Daugiakomponenčiai lėtieji poliaritonai šaltųjų atomų dujose

Julius Ruseckas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas

Rugsėjo 28, 2011

Planas

- Įvadas
 - Lėta šviesa
 - Lėtos šviesos išsaugojimas ir atgaminimas
 - Stacionari šviesa
- Daugiakomponentė lėta šviesa
 - Létos šviesos osciliacijos
 - Dirac'o lygtis lėtai šviesai
 - Optinio sūkurio perkėlimas
 - Daugiakomponentė stacionari šviesa
- 3 Išvados

Planas

- Įvadas
 - Lėta šviesa
 - Lėtos šviesos išsaugojimas ir atgaminimas
 - Stacionari šviesa
- Daugiakomponentė lėta šviesa
 - Lėtos šviesos osciliacijos
 - Dirac'o lygtis lėtai šviesai
 - Optinio sūkurio perkėlimas
 - Daugiakomponentė stacionari šviesa
- 3 Išvados

Planas

- Įvadas
 - Lėta šviesa
 - Lėtos šviesos išsaugojimas ir atgaminimas
 - Stacionari šviesa
- Daugiakomponentė lėta šviesa
 - Lėtos šviesos osciliacijos
 - Dirac'o lygtis lėtai šviesai
 - Optinio sūkurio perkėlimas
 - Daugiakomponentė stacionari šviesa
- Išvados

Du šviesos pluoštai: zonduojantis ir valdantysis.

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

- ullet Šuolių g o e ir s o e destruktyvi interferencija
- Sugerties išnykimas
- Elektromagnetiškai sukeltas praskaidrėjimas
- Tamsi būsena
- Labai lengvai suardoma
- Labai siauras skaidrumo langas

Labai siauras skaidrumo langas

- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

- Labai siauras skaidrumo langas
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

- Labai siauras skaidrumo langas
- Medžiaga su didele dispersija
- Mažas grupinis greitis lėta šviesa

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantįjį lazerį, zonduojantis šviesos pluoštas atsigamina

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantįjį lazerį, zonduojantis šviesos pluoštas atsigamina

- Informacija apie sklindančią šviesą yra elektroniniame sužadinime
- Išjungus valdantį lazerį, infromacija elektroniniame sužadinime išlieka
- Vėl įjungus valdantįjį lazerį, zonduojantis šviesos pluoštas atsigamina

- Elektromagnetinis laukas sklinda kartu su sukinine banga
- Spinduliavimas stumia sukininę bangą pirmyn
- Jjungus papildomą zonduojantį lazerį:
- Spinduliavimas stumia sukininę bangą pirmyn ir atga
- Stacionari šviesa

- Elektromagnetinis laukas sklinda kartu su sukinine banga
- Spinduliavimas stumia sukininę bangą pirmyn
- Jjungus papildomą zonduojantį lazerį:
- Spinduliavimas stumia sukininę bangą pirmyn ir atga
- Stacionari šviesa

- Elektromagnetinis laukas sklinda kartu su sukinine banga
- Spinduliavimas stumia sukininę bangą pirmyn
- Įjungus papildomą zonduojantį lazerį:
- Spinduliavimas stumia sukininę bangą pirmyn ir atga
- Stacionari šviesa

- Elektromagnetinis laukas sklinda kartu su sukinine banga
- Spinduliavimas stumia sukininę bangą pirmyn
- Įjungus papildomą zonduojantį lazerį:
- Spinduliavimas stumia sukininę bangą pirmyn ir atgal
- Stacionari šviesa

- Elektromagnetinis laukas sklinda kartu su sukinine banga
- Spinduliavimas stumia sukininę bangą pirmyn
- Įjungus papildomą zonduojantį lazerį:
- Spinduliavimas stumia sukininę bangą pirmyn ir atgal
- Stacionari šviesa

Kvadratinė dispersija

 Stacionarus poliaritonas (normalioji spinduliuotės moda) su nelygia nuliui m_{eff}

- Kvadratinė dispersija
- Stacionarus poliaritonas (normalioji spinduliuotės moda) su nelygia nuliui m_{eff}

Daugiakomponentė lėta šviesa

Ar gali būti sukurta lėta šviesa sudaryta iš keleto sąveikaujančių laukų?

