FIRST-ORDER LOGIC

CSE 511A: Introduction to Artificial Intelligence

1

OVERVIEW

Languages
(natural language + logical expressions)

Sentences entail Sentences

represents represents

Concepts entail Concepts

World

3

OVERVIEW

Facts	Sentences
All students in this class are studying Al	??
Michael is a student in this class	??
entail	
Michael is studying Al	??

4

OVERVIEW

Facts	Sentences
Student I is studying AI, Student 2 is studying AI, Student 3 is studying AI,	$SI \Rightarrow AI \land S2 \Rightarrow AI \land S3 \Rightarrow AI \land \dots$
Michael is Student 3	M = S3
entail	
Michael is studying Al	$M \Rightarrow Al$

OVERVIEW

- Ontological commitment: what exists facts? objects? time? belief?
- Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional Logic	facts	true/false/unknown
First-order Logic	facts, objects, relations	true/false/unknown
Temporal Logic	facts, objects, relations, times	true/false/unknown
Probability Logic	facts	degree of belief
Fuzzy Logic	facts, degrees of truth	known interval value

5

OVERVIEW

- Ontological commitment: what exists facts? objects? time? belief?
- Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional Logic	facts	true/false/unknown
First-order Logic	facts, objects, relations	true/false/unknown
Temporal Logic	facts, objects, relations, times	true/false/unknown
Probability Logic	facts	degree of belief
Fuzzy Logic	facts, degrees of truth	known interval value

7

6

SYNTAX

- Objects (constants in the world):
 - e.g., wheel, door, body, engine, baseball, football, green, blue, cyan, 0, 5, 1.2, minutes, centuries, Al, Amy, Bob, Charles, . . .

8

SYNTAX

- Objects (constants in the world):
 - e.g., wheel, door, body, engine, baseball, football, green, blue, cyan, 0, 5, 1.2, minutes, centuries, Al, Amy, Bob, Charles, ...
- Functions (returns an object):
 - e.g., ColorOf(car), FatherOf(Amy), AgeOf(Bob), ...

SYNTAX

- Objects (constants in the world):
 - e.g., wheel, door, body, engine, baseball, football, green, blue, cyan, 0, 5, 1.2, minutes, centuries, Al, Amy, Bob, Charles, ...
- Functions (returns an object):
 - e.g., ColorOf(car), FatherOf(Amy), AgeOf(Bob), ...
- Predicates (returns true/false):
 - Relations (predicates between multiple objects):
 - e.g., IsInside(Amy, car), IsMotherOf(Amy, Bob), ...
 - Properties (predicates of a single object):
 - e.g., IsBlue(car), IsOpen(door), IsOld(Bob), ...

9

SYNTAX

- "One plus two equals tree"
 - Objects: one, two, three, one plus two
 - Functions: plus
 - Relations: equals
 - Properties: N/A

10

SYNTAX

- "One plus two equals tree"
 - Objects: one, two, three, one plus two
 - Functions: plus
 - Relations: equals
 - Properties: N/A
- "All mailboxes are blue, except for the ones at WashU"
 - Objects: WashU, blue, mailbox 1, mailbox 2, ...
 - Functions: location of mailbox, color of mailbox
 - Relations: N/A
 - Properties: is blue

SYNTAX

- Objects (constants in the world)
- Functions (returns an object)
- Predicates (returns true/false)
 - Relations (predicates between multiple objects)
 - Properties (predicates of a single object)
- Connectives: ⇒, ⇔, ∧, ∨
- Quantifiers: ∀,∃
- Equality: =

SENTENCES

- Atomic sentences (sentences that return true/false):
 - predicate(term I, term 2, term 3, ...)
 - term I = term 2
 - term:
 - function(term I, term2, ...)
 - constant
 - variable
- Examples: SchoolOf(Alex), Colleague(TeacherOf(Alex), FatherOf(Bob))

13

SENTENCES

- Complex sentences (atomic sentences combined together using connectives and quantifiers):
 - sentence = atomic sentence
 sentence connective sentence
 quantifier variable: sentence
 ¬sentence
- Examples:

 - $\forall x$: $IsMailbox(x) \Rightarrow IsBlue(x)$

14

QUANTIFIERS

- · All mailboxes are blue
- ∀x: IsMailbox(x) ⇒ IsBlue(x), corresponds to
 (IsMailBox(object 1) ⇒ IsBlue(object 1)) ∧
 (IsMailBox(object 2) ⇒ IsBlue(object 2)) ∧ ...

