

Lecture 11.4 - Kernel Methods

Intermezzo: Constraint Optimization

Erik Bekkers

(Bishop E, 7.1)

Intermezzo: Optimization with equality constraints

- Problem: Maximize $f(\mathbf{x})$ subject to $g(\mathbf{x}) = 0$
- Useful property: $\nabla g(\mathbf{x})$ is perpendicular to the constraint surface
- At constrained maximum, $\nabla f(\mathbf{x})$ must also be perpendicular to constraint surface
- Therefore: $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$ λ : Lagrange multiplier
- It is helpful to introduce a Lagrangian function:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

Solutions to original problem: stationary points of $L(\mathbf{x}, \lambda)$

$$\frac{\partial}{\partial \mathbf{x}} L(\mathbf{x}, \lambda) = 0, \qquad \frac{\partial}{\partial \lambda} L(\mathbf{x}, \lambda) = 0$$

Intermezzo: Optimization with inequality constraints

- Maximize $f(\mathbf{x})$ subject to $g(\mathbf{x}) \geq 0$ Problem: (1)
- Two kinds of solutions:
 - Stationary point lies in region $g(\mathbf{x}) \geq 0$: inactive constraint

$$\nabla f(\mathbf{x}) = 0,$$

$$\mu = 0$$

Stationary point lies on boundary $g(\mathbf{x}) = 0$: active constraint

$$\nabla f(\mathbf{x}) = -\mu \nabla g(\mathbf{x}), \quad \mu > 0$$

now the gradients

Primal Lagrangian: must have apposite signs,

-> M > 0

$$L(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu g(\mathbf{x})$$

Solution to (1):

 $\max_{\mathbf{x}} \min_{\mu} L(\mathbf{x}, \mu) \text{ subject to Karush-Kuhn-Tucker (KKT) conditions} \\ \max_{\mathbf{x}} \mu \text{ subject to Karush-Kuhn-Tucker (KKT) conditions}$

$$\mu \geq 0$$

$$\mu \ge 0$$
, $g(\mathbf{x}) \ge 0$, $\mu g(\mathbf{x})$

$$\mu g(\mathbf{x}) = 0$$

Intermezzo: Optimization with inequality constraints

- Primal Problem: $\max f(\mathbf{x})$ subject to $g(\mathbf{x}) \ge 0$ (1)
- Solution to (1): $\max_{\mathbf{x}} \min_{\mu} L(\mathbf{x}, \mu)$ subject to

KKT conditions
$$\mu \ge 0$$
, $g(\mathbf{x}) \ge 0$, $\mu g(\mathbf{x}) = 0$

Dual Lagrangian (Optimize w.r.t. primal variables \mathbf{x} for fixed dual variables μ)

$$\tilde{L}(\mu) = \max_{\mathbf{x}} L(\mathbf{x}, \mu)$$

with

$$L(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu g(\mathbf{x})$$

- Obtain dual Langrangian analytically:
 - Use stationarity condition $\nabla_{\mathbf{x}} L = 0$ to eliminate \mathbf{x} from L
 - This gives $ilde{L}$ which now only depends on μ
 - This is an upper bound for (1) as function of μ
- $\frac{1}{2} \int_{CX'} dx'$

- Duality gap: $0^* p^*$
 - For every \mathbf{x}' satisfying $g(\mathbf{x}') \geq 0$ we have $f(\mathbf{x}') \leq L(\mathbf{x}', \mu) \leq \tilde{L}(\mu)$
 - It follows (weak duality):

$$\mathbf{p}^* = \max_{\mathbf{x}, g(\mathbf{x}) \ge 0} f(\mathbf{x}) \le \min_{\mu} \tilde{L}(\mu) = \mathbf{d}^*$$

Intermezzo: Optimization with inequality constraints

- Primal Problem: $\max f(\mathbf{x})$ subject to $g(\mathbf{x}) \ge 0$ (1)
- Solution to (1): $\max_{\mathbf{x}} \min_{\mu} L(\mathbf{x}, \mu)$ subject to

KKT conditions $\mu \ge 0$, $g(\mathbf{x}) \ge 0$, $\mu g(\mathbf{x}) = 0$

- For (almost all) convex problems
 - Strong duality: $\mathbf{p}^* = \mathbf{d}^*$
 - So if we have solved the dual problem, we have solved the primal problem!
- **Dual problem** (find the lowest upper bound):

$$\min_{\mu} \tilde{L}(\mu)$$
 subject to $\mu \geq 0$

Recipe:

• Define Lagrangian $L(\mathbf{x}, \mu) = f(x) + \mu g(\mathbf{x})$

Compute dual Lagrangian \$\tilde{L}(\mu)\$

Solve dual problem: $\mu^* = \mathop{\arg\min}_{\mu} \tilde{L}(\mu) \text{ subject to } \mu \geq 0$

X

• Maximize primal Lagrangian: $\mathbf{x}^* = \arg\max L(\mathbf{x}, \mu^*)$

5