МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИРЭА – РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

СХЕМОТЕХНИКА ЭЛЕКТРОННЫХ УСТРОЙСТВ

Методические указания к лабораторным работам по дисциплине «Схемотехника электронных устройств» для студентов дневной формы обучения, обучающихся по направлениям: 11.03.01 Радиотехника, 11.03.02 Инфокоммуникационные технологии и системы связи, 11.03.03 Конструирование и технология электронных средств, а также по специальности 11.05.01 Радиоэлектронные системы и комплексы.

Составитель: Тепляков А.П.

СОДЕРЖАНИЕ

Введение	3
Интерфейс программного комплекса Multisim	4
Правила выполнения работ	6
Лабораторная работа № 1. Исследование резисторных каскадов	
предварительного усиления	7
Лабораторная работа № 2. Исследование усилителей с обратной	
связью	14
Лабораторная работа № 3. Исследование усилителя с мощным	
двухтактным выходным каскадом	20
Лабораторная работа № 4. Исследование усилительных каскадов	
на базе интегрального операционного усилителя	25
Список рекомендуемой литературы	30

ВВЕДЕНИЕ

Методические указания предназначены для проведения лабораторных работ по дисциплине «Схемотехника электронных устройств» для студентов дневной формы обучения обучающихся по направлениям: 11.03.01-Радиотехника, 11.03.02 - Инфокоммуникационные технологии и системы связи, 11.03.03 - Конструирование и технология электронных средств, а также по специальности - 11.05.01 Радиоэлектронные системы и комплексы.

Работы выполняются в электронной системе Multisim. Электронная система моделирования Multisim имитирует реальное рабочее место исследователя, оборудованное измерительными приборами, работающими в реальном масштабе времени. С ее помощью можно создавать, моделировать как простые, так и сложные аналоговые и цифровые устройства. В данном методическом указании представлены лабораторные работы по исследованию характеристик усилительных устройств аналоговой техники:

- исследование резисторных каскадов предварительного усиления;
- исследование усилителей с обратной связью;
- исследование усилителя с мощным двухтактным выходным каскадом;
- исследование усилительных каскадов на базе интегрального операционного усилителя.

ИНТЕРФЕЙС ПРОГРАММНОГО КОМПЛЕКСА MULTISIM

Интерфейс пользователя состоит из нескольких основных элементов, которые представлены на рисунке 1.

Pис. 1. Среда Multisim

Окно разработки (Design Toolbox)

В окне разработки находятся средства управления различными элементами схемы. Закладка Доступность (Visibility) позволяет скрыть или отобразить слои схемы рабочей области. Закладка Иерархия (Hierarchy) отображает взаимосвязь между файлами открытого проекта в виде древовидной структуры. Закладка Проект (Project) содержит

информацию об открытом проекте. Пользователь может добавить файлы в папки открытого проекта, изменить доступ к файлам и создать архив проекта.

Работа с приборами

Генератор сигналов

Генератор сигналов (function generator) — это источник напряжения, который может генерировать синусоидальные, пилообразные прямоугольные импульсы. Можно изменить форму сигнала, его частоту, амплитуду, коэффициент заполнения и постоянный сдвиг.

Лицевая панель генератора и прочих устройств открывается двойным щелчком на символе соответствующего устройства.

Рис. 2. Символ генератора сигналов

Рис. 3. Лицевая панель генератора сигналов

Осциллографы

В Multisim есть несколько модификаций осциллографов, которыми можно управлять как настоящими. Они позволяют устанавливать параметры развертки и напряжения, выбирать тип и уровень запуска измерений.

Рис. 4. Символ осциллографа

Рис. 5. Лицевая панель осциллографа

ПРАВИЛА ВЫПОЛНЕНИЯ РАБОТЫ

1. Подготовка к работе

При подготовке к работе следует:

- по конспектам лекций и рекомендованной литературе изучить теоретический материал, относящийся к данной работе;
- ознакомиться с описанием, выполнить домашнее задание и продумать ответы на контрольные вопросы;
 - составить краткую программу выполнения лабораторной работы;
 - ознакомиться с применяемой в работе программой Multisim.

2. Выполнение работ в лаборатории

Лабораторные работы выполняются только в часы, предусмотренные расписанием, бригадами по 2–4 человека. Выполнению работы предшествует проверка готовности студента к работе, при этом студент должен представить все материалы, подготовленные в соответствии с п. 1, и ответить на вопросы преподавателя по теории предстоящей работы и методике ее выполнения. Если результаты проверки готовности будут признаны удовлетворительными, студент получает допуск к работе.

