Language Models

Generative model

One-state Finite Automaton

Language Model

- If each node has a probability distribution over generating different terms, we have a language model.
- A language model is a function that puts a probability measure over strings drawn from some vocabulary.

- model M over an alphabet \sum :
- $\sum P(s) = 1$
 - s∈∑*
 - Probabilistic Finite Automaton
 - $\sum P(t) = 1$
 - t∈V

Example

P(frog said that toad likes frog) =

$$(0.01 \times 0.03 \times 0.04 \times 0.01 \times 0.02 \times 0.01)$$

$$\times (0.8 \times 0.8 \times 0$$

0.2)

 ≈ 0.00000000001573

Types of Lang Models

Unigram

Bigram

•

 Similarly, there can be higher n-gram models

Unigram is experimentally

found to work good for IR

Language Model

Multinomial Distribution

 $L_d = \text{length of doc in } \# \text{terms}$

Query Likelihood Model

We need

We use

where

Estimating Probabilities

Maximum Likelihood Estimate

• Smoothing if $tf_{t,d} = 0$, then

Linear Internpolation

• where $0 < \lambda < 1$ and M_c is the model built from entire document collection.

Ranking is done using

Bayesian Smoothing

- Small Lambda or large alpha means more smoothing
- Low smoothing good for short queries, high smoothing good for long queries

Example

Suppose the query is *revenue* down.

Soln.