Computer Graphics Lecture 07: Ray Tracing

DR. ELVIS S. LIU
SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
SPRING 2018

Rendering

 A process of generating an image from a 2D or 3D model, by means of computer programs

Rendering (cont.)

- "Rendering" refers to the entire process that produces color values for pixels, given a 3D representation of the scene
- Pixels correspond to rays; need to figure out the visible scene point along each ray
 - Called "hidden surface problem" in older texts
 - "Visibility" is a more modern term
 - Also, we assume (for now) a single ray per pixel
- Major algorithms: Ray casting

Rendering Methods

Forward tracing

- Consider every photon emitted by light source
- Inefficient and extremely slow
- Large number of light rays

Backward tracing (ray tracing)

- Trace hypothetical photo backwards from eye in particular direction
- Slow
- Number of light rays equals to the screen resolution

Surface rendering

- What light shines on surface?
- How does material interact with light?
- What part of result is visible to eye?

Origins of Ray Tracing

LECTURE 07: RAY TRACING

Dürer's Ray Casting Machine

- Generalising from Albrecht Dürer's wood cut (16th Century) showing perspective projection
- Durer: Record string intersection from center of projection (eye), to nearest object as points on a 2D plane

Dürer's Ray Casting Machine (cont.)

- Points created are perspective projection of 3D object onto 2D plane
 our pixels
- Can think of first starting with sample points on objects and then drawing ray OR starting with ray thru pixel center (or sample points within supersampled pixel)

What is a Raytracer?

- A finite back-mapping of rays from camera (eye) through each sample (pixel or subpixel) to objects in scene
 - Avoids forward solution of having to sample from an infinite number of rays from light sources, not knowing which will be important for PoV
- Each pixel represents either:
 - A ray intersection with an object/light in scene
 - No intersection
- A ray traced scene is a "virtual photo" comprised of many samples on film plane
- Generalising from one ray, millions of rays are shot from eye, one through each point on film plane

Ray Tracing Fundamentals

- Generate primary ray
 - shoot rays from eye through sample points on film plane
 - sample point is typically center of a pixel, but alternatively supersample pixels (recall supersampling from Image Processing IV)
- Ray-object intersection
 - find first object in scene that ray intersects with (if any)
 - solves VSD/HSR problem use parametric line equation for ray, so smallest t
 value

Ray Tracing Fundamentals (cont.)

- Calculate lighting (i.e., colour)
 - Use illumination model to determine direct contribution from light sources (light rays)
 - Reflective objects recursively generate secondary rays (indirect contribution) that also contribute to color; RRT (Recursive Ray Tracing) only uses specular reflection rays because they are easy to compute and specular reflections are typically brighter than average
 - Sum of contributions determines color of sample point
 - No diffuse reflection rays → RRT is limited approximation to global illumination
- Finesse need for shading rule ray-trace for lighting equation evaluation at each sample point

Ray Casting vs. Ray Tracing

- Ray Casting: eye rays only
- Ray Tracing: consider also secondary rays which are used for testing shadows, doing reflections, refractions, etc.

Ray Tracing Examples

Ray Tracing Examples (cont.)

Ray Generation

LECTURE 07: RAY TRACING

Simple Ray Casting

For every pixel
 Construct a ray from the eye
 For every object in the scene
 Find intersection with the ray
 Keep if closest

Ray Origin

- Consider the geometry of the problem in normalised world space with canonical perspective frustum (i.e., do not apply perspective transformation)
- Start a ray from "eye point" P
- Shoot ray in some direction d from P toward a point in film plane (a rectangle in the u-v plane in the camera's uvw space) whose color we want to know
- Points along ray have form P + td where
 - P is ray's base point: camera's eye
 - d is unit vector direction of ray
 - t is a non-negative real number

Ray Direction

- Start with 2D screen-space sample point ((sub)pixel)
- To create a ray from eye point through film plane, 2D screen-space point must be converted into a 3D point on film plane. Then we can get the direction vector by subtracting the COP from the 3D screen space point
- Note that ray generated will be intersecting objects in normalised world space coordinate system before the perspective transformation

canonical frustum in normalized world coordinates Any plane z = k, -1<= k < 0 can be the film plane

Ray Direction (cont.)

