Lossless Join Decomposition Tutorial

SWEN304/SWEN439

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Lossless join decomposition
- Exercises
 - 3NF decomposition
 - BCNF decomposition

FDs and a Relation Schema Key

- Each relation schema key is the consequence of a functional dependency from F+
- Let R (A₁,...., A_n) be a relation schema and F the set of functional dependencies in R
- Set of attributes $X \subseteq R$ is a relation schema **key** if

```
1° X \rightarrow R \in F^+ (or X^+ = R)
2° (\forall Y \subset X)(Y \rightarrow R \notin F^+)
```

- Not null condition still applies to X
- A prime attribute is a relation schema attribute that belongs to any of the keys
- Primary key is one of the keys

Lossless Join Decomposition

- A decomposition $D = \{R_1, R_2, ..., R_m\}$ of a relation R has the **lossless (nonadditive) join** property wrt the set of dependencies F on R if, for every relation r(R) that satisfies F,

*
$$(\pi_{R1}r(R), ..., \pi_{Rm}r(R)) = r(R)$$

where * is the natural join of all the relations in D.

• It is proven in the theory of the relational data model that the decomposition of a relation schema R onto R_1 and R_2 is lossless (non-additive) if the intersection $R_1 \cap R_2$ contains a key of R_1 or a key of R_2

Example 1: Checking Losslessness of D (1)

• Given a set of relation schemas:

$$D = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{C, B\}, \{C\})\}$$

 How to check whether the whole set of relation schemas represents a lossless join decomposition of the (supposed) universal relation schema?

Example 1: Checking Losslessness of D (2)

- A naïve and generally wrong approach:
 - Perform a pair wise checking of the relation schemas
 - for each relation schema you find another one such that the intersection of the two schemas is a schema key of one of the schema
- So, according to that approach:
 - $\{A, B\} \cap \{B, D\} = \{B\}$, and B is the key of N_2
 - $\{B, C\} \cap \{B, D\} = \{B\}$, and B is the key of N_2
 - Conclusion (a wrong one): The set of relation schemas D is a lossless join decomposition (of a universal relation schema)

Example 1: Checking Losslessness of D (2)

$$D = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{C, B\}, \{C\})\}$$

- A correct approach is to apply this checking iteratively until all the schemas are considered
 - $\{A, B\} \cap \{B, D\} = \{B\}$, and B is the key of N_2 .
 - construct new relation schema $N_{12}(R_{12}, \text{Key}(N_{12}))$, with $R_{12} = \{A, B\} \cup \{B, D\} = \{A, B, D\}$ and $\text{Key}(N_{12}) = \{A\}$
 - $\{A, B, D\} \cap \{B, C\} = \{B\}$, and check again.
 - B is neither a key of N_{12} nor a key of N_3
- We can conclude the set of relation schemas D is a not a lossless join decomposition (of a universal relation schema).

Example 1: Checking Losslessness of D (3)

Example 1: Checking Losslessness of D (4)

The pair wise approach is wrong since

 It can not ensure the whole decomposition is lossless

В	С
0	1
0	2
	-

ΛI

 $(r(N_1)^*r(N_2))^*r(N_3)$

А	В	С	D
1	0	1	0
1	0	2	0
2	0	1	0
2	0	2	0

One Approach of Checking Losslessness of D

- To check whether a set D of relation schemas is a lossless decomposition is:
 - Construct a relation schema (U, F), where

$$U = \bigcup_{i=1}^{n} R_i$$
 and $F = \bigcup_{i=1}^{n} F_i$

- $U = \bigcup_{i=1}^{n} R_{i} \quad \text{and} \quad F = \bigcup_{i=1}^{n} F_{i}$ Find all keys $\{X_{i} \mid i = 1, ..., m\}$ of the constructed "universal" relation schema (U, F)
- If there is a relation schema N(R, K) in D that contains a key of the constructed relation schema (U, F), then D is a lossless join decomposition
- Otherwise, add a new relation schema that contains only a key X_i of the constructed "universal" relation schema (U, F) to D

$$D = D \cup \{N_{\chi}(X_{ii}, X_{i})\}$$

Example 2: Checking Losslessness of D

 The universal relation schema key is AC, and decompositions

 $D = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{B, C\}, \{C\}))\}$ Is the decomposition lossless? Why?

