Программа предназначена для создания модели (определение параметров моделей приборов, входящих в МС7) прибора из данных, полученных экспериментальным путем или же справочных данных. Данных обрабатываются численными методами и оптимизируются для получения наиболее точного задания параметров.

- Как правило необходимо ввести от двух до пяти значений в таблицу данных. Если такого количества данных нет, то можно использовать единственное значение, взятое из справочников.
- Отсутствие данных предполагает использование в параметрах значение по умолчанию, назначенные для комнатной температуры. После ввода Данных, использование опция Initialize подменю Run для первой оценки параметров, после этого, для оптимизации используют опцию Optimize подменю Run.

ОКНО ПРОГРАММЫ

- Основные компоненты окна MODEL следующие:
- **Текстовые поля**: имеются четыре поля текстовые поля: 'T1', 'T2', 'T3', и 'T4'.
- 'T1' и 'T3' импортируются в библиотеки модели МС7. Поле 'T1' определяет название компонента и используется в библиотеке. Другие текстовые поля служат только как дополнительная документация.
- Числовые поля данных: имеют от одного до трех полей данных, в зависимости от Типа устройства и графиков. ИСХОДНЫХ поле данных может быть введено от одной до пятидесяти позиций. Данные обычно получаются по ВАХ прибора. Если ВАХ нет, то быть может использована пара значений, единственная найденная в справочниках. Если же и в справочниках нет данных, то параметры модели задаются по умолчанию.

Удалить данные из таблицы можно за счет нажатия горячих клавиш СТRL/D, или через пункт меню Edit – Delete Data, предварительно выбрав строчку данных

ОКНО ПРОГРАММЫ

- В полях **Model Parameters** расположены значения модельных параметров. Они могут быть исправлены пользователем по экспертным значениям.
- Поля Условий эксперимента **Measurement Condition**: здесь приводят значение условия проведения эксперимента в процессе получения исходных данных.

Начальные, по умолчанию параметры задаются в окне Model Default Editor

Начало работы с программой. После выбора пункта New... в окне New File Name производится выбор типа прибора для ввода данных с целью получения параметров модели.

В этом же окне задаётся и путь до файла с расширением MDL – файла программы MODEL.

	Part 1	DIODE
Τ1	D234	
Т2	Высокочастотный диод	
Т3	Лабораторный практикум РЛ	
Τ4	Расчет параметров модели диода	

Описание полей первого экрана расчёта параметров модели биполярного транзистора:

Т1 – название прибора, только латинские буквы,

T2, T3, T4 – поля произвольных комментарий, можно использовать и кириллицу.

Числовая характеристика процесса восстановления равновесной концентрации определяется значением постоянной времени (обозначается как ТТ) для диода (среднее время жизни носителей). Это время можно определить следующими способами:

Постоянная времени для диода при сплавной технологии может быть определено как

```
TT=4 tвос(1+ln(lпр/lобр) -- [ 4 Trr*(1+ln(lrr/lf)].
```

где — tвос время восстановления обратного сопротивления, Inp - значение прямого тока при котором было измерено значение времени восстановления обратного сопротивления (если данный параметр не указан в ТУ на диод, то вместо вводим значение постоянного прямого тока), Ioбр - постоянный обратный ток.

При диффузионной технологии можно положить TT = 1.6 tвос.

При известной максимальной частоте выпрямления f тах можно оценить время постоянную времени как $TT = [1/(2*\pi \text{ f max})]$

После расчёта параметров модели можно сохранить данные в форматах:

В формате SPICE (файл с расширением LIB) и формате упакованного файла для MC7 (расширение LBR).

Соответственно пункты меню:

Create SPICE File

Create Model Library

New...

Содержимое файла в формате библиотеки LBR можно просмотреть непосредственно в программе MC7.

+ UJ=700M M=500.257M EG=1.11 RL=7.8125MEG)

Содержимое файла в формате библиотеки LBR можно просмотреть непосредственно в программе MC7.

