# **Using Transfer Learning for Automatic Speech Translation**

Tatjana Chernenko, Siting Liang

Institute for Computational Linguistics, Ruprecht-Karls-Universität Heidelberg {chernenko/liang}@cl.uni-heidelberg.de

Prof. Dr. Riezler, Sariya Karimova Speech Recognition Project Outline Outline 1/21

## **Outline**

- ► Introduction
- ▶ Transfer Learning
- Approach
- Datasets
- Experimental Setup
- Results
- Conclusion and discussion

Outline Outline 2/21

#### Introduction

**Automatic Speech Translation** is a problem which involves Automatic Speech Recognition in order to transfer the audio input into text, which will be translated into another language by a Machine Translation System.



Abbildung: Automatic Speech Translation

# **Transfer Learning**

#### Learning Process of Transfer Learning



Outline Approach 4/21

# **Approach**



Abbildung: Project Process: ASR + MT -> AST

Outline Datasets 5/21

#### **Datasets**

- ► LDC2010T04
- ► Audio: Fisher Spanish Speech (819 telephone conversations of 10 to 12 minutes in duration)
- ► Fisher Spanish Transcripts (819 transcribed conversations in Spanish)
- ► Fisher English Translation (obtained by crowd-sourcing using Amazon's Mechanical Turk)

# **Experiment Setup**

#### Pre-trained Models: ASR, MT

|            | ASR ("best-276000") | MT ("best-98000") |
|------------|---------------------|-------------------|
| step       | 276000              | 98000             |
| train loss | 14.338              | 20.686            |
| dev wer    | 40.65               | 46.17             |
| dev bleu   | 41.91               | 35.98             |
| dev ter    | 46.19               | 45.90             |
| dev bleu1  | 64.24               | 65.87             |
| dev loss   | 17.36               | 21.44             |
| dev ratio  | 1.061               | 1.015             |

We used two pre-trained Models (ASR and MT) as checkpoints for our Transfer Learning AST System.

Outline Experimental Setup 7/21

# **Settings**

#### Pre-trained ASR

#### Hyperparameters (find other hyperparameters in log files of ASR)

batch\_size: 32cell size: 256

► attn size: 256

soll type I STM

cell\_type: LSTM

- encoder:
  - embedding\_size: 41
  - ► layers: 3
  - ▶ input\_layers: 256, 128
  - input\_layer\_activation: tanh
- decoder:
  - deep\_layer\_size: 256
  - embedding\_size: 128
  - max\_len: 285

#### Pre-trained MT

- ► Hyperparameters (find other hyperparameters in log files of MT)
  - batch\_size: 64
  - ► cell\_size: 512
  - ▶ attn\_size: 512
  - cell\_type: LSTM
  - encoder:
    - ▶ cell size: 512
    - embedding\_size: 256
    - ► max\_len: 75
  - decoder:
    - deep\_layer\_size: 512
    - ▶ embedding\_size: 128
    - ► max\_len: 275

8/21

## New System: AST with Transfer Learning

- Use ASR and MT as checkpoints
- ► Hyperparameters of AST (other hyperparameters are in log and log1 files of AST)
  - ▶ batch size: 32
  - ► cell\_size: 512
  - attn\_size: 512
  - cell\_type: LSTM
  - encoder:
    - embedding\_size: 41
    - ► layers: 3
    - ▶ input\_layers: 256, 128
    - max\_len: 1010
  - decoder:
    - ▶ deep\_layer\_size: 256
    - embedding\_size: 128
    - max\_len: 285

Outline Results 10/21

## Results

## AST with Transfer Learning - BEST MODEL

- Results:
  - ▶ Best model: step 364 000 \*
  - train loss 16.770
    dev bleu=17.12
    dev ter=72.46
    dev wer=72.71
    dev bleu1=45.72
    dev loss=35.58
    dev penalty=1.000
    rdev ratio=1.017

<sup>\*</sup> Step in log file = 462000 (training starts from step 98000 because of the used checkpoints)

Outline Results 11/21

#### **AST train loss**



Abbildung: AST with transfer-learning train loss (starting from step 120000. Find steps 1-120000 on pages 17-20)

Outline Results 12/21

#### **AST dev WER**



Abbildung: AST with transfer-learning WER (starting from step 120000. Find steps 1-120000 on pages 17-20)

Outline Results 13/21

#### **AST dev BLEU**



Abbildung: AST with transfer-learning BLEU (starting from step 120000. Find steps 1-120000 on pages 17-20)

Outline Results 14/21

#### **AST dev BLEU 1**



Abbildung: AST with transfer-learning dev BLEU 1 (starting from step 120000. Find steps 1-120000 on pages 17-20)

Outline Results 15/21

# **Comparison**

## AST using Transfer Learning vs. Multi-Task AST from scratch

It would be interesting to compare the model to the AST model with similar hyperparameters trained from scratch without Transfer Learning.

Limited technical/time resources don't allow to train such a baseline model to use it for the direct comparison, that's why we use the available Multi-Task Learning AST system without pre-trained models (Project Group 5, extra model) as our model for comparison.

Multi-Task learning AST without pre-trained models - later 'Comparison Model'. Note that this model uses a bit different set of hyperparameters, that's why the comparison of the two models could not be direct.

Outline Results 16/21

# **Settings of Comparison Model**

## Multi-Task AST without pre-trained models - Comparison Model

#### Comparison Model Hyperparameters:

- batch\_size: 64
- cell\_type: LSTM
- encoder:
  - embedding\_size: 41
  - ▶ layers: 3
  - ▶ input\_layers: 256, 128
  - ► max\_len: 1010
- decoder:
  - deep\_layer\_size: 256
  - ▶ embedding\_size: 128
  - max len: 285

<sup>\*</sup> Other hyperparameters are in log files of Project Group 5

Outline Results 17/21

#### **Train loss**





Abbildung: Comparison Model (left) and AST with transfer-learning (right) train loss

Outline Results 18/21

## **Dev WER**





Abbildung: Comparison Model (left) and AST with transfer-learning (right) dev WER

Outline Results 19/21

#### **Dev BLEU**





Abbildung: Comparison Model (left) and AST with transfer-learning (right) dev BLEU

Outline Results 20/21

#### **Dev BLEU 1**





Abbildung: Comparison Model (left) and AST with transfer-learning (right) dev BLEU 1

# Possible Improvements, Conclusion and Discussion

- ► Transfer Learning should allow rapid progress of improved performance. The trained AST model in our case doesn't show significant performance on the development set (bleu=17.12, bleu1=45.72, wer=72.71).
- ▶ It could be useful to evaluate the model on unseen data
- ► To train a suitable comparison model: AST Model with the same hyperparameters and number of steps from scratch (without pre-trained MT and ASR Models)
- ► To use optimal pre-trained versions of ASR and MT models. Our initialization step was not optimal at that time step (see page 6 Experiment Setup). Optimal solution at the time step of our model initialization would be:
  - ► ASR step 227000 (best model with train\_loss 12.902, dev wer=39.95 bleu=43.03 ter=44.45 bleu1=65.08 loss=16.93 ratio=1.060)
  - ► MT step 92000 (train\_los = 20.643, dev bleu=36.13 ter=45.71 wer=46.19 bleu1=66.01 loss=21.06 penalty=1.000 ratio=1.017)