3. Skew shaped positroid varieties

3.1. **Positroid varieties.** First, we recall equivalent ways of describing positroid varieties in the Grassmannian: Grassmann necklaces and bounded affine permutations.

Definition 3.1.1. A (k, n)-source Grassmann necklace $\mathcal{I} = (I_1, I_2, \dots, I_n)$ is an n-tuple of k-element subsets $I_i \subseteq [n]$ where

- if $i \in I_i$ then there exists $j \in [n]$ such that $I_{i-1} = (I_i \setminus \{i\}) \cup \{j\}$, and
- if $i \notin I_i$ then $I_i = I_{i-1}$.

We denote by GN(k, n) the set of (k, n)-Grassmann necklaces.

Remark 3.1.2. Note that if $i \in I_i$ then it may be that $I_{i-1} = I_i = (I_i \setminus \{i\}) \cup \{i\}$. Finally, note that $I_{i-1} \setminus I_i$ is either empty or a singleton.

Remark 3.1.3. Grassmann necklaces were first defined in [24]. Our definition is slightly different, as we use I_{i-1} instead of I_{i+1} , this difference is indicated by the word **source** in the name.

Definition 3.1.4 ([19]). A bijection $f : \mathbb{Z} \to \mathbb{Z}$ is called a (k, n)-bounded affine permutation if it satisfies the following conditions:

- (1) f(i+n) = f(i) + n for every $i \in \mathbb{Z}$.
- (2) For every $i \in \mathbb{Z}$, $i \leq f(i) \leq f(i) + n$.
- (3) We have:

$$\sum_{i=1}^{n} (f(i) - i) = nk.$$

Note that, by (1), f is uniquely determined by the values $f(1), \ldots, f(n)$, which are pairwise distinct modulo n. We often simply denote $f = [f(1), \ldots, f(n)]$. Note also that, upon the presence of (1) and (2), (3) is equivalent to $|\{i \in [n] : f(i) > n\}| = k$. We denote the set of (k, n)-bounded affine permutations by $\mathsf{BA}(k, n)$. We say that f is a **bounded** n-affine **permutation** if there exists k such that f is a (k, n)-bounded affine permutation.

Lemma 3.1.5. The sets GN(k,n) and BA(k,n) are in natural bijection.

In the proof, we will need the following definition.

Definition 3.1.6. We define the cyclic order \leq_i on the set [n]: $i <_i i + 1 <_i i + 2 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1$.

Proof of Lemma 3.1.5. This is essentially a combination of [19, Corollary 3.13] and [23, Remark 2.4]. For the reader's convenience and to fix notation, we provide the bijection φ : $\mathsf{GN}(k,n) \to \mathsf{BA}(k,n)$. Let us first describe $\bar{f}_{\mathcal{I}} := \varphi(\mathcal{I}) \pmod{n}$ through its inverse $\bar{f}_{\mathcal{I}}^{-1}$: we have $\bar{f}_{\mathcal{I}}^{-1}(i) = i$ if $I_{i-1} = I_i$, and $\bar{f}_{\mathcal{I}}^{-1}(i) = j$ if $I_{i-1} \setminus I_i = \{j\}$. To lift this to a bounded affine permutation, we set $f_{\mathcal{I}}(i) = i + n$ if $I_{i-1} = I_i$ and $i \in I_i$, and $f_{\mathcal{I}}(i) = i$ if $i \notin I_i$. On the other hand, if $f: \mathbb{Z} \to \mathbb{Z}$ is a k-bounded affine permutation, let $I = \{i \in [n] \mid f(i) = i + n\}$, and $\bar{f} = f \pmod{n}$. Then I_i consists of I together with the elements $\{a \in [n] \mid a <_i \bar{f}(a)\}$. The collection $\mathcal{I}_f = (I_1, \ldots, I_n)$ is a Grassmann necklace, and $f \mapsto \mathcal{I}_f$, $\mathcal{I} \mapsto f_{\mathcal{I}}$ are inverse bijections.

Now, we associate a Grassmann necklace and a bounded affine permutation to an element V in the Grassmannian Gr(k,n) following [19, 24]. We represent V by a $k \times n$ matrix of rank k, up to row operations, and denote by $v_1, \ldots, v_n \in \mathbb{C}^k$ the columns of V. Furthermore, we define v_i for all $i \in \mathbb{Z}$ by setting $v_{i+n} := (-1)^{k-1}v_i$. Given an (ordered) k-element subset