

中山大学计算机学院人工智能本科生实验报告

(2022 学年春季学期)

课程名称: Artificial Intelligence

教学班级	人工智能(陈川)	专业(方向)	计算机科学与技术(人工智能与 大数据方向)
学号	20337025	姓名	崔璨明

目录

一、	实验题目2
Ξ,	实验内容2
	1. 算法原理
	1.1 AutoEncoder2
	1.2 Variational AutoEncoders2
	2. 伪代码
	3. 关键代码展示(带注释)
	3.1 数据集的加载
	3.2 自编码器的设计
	3.3 自编码器训练过程4
	3.4 自编码器测试过程
	3.5程序主函数4
	4. 创新点&优化
三、	实验结果及分析
	1. 实验结果展示示例(可图可表可文字,尽量可视化)
	1.1 损失函数变化图:
	1.2 重建图片展示
	1.3 每个数字的重建展示
	1.5 分类准确率变化图9
四、	参考资料

一、 实验题目

设计 Auto-Encoder 的网络结构,并完成分类任务:

- 利用 Auto-Encoder 学习 MNIST 数据集的表征,并用得到的表征进行分类器训练
- 有兴趣的同学可以去了解较复杂的自编码器结构,比如 VAE
- 需要在实验报告中画出损失函数自编码器随训练过程的变化曲线
- 每个标签的数据随机选取 10 张图片展示重构后的图像
- 给出利用该特征进行分类的准确率变化曲线
- 如果采用了新的自编码器结构,需要在报告中给出说明

二、 实验内容

1. 算法原理

1.1 AutoEncoder

AutoEncoder 是一种无监督的学习算法,主要用于数据的降维或者特征的抽取,在深度学习中,AutoEncoder 可用于在训练阶段开始前,确定权重矩阵的初始值。

神经网络中的权重矩阵可看作是对输入的数据进行特征转换,即先将数据编码为另一种形式,然后在此基础上进行一系列学习。然而,在对权重初始化时,我们并不知道初始的权重值在训练时会起到怎样的作用,也不知道在训练过程中权重会怎样的变化。因此一种较好的思路是,利用初始化生成的权重矩阵进行编码时,我们希望编码后的数据能够较好的保留原始数据的主要特征。如果编码后的数据能够较为容易地通过解码恢复成原始数据,我们则认为权重矩阵较好的保留了数据信息。

简单来说,AutoEncoder(自编码)是一种无监督学习的算法,他利用反向传播算法,让目标值等于输入值。输入一张图片,通过一个 Encoder 神经网络,输出一个降维(压缩)后的特征。之后将这个特征通过一个 Decoder 网络,又可以将这张图片还原。

1.2 Variational AutoEncoders

Variational AutoEncoders(VAE)提供了一种概率分布的描述形式,VAE 中 Encoder 描述的是每个潜在属性的概率分布,而不是直接输出一个值。除此之外,VAE 会在输入的数据中添加一些噪音,使得在噪音范围内的图片可以被还原,这样 VAE 可以产生了输入数据中不包含的数据,(可以认为产生了含有某种特定信息的新的数据),而 AE 只能产生尽可能接近或者就是以前的数据(当数据简单时,编码解码损耗少时)。

2. 伪代码

设计 AutoEncoder 网络结构的伪代码如下:


```
输入: 原始图片a
输出: 降维后提取的特征f,重构的图片x
def Encoder(a):{
   a=Linear(784, 256)
   ReLU(a)
   a=Linear(256, 64)
   ReLU(a)
   a=Linear(64, 20)
   ReLU(a)
   return a
def Decoder(f):{
   f=Linear(20, 64)
   ReLU(f)
   f=Linear(64, 256)
   ReLU(f)
    f=Linear(256, 784)
   Sigmoid(f)
   return f
def AE(a):
   f=Encoder(a)
   x=Decoder(f)
  return f,x
```

3. 关键代码展示(带注释)

3.1 数据集的加载

数据集采用 mnist 数据集,直接调用 torchvision 库中的 datasets,下载 mnist 数据集, 其关键代码如下:

3.2 自编码器的设计

调用 torch,依照实验给出的网络架构构建 AutoEncode 神经网络,神经网络包括编码 网络和译码网络,在编码网络中对图像进行特征提取,该网络包括三个全连接层,每个全连接层后面跟有激活函数层,最后提取出的特征向量的维数为 20。在译码网络中根据图像特征进行图像的复原,该网络包括三个全连接层,同样每个全连接层后面跟有激活函数层。该部分的关键代码如下:


```
AE(nn.Module):
ef __init__(self):
    super(AE, self).__init__()
    #答证器的两条结构
                                                             def forward(self, x):
  #編码器的网络語例
self.encoder = nn.Sequential(
      # [b, 784] => [b, 256]
nn.Linear(784, 256),
                                                                     batchsz = x.size(0)
      nn.ReLU(),
# [b, 256] => [b, 64]
nn.Linear(256, 64),
                                                                     #展平
                                                                     x = x.view(batchsz, -1)
                                                                     x = self.encoder(x)
                                                                     #译码
                                                                     x = self.decoder(x)
     nn.ReLU(),
# [b, 64] => [b, 256]
nn.Linear(64, 256),
                                                                     #将其恢复原来的格式
                                                                     x = x.view(batchsz, 1, 28, 28)
     nn.ReLU(),
# [b, 256] => [b, 784]
nn.Linear(256, 784),
nn.Sigmoid()
                                                                     return x
```

