KOMUNIKAZIO SERIALA AVR-n (USART)

USART, ingelesezko *Universal Syncronous Asynchronous Receiver-Transmitter* sigletatik dator. Mikrokontrolagailua, ordenagailuarekin komunikatzeko balioko du.

Komunikazioaren azalpena

USART bidezko komunikazioa simplea da azaltzen, komunikazioa hasteko start bita erabiliko da, hau da beheranzko aldaketa bat detektatzen denean seinalean, UART-ek interpretatu egingo du, hurrengo bitak datuak direla. Azkenik stop bitaren bidez, mezua bukatu dela adieraziko da. Stop bita, 1-eko konstantea izango da. Ondorengo irudian ikusi daiteke aurretik azaldutakoa.

AVR mikrokontrolagailu batekin komunikazio seriala gauzatzeko erabiliko diren kodearen eta programen azalpen hau bi ataletan banatuko da.

- AVR-n konfigurazioa
- Screen serie terminalaren instalazioa eta oinarrizko erabilera

AVR-n konfigurazioa

Konfigurazioarekin hasteko, erregistroak behar diren bezala hasieratu beharko ditugu, mikrokontrolagailuak izatea nahi dugun portaera lortzeko.

DATU TRANSMISIOA ETA DATU JASOKETA GAITU

Bit hauek UCSR0B erregistroaren barruan daude, eta datu transmisioa(TX) edo jasoketa(RX) gaitzeko ahalmena daukate, bitak 1 balioa daukatenean. Biten balioa 1-era jartzeko honako hau izango da kodea:

```
UCSR0B |= (1 << TXEN0);
UCSR0B |= (1 << RXEN0);
```

USART OPERAZIO MODUA AUKERATU

Atmega328p mikrokontrolagailuak hainbat operazio modu desberdinetan funtzionatzeko konfigura

daiteke, ondoko taulan ikus daitekeen bezala

UMSEL0[1:0]	Mode
00	Asynchronous USART
01	Synchronous USART
10	Reserved
11	Master SPI (MSPIM) ⁽¹⁾

Irudian antzematen den moduan, *UCSROC* erregistroko *UMSEL0[1:0]* bitei balio desberdinak emanda aukeratuko dugu operazio modua. Gure kasuan asinkronoa erabiliko dugu, beraz *UMSEL01* = 0 eta *UMSEL00* = 0 izan beharko dute.

```
UCSR0C &=~ (1 << UMSEL00);
UCSR0C &=~ (1 << UMSEL01);
```

PARITATEA

Datuak elkartrukatzerakoan erroreak detektatzeko, paritate bitak erabiltzen dira.

UPM0[1:0]	ParityMode
00	Disabled
01	Reserved
10	Enabled, Even Parity
11	Enabled, Odd Parity

Ikus daitekeen bezala, bi paritate mota daude, bakoitia eta bikoitia. Gure kasuan ez dugu erabiliko, beraz *UPM01* = 0 eta *UPM00* = 0 izan beharko dute.

```
UCSROC &=~ (1 << UPM00);
UCSROC &=~ (1 << UPM01);
```

STOP BITA KONFIGURATU

Hasieran aipatu den bezala, transmisio bakoitza noiz hasten den eta bukatzen den jakiteko *start* eta *stop* bitak erabiltzen dira. *Stop* bitaren kasuan bita bat edo bi izan daitezke. Luzeera hori *USBSO* bitean balioak aldatuz zehaztuko da. Gure kasuan bateko luzeera jarriko diogu, beraz *USBSO* = 0 izan beharko da.

USBS0	Stop Bit(s)					
0	1-bit					
1	2-bit					

```
UCSR0C &=~ (1 << USBS0);
```

DATUAK IZANGO DUEN BIT KOPURUA ZEHAZTU

Datuak izango duen bit kopurua zehazteko *UCSR0C* eta *UCSR0B* erregistroetako *UCSZ0[2:0]* bitei balio desberdinak emango zaizkie, nahi den luzeeraz lortzeko. Ondorengo taulan bit hauen balioak eta bakoitzari dagokion bit kopurua agertzen dira.

UCSZ0[2:0]	Character Size
000	5-bit
001	6-bit
010	7-bit
011	8-bit
100	Reserved
101	Reserved
110	Reserved
111	9-bit

Gure kasuan datuak 8 bit izango ditu, horretarako *UCSZ0[2:0]* biten balioak 011 izan behar dute hurrenez hurren

BAUDRATE

Baud rate, komunikazio kanal batetik transmititzen diren datuen maiztasuna zehazten du. Atmega328p mikrokontrolagailuan *UBRR0* erregistroan balio bat zehaztu behar da nahi den *baud rate*-aren arabera. Balio hori kalkulatzeko ondorengo formula erabiliko da.

