Отчёт по работе № 12

«Изучение режимов истечения газа из сопла Лаваля»

Работу выполнили студенты группы Б03-906: Кузьмичёва Евдокия Орифов Далер Петров Дмитрий Пыряев Евгений

Цель работы:

- ознакомиться с работой сопла Лаваля и различными режимами истечения воздуха из него;
- определить параметры потока на выходе из сопла и сравнить с рассчитанными по одномерной теории.

В работе используются:

- оптическая система визуализации
- пружинный манометр
- сменные сопла
- ресивер, редуктор, баллон с воздухом

Теоретические сведения

Одномерная теория сверхзвукового сопла

Сопло — закрытый канал переменного сечения, предназначенный для разгона газа или жидкости. Будем считать течение в канале стационарным, одномерным, адиабатическим, а газ идеальным и калорически совершенным. Обозначим через ρ плотность газа, через u скорость вдоль оси x и через A местное сечение канала. Из уравнения неразрывности (1) и уравнения Эйлера (2) можно получить соотношение между изменениями скорости и площади сечения трубы.

$$\rho uA = const \tag{1}$$

$$\rho u A = const$$

$$u \frac{du}{dx} = -\frac{1}{\rho} \frac{dp}{dx}$$
(2)

Перепишем уравнение Эйлера в виде:
$$udu = -\frac{1}{\rho}dp = \frac{dp}{d\rho}\frac{d\rho}{\rho} = -a^2\frac{d\rho}{\rho} \tag{3}$$

Проведём логарифмическое дифференцирование уравнения непрерывности:

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0 \tag{4}$$

Подставив выражение для $\frac{d\rho}{\rho}$ из (4) в (3), получаем: $udu = a^2 \left(\frac{du}{u} + \frac{dA}{A} \right),$

$$u \, du = a^2 \left(\frac{du}{u} + \frac{dA}{A} \right).$$

откуда, используя $M = \frac{u}{a}$:

$$(M^2 - 1)\frac{du}{u} = \frac{dA}{A} \tag{5}$$

Соотношение (5) называется соотношением Гюгонио. Из анализа (5):

- если M < 1 (дозвуковое течение), знаки изменения u и A противоположны; с увеличением $u \rho$ уменьшается, и при малых u, когда сжимаемость мала, для увеличения u необходимо уменьшение A.
- если M > 1 (сверхзвуковое течение), знаки изменения u и A одинаковы; уменьшение ρ не компенсируется ростом u, и для ускорения газа A должно увеличиваться.

• если M=1, то dA=0, соответствующее минимальное сечение A* называется критическим.

Из уравнения неразрывности и изоэнтропических соотношений для параметров газа в потоке можно получить связь между параметрами одномерного газового потока и площадью сечения канала:

$$q^{-1} = \frac{A}{A^*} = \frac{1}{M} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
 (6)

$$\pi = \frac{p}{p^*} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{\gamma}{\gamma - 1}} \tag{7}$$

$$\varepsilon = \frac{\rho}{\rho^*} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{1}{\gamma - 1}} \tag{8}$$

$$\tau = \frac{T}{T^*} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1} \tag{9}$$

Здесь A * , p * , ρ * , T * — параметры в критическом сечении.

Геометрическое определение числа Маха:

$$M^{2} = \frac{\gamma + 1}{\gamma - 1} \left(\frac{A}{A^{*}} M \right)^{2\frac{\gamma - 1}{\gamma + 1}} - \frac{2}{\gamma - 1}$$
 (10)

Физическое определение числа Маха:

$$M^{2} = \frac{\gamma - 1}{2\gamma} + \frac{\gamma + 1}{2\gamma} \left(\frac{p'_{0}}{p_{0}}\right)^{-(\gamma - 1)} \left(\frac{2}{\gamma + 1} \left(\frac{1}{M^{2}} + \frac{\gamma - 1}{2}\right)\right)^{-\gamma}$$
(11)

Если предположить, что течение в сопле изоэнтропично, то определить число Маха из соотношения:

$$\frac{p_0'}{p_0} = \left(\frac{2\gamma}{\gamma+1}M^2 - \frac{\gamma-1}{\gamma+1}\right)^{-\frac{1}{\gamma-1}} \left(\frac{1 + \frac{\gamma-1}{2}M^2}{\frac{\gamma+1}{2}M^2}\right)^{-\frac{\gamma}{\gamma-1}},\tag{12}$$

где p_0 — давление торможения, измеренное в форкамере, p_0' — давление торможения за прямым скачком уплотнения.

Для получения сверхзвукового потока газа необходимо пропустить его сначала через сужающийся канал, затем через расширяющийся. Такое сопло называется соплом Лаваля. Рассмотрим течение в таком сопле, считая его адиабатическим и изоэнтропическим.

Если величина противодавления окружающей среды (p_a) равна расчётному значению для сверхзвуковой ветви, то реализуется расчётный режим истечения из сопла.

Если p_a больше минимального расчётного значения для дозвукового режима со звуковой скоростью в горле сопла и меньше расчетного значения для сверхзвукового режима истечения, то течение в сопле изоэнтропично. При этом дозвуковых режимов может реализовываться сколько угодно и определяются они величиной p_a . Причём

 $p_c = p_a \, (p_c$ — давление в потоке на срезе сопла), а сверхзвуковой только один, т.к. изменение внешних условий не влияет на сверхзвуковой поток.

Если p_a меньше минимального расчётного значения для дозвукового режима и больше некоторого предельного (превышающего расчётное сверхзвуковое значение), при котором ещё реализуется сверхзвуковая скорость на срезе, нарушается изоэнтропичность течения в сопле, и расчёты надо производить с учётом существования скачков уплотнения.

