

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-233401

(43) Date of publication of application: 05.09.1995

(51) Int. CI.

B22F 1/00

B22F 9/08

C22C 33/02

(21) Application number: 06-208949

(71) Applicant: KAWASAKI STEEL CORP

(22) Date of filing:

01. 09. 1994

(72) Inventor:

UENOSONO SATOSHI ISHIKAWA HIROYUKI

OGURA KUNIAKI

(30) Priority

Priority number 05217368 Priority date 01.09.1993 05217369 Priority country 01.09.1993: 05223765 JP 09. 09. 1993 05337325 JP 28. 12. 1993 JP

(54) ATOMIZED STEEL POWDER EXCELLENT IN MACHINABILITY AND DIMENSIONAL PRECISION AND SINTERED STEEL (57) Abstract:

PURPOSE: To produce atomized steel powder capable of obtaining a sintered steel small in the dispersion of dimensional variation and excellent in machinability after sintering by forming a specified compsn. in which S, Cr and Mn are compositely added and the content of 0 is controlled.

CONSTITUTION: This atomized steel powder contains, by weight, 0.005 to 0.3% S, 0.03 to <0.1% Cr, 0.03 to 0.5% Mn and 0.3% O, and the balance Fe (compsn. 1). This compsn. may moreover be incorporated with one or more kinds among ≤4.0% Ni, \leq 4.0% Mo, \leq 0.05% Nb, \leq 0.5% V, \leq 0.1% Si and \leq 0.1% Al (compsn. 2). The compsn. 1 or 2 may be formed into alloy powder by mixing one or more kinds among ≤5.0% Ni source, ≤3.0% Mo source and ≤5.0% Cu source thereto, executing heat treatment and diffusedly sticking the same thereto. Moreover, the same powder may be added with 0.4 to 1.5% graphite and be subjected to compacting and sintering. By using this steel powder, the sintered steel having a structure in which graphite is precipitated into pores of the sintered steel by $\geq\!0.05\%$ and MnS having $\leq\!5\,\mu$ m grain size is present in the grains of iron and on the grain boundaries can be

obtd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-233401

(43)公開日 平成7年(1995)9月5日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
B 2 2 F 1/00	S			
	F			
9/08	Α			
C 2 2 C 33/02	103 A			
			審査請求	未請求 請求項の数6 OL (全 13 頁)
(21)出願番号	特顧平6-208949		(71)出願人	000001258
	TURNET O LOCUITO		(11/11/11/1947)	川崎製鉄株式会社
(22)出顧日	平成6年(1994)9月	18		兵庫県神戸市中央区北本町通1丁目1番28
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		号
(31)優先権主張番号	特顧平5-217368		(72)発明者	上ノ薗聡
(32)優先日	平5 (1993) 9月1日			千葉県千葉市中央区川崎町1番地 川崎製
(33)優先権主張国	日本 (JP)			鉄株式会社ハイテク研究所内
(31)優先権主張番号	特願平5-217369		(72)発明者	石川 博之
(32)優先日	平5 (1993) 9月1日	I		千葉県千葉市中央区川崎町1番地 川崎製
(33)優先権主張国	日本 (JP)			鉄株式会社ハイテク研究所内
(31)優先権主張番号	特顧平5-223765		(74)代理人	弁理士 小林 英一
(32)優先日	平5 (1993) 9月9日	1		
(33)優先権主張国	日本(JP)			
				最終頁に続く

(54) 【発明の名称】 切削性および寸法精度に優れたアトマイズ鋼粉および焼結鋼

(57)【要約】

【目的】 切削性、寸法精度に優れたアトマイズ鋼粉および焼結鋼を提供する。

【構成】 S、CrさらにMnなどを適量添加した溶鋼の水噴霧によって製造したアトマイズ鋼粉であり、またその鋼粉に黒鉛、銅粉などを混ぜて焼成し、S量、Cr量、Cu量、C量などが適量存在し、かつ気孔に黒鉛が析出した構造を有する切削性、寸法精度に優れたアトマイズ鋼粉と焼結鋼。

【特許請求の範囲】

【請求項1】 S:0.005 ~0.3 wt%、Cr:0.03~0.1 wt%未満、Mn:0.03~0.5 wt%およびO:0.3 wt%以下 で、残部がFeと不可避的不純物であることを特徴とする 切削性および寸法精度に優れたアトマイズ解粉。

【請求項2】 請求項1記載の組成に加え、さらにNi: 4.0 wt%以下、Mo:4.0 wt%以下、Nb:0.05wt%以下、 V:0.5 wt%以下、Si:0.1 wt%以下およびAl:0.1 wt %以下の群から選ばれた1種以上を含むことを特徴とす る切削性および寸法精度に優れたアトマイズ鋼粉。

請求項1記載のアトマイズ鋼粉に、Ni 【請求項3】 源:5.0 wt%以下、Mo源:3.0 wt%以下およびCu源:5. 0 wt%以下の群から選ばれた1種以上を混合し、熱処理 して拡散付着させたことを特徴とする切削性および寸法 精度に優れた合金鋼粉。

請求項2記載のアトマイズ鋼粉に、Ni 【請求項4】 源:5.0 wt%以下、Mo源:3.0 wt%以下およびCu源:5. 0 wt %以下の群から選ばれた 1 種以上を混合し、熱処理 して拡散付着させたことを特徴とする切削性および寸法 精度に優れた合金鋼粉。

【請求項5】 請求項1、2、3または4記載の鋼粉 に、さらに黒鉛を0.4~1.5 wt%添加し、成形・焼結し たことを特徴とする切削性および寸法精度に優れた焼結 鋼。

【請求項6】 焼結鋼中の気孔に黒鉛が0.05wt%以上、 鉄粒子内および粒界に粒径5 μm 以下のMnS が存在する 組織を有することを特徴とする請求項5記載の切削性お よび寸法精度に優れた焼結鋼。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、粉末冶金用アトマイズ 鋼粉およびその焼結鋼に係わり、とくに焼結時に寸法変 化のばらつきが少なく、かつその焼結後の切削性が優れ た粉末冶金用アトマイズ鋼粉およびその焼結鋼に関す る。

[0002]

【従来の技術】粉末冶金用鉄粉は、Cu粉、黒鉛粉などを 添加混合し、金型中で圧縮成形して焼結することによ り、通常5.0 ~7.2 g/cm³ の密度を有する焼結機械部 品等の製造に用いられる。このような機械部品製造工程 *40* では、鉄粉そのものの製造工程、鉄粉に銅粉や黒鉛粉を 混合する工程や、運搬、輸送、成形、焼結などの長い工 程を経るため、結果として得られる焼結体の寸法がばら つきやすいという問題を有しており、このため、焼結後 にサイジングと呼ばれる寸法矯正を行う1工程を入れる ことが多い。

【0003】しかし、鉄粉にCu粉、黒鉛粉などを添加し て製造された焼結体はその強度が高く、寸法矯正のため のサイジングを行っても焼結体のスプリングバックのた めに十分に寸法矯正が果たせないという問題がある。ま 50 平4-72905 号公報には、Mm:0.1 ~0.9 %、Cr:0.1

たサイジング工程はもともとできるだけ工程を短縮する というコストおよびリードタイムの観点からは、省略で きることが望ましい。

【0004】このため、これまで寸法精度をサイジング によらずに確保するため、特公昭56-12304 号公報に開 示されているような、粉末の粒度構成を規定して寸法精 度を高める技術や、特開平3-142342号公報に開示され ているような粉末の形状から焼結時の寸法変化を予測し て制御する技術などが提案されている。一方、寸法変化 に対する鉄粉の組成の影響については、特公平3-2548 1 号公報に0.1 ~0.5 wt%(以下%と略す)のMnとSi、 Cなどを含み残部は鉄である純鉄粉にSを0.03~0.07% 添加することによって焼結歪みを減少させ、サイジング 後の寸法不良率を少なくする技術が開示されている。

【0005】鉄粉中にSを添加することの効果について は、上述の特公平3-25481 号公報の焼結歪みについて の効果以外には、同公報を含めて焼結体の切削性の改良 を試みた提案が殆どであり、この他、特公昭54-457 号 公報、特公昭47-39832 号公報、特公昭56-45964 号公 報、特公昭61-253301号公報などにSを鉄粉中に添加す ることにより切削性の改善を試みた例はあるが、寸法変 化の安定性の改善について提案された技術はない。

【0006】以上のことから、本発明者らは、寸法変化 の安定性を実際の操業面から捉えることにした。すなわ ち、鉄粉にCu粉、黒鉛粉、潤滑剤などを添加し、均一化 のために混合した後、容器入替えのための移送操作、あ るいは輸送、成形装置系への供給などのハンドリングの 際に、添加したCu粉や黒鉛粉が偏析によりばらつきやす く、これに起因して焼結時の寸法変化が大きく変動する という問題点があった。また、焼結時間、焼結温度など の焼結条件の変動によっても寸法変化は大きく左右され ていた。このような実操業において避けがたい変動因子 によって寸法変化がばらつくという問題点の解決方法に ついては、上記特公平3-25481 号公報も含め、過去に 開示された技術はない。

