Renforcer la conjecture de Murty-Simon sur les graphes critiques de diamètre 2

Antoine Dailly¹, Florent Foucaud², Adriana Hansberg³

G-SCOP, Grenoble
 LIMOS, Clermont-Ferrand
 Instituto de Matemáticas, UNAM Juriquilla

Distance

La distance entre deux sommets est le nombre d'arêtes sur le plus court chemin entre eux.

Distance

La distance entre deux sommets est le nombre d'arêtes sur le plus court chemin entre eux.

Distance

La distance entre deux sommets est le nombre d'arêtes sur le plus court chemin entre eux.

Diamètre

Le diamètre d'un graphe est la plus grande distance entre deux sommets.

Distance

La distance entre deux sommets est le nombre d'arêtes sur le plus court chemin entre eux.

Diamètre

Le diamètre d'un graphe est la plus grande distance entre deux sommets.

Graphes diamètre-2-critiques (D2C)

Définition

Un graphe est D2C s'il a diamètre 2

Graphes diamètre-2-critiques (D2C)

Définition

Un graphe est D2C s'il a diamètre 2 et si supprimer toute arête augmente son diamètre.

Graphes diamètre-2-critiques (D2C)

Définition

Un graphe est D2C s'il a diamètre 2 et si supprimer toute arête augmente son diamètre.

Graphes bipartis complets

Graphe de Clebsch

Graphe de Chvàtal

Combien d'arêtes dans un graphe D2C?

Combien d'arêtes dans un graphe D2C?

Exemple : $K_{k,\ell}$

Combien d'arêtes dans un graphe D2C?

Exemple : $K_{k,\ell}$

Exemple : graphes D2C sans triangles Au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes; égalité $\Leftrightarrow G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$ (Mantel, 1907).

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

•
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

- ► $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975) ► $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta et Häggkvist, 1979)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

- $M < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

► $n \le 24$, n = 26 (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ▶ $n \le 24$, n = 26 (Fan, 1987)
- $ightharpoonup n \ge 2^{2^{\cdot \cdot \cdot^2}}$ taille 10¹⁴ (Füredi, 1992)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ► $n \le 24$, n = 26 (Fan, 1987)
- $n \ge 2^{2^{\cdot \cdot \cdot^2}}$ taille 10¹⁴ (Füredi, 1992)
- $ightharpoonup \Delta \geq 0.6756n$ (Jabalameli *et al.*, 2016)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

Si G est D2C, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor$ arêtes, avec égalité ssi $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < \frac{0.27n^2}{1}$ (Cacceta et Häggkvist, 1979)
- $ightharpoonup m < 0.2532n^2$ (Fan, 1987)

Vérifiée pour :

- ► $n \le 24$, n = 26 (Fan, 1987)
- $n \ge 2^{2^{1/2}}$ taille 10¹⁴ (Füredi, 1992)
- $ightharpoonup \Delta \geq 0.6756n$ (Jabalameli *et al.*, 2016)
- ► Avec une arête dominante (Hanson et Wang, 2003, Haynes *et al.*, 2011, Wang 2012)

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Théorème (Balbuena et al., 2015)

Si G est D2C non-biparti sans triangles, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes, avec égalité ssi G est une inflation de C_5 .

Affirmation (Füredi, 1992)

Si G est D2C non-biparti, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$, avec égalité ssi G est obtenu en subdivisant une arête de $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lfloor \frac{n-1}{2} \right\rfloor}$.

Théorème (Balbuena et al., 2015)

Si G est D2C non-biparti sans triangles, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes, avec égalité ssi G est une inflation de C_5 .

Conjecture : renforcement linéaire (Balbuena et al., 2015)

Si G est D2C non-biparti et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes. Si $n \geq 10$, il y a égalité ssi G est une inflation de C_5 .

$$H_5 =$$

Conjecture : renforcement linéaire (Balbuena et al., 2015)

Si G est D2C non-biparti et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ arêtes. Si $n \geq 10$, il y a égalité ssi G est une inflation de C_5 .

$$H_5 =$$

→ Difficile! Renforcement constant?

Notre résultat principal

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left| \frac{n^2}{4} \right| - 2$ arêtes.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left|\frac{n^2}{4}\right| - 2$ arêtes.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

Plan

1. Partitionner les sommets en deux ensembles A et B.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

Plan

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

Plan

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Théorème (D., Foucaud, Hansberg, 2018+)

Si G est D2C non-biparti avec une arête dominante et $G \neq H_5$, alors il a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ arêtes.

