

Operadores Matemáticos y Lógicos

CS1100 - Introducción a Ciencia de la Computación UTEC

Logro de la Sesión

Al finalizar la unidad, estarás en la capacidad de:

Utilizar adecuadamente los operadores matemáticos y lógicos

Calcular el valor

$$+ + + + + = 45$$
 $+ + + + = 23$
 $+ + + + = 10$
 $+ + + + + = 10$
 $+ + + + + + + + = ??$

Operadores matemáticos

Los operadores matemáticos (en orden de precedencia) son:

```
potencia
Negación matemática
*,/,//, % multiplicación, división, división entera y modulo
+, - suma, resta
```

NOTA: Adicionalmente se puede utilizar los paréntesis () para agrupar y cambiar la precedencia.

Operadores matemáticos

Algunas características de los operadores matemáticos:

- Se respeta la precedencia de los operadores
- Operaciones con la misma precedencia se evalúan de izquierda a derecha
- Los paréntesis permiten modificar las precedencias
- El operador unario de negación tiene menor precedencia que la potencia
- Los operadores matemáticos tienen mayor precedencia que los operadores lógicos

Operadores lógicos - conectores lógicos

Los conectores lógicos son:

and Es True si ambos son True

or Es True si al menos uno es True

not Convierte el True en False y viceversa

Tabla de Verdad:

а	b	a and b	a or b	not a
True	True	True	True	False
True	False	False	True	False
False	True	False	True	True
False	False	False	False	True

Operadores Lógicos - operadores de relación

Los operadores de relación son:

- > mayor
- >= mayor o igual
- < menor
- <= menor o igual
- != diferentes
- == iguales

Operadores lógicos

Algunas características de los operadores lógicos:

- Conectores lógicos tienen mayor precedencia que operadores de relación
- Operaciones con la misma precedencia se evalúan de izquierda a derecha
- Los paréntesis permiten modificar las precedencias
- Tienen menor precedencia que los operadores matemáticos

Manualmente calcular las respuestas

```
1 - 2 ** 2

2 4 > 4.0

3 5 + 3 / 2 * 4

4 5 + 1 != 3 * 10

5 5 + (1 != 3) * 10

6 (1 == 4) * 50

7 (10 < 4) or (7 > 9) and (5 > 4.5)

8 (5 > 4.5) and (7 > 9 or 10 < 4)
```

Solución de expresiones

Índice de Masa Corporal - BMI

Desarrollar un programa que resuelva el siguiente enunciado:

Escribir un programa que calcule el índice de la masa corporal (BMI) de una persona. El programa debe empezar leyendo la altura y el peso de una persona.

La altura debe ser leída en metros y el peso en kilogramos, la fórmula es:

$$BMI = \frac{peso}{altura \times altura}$$

Solución de Indice de Masa Corporal - BMI

```
altura = float(input("Ingrese altura (metros) : "))

peso = float(input("Ingrese peso (kilogramos) : "))

BMI = peso/(altura * altura)

print("El Indice de masa corporal es:", BMI)
```

Efecto Wind Chill (Percepción de Frio)

Desarrollar un programa que resuelva el siguiente enunciado:

Cuando el viento sopla en un clima frio, el aire se siente más frio que lo que realmente es debido al incremento a la tasa de enfriamiento de los objetos más calientes a la temperatura de ambiente, por ejemplo la temperatura del cuerpo. Este efecto se conoce como Wind Chill.

En 2001, Canada, Reino Unido y EE.UU. adoptaron la siguiente fórmula para calcular el índice del efecto Wind Chill. donde T_a es la temperatura en grados Centígrados y Ves la velocidad del viento en Kilómetros por hora.

$$WCI = 13.12 + 0.6215T_a - 11.37V^{0.16} + 0.3965T_aV^{0.16}$$

Escribir un programa que empiece leyendo la temperatura y velocidad del viento desde el teclado. Una vez leídos los valores el programa debería mostrar el índice del efecto Wind Chill redondeado a dos decimales:

NOTA: El índice es solo valido para temperaturas menores o iguales a 10 grados Centígrados y a velocidades menores o iguales a 4.8 Km/hr.

Solución de Percepción de Frio - WCI

```
temperatura = float(input("Temperatura (Centigrados) Max=10 : "))
velocidad = float(input("Velocidad (Km/h) Min=4.8 : "))

WCI = 13.12 + \
0.6215*temperatura - \
11.37*velocidad**0.16 + \
0.3965*temperatura*velocidad**0.16

# redondeando a 2 d\'igitos
WCI = int(WCI * 10**2) / 10**2

print("La percepcion de Frio es:", WCI)
```

Verificar si es Tríangulo

Desarrollar un programa que resuelva el siguiente enunciado:

Sean s_1 , s_2 y s_3 las longitudes de los tres lados de un triángulo, para verificar si esos tres lados realmente forman un triángulo debe de cumplirse la propiedad de que la suma de 2 de los lados sea mayor al otro lado, es así por ejemplo que la suma (a) $s_1 + s_2 > s_3$, (b) $s_2 + s_3 > s_1$ y (c) $s_1 + s_3 > s_4$, si se cumplen estas 3 ecuaciones podemos decir que los 3 lados forman un triángulo.

Desarrollar un programa que lea la longitud de los lados de un triángulo y que muestre "ES TRIANGULO VALIDO" si se cumple la regla mencionada arriba o que muestre "NO ES TRIANGULO VALIDO" si no se cumple la regla.

