

Predictive Model Selection for Tracheostomy or Death in Neonates with Severe Bronchopulmonary Dysplasia (sBPD)

Angel(Anqi) Zheng¹

¹Brown University School of Public Health, RI

Overview

Infants with sBPD often undergo tracheostomy to facilitate their living after discharge. This project performs model and variable selection to develop a predictive model using hospital data including: data at birth-level, at 36 & 44 weeks postmenstrual age, and at discharge.

Background

- Severe Bronchopulmonary Dysplasia (sBPD) impacts over 10,000 infants annually
- Due to **premature**, their **lung** is under-developed structurally then lead to dependence for ventilator support
- ~75% of infants with sBPD discharged from hospital with tracheostomy, a surgical procedure that creates opening on neck to allow airway
- This procedure has risks of **death** and **infection**
- Therefore a predictive model that determines **who** of the patients actually need tracheostomy and **when** to give tracheostomy is crucial
- what model fits? What variables matter?

Study Population

- United States and Sweden
- BPD Collaborative Registry: multi-center consortium, contains patients data across different medical centers
- 994 patients from 9 medical centers
- Dependent on ventilator at 36 weeks corrected PMA

About the Variables

Some centers have patients that are more severe ventilation support and medication status.

Birth Variables	Discharge Variables
• weight	• outcome
• gestational age	tracheostomy
length and head circumference	death
delivery method	gestational age
• gender	
maternal race	
• prenatal steroids	
chorioamnionitis	

at 36 weeks PMA	at 44 weeks PMA		
• weight			
 ventilation support level 			
• fraction of inspired oxygen (FiO2)			
 peak inspiratory pressure 			
• positive and exploratory pressure	(PEEP)		

Methods (Model Selection)

Multiple Imputation:

fill in values for the missing entries based on algorithm

→ a completed dataset

• Cross Validation:

iteratively partitioning the dataset to test for model performance

→ robust model performance evaluation

medication for pulmonary hypertension (PH)

• Each **model selection methods** is combined with multiple imputation and cross validation

Best Subset

Forward Selection

→ a model that minimizes the method-specific test error

Result Model

Variable	Coefficient	Variable (Cont)	Coefficient (Cont)
intercept	-5.202	weight (36wk)	3 × 10-4
birth length	0.047	non-invasive VS (36wk)	-0.177
birth head circumference	0.010	invasive VS (36wk)	1.788
cesarean delivery	0.652	FiO2 (36wk)	1.508
prenatal corticosteroids	0.342	weight (44wk)	5.8 × 10-4
complete prenatal steroids	0.428	non-invasive VS (44wk)	-0.391
male	0.063	invasive VS (44wk)	0.905
surfactant in 72hrs	0.039	FiO2 (44wk)	0.064
non-invasive VS * medication for PH	0.623	PEEP (44wk)	0.170
invasive VS * medication for PH	-1.141	medication for PH (44wk)	0.800
FiO2 * medication for PH	2.286	1.00	
Jpon comparison of the three		0.75 Lopution	

Conclusion

yields best predictive model:

model selection methods, LASSO

- LASSO is a better model selection method than Best Subset and Forward, in this setting
- the final predictive model involves data across timepoints and interactions at 44 weeks
- some variables were excluded by the LASSO model selection process
- calibration plot above shows that the result model is relatively accurate
- coefficients for weights are small, might not be an important predictor
- more predictors are from **44 weeks** PMA, might be a more important timing than birth and 33 weeks
- with this model, hospitals can predict whether the patient needs tracheostomy based on their respiratory and birth variables to avoid unnecessary surgical risks