ENGLISH ABSTRACT FOR JP6204569

```
1 / 1
       PLUSPAT - QUESTEL-ORBIT - image
Patent Number :
  JP6204569 A 19940722 [JP06204569]
Title :
  (A) STRUCTURE OF LIGHT-EMITTING DIODE
Patent Assignee :
  (A) CASIO COMPUTER CO LTD
Patent Assignee :
  (A) CASIO COMPUT CO LTD
Inventor(s):
  (A) USUI NORIHISA; KUMAGAI SHINGO; TASAKA HIDEO
Application Nbr :
 JP36007492 19921228 [1992JP-0360074]
Priority Details :
  JP36007492 19921228 [1992JP-0360074]
Intl Patent Class :
  (A) G09F-009/33 H01L-033/00
IPC Advanced All:
  H01L-033/00 [2006-01 A - I R M EP]
IPC Core All :
  H01L-033/00 [2006 C - I R M EP]
EPO ECLA Class :
 H01L-033/00B5
 H01L-033/00B6C2
FI-Terms :
  G09F9/33 A; H01L33/00 H; H01L33/00 N
F-Terms (File forming terms) :
  5F041 AA03; 5F041 AA04; 5F041 AA42; 5F041 AA47; 5F041 DA06; 5F041 DA07;
  5F041 DA12; 5F041 DA18; 5F041 DA26; 5F041 DA29; 5F041 DB03; 5F041 DC02;
  5F041 DC12; 5F041 DC23; 5F041 DC44; 5F041 DC56; 5F041 DC66; 5F041 EE23;
  5F041 FF11; 5C094 AA07; 5C094 BA23; 5C094 BA43; 5C094 DB01; 5C094 ED01;
  5C094 ED11; 5C094 ED13; 5C094 FA03; 5C094 HA03
Publication Stage :
  (A) Doc. Laid open to publ. Inspec.
Abstract :
  PURPOSE: To make illumination with a good amount of light available and
  to eliminate accessories such as a reflecting board by forming a
  reflecting section which reflects light from a light-emitting diode chip
  in one direction integrally with a mounting section by bending the
  mounting section at an angle.
  CONSTITUTION: An electrode of a LED chip 20 is connected to an inner
  lead 14 with bonding wire or without wire. With application of voltage,
  the LED chip emits light. The LED chip 20 is formed in package by
  sealing a di-bonding area and the inner lead 14 with transparent sealing
  resin 11. A mounting section 13 of a lead frame 15 and one side of the
  inner lead 14 are bent at right angles, to be raised towards the LED
  chip 20. The raised sections serve as a reflecting section 16 to reflect
  light from the LED chip 20 in one direction. Since the LED itself has a
  reflecting function, efficient illumination can be provided.
  COPYRIGHT: (C) 1994, JPO&Japio
```

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-204569

(43)公開日 平成6年(1994)7月22日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H01L	33/00	N	7376-4M		
		Н	7376-4M		
G 0 9 F	9/33	Α	7244-5G		

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号	特顯平4-360074	(71)出願人 000001443
		カシオ計算機株式会社
(22)出願日	平成4年(1992)12月28日	東京都新宿区西新宿2丁目6番1号
		(72)発明者 碓氷 則久
		東京都羽村市栄町3丁目2番1号 カシオ
		計算機株式会社羽村技術センター内
		(72)発明者 熊谷 眞吾
		東京都羽村市栄町3丁目2番1号 カシオ
		計算機株式会社羽村技術センター内
		(72)発明者 田坂 英夫
*		東京都羽村市栄町3丁目2番1号 カシオ
		計算機株式会社羽村技術センター内
		(74)代理人 弁理士 奈良 武
		I .

(54)【発明の名称】 発光ダイオードの構造

(57)【要約】

【目的】 出力を増大させないで出射光量を増大させ

【構成】 リードフレーム15のマウント部13にLE Dチップ20をダイボンディングし、アウターリード1 2から電圧を印加し、LEDチップ20を発光させる。 マウント部13を直角に折り曲げて反射部16を形成 し、反射部16から反射させて、光量を増大させる。

【特許請求の範囲】

【請求項1】 電圧印加により発光する発光ダイオード チップと、

この発光ダイオードチップがダイボンディングされるマウント部と、このマウント部に連設されて外部機器との電気的な接続が行われるリード部と、前記マウント部に角度を有して一体的に形成され発光ダイオードチップからの光を一定方向に反射する反射部とを有したリードフレームとを備えていることを特徴とする発光ダイオードの構造。

