ងខ្លឹះសិត្សាអនុងមន៍ និចខ្សែអោច

រៀបរៀងដោយ ស៊ុំ សំអុន

A A 2

• ដែលកំណត់

 \circ អនុគមន៍សនិទាន $y=rac{f(x)}{g(x)}$ មានន័យកាលណា g(x)
eq 1 ដូច្នេះ $\mathbb{D}=\mathbb{R}-\{g(x)=0\}$

• អាស៊ីមគូត

- \circ បើ $\lim_{x o a} f(x) = \pm \infty$ នោះគេអាចទាញថាបន្ទាត់ដែលមានសមីការ x = a ជា អាស៊ីមកូតឈរ នៃក្រាបតាងអនុគមន៍ f ។
- \circ បើ $\lim_{x o +\infty} f(x) = b$ នោះគេអាចទាញថាបន្ទាត់ដែលមានសមីការ y = b ជា អាស៊ីមតូតដេក នៃក្រាបតាងអនុគមន៍ f ។
- \circ បើគេមានអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{b} + \phi(\mathbf{x})$ ជាទម្រង់កាណូនិច ដែល $\lim_{\mathbf{x} \to \pm \infty} \phi(\mathbf{x}) = 0$ នោះគេអាចទាញថាបន្ទាត់ដែលមានសមីការ $\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$ ជា អាស៊ីមតូតទ្រេត នៃក្រាបតាងអនុគមន៍ \mathbf{f} ។ ម៉្យាងទៀត បើ $\lim_{\mathbf{x} \to \pm \infty} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}} = \mathbf{a}$ និង $\lim_{\mathbf{x} \to \pm \infty} [\mathbf{f}(\mathbf{x}) \mathbf{a}\mathbf{x}] = \mathbf{b}$ នោះបន្ទាត់ដែលមានសមីការ $\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$ ជាអាស៊ីមតូតទ្រេត នៃ ក្រាបតាងអនុគមន៍ \mathbf{f} ។

• សនីភារមន្ទាត់ម៉ះ

- \circ បើគេមានអនុគមន៍ y=f(x) ហើយមានក្រាបតាង C ប៉ះនឹងបន្ទាត់ (T) ត្រង់អាប់ស៊ីស \mathbf{x}_0 នោះគេបាន $(T):y-y_0=y_0'(\mathbf{x}-\mathbf{x}_0)$ ឬ $(T):y=f'(\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_0)+f(\mathbf{x}_0)$ ដែលយើងត្រូវសរសេរទៅជាទម្រង់ $(T):y=a\mathbf{x}+b$ ។
- ១. ចូររកដែនកំណត់នៃអនុគមន៍ខាងក្រោម៖

(fi)
$$f(x) = \frac{x+1}{x-1}$$

(ພ)
$$f(x) = \ln(x+1) + e^{2x}$$

(8)
$$f(x) = \frac{2-3x}{x^2-3x+2}$$

(a)
$$f(x) = x + 1 + \ln\left(\frac{3+x}{3-x}\right)$$

(a)
$$f(x) = \frac{x^2 + x + 1}{x^2 - x + 1}$$

(i)
$$f(x) = x + 1 + \ln\left(\frac{x+2}{x-2}\right)$$

២. រកសមីការបន្ទាត់ប៉ះ T ដែលប៉ះនឹងខ្សែកោង៖

- (ក) $C: f(x) = x^2 + 1$ ក្រង់ចំណុចដែលមានអាប់ស៊ីស $x_0 = 1$
- (ខ) $\mathbf{C}:\mathbf{f}(\mathbf{x})=1-\mathbf{x}\ln\mathbf{x}$ ត្រង់ចំណុចដែលមានអាប់ស៊ីស $\mathbf{x}_0=1$
- (គ) $C: f(x) = \frac{e^x}{1-\sin x}$ ត្រង់ចំណុចដែលមានអាប់ស៊ីស $x_0 = 0$
- (ឃ) $\mathbf{C}:\mathbf{f}(\mathbf{x})=\mathbf{e}^{\mathbf{x}}+rac{\mathbf{e}^{\mathbf{x}}+1}{\mathbf{e}^{\mathbf{x}}-1}$ ត្រង់ចំណុចដែលមានអាប់ស៊ីស $\mathbf{x}_0=\ln 2$

