Recovery system for drone etc. - has catch line held in frame to lock into hook held above drone, with retarding mounting for line.

Patent number:

DE4301671

Publication date:

1993-07-29

Inventor:

HOEPPNER HEINZ JOCHEN (DE)

Applicant:

NORD SYSTEMTECHNIK (DE)

Classification:

- international:

B64F1/02

- european:

B64F1/02

Application number: DE19934301671 19930122

Priority number(s): DE19934301671 19930122; DE19924201621 19920122

Abstract of DE4301671

The drone carries a recovery hook held on an extending support above the rear the of the aircraft. The catch-line (3) is slung between the open ends of a recovery frame which is held into the flight path of the drone. The recovery line is attached to brake lines to retard the

drone and recover it.

The frame is primed and held for recovery, e.g. over the side of a ship. The braking path is controlled under a longitudinal boom behind the frame, which then supports the recovered drone held by the catch line. The recovery system can have a sensor to monitor the position of the incoming drone.

ADVANTAGE - Simple, low-cost and reliable recovery.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 43 01 671 A 1

(5) Int. Cl.5: B 64 F 1/02

PATENTAMT

(21) Aktenzeichen:

P 43 01 671.5

Anmeldetag:

22. 1.93

Offenlegungstag:

29. 7.93

30 Innere Priorität: 32 33 31

22.01.92 DE 42 01 621.5

(7) Anmelder:

STN Systemtechnik Nord GmbH, 2800 Bremen, DE

(4) Vertreter:

Eisenführ, G., Dipl.-Ing.; Speiser, D., Dipl.-Ing.; Rabus, W., Dr.-Ing.; Brügge, J., Dipl.-Ing.; Klinghardt, J., Dipl.-Ing.; Heun, T., Dipl.-Ing.Univ., 2800 Bremen; Schuler, P., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte, 8000 München

(7) Erfinder:

Höppner, Heinz Jochen, 2800 Bremen, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (6) Vorrichtung zum Bergen von Flugkörpern
- Die Erfindung betrifft eine Vorrichtung zum Bergen von Flugkörpern (1), insbesondere Drohnen, mit einer Fangeinrichtung (2), die ein Fangelement (3) aufweist, das von einer ersten Stellung, in der es mit einem an einem anfliegenden Flugkörper (1) angebrachten Kupplungselement in Eingriff bringbar ist, in eine zweite Stellung derart gebremst bewegbar ist, daß der Flugkörper (1) in der zweiten Stellung zum Stillstand gelangt.

Beschreibung

Die Erfindung betrifft eine Vorrichtung zum Bergen von Flugkörpern, insbesondere Drohnen, mit einer

Fangeinrichtung.

Derartige gattungsgemäße Vorrichtungen werden eingesetzt, um beispielsweise Drohnen aufzunehmen, die mit entsprechenden Startvorrichtungen von Schiffen abgesetzt werden. Neben Fallschirmbergesystemen, die eine große Fläche für die Bergung benötigen, wird 10 eine genaue Bergung der rückkehrenden Flugkörper bislang hauptsächlich mit Hilfen von Netzen durchgeführt, die im Bereich einer vorgesehenen Flugbahn des Objektes aufgespannt werden und sowohl ein Abbremsen als auch eine Rückführung an Bord des Schiffes 15 ermöglichen. Die erforderliche Netzgröße hängt dabei von der jeweiligen Größe des Flugkörpers sowie dessen Anfluggenauigkeit ab. Für eine Handhabung derartiger Vorrichtungen ist ein vergleichsweise hoher materieller und personeller Aufwand erforderlich, der gerade an 20 Bord von Schiffen in der Regel erhebliche Probleme bereitet.

Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung der eingangs genannten Art derart zu verbessern, daß die Bergung von Flugkörpern vereinfacht wird und mit geringerem Aufwand durchführbar ist.

Diese Aufgabe wird bei einer Vorrichtung der eingangs genannten Art dadurch gelöst, daß die Fangeinrichtung ein Fangelement aufweist, das von einer ersten Stellung, in der es mit einem an einem anfliegenden 30 Flugkörper angebrachtem Kupplungselement in Eingriff bringbar ist, in eine zweite Stellung derart gebremst bewegbar ist, daß der Flugkörper in der zweiten Stellung im wesentlichen zum Stillstand gelangt.

