Los conceptos del Cálculo Integral

1.3. Funciones. Definición formal como conjunto de pares ordenados

En cálculo elemental tiene interés considerar en primer lugar, aquellas funciones en las que el dominio y el recorrido son conjuntos de números reales. Estas funciones se llaman **Funciones de variable real** o funciones reales.

Definición 1.1 (Par ordenado) Dos pares ordenados (a,b) y (c,d) son iguales si y sólo si sus primeros elementos son iguales y sus segundos elementos son iguales.

$$(a,b) = (c,d)$$
 si y sólo si $a = c$ y $b = d$

Definición 1.2 (Definición de función) Una función f es un conjunto de pares ordenados (x, y) ninguno de los cuales tiene el mismo primero elemento.

Debe cumplir las siquientes condiciones de existencia y unicidad:

- (i) $\forall x \in D_f, \exists y/(x,y) \in f(x) \text{ ó } y = f(x)$
- (ii) $(x,y) \in f \land (x,z) \in f \Rightarrow y=z$

Definición 1.3 (Dominio y recorrido) Si f es una función, el conjunto de todos los elementos x que aparecen como primeros elementos de pares (x,y) de f se llama el **dominio** de f. El conjunto de los segundos elementos y se denomina **recorrido** de f, o conjunto de valores de f.

TEOREMA 1.1 Dos funciones f y g son iguales si y sólo si

- (a) f y g tienen el mismo dominio, y
- **(b)** f(x) = g(x) para todo x del dominio de f.

Demostración.- Sea f función tal que $x \in D_f$, $\exists y \mid y = f(x)$ es decir (x, f(x)), g una función talque $\forall z \in D_g$, $\exists y \mid y = g(z)$ es decir (z, g(z)), entonces por definición de par ordenado tenemos que (x, f(x)) = (z, g(z)) si y sólo si x = z y f(x) = g(z) Definición 1.4 (Sumas, productos y cocientes de funciones) Sean f y g dos funciones reales que tienen el mismo dominio D. Se puede construir nuevas funciones a partir de f y g por adición, multiplicación o división de sus valores. La función u definida por,

$$u(x) = f(x) + g(x) \ si \ x \in D$$

se denomina suma de f y g, se representa por f+g. Del mismo modo, el producto v=fcdotg y el cociente w=f/g están definidos por las fórmulas

$$v(x) = f(x)g(x)$$
 si $x \in D$, $w(x) = f(x)/g(x)$ si $x \in D$ y $g(x) \neq 0$

1.5. Ejercicios

- **1.** Sea f(x) = x + 1 para todo real x. Calcular:
 - f(2) = 2 + 1 = 3
 - f(-2) = -2 + 1 = -1
 - -f(2) = -(2+1) = -3
 - $f\left(\frac{1}{2}\right) = \frac{1}{2} + 1 = \frac{3}{2}$
 - $\frac{1}{f(2)} = \frac{1}{3}$
 - f(a+b) = a+b+1
 - f(a) + f(b) = (a+1) + (b+1) = a+b+2
 - $f(a) \cdot f(b) = (a+1)(b+1) = ab+a+b+1$
- **2.** Sean f(x) = 1 + x y g(x) = 1 x para todo real x. calcular:
 - f(2) + g(2) = (1+2) + (1-2) = 2
 - f(2) g(2) = (1+2) (1-2) = 4
 - $f(2) \cdot g(2) = (1+2) \cdot (1-2) = 3 \cdot (-1) = -3$

