Electrochemical Cell

Left side Right side Oxidation Reduction Anode Cathode Negative Positive

Representation of cell

Zn | Zn2+ | | Cu2+ | Cu R. | P. | | R. | Pc

Reactant at anode at cathode

 Electrode potential (E_Mn+/M) E.P= Reduction Potential (R.P) = -Oxidation potential (O.P) If R.P=x.then O.P=-x Representation of Reduction half reaction:

 $M^{n+} + ne^{-} \longrightarrow M$

Standard Reduction Potential(SRP)

R.P at 1M and 298K. SRP is calculated by using SHE

Respresentation of SHE $H^{+}_{(1M)}|_{(g,1 \text{ bar})}|_{(g,1 \text{ bar})}|_{F^{+}_{(s)}}$

Electrochemical series

SRPT=O.A. Metals with high SRP = less reactive 4 EMF of a cell

 $E_{cell}^{0} = E_{Cathode}^{0} - E_{Anode}^{0}$ $E_{cell}^{0} = RP_{Cathode}^{0} - RP_{Anode}^{0}$ E_{cell} = RP_{Cathode} + OP_{Anode} E_{cell} = OP_{Anode} - OP_{Cathode} In cell, Cathode with high RP .Anode with low RP makes spontaneous reactions

Nernst equation

 $E_{cell} = E_{cell}^{0} - \frac{0.0591}{n} \log \frac{Product}{Reactant}$

For Zn| Zn2+|| Cu2+| Cu $E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log \left[\frac{Zn^{2+1}}{Cu^{2+1}} \right]$

For Ni Ni2+ Ag+ Ag

 $E_{cell} = E_{Cell}^0 - \frac{0.0591}{2} \log \left[\frac{Ni^{2+}}{(Aa^+)^2} \right]$

 $R_1 | P_1 | R_2 | P_2$ If R, 1, P, J, then E ...

Application of Nernst Equation

• Electrode Potential

$$E_{M^{n+}/M} = E_{M^{n+}/M}^{0} - \frac{0.0591}{n} \log \frac{1}{[M^{n+}]}$$

• Nernst equation in SHE

1)
$$E_{H^+/H_2} = -0.0591 \log \frac{P_{H_2}}{[H^+]^2}$$

2) If, $P_{H_0} = 1$ atm

(R.P.)= E_{H^+/H_2} =-0.0591 pH (O.P.)= E_{H_/H}+=+0.0591 pH

• Concentration Cells

$$Zn \mid Zn_{(C_4)}^{2+} \mid \mid Zn_{(C_5)}^{2+} \mid Zn$$

$$\mathsf{E}_{\mathsf{cell}} = \frac{0.0591}{\mathsf{n}} \; \mathsf{log} \; \left| \frac{\mathsf{cathode.} C_2}{\mathsf{anode.} C_1} \right|$$

$$\frac{C_2}{C_1} > 1 \Rightarrow \log \left(\frac{C_2}{C_1} \right) > 0 \quad \therefore E_{cell} > 0$$

\bigcirc EMF; K_c & \triangle G

 $\mathsf{E}_{\mathsf{cell}}^{\mathsf{0}} = \underbrace{\mathsf{0.0591}}_{\mathsf{n}} \; \mathsf{log} \; \mathsf{K}_{\mathsf{c}}, \; \mathsf{log} \; \mathsf{K}_{\mathsf{c}} = \mathsf{nE}_{\mathsf{cell}}^{\mathsf{0}}$

coating of Zn

$\Delta G = -nFE_{cell}$		
Spontaneous	Non-spontaneous	
∆ G<0	∆ G >0	
E ₀ >0	E _{cell} <0	
log K _c >0	log K _c <0	
K _c >1	K _c <1	
Galvanisation is applying		

ELECTROCHEMISTRY

Faraday's law

Product formed

Electrolytic cell

ANODE	CATHODE
·Anion goes to anode	·Cation goes to cathode
·+ve electrode	·-ve electrode
·Oxidation	·Reduction
• A → A++e-	•B+1e- → B-
$\cdot A \rightarrow A^{n+} + ne^{-}$	·B ⁿ +ne ⁻ → B ⁻

Product of electrolysis

Deposition order of cation: (order of R.P) $Li^+ < K^+ < Ca^{2+} < Na^+ < Mq^{2+} < Al^{3+} < Zn^{2+}$