【0007】前述のとおり、寸法精度の厳しい粉末冶金 製品は、寸法矯正のため焼結後に切削加工されるが、粉 末冶金製品は一般に被削性が劣り、溶製材製品に比べる とこれを加工する工具の寿命が短いという問題点を有し ており、そのため機械加工のコストが高価になる欠点を 有している。粉末冶金製品における被削性の劣化は、粉 末冶金製品に含まれる気孔による断続切削あるいは熱伝 導率の低下による切削温度の上昇に起因すると言われて いる。

【0008】被削性の改善を行うためには、SやMuS な どの快削成分を鉄粉に混合することが多い。これは、S やMnS の切り屑の破断を容易にする効果、あるいは工具 にSやMnS の薄い構成刃先を形成し工具すくい面での潤 滑作用、により切削性を向上するためである。また特公 ~1.2 %、Mo: 0.1 ~1.0 %、Cu: 0.1 ~2.0 %および Ni: 0.1 ~2.0 %の金属のうちの2種以上およびNb、A l、Vのうちの1種以上およびSを含有し、かつC、Si を含有する快削性焼結鍛造部品が開示されている。

【0009】この焼結鍛造部品はほぼ真密度に達しているため気孔がほとんどなく、気孔による熱伝導率の低下や断続切削による切削性の劣化は少ないと考えられるが、密度が5.0~7.2 g/cm³の気孔を含む一般の焼結部品については言及されていない。Sを含む粉末冶金用鉄粉に関する従来技術としては、特公平3-25481号公和において若干のMn(0.1~0.5%)とSi、Cなどを含み残部は鉄である純鉄粉の成分配合に、さらにSを0.03~0.07%溶湯中に添加し、水または気体で噴霧して製造された粉末冶金用粉末が開示されている。しかしながらCrとSを同時に溶湯中に添加して噴霧された粉末冶金用粉末はまだ提案されていない。

[0010]

【発明が解決しようとする課題】本発明の目的は、このような従来技術の欠点に鑑み、圧縮性を損なわず焼結時の寸法変化が少なく、このためサイジング工程を省略でき、とくに添加黒鉛量のばらつきに対して焼結時の寸法変化の変動が小さく、かつ、焼結時間のばらつきに対しても焼結時の寸法変化の変動が小さく、その焼結網の被削性に優れる粉末冶金用アトマイズ網粉、およびその焼結網を提供することである。

[0011]

【課題を解決するための手段】本発明者らは、上述の目的を達成するために、焼結時の寸法変化の変動に対する添加元素の影響を広範に研究した結果、SとCrおよびMnを複合添加し、O量を制御することにより寸法変化の変 30動を著しく低減し、かつ切削性に優れたアトマイズ鋼粉および焼結鋼を見い出した。

【0012】さらに本発明者らは、Cr、S、Mnを適量添加した溶鋼の水質霧による粉末冶金用鉄粉を作製し、この鉄粉を用いて得られた切削性のよい焼結体組織を詳細に観察した。そしてこのCrと遊離S(X線マイクロアナライザーで観察した場合、Sのみが検出されるような存在の形態)からなる組成の焼結体組織には、焼結中に拡散を抑制されたCが粒界、気孔に残留黒鉛として析出し、同時に粒径5μm以下の微細なMnSを析出し、この40残留黒鉛とMnSが複合的に作用し加工時の工具すくい面での潤滑剤として作用し、大幅に工具寿命が延長することを確認した。

【0013】本発明者は、以上の知見にもとづき、焼結時の寸法変化の変動が小さく、同時にこれまで提案されてきた被削性向上機構とは異なる新規な被削性向上機構を有し、かつ圧縮性にすぐれた粉末冶金用鋼粉およびその焼結鋼を提案する。本発明は、S:0.005~0.3 wt%、Cr:0.03~0.1 wt%未満、Mn:0.03~0.5 wt%およびの:0.3 wt%以下で、残部がFeと不可避的不純物であ

4 ることを特徴とする切削性および寸法精度に優れたアト マイズ鋼粉であり、さらにNi : 4.0 wt%以下、Mo : 4.0 wt%以下、Nb:0.05wt%以下、V:0.5 wt%以下、Si: 0.1 wt %以下およびAl: 0.1 wt %以下の群から選ばれた **1種以上を含ませたアトマイズ鋼粉である。また、これ** らアトマイズ鋼粉にNi源:5.0 wt%以下、Mo源:3.0 wt %以下およびCu源: 5.0 wt%以下の群から選ばれた1種 以上を混合し、熱処理して拡散付着させたことを特徴と する切削性および寸法精度に優れた合金鋼粉である。こ れら合金鋼粉は、S:0.005 ~0.3 wt%、Cr:0.03~0. 1 wt %未満、Mn: 0.03~0.5 wt %およびO: 0.3 wt %以 下で、かつNi:5.0 wt %以下、Mo:3.0 wt %以下および Cu: 5.0 vt%以下の群から選ばれた1種以上、残部がFe と不可避的不純物とからなる組成であり、また、S:0. 005 ~0.3 wt%、Cr:0.03~0.1 wt%未満、Mn:0.03~ 0.5 wt%およびO:0.3 wt%以下で、かつNi:9.0 wt% 以下、Mo: 7.0 wt%以下、Cu: 5.0 wt%以下、Nb: 0.05 wt%以下、V:0.5 wt%以下、Si:0.1 wt%以下および Al: 0.1 wt %以下の群から選ばれた1種以上、残部がFe と不可避的不純物とからなる組成である。なお、Ni源と してはNi粉、Mo源としてはMo粉、MoOs粉、Cu源としては

【0014】さらに本発明は、これらの鋼粉に黒鉛を $0.4\sim1.5$ %添加し、成形・焼結したことを特徴とする切削性・寸法精度に優れた焼結鋼であり、必要に応じてCu量 $0.5\sim4.0$ %混合してもよく、また焼結鋼中の気孔に黒鉛が0.05%以上析出した組織を、また鉄粒子内および粒界に粒径 $5~\mu$ m 以下のMnS が存在する組織を有するものである。

0 [0015]

Cu粉が使用できる。

【作用】アトマイズ鋼粉にCrとSを含有させることによ って、①焼結時の寸法変化が安定する、②黒鉛が焼結鋼 の気孔および粒界に残留または析出して切削性を向上さ せることできる、という二つの効果が得られる。まず、 寸法変化の安定化効果については、本発明者らが種々行 った実験結果を考察すると、Crと遊離Sの存在による作 用には次の二つが考えられる。まず第一の作用として、 鉄粉中にCrと遊離Sが共存すると、焼結の際に添加する 黒鉛からのCの鉄粉粒子中への拡散が抑えられるため、 添加黒鉛量が変化しても鉄粉中へ侵入拡散するC量は一 定に保たれる。焼結中の寸法変化を決定する因子とし て、焼結中のγ粒子へのCの拡散に伴うC膨張と、Fe-Cu-C系においてはCuの鉄粒子間への浸透の程度(いわ) ゆるCu膨張)が、ィ粒子のC固溶量に依存することが重 要である。したがって、本発明粉の焼結においてはFe-C系ではC膨張が、Fe-Cu-C系ではCu膨張量とC膨張 量とも、添加黒鉛量のばらつきに対して小さくすること ができる。第二の作用として、鉄粉中にCrと遊離Sが存 在すると、焼結時に焼結時間が変動しても寸法の変動が 50 抑制されることがわかったが、これは鉄粉中からの脱炭

に伴う収縮が抑制されるためと考えられる。

【0016】これらの作用によって焼結の際の寸法変化 の変動が抑制されるわけであるが、これは実施例の項で 述べるようにCrと遊離Sが共存して始めて発揮される。 どちらか単独の元素のみが本発明の組成範囲を満たして も十分な効果は得られない。このように、Crと遊離Sは いかなる原理により上記の二つの効果を発揮するのか詳 細は不明であるが、個々の元素のみではこの効果を発揮 しないことから、相互に影響し合っているものと考えら れる。

【0017】次に切削性改善効果について説明する。Mn S とともに気孔に黒鉛が析出した構造を有する焼結鋼に おいて、気孔に析出した黒鉛が加工時の工具すくい面上 での潤滑剤としての作用、および断続切削の抑制によっ て大幅に切削性が向上する。このような切削性向上機構 は従来提案されたMnS などを用いたものとは全く異なる 新規なものであり、MnS が単独に存在する場合に比べ て、切削性は顕著に改善される。

【0018】本発明者らは、このような前提の基に、切 削性に優れた鋼粉を開発するために、Crを0.03%以上含 20 有させたCr、Mn、S含有アトマイズ鋼粉およびその焼結 鋼に着目し、鋭意検討を加えた。その結果、Mnを0.03% 以上0.5 %以下とすると、CrがMn、Sと共存することに より、黒鉛が気孔に0.05%以上残留し、その大きさが平 均10μm 以上となることを発見した。そして気孔に残留 する黒鉛の平均の大きさが10μm 以上で、その量が0.05 %以上を超え、同時に粒径 5 μm 以下のMnS が鉄粒子内 および粒界に析出していると切削性が飛躍的に増加する ことを見い出した。

