Аксиома выбора

Аксиома выбора

Аксиома (Аксиома выбора)

Из любого семейства дизъюнктных непустых множеств $\{A_i\}$ можно выбрать непустую трансверсаль — множество S, что $S \cap A_i = \{x_i\}$. Иначе, $S \in \times \{A_i\}$.

Теорема (Аксиома выбора)

Пусть $\{A_i\}$ — семейство непустых множеств. Тогда существует $f:\{A_i\} \to \cup A_i$, причём $\forall a.a \in \{A_i\} \to f(a) \in a$

Доказательство.

По семейству A_i рассмотрим семейство множеств $X(A_i)$:

$$X(A_i)=\{\langle A_i,a\rangle\mid a\in A_i\}$$
, если $A_i
eq A_j$, то $X(A_i)\cap X(A_j)=\varnothing$, тогда $\exists f.f\in imes \{X(A_i)\}.$

Обратное утверждение также легко показать.

Аксиома выбора: альтернативные формулировки

Теорема (Лемма Цорна)

Если задано $\langle M, (\preceq) \rangle$ и для всякого линейно-упорядоченного $S \subseteq M$ выполнено $upb_MS \in M$, то в M существует максимальный элемент.

Теорема (Теорема Цермело)

На любом множестве можно задать полный порядок.

Теорема

У любой сюрьективной функции существует частичная обратная.

Теорема

Аксиома выбора \Rightarrow лемма Цорна: без доказательства

Начальный отрезок

Определение

Будем говорить, что $\langle S, (\prec_S) \rangle$ — начальный отрезок $\langle T, (\prec_T) \rangle$, если:

- \triangleright $S \subseteq T$;
- ightharpoonup если $a,b\in S$, то $a\prec_S b$ тогда и только тогда, когда $a\prec_T b$;
- ▶ если $a \in S$, $b \in T \setminus S$, то $a \prec_T b$.

Будем записывать это как $S \prec T$.

Теорема

Если множество начальных отрезков X линейно упорядочено, то в нём есть наибольший элемент.

Доказательство.

Пусть $M = \cup \{T | \langle T, (\prec) \rangle \in X\}$ и $(\prec)_M = \cup \{(\prec) | \langle T, (\prec) \rangle \in X\}$.

Раз все элементы X сравнимы, значит, любые два отношения порядка не противоречат друг другу (одно – продолжение другого). Поэтому что все множества в X — начальные отрезки M.

Лемма Цорна ⇒ теорема Цермело

Пусть выполнена лемма Цорна и дано некоторое X. Покажем, что на нём можно ввести линейный порядок.

- ▶ Пусть $S = \{\langle P, (\prec) \rangle \mid P \subseteq X, (\prec)$ полный порядок $\}$. Например, для $X = \{0,1\}$ множество $S = \{\langle \varnothing, \varnothing \rangle, \langle \{0\}, \varnothing \rangle, \langle \{1\}, \varnothing \rangle, \langle X, 0 \prec 1 \rangle, \langle X, 1 \prec 0 \rangle\}$
- ▶ Введём порядок на S: положим $\langle P, (\prec_p) \rangle < \langle Q, (\prec_q) \rangle$, если $P \subseteq Q$, $a \prec_p b$ тогда и только тогда, когда $a \prec_q b$ при $a, b \in P$, $a \prec_q b$ при $a \in P, b \in Q \setminus P$.
- ▶ Заметим, что $\langle \varnothing, \varnothing \rangle < \langle \{0\}, \varnothing \rangle$, но $\langle X, 0 \prec 1 \rangle$ несравним с $\langle X, 1 \prec 0 \rangle$.
- ▶ Любое линейно-упорядоченное подмножество $\langle T, (<) \rangle$ (где $T \subseteq S$) имеет верхнюю грань (она же максимальный элемент): $\langle \cup T, \cup (\prec) \rangle$ (например, для $\{\langle \varnothing, \varnothing \rangle, \langle \{0\}, \varnothing \rangle, \langle X, 0 \prec 1 \rangle\}$ это $\langle X, 0 \prec 1 \rangle$.
- ▶ По лемме Цорна тогда есть $\langle R, \sqsubset \rangle = \max S$. Заметим, что R = X, потому что иначе пусть $a \in X \setminus R$. Тогда положив $M = \langle R \cup \{a\}, (\prec_R) \cup \{x \prec a \mid x \in R\} \rangle$ получим, что M тоже вполне упорядоченное (и потому $M \in S$), значит, R не максимальное.

Теорема Цермело \Rightarrow существование обратной \Rightarrow аксиома выбора

Теорема

Теорема Цермело \Rightarrow у сюрьективных функций существует частичная обратная.

