# Design of Experiments

### Design of experiments

#### Lecture 4

Introduction to DoE and factorial design at two levels (Chapter 4)

### Workshop 4

Full factorial design at two levels

#### Lecture 5

Block design and fractional factorial design (Chapter 5)

### Workshop 5

Fractional design

#### Lecture 6

Optimisation (Chapter 6)

Laboration on optimization (or? Suggestions?)

### After this part of the course, you will be able to

"Use basic techniques in the design of experiments for screening, and empirical or mechanistic model building"

"Use experimental design to maximize experimental output and for optimization"

### What is experimental design?

"Scientific phenomena are commonly investigated through experiments where we change *one variable at a time (OVAT)*"

- Change one variable
- Keep everything else constant (to the best of our ability)
- See how the results change

### Advantages... Disadvatages...

- OVAT is favored by non-experts, especially in situations where the data is cheap and abundant.
- There exist cases where the mental effort required to conduct a complex multi-factor analysis exceeds the effort required to acquire extra data, in which case OVAT might make sense.
- Furthermore, some researchers have shown that OVAT can be more effective than <u>fractional factorials</u> under certain conditions (number of runs is limited, primary goal is to attain improvements in the system, and experimental error is not large compared to factor effects, which must be additive and independent of each other)
- OVAT requires more runs for the same precision in effect estimation
- OVAT cannot estimate interactions
- OVAT can miss optimal settings of factors

### Example:

Optimize the yield of a chemical reaction... what possible factors will influence the yield?

- Concentration of Reagent 1
- Concentration of Catalyst
- Concentration of Catalyst Ligand
- Solvent
- Temperature
- Reaction Time

Any more?

### Example:

Optimize the yield of a chemical reaction... what possible factors will influence the yield?

- Concentration of Reagent 1
- Concentration of Catalyst
- Concentration of Catalyst Ligand
- Solvent
- Temperature
- Reaction Time

Any more?









### Why did we miss the optimal condition?

"OVAT generally misses interactions between otherwise independent factors in our experiments"

Instead of OVAT, we should have used "design of experiments"



### Iterative DoE



### Iterative DoE



### "Steepest ascent"



### Iterative DoE



### Finding the optimal factors



### Different classes (stages) of experiments

- Screening (WHICH Stage)
  - aiming to determine the subset of important parameters from a given larger set of potentially important parameters
- Empirical Model Building (HOW Stage)
  - determine empirically the effects of the known input parameters
  - determine the approximate function for local interpolation
- Mechanistic Model Building (WHY Stage)
  - build a function for extrapolation

TABLE 1.1. Some scientific problems

| Supposed unknown                                                  | Objective                                                                                                          | Descriptive name                     | Stage |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|
| f                                                                 | Determine the subset $\xi$ of important variables from a given larger set $\Xi$ of potentially important variables | Screening variables                  | Which |
| $\left. egin{matrix} f \\ oldsymbol{\theta} \end{array} \right\}$ | Determine empirically the effects of the known input variables $\xi$                                               | Empirical model building             | How   |
| $\binom{f}{0}$                                                    | Determine a local interpolation approximation $g(\xi, \beta)$ to $f(\xi, \theta)$                                  | (Response<br>surface<br>methodology) |       |
| $\begin{pmatrix} f \\ \mathbf{\theta} \end{pmatrix}$              | Determine f                                                                                                        | Mechanistic model building           | Why   |
| θ                                                                 | Determine $\theta$                                                                                                 | Mechanistic model fitting            | why   |

### What can we learn?

- Screening studies: vary a few things to determine which factors are important (e.g., in combination with ANOVA)
  - Consider the efficiency of a rechargable battery. The redox levels of the anode and cathode matter (voltage). But you also care about the mass, volume, speed of recharging ... etc.
- Modeling a process: similar get a better understanding of a system
  - Maybe a process has interactions or nonlinear effects?
- Optimization: finding the best yield, best coffee, etc.

### How is it done?

• Mathematically, we usually treat this as an example of multiple regression:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \text{ experimental error}$$
 Linear

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \text{ experimental error}$$
 Non-Linear

- In general, we might have a lot of factors and interactions.
- Second-order interactions are pretty common. Maybe a catalyst doesn't work as well at higher temperature (e.g., it decomposes). Or light roast coffee requires longer brew times?
- In general, third-order interactions and higher are much less common. This is good because we essentially get replication "for free."

## Factorial Designs at Two Levels

Chapter 4 in "Empirical Model-building and Response Surfaces"

by George E. P. Box and Norman R. Draper, Wiley Series in probability and mathematical statistics (ISBN 0-471-81033-9)

### Example: Hardening of steel

• Depends on temperature before hardening (S), Oil temperature (T) and carbon level (C):

|            | S   | Т   | С   |
|------------|-----|-----|-----|
| Low level  | 830 | 70  | 0.5 |
| High level | 910 | 120 | 0.7 |

Which factors are more important?

