Question	Scheme	Marks
6	$\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = \log_2 x^3 + \frac{\log_2 x^2}{\log_2 4} - \frac{3\log_2 2}{\log_2 x} = 0$	M1
	$=3\log_2 x + \frac{2\log_2 x}{\log_2 4} - \frac{\log_2 2^3}{\log_2 x} = 0$	M1
	$3\log_2 x + \frac{2\log_2 x}{2} - \frac{3}{\log_2 x} = 0$	B1
	$\Rightarrow 3(\log_2 x)^2 + (\log_2 x^2)^2 - 3 = 0$	M1
	$\Rightarrow 3(\log_2 x)^2 + (\log_2 x^2)^2 - 3 = 0$ $\Rightarrow 4(\log_2 x)^2 = 3 \Rightarrow (\log_2 x)^2 = \frac{3}{4} \Rightarrow \log_2 x = \pm \sqrt{\frac{3}{4}}$	M1
	$\Rightarrow x = 2^{\sqrt{\frac{3}{4}}} \approx 1.82 \text{ or } x = 2^{-\sqrt{\frac{3}{4}}} \approx 0.549$	M1A1A1
		[8]
Total 8 marks		al 8 marks

Mark	Notes NB: Candidates will frequently use a substitution for their chosen log.	
Working in log base 2		
Correct answer/s with no working scores no marks.		
M1	For changing the base of the log correctly in at least one term	
	$\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = \log_2 x^3 + \frac{\log_2 x^2}{\log_2 4} - \frac{3\log_2 2}{\log_2 x} = 0$	
M1	For using the power law in at least one term.	
	$\log_2 x^3 = 3\log_2 x$ or $\log_2 x^2 = 2\log_2 x$ or $3\log_2 2 = \log_2 2^3$	
	$\Rightarrow 3\log_2 x + \log_2 x - \frac{\log_2 2^3}{\log_2 x} = 0$	
B1	For either $\log_2 4 = 2$ or $\log_2 8 = 3$	
M1	For multiplying through by $\log_2 x$	
	$3(\log_2 x)^2 + (\log_2 x)^2 - 3 = 0$	
M1	For simplifying and obtaining two values for $\log_2 x$ using a valid method.	
	NB: If they discard one value at any stage do not award this mark.	
	$4(\log_2 x)^2 - 3 = 0 \Rightarrow \log_2 x = \pm \sqrt{\frac{3}{4}}$	
M1	For removing the log to find at least one value for <i>x</i>	
	$x = 2^{\sqrt{\frac{3}{4}}}$ or $x = 2^{-\sqrt{\frac{3}{4}}}$	
A1	For either awrt $x = 1.82$ or 0.549	
A1	For awrt both $x = 1.82$ and 0.549	

Worki	ng in log base 4
M1	For changing the base of the log correctly in at least one term
	$\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = \frac{\log_4 x^3}{\log_4 2} + \log_4 x^2 - \frac{3\log_4 2}{\log_4 2} = 0$
	$\log_2 x + \log_4 x - 3\log_x 2 = \frac{\log_4 x}{\log_4 2} + \log_4 x - \frac{\log_4 2}{\log_4 2} = 0$
M1	For using the power law in at least one term
	$\frac{3\log_4 x}{x} + 2\log_4 x - \frac{3\log_4 2}{x} = 0$
	$\log_4 2 \qquad \log_4 2 \qquad \log_4 2$
B1	1 2 1 1 0 3
	$\frac{3\log_4 x}{\log_4 2} + 2\log_4 x - \frac{3\log_4 2}{\log_4 2} = 0$ For either $\log_4 2 = \frac{1}{2}$ or $\log_4 8 = \frac{3}{2}$
3.51	2
M1	For multiplying through by $\log_4 x$ $6(\log_4 x)^2 + 2(\log_4 x^2)^2 - \frac{3}{2} = 0$
M1	For simplifying and obtaining two values for $\log_4 x$
	$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
	$8(\log_4 x)^2 = \frac{3}{2} \Rightarrow (\log_4 x)^2 = \frac{3}{16} \Rightarrow \log_4 x = \pm \sqrt{\frac{3}{16}}$
	NB: If they discard one value at any stage do not award this mark.
M1	For removing the log to find at least one value for x using a valid method.
	$x = 4^{\sqrt{\frac{3}{16}}} \approx \dots$ or $x = 4^{-\sqrt{\frac{3}{16}}} \approx \dots$
A1	For either awrt $x = 1.82$ or 0.549
A1	For awrt both $x = 1.82$ and 0.549
Worki	ng in log base x
	For changing the base of the log correctly in at least one term
M1	$\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = \frac{\log_x x^3}{\log_x 2} + \frac{\log_x x^2}{\log_x 4} - 3\log_x 2 = 0$
1,22	$\log_x 2 \log_x 4$
M1	For using the power law in at least one term
	$\frac{3\log_x x}{\log_x 2} + \frac{2\log_x x}{2\log_x 2} - 3\log_x 2 = 0$
B 1	For $\log_x x = 1$ $\frac{3}{\log_x 2} + \frac{1}{\log_x 2} - 3\log_x 2 = 0 \Rightarrow \frac{4}{\log_x 2} - 3\log_x 2 = 0$
M1	For multiplying through by $\log_x 2$
	$4 - 3(\log_x 2)^2 = 0$
	- $($ $ ($ $)$ $($
M1	For obtaining two values of $\log_x 2$ using a valid method $\left(\log_x 2 = \pm \sqrt{\frac{4}{3}}\right)$
	NB: If they discard one value at any stage do not award this mark.
M1	For removing the log to find at least one value for x.
	$2 = x^{\sqrt{\frac{4}{3}}} \Rightarrow x = 2^{\sqrt{\frac{3}{4}}} \approx \dots \text{or} 2 = x^{-\sqrt{\frac{4}{3}}} \Rightarrow x = 2^{-\sqrt{\frac{3}{4}}} \approx \dots$
A 1	
A1	For either awrt $x = 1.82$ or 0.549