Arquitetura e Organização de Computadores

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

02 de Abril de 2023

Memória interna

- 5.1) Quais são as principais propriedades da memória semicondutora?
- O elemento básico de uma memória semicondutora é a célula de memória.
- Todas as células de memória semicondutora compartilham certas propriedades:
- Apresentam dois estados estáveis, que podem ser usados para representar o binário 1 e 0.
- São capazes de serem gravadas, para definir o estado.
- São capazes de serem lidas, para verificar o estado.

Memória principal semicondutora

Figure: Operação de uma célula de memória

Figure: Tipos de memória semicondutora

Tipo de memória	Categoria	Apagamento	Mecanismo de gravação	Volatilidade
Memória de acesso aleatório (RAM)	Memória de leitura-gravação	Eletricamente, em nível de byte	Eletricamente	Volátil
Memória somente de leitura (ROM)	Memória	Não é possível	Máscaras	Não volátil
ROM programável (PROM — do inglês, <i>Programmable ROM</i>)				
PROM apagável (EPROM — do inglês, <i>Erasable PROM</i>)		Luz UV, Em nível de chip		
PROM eletricamente apagável (EEPROM — do inglês, Electrically Erasable PROM) Memória flash	principalmente	Eletricamente, em nível de byte	Eletricamente	
		Eletricamente, em nível de bloco		

- A mais comum é conhecida como memória de acesso aleatório (RAM — do inglês, Random Access Memory).
- Uma característica distinta da memória que é designada como RAM é a possibilidade tanto de ler dados como escrever novos dados na memória de um modo fácil e rápido.
- Outra característica distinta da RAM é que ela é volátil.
- A tecnologia RAM é dividida em duas tecnologias:
 - Dinâmica;
 - Estática.

 Uma RAM dinâmica (Dynamic RAM - DRAM) é feita com células que armazenam dados como carga em capacitores.

 Uma RAM estática (SRAM) é um dispositivo que usa os mesmos elementos lógicos usados no processador.

- 5.3) Qual a diferença entre DRAM e SRAM em termos de características como velocidade, tamanho e custo?
- 5.2) Qual a diferença entre DRAM e SRAM em termos de aplicação?
- Principais diferenças:
 - **Velocidade**: Mais rápida SRAM, utiliza flip-flops para armazenar dados, não precisando de atualização constante.
 - **Tamanho**: A SRAM requer mais espaço físico para armazenamento, utiliza mais componentes.
 - **Custo**: A SRAM é mais cara devido a sua complexidade de fabricação e a quantidade de espaço físico que ocupa.
- DRAM: Mais adequada para aplicações que exigem alta densidade de armazenamento e são sensíveis ao custo.
- SRAM: Mais adequada para aplicações que exigem alta velocidade e baixa latência. Por conseguir acessar dados mais rapidamente que a DRAM porém, com custo maior.

Tipos de ROM

- 5.4) Quais são as aplicações para a ROM?
- 5.5) Quais as diferenças entre EPROM, EEPROM e memória flash?
- Uma memória somente de leitura (Read-Only Memory -ROM) contém um padrão permanente de dados, que não pode ser mudado.
- Uma ROM é não volátil, ou seja, nenhuma fonte de energia é necessária para manter os valores dos bits na memória.
- A ROM programável (PROM) é não volátil e pode ser gravada apenas uma vez.
- A memória somente de leitura programável e apagável (EPROM) memória apenas de leitura que pode ser programada uma vez e não pode ser apagada eletronicamente (Expor a luz ultravioleta).

Tipos de ROM

- Uma forma mais atraente de memória principalmente de leitura é a memória somente de leitura programável e apagável eletricamente (EEPROM).
- Essa é uma memória principalmente de leitura que pode ser gravada a qualquer momento sem apagar o conteúdo anterior; somente o byte ou os bytes endereçados são atualizados.
- Outra forma de memória de semicondutor é a memória flash.
- É intermediária entre a EPROM e a EEPROM tanto no custo quanto na funcionalidade.
- Não volátil e pode ser programada e apagada eletronicamente, armazena grande número de dados em um único chip.

Lógica do chip

- Assim como outros produtos de circuito integrado, a memória semicondutora vem em chips encapsulados.
- Cada chip contém um array de células de memória.
- Por exemplo, um chip de 16 Mbits poderia ser organizado como 1 M palavras de 16 bits.
- No outro extremo está a chamada organização de 1 bit por chip, em que os dados são lidos/escritos 1 bit de cada vez.

Encapsulamento do chip

 Um circuito integrado é montado em uma cápsula que contém pinos para conexão com o mundo exterior:

DDR-DRAM

- Uma das formas mais utilizadas de DRAM é a DRAM síncrona (Synchronous DRAM - SDRAM).
- A SDRAM troca dados com o processador sincronizado com um sinal de clock externo e executando na velocidade do barramento do processador/memória, sem imposição de estados de espera.
- Com o acesso síncrono, a DRAM move dados para dentro e para fora sob o controle do clock do sistema.