$oldsymbol{\mathsf{m}}$. គេមានអនុគមន៍ \mathbf{f} កំណត់ដោយ $\mathbf{y} = \mathbf{f}(\mathbf{x}) = 1 + rac{\ln \mathbf{x}}{\mathbf{x}}$ និងមានខ្សែកោង \mathbf{H} ។

- (ក) សរសេរសមីការបន្ទាត់ ${f d}$ ដែលប៉ះខ្សែកោង ${f H}$ ត្រង់ចំណុច ${f A}(1,1)$ ។
- (ខ) គេឲ្យខ្សែកោង K តាងអនុគមន៍ $y=g(x)=e^{3x}+x-e^6$ ។ ចូរកំណត់កូអរដោនេនៃចំណុចប្រសព្វ B រវាងបន្ទាត់ d និងខ្សែកោង K តាង g ។

៤. រកតម្លៃបរមានៃអនុគមន៍ខាងក្រោម៖

(fi)
$$y = \frac{x^2 - x - 2}{x + 2}$$

(2)
$$y = \frac{x^2 - 3x + 6}{x - 2}$$

(a)
$$y = \frac{x^2 + x + 2}{x - 1}$$

- (គ) $y=\frac{x^2-x-2}{x+2}$ (2) $y=\frac{x^2-3x+6}{x-2}$ (គ) $y=\frac{x^2+x+2}{x-1}$ ថ. គេឲ្យអនុគមន៍ $f(x)=\frac{ax^2+bx+c}{x-2}$ ។ រកតម្លៃមេគុណ a,b និងc ដើម្បីឲ្យអនុគមន៍ f មានតម្លៃស្មើ -1 ចំពោះ x=1 ហើយមានតម្លៃ បរមាស៊ើ 8 ត្រង់ $\mathbf{x} = 4$ ។
- **៦.** គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}}{\mathbf{x}}$ ។ រកតម្លៃមេគុណ \mathbf{a}, \mathbf{b} និង \mathbf{c} ដើម្បីឲ្យអនុគមន៍ \mathbf{f} មានតម្លៃស្មើ $\mathbf{8}$ ចំពោះ $\mathbf{x} = \mathbf{1}$ ហើយមានតម្លៃ អតិបរមាស្នើ -1 ត្រង់ $\mathbf{x} = -2$ ំ
- ${rak 0}$. គេឲ្យអនុគមន៍ ${
 m g}({
 m x})={
 m a}{
 m x}+{
 m a}+rac{{
 m b}}{{
 m x}+2}$ ចំពោះ ${
 m x}
 eq -2$ ។ រកតម្លៃមេគុណ ${
 m a}$ និង ${
 m b}$ ដើម្បីឲ្យអនុគមន៍ ${
 m g}$ មានតម្លៃអប្បរមាស្មមើ ${
 m 2}$ ចំពោះ $\mathbf{x}=1$ ហើយមានកម្លៃអភិបរមាស្នើ -1 ក្រង់ $\mathbf{x}=0$
- ៨. រកសមីការអាស៊ីមតូតនៃក្រាបតាងអនុគមន៍នីមួយៗដូចខាងក្រោម៖

