Decoding perceptual choices in the presence and absence of sensory information

By: Iacopo Hachen, Sarah McIntyre, Jorge Ramirez Ruiz, Henry Skelton, Eva Berg

Pod: Antique-cicada / Mistaken Mice

Mentor: Marius Pachitariu

Steinmetz dataset:

~30.000 neurons from 42 brain regions 39 sessions, 10 mice, 10 ms time bins

- Figures adapted from Steinmetz et. al. (2019). Nature, 10.1038/s41586-019-1787-x

Experimental Setup and Methods

Sanity-check: decoding decisions based on all trials

-0.3

other ctx

Lambda (Increasing Regularization)

Our decoder works! (when given all trials)

Brain Region

hipp

thal

vis ctx

basal ganglia

0.65

cortical subplate

other

midbrain

^{*} Naive classifier always chooses the more commonly chosen side in trial

Decoding decisions from "unfair" trials

Decoding behavior from "unfair" trials sometimes possible

^{*} Naive classifier always chooses the more commonly chosen side in trial

Conclusions

 Appropriate combination of linear methods is a powerful tool for decoding

- Choice-related activity found in many brain areas
- The power of statistical power...

Future directions

- Different time bins to identify most-informative time windows (prediction possible?)
- Control analysis
 (trial-shuffled data to establish baseline for coefficients)

