ORGANIC ELECTROLUMINESCENCE ELEMENT AND MANUFACTURING METHOD THEREFOR

Publication number: JP2003036974 Publication date: 2003-02-07

Inventor: TADA MIGAKU

Applicant: VICTOR COMPANY OF JAPAN

Classification: - international:

H05B33/12; H01L51/50; H05B33/02; H05B33/10; H05B33/14; H05B33/12; H01L51/50; H05B33/02; H05B33/10; H05B33/14; (IPC1-7): H05B33/12;

H05B33/02; H05B33/10; H05B33/14

- European:

Application number: JP20010222333 20010723 Priority number(s): JP20010222333 20010723

Report a data error here

Abstract of JP2003036974

PROBLEM TO BE SOLVED. To provide a continuous organic electroluminescence element having a high productivity by using a film-shaped flexible substrate. SOLUTION: In the organic electroluminescence element in which the first electrode 14, a white light-emitting layer 18, the second electrode 24, and the second flexible substrate 28 are at least successively laminated, either one of the first flexible substrate or the second flexible substrate contains a color pigment, or the color filter is adhered to either one of the first flexible substrate or the second flexible substrate. By this, the continuous organic electroluminescence element having a high productivity is provided.

28 カラーフィルタ付き 28 カラーフィルタ付き 28 海野田電路 28 海野田電路 29 電子並入服 20 電子を入服 20 電子を入服 18 自免益光度 16 正人を出版 17 正人を出版 18 正人を出版 18 正人を出版 19 正人を出版 10 正人を記述 1

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-36974

(P2003-36974A)

(43)公開日 平成15年2月7日(2003.2.7)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
H05B 33/12		H05B 33/12	E 3K007
•	•	•	В
33/02	•	33/02	
33/10		33/10	•
33/14		33/14	Α
		審查請求 未請求 請求項の	D 数 2 OL (全 6 頁)
(21)出顧番号	特顏2001-222333(P2001-222333)	(71) 出願人 000004329	
	•	日本ピクター株式	会社
(22)出顧日 平成13年7月23日(2001.7.23)		神奈川県横浜市神	捺川区守屋町3丁目12番
		地	
		(72)発明者 多田 琢	•
,		神奈川県横浜市神奈川区守屋町3丁目12番	
•		地 日本ピクター	-株式会社内
		(74)代理人 100090125	4
		弁理士 浅井 章	
		Fターム(参考) 3K007 AB04	AB18 BA06 BA07 BB06
		CAD6 (CB01 DA01 DB03 EA01
	•	EB00 I	FAOD
	·		

(54) 【発明の名称】 有機エレクトロルミネッセンス素子及びその製造方法

(57)【要約】

【課題】 フィルム状のフレキシブルな基板を用いて連続した生産性の高い有機エレクトロルミネッセンス素子を提供する。

【解決手段】 第1のフレキシブル基板12上に第1の電極14と、白色発光層18と、第2の電極24と、第2のフレキシブル基板28とを少なくとも順次積層した有機エレクトロルミネッセンス素子において、前記第1のフレキシブル基板か前記第2のフレキシブル基板のいずれか一方がカラー色素を含むか、或いは前記第1のフレキシブル基板の的記第2のフレキシブル基板のいずれか一方にカラーフィルタを接着する。これにより、連続した生産性の高い有機エレクトロルミネッセス素子を提供する。

【特許請求の範囲】

【請求項1】 第1のフレキシブル基板上に第1の電極 と、白色発光層と、第2の電極と、第2のフレキシブル 基板とを少なくとも順次積層した有機エレクトロルミネ ッセンス素子において、

前記第1のフレキシブル基板か前記第2のフレキシブル 基板のいずれか一方がカラー色素を含むか、或いは前記 第1のフレキシブル基板か前記第2のフレキシブル基板 のいずれか一方にカラーフィルタを接着したことを特徴 とする有機エレクトロルミネッセンス素子。

