Practical Medical Bacteriology

Lab 4 Laboratory Diagnosis of Streptococcal Group

General Characteristics of Streptococci

- Gram-positive spherical bacteria arranged in long chains; or in pairs.
- ➤ The colonies are small, ranging from pinpoint size to 2 mm in diameter,
- Some are members of the normal human microbiota; others are associated with important human diseases
- ➤ Non-motile and do not form spores
- > Some members form capsules
- ➤ Anaerobic or Facultative anaerobes
- > Catalase negative
- > Sensitive to drying, heat, and disinfectants

Classification of Streptococci

Streptococci can be classified according to:

- Colony morphology and hemolytic reactions on blood agar.
- Serologic specificity of the cell wall group-specific substance (Lancefield antigens) and other cell wall or capsular antigens.
- **Biochemical reactions** and resistance to physical and chemical factors.
- **Ecologic features** and Molecular genetics

Lancefield Classification of Streptococci

- Classification based on C- carbohydrate that contained in the cell wall of many streptococci and forms the basis of serologic grouping into Lancefield groups A- H and K-U.
- > Typing is generally done only for groups A, B, C, F, and G which cause disease in humans.
- ➤ Based on C- carbohydrate antigen of cell wall streptococci can be classified into two groups
 - **✓** Groupable streptococci
 - A, B and D (more frequent)
 - C, G and F (Less frequent)
 - ✓ Non-groupable streptococci
 - S. pneumoniae (pneumonia)
 - viridans streptococci
 - e.g. S. mutans that cause dental caries

Classification of Streptococci based on hemolysis on blood agar

Hemolysis on Blood Agar

1. α-hemolysis

- > Partial hemolysis
- > Green discoloration around the colonies
- > e.g. non- groupable Streptococci (S.pneumoniae & S.viridans)

2. β-hemolysis

- > Complete hemolysis
- > Clear zone of hemolysis around the colonies
- > e.g. Group A & B (S. pyogenes & S. agalactiae)

3. γ-hemolysis

- ➤ No lysis
- > e.g. Group D (*Enterococcus* spp)

Classification of Streptococci based on hemolysis on blood agar

Beta Hemolysis

Alpha Hemolysis

Gamma Hemolysis

Classification of Streptococci based on hemolysis on blood agar

β-hemolysis

α-hemolysis

γ-hemolysis

- 1. Specimen:
 - Throat swab, Pus swab, CSF, Blood, Urine
- 2. Culture:
 - Blood agar
 - Chocolate agar
 - Other selective media
- 3. Biochemical tests
- 4. Serological methods for identification of some strains or species
- 5. Antibiotic sensitivity tests
- 6. Molecular biology methods for research

Group A β- hemolysis Streptococcus

- > Colony morphology
 - ➤ Transparent, smooth, and well-defined zone of beta- hemolysis
- > Identification
 - ➤ Catalase-negative
 - **Bacitracin-susceptible**
 - ➤ Bile-esculin—negative
 - ➤ 6.5% NaCl-negative
- ➤ Group A streptococci (S. pyogenes) is susceptible to Bacitracin disk (left); The right shows resistance

Group B β- hemolysis Streptococcus

- Colony morphology
 - > Grayish-white, mucoid, creamy, narrow zone of β-hemolysis
- > Presumptive Identification tests
 - Catalase-negative
 - **Bacitracin-resistant**
- > Identification tests
 - ➤ Bile esculin hydrolysis—negative
 - ➤ Does not grow in 6.5% NaCl
 - > CAMP test–positive
- ➤ S. agalactiae shows the arrow-shaped hemolysis near the staphylococcus streak, showing a positive test for CAMP factor

TABLE 18.4 Scheme for Differentiating Beta-Hemolytic Streptococci

^{*}Name is derived from the first letters of the names of its discoverers. CAMP is a diffusible substance of group B, which lyses sheep red blood cells in the presence of staphylococcal hemolysin.

Schema to differentiate Group A and B from other -hemolytic streptococci

^{**}A sugar that can be split into glucose and esculetin. Group D streptococci can accomplish this in the presence of 40% bile.

^{***}Sulfa and trimethoprim. The test is performed (like bacitracin) with discs containing this combination drug.

