FIG. 1A

GGATTGAACA AGGACGCATT TCCCCAGTAC ATCCACAAC A	ATG CTG TCC ACA TCT 54 Met Leu Ser Thr Ser 1 5
CGT TCT CGG TTT ATC AGA AAT ACC AAC GAG AGC G Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser G 10	
ACC TTT TTT GAT TAT GAT TAC GGT GCT CCC TGT C Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys H 25 30	
AAG CAA ATT GGG GCC CAA CTC CTG CCT CCG CTC T Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu T 40 45	
ATC TTT GGT TTT GTG GGC AAC ATG CTG GTC GTC CITE Phe Gly Phe Val Gly Asn Met Leu Val Val L	
TGC AAA AAG CTG AAG TGC TTG ACT GAC ATT TAC C Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr L 70 75 80	
ATC TCT GAT CTG CTT TTT CTT ATT ACT CTC CCA Ile Ser Asp Leu Leu Phe Leu Ile Thr Leu Pro I 90 95	
GCT GCA AAT GAG TGG GTC TTT GGG AAT GCA ATG Ala Ala Asn Glu Trp Val Phe Gly Asn Ala Met 105 110	
GGG CTG TAT CAC ATC GGT TAT TTT GGC GGA ATC 3 Gly Leu Tyr His Ile Gly Tyr Phe Gly Gly Ile F 120 125	
CTG ACA ATC GAT AGA TAC CTG GCT ATT GTC CAT C Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His A	

FIG. 1B

GCC Ala								534
GTG Val								582
AAA Lys								630
AAT Asn								678
CTG Leu 215								726
CGG Arg								774
ACC Thr								822
ATT Ile								870
AGC Ser							CTT Leu	918
			Asn				GGG Gly	966

FIG. 1C

GAG AAG TTC AGA AGC CTT TIT CAC ATA GCT CTT GGC TGT AGG ATT GCC Glu Lys Phe Arg Ser Leu Phe His Ile Ala Leu Gly Cys Arg Ile Ala 310 325	1014
CCA CTC CAA AAA CCA GTG TGT GGA GGT CCA GGA GTG AGA CCA GGA AAG Pro Leu Gln Lys Pro Val Cys Gly Gly Pro Gly Val Arg Pro Gly Lys 330 335 340	1062
AAT GTG AAA GTG ACT ACA CAA GGA CTC CTC GAT GGT CGT GGA AAA GGA Asn Val Lys Val Thr Thr Gln Gly Leu Leu Asp Gly Arg Gly Lys Gly 345 350 355	1110
AAG TCA ATT GGC AGA GCC CCT GAA GCC AGT CTT CAG GAC AAA GAA GGA Lys Ser Ile Gly Arg Ala Pro Glu Ala Ser Leu Gln Asp Lys Glu Gly 360 365 370	1158
GCC TAGAGACAGA AATGACAGAT CTCTGCTTTG GAAATCACAC GTCTGGCTTC Ala	1121
ACAGATGTGT GATTCACAGT GTGAATCTTG GTGTCTACGT TACCAGGCAG GAAGGCTGAG	1271
AGGAGAGAGA CTCCAGCTGG GTTGGAAAAC AGTATTTTCC AAACTACCTT CCAGTTCCTC	1331
ATTTTTGAAT ACAGGCATAG AGTTCAGACT TTTTTTAAAT AGTAAAAATA AAATTAAAGC	1391
TGAAAACTGC AACTTGTAAA TGTGGTAAAG AGTTAGTTTG AGTTGCTATC ATGTCAAACG	1451
TGAAAATGCT GTATTAGTCA CAGAGATAAT TCTAGCTTTG AGCTTAAGAA TTTTGAGCAG	1511
GTGGTATGTT TGGGAGACTG CTGAGTCAAC CCAATAGTTG TTGATTGGCA GGAGTTGGAA	1571
GTGTGTGATC TGTGGGCACA TTAGCCTATG TGCATGCAGC ATCTAAGTAA TGATGTCGTT	1631
TGAATCACAG TATACGCTCC ATCGCTGTCA TCTCAGCTGG ATCTCCATTC TCTCAGGCTT	1691
GCTGCCAAAA GCCTTTTGTG TTTTGTTTTG TATCATTATG AAGTCATGCG TTTAATCACA	1751
TTCGAGTGTT TCAGTGCTTC GCAGATGTCC TTGATGCTCA TATTGTTCCC TAATTTGCCA	1811
GTGGGAACTC CTAAATCAAA TTGGCTTCTA ATCAAAGCTT TTAAACCCTA TTGGTAAAGA	1871