A lossless decomposition

$$D' = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{B, C\}, \{C\}), N_4(\{A, C\}, \{AC\})\}$$

This can be achieved using the Synthesis Algorithm

Example 2: Checking Losslessness of D (3)

Example 2: Checking Losslessness of D (4)

Exercise 1: Lossless Join Decomposition

- Consider the following relation schema again
 Department ({LecId, LeName, CourId, CoName, DptId}, {LecId → LeName + CourId, CourId → CoName + DptId})
- Is Department in 3NF? If not, decompose it into 3NF
- Is Department in BCNF? If not, decompose it into BCNF

Exercise 1: 3NF Decomposition

- Consider the following relation schema again
 Department ({LecId, LeName, CourId, CoName, DptId}),
 {LecId → LeName + CourId, CourId → CoName + DptId})
- Compute minimal cover of F
 G= {LecId → LeName , LecId → CourId, CourId → CoName,
 CourId → DptId })
- Group FDs according to LHS and form relation schemas
 LecId → LeName , LecId → CourId,
 CourId → CoName, CourId → DptId
 Lecturer ({LecId, LeName, CourId}, {LecId})
 Course ({CourId, CoName, DptId}, {CourId})

Exercise 1: 3NF Decomposition

- 2. Compute universal relation keys and check if any of the relation schemas contains one of the keys:
 - LecId is the universal relation schema key and is in Lecturer
- 3. All functional dependencies are preserved

Exercise 1: BCNF Decomposition

- Consider the following relation schema again Department ({LecId, LeName, CourId, CoName, DptId}, {LecId → LeName + CourId, CourId → CoName + DptId}) Is Department in BCNF?
- Is decomposed into BCNF using CourId → CoName + DptId
 Lecturer ({LecId, LeName, CourId}, {LecId})

 Course ({CourId, CoName, DptId}, {CourId})
- Both Lecturer and Course are in BCNF

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 1) Find the candidate keys for *R*
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 1) Find the candidate keys for *R*

$$A^+ = A$$
, $B^+ = B$ $C^+ = CDA$, $D^+ = DA$,
 $AB^+ = ABCD = R = ABC^+ = ABD^+ = ABCD^+$,
 $AC^+ = ACD$

$$AD^{+} = AD$$

$$BC^{+} = BCDA = R = BCD^{+}$$

$$BD^{+} = BDAC = R$$

$$CD^{+} = CDA$$

$$ACD^+ = ACD$$

AB, BC, and BD are scheme keys

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

R is not in BCNF because there are FDS, $C \rightarrow D$ and $D \rightarrow A_r$ of which the *LHS* is not a superkey.

Decompose R using $C \to D$ into $R_1 = ABC$ with $F_1 = \{AB \to C, C \to A\}$, $R_2 = CD$ with $F_2 = \{C \to D\}$.

 R_2 is in BCNF but R_1 is not yet in BCNF because there is FD $C \rightarrow A$, of which the *LHS* is not a super key.

Decompose R_1 along $C \rightarrow A$, R_1 is decomposed into $R_{11} = BC$ with $F_{11} = \{\}$, and $R_{12} = CA$ with $F_{12} = \{C \rightarrow A\}$. Both R_{11} and R_{12} are in BCNF

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

R is decomposed into $R_{11}(\{B,C\},\{B+C\})$, $R_{12}(\{C,A\},\{C\})$, $R_{11}(\{D,A\},\{D\})$ $F' = R_{11} \cup R_{12} \cup R_{2} = \{C \rightarrow A, C \rightarrow D\}$

Functional dependencies $AB \rightarrow C$, $D \rightarrow A$ are lost during the decomposition because based on F'

 $D^+ = D$ and $A \notin D^+$ $AB^+ = AB$ and $C \notin AB^+$

- Let R=JKL a relation and F = {JK → L, L → K} a set of dependencies for R.
- Find two canditate keys in R
- Is R in 3NF? Justify your answer
- If R is not in BCNF, decompose R into BCNF
- Are the functional dependencies preserved during the decomposition?

• Let R=JKL a relation and $F=\{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.

Let R=JKL a relation and $F=\{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.

- Find two candidate keys in RJK and JL are the keys, since $JK^+ = JKL = R$, and $JL^+ = JLK = R$
- Is R in 3NF? Justify your answer

Yes, it is, since all FDs in *F* either their *LHS* is a superkey or *RHS* is a prime attribute.

- Let R=JKL a relation and $F=\{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.
- If R is not in BCNF, decompose R into BCNF

R is not in BCNF because there is a FD $L \rightarrow K$ of which the LHS is not a super key

Using $L \rightarrow K$, R is decomposed into

 $R_1 = JL$ with $F_1 = \{\}$ and $R_2 = LK$ with $F_2 = \{L \rightarrow K\}$

Both R_1 and R_2 is in BCNF since for each of them all FDs having LHS as a super key of R_i

Hence, R is decomposed into $R_1(\{J,L\},\{J+I\})$, $R_2(\{L,K\},\{L\})$

Not all the functional dependencies preserved during the decomposition.

 $JK \rightarrow L$ is lost since using $F_1 \cup F_2$, $JK^+ = JK$ and $L \notin JK^+$