Gram-Schmidt 正交基的行列式表示法*

宁 博 (西北工业大学应用数学系 西安 710072)

摘 要 Gram-Schmidt 正交化方法是求正交基的一种算法. 基于行列式的性质和归纳法可以证明 ,其正交向量组的一般项可通过行列式表示出来.

关键词 Gram-Schmidt 正交基 行列式

中图分类号 0151.2

Gram-Schmidt 正交化方法是求正交基的一种算法 ,其通项 β_n 的表示方法优美且规律性强 ,便于在计算机上进行递推运算. 本文受类似 Gram-Schmidt 正交基 β_n 的行列式表示法.

首先 ,设 α_1 α_2 ,... α_n 是 R^n 上的一组基. 由 Gram-Schmidt 正交化方法 ,可得

$$\begin{split} \beta_1 &= \alpha_1 \ , \qquad \beta_2 &= \alpha_2 - \frac{\left(\ \alpha_1 \ \alpha_2 \ \right)}{\alpha_1 \ \alpha_1 \ \alpha_1 \ } \alpha_1 \ , \\ \beta_3 &= \alpha_3 - \frac{\left(\ \alpha_1 \ \alpha_1 \ \right) \alpha_2 \ \alpha_3 \ \right) - \left(\ \alpha_1 \ \alpha_2 \ \right) \alpha_2 \ \alpha_3 \ \right)}{\left(\ \alpha_1 \ \alpha_1 \ \right) \alpha_2 \ \alpha_2 \ \right) - \left(\ \alpha_1 \ \alpha_2 \ \right) \alpha_2 \ \alpha_3 \ \right)} \alpha_2 + \frac{\left(\ \alpha_1 \ \alpha_2 \ \right) \alpha_2 \ \alpha_3 \ \right) - \left(\ \alpha_2 \ \alpha_2 \ \right) \alpha_1 \ \alpha_3 \ \right)}{\left(\ \alpha_1 \ \alpha_1 \ \right) \alpha_2 \ \alpha_2 \ \right) - \left(\ \alpha_1 \ \alpha_2 \ \right) \alpha_1 \ \alpha_2 \ \right)} \alpha_1. \\ \\ \bot \dot{x} \beta_2 \, \beta_3 \ \ \vec{\theta} \ \vec{\theta$$

$$\beta_{2} = \frac{\begin{vmatrix} (\alpha_{1} \ \alpha_{1})(\alpha_{1} \ \alpha_{2}) \\ \frac{\alpha_{1}}{|(\alpha_{1} \ \alpha_{1})|} \end{vmatrix}}{\begin{vmatrix} (\alpha_{1} \ \alpha_{1}) \end{vmatrix}}, \qquad \beta_{3} = \frac{\begin{vmatrix} (\alpha_{1} \ \alpha_{1})(\alpha_{1} \ \alpha_{2})(\alpha_{1} \ \alpha_{2})(\alpha_{2} \ \alpha_{2})(\alpha_{2} \ \alpha_{3}) \\ \frac{\alpha_{1}}{|(\alpha_{1} \ \alpha_{1})(\alpha_{1} \ \alpha_{2})|} \end{vmatrix}}{\begin{vmatrix} (\alpha_{1} \ \alpha_{1})(\alpha_{1} \ \alpha_{2}) \\ (\alpha_{2} \ \alpha_{1})(\alpha_{2} \ \alpha_{2}) \end{vmatrix}}.$$