【請求項2】 電圧印加により発光する発光ダイオード チップと、

この発光ダイオードチップがダイボンブティングされるマウント部と、このマウント部に対し角度を有した状態で連設され外部機器との電気的な接続が行われると共に当該接続で前記マウント部を発光ダイオードチップからの光を一定方向に反射する反射面とするリード部とを有したリードフレームとを備えていることを特徴とする発光ダイオードの構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は発光ダイオードの構造に 関する。

[0002]

【従来の技術】発光ダイオード(以下、LEDと称する。)は表示装置として使用されており、また、文字板や表示パネルなどの表示部材を照明して夜間や暗所などでの目視読み取りを容易にするために、照明装置として機器ケース内に組み込まれて使用される。この場合、良好な明るさを得るためには、LEDを表示部材の下方に配置するのが好ましいが、このように配置した場合には電子機器が厚くなり、薄型化に限界を生じている。このため、LEDを表示部材の側方に配置し、LEDからの散乱光で表示部材の照明を行っている。

[0003]

【発明が解決しようとする課題】しかしながら、LEDを表示部材の側方に設けた場合には、LEDから発して表示部材に達する光の量が少ないため、十分な照明ができない問題があった。このためLEDからの光を表示部材に向けて反射する反射板を別途設けたり、LEDを多く設けたり、大出力のLEDを使用することがなされている。ところが、反射板を設ける場合には、そのためのスペースが必要となり、電子機器を小型化することが難しいと共に、部品点数が多くなって、電気機器の組み立てが面倒となる不都合が生じる。また、LEDの数を増加したり、大出力のLEDを使用する場合には、消費電力が大きくなると共に、発熱量の増加により電気機器に不都合を生じる。

【0004】本発明は上記事情を考慮してなされたものであり、それ自体に反射機能を備えることにより、良好

な光量での照明が可能で、しかも反射板等の付加部品を不要とし、電気機器の小型化と容易な組み立てを可能としたLEDの構造を提供することを目的とする。

[0005]

【課題を解決するための手段】上記目的を達成する本発明のLEDの構造は、電圧印加により発光する発光ダイオードチップと、この発光ダイオードチップがダイボンディングされるマウント部と、このマウント部に連設されて外部機器との電気的な接続が行われるリード部と、前記マウント部に角度を有して一体的に形成され発光ダイオードチップからの光を一定方向に反射する反射部とを有したリードフレームとを備えていることを特徴とする。

【0006】また、本発明の別のLEDの構造は、電圧 印加により発光する発光ダイオードチップと、この発光 ダイオードチップがダイボンブティングされるマウント 部と、このマウント部に対し角度を有した状態で連設さ れ外部機器との電気的な接続が行われると共に当該接続 で前記マウント部を発光ダイオードチップからの光を一 定方向に反射する反射面とするリード部とを有したリー ドフレームとを備えていることを特徴とする。

[0007]

【実施例】図1ないし図3は本発明によるLEDを電子 腕時計の時計モジュールに適用した構造を示す。時計モ ジュール1は図1に示すように、上部ハウジング2と、 下部ハウジング3と、これらのハウジング2、3を組み 付ける取付部材(地板)4とを備えている。上部ハウジ ング2は、上面が開口されており、この開口部分に液晶 部材5が取り付けられている。液晶部材5は表示用信号 が入力されることにより、時刻やその他の情報を可視表 示する。一方、下部ハウジング3には液晶部材5に表示 用信号を出力する回路基板6が取り付けられている。ま た、液晶部材5の下方には、同部材5と略同一幅を有し た拡散反射板7が設けられている。この拡散反射板7は 後述するLED10から光が入射すると、均一に分散し て液晶部材5方向に反射する。そして、この拡散反射板 7の側方にLED10が配置されている。このLED1 0は回路基板6上面に接着等により固定された緩衝台8 に支持された状態で、拡散反射板7の側方に設けられて いる。以上のような時計モジュール1は取付板4を下部 ハウジング3の下面に当接させた状態で、取付板4から 部分的に起立したフック部4 a を上部ハウジング2の側 面に設けられた係合突起2aに係合させることで組み立 てられ、この組み立て状態で腕時計ケース等の機器ケー ス(図示省略)内にセットされる。

【0008】図2および図3は緩衝台8へのLED10の取り付けを示し、緩衝台8の上面に位置決め孔8aが形成されると共に、LED10の下面に位置決め突起10aが形成され、これらによりLED10の位置決めが行われる。LED10は封止樹脂11と、封止樹脂11

