Systems Thinking: Assignment–1

Monsoon 2025 (Instructor: Prof. Spandan Roy)

Release date: 19/08/25 **Due date:** 27/08/25 (11:59 pm)

Instructions & Marking Scheme

Marking Scheme

Question	Marks
Q1	10
Q2	10
Q3	10

Submission Format

- Submit a single .zip file named: Name_RollNo.zip.
- Inside the zip:
 - Assignment.pdf (Solutions for Q1 and Q2)
 - README.md (Explanations for Q3: MATLAB usage, functions, variables, and thought process)
 - q3.m (MATLAB script for Q3)
 - plots/ (Folder containing all MATLAB-generated plots in .png format)

PDF Content

- Q1: Derivations and explanations
- Q2: State-space matrices, eigenvalues, transfer function derivation
- Q3: Plots from MATLAB with proper labels, titles, and axes (include explanations)

Tools & Integrity

- Use MATLAB for all simulations.
- All plots must be properly labeled (units, axes).
- Work should be original. Any plagiarism will result in zero marks for the question and/or assignment.

References

- Ogata, K. Modern Control Engineering.
- MATLAB Documentation: tf, ss, lsim, ode45.

Systems Thinking Page 1

Q1. Application of Transfer Functions (10 marks)

A series RLC circuit has

$$R = 10 \ \Omega$$
, $L = 0.5 \ H$, $C = 0.02 \ F$.

The input voltage is $v_{in}(t)$. The output is the capacitor voltage $v_C(t)$.

- 1. Derive a single second-order differential equation governing $v_C(t)$ (use KVL and express everything in terms of v_C and its derivatives).
- 2. Assuming zero initial conditions, use Laplace transforms to find the transfer function

$$G(s) = \frac{V_C(s)}{V_{in}(s)}.$$

Write G(s) in simplest rational form.

- 3. For the input $v_{in}(t) = 5u(t)$ and the given initial conditions $v_C(0) = 1$ V, $i_L(0) = 0.5$ A, find $V_C(s)$ (include the initial-condition terms) and state the inverse Laplace form of $v_C(t)$.
- 4. From G(s):
 - find zeros and poles (give numerical locations),
 - compute the DC gain G(0)
- 5. Comment briefly on internal/BIBO stability of the system.

Q2. Block Diagram Reduction and Transfer Function (10 marks)

A system has the following block diagram representation:

$$G_1(s) = \frac{10}{s+2}$$
, $G_2(s) = \frac{5}{s+1}$, $H(s) = \frac{1}{s+3}$

Configuration:

- $G_1(s)$ and $G_2(s)$ are in series.
- The output of $G_2(s)$ is fed back negatively through H(s).

- a) Draw the block diagram based on the description.
- b) Reduce the block diagram to find the overall transfer function: $T(s) = \frac{C(s)}{R(s)}$.
- c) Find the poles of the system and comment on stability.

Systems Thinking Page 2

Q3. MATLAB Simulation (10 marks)

Write a MATLAB script to:

a) Accept as input the coefficients of a second-order linear ODE in the form

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = K u(t),$$

where u(t) can be a unit step or sinusoidal input and K be the gain constant.

- b) Plot: (i) the input u(t) vs. time, (ii) the output y(t) vs. time.
- c) Use both methods:
 - lsim() with a transfer function object (tf()).
 - ode45() directly on the ODE.
- d) Compare and comment on the results from both methods with the plot for the error between them.
- e) Example for testing:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = u(t)$$
, with $u(t)$ as the step signal

Systems Thinking Page 3