Aufgabe 1 (Frühjahr 2015). Ein Ring R mit Eins heißt idempotent, wenn $a \cdot a = a$ für alle $a \in R$ gilt Beweisen Sie:

- (a) -1 = 1 in R.
- (b) Jeder idempotente Ring ist kommutativ.
- (c) Jeder idempotente Integritätsbereich is isomorph zu \mathbb{F}_2 , dem Körper mit zwei Elementen. (Dies werden wir später besprechen.)

Aufgabe 2 (Herbst 1999). Die Menge \mathbb{Z}^2 ist ein Ring bezüglich komponentenweiser Addition und Multiplikation. Wir untersuchen hier seine Ideale.

(a) Sei $I \triangleleft \mathbb{Z}^2$ ein Ideal und

$$I_1 = \{x \in \mathbb{Z} \mid (x,0) \in I\}$$

$$I_2 = \{y \in \mathbb{Z} \mid (0,y) \in I\}$$

Man zeige, daß I_1 und I_2 Ideale von \mathbb{Z} sind.

- (b) Man zeige $I = I_1 \times I_2$.
- (c) Man bestimme die Ideale von \mathbb{Z}^2

Aufgabe 3 (??). Sei $A \in M_n(\mathbb{R})$ eine $n \times n$ -Matix über den reellen Zahlen. Sei

$$K_A := \{ M \in M_n(\mathbb{R}) \mid AM = MA \}$$

die Menge der mit A vertauschbaren Matrizen.

Zeigen Sie, daß K_A eine \mathbb{R} -Agebra ist.

Aufgabe 4 (Herbst 1978). Sei E eine Menge und $A = \mathcal{P}(E)$ ihre Potenzmenge mit den Verknüpfungen

$$E_1 \Delta E_2 = \{ e \in E \mid e \in E_1 \cup E_2, e \notin E_1 \cap E_2 \}$$

 $E_1 \cap E_2$

- (a) Man zeige, daß (A, Δ, \cap) ein kommutativer Ring ist.
- (b) Sei E endlich und $E' \subset E$. Man zeige, daß $I = \mathcal{P}(E')$ ein Ideal von A ist.
- (c) Sei andererseits I ein Ideal von A. Sei $X, Z \in I$ und $Y \subset X$. Man zeige $Y \in I$ und $X \cup Z \in I$.
- (d) Man zeige, daß es $E' \subset E$ gibt, so daß $I = \mathcal{P}(E')$.
- (e) Sei E unendlich. Man zeige, dass die Menge der endlichen Teilmengen von E ein Ideal von A bilden, das nicht on der Form $\mathcal{P}(E')$ ist.

Aufgabe 5 (Herbst 1975). Sei R ein endlicher kommutativer Ring (nicht notwendig mit 1). Beweisen Sie, daß jedes Element $x \in R$ eine der drei folgenden Aussagen erfüllt:

- (a) x ist 0 oder nilpotent,
- (b) x ist eine Einheit in R,
- (c) eine Potenz von x ist idempotent.