CSE 5243 INTRO. TO DATA MINING

Cluster Analysis: Basic Concepts and Methods

Yu Su, CSE@The Ohio State University

Chapter 10. Cluster Analysis: Basic Concepts and Methods

Cluster Analysis: An Introduction

- Partitioning Methods
- Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering
- Summary

Introduction

Suppose you are a marketing manager and you have (anonymized) information about users such as demographics and purchase history stored as feature vectors. What to do next towards an effective marketing strategy?

What is a cluster?

- A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)

- What is a cluster?
 - A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - □ Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

- What is a cluster?
 - A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Intra-cluster distances are minimized distances are minimized

Inter-cluster

- What is a cluster?
 - A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - □ Given a set of data points, partition them into a set of groups (i.e., clusters), such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups
- Cluster analysis is unsupervised learning (i.e., no predefined classes)
 - This contrasts with classification, which is supervised learning
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - As a preprocessing (or intermediate) step for other algorithms

What is Good Clustering?

- A good clustering method will produce high quality clusters, which should have
 - High intra-class similarity: Cohesive within clusters
 - Low inter-class similarity: Distinctive between clusters

What is Good Clustering?

- A good clustering method will produce high quality clusters, which should have
 - High intra-class similarity: Cohesive within clusters
 - Low inter-class similarity: Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- □ There exist many similarity measures and/or functions for different applications
- □ Similarity measure is critical for cluster analysis

Cluster Analysis: Applications

Understanding

Group related documents for browsing, group genes and proteins that have similar functionality, or

group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification

Notion of a Cluster can be Ambiguous

How many clusters?

Notion of a Cluster can be Ambiguous

How many clusters?

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between partitional and hierarchical sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

Partitional Clustering

Types of Clusterings

- □ A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of <u>nested</u> clusters organized as a <u>hierarchical tree</u>

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Non-traditional Dendrogram

Types of Clusters: Well-Separated

Well-Separated Clusters:

A cluster is a set of points such that <u>any point in a cluster is closer</u> (or more similar) to every other <u>point in the cluster than to any point not in the cluster</u>.

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that <u>an object in a cluster is closer (more similar) to the "center"</u> of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that <u>a point in a cluster is closer (or more similar) to one or more other</u> points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

Measured by Euclidean distance, cosine similarity, etc.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Often chosen randomly

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.

Typically the mean of the points in the cluster

5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- "Closeness" is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

randomly select K = 2 centroids

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster

Execution of the K-Means Clustering Algorithm

Select K points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster

Re-compute the centroids (i.e., mean point) of each cluster

K-means Example – Animated

Evaluating K-means Clusters

Why one clustering result is better than the other?

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - □ To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(x, c_i)$$

 $lue{x}$ is a data point in cluster C_i and C_i is the representative point (e.g., center) of cluster C_i

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - c_i||^2$$
 Using Euclidean Distance

 $lue{}$ x is a data point in cluster C_i and C_i is the representative point (e.g., center) of cluster C_i

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - c_i||^2$$

- $lue{}$ x is a data point in cluster C_i and C_i is the representative point (e.g., center) of cluster C_i
- Given two clusters, we can choose the one with the smaller error
- However, one easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a larger SSE than a poor clustering with larger K
 - \blacksquare Think of the extreme case when K = number of data points

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - c_i||^2$$

lacktriangleq x is a data point in cluster C_i and C_i is the representative point (e.g., center) of cluster C_i

1: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centroid.

4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

=> attempt to minimize SSE

Derivation of K-means to Minimize SSE

Example: one-dimensional data

Step 4: how to update centroid

$$\frac{\partial}{\partial c_k} SSE = \frac{\partial}{\partial c_k} \sum_{i=1}^K \sum_{x \in C_i} (c_i - x)^2$$

$$= \sum_{i=1}^K \sum_{x \in C_i} \frac{\partial}{\partial c_k} (c_i - x)^2$$

$$= \sum_{x \in C_k} 2 \times (c_k - x_k) = 0$$

$$\sum_{x \in C_k} 2 \times (c_k - x_k) = 0 \Rightarrow m_k c_k = \sum_{x \in C_k} x_k \Rightarrow c_k = \frac{1}{m_k} \sum_{x \in C_k} x_k$$

