使用标准方程法求解参数 θ 的最优值,使用迭代法可以一次性求解 θ 的最优值,可以一步得到最优值。

Gradient Descent

举例

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

我们假设有一个非常简单的代价函数 $J(\theta)$,假设 θ 是一个数字不是向量,J 是这个实参数 θ 的二次函数,如何最小化一个二次函数?---求导,并将导数置零,对 J 关于 θ 的导数,求出使得 $J(\theta)$ 最小的 θ 值。

当 Θ 不是实数的时候,它是一个 n+1 维的参数向量,代价函数 J 是这个向量的函数,也就是 Θ 0 到 Θ m 的函数,像下图右边这个平方代价函数。

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0,\theta_1,\dots,\theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \dots = 0 \quad \text{(for every j)}$$
 Solve for $\theta_0,\theta_1,\dots,\theta_n$

通过对每个参数 θ 求 J 得偏导数,然后把它们全部置零,求出 θ 0, θ 1 一直到 θ n 的值,能够最小化代价函数 J 的 θ 值。等价的这个 θ 能够使得代价函数 J(θ)最小化。举例:

Examples: m=4.

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

假设有一个 m=4 个训练样本,假设这两个训练样本就是我的所有数据,在我的训练数集中加上一列对应额外特征变量的 x0

Examples: m=4.

Ţ	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\cdot x_0$	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

接下来构建矩阵,矩阵包含了训练样本的所有特征变量

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

这里有我所有的特征变量x,我们将这些数字全部放到矩阵中,对y构建一个向量y

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

所以 X 会是一个 $M^*(n+1)$ 维矩阵,y 会是一个 m 维向量,其中 m 是训练样本数量,n 是特征 变量数,n+1 是因为我加的这个额外的特征变量 x0,如果用矩阵 X 和向量 y 来计算这个, θ 等于 x 转置乘以 X 的逆乘以 X 的转置乘以 y。这样就能够使得代价函数最小化 θ

Examples: m=4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	x_0	x_1	x_2	x_3	x_4	y
	1	2104	- 5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	_1	36	178
$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$ $\theta = (X^T X)^{-1} X^T y$					$\underline{y} = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$	460 232 315 178

假如我们有 M 个训练样本,x1y1 直到 xnyn,n 个特征变量,每一个训练样本 xi 可能看起来像一个向量,像这样一个 n+1 维特征向量,我们要构建矩阵 X 的方法,也叫设计矩阵。

$$m$$
 examples $(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})$; n features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \qquad \swarrow$$
 (&

每个训练样本给出一个这样特征向量,这样的 n+1 维向量,构建设计矩阵 • X 的方法,取第一个训练样本,一个向量,取他的转置,让 x1 的转置作为我设计矩阵的第一行

Attem agiseb ym to wor feith eith ecogenari ha eilan To-feith agist and ecogenari ha eilan

然后将 x2 的转置作为 X 的第二行,以此类推直到最后一个训练样本 xn,取它的转置作为矩阵 X 的最后一行,这个矩阵就是一个 $m^*(n+1)$ 维矩阵。

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}} \in \mathbb{R}^{n+1}$$

$$(\text{Aesign} \\ \text{Moders})$$

$$(\text{Mesign} \\ \text{Moders})$$