Plan

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Définition

Une arête e est critique pour les sommets x et y si

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

$$\rightarrow$$
 Soit $e = xy$ et $N(x) \cap N(y) = \emptyset$;

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

 \rightarrow Soit e = xy et $N(x) \cap N(y) = \emptyset$;

 \rightarrow Soit $xy \notin E$, $N(x) \cap N(y) = \{z\}$ et $e \in \{xz, yz\}$.

Définition

Une arête e est critique pour les sommets x et y si e fait partie du seul chemin de longueur 1 ou 2 entre x et y.

 \rightarrow Soit e = xy et $N(x) \cap N(y) = \emptyset$;

 \rightarrow Soit $xy \notin E$, $N(x) \cap N(y) = \{z\}$ et $e \in \{xz, yz\}$.

⇒ Toute arête est critique pour une paire de sommets

La fonction fSoit xy une arête dans A.

La fonction f

Soit xy une arête dans A.

ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

Lemme

f est injective.

La fonction f

Soit xy une arête dans A.

- ightharpoonup Pas critique pour x et y car ils ont v comme voisin commun.
- ▶ Critique pour y et z avec $z \in B \cap N(x)$: soit $f(xy) = \overline{yz}$.

Lemme

f est injective. \Rightarrow Borne de Murty-Simon démontrée

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Définition

Une non-arête entre A et B sans antécédent par f est f-libre.

Plan

- 1. Partitionner les sommets en deux ensembles A et B.
- 2. Associer à chaque arête dans A et B une non-arête entre eux.
- 3. Trouver deux non-arêtes sans antécédent entre A et B.

Définir une orientation des arêtes internes

La f-orientation Si $f(xy) = \overline{yz}$,

Définir une orientation des arêtes internes

La f-orientation

Si $f(xy) = \overline{yz}$, on oriente xy de $x \ge y$.

Définir une orientation des arêtes internes

La *f*-orientation

Si $f(xy) = \overline{yz}$, on oriente xy de $x \ge y$.

Prochaine étape

Trouver 2 non-arêtes libres en utilisant les propriétés de l'orientation.

Lemme)

Lemme

Lemme

Lemme

Lemme

Pas de cycle orienté ⇒ Au moins une source et un puits

Pas de cycle orienté
⇒ Au moins une
source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Fin de la preuve

► Au moins une source et un puits à distance au moins 3 dans une composante ⇒ Preuve terminée

Pas de cycle orienté ⇒ Au moins une source et un puits

Lemme

Au moins 1 non-arête libre dans le voisinage d'une source ou d'un puits.

Remarque

⇒ Prouve Murty-Simon pour cette famille!

Fin de la preuve

- ► Au moins une source et un puits à distance au moins 3 dans une composante ⇒ Preuve terminée
- ► Sinon ⇒ Raffinement des propriétés pour terminer la preuve

Des résultats plus forts sous conditions

Théorème (D., Foucaud, Hansberg, 2018+)

Si uv n'est critique que pour u et v, alors G a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - 2c$ arêtes $(c = \text{nombre de composantes de diamètre} \geq 3 \text{ dans } N(u)$ ou dans N(v).

Théorème (D., Foucaud, Hansberg, 2018+)

Si uv n'est critique que pour u et v, alors G a au plus $\left\lfloor \frac{n^2}{4} \right\rfloor - \sum_{C \in \mathcal{C}} |C| - |\mathcal{S}|$ arêtes $(\mathcal{C} \text{ (resp. } \mathcal{S}) = \text{ cycles (resp. triangles transitifs ou voisinages disjoints de sources/puits) induits par la <math>f$ -orientation dans N(u) ou dans N(v).

Au final

Conclusion

- ► Amélioration de la borne de Murty-Simon
- ► Méthode de la *f*-orientation potentiellement réutilisable

Au final

Conclusion

- ► Amélioration de la borne de Murty-Simon
- ▶ Méthode de la *f*-orientation potentiellement réutilisable

Perspectives

- Améliorer la borne pour cette famille (étude structurelle)
- ► Appliquer la méthode à d'autres familles de graphes D2C

Au final

Conclusion

- ► Amélioration de la borne de Murty-Simon
- ▶ Méthode de la *f*-orientation potentiellement réutilisable

Perspectives

- ► Améliorer la borne pour cette famille (étude structurelle)
- ► Appliquer la méthode à d'autres familles de graphes D2C