Pirmas bandymas: dviguba A schema

Naudojama stacionariai šviesai

- Gali būti sudaryta tik viena tamsi būsena
- Gali būti tik vienas tamsios būsenos poliaritonas, sklindantis be sugerties.
- Daugiakomponentėi lėtai šviesai reikia įtaukti daugiau lygmenų.

- Gali būti sudaryta tik viena tamsi būsena
- Gali būti tik vienas tamsios būsenos poliaritonas, sklindantis be sugerties.
- Daugiakomponentėi lėtai šviesai reikia įtaukti daugiau lygmenų.

- Gali būti sudaryta tik viena tamsi būsena
- Gali būti tik vienas tamsios būsenos poliaritonas, sklindantis be sugerties.
- Daugiakomponentėi lėtai šviesai reikia įtaukti daugiau lygmenų.

- Gali būti sudaryta tik viena tamsi būsena
- Gali būti tik vienas tamsios būsenos poliaritonas, sklindantis be sugerties.
- Daugiakomponentėi lėtai šviesai reikia įtaukti daugiau lygmenų.

Dviguba tripodo schema

Galima eksperimentinė realizacija

- Atomai tokie kaip rubidis ar natris.
- Šuoliai tarp hypersmulkių lygmenų su F = 1 ir F = 2 magnetinių būsenų.
- Abu zonduojantys pluoštai apskritimiškai σ^+ poliarizuoti, visi keturi valdantieji pluoštai apskritimiškai σ^- poliarizuoti.

Dviguba tripodo schema

 \mathcal{E}_1 ir \mathcal{E}_2 yra susieti jei $\langle B_1|B_2\rangle \neq 0$

Dviguba tripodo schema

Ribiniai atvejai:

- $\langle B_1|B_2\rangle=0$ du nesusiję tripodai
- $\langle B_1|B_2\rangle=1$ dviguba Λ schema
- $0 < |\langle B_1 | B_2 \rangle| < 1$ du susieti tripodai

Dviguba tripodo schema

Ribiniai atvejai:

- $\langle B_1|B_2\rangle=0$ du nesusiję tripodai
- $\langle B_1 | B_2 \rangle = 1$ dviguba Λ schema
- $0 < |\langle B_1 | B_2 \rangle| < 1$ du susieti tripodai

Dviguba tripodo schema

Ribiniai atvejai:

- $\langle B_1|B_2\rangle=0$ du nesusiję tripodai
- $\langle B_1|B_2\rangle=1$ dviguba Λ schema
- $0 < |\langle B_1 | B_2 \rangle| < 1$ du susieti tripodai

Dviguba tripodo schema

Ribiniai atvejai:

- $\langle B_1|B_2\rangle=0$ du nesusiję tripodai
- $\langle B_1|B_2\rangle=1$ dviguba Λ schema
- ullet 0 < $|\langle B_1|B_2\rangle|$ < 1 du susieti tripodai

- Grupinis greitis aprašomas nediagonalia matrica
- Atskiri zonduojantys pluoštai neturi apibrėžto grupinio greičio
- Tik tam tikros abiejų zonduojančių pluoštų kombinacijos sklinda per atomų dujas su apibrėžtais (ir skirtingais) greičiais.
- Greičių skirtumas sukelia interferenciją tarp zonduojančių pluoštų.

- Grupinis greitis aprašomas nediagonalia matrica
- Atskiri zonduojantys pluoštai neturi apibrėžto grupinio greičio
- Tik tam tikros abiejų zonduojančių pluoštų kombinacijos sklinda per atomų dujas su apibrėžtais (ir skirtingais) greičiais.
- Greičių skirtumas sukelia interferenciją tarp zonduojančių pluoštų.

