

Niels Henrik Abels matematikkonkurranse 2013–2014. *Løsninger*

Andre runde 16. januar 2014

Oppgave 4. Tallene 1–9 tar opp de første ni sifrene, mens tallene 10–99 tar de neste $2 \cdot 90 = 180$ sifrene, til sammen 189 sifre så langt. Fordi $2013 - 189 = 3 \cdot 608$, har vi brukt opp 2013 siffer etter å ha lagt til 608 tresifrede tall. Disse er altså tallene 100–707, så rekken av tallsiffer fortsetter fra det 2014. sifferet med $708709710 \dots 708$

Oppgave 5. I stedet for å legge klinkekulene i esker, kan vi legge dem på et papirark og tegne piler mellom klinkekulene. Hvis en blå klinkekule skal i en gul eske, tegner vi en pil fra den blå til den gule klinkekulen. På den måten får vi et diagram av piler mellom klinkekulene, der hver klinkekule befinner seg i halen av én pil og ved spissen av en annen. Pilene må danne lukkede sykler av lengde 2, 3 eller 5 – se figuren. (Vi kan ikke ha en sykel av lengde 4, for da kan ikke den femte klinkekulen være med i noen sykel.) Det er $4 \cdot 3 \cdot 2 = 24$ mulige måter å ordne klinkekulene i en sykel med fem kuler: Fire mulige valg for klinkekulen etter den blå, deretter tre for den neste, to for

Oppgave 6. De to rettvinklede trekantene ABD og BCD har siden BD felles. Pytagoras anvendt på de to trekantene gir derfor $(2a)^2 + (3a)^2 = c^2 - b^2$, med andre ord $13a^2 = (c - b)(c + b)$. Fordi 13 er et primtall, må 13 gå opp i enten c - b eller c + b. For et minimalt resultat prøver vi oss frem med c + b = 13, slik at vi må ha $a^2 = c - b$. Da blir a minst mulig om vi velger a = 1, og dermed

Oppgave 7. $p(x) = (x - r_1)(x - r_2)(x - r_3) = x^3 - (r_1 + r_2 + r_3)x^2 + \cdots$, så $r_1 + r_2 + r_3 = -5$. $p(-5) = -5^3 + 5^3 + 20 \cdot 5 + 14 = 114$.

Oppgave 8. Et tresifret palindrom har formen 100a + 10b + a = 101a + 10b, der a og b er tallsifre med $a \neq 0$. Tverrsummen er 2a + b. Dersom a = b er tallet 111a og tverrsummen 3a, som går opp i tallet fordi $3 \mid 111$ (vi bruker en loddrett strek i betydningen «går opp i»). Det gir ni muligheter med a = b. I tilfellet $a \neq b$ må $2a + b \mid (101a + 10b) - 10(2a + b) = 81a$. Vi kan ikke ha

Oppgave 9. Vi har $AF = AD = \frac{10}{2} = 5$, fordi AD og AF tangerer samme sirkel i henholdsvis D og F (du kan enklest se det ved å sjekke at tre-kantene ADO og AFO er kongruente). Så FC = 8 - 5 = 3. De to trekantene FEC og ABC er formlike med lengdeforhold 3:8, og spesielt er $FE = \frac{3}{8}AB$. Vi har også forholdet 3:8 mellom høydene til FEC og ABC, altså $CG = \frac{3}{8}CD$, og derfor $DG = \frac{5}{8}CD$.

Fasit

Hvis denne sida kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.