Independent No. of ppl. No. of traspoons voras Variable 1 2 Tary	Linear Regression:	Tea for the guests. Dependent
variable 1 (any	Independent No. of ppl.	No of teaspoons vorasi
	Variorista 1	2 Conjet
\mathcal{X} $\frac{2}{6}$ $\frac{4}{6}$ $\frac{4}{6}$ $\frac{4}{6}$	\mathcal{L}	$\frac{4}{6} \qquad (4)$
$\frac{1}{4}$	4	8
5	5,	10
12	6	12

Any General Linear Line egn:
Ty = mx + cl

y = No of Sugar

Spoons

For our gurst example, (=0,

y = mx + 0

Ty = mx

m = Slope of the

line

No of Sugar

Spoons

C = meeting point

of the line with

y - axis.

Mo of SS = m x No. of ppl.

Linear Regression

The squares

M-2

No. of SS = 2 x No. of ppl.

No. of SS = 2 x No. of ppl.

Mout $S = 2 \times 12$ = 200 = 200

We established the rel beth Indep of days
by find the values of m of c

\[y = 27c \]

7 3	\mathcal{I}_{l}	χ_2	$\perp J$
Mi of	Edu. Qualitication	Yn. of Exp	Mary
7,	,		
		1	J

 $\int \int d^{2} = m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} + c$

General linear Ry Fign:

 $J = m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + c_{t+1}$

 $\mathcal{J} = \frac{\beta_0}{\beta_1} + \frac{\beta_1}{\gamma_1} \times \frac{\beta_2}{\gamma_2} \times \frac{\beta_2}{\gamma_2} + \frac{\beta_3}{\gamma_3} \times \frac{\beta_1}{\gamma_1} \times \frac{\beta_1}{\gamma_2} \times \frac{\beta_1}{\gamma_1} \times \frac{\beta_1}{\gamma_2} \times \frac{\beta_1}{\gamma_2} \times \frac{\beta_1}{\gamma_1} \times \frac{\beta_1}{\gamma_2} \times \frac{\beta_1}{$

* Simple linear Regression: - $y = \beta_0 + \beta_\infty$ Gry 1 indep
Variable

* Multiple Linear Ryrssian: - 7 = Bo + Bixi + Bz zzt...