- Grupinis greitis aprašomas nediagonalia matrica
- Atskiri zonduojantys pluoštai neturi apibrėžto grupinio greičio
- Tik tam tikros abiejų zonduojančių pluoštų kombinacijos sklinda per atomų dujas su apibrėžtais (ir skirtingais) greičiais.
- Greičių skirtumas sukelia interferenciją tarp zonduojančių pluoštų.

- Grupinis greitis aprašomas nediagonalia matrica
- Atskiri zonduojantys pluoštai neturi apibrėžto grupinio greičio
- Tik tam tikros abiejų zonduojančių pluoštų kombinacijos sklinda per atomų dujas su apibrėžtais (ir skirtingais) greičiais.
- Greičių skirtumas sukelia interferenciją tarp zonduojančių pluoštų.

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas lygus nuliui $\delta_1 = \delta_2 = 0$
- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- R ir T osciliacijos pasireiškia jei turime dvi susijusias tripodo sistemas

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas lygus nuliui $\delta_1 = \delta_2 = 0$
- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- R ir T osciliacijos pasireiškia jei turime dvi susijusias tripodo sistemas

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas lygus nuliui $\delta_1 = \delta_2 = 0$
- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- R ir T osciliacijos pasireiškia jei turime dvi susijusias tripodo sistemas

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas lygus nuliui $\delta_1 = \delta_2 = 0$
- \mathcal{E}_1 yra atspindimas į \mathcal{E}_2
- R ir T osciliacijos pasireiškia jei turime dvi susijusias tripodo sistemas

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas nelygus nuliuk $\delta_1 = -\delta_2 \equiv \delta \neq 0$
- Dirac'o tipo lygtis su nenuline mase dvikomponentėi lėtai šviesai:

$$i\frac{\partial}{\partial t}\tilde{\mathcal{E}} = -iv_0\sigma_z\frac{\partial}{\partial z}\tilde{\mathcal{E}} + \delta\sigma_y\tilde{\mathcal{E}}$$

Čia
$$v_0 = \frac{c\Omega^2}{\sigma^2 n}$$

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas nelygus nuliui $\delta_1 = -\delta_2 \equiv \delta \neq 0$
- Dirac'o tipo lygtis su nenuline mase dvikomponentėi lėtai šviesai:

$$i\frac{\partial}{\partial t}\tilde{\mathcal{E}} = -iv_0\sigma_z\frac{\partial}{\partial z}\tilde{\mathcal{E}} + \delta\sigma_y\tilde{\mathcal{E}}$$

Čia
$$v_0 = \frac{c\Omega^2}{g^2n}$$

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas nelygus nuliui $\delta_1 = -\delta_2 \equiv \delta \neq 0$
- Dirac'o tipo lygtis su nenuline mase dvikomponentėi lėtai šviesai:

$$\mathrm{i}\frac{\partial}{\partial t}\tilde{\mathcal{E}}=-\mathrm{i}\textit{v}_{0}\sigma_{z}\frac{\partial}{\partial z}\tilde{\mathcal{E}}+\delta\sigma_{y}\tilde{\mathcal{E}}$$

Čia
$$v_0 = \frac{c\Omega^2}{a^2n}$$

- Priešpriešais sklindantys pluoštai
- Dvifotoninis išderinimas nelygus nuliui $\delta_1 = -\delta_2 \equiv \delta \neq 0$
- Dirac'o tipo lygtis su nenuline mase dvikomponentėi lėtai šviesai:

$$\mathrm{i}\frac{\partial}{\partial t}\tilde{\mathcal{E}}=-\mathrm{i}\textit{v}_{0}\sigma_{z}\frac{\partial}{\partial z}\tilde{\mathcal{E}}+\delta\sigma_{y}\tilde{\mathcal{E}}$$