Работа в лаборатории считается законченной только после просмотра и утверждения полученных результатов преподавателем.

3. Оформление отчета и зачет по работе

Отчет о выполненной работе должен быть составлен индивидуально на листах писчей бумаги формата A4. Графический материал и все результаты лабораторной работы выполняются дома на компьютере. Расчету отдельных величин должно предшествовать краткое объяснение и буквенное обозначение формул. Зачет по работе студент получает только после представления отчета.

ЛАБОРАТОРНАЯ РАБОТА №1

ИССЛЕДОВАНИЕ РЕЗИСТОРНЫХ КАСКАДОВ ПРЕДВАРИТЕЛЬНОГО УСИЛЕНИЯ

1. Цель работы

Изучение принципиальных схем резисторных каскадов предварительного усиления и назначения отдельных элементов схемы, экспериментальное исследование влияния различных элементов схемы каскада с общим эмиттером (ОЭ) на его основные показатели – частотную характеристику, коэффициенты усиления по напряжению и току, входное и выходное сопротивления.

2. Домашнее задание

2.1. Для исследуемого каскада ОЭ (рис. 1.1) построить нагрузочные линии постоянного и переменного токов при следующих условиях:

$$U_{ox} = 7.5 B$$
; $I_{ox} = 10 mA$; $E_{x} = 15 B$; $U_{back} = 2 B$.

Примечание: Отечественный аналог транзистора BC548A — КТ3102A.

- 2.2. По динамическим входным и выходным характеристикам определить входное и выходное сопротивления каскада, коэффициенты усиления по напряжению и току в точке покоя с коэффициентами (U_{oк}; I_{ox}).
- 2.3. Аналитически вычислить показатели, указанные в п. 2.2 при условии, что транзистор имеет следующие параметры:

$$r_6 = 100 \text{ Om}$$
; $h_{21} = 100$; $r_k = 1 \text{ MOM}$.

Изучить основные принципы работы с пакетом Multisim.

3. Экспериментальные исследования

- 3.1. На частоте f = 1 кГц снять и построить амплитудные характеристики при различных значениях сопротивлений нагрузки. Найти сквозные коэффициенты усиления по напряжению.
- 3.2. Не изменяя сопротивления нагрузки, снять частотные характеристики и определить диапазон рабочих частот:
 - а) при различных значениях разделительных конденсаторов;
- б) при включенном и выключенном конденсаторе С₀, имитирующем паразитную емкость.
- 3.3. Измерить входное и выходное сопротивление каскада, найти коэффициент усиления по току.

3.4. Снять частотную характеристику каскада с общим истоком (рис. 1.2) и измерить его входное сопротивление.

4. Методические указания к выполнению работы

4.1. Аналитический расчет показателей усилительного каскада по переменному току производится в следующей последовательности:

Входное сопротивление каскада r_{вх} без учета делителя R₆ в цепи смещения базы:

$$r_{BX} = \frac{U_{BX}}{I_6} = r_6 + (1 + h_{213})r_3,$$

где $r_{\mathfrak{3}} = \frac{26}{I_{\mathfrak{0}\mathfrak{3}}} \; (r_{\mathfrak{3}} \; \mathsf{B} \; \mathsf{Омах}, \mathsf{при} \; \mathsf{I}_{\mathfrak{0}\mathfrak{3}} \; \mathsf{B} \; \mathsf{миллиамперах}).$

Входное сопротивление каскада $R_{\text{вх}}$ с учетом делителя R_6 :

$$R_{BX} = r_{BX} || R_{\delta}$$
, где $R_{\delta} = R_{\delta 1} || R_{\delta 2}$,

Коэффициент усиления по току:

$$K_{I} = h_{213} \frac{R_{6}}{R_{6} + r_{BX}} \cdot \frac{R_{K}}{R_{K} + R_{H}}.$$

Коэффициент усиления по напряжению:

$$K_U = \frac{U_{\text{bux}}}{U_{\text{dy}}} \cong h_{213} \frac{R_{\text{k}} || R_{\text{h}}}{R_{\text{dy}}}.$$

Сквозной коэффициент усиления по напряжению:

$$K_U^* = \frac{U_{\text{bmx}}}{E_{\text{mct}}} = \frac{R_{\text{bx}}}{R_{\text{mct}} + R_{\text{bx}}} \cdot K_U = h_{213} \frac{R_{\text{k}} || R_{\text{h}}}{R_{\text{mct}} + R_{\text{bx}}}.$$

Выходное сопротивление:

$$R_{\text{baix}} \cong R_{\kappa} || r_{\kappa} \cong R_{\kappa}.$$

4.2. Открыть файлы с исследуемыми схемами. В данной работе используются файлы 1.1.ms11 – 1.2.ms11. Для открытия этих файлов нужно на стандартной панели щелкнуть по кнопке Открыть файл, затем в появившемся окне выбрать нужный файл и щелкнуть по кнопке Открыть.

