

1. Resolución de Sistemas de Ecuaciones Lineales

Métodos Directos: Calculan la solución exacta en un número finito de pasos

Gauss.

Gauss-Jordan

Método de la inversa

Factorización LU

Métodos Iterativos.

Construyen una sucesión de valores que converge a la solución del sistema.

Jacobi

Gauss-Seidel.

Convergencia de los métodos

Ejercicio 3-H2. Resuelve el SL usando la factorización LU de la matriz A

$$2x_1 + 4x_2 - 6x_3 = -8$$
 $-x_1 + x_2 - 3x_3 = -8$
 $x_1 + x_2 = 3$

$$Ax = b$$

A = LU

Resolución de SL con Factorización LU

❖ Se descompone A = LU

L: cuadrada triangular inferior e invertible.

U: escalonada de A, puede **no** ser cuadrada

- Los SL con matrices triangulares son más fáciles de resolver.
- ❖ Si U tiene n unos principales (A es invertible) → factorización única.

La ventaja de este método es que es computacionalmente eficiente porque elegido el vector b no tenemos que volver a hacer la eliminación de Gauss cada vez.

Ejercicio 3-H2. Resuelve el SL usando la factorización LU de la matriz A

$$2x_1 + 4x_2 - 6x_3 = -8$$
 $-x_1 + x_2 - 3x_3 = -8$
 $x_1 + x_2 = 3$

$$Ax = b \implies 1^{\circ} Ly = b$$

$$2^{\circ} Ux = y$$

$$\mathbf{A}\mathbf{X} = \mathbf{b} \begin{bmatrix} 2 & 4 & -6 & | & \mathbf{x}_1 \\ -1 & 1 & -3 & | & \mathbf{x}_2 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} -8 \\ -8 \\ 3 \end{bmatrix}$$

$$Ly = b$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -8 \\ -8 \\ 3 \end{bmatrix} \implies y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \implies U \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \implies x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Obtención de L, U

- a) Inicio $L = I_m$
- b) Obtención de L:

En cada fila i de A se busca candidato a 1 principal (sup. \mathbf{a}_{ik}).

Antes de obtener el 1 principal se copia en la k-ésima columna de L los valores de la columna de A desde el candidato a 1 principal hasta final de la columna.

c) Se **escalona** a_{ik}

L >> cualquier valor en diagonal

U >> escalonada de A con 1 principales en la diagonal

Obtención de L, U

Para matrices cuadradas. Sea A (nxn)

Suponemos que A se puede escalonar sin hacer permutaciones por fila (OE/tipo 1). Entonces existe una matriz triangular inferior L (nxn) invertible / A = LU, siendo U (nxn) la escalonada de A con unos en la diagonal. Si además U tiene n unos principales, la factorización es única.

Para matrices no cuadradas Sea A (mxn)

Suponemos que A se puede escalonar sin hacer permutaciones por fila (OE/tipo 1). Entonces existe una matriz triangular inferior L (mxm) invertible / A = LU, siendo U (mxn) la escalonada de A con u_{ii} = 0 si i > j (1)

Nota: La condición (1) significa que U es triangular superior en el sentido de que todos los elementos que se encuentran por debajo de la "diagonal" son cero.

$$\begin{bmatrix} d_1 & \mathbf{u_{12}} & \mathbf{u_{13}} & \mathbf{u_{14}} & \mathbf{u_{15}} \\ 0 & d_2 & u_{23} & u_{24} & u_{25} \\ 0 & 0 & d_3 & u_{34} & u_{35} \end{bmatrix}$$

Matrices que satisfacen la condición (1)

$$\begin{bmatrix} d_1 & \mathbf{u_{12}} & \mathbf{u_{13}} \\ 0 & d_2 & \mathbf{u_{23}} \\ 0 & 0 & d_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Ejercicio 3 (cont)

Obtención de L, U

Candidato a 1 principal en A >> a_{11} >> 1_{i1} = a_{i1} , i = 1, 2, 3 Después >> escalona a_{11} >> A'

$$A = \begin{bmatrix} \mathbf{2} & 4 & -6 \\ -\mathbf{1} & 1 & -3 \\ \mathbf{1} & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} F1 \longleftrightarrow (1/2)F1 \\ F2 \longleftrightarrow F2 + F1 \\ F3 \longleftrightarrow F3 - F1 \end{array} \qquad \begin{array}{c} \mathbf{1} & 2 & -3 \\ \mathbf{0} & 3 & -6 \\ \mathbf{0} & -1 & 3 \end{array}$$

