## SpikeAnts: A Spiking Neuron Network Modelling the Emergence of Organization in a Complex System

Sylvain Chevallier1

Hélène Paugam-Moisy<sup>2</sup>

Michèle Sebag<sup>1,3</sup>

<sup>1</sup>TAO – INRIA-Saclay Parc Orsay Université 91893 Orsay, France <sup>2</sup>LIRIS – CNRS Université Lyon 2 69676 Bron, France <sup>3</sup>LRI – CNRS Université Paris-Sud 91405 Orsay, France

Groupe de travail COMBINING - LIRIS January, 7th. 2011



UNIVERSITÉ
LUMIÈRE
LYON 2

## **Emergent Synchrony**

Emergence of synchronization is at the core of many biological systems, e.g:

- Fireflies
- Cricket chirping
- Pacemaker heart cells
- Neural cells
- ...



How social insects proceed to temporally synchronize their activities?

#### Foraging synchronization in ant colonies

- Division of labor
- How do ants synchronize?

# A Spiking Neuron Approach of Ant Colonies

- Synchronization of activity is a consequence of temporal coupling between individuals [Cole, 91]
- The basis of spiking neuron network (SNN) processing is temporal dynamics

SpikeAnts: A single ant is modelled by two spiking neurons

- ⇒ Local decision based on interactions (microscale)
- ⇒ Global synchronization in the colony (macroscale)

#### Spiking neurons

- Synchrony in cell assemblies [Hebb, 49]
- Complete synchrony [Mirollo, 90]
- Transient synchrony [Hopfield, 01]

- Order-chaos phase transition [Schrauwen, 08]
- Polychronization [Izhikevich, 06]
- Rhythmic oscillations [Brunel, 03]

## SpikeAnts Model

#### Agent's state

- Forage
- Observe
- Sleep
- self-Grooming



#### Agents follow these rules:

- If "sufficiently many" foragers are seen, start grooming activities
- If none or few foragers are seen, go forage
- Once grooming or foraging (and sleep) is done, come back to observation

# SpikeAnts Model

#### Agent's state

- Forage
- Observe
- Sleep
- self-Grooming



#### A competition between two spiking neurons implements local decision

#### Passive neuron P:

Leaky Integrate-and-Fire (LIF)

$$\left\{ \begin{array}{l} \frac{dV_p}{dt} = -\lambda(V_p(t) - V_{\rm rest}) + I_{\rm exc}(t), \quad \text{if } V_p < \vartheta \\ \text{else fires a spike and } V_p \text{ is set to } V_{\rm reset}^p \end{array} \right.$$

#### Active neuron A:

Quadratic

Integrate-and-Fire (QIF)

$$\left\{\begin{array}{l} \frac{dV_a}{dt} = -\lambda(V_a(t) - V_{\rm rest})(V_a(t) - V_{\rm thres}) + I_{\rm inh}(t) + I_{\rm clock}(t), \text{ if } V_a < \vartheta \\ \text{else fires a spike and } V_a \text{ is set to } V_{\rm reset}^a \end{array}\right.$$

with 
$$I_{\text{inh}}(t) = -I_{\text{exc}}(t)$$
.

## SpikeAnts Model

#### Agent's state

- $\bullet$   $\mathcal{F}$ orage
- Observe
- Sleep
- self-Grooming



#### Global synchronization: emergent subpopulations of foragers



#### Sleep state



#### Observation state



#### Foraging state



#### Sleep state



#### Observation state



#### Grooming state



#### Another foraging decision



### Macroscopic Scale

#### **Population**

- M agents
- ullet Connectivity ho
- Sparsely connected spiking neuron network



#### **Model Parameters**

| Parameter type | Symbol                   | Description                          | Value | (units)   |
|----------------|--------------------------|--------------------------------------|-------|-----------|
| Neural         | λ                        | Membrane relaxation constant         | 0.1   | $mV^{-1}$ |
|                | $V_{ m rest}$            | Resting potential                    | 0.0   | mV        |
|                | $\vartheta$              | Spike firing threshold               | 1.0   | mV        |
|                | $V_{\mathrm{reset}}^{p}$ | Passive neuron reset potential       | -0.1  | mV        |
|                | $V_{ m thres}$           | Active neuron bifurcation threshold  | 0.5   | mV        |
|                | $V_{ m reset}^a$         | Active neuron reset potential        | 0.55  | mV        |
|                | $I_{ m clock}$           | Active neuron constant input current | 0.1   | mV        |
|                | w                        | Synaptic weight                      | 0.01  | $mV^{-1}$ |
| Agent          | $t_{\mathcal{F}}$        | Foraging duration                    | 47.1  | ms        |
|                | $t_{\mathcal{O}}$        | Maximum observation duration         | 10.5  | ms        |
|                | $t_{\mathcal{S}}$        | Sleeping duration                    | 45.7  | ms        |
|                | $t_{\mathcal{N}}$        | Nap duration                         | 16.7  | ms        |
| Population     | ρ                        | Connection probability               | 0.3   | %         |
|                | M                        | Population size                      | 150   | agents    |

### **Example of Synchronization**

#### Experimental setting:



# Connectivity influence



Two different activity shapes around  $\rho = 0.1$ 

### **Emergent Synchronization: Shapes of Activity**



### **Emergent Synchronization: Shapes of Activity**



#### Transitions between Shapes of Activity



#### **Control Parameters**

#### 15 model parameters

Which parameters govern the emergence of activity shapes?

#### Control parameters

- Sociability  $\rho\sqrt{M}$
- Receptivity  $\frac{w}{|\vartheta V_{\text{rest}}|}$



### Phase Diagram of Emergent Synchronization

Entropy-based indicator: 
$$H = -\sum_{k=1}^{K} \frac{n_k}{\sum_m n_m} \log \left( \frac{n_k}{\sum_m n_m} \right)$$



Order parameters govern emergence of shape of activity:

- A Asynchronous, H = 0
- B Synchronous aperiodic,  $H > \log 2$
- C Periodic synchronous,  $H \sim \log 2$

# Conclusion and Perspectives

# SpikeAnts: a local and parsimonious system modelling emergent collective behavior

- Deterministic model
- No asumption on agent's computational ability

#### Perspectives

- Influence of synchrony detection at neuronal level
- Role of excitation/inhibition balance
- Learning ability of agents (e.g. STDP, IP)
- Reaction to external perturbations
- Application to swarm robotics





Thank you for your attention

Do you have any questions?



### Addendum

### Influence of Weight Balance



The weight balance influences the asynchronous/synchronous boundary

### A Sample Run



### A Sample Run



### Population Size



For M > 600, subpopulation size variability increases

### Active neuron reset potential



 $V_{\text{reset}}^{a}$  governs the firing rate during bursting