【請求項2】 第1のフレキシブル基板上に第1の電極 と、白色発光層と、第2の電極とを順次積層する工程 と、

第2のフレキシブル基板にカラー色素を有したカラーフ イルタ形成用フィルムを密着させた後、熱転写により拡 散する工程と、

前記フィルムを前記第2のフレキシブル基板から剥離す る工程と、

前記第2の電極上に前記第2のフレキシブル基板を貼り 合わせる工程と、

からなることを特徴とする有機エレクトロルミネッセン ス素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フレキシブル透明 基板上に作製された低電圧で駆動して白色を発光する有 機エレクトロルミネッセンス素子及びその製造方法に関 するものであり、特に、RGB色分けのためのカラーフ ィルタを備えている有機エレクトロルミネッセンス素子 と、その量産性に優れた製造方法に関するものである。 [0002]

【従来の技術】一般に、有機エレクトロルミネッセンス (以下、ELとも称す)素子は、携帯端末機器のディス プレイやパーソナルコンピュータのディスプレイ等に応 用することが考えられている。また、車載オーディオ用 の表示パネルにはモノカラーを組み合わせたマルチカラ 一(エリアカラー)が実用されている。そして、赤、 緑、青(RGB)に対応した表示素子を組み合わせれ ば、フルカラー表示も可能であることから、そのために 低電圧で駆動して高輝度の発光を生じる高性能の有機E L素子を得ようとする種々の研究が行われている。この 有機 E L 素子の典型的な構造は、インジウムースズ酸化 物(ITO)等の透明電極がコートされたガラス等の透 明基板上に、有機材料からなる薄い有機層を積層し、そ の上からアルミニウム、マグネシウム等の単体もしくは 合金からなる金属電極を積層したものである。上記有機 材料は、高分子材料や低分子材料、金属錯体が使用され るが、材料により溶液からの塗布や真空蒸着などにより 形成される。

よりなる単層型と、複数の異なる材料を積層した積層型 とに分けられており、有機層から発せられる光は透明電 極、透明基板を通して取り出すことが出来るというもの である。また、有機EL素子の一例として、図5に示す ような構造をしているものがある。即ち、この有機EL 素子は、例えばインジウムスズ酸化物 (ITO) の透明 電極(陽極) 4がコートされた透明基板2上に、アリー ルジアミンからなる正孔輸送層6とトリス(8-キノリ ノラート) アルミニウムの有機金属錯体からなる電子輪 10 送発光層8とを積層し、その上からアルミニウム、マグ ネシウム等の金属電極(陰極)10を積層して構成されて いる。そして、これに電圧を印加するとITOの透明電 極4より正孔注入が行われ、また、アルミニウム、マグ ネシウム等の金属電極10より電子注入が行われ、その 結果、正孔輸送層6から運ばれてきた正孔が電子輸送の 発光層8に注入される。

【0004】一方、発光層8では電子輸送性を兼ねてい るため、電子注入側の金属電極10から注入された電子 は発光層8中を移動するが正孔輸送層6中には注入され 20 ない。さらに、発光層8中に注入された正孔は電子輸送 性の発光層8を殆ど移動しないので、結果として電子と 正孔は発光層8中の有機層界面近傍で結合して発光す る。この発光層8から発せられた光1は透明電極4及び 透明基板2を通して外部に取り出されるのである。この 際の発光は発光層8の発光色に依存し単色発光である。 [0005]

【発明が解決しようとする課題】ところで、発光光を外 部にフルカラーディスプレイとして取り出すには、赤色 (R)、緑色(G)、青色(B)の各発光用の三種の微 細な素子(ピクセル)を組み合わせて一つの画素とする 必要がある。しかし、通常では有機EL素子の製造方法 としては、真空蒸着法や塗布法によって発光色の異なる 各素子を微細に配置することは困難である。例えば真空 蒸着法では微細なピクセル形状の蒸着マスクを作製し、 これと基体との隙間が出来ないよう且つ高精度に移動お よび位置決めする必要があり、現状では100μmピッ チ程度が限界であることから、より高精細な画素を生産 効率よく作製するのはかなりの困難を要する。