Ejercicio 3 (cont)

Obtención de L, U

Candidato a 1 principal en A' >> a'_{22} >> l_{i2} = a'_{i2} , i = 2, 3 Después >> escalona a'_{22} >> A"

$$A' = \begin{bmatrix} 1 & 2 & -3 \\ 0 & \mathbf{3} & -6 \\ 0 & -\mathbf{1} & 3 \end{bmatrix} \qquad F2 \leftrightarrow (1/3)F2 \\ F3 \leftrightarrow F3 + F2 \qquad A'' = \begin{bmatrix} 1 & 2 & -3 \\ 0 & \mathbf{1} & -2 \\ 0 & \mathbf{0} & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Ejercicio 3 (cont)

Obtención de L, U

Candidato a 1 principal en A" es $a''_{33} \rightarrow l_{i3} = a''_{i3}$, i = 3Después >> escalona a";3 >> A""

$$A''' = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 1 \end{bmatrix} \qquad L = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

Factorización LU

Ejercicio 3 (cont)

Resolver SL

$$Ly = k$$

$$\begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -8 \\ -8 \\ 3 \end{bmatrix}$$
(3x3)

$$2y_1$$
 = -8
 $-y_1$ + $3y_2$ = -8
 y_1 - y_2 + y_3 = 3

$$y = \begin{vmatrix} -4 \\ -4 \\ 3 \end{vmatrix}$$

sustitución progresiva

Factorización LU

Ejercicio 3 (cont)

Resolver SL $\begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 3 \end{bmatrix}$

$$x_1 + 2x_2 - 3x_3 = -4$$
 $x_2 - 2x_3 = -4$
 $x_3 = 3$

sustitución regresiva

Ejercicio "extra" factorización A = LU, Resolver Ax = b / A = LU

$$A = \begin{bmatrix} -1 & 3 & 1 & 0 & -1 \\ 1 & -1 & 1 & 4 & 1 \\ 1 & -5 & -3 & -4 & 1 \\ 0 & -2 & -2 & -4 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Factorización LU

Ejercicio "extra" (cont)

candidato a 1 principal en A \Rightarrow $\mathbf{l}_{i1} = \mathbf{a}_{i1}$, $\mathbf{i} = 1,..., 4$ escalona a₁₁

$$A = \begin{bmatrix} -1 & 3 & 1 & 0 & -1 \\ 1 & -1 & 1 & 4 & 1 \\ 1 & -5 & -3 & -4 & 1 \\ 0 & -2 & -2 & -4 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 3 & 1 & 0 & -1 \\ 1 & -1 & 1 & 4 & 1 \\ 1 & -5 & -3 & -4 & 1 \\ 0 & -2 & -2 & -4 & 0 \end{bmatrix}$$
 F1 \leftrightarrow (-1)F1 \Rightarrow F2 \leftrightarrow F3 \rightarrow F1 \Rightarrow F3 \rightarrow F1 \Rightarrow F3 \leftarrow F3 \rightarrow F1 \Rightarrow F3 \leftarrow F3 \leftarrow F1 \Rightarrow F3 \leftarrow F3 \leftarrow F1 \Rightarrow F3 \leftarrow F3 \leftarrow F3 \leftarrow F1 \Rightarrow F3 \leftarrow F3

$$L = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejercicio "extra" (cont)

Factorización LU

Candidato a 1 principal en A \Rightarrow $a_{22} \rightarrow 1_{i2} = a_{i2}$, i = 2,3,4escalona a₂₂

$$A' = \begin{bmatrix} 1 & -3 & -1 & 0 & 1 \\ 0 & 2 & 2 & 4 & 0 \\ 0 & -2 & -2 & -4 & 0 \\ 0 & -2 & -2 & -4 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix}$$