- Any plane orthogonal to look vector is a convenient film plane (plane z = k in canonical frustum)
- Choose a film plane and then create a function that maps screen integer (u, v) space points onto it to floats
 - what's a good plane to use? Try the far clipping plane (z = 1)
 - to convert, scale integer screen-space coordinates into floats between -1 and 1 for x and y, z = -1

canonical frustum in normalized world coordinates Any plane z = k, $-1 \le k \le 0$ can be the film plane

Normalised world space

Ray Direction (cont.)

- Once have a 3D point on the film plane, need to transform to prenormalisation world space where objects are
 - Why? illumination model prefers intersection point to be in world-space (less work than normalising lights)
 - Make a direction vector from eye point P (at center of projection) to 3D point on film plane
 - Need this vector to be in world-space in order to intersect with original object in pre-normalisation world space

Ray Direction (cont.)

- Normalising transformation maps world-space points to points in the canonical view volume
 - translate to the origin; orient so Look points down —Z, Up along Y; scale x and y to adjust viewing angles to 45°, scale z: [-1, 0]; x, y: [-1, 1]
- How do we transform a point from the canonical view volume back to untransformed world space?
 - apply the inverse of the normalising transformation: Viewing Transformation
 - Note: not same as viewing transform you use in OpenGL (e.g., ModelView matrix)

Summary

- Start the ray at center of projection ("eye point")
- Map 2D integer screen-space point onto 3D film plane in normalised frustum
 - scale x, y to fit between -1 and 1
 - set z to -1 so points lie on the far clip plane
- Transform 3D film plane point (mapped (sub)pixel) to an untransformed world-space point
 - need to undo normalising transformation (i.e., viewing transformation)
- Construct the direction vector
 - a point minus a point is a vector
 - direction = (world-space point (mapped pixel)) (eye point (in untransformed world space))

Ray-Object Intersection

LECTURE 07: RAY TRACING

Implicit Objects

- If an object is defined implicitly by a function f, where f(Q) = 0 IFF Q is a
 point on the surface of the object, then ray-object intersections are
 relatively easy to compute
 - Many objects can be defined implicitly
 - Implicit functions provide potentially infinite resolution
 - Tessellating these objects is more difficult than using the implicit functions directly
- For example, a circle of radius R is an implicit object in a plane, with equation:
 - $f(x,y) = x^2 + y^2 R^2$
 - point (x,y) is on the circle when f(x,y) = 0
- A sphere of radius R in 3-space:
 - $f(x,y,z) = x^2 + y^2 + z^2 R^2$

Implicit Objects (cont.)

- •At what points (if any) does the ray intersect an object?
- Points on a ray have form P + td where t is any non-negative real number
- A surface point Q lying on an object has the property that f(Q) = 0
- •Combining, we want to know "For which values of t is f(P + td) = 0?"
- We are solving a system of simultaneous equations in x, y (in 2D) or x, y, z (in 3D)

Explicit vs. Implicit

- Ray equation is explicit P(t) = R_o + t x R_d
 - Parametric
 - Generates points
 - Hard to verify that a point is on the ray
- Plane equation is implicit $H(P) = n \cdot P + D = 0$
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane
- What about implicit plane and explicit ray?

An Explicit Example – 2D Raycircle Intersection

- Consider the eye-point P = (-3, 1), the direction vector $\mathbf{d} = (0.8, -0.6)$ and the unit circle: $f(x,y) = x^2 + y^2 R^2$
- A typical point of the ray is: Q = P + td = (-3,1) + t(0.8, -0.6) = (-3+0.8t, 1-0.6t)
- Plugging this into the equation of the circle: $f(Q) = f(-3+0.8t, 1-0.6t) = (-3+0.8t)^2 + (1-0.6t)^2 1$
- Expanding, we get: $9 4.8t + 0.64t^2 + 1 1.2t + .36t^2 1$
- Setting this equal to zero, we get: $t^2 6t + 9 = 0$

An Explicit Example – 2D Ray-circle Intersection (cont.)

- Using the quadratic formula: $roots = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- We get: $t = \frac{6 \pm \sqrt{36 36}}{2}, \quad t = 3, 3$
- Because we have a root of multiplicity 2, ray intersects circle at only one point (i.e., it's tangent to the circle)
- Use discriminant D = $b^2 4ac$ to quickly determine if true intersection:
 - \circ if D < 0, imaginary roots; no intersection
 - if D = 0, double root; ray is tangent
 - if D > 0, two real roots; ray intersects circle at two points
- Smallest non-negative real t represents the intersection nearest to eyepoint

An Explicit Example – 2D Ray-circle Intersection (cont.)