Solución de Verificar si es Triangulo

```
s1 = float(input('Ingrese primer lado: '))
s2 = float(input('Ingrese segundo lado: '))
s3 = float(input('Ingrese tercer lado: '))

es_triangulo = (s1 + s2 > s3) and (s1 + s3 > s2) and (s2 + s3 > s1)

respuesta = 'NO '*(not es_triangulo) + 'ES TRIANGULO VALIDO'
print(respuesta)
```

Área de un Tríangulo

Desarrollar un programa que resuelva el siguiente enunciado:

Usualmente para el cálculo del área de un tríangulo se utiliza la fórmula:

$$Area = \frac{base \times altura}{2}$$

Pero existe un método que permite cálcular el área utilizando la longitud de cada uno de los tres lados. siendo s_1 , s_2 y s_3 las longitudes de los tres lados debemos calcular primero el valor S:.

$$S = \frac{s_1 + s_2 + s_3}{2}$$

Entonces el cálculo del área del triángulo es:

$$area = \sqrt{S \times (S - s_1) \times (S - s_2) \times (S - s_3)}$$

Desarrollar un programa que lea la longitud de los lados del triángulo y que muestre el área.

NOTA: Como podría utilizar el anterior programa para verificar si la longitud de los lados de un triángulo es correcta.

Solución de Area de un Tríangulo

Invertir un número

Desarrollar un programa que resuelva el siguiente enunciado:

Desarrollar un programa que invierta un número de 5 dígitos.

Ejemplo: Si el número ingresado es 12345 el resultado debe ser 54321.

Solución de Area de un Tríangulo

```
# ingresando el numero
1
      numero = int(input('Ingrese un numero entero de 5 digitos:'))
      resultado = 0
      resultado = resultado * 10 # 1er digito
      resultado += numero % 10
      numero = numero // 10
      resultado = resultado * 10 # 2do digito
      resultado += numero % 10
      numero = numero // 10
      resultado = resultado * 10 # 3er digito
10
      resultado += numero % 10
11
      numero = numero // 10
12
      resultado = resultado * 10 # 4to digito
13
      resultado += numero % 10
14
      numero = numero // 10
15
      resultado = resultado * 10 # 5to digito
16
      resultado += numero % 10
17
      numero = numero // 10
18
      #imprimiendo resultado
19
      print(resultado)
20
```

Área de un Polígono Regular

Desarrollar un programa que resuelva el siguiente enunciado:

Un polígono es regular si sus lados son de la misma longitud y el ángulo entre lados adyacentes es igual. El área de un polígono regular puede ser calculado usando la siguiente formula, donde (s) es la longitud de los lados y (n) es el número de lados:

$$area = \frac{n \times s^2}{4 \times tan(\frac{\pi}{n})}$$

NOTA: Para el cálculo se requiere el valor de PI y llamar a la función tan en la biblioteca math:

from math import pi, tan

1

Solución de Área de un Polígono Regular

```
from math import pi, tan

s = float(input("Ingrese la longitud de lado: "))

n = int(input("Ingrese n\'umero de lados: "))

area = (n * s**2)/(4*tan(pi/n))

# redondeando a 2 d\'igitos
area = int(area * 10**2) / 10**2
print(int(area))
```

Distancia entre 2 puntos en la tierra

Desarrollar un programa que resuelva el siguiente enunciado:

La Superficie de la tierra es curva y la distancia entre grados de longitud varia con los grados de latitud. Como resultado, buscar la distancia entre 2 puntos en la superficie de la tierra es más complicado que simplemente usar el teorema de Pitágoras.

Dado (t_1,g_1) y (t_2,g_2) que son las latitudes (t) y longitudes (g) de 2 puntos en la superficie de la tierra, la distancia entre esos puntos siguiendo la superficie de la tierra se calcula en kilómetros usando la siguiente formula:

$$distancia = 6371.01 \times arccos(sen(t_1) \times sen(t_2) + cos(t_1) \times cos(t_2) \times cos(g_1 - g_2))$$

NOTA: Para el cálculo se requiere llamar a las funciones acos, sin, cos y al valor PI en la biblioteca math. Los grados de latitud y longitud deben convertirse a radianes para que puedan ser usados por las funciones trigonométricas.

from math import atan, cos, sin, pi

1

Solución de Distancia entre 2 puntos en la tierra

```
from math import acos, sin, cos, pi
1
      print('Ingrese el punto 1')
      t1 = float(input("Ingrese la latitud 1: "))
      g1 = float(input("Ingrese la Longitud 1: "))
      print('Ingrese el punto 2')
      t2 = float(input("Ingrese la latitud 2: "))
      g2 = float(input("Ingrese la Longitud 2: "))
      distancia = 6317.01*acos(sin(pi*t1/180)*sin(pi*t2/180) +
10
                     cos(pi*t1/180)*cos(pi*t2/180)*cos(pi*(g1-g2)/180))
11
12
      #redondeando a 2 decimales
13
      distancia = int(distancia*10**2)/10**2
14
      print("La distancia entre punto 1 y punto 2 es:", distancia)
15
```

Evaluación

Responda las siguientes preguntas:

- ¿Qué es un operador lógico matemático en Python?
- Mencione alguna diferencia relevante entre ambos tipos de operadores?
- ¿Para qué sirve un operador relacional? De un ejemplo
- ¿Para qué sirve un conector lógico? De un ejemplo
- ¿Qué es la precedencia de una operación? ¿Por qué es importante?
- ¿Por qué son utiles los parentesis?
- ¿Qué diferencia existe entre el operador / y el operador //?
- ¿Para qué sirve el operador %?
- ¿Cuál es el operador potencia? ¿Se puede calcular con el operador potencia un raíz cuadrada? De un ejemplo.

Cierre

En esta sesión se ha aprendido:

- A representar algunas de las operaciones matemáticas por medio de operadores lógico matemáticos definidos en Python.
- Entender algunas característica de los operadores en especial el concepto de precedencia y utilizarlo adecuadamente.