Exercise 1.

说明convex函数 f, g 的和 f + g 也是convex的。

解答:

对于函数 f 和 g,根据凸函数定义有

$$f((1 - \alpha x) + \alpha y) \le (1 - \alpha)f(x) + \alpha f(y)$$

$$g((1 - \alpha x) + \alpha y) \le (1 - \alpha)g(x) + \alpha g(y)$$

设 h = f + g,则联合上面二式得

$$h((1 - \alpha x) + \alpha y) = f((1 - \alpha x) + \alpha y) + g((1 - \alpha x) + \alpha y)$$

$$\leq (1 - \alpha)(f(x) + g(x)) + \alpha(f(y) + g(y))$$

证毕。

Exercise 1.补充

- (1) $H(\mathbf{p}) = -\sum_{i} p_{i} \log p_{i}$ 为convex函数,其中 \mathbf{p} 是概率向量
- (2) I(X; Y),其中 X 的分布为 $P_X(x)$,X 到 Y 的转移概率矩阵 为 $P_{Y|X}(y|x)$ 。若固定转移概率矩阵,则 I(X; Y) 是 P_X 的concave函数;固定 P_X ,则 I(X; Y) 是 $P_{Y|X}$ 的convex函数。

Exercise 2.

设一个二元信源的符号集为 $\{0,1\}$,有两个概率分布 p 和 q,并且 p(0) = 1 - r, p(1) = r, q(0) = 1 - s, q(1) = s, 求 D(p||q) 和 D(q||p),并分别求当 r = s 和 r = 2s = 1/2 时两种相对熵的值。

解答:

根据相对熵得定义有:

$$D(p||q) = (1-r)\log\frac{1-r}{1-s} + r\log\frac{r}{s}$$

和

$$D(q||p) = (1-s)\log\frac{1-s}{1-r} + s\log\frac{s}{r}$$

当
$$r = s$$
时,有 $D(p||q) = D(q||p) = 0$;

当
$$r = 2s = 1/2$$
时,有

$$D(p//q) = (1 - 1/2) \log \frac{1 - 1/2}{1 - 1/4} + (1/2) \log \frac{1/2}{1/4} = 1 - (\log 3)/2 = 0.2075 \text{bit}$$

$$D(q//p) = (1 - 1/4) \log \frac{1 - 1/4}{1 - 1/2} + (1/4) \log \frac{1/4}{1/2} = \frac{3}{4} \log 3 - 1 = 0.1887 \text{bit}$$

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise 3.[田宝玉(2008)]

某城市天气情况与气象预报分别看成包含 $\{ \pi, \Xi \pi \}$ 的随机变量集合X和Y,且X与Y的联合概率为: $P(\pi,\pi)=1/8$, $P(\pi,\Xi \pi)=1/16$, $P(\Xi \pi,\pi)=3/16$, $P(\Xi \pi,\Xi \pi)=10/16$ 。求:

- (1)气象预报的准确率;
- (2)气象预报所提供的关于天气情况的信息量 I(X; Y);
- (3)如果天气预报总是预报"无雨",求此时气象预报的准确率以及气象预报所提供的关于天气情况的信息量 I(X;Y);
- (4)以上两种情况相比,哪种情况天气预报准确率高?从信息论的观点看,哪种情况下的天气预报有意义?

解答:

令有雨 \rightarrow 1,无雨 \rightarrow 0; X 为天气情况,Y 为气象预报,已知条件如 表

		Y		
p(x,y)		0	1	
X	0	10/16	3/16	$P_X(0) = 13/16$
	1	1/16	1/8	$P_X(1) = 3/16$
		$P_Y(0) = 11/16$	$P_Y(1) = 5/16$	

(1) 气象预报的准确率为

$$P = p(00) + p(11) = 10/16 + 1/8 = 3/4$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$= H(\frac{13}{16}, \frac{13}{16}) + H(\frac{11}{16}, \frac{5}{16}) - H(\frac{10}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{8}) = 0.09$$
比特/符号

(3)气象预报的准确率为

$$P(x=0)=\frac{13}{16}$$

此时,联合概率如表

		Y		
p(x,y)		0	1	
X	0	13/16	0	
^	1	3/16	0	
		$P_{Y}(0) = 1$	$P_Y(1)=0$	

$$I(X;Y) = H(X) + H(Y) - H(XY) = H(\frac{13}{16}, \frac{3}{16}) + H(1,0) - H(\frac{13}{16}, \frac{3}{16}) = 0$$

(4) 第二种情况天气预报准确率高。但从信息论观点来看,第一种情况下的天气预报有意义。因为在第二种情况下,平均互信息为 0,说明由天气预报不能得到天气情况的任何信息,故无意义。

Exercise 4.[王育民(2013)]

随机掷 3 颗骰子,以 X 表示第一颗骰子抛掷的结果,以 Y 表示第一和第二颗骰子抛掷的点数之和,以 Z 表示 3 颗骰子的点数之和。试 求 I(Y;Z)、I(X;Z)、I(X,Y;Z)、I(Y;Z|X)和I(X;Z|Y)。

解答: 设第一、第二和第三颗骰子得点数分别为 X_1 , X_2 和 X_3 。由题意得 $X = X_1$, $Y = X_1 + X_2$, $Z = X_1 + X_2 + X_3$ 。其中,通过分类的方法计算:

$$H(X) = H(X_1) = H(X_2) = H(X_3) = \log 6 = 2.585$$
 bit $H(Y) = H(X_1 + X_2) = 3.2744$ bit $H(Z) = H(X_1 + X_2 + X_3) = 3.5993$ bit

因此,可求出各条件熵:

$$H(Z|Y) = H(X_3) = 2.585$$
 bit
 $H(Z|X) = H(X_2 + X_3) = H(X_1 + X_2) = 3.2744$ bit
 $H(X|Y) = H(X) + H(Y|X) - H(Y)$
 $= H(X_1) + H(X_2) - H(Y) = 1.8955$ bit
 $H(Z|X,Y) = H(Z|Y) = H(X_3) = 2.585$ bit
 $H(X,Z|Y) = H(X|Y) + H(Z|X,Y) = 4.4805$ bit

接下来计算互信息

$$I(Y; Z) = H(Z) - H(Z|Y) = H(Z) - H(X_3) = 1.0143$$
 bit $I(X; Z) = H(Z) - H(Z|X) = 0.3249$ bit $I(X, Y; Z) = H(Z) - H(Z|X, Y) = 1.0143$ bit $I(Y; Z|X) = H(Z|X) - H(Z|X, Y) = 0.6894$ bit $I(X; Z|Y) = H(Z|Y) - H(Z|X, Y) = 0$