Series SSO

Code No. 56/1 कोड नं.

Roll No.					Spill 3	
रोल नं.	1050	10	Valle 35	100	a feli	309.52

Candidates must write the Code on the title page of the answer-book. परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

- · Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not write any answer on the answer script during this period.
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

CHEMISTRY (Theory) रसायन विज्ञान (सैद्धान्तिक)

Time allowed : 3 hours

Maximum Marks: 70

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

General Instructions:

- (i) All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iv) Questions number 9 to 18 are short-answer questions and carry 2 marks each.
- (v) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
- (vi) Questions number 28 to 30 are long-answer questions and carry 5 marks each.
- (vii) Use Log Tables, if necessary. Use of calculators is not allowed.

सामान्य निर्देश :

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रत्येक प्रश्न के सामने अंक दर्शाए गए हैं।
- (iii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iv) प्रश्न-संख्या 9 से 18 तक लघ्-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 2 अंक हैं।
- (v) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (vi) प्रश्न-संख्या 28 से 30 दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है।
- How do metallic and ionic substances differ in conducting electricity?
 धात्वीय और आयिनक पदार्थ विद्युत् चालन में क्या अन्तर रखते हैं ?

1

- 2. What is the 'coagulation' process ? 'स्कंदन' (coagulation) प्रक्रम क्या होता है ?
- 3. What is meant by the term 'pyrometallurgy' ?

 'ताप-धातुकर्म' से क्या तात्पर्य होता है ?

- 4. Why is red phosphorus less reactive than white phosphorus?

 सफेद फ़ॉस्फ़ोरस की अपेक्षा लाल फ़ॉस्फ़ोरस कम क्रियाशील क्यों होता है ?
- 5. Give the IUPAC name of the following compound:

$$\begin{array}{c} \mathbf{H_2C} = \mathbf{CH} - \mathbf{CH} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{CH_3} \\ \mathbf{OH} \end{array}$$

निम्नलिखित यौगिक का IUPAC नाम बताइए :

$$H_2C = CH - CH - CH_2 - CH_2 - CH_3$$
OH

6. Write the structural formula of 1-phenylpentan-1-one. 1-फेनिलपेन्टेन-1-ओन का संरचना सूत्र लिखिए।

1

7. Arrange the following compounds in an increasing order of basic strengths in their aqueous solutions:

1

$${\rm NH_3,\ CH_3NH_2,\ (CH_3)_2NH,\ (CH_3)_3N}$$

निम्नलिखित यौगिकों को उनके जलीय विलयनों में क्षारीय सामर्थ्य के बढ़ते हुए क्रम में लिखिए :

 NH_3 , CH_3NH_2 , $(CH_3)_2NH$, $(CH_3)_3N$

1

8. What does '6,6' indicate in the name nylon-6,6? नाइलॉन-6,6 नाम में लिखा '6,6' क्या सूचित करता है?

2

9. What type of cell is a lead storage battery? Write the anode and the cathode reactions and the overall cell reaction occurring in the use of a lead storage battery.

OR

Two half cell reactions of an electrochemical cell are given below:

$${\rm MnO_4^-}({\rm aq}) + 8~{\rm H^+}({\rm aq}) + 5~{\rm e^-} \rightarrow {\rm Mn^{2+}}({\rm aq}) + 4~{\rm H_2O}~(l),~{\rm E^\circ} = +~1.51~{\rm V}$$

 ${\rm Sn^{2+}}({\rm aq}) \rightarrow {\rm Sn^{4+}}({\rm aq}) + 2~{\rm e^-},~{\rm E^\circ} = +~0.15~{\rm V}$

Construct the redox equation from the two half cell reactions and predict if this reaction favours formation of reactants or product shown in the equation.

2

56/1

सीसा संचायक बैटरी किस प्रकार का सेल है ? सीसा संचायक बैटरी में प्रयोग के समय ऐनोड और कैथोड पर होने वाली अभिक्रियाएँ और कुल मिलाकर होने वाली सेल अभिक्रिया को लिखिए।

अथवा

एक विद्युत्-रासायनिक सेल के दो अर्ध सेलों की अभिक्रियाएँ निम्न प्रकार हैं :

$${\rm MnO_4^-}({\rm aq}) + 8~{\rm H^+}({\rm aq}) + 5~{\rm e^-} \rightarrow {\rm Mn^{2+}}({\rm aq}) + 4~{\rm H_2O}\,(l),~{\rm E^\circ} = +~1.51~{\rm V}$$