Factorización LU

Ejercicio "extra" (cont)

$$L = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix}$$

$$Ly = b$$

$$-y_1$$
 = -1
 $y_1 + 2y_2$ = 1
 $y_1 - 2y_2 + y_3$ = 1
 $-2y_2 + y_4 = 0$

$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Ux = y

$$x_1 - 3x_2 - x_3 + x_5 = 1$$

 $x_2 + x_3 + 2x_4 = 0$

$$x = \begin{bmatrix} 1 - 2x_3 - 6x_4 - x_5 \\ - x_3 - 2x_4 \end{bmatrix}$$
SCI.
$$x_3, x_4, x_5$$
son parámetros
$$x_4$$

$$x_5$$

Ejercicio 4-H2. Resuelve Ax = b, / factorización A = LU

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ -1 & -2 & 0 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ 5 \\ 6 \\ -3 \end{bmatrix}$$

$$\begin{array}{c|cccc}
U = & 2 & 3 & -1 \\
0 & 3 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}$$

Ly = b >> y =
$$\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$
 Ux = y >> x = $\begin{bmatrix} (-6 + 3x_3)/2 \\ (5 - 2x_3)/3 \\ x_3 \end{bmatrix}$

SCI. x₃ parámetro

MATRICES ELEMENTALES

"Guardamos" las OE / filas en matrices

$$A = \begin{bmatrix} 2 & 4 & -6 \\ -1 & 1 & -3 \\ 1 & 1 & 0 \end{bmatrix} \xrightarrow{F1 \leftrightarrow (1/2)F1} A' = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -3 \\ 1 & 1 & 0 \end{bmatrix}$$

$$E = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow EA = A'$$

E >> MATRIZ ELEMENTAL

¿ Cómo se obtienen?

ME >> matriz nxn que se obtiene al realizar una \underline{unica} OE/fila sobre la matriz identidad I_n

	OE/fila	MATRIZ ELEMENTAL	
MATRIZ	$F_i \leftrightarrow F_j$	Tipo 1	P _{ij}
IDENTIDAD	$F_i \leftarrow \alpha F_i (\alpha \neq 0)$	Tipo 2	$E_i(\alpha)$
I (nxn)	$F_i \leftarrow F_i + \beta F_j$	Tipo 3	E _{ij} (β)

 $P^{(n)}_{ij} = P_{ij}$ se omitirá exponente (n) que representa el orden de la matriz I

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{12} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \textbf{F3} \leftarrow \textbf{(2/5)F3}$$

$$E_3(2/5) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2/5 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{F2} \leftarrow \mathbf{F2} + (\mathbf{-5})\mathbf{F3} \qquad E_{23}(\mathbf{-5}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \mathbf{-5} \\ 0 & 0 & 1 \end{bmatrix}$$

MATEMÁTICAS I ÁLGEBRA 2018-19

En el Ejercicio 3

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -6 \\ -1 & 1 & -3 \\ 1 & 1 & 0 \end{bmatrix}$$

 $F1 \leftrightarrow (1/2)F1$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -6 \\ -1 & 1 & -3 \\ 1 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} F1 \leftrightarrow (1/2)F1 \\ F2 \leftrightarrow F2 + F1 \\ F3 \leftrightarrow F3 - F1 \end{array} \qquad \begin{array}{c} \mathbf{1} & 2 & -3 \\ \mathbf{0} & 3 & -6 \\ \mathbf{0} & -1 & 3 \\ \end{array}$$

$$\mathbf{E_{1}(1/2)} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{E_{21}(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{E_{31}(-1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\mathsf{E}_{21}(1) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $F2 \leftrightarrow F2 + F1$

F3
$$\leftrightarrow$$
 F3 - F1
$$E_{31}(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$E_{31}$$
 (-1) E_{21} (1) E_{1} (1/2) $A = A'$

Repasar multiplicación de matrices

Métodos Iterativos

Progresivamente calculan aproximaciones a la

solución de un problema Ax = b

$$\lim x^{(k)} = x, k \to \infty$$

- >> Se **repite** un mismo proceso de mejora sobre una solución aproximada (secuencia de iteraciones)
- >> La solución obtenida es **mejor** que la inicial
- >> Se puede **suspender** el proceso (criterio de parada).
- >> Útiles para resolver problemas con nº muy grande de variables
- >> Sólo se almacenan los coeficientes no nulos de la matriz del SL.