(fi)
$$y = f(x) = \frac{x^2 + x + 1}{x - 1}$$

(8)
$$y = f(x) = \frac{x^2 + 2x - 3}{x + 2}$$

(f)
$$y = f(x) = \frac{3x^2 + 6x + 3}{x^2 + 2}$$

- (ក) $y=f(x)=\dfrac{x^2+x+1}{x-1}$ (ខ) $y=f(x)=\dfrac{x^2+2x-3}{x+2}$ ថឺ. គេឲ្យអនុគមន៍ f កំណត់ដោយ $y=f(x)=\dfrac{x^2-x+1}{x-1}$ និងមានក្រាប C។
 - (ក) រកសមីការអាស៊ីមតូតឈរ និងអាស៊ីមតូតទ្រេតរបស់ក្រាប С ។
 - (ខ) បង្ហាញថាចំណុច $\mathbf{I}(1,1)$ ជាផ្ចិតឆ្លុះរបស់ក្រាប \mathbf{C} ។
- ${f 90}.$ គេមានអនុគមន៍ ${f f}$ កំណត់ដោយ ${f y}={f f}({f x})=rac{{f x}}{{f x}^2+1}$ និងមានក្រាប ${f C}$ ។
 - (ក) រកសមីការអាស៊ីមតូតរបស់ក្រាប C ។
 - (ខ) សិក្សាភាពគូរ-សេស រួចទាញថា គល់ O នៃតម្រុយជាផ្ចិតឆ្លុះនៃក្រាប C ។
- 99. សិក្សាអថេរភាព និងសង់ក្រាបនៃអនុគមន៍ខាងក្រោម៖

(n)
$$f(x) = \frac{x^2 + x + 1}{x + 1}$$

(8)
$$f(x) = \frac{x^2 - 2x - 3}{x - 1}$$

(a)
$$f(x) = \frac{x^2 - 3x + 2}{x + 2}$$

១២. សិក្សាអថេរភាព និងសង់ក្រាបនៃអនុគមន៍ខាងក្រោម៖

(ñ)
$$f(x) = \frac{x^2 + x + 1}{x^2 + 1}$$

(ii)
$$f(x) = \frac{x^2 + x + 1}{x^2 + 1}$$
 (2) $f(x) = \frac{x^2 - 2x + 1}{x^2 - 2x}$

(a)
$$f(x) = \frac{3x^2 + 6x + 3}{x^2 + 2}$$

- **១៣.** អនុវត្តន៍ \mathbf{f} កំណត់ដោយ $\mathbf{f}(\mathbf{x}) = \mathbf{x} + 2 \frac{4}{\mathbf{x} 1}$ និងមានខ្សែកោង \mathbf{C} ។
 - (ក) រកដែនកំណត់នៃអនុគមន៍ \mathbf{f} ។ គណនា និងសិក្សាសញ្ញាដេរីវេ $\mathbf{f}'(\mathbf{x})$ ។
 - (ខ) រកតម្លៃអតិបរមា និងអប្បបរមានៃ f ។
 - (ฅ) កំណត់សមីការនៃអាស៊ីមកូតឈរ និងទ្រេតនៃខ្សែកោង С ។
 - (ш) សិក្សាទីតាំងធៀបរវាងអាស៊ីមកូតទ្រេត និងខ្សែកោង С ។
 - (ង) សង់តារាងអថេរភាពនៃអនុគមន៍ f និងសង់ខ្សែកោង C ។
- ${f 9d}$. អនុគមន៍ ${f f}$ កំណត់ចំពោះគ្រប់ ${f x}
 eq 1$ ដោយ ${f f}({f x}) = rac{{f x}^2 3{f x} + 6}{{f x} 1}$ និងមានក្រាប ${f C}$ ។
 - (ក) រកចំនួនពិត a,b និង c ដើម្បីឲ្យ $f(x)=ax+b+rac{c}{x-1}$ ចំពោះគ្រប់ $x \neq 1$ ។
 - (ខ) រកតម្លៃអតិបរមា និងអប្បបរមានៃ f ។
 - (ฅ) រកសមីការនៃអាស៊ីមកូតឈរ និងទ្រេតនៃខ្សែកោង С ។
 - (ш) សិក្សាទីតាំងធៀបរវាងអាស៊ីមតួតទ្រេត និងខ្សែកោង С ។