Mit Hilfe der Erfindung wird die Bewegung des anfliegenden Flugkörpers während des Bergevorganges gleichmäßig und stetig auf null reduziert. Dies wird erfindungsgemäß dadurch erreicht, daß das Fangelement den Flugkörper bis zum Stillstand im wesentlichen stetig auf geradliniger Bahn und ohne die Gefahr eines 40 Überschwingens abbremst. Nachdem nämlich der Flugkörper mit seinem Kupplungselement mit dem erfindungsgemäßen Fangelement in dessen erster Stellung in Eingriff gelangt ist, wird das Fangelement vom Flugkörper aufgrund dessen noch vorhandener kinetischer 45 Energie mitgenommen. Da das erfindungsgemäße Fangelement von der ersten Stellung in die zweite Stellung gebremst bewegbar ist, übt es während dieser Mitnahmebewegung auf den Flugkörper eine Bremswirkung aus, was zu einem schnellen Abbau der kinetischen 50 Energie und somit zu einer definierten Verzögerung des Flugkörpers in einem definierten Bewegungsablauf führt, bis dieser in der zweiten Stellung im wesentlichen zum Stillstand gelangt ist. Mit Hilfe des erfindungsgemäßen, eine gebremste Bewegung ausführenden Fang- 55 elementes ist somit eine gezielte und einfache Bergung von Flugkörpern möglich.

Besonders vorteilhaft ist es natürlich, wenn die vom Fangelement zwischen dessen erster und dessen zweiter Stellung auf den Flugkörper ausgeübte Verzögerungsbzw. Bremskraft im wesentlichen gleichmäßig, d. h. ohne Lastspitzen, ist. Zweckmäßigerweise sollte das Fangelement von der ersten in die zweite Stellung im wesentlichen in Flugrichtung des anfliegenden Flugkörpers und somit geradlinig bewegbar sein.

Bei einer konstruktiv besonders einfachen Ausführung ist das Fangelement als Fangleine ausgebildet, die von einer gebremsten Trommel abwickelbar ist. Zur

Erhöhung des Auffangbereiches ist es zweckmäßig, die Fangleine in der ersten Stellung zwischen zwei Halteelementen zu spannen.

Bei einer weiteren Ausführung ist die Fangleine von einem Halteseil an einem im wesentlichen in Flugrichtung ausrichtbaren Längsträger entlang verschiebbar gehaltert. Dadurch ist gerade im Stillstand eine sichere Fixierung des aufgefangenen Flugkörpers gewährleistet. Zur Erhöhung der Flexibilität des Abbremsvorganges einerseits und zur Verringerung des Bauvolumens der Vorrichtung gerade in einem unbenutzten Zustand andererseits wird vorgeschlagen den Längsträger als mechanisch verlängerbare Struktur auszubilden.

Vorzugsweise ist eine positionsveränderliche Halteeinrichtung zur Halterung der Fangeinrichtung sowie eine Regeleinrichtung zur Regelung der Position der Halteeinrichtung und/oder der Flugbahn des ansliegenden Flugkörpers vorgesehen, um die Flugbahn des Flugkörpers und die Fangeinrichtung zueinander automa-

tisch auszurichten.

Eine Weiterbildung dieser Ausführung ist dadurch gekennzeichnet, daß bei Anflug eines Flugkörpers die Regeleinrichtung zunächst die Flugbahn des Flugkörpers so regelt, daß diese auf die Fangeinrichtung ausgerichtet wird, und anschließend die Position der Halteeinrichtung so regelt, daß die Fangeinrichtung auf die Flugbahn des Flugkörpers ausgerichtet wird. Demnach erfolgt zunächst eine Ausrichtung der Flugbahn des Flugkörpers und der Fangeinrichtung zueinander durch eine Regelung der Flugbahn des Flugkörpers. In der letzten Anflugphase erfolgt dagegen die Feinausrichtung durch Regelung der Position der Halteeinrichtung, während die Flugbahn des Flugkörpers durch die eigene Inertialregelung geradlinig fortgesetzt wird, da in diesem Stadium aufgrund der nur noch geringen Entfernung zur Fangeinrichtung eine Beeinflussung der Flugbahn insbesondere wegen des begrenzten Flugradius keine grö-Beren Wirkungen mehr zeigt. Hierzu sollte die Regeleinrichtung mit mindestens einem Sensor zur Erfassung der Position des Flugkörpers gekoppelt sein.