 $< Fe^{2+} < Ni^{2+} < H^+ < Cu^{2+} < Hg^{2+} < Ag^+ < Au^{3+}$ 50,2- < NO,- < OH- < CI- < Br- < I-

Note:	1) For conc. H₂SO₄	3) For CuSO ₄ with Cu electrode
	Anode: H++1e ⁻ → 1/2 H ₂	Anode: Cu → Cu²+ + 2e ⁻
	Cathode:	Cathode:
	250 ₄ ²⁻ → 5 ₂ 0 ₈ ²⁻ +2e ⁻	Cu²+ + 2e- → Cu
	(peroxo disulphate ion)	
	2) Very dil. NaCl(H ₂ O>>NaCl)	
	Anode:	
	H++1e- → 1/2 H ₂	
	Cathode:	Cu ²⁺ 5O ₄ ²⁻
	20H ⁻ → 1/2 O ₂ + H ₂ 0	
	+ 2e-	Electroplating

4 Electrolytic conduction

Resistance(R)= ρ | Unit of R = Ω $\rho = \Omega m$ $C = \Omega^{-1} = S = \text{mho}$ Conductance(C) = 1 $K = \Omega^{-1} m^{-1}$ or Sm^{-1} 15cm⁻¹ = 100 5m⁻¹ Conductivity(K) = 1

$\begin{array}{ c c }\hline \textbf{Molar}\\ \textbf{Conductivity}^{(\lambda_{\mathbf{m}})}\\ \end{array}$	Equivalent Conductivty $(\lambda_{\rm eq})$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} -1000 \text{ K} \\ \hline \text{M} \end{array} \end{array} \\ \begin{array}{c} \text{K} \longrightarrow \text{Scm}^{-1} \\ \text{M} \longrightarrow \text{mol L}^{-1} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ $	$ \lambda_{eq} = \frac{1000 \text{ K}}{\text{N}} $ $ K \rightarrow \text{Scm}^{-1} $ $ N \rightarrow \text{eq L}^{-1} $ $ \lambda_{eq} \rightarrow \text{Scm}^{2} \text{ eq}^{-1} $

15cm² mol⁻¹ = 10⁻⁴ 5m²mol⁻¹ N>M: \mathbb{\lambda}_m \rangle \alpha_eq

For H_2SO_4 , $Z = 2 (2H^{+})$ NaCl, Z = 1 (1Na⁺) $Al_2(SO_4)_3$, Z = 6 (2Al³⁺)

 λ for SE increases with dilution (interionic attraction m decreases)

 $|\lambda_{m} = \lambda_{m}^{\infty} - b \int c | (Debye-Huckel Onsagar equation)$ At $\int c=0$, $\sum_{m=0}^{\infty} \sum_{m=0}^{\infty} (limiting molar conductivity)$

5 Kohlrausch's law

 $\lambda_{M}^{\infty}(AB_{2}) = \lambda_{M}^{\infty}(A^{2+}) + 2 \lambda_{M}^{\infty}(B^{-})$ $\lambda^{\infty}_{eq}(AB_2) = \lambda^{\infty}_{\mu}(A^{2+}) + \lambda^{\infty}_{eq}(B^{-})$

For Al, (SO,)

 $\lambda^{\infty}_{M}(AI_{2}(SO_{4})_{3})=2\lambda^{\infty}_{M}(AI^{3+})+3\lambda^{\infty}_{M}(SO_{4}^{2-})$ $\lambda^{\infty}_{eq}(A|_{2}(SO_{4})_{3}) = \lambda^{\infty}_{eq}(A|^{3+}) + \lambda^{\infty}_{eq}(SO_{4}^{2-})$

 λ^{∞}_{M} NH₄OH= λ^{∞}_{L} NH₄CI+ λ^{∞}_{L} NaOH - λ^{∞}_{L} NaCI $\lambda^{\infty}_{\ \ M}\ \text{CH}_{3}\text{COOH} = \lambda^{\infty}_{\ \ M}\ \text{CH}_{3}\text{COONa} + \lambda^{\infty}_{\ \ M}\text{HCI} - \lambda^{\infty}_{\ \ M}\text{NaCI}$ $\lambda^{\infty}_{\ \ M}$ Baso₄= $\lambda^{\infty}_{\ \ M}$ Bacl₂ + $\lambda^{\infty}_{\ \ M}$ Na₂so₄-2 $\lambda^{\infty}_{\ \ M}$ NaCl