2강. Basic Methods for Regression 1

◈ 담당교수 : 김 동 하

■ 학습개요

이번 강의에서는 회귀모형의 기본이 되는 선형회귀모형에 대해 학습한다. 한 개의 독립변수를 사용하는 단순선형회귀모형과 복수 개의 독립변수를 사용하는 다중선형회귀모형에 대해 배운다. 데이터를 가장 잘 설명하는 모수를 찾기 위한 추정 방법 중 하나인 최소 제곱법에 대해서도 다루도록 한다. 더 나아가, 선형모형이 실제로 데이터를 잘설명하고 있는지를 확인하기 위한 모형 적합성 검토 방법론에 대해서도 학습한다.

■ 학습목표

1	선형회귀분석에 대해 학습한다.
2	최소 제곱법을 통한 적합 방법에 대해 학습한다.
3	모형의 적합성 검토를 위한 다양한 방법에 대해 학습한다.

■ 주요용어

용어	해설		
	가장 단순한 회귀 모형으로 설명변수와 종속변수 사이의 관계를		
선형회귀분석	설명변수의 선형식으로 규정하는 모형이다. 사용하는 변수의 개수		
	에 따라 단순선형회귀모형, 다중선형회귀모형으로 구분할 수 있다.		
원 시 제 고 HJ	선형회귀모형의 모수를 추정하는 방식 중 하나. 종속변수와 독립변		
최소 제곱법	수의 선형식의 차에 대한 제곱합을 최소로 하는 모수를 찾는다.		
서청하기미청 저하나	선형 모형의 사용이 실제로 데이터에 적합한지를 테스트하기 위한		
선형회귀모형 적합성	방법. 선형성, 등분산성, 정규성, 독립성을 체크해야 하며, 각 가정		
검토	마다 적절한 검정 방법들을 이용하여 검토한다.		

■ 학습하기

01. 선형회귀분석

회귀분석이란?

- 종속변수가 독립변수들에 의해 어떻게 설명되는지를 분석하는 통계적 기법.
- 단순선형회귀분석: 한 개의 설명 변수의 선형 함수로 종속변수를 설명.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- 다중회귀분석: 설명 변수가 두 개 이상

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- 다항회귀분석: 설명변수들의 교차 영향이나 다항 영향을 고려.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{12} X_1 X_2 + \beta_{22} X_2^2 + \dots + \epsilon$$

질적 설명변수 처리

- 가변수 (Dummy variable) 활용: 범주가 n개 있는 경우 (n-1)개의 가변수를 사용하여 해당 변수를 표현할 수 있다.
- 예:대학교 학년 설명 변수 (1학년~4학년)

1학년	(1,0,0)
2학년	(0,1,0)
3학년	(0,0,1)
4학년	(0,0,0)
(Reference 변수)	(0,0,0)

선형 회귀식의 추정

- 최소 제곱법: 선형 회귀식에서 절편항과 기울기를 나타내는 숫자를 '모수'라 부른다.
- 주어진 데이터를 잘 설명하는 '모수'를 잘 추정하는 것이 중요.
- 데이터와 모형의 예측값 사이의 오차 제곱합을 최소로 하는 모수를 추정하는 방법.
- 주어진 데이터: $D = (x_1, y_1), \cdots (x_n, y_n)$

모형	단순 선형회귀모형	다중 선형회귀모형
회귀식	$Y = \beta_0 + \beta_1 X + \epsilon$	$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$
오차제곱합	$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$	$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{ip})^2$
예측	$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$	$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_p x_p$

선형회귀모형을 이용해 예측하기

- 예: 티비 광고 횟수 (X)를 통해 상품 판매량 (Y) 예측하기.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 10 + 20x$$

- 티비 광고 횟수가 5회일 때 (X=5), 상품 판매량은 10+20*5=110으로 예측할 수 있다.

단순선형회귀모형 적합하기

- Sale 데이터를 이용하여 단순선형회귀 모형을 적합해보자.
- 필요한 패키지 불러오기

```
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
```

- Sale 데이터 불러오기

> Adver: 광고량

> Sales: 상품의 판매량

```
data_file = "./data/Sales.csv"
Sales = pd.read_csv(data_file)
Sales.iloc[0:5]
```

	Company	Adver	Sales
0	1	11	23
1	2	19	32
2	3	23	36
3	4	26	46
4	5	56	93

- 단순선형회귀분석 적합하기

```
## 단순선형회귀분석 적합
SalesFit = smf.ols(formula='Sales~Adver', data=Sales).fit()
print(SalesFit.summary())
```