Включение и выключение схемы осуществляется с помощью выключателя моделирования:

4.3.1. При снятии амплитудных характеристик, следует учесть, что амплитуда сигнала на входе усилительного каскада — это амплитуда с учетом внутреннего сопротивления источника сигнала. В рассматриваемой схеме это сопротивление имитируется резистором R₁ (R₁ = R_{доп}). Используя переключатель S4, можно наблюдать на осциллографе (канал А) ЭДС источника сигнала или амплитуду входного сигнала, в зависимости от положения переключателя. На основе полученных показаний строится график амплитудной характеристики.

Таблица 1.1

U _{mex} , MB						
$U_{\text{mbarx}}, B;$ $R_{\text{H}} = 1 \text{ kOm}$						
$U_{\text{mbarx}}, B;$ $R_{\text{H}} = 300 \text{ OM}$						

4.3.2. Перед снятием АЧХ на входе усилителя устанавливается амплитуда входного сигнала, которая выбирается из динамического диапазона усилителя. Переключение элементов в схеме осуществляется с помощью соответствующих переключателей. На основе полученных показаний строится график частотной характеристики.

Таблица 1.2

f, кГц	0,2	0,4	0,7	1	2	4	10	20	30	40	50	60	70	80	90	100
U_{mbarx}, B (C_2, C_0)																
U_{mback}, B (C_3, C_0)																
U_{mback}, B (C_2)																
U_{mbady}, B (C_3)																

4.3.3. Для измерения входного сопротивления каскада R_{вх} необходимо измерить напряжение до (Еист) и после (U_{вх}) добавочного резистора R_{доп}, включенного в цепь базы и имитирующего внутреннее сопротивление источника сигнала:

$$R_{\text{bx}} = R_{\text{doff}} \frac{U_{\text{bx}}}{E_{\text{uct}} - U_{\text{bx}}},$$

т. е. $R_{\text{вх}}$ измеряется косвенным путем. Здесь отношение $\frac{E_{\text{ист}} - U_{\text{вх}}}{R_{\text{доп}}}$ является действующим значением переменной составляющей тока базы.

Выходное сопротивление $R_{вых}$ также измеряется косвенно измерением выходного напряжения $U_{вых1}$ на сопротивлении нагрузки $R_{н1}$ и напряжения $U_{вых2}$ на сопротивлении $R_{н2}$ при измеренной величине $E_{ист}$:

$$R_{\text{bmx}} = \frac{U_{\text{mbmx}1} - U_{\text{mbmx}2}}{I_{\text{h}2} - I_{\text{h}1}},$$

где
$$I_{\text{H}2} = \frac{U_{\text{mbыx2}}}{R_{\text{H}2}}$$
 ; $I_{\text{H}1} = \frac{U_{\text{mbыx1}}}{R_{\text{H}1}}$.

Внутреннее сопротивление источника сигнала при этом равно сопротивлению R_{доб}.

4.3.4. При снятии АЧХ каскада с общим истоком, следует заполнить таблицу 1.3. Амплитуду сигнала на входе установить U_{max} = 100 мВ.

Таблица 1.3 f, кГц 0,01 0,02 0,04 0.07 0,1 10 20 40 70 100 200 500 700 Umber, B

Рис. 1.1. Принципиальная схема каскада усилителя с общим эмиттером

Рис. 1.2. Принципиальная схема каскада усилителя с общим истоком

5. Контрольные вопросы

- 5.1. Что называется амплитудной характеристикой усилителя?
- 5.2. Что называется динамическим диапазоном усилителя, в каких единицах он измеряется?
- 5.3. Чем ограничивается динамический диапазон усилителя?
- 5.4. Как экспериментально снимается амплитудная характеристика?
- 5.5. Что называется амплитудно-частотной характеристикой?
- 5.6. Какие элементы схемы усилителя и как влияют на амплитудночастотную характеристику?
- 5.7. Что называется фазовой характеристикой?
- 5.8. Как экспериментально снимаются АЧХ и ФЧХ?
- 5.9. Как экспериментально измеряются входное и выходное сопротивления усилителя?
- 5.10. Что называется частотными искажениями и в каких единицах они измеряются?
- Бывести формулу для коэффициентов усиления по напряжению и по току на средних частотах.
- 5.12. Какой порядок имеют коэффициенты усиления по току, напряжению, входное и выходное сопротивления каскадов ОЭ, ОК и ОБ?
- 5.13. Построить эквивалентные схемы каскада ОЭ на нижних, средних и верхних частотах.

