\sim .	00 A T	A	
11117	('C A I	A ttemi	ot review
Juiz.	-Со-лі	$\Delta ucmi$	Jt 1 C V 1 C VV

	Mednesday, 4 June 2025, 3:25 PM
State	
	Wednesday, 4 June 2025, 3:39 PM
Time taker	
Mark	
Grade	80.00 out of 100.00
Question 1	
Complete	
Mark 1.00 out of 1.00	
What is the primary	function of the attention mechanism in Transformers?
a. Pooling fea	iture maps
	dient vanishing
	epth of networks
	ng-range dependencies
Question 2	
Complete	
Mark 1.00 out of 1.00	
Mark 1.00 out of 1.00	
Which scheduling a	lgorithm may lead to starvation in OS?
a. Shortest Jo	b First
b. Priority Sch	neduling
c. Round Rob	
d. First-Come	
O di Tiist como	
Question 3	
Complete	
Mark 1.00 out of 1.00	
What does the Big-	O notation O(n log n) represent in divide and conquer algorithms?
a. Average-ca	ise performance
ob. Sub-linear	performance
c. Linear perf	ormance
d. Logarithmi	
3	

Complete
Mark 0.00 out of 1.00
What is a major limitation of convolutional neural networks (CNNs)?
a. Inability to capture spatial hierarchies
b. Inefficiency in handling sequential data
○ c. Lack of parallelism
d. Overfitting on small datasets
Question 5
Complete
Mark 0.00 out of 1.00
What is the best-case time complexity for inserting in a heap?
○ a. O(n log n)
○ b. O(1)
© c. O(log n)
○ d. O
Question 6
Complete Mark 0.00 out of 1.00
Walk 0.00 Out of 1.00
Which technique is used to prevent exploding gradients in RNNs?
Which technique is used to prevent exploding gradients in RNNs? a. Batch normalization b. Dropout
a. Batch normalization
a. Batch normalizationb. Dropout
a. Batch normalizationb. Dropoutc. Gradient clipping
a. Batch normalizationb. Dropoutc. Gradient clipping
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay Question 7 Complete
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay Question 7 Complete Mark 1.00 out of 1.00
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay Question 7 Complete Mark 1.00 out of 1.00 Which of the following sorting algorithms has the best worst-case time complexity?
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay Question 7 Complete Mark 1.00 out of 1.00 Which of the following sorting algorithms has the best worst-case time complexity? a. Insertion Sort
 a. Batch normalization b. Dropout c. Gradient clipping d. Weight decay Question 7 Complete Mark 1.00 out of 1.00 Which of the following sorting algorithms has the best worst-case time complexity? a. Insertion Sort b. Heap Sort

0 ' 00 11	.	
Quiz-CS-AI:	Attempt	review

Question 8 Complete
Mark 1.00 out of 1.00
What is the purpose of a softmax layer in a neural network?
a. Convert logits into probabilities
○ b. Normalize gradients
○ c. Introduce sparsity
○ d. Prevent overfitting
Question 9 Complete
Mark 1.00 out of 1.00
What is the time complexity of searching for an element in a balanced Binary Search Tree (BST)?
a. O(n log n)
O b. O(n)
○ c. O(1)
■ d. O(log n)
Question 10 Complete
Mark 0.00 out of 1.00
Which component is not part of a Turing Machine?
a. State register
○ b. Tape
C. Head
○ d. Stack
Question 11
Complete
Mark 1.00 out of 1.00
Which of the following loss functions is most commonly used in classification problems?
a. Cross-Entropy
a. Cross-Entropy
b. Mean Squared Error
○ b. Mean Squared Error

o . cc . t		
Quiz-CS-AI:	Aftemnt	review
Quiz CD 111.	riccinpt	1011011

Question 12
Complete
Mark 1.00 out of 1.00
What is backpropagation used for in neural networks?
a. Performing forward pass
○ b. Initializing weights
c. Updating weights via gradients
○ d. Computing loss
Question 13
Complete Mark 100 and sf100
Mark 1.00 out of 1.00
Which data atments are allowed in and deletion from both and 2
Which data structure allows insertion and deletion from both ends?
○ a. Stack
b. Deque
C. Queue
○ d. Priority Queue
Question 14
Complete
Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00 What is the main advantage of using dropout in neural networks?
Mark 1.00 out of 1.00 What is the main advantage of using dropout in neural networks? a. Better weight initialization
Mark 1.00 out of 1.00 What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00 What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete Mark 1.00 out of 1.00 What does the Bellman Equation define in Reinforcement Learning?
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete Mark 1.00 out of 1.00 What does the Bellman Equation define in Reinforcement Learning? a. The reward function
What is the main advantage of using dropout in neural networks? a. Better weight initialization b. Faster training c. Easier gradient computation d. Prevent overfitting Question 15 Complete Mark 1.00 out of 1.00 What does the Bellman Equation define in Reinforcement Learning? a. The reward function b. The action set