 ${\rm Sn^{2+}}({\rm aq}) \rightarrow {\rm Sn^{4+}}({\rm aq}) + 2~{\rm e^-},~{\rm E^\circ} = +~0.15~{\rm V}$

2

2

दोनों अर्ध सेल अभिक्रियाओं से रेडॉक्स (अपोपचय) समीकरण निर्धारित कीजिए और प्रागुिक कीजिए कि यह अभिक्रिया समीकरण इसके अभिकारक अथवा उत्पाद बनने का सूचक है।

- 10. Define the following:
 - (i) Elementary step in a reaction
 - (ii) Rate of a reaction निम्नलिखित की परिभाषाएँ दीजिए :
 - (i) अभिक्रिया का प्राथमिक (elementary) चरण
 - (ii) अभिक्रिया दर
- 11. Describe the underlying principle of each of the following metal refining methods:
 - (i) Electrolytic refining of metals
 - (ii) Vapour phase refining of metals धातु परिष्करण की निम्नलिखित विधियों के आधारमूल सिद्धान्तों का वर्णन कीजिए :
 - (i) धातुओं का विद्युत्-अपघटनी परिष्करण
 - (ii) धातुओं का वाष्प प्रावस्था परिष्करण
- 12. Complete the following chemical reaction equations:
 - (i) $XeF_2 + H_2O \rightarrow$
 - (ii) $PH_3 + HgCl_2 \rightarrow$

निम्नलिखित रासायनिक अभिक्रिया समीकरणों को पूर्ण कीजिए :

- (i) $XeF_2 + H_2O \rightarrow$
- (ii) $PH_3 + HgCl_2 \rightarrow$

56/1

- 13. Complete the following chemical reaction equations:
 - (i) MnO_4^- (aq) + $C_2O_4^{2-}$ (aq) + H^+ (aq) \to
 - (ii) $Cr_2O_7^{2-}$ (aq) + Fe^{2+} (aq) + H^+ (aq) \to

निम्नलिखित रासायनिक अभिक्रिया समीकरणों को पूर्ण कीजिए :

- $\mathrm{(i)} \qquad \mathrm{MnO_4^-} \ \mathrm{(aq)} + \ \mathrm{C_2O_4^{2-}} \ \mathrm{(aq)} + \ \mathrm{H^+} \ \mathrm{(aq)} \rightarrow$
- (ii) $Cr_2O_7^{2-}$ (aq) + Fe^{2+} (aq) + H^+ (aq) \to
- 14. Which one in the following pairs undergoes $S_N^{\,1}$ substitution reaction faster and why ?
 - Cl or Cl
 - (ii) Or Cl

निम्नलिखित युग्मों में से कौनसा एक $\mathbf{S_N}\mathbf{1}$ प्रतिस्थापन अभिक्रिया अधिक तीव्रता से करता है और क्यों ?

- (i) Cl Cl Cl
- (ii) Cl अथवा Cl
- 15. Complete the following reaction equations:
 - (i) $CH_3 + HI \rightarrow$
 - (ii) $CH_3CH_2CH = CH_2 + HBr \rightarrow$

निम्नलिखित अभिक्रिया समीकरणों को पूर्ण कीजिए :

- (i) $CH_3 + HI \rightarrow$
- (ii) $CH_3CH_2CH = CH_2 + HBr \rightarrow$
- 16. Name the four bases present in DNA. Which one of these is not present in RNA?

 चार क्षारकों के नाम लिखिए जो DNA में विद्यमान हैं। इनमें से कौनसा एक RNA में विद्यमान नहीं है?

2

2

2

17. Name two fat soluble vitamins, their sources and the diseases caused due to their deficiency in diet.

वसा में घुलनशील दो विटामिनों के नाम, उनके स्रोत और उनकी भोजन में कमी से होने वाली बीमारियों के नाम बताइए ।

2

2

3

3

3

- 18. Differentiate between molecular structures and behaviours of thermoplastic and thermosetting polymers. Give one example of each type.

