" AÑO DE LA RECUPERACIÓN Y CONSOLIDACIÓN DE LA ECONOMÍA PERUANA"

UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL

SISTEMAS Y COMPUTACIÓN

Docente: Ing. Fernandez Bejarano Raul Enrique

Estudiantes: Guadalupe Carbajal Emanuel Gaddiel

Código: R01068D

Ciclo: V

Sección: B1

Huancayo - Peru - Junin 2025

Base de Datos Relacional (RDBMS)

Es un tipo de base de datos que organiza la información en **tablas** formadas por filas y columnas. Las tablas pueden relacionarse entre sí mediante **claves primarias y foráneas**, lo que permite mantener la **integridad y consistencia** de los datos.

Utiliza el **lenguaje SQL** para realizar consultas, actualizaciones o eliminaciones de información.

Ejemplo: MySQL, PostgreSQL, Oracle, SQL Server.

Base de Datos No Relacional (NoSQL)

Es un modelo de base de datos que **no usa tablas** como las bases relacionales tradicionales. Está diseñado para trabajar con **datos no estructurados o semiestructurados**, y permite **esquemas flexibles** que pueden adaptarse fácilmente a los cambios en la información.

Se orienta a mejorar el **rendimiento**, **la escalabilidad y la disponibilidad**, especialmente en aplicaciones web y de Big Data.

Ejemplo: MongoDB, Cassandra, Redis, Neo4j.

Base de Datos Multimodelo

Es un tipo de base de datos que **combina varios modelos de almacenamiento** dentro de un mismo sistema, como el relacional, documental, de grafos o de columnas.

Permite manejar diferentes tipos de datos de manera **integrada y eficiente**, evitando el uso de múltiples sistemas distintos. Es ideal para proyectos que necesitan **flexibilidad y variedad de estructuras** de información.

Ejemplo: ArangoDB, OrientDB, Cosmos DB.

Cuadro Comparativo

Características	Base de Datos Relacional (RDBMS)	Base de Datos No Relacional (NoSQL)	Base de Datos Multimodelo
Estructura de datos	Datos organizados en tablas con un esquema fijo.	Datos almacenados en documentos, grafos, columnas o pares clave-valor, sin esquema rígido.	Combina varios modelos de datos en un mismo sistema (tablas, documentos, grafos, etc.).
Lenguaje de consulta	Utiliza SQL, un lenguaje estandarizado.	Usa lenguajes específicos según el tipo (JSONPath, CQL, Gremlin, etc.).	Admite SQL y otros lenguajes dependiendo del modelo usado.
Escalabilidad	Principalmente vertical (aumentar	Principalmente horizontal (añadir	Puede escalar vertical y

Consistencia e integridad	recursos en un solo servidor). Muy alta, cumple con las propiedades ACID.	más nodos o servidores). Menor consistencia, se basa en el modelo BASE (más	horizontalmente según las necesidades. Puede equilibrar entre ACID y BASE.
Rendimiento	Alto en transacciones complejas y estructuradas.	disponibilidad). Muy rápido en grandes volúmenes de datos distribuidos.	Rendimiento adaptable según el modelo y tipo de datos.
Flexibilidad del esquema	Rígido, los datos deben ajustarse a un formato definido.	Flexible, permite añadir o modificar campos sin afectar al sistema.	Muy flexible, admite diferentes estructuras de datos simultáneamente.
Ejemplos	MySQL, PostgreSQL, Oracle.	MongoDB, Cassandra, Neo4j, Redis.	ArangoDB, OrientDB, Cosmos DB.
Ventajas	Alta integridad, consistencia y soporte técnico.	Escalabilidad, flexibilidad y velocidad en lectura/escritura.	Permite trabajar con múltiples tipos de datos y modelos en un solo sistema.
Desventajas	Difícil de escalar horizontalmente y poco flexible.	Menor consistencia y falta de estándares universales.	Más compleja de administrar y configurar.
Casos de uso	Bancos, inventarios, sistemas contables y financieros.	Big Data, redes sociales, análisis de datos, IoT.	Aplicaciones que mezclan varios tipos de información (texto, imágenes, grafos, etc.).