Correction DS de spécialité - Stromatolites

Les compositions des enveloppes fluides (atmosphère, hydrosphère) et de la géosphère ont évolué au cours des temps géologiques: l'atmosphère s'est notamment enrichie en O_2 et appauvrie en CO_2 , l'eau gazeuse s'est condensée pour former l'eau liquide de l'hydrosphère, et les roches lithosphériques continentales soumises à l'altération et à l'érosion sont en permanence recyclées.

Comment expliquer l'évolution de la composition des enveloppes fluides et de la géosphère ?

Les stromatolites sont des structures en couches qui résultent de l'activité des cyanobactéries. Ils se forment dans différents sites mondiaux en milieu marin côtier. Les cyanobactéries sont des microorganismes photosynthétiques: elles consomment des matières minérales comme le CO₂ pour fabriquer, grâce l'énergie lumineuse, de la matière organique tout en rejetant du O₂. Leur apparition il y'a 3,6 Ga coïncide avec la formation des premiers gisements de fer rubanés.

Hypothèse: L'activité d'êtres vivants tels que les cyanobactéries aurait des conséquences sur la composition des enveloppes fluides et sur celle de la géosphère, à l'échelle des temps géologiques.

1 : Les conséquences de la consommation de CO2 par les cyanobactéries.

La solubilisation / dégazage du CO₂ entre l'atmosphère et l'hydrosphère (réaction 1), la dissolution / précipitation du CO₂ / HCO³⁻ (réaction 2), et la précipitation / dissolution biochimique du CaCO₃ (réaction 3) sont des réactions réversibles dont les deux sens sont normalement équilibrés.

En consommant localement du CO₂, les cyanobactéries empêchent la dissolution du CaCO₃, ce qui déplace l'équilibre de la réaction 3 dans le sens de la précipitation des carbonates. Piégés par les filaments bactériens en croissance, ces carbonates forment un ciment calcaire à l'origine des stromatolites. L'activité des cyanobactéries favorise donc la formation de roches sédimentaires en milieu océanique.

La réaction 3 étant décalée dans le sens de la précipitation, les HCO³⁻ se trouvent piégés dans le CaCO₃ ce qui déplace l'équilibre de la réaction 2 dans le sens de la dissolution du CO₂ (formation de HCO³⁻). Le CO₂ soluble étant piégé dans les HCO³⁻, l'équilibre de la réaction 1 est donc lui aussi déplacé dans le sens de la solubilisation du CO₂ atmosphérique. L'activité des cyanobactéries induit donc une diminution de la concentration en CO₂ atmosphérique.

2 : Les conséquences de la production de O2 par les cyanobactéries.

L'apparition des stromatolites il y' a 3,6 Ga coïncide avec le début de la formation des gisements de fer rubané. De -3,6 à -1,8 Ga, le O₂ libéré par l'activité photosynthétique des cyanobactéries oxyde les ions ferreux Fe²⁺ dissous provenant de l'érosion des continents, ce qui conduit à la formation des fers rubanés en milieu océanique.

La fin de la formation des gisements de fer rubanés (-1,8 Ga) coı̈ncide avec le début de l'enrichissement de l'atmosphère en O_2 . Le O_2 produit par les cyanobactéries (et les autres organismes marins photosynthétiques apparus depuis) est devenu quantitativement trop important en milieu océanique (il y a plus de O_2 que de Fe^{2+}). Le O_2 n'étant plus totalement utilisé pour oxyder le Fe^{2+} dissous, les océans deviennent de plus en plus riches en O_2 , jusqu'à saturation. Le O_2 libéré par la suite sort alors de l'hydrosphère (dégazage) pour venir enrichir l'atmosphère.

A partir de -1,8 Ga, l'enrichissement de l'atmosphère en O_2 à des conséquences importantes en milieu continental comme en milieu océanique. L'atmosphère étant devenue oxydante, les ions Fe^{2+} issus de l'altération / érosion des continents sont directement oxydés en milieu continental pour former des sols rouges (contenant de l'hématite). Les ions Fe^{2+} n'étant plus transportés vers les océans, ceux ci s'appauvrissent en Fe^{2+} jusqu'à en être totalement dépourvus.

Conclusion:

L'activité photosynthétique des cyanobactéries a eu des conséquences importantes sur l'hydrosphère: enrichissement en O_2 , appauvrissement en Fe^{2+} dissous; sur l'atmosphère: enrichissement en O_2 , appauvrissement en O_2 , appauvrissement en O_2 , et sur la lithosphère: formation de stromatolites calcaires et de fers rubanés en milieu océanique, formation de sols rouges en milieu continental. L'activité des cyanobactéries a eu aussi des conséquences importantes sur la biosphère puisque en enrichissant l'hydrosphère et l'atmosphère en O_2 , cela a permis le développement de la vie en milieux océanique et continental.

1 - Qualité de la démarche

Compréhension du problème posé / Enoncé du problème posé	
Extraction d'informations pertinentes des documents	
Apport d'informations pertinentes à partir des connaissances	
Mise en relation des informations issues des documents et des connaissances	
Prise en compte de la dimension temporelle	
Mise en œuvre d'un raisonnement rigoureux, esprit critique	
Un bilan clair est proposé	

2 - Eléments scientifiques

Compréhension globale

En réalisant la photosynthèse en milieu océanique, les cyanobactéries modifient la composition de l'hydrosphère , de l'atmosphère , et de la lithosphère.

Éléments scientifiques:

	_
Les cyanobactéries apparaissent en milieu océanique à partir de -3,6 Ga	
En réalisant la photosynthèse en milieu océanique, les cyanobactéries consomment du CO2 ce qui favorise la précipitation des carbonates	
Les carbonates piégés par les filaments bactériens forment les stromatolites calcaires.	
La précipitation des carbonates favorise la solubilisation et la dissolution du CO ₂ gazeux, ce qui induit une diminution de la concentration en CO ₂ atmosphérique.	
En réalisant la photosynthèse en milieu océanique, les cyanobactéries libèrent du O2 dans l'hydrosphère	
Le O ₂ océanique dissous oxyde les ions Fe ²⁺ dissous ce qui conduit à la formation de fers rubanés en milieu océanique (de -3,6 Ga à -1,8 Ga)	
Lorsqu'il y a davantage de O ₂ produit en milieu océanique que de Fe ²⁺ dissous disponible (-1,8 Ga), l'hydrosphère s'enrichit en O ₂ puis l'O ₂ en excès est dégazé ce qui enrichit l'atmosphère en O ₂	
Le O ₂ atmosphérique oxyde le Fe ²⁺ en milieu continental ce qui conduit à la formation d'oxyde de fer (sols rouges), et à la disparition du Fe ²⁺ en milieu océanique.	

Barème:

Démarche cohérente qui permet de répondre à la problématique		Démarche maladroite et réponse partielle à la problématique			Aucune démarche ou démarche incohérente		
Éléments scientifiques issus des documents et des connaissances suffisants	Éléments scientifiques insuffisants peu tirés des documents et / ou des connaissances	Éléments scientifiques insuffisants peu tirés des documents et / ou connaissances		Éléments scientifiques issus des documents et des connaissances insuffisants	Éléments scientifiques issus des documents et des connaissances insuffisants		Très rares éléments scientifiques
5 points	4 points	3 points		2 points	1 point		0 point