 तापसुनम्य (थर्मोप्लास्टिक) और ताप-दृढ़ (थर्मोसेटिंग) बहुलकों की आण्विक संरचनाओं और व्यवहारों में अंतर को स्पष्ट कीजिए। प्रत्येक प्रकार का एक उदाहरण दीजिए।
- 19. A first order reaction has a rate constant of 0.0051 min⁻¹. If we begin with 0.10 M concentration of the reactant, what concentration of the reactant will be left after 3 hours?
 एक प्रथम कोटि की अभिक्रिया का दर स्थिरांक 0.0051 min⁻¹ है । यदि हम अभिकारक के 0.10 M सांद्रण के साथ प्रारम्भ करें, तो 3 घंटे पश्चात् कितनी अभिकारक सान्द्रता शेष रह
- 20. Silver crystallises with face-centred cubic unit cells. Each side of the unit cell has a length of 409 pm. What is the radius of an atom of silver ? (Assume that each face atom is touching the four corner atoms.)

 सिल्वर फलक-केन्द्रित घनीय एकक सेल में क्रिस्टिलत होता है। एकक सेल के प्रत्येक किनारे की लम्बाई 409 pm है। सिल्वर परमाणु की त्रिज्या क्या होगी ? (यह मानकर चिलए कि प्रत्येक फलकीय परमाणु चारों कोनों के परमाणुओं से स्पर्श करता है।)
- 21. A copper-silver cell is set up. The copper ion concentration in it is 0·10 M. The concentration of silver ion is not known. The cell potential measured 0·422 V. Determine the concentration of silver ion in the cell.

Given :
$$E_{Ag^+/Ag}^{\circ} = + 0.80 \text{ V}, \quad E_{Cu^{2+}/Cu}^{\circ} = + 0.34 \text{ V}.$$

एक कॉपर-सिल्वर सेल बनाया गया है । उसमें कॉपर आयन की सांद्रता $0\cdot 10~M$ है । सिल्वर आयन की सांद्रता ज्ञात नहीं है । सेल विभव मापने पर $0\cdot 422~V$ पाया गया । सेल में सिल्वर आयन की सांद्रता ज्ञात कीजिए ।

दिया गया है :
$$E_{Ag^+/Ag}^{\circ}$$
 = + 0.80 V, $E_{Cu^{2+}/Cu}^{\circ}$ = + 0.34 V.

56/1

जाएगी ?

- 22. What happens in the following activities and why?
 - (i) An electrolyte is added to a hydrated ferric oxide sol in water.
 - (ii) A beam of light is passed through a colloidal solution.
 - (iii) An electric current is passed through a colloidal solution.

निम्नलिखित क्रियाओं में क्या देखा जाएगा और क्यों ?

- (i) जल में जलयोजित फेरिक ऑक्साइड सॉल में एक विद्युत्-अपघट्य डाला जाता है।
- (ii) एक कोलॉइडी विलयन में से प्रकाश पुंज प्रवाहित किया जाता है।
- (iii) एक कोलॉइडी विलयन में से विद्युत धारा प्रवाहित की जाती है।
- 23. Giving a suitable example for each, explain the following:
 - (i) Crystal field splitting
 - (ii) Linkage isomerism
 - (iii) Ambidentate ligand

OR

Compare the following complexes with respect to structural shapes of units, magnetic behaviour and hybrid orbitals involved in units:

 $[Co(NH_3)_6]^{3+}$, $[Cr(NH_3)_6]^{3+}$, $Ni(CO)_4$

(At. Nos. : Co = 27, Cr = 24, Ni = 28)

प्रत्येक के लिए एक-एक उपयुक्त उदाहरण देते हुए निम्नलिखित की व्याख्या कीजिए :

- (i) क्रिस्टल क्षेत्र विपाटन
- (ii) आबन्धन समावयवता
- (iii) उभयदन्ती (ऐम्बिडेन्टेट) लिगण्ड

अथवा

निम्नलिखित संकरों (कॉम्प्लेक्सों) की तुलना उनकी इकाइयों की संरचना आकृति, चुम्बकीय व्यवहार और उपस्थित संकर ऑर्बिटलों के संदर्भ में कीजिए :

 $[Co(NH_3)_6]^{3+}, [Cr(NH_3)_6]^{3+}, Ni(CO)_4$

(परमाणु क्रमांक : Co = 27, Cr = 24, Ni = 28)

- 24. Explain the following observations:
 - (i) The boiling point of ethanol is higher than that of methoxymethane.
 - (ii) Phenol is more acidic than ethanol.
 - (iii) o- and p-nitrophenols are more acidic than phenol.