Čia
$$v_0 = \frac{c\Omega^2}{a^2n}$$

Reliatyvistinė dalelės-antidalelės dispersija:

$$\Delta\omega^{\pm} = \pm\sqrt{v_0^2\Delta k^2 + \delta^2}$$

• $\hbar\delta=mv_0^2$ — plyšio plotis, m — poliaritono efektyvioji masė

Reliatyvistinė dalelės-antidalelės dispersija:

$$\Delta\omega^{\pm} = \pm\sqrt{v_0^2\Delta k^2 + \delta^2}$$

• $\hbar\delta=mv_0^2$ — plyšio plotis, m — poliaritono efektyvioji masė

ullet Atspindžio ir praėjimo koeficientai plyšio centre ($\Delta\omega=0$):

$$T = \cosh^{-1}(L/\lambda_{\rm C}), \quad R = \tanh(L/\lambda_{\rm C})$$

- $\lambda_{\rm C} = \hbar/mv_0 = v_0/\delta$ poliaritono Compton'o bangos ilgis
- Compton'o bangos ilgis nusako poliaritono tuneliavimo nuotolį

• Atspindžio ir praėjimo koeficientai plyšio centre ($\Delta \omega = 0$):

$$T = \cosh^{-1}(L/\lambda_{\rm C}), \quad R = \tanh(L/\lambda_{\rm C})$$

- $\lambda_{\rm C} = \hbar/mv_0 = v_0/\delta$ poliaritono Compton'o bangos ilgis
- Compton'o bangos ilgis nusako poliaritono tuneliavimo nuotolį

ullet Atspindžio ir praėjimo koeficientai plyšio centre ($\Delta\omega=0$):

$$T = \cosh^{-1}(L/\lambda_{\rm C}), \quad R = \tanh(L/\lambda_{\rm C})$$

- $\lambda_{\rm C} = \hbar/mv_0 = v_0/\delta$ poliaritono Compton'o bangos ilgis
- Compton'o bangos ilgis nusako poliaritono tuneliavimo nuotolį

- Ta pačia kryptimi sklindantys zonduojantys pluoštai
- Valdantieji pluoštai su Rabi dažniais $\Omega_{11} \sim e^{i\ell\varphi}$ ir $\Omega_{22} \sim e^{-i\ell\varphi}$ turi optinius sūkurius su priešingais topologiniais krūviais
- Krentantis pluoštas \mathcal{E}_1 yra be sūkurio
- Zonduojantis pluoštas \mathcal{E}_2 įgyja optinį sūkurį

- Ta pačia kryptimi sklindantys zonduojantys pluoštai
- Valdantieji pluoštai su Rabi dažniais $\Omega_{11}\sim e^{i\ell\varphi}$ ir $\Omega_{22}\sim e^{-i\ell\varphi}$ turi optinius sūkurius su priešingais topologiniais krūviais
- Krentantis pluoštas \mathcal{E}_1 yra be sūkurio
- Zonduojantis pluoštas \mathcal{E}_2 įgyja optinį sūkurį

- Ta pačia kryptimi sklindantys zonduojantys pluoštai
- Valdantieji pluoštai su Rabi dažniais $\Omega_{11} \sim e^{i\ell\varphi}$ ir $\Omega_{22} \sim e^{-i\ell\varphi}$ turi optinius sūkurius su priešingais topologiniais krūviais
- Krentantis pluoštas \mathcal{E}_1 yra be sūkurio
- Zonduojantis pluoštas \mathcal{E}_2 įgyja optinį sūkurį

- Ta pačia kryptimi sklindantys zonduojantys pluoštai
- Valdantieji pluoštai su Rabi dažniais $\Omega_{11} \sim e^{i\ell\varphi}$ ir $\Omega_{22} \sim e^{-i\ell\varphi}$ turi optinius sūkurius su priešingais topologiniais krūviais
- Krentantis pluoštas \mathcal{E}_1 yra be sūkurio
- Zonduojantis pluoštas £2 įgyja optinį sūkurį

Optinio sūkurio perkėlimas

Praėjimo amplitudės antram (raudona) ir pirmam (žalia) šviesos pluoštams.

