LES GRAPHES

Exercice n°1:

Pour le graphe ci-contre :

- 1. Donner la liste des voisins de F, D et C.
- 2. Est-ce un graphe complet ? Connexe ?
- 3. Donner 3 exemples d'arcs adjacents.

Exercice n°2:

Pour le graphe ci-contre :

- 1. Donner la liste des voisins de chaque nœud.
- 2. Donner la liste des prédécesseurs de B, D et H puis celle des successeurs de A, C et E.
- 3. Est-ce un graphe complet ? Connexe ?

Exercice n°3:

Sommet	Liste successeurs
Α	D,F
В	A,E
С	В
D	B,C
E	A,D
F	E

Donner les graphes représentés par ces tableaux :

Utilisateur	Ami avec
Α	B,D,G
В	A,C,G
С	B,F,G
D	Α
E	F
F	C,E
G	A,B,C

Exercice n°4:

- 1. Pour les deux graphes précédents, représenter les matrices d'adjacence.
- 2. Représenter la matrice d'adjacence du graph sur le réseau social de l'activité d'introduction.
- 3. Même question pour les graphes suivants :

Exercice n°5:

Représenter les graphes correspondant aux matrices ci-dessous (commencer par vérifier si le graphe est orienté ou non).

																						_								
	\mathbf{x}_1	X ₂	X.,	X.4	X.5	X ₆											a	b	C	d	e	t	g	h						
		2	- 3	174	3	0		0	1	2	3	4	5	6	7	а	/ 0	1	1	0	0	0	0	0\						
\mathbf{x}_1	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	-	1 .	_	_	-	-	~	~	۱؞		X1	X2	Х3	X4	X5
-				-			-	-	_		1	1	_		_	b	1	U	U	1	1	U	U	U	X1	F	F	F	V	V
X ₂	1	0	0	1	0	0	1	1	U	U	1	1	U	U	U	_	1 1	0	0	1	0	0	0	0	X2	٧	F	F	F	F
				0			2	1	0	0	0	0	0	0	0	Ξ,	1 -	-	•	_	•	0		ا د	Х3	F	٧	F	F	٧
x ₃	1	1	0	0	1	0	3	0	1	0	0	0	0	0	0	d	١ ٥	1	1	U	1	0	0	U	X4	F	F	F	F	F
	0	0		_	_	0		-	-	-	-	-	-	-	-	e	lο	1	Ω	1	Ω	1	1	n I	X5	E	v	-	W	-
X_4	U	U	1	0	0	0	4	0	1	0	0	0	1	1	1	-	ľ	-	-	-		-	-	ĭ		-		-	V	-
v	Λ	^	0	0	0	1	5	0	n	0	0	1	0	0	0	f	0	0	0	0	1	0	1	0	X6	F	F	F	F	٧
x ₅	U	0	U	U	U	1		ř	Ľ	Ľ	Ŭ	-	ŭ	Ľ	_	_	l۸	0	0	0	1	1	0	-1 İ	X7	F	F	F	F	F
v	^	^		0	0	1	6	0	0	0	0	1	0	0	0	g	ľ	U	U	U	1	1	U	1	X8	F	F	F	F	F
x ₆	U	0	1	0	0	1	7	0	0	0	0	1	0	0	0	h	\ 0	0	0	0	0	0	1	0/						-
								ٿ																,						

Exercice n°6:

d		
	G1=CREER_GRAPHE_VIDE()	Représenter le graphe obtenu par le
	AJOUTER_SOMMET(G1,'A')	pseudo code ci-contre.
	AJOUTER_SOMMET(G1,'B')	pseudo code ci-contre.
	AJOUTER_SOMMET(G1,'C')	
	AJOUTER_SOMMET(G1,'D')	
	AJOUTER_SOMMET(G1,'E')	
	AJOUTER_SOMMET(G1,'F')	
	AJOUTER_ARC(G1,'A','B')	
	AJOUTER_ARC(G1,'B','C')	
	AJOUTER_ARC(G1,'C','F')	
	AJOUTER_ARC(G1,'F','E')	
	AJOUTER_ARC(G1,'E','D')	

Exercice n°7**:

Un graphe peut être pondéré (c'est-à-dire que ses arcs ont une

Tanger Tétouan	880 892	Al Hoceima	Gasablanca 385	720 736	303 281	Marrakech 675	288 258 258	Ouarzazate 028	609 555 epjino	278 294 294	625 641	Tanger 72	Tétouan
Rabat Safi	295	792	91 256	129	545	321 157	138 486	528 361	888	347			
Oujda	1100 601	293 445	632	983	343 198	826	403	820	541	Ī			
Ouarzazate	375	992	442	380	687	204	652						
Meknès	740	335	229	580	60	467							
Marrakech	273	758	238	176	483	I							
Essaouira Fès	173 756	887 275	351 289	640	Ī								
Casablanca	511	536		ı									
Al Hoceima	1091		1										
Agadir													

valeur appelé poids). Le tableau de distances

distances entre des

villes marocaines peut être représenter sous forme de graphe. Représenter le graphe et la matrice d'adjacence en tenant compte des distances.