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRRn Value
Synchronous Master mode	$BAUD = \frac{f_{OSC}}{2(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{2\mathrm{BAUD}} - 1$

Gure kasuan 9600-ko *baud rate*-a nahi dugu, beraz hau izango litzateke *UBRR0*-n jarri beharko genukeen balioa:

$$UBRR0 = rac{16000000}{8*9600} - 1 = 207, 3$$

Baud Rate [bps]	f _{osc} = 16.0000MHz				f _{osc} = 18.4320MHz				f _{osc} = 20.0000MHz			
	U2Xn = 0		U2Xn = 1		U2Xn = 0		U2Xn = 1		U2Xn = 0		U2Xn = 1	
	UBRRn	Error	UBRRn	Error	UBRRn	Error	UBRRn	Error	UBRRn	Error	UBRRn	Error
2400	416	-0.1%	832	0.0%	479	0.0%	959	0.0%	520	0.0%	1041	0.0%
4800	207	0.2%	416	-0.1%	239	0.0%	479	0.0%	259	0.2%	520	0.0%
9600	103	0.2%	207	0.2%	119	0.0%	239	0.0%	129	0.2%	259	0.2%
14.4k	68	0.6%	138	-0.1%	79	0.0%	159	0.0%	86	-0.2%	173	-0.2%
19.2k	51	0.2%	103	0.2%	59	0.0%	119	0.0%	64	0.2%	129	0.2%
28.8k	34	-0.8%	68	0.6%	39	0.0%	79	0.0%	42	0.9%	86	-0.2%
38.4k	25	0.2%	51	0.2%	29	0.0%	59	0.0%	32	-1.4%	64	0.2%
57.6k	16	2.1%	34	-0.8%	19	0.0%	39	0.0%	21	-1.4%	42	0.9%
76.8k	12	0.2%	25	0.2%	14	0.0%	29	0.0%	15	1.7%	32	-1.4%
115.2k	8	-3.5%	16	2.1%	9	0.0%	19	0.0%	10	-1.4%	21	-1.4%
230.4k	3	8.5%	8	-3.5%	4	0.0%	9	0.0%	4	8.5%	10	-1.4%
250k	3	0.0%	7	0.0%	4	-7.8%	8	2.4%	4	0.0%	9	0.0%
0.5M	1	0.0%	3	0.0%	_	_	4	-7.8%	_	_	4	0.0%
1M	0	0.0%	1	0.0%	-	_	_	_	_	_	_	-
Max.(1)	1Mbps		2Mbps		1.152Mbps		2.304Mbps		1.25Mbps		2.5Mbps	

Taulan ikusten den bezala lortutako emaitza, taulan 3 lerroan eta 4 zutabean dagoen balioa da. Gure formulan ikusten den bezala *baud rate-*a gordetzeko erabiltzen diren 16 bitak erabili beharrean zati 8 egiten da. Hori *U2X0* bita 1 balioa daukalako da. Bit hori modu asinkronoan erabiltzen da eta baud ratearen zatitzailean 16 tik 8 ra pasatzen du, transmisio maiztasuna bikoiztuz.

Honako hau izango litzateke beharrezko kodea, 207 balioa zuzenean jarriz:

```
UCSR0A |= (1 << U2X0);
UBRR0 = 207;
```

Zenbakia zuzenean jarri nahi bada, formula jarri dezakegu:

KONTUZ: formulako biderketa jartzen badugu overflow gertetuko da, biderketako emaitza adierazteko ez dago bit nahikoa. Hori ekiditeko, zatiketak erabiliz egingo da kalkulua.

```
#define F_CPU 16000000

#define BAUD 9600

UCSR0A |= (1 << U2X0);

UBRR0 = (F_CPU/16/BAUD)-1;
```

C lengoaian karaktere baten ascii kodea lortzea nahiko erraza da, honako hau izango litzateke zenbaki baten ascii kodea lortzeko kodea:

Screen serie terminalaren instalazioa eta oinarrizko erabilera

Screen, terminal multiplexore bat da. Window manager baten antzekoa, baina sesio desberdinak terminalean irekitzen utziko digu. Gure kasuan Komunikazio serialean trukatzen diren mezuak pantailaratzeko erabiliko dugu.

Instalazioa banaketa desberdinetan

Programa honen instalazioa oso simplean da, programa linuxeko banaketa gehienetako errepositorioetan baitago.

Arch-en oinarritutako banaketetan:

```
pacman -S screen
```

Debian-en oinarritutako banaketak (Debian, Ubuntu):

```
sudo apt update
sudo apt install screen
```

Erabilera

Gure kasuan, komando bakarra erebiliko dugu egindako programako komunikazio serialean trukatzen diren mezuak bistaratzeko.

```
screen /dev/ttyACM0 9600
```

Komandoak honako parametroak dauzka:

- 1. portua
- 2. baud-rate