FIG. 1D

ATGGAAGGTG	GAGAAGCTCC	CTGAAGTAAG	CAAAGACTTT	CCTCTTAGTC	GAGCCAAGTT	1931
AAGAATGTTC	TTATGTTGCC	CAGTGTGTTT	CTGATCTGAT	GCAAGCAAGA	AACACTGGGC	1991
TTCTAGAACC	AGGCAACTTG	GGAACTAGAC	TCCCAAGCTG	GACTATGGCT	CTACTTTCAG	2051
GCCACATGGC	TAAAGAAGGT	TTCAGAAAGA	AGTGGGGACA	GAGCAGAACT	TTCACCTTCA	2111
TATATTTGTA	TGATCCTAAT	GAÁTGCATAA	AATGTTAAGT	TGATGGTGAT	GAAATGTAAA	2171
TACTGTTTTT	AACAACTATG	ATTTGGAAAA	TAAATCAATG	CTATAACTAT	GTTGATAAAA	2231
G						2232

FIG. 2A

CAGG	ACT(GCC T	rgag,	ACAA	GC C	ACAA	GCT	A AC	AGA	AAA	G TG	GATT	GAAC	CAAG	GACG	CAT	60
TTC	CCA	GTA	CATO	CAC									CGG Arg				110
															AT TA		158
				15					2	0				2	25		
													ATT Ile 40				206
													GGT Gly				254
													AAG Lys				302
													GAT Asp				350
													AAT Asn				398
									Phe				TAT Tyr 120	His	ATC Ile		446
													ATC				494
							Val					Ala	AGG Arg		GTC Val		542

FIG. 2B

							TGG Trp 165				590
							TGC Cys				638
							GGA Gly				686
							CTG Leu				734
							CTG Leu				782
							ATC Ile 245				830
							ATT Ile				878
		Phe				Asn				CAA Gln	926
					Glu				Thr	TGC Cys	974
	Asn			Ala				Lys		AGG Arg	1022

FIG. 2C

TAT CTC TCG GTG TTC TTC CGA AAG CAC ATC ACC AAG CGC TTC TGC AAA Tyr Leu Ser Val Phe Phe Arg Lys His Ile Thr Lys Arg Phe Cys Lys 315 320 325 330	1070
CAA TGT CCA GTT TTC TAC AGG GAG ACA GTG GAT GGA GTG ACT TCA ACA Gln Cys Pro Val Phe Tyr Arg Glu Thr Val Asp Gly Val Thr Ser Thr 335 340 345	1118
AAC ACG CCT TCC ACT GGG GAG CAG GAA GTC TCG GCT GGT TTA Asn Thr Pro Ser Thr Gly Glu Gln Glu Val Ser Ala Gly Leu 350 355 360	1160
TAAAACGAGG AGCAGTTTGA TTGTTGTTTA TAAAGGGAGA TAACAATCTG TATATAACAA	1220
CAAACTTCAA GGGTTTGTTG AACAATAGAA ACCTGTAAAG CAGGTGCCCA GGAACCTCAG	1280
GGCTGTGTGT ACTAATACAG ACTATGTCAC CCAATGCATA TCCAACATGT GCTCAGGGAA	1340
TAATCCAGAA AAACTGTGGG TAGAGACTTT GACTCTCCAG AAAGCTCATC TCAGCTCCTG	1400
AAAAATGCCT CATTACCTTG TGCTAATCCT CTTTTTCTAG TCTTCATAAT TTCTTCACTC	1460
AATCTCTGAT TCTGTCAATG TCTTGAAATC AAGGGCCAGC TGGAGGTGAA GAAGAGAATG	1520
TGACAGGCAC AGATGAATGG GAGTGAGGGA TAGTGGGGTC AGGGCTGAGA GGAGAAGGAG	1580
GGAGACATGA GCATGGCTGA GCCTGGACAA AGACAAAGGT GAGCAAAGGG CTCACGCATT	1640
CAGCCAGGAG ATGATACTGG TCCTTAGCCC CATCTGCCAC GTGTATTTAA CCTTGAAGGG	1700
TTCACCAGGT CAGGGAGAGT TTGGGAACTG CAATAACCTG GGAGTTTTGG TGGAGTCCGA	1760
TGATTCTCTT TTGCATAAGT GCATGACATA TTTTTGCTTT ATTACAGTTT ATCTATGGCA	1820
CCCATGCACC TTACATTTGA AATCTATGAA ATATCATGCT CCATTGTTCA GATGCTTCTT	1880
AGGCCACATC CCCCTGTCTA AAAATTCAGA AAATTTTTGT TTATAAAAGA TGCATTATCT	1940
ATGATATGCT AATATATGTA TATGCAATAT AAAATTTAG	1979

FIG. 3(A)

FIG. 3(B)

FIG.4(A)

MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	MLSTSRSRFIRNTNESGEEVTTFFDYDYGAPCHKFDVKQIGAQLLPPLMETPNTTEDYDTTTEFDYGDATPCQKVNERAFGAQLLPPLMEGISIYTSDNYTEEMGS-GDYDSMK-EPCFREENANFNKIFLPTIMSNITDPQ-MWDFDDLNFTGMPPADEDYSPC-MLETETLNKYVVIIAMESDSFEDFWKGEDLSNYSYSSTLPPFLLDAAPC-EPESLEINKYFVVII	48 40 44 45 49
MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	YSLVFIFGFVGNMLVVLILINCKKLKCLTDIYLLNLAISDLLFLITLPLW YSLVFVIGLVGNILVVLVLVQYKRLKNMTSIYLLNLAISDLLFLFTLPFW YSIIFLTGIVGNGLVILVMGYQKKLRSMTDKYRLHLSVADLLFVITLPFW YALVFLLSLLGNSLVMLVILYSRVGRSVTDVYLLNLALADLLFALTLPIW YALVFLLSLLGNSLVMLVILYSRVGRSVTDVYLLNLALADLLFALTLPIW	98 90 94 95 99
MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	101 115 3 136 AH-SAANEWVFGNAMCKLFTGLYHIGYFGGIFFIILLTIDRYLAIVHAVF IDYKLKDDWVFGDAMCKILSGFYYTGLYSEIFFIILLTIDRYLAIVHAVF AV-DAVANWYFGNFLCKAVHVIYTVNLYSSVLILAFISLDRYLAIVHATN AA-SKVNGWIFGTFLCKVVSLLKEVNFYSGILLLACISVDRYLAIVHATR AA-SKVNGWIFGTFLCKVVSLLKEVNFYSGILLLACISVDRYLAIVHATR	147 140 143 144 148
MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	154 4 178 ALKARTVTFGVVTSVITMLVAVFASVPGI IFTKCOKEDSVYVCGPYFP ALRARTVTFGVITSIIIIWALAILASMPGLYFSKTOWEFTHHTCSLHFPHE SQRPRKLLAEKVVYVGVWIPALLLTIPDFIFANVSEADDRYICDRFYPN- TLTQKR-HLVKFVCLGCWGLSMNLSLPFFLFRQAYHPNNSSPVCYEVLGN TLTQKRYLVKFI-CLSIWGLSLLLALPVLLFRRTVYSSNVSPACYEDMGN	195 190 192 193 197
MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	204 5 231RGWNNFHTIMRNILGLVLPLLIMVICYSGILKTLLRCRNEKKRHRAVR SLREWKLFQALKLNLFGLVLPLLVMIICYTGIIKILLRRPNEKKS-KAVRDLWVVVFQFQHIMVGLILPGIVILFCYCIIISKLSHSKGHQKR-KALK DTAKWRMVLRILPHTFGFIVPLFVMLFCYGFTLRTLFKAHMGQK-HRAMR NTANWRMLLRILPQSFGFIVPLLIMLFCYGFTLRTLFKAHMGQ-KHRAMR	243 239 239 242 246
MCP-1RA (CCR2-A) MIP-1α/RANTESR HUMSTSR IL-8RA IL-8RB	244 6 268 VIFTIMIVYFLFWTPYNIVILLNTFQEF-FGLSNCESTSQLDQATQVTET LIFVIMIIFFLFWTPYNLTILISVFQDF-LFTHECEQSRHLDLAVQVTEV TTVILILAFFACWLPYYIGISIDSFILLEIIKQGCEFENTVHKWISITEA VIFAVVLIFLLCWLPYNLVLLADTLMRTQVIQETCERRNNIGRALDATEI VIFAVVLIFLLCWLPYNLVLLADTLMRTQVIQETCERRNHIDRALDATEI	292 288 289 292 296

FIG. 4(B)

	<u>295 7 313</u>	
MCP-1RA (CCR2-A)	LGMTHCCINPIIYAFVGEKFRŠLFHIALGCRIAPLQKPVCGGPGVRPGKN	342
MIP-1α/RANTESR	IAYTHCOVNPVIYAFVGERFRKYLRQLFHRRVAVHLVKW	327
HUMSTSR	LAFFHCCLNPILLYAFLGAKFKTSAQHALLTSVSRGSS	325
IL-8RA	LGFLHSCLNPIIYAFIGONFRHGFLKILLA	327
IL-8RB	LGILHSCLNPLIYAFIGOKFRHGLLKILAIHGLIS	331
MCP-1RA (CCR2-A)	VKVTTQGLLDGRGKGKSIGRAPEASLQDKEGA	374
$MIP-1\alpha/RANTESR$	LPFLSVDRLE-RVSSTS-PSTGEHELSAGF	355
HUMSTSR	LKILSKGKRGGHSSVSTESESSSFHSS	352
IL-8RA	KEFLARHRVTSYT-SSSVNVSSNL	350
IL-8RB	KDSLPKDSRPSFVG-SSSGHTSTTL	355

FIG. 6

cRNA MCP-1RA MCP-1RB

MCP-101/RANTES R IL-8RA

LOG [CHEMOKINE] (M)

MCP-1 BOUND (M, X10-11)