【0019】従来、溶製材の分野では切削性を向上させ 30 るためには、MuS などの快削性の介在物を大きくするこ とが必要であることが良く知られている。しかし、粉末 冶金の従来技術では、析出するMnS は5 μm 以下、平均 1μα 程度と小さく、切削性を格段に向上させるのは難 しかった。また、添加した黒鉛は焼結中に完全に鉄粒子 中に拡散してしまい、焼結体の気孔にはほとんど残らな かプ

【0020】本発明における主たる快削性を担う介在物 は残留黒鉛とMnS であり、特に残留黒鉛の寄与が大き い。本発明による残留黒鉛の大きさは平均10μm 以上で 40 あり、MnS の大きさの10倍以上である。そのような残留 黒鉛を0.05%以上含有するときは切削性向上に非常に有 効である。しかしながらMaS がほとんど析出しない、た とえばMnO.03%未満では切削性の向上は比較的小さく、 MnS と0.05%以上の残留黒鉛の相乗効果により切削性に 優れる焼結鋼が得られることが分かった。

【0021】これらの成分の鋼粉を得るには、還元鉄粉 では成分組成を変更してCrおよびSを高めることは困難 である。またアトマイズ粉の場合も、単に純鉄溶鋼にS を添加するだけでは得られない。すなわち、転炉または *50* 【0025】Crは、Sとの相乗作用によりCの*ャ*粒内へ

電気炉などで脱硫反応を制御し、あるいは積極的に添加 してS量を目標に適合させ、さらに精錬終了後取鍋など でCrを添加し(添加しなければ通常0.01%以下)、水ア トマイズ法などにより、噴霧して鋼粉を得、さらに乾 燥、あるいは還元焼鈍などの後工程で酸素量を制御する ことによって始めて達成される。

6

【0022】焼結体中の気孔に黒鉛が存在する構造を有 する焼結鋼を製造するには、S量が0.005 ~0.3 %、Cr 量が0.03~0.1 %未満、〇量が0.3 %以下、Mn量が0.03 10 ~0.5 %、残部がFeと不可避的不純物であることを特徴 とした水アトマイズ法により製造された粉末に黒鉛粉、 銅粉、ステアリン酸亜鉛を混ぜ、通常の粉末冶金で用い られる成形装置にて成形を行い、窒素雰囲気で焼結を行 えば容易に得られる。かくして得られた焼結鋼は成分が S量0.005 ~0.3 %、Cr量0.03~0.1 %未満、Mπ量0.03 ~0.5 %、C量0.4 ~1.5 %、残部Feと不可避的不純物 からなり、気孔に残留黒鉛とMnS が存在する構造を有 し、切削性・寸法精度の優れる焼結鋼となる。また本発 明の鋼粉に、潤滑剤としてステアリン酸亜鉛1%を添加 して成形圧力 5 t/cm² で成形すると6.85g/cm³ 以上の圧 粉密度が得られる。

【0023】本発明で提案する気孔に黒鉛が析出した焼 結鋼は、焼結中のCrとSとの相乗作用により、焼結中に 黒鉛のγ粒内への拡散が一部抑制され、焼結後気孔に黒 鉛が残留することによって得られる。このようにCrとS との相乗作用により気孔に黒鉛が残留する特異なフェラ イトーパーライト組織が得られることが分かる。また上 述のアトマイズ鋼粉に、さらにNi、Mo、Nb、Vなどの元 素を適量添加すれば、これらの元素の強化作用により、 高強度でしかも寸法精度および切削性に優れたアトマイ ズ鋼粉と焼結鋼を得ることができる。切削性の一層の向 上にはAl、Siなどの添加も有効である。また上述の鋼粉 の表面にNi、Mo、Cuなどの元素を混合し、熱処理して拡 散付着させておけば、圧縮成形も容易で、焼結により一 層高強度でしかも寸法精度と切削性に優れた焼結鋼を得 ることができる。

【0024】以下に成分の限定理由について述べる。S は、CrとSの相乗作用によりCのア粒内への拡散を抑制 し、焼結後気孔に黒鉛が残留する焼結鋼組織を形成させ るために含有させる。S畳を0.005 %以上に限定した理 由は、0.005 %未満ではCが鉄粉粒子内に全て拡散して しまい、粒界気孔に黒鉛の析出量が少なく、上述の潤滑 作用が得られないので切削性が悪く寸法精度も悪くなる ためである。0.3 %以下に限定した理由は、0.3 %を超 えて添加された場合、圧縮性が低下し、Cの鉄粉粒子内 への拡散量が少なくなり、フェライト単相が増加し、強 度が低下するためである。S量を0.05~0.15%とすれ ば、さらに焼結時の寸法変化が安定し、優れた切削性が 得られる。

の拡散を抑制し、焼結後気孔に黒鉛が残留する焼結鋼組織を形成するために含有される。Cr含有量を0.03%以上0.1%未満に限定した理由は、Cr含有量が0.03%未満では同様に上述の被削性向上効果がなくなり、寸法精度も劣るためであり、一方、0.1%以上では圧縮性、寸法精度が低下するためである。Cr量のより好ましい範囲は、0.06~0.09%である。この範囲で、さらに焼結時の寸法変化が安定し、優れた切削性が得られる。

【0026】〇量を0.3%以下に限定した理由は、0.3%を超えると圧縮性が低下し、強度が劣化するためである。Mnは、MnSのMn源として添加する。Mn量を0.03~0.5%に限定した理由は0.03%未満ではMnSの析出が少なく、切削性の顕著な増加が認められないからである。また0.5%を超えると圧縮性が悪くなるからである。なお、Mn量のより好ましい範囲は0.05~0.15%であり、この範囲でより優れた切削性が得られる。

【0027】黒鉛:0.4~1.5%

黒鉛は、通常の目的である鋼中に固溶させて所望の強度を得るためと、本発明においては気孔に残留する黒鉛源とするため添加する。添加する黒鉛量を $0.4 \sim 1.5 \%$ としたのは、0.4 %未満では強度が低くなり、<math>1.5 %を超えると初析セメンタイトが析出して切削性が低下する。そこで、好ましくは $0.6 \sim 1.2 \%$ とする。この範囲の中で更に特にCr、Mn、Sが好適な範囲であれば、焼結鋼中の黒鉛の大きさが平均 $10 \mu m$ 以上となり、切削性が向上する。

【0028】すなわち本発明鋼粉を通常のFe-C系、Fe-Cu-C系で焼結すれば、MnS と気孔部に存在する残留 黒鉛を含有した切削性に優れた焼結鋼が得られる。前記した特公平4-72905号公報の気孔をほとんど含まない 30 焼結鍛造鋼は、Sによって切削性を改善したものであり、本発明のMnS と気孔部に存在する残留黒鉛により、気孔を含有する焼結鋼の切削性を向上させる技術とは全く異なる。

【0029】また特公平4-72905 号公報の焼結鍛造鋼のC含有量は0.4%であるのに対し、本発明においては、残留黒鉛を生成させ、同時に基地に固溶する炭素を確保するため、添加する黒鉛量は0.4~1.5%と多くなっている。上述したように残留黒鉛やMnSの粒子の大きさは切削性に大きな効果を有している。本発明により得40られる鋼粉では残留黒鉛は0.05%以上で、その大きさは平均10μm以上であり、同時にMnSは1μm程度の大きさのために、切削性に優れている。

【0030】予合金として、SiとAIは、Cr、Sと同様に 浸炭を防止する効果があることと、溶鋼からMnS が析出 する際の析出サイトとなるSiO₂、Al₂O₃を析出させる効 果があるため添加する。Si、AlをO.1 %以下としたの は、0.1 %を超えるとSiO₂、Al₂O₃ が多くなりすぎ、切 削性が急激に低下する。またSi、Alの添加量が少ない場 合、その添加効果が小さいので、Si Alの添加量はそれ ぞれ0.01%から0.03%が好適である。

【0031】予合金成分として、Ni、Mo、Nb、Vは通常の合金鋼粉同様、焼入性を高め、または析出効果により所望の強度を得るために添加する。またNb、Vはその添加によりアトマイズ鋼粉が球形化しやすく、圧縮性が適量添加で向上するので圧縮性を高めるために添加する。Ni添加量を4%以下としたのは、それぞれ4%を超えると固溶硬化のため切削性が劣化するからである。各々0.1%以上2.0%以下添加することが好ましく、強度の向上と寸法精度の一層の向上が認められるからである。

