Classical Lambda Calculus in Modern Dress

April 18, 2023

```
expr = 1 | -<expr> | <expr> + <expr>
```

```
\begin{array}{lll} \text{expr} &= 1 & | & -\langle \text{expr}\rangle & | & \langle \text{expr}\rangle & + & \langle \text{expr}\rangle \\ \text{For } t \in \text{expr}, & [\![t]\!] \in \mathbb{Z}. \end{array}
```

```
expr = 1 | x | -<expr> | <expr> + <expr>
```

```
\begin{array}{lll} \text{expr} = 1 & | & x & | & -\langle \text{expr}\rangle & | & \langle \text{expr}\rangle & + & \langle \text{expr}\rangle \\ \text{For } t \in \text{expr}, & [\![t]\!] \in \mathbb{Z} \oplus x \cdot \mathbb{Z}. \end{array}
```

```
expr = 1 | x * <expr> | -<expr> | <expr> + <expr>
```

```
\begin{array}{lll} \operatorname{expr} &= 1 & | & x & < \operatorname{expr} > & | & -< \operatorname{expr} > & | & < \operatorname{expr} > & + & < \operatorname{expr} > \\ \operatorname{For} & t \in \operatorname{expr}, & [\![t]\!] \in \mathbb{Z}[x]: & \operatorname{polynomials} & \operatorname{with} & \operatorname{coefficients} & \operatorname{in} & \mathbb{Z}. \end{array}
```

```
expr = 1 | x * <expr> | -<expr> | <expr> + <expr> For t \in \text{expr}, \llbracket t \rrbracket \in \mathbb{Z}[x]: polynomials with coefficients in \mathbb{Z}. Or \llbracket t \rrbracket \in \mathbb{Z} \to \mathbb{Z}. Or maybe \llbracket t \rrbracket \in \mathbb{R} \to \mathbb{R}.
```

```
expr = Var(<nat>) | App(<expr>, <expr>) | Abs(Var(<nat>), <expr>)
```

```
expr = Var(<nat>) | App(<expr>, <expr>) | Abs(Var(<nat>), <expr>) For t \in \exp(t, [t]) \in \mathbb{R}.
```

Algebraic Theory

Definition

An algebraic theory consists of

- a functor $\mathcal{T}: F \to \operatorname{SET}$,
- elements (projections) $x_{n,i} \in \mathcal{T}(n)$ for all $1 \leq i \leq n$,
- a composition morphism : $\mathcal{T}(m) \times \mathcal{T}(n)^m \to \mathcal{T}(n)$ for all m, n.

The composition must be associative, unital, compatible with projections and dinatural in m.

Abstract Clone

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

Take
$$C(n) = \{1, 2, ..., n\}, x_{n,i} = i \text{ and } i \bullet (f_1, ..., f_n) = f_i.$$

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

Take C(n) the free monoid on n generators. The $x_{n,i}$ are the generators and $f \bullet (g_1, \ldots, g_m)$ applies the mapping $C(m) \to C(n)$ on f, given by sending $x_{m,i}$ to g_i .

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all $m, n, m \to C(n)$
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

Let X be an object in a category with finite products. The endomorphism clone has $C(n) = (X^n \to X)$. Then $x_{n,i}$ is the ith projection morphism. The universal property of the product gives \bullet .

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

The λ -calculus Λ , in which $\Lambda(n)$ consists of the terms with n free variables, $x_{n,i} = \text{Var}(i)$ (with De Bruijn indices) and \bullet is substitution.

Abstract Clone Algebra

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Abstract Clone Algebra - Example

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

For the clone $C(n) = \{1, ..., n\}$, any set A can be an algebra, setting $\alpha_n(i, a) = a_i$.

Abstract Clone Algebra - Example

Definition

An abstract clone is

- a function $C: \mathbb{N} \to \operatorname{SET}$,
- a composition morphism : $C(m) \times C(n)^m \to C(n)$ for all m, n,
- elements (projections) $x_{n,i} \in C(n)$ for all $1 \le i \le n$.

The composition must satisfy $x_{n,i} \bullet (f_1, \ldots, f_n) = f_i$ and $f \bullet (\pi_{1,n}, \ldots, \pi_{n,n}) = f$ and

$$(f \bullet (g_1,\ldots,g_m)) \bullet (h_1,\ldots,h_n) = f \bullet (g_1 \bullet (h_1,\ldots,h_n),\ldots,g_m \bullet (h_1,\ldots,h_n)).$$

Example

For the clone with C(n) the free monoid on n generators, the algebras are exactly the monoids. Setting $a \star b := \alpha_2(x_1 \star x_2, (a, b))$.