### Full factorial design 2<sup>k</sup>

2<sup>3</sup> gives 8 different experiments for a full factorial design

| Trial # |        | Factor |       |
|---------|--------|--------|-------|
|         | S (°C) | T (°C) | C (%) |
| 1       | 830    | 70     | 0.5   |
| 2       | 910    | 70     | 0.5   |
| 3       | 830    | 120    | 0.5   |
| 4       | 910    | 120    | 0.5   |
| 5       | 830    | 70     | 0.7   |
| 6       | 910    | 70     | 0.7   |
| 7       | 830    | 120    | 0.7   |
| 8       | 910    | 120    | 0.7   |

### Full factorial design 2<sup>k</sup>

The real data can be coded so that we end up between -1 and 1 → design matrix

A full 2<sup>k</sup> factorial design consists of all 2<sup>k</sup> trial points:

$$(x_1, x_2, ..., x_k) = (\pm 1, \pm 1, ..., \pm 1),$$

where every possible combination of +1/-1 is selected in turn

| Trial # |        | Factor |       |
|---------|--------|--------|-------|
|         | S (°C) | T (°C) | C (%) |
| 1       | -1     | -1     | -1    |
| 2       | +1     | -1     | -1    |
| 3       | -1     | +1     | -1    |
| 4       | +1     | +1     | -1    |
| 5       | -1     | -1     | +1    |
| 6       | +1     | -1     | +1    |
| 7       | -1     | +1     | +1    |
| 8       | +1     | +1     | +1    |





Should be randomized!

### Full factorial design 2<sup>k</sup>

Each trial will give an outcome, in this case, a measure of the hardening of the steel in terms of % of defect-free springs.

| Trial # |        | Factor |       | outcome |
|---------|--------|--------|-------|---------|
|         | S (°C) | T (°C) | C (%) |         |
| 1       | -      | -      | -     | 67      |
| 2       | +      | -      | -     | 79      |
| 3       | -      | +      | -     | 59      |
| 4       | +      | +      | -     | 90      |
| 5       | -      | -      | +     | 61      |
| 6       | +      | -      | +     | 75      |
| 7       | -      | +      | +     | 52      |
| 8       | +      | +      | +     | 87      |





### Graphical illustration







### Graphical illustration



### Graphical illustration



- Graphical view of the result is difficult for k > 3
- Also, it is difficult to distinguish "real" effects from random variation
- → we need a quantitative way of determining the "effects" of the +/-

**Example:** what is the effect of increasing S? **solution:** study differences...

| Trial # |        | Factor |       | outcome |
|---------|--------|--------|-------|---------|
|         | S (°C) | T (°C) | C (%) |         |
| 1       | -      | -      | -     | 67      |
| 2       | +      | -      | -     | 79      |
| 3       | -      | +      | -     | 59      |
| 4       | +      | +      | -     | 90      |
| 5       | -      | -      | +     | 61      |
| 6       | +      | -      | +     | 75      |
| 7       | -      | +      | +     | 52      |
| 8       | +      | +      | +     | 87      |

- Graphical view of the result is difficult for k > 3
- Also, it is difficult to distinguish "real" effects from random variation

→ we need a quantitative way of determining the "effects" of the +/-

**Example:** what is the effect of increasing S? **solution:** study differences... we have four different differences per variable...

$$1 \leftarrow \frac{12+31+14+35}{4} = 23$$

| Trial # |        | Factor |       | outcome |
|---------|--------|--------|-------|---------|
|         | S (°C) | T (°C) | C (%) |         |
| 1       | -      | -      | -     | 67      |
| 2       | +      | -      | -     | 79      |
| 3       | -      | +      | -     | 59      |
| 4       | +      | +      | -     | 90      |
| 5       | -      | -      | +     |         |
| 6       | +      | -      | +     |         |
| 7       | -      | +      | +     | 52      |
| 8       | +      | +      | +     | 87      |

## Graphical illustration



The effect of S is the difference between the arithmetic means at the low and high values of S

- Graphical view of the result is difficult for k > 3
- Also, it is difficult to distinguish "real" effects from random variation
- → we need a quantitative way of determining the "effects" of the +/-

**Example:** what is the effect of increasing S? **solution:** study differences... we have four different differences per variable...

$$S \leftarrow \frac{12+31+14+35}{4} = 23$$

$$C \leftarrow \frac{61+75+52+87-67-79-59-90}{4} = -5$$

$$T \leftarrow \frac{59+90+52+87-67-79-61-75}{4} = 1.5$$

| Trial # |        | Factor |       | outcome |
|---------|--------|--------|-------|---------|
|         | S (°C) | T (°C) | C (%) |         |
| 1       | -      | -      | -     | 67      |
| 2       | +      | -      | -     | 79      |
| 3       | -      | +      | -     | 59      |
| 4       | +      | +      | -     | 90      |
| 5       | -      | -      | +     | 61      |
| 6       | +      | -      | +     | 75      |
| 7       | -      | +      | +     | 52      |
| 8       | +      | +      | +     | 87      |

