Computer Vision 1: Photometric Stereo & Color Spaces

February 12, 2017

All the files should be zipped and sent to **computervision1.uva@gmail.com** before **20-02-2017**, **23.59** (Amsterdam Time).

1 Photometric Stereo

In this part of the assignment, you are going to implement the photometric stereo algorithm as described in Algorithm 5.1 (Chapter 5 of the book "Computer Vision: A Modern Approach" whose snippet can be found in Course Materials).

The algorithm skeleton is provided in a template code following this instruction, you will have to edit and fill in your code in the files $get_source.m$, $compute_surface_gradient.m$, $check_integrability.m$, and $construct_surface.m$. The main script $photometric_stereo.m$ would be a good start.

For the sake of simplicity, you can assume the light sources in the sample images are far way and, respectively, frontal, left-above, right-above, right-below, left-below, with equality at all pixels. The task now is to represent these assumptions with directional unit vectors, yielding the $\mathcal V$ up to a scale factor. Try out several scalar multiplications to see what gives good results.

Try to structure your code well, explain your implementation and results in comments.

2 Color Spaces

Create a function to convert an RGB image into the following color spaces by using the template code you are provided ConvertColorSpace.m and other sub-functions. Visualize the new color space channels separately in the same figure.

Opponent Color Space

$$\left(\begin{array}{c}O_1\\O_2\\O_3\end{array}\right)=\left(\begin{array}{c}\frac{R-G}{\sqrt{2}}\\\frac{R+G-2B}{\sqrt{6}}\\\frac{R+G+B}{\sqrt{3}}\end{array}\right)$$

Normalized RGB (rgb) Color Space

$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} \frac{R}{R+G+B} \\ \frac{G}{G} \\ \frac{R+G+B}{R+G+B} \end{pmatrix}$$

HSV Color Space

Convert the RGB image into HSV Color Space. Use MATLAB's built-in function rgb2hsv.

YCbCr Color Space

Convert the RGB image into YCbCr Color Space. Use MATLAB's built-in function rgb2ycbcr.

Grayscale

Convert the RGB image into grayscale by using 3 different methods mentioned in https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/In the end, check which method MATLAB uses for grayscale conversion, include it as well, and visualize all 4 in the same figure.