Доказательство.

Рассмотрим сюрьективную $f:A\to B$. Рассмотрим семейство $R_b=\{a\in A\mid f(a)=b\}$. Построим полный порядок на каждом из R_b . Тогда $f^{-1}(b)=\min R_b$.

Теорема

Существует частичная обратная у сюръективных функций \Rightarrow существует трансверсаль у дизъюнктных множеств.

Доказательство.

Пусть дано семейство дизъюнктных множеств $\{A_i\}$. Рассмотрим $f: \cup A_i \to \{A_i\}$, что $f(a) = \cup \{A_i \in \{A_i\} \mid a \in A_i\}$. Поскольку A_i дизъюнктны, $f(a) = A_i$ при всех a. Тогда существует $f^{-1}(A_i) \in A_i$. Тогда $\{f^{-1}(A_i)\} \in \times \{A_i\}$.

Зачем нужна аксиома выбора?

Определение

Пределом функции f в точке x_0 по Коши называется такой y, что

$$\forall \varepsilon \in \mathbb{R}^+.\exists \delta. \forall x. |x-x_0| < \delta \rightarrow |f(x)-y| < \varepsilon$$

Определение

Пределом функции f в точке x_0 по Гейне называется такой y, что для любой $x_n \to x_0$ выполнено $f(x_n) \to y$.

Теорема

Пусть
$$\lim_{x \to x_0} f(x) = y$$
 по Гейне, тогда $\forall \varepsilon. \exists \delta. \forall x. |x_\delta - x_0| < \delta \to |f(x_\delta) - y| < \varepsilon.$

Доказательство.

Пусть не так. То есть, $\exists \varepsilon. \forall \delta. \exists x_\delta. |x_\delta-x_0| < \delta \ \& \ |f(x_\delta)-y| \ge \varepsilon$. Фиксируем ε и возьмём $\delta_n = \frac{1}{n}$ и $p_n = x_{\delta_n}$. $p_n \to x_0$, так как $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$, по определению предела по Гейне $f(p_n) \to y$, но по предположению $|f(p_n) - y| \ge \varepsilon$.

Теорема

Пусть $\lim_{x \to x_0} f(x) = y$ по Гейне, тогда $\forall \varepsilon. \exists \delta. \forall x. |x_\delta - x_0| < \delta \to |f(x_\delta) - y| < \varepsilon.$

Доказательство.

Пусть не так. То есть, $\exists \varepsilon. \forall \delta. \exists x_{\delta}. |x_{\delta} - x_0| < \delta \ \& \ |f(x_{\delta}) - y| \ge \varepsilon$. Фиксируем ε и возьмём $\delta_n = \frac{1}{n}$ и $p_n = x_{\delta_n}.$ $p_n \to x_0$, так как $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$, по определению предела по Гейне $f(p_n) \to y$, но по предположению $|f(p_n) - y| \ge \varepsilon$.

Пояснение

Для применения предела по Гейне нужна p_n — как множество. $\langle p_1, p_2, p_3, \dots \rangle$?

Теорема

Пусть $\lim_{x \to x_0} f(x) = y$ по Гейне, тогда $\forall \varepsilon. \exists \delta. \forall x. |x_\delta - x_0| < \delta \to |f(x_\delta) - y| < \varepsilon.$

Доказательство.

Пусть не так. То есть, $\exists \varepsilon. \forall \delta. \exists x_\delta. |x_\delta - x_0| < \delta \ \& \ |f(x_\delta) - y| \ge \varepsilon$. Фиксируем ε и возьмём $\delta_n = \frac{1}{n}$ и $p_n = x_{\delta_n}$. $p_n \to x_0$, так как $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$, по определению предела по Гейне $f(p_n) \to y$, но по предположению $|f(p_n) - y| \ge \varepsilon$.

Пояснение

Для применения предела по Гейне нужна p_n — как множество. $\langle p_1, p_2, p_3, \dots \rangle$? ... Фиксируем ε и рассмотрим $X_\delta = \{x_\delta \mid |x_\delta - x_0| < \delta \ \& \ |f(x_\delta) - y| \ge \varepsilon\}$. Возьмём $\delta_n = \frac{1}{n}$ и $x_{\frac{1}{n}} \in X_{\frac{1}{n}}$.

Теорема

Пусть $\lim_{x\to x_0} f(x) = y$ по Гейне, тогда $\forall \varepsilon. \exists \delta. \forall x. |x_\delta-x_0| < \delta \to |f(x_\delta)-y| < \varepsilon.$

Доказательство.

