Vortragsnotizen

Georg Meinhardt

19. Juli 2022

Allgemein

- Haben alle anwesenden meinen Vortrag schonmal gehört?
- Kennen alle das CVRP?

Branch-and-Price

- Master Problem erklären
- Vor dem Pricing Problem das generelle Prinzip erklären
- reduzierte Kosten erwähnen

Pricing Problem

• q-Routes erwähnen

ng-Pfade

- Intuition: Aller Pfade in der Nachbarschaft
- $\Delta = 2$, 2-cycle ist verboten, 3-cycle nicht
 - -der 3 cycle verläuft in der Nachbarschaft von z
 - v-w-v wäre erlaubt
- $\Delta = 4$, beide cycles sind verboten

Untere Schhranken

• Paper von Fukasawa erwähnen

Ergebnisse

- Erzählen, dass diese ganzen Sachen implementiert wurden.
- C++
- Qualitätsausage über die finalen Bounds
- Idee dieser Präsentation: Kurze Vorstellung der Resultate, alles sauber belegt, neugierig machen auf die ganze Arbeit
- Nun eine Instanz anschauen

Generelle Ergebnisse

- Lagrangian Bound ist tatsächlich sinnvoll
- Das ziemlich schnell, wegen Heuristiken
- Bounds bilden eine Hierarchie (und erklären)
- Bounds sind nicht monoton (und erklären)
- Anzahl der Iterationen eingehen
- Nun zur Laufzeit (nächste Folie)
- Zuerst ng20 erklären und warum die Linien mittem im Plot starten
- Dann explizit auf ng8 zu cyc2 und SPPRC eingehen
- Übergang: Erzählen Auswertung ESPPRC und Terminierung von ng20

Vergleich mit relativen Schwellenwerten

- Hierarchie erklären und sagen, wann sie gilt
- Annahme der Hierarchie der Laufzeit
- Parameter It erklären (eventuell auch am Plot)
- Plots zeigen
 - Gruppieren und Runden erklären
 - Spearman's rank corellation coefficent erklären (auf ganzen Daten)
- ng20 nicht vergessen!

Farley

- Nur auf dem E Datensatz
- Plot zeigen für SPPRC Farley
- \bullet Peformance: 4 von 11 über $10^4 {\rm section},\, 9$ von 11 über 1000 s
- DAnn allgemeine Performance Evaluation nennen.
 - $-\ 38$ nicht finish Pricing Calls ingesamt
 - $-\ 21\ dnf$
 - 13 Farley besser
 - 4 war Lagrangian besser (sehr eng)