【0006】そこで、発光画素の別の作製方法として従 来より以下の提案もなされている。例えば発光層中に可 視光領域をなるべく広くカバーして白色光を発するよう に、複数種類の色素を高分子中に分散させて発光層を形 成し、この発光層を白色発光層とすることが知られてい る (特開平7-220871号公報)。 そして、この白 色発光層をカラーフィルタと組み合わせて任意の発光色 を取り出すようにし、各発光色サブピクセルの微細な配 置を必要とすることなく、組み合わせたカラーフィルタ を微細配置で対応することが出来る。また、他にRGB 発光層をそれぞれ積層し、発光色を白色として取り出す 【0003】有機EL索子における有機層は、単一の層 50 技術、さらには発光色の補色を利用して青色発光と黄色

3

発光を混在させてバランスを取ることによって白色発光 をさせる技術も知られている。

【0007】また、通常、カラーフィルタは染料もしくは顔料を分散した光反応性樹脂を露光現像するフォトリソグラフィー技術を用いて作製される。そして、ガラス基板上へのカラーフィルタ工程はカラーフィルタ基板を用意した後、洗浄、クロム成膜、洗浄、ブラックマトリックス、洗浄を行い、洗浄の前工程に続き、第1の色のカラーレジスト塗付、プリベーク、露光、現像、焼成、洗浄、第2および第3の色についても同様な工程を行なり。更に、オーバーコート、焼成、洗浄という複雑で数多い工程を行う必要があった。本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものであり、本発明の目的は、フィルム状のフレキシブルな基板を用いて連続した生産性の高い有機エレクトロルミネッセンス素子及びその製造方法を提供することにある。

[8000]

【課題を解決するための手段】請求項1に規定する発明 は、第1のフレキシブル基板上に第1の電極と、白色発 20 光層と、第2の電極と、第2のフレキシブル基板とを少 なくとも順次積層した有機エレクトロルミネッセンス素 子において、前記第1のフレキシブル基板か前記第2の フレキシブル基板のいずれか一方がカラー色素を含む か、或いは前記第1のフレキシブル基板か前記第2のフ レキシブル基板のいずれか一方にカラーフィルタを接着 したことを特徴とする有機エレクトロルミネッセンス素 子である。請求項2に規定する発明は、第1のフレキシ ブル基板上に第1の電極と、白色発光層と、第2の電極 とを順次積層する工程と、第2のフレキシブル基板にカ ラー色素を有したカラーフィルタ形成用フィルムを密着 させた後、熱転写により拡散する工程と、前記フィルム を前記第2のフレキシブル基板から剥離する工程と、前 記第2の電極上に前記第2のフレキシブル基板を貼り合 わせる工程と、からなることを特徴とする有機エレクト ロルミネッセンス素子の製造方法である。

[0009]

【発明の実施の形態】以下に、本発明に係る有機エレクトロルミネッセンス素子及びその製造方法の一実施例を添付図面に基づいて詳述する。図1は本発明の有機エレクトロルミネッセンス素子の要部を示す断面図、図2は本発明の有機エレクトロルミネッセンス素子を示す断面図、図3は素子本体を示す断面図、図4はカラーフィルタ付きの第2のフレキシブル基板の製造方法を説明するための図である。本発明の特徴は、フレキシブル基板に、フィルムに付着しているRGB色素を熱、もしくは光により加熱転写拡散してカラーフィルタ付きのフレキシブル基板を形成し、別のフレキシブル基板に有機エレクトロルミネッセンス素子用の各層、各膜等を形成し、両フレキシブル基板を接合することにより、生産性の良50

