

Chapitre X – Lois de probabilité

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE DES MATIÈRES									
I - Lois de probabilité discrètes 1									
1. Probabilités conditionnelles	1								
2. Formule des probabilités totales	2								
3. Variables aléatoires	2								
4. Épreuve et loi de Bernoulli	4								
5. Loi binomiale	4								
II - Lois de probabilités continues 5									
1. Différence discret / continu	5								
2. Densité de probabilité	5								
3. Loi uniforme	7								
4. Loi exponentielle	8								
5. Loi normale	0								
6. Loi normale centrée réduite	1								

I - Lois de probabilité discrètes

1. Probabilités conditionnelles

Soient A et B deux événements avec A de probabilité non nulle. Alors la probabilité conditionnelle de B sachant que A est réalisé est :

À RETENIR 💡

$$p_A(B) = \frac{p(A \cap B)}{p(A)}$$

À LIRE 99

En réalité, lorsque l'on dessine un arbre de probabilité (vu en classe de Première), $p_A(B)$ se lit sur les branches de l'arbre :

Ici, on a $p_A(B) = \frac{1}{4}$.

Deux événements A et B sont dits **indépendants** si la réalisation de l'un n'a aucune incidence sur la réalisation de l'autre et réciproquement. C'est-à-dire :

$$p(A \cap B) = p(A) \times p(B)$$

Pour deux événements indépendants A et B, on a les relations suivantes :

À RETENIR 🖁

$$-- p_A(B) = p(B)$$

$$--p_B(A)=p(A)$$

2. Formule des probabilités totales

Soient $A_1, A_2, ..., A_n$ des événements qui partitionnent (qui recouvrent) l'univers Ω , alors pour tout événement B:

À RETENIR 💡

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + \dots + p(B \cap A_n)$$

À LIRE 00

En reprenant l'arbre précédent, comme A et \bar{A} recouvrent notre univers (en effet, soit on tombe sur A, soit on tombe sur \bar{A} : pas d'autre choix possible), calculons p(B):

D'après la formule des probabilités totales, $p(B)=p(B\cap A)+p(B\cap \bar{A})=\frac{107}{252}$.

3. Variables aléatoires

Une **variable aléatoire** X est une fonction qui, à chaque événement élémentaire de l'univers Ω y associe un nombre réel. C'est-à-dire : $X:\Omega\mapsto\mathbb{R}$. L'ensemble des valeurs prises par X est noté $X(\Omega)$.

La **loi de probabilité** de X attribue à chaque valeur x_i la probabilité $p_i = p(X = x_i)$ de l'événement $X = x_i$ constitué de tous les événements élémentaires dont l'image par X est x_i . Cette loi est généralement représentée dans un tableau :

À RETENIR 💡

>	ζį	<i>x</i> ₁	<i>x</i> ₂		Xn		
F	$o(X=x_i)$	$p(X=x_1)$	$p(X=x_2)$		$p(X = x_n)$		
On a $p(X = x_1) + p(X = x_2) + + p(X = x_n) = 1.$							

On a
$$p(X = x_1) + p(X = x_2) + \dots + p(X = x_n) = 1$$
.

L'espérance E(X) de la variable aléatoire X est un réel :

À RETENIR 💡

$$E(X) = x_1 \times p_1 + x_2 \times p_2 + \dots + x_n \times p_n$$

La variance V(X) et l'écart-type $\sigma(X)$ de la variable aléatoire X sont les réels positifs :

$$-V(X) = E(X^2) - E(X)^2$$

—
$$\sigma(X) = \sqrt{V(X)}$$

À LIRE 👀

Exemple : Calcul de l'espérance, de la variance et de l'écart-type. Soit X une variable aléatoire suivant la loi de probabilité donnée par le tableau ci-dessous :

Xi	-1	0	2	6
$p(X=x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	1 8	1/8

On a:

Chacun de ces paramètres a une utilité précise :

- L'espérance est la **valeur moyenne** prise par X.
- La variance et l'écart-type mesurent la **dispersion** des valeurs prises par X. Plus ces valeurs sont grandes, plus les valeurs sont dispersées autour de l'espérance.

