

CSPE65: MACHINE LEARNING TECHNIQUES AND PRACTICES

Assignment - 2

106119100 - Rajneesh Pandey

Problem Statements

- 1. Do the following for the given dataset:
 - a. Visualize the dataset using a plot (<u>Library</u>: Seaborn and Matplotlib) and create Decision Tree Algorithm to its complete depth (visualize the tree after construction).
 - Calculate the following evaluation metrics → Accuracy, Precision, Recall, F1
 Score, Confusion Matrix and discuss what you observe.
 - b. Create Decision Tree Algorithm with hyperparameter tuning (visualize the tree after construction).
 - Calculate the following evaluation metrics → Accuracy, Precision, Recall, F1
 Score, Confusion Matrix and discuss what you observe.
- 2. Do the following for the given dataset:
 - a. Apply k-Nearest Neighbour algorithm on the given dataset (Find the best value for "k" using the method explained in class).
 - Calculate the following evaluation metrics → Accuracy, Precision, Recall, F1 Score, Confusion Matrix and discuss what you observe.
 - b. Apply Min-Max Normalization on the given dataset and visualize it using a plot; Then, repeat Section "2. a" fully on the Normalized dataset.
 - c. Plot ROC curves and calculate the corresponding AUC values for Section "2. a" and "2. b" and discuss what you observe.

Code is written on Kaggle Notebook

Link of the notebook : https://www.kaggle.com/rajneesh1708/106119100-ml-assignment-2/edit

Importing the required libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
```

Load dataset and understanding it by seeing the data

Checking for rows duplicate

```
Checking for rows duplicacy

[3]: any(df.duplicated())

[3]: False
```

Mapping the target variables, for Male as 1 and Female And checking the replacement done.

Checking the outliers present in the dataset by using Box and Whiskers Plot

Scatter Plot

```
fig = plt.figure(figsize = (8,8))
    ax = fig.add_subplot(1,1,1)
    ax.set_xlabel('Height', fontsize = 15)
    ax.set_ylabel('Weight', fontsize = 15)
    ax.set_title('Scatter Plot', fontsize = 20)
    y_values = [1, 0]
    colors = ['b', 'y']
    markers = ['x', 'o']
    for t, color, marker in zip(y_values,colors,markers):
        indicesToKeep = target['Gender'] == t
        ax.scatter(df.loc[indicesToKeep, 'Height'], df.loc[indicesToKeep, 'Weight'], c = color, s=50, marker=marker)
    ax.legend(y_values)
    ax.grid()
```


Split our dataset into training and testing dataset in the ratio of 80-20 respectively.

```
x_train, x_test, y_train, y_test = train_test_split(df, target, test_size=0.2, random_state=1)
print(len(x_train), len(x_test), len(y_train), len(y_test))
print(x_test.head(), y_test.head())

399 100 399 100
    Height    Weight
110 1.103653e+06 125.121006
147 1.521503e+06 45.075623
307 1.030528e+06 45.075623
307 1.030528e+06 45.0753982
326 1.427560e+06 115.348483
189 1.237990e+06 52.562252    Gender
110    0
147    0
307    0
326    1
189    0

+ Code    + Markdown
```

Check for class imbalance i.e. we have data belonging to both the classes in training and testing dataset

As I can see from the plots, both the classes are split in appropriate proportions. So our model will not become biased after training.

Question 1A and 1B

Intialising the DecisionTreeClassifier

Printing the required evaluation metrics (1A)

