Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

14 mars 2014

Plan

1 Approche Expérimentale des Probabilités

P-valeur

L'Expérimentateur :

• Réaliser m expériences

L'Expérimentateur :

Réaliser m expériences

3 / 8

L'Expérimentateur :

• Réaliser m expériences

L'Expérimentateur :

• Réaliser m expériences

- 1 Réaliser m expériences
- Répartition des μ• (y•ji) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

- 1 Réaliser m expériences 2 Répartition des \widehat{u} (ve-
- Répartition des \(\hat{\mu}^\cdot \big(\mathbf{y}^\big) \) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.)

- Réaliser *m* expériences
- Répartition des \(\hat{\mu}^\circ \big(\mathbf{y}^\big) \) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.)

- 1 Réaliser m expériences
- Répartition des μ̂ (y_[j]) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.)

L'Expérimentateur :

- Réaliser m expériences
- Répartition des μ̂ (y_[j]) représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.)

Le Matheux:

3 Je le savais à **l'avance** pour $m \to +\infty$

L'Expérimentateur :

- Réaliser m expériences
- 2 Répartition des $\widehat{\mu^{\bullet}}\left(\mathbf{y}_{[j]}^{\bullet}\right)$ représentées par m briques de surface 1/m et de largeur 1/n empilées l'une après l'autre en les centrant en abscisse en leur valeur.

Le Matheux:

- 3 Je le savais à l'avance pour $m \to +\infty$

Réalisation d'une future estimation par l'Expérimentateur

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{oldsymbol{[j]}}^{ullet} ight)$
:	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par l'Expérimentateur

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	:

Réalisation d'une future estimation par l'Expérimentateur

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{oldsymbol{[j]}}^{ullet} ight)$
÷	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}}\right)$
÷	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	i
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
:	:

Réalisation d'une future estimation

 \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=0.15$ (juste pas le marché)

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}(\mathbf{y}_{[i]})$ parmi les m)

- ightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{ullet}=0.15$ (juste pas le marché)
- \rightarrow II prend alors conscience que ce qui peut lui arriver **le jour J**, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}$ ($\mathbf{y}_{[j]}$) parmi les m)
 - ② Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^{\bullet}}$ (Y) choisie parmi une infinité.

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=0.15$ (juste pas le marché)
- \rightarrow II prend alors conscience que ce qui peut lui arriver **le jour J**, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un $\widehat{\mu}^{\bullet}$ ($y_{[j]}$) parmi les m)
 - **2** Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^{\bullet}}(\mathbf{Y})$ choisie parmi une infinité.
- \Rightarrow Il voit clairement la "courbe $\mathcal{N}(\mu^{\bullet}, \frac{\sigma_{\bullet}}{\sqrt{n}})$ " comme un empilement d'une infinité de briques ("devenues des points") associées à une infinité de réalisations possibles de $\widehat{\mu^{\bullet}}(\mathbf{Y})$.

Produit A: Risque 1ère espèce

$$\begin{array}{l} \overline{\left(\widehat{p^{A}}\left(\mathbf{y_{[\cdot]}^{A}}\right)>16.9\%\right)}_{m} = \text{Prop. des } \left(\widehat{p^{A}}\left(\mathbf{y_{[\cdot]}^{A}}\right)\right)_{10000} \text{ supérieurs à } 16.9\%\\ = \frac{1}{m}\times\left(\text{Nbre des } \left(\widehat{p^{A}}\left(\mathbf{y_{[\cdot]}^{A}}\right)\right)_{m} \text{ supérieurs à } 16.9\%\right)\\ = \text{Surface des } \mathbf{briques} \text{ associées aux } \left(\widehat{p^{A}}\left(\mathbf{y_{[\cdot]}^{A}}\right)\right)_{m} \text{ supérieurs à } 16.9\% \end{array}$$

Produit A: Risque 1ère espèce

$$\begin{split} & P(\widehat{p^{A}}\left(\mathbf{Y^{A}}\right) > 16.9\%) = \overline{\left(\widehat{p^{A}}\left(\mathbf{y_{I \cdot I}^{A}}\right) > 16.9\%\right)_{\infty}} \\ &= \lim_{m \to \infty} \frac{1}{m} \times \left(\text{Nbre des } \left(\widehat{p^{A}}\left(\mathbf{y_{I \cdot I}^{A}}\right)\right)_{\infty} \text{ supérieurs à } 16.9\%\right) \\ &\simeq \text{Surface des points associés aux } \left(\widehat{p^{A}}\left(\mathbf{y_{I \cdot I}^{A}}\right)\right)_{\infty} \text{ supérieurs à } 16.9\% \end{split}$$

Produit A: Risque 1ère espèce

$$\begin{split} & P(\widehat{p^A}\left(\mathbf{Y^A}\right) > 16.9\%) \simeq \overline{\left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right) > 16.9\%\right)_m} \\ &= \frac{1}{m} \times \left(\text{Nbre des } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_m \text{ supérieurs à } 16.9\%\right) \\ &= \text{Surface des } \mathbf{briques} \text{ associées aux } \left(\widehat{p^A}\left(\mathbf{y_{[\cdot]}^A}\right)\right)_m \text{ supérieurs à } 16.9\% \end{split}$$

Plan

1 Approche Expérimentale des Probabilités

P-valeur

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos par semaine \Leftrightarrow $\mathbf{H_1}:\mu^D>$ 4 (en 2 semaines)

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos

par semaine \Leftrightarrow **H**₁ : $\mu^D >$ 4 (en 2 semaines)

Décision (au vu des n=50 données) : Accepter \mathbf{H}_1 si $\delta_{\mu^D,4}$ (\mathbf{y}^D) $> \delta^+_{lim,\alpha}$

Question : Conclure pour $\alpha = 5\%$?

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos

par semaine \Leftrightarrow **H**₁ : $\mu^D >$ 4 (en 2 semaines)

Décision (au vu des n=50 données) : Accepter \mathbf{H}_1 si $\widehat{\delta_{\mu^D,4}}\left(\mathbf{y^D}\right) > \delta_{\lim,\alpha}^+$

Question : Conclure pour $\alpha = 10\%$?

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos

par semaine \Leftrightarrow **H**₁ : $\mu^D >$ 4 (en 2 semaines)

Décision (au vu des n=50 données) : Accepter $\mathbf{H_1}$ si $\delta_{\mu^D,4}$ ($\mathbf{y^D}$) $> \delta^+_{lim,\alpha}$

Question: Conclure pour $\alpha = 1\%$?

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos par semaine $\Leftrightarrow \mathbf{H_1}: \mu^D > 4$ (en 2 semaines)

Question: Quel est le plus petit α (i.e. risque maximal de décider à tort $\mathbf{H_1}$) à encourir pour accepter $\mathbf{H_1}$ (i.e. l'assertion d'intérêt) au vu des n=50 données?

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos par semaine \Leftrightarrow \mathbf{H}_1 : $\mu^D > 4$ (en 2 semaines)

Réponse : **p**—valeur= le plus petit risque maximal de décider à tort H_1 à encourir pour accepter H_1 (i.e. l'assertion d'intérêt).

Exemple diététicien (fin)

Assertion d'intérêt : Le régime permet une perte de poids de 2 kilos par semaine \Leftrightarrow \mathbf{H}_1 : $\mu^D > 4$ (en 2 semaines)

Décision (au vu des n = 50 données) : Accepter H_1 si $p - valeur < \alpha$ i.e. si le risque pour accepter H_1 est raisonnablement petit