好な有機エレクトロルミネッセンス素子を形成する点である。

【0010】まず、図1及び図2に基づいて、この有機 エレクトロルミネッセンス素子の要部を素子自体につい て説明する。図1において、その最下層より説明する と、10は保護層、12は第1のフレキシブル基板、1 4はアノードとして機能する透明な第1の電極(アノー ド)、16は正孔輸送層、18は白色発光層、20は電 子輸送層、22は電子注入層、24はカソードとして機 能する透明な第2の電極、26は透明導電膜、28はカ ラーフィルタ付きの第2のフレキシブル基板、30は保 護膜である。そして、図1に示すように形成された積層 体の周囲の第1及び第2のフレキシブル基板12、28 間を例えば紫外線硬化樹脂32で封止することにより、 有機エレクトロルミネッセンス素子50が形成されるこ とになる。図1に示す積層体は、図3に示すフィルム状 の素子本体40と図4に示すようにして作成されたカラ ーフィルタ付きの第2のフレキシブル基板28とを張り 合わせることによって形成される。

【0011】まず、図3を参照して索子本体40の製造 工程について説明する。第1のフレキシブル基板12 は、通常においては膜厚50~500μm程度の透明な プラスティックフィルムが用いられ、ポリエチレンテレ フタレート、ポリエチレンナフタレート、ポリカーボネ ート等のフィルムを用いることが出来る。ただし、いず れも透湿度を小さくするため、少なくともフィルムの片 側に無機、或いは有機パッシベーション膜が保護膜10 として形成してある。この保護膜10が無機膜の場合に は酸化シリコン系、窒化シリコン系、酸化窒化シリコン 系などの膜がCVD (Chemical Vapor Deposition) により形成され、有機膜の場合 には、紫外線硬化型の樹脂膜が用いられる。透湿度とし ては60℃、90%RH環境下で20g/m゚・day 以下が望ましくは必要である。さらに、透明な第1の電 極14を成膜するに当たって、第1のフレキシブル基板 12をロール状で用いる場合には成膜後にクラックを生 じる恐れがあれば実用上の大きさに切り分けてから次工 程へ供してもよい。

【0012】次に、上記第1のフレキシブル基板12上に透明な第1の電極14を形成する。この第1の電極14としては、通常、ITO(インジウムスズ酸化物)やIZO(インジウム亜鉛酸化物)などの透明金属酸化物が用いられる。この膜厚は50~300nm程度であり、シート抵抗は20~3000/cm²程度である。次いで、必要に応じてこの第1の電極14のパターンニングを行う。このパターンニングは、第1の電極14上にフォトレジストを塗布して乾燥させ、これをフォトマスクを通して露光し、更にアルカリ溶液で現像を行ってフォトレジストのパターンを形成し、次いで、ITOエッチング液で処理して洗浄を行えばよい。

【0013】次に、電極表面を大気中、或いは減圧下で 酸素や空気のプラズマ洗浄した後、UV照射によるオゾ ン洗浄を行う。次いで、上記パターン化された第1の電 極14上に正孔輸送層16として、ポリアニリンやポリ エチレンジオキシチオフェン/ポリスチレンスルフォネ ート混合物、ルイス酸をドープしたトリフェニレンアミ ン系ポリマーなどの導電性高分子をダイコート、グラビ アコート、リバースコートなどの塗布法、或いはオフセ ット印刷、グラビア印刷、スクリーン印刷、インクジェ ット印刷などの印刷法により 10~100 nm程度の厚 10 さで形成する。上記各印刷法を用いる場合には、上記第 1の電極14のパターンニングを行うことは必ずしも必 要ではなく、この正孔輸送層16をパターン形成するこ とにより代替させることができる。また、塗布法で形成 する場合は、第1の電極14のパターンニングが必要で あり、この場合は正孔輸送層16は連続膜でよい。

