I. Linear Algebra

I.2. Subspaces and Linear Maps

Lecture based on

https://github.com/gwthomas/math4ml (Garrett Thomas, 2018)

https://mml-book.github.io/ (Deisenroth et al., 2020, Mathematics for Machine Learning)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Vector spaces can contain other vector spaces.

If V is a vector space, then $S \subseteq V$ is a **subspace** of V if

- $\mathbf{0} \mathbf{0} \in S$
- \mathbf{m} S is closed under addition: $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x} + \mathbf{y} \in S$
- \bigcirc S is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$

Note that V is always a subspace of V, as is the trivial vector space which contains only $\mathbf{0}$.

As a concrete example, a line passing through the origin is a subspace of Euclidean space.

(Deisenroth et al., 2020)

$T:V\to W$ is called a **linear map**, if

$$\forall \mathbf{x}, \mathbf{y} \in V \ \forall \lambda, \kappa \in \mathbb{R} : T(\lambda \mathbf{x} + \kappa \mathbf{y}) = \lambda T(\mathbf{x}) + \kappa T(\mathbf{y})$$

If $T:V\to W$ is a linear map, then

• the **nullspace** a of T as

$$\operatorname{null}(T) = \{ \mathbf{x} \in V \mid T\mathbf{x} = \mathbf{0} \}$$

ullet the **range** of T is

$$range(T) = \{ \mathbf{y} \in W \mid \exists \mathbf{x} \in V \text{ such that } T\mathbf{x} = \mathbf{y} \}$$

3 Subspaces 06.11.2020

^aIt is sometimes called the **kernel** in algebra, but we avoid this terminology because the word "kernel" has another meaning in machine learning.

Example

A matrix A defines a linear map.

- (a) Original data.
- (b) Rotation by 45°.
 - (c) Stretch along the (d) horizontal axis.
- (d) General l mapping.

linear

We consider three linear transformations of a set of vectors in \mathbb{R}^2 with the transformation matrices

$$\boldsymbol{A}_{1} = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}, \ \boldsymbol{A}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{A}_{3} = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix}.$$
 (2.97)

(Deisenroth et al., 2020)

The vectors $\mathbf{v}_1, \dots, \mathbf{v}_R \in V$ are **linearly independent** if and only if

$$\sum_{i=1}^{R} \lambda_i \mathbf{v}_i = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_R = 0$$

Example

A person in Nairobi (Kenya) describes the way to Kigali (Rwanda):

"You can get to Kigali by first going 506km NW to Kampala (Uganda) and then 374km SW."

She adds "It is about 751km W of here."

Although the last statement is true, it is not necessary to find Kigali given the previous information.

(Deisenroth et al., 2020)

5 Subspaces 06.11.2020

Definition

A subset B of a vector-space V is called **basis** of V, if

- $\operatorname{span}(B) = V$
- ullet B is linearly independent

Different coordinate representations of a vector x, depending on the choice of basis.

(Deisenroth et al., 2020)

Definition

Let V be a vector space, $\mathbf{x}_0 \in V$ and $U \subseteq V$ a subspace.

Then the subset

$$L = \mathbf{x}_0 + U \colon = \{\mathbf{x}_0 + \mathbf{u} \colon \mathbf{U} \in U\}$$
$$= \{\mathbf{v} \in V | \exists \mathbf{u} \in U \colon \mathbf{v} = \mathbf{x}_0 + \mathbf{u}\} \subseteq V$$

is called **affine subspace** or **linear manifold** of V. U is called direction or direction space and x_0 is called support point.

Example

(Deisenroth et al., 2020)

Note that the definition excludes $\mathbf{0}$ if $\mathbf{x}_0 \notin U$.

- In ML, affine subspaces define hyperplanes and are often described by parameters.
- If $(b_1,\ldots,\mathbf{b}_K)$ is an ordered basis of U, then every element $\mathbf{x}\in L$ can be uniquely described as

$$\mathbf{x} = \mathbf{x}_0 + \lambda_1 \mathbf{b}_1 + \dots + \lambda_K \mathbf{b}_K$$

Summary

- ullet A subspace $S\subseteq V$
 - $\mathbf{0} \in S$
 - •
 - S is closed under addition: $x, y \in S$ implies $x + y \in S$
 - S is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$
- Linear maps induce subspaces
- $B \subset V$ is a **basis** of V, if
 - $\operatorname{span}(B) = V$
 - ullet B is linearly independent
- ullet An affine subspace V is a subspace U shifted by a support point x_0

$$L = x_o + U$$