Пусть не так. То есть, $\exists \varepsilon. \forall \delta. \exists x_\delta. |x_\delta-x_0| < \delta \ \& \ |f(x_\delta)-y| \ge \varepsilon$. Фиксируем ε и возьмём $\delta_n = \frac{1}{n}$ и $p_n = x_{\delta_n}$. $p_n \to x_0$, так как $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$, по определению предела по Гейне $f(p_n) \to y$, но по предположению $|f(p_n) - y| \ge \varepsilon$.

Пояснение

Для применения предела по Гейне нужна p_n — как множество. $\langle p_1, p_2, p_3, \dots \rangle$? ... Фиксируем ε и рассмотрим $X_\delta = \{x_\delta \mid |x_\delta - x_0| < \delta \& |f(x_\delta) - y| \ge \varepsilon\}$. Возьмём $\delta_n = \frac{1}{n}$ и $x_{\frac{1}{n}} \in X_{\frac{1}{n}}$.

... То есть, по семейству непустых множеств $\{X_\delta\}$ по аксиоме выбора построим $p:\{X_\delta\}\to \cup X_\delta$, что $p(X_\delta)\in X_\delta$, и построим последовательность $p(X_{\underline{1}})\to x_0$.

Предел по Коши влечёт предел по Гейне

Теорема

Пусть $\lim_{x\to x_0} f(x) = y$ и дана $x_n \to x_0$. Тогда $f(x_n) \to y$.

Доказательство.

Фиксируем $\varepsilon > 0$.

- ightharpoonup (определение предела по Коши) существует δ , что $\forall x. |x-x_0| < \delta \to |f(x)-y| < \varepsilon$.
- lacktriangle (сходимость x_n к x_0) найдётся N, что $\forall n.n > N
 ightarrow |x_n x_0| < \delta$.
- lacktriangle (предыдущие два пункта) $orall n.n > N
 ightarrow |f(x_n) y| < arepsilon.$

Предел по Коши влечёт предел по Гейне

Теорема

Пусть $\lim_{x\to x_0} f(x) = y$ и дана $x_n \to x_0$. Тогда $f(x_n) \to y$.

Доказательство.

Фиксируем $\varepsilon > 0$.

- (определение предела по Коши) существует δ , что $\forall x. |x-x_0| < \delta \to |f(x)-y| < \varepsilon$.
- lacktriangle (сходимость x_n к x_0) найдётся N, что $\forall n.n > N o |x_n x_0| < \delta$.
- ▶ (предыдущие два пункта) $\forall n.n > N \rightarrow |f(x_n) y| < \varepsilon$.

Почему здесь не требуется аксиома выбора? Потому что нам нужен δ из единственного множества $\{\delta \in \mathbb{R} \mid \forall x. |x-x_0| < \delta \to |f(x)-y| < \varepsilon\}$. То же про N. Аксиома выбора для конечного семейства множеств доказуема в ZF.

Равенство и функции

Пример

Пусть $A_0=\{0,1,3,5\}$ и $A_1=\{3,5,1,0,0,5,3\}$. Верно ли, что $A_0=A_1$?

Равенство и функции

Пример

Пусть $A_0=\{0,1,3,5\}$ и $A_1=\{3,5,1,0,0,5,3\}$. Верно ли, что $A_0=A_1$? Да, так как $\forall x.x \in \{0,1,3,5\} \leftrightarrow x \in \{3,5,1,0,0,5,3\}$.

Равенство и функции

Пример

Пусть $A_0=\{0,1,3,5\}$ и $A_1=\{3,5,1,0,0,5,3\}$. Верно ли, что $A_0=A_1$? Да, так как $\forall x.x \in \{0,1,3,5\} \leftrightarrow x \in \{3,5,1,0,0,5,3\}$.

Теорема

Если $f:A\to B$, также $a,b\in A$ и a=b, то f(a)=f(b).

Доказательство.

Пусть $F \subseteq A \times B$ — график функции f. Легко показать, что если a=b и $y_1=y_2$, то $\langle a,y_1\rangle=\langle b,y_2\rangle$. По определению функции, $\forall x. \forall y_1. \forall y_2. \langle x,y_1\rangle \in F \ \& \ \langle x,y_2\rangle \in F \ \to \ y_1=y_2$. Также, если $f(a)=y_1$, $f(b)=y_2$, то $\langle a,y_1\rangle \in F$ и $\langle b,y_2\rangle \in F$. Тогда: $\langle a,y_1\rangle=\langle b,y_1\rangle=\langle b,y_2\rangle=\langle a,y_2\rangle$, то есть $f(a)=y_2=f(b)$.

