Uczenie ze wzmocnieniem

Michał Bieroński, Łukasz Odwrot05.06.2018

Spis treści

1	Opis algorytmów	2
2	Opis badanych parametrów	3
3	Badania metody bagging	4
4	Badania metody ADA-Boosting	6
5	Badania metody Random Forest	7
6	Optymalne wartości parametrów dla zbiorów i porównania	8
7	Wnioski	10

1 Opis algorytmów

Zespoły klasyfikatorów wykorzystują wiele modeli decyzyjnych używających tego samego algorytmu. Zakłada się, że decyzja podjęta na podstawie głosu większości modeli jest prawidłowa. Do badań bazowym klasyfikatorem będzie *Naive Bayes*. Głównymi metodami tworzenia zespołów klasyfikatorów są *bagging* i *boosting*. W przypadku pierwszej metody przykłady uczące losowane są ze zwracaniem, w drugim przypadku sytuacja wygląda podobnie, jednak szansa wylosowania każdego z przykładów odbywa się z różnym prawdopodobieństwem, zależnym od tego, jak dobrze radzą sobie wytrenowane już klasyfikatory.

Rysunek 1: Losowanie przykładów uczących dla metod baging i boosting

Ponadto w przypadku metody bagging głos każdego z klasyfikatorów liczony jest tak samo, w przypadku boostingu każdy model ma przypisaną wagę głosu na podstawie jakości klasyfikacji. Niektóre modele mogą zostać odrzucone w przypadku zbyt niskiej jakości klasyfikacji (AdaBoost wymaga 50% skuteczności).

Rysunek 2: Przypisywanie wag modelom składowym

Zewnętrzne źródła podają, że użycie boostingu może w przypadku słabych klasyfikatorów dać bardzo dobre wyniki, a w przypadku boostingu prościej jest zapobiegać przeuczeniu poszczególnych modeli.

Oprócz tego zbadana zostanie metoda random forest, która wykorzystuje wiele drzew decyzyjnych w celu podjęcia decyzji. Drzewa trenowane są zwykle w oparciu o bagging.

2 Opis badanych parametrów

Dla każdej metody zbadany zostanie wpływ trzech parametrów na jakość klasyfikatorów. W przypadku dwóch pierwszych jako bazowy klasyfikator wykorzystany zostanie *Naive Bayes*

Bagging:

- n_estimators liczba klasyfikatorów,
- max_samples odsetek przykładów dla każdego klasyfikatora jaki będzie brany z przykładów uczących,
- max_features determinuje ilość cech jakie będą brane pod uwagę przy uczeniu poszczególnych klasyfikatorów

Boosting:

- n_estimators liczba klasyfikatorów,
- learning_rate współczynnik obniżenia znaczenia każdego z klasyfikatorów,

• algorithm - algorytm używany przez algorytm ada-boost, w używanym pakiecie dostępne są 'SAMME' i 'SAMME.R'.

Random Forest:

- n_estimators liczba klasyfikatorów,
- max_features determinuje ilość cech jakie będą brane pod uwagę przy uczeniu poszczególnych klasyfikatorów
- max_depth maksymalna liczba poziomów pojedynczego drzewa

3 Badania metody bagging

wine				
n_estimators	Accuracy	Precision	Recall	FScore
5.00	0.961	0.961	0.961	0.961
10.00	0.966	0.967	0.966	0.966
15.00	0.966	0.967	0.966	0.966
20.00	0.955	0.955	0.955	0.955
25.00	0.949	0.949	0.949	0.949
max_samples	Accuracy	Precision	Recall	FScore
0.50	0.955	0.955	0.955	0.955
0.60	0.938	0.938	0.938	0.938
0.70	0.961	0.961	0.961	0.961
0.80	0.966	0.967	0.966	0.966
0.90	0.961	0.961	0.961	0.961
1.00	0.955	0.955	0.955	0.955
max_features	Accuracy	Precision	Recall	FScore
0.50	0.910	0.910	0.910	0.910
0.60	0.955	0.955	0.955	0.955
0.70	0.944	0.944	0.944	0.944
0.80	0.966	0.966	0.966	0.966
0.90	0.944	0.944	0.944	0.944
1.00	0.961	0.961	0.961	0.961

glass				
$n_{\text{-}}$ estimators	Accuracy	Precision	Recall	FScore
5.00	0.374	0.401	0.374	0.360
10.00	0.294	0.383	0.294	0.302
15.00	0.379	0.422	0.379	0.374
20.00	0.407	0.432	0.407	0.390
25.00	0.327	0.410	0.327	0.342
max_samples	Accuracy	Precision	Recall	FScore
0.50	0.416	0.458	0.416	0.379
0.60	0.374	0.431	0.374	0.366
0.70	0.374	0.471	0.374	0.389
0.80	0.369	0.418	0.369	0.372
0.90	0.355	0.418	0.355	0.356
1.00	0.402	0.452	0.402	0.399
max_features	Accuracy	Precision	Recall	FScore
0.50	0.379	0.440	0.379	0.374
0.60	0.402	0.420	0.402	0.391
0.70	0.397	0.423	0.397	0.389
0.80	0.355	0.380	0.355	0.349
0.90	0.341	0.411	0.341	0.353
1.00	0.425	0.449	0.425	0.409
		diabetes		
$n_{estimators}$	Accuracy	Precision	Recall	FScore
5.00	0.746	0.650	0.590	0.618
10.00	0.754	0.667	0.590	0.626
15.00	0.758	0.669	0.604	0.635
20.00	0.754	0.664	0.597	0.629
25.00	0.753	0.664	0.590	0.625
max_samples	Accuracy	Precision	Recall	FScore
0.50	0.754	0.664	0.597	0.629
0.60	0.759	0.671	0.608	0.638
0.70	0.755	0.668	0.593	0.628
0.80	0.745	0.650	0.582	0.614
0.90	0.754	0.664	0.597	0.629
1.00	0.749	0.653	0.597	0.624
max_features	Accuracy	Precision	Recall	FScore
0.50	0.755	0.700	0.522	0.598
0.60	0.743	0.698	0.466	0.559
0.70	0.749	0.673	0.545	0.602
0.80	0.757	0.669	0.597	0.631
0.90	0.753	0.662	0.593	0.626
1.00	0.753	0.664	0.590	0.625

4 Badania metody ADA-Boosting

wine				
n_estimators	Accuracy	Precision	Recall	FScore
5.00	0.803	0.805	0.803	0.802
10.00	0.815	0.825	0.815	0.816
20.00	0.921	0.925	0.921	0.921
30.00	0.899	0.903	0.899	0.899
40.00	0.949	0.951	0.949	0.950
50.00	0.916	0.922	0.916	0.915
60.00	0.938	0.939	0.938	0.938
70.00	0.966	0.967	0.966	0.966
learning_rate	Accuracy	Precision	Recall	FScore
0.80	0.972	0.972	0.972	0.972
0.85	0.921	0.931	0.921	0.922
0.90	0.927	0.929	0.927	0.927
0.95	0.961	0.961	0.961	0.961
1.00	0.916	0.922	0.916	0.915
algorithm	Accuracy	Precision	Recall	FScore
SAMME	0.966	0.966	0.966	0.966
SAMME.R	0.916	0.922	0.916	0.915

glass					
$n_{-}estimators$	Accuracy	Precision	Recall	FScore	
5.00	0.425	0.442	0.425	0.429	
10.00	0.421	0.464	0.421	0.420	
20.00	0.481	0.529	0.481	0.492	
30.00	0.528	0.575	0.528	0.535	
40.00	0.598	0.631	0.598	0.599	
50.00	0.584	0.627	0.584	0.575	
60.00	0.551	0.587	0.551	0.537	
70.00	0.593	0.590	0.593	0.573	
learning_rate	Accuracy	Precision	Recall	FScore	
0.80	0.565	0.626	0.565	0.550	
0.85	0.519	0.534	0.519	0.482	
0.90	0.523	0.543	0.523	0.509	
0.95	0.547	0.563	0.547	0.539	
1.00	0.584	0.627	0.584	0.575	
algorithm	Accuracy	Precision	Recall	FScore	
SAMME	0.379	0.442	0.379	0.395	
SAMME.R	0.584	0.627	0.584	0.575	

diabetes				
n_{-} estimators	Accuracy	Precision	Recall	FScore
5.00	0.645	0.472	0.157	0.235
10.00	0.503	0.397	0.821	0.535
20.00	0.484	0.373	0.698	0.486
30.00	0.556	0.368	0.381	0.374
40.00	0.559	0.391	0.478	0.430
50.00	0.533	0.390	0.604	0.474
60.00	0.591	0.421	0.455	0.437
70.00	0.589	0.430	0.549	0.482
learning_rate	Accuracy	Precision	Recall	FScore
0.80	0.546	0.414	0.724	0.526
0.85	0.518	0.377	0.582	0.457
0.90	0.531	0.372	0.496	0.425
0.95	0.617	0.453	0.463	0.458
1.00	0.533	0.390	0.604	0.474
algorithm	Accuracy	Precision	Recall	FScore
SAMME	0.760	0.688	0.575	0.626
SAMME.R	0.533	0.390	0.604	0.474

5 Badania metody Random Forest

wine				
n_{-} estimators	Accuracy	Precision	Recall	FScore
5.00	0.955	0.956	0.955	0.955
10.00	0.978	0.978	0.978	0.978
15.00	0.949	0.950	0.949	0.949
20.00	0.972	0.974	0.972	0.972
25.00	0.955	0.956	0.955	0.955
max_features	Accuracy	Precision	Recall	FScore
0.50	0.978	0.978	0.978	0.978
0.60	0.955	0.955	0.955	0.955
0.70	0.944	0.944	0.944	0.943
0.80	0.921	0.924	0.921	0.921
0.90	0.933	0.933	0.933	0.933
1.00	0.944	0.944	0.944	0.944
max_depth	Accuracy	Precision	Recall	FScore
3.00	0.944	0.947	0.944	0.944
4.00	0.961	0.962	0.961	0.960
5.00	0.944	0.944	0.944	0.944
6.00	0.961	0.961	0.961	0.960
7.00	0.933	0.934	0.933	0.933
8.00	0.966	0.966	0.966	0.966

glass				
n_estimators	Accuracy	Precision	Recall	FScore
5.00	0.650	0.648	0.650	0.647
10.00	0.678	0.668	0.678	0.667
15.00	0.654	0.654	0.654	0.649
20.00	0.664	0.666	0.664	0.653
25.00	0.678	0.675	0.678	0.671
max_features	Accuracy	Precision	Recall	FScore
0.50	0.664	0.657	0.664	0.657
0.60	0.682	0.690	0.682	0.681
0.70	0.636	0.634	0.636	0.631
0.80	0.650	0.649	0.650	0.643
0.90	0.668	0.671	0.668	0.662
1.00	0.626	0.619	0.626	0.612
max_depth	Accuracy	Precision	Recall	FScore
3.00	0.612	0.568	0.612	0.582
4.00	0.678	0.706	0.678	0.657
5.00	0.654	0.653	0.654	0.644
6.00	0.673	0.684	0.673	0.660
7.00	0.640	0.644	0.640	0.630
8.00	0.682	0.685	0.682	0.679
		diabetes	1	
n_estimators	Accuracy	Precision	Recall	FScore
5.00	0.732	0.624	0.582	0.602
10.00	0.738	0.652	0.537	0.589
15.00	0.759	0.675	0.597	0.634
20.00	0.746	0.665	0.549	0.601
25.00	0.755	0.675	0.575	0.621
max_features	Accuracy	Precision	Recall	FScore
0.50	0.737	0.657	0.515	0.577
0.60	0.758	0.703	0.530	0.604
0.70	0.754	0.689	0.537	0.604
0.80	0.740	0.656	0.534	0.588
0.90	0.754	0.682	0.552	0.610
1.00	0.754	0.685	0.545	0.607
max_depth	Accuracy	Precision	Recall	FScore
3.00	0.757	0.731	0.478	0.578
4.00	0.755	0.696	0.530	0.602
5.00	0.760	0.696	0.556	0.618
6.00	0.753	0.682	0.545	0.606
7.00	0.757	0.685	0.560	0.616
8.00	0.747	0.661	0.567	0.610

6 Optymalne wartości parametrów dla zbiorów i porównania

Dla każdego zestawu danych i każdej metody wybrane zostały wyznaczone optymalne wartości parametrów.

Dla metody bagging wartości parametrów kolejno: n_estimators, max_samples, max_features

1. wine: 15, 0.8, 0.8

2. glass: 20, 1.0, 1.0

3. diabetes:15, 0.6, 0.8

Dla metody bagging wartości parametrów kolejno: n_estimators, learning_rate, algorithm

1. wine: 70, 0.8, 'SAMME'

2. glass: 40, 1.0, 'SAMME.R'

3. diabetes: 10, 0.8, 'SAMME'

Dla metody random forest wartości parametrów kolejno: n_estimators, max_features, max_depth

1. wine: 10, 0.5, 8

2. glass: 25, 0.6, 8

3. diabetes: 15, 0.9, 5

Rezultaty zestawiono z wynikami z poprzednich laboratoriów.

Metoda	Wine	Diabetes	Glass
C4.5	0.932	0.816	0.691
NaiveBayes	0.957	0.748	0.646
Knn	0.972	0.690	0.608
Baging	0.966	0.643	0.671
Boosting	0.922	0.6	0.291
Random Fores	0.949	0.631	0.689

Rysunek 3: Porównanie rezultatów różnych metod klasyfikacji

7 Wnioski

Zastosowane metody na relatywnie słabym, niesparametryzowanym modelu dały porównywalne rezultaty do badanych na poprzednich zajęciach. Optymalizacja klasyfikatora bazowego, albo jego zmiana mogłyby znaczącą wpłynąć na poprawę wyników.