# X-RAY GENERATION

# LIST OF DOCUMENTATION IN THIS BINDER:

- **⊗** SUBSYSTEM MANUAL OPTIMUS
- O UNIT MANUAL Surge Arrester WN
- O UNIT MANUAL Extension set for an additional tube assembly WG/GWB
- O UNIT MANUAL 26 V DC / 230 V AC Adapter
- O UNIT MANUAL Handswitch for OPTIMUS
- O UNIT MANUAL Patient data organizer PDO

Note: ⊗ indicates document present

### LIST OF ALL BINDERS FOR X-RAY GENERATION:

SUBSYSTEM MANUAL OPTIMUS (this binder)

# **PHILIPS**

Philips Medical Systems Development and Manufacturing Centre INTRODUCTION AND TECHNICAL DATA

**SERVICE MANUAL** 742 **SUBSYSTEM** 

INSTALLATION

**OPTIMUS 50/65/80** 

9890 000 02012

**FAULT FINDING** 

REPLACEMENT



**PROGRAMMINGS** 

**ADJUSTMENTS** 

**ACCEPTANCE** 

SERVICE INFORMATION

CAN-controlled X-ray generator of the converter type

**PARTS LIST** 

**DMC Hamburg** 

Printed in Hamburg Federal Republic of Germany

© 1996 Philips Medizin Systeme ALL RIGHTS RESERVED

SCHEMATIC DRAWINGS

# **SERVICE MANUAL – SUBSYSTEM**

### **OPTIMUS 50/65/80**

Type No:

9890 000 02012

Techn. No: Basis 4512 104 72003/4

Release: 2

In case there are any questions concerning this manual, please send this LOPAD via fax to 49/(0)40/5078 2481

File: OPTIMUS\_50/65/80\_R/D/L\_e\_SS

## List of pages and drawings (LOPAD)

Manual Order No: 4512 103 58276

Author: B. Freytag

| 0.1 | (e/96.2) | <b>A</b> 4 | (Rosa Karton) |
|-----|----------|------------|---------------|
| 1   | (e/96.2) |            |               |
| 3.1 | (e/96.2) |            |               |
| 3.2 | (e/96.2) |            |               |

### PRB-XRD products

Module code number: 4512 982 00751 (b/96.0)

| <b>2–0.1 0.2</b><br>2–1 44 | (d/96.1)<br>(d/96.1) |            |
|----------------------------|----------------------|------------|
| 2Z1                        | (a/96.0)             | АЗ         |
| 3-0.1                      | (b/96.1)             | E          |
| 3–1 60                     | (b/96.1)             | Ε          |
| 3Z-1                       | (95.0)               | <b>A</b> 4 |
| 4-0.1                      | (96.2)               | E          |
| 4–1 2                      | (96.2)               | E          |
| 5Z-1                       | (b/96.2)             | A3         |
| 5Z-2                       | (b/96.1)             | АЗ         |
| 6-0.1                      | (96.1)               | E          |

(96.1) E

| 7-0.1  | (96.0) E       |        |
|--------|----------------|--------|
| 7–1 3  | (96.0) E       |        |
| 8–1    | (95.0)         |        |
| 8–2    | (95.0)         |        |
| PList  | 9890 000 02011 | (96.2) |
| P-List | 9890 000 02351 | (96.0) |
| P-List | 9890 000 02361 | (96.0) |
| P-List | 9890 000 02371 | (96.1) |
| P-List | 9890 000 02031 | (96.0) |
| P-List | 9890 000 02211 | (96.0) |
| P-List | 9890 000 02381 | (96.0) |
| P-List | 9890 000 02311 | (96.0) |
| P-List | 9890 000 02401 | (96.1) |
|        |                |        |

6-1 ... 6

| Z0-1                                                                                                                                                                | (b/96.0)                                                                                                                                                                                   |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Z1-1.1                                                                                                                                                              | (96.0)                                                                                                                                                                                     | A3                                       |
| Z1-1.2                                                                                                                                                              | (96.0)                                                                                                                                                                                     | A3                                       |
| Z1-2.1                                                                                                                                                              | (b/96.1)                                                                                                                                                                                   | A3                                       |
| Z1-2.2                                                                                                                                                              | (b/96.1)                                                                                                                                                                                   | A3                                       |
| Z1-2.3                                                                                                                                                              | (a/95.0)                                                                                                                                                                                   | A3                                       |
| Z1-3.2                                                                                                                                                              | (b/96.1)                                                                                                                                                                                   | A3                                       |
| Z1-3.2                                                                                                                                                              | (c/96.0)                                                                                                                                                                                   | A3                                       |
| Z1-3.3                                                                                                                                                              | (a/96.0)                                                                                                                                                                                   | A3                                       |
| Z1-4.1                                                                                                                                                              | (96.0)                                                                                                                                                                                     | A3                                       |
| Z1-4.2                                                                                                                                                              | (96.0)                                                                                                                                                                                     | A3                                       |
| Z1-5.1                                                                                                                                                              | (a/96.0)                                                                                                                                                                                   | A3                                       |
| Z1-6                                                                                                                                                                | (a/96.3)                                                                                                                                                                                   | A3                                       |
| Z1-11.1                                                                                                                                                             | (96.0)                                                                                                                                                                                     | A3                                       |
| Z1-11.2                                                                                                                                                             | (94.0)                                                                                                                                                                                     | A4                                       |
| Z1-12                                                                                                                                                               | (a/96.0)                                                                                                                                                                                   | A3                                       |
| Z1-13.2                                                                                                                                                             | (a/96.1)                                                                                                                                                                                   | A3                                       |
| Z1-14.1                                                                                                                                                             | (a/96.0)                                                                                                                                                                                   | A3                                       |
| Z1-14.2                                                                                                                                                             | (b/95.0)                                                                                                                                                                                   | A3                                       |
| Z1-15.1                                                                                                                                                             | (96.0)                                                                                                                                                                                     | A3                                       |
|                                                                                                                                                                     |                                                                                                                                                                                            |                                          |
| M                                                                                                                                                                   |                                                                                                                                                                                            |                                          |
| Z0-2                                                                                                                                                                | (b/96.0)                                                                                                                                                                                   |                                          |
| Z02<br>Z21.0                                                                                                                                                        | (b/96.0)<br>(94.1)                                                                                                                                                                         | A4                                       |
|                                                                                                                                                                     | •                                                                                                                                                                                          | A4<br>A3                                 |
| Z2-1.0                                                                                                                                                              | (94.1)                                                                                                                                                                                     |                                          |
| Z2-1.0<br>Z2-1.1                                                                                                                                                    | (94.1)<br>(b/96.0)                                                                                                                                                                         | A3                                       |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2                                                                                                                                          | (94.1)<br>(b/96.0)<br>(b/96.0)                                                                                                                                                             | A3<br>A3                                 |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3                                                                                                                                | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)                                                                                                                                                 | A3<br>A3<br>A3                           |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1                                                                                                                      | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)                                                                                                                                     | A3<br>A3<br>A3                           |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2                                                                                                            | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)                                                                                                                         | A3<br>A3<br>A3<br>A3                     |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3                                                                                                  | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(94.0)                                                                                                               | A3<br>A3<br>A3<br>A3<br>A3               |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3                                                                                          | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(94.0)<br>(b/96.1)                                                                                                   | A3<br>A3<br>A3<br>A3<br>A3<br>A3         |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3                                                                                  | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.0)<br>(a/96.2)                                                                         | A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3   |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3                                                    | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.2)<br>(a/96.2)                                                                         | A3         |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12                                   | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.0)<br>(a/96.2)<br>(95.0)<br>(a/96.0)                                                   | A3      |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12<br>Z2-13                                  | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.0)<br>(a/96.2)<br>(95.0)<br>(a/96.0)<br>(b/96.0)                                       | A3   |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12<br>Z2-13<br>Z2-14.1                       | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.0)<br>(a/96.2)<br>(95.0)<br>(a/96.0)<br>(b/96.0)<br>(a/96.0)                           | A3 A |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12<br>Z2-13<br>Z2-14.1<br>Z2-14.2            | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.2)<br>(g/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)             | A3 A |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12<br>Z2-13<br>Z2-14.1<br>Z2-14.2<br>Z2-14.3 | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0) | A3 A |
| Z2-1.0<br>Z2-1.1<br>Z2-1.2<br>Z2-1.3<br>Z2-2.1<br>Z2-2.2<br>Z2-2.3<br>Z2-3<br>Z2-3<br>Z2-5.1<br>Z2-5.2<br>Z2-5.3<br>Z2-12<br>Z2-13<br>Z2-14.1<br>Z2-14.2            | (94.1)<br>(b/96.0)<br>(b/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(b/96.1)<br>(c/96.0)<br>(a/96.2)<br>(g/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)<br>(a/96.0)             | A3 A |

# (nur für Fabrik-Auslieferung)

Service software No: 4512 152 04755

XRG\_SCOPE 1

(96.0) E

### LIST OF PAGES AND DRAWINGS

Module code number: 4512 982 00751

| 1<br>2 – 8 | (b/96.0)<br>(b/96.0) | ·     |        |          |                        | Author: | B. Freytag<br>GSI22 |
|------------|----------------------|-------|--------|----------|------------------------|---------|---------------------|
| Z-1        | (94.0)               | A2/A4 | Z-7.1  | (b/96.0) | A2/A3                  |         |                     |
| Z-2        | (a/96.0)             | A4    | Z-7.2  | (b/96.0) | A2/A3                  |         |                     |
| Z-3        | (94.0)               | A4    | Z-7.3  | (b/96.0) | A2/A3                  |         |                     |
| Z-5        | (a/96.0)             | A4    | Z-7.4  | (b/96.0) | A2/A3                  |         |                     |
|            |                      |       | Z-20.1 | (95.0)   | A1/A3 (4512 982 00101) |         |                     |

OPTIMUS PLANNING DATA

| TE | XT:                   | DRAWINGS:                                      |
|----|-----------------------|------------------------------------------------|
| 1. | Product information 1 | Mechanical dimensions Z-1                      |
| 2. | Compatibility 2       | Overlayer for room layout Z-2                  |
| 3. | Mechanical data 3     | Connection of generator Z–3                    |
| 4. | Environmental data 3  | Operating panel Z-5                            |
| 5. | Electrical data4      | Connection diagram Z-7.1                       |
| 6. | Tools 7               | Connection diagram Z-7.2                       |
| 7. | Traceable items 7     | Connection diagram Z-7.3                       |
| 8. | Preparation7          | Earthing diagram Z-7.4                         |
| 9. | Planned maintenance 8 | Legend for earthing and cabling diagram Z-20.1 |

### 1. Product information

The OPTIMUS family of generators for radiography is based on computer-controlled converter technology. The converter operates in the non-audible frequency range.

Applicational options are essentially achieved by releasing software modules using customized PAL ICs.

Control between the internal function units (FUs) and the external online equipment takes place via a CAN bus.

Safety-relevant signals are transferred directly on the so-called signal bus.

Units without any CAN interface are operated via the "Adapter 4 auxiliary units" option.

### 1.1. Applications

- Radiography
- Tomography

PRB - XRD products

| 1.2. Options | 1 | .2 |  | 1 | 0 | р | ti | 0 | n | S |
|--------------|---|----|--|---|---|---|----|---|---|---|
|--------------|---|----|--|---|---|---|----|---|---|---|

|                                                                                                                                                             |                      | (                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|
| <ul> <li>Low-speed rotor control</li> </ul>                                                                                                                 | 9890 000 02201/2     | ,                                |
| <ul> <li>High-speed rotor control</li> </ul>                                                                                                                | 9890 000 02211/2     |                                  |
| <ul> <li>Automatic input of tomo times</li> </ul>                                                                                                           | 9890 000 02221       |                                  |
| <ul><li>Tomo density control (TDC)</li></ul>                                                                                                                | 9890 000 02231 *)    |                                  |
| - VARIO FOCUS                                                                                                                                               | 9890 000 02271       |                                  |
| <ul> <li>Mains transformer 400 480 V, 50/60 Hz,<br/>also for 400 V mains supply without neutral lead N<br/>with taps for 400 / 440 / 460 / 480 V</li> </ul> | 9890 000 02301       |                                  |
| <ul> <li>Adapter for 4 aux. units WA</li> </ul>                                                                                                             | 9890 000 02311       |                                  |
| - Option rack                                                                                                                                               | 9890 000 02321       |                                  |
| <ul> <li>Extension set for one additional tube</li> </ul>                                                                                                   | 9890 000 02341       |                                  |
| <ul> <li>Tube extension WG</li> </ul>                                                                                                                       | 9890 000 02381       |                                  |
| <ul> <li>Operating panel</li> </ul>                                                                                                                         | 9890 000 02401       |                                  |
| <ul> <li>Operating desk data cable, 10 m, 20 m, 30 m</li> </ul>                                                                                             | 9890 000 02411/21/31 | (                                |
| <ul> <li>Stand for operating panel</li> </ul>                                                                                                               | 9890 000 02441       | ,                                |
| <ul> <li>Wall mounting of operating panel</li> </ul>                                                                                                        | 9890 000 02451       |                                  |
| - 26 V DC / 230 V AC Adapter                                                                                                                                | 9890 000 02461       |                                  |
| <ul> <li>Surge Arrester WN</li> </ul>                                                                                                                       | 9890 000 02471       |                                  |
| <ul> <li>Handswitch for OPTIMUS</li> </ul>                                                                                                                  | 9890 000 02491       |                                  |
| <ul> <li>Patient data organizer (PDO)</li> </ul>                                                                                                            | 9890 000 02551 *)    |                                  |
| <ul> <li>Area dose calculator</li> </ul>                                                                                                                    | 9890 000 02561 *)    |                                  |
| - APR extension                                                                                                                                             | 9890 000 02571 *)    |                                  |
| - Decade cable set                                                                                                                                          | 9803 704 20102 1     | 4 x 4 m, top decade → AMP decade |
| <ul> <li>Mains transformer 190 390 V, 50/60 Hz</li> <li>with taps for 190 / 200 / 207 / 220 / 230 / 240 / 250 / 343 / 380 / 390 V</li> </ul>                | 9803 720 81002 n     | nax. 50 kW!                      |

<sup>\*)</sup> These options are possible only in conjunction with the generator firmware Release 2.

# 2. Compatibility

# 2.1. Generator components

| of the X-ray generate                 | or family OPTIMUS | 9890 000 02001   |
|---------------------------------------|-------------------|------------------|
| - OPTIMUS 50/65/80                    | basis             | 9890 000 02011/2 |
| <ul> <li>H.V. transformer,</li> </ul> | 1 tube, 50 kW     | 9890 000 02031   |
| - H.V. transformer,                   | 2 tubes, 50 kW    | 9890 000 02041   |
| - H.V. transformer,                   | 1 tube, 65/80 kW  | 9890 000 02051   |
| <ul> <li>H.V. transformer,</li> </ul> | 2 tubes, 65/80 kW | 9890 000 02061   |
| - 50 kW extension                     |                   | 9890 000 02351   |
| - 65 kW extension                     |                   | 9890 000 02361   |
| - 80 kW extension                     |                   | 9890 000 02391   |
| <ul><li>Converter</li></ul>           |                   | 9890 000 02371   |
| - Firmware, Rel. 1 / F                | Rel. 2            | 9890 000 02502/3 |

#### 2.2. Tubes

### Recommended standard tubes:

RO 17 50 SRO 25 50 SRO 33 100

### Further compatible tubes:

RO 12 30

SRO 20 50

SRO 22 50

**RO 30** 

SRO 0950

SRO 32 100

**RO 30 50 RE** 

SRO 20 55

SRO 13 30

### Compatible tube housings:

**ROT 350** 

**ROT 351** 

Current information on further tubes to be connected is available at the service center Hamburg.

### 3. Mechanical data

Installation dimensions and weights: see drawing Z-1

### Transport data:

|                      |                                    | Weights (kg) |            | ſ      | cm)   |        |
|----------------------|------------------------------------|--------------|------------|--------|-------|--------|
|                      |                                    | net          | gross      | length | width | height |
| Case 1:<br>Contents: | generator cabinet, operating panel | 178          | 226        | 210    | 82    | 84     |
| Case 2:              | 1-tube version 2-tube version      | 73<br>88     | 100<br>115 | 77     | 67    | 80     |
| Contents:            | H.V. generator                     |              |            |        |       |        |

### 4. **Environmental data**

according to PMS standard UXW 13600

#### 4.1. **Climatic conditions**

Ambient temperature:

10 ... 40 °C

Relative humidity:

15 ... 90 %, no condensation

Relative atmospheric pressure:

70 ... 110 kPa

### 5. Electrical data

### 5.1. Power data and mains conditions

|               | 50 kW                                                                            | 65 kW                 | 80 kW                   |
|---------------|----------------------------------------------------------------------------------|-----------------------|-------------------------|
| Power data:   |                                                                                  |                       | 1                       |
| Mains voltage | $3 \times 400  \text{V}  \pm$                                                    | 10% (≏ 380 V –59      | %, 415 V +6%)           |
|               | $3 \times 400/440/460 \text{ V} \pm 10$<br>$3 \times 480 \text{ V} - 10\%, +6\%$ | > Willi lillei liai   | transformer (option)    |
|               | 3 × 190343 V ± 10% w                                                             | ith external transfor | mer, max. 50 kW (option |

49 ... 61 Hz Mains frequency Max. mains current 145 A 190 A 230 A at 400 V 180 A 215 A 135 A at 440 V 170 A 210 A 125 A at 460 V at 480 V 120 A 160 A 205 A 300 A at 190 V 50 A 35 A Fuse protection (slow-blow) 100 A at ≤ 240 V Mains resistance at 400 V  $\leq$  300 m $\Omega$  $\leq$  200 m $\Omega$  $\leq$  240 m $\Omega$  $\leq 350 \, \text{m}\Omega$ at 440/460 V  $\leq$  400 m $\Omega$  $\leq$  300 m $\Omega$ at 480 V  $\leq$  240 m $\Omega$  $\leq$  180 m $\Omega$ at 480 V, valid for DOD only ≤ 300 mΩ

# 5.2. Operating data

Unit supply

Max. output power

| 3                 |             |              |            |
|-------------------|-------------|--------------|------------|
|                   | 50 kW 65 kW |              | 80 kW      |
| Tube current      | 10 650 mA   | 10 900 mA    | 10 1100 mA |
| Tube voltage      | 40 150      | kV in 1 kV o | or % steps |
| ma A a manadis at |             | 0.5 850 mAe  |            |

50 kW

230 V / 400 V, max. 5 A

65 kW

80 kW

mAs product  $0.5 \dots 850 \text{ mAs}$ Exposure time  $1 \text{ ms} \dots 6/16 \text{ s}$ Exposure sequency  $\leq 12 \text{ exp./s}$ Noise level  $\leq 40 \text{ dBA}$ Heat dissipation 500 W

Interfacing option for.... door contact, external radiation warning indicator

## 5.3. Power supply

### 5.3.1. Type of power supply



- 400 V
- 440 V / 460 V / 480 V
   with mains transformer
   9890 000 02301.
- Neutral not required if the mains transformer
   9890 000 02301 is ordered.
- 190 V...343 V with external mains transformer
   9803 720 81002 (max. 50 kW).



- Mains transformer
   9890 000 02301 is required.
- 400 V / 440 V / 460 V / 480 V
- 190 V...343 V with external mains transformer
   9803 720 81002 (max. 50 kW).
   Only together with the internal mains transformer.



- Mains transformer
   9890 000 02301 is required.
- 400 V / 440 V / 460 V / 480 V
- Surge Arrester WN is required (inclusive modification at the filter of the kV power unit).
- 190 V...343 V with external mains transformer 9803 720 81002 (max. 50 kW). Only together with the internal mains transformer.
- Check that the sequence of phases in the wall junction box is correct corresponding to the designations L1, L2, L3.

### 5.3.2. Calculating the mains resistances

If possible, the sum of  $R_0$ ,  $R_1$ ,  $R_2$  and  $R_3$  should be smaller than the  $R_{XG}$  required.

With higher internal mains resistances the generator output is reduced respectively.

Note that the cross section of lead  $l_3$  must not exceed 25  $\mathrm{mm}^2$ .



- R<sub>0</sub> designates the mains resistance on the distributor transformer.
- R<sub>1</sub> is dependent upon the length of lead I<sub>1</sub> between distributor transformer and main distributor and upon the cross section selected, so:

$$R_1 = I_1 \times R_{Cu}$$

- R<sub>2</sub> consists of upstream elements such as:

 R<sub>3</sub> is dependent upon the length of lead I<sub>3</sub> between main distributor and wall junction box and upon the cross section selected, so:

$$R_3 = I_3 \times R_{Cu}$$

The resistances already consider the go and return line so that the calculation can be based on simple cable lengths.

| Copper cross section [mm²] | Resistance R <sub>Cu</sub> [in mΩ/m] |  |
|----------------------------|--------------------------------------|--|
| 16                         | 2.19                                 |  |
| 25                         | 1.4                                  |  |
| 35                         | 1.0                                  |  |
| 50                         | 0.7                                  |  |
| 70                         | 0.5                                  |  |
| 95                         | 0.38                                 |  |
| 120                        | 0.30                                 |  |
| 150                        | 0.24                                 |  |

### 5.3.3. Earth-leakage circuit breaker

To be provided between fuse and X-ray installation depending upon local regulations.

Siemens earth-leakage circuit breaker:

Order No. 5SM1 3466

Rated fault current 30 mA

Rated current 63 A

Connection terminals for wire cross sections of up to 25 mm<sup>2</sup>.

**OPTIMUS** 

### 5.3,4. EMERGENCY-OFF device

To be provided depending upon local regulations.

There are 2 possibilities:

- 1. All the EMERGENCY-OFF buttons are connected in series and looped into the switch on circuit (12 V DC) of the generator.
- 2. The EMERGENCY-OFF circuit acts on an external main contactor which switches off the power before it is fed into the generator.

### 6. Tools

In addition to the standard tools the following are required:

- Service-PC
  - IBM- compatible, 640 kB RAM, 3.5" floppy disk drive, ≥1 serial port
- 0-modem cable; recommended length = distance generator cabinet operating desk
   Male 9-pole D-Sub connector at the generator end.
- Installation and service software 4512 152 0475x supplied on a floppy disk with the generator.
- PC-Hardkey (DIAGGEN) to use the installation and service software (special programmings, faultfind).
- Mains resistance measuring instrument.
- Dose measuring instrument

### 7. Traceable items

- X-ray generator (generator cabinet, operating panel)
- H.V. generator

The items are assigned the same series number when delivered ex factory.

### 8. Preparation

Connection of the generator:

see drawing Z-3

Operating panel:

see drawing Z-5

Connection diagram:

see drawing Z-7.1/2/3

Earthing diagram:

see drawing Z-7.4

Legend:

see drawing Z-20.1

# 8.1. Installation materials

To be ordered from the service department via PMS Hamburg:

- - inclusive connection block (25 mm²) for mains supply and connection block (10 mm²) for unit supply.
- Relay for radiation warning indicator

4512 100 45231

1 interface relay with a floating contact (230 V, 1 A) is included in the scope of delivery for the generator.

### 8.2. Cables

- H.V. cables

9806 402 6xx02

plugs:

03/03

length:

6 ... 30 m in steps of 2 m

capacity:

155 pF/m

diameter:

16.5 mm

The cable length is indicated at the 9th and 10th digits of the code No.

### - Thermal contact cable

2-wire screened for 1 excess temperature switch 4512 100 66151 10-wire screened for additional supervision like 0722 215 19005

temperature alarm switch, buzzer, selection indicator.

- Stator cable

 $3 \times 1.31 \text{ mm}^2$ , screened

0722 215 02054

### - AMPLIMAT cable with D-Sub and 3 PLUS plug.

| 12 m | 9890 000 01721 |
|------|----------------|
| 16 m | 9890 000 01731 |
| 20 m | 9890 000 01741 |
| 24 m | 9890 000 01751 |

AMPLIMAT cables 9803 507 0xx02 with 3 PLUS plugs at both ends can be connected in the generator via the following adapter for each cable:

Adapter for AMPLIMAT cable

4512 108 09041

The generator includes 5 adapters.

### Operating desk

| -         |      |                |
|-----------|------|----------------|
| cable set | 10 m | 9890 000 02411 |
|           | 20 m | 9890 000 02421 |
|           | 30 m | 9890 000 02431 |

### 8.3. Manpower

At least two persons to insert the H.V. generator, which weights about 110 kg, in the generator cabinet.

### 9. Planned maintenance

The technical documentation for carrying out maintenance work in compliance with the applicable regulations are available at the responsible authority of Philips Medical Systems.

The importance of having maintenance implemented is pointed out to the operator in the operating instructions.

It must be guaranteed that the person carrying out maintenance work knows about the respective national regulations and that this person observes these regulations throughout all steps of maintenance work.





- 1) Wall junction box
- 2) Lateral clearance unless there is an adjacent cabinet
- 3) Filler panel
- 4) Wall-cabinet spacing angle
- weight: 210 kg



- 1) With no other cabinets beside them
- E= Control cabinet
- C= Operating desk



scale 1:20 measures in cm

Overlayer for room layout



\*) Space with no other cabinets beside them.

Connection of generator

# 1 Low profile control desk



# 2 Stand for low profile control desks



mounting drillings in the bottom of the stand



# 3 Wall-mounting support

Passage for surface cable (180° n possible)



Operating panel

PRB-XRD products







<sup>\*</sup> Adapter from 3 PLUS to Sub-D connector is available.



<sup>×</sup> Adapter from 3 PLUS to Sub-0 connector is available.





A2/A3 96-03-14 S ub0616

Earthing diagram



- Heading symbols

A electronics cabinet anglo
BL electronics cabinet DSI
C operators conside
E electronics cabinet N-ray generator
High tension tank frontal
H.T. changeover switch
HCU hard capy unit
K electronics cabinet TOMO
LA collimator
HCU wcb operators conside
HC wcb electronics cabinet TOMO
NON maintor
HCW wcb operators conside
HC wcb electronics cabinet TOMO
NON maintor
HCW wcb electronics cabinet TOMO
NON monitor
HCW wcb electronics cabinet N-ray generator
HCW TOMO
NON TOMO
NON TOMO
NON TOMO
NON TOMO
NON

### - Cable symbols





Legend for earthing and cabling diagram

# **INSTALLATION**

# **TEXT**

|                  | Contents                                   | 2-0.1        |
|------------------|--------------------------------------------|--------------|
| 1.               | Installing the wall junction box           | 2-1          |
| 2.               | Mounting the H.V. generator in the cabinet | 2–1          |
| 3.               | Installing the operating panel             | 2-3          |
| 3.1.             | Desk version                               | 2-3          |
| 3.2.             | Stand version                              | 2-4          |
| 3.3.             | Wall mounted version                       | 2-5          |
| 3.4.             | Additional release switch                  | 2-5          |
| 4.               | Electrical connection                      | 2-6          |
| 4.1.             | Earthing                                   | 2-6          |
| 4.2.             | Mains connection                           | 2-6          |
| 4.3.             | Stator connection                          | 2-7          |
| 4.4.             | Signal cables                              | 2-8          |
| 4.4.1.           | Room decade cable                          | 2-8          |
| 4.4.2.<br>4.4.3. | Tube supervision                           | 2–8<br>2–9   |
| 4.4.4.           | Adapter for 4 auxiliary units              | 2-9<br>2-9   |
| 4.4.5.           | Measuring chamber                          | 2-9          |
| 4.4.6.           | Patient Data Organizer PDO (option)        | 2-9          |
| 4.5.             | H.V. cables                                | 2-10         |
| 4.6.             | EMERGENCY-OFF circuit                      | 2–10         |
| 5.               | Hardware programming                       | 2-11         |
| 6.               | Switching on the generator                 | 2-11         |
| 7.               | Using the installation software XRGSCOPE   | 2-12         |
| 8.               | Setting-to-work overview                   | 2–13         |
| 9.               | Configuration                              | 2-14         |
| 9.1.             | Date and time                              | 2-14         |
| 9.2.             | Mains data                                 | 2-14         |
| 9.3.             | Tubes                                      | 2-14         |
| 9.3.1.           | Tube data set                              | 2-14         |
| 9.3.2.<br>9.3.3. | Tube speed selection                       | 2-14         |
| 9.3.4.           | Tube limits                                | 2–15<br>2–15 |
| 9.3.5.           | Tube operating modes                       | 2-15         |
| 9.3.6.           | Disable tube                               | 2-16         |
| 9.4.             | Dose rate control                          | 2–17         |
| 9.4.1.           | AMPLIMAT sensitivity                       | 2-17         |
| 9.4.2.           | Film/screen combinations                   | 2-17         |
| 9.4.3.           | Fault exposure detection                   | 2-19         |
| 9.5.             | Registration devices                       | 2-20         |
| 9.6.             | Example for RGDV programming               | 2-22         |
| 9.6.1.<br>9.6.2. | Unit connected via adapter WA              | 2–22         |
|                  | Unit connected via CAN interface           | 2-24         |

| 10.                | Tube adjustment                            | 2-26         |
|--------------------|--------------------------------------------|--------------|
| 10.1.              | Tube conditioning                          | 2-26         |
| 10.2.              | Adaptation of the tube                     | 2-27         |
| 11.                | Application Limits                         | 2–28         |
| 12.                | Programming the operating desk             | 2-28         |
| 12.1.              | Language                                   | 2-28         |
| 12.2.              | Automatic programming of APRs              | 2–33         |
| 12.3.              | Manual programming of APRs                 | 2-34         |
| 12.3.1.            | Creating menus                             | 2-35         |
| 12.3.2.<br>12.3.3. | Creating sub menus                         | 2–35<br>2–35 |
| 12.4.              | Changing of APRs                           | 2-36         |
| 12.5.              | Moving/copying of an APR data set          | 2-37         |
| 12.6.              | Deleting of APRs                           | 2-37         |
| 12.7.              | Manipulating menus                         | 2–38         |
| 12.8.              | External APR assignment                    | 2-39         |
| 13.                | Density correction                         | 2-40         |
| 13.1.              | Density correction for AEC technique       | 2-40         |
| 13.2.              | Density correction for non-AEC techniques  | 2-41         |
| 14.                | Interlock facility for APR modification    | 2-41         |
| 15.                | AEC fixed current (kV-mA)                  | 2-41         |
| 16.                | Tomo Density Control TDC (option)          | 2-42         |
| 17.                | VARIOFOCUS (option)                        | 2-42         |
| 18.                | Area exposure product calculation (option) | 2-42         |
| 19.                | Executing the acceptance test              | 2-43         |
| 20.                | Saving all configuration data              | 2-43         |
| 21.                | Labels                                     | 2-44         |
| 22.                | Final installation work                    | 2–44         |
|                    | DRAWINGS                                   |              |
|                    | Labelling                                  | 2Z-1         |

## 1. Installing the wall junction box

- Mount the wall junction box at the place where the generator is intended to be installed.
   (See drawing Z-3 in section 1 and manual UNIT 4512 103 75380 for wall junction boxes).
- If necessary, install the optional Surge Arrester WN inside the wall junction box.
   To do this see Surge Arrester documentation.
- If applicable, mount the filler panels of the generator to the wall junction box.
- Have the mains cable present at the clinic connected to mains terminal MEX by a person who is authorized for this
  job.
- Check the phase sequence of L1, L2 and L3.
- Switch off the mains supply present at the clinic and make sure that it cannot be switched on again by anyone who is not authorized to do so.

# 2. Mounting the H.V. generator in the cabinet

### Caution!

### Do not tilt the H.V. generator when transporting it!

In case a tilting angle of greater than 45° has been exceeded, the setting-to-work of the generator can be started not before a waiting time of about 8 hours has passed. Otherwise the H.V. generator may be destroyed by electrical sparkover!

- · Unpack generator cabinet E.
- Unpack the H.V. generator.
- In case the packing material is strongly soiled with oil, check the oil level and, if necessary, correct.

Watch that no foreign matter falls into the oil! Otherwise the transformer must be exchanged!

Tolerance: ±2 mm

Oil: Shell Diala G in 2.5 I container 4512 148 43172



- Take the two transport bars from the rear side of the cabinet.
- Lift the H.V. generator into the generator cabinet with the transport bars.
   The 4 connecting bolts GX1001 to 1004 must point towards the front of the generator cabinet.
- · Loosen the deaerating screw by turning it 3 times counter-clockwise.

**OPTIMUS 50/65/80 INSTALLATION** 

| • | Connect the H.V.  | generator ele                                  | ectrically.                                      |                         |       |                                                                                                                                                                                                                                                                                         |
|---|-------------------|------------------------------------------------|--------------------------------------------------|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Always:           | - E1 ±                                         | 4                                                | GX1100 (g               | grour | nd)                                                                                                                                                                                                                                                                                     |
|   |                   | - ZX12<br>- ZX35                               | (MANUSCON 100 100 100 100 100 100 100 100 100 10 | G100X15<br>G100X14      | }     | Route the cables along the front and left-hand edge of the H.V. generator and fix them!                                                                                                                                                                                                 |
|   | 50 kW version:    | - QC13:1<br>- QC 3:1                           |                                                  |                         | }     | Twist the cables!  Bear in mind that the connecting bolts are not arranged in numerical order.  After connecting up, push the screening cap forward over the connecting bolts and tighten up. Attach the converter cables including the screening to the screening cap with cable ties. |
|   | 65/80 kW version: | - QC13:1<br>- QC 3:1<br>- 2QC13:1<br>- 2QC 3:1 |                                                  | GX1002                  |       | Twist the cables!  Bear in mind that the connecting bolts are not arranged in numerical order.  After connecting up, push the screening cap forward over the connecting bolts and tighten up. Attach the converter cables including the screening to the screening cap with cable ties. |
|   | 2nd tube:         | – WGX61<br>– WGX67<br>– WGX62                  |                                                  | GK1:1<br>GK1:2<br>GK2:1 |       |                                                                                                                                                                                                                                                                                         |

• Fold the two earthing angles of the H.V. generator outward and screw it on to the members of the cabinet.

-WGX68 ---- GK2:2



# 3. Installing the operating panel

### 3.1. Desk version

### Accessories:

- 2 feet for the unit
- 2 elastic buffers, black
- 5 insert strips for the RGDV buttons
- sheet with RGDV symbols
- release switch
- · Carefully unpack the desk.
- Mount the release switch on the left-hand or right-hand side of the desk.
  - Using the two M4x10 countersink screws attach the holding bracket to the edge of the desk (1). For visual reasons the release button should be in line with the +/- buttons on the control desk so please use the appropriate holes in the bracket.
  - Slip the release switch over the edge of the desk and fasten in position using the two M4x10 cheese-head screws, securing rings and washers (2).



- Screw in the 2 feet for the unit at the bottom of the desk.
- Glue the 2 black elastic buffers to the front edges of the bottom of the desk such that they are acting as the front feet.



