

#### Muon Alignment Status Report

<u>Jim Pivarski</u>, Alexei Safonov, Karoly Banicz\*, Vadim Khotilovich, Alexey Kamenev\*\*

Texas A&M University
\*Purdue University

\*\*Joint Institute for Nuclear Research, Dubna

20 October, 2007



#### Main Theme

The muon alignment *process* is basically working (most stations) and performs better than expected.

#### Now we need to

- (a) continue looking for sources of systematic error
- (b) correct a bug in ME1/1
- (c) improve our layer-alignment strategy
- (d) develop cosmic-ray and beam-halo procedures
- (e) create additional monitoring tools
  - (f) actually align the detector: MTCC as soon as possible, beam-halo and  $Z \rightarrow \mu\mu$  when available



#### PART I: WHAT WORKS



#### Working procedure

Reaches alignment goals with 5 pb $^{-1}$  of Z, W (20,000 high- $|\vec{p}|$  muons), assuming no surprises









#### Anticipating surprises: systematics studies

#### Done

- ▶ Dependence on miscalibration: negligible
- ▶ Dependence on tracker misalignment: only significant at 1–2 times the "tracker short-term scenario"

#### **Partial**

▶ Dependence on momentum: aligned high- $|\vec{p}| Z \rightarrow \mu\mu$ (60+ GeV) and low- $|\vec{p}| Z \rightarrow \mu\mu$  (~20 to 60 GeV), but not realistic physics distributions

low- $|\vec{p}|$ : 10% of chambers placed at too large radius (2–8 mm)

#### To-do

- Mismeasured magnetic field
- Incorrect material budget/distribution
  - Backgrounds (contamination with non-muons)





#### All systematics studies applied to TeV Drell-Yan and Z'





"low-p" means 20-60 GeV  $Z 
ightarrow \mu \mu$ official  $10 \text{ pb}^{-1}$  scenario is pessimistic

(private  $1_{-}5_{-}4$  Z' samples)





#### All systematics studies applied to 2 TeV Drell-Yan and Z'





"low-p" means 20-60 GeV  $Z \rightarrow \mu\mu$  official 10 pb<sup>-1</sup> scenario is pessimistic

(private  $1_{-}5_{-}4$  Z' samples)



#### Using effect on TeV muons as "alignment quality"

RMS of event-by-event  $\frac{\text{misaligned di-muon mass}}{\text{ideal di-muon mass}} - 1$ 

| Source of alignment            | Z'(1000) | Z'(2000) | DY(>500) | DY(>1000) |
|--------------------------------|----------|----------|----------|-----------|
| $1$ k $\mu$ (0.25 pb $^{-1}$ ) | 6.0%     | 5.5%     | 4.8%     | 6.6%      |
| 10k $\mu$ (2.5 pb $^{-1}$ )    | 1.8%     | 1.7%     | 1.6%     | 2.1%      |
| 100k $\mu$ (25 pb $^{-1}$ )    | 1.2%     | 1.1%     | 1.0%     | 1.3%      |
| 325k $\mu$ (82 pb $^{-1}$ )    | 1.0%     | 1.0%     | 0.7%     | 1.2%      |
| $ ec{p}  > 60 \; GeV$          | 1.0%     | 1.0%     | 0.8%     | 1.2%      |
| $20< ec{ ho} <60\;	ext{GeV}$   | 1.7%     | 1.7%     | 1.5%     | 2.1%      |

With this as a bottom line, we can make statements like "switching to  $|\vec{p}| >$  60 GeV is as good as getting a factor of ten more tracks."





#### Uncertainty in track $p_T$ , binned in $p_T$ and factorized

What works



everything but alignment

effect of alignment

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$
= sum in quadrature of both uncertainties





#### Uncertainty in track $p_T$ , binned in $p_T$ and factorized



everything but alignment

effect of alignment

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$
= sum in quadrature of both uncertainties



### Software infrastructure will be tested next Wednesday That's when we start our CSA07 jobs





## PART II: WHAT NEEDS WORK



#### ME1/1: bug in alignment and/or reconstruction

Asymmetric non-Gaussian tail in aligned y positions due to ME1/1





Chambers with y > 0.2

Problem with coordinate systems? ME1/1's unique geometry?

Alexey Kamenev (Dubna) and I are beginning investigation...



14/24





#### Need a more effective procedure for CSC layers

What needs work

► CSC layer misalignment is known (Karoly, Andrey, Oleg...)



Note: "alignment quality" studies use *current* layer misalignment



## PART III: COSMIC RAYS AND BEAM-HALO



#### Cosmic rays (Alexey Kamenev)

- Very recently freed from other obligations, Alexey is ready to work on alignment
- We're starting with the ME1/1 bug
- We'll use Adam Roe's re-processed MTCC until official sample becomes available

#### Beam-halo (Karoly Banicz)

- Generating reliable beam-halo samples
- Successfully ran an alignment
- ▶ We have yet to optimize the procedure, but the initial results are promising (I peeked at the output)



## PART IV: TOOLS FOR MONITORING



18/24





#### Done

"Sanity checks" generated in the alignment job (used, for example, to diagnose ME1/1)

Monitoring tools

#### Started

Geometry comparison tool: compare alignments at the database level, without events

Example time-series plot: barrel alignments with increasingly misaligned tracker



#### **Brand New**

Overlap plots: to identify misaligned chambers in data. . .



#### Prerequisites for overlap plots





- No tracks overlap neighboring pairs of chambers in the same station
- ▶ Very few muons do ( $\sim$ 4%)
- ▶ But 12-hit events usually have segments with good  $\chi^2$ , in the right regions





#### Overlap plot (MC)

▶ Linear extrapolation over  $\Delta z \approx 25$  cm

Monitoring tools

- ▶ Poor resolution, even with all chamber-pairs combined
- Still have sign ambiguities to resolve





# PART V: TOWARD REAL ALIGNMENTS (not just realistic)





#### Actually aligning the detector

#### Making overlap plots with MTCC





- Adam Roe's privately re-processed sample
- ightharpoonup Somewhat more background and larger segment  $\chi^2$  values
- Not a fair comparison because:
  - $Z \rightarrow \mu\mu$  MC versus cosmic ray MTCC
  - ▶ MTCC layers are misaligned, ideal MC are not
  - MTCC could be miscalibrated, ideal MC is not

Jim Pivarski





#### MTCC overlap plot superimposed on MC



- ▶ Chamber misalignments are probably smaller than  $\mathcal{O}(1 \text{ cm})$
- How would we see them with 1 cm resolution?



#### Conclusions!

- $ightharpoonup Z 
  ightarrow \mu \mu$  alignment procedure is not in danger of being late
- ▶ We cautiously anticipate needing only 5 pb<sup>-1</sup>, even with preferring high- $|\vec{p}|$  tracks to high statistics
- Still checking systematic effects for potential spoilers
- Still building monitoring tools to catch the problems we don't think of
- Using TeV muons as a test-bed for alignment quality (in MC)
- Developing ways to test alignment quality in data
- ▶ MTCC and beam-halo alignment efforts are ramping up