```
[11]:
         print("Confusion Matrix : \n",confusion_matrix(y_test, predict))
         print("Accuracy Score : ",accuracy_score(y_test, predict))
print("Precision Score : ",precision_score(y_test, predict))
         print("Recall Score : ",recall_score(y_test, predict))
         print("F1 Score : ",f1_score(y_test, predict))
         target_names = ['Female', 'Male']
         print(classification_report(y_test, predict, target_names=target_names))
      Confusion
[[62 0]
[ 0 38]]
Accuracy Score : 1.0
Precision Score : 1.0
       Confusion Matrix:
       Recall Score :
F1 Score : 1.0
                       precision
                                       recall f1-score
                                                              support
              Female
                                                      1.00
                Male
                              1.00
                                                      1.00
                                                      1.00
                                                                   100
           accuracy
                                          1.00
                                                      1.00
1.00
                              1.00
          macro avg
       weighted avg
```

As we can see from the evaluation metrics, the model has an accuracy of 100% even without hyperparameter tuning. Since this is a small and easy dataset, we were able to get a 100% accuracy. But this need not be true for complex datasets.

```
fig = plt.figure(figsize=(10,10))
  out = tree.plot_tree(fittedModel, feature_names=["Height", "Weight"], class_names=["Female", "Male"], filled=True)
  for outs_ in out:
        arrow = outs_.arrow_patch
        if arrow is not None:
            arrow.set_edgecolor('yellow')
  out

[12... [Text(0.4, 0.83333333333334, 'Height <= 1349001.0\ngini = 0.452\nsamples = 399\nvalue = [261, 138]\nclass = Female'),
        Text(0.2, 0.5, 'gini = 0.0\nsamples = 200\nvalue = [200, 0]\nclass = Female'),
        Text(0.6, 0.5, 'Weight <= 69.781\ngini = 0.425\nsamples = 199\nvalue = [61, 138]\nclass = Male'),
        Text(0.4, 0.166666666666666, 'gini = 0.0\nsamples = 61\nvalue = [61, 0]\nclass = Female'),
        Text(0.8, 0.16666666666666, 'gini = 0.0\nsamples = 138\nvalue = [0, 138]\nclass = Male')]</pre>
```


This is the obtained Decision tree gridsearchCV is used to tune the hyperparameters.

'min_impurity_decrease' is an efficient parameter to prevent overfitting of the model.

Question 1 B

Heat map

```
[16]:
         predict = fittedModel.predict(x_test)
         sns.set(font_scale=1.5)
        fig, ax = plt.subplots(figsize=(4, 4))
ax = sns.heatmap(confusion_matrix(y_test, predict), annot=True, cbar=True)
        plt.xlabel("True label")
plt.ylabel("Predicted label")
         print(accuracy_score(y_test, predict))
         print(precision_score(y_test, predict))
         print(recall_score(y_test, predict))
         print(f1_score(y_test, predict))
                                            60
     Predicted label
                   62
                                0
                                            40
                                            20
                    0
                   0
                                1
                    True label
```

Here we got the same accuracy for both the trees.

But, for new complex real time data, this hyperparameter tuned decision tree may perform better

```
[18]:
      fig = plt.figure(figsize=(10,10))
      out = tree.plot_tree(fittedModel, feature_names=["Height", "Weight"], class_names=["Female", "Male"], filled=True)
         arrow = o.arrow_patch
         if arrow is not None:
                 Height <= 1349001.0
                      gini = 0.452
                    samples = 399
                  value = [261, 138]
                    class = Female
                              Weight <= 69.781
           gini = 0.0
                                 gini = 0.425
         samples = 200
                                samples = 199
        value = [200, 0]
                               value = [61, 138]
         class = Female
                                 class = Male
                       gini = 0.0
                                               gini = 0.0
                                            samples = 138
                     samples = 61
                    value = [61, 0]
                                           value = [0, 138]
                    class = Female
                                             class = Male
```

Reshape y_train and y_test to a one dimensional numpy array to suit KNN input format (avoid warnings)

Question 2A

Implementation of KNN

- 1. Import necesaary class from sklearn
- 2. Initialise model
- 3. Fit model on training dataset

Evaluating the model-confusion matrix and classification report