INSTALLATION OPTIMUS 50/65/80

 Define the assignment of the RGDV buttons 1...8 and glue the respective symbols to the insert strips which are provided with subsidiary lines (1).

- Raise the keyboard from the bottom of the desk about
   5 mm with an Allen key, 3 mm across flats (2).
- Push the insert strips under the keyboard foil. Press the angulated, protruding end of each insert strip into the housing of the desk (3).
- Lower the keyboard (4).
- Screw off the cable cover at the rear side of the desk..
- Connect the cables:

- Supply cable EZX20 - C200X1

EZX6 - earth

- Data cable EZX46 - C300X1

Release switchC300X3

Patient Data Organizer – C300X2 (option)



- Provide drag relief for the supply and data cables with the clamp present on the desk.
- Screw on the cable cover. Make sure that the cable strain relief device of the release switch (1 cable tie) remains under the cover.

### 3.2. Stand version

See Z-5 "Operating panel" in section 1.

Additional accessories:

- 4 dowels S10
- 4 hexagon cap screws 8 x 60 mm
- 4 washers
- · Position the desk stand according to the respective room layout.
- Mark the fixing holes on the floor.
- · Set the 4 dowels supplied into the floor (drill bit: 10 mm).
- · Screw on the desk stand with 4 screws (13 mm across flats) and washers.
- Route the supply and data cables from the bottom to the top in the desk stand and provide the cables with drag relief.
   Cable ends including plugs should protrude beyond the edge of the desk by about 500 mm.
- Mount the release switch as described under 3.1.
- Assign the RGDV buttons 1...8 with the desired symbols as described under 3.1.
- · Connect the cables to the desk as described under 3.1.
- Screw on the cable cover. Make sure that the cable strain relief device of the release switch (1 cable tie) remains under the cover.
- Attach the operating panel on the stand.

### 3.3. Wall mounted version

See Z-5 "Operating panel" in section 1.

Additional accessories:

- 4 ball-head bolts
- 4 dowels S8
- 4 hexagon cap screws 5 x 30 mm
- 4 washers
- 2 screws 4 x 10 mm
- 2 angle plates
- 4 nuts
- Screw the angle plates into the wall frame.
   The short ends of the angles must be pointing upwards.
- · Screw the 4 ball-head bolts into the wall support.
- Mark the 4 fixing holes of the wall frame at the respective place on the wall.
- Set the dowels supplied into the wall (drill bit: 8 mm).
- Screw on the wall frame with 4 screws and washers.
- Provide drag relief for the supply and data cables in the wall frame. Cable ends including plugs should protrude beyond the edge of the desk by about 500 mm.
- Mount the release switch as described under 3.1.
- Assign the RGDV buttons 1...8 with the desired symbols as described under 3.1.
- Connect the cables to the desk as described under 3.1.
- Attach the operating panel on the wall frame and fix it with two screws.
- Screw on the cable cover. Make sure that the cable strain relief device of the release switch (1 cable tie) remains under the cover.

The wall frame is of symmetrical design. If surface-mounted cables to be connected come from above it can be fitted upside down. The ball-head bolts and the angle plates must then be fitted appropriately at different positions.



### 3.4. Additional release switch

An optional second release switch is supplied with a longer spiral cable. The scope of delivery includes various wall hooks and an adapter cable. Electrical connection is made in parallel with the existing release switch which is mounted on the desk itself. To do this, plug the pins of the adapter cable into the D-Sub connector of the existing release switch.

Sequence: Adapter connector pins 1-2-3 to D-Sub connector pins 6-9-7

Reference: Drawing Z1-11.1

INSTALLATION OPTIMUS 50/65/80

### 4. Electrical connection

### 4.1. Earthing

See Z-7.4 "Earthing diagram" in section 1.

### 4.2. Mains connection

See Z-7.1 "Connection diagram" in section 1.

 Measure the internal mains resistance at the terminal MEX or WNX1100 (option Surge Arrester) with a suitable measuring instrument.

| L1-L2: | $R_i =$          |                    | mΩ |
|--------|------------------|--------------------|----|
| L1-L3: | R <sub>j</sub> = |                    | mΩ |
| L2-L3: | R <sub>i</sub> = | Q#0000000000000000 | mΩ |

Required max. mains resistance at generator input (without Surge Arrester WN):

| Mains voltage                                            | 30 kW                                              | 50 kW                                                                                                  | 65/80 kW                               |
|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|
| 190 V *<br>220 V *<br>240 V *<br>400 / 440 / 460 / 480 V | 130 m $\Omega$<br>160 m $\Omega$<br>500 m $\Omega$ | $40 \text{ m}\Omega$ $60 \text{ m}\Omega$ $80 \text{ m}\Omega$ $300 / 350 / 350 / 400 \text{ m}\Omega$ | -<br>-<br>-<br>-<br>200/240/240/300 mΩ |

with external mains transformer

Maximum permissible internal mains resistance:

500 m $\Omega$ 

Internal resistance of Surge Arrester WN:

 $20 \text{ m}\Omega$  at 50 Hz

23 mΩ at 60 Hz

- · Switch off the mains supply present at the clinic.
- Connect the mains cable of the generator to terminal MEX:L1/L2/L3 at the wall taking care that the phase sequence
  is correct.

If the optional Surge Arrester WN is fitted, connect the cables at that point up to terminal WNX1100.

• Connect the examination unit supply (max. 5 A) to terminal MEX:T1/T2/T3.

## 4.3. Stator connection

### At the tube end:

- Place the jumpers across terminals 100 and 200 accordingly.
- · Connect up stator cable.

Use wire 1 for phase U, wire 2 for phase V, wire 3 for phase W.

 Earth the screening of the stator cable in the tube housing.



### At the generator end:

See Z-7.1/2 "Connection diagram" in section 1.

- Connect the stator cable to the terminal EX1100 (U-V-W) or the stator contactors of the tube extension EWG if present.
- · Check the stator connection by measuring resistance.

U-V = wire 1 - 2  $\approx$  11  $\Omega$ U-W = wire 1 - 3  $\approx$  20  $\Omega$ V-W = wire 2 - 3  $\approx$  9  $\Omega$ 

· Relieve the tension on the stator cable with a cable tie.

### Note

- Use screened cables. Connect the screen to earth at both ends
- Do not mix up the phases, for otherwise components of the rotor control may be destroyed.
- Shorten the stator cable to the required length.
   Do not accommodate excess lengths at the generator.
- Keep stator cable separate from all the other signal cables to avoid interference.





### 4.4. Signal cables

See Z-7.1/2/3 "Connection diagram" in section 1.

### 4.4.1. Room decade cable

- Connect the door switches at the generator.
   If none present, link pins 8 10.
- In case of need connect an external relay for each examination room to control external radiation warning devices.

One relay inclusive cable is part of delivery.

A mounting place is reserved on the mains connection terminal MEX of the wall junction box.

Make sure the polarity of the relay is correct.



### 4.4.2. Tube supervision

- Connect the thermal switch or the thermal sensor of the tube housing assembly.
- For U.S.A. only:
   Connect the so-called HHS-lamp to indicate the selected tube housing assembly.

### Note

Generators with the older back panel EZ, code No. 4512 108 05983, have the thermal switch connected to pins 3 and 4. If the connection is not correct or if there is an earth short the error "00TB" will appear.



OPTIMUS 50/65/80 INSTALLATION

### 4.4.3. CAN interface

For examination units which are provided with a CAN system interface.

- EZX 23 signalbus
- EZX 43 system CAN

### 4.4.4. Adapter for 4 auxiliary units

For examination unit which provide their control signals separately via decade cables.

Each of the release circuits and bucky decades can be assigned to one or several of the RGDV buttons 1...8 via software programming.

Survey: Z-7.3

"Connection diagram"

Z1-1.2

"Block diagram, expansions"

Detail:

Z1-15.1

"Adapter 4 aux. units"

Information about assignment of the bucky decades WAX11/12:

- The Bucky decades only have to be assigned if any of the following inputs are to be used:

1-2 format contacts

Switch the external measuring fields ON/OFF

3-4 tomo mode

bucky - tomo switchover

5-6 tomo ready

tomo condition met

9-10 bucky ready

bucky condition met

- The inputs are only activated by SW programming (see 9.5).
- After activation via the SW any missing inputs must be simulated by jumpers.

Example:

Format contacts on WAX11/12:1-2.

The outer measuring fields can only be selected in the closed state.

### 4.4.5. Measuring chamber

Connect the measuring chambers to the D-Sub connectors EZX21/22/31/32/41.

There are no restrictions on assignment because the measuring chambers are assigned to the auxiliaries in SW programming.

At the junior/extremity measuring chamber withdraw pins 101–102–103 or A–D–H for measuring field selection.

These measuring chambers have only one measuring field. The terminal for the left-hand field is used in other configurations for switching over intensification and must not be connected up here.

AMPLIMAT cables which are provided with a 3-PLUS-connector can be connected up using the adapter connectors supplied.

Detail:

Z1-6

"Basic interface"

### 4.4.6. Patient Data Organizer PDO (option)

See UNIT manual Patient Data Organizer.

INSTALLATION OPTIMUS 50/65/80

### 4.5. H.V. cables

See Z-7.1/2 "Connection diagram" in section 1.

- · Mark the H.V. cables at the generator and the tube end with the correct polarity.
- Fix the H.V. cables on the left-hand side of the wall junction box on the middle rail for providing drag relief for the cables. The short ends of the H.V. cables which are going to the H.V. generator must be routed in downward direction in this area.

The free cable lengths including plugs should be about 1.5 m.

Twist the H.V. cables counter-clockwise by one turn and connect them to the H.V. generator.

The twisting of the cables provides that the H.V. cables can be put into a loop when the cabinet is placed against the wall.

The H.V. sockets should always be filled with some oil. At least the lower half of the plugs must be wet with oil.

Do not fit a silicone washer.

Do not rub them with silicone.

### **Notes**

- The union nuts of the high-voltage connectors must be tightened up to ensure good electrical contact for screening.
- Only high-voltage connectors which have threaded flange halves may be used. Older high-voltage cables still have connectors where the flange halves are kept together with a spring washer.
   In such cases the modification kit 4512 103 80852 will be required.

### 4.6. EMERGENCY-OFF circuit

Connect the EMERGENCY-OFF buttons to EZX4:1/2.
 If not necessary, link pins 1 - 2.

## 5. Hardware programming

- In case mains transformer 9890 000 02301 is present in the generator, connect the primary end according to the rated voltage of the mains.
  - Connect 415 V mains systems up to the 400 V terminal.
- Modify filters in the converter assemblies EQ/E2Q if the generator is operated via the optional Surge Arrester on a grounded or floating delta mains.
  - See service documentation for Surge Arrester.

### On PCB EZ150 Basic interface:

 Voltage supply for the amplifiers of connected measuring chambers:

| Voltage\Soldering link | EZ 150 W2 | EZ 150 W3 |
|------------------------|-----------|-----------|
| 15 V default           | OFF       | ON        |
| 40 V                   | ON        | OFF       |

- Working voltage range for ALC measuring chambers: 15 ... 45  $\rm V$
- Working voltage range for Hybrid measuring chambers: 40 ... 45 V

ALC measuring chambers can be recognized from the code No. 4512 104 xxxxx, hybrid measuring chambers based on code No. 4512 102/103 xxxxx.

- Set gain factor for AEC techniques with jumper EZ150:W4:
  - Factor 1 = W4 in position 3 = default
     For film/screen combination with a system speed of 200 or less.
  - Factor 4 = W4 in position 1
     For film/screen combinations with a system speed of at least 200.

The rest of the generator hardware has been properly programmed at the factory.

If required, refer to section "Programming".

### 6. Switching on the generator

- · Switch on the fuses present at the clinic.
- Switch on automatic circuit-breakers ENF1, ENF2 and ENF3.

The yellow LED on EN100 POWER ON CIRCUIT must be illuminated.





### 7. Using the installation software XRGSCOPE

Provide the service PC with the hardware key and switch it on.
 The hardware key provides access to special program settings and to menu "Faultfind".

Standard programming is possible without a hardware key.

- · Switch the generator on.
- Connect the PC to X5 on EZ139 CENTRAL UNIT CU via a serial data cable.

PC, COM1 
$$\rightleftharpoons$$
 RXD - 2  $\qquad$  2 - RXD  $\rightleftharpoons$  generator, 3 - TXD  $\rightleftharpoons$  EZ139 X5 GND - 5  $\qquad$  5 - GND (9-pole, female) (9-pole, male)

· Insert the installation disk in the PC.

We recommend that the program be stored on hard disk (e.g. with DOS - command xcopy).

• Call the installation program with *xrgscope* or *xrgscope lcd* for PCs with LCD screen.

The following menu line appears:

|      |         |             | Mail 10 10 10 10 10 10 10 10 10 10 10 10 10 |      |
|------|---------|-------------|---------------------------------------------|------|
| File | OPTIMUS | Select Unit | Options                                     | Help |
|      |         |             |                                             |      |

· Select "OPTIMUS".

The following menu line appears:

| 1       |        | The second secon |           |      |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| Program | Adjust | Accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Faultfind | Quit |

#### General information:

| <b>direct</b> | Button F1 | <help></help> | Call help/cancel help. |
|---------------|-----------|---------------|------------------------|
|---------------|-----------|---------------|------------------------|

Button F2 <transmit>
 Store screen contents/data set in the generator ⇒ transmit to generator.

Button F3 <save> Store data set on disk; the path desired can be selected.

Button F4 <load> Load data set from disk.

Button Esc
 Commands one step back; can be used repeatedly.

- Fields with ↓ Select the possible range of values with the RETURN button = ↓.

The data are specified by the generator as fixed values.

Fields with [...]
 Input of data via the keyboard.

Error numbers which appear at the beginning of the programming procedure must be erased from the screen with the RETURN button.

#### Note

- Current data files, for instance, for online help, tube types, APR programming are available in BBS.

Product: Generatoren Hamburg

Download area: OPTIMUS

If you call the installation program with xrgscope? the possible starting parameters for the service program will be
listed.

### 8. Setting-to-work overview

This overview shows in what order the programming of a generator should take place.

The methods of programming are described in the following sections.

- Generator ON

– Program ... Date and time

Mains data

Tubes

- Reset the generator

with ON button at the desk or S1 on PCB EZ139

- Program ...

Dose Rate Control/ AMPLIMAT/ Chamber 1...5/ Data set 1...5

- Reset the generator

- Program ...

Registration devices/ RGDV 1...8/ Data set A ... B

Registration devices/ RGDV interface assignment

- Reset the generator

- Conditioning the tube

- Adjust ...

Tube adaptation (all foci)

- Reset the generator

- Program ...

Application limits

- Reset the generator

- Program ...

Human interface/...

---> All changes will be visible after a reset

... /Select language

... /RGDV related assignment/ RGDV 1 ... 8/ Predefined assignment

Reset the generator

- Density correction

Dose Rate Control/ AMPLIMAT/ Chamber 1...5/ Data set 1...5

- manual programming

- Adjust ...

Area Exposure Product/...

.../ Specific yield of tube 1...3
.../ Add filter correction tables

.../ Wedge filter correction tables

(not used at time)

- Accept...

Backup

**OPTIMUS 50/65/80** 

### 9. Configuration

#### 9.1. Date and time

- · Select menu "Program/ Date and Time".
- · Enter the respective local data.

#### 9.2. Mains data

- Select menu "Program/ Mains Data".
- Select the nominal value of the mains voltage U. Range: 380 V, 400 V, 440 V, 480 V Default: 400 V
   If 460 V is present program 480 V.
   If 415 V is present program 400 V.
- Enter the maximum internal mains resistance  $R_i$ . Range: 0...500 m $\Omega$

Depending on the internal mains resistance and the mains voltage the generator calculates the maximum possible output.

### 9.3. Tubes

#### 9.3.1. Tube data set

#### Note

During this procedure the CAN interface on EZX43 must be disconnected if present (THORAVISION or Bucky TH with bucky controller).

- Select menu "Program/ Tubes/ Tube 1...3/ Tube 1...3 Data Set".
- Start the displayed file *tube.tdl* with <Return>.

  All the permitted combinations of tube type and housing type are listed in a window.
- From the list select the respective combination of tube type and housing type and press <Enter>.
- Reset the generator with the ON button at the desk or button S1 on PCB EZ139.
   Then the data which have been configured up to now are read by the processor when the system is started.

#### 9.3.2. Tube speed selection

Depending on the type of tube loaded the set speed for the anode is programmed automatically.

Modifications, if necessary, may only be performed if a hardkey is used on the PC.

#### Caution!

Wrong programming could destroy the rotor control unit.

Select menu "Program/ Tubes/ Tube 1...3/ Tube 1...3 Speed Selection".

| RPM \ tube type               | RO   | SRO  |
|-------------------------------|------|------|
| Exposure rotation [RPM]:      | 3000 | 9000 |
| Fast Exposure rotation [RPM]: | 0    | 5600 |
| Fluoroscopy rotation [RPM]:   | 0    | 3000 |

### 9.3.3. Tube limits

• Select menu "Program/ Tubes/ Tube Limits".

• For each tube connected, program the maximum working voltage which is indicated on the data label:

Max. Tube Voltage Limit:

default: 150 kV

range: 40...150 kV

Adaptation of the tube is up to this limit.

If older tubes are to be operated on this generator, it is urgently recommended that the maximum kV used in practical operation so far be specified instead of the theoretically possible value.

After adaptation of a tube the upper kV limit is displayed for each focus of each tube under:

Adapted to [kV]:

e.g. 125

All the other limit programmings are performed by the generator automatically and do not usually have to be observed.

### 9.3.4. Capacitance of tube connection

• Select menu "Program/ Tubes/ Capacitance tube connection".

• The total capacitance for each tube connected is indicated.

$$C = \frac{1}{2} (C_{H.V. generator} + C_{H.V. cable})$$

 $= 4.550 \, nF$ 

Default for H.V. generator + 20 m H.V. cable (155pF/m)

$$C [nF] = 3 + \frac{C_c \times L}{20000}$$

C<sub>c</sub> = specific cable capacitance in [pF/m]

2000

L = single cable length in [m]

Example for "capacitance tube connection" in [nF]:

| L[m] single length | for 155 pF/m cable | for 200 pF/m cable |
|--------------------|--------------------|--------------------|
| 14                 | 4.085              | 4.400              |
| 16                 | 4.240              | 4.600              |
| 18                 | 4.395              | 4.800              |
| 20                 | 4.550              | 5.000              |
| 22                 | 4.705              | 5.200              |
| 24                 | 4.860              | _                  |
| 26                 | 5.015              | (man)              |
| 28                 | 5.170              | _                  |
| 30                 | 5.325              | Phone              |

The high-voltage cables type 9806 402 6xx02 currently being supplied have a capacitance of 155 pF/m.

#### 9.3.5. Tube operating modes

· Select menu "Program/ Tubes/ Tube Operating Modes".

- Intermediate boost:

Select ... Disable = During preparation the rated filament current is applied (default).

Enable = During preparation a reduced filament current is applied.

After the release of exposure boosting takes place for a short time before the exposure

is released. Effective with tube currents > 80%.

- Rotation prolongation after PREP:

Disable = The tube is braked as soon as Preparation has been cancelled.

Enable = After cancellation of Preparation the tube is only braked after 30 s. Within this time

Preparation can be repeated as often as necessary. Recommended for paediatrics.

Only with High Speed Rotor Control.

#### 9.3.6. Disable tube

For correction of the configuration.

• Select menu "Program/ Tubes/ Disable Tube".

When the tube is disabled the above stored data set of the tube is erased. To enable the tube the tube data set has to be loaded again.

#### 9.4. Dose rate control

#### 9.4.1. AMPLIMAT sensitivity

- Select "Dose Rate Control/ AMPLIMAT/ Sensitivity".
- Depending on HW programming of jumper EZ150: W4, program sensitivity accordingly:

high =  $\times$  4 = EZ150: W4 in position 1 = Film/screen combinations with a system speed of over 200.

 $= \times 1 = EZ150$ : W4 in position 3

= Film/screen combinations at 200 or less.

#### 9.4.2. Film/screen combinations

5 film/screen combinations can be programmed for each of the 5 measuring chambers:

• Select menu "Program/ Dose Rate Control/ AMPLIMAT/ Chamber 1...5/ Data Set 1...5". The number of the chamber corresponds to the specified unit number of the dose measuring unit.

The choice between automatic and manual DRC processing is possible when an authorized hardware key is inserted in the PC.

Automatic is selected as default and must be used for the initial programming.

Access manual DRC processing by pressing the Esc key.

The manual mode is suitable for:

- Copying complete programming to other measuring chambers
- Setting the basic density
- Changing the desk-displayed names of the programmed film-screen combinations
- Creating backups of the DRC programmings

#### Automatic DRC processing:

• Select the desired data from the files offered for the following programming steps.

The files are part of the installation software.

- Select the programming field with the cursor and enter <Return>.
- Enter the desired file from the list offered.
- Select the desired data as required.

| FILM              | File "film.tdl":              | Film types according to description of the manufacturer.                                   |
|-------------------|-------------------------------|--------------------------------------------------------------------------------------------|
|                   | File "film_bl/ _gr/ _uv.tdl": | General classification of the film according to color, sensitivity S and RLF compensation. |
| SCREEN            | File "screen.tdl":            | Screen types according to description of the manufacturer.                                 |
|                   | File "lumat_lg.tdl":          | Screen types according to luminous matter.                                                 |
| CHAMBER           | File "chamber.tdl":           | Different types of measuring chambers.                                                     |
| CASSETTE          | File "cassette.tdl":          | Different types of cassettes.                                                              |
| SYSTEM CORRECTION | File "syscor.tdl":            | Select "no corr. (ISO 9236-1)".                                                            |
| CORRECTION FACTOR | Default: 1.0                  | Correction factor for switch-off dose.                                                     |

Based on the combination of the components entered, the processor calculates the switch-off dose, kV correction and RLF compensation and creates a name for the film/screen combination, e.g. "B400".

Since the data selected are not directly stored in the generator, it is recommended that they be entered in the following table.

• Reset the generator.

Color and sensitivity class of the film/screen combination are displayed on the desk, for instance, B 400. The other film/screen combinations (data set 1...5) for the chamber can be selected with the  $\pm$  buttons.

|          |               | Chamber 1                                         | Chamber 2                                             | Chamber 3                                         | Chamber 4                                                 | Chamber 5                                             |
|----------|---------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
|          | Film:         | 9 3 6 3 11 5 1 6 5 6 6 6 6 6 7 9 8 7 9 8          |                                                       | ****************                                  | 0 * 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   | 4                                                     |
| -        | Screen:       | U m m e m m d m d m d m d m d m d m d m d         | 3 9 9 0 8 9 8 2 8 C 9 d d d d 8 8 8 7 7 7 0 7 11 11 1 | J # 8 4 8 8 8 8 8 8 9 9 9 3 7 0 0 0 0 0 0 0 0 0   |                                                           | g n g = n = n + a = = + a = 2 4 4 4 4 4 4 4 4         |
|          | Chamber:      |                                                   |                                                       | \$ 4 6 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      |                                                           |                                                       |
| Data Set | Cassette:     | 006940000000000000000000000000000000000           |                                                       | ******                                            | 000000000000000000000000000000000000000                   | 6203066704440000048444                                |
| Da       | Sys.corr.:    |                                                   | * 3 4 4 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9           | 9 4 3 8 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5     | 0 3 0 8 8 9 8 8 2 8 8 8 8 8 8 8 8 8 8 8 9 9 9             | 000000000000000000000000000000000000000               |
|          | Corr. factor: | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           |                                                       |                                                   |                                                           | 30 % 4 C % 4 O O O O O O O O O O O O O O O O O O      |
|          | Film:         |                                                   | 30000300000000000000000000000000000000                | 300000000000000000000000000000000000000           | ##CO W # ## # # # 5 # \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0               |
|          | Screen:       | 0 C C O G O O C C C C C C D D D D D D D D D D D D | 3 5 5 4 9 8 5 8 5 8 8 9 9 9 9 9 9 9 9 9 9 9           |                                                   |                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,               |
| et 2     | Chamber:      | 00 6 3 0 6 2 2 2 2 2 4 6 6 7 8 2 8 8 6 6 6 2      | + 0 + 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               | 0 4 5 4 6 4 5 5 4 4 0 0 8 5 5 6 9 9 4 6 9         | 900#88#008#30#88                                          | 0.0000000000000000000000000000000000000               |
| Data Set | Cassette:     | 000000000000000000000000000000000000000           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,               | s = • • • • • • • • • • • • • • • • • •           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   | **************************************                |
| Da       | Sys.corr.:    | 000000000000000000000000000000000000000           | g ng ty d m d & d m d & d d # 9 % C O O D D           |                                                   | 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   | # # # # # # # # # # # # # # # # # # #                 |
|          | Corr. factor: |                                                   |                                                       | 4 2 3 2 5 3 0 0 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0   | 999990000000000000                                        | 9 4 9 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6         |
|          | Film:         | 0.00.00.00.00.00.00.00.00.00.00.00.00.0           | @ C = @ C C C C C C C C C C C C C C C C               | a a a a a a a a a a a a a a a a a a a             | 2 8 + 2 • 3 • 3 2 7 0 0 • 4 0 0 0 0 0 0 0 0               | p a s s a b a s s c a a a e a a c c a a a             |
| m        | Screen:       |                                                   | 0 6 9 9 0 0 0 9 9 8 8 8 9 8 9 8 8 9 9 8 9 9           | 0 2 2 0 2 4 4 4 6 2 0 4 0 2 2 2 2 0 0 0 0 7 0 0 0 |                                                           | 0 3 4 5 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5         |
|          | Chamber:      | 000000000000000000000000000000000000000           | 5 3 3 5 0 0 0 0 <b>0 0 0 0 0 0 0 0 0 0 0 0 0 0 </b>   | # 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 9994923489443898888                                       | u o m # 0 q d # 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Data Set | Cassette:     |                                                   | 202000000000000000000000                              | 0 0 2 0 2 4 0 0 0 0 4 6 0 0 7 8 0 7 9 0 2 1       |                                                           | \$4400000000000000000000000000000000000               |
| Da       | Sys.corr.:    | 000000000000000000000000000000000000000           |                                                       | 0021430000000000000000000000000000000000          | 2 4 2 8 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1             |                                                       |
|          | Corr. factor: | 000000000000000000                                |                                                       | a a z * a a a a a a c o o c o o o o o o           | 3 4 5 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                 | 3 5 5 4 5 8 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       |
|          | Film:         | 00083584060058060008                              | 000000000000000000000000                              | 337931970000000000                                | 0 * 4 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8                 | ******                                                |
| 4        | Screen:       | 33333000000000000000000000000000000000            |                                                       | # Q • • # # 0 # D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 000000000000000000000000000000000000000                   | 000000000000000000000000000000000000000               |
| Set      | Chamber:      | 00604000000000000000                              | 2024244000000000000                                   | 5 4 4 4 9 9 9 9 9 8 8 8 8 8 8 9 7 8 9 7 7 7       | 34 = 4 4 6 8 6 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8              | 203999988650000000000                                 |
| Data S   | Cassette:     | 0080044064000000444000                            | 3 1 2 6 0 <b>1 0 4</b> 8 8 8 8 8 8 8 8 8 8 8 8 8 8    | 00 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0            | 3626666666666666666                                       | 0 4 5 5 5 6 4 6 8 6 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 |
| a        | Sys.corr.:    | 360000000000000000000000000000000000000           | ***************************************               | 0 0 5 0 0 5 5 0 8 8 8 9 9 9 9 9 9 9 9 9 9         | 0 2 3 2 4 6 4 0 0 5 5 5 5 6 6 6 6 9 8 8 8 9 9 9 9 9       |                                                       |
|          | Corr. factor: |                                                   | 3 6 4 6 8 6 8 6 7 8 6 8 6 8 6 8 6 7 7 7 7 7           | 000000000000000000000000000000000000000           | 0 8 8 4 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8                 | 0303303352350000005050000                             |
|          | Film:         | 44 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6          | 0.00.63.00.00.00.00.00.00.00.00.00.00                 |                                                   |                                                           | # 7 4 * # 6 4 5 0 2 2 5 0 2 4 0 0 D 0 0 0 0 0         |
| 2        | Screen:       | 3000000000000000000                               | 0 U O 3 O # O O O A D O O O O O O O O O               | Q D W & B & B & B & B & B & B & B & B & B &       | g d a * # a # 0 0 8 a d # 9 # 9 9 9 9 1 C                 | G 6 G 6 G H 4 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7   |
|          | Chamber:      | 000000000000000000000000000000000000000           |                                                       |                                                   | 3 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                   | 5 # p c * * * * * * * * * * * * * * * * * *           |
| Data Set | Cassette:     | 050*00000000000000000000000000000000000           | 346345634559960000000000000000000000000000000000      |                                                   |                                                           |                                                       |
| Da       | Sys.corr.:    | ## • • • • • • • • • • • • • • • • • •            | 7 # Q Q Q P P V # T Q Q Q Q Q Q Q Q Q Q Q             | a z o a a a a a a a a a a a a a a a a a           | 000000000000000000000000000000000000000                   | 30444468#204#4400000000                               |
|          | Corr. factor: | 00000000                                          | 5 5 6 0 8 4 0 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 04 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                  | 20898404022300040404000                               |

### Manual DRC processing:

The current data set of the film/screen combination is displayed.

Abbreviation: Abbreviation for the film/screen combination.

Example: B400 = blue, intensification 400.

Dose Request Chamber:

Parameter of the measuring chamber type in  $[\mu Gy/V]$ . Switch-off dose of the film/screen combination in  $[\mu Gy]$ .

Linear ratio with respect to the film density.

kV70-Char. U 0...9:

Checkpoints for kV-dependent density correction.

kV70-Char. Drel 0...9:

Relative correction value for the dose.

RLF t 0...9:

Dose of FSC:

Checkpoints for time-dependent density correction (RLF).

RLF Drel\_0...9:

Relative correction value for the dose.

If required, change the data.
 Usually no value except the basic density "Dose of FSC" must be changed (see chapter 13.)

- Transmit the data set with F2.
- · Reset the generator.

The SAVE (F3) and LOAD (F4) functions of **XRGSCOPE** permit straightforward copying of the measuring chamber programmings.

### 9.4.3. Fault exposure detection

Fault exposure detection is switched on as a default for AEC and TDC. If in the initial phase of an exposure too little dose is measured, the exposure is aborted to protect the patient.

- Time of control measurement:

10% of backup time, min. 250 ms at TDC

– Dose minimum:

4% of set density voltage at AEC, 4...10% at TDC

- Backup time AEC:

Calculated time from 10 times mAs of the respective 2-factor technique. Max. 4s.

- Backup time TDC:

Exposure time set 0.3...6 s

This additional precaution can be switched off for both techniques individually in the menu "Program/ Dose Rate Control/Fault Exposure Detection/ AEC or TDC".

This monitoring does not take effect in the following cases, irrespective of programming:

- Using film/screen combinations with high speed in AEC technique.
- Exposure time in TDC technique is lower than 1 s.

**OPTIMUS 50/65/80** 

### 9.5. Registration devices

- Select menu "Program/ Registration devices/ RGDV 1...8/ Data Set A...B".
- Program the data set A and B of RGDV 1.....8 for all exam./aux. units desired.

#### Data set A:

| Room:                                                          | Room number of the exam./aux. unit for room decade (radiation warning display and door contact).                |                                                          |                                                                                                                                                                      |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tube:                                                          | Tube assignment for the exam./aux. unit.                                                                        |                                                          |                                                                                                                                                                      |
| Release circuit number:                                        | Number of the release decade of the release circuit adaptation unit programm (e.g.: 1 for X1 etc., see Z1-1.2). |                                                          |                                                                                                                                                                      |
| Enable handswitch at release circuit:                          | No<br>Yes                                                                                                       | =                                                        | Operation/release via the handswitch at the desk.<br>Release via release decade.                                                                                     |
| Syncmaster present:                                            | No<br>Yes                                                                                                       | 999                                                      | free cassette (without cassette present interlock) Bucky or tomo synchronous contact (20/21).                                                                        |
| Exposure switch type:                                          | •                                                                                                               | •                                                        | Exposure request instantly with preparation.  Preparation request plus exposure request.                                                                             |
| Bucky format density correction:                               |                                                                                                                 |                                                          | tion in steps of 6%. Range: -8 +8 n the assigned format contact is opened.                                                                                           |
| Cone density correction:                                       |                                                                                                                 |                                                          | tion in steps of 6%. Range: -8 +8<br>n the assigned cone contact is opened.                                                                                          |
| Dose measurement input:                                        | Measurii<br>none                                                                                                | ng cha<br>=                                              | mber respectively at input EZX 21,22,31,32,41  No measuring chamber assigned.  For free cassette or tomography without TDC.                                          |
| No break after exposure end:                                   | no                                                                                                              | =                                                        | Instant braking after exposure.                                                                                                                                      |
|                                                                | yes                                                                                                             | =                                                        | More than one exposure possible with the same preparation. For tomo recommended.                                                                                     |
| Release delay:                                                 | disable<br>enable                                                                                               | OSSO<br>OSSO<br>GRAN                                     | For free cassette and tomography without TDC. For all automatic techniques.                                                                                          |
| Mounted radiographical controller:<br>Bucky contr<br>THORAVISI | oller 12                                                                                                        | Camada<br>camada<br>Camada<br>Camada<br>Camada<br>Camada | No CAN controlled examination unit is assigned to this RGDV. CAN controlled bucky unit 1 or 2 is assigned to this RGDV. THORAVISION system is assigned to this RGDV. |
| Release circuit adaptation unit:                               | Assignm<br>none                                                                                                 | nent of                                                  | the release unit 1WA, 2WA,1WB, 2WB. free cassette or in case of a CAN driven examination unit                                                                        |
| Mounted tomo extension:                                        | none<br>1WA<br>2WA                                                                                              | = =                                                      | Tomography time input not possible via 1WA or 2WA. (1)WAX21 valid as tomography time input. 2WAX21 valid as tomography time input.                                   |

Bucky Controller 1 may only be programmed for RGDV 1...4 and Bucky Controller 2 may only be programmed for RGDV 5...8.

An RGDV must not be assigned a "Mounted radiographical controller" and a "Release circuit adaptation unit" together.

#### Data Set B:

Used for tomo: Yes/No

With "Yes" a definition of the tomography time is expected from the examination

unit, e.g. via WAX21.

Disable time override: Yes/No

With "Yes" time correction via ± buttons on the desk disabled.

Automatically disabled with "Used for tomo = Yes".

Tube power factor: 1 ... 100%

kV steps: Single = kV-grading in steps of 1 kV.

