

* Apply linear algebra techniques to solve problems in various fields.
* Develop logical reasoning and problem-solving abilities.
Topics Covered:
* Vector spaces and subspaces
* Matrix algebra
* Linear transformations
* Eigenvalues and eigenvectors
* Applications in computer graphics and data analysis
Assignments and Projects:
* Problem-solving assignments on linear algebra concepts
* Project on the applications of linear algebra in a chosen field
Grading Criteria:
* Participation in class and online discussions (10%)
* Assignments (30%)
* Project (20%)
* Final exam (40%)
Module 3: Differential Equations

and linear transformations.

Learning Objectives:
* Understand various types of differential equations and their solutions.
* Develop analytical and numerical methods for solving differential equations.
* Apply differential equations to model real-world phenomena.
Topics Covered:
* First-order differential equations
* Higher-order linear differential equations
* Systems of differential equations
* Numerical methods for solving differential equations
* Applications in physics, engineering, and finance
Assignments and Projects:
* Problem-solving assignments on differential equations
* Project on a real-world application of differential equations
Grading Criteria:
* Participation in class and online discussions (10%)
* Assignments (30%)
* Project (20%)
* Final exam (40%)

Module 4: Numerical Analysis
Learning Objectives:
* Understand the principles and techniques of numerical analysis.
* Apply numerical methods to solve mathematical problems accurately and efficiently.
* Develop computational thinking and problem-solving skills.
Topics Covered:
* Approximation of functions
* Numerical integration
* Numerical differentiation
* Numerical linear algebra
* Applications in optimization and data analysis
Assignments and Projects:
* Problem-solving assignments on numerical analysis concepts
* Project on implementing a numerical method for a specific application
Grading Criteria:
* Participation in class and online discussions (10%)
* Assignments (30%)
* Project (20%)

* Final exam (40%)
Module 5: Probability and Statistics
Learning Objectives:
* Understand the foundations of probability and statistical inference.
* Apply probability and statistical techniques to analyze data and make informed decisions.
* Develop critical thinking and data-driven decision-making skills.
Topics Covered:
* Probability theory
* Statistical inference
* Hypothesis testing
* Regression analysis
* Applications in finance, machine learning, and healthcare
Assignments and Projects:
* Problem-solving assignments on probability and statistics concepts
* Project on conducting a statistical analysis of a real-world dataset
Grading Criteria:
* Participation in class and online discussions (10%)

* Assignments (30%)
* Project (20%)
* Final exam (40%)
Module 6: Applications in Research and Industry
Learning Objectives:
* Explore advanced applications of mathematics in various research and industry domains.
* Identify and solve real-world problems using mathematical techniques.
* Develop interdisciplinary thinking and collaboration skills.
Topics Covered:
* Mathematical modeling in physics and engineering
* Data science and machine learning
* Optimization and decision-making
* Financial modeling
* Applications in healthcare and biotechnology
Assignments and Projects:
* Problem-solving assignments on real-world applications of mathematics
* Group project on a mathematical solution to a specific research or industry problem
Grading Criteria:

- * Participation in class and online discussions (10%)

 * Assignments (30%)

 * Group project (20%)
- **Final Project:**

* Final exam (40%)

Students will complete a final project that demonstrates their understanding of the advanced mathematics concepts covered in the course. The project can be an extended research paper, a software implementation, or a presentation on a real-world application of mathematics.

Grading Criteria:

- * Depth of understanding and analysis of mathematical concepts (40%)
- * Ability to apply mathematical techniques to solve a complex problem (30%)
- * Clarity of presentation and communication of results (20%)
- * Originality and contribution to the field (10%)