Taehwan Kim

Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94720

+1-510-295-3549 | taehwan@berkeley.edu

RESEARCH

Electronic-photonic integrated systems for communication/sensing

INTERESTS

Electronic-photonic integration technology & design methodology development

Analog/mixed-signal integrated circuit design, high-performing/efficient IO technology

EDUCATION

University of California, Berkeley

Aug. 2014 to Present

Ph.D. Student in Electrical Engineering and Computer Sciences

Seoul National University

Mar. 2007 to Feb. 2014

B.S. in Electrical and Computer Engineering

B.A. in Economics (Double Major)

RESEARCH **EXPERIENCE**

Graduate Student Researcher

Aug. 2014 to present

Integrated Systems Group, University of California, Berkeley (Advisor: Vladimir Stojanović)

- Optical phased-array based free-space optical systems in electronic-photonic integration platform
 - Goal: realization of an integrated solution for ultra high-resolution FMCW LIDAR and free-space optical communication links leveraging optical phased arrays
 - Developing building blocks for 1) laser modulation/synchronization (optical PLL for FMCW modulation/multi-laser synchronization) 2) large-scale phase-array implementation (optical phaseshifter drivers, algorithms for programming the array) 3) high-sensitivity FMCW receiver
 - Various system-level budget analysis for LIDAR/communication applications
 - First tape-out done in early 2016 in 65nm 10LPe
- Model Predictive Control algorithm (MPC) based equalization of high-speed links
 - Demonstration of TX-side equalization scheme based on channel models for flexible, energyefficient equalization of asymmetric high-speed interfaces (e.g. processor-memory, switches)
 - Built/measured chips in 28nm FDSOI & 45nm SOI, paper accepted

Undergraduate Researcher

Jun. 2012 to Feb. 2014

Mixed-Signal IC and System Group, Seoul National University (Advisor: Jaeha Kim)

- Formal verification of analog/mixed-signal circuits
 - Developed an algorithm to verify correctness of start-up behavior of ring oscillators in presence of variability
 - Implemented GCHECK: a Python-based tool for detection of start-up failures of coupled ring oscillators (transferred to Samsung Electronics, patent issued)
- Variability-aware circuit optimization
 - Developed global optimizer for analog/mixed-signal circuits based on statistical metamodeling

PUBLICATIONS

T. Kim, P. Bhargava, V. Stojanović, A Model Predictive Control Equalization Transmitter for Asymmetric Interfaces in 28nm FDSOI, IEEE Asian Solid-State Circuits Conference (ASSCC), 2016, accepted.

T. Kim, D.-G. Song, S. Youn, J. Park, H. Park, and J. Kim, "Verifying Start-Up Failures in Coupled Ring Oscillators in Presence of Variability Using Predictive Global Optimization," in Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013.

J. Kim, J. Lee, D.-G. Song, T. Kim, K.-H. Kim, S. Jung, and S. Youn, "Discretization and Discrimination Methods for Design, Verification, and Testing of Analog/Mixed Signal Circuits," in *Proc. Custom Integrated* Circuits Conference (CICC), 2013.

Honors &

Kwanjeong Scholarship for Abroad Studies

2014-2018

National Scholarship for Science and Engineering, Korea Science Foundation AWARDS

2007-2013

SKILLS

Languages: C, C++, Python, Verilog, Verilog-A

Tools: Custom IP block and VLSI design/verification tools (Virtuoso, ADS, DC, ICC, RC, SOC-ENC,

Calibre), MATLAB