3.3 自编码器训练过程

用 mnist 数据集中的训练集数据对 AutoEncoder 进行训练, 关键代码如下:

```
def Train(epochs_num,_model,_criterion,_optim,_exp_lr_scheduler,_trian_loader):
    _model.train()
    _exp_lr_scheduler.step()
    loss_set=[]
    for ep in range(epochs_num):
        for i,(img,label) in enumerate(_trian_loader):
            output=_model(img)
            loss=_criterion(output,img)

            __optim.zero_grad()
            #反向传播
            loss.backward()
            _optim.step()
            print("Epoch:{}/{}, step:{}, loss:{:.4f}".format(ep + 1, epochs_num, i + 1, loss.item()))
            loss_set.append(loss.item())
            return loss_set
```

3.4 自编码器测试过程

用 mnist 数据集中的测试集数据对 AutoEncoder 进行测试,即进行图像的复原,并和原来图像进行对比,关键代码如下:

```
#興试过程

def Test():
    model.eval()
    N=4
    M=8
    #迭代器
    dataiter = iter(mnist_test)
    images, labels = dataiter.next()
    with torch.no_grad():
        _images = model(images)
    p1=plt.figure(1)
    for i in range(32):
        plt.subplot(N,M,i+1)#表示第i张图片,下标只能从1开始,不能从0
        plt.mshow(images[i].numpy().squeeze(), cmap='gray_r')
        plt.xticks([])
        plt.yticks([])
    p2=plt.figure(2)
    for i in range(32):
        plt.subplot(N,M,i+1)#表示第i张图片,下标只能从1开始,不能从0
        plt.imshow(_images[i].numpy().squeeze(), cmap='gray_r')
        plt.yticks([])
    plt.yticks([])
    plt.yticks([])
    plt.yticks([])
    plt.yticks([])
```

3.5程序主函数


```
if __name__ == '__main__':
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model=AE().to(device)
    epochs_num=1

# 提失函数
    criterion=nn.MSELoss()
# 学习率
    learn_rate=le-3
    optim=torch.optim.Adam(model.parameters(),lr=learn_rate)

# 定义学习率调度器: 输入包装的模型, 定义学习率衰减周期step_size, gamma为衰减的乘法因于
    exp_lr_scheduler = lr_scheduler.StepLR(optim, step_size=6, gamma=0.1)
    # 进行训练, 返回损失函数的变化过程
    loss_set=Train(epochs_num,model,criterion,optim,exp_lr_scheduler,mnist_train)
    index = [i for i in range(len(loss_set))]
    fig1 = plt.figure(1)
    plt.plot(index_loss_set)
    plt.xlabel("Train times")
    plt.ylabel("Loss")
    plt.ylabel("Loss")
    plt.show()

Test2()
```

4. 创新点&优化

除了实现 AutoEncoder 之外,我还对 Variational AutoEncoders (VAE),并进行了简单的实现,关键代码如下:

```
def forward(self, x):
                                                                  batchsz = x.size(0)
super(VAE, self).__init__()
self.encoder = nn.Sequential(
    # [b, 784] => [b, 256]
    nn.Linear(784, 256),
                                                                  x = x.view(batchsz, -1)
                                                                  q = self.encoder(x)
                                                                  mu, sigma = q.chunk(2, dim=1)
                                                                 q = mu + sigma * torch.randn_like(sigma)
   nn.Linear(64, 20),
nn.ReLU()
                                                                 x_hat = self.decoder(q)
                                                                  x_{hat} = x_{hat.view(batchsz, 1, 28, 28)}
                                                                  kld = 0.5 * torch.sum(
                                                                       torch.pow(mu, 2) +
   # [b, 64] => [b, 256]
nn.Linear(64, 256),
nn.ReLU(),
# [b, 256] => [b, 784]
nn.Linear(256, 784),
nn.Sigmoid()
                                                                         torch.pow(sigma, 2)
                                                                        torch.log(1e-8 + torch.pow(sigma, 2)) - 1
                                                                   ) / (batchsz*28*28)
                                                                   return x_hat, kld
```

三、 实验结果及分析

- 1. 实验结果展示示例(可图可表可文字,尽量可视化)
- 1.1 损失函数变化图:

1.2 重建图片展示

原始手写数字图片:

可见自编码器能够很好地提取图片的特征,这从复原的图片和原图片非常相近可以看出。

1.3 每个数字的重建展示

按照实验要求,每个标签的数据随机选取10张图片展示重构后的图像,结果展示如下:

1.5 分类准确率变化图

四、 参考资料

1. <u>(131 条消息) VAE 模型基本原理简单介绍 smile-yan 的博客-CSDN 博客 vae 模型</u>