

Theoretische Informatik Berechenbarkeit

Technische Hochschule Rosenheim SS 2019

Prof. Dr. J. Schmidt

Inhalt

- Algorithmen
- Entscheidungsproblem und Church-Turing-These
- Halteproblem
- LOOP/WHILE/GOTO Berechenbarkeit
- primitiv rekursive Funktionen
- μ-rekursive Funktionen und die Ackermann-Funktion
- Busy-Beaver-Funktion

ALGORITHMEN

Definition Algorithmus (nach Knuth)

Endlichkeit

ein Algorithmus muss immer nach einer endlichen Anzahl Schritten terminieren

Bestimmtheit

jeder Schritt eines Algorithmus ist in jedem Fall eindeutig definiert

Eingabe

 ein Algorithmus hat 0 oder mehr Eingabeparameter (statisch oder dynamisch)

Ausgabe

 ein Algorithmus hat mindestens einen Ausgabewert, der sich aus den Eingabeparametern ableitet

Effektivität

- Anweisungen müssen grundlegend genug sein, so dass sie prinzipiell
 - exakt und
 - in endlicher Zeit ausgeführt werden können

Algorithmus Anmerkungen

- es gibt Beispiele für nicht-terminierende Algorithmen (Regelschleifen in eingebetteten Systemen, Betriebssysteme). Streng genommen kein Algorithmus, Knuth schlägt hierfür "Computational Method" vor.
- ▶ effektiv ≠ effizient
- Endlichkeit ist für praktische Zwecke ein schwaches Kriterium; ein Algorithmus soll auch effizient sein
- Begriff "Algorithmus": Al-Khwarizmi, Name eines berühmten persischen Buchautors (825 n.Ch.)

Schritte

6

Algorithmierung

- # finde einen Algorithmus zur prinzipiellen Lösung des anstehenden Problems
- wesentlich: Beschreibung der funktionalen Abhängigkeit zwischen den Ein- und Ausgabedaten

Programmierung

- Formuliere den Algorithmus als Programm
- Programmiersprache Bindeglied zwischen Mensch und Maschine
- Abstraktion von Maschinendetails
- Unterstützung einer möglichst einfachen und vollständigen Formulierung beliebiger Algorithmen

Ausführung

- Interpretation der formulierten Anweisungen
- Umsetzung in endlich viele, einfache, direkt ausführbare Einzelaktionen
- wesentlich: benötigte Zeit und Speicherplatz

- Kann jedes Problem durch einen Algorithmus beschrieben werden?
 - zumindest prinzipiell, bei genügend großer Anstrengung?
- Kann jeder Algorithmus in ein Programm übertragen werden?
 - Welchen Anforderungen muss eine Programmiersprache genügen, damit jeder Algorithmus damit formuliert werden kann?
- Ist ein Computer grundsätzlich in der Lage, einen bekannten, als Programm formulierten Algorithmus auszuführen?

ENTSCHEIDUNGSPROBLEM UND CHURCH-TURING-THESE

Das Gödel'sche Unvollständigkeitstheorem

- Kurt Gödel (1906 1978)
- ursprüngliche Ansicht: jede mathematische Aussage ist algorithmisch entscheidbar
 - man kann prinzipiell beweisen, ob sie wahr oder falsch ist
- Unvollständigkeitstheorem (Gödel 1931)
 - Beweis, dass alle widerspruchsfreien axiomatischen Formulierungen der Zahlentheorie unentscheidbare Aussagen enthalten
 - es gibt Aussagen, die wahr, aber nicht beweisbar sind
 - nicht jede Aussage ist also algorithmisch entscheidbar
 - daher gibt es Probleme, die prinzipiell nicht von Computern gelöst werden können

Universelle Turingmaschine

- Formalisierung des Algorithmus-Begriffs
- jeder Algorithmus kann als Turing-Maschine dargestellt werden
- Universelle Turing-Maschine U
 - TM, die jede andere TM T simulieren kann
 - Computer entspricht einer universellen TM
 - Programmierung von U: Schreibe auf Eingabeband
 - Beschreibung der TM T
 - Eingabe x, die von T verarbeitet werden soll