- Konfigūracija su priešpriešais sklindančiais pluoštais.
- ullet Pradžioje dvifotonis išderinimas δ lygus nuliui
- tik vienas zonduojantis pluoštas \mathcal{E}_1 turintis centrinį dažnį $\Delta\omega=0$ krenta į atomų dujas
- ullet kuriose sklinda grupiniu greičiu v_0

- Konfigūracija su priešpriešais sklindančiais pluoštais.
- ullet Pradžioje dvifotonis išderinimas δ lygus nuliui
- tik vienas zonduojantis pluoštas \mathcal{E}_1 turintis centrinį dažnį $\Delta\omega=0$ krenta į atomų dujas
- kuriose sklinda grupiniu greičiu v₀

- Konfigūracija su priešpriešais sklindančiais pluoštais.
- ullet Pradžioje dvifotonis išderinimas δ lygus nuliui
- tik vienas zonduojantis pluoštas \mathcal{E}_1 turintis centrinį dažnį $\Delta\omega=0$ krenta į atomų dujas
- kuriose sklinda grupiniu greičiu v₀

- Konfigūracija su priešpriešais sklindančiais pluoštais.
- ullet Pradžioje dvifotonis išderinimas δ lygus nuliui
- tik vienas zonduojantis pluoštas \mathcal{E}_1 turintis centrinį dažnį $\Delta\omega=0$ krenta į atomų dujas
- kuriose sklinda grupiniu greičiu v₀

- Kai pluošto \mathcal{E}_1 bangų paketas yra atomų debesėlyje, dvifotonis išderinimas staigiai padidinamas nuo 0 iki δ
- Susiformuoja plyšys dispersijoje
- Jei bangų paketo plotis dažnių erdvėje yra mažesnis už plyšio plotį 2δ
- sukuriama dvikomponentė stacionari šviesa

- Kai pluošto \mathcal{E}_1 bangų paketas yra atomų debesėlyje, dvifotonis išderinimas staigiai padidinamas nuo 0 iki δ
- Susiformuoja plyšys dispersijoje
- Jei bangų paketo plotis dažnių erdvėje yra mažesnis už plyšio plotį 2δ
- sukuriama dvikomponentė stacionari šviesa

- Kai pluošto \mathcal{E}_1 bangų paketas yra atomų debesėlyje, dvifotonis išderinimas staigiai padidinamas nuo 0 iki δ
- Susiformuoja plyšys dispersijoje
- Jei bangų paketo plotis dažnių erdvėje yra mažesnis už plyšio plotį 2δ
- sukuriama dvikomponentė stacionari šviesa

- Kai pluošto \mathcal{E}_1 bangų paketas yra atomų debesėlyje, dvifotonis išderinimas staigiai padidinamas nuo 0 iki δ
- Susiformuoja plyšys dispersijoje
- Jei bangų paketo plotis dažnių erdvėje yra mažesnis už plyšio plotį 2δ
- sukuriama dvikomponentė stacionari šviesa

Šviesa pereina į tikrinių būsenų su teigiamais ir neigiamais dažniais superpoziciją.

• Vietoj sklidimo šviesa osciliuoja tarp dviejų zonduojančių pluoštų:

$$\left(\begin{array}{c} \mathcal{E}_1 \\ \mathcal{E}_2 \end{array}\right) = \left(\begin{array}{c} \cos(\delta t) \\ \sin(\delta t) \end{array}\right)$$

• Vėlesniu laiko momentu $t=t_r$, dvifotonis išderinimas δ vėl sumažinamas iki nulio, stacionari šviesa pereina į lėtą šviesą

• Vietoj sklidimo šviesa osciliuoja tarp dviejų zonduojančių pluoštų:

$$\left(\begin{array}{c} \mathcal{E}_1 \\ \mathcal{E}_2 \end{array}\right) = \left(\begin{array}{c} \cos(\delta t) \\ \sin(\delta t) \end{array}\right)$$

• Vėlesniu laiko momentu $t=t_r$, dvifotonis išderinimas δ vėl sumažinamas iki nulio, stacionari šviesa pereina į lėtą šviesą

