$e4\nu$ analysis topics

Larry Weinstein
Old Dominion University

Data sets available

- CLAS6 (data well analyzed understood, thoroughly data mined)
 - E2a
 - 1.1, 2.2 and 4.4 GeV beams
 - 3He, 4He, 12C, 56Fe
 - Eg2
 - 5.0 GeV
 - D, C, Al, Fe, Sn, Pb
- CLAS6 (well analyzed and understood)
 - E2b
 - 1.1 and 4.4 GeV
 - · Mostly 3He and Fe
 - E1
 - Various energies
 - H, D
 - E6
 - 5.7 GeV
 - D

- CLAS12 (Oct-Dec 2021)
 - 1 GeV
 - H, C, Ar
 - 2 GeV
 - H, C, Ar
 - 4 GeV
 - H, D, 4He, C, Ar, 40Ca, 48Ca, Sn
- Smaller angles
- Better neutron detection
- More hermetic hadron detection for $40 < \theta < 120^{\circ}$
- Require ~ 12 months to calibrate and "cook"

Goals

- Overall goal: Reduce systematic uncertainties in neutrino analysis due to discrepancies between the event generators and reality
- Choose analysis topics to best challenge, constrain, and optimize event generators
 - Overall topics
 - energy reconstruction
 - Detailed topics
 - reaction mechanisms
 - Hadron production
 - Transverse variables

Analysis topics

In progress

- 1. 1p0pi channel (see Afro's talk)
 - 1. Energy reconstruction
 - 2. Single transverse variables (STV)
- 2. 1p1pi channel (Stuart Fegan, Alicia Mand)
 - 1. E rec
 - 2. STV

New ideas (your name here) (details on next slides)

- Final state hadrons for different reaction mechanisms (RES, MEC, DIS)
- NN final states
- 3. Pion transparency
- 4. $(e, e'\pi)$ final states
- 5. FSI models
- Resonance production in H and

Final state hadrons

- Goal understand the hadronization for different GENIE reaction mechanisms (MEC, RES, DIS)
 - Technique: choose beam energy and (e,e') kinematics (Q², ω) to emphasize different reaction mechanisms
 - Compare distribution of final state hadrons to GENIE predictions for different reaction mech
 - Multiplicities
 - Angular and momentum distributions
 - E and A dependence
- Difficulty level: straightforward
 - Hard to isolate MEC

NN final states

- Goal: understand NN reaction mechanisms
 - QE + FSI
 - MEC
 - Neutrino CC MEC -> pp final states
 - Electron NC MEC -> pn final states
 - RES
 - Technique: Isolate pn and pp final states.
 - Study Q^2 , ω dependence
 - Study A/density dependence (3He, 4He, C especially)
 - Compare to GENIE
- Difficulty: hard
 - Neutron identification
 - Isolation of NN final states (removing contributions from high multiplicities)

Pion transparency

- Goal: understand how pions propagate and rescatter as they travel through the remaining nucleus
 - Technique: choose beam energy and (e,e') kinematics (Q^2 , ω) to emphasize RES events.
 - Compare (e,e'p) and (e,e'p pi) yields.
 - Study A dependence
 - E2a: 4He, C, Fe at 1, 2, and 4 GeV
 - Eg2: d, C, Fe, Pb at 5 GeV
 - Compare to GENIE FSI models
 - Difficulty: medium
 - Isolating events where we expect pions

 $(e,e'\pi)$ final states

- Goal: understand pion production
 - Technique: choose beam energy and (e,e') kinematics (Q^2 , ω) to select RES events. Look at pion distributions in energy, angle etc
 - Compare to GENIE. Work with pion transparency analysis
 - Difficulty: straightforward

FSI models

- Goal: constrain hadron rescattering models
- Technique: choose different event topologies. Look at how STV (single transverse variables) distributions depend on A, E, Q^2 , ω
- Compare to GENIE.
- Difficulty: straightforward

resonance production

- Goal: constrain resonance production models
- Technique: look at resonance production using (e,e'p pi) and other topologies in H, D, 3He, 4He, ...
- Compare to GENIE.
- Difficulty: straightforward