Dinámica rotacional

El propósito de este experimento es medir el momento de inercia de un objeto que rota alrededor de un eje fijo y emplearlo para medir masas desconocidas.

Materiales

- 1) Móvil giratorio con sus masas ajustables y soporte.
- 2) Sujetadores.
- 3) Varilla de 1 m.
- 4) Fotocelda Vernier y su varilla de soporte.
- 5) Polea Vernier.
- 6) Interfaz LabQuest Stream

Toma de Datos 1

Primera medida:

El móvil giratorio no lleva puesto las masas cilíndricas en sus brazos laterales.

- 1) Ajuste el número de eventos a medir.
- 2) El sensor proporcionará el tiempo (en segundos) y la distancia recorrida (en centímetros)
- 3) Mida la masa suspendida en gramos y el radio del móvil giratorio e ingréselos en los parámetros Masa_suspendida y Radio_móvil_giratorio respectivamente.

Antes de iniciar la toma de datos, asegúrese de calibrar la fotocelda.

Consulte la guía para ver cómo.

Distancia 64,000 cm

Tiempo 6,123546 s

Masa_suspendida 120,0 gr 🗦

Radio_móvil_giratorio 1,22 cm 🕏

Toma de Datos 2 y 3

Segunda y tercera medidas:

El móvil giratorio lleva puesto las masas cilíndricas en sus brazos laterales.

- 1) Mida la masa de una de las masas cilíndricas y regístrela en el parámetro Masa cilíndrica.
- 2) La segunda medida se hace con estas masas ubicadas en los extremos de las barras del móvil giratorio. Mida la distancia de uno de los discos al eje de rotación y regístrela en el parámetro Distancia_1.
- 3) La tercera medición lleva los discos en un punto intermedio (no puede ser la mitad) en las barras laterales del móvil rotatorio. Mida la distancia del disco al eje de rotación y regístrela en el parámetro Distancia_2.

Masa_cilíndrica 60,0 gr	A
Distancia_1 28,0 cm	A V
Distancia_2 16,0 cm	A

Tiempo 6,123546 s

Distancia 64,000 cm

Análisis cualitativo

- ¿Qué implica que un cuerpo tenga mayor momento de inercia? ¿Cómo puede divisar este efecto en los resultados obtenidos?

 -Al tener mayor momento de incercia un cuerpo presenta una mayor resistencia a cambiar su velocida de giro.

 Como se pudo evidenciar a mayor masa y mayor distancia entre las masas el sistema presenta una mayor incercia por tanto su aceleración es menor.
- ¿Qué puede decir sobre el tipo de movimiento angular del móvil? ¿Es uniforme? ¿Es acelerado? No olvide el porqué. -El momento angular es acelerado ya que genera una aceleración radial sobre el cilindro sobre el cual gira el sistema.
- ¿Hasta qué punto es razonable suponer que los discos son masas puntuales? ¿Cómo cambiaría el cálculo de la masa de cada disco si se hiciese caso omiso a dicha suposición?
 -Se puede asumir esto por la existencia de un centro de masa. En caso tl que no se asuma que son masas puntuales, se tendría más exactitud en la medición.
- ¿Cómo cambiarían las aceleraciones calculadas si se tuviese en cuenta el momento de inercia de la polea? ¿Aumentarían? ¿Disminuirían? -Tienden a disminuir.
- ¿Cómo incidiría el radio del rodillo en donde la cuerda se enrolla sobre la aceleración angular si no se cambia la masa suspendida en ella?
 -A mayor radio, menor aceleración angular.

Análisis cuantitativo

- Para cada medida, haga una gráfica de velocidad contra tiempo y calcule la aceleración correspondiente. Anote sus resultados en los parámetros abajo de cada gráfica. Comente sus resultados

Discusión: A mayor distancia distancia entre las masas que se colocan en la barra movil, hay menor aceleración. Si no hay masas su aceleración es máxima

Análisis cuantitativo

- Use esta aceleración para medir el momento de inercia del rodillo en kg m². Use la ecuación para calcular el momento de Inercia de la guía.
- Para la segunda y tercera medidas, use la ecuación (11.8) y calcule las masas cilindricas usando la aceleración obtenida cuando el móvil giratorio no tiene estas masas y la aceleración calculada cuando si las tiene. Anote los resultados en los parámetros Masa_cilindrica_Set2 y Masa_cilindrica_Set3

 ¿La masa calculada es consistente con la masa medida?
Si no es así, proporcione las posibles razones de tales
discrepancias. Indique además, cómo mitigaría esta causa sin
modificar el montaje.

	Momentos de Inercia			Datos	Último
	Inercia 0	Inercia 1	Inercia 2	ms2	ms3
	(g cm ²)	(g cm ²)	(g cm ²)		
1	36889,550	132424,301	67981,766	62,050	61,620
2					
3					
4					
5					
6					

Masa_cilíndrica_Set2	A	Masa_cilíndrica	•	Masa_cilíndrica_Set3	•
62,050 gr	▼	60,0 gr	▼	61,620 gr	•

Discusión:

La masa calculada es muy cercana a la masa teórica, las posibles fuentees de error pueden ser no teer una gravedad exacta como parámetro y error en la medición del radio.

Conclusiones

Aceleración toma de datos 1 = 4,722 Aceleración toma de datos 2 =1,32 Aceleración toma de datos 3 =2,568

Inercia1 = 36889,55 Inercia2 = 132424 Inercia3 = 67981