

《现代密码学》第四讲

分组密码 (二)

《现代密码学》第四讲

数据加密标准(DE S)算法介绍

上讲内容回顾

- ●分组密码定义
- ●分组密码的发展历史
- ●保密系统的安全性分析及分组密码的攻

击

本节主要内容

- DES 算法的整体结构
- DES 算法的轮函数
- DES 算法的密钥编排算法
- ●DES 的解密变换

本节主要内容

- DES 算法的整体结构
- DES 算法的轮函数
- DES 算法的密钥编排算法
- DES 的解密变换

DES 是从 1975 年被美国联邦政府确定为非敏感信息的加密标准,它利用 56 比特长度的密钥 K 来加密长度为 64 比特的明文,得到 64 比特长的密文。

1997年,由于计算机技术迅速发展,DES的密钥长度已经太短,NIST建议停止使用DES算法作为标准. 目前,二重DES和三重DES仍然广泛使用。

 P_0 1. 给定明文,通过一个固定的初始置换 IP来重排输入明文块 P中的比特,得到比特串 P_0 =IP(P)= L_0 R₀,这里 L_0 R₀分别是 P_0 的前 32 比特和丘 32 比特

初始置换 IP

			I	P			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- ► Feistel 结构
- 2. 按下述规则进行16次迭代,即

$$L_{i} = R_{i}^{1} + \mathbb{I} \oplus R_{i}^{1} = L_{i} \oplus f(R_{i-1}, K_{i})$$

这里 是对应比特的模 2加, f是一个函数 (称为轮函数);

16个长度为 48 比特的 子密钥 K_i(1≤i≤16) 是由密钥 k 经密钥编 排函数计算出来的.

信息安全中心

DES 算法的整体结构——能感觉经验的结构

DES 算法的整体结构——Fierset Edition 结构

3. 对比特串 R₁₆L₁₆使用逆置换 IP-1 得到密文 C, 即 C=IP-1 (R₁₆L₁₆)。(注意 L₁₆和 R₁₆的相反顺序)

初始置换 的逆置换 IP

			IF) -1			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

本节主要内容

- ●DES 算法的整体结构—— Feistel 结构
- DES 算法的轮函数
- DES 算法的密钥编排算法
- DES 的解密变换

函数f以长度为32比特串R_{i-1}作为第一输

入,以长度为48比特串 K;作为第二个输入,产

生长度为32比特的输出:

E扩展: R_{i-1} 根据扩展规则扩展为 48 比特长度

的串;

一的中	•				
		比特一	一选择是	麦	
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

密钥加: 计算 (R_{i-1}) $\mid K_i$,并将结果写成 8

个比特串,每个6比特,B=B₁B₂B₃B₄B₅B₆B₇B₈.

S盒代换:使用8个S盒S,……Sg. 每个S,是 一个固定的4*16阶矩阵,其元素取0~15 之间的整数.

给定长度为6的比特串。如 Bj=b₁b₂b₃b₄b₅b₆, Sj(Bj) 计算如下:

- 1) b,b,两个比特确定了S,的行r的二 进制表示(0≤r≤3),
- 2) b₂b₃b₄b₅ 四个比特确定了S₁的列 c 的二进制表示(0≤c≤15),
- 3) S₁(B₁) 定义成长度为 4 的比特串的 信息S₁(r, c) 。由此可以算出 C₁=S₁(B₁), 1≤ i²²

																ME
	T.	T		T	T	I	S	-	I	l	11	<u>.</u>				2
14	4	13	1	2	15	11	8	3	10	6	12	75	79	100	7	7
0	15	7	4	15	2	13	1	10	6	12	11			y of Bosts		COMMUNICATIONS
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
							S									
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9	
	ı	1				ı	S	Ī	ī							
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	
		1				ı	S		ı							
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	
12	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	
	T	T				T		5	T							
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9	
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6	
4	2	1	<u>11</u>	10	13	7	8	15	9	12	5	6	3	0	14	
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3	
			<u> </u>				1	6	I				T _	_		
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11	
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8	
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6	
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13	
4			4.4	4-	6	6		7	40		—		10			
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1	
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6	
1	4	11	13	12	3	7	14 7	10	15	6	8	0	5	9	2	
6	11	13	8	1	4	10		9	5	0	15	14	2	3	12	
40	_				4-	4.4		8	6					4.0		
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7	
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2	
TISC 7/		安4全	- 14	2	12	14	2	0	6	10	13	15	3	5	8	23
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11	

P 置换: 长度为 32 比特串 $C=C_1C_2C_3C_4C_5C_6C_7C_8$, 根据固定置换 P(*) 进行置换, 得到比特串

P(G) .			
	P置	置换	
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

本节主要内容

- ●DES 算法的整体结构—— Feistel 结构
- DES 算法的轮函数
- DES 算法的密钥编排算法
- DES 的解密变换

DES 算法的密钥编排算法 BEIJING UNIVERSITY OF POSTS AND TELECOM

K 根每 据轮 PC-1 密中 D_0 钥所 来使 LS_1 LS₁ K 用 K_1 D_1 PC-2 获的 得子 LS_2 LS_2 密 钥 LS₁₆ LS₁₆ K_{16} D_{16} PC-2

DES 算法的密钥编排算法

给定 64 比特密 钥 K, 根据固定 的置换 PC-1 来 处理 K 得到 PC-1 (K) = $C_0 D_0$,其中C。和D。 分别由最前和最 后28比特组成

			PC-1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

DES算法的密钥编排算法

计算 C_i=LS_i(C_i-1) 和 D_i=LS_i(D_i-1),且
K_i=PC-2(C_iD_i), LS_i表示循环左移两个或一个位置, 具体地, 如果 i=1,2,9,16 就移一个位置, 否则就移两个位置, PC-2 是另一个固定的置换。

