

ЭТИКЕТКА

$\underline{\text{УП3.487.359ЭТ}}$ Микросхема интегральная 564 ЛП2В Функциональное назначение –

Четыре логических элемента «исключающее или»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Вход
3	Выход	10	Выход
4	Выход	11	Выход
5	Вход	12	Вход
6	Вход	13	Вход
7	Общий	14	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
палменование нараметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, 10 B	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm I}$ = 1,5 B $U_{\rm CC}$ = 10 B, $U_{\rm I}$ = 3,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_I = 3,5 B U_{CC} = 10 B, U_I = 7,0 B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, U_O = 0,5 \; B$ $U_{CC} = 10 \; B, U_O = 0,5 \; B$	I_{OL}	0,6 1,2	- -
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 4,5 \; B \\ U_{CC} = 10 \; B, \; U_O = 9,5 \; B$	I_{OH}	/-0,5/ /-1,0/	-
9. Ток потребления, мкА, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I_{CC}	- - -	0,5 1,0 2,0
10. Время задержки распространения при включении, н C , при: $U_{CC}=5$ B, $C_L=50$ п Φ $U_{CC}=10$ B, $C_L=50$ п Φ	$t_{ m PHL}$		300 150
11. Время задержки распространения при выключении, н C , при: U_{CC} = 5 B, C_L = 50 п Φ U_{CC} = 10 B, C_L = 50 п Φ	t _{PLH}	- -	300 150
12. Входная емкость, п Φ , при: U_{CC} = 10 В	C_{I}	-	8,0

1.2 СОДСРжание драгоценных металлов в 1000 шт. микроск	Содержание драгоценных металлов в 1000 шт. микро	CXCM
--	--	------

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5$ В \pm 10% - не менее $120000\,$ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте 3ИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1\ \underline{\Gamma}$ арантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛП2В соответствуют техническим условиям бК0.347.064 ТУ 13 и признаны годными для эксплуатации.

Приняты по(извет	цение, акт и др.)	от	(дата)	
Место для штампа С	ЭТК			Место для штампа ВП
Место для штампа	«Перепроверка пр	оизведена		
	цение, акт и др.)	от	(дата)	
Место для штампа С	ОТК _			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.