Convolutional Neural Networks for Sentence Classification

Ha-larm

Abstract

- Word Vector와 CNN을 활용한 문장 분류
- 이미 트레이닝 된 word vector를 활용
- Simple한 CNN 사용
- 높은 정확도

문장 분류(Sentence Classification)

- 감정 분류(Sentiment Analysis)
- Ex)이거 정말 좋다-긍정, 이 레스토랑 음식 정말 별로다-부정
- 주제 분류
- EX)손흥민 MOM선정 -스포츠 , 유승민 유세 성공적-정치

Word2Vec

• 각 단어마다 Vector 값을 부여하자

• 단어들의 특징을 표현할 수 있도록 수치로 된 값 부여

• Ex)강아지=[2,4,5,1,3]

Word2Vec

 The quick brown fox jumped over the lazy dog ([the,brown],quick),([quic,fox],brown),([brown,jumped],fox)

- 문장에서 나오는 **단어**들의 위치로 학습시키자
- 다양한 Window size를 이용

그랬더니 특정 방향들이 의미를 담고 있었어!

CNN과 Word Vector를 이용한 문장 분류

Model Architecture

$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n, \tag{1}$$

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b). \tag{2}$$

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}],$$
 (3)

 ${f n}$: 문장에 나오는 단어의 갯수 ${f k}$: Word Vector의 차원 ${f h}$: 필터 윈도우 사이즈

Static, Non-static, Multichannel

Multichannel

Back Propagation

Static vs. Non-static

	Most Similar Words for					
	Static Channel	Non-static Channel				
bad	good	terrible				
	terrible	horrible				
	horrible	lousy				
	lousy	stupid				
good	great	nice				
	bad	decent				
	terrific	solid				
	decent	terrific				
n't	os	not				
	ca	never				
	ireland	nothing				
	wo	neither				
1	2,500	2,500				
	entire	lush				
	jez	beautiful				
	changer	terrific				
,	decasia	but				
	abysmally	dragon				
	demise	a				
	valiant	and				

Non-static으로 학습시키니 word vector가 의미를 더 잘 이해하게 되었군!

Model	MR 76.1	SST-1 45.0	SST-2 82.7	Subj 89.6	TREC 91.2	CR 79.8	MPQA 83.4
CNN-rand							
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	(-	-	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	100	0.75	-	S=3
RNTN (Socher et al., 2013)	-	45.7	85.4	100	100		123
DCNN (Kalchbrenner et al., 2014)	-	48.5	86.8	-	93.0	_	-
Paragraph-Vec (Le and Mikolov, 2014)	-	48.7	87.8	-	-	-	-
CCAE (Hermann and Blunsom, 2013)	77.8	-	-	-	1-1	-	87.2
Sent-Parser (Dong et al., 2014)	79.5	-	1-	-	1-1	-	86.3
NBSVM (Wang and Manning, 2012)	79.4	-	(S-2)	93.2	0=6	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_		93.6	-	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	-	-	93.4	1-1	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	-	-	93.6	::	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	2-2	1-1	-	-	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	-	-	S=8		8=8	82.7	-
SVM _S (Silva et al., 2011)	-	-	-	-	95.0	-	-

Q & A

Thank you!

Paper:Convolutional Neural Networks for Sentence Classification