Ejemplo

Encontrar raíz a la ecuación cuadrática

$$f(x) = x^2 - x - 2 = 0$$

>> Método directo

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)} = -1, 2$$

>> Método **iterativo**: Newton

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^2 - x_i - 2}{2x_i - 1}$$

Ejemplo (cont)

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^2 - x_i - 2}{2x_i - 1}$$

Se toma como 1ª aproximación $x_0 = 3 >>$

$$x_1 = x_0 - \frac{{x_0}^2 - x_0 - 2}{2x_0 - 1} = 3 - \frac{3^2 - 3 - 2}{2 \cdot 3 - 1} \approx 2.2$$

$$X_1 = 2.2 >>$$

Etc...

$$x_2 = x_1 - \frac{{x_1}^2 - x_1 - 2}{2x_1 - 1} = 2.2 - \frac{2.2^2 - 2.2 - 2}{2 \cdot 2.2 - 1} \approx 2.011$$

- >> Comienzan vector inicial arbitrario $\mathbf{x}_0 = (0^{(0)}, 0^{(0)}, 0^{(0)})$
- >> Construyen sucesión de vectores: $x_i = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$ aplicando ecuación de recurrencia que se repite k veces

>> Condición de parada:
$$||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||_{\infty} < 10^{-n}$$

$$||x^{(k+1)} - x^{(k)}||_{\infty} = \max(|x1|, |x2|, ... |xn|)$$

Jacobi

Sólo en sistemas cuadrados (nº incógnitas = nºecuaciones).

Ilustramos método con este SL

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1$$

$$a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2$$

$$a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 = b_3$$

Jacobi

- 1º Se ordenan las ecuaciones y las incógnitas.
- 2º De la ecuación i se despeja la incógnita i (a_{ii} <> 0).

Iteraciones : superíndice k

$$a_{11} \cdot x_{1} + a_{12} \cdot x_{2} + a_{13} \cdot x_{3} = b_{1} \qquad x_{1}^{(k+1)} = \frac{b_{1} - a_{12} \cdot x_{2}^{(k)} - a_{13} \cdot x_{3}^{(k)}}{a_{11}}$$

$$a_{21} \cdot x_{1} + a_{22} \cdot x_{2} + a_{23} \cdot x_{3} = b_{2}$$

$$a_{31} \cdot x_{1} + a_{32} \cdot x_{2} + a_{33} \cdot x_{3} = b_{3}$$

$$x_{2}^{(k+1)} = \frac{b_{2} - a_{21} \cdot x_{1}^{(k)} - a_{23} \cdot x_{3}^{(k)}}{a_{22}}$$

$$x_{3}^{(k+1)} = \frac{b_{3} - a_{31} \cdot x_{1}^{(k)} - a_{32} \cdot x_{2}^{(k)}}{a_{33}}$$

$$(2)$$

Jacobi

Ejercicio 5-H2. Resuelve SL usando el método iterativo Jacobi.

$$7x_1 - x_2 = 5$$

$$3x_1 - 5x_2 = -7$$

Se despeja la variable $\mathbf{x_1}$ en ecuación 1 variable $\mathbf{x_2}$ en ecuación 2 Ecuación de recurrencia

$$x_1 = \frac{5 + x_2}{7}$$
$$x_2 = \frac{7 + 3x_1}{5}$$

Se elige aproximación inicial a la solución $(x_1 x_2) = (0, 0)$

Criterio de parada

$$| | x^{(k+1)} - x^{(k)} | |_{\infty} < 0.01$$

Ejercicio 5 (cont)

Jacobi

ITERACIONES

$$(x_1^{(0)}, x_2^{(0)}) = (0, 0)$$

$$(x_1^{(1)}, x_2^{(1)}) = (0,714, 1,400)$$

$$x_1^{(1)} = \frac{5+0}{7} \approx 0'714$$
$$x_2^{(1)} = \frac{7+3\cdot 0}{5} \approx 1'400$$

$$(x_1^{(2)}, x_2^{(2)}) = (0,914, 1,829)$$

$$x_1^{(2)} = \frac{5 + 1'4}{7} \approx 0'914$$

$$x_2^{(2)} = \frac{7 + 3 \cdot 0'714}{5} \approx 1'829$$

i	0	1	2	3	4	5	6
$x_1^{(i)}$	0	0'714	0'914	0′976	0'9934	0′998	0'999
$x_2^{(i)}$	0	1'400	1′829	1′949	1′985	1′996	1′999

Solución $(x_1 x_2)$ converge a \rightarrow (1,2)

$$||x^{(6)} - x^{(5)}||_{\infty} = \max(|x_i^{(6)} - x_i^{(5)}|) = \max(|0,999 - 0,998|, |1,999 - 1,996|) = \max(0,001, 0,003) < 0,01$$

Convergencia de los métodos iterativos

Condición suficiente para que los métodos iterativos converjan a la solución del SL es que la matriz de coeficientes sea estrictamente diagonal dominante.

