K-Means Clustering and Gaussian Mixture Model

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the clustering task and the K-means algorithm
 - Know what the unsupervised learning is
 - Understand the K-means iterative process
 - Know the limitation of the K-means algorithm
- Understand the Gaussian mixture model
 - Know the multinomial distribution and the multivariate Gaussian distribution
 - Know why mixture models are useful
 - Understand how the parameter updates are derived from the Gaussian mixture model
- Understand the EM algorithm
 - Know the fundamentals of the EM algorithm
 - Know how to derive the EM updates of a model

K-MEANS ALGORITHM

Expectation and Maximization

•
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

- Expectation
 - Expectation of the log-likelihood given the parameters
 - Assign the data points to the nearest centroid
- Maximization
 - Maximization of the parameters with respect to the log-likelihood
 - Update the centroid positions given the assignments
- \bullet r_{nk}
 - $r_{nk} = \{0,1\}$
 - Discrete variable
 - Logical choice: the nearest centroid μ_k for a data point of x_n
- μ_k

•
$$\frac{dJ}{d\mu_k} = \frac{d}{d\mu_k} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 = \frac{d}{d\mu_k} \sum_{n=1}^{N} r_{nk} ||x_n - \mu_k||^2 = \sum_{n=1}^{N} -2r_{nk}(x_n - \mu_k) = -2(-\sum_{n=1}^{N} r_{nk}\mu_k + \sum_{n=1}^{N} r_{nk}x_n) = 0$$

•
$$\mu_k = \frac{\sum_{n=1}^{N} r_{nk} x_n}{\sum_{n=1}^{N} r_{nk}}$$

Progress of K-Means Algorithm

EM iterations to

KAIST

- Optimize the assignments with respect to the sum of distances
- Optimize the parameters with respect to the sum of distances

Properties of K-Means Algorithm

- # of clusters is uncertain
- Initial location of centroids
 - Some initial locations might not result in the reasonable results
- Limitation of distance metrics
 - Euclidean distance is very limited knowledge of information
- Hard clustering
 - Hard assignment of data points to clusters
 - $r_{nk} = \{0,1\}$
 - This can be the smoothly distributed probability
 - Any alternatives?
 - Soft clustering

