Einführung in die Algebra

 $Vorlesungsmitschriften\ im\ Wintersemester\ 2018/19$

INHALTSVERZEICHNIS

1	Nul	llstellen von Polynomen	1
	1.1	Reelle und komplexe Wurzeln	1
	1.2	Formeln für Nullstellen vom Grad $n \leq 4$	1
	1.3	Körpererweiterungen	1
	1.4	Auflösbarkeit durch Radikale	2
2	Kor	nstruktion mit Zirkel und Lineal	5
Tn	dex		7

VORWORT

Diese Vorlesungsmitschriften werden in der Vorlesung Einführung in die Algebra von Prof. Jan Schröer im Wintersemester 2018/19 an der Universität Bonn angefertigt.

Wir versuchen, diese immer unter https://pankratius.github.io zu aktualisieren.

1.1 Reelle und komplexe Wurzeln

Sei $n \in \mathbb{N}_1$. Für $z \in \mathbb{C}$ heißen die Nullstellen von $X^n - z \in \mathbb{C}[X]$ die n-ten **Wurzeln** von z. Sei $r \in \mathbb{R}, r \geq 0$. Dann existiert eine eindeutig bestimmte reelle Zahl $w \geq 0$ mit $w^n = r$. Wir schreiben $\sqrt[n]{r} := w$.

Sei $z = r \exp(i\alpha)$ mit $r \ge 0$ reell und $\alpha \in [0, 2\pi)$ eine komplexe Zahl. Setze

$$\sqrt[n]{z} := \sqrt[n]{r} \exp(i\alpha/n),$$

und definiere $\sqrt[2]{z} =: \sqrt{z}$. Definiere weiterhin

$$\zeta_n := \exp(2\pi i/n).$$

Die Menge der ζ_n^j für $0 \le j \le n-1$ heißen n-te **Einheitswurzeln**. Dies sind gerade die Nullstellen von $X^n-1 \in \mathbb{C}[X]$.

1.2 Formeln für Nullstellen vom Grad $n \leq 4$

c.f. Formeln von Cardano und Ferrari.

1.3 Körpererweiterungen

Definition 1.3.1. Sei L ein Körper. Eine Teilmenge $K \subseteq L$ heißt **Teilkörper** von L, falls gilt

- i) $0, 1 \in K$
- ii) $a+b \in K$, $ab \in K$ für alle $a,b \in K$
- iii) $-a \in K$ für alle $a \in K$
- iv) $a^{-1} \in K$ für alle $a \in K^{\times}$

Durch Einschränkung der Addition und Multiplikation ist K wieder ein Körper. In diesem Fall heißt das Tupel L/K := (K, L) eine **Körpererweiterung**. Wir dafür auch $K \subset L$ und sagen, dass L eine Körpererweiterung von K ist.

Lemma 1.3.2. Sei L ein Körper, I eine Indexmenge und K_i ein Teilkörper für alle $i \in I$. Dann ist

$$K := \bigcap_{i \in I} K_i$$

wieder ein Teilkörper.

Beweis. Wir rechnen schnell die Eigenschaften nach:

- i) Es gilt $0, 1 \in K_i$ für alle i, also auch $0, 1 \in K$.
- ii) Seien $a, b \in K_i$ für alle i. Dann ist auch a + b und ab in K_i für alle i, weil die K_i jeweils Teilkörper sind. Also auch $a + b, ab \in K$.
- iii) genauso.
- iv) genauso.

Definition 1.3.3. Sei L ein Körper, $M \subseteq L$ eine Teilmenge. Dann ist

$$(M) := \bigcap_{M \subseteq F \subseteq L} F,$$

mit F Teilkörper, der von M erzeugte Teilkörper .

Sei L/K eine Körpererweiterung und $M\subseteq L$ eine Teilmenge von L. Definiere

$$K(M) := (K \cup M) \subset L.$$

K(M) entsteht an K durch **Adjungtion** von M.

