

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: 0 337 794 B1

(12)

EUROPEAN PATENT SPECIFICATION

2A

(45) Date of publication of patent specification :
12.10.94 Bulletin 94/41

(51) Int. Cl.⁵ : G07F 7/10

(21) Application number : 89303701.0

(22) Date of filing : 13.04.89

(54) Portable electronic device.

(30) Priority : 15.04.88 JP 93120/88

(72) Inventor : Naruse, Kazuaki Intellectual

Property Div.

Toshiba Corporation

1-1-1, Shibaaura

Minato-ku Tokyo (JP)

Inventor : Matsuoka, Hideo Intellectual

Property Div.

Toshiba Corporation

1-1-1, Shibaaura

Minato-ku Tokyo (JP)

(43) Date of publication of application :
18.10.89 Bulletin 89/42

(45) Publication of the grant of the patent :
12.10.94 Bulletin 94/41

(84) Designated Contracting States :
DE FR GB

(74) Representative : BATCHELLOR, KIRK & CO.

2 Pear Tree Court

Farringdon Road

London EC1R 0DS (GB)

(56) References cited :
EP-A- 0 162 221
EP-A- 0 234 954
WO-A-86/03040

(73) Proprietor : KABUSHIKI KAISHA TOSHIBA
72, Horikawa-cho
Saiwai-ku
Kawasaki-shi Kanagawa-ken 210 (JP)

EP 0 337 794 B1

Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description**BACKGROUND OF THE INVENTION**

The present invention relates to a portable electronic apparatus such as an integrated circuit (IC) card which may be used as a credit card in conjunction with a shopping system, for example.

Recently, an IC card incorporating an IC chip containing an erasable non-volatile memory and a central processing unit (CPU) controlling this memory has been developed as a new portable data memory medium. The IC card allows a variety of data to be input and output in conjunction with external sources by means of the internal CPU which accesses the memory.

Conventionally, the IC card is used in a shopping system in a similar manner as a credit card. The limit of the total amount of charges that may be applied to the card in a month (credit limit) is stored in the IC card. When making a purchase, an operator inserts the IC card into terminal equipment and inputs the charge amount by operating a keyboard of the terminal equipment. The terminal equipment generates a new credit limit by subtracting the input amount of the transaction from the credit limit stored in the memory of the IC card and stores the new credit limit in the memory.

The credit limit stored in the memory of the IC card is renewed every predetermined term, for example the first day of each month. Conventionally, the credit limit is renewed by using the IC card with specific terminal equipment owned by the IC-card issuer. In other words, while using any conventional IC card for purchasing merchandise on credit, only the IC-card issuer can renew the credit limit. As a result, each IC-card holder must seek out an appropriate terminal for renewing his credit limit to continue transactions each term. This is bothersome and inconvenient to all those who hold IC cards.

As an alternative, a study is underway to explore the possibility of renewing the credit limit by means of on-line communication with a host computer. Nevertheless, if this idea is adopted, all IC card holders will be obliged to communicate with the host computer via terminal equipment whenever renewing the credit limit, thus incurring a heavy burden to them in bearing the cost of on-line communication facilities and the communication itself.

In addition, recently, a battery-powered IC card has also been developed, which incorporates a battery and is provided with a keyboard and display and operates without being connected to terminal equipment.

European Patent Publication No. 0167044 (published August 1, 1986) discloses an IC card which is provided with a battery, keyboard and display. In addition, this IC card incorporates a clock and identifies

the expiration of the card itself, not only to provide a time after which a new card is required (as is conventional) but also to provide a time after which the battery in the card may fail. Nevertheless, this publication does not disclose means for renewing the credit limit for transactions with the IC card.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a portable electronic device which automatically and internally renews the maximum amount allowed for transactions during a transaction period.