56/1

3

3

3

3

निम्नलिखित अवलोकनों की व्याख्या कीजिए :

- (i) एथेनॉल का क्वथनांक मेथॉक्सीमेथैन के क्वथनांक से उच्च होता है।
- (ii) फीनॉल एथेनॉल से अधिक अम्लीय होता है।
- (iii) o- और p-नाइट्रोफीनॉल अपेक्षाकृत फीनॉल से अधिक अम्लीय होते हैं।

25. How would you account for the following:

- 3
- (i) Many of the transition elements and their compounds can act as good catalysts.
- (ii) The metallic radii of the third (5d) series of transition elements are virtually the same as those of the corresponding members of the second series.
- (iii) There is a greater range of oxidation states among the actinoids than among the lanthanoids.

आप निम्नलिखित के क्या कारण समझते हैं :

- (i) बहुत से संक्रमण तत्त्व और उनके यौगिक अच्छे उत्प्रेरकों का कार्य करते हैं ।
- (ii) संक्रमण तत्त्वों की तीसरी (5d) श्रेणी के तत्त्वों की धात्विक त्रिज्याएँ लगभग वही होती हैं जो दूसरी श्रेणी के तत्सम्बन्धी तत्त्वों की होती हैं।
- (iii) ऐक्टिनाइडों में उपचयन अवस्थाओं का परास लैन्थैनाइडों की अपेक्षा अधिक होता है।
- 26. Complete the following reaction equations:

3

(i)
$$R - C - NH_2 \xrightarrow{\text{LiAlH}_4} H_2O$$

(ii)
$$C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow$$

(iii)
$$C_6H_5NH_2 + Br_2 (aq) \longrightarrow$$

निम्नलिखित अभिक्रिया समीकरणों को पूर्ण रूप में लिखिए :

(i)
$$R - C - NH_2 \xrightarrow{\text{LiAlH}_4} H_2O$$

(ii)
$$C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow$$

(iii)
$$C_6H_5NH_2 + Br_2 (aq) \longrightarrow$$

56/1

27.	type	ribe the following substances with one suitable example of each:	3
	(i)	Non-ionic detergents	
	(ii)	Food preservatives	
	(iii)	Disinfectants	
	प्रत्येक (i)	का एक-एक उपयुक्त उदाहरण देते हुए निम्नलिखित पदार्थीं का वर्णन कीजिए : अन-आयनिक अपमार्जक	
	(ii)	खाद्य परिरक्षक	
	(iii)	रोगाणुनाशी	
28.	(a)	Define the following terms:	
		(i) Mole fraction	
		(ii) Van't Hoff factor	
	(b)	100 mg of a protein is dissolved in enough water to make 10.0 mL of a solution. If this solution has an osmotic pressure of 13.3 mm Hg at 25° C, what is the molar mass of protein? (R = 0.0821 L atm mol ⁻¹ K ⁻¹ and 760 mm Hg = 1 atm.)	5
		OR	
	(a)	What is meant by:	
		(i) Colligative properties	
		(ii) Molality of a solution	
	(b)	What concentration of nitrogen should be present in a glass of water at room temperature? Assume a temperature of 25° C, a total pressure of 1 atmosphere and mole fraction of nitrogen in	
		air of 0.78. [K _H for nitrogen = 8.42×10^{-7} M/mm Hg]	5
	(a)	निम्नलिखित पदों को परिभाषित कीजिए :	
		(i) मोल अंश	
		(ii) वांट हॉफ़ गुणांक	
	(b)	एक प्रोटीन की $100~\mathrm{mg}$ मात्रा को पर्याप्त जल में घुलाकर $10\cdot0~\mathrm{mL}$ विलयन बनाया गया । यदि 25° C पर इस विलयन का परासरणी दाब $13\cdot3~\mathrm{mm}$ Hg हो, तो प्रोटीन का	

STOTELL

मोलर द्रव्यमान क्या होगा ?

 $(R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$ और 760 mm Hg = 1 atm.)