Eine einfache Positioniermöglichkeit nach Art eines Kranes kann bevorzugt dadurch erzielt werden, daß die Halteeinrichtung einen Ausleger aufweist, der über ein Schwenklager an einem Mast befestigt ist und zweckmäßigerweise auch noch ausfahrbar sein sollte.

Wird die erfindungsgemäße Vorrichtung auf einem Schiff verwendet, sollte die Fangeinrichtung wahlweise auch außerhalb des Schiffskörpers angeordnet werden, um einen ausreichenden Abstand zum Schiffskörper herzustellen, der auch bei einer möglichen Flugbahnabweichung sicher Kollisionen des Flugkörpers mit dem Schiffskörper vermeidet. Bei dieser Ausführung sollte dann die Regeleinrichtung mit Sensoren zur Erfassung von Schiffsbewegungen gekoppelt sein, um bei der Positionsregelung der Halteeinrichtung die Schiffsbewegungen kompensieren zu können.

Der Automatisierungsgrad des Bergevorganges kann noch dadurch erhöht werden, daß eine Rückholeinrichtung zur Zurückführung des Flugkörpers in den Bereich der ersten Stellung des Fangelementes vorgesehen ist.

Bei einer weiteren Ausführung ist das Kupplungselement am Flugkörper angelenkt. Dadurch bleibt während des Bergevorganges gewährleistet, daß der vom Fangelement auf den Flugkörper wirkende Verzögerungs- bzw. Bremskraftvektor in seiner Verlängerung stets durch den Schwerpunkt des Flugkörpers verläuft, was aus physikalischen Gründen gerade für einen definierten und geradlinigen Bewegungsablauf während des Bei einer weiteren vorteilhaften Ausbildung des Kupplungselementes als Haken, der mit einer schräg zur Flugrichtung orientierten Eingriffsfläche versehen ist, können Höhenabweichungen des Flugkörpers relativ zum Fangelement während des Eingreifens des Kupplungselementes in das Fangelement in dessen erster Stellung ausgeglichen werden.

Es kann zusätzlich auch eine Halterung vorgesehen sein, mit der der Flugkörper mit seinem Kupplungselement nach Beendigung des Verzögerungsvorganges in

Eingriff gelangt.

Schließlich sei darauf hingewiesen, daß das Fangelement beispielsweise auch als flexibles Element ausgebildet sein kann, in das der Flugkörper mit seinem Kupplungselement eingreift.

Kopfsegmentes 13 angeordnet ist. Die Schlittens 19 entlang der Führungsstel spielsweise hydraulisch oder elektrisch.
Rechtwinklig zum Kopfsegment

Nachfolgend wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der beiliegenden Zeichnun-

gen näher erläutert. Es zeigen:

Fig. 1 eine teilweise perspektivische Darstellung eines mit einer Bergevorrichtung ausgestatteten Schiffes, wobei die Bergevorrichtung in zwei unterschiedlichen Anordnungen (I und II) dargestellt ist;

Fig. 2 eine Seitenansicht eines zu bergenden Flugkör-

ers.

Fig. 3 eine teilweise perspektivische Darstellung des Schiffes mit eingeschwenkter Bergevorrichtung sowie einer Darstellung des Abschusses eines Flugkörpers;

Fig. 4 eine Prinzipdarstellung des Einkopplungsvorganges des Flugkörpers in die Fangleine in deren erster 30

Stellung;

Fig. 5 eine Prinzipdarstellung der Vorrichtung während des Abbremsvorganges des eingekoppelten Flugkörpers; und

Fig. 6 eine Prinzipdarstellung der Vorrichtung mit ab- 35

gebremstem Flugkörper.

Die nachfolgend beschriebene Ausführung der Bergevorrichtung ist für den Einsatz auf Schiffen vorgesehen. Gleichwohl sei bereits an dieser Stelle darauf hingewiesen, daß die Bergevorrichtung selbstverständlich auch auf anderen Trägern montiert und verwendet werden kann.

Die in Fig. 1 im ganzen dargestellte Vorrichtung zum Bergen eines Flugkörpers 1, bei dem es sich insbesondere um eine Drohne handeln kann, weist eine Fangeinrichtung 2 auf, die mit einem Fangelement 3 versehen ist. Die Fangeinrichtung 2 ist von einem Ausleger 4 gehaltert, der quer zur Längsachse 5 eines Schiffes 6 positionierbar ist, auf welchem die beschriebene Berge-

vorrichtung montiert ist.

