

AI/ML Transition Roadmap

This roadmap outlines a step-by-step progression for transitioning from a software testing/automation background into roles focused on building AI/ML models, agents, or training large language models. Each stage lists key topics to learn along with curated free resources. Citations correspond to footnotes in the text.

Stage	Key topics / concepts	Free resources (names)	Direct links
Mathematical foundations	Vectors & matrices; determinants & eigenvalues; calculus & probability	MIT Linear Algebra 1; MIT Probability & Statistics 2; Matrix Calculus for ML 3	https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/; https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/; https://ocw.mit.edu/courses/18-s096-matrix-calculus-for-machine-learning-and-beyond-january-iap-2023/
Programming fundamentals	Python basics & data structures; Pandas/NumPy; version control (Git)	Google's Python Class ⁴ ; Pandas & NumPy tutorials	https://developers.google.com/edu/ python; https://numpy.org/doc/; https://pandas.pydata.org/docs/
Machine Learning core	Data collection & cleaning; EDA & feature engineering; supervised & unsupervised ML; evaluation metrics	Google ML Crash Course ⁵ ; GeeksforGeeks ML roadmap ⁶ ⁷	https://developers.google.com/ machine-learning/crash-course; https://www.geeksforgeeks.org/ blogs/machine-learning-roadmap/
Deep Learning	Neural networks & backpropagation; CNNs & RNNs; Transformers & generative models	fast.ai Practical DL 8; PyTorch tutorial 9; MIT 6.S191 (deep learning & generative AI) 10; CS231n 11; Karpathy Zero to Hero 12; CS236 generative models	https://course.fast.ai/; https://docs.pytorch.org/tutorials/beginner/pytorch_with_examples.html; https://introtodeeplearning.com/; https://cs231n.stanford.edu/; https://karpathy.ai/zero-to-hero.html; https://deepgenerativemodels.github.io/

Stage	Key topics / concepts	Free resources (names)	Direct links
Specializations	Computer vision; NLP; reinforcement learning; generative modeling	CS231n vision 11; CS224n NLP 14; Spinning Up RL 15; HF Deep RL course 16; MIT 6.S191 generative modeling 17 18; CS236 generative models 19	https://cs231n.stanford.edu/; https://web.stanford.edu/class/cs224n/; https://spinningup.openai.com/en/latest/; https://huggingface.co/learn/deep-rl-course; https://introtodeeplearning.com/; https://deepgenerativemodels.github.io/
LLMs & agents	Tokenization & transformers; prompt engineering; retrieval-augmented generation; agent frameworks	Karpathy Zero to Hero (GPT) 12 20; LLM course (fundamentals, scientist, engineer) 21; MIT 6.S191 LLM lectures 22; Full Stack LLM Bootcamp 23; LangChain tutorials & academy 24; HF AI Agents course 25	https://karpathy.ai/zero-to-hero.html; https://github.com/mlabonne/llm- course; https:// introtodeeplearning.com/; https:// fullstackdeeplearning.com/llm- bootcamp/; https:// academy.langchain.com/; https:// huggingface.co/learn/agents-course
MLOps & deployment	Experiment tracking & pipelines; containerization & CI/CD; monitoring & data engineering	DataTalksClub MLOps Zoomcamp ²⁶ ²⁷ ; Full Stack Deep Learning ²⁸ ; Google ML Crash Course (production ML) ⁵	https://github.com/DataTalksClub/ mlops-zoomcamp; https:// fullstackdeeplearning.com/; https:// developers.google.com/machine- learning/crash-course
Advanced topics & research	Distributed training; model efficiency (LoRA, quantization); fairness & ethics; RLHF	MIT 6.S191 New Frontiers ²⁹ ; Spinning Up research guidance ¹⁵ ; LLM course scientist & engineer modules	https://introtodeeplearning.com/; https://spinningup.openai.com/en/ latest/; https://github.com/mlabonne/ llm-course

¹ Linear Algebra | Mathematics | MIT OpenCourseWare

https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/

² Introduction to Probability and Statistics | Mathematics | MIT OpenCourseWare https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/

Matrix Calculus for Machine Learning and Beyond | Mathematics | MIT OpenCourseWare https://ocw.mit.edu/courses/18-s096-matrix-calculus-for-machine-learning-and-beyond-january-iap-2023/

4 Google's Python Class | Python Education | Google for Developers

https://developers.google.com/edu/python

5 Machine Learning | Google for Developers

https://developers.google.com/machine-learning/crash-course

6 7 Machine Learning Roadmap - GeeksforGeeks

https://www.geeksforgeeks.org/blogs/machine-learning-roadmap/

8 Practical Deep Learning for Coders - Practical Deep Learning

https://course.fast.ai/

9 Learning PyTorch with Examples — PyTorch Tutorials 2.8.0+cu128 documentation

https://docs.pytorch.org/tutorials/beginner/pytorch_with_examples.html

10 17 18 22 29 MIT Deep Learning 6.S191

https://introtodeeplearning.com/

11 Stanford University CS231n: Deep Learning for Computer Vision

https://cs231n.stanford.edu/

12 20 Neural Networks: Zero To Hero

https://karpathy.ai/zero-to-hero.html

13 19 Stanford University CS236: Deep Generative Models

https://deepgenerativemodels.github.io/

14 Stanford CS 224N | Natural Language Processing with Deep Learning

https://web.stanford.edu/class/cs224n/

15 Introduction — Spinning Up documentation

https://spinningup.openai.com/en/latest/user/introduction.html

16 Welcome to the Deep Reinforcement Learning Course - Hugging Face Deep RL Course

https://huggingface.co/learn/deep-rl-course/unit0/introduction

²¹ raw.githubusercontent.com

https://raw.githubusercontent.com/mlabonne/llm-course/refs/heads/main/README.md

²³ LLM Bootcamp - The Full Stack

https://fullstackdeeplearning.com/llm-bootcamp/

24 LangChain Academy

https://academy.langchain.com/

25 Welcome to the AI Agents Course - Hugging Face Agents Course

https://huggingface.co/learn/agents-course/en/unit0/introduction

²⁶ IgitHub - DataTalksClub/mlops-zoomcamp: Free MLOps course from DataTalks.Club

https://github.com/DataTalksClub/mlops-zoomcamp

28 The Full Stack

https://fullstackdeeplearning.com/