Lab session 1: Signals and Systems

Problem 1: Cartesian coordinates to Polar coordinates

Write a program that reads a Cartesian coordinate (x,y) from the input and converts it into the corresponding Polar coordinate (r,θ) . The input of this problem consists of two integers: x and y. The output of your program should be two floating point numbers (use doubles in your programs): r (length, so a non-negative number) and the principal value of θ (in radians). The output values should be rounded and have two digits after the decimal dot.

Example 1:	Example 2:	Example 3:
input:	input:	input:
2 0	0 2	-2 0
output:	output:	output:
2.00 0.00	2.00 1.57	2.00 3.14

Problem 2: Polar coordinates to Cartesian coordinates

Write a program that reads a Polar coordinate (r, θ) from the input and converts it into the corresponding Cartesian coordinate (x, y). The input consists of two floating point numbers: r (a non-negative number) and θ (in radians). The output of your program should be two floating point numbers (rounded to two digits after the decimal dot):

Example 1:	Example 2:	Example 3:
input:	input:	input:
1.00 1.57	1.00 0.00	1.00 -1.57
output:	output:	output:
0.00 1.00	1.00 0.00	0.00 -1.00

Problem 3: Sum of sinusoids of the same frequency

In this problem, you are constructing the sum of a number of sinusoids with the same frequency. The input of this problem consists of several lines. The first line contains two integers: the frequency f (in Hz) and the number n of sinusoids to sum.

The following n lines each contain two floating point numbers, representing the amplitude A_i and phase φ_i of the i-th sinusoid $A_i \cos(2\pi f t + \varphi_i)$. Your program should calculate the resulting signal $x(t) = \sum_i A_i \cos(2\pi f t + \varphi_i) = A \cos(2\pi f t + \varphi)$. The values of A and φ should be rounded to two digits after the decimal dot. Note that if A = 0, the output should be x(t) = 0.00.

Example 1:	Example 2:	Example 3:
input:	input:	input:
42 2	100 3	10 2
1 1.047198	5 3.665191	3 1.570796
1 0.523599	5 1.570796	4 0
	5 -0.5235988	
output:	output:	output:
$x(t)=1.93\cos(2*pi*42*t+0.79)$	x(t) = 0.00	$x(t) = 5.00\cos(2*pi*10*t+0.64)$

Problem 4: Aliasing

The input for this problem is a single line containing two integers representing signal frequency f_0 (in Hz) and sampling frequency f_s (in Hz). The output should be a single integer that represents the frequency (in Hz) of the reconstructed sinusoid after a sinusoid with frequency f_0 has been sampled with frequency f_s .

Example 1:	Example 2:	Example 3:
input:	input:	input:
100 500	100 100	100 90
output:	output:	output:
100	0	10

Problem 5: Products of sinusoids

A beat note can be represented as a product of two sinusoids. In this problem, we consider the product $\prod_i \cos(2\pi f_i t)$ of arbitrary numbers of sinusoids $\cos(2\pi f_i t)$ and determine what (nonnegative) frequencies are present in the spectrum.

The input for this problem consists of several lines. Each line contains a single integer that represents the frequency f_i (in Hz) of one of the sinusoids in the product. The integer 0 signals the end of the input. The output should be a list of all the non-negative frequencies (in Hz) in the spectrum, in order from smallest to largest. Note that the spectrum does not contain the same frequency twice.

Example 1:	Example 2:	Example 3:
input:	input:	input:
2000	300	100
515	20	100
27	0	100
0		0
output:	output:	output:
1458	280	100
1512	320	300
2488		
2542		

Problem 6: Nyquist frequency

A beat note can be represented as a product of two sinusoids. In this problem, we consider the product $\prod_i \cos(2\pi f_i t)$ of arbitrary numbers of sinusoids $\cos(2\pi f_i t)$ and determine what the Nyquist frequency would be for sampling the signal.

The input for this problem consists of several lines. Each line contains a single integer that represents the frequency f_i (in Hz) of one of the sinusoids in the product. The integer 0 signals the end of the input. The output should be a single integer representing the Nyquist frequency (in Hz) needed to accurate reproduce the signal.

Example 1:	Example 2:	Example 3:
input:	input:	input:
2000	300	100
515	20	100
27	0	100
0		0
output:	output:	output:
5084	640	600

Problem 7: Multipath fading

When radio waves waves reflect off smooth surfaces, these reflections may interfere with the original signal. In such reflection cases, the received signal is a sum of the original signal and the reflected signal. Since these signals travel different distances, they differ in their time delay. Given a transmitted signal s(t), the received signal r(t) is therefore given by

$$r(t) = s(t - t_1) + s(t - t_2)$$

Consider the case where a receiver located at (x, 0) receives a signal from a transmitter located at (0, 0), which is also reflected off a reflecter at (d_r, d_t) , as depicted below.

In this case, the transmitter sends out the signal $s(t) = \cos(2\pi(150 \times 10^6)t)$, which travels at a speed of 3×10^8 m/s. For simplicity, we ignore propagation losses. That is, the amplitude is not affected by distance or reflection.

Write a program that reads a single line containing the three integers d_r , d_t , and x (in m). The output of your program should be floating point number (rounded to two digits after the decimal dot) that represents the amplitude of the received signal r.

Example 1:	Example 2:	Example 3:
input:	input:	input:
30 40 30	30 40 31	10 100 50
output:	output:	output:
2.00	0.04	1.90