- 5.14. Динамические входные и выходные характеристики, порядок их построения.
- Привести варианты схем подачи на базу транзистора при питании от одного источника.
- 5.16. Дать определение нижней и верхней частот рабочего диапазона.
- 5.17. Как зависят величины входного сопротивления и коэффициентов усиления от положения точки покоя?
- Характерные особенности усилительных каскадов на полевых транзисторах.
- 5.19. От чего зависит коэффициент усиления напряжению каскада на полевом транзисторе?

ЛАБОРАТОРНАЯ РАБОТА №2

ИССЛЕДОВАНИЕ УСИЛИТЕЛЕЙ С ОБРАТНОЙ СВЯЗЬЮ

1. Цель работы

Исследование влияния обратной связи на основные технические показатели усилителя: амплитудно-частотную характеристику, уровень помех, входное и выходное сопротивления, стабильность величины коэффициента усиления.

2. Расчетное задание

- 2.1. Определить коэффициент передачи цепи обратной связи усилителя, имеющего без обратной связи коэффициент усиления по напряжению $K_u = 100$, если глубина обратной связи A равна A = 20 дБ.
- 2.2. Рассчитать эмиттерный повторитель по следующим исходным данным: $R_{\text{вх}} \ge 10$ кОм; $E_{\kappa} = 15$ B; $f_{\pi} = 100$ Гц; $f_{\pi} = 20$ кГц; $R_{\pi} = 500$ Ом; $E_{\text{ист}} = 1$ B; $R_{\text{ист}} = 10$ кОм.

3. Экспериментальные исследования

Принципиальные схемы исследуемых каскадов приведены на рис. 2.1 и 2.2 (данным схемам соответствуют файлы 2.1.ms11 – 2.2.ms11).

- 3.1. Не изменяя сопротивления нагрузки, снять амплитудные характеристики двухкаскадного усилителя на частоте f = 1 кГц при наличии и отсутствии обратной связи (рис. 2.1).
- 3.2. Не изменяя сопротивления нагрузки, снять амплитудночастотные характеристики усилителя при наличии и отсутствии обратной связи. Определить верхнюю и нижнюю частоты рабочего диапазона.
- 3.3. На частоте f = 1 кГц определить входное и выходное сопротивления при наличии и отсутствии обратной связи.
- 3.4. На частоте f = 1 к Γ ц измерить изменение сквозного коэффициента усиления в зависимости от изменения сопротивления нагрузки при наличии и отсутствии обратной связи.
- Снять амплитудно-частотные характеристики эмиттерного повторителя, измерить его выходное и входное сопротивления (рис. 2.2).

Примечание: входное и выходное сопротивления усилителя определяются по методике, изложенной в лабораторной работе № 1.

4. Методические указания к выполнению работы

В процессе расчета эмиттерного повторителя необходимо определить:

- тип транзистора;
- сопротивление резистора в цепи R_э и номиналы резисторов R₆₁, R₆₂ в цепи смещения базы;
 - емкости разделительных конденсаторов.

Расчет производится в следующей последовательности:

- 4.1.1. Выбирается транзистор по допустимым напряжению $U_{\kappa s}$, току I_{κ} и мощности рассеяния $P_{\kappa доп}$, удовлетворяющей условию $f_{h21s} \gg f_{g}$, где $f_{h21s} -$ предельная частота, f_{g} верхняя частота рабочего диапазона.
- 4.1.2. Рассчитываются h_{κ} параметры транзистора при его включении по схеме с общим коллектором:

$$h_{11\kappa} = h_{113}$$
; $h_{12\kappa} \approx 1$; $h_{21\kappa} \approx 1 + h_{213}$; $h_{22\kappa} \approx h_{223}$.

4.1.3. Определяется сопротивление резистора R₃:

$$R_{\mathfrak{I}} = \frac{U_{R\mathfrak{I}}}{I_{\mathfrak{I}\mathfrak{I}}},$$

где U_{Rэ} может быть определено из соотношения

$$\frac{E_{\text{uct}}}{R_{\text{uct}} + R_{\text{bx}}} \cdot R_{\text{bhx}} \leq U_{R\mathfrak{3}} \leq 0.5 E_{\text{k}},$$

а ток покоя $I_{\text{ок}} \approx I_{\text{h}} + (5 \div 10)I_{\text{ко}}$,

где ток нагрузки
$$I_{\text{H}} = \frac{U_{\text{H}}}{R_{\text{H}}} \cong \frac{E_{\text{ист}}}{R_{\text{ист}} + R_{\text{BX}}} \cdot \frac{R_{\text{BX}}}{R_{\text{H}}};$$

Іко – обратный (неуправляемый) ток коллектора.