Example 1.3.4. Betrachte \mathbb{R}/\mathbb{Q} und

$$\mathbb{Q}(\sqrt{2}) := \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}.$$

Für $M=x_1,...,x_n\subset L$ endlich schreibt man vereinfacht auch

$$K(M) =: K(x_1, ..., x_n).$$

Definition 1.3.5. L/K ist **einfach**, falls es ein $x \in L$ gibt mit K(x) = L.

Definition 1.3.6. Für $M = \{0, 1\}$ heißt P := (M) der **Primkörper** von L. Jeder Teilkörper von L enthält p

Example 1.3.7. Der Primkörper von \mathbb{C} ist \mathbb{Q} .

1.4 Auflösbarkeit durch Radikale

Definition 1.4.1. L/K ist eine **Radikalerweiterung** von L falls gilt:

- i) es gibt $x_1, ..., x_n \in L$ mit $K(x_1, ..., x_n) = L$
- ii) Es gibt $r_1,...,r_n \in \mathbb{N}_1$ mit $x_1^{r_1} \in K$ und $x_i^{r_i} \in K(x_1,...,x_{i-1})$ für $2 \le i \le n$.

Wir sagen: "L entsteht aus K durch sukzessive Adjungtion von Wurzeln".

Definition 1.4.2. $f \in K[X]$ ist **durch Radikale auflösbar**, falls es eine Radikalerweiterung L/K gibt, so dass f eine Nullstelle in L hat.

Theorem 1.4.3 (Cadano und Ferrari). Sei $f \in \mathbb{Q}[X]$ mit deg $f \leq 4$. Dann ist f auflösbar.

Ein Ziel der Vorlesung wird es sein, zu verstehen, wann $f \in \mathbb{Q}[X]$ durch Radikale auflösbar ist.

2. KONSTRUKTION MIT ZIRKEL UND LINEAL

Ein weiteres Ziel der Vorlesung wird es sein, die klassischen Konstruktionsprobleme zu untersuchen.

Identifiziere $\mathbb{C}\cong\mathbb{R}^2$. Gegeben sei nun $M\subset\mathbb{C}$ mit $|M|\geq 2$. Definiere

- i) $G(M) := \{ \text{affine Geraden } G \text{ in } \mathbb{R}^2 \text{ mit } |G \cap M| \geq 2 \}$
- ii) $C(M):=\{\text{reelle Kreise }C\text{ in }\mathbb{R}^2\text{mit: Mittle$ $punkt von }C\in M\text{ und Radius von }C=||z_1-z_2||,z_1,z_2\in M\}$

Durch folgende Operation erhalten wir wieder komplexe Zahlen:

- (ZL1): Schnitt zweier Geraden aus G(M)
- (ZL2): Schnitt einer Gerade aus G(M) und eines Kreises aus C(M)
- (ZL3): Schnitt zweier Kreise aus C(M).

Setze

 $ZL(M) := \{z \in \mathbb{C} \mid z \in M \text{ oder } z \text{ entsteht aus } M \text{durch Anwendung von } (ZL1, (ZL2), (ZL3))\}.$

Definiere jetzt

$$M_0 := M, M_{i+1} := ZL(M_i) \text{ und } M_{\infty} := \bigcup_{i>0} M_i.$$

Die Elemente von M_{∞} heißen die von M durch Zirkel und Lineal konstruierbare Punkte.

Lemma 2.0.1. $M_{\infty} = ZL(M_{\infty})$.

2.	Konstruktion mit Zirkel und Lineal
	End of Lecture 1

2018-10-13,10:03:57

INDEX

```
Adjungtion, 2

Einheitswurzeln, 1

Körpererweiterung, 1
einfache, 2
konstruierbare Punkte, 5

Primkörper, 2

Radikalerweiterung, 2

Teilkörper, 1
erzeugter, 2

Wurzeln, 1
```