$$f(2) = \frac{1+2}{g(2)} = \frac{3}{1-2} = -3$$

•
$$f[g(2)] = f(1-2) = f(-1) = 1 + (-1) = 0$$

$$g[f(2)] = f(1+2) = g(3) = 1-3 = -2$$

•
$$f(a) + g(-a) = (1+a) + (1-a) = 2$$

$$f(t) \cdot g(-t) = (1+t) \cdot (1+t) = 1+t+t+t^2 = t^2+2t+1 = (t+1)^2$$

3. Sea f(x) = |x-3| + |x-1| para todo real x. Calcular:

$$f(0) = |0-3| + |0-1| = 3+1=4$$

$$f(1) = |1-3| + |1-1| = 2$$

$$f(2) = |2-3| + |2-1| = -1 + 1 = 2$$

$$f(3) = |3-3| + |3-1| = 2$$

$$f(-1) = |-1-3| + |-1-1| = 4+2=6$$

$$f(-2) = |-2-3| + |-2-1| = 5+3 = 8$$

Determinar todos los valores de t para los que f(t+2) = f(t)

$$\begin{array}{rcl} |t+2-3|+|t+2-1| & = & |t-3|+|t-1| \\ |t-1|+|t+1| & = & |t-3|+|t-1| \\ |t+1| & = & t-3 \end{array}$$

Por lo tanto t=1

4. Sea $f(x) = x^2$ para todo real x. Calcular cada una de las fórmulas siguientes. En cada caso precisar los conjuntos de números erales x, y t, etc., para los que la fórmula dada es válida.

(a)
$$f(-x) = f(x)$$

Demostración.- Se tiene $f(-x) = (-x)^2 = x^2 = f(x) \ \forall x \in \mathbb{R}$

(b)
$$f(y) - f(x) = (y - x)(y + x)$$

Demostración.- $f(y) - f(x) = y^2 - x^2 = (x - y)(x + y), \ \forall x, y \in \mathbb{R}$

(c)
$$f(x+h) - f(x) = 2xh + h^2$$

Demostración.- $f(x+h) - f(x) = (x+h)^2 - x^2 = x^2 + 2xh + h^2 - x^2 = 2xh + h^2, \ \forall x \in \mathbb{R}$

(d)
$$f(2y) = 4f(y)$$

Demostración.-
$$f(2y) = (2y)^2 = 4y^2 = 4f(y), \forall y \in \mathbb{R}$$

(e)
$$f(t^2) = f(t)^2$$

Demostración.-
$$f(t^2) = (t^2)^2 = f(t)^2$$

(f)
$$\sqrt{f(a)} = |a|$$

Demostración.-
$$\sqrt{f(a)} = \sqrt{a^2} = |a|$$

5. Sea $g(x) = \sqrt{4 - x^2}$ para $|x| \le 2$. Comprobar cada una de las fórmulas siguientes e indicar para qué valores de x, y, s y t son válidas.

(a)
$$g(-x) = g(x)$$

Se tiene
$$g(-x) = \sqrt{2 - (-x)^2} = \sqrt{2 - (x)^2} = g(x)$$
, para $|x| \le 2$

(b)
$$g(2y) = 2\sqrt{1-y^2}$$

$$g(2y) = \sqrt{4-(2y)^2} = \sqrt{4(1-y^2)} = 2\sqrt{1-y^2}, \quad para \ |y| \le 1$$
 Se obtiene $|y| \le 1$ de $\sqrt{1-y^2}$ es decir $1-y^2 \ge 0$ entonces $\sqrt{y^2} \le \sqrt{1}$ y $|y| \le 1$

(c)
$$g\left(\frac{1}{t}\right) = \frac{\sqrt{4t^2 - 1}}{|t|}$$

 $g\left(\frac{1}{t}\right) = \sqrt{4 - \left(\frac{1}{t}\right)^2} = \sqrt{\frac{4t^2 - 1}{t^2}} = \frac{\sqrt{4t^2 - 1}}{|t|}, para |t| \ge \frac{1}{2}$

Para hallar los valores correspondientes debemos analizar $\sqrt{4t^2-1}$. Es decir

$$4t^2 - 1 \ge 0 \Rightarrow 4t^2 \ge 1 \Rightarrow t^2 \ge \frac{1}{2^2} \Rightarrow |t| \ge \frac{1}{2}$$