- jeder Algorithmus kann dargestellt werden als
 - Turing-Maschine ("Turing-Berechenbarkeit")
 - formale Sprache (Typ 0)
 - Programm einer Registermaschine
 - Schaltwerk
 - # µ-rekursive Funktion
 - WHILE bzw. GOTO-Programm
 - **+** ...
- alle diese Darstellungen sind äquivalent
- Church-Turing-These
 - die durch die formale Definition der Turing-Berechenbarkeit erfasste Klasse von Funktionen stimmt genau mit der Klasse der intuitiv berechenbaren Funktionen überein

- These: nicht beweisbar, aber allgemein akzeptiert
- Indizien für Korrektheit
 - niemand konnte bisher einen umfassenderen Berechenbarkeitsbegriff finden, als den der TM
 - die Äquivalenz vieler verschiedener Formalismen ist ein starkes Indiz dafür, dass man mit der TM tatsächlich den Berechenbarkeitsbegriff an sich gefunden hat
- Resultat: wenn von einer Funktion nachgewiesen ist, dass sie nicht Turing-berechenbar ist, so ist sie überhaupt nicht berechenbar

Berechenbarkeit/Entscheidbarkeit

Berechenbare Funktionen

- # Funktion f: $\mathbb{N}^k \to \mathbb{N}$ heißt **berechenbar**, wenn es einen Algorithmus gibt, der bei Eingabe von $x \in \mathbb{N}^k$ f(x) berechnet
- # d.h., Algorithmus stoppt nach endlich vielen Schritten
- bei partiellen Funktionen (an manchen Stellen undefiniert):
 Funktion eingeschränkt auf Definitionsbereich

Entscheidbarkeit

- # Menge M heißt **entscheidbar**, wenn ihre charakteristische Funktion $\chi(m)$ berechenbar ist
- \star $\chi(m)$ berechnet, ob ein Element m in der Menge M enthalten ist oder nicht:

$$\chi(m) = \begin{cases} 1 & \text{wenn } m \in M \\ 0 & \text{sonst} \end{cases}$$

Nicht-berechenbare Funktionen

- ein Algorithmus
 - muss durch ein Alphabet A mit einem endlichen Zeichenvorrat dargestellt werden können
 - im Falle einer TM reicht das binäre Alphabet A = {0, 1}
 - hat endliche Länge
- Nachrichtenraum A* besteht aus abzählbar unendlich vielen Zeichenketten
- daher gibt es auch nur abzählbar viele Algorithmen
 - d.h. alle Algorithmen könnten unter Verwendung der natürlichen Zahlen im Prinzip durchnummeriert werden
 - es gibt nur endlich viele Quelltexte mit bestimmter Länge in einer bestimmten Programmiersprache
 - man könnte diese also alle hinschreiben und ordnen

Nicht-berechenbare Funktionen – Beweis

- Es gibt nicht-berechenbare Funktionen
- ▶ bereits die Menge der Funktionen f(n): $\mathbb{N} \to \mathbb{N}$ ist überabzählbar
- Beweis
 - ♣ Annahme: Menge f(n), $n ∈ \mathbb{N}$ ist abzählbar (und damit **komplett berechenbar**)
 - dann kann man die Funktionen sortiert in eine Tabelle schreiben:

	1	2	3	4	
f ₁	f ₁ (1)	f ₁ (2)	$f_1(3)$	f ₁ (4)	
f ₂	f ₂ (1)	$f_2(2)$	$f_2(3)$	$f_2(4)$	
f_3	f ₃ (1)	f ₃ (2)	$f_3(3)$	$f_3(4)$	
f ₄	f ₄ (1)	$f_4(2)$	$f_4(3)$	$f_4(4)$	

Nicht-berechenbare Funktionen – Beweis

17

Konstruiere Funktion g wie folgt

```
# g(1) = f_1(1) + 1 somit unterscheidet sich g von f_1

# g(2) = f_2(2) + 1 somit unterscheidet sich g von f_2

# g(3) = f_3(3) + 1 somit unterscheidet sich g von f_3

# usw.
```

