

PRODUCT SPECIFICATION

PRODUCT: ESP MODULE PART NO: 830-00021

Prepared By	Checked By	Approved By		
МН			790-0	0006
COOLIT SYSTEMS, INC.			REV.	A00

PROPRIETARY NOTE

This item is the property of CoolIT Systems, Calgary Alberta, Canada and contains confidential and trade secret information. This item may not be transferred from the custody of CoolIT Systems, except as authorized by CoolIT Systems and then only by way of loan for limited purposes. It must not be reproduced in whole or in part and must be returned to CoolIT Systems upon request and in all events upon completion of the purpose of the loan. Neither this item nor the information it contains may be used by or disclosed to persons not having a need for such use or disclosure consistent with the purpose to the loan without prior written consent of CoolIT Systems.

1. Table of Contents

1.	Table o	f Contents	. 1
2.	Summa	ıry	. 2
3.	Block D	riagrams	. 2
		Components	
	-	Usage	
		iical Dimensions	
5.	Pinouts		. 5
		al Characteristics	
Apper	ndix A	Bill of Materials	. 8
Apper	ndix B	Schematics	. 9
		Layout	

2. Summary

This document details the specifications of the Coolit Systems, Inc. ESP Wireless Module, P/N: 830-00021.

The ESP Wireless Module is a 2.54GHz, IEEE 802.15.4, transceiver for enabling Coolit Systems Node PCBs (Carrier Boards) to communicate wirelessly across a PAN (Personal Area Network), for monitoring and control of PC cooling devices, including fans, coolant pumps, temperature sensors, and self-contained liquid cooling systems.

3. Block Diagrams

Figure 1 - ESP Module Block Diagram

3.1 Major Components

Microcontroller / Transceiver

Freescale Semiconductor MC13224V Integrated 802.15.4 Transciever ARM7 Core

Antenna

Johanson Technology 2450AT18A100

On-board chip antenna, 500mW max input power 0.5dBi peak gain (typ.), -0.5dBi avg. gain (typ).

Crystal

NDK NX3225SA-24.000000MHZ 24MHz Crystal, +/-15ppm

Figure 2 - Typical Usage of the ESP Node

3.2 Typical Usage

The ESP Module enables wireless communications between Carrier Boards within a desktop PC. In Fig.2 above, a typical scenario is shown, where the ESP Module passes wireless communications between a USB I/O Board and a Fan Node I/O Board. The USB Carrier board bridges wired communications between the host operating system (via USB) and the ARM7 controller on the ESP Module. The Fan Node carrier board monitors and controls PC devices such as fans, temperature sensors, and chassis lighting.

4. Mechanical Dimensions

The ESP Module measures 0.945" (24mm) x 0.750" (19.05mm), with a maximum height, including components, of 0.084" (2.14mm).

Figure 3 - ESP Module Dimensions

5. Pinouts

The optional JTAG/UART programming pins on the topside of the ESP Module has the following pinout. This connector is not installed for production.

Pin	Net Name	Description
1	+3.3V	3.3V Input for during factory programming
2	UART1_TX	Debug serial port / optional programming port
3	UART1_RX	и
4	UART1_CTS	и
5	UART1_RTS	п
6	RESET#	RESET used during programming operation
7	JTAG_TMS	JTAG / debug port
8	JTAG_TCK	и
9	JTAG_TDI	п
10	JTAG_TDO	п
11	JTAG_RTCK	ш
12	GND	Ground conection used during factory prog.

Table 1 - JTAG/UART Pinout for Programming / Debug

The ESP Module itself has 33 solderable connections on the bottom side of the PCB for I/O to various carrier boards. The pinout is as follows:

Pin	Net Name	Description
1	GND	Ground
2	ADC0	Analog input channel 0
3	ADC1	Analog input channel 1
4	ADC2	Analog input channel 2
5	ADC3	Analog input channel 3
6	UART2_RX	UART Port 2
7	UART2_TX	ш
8	UART1_RTS	UART Port 1
9	UART1_CTS	ш
10	UART1_RX	ш
11	UART1_TX	и
12	I2C_SDA	I ² C Interface
13	I2C_SCL	ш
14	TMR3	Timer Channel 3
15	TMR2	Timer Channel 2
16	TMR1	Timer Channel 1
17	TMR0	Timer Channel 0
18	SPI_SCK	SPI Port
19	SPI_MOSI	ш
20	SPI_MISO	ш
21	SPI_SS	ш
22	GND	Ground
23	KBI7	GPIO
24	KBI6	GPIO
25	KBI5	GPIO
26	KBI4	GPIO
27	KBI3	GPIO
28	COIL_BK	Unused
29	LREG_BK_FB	+3.3V Input Voltage
30	+3.3V	+3.3V Input Voltage
31	KBI2	GPIO
32	KBI1	GPIO
33	KBI0	GPIO

Table 2 - Carrier Board I/O Connections

6. Electrical Characteristics

Rating	Min	Max	Units
Storage Temperature	-55	125	οС
Reflow Soldering Temperature		260	°С
Power Supply Voltage (Vcc)	2.0	3.6	V
Digital Input Voltage	-0.3	Vcc + 0.2	V
RF Input Power		10	dBm

Table 3 – Absolute Maximum Ratings

Characteristic	Min	Max	Units
Power Supply Voltage (Vcc)	2.0	3.6	V
Operating Temperature Range	-10	70	°C

Table 4 – Recommended Operating Conditions

Component	Voltage (V)	Current (mA)	Power (mW)
MC13224V	3.3	31 (max) ¹	102.3
R4 (Reset Pullup)	3.3	0.33	1.1
TOTAL			103.4mW

Table 5 - Power Requirements

Rating	Min	Max	Units
Input Frequency	2.405	2.480	GHz
RF Transmit Power (max.)		4.0	dBm
RF Channels		15	
RF Transmit Power Range		6.5	dB

Table 6 – RF Characteristics

_

¹ Transmit current, All RAM active, Radio TX on (sending @ 0dBm), CPU clk @ 2MHz

Appendix A Bill of Materials

ltem	Part_Number	Qty	Ref	Description	MFG1	MFG_PN1
1	100-00918-00	1	U1	IC, MC13224V, Microcontroller, ARM7 Core, ZigBee Transciever, LGA99	Freescale Semiconductor	MC13224V
2	100-00919-00	1	U2	IC, Chip Antenna, 2.45GHz Antenna	Johanson Technology	2450AT18A100
3	300-00116-00	1	Y1	CRYSTAL, 24MHz, 8pF, SMD 3.2mm x 2.5mm	NDK	NX3225SA-24.000000MHZ
4	450-11401-00	2	C3,C9	CAP, 0.1uF, X7R, +/-20%, 16V, 0402	VENKEL	C0402X7R160-104MNP
5	450-11463-00	1	C2	CAP, 10uF, X5R, +/-20%, 6.3V, 0603	Panasonic	ECJ-1VB0J106M
6	500-02267-00	1	R4	RES, 10.0k ohms, +/-1%, 0.063W, 0402	Rohm	MCR01MZPF1002
7	500-06954-00	1	R3	RES, 0 ohms, +/-5%, 0.063W, 0402	Panasonic	ERJ-2GE0R00X

Table 7 - Bill of Materials

Appendix B Schematics

Appendix C Layout

Figure 7 - Top Solder Mask

Figure 5 - Bottom Signal

Figure 8 – Top Paste Mask

Figure 6 – Top Silkscreen

Figure 9 – Bottom Solder Mask

Figure 10 – Component Placement

Figure 11 – Bottom Side Pad Layout