Detecting the presence of a gene/protein:	
○ Immunofluorescence	
○ RNA in-situ hybridisation	
Study of gene function: in-vivo vs in-vitro:	
○ Knockout	
○ Conditional knockout	
○ Transgenic organism	
○ RNAi kockdown	
○ Overexpression	
RNA in-situ hybridisation (wholemount in-situ hybridisation = examination of the whole animal)	
 Genetic sequence of the gene in interest is acquired through sequencing or genetic database 	
Artificial manufacture of antisense mRNA sequence, which contains a probe	
 Addition of antibody, recognises and binds to the probe. 	
 Antibody attached to an enzyme or fluorophore, able to catalyse reactions to release signal. 	
• Protein detection:	
Primary antibody specific to protein of interest added, bind to protein	
 Secondary antibody added, with a fluorophore attached bind to primaey antibody, release signal. 	
• Knockout experiments (KO) see if the gene function is necessary in an organism. Creation of genetic KO organism:	
A vector gene is created by inserting a selection gene into the target gene exon to disrupt its function	
The vector gene is then added to be cultured with the cell line.	
 Selector gene, flanked by the exon fragments of the interested gene, can be incorporated into the cell genome via 	a
homologous recombination. Successfully introduced cells would express selector gene.	
 If non-homologous insertion (random insertion) occur, other genes on the vector would act as another selector, ca 	an
be distinguished.	
 Cells with target mutation is selected and transplanted into organism embryo to create chimeric animals. 	
 Chimeric animals (M/m) is then crossed with an wild type animal (M/M), half of the offspring will have heterozygos KO gene, can be identified through PCR 	us
• The heterozygous individuals can then be crossed together to produce 1/4 homozygous KO organism.	
The neterozygous individuals can then be crossed together to produce 174 homozygous NO organism.	
 Conditional KO: allow time-specific, tissue specific KO, in case the homozygous mutation is lethal. 	
○ Cre-Lox system:	
 Similar to creating KO organisms, the target gene is introduced into organism via homologous recombination 	n
 However, instead of disrupting the gene, it is flanked with two LoxP sites. 	
 Cre recombinase gene is then introduced to the organism downstream of a promotor. The promotor only 	
promote expression at a specific developmental stage or in specific tissues.	
 Under right condition, Cre recombinase is expressed, which will recombinate the two LoxP sites together, 	
excising the target gene.	
○ Flp-FRT system	
Analogous to the Cre-Lox system, target gene is introduced to the organism flanked by two FRT sites	
Flipase is expressed conditionally, which will invert the sequence between the two FRT sites	
This can cause conditional KO or conditional expression if a FRT-flanked STOP codon is introduced	

upstream to the target gene.
. Cain of function analysis
 Gain of function analysis: Construction of a vector sequence containing a tissue specific promotor and target gene.
Inject the vector sequence into the early embryo, allowing random insertion of the sequence
Genetic screening for the genotype.
- deficite sereening for the genetype.
Transient expression / inhibition:
 Electroporation: injection of DNA followed by electric shock to induce pore opening
○ Entry of the DNA segment, transient expression of the gene.
RNAi: First discovered in C.elegans.
○ Introduction of RNAi precursur into the cell (siRNA is double stranded)
o siRNA bind with protein to form RNA-induced silencing complex (RISC), recognise complementary target mRNA.
○ RISC bind to target mRNA, argonaute protein in the complex induce cleavage of the mRNA
 Transient response, longer lasting if using viral vectors to introduce shRNA into the nucleus