Dose equivalent = kV-grading corresponding to 20% density change.

mAs steps: step width in <u>25</u>, 12 or 6%.

mA steps: step width in 25, 12 or 6%.

time steps: exposure time step width in 25, 12 or 6%.

Density steps: step width in 25, 12 or 6%.

Density correction (6% steps): -8 ... 0 ... +8 correction steps.

For correction see chapter 13.

Underexposure display

(non-automatic techniques): Yes = Underexposure is also indicated with techniques without AMPLIMAT.

No = e.g. tomo

Tube overload protection: On = Overload protection active (default): red = exposure not possible

Off = Exposures are possible irrespective of load status.

| desk display   | tube load |
|----------------|-----------|
| green          | 100 %     |
| green – yellow | 100 %     |
| yellow         | 80 %      |
| yellow – red   | 64 %      |
| red            | 0 %       |

- Select menu "Program/ Registration Devices/ RGDV Interface Assignment/ Bucky/Tomo 1WA...2WA".
   There must be no programming here if the diagnostic unit is connected up via the CAN interface.
- Assign the format and ready contacts of the decade connector WAX11 or WAX12 to a bucky or tomography RGDV.
   Refer to Z1-15.1.

Decade Bucky 1 (X11)
 See following table.

Decade Bucky 2 (X12)
 Program the functions as for the first Bucky decade.

But both the tomo mode switch and the tomo RGDV may not be activated twice.

- Tomo Time 0.1 ... 6000 ms for each trajectory.

One tomography unit can be programmed for each device interface.

#### Decade Bucky 1 ... 2

Tomo mode switch: disable = Input "tomo mode" is not activated. Changeover

Bucky/tomography not possible via the examination unit.

enable = Input "tomo mode" is activated. Remote changeover

Bucky/tomography possible.

Bucky and tomo RGDV must be defined.

Bucky RGDV - switch related: none/ RGDV 1...8

The inputs "format contacts" and "bucky ready" are activated.

When the tomo mode switch is enabled, this RGDV is activated when the

tomo mode switch is open.

Bucky RGDV: none/RGDV 1...8

The inputs "format contacts" and "bucky ready" can be assigned to another

RGDV button.

Tomo RGDV - switch related: none/ RGDV 1...8

The inputs "format contacts" and "tomo ready" are activated.

When the tomo mode switch is enabled, this RGDV is activated when the

tomo mode switch is closed.

· Reset the generator.

### 9.6. Example for RGDV programming

#### 9.6.1. Unit connected via adapter WA

Examination unit: - HDH without / with tomo time input (unit UP)

Tomo programs: 1= 30°, 0.8 s (UP 6/7:01)

2= 30°, 3.2 s (UP 6/7:02) 3= 8°, 0.8 s (UP 6/7:03) 4= 8°, 3.2 s (UP 6/7:04)

Connection via Adapter for 4 Aux. Units WA

Ready and format contacts connected at WAX11.

- 1 tube

RGDV 1 = Bucky Release circuit 1 at WAX1, Measuring chamber at EZX21

RGDV 2 = Tomography Release circuit 2 at WAX2

RGDV 3 = Bucky wall stand Release circuit 3 at WAX3, Measuring chamber at EZX31

RGDV 4 = Free cassette - -

/Free cassette USA Release circuit 4 at WAX4 for free exposure interlock

Programmings in ( ) relate to the option "Automatic tomographic time input" via assembly UP of HDH.

Programmings in [ ] relate to the option "Tomo Density Control".

Programmings after a stroke relate to the option "Free Exposure Interlock", which is necessary in some countries such as the USA.

### Menu "Program/ Registration devices/ ...

| RGDV #/ Data Set A                                        | RGDV1           | RGDV2            | RGDV3           | RGDV4           |
|-----------------------------------------------------------|-----------------|------------------|-----------------|-----------------|
| - Room:                                                   | Room 1          | Room 1           | Room 1          | Room 1          |
| - Tube:                                                   | Tube 1          | Tube 1           | Tube 1          | Tube 1          |
| <ul> <li>Release circuit number:</li> </ul>               | Circuit 1       | Circuit 2        | Circuit 3       | Circuit 4       |
| <ul> <li>Enable handswitch at release circuit:</li> </ul> | No              | No               | No .            | No              |
| <ul> <li>Syncmaster present:</li> </ul>                   | Yes             | Yes              | Yes             | No / Yes        |
| <ul><li>Exposure switch type:</li></ul>                   | Double Step     | Double Step      | Double Step     | Double Step     |
| <ul> <li>Bucky format density correction:</li> </ul>      | 0               | 0                | 0               | 0               |
| <ul> <li>Cone density correction:</li> </ul>              | 0               | 0                | 0               | 0               |
| <ul> <li>Dose measurement input:</li> </ul>               | EZ X21          | none [EZ X21]    | EZ X31          | none            |
| <ul> <li>No break after exposure end:</li> </ul>          | no              | yes              | no              | no              |
| <ul> <li>Release delay:</li> </ul>                        | enable          | disable [enable] | enable          | disable         |
| <ul> <li>Mounted radiographical controller:</li> </ul>    | none            | none             | none            | none            |
| <ul> <li>Release circuit adaptation unit:</li> </ul>      | 1WA             | 1WA              | 1WA             | none / 1WA      |
| <ul><li>Mounted tomo extension:</li></ul>                 | none            | none(1WA)        | none            | none            |
| RGDV #/ Data Set B                                        |                 |                  |                 |                 |
| <ul><li>Used for tomo:</li></ul>                          | No              | No (Yes)         | No              | No              |
| <ul> <li>Disable time override:</li> </ul>                | No              | No               | No              | No              |
| <ul><li>Tube power factor:</li></ul>                      | 100 %           | 100 %            | 100 %           | 100 %           |
| - kV steps:                                               | Dose equivalent | Dose equivalent  | Dose equivalent | Dose equivalent |
| <ul><li>mAs steps:</li></ul>                              | 25%             | 25%              | 25%             | 25%             |
| - mA steps:                                               | 25%             | 25%              | 25%             | 25%             |
| – time steps:                                             | 25%             | 25%              | 25%             | 25%             |
| <ul><li>Density steps:</li></ul>                          | 12%             | 12%              | 12%             | 12%             |
| <ul><li>Density correction (6% steps):</li></ul>          | 0               | 0                | 0               | 0               |
| <ul><li>Underexposure display:</li></ul>                  | Yes             | No               | Yes             | Yes             |
| <ul> <li>Tube overload protection:</li> </ul>             | On              | On               | On              | On              |

## Menu "Program/ Registration devices/ RGDV Interface Assignment/ ...

### Bucky/Tomo 1WA/ Decade Bucky 1 (WAX11)

| - Tomo mode switch:                              | disable (enable) | (activates input at WAX11:3)                  |
|--------------------------------------------------|------------------|-----------------------------------------------|
| <ul> <li>Bucky RGDV – switch related:</li> </ul> | RGDV 1           | activates inputs at WAX11:1 and 10 for RGDV 1 |
| <ul><li>Bucky RGDV:</li></ul>                    | RGDV 3           | activates inputs at WAX11:1 and 10 for RGDV 3 |
| <ul><li>Bucky RGDV:</li></ul>                    | none             |                                               |
| <ul> <li>Tomo RGDV – switch related:</li> </ul>  | RGDV 2           | activates inputs at WAX11:1 and 5 for RGDV 2  |

### Bucky/Tomo 1WA/ Decade Bucky 2 (WAX12)

Tomo mode switch: disable
Bucky RGDV – switch related: none
Bucky RGDV: none
Bucky RGDV: none
Tomo RGDV – switch related: none

### Bucky/Tomo 1WA/ Tomo time

| – Tomo time 1:   | 800 ms  | time setting for input at WAX21:1   |
|------------------|---------|-------------------------------------|
| - Tomo time 2:   | 3200 ms | time setting for input at WAX21:2   |
| - Tomo time 3:   | 800 ms  | time setting for input at WAX21:3   |
| - Tomo time 4:   | 3200 ms | time setting for input at WAX21:4   |
| - Tomo time 5 8: | 0.1 ms  | any valid value for inputs WAX21:58 |

#### 9.6.2. Unit connected via CAN interface

Examination unit:

- Bucky DIAGNOST TH with wall stand VE or VT

with sensing and/or tomography (= with Bucky controller)

1 tube

RGDV 1 = Buckv

Measuring chamber at EZX21

RGDV 2 = Tomography

RGDV 3 = Bucky wall stand

Measuring chamber at EZX31

RGDV 4 = Free cassette

Programmings in [ ] relate to the option "Tomo Density Control".

### Menu "Program/ Registration devices/ ...

| RGDV #/ Data Set A                                          | RGDV1           | RGDV2            | RGDV3           | RGDV4           |  |
|-------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|--|
| - Room:                                                     | Room 1          | Room 1           | Room 1          | Room 1          |  |
| - Tube:                                                     | Tube 1          | Tube 1           | Tube 1          | Tube 1          |  |
| <ul> <li>Release circuit number: does not matter</li> </ul> |                 |                  |                 |                 |  |
| - Enable handswitch at release circuit:                     | No              | No               | No              | No              |  |
| <ul><li>Syncmaster present:</li></ul>                       | Yes             | Yes              | Yes             | No              |  |
| <ul><li>Exposure switch type:</li></ul>                     | Double step     | Double step      | Double step     | Double step     |  |
| <ul> <li>Bucky format density correction:</li> </ul>        | 0               | 0                | 0               | 0               |  |
| <ul><li>Cone density correction:</li></ul>                  | 0               | 0                | 0               | 0               |  |
| <ul> <li>Dose measurement input:</li> </ul>                 | EZ X21          | none [EZ X21]    | EZ X31          | none            |  |
| <ul> <li>No break after exposure end:</li> </ul>            | no              | yes              | no              | no              |  |
| <ul><li>Release delay:</li></ul>                            | enable          | disable [enable] | enable          | disable         |  |
| <ul> <li>Mounted radiographical controller:</li> </ul>      | Bucky contr. 1  | Bucky contr. 1   | Bucky contr. 1  | Bucky contr. 1  |  |
| <ul> <li>Release circuit adaptation unit:</li> </ul>        | none            | none             | none            | none            |  |
| <ul><li>Mounted tomo extension:</li></ul>                   | none            | none             | none            | none            |  |
| RGDV #/ Data Set B                                          | RGDV1           | RGDV2            | RGDV3           | RGDV4           |  |
| <ul><li>Used for tomo:</li></ul>                            | No              | Yes              | No              | No              |  |
| <ul><li>Disable time override:</li></ul>                    | No              | No               | No              | No              |  |
| <ul><li>Tube power factor:</li></ul>                        | 100 %           | 100 %            | 100 %           | 100 %           |  |
| – kV steps:                                                 | Dose equivalent | Dose equivalent  | Dose equivalent | Dose equivalent |  |
| - mAs steps:                                                | 25%             | 25%              | 25%             | 25%             |  |
| - mA steps:                                                 | 25%             | 25%              | 25%             | 25%             |  |
| - time steps:                                               | 25%             | 25%              | 25%             | 25%             |  |
| - Density steps:                                            | 12%             | 12%              | 12%             | 12%             |  |
| - Density correction (6% steps):                            | 0               | 0                | 0               | 0               |  |
| - Underexposure display:                                    | Yes             | No               | Yes             | Yes             |  |
| <ul> <li>Tube overload protection:</li> </ul>               | On              | On               | On              | On              |  |

# Menu "Program/ Registration devices/ RGDV Interface Assignment/ Bucky/Tomo 1WA...2WA/ Decade Bucky 1 ... 2

| - | Tomo mode switch:          | disable |
|---|----------------------------|---------|
| _ | Bucky RGDV switch related: | none    |
|   | Bucky RGDV:                | none    |
| _ | Tomo RGDV switch related:  | none    |

### 10. Tube adjustment



#### Warning!

### Radiation is released during the adjustment procedure!

The generator must be in the READY state, i.e. the green ring at the desk must be illuminated!

### 10.1. Tube conditioning

This procedure must be performed for each new tube to be connected up, irrespective of the storage time. The interval times between exposures must be adhered to and monitored with a watch. For tubes with a maximum of 125 kV the last two break-in stages must be at 109 kV and 125 kV. The break-in of the tube only takes place using the large focus.

- · Perform the following programmings temporarily:
  - In the menu "Program/ Tubes/ Tube Operating Modes":

Intermediate boost:

Disable

Rotation prolongation after prep:

Disable

For each tube connected in one of the assigned RGDVs (free cassette recommended) in the menu
 "Program/ Registration devices/ RGDV #/Data Set A":

Enable handswitch ...:

No

Syncmaster present:

No

Exposure switch type:

Double Step

Dose measurement input:

none

No break after exposure end:

ves

Release delay:

disable

Mounted radiographical controller:

none

Release circuit adaptation unit:

none

- · Reset generator.
- Select appropriately programmed auxiliary for the respective tube to be break in.
- · Select large focus.
- Release exposures according to the following table.

The exposure run must always be made at one kV level without any repeated start-up of the tube, i.e. the PREP button must always remain pressed during the run.

| Number of EXPs                         | kV        | mAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pause [s] |
|----------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5                                      | 81        | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
|                                        |           | -200 A Circle Control | 30        |
| 3                                      | 102       | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
| ************************************** |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30        |
| 2                                      | 117 (109) | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4         |
|                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60        |
| 2                                      | 141 (125) | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
|                                        | ,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120       |

In the event of electrical interference the process must be continued after an interval of 5 minutes, commencing at the lower kV level.

- · Bring generator programming to the original status.
- Reset generator.

After operating intervals at the customer's of over 3 months it is recommended that 5 exposures be made on the large focus at 81 kV and 125 mAs. Between exposures there should be intervals of 15 s.

### 10.2. Adaptation of the tube

Adaptation is an automatic process which has to be performed for each focus of all the tubes connected.

Boost Adaptation, where the inertia of the filament with respect to heating up and cooling down is registered, is integrated into this process.

In case an error message occurs during the adaptation procedure, reset the generator and repeat the adaptation for this particular focus.

- Check whether the <u>upper kV limit</u> for data adaptation in the menu "Program/ Tubes/ Tube Limits" is programmed according to the tube connected.
  - If older tubes are to be operated on this generator, it is urgently recommended that the maximum kV used in practical operation so far be specified instead of the theoretical possible value.
- Select menu "Adjust/ Tube Adaptation".
- Select the tube to be adapted and the focus to be adapted.
   Start with the small focus!
- Press button F2.
  - "Adap" is displayed on the desk.
  - "Waiting" is displayed on the screen.
- Wait until the generator is in the READY state.
- · Start the adaptation procedure by pressing the handswitch continuously.

The generator carries out adaptation of the focus automatically. It may happen that the red LED on the desk lights up for a short time.

The tube adaptation of the focus is complete when "Adap" has disappeared on the desk and "Test" is displayed.

- · Let go of the handswitch.
- · Reset the generator.
- · Repeat the adaptation procedure for each additional focus and tube.

Do not try to adapt VARIOFOCUS as middle focus.

VARIOFOCUS is a combination of both small and large focus.

### 11. Application Limits

Using the menu "Program/Application Limits/X-Mode Limits" all the types of generator technique available can be varied in the following parameters:

- Min./Max. Time Limit
- Min./Max. Current Time Product Limit

A modification is usually only necessary if specific national legislation defines different limits.

The kV-dependent mAs limits can be accessed via the menu "Program/ Application Limits/ Thoravision Limits". They are activated only in conjunction with an on-line THORAVISION unit.

A change may only be made if instructed to do so by the service centre.

Reference files on floppy disk: - ref\_limx.tdl X-ray limits

- ref\_limt.tdl THORAVISION limits

### 12. Programming the operating desk

A maximum of up to 1024 APRs can be stored in the generator.

On a single RGDV button either up to 80 APRs can be programmed directly (10 pages of 8 each) or up to 250 APRs via menus.

The initial data sets are called ### APR name ### and they have the same exposure parameters.

They can be directly assigned or via menu and submenu levels to registration devices RGDV 1...8.

In case "Test APR" is displayed after selection of a registration device, at least this particular registration device has not been assigned to any APRs.

#### 12.1. Language

The language for operating instructions is selected in this menu.

- · Select menu "Program/ Human interface/ Select Language".
- Select the desired language:
  - English
  - German
  - French
  - Spanish
- · Reset the generator.

The following table lists which characters can be displayed on the control desk and how they can be indicated/entered at the service PC, e.g. for APR names.

Certain characters can be generated at the PC only via the decimal code. To do so, press the "Alt" key on the PC and enter the numerical code.

| Charac  | ter display o | n the contro | ol desk | Possible PC display | Input<br>at the P0 |
|---------|---------------|--------------|---------|---------------------|--------------------|
| English | German        | French       | Spanish | (code 850)          |                    |
| I       | !             | !            | l       |                     |                    |
| #       | #             | £            | £       | #                   |                    |
| \$      | \$            | \$           | \$      | \$                  |                    |
| %       | %             | %            | %       | %                   |                    |
| &       | &             | &            | &       | <u> </u>            |                    |
| ,       | ,             | ,            | ,       | ,                   |                    |
| (       | (             | (            | (       | (                   |                    |
| )       | )             | )            | )       | )                   |                    |
| *       | *             | *            | *       | *                   |                    |
| +       | +             | +            | +       | +                   | ···                |
| ,       | ,             | ,            | ,       | ,                   |                    |
| _       | -             | _            |         | -                   | ***                |
|         |               | •            | •       | •                   |                    |
| /       | /             | . / .        | /       | 1                   |                    |
| 0       | 0             | 0            | 0       | 0                   |                    |
| 1       | 1             | 1            | 1       | . 1                 |                    |
| 2       | 2             | 2            | 2       | 2                   |                    |
| 3       | 3             | 3            | 3       | 3                   |                    |
| 4       | 4             | 4            | 4       | 4                   |                    |
| 5       | 5             | 5            | 5       | 5                   |                    |
| 6       | 6             | 6            | 6       | 6                   |                    |
| 7       | 7 8           | 7            | 7       | 7                   |                    |
| 9       | 9             | 8            | 8       | 8                   |                    |
| :       | :             | 9            | 9       | 9                   |                    |
| ;       |               | - :          | :       | :                   |                    |
| ·       | ; <           | ;            | ;       | ;                   | 7.10.00            |
| =       | =             |              |         |                     |                    |
| >       | >             | >            | >       | >                   |                    |
| ?       | ?             | ?            | ?       | ?                   |                    |
| @       | §             | à            | §       | · @                 |                    |
| A       | A             | Α            | A       | A                   |                    |
| В       | В             | В            | В       | В                   |                    |
| С       | С             | С            | С       | С                   |                    |
| D       | D             | D            | D       | D                   |                    |
| E       | E             | E            | E       | Е                   |                    |
| F       | F             | F            | F       | F                   |                    |
| G       | G             | G            | G       | G                   |                    |
| Н       | Н             | Н            | н       | Н                   |                    |
| ı       | ı             | ı            | ī       | 1                   |                    |
| J       | J             | J            | J       | J                   |                    |
| К       | К             | К            | К       | К                   |                    |

| Charac  | ter display o | n the contro | ol desk     | Possible PC<br>display | Input<br>at the PC |
|---------|---------------|--------------|-------------|------------------------|--------------------|
| English | German        | French       | Spanish     | (code 850)             | a, and i           |
| L       | L             | L            | L           | · L                    |                    |
| М       | М             | М            | М           | М                      |                    |
| N       | N             | N            | N           | N                      |                    |
| 0       | 0             | 0            | 0           | 0                      |                    |
| Р       | Р             | Р            | Р           | Р                      |                    |
| Q       | Q             | Q            | ø           | Q                      |                    |
| R       | R             | R            | R           | R                      |                    |
| S       | S             | S            | s           | S                      |                    |
| Т       | Т             | Т            | Т           | Т                      |                    |
| U       | U             | U            | U           | U                      |                    |
| ٧       | V             | V            | ٧           | V                      |                    |
| W       | W             | W            | W           | W                      |                    |
| Х       | Х             | Х            | Х           | Х                      |                    |
| Y       | Υ             | Υ            | Y           | Y                      |                    |
| Z       | Z             | Z            | Z           | Z                      |                    |
| [       | Ä             | •            | i           | ] [                    |                    |
| ١       | Ö             | ç            | Ñ           | \                      |                    |
| ]       | Ü             | §            | خ           | ]                      |                    |
| ^       | ^             | ۸            | ^           | ٨                      |                    |
|         | _             |              |             |                        |                    |
| ,       | ,             |              | 3           | ,                      |                    |
| a       | a             | а            | а           | a                      |                    |
| b       | b             | b            | b           | b                      |                    |
| С       | С             | C            | <u> </u>    | C                      |                    |
| d       | d             | d            | d           | d                      |                    |
| e       | e             | e            | e           | e<br>f                 |                    |
| f       | f             | f            | f           |                        |                    |
| 9       | g             | 9            | g           | 9                      |                    |
| h       | h             | h            | h           | i                      |                    |
| i       | i             | i            | i           |                        |                    |
| j       | j<br>k        | j<br>k       | j<br>k      | j                      |                    |
| k<br>I  | K<br>         | K I          | I K         | 1                      |                    |
|         | ļ             |              | ļ           | n                      |                    |
| m       | m             | m            | m           | r                      |                    |
| n       | n             | n            | n<br>0      | 0                      |                    |
| 0       | 0             | 0            |             |                        |                    |
| P       | р             | р            | p           | F                      |                    |
| q       | q             | q            | q           | C                      |                    |
| r       | r             | r            |             | S                      |                    |
| s       | s<br>t        | s            | s<br>t      |                        |                    |
| t       |               |              |             | ·                      |                    |
| u       | u             | u<br>v       | u<br>V      |                        |                    |
| V W     | V<br>W        |              | <del></del> | v                      |                    |
| w       | W             | W            | w<br>x      |                        | <b>Y</b>           |
| X       | ×             | X            | 1           |                        |                    |

| Charac  | cter display o | Possible PC | Input<br>at the PC                      |                       |          |
|---------|----------------|-------------|-----------------------------------------|-----------------------|----------|
| English | German         | French      | Spanish                                 | display<br>(code 850) | attilero |
| у       | у              | у           | у                                       | у                     |          |
| z       | z              | z           | z                                       | z                     |          |
| {       | ä              | é           |                                         | {                     | Alt +123 |
| I       | ö              | ù           | ñ                                       | l                     | Alt +124 |
| }       | ü              | é           | Ç                                       | }                     | Alt +125 |
| ~       | ß              | -           | ~                                       | ~                     | Alt +126 |
|         |                |             | *************************************** | Δ                     | Alt +127 |
| 4       | 4              | 4           | 4                                       | á                     | Alt +160 |
|         |                |             |                                         | ſ                     | Alt +161 |
| ŀ       | ŀ              | ŀ           | F                                       | ó                     | Alt +162 |
| £       | £              | £           | £                                       | ú                     | Alt +163 |
|         | •              | •           |                                         | ñ                     | Alt +164 |
| §       | §              | §           | §                                       | ō                     | Alt +167 |
| III     | III            | III         | III                                     | ¿                     | Alt +168 |
|         |                |             |                                         | ®                     | Alt +169 |
| ■       | =              | =           | =                                       | -                     | Alt +170 |
| =       | =              | =           | =                                       | 1/2                   | Alt +171 |
|         |                |             |                                         |                       | Alt +172 |
|         |                |             |                                         |                       | Alt +173 |
|         |                |             |                                         |                       | Alt +174 |
|         |                |             | ****                                    |                       | Alt +175 |
| 0       | 0              | ٥           | 0                                       |                       | Alt +176 |
| ±       | ±              | ±           | ±                                       | Ä                     | Alt +177 |
| 2       | 2              | 2           | 2                                       |                       | Alt +178 |
| À       | À              | À           | À                                       | L                     | Alt +192 |
| Á       | Á              | Á           | Á                                       | 1                     | Alt +193 |
| Â       | Â              | Â           | Â                                       | Т                     | Alt +194 |
| Ã       | Ã              | Ã           | Ã                                       | F                     | Alt +195 |
| Ä       | Ä              | Ä           | Ä                                       |                       | Alt +196 |
| Å       | Å              | Å           | Å                                       | +                     | Alt +197 |
| Æ       | Æ              | Æ           | Æ                                       | ã                     | Alt +198 |
| Ç       | Ç              | Ç           | Ç                                       | Ã                     | Alt +199 |
| È       | È              | È           | È                                       | L                     | Alt +200 |
| É       | É              | É           | É                                       | F                     | Alt +201 |
| Ê       | Ê              | Ê           | Ê                                       | <u>I</u>              | Alt +202 |
| Ë       | Ë              | Ë           | Ë                                       | TF                    | Alt +203 |
| ì       | ì              | ì           | ì                                       | ŀ                     | Alt +204 |
| í       | ſ              | ſ           | ĺ                                       |                       | Alt +205 |
| Î       | î              | î           | î                                       | 44                    | Alt +206 |
| Ϊ       | ï              | Ϊ           | Ï                                       | ¤                     | Alt +207 |
|         |                |             |                                         | δ                     | Alt +208 |
| Ñ       | Ñ              | Ñ           | Ñ                                       | Ð                     | Alt +209 |
| Ò       | Ò              | Ò           | Ò                                       | Ê                     | Alt +210 |
| Ó       | Ó              | Ó           | Ó                                       | Ë                     | Alt +211 |
| Ô       | Ô              | Ô           | Ô                                       | È                     | Alt +212 |
|         |                |             |                                         |                       |          |

