Oiulin Fan

ma217-w24 Assignment readQ3-2 due 02/09/2024 at 08:01am EST

Problem 1. (1 point)

 $\in \mathbb{R}^2 : x \in \mathbb{R}$. Give a value of y so that W is a

 $v = _{--}$

Give a value of y so that W is not a subspace.

Answer(s) submitted:

- 0
- 1

submitted: (correct) recorded: (correct)

Problem 2. (1 point)

Let
$$\vec{v}_1 = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 2 \\ 3 \\ -4 \end{bmatrix}$.

Give a vector \vec{v}_3 so that the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are **not** linearly independent.

$$\vec{v}_3 = \begin{bmatrix} -- \\ -- \end{bmatrix}$$

Give a vector \vec{v}_3 so that the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are linearly indepen-

$$\vec{v}_3 = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

$$\bullet \begin{bmatrix} 5 \\ -1 \\ -3 \end{bmatrix} \\
\bullet \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

submitted: (correct) recorded: (correct)

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

Problem 3. (1 point)

Let
$$\vec{v}_1 = \begin{bmatrix} 4 \\ -2 \\ 4 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ be a basis for a subspace V of \mathbb{R}^3 , and let $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$.

What is rank(A)? $rank(A) = \underline{\hspace{1cm}}$

Find the coordinates of $\vec{w} = \begin{bmatrix} 12 \\ -2 \\ 6 \end{bmatrix}$ with respect to this basis.

 $c_2 =$ ____

Answer(s) submitted:

- 2
- 2

submitted: (correct) recorded: (correct)

1