4.1.4. Определяется ток делителя цепи смещения базы:

$$I_{A} \cong (3 \div 5) \cdot I_{o6}$$

где ток смещения базы $I_{\mathsf{o}\mathsf{f}}\cong rac{I_{\mathsf{o}\mathsf{j}}}{h_{21\kappa}}\cdot$

4.1.5. Определяются сопротивления делителя смещения:

$$R_{61} = \frac{E_K - U_{o6} - U_{R3}}{I_{\pi} + I_{o6}}; \qquad R_{62} = \frac{U_{R3} + U_{o6}}{I_{\pi}},$$

где U_{об} — напряжение смещения базы.

- 4.1.6. Рассчитывается входное сопротивление эмиттерного повторителя:
 - без учета делителя R₆:

$$r_{BX} \cong h_{11K} + h_{21K} \cdot R_{3\sim};$$

с учетом делителя:

$$R_{BX} = r_{BX} || R_{\delta};$$

где $R_{3\sim}=R_{3}||R_{H}$ — сопротивление нагрузки эмиттера по переменному току; $R_{6}=R_{61}||R_{62}$.

Если величина входного сопротивления $R_{\text{вх}}$ окажется меньше заданной, то следует увеличить $R_{\text{э}}$, увеличив до возможно большей величины $U_{\text{R}\text{э}}$, или выбрать транзистор с большим значением статического коэффициента передачи тока базы $h_{21\text{э}}$ и повторить расчет с п. 4.1.3 заново.

4.1.7. Рассчитывается выходное сопротивление:

$$R_{\text{bux}} \cong \frac{R_{\text{uct}} + h_{11\kappa}}{h_{21\kappa}}.$$

4.1.8. Определяется коэффициент усиления по напряжению:

$$K_u = \frac{h_{21\kappa} \cdot R_{\mathfrak{z}_{\sim}}}{h_{11\kappa} + h_{21\kappa} \cdot R_{\mathfrak{z}_{\sim}}}.$$

4.1.9. Определяется напряжение сигнала на нагрузке:

$$U_{\rm H} = U_{\rm BMX} = \frac{R_{\rm BMX}}{R_{\rm BX} + R_{\rm uct}} \cdot K_{\rm u} \cdot E_{\rm uct},$$

где $\frac{R_{\text{вых}}}{R_{\text{вх}}+R_{\text{ист}}}=\alpha-$ коэффициент передачи напряжения источника

сигнала во внутреннюю цепь.

4.1.10. Определяются емкости разделительных конденсаторов:

$$C_1 \ge \frac{0.16}{f_{\text{H}} \cdot (R_{\text{HCT}} + R_{\text{BX}}) \cdot \sqrt{M_{\text{H}}^2 - 1}};$$

$$C_2 \ge \frac{0.16}{f_H \cdot (R_{BMX} + R_H) \cdot \sqrt{M_H^2 - 1}},$$

где M_н — коэффициент частотных искажений на нижней частоте рабочего диапазона.

 4.2.1. Для получения амплитудной характеристики заполнить таблицу 2.1.

Таблица 2.1

U _{швх} , мВ						
U _{mвых} , В; без ОС						
Umber, B; c OC						

4.2.2. Таблица для снятия АЧХ двухкаскадного усилителя с обратной связью.

Таблица 2.2

f, кГц	0,04	0,07	0,1	0,2	0,4	0,7	1	7	10	20	30	40	70	100	200
U _{mвых} , В; без ОС															
Umber, B; c OC															

4.2.3. Таблица для снятия AЧX эмиттерного повторителя. Амплитуду сигнала на входе установить $U_{max}=1~B.$

Таблица 2.3

f, кГц	0,03	0,05	0,1	0,15	0,4	1	10	20	50	100	300	600	1300
U_{mber} , B													

Рис. 2.1. Принципиальная схема двухкаскадного усилителя с обратной связью

Рис. 2.2. Принципиальная схема эмиттерного повторителя

5. Контрольные вопросы

- 5.1. Что называется обратной связью?
- 5.2. Способы снятия и введения обратной связи.
- Изобразить принципиальные схемы усилителей с последовательной и параллельной обратной связью по напряжению и по току.
- 5.4. Как влияет обратная связь на частотную, фазовую и переходную характеристики?
- 5.5. Как влияет обратная связь различного вида на входное и выходное сопротивление усилителя?
- 5.6. Привести примеры использования положительной обратной связи.
- 5.7. Что называется самовозбуждением усилителя и в чем его причины?
- 5.8. Почему в многокаскадных усилителях, охваченных общей отрицательной обратной связью, может возникать самовозбуждение?