DDR-DRAM

DDR-DRAM

• Atribuições dos pinos da SDRAM:

A0 a A13	Entradas de endereço				
BAO, BA1	Linhas de endereço de banco				
CLK	Entrada de clock				
CKE	Habilitação de clock				
CS	Seleção de chip				
RAS	Strobe de endereço de linha				
CAS	Strobe de endereço de coluna				
WE	Habilitação de escrita				
DQ0 a DQ7	Entrada/saída de dados				
DQM	Máscara de dados				

DDR-SDRAM

- Uma nova versão da SDRAM, referida como Double-Data-Rate DRAM (DDR-DRAM), proporciona características que aumentam a taxa de dados.
- A DDR alcança taxas mais altas de dados de três maneiras:
 - A transferência de dados é sincronizada tanto na borda de subida como na de descida do clock;
 - A DDR usa frequência de clock mais alta no barramento para aumentar a taxa de transferência;
 - Um esquema de buffering é usado (memória temporária).

DDR-SDRAM

Assim, a JEDEC (Joint Electron Device Engiineering Council)
 definiu quatro gerações da tecnologia da DDR:

	DDR1	DDR2	DDR3	DDR4
Buffer de pré-busca (bits)	2	4	8	8
Nível de voltagem (V)	2,5	1,8	1,5	1,2
Taxas de dados do barramento frontal (Mbps)	200-400	400-1.066	800-2.133	2.133-4.266

 Embora cada nova geração da SDRAM resulte em muito mais capacidade, a velocidade do core da SDRAM não mudou de modo significativo de uma geração para a outra.

DDR-SDRAM

Memória flash

- Outra forma de memória semicondutora é a memória flash.
- Ela é usada nas aplicações tanto como memória interna como externa.
- Uma característica importante da memória flash é que ela é uma memória permanente, o que significa que ela retém dados quando não há energia aplicada à memória.

Memória flash

Figure: Estrutura do transistor

Memória flash

Figure: Célula de memória flash no estado 1

Figure: Célula de memória flash no estado 0

Memória flash NOR e NAND

• Na **memória flash NOR**, a unidade básica de acesso é um bit, referido como uma célula de memória.

Memória flash NOR e NAND

 A memória flash NAND é organizada em arrays de transistor com 16 ou 32 transistores em séries.

Memória flash NOR e NAND

• Gráficos de Kiviat para a memória flash:

(a) NOR (b) NAND

Novas tecnologias de memória de estado sólido não voláteis

• RAM não volátil dentro da hierarquia da memória:

Custo decrescente por bit, capacidade ou densidade crescentes

Novas tecnologias de memória de estado sólido não voláteis

- Tem a vantagem sobre a memória tradicional, que é não volátil.
- A flash NOR é mais adequada ao armazenamento de programas e dados estáticos de aplicações em sistemas embarcados. Devido a sua alta confiabilidade e sua velocidade de leitura mais rápida.
- A flash NAND tem características intermediárias entre a DRAM e os discos rígidos. É usada em dispositivos de armazenamento em massa devido à sua alta densidade de armazenamento e custo mais baixo.

STT-RAM

- A STT-RAM é um novo tipo de RAM magnética (MRAM), que caracteriza não volatilidade, velocidade rápida de leitura/escrita, bem como programação de alta durabilidade e energia em standby em 0.
- Na STT-RAM, um novo mecanismo de gravação, chamado de comutação da magnetização induzida pela polarização da corrente, é introduzido.
- A STT-RAM é uma boa candidata tanto para a cache como para a memória principal.

STT-RAM

PCRAM

- A tecnologia PCRAM é baseada em um material de liga de calcogeneto, que é similar aos usados em geral nos meios de armazenamento óptico.
- A capacidade de armazenamento de dados é alcançada a partir das diferenças de resistência entre uma fase amorfa (alta resistência) e uma fase cristalina (baixa resistência) do material baseado em calcogeneto.
- A PCRAM é uma boa candidata para substituir ou suplementar a DRAM para a memória principal.

PCRAM

ReRAM

- A ReRAM (também conhecida como RRAM) trabalha criando resistência em vez de carga direta de armazenamento.
- Uma corrente elétrica é aplicada a um material, mudando a resistência desse material.
- O estado de resistência pode então ser mensurado, e 1 ou 0 é lido como resultado.
- A ReRAM é uma boa candidata para substituir ou suplementar tanto o armazenamento secundário como a memória principal.

ReRAM

Bibliografia Básica

- STALLINGS, W. Arquitetura e Organização de Computadores. 10 ed. São Paulo: Pearson, 2017;
- TANENBAUM, A. S. Organização Estruturada de Computadores. 5 ed. Pearson 2007;
- HENNESY, J. PATTERSON, D. Organização e Projeto de Computadores. 3 ed. Editora Campus, 2005.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2023