(d)
$$g(a-2) = \sqrt{4a-a^2}$$

$$g(a-2) = \sqrt{4-x^2} = \sqrt{4-(a-2)^2} = \sqrt{4a-a^2}$$
, para $0 \le a \le 4$. Basta probar $4a-a^2 \ge 0$

(e)
$$g\left(\frac{s}{2}\right) = \frac{1}{2}\sqrt{16 - s^2}$$

$$s\left(\frac{s}{2}\right) = \sqrt{4 - \left(\frac{s}{2}\right)^2} = \frac{\sqrt{16 - s^2}}{2}$$
, $para |s| \le 4$. ya que solo basta comprobar que $\sqrt{16 - s^2} \ge 0$

(f)
$$\frac{1}{2+g(x)} = \frac{2-g(x)}{x^2}$$

$$\frac{1}{2+g(x)} = \frac{1}{2+\sqrt{4-x^2}} \cdot \frac{2-\sqrt{4-x^2}}{2-\sqrt{4-x^2}} = \frac{2-g(x)}{x^2} \; para \; \; |x| \leq 2 \; y \; x \neq 0$$

Evaluemos $\sqrt{4-x^2}$. Sea $4-x^2 \ge 0$ entonce $\sqrt{x^2} \le 2$. Por otro lado tenemos que la función no puede ser 0 por $\frac{1}{x^2}$, por lo tanto debe ser $x^2 \ne 0$.

- **6.** Sea f la función definida como sigue: f(x) = 1 para $0 \le x \le 1$; f(x) = 2 para $1 < x \le 2$. La función no está definida si x < 0 ó si x > 2.
 - (a) Trazar la gráfica de f

(b) Poner g(x) = f(2x). Describir el dominio de g y dibujar su gráfica.

Debido a que $1 \le 2x \le 1$ y $1 < 2x \le 2$ el dominio de g(x) es $0 \le x \le 1$

(c) Poner h(x) = f(x-2). Describir el dominio de k y dibujar su gráfica.

Debido a que $1 \le x - 2 \le 1$ y $1 < x - 2 \le 2$ el dominio de h(x) es $2 \le x \le 4$

(d) Poner k(x) = f(2x) + f(x-2). Describir el dominio de k y dibujar su gráfica.

El dominio está vacío ya f(2x) que solo está definido para $0 \le x \le 1$ y f(x-2) solo está definido para $2 \le x \le 4$. Por lo tanto no hay ninguno x que satisfaga ambas condiciones.

7. Las gráficas de los dos polinomios g(x) = x y $f(x) = x^3$ se cortan en tres puntos. Dibujar una parte suficiente de sus gráficas para ver cómo se cortan.

8. Las gráficas de los dos polinomios cuadráticos $f(x) = x^2 - 2$ y $g(x) = 2x^2 + 4x + 1$ se cortan en dos puntos. Dibujar las porciones de sus gráficas comprendidas entre sus intersecciones.

- **9.** Este ejercicio desarrolla ciertas propiedades fundamentales de los polinomios. Sea $f(x) = \sum_{k=0}^{n} c_k x^k$ un polinomio de grado n. Demostrar cada uno de los siguientes apartados:
 - (a) Si $n \ge 1$ y f(0) = 0, f(x) = xg(x), siendo g un polinomio de grado n 1.

Para entender lo que nos quiere decir Apostol pongamos un ejemplo. Supongamos que tenemos un polinomio donde $f(x) = 2x^2 + 3x - x$ entonces notamos que f(x) = x(2x+3-1) donde g(x) = 2x+3-1, esto quiere decir que si $0 = f(0) = c_0 \Rightarrow c_1x + c_2x^2 + ... + c_nx^n = x(c_1 + c_2x + ... + c_nx^{n-1})$ Así que debemos demostrar que f(x) es un polinomio arbitrario de grado $n \ge 1$ tal que f(0) = 0, entonces debe haber un polinomio de grado n - 1, g(x), tal que f(x) = xg(x)

Demostración.- Sabemos que

$$f(0) = c_n \cdot 0^n + c_{n-1} \cdot 0^{n-1} + \dots + c_1 \cdot 0 + c_0 = c_0,$$

como f(0) = 0 se concluye que $c_0 = 0$. Así tenemos

$$f(x) = \sum_{k=1}^{n} c_k x^k.$$

Ahora crearemos una función g(x). Dada la función f(x) como la anterior, definamos,

$$f(x) = \sum_{k=0}^{n} c_k x^{k-1} = \sum_{k=1}^{n} c_k x^{k-1}$$

Ahora crearé una función g(x). Dada una función f(x) como la anterior, definamos

$$g(x) = \sum_{k=1}^{n} c_k x^{k-1}$$

donde c_k son los mismos que los dados por la función f(x). Primero notemos que el grado de g(x) es n-1. Finalmente, tenemos que

$$xg(x) = x \sum_{k=1}^{n} c_k x^{k-1} = \sum_{k=1}^{n} c_k x^k = f(x).$$

(b) Para cada real a, la función p dada por p(x) = f(x+a) es un polinomio de grado n.

Demostración.- Usando el teorema del binomio,

$$f(x+a) = \sum_{k=0}^{n} (x+a)^k c_k$$

$$= c_o + (x+a)c_1 + (x+a)^2 c_2 + \dots + (x+a)^n c_n$$

$$= c_o + c_1 \left(\sum_{j=0}^{1} {1 \choose j} a^j x^{1-j}\right) + c_2 \left(\sum_{j=0}^{2} {2 \choose j} a^j x^{2-j}\right) + \dots + c_n \left(\sum_{j=0}^{n} {n \choose j} a^j x^{n-j}\right)$$

$$= (c_o + ac_1 + a^2 c_2 + \dots + a^n c_n) + x(c_1 + 2ac_2 + \dots + na^{n-1} c_n)$$

$$= \sum_{k=0}^{n} \left(x^k \left(\sum_{j=k} {j \choose j-k} c_j aj - k\right)\right)$$

En la linea final reescribimos los coeficientes como sumas para verlos de manera más concisa. De cualquier manera, dado que todos los c_i son constantes, tenemos $\sum_{j=k}^{n} \binom{j}{j-k} c_j a^{j-k}$ es alguna constante para cada k, de d_k y tenemos,

$$p(x) = \sum_{k=0}^{n} d_k x^k$$

(c) Si $n \ge 1$ y f(a) = 0 para un cierto valor real a, entonces f(x) = (x-a)h(x), siendo h un polinomio de grado n-1. (considérese p(x) = f(x+a).)

Demostración.- Por la parte b) se sabe que f(x) es un polinomio de grado n, entonces p(x) = f(x+a) también es un polinomio del mismo grado. Ahora si f(a) = 0 entonces por hipótesis p(0) = f(a) = 0. Luego por la parte a), tenemos

$$p(x) = x \cdot q(x)$$

donde g(x) es un polinomio de grado n-1. Así,

$$p(x-a) = f(x) = f(x) = (x-a) \cdot q(x-a)$$

ya que p(x) = f(x + a). Pero, si g(x) es un polinomio de grado n - 1, entonces por la parte b) nuevamente, también lo es h(x) = g(x + (-a)) = g(x - a). Por lo tanto,

$$f(x) = (x - a) \cdot h(x)$$

para h un grado n-1 polinomial, según lo solicitado.

(d) Si f(x) = 0 para n + 1 valores reales de x distintos, todos los coeficientes c_k son cero y f(x) = 0 para todo real de x

Demostración.- La prueba se realizara por inducción. Sea n = 1, entonces $f(x) = c_o + c_1 x$. Dado que la hipótesis es que existen n + 1 distintos x de tal manera que f(x) = 0, sabemos que existen $a_1, a_2 \in \mathbb{R}$ tal que

$$f(a_1) = f(a_2) = 0, \quad a_1 \neq a_2,$$

Así,

$$c_0 + c_1 a_1 = 0 \Rightarrow c_1 a_1 - c_1 a_2 = 0$$

 $\Rightarrow c_1 (a_1 - a_2) = 0$
 $\Rightarrow c_1 = 0 \text{ ya que } a_1 \neq a_2$
 $\Rightarrow c_0 = 0 \text{ ya que } c_0 + c_1 a_1 = 0$

Por lo tanto, la afirmación es verdadera. Suponga que es cierto para algunos $n = k \in \mathbb{Z}^+$. Luego Sea f(x) un polinomio de grado k + 1 con k + 2 distintos de $0, a_1, ..., a_{k+2}$. ya que $f(a_{k+2}) = 0$, usando la parte c), tenemos,

$$f(x) = (x - a_{k+2})h(x)$$

donde h(x) es un polinomio de grado k. Sabemos que hay k+1 valores distintos $a_1, ... a_{k+1}$ tal que $h(a_i) = 0$. Dado que $f(a_i) = 0$ para 1 < i < k+2y y $(x-a_{k+2}) \neq 0$ para $x = a_i$ con 1 < i < k+1 ya que todos los a_1 son distintos), por lo tanto, según la hipótesis de inducción, cada coeficiente de h es 0 y h(x) = 0 para todo $x \in \mathbb{R}$. Así,

$$f(x) = (x - a_{k+2})h(x) = (x - a_{k+2}) \cdot \sum_{j=0}^{k} c_j x^j$$

$$= \sum_{j=0}^{k} (x - a_{k+2})c_j x^j$$

$$= c_k x^{k+1} + (c_{k-1} - a_k + 2c_k)x^k + \dots + (c_1 - a_{k+2}c_0)x + a_{k+2}c_0$$

Pero dado que todos los coeficientes de h(x) son cero y f(x) = 0 para todo $x \in \mathbb{R}$. Por lo tanto, la afirmación es verdadera para el caso k+1 y para todo $n \in \mathbb{Z}^+$

(e) Sea $g(x) = \sum_{k=0}^{m} b_k x^k$ un polinomio de grado m, siendo $m \ge n$. Si g(x) = f(x), para m+1 valores reales de x distintos, entonces m = n, $b_k = c_k$ para cada valor de k, y g(x) = f(x) para todo real x

Demostración.- Sea

$$p(x) = g(x) - f(x) = \sum_{k=0}^{m} b_k x^k - \sum_{k=0}^{n} c_k x^k = \sum_{k=0}^{m} (b_k - c_k) x^k$$

donde $c_k = 0$ para $n < k \le m$, cabe recordar que tenemos $m \ge n$.

Entonces, hay m+1 distintos reales x para los cuales p(x)=0. Dado que hay m+1 valores reales distintos para lo cuál g(x)=f(x), así en cada uno de estos valores p(x)=g(x)-f(x)=0. Por lo tanto, por la parte d), $b_k-c_k=0$ para k=0,...,m y p(x)=0 para todo $x \in \mathbb{R}$. Es decir

$$b_k - c_k = 0 \quad \Rightarrow \quad b_k = c_k \quad para \ k = 0, ..., m$$

у

$$p(x) = 0 \Rightarrow g(x) - f(x) = 0 \Rightarrow f(x) = g(x),$$

para todo $x \in \mathbb{R}$. Ademas desde $b_k - c_k = 0$ para k = 0, ..., m y por supuesto $c_k = 0$ para k = n + 1, ..., m, tenemos $b_k = 0$ para k = n + 1, ..., m. Pero entonces,

$$g(x) = \sum_{k=0}^{n} b_k x^k + \sum_{k=n+1}^{m} 0 \cdot x^k = \sum_{k=0}^{n} b^k x^k$$

significa que g(x) es un polinomio de grado n también.