Bei der dargestellten Ausführung ist der Ausleger 4 an einem Mast 7 befestigt, der im Bereich eines Schiffsaufbaus 8 gehaltert ist. Der Mast 7 ist über ein Schwenklager 9 mit einem Sockel 10 verbunden, der seinerseits starr am Schiffsaufbau 8 befestigt ist. An seinem dem 55 Schwenklager 9 abgewandten Ende weist der Mast 7 ein Drehgelenk 11 auf, das eine im wesentlichen vertikale Verschwenkung des Auslegers 4 gegenüber dem Mast 7 erlaubt. Dadurch ergibt sich eine dreidimensionale Positionierungsmöglichkeit für die Fangeinrichtung 2. Prinzipiell ist es auch denkbar, den Ausleger 4 unmittelbar am Schiffsaufbau 8 oder an einem anderen Teil des Schiffes 6 zu lagern.

Der Ausleger 4 besteht aus einem Basissegment 12 sowie einem Kopfsegment 13. Das Basissegment 12 ist 65 dem Mast und das Kopfsegment 13 der Fangeinrichtung 2 zugewandt angeordnet. Zur Positionierung des Basissegmentes 12 sowie des Kopfsegmentes 13 sind Ver-

stellelemente 14 und 15 vorgesehen, die beispielsweise als Hydraulikzylinder ausgebildet sind. Durch eine Betätigung der Verstellelemente 14 und 15 können beispielsweise die beiden in Fig. 1 dargestellten Positionen I und

II der Fangeinrichtung 2 realisiert werden.

Die Fangeinrichtung 2 weist zwei seitliche Haltearme 16, 17 auf, die an ihren dem Kopfsegment 13 abgewandten Enden das Fangelement 3 haltern. An ihren dem Kopfsegment 13 zugewandten Enden sind die seitlichen Haltearme 16, 17 von einem Querträger 18 verbunden und über einen Schlitten 19 entlang einer Führungsschiene 20 positionierbar, die an der Unterseite des Kopfsegmentes 13 angeordnet ist. Die Verstellung des Schlittens 19 entlang der Führungsstelle 20 erfolgt beispielsweise hydraulisch oder elektrisch.

Rechtwinklig zum Kopfsegment 13 verläuft ein Längsträger 21, der am Querträger 18 angebracht ist. Grundsätzlich ist auch eine Anbringung am Schlitten 19 möglich. Der Längsträger 21 kann sowohl als ein starres als auch als ein verlängerbares Element ausgebildet sein. Bei einer verlängerbaren Ausführung ist insbesondere eine teleskopartige oder scherenartige Ausbildung

zweckmäßig.

Das Fangelement 3 ist nachgiebig oder flexibel ausgeführt, wobei zur Dämpfung der Auslenkung des Fangelementes 3 ein Verzögerungselement 23 vorgesehen ist, das auf der Oberseite des Kopfsegmentes 13 montiert ist.

In der dargestellten Ausführung ist das Fangelement 3 als Leine und das Verzögerungselement 23 als abgebremste Trommel ausgebildet. Die Fangleine 3 ist im unbenutzten Zustand zwischen den unteren Enden der beiden seitlichen Haltearme 16, 17 gespannt und an diesen zur Verzögerungstrommel 23 umgelenkt, von der die Fangleine 3 gebremst abgewickelt werden kann. Das auf die Trommel 23 wirkende Bremsmoment kann beispielsweise von einem nicht im einzelnen dargestellten Elektromotor mit Bremse erzeugt werden, der dann auch zusätzlich noch zum Aufwickeln der Fangleine 3 verwendet werden kann. Bei einer teleskop- oder scherenartigen Ausführung des Längsträgers 21 können einer Verlängerung des Längsträgers 21 entgegenwirkende Dämpfungselemente vorgesehen sein, die zusätzlich oder alternativ zum Verzögerungselement 23 eine Abbremsung der Auslenkung der Fangleine 3 bewirken.

Wie insbesondere auch Fig. 6 zu entnehmen ist, ist bei der dargestellten Ausführung zusätzlich ein Halteseil 22 vorgesehen, das am Längsträger 21 entlang verschiebbar gehaltert und mit der Fangleine 3 verbunden ist.

