

Electronic Circuits and Systems (EEE211)

Course Work: Assignment-2

Deadline: 08-November-2024, 23:59 hours @ LMO

Q1 – Differential amplifiers (Total: 25 marks)

For the differential amplifier depicted in Fig. 1, the circuit parameters: $V^+ = 5 V$, $V^- = -5 V$, $I_Q = 0.8 \, mA$, and $R_C = 25 \, kOhm$. The transistor parameters are $\beta = \infty$, $V_A = \infty$, $V_{BE}(on) = 0.7 \, V$, and $V_T = 26 \, mV$. For the input voltages $v_{B1} = 1.001 \, V$ and $v_{B2} = 0.999 \, V$:

- i. Determine quiescent collector currents i_{CQ1} and i_{CQ2} , common emitter voltage v_E , and collector-emitter voltages v_{CE1} and v_{CE2} (hint: find everything for the common mode input voltage v_{cm}). (5 marks)
- ii. Considering the exponential relationship between collector current i_C and base-emitter voltage v_{BE} of a BJT $\left(i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)\right)$, find the collector voltages v_{C1} and v_{C2} . (9 marks)
- iii. Considering two-sided output $v_0 = v_{C2} v_{C1}$, determine the differential-mode gain and, assuming that the common-mode gain of the amplifier $A_{cm} = -0.01$, calculate the common mode rejection ratio (CMRR) in absolute values and in decibels. (11 marks)

Fig. 1 – Basic BJT differential-pair configuration

Dr. Timur Saifutdinov

Q2 – Current mirrors and Widlar current source (Total: 25 marks)

a. For the two-transistor current source depicted in Fig. 2.a, the circuit parameters: $V^+ = 10 V$, $V^- = 0 V$, and $R_1 = 50 \ kOhm$. The transistor parameters are $\beta = 80$ and $V_{BE}(on) = 0.7 V$.

i. Neglecting the Early effect $(V_A = \infty)$, determine the reference current I_{REF} , the output current I_O , and the base currents I_{B1} and I_{B2} . (7 marks)

ii. Accounting for the Early effect, the ratio of load current to reference current is given by

$$\frac{I_O}{I_{REF}} = \frac{1}{\left(1 + \frac{2}{\beta}\right)} \times \frac{\left(1 + \frac{V_{CE2}}{V_A}\right)}{\left(1 + \frac{V_{CE1}}{V_A}\right)}$$

For Early voltage $V_A = 100 V$, determine the small-signal output resistance r_0 looking into the collector of transistor Q2. (7 marks)

b. Consider the Widlar current source shown in Fig. 2.b. The voltage source is provided with $V^+ = 3 V$ and $V^- = -3 V$, $V_{BE1}(on) = 0.7 V$ and thermal voltage $V_T = 26 \ mV$.

i. Neglecting the base currents and considering the exponential relationship between collector current I_C and base-emitter voltage V_{BE} ($I_C = I_S \exp(V_{BE}/V_T)$), determine the required values of the reference current resistor R_1 and emitter resistor R_E to set the reference current to $I_{REF} = 2 \, mA$ and the output current to $I_O = 10 \, \mu A$. (8 marks)

ii. Determine the base-emitter voltage V_{BE2} of transistor Q2. (3 marks)

Fig. 2.a – Two-transistor current source

Fig. 2.b – Widlar current source

Q3 – Basic feedback concepts (Total: 25 marks)

For the basic configuration of a feedback amplifier depicted in Fig. 3, where input signal $S_i = 1 \, mV$, output signal $S_o = 99.9 \, mV$, and feedback signal $S_{fb} = 0.999 \, mV$.

- i. Determine the closed-loop gain A_f , feedback transfer function β , and open loop gain A. (4 marks)
- ii. Determine the required value of feedback transfer function β to obtain the closed-loop gain of $A_f = 200$. (4 marks)
- iii. For $\beta = 0.005$ and $A = 100\,000$ (hint: these are not exactly equal to the solution of ii.) and assuming that the open loop gain A can vary by $\pm 50\%$, estimate the variation of the closed-loop gain A_f in percentage value. (8 marks)
- iv. Assuming that the feedback transfer function β does not depend on frequency and the frequency response of a basic amplifier follows the transfer function A(s):

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_H}}$$

Derive the closed-loop gain transfer function $A_f(s)$, and determine closed-loop low frequency gain A_{f0} and closed-loop corner frequency ω_{fH} if the open loop corner frequency $\omega_H = 10 \, rad/s$, low-frequency gain $A_0 = 10^5$, and feedback transfer function $\beta = 10^{-3}$. (9 marks)

Fig. 3 – Basic configuration of a feedback amplifier

Dr. Timur Saifutdinov

Q4 – Ideal feedback topologies (Total: 25 marks)

- a. Consider the ideal feedback amplifier depicted in Fig. 4.a:
- i. Determine the feedback connection type of the amplifier and justify your choice. (2 marks)
- ii. Determine the open loop gain A_i if the source resistance $R_S = \infty$, input current $I_i = 1$ mA, output current $I_o = 500$ mA, and feedback current is $I_{fb} = 0.99$ mA. (2 marks)
- iii. For the same signal conditions ($I_i = 1 \, mA$, $I_o = 500 \, mA$, and $I_{fb} = 0.99 \, mA$), determine the input resistance of the feedback amplifier R_{if} if the input resistance of a basic amplifier $R_i = 5 \, kOhm$.

(6 marks)

- **b.** Consider the ideal feedback amplifier depicted in Fig. 4.b:
- i. Determine the feedback connection type of the amplifier and justify your choice. (2 marks)
- ii. Derive the closed-loop gain function A_{gf} of the amplifier. (5 marks)
- iii. Given input and output resistances of the basic amplifier (R_i and R_o , respectively), derive the input and output resistances of the feedback amplifier (R_{if} and R_{of} , respectively). (8 marks)

Fig. 4.a – An ideal feedback amplifier

Fig. 4.b – An ideal feedback amplifier