- (ង) សង់តារាងអថេរភាពនៃអនុគមន៍ f និងសង់ខ្សែកោង C ។
- ${f 9}$ ៥. ${f h}$ ជាអនុគមន៍កំនត់ដោយ ${f h}({f x})=rac{{f x}^2}{{f x}-1}, {f x}\in {\Bbb R}$ និង ${f x}
 eq 1$ ។
 - (ក) កំណត់រក a,b និង c ដើម្បីឲ្យ $h(x)=ax+b+rac{c}{x-1}$ ចំពោះ x
 eq 1 ។
 - (ខ) ទាញរកសមីការអាស៊ីមតូតទ្រេតនៃខ្សែកោង C តំណាងអនុគមន៍ f ។
- **១៦.** g ជាអនុគមន៍កំណត់ដោយ $\mathbf{g}(\mathbf{x}) = \frac{\mathbf{x}^2 3\mathbf{x} 4}{\mathbf{x} 2}$ មានក្រាប C ។
 - (ក) កំណត់ចំនួនពិត a,b និង c ដើម្បីឲ្យ $g(x)=ax+b+rac{c}{x-2}$ ចំពោះ $x \neq 2$ ។
 - (ខ) កំណត់សមីការអាស៊ីមតូតឈរ និងទ្រេតនៃក្រាប C ។
 - (គ) បង្ហាញថាចំណុច $\mathrm{I}(2;1)$ ជាផ្ចិតឆ្លះនៃក្រាប C ។
- ${f 9}$ ៧. គេឲ្យអនុគមន៍ ${f g}$ កំណត់ដោយ ${f g}({f x})=rac{4x-4}{x^2}, x
 eq 0$ ។ ${f C}$ ជាក្រាបនៃអនុគមន៍ ${f g}$ ។
 - (ក) គណនា $\lim_{x \to +\infty} g(x), \; \lim_{x \to -\infty} g(x)$ និង $\lim_{x \to 0} g(x)$ រួចទាញរកអាស៊ីមតូតនៃក្រាប C ។
 - (ខ) គូសតារាងអថេរភាពនៃ g ។
 - (គ) បង្ហាញថា C មានចំណុចរបត់មួយ រួចរកកូអរដោនេនៃចំណុចរបត់នេះ ។
 - (\mathfrak{W}) គណនា $g(-4),\ g(-2),\ g(1)$ និង g(4) ។
 - (ង) សង់ក្រាប C នៅក្នុងតម្រុយអរតូណរម៉ាល់ ។
- $oldsymbol{9}$ ៨. f ជាអនុគមន៍កំណត់ដោយ $\mathbf{f}(\mathbf{x})=rac{\mathbf{x}^2+6\mathbf{x}}{2\left(\mathbf{x}^2-2\mathbf{x}+2
 ight)}$ មានក្រាប \mathbf{C} ក្នុងតម្រុយអរតូណរម៉ាល់ $\left(\mathbf{O},ec{\mathbf{i}},ec{\mathbf{j}}
 ight)$ ។
