

CIS 422/522 PROJECT 1 TIME SERIES CONCEPTS

Professor: Juan J. Flores iflore10@uoregon.edu

UNIVERSITY OF OREGON

1

TIME SERIES CONCEPTS

- Time Series
- Preprocessing
- Forecasting Models
- Forecasting
- TS2DB

O

3

Time Series Forecasting

Time Series Forecasting Methods

- Cualitative
 - Subjetive
 - No data available (new products)
 - Experts Opinion
- Cuantitative
 - Use historical data
 - Mathematical/Statistical Model
 - Models behavior patterns
 - Proyects those patterns to the future

_

Time Series Forecasting

Quantitative Methods

- Regression
- Smoothing
- ARIMA
- Artificial Intelligence

5

Preprocessing

- Statistical Analysis
- Noise
- Outliers
- Missing Data
- Autocorrelation
- Chaos

Statistical Analysis

The null hypothesis that the data is distributed according to the NormalDistribution[79.5032,62.0572] is rejected at the 5% level, based on the Cramér-von Mises test.

9

Noise Removal

- Moving average
- Moving medians

Noise Removal

- Moving average
- Moving medians

11

Noise Removal

- Moving average
- Moving medians

Noise Removal

- Moving average
- Moving medians

13

• Context sensitive • Air Temperature TS • Synthetic Outlier

Outliers

15

• Difference $T_i - T_{i-1}$

Missing Data Blackout Transmission failure Sick day

• Difference also eliminates trend
• Discrete derivative

Other Transformations

- Scaling/Normalization y = (x min) / (max min)
- Standardization $y = (x \mu) / \sigma$
- Logarithm Log(x)
- Cubic Root $\sqrt[3]{x}$

19

Forecasting Models

- Based on the TS history
- Determine the value at the next time instant

TS Forecasting

- Based on TS history
- Determine y_{n+1}

O

21

TS Forecasting

- OSA One Step Ahead Forecasting
- Determine $\langle y_{n+1}, y_{n+2}, ..., y_{n+k} \rangle$
- One at a time

O

TS Forecasting

- OSA One Step Ahead Forecasting
- Determine $\langle y_{n+1}, y_{n+2}, ..., y_{n+k} \rangle$
- One at a time

23

TS Forecasting

- OSA One Step Ahead Forecasting
- Determine $\langle y_{n+1}, y_{n+2}, ..., y_{n+k} \rangle$
- One at a time

TS to DB

f:

- Design Matrix
- Maps Forecasting to Regression
- Eliminates time (sequentiality)
- Shuffle records
- Be careful when splitting Training and Test sets

35

Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 \ ext{MAPE} = rac{1}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

