Express Mail No: EV287336505US Appln. No.: 09/882,645

Date of Deposit: October 15, 2003

1. Cancel.

2. Cancel.

3. (as previously amended) A fuel cell system comprising:

a housing defining an anode chamber and a cathode chamber and including a catalyst, a protonically conductive but substantially electronically nonconductive membrane positioned between said anode chamber and said cathode chamber;

a conduit in communication with at least one of said anode chamber and said cathode chamber for directing effluent from at least one of said anode chamber and said cathode chamber; and

a coalescing surface for collecting effluent gas from said effluent received from at least one of said anode chamber and said cathode chamber via said conduit.

- 4. (as previously amended) The apparatus according to claim 3, wherein said coalescing surface is provided on a portion of a wall of said conduit, for collecting effluent gas from said effluent received from said anode chamber and/or said cathode chamber.
- 5. (as previously amended) The apparatus according to claim 3, wherein said coalescing surface is provided on a portion of a wall of said conduit, for collecting effluent gas from said effluent received from said cathode chamber.
- 6. (original) The apparatus according to claim 3, wherein said coalescing surface includes a vaulted shape.
- 7. (as previously amended) The fuel cell system according to claim 6, wherein said vaulted shape includes a dome.

Express Mail No: EV287336505US Appln. No.: 09/882,645
Date of Deposit: October 15, 2003

8. (as previously amended) The fuel cell system according to claim 3, wherein said conduit includes an outlet provided adjacent said coalescing surface.

- 9. (previously amended) The fuel cell system according to claim 5, wherein said conduit includes an outlet provided adjacent said coalescing surface.
- 10. (previously amended) The fuel cell system according to claims 8 or 9, wherein said outlet includes a first opening positioned at a base of said coalescing surface and a second opening provided above an uppermost portion of said coalescing surface.
- 11. (original) The fuel cell system according to claim 3, wherein said system is used in conjunction with a bipolar stack.
- 12. (original) The fuel cell system according to claim 3, wherein said system is used in conjunction with a plurality of protonically conductive membranes.
- 13. (original) The fuel cell system according to claim 12, wherein said plurality of protonically conductive membranes are assembled substantially in a single plane.
- 14. (previously amended) The fuel cell system according to claim 3, wherein said coalescing surface is provided in a coalescing chamber, said chamber placed in-line with said conduit.
- 15. (original) The fuel cell system according to claim 3, wherein said coalescing surface is provided on a surface of at least one of said anode chamber and said cathode chamber.
- 16. (previously amended) A method for separating gas from effluent produced in an anode or a cathode chamber of a fuel cell system, said system comprising:

a housing defining an anode chamber and a cathode chamber and including a catalyst, a protonically conductive but electronically non-conductive membrane positioned between said anode chamber and said cathode chamber; and

Express Mail No: EV287336505US . Appln. No.: 09/882,645

Date of Deposit: October 15, 2003

a coalescing surface in communication with at least one of said anode chamber and said cathode chamber for collecting effluent gas from effluent produced in said fuel cell;

said method comprising:

passing effluent produced in said fuel cell adjacent said coalescing surface; and

collecting gas via said coalescing surface from said effluent adjacent said coalescing surface.

- 17. (previously amended) The method according to claim 16, further comprising venting said collected gas when a volume of said collected gas reaches a predetermined amount, said collected gas being vented through an outlet provided adjacent said coalescing surface.
- 18. (previously amended) A fuel cell system comprising:

a housing defining an anode chamber and a cathode chamber and including a catalyst, a protonically conductive but electronically non-conductive membrane positioned between said anode chamber and said cathode chamber;

a first coalescing chamber containing a first coalescing surface for collecting effluent gas from said effluent received from said anode chamber; and

a second coalescing chamber including a second coalescing surface for collecting effluent gas from said effluent received from said cathode chamber;

Appln. No.: 09/882,645

Express Mail No: EV287336505US Date of Deposit: October 15, 2003

19. (previously presented) The method according to claim 17, wherein the vented gas is used to transport a fluid.

- 20. (previously presented) The method according to claim 19, wherein said fluid comprises effluent.
- 21. (previously presented) A method for moving a fluid in a fuel cell system comprising:

providing a fuel cell comprising a housing defining an anode chamber and a cathode chamber and including a catalyst, a protonically conductive but substantially electronically non-conductive membrane positioned between said anode chamber and said cathode chamber;

providing a coalescing chamber in communication with at least one of said anode chamber and said cathode chamber for receiving effluent therefrom, wherein said coalescing chamber includes a coalescing surface for collecting gaseous effluent from said effluent;

collecting gaseous effluent in said coalescing chamber;

transporting a fluid using said gaseous effluent collected by said coalescing chamber.

- 22. (previously presented) The method according to claim 21, wherein said liquid comprises effluent.
- 23. (previously presented) The method according to claim 21, wherein the fluid is transported proportionately with respect to the amount of gaseous effluent collected.
- 24. (presently amended) A self-driven pump for moving a fluid in a fuel cell system comprising:

Express Mail No: EV287336505US . Appln. No.: 09/882,645

Date of Deposit: October 15, 2003

an anode chamber;

a cathode chamber; and

a first-chamber including:

an inlet for receiving effluent from at least one either or both of said an anode chamber and said a cathode chamber;

a coalescing surface for coalescing a gas from said effluent, wherein coalesced gas is collected within said first chamber; and

an outlet, wherein collected gaseous effluent is vented via said outlet to transport a fluid.

- 25. (previously presented) The self-driven pump according to claim 24, wherein the fluid comprises effluent.
- 26. (previously presented) The pump according to claim 24, wherein fluid is transported proportionately with respect to the amount of gaseous effluent collected.

REMARKS

The application has been reviewed in light of the outstanding Action. Claims 3-24 are pending with claims 3, 16, 18, 21 and 24 being independent. Claims 1 and 2 have been canceled without prejudice and/or disclaimer of subject matter. Claim 24 has been amended. Each of the points raised in the outstanding Action are addressed below.