Report for Experiment 5

Name	THE PAR	2 8166	aldur
Date			
Class			

ABSTRACT:

DATA:

Table 5-1

Component	Listed Value	Measured Value
R_1	2.7 kΩ	minist to has

Table 5-2

Mea	sured value	e of
Resistance	Voltage	Current
kΩ	V	mA
Con	puted Pow	er
P = IV	$P=I^2R$	$P = \frac{V^2}{R}$
mW	mW	mW

Table 5-3

Variable Resistance Setting (R ₂)	V ₁ (measured)	V ₂ (measured)	Power in R_2 $P_2 = \frac{V_2^2}{R_2}$
0.5 kΩ			
1.0 kΩ			
2.0 kΩ	en (Explain		
3.0 kΩ	U.TS:	SET FUE TES	TION PRO
4.0 kΩ			
5.0 kΩ			
7.5 kΩ		tor?	
10.0 kΩ			

Plot 5-1

FURTHER INVESTIGATION RESULTS:

Plot 5-2

APPLICATION PROBLEM RESULTS:

Plot 5-3

ESETA	T TTA	TION	ANTO	DESTRESS	OTTECTIONS.
E VA	LUA	MUN	AND	KEVIEW	OUESTIONS:

to exceed 0.5 W?

In the first part of the experiment, you computed the power in a resistor using three different 1. equations. Why might the results in each case be slightly different? For the circuit in Figure 5-1, assume a student accidentally set the power supply to 24 V instead 2. of 12 V. How much power would be dissipated in the resistor? __ (a) (b) Would a 1/4 W resistor be adequate for this case? _ For the circuit in Figure 5-2, what was happening to the total power in the circuit as the resistance of R_2 was increasing? Explain your answer. 4. A 1.5 k Ω resistor is found to have 22.5 V across it. (a) What is the current in the resistor? (b) What is the power dissipated in the resistor? (c) Could a ¹/₄ W resistor be used in this application? Explain your answer. What physical characteristic determines the power rating of a resistor? 5. What is the smallest value of resistance that can be used across 10 V if the power dissipated is not 6.