DES 算法的密钥编排算法

		PC	C-2		
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

对 1≤i≤16, DES的每一轮中使用 K的 56比特中的 48 个比特, 具体选取位置由下表确定

	轮 1											
10	51	34	60	49	17	33	57	2	9	19	42	
3	35	26	25	44	58	59	1	36	27	18	41	
22	28	39	54	37	4	47	30	5	53	23	29	
61	21	38	63	15	20	45	14	13	62	55	31	
					轮	2						
2	43	26	52	41	9	25	49	59	1	11	34	
60	27	18	17	36	50	51	58	57	19	10	33	
14	20	31	46	29	63	39	22	28	45	15	21	

					轮	3					
51	27	10	36	25	58	9	33	43	50	60	18
44	11	2	1	49	34	35	42	41	3	59	17
61	4	15	30	13	47	23	6	12	29	62	5
37	28	14	39	54	63	21	53	20	38	31	7

12 | 37

55 7

					轮	4					
35	11	59	49	9	42	58	17	27	34	44	2
57	60	51	50	33	18	19	26	25	52	43	1
45	55	62	14	28	31	7	53	63	13	46	20
21	12	61-	23	38	47	4	37	4	22	15	54

北京郵電大學		北	京	郵	電	大学
--------	--	---	---	---	---	----

			V.	313	轮	UNIVER	SITY OF	POSTS A	IND TELE	СОММ	UNICATI
19	60	43	33	58	26	42	1	11	18	57	51
41	44	35	34	17	2	3	10	9	36	27	50
29	39	46	61	12	15	54	37	47	28	30	4
5	63	45	7	22	31	20	21	55	6	62	38

					轮	6					
3	44	27	17	42	10	26	50	60	2	41	35
25	57	19	18	1	51	52	59	58	49	11	34
13	23	30	45	63	62	38	21	31	12	14	55
20	47	29	54	6	15	4	5	39	53	46	22

					轮	7					
52	57	11	1	26	59	10	34	44	51	25	19
9	41	3	2	50	35	36	43	42	33	60	18
28	7	14	29	47	46	22	5	15	63	61	39
4	31	13	38	53	62	55	20	23	37	30	6

					轮	8					
36	41	60	50	10	43	59	18	57	35	9	3
58	25	52	51	34	19	49	27	26	17	44	2
12	54	61	13	31	30	6	20	62	47	45	23
55	15	28	22	37	46	39	4	7	21	14	53

					轮	9					
57	33	52	42	2	35	51	10	49	27	1	60
50	17	44	43	26	11	41	19	18	9	36	59
4	46	53	55	23	22	61	12	54	39	37	15
47	7	20	14	29	38	31	63	62	13	6	45

		2	6		以 [®] 轮 ^{NG}	T. UNIVER	SITY OF	POSTS A	大 IND TELE	学 COMM	UNICATI
58	34	17	43	3	36	52	11	50	57	2	35
51	18	9	44	27	41	42	49	19	10	1	60
7	45	20	39	22	21	28	15	53	38	4	14
46	6	23	13	63	37	30	62	61	47	5	12

					轮	10					
41	17	36	26	51	19	35	59	33	11	50	44
34	1	57	27	10	60	25	3	2	58	49	43
55	30	37	20	7	6	45	63	38	23	21	62
31	34	4	61	13	22	15	47	46	28	53	29

					轮	14					
42	18	1	27	52	49	36	60	34	41	51	9
35	2	58	57	11	25	26	33	3	59	50	44
54	29	4	23	6	5	12	62	37	22	55	61
30	53	7	28	47	21	14	46	45	31	20	63

					轮	11					
25	1	49	10	35	3	19	43	17	60	34	57
18	50	41	11	59	44	9	52	51	42	33	27
39	14	21	4	54	53	29	47	22	7	5	46
15	38	55	45	28	6	62	31	30	12	37	13

					轮	15					
26	2	50	11	36	33	49	44	18	25	35	58
19	51	42	41	60	9	10	17	52	43	34	57
38	13	55	7	53	20	63	46	21	6	39	45
14	37	54	12	31	5	61	30	29	15	4	47

					轮	12					
9	50	33	59	19	52	3	27	1	44	18	41
2	34	25	60	43	57	58	36	35	26	17	11
23	61	5	55	38	37	13	31	6	54	20	30
62 B	1P7 <u>2</u> 2	39	29	12	2 53 \	46	15	14	63	21	28

					轮	16					
18	59	42	3	57	25	41	36	10	17	27	50
11	43	34	33	52	1	2	9	44	35	26	49
30	5	47	62	45	12	55	38	13	61	31	37
6	29	46	4	23	28	53	22	21	7	63	39

本节主要内容

- ●DES 算法的整体结构—— Feistel 结构
- DES 算法的轮函数
- DES 算法的密钥编排算法
- DES 的解密变换

DES 的解密变换

DES 的解密与 加密一样使用 相同的算法, 它以密文v作 为输入,但以 相反的顺序使 用密钥编排 $K_{16}, K_{15}, \dots, K_{1},$ 输出的是明文 X

北京郵電大學

课堂练习

1. 设明文为 0123456789ABCDEF(16 进制),密 钥为 133457799BBCDFF1,求第一轮加密后的 数据流。

2. 应用 IP, 得到二进制的 L₀R₀为:
 L₀=110011000000000011001100111111111
 L₁=R₀=11110000101010101111000010101010

课堂练习

第1轮

主要知识点小结

- ●DES 算法的整体结构—— Feistel 结构
- ●DES 算法的轮函数
- ●DES 算法的密钥编排算法

THE END!