ЛАБОРАТОРНАЯ РАБОТА №3

ИССЛЕДОВАНИЕ УСИЛИТЕЛЯ С МОЩНЫМ ДВУХТАКТНЫМ ВЫХОДНЫМ КАСКАДОМ

1. Цель работы

Изучение схемы, принципа действия, характеристик и энергетических показателей двухтактного бестрансформаторного усилителя мощности в режимах классов В и АВ.

2. Расчетное задание

- 2.1. По семейству выходных характеристик оконечного транзистора КТ943Г определить оптимальное сопротивление нагрузки $R_{\text{норt}}$ и максимальную выходную мощность $P_{\text{выхмах}}$, приняв для каждого плеча $E_{\text{кл}} = 7.5 \text{ B}$.
 - 2.2. Построить эпюры токов, иллюстрирующих режим класса В.

3. Экспериментальные исследования

Принципиальная схема усилителя с мощным двухтактным выходным каскадом представлена на рис. 3.1.

3.1. Усилитель мощности в режиме класса В.

- При отключенной обратной связи снять и построить амплитудные характеристики усилителя.
- 3.1.2. При отключенной обратной связи снять и построить зависимость выходной мощности $P_{\text{вых}}$ от сопротивления нагрузки $R_{\text{н}}$ на частоте f = 1000 Гц. Входное напряжение $U_{\text{вх}}$ устанавливать максимальным $U_{\text{вх}} = U_{\text{вхтах}}$. Величина $U_{\text{вхтах}}$ определяется визуально по началу ограничения амплитуды выходного напряжения $U_{\text{вых}}$ на экране осциллографа. Определить из графика $P_{\text{вых}} = f(R_{\text{н}})$ оптимальное значение сопротивления нагрузки $R_{\text{норt}}$ и максимальную величину выходной мощности $P_{\text{выхтах}}$. Все последующие пункты задания выполняются при $R_{\text{н}} = R_{\text{норt}}$.
- 3.1.3. При отключенной обратной связи на частоте f=1000 Γ ц снять зависимости выходного напряжения $U_{\text{вых}}$ и потребляемого от источника питания тока I_{\circ} от входного напряжения:

$$U_{\text{вых}} = \phi (U_{\text{вх}})$$
 и $I_{\text{o}} = \phi (U_{\text{вх}})$.

Исследуя полученные данные, построить зависимости:

$$P_{\mathtt{bbx}} = \phi \; (U_{\mathtt{bx}}); \; P_{\mathtt{o}} = \phi \; (U_{\mathtt{bx}}); \; P_{\mathtt{k}} = \phi \; (U_{\mathtt{bx}}); \; \eta = \phi \; (U_{\mathtt{bx}}),$$

где P_o – мощность, потребляемая от источника питания;

Р_к – мощность, рассеиваемая на коллекторе транзисторов;

η – КПД усилителя.

- 3.1.4. Снять частотные характеристики при наличии и отсутствии обратной связи.
- 3.1.5. Переключателем S3 разомкнуть резистор R17, имитирующий разбаланс плеч, на частоте f =1000 Гц проследить искажения формы выходного сигнала. Для уровня, близкого к максимальному, зарисовать осциллограммы выходного напряжения при наличии и отсутствии обратной связи.
- 3.1.6. Зарисовать осциллограммы выходного сигнала на частоте f=1000 Γ ц при действии и отсутствии обратной связи. Уровень выходного сигнала установить примерно равным $0.1U_{\text{выхмах}}$.

3.2. Усилитель мощности в режиме класса АВ

Перевести усилитель в режим класса AB, для чего разомкнуть переключателем S2 резистор R12, обеспечивающий небольшое начальное смещение выходному каскаду. Зарисовать осциллограммы выходного сигнала на частоте f =1000 Гц при отсутствии обратной связи. Сравнить с осциллограммами, полученными при выполнении п. 3.1.6.

4. Методические указания к выполнению работы

- 4.1.1. Открыть файл с исследуемой схемой. В данной работе используется файл 3.1.ms11.
- 4.1.2. Для перевода усилителя мощности в режим В необходимо переключателем S1 замкнуть резистор смещения R12.
- 4.1.3. Для получения амплитудной характеристики заполнить таблицу 3.1. Амплитудная характеристика снимается при $R_{\tt m}=8$ Ом.

