This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

 Use of a therapeutically active and physiologically acceptable derivative of prostaglandin PGA, PGB, PGD, PGE or PGF, in which the omega chain has the formula:

(13) (14) (15-24)

$$C B C - D - R_2$$

wherein

C is a carbon atom (the number is indicated within parenthesis)

B is a single bond, a double bond or a triple bond D is a chain with 1-10 carbon atoms, optionally interrupted by hetero atoms O, S, or N, the substituents on each carbon atom being H, alkyl groups, preferably lower alkyl groups with 1-5 carbon atoms, a carbonyl group, or a hydroxyl group

R₂ is a ring structure such as a phenyl group which is unsubstituted or has at least one substituent selected from C₁-C₅ alkyl groups, C₁-C₄ alkoxy groups, trifluoromethyl groups, C₁-C₃ aliphatic acylamino groups, nitrogroups, halogen atoms, and phenyl group; or an aromatic heterocyclic group having 5-6 ring atoms, like thiazol, imidazole, pyrrolidine, thiopene and oxazole; or a cycloalkane or a cycloalkene with 3-7 carbon atoms in the ring, optionally substituted with lower alkyl groups with 1-5 carbon atoms,

for the preparation of an ophtalmological composition for the treatment of glaucoma or ocular hypertension.

- 2. Use according to claim 1 wherein D is a chain with 2-8 carbon atoms.
- 3. Us according to claim 1 wherein D is a chain with 2-5 carbon at ms.

- 4. Use according to claim 1 wherein D is a chain with 3 carbon atoms.
- 5. Use according to any of claims 1-4 wherein B is a single bond or a double bond and the substituent on C₁₅ being a carbonyl group or (R)-OH or (S)-OH.
- 6. Use according to any of claims 1-5 wherein R₂ is a phenyl group which is unsubstituted or has at least one substituent selected from C₁-C₅ alkyl groups, C₁-C₄ alkoxy groups, trifluoromethyl groups, C₁-C₃ aliphatic acylamino groups, nitro groups, halogen atoms or a phenyl group.
- 7. Use according to claim 6 wherein the prostaglandin derivative is a 17-phenyl-18,19,20-trinor analogue.
- 8. Use according to claim 7 wherein the prostaglandin derivative is a 15-dehydro-17-phenyl-18,19,20-trinor analogue or a 13,14-dihydro-17-phenyl-18,19,20-trinor analogue.
- 9. Use according to claim 8 wherein the prostaglandin derivative is a 13,14-dihydro-17-phenyl-18,19,20-trinor derivative of PGA, PGE or PGF.
- 10. Use according to claim 8 wherein the prostaglandin is a 15-dehydro-17-phenyl-18,19,20-trinor derivative of PGA, PGE or PGF.
- 11. Use according to any of claims 1-10 wherein the prostaglandin derivative is an alkyl ester.
- 12. A method for treating glaucoma or ocular hypertension in a subject's eye which comprises contacting the surface of the eye with an effective intraocular pressure reducing amount of a therapeutically active

and physiologically acceptable derivativ of prostaglandin PGA, PGB, PGD, PGE or PGF in which the omega chain has the formula:

wherein

C is a carbon atom (the number is indicated within parenthesis)

B is a single bond, a double bond or a triple bond D is a chain with 1-10 carbon atoms, optionally interrupted by hetero atoms O, S, or N, the substituents on each carbon atom being H, alkyl groups, preferably lower alkyl groups with 1-5 carbon atoms, a carbonyl group, or a hydroxyl group

R₂ is a ring structure such as a phenyl group which is unsubstituted or has at least one substituent selected from C₁-C₅ alkyl groups, C₁-C₄ alkoxy groups, trifluoromethyl groups, C₁-C₃ aliphatic acylamino groups, nitro groups, halogen atoms, and phenyl group; or an aromatic heterocyclic group having 5-6 ring atoms, like thiazol, imidazole, pyrrolidine, thiopene and oxazole; or a cycloalkane or a cycloalkene with 3-7 carbon atoms in the ring, optionally substituted with lower alkyl groups with 1-5 carbon atoms,

- 13. The method of claim 12 wherein D is chain with 2-8 carbon atoms.
- 14. The method of claim 12 wherein D is a chain with 2-5 carbon atoms.
- 15. The m thod of claim 12 wherein D is a chain with 3 carbon atoms.

- 16. The method of any of claims 12-15 wherein B is a single bond or a double bond and the substituent on C₁₅ being a carbonyl group or (R)-OH or (S)-OH.
- 17. The method of any of claims 12-16 wherein R_2 is a phenyl group which is unsubstituted or has at least one substituent selected from C_1 - C_5 alkyl groups; C_1 - C_4 alkowy groups, trifluoromethyl groups, C_1 - C_3 aliphatic acylamino groups, nitro groups, halogen atoms or a phenyl group.
- 18. The method of claim 17 wherein the prostaglandin derivative is a 17-phenyl-18,19,20-trinor analogue.
- 19. The method of claim 18 wherein the prostaglandin derivative is a 15-dehydro-17-phenyl-18,19,20-trinor analogue or a 13,14-dihydro-17-phenyl-18,19,20-trinor analogue.
- 20. The method of claim 19 wherein the prostaglandin derivative is a 15-dehydro-17-phenyl-18,19,20-trinor derivative of PGA, PGE or PGF.
- 21. The method of claim 20 wherein the prostaglandin derivative is a 13,14-dihydro-17-phenyl-18,19-20-trinor derivative of PGA, PGE or PGF.
- 22. The method of any of claims 12-21 wherein the prostaglandin derivative is an alkyl ester.
- 23. An ophthalmological composition for topical treatment of glaucoma or ocular hypertension which comprises an effective intraocular pressure reducing amount of a therapeutically active and physiologically acceptable prostaglandin derivative of PGA, PGB, PGD, PGE or PGF in which the omega chain has th formula:

(13) (14) (15-24)

$$C \quad B \quad C \quad - \quad D \quad - \quad R_2$$

wherein

C is a carbon atom (the number is indicated within parenthesis)

B is a single bond, a double bond or a triple bond D is a chain with 1-10 carbon atoms, optionally interrupted by hetero atoms O, S, or N, the substituents on each carbon atom being H, alkyl groups, preferably lower alkyl groups with 1-5 carbon atoms, a carbonyl group, or a hydroxyl group

R₂ is a ring structure such as a phenyl group which is unsubstituted or has at least one substituent selected from C₁-C₅ alkyl groups, C₁-C₄ alkoxy groups, trifluoromethyl groups, C₁-C₃ aliphatic acylamino groups, nitro groups, halogen atoms, and phenyl group; or an aromatic heterocyclic group having 5-6 ring atoms, like thiazol, imidazole, pyrrolidine, thiopene and oxazole; or a cycloalkane or a cycloalkene with 3-7 carbon atoms in the ring, optionally substituted with lower alkyl groups with 1-5 carbon atoms,

in an ophthalmologically compatible carrier.