# VOLE-in-the-Head and the FAEST Post-Quantum Signature Scheme



### Based on

Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head with Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy CRYPTO 2023

#### **FAEST Digital Signature Scheme**

+ Christian Majenz, Shibam Mukherjee, Sebastian Ramacher, Christian Rechberger Submission to NIST PQC Standardization process

## Families of ZK Proofs



# VOLE-in-the-Head: a general tool for making VOLE-ZK proofs publicly verifiable



### **VOLE-ZK**

in the designated verifier setting



# Background: VOLE (vector oblivious linear evaluation)





## ZK from VOLE (designated verifier)

[BMRS 21, WYKW 21]

Use VOLE as a linear commitment to  $\vec{w}$ 

#### To open

- Alice sends (w, v), Bob checks if  $q = w\Delta + v$
- Hiding: since v is random
- Binding: opening to  $w' \neq w$  requires guessing  $\Delta$ , prob.  $1/|\mathbb{F}|$



Commitments are linearly homomorphic

### ZK from VOLE via Commit-and-Prove

[BMRS 21, WYKW 21]

- Commit to witness  $\vec{w}$
- Evaluate *C* gate-by-gate:

➤ Linear gates: easy

➤ Multiplication: ???



# Multiplication gates in VOLE-ZK



[DIO 21, YSWW 21]

 Multiply two lines ⇒ quadratic polynomial

$$\triangleright p_{ab}(x) = d_0 + d_1 x + abx^2$$

- Commit to output  $c \Rightarrow p_c(x) = v + cx$
- $p_{ab}(x) xp_c(x)$  should be degree-1
  - ➤ Open and check
  - First, mask with random deg-1 commitment



## Cost analysis for VOLE-ZK

- Per multiplication gate:
  - $\triangleright$  Commit to c
    - 1× VOLE element
  - ➤ Open masked commitment
    - Can be amortized (check random combination of gates)

- For circuit:
  - $\succ n$  field elements for circuit with n mult. gates (assuming cheap VOLE)
  - >Improvements:
    - General deg-2 and higher degree gates; branching; field switching...

# VOLE-in-the-Head Adding public verifiability



# MPC-in-the-Head vs VOLE-in-the-head: high-level differences



# MPC-in-the-Head vs VOLE-in-the-head: high-level differences



Peter Scholl

 $w = w_1 + \cdots + w_n$ 

15

## How to do VOLE-in-the-head?



Peter Scholl

16

## VOLE-in-the-head: some details

- (n-1)-out-of-n vector commit  $\Rightarrow$  VOLE in  $\mathbb{F}_n$ 
  - $\triangleright$  Commitments have soundness error  $\frac{1}{n}$   $\otimes$
  - $\triangleright$  What about  $\mathbb{F}_m$  for large m?
- For extension fields,  $m = n^{\tau}$ :
  - $\triangleright$  Repeat  $\tau$  times, with same  $w \in \mathbb{F}_n$
  - $\triangleright$  Cost e.g. over  $\mathbb{F}_2$ , 10-16 bits per AND
- For large prime fields:
  - Encode w with linear code
  - ➤ Cost: 1-2 field elements per MULT

Needs consistency check

Application to Post-Quantum Signatures



## Paradigm for ZK-based signatures

- Signature:
  - $\triangleright$ NIZK proof of knowledge of sk, such that  $pk = \operatorname{Enc}_{sk}(x)$
- Challenge: finding a ZK-friendly Enc
  - Custom ciphers: e.g. LowMC, MiMC
  - ➤Other assumptions: code-based, multivariate...

# AES: a ZK-friendly OWF?

#### ShiftRows, MixColumns, AddRoundKey:

 $\triangleright$  All linear over  $\mathbb{F}_2$ 

#### S-Box:

- $\triangleright$ Inversion in  $\mathbb{F}_{2^8}$
- ➤ Prove in ZK as 1 multiplication constraint



## Proving AES-128 in FAEST

Witness: key + internal state of each round

• 1600 bits (in  $\mathbb{F}_2$ )

### 200 constraints over $\mathbb{F}_{2^8}$ :

• 1 per S-box: degree-2 polynomial xy = 1



# FAEST overview: proving $pk = AES_{sk}(x)$



# FAEST: example performance

|            | Sign/Verify | Size     |
|------------|-------------|----------|
| FAEST-128s | ≈ 8ms       | 5 006 B  |
| FAEST-128f | ≈ 1ms       | 6 336 B  |
| FAEST-256s | ≈ 27ms      | 22 100 B |
| FAEST-256f | ≈ 3ms       | 28 400 B |

#### • Signature sizes:

- ➤ Smaller than SPHINCS+ and most code-based candidates
- > Faster signing, slower verification

#### Possible variants:

 $\triangleright$  MQ instead of AES: size  $\approx 3$  kB

### Conclusion

#### **VOLE-ZK** proofs:

- Lightweight and fast with linear size
- VOLE-in-the-head: publicly verifiable

#### FAEST signature:

- ➤ Conservative security
- ➤ Reasonable performance

#### Resources:

Paper: <a href="https://ia.cr/2023/996">https://ia.cr/2023/996</a>

PQ signature: <a href="https://faest.info">https://faest.info</a>





