Begleitmaterial Seminarvortrag Verzweigte Überlagerungen Riemannscher Flächen

Robert Hemstedt r@twopi.eu

7. November 2014

Die schriftliche Ausarbeitung des Vortrags sowie dieses Begleitmaterial lassen sich in meinem GitHub-Repository https://github.com/euklid/SeminarBranchedCovering finden.

Endliche Automorphismengruppen der Zahlenkugel $\hat{\mathbb{C}}$

Satz. Jede nicht-zyklische, endliche Gruppe $G < \operatorname{Aut}(\hat{\mathbb{C}})$ der Ordnung N hat genau drei Ausnahmeorbiten $\Sigma_1, \Sigma_2, \Sigma_3$. Für deren Mächtigkeiten $s_j := \sharp \Sigma_j \geq 1$ und für die Ordnungen $n_j := N/s_j$ der Standgruppen G_a von $a \in \Sigma_j$ gibt es höchstens folgende Möglichkeiten:

Typ	N	s_1	s_2	s_3	n_1	n_2	n_3
q -Dieder, $q \ge 2$	2q	q	q	2	2	2	q
Tetraeder	12	6	4	4	2	3	3
Oktaeder	24	12	8	6	2	3	4
Ikosaeder	60	30	20	12	2	3	5

Sei g_j ein erzeugendes Element der Standgruppe von $a_j \in \Sigma_j$. Dann wird G von $\{g_1, g_2, g_3\}$ erzeugt.

Fortsetzung unverzweigter Überlagerungen

Satz. Die unverzweigte Überlagerung $\eta: X \to Y \setminus B$ lässt sich genau dann zu einer Überlagerung $\hat{\eta}: \hat{X} \to Y$ fortsetzen, wenn jeder Punkt $b \in B$ Zentrum einer Scheibe V ist, so dass für $V^{\times} := V \setminus \{b\}$ und jede Komponente U von $\eta^{-1}(V^{\times})$ die Beschränkung $\eta|U:U\to V^{\times}$ endlich ist. Insbesondere existiert die Fortsetzung für jede endliche Abbildung η .

Beweis. Die Endlichkeitsbedingung an die Abbildung ist notwendig, wie wir an $\mathbb{H} \to \mathbb{E}^{\times}, z \mapsto e^{iz}$ gesehen haben. Konstruiere die Fortsetzung wie folgt:

- Wähle paarweise disjunkte Scheiben $V \subset Y$ um die Punkte in $b \in B$ und Karten $z : (V, b) \to (\mathbb{E}, 0)$.
- Aus der Endlichkeitsbedingung folgt, dass es zu jeder Komponente U von $\eta^{-1}(V^{\times})$ einen Isomorphismus $h: U \to \mathbb{E}^{\times}$ mit $z \circ \eta | U = h^n$ gibt, n abhängig von U.

- Ergänze U um Punkt a_U zu $\hat{U} := U \dot{\cup} a_U$ und ergänze h zur bij. Abbildung $h : (\hat{U}, a_U) \to (\mathbb{E}, 0)$. Siehe Abb. 3.
- A sei die Menge der zusätzlichen Punkte, dann definiere auf $\hat{X} = X \cup A$ die folgende Topologie: $W \subset \hat{X}$ offen, wenn $W \cap X \subset X$ offen in X ist und für alle Komponenten \hat{U} aus der Konstruktion die Bilder $h(W \cap \hat{U}) \subset \mathbb{E}$ offen in \mathbb{E} sind. Das macht \hat{X} zu einem Hausdorff-Raum, so dass $A \subset \hat{X}$ lokal endlich ist.
- \bullet Ergänze den holomorphen Atlas von X um die Karten $h:\hat{U}\to\mathbb{E}$ der Konstruktion. Damit wird \hat{X} zu einer Riemannschen Fläche.
- Definiere $\hat{\eta}: \hat{X} \to Y$ durch $\hat{\eta}|X = \eta, \hat{\eta}(a_U) = b$ für b Zentrum der Scheibe V, für die U eine Komponente von $\eta^{-1}(V^{\times})$ ist.
- Aus der Konstruktion folgt, dass $\hat{\eta}: \hat{X} \to Y$ die Definition einer Überlagerung erfüllt und $\eta: X \to Y \setminus B$ fortsetzt.

Quellen

Riemannsche Flächen, Klaus Lamotke, 2., ergänzte und verbesserte Auflage, Springer, 2009. Abbildung 1 und Abbildung 2 sind den Seiten 74 bzw. 73 entnommen.

Abbildung 1: Linksseitig Parkettierungen des Tetra-, Okta- und Ikosaeders mit Baryzentren jeder Seite. Rechtsseit
g die Parkettierungen auf die S^2 mittels Radialprojektion übertragen.

Abbildung 2: 3-Dieder-Parkettierung

Abbildung 3: Fortsetzung zur verzweigten Überlagerung