Характер сверхзвукового истечения, т.е. структуры течения вне сопла, определяется соотношением p_a и p_c . За соплом неизобарическая сверхзвуковая струя имеет участок, который характеризуется наличием системы скачков уплотнения и волн разрежения, на которых давление в струе выравнивается с давлением окружающей среды. Струя распространяется в покоящемся газе, то скачки уплотнения и волны разрежения не выходят за пределы струи, отражаясь от границы неподвижного и движущегося газа так, что скачки уплотнения отражаются волнами разрежения, волны разрежения — скачками уплотнения. Это следует из граничных условий на границе струи и окружающей среды.

Истечение газа с перерасширением

При перерасширении $p_c < p_a$, и струя начинает сжиматься. При этом возникают косые скачки уплотнения DE и D_1E , за которыми давление становится равным p_a , а после отражённых от оси потока скачков EA и EA_1 давление возрастает ещё больше. Далее течение происходит так же, как в случае недорасширения.

Снижение p_c увеличивает угол наклона скачков DE и D_1E и, соответственно, угол поворота потока в этих скачках и в скачках EA и EA_1 . При некотором p_c ударная волна принимает мостообразную форму из-за невозможности отражения скачков EA и EA_1 от оси течения. При дальнейшем уменьшении p_c скачок перемещается внутрь сопла.

Истечение газа с недорасширением

При перерасширении $p_a < p_c$, течение происходит как бы из укороченного сопла. Сразу за срезом сопла AA_1 начинается расширение струи. Оно происходит в веере волн разрежения AB_1C_1 и A_1BC . После расширения в веере AO_1O_2 давление в струе выравнивается до p_a , в веере O_1BO_2C падает до $p_c < p_a$, т.е. струя перерасширяется. На границе свободной струи волны разрежения отражаются волнами сжатия, поэтому далее труя начинает сжиматься и за волнами BO_3CO_4 давление в струе снова выравнивается с p_a , а за волнами $O_3A_1O_4$ возрастает до $p_c > p_a$. Далее процесс повторяется.

Экспериментальная установка

Воздух из баллона высокого давления поступает в ресивер через редуктор. Ресивер служит для выравнивания параметров газа в предсопловом объёме. Давление в нём устанавливается и регулируется редуктором. К ресиверу подсоединяются сменные сопла, позволяющие получить потоки газа с различными числами Маха.

Установка оснащена оптической системой визуализации. Она состоит из точечного источника света, набора линз. ножа Фуко и экрана.

Давление в ресивере измеряется пружинным манометром. Для распределения полного давления вдоль струи используется насадок полного давления, соединённый с пружинным манометром.

Экспериментальные данные

Измеряем геометрические характеристики сопел; для каждого сопла снимаем значения p_0 (давление торможения, измеренное в форкамере) и p_0' (давление торможения за прямым скачком уплотнения).

	Стекло	Алюминий	Латунь
d _вых, мм	1.698	2.275	3.678
d _кр, мм	1.542	1.575	3.329
p_{01} , атм	3.92	11.2	
p_{01} , атм	3.625	6.895	
p_{02} , атм	16	6	2.5

Истечение с большим режимом недорасширения

Свободное обтекание носика трубки напоров на режиме истечения, близком к расчётному (скачок уплотнения)

Истечение с перерасширением с характерной мостовой схемой

Сверхзвуковое течение

Обработка результатов

	Стекло	Алюминий	Латунь
М (геометрическое)	1.55134	2.24466	1.56215
М (физическое)	1.50153	2.20861	
q	0.82470	0.47929	0.81922
p_1 , атм (по геометрическому числу Маха)	0.991	0.977	
p_1 , атм (по физическому числу Маха)	1.065	1.016	
p_1 , атм (среднее) (давление истекающей струи)	1.028	0.996	
p_2 , атм (по геометрическому числу Маха)	4.04424	0.52325	0.62196
p_2 , атм (по физическому числу Маха)	4.34880	0.55362	
p_2 , атм (среднее) (давление на выходе)	4.19652	0.53844	0.62196
p_{02} , атм (по геометрическому числу Маха)	9.31000	3.65756	8.97277
p_{02} , атм (по физическому числу Маха)	11.07760	3.74532	
p_{02} , атм (среднее) (давление торможения за прямым скачком уплотнения)	10.1938	3.70144	8.97277

- 1. По формулам (10) и (11) рассчитываем геометрическое и физическое число Маха, используя метод последовательных приближений.
- 2. По измеренным p_{01} рассчитываем давление истекающей струи p_1 по формуле (7).
- 3. По данным p_{02} рассчитываем давление на выходе из струи p_2 по формуле (7).
- 4. По данным p_{02} рассчитываем давление торможения за прямым скачком уплотнения p_{02} по формуле (12).

Рассчитаем степень нерасчётности для стеклянного и алюминиевого сопел:

• стекло

$$p_{_{\rm BЫX}}/p_{_{\rm BH}} = \frac{1.028 \; atm}{1 atm} = 1.028 \qquad \Rightarrow \qquad$$
 недорасширение, режим близкий к расчётному

• алюминий

$$p_{\rm _BHX}$$
 / $p_{\rm _BH}$ = $\frac{0.996~atm}{1~atm}$ = 0.996 \Rightarrow перерасширение, режим близкий к расчётному

Вывод

Была выполнена работа по изучению принципа работы сопла Лаваля. Мы рассмотрели одномерную теорию сопла в режиме непрерывного ускорения потока, а также продемонстрировали и получили сверхзвуковое течение в различных режимах а также измерили его параметры. Полученные значения отличаются от посчитанных теоретически незначительно.