Таблица 3.1

U_{mbx}, мВ

U_{mbax}, В

4.1.4. Дискретные значения сопротивления нагрузки R20 – R29 имеют соответственно, следующие значения: 0,2; 0,5; 1; 2; 4; 8; 10; 16; 20; 30 Ом. Сопротивление нагрузки изменяется путем включения соответствующего переключателя S4.

4.1.5. Для получения характеристик: $P_{\text{вых}} = \phi (U_{\text{вх}})$; $P_{\text{o}} = \phi (U_{\text{вх}})$; $P_{\text{w}} = \phi (U_{\text{вх}})$; $\eta = \phi (U_{\text{вх}})$ необходимо заполнить таблицу 3.2

Таблица 3.2

$\mathbf{U}_{\mathtt{BX}},\mathbf{B}$					
U_{bedx}, B					
I _o , A					
P_{bedy}, B_T					
P _{BMX} , Bt P _o , Bt					
P _K , B _T					
η, %					

Среднее значение тока I₀, потребляемого от источника питания усилителем в режиме класса В, определяется при помощи мультиметра XMM1 (включенного в режиме измерения постоянного тока).

$$P_{\text{вых}} = \frac{U_{\text{вых}}^2}{R_{\text{н}}} - \,\,$$
 выходная мощность усилителя;

 ${\bf P_0} = {\bf E_{\rm пит}} \cdot \, {\bf I_0} - \,$ мощность потребляемая от источника питания;

 $P_{\!\scriptscriptstyle K} = P_{\!\scriptscriptstyle 0} - P_{\!\scriptscriptstyle BMX} - \,$ мощность, рассеиваемая на коллекторах транзисторов;

$$\eta = \frac{P_{\text{вых}}}{P_0} \cdot 100\% - \text{КПД усилителя}.$$

4.1.6. Таблица для снятия АЧХ двухтактного усилителя.

Таблица 3.3

f, кГц	0,01	0,05	0,1	0,2	0,4	0.7	1	2	5	10	15	20	30	50
Umber, B;														
без ОС														
Umber, B;														
c OC														

Рис. 3.1. Принципиальная схема усилителя с мощным двухтактным выходным каскадом

5. Контрольные вопросы

- 5.1. Как работает двухтактный бестрансформаторный каскад?
- 5.2. Какие энергетические соотношения в усилителе мощности, работающем в режиме класса В?
- 5.3. С какой целью в усилителях мощности вместо режима В часто используют режим AB?
- 5.4. Причина возникновения нелинейных искажений гармонического сигнала типа «ступенька»?
- 5.5. Какими особенностями обладают составные транзисторы верхнего и нижнего плеч усилителя?
- 5.6. Как производится построение выходной динамической характеристики по переменному току для режимов А и АВ?
- 5.7. Какие цепи обратной связи применены в схеме усилителя и их назначение?
- 5.8. Назначение конденсатора С7. Исходя из каких условий рассчитывается его величина?
- 5.9. От каких величин и как зависит необходимое напряжение питания двухтактного бестрансформаторного усилителя мощности?
- 5.10. Как аналитически определить сопротивление нагрузки, при котором усилитель отдает максимальную мощность, и чему равна его величина?

ЛАБОРАТОРНАЯ РАБОТА №4

ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНЫХ КАСКАДОВ НА БАЗЕ ИНТЕГРАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ

1. Цель работы

Изучение принципов построения усилительных каскадов на базе операционного усилителя, назначения отдельных элементов принципиальных схем каскадов, экспериментальное исследование каскадов с различными цепями внешней отрицательной обратной связи.

2. Расчетное задание

Рассчитать и представить графически принципиальную электрическую схему инвертирующего усилителя, построенного на базе операционного усилителя К140УД8Б, который должен обладать входным сопротивлением $R_{\text{вх}} = 10$ кОм и сквозным коэффициентом усиления по напряжению $K_{\text{U}}^{*} = 10$, если источник сигнала имеет следующие параметры:

 $E_{\text{ner}} = 0.1 \text{ B}; R_{\text{ner}} = 10 \text{ kOm}.$

3. Экспериментальные исследования

- 3.1. На частоте f = 1 кГц снять и построить амплитудные характеристики неинвертирующего и инвертирующего усилителей при различных сопротивлениях обратной связи.
- 3.2. На частоте f = 1 кГц измерить входное R_{вх} и выходное R_{вых} сопротивления неинвертирующего и инвертирующего усилителей при различных сопротивлениях обратной связи.
- Снять и построить амплитудно-частотные характеристики избирательного усилителя и инвертирующего усилителя при различных сопротивлениях обратной связи.