Si A =
$$(a_{ij})$$

$$\sum_{j=1(i\neq j)}^{n} |a_{ij}| < |a_{ii}| \quad \text{para} \quad i = 1, 2, \dots, n$$

Si A no es DD >> cambiar el orden de las ecuaciones /incógnitas >> comprobar de nuevo si A es DD

Ejemplo

Se comprueba que la matriz de coeficientes A es DD

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 2 & 5 & -1 \\ 0 & -1 & 3 \end{array}\right)$$

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & -1 \\ 0 & -1 & 3 \end{pmatrix} |2| > |1| + |0| \\ |5| > |2| + |-1| \\ |3| > |0| + |-1|$$

Comprueba si las siguientes matrices son DD

$$\begin{bmatrix} 4 & 1 \\ 3 & 8 \end{bmatrix}, \begin{bmatrix} 4 & 1 & 1 \\ 2 & 8 & -3 \\ 3 & 2 & 9 \end{bmatrix}, \begin{bmatrix} -6 & 1 & 2 \\ 1 & 3 & 0 \\ 3 & 2 & -9 \end{bmatrix} \quad \begin{bmatrix} 4 & 4 \\ 3 & 8 \end{bmatrix}, \begin{bmatrix} 4 & 1 & 3 \\ 2 & 8 & 1 \\ 3 & -10 & 2 \end{bmatrix}, \begin{bmatrix} 4 & 1 & 1 \\ 2 & 8 & -7 \\ 3 & -10 & 20 \end{bmatrix}$$

Gauss-Seidel

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1$$

>> La solución se obtiene sustituyendo los valores parciales calculados

$$a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2$$

$$a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 = b_3$$

$$x_1^{(k+1)} = \frac{b_1 - a_{12} \cdot x_2^{(k)} - a_{13} \cdot x_3^{(k)}}{a_{11}}$$

$$x_{2}^{(k+1)} = \frac{b_{2} - a_{21} \cdot x_{1}^{(k+1)} - a_{23} \cdot x_{3}^{(k)}}{a_{22}} \qquad x_{3}^{(k+1)} = \frac{b_{3} - a_{31} \cdot x_{1}^{(k+1)} - a_{32} \cdot x_{2}^{(k+1)}}{a_{33}}$$

El valor de x_1 se calcula con los valores asumidos de x_2 y x_3 .

Después el valor de x_1 obtenido y x_3 asumido, se usan para calcular x_2 .

Finalmente el nuevo valor de x_3 sale de los valores calculados x_1 y x_2 .

>> Converge mas rápidamente que Jacobi

Gauss-Seidel

$$x_i^{(k)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)})$$

Observa la diferencia con Jacobi

$$x_i^{(k)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)})$$

Jacobi usa el valor de las variables obtenido en la iteración anterior.

Gauss-S para la **variable i** considera el valor de la variable (i-1) que acaba de calcular en la misma iteración en la que se está haciendo el cálculo

Gauss-Seidel

Ejercicio 6-H2. Resuelve SL usando el método iterativo b) Gauss-Seidel

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 6$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = 11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

Despejamos incógnitas, igual que en Jacobi, en la ecuación i la incógnita i

$$x_1 = (6 + x_2 - 2x_3)/10$$

 $x_2 = (6 + x_1 + x_3 - 3x_4)/11$
 $x_3 = (11 - 2x_1 + x_2 + x_4)/10$
 $x_4 = (15 - 3x_2 + x_3)/8$

Ejercicio 6 b) (cont)

