Regulatory sequence analysis

Sequence models

(Bernoulli and Markov models)

Why do we need random models?

- Any pattern discovery relies on an underlying model to estimate the random expectation.
 - This model can be simple (succession of independent and equiprobable nucleotides) or more elaborate (differences in oligonucleotide composition).
 - The choice of an inappropriate model can lead to false conclusions.
 - In practice, a sequence model can be used to generate random sequences, which will serve to validate some theoretical assumptions.
- Example: comparison of observed and expected occurrences with the binomial distribution, as applied with oligo-analysis:
 - Relies on an assumption that successive oligonucleotides are independent from each other.
 - This is clearly not the case: each k-letter word depends on the k-1 neighbour words on both sides. How far does it affect the conclusions?
 - We could test it by generating random sequences, counting words, and fitting the distribution of observed occurrences with a binomial distribution.

Probability of a sequence segment

- What is the probability for a given sequence segment (oligonucleotide, "word") to be found at a given position of a DNA sequence?
- Different models can be chosen
 - Independently distributed nucleotides (Bernoulli model)
 - The probability of each residue is fixed a priori (*prior residue probability*)
 - Example: P(A) = 0.35; P(T) = 0.32; P(C) = 0.17; P(G) = 0.16
 - Particular case: equiprobable residues
 - P(A) = P(T) = P(C) = P(G) = 0.25
 - simple, but NOT realistic!

Markov model

- The probability of each residue depends on the *m* preceding residues.
- The parameter **m** is called the **order** of the Markov model
- Remark: a Markov model of order 0 is a Bernoulli model.

Independent and equiprobable nucleotides

 The simplest model: identically and independently (i.i.d.) distributed nucleotides.

$$P(S) = p^{L}$$

$$p = P(A) = P(C) = P(G) = P(T) = 0.25$$

- The probability of a sequence
 - Is the product of its residue probabilities (independence)
 - Equiprobability: since all residues have the same probability, it is simply computed as the residue proba (p) to the power of the sequence length (L)
 - S is a sequence segment (e.g. an oligonucleotide)
 - L length of the sequence segment
 - p nucleotide probability
 - *P(S)* is the probability to observe this sequence segment at given position of a larger sequence
- Example
 - Arr P(CACGTG) = 0.25⁶ = 2.44e⁻⁴

Bernoulli model: independently distributed nucleotides

- A more refined model consists in using residue-specific probabilities. The probability of each residue is assumed to be constant on the whole sequence (Bernoulli schema).
- The probability of a sequence is the product of its residue probabilities.

```
= i = 1..k is the index of nucleotide positions
```

 r_i is the residue found at position I

ho is the probability of this residue

Example: non-coding sequences in the yeast genome

```
P(A) = P(T) = 0.325
```

$$P(C) = P(G) = 0.175$$

P(CACGTG) = P(C) P(A) P(C) P(G) P(T) P(G)
=
$$0.325^{4} * 0.175^{2}$$

= $9.91E^{-5}$

$$P(S) = \prod_{i=1}^{L} P(r_i)$$

Markov chains and transition matrices

$$P(r_i \mid S_{i-m,i-1})$$

Transition matrix, order 1

	a	С	g	t
Α	P(A A)	P(C A)	P(G A)	P(T A)
C	P(A C)	P(C C)	P(G C)	P(T C)
G	P(A G)	P(C G)	P(G G)	P(T G)
T	P(A T)	P(C T)	P(G T)	P(T T)

Transition matrix, order 2

			,	_
Pref	Α	C	G	Т
AA	P(A AA)	P(C AA)	P(G AA)	P(T AA)
AC	P(A AC)	P(C AC)	P(G AC)	P(T AC)
AG	P(A AG)	P(C AG)	P(G AG)	P(T AG)
ΑT	P(A AT)	P(C AT)	P(G AT)	P(T AT)
CA	P(A CA)	P(C CA)	P(G CA)	P(T CA)
CC	P(A CC)	P(C CC)	P(G CC)	P(T CC)
CG	P(A CG)	P(C CG)	P(G CG)	P(T CG)
CT	P(A CT)	P(C CT)	P(G CT)	P(T CT)
GA	P(A GA)	P(C GA)	P(G GA)	P(T GA)
GC	P(A GC)	P(C GC)	P(G GC)	P(T GC)
GG	P(A GG)	P(C GG)	P(G GG)	P(T GG)
GT	P(A GT)	P(C GT)	P(G GT)	P(T GT)
TA	P(A TA)	P(C TA)	P(G TA)	P(T TA)
TC	P(A TC)	P(C TC)	P(G TC)	P(T TC)
TG	P(A TG)	P(C TG)	P(G TG)	P(T TG)
TT	P(A TT)	P(C TT)	P(G TT)	P(T TT)