Aus Fig. 2 ist erkennbar, daß der Flugkörper 1 mit einem hakenförmigen Kupplungselement 27 versehen ist, der mittels eines Drehgelenkes 28 am Flugkörper 1 angelenkt ist. Das Kupplungselement 27 ist normalerweise gegenüber der Längsachse des Flugkörpers 1 nach hinten bzw. entgegen der Flugrichtung geneigt angeordnet, wobei die Eingriffsfläche des Kupplungselementes 27 in Flugrichtung orientiert ist. Durch eine derartige Anordnung des Kupplungselementes 27 ist es möglich, zum einen eine Beeinträchtigung der Flugeigenschaften durch das Kupplungselement 27 zu vermeiden und dieses erst kurz vor einer Einleitung des nachfolgend noch zu beschreibenden Fangvorganges aufzurichten und zum anderen während des Fangvorganges die Orientierung des Kupplungselementes 27 so zu halten, daß dessen Verlängerung und somit der Verzögerungs- oder Bremskraftvektor durch den Schwerpunkt des Flugkörpers verläuft.

Bei der in Fig. 3 gezeigten Betriebsweise befindet sich

die Vorrichtung in einer Ruhestellung und ist am Schiffsaufbau 8 anliegend angeordnet. Zur kompakten Verstauung sind die seitlichen Haltearme 16, 17 am Querträger 18 verschwenkbar angeordnet und in der dargestellten Ruhestellung an den Querträger 18 geklappt. Für eine besonders kompakte Anordnung der Vorrichtung im Ruhezustand ist es möglich, den Längsträger 21 derart verschwenkbar relativ zum Ausleger 4 anzuordnen, daß der Längsträger 21 in der Ruhestellung in eine in Richtung des Auslegers 4 weisende Orientierung verschwenkt ist. Demnach sind alle wesentlichen Elemente an den Ausleger 4 geklappt oder weisen in dessen Richtung.

Wie Fig. 3 ferner zu entnehmen ist, ist zum Aussetzen des Flugkörpers 1 im Bereich eines Schiffsdecks 24 eine Starteinrichtung 25 vorgesehen, die verschwenkbar auf einer Basisplatte 26 angeordnet ist. Die Basisplatte 26 ist auf dem Schiffsdeck 24 verschieblich befestigt. Der startende Flugkörper 1 ist in Fig. 3 in unterschiedlichen

Flugzuständen dargestellt.

Zur automatischen Ausrichtung der Flugbahn des Flugkörpers 1 und der Fangeinrichtung 2 bei Einleitung und Durchführung des Bergevorganges ist eine in den Figuren im einzelnen nicht dargestellte Regeleinrichtung vorgesehen. Mittels geeigneter Sensoren kann die 25 Regeleinrichtung die Flugbahn des ansliegenden Flugkörpers 1 erfassen und im Falle unerwünschter Bahnabweichungen den Flugkörper 1 mittels über eine Funkverbindung übertragener Signale zu einer entsprechenden Bahnkorrektur veranlassen. Darüber hinaus ist es mit Hilfe der Regeleinrichtung auch möglich, die Verstellelemente 14, 15 und den Schlitten 19 zu positionieren. Hierdurch werden zum einen Eigenbewegungen des Schiffes 6, die beispielsweise durch Wellengang und Strömungseinflüsse hervorgerufen werden, kompensiert und zum anderen Bahnabweichungen des Flugkörpers 1 durch entsprechende Ausrichtung der Fangeinrichtung 2 ausgeglichen. Durch das Zusammenwirken der Regeleinrichtung, der Verstellelemente 14, 15 sowie des Schlittens 19 kann demnach die Position der Fangeinrichtung 2 sowohl in lotrechter Richtung als auch quer zur Schiffslängsachse 5 (Fig. 1) in horizontaler Richtung verändert und auf die Flugbahn des ansliegenden Flugkörpers 1 ausgerichtet werden.

Vorzugsweise regelt bei Anflug des Flugkörpers 1 die Regeleinrichtung zunächst die Flugbahn des Flugkörpers 1 so, daß dieser auf die Fangeinrichtung 2 ausgerichtet wird. In der Endanflugphase beeinflußt die Regeleinrichtung dann nur noch die Verstellelemente 14, 15 und den Schlitten 19 und regelt somit die Position der Fangeinrichtung 2, so daß die Fangeinrichtung 2 auf die Flugbahn des sich nähernden Flugkörpers 1 ausgerichtet wird. Demnach erfolgt zunächst eine grobe Regelung durch entsprechende Beeinflussung der Flugbahn des Flugkörpers 1 und anschließend eine Feinregelung 55 durch Beeinflussung der Position der Fangeinrichtung 2 in Ausrichtung auf den ansliegenden Flugkörper 1.