2 · CC + T	.	•
Quiz-CS-AI:	Aftemnt	review
Quil CD 111.	ricconipe	10 110 11

Question 16 Complete
Mark 1.00 out of 1.00
What is the role of the 'learning rate' in gradient descent?
a. Determines step size during optimization
○ b. Regularizes feature importance
c. Controls model complexity
○ d. Determines output layer depth
Question 17 Complete
Mark 1.00 out of 1.00
Which type of neural network is primarily used for sequence modeling?
○ a. CNN
b. RNN
○ c. Autoencoder
○ d. GAN
Question 18
Complete
Mark 1.00 out of 1.00
In graph theory, what is the minimum number of colors needed for a graph with chromatic number k?
○ a. log₂(k)
○ b. Depends on graph size
\bigcirc c. k^2
 ○ c. k² ■ d. k
■ d. kQuestion 19Complete
■ d. kQuestion 19Complete
■ d. k Question 19 Complete Mark 0.00 out of 1.00
Question 19 Complete Mark 0.00 out of 1.00 Which algorithm is used to find strongly connected components in a directed graph?
Question 19 Complete Mark 0.00 out of 1.00 Which algorithm is used to find strongly connected components in a directed graph? a. Bellman-Ford Algorithm
 Question 19 Complete Mark 0.00 out of 1.00 Which algorithm is used to find strongly connected components in a directed graph? a. Bellman-Ford Algorithm b. Kosaraju's Algorithm

o		
Quiz-CS-AI:	Aftemnt	review
Quil CD 111.	riccompt	10,10,1

Question 20 Complete
Mark 1.00 out of 1.00
In the context of Operating Systems, what is a "race condition"?
a. When processes terminate unexpectedly
b. When a process is stuck in an infinite loop
c. When multiple processes attempt to modify the same data concurrently
d. When the CPU switches tasks too quickly
Question 21
Complete
Mark 1.00 out of 1.00
Which activation function can cause the vanishing gradient problem?
○ a. Tanh
b. Sigmoid
○ c. Softmax
○ d. ReLU
Question 22
Complete
Complete Mark 0.00 out of 1.00
Mark 0.00 out of 1.00
Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs?
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs?
Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients
Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information Question 23 Complete Mark 1.00 out of 1.00
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information Question 23 Complete Mark 1.00 out of 1.00 What does PCA (Principal Component Analysis) aim to achieve?
Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information Question 23 Complete Mark 1.00 out of 1.00 What does PCA (Principal Component Analysis) aim to achieve? a. Maximize variance in lower dimensions
What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Estimate weight gradients b. Optimize a generative model c. Regularize output probabilities d. Maximize mutual information Question 23 Complete Mark 1.00 out of 1.00 What does PCA (Principal Component Analysis) aim to achieve? a. Maximize variance in lower dimensions b. Normalize features

2 · CC + T	.	•
Quiz-CS-AI:	Aftemnt	review
Z WILL CO 1111.	ricconipe	10 110 11

Question 24
Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Which of the following is a non-parametric model?
which of the following is a non-parametric model:
a. K-Nearest Neighbors
○ b. Logistic Regression
○ c. Naive Bayes
d. Linear Regression
Question 25
Complete
Mark 1.00 out of 1.00
Which of the fallowing is NOT availed learned function in CVM2
Which of the following is NOT a valid kernel function in SVM?
a. Gaussian Kernel
○ b. Linear Kernel
c. Step Kernel
○ d. Polynomial Kernel
Question 26
Complete
Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML?
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage Question 27 Complete Mark 1.00 out of 1.00 In a relational database, which normal form eliminates transitive dependencies?
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage Question 27 Complete Mark 1.00 out of 1.00 In a relational database, which normal form eliminates transitive dependencies? a. 1NF
What is the primary objective of feature scaling in ML? a. Ensure features contribute equally during training b. Improve model interpretability c. Eliminate irrelevant features d. Reduce memory usage Question 27 Complete Mark 1.00 out of 1.00 In a relational database, which normal form eliminates transitive dependencies? a. 1NF b. 3NF

Question 28
Complete
Mark 1.00 out of 1.00
Which AI concept is best associated with "exploration vs exploitation"?
a. Reinforcement Learning
○ b. Unsupervised Learning
c. Self-supervised Learning
○ d. Supervised Learning
Question 29
Complete
Mark 1.00 out of 1.00
What does the term "curse of dimensionality" refer to in ML?
a. Difficulty in training deep models
○ b. Limited model capacity
c. Increased computation time
d. Data sparsity in high-dimensional spaces
Question 30
Complete
Mark 1.00 out of 1.00
Which of the following problems is undecidable?
a. Graph Coloring
b. Halting Problem
c. Sorting a list
○ d. Finding the shortest path