•Generalising:

- We can take an arbitrary implicit surface with equation f(Q) = 0, A ray P + td, and plug the latter into the former:
 - f(P + td) = 0
- •The result, after some algebra, is an equation with t as unknown
- We then solve for t, analytically or numerically

Cylindrical Objects – Multiple Conditions

- For cylindrical objects, the implicit equation
 - $f(x,y,z) = x^2 + z^2 1 = 0$
 - In 3D-space defines an infinite cylinder of unit radius running along the yaxis
- Usually, it's more useful to work with finite objects
 - e.g. a unit cylinder truncated with the limits:
 - Cylinder body: $x^2 + z^2 1 = 0$, $-1 \le y \le 1$
- But how do we define cylinder "caps" as implicit equations?
- The caps are the insides of the cylinder at the cylinder's y extrema (or rather, a circle)
 - Cylinder caps top: $x^2 + z^2 1 \le 0$, y = 1
 - bottom: $x^2 + z^2 1 \le 0, y = -1$

Cylinder Pseudocode

Solve in a case-by-case approach
 Ray inter finite cylinder(P,d):

Of all the remaining t's (t1 - t4), select the smallest non-negative one. If none remain, ray does not intersect cylinder

Implicit Surface Strategy Summary

- Substitute ray (P + td) into implicit surface equations and solve for t
 - smallest non-negative t-value is from the closest surface you see from eye point
- For complicated objects (not defined by a single equation), write out a set of equalities and inequalities and then code individual surfaces as cases
- Latter approach can be generalized cleverly to handle all sorts of complex combinations of objects
 - constructive Solid Geometry (CSG), where objects are stored as a hierarchy of primitives and 3-D set operations (union, intersection, difference) – don't have to evaluate the hierarchy to raytrace!
 - "blobby objects", which are implicit surfaces defined by sums of implicit equations (F(x,y,z)=0)

Ray-Triangle Intersection

- Motivation: 3D objects are usually represented by triangle meshes
- Use ray-plane intersection followed by in-triangle test
- Or try to be smarter
 - Use barycentric coordinates

Barycentric Definition of a Plane

- A (non-degenerate) triangle (a,b,c) defines a plane
- Any point P on this plane can be written as
 - $P(\alpha,\beta,\gamma,) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$,
 - with $\alpha + \beta + \gamma = 1$

Barycentric Coordinates

- •Since $\alpha + \beta + \gamma = 1$, we can write
 - $\alpha = 1 \beta \gamma$
- •P(α , β , γ) = α a + β b + γ c
- •P(β , γ) = $(1-\beta-\gamma)a + \beta b + \gamma c$
 - \circ = a + β (b-a) + γ (c-a)

Barycentric Definition of a Plane

- •P(α , β , γ) = α a + β b + γ c • With α + β + γ =1
- •Is it explicit or implicit?
- •P is the **barycenter**, the single point upon which the triangle would balance if weights of size α, β, & γ are placed on points a, b & c

Barycentric Definition of a Plane (cont.)

- •P(α , β , γ) = α a + β b + γ c
 - With $\alpha + \beta + \gamma = 1$ parameterises the entire plane
- •If we require in addition that α , β , γ >= 0, we get just the triangle
 - Note that with $\alpha + \beta + \gamma = 1$ this implies $0 <= \alpha <= 1 \& 0 <= \beta <= 1 \& 0 <= \gamma <= 1$
 - Verify:
 - $\alpha = 0 \Rightarrow P$ lies on line **b**-c
 - α , $\beta = 0 \Rightarrow P = c$
 - etc.

Barycentric Definition of a Plane (cont.)

- •P(α , β , γ) = α a + β b + γ c
 - With $\alpha + \beta + \gamma = 1$ parameterises the entire plane
- Condition to be barycentric coordinates:
 - $\alpha + \beta + \gamma = 1$
- Condition to be inside the triangle
 - α , β , γ >= 0

How to Compute α , β , γ ?

- Ratio of opposite sub-triangle area to total area
 - $\alpha = A_a/A$
 - $\beta = A_b/A$
 - $_{\circ}$ $\gamma = A_{c}/A$
- Use signed areas for points outside the triangle

Intersection with Barycentric Triangle

- Again, set ray equation equal to barycentric equation
- • $P(t) = P(\beta, \gamma)$

•
$$\mathbf{R}_{o}$$
 + t \mathbf{R}_{d} = a + β (b-a) + γ (c-a)

- Intersection if
 - \circ $\beta + \gamma <= 1$, and
 - \circ $\beta >= 0$, and
 - $^{\circ} v >= 0$

Intersection with Barycentric Triangle (cont.)