- g unterscheidet sich von allen Funktionen fi
- g ist offensichtlich berechenbar
- damit müsste g in der Tabelle enthalten sein
- das ist aber nicht der Fall
- Fazit: Widerspruch Annahme, dass Tabelle alle Funktionen $f(n): \mathbb{N} \to \mathbb{N}$ enthält, ist falsch

Nicht-berechenbare Funktionen – Fazit

18

- es gibt nicht berechenbare Funktionen
- es gibt überabzählbar viele arithmetische Funktionen
- von diesen sind nur abzählbar viele berechenbar
- verglichen mit dem, was ein Computer nicht kann, ist das was er kann vernachlässigbar klein

Anmerkung:

- nicht-berechenbar bedeutet nicht, dass es Probleme gibt, für die einfach noch kein Algorithmus gefunden wurde
- es bedeutet: es gibt Probleme, für die es prinzipiell keinen
 Algorithmus zur Lösung geben kann
 - unabhängig von der zukünftigen Entwicklung der Computer-Hardware
 - ...und viele davon wären praktisch interessant

HALTEPROBLEM

Halteproblem

- wichtigstes Beispiel für unentscheidbares Problem
- Frage: Gibt es einen Algorithmus bzw. ein Programm HALT, mit dem man für ein **beliebiges** Programm P ermitteln kann, ob es mit beliebigen Eingabedaten jemals stoppen wird oder nicht?
- Aufruf HALT(P) würde liefern:
 - P stoppt
 - P stoppt nicht
 - ohne dass man P selbst laufen lassen müsste
- HALT könnte also prüfen, ob ein Programm in eine Endlosschleife geraten wird

Stein der Weisen

- Bedeutung des Halteproblems ist unübertroffen essentiell
- wäre es entscheidbar, hätte man einen Stein der Weisen, mit dem man sämtliche als Programm formulierbaren Probleme der Welt sofort lösen könnte
- Beispiel: Goldbachsche Vermutung
 - jede gerade Zahl g > 2 ist als Summe zweier Primzahlen darstellbar
 - bisher unbewiesen auf jeden Fall richtig für alle Zahlen g < 2 · 10¹⁸
 - schreibe Programm, dass alle geraden Zahlen g durch Probieren testet,
 ob g die Summe zweier Primzahlen ist
 - das Programm hält an, falls dies für ein bestimmtes g nicht zutrifft
 - wenn die Goldbachsche Vermutung zutrifft: Programm wird nie anhalten
 - dies könnte man aber durch HALT(GOLDBACH) vorab testen
 - damit wäre die Goldbachsche Vermutung eindeutig bewiesen oder widerlegt

Beweis – spezielles Halteproblem

- Annahme: es existiert ein Algorithmus zur Lösung des Halteproblems
- Es gibt also ein Programm HALT
 - # Eingabe:
 - beliebiges zu testendes Programm P
 - inklusive dessen Eingabedaten
 - Ausgabe: P "stoppt" oder "stoppt nicht"
- bei beliebigen Eingabedaten für P: allgemeines Halteproblem
- P verwendet seinen eigenen Code als Eingabe: spezielles Halteproblem oder Selbstanwendbarkeitsproblem

Beweis – spezielles Halteproblem Rosenheim

Konstruiere nun ein Programm TEST wie folgt:

Beweis – spezielles Halteproblem

- Nun: P = TEST
- 2 Fälle
 - TEST(TEST) stoppt
 - Ausgabe von HALT(TEST): TEST stoppt nicht
 - TEST(TEST) stoppt nicht
 - Ausgabe von HALT(TEST): TEST stoppt
- Widerspruch!
- Schlussfolgerung:
 - # HALT existiert nicht!
 - Das spezielle Halteproblem ist unentscheidbar

- Beweis von vielen weiteren unentscheidbaren Problemen durch Reduktion auf das spezielle Halteproblem möglich
 - d.h., Einbettung des speziellen Halteproblems als Spezialfall in das neue Probleme
 - dann muss das allgemeinere Problem erst recht unentscheidbar sein
- Allgemeines Halteproblem
 - Entscheide, ob P mit beliebiger Eingabe stoppt
 - Reduktion offensichtlich: bereits mit Spezialfall P als Eingabe unentscheidbar
 - Das allgemeine Halteproblem ist unentscheidbar

