

Informatik 09 - Tabellenkalkulation

BYCS Drive

- 1. Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mebis Logindaten an.
- 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name **Informatik 09**
- 3. Wenn du in diesem Ordner auf **+Neu** klickst kannst du neue Dateien (z.B. Kalkulationstabellen) erstellen.

WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. .xlsx), nicht zu verändern!

Excel Werbung

- 1. Schau das Video unter: mebis.link/inf9_excel-werbung
- 2. Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01_ExcelWerbung.xlsx
- 3. Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- 5. Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar?
- 6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben (
) und Zahlen (
) Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel Libre Office

) und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadsheets.

Calc oder Google Spreadsheets.

In Tabellenkalkulationsprogrammen können Daten in den Zellen der **Tabellenblätter** erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (

). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice

In Tabellenkalkulationsprogrammen können Daten in den Zellen der **Tabellenblätter** erfasst und mithilfe von **Formeln** verarbeitet werden. Jede Zelle besitzt eine eindeutige **Adresse**. Diese besteht aus **Buchstaben** (**Spalten**) und **Zahlen** (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadsheets.

In Tabellenkalkulationsprogrammen können Daten in den Zellen der **Tabellenblätter** erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben (**Spalten**) und Zahlen (Zeilen). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice

Calc oder Google Spreadsheets.

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

+ , ,

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

+ , - ,

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

Auswertung der Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

```
+ , - , * ,
```

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

+ , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

Auswertung der Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt:

1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

Auswertung der Formel und läuft so ab:

Formel

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert).

Die Grundrechenarten werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert).

Die Grundrechenarten werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Zellwerte

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert).

Die Grundrechenarten werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Zellwerte

z.B. 100

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen

(=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert).

Die **Grundrechenarten** werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Zellwerte

z.B. 100

Endergebnis

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen

(=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert).

Die **Grundrechenarten** werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Zellwerte

z.B. 100

z.B. 119

Endergebnis

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

+ , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

z.B. 119

Endergebnis

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

+, -, *, /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

z.B. 119 Endergebnis

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

+ , - , * , /

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term

oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

+, -, *, /

Excel-Werbung erweitert mit Formeln

- 1. Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
- 2. Führt die Schritte wie im Video aus, jedoch nur bis zu den Werten der 1. Spalte
- 3. Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben und setzt dies in eurer Tabelle um. Tragt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert, automatische Berechnung (=Formel)

Zieht oder kopiert n	nan eine Formel in eine
andere Zelle, so verä	indern sich die Adressen
entsprechend der verä	anderten Zellposition. Man
spricht von einem	Zellbezug.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

Zellbezug. Dies ist auch für Spalte oder Zeile einzeln möglich.

D			
ΚО	I C I	ni	В
	2	וע	ŀ

Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

2 nach unten

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern, setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem Zellbezug. Dies ist auch für Spalte

oder Zeile einzeln möglich.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ	= A\$1 + C3	

= \$A\$1 + C3

Zeile absolut absolut

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern, setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

absoluten Zellbezug. Dies ist auch für Spalte oder Zeile einzeln möglich.

Zeile relativ

Spalte relativ

Zeile absolut absolut

Art des Bezugs von A1	Original Formel	+ 1 nach unten + 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern, setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der	Adresse und spricht von einem
absoluten	Zellbezug. Dies ist auch für Spalte
oder Zeile e	inzeln möglich.

_		
KA	ichia	
	שוטכו	ь.

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	=B3 + D5
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	

= \$A\$1 + C3

absolut

1 nach rechts verschoben

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der	Adresse und spricht von einem
absoluten	Zellbezug. Dies ist auch für Spalte
oder Zeile e	einzeln möglich.

Art des	Original	2 nach unten
Bezugs von A1	Formel	+ 1 nach rechts
bezugs von AT	ronner	verschohen

Spalte relativ

Zeile absolut

absolut

relativ	= A1 + C3	=B3 + D5
Spalte absolut Zeile relativ	= \$A1 + C3	=\$A3 + D5

= A\$1 + C3

= \$A\$1 + C3

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern, setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem absoluten Zellbezug. Dies ist auch für Spalte

oder Zeile einzeln möglich.

Art des	Original
Bezugs von A1	Formel

Spalte relativ

Zeile absolut

absolut

relativ	= A1 + C3	=B3 + D5
Spalte absolut Zeile relativ	= \$A1 + C3	=\$A3 + D5

= A\$1 + C3=B\$1 + D5= \$A\$1 + C3

2 nach unten + 1 nach rechts

verschoben

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem relativen Zellbezug .
Möchte man dies verhindern, setzt man ein \$-

\$-		
er		

Spalte relativ

Zeile absolut

absolut

ech	enden '	Teil (2	Zeile oder	
ام م	an riab+		oinom	

Symbol vor den entspre Spalte) der Adresse und spricht von einem

absoluten Zellbezug. Dies ist auch für Spalte oder Zeile einzeln möglich.