 - (ក) បង្ហាញថា \mathbf{f} កំណត់បានចំពោះគ្រប់ $\mathbf{x} \in \mathbb{R}$ ។
 - (ខ) គណនាលីមីតនៃ ${f f}$ កាលណា ${f x}$ ខិតជិត $+\infty, -\infty$ រួចបង្ហាញថា ${f C}$ មានអាស៊ីមតូតមួយ ដែលត្រូវបញ្ជាក់សមីការ ។
 - (គ) គណនា $\mathbf{f}'(\mathbf{x})$ រួចសិក្សាសញ្ញា $\mathbf{f}'(\mathbf{x})$ ។ ទាញថា \mathbf{f} មានតម្លៃអតិបរមាមួយ និងអប្បបរមាមួយ រួចគណនាតម្លៃទាំងពីរនេះ ។
 - (ឃ) គូសតារាងអថេរភាពនៃ f ។
 - (ង) គណនាកូអរដោនេចំណុចប្រសព្វរវាង C និងអ័ក្សទាំងពីរនៃតម្រួយ និងចំណុចប្រសព្វរវាង C និងអាស៊ីមតូតដេក ។
 - (ច) គណនា f(2) និង f(3) ។ សង់ខ្សែកោង C និងអាស៊ីមកូត ។
- **១៩.** គេឲ្យអនុគមន៍ f កំណត់ដោយ $y = f(x) = x + 2 + \frac{4}{x-1}$ និងមានខ្សែកោង C ។
 - (ក) រកដែនកំណត់នៃអនុគន៍ f គណនា និងសិកស្សាសញ្ញាដេរីវេ f'(x) ។ បង្ហាញថា f មានអតិបរមាមួយ និងអប្បបរមាមួយ ហើយគណនា តម្លៃនៃបរមាទាំងពីរនេះ ។
 - (ខ) កំណត់សមីការនៃអាស៊ីមតូតឈរ និងទ្រេតនៃខ្សែកោង C ។
 - (ฅ) សិក្សាទីតាំងធៀបរវាងអាស៊ីមតូតទ្រេត នឹងខ្សែកោង С ។
 - $({f w})$ សង់តារាងអថេរភាពនៃអនុគមន៍ ${f f}$ និងសង់ខ្សែកោង ${f C}$
- ${rac{f v}{f O}}$. គេមានអនុគមន៍ ${f f}$ កំណត់ដោយ ${f f}({f x})=rac{2x^2-7x+5}{x^2-5x+7}$ ។ យើងតាងដោយក្រាប ${f C}$ របស់វាលើតម្រុយអរកូណរម៉ាល់ $\left({f O}, {f i}, {f j}
 ight)$ ។
 - 1. រកដែនកំណត់ D នៃអនុគមន៍ f ។
 - f 2. សិក្សាលីមីតនៃអនុគមន៍ f f(x) ត្រង់ $-\infty$ និងត្រង់ $+\infty$ ។ ទាញរកសមីការអាស៊ីមតូត f d ទៅនឹងក្រាប f C ត្រង់ $-\infty$ និង $+\infty$ ។

