Theory of Answer Set Programming clingo programs with negation

Objectives

Objective

Compute stable models of programs with negation using Clingo

Clingo Rules

Clingo rules are either

```
-H_1, \dots, H_m (m \ge 1) or -H_1, \dots, H_m: -B_1, \dots, B_n (m, n \ge 0) where H_1, \dots, H_m, B_1, \dots, B_n are atoms and comparisons, possibly preceded with not (for \neg)
```

Example:

```
p(a),q(b).
q(a) :- p(X), r(X).
r(X) :- p(X), not q(X).
```

Recall: Propositional Image of Head and Body Expressions

Expression	Propositional Image
atom $p(t_1,,t_k)$ in the head	conjunction of all formulas of the form $p(v_1,,v_k)$ where v_i is a value of t_i ($i=1,,k$)
atom $p(t_1,,t_k)$ in the body	disjunction of all formulas of the form $p(v_1,,v_k)$ where v_i is a value of t_i ($i=1,,k$)
Comparison $t_1 < t_2$ in the head	$ op$ if for every value v_1 of t_1 and every value v_2 of t_2 , $v_1 \prec v_2$; \perp otherwise
Comparison $t_1 < t_2$ in the body	$ op$ if for some value v_1 of t_1 and some value v_2 of t_2 , $v_1 \prec v_2$; \perp otherwise

- p(1..2) in the head
- p(1..2) in the body
- 1..2=2..3 in the head
- 1..2=2..3 in the body

Recall: Propositional Image of Clingo Programs: Definition [Allowing Intervals]

The propositional image of a Clingo program consists of the instances of its rules rewritten as propositional formulas.

To rewrite a ground rule as a formula,

replace the symbol :- and all commas in the head and the body by propositional connectives as in the table shown;

replace each of the expressions in the head in the body by its propositional image as in the previous slide

replace the head of the rule by \bot if it is empty, and replace the body by T if it is empty.

Exercise

```
\begin{array}{c} p(a). \\ q(a). \\ r(X) := p(X), \text{ not } q(X). \end{array}
```

Check if $\{p(a), q(a)\}$ is a stable model

1. Construct the propositional image

2. Find the reduct relative to {p(a),q(a)}

3. Check if {p(a),q(a)} is a minimal model of the reduct

r(v) <- p(v) for Il vesuzidado

(a) Find the propositional image of

$$p(1...3)$$
.
 $q(X) :- X=2...4$, not $p(X)$.

(b) Find the reduct relative to

$${p(1),p(2),p(3),q(4)}$$

(c) Find the minimal model of the reduct

 $p(1) \land p(2) \land p(3)$ $g(2) \leftarrow 2 = 2..4$, not p(2) $g(3) \leftarrow 3 = 2..4$, not p(3) $g(4) \leftarrow 4 = 2..4$, not p(4) $g(4) \leftarrow 4 = 2..4$, not p(4)

8(4) < 1P(4) T

Definition: Prime

N is a prime number between 1 and n if

- It is one of the numbers 2, ..., n, and
- there is no evidence that it is composite.

```
composite(N) :- N=1..n, I=2..N-1, N\I=0. prime(N) :- N=2..n, not composite(N).
```