•
$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

•
$$R_{ox} + tR_{dx} = a_x + \beta(b_x - a_x) + \gamma(c_x - a_x)$$

•
$$R_{oy} + tR_{dy} = a_y + \beta(b_y - a_y) + \gamma(c_y - a_y)$$

•
$$R_{oz} + tR_{dz} = a_z + \beta(b_z - a_z) + \gamma(c_z - a_z)$$

Regroup and write in matrix form Ax=b

$$\begin{bmatrix} a_x - b_x & a_x - c_x & R_{dx} \\ a_y - b_y & a_y - c_y & R_{dy} \\ a_z - b_z & a_z - c_z & R_{dz} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} a_x - R_{ox} \\ a_y - R_{oy} \\ a_z - R_{oz} \end{bmatrix}$$

Barycentric Intersection Advantages

- Efficient
- Stores no plane equation
- Get the barycentric coordinates for free
- Useful for interpolation, texture mapping

Barycentric Interpolation

- •Values v₁, v₂, v₃ defined at a, b, c
 - Colors, normal, texture coordinates, etc.
- •P(α , β , γ) = α **a** + β **b** + γ **c** is the point...
- • $v(\alpha, \beta, \gamma) = \alpha v_1 + \beta v_2 + \gamma v_3$ is the barycentric interpolation of v_1, v_2, v_3 at point **P**
 - Sanity check: $v(1,0,0) = v_1$, etc.
- •i.e, once you know α, β, γ you can interpolate values using the same weights.
 - Convenient!

Summary of Ray Casting (put it all together)

```
P = eyePt
for each sample of image:
   Compute d
   for each object:
        Take world space intersection point P+td
        Convert to object space, +t
        Use implicit formula to calculate t for object
        Store object space intersection for later normal calculation
   Select object with smallest non-negative t-value (visible object)
   Compute object space normal at object space intersection
   Transform object space normal to world space
   Use normal and intersection point (both in world space) for
   lighting computation
```

Shadows

LECTURE 07: RAY TRACING

Equation of Shadows

 Each light in the scene contributes to the color and intensity of a surface element...

$$objectIntensity_{\lambda} = ambient + \sum_{light = 1}^{numLights} attenuation \cdot lightIntensity_{\lambda} \cdot [diffuse + specular]$$

- If and only if light source reaches the object
 - could be occluded/obstructed by other objects in scene
 - could be self-occluding

Algorithm of Shadows

- Construct a ray from the surface intersection to each light
- Check if light is first object intersected
 - if first object intersected is the light, count light's full contribution
 - if first object intersected is not the light, do not count (ignore) light's contribution
 - this method generates hard shadows; soft shadows are harder to compute (must sample)
- What about transparent or specular (reflective) objects? Such lighting contributions are the beginning of global illumination ⇒ need recursive ray tracing

Recursive Ray Tracing

LECTURE 07: RAY TRACING

Recursive Ray Tracing

Simulating global lighting effects

- By recursively casting new rays into the scene, we can look for more information
- Start from point of intersection with object
- We'd like to send rays in all directions, but that's too hard/computationally taxing
- Instead, just send rays in directions likely to contribute most:
 - toward lights (blockers to lights create shadows for those lights)
 - specular bounce off other objects to capture specular inter-object reflections
 - use ambient hack to capture diffuse interobject reflection
 - refractive rays through object (transparency)

Trace Secondary Rays at Intersections

- Light: trace a ray to each light source. If light source is blocked by an opaque object, it does not contribute to lighting
- Specular reflection: trace reflection ray (i.e., about normal vector at surface intersection)
- Refractive transmission/transparency: trace refraction ray (following Snell's law)
- Recursively spawn new light, reflection, and refraction rays at each intersection until contribution negligible or some max recursion depth is reached
- Limitations
 - recursive inter-object reflection is strictly specular
 - diffuse inter-object reflection is handled by other techniques