- In a Markov model, the probability to find a letter at position i depends on the residues found at the m preceding residues.
- The tables represent the transition matrices for Markov chain models of order m=1 (top) and m=2 (bottom).
- Each row specifies one *prefix*, each column one *suffix*.
- The values indicate the probability to observe a given residue (suffix r_i) at position (i) of the sequence, as a function of the m preceding residues (the prefix $S_{i-m,i-1}$)
- Particular case
 - □ A Bernoulli model is a Markov model of order 0.

Markov model estimation ("training")

Transition frequencies for a Markov model of order m can be estimated from the frequencies observed for oligomers of length k=m+1 in a reference sequence set.

$$P(r_i \mid S_{1..m}) = \frac{F_{bg}(r_i \mid S_{1..m})}{\sum_{j \in A} F_{bg}(r_j \mid S_{1..m})} = \frac{F_{bg}(S_{1..m}r_i)}{\sum_{j \in A} F_{bg}(S_{1..m}r_j)}$$

Example

- The upper table shows dinucleotide frequencies computed from the whole set of upstream sequences of the yeast Saccharomyces cerevisiae
- The bottom table shows the corresponding transition frequencies.

Dinucleotide frequencies

Sequences	Occurrences	Frequency
S	N(S)	F(S)
AA	526,149	0.112
AC	251,377	0.054
AG	275,056	0.059
AT	414,453	0.088
CA	294,423	0.063
CC	178,324	0.038
CG	146,052	0.031
CT	275,859	0.059
GA	277,343	0.059
GC	184,367	0.039
GG	173,404	0.037
GT	239,569	0.051
TA	369,980	0.079
TC	280,475	0.060
TG	279,932	0.060
TT	521,236	0.111

$$P(G \mid T) = \frac{F(G \mid T)}{\sum_{j \in A} F(j \mid T)} = \frac{F(TG)}{F(T^*)}$$
$$= \frac{0.070}{0.046 + 0.058 + 0.070 + 0.073} = 0.282$$

Transition matrix, order 1

	,					
Prefix \ Suffix	Α	С	G	Т	P(Prefix)	N(Suffix)
Α	0.359	0.171	0.187	0.283	0.313	1,467,035
c	0.329	0.199	0.163	0.308	0.191	894,658
G	0.317	0.211	0.198	0.274	0.187	874,683
Т	0.255	0.193	0.193	0.359	0.310	1,451,623
P(Suffix)	0.313	0.191	0.187	0.310		
N(Suffix)	1.467.895	894.543	874.444	1.451.117		

Examples of transition matrices

$$P(r_i \mid S_{i-m,i-1})$$

- The two tables below show the transition matrices for a Markov model of order 1 (top) and 2 (bottom), respectively.
- The two models were trained with the whole set of **non-coding upstream sequences** of the yeast *Saccharomyces cerevisiae*.
- Notice the strong probability of transitions from AA to A and TT to T.

Transition matrix, order 1

	, -					
Pre/Suffix	Α	С	G	Т	P(Prefix)	N(Suffix)
Α	0.359	0.171	0.187	0.283	0.313	1,467,035
С	0.329	0.199	0.163	0.308	0.191	894,658
G	0.317	0.211	0.198	0.274	0.187	874,683
Т	0.255	0.193	0.193	0.359	0.310	1,451,623
P(Suffix)	0.313	0.191	0.187	0.310		
N(Suffix)	1.467.895	894.543	874.444	1.451.117	1	

Transition matrix, order 2

Prefix/Suffix	Α	С	G	Т	P(Prefix	N(Prefix
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
cc	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
СТ	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

Markov chains and Bernoulli models

- By extension of the concept of Markov chain, Bernoulli models can be qualified as Markov models of order 0 (the order 0 means that there is no dependency between a residue and the preceding ones).
- The prior probabilities of a Makov model of order m=0 can be estimated from the residue of single nucleotides (k=m+1=1) in a background sequence set.
- The table below shows the residue frequencies in the genomes of the yeast *Saccharomyces cerevisiae* and the bacteria *Escherichia coli K12*, respectively.
- Notice the strong differences between these genomes.

