EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1.6 \times 10^{-19}\mathrm{C}$
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standard pressure	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molar gas volume at STP	V_{m}	22,4 dm³⋅mol ⁻¹
Standard temperature	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro's constant	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C⋅mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	<u> </u>	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ at 25 °C (298 K)					
q = It		$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta}$					
q = nF	$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta}$						

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					mic er (Z)	1	2,1	Elect negat									2 He
2	Li Be Relative atomic mass										5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	10 Ne 20		
3	11 0,9 12 1,2 Na Mg 23 24,3									Al	14 1,8 Si 28	P 31	S	Cℓ 35,5	Ar 40			
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5							44 2,2 Ru 101				· ·		50 1,8 Sn 119			53 2,5 I 127	
6	55 Cs 133	56 Ba 137,3		72 Hf 178,5	73 Ta	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt	79 Au 197	80 Hg 200,6	81 T£ 204,4	82 Pb 207	83 Bi 209	84 Po	85 At	86 Rn
7	87 Fr	88 Ra					1.00				1.0,	1200,0		120,	1200	I	I	L

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
, (0		• •				* * * * * * * * * * * * * * * * * * *	•		•		• • • • •			

TABLE 4 STANDARD ELECTRODE POTENTIALS

Half-	Half-reaction						
Li+ + e-	=	Li	-3,05				
K+ + e-	\rightleftharpoons	K	-2,93				
Cs+ + e-	\rightleftharpoons	Cs	-2,92				
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90				
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89				
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87				
Na+ + e-	\rightleftharpoons	Na	-2,71				
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37				
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	-1,66				
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18				
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83				
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76				
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74				
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44				
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40				
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28				
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25				
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14				
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13				
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04				
2H+ + 2e-	\rightleftharpoons	$H_2(g)$	0,00				
S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+0,14				
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15				
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17				
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34				
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40				
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+0,45				
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54				
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+0,68				
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77				
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79				
NO ₃ ⁻ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80				
Ag+ + e-		Ag	+0,80				
NO ₃ ⁻ + 4H ⁺ + 3e ⁻		$NO(g) + 2H_2O$	+0,96				
Br ₂ + 2e ⁻		2Br ⁻	+1,09				
Pt ²⁺ + 2e ⁻	-	Pt	+1,20				
MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21				
O ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+1,23				
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33				
$C\ell_2(g) + 2e^-$		2C <i>l</i> −	+1,36				
Au ³⁺ + 3e ⁻		Au	+1,42				
MnO ₄ - + 8H+ + 5e-	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51				
H ₂ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	2H ₂ O	+1,77				
F ₂ (g) + 2e ⁻	=	2F ⁻	+2,87				

Increasing reducing ability

Increasing oxidising ability