Van Anda's Water Treatment Plan

Design Recommendation Presentation

Team H-4

Hannah Cha, Kushagra Sharma, Yuhan Qiu, Yasin Kurji, Simon Huang, Joshua Riefman

Introduction -

Our Goal:

To provide the Van Anda community with a *sustainable* solution to the current water crisis.

Priest Lake

What do we mean by **Sustainable**?

Our Recommendation:

A 'Hybrid' Treatment Model

We propose a water treatment system which will provide water from two sources:

Rainwater Harvesting

Bottled Water Shipments

Table of Contents:

- Considered Options
- Research Summary
- Our Decision Making Process
- The Final Design

Investigating Different Models

1: 'Semi-Decentralized Model'

- Continues to source from Priest
 Lake
- Implementation involves renovating the *existing* system

2: 'Centralized Model'

- Sources water from the mainland (Powell River)
- Involves transporting water across the Malaspina Strait

Unresolved Issues:

1: Semi-Decentralized Model

Priest Lake remains unsustainable

2: Centralized Model

- Dependent on supply lines that are vulnerable to weather conditions.
- Expensive transportation costs

What if we could capture each's benefits whilst mitigating adverse effects?

Results from our Research

We explored some water source alternatives:

- Groundwater contamination is a problem
- Pipelines or desalination are way too expensive

Rainwater collection stand alone as a local water source

A combined system consisting of decentralized and centralized elements.

Rainwater Collection System:

(decentralized)

- One rainwater collection and filtration system per property
- Provides nearly a third of total water needs.

Bottled Water Shipment System: (centralized)

- Remaining water demand will be covered by bottled water.
- Volume of water imported is flexible

In an average year, rainfall is enough to supply approximately

30% of water needs in Van Anda

Collected Rain = [Avg. Roof Area] * [# of Buildings] * [Avg. Annual Rainfall]

Avg Collected Rain per Year ≅ 32,132,000 L

Avg Water Use per Year ≅ 110,800,000 L

(28,710,000L / 110,800,000 L) ≅ 30%

Quantitative Analysis

Quantitative Analysis

Option 3 was scored as the optimal solution

Qualitative Analysis

Streamlined Life Cycle Assessment

Final Recommendation: Option 3

A Decentralized Rainwater Collection model supported by Bottled Water Shipments

- Ranked above other options in the WDM in terms of sustainability.
- More resilient compared to the other options.
- Prioritizes long life and reliability.
- Minimizes expenditure.

Thank you.

Works Cited:

Van Anda Improvement District. https://vananda-id.ca/wp-content/uploads/RESEAU-WaterNET-VAID-Design-Brief-March-2017.pdf.

Government of Canada, Statistics Canada. "Census Profile, 2016 Census Vananda, Unincorporated Place [Designated Place], British Columbia and British Columbia [Province]." Census Profile, 2016 Census - Vananda, Unincorporated Place [Designated Place], British Columbia and British Columbia [Province], 27 Oct. 2021,

https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E&Geo1=DPL&Code1=590022&Geo2=PR&Code2=59&SearchText=Vananda&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=590022&TABID=1&type=0.

"Free Vector: Trees in the Park." Freepik, 21 Feb. 2020,

https://www.freepik.com/free-vector/trees-park_6997496.htm#query=cartoon%20tree&position=2&from_view=search&track=ais.

Rainwater Harvesting, https://rainwaterharvesting.tamu.edu/catchment-area/.

Pilot Study of Water Treatment Technologies for Van Anda Improvement ... https://vananda-id.ca/wp-content/uploads/RESEAU-WaterNET-VAID-pilot-study-Report-July-2016.pdf.