Example

An algebra A for the lambda calculus clone Λ gets a lot of structure. For each term $t \in \Lambda(n)$ and $a \in A^n$, we have an interpretation $t(a) \in A$.

Example

An algebra A for the lambda calculus clone Λ gets a lot of structure. For each term $t \in \Lambda(n)$ and $a \in A^n$, we have an interpretation $t(a) \in A$. A has function application $ab := \alpha_2(x_1x_2, (a, b))$.

Example

An algebra A for the lambda calculus clone Λ gets a lot of structure. For each term $t \in \Lambda(n)$ and $a \in A^n$, we have an interpretation $t(a) \in A$.

A has function application $ab := \alpha_2(x_1x_2, (a, b))$.

And lambda abstraction $\lambda x, ax := \alpha_1((\lambda x, x_1x), (a)).$

Example

An algebra A for the lambda calculus clone Λ gets a lot of structure. For each term $t \in \Lambda(n)$ and $a \in A^n$, we have an interpretation $t(a) \in A$.

A has function application $ab := \alpha_2(x_1x_2, (a, b))$.

And lambda abstraction λx , $ax := \alpha_1((\lambda x, x_1x), (a))$.

It can inherit beta and eta reduction:

$$(\lambda x, ax)(b) = \alpha_2(x_1x_2, (\alpha_1((\lambda x, x_1x), (a)), b))$$

$$= \alpha_2(x_1x_2, (\alpha_2((\lambda x, x_1x), (a, b)), \alpha_2(x_2, (a, b))))$$

$$= \alpha_2((x_1x_2) \bullet ((\lambda x, x_1x), x_2), (a, b))$$

$$= \alpha_2((\lambda x, x_1x)(x_2), (a, b))$$

$$= \alpha_2(x_1x_2, (a, b))$$

$$= ab.$$

λ -clone

Definition

A λ -clone consists of

- an abstract clone \mathcal{L} ,
- functions $\rho_n:\mathcal{L}(n)\to\mathcal{L}(n+1)$ and $\lambda_n:\mathcal{L}(n+1)\to\mathcal{L}(n)$.

Such that

$$\rho(f \bullet g) = \rho(f) \bullet (g_1, \ldots, g_m, x_{n+1, n+1})$$

and

$$\lambda(f) \bullet g = \lambda(f \bullet (g_1, \ldots, g_m, x_{n+1, n+1})).$$

Hyland also requires (λ, ρ) to be a section-retraction pair.

Given a λ -clone \mathcal{L} , we can interpret a term t of the lambda calculus (that has a context Γ of length n) as an element $[\![t]\!] \in \mathcal{L}(n)$.

λ -clone - Example

Definition

A λ -clone consists of

- an abstract clone \mathcal{L} ,
- functions $\rho_n:\mathcal{L}(n)\to\mathcal{L}(n+1)$ and $\lambda_n:\mathcal{L}(n+1)\to\mathcal{L}(n)$.

Such that

$$\rho(f \bullet g) = \rho(f) \bullet (g_1, \ldots, g_m, x_{n+1,n+1})$$

and

$$\lambda(f) \bullet g = \lambda(f \bullet (g_1, \ldots, g_m, x_{n+1,n+1})).$$

Hyland also requires (λ, ρ) to be a section-retraction pair.

Example

If we have an object X in a category with products, and a retraction $X \to (X \to X)$, the endomorphism clone of X is a λ -clone.

λ -clone - Example

Definition

A λ -clone consists of

- an abstract clone \mathcal{L} ,
- functions $\rho_n:\mathcal{L}(n)\to\mathcal{L}(n+1)$ and $\lambda_n:\mathcal{L}(n+1)\to\mathcal{L}(n)$.

Such that

$$\rho(f \bullet g) = \rho(f) \bullet (g_1, \ldots, g_m, x_{n+1, n+1})$$

and

$$\lambda(f) \bullet g = \lambda(f \bullet (g_1, \ldots, g_m, x_{n+1,n+1})).$$

Hyland also requires (λ, ρ) to be a section-retraction pair.

Example

The lambda calculus clone Λ is a λ -clone, with $\lambda_n f = \lambda x_{n+1}$, f and $\rho_n(f) = f x_{n+1}$. It is the initial λ -clone, so any algebra for a λ -clone is a " Λ -algebra".

λ -clone - Properties

Definition

A λ -clone consists of

- an abstract clone \mathcal{L} ,
- functions $\rho_n:\mathcal{L}(n)\to\mathcal{L}(n+1)$ and $\lambda_n:\mathcal{L}(n+1)\to\mathcal{L}(n)$.