A portable electronic device according to the present invention comprises first memory means for storing predetermined term data, timer means for generating data relating to elapsed time, and comparison means for comparing the data generated by the timer means with the term data in the first memory means, second memory means for storing maximum amount data indicating a monetary amount allowed for executing transactions within the predetermined term; third memory means for storing renewable data including a monetary amount for setting new maximum amount data in the second memory means; and renewal means for renewing the maximum amount data in the second memory means in accordance with the renewable data in the third memory means when the comparison means indicates that the elapsed time data generated by the timer means exceeds the term data in the first memory means.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of this invention will now be described by way of example and with reference to the accompanying drawings, in which

FIGURE 1 is a plan view of an IC card as a portable electronic medium according to the present invention;
 FIGURE 2 is a block diagram of the electric circuits of the IC card;
 FIGURE 3 is a memory configuration of the IC card;
 FIGURE 4 is a flowchart for executing transaction processes; and
 FIGURE 5 is a chart indicating internally varying conditions of maximum amount allowed for transactions on credit using the IC card.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIGURE 1 shows the front of an IC card which may be used as a credit card and which represents an example of the portable electronic medium related to the present invention. This IC card is commonly usable either for an ON-LINE system (system operation

is executed with the IC card being connected to terminal equipment) or an OFF-LINE system (the IC card executes various operations itself). For example, the IC card allows transactions to be executed in conjunction with a plurality of transacting accounts. It includes a clock function which displays data related to date and time, and a calculating function which can execute at least the four basic arithmetic operations. Details of such an IC card is disclosed in U.S. Patent No. 4,766,294.

Referring now to FIGURE 1. Card body 10 is composed of a thinly-molded rectangular plastic card. Contact 14 is placed on a specific position on the surface of card body 10 and is electrically connected to an integrated circuit (IC) 12 built in the card body 10. Contact 14 is placed to electrically communicate with terminal equipment (not shown). In addition, the surface of card body 10 is provided with a liquid crystal display (LCD) 16, which displays input/output data and data related to date and time, and keyboard 18 (input means) used for entry of various data.

The keyboard 18 is composed of a plurality of account keys 20, digit keys 22, and a variety of functional keys. The card body 10 also incorporates crystal oscillator 14 and power supply battery 26.

FIGURE 2 is a simplified block diagram of the circuits within the IC card 10. A central processing unit (CPU) 30, executing overall controlling operations, is connected to the contact 14, the liquid crystal display 16 and the keyboard 18. The CPU 30 is further connected to data memory 32, which stores a variety of data, program memory 34, which stores operation programs of the CPU 30, and clock circuit 36 which generates data related to date and time. CPU 30, data memory 32, program memory 34, and clock circuit 36, are installed in a single IC chip 12 (or in a plurality of IC chips). The integrated circuit 12 receives power from the battery 26. Clock circuit 36 generates data in conjunction with date, month, year, and time, by counting reference clock signals output from the crystal oscillator 24. Data memory 32 is composed of an erasable non-volatile memory such as an EEPROM, for example. As shown in FIGURE 3, for example, the data memory 32 is composed of regions 42 (1) - 42 (4) each storing the maximum amount allowed for transactions in each effective term, regions 44 (1) - 44 (4) each storing the effective term of transactions in which the amounts of transactions are totaled and cannot exceed a maximum, regions 46 (1) - 46 (4) each storing the maximum amount to be renewed (renewable data) for each effective term, regions 48 (1) - 48 (4) each storing the effective period by which the effective term of transactions can be extended (renewable term data), region 50 which stores an address, name and a personal identification number for the card holder, and region 52 which stores data related to transactions. These data are stored in the data memory 32 for each transacting account (M1)

through (M4).

Referring now to the flowchart shown in FIGURE 4, processes for executing transactions in conjunction with the renewal of the maximum amount and effective term allowed for a transaction are described below. First, a card holder inputs his personal identification number (PIN) by operating the digit keys 22 of keyboard 18 to identify himself (ST 1). CPU 30 then checks to see if the PIN input by the card holder correctly matches the PIN stored in the region 50 of data memory 32 (ST 2). If the PINs do not match, CPU 30 causes liquid crystal display 16 to display a message that a transaction is prohibited (ST 3). This completes the trading process.

