

Fully Convolutional DenseNets for Semantic Segmentation

Simon Jégou, Michal Drozdzal, David Vazquez, <u>Adriana Romero</u>, Yoshua Bengio

Outline

- Classical architectures and their extensions to FCN
- FC-DenseNets
- Results
- Wrap up

(*Zhou et al., 2015*)

(Xu et al., 2015)

(Xu et al., 2015)

(https://www.youtube.com/watch?v=FroRjEejA30, 2015)

Classical architectures and their extensions

CNN - classification

ResNet - classification

DenseNet - classification

Connect every layer to every other layer of the same filter size (dense blocks).

G. Huang et al., 2016

DenseNet - classification

Connect every layer to every other layer of the same filter size (dense blocks).

Pense Block (4 layers, growth rate 4)

Dense Net - classification

Connect every layer to every other layer of the same filter size (dense blocks).

Pense Block (4 layers, growth rate 4)

Dense Net - classification

Connect every layer to every other layer of the same filter size (dense blocks).

Dense Block (4 layers, growth rate 4)

G. Huang et al., 2016

Dense Net - classification

Connect every layer to every other layer of the same filter size (dense blocks).

Dense Block (4 layers, growth rate 4)

CNNs

CNNs

$$F(x) = \begin{pmatrix} Conv. \\ + \\ RelU \end{pmatrix} x n$$

CNNs

$$F(x) = \begin{pmatrix} Conv. \\ + \\ RelU \end{pmatrix} x n$$

ResNets

CNNs

$$F(x) = \begin{pmatrix} Conv. \\ + \\ RelU \end{pmatrix} x n$$

CNNs

$$F(x) = \begin{pmatrix} Conv. \\ + \\ RelU \end{pmatrix} x n$$

ResNets

DenseNets

CNNs

$$F(x) = \begin{pmatrix} Conv. \\ + \\ RelU \end{pmatrix} x n$$

ResNets

DenseNets

Classification results

- * Sum (J. Long et al., 2015)
- * Concat (O. Ronneberger et al., 2015)
- * Index tracking (V. Badrinarayanan et al., 2015)

* ResUnet (M. Drozdzal et al., 2016)

- * Sum (J. Long et al., 2015)
- * Concat (O. Ronneberger et al., 2015)
- * Index tracking (V. Badrinarayanan et al., 2015)

FC-DenseNets

Naive extension of DenseNets

Naive extension of DenseNets

Naive extension of Dense Nets

Fully Convolutional DenseNets

Fully Convolutional DenseNets

Results

Quantitative results - CamVid

Model	Pretrained	# parameters (M)	Building	Tree	Sky	Car	Sign	Road	Pedestrian	Fence	Pole	Sidewalk	Cyclist	Mean IoU	Global accuracy
SegNet [1]	✓	29.5	68.7	52.0	87.0	58.5	13.4	86.2	25.3	17.9	16.0	60.5	24.8	46.4	62.5
Bayesian SegNet [14]	✓	29.5	n/a								63.1	86.9			
DeconvNet [20]	√	252	n/a								48.9	85.9			
Visin et al. [35]	~	32.3	n/a								58.8	88.7			
FCN8 [19]	X	134.5	77.8	71.0	88.7	76.1	32.7	91.2	41.7	24.4	19.9	72.7	31.0	57.0	88.0
DeepLab-LFOV [5]	√	37.3	81.5	74.6	89.0	82.2	42.3	92.2	48.4	27.2	14.3	75.4	50.1	61.6	_
Dilation8 [36]	√	140.8	82.6	76.2	89.0	84.0	46.9	92.2	56.3	35.8	23.4	75.3	55.5	65.3	79.0
Dilation8 + FSO [16]	✓	140.8	84.0	77.2	91.3	85.6	49.9	92.5	59.1	37.6	16.9	76.0	57.2	66.1	88.3
Classic Upsampling	X	20	73.5	72.2	92.4	66.2	26.9	90.0	37.7	22.7	30.8	69.6	25.1	55.2	86.8
FC-DenseNet56 (k=12)	X	1.5	77.6	72.0	92.4	73.2	31.8	92.8	37.9	26.2	32.6	79.9	31.1	58.9	88.9
FC-DenseNet67 (k=16)	X	3.5	80.2	75.4	93.0	78.2	40.9	94.7	58.4	30.7	38.4	81.9	52.1	65.8	90.8
FC-DenseNet103 (k=16)	X	9.4	83.0	77.3	93.0	77.3	43.9	94.5	59.6	37.1	37.8	82.2	50.5	66.9	91.5

Qualitative results - good

Qualitative results - fail

Quantitative results - Gatech

Model	Acc.					
2D models (no time)						
2D-V2V-from scratch [33]	55.7					
FC-DenseNet103	79.4					
3D models (incorporate time)						
3D-V2V-from scratch [33]	66.7					
3D-V2V-pretrained [33]	76.0					

Wrap up

Wrap up

- We presented an extension of DenseNets for semantic segmentation.
- FC-DenseNets encourage deep supervision and feature reuse, while mitigating the feature explosion.
- FC-DenseNets as an ensemble of variable depth networks.

Fully Convolutional DenseNets for Semantic Segmentation

Simon Jégou, Michal Drozdzal, David Vazquez, <u>Adriana Romero</u>, Yoshua Bengio

Thank you!