Such that

$$\rho(f \bullet g) = \rho(f) \bullet (g_1, \ldots, g_m, x_{n+1, n+1})$$

and

$$\lambda(f) \bullet g = \lambda(f \bullet (g_1, \ldots, g_m, x_{n+1, n+1})).$$

Hyland also requires (λ, ρ) to be a section-retraction pair.

Any algebra $(A, (\alpha_i)_i)$ for a λ -theory can be interpreted as a Λ -algebra.

work in progress

Preliminaries to the main theorem

For a λ -theory \mathcal{L} , $\mathcal{L}(0)$ is a \mathcal{L} -algebra and therefore a Λ -algebra.

Preliminaries to the main theorem

For a λ -theory \mathcal{L} , $\mathcal{L}(0)$ is a \mathcal{L} -algebra and therefore a Λ -algebra.

Given a Λ -algebra A. Take $\Lambda_A(n) = A + \Lambda(n)$, as a coproduct of Λ -algebras, defined as a coend of sets

$$A + B = \int^{m,n} Alg_{\Lambda}(\Lambda(m), A) \times Alg_{\Lambda}(\Lambda(n), B) \times \Lambda(m+n)$$

Preliminaries to the main theorem

For a λ -theory \mathcal{L} , $\mathcal{L}(0)$ is a \mathcal{L} -algebra and therefore a Λ -algebra.

Given a Λ -algebra A. Take $\Lambda_A(n) = A + \Lambda(n)$, as a coproduct of Λ -algebras, defined as a coend of sets

$$A + B = \int_{-\infty}^{m,n} Alg_{\Lambda}(\Lambda(m), A) \times Alg_{\Lambda}(\Lambda(n), B) \times \Lambda(m+n)$$

Lemma

 Λ_A is a λ -theory.

Proof.

We can identify Λ_A with \mathcal{U}_A .

We have a retraction $U_A \to U_A^{U_A}$. Composition with this gives a retraction $\mathcal{U}_A(n) \to \mathcal{U}_A(n+1)$.

$$\mathcal{U}_{A}$$

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with $\mathbf{1} := \lambda xy, xy = \alpha_0((\lambda xy, xy), ())$ and $a \circ b := \alpha_2((\lambda x, x_1(x_2x)), (a, b))$.

$$\mathcal{U}_{A}$$

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with $\mathbf{1} := \lambda xy, xy = \alpha_0((\lambda xy, xy), ())$ and $a \circ b := \alpha_2((\lambda x, x_1(x_2x)), (a, b))$.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal objec t' $U_A = M_A$ with the obvious right action of M_A .

$$\mathcal{U}_{A}$$

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with $\mathbf{1} := \lambda xy, xy = \alpha_0((\lambda xy, xy), ())$ and $a \circ b := \alpha_2((\lambda x, x_1(x_2x)), (a, b))$.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal objec t' $U_A = M_A$ with the obvious right action of M_A .

Lemma

We have a retraction $U_A \rightarrow (U_A \rightarrow U_A)$.

Proof.

We can identify $U_A \to U_A$ with $\{a \in A \mid \mathbf{1}_2 a = a\}$ with $\mathbf{1}_2 := \lambda x y_1 y_2, (x y_1) y_2$. Composition on the left with $\mathbf{1}$ gives the retraction.

$$\mathcal{U}_{A}$$

Definition

We define a monoid $M_A = (\{a \in A \mid \mathbf{1}a = a\}, \circ)$ with $\mathbf{1} := \lambda xy, xy = \alpha_0((\lambda xy, xy), ())$ and $a \circ b := \alpha_2((\lambda x, x_1(x_2x)), (a, b))$.

Definition

We define P(A) to be the category of presheaves on the category M_A . This has 'universal objec t' $U_A = M_A$ with the obvious right action of M_A .

Lemma

We have a retraction $U_A \rightarrow (U_A \rightarrow U_A)$.

Proof.

We can identify $U_A \to U_A$ with $\{a \in A \mid \mathbf{1}_2 a = a\}$ with $\mathbf{1}_2 := \lambda x y_1 y_2, (x y_1) y_2$.

Composition on the left with 1 gives the retraction.

Definition

We take U_A to be the endomorphism theory of the reflexive universal $U_A \in P(A)$.

The Main Theorem of the Lambda Calculus

Theorem

There is an adjoint equivalence $\mathcal{L} \mapsto \mathcal{L}(0)$ and $A \mapsto \Lambda_A$ between λ -theories and Λ -algebras.

In particular, each λ -theory $\mathcal L$ is isomorphic to the theory of extensions of its initial algebra $\mathcal L(0)$.

Conclusion

In this framework, we can study the denotations/interpretations/models for the lambda calculus by studying the λ -theories.