6: Window Filter
Design
Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

6: Window Filter Design

Inverse DTFT

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

Note: Width in ω is $2\omega_0$, width in n is $\frac{2\pi}{\omega_0}$: product is 4π always Sadly h[n] is infinite and non-causal. Solution: multiply h[n] by a window

Rectangular window

6: Window Filter
Design
Inverse DTFT
Rectangular
window
Dirichlet Kernel
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$

Minimum E is when $h_1[n] = h[n]$.

Proof: From Parseval: $E = \sum_{-\frac{M}{2}}^{\frac{M}{2}} |h[n] - h_1[n]|^2 + \sum_{|n| > \frac{M}{2}} |h[n]|^2$

However: 9% overshoot at a discontinuity even for large n.

Normal to delay by $\frac{M}{2}$ to make causal. Multiplies $H(e^{j\omega})$ by $e^{-j\frac{M}{2}\omega}$.

Dirichlet Kernel

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega) \stackrel{\text{(ii)}}{=} \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

[Dirichlet Kernel]
$$\frac{dH_{min}(e^{jw})}{dw} = \frac{i}{2\pi} \frac{d(H_{i}e^{jw})}{dw} \mathcal{B}W(e^{jw})$$

$$= \frac{i}{2\pi} \left(\int (w - w_{\bullet}) + \int (w + w_{\bullet}) \mathcal{A}W(e^{jw}) \right)$$
Other properties of $W(e^{j\omega})$:
$$= \frac{i}{2\pi} \left[W(e^{jw_{\bullet}}) + W(e^{-jw_{\bullet}}) \right]$$

Other properties of $W(e^{j\omega})$:

The DTFT of a symmetric rectangular window of length M+1 is $W(e^{j\omega})=\sum_{-M}^{M\over 2}e^{-j\omega n}=$

$$e^{j\omega\frac{M}{2}}\sum_{0}^{M}e^{-j\omega n} = e^{j\omega\frac{M}{2}}\frac{1 - e^{-j\omega(M+1)}}{1 - e^{-j\omega}} = \frac{e^{j0.5\omega(M+1)} - e^{-j0.5\omega(M+1)}}{e^{j0.5\omega} - e^{-j0.5\omega}} = \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}.$$

For small x we can approximate $\sin x \approx x$ for x < 0.25. So, for $\omega < 0.5$, we have $W(e^{j\omega}) \approx 2\omega^{-1} \sin 0.5(M+1)\omega$.

The peak value is at $\omega=0$ and equals M+1; this means that the peak gradient of $H_{M+1}(e^{j\omega})$ will be $\frac{M+1}{2\pi}$.

The minimum value of $W(e^{j\omega})$ is approximately equal to the minimuum of $2\omega^{-1}\sin 0.5(M+1)\omega$ which is when $\sin 0.5(M+1)\omega = -1$ i.e. when $\omega = \frac{1.5\pi}{0.5(M+1)} = \frac{3\pi}{M+1}$

Hence $\min W(e^{j\omega}) \approx \min 2\omega^{-1} \sin 0.5(M+1)\omega = -\frac{M+1}{1.5\pi}$.

Passband and Stopband ripple:

The ripple in $W(e^{j\omega})=\frac{\sin 0.5(+1)\omega}{\sin 0.5\omega}$ has a period of $\Delta\omega=\frac{2\pi}{0.5(+1)}=\frac{4\pi}{M+1}$ and this gives rise to ripple with this period in both the passband and stopband of $H_{M+1}(e^{j\omega})$.

However the stopband ripple takes the value of $H_{M+1}(e^{j\omega})$ alternately positive and negative. If you plot the magnitude response, $|H_{M+1}(e^{j\omega})|$ then this ripple will be full-wave rectified and will double in frequency so its period will now be $\frac{2\pi}{M+1}$.

Window relationships

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel
Window
Prelationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

When you multiply an impulse response by a window M+1 long $H_{M+1}(e^{j\omega})=\frac{1}{2\pi}H(e^{j\omega})\circledast W(e^{j\omega})$

- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega=$ width of the main lobe transition amplitude, $\Delta H=$ integral of main lobe÷ 2π rectangular window: $\Delta\omega=\frac{4\pi}{M+1},~\Delta H\approx 1.18$
- (c) stopband gain is an integral over oscillating sidelobes of $W(e^{j\omega})$ rect window: $\left|\min H(e^{j\omega})\right| = 0.09 \ll \left|\min W(e^{j\omega})\right| = \frac{M+1}{1.5\pi}$
- (d) features narrower than the main lobe will be broadened and attenuated

Common Windows

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

Blackman-Harris 3-term: $0.42 + 0.5c_1 + 0.08c_2$ best peak sidelobe

Kaiser:
$$\frac{I_0\left(\beta\sqrt{1-\left(\frac{2n}{M}\right)^2}\right)}{I_0(\beta)}$$

 β controls width v sidelobes Good compromise: Width v sidelobe v decay

Order Estimation

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2 - \omega_1$, or the gain tolerances δ and ϵ get smaller. Only approximate.

Example:

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943$, $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple:
$$20\log_{10}{(1+\delta)} = 0.1 \text{ dB}$$
, $20\log_{10}{\epsilon} = -35 \text{ dB}$ $\delta = 10^{\frac{0.1}{20}} - 1 = 0.0116$, $\epsilon = 10^{\frac{-35}{20}} = 0.0178$

$$M \approx \frac{-5.6 - 4.3 \log_{10}(2 \times 10^{-4})}{1.047 - 0.943} = \frac{10.25}{0.105} = 98$$
 or $\frac{35 - 8}{2.2\Delta\omega} = 117$

Example Design

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

Specifications:

Bandpass: $\omega_1=0.5$, $\omega_2=1$

Transition bandwidth: $\Delta \omega = 0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34 \text{ dB}$$

$$20\log_{10}{(1+\delta)} = 0.17 \text{ dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

Kaiser Window: $\beta = 2.5$

Frequency sampling

6: Window Filter
Design
Inverse DTFT
Rectangular window
Dirichlet Kernel
Window relationships
Common Windows
Order Estimation
Example Design
Frequency
Sampling
Summary
MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

Disadvantage:

poor intermediate approximation if spectrum is varying rapidly

Solutions:

- (1) make the filter transitions smooth over $\Delta\omega$ width
- (2) oversample and do least squares fit (can't use IDFT)
- (3) use non-uniform points with more near transition (can't use IDFT)

Summary

6: Window Filter Design

Inverse DTFT
Rectangular window
Dirichlet Kernel
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary
MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - \circ Ideal lowpass has $h[n] = rac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is * with the DTFT of the window
 - \circ Rectangular window $(W(z)={\sf Dirichlet\ kernel})$ has $-13~{\sf dB}$ sidelobes and is always a bad idea
 - Hamming, Blackman-Harris are good
 - \circ Kaiser good with β trading off main lobe width v. sidelobes
- Uncertainty principle: cannot be concentrated in both time and frequency
- Frequency sampling: IDFT of uniform frequency samples: not so great

For further details see Mitra: 7, 10.

MATLAB routines

6: Window Filter
Design
Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

diric(x,n)	Dirichlet kernel: $rac{\sin 0.5 nx}{\sin 0.5 x}$
hanning	Window functions
hamming kaiser	(Note 'periodic' option)
kaiserord	Estimate required filter order and eta