Firmwares

Prof. Joacillo

Instituto Federal do Ceará

Outubro de 2020

Sumário

Semáforo

Faça um firmware para comandar 2 semáforos de um cruzamento. O ciclo se repete indefinidamente.

Vd1	Am1	Vm1	Vd2	Am2	Vm2
ON	0FF	OFF	OFF	OFF	ON
OFF	ON	OFF	OFF	OFF	ON
OFF	0FF	ON	OFF	OFF	ON
OFF	0FF	ON	ON	OFF	FF
OFF	0FF	ON	OFF	ON	OFF
OFF	0FF	ON	OFF	OFF	ON

Semáforo

Circuito:

Figure: Semáforo

Chave Comanda Leds

Uma chave deve comandar 3 leds, conforme tabela verdade dada. Faça o firmaware correspondente baseado no hardware mostrado na figura.

chave	Led1	Led2	Led3	
repouso	0FF	OFF	OFF	
Pulso	ON	OFF	OFF	
Pulso	0FF	ON	OFF	
Pulso	OFF	OFF	ON	
Pulso	OFF	OFF	OFF	

Hardware

Circuito:

Figure: Circuito ara comandar 3 leds

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200 ns$$

$$\frac{1s}{200 ns} = \frac{1000000000ns}{200 ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

$$F_{cy} = \frac{F_{ext}}{4} = 5MHz \Rightarrow T_{cy} = \frac{1}{F_{cy}} = 200ns$$

$$\frac{1s}{200ns} = \frac{1000000000ns}{200ns} = 5000000$$

$$\frac{5000000}{10000} = 500$$

$$\Rightarrow 1s = 2xDelay10KTCYx(250)$$

No PIC da família 18 existem 4 instruções para deslocamento de bits, sendo que 2 delas usa-se o *carry*. Apresentaremos aqi as duas que não o usam;

Deslocamento a esquerda: RIncf(var, destino, acess).

Se var = $0 \Rightarrow$ resultado armazenado no WREG; var = $1 \Rightarrow$ resultado armazenado na propria variável ou registro.

1 0 0	0	0	0	0	1
-------	---	---	---	---	---

Figure: Variável ou registro

No PIC da família 18 existem 4 instruções para deslocamento de bits, sendo que 2 delas usa-se o *carry*. Apresentaremos aqi as duas que não o usam;

Deslocamento a esquerda: *Rlncf(var,destino,acess)*.

Se var $= 0 \Rightarrow$ resultado armazenado no WREG; var $= 1 \Rightarrow$ resultado armazenado na propria variável ou registro.

Figure: Deslocamento a esquerda

No PIC da família 18 existem 4 instruções para deslocamento de bits, sendo que 2 delas usa-se o *carry*. Apresentaremos aqi as duas que não o usam;

Deslocamento a esquerda: RIncf(var, destino, acess).

Se var = $0 \Rightarrow$ resultado armazenado no WREG; var = $1 \Rightarrow$ resultado armazenado na propria variável ou registro.

0 0 0	0	0	0	1	1
-------	---	---	---	---	---

Figure: Disposição final

Deslocamento a direita: Rrncf(var, destino, acess). Se var = 0 \Rightarrow resultado armazenado no WREG; var = 1 \Rightarrow resultado armazenado na propria variável ou registro.

	0	0	0	0	0	0	1	1
١								

Figure: Variável ou registro

Deslocamento a direita: Rrncf(var, destino, acess). Se var = 0 \Rightarrow resultado armazenado no WREG; var = 1 \Rightarrow resultado armazenado na propria variável ou registro.

Figure: Deslocamento a direita

No PIC da família 18 existem 4 instruções para deslocamento de bits, sendo que 2 delas usa-se o *carry*. Apresentaremos aqi as duas que não o usam;

Deslocamento a esquerda: RIncf(var, destino, acess).

Se var $= 0 \Rightarrow$ resultado armazenado no WREG; var $= 1 \Rightarrow$ resultado armazenado na propria variável ou registro.

1 0 0	0	0	0	0	1
-------	---	---	---	---	---

Figure: Disposição final

Trabalho

De acorco com o circuito mostrado, faça um firmware que se pede:

- Os leds devem ser ligados um por vez.
- Se botoeira não tiver pressionada, os leds devem ser ligados da direira para esquerda. Após ligar RD7 rotorna para RD0 e repete o ciclo.
- Se botoeira tiver pressionada, os leds devem ser ligados da esquerda para direira. Após ligar RD0 rotorna para RD7 e repete o ciclo.

Circuito

Figure: Circuito