【0014】次いで、白色発光層18を形成するが、こ の形成方法は正孔輪送層16と同様に塗布法、印刷法の いずれも用いることが出来る。この白色発光層18の形 成は、高分子発光層を用いることが容易であり、既知の 20 白色発光層等を用いることが出来る。この膜厚は10~ 100 n m程度が望ましい。また、この白色発光層18 は、高分子材料よりなり、一例としてポリビニルカルバ ゾール (PVCz) があげられる。このPVCzはそれ 自体が発光波長400~450 n m付近の青色発光を示 すため、各色ドーパントへのエネルギー移動が生じ易 く、有用なホスト材である。また、上記PVCzよりも 低電圧で高輝度発光を得られる高分子材料も開発されて おり、高分子よりなる白色発光層として、ポリフェニレ ンビニレン誘導体、ポリフルオレン誘導体、ポリチオフ ェン誘導体、ポリシラン誘導体、ポリアセチレン誘導体 等が適用できる。これらの高分子発光材料は単体として 用いるのみならず、電子輸送性のオキサジアゾール化合 物や正孔輸送性のジアミン化合物、カルバゾール等を混 合して用いることも可能である。

【0015】この白色発光層18中には色素が予め分散 されており、青から赤までの色を発光する蛍光色素が最 適なエネルギー移動が生じるように混合してある。この 色素および高分子の白色発光層の材料を溶解した溶液 を、ダイコート、マイクログラビアコート、リバースロ 40 ールコート、スプレーコート等の連続式湿式塗布法によ り塗布する。ここで、湿式塗布法で用いられる溶媒は、 色素、白色発光層の材料が可溶であり、正孔注入層が不 溶で表面形状に変化を与えないものであれば使用でき、 クロロホルム、ジクロロエタン等の有機塩素系溶剤、ト ルエン、キシレン等の芳香族炭化水素形溶剤、テトラヒ ドロフラン、ジオキサン等のエーテル系溶剤等があげら れる。上記色素は、蛍光性を有し、RGBを発色するも のであれば使用可能であり、R用では、ポルフィリン化

ン化合物、スクアリリウム化合物、ジスチリル化合物、 ユーロリジン化合物、クマリン化合物等の既存の蛍光色 素を、また、G用では、クマリン化合物、キナクリドン 化合物、キノリノール金属錯体化合物等の既存の蛍光色 素を、また、B用では、ジスチリルアリール化合物、ジ アリールアミン化合物、トリアリールアミン化合物、テ トラフェニルブタジエン、ペリレン等の既存の蛍光色 素、それぞれを用いることができる。

【0016】また、白色発光層18の上下には、より低 電圧駆動化を狙ってバッファー層を用いることが出来 る。先に述べた正孔輸送層16の下層陽極側には正孔注 入層を設けることもできる。反対側の陰極側には電子注 入あるいは電子輸送機能を持つ電子輸送層20を形成す ることができる。この電子輸送層20は、A1キノリノ ラート錯体等よりなり、この電子輸送層20を設けるこ とにより、正孔との注入バランスを取るようにする。こ の電子輸送層20に代えて、バソクプロインなどのフェ ナントロリン化合物やトリアゾール化合物等の正孔阳止 (ホールブロック) 層を設けることができ、この正孔阳 止層は電子輸送の機能にも優れているため電子輸送層と して兼用することができる。この電子輸送層20上に形 成される電子注入層22としては、LiF、Li2Oな どのアルカリ金属、アルカリ土類金属の酸化物、フッ化 物の薄膜を用いることができ、これにより、さらに注入 効率を向上させることが出来る。

【0017】次に、上記電子注入層22の上面に、透明 な第2の電極24を形成する。透明な有機EL素子とす るにはこのように透明な金属の電極膜が必要となる。そ の膜厚は、光透過率と発光効率との兼ね合いを考慮する と、3~10nm程度が望ましい。この第2の電極24 の金属としてはアルカリ金属、アルカリ土類金属などの 仕事関数が4.0 e V以下のものを用いることが出来 る。次に、保護膜として機能する透明導電膜26を形成 する。この透明導電膜26としては、ITOやIZOな どの透明電極を積層して利用する事も可能であるし、前 述した無機あるいは有機パッシベーション膜を作成する ことが可能である。ここでは透明誘電膜26、パッシベ ーション膜は主として前者が機械的強度を向上させる機 能、後者が酸素、或いは水分を遮断する機能を有する が、機能分離は完全にはできないため混同して用いる場 合もある。