10. En cada caso, hallar todos los polinomios p de grado ≤ 2 que satisfacen las condiciones dadas.

Sabemos que para un polinomio de grado ≤ 2 es:

$$p(x) = ax^2 + bx + c$$

para todo $a, b, c \in \mathbb{R}$.

(a)
$$p(x) = p(1-x)$$

Sea f(x) = p(x) - 1, entonces f es de grado como máximo 2 por la parte d) del problema 9 tenemos que todos los coeficientes de f son 0 y f(x) = 0 para todo $x \in \mathbb{R}$, así,

$$p(x) - 1 = 0 \implies p(x) = 1 \ \forall x \in \mathbb{R}$$

(b)
$$p(x) = p(1+x)$$

Tenemos $p(0)=1\Rightarrow c=1$ luego, $p(1)=1\Rightarrow a+b=0\Rightarrow b=-a$ y finalmente, con c=1 y b=-a, tenemos: $p(2)=2\Rightarrow 4a-2a=1\Rightarrow a=\frac{1}{2},\ b=-\frac{1}{2}$. por lo tanto

$$p(x) = \frac{1}{2}x^2 - \frac{1}{2}x + 1 = \frac{1}{2}x(x-1) + 1$$

(c)
$$p(x) = p(0) = p(1) = 1$$

Una vez mas, desde p(0) = 1 tenemos: $a + b = 0 \Rightarrow b = -a$ así, $p(x) = ax^2 - ax + 1 = ax(x - 1) + 1$

(d)
$$p(0) = p(1)$$

Simplemente sustituyendo estos valores que tenemos, $p(0) = p(1) \Rightarrow c = a + b + c \Rightarrow b = -a$ entonces,

$$p(x) = ax^2 - ax + c = ax(x - 1) + c$$

11. En cada caso, hallar todos los polinomios p de grado ≤ 2 que para todo real x satisfacen las condiciones que se dan. Como p es un polinomio de grado por lo mucho 2, podemos escribir

$$p(x) = ax^2 + bx + c$$
, $para a, b, c \in \mathbb{R}$

(a)
$$p(x) = p(1-x)$$

Sustituyendo se tiene $p(x) = p(1-x) = ax^2 + bx + c = a(1-x)^2 + b(1-x) + c \Rightarrow a - 2ax + ax^2 + b - bx + c$ por lo tanto

$$ax^{2} + (-2a - b)x + (a + b + c)$$

Así para $a=a,\,b=-2a-b\Rightarrow a=-b,\,c=a+b+c$ entonces

$$p(x) = -bx^{2} + bx + c = bx(1 - x) + c$$

(b)
$$p(x) = p(x) = p(1+x)$$

Una vez más sustituyendo, $p(x) = p(1+x) \Rightarrow ax^2 + bx + c = a(1+x)^2 + b(1+x) + c = ax^2 + (2a+b)x + (a+b+c)$. Luego, igualando como potencias de x, a = a, $b = 2a + b \Rightarrow a = 0$, $c = a + b + c \Rightarrow b = 0$. Por lo tanto p(x) = c donde c es una constante arbitraria.

(c)
$$p(2x) = 2p(x)$$

Sustituyendo, $p(2x)=2p(x)\Rightarrow 4ax^2+2bx+c=2ax^2+2bx+2c$. Igualando a las potencias de $x,\ 4a=2a\Rightarrow a=0,\ 2b=2b\Rightarrow b\ arbitrario,\ c=2c\Rightarrow c=0$. Así

$$p(x)bx$$
, b arbitrario

(d)
$$p(2x) = p(x+3)$$

Sustituyendo $p(3x) = p(x+3) \Rightarrow 9ax^2 + 3bx + c = ax^2 + (6a+b)x + (9a+3b+c)$. Igualando como potencias de x, $9a = a \Rightarrow a = 0$, $3b = 6a + b \Rightarrow b = 0$, $c = 9a + 3b + c = c \Rightarrow c$ arbitrario. Por lo tanto

$$p(x) = c$$
para c constante arbitrario.

