STAT 346

Theoretical Statistics II Spring Semester 2018

Exam 1

Name: 50/ution

- $\bullet\,$ You have 75 min to complete this exam
- Justify your answers
- Evaluate expressions as much as you can

Note: There is a table on the last page that lists pdf/pmf, mean, variance and mgf for a few distributions.

1. (6 points) Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Show that $\overline{X} \sim N(\mu, \sigma^2/n)$. Hint: consider using mgf's.

We know that
$$M_{\overline{X}}(t) = \left(M_{X}(\frac{t}{n})\right)$$
and mgf for $N(\mu, \tau^{2})$ is
$$M_{X}(t) = e^{\mu t} + \tau^{2} t^{2}/2$$

$$= \gamma M_{\overline{X}}(t) = \left(e^{\mu t/n} + \tau^{2} t^{2}/2n^{2}\right)$$

$$= e^{\mu t/n} + n\tau^{2} t^{2}/2n^{2}$$

$$= e^{\mu t} + \frac{\sigma^{2}}{n} t^{2}/2$$

$$= mgf of $N(\mu, \tau^{2}/n)$$$

2. (8 points) Let X_1, X_2, \ldots, X_9 be a random sample from Uniform (0, 1). Derive the pdf for the 4th order statistic, $X_{(4)}$, and identify the name and parameter values of that distribution.

Have
$$f(x)=1$$
 and $F(x)=x$ for $x \in (0,1)$

In general:

$$f_{(j)}(x) = \frac{n!}{(j-1)!(n-j)!} f(x) (F(x))^{j-1} (1-F(x))^{n-j}$$

Have
$$n=9$$
 and $j=4$

$$f_{(4)}(x) = \frac{9!}{3! \, 5!} + 1 + x^3 \, (1-x)^5 \quad \text{for } x \in (0,1)$$

$$= \frac{\Gamma(6+4)}{\Gamma(4) \, \Gamma(6)} \times^{4-1} (1-x)^{6-1}$$

$$= pdf \quad \text{of the Bela(4,6)}$$

distribution

3. Let X_1, X_2, X_3 , be a random sample from N(0,4) and let Y_1, Y_2, Y_3, Y_4 , be a random sample from N(2,9). Also assume that $\{X_1, X_2, X_3\}$ are independent of $\{Y_1, Y_2, Y_3, Y_4\}$. Determine the distribution of the following random variables. Remember to justify your answers.

(a) (5 points)
$$U_{1} = \frac{3}{4}\overline{X^{2}} + \frac{4}{9}(\overline{Y} - 2)^{2}$$

$$\overline{X} \sim N(0, \frac{4}{3}) = 7 \qquad \overline{X} \sim N(0, 1)$$

$$= 7 \qquad \frac{X^{2}}{4/3} = \frac{3}{4}\overline{X^{2}} \sim X_{1}^{2}$$

$$\overline{Y} \sim N(2, \frac{9}{4}) = 7 \qquad \overline{Y} - 2 \sim N(0, 1)$$

$$= 7 \qquad \frac{(\overline{Y} - 2)^{2}}{\frac{9}{4}} = \frac{4}{9}(\overline{Y} - 2)^{2} \sim X_{2}^{2}$$

$$\overline{X} \sim N(0, 1)$$

$$= 7 \qquad \frac{(\overline{Y} - 2)^{2}}{\frac{9}{4}} = \frac{4}{9}(\overline{Y} - 2)^{2} \sim X_{2}^{2}$$

$$\overline{X} \sim N(0, 1)$$

$$= 7 \qquad N(0,$$

(b) (5 points)
$$U_2 = \frac{4(\overline{Y} - 2)}{\sqrt{3\sum_{i=1}^3 X_i^2}}$$

$$\frac{2}{3}(\overline{y}-2) \sim N(\delta, l)$$

$$X_i \sim N(0,4) = 7 \qquad \frac{X_i}{2} \sim N(0,1) = 7 \qquad \frac{X_i}{4} \sim X_1^2$$

=7
$$\sum_{i=1}^{3} \frac{X_i^2}{4} \sim \chi_3^2$$

$$= \frac{\frac{2}{3}(\overline{Y}-2)}{\sqrt{\frac{1}{4}\sum_{i=1}^{3}\chi_{i}^{2}/3}} \sim t_{3}$$

$$= \frac{2(\bar{Y}-2)}{\frac{1}{2}\sqrt{\frac{1}{3}}\frac{3}{2}\chi_{i}^{2}} = \frac{4(\bar{Y}-2)}{\sqrt{\frac{1}{3}}\frac{3}{2}\chi_{i}^{2}}$$

(c) (5 points)
$$U_3 = \frac{3\sum_{i=1}^3 X_i^2}{\sum_{i=1}^4 (Y_i - 2)^2}$$

$$\frac{\dot{\gamma}_{i}-2}{3}\sim N(\partial_{i}) = 2 \left(\frac{\dot{\gamma}_{i}-2}{9}\right)^{2} \sim \chi_{1}^{2}$$

=>
$$\frac{1}{9} \stackrel{4}{\underset{i=1}{2}} (Y_{i}-2)^{2} \sim \chi_{4}^{2}$$

$$= \frac{1}{4} \sum_{i=1}^{3} X_{i} / 3 = \frac{1}{4} \sum_{i=1}^{4} (Y_{i}-2)^{2} / 4$$

$$= \frac{1}{4.3} \stackrel{3}{\underset{i=1}{\overset{3}}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}}{\underset{i=1}}}{\overset{3}}{\overset{3}}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}{\overset{3}{\underset{i=1}}}}{\overset{1}}{\overset{3}}{\underset{i=1}}}}{\overset{3}{\underset{i=1}}}}{\overset{1}}{\overset{3}}{\underset{i=1}}}{\overset{1}$$

