

## planetmath.org

Math for the people, by the people.

## divisibility of prime-power binomial coefficients

Canonical name DivisibilityOfPrimepowerBinomialCoefficients

Date of creation 2013-03-22 18:42:29 Last modified on 2013-03-22 18:42:29

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146)
Entry type Theorem
Classification msc 05A10
Classification msc 11B65
Related topic OrderValuation

For p a prime, n a nonzero integer, define  $\operatorname{ord}_p(n)$  to be the largest integer r such that  $p^r \mid n$ .

An easy consequence of Kummer's theorem is:

**Theorem 1.** Let p be a prime,  $n \ge 1$  an integer. If  $1 \le rp^s \le p^n$  where r, s are nonnegative integers with  $p \nmid r$ , then  $\operatorname{ord}_p\binom{p^n}{rn^s} = n - s$ .

Proof. The result is clearly true for r=1, s=n, so assume that s < n. By Kummer's theorem,  $\operatorname{ord}_p\binom{p^n}{rp^s}$  is the number of carries when adding  $rp^s$  to  $p^n-rp^s$  in base p. Consider the base p representations of  $rp^s$  and  $p^n-rp^s$ . They each have n digits (possibly with leading zeros) when represented in base p, and they each have s trailing zeros. If the rightmost nonzero digit in  $rp^s$  is k, then the rightmost nonzero digit in  $p^n-rp^s$  is in the same "decimal" place and has value p-k. Each pair of corresponding digits (one from  $rp^s$  and one from  $p^n-rp^s$ ) to the left of that point sum to p-1 (it may help to think about how you subtract a decimal number from a power of 10, and what the result looks like).

It is then clear that adding those two numbers together will result in no carries in the rightmost s places, but there will be a carry out of the  $s+1^{\rm st}$  place and out of each successive place up to and including the  $n^{\rm th}$  place, for a total of n-s carries.

A couple of examples may help to make this proof more transparent. Take p=3. Then

$$\binom{27}{4} = 17550 = 2 \cdot 3^3 \cdot 5^2 \cdot 13$$

so that  $\operatorname{ord}_3\binom{27}{4}=3$ . Now,  $27_{10}=1000_3$  and  $4_{10}=11_3$ , so that  $27-4=23_{10}$  is  $212_3$ . Adding  $212_3+11_3$  indeed results in carries out of all three places since there are no trailing zeros.

$$\binom{27}{6} = 296010 = 2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13 \cdot 23$$

so that  $\operatorname{ord}_3\binom{27}{6} = 2$ . Now,  $6_{10} = 20_3$  so that  $27 - 6 = 21_{10}$  is  $210_3$ . When adding  $20_3 + 210_3$ , there are two carries, out of the 3's place and out of the 9's place. There is no carry out of the ones place since both numbers have a 0 there.