Conversely, if the PINs entered by the card holder and stored in the data memory 32 were consistent, then CPU 30 causes liquid crystal display 16 to display a message for guiding the card holder to select any of the transacting accounts M1 through M4 (ST 4), where the card holder selects any of those accounts by operating the account key 20 of keyboard 18. Next, CPU 30 causes comparison means to compare the effective term, in conjunction with the selected account stored in the region 44 (n) of data memory 32, with the present date generated by clock circuit 36. Based on this result, CPU 30 identifies whether any time still remains in the effective term for transactions (ST 5). If the effective term for transactions were identified to have time remaining, no process is executed for renewing the effective term for transactions and the maximum amount allowed for executing transactions during the effective term. Conversely, if CPU 30 identifies that the term allowed for transactions has already run out, CPU 30 executes a process for renewing the effective term for transactions (ST 6). Specifically, CPU 30 generates a new effective term for transactions by adding the renewal term (for example, one month) of the selected account stored in the region 48 (n) to the effective term for transactions stored in the region 44 (n) of data memory 32. The new effective term for transactions is stored in the region 44 (n) of the data memory 32. Next, CPU 30 causes comparison means to compare the maximum amount remaining for transactions during the effective term and related to the selected account stored in the region 42 (n) of data memory with the maximum amount to be renewed for this account stored in region 46 (n) of data memory 32 (ST 7). CPU 30 checks to see if the maximum amount remaining for transactions in the effective term is less than the maximum amount to be renewed, or not. If the maximum amount allowed for transaction equals or exceeds the maximum amount to be renewed, no renewal is executed for the maximum amount allowed for transactions. Conversely, if the maximum amount allowed for transactions is less than the maximum amount to be renewed, CPU 30 converts the maximum amount allowed for transactions to the new

maximum amount (ST 8). Specifically, CPU 30 reads the maximum amount to be renewed from the region 46 (n) of data memory 32, and stores the maximum amount to be renewed into the region 42 (n) of data memory.

After completing all the processes needed for renewing the maximum amount allowed for transactions and the effective term for transactions as mentioned above, (of if the transaction term were identified to be still effective and the maximum amount allowed for transactions to be more than that is to be renewed) CPU 30 then causes liquid crystal display 16 to display a message for guiding the card holder to input the amount of a transaction (ST 9). The card holder inputs the amount of the transaction by operating the digit keys 22 of keyboard 18. The CPU 30 identifies whether the input amount for the transaction is less than the maximum amount allowed for transactions stored in region 42 (n) of data memory 32 (ST 10). If CPU 30 identifies that the input amount of the transaction is more than the maximum amount allowed for transactions, the CPU 30 causes liquid crystal display 16 to display a message that the transaction is prohibited (ST 11). This completes the trading process.

If CPU 30 identifies that the input amount of the transaction is less than the maximum amount allowed for a transaction, the CPU 30 generates a new maximum amount allowed for a transaction by subtracting the amount of the transaction from the maximum amount allowed for a transaction in the region 42 (n) of data memory 32. CPU stores the new maximum amount allowed for a transaction in the region 42 (n) of data memory (ST 12). This completes the trading process.

FIGURE 5 illustrates the internally varying conditions of the maximum amount allowed for transactions on credit using the IC card. This chart specifies that the maximum amount allowed for transactions is renewable on the first day of a month. Circles shown in the chart denote the date of implementing the renewal. Actually, as shown in FIGURE 5, the renewal process is executed on the initial trading day C after the renewal date is past. Marks A, B, D, F and G shown in FIGURE 5 denote those cases in which the maximum amount allowed for transactions is reduced as a result of executing normal transactions. Mark H denotes the effective term of renewal, such as a month, for example. Mark E denotes the case in which the card holder has executed transactions beyond the maximum allowable amount during the term. In this case, CPU 30 causes liquid crystal display 16 to display a message that the transaction is prohibited before eventually terminating the trading process. Mark E' also shows a particular case in which the card issuer has received a certain amount of monetary replenishment from the card holder by more than the maximum renewable amount. Note that any descrip-

tion on the method of collecting monetary replenishment from the card holder is not provided, since it is not a part of this invention.

Mark F shown in FIGURE 5 denotes the case in which no renewal process is executed because the maximum amount allowed for transactions is still in excess of the maximum amount provided for the renewal.

The examples cited above cause processes to be executed for renewing the maximum amount allowed for transactions in each effective term by writing the amount of region 46 (n) into region 42 (n) of data memory 32. Alternatively, the renewal process can also be executed by storing the sum of the amount in the region 42 (n) and the amount in the region 46 (n) to constitute a new maximum amount allowed for executed transactions.