8

【0032】Nb添加量は0.05%以下、Vは0.5%以下と する。それぞれ0.05%、0.5%を超えると、生成する炭 化物、あるいは析出強化のため切削性も圧縮性も低下す るためである。好ましい範囲は、それぞれ0.01%以上0. 03%以下、0.1 %以上0.4 %以下である。拡散合金成分 として、Ni、Mo、Cuは通常の合金鋼粉同様、所望の強度 を得るために使用する。Ni、Mo、Cuの添加量は、アトマ イズ鋼粉の予合金成分量との関係も考慮に入れて、それ 20 ぞれ5%、3%、5%以下とする。それぞれ5%、3 %、5%を超えるとその固溶硬化のため切削性が低下す るためである。各々0.1 ~4.0 、0.1 ~2.0 、0.5 ~2. 0 %の範囲で拡散付着させることが好ましい。この理由 は各々0.1 、0.1 、0.5 %以上拡散付着させることによ り、強度の向上が認められるからである。また各々4、 2、2%以下拡散付着させることにより、理由は不明で あるが、寸法精度が一層向上するからである。

【0033】次に本発明による焼結鋼の組織について述べる。本発明によれば、焼結鋼の気孔に黒鉛が、また鉄粒子内あるいは粒界にMnS が折出した構造とすることにより、気孔に析出した黒鉛の切削加工時の工具すくい面上での潤滑剤としての作用、および断続切削の抑制のため大幅に切削性が向上する。このような切削性向上機構は従来提案されたMnS などを用いたものとは全く異なる新規なものである。

【0034】また粒径5μm以下のMnSをに微細に分散させることにより、微細なMnS粒子が焼結中にγ相の成長に対してピンニング効果を発揮し、焼結体組織が微細化するため、Sが含まれない場合に比べ焼結体強度の低下がほとんど認められない。このような気孔に析出させた黒鉛と微細なMnSとによる複合切削性向上機構と、微細なMnSを利用した強化機構とにより強度の劣化を補う本発明は、従来粉末冶金の分野で提案されたMnS粉末などを用いたものとは全く異なる新規な焼結鋼である。

[0035]

【実施例】次に本発明を実施例に基づいて詳細に説明す る。

は、0.1~%を超えると SiO_2 、 Al_2O_3 が多くなりすぎ、切 (実施例 1)請求項 1 についての発明例および比較例を削性が急激に低下する。またSi、Alの添加量が少ない場 以下に説明する。表 1 に発明例および比較例に用いたア合、その添加効果が小さいので、Si、Alの添加量はそれ 50 トマイズ鋼粉の化学組成を示した。これらの鋼粉は、溶

網を水噴霧して得た生粉を、窒素雰囲気中で 140℃で60 分乾燥した後、純水素雰囲気中で 930℃で20分還元した のち、粉砕分級して製造した。

[0036]

【表1】

N	7	* ት マ	イズ	網粉	化学	組成(v t 9	ລ	压板	密度
No.	C	r	M	a l		S	1	0 -	E	(cm _e)
発明例1	٥.	8 0	0.	18	۵.	0 9	0.	23	6.	91
発明例 2	0.	05	0.	20	٥.	1 2	٥.	26	6.	9 1
発明例3	D.	07	0.	1 5	0.	25	0.	26	6.	86
発明例4	٥.	09	0.	4 8	0.	1 2	0.	22	6.	86
発明例5	0.	07	0.	30	0.	8 0	0.	08	6.	9 2
発明例 6	0.	8 0	0.	25	0.	15	0.	15	6.	91
発明例7	0.	09	Q.	06	0.	0 8	0.	1 5	6.	9 0
発明何8	0.	07	0.	07	0.	15	٥.	2 6	6.	9 1
発明例9	0.	09	0.	15	0.	800	0.	15	6.	91
発明例10	0.	8.0	0.	0.8	0.	0 1	0.	23	6.	89
比較例1	0.	0 1	D.	1 5	0.	02	0.	25	6.	8 6
比较例2	0.	06	0.	14	0.	0 D 2	0.	2 1	6.	93
比較例3	0.	8 0	٥.	1 2	٥.	3 2	0.	24	6.	80
比較例4	0.	0 9	٥.	03	0.	0 9	0.	24	6.	91
比較例5	0.	8 0	0.	53	٥.	07	0.	26	6.	74
比較例6	D.	0 2	0.	13	۵.	8.0	٥.	26	6.	9 1
比較例7	٥.	32	D.	11	٥.	ם 9	٥.	22	6.	82
比較例8	٥.	8 0	0.	30	0.	10	٥.	3 5	6.	72

【0037】焼結時の寸法変化は、純鉄粉に黒鉛粉、銅粉を混ぜ、Fe-2.0%Cu-0.8%Gr (黒鉛)とFe-2.0%Cu-1.0%Grの2水準の黒鉛量について調べた。Fe-2.0%Cu-0.8%Grの焼結寸法(圧粉体基準)とFe-2.0%Cu-1.0%Grの焼結寸法(圧粉体基準)との差の比をばらつき幅(A)とした。このときの試料形状は、外径60㎜ゆ、内径25㎜ゆ、高さ10㎜のリング円柱形状で、圧粉密度6.85g/cm³とし、1130℃窒素雰囲気中で20分焼結した。また、Fe-2.0%Cu-0.8%Gr組成において、焼結時間を30分とした時の焼結寸法(圧粉体基準)を調べ、焼結時間20分の時の焼結寸法(圧粉体基準)との差の比をばらつき幅(B)とした。

【0038】圧縮性の評価は、各鋼粉にステアリン酸亜 鉛を1%添加し、成形圧力5 t/cm² で11 φ×10mmのタ ブレットを成形したときの成形密度により行った。切削性の評価は、外径60mmの、高さ10mmの円柱形状で、圧粉密度6.85g/cm³とし、1130℃窒素雰囲気中で20分焼結後、直径1mmののハイス製ドリルを用いて10000rpm、0.012mm/rev の条件で加工が不可能になるまでの加工した穴の平均数(ドリル3本の平均値)を工具寿命として評価した。

10

【0039】表2に、表1のアトマイズ鋼粉を成形・焼 結した焼結鋼の分析値および工具寿命、引張強さ、寸法 10 変化率の結果をまとめて示した。市販の純鉄粉の圧粉密 度は6.86g/cm³、をれを成形、焼結した焼結鋼の引張 強さ 42kgf/m²、工具寿命は30回であった。 S量が0. 005 ~0.3 %、Cr量が0.03~0.1 %未満、Mn量が0.03~ 0.5 %、〇量が0.3 %以下、残部Feと不可避的不純物で あることを特徴とした鋼粉から、S量が0.005 ~0.3 %、Cr量が0.03~0.1 %未満、Mn量が0.03~0.5%、C 量が0.4~1.5%、必要に応じCu量が0.5~4.0%、残 部Feと不可避的不純物であることを特徴とした焼結鋼を 作製すれば、市販の純鉄粉と比較して10倍以上の工具寿 20 命、引張強さ 47kgf/m² 以上を同時に満足することが わかる。また表2から明らかなようにCrが0.03~0.1 % 未満の好適範囲の鋼粉であれば、いずれもばらつき幅 (A) が0.1 %以下で、かつばらつき幅(B) が0.01% 以下の優れた寸法精度を示している。

【0040】また発明例7、8はCrが0.06~0.09%、Sが0.05~0.15%、Mnが0.05~0.15%の好適範囲であり、寸法安定性はばらつき幅(A)が0.05%以下、またばらつき幅(B)も0.005%以下を満足し極めて寸法安定性に優れ、工具寿命も600回を超える。比較例1は、通常の純鉄粉であるが、切削性が著しく劣り、また寸法安定性にも劣る。比較例2はS量が0.005%未満で切削性、寸法安定性が劣っている。比較例3はS量が0.3%を超えると圧縮性が低いことを示す。比較例4はMnが0.03%未満で切削性の顕著な向上が認められない。比較例5はMnが0.5%を超えると圧縮性が劣ることを示している。比較例6はCrが0.03%未満で切削性、寸法安定性が劣ることを示している。比較例7はCr量が0.1%以上では切削性が悪く、比較例8は鋼粉のO量が0.3%を超えると圧縮性が劣ることを示している。

40 [0041]

【表2】

No.	饶	結網	化学期	成 (*	rt96)	引張強さ	工具寿命	寸法変	化率(%)
NO.	Ст	Mn	S	Cu	С	(kgf/mm²)		じらつき語(A)	助づ相 (B)
発明例1	0. 08	0.17	0.07	1.92	0.64	47	630	0, 07	0, 005
発明例 2	0.05	0, 20	Q 11	1.95	0,62	5 0	61D	0. 05	0, 004
発明例3	0.07	0. 14	0. 24	1.94	0.65	4.7	6 2 D	0.06	8, 006
発明例4	0.09	0.47	0.11	1.95	0.64	5 3	315	0.06	0, 005
発明例 5	0.07	0.29	0.08	1.95	0.64	5 1	352	0.07	0,007
発明例 6	0.08	0.25	0. 14	1. 95	0.64	5 0	456	0. 08	0.007
発明例7	0,09	0.06	O. 07	1.95	0, 63	5 2	712	0. 0 5	0, 005
発明例8	0.07	0.07	D. 14	1.98	0.64	5 5	725	0, 04	0.004
発明例9	0,09	C. 15	0.007	1.96	0.65	5 2	315	0.08	0.007
発明例10	0.08	C. 08	0.008	1, 95	0.68	5 1	330	0, 09	0.008
比較例1	0.01	0. 13	0.02	1, 95	0.65	4 2	3 3	0.16	0.04
出域例2	0.05	0. 13	0.002	1. 94	0.64	5 3	3 0	0.1	0, 04
比較例3	0, 08	0.11	0. 31	1.95	0.64	3 6	360	0, 09	D. 009
比较例4	0,08	0,02	0.08	1.95	0.64	4 2	150	0.08	0. 008
比较例5	0.08	0.51	0.07	1. 98	0. 64	5 5	120	0, 07	0.009
比較到6	0,02	0.12	0.07	1.95	L 63	43	8 0	0, 13	0.03