- ${f 3.}$ (ក) ស្រាយបំភ្លឺថាគ្រប់ចំនួនពិត ${f x}\in {\Bbb D}$, ដេរីវេ ${f f}'({f x})=rac{-3\left(x^2-6x+8
 ight)}{\left(x^2-5x+7
 ight)}$ ។
 - (ខ) សិក្សាអថេរភាពនៃអនុគមន៍ f និងសង់តារាអថេរភាពនៃអនុគមន៍ f ។
 - (គ) សង់ក្រាប C នៃអនុគមន៍ f ។
- $oldsymbol{rac{v}{9}}$. គេមានអនុគមន៍ \mathbf{f} កំណត់លើ $\mathbb{R}-\{2\}$ ដោយ $\mathbf{f}(\mathbf{x})=rac{\mathbf{x}^2-\mathbf{x}-1}{\mathbf{x}-2}$ ។ យើងតាង \mathbf{C} ជាក្រាបរបស់វា លើតម្រុយអរតូណរម៉ាល់ $\left(0,\vec{\mathbf{i}},\vec{\mathbf{j}}
 ight)$ ។
 - ${f 1.}$ សិក្សាលីមីតនៃអនុគមន៍ ${f f}$ ត្រង់ $-\infty$ និងត្រង់ $+\infty$ ។
 - 2. សិក្សាអថេរភាព និងសង់ការាងអថេរភាពនៃអនុគមន៍ f ។
 - **3.** (ក) រកចំនួនពិត a,b,c ដែលគ្រប់ $x \neq 2$; $f(x) = ax + b + \frac{c}{x-2}$ ។
 - (ខ) គេតាង d ដែលមានសមីការ y=x+1។ បង្ហាញថា d ជាអាស៊ីមកូតនៃ C ត្រង់ $+\infty$ និង $-\infty$ ។ សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ d ។
 - (គ) សង់ក្រាប C និង បន្ទាក់ d ។
- ២២. f ជាអនុគមន៍កំណត់លើ $\mathrm{I}=\mathbb{R}-\{-2,2\}$ ដោយ $\mathrm{f}(\mathrm{x})=rac{2\mathrm{x}^2}{\mathrm{x}^2-4}$ ។
 - (ក) សិក្សាលីមីតនៃ ${\bf f}$ ត្រង់ $-\infty, -2, 2$ និង $+\infty$ ។ ទាញរកសមីការអាស៊ីមតូតដេក និង អាស៊ីមតូតឈរនៃក្រាបតាង ${\bf f}$ ។
 - (ខ) សិក្សាអថេរភាព និង សង់តារាងអថេរភាពនៃ f ។
 - (គ) សង់នៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(\mathbf{o}, \vec{\mathbf{i}}, \vec{\mathbf{j}}\right)$ ក្រាបតាង \mathbf{f} ។
- ២៣. គេមានអនុគមន៍ \mathbf{f} ដែល $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 \mathbf{x} 3}{\mathbf{x} + 1}$ និង គេតាងដោយ (\mathbf{C}) ក្រាបនៃអនុគមន៍ \mathbf{f} ។
 - (ក) រកដែនកំណត់នៃអនុគន៍ f ។
 - (ខ) បង្ហាញថា $f(x) = x 2 \frac{1}{x+1}$ ។
 - (គ) បង្ហាញថាបន្ទាត់ដែលមានសមីការ $\mathbf{y}=\mathbf{x}-2$ ជាអាស៊ីមតូតទ្រេតនៃក្រាប (\mathbf{C}) ។
 - (ឃ) សិក្សាអថេរភាព និងសង់ក្រាបនៃ f ។
- ${rac{{f v}}{{f c}}}$. គេមានអនុគមន៍ ${f f}({f x})=rac{({f x}+2)({f x}-2)}{(1-{f x})}$ ។
 - (ក) រកដែនកំណត់ f(x) ។
 - (ខ) បង្ហាញថា $\mathbf{f}(\mathbf{x}) = -\mathbf{x} 1 + \frac{3}{\mathbf{x} 1}$ ។
 - (គ) សិក្សាអថេរភាពនិង សង់ក្រាប \mathbf{C} នៃអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{(\mathbf{x}+2)(\mathbf{x}-2)}{(1-\mathbf{x})}$ ។
- ២៥. គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x)=rac{1}{1+e^x}+rac{2}{9}x$ និង C តាងក្រាបរបស់ f ។
 - **1.** អនុគមន៍ g កំណត់លើ $\mathbb R$ ដោយ $\mathbf g(\mathbf x) = 2\mathbf e^{2\mathbf x} 5\mathbf e^{\mathbf x} + 2$ ។
 - (ក) ផ្ទៀងផ្ទាក់ថា $\mathbf{g}(\mathbf{x}) = (2\mathbf{e}^{\mathbf{x}} 1)\,(\mathbf{e}^{\mathbf{x}} 2)$ ។
 - (ខ) ទាញយកតាមតម្លៃនៃ ${\bf x}$ ចំពោះសញ្ញានៃ ${\bf g}({\bf x})$ ។
 - $\mathbf{2.}$ (ក) រក $\lim_{\mathbf{x} \to +\infty} \mathbf{f}(\mathbf{x})$ និង $\lim_{\mathbf{x} \to -\infty} \mathbf{f}(\mathbf{x})$ ។

