

Cryptography and Security 2017

Exercise Sheet 5

Exercise 1 Authenticated Diffie-Hellman Key Agreement Protocol

Let us consider a public-key Diffie-Hellman key agreement protocol derived from the simple Diffie-Hellman protocol. In this protocol, we have the following public parameters:

- a large prime p
- a large prime factor q of p-1
- an element g of order q in \mathbf{Z}_p^*

Each user U has a random secret key $X_U \in \mathbf{Z}_q$ uniformly distributed and a public key $Y_U = g^{X_U} \mod p$. All the users' public keys are stored in an authenticated database (e.g., using a trusted third party), which is publicly readable. We propose the following key agreement protocol between users A and B.

- A generates $a \in \mathbf{Z}_q$ using a pseudorandom number generator, computes $v = g^a \mod p$, and sends v to B.
- B generates $b \in \mathbf{Z}_q$ using a pseudorandom number generator, computes $w = g^b \mod p$ and sends w to A.

In the end, A and B share the secret key $K = g^{aX_B + bX_A} \mod p$.

- 1. Explain how A can compute K.
- 2. Assume the pseudorandom number generator of B is biased in the sense that it only generates small numbers (e.g., of length around 40 bits) instead of generating numbers almost uniformly in \mathbb{Z}_q . Show how an adversary A^* can impersonate A to set up a key with B. Suggest a countermeasure.
- 3. Assume that b = ac for some small c. Show that the adversary A^* can impersonate A and set up a key with B. Suggest a countermeasure.

Exercise 2 Square Roots

- 1. Let n := pq for primes p, q. Given access to a oracle \mathcal{O} that returns a random square root mod n, explain how to factor n using \mathcal{O} .
- 2. Show that your algorithm returns a correct factorization.
- 3. How many queries to \mathcal{O} do you need to perform in average? Deduce the expected complexity of your algorithm.

Exercise 3 Modulo 101 Computation

Through all this exercise, we will let p = 101.

- 1. Show that p is a prime number.
- 2. What is the order of \mathbf{Z}_p^* ?
- 3. If $x = \sum_{i=0}^{2\ell-1} d_i 10^i$ with $0 \le d_i < 10$ for all i, show that

$$x \equiv \sum_{i=0}^{\ell-1} (-1)^i (d_{2i} + 10d_{2i+1}) \pmod{101}$$

Deduce an algorithm to compute $x \mod 101$ easily.

4. Show that every element of \mathbf{Z}_p^* has a unique 7th root and give an explicit formula to compute it (recall that p = 101).

Application: Find the 7th root of 2 in \mathbb{Z}_p^* .

- 5. Given $g \in \mathbf{Z}_p^*$ we let $y = g^{10} \mod p$. Using 3 multiplications modulo p and 2 tests, give an algorithm with input y to decide whether g is a generator or not (recall that p = 101). **Application:** show that 2 is a generator.
- 6. Under which condition is x a quadratic residue in \mathbb{Z}_p^* ?
- 7. Show that 5 is a quadratic residue in \mathbf{Z}_{p}^{*} .
- 8. Show that 10 is a 4th root of 1 in \mathbf{Z}_p^* .
- 9. Show that for all $y \in \mathbb{Z}_p^*$ we have that $y^{\frac{p-1}{4}}$ is 10^k for some $k \in \{0, 1, 2, 3\}$. Show that $y^{\frac{p+3}{4}}$ can be written $y \times 10^k$.
- 10. Deduce that if x is a quadratic residue then either $x^{\frac{p+3}{8}}$ or $10x^{\frac{p+3}{8}}$ is a square root of x. Provide an algorithm to extract square roots in \mathbb{Z}_p^* .
- 11. Find a square root of 5.