Halteproblem auf leerem Band

- Entscheide, ob P angesetzt auf leerem Band (also mit keiner Eingabe) stoppt
- Reduktion:
 - schreibe nach dem Start zunächst Code von P aufs Band
 - anschließend Verhalten wie bei speziellem Halteproblem
- Das Halteproblem auf leerem Band ist unentscheidbar

Weitere unentscheidbare Probleme

- Berechnen zwei TM/Programme die gleiche Funktion?
 - Äquivalenzproblem
 - lässt sich nicht auf das Halteproblem zurückführen
 - ist also "noch unentscheidbarer" als dieses
- Berechnet TM eine konstante Funktion?
- Game of Life: gegeben 2 Konfigurationen gibt es eine Zugfolge, so dass die eine aus der anderen entsteht?
- Satz von Rice:
 - Es ist hoffnungslos von einer TM irgendeinen Aspekt ihres funktionalen Verhaltens algorithmisch bestimmen zu wollen

Wort-/Leerheits-/Schnitt-/ Äquivalenzproblem

- für welche Sprachklassen/Automatenmodelle ist das Problem entscheidbar (lösbar)?
- Einträge

nein: das Problem ist unlösbar, es gibt keinen Algorithmus dafür

Sprache	Wortproblem	Leerheits-/ Endlichkeitsproblem	Äquivalenzproblem	Schnittproblem
Typ 3	ja	ja	ja	ja
det.kf.	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

Typ 2 Sprachen

- Gegeben: kontextfreie Grammatiken G, G₁ und G₂
- Unentscheidbar sind
 - # ist G mehrdeutig?
 - + ist $\overline{L(G)}$ kontextfrei?
 - ist L(G) deterministisch kontextfrei?
 - ist L(G) regulär?
 - \oplus ist $L(G_1) \cap L(G_2) = \emptyset$?
 - \oplus ist L(G₁) \cap L(G₂) kontextfrei?
 - + ist | L(G₁) ∩ L(G₂) | = ∞?
 - \bullet ist $L(G_1) \subseteq L(G_2)$?
 - + ist L(G₁) = L(G₂)?

Deterministisch-kontextfreie Sprachen

- Gegeben: det. kontextfreie Grammatiken G₁ und G₂
- Unentscheidbar sind
 - \oplus ist $L(G_1) \cap L(G_2) = \emptyset$?
 - \oplus ist L(G₁) \cap L(G₂) kontextfrei?
 - + ist | L(G₁) \cap L(G₂) | = ∞?
 - \Rightarrow ist $L(G_1) \subseteq L(G_2)$?

LOOP/WHILE/GOTO BERECHENBARKEIT

- einfache Programmiersprache
- Komponenten

 \bullet Variablen: $x_0, x_1, x_2, x_3, \dots$

Konstanten: 0, 1, 2, ...

Trennsymbole: ;:=

Operatoren: + –

Schlüsselwörter: LOOP DO END

Syntax

 $+ x_i := x_i + c$ bzw. $x_i := x_i - c$ ist ein LOOP-Programm (mit c Konstante)

wenn P₁ und P₂ LOOP-Programme, dann auch P₁; P₂

 wenn P ein LOOP Programm und x_i eine Variable, dann ist auch LOOP x_i DO P END ein LOOP-Programm

LOOP-Programme

33

Semantik

- Programm wird gestartet mit Parametern in den Variablen x₁, ..., x_n
- alle anderen haben den Wert 0
- es sind nur natürliche Zahlen zulässig
- Berechnungsergebnis steht am Ende in x₀
- Zuweisungen
 - + wie üblich
 - → –: wenn Wert kleiner Null werden würde, wird der Wert auf Null gesetzt
- P₁; P₂ bedeutet: erst wird P₁, dann P₂ ausgeführt
- + LOOP x_i DO P END bedeutet
 - P wird x_i mal ausgeführt
 - Änderung der Variablen im Schleifenrumpf hat keinen Effekt

- die alleinige Verwendung von natürlichen Zahlen ist keine Einschränkung
- jedes Alphabet kann auf die natürlichen Zahlen abgebildet werden
- ebenso jede rationale Zahl
- nicht: reelle Zahlen die kann eine TM/Rechner aber sowieso nicht verarbeiten