Art des	Original	2 nach unte + 1 nach rec
ezugs von A1	Formel	+ I hach rec

relativ	= A1 + C3	=B3 + D5
Spalte absolut Zeile relativ	= \$A1 + C3	=\$A3 + D5

=B\$1 + D5 = A\$1 + C3=\$A\$1 + D5 = \$A\$1 + C3

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Exkurs: Abstraktionsebenen

L

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen
. In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

L

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung) .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen
. In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

1

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung) .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

L

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€			

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3		

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung) .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3	=GolfQ2 * Wachstumsfak.	

L

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3	=GolfQ2 * Wachstumsfak.	Umsatz Golf Q3

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Ein paar Beispiele für eine Zelle. Es gibt natürlich seehr viele Möglichkeiten.

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Werte (Eingaben)

Funktionen

Datenflüsse: --->

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenfluss-

diagramme bestehen aus diesen Elementen:

Werte (Eingaben/Ausgaben)

Funktionen

Datenflüsse: →

Schema eines DFDs mit Platzhaltern:

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=

Besitzt eine Funktion einen Parameter heißt sie , bei **zwei** Parametern Funktionen. SUMME und PRODUKT können auch als Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (=

Besitzt eine Funktion einen Parameter heißt sie , bei **zwei** Parametern Funktionen. SUMME und PRODUKT können auch als Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe Rückgabewert).

Besitzt eine Funktion einen Parameter heißt sie

, bei **zwei** Parametern Funktionen. SUMME und PRODUKT können auch als Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (= Rückgabewert).

Besitzt eine Funktion **einen** Parameter heißt sie **einstellig** , bei **zwei** Parametern usw.

<u>Gewöhnliche Rechenoperationen sind</u>
<u>Funktionen.</u> SUMME und PRODUKT können auch als

Gewöhnliche **Rechenoperationen sind Funktionen**. SUl fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (= Rückgabewert).

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern zweistellig usw.

Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (= Rückgabewert).

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern zweistellig usw. Gewöhnliche Rechenoperationen sind zweistellige Funktionen. SUMME und PRODUKT können auch als

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (= Rückgabewert).

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern zweistellig usw.

Gewöhnliche Rechenoperationen sind zweistellige Funktionen. SUMME und PRODUKT können auch als

fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

= A1 + B1 + C1 + D1 = SUMME(A1;B1;C1;D1) = SUMME(A1:D1)

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

z.B. Besserer Überblick, Aufbau einer Intuition für den Kontext, geringere Gefahr vor lauter Syntax den Überblick zu verlieren, 'Divide-and-Conquer', erst Planen, dann Umsetzen reduziert Fehler

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

z.B. Besserer Überblick, Aufbau einer Intuition für den Kontext, geringere Gefahr vor lauter Syntax den Überblick zu verlieren, 'Divide-and-Conquer', erst Planen, dann Umsetzen reduziert Fehler

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter? aussagekräftige Namen für Werte auch ohne den Kontext zu kennen, beschreibende Funktionsnamen statt nur Rechenoperationen, ...

Getränkekalkuation A1 Preis Anzahl Flaschen pro Kasten Kasten Spezi Spezi Flaschenpreis Spezi berechnen Flaschenpreis Spezi

Getränkekalkuation A1 Preis Anzahl Preis Anzahl Flaschen pro Kasten Preis Anzahl Flaschen pro Wasser Kasten Wasser Kasten Kasten Flaschen pro Spezi Kasten Spezi Kasten Bier Bier Flaschenpreis Flaschenpreis Wasser Flaschenpreis Spezi berechnen berechnen Bier berechnen Flaschenpreis Spezi Flaschenpreis Wasser Flaschenpreis Bier

Getränkekalkuation A2 Konsum Flaschenpreis Anzahl Konsum Spezi Flaschenpreis Anzahl Wasser Gäste Wasser pro Gast Spezi Gäste pro Gast Einkaufskosten Einkaufskosten Spezi berechnen Wasser berechnen

Einkaufskosten Wasser

Einkaufskosten Spezi

Getränkekalkuation B1

Getränkekalkuation B2 Einkaufs-Erwartete kosten bei Einnahmen Händler 1 Gewinn bei

Händler 1 berechnen

Gewinn bei Händler 1

Getränkekalkuation B2 Einkaufs-Einkaufs-Erwartete Erwartete kosten bei kosten bei Einnahmen Einnahmen Händler 1 Händler 1 Gewinn bei Gewinn bei Händler 1 Händler 1 berechnen berechnen

Gewinn bei Händler 1

Gewinn bei Händler 1

Getränkekalkuation B2 Einkaufs-Einkaufs-Gewinn Gewinn Erwartete Erwartete kosten bei kosten bei bei bei Einnahmen Einnahmen Händler 1 Händler 1 Händler 1 Händler 2 Gewinn bei Gewinn bei Kostenunterschied Händler 1 Händler 1 berechnen berechnen berechnen Gewinn bei Händler 1 Gewinn bei Händler 1 Kostenunterschied

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?

