EA721 - Princípios de Controle e Servomecanismos

10. Semestre de 2007 - 2a. Prova - Prof. Paulo Valente

RA: 035349 Nome: Rafael Attili Chiea Ass.:

Importante. Na resolução das questões a seguir, é absolutamente imprescindível que os métodos e procedimentos utilizados sejam descritos de forma clara. Use a calculadora apenas para executar operações numéricas mais complicadas. Não resolva questões na calculadora.

Q1. [2 pts] Construa o Lugar das Raízes associado à equação característica

$$1 + k \frac{s+2}{(s+1)(s^2+6s+10)} = 0$$

para $0 \le k \le \infty$. Especificamente, obtenha

- a) [1 pt] As seguintes quantidades, quando aplicáveis: número e intersecção de assíntotas, pontos de entrada e saída no eixo real e pontos de cruzamento com o eixo imaginário;
- b) [1 pt] Os ângulos de partida dos pólos e o esboço do Lugar das Raízes. Indique claramente os pontos de partida (quando k=0), de chegada (quando $k\to\infty$), e os sentidos dos ramos do Lugar das Raízes.

Q2. [2 pts] Considere o sistema de controle com realimentação unitária da Figura 1 com

$$P(s) = \frac{3}{s(s+2)^2}.$$

- a) [1 pt] Projete um compensador atraso de forma a obter erro de regime para entrada rampa unitária igual a 0.2;
- b) [1 pt] Esboce o Lugar das Raízes do sistema compensado. (Ao indicar o zero e o pólo do compensador, não é necessário manter a escala no eixo real do plano s. Um esboço qualitativo é suficiente.)

Figura 1

Q3. [2 pts] Considere o sistema de controle com realimentação unitária da Figura 1 com

$$P(s) = \frac{4}{s(s+2)}.$$

- a) [1 pt] Projete um compensador avanço de forma a obter pólos complexos conjulgados dominantes em $-2 \pm j2\sqrt{3}$. Faça T=0.25 s;
- b) [1 pt] Esboce o Lugar das Raízes do sistema compensado.

As questões $\mathbf{Q4}$ e $\mathbf{Q5}$ a seguir dizem respeito ao sistema de controle com realimentação unitária da Figura 1. A resposta em freqüência da função de transferência P(s) é apresentada na Tabela 1. Adote sempre os valores da tabela mais próximos (em valorabsoluto) aos valores teóricos procurados.

- Q4. [2 pts] Determine, deixando perfeitamente claros os procedimentos adotados,
- a) [1 pt] O erro de regime do sistema para a entrada degrau unitário;
- b) [1 pt] O ganho k_c de um compensador proporcional que associado em série com P(s) fornece MF = 40° .
- Q5. [2 pts.] Projete compensadores de tal forma que a margem de fase do sistema compensado seja de 40° com margem adicional de 5° , mantendo o ganho estático apresentado pelo sistema não-compensado. Os compensadores a serem projetados devem ser do tipo
- a) [1 pt] Avanço;
- b) [1 pt] Atraso.

Tabela 1 – Resposta em Freqüência de P(s).

ω (rad/s)	$G(j\omega) \mid (dB)$	$\angle G(j\omega)$ (graus)
0.0100	13.9788	-0.9740
0.0200	13.9772	-1.9479
0.0253	13.9758	-2.4658
0.0321	13.9736	-3.1214
0.0406	13.9702	-3.9510
0.0514	13.9646	-5.0008
0.0650	13.9557	-6.3286
0.0823	13.9415	-8.0073
0.1000	13.9236	-9.7188
0.1042	13.9188	-10.1279
0.1320	13.8825	-12.8031
0.1670	13.8248	-16.1713
0.2115	13.7333	-20.3984
0.2677	13.5892	-25.6769
0.3389	13.3643	-32.2187
0.4291	13.0182	-40.2357
0.5432	12.4965	-49.9049
0.6877	11.7311	-61.3198
0.8706	10.6463	-74.4403
1.0000	9.8297	-82.8750
1.1021	9.1688	-89.0674
1.3952	7.2384	-104.8605
1.7663	4.8159	-121.3887
2.2361	1.8842	-138.1897
2.8308	-1.5530	-154.8187
3.5837	-5.4768	-170.8741
4.5368	-9.8560	-185.9997
5.7435	-14.6477	-199.8829
7.2711	-19.7963	-212.2750
9.2050	-25.2360	-223.0313
10.0000	-27.2032	-226.4144
11.6532	-30.8991	-232.1340
14.7525	-36.7239	-239.6789
18.6763	-42.6606	-245.8350
23.6435	-48.6721	-250.8023
29.9320	-54.7324	-254.7804
37.8929	-60.8241	-257.9502
47.9712	-66.9358	-260.4680
60.7300	-73.0600	-262.4638
76.8823	-79.1922	-264.0437
97.3305	-85.3293	-265.2934
100.0000	-86.0336	-265.4189

Erros de Regime

Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 0.$$

- 1. Magnitude e fase: |kG(s)| = 1, $\angle G(s) = 180^{\circ} \times r$, $r = \pm 1, \pm 3, \dots$
- 2. Assíntotas: $\theta = \frac{180^o \times r}{n-m}, \; r = \pm 1, \pm 3, \ldots$
- 3. Ângulos de partida e chegada: satisfazem

$$\sum_{i} \phi_{z_i} - \sum_{j} \phi_{p_j} = 180^o \times r, \ r = \pm 1, \pm 3, \dots$$

4. Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0$$

5. Pontos de cruzamento com o eixo imaginário: Critério de Routh-Hurwitz

$$\begin{split} \textbf{Compensação Avanço:} \ &C(s) = k_c \alpha \frac{Ts+1}{\alpha Ts+1}, \ T>0, \ 0<\alpha<1 \\ & \sin \phi_m = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad 20 \log \left| \frac{jT\omega+1}{j\alpha T\omega+1} \right|_{\omega=\omega_m} = 20 \log \frac{1}{\sqrt{\alpha}}. \end{split}$$

Compensação Atraso:
$$C(s)=k_c\beta\frac{Ts+1}{\beta Ts+1},\ T>0,\ \beta>1$$

$$20\log\left|\frac{jT\omega+1}{j\beta T\omega+1}\right|=-20\log\beta\qquad(\omega>>1/T).$$

7,0

Rafaed Atthi Unea SA: 035349

EA721 - 2º prova

1.

or)

7,0

11 2.0

405

4/20

5)40

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$

.

¿+ · :

 $-\frac{1}{4} \frac{1}{2} - \frac{3}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{1}{4} + \frac{1}{4} \frac{1}{2} \frac{1}{2}$ Arguin de 12 ar a graffer

 $\frac{1}{2}(s) = \frac{(s \ominus s)}{2}$

$$(4. a) 20 6 = 15,77:6$$

$$(e = 1) = 1 \Rightarrow 2 = 5.16:7$$

((s) = 1,0) (s = 1,0)