

Visual Analysis of Set Relations in a Graph

Panpan Xu¹, Fan Du², Nan Cao³, Conglei Shi¹, Hong Zhou⁴, Huamin Qu¹

¹ Hong Kong University of Science and Technology, 2 Zhejiang University,
 3 IBM T. J. Watson Research Center, 4 Shenzhen University

2013.06.19

Motivation: data model and research questions

Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Motivation: data model and research questions

Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Collaboration network

Research topics

- tree
- graph
 - hierarchical data
- o pipeline
 - architecture

Data

Collaboration network

Research topics

Data

Do "birds of a feather flock together"?

Do "birds of a feather flock together"?

How proximity of nodes correlates to set relation?

Do "birds of a feather flock together"?

How proximity of nodes correlates to set relation?

Set relation over item clusters

Distribution and implicit overlap of the sets

complementary perspectives

Homophily effect

Do "birds of a feather flock together"?

How proximity of nodes correlates to set relation?

Set relation over item clusters

Distribution and implicit overlap of the sets

Motivation: data model and research questions

Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Set relation over item clusters

Glyph design at graph nodes correlates set relation and node distance

Set relation over item clusters

Homophily effect Glyph design at graph nodes correlates: node distance

Set relation over item clusters

Homophily effect

Glyph design at graph nodes correlates s

node distance

Set relation over item clusters

Contour map + visual link design

Layout algorithm trades precise location of the items for visual simplicity (inspired by metro map drawing, storyline visualization)

Homophily effect Glyph design at graph nodes correlates s

node distance

Set relation over item clusters

Contour map + visual link design
Layout algorithm trades precise local
simplicity (inspired by metro map design)

Motivation: data model and research questions Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

PivotPath [Dörk et al. 12]

Facetatlas [Cao et al. 10]

Previous works - graph visualization

PivotPath [Dörk et al. 12]

Facetatlas [Cao et al. 10]

GraphDice [Bezerianos et al. 10]

Previous works - graph visualization

Untangling Euler diagrams [Riche and Dwyer, 10]

Previous works - set visualization

Untangling Euler diagrams [Riche and Dwyer, 10]

Bubble Set [Collins et al., 09]

Line Set [Alper et al., 11]

Kelp Diagram [Dinkla et al., 12]

Previous works - set visualization

Motivation: data model and research questions Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Correlate set overlap and node distance

Scatterplot

Correlate set overlap and node distance

more

Shade

amount of set overlap

Height

the number of nodes at same distances and with similar amount of overlap

Scatterplot Stacked Barchart

Correlate set overlap and node distance

Scatterplot Stacked Barchart Stacked Graph

Hue: size of the set compared to its

neighbors

community with locally distributed interests

Draw glyphs for each node on a graph

Hue: size of the set compared to its neighbors

MDS: similar items form visual clusters

MDS: similar items form visual clusters

Contour map with KDE: abstracted display of item clusters

MDS: similar items form visual clusters

graph

hierarchical data

• pipeline

architecture

Layout Items Generate contour map Form backbone spanning tree Route visual links

MDS: similar items form visual clusters

Form MST for items in selected sets

Layout Items Generate contour map Form backbone spanning tree Route visual links

Form MST for items in selected sets

Fold small branches on MST

Form MST for items in selected sets

Fold small branches on MST

Straighten branches

Layout Generate contour map

Form backbone spanning tree

Route visual links

Form MST for items in selected sets

Fold small branches on MST

Straighten branches

Layout Items

Generate contour map

Form backbone spanning tree

Route visual links

Draw visual link for individual sets

Layout Generate contour map Form backbone spanning tree Route visual links

the original MST and the simplified backbone

the visual links for three sets

Motivation: data model and research questions

Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Infovis proceedings (95-02)

Titles, Authors Abstracts, References

Marti Hearst

Peter Piroll

Bibliographic data

Last.fm
Artist similarity
User friendship
Listening history

Social site data

Last.fm
Artist similarity
User friendship
Listening history

Social site data

Glyph design for homophily analysis

Set visualization over item clusters and layout algorithm

Case studies

Summary

Motivation: data model and research questions

Approaches

Previous works

Technical details

Case studies

Limitation and future works

Outline

Use different graph layout, aggregate the nodes

Use different graph layout, aggregate the nodes

Scalability of set visualization

Improve layout algorithm

Use different graph layout, aggregate the nodes

Scalability of set visualization

Improve layout algorithm

Evaluation

Compare with existing techniques (Line set, Kelp diagram)

Use different graph layout, aggregate the nodes

Scalability of set visualization

Improve layout algorithm

Evaluation

Compare with existing techniques (Line set, Kelp diagram)

Application of set visualization technique

Draw sets on word cloud, tree map, etc.

Thanks!

panpan pxu@ust.hk

Last.fm Data

Artist similarity collected through Last.fm web API User information could also be accessed

Infovis 04 publication data

Keyword similarity: through topic modeling (LDA) and co-citation

Dataset collection & processing

The Great Bear