【0018】次に、上記のように形成された素子本体4 0とは別途に形成されるカラーフィルタ付きの第2のフ レキシブル基板28の製造方法について、図4を参照し て説明する。このカラーフィルタ付きの第2のフレキシ ブル基板28は、カラーフィルタに用いられる色素薄膜 34を有したカラーフィルタ形成用フィルム36を熱、 、或いは光で加熱し、この色素をカラーフィルタの付いて いない第2のフレキシブル基板28中へ転写、拡散する 合物、クロリン化合物、ペリレン化合物、ジシアノピラ 50 方法で作製される。尚、この第2のフレキシブル基板2

8は、前記第1のフレキシブル基板12と同様なものを用いることができる。この色素のフィルム36及びフレキシブル基板28間の移動は、合わせられたフィルムーフレキシブル基板が例えば加熱用ヘッド38により加熱されることにより色素層及び高分子フィルムが昇温され、色素分子が第2のフレキシブル基板28の内部へ拡散、或いは溶解する。このように加熱された場合、接触している部位間での色素の移動が生じ、所定の色の色素が所定の場所にドーピングされる。ドーピングされる色素の量は、加熱温度、加熱時間、色素膜厚に依存して定10まり、再現性良く制御できる。

【0019】例えば第2のフレキシブル基板28がポリ エチレンテレフタレートの場合には、ガラス転移点温度 は70℃であるため、それ以上の加熱温度があれば色素 はカラーフィルタ形成用フィルム36側から第2のフレ キシブル基板28の表面に移り、容易にこの第2のフレ キシブル基板28の内部へ拡散する。これによりカラー フィルタ付きの第2のフレキシブル基板28が作成され る。一方、色素薄膜34を形成するカラーフィルタ形成 用フィルム36側はそれ以上のガラス転移点温度を有し 20 ていればこのフィルム36中へ色素が拡散することはな い。第2のフレキシブル基板28側が、ロール状になさ れてカラーフィルタが形成される場合には、走行時に巻 取テンションが第2のフレキシブル基板28にかかって いると、全体がガラス転移点以上の加熱を受けた場合に フィルム厚が薄ければフィルムが伸びる。この状態のフ レキシブル基板28は、処理後にゆっくりと元の状態に 戻ろうとしてフィルム幅が変化する。従って、髙温時に 形成したカラーフィルタの画素の大きさも変化すること になり、位置あわせに狂いが生じることがある。このよ。30 うな場合には、より高温でフレキシブル基板28を再度 熱処理することによりフレキシブル基板28の変化を止 めることができる。

【0020】例えば第2のフレキシブル基板28の厚さ が数μmのときは数msの時間でフレキシブル基板28 まで熱が伝達される。色素薄膜34も同時に加熱され、 温度及び加熱時間とともにフレキシブル基板28側が加 熟されると容易にフレキシブル基板28中に色素が拡散 する。色素のドーピング濃度は、色素層膜厚、加熱温 度、時間により制御される。2色目、3色目も同様な方 法で選択位置を移動させることにより、前工程の色素が ドーピングされていない部分に、別な色素をドーピング することが可能となる。また、フィルタ画素間を遮光し てコントラストを向上させるブラックマトリックスは、 前述した印刷法で形成できる。また、カラーフィルタ用 の色素としては、フタロシアニン、イソインドリノン、 ベンズイミグゾロン、キナクリドン、ペリレン、チオイ ンディゴ、アンサンスロン、インダンスロン、アントラ キノン、ピグメントレッド、ピグメントグリーン、ピグ メントブルーなどの既存の染料顔料も使用可能である。

