可測集合が可測集合に写る事

平成29年7月7日

定理 0.1. 集合 X 上の全単射連続写像 T と 0 でない定数 τ があって,集合 X 上の外測度 μ に対して,

$$\mu \circ T = \tau \cdot \mu$$

が成立するものとする.このとき,E が μ -可測集合ならば $T^{-1}(E)$ も μ -可測集合.特に T が同相 写像ならば T(E) も μ -可測集合.

(証明). T, τ の関係と,T が全単射であることから $\tau \cdot (\mu \circ T^{-1}) = \mu \circ (T \circ T^{-1}) = \mu$ が成立する. 任意の $A \subset X$ を取る.

$$\begin{split} \mu(A) &= \mu(A \cap E) &+ \mu(A \cap E^c) \\ &= \tau \cdot \mu(T^{-1}(A \cap E)) &+ \tau \cdot \mu(T^{-1}(A \cap E^c)) \\ &= \tau \cdot \mu(T^{-1}(A) \cap T^{-1}(E)) &+ \tau \cdot \mu(T^{-1}(A) \cap T^{-1}(E^c)) \\ &= \tau \cdot \mu(T^{-1}(A) \cap T^{-1}(E)) &+ \tau \cdot \mu(T^{-1}(A) \cap T^{-1}(E)^c) \end{split}$$

 $\mu(A) = \tau \cdot \mu \circ T^{-1}(A)$ を用いて

$$\tau \cdot \mu \circ T^{-1}(A) = \tau \cdot (\mu(T^{-1}(A) \cap T^{-1}(E)) + \mu(T^{-1}(A) \cap T^{-1}(E)^c))$$
$$\mu(T^{-1}(A)) = \mu(T^{-1}(A) \cap T^{-1}(E)) + \mu(T^{-1}(A) \cap T^{-1}(E)^c)$$

任意の集合 A は T(A') と表現できる (T の全射性) から,

$$\mu(A') = \mu(A' \cap T^{-1}(E)) + \mu(A' \cap T^{-1}(E)^c)$$

よって $T^{-1}(E)$ は μ -可測.

実際の所,定数 τ が存在するという条件は「加法準同型な全単射写像 U があって $\mu \circ T = U \circ \mu$ 」と書けるのだが,このような U であって更に連続なものに限ると, $U(x) = \tau x$ の形になるしか無い.

例 0.2. \mathbb{R}^n 上のルベーグ測度を考えることにする. 定数 c に対して T(E) = E - c, $\tau = 1$ とすればこれは定理の仮定を満たす. したがって平行移動に対して可測性は不変.

また、0 でない定数 a を取ると、T(E)=aE に対して $\tau=|a|^n$ とすればこれも定理の仮定を満たすから、定数倍に対しても可測性は不変.