4. Épreuve et loi de Bernoulli

Soit $p \in \mathbb{R}$ compris entre 0 et 1. Une **épreuve de Bernoulli** de paramètre p est une expérience aléatoire ne présentant que deux issues possibles :

À RETENIR 💡

- Succès, obtenu avec la probabilité p.
- **Échec**, obtenu avec la probabilité 1 p.

Une variable aléatoire X suit la loi de Bernoulli de paramètre p si :

$$-X(\Omega) = \{0; 1\}$$

$$-p(X=1) = p$$
 et $p(X=0) = 1 - p$

Si X suit la loi de Bernoulli de paramètre p, on a les propriétés suivantes :

$$- E(X) = p$$

$$- V(X) = p$$

$$- V(X) = p(1-p)$$

5. Loi binomiale

On répète n épreuves de Bernoulli identiques et indépendantes. On note p la probabilité de succès à chaque épreuve et X la variable aléatoire égale au nombre de succès au cours de ces *n* épreuves.

La loi de probabilité de X est appelée loi binomiale de paramètres n et p et est notée B(n; p).

Ainsi, pour X variable aléatoire suivant une loi binomiale de paramètres n et p, on a :

$$-p(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ pour tout } 0 \le k \le n, \text{ avec } \binom{n}{k} \text{ coefficient binomial (se lit } k \text{ parmi } n)$$

$$-E(X) = n \times p$$

$$-V(X) = np(1-p)$$

$$--E(X)=n\times p$$

$$-V(X) = np(1-p)$$

II - Lois de probabilités continues

1. Différence discret / continu

Une variable aléatoire est dite **discrète** s'il est possible d'énumérer le nombre de valeurs prises par cette variable. Dès lors qu'une variable aléatoire peut prendre comme valeur tous les nombres réels d'un certain intervalle de \mathbb{R} , il devient impossible de compter le nombre de valeurs prises par cette variable et on parle alors de variable aléatoire **continue**.

2. Densité de probabilité

Soit $f : \mathbb{R} \to \mathbb{R}$, f est une **fonction densité de probabilité** si les conditions suivantes sont respectées :

- f est positive sur \mathbb{R} .
- f est continue sur \mathbb{R} (sauf peut-être en certains points).
- L'aire du domaine délimitée par la courbe représentative de f et l'axe des abscisses est égale à 1.

Soient X une variable aléatoire admettant une densité de probabilité et a et b deux réels tels que $a \le b$, alors on a :

A RETENIR
$$\P$$

$$-p(X \in [a;b]) = p(X \in [a;b[) = p(X \in]a;b]) = p(X \in]a;b[)$$

$$-p(X = a) = 0$$

$$-p(a \le X \le b) = p(X \le b) - p(X \le a)$$

$$-p(X \le a) + p(X > a) = 1$$

On peut calculer l'espérance d'une variable aléatoire X de densité f sur un intervalle [a;b]:

$$E(X) = \int_{a}^{b} x f(x) \, \mathrm{d}x$$

On peut également calculer sa variance :

$$V(X) = E(X^2) - E(X)^2 = \int_a^b x^2 f(x) dx$$

3. Loi uniforme

Une variable aléatoire X suit la loi uniforme sur [a;b] (avec a et b réels tels que a < b) si elle admet pour densité la fonction f définie sur [a;b] par :

A RETENIR
$$\P$$

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a; b] \\ 0 & \text{sinon} \end{cases}$$

Si X suit la loi uniforme énoncée précédemment, alors :

$$p(c \le X \le d) = \int_d^c \frac{1}{b-a} \, \mathrm{d}x = \frac{d-c}{b-a}$$
 avec c et d réels tels que $a \le c \le d \le b$

