הרצאה 7 (המשך): הצפנה אסימטרית נחזור לעניינינו: הצפנה אסימטרית

מטרה: ליצור מפתח משותף סודי על ערוץ פתוח •

בעיית הלוג הדיסקרטי:

לפני הצגת הבעיה נגדיר:

- :שדה גלואה מעל המספר הראשוני GF(p):p שדה גלואה מעל המספר הראשוני
 - 0, 1, 2, ..., p-1
- סגור תחת חיבור, חיסור, כפל במודולו ק.
- שלם שונה מספר הופכי: לכל מספר a שונה מאפס בשדה ישנו מספר אחר (שלם . $a\cdot a^{-1}=1\ mod\ p$ הנמצא בשדה כך ש
 - $GF(13) = \{0,1,...,12\}$ •
 - 5-12=-7+13=6 פעולת חיסור:
 - 12 + 11 = 23 13 = 10 פעולת חיבור:

בעיית הלוג הדיסקרטי

נגדיר איבר פרימיטיבי

- נתחיל בלהסביר על ידי דוגמה
- p = 5 עם סדר שדה , $GF(5) = \{0,1,2,3,4\}$ נסתכל על
 - 2^{i} , i = 0,1,... נסתכל על חזקות •
 - $a^{p-1} = 1 \mod p$ לפי המשפט הקטן של פרמה: •
- $2^4 = 1 \ mod \ 5$ ונקבל: $a = 2, \ p = 5$
- כעת נשאל: האם $2^{p-2},...,2^{p-2}$ פורשים את כל איברי השדה מלבד איבר האפס?
 - .GF(5) אם התשובה חיובית, אז 2 הוא איבר פרימיטיבי של
 - $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8 \mod 5 = 3$: נבדוק
 - GF(5) לכן 2 הוא איבר פרימיטיבי של •

בעיית הלוג הדיסקרטי

- $\operatorname{GF}(5)$ האם 3 הוא איבר פרימיטיבי של •
- $3^0 = 1$, $3^1 = 3$, $3^2 = 9 mod 5 = 4$, $3^3 = 27 mod 5 = 2$: נבדוק:
 - GF(5) לכן גם 3 הוא איבר פרימיטיבי של
 - ?GF(5) האם 4 הוא איבר פרימיטיבי של •
 - $4^0 = 1$, $4^1 = 4$, $4^2 = 16 mod 5 = 1$: נבדוק
 - GF(5) לכן 4 אינו איבר פרימיטיבי של •
 - כעת לאחר שראינו את הדוגמה נגדיר •
- לא בהכרח יחיד) הוא איבר בעל התכונה GF(p) איבר פרימיטיבי α של איבר בהכרח יחיד) הוא איבר בעל התכונה הבאה:
 - פורשים את כל איברי השדה השונים $lpha^{i} mod p, \ i = 0,1,...,p-2$ מאפס ב GF(p) מאפס

בעיית הלוג הדיסקרטי

עובדה: לכל eta שונה מאפס ששייך ל GF(p) עובדה לכל eta

$$\alpha^x = \beta \mod p$$

- $\beta = \alpha^x \mod p$:אם נתון α, x, p ניתן לחשב בקלות α, x, p
- לעומת זאת, כעת נציג את בעיית הלוג הדיסקרטי (בעיה בשלמים מודולו) שהיא בעיה קשה:
 - : נתונים $0 \le x \le p-2$ יש למצוא α , שלם בטווח α , β , p נתונים $\alpha^x = \beta \bmod p$
 - לא קיים אלגוריתם יעיל לפתרון הבעיה ועל זה מתבססת ההצפנה.
 - ליצירת מפתח (Diffi Hellman (DH)) כעת נלמד על תהליך דיפי הלמן שפתח (שותף על ערוץ פתוח בהתבסס על תובנה זו.

ליצירת מפתח משותף על ערוץ פתוח DH תהליך

- α , p :פרמטרים ידועים לכל העולם
 - x, y :מפתחות פרטיים •

משדר γ לאליס

Bob

$$(0 < x < p-1)$$
 מייצר y אקראי ($0 < y < p-1)$ מייצר y אקראי $y = \alpha^y \mod p$ מחשב $y = \alpha^y \mod p$

ערוץ פתוח $_{-}$ משדרת eta לבוב

Alice

 $K_A = \gamma^x \bmod p$ מחשבת ארמישבת $K_B = \beta^y \bmod p$ מחשב

- . ורק אליס ובוב יודעים את הערך הזה , $K=K_A=K_B$ טענה:
 - זהו המפתח המשותף לאליס ובוב K
 - אלו מפתחות פרטיים x,y