- Graphical view of the result is difficult for k > 3
- Also, it is difficult to distinguish "real" effects from random variation

→ we need a quantitative way of determining the "effects" of the +/-

**Example:** what is the effect of increasing S? **solution:** study differences... we have four different differences per variable...

$$S \leftarrow \frac{12+31+14+35}{4} = 23$$

$$C \leftarrow \frac{61+75+52+87-67-79-59-90}{4} = -5$$

$$T \leftarrow \frac{59+90+52+87-67-79-61-75}{4} = 1.5$$

| Trial #          |        | Factor |       | outcome |
|------------------|--------|--------|-------|---------|
|                  | S (°C) | T (°C) | C (%) |         |
| 1                | -      | -      | -     | 67      |
| 2                | +      | -      | -     | 79      |
| 3                | -      | +      | -     | 59      |
| 4                | +      | +      | -     | 90      |
| 5                | -      | -      | +     | 61      |
| 6                | +      | -      | +     | 75      |
| 7                | -      | +      | +     | 52      |
| 8                | +      | +      | +     | 87      |
| Estimated effect | 23     | -5     | 1.5   |         |

#### What have we achieved so far?

- We have now estimates of the effect of each parameter in a minimum number of trials.
- In fact, using an OVAT would need 16 experiments to get the same information.
- But, what about cooperative effects? Can we get these as well?

| Trial #          |    | Factor |     | Cooperative effects |     |     |       |    |  |
|------------------|----|--------|-----|---------------------|-----|-----|-------|----|--|
|                  |    |        |     |                     |     |     |       |    |  |
|                  | S  | T      | С   | SxT                 | SxC | TxC | SxTxC |    |  |
| 1                | -  | -      | -   | +                   | +   | +   | -     | 67 |  |
| 2                | +  | -      | -   | -                   | -   | +   | +     | 79 |  |
| 3                | -  | +      | -   | -                   | +   | -   | +     | 59 |  |
| 4                | +  | +      | -   | +                   | -   | -   | -     | 90 |  |
| 5                | -  | -      | +   | +                   | -   | -   | +     | 61 |  |
| 6                | +  | -      | +   | -                   | +   | -   | -     | 75 |  |
| 7                | -  | +      | +   | -                   | -   | +   | -     | 52 |  |
| 8                | +  | +      | +   | +                   | +   | +   | +     | 87 |  |
| Estimated effect | 23 | -5     | 1.5 |                     |     |     |       |    |  |

| Trial #          |    | Factor |     | Cooperative effects |     |     |       |       |
|------------------|----|--------|-----|---------------------|-----|-----|-------|-------|
|                  |    |        |     |                     |     |     |       |       |
|                  | S  | T      | С   | SxT                 | SxC | TxC | SxTxC |       |
| 1                | -  | -      | -   | +                   | +   | +   | -     | 67    |
| 2                | +  | -      | -   | -                   | -   | +   | +     | 79    |
| 3                | -  | +      | -   | -                   | +   | -   | +     | 59    |
| 4                | +  | +      | -   | +                   | -   | -   | -     | 90    |
| 5                | -  | -      | +   | +                   | -   | -   | +     | 61    |
| 6                | +  | -      | +   | -                   | +   | -   | -     | 75    |
| 7                | -  | +      | +   | -                   | -   | +   | -     | 52    |
| 8                | +  | +      | +   | +                   | +   | +   | +     | 87    |
| Estimated effect | 23 | -5     | 1.5 | 10                  | 1.5 | 0   | 0.5   | 71.25 |

#### Variance and standard deviation

$$V(\text{grand mean}) = \frac{\sigma^2}{2^k},$$



#### Normal distribution



#### Normal distribution



Within random variation

### Recap... new example

| Coded levels                 | $x_i$   | -1  | 1   |
|------------------------------|---------|-----|-----|
| Length of test specimen (mm) | ξ1      | 250 | 350 |
| Amplitude of load cycle (mm) | ξ2      | 8   | 10  |
| Load (g)                     | $\xi_3$ | 40  | 50  |

$$x_1 = \frac{(\xi_1 - 300)}{50}, \quad x_2 = \frac{(\xi_2 - 9)}{1}, \quad \text{and} \quad x_3 = \frac{(\xi_3 - 45)}{5}.$$

| Ur                           | ncoded                  |                   |                        | Coded            |       | Cycles           |              |
|------------------------------|-------------------------|-------------------|------------------------|------------------|-------|------------------|--------------|
| Specimen ength (mm), $\xi_1$ | Amplitude (mm), $\xi_2$ | Load (g), $\xi_3$ | Specimen length, $x_1$ | Amplitude, $x_2$ | Load, | to<br>failure, Y | $y = \log Y$ |
| 250                          | 8                       | 40                | -1                     | -1               | -1    | 674              | 2.83         |
| 350                          | 8                       | 40                | 1                