L'espérance de cette loi uniforme est :

À RETENIR 9

$$E(X) = \frac{a+b}{2}$$

Sa variance est:

À RETENIR 📍

$$V(X) = \frac{(b-a)^2}{12}$$

4. Loi exponentielle

Une variable aléatoire X suit **la loi exponentielle** (ou loi de durée de vie sans vieillissement) de paramètre λ (avec λ réel et positif) si elle admet pour densité la fonction f définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} 0 \text{ si } x < 0 \\ \lambda e^{-\lambda x} \text{ si } x \ge 0 \end{cases}$$

Si X suit la loi exponentielle énoncée précédemment, alors :

À RETENIR 🖠

$$p(a \le X \le b) = \int_a^b \lambda e^{-\lambda x} dx$$
 avec a et b réels tels que $a \le b$

Les propriétés suivantes sont par conséquent disponibles :

À RETENIR 💡

$$-p(X \le a) = \int_0^a \lambda e^{-\lambda x} dx = 1 - e^{-\lambda a}$$
$$-p(X > a) = 1 - p(X \le a) = e^{-\lambda a}$$

L'espérance de cette loi exponentielle est :

À RETENIR 🛚

$$E(X) = \frac{1}{\lambda}$$

Sa variance est:

À RETENIR 📍

$$E(X) = \frac{1}{\lambda^2}$$

La loi exponentielle de paramètre λ est dite "sans vieillissement" :

À RETENIR 💡

$$p_{X>T}(X>T+t)=p(X>t)$$
 avec T et t réels positifs

Ceci montre que X peut avoir vécu pendant t heures (ou autre unité de temps), cela ne modifiera pas son espérance de vie à partir du temps t.

5. Loi normale

Une variable aléatoire X suit la loi normale de paramètres μ , σ avec $\mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}^+_*$ (notée $\mathcal{N}(\mu; \sigma^2)$) si elle admet pour densité la fonction f définie sur \mathbb{R} par :

Si X suit la loi normale énoncée précédemment, alors on a les valeurs remarquables suivantes :

—
$$p(\mu - \sigma \le X \le \mu + \sigma) \approx 0,683$$

$$-p(\mu-2\sigma\leq X\leq \mu+2\sigma)\approx 0,954$$

$$-p(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0,954$$

$$-p(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0,997$$

L'espérance E(X) et la variance V(X) de cette loi normale sont :

A RETENIR
$$\P$$

$$- E(X) = \mu$$

$$- V(X) = \sigma^2$$

La fonction densité de probabilité de la loi normale n'admet pas de primitive avec les moyens usuels.

Il faut donc utiliser la calculatrice pour déterminer les probabilités d'événements.

6. Loi normale centrée réduite

Un cas particulier de la loi normale est la loi normale centrée réduite.

Une variable aléatoire X suit la loi normale centrée réduite (notée $\mathcal{N}(0;1)$) si elle admet pour densité la fonction f définie sur \mathbb{R} par :

A RETENIR
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Autrement dit, X suit la loi normale centrée réduite si et seulement si X suit la loi normale de paramètres $\mu=0$ et $\sigma=1$.

Si X suit la loi normale centrée réduite, alors pour tout réel $\alpha \in [0;1]$ il existe u_{α} tel que :

$$p(-u_{\alpha} \leq X \leq u_{\alpha}) = 1 - \alpha$$

Valeurs particulières :

- $-u_{0,05}\approx 1,959$
- $u_{0,01} \approx 2,575$

L'espérance E(X), la variance V(X) et l'écart-type $\sigma(X)$ de la loi normale centrée réduite sont :

$$-- E(X) = 0$$

-
$$E(X) = 0$$

- $V(X) = \sigma(X) = 1$

Comme pour la loi normale, il faudra utiliser la calculatrice pour déterminer les probabilités d'événements.