Método de Quine McCluskey

También llamado método tabular, se utiliza para reducir ecuaciones booleanas. El método se divide en dos partes: encontrar los implicantes primos y obtener las ecuaciones a partir de la tabla de implicantes primos.

Encontrar implicantes primos.

1. Se toman los mintérminos de la tabla de verdad, y se convierten a su equivalente en binario. $\Sigma m(0,1,2,4,5,7,8,9,10,12,13,15)$

A	В	C	D	Z
A 0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

2. Se colocan en la Columna I, los mintérminos ordenados de menor a mayor número de unos.

Columna I

3. Se comparan los mintérminos que sólo tienen una diferencia en sus bits, formando la siguiente columna. En esta columna se escriben los mintérminos comparados y y el nuevo término, donde se marcará con un guión (_) esa diferencia. Cada término que pase a la siguiente columna deberá marcarse (✓)

Columna I Columna II (0,1)(0,2)(0,4) $\overline{0}$ (0,8)(1,5)(1,9)(2,10)(4,5)(4,12)(8,9)(8,10)(8,12)(5,7)(5,13) $\frac{1}{1}$ (9,13)(12,13)(7,15)(13,15)

4. El paso 3 se repetirá hasta que ya no sea posible formar nuevas columnas

Columna I					Columna II						Columna III					
0	0	0	0	0	√	(0,1)	0	0	0		1	(0,1,4,5)	0		0	
1					√				U	$\overline{0}$	√		U	$\frac{-}{0}$		_
1	0	0	0	1		(0,2)	0	0	_	-		(0,1,8,9)	_		0	_
2	0	0	1	0	✓	(0,4)	0	_	0	0	✓	(0,2,8,10)	_	0	_	0
4	0	1	0	0	✓	(0,8)		0	0	0	\checkmark	(0,4,1,5)	$\overline{0}$		0	_
8	1	0	0	0	\checkmark	(1,5)	0		0	1	✓	(0,4,8,12)		_	0	0
5	0	1	0	1	\checkmark	(1,9)		0	0	1	\checkmark	(0,8,1,9)		0	0	
9	1	0	0	1	\checkmark	(2,10)	_	0	1	0	\checkmark	(0,8,2,10)		0		0
10	1	0	1	0	\checkmark	(4,5)	0	1	0	_	\checkmark	(0,8,4,12)		_	0	0
12	1	1	0	0	\checkmark	(4,12)	_	1	0	0	\checkmark	$\overline{(1,5,9,13)}$			0	1
7	0	1	1	1	\checkmark	(8,9)	1	0	0	_	\checkmark	(1,9,5,13)	_	_	0	1
13	1	1	0	1	\checkmark	(8,10)	1	0	_	0	\checkmark	(4,5,12,13)	_	1	0	_
15	1	1	1	1	\checkmark	(8,12)	1	_	0	0	\checkmark	(4,12,5,13)		1	0	_
						(5,7)	0	1		1	✓	(8,9,12,13)	1	_	0	_
						(5,13)	_	1	0	1	\checkmark	(8,12,9,13)	1	_	0	_
						(9,13)	1	_	0	1	\checkmark	$\overline{(5,7,13,15)}$		1		Τ
						(12,13)	1	1	0	_	\checkmark	(5,13,7,15)	_	1	_	1
						(7,15)		1	1	1	\checkmark					
						(13,15)	1	1	_	1	\checkmark					

5. Si en alguna de las columnas se repiten elementos, se toma solamente uno para formar la siguiente columna.

Columna III

Columna IV

Tabla de Implicantes primos

- 1. Se dibuja una tabla, en las columnas se acomodan los mintérminos.
- 2. Acomodar en los renglones los términos de la última columna y de las columnas anteriores que no fueron marcados.
- 3. Se coloca una X en donde cruzan los términos con los mintérminos.

	0	1	2	4	5	7	8	9	10	12	13	15
(0,1,4,5,8,9,12,13)	X	X		X	X		X	X		X	X	
(0,2,8,10)	X		X				X		X			
(5,7,13,15)					X	X					X	X

- 4. Se agrupan verticalmente las X
- 5. Las X que quedan solas son las que marcan cuál término pasará a ser parte de la ecuación final. Esta X eliminará a las que se encuentran en su mismo renglón y se deben marcar los mintérminos involucrados.

		X	X	X	X	X	X	X	X	X	X	X	X
		0	1	2	4	5	7	8	9	10	12	13	15
*	(0,1,4,5,8,9,12,13)	X	- X T		X	X		X	X		X	X	
*	(0,2,8,10)	₹X		X				X		X			>
*	(5,7,13,15)	•				X	- X -					X	X

- 6. Si al final quedan mintérminos sin marcar, se tomará un término que los involucre, tomando el mismo criterio que en mapas de Karnaugh: agrupar el mayor número de mintérminos en el menor número de grupos posibles.
- 7. Los guiones representan a las variables que se eliminan, los 1 a las variables y los 0 a las variables negadas, formando cada una de las partes de la ecuación final.

Ecuación final: C' + B' D' + B D