| English German French Spanish (code 850)  O O O O O I Alt +213 O O O O O I Alt +214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Charac   | cter display o | Possible PC | Input<br>at the PC |                                                  |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------|--------------------|--------------------------------------------------|----------|
| Ö         Ö         Ö         j         Alt +214           Ø         Ø         Ø         j         Alt +215           Ø         Ø         Ø         j         Alt +216           Ü         Ü         Ü         Ü         J         Alt +217           Ü         Ü         Ü         Ü         J         Alt +218           Ü         Ü         Ü         Ü         J         Alt +219           Ü         Ü         Ü         Ü         Alt +221           Ä         Alt +221         À         Alt +222           Ä         Ä         Ä         Alt +222           Ä         Ä         Ä         Alt +223           Ä         Ä         Ä         Ä         Alt +223           Ä         Ä         Ä         Ä         Alt +224           Ä         Ä         Ä         Ä         Alt +223           Ä         Ä         Ä         Ä         Alt +226           Ä         Ä         Ä         Ä         Alt +227           Ä         Ä         Ä         Ä         Ä         Alt +227           Ä         Ä         Ä         Ä<                                                                                                                                                                                                                                                                                            | English  | German         | French      | Spanish            |                                                  | at the r |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Õ        | Õ              | Õ           | Õ                  | I                                                | Alt +213 |
| Ø         Ø         Ø         T         Alt +216           Ü         Ü         Ü         Ü         Ü         J         Alt +217           Ü         Ü         Ü         Ü         Ü         Alt +218         Ü         Ü         I         Alt +218         Ü         Ü         I         Alt +219         Ü         I         Alt +219         Ü         I         Alt +221         I         Alt +221         I         Alt +222         I         Alt +222         I         Alt +222         I         Alt +223         I         Alt +223         I         Alt +224         I         Alt +223         I         I         Alt +233         I </td <td>Ö</td> <td>Ö</td> <td>Ö</td> <td>Ö</td> <td>ſ</td> <td>Alt +214</td>                                | Ö        | Ö              | Ö           | Ö                  | ſ                                                | Alt +214 |
| Ù         Ù         Ù         Û         J         Alt +217           Û         Û         Û         Û         I         Alt +218           Û         Û         Û         Û         I         Alt +219           Û         Û         Û         I         Alt +221           Û         Û         Û         I         Alt +222           Î         Alt +222         Î         Alt +223         Â           Î         Â         Â         Â         Â         Â         Alt +223         Â         Â         Â         Alt +224         Â         Â         Â         Â         Alt +224         Â         Â         Â         Alt +222         Â         Â         Â         Alt +224         Â         Â         Â         Alt +225         Â         Â         Â         Alt +226         Â         Â         Â         Alt +226         Â         Â         Â         Â         Â         Â         Â         Â         Â         Â         Â         Â         Â                                                                                                                                                                                                                |          |                |             |                    | î                                                | Alt +215 |
| Ú         Ú         Ú         Ú         I         Alt +218           Ü         Ü         Ü         Ü         I         Alt +219           Ü         Ü         Ü         Ü         I         Alt +221           Ü         Ü         Ü         Ü         I         Alt +221           I         Alt +222         I         Alt +222         I         Alt +223         I         Alt +223         I         I         Alt +224         I         Alt +224         I         Alt +224         I         Alt +226         I         I         Alt +225         I         I         Alt +226         I         I         Alt +226         I         I         I         Alt +226         I         I         I         Alt +226         I         I         Alt +227         I         I         I         Alt +228         I         Alt +229         I         Alt +229         I         I         Alt +229         I         I         Alt +229         I         I         Alt +229         I         I         I         I         I         I         I<                                                                                                                                                       | Ø        | Ø              | Ø           | Ø                  | ï                                                | Alt +216 |
| Û         Û         Û         Û         I         Alt +219           Û         Û         Û         Û         I         Alt +220           Ŷ         Ŷ         Ŷ         Ŷ         Î         Alt +221           â         â         â         â         Alt +222           â         â         â         â         Alt +224           â         â         â         â         Alt +225           â         â         â         â         Alt +226           â         â         â         â         Alt +227           â         â         â         â         Alt +226           â         â         â         â         Alt +227           â         â         â         â         Alt +227           â         â         â         Alt +228           â         â         â         Alt +229           a         Alt +239         Alt +230           a         Alt +232                                                                                                                                                                                                                                                                                                 | ù        | Ù              | Ù           | Ù                  | J                                                | Alt +217 |
| Ü         Ü         Ü         Ü         I         Alt +220           Y         Y         Y         Y         I         Alt +221           i         Alt +222         I         Alt +223         Alt +224         Alt +224         Alt +225         Alt +225         Alt +226         Alt +226         Alt +226         Alt +226         Alt +226         Alt +226         Alt +227         Alt +226         Alt +227         Alt +228         Alt +228         Alt +228         Alt +228         Alt +229         Alt +230         Alt +233         Alt +234         Alt +234         Alt +234         Alt +236         Alt +236         Alt +237         Alt +237         Alt +237         Alt +237         Alt +237         Alt +239         Alt +239         Alt +239         Alt +239         Alt +239         Alt +239         Alt +2420         Alt +2424         Alt +2424         Alt +2424         Alt +2424         Al | Ú        | Ú              | Ú           | Ú                  | Γ                                                | Alt +218 |
| Ý         Ý         Ý         Í         Alt +221           B         B         B         Alt +223           à         à         à         Å         Alt +224           à         à         à         Å         Alt +225           à         à         à         Å         Alt +225           à         à         à         Å         Alt +226           ā         à         à         Å         Å         Alt +227           ā         ā         ā         ā         Å         Å         Alt +228           ā         ā         ā         ā         Å         Å         Alt +228           ā         ā         ā         ā         Å         Å         Alt +228           ā         ā         ā         ā         Å         Alt +229         Alt +229         Alt +230         Alt +229         Alt +231         Alt +232         Alt +233         Alt +233         Alt +233         Alt +234         Alt +233         Alt +234         Alt +235         Alt +236         Alt +236         Alt +236         Alt                                                                                                                                                                                       | Û        | Û              | Û           | Û                  |                                                  | Alt +219 |
| β         β         β         β         Alt +223           à         à         à         à         Ó         Alt +224           á         á         á         á         β         Alt +225           á         á         á         á         h         Alt +226           ã         á         á         â         ò         Alt +227           ä         á         ā         ā         ò         Alt +228           ā         á         â         â         ò         Alt +228           ā         â         â         â         ò         Alt +228           ā         â         â         â         ò         Alt +228           ā         â         â         â         ò         Alt +229           æ         æ         æ         µ         Alt +229           æ         æ         æ         µ         Alt +230           ¢         ç         ç         ç         p         Alt +232           e         e         e         e         û         Ú         Alt +233           i         i         i         í         í         ý <td>Ü</td> <td>Ü</td> <td>Ü</td> <td>ΰ</td> <td></td> <td>Alt +220</td>                                                                                                                                                                                                                | Ü        | Ü              | Ü           | ΰ                  |                                                  | Alt +220 |
| β         β         β         Alt +223           à         à         à         Ó         Alt +224           á         á         á         β         Alt +225           á         á         á         â         Å         Alt +226           ã         ã         ã         ã         Å         O         Alt +227           ä         ã         ã         ã         Å         O         Alt +228           å         â         â         â         Å         O         Alt +228           æ         æ         æ         µ         Alt +229         P         Alt +229           æ         æ         æ         æ         µ         Alt +231         Alt +232         Alt +232         E         E         Ø         Ø         Alt +233         Alt +233         Alt +234         Alt +235         Alt +236         Alt +236         Alt +236 <td>Ý</td> <td>Ý</td> <td>Ý</td> <td>Ý</td> <td>1</td> <td>Alt +221</td>                                                                                                                                                             | Ý        | Ý              | Ý           | Ý                  | 1                                                | Alt +221 |
| à         à         à         à         Ó         Alt +224           á         á         á         á         β         Alt +225           â         á         â         â         Ó         Alt +226           ā         â         â         â         ô         Alt +227           ā         â         â         â         ô         Alt +228           â         â         â         â         ô         Alt +229           æ         æ         æ         µ         Alt +229           æ         æ         æ         µ         Alt +230           ç         ç         ç         p         Alt +231           è         è         è         û         Ú         Alt +232           é         é         é         é         û         Ú         Alt +233           i         i         i         í         í         í <td></td> <td></td> <td></td> <td></td> <td>ì</td> <td>Alt +222</td>                                                                                                                                                                                                                   |          |                |             |                    | ì                                                | Alt +222 |
| á       á       á       á       β       Alt +225         â       â       â       â       û       Alt +226         ã       ã       ã       â       û       Alt +227         ä       â       â       â       û       Alt +228         å       â       â       â       û       Alt +228         â       â       â       â       û       Alt +229         æ       æ       æ       µ       Alt +230         æ       æ       æ       µ       Alt +231         è       è       è       è       þ       Alt +232         é       é       é       é       Ú       Alt +233         è       è       è       è       Û       Alt +234         i       i       i       j       j       Alt +235         i       i       j       j       Alt +235         i       i       j       j       Alt +235         i       i       j       j       Alt +236         i       j       j       Alt +237         i       i       j       j       Alt +243                                                                                                                                                                                                                                                                                                                                                                                             | ß        | ß              | ß           | ß                  |                                                  | Alt +223 |
| â       â       â       â       â       û       Alt +226         ā       ā       ā       ā       û       Alt +228         â       â       â       â       û       Alt +228         â       â       â       â       û       Alt +229         æ       æ       æ       µ       Alt +230         ç       ç       ç       p       Alt +231         è       è       è       è       þ       Alt +232         é       é       é       é       Ú       Alt +233         è       è       è       è       Ú       Alt +234         è       è       è       è       Ú       Alt +234         i       i       i       i       ý       Alt +235         i       i       i       i       ý       Alt +235         i       i       i       i       ý       Alt +234         i       i       i       i       ý       Alt +235         i       i       i       i       i       i       i       i       i       i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                      | à        | à              | à           | à                  | Ó                                                | Alt +224 |
| ā         ā         ā         ā         Ö         Alt +227           ā         ā         ā         ā         ā         Ö         Alt +228           ā         ā         ā         ā         Ö         Alt +228           ā         ā         ā         ā         Ö         Alt +229           æ         æ         æ         µ         Alt +230           ç         ç         ç         p         P         Alt +231           è         è         è         è         þ         Alt +232           é         é         é         é         Ú         Alt +233           è         è         è         è         Û         Alt +234           i         i         i         i         j         Alt +235           i         i         i         i         j         Alt +237           i         i         i         i <td>á</td> <td>á</td> <td>á</td> <td>á</td> <td>β</td> <td>Alt +225</td>                                                                                                                                                                                                               | á        | á              | á           | á                  | β                                                | Alt +225 |
| ä         ä         ä         ö         Alt +228           å         å         å         å         Ö         Alt +229           æ         æ         æ         µ         Alt +230           ç         ç         ç         ç         p         Alt +231           è         è         è         è         þ         Alt +232           é         é         é         é         Ú         Alt +233           è         è         è         è         Ú         Alt +234           è         è         è         è         Ú         Alt +234           è         è         è         è         Ú         Alt +234           i         i         i         i         j         Alt +235           i         i         i         i         j         Alt +234           i         i         i         i         j         Alt +234           i         i         i         i         j         Alt +237           i         i         i         i         j         Alt +238           i         i         i         i         j         Alt +                                                                                                                                                                                                                                                                                    | â        | â              | â           | â                  | Ô                                                | Alt +226 |
| â       â       â       â       â       Ó       Alt +229         æ       æ       æ       µ       Alt +230         ç       ç       ç       þ       Alt +231         è       è       è       è       þ       Alt +232         é       é       é       é       Ú       Alt +233         è       è       è       è       Ú       Alt +234         ë       ë       è       è       Ú       Alt +235         i       i       i       i       ý       Alt +235         i       i       i       i       ý       Alt +235         i       i       i       i       ý       Alt +235         i       i       i       i       j       Alt +235         i       i       i       i       j       Alt +235         i       i       i       i       j       Alt +236         i       i       i       i       j       Alt +247         i       i       i       i       i       i       Alt +248         i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                             | ã        | ã              | ã           | ã                  | Ò                                                | Alt +227 |
| æ         æ         æ         μ         Alt +230           ç         ç         ç         p         Alt +231           è         è         è         þ         Alt +232           é         é         é         é         ú         Alt +233           è         è         è         è         Ú         Alt +234           ë         ë         ë         Û         Alt +235           ì         ì         ì         i         ý         Alt +236           í         í         í         í         ý         Alt +236           í         í         í         í         ý         Alt +237           i         í         í         í         ý         Alt +238           ï         i         i         i         Alt +238           ï         ñ         ñ         ñ         Alt +239           a         Alt +240         â         Alt +242           ô         ô         ô </td <td>ä</td> <td>ä</td> <td>ä</td> <td>ä</td> <td>ő</td> <td>Alt +228</td>                                                                                                                                                                                                               | ä        | ä              | ä           | ä                  | ő                                                | Alt +228 |
| Ç         Ç         Ç         P         Alt +231           è         è         è         è         p         Alt +232           é         é         é         é         Ú         Alt +233           è         è         è         û         Alt +234           ë         ë         ë         Û         Alt +235           i         i         i         i         ý         Alt +236           i         i         i         i         ý         Alt +236           i         i         i         i         ý         Alt +236           i         i         i         i         j         Alt +237           i         i         i         i         i         Alt +238           i         i         i         i         i         Alt +238           i         i         i         i         Alt +238           i         i         i         i         Alt +239           .         Alt +249         .         Alt +244           ò         ò         ò         ò         d         Alt +242           ò         ò         ò                                                                                                                                                                                                                                                                                            | å        | å              | å           | å                  | Ő                                                | Alt +229 |
| è         è         è         b         Alt +232           é         é         é         é         Ú         Alt +233           è         è         è         û         Alt +234           ë         ë         ë         û         Alt +234           ë         ë         ë         ù         Alt +235           i         i         i         i         ý         Alt +236           i         i         i         i         ý         Alt +236           i         i         i         i         ý         Alt +236           i         i         i         i         j         Alt +237           i         i         i         i         i         Alt +238           i         i         i         i         i         Alt +238           i         i         i         i         i         Alt +238           i         i         i         i         i         Alt +239           i         i         i         i         i         Alt +241           ò         ò         ò         ò         ò         i         Alt +242                                                                                                                                                                                                                                                                                           | æ        | æ              | æ           | æ                  | μ                                                | Alt +230 |
| è         è         è         p         Alt +232           é         é         é         ú         Alt +233           è         ê         ê         û         Alt +234           ë         ë         ë         û         Alt +235           ì         ì         ì         ý         Alt +236           i         í         í         í         ý         Alt +238           i         í         í         í         í         Alt +238           i         í         í         í         Alt +238           i         í         í         í         Alt +239           a         Alt +240         á         Alt +240           ñ         ñ         ñ         ñ         ñ         ñ         Alt +241           ò         ó         ó         ó         ð         Alt +242           ò <td>ç</td> <td>ç</td> <td>ç</td> <td>ç</td> <td>Þ</td> <td>Alt +231</td>                                                                                                                                                                                                                    | ç        | ç              | ç           | ç                  | Þ                                                | Alt +231 |
| ê         ê         ê         ê         û         Alt +234           ë         ë         ë         û         Alt +235           i         i         i         i         ý         Alt +236           i         i         i         i         ý         Alt +237           i         i         i         i         y         Alt +237           i         i         i         i         Alt +238           i         i         i         Alt +239           a         Alt +249         alt +240           i         i         i         i         Alt +241           i         i         i         i         i         Alt +242           i         i         i         i         i         Alt +243           i         i         i         i         i         i         i         i         i         i         i         i         i         i <td< td=""><td></td><td></td><td>è</td><td>è</td><td>þ</td><td>Alt +232</td></td<>                                                                                                                                                                                                        |          |                | è           | è                  | þ                                                | Alt +232 |
| ë         ë         ë         Ù         Alt +235           ì         ì         ì         ì         ý         Alt +236           í         í         í         í         ý         Alt +237           î         î         î         î         i         Alt +237           î         î         î         î         i         Alt +238           ï         ï         ï         ï         i         Alt +238           ï         ï         ï         ï         Alt +239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | é        | é              | é           | é                  | Ú                                                | Alt +233 |
| ì         ì         ì         ý         Alt +236           í         í         í         ý         Alt +237           î         î         î         î         i         Alt +238           ï         î         ï         ï         i         Alt +238           ï         ï         ï         ï         Alt +238           ö         ö         a         Alt +239           a         Alt +240         alt +240           ñ         ñ         ñ         ñ         i         alt +241           ò         ò         ò         ò         alt +242         alt +242           ó         ó         ó         ó         ¾         Alt +243           ò         ò         ò         ö         ¶         Alt +243           ò         ò         ò         ö         ¶         Alt +243           ò         ò         ò         ö         ¶         Alt +244           ò         ö         ö         ö         ö         alt +245           ö         ö         ö         ö         alt +246           ò         ö         ö         ö         alt                                                                                                                                                                                                                                                                                   | ê        | ê              | ê           | ê                  | Û                                                | Alt +234 |
| Í         Í         Í         Í         Ý         Alt +237           Î         Î         Î         Î         I         Alt +238           Ï         Î         Î         Î         Alt +239           .         Alt +240         .         Alt +240           .         .         Alt +241         .         Alt +241           .         .         .         Alt +242         .           .         .         .         Alt +242         .           .         .         .         .         Alt +242           .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                                                                                                                                                                          | ë        | ë              | ë           | ë                  | Ù                                                | Alt +235 |
| Î       Î       Î       Î       Î       Î       Alt +238         Î       Î       Î       Î       Î       Alt +238         Î       Î       Î       Î       Alt +239         a       Alt +240       a       Alt +240         Î       Î       Î       Î       Alt +241         Î       Î       Î       Î       Alt +241         Î       Î       Î       Î       Alt +242         Î       Î       Î       Î       Alt +242         Î       Î       Î       Î       Alt +243         Î       Î       Î       Î       Alt +243         Î       Î       Î       Î       Alt +244         Î       Î       Î       Î       Alt +244         Î       Î       Î       Î       Alt +245         Î       Î       Î       Î       Alt +245         Î       Î       Î       Î       Alt +246         Î       Î       Î       Î       Î       Alt +247         Î       Î       Î       Î       Î       Î       Î       Î       Î       Î       Î                                                                                                                                                                                                                                                                                                                                                                                             | 1        | ì              | ì           | ì                  | ý                                                | Alt +236 |
| i       i       i       i       i       Alt +238         i       i       i       i       Alt +239         a       Alt +240       a       Alt +240         n       n       n       i       Alt +241         o       o       o       o       a       Alt +242         o       o       o       o       o       a       Alt +243         o       o       o       o       f       Alt +243         o       o       o       o       f       Alt +244         o       o       o       o       f       Alt +245         o       o       o       o       f       Alt +245         o       o       o       o       o       a       Alt +246         o       o       o       o       o       a       a       a       Alt +248         o       o </td <td>í</td> <td>í</td> <td>ſ</td> <td>ſ</td> <td>Ý</td> <td>Alt +237</td>                                                                                                                                                                                                                                                                                                        | í        | í              | ſ           | ſ                  | Ý                                                | Alt +237 |
| n n n n n n ± Alt +240  n n n n n m ± Alt +241  n n n n m ± Alt +241  n n n n m ± Alt +242  n n n n m m ± Alt +242  n n n n n m ± Alt +242  n n n n n m m ± Alt +242  n n n n n m m m m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | î        | î              | î           | î                  | 9                                                | Alt +238 |
| ñ         ñ         ñ         t         Alt +241           ò         ò         ò         ò         =         Alt +242           ó         ó         ó         ó         ¾         Alt +243           ô         ô         ô         ô         ¶         Alt +243           ô         ô         ô         ô         ¶         Alt +244           ô         ô         ô         ô         ¶         Alt +245           ö         ö         ö         ö         ÷         Alt +246           w         w         ø         o         Alt +246           w         w         ø         o         Alt +246           w         w         ø         o         Alt +248           w         w         w         o         Alt +248           w         w         w         o         Alt +248           w         w         w         o         Alt +249           w         w         w         u         o         Alt +250           w         w         w         w         o         Alt +251           w         w         w <td< td=""><td>ï</td><td>ï</td><td>ï</td><td>ï</td><td><del>                                     </del></td><td>Alt +239</td></td<>                                                                                                                                                               | ï        | ï              | ï           | ï                  | <del>                                     </del> | Alt +239 |
| ò       ò       ò       =       Alt +242         ó       ó       ó       ó       ¾       Alt +243         ò       ô       ô       ô       ¾       Alt +244         õ       ô       ô       ô       ¾       Alt +244         õ       ô       ô       ô       ô       ¾       Alt +245         ö       ö       ö       ö       ÷       Alt +246         w       Ø       Ø       Ø       Alt +247         Ø       Ø       Ø       Ø       Alt +248         ù       ù       ù       ù       ∴       Alt +248         ù       û       û       û       ∴       Alt +249         ú       û       û       û       ∴       Alt +250         û       û       û       û       i       Alt +251         ü       ü       ü       û       û       û       â       Alt +252         ý       ý       ý       ý       ½       Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                | <i></i>     |                    | a                                                | Alt +240 |
| Ó       Ó       Ó       Ó       ¾       Alt +243         Ô       Ô       Ô       I       Alt +244         Õ       Õ       Õ       I       Alt +245         Ö       Ö       Ö       Ö       I       Alt +245         Ö       Ö       Ö       Ö       I       Alt +246         W       W       W       W       W       Alt +247         Ø       Ø       Ø       Ø       O       Alt +248         W       W       W       W       W       Alt +248         W       W       W       W       Alt +249         W       W       W       W       Alt +250         W       W       W                                                                                                                                                                                                                                                                                                                                                                                            | ñ        | ñ              | ñ           | ñ                  | ±                                                | Alt +241 |
| ô       ô       ô       û       I       Alt +244         ô       ô       ô       ô       §       Alt +245         ö       ö       ö       ö       ÷       Alt +245         ö       ö       ö       ÷       Alt +246         u       u       u       alt +247         w       w       w       o       Alt +248         u       u       u       u       alt +249         u       u       u       u       alt +250         u       u       u       u       alt +251         u       u       u       u       alt +251         u       u       u       u       alt +252         y       y       y       y       y       alt +253         a       Alt +254       alt +254       alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ò        | ò              | ò           | ò                  | =                                                | Alt +242 |
| Õ       Õ       Õ       Š       Alt +245         Ö       Ö       Ö       Ö       ÷       Alt +246         U       Alt +247       Alt +247       Alt +247         Ø       Ø       Ø       °       Alt +248         Ù       Ù       Ù       "       Alt +249         Ú       Ú       Ú       Ú       Alt +250         Û       Û       Û       Û       I       Alt +251         Ü       Ü       Ü       Ü       Ü       Alt +251         Ü       Ü       Ü       Ü       Ü       Alt +252         Ý       Ý       Ý       Ý       Alt +253         Alt +254       Alt +254       Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ó        | ó              | ó           | ó                  | 3/4                                              | Alt +243 |
| Ö       Ö       Ö       Ö       ÷       Alt +246         Image: Alt +247       Alt +247       Alt +247       Alt +248       Alt +248       Alt +248       Alt +248       Alt +249       Alt +249       Alt +250       Alt +250       Alt +250       Alt +251       Alt +251       Alt +251       Alt +252       Alt +252       Alt +252       Alt +253       Alt +253       Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ô        | ô              | ô           | ô                  | I                                                | Alt +244 |
| Ø       Ø       Ø       Ø       Alt +247         Ø       Ø       Ø       °       Alt +248         ù       ù       ù       ù        Alt +249         ú       ú       ú       ú        Alt +250         û       û       û       û       i       Alt +251         ü       ü       ü       ü       3       Alt +252         ý       ý       ý       ý       2       Alt +253         Mit +254       Mit +254       Mit +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | õ        | õ              | õ           | õ                  | §                                                | Alt +245 |
| Ø       Ø       Ø       °       Alt +248         ù       ù       ù       ù       "       Alt +249         ú       ú       ú       ú       ·       Alt +250         û       û       û       û       i       Alt +251         ü       ü       ü       ü       ü       3       Alt +251         ý       ý       ý       ý       2       Alt +252         ý       ý       ý       2       Alt +253         a       Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ö        | ö              | ö           | ö                  | ÷                                                | Alt +246 |
| ù       ù       ù       ù        Alt +249         ú       ú       ú       ú        Alt +250         û       û       û       û        Alt +251         ü       ü       ü       ü       3       Alt +251         ü       ü       ü       ü       3       Alt +252         ý       ý       ý       ý       2       Alt +253          Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |             |                    | 40                                               | Alt +247 |
| ú     ú     ú     ú     ú     .     Alt +250       û     û     û     û     i     Alt +251       ü     ü     ü     ü     i     Alt +251       ü     ü     ü     ü     3     Alt +252       ý     ý     ý     ý     2     Alt +253       .     Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ø        | ø              | Ø           | ø                  | 0                                                | Alt +248 |
| û     û     û     û     i     Alt +251       ü     ü     ü     ü     3     Alt +252       ý     ý     ý     ý     2     Alt +253       Image: Alt +254     Image: Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ù        | ù              | ù           | ù                  | 99                                               | Alt +249 |
| ü         ü         ü         ü         3         Alt +252           ý         ý         ý         ý         2         Alt +253           Image: Alt +254         Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ú        | ú              | ú           | ú                  | 9                                                | Alt +250 |
| ý ý ý ý 2 Alt +253  Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | û        | û              | û           | û                  | 1                                                | Alt +251 |
| y y y y Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ü        | ü              | ü           | ü                  | 3                                                | Alt +252 |
| ■ Alt +254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ý        | ý              | ý           | ý                  | 2                                                | Alt +253 |
| Alt +255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u> | <u> </u>       |             |                    | 3                                                | Alt +254 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |             |                    |                                                  |          |

### 12.2. Automatic programming of APRs

The installation disk contains data files for a complete, typical APR programming in different languages.

Standard APR programs for each application can easily and quickly be loaded for each registration device.

#### Note

During this procedure the CAN interface on EZX43 must be disconnected if present (THORAVISION or Bucky TH with bucky controller).

- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Predefined assignment".
- Select with TAB and cursor-down key one of the files listed up, e.g. "ar65eng.tdl".

```
Meaning:
                       APR data file
                       radiography
           r
                 =
           65
                       version (month/year)
                 =
           m
                       mono focus tube
                       pediatrics
                 _
                       with VARIOFOCUS settings for RO 1750, SRO 2550, SRO 33 100
           ν9
                 =
                       with VARIOFOCUS settings for SRO 0950
                       language;
                                   en(g) = English,
           eng
                 =
                                                          de(u) = German,
                                   es(p) = Spanish,
                                                          fr(a) = French
```

Select one of the applications listed up, e.g. "Bucky", and load the data file.

#### Applications:

| <ul><li>Bucky</li></ul>       |   | bucky                                                 |                                                |  |  |  |
|-------------------------------|---|-------------------------------------------------------|------------------------------------------------|--|--|--|
| <ul><li>Wallstd</li></ul>     |   | bucky at wa                                           | allstand                                       |  |  |  |
| - Free                        |   | free casset                                           | te                                             |  |  |  |
| <ul><li>Tomo LT/HDH</li></ul> |   | linear tomo                                           | graphy with units HDH, BTS2, BTS4 (group)      |  |  |  |
| <ul><li>Tomo LIN</li></ul>    |   | linear tomography with units HDH, BTS2, BTS4 (paging) |                                                |  |  |  |
| <ul><li>Tomo BTC</li></ul>    |   | tomography                                            | with unit Bucky DIAGNOST TC                    |  |  |  |
| <ul><li>Tomo BTH</li></ul>    |   | tomography                                            | with unit Bucky DIAGNOST TH                    |  |  |  |
| Extension GR                  | = | Group;                                                | APRs are divided into groups (menu technique), |  |  |  |
| Extension PA                  | = | Paging;                                               | APRs are assigned directly to an application.  |  |  |  |

- Repeat this procedure for each registration device.
- Reset the generator.

Now all APR programs which have been loaded are displayed on the desk.

### If required:

- · Change the name and the contents of the APRs according to 12.4.
- Change the menus and the assignment of the APRs according to 12.3.

#### Note

In case a complete APR program setting is to be replaced by another program setting, all other APR program settings under the registration device concerned must be deleted first.

For deleting a program setting call menu "Program/Human interface/RGDV related assignment/RGDV 1...8/Manual assignment/ **Delete menu**" and select the blank line.

### 12.3. Manual programming of APRs

# Manual APR and menu assignment possibilities

• Select service menu Program/ Human interface/ RGDV Related Assignment/ RGDV 1...8 /Manual Assignment ...



### 12.3.1. Creating menus

• Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Menu assignment/ Assign menu".

- Enter the first menu name, e.g. "Body region 1".
- If required, change the location suggested in the display. Otherwise the next vacant location is assigned.
- Enter the second menu name, e.g. "Body region 2".

Etc.

### 12.3.2. Creating sub menus

- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Menu assignment/ Select menu".
- Select with the cursor from one of the windows a menu to be assigned with submenus.
- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Menu assignment/ Assign menu".
- Enter the first submenu name, e.g. "Left side".
- If required, change the location suggested in the display. Otherwise the next vacant location is assigned.
- Enter the second submenu name, e.g. "Right side".

Etc.

#### 12.3.3. Creating or assigning APRs

- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ APR assignment/ Select menu".
- Select with the cursor from one of the windows a menu or submenu. If no menu layer is desired, proceed to assign APR.
- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ APR assignment/ Assign APR".
- · Select from one of the windows an initial APR or an APR which has not been assigned.

Initial APR:

"### APR name ###

Not assigned APR:

e.g. "Thorax ap"

- If required, change the location suggested in the display. Otherwise the next vacant location is assigned.
- · Assign the next APR.

Etc.

Reset the generator.

Only after a reset of the generator the menus, submenus and APRs are displayed on the desk.

### 12.4. Changing of APRs

- Select the APR to be changed on the desk, e.g. ### APR name ###.
- Select menu "Program/ Human interface/ APR data set/ Select APR data set".
   The number of the APR selected on the desk is displayed. Transmit data with <F2>.
- Select menu "Program/ Human interface/ APR data set/ Change APR data set".
- Change the contents of the APR, e.g. name, kV etc.

It is recommended that you select the kV value according to the dose-equivalent series:

40-41-42-44-46-48-50-52-55-57-60-63-66-70-73-77-81-85-90-96-102-109-117-125-133-141-150 kV.

APR number: 1 ... 1024 APR name: up to 16 characters small/ middle / vario/ large Focus: 20%, 35%, 50%, 65%, 80% of small focus Vario focus ratio [%]: on/off Dose measurement field (left) Dose measurement field (middle) on/ off on/ off Dose measurement field (right) Non automatic/automatic Preferred technique: AEC falling load kV/ AEC fixed current kV-mA/ AEC technique: TDC (Tomo Density Control) kV-mA-ms/ kV-mAs/ kV-mAs-ms No AEC technique: Tube current max. factor [%]: 1 ... 100 PSC U thin (dose equiv. steps): 0 ... 5 0 ... 5 PSC U thick (dose equiv. steps): 0 ... 10 PSC Q thin (6% steps): 0...10 PSC Q thick (6% steps): PSC dens. thin (6% steps): 0 ... 10 PSC dens. thick (6% steps): 0 ... 10 40 ... 150 Exposure data U [kV]: Exposure data | [mA]: 0.1 ... 2000 0.001 ... 1000 Exposure data Q [mAs]: 1 ... 16000 (60000) Exposure time [ms]: -16...+16Exposure data density (6% steps): RGDV-dependent; Default = Data Set 1 Film screen comb.: Tomo No.: 1 ... 16 assignment of a tomographic figure Spectral Filter: none/2mm Al/0.1mm Cu + 1mm Al / 0.2mm Cu + 1mm Al; Default = none

### AEC = Automatic Exposure Control

The following parameters must also be taken into account for AEC techniques:

mas: basis for calculating the backup time for AEC, the tube current for AEC fixed current (kV-mA) and the

initial mA value for TDC

t: exposure time for TDC and AEC fixed current

For details see chapters 15 and 16.

If "AEC fixed current kV-mA" or "TDC" is programmed as the preferred technique, the kV-mAs-s- technique must be selected under "No AEC technique".

- Transmit data with <F2>.
- Select the next APR on the desk, select it in the programming menu and change it.

#### Etc.

· Reset the generator.

<sup>\* =</sup> The basic setting of this data can also be performed from the desk ("Reset" + APR). Refer to the operator's manual.

### 12.7. Manipulating menus

#### Deleting:

• Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Delete menu".

- Select the menu or submenu to be deleted from one of the windows. For deleting a complete APR program select the blank line.
- · Reset the generator.

#### Shifting:

- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Move menu".
- · Select the menu or submenu from one of the windows.
- Enter the new positions.
- Reset the generator.

#### Re-naming:

- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ Rename menu".
- · Select the menu or submenu from one of the windows.
- Enter the name in the lowermost line.
- · Reset the generator.

### 12.8. External APR assignment

The first APR extension can be assigned with 2 RGDVs and with 6 APRs per RGDV 1...8. It must be connected up to assembly WA or 1WA, adapter for 4 aux. units. The second one can be assigned with 8 APRs per RGDV 1...8 and must be connected up to assembly 2WA.

If only because of the limited scope for labelling it is recommended that a maximum of two assignments be selected per APR extension.

If only one APR extension is to be connected up to 8 APRs and if there is only one WA assembly, the latter assembly must be programmed as 2WA by closing the soldering jumper W1 on its back panel.

- · Define assignment of the extended RGDV and APR keys and enter in the tables below:
  - For the first APR extension select two RGDVs.
  - Read out the respective number of the APRs to be assigned.

To do this select the corresponding APR at the control desk and establish the respective number using the menu "Program/ Human Interface/ APR Data Set/ Select APR Data Set".

Device Interface 1 - first and second assignment

| RGDV  | ••• |       |           |     | RGDV  | ••• |
|-------|-----|-------|-----------|-----|-------|-----|
| APR 1 | 4.0 | APR 2 | <br>APR 1 |     | APR 2 |     |
| APR 3 | ••• | APR 4 | <br>APR 3 |     | APR 4 | 404 |
| APR 5 |     | APR 6 | <br>APR 5 | *** | APR 6 | ••• |

#### Device Interface 2

Assignment for RGDV...

Assignment for RGDV...

| APR 1 | • • • | APR 2 | •••   | APR 1 |       | APR 2 | ••• |
|-------|-------|-------|-------|-------|-------|-------|-----|
| APR 3 | 0 0 0 | APR 4 | = 4 = | APR 3 |       | APR 4 |     |
| APR 5 |       | APR 6 | •••   | APR 5 | 6 % 2 | APR 6 | ••• |
| APR 7 | • • • | APR 8 | •••   | APR 7 | •••   | APR 8 |     |

• In the corresponding menus "Human Interface/ RGDV related Assignments/ RGDV 1...8/ External APR Assignments/

Device Interface 1...2" save the numbers determined.

### 13. Density correction

### 13.1. Density correction for AEC technique

#### Basic density per film/screen combination:

A hardware key is required at the PC for direct access to the switch-off dose.

- Make a sample exposure for each film/screen combination.
   To do so, select APRs with density correction "0".
- · Determine density of the sample exposures.
- Select menu "Program/ Dose rate control/ AMPLIMAT/ Chamber 1...5 / Data set 1...5".
- Select manual DRC programming with <Escape>.
- · Correct the switch-off dose FSC according to formular below:

- · Transmit the data set with F2.
- Repeat the procedure for each ensuing film/screen combination.
- · Reset the generator.

The switch-off dose can be set on the PC even without a hardware key.

To do so, call up the automatic DRC programming, repeat all the selections and change the correction factor for switch-off dose accordingly. Each time this programming is called up all the selections must be repeated.

#### Organ-dependent correction:

- · Select the APR to be changed on the desk.
- Select menu "Program/ Human interface/ APR data set/ Select APR data set".
   Confirm the APR number displayed with <Transmit>.
- Select menu "Program/ Human interface/ APR data set/ Change APR data set".
- Exposure data density: -16 ... +16 = correction in steps of 6%.

The number of correction steps must be matched to the programmed step length of the desk display. Example:

The desk display has been programmed to the R20 series (=12%) in the menu "Program/ Registration devices/ RGDV 1...8/ Data Set B/ Density steps". To be able to display a density correction of +1 for a certain APR two corrections steps (2x6% = 12%) must be programmed under this APR.

Select the next APR on the desk, select it in the programming menu and change it.

#### Etc.

· Reset the generator.

### Correction for each RGDV 1...8:

This correction is possible but for reasons of clarity it should not be used.

- Select menu "Program/ Registration Devices/ RGDV 1...8/ Data set B".
- Density correction: -8 ... +8 = correction in steps of 6%.

### 13.2. Density correction for non-AEC techniques

The supplied APR standard sets are based mostly on a film/screen combination with an intensification of 400. APR for extremities and some other applications are based on a 100 or 200 type system. Depending on the local situation the "mAs" or "s" parameters of all the relevant APRs must be adapted. Example:

The customer uses a 200 type system. To change from the existing "400" values the relevant APRs must be reprogrammed to double the mAs products or to double the exposure time (400 divided by 200=2).

- Select the relevant APR at the control desk.
- Set the new parameters at the control desk.
- Save the new parameters as default values. To do this press the "Reset" button and the corresponding APR button. The asterisk in the APR name as an indication of overwritten data disappears.

#### 14. Interlock facility for APR modification

Using the menu "Program/ Human interface/ APR modifiable by User" it is possible to prevent a customer from being able to store APR modifications as default setting via the control desk.

Default: yes

#### 15. AEC fixed current (kV-mA)

For this exposure technique the APRs must have the following programming:

- Dose measurement field:

on (at least 1 field must be set to ON)

- Preferred technique:

automatic

- AEC technique:

AEC fixed current kV-mA

No AEC technique:

kV-mAs-ms technique (RUQT)

Exposure data U:

= anatomical kV value

- Exposure data Q:

= anatomical mAs product based on the screen-film combination used.

- Exposure time t:

= anatomical exposure time.

The mA value is calculated automatically.

In the APR standard files supplied the following APR is programmed to kV-mA technique (language: German/English/French/Spanish):

- Dens axis F / dens axis F / dens axis F / atlas F The APR is marked with "F".

The mAs value is based on a 400-type screen-film combination and must be adapted to the combinations actually used. If, for example, the 200-type combination is used, the mAs value must be doubled.

If the TDC option is installed, the preferable technique for all exposures is the one where the exposure time is the determining factor. TDC is not restricted to tomography applications.

### 12.5. Moving/copying of an APR data set

Determination of the number of APR data set "x" to where APR data set "y" is to be moved/copied.

- · Select APR data set "x" on the desk.
- Select menu "Program/ Human interface/ APR Data Set/ Select APR Data Set".
- Note the number of APR data set "x", for instance, 100.

### Changing of the number of APR data set "y" to be moved/copied to the number of APR data set "x"

- Select APR data set "y" on the desk.
- Select menu "Program/ Human interface/ APR Data Set/ Select APR Data Set".
   Transmit with F2.
- Select menu "Program/ Human interface/ APR Data Set/ Change APR Data Set".
- Replace the number of APR data set "y" with the number of APR data set "x" in the input mask, for instance, nnn ⇒ 100.
- Transmit this number with F2 and reset the generator.

APR data set "y" is displayed in place of the old APR data set "x" on the desk.

In case APR data set "y" is merely moved and not copied to the location of APR data set "x", the original APR data set "y" must be deleted at the end of programming.

### 12.6. Deleting of APRs

 Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ APR deassign/ Select menu".

Required only when the APR is assigned to a menu or submenu.

- Select the associated menu or submenu from one of the windows.
- Select menu "Program/ Human interface/ RGDV related assignment/ RGDV 1...8/ Manual assignment/ APR deassign/ Deassign APR".
- · Select the APR to be deleted from one of the windows.
- Reset the generator.

An APR which has been deleted is no longer displayed on the desk but remains stored in the generator. It can be re-activated according to 12.3.3..

#### 16. **Tomo Density Control TDC (option)**

For this exposure technique the APRs must have the following programming:

(at least 1 field must be set to ON) - Dose measurement field: on

- Preferred technique: automatic

TDC (Tomo Density Control) - AEC technique:

- No AEC technique: kV-mAs-ms technique (RUQT)

= anatomical kV Exposure data U:

= anatomical mAs product based on the screen-film combination used. Exposure data Q:

= anatomical exposure time. - Exposure time t:

The mAs product is used to calculate the initial current, indicated under Exposure Data I.

In the APR files supplied all the APRs for tomography applications are programmed to TDC. If there is no TDC option installed, the manual technique will be selected as the Preferred Technique automatically.

TDC is not restricted to tomography applications so it can be preferred for all exposures where exposure time is the determining factor.

The respective mAs product is generally based on a 400-type screen-film combination and must be adapted to the combinations actually used. If, for example, a 200-type combination is used, the mAs product must be doubled.

#### 17. **VARIOFOCUS** (option)

For the VARIOFOCUS option, special APR files have to be loaded. These are designated with a "v" in the file name and contain correspondingly defined APRs.

VARIOFOCUS is programmed as a percentage mix of the small focus with the large focus. The following steps are possible: 20%, 35%, 50%, 65% and 80%. As a rule, the predefined APRs are programmed at 50%.

The percentage mix is not displayed direct on the control desk and can only be estimated indirectly via the small/large focus exposure time.

It is only possible to display and change the percentage mix via XRGSCOPE menu "Program/ Human interface/ APR Data Set/ Change APR Data Set". However, VARIOFOCUS can be selected via the control desk and can also be stored as default focus for an APR. The percentage mix is then always 50%.

VARIOFOCUS is only possible for tubes with superimposed focal spots.

The following tubes are suitable for the application: SRO 0950, SRO 2550, SRO 33100, RO 1750.

#### 18. Area exposure product calculation (option)

This option operates only in conjunction with a unit and a collimator which are CAN-controlled and supply information about SID, collimation and added filters.

Check and correction: see ADJUSTMENTS section.

### 19. Executing the acceptance test

- Execute the acceptance test according to section "Acceptance".
- Observe all applicable national regulations.

#### For U.S.A.:

### Checking H.H.S. requirements

After completition of setting-to-work, the system must be tested for H.H.S. compliance according the P.M.S.I. comprehensive compliance testing workbook (code No. 4535 800 2035.).

### 20. Saving all configuration data

A hardware key is required of the PC.

To save the configuration data use the "Configuration Backup" disk supplied.

- Save the complete SW programming of the generator using the menu "Accept/ Backup/ CU Complete" on the floppy disk.
  - Default file name:

cubackup.tdl

- Recommended file name:

s/n of the generator, e.g. 960007.tdl

- File size:

approx. 250 kB

- Transfer time:

approx. 6 min. (Restore: approx. 15 min.)

· Recommendation:

In addition, save the APR programmings individually for each RGDV using the menu "Accept/ Backup/ RGDV related Assignments/ RGDV 1...8/ APR Assignments" on floppy disk.

File name:

apr bak#.tdl

# = RGDV-number

#### Note

In a backup of the APR programmes all the customized assignments of film-screen combinations will be lost. If APR programmes are loaded into the generator using the Restore command, it is always the first film-screen combination which is assigned to a measuring chamber as the default (data set 1 of chamber 1 ... 5).

To restore the customized APR assignment, it is absolutely essential that you make a note of which other film-screen combinations (data set 2 ... 5 of chamber 1 ... 5) are assigned to which APRs.

We recommend creating the information on the PC as a simple text file in the following sequence:

- RGDV 1 ... 8
- Menu name and, where applicable, submenu name
- APR
- Data Set 2...5 and/or name of the film-screen combination, e.g. G400 and storing it on the backup floppy disk.
- Recommendation:

In addition, save the programmings for film/screen combinations using the menu "Program/ Dose Rate Control/AMPLIMAT/ Chamber 1...5/ Data Set 1...5" (manual processing) and with the SAVE function (F3 key) on floppy disk.