4. (6 points) Let X_1, X_2, \ldots, X_n be a random sample from $Gamma(\theta, 2)$. Use the Central Limit Theorem and other theorems or corollaries to find the asymptotic (limiting) distribution of the following statistic

$$\frac{\sqrt{n}(\overline{X}_n - 2\theta)}{\sqrt{\overline{X}_n}}$$

$$E(x_i) = 92$$

$$E(X_i) = \theta 2$$
 $Var(X_i) = \theta 2^2$

By Central Limit Theorem:

$$\frac{\sqrt{N}(\overline{X}_{n}-29)}{\sqrt{49}} \quad \frac{2}{-7} \quad \overline{Z} \sim N(0,1)$$

By law of large numbers $\overline{X}_n \xrightarrow{P} 29$

$$= 7 \sqrt{\chi} \frac{P}{\sqrt{2}} \sqrt{2}$$

$$= > \sqrt{\overline{\chi}} \frac{P}{\sqrt{7}} \sqrt{2\theta} = > \frac{1}{\sqrt{\overline{\chi}}} \frac{P}{\sqrt{7}} \sqrt{\frac{1}{29}}$$

By Slutsky:

$$\frac{\sqrt{n}(\bar{X}_n-2\theta)}{\sqrt{\bar{X}}} \xrightarrow{J} \frac{1}{\sqrt{2\theta}} \sqrt{4\theta} Z = \sqrt{2} Z \sim N(0,2)$$

=7 Limiting distribution is N(0,2)

5. (6 points) Again, let X_1, X_2, \ldots, X_n be a random sample from Gamma($\theta, 2$). Use the Central Limit Theorem and other theorems or corollaries to find the asymptotic (limiting) distribution of the following statistic

$$\sqrt{n}(\overline{X}_n^2 - 4\theta^2)$$
 $CLT: \qquad \overline{N} \left(\overline{X}_n - 2\theta \right) \stackrel{\mathcal{J}}{\longrightarrow} \overline{\mathcal{U}} \overline{\theta} \overline{Z} \sim \mathcal{N}(0, 4\theta)$

bet
$$g(x) = x^2$$
. By delta method we get

In $(g(X_n) - g(2\theta)) \xrightarrow{d} N(0, 4\theta \ g'(2\theta)^2)$
 $g'(x) = 2x = 2 \ g'(2\theta) = 2 \cdot 2\theta = 4\theta$

$$= N(0, 4\theta \cdot 4^{2}\theta^{2})$$

$$= N(0, 4^{3}\theta^{3})$$

- 6. (9 points) Let X be a random variable and X_1, X_2, X_3, \ldots be a sequence of random variables. Define in mathematical notation what the following statements mean.
 - (a) $X_n \xrightarrow{D} X$, i.e. X_n converges to X in distribution as $n \to \infty$

$$\lim_{n\to\infty} F_{x_n}(x) \longrightarrow F(x)$$
 for all x

(b) $X_n \stackrel{P}{\longrightarrow} X$, i.e. X_n converges to X in probability as $n \to \infty$

(c) $X_n \xrightarrow{\text{a.s.}} X$, i.e. X_n converges to X almost surely as $n \to \infty$

$$P\left(\lim_{n\to\infty}|X_n-X|\geq \epsilon\right)=1$$
 for all $\epsilon >0$

Problem	1	2	3	4	5	6	Total
Missed							
Score							
out of	6	8	15	6	6	9	50

	Name	pdf	Parameters	Mean	Variance	Mgf
	Exponential(β)	Exponential(β) $f(x) = \frac{1}{\beta}e^{-x/\beta}, x \ge 0$	$\beta > 0$	$\mathrm{E}(X)=eta$	$\operatorname{Var}(X) = \beta^2$	$M_X(t) = \frac{1}{1-\beta t}, \ t < \frac{1}{\beta}$
	$\mathrm{Gamma}(\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x \ge 0$	$\alpha, \beta > 0$	$E(X) = \alpha\beta$	$Var(X) = \alpha \beta^2$	$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \ t < \frac{1}{\beta}$
	$\mathrm{N}(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, x \in \mathbb{R}$	$\mu \in \mathbb{R}, \sigma > 0$	$\mathrm{E}(X) = \mu$	$\operatorname{Var}(X) = \sigma^2$	$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$
10	$\operatorname{Uniform}(a,b)$	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	$a,b \in \mathbb{R}, \ a < b$	$E(X) = \frac{b+a}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$
	$\mathrm{Beta}(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 \le x \le 1$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{\alpha}{\alpha + \beta}$	$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	+1)
					$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^k \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$	$\prod_{r=0}^{k} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$
	Binomial (n, p)	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	$n \in \mathbb{N}, \ 0 \le p \le 1$	E(X) = np	Var(X) = np(1-p)	$Var(X) = np(1-p)$ $M_X(t) = (pe^t + (1-p))^n$
	$\mathrm{Poisson}(\lambda)$	$f(x) = \frac{e^{-\lambda \lambda x}}{x!}, \ x = 0, 1, 2, \dots$	γ ο γ ο	$E(X) = \lambda$	$Var(X) = \lambda$	$M_X(t) = e^{\lambda(e^t - 1)}$