Group D Streptococci and *Enterococcus* **Species**

- Microscopic morphology
 - > Cells tend to elongate
- Colony morphology
 - Most are **non-hemolytic**, although some may show α- or rarely β-hemolysis
 - > Possess Group D antigen

➤ Identification tests

- Catalase: may produce a weak catalase reaction
- ➤ Hydrolyze bile esculin
- Differentiate Group D from Enterococcus sp. with 6.5% NaCl

Identification Schema

Schema to differentiate Enterococcus and Group D streptococci from other non-hemolytic streptococci

Streptococcus pneumoniae none groupable

- Microscopic morphology
 - > Gram-positive cocci in pairs; lancet-shaped
- > Colony morphology
 - Smooth, glistening, wet-looking, mucoid, α hemolytic colonies.
 - ➤ CO₂ enhances growth
- > Identification tests
 - > Catalase negative
 - ➤ Optochin susceptibility test–susceptible
 - ➤ Bile solubility test—positive

Viridans streptococci none groupable

- ➤ Viridans streptococci are the most prevalent members of the normal microbiota of the upper respiratory tract
- \triangleright α -hemolytic, but they may also be nonhemolytic.
- Their growth is not inhibited by optochin, and colonies are not soluble in bile (deoxycholate).
- Lack both the group carbohydrate antigens of the pyogenic streptococci and the capsular polysaccharides of the pneumococcus.
- > e.g., S. mutans

Bacitracin sensitivity test

- Definitive test to differentiate between *S. pyogenes* & Non group A β-hemolytic Streptococci (*S. agalactiae*)
- ➤ **Principle:** A low conc. of Bacitracin (0.04 units) will selectively inhibit the growth of *S. pyogenes* giving a zone of inhibition around the disc.

Procedure:

- 1. Inoculate blood agar plate with the test organism
- 2. Aseptically apply Bacitracin disc onto the center of the streaked area.
- 3. Incubate the plate at 37oC for 16-18 hrs.

Results:

> Positive test: any zone of inhibition around the disc.

Bacitracin sensitivity test

Bacitracin Sensitive *S. pyogenes*

Bacitracin Resistant

S. agalactiae

CAMP test

- The CAMP phenomenon was first reported in 1944 by Cristie, Atkins, and Munch-Peterson.
- > Specific for **S.** agalactiae (Group B)

Principle: The hemolytic activity of Staphylococcal beta —lysin on erythrocytes is enhanced by an extracellular factor produced by group B streptococci, called the CAMP factor. Therefore, where the two reactants overlap in a sheep blood agar plate, accentuation of the beta hemolytic reaction occurs.

Procedure:

- Single streak of *Streptococcus* to be tested and a *Staph. aureus* are made perpendicular to each other
- 3-5 mm distance was left between two streaks
- After incubation, a positive result appear as an arrowhead shaped zone of complete hemolysis
- S. agalactiae is CAMP test positive while non group B streptococci are negative

CAMP test

Optochin sensitivity test

- ➤ **Definitive** test to differentiate between *S. pneumoniae* & viridans Streptococci
- Principle: S. pneumoniae is inhibited by less than 5 μg/ml Optochin reagent (ethylhydroxycupreine hydrochloride) giving a zone of inhibition.

Procedure:

- 1. Inoculate blood agar plate with the test organism
- 2. Aseptically apply Optochin disc onto the center of the streaked area.
- 3. Incubate the plate at 37°C for 24 hrs.
- 4. Accurately measure the diameter of the inhibition zone around the disc.

Optochin sensitivity test

Optochin resistant

S. viridans

Optochin susceptible *S. pneumoniae*

Differentiation between β-hemolytic streptococci

	Hemolysis	Bacitracin sensitivity	CAMP test
S. pyogenes	β	Susceptible	Negative
S. agalactiae	β	Resistant	Positive

Differentiation between α-hemolytic Streptococci

	Hemolysis	Optochin sensitivity	Bile solubility	Inulin Fermentation
S. pneumoniae	α	Sensitive (≥ 14 mm)	Soluble	Not ferment
Viridans strep	α	Resistant (≤13 mm)	Insoluble	Ferment

Lancefield antigens are cell wall carbohydrates

Presence of Lancefield antigens defines the pyogenic streptococci

Hemolysis is a practical guide to classification

Only pyogenic streptococci are β-hemolytic

Groups A and B streptococci are most common cause of disease