Recommended file name:

drc##.tdl

## = Chamber and Data Set Number

- Provide the floppy disk with the serial number of the generator.
- Keep the floppy disk in the service documentation.

#### 21. Labels

· Check the labelling according to the respective generator type.

See drawing 2Z-1.

All lables become visible by swiveling out the label bracket simply by hand and without any tool. The bracket is located at the top left corner of the front side of the cabinet, visibly marked by an "i" (for information) and text "Certified Component Lables Here". If you swivel the label bracket 90 degrees to the right the following labels will appear at its bottom side:

- X-Ray Control:
- type designation
- serial No.
- name and address of manufacturer
- DHHS certification statement (if necessary)
- date of manufacture
- X-Ray H.V. Generator:
- type designation
- serial No.
- name and address of manufacturer
- DHHS certification statement (if necessary)
- date of manufacture
- Technical Data label with UL/CSA classification (if necessary)

#### 22. Final installation work

- · Mount the side panels of the generator cabinet.
- Roll the generator cabinet against the wall.
   Take care that all cables inside the wall junction box are routed in a loop without any kinks.
- Block the two front wheels of the cabinet with the locking screws to guarantee that unauthorized persons cannot accidentally touch parts of the generator which might be dangerous.
- · If necessary, level the cabinet with the locking screws.
- · Mount the front cover of the generator.



# FAULT FINDING TEXT

|                               | Contents                                                                                                  | 3-0.1                           |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.                            | Tools                                                                                                     | 3–1                             |
| 2.                            | Notes                                                                                                     | 3–1                             |
| 3.                            | Strategy                                                                                                  | 3–1                             |
| <b>4.</b> 4.1. 4.2. 4.3. 4.4. | Service-PC Connection Operation Menu structure Saving data on disk and restoring data                     | 3–2<br>3–2<br>3–2<br>3–3<br>3–8 |
| <b>5.</b><br>5.1.<br>5.2.     | Initialization phase of the generator  Start-up sequence  Program status displayed on the operating panel | 3–9<br>3–9<br>3–10              |
| 6.                            | Switch-on not possible                                                                                    | 3–11                            |
| <b>7.</b><br>7.1.<br>7.2.     | Error numbers  Error classification  Error list                                                           | 3–12<br>3–12<br>3–13            |
| 8.                            | Power supply                                                                                              | 3–30                            |
| 9.1.<br>9.2.<br>9.3.          | Converter  Problem overview  Hardware problems  kV driver test                                            | 3–31<br>3–31<br>3–32<br>3–33    |
| 10.                           | Functional description of function unit mA                                                                | 3–38                            |
| 11.                           | CAN bus                                                                                                   | 3-40                            |
| 12.                           | Incorrect exposure indicator                                                                              | 3-42                            |
| 13.                           | Mnemonic and routing list                                                                                 | 3–44                            |
|                               | DRAWINGS                                                                                                  |                                 |
|                               | Central rack, service aid                                                                                 | 27_1                            |

#### 1. Tools

- Service engineer mechanical tool kit
- mAs meter
- Multimeter
- Digital oscilloscope with 2-beam memory
- PC incl. 3.5" FDD, HW-dongle, serial interface cable, free RAM ≥ 590 KB
- Service software "XRG SCOPE" 4512 152 04755 or higher
- Recommended PLCC extraction tool (AMP 822154-1) 2422 487 89772

### 2. Notes

#### Caution!

After the generator has been switched off, hazardous voltages are still applied to the d.c. intermediate circuits of the converter, the rotor control and the mA control.

These voltages are usually discharged within 1 minute to values which are no longer dangerous.

### 3. Strategy

There are 3 categories of errors:

- The generator cannot be switched on at all or only for a short time.
  - See ⇒ 5. "Initialization phase of the generator"
    - ⇒ 6. "Switch-on not possible"
- The generator can be switched on but no error numbers are displayed on the operating desk.

For fault finding use the service PC.

- See ⇒ 4. "Connecting the service PC"
  - ⇒ 5. "Initialization phase of the generator"
  - ⇒ 7. "Error numbers"
- Error messages are displayed on the desk.

For fault finding use the service PC.

- See ⇒ 4. "Connecting the service PC"
  - ⇒ 7. "Error numbers"

### 4. Service-PC

### 4.1. Connection

- · Switch the generator on.
- Provide the PC with the HW key and switch it on.
- Connect the PC to X5 on EZ139 CENTRAL UNIT CU via a serial data cable.

PC, COM1 
$$\iff$$
 RXD - 2  $\qquad$  2 - RXD  $\qquad$  generator, 3 - TXD  $\qquad$  EZ139 X5 GND - 5  $\qquad$  5 - GND (9-pole, female)  $\qquad$  (9-pole, male)

## 4.2. Operation

- Insert the floppy disk with the service program in the PC.
- Call the program with xrgscope or with xrgscope lcd for PC's with LCD screen.
- Enter you password
   The following menu line appears:

|      |         |             | 0410.14. |      |
|------|---------|-------------|----------|------|
| File | OPTIMUS | Select Unit | Options  | Help |

### Note

- Current data files, for instance, for online help, tube types, APR programming are available in BBS.

Product:

Generatoren Hamburg

Download area:

OPTIMUS

 If you call the installation program with xrgscope? the possible starting parameters for the service program will be listed.

### 4.3. Menu structure











[ - A hardware key is required

### 4.4. Saving data on disk and restoring data

All configurations data and logging tables are stored in battery-buffered CMOS areas.

Therefore, these data should be saved on disk as a backup.

In case data get lost they can easily be restored in the CMOS areas after the error source has been eliminated.

### Saving of data:

· Select menu "Accept/ Backup/ CU Complete".

• Store the data on floppy disk "Generator configuration data" found in the service documentation.

Default file name:

cubackup.tdl

Recommended file name:

s/n of the generator, e.g. 960007.tdl

File size:

approx. 250 kB

Transfer time:

approx. 6 mins.

Becommendation:

In addition, save the APR programming individually for each RGDV via the menu "Accept/ Backup/ RGDV related Assignments/ RGDV 1...8/ APR Assignment" on floppy disk.

File name:

apr bak#.tdl

#= RGDV - number

Assignment of film/screen combinations to the individual APRs is not saved in this procedure!

Recommendation:

In addition, save the programmings for the film/screen combinations via the menu "Program/ Dose Rate Control/ AMPLIMAT/ Chamber 1...5/ Data Set 1...5" (manual processing) and store them with the SAVE function (F3 key) on floppy disk.

Recommended file name:

drc##.tdl

## = chamber and data set number

Assignment of film/screen combinations to the individual APRs is not saved in this procedure!

### Restoring of data:

#### Note

During this procedure the CAN interface on EZ X43 must be disconnected if present (THORAVISION or Bucky TH with bucky controller).

- Select menu "Accept/ Restore/ CU Complete".
- Restore the data from floppy disk.

Transfer time:

approx. 15 mins.

- Reset the generator.
- · Program date and time.

Most of the programmings and logging tables can also be stored via the SAVE-function (button F3) of XRG SCOPE.

Some programmings can be restored via the LOAD-function (button F4).

- For service use, only keep the latest version of the backup.
- Never use a complete backup for a different generator.
- APR backups can also be loaded into other generators.
   Since specific kV and mA reductions are also transferred, one should load APR backups only in generators of the same or a lower power class.

## 5. Initialization phase of the generator

# 5.1. Start-up sequence

| Switch-on of the generator         |                                                                                                    |
|------------------------------------|----------------------------------------------------------------------------------------------------|
| 1                                  |                                                                                                    |
| Pulling-up of ENK 2                |                                                                                                    |
| 1                                  |                                                                                                    |
| Selftest of                        |                                                                                                    |
| I control desk C:                  | All display elements are switched on for a short moment.                                           |
| I central unit EZ139:              |                                                                                                    |
| I kV control EZ130:                | voltage E is measured in the d.c. intermediate circuit.                                            |
| 1                                  |                                                                                                    |
| I mA control EZ119:                |                                                                                                    |
| l basic interface EZ150:           |                                                                                                    |
| I rotor control EY:                |                                                                                                    |
| I universal I/O EWA/B 102:         |                                                                                                    |
| Indicating device:                 | The red status LED of the associated printed-circuit board or assembly is illuminated              |
|                                    |                                                                                                    |
| -                                  |                                                                                                    |
| When the selftests have success    | sfully been completed, the status LED's are blinking.                                              |
| 1                                  |                                                                                                    |
| The central unit establishes conf  | nection to each functional unit via the CAN bus.                                                   |
| 1                                  |                                                                                                    |
| Indicating device:                 | The red status LED of the associated printed-circuit board or assembly grows dark                  |
| 1                                  |                                                                                                    |
| ENK1 is switched on.               |                                                                                                    |
| 1                                  |                                                                                                    |
| The generator is internally ready  |                                                                                                    |
| 1                                  |                                                                                                    |
| The external ready circuits are cl | necked (unit ready, door contact closed, thermal contact of the tube closed, tube not overloaded). |
| 1                                  |                                                                                                    |
| The green READY lamp in the op-    | perating desk is illuminated.                                                                      |
| The generator is in the READY s    | tate.                                                                                              |

## 5.2. Program status displayed on the operating panel

| PHILIPS OPTIM                       | 1US      |                                 | <ul> <li>No tube data loaded yet.</li> <li>No RGDVs programmed yet.</li> <li>No communication between desk and CU.</li> <li>Possible error entries: 00B3, 00B6, 00BA F, 00B0, 00BT, 00BX, 00CJ, 00L1, 00PE, 00XB, 00XL, 03FD</li> </ul> |
|-------------------------------------|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70 kV                               | 32.0 mAs | Test                            | - Tube data loaded Selected focus not adapted.                                                                                                                                                                                          |
| 70 kV                               | 32.0 mAs | Adap                            | Status after calling up the adaptation mode.                                                                                                                                                                                            |
| 40 kV                               | 00.0 mAs | Adap                            | <ul> <li>Start phase of adaptation mode.</li> <li>After the Ready signal appears the adaptation can be started up with the release switch.</li> <li>Possible error entries after adaptation: 00BU, 00BV, 00X6</li> </ul>                |
| 70 kV                               | 320 mAs  | 100 ms                          | <ul> <li>Selected focus is adapted.</li> <li>AEC/TDC technique:         <ul> <li>For the selected RGDV no measuring unit has been assigned yet.</li> </ul> </li> </ul>                                                                  |
| 70 kV                               | 0 🛦      | def1                            | - For the selected RGDV no film/screen combination has been programmed yet.                                                                                                                                                             |
| Test APR                            |          |                                 | No APR data have yet been loaded onto the selected RGDV.                                                                                                                                                                                |
| 81 kV<br>skull axial<br>Schädel ax. |          | B100<br>Ine axial<br>Ineo axial | Ready status.  An APR with AEC technique has been selected.                                                                                                                                                                             |

### 6. Switch-on not possible

See drawings:

Z1-2.1 / 2.2 / 2.3

Z2-2

H1 on PCB EN100 is not illuminated.

Error sources:

- ENF1 was released.

For fault-finding look in the error buffer.

- ENF1 is not switched on.

- Mains voltage, especially phase L3, is not present.

- ENF2 was released.

Check: Low-voltage supply

Filament circuit
Tube extension
Rotor control

External current consumers

- ENF2 is not switched on.

- PCB EN100 or its connections are not okay.

H1 on PCB EN100 is illuminated.

Error sources:

- The EMERGENCY-OFF circuit is open.

- The operating desk is not connected.

### 7. Error numbers

### 7.1. Error classification



Errors are displayed in a code consisting of 4 characters.

### Analysed errors:

- These errors are indicated by 4 digits.
- The first two digits indicate the functional unit FU reporting the error.

00xx = CU-functional unit is concerned 02xx = kV-functional unit is concerned

03xx = mA-functional unit is concerned

etc.

- The last two digits indicate the assembly which is defective.

#### Not analyzed errors:

- These errors are indicated by 2 digits and 2 letters.
- The first two digits indicate the functional unit reporting the error.
- The last two letters indicate the error symptom.

#### Displayed errors:

- These errors are indicated on the display of the operating desk for the customer.
- The customer must call the service.

The customer can inform the service about the respective error number and the service can order the spare parts needed at an early stage of the maintenance procedure.

### Not displayed errors:

- These errors are not relevant for the customer.
- In case an error of this category occurs frequently within a certain period of time, a displayed error can be generated.

#### 7.2. **Error list**

Sources of error codes indicated in the first two digits (hex):

00=CU

01=FU\_DRC

02=FU\_kV

05=FU\_mA\_c

06=FU\_mA\_d

07=FU\_CIE 0D=FU\_ADAP\_a 0E=FU\_ADAP\_b 0F=FU\_ADAP\_c 10=FU\_ADAP\_d 11=FU\_MDO

08=FU\_HI\_a

09=FU\_HI\_b

0A=FU\_RC\_a

0B=FU\_RC\_b

0C=FU\_RC\_c 12=FU\_ANA

Class:

Fatal error, Error, Warning

| Error        | class | explan    | ation                                           |
|--------------|-------|-----------|-------------------------------------------------|
| 00B0         |       | CPU:      | Error in application data service interface     |
| 00B1         |       | CPU:      | IIM was not expected by gen_order_list          |
| 00B2         |       | CPU:      | HI order is not expected – NO Member in display |
| <b>0</b> 0B3 |       | NVRAM:    | data language selector is invalid               |
| 00B4         |       | CPU:      | message invalid in ADopmes                      |
| 00B5         |       | CPU:      | Inputparameter out of range in ADsynta          |
| 00B6         |       | NVRAM:    | FU adap data for DI are invalid                 |
| 00B7         |       | CPU:      | Message cannot be send                          |
| 00BA         |       | NVRAM:    | data of RGDV are invalid                        |
| 00BB         |       | NVRAM:    | basedata of RGU are invalid                     |
| 00BC         |       | NVRAM:    | statedata of RGU are invalid                    |
| 00BD         | •     | NVRAM:    | data of APR are invalid                         |
| OOBE         |       | NVRAM:    | data of active RGU are invalid                  |
| 00BF         |       | NVRAM:    | data of RGKeys are invalid                      |
| 00BG         |       | APR:      | no more lowest level menus available            |
| 00BH         |       | APR:      | display position collision                      |
| 00BI         |       | APR:      | menu/APR mismatch in same level                 |
| 00BJ         |       | APR:      | menu name not found                             |
| 00BK         |       | APR:      | APR is assigned to a different RGDV             |
| 00BL         |       | APR:      | menu name already exists                        |
| 00BM         |       | APR:      | max display position reached                    |
| OOBN         |       | APR:      | APR not found in this menu                      |
| 00BO         |       | NVRAM:    | data of menu tree are invalid                   |
| 00BP         |       | APR is ac | tive                                            |
| 00BQ         |       | CPU:      | APR cannot be modified                          |
| 00BR         |       | CPU:      | APR is not assigned to an RGDV                  |
| 00BS         |       | APR:      | The RGDV of the APR is not ready for operation  |
| 00BT         |       | NVRAM:    | data of APR characteristics are invalid         |

| Error | class | explanation                                        |
|-------|-------|----------------------------------------------------|
| 00BU  |       | Adaptation paused due to missing load              |
| 00BV  |       | CPU: TTS status message during adaptation          |
| 00BW  |       | APR: APR not accepted by general calculation       |
| 00BX  |       | NVRAM: variofocus allowed invalid                  |
| 00BY  |       | RGDV order without active RGDV                     |
| 00CA  |       | CA_err_DPRAM_too_small                             |
| 00CB  |       | CONF: Received IIM #1#2H unknown                   |
| 00CC  |       | CAN: frame-repeat-counter overflow (IIM #1#2H)     |
| 00CD  |       | CAN: FU #1H not addressable                        |
| OOCE  |       | CAN: rx-signal conflict (FU #1H)                   |
| 00CF  |       | CAN: no RTR from FU #1H                            |
| 00CG  |       | CPU: domain tx response Mailbox type wrong         |
| 00CH  |       | CPU: Invalid tbdor-Parameter FU_type               |
| 00CI  |       | CAN: No FU acknowledges                            |
| 00CJ  |       | CAN auto configuration successful (#1H)            |
| 00CK  |       | CAN auto configuration without success (#1H)       |
| 00CL  |       | CAN: FU #1H not addressable                        |
| 00CM  |       | CAN: FU #1H sent event and did not answer RTR      |
| 00CQ  |       | SYSCAN: Radiography system is not responding       |
| 00CX  |       | CAN: last-only-repeat-counter overflow (IIM #1#2H) |
| 00CY  |       | CAN: abort of rx of IIM #1#2H (unexp frame)        |
| 00CZ  |       | CAN: unexpected frame received after IIM #1#2H     |
| 00DA  |       | No CPU-access to CAN-chip                          |
| 00DB  |       | CAN-chip reset not acknowledged                    |
| 00DC  |       | CAN-chip reset release not acknowledged            |
| 00DD  |       | CAN-chip DPRAM check failed                        |
| 00DE  |       | unexpected CAN-chip int-pointer                    |
| 00DF  |       | CAN-chip state undefined                           |
| 00DG  |       | CAN-chip error-active after passive                |
| 00DH  |       | CAN-chip state error-passive                       |
| 00DI  |       | CAN-chip state bus-off                             |
| 00DJ  |       | CAN-chip state DPRAM-error                         |
| OODK  |       | CAN-chip state DPRAM-error & passive               |
| OODL  |       | unexpected CAN-chip interrupt                      |
| 00E0  |       | iRMX exception #2#1H occurred                      |

| Error | class | explanation                                                |
|-------|-------|------------------------------------------------------------|
| 00Ex  |       | something went wrong                                       |
| 00G0  |       | variable in case statement has undefined value             |
| 00G1  |       | condition_code <> OK after CALL to send                    |
| 00G2  |       | condition_code <> OK after CALL to init                    |
| 00Hx  |       | something went wrong                                       |
| 0010  |       | test error                                                 |
| 0011  |       | CPU Index to I/O-table is wrong                            |
| 0012  |       | No interrupt reason on sig-bus                             |
| 0013  |       | No interrupt reason on XS-bus                              |
| 0014  |       | One FU has a WD-error                                      |
| 00Kx  |       | something went wrong                                       |
| 00L1  |       | GC: checksum error                                         |
| 00L2  |       | GC: data access error                                      |
| 00L3  |       | GC: limit data error                                       |
| 00L4  |       | GC: limits inconsistent                                    |
| 00L5  |       | GC: calculation error                                      |
| 00L6  |       | GC: function not implemented                               |
| 00M0  |       | Unable to initialize FU(s) #1H, #2H, #3H, #4H, #5H, #6H    |
| 00M1  |       | Configuration key is missing or defective                  |
| 00M2  |       | Unable to initialize the FU mA                             |
| 00M3  |       | No response at all from FU(s) #1H, #2H, #3H, #4H, #5H, #6H |
| 00Mx  |       | ER_error\$code\$MC                                         |
| 00Ox  |       | error\$code\$OS_RMX                                        |
| 00PA  | W     | CPU: IIM/MSC number unknown                                |
| 00PB  | W     | CPU: technic mode unknown                                  |
| 00PC  | W     | CPU: value limit overflow                                  |
| 00PD  | E     | PC comm: unknown TDL proc ID                               |
| 00PE  | W     | NVRAM: DRC NV checksum error                               |
| 00S?  |       | PC comm: Unexpected error                                  |
| 00SA  |       | PC comm: Not enough space at destination segment           |
| 00SB  |       | PC comm: Base out of range                                 |
| 00SC  |       | PC comm: Value too large                                   |
| 00SD  |       | PC comm: Terminator not found                              |
| 00SE  |       | PC comm: Error in description                              |
| 00SF  |       | PC comm: Item type unknown                                 |

| Error | class | explanation                                                                  |                |
|-------|-------|------------------------------------------------------------------------------|----------------|
| 00SG  |       | PC comm: Internal type unknown                                               |                |
| 00SH  |       | PC comm: Value negative                                                      |                |
| 00SI  |       | PC comm: Not enough space at destination buffer                              |                |
| 00SJ  |       | PC comm: Syntax wrong                                                        |                |
| 00SK  |       | PC comm: String too long                                                     |                |
| OOSL  |       | PC comm: String truncated                                                    |                |
| OOSM  |       | PC comm: TDL segment overflow                                                |                |
| OOSN  |       | PC comm: FU Reference Table full                                             |                |
| 0080  |       | PC comm: Node ID unknown                                                     |                |
| 00SP  |       | PC comm: FU Code unknown                                                     | ,              |
| 00SQ  |       | PC comm: Syntax error in node ID                                             | (              |
| 00SR  |       | PC comm: No node ID found                                                    |                |
| ooss  |       | PC comm: Request not performed                                               |                |
| OOST  |       | PC comm: RMX error                                                           |                |
| 00SU  |       | PC comm: Enumeration element not found                                       |                |
| oosv  |       | PC comm: Mail corrupted                                                      |                |
| oosw  |       | PC comm: Procedure ID unknown                                                |                |
| 00SX  |       | PC comm: FU mA incompatible                                                  |                |
| 00SY  |       | PC comm: FU Off request failed                                               |                |
| oosz  |       | PC comm: Wrong response                                                      |                |
| 00T?  |       | TTS: Unexpected Error                                                        |                |
| ATOO  |       | TTS: Received Message unknown                                                |                |
| 00TB  |       | TTS: Tube Supervision Error from FU kV; thermal switch of tube housing okay? | (              |
| OOTC  |       | TTS: Internal TTS Error                                                      |                |
| 00TD  |       | TTS: Tube Number unknown                                                     |                |
| 00TE  |       | TTS: NVRAM Checksum Error                                                    |                |
| 00TF  |       | TTS: NVRAM unavailable                                                       |                |
| 00Ux  |       | ER_error\$code\$SC                                                           |                |
| 00X0  |       | CPU: wrong timer ID                                                          |                |
| 00X1  |       | CPU: wrong timer mode                                                        |                |
| 00X2  |       | CPU: wrong message type                                                      |                |
| 00X3  |       | CPU: DWORD does not fit into BYTE3                                           |                |
| 00X4  |       | timeout of X-ray backup timer                                                |                |
| 00X5  |       | timeout of X-ray rotation timer                                              |                |
| 00X6  |       | timeout setting FUs, response missing                                        | and the second |

| Error | class | explanation                                  |
|-------|-------|----------------------------------------------|
| 00X7  |       | CPU: curve token is NO_TOKEN                 |
| 00XA  |       | NVRAM: switch table invalid                  |
| 00XB  |       | NVRAM: tube data rotation invalid            |
| 00XC  |       | NVRAM: watch dog invalid                     |
| 00XD  |       | NVRAM: konfi table invalid                   |
| 00XE  |       | NVRAM: test data invalid                     |
| 00XF  |       | NVRAM: RoCo data invalid                     |
| 00XG  |       | CPU: received IIM is unknown                 |
| 00XH  |       | CPU: received FU-type is unknown             |
| 00XI  |       | init with FU-RoCo not OK                     |
| 00XJ  |       | exposure time too short                      |
| 00XK  |       | CPU: FU mA refuses set data                  |
| 00XL  |       | NVRAM: tube yield table invalid              |
| 00XM  |       | NVRAM: add filter corr table invalid         |
| 00XN  |       | NVRAM: wedge filter corr table invalid       |
| 00XO  |       | exposure time too long                       |
| 00XP  |       | exposure time too long                       |
| 02AB  | W     | procedure called with wrong parameter        |
| 02AC  | E     | wrong index for table access                 |
| 02AD  | E     | wrong do case entry                          |
| 02AE  | W     | unknown IIM received                         |
| 02AF  | W     | IIM parameter out of range                   |
| 02CA  |       | error DPRAM too small                        |
| 02CB  |       | received IIM has invalid number              |
| 02CC  |       | domain rx: frame-repeat-counter overflow     |
| 02CE  |       | domain rx: signal conflict                   |
| 02CF  |       | domain tx: timeout (no rety from receiver)   |
| 02CG  |       | domain tx: response mailbox type wrong       |
| 02CX  |       | domain rx: last-only-rep-counter overflow    |
| 02CY  |       | unexpected frame received, domain rx aborted |
| 02CZ  |       | unexpected frame received outside domain rx  |
| 02DA  |       | No CPU-access to CAN controller              |
| 02DB  |       | CAN-chip reset not acknowledged              |
| 02DD  |       | check of CAN-chip DPRAM failed               |
| 02DE  |       | unexpected CAN-chip int-pointer              |
| 02DF  |       | CAN-chip state undefined                     |

### **FAULT FINDING**

| Error | class | explanation                                                                                                 |   |
|-------|-------|-------------------------------------------------------------------------------------------------------------|---|
| 02DG  |       | CAN-chip error-active after passive                                                                         |   |
| 02DH  |       | CAN-chip state error-passive                                                                                |   |
| 02DI  |       | CAN-chip state bus-off                                                                                      |   |
| 02DJ  |       | CAN-chip state DPRAM-error                                                                                  |   |
| 02DK  |       | CAN-chip state DPRAM-error and passive                                                                      |   |
| 02EA  | F     | interrupt 0: divide by zero                                                                                 |   |
| 02EB  | F     | interrupt 1: single step                                                                                    |   |
| 02EC  | F     | interrupt 2: NMI                                                                                            |   |
| 02ED  | F     | interrupt 3: breakpoint                                                                                     |   |
| 02EE  | F     | interrupt 4: overflow exception                                                                             | 1 |
| 02EF  | F     | interrupt 5: array bounds exception                                                                         | , |
| 02EG  | F     | interrupt 6: unused opcode                                                                                  |   |
| 02EH  | F     | interrupt 7: ESC opcode                                                                                     |   |
| 02EI  | F     | CAN connection to CU lost                                                                                   |   |
| 02GA  | W     | interpolation not possible                                                                                  |   |
| 02HA  | W     | kV nominal value out of range: $\pm$ (4 % + 1 kV); 3 detections within 30 ms                                |   |
| 02HB  | E     | kV nominal value out of range: 0 kV > U > 170 kV                                                            |   |
| 02HC  | W     | Z nominal value out of range: $\pm$ 1 % $\pm$ 0.2; 3 detections within 30 ms; duty cycle range 3 %30 %      |   |
| 02HD  | E     | Z nominal value out of range: 0 % > Z > 50 %                                                                |   |
| 02HE  | W     | kV value during standby too large: > 3 kV for > 400 ms after PREP                                           |   |
| 02HF  | E     | kV value during standby too large: > 4 kV for > 400 ms after PREP                                           |   |
| 02HG  | W     | kV actual value out of range: $\pm$ (4 % + 1 kV); 2 detections within 20 ms                                 | / |
| 02HH  | E     | kV actual value out of range: 20 kV > U > 170 kV; 3 detections within 30 ms                                 | ( |
| 02HI  | W     | E value during standby out of range: $470 \text{ V} > E > 780 \text{ V}$ ; 3 detections within 30 ms        |   |
| 02HJ  | E     | E value during standby out of range: 450 V > E > 800 V; 3 detections within 30 ms                           |   |
| 02HK  | W     | E value during high tension out of range: 400 V > E > 780 V; 3 detections within 30 ms                      |   |
| 02HL  | Ε     | E value during high tension out of range: 350 V > E > 800 V; 3 detections within 30 ms                      |   |
| 02HM  | W     | converter 1 temperature out of range: 0 °C > T > 85 °C; 3 detections within 30 ms                           |   |
| 02HN  | Ε     | converter 1 temperature out of range: 0 $^{\circ}$ C > T > 90 $^{\circ}$ C; 3 detections within 30 ms       |   |
| 02HO  | W     | converter 2 temperature out of range: 0 °C > T > 85 °C; 3 detections within 30 ms                           |   |
| 02HP  | E     | converter 2 temperature out of range: 0 $^{\circ}$ C > T > 90 $^{\circ}$ C; 3 detections within 30 ms       |   |
| 02HQ  | W     | high tension tank temperature out of range: 0 $^{\circ}$ C > T > 80 $^{\circ}$ C; 3 detections within 30 ms |   |
| 02HR  | E     | high tension tank temperature out of range: 0 $^{\circ}$ C > T > 85 $^{\circ}$ C; 3 detections within 30 ms |   |
| 02HS  | W     | divider test cathode out of range: 45.5 kV > U > 50.5 kV; 3 detections within 30 ms                         |   |
| 02HT  | E     | divider test cathode out of range: 43 kV $\geq$ U > 53 kV; 3 detections within 30 ms                        | ( |
| 02HU  | W     | divider test anode out of range: $45.5  \text{kV} > \text{U} > 50.5  \text{kV}$ ; 3 detections within 30 ms |   |

| Error | class | explanation                                                                   |
|-------|-------|-------------------------------------------------------------------------------|
| 02HV  | E     | divider test anode out of range: 43 kV ≥ U > 53 kV; 3 detections within 30 ms |
| 02HW  | W     | kV anode out of range, asymmetric ?: ± 15%; 2 detections within 20 ms         |
| 02HX  | E     | kV anode out of range, asymmetric ?: ± 15%; 3 detections within 30 ms         |
| 02MA  | Ε     | state request not accepted because of grid mode                               |
| 02MB  | E     | state request not accepted because of error state                             |
| 02MC  | W     | state requested by CU unknown                                                 |
| 02OA  | F     | RMX error: timeout                                                            |
| 02OB  | F     | RMX error: memory                                                             |
| 02OC  | F     | RMX error: busy                                                               |
| 02OE  | F     | RMX error: limit                                                              |
| 02OF  | F     | RMX error: context                                                            |
| 02OG  | F     | RMX error: exist                                                              |
| 02OH  | F     | RMX error: state                                                              |
| 0201  | F     | RMX error: not configured                                                     |
| 02OJ  | F     | RMX error: interrupt saturation                                               |
| 02OK  | F     | RMX error: interrupt overflow                                                 |
| 02OL  | F     | RMX error: transmission                                                       |
| 02OM  | F     | RMX error: divide by zero                                                     |
| 02ON  | F     | RMX error: overflow                                                           |
| 0200  | F     | RMX error: type                                                               |
| 02OP  | F     | RMX error: parameter                                                          |
| 02OQ  | F     | RMX error: bad call                                                           |
| 02OR  | F     | RMX error: array bound                                                        |
| 02OS  | F     | RMX error: NDP error                                                          |
| 02OT  | F     | RMX error: illegal opcode                                                     |
| 02OU  | F     | RMX error: emulator trap                                                      |
| 02OV  | F     | RMX error: interrupt table limit                                              |
| 02OW  | F     | RMX error: CPU xfer data limit                                                |
| 02OX  | F     | RMX error: wrap around                                                        |
| 02OY  | F     | RMX error: check exception                                                    |
| 02OZ  | F     | RMX error: unknown                                                            |
| 02RA  | W     | grid mode changeover requested during prep                                    |
| 02RB  | W     | tube switch requested during preparation                                      |
| 02RC  | w     | requested P out of range                                                      |
| 02SA  | W     | Not enough space at the destination                                           |

### **FAULT FINDING**

| Error | class | explanation                                                                     | <u> </u> |
|-------|-------|---------------------------------------------------------------------------------|----------|
| 02SB  | W     | Base out of range                                                               |          |
| 02SC  | W     | PC comm: Value too large                                                        |          |
| 02SD  | W     | Terminator not found                                                            |          |
| 02SE  | W     | PC comm: Error in description                                                   |          |
| 02SF  | W     | PC comm: Item type unknown                                                      |          |
| 02SG  | W     | PC comm: Internal type unknown                                                  |          |
| 02SH  | W     | PC comm: Value negative                                                         |          |
| 0281  | W     | PC comm: Not space at dest. buffer                                              |          |
| 02SJ  | W     | PC comm: Syntax wrong                                                           |          |
| 02SK  | W     | PC comm: String too long                                                        | (        |
| 02SL  | W     | PC comm: String truncated                                                       | (        |
| 0280  | W     | PC comm: Unknown Table ID received                                              |          |
| 02SP  | W     | PC comm: Access Level too low                                                   |          |
| 02SQ  | W     | PC comm: Unknown Action requested                                               |          |
| 02SR  | W     | PC comm: Routing or Message corrupt                                             |          |
| 02SS  | W     | Source Buffer too small for incoming Message                                    |          |
| 02ST  | W     | CAN Buffer too small for outgoing Message                                       |          |
| 02SU  | W     | PC comm: Access.level is N_A (not available)                                    |          |
| 02UA  | E     | HW configuration identifier wrong                                               |          |
| 02UB  | W     | Set Up request received during preparation                                      |          |
| 02WA  | W     | wrong tube selected                                                             |          |
| 02WB  | E     | wrong tube selected                                                             | 1        |
| 02WC  | W     | EN X C signal faulty                                                            | (        |
| 02WD  | E     | EN X C signal faulty                                                            |          |
| 02WE  | W     | wrong grid mode selected                                                        |          |
| 02WF  | E     | wrong grid mode selected                                                        |          |
| 02WG  | W     | tube arcing detected                                                            |          |
| 02WH  | E     | tube arcing detected                                                            |          |
| 02WI  | W     | kV over voltage detected                                                        |          |
| 02WJ  | E     | kV over voltage detected                                                        |          |
| 03AA  | W     | Internal parameter error                                                        |          |
| 03AB  | W     | Wrong parameter from CU                                                         |          |
| 03AC  | W     | ${ m I}_{ m e}$ -regulation active on two filaments; only in case of VARIOFOCUS |          |
| 03AI  | W     | Wrong IIM received                                                              |          |
| 03BA  | W     | Coordinates not monotonous; boost adaptation error                              | (        |

| Error | class | explanation                                  |
|-------|-------|----------------------------------------------|
| 03BB  | w     | No measurement values for adap. found        |
| 03CA  |       | error DPRAM too small                        |
| 03CB  |       | received IIM has invalid number              |
| 03CC  |       | domain rx: frame-repeat-counter overflow     |
| 03CE  |       | domain rx: signal conflict                   |
| 03CF  |       | domain tx: timeout (no rety from receiver)   |
| 03CG  |       | domain tx: response mailbox type wrong       |
| 03CX  |       | domain rx: last-only-rep-counter overflow    |
| 03CY  |       | unexpected frame received, domain rx aborted |
| 03CZ  |       | unexpected frame received outside domain rx  |
| 03DA  |       | No CPU-access to CAN controller              |
| 03DB  |       | CAN-chip reset not acknowledged              |
| 03DD  |       | check of CAN-chip DPRAM failed               |
| 03DE  |       | unexpected CAN-chip int-pointer              |
| 03DF  |       | CAN-chip state undefined                     |
| 03DG  |       | CAN-chip error-active after passive          |
| 03DH  |       | CAN-chip state error-passive                 |
| 03DI  |       | CAN-chip state bus-off                       |
| 03DJ  |       | CAN-chip state DPRAM-error                   |
| 03DK  |       | CAN-chip state DPRAM-error and passive       |
| 03EA  | F     | CPU interrupt 0                              |
| 03EB  | F     | CPU interrupt 1                              |
| 03EC  | F     | CPU interrupt 2                              |
| 03ED  | F     | CPU interrupt 3                              |
| 03EE  | F     | CPU interrupt 4                              |
| 03EF  | F     | CPU interrupt 5                              |
| 03EG  | F     | CPU interrupt 6                              |
| 03EH  | F     | CPU interrupt 7                              |
| 03EI  | F     | CAN is unable to send an error to CU         |
| 03FA  | W     | NVRAM: Invalid checksum                      |
| 03FB  | W     | NVRAM: Standby filament not found            |
| 03FC  | F     | No NVRAM plugged in                          |
| 03FD  | W     | NVRAM empty; battery?                        |
| 03GA  | W     | Linint error                                 |
| 03GB  | W     | Real math. error: real underflow             |
| 03GC  | W     | Real math. error: real overflow              |

| Error | class | explanation                                                  |   |
|-------|-------|--------------------------------------------------------------|---|
| 03GD  | W     | Real math. error: dword overflow                             |   |
| 03GE  | W     | Real math. error: integer overflow                           |   |
| 03GF  | W     | Real math. error: word overflow                              |   |
| 03GG  | W     | Singular matrix                                              |   |
| озна  | F     | Unknown hardware                                             |   |
| ознв  | E/W   | Intermediate circuit voltage < 200 V                         |   |
| 03HF  | W     | Undefined analog input channel                               |   |
| 03HG  | W     | I <sub>f</sub> -actual out of tolerance: ± 3 %               |   |
| ознн  | E     | I <sub>f</sub> -setpoint tp large                            |   |
| 03HI  | Е     | $I_{f}$ -actual out of tolerance: $\pm$ 500 mA within 250 ms |   |
| 03HJ  | E     | I <sub>f</sub> -actual out of tolerance                      | ( |
| ознк  | W     | I <sub>f</sub> -nominal out of tolerance                     |   |
| 03HL  | E     | I <sub>f</sub> -nominal out of tolerance                     |   |
| ознм  | E     | I <sub>f</sub> -nominal out of tolerance                     |   |
| O3HN  | F     | no retrigger received from CU                                |   |
| 031A  | W     | Adaptation cannot be completed                               |   |
| 03IC  | W     | No I <sub>e</sub> -adaptation measurement values             |   |
| 03ID  | W     | l <sub>e</sub> -adaptation values not evaluable              |   |
| 03KA  | W     | CondiX-Ray mode without mAs parameter                        |   |
| O3MA  | W     | Undefined status                                             |   |
| 03MB  | W     | Status change not allowed                                    |   |
| озмс  | W     | FU init data not expected                                    |   |
| 03OA  | F     | RMX exception: E\$TIME                                       | ( |
| 03OB  | F '   | RMX exception: E\$MEM                                        |   |
| 0300  | F     | RMX exception: E\$BUSY                                       |   |
| 03OD  | F     | RMX exception:E\$LIMIT                                       |   |
| 030E  | F     | RMX exception: E\$CONTEXT                                    |   |
| 03OF  | F     | RMX exception: E\$EXIST                                      |   |
| 03OG  | F     | RMX exception: E\$STATE                                      |   |
| 03OH  | F     | RMX exception: E\$NOT\$CONFIGURED                            |   |
| 0301  | F     | RMX exception: E\$INTERRUPT\$SATURATION                      |   |
| 03OJ  | F     | RMX exception: E\$INTERRUPT\$OVERFLOW                        |   |
| 03OL  | F     | RMX exception: E\$ZERO\$DIVIDE                               |   |
| 03OM  | F     | RMX exception: E\$OVERFLOW                                   |   |
|       | F     | RMX exception: E\$TYPE                                       |   |

| Error | class | explanation                                                                                                                |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------|
| 03OK  | F     | RMX exception:E\$TRANSMISSION                                                                                              |
| 0300  | F     | RMX exception: E\$PARAM                                                                                                    |
| 03OP  | F     | RMX exception:E\$BAD\$CALL                                                                                                 |
| 03OQ  | F     | RMX exception:E\$ARRAY\$BOUND                                                                                              |
| 03OR  | F     | RMX exception:E\$NDP\$ERROR                                                                                                |
| 03OS  | F     | RMX exception:E\$ILLEGAL\$OPCODE                                                                                           |
| 03OT  | F     | RMX exception:E\$EMULATOR\$TRAP                                                                                            |
| 030U  | F     | RMX exception:E\$INTERRUPT\$TABLE\$LIMIT                                                                                   |
| 03OV  | F     | RMX exception:E\$CPUXFER\$DATA\$LIMIT                                                                                      |
| 03OW  | F     | RMX exception: E\$SEG\$WRAP\$AROUND                                                                                        |
| 03OX  | F     | RMX exception: E\$CHECK\$EXCEPTION                                                                                         |
| 03OY  | F     | unknown RMX exception                                                                                                      |
| 03PA  | Е     | l <sub>e</sub> zero measured                                                                                               |
| 03PB  | W     | $l_e$ out of tolerance: $\pm$ 10 % ( $l_e$ > 5 mA, exp. time $\leq$ 44 ms) or $\pm$ 3 % ( $l_e$ > 5 mA, exp. time > 44 ms) |
| 03PC  | E     | $I_e$ out of tolerance: $\pm$ 30 % ( $I_e$ > 5 mA, exp. time > 44 ms)                                                      |
| 03PD  | W     | Setpoint for le-regulation incorrect                                                                                       |
| 03PE  | F     | Emergency off! Grid not closed!                                                                                            |
| 03SC  | E     | PC comm: Value too large                                                                                                   |
| 03SE  | F     | PC comm: Error in description                                                                                              |
| 03SF  | W     | PC comm: Item type unknown                                                                                                 |
| 03SG  | Е     | PC comm: Internal type unknown                                                                                             |
| 03SH  | F     | PC comm: Value negative                                                                                                    |
| 03SI  | F     | PC comm: No space at dest. buffer                                                                                          |
| 03SJ  | W     | PC comm: Syntax wrong                                                                                                      |
| 03SK  | W     | PC comm: String too long                                                                                                   |
| 03SL  | W     | PC comm: String truncated                                                                                                  |
| 03SM  | W     | Internal type definition not known                                                                                         |
| 03SN  | W     | value is neg., absolute values only used                                                                                   |
| 03SO  | W     | PC comm: Unknown Table ID received                                                                                         |
| 03SP  | W     | PC comm: Access Level too low                                                                                              |
| 03SQ  | W     | PC comm: Unknown Action requested                                                                                          |
| 03SR  | W     | PC comm: Routing or Message corrupt                                                                                        |
| 03SS  | W     | Unknown Action requested                                                                                                   |
| 03ST  | W     | Routing Info present or Mess. corrupt                                                                                      |
| 03SU  | W     | PC comm: Access. level is N_A (not available)                                                                              |

### **FAULT FINDING**

| Error | class | explanation                                |   |  |
|-------|-------|--------------------------------------------|---|--|
| 03SV  | W     | Access Level too low                       |   |  |
| 03SW  | W     | Unknown Table ID received                  |   |  |
| 07CA  |       | CAN: case-selector error                   |   |  |
| 07CB  |       | CAN: invalid CAN ID%u                      |   |  |
| 07CC  |       | CAN: frame rep. overflow IIM%u             |   |  |
| 07CD  |       | CAN: no RTR from CU                        |   |  |
| 07CE  |       | CAN: rx signal conflict IIM%u              |   |  |
| 07CF  |       | CAN: tx timeout                            |   |  |
| 07CI  |       | CAN: IMPOSSIBLE ERROR                      |   |  |
| 07CP  |       | CAN: CPU: PXerr %d %s(%d)                  | ( |  |
| 07CR  |       | CAN: CPU: message request fail             | / |  |
| 07CS  |       | CAN: CPU: message send error               |   |  |
| 07CY  |       | CAN: rx abort IIM%u                        |   |  |
| 07CZ  |       | CAN: unexpected frame (IIM%u)              |   |  |
| 07DA  |       | CAN: chip access error                     |   |  |
| 07DB  |       | CAN: chip reset error                      |   |  |
| 07DC  |       | CAN: chip reset release error              |   |  |
| 07DE  |       | CAN: illegal interrupt pointer             |   |  |
| 07DF  |       | CAN: chip state undefined                  |   |  |
| 07DG  |       | CAN: chip err act. after pass.             |   |  |
| 07DH  |       | CAN: chip state error passive              |   |  |
| 07DI  |       | CAN: chip state bus-off                    | 7 |  |
| 07DJ  |       | CAN: chip DPRAM Error                      | ( |  |
| 07DK  |       | CAN: chip DPRAM Error & passive            |   |  |
| 07DL  |       | CAN: unexpected interrupt                  |   |  |
| 07LA  | W     | Received IIM unknown                       |   |  |
| 07LB  | W     | Rotor Control stator number out of range   |   |  |
| 07LC  | W     | Rotor Control stator not available         |   |  |
| 07LD  | E     | Rotor Control stator 1 readback failed     |   |  |
| 07LE  | E     | Rotor Control stator 2 readback failed     |   |  |
| 07LF  | E     | Rotor Control stator 3 readback failed     |   |  |
| 07LG  | W     | Rotor Control speed value out of range     |   |  |
| 07LH  | E     | Rotor Control speed set timeout            |   |  |
| 07LI  | W     | Rotor Control max. stator loading exceeded |   |  |
| 07LJ  | E     | Rotor Control max. rotation time exceeded  | ( |  |

| Error | class | explanation                                                            |  |  |
|-------|-------|------------------------------------------------------------------------|--|--|
| 07LK  | w     | AMPLIMAT chamber number out of range                                   |  |  |
| 07LL  | W     | AMPLIMAT field number out of range                                     |  |  |
| 07LM  | W     | Wrong AMPLIMAT delay value                                             |  |  |
| 07LN  | Е     | Door contact grounded                                                  |  |  |
| 07LO  | E     | Cooling unit contact grounded                                          |  |  |
| 07LP  | W     | Ionization voltage out of range                                        |  |  |
| 08CA  |       | CAN: case-selector error                                               |  |  |
| 08CB  |       | CAN: invalid CAN ID %u                                                 |  |  |
| 08CC  |       | CAN: frame rep. overflow IIM%u                                         |  |  |
| 08CD  |       | CAN: no RTR from CU                                                    |  |  |
| 08CE  |       | CAN: rx signal conflict IIM%u                                          |  |  |
| 08CF  |       | CAN: tx timeout                                                        |  |  |
| 0801  |       | CAN: IMPOSSIBLE ERROR                                                  |  |  |
| 08CP  |       | CAN: CPU: PXerr %d %s(%d)                                              |  |  |
| 08CR  |       | CAN: CPU: message request fail                                         |  |  |
| 08CS  |       | CAN: CPU: message send error                                           |  |  |
| 08CY  |       | CAN: rx abort IIM%u                                                    |  |  |
| 08CZ  |       | CAN: unexpected frame (IIM%u)                                          |  |  |
| 08DA  |       | CAN: chip access error                                                 |  |  |
| 08DB  |       | CAN: chip reset error                                                  |  |  |
| 08DC  |       | CAN: chip reset release error                                          |  |  |
| 08DD  |       | error when offset out of range in APR data structure while surging APR |  |  |
| 08DE  |       | CAN: illegal interrupt pointer                                         |  |  |
| 08DF  |       | CAN: chip state undefined                                              |  |  |
| 08DG  |       | CAN: chip err act. after pass.                                         |  |  |
| 08DH  |       | CAN: chip state error passive                                          |  |  |
| 08DI  |       | CAN: chip state bus-off                                                |  |  |
| 08DJ  |       | CAN: chip DPRAM Error                                                  |  |  |
| 08DK  |       | CAN: chip DPRAM Error & passive                                        |  |  |
| O8DL  |       | CAN: unexpected interrupt                                              |  |  |
| 08IE  |       | Init: wrong IIM during setup                                           |  |  |
| 08IF  |       | no message request for test task                                       |  |  |
| 08IG  |       | no message send for test task                                          |  |  |
| 08RA  |       | no message receive display task                                        |  |  |
| 08RB  |       | no message release display task                                        |  |  |

| Error | class | explanation                                                        |   |  |
|-------|-------|--------------------------------------------------------------------|---|--|
| 08SA  |       | error when requesting message object to CAN_tx_task from scan task |   |  |
| 08SB  |       | error when requesting message object to CAN_tx_task from test task |   |  |
| 08SC  |       | error when sending message to CAN_tx_task from scan task           |   |  |
| 0ACA  |       | CAN: case-selector error                                           |   |  |
| 0ACB  |       | CAN: invalid CAN ID %u                                             |   |  |
| 0ACC  |       | CAN: frame rep. overflow IIM%u                                     |   |  |
| 0ACD  |       | CAN: no RTR from CU                                                |   |  |
| OACE  |       | CAN: rx signal conflict IIM%u                                      |   |  |
| OACF  |       | CAN: tx timeout                                                    |   |  |
| 0ACI  |       | CAN: IMPOSSIBLE ERROR                                              | 1 |  |
| OACP  |       | CAN: CPU: PXerr %d %s(%d)                                          | ( |  |
| 0ACR  |       | CAN: CPU: message request fail                                     |   |  |
| OACS  |       | CAN: CPU: message send error                                       |   |  |
| OACY  |       | CAN: rx abort IIM%u                                                |   |  |
| OACZ  |       | CAN: unexpected frame (IIM%u)                                      |   |  |
| OADA  |       | CAN: chip access error                                             |   |  |
| 0ADB  |       | CAN: chip reset error                                              |   |  |
| OADC  |       | CAN: chip reset release error                                      |   |  |
| OADE  |       | CAN: illegal interrupt pointer                                     |   |  |
| OADF  |       | CAN: chip state undefined                                          |   |  |
| 0ADG  |       | CAN: chip err act. after pass.                                     |   |  |
| OADH  |       | CAN: chip state error passive                                      |   |  |
| OADI  |       | CAN: chip state bus-off                                            | I |  |
| 0ADJ  |       | CAN: chip DPRAM Error                                              |   |  |
| OADK  |       | CAN: chip DPRAM Error & passive                                    |   |  |
| OADL  |       | CAN: unexpected interrupt                                          |   |  |
| OAIF  |       | initialization failed                                              |   |  |
| OALA  |       | acceleration count limit exceeded                                  |   |  |
| OALC  |       | current limit exceeded                                             |   |  |
| OALH  |       | intermediate current %u mA (>%u)                                   |   |  |
| OALL  |       | intermediate current %u mA (<%u)                                   |   |  |
| OALO  |       | intermediate voltage %u V (>%u)                                    |   |  |
| OALT  |       | temperature limit exceeded                                         |   |  |
| OALU  |       | intermediate voltage %u V (<%u)                                    |   |  |
| OAOE  |       | CPU: PXROS error %d                                                |   |  |

| Error | class | explanation                        |  |
|-------|-------|------------------------------------|--|
| 0AOF  |       | CPU: PXROS error %d %s(%d)         |  |
| 0ARC  |       | rotation check failed              |  |
| 0ARI  |       | invalid rotation request: %u       |  |
| OARM  |       | rotation detector not present      |  |
| OART  |       | rotation request timeout           |  |
| OATE  |       | stator %u hardware error           |  |
| OATF  |       | stator %u switching failed         |  |
| OATI  |       | invalid stator request: %u         |  |
| 0ATR  |       | stator change with rotating anode  |  |
| 0AUI  |       | unknown message from CU: IIM %u    |  |
| 0AUM  |       | unexpected message from CU: IIM %u |  |
| OAWT  |       | CPU: watchdog timeout              |  |
| 0AXX  |       | IMPOSSIBLE ERROR                   |  |
| 0DCA  |       | CAN: case-selector error           |  |
| 0DCB  |       | CAN: invalid CAN ID %u             |  |
| 0DCC  |       | CAN: frame rep. overflow IIM%u     |  |
| 0DCD  |       | CAN: no RTR from CU                |  |
| 0DCE  |       | CAN: rx signal conflict IIM%u      |  |
| 0DCF  |       | CAN: tx timeout                    |  |
| 0DCI  |       | CAN: IMPOSSIBLE ERROR              |  |
| 0DCP  |       | CAN: CPU: PXerr %d %s(%d)          |  |
| 0DCR  |       | CAN: CPU: message request fail     |  |
| 0DCS  |       | CAN: CPU: message send error       |  |
| ODCY  |       | CAN: rx abort IIM%u                |  |
| 0DCZ  |       | CAN: unexpected frame (IIM%u)      |  |
| ODDA  |       | CAN: chip access error             |  |
| ODDB  |       | CAN: chip reset error              |  |
| 0DDC  |       | CAN: chip reset release error      |  |
| ODDE  |       | CAN: illegal interrupt pointer     |  |
| 0DDF  |       | CAN: chip state undefined          |  |
| 0DDG  |       | CAN: chip err act. after pass.     |  |
| 0DDH  |       | CAN: chip state error passive      |  |
| 0DDI  |       | CAN: chip state bus-off            |  |
| 0DDJ  |       | CAN: chip DPRAM Error              |  |
| ODDK  |       | CAN: chip DPRAM Error & passive    |  |

FAULT FINDING

| Error | class | explanation                            |
|-------|-------|----------------------------------------|
| oddl. |       | CAN: unexpected interrupt              |
| ODLA  | W     | received IIM unknown                   |
| 0DLB  | W     | wrong bidirectional lines output value |
| 0DLC  | W     | value for K5 – K12 out of range        |
| 0DLD  | W     | RGDV value out of range                |
| ODLE  | Е     | RGDV readback failed                   |
| 0DLF  | W     | wrong sync. contact value              |
| ODLG  | W     | wrong handswitch enable value          |
| 0DLH  | E     | S1/S2 switch active during startup     |
| 0ECA  |       | CAN: case-selector error               |
| 0ECB  |       | CAN: invalid CAN ID %u                 |
| 0ECC  |       | CAN: frame rep. overflow IIM%u         |
| 0ECD  |       | CAN: no RTR from CU                    |
| 0ECE  |       | CAN: rx signal conflict IIM%u          |
| 0ECF  |       | CAN: tx timeout                        |
| 0ECI  |       | CAN: IMPOSSIBLE ERROR                  |
| 0ECP  |       | CAN: CPU: PXerr %d %s(%d)              |
| 0ECR  |       | CAN: CPU: message request fail         |
| 0ECS  |       | CAN: CPU: message send error           |
| 0ECY  |       | CAN: rx abort IIM%u                    |
| 0ECZ  |       | CAN: unexpected frame (IIM%u)          |
| 0EDA  |       | CAN: chip access error                 |
| 0EDB  |       | CAN: chip reset error                  |
| 0EDC  |       | CAN: chip reset release error          |
| 0EDE  |       | CAN: illegal interrupt pointer         |
| 0EDF  |       | CAN: chip state undefined              |
| 0EDG  |       | CAN: chip err act. after pass.         |
| 0EDH  |       | CAN: chip state error passive          |
| 0EDI  |       | CAN: chip state bus-off                |
| 0EDJ  |       | CAN: chip DPRAM Error                  |
| 0EDK  |       | CAN: chip DPRAM Error & passive        |
| 0EDL  |       | CAN: unexpected interrupt              |
| 0ELA  | W     | received IIM unknown                   |
| 0ELB  | W     | wrong bidirectional lines output value |
| 0ELC  | W     | value for K5 – K12 out of range        |
|       |       |                                        |

| Error | class | explanation                        |
|-------|-------|------------------------------------|
|       |       |                                    |
| 0ELD  | W     | RGDV value out of range            |
| 0ELE  | E     | RGDV readback failed               |
| 0ELF  | W     | wrong sync. contact value          |
| 0ELG  | W     | wrong handswitch enable value      |
| 0ELH  | E     | S1/S2 switch active during startup |

### 8. Power supply

### Switch-on not possible:

- ENF1 released.
- ENF1 not switched on (visual check).

ENF2 released by

low-voltage supply filament circuit

tube extension

external components supply.

- FNF2 not switched on (visual check).
- "ON" circuit EN100 defective.

#### Phase supervision

a) Without mains adaptation transformer:

- Phase L1 is missing: Mains contactors ENK2 and ENK1 cannot be activated.

- Phase L2 is missing: The generator can be switched on but does not go into the READY state.

The filament-circuit supply is missing.

There is an error message from function unit kV.

- Phase L3 is missing: "ON" circuit without supply voltage.

Fault tracing:

Check leads and fuses up to the mains supply.

b) With mains adaptation transformer:

In case at least one phase at the primary end is missing, the generator cannot be switched on. If there is a problem concerning the leads at the secondary end, refer to a).

#### After switch-on or attempted switch-on:

The generator cannot be brought into the READY state (e.g. no desk display).

Check the low-voltage supply.

- ENF1 released:

Ground fault/short-circuit of one/several phase(s).

Check ENK2 and, if necessary, the contacts of ENK1.

Check the leads and the mains adaptation transformer.

Have contacts ENK2 or ENK1 dropped out?

Check visually. Be careful when doing so since the unit is still connected to mains.

- Missing voltage of intermediate circuit:

The damping resistors are unsoldered which was caused by overcurrent during switch-on.

Cause: Short-circuit in the converter, defective charging capacitors, mains-filter capacitors or rectifiers.

Unsoldering happens about 45 sec. after switch on.

The damping resistors are unsoldered because the converter was active and ENK1 was not switched on although activated by the software.

Probably termination of exposure.

OPTIMUS 50/65/80 FAULT FINDING

This procedure can only happen once since the generator cannot go into STANDBY when intermediate-circuit voltage E is missing.

In case intermediate-circuit voltage E is present, ENK1 is activated by the software of the kV-control and remains activated for the complete time the unit is in operation.

In case of high impedance or when the tolerance of the symmetry resistors of the intermediate-circuit capacitor battery is too large, capacitors may be destroyed by overvoltage. In case ENK1 has already been activated, ENF1 will probably release.

ENF3 is released by the rotor control units.

The release of ENF2 switches the generator off since the supply voltage for the "ON" circuit and, consequently, the supply voltage of contactors ENK2 and ENK1 is interrupted.

#### 9. Converter

See drawings: Z1-3.2 / 3.3

Z2 - 3

### 9.1. Problem overview

Resonant capacitor(s) defective:

- At least one of the two capacitors is ineffective:

High voltage is not possible with the 50 kW version.

Asymmetry or too low kV with the 65/80/100 kV versions.

- Short-circuit on one of the two capacitors (in case both capacitors are concerned, ENF1 will be released):

Low resonant-circuit frequency.

The IGTBs can break because of overcurrent.

Overvoltage at the resonant capacitor which is intact.

kV overswing.

DC short-circuit current possible because of resonant current which has not yet died off.

Snubber diode on kV power board defective:

- High impedance:

IGBTs defective. DC short-circuit current causes the release of ENF1.

- Short-circuit:

IGBTs defective. DC short-circuit current causes the release of ENF1. The resistors of the protective wiring might be destroyed in advance.

The fan for the IGBT heat sinks fails:

The temperature is measured and a (warning) message is given via the software.

The converter is switched off when the limit values are exceeded (error).

This might be caused by failure of the supply of the fan.

The NTC resistor for temperature measurement is supervised via the software with respect to logical values.

The valid temperature range is between these error conditions.

Open/shorted measuring circuits or any values going beyond the temperature limits will cause an error message.

### 9.2. Hardware problems

An ENF1 tripout will be the 'message' if something serious happened in the converter. If something like this occurs, replace the whole kV power unit. We want to have the complete unit to get a chance of researching the problem.

Before the ENF1 is pushed back to the on position check if all contacts of ENK1 1–2, 3–4 and 5–6 are open in the
non-energized condition of the relay. If not, replace the relay before you switch on ENF1 and proceed with other test
activities.

The first thing to look at will be the emitter-collector / emitter-gate impedance at every IGBT 1 to 4. If all 4 of a kV power unit are not 0 Ohms (50 kW) and none of the 8 of a double converter generator is on 0 Ohms one should not suspect the power unit(s) (so far).

Are there any damages on the driver PCB('s)?

• Check the snubber diodes V 500 / 501 / 502 / 503 for short-circuit. If one has a short-circuit some of the resistors linked to the damaged diode(s) must also be open or have some overheat characteristics.

The second step should be the measurement of the rectifier(s) EQV5 (E2QV5). It could have been damaged from overvoltage (surge). Look for short-circuits and, after the next switch-on, for error codes 02Hi and/or 02HJ (E\_value out of range = DC power supply) in the error log index.

```
02HI = 470 \text{ V} > E_value > 780 \text{ V} in standby \geq 30 \text{ ms} 02HJ = 450 \text{ V} > E_value > 800 \text{ V} —dto— .
```

- Remove the driver PCB('s) to look at the current tracks for short-circuit (insulation damaged?)
- Check all 4 DC capacitors for short-circuit. Are the DC symmetry resistors R1 + R11 ok (47 kΩ)?
- Are the frequency capacitors C3 and C13 ok?
- If everything seems to be fine so far reinstall the kV\_driver PCB.
- · Switch on ENF1.
- · Switch on the generator.

With switch-on the converter DC supply will be charged via the dumping (spring) resistors EN R1, R2 and R3. If there is still any kind of short-circuit in the machine we could not measure with a (low voltage)  $\Omega$ -meter and/or there is a part in the generator which fails when the AC or DC increases a certain level, one or two of the spring resistors might become very hot and will open.

If it does not happen, measure the converter DC supply at ENK2 41(+) and 42(-). It should have a value between 480 V and 750 V.

If the generator is in a stable standby condition, proceed with the converter driver test without converter DC supply.

### 9.3. kV driver test

#### Caution!

Before this driver test can be carried out the kV power unit(s) must be disconnected from the mains supply (leads of unit(s) EQ/E2Q to ENK1:1,:3,:5).

This safety measure is also valid for the chopper test to guarantee that the measurements can be carried out without any risks involved.



The kV driver test is software controlled via PC. Due to the missing PREP and exposure requests the signals EN\_X\_C/ and CTRL\_X\_C/ have to be set low-active at the backpanel at locations X76 and X74 (see drawing Z2–5.1/2).

#### Caution!

Do not forget to remove these connections after the test. Otherwise kV will start immediately with the PREP command in normal application mode.

- Switch on the generator.

  Ignore error codes 02HI and 02HJ now, the DC supply is off and these error must come up.
- Check whether the gate voltage is about  $-14.2 \text{ V} \pm 0.3 \text{V}$  against emitter for every IGBT.
- Check the ±15 V supply for the IGBT drivers now. Drivers 1 and 2 are supplied by chopper 1 while drivers 3 and 4 are supplied by chopper 2. The common zero point is the emitter.

| Emitter  | +15 V supply at heat sink | -15 V at resistor      |                              |
|----------|---------------------------|------------------------|------------------------------|
| E1, X101 | A100                      | R103 upper position or | X102 (Q100 ≥ 4512 108 08621) |
| E2, X201 | A200                      | R203 upper position    | X202                         |
| E3, X301 | A300                      | R303 lower position    | X302                         |
| E4, X401 | A400                      | R403 upper position    | X402                         |





### Test of control signal(s) and driver(s) behaviour:

The range of the control signal is + 3.7 V  $\pm$  0.2 V for the on condition and + 1.2 V  $\pm$  0.2 V for the off condition at the specified measuring point against generator ground (see drawings of principals and PCB layout).

The range of the driver signal (gate against emitter) is  $-14.2 \text{ V} \pm 0.3 \text{ V}$  for the off condition and  $+13.5 \text{ V} \pm 0.3 \text{ V}$  for the on condition.

Select menu "FU\_kV/ Faultfind/ Functional Test/ Test Converter" at the service PC.
 The question [power supply mains – E disconnected ?:] will come up.
 Answer with 'yes' (type Return twice) and transmit with [F2].

If the test takes longer than 10 minutes it may happen, that the test will be denied by the kV\_control. This happens if the DC voltage = E-value increases 5 V (the DC capacitors are slowly charged by the  $\pm$  15 V of the drivers). Then short-circuit the DC at collector C1 and emitter E2.

Do not establish a constant short-circuit to avoid a big problem after the test!

The test itself is short. The pulse time is 2.5 sec long, but the PC screen says [completed] after 5 seconds. kV\_control sends pulses for 5 seconds, but the hardware timer on the kV\_control inhibits more pulses after 2.5 ms. Within this time the actual kV have to be on the nominal value.

### Test 1: in- and output:

power unit 4512 108 0862x only.

- Put a 2 beam scope to every measuring point of the control signals (channel A) and to every gate belonging to the inputs (channel B).
   Measuring points X6...X10 are present at the new kV
- Trigger with the negative slope of channel A, take 10..50µs/Div.



The 'needle' shape of the attached scope picture is due to the resolution of the scope, which has been magnified thereafter.



### Test 2: inputs only:

Check if the signal pattern of all 4 control signals look the same as on the diagram. Of course, only 2 channels be seen at the same time, but the "on's" and "off's" must be equal to the drawing. There should never be an on (low active) of A (R25) + C (R27) and never be an on of B (R31) + D (R29).



## Test 3: only for 65/80/100kW with two kV power units:

Compare control signals of both units.
 The signals at R25 of unit 1 must be absolutely equal to the signal at R25 at unit 2.

If no problems are visible = all waveforms are as they should be:

- · Switch off the generator with ENF1.
- Remove links EN\_X\_C/ and CTRL\_X\_C/ at the backpanel X76 and X74.
- · Remove scope probes.
- Close the kV power part(s).
- Connect mains power lines at ENK1:1:3:5.
- · Switch on ENF1 and the generator.

### 10. Functional description of function unit mA

Tube data must be loaded as a data set from floppy disk via PC and central unit CU to into function unit mA.

The procedures described below cannot be carried out before the complete data set for the tube housing assembly is present in central unit CU.

Before the tube adaptation can be started, tube conditioning must be implemented.

With the present generator release the conditioning must be implemented manually.

Later on the conditioning program will take place automatically.

Before adaptation can be started, the mA offset value of the mA measuring circuit must be determined.

This offset value consists of two components:

- 1. A current of 4 mA is impressed upon the mA measuring circuit which is used for continuous calibration (during STANDBY about once per minute).
- 2. In addition to this the kV measuring circuit delivers an offset current depending on the kV.

To measure this total value an exposure must be released with 40 kV without filament current. The current measured is the correction value for all standard exposures (4 mA, measuring circuit current depending on the kV).

As opposed to the standby filament current value of the predecessor versions of the generator, the standby filament current value of the OPTIMUS generator is not fixed.

It is determined for each focus individually. A 40 kV exposure must be released with the focus to be measured while all other foci are switched off.

The filament current must be changed until an emission current of 100 µA is obtained.

The associated filament current value is the individual standby filament current (1% to be substracted so that the fluoroscopic current of any of the other foci is not affected).

The adaptation program takes place fully automatically.

Based on 120 single exposures for each focus a data field is created in the CMOS of function unit mA. The adjustments for all other exposures are interpolated from this data field during operation.

During the adaptation procedure any limit values such as maximum filament current, maximum kV, maximum tube load, maximum output, current of the generator etc. are taken into account.

### **Boost adaptation**

Boost time determination (positive boosting).

With the predecessor versions of the generator, a **calculated boost current** was added to the exposure filament current for a **fixed time** of 400 ms.

With OPTIMUS generators the boost current is also fixed but with a variable time.

The amount of the boost current is the sum of the maximum filament current (of the respective filament) plus 2000 mA.

To determine the time values an exposure must be started in the kV isowatt point (determined from tube and generator parameters).

As soon as the 100% kV value is reached, the maximum filament current plus 2000 mA is adjusted by function unit mA. The emission current is measured every 2 ms until the maximum tube current or the maximum possible generator current is reached.

In case this procedure takes too long (warming up of the tube), the measurement is continued with a second exposure after a sufficient period of time has passed.

The measurement starts again at the value obtained last.

OPTIMUS 50/65/80 FAULT FINDING

An innovation of the OPTIMUS generator is the determination of the **negative boosting** (blanking of the filament current).

The measurement is started with the same kV isowatt exposure which is used for the determination of the positive boost time but with maximum filament current.

As soon as the 100% kV value is reached, the maximum filament current of the filament circuit is abruptly reduced to 500 mA.

Every 2 ms the emission current is measured until a value of 100 µA is obtained.

The values for the blanking times are required for techniques such as, for instance, cine.

A filament current value of 500 m must not be exceeded for otherwise the output to supply a gridswitch box (which might be present) is too low.

The following procedure takes place after the generator has been switched on:

Function unit mA initializes itself and afterwards establishes connection with central unit CU via CAN.

For 3 seconds all foci are boosted with their respective specified maximum filament current. Then blanking of the filament current (500 mA) takes place for a variable period of time (derived from negative boost adaptation) to bring the filament current to the STANDBY value.

The change of the filament current value upon a change of the focus which was the usual routine for the predecessor versions of the OPTIMUS generator does no longer take place – all STANDBY values remain constant.

During operation the following procedure takes place after the release of PREP:

 The filament current is raised from the individual STANDBY filament current which depends on the focus to the boost current.

The switch-on time of the boost current results from the difference between STANDBY and intermediate filament current.

- The intermediate filament current is a calculated value. It is calculated in such a way that the filament current and thus the filament temperature is brought to exposure level when the boost current is switched off for 50 ms directly at the end of the preparation phase (RQ\_SN\_X/ already active) and/or directly before high voltage is switched on (RQ\_SN\_X/ active when the patient is quiet).
- During exposure the filament current is regulated as required.
- At the end of exposure the filament current is reduced to the minimum value of 500 mA (negative boosting) for a short time.

At the same time the temperature of the filament abruptly drops to a level which corresponds to the level of the intermediate filament current.

Afterwards heating takes place with the intermediate filament current.

Now the tube would be ready for the next exposure with the same preparation.

 In case preparation is released, negative boosting takes place until heating can go on with the STANDBY filament current.

### 11. CAN bus

All the intelligent assemblies/pc boards communicate via the CAN bus. There they are connected in parallel to the two lines CAN\_L (low) and CAN\_H (high).

The data are serially transmitted in the form of so-called frames.

Levels in quiescent state against chassis:

– CAN\_L: 2.5 V

- CAN\_H: 2.5 V

Levels during data transmission against chassis:

- CAN\_L: 0.50 ... 2.25 V Both levels are opposite.

- CAN H: 2.75 ... 4.50 V J The difference must be greater than 1.5 V!

Test points generator CAN:

Test points system CAN:

- CAN\_L: EZX71

- S\_CAN\_L: EZX42:2

- CAN\_H: EZX72

- S\_CAN\_H: EZX42:7

- Chassis:

EZX5

- Chassis:

EZX42:3

Reference:

Z1-5.1, Z2-5.1/5.2

### Symptoms of errors:

- The generator is inoperable.
- The red LED of one or more of the assemblies/pc boards is flashing.
- Parameter settings on the control desk are accepted and displayed with a considerable delay.
- In the error memory there are several entries which in the code begin with 00C (apart from 00CJ) or the error description contains a reference to signal conflicts.

### Error localization:

- Entries in the error memory clearly draw attention to the fact that the assembly and pcb are not communicating properly or not at all.
- Control measurement of CAN levels with an oscilloscope during data transmission and in the quiescent state.
   Data transmission is triggered by pressing any desk button.
  - If the levels are outside the tolerance or are not symmetrical, the CAN driver of an assembly/pcb is faulty. Since all the users are connected to the bus in parallel, the troublemaker can only be found by disconnecting one user after another.

Disconnection may only take place with the generator switched off.



### 12. Incorrect exposure indicator

### General causes:

On the control desk an incorrect exposure is indicated if an exposure cannot be terminated according to the parameters set. Frequent causes of underexposure are the following:

- The operator has let go of the release switch prematurely.
- Tomography time of the unit does not coincide with the exposure time of the generator. Permissible tolerance: ± 10%
- Measuring chamber incorrectly programmed, not connected or faulty.

Check the following:

- RGDV programming
- Programming of AMPLIMAT sensitivity
- Programming of EZ150 Basic Interface (Gain, 15 V/40 V supply)
- Programming of screen-film combination (Data Sets 1...5)
- The APR selected is not matched to the technique used or the screen-film combination.

Check the following:

APR programming

The standard APRs supplied have parameters which are generally matched to a 400–type screen–film combination. If the standard APRs are used, the exposure parameters will have to be changed according to the speed of the screen–film combination actually used.

This also applies if an automatic technique is programmed as the preferred technique. In automatic techniques the mAs and ms-parameters are used for Fault Exposure Detection.

### Fault exposure detection AEC/TDC:

To protect patients there are 3 monitoring systems for automatic techniques:

- 1. Maximum mAs product
- 2. Maximum exposure time or backup time
- 3. Fault Exposure Detection

The maximum mAs product can be set via xrgscope.

The fault exposure detection can be switched on or off via xrgscope. Irrespective of this, fault exposure detection is not performed if levels fall below certain limits.

### **AEC/AECF limits:**

- Maximum mAs product:

580 mAs (default)

- Maximum exposure time:

4 s

- Backup time AEC:

Exposure time based on 10 times the mAs of the respective manual

technique (kV-mAs). 4 s after overriding.

- Backup time AECF:

10 times the exposure time of the respective manual technique (kV-mAs).

Fault Exposure Detection:

≤ 4% dose at 10% backup time

Fault Exposure Detection is ignored under the following circumstances:

- Backup time:

 $\leq$  100 ms ( $\leq$  10 ms at 10%)

- Switch-off voltage (dose):

 $\leq$  610 mV ( $\leq$  24.4 mV at 4%)

If there is a fault an exposure is aborted after about 10% of backup time. If the Fault Exposure Detection fails to respond (in the event of a fault, shutdown takes place after reaching backup time or maximum exposure time or max. mAs product.

OPTIMUS 50/65/80 FAULT FINDING

### **TDC limits:**

Maximum mAs product:

580 mAs (default)

- Exposure time:

0.3 ... 6 s

- Fault Exposure Detection:

≤ 10 ... 4% dose for 10 times the sample time

10 x sample time

Dose minimum =

- x 40% nominal dose

exposure time (corr.)

- Backup time:

Exposure time

- Sample time:

25 ... 60 ms = 1% exposure time (corr.), min. 25 ms

- Sample steps:

12 ... 100

Fault Exposure Detection is ignored under the following circumstances:

- Exposure time:

< 1 s

In the event of a fault the exposure is aborted after approx. 11 times Sample Time. If the Fault Exposure Detection fails to respond in the event of a fault, shutdown takes place after reaching the backup time or the max. mAs product.

The switch—off voltage should be at least 1.2 V to guarantee good TDC regulation. Program the higher gain factor on EZ150 BASIC INTERFACE (≥ 4512 108 05964) if necessary.

### Programming possibilities:

- Menu "Program/ Application Limits/ X-Mode Limits":

X-Ray Mode: AEC ... TDC

Max. Current Time Product Limit: 580 mAs

- Menu "Program/ Dose Rate Control/ Fault Exposure Detection/ AEC ... TDC": on - off

### Aids to fault finding:

Menu "Faultfind/ Logging Table/ X-Ray Log/ Dose Rate Control Logging/ ...

.../ Read Actual Status":

Technique and parameters of the last exposure

.../ AEC/ AEC Calculation":

Data of the selected APR with AEC or AECF

.../ AEC/ AEC Trace":

Control values of the last AEC exposure

.../ TDC/ TDC Calculation":

Data of the selected APR with TDC

.../ TDC/ TDC Trace":

Control values of the last TDC exposure

### Adjustment possibilities:

- Menu "Adjust / Dose Rate Control / TDC AMPLIMAT":

```
P gain factor (def. 50):
i gain factor (def. 8):
d gain factor (def. 5):

Don't change any value here without order from DMC Hamburg!
d gain factor (def. 5):

min. sample time (def. 40) [ms]: 25 ... 65
```

CM\_EX\_SW\_1

3-44

| 13. Mnem   | onic and routing list                                                                         |
|------------|-----------------------------------------------------------------------------------------------|
| Example:   |                                                                                               |
| MNEMONIC   | explanation                                                                                   |
|            | chain                                                                                         |
|            | value                                                                                         |
|            |                                                                                               |
|            | measuring point                                                                               |
|            | trigger point                                                                                 |
|            | remarks                                                                                       |
|            | part of supply                                                                                |
| AC_0V_XG   | mains supply 0 V X-ray generator                                                              |
|            | ENX1102-EZX13:2-EZ102X1:DBZ4-EZ119X1:DBZ24                                                    |
|            | EZX14:2-                                                                                      |
|            | EZX15:2-EWRX21:2                                                                              |
| AC_230V_L1 | mains supply 230V AC phase 1                                                                  |
|            | ENF3:L1-EZX13:1-EZX102X1:DBZ2                                                                 |
|            | EZX14:1-                                                                                      |
|            | EZX15:1-EWRX21:1-                                                                             |
| AC_230V_L2 | mains supply 230V AC phase 2                                                                  |
|            | ENF3:L2-EZX13:3-EZ119X1:DBZ26                                                                 |
| AV_HT_AN   | high tension actual value anode side                                                          |
|            | 0V+3.75V 1V ≏ 20kV                                                                            |
|            | measuring point EZ130X4                                                                       |
| AV_HT_CA   | high tension actual value cathode side                                                        |
|            | 0V+3.75V 1V ≏ 20kV                                                                            |
|            | measuring point EZ130X5                                                                       |
| AV_HT      | high tension actual value                                                                     |
|            | 0+7.5V 1V ≈ 20kV                                                                              |
|            | measuring point EZ130X3                                                                       |
| CAN_H      | generator CAN high active                                                                     |
| _          | EZ119X2:C3-EZ130X2:C3-EZ139X2:C3-EZ150X2:C3-EZX44:10-EZX45:10-EZX46:10-                       |
|            | -C300X1:10-EZX51:3-EZX151:3-EZX52:7-EZX72-                                                    |
|            | EWAX51:10-EWAX52:10-EWA100X2:C3-                                                              |
|            | 0V/5V                                                                                         |
|            | measuring point EZX72                                                                         |
|            | part of: XRG bus                                                                              |
| CAN_L      | generator CAN low active                                                                      |
|            | EZ119X2:A3-EZ130X2:A3-EZ139X2:A3-EZ150X2:A3-EZX44:2-EZX45:2-EZX46:2C300X1:2-EZX51:2-EZX151:2- |
|            | EZX52:2-EZX71- EWAX51:2-EWAX52:2-EWA100X2:A3-                                                 |
|            | 0V/5V                                                                                         |
|            | measuring point EZX71 part of: XRG bus                                                        |
| CM EV OW 4 |                                                                                               |

common for exposure switch of release decade 1

EWA100X1:C5-EWAX1:10-

| CM_EX_SW_2 | common for exposure switch of release decade 2 EWA100X1:C7-EWAX2:10-                                                                                                                                                                                                                                                                                                                                                                        |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CM_EX_SW_3 | common for exposure switch of release decade 3 EWA100X1:C9-EWAX3:10-                                                                                                                                                                                                                                                                                                                                                                        |
| CM_EX_SW_4 | common for exposure switch of release decade 4 EWA100X1:C11-EWAX4:10-                                                                                                                                                                                                                                                                                                                                                                       |
| CM_SW      | common for radiation indication EZ150X1:C29-EZX1:6-                                                                                                                                                                                                                                                                                                                                                                                         |
| CM_TH      | common for thermal sensor of tube housing EZ130X1:C12-EZX3:7- (generator basis 4512 104 70202/70601 only) EZ130X1:C12-EZX3:4-                                                                                                                                                                                                                                                                                                               |
| CM_TH_SW   | common for tube housing switch EZ130X1:C11-EZX3:4- (generator basis 4512 104 70202/70601 only) EZ130X1:C11-EZX3:7-                                                                                                                                                                                                                                                                                                                          |
| CTRL_X/    | control X-ray request command, system level EZ139X1:A4-EZX23:4-EZX45:5-EWAX51:5-EWAX52:5-EWA100X2:C25- 0V/15V measuring point: EZX85 part of: system signal bus                                                                                                                                                                                                                                                                             |
| CTRL_X_C/  | control X-ray request command, internal generator level EZ119X2:C6–EZ130X2:C6–EZ139X2:C6–EZ150X2:C6–EZX52:8 0V/5V measuring point EZX74 driven by CU, active, if STOP_X_C/ not active, immediately inactive if STOP_X_C/ active, controls all non AEC exposures with exposure timer or AEC exposures with DRC timer HTON high tension on command (internal generator command) resp. 20/21 signal (external = old world) part of: XS/XRG bus |
| CU_CT1_1   | cooling unit contact 1_1 EZ150X1:A22-EZX2:6                                                                                                                                                                                                                                                                                                                                                                                                 |
| CU_CT1_2   | cooling unit contact 1_2 EZ150X1:C22-EZX2:7-                                                                                                                                                                                                                                                                                                                                                                                                |
| CV1_GND    | converter power part 1 ground EZ130X1:AC8-EZX24:8/21-EQ100X1:8/21                                                                                                                                                                                                                                                                                                                                                                           |
| CV1_GND_OL | converter power part 1 ground overload (generator basis ≥ 4512 104 70203/70602) EZ130X1:A7–EZX24:20–EQ100X1:20                                                                                                                                                                                                                                                                                                                              |
| CV1_ID/    | converter power part 1 identification EQ100X1:19-EZX24:19-EZ130X1:A6 open 5V, low active 0V                                                                                                                                                                                                                                                                                                                                                 |

| CV1_OL/    | converter power part 1 overload EQ100X1:7-EZX24:7-EZ130X1:C7- open +26V, low active 0V                                                                                                                    | (           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CV1_TM     | converter power part 1 temperature EQ100X1:6-EZX24:6-EZ130X1:C6- 0.33.5V, 85 °C0 °C                                                                                                                       | <del></del> |
| CV2_GND    | converter power part 2 ground<br>EZ130X1:AC29-EZX34:8/21-E2Q100X1:8/21                                                                                                                                    |             |
| CV2_GND_OL | converter power part 2 ground overload (generator basis ≥ 4512 104 70203/70602) EZ130X1:A28-EZX34:20-E2Q100X1:20                                                                                          |             |
| CV2_ID/    | converter power part 2 identification E2Q100X1:19-EZX34:19-EZ130X1:A27- open 5V, low active 0V                                                                                                            | (           |
| CV2_OL     | converter power part 2 overload E2Q100X1:7-EZX34:7-EZ130X1:C28- open +26V, low active 0V                                                                                                                  | \           |
| CV2_TM     | converter power part 2 temperature EZ130X1:C27-E2Q100X1:6-EZX34:6- 0.33.5V, 85 °C0 °C                                                                                                                     |             |
| DR_BV_0V   | dose rate (signal) reference of image intensifier  EZX61:3–EZ139X2:C18–  negative potential of II unit, 0V ± 50mV against generator ground  differential signal with DR_BV_SG  part of: dose rate control |             |
| DR_BV_SG   | dose rate signal of image intensifier  EZX61:8–EZ139X2:A18–  positive potential, 010V  differential signal with DR_BV_0V  part of: dose rate control                                                      | (           |
| DR_FQ_NG   | dose rate signal (pulses) negative  EZX61:6–EZ139X2:C20–  0.1 μR / pulse  optocoupled interface, dose rate signal = pulsed frequency part of: dose rate control                                           |             |
| DR_FQ_PO   | dose rate signal (pulses) positive EZX61:1–EZ139X2:A20– 0.1 $\mu$ R / pulse optocoupled interface, dose rate signal = pulsed frequency part of: dose rate control                                         |             |

OPTIMUS 50/65/80 FAULT FINDING

DR\_TV\_NT dose rate of TV chain signal negative, fluoro regulation

EZX61:4-EZ139X2:C19-± 12V minus polarity

dual voltage differential signal

+12V = 200% light, 0V = 100% light, -12V = 50% light

part of: dose rate control

DR\_TV\_PT dose rate of TV chain signal positive, fluoro regulation

EZX61:9-EZ139X2:A19-±12V positive polarity dual voltage differential signal

-12V = 200% light, 0V = 100% light, +12V = 50% light

part of: dose rate control

DS\_BV\_0V dose (signal ramp) reference of image intensifier

EZX61:2-EZ139X2C17-

negative potential of II unit, 0V ±50mV against generator ground

differential signal with DS\_BV\_SG

part of: dose rate control

DS\_BV\_SG dose signal ramp of image intensifier signal

EZX61:7-EZ139X2:A17-0...10V, polarity positive differential signal with DS\_BV\_0V part of: dose rate control

DS\_MC\_0V dose (signal ramp) reference of selected measuring chamber

EZ150X2:C16-EZ139X2:C16

negative potential of selected measuring chamber, 0V  $\pm$ 50mV against generator ground

differential signal with DS\_MC\_SG

DS\_MC\_SG dose signal ramp of selected measuring chamber

EZ150X2:A16-EZ139X2:A16-

0...12V

differential signal with DS\_MC\_0V

E\_NG\_CV1/2 E value converter DC supply negative

converter 1: EQ100X1:5-EZX24:5-EZ130X1:C5-

converter 2: E2Q100X1:5-EZX34:5-EZ130X1:C26 (future releases)

 $0...-12V \simeq 0...-375V$ 

E\_PO\_CV1/2 E value converter DC supply positive

converter 1: EQ100X1:18-EZX24:18-EZ130X1:A5-

converter 2: E2Q100X1:18-EZX34:18-EZ130X1:A26 (future releases)

0...+12V \(\sigma\) 0...+375V

EN\_X/ enable X-ray, system level

EZ139X1:C2-EZX10:1/3-EZX23:15-EZX45:11-EZX46:11-C300X1:11- -EWAX51:11-EWAX52:11-EWA100X2:C26-

measuring point: EZX82, EZ139X9

part of: signal bus 0V/15V low active

| EN_X_C/            | enable X-ray, internal generator level EZ119X2:C7-EZ130X1:A9-EZ130X1:A30-EZ130X2:C7-EZ139X2:C7-EZ150X2:C7-EZX52:9-EZX76- 0V/5V low active measuring point EZX76 driven by CU if EN_X/ active (low) part of: XS/XRG bus |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CV1 EN/<br>CV2 EN/ | converter 1/2 enable converter 1: EZ130X1:A9-EZX24:22-EQ100X1:22- converter 2: EZ130X1:A30-EZX34:22-E2Q100X1:22-                                                                                                       |
| EX_ON              | exposure on EWA100X2:A9–EWAX14:7– part of: exon old world                                                                                                                                                              |
| FD_C_CH1           | central field measuring chamber 1 EZ150X1:C4–EZX21:12–15V, $R_i$ = 220 $\Omega$                                                                                                                                        |
| FD_C_CH2           | central field measuring chamber 2 EZ150X1:A4–EZX22:12–15V, $R_i$ = 220 $\Omega$                                                                                                                                        |
| FD_C_CH3           | central field measuring chamber 3 EZ150X1:C10–EZX31:12 15V, $R_i$ = 220 $\Omega$                                                                                                                                       |
| FD_C_CH4           | central field measuring chamber 4 EZ150X1:A10–EZX32:12– 15V, $R_{\rm i}$ = 220 $\Omega$                                                                                                                                |
| FD_C_CH5           | central field measuring chamber 5 EZ150X1:C16–EZX41:12–15V, $R_{\rm i}$ = 220 $\Omega$                                                                                                                                 |
| FD_L_CH1           | left field measuring chamber 1 EZ150X1:C3–EZX21:11– 15V, $R_i$ = 220 $\Omega$                                                                                                                                          |
| FD_L_CH2           | left field measuring chamber 2 $ EZ150X1:A3-EZX22:11-15V,\ R_i=220\ \Omega $                                                                                                                                           |
| FD_L_CH3           | left field measuring chamber 3<br>EZ150X1:C9–EZX31:11–<br>15V, $R_{\rm i}$ = 220 $\Omega$                                                                                                                              |
| FD_L_CH4           | left field measuring chamber 4 $EZ150X1:A9-EZX32:11$ $15V,\ \ R_i=220\ \Omega$                                                                                                                                         |

| FD_L_CH5          | left field measuring chamber 5<br>EZ150X1:C15–EZX41:11–<br>15V, $R_{\rm i}$ = 220 $\Omega$                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------|
| FD_R_CH1          | right field measuring chamber 1 EZ150X1:C5–EZX21:3 15V, $R_{i}$ = 220 $\Omega$                                  |
| FD_R_CH2          | right field measuring chamber 2 EZ150X1:A5–EZX22:3– 15V, $R_{\rm i}$ = 220 $\Omega$                             |
| FD_R_CH3          | right field measuring chamber 3 EZ150X1:C11–EZX31:3– 15V, $R_{i}$ = 220 $\Omega$                                |
| FD_R_CH4          | right field measuring chamber 4 EZ150X1:A11–EZX32:3– 15V, $R_{\rm i}$ = 220 $\Omega$                            |
| FD_R_CH5          | right field measuring chamber 5 $EZ150X1:C17-EZX41:3-15V,\ R_i=220\ \Omega$                                     |
| FI_TF1_1          | filament transformer 1 line 1 EZ119X1:DBZ4-EZX12:1-EG106X15:1- max. 300Veff or ± 150V against ground, 10020kHz  |
| FI_TF1_2          | filament transformer 1 line 2 EZ119X1:DBZ6–EZX12:2–EG106X15:2– max 300Veff or ±150V against ground, 10020kHz    |
| FI_TF2_1          | filament transformer 2 line 1 EZ119X1:DBZ8–EZX12:4–EG106X15:4 max. 300Veff or ±150V against ground, 10020kHz    |
| FI_TF2_2          | filament transformer 2 line 2 EZ119X1:DBZ10-EZX12:5-EG106X15:5- max. 300Veff or ± 150V against ground, 10020kHz |
| GND               |                                                                                                                 |
| GND_15V           | ground (+15V) for desk handswitch<br>C300X3:1/2/6                                                               |
| GNDC<br>S_CAN_GND | CAN bus ground EZ139X1:C17-EZX42:3/6-EZX43:3/6-EZX44:9- part of: system CAN                                     |

| GNDS<br>PO_0V     | signal bus ground EZ139X1:AC1-EZX23:1/14-EZX44:15-EZX45:15-EWAX51:15-EWAX52:15- part of: signal bus negative                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HT_AN             | high tension anode side actual value<br>EG100X14:2-EZX35:2-EZ130X1:C17-<br>0+10V ≏ 0+100 kV                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HT_AN_GND         | high tension anode side ground<br>EG100X14:10–EZX35:10–EZ130X1:A17–<br>0V                                                                                                                                               | and the second s |
| HT_CA             | high tension cathode side actual value EG100X14:1-EZX35:1-EZ130X1:C16- 010V                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HT_CA_GND         | high tension cathode side ground EG100X14:9–EZX35:9—EZ130X1:A16 0V                                                                                                                                                      | - Marie Commission (Marie Comm |
| <br> 1_1<br> 1_1/ | IGBT1 power part 1 EQ100 = 4512 108 05882<br>IGBT1 power part 1 EQ100 ≥ 4512 108 08621 *<br>EZ130X1:C1-EZX24:1-EQ100X1:1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11_1/<br>11_1     | IGBT1 power part 1 EQ100 = 4512 108 05882 IGBT1 power part 1 EQ100 ≥ 4512 108 08621 * EZ130X1:A1-EZX24:14-EQ100X1:14- value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R25 end to X1 * EQ100 X6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i1_2<br>i1_2/     | IGBT2 power part 1 EQ100 = 4512 108 05882<br>IGBT2 power part 1 EQ100 ≥ 4512 108 08621 *<br>EZ130X1:C2-EZX24:2-EQ100X1:2                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1_2/<br> 1_2      | IGBT2 power part 1 EQ100 = 4512 108 05882 IGBT2 power part 1 EQ100 ≥ 4512 108 08621 * EZ130X1:A2-EZX24:15-EQ100X1:15- value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R27 end to X1 * EQ100 X7 | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i1_3<br>i1_3/     | IGBT3 power part 1 EQ100 = 4512 108 05882<br>IGBT3 power part 1 EQ100 ≥ 4512 108 08621 *<br>EZ130X1:C3-EZX24:3-EQ100X1:3-                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I1_3/<br>I1_3     | IGBT3 power part 1 EQ100 = 4512 108 05882 IGBT3 power part 1 EQ100 ≥ 4512 108 08621 * EZ130X1:A3-EZX24:16-EQ100X1:16 value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R29 end to X1 * EQ100 X8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 11_4<br>11_4/     | IGBT4 power part 1 EQ100 = 4512 108 05882<br>IGBT4 power part 1 EQ100 ≥ 4512 108 08621 *<br>EZ130X1:C4-EZX24:4-EQ100X1:4-                                                                                                       |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I1_4/<br>I1_4     | IGBT4 power part 1 EQ100 = 4512 108 05882 IGBT4 power part 1 EQ100 ≥ 4512 108 08621 * EZ130X1:A4-EZX24:17-EQ100X1:17- value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R31 end to X1 * EQ100 X9         |
| 12_1<br>12_1/     | IGBT1 power part 2 E2Q100 = 4512 108 05882<br>IGBT1 power part 2 E2Q100 ≥ 4512 108 08621 *<br>EZ130X1:C22–EZX34:1–E2Q100X1:1–                                                                                                   |
| I2_1/<br>I2_1     | IGBT1 power part 2 E2Q100 = 4512 108 05882 IGBT1 power part 2 E2Q100 ≥ 4512 108 08621 * EZ130X1:A22-EZX34:14-E2Q100X1:14 value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R25 end to X1 * E2Q100 X6     |
| <br> 2_2<br> 2_2/ | IGBT2 power part 2 E2Q100 = 4512 108 05882<br>IGBT2 power part 2 E2Q100 ≥ 4512 108 08621 *<br>EZ130X1:C23–EZX34:2–E2Q100X1:2–                                                                                                   |
| 2_2/<br> 2_2      | IGBT2 power part 2 E2Q100 = 4512 108 05882 IGBT2 power part 2 E2Q100 ≥ 4512 108 08621 * EZ130X1:A23—EZX34:15—E2Q100X1:15— value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R27 end to X1 * E2Q100 X7    |
| I2_3<br>I2_3/     | IGBT3 power part 2 E2Q100 = 4512 108 05882 IGBT3 power part 2 E2Q100 ≥ 4512 108 08621 * EZ130X1:C24–EZX34:3–E2Q100X1:3–                                                                                                         |
| 12_3/<br>12_3     | IGBT3 power part 2 E2Q100 = 4512 108 05882 IGBT3 power part 2 E2Q100 ≥ 4512 108 08621 *  EZ130X1:A24-EZX34:16-E2Q100X1:16-  value: on = 3.7V off = 1.2V against ground * = X10  measuring point EQ100 R29 end to X1 * E2Q100 X8 |
| 12_4<br>12_4/     | IGBT4 power part 2 E2Q100 = 4512 108 05882 IGBT4 power part 2 E2Q100 ≥ 4512 108 08621 * EZ130X1:C25–EZX34:4–E2Q100X1:4–                                                                                                         |
| 12_4/<br>12_4     | IGBT4 power part 2 E2Q100 = 4512 108 05882 IGBT4 power part 2 E2Q100 ≥ 4512 108 08621 * EZ130X1:A25–EZX34:17–E2Q100X1:17– value: on = 3.7V off = 1.2V against ground * = X10 measuring point EQ100 R31 end to X1 * E2Q100 X9    |
| IT_OV             | emitter 0V exposure on signal EWA100X2:C9–EWAX14:9– part of: exon old world                                                                                                                                                     |

| ſu        | stator current U of Low Speed Rotor Control low speed measuring point EYAX22                                                                                                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lw        | stator current W of Low Speed Rotor Control low speed measuring point EYAX21                                                                                                                                                                                                          |
| MN_EM_OF  | mains power emergency off EZX4:1-EZX47:6-EN100X1:6                                                                                                                                                                                                                                    |
| MN_ON     | mains on<br>C300X1:6-EZX46:6-EZX47:2-EN100X1:2-EZX44:14                                                                                                                                                                                                                               |
| NG_15V    | - 15 V supply Vee EZ102X2:DBZ24-EZ119X2:AC12-EZ130X2:AC12-EZ139X2:AC12-EZ150C2:AC12-EZX21/22/31/32/41:6-EZX35:15- EZX51:8-EZX151:8-EG100X14:15- EZX31:6-EZX32 -14.5V15.5V                                                                                                             |
| NR_PR_X/  | not ready preparing for X-ray (low active) EZ139X1:A3-EZX23:3-EZX45:4-EZX46:4-C300X1:4EWAX51:4-EWAX52:4-EWA100X2:A24- driven by CU measuring point: EZX83 part of: signal bus                                                                                                         |
| PO_12V    | + 12 V supply<br>EN100X1:1-EZX47:1-EZX46:7-C300X1:7-                                                                                                                                                                                                                                  |
| PO_15V    | + 15 V supply Vdd  EZ102X2:DBZ22-EZ119X2:AC11-EZ130X2:AC11-EZ139X2:AC11 -EZ150X2:AC11-EZX2:8/9-EZX35:7-EZX44:12/13-EZX46:5 -EZX51:7-EG100X14:7-C300X1:5 -EZX21/22/31/32/41:5 only generator basis 4512 104 70202/70601 -EZX151:7 generator basis ≥ 4512 104 70203/70602 +14.5V +15.5V |
| PO_15/40V | + 15 V or + 40 V supply for measuring chamber<br>EZ150X1:A20-EZX21/22/31/32/41:5                                                                                                                                                                                                      |
| PO_26V    | + 26 V supply EZ102X2:DBZ28-EZ119X2:AC14-EZ130X2:AC14-EZ139X2:AC14 -EZ150X2:AC14-EZX1:5-EZX2:3-EZX3:9-EZX11:1-EZX17:1-EZX18:1-EWAX1:4EWAX2:4-EWAX3:4-EWAX4:4-EWAX41:1-EWAX23:9-EWAX24:5-EWA100X2:A14-EWA100X2:C14-EQ100X2:1-E2Q100X2:1-                                               |
| PO_26V_1  | + 26 V supply optional EZ102X2:DBZ32–EZX19:1–EZX20:1– EZX8:1 generator basis ≥ 4512 104 70203/70602                                                                                                                                                                                   |
| PO_26V_RE | + 26 V supply reverse  EWAW11-EWAW12-EWAX1/2/3/4:4-EWAX42:1-  if generator and system release voltage are of the same polarity  PO_26V_RE = +26V, if not PO_26_RE = 0V against -24V                                                                                                   |
| PO_26V_SW | + 26 V supply switched EZ102X1:D32–EZX7:1–EM1 generator basis ≥ 4512 104 70203/70602                                                                                                                                                                                                  |

| PO_400V             | + 400 V supply measuring chamber EZ150X1:AC1-EZX21/22/31/32/41:1- +400V , Ri=100k                                                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO_5V               | + 5 V supply Vcc<br>EZ102X2:DBZ2/4/6-EZ119X2:AC1/2-EZ130X2:AC1/2-EZ139X2:AC1/2-EZ150X2:AC1/2-EZX46:9-C300X1:9-<br>EZX51:4/5/6-EZX151:4/5/6<br>+4.74V +5.25V                                                  |
| PO_V                | signal bus supply EZX23:13/25-EZX44:5-EZX45:7-EWAX51/52:7- EWA100X2:AC27-EZ139X1:AC6- Vsgn part of: signal bus                                                                                               |
| POWERFAIL           | power fail signal of power supply EZ102X1:D30–EZ139X1:A10–                                                                                                                                                   |
| PW_ON_NG            | DC supply relay power on negative EZ130X1:A15–EZX47:9–EN100X1:9– 0V/+15V, low active                                                                                                                         |
| PW_ON_PO            | DC supply relay power on positive EZ130X1:C15–EZX47:4–EN100X1:4– +15V                                                                                                                                        |
| RC_ON/              | rotor control on EZ150X1:A25–EZX51:1–                                                                                                                                                                        |
| RC_RD/              | rotor control ready EYAX1:9(low speed)—EXZ51:9—EZ150X1:C25— measuring point EYAX25 low speed rotor control                                                                                                   |
| RC_ST_2/            | rotor control stator 2 EZ150X1:A26–EZX16:1(low speed)–EY100X3:1(high speed)–EWGX14:1                                                                                                                         |
| RC_ST_3/            | rotor control stator 3 EZ150X1:C26-EZX16:2(low speed)-EY100X3:2(high speed)-EWGX14:2-EWGX15:1-E1WGX14:1                                                                                                      |
| RD_MN_ON            | ready mains power on<br>C300X1:14–EZX46:14–EZX47:7–EN100X1:7–                                                                                                                                                |
| RD_PR_X<br>NR_PR_X/ | ready preparing for X-ray or not ready preparing for X-ray (low active)  EZ139X1:A3-EZX23:3-EZX45:4-EZX46:4-C300X1:4EWAX51:4-EWAX52:4-EWA100X2:A24-driven by CU  measuring point: EZX83  part of: signal bus |
| REL_CH1             | release (reset integrator) chamber 1 EZ150X1:C6-EZX21:4-                                                                                                                                                     |
| REL_CH2             | release (reset integrator) chamber 2 EZ150X1:A6–EZX22:4–                                                                                                                                                     |

| REL_CH3   | release (reset integrator) chamber 3 EZ150X1:C12-EZX31:4                                                                                                                                                                                                                                                                                                       |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| REL_CH4   | release (reset integrator) chamber 4 EZ150X1:A12-EZX32:4-                                                                                                                                                                                                                                                                                                      |  |
| REL_CH5   | release (reset integrator) chamber 5 EZ150X1:C18-EZX41:4-                                                                                                                                                                                                                                                                                                      |  |
| RESET_C/  | system RESET command EZ130X2:A6-EZ119X2:A6-EZ139X2:A6-EZ150X2:A6-EZX45:3-EZX46:3-C300X1:3EZX51:10-EZX52:3-EZX73-EWAX51:3-EWAX52:3-EWA100X1:A6- 0V/5V measuring point EZX73 driven by CU, active (low) if: EZ139 S1 activated, RESET_SW/ active, threatening power supply drop in, watchdog alarm, switch on (button), resets FU's drop in, part of: XS/XRG bus |  |
| RESET_SW/ | signal bus reset, generator reset  EZX23:2–EZX44:6–EZ139X1:A2–  low active  τ ≥ 200ms (τ = 8.41 WP)  resets CU  measuring point: EZX81  part of: signal bus                                                                                                                                                                                                    |  |
| RF_0V_CH1 | 0V reference value measuring chamber 1 EZX21:8-EZ150X1:C8- differential signal with SIGN_CH1                                                                                                                                                                                                                                                                   |  |
| RF_0V_CH2 | 0V reference value measuring chamber 2 EZX22:8-EZ150X1:A8- differential signal with SIGN_CH2                                                                                                                                                                                                                                                                   |  |
| RF_0V_CH3 | 0V reference value measuring chamber 3 EZX31:8-EZ150X1:C14- differential signal with SIGN_CH3                                                                                                                                                                                                                                                                  |  |
| RF_0V_CH4 | 0V reference value measuring chamber 4 EZX32:8-EZ150X1:A14- differential signal with SIGN_CH4                                                                                                                                                                                                                                                                  |  |
| RF_0V_CH5 | 0V reference value measuring chamber 5 EZX41:8-EZ150X1:C20- differential signal with SIGN_CH5                                                                                                                                                                                                                                                                  |  |
| RG_DV_1   | registration device 1 selected EWA100X1:C4-EWAX1:5                                                                                                                                                                                                                                                                                                             |  |
| RG_DV_2   | registration device 2 selected EWA100X1:A7-EWAX2:5-                                                                                                                                                                                                                                                                                                            |  |

|                    | THE THE MAN                                                                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RG_DV_3            | registration device 3 selected EWA100X1:A9-EWAX3:5-                                                                                                             |
| RG_DV_4            | registration device 4 selected EWA100X1:A11-EWAX4:5-                                                                                                            |
| RM_DR_0V           | room door contact 0V EZ150X1:C28-EZX1:10-                                                                                                                       |
| RM_DR_CT           | room door contact<br>EZX1:8-EZ150X1:A28-                                                                                                                        |
| RQ_SN_X/           | request synchronization of X-ray  EZX23:16-EZX45:12-EZX46:12-C300X1:12-EZ139X1:C3EWAX51:12-EWAX52:12-EWA100X2:A25-  measuring point: EZX84  part of: signal bus |
| RQ_XG_EX           | request X-ray generator for exposure EWAX1/2/3/4:1–EWA100X1:A3                                                                                                  |
| RQ_XG_FL           | request X-ray generator for fluoroscopy EWAX1/2/3/4:6-EWA100X1:A5                                                                                               |
| RQ_XG_PR_1         | request X-ray generator for preparation EWAX1:3-EWA100X1:A4                                                                                                     |
| RQ_XG_PR_2         | request X-ray generator for preparation EWAX2:3-EWA100X1:C6-                                                                                                    |
| RQ_XG_PR_3         | request X-ray generator for preparation EWAX3:3-EWA100X1:C8-                                                                                                    |
| RQ_XG_PR_4         | request X-ray generator for preparation EWAX4:3-EWA100X1:C10-                                                                                                   |
| RX_CAN_1           | system CAN 1 optional EZX44:3-EZ139X1:C15- part of: system CAN                                                                                                  |
| RX_CAN_2           | system CAN 2 optional EZX43:1-EZX44:11-                                                                                                                         |
| S_CAN_L<br>(CAN_N) | system CAN low active EZ139X1:C16-EZX42:2-EZX43:2- part of: system CAN                                                                                          |
| S_CAN_H<br>(CAN_P) | system CAN high active EZ139X1:A16-EZX42:7-EZX43:7- part of: system CAN                                                                                         |
|                    | part of. system CAN                                                                                                                                             |

