Power seins = 0.

Suppose that
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for $0 \le |x| < a$.

A suppose also that $\sum_{n=0}^{\infty} a_n x^n = 0$ $\forall x \in (-a, a)$.

Simple trick:

$$a_n = \frac{f^{(n)}(0)}{m!} \quad (n \ge 0).$$

How do you get this frmula?

$$o f''(o) = 2 \cdot 1 a_2 + 3 \cdot 2 a_3 \cdot 0 + \dots = 2! a_2$$

$$\Rightarrow \qquad \alpha_z = \frac{\int_0^{\infty}(0)}{2!}$$

$$f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1)(k-2)...(k-n+1)x^{k-n}$$

$$\Rightarrow f^{(n)}(0) = \sum_{k=n+1}^{\infty} 0 + n(n-1)(n-2)...1an$$

$$h!$$

$$=)$$
 $a_n = \frac{f^{(n)}(0)}{n!}$

So, you have
$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \frac{f_n^{(n)}(0)}{n!} x^n = 0$$

But, in this case, $f(x) = 0 \Rightarrow f_n^{(n)}(0) = 0$
Thuefre, $a_n = \frac{f_n^{(n)}(0)}{n!} = 0$ $(\forall n \ge 0)$.