示.

	a = 0.25	a = 0.5	a = 1	a=2	a = 4	a = 8
n=5	0.0433	0.0195	0.0068	0.0045	0.0049	0.0106
n = 10	0.0227	0.0104	0.0032	0.0022	0.0044	0.0106
n = 50	0.0047	0.0021	0.0006	0.0009	0.0044	0.0106
n = 100	0.0024	0.0009	0.0005	0.0009	0.0045	0.0106
n = 1000	0.0002	0.0001	0.0001	0.0008	0.0044	0.0106
n = 5000	0.0000	0.0000	0.0001	0.0008	0.0044	0.0106

表 7: 余弦估计均方误差期望

图 6: 三角形估计

图 7: 余弦估计

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	2.2951e-04	9.5301e-05	1.5815e-05	1.9215e-05	1.2055e-06	4.0842e-08
n = 10	6.0942e-05	2.9110e-05	2.7757e-06	3.3023 e-06	2.0050 e-07	1.4286 e - 08
n = 50	3.2806e-06	1.3003 e-06	1.8299 e - 07	2.7372e-07	4.0559 e - 08	3.9168e-09
n = 100	5.7175e-07	1.3395 e-07	1.0991e-07	1.0813e-07	4.0889e-08	1.5858e-09
n = 1000	3.9053e-09	1.2351e-09	1.7076e-09	5.7179e-09	3.2295 e-09	1.2545 e-10
n = 5000	1.4506e-39	1.4286e-39	1.4239 e-38	3.6626 e - 37	1.0295 e36	9.5029 e36

表 8: 余弦估计均方误差方差

取 n = 5, 10, 50, 100, 1000, 5000, a = 0.25, 0.5, 1, 2, 4, 8, 使用指数核函数

$$K(x) = \frac{1}{2a} \exp\left(-\left|\frac{x}{a}\right|\right) \tag{60}$$

进行估计, 结果如图 8 所示, 图中红色曲线表示 p(x). 对每一组给定的 (n,a), 进行多次重复试验, 而后对多次试验得到的 $\epsilon(p_n)$ 数组计算均值和方差, 结果分别如表 9 和表 10 所示.

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	0.0159	0.0043	0.0029	0.0049	0.0097	0.0139
n = 10	0.0069	0.0034	0.0026	0.0050	0.0097	0.0139
n = 50	0.0015	0.0009	0.0017	0.0049	0.0097	0.0140
n = 100	0.0008	0.0006	0.0016	0.0049	0.0096	0.0140
n = 1000	0.0001	0.0003	0.0016	0.0050	0.0096	0.0140
n = 5000	0.0000	0.0003	0.0016	0.0049	0.0096	0.0140

表 9: 指数估计均方误差期望

	a = 0.25	a = 0.5	a = 1	a = 2	a = 4	a = 8
n=5	4.4102e-05	4.6225e-06	3.6103e-06	7.1588e-07	6.2318e-07	5.3395e-08
n = 10	4.9972e-06	5.7290 e-06	1.8833e-06	8.6840 e - 07	3.0770 e-07	2.0078e-08
n = 50	8.6323e-07	1.6730 e - 07	3.5128 e-07	1.9786e-07	4.7670 e - 08	5.5717e-09
n = 100	9.7696e-08	1.1821e-07	1.8168e-07	8.9720 e - 08	1.5764 e - 08	1.6416e-09
n = 1000	2.5749e-09	5.8766e-09	1.3514 e-08	4.2008e-09	1.4476e-09	2.4628e-10
n = 5000	7.1807e-39	1.7308e-37	6.2858 e-37	4.9494e-36	1.1087e-36	3.6428e-36

表 10: 指数估计均方误差方差

最优参数与窗函数: 通过整体比较方窗, 高斯窗, 三角形窗, 余弦窗, 指数窗等5种类型窗函数的估计效果, 均方误差的期望和方差大小, 可以看出当窗宽 a=0.5 且样本数为 n=5000 时, 三角形窗的估计效果最好, 其均方误差均值 6.4746×10^{-6} 和方差 8.1878×10^{-40} 都是所有估计结果中最小的.

图 8: 指数估计

参考文献

[1] Casella, George, and Roger L. Berger. Statistical inference. Cengage Learning, 2021.