|                    | •                                                                                                                           | OF HIVIUS 50/65/60 |             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|
| _CAN_PO            | system CAN supply EZX42:9-EZX43:9-EZX44:4-EZ139X1:A17- Vcan part of: system CAN                                             |                    |             |
| SI_PH_ID<br>SI_PH/ | single phase identifier EN100X1:5-EZX47:5-EZ130X1:C14-                                                                      |                    | -           |
| SIGN_CH1           | signal ramp of measuring chamber 1 EZX21:7-EZ150X1:C7- 012V (24V out of range possible) differential signal with FR_0V_CH1  |                    | -           |
| SIGN_CH2           | signal ramp of measuring chamber 2 EZX22:7–EZ150X1:A7– 012V (24V out of range possible) differential signal with RF_0V_CH2  |                    | -           |
| SIGN_CH3           | signal ramp of measuring chamber 3 EZX31:7-EZ150X1:C13- 012V (24V out of range possible) differential signal with RF_0V_CH3 |                    | - (         |
| SIGN_CH4           | signal ramp of measuring chamber 4 EZX32:7–EZ150X1:A13– 012V (24V out of range possible) differential signal with RF_0V_CH4 |                    | -           |
| SIGN_CH5           | signal ramp of measuring chamber 5 EZX41:7-EZ150X1:C19 012V (24V out of range possible) differential signal with RF_0V_CH5  |                    | -           |
| SL_CO_1            | select correction 1 (thickness) EWA100X1:A32–EWAX24:8–                                                                      |                    | - A         |
| SL_CO_2            | select correction 2 (thickness) EWA100X1:C32-EWAX24:9-                                                                      |                    | - 1         |
| SL_PG_1            | select ext APRT program 1 EWA100X1:A28–EWAX23:1–                                                                            |                    | _           |
| SL_PG_2            | select ext APRT program 2 EWA100X1:C28-EWAX23:2-                                                                            |                    |             |
| SL_PG_3            | select ext APRT program 3 EWA100X1:A29-EWAX23:3                                                                             |                    |             |
| SL_PG_4            | select ext APRT program 4 EWA100X1:C29-EWAX23:4-                                                                            |                    | <del></del> |
|                    |                                                                                                                             |                    |             |

| SL_PG_5    | select ext APRT program 5 EWA100X1:A30-EWAX23:5-                                                                                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL_PG_6    | select ext APRT program 6 EWA100X1:C30-EWAX23:6-                                                                                                                                           |
| SL_PG_7    | select ext APRT program 7 EWA100X1:A31-EWAX23:7-                                                                                                                                           |
| SL_PG_8    | select ext APRT program 8 EWA100X1:C31-EWAX23:8-                                                                                                                                           |
| SL_TO_TM_1 | select tomo time 1 EWAX21:1-EWA100X1:A24-                                                                                                                                                  |
| SL_TO_TM_2 | select tomo time 2 EWAX21:2-EWA100X1:C24-                                                                                                                                                  |
| SL_TO_TM_3 | select tomo time 3 EWAX21:3-EWA100X1:A25-                                                                                                                                                  |
| SL_TO_TM_4 | select tomo time 4 EWAX21:4-EWA100X1:C25-                                                                                                                                                  |
| SL_TO_TM_5 | select tomo time 5 EWAX21:5-EWA100X1:A26-                                                                                                                                                  |
| SL_TO_TM_6 | select tomo time 6 EWAX21:6-EWA100X1:C26-                                                                                                                                                  |
| SL_TO_TM_7 | select tomo time 7 EWAX21:7-EWA100X1:A27-                                                                                                                                                  |
| SL_TO_TM_8 | select tomo time 8 EWAX21:8-EWA100X1:C27-                                                                                                                                                  |
| SL_XG_TO   | select X-ray generator for tomography EWAX11:3-EWAX12:3-EWA100X1:C18-                                                                                                                      |
| STOP_X_C/  | stop X-ray command, X-ray off from FU EZ119X2:A7–EZ130X2:A7–EZ150X2:A7–EZX52:4–EZ139X2:A7– 0V/5V measuring point EZX75 inactivates CTRL_X_C/ EXOF exposure off command part of: XS/XRG bus |
| STU        | stator line U EYAX2:2(low speed)-EY100X6:2/EY100X46:2(high speed)-EWGK11/K12:1 part of: low/high speed rotor control                                                                       |

| STV         | stator line V = common EYAX2:3(low speed)-EY100X6:3/EY100X47:1(high speed)-EWGK11/K12:3 part of: low/high speed rotor control |      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|------|
| STW         | stator line W EYAX2:4(low speed)–EY100X6:4/EY100X47:2(high speed)–EWGK11/K12:5 part of: low/high speed rotor control          | -    |
| SW_BU_1     | switch bucky EWAX11:10-EWA100C1:C19 part of: bucky ready contact                                                              | ***  |
| SW_BU_2     | switch bucky 2 (EWA or EWB) or 4 (EWB)  EWAX12:10-EWA100X1:A21EWB100X1:A21-EWBX12:10 part of: bucky ready contact             | -    |
| SW_SF_CF_1  | switch side field to central field bucky measuring chamber EWAX11:1-EWA100X1:A18-                                             | -    |
| SW_SF_CF_2  | switch side field to central field bucky measuring chamber 2 (EWA or EWB) or 4 (EWB) EWAX12:1-EWA100X1:A20-                   |      |
| SW_TO_1     | switch tomography 1 EWAX11:5-EWA100X1:A19 part of: tomo ready contact                                                         | an . |
| SW_TO_2     | switch tomography 2 EWAX12:5-EWA100X1:C20- part of: tomo ready contact                                                        | -    |
| SW_UN_EX    | radiation indication<br>EZ150X1:A29–EZX1:4–                                                                                   | -    |
| TB_2/       | tube 2 selected EZ130X1:A13-EZX11:2-EWGX11:2 0V/15V, low active                                                               | -    |
| TB_2_RT     | tube 2 selection check EWGX11:3-EZX11:3-EZ130X1:A10 0V/5V, low active                                                         | m    |
| TB_3/       | tube 3 selected<br>EZ130X1:C13–EZX11:5–EWGX11:5–EWGX12:2<br>0V/15V, low active                                                |      |
| TB_3_RT     | tube 3 selection check E2WGX11:3-E1WGX12:3-E1WGX11:6-EZX11:6-EZ130X1:C10- 0V/5V, low active                                   | -    |
| TB_CU_FR_NG | tube current frequency negative EG100X14:14-EZX35:14-EZ119X1:BZ3215V against ground                                           |      |

| TB_CU_FR_PO | tube current frequency positive EG100X16:6–EZX35:6–EZ119X1:BZ30– 15V against ground, frequency: 1 kHz ≏ 2 mA, 01500mA 500kHz/A      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| TH_OL       | tube housing overload EZX3:6-EZ130X1:A12- (generator basis 4512 104 70202/70601 only) EZX3:3-EZ130X1:A12- 05V                       |
| TH_OL_SW/   | tube housing overload switch EZX3:3-EZ130X1:A11- (generator basis 4512 104 70202/70601 only) EZX3:6-EZ130X1:A11- 0V/26V, low active |
| TO_MO_PG    | tomo mode programmed EWA100X1:A17-EWAX22:9-                                                                                         |
| TO_PG_1     | tomo program 1 EWA100X1:A13-EWAX22:1                                                                                                |
| TO_PG_2     | tomo program 2 EWA100X1:C13-EWAX22:2-                                                                                               |
| TO_PG_3     | tomo program 3<br>EWA100X1:A14–EWAX22:3–                                                                                            |
| TO_PG_4     | tomo program 4 EWA100X1:C14–EWAX22:4–                                                                                               |
| TO_PG_5     | tomo program 5<br>EWA100X1:A15-EWAX22:5-                                                                                            |
| TO_PG_6     | tomo program 6 EWA100X1:C15-EWAX22:6-                                                                                               |
| TO_PG_7     | tomo program 7 EWA100X1:A16-EWAX22:7-                                                                                               |
| TO_PG_8     | tomo program 8 EWA100X1:C16-EWAX22:8-                                                                                               |
| TO_PG_SL    | tomo program selected EWA100X1:C17-EWAX22:10-                                                                                       |
| TP_HT_GND   | temperature high tension tank ground EZ130X1:A19–EZX35:12–EG100X14:4–                                                               |
| TP_HT_SG    | temperature signal high tension tank EG100X14:12–EZX35:4–EZ130X1:C19– 05V +25 °C(12kΩ)+100 °C(950 Ω)                                |

| V15C<br>S_CAN_PO | system CAN supply EZX42:9-EZX44:4-EZ139X1:A17- Vcan part of: system CAN                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V15S<br>PO_V     | signal bus supply EZX23:13/25-EZX44:5-EZX45:7-EWAX51/52:7- EWA100X2:AC27-EZ139X1:AC6- Vsgn part of: signal bus                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X_ACT/           | signal bus X-ray active EZ139X1:A5-EZX23:5-EZX45:6-EWAX51/52:6-EWA100X2:C24-driven by CU, X_ACT_S/ status dependent, old: EXON signal measuring point: EZX86 part of: signal bus 0V/15V                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X_ACT_S/         | X-Ray active signal, kV > 75% nominal value or 'fluoroscopy technique' high tension on EZ119X2:A8–EZ130X2:A8–EZ139X2:A8–EZ150X2:A8–EZX52:5–0V/5V measuring point EZX77 HTON (high tension on) or FLON (fluoroscopy high tension on) signal part of: XS/XRG bus, controls X_ACT/ status | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| XG_RD_EX_1       | X-ray generator ready for exposure request EWA100X1:C3-EWAX1:2-                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XG_RD_EX_2       | X-ray generator ready for exposure request EWA100X1:A6-EWAX2:2                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XG_RD_EX_3       | X-ray generator ready for exposure request EWA100X1:A8-EWAX3:2-                                                                                                                                                                                                                        | CANCER CANCEL PROPERTY OF THE |
| XG_RD_EX_4       | X-ray generator ready for exposure request EWA100X1:A10-EWAX4:2-                                                                                                                                                                                                                       | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



Central rack, service aid

**OPTIMUS 50/65/80** 

# REPLACEMENT

### **TEXT**

|    | Contents               | 4-0.1 |
|----|------------------------|-------|
| 1. | H.V. generator         | 4-1   |
| 2. | Operating panel        | 4-1   |
| 3. | Printed-circuit boards | 4-2   |

### 1. H.V. generator

The H.V. generator is a traceable item and is therefore labelled as follows:

```
type number
serial number
manufacturer
HHS certification
combined label
```

H.V. generators have a serial number which has the following meaning:

### Example:

### 96 01 005

### Meaning:

96 = year of manufacture, e.g. 1996 01 = power class, e.g. 50 kW, 1 tube

005 = consecutive number

### Power classes:

01 = 50 kW, 1 tube 02 = 50 kW, 2 tubes 03 = 65/80 kW, 1 tube 04 = 65/80 kW, 2 tubes

With the H.V. generator for replacement a separate label will be delivered. This must be affixed to the label bracket on the top left corner of the generator cabinet. See drawing 2Z–1 Labelling.

The new type number, code number and serial number must be entered on the master card for the generator.

Please, send a copy of the corrected master card as FAX to:

Philips Medical Systems
DMC Hamburg, Germany
Department XGT40
FAX No. +49 40 5078 1247

### 2. Operating panel

The operating panel is a traceable item and is therefore labelled as follows:

```
type number
serial number
manufacturer
HHS certification
```

The new type number, code number and serial number must be entered on the master card for the generator.

Please, send a copy of the corrected master card to the address mentioned above.

- code number

OPTIMUS 50/65/80

### 3. Printed-circuit boards

| РСВ                             | HW<br>programming                          | SW programming via XRGScope                 | Adaptation of tube | Remarks                                                                                                                                                            |
|---------------------------------|--------------------------------------------|---------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EZ Back panel                   | see Z2–5.1/2/3                             |                                             |                    | <ul> <li>To attend to:<br/>X4, X10, X42, X44, X52</li> <li>Tube supervision on X3:<br/>connection changed from<br/>3-4 to 6-7 from level 4<br/>onwards.</li> </ul> |
| EZ 102 Low voltage supply       |                                            |                                             |                    |                                                                                                                                                                    |
| EZ 119 mA control               | see 5Z-1                                   | Tube data set                               | x                  |                                                                                                                                                                    |
| EZ 130 kV control               | see 5Z-1                                   |                                             |                    |                                                                                                                                                                    |
| EZ 139 CU                       | see 5Z-1                                   | - Restore complete - Program date and time  |                    | Note the exposure counter data previously.                                                                                                                         |
| EZ 150 Basic interface          | see 5Z-1                                   | AMPLIMAT sensitivity according to jumper W4 |                    | Jumper W1 W4 from level 4 onwards                                                                                                                                  |
| EN 100 Power ON circuit         |                                            |                                             |                    |                                                                                                                                                                    |
| EG 100 Measuring circuit        | -                                          | _                                           | _                  | Exchange not allowed at time. Exchange the whole tank.                                                                                                             |
| EWA Back panel                  | see Z1-15.1 - address W1W3 - ground W11W13 |                                             |                    |                                                                                                                                                                    |
| EWA 102 Universal I/O interface | see 5Z–2                                   |                                             |                    |                                                                                                                                                                    |
| EY 100 Rotor control high speed | see 5Z–2                                   |                                             |                    |                                                                                                                                                                    |
| EYA 100 Rotor control low speed |                                            |                                             |                    |                                                                                                                                                                    |
| C 300 Desk CPU                  | see 5 <b>Z-</b> 2                          |                                             |                    |                                                                                                                                                                    |









D800 = 4512 113 2020 (4512 114 2020 (5)

D800 = 4512 113 20112 (4512 114 20112)

D3 = 4512 113 20721 (4512 114 20721)
D38 = function key,
marked with s/n of the generator

D4 = 4512 113 18025 18026 D5 = 4512 113 18035 18036 9890 000 02503 (4512 114 20821) 9890 000 02503 (4512 114 20822) D6 = 4512 113 20301 (4512 114 20301)



D10 = 4512 113 20601 (4512 114 20601)



D2 = 4512 113 20401 (4512 114 20401) compatible: 4512 113 22301 (4512 114 22301)

High speed rotor control Y 9890 000 02212



D2 = 4512 113 22301 (4512 114 22301)

PCB programming Options

OPTIMUS 50/65/80

### **ADJUSTMENTS**

## **TEXT**

|      | Contents                                   | 6-0.1 |
|------|--------------------------------------------|-------|
| 1.   | Area exposure product calculation (option) | 6–1   |
| 1.1. | Correction of the default adjustment       | 6–1   |
| 1.2. | Correction of the specific yield           | 6–2   |
| 1.3. | Correction of the filter values            | 6-4   |

OPTIMUS 50/65/80 ADJUSTMENTS

### 1. Area exposure product calculation (option)

### Special tools:

- calibrated dosemeter, e.g. DALI with measuring cell 77334 or PMX3
- 1 mm lead plate

The following parameters are relevant to calculation:

- SID (Source Image Distance)
- diaphragm aperture
- added filters
- specific yield of tube
- mAs product
- number of exposures

SID, diaphragm aperture and type of filters are supplied by the diagnostic unit, where they are also adjusted.

In the generator default values are given for the specific yield of a tube and filter correction.

These default values can be found as reference files on floppy disk in order to recreate the original settings if need be.

### Reference files:

ref\_viel.tdl

specific yield of tube

ref\_2al.tdl

filter 2 mm Al

ref\_01cu.tdl

filter 1 mm AI + 0.1 mm Cu

ref\_02cu.tdl

filter 1 mm Al + 0.2 mm Cu

The specific yield curve relates to tungsten anodes and 2.5 mm primary filters.

Display on the desk is in: [cGycm<sup>2</sup>].

### 1.1. Checking the default adjustment

- Place the lead plate and the measuring cell of the measuring instrument on the table in the central radiation beam.
   The purpose of the lead plate is to reduce radiation scatter of the table top. Without the plate the test result would be approximately 10% higher using a table top made, for example, from resin bonded paper.
- · Perform the following settings:
  - 1 m between the focus and the measuring cell (=SMD)
  - free cassette technique
  - kV-mAs-s technique
  - 10 mAs
  - -0.1s
  - collimation 10 x 10 cm at the height of the measuring cell
  - no filter

ADJUSTMENTS OPTIMUS 50/65/80

• Determine area dose at the following kV settings and compare it with the respective value displayed on the desk

|                    | 50 kV              | 80 (81) kV         | 120 (117) kV       |
|--------------------|--------------------|--------------------|--------------------|
| displayed product  | cGycm <sup>2</sup> | cGycm <sup>2</sup> | cGycm <sup>2</sup> |
| measured dose      | cGy                | cGy                | cGy                |
| calculated product | cGycm <sup>2</sup> | cGycm <sup>2</sup> | cGycm <sup>2</sup> |
|                    |                    |                    |                    |
| difference in %    |                    |                    |                    |

### Example:

displayed area exposure product:
8.8

8.8 cGycm<sup>2</sup>

- measured dose:

 $890 \mu Gy = 0.089 cGy$ 

- calculated area exposure product:

measured dose × exposed area

 $= 0.089 \text{ cGy} \times 100 \text{ cm}^2$ 

 $= 8.9 \text{ cGycm}^2$ 

- difference in %:

$$=\frac{8.9-8.8}{8.9}\times100=1.12\%$$

• If there are any deviations of over 5% it is recommended that the yield curve be corrected in accordance with the procedure described in 1.2.

### 1.2. Correction of the specific yield

### Prerequisite:

Test setup and settings in accordance with section 1.1.:

- 1 m between the focus and the measuring cell (=SMD)
- free cassette technique
- kV-mAs-s technique
- 10 mAs
- -0.1s
- collimation 10 x 10 cm at the height of the measuring cell
- no filter

### Principle:

For each kV specified a dose measurement is taken under the same conditions. If the distance between the focus and the measuring cell deviates from 1 m, all the dose values must be corrected with the square of distance (unit of measurement is [m]). Dividing the dose values by the mAs product set gives the respective current yield.

#### Procedure:

• Measure dose at each kV checkpoint and use it to calculate specific yield.

The values determined must be greater at higher kVs settings and produce a characteristic with a slight curve on the graph. If considerable fluctuations are detected, the measurements must be repeated at the points in question.

Range: 0.00 ... 400.00 μGy/mAs

The values can only be stored in the generator if they are within the range specified and rise uniformly with kV.

### Specific yield

| kV checkpoint                | 40                                                                                                                                                               | 50   | 60   | 70      | 80   | 90       | 100       | 110      | 120       | 130   | 140   | 150   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|------|----------|-----------|----------|-----------|-------|-------|-------|
| default yield [μGy/mAs]      | 11.0                                                                                                                                                             | 20.8 | 32.2 | 45.7    | 58.0 | 73.5     | 88.7      | 106.1    | 124.4     | 143.6 | 163.1 | 181.8 |
| measured dose [μGy]          |                                                                                                                                                                  |      |      |         |      |          |           |          |           |       |       |       |
| distance <sup>2</sup> factor | If the distance focus – measuring cell (= SMD) differs from 1 m correct the dose with this factor, distance <sup>2</sup> factor = (SMD [m] / 1 m) <sup>2</sup> = |      |      |         |      |          |           |          |           |       |       |       |
| corrected dose [μGy]         |                                                                                                                                                                  |      |      |         |      |          |           |          |           |       |       |       |
|                              |                                                                                                                                                                  | •    |      | calcula | te:  | specific | yield = c | orrected | dose / 10 | ) mAs |       |       |
| specific yield [μGy/mAs]     |                                                                                                                                                                  |      |      |         |      |          |           |          |           |       |       |       |



- Correct the default values of the specific yield for all the kV checkpoints using the menu "Adjust/ Area Exposure
  Product/ Specific Yield of Tube 1...3" with the factor determined and save with <Transmit>.
- Save the specific yield curve with the SAVE function of XRGSCOPE (F3 key) on the backup disk.
   Recommended file name: act\_yiel.tdl

ADJUSTMENTS OPTIMUS 50/65/80

### 1.3. Correction of the filter values

### Prerequisite:

Test setup and settings in accordance with section 1.1.

- 1 m between the focus and the measuring cell (=SMD)
- free cassette technique
- kV-mAs-s technique
- 10 mAs
- -0.1 s
- collimation 10 x 10 cm at the height of the measuring cell
- no filter

### Principle:

At otherwise identical settings the dose is determined for the kV values specified with and without filter. The ratio of dose values with/without filter produces the respective current correction factor.

#### Procedure:

- Accept measured dose values (not the corrected ones!) for the respective kV checkpoints from yield measurement or measure them again if any changes have been made to the test-setup or settings.
- Move the filter to be checked into the radiation beam.
- Measure dose at each kV checkpoint and enter it in the respective table.

#### Note

The 40 kV range is not used in practice so it does not have to be corrected.

If in the lower kV range the considerably reduced dose can no longer be measured or read perfectly, at that point a higher mAs product must be selected. Then the repeat measurement must be performed without filter.

· Using the ratio between dose with and without filter determine the respective correction factor.

The values determined must be greater at higher kVs settings and produce a characteristic with a slight curve on the graph. If considerable fluctuations are detected, the measurements must be repeated at the points in question.

Range: 0.000 ... 1.000

The values can only be stored in the generator if they are within the range specified and rise uniformly with kV.

• Perform the procedure for each selectable filter type.

### Filter correction - 2 mm Al

| kV-checkpoint                         | >46<   | 50            | 70                | 100          | 150    |
|---------------------------------------|--------|---------------|-------------------|--------------|--------|
| default factor                        | 0,39   | 0.47          | 0.56              | 0.66         | 0.75   |
| measured dose [μGy]<br>without filter | $\sim$ |               |                   |              |        |
| measured dose [μGy]<br>with filter    | $\sim$ |               |                   |              |        |
|                                       | new    | factor = dose | e with filter / o | dose without | filter |
| new factor                            | $\sim$ |               |                   |              |        |

OPTIMUS 50/65/80 ADJUSTMENTS

### Filter correction - 1 mm AI + 0.1 Cu

| kV-checkpoint                         | >48<          | 50            | 70                | 100          | 150    |
|---------------------------------------|---------------|---------------|-------------------|--------------|--------|
| default factor                        | 9.17          | 0.25          | 0.37              | 0.5          | 0.65   |
| measured dose [μGy]<br>without filter | <b>&gt;</b> < |               |                   |              |        |
| measured dose [μGy]<br>with filter    | <b>&gt;</b> < |               |                   |              |        |
| , ,                                   | new           | factor = dose | e with filter / o | dose without | filter |
| new factor                            | <b>&gt;</b> < |               |                   |              |        |

### Filter correction - 1 mm AI + 0.2 Cu

| kV-checkpoint                         | >40<          | 50            | 70                | 100          | 150    |
|---------------------------------------|---------------|---------------|-------------------|--------------|--------|
| default factor                        | 0.064         | 0.123         | 0.23              | 0.37         | 0.53   |
| measured dose [μGy]<br>without filter | <b>&gt;</b> < |               |                   |              |        |
| measured dose [μGy]<br>with filter    | ><            |               |                   |              |        |
| •                                     | new           | factor = dose | e with filter / o | dose without | filter |
| new factor                            | $\sim$        |               |                   |              |        |



**ADJUSTMENTS OPTIMUS 50/65/80** 

· Read out the default values of the filter tables for each kV checkpoint, correct with the factor determined and write back into the generator with <Transmit>.

Menu "Adjust/ Area Exposure Product/ Add Filter Correction Tables/...

- ... 2 mm AL"
- ... 1 mm AL+0.1mm CU"
- ... 1 mm AL+0.2mm CU"
- Save the specific correction tables with the SAVE function of XRGSCOPE (F3 key) on the backup disk.

Recommended file names:

act\_2al.tdl

filter 2 mm Al

act 01cu.tdl - filter 1 mm Al + 0.1 mm Cu

act\_02cu.tdl

filter 1 mm Al + 0.2 mm Cu

**OPTIMUS 50/65/80** 

### **ACCEPTANCE**

|    | Contents         | 7-0.1 |
|----|------------------|-------|
| 1. | Preface          | 7–1   |
| 2. | Test equipment   | 7–1   |
| 3. | Setup            | 7-1   |
| 4. | Test             | 7–2   |
| 5  | Exposure Counter | 7-3   |

OPTIMUS 50/65/80 ACCEPTANCE

#### 1. Preface

The national rules for accepting a X-ray system are very different. Therefore in the following is given an example for checking the generator in the U.S.A.

OPTIMUS generators are factory-calibrated and checked for compliance with the parameter readout tolerances as stated in the relevant Operator's Manuals.

Provided these generators are installed and set to work in accordance with the Installation Manuals only the following limited field compliance testing is required.

#### 2. Test equipment

- Keithley voltage divider model No. 35080 with filter packs 32867C, 5C, 9C or equivalent.
- Oscilloscope (storage)
- Digital mA, mAs meter.

#### **Notes**

Do not start test until generator has been switched on for at least one hour.

Direct (invasive) kVp measurements on OPTIMUS generators with HV divider tanks normally available to the field service organization are not permitted.

Measurements of kV using instruments other than the Keithley instrument may lead to larger measuring tolerances. The causes are to be found in the specific frequency response and transient response of each test instrument.

#### 3. Setup

- · Switch off generator and also switch off main disconnect breaker to system.
- Connect digital mA meter as per instructions in the relevant Service Manual.
- Set up the Keithley voltage divider complete with the appropriate filter as per Keithley Instructions Manual No. 3294 OIM.
- · Connect the oscilloscope to the Keithley divider.

#### Note

Make sure that the oscilloscope has been calibrated with the aid of the Keithley divider as described in the Keithley Instructions Manual before starting any testing (par. 3.6. Internal calibration).

Calculate rejection limits based on the exposure parameter "Specification Limits" shown in the table below.

The "Specification Limits" are based on the actual tolerances as listed in the generator Operator's Manuals. These "Specification Limits" must be restricted to include the actual measuring instrument error. See also section 6, par. 3.1. of "Comprehensive Compliance Testing Manual" No. 4535 800 2034. regarding how to calculate rejection limits.

#### 4. Test

- · Switch the system on.
- Measure the mains voltage on ENF1.

Reference voltage:

Mains voltage programmed ±10%

Actual values:

L1 – L2: ..... V

L1 – L3: ..... V

L2 – L3: ..... V

- · Select the largest focus.
- Release exposures according to the table below and compare the values measured with the reference values.

| Technique           | Parameter           | Reference range | Measured value | Corrected value |
|---------------------|---------------------|-----------------|----------------|-----------------|
|                     | 81 kV ±5% ±1 kV     | 76 86 kV        | kV             | (               |
| 3-knob<br>technique | 250 mA ±5% ±0.5 mA  | 237 263 mA      | mA             | mA              |
| 1                   | 100 ms ±5% ±0.5 ms  | 94.5 105.5 ms   | ms             |                 |
| 2-knob              | 125 kV ±5% ±1 kV    | 118 132 kV      | kV             |                 |
| technique           | 80 mAs ±3% ±0.5 mAs | 77.1 82.9 mAs   | mAs            | mAs             |

Owing to an offset current in the measuring circuit of the HV generator the measured values for mA/mAs must be adjusted using the following formulas:

$$I_{corrected}$$
 [mA] =  $I_{measured}$  [mA] -  $\frac{U \text{ [kV]}}{R_{calc.} \text{ [M}\Omega]}$  Offset  $\approx 0.2 \dots 0.75 \text{ mA}$ 

$$Q_{corrected} \text{ [mAs]} = Q_{measured} \text{ [mAs]} - \frac{U \text{ [kV]} \times t \text{ [s]}}{R_{calc.} \text{ [M}\Omega]} - \frac{4.55 \text{ [nF]} \times U \text{ [kV]}}{1000}$$

$$Cable \text{ charge for } 20 \text{ m HV cable}$$

 $R_{calc}$  = calculated measuring circuit resistance. Typical value:  $\approx 200 \text{ M}\Omega$ 

Is read out via service menu "FU\_mA/ Fault find/ Read Ie corrections".

Focus assignment: Focus 1 = tube 1, large focus

2 = tube 1, small focus

3 = tube 2, large focus

4 = tube 2, small focus

5 = tube 3, large focus

6 = tube 3, small focus

t = exposure time according to desk display.

OPTIMUS 50/65/80 ACCEPTANCE

## 5. Exposure Counter

Before handing over the generator to the customer, read the Exposure Counter via the "Accept/Inspect/Exposure Counter" menu and record the figure in the table.

The count cannot be changed, so it is recommended that also whenever the tube or the CU PCB is being replaced, or whenever the entire CU PCB programming is being deleted, the count be recorded in the system logbook and/or in the following table.

| Tube 1 | Tube 2 | Tube 3 | Remarks |
|--------|--------|--------|---------|
| 3      |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |
|        |        |        |         |

| l Change Order | Checklist   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| ment:          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type No.:      |
|                | •••••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serial No.:    |
| •••••          | •••••       | Insta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | allation Date: |
| F00 N-         | Implemented |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| FCO No.        | Date        | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Remarks      |
| 1000           |             | A Control of the Cont |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1000           |             | - Andrew Control of the Control of t |                |
| M              |             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

| FCO No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implemented |           | - Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 00 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date        | Signature | nelliai ks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Activities of the second secon |             |           | Mark and a second |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

### **SERVICE MANUAL**

## Drawings Schematic diagrams

| Dasis                                                                     |                            |
|---------------------------------------------------------------------------|----------------------------|
| Block diagram basis Block diagram expansions                              | Z1–1.1<br>Z1–1.2           |
| Power supply Power supply with mains transformer Low voltage power supply | Z1–2.1<br>Z1–2.2<br>Z1–2.3 |
| kV power unit<br>kV control                                               | Z1-3.2<br>Z1-3.3           |
| mA control H.V. generator                                                 | Z1–4.1<br>Z1–4.2           |
| Central unit                                                              | Z1-5.1                     |
| Basic interface                                                           | Z1–6                       |
| Options                                                                   |                            |
| Operating panel C Button and display arrangement                          | Z1–11.1<br>Z1–11.2         |
| Low speed rotor control                                                   | Z1-12                      |
| High speed rotor control                                                  | Z1-13.2                    |
| Tube extension overview Tube extension WG/1WG/2WG                         | Z1-14.1<br>Z1-14.2         |
| Adapter 4 auxil. units WA/1WA/2WA                                         | Z1-15.1                    |

















96-01-19 Ost./Schr

(a/96.0)

Z1-3.3





(96.0)

Note:
In case errors were detected
in the tank or on the measuring
board, exchange the tank
as a whole.

H.V. generator

4512 108 0902x

EZX46

EZX45

Adapter 4 aux, units

96-01-24

**OPTIMUS** 

© Philips Medizin Systeme

Z1-5.1



Basic interface



A1/A3 96-01-19 Ost./Schr. v00275

(96.0)

Z1-11.1





Low speed Rotor control



EY High speed rotor control 9890 000 02212

Hardware programming Room 1 cable 1WGX13-2WGX13 Room 2 soldering link 1WGW soldering link 2WGW High speed rotor control Tube 1 Tube 2 Tube 3 X Tube 1 Tube 2+3 Χ X Tube 1+2 Tube 3 Х Χ Tube 1+3 Tube 2 control (tube 3) control (tube 3) Soldering link K1 K2 K5 **K**3 K11 K12 Room decade 1 K3 3rd tube in room 2 Room decade 3 Room decade 2 Cooling unit control 1 Cooling unit control 3 Cooling unit control 2 Tube supervision 1 Tube supervision 3 Tube supervision 2 Stator supply 1 Stator supply 2 Stator supply 3 X61 X64& | K2 |tube2/3 K1 tube1 X68 H.V. generator! K5 X1103 X1102 K1 K2 tube2 tube3 X84 **GWB** H.V. changeover switch 2WG Tube extension low speed rotor control is present

Tube extension overview





WA / 1WA / 2WA Adapter 4 auxil. units

## **SERVICE MANUAL**

## Drawings Wirings

| Cabinet E                      | Z2-1.0       |
|--------------------------------|--------------|
| Cabinet wiring E, 50 kW        | Z2-1.1       |
| Cabinet wiring E, 65/80/100 kW | Z2-1.2       |
| Earthing diagram               | Z2-1.3       |
|                                |              |
| Power supply N, 50 kW          | Z2–2.1       |
| Power supply N, 65/80/100 kW   | Z2-2.2       |
| Mains transformer              | Z2-2.3       |
| W nower unit 0/00              | 70.0         |
| kV power unit Q/2Q             | Z2–3         |
| Back panel basis rack Z        | Z2-5.1/.2/.3 |
| _ow speed rotor control YA     | Z2-12        |
| ·                              |              |
| High speed rotor control Y     | Z2-13        |
| Tube extension WG              | Z2-14.1      |
| Γube extension WG              | Z2-14.2      |
| Tube extension 1WG/2WG         | Z2-14.3      |
| Tube extension Tyva/244a       | 22-14.0      |
| Adapter 4 auxil. units WA      | Z2-15.1      |

# Front side Rear side Option rack W Tube extension WG/ 230V/24V Adapter WR Adapter decade cable WA Basis rack Z Power supply N Rotor control Y 2 nd converter 2 Q Converter Q H. V. generator G

## Cabinet E



OPTIMUS (b/96.0) © Philips Medizin Systeme

Z2-1.1



Schr.

A3/A3 96-02-28 ub0781

Z2-1.2



E Earthing diagram



RC1 2

- K1:A2

OPTIMUS © Philips Medizin Systeme

(a/96.0)

Z2-2.1

Power supply 50kW

A3/A3 96-01-26 Schr. ua0786

> OPTIMUS © Philips Medizin Systeme

(a/96.0)

N Power supply 65/80/100kW



(94.0)

Z2-2.3



Ost.

96-05-02

(b/96.1)

Z2-3



OPTIMUS (c/96.0)© Philips Medizin Systeme

kV power unit



Back panel Basis rack Z



(a/96.2)

Z2-5.2





(95.0)

Z2-5.3



Stator cable to intermediate connection strip or tube extension

YA Low speed rotor control



High speed rotor control

Z2-13





OPTIMUS (a/96.0)
© Philips Medizin Systeme

Schr.

A3/A3 96-02-27 3

Z2-14.2





1WG | 2WG

1WG/2WG Tube extension



WA Adapter 4 auxil. units