MÉTODOS ITERATIVOS

Gauss-Seidel

Definimos la sucesión, pero en cuanto calculamos una aproximación la usamos

$$x_1^{(k+1)} = (6 + x_2^{(k)} - 2x_3^{(k)})/10$$

$$x_2^{(k+1)} = (6 + x_1^{(k+1)} + x_3^{(k)} - 3x_4^{(k)})/11$$

$$x_3^{(k+1)} = (11 - 2x_1^{(k+1)} + x_2^{(k+1)} + x_4^{(k)})/10$$

$$x_4^{(k+1)} = (15 - 3x_2^{(k+1)} + x_3^{(k+1)})/8$$

Ejercicio 6 b) (cont)

MÉTODOS ITERATIVOS

Gauss-Seidel

Primera iteración
$$\mathbf{x}^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, x_4^{(0)}\right)^t = (0, 0, 0, 0)^t.$$

$$x_1^{(1)} = (6 + x_2^{(0)} - 2x_3^{(0)})/10$$
 $= 0.6(6 + 0 - 0)/10 = 0.6$
 $x_2^{(1)} = (6 + x_1^{(1)} + x_3^{(0)} - 3x_4^{(0)})/11$ $= (6 + 0.6 + 0 - 0)/11 = 0.6$
 $x_3^{(1)} = (11 - 2x_1^{(1)} + x_2^{(1)} + x_4^{(0)})/10$ $= 1.1(11 - 2(0.6) + (0.6) + 0)/10 = 1.04$
 $x_4^{(1)} = (15 - 3x_2^{(1)} + x_3^{(1)})/8$ $= (15 - 3(0.6) + (1.04))/8 = 1.78$

Criterio de parada: diferencia entre dos iteraciones menor que 0.01

$$\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty} = \max_{1 \le i \le 4} (|\mathbf{x}_i^{(1)} - \mathbf{x}_i^{(0)}|) = \max(0.6, 0.6, 1.04, 1.78) = 1.78$$

Ejercicio 6 b) (cont)

MÉTODOS ITERATIVOS

Gauss-Seidel

segunda iteración

$$x_1^{(2)} = (6 + x_2^{(1)} - 2x_3^{(1)})/10 = (6 + 0.6 - 2(1.04))/10 = 0.452$$
 $x_2^{(2)} = (6 + x_1^{(2)} + x_3^{(1)} - 3x_4^{(1)})/11 = (6 + 0.452 + 1.04 - 3(1.78))/11 = 0.196$
 $x_3^{(2)} = (11 - 2x_1^{(2)} + x_2^{(2)} + x_4^{(1)})/10 = (11 - 2(0.452) + 0.196 + (1.78))/10 = 1.2$
 $x_4^{(2)} = (15 - 3x_2^{(2)} + x_3^{(2)})/8 = (15 - 3(0.196) + 1.207)/8 = 1.953$

Criterio de parada < 0.01, no se cumple

$$\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} = 0.404 > 0.01$$

Ejercicio 6 b) (cont)

MÉTODOS ITERATIVOS

Gauss-Seidel

$$\mathbf{x}^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mathbf{x}^{(1)} = \begin{pmatrix} 0.6 \\ 0.6 \\ 1.04 \\ 1.78 \end{pmatrix} \mathbf{x}^{(2)} = \begin{pmatrix} 0.452 \\ 0.196 \\ 1.207 \\ 1.953 \end{pmatrix} \mathbf{x}^{(3)} = \begin{pmatrix} 0.378 \\ 0.157 \\ 1.235 \\ 1.971 \end{pmatrix}$$

$$\mathbf{x}^{(4)} = \begin{pmatrix} 0.369 \\ 0.154 \\ 1.239 \\ 1.972 \end{pmatrix}$$

$$con \qquad \mathbf{x} = \begin{pmatrix}
0.368 \\
0.154 \\
1.239 \\
1.972
\end{pmatrix}$$

Criterio de parada < 0.01, se cumple

$$\left\| \mathbf{x}^{(4)} - \mathbf{x}^{(3)} \right\|_{\infty} = 0.009 < 0.01$$

Ejercicio 6-a)-H2. Resuelve SL usando el método iterativo a) Jacobi.