4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?

 Datenblöcke zwischen 2 Funktionen (aber nur wenn Funktionsname aussagekräftig genug ist, um trotzdem zu verstehen, was gerechnet wird)
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit

einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Wenn der Ausgabewert einer Funktion als einer anderen Funktion verwendet wird, spricht man von Funktionen. In Datenflussdiagrammen können zwischen von

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit

kann ein Datenfluss in zwei aufgeteilt werden. einem

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

gen Aufgabe.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Funktionen. In Datenflussdiagrammen können zwischen von

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit

kann ein Datenfluss in zwei aufgeteilt werden. einem

Ein Beispiel ist das Gesamt-Diagramm aus der vorheri-

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man Verkettung von Funktionen. In Datenflussdiagrammen können zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit

kann ein Datenfluss in zwei aufgeteilt werden. einem

Ein Beispiel ist das Gesamt-Diagramm aus der vorheri-

gen Aufgabe.

Wenn der **Ausgabewert** einer Funktion als **Eingabewert** einer anderen Funktion verwendet wird, spricht man von **Verkettung** von Funktionen. In Datenflussdiagrammen können **Datenblöcke** zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem

einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Wenn der **Ausgabewert** einer Funktion als **Eingabewert** einer anderen Funktion verwendet wird, spricht man von **Verkettung** von Funktionen. In Datenflussdiagrammen können **Datenblöcke** zwischen **2 Funktionen** weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

einem kann ein Datenfluss in zwei aufgeteilt werden. Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen 2 Funktionen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem Verteiler kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen 2 Funktionen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem Verteiler kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf höchster Abstraktionsebene.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- Möglichkeit 1: Einfach untereinander Eingaben und berechnete Werte etwa in Reihenfolge des 'Auftretens'
- Möglichkeit 2: Strukturell am DFD orientiert, wird ähnlich einer Pyramide
- weitere Möglichkeiten: ...

Umsetzung der DFDs als Tabelle

										9			
Zeichne eine grobe Skizze deiner Tabelle:													
A	В	C	D	Е	F	G	н		J	К			
1													
2	Lösungmöglichk		Lösungmöglichkeit 2										
3	Einnahmen Getränke	400,00€				Einnahm	en Tickets	Preis pro Ticket					
4	Ausgaben Getränke	100,00€				600	,00€	5					
5	Gewinn Getränke	300,00€					Anzahl Gäste		Gäste pro Security				
6	Einnahmen Tickets	600,00€					120		80				
7	Preis pro Ticket	5		Einnahmen Getränke	Ausgaben Getränke			Anzahl Security		Kosten pro Secu-Person			
8	Anzahl Gäste	120		400,00€	100,00€				2	250,00€			
9	Gäste pro Security	80		Gewinn Getränke Securitykosten			ten						
10	Anzahl Security	2		300,00 € 500,00 €									
11	Kosten pro Secu-Person	250,00€		Gewinn pro Gaste									
12	Kosten Security gesamt	500,00€		3,33 €									
13	Durchn. Gewinn pro Gast	3,33€											

Wenn-Dann-Funktion

- 1. Öffne Studyflix: bycs.link/studyflix-excel-if
- 2. Schaue das Video und baue die beschriebene Tabelle in BYCS Drive nach.
- 3. Fasse den Artikel/das Video in einem kurzen Hefteintrag zusammen.
- 4. Ergänze mit Hilfe deines Buchs, die Darstellung der Wenn-Dann-Funktion im Datenflussdiagramm.

Mit der Wenn-Dann-Funktion können anhand einer Bedingung verschiedene Werte verwendet werden.

Eine Bedingung kann z.B.

- Gleichheit zweier Werte (=) oder
- eine Größer-/Kleiner-Bedingung (<,>,<=,>=)

prüfen.

Wenn die Bedingung als wahr ausgewertet (=erfüllt) wird, wird der Dann-Teil in die Zelle eingefügt, ansonsten der Sonst-Teil.

In Excel gibt man die Funktion so ein:

Schema: =WENN(Bedingung; Dann; Sonst)
Beispiel: =WENN(D5 < 10; "kleiner als 10"; "größer oder gleich 10")

Bei der Darstellung im Datenflussdiagramm ist die Reihenfolge (von links nach rechts), mit der die Pfeile an der Funktion ankommen, wichtig:

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€

 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - o Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person? Alicia Solis
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person? Alicia Solis
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde? Milch

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur **Zeilen** mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
- die Zeilen nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
- die Zeilen nach den Werten einer bestimmten Spalte sortieren.
- Mehrere Filter können miteinander kombiniert werden.

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten.

Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch

ansprechend sein.

Erstelle in BYCS-Drive eine solche Kalkulationstabelle