

Prof. Matthias Beck Hauke Sprink Institut für Mathematik AG Diskrete Geometrie Arnimallee 2

15. Übung (Abgabe: 11.2.2020, 8:30)

Aufgabe 15.1

Es sei (X_1, X_2, \dots, X_n) eine Stichprobe eines Bernoulliexperiments mit Parameter p; insbesondere ist $X_1 + X_2 + \cdots + X_n$ binomialverteilt.

- a. Zeigen Sie, daß $\overline{X} := \frac{1}{n} (X_1 + X_2 + \dots + X_n)$ eine erwartungstreue Schätzfunktion für p
- b. Zeigen Sie, daß $V(\overline{X}) = \frac{p(1-p)}{n}$ ist. c. Berechnen Sie $\mathbb{E}\left(\frac{\overline{X}(1-\overline{X})}{n}\right)$ und schließen Sie hieraus, daß $\frac{\overline{X}(1-\overline{X})}{n}$ nicht eine erwartungstreue Schätzfunktion für $V(\overline{X})$ ist.

Aufgabe 15.2

Wir betrachten eine geometrische Verteilung mit (unbekanntem) Parameter p. Berechnen Sie eine Maximum-likelihood Schätzfunktion für p, falls die Stichprobe (X_1, X_2, \ldots, X_n) vorliegt. Interpretieren Sie Ihre Antwort.

Aufgabe 15.3

Angenommen, eine Zufallsvariable ist normalverteilt mit unbekanntem Erwartungswert μ und bekannter Varianz σ^2 . Wir möchten ein Konfidenzinterval für μ finden zu einem vorgegebenen Fehlerniveau a.

- a. Sei a=1%. Wie groß muß eine Stichprobe mindestens sein, daß das Konfidenzintervall eine vorgegebene Länge l hat?
- b. Welches Fehlerniveau a sollten wir für eine gegebene Stichprobenanzahl n und Konfidenzintervallänge l ansetzen?

Aufgabe 15.4

Ihre Tante hat ein Käsegeschäft und verkauft u.a. 22-Pfund-Käselaibe. Sie hat gerade eine Lieferung bekommen und eine Stichprobe von 10 Laiben genommen, mit folgendem Ergebnis für die Gewichte (in Pfund):

$$21,50$$
 $18,95$ $18,55$ $22,35$ $22,90$ $22,20$ $19,40$ $23,10$ $22,84$ $23,34$.

Unter der Annahme, daß die Gewichte normalverteilt sind, berechnen Sie ein 95%-Konfidenzintervall für den Erwartungswert.