LOOP-Programme Eigenschaften

- alle LOOP-berechenbaren Funktionen sind totale Funktionen
 - die Umkehrung gilt nicht: Ackermann-Funktion
- jedes LOOP-Programm stoppt immer in endlicher Zeit
- Wertzuweisungen
 - x_i := c durch x_i := x_j + c mit Verwendung einer nicht benutzten
 Variablen x_i, die noch den Wert Null hat
 - $+ x_i := x_i$ durch Verwendung von c = 0
- > IF-THEN
 - # IF x = 0 THEN P END kann simuliert werden durch
 - y := 1;LOOP x DO y := 0 END;LOOP y DO P END

LOOP-Programme Beispiel

- Addition ist LOOP-berechenbar: x₀ := x₁ + x₂
- $x_0 := x_1;$ LOOP x_2 DO $x_0 := x_0 + 1$ END

- Erweiterung der LOOP-Syntax durch
 - wenn P ein WHILE-Programm und x_i eine Variable, dann ist auch WHILE x_i ≠ 0 DO P END ein WHILE-Programm
- Semantik: Führe P so lange aus, wie der Variablenwert nicht Null ist
- Anmerkung: LOOP wird nun eigentlich nicht mehr benötigt
 - LOOP x DO P END entspricht
 - # y := x; WHILE y≠0 DO y := y - 1; P END

- es können nun auch partielle Funktionen dargestellt werden
 - Endlosschleifen sind möglich
- jede WHILE-berechenbare Funktion ist auch Turingberechenbar
 - TM können WHILE Programme simulieren
 - die Umkehrung gilt ebenfalls
- für jedes beliebige Programm genügt eine einzige WHILE-Schleife – Beweis folgt

Sequenz von Anweisungen mit Marke

$$M_1: A_1; M_2: A_2; ...; M_n: A_n$$

zulässige Anweisungen:

 \bullet Zuweisung: $x_i := x_i + c bzw. x_i := x_i - c$

unbedingter Sprung: GOTO M_i

• bedingter Sprung: IF $x_i = c$ THEN GOTO M_i

Stopp:

jede GOTO-berechenbare Funktion ist auch WHILEberechenbar und umgekehrt

- WHILE x_i ≠ 0 DO P END entspricht
- M_1 : IF $x_i = 0$ THEN GOTO M_2 ; P; GOTO M_1 ; M_2 : ...

GOTO durch WHILE

GOTO Programm:

 $M_1: A_1; M_2: A_2; ...; M_n: A_n$

umgeformt in WHILE:

```
z := 1;
WHILE z \neq 0 DO

IF z = 1 THEN A'<sub>1</sub> END;

IF z = 2 THEN A'<sub>2</sub> END;

...

IF z = n THEN A'<sub>n</sub> END;
END
```

 \rightarrow mit A'_i =

```
+ x_i := x_k \pm c ; z := z + 1
```

⊕ z := n

IF x_i = c THEN z := n ELSE z := z + 1 END

→ z := 0

falls $A_i = x_j := x_k \pm c$

falls A_i = GOTO M_n

falls $A_i = IF x_i = c$ THEN GOTO M_n

falls $A_i = HALT$

- wobei IF-THEN-ELSE durch LOOP darstellbar ist
- es entsteht nur eine einzige WHILE-Schleife!

PRIMITIV REKURSIVE FUNKTIONEN

- Berechenbarkeitsmodell, entstanden parallel zu Turing
- es werden wenige Grundfunktionen definiert, aus denen neue Funktionen erstellt werden können

Primitive Rekursion Definition

45

- Die folgenden Basisfunktionen sind primitiv rekursiv:
 - alle konstanten Funktionen

$$f: \mathbb{N}_0^n \to \mathbb{N}_0, f(\mathbf{x}) = c$$
 , $c \in \mathbb{N}_0$, $\forall \mathbf{x} \in \mathbb{N}_0^n$

Projektion

$$p_i^n : \mathbb{N}_0^n \to \mathbb{N}_0, p_i^n(x_1, x_2, \dots, x_n) = x_i, \quad 1 \le i \le n$$