```
[23]:
          print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
       [[55 7]
[ 3 35]]
                        precision
                                        recall f1-score
                                                             support
                              0.95
0.83
                                          0.89 0.92
                                                      0.92
0.88
                                                                     62
38
           accuracy
                                                                    100
       macro avg
weighted avg
                              0.89
0.90
                                          0.90
0.90
                                                      0.90
0.90
                                                                    100
100
```


Creating a new model with n_neighbors parameter as 25

Visualising the dataset (data points under each target class) before normalization

Question 2 B

Min-max normalisation
Use same scalar we used for the train split to transform the test split

Visualizing data points after normalization

```
fig = plt.figure()
       ax = fig.add_subplot(1, 1, 1)
       x = scaled_train[:,0]
       y = scaled_train[:,1]
       ax.scatter(x, y, color = 'lightgreen')
plt.title("Visualze min-max normalised data")
       plt.xlabel("Height")
       plt.ylabel("Weight")
[33... Text(0, 0.5, 'Weight')
               Visualze min-max normalised data
         1.0
         0.8
     Weight
9.0
9.0
         0.2
         0.0
                                 Height
      + Code
                    + Markdown
```

finding the optimal K value by plotting the error vs K value. But this time I use the normalised dataset to train the model

```
errors = []
# Trying different K values
for i in range(1, 60):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(scaled_train, y_train)
    pred_i = knn.predict(scaled_test)
    errors.append(np.mean(pred_i != y_test))
```



```
[36]:
                                                                                                                                                                                                                                                                                                             print('Error is',errors[i-1],', When k is',i)
                                                                                                                   Error is 0.0 , When k is 1
Error is 0.0 , When k is 2
Error is 0.0 , When k is 3
Error is 0.0 , When k is 4
Error is 0.0 , When k is 5
Error is 0.0 , When k is 6
Error is 0.0 , When k is 6
Error is 0.0 , When k is 7
Error is 0.0 , When k is 8
Error is 0.01 , When k is 9
Error is 0.01 , When k is 11
Error is 0.01 , When k is 12
Error is 0.01 , When k is 12
Error is 0.01 , When k is 15
Error is 0.01 , When k is 15
Error is 0.01 , When k is 15
Error is 0.0 , When k is 20
Error is 0.0 , When k is 22
Error is 0.0 , When k is 23
Error is 0.0 , When k is 25
Error is 0.0 , When k is 26
Error is 0.0 , When k is 28
Error is 0.0 , When k is 30
Error is 0.0 , When k is 40
Error is 0.0 , When k is 50
Error
```

K=5 is the optimal value as obtained from the above graph. Now I will create a new model with n_neighbors tuned to 5

Classification Report and confusion matrix of the predicted values

```
[39]:
        print(classification_report(y_test, y_pred))
                                   recall f1-score support
                     precision
                          1.00
1.00
                                               1.00
1.00
                                                           100
          accuracy
                                                1.00
                                     1.00
1.00
                                               1.00
1.00
                                                           100
100
      macro avg
weighted avg
[40]:
        sns.set(font_scale=1.5)
        fig, ax = plt.subplots(figsize=(4, 4))
        ax = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cbar=True)
        plt.xlabel("True label")
        plt.ylabel("Predicted label")
[40... Text(4.5, 0.5, 'Predicted label')
                                         60
      Predicted label
                  62
                              0
                                         - 40
                                          20
                  0
                               1
                   True label
```

Again Using gridsearch to find the best parameters (like for n_neighbors)

Question 2C

```
ROC curves and AUC

Question 2 C

[44]: from sklearn.metrics import plot_roc_curve

[45]: model_diff_neighbors = KNeighborsClassifier(n_neighbors=5) model_diff_neighbors.fit(x_train, y_train) plot_roc_curve(model_diff_neighbors, scaled_test, y_test)
```


Got slightly bent roc curve (AUC not exactly one - rounded off in the plot) if I use different number of n_neighbors like 11 as the best hyperparameter is 5 for n_neighbors

Perfect ROC curve

Perfect plot with well tuned hyperparameter(n_neighbors=5) and fitted on normalised data. AUC is one, hence this is the most optimum solution

Thankyou