

UNIVERSIDAD NACIONAL DE TUCUMÁN

Facultad de Ciencias Exactas y Tecnología

Departamento de Electricidad, Electrónica y Computación

Ingeniería de Datos con CASE

Modelado de Datos

Profesor: Maximiliano Odstrcil

Modelado de Datos

- Introducción
- Componentes de un DER
- Reglas para la construcción de un DER
- Diccionario de datos
- Modelo Relacional
- Ejemplo

Introducción

- Ejes de un sistema software
- ¿Por qué modelar datos?
- Diagramas Entidad-Relación (DER)

Componentes de un DER

- Entidades
- Atributos
- Relaciones
- Cardinalidad
- Indicadores de supertipo/subtipo

Reglas para la construcción de un DER

- Añadir Entidades Adicionales.
 - Por Supertipo/Subtipo
 - Por avance en nivel de abstracción
- Eliminar Entidades.
 - Tipos de datos que consisten sólo en un identificador
 - Entidades para las cuales existe una sola instancia
 - Relaciones Derivadas

Diccionario de Datos

- Notación de Backus Naur.
 - Definición =
 - Concatenación +
 - Clave @
 - Iteración {}
 - Optativo ()
 - Una de varias Alternativas []
 - Comentarios **
 - Separa Alternativas |
- Ejemplos de Notaciones

Modelo Relacional

- Los Modelos de Datos
- Normalización. Tercera Forma Normal
- Notación Relacional
- Reglas para pasar de un DER a un MR

Ejemplo

Una cadena de cines necesita una aplicación software que le permita administrar su negocio: Gestionar las reservas de entradas, las salas, las películas y permitir listados y estadísticas (ej: películas más taquilleras, horarios con más convocatorias, recaudación, etc.). De las películas interesan el nombre de la película, precio, fecha y hora de inicio, duración, sinopsis y actores principales. Cada sala tiene un nombre y tipo (3d/común), de las butacas es importante su numeración y la fila y columna correspondiente. Las butacas pueden estar libres, reservadas u ocupadas. Para las reservas se solicita el DNI.

- Construya el DER de la situación descripta.
- Construya el modelo relacional.

Ejes de un Sistema Software

Por qué modelar datos?

- Complejidad de las estructuras de datos.
- Independizar las estructuras de datos del proceso.
- Estandarización: hablar un mismo lenguaje dentro de la organización.
- Control de errores.
- Automatización.

Diagramas Entidad Relación

- Notación gráfica para modelar datos.
- Modelo de red.
- Fuerte componente estático del sistema.
- Describe en alto nivel de abstracción.
- Estudia la distribución de datos almacenados en un sistema.

Entidades (1)

- Representa una colección de cosas del mundo real cuyos miembros individuales tienen las siguientes características:
 - Pueden identificarse de manera única por algún medio.
 - Cada uno juega un papel necesario en el sistema que se construye.
 - Cada uno puede describirse por uno o más datos.

Entidades (2)

- Se representa por medio de una caja rectangular
- Nombre preferiblemente en plural y mayúsculas.

Atributos (1)

- Describen las características de las entidades.
- Cuando toman un valor, señalan una instancia particular de la entidad.
- Se representan por medio de un círculo que se conecta por una línea recta a la entidad que califica.

Atributos (2)

- Los nombres de los atributos deben ir en minúsculas.
- Un atributo considerado clave se representa por un círculo doble o bien por un asterisco.

Relaciones (1)

- Las entidades se conectan entre sí mediante relaciones.
- Representan una conexión semántica entre entidades.
- Se representa por medio de un rombo con el nombre de la relación en su interior, preferentemente en minúsculas.

Relaciones (2)

 Cada instancia de la asociación representa una asociación entre cero o más ocurrencias de una entidad y cero o más ocurrencias de la otra.

- Instancia 1: el cliente 1 compra el artículo 1.
- Instancia 2: el cliente 2 compra los artículos 2 y 3.
- Instancia 3: el cliente 3 compra el artículo 4.
- Instancia 4: el cliente 4 compra los artículos 5, 6 y 7.
- Instancia 5: el cliente 5 no compra ningún artículo.
- Instancia 6: los clientes 6 y 7 compran el artículo 8 y 9.

Relaciones (3)

- La relación representa algo que debe ser recordado por el sistema.
- Puede haber más de una relación entre dos entidades.

Relaciones (4)

- Una relación puede tener uno o más atributos y se los representa de igual manera que las entidades.
- Las relaciones débiles representan dos entidades poco enlazadas semánticamente. Se las representa con un rombo doble.

Cardinalidad

• 1: Uno

• 0..1: Cero o Uno

N: Muchos

1..N: Uno o Muchos

0..N: Cero o Muchos

Indicadores de Supertipo/Subtipo (1)

- Entidades de una o más categorías, conectadas por una relación.
- Se conectan entre sí por medio de una relación sin nombre.
- La línea que conecta al supertipo contiene una barra.

Indicadores de Supertipo/Subtipo (2)

- El supertipo tiene los atributos comunes.
 - Nombre
 - Años de servicio
 - Domicilio
- Cada subtipo agrega atributos distintivos.
 - Salario Mensual, Porcentaje anual adicional (en Empleados Asalariados)
 - Paga por Hora, Hora de Comienzo (en Empleados por Horas)

Por Supertipo/Subtipo

- Se descubren datos que se pueden asignar a algunas instancias de entidades pero no a otras.
- Se descubren datos aplicables a todas las instancias de dos entidades distintas.

Por Avance en Nivel de Abstracción

Eliminar Entidades (1)

Una entidad tiene sólo un identificador asignado como dato.

Eliminar Entidades (2)

Entidades que sólo tienen una instancia o bien se pueden calcular a través de otras

Eliminar Entidades (3)

- Cuando una relación se puede derivar basándose en uno o más atributos de una entidad.
 - La relación renovar puede basarse en el cumpleaños del conductor.

Ejemplos de Notaciones

- ALUMNOS = Apellidos + Nombres + TipoDoc + Documento +
 FechaNacimiento + Sexo + Domicilio + Teléfono + (Fax) + (Email)
 - TipoDocAlumno = [DNI | PAS | CI | LE | LC]
 - Sexo = [Femenino | Masculino]
 - Teléfono = 5{Número}14
 - Número = [0..9]

Los Modelos de Datos

Normalización (1)

- No debe haber grupos repetitivos.
- 2. No debe haber atributos que no dependan de la clave primaria o parte de la clave primaria.
- No debe haber atributos que dependan de otros atributos que no sean la clave.

Normalización (2)

EMPLEADOS

IdEmpleado

Nombre Empleado

DomicilioEmpleado

CiudadEmpleado

ProvinciaEmpleado

CodPostalEmpleado

IdJefe

NombreJefe

IdTrabajo1

Nombre Trabajo1

FechaTrabajo1

IdTrabajo2

NombreTrabajo2

FechaTrabajo2

IdTrabajo3

NombreTrabajo3

FechaTrabajo3

Normalización (3). 1^{ra} Forma Normal

EMPLEADOS

IdEmpleado
NombreEmpleado
DomicilioEmpleado
CiudadEmpleado
ProvinciaEmpleado
CodPostalEmpleado
IdJefe
NombreJefe

EMPLEADO-TRABAJO

IdEmpleado IdTrabajo Nombre Trabajo FechaTrabajo

Normalización (4). 2^{da} Forma Normal

Normalización (5). 3^{ra} Forma Normal

EMPLEADOS

IdEmpleado
NombreEmpleado
DomicilioEmpleado
CiudadEmpleado
ProvinciaEmpleado
CodPostalEmpleado
IdJefe

IdJefe NombreJefe

Notación Relacional

Reglas para pasar de DER a MR (1)

- Las entidades del DER pasan como una tabla en el MR.
- Las relaciones 1 a 1 sin atributos entre dos entidades de un DER, pasan a una sola tabla en el MR.
- Las relaciones 1 a muchos sin atributos entre dos entidades de un DER, pasan como dos tablas en el MR.
- Las relaciones muchos a muchos y uno a muchos con atributos de un DER, pasan como tres tablas en el MR.

Reglas para pasar de DER a MR (2)

Reglas para pasar de DER a MR (3)

Reglas para pasar de DER a MR (4)

© Maximiliano Odstrcil

Reglas para pasar de DER a MR (5)

EMPLEADOS

IdEmpleado

NombreEmpleado

REALIZAN

IdEmpleado

IdTrabajo

Fecha

TRABAJOS

IdTrabajo

NombreTrabajo

Reglas para pasar de DER a MR (6)

Reglas para pasar de DER a MR (7)

"Los programas deben ser escritos para que los lean las personas, y sólo incidentalmente, para que lo ejecuten las máquinas."

Abelson and Sussman