Примечание: Зарубежный аналог операционного усилителя К140УД8Б – MC1556G.

4. Методические указания к выполнению работы

4.1. Открыть файлы с исследуемыми схемами. В данной работе используются файлы: 4.1.ms11 (неинвертирующий усилитель), 4.2.ms11 (инвертирующий усилитель), 4.3.ms11 (избирательный усилитель). 4.2. Заполнить таблицы 4.1 и 4.2 ($R_{\rm H}=1~{\rm kOm}$). На основе полученных показаний строятся графики амплитудных характеристик.

Амплитудные характеристики неинвертирующего усилителя:

Таблица 4.1

U _{BX} , B					
$U_{BMN}, B;$ $R_{oc} = 10 \text{ kOm}$					
$R_{oc} = 10 \text{ kOm}$					
$\mathbf{U}_{\mathtt{BLIX}},\mathbf{B};$					
$U_{BMN}, B;$ $R_{oc} = 200 \text{ kOm}$					

Амплитудные характеристики инвертирующего усилителя:

Таблица 4.2

U _{BX} , B					
$U_{\text{BMD}}, B;$ $R_{\text{oc}} = 10 \text{ kOm}$					
$U_{BbDX}, B;$ $R_{oc} = 200 \text{ kOm}$					

4.3. Входное и выходное сопротивления усилительных каскадов определяются по методике, изложенной в лабораторной работе № 1.

При измерении входного сопротивления неинвертирующего и инвертирующего усилителей задать ЭДС источника сигнала, равную 0.5~B, последовательно с резистором R_1 следует включить (разомкнуть) добавочный резистор $R_{доб}$ сопротивлением 10~MOm. При измерении выходного сопротивления усилителей резистор $R_{доб}$ замкнуть.

4.4. Заполнить таблицы 4.3—4.4 ($R_{\rm H}=1~{\rm кOM}$). При снятии AЧX избирательного усилителя использовать значение $U_{\rm BX}=1~{\rm B}$. При снятии AЧX инвертирующего усилителя значение $U_{\rm BX}$ определяется по середине прямолинейного участка амплитудной характеристики. На основе полученных показаний строятся графики АЧX.

Амплитудно-частотная характеристика избирательного усилителя

Таблица 4.3

f, кГц						
U _{BBEN} , B						

Амплитудно-частотные характеристики инвертирующего усилителя:

Таблица 4.4

f, МГц						
$U_{BMX}, B;$ $R_{oc} = 10 \text{ kOm}$						
$U_{BBDX}, B;$ $R_{oc} = 200 \text{ kOm}$						

Рис. 4.1. Принципиальная схема неинвертирующего усилителя

Рис. 4.2. Принципиальная схема инвертирующего усилителя

Рис. 4.3. Принципиальная схема избирательного усилителя

5. Контрольные вопросы

- 5.1. Каким условиям должен удовлетворять идеальный операционный усилитель?
- 5.2. Дать определения основным параметрам операционного усилителя:
 - напряжения смещения;
 - разность входных токов;
 - диапазон допустимых синфазных и дифференциальных напряжений;
 - коэффициент подавления синфазного сигнала;
 - скорость нарастания выходного напряжения;
 - частота единичного усиления.
- 5.3. Вывести аналитические выражения для:
 - повторителя сигнала;
 - инвертирующего усилителя;
 - неинвертирующего усилителя;
 - сумматоров сигналов;
 - интегрирующего усилителя;
 - дифференцирующего усилителя;
 - логарифмирующего усилителя;
 - дифференциального усилителя.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- Павлов, В. Н. Схемотехника аналоговых электронных устройств: учебн. пособие для вузов / В. Н. Павлов. – М.: Издательский центр «Академия», 2008.
- 2. Павлов, В. Н. Схемотехника аналоговых электронных устройств : учебник для вузов / В. Н. Павлов. – М. : Горячая линия – Телеком, 2003.
- 3. Транзисторы для аппаратуры широкого применения: справочник /под ред. Б. Л. Перельмана. М.: Радио и связь, 1981.
- 4. Горбоконенко, А. Д. Проектирование аналоговых электронных устройств / А. Д. Горбоконенко. Ульяновск, 1995.
- Марченко, А. Л. Лабораторный практикум по электротехнике и электронике в среде Multisim: учебное пособие для вузов / А. Л. Марченко, С. В. Освальд. М.: ДМК Пресс, 2010.
- 6. Введение в Multisim National Instruments. ftp://ftp.ni.com/pub/branches/russia/software/multisim_gettingstarted.pdf