Comparison of Quantitative BOLD and MR Vascular Fingerprinting for Mapping Brain Oxygenation

Abstract 4094

Linh N. N. Le¹, Gregory J. Wheeler¹, Thomas Christen³, Greg Zaharchuk⁴, and Audrey P. Fan^{1,2}

¹Department of Biomedical Engineering, University of California Davis, USA

²Department of Neurology, University of California Davis, USA

³Grenoble Institute of Neuroscience, France

⁴Stanford University, USA

JOINT ANNUAL MEETING ISMRM-ESMRMB ISMRT 31ST ANNUAL MEETING

07-12 MAY 2022 | LONDON, ENGLAND, UK

A HYBRID EXPERIENCE

Declaration of Financial Interests or Relationships

Speaker Name: Linh Le and Greg Wheeler

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Introduction

 Brain oxygenation measurements are important indicators for studies of brain physiology and pathologies

 Various MRI methods to measure brain oxygenation (i.e., oxygen extraction fraction) have been proposed, but have not been directly compared

 Quantitative BOLD (qBOLD) and magnetic resonance vascular fingerprinting (MRvF) represent promising approaches for mapping brain oxygenation on gradient and spin echo scans

Design and Objective

- 10 healthy, young (33±6 years) participants in this study
- 3 GESFIDE (Gradient-Echo Sampling of Free Induction Decay and Echo) scans were collected for each subject
 - 1 while breathing normal air (21% O₂)
 - 1 during induced hypoxia (14% O₂)
 - 1 during induced hyperoxia (100% O₂)
- Images had 1.5×1.5×2.5 mm³ voxel size, 14 slices, and 40 TEs

We compared two approaches of quantitative brain oxygenation mapping using quantitative Blood-Oxygenation Level-Dependent (qBOLD) and magnetic resonance vascular fingerprinting (MRvF)

Quantitative BOLD (qBOLD) Method

Voxel-wise Signal Evolution Extraction

MR Vascular Fingerprinting (MRvF) Method

Summary of qBOLD vs MRvF Comparison

Magnetic Resonance Vascular Fingerprinting

CBV (%)

Radii (µm)

T2 (ms)

SO₂ (%)

$$(S_a O_2 - S_v)$$

OEF Calculated: qBOLD vs. MRvF

Change in Gray Matter OEF During Hypoxia and Hyperoxia Using qBOLD vs. MRvF

Relationship Between OEF Changes and Arterial Blood Oxygen Changes During Hypoxia and Hyperoxia

Discussion and Conclusions

 Brain OEF measurements from both qBOLD and MRvF provide sensitivity to physiological changes across hypoxic and hyperoxic oxygen inhalation conditions

- OEF maps from MRvF visually showed improved reconstruction and larger changes during different gas conditions
 - ➤ Robustness of fingerprint matching to noise
- Future studies will utilize these models to assess oxygenation changes in conditions that affect neurovascular physiology

Acknowledgement

Professor Thomas Christen

Professor Audrey P. Fan

Fan's Lab

This study was supported by NIH R00-NS102884

Special thanks to:

UC Davis FAN Lab Greg Zaharchuk – Stanford University