猜想 对于 R^n 中给定的一组基 α_1 α_2 r... α_n 则由 Gram-Schmidt 正交化所得到的正交基 β_1 , β_2 r... β_n ,当 $2 \le m \le n$ 时 β_m 的一般形式可以表示如下:

$$\beta_{m} = \frac{\begin{vmatrix} (\alpha_{1} & \alpha_{1}) & (\alpha_{1} & \alpha_{2}) & (\alpha_{1} & \alpha_{3}) & \dots & (\alpha_{1} & \alpha_{m}) \\ (\alpha_{2} & \alpha_{1}) & (\alpha_{2} & \alpha_{2}) & (\alpha_{2} & \alpha_{3}) & \dots & (\alpha_{2} & \alpha_{m}) \end{vmatrix}}{\begin{vmatrix} (\alpha_{m-1} & \alpha_{1}) & (\alpha_{m-1} & \alpha_{2}) & (\alpha_{m-1} & \alpha_{3}) & \dots & (\alpha_{m-1} & \alpha_{m}) \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \dots & \alpha_{m} \end{vmatrix}} = \frac{\begin{vmatrix} (\alpha_{1} & \alpha_{1}) & (\alpha_{1} & \alpha_{2}) & \dots & (\alpha_{1} & \alpha_{m-1}) \\ (\alpha_{2} & \alpha_{1}) & (\alpha_{2} & \alpha_{2}) & \dots & (\alpha_{2} & \alpha_{m-1}) \\ (\alpha_{m-1} & \alpha_{1}) & (\alpha_{m-1} & \alpha_{1}) & \dots & (\alpha_{m-1} & \alpha_{m-1}) \end{vmatrix}}.$$

证明 用归纳法证明. 当 m=2 时,

$$(\beta_1 \ \beta_2) = (\alpha_1 \ \alpha_2 - \frac{(\alpha_1 \ \alpha_2)}{(\alpha_1 \ \alpha_1)}\alpha_1) = (\alpha_1 \ \alpha_2) - (\alpha_1 \ \alpha_1) \cdot \frac{(\alpha_1 \ \alpha_2)}{(\alpha_1 \ \alpha_1)} = 0,$$

即 β_1 和 β_2 正交. 当 $m=k(2\leqslant k\leqslant n-1)$ 时假设 β_1 β_2 ,... β_k 两两正交现证 β_{k+1} 和 β_1 β_2 ,... β_k 均正

^{*} 收稿百節数据_11 - 14.

交.

对任一 β ($1\leqslant j\leqslant k$),由猜想表达式, $\beta_j=A_{j,1}\alpha_1+A_{j,2}\alpha_2+\ldots+A_{j,j}\alpha_j$. 其中当j=1 时, $A_{1,1}=1$. 当 $2\leqslant j\leqslant k$ 时,

$$A_{j,i} = (-1)^{j+1} = \begin{pmatrix} \alpha_1 & \alpha_1 \end{pmatrix} (\alpha_1 & \alpha_2) & \dots & (\alpha_1 & \alpha_{i-1}) & (\alpha_1 & \alpha_{i+1}) & \dots & (\alpha_1 & \alpha_j) \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & &$$

记分子各行对应的 k+1 维向量是 γ_1 γ_2 r... γ_k γ_{k+1} . 则 $\gamma_{k+1} = \sum\limits_{s=1}^{t} A_{j,s} \gamma_s$. 即 γ_{k+1} 可以用 γ_1 γ_2 r... γ_j 线性表示. 由行列式性质 即知(β_{k+1} β_j) = 0 (j=1 2 r... k). 故得到一组正交向量 β_1 β_2 r... β_{k+1} . 由归纳法 当 k=n-1 时 得 β_1 β_2 r... β_n 是一组正交向量. 又正交向量必线性无关,且 R^n 中任 R^n 个线性无关的向量是一组基. 故 β_1 β_2 r... β_n 是 R^n 中一组正交基. 证毕.

至此,上文给出 Gram-Schmidt 正交基的行列式表示. 它是类似于 Gramer 法则的优美的表示形式. 但是 必须指出:从计算方法角度考虑仍没有任何实质性的改进.

参考文献

- [1]丘维声. 高等代数 M]. 北京:高等教育出版社,1996.
- [2] 张肇庆数据数与几何基础[M] 北京 高等教育出版社 2001.