出校列8 [0.08 | 0.29 | 0.08 | 1.94 | 0.62] [0.04 2] (実施例2)請求項2についての発明例および比較例である。表3に発明例および比較例に用いたアトマイズ鋼粉の化学組成を示す。これらの鋼粉は、溶鋼を水噴霧して得た生粉を窒素雰囲気中で140℃で60分**

比较例? 0.22 0.10

0.08

1.95 1.64

*乾燥した後、純水素雰囲気中で 930℃で20分還元したの ち、粉砕分級して製造した。

0.008

0.006

12

[0043]

40

351

0, 15

0.07

【表3】

50

50

表3-1

No.		_	アトマ	ィイス	練粉	化学	組成	(wt9	6 0		压粉密度	工具	寸法変	化率 (%)
140.	S	Ст	0	Mn	Ni	Мо	Nb	V	Si	A 1	(g/cm³)	寿命(国)	近の製造(人)	100分割(日)
発明例11	0.09	0.09	0.10	0.07	3.9						7. 03	355	0.07	0.007
発明例12	0.006	0, 06	0, 07	0.08		1.5					7. 17	210	0.09	0.007
発明例13	0.11	IT 03	0.12	0.2			0.05				7, 21	467	0, 07	0.007
発明例14	0, 29	0.07	0.18	0.4				0.06			7. 2	445	0, 06	0, 007
発明的15	0.07	0.06	C. 12	0.35					0.02		7. 18	454	0.06	0.007
発明例16	0. 12	0.09	0. 21	0. 12						0,08	7. 17	365	0.06	0.007
発明例17	0.12	0.07	0.13	0.07	0.5	0.3					7, 22	355	0.04	0.004
発明例18	0. 29	0.08	0.14	0. 22	3		0.003				7.1	30 0	D, C6	0.007
発明例19	0. 14	0.06	0. 15	0.13	2			0.3			7. 22	365	Q 04	0.005
発明例20	0. 07	0.05	0. 19	0. 14		0,5	0.005				7. 19	311	0.06	0, 005
発明例21	0.06	0.06	0. 25	0. 12		1.5		0.3			7, 23	461	D. 04	0.004

[0044]

【表4】

13

表3-2

31.0			ፖ ト	マ イ	ズ鋼	粉化	学組成	6	rt.96)		E的密度	工具	寸法変	化 率 (96)
No.	S	Ст	0	Mn	Ni	Mo	Nb	V	S i	A 1	(E/CH ²)	海	低の機の	55/25年 (3)
分别的22	0,09	0.09	0.22	O. D8		1	0,003	0.2			7. 18	411	C. 09	0.007
発列詞23	0. 16	0.06	0,08	0.25		15		0.06	0.05		7. 19	370	0,07	0, 008
是劳政24	0.22	0.06	0.09	0.09	15	1	0.04			· · · · -	7.2	365	0.07	0.006
光明时25	0.11	0.07	Q 15	0.06	0.5	0.3		0.1			7.23	335	0.05	0.004
元列列26	0.07	o or	Q 14	0.08	2	L 5			0.02	•	7.24	374	0.05	£ 004
発明的27	0.06	0.06	0.12	0.19	L 5	1	0.03	0.2		0.08	7. 18	440	0.06	L 007
出級到9	0,003	0.08	0 . 13	O 08		1					7.08	15	Q. 15	0.022
H100110	0.4	0, 08	0, 12	0.09	0.54						6.81	333	D. 08	IL 006
H-0000111	0.05	0.02	0.11	0. 15							7, 16	33	0.11	0.005
出致例12	0.22	0 .6	0. 14	0.11							6.88	40	0.3	0,009
H400113	0.08	0.06	0.15	0.01				_		0,008	7. 19	140	0.08	J. 008
出於例14	0.08	0.06	0.16	Q 55						0.008	6.88	160	0, 07	1,008
H#2015	0. 15	J 03	0. 21	0.11	4.2						6.75	35	0.08	0.007
11889116	O. 12	0.08	0. 15	0.08		4.2					6.77	51	0.07	0.006
HEEF117	07.08	0.06	Q. 18	0.09	15	1	0.11				6. 58	32	D. 0 6	0.007
比較別8	Q 14	a. 06	0.20	0. 45	2			0.6			6.95	3 D	0, 07	0.008
HEEFI19	0.07	0.07	0. 13	0.08	2	1.5			0.16		7. 16	25	0.05	0.006
出级 720	0.06	Ø 06	0.14	0.19	1.5	1	0.003	£ 2	•	0.14	7. 18	33	0.07	0.008

【0045】圧縮性の評価は、各鋼粉にステアリン酸1 %添加した組成 (Fe-1.0 %ZnSt) において、成形圧力 7 t / cm² で11φ×10mmのタブレットを成形したときの 成形密度により行った。切削性の評価は、表3に示す粉 末に黒鉛粉、ステアリン酸亜鉛を混ぜFe-0.9%Gr-1. 0 %2nStとし、圧粉密度7.00g/cm³ にて外径90mmの、 高さ10㎜の円柱形状とし、1130℃、窒素雰囲気中で20分 焼結して行った。焼結後、直径4㎜のハイス製ドリル を用いて10000rpm、0.012mm / rev の条件で加工が不可 30 能になるまでの加工した穴の平均数(ドリル3本の平均 値)を工具寿命として評価した。

【0046】焼結時の寸法変化率の評価は、実施例1に 準じて行った。表3に圧粉密度、工具寿命、寸法変化率 の結果をまとめて示した。請求項2の要件を満たすアト マイズ鋼粉をPe- 0.9%Gr-1.0 %ZnStの配合で1150 ℃、窒素雰囲気中で30分焼結すれば、工具寿命が 100回 以上で、かつばらつき幅 (A) が0.10%以下で、かつば らつき幅(B)が0.01%以下の良好な寸法精度を示して いる。

【0047】発明例17、19、21、25および26は、Crが0. 06~0.09%、Sが0.05~0.15%、Mnが0.05~0.15%であ り、さらにNiが2%以下、Moが2%以下、Siが0.01~0. 03%、Alか0.01~0.03%、Vか0.1 ~0.4 %、Nbか0.01 ~0.03%の1種または2種以上含有する好適範囲であ り、寸法安定性はばらつき幅(A)が0.05%以下、ばら つき幅(B) も0.05%以下を満足し、極めて寸法安定性 に優れ、工具寿命も 300回を超える。

【0048】比較例9は5量が0.005%未満では、切削

が0.3 %を超えると圧縮性が劣ることを示す。比較例11 はCr量が0.03%未満では切削性、寸法安定性とも劣るこ とを示す。比較例12はCr量が0.1 %以上では圧縮性、寸 法安定性が劣ることを示す。比較例13(AI含有)はMn量 が0.03%未満で切削性向上などの含有効果が認められ ず、比較例14はMn量が0.5%を超えて含有しているので 圧縮性が低下している。比較例15、16はNi量、Mo量がそ れぞれ4.0 %を超えると圧縮性が低下することを示す。 Ni、Mo量は好ましくは0.1 %以上添加すれば各元素を添 加しない場合に比べ強度が向上することを確認した。比 較例17と発明例13と比較すると、適量のNbの添加により 圧縮性が向上するが、0.05%を超えるとかえって切削性 と圧縮性が低下する。比較例18と発明例19と比較する と、適量のVの添加により圧縮性が向上するが、0.5 % を超えると切削性と圧縮性が低下する。比較例19と実施 例26と比較すると、適量のSiの添加により切削性が向上 するが、0.1 %を超えるとかえって圧縮性、切削性が低 下する。比較例20と実施例27と比較すると、適量のAlの 40 添加により切削性が向上するが、 0.1%を超えると切削 性が低下する。