Lighting Equation for Recursive Ray Tracing

 New lighting equation (Phong lighting + specular reflection + transmission):

$$I_{\lambda} = \underbrace{L_{a\lambda}k_{a}O_{a\lambda}}_{ambient} + \underbrace{\sum_{lights}f_{att}L_{p\lambda}[\underbrace{k_{d}O_{d\lambda}(\overset{\rightharpoonup}{n}\bullet\overset{\rightharpoonup}{l})}_{diffuse} + \underbrace{k_{s}O_{s\lambda}(\overset{\rightharpoonup}{r}\bullet\overset{\rightharpoonup}{v})^{n}}_{specular}] + \underbrace{k_{s}O_{s\lambda}I_{r\lambda}}_{recursive} + \underbrace{k_{t}O_{t\lambda}I_{t\lambda}}_{transmitted}}_{recursive}$$

- I is the total color at a given point (lighting + specular reflection + transmission, λ subscript for each r,g,b)
- Its presence in the transmitted and reflected terms implies recursion
- L is the light intensity; LP is the intensity of a point light source
- k is the attenuation coefficient for the object material (ambient, diffuse, specular, etc.)
- O is the object color
- f_{att} is the attenuation function for distance
- n is the normal vector at the object surface

Lighting Equation for Recursive Ray Tracing (cont.)

New lighting equation (Phong lighting + specular reflection + transmission):

$$I_{\lambda} = \underbrace{L_{a\lambda}k_{a}O_{a\lambda}}_{ambient} + \underbrace{\sum_{lights}f_{att}L_{p\lambda}[\underbrace{k_{d}O_{d\lambda}(\overrightarrow{n} \bullet \overrightarrow{l})}_{diffuse} + \underbrace{k_{s}O_{s\lambda}(\overrightarrow{r} \bullet \overrightarrow{v})^{n}}_{specular}] + \underbrace{k_{s}O_{s\lambda}I_{r\lambda}}_{recursive} + \underbrace{k_{t}O_{t\lambda}I_{t\lambda}}_{transmitted}$$

- I is the vector to the light
- r is the reflected light vector
- v is the vector from the eye point (view vector)
- n is the specular exponent
- note: intensity from recursive rays calculated with the same lighting equation at the intersection point
- light sources contribute specular and diffuse lighting
- Note: single rays of light do not attenuate with distance; purpose of f_{att} is to simulate diminishing intensity per unit area as function of distance for point lights (typically an inverse quadratic polynomial)

Some Old Videos

https://www.youtube.com/watch?v=sg8YwRNA5j8

Some Old Videos (cont.)

https://www.youtube.com/watch?v=b UqzLBFz4Y

Transparent Surfaces

LECTURE 07: RAY TRACING

Non-Refractive Transparency

For a partially transparent polygon

$$I_{\lambda} = (1 - k_{t1})I_{\lambda 1} + k_{t1}I_{\lambda 2}$$

$$k_{t1} = \text{transmittance of polygon 1}$$

$$\left(0 = \text{opaque}; 1 = \text{transparent}\right)$$

$$I_{\lambda} = \text{intensity calculated for polygon}$$

 $I_{\lambda 1}$ = intensity calculated for polygon 1

 $I_{\lambda 2}$ = intensity calculated for polygon 2

Refractive Transparency

 Model the way light bends at interfaces with Snell's Law

$$\sin \theta_r = \frac{\sin \theta_i \eta_{i\lambda}}{\eta_{r\lambda}}$$

 $\eta_{i\lambda}$ = index of refraction of medium 1

 $\eta_{r\lambda}$ = index of refraction of medium 2

Sampling

LECTURE 07: RAY TRACING

Choosing Samples

- •This example samples once per pixel. This generates images similar to this:
- •We have a clear case of the jaggies
- •Can we do better?

Choosing Samples (cont.)

- In the simplest case, sample points are chosen at pixel centers
- For better results, supersamples can be chosen (called supersampling)
 - e.g., at corners of pixel as well as at center
- Even better techniques do adaptive sampling: increase sample density in areas of rapid change (in geometry or lighting)
- With stochastic sampling, samples are taken probabilistically (recall Image Processing IV slides)
 - Actually converges on "correct" answer faster than regularly spaced sampling
- For fast results, we can subsample: fewer samples than pixels
 - take as many samples as time permits
 - beam tracing: track a bundle of neighboring rays together
- How do we convert samples to pixels? Filter to get weighted average of all the samples per pixel!
 - Instead of sampling one point, sample within a region to create a better approximation

VS.

Supersampling Example

WITH SUPERSAMPLING

WITHOUT SUPERSAMPING

