6 章: GLMの応用範囲をひろげる 後半 二項分布以外への応用

太田研究室4年 和田

(6章前半) GLMの二項分布 への応用 GLMを応用する 際の有効な手法; オフセット項の指定

GLMの他の確率分布への応用

正規分布

割算値の統計モデリングはやめよう

(6章前半) GLMの二項分布 への応用 GLMを応用する 際の有効な手法; オフセット項の指定 GLMの他の確率分布への応用

正規分布

割算値の統計モデリングは、必ずしも現実を反映しない

(そもそもなぜ、二項分布やロジスティック回帰を使うのか?)

観測値の誤った「解析」が起こりがち(以下例)

- 生起確率= (観測データ) / (観測データ)
- 観測値の変数変換 e.g. 対数変換, 平均化, etc.

問題

- 1000回中300回起こる現象と、10回中3 回起こる現象は、同じ確からしさか?
- 分子の観測データ、分母の観測データに それぞれ誤差があるとき…生起確率はど んな確率分布になる?

 N_1 個中 y_1 個の種子が生存するとき…

「生存確率を y₁/N₁の単純 計算で求める」

#

「生存確率p₁を、p=p₁, N=N_{1,} x=y₁の二項分布に 従うと仮定して探る」

オフセット項を使えば、単純比例の関係もGLMに組み込める

- ・観測値を割り算や変数変換→得た数値を応答変数に 間違い
- 「人口密度」などを調べたい=観測データと観測データの比例 関係が知りたいときはどうすれば…? → オフセット項設置

架空データ・調査

- ・森林内に調査値を100箇所設置
- ・調査値iごとに面積A_iが異なる
- ・調査値iの「明るさ」x_iを測定
- ・調査値iにおける植物個体数y_iを 記録
- ・明るさx_iは植生密度にどう影響 しているかを調査

 $\frac{\mathbb{P}$ 平均個体数 λ_i A_i = 人口密度

$$\lambda_i = A_i \times$$
人口密度 = $A_i \exp(\beta_1 + \beta_2 x_1)$
 $\lambda_i = \exp(\beta_1 + \beta_2 x_1 + \log A_i)$
線形予測子: $z_i = \beta_1 + \beta_2 x_1 + \log A_i$

- > glm(y~x, offset=log(A), family=poisson, data=d)
 - ・個体数平均は調査値の面積に比例
 - ・明るさxiの影響を推定可能

正規分布とその尤度

(6章前半) GLMの二項分布 への応用 GLMを応用する 際の有効な手法; オフセット項の指定 GLMの他の確率分布への応用

正規分布

正規分布を扱う際にも最尤推定を行うことができる①

正規分布のおさらい

- ・連続値のデータを扱う
- ・範囲は-∞ ~ +∞
- ・パラメーターは二つ 平均値 μ 標準偏差 σ

確率密度関数

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y-\mu)^2}{2\sigma^2}\}$$

pnorm (x, μ, σ) で求められるのは青い面積

正規分布を扱う際にも最尤推定を行うことができる②

 μ -3 σ μ -2 σ μ - σ

 $\mu + \sigma \mu + 2\sigma \mu + 3\sigma$

尤度関数は

$$L(\mu, \sigma) = \prod_{i} p(yi|\mu, \sigma) \Delta y = \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\} \Delta y$$
 $logL(\mu, \sigma) = \begin{bmatrix} -0.5Nlog(2\pi\sigma^2) \\ \sigma \ lip \ li$

この σ の項目が最小なるとき $(=(y_i-μ)^2$ が最小のとき) logL(μ, σ)が最大

「最小二乗法」

ガンマ分布のGLM

(6章前半) GLMの二項分布 への応用 GLMを応用する 際の有効な手法; オフセット項の指定 GLMの他の確率分布への応用

正規分布

ガンマ分布とは何か

• 期間 θ に 1 回起こる現象がk回起こるまでにかかる時間の分布

右図 オレンジの線

- 2分に一度電話が鳴るコールセンター
- 出勤してから、電話が2度鳴るまでに かかる時間
- 1分で2度鳴る確率が約15%
- 2分で2度鳴る確率が約19%
- 4分で2度鳴る確率が8%

ガンマ分布の特徴

確率密度関数: $f(x) = x^{k-1} \frac{\exp(-\frac{\lambda}{\theta})}{(k-1)! \theta^k}$ 非負の連続確率分布 パラメーターは 2 つ(k, θ) 平均は $k \theta$, 分散は $k \theta^2$