Примечание: программа предоставляет возможность изучить влияние вариации отдельных параметров на вид различных характеристик через меню Step Model Parameters

Меню Step Model Parameters

После нажатия клавиши ОК программа будет готова к расчёту исходного графика с заданными пределами изменения параметра модели.

Изменение параметра модели и перестроение графика произойдёт сразу после нажатия любой клавиши. Одновременно в окне Model Parameters будет указано значение этого параметра для перестроенного графика.

2e-009

После создания модели диода в существующую библиотеку можно подключить новый прибор. Для этого в меню Edit необходимо выбрать пункт меню Add Part и указать какой прибор будет добавлен:

Биполярный транзистор. NPN и PNP тип, соответственно

Полевой транзистор с p-n переходом. Транзистор с n-каналом и p-каналом.

NMOS

PMOS

МОП транзистор пканальный и рканальный соответственно с индуцированным каналом.

МОП транзистор п-канальный и рканальный соответственно со встроенным каналом

Полевой транзистор с p-n переходом. Транзистор с n-каналом и p-каналом.

Полевой транзистор с p-n переходом. Транзистор с n-каналом и p-каналом.

МОП транзистор n-канальный и p-канальный соответственно со встроенным каналом

МОП транзистор n-канальный и p-канальный соответственно со встроенным каналом

БИПОЛЯРНЫЙ ТРАНЗИСТОР

Схема стенда для измерения ВАХ биполярного транзистора

Схема эксперимента по получени выходной и входной ВАХ биполярного транзистора.

Биполярный транзистор. NPN и PNP тип, соответственно. Схема реального эксперимента

Биполярный транзистор. NPN и PNP тип, соответственно. Схема реального эксперимента

БИПОЛЯРНЫЙ ТРАНЗИСТОР Определение параметров модели

Начальный экран работы с программой:

БИПОЛЯРНЫЙ ТРАНЗИСТОР Определение параметров модели

«Усечённый» начальный экран работы с программой (расчёт только статических параметров):

БИПОЛЯРНЫЙ ТРАНЗИСТОР Определение параметров модели

«Усечённый» начальный экран работы с программой (расчёт только статических параметров модели):

БИПОЛЯРНЫЙ ТРАНЗИСТОР Расчёт в программе **MODEL** Экран 1

БИПОЛЯРНЫЙ ТРАНЗИСТОР

	Part 1 NPN
T1	q315LLL
T2	Расчет параметров модели транзистора
Т3	Proba
Τ4	Лабораторный практикум

Описание полей первого экрана расчёта параметров модели биполярного транзистора: **Т1** – Название прибора, только латинские буквы, **Т2, Т3, Т4** – поля произвольных комментарий,

 В таблицу заносят данные по току коллектора и напряжения база эмиттер в режиме насыщения. В явном виде эти данные в справочниках не приводятся. Но их можно получить используя входные и выходные ВАХ.

можно использовать и кириллицу.

- После этого производят инициализацию начальных условий, нажатием клавиш CTRL-I, затем нажатием клавиш CTRL-T производят оптимизацию параметров на основе введённых данных.
- ПРИМЕЧАНИЕ: параметры EG ширина запрещённой зоны определяется материалом прибора; XTI температурный коэффициент IS не рассчитываются, а остаются данными по умолчанию

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на первом экране, получение выходной ВАХ

ИЗМЕРЕНИЕ ВЫХОДНОЙ ВАХ

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на первом экране, получение входной ВАХ

ВХОДНАЯ ВАХ

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на первом экране

Определение тока коллектора насыщения и напряжения на коллекторе в режиме насыщения. Ток равен 67.873 мА, а напряжение 0.566 В. Реальный эксперимент.