In the manner mentioned above, the portable electronic medium executes a renewal process as required when the card holder selects any of those transacting accounts by allowing data memory to preliminarily store the maximum amount allowed for transactions during each effective term effective term for transactions, maximum amount allowed for renewal, and effective term for the renewal.

The portable electronic medium compares the effective term for transactions stored in the data memory with data related to the present date generated by clock circuit. If the value of data related to the present date were in excess of the value related to the effective term for transactions, the portable electronic medium executes a renewal process.

The maximum amount allowed for transactions in any effective term stored in data memory is converted into the new maximum amount allowed for transactions during the next effective term, and finally, the portable electronic medium rewrites the maximum amount allowed for transactions during the effective term stored in the data memory.

Consequently, it is possible for the portable electronic medium related to the invention to automatically renew the maximum amount allowed for transactions during any effective term on the basis of an optional term inside of the IC card. As a result, the portable electronic medium dispenses with procedure and processes conventionally necessary for renewing the maximum amount allowed for implementing transactions by the card holder, and yet, the portable electronic medium eliminates the needs for communicating with the host computer, thus effectively providing practical convenience of use.

The above preferred embodiment causes the portable electronic medium to first identify whether the maximum amount allowed for transactions during an effective term exceeds the maximum amount designated for renewal, or not, before eventually renewing the maximum amount allowed for transactions during the effective term and the effective term for

transactions itself. However, it is not always necessary for this preferred embodiment to identify whether the maximum amount allowed for transaction exceeds the maximum amount designated for the renewal, or not.

Although only a single preferred embodiment of this invention has been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the preferred embodiment without departure from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included in this invention as defined by the following claims.

Claims

1. A portable electronic device for controlling monetary transactions, comprising: first memory means (44) for storing predetermined term data, timer means (36) for generating data relating to elapsed time, and comparison means for comparing the data generated by the timer means with the term data in the first memory means, characterised by:
 second memory means (42) for storing maximum amount data indicating a monetary amount allowed for executing transactions within the predetermined term;
 third memory means (46) for storing renewable data including a monetary amount for setting new maximum amount data in the second memory means (42); and
 renewal means for renewing the maximum amount data in the second memory means (42) in accordance with the renewable data in the third memory means (46) when the comparison means indicates that the elapsed time data generated by the timer means (36) exceeds the term data in the first memory means (44).
2. A portable electronic device according to claim 1, characterized in that the renewal means includes a monetary amount comparing means for comparing the maximum amount data in the second memory means (42) with the renewable data in the third memory (46), and the renewal means renews the maximum amount data only when the monetary amount comparing means indicates that the maximum amount data is less than the renewable data.
3. A portable electronic device according to claim 1, characterized in that the renewal means stores the renewable data read from the third memory means (46) into the second memory means (42) so that the renewable data indicates newly-provided maximum amount data.

4. A portable electronic device according to claim 1, characterized in that the renewal means generates newly-provided maximum amount data by adding the renewable data in the third memory means (46) to the maximum amount data in the second memory means (42).
5. A portable electronic device according to claim 1 characterized in that the second memory means (42) stores a plurality of maximum amount data each for one of a plurality of accounts, and the third memory means (46) stores a plurality of renewable data each corresponding to one of the maximum amount data, respectively.
6. A portable electronic device according to claim 1, characterized by further comprising, input means (18) for entering monetary amount data indicating transaction data associated with the medium, and
 subtracting means for subtracting the monetary amount data entered by the input means (18) from the maximum amount data in the second memory means (42).
7. A portable electronic device according to claim 1, characterized in that the first memory means (44) stores term data relating to an effective date, the timer means (36) includes calendar means for generating data relating to a present date, and the comparison means compares the effective date with the present date.
8. A portable electronic device according to claim 1, characterized by further comprising:
 fourth memory means (48) for storing renewable term data which relates to a next effective time, and
 another renewal means for renewing the term data in the first memory means (44) in accordance with the renewable term data in the fourth memory means (48) when the comparison means indicates that the data generated by the timer means (36) exceeds the term data in the first memory means (44).
9. A portable electronic device according to claim 8, characterized in that the first memory means (44) stores term data relating to an effective date, the time means (36) includes calendar means for generating data representing a present date, and the comparison means compares the effective date with the present date.
10. A portable electronic device according to claim 9, characterized in that the fourth memory means (48) includes the number of days in a term as the renewable term data, and another renewal

means generates newly-provided term data by adding the number of days to the term data in the first memory means (44).