【0021】また、上記カラーフィルタ形成用フィルム 36上に色素を形成するには、真空蒸着法、ダイコー ト、マイクログラビアコート、リバースロールコート、 スプレーコート等の連続式湿式塗布法により形成する。 カラーフィルタのパターン形成は、上述のように加熱用 ヘッド38で行うため、色素膜は連続膜でよい。また、 この色素の加熱転写によるカラーフィルタのパターン形 成は、各色毎に、すなわち3色について行う。尚、この カラーフィルタ形成用フィルム36は、色素転写後に、 第2のフレキシブル基板28より剥がされる。このよう にして、第2のフレキシブル基板28中に形成された各 色素のドーピングパターンが、すなわちカラーフィルタ である。第1の色素をドーピングする際には、フィルム 走行方向と直交した方向に加熱用ヘッド38を並べて選 択位置に必要な時間だけ加熱が行えるようドーピングを 行う。第2、第3の各色素の場合には、第1列のフィル タパターンを合わせるようヘッド位置を調整した後、フ ィルムを走行させ同様に加熱用ヘッド38でドーピング を行い、カラーフィルタが完成する。3色1単位とした ピッチ寸法は 0.33 mm程度の高精細なカラー素子も 作製可能となる。また、小型カラー素子の多数個取りも 実現できる。

【0022】このようにして、形成されたカラーフィル タ付き第2のフレキシブル基板28と図3に示す素子本 体40とを図1に示すように接合する。そして、両フィ ルム12、28の外側に保護膜10、30をそれぞれ形 成する。この時、第1のフレキシブル基板12上に成膜 した第1電極14のパターンとカラーフィルタとの位置 合わせは、据え付け、位置制御精度で決まり、それらは μmオーダで制御可能である。この接合操作は、例えば Nz やAr等の不活性ガス雰囲気中で行う。また、この 両者の接合の際には、図2に示したように、紫外線硬化 樹脂32を所定の大きさの部分に塗布し、紫外線照射し て硬化させ封止する。この場合、フィルム全面に熱を加 えれば、両者の密着性は向上する。また、紫外線硬化樹 脂32には、透湿度が小さくアウトガスのない接着剤を 使用する。このように均一な性能の安定したカラーフィ ルタ付きのEL素子の量産ができる。これらの工程は、 酸素濃度、水分濃度が1ppm以下に抑えられた環境で行う と寿命の長いEL素子が作製できる。

【0023】また、EL素子の両面から発光を取り出す場合には、第1及び第2の両方のフレキシブル基板にカラーフィルタを作製する。これに対して、片側から発光を取り出す場合には、第1のフレキシブル基板側へカラーフィルタを作製し、陰極は不透明でよい。また、カラーフィルタを作製したフィルムを第1のフレキシブル基板、或いは第2のフレキシブル基板の外側へ張り付けてもよい。

[0024]

【発明の効果】以上説明したように、本発明によれば、

10

フレキシブル基板上への白色発光層等の形成と、フレキシブル基板へのカラーフィルタの形成を、ロールからロールへの工程で容易に製造でき、大画面でフルカラー表示が可能なフレキシブルな有機エレクトロルミネッセンス素子の量産性を向上させることができる。

【図面の簡単な説明】

【図1】本発明の有機エレクトロルミネッセンス素子の 要部を示す断面図である。

【図2】本発明の有機エレクトロルミネッセンス素子を示す断面図である。

【図3】素子本体を示す断面図である。

*【図4】カラーフィルタ付きの第2のフレキシブル基板 の製造方法を説明するための図である。

【図5】従来の有機エレクトロルミネッセンス素子を示す概略断面図である。

【符号の説明】

10…保護膜、12…第1のフレキシブル基板、14…透明な第1の電極、16…正孔輸送層、18…白色発光層、20…電子輸送層、22…電子注入層、24…透明な第2の電極、26…透明誘電層、28…第2のフレキシブル基板、30…保護膜、40…素子本体、50…有機エレクトロルミネッセンス素子。

10 8 8 4 4 2

[25]