

Logistic Regression

Rishabh Iyer
University of Texas at Dallas

Last Time

- Supervised learning via naive Bayes
 - Use MLE to estimate a distribution p(x, y) = p(y)p(x|y)
 - Classify by looking at the conditional distribution, p(y|x)
- Today: logistic regression

Logistic Regression

- Learn p(Y|X) directly from the data
 - Assume a particular functional form, e.g., a linear classifier p(Y=1|x)=1 on one side and 0 on the other
 - Not differentiable...
 - Makes it difficult to learn
 - Can't handle noisy labels

$$p(Y=1|x)=1$$

Logistic Regression

- Learn p(y|x) directly from the data
 - Assume a particular functional form

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$

$$p(Y = 1|x) = \frac{\exp(w^T x + b)}{1 + \exp(w^T x + b)}$$

Logistic Function in m Dimensions

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$

Can be applied to discrete and continuous features

Functional Form: Two classes

- Given some w and b, we can classify a new point x by assigning the label 1 if p(Y=1|x)>p(Y=-1|x) and -1 otherwise
 - This leads to a linear classification rule:
 - Classify as a 1 if $w^T x + b > 0$
 - Classify as a -1 if $w^T x + b < 0$

To learn the weights, we maximize the conditional likelihood

$$(w^*, b^*) = \arg\max_{w,b} \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

This is the not the same strategy that we used in the case of naive Bayes

For naive Bayes, we maximized the log-likelihood

Generative vs. Discriminative Classifiers

Generative classifier:

(e.g., Naïve Bayes)

- Assume some functional form for p(x|y), p(y)
- Estimate parameters of p(x|y), p(y) directly from training data
- Use Bayes rule to calculate p(y|x)
- This is a generative model
 - Indirect computation of p(Y|X) through Bayes rule
 - As a result, can also generate a sample of the data, $p(x) = \sum_{v} p(y)p(x|y)$

Discriminative classifiers:

(e.g., Logistic Regression)

- Assume some functional form for p(y|x)
- Estimate parameters of p(y|x) directly from training data
- This is a discriminative model
 - Directly learn p(y|x)
 - But cannot obtain a sample of the data as p(x) is not available
 - Useful for discriminating labels

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$
$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^{T}x^{(i)} + b) - \ln(1 + \exp(w^{T}x^{(i)} + b))$$

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^{T}x^{(i)} + b) - \ln(1 + \exp(w^{T}x^{(i)} + b))$$

This is concave in w and b: take derivatives and solve!

$$\ell(w,b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^{T}x^{(i)} + b) - \ln(1 + \exp(w^{T}x^{(i)} + b))$$

No closed form solution 🕾

Likelihood Maximization

$$\ell(w,b) = \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^{T} x^{(i)} + b) - \ln(1 + \exp(w^{T} x^{(i)} + b))$$

The above is the Likelihood which we maximize!

Can apply gradient ascent to maximize the conditional likelihood

$$\nabla_{b} \mathcal{L} = \frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1 | x^{(i)}, w, b) \right]$$

$$\nabla_{w} \mathcal{L} = \frac{\partial \ell}{\partial w_{j}} = \sum_{i=1}^{N} x_{j}^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1 | x^{(i)}, w, b) \right]$$

$$\nabla_{w} \mathcal{L} = \frac{\partial \ell}{\partial w_{j}} = \sum_{i=1}^{N} x_{j}^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1 | x^{(i)}, w, b) \right]$$

$$\nabla_{w} \mathcal{L} = \frac{\partial \ell}{\partial w_{j}} = \sum_{i=1}^{N} x_{j}^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1 | x^{(i)}, w, b) \right]$$

$$\nabla_{w} \mathcal{L} = \frac{\partial \ell}{\partial w_{j}} = \sum_{i=1}^{N} x_{j}^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1 | x^{(i)}, w, b) \right]$$

Priors

- Can define priors on the weights to prevent overfitting
 - Normal distribution, zero mean, identity covariance

$$p(w) = \int_{j}^{1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{w_j^2}{2\sigma^2}\right)$$

- "Pushes" parameters towards zero
- Regularization
 - Helps avoid very large weights and overfitting

Priors as Regularization

The log-MAP objective with this Gaussian prior is then

$$\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w) p(b) = \left[\sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_{2}^{2}$$

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization

Priors as Regularization

The log-MAP objective with this Gaussian prior is then

$$\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w) p(b) = \left[\sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_{2}^{2}$$

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization

 ℓ_2 regularizer

L2 vs L1 Regularization

The Likelihood with L2 Regularization:

$$\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w) p(b) = \left[\sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_{2}^{2}$$

Alternate formulation is L1 Regularization:

$$\ln \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, w, b) p(w) p(b) = \left[\sum_{i=1}^{N} \ln p(y^{(i)} | x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_{1}$$

Regularization

Naïve Bayes vs. Logistic Regression

- Non-asymptotic analysis (for Gaussian NB)
 - Convergence rate of parameter estimates as size of training data tends to infinity (n = #) of attributes in X)
 - Naïve Bayes needs $O(\log n)$ samples
 - NB converges quickly to its (perhaps less helpful) asymptotic estimates
 - Logistic Regression needs O(n) samples
 - LR converges more slowly but makes no independence assumptions (typically less biased)

NB vs. LR (on UCI datasets)

LR in General

- Suppose that $y \in \{1, ..., R\}$, i.e., that there are R different class labels
- Can define a collection of weights and biases as follows
 - Choose a vector of biases and a matrix of weights such that for $y \neq R$

$$p(Y = k|x) = \frac{\exp(b_k + \sum_i w_{ki} x_i)}{1 + \sum_{j < R} \exp(b_j + \sum_i w_{ji} x_i)}$$

and

$$p(Y = R|x) = \frac{1}{1 + \sum_{j \le R} \exp(b_j + \sum_i w_{ji} x_i)}$$