

Graph Databases and Machine Learning: Finding a Happy Marriage

Victor Lee, November 12, 2018

Know Your Speaker

Victor Lee, Director of Product Management PhD in Graph Data Mining MS Electrical Engineering, Stanford BS EE/CS, UC Berkeley

- Mission: Unleash the power of interconnected data for deeper insights and better outcomes
- Technology: Industry's First and Only Native
 Massively Parallel Processing (MPP) Graph Technology
- Product: The world's fastest graph database used by organizations including AliPay, Intuit, Uber, Visa, Zillow

Two Hot Items: A Good Match?

Graph Database

New, exciting way to represent information and to query it.

Machine Learning

Established powerhouse for predictions and "smart" systems, but still tricky to use.

Graph analysis is possibly the single most effective competitive differentiator for organizations pursuing data-driven operations and decisions after the design of data capture."

What is Machine Learning?

- Branch of Al
- Making predictions, models, or optimizations using incomplete or inexact data
 - Model? Weather
 - Optimization?
 Best driving route,
 best investment portfolio

Uses of Machine Learning

- Virtual Personal Assistants
 - Voice-to-text
 - Semantic analysis
 - Formulate a response

- Waze, Google Maps
- Image Recognition
 - Facial recognition
 - X-ray / CT scan reading
- Effective spam filters

Machine Learning Techniques

Supervised Learning

Humans provide "training data" with known correct answers

- Decision Trees
- Nearest Neighbor
- Hidden Markov Model, Naïve Bayesian
- Linear Regression
- Support Vector Machines (SVM)
- Neural Networks

Unsupervised Learning

No "correct" answer; detect patterns or summarize

- Clustering, Partitioning, Outlier detection
- Neural Networks
- Dimensionality reduction

Graphs (Networks) are all around us

Graph: collection of nodes and links ("edges") between nodes

- Data Never Sleeps
- Internet of Things
- BIG Data
- Social Networks

Graph Database - The Natural Choice for Interconnected Data

- Natural storage model for interconnected data
- Natural for transactions: transaction = edge
- Natural for computational knowledge/inference/ learning – "connect the dots"

Matchmaking: Consider Each Party

Graph Databases

- Stores data as nodes & edges.
- An edge (link) IS a data object.

- Capabilities of platforms and query languages vary:
 - All are good a storing data
 - Wide range of analytical abilities

Machine Learning (ML)

 Wants data as vector, array, or tensor

- Comportationally intensive, long and time-consuming
- Requires good quality input data:
 - Garbage in, garbage out
- Many methods to choose from

ML Features and Modeling

 Most/All ML methods try to correlate features (properties/attributes) with the target result.

	Feat 1	Feat 2	Feat 3	Result
Item 1	X	0	0	X
Item 2	X	X	0	0
Item 3	X	0	X	?

- Quality of modeling depends on quality of features
 - Having the right features
 - Having the right distribution of values & results
- Don't know which features are needed!

ML Features and Modeling

- If you don't know the right features yet, then just try to have LOTS of features.
- Big Data 3 V's:
 - Volume
 - Variety
 - Velocity
- Example:
 - Suppose family medical history is the best predictor of an ailment.
 - If you don't know family medical history, you won't be able to make good predictions

3 Possible Arrangements for Graph DB + ML

- 1. Graph Data leaves home and moves to ML.
- 2. ML moves into the Graph Database.
- 3. A Graph Database and ML partnership.

#1 - Graph Data leaves home and moves to ML

- Export relevant graph data
- Simple analogy to Relational Database:
 - Table(s) of node data
 - Table(s) of edge data

- Traditional approach
 - ML is fed data from DBs or just data files
- Business Value
 - Easy to deploy
 - Graph DB still valuable for non-ML queries and analytics

Exporting Graph Data to ML: Concerns

- Is exported data really "flat" enough?
 - Edge records refers to Node records
 - ML algorithms usually want records to be independent
 - One answer is graph embedding
- Graph Embedding
 - "Mapping a graph's nodes and edges to points in space."
 - Example: drawing a graph on paper is mapping to 2D space.
 - General graphs can be drawn in 3D space → tensor

#2 - ML moves into the Graph Database

- Implement ML algorithm as an advanced query
- Novel Approach: in-graph analytics

- Business Value
 - Integration
 - Eliminate need for separate systems

ML in Graph Database: Concerns

- 1. Computational power of Graph DB
- 2. Graph query language's algorithmic expressiveness
- 3. Expressing ML algorithms in Graph terms

Only 3rd Gen. Native Parallel Graphs satisfy 1 and 2.

Evolution of Graph Databases

Native Graph Storage

Graph 2.0 NoSQL base for storage

Graph 3.0 Native, Parallel

Graph 1.0

Scale up to Support **Query Volume**

Privacy for Sensitive Data

Graph Query Languages

- SparQL (RDF): Designed for semantic reasoning, but not computationally intensive work
- Gremlin (Apache): Older scheme. Declarative. Very awkward to write complex tasks.
- Cypher (Neo4j): Known by many. Okay for analytics if you couple it with Java.
- GSQL (TigerGraph): Designed for big data analytics.
 - Built-in parallelism and accumulation.
 - Syntax is natural and familiar for algorithms.

Example: Graph Algorithm Libraries

- Some Graph Databases provide libraries of standard graph algorithms
 - Measure/discover characteristics of a graph
 - PageRank, Community Detection, Shortest Path, etc.

- GSQL is well-suited for algorithms
 - Library is written in GSQL
 - Users can see the code and modify as desired
- Cypher is less well-suited
 - Library is pre-compiled function calls
 - User can't see how the algorithms are written or modify them

Expressing ML Algorithms in Graph Terms

 Not widely known how to execute most ML algorithms on a graph.

- Same problem as with exporting the Graph data:
 - ML is used to flat data
 - O How to make edges a benefit instead of a hinderance?
- This marriage proposal needs further work.

#3 - A Graph Database and ML partnership

- Multi-Step process:
 - a. First, Graph DB runs queries to extract graph-based features
 - b. Send graph features to ML system.
 - c. ML system, enriched by new graph features, learns a predictive model.
 - d. Model can be applied back to graph for real-time prediction.
- Seems more like a transactional partnership than a marriage.

Example: China Mobile Fraud Detection using Graph Features for ML

Download the solution brief at - https://info.tigergraph.com/MachineLearning

TigerGraph

Generating New Training Data for ML to Detect Phone-Based Scam

Graph with 600M phones and 15B call edges, 1000s of calls/second. Feed ML with new training data with 118 features per phone.

Tens – Hundreds of Billions of calls

Phone 1 Features

- (1) High call back phone
- (2) Stable group
- (3) Long term phone
- (4) Many in-group connections
- (5) 3-step friend relation

Phone 2 Features

- (1) Short term call duration
- (2) Empty stable group
- (3) No call back phone
- (4) Many rejected calls
- (5) Avg. distance > 3

Training Data

118 per phone x 600 Million phones = 70 Billion new features

Machine Learning Solution

Graph-enhanced workflow for Anti-Money Laundering

Summary

Graph Databases and Machine Learning both represent powerful tools for getting more value from data.

3 Proposals for Marrying Graph DBs + ML:

- Export Graph Data to ML system
 - Conventional, but not clear how to treat the data.
- Perform ML within Graph Database
 - Need fast, scalable analytical Graph DB. ML methods not yet ported to Graph DB.
- Export Graph Features to ML system
 - Improves ML results; in practice now.

Final Thoughts

- Room for diversity.
- Healthy marriages evolve over time.

THANK YOU