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 6$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = 11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

Despejamos las incógnitas

Primero despejamos x_1 en la primera ecuación, x_2 en la segunda, ...

$$x_1 = (6 + x_2 - 2x_3)/10$$

 $x_2 = (6 + x_1 + x_3 - 3x_4)/11$
 $x_3 = (11 - 2x_1 + x_2 + x_4)/10$
 $x_4 = (15 - 3x_2 + x_3)/8$

Definimos la suceción

$$x_1^{(k+1)} = (6 + x_2^{(k)} - 2x_3^{(k)})/10$$

$$x_2^{(k+1)} = (6 + x_1^{(k)} + x_3^{(k)} - 3x_4^{(k)})/11$$

$$x_3^{(k+1)} = (11 - 2x_1^{(k)} + x_2^{(k)} + x_4^{(k)})/10$$

$$x_4^{(k+1)} = (15 - 3x_2^{(k)} + x_3^{(k)})/8$$

Ejercicio 6 a) (cont)

MÉTODOS ITERATIVOS

Jacobil

Primera iteración

Punto inicial
$$\mathbf{x}^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, x_4^{(0)}\right)^t = (0, 0, 0, 0)^t.$$

$$x_1^{(1)} = (6 + x_2^{(0)} - 2x_3^{(0)})/10 = 0.6$$

$$x_2^{(1)} = (6 + x_1^{(0)} + x_3^{(0)} - 3x_4^{(0)})/11 = 0.545$$

$$x_3^{(1)} = (11 - 2x_1^{(0)} + x_2^{(0)} + x_4^{(0)})/10 = 1.1$$

$$x_4^{(1)} = (15 - 3x_2^{(0)} + x_3^{(0)})/8 = 1.875$$

Criterio de parada

Impondremos que la distancia entre dos puntos consecutivos sea menor que una 0.01.

$$\left\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\right\|_{\infty} = \max_{1 \le i \le 4} \left(\left|\mathbf{x}_{i}^{(1)} - \mathbf{x}_{i}^{(0)}\right|\right) = \max(0.6, 0.545, 1.1, 1.875) = 1.875$$

Ejercicio 6 a) (cont)

MÉTODOS ITERATIVOS

Jacobi

Segunda iteración

$$x_1^{(2)} = (6 + x_2^{(1)} - 2x_3^{(1)})/10 = (6 + 0.545 - 2(1.1))/10 = 0.435$$
 $x_2^{(2)} = (6 + x_1^{(1)} + x_3^{(1)} - 3x_4^{(1)})/11 = (6 + 0.6 + 1.1 - 3(1.875))/11 = 1.886$
 $x_3^{(2)} = (11 - 2x_1^{(1)} + x_2^{(1)} + x_4^{(1)})/10 = (11 - 2(0.6) + 0.545 + (1.875))/10 = 1.22$
 $x_4^{(2)} = (15 - 3x_2^{(1)} + x_3^{(1)})/8 = (15 - 3(0.545) + 1.1)/8 = 1.808$

Criterio de parada

¿Se cumple? No

$$\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} = 0.357 > 0.01$$

Se siguen las iteraciones hasta que se **cumple** el criterio de parada

Ejercicio 6 a) (cont)

MÉTODOS ITERATIVOS

Jacobi

$$\mathbf{x}^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \ \mathbf{x}^{(1)} = \begin{pmatrix} 0.6 \\ 0.545 \\ 1.1 \\ 1.875 \end{pmatrix} \ x^{(2)} = \begin{pmatrix} 0.435 \\ 0.189 \\ 1.222 \\ 1.808 \end{pmatrix} \ x^{(3)} = \begin{pmatrix} 0.374 \\ 0.203 \\ 1.213 \\ 1.957 \end{pmatrix}$$

$$x^{(4)} = \begin{pmatrix} 0.378 \\ 0.156 \\ 1.241 \\ 1.950 \end{pmatrix} \dots x^{(6)} = \begin{pmatrix} 0.369 \\ 0.153 \\ 1.240 \\ 1.979 \end{pmatrix} \quad \text{con} \quad x = \begin{pmatrix} 0.368 \\ 0.154 \\ 1.239 \\ 1.972 \end{pmatrix}$$

Cada vez que se calcula una iteración se comprueba el criterio de parada En este caso se cumple en la iteración 6.

Se para y el vector **x** será la aproximación a la solución.

$$\left\| \mathbf{x}^{(6)} - \mathbf{x}^{(5)} \right\|_{\infty} = 0.007 < 0.01$$