【0049】(実施例3)請求項3のについての発明例 および比較例である。表4-1に発明例および比較例に 用いたアトマイズ鋼粉(元粉)の化学組成と拡散付着量 を示す。これらの鋼粉は、溶鋼を水噴霧し得た生粉を窒 素雰囲気中で、 140℃で60分乾燥した後、純水素雰囲気 中で 930℃で20分還元したのち、粉砕分級して、まず S、Cr、Mn、Oと残部がFeと不可避的不純物からなる元 粉を製造した。ついでこの元粉にNi粉、MoOs粉、Cu粉を 性と寸法安定性が低下することを示す。比較例10は5量 50 V型混合機で所定量混粉した。この混合粉末をアンモニ

15

ア分解雰囲気ガス中、 900℃で30分加熱後徐冷し後、粉 * 【0050】 砕分級して表4-2に示す化学組成の粉末を得た。 * 【表5】

表4-1

	5	T 45)	(wt9	6)	初款	力着量((wt%)	田粉密度	王县	寸法変	化 丰 (%)
No.	S	Ст	0	Mn	Ni	Мo	Cu	(g/cm²)	安全	町X網(A)	参う2種 (B)
537797128	0.006	0, 06	0, 15	0.04	0, 05			7. 21	165	0.09	D. 008
発用例29	0. 08	0,06	0, 13	0, 08	2			7. 21	355	0.04	0.004
発明例30	0.29	0.07	0.11	0.30		0.02		7. 21	390	0.06	0.006
発明例31	O. 14	0.06	0.15	0.20		1.5		7. 22	290	0.07	0.007
発明例32	C. 02	0.05	0.21	0. 0 5			0.5	7. 21	331	0.08	0,006
発明例33	O. OB	0.06	0.28	0.35			2.5	7. 22	190	0, 06	0,006
発明例34	0.008	0.06	0.07	0. 48	1.5	2		7.22	185	0.09	0.009
発明例35	0.09	0.09	0. 21	0. 15	25		2	7, 21	395	0. 04	0.005
列 列例36	Q. 11	0.08	0.22	0, 08	4	Ω7	1.3	7. 21	350	0.04	0.004
比较到21	0.003	0.08	0, 15	0. 10	1.5			7. 22	31	0.15	0, 013
比较例22	0, 35	0.05	0.12	0.08	2	1		6. 85	250	0.06	0.007
比較例23	0. 08	0. 02	Q. 19	0, 14			0.5	7. 21	22	0.12	0, 015
比较例24	0, 07	0.52	0. 25	0.07	1	1		6. 92	30	0.30	0.009
比較例25	0.08	0.06	0.08	0.55		1	1	6. 88	151	0.07	0.007
比较例25	0.06	0.07	0. 21	0.11	5.5			7. 20	15	0.06	0.006
比較例27	0.22	0.08	0. 16	0. 08		3.5		7. 21	25	0.08	0.006
比較例28	0.08	0.09	Q , 15	0. 13			5.5	7. 21	26	0.07	0.008

【0051】 【表6】 表4-2

	4	金	綱粉	の粗	成	(%)	
No.	S	Сг	٥.	Мп	Ni	Мо	Сu
発明例28	0.006	0.06	0. 15	0.04	0.05		
発明例29	0. 08	0. 06	0. 13	0. 08	1.96		
発明例30	0. 29	0. 07	0. 11	0.30		0, 02	
発明例31	0. 14	0.06	0. 15	0. 20		1. 48	
発明例32	0. 02	0. 05	0. 21	0.05			0. 50
発明例33	0. 08	0. 06	0. 27	0.34			2. 44
発明例34	0.008	0.06	0. 07	0.46	1. 45	1, 93	
発明例35	0.09	0. 0 9	0. 20	0. 14	2, 39		1. 91
発明例36	0. 10	0. 08	0. 21	0. 08	3.77	0, 66	1. 23
比較例21	0.003	0. 08	0. 15	0. 10	1. 48		
比較例22	0. 34	0. 06	0. 12	0, 08	1. 94	0. 97	
上較例23	O. 08	0. 02	0. 19	0. 14			0, 50
比較例24	0. 07	0. 51	0. 25	0. 07	0. 98	0.98	
比較例25	0. 08	0. 0 6	0. 08	0. 54		0. 98	0. 98
比較例26	0. 06	0. 07	D. 20	0. 10	5. 21		
比較例27	0. 21	0. 08	0. 15	0. 08		3, 38	
上較例28	0. 08	0.09	0. 14	0. 12			5. 21

【0052】圧縮性および切削性の評価は、実施例2と 切削性が低下することを示す。Ni源量、Mo源量は好まし同様の方法で行った。焼結時の寸法変化も実施例2と同 50 くは 0.1%以上、Cu源量は好ましくは0.5 %以上添加す

様方法で評価した。表4-1に圧粉密度、工具寿命、寸法変化率の結果をまとめて示した。請求項3の要件をみたす合金鋼粉をFe-0.9 %Gr-1.0 %ZnStの配合で1150 ℃、窒素雰囲気中で30分焼結すれば、発明例では工具寿命が100回以上で、かつばらつき幅(A)が0.10%以下ので、かつばらつき幅(B)が0.01%以下の良好な寸法精度を示している。

【0053】発明例29、35、36はCr量が0.06~0.09%、 S量が0.05~0.15%、Mn量が0.05~0.15%の鋼粉にNi源 量4%以下、Mo源量2%以下、Cu源量2%以下の1種以 上を混合し、熱処理されて拡散付着された好適範囲の合 金鋼粉であり、寸法安定性はばらつき幅(A)が0.05% 以下、またばらつき幅(B)も0.005%以下を満足し、 極めて寸法安定性に優れ、工具寿命も300回を超える。

【0054】比較例21は、S量が0.005%未満で、切削性と寸法安定性が低下することを示す。比較例22は、S量が0.3%を超えると圧縮性が劣ることを示す。比較例23は、Cr量が0.03%未満で切削性、寸法安定性とも劣ることを示す。比較例24は、Cr量が0.1%以上では圧縮性、寸法安定性が劣ることを示す。比較例25はMn量が0.5%超では圧縮性が劣ることを示す。またMn量が0.03%未満では圧縮性、切削性、寸法精度に関してその効果が認められなかった。比較例26、27、28は、Ni源量、Mo源量、Cu源量がそれぞれ5.0、3.0、5.0%を超えると切削性が低下することを示す。Ni源量、Mo源量は好ましくは0.1%以上、Cu源量は好ましくは0.5%以上添加す

れば各元素を添加しない場合に比べ強度が向上することを確認した。

【0055】(実施例4)請求項4の発明例および比較例である。表5-1および表6-1に発明例および比較例に用いたアトマイズ鋼粉(元粉)の化学組成と拡散付着量を示す。これらの鋼粉は、溶鋼を水噴霧し得た生粉を窒素雰囲気中で140℃で60分乾燥した後、純水素雰囲気中で930℃で20分還元したのち、粉砕分級してまず表*

*中の元粉部に示す合金成分と残部がFeと不可避的不純物とからなる元粉を製造した。ついでこの元粉にNi粉、Mo 0s粉、Cu粉をV型混合機で所定量混粉した。この混合粉末をアンモニア分解雰囲気ガス中、900℃で30分加熱後徐冷し後、粉砕分級して表5-2および表6-2に示す化学組成の粉末を得た。

18

[0056]

