Student ID: _____

<u>Definitions and Formulas:</u> This page contains some definitions used in this exam and a list of formulas (theorems) that you may use in the exam (without having to provide a proof). Note that you might not need all of these formulas on this exam.

Definitions

- 1. $N = \{0, 1, 2, 3, \ldots\}$, the set of non-negative integers.
- 2. $Z^+ = \{1, 2, 3, \ldots\}$, the set of positive integers.
- 3. Z is the set of *all* integers.
- 4. R is the set of real numbers.
- 5. R^+ is the set of positive real numbers.
- 6. Let $n \in \mathbb{Z}^+$. Then $\mathbb{Z}_n = \{0, 1, 2, 3, \dots, (n-2), (n-1)\}.$

Formulas:

1.
$$\binom{n}{i} = \frac{n!}{i! (n-i)!}$$

2. If
$$0 < i < n$$
 then $\binom{n}{i} = \binom{n-1}{i-1} + \binom{n-1}{i}$

3.
$$\neg (p \land q)$$
 is equivalent to $\neg p \lor \neg q$

4.
$$\neg (p \lor q)$$
 is equivalent to $\neg p \land \neg q$

5.
$$p \Rightarrow q$$
 is equivalent to $\neg p \lor q$

6.
$$\neg \forall x \in U(p(x))$$
 is equivalent to $\exists x \in U(\neg p(x))$

7.
$$\sum_{i=1}^{n-1} i = n(n-1)/2$$

8.
$$\sum_{i=1}^{n-1} i^2 = \frac{2n^3 - 3n^2 + n}{6}$$

9. If
$$r \neq 1$$
 then $\sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r}$

10. If
$$r \neq 1$$
 then $\sum_{i=0}^{n} ir^i = \frac{nr^{n+2} - (n+1)r^{n+1} + r}{(1-r)^2}$