Теорема Диаконеску

Теорема

Если рассмотреть ИИП с ZFC, то для любого P выполнено $\vdash P \lor \neg P$.

Доказательство.

```
Рассмотрим \mathcal{B} = \{0,1\}, A_0 = \{x \in \mathcal{B} | x = 0 \lor P\} и A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}. \{A_0,A_1\} — непустое семейство непустых множеств, и по акс. выбора существует f: \{A_0,A_1\} \to \cup A_i, что f(A_i) \in A_i. (Если P, то A_0 = A_1 и \{A_0,A_1\} = \{\mathcal{B}\}).
```

$$\vdash f(A_0) \in A_0 \& f(A_1) \in A_1$$
 $f(A_i) \in A_i$ $\vdash (f(A_0) \in \mathcal{B} \& f(A_0) = 0 \lor P) \& (f(A_1) \in \mathcal{B} \& f(A_1) = 1 \lor P)$ Опр. A_i $\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$ Удал. $(\&) +$ дист. $\vdash P \lor f(A_0) \neq f(A_1)$ Перегруппировка

Теорема Диаконеску

Теорема

Если рассмотреть ИИП с ZFC, то для любого P выполнено $\vdash P \lor \neg P$.

Доказательство.

```
Рассмотрим \mathcal{B} = \{0, 1\}, A_0 = \{x \in \mathcal{B} | x = 0 \lor P\} и A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}.
\{A_0, A_1\} — непустое семейство непустых множеств, и по акс. выбора существует
f: \{A_0, A_1\} \to \cup A_i, что f(A_i) \in A_i. (Если P, то A_0 = A_1 и \{A_0, A_1\} = \{\mathcal{B}\}).
 \vdash f(A_0) \in A_0 \& f(A_1) \in A_1
                                                                                         f(A_i) \in A_i
 \vdash (f(A_0) \in \mathcal{B} \& f(A_0) = 0 \lor P) \& (f(A_1) \in \mathcal{B} \& f(A_1) = 1 \lor P)
                                                                                        Опр. A_i
 \vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P
                                                                                        Удал. (&) + дист.
 \vdash P \lor f(A_0) \neq f(A_1)
                                                                                         Перегруппировка
 \vdash P \rightarrow A_0 = A_1
                                                                                         Определение A_i
 \vdash A_0 = A_1 \to f(A_0) = f(A_1)
                                                                                         Теорема выше
 \vdash f(A_0) \neq f(A_1) \rightarrow \neg P
                                                                                         Контрапозиция
 \vdash P \lor \neg P
                                                                                         Подставили
```

Слабые варианты аксиомы выбора

Теорема (конечного выбора)

Если $X_1 \neq \varnothing, \ldots, X_n \neq \varnothing$, $X_i \cap X_j = \varnothing$ при $i \neq j$, то $\times \{X_1, \ldots, X_n\} \neq \varnothing$.

Доказательство.

- ▶ База: n=1. Тогда $\exists x_1.x_1 \in X_1$, поэтому $\exists x_1.\{x_1\} \in \times \{X_1\}$.
- Переход:

$$\exists v.v \in \times \{X_{1,n}\} \to \exists x_{n+1}.x_{n+1} \in X_{n+1} \to v \cup \{x_{n+1}\} \in \times (X_{1,n} \cup \{X_{n+1}\})$$

Аксиома (счётного выбора)

Для счётного семейства непустых множеств существует функция, каждому из которых сопоставляющая один из своих элементов

Аксиома (зависимого выбора)

если $\forall x \in E.\exists y \in E.xRy$, то существует последовательность $x_n: \forall n.x_nRx_{n+1}$

Аксиома конструктивности: V=L

Определение

Универсум фон Неймана V — все наследственные фундированные множества. Конструктивный универсум $L = \cup_a L_a$, где:

$$L_a = \left\{ egin{array}{ll} arnothing, & a = 0 \ \{\{x \in L_b \mid arphi(x, t_1, \dots, t_k)\} \mid arphi - oldsymbol{\phi}$$
ормула, $t_i \in L_b\}, & a = b' \ \bigcup_{b < a}(L_b), & a - \mathit{пред}. \end{array}
ight.$

При наличии аксиомы фундирования можно показать, что $V=\cup_a V_a$, где:

$$V_{a}=\left\{egin{array}{ll} arnothing, & a=0\ \mathcal{P}(V_{b}), & a=b'\ igcup_{b< a}(V_{b}), & a-$$
предельный

Аксиома конструктивности: V = L, то есть все фундированные множества задаются формулами.