БИПОЛЯРНЫЙ ТРАНЗИСТОР

К расчёту на первом экране, последовательность

экспериментов

Определение тока коллектора насыщения и напряжения на коллекторе в режиме насыщения — перегиб характеристики при переходе от режима активного к режиму насыщения. Коллекторный ток из первого эксперимента заносится в таблицу, а напряжение Ube - из данных второго эксперимента.

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на первом экране

Vbe	
0.539293	
0.578794	
0.624532	
0.659875	
0.73264	
0.83659	
0.998753	
1.16299	
1.30852	
-	
	0.539293 0.578794 0.624532 0.659875 0.73264 0.83659 0.998753 1.16299

Заполнение таблицы данных для тока коллектора насыщения и соответствующему ему напряжению база эмиттер.

По данным измерения входной ВАХ и выходной ВАХ заполняется таблица в верхнем правом углу экрана.

После этого производят инициализацию начальных условий, нажатием клавиш **CTRL- I**, затем нажатием клавиш **CTRL-T** производят оптимизацию параметров на основе введённых данных.

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на втором экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на втором экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на третьем экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на третьем экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на четвёртом экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на пятом экране

	Part 1 NPN			Vcb	Cob
T1	KT315F]			
T2	ПРАКТИКУМ ЭЛЕКТРОННЫЕ ПРИБОРЫ ЧАСТЬ 2				
Т3	Высокочастотный транзистор				
T4	ПРАКТИКУМ ЭЛЕКТРОННЫЕ ПРИБОРЫ ЧАСТЬ 2]			
	Cob vs. Vcb	Error=0%			
	10p				
	Вольт фарадная хара	ктеристика перехода			
	эмиттер – база. В спра	авочнике может быть			
	приведено только одн				
	коллекторного перех				
	напряжения (Vcb, Cob).	. Тогда MJC задаётся			
	конструкцией транзис	стора. а VJO –	-Model Para	ameters ——	
	материалом (германий		CJC	5e-0	12
	Marchianom (repinalium	VISTO RECIMITION).	MJC	0.5	
			VJC	0.75	
			FC	0.5	
	Поличения	2222			
	Примечание: при		-Measurem	ent Condition:	c ————
	смещения берётся по і	модулю.	- Ivicusuleiii	Sin Containon:	-
	1000f				
	100m 1	000m	10		

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на шестом экране

F	Part 1	NPN				lc	TS	_
T1 [KT315	F						1
T2 [ПРАК	ТИКУМ ЭЛЕКТРОННЫЕ ПРИБОРЫ ЧАСТЬ 2						
T3 [Высон	очастотный транзистор						
T4 [ПРАК	ТИКУМ ЭЛЕКТРОННЫЕ ПРИБОРЫ ЧАСТЬ 2						
	_	TS vs. Ic	Error=0%					
	2n	функция от тока колл	рассасывания как ектора, при заданном пектора к току базы		-Model Parame	eters—	08	
		Параметр может	быть оценён из					-
		технологических	характеристик					
		транзистора или же из	з эксперимента.					
			•					
					-Measurement	Condition:	S	
	1000p				lc/lb	10		
		1000u	10m	_ 100m				

БИПОЛЯРНЫЙ ТРАНЗИСТОР К расчёту на седьмом экране

БИПОЛЯРНЫЙ ТРАНЗИСТОР Подготовка к выводу данных в файл *.lib

Сохранение данных расчёта в файле формата PSPICE – текстовом файле с расширением LIB

БИПОЛЯРНЫЙ ТРАНЗИСТОР Подготовка к выводу данных в файл *.lbr

Сохранение данных расчёта в файле формата MC – библиотечном файле с расширением LBR

ФАЙЛ ФОРМАТА PSPCE *.LIB

ФАЙЛ ФОРМАТА *.LBR

Файл такого формата можно открыть только в программе МС7:

ФАЙЛ ФОРМАТА *.LBR

Файл формата *.lbr открытый в программе Microcap 9 demo:

