Noncommutative Schur functions

Jasper Ty

What is this?

This is (going to be) an "infinite napkin" set of notes I am taking about noncommutative Schur functions.

Contents

I	Ideals and words	2
2	Noncommutative e's and h's	2
	2.1 The ideal I_C	2
	2.2 The homomorphism	3
3	Noncommutative Schur functions	3
	3.1 Cauchy kernel	3
4	Stuff	4
5	Appendix	4
	5.1 Gessel's fundamental quasisymmetric function	4
	5.2 The Edelman-Greene correspondence	4

Ideals and words T

Let $\mathbf{u} = (u_1, \dots, u_N)$ be a collection of variables. Let $\langle \mathbf{u} \rangle$ be the free semigroup on the generators **u**. Then, let $\mathcal{U} = \mathbb{Z}\langle \mathbf{u} \rangle$ denote the corresponding semigroup ring—the free associative ring generated by **u**.

We will denote by \mathcal{U}^* the \mathbb{Z} -module spanned by words in the alphabet $\{1,\ldots,N\}$.

We will have a fundamental pairing $\langle -, - \rangle$ given by making noncommutative monomials dual to words.

Now, if I is an ideal of \mathcal{U} , we define I^{\perp} by

$$I^{\perp} := \{ \gamma \in \mathcal{U}^* \mid \langle I, \gamma \rangle = 0 \}.$$

Noncommutative e's and h's 2

Definition 2.1. The noncommutative elementary symmetric function $e_k(\mathbf{u})$ is defined to be

$$e_k(\mathbf{u}) \coloneqq \sum_{i_1 > i_2 > \dots > i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$

The noncommutative complete homogeneous symmetric function $b_k(\mathbf{u})$ is defined to be

$$b_k(\mathbf{u}) \coloneqq \sum_{i_1 \ge i_2 \ge \cdots \ge i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$

The ideal I_C **2.**I

Lemma 2.2. Let I be an ideal. If the e's commute modulo I, then the b's commute modulo *I* as well, and vice versa.

Definition 2.3. We define the ideal I_C to be the ideal consisting of exactly the ele-

$$u_{b}^{2}u_{a} + u_{a}u_{b}u_{a} - u_{b}u_{a}u_{b} - u_{b}u_{a}^{2} \qquad (a < b), \qquad (1)$$

$$u_{b}u_{c}u_{a} + u_{a}u_{c}u_{b} - u_{b}u_{a}u_{c} - u_{c}u_{a}u_{b} \qquad (a < b < c), \qquad (2)$$

$$u_{c}u_{b}u_{c}u_{a} + u_{b}u_{c}u_{a}u_{c} - u_{c}u_{b}u_{a}u_{c} - u_{b}u_{c}^{2}u_{a} \qquad (a < b < c). \qquad (3)$$

$$u_b u_c u_a + u_a u_c u_b - u_b u_a u_c - u_c u_a u_b \qquad (a < b < c), \qquad (2)$$

$$u_{c}u_{b}u_{c}u_{a} + u_{b}u_{c}u_{a}u_{c} - u_{c}u_{b}u_{a}u_{c} - u_{b}u_{c}^{2}u_{a} \qquad (a < b < c).$$
 (3)

Theorem 2.4. I_C is the smallest ideal in which the elementary symmetric functions $e_k(\mathbf{u}_S)$ and $e_\ell(\mathbf{u}_S)$ commute for any k, ℓ, S .

2.2 The homomorphism

Theorem 2.5 (Fundamental theorem of symmetric functions). Let $\Lambda(\mathbf{x})$ denote the ring of symmetric polynomials in the commuting variables $\mathbf{x} = (x_1, \dots, x_n)$. Then

$$\Lambda(\mathbf{x}) \simeq \mathbb{Q}[e_1(\mathbf{x}), e_2(\mathbf{x}), \dots, e_n(\mathbf{x})].$$

Proof. See Theorem 7.4.4 in [EC2]. One checks that products of the form. One can prove this via the *Gale-Ryser* theorem.

Corollary 2.6. If I contains I_C , then the map

$$\Lambda_n(\mathbf{x}) \to \mathcal{U}/I$$

$$e_k(\mathbf{x}) \mapsto e_k(\mathbf{u})$$

extends to a ring homomorphism.

Proof. Combine Theorems 2.5 and 2.4.

3 Noncommutative Schur functions

Definition 3.1. The noncommutative Schur function $\mathfrak{J}(\mathbf{u})$ is defined to be

$$\mathfrak{J}_{\lambda}(\mathbf{u}) = \sum_{\pi \in \mathcal{S}_t} \operatorname{sgn}(\pi) e_{\lambda_1^\top + \pi(1) - 1}(\mathbf{u}) e_{\lambda_2^\top + \pi(2) - 2}(\mathbf{u}) \cdots e_{\lambda_t^\top + \pi(t) - t}(\mathbf{u}),$$

where $t = \lambda_1$ is the number of parts of λ^{\top} .

Theorem 3.2 ([FG98], [BF16]). In the ideal I_{\varnothing} ,

$$\mathfrak{J}_{\lambda}(\mathbf{u}) \coloneqq \sum_{T \in SSYT(\lambda; N)} \mathbf{u}^{\operatorname{colword} T}.$$

3.1 Cauchy kernel

Definition 3.3. Let $\mathbf{x} = (x_1, x_2...)$ be a countable collection of commuting variables.

4 Stuff

Definition 4.1. A combinatorial representation of \mathcal{U}/I is

Definition 4.2.

5 Appendix

- 5.1 Gessel's fundamental quasisymmetric function
- 5.2 The Edelman-Greene correspondence

References

- [EC2] Sergey Fomin and Curtis Greene, *Noncommutative Schur functions and their applications*, Discrete Math. **193** (1998), 179-200.
- [FG98] Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), 179-200.
- [BF16] Jonah Blasiak and Sergey Fomin, Noncommutative Schur functions, switchboards, and Schur positivity, Sel. Math. 23 (2017), 727-766.
 Also available as arXiv: 1510.00657.
- [A15] Sami Assaf, Dual equivalence graphs I: A new paradigm for Schur positivity, Forum. Math. Sigma 3 (2015), e12.

 Also available as arXiv: 1506.03798.
- [Lo4] Thomas Lam, *Ribbon Schur operators*, European J. Combin. **29** (2008), 343-359. Also available as arXiv:math/0409463.