Derivation of K-means to Minimize SSE

Example: What if we choose Manhattan distance?

$$\frac{\partial}{\partial c_k} \text{SAE} = \frac{\partial}{\partial c_k} \sum_{i=1}^K \sum_{x \in C_i} |c_i - x|$$

$$= \sum_{i=1}^K \sum_{x \in C_i} \frac{\partial}{\partial c_k} |c_i - x|$$

$$= \sum_{x \in C_k} \frac{\partial}{\partial c_k} |c_k - x| = 0$$

Step 4: how to update centroid

$$\sum_{x \in C_k} \frac{\partial}{\partial c_k} |c_k - x| = 0 \Rightarrow \sum_{x \in C_k} sign(x - c_k) = 0$$

Partitioning Algorithms: From Optimization Angle

- <u>Partitioning method</u>: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_i is the "center" of cluster C_i)
 - A typical objective function: Sum of Squared Errors (SSE)

$$SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - c_i||^2$$

- □ Problem definition: Given K, find a partition of K clusters that optimizes the chosen partitioning criterion
 - Global optimum: Needs to exhaustively enumerate all partitions
 - Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.

Two different K-means Clusterings

Importance of Choosing Initial Centroids (1)

Importance of Choosing Initial Centroids (2)

Solutions to Initial Centroids Problem

- ☐ Multiple runs
 - Helps, but probability is not on your side
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- General intuition: spreading out the k initial centroids is a good thing

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process
 - ISODATA

K-means++

- □ Original proposal (MacQueen'67): Select K seeds randomly
 - Need to run the algorithm multiple times using different seeds

- \square There are many methods proposed for better initialization of k seeds
 - □ *K-means*++ (Arthur & Vassilvitskii'07):
 - The first centroid is selected at random
 - ☐ The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
 - ☐ The selection continues until K centroids are obtained

K-means++

Algorithm 7.2 K-means++ initialization algorithm.

- 1: For the first centroid, pick one of the points at random.
- 2: for i = 1 to number of trials do
- 3: Compute the distance, d(x), of each point to its closest centroid.
- 4: Assign each point a probability proportional to each point's $d(x)^2$.
- 5: Pick new centroid from the remaining points using the weighted probabilities.
- 6: end for

K-means vs. K-means++

- K-means++ is generally preferred over K-means
 - Even among advanced initialization strategies for K-Means (e.g., Random Partition, Maximin, among others), K-means++ is generally among the best
- K-means++ has better quality guarantee than K-means
 - For K-means, clusterings can be **arbitrarily worse** than the optimum
 - \blacksquare K-means++ guarantees an approximation ratio $O(\log k)$ in expectation
- In practice K-means++ often performs better than K-means in both quality and speed

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

K-means has problems when the data contains outliers.

Limitations of K-means: Differing Size

(a) Original points.

Figure 7.9. K-means with clusters of different size.

(b) Three K-means clusters.

Limitations of K-means: Differing Density

(a) Original points.

(b) Three K-means clusters.

Figure 7.10. K-means with clusters of different density.

https://www-users.cs.umn.edu/~kumar001/dmbook/ch7_clustering.pdf

Limitations of K-means: Non-globular Clusters

(a) Original points.

(b) Two K-means clusters.

Figure 7.11. K-means with non-globular clusters.

https://www-users.cs.umn.edu/~kumar001/dmbook/ch7 clustering.pdf

Overcoming K-means Limitations:

Breaking Clusters to Subclusters

Original Points

K-means Clusters

K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
 - □ Think of the median salary vs. mean salary of a large firm when adding a few top executives!

K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
 - Think of the median salary vs. mean salary of a large firm when adding a few top executives!
- □ **K-Medians**: Instead of taking the **mean** value of the object in a cluster as a reference point, **medians** are used (corresponding to L₁-norm as the distance measure)
- $lue{}$ The criterion function for the K-Medians algorithm:
- $S = \sum_{i=1}^{K} \sum_{x \in C_i} \sum_{j=1}^{D} |x_j med_{ij}|$

- The K-Medians clustering algorithm:
 - Select K points as the initial representative objects (i.e., as initial K medians)

Repeat

- Assign every point to its nearest median
- Re-compute the median using the median of each individual feature
- Until convergence criterion is satisfied

K-Medoids: PAM (Partitioning around Medoids)

- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
- □ The K-Medoids clustering algorithm: $SSE(C) = \sum_{i=1}^{n} \sum_{x \in C_i} dist(x, o_i)$
 - Select K points as the initial representative objects (i.e., as initial K medoids)

Repeat

- Assigning each point to the cluster with the closest medoid
- Randomly select a non-representative object o_i
- \blacksquare Compute the total cost S of swapping the medoid m with o_i
- If S < O, then swap m with O_i to form the new set of medoids
- Until convergence criterion is satisfied

K-Medoids: PAM (Partitioning around Medoids)

Randomly select a nonmedoid object,O_{ramdom}

Select initial *K-Medoids* randomly

Repeat

Object re-assignment

Swap medoid m with o_i if it improves the clustering quality

Until convergence criterion is satisfied

Compute total cost of swapping

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods

- Density- and Grid-Based Methods
- **Evaluation of Clustering**
- Summary

- □ Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Dendrogram: Shows How Clusters are Merged/Splitted

- <u>Dendrogram</u>: Decompose a set of data objects into a <u>tree</u> of clusters by multi-level nested partitioning
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

Hierarchical clustering generates a dendrogram (a hierarchy of clusters)

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

- □ Two main types of hierarchical clustering
 - Agglomerative:
 - Divisive:

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Build a bottom-up hierarchy of clusters
 - Divisive:

Two main types of hierarchical clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters
 until only one cluster (or k clusters) left
- Build a bottom-up hierarchy of clusters

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster
 contains a point (or there are k clusters)
- Generate a top-down hierarchy of clusters

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. **Until** only a single cluster remains

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance/similarity between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

□ We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

Proximity Matrix

After Merging

How do we update the proximity matrix?

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						
p5						

Proximity Matrix

.

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
р5						

Proximity Matrix

.

- MIN
- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

Proximity Matrix

.

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						_
p5						
_						

Proximity Matrix

•

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
p3						_
p4						_
p5						

Proximity Matrix

•

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	<u> </u>	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_				14	
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_			13		
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_				14	
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

Update proximity matrix with new cluster {11, 12}

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	{I1,I2}	13	I 4	<u> 15</u>
{I1,I2}	1.00	0.70	0.65	0.50
13	0.70	1.00	0.40	0.30
I 4	0.65	0.40	1.00	0.80
15	1.00 0.70 0.65 0.50	0.30	0.80	1.00

Update proximity matrix with new cluster {11, 12}

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

Update proximity matrix with new cluster {11, 12} and {14, 15}

- Similarity of two clusters is based on the two most similar (closest)
 points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	{I1,I2, I3}	{I4,I5}
{I1,I2, I3}	1.00	0.65
{I4,I5}	0.65	1.00
	Only two cluster	s are left.

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

	I 1	12	13	1 4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

{I1,I2} I3				15	
11	1.00	0.10	0.60	0.20	
13	0.10	1.00	0.40	0.30	
14	0.60	0.40	1.00	0.80	
15	1.00 0.10 0.60 0.20	0.30	0.80	1.00	

- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

{I1,I2} I3				<u>15</u>	
11	1.00	0.10	0.60	0.20	
13	0.10	1.00	0.40	0.30	
14	0.60	0.40	1.00	0.80	
15	1.00 0.10 0.60 0.20	0.30	0.80	1.00	

Which two clusters should be merged next?

- Similarity of two clusters is based on the two least similar (most distant)
 points in the different clusters
 - Determined by all pairs of points in the two clusters

{I1,I2} I3			14	<u>15</u>	
11	1.00	0.10	0.60	0.20	
13	0.10	1.00	0.40	0.30	
14	0.60	0.40	1.00	0.80	
15	1.00 0.10 0.60 0.20	0.30	0.80	1.00	

Merge {3} with {4,5}, why?

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points

Two Clusters

Less susceptible to noise and outliers

Limitations of MAX

Original Points

- Tends to break large clusters
- Biased towards globular clusters

Two Clusters

Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum\limits_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}| * |Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}|}} \frac{\sum\limits_{\substack{p_{i} \in$$

Need to use average connectivity for scalability since total proximity favors large clusters

_	I 1	12	13	 4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Time and Space requirements

- \square O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- \square O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - \blacksquare Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters