Procesarea Semnalelor

Laboratorul 8 Serii de timp - Partea I

1 Forma unei serii de timp

O serie de timp este modelată drept un vector care are atașat și informație temporală. În general, vom spune că avem la momentul t_i o valoare masurată y[i] iar seria de timp completă este notată \mathbf{y} și are dimensiune N.

La acest laborator, o serie de timp este formată din trei componente dominante: trend, sezonalitate și caracteristici locale. Aveți un exemplu de astfel de serie de timp în Figura 1.

Figure 1: Vânzările companiei Johnson & Johnson pentru intervalul 1960 - 1980.

2 Ghid Python

Folosiți funcții din numpy sau scipy ca să rezolvați problemele de regresie liniară din acest laborator.

3 Exerciții

- 1. Generați și analizați o serie de timp univariată folosind modelul AR.
 - (a) Generați o serie de timp aleatoare de dimnesiune N=1000 care să fie suma a trei componente: trend, sezon și variații mici. Pentru componenta trend folosiți o ecuație de grad 2, pentru sezon folosiți două frecvențe iar pentru variațiile mici folosind zgomot alb gaussian. Desenați seria de timp și cele trei componente separat.
 - (b) Calculați vectorul de autocorelație pentru seria de timp generată. Verificați dacă este o funcție în *numpy* care să calculeze aceată cantitate. Încercați să înțelegeți de unde vine această cantitate. Desenați vectorul de autocorelație.
 - (c) Calculați un model AR de dimensiune p este seria de timp calculată anterior. Afișați pe ecran seria de timp originală și predicțiile.
 - (d) Dacă vrem să prezicem mereu doar valoarea seriei de timp pentru un singur pas în viitor, calculați parametrii modelului AR p și orizontul m care oferă cea mai bună performantă de predicție (hyperparameter tunning).