- 결과 확인하기

```
OLS Regression Results
Dep. Variable:
Model:
Method: Least
                                              Sales
OLS
Least Squares
                                                                              R-squared:
Adj. R-squared:
                                                                                                                                                0.979
0.976
455.5
                                                                Prob (F-statistic):
2022 Prob (F-statistic):
17:56 Log-Likelihood:
12 AIC:
10 BIC:
                                                                               F-statistic:
Method:
Date:
Time:
No. Observations:
Df Residuals:
Df Model:
Covariance Type:
                                       Mon, 23 May 2022
13:17:56
                                                                                                                                                 69.09

        coef
        std err
        t
        P>|t|
        [0.025]

        Intercept
        3.2848
        2.889
        1.137
        0.282
        -3.153

        Adver
        1.5972
        0.075
        21.343
        0.000
        1.430

                                                                                                                                              0.975]
Adver 1.5972 0.075 21.343 0.000 1.430
                                                                                                                                                 1.764
                                               0.879 Durbin-Watson:
0.644 Jarque-Bera (J
0.419 Prob(JB):
2.768 Cond. No.
Omnibus:
Prob(Omnibus):
                                                                                                                                                 2.470
                                                                               Jarque-Bera (JB):
                                                                                                                                                 0.828
```

02. 잔차분석

잔차분석이란?

- 모형 적합성 검토: 데이터가 실제로 선형회귀모형을 따르는지 확인할 필요가 있음.

선형회귀모형의 가정

- 선형회귀모형은 다음과 같은 네 가지의 가정을 필요로 함.
 - > 선형성
 - > 오차항 ϵ 의 등분산성
 - > 오차항 ϵ 의 정규성
 - > 오차항 ϵ 의 독립성
- 이를 확인하기 위해서 잔차 $\hat{\epsilon} = y \hat{y}$ 를 활용하여 검토.

오차항에 대한 검토

- 선형성 검토 방법의 예
 - > 잔차산점도 이용
- 등분산성 검토 방법의 예
 - > 잔차산점도 이용, Bruesch-Pagan 검정
- 정규성 검토 방법의 예
 - > 정규확률 그림 (Q-Q plot), Jarque-Bera 검정
- 독립성 검토 방법의 예
 - > Durbin-Watson 검정

선형성과 등분산성 검토: 잔차 산점도

- x축에는 적합값, v축에는 스튜던트화 잔차를 그린 산점도.
- 스튜던트화 잔차가 -2에서 2 사이에서 랜덤하게 흩어져 분포해 있으면 선형성과 등분산 성 가정을 만족하는 것으로 간주할 수 있음.

머신러닝 응용

정규성 검토: 정규확률 그림 (Q-Q plot)

- 정규성을 확인하기 위해 그리는 산점도.
- 점들이 직선 위에 가깝게 분포하고 있으면 정규성을 따르는 것으로 간주할 수 있음.

독립성 검토: Durbin-Watson 검정

- 더빈왓슨 통계량을 사용.
 - > 항상 0과 4 사이의 값을 가짐.
- > 2에 가까울수록 독립성을 만족하는 것으로 생각할 수 있음. 반대로, 2에서 멀어질수록 독립성 가정을 만족하지 않는 것으로 판단할 수 있음. d=

■ 연습문제

(객관식)1. 회귀 분석에 대한 설명으로 잘못된 것을 고르시오.

머신러닝 응용

① 종속변수가 독립변수들에 의해 어떻게 설명되는지를 분석하는 통계적 기법이다.

② 종속 변수를 반응 변수라고도 하며 독립변수들에 의해 설명되는 변수를 의미한다..

③ 오차항은 회귀식으로는 설명할 수 없는 랜덤 성분이며, 선형회귀모형의 경우 대체로 라플라스 분포를 가정한다.

④ 단순선형회귀분석의 경우 모수는 절편항과 기울기 두 개이다.

정답 : ③

해설 : 오차항은 주로 정규분포를 가정한다.

(단답형)2. 설명 변수 중 하나가 총 5가지의 수준을 가질 수 있는 질적 변수라 하자. 이를 회귀식에 포함하기 위해서는 몇 개의 가변수가 필요한가?

정답) 4개

해설) 질적 변수가 가질 수 있는 수준의 수보다 하나 작은 가변수가 필요하다.

(단답형)3. 모형 적합성 검토에서 더빈-왓슨 검정을 통해 확인할 수 있는 선형회귀모형의 가정은 무엇인가?

정답: 독립성

해설 : 해설 없음.

■ 정리하기

1. 회귀모형은 종속변수가 독립변수들에 의해 어떻게 설명되는지를 분석하는 기법으로, 가장 간단한 모형으로는 선형식을 활용한 선형회귀모형이 있다.

2. 선형회귀모형에 필요한 모수들은 제곱합을 최소로 하는 최소 제곱법을 이용하여 추정할 수 있다.

3. 선형모형이 실제로 데이터에 잘 적합하는지를 확인하기 위해 모형 적합성 검토가 필요하다. 선형성, 등분산성, 정규성, 독립성을 확인해야 하며, 이를 위해서 잔차 산점도, Q-Q plot, 더빈-왓승 검정 등이 사용된다.

머신러닝 응용

- 참고자료 (참고도서, 참고논문, 참고사이트 등)
- 1. 이성건,강현철, 『파이썬을 활용한 데이터 분석과 응용』, 자유아카데미(2021) => 파이썬을 활용한 데이터 분석과 응용은 통계 방법론의 개념과 파이썬을 이용한 구현에 대해 자세히 서술하고 있다.