- Panaudojant atomus su dvigubo tripodo lygmenų schema gali būti sukurta dvikomponentė lėta šviesa.
- Dvikomponentė lėta šviesa pasižymi osciliacijomis tarp zonduojančių pluoštų.
- Esant tam tikroms sąlygoms, dvikomponentė lėta šviesa gali būti aprašoma Dirac'o tipo lygtimi atitinkančia baigtinės masės dalelę Tokiu atveju dispersijos šakos yra atskirtos plyšio.
- Zonduojantis pluoštas gali būti sustabdytas atomų terpėje suformuojant dvikomponentę stacionarią šviesą.
- Dvigubo tripodo schema gali būti panaudoto optinio sūkurio perkėlimui iš valdančiųjų pluoštų į lėtą šviesą.

- Panaudojant atomus su dvigubo tripodo lygmenų schema gali būti sukurta dvikomponentė lėta šviesa.
- Dvikomponentė lėta šviesa pasižymi osciliacijomis tarp zonduojančių pluoštų.
- Esant tam tikroms sąlygoms, dvikomponentė lėta šviesa gali būti aprašoma Dirac'o tipo lygtimi atitinkančia baigtinės masės dalelę. Tokiu atveju dispersijos šakos yra atskirtos plyšio.
- Zonduojantis pluoštas gali būti sustabdytas atomų terpėje suformuojant dvikomponentę stacionarią šviesą.
- Dvigubo tripodo schema gali būti panaudoto optinio sūkurio perkėlimui iš valdančiųjų pluoštų į lėtą šviesą.

- Panaudojant atomus su dvigubo tripodo lygmenų schema gali būti sukurta dvikomponentė lėta šviesa.
- Dvikomponentė lėta šviesa pasižymi osciliacijomis tarp zonduojančių pluoštų.
- Esant tam tikroms sąlygoms, dvikomponentė lėta šviesa gali būti aprašoma Dirac'o tipo lygtimi atitinkančia baigtinės masės dalelę. Tokiu atveju dispersijos šakos yra atskirtos plyšio.
- Zonduojantis pluoštas gali būti sustabdytas atomų terpėje suformuojant dvikomponentę stacionarią šviesą.
- Dvigubo tripodo schema gali būti panaudoto optinio sūkurio perkėlimui iš valdančiųjų pluoštų į lėtą šviesą.

- Panaudojant atomus su dvigubo tripodo lygmenų schema gali būti sukurta dvikomponentė lėta šviesa.
- Dvikomponentė lėta šviesa pasižymi osciliacijomis tarp zonduojančių pluoštų.
- Esant tam tikroms sąlygoms, dvikomponentė lėta šviesa gali būti aprašoma Dirac'o tipo lygtimi atitinkančia baigtinės masės dalelę. Tokiu atveju dispersijos šakos yra atskirtos plyšio.
- Zonduojantis pluoštas gali būti sustabdytas atomų terpėje suformuojant dvikomponentę stacionarią šviesą.
- Dvigubo tripodo schema gali būti panaudoto optinio sūkurio perkėlimui iš valdančiųjų pluoštų į lėtą šviesą.

- Panaudojant atomus su dvigubo tripodo lygmenų schema gali būti sukurta dvikomponentė lėta šviesa.
- Dvikomponentė lėta šviesa pasižymi osciliacijomis tarp zonduojančių pluoštų.
- Esant tam tikroms sąlygoms, dvikomponentė lėta šviesa gali būti aprašoma Dirac'o tipo lygtimi atitinkančia baigtinės masės dalelę. Tokiu atveju dispersijos šakos yra atskirtos plyšio.
- Zonduojantis pluoštas gali būti sustabdytas atomų terpėje suformuojant dvikomponentę stacionarią šviesą.
- Dvigubo tripodo schema gali būti panaudoto optinio sūkurio perkėlimui iš valdančiųjų pluoštų į lėtą šviesą.

Ačiū už dėmesį!