Corolario 1.1 Probar que:

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \ parax \neq 1$$

Demostración.- Usando propiedades de suma,

$$(1-x)\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} (x^{k} - x^{k+1}) = -\sum_{k=0}^{n} (x^{k+1} - x^{k}) = -(x^{n+1} - 1) = 1 - x^{n} + 1$$

En la penultima igualdad se deriva de la propiedad telescópica, por lo tanto nos queda,

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Corolario 1.2 Probar la identidad

$$\prod_{k=1}^{n} \left(1 + x^{2^{k-1}} \right) = \frac{1 - x^{2^n}}{1 - x}, \ para \ x \neq 1$$

Demostración.- Para n = 1 a la izquierda tenemos,

$$\prod_{k=1}^{n} \left(1 + x^{2^{k-1}} \right) = \prod_{k=0}^{1} \left(1 + x^{2^{k-1}} = 1 + x^{2^0} = 1 + x \right)$$

Por otro lado a la derecha se tiene,

$$\frac{1-x^{2^n}}{1-x} = \frac{1-x^2}{1-x} = \frac{(1-x)(1+x)}{1-x} = 1+x$$

Concluimos que la identidad se mantiene para n=1. Ahora supongamos que es válido para algunos $n=m\in\mathbb{Z}^+$,

$$\prod_{k=1}^{m+1} = (+x^{2^m}) \cdot \prod_{k=1}^{m} (1+x^{2^{k+1}})$$

$$= (1+x^{2^m}) \cdot (\frac{1-x^{2^m}}{1-x})$$

$$= \frac{(1+x^{2^m})(1-x^{2^m})}{1-x}$$

$$= \frac{1-x^{2^{m+1}}}{1-x}$$

Por lo tanto, la afirmación es verdadera para m+1, y así para todo $n \in \mathbb{Z}^+$

12. Demostrar que las expresiones siguientes son polinomios poniéndolas en la forma $\sum_{k=0}^{m} a_k x^k$ para un valor de m conveniente. En cada caso n es entero positivo.

(a)
$$(1+x)^{2n}$$

Demostración.- Usando el teorema binomial $(1+x)^{2n} = \sum_{k=0}^{2} n \binom{2n}{k} x^k$, sea m=2n entonces $\sum_{k=0}^{m} \binom{m}{n} x^k$, por lo tanto $\sum_{k=0}^{m} c_k x^k$ si $c_k = \binom{m}{k}$ para cada k.

(b)
$$\frac{1-x^{n+1}}{1-x}, x \neq 1$$

Demostración.- Por el corolario anterior

$$\frac{1 - x^{n+1}}{1 - x} = \frac{(1 - x)(1 + x + \dots + x^n)}{1 - x}$$

$$= 1 + x + \dots + x^n$$

$$= \sum_{k=0}^{n} 1 \cdot x^k$$

(c)
$$\prod_{k=0}^{n} (1+x^{2^k})$$

Demostración.- Por le corolario anterior,

$$\prod_{k=0}^{n} \left(1 + x^{2^k} \right) = \frac{(1 - x^{2^{n+1}})}{1 - x}$$

$$= \frac{(1 - x^{2^n})(1 + x^{2^n})}{1 - x}$$

$$= \left(\frac{1 - x^{2^n}}{1 - x} \right) (1 + x^{2^n})$$

$$= (1 + x + \dots + x^{2^n + 1})(1 + x^{2^n})$$

$$= (1 + x + \dots + x^{2^n + 1})(x^{2^n} + x^{2^n + 1} + \dots + x^{2^{n+1} - 1})$$

$$= \sum_{k=0}^{2^{n+1} - 1} 1 \cdot x^k$$

$$= \sum_{k=0}^{m} 1 \cdot x^k \text{ si } m = 2^{n+1} - 1$$

Axioma .1 (Definición axiomática de área) Supongamos que existe una clase M de conjuntos del plano medibles y una función de conjunto a, cuyo dominio es M, con las propiedades siguientes:

- 1. Propiedad de no negatividad. Para cada conjunto S de M, se tiene $a(S) \geq 0$
- 2. Propiedad aditiva. Si S y T pertenecen a M, también pertenecen a M, $S \cup T$ y $S \cap T$, y se tiene

$$a(S \cup T) = a(S) + a(T) - a(S \cap T)$$

- 3. Propiedad de la diferencia. Si S y T pertenecen a M siendo $S \subseteq T$ entonces T S está en M, y se tiene a(T S) = a(T) a(S)
- 4. Invariancia por congruencia. Si un conjunto S pertenece a M y T es congruente a S, también T pertenece a M y tenemos a(S) = a(T)
- 5. Elección de escala Todo rectángulo R pertenece a M. Si los lados de R tienen longitudes h y k, entonces a(R) = hk
- 6. Propiedad de exhaución. Sea Q un conjunto que puede encerrarse entre dos regiones S y T de modo que

$$S \subseteq Q \subseteq T$$
.

Si existe uno y sólo un número c que satisface las desigualdades

$$a(S) \le c \le a(T)$$

para todas la regiones escalonadas S y T que satisfacen $S\subseteq Q\subseteq T$, entonces Q es medible y a(Q)=c

1.7. Ejercicios

- 1. Demostrar que cada uno de los siguientes conjuntos es medible y tiene área nula:
 - (a) Un conjunto que consta de un solo punto.

Demostración.- Un sólo punto se puede medir con un área 0, ya que un punto es un rectángulo con h=k=0

(b) El conjunto de un número finito de puntos.

Demostración.- Demostraremos por inducción en n, el número de puntos. Para el caso de n=1 ya quedo demostrado en el anterior inciso. Supongamos que es cierto para algunos $n=k\in \mathbf{Z}^+$. Entonces, tenemos un conjunto $S\in M$ de k puntos en el plano y a(S)=0. Sea T un punto en el plano. Por (a) $T\in M$ y a(T)=0, por tanto por la propiedad aditiva,

$$S \cup T \in M$$
 y $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.

pero $S \cap T \subseteq S$, entonces

$$a(S \cap T) \le a(S) \Rightarrow a(S \cap T) \le 0 \Rightarrow a(S \cap T) = 0.$$

El axioma 1 nos garantiza que $a(S \cap T)$ no puede ser negativo. Por lo tanto, $a(S \cup T) = 0$, Por tanto,

el enunciado es verdadero para k+1 puntos en un plano y, por tanto, para todo $n \in \mathbb{Z}_{>0}$

(c) La reunión de una colección finita de segmentos de recta en un plano.

Demostración.- Por inducción, sea n el número de segmentos en un plano. Para n=1, dejamos S ser un conjunto con una línea en un plano. Dado que una línea es un rectángulo y todos los rectángulos son medibles, tenemos $S \in M$ ademas, a(S) = 0 ya que una línea es un rectángulo con h = 0 ó k = 0, y así en cualquier caso hk = 0. Por lo tanto, el enunciado es verdadero para una sola línea en el plano, el caso n = 1.

Asuma entonces que es cierto para $n=k\in \mathbf{Z}^+$. Sea S un conjunto de rectas en el plano. Luego, por la hipótesis de inducción, $S\in M$ y a(S)=0. Sea T una sola línea en el plano. Por el caso n=1 en $T\in M$ y a(T)=0. Por lo tanto $S\cup T\in M$ y $a(S\cup T)=0$ (ya que $a(S)=a(T)a(S\cap T)=0$). Por tanto, la afirmación es verdadera para k+1 líneas en un plano, y así para todos $n\in \mathbf{Z}^+$

2. Toda región en forma de triángulo rectángulo es medible pues puede obtenerse como intersección de dos rectángulos. Demostrar que toda región triangular es medible y que su área es la mitad del producto de su base por su altura.

Demostración.-