Ferry,https://www.vecteezy.com/vector-art/4974448-cruise-color-icons-set-services-tickets-booking-and-buying-ships-destinations-summer-voya ge-shore-excursions-tours-and-travel-agency-isolated-vector-illustrations

Cost Analysis

Based on stakeholder interviews, the prices they are paying for chlorine, and publicly available cost estimations for the transportation of water including fuel and labour costs:

- We predict it will cost ~\$200k/year to ship in needed water.
- For a population of 300, that would be ~\$676 per capita per annum.
- The national average for the installation of a rainwater collection system ranges from \$1000 - \$3500 which varies based on catchment area and materials.
 - This upfront cost will pay itself off in 2-8 years due to the cost savings of shipping in less water.
- Without a detailed and comprehensive analysis of the current system's state we are unable to estimate the cost of renovation.
 - Notwithstanding, the up-front costs of renovating such a system can be expected to significantly greater than \$3500.
- Reverse osmosis filtration systems for as low as \$750.

Rainfall Estimate

- Average Rainfall: 957 mm per annum
 - a. Publicly available data
- 2. Water use: ~110,000,000L
 - a. From Van Anda Improvement District published data
- 3. Average catchment area of roof: 150m²
 - a. Estimation based on national averages
- 4. Number of Residences: 175
 - a. From Statistics Canada's 2016 Census
- 5. Other Applicable Buildings: >35
 - a. From looking at Google Maps and counting applicable buildings, lower bound used

WDM

	Criteria	Weightin	Option 1 -	Option 2 -	Option 3 -
Weights and Raw	Energy required for water transport from source to	0.05	9	2	5
	Energy for water transport after treatment to user	0.05	8	3	5
	Water quantity available	0.25	4	8	9
	Resiliency of water supply	0.15	4	8	9
	Amount of treatment required	0.05	4	8	7
	Seasonal variation of water quality	0.05	4	10	9
	Seasonal variation of water quantity	0.2	2	10	8
	Average annual cost over 10 year period (including	0.2	5	3	5
	Sum of weights	1.0			
Caclulated Scores	Energy required for water transport from source to		0.45	0.1	0.25
	Energy for water transport after treatment to user		0.4	0.15	0.25
	Water quantity available		1	2	2.25
	Resiliency of water supply		0.6	1.2	1.35
	Amount of treatment required		0.2	0.4	0.35
	Seasonal variation of water quality		0.2	0.5	0.45
	Seasonal variation of water quantity		0.4	2	1.6
	Average annual cost over 10 year period (including		1	0.6	1
		Total	4.25	6.95	7.5

SLCA

Option 1 - Water Treatment from Priest Lake (semi-decentralized)

	Material	Production	Distribution	Disposal	Total
Resources used	3	3	4	2	
Energy usage	3	2	2	2	
Waste generation	3	3	4	4	
Public health	3	3	2	3	
Total	12	11	12	11	46

Option 2 – Bottled Water from the mainland (Centralized)

Material Production Distribution Disposal

	Material	Production	Distribution	Disposal	Total
Resources used	2	2	3	2	
Energy usage	2	2	1	2	
Waste generatio	2	2	4	2	
Public health	3	3	3	2	
Total	9	9	11	8	37

Option 3 – Team-generated option (Rainwater/Bottled)					
	Material	Production	Distribution	Disposal	Total
Resources u	2	3	4	3	
Energy usage	2	3	2.5	2	
Waste gene	3	3	4	2.5	
Public health	3	2	2	2	
Total	10	11	12.5	9.5	43

Additional Information

- Used plastic bottles can be shipped back to Powell River to hopefully be reused or recycled.
- Van Anda could enter into a future's contract with a supplier to agree to buy bottled water at a certain price to reduce price volatility.
- WDM for Option 2 and 3 are very similar as they are rather similar systems with only 30% of Option 3's water supply being different.
- Our estimates for water quantity from rainfall does not account for water tanks filling.
- Unpowered homes could have filtration capacity from purification tablets or simply use bottled water solely.
- Option 1 scored so well on our SLCA as its unreliability due to climate change was not factored in.
- A sensitivity analysis was performed with our WDM with other likely options for our weights. Option 3 scored
 the best on all different sets of weights that we considered as realistic, and for most of them the gap
 between it and Option 2 even grew.
- Malaspina Strait is the portion of the Georgia Strait between Texada Island and Powell River.