の両側から抜き出されるリード部 (アウターリード) 1 2とを備えている。そしてリード部 1 2は下方に折り曲 げられて回路基板 6 上に達しており、回路基板 6 上面に パターン形成された端子部 6 a と半田付け等により接合 されている。

【0009】図4はこのようなLED10の一実施例を 示す。マウント部13、インナーリード14およびリー ド部 (アウターリード) 12とが連設されることにより 形成したリードフレーム15と、リードフレーム15の マウント部13上にダイボンディングされたLEDチッ プ20とを備えている。LEDチップ20はその電極と インナーリード14とがポンディングワイヤあるいはワ イヤレスにより接続され、電圧が印加されることにより 発光する。このLEDチップ20のダイボンディング領 域およびインナーリード14領域が透明または半透明の 透光性の封止樹脂11により封止されることにより、パ ッケージ形状に形成されている。このような構成におい て、リードフレーム15のマウント部13およびインナ ーリード14の片側が直角状に折り曲げられて、LED チップ20方向に起立し、この起立部分がLEDチップ 20からの光を一定方向に反射する反射部16となって いる。

【0010】図5は上記構造のLED10を回路基板6 上に実装した状態を示す。この実装にあっては、反射部 16が拡散反射板7に対向して臨むように配置される。 同図において、9はLED10のリード部12を回路基 板6の端子部6aに接合する半田である。このような構 成において、電圧印加によりLEDチップ20を発光さ せると、光線は封止樹脂11を透過し、その一部が拡散 反射板 7 に入射する。このとき、さらに一部の光線は反 射部16に達し、この反射部16により反射して拡散反 射板 7 に入射する。これにより拡散反射板 7 に入射する 光線の光量が増加するため、拡散反射板7から液晶部材 5 (図1参照) に入射する光量が増加する。従って、液 晶部材5を明るく照明できるため、表示内容の目視を明 瞭に行うことができる。このような本実施例では、LE D10自体に反射機能を備えるため、明るい照明が可能 となり、反射用の部材が不要となると共に、LED数の 増加や大出力のLEDの使用も不要となる。

【0011】図6は本実施例の変形例を示し、反射部16が湾曲状に起立され、これにより凹面反射鏡と同様に作用している。なお、これらの場合においては、リードフレーム15全体または反射部16のみを鏡面加工することにより、その反射率を向上させても良く、鏡面加工の後、これらを錫めっき処理して反射率の増大を半田9

との濡れ性を増大を図っても良い。

【0012】図7ないし図9は本発明の別の実施例を示 し、前記実施例と同一の要素は同一の符号を付して対応 させてある。この実施例では、図7で示すようにアウタ ーリードとなるリード部12の先端部分が直角方向に折 り曲げられることにより、リード部12と連設する接合 部17が形成されている。また、この実施例ではマウン ト部13およびインナーリード14は折り曲げられるこ となく平面状となっており、接合部17はこれらの部位 に対し、直交するように位置している。図8および図9 はこのLED10を回路基板6に実装した状態を示し、 接合部17が回路基板6に接触した状態で半田付け等に より接合される。この状態では、LEDチップ20が横 向き状態に配置され、マウント部13およびインナーリ ード14が拡散反射板7に臨むこととなる。このような 構成では、マウント部13およびインナーリード14が LEDチップ20からの光線を反射する反射面として機 能するため、前記実施例と同様に、拡散反射板7に入射 する光量を増大させることができる。

【0013】本発明は上記実施例に限定されることなく種々変更が可能であり、例えばLEDチップ20を封止樹脂で封止することなく、リードフレーム15に実装しても良く、LED10として液晶部材以外の部材を照明しても良い。また、本発明は電気腕時計以外の計算機、通信機等の電子機器にも同様に適用することができる。

[0014]

【発明の効果】以上のとおり本発明は、LED自体に反射機能を備えるため、効率の良い照明が可能となる。

【図面の簡単な説明】

- 【図1】本発明を電気腕時計に適用した断面図。
- 【図2】LEDを実装する斜視図。
- 【図3】LEDの固定を示す斜視図。
- 【図4】本発明の一実施例の斜視図。
- 【図5】一実施例の作用を示す側面図。
- 【図6】一実施例の変形例を示す側面図。
- 【図7】他の実施例の斜視図。
- 【図8】他の実施例の作用を示す正面図。
- 【図9】他の実施例の作用を示す側面図。

【符号の説明】

- 12 リード部
- 13 マウント部
- 14 インナーリード
- 15 リードフレーム
- 16 反射部
- 20 LEDチップ