In den Fig. 4 bis 6 ist der Fang- und Bergevorgang

schematisch dargestellt.

Der Flugkörper 1 fliegt die Fangeinrichtung 2 derart 60 an, daß sein Kupplungselement 27 in die querverlaufende, gespannte Fangleine 3 eingehängt wird, wie in Fig. 4 dargestellt ist. Dabei können durch geeignete Dimensionierung der schräg zur Flugrichtung orientierten Eingriffsfläche des Kupplungselementes 27 Höhenabweichungen des Flugkörpers 1 gegenüber der Fangleine 3 ausgeglichen werden, während seitliche Abweichungen quer zur Flugrichtung durch eine ausreichend lange Di-

mensionierung der Fangleine 3 kompensiert werden können.

Nach dem Einhängen des Kupplungselementes 27 in die Fangleine 3 nimmt der Flugkörper 1 aufgrund seiner noch vorhandenen kinetischen Energie die Fangleine 3 mit wodurch sie von der Trommel 23 abgewickelt wird. Dieser Zustand ist in Fig. 5 angedeutet. Da auf die Trommel 23 ein Bremsmoment wirkt, wird sie nur gebremst gedreht, so daß auf die sich abwickelnde Fangleine 3 eine Bremskraft wirkt. Diese Bremskraft bewirkt eine stetige Reduzierung der kinetischen Energie, bis der Flugkörper 1 zum Stillstand kommt. Während des Bremsvorganges wird das am Flugkörper 1 angelenkte Kupplungselement 27 stets derart ausgerichtet, daß der von der Fangleine 3 auf den Flugkörper 1 wirkende Verzögerungs- bzw. Bremskraftvektor durch den Schwerpunkt des Flugkörpers 1 verläuft. Dadurch ist gewährleistet, daß der Flugkörper während der Abbremsphase geradlinig weiterfliegt und unerwünschte Pendelbewegungen vermieden werden. Zur geradlinigen Abbremsbewegung des Flugkörpers 1 sollte dessen Schwerpunkt außerdem derart unterhalb des Fangleinenhaltepunktes liegen, daß die auf den Flugkörper 1 einwirkende Schwerkraft durch das Integral einer Vertikalbremskraftkomponente gerade kompensiert wird. Konstruktiv kann dies zusätzlich auch dadurch realisiert werden, daß für die seitlichen Haltearme 16, 17 der Fangeinrichtung 2 eine Verschwenkmöglichkeit vorgesehen ist wodurch die Haltearme 16, 17 und damit der aus deren Stellung resultierende Haltepunkt der Fangleine 3 so positioniert werden können, daß eine Schwerkraftkompensation durch die Fangleine 3 erfolgt.

Mit Hilfe des Verzögerungselementes 23 kann nun die kinetische Energie des Flugkörpers 1 umgewandelt und somit der Flugkörper 1 in einem definierten Bewe-

gungsablauf zum Stillstand gebracht werden.

Während des Abbremsvorganges wird das Halteseil 22 am Längsträger 21 entlang geführt, was ebenfalls zu einem definierten Bewegungsablauf des Flugkörpers 1 beiträgt. Außerdem bewirkt das Halteseil 22 eine Fixierung des Flugkörpers 1 im Stillstand, so daß der Flugkörper 1 gesichert ist und nicht herunterfallen kann. Die Stellung des Flugkörpers 1 im Stillstand nach Beendigung des Abbremsvorganges ist in Fig. 6 dargestellt. Demnach bestimmt sich die Länge des Längsträgers mindestens nach der Länge des Bremsweges des Flugkörpers 1 zwischen in den Fig. 4 und 6 gezeigten Stellungen.

Nach Abbremsung des Flugkörpers 1 erfolgt eine Rückholung des Fangseils 3 und des Halteseils 22, wodurch der Flugkörper 1 in Richtung auf die Fangeinrich-

tung 2 transportiert wird.