【表7】

表5-1

			元	1			(wt)	ક		拉默州	才管量	(wt%)	田粉密度	Mo合計	工具	寸祛変	化率 06
S	Cr	0	Mn	Ni	Мо	NЪ	ν	Si	Al	Ni	Мо	Сu	(g/cm²)	%		野洋幅(A)	起 200 (B)
0.01	0.06	0. 14	0.04	0, 31						2			7. 14	D	171	0.09	0.009
0.09	0.09	0, 12	0.15	3.90							15	3	7.05	L 5	210	0. 07	0.007
0,08	0.08	0. 19	0.08		0.6					2.5			7. 18	0.6	285	0.06	0.008
0.71	0.09	0. 21	0.30			0.03					15		7. 23	15	294	0,06	0.007
0. 14	0.06	OL 10	0.40				0.45			5			7. 21	0	284	0.07	0.006
0.11	0.06	0.09	0.05	2	1				0.03	1	0.5		7.20	15	402	0.04	0.005
0,07	0.07	0. 19	0.09		0.5	0.05					0.02		7.21	0.52	410	0.04	0.005
Q 16	0.06	0.25	0.14		1.5		0.06	0,05				4	7. 20	1.5	295	0.05	0.008
0.11	0.07	0. 15	0. 24	Q .5	0.3		0.10			2.5		3	7. 19	0.3	264	0,06	0.007
0.07	0, 07	0.10	0.11	2	15			0.02		9		0.5	7. 21	1.5	320	0.05	0,005
	0.01 0.09 0.08 0.11 0.14 0.11 0.07 0.16 0.11	0.01 0.06 0.09 0.09 0.08 0.08 0.11 0.09 0.14 0.06 0.11 0.06 0.07 0.07 0.16 0.06 0.11 0.07	0. 01 0. 06 0. 14 0. 09 0. 09 0. 12 0. 08 0. 08 0. 19 0. 11 0. 09 0. 21 0. 14 0. 06 0. 10 0. 11 0. 06 0. 09 0. 07 0. 07 0. 19 0. 16 0. 06 0. 25 0. 11 0. 07 0. 15	S C r O Mn 0.01 0.06 0.14 0.04 0.09 0.09 0.12 0.15 0.08 0.08 0.19 0.08 0.11 0.09 0.21 0.30 0.14 0.06 0.10 0.40 0.11 0.06 0.09 0.05 0.07 0.07 0.19 0.09 0.16 0.06 0.25 0.14 0.11 0.07 0.15 0.24	S C r O Mn N i 0.01 0.06 0.14 0.04 0.31 0.09 0.09 0.12 0.15 3.90 0.08 0.08 0.19 0.08 0.11 0.09 0.21 0.30 0.14 0.06 0.10 0.40 0.11 0.06 0.09 0.05 2 0.07 0.19 0.09 0.16 0.06 0.25 0.14 0.11 0.07 0.15 0.24 0.5	S C r O Mn N i Mo 0.01 0.06 0.14 0.04 0.31 0.09 0.09 0.12 0.15 3.90 0.08 0.08 0.19 0.08 0.6 0.11 0.09 0.21 0.30 0.14 0.06 0.10 0.40 0.11 0.06 0.09 0.05 2 1 0.07 0.07 0.19 0.09 0.5 0.16 0.06 0.25 0.14 1.5 0.11 0.07 0.15 0.24 0.5 0.3	S C r O Mn N i Mo N b 0.01 0.06 0.14 0.04 0.31 0.09 0.09 0.12 0.15 3.90 0.08 0.09 0.19 0.08 0.6 0.11 0.09 0.21 0.30 0.03 0.14 0.06 0.10 0.40 0.11 0.06 0.09 0.05 2 1 0.16 0.06 0.25 0.14 1.5 0.05 0.16 0.06 0.25 0.14 0.5 0.3 0.11 0.07 0.15 0.24 0.5 0.3	S C r O Mn N i Mo N b V 0.01 0.06 0.14 0.04 0.31 0.09 0.09 0.12 0.15 3.90 0.08 0.09 0.19 0.08 0.6 0.11 0.09 0.21 0.30 0.03 0.14 0.06 0.10 0.40 0.45 0.11 0.06 0.09 0.05 2 1 0.07 0.07 0.19 0.09 0.5 0.05 0.16 0.06 0.25 0.14 1.5 0.05 0.10 0.11 0.07 0.15 0.24 0.5 0.3 0.10	S C r O Mn N i Mo N b V S i 0.01 0.06 0.14 0.04 0.31 0.09 0.09 0.12 0.15 3.90 0.08 0.09 0.12 0.08 0.6 0.11 0.09 0.21 0.30 0.03 0.14 0.06 0.10 0.40 0.45 0.11 0.06 0.09 0.05 2 1 0.17 0.07 0.19 0.09 0.05 2 1 0.16 0.06 0.25 0.14 1.5 0.06 0.05 0.11 0.07 0.15 0.24 0.5 0.3 0.10	S C r O M n N i M o N b V S i A l 0.01 0.06 0.14 0.04 0.31 — — — — — — 0.09 0.09 0.12 0.15 3.90 — </td <td>S C r O Mn N i Mo N b V S i A 1 N i 0.01 0.06 0.14 0.04 0.31 </td> <td>S C r O Mn N i Mo N b V S i A 1 N i Mo 0.01 0.06 0.14 0.04 0.31 - - - - - 2 - 0.09 0.09 0.12 0.15 3.90 - - - - - - 1.5 0.08 0.09 0.12 0.08 - 0.6 - - - - 2.5 - 0.11 0.09 0.21 0.30 - - 0.03 - - 1.5 0.14 0.06 0.10 0.40 - - 0.03 - - 1.5 0.11 0.06 0.09 0.05 2 1 - 0.45 - 0.03 1 0.03 0.17 0.07 0.19 0.09 0.15 0.5 0.05 0.05 - 0.02 0.02</td> <td>S C r O Mn N i Mo N b V S i A l N i Mo C u 0.01 0.06 0.14 0.04 0.31 2 0.09 0.09 0.12 0.15 3.90 </td> <td>S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (g/cm²) 0.01 0.06 0.14 0.04 0.31</td> <td>S C r O Mn N i Mo N b V S i A 1 N i Mo C u (g/cm²) 96 0.01 0.06 0.14 0.04 0.31 </td> <td>S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (g/cm²) % (ED) 0.01 0.06 0.14 0.04 0.31</td> <td>S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (&/cn²) 96 (DD) 55-246(A) 0.01 0.06 0.14 0.04 0.31</td>	S C r O Mn N i Mo N b V S i A 1 N i 0.01 0.06 0.14 0.04 0.31	S C r O Mn N i Mo N b V S i A 1 N i Mo 0.01 0.06 0.14 0.04 0.31 - - - - - 2 - 0.09 0.09 0.12 0.15 3.90 - - - - - - 1.5 0.08 0.09 0.12 0.08 - 0.6 - - - - 2.5 - 0.11 0.09 0.21 0.30 - - 0.03 - - 1.5 0.14 0.06 0.10 0.40 - - 0.03 - - 1.5 0.11 0.06 0.09 0.05 2 1 - 0.45 - 0.03 1 0.03 0.17 0.07 0.19 0.09 0.15 0.5 0.05 0.05 - 0.02 0.02	S C r O Mn N i Mo N b V S i A l N i Mo C u 0.01 0.06 0.14 0.04 0.31 2 0.09 0.09 0.12 0.15 3.90	S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (g/cm²) 0.01 0.06 0.14 0.04 0.31	S C r O Mn N i Mo N b V S i A 1 N i Mo C u (g/cm²) 96 0.01 0.06 0.14 0.04 0.31	S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (g/cm²) % (ED) 0.01 0.06 0.14 0.04 0.31	S Cr O Mn Ni Mo Nb V Si Al Ni Mo Cu (&/cn²) 96 (DD) 55-246(A) 0.01 0.06 0.14 0.04 0.31

[0057]

※ ※【表8】

表5-2

No.			4	全	鄉色	分 の	組点	Š.	G	ଚ	
140.	S	Ст	0	Mn	Ni	Мо	NЪ	V	Si	Al	Cu
是明例37	Q. 01	0.06	0. 14	0.04	2,26						
発明的38	0.09	0. 09	0. 11	0.14	3. 73	1.44					2.87
発明例39	0.08	01.08	0, 19	0, 08	2 44	0.59					
発明例40	0, 11	0.09	0.21	0, 30		1.48	0.03				
発明的41	0, 13	0.06	0. 10	0.38	4. 76			0. 43			
発明例42	0.11	0, 06	0.09	0,05	2.96	1.48				0.03	
発明例43	0.07	0, 07	0. 19	0, 09		0.52	0. 05				
発明例44	0. 15	0, 06	0.24	0. 13		L 44		0.06	0.05		3.85
発明例45	0. 10	0.07	0.14	0. 23	2.84	0. 28		0.09			2, 84
発明例46	0.07	0.07	0. 10	0.11	4, 83	1 45			0.02		0.48

[0058]

【表9】

表6-1

No.			·	元		粉	(1	w t 96)			拉勒	才若量	(wt35)	ENEE	Mo合計	工具	寸法变	化丰砂
	S	Сг	0	Мп	Ni	Мо	Nb	v	Si	A 1	Νi	Мо	Cu	(g/cm²)	96	今 命	助神(4)	乾鸡酱(B)
出校 野29	0.003	0.08	0.08	0. 15		0.6					3	-		7. 18	0.6	26	0 14	0.015
11.829130	0.45	0.07	0.11	0.08	2								1	6, 89	0	271	0.06	CL 0008
比较9131	0.08	0.02	0. 13	0.14	1	Q 5						0.5		7. 19	1	30	0.11	0.012
H-1009132	0.19	0. 52	0.15	0.08	3							-	2.5	6. 79	0	40	0.12	0.01
11200133	0.25	0. 08	0.16	0.55		1.5							1	6. 85	1.5	184	0.07	0.008
HEXPI34	D 14	0.0 6	0. 22	0.07	4.5							1		6. 89	1	32	0.06	0.007
H1009135	0.06	Q. D7	0.12	0.09		4.3					0.5			6.88	43	27	0.07	0.008
LLANGE 136	0.11	0.09	0.18	0, 30			a 11					1,5		6.91	1.5	30	0. 08	0. 007
出域的37	0.14	0. D6	0. 15	0.40				0.56			5			6. 88	٥	41	0.08	0.007
比较知識	0.07	0.07	0.13	0.11	2	15			0.16				Q 5	7. 17	1.5	31	0.07	0.007
H-229139	Q 11	0.06	0. 18	0.05	2	1				0.14	1	0.5		7. 16	1.5	34	0.07	0.006
比较 例40	0. 15	0, 08	0. 17	0. 12		0.5					5.2			7. 18	0.5	25	0. 07	0.006
LLANGE MAI	0. 22	0.07	Q 16	0.05	1	1						3.3		7. 18	4.3	35	0.05	0.005
LL020942	0. 08	0.09	0.13	0. 08			D. D8						5.1	7. 19	0	40	0.06	0,007

