Computer Network Lab

LAB WORK # 12

Submitted By
QASIM ALI (20P-0070)
Submitted to: Hurmat Hidayat
(INSTRUCTOR CS)

DEPARTMENT OF COMPUTER SCIENCE

FAST NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES, PESHAWAR

Session 2020-2024

Task 1: Determine Network Address of the following IP Address IP address: 10.128.240.50/30. Also, determine broadcast and range of host addresses.

Ip Address : 10.128.240.50

Submet mass: 255.255.255.0 = 30

binary numbers:

10.128.240.50

10.128.240.50 : 000000110. 010000000. 11110000 . 00110010 255.255.255.0 : 11111111 . 11111111 . 111111100

Apply the AND Operation:

AND: 000000110.010000000.11110000.00110000

AND after we want the Network:

Network ip is: 00000110. 10000000. 11110000. 00110000

In decimal: 10.128.240.48

Broadcast address:

Host bit: 32-30 = 2 the host bit

In decimal: 10.128.240.51

Rang of host: 10.128.240.49

10.128.240.50

Only two networks only

Task 2: Determine the network and broadcast addresses and number of hosts bits and hosts for the given IPv4 addresses and prefixes in the following table.

IPv4 Address/Prefix	Network Address	Broadcast Address	Total Number of Host Bits	Total Number of Hosts
192.168.100.25/28	192.168.100.16	192.168.100.31	4	14
172.30.10.130/30	172.30.10.128	172.30.10.131	2	2
10.1.113.75/19	10.1.96.0	10.1.111.255	13	167
198.133.219.250/24	192.1233.219.0	192.133.219.255	8	62

192.168.100.25/28:

192.168.100.25 : 11000000. 10101000. 01100100 . 00011001 255.255.255.0 : 11111111 . 11111111 . 11111111 .11110000

Apply the AND Operation:

Network ip Address is: 11000000. 10101000. 01100100. 00010000

In decimal: 192.168.100.16

Broadcast address:

Host bit: 32-28 = 4 the host bit

11000000. 10101000. 01100100. 00011111

In decimal: 192.168.100.31

Total Number of Hosts 192.168.100.16

٨

| the center all ip is Total Number of Hosts

192.168.100.31

//============//=======//=======//

2-> 172.30.10.130/30 :

172.30.10.130 : 10101011. 00001110 . 00000110 . 10000010 255.255.255.0 : 11111111 . 11111111 . 111111100

Apply the AND Operation:

Network ip Address is: 10101011. 00001110.00000110.10000000

In decimal: 172.30.10.128

Broadcast address:

Host bit: 32-30 = 2 the host bit

10101011. 00001110.00000110.10000011

In decimal: 172.30.10.131

Total Number of Hosts

172.30.10.128

٨

the center all ip is Total Number of Hosts

172.30.10.**129** 172.30.10.130

٨

172.30.10.131

//==========//======//======//

3-> 10.1.113.75/19

10.1.113.75: 00001010. 00000001.01110001.01001001 255.255.255.0: 11111111 .11111111 .11100000.0000000

```
Apply the AND Operation:
Network ip Address is: 00001010. 00000001. 01100000. 00000000
In decimal: 10.1.96.0
Broadcast address:
Host bit: 32-19= 13 the host bit
00001010. 00000001. 01101111.11111111
In decimal: 10.1.111.255
Total Number of Hosts
10.1.96.0
٨
    the center all ip is Total Number of Hosts
10.1.111.255
//============//======//
4->198.133.219.250/24
192.133.219.250: 00001010. 00000001.01110001.01001001
Apply the AND Operation:
In decimal: 192.1233.219.0
Broadcast address:
Host bit: 32-24= 8 the host bit
00001010. 00000001.01110001.11111111
In decimal: 192.133.219.255
Total Number of Hosts
192.1233.219.0
   the center all ip is Total Number of Hosts
192.133.219.255
//============end Q1=============//
```

Q3: Network Topology A

Step 1: Determine the number of subnets in Network Topology A.

- a. How many subnets are there? ____2___
- b. How many bits should you borrow to create the required number of subnets? ____1
- c. How many usable host addresses per subnet are in this addressing scheme? ____62____
- d. What is the new subnet mask in dotted decimal format? ____255.255.255.129____
- e. How many subnets are available for future use? _____1____1_____

Step 2: Record the subnet information.

Fill in the following table with the subnet information:

Subnet	Subnet Address	First Usable Host	Last Usable Host	Broadcast
Number		Address	Address	Address
0	192.168.10.0	192.168.10.1	192.168.10.62	192.168.10.63
1	192.168.10.64	192.168.10.65	192.168.10.126	192.168.10.127
2	192.168.10.128	192.168.10.129	192.168.10.190	192.168.10.191
3	192.168.10.192	192.168.10.193	192.168.10.254	192.168.10.254
4				
5				

Q4: Network Topology B

Step 1: Determine the number of subnets in Network Topology B.

- a. How many subnets are there? _____9____
- b. How many bits should you borrow to create the required number of subnets? ____4___
- c. How many usable host addresses per subnet are in this addressing scheme? 14
- d. What is the new subnet mask in dotted decimal format? _____255.255.255.240___
- e. How many subnets are available for future use? _____7____

Step 2: Record the subnet information. Fill in the following table with the subnet information:

Network Name	Subnet Address	First Usable Host Address	Last Usable Host Address	Broadcast Address
0	192.168.10.0/26	192.168.10.1	192.168.10.30	192.168.10.31
1	192.168.10.32/26	192.168.10.33	192.168.10.62	192.168.10.63
2	192.168.10.64/26	192.168.10.65	192.168.10.94	192.168.10.95
3	192.168.10.96/32	192.168.10.97	192.168.10.98	192.168.10.99
4	192.168.10.100/32	192.168.10.101	192.168.10.102	192.168.10.103
5	192.168.10.104/32	192.168.10.105	192.168.10.106	192.168.10.107
6	192.168.10.108/32	192.168.10.109	192.168.10.110	192.168.10.111
7	192.168.10.112/32	192.168.10.113	192.168.10.114	192.168.10.115

Step 3: Assign addresses to network devices in the subnets.

a. Fill in the following table with IP addresses and subnet masks for the router interfaces:

Device	Interface	IP Address	Subnet Mask
R1	GigabitEthernet 0/1	192.168.10.30	255.255.255.224
	Serial 0/0/0	192.168.10.97	255.255.255.252
	Serial 0/0/1	192.168.10.101	255.255.255.252
R2	GigabitEthernet 0/1	192.168.10.62	255.255.255.224
	Serial 0/0/0	192.168.10.98	255.255.255.252
	Serial 0/0/1	192.168.10.105	255.255.255.252
R3	GigabitEthernet 0/1	192.168.10.94	255.255.255.224
	Serial 0/0/0	192.168.10.102	255.255.255.252
	Serial 0/0/1	192.168.10.106	255.255.255.252