Patentansprüche

1. Vorrichtung zum Bergen von Flugkörpern (1), insbesondere Drohnen, mit einer Fangeinrichtung (2), dadurch gekennzeichnet, daß die Fangeinrichtung (2) ein Fangelement (3) aufweist, das von einer ersten Stellung (Fig. 4), in der es mit einem an einem ansliegenden Flugkörper (1) angebrachten Kupplungselement (27) in Eingriff bringbar ist, in eine zweite Stellung (Fig. 6) derart gebremst bewegbar ist, daß der Flugkörper (1) in der zweiten Stellung im wesentlichen zum Stillstand gelangt.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die vom Fangelement (3) zwischen dessen erster und dessen zweiter Stellung auf den

Flugkörper (1) ausgeübte Verzögerungs- bzw. Bremskraft im wesentlichen gleichmäßig ist.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fangelement (3) von der ersten in die zweite Stellung im wesentlichen in 5 Flugrichtung des ansliegenden Flugkörpers (1) bewegbar ist.

4. Vorrichtung nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Fangelement als Fangleine (3) ausgebildet ist.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Fangleine (3) von einer gebremsten Trommel (23) abwickelbar ist.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Fangleine (3) in der ersten 15 Stellung zwischen zwei Halteelementen (16, 17) ge-

spannt ist.

7. Vorrichtung nach mindestens einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Fangleine (3) von einem Halteseil (22) an einem im wesentlichen in Flugrichtung ausrichtbaren Längsträger (21) entlang verschiebbar gehaltert ist.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Längsträger (21) als mechanisch

verlängerbare Struktur ausgebildet ist.

9. Vorrichtung nach mindestens einem der Ansprüche 1 bis 8, mit einer Halteeinrichtung (4) zur Halterung der Fangeinrichtung (2), dadurch gekennzeichnet, daß die Halteeinrichtung (4) positionsveranderlich ausgebildet ist und eine Regeleinrichtung 30 zur Regelung der Position der Halteeinrichtung (4) und/oder der Flugbahn des anfliegenden Flugkörpers (1) vorgesehen ist, um die Flugbahn des Flugkörpers (1) und die Fangeinrichtung (2) zueinander auszurichten.

10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß bei Anslug eines Flugkörpers (1) die Regeleinrichtung zunächst die Flugbahn des Flugkörpers (1) so regelt, daß diese auf die Fangeinrichtung (2) ausgerichtet wird, und anschließend die 40 Position der Halteeinrichtung (4) so regelt, daß die Fangeinrichtung (2) auf die Flugbahn des Flugkörpers (1) ausgerichtet wird.

11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Regeleinrichtung mit min- 45 destens einem Sensor zur Erfassung der Position

des Flugkörpers (1) gekoppelt ist.

12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß die Halteeinrichtung einen Ausleger (4) aufweist, der über ein Schwenk- 50 lager (9) an einem Mast (7) befestigt ist.

13. Vorrichtung nach Anspruch 12. dadurch gekennzeichnet, daß der Ausleger (4) ausfahrbar ist.

- 14. Vorrichtung nach mindestens einem der Ansprüche 1 bis 13, zur Anordnung auf einem Schiff, 55 dadurch gekennzeichnet, daß die Fangeinrichtung (2) wahlweise auch außerhalb des Schiffskörpers (6) angeordnet werden kann.
- 15. Vorrichtung nach Anspruch 14 sowie nach mindestens einem der Ansprüche 8 bis 13, dadurch ge- 60 kennzeichnet, daß die Regeleinrichtung mit Sensoren zur Erfassung von Schiffsbewegungen gekoppelt ist.

16. Vorrichtung nach mindestens einem der Ansprüche 1 bis 15, gekennzeichnet durch eine Rück- 65 holeinrichtung zur Zurückführung des Flugkörpers (1) in den Bereich der ersten Stellung des Fangelementes (3)

17. Vorrichtung nach mindestens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Kupplungselement (27) am Flugkörper (1) ange-

18. Vorrichtung nach mindestens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Kupplungselement (27) als Haken ausgebildet ist, der mit einer schräg zur Flugrichtung orientierten

Eingriffsfläche versehen ist.

19. Vorrichtung nach mindestens einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das Fangelement (3) als flexibles Element ausgebildet

Hierzu 4 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 43 01 671 A1 B 64 F 1/02 29. Juli 1993

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 43 01 671 A1 B 64 F 1/02

29. Juli 1993

Fig. 2

Nummer:

Int. Cl.5:

Offenlegungstag:

DE 43 01 671 A1 B 64 F 1/02

29. Juli 1993

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 43 01 671 A1 B 64 F 1/02

29. Juli 1993

Fig. 4

Fig. 5

Fig. 6