Nachfolgerfunktion

$$s: \mathbb{N}_0 \to \mathbb{N}_0, s(x) = x + 1$$

- Die wie folgt konstruierten Funktionen sind primitiv rekursiv:
 - **Funktionskomposition** (Einsetzung) seien $g: \mathbb{N}_0^n \to \mathbb{N}_0$ und $h_1, h_2, ..., h_n: \mathbb{N}_0^n \to \mathbb{N}_0$ primitiv rekursiv dann ist auch $f(x) = g(h_1(x), ..., h_n(x))$ primitiv rekursiv
 - primitive Rekursion

seien $g: \mathbb{N}_0^n \to \mathbb{N}_0$ und $h: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ primitiv rekursiv dann ist auch $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$ primitiv rekursiv mit $f(0, \mathbf{y}) = g(\mathbf{y})$, $\mathbf{y} \in \mathbb{N}_0^n$

$$f(0, \mathbf{y}) = g(\mathbf{y}), \qquad \mathbf{y} \in \mathbb{N}_0^n$$

$$f(x+1, \mathbf{y}) = h(x, \mathbf{y}, f(x, \mathbf{y})), \qquad x \in \mathbb{N}_0, \mathbf{y} \in \mathbb{N}_0^n$$

Primitive Rekursion Beispiele

Addition

```
add(0, y) = g(y) = p_1^1(y) = y

add(x + 1, y) = h(x, y, add(x, y))

= s(p_3^3(x, y, add(x, y)))

= add(x, y) + 1
```

Multiplikation

```
mult(0, y)
mult(x + 1, y)
```

```
= g(y) = 0

= h(x, y, mult(x, y))

= add(p_2^3(x, y, mult(x, y)), p_3^3(x, y, mult(x, y)))

= add(y, mult(x, y))
```

Primitive Rekursion

- alle primitiv rekursiven Funktionen sind
 - berechenbar
 - # total
- die Umkehrung gilt nicht
- die Klasse der primitiv rekursiven Funktionen stimmt genau mit der Klasse der LOOP-berechenbaren Funktionen überein
- Schlussfolgerung
 - jede Iteration lässt sich durch eine Rekursion darstellen
 - und umgekehrt

µ-REKURSIVE FUNKTIONEN

µ-Rekursion

49

- Erweiterung des Konzepts der primitiven Rekursion
- hinzunehmen des μ-Operators
- sei $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$ eine μ-rekursive Funktion, dann ist auch μ $f: \mathbb{N}_0^n \to \mathbb{N}_0$ μ-rekursiv mit

$$\mu f(x_1, \dots, x_n) = \begin{cases} \min M & \text{falls } M \neq \emptyset \\ \text{undefiniert} & \text{falls } M = \emptyset \end{cases}$$

mit

$$M = \{k \mid f(k, x_1, ..., x_n) = 0 \text{ und} f(l, x_1, ..., x_n) \text{ ist def. } \forall l < k\}$$

somit sind jetzt auch partielle Funktionen darstellbar

Ackermannfunktion

- totale berechenbare Funktion, die nicht primitiv rekursiv ist (und damit auch nicht LOOP-berechenbar)
- > entdeckt von Wilhelm Ackermann 1928
- einfachste bekannte Funktion, die schneller wächst als jede primitiv rekursive Funktion
 - also auch schneller als die Fakultät und jede Exponentialfunktion
- Definition

$$a(0, y) = y + 1$$

 $a(x + 1, 0) = a(x, 1)$
 $a(x + 1, y + 1) = a(x, a(x + 1, y))$


```
Berechnung von a(1, 2)
a(1, 2) = a(0, a(1, 1))
= a(0, a(0, a(1, 0)))
= a(0, a(0, a(0, 1)))
= a(0, a(0, 2))
= a(0, 3)
= 4
```

```
a(0, y) = y + 1

a(x + 1, 0) = a(x, 1)

a(x + 1, y + 1) = a(x, a(x + 1, y))
```

Wachstum von a(x, y)

```
a(1, 1) = 3

a(1, 2) = 4

a(2, 2) = 7

a(3, 3) = 61

a(4, 4) > 10^{10^{10^{2100}}}
```