0	(a)	निम्नलिखित से क्या अभिप्राय है : (i) अणुसंख्य गुणधर्म (ii) विलयन की मोललता	
	(b)	(ii) विलयन की मोललता कमरे के ताप पर जल के एक गिलास में घुलित नाइट्रोजन का सांद्रण क्या होगा ? यह मानिए कि ताप 25° C है और सकल वायु दाब 1 ऐटमॉस्फियर है, और वायु में नाइट्रोजन का मोल अंश 0.78 है । [नाइट्रोजन के लिए $K_{\rm H} = 8.42 \times 10^{-7}$ M/mm Hg]	
29.	(a)	Draw the structures of the following:	
		(i) $H_2S_2O_8$	
		(ii) HClO ₄	
	(b)	How would you account for the following:	
	4	(i) NH ₃ is a stronger base than PH ₃ .	
		(ii) Sulphur has a greater tendency for catenation than oxygen.	
	15. ak	(iii) F ₂ is a stronger oxidising agent than Cl ₂ .	5
		OR OR OF THE MENT OF THE PROPERTY OF THE PROPE	
	(a)	Draw the structures of the following:	
		(i) $H_2S_2O_7$	
		(ii) HClO ₃	
	(b)	Explain the following observations:	
		(i) In the structure of HNO_3 , the $N-O$ bond (121 pm) is shorter than the $N-OH$ bond (140 pm).	
		(ii) All the P-Cl bonds in PCl ₅ are not equivalent.	
		(iii) ICl is more reactive than I ₂ .	5
	(a)	निम्नलिखित की संरचनाएँ आरेखित कीजिए :	
		(i) $H_2S_2O_8$	
		(ii) HClO ₄	
	(b)	निम्नलिखित तथ्यों को कारण देते हुए स्पष्ट कीजिए : अक्ट ००० वर्ष कार्या स्प	
		(i) PH3 की अपेक्षा NH3 अधिक प्रबल क्षार है।	
		(ii) ऑक्सीजन की अपेक्षा सल्फ़र में शृंखलन की प्रवृत्ति अधिक होती है।	
		(iii) Cl_2 की अपेक्षा F_2 अधिक प्रबल ऑक्सीकारक है ।	
		अथवा	

निम्नलिखित की संरचनाएँ आरेखित कीजिए : (a) (i) H₂S₂O₇ HClO₃ (ii) निम्नलिखित अवलोकनों की व्याख्या कीजिए : HNO3 की संरचना में, N-O आबंध (121 pm) अपेक्षाकृत (i) आबंध (140 pm) से छोटा है। PCl5 में सभी P - Cl आबंध एक से नहीं हैं। (ii) I2 की अपेक्षा ICl अधिक क्रियाशील है। (iii) Write chemical equations to illustrate the following name bearing (a) reactions: Cannizzaro's reaction (i) (ii) Hell-Volhard-Zelinsky reaction (b) Give chemical tests to distinguish between the following pairs of compounds: Propanal and Propanone (ii) Acetophenone and Benzophenone (iii) Phenol and Benzoic acid 5

OR

- (a) How will you bring about the following conversions:
 - (i) Ethanol to 3-hydroxybutanal
 - (ii) Benzaldehyde to Benzophenone
- (b) An organic compound A has the molecular formula C₈H₁₆O₂. It gets hydrolysed with dilute sulphuric acid and gives a carboxylic acid B and an alcohol C. Oxidation of C with chromic acid also produced B. C on dehydration reaction gives but-1-ene. Write equations for the reactions involved.

5

56/1

30.

- (a) निम्नलिखित नामधारिक अभिक्रियाओं को रासायनिक समीकरण देकर स्पष्ट कीजिए :
 - (i) कैनिज़ारो की अभिक्रिया
 - (ii) हेल-वोल्हर्ड-ज़ेलिस्की अभिक्रिया
- (b) निम्नलिखित यौगिक युग्मों में भिन्नता की पहचान करने के लिए एक-एक रासायनिक परीक्षण दीजिए :
 - (i) प्रोपेनल और प्रोपेनोन में
 - (ii) ऐसीटोफीनोन और बेन्ज़ोफीनोन में
 - (iii) फीनॉल और बेन्ज़ोइक अम्ल में

अथवा

- (a) निम्नलिखित रूपांतरण आप कैसे करेंगे :
 - (i) एथेनॉल को 3-हाइड्रॉक्सीब्यूटेनल में
 - (ii) बेन्ज़ैल्डिहाइड को बेन्ज़ोफीनोन में
- (b) एक ऑर्गैनिक यौगिक A (आण्विक सूत्र C₈H₁₆O₂) को तनु सल्फ़्यूरिक अम्ल से जल-अपघटित किया गया जिससे एक कार्बोक्सिलिक अम्ल B और एक ऐल्कोहॉल C उत्पादित हुआ । C के क्रोमिक अम्ल के साथ उपचयन से भी B प्राप्त होता है । C का निर्जलीकरण करने पर ब्यूट-1-ईन प्राप्त होता है । सिन्निहित अभिक्रियाओं के लिए समीकरणों को लिखिए ।

riving a string tong from obtained and a second

nels has birginas niera Guillachigh access a leisteis als all