QUANTIFIERS

- · All mailboxes are blue
- ∀x: IsMailbox(x) ⇒ IsBlue(x), corresponds to
 (IsMailBox(object 1) ⇒ IsBlue(object 1)) ∧
 (IsMailBox(object 2) ⇒ IsBlue(object 2)) ∧ ...
- Common mistake:
 ∀x: IsMailbox(x) ∧ IsBlue(x), which means?

QUANTIFIERS

- · All mailboxes are blue
- ∀x: IsMailbox(x) ⇒ IsBlue(x), corresponds to
 (IsMailBox(object 1) ⇒ IsBlue(object 1)) ∧
 (IsMailBox(object 2) ⇒ IsBlue(object 2)) ∧ ...
- · Common mistake:

∀x: IsMailbox(x) ∧ IsBlue(x), which corresponds
(IsMailBox(object 1) ∧ IsBlue(object 1)) ∧
(IsMailBox(object 2) ∧ IsBlue(object 2)) ∧ ...
which means that ALL objects are blue mailboxes.

17

QUANTIFIERS

- There exists a blue mailbox:
- ∃x: IsMailbox(x) ∧ IsBlue(x), which corresponds to (IsMailBox(object 1) ∧ IsBlue(object 1)) ∨
 (IsMailBox(object 2) ∧ IsBlue(object 2)) ∨ ...

QUANTIFIERS

18

- There exists a blue mailbox:
- ∃x: IsMailbox(x) ∧ IsBlue(x), which corresponds to (IsMailBox(object 1) ∧ IsBlue(object 1)) ∨ (IsMailBox(object 2) ∧ IsBlue(object 2)) ∨ ...
- Common mistake:
 ∃x: IsMailbox(x) ⇒ IsBlue(x), which means?

19 20

QUANTIFIERS

- There exists a blue mailbox:
- ∃x: IsMailbox(x) ∧ IsBlue(x), which corresponds to (IsMailBox(object 1) ∧ IsBlue(object 1)) ∨ (IsMailBox(object 2) ∧ IsBlue(object 2)) ∨ ...
- Common mistake:

 $\exists x: IsMailbox(x) \Rightarrow IsBlue(x), which corresponds$

(IsMailBox(object I) ⇒ IsBlue(object I)) ∨

(IsMailBox(object 2) ⇒ IsBlue(object 2)) ∨ ...

which means can be true if there exists an object that isn't a mailbox

QUANTIFIERS

- Relationships between quantifiers: ∀,∃
- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x?$
- $\exists x \exists y \text{ is the same as } \exists y \exists x?$
- ∀x ∃y is the same as ∃y ∀x?

21 22

QUANTIFIERS

- Relationships between quantifiers: ∀,∃
- ∀x ∀y is the same as ∀y ∀x? YES
- $\exists x \exists y \text{ is the same as } \exists x ? YES$
- ∀x ∃y is the same as ∃y ∀x? NO
 - ∀x ∃y: Loves (x,y) means "everyone loves someone in the world"
 - $\exists y \ \forall x$: Loves (x,y) means "someone is loved by everyone in the world"

QUANTIFIERS

- Relationships between quantifiers: ∀,∃
- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x? \ YES$
- 3x 3y is the same as 3y 3x? YES
- ∀x ∃y is the same as ∃y ∀x? NO
 - ∀x ∃y: Loves (x,y) means "everyone loves someone in the world"
 - ∃y ∀x: Loves (x,y) means "someone is loved by everyone in the world"
 - $\forall x$: Likes(x, IceCream) is the same as $\neg \exists x$: $\neg Likes(x, IceCream)$?
 - ∃x: Likes(x, Broccoli) is the same as ¬∀x: ¬Likes(x, Broccoli)?

QUANTIFIERS

- Relationships between quantifiers: ∀,∃
- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x? YES$
- $\exists x \exists y \text{ is the same as } \exists y \exists x? YES$
- ∀x ∃y is the same as ∃y ∀x? NO
 - ∀x ∃y: Loves (x,y) means "everyone loves someone in the world"
 - ∃y ∀x: Loves (x,y) means "someone is loved by everyone in the world"
- Quantifier duality:
 - ∀x: Likes(x, IceCream) is the same as ¬∃x: ¬Likes(x, IceCream)? YES
 - ∃x: Likes(x, Broccoli) is the same as ¬∀x: ¬Likes(x, Broccoli)? YES