De Novo Genome Assembly

Etienne JEAN
M2 BI - Short Project Presentation
September 2018

Principle of de novo assembly

GENOME ASSEMBLY

Description of an assembler

- K-mers strategy : substrings of length K
 - Remove redundancy of reads
 - Graph is no bigger than needed
 - Necessary step for De Bruijn graph
- Graph: set of vertices connected by edges

Two types of graphs

Two types of graphs Short-read sequencing Vertices are k-mers Edges are (k-1)-mers Edges are (k-1)-mers Edges are k-mers

Two types of graphs

Short-read sequencing

Vertices are k-mers Edges are (k-1)-mers

Hamiltonian cycle Visit each vertex once (harder to solve)

Eulerian cycle Visit each edge once (easier to solve)

Graph implementation

- Object oriented
- Vertices object point to Edges object
 - Reduces computation time
- Adjacency list
 - More adapted to sparse graphs than adjacency matrix
- Test for balanced De Bruijn graph
- Find Eulerian cycles
- Assemble cycles into one

Results

- Random genome, 1 Mb :
 - o reads 100 bp
 - o coverage 50x
 - K-mers 55 bp

93 seconds

- Mycoplasma genitalium genome, 586 kb :
 - o reads 400 bp
 - o coverage 100x
 - K-mers 250 bp

82 seconds

Improvements

- Sequencing errors management
 - sequencing.py is currently not optional
- Multiple assemblies
 - o 2 cycles connected by 2 different nodes
- Linear chromosome assembly
 - Eulerian path instead of Eulerian cycle

- Partial assemblies
 - When graph is not entirely balanced
 - Find set of contigs (subsequences of the genome)
- Multiple linear chromosomes assembly
 - Find different contigs, that correspond to different chromosomes
- Repeated sequences management
 - Introduce k-mers multiplicity

Thank you for your attention

Supplementary slides

Sequencing errors: creation of bulges in the graph

K-mers multiplicity for repeated sequences

