EM 423A Lista de Exercícios Teoria Técnica de Barras

Baseado no Exercício ubarra 06 plus.

Data da Aula Original: 25 de Maio 2020

Data da Divulgação do Material Didático: 10 de Junho de 2020

Data para Entrega dos Exercícios Resolvidos: 17 de Junho de 2020

Nome do Arquivo para entrega da Lista EM423A_eBarra_10_xxxxxxx@dac

Onde xxxxxxx é seu RA na DAC

Material Fonte

Arquivo(s) com Material Didático:

- Resistência dos Materiais Capítulo 6 Análise de Barras versão 08 de junho de 2020.pdf
- Conjunto de exercícios propostos e revolvidos sobre teoria técnica de barras

Enunciado Geral.

Resolva os exercícios abaixo, compostos por 3 partes.

Parte 1:

Para a barra mostrada na figura ubarra 06.1 determine:

- 1) As expressões e os diagramas de esforços normais resultantes na seção transversal $N_x(x)$, bem como as expressões e os diagramas das tensões normais $\sigma_{xx}(x)$.
- 2) Determine o ponto e o valor da tensão normal máxima $\sigma_{xx}(x=?) = \sigma_{xx \max}$
- 3) As expressões e os gráficos dos deslocamentos axiais u(x), bem o ponto e o valor do deslocamento máximo u_{max} .

Dados: $L_1=2m$, $L_2=2m$, $p_0=1000$ N/m, $F_B=1000$ N, $F_C=2000$ N, A=180mm², E=210 GPa

Resolva o problema analiticamente. Aplique os valores numéricos para traçar os diagramas e determinar os valores máximos solicitados.

Parte 2:

4. Considerando-se todos os demais valores como iguais àqueles do item anterior, pergunta-se qual deverá ser o valor de F_C para que o deslocamento no ponto C seja nulo, $u(x = L_1 + L_2) = u_C = 0$.

Figura ubarra_06.1: barra com carregamento distribuído e força concentrada na extremidade

Parte 3:

Resolva o exercício hiperestático mostrado na figura ubarra 06.2. Determine:

- 5) As expressões e os diagramas de esforços normais resultantes na seção transversal $N_x(x)$, bem como as expressões e os diagramas das tensões normais $\sigma_{xx}(x)$.
- 6) Determine o ponto e o valor da tensão normal máxima $\sigma_{xx}(x=?) = \sigma_{xx \max}$
- 7) As expressões e os gráficos dos deslocamentos axiais u(x), bem o ponto e o valor do deslocamento máximo u_{max} .

8) Compare os resultados com aqueles do item 4). Em particular, analise as reações de apoio $N_{XA} = N_X(x=0)$ e $N_{XC} = N_X(x=L_1+L_2)$ e também o deslocamento no ponto B, $u_B = u(x=L_1)$.

Dados: L_1 =2m, L_2 =2m, p_0 =1000 N/m, F_B =1000 N, A=180mm², E=210 GPa