[0059]

20【表10】

表6-2

					•	-, -				 .	
No.			{	A	鋼	8 0	組工	ĬŽ.	C	6)	
140,	S	C t	0	Мп	Ni	Мо	Nb	V	Si	A I	Cu
比较例29	0.003	0.08	0, 08	0. 15	2.91	0. 58					
上较到30	0. 45	0.07	0.11	0.08	1.98						0.99
比较例31	0.08	0.02	0. 13	0.14	1	1					
LEAXE 132	0, 19	0. 51	D. 15	0.08	2.93						2.44
11 1025 7133	0, 25	0.08	Q 16	0.54		1.49					0, 99
比较到34	0.14	0.06	0.22	0.07	4. 46	0.99					
比较到35	0.06	0, 07	0.12	0, 09	0.50	4.28					
比較例36	0.11	0, 09	Q . 18	0.30		1.48	0.11		-		
比較多37	0.13	0.06	0.14	0.38	4.76			0.53			
比较例38	0.07	0.07	Q 13	0.11	1.99	1. 49			0.16		0.50
比较例39	0, 11	0.06	0, 18	0.05	2.96	1. 48				0.14	
比较例40	0.14	0.08	0. 16	0.11	4.94	0.48					
比較例41	0, 21	0.07	0. 15	0.05	0. 97	4. 16					
比较例42	0.08	0.09	0. 12	0, 08			0.08				4.85

【0060】圧縮性、切削性、寸法安定性の評価は実施例2に準じた。表5-1および表6-1に圧粉密度、工具寿命、焼結寸法変化の結果を示した。請求項4の要件をみたす合金鋼粉をFe-0.9 %Gr-1.0 %ZnStの配合で1150℃、窒素雰囲気中で30分焼結すれば、工具寿命が100回以上で、かつばらつき幅(A)が0.10%以下で、かつばらつき幅(B)が0.01%以下の良好な寸法精度を示している。発明例42、43、46のようにCr量が0.06~0.09%、S量が0.05~0.15%、加量が0.05~0.15%、およびNi量2.0%以下、Mo量2.0%以下、Si量0.01~0.03%、

Al量0.01~0.03%、V量 0.1~0.4%、Nb量0.01~0.03%の1種類以上を含有する予合金鋼粉にNi量4.0%以下、Mo量2.0%以下、Cu量2.0%以下の1種類以上を混合し、熱処理されて拡散付着された好適範囲の合金鋼粉であり、寸法安定性はばらつき幅(A)が0.05%以下、また、ばらつき幅(B)も 0.005%以下を満足し極めて寸法安定性に優れ、工具寿命も 300回を超える。

【0061】比較例29は、S量が0.005 %未満で切削性 と寸法安定性が低下することを示す。比較例30は、S量 50 が 0.3%を超えると圧縮性が劣ることを示す。比較例31

は、Cr量が0.03%未満では切削性、寸法安定性が劣るこ とを示す。比較例32は、Cr量が 0.1%以上では圧縮性、 寸法安定性が劣ることを示す。比較例33は、Mm量が 0.5 %を超えると圧縮性が劣ることを示す。またMD量が0.03 **%未満では切削性の向上は認められなかった。比較例3** 4、35はそれぞれ元粉のNi量、Mo量が 4.0%を超えると 圧縮性、切削性が低下することを示す。また元粉のNi 量、Mo量が 0.1%未満では各元素を添加しない場合に比 べ強度の向上が認められず、合金コストの点からも実用 的ではない。比較例36と発明例40と比較するとNbの添加 により圧縮性、被削性が向上するが、0.05%を超えると かえって圧縮性、切削性が低下する。比較例37と発明例 41と比較するとVの添加により圧縮性が向上するが、 0.5%を超えると切削性と圧縮性が低下する。比較例38 と発明例46と比較するとSiの添加により一般に切削性が 向上するが 0.1%を超えるとかえって切削性が低下す る。比較例39と発明例42と比較するとAlの添加により一 般に切削性が向上するが 0.1%を超えるとかえって切削*

*性が低下する。比較例40、41、42によると拡散付着種の Ni量、Mo量、Cu量がそれぞれ5.0 %、3.0 %、5.0 %を 超えると切削性が低下することがわかる。また拡散付着 種のNi量、Mo量は好ましくは0.1 %以上、Cu量を 0.5% 以上添加すれば、各元素を添加しない場合に比べ強度が 向上することを確認した。

22

【0062】(実施例5)請求項5、請求項6の発明例お よび比較例である。表7-1にアトマイズ鋼粉 (元粉) の組成と拡散付着量を示した。そして表7-2に示す組 成とした合金鋼粉にグラファイト、および 1.0%のステ アリン酸亜鉛を配合し混合後、成形工程で圧粉密度6.85 g/cm³ とし、1130℃、窒素雰囲気中で20分焼結した。 表7に工具寿命、寸法安定性をまとめて示した。工具寿 命、寸法安定性の評価は実施例1および2と同様の方法 で行った。

[0063]

【表11】

表7-1

No.		_ (元		粉	(w t 96)			拉波	才着量	(wLX)	添加	田粉密度	工具	场难	砂龙	道權
NO.	S	Cr	0	Mn	Ni	Мо	Nb	v	Sī	Al	Νi	Мо	Cu	建	(B\cm ₂)	寿命	(A)	幅 (B)	(A)
発列例47	0, 08	0.06	0. 13	0.08										0.5	7. 25	551	0, 07	0.004	0.06
発明例组	0. 15	0.09	Q. 12	0. 15	0.4	0.4	0.003	0, 15	0,03	0.02				1.0	7. 21	334	0.06	0,006	Q 1
完明例49	Q 20	0.07	Q 15	0. 20							0.3	0,5	0.2	0.8	7. 22	355	0,08	0.008	Q 15
発明例50	0.11	0,08	0, 18	0.06	0.1	15	0.005	0.3	0.02	0.03	2	0. 2	0.1	0.8	7. 21	377	0.06	0.006	Q 15
比較例43	0, 10	O 08	0, 15	0.11		1		0.3			3.5		0.5	0.3	7. 21	291	0.16	0. 015	0.01
比较例44	0.22	0,09	Q 12	0.40	0.5	1	0.003		0.02			2	1	5.5	7.22	34	0.08	0.008	

[0064]

※30※【表12】

表7-2

No.	合金鋼粉の組						戾	(%)			
	S	Cr	0	Mn	Ni	Мо	Nb	V	Si	Al	Cu
発明例47	0.08	0,06	0. 13	0.08							
竞男例48	Q 15	0.09	Q. 12	Q 15	0.40	0.40	0.003	0. 15	0,03	0.02	
発明例49	0.20	0.07	Q 15	0.20	0, 30	0.50					0.20
発明的50	0. 11	0.08	0.18	0,06	2.05	1.66	0.005	0. 29	0.02	0. 03	0.10
比较例43	0. 10	DL 08	0.14	0.11	3.37	0.96		0. 29			0.48
比較例44	0. 21	0.09	0. 12	0.39	0. 49	2.91	0.003		0.02		0, 97

【0065】残留黒鉛量は硝酸溶解残査をガラスフィル ターでろ過し、赤外線吸収法で定量化した。またElectr on Probe X-ray Miccroanalyzer (以下EPMAとい う)によるMn、Sの面分析を実施し、この2元素の同時 出力によりMnS の析出を確認した。発明例47~50は、焼 結時の添加黒鉛量が0.4~1.5%の場合であり、300回 以上の工具寿命とばらつき幅(B)が0.01%以下の優れ た寸法安定性を示した。比較例43は添加黒鉛量が0.4 %

が1.5 %を超えていて切削性が劣っていることがわか

【0066】本発明例においては残留黒鉛が0.05%以上 であり、EPMAによるCマッピングの結果、気孔部に 黒鉛が集中して残留し、MnS が組織全体に析出してい た。引張試験片の破面観察を行い、Emergy Dispersive X-ray Spectroscope (以下EDX分析という) により確 認したMoとSを含む介在物50個の大きさを測定したとこ 未満であって寸法安定性が悪く、比較例44は添加黒鉛量 50 ろすべて 5 μ μ 以下であった。このことから本発明の要

件を備える各発明例の鋼粉であれば、気孔に黒鉛が、鉄 粒子内および粒界に5μm 以内のMnS が存在する組織を 有する切削性、寸法安定性、強度に優れた焼結鋼を容易 に得ることができる。

【発明の効果】本発明により、切削性、寸法精度および 耐摩耗性に優れたアトマイズ鋼粉および焼結鋼を製造す ることができる。

24

フロントページの続き

(31) 優先権主張番号 特願平5-337325

(32)優先日

平 5 (1993)12月28日

(33)優先権主張国 日本(JP)

(72)発明者 小倉 邦明

[0067]

千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社ハイテク研究所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.