Markov order 0 = Bernouli

Α	C	G	T Genome
0.310	0.191	0.191	0.309 Saccharomyces cerevisiae
0.246	0.254	0.254	0.246 Escherichia coli K12

Scoring a sequence segment with a Markov model

The example below illustrates the computation of the probability of a sequence segment P(S|B) with a background Markov model B of order 2, calibrated from 3nt frequencies on the yeast genome.

CCTACTATATGCCCAGAATT

Background model B

Transition matrix, order 2

Transition matrix, order 2							
Prefix/Suffix	A	С	G	T	P(Prefix N(Prefix		
AA	0.388	0.161	0.200	0.251	0.112 525,000		
AC	0.339	0.198	0.173	0.290	0.054 251,072		
AG	0.345	0.204	0.196	0.255	0.059 274,601		
AT	0.311	0.184	0.182	0.323	0.088 413,946		
CA	0.347	0.178	0.189	0.286	0.063 293,750		
CC	0.341	0.190	0.161	0.309	0.038 178,110		
CG	0.293	0.221	0.196	0.290	0.031 145,876		
CT	0.229	0.195	0.205	0.371	0.059 275,634		
GA	0.394	0.155	0.187	0.264	0.059 277,053		
GC	0.330	0.205	0.169	0.297	0.039 184,192		
GG	0.318	0.217	0.187	0.277	0.037 173,266		
GT	0.285	0.175	0.204	0.336	0.051 239,384		
TA	0.300	0.193	0.168	0.339	0.079 369,426		
TC	0.313	0.203	0.152	0.332	0.060 280,131		
TG	0.302	0.209	0.208	0.282	0.060 279,783		
TT	0.210	0.208	0.189	0.392	0.111 520,906		
P(Suffix)	0.313	0.191	0.187	0.310			
N(cuffix)	1 466 075	803 444	273 260	1 440 351			

Sequence probability given the backgound model

$$P(S | B) = P(S_{1,m} | B) \prod_{i=m+1}^{L} P(r_i | S_{i-m,i-1}, B)$$

os	P(R W)	wR	S	P(S)
	1 P(CC)	0.038 cc	CC	3.80E-02
	2 P(T CC)	0.309 ccT	CCT	1.17E-02
	3 P(A CT)	0.229 ctA	CCTA	2.69E-03
	4 P(C TA)	0.193 taC	CCTAC	5.19E-04
	5 P(T AC)	0.290 acT	CCTACT	1.50E-04
	6 P(A CT)	0.229 ctA	CCTACTA	3.45E-05
	7 P(T TA)	0.339 taT	CCTACTAT	1.17E-05
	8 P(A AT)	0.311 atA	CCTACTATA	3.63E-06
	9 P(T TA)	0.339 taT	CCTACTATAT	1.23E-06
	10 P(G AT)	0.182 atG	CCTACTATATG	2.25E-07
	11 P(C TG)	0.209 tgC	CCTACTATATGC	4.69E-08
	12 P(C GC)	0.205 gcC	CCTACTATATGCC	9.61E-09
	13 P(C CC)	0.190 ccC	CCTACTATATGCCC	1.82E-09
	14 P(A CC)	0.341 ccA	CCTACTATATGCCCA	6.21E-10
	15 P(G CA)	0.189 caG	CCTACTATATGCCCAG	1.17E-10
	16 P(A AG)	0.345 agA		4.04E-11
	17 P(A GA)	0.394 gaA	CCTACTATATGCCCAGAA	1.59E-11
	18 P(T AA)	0.251 aaT	CCTACTATATGCCCAGAAT	4.00E-12
	19 P(T AT)	0.323 atT	CCTACTATATGCCCAGAATT	1.29E-12

Background sequences

- The frequencies observed for a *k*-letter word in a reference sequence set (background sequence) can be used to estimate the expected frequencies of the same *k*-letter word in the sequences to be analyzed.
- Typical background models:
 - Whole genome
 - But this will bias the estimates towards coding frequencies, especially in microbial organisms, where the majority of the genome is coding.
 - Whole set of intergenic sequences
 - More accurate than whole-genome estimates, but still biased because intergenic sequences include both upstream and downstream sequences
 - Whole set of upstream sequences, same sizes as the sequences to be analyzed
 - Requires a calibration for each sequence size
 - Whole set of upstream sequences, fixed size (default on the web site)
 - Reasonably good estimate for microbes, NOT for higher organisms.