

Background: Thermoelectric generators and view factors

Figure of merit for TE materials ($Z\bar{T}$):

 α : Seebeck coefficient

 σ_{el} : electrical conductivity

K: thermal conductivity

 \bar{T} : mean temperature

$$Z\bar{T} = \frac{\alpha^2 \sigma_{el}}{K} \bar{T}$$

Radiation Heat Transfer Rate (Q_i) :

ε: material emissivity

 T_i : temperature of emitter

 T_i : temperature of receiver

Radiation view factor (F_{ij}) :

Fig 1: Single-junction thermoelectric generator (TEG) design.

Discretize

Domain

The

$$F_{ij} = \frac{1}{A_i} \int \int \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

$$F_{ij} = \frac{1}{A_i} \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

Methodology: GPU-accelerated programming

- Rays cast from every dA_i to every dA_j
- Shadow effect handled via Möller-Trumbore (MT) ray-triangle intersection algorithm

$$F_{ij} = \frac{1}{A_i} \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

Results: Computational runtimes and trends

Fig 5: Multi-junction TEG design.

Explored effect of junction number (N) on F_{ii}

- Asymptotic behavior observed for constant design parameters
- Runtime decrements with GPU-accelerated programming

<u>Future Work</u>

- Multi-GPU acceleration
- Efficient selfintersection algorithms
- New applications

Acknowledgements

Computational resources provided by the Center for Research Computing (CRC) at the University of Pittsburgh

Fig 6: View factors of a TEG design with varying junction number and b) CPU vs. GPU runtimes for varying model fidelity

<u>Author Contact Info</u> Email: <u>ajh172@pitt.edu</u>