- (ខ) អនុគមន៍ f មានដេរីវេ f' ។ បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x គេបាន f'(x) និង g(x) មានសញ្ញាដូចគ្នា។
- (គ) សិក្សាអថេរភាពនៃអនុគមន៍ f លើ R ។
- ${rac{f v}{f b}}$. អនុគមន៍ ${rac{c}{f r}}$ កំណត់ដោយ ${
 m y}={
 m f}({
 m x})=rac{{
 m x}^2-3{
 m x}-3}{{
 m x}-2}$ មានក្រាបតំណាង ${
 m (C)}$ ។
 - (ក) ចូររកដែនកំណត់នៃអនុគមន៍ f ។
 - (ខ) ចូរគណនា $\lim_{x \to 2} f(x); \lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x)$ ។ រួចទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប (C) ។
 - (គ) ចូរបង្ហាញថា $\mathbf{f}(\mathbf{x}) = \mathbf{x} 1 + \frac{-5}{\mathbf{x} 2}$ ។ រួចទាញរកសមីការអាស៊ីមតូតទ្រេត។
 - (ឃ) សិក្សាអថេរភាព សង់ការាងអថេរភាព និង សង់ក្រាប(C)។
- ២៧. គេអោយអនុគមន៍ f កំណត់ដោយ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 5\mathbf{x} + 7}{\mathbf{x} 2}$ មានក្រាបតំណាង (\mathbf{C}) ។
 - (ក) រកដែនកំណត់នៃអនុគមន៍ **f** ។
 - (ខ) គណនា $\lim_{\mathbf{x} \to 2} \mathbf{f}(\mathbf{x})$; $\lim_{\mathbf{x} \to \pm \infty} \mathbf{f}(\mathbf{x})$ ។ ទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប \mathbf{C} ។
 - (គ) រកតម្លៃនៃចំនួនពិត a,b និង c ដែលធ្វើអោយ $f(x)=ax+b+rac{c}{x-2}$ ។ បង្ហាញថា បន្ទាត់ d ដែលមានសមីការ $f(x)=x-3+rac{1}{x-2}$ ជាអាស៊ីមតូតទ្រេតនៃក្រាប C ត្រង់ $\pm\infty$ ។
 - (ឃ) សិក្សាអថេរភាព និងសង់ក្រាប С។
- **២៨.** គេឲ្យអនុគមន៍ \mathbf{f} កំណត់ដោយ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 + \mathbf{x} + \mathbf{4}}{\mathbf{x} + \mathbf{1}}$ ហើយមានក្រាប \mathbf{C} ។
 - (ក) រកដែនកំណត់នៃអនុគមន៍ f។
 - (ខ) គណនា $\lim_{x \to -1} f(x)$, $\lim_{x \to +\infty} f(x)$ ។
 - (ฅ) សរសេរសមីការអាស៊ីមតូតឈរ និង អាស៊ីមតូតទ្រេតនៃក្រាប С ។
 - $({f w})$ សិក្សាសញ្ញាដេរីវេ ${f f}'({f x})$ នៃអនុគមន៍ ${f f}$ ។
 - (ង) សង់តារាងអថេរភាព អាស៊ីមតូត និង ក្រាប C នៃអនុគមន៍ f ។
- ${rac{f v}{6}}$. គេមានអនុគមន៍ ${rac{c}{6}}$ កំណត់ដោយ ${rac{c}{6}}=rac{{rac{c}{6}}-4}{{rac{c}{6}}}$ មានក្រាបតំណាង ${rac{c}{6}}$ ។
 - 9. ចូររកដែនកំណត់នៃអនុគមន៍ f ។
 - ${f v}$. គណនា $\lim_{{
 m x} \to 1} {
 m f}({
 m x}); \; \lim_{{
 m x} \to \pm \infty} {
 m f}({
 m x})$ ។ រួចទាញរកសមីការអាស៊ីមតូតឈរ។
 - ${\sf M}.$ បង្ហាញថា ${\sf f}({\sf x})={\sf x}+1-rac{3}{{\sf x}-1}$ ។ រួចបង្ហាញថាបន្ទាត់ ${\sf d}$ ដែលមានសមីការ ${\sf y}={\sf x}+1$ ជាអាស៊ីមកូតទ្រេតនៃក្រាប ${\sf C}$ ខាង $\pm\infty$ ។
 - $oldsymbol{\mathfrak{c}}$. គណនាដេរីវេ $\mathbf{f}'(\mathbf{x})$ និងសិក្សាសញ្ញាដេរីវេ $\mathbf{f}'(\mathbf{x})$ ។
 - ៥. (ក) សង់តារាងអថេរភាពនៃ f។
 - (ខ) សិក្សាទីតាំងធៀបរវាងក្រាប C និងបន្ទាត់ d ។
 - (គ) សង់ក្រាប C និងបន្ទាត់ d ក្នុងតម្រុយតែមួយ។

សូមសំណា១ល្អ!