Logistics

- HW4sol: posted
- ❖ HW5:
 - due on Fri 5pm (EH 4207), Sat 2pm (online)
 - solution will be posted then
- Evaluations
 - open until June 5th
 - as of today: 93/287
 - ok here it is: +1% for completing it
- Office hours
 - Thu: Kasra 14:00-16:00, EH3404
 - Fri: Fred 11:00-13:00, EH3404
 - Mon: Sush 15:00-17:00, EH3404
 - Athina's extra on Mon: 2-3pm in EH 4207

Final Exam

- ❖ Tue 6/7 8-10am
- Same format as midterm
 - Open books/notes/paper materials
 - No phones/laptops/any electronics
 - Come early, so we can get seated and start on time
 - In addition: bring your IDs
- * All inclusive but more focus on later chapters
 - everything we covered minus some sections (see next)
- Sample Final and Solution posted (F13)

How to prepare

- Lectures + Discussions: slides
- Class website: homeworks + solutions, Midterm, Sample Exams
- Book:
 - Reading: only sections listed in black in this review (not the ones in gray)
 - Problems
 - Companion website: interactive exercises, self-assessment, applets
- Focus on 2nd part, but all inclusive
 - See sample final+solution from F13

Predictable and familiar (#trivial)

- * A day in the life of a web request (5.7)
 - You should practice it on your own!!

Chapter 1: Introduction

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Performance, Network core
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Chapter 2: Application layer

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 DNS
- 2.6 P2P applications
- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP

Chapter 3: Transport Layer

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer
- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

Chapter 4: Network Layer

- 4. 1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
 - IP security

4.5 Routing algorithms

- Link state
- Distance Vector
- Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Chapter 5: Link Layer

- 5.1 Introduction
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
 - 5.3.1: Channel partitioning: TDMA, FDMA, (CDMA)
 - 5.3.2: Random access: Aloha, Slotted Aloha, CSMA, CSMA/CD
 - Taking turns, DOCSIS

5.4 LANS

- addressing, ARP, Ethernet, switches, VLANS
- 5.5 Link virtualization: MPLS
- 5.6 Data center networking
- 5.7 day in the life of a web request

More networking at UCI

- http://www.networkedsystems.uci.edu/
 - MS and PhD program
 - Faculty from EECS and ICS
 - Courses
 - Individual Research
 - Senior Design in CS and EE/CpE

Synthesis: a day in the life of a web request

- * A day in the life of a web request (5.7)
 - You should practice it on your own!!
- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives
 DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com:
 DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS **DNS UDP** DNS **DNS** server DNS IΡ **DNS** DNS Eth DNS **UDP** DNS Phy **IP** Eth Phy Comcast network 68.80.0.0/13

IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

router

(runs DHCP)

- IP datagram forwarded from campus network into comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing
- * protocols) to DNS server
- DNS server replies to client with IP address of www.google.com

Link Layer 5-15

A day in the life...TCP connection carrying HTTP

A day in the life... HTTP request/reply

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

The End