HOMEWORK SET #5

EE 510: Linear Algebra for Engineering Assigned: 27 September 2024

Due: 5 October 2024

Directions: Please show all work and box answers when appropriate.

1. Introduction to Linear Algebra by Gilbert Strang (5th Edition):

a) Problem Set 8.1: #10, #12, #14

2. Let $F:V\to U$ and $G:U\to V$ be linear. Prove or disprove that if F and G are nonsingular, then $G\circ F$ is nonsingular.

3. Suppose $F: V \to U$ is linear. Show that the image of any subspace of V is a subspace of U.

4. Let $V = \mathbf{P}_{10}(t)$ be the vector space of polynomials of degree ≤ 10 . Consider the linear map $\mathbf{D}^4 : V \to V$, where \mathbf{D}^4 is the fourth-order derivative. Find a basis for the image of \mathbf{D}^4 and determine whether \mathbf{D}^4 is nonsingular or not.

5. Suppose that U, V, and W are vector spaces and $T: U \to V$ and $S: V \to W$ are linear transformations. Prove or disprove that $S \circ T$ is a linear transformation.

6. Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ and $G: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by F(x, y, z) = (y, x + z) and G(x, y, z) = (2z, x - y):

- a) Find a basis for 3F + 2G.
- b) Find the kernel of 3F + 2G.