11. A portable electronic device according to claim 8, characterized in that the first memory means (44) stores a plurality of term data, each for one of a plurality of accounts, and the fourth memory means (48) stores a plurality of renewable term data, each for one of a plurality of accounts, and the fourth memory means (48) stores a plurality of renewable term data each corresponding to one of the term data, respectively.

Patentansprüche

1. Tragbares elektronisches Gerät zur Steuerung finanzieller Transaktionen, mit: einer ersten Speichereinrichtung (44) zum Speichern vorbestimmter Zeitdauerdaten, einer Zeitgebereinrichtung (36) zum Erzeugen von Daten, die sich auf bereits abgelaufene Zeit beziehen, und einer Vergleichseinrichtung zum Vergleichen der von der Zeitgebereinrichtung erzeugten Daten mit den Zeitdauerdaten in der ersten Speichereinrichtung, **gekennzeichnet durch:**
 - eine zweite Speichereinrichtung (42) zum Speichern von Maximalbetragsdaten, die einen Geldbetrag anzeigen, in dessen Höhe während der vorbestimmten Zeitdauer Transaktionen durchgeführt werden dürfen;
 - eine dritte Speichereinrichtung (46) zum Speichern erneuerbarer Daten einschließlich eines Geldbetrages, um neue Maximalbetragsdaten in der zweiten Speichereinrichtung (42) zu setzen; und
 - eine Erneuerungseinrichtung zum Erneuern der Maximalbetragsdaten in der zweiten Speichereinrichtung (42) gemäß der erneuerbaren Daten in der dritten Speichereinrichtung (46), wenn die Vergleichseinrichtung anzeigt, daß die Daten der bereits abgelaufenen Zeit, die durch die Zeitgebereinrichtung (36) erzeugt werden, die Zeitdauerdaten in der ersten Speichereinrichtung (44) überschreiten.
2. Tragbares elektronisches Gerät nach Anspruch 1, **dadurch gekennzeichnet**, daß die Erneuerungseinrichtung eine Geldbetrags-Vergleichseinrichtung zum Vergleichen der Maximalbetragsdaten in der zweiten Speichereinrichtung (42) mit den erneuerbaren Daten in der dritten Speichereinrichtung (46) aufweist, und daß die Erneuerungseinrichtung die Maximalbetragsdaten nur dann erneuert, wenn die Geldbetrags-Vergleichseinrichtung anzeigt, daß die Maximalbetragsdaten kleiner als die erneuerbaren Daten sind.
3. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß die Erneuerungseinrichtung die erneuerbaren Daten, die aus der dritten Speichereinrichtung (46) ausgelesen werden, in der zweiten Speichereinrichtung (42) speichert, so daß die erneuerbaren Daten neu geschaffene Maximalbetragsdaten anzeigen.
4. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß die Erneuerungseinrichtung neue Maximalbetragsdaten erzeugt, indem die erneuerbaren Daten in der dritten Speichereinrichtung (46) zu den Maximalbetragsdaten in der zweiten Speichereinrichtung (42) addiert werden.
5. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß die zweite Speichereinrichtung (42) eine Anzahl von Maximalbetragsdaten für jeweils eines einer Anzahl von Konten speichert, und daß die dritte Speichereinrichtung (46) eine Anzahl von erneuerbaren Daten speichert, die jeweils einem der Maximalbetragsdaten entsprechen.
6. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß es außerdem eine Eingabeeinrichtung (18) zum Eingeben von Geldbetragsdaten, die dem Medium zugeordnete Transaktionsdaten bezeichnen, und
 - eine Subtraktionseinrichtung enthält, um die über die Eingabeeinrichtung (18) eingegebenen Geldbetragsdaten von den Maximalbetragsdaten in der zweiten Speichereinrichtung (42) zu subtrahieren.
7. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß die erste Speichereinrichtung (44) Zeitdauerdaten speichert, die sich auf ein Anfangsdatum beziehen, wobei die Zeitgebereinrichtung (36) eine Datumseinrichtung enthält, um Daten zu erzeugen, die sich auf das aktuelle Datum beziehen, und wobei die Vergleichseinrichtung das Anfangsdatum mit dem aktuellen Datum vergleicht.
8. Tragbares elektronisches Gerät nach Anspruch 1, dadurch **gekennzeichnet**, daß es weiterhin aufweist:
 - eine vierte Speichereinrichtung (48) zum Speichern erneuerbarer Zeitdauerdaten, die sich auf einen nächsten Anfangszeitpunkt beziehen, und
 - eine weitere Erneuerungseinrichtung zum Erneuern der Zeitdauerdaten in der ersten Spei-

chereinrichtung (44) gemäß der erneuerbaren Zeitdauerdaten in der vierten Speichereinrichtung (48), wenn die Vergleichseinrichtung anzeigt, daß die Daten, die durch die Zeitgebereinrichtung (36) erzeugt werden, die Zeitdauerdaten in der ersten Speichereinrichtung (44) überschreiten.

9. Tragbares elektronisches Gerät nach Anspruch 8, dadurch gekennzeichnet, daß die erste Speichereinrichtung (44) Zeitdauerdaten speichert, die sich auf ein Anfangsdatum beziehen, wobei die Zeitgebereinrichtung (36) eine Datumseinrichtung zum Erzeugen von Daten enthält, die ein aktuelles Datum darstellen, und wobei die Vergleichseinrichtung das Anfangsdatum mit dem aktuellen Datum vergleicht.

10. Tragbares elektronisches Gerät nach Anspruch 9, dadurch gekennzeichnet, daß die vierte Speichereinrichtung (48) eine Zeitdauer mit einer Anzahl von Tagen als die erneuerbaren Zeitdauerdaten enthält, und eine weitere Erneuerungseinrichtung neue Zeitdauerdaten erzeugt, indem die Anzahl von Tagen zu den Zeitdauerdaten in der ersten Speichereinrichtung (44) addiert werden.

11. Tragbares elektronisches Gerät nach Anspruch 8, dadurch gekennzeichnet, daß die erste Speichereinrichtung (44) eine Anzahl von Zeitdauerdaten für jeweils eines einer Anzahl von Konten speichert, und daß die vierte Speichereinrichtung (48) eine Anzahl von erneuerbaren Zeitdauerdaten speichert, die jeweils einer der Zeitdauerdaten entsprechen.

Revendications

1. Dispositif électronique portable pour commander des transactions monétaires, qui comprend : une première mémoire (44) pour conserver des données de termes prédéterminées, des moyens chronologiques (36) pour générer des données se rapportant au temps écoulé et des moyens de comparaison pour comparer les données générées par les moyens temporels avec les données de termes dans la première mémoire, caractérisé en ce qu'il comprend :

- des seconds moyens de mémoire (42) pour conserver une quantité maximale de données indiquant un montant monétaire autorisé pour effectuer des transactions dans le délai du terme prédéterminé;
- des troisièmes moyens de mémoire (46) pour conserver des données renouvelables incluant un montant monétaire pour établir de nou-

velles données de montant maximum dans les seconds moyens de mémoire (42); et

des moyens de renouvellement pour renouveler les données exprimant le montant maximum dans le second moyen de mémoire (42) en accord avec les données renouvelables contenues dans le troisième moyen de mémoire (46), quand les moyens de comparaison indiquent que les données de temps écoulé générées par les moyens chronologiques (36) dépassent les données de terme contenues dans les premiers moyens de mémoire (44).

2. Dispositif électronique portable, selon la revendication 1, caractérisé en ce que les moyens de renouvellement comprennent des moyens de comparaison d'un montant monétaire pour comparer le montant maximum dans les seconds moyens de mémoire (42) avec les données renouvelables dans les troisièmes moyens de mémoire (46) et les moyens de renouvellement renouvellent les données du montant maximum seulement lorsque le montant monétaire des moyens de comparaison indiqué que les données du montant maximum sont inférieures aux données renouvelables.

3. Dispositif électronique portable, selon la revendication 1, caractérisé en ce que les moyens de renouvellement concernent les données renouvelables lues dans les troisièmes moyens de mémoire (46) à travers les seconds moyens de mémoire (42) afin que les données renouvelables indiquent des données d'un montant maximum nouvellement produites.

4. Dispositif électronique portable selon la revendication 1, caractérisé en ce que les moyens de renouvellement génèrent de nouvelles données de montant maximum en additionnant les données renouvelables contenues dans la troisième mémoire (46) avec les données de montant maximum du second moyen de mémoire (42).

5. Dispositif électronique portable selon la revendication 1, caractérisé en ce que le second moyen de mémoire (42) conserve un certain nombre de données de montant maximum pour chacun d'une multiplicité de comptes, tandis que les troisièmes moyens de mémoire (46) conservent un certain nombre de données renouvelables dont chacune correspond, respectivement, à l'une des données de montant maximum.

6. Dispositif électronique portable selon la revendication 1, caractérisé en ce qu'il comprend, en outre, des moyens d'entrée (18) pour entrer des données de montant monétaire indiquant des

données de transaction associées au milieu et des moyens de soustraction pour soustraire les données de montant monétaire entrées par les moyens d'entrée (18) des données de montant maximum contenues dans les seconds moyens de mémoire (42). 5

certain nombre de données de termes renouvelables dont chacune correspond, respectivement, à l'une des données de terme.

7. Dispositif électronique portable, selon la revendication 1, caractérisé en ce que les premiers moyens de mémoire (44) conservent les données de terme se rapportant à une date effective, les moyens chronologiques (36) incluant des moyens de calendrier pour générer des données se rapportant à une date présente, tandis que les moyens de comparaison comprennent la date effective avec la date présente. 10

8. Dispositif électronique portable, selon la revendication 1, caractérisé en ce qu'il comprend, en outre, des quatrièmes moyens de mémoire (48) pour conserver des données de termes renouvelables qui se rapportent à un temps effectif suivant et un autre moyen renouvelable pour renouveler les données de termes dans le premier moyen de mémoire (44) en accord avec les données de termes renouvelables contenues dans le quatrième moyen de mémoire (48) quand les moyens de comparaison indiquent que les données générées par les moyens chronologiques (36) dépassent les données de termes dans le premier moyen de mémoire (44). 15

9. Dispositif électronique portable selon la revendication 8, caractérisé en ce que le premier moyen de mémoire (44) conserve des données de termes se rapportant à une date effective, les moyens chronologiques (36) incluant un calendrier pour générer des données représentant une date actuelle, tandis que les moyens de comparaison comparent la date effective avec la date actuelle. 20

10. Dispositif électronique portable selon la revendication 9, caractérisé en ce que les quatrièmes moyens de mémoire (68) incluent le nombre de jours en tant que données de termes renouvelables, tandis qu'un autre moyen de renouvellement génère des données de termes nouvellement produites en additionnant le nombre de jours aux données de terme dans le premier moyen de mémoire (44). 25

11. Dispositif électronique portable selon la revendication 8, caractérisé en ce que les premiers moyens de mémoire (44) conservent un certain nombre de données de termes, chacun pour un certain nombre de comptes, tandis que les quatrièmes moyens de mémoire (48) conservent un 30

35

40

45

50

55

FIG. 1

FIG. 2

42 (1)	42 (2)	42 (3)	
ACCOUNT M 1	ACCOUNT M 2	ACCOUNT M 3	ACCOUNT 4 M 4
44 (1)~	46 (1)~	48 (1)~	42 (4)
MAXIMUM AMOUNT 1	MAXIMUM AMOUNT 2	MAXIMUM AMOUNT 3	MAXIMUM AMOUNT 4
EFFECTIVE TERM 1	EFFECTIVE TERM 2	EFFECTIVE TERM 3	EFFECTIVE TERM 4
RENEWABLE AMOUNT 1	RENEWABLE AMOUNT 2	RENEWABLE AMOUNT 3	RENEWABLE AMOUNT 4
RENEWABLE TERM 1	RENEWABLE TERM 2	RENEWABLE TERM 3	RENEWABLE TERM 4
DATA OF CARD HOLDER (ADDRESS, NAME, PIN)			
DATA OF TRANSACTION			
			50
			52

FIG. 3

FIG. 5

FIG. 4