Anzahl Atome im Universum: ca. 1080

- Eine Programmiersprache heißt Turing-vollständig, wenn damit alles berechenbar ist, was auch eine TM berechnen kann
- Turing-vollständig sind z.B.
 - WHILE, GOTO und μ-Rekursion
 - alle verbreiteten prozeduralen, objektorientierten oder funktionalen
 Programmiersprachen
- Nicht Turing-vollständig sind z.B.
 - LOOP und primitive Rekursion
 - reguläre Ausdrücke

BUSY BEAVER

Definition

- > **Tibor Radó** 1962
- wächst schneller als jede μ-rekursive Funktion
 - und damit schneller als jede berechenbare Funktion
 - ist also auch nicht durch WHILE-/GOTO-Programme oder TM darstellbar
 - daher nicht berechenbar es gibt keinen allgemeinen Algorithmus zur Lösung des Problems

Definition

bb(0) = 0

bb(n) = die maximale Anzahl von Strichen (Einsen), die eine Turing-Maschine mit n Zuständen (Anweisungen) und Alphabet {0, 1} auf ein leeres Band schreibt **und hält**

- 1. Liste alle Turing-Maschinen mit T = {0,1} mit n Anweisungen auf.
 - jede Anweisung besteht aus zwei Teilen: ergibt 2n Teilanweisungen
 - für jede gibt es zwei Möglichkeiten für das zu schreibende Zeichen
 - und zwei Möglichkeiten für den nächsten Schritt (L, R)
 - und n+1 mögliche Anweisungsnummern (einschließlich HALT) für den folgenden Schritt
 - Anzahl der Turing-Maschinen mit n Anweisungen: [4(n+1)]²ⁿ
 - Für n=5: ca. 6,3 · 10¹³ Möglichkeiten

- suche alle haltenden Turing-Maschinen aus, die auf ein mit Nullen vorbesetztes Band Einsen schreibt
 - solche gibt es für jedes n auf jeden Fall (wird hier nicht bewiesen)
 - das auftretende Halteproblem ist zwar ein Indiz f
 ür die Nichtberechenbarkeit von bb(n), aber als Beweis nicht ausreichend
 - es wird nicht vorausgesetzt, dass ein allgemeines Verfahren zur Lösung des Halteproblems existieren muss
 - das Problem ist sehr speziell
 - man könnte verschiedene angepasste Verfahren für jede zu prüfende TM entwickeln – die Anzahl ist für jedes n ja endlich
- 3. Prüfe für jede der so ausgewählten Turing-Maschinen, wie viele Striche sie auf das Band schreibt, bevor sie anhält. Die größte Anzahl geschriebener Striche ist bb(n).

- der Beweis, dass bb(n) tatsächlich nicht berechenbar ist, soll hier nicht geführt werden
- das bedeutet nicht, dass bb(n) nicht für einzelne Werte bestimmbar ist
- es existiert nur kein allgemeingültiger Algorithmus, der bb(n) für jedes beliebige n berechnen könnte

n	0	1	2	3	4	5	6	>6
bb(n)	0	1	4	6	13	≥ 4098	$\geq 3.5 \cdot 10^{18267}$?

- Berechenbarkeit
 - Es gibt einen Algorithmus zur Berechnung der Funktion
 - dieser stoppt nach endlich vielen Schritten
- Entscheidbarkeit
 - Berechenbarkeit der charakteristischen Funktion
- Problem unentscheidbar
 - es gibt keinen allgemeingültigen Algorithmus, der das Problem löst
 - es kann aber durchaus für manche Fälle oder auch mit speziell auf bestimmte Fälle angepassten Algorithmen Lösungen geben
- es existieren unendlich viel mehr nicht-berechenbare
 Funktionen als berechenbare

Quellen

Die Folien entstanden auf Basis folgender Literatur

- H. Ernst, J. Schmidt und G. Beneken: Grundkurs Informatik. Springer Vieweg, 6. Aufl., 2016.
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Hopcroft, J.E., Motwani, R. und Ullmann, J.D.: Einführung in die Automatentheorie, formalen Sprachen und Komplexitätstheorie.
 Pearson Studium (2002)