	Week 2 HW I
171	- Let P(0) be a function from 11N to Z where
16)	$f(n) = \frac{n}{2} \text{if} n \text{is even}$
	$f(n) = \frac{-(n-1)}{2} \text{ if } n \text{ is odd}$ The function is a bivection,
	- Let k and n be 2 even natural numbers
	f(k) = k/2, $f(n) = n/2f(k) = f(n) = k = n$
	- Let K and n be 2 odd natural numbers
	f(k) = -(k-1) $f(n) = -(n-1)$
24	$f(k) = f(n) \Rightarrow k = n$
	- Let 9 be even, appearing in the Function like so
	f(2k) = 2k = q , such that q = k For every q in Z there is a normally occurry 2k - Let q be odd, appearing in the C
	- Let a be odd, appearing in the function like so
	$f(2k-1) = (-2k-1-1) = q , such that q = k$ For every q in \mathbb{Z} there exists a $2k-1$
	The function is surjective 18

	Prove.
18)	INK = N×N×NN= Le+ N2 = IN ×N G K=1,2
	k times
	Assume IN = IN = N = N is countably infinite for m=k
	m mes , and the second
	IF A and B are countably infinite, AXB is countably infinite
	For K= M+1, IN = IN XIN XN XN XN
	m+1 +imes
	Let A= N×N×N B=N
	in times
	A & B are countably infinite, and AxB are countably infinite
	The same is true for k=m+1 when it is true for k=m and k=1,2
	Thus by induction, INK = IN × IN × IN xIN is countably intinte
	for an K & IN R

20) Suppose f:A > B, g:B > C are one to one

Let $a_1, a_2 \in A$ such that $g \circ f(a_1) = ig \circ f(a_2)$ $\Rightarrow g [f(a_1)] = g [f(a_2)]$ $f(a_1) = f(a_2)$ because g is one to one $f(a_1) = f(a_2)$ because f is one to one $f(a_1) = a_1 \circ f(a_2)$ because $f(a_2) \Rightarrow a_1 \circ f(a_2)$ $f(a_1) = a_2 \circ f(a_1) \circ f(a_2) \Rightarrow a_1 \circ f(a_2)$ $f(a_1) \circ f(a_2) \circ f(a_2) \Rightarrow a_1 \circ f(a_2) \Rightarrow a_2 \circ f(a_2) \Rightarrow a_3 \circ f(a_2) \Rightarrow a_4 \circ f$