

IHAB BENDIDI ihab.bendidi@etu.u-paris.fr

CLÉMENT SIEGRIST clement.siegrist@etu.u-paris.fr

Imagerie Biomédical: Quantification de l'incertitude de la segmentation sémantique de noyaux grâce aux réseaux bayésiens.

Segmentation Probabiliste avec réseau de neurones à Dropout de Monte-Carlo

SOMMAIRE

Segmentation Probabiliste

QUANTIFICATION DE L'INCERTITUDE DE LA SEGMENTATION SÉMANTIQUE DE NOYAUX GRÂCE AUX RÉSEAUX BAYÉSIENS

Introduction

Problèmatique et motivations

Etat de l'art

Théorie et modèles

Dataset, entrainements & resultats

Conclusion & travaux futurs

Pourquoi un modèle probabiliste?

Lisser les prédictions en moyennant sur un ensemble de prédictions possibles

Attribuer un degré de confiance aux prédictions

Diagnostiques plus robustes, mieux guidés et détecter les anomalies

Etudes et approches récentes

Approches probabilistes : Réseaux de neurones bayesien et à Dropout de MonteCarlo

Approches Floues: Réseaux de neurones flous et fuzzycmeans

Théorie

SEGMENTATION PROBABILISTE AVEC RÉSEAU DE NEURONES À DROPOUT DE MONTE-CARLO

Estimation des poids pour un modèle Bayesien

Estimation des poids pour un modèle Bayesien

Estimation des poids pour un modèle Bayesien

Simulation de Monte-Carlo

Réseau de neurones avec Dropout de Monte-Carlo

Dataset

- Kaggle Data Science Bowl 2018
- Noyaux de cellules acquis dans différentes conditions
- → 670 images
 - Données entièrement labellisées

Quantification de l'incertitude par réseaux de neurones bayésiens

Entrainements

- 70% Training set, 10% Validation set, 20% Test set.
- Hyperparamètres différents
- Nombres d'époques différent

Quantification de l'incertitude par réseaux de neurones bayésiens

Unet Classique

- Entrainé sur train/test/validation aux proportions précedemment citées
- -> 10 époques
- Précision presque égale à 100%

Quantification de l'incertitude par réseaux de neurones bayésiens

Réseaux de Neurones avec Dropout de Monte-Carlo

- Entrainé sur train/test/validation aux proportions précedemment citées
- \rightarrow 3000 iterations
- environ 95% de précision

Résultats de la Segmentation Unet

Résultats de la Segmentation

Réseau de neurones à Dropout de Monte-Carlo

Réseau de neurones à Dropout de Monte-Carlo

Résultats de la Segmentation

Réseau de neurones à Dropout de Monte-Carlo

Conclusion

- La segmentation probabiliste fonctionne sur une petit jeu de données
- Donne des informations que l'approche déterministe classique ne donne pas

- Comparer rigoureusement les approches probilistes et déterministes ainsi que les approches floues.
- Tester sur d'autres jeux de données (Transfer Learning)
- Intégrer du Pré et Postprocessing

IHAB BENDIDI ihab.bendidi@etu.u-paris.fr

CLÉMENT SIEGRIST clement.siegrist@etu.u-paris.fr

Imagerie Biomédical: Quantification de l'incertitude de la segmentation sémantique de noyaux grâce aux réseaux bayésiens.

Segmentation Probabiliste avec réseau de neurones à Dropout de Monte-Carlo

