

Statistics Ex 7.3 Q23

Answer:

Let the assumed mean A = 0.1 and h = 0.04.

Concentration of SO ₂ (in ppm):	$Midvalue(x_i)$:	$frequency\big(f_i\big)$	$d_i = x_i - A$ $= x_i - 0.10$	$u_i = \frac{1}{h}(d_i)$ $= \frac{1}{0.04}(d_i)$	$f_i u_i$
0.00-0.04	0.02	4	-0.08	-2	-8
0.04 - 0.08	0.06	9	-0.04	-1	-9
0.08 - 0.12	0.10	9	0	0	0
0.12 - 0.16	0.14	2	0.04	1	2
0.16 - 0.20	0.18	4	0.08	2	8
0.20-0.24	0.22	2	0.12	3	6
		$\sum f_i = 30$			$\sum f_i u_i = -1$

We know that mean,
$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

Now, we have $N=\sum f_i=30,\;\sum f_iu_i=-1,\;\;h=0.04$ and A=0.10

Putting the values in the above formula, we have

$$\overline{X} = A + h \left(\frac{1}{N} \sum_{i} f_{i} u_{i} \right)$$

$$= 0.10 + 0.04 \left[\frac{1}{30} \times (-1) \right]$$

$$= 0.10 - \frac{0.04}{30}$$

$$= 0.10 - 0.001$$

$$= 0.099$$

Hence, the mean concentration of SO₂ in the air is 0.099 ppm.

Statistics Ex 7.3 Q24

Answer:

Let the assume mean A = 17.

No. of days:	(x_i) :	No. of students (f_i) :	$d_i = x_i - A$	$f_i d_i$
	16.14.12		$= x_i - 17$	WW
0-6	3	11	-14	-154
6-10	8	10	<u>-9</u>	-90
10 - 14	12	7	-5	-35
14 - 20	17	4	0	0
20-28	24	4	7	28
28 - 38	33	3	16	48
38 - 40	39	1	22	22
		$\sum f_i = 40$		$\sum_i f_i d_i = -181$

We know that mean,
$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

Now, we have
$$N=\sum f_{i}=40,\,\sum f_{i}d_{i}=181\,\mathrm{and}\,A=17$$
 .

Putting the values in the above formula, we have

$$\overline{X} = A + \frac{1}{N} \sum_{i=1}^{n} f_i d_i$$

$$= 17 + \frac{1}{40} \times (-181)$$

$$= 17 - \frac{181}{40}$$

$$= 17 - 4.525$$

$$= 12.475$$

Hence, the mean number of days a student was absent is 12.475.

********** END ********