ליצירת מפתח משותף על ערוץ פתוח DH תהליך

 $: K_A = K_B :$ הוכחה ש

$$K_A = \gamma^x = (\alpha^y)^x = \alpha^{yx} = (\alpha^x)^y = \beta^y = K_B$$

- K הוכחה שרק אליס ובוב יודעים את ullet
- ידועים לכל העולם $\gamma=lpha^y mod p$, $eta=lpha^x mod p$ וגם lpha, m p ידועים לכל העולם
 - מספיק לדעת x אוy כדי לחשב את K ולשבור את ספיק \bullet
- y ואת $eta=lpha^x mod p$ ברור שפעולת לוג דיסקרטי מחלצת את x מתוך $\gamma=lpha^y mod p$ ושוברת את המערכת
 - ללא α^y, α^x מתוך α^{xy} ללא α^y, α^x מתוך אניתן לחשב את α^y, α^y מתוך שימוש בפעולת לוג דיסקרטי
 - Kקיבלנו שתחת השערת דיפי הלמן רק אליס ובוב יודעים את ullet

הוכחת זהות

- עדיין קיימת בעיה: איך ידעו אליס ובוב שהם אכן מדברים אחד עם השנייה? חסרה פה הוכחת זהות. נראה בהמשך פרוטוקול RSA שפותר זאת.
 - לשם כך נצטרך רקע מתמטי נוסף •
 - :(Euler's Totient Function) פונקציית אוילר •
 - עבור n שלם וחיובי היא מספר המספרים השלמים החיוביים $\phi(n)$ שקטנים מ n וזרים לו.
 - :דוגמה •
 - $\phi(12)=4$ עבור n=12 קיימים n=1 קיימים n=1 ולכן
 - $\phi(8)=4$ עבור n=8 קיימים n=8 ולכן n=8
 - $\phi(5) = 4$ עבור n=5 , n=5 ולכן , n=5
 - $\phi(p) = p 1$ עבור p = n 1 עבור •

הוכחת זהות

:משפט אוילר

$$\alpha^{\phi(n)} = 1 \mod n$$

(סימון ל GCD, כלומר
$$a$$
 , n וכן $a \neq 0$ וכן $a \neq 0$ סימון ל

- ?מה מקבלים עבור n ראשוני
 - :טענה

$$a^x=lpha^{x\ mod\ \phi(n)}\ mod\ n$$
 נקבל: $a
eq 0$ וכן $a
eq 0$ וכן $a
eq 0$

בדומה למה שקיבלנו עבור פרמה הקטן: אם נציב n=p בדומה למה שקיבלנו עבור פרמה הקטן: אם $a^x=lpha^{x\ mod\ p-1}\ mod\ p}$ שגרר: מפרמה: $a^{p-1}=1\ mod\ p$

אלגוריתם RSA

- אלגוריתם שפורסם בשנות ה 70 על ידי ריבסט, שמיר, ואדלמן
 - יישום נפוץ מאד של הצפנה אסימטרית •
- יישום נפוץ מאד לחתימה דיגיטלית בערוץ פתוח משתמש מייצר חתימה
 שלו ולכל העולם יש יכולת לאשר את החתימה שלו מבלי היכולת לייצר
 את החתימה שלו
 - :נסמן:
 - (private) פרטי PR , (public) ציבורי PU •
 - אליס תייצג את המשתמש , בוב ייצג נציג של העולם
 - מפתח פרטי של אליס, ידוע רק לה K_{PRA}
 - מפתח ציבורי של אליס, ידוע לכל העולם K_{PUA}
 - K_{PUA} מתוך K_{PRA} מתוך דרישה אי אפשר למצוא את

RSA אלגוריתם

- נדון בשני סוגי תקשורת:
- חתימה דיגיטלית אליס נועלת את ההודעה ששולחת לעולם ואחר כך העולם פותח
 את ההודעה

• הצפנה – העולם נועל את ההודעה ששולח לאליס ואחר כך אליס פותחת את ההודעה

- אליס רוצה להוכיח לבוב את זהותה (שהיא זו שחותמת על המסמך)
 - ההודעה לא סודית, רק דרושה הוכחת זהותה של אליס
 - אליס נועלת את המסמך לפי המפתח הפרטי שלה
 - שולחת את המסמך הנעול לבוב •
- בוב משתמש במפתח הציבורי של אליס בשביל לפתוח את המסמך •
- לאחר פתיחת המסמך בוב יחשוף את הטקסט הקבוע המוכיח את זהותה
 של אליס

חתימה דיגיטלית

: \mathcal{C} י אריאציה נוספת היא לשלוח את בנוסף ל \bullet

הצפנה

- בוב משתמש במפתח הציבורי של אליס בשביל לנעול הודעה סודית
 המיועדת לאליס
 - רק אליס יכולה לפתוח את ההודעה בעזרת המפתח הפרטי שלה •

בטיחות של RSA מתבססת על קושי פירוק לגורמים של מספר גדול
 בעיית פקטוריזציה)

RSA פקטוריזציה ב

- $n=p\cdot q$ מספרים ראשוניים, נסמן את המכפלה p,q
 - נניח p,q לא ידועים, n ידוע •
- מתבסס על עובדה זו RSA , p,q מתוך p,q מתבסס על עובדה אין שיטה יעילה למציאת p,q

כעת נדון כיצד אליס מייצרת מפתח פרטי וציבורי

- אליס מייצרת שני מספרים ראשוניים p,q סודיים
 - $n=p\cdot q$ מחשבת את המכפלה
- מחשבת: $(q-1)\cdot (q-1) \cdot (q-1)$ (נוכיח בהמשך) שומרת ערך בסוד
 - $\phi(n)$ מייצרת פרמטר ציבורי e בתחום e בתחום
 - $d = e^{-1} \mod \phi(n)$ מחשבת:
 - (מפתח ציבורי) בערוץ פתוח $e,\,n$ בערוץ פיבוריים ullet
 - d :מפתח פרטי של אליס

RSA פקטוריזציה ב

- $\phi(n) = (p-1) \cdot (q-1)$ נוכיח כי
- :בסך הכול המספרים הקטנים מ $p\cdot q$ או שווים לו

$$\{1, 2, ..., p \cdot q\}$$

 $:p\cdot q$ או p שהם לא זרים ל $p\cdot q$ נוריד כפולות של

$$|\{1 \cdot p, \ 2 \cdot p, \ \dots, q \cdot p\}| = q$$

$$|\{1 \cdot q, 2 \cdot q, \dots, p \cdot q\}| = p$$

אבל הורדנו $p \cdot q$ פעמיים ולכן נוסיף ullet

$$\phi(n) = p \cdot q - p - q + 1 = (p-1)(q-1)$$
 = \bullet

ייצור חתימה ובדיקת חתימה ב RSA

- $S = M^d \ mod \ n$, M < n ייצור חתימה על ידי אליס:
 - בדיקת חתימה על ידי בוב:
- S משתמש במפתח הציבורי e, e, n בהודעה M (לא סודית), ובחותמת ullet
 - $S^e = M \bmod n$ בודק האם השוויון הבא מתקיים: •
- שוויון מתקיים החתימה אמיתית, שוויון לא מתקיים החתימה לא אמיתית •

ייצור חתימה ובדיקת חתימה ב RSA

- הוכחת נכונות השיטה:
- נבדוק את הוכחת הזהות על ידי בוב:

$$S^e = (M^d)^e \mod n$$

$$a^x = a^{x \bmod \phi(n)} \bmod n$$
 מאוילר ידוע כי:

$$S^e = (M^d)^e = M^{d \cdot e \bmod \phi(n)} \bmod n$$
 :ולכן:

:נקבל
$$d=e^{-1} \ mod \ \phi(n)$$
 נקבל

$$S^e = (M^d)^e = M^{d \cdot e \bmod \phi(n)} \bmod n = M \bmod n = M$$

הצפנה

- :על ידי בוב למסר מוצפן שרק אליס יכולה לפענח M הצפנת ההודעה M הצפנת ההודעה $C=M^e\ mod\ n$
 - :פענוח על ידי אליס

$$M = C^d \mod n$$

הצפנה

- הוכחת נכונות השיטה:
- :נבדוק את הפענוח על ידי אליס

$$C^d = (M^e)^d \mod n$$

$$a^x = a^{x \bmod \phi(n)} \bmod n$$
 מאוילר ידוע כי:

$$C^d = (M^e)^d = M^{e \cdot d \bmod \phi(n)} \bmod n$$
 :ולכן:

:נקבל
$$d=e^{-1}\ mod\ \phi(n)$$
 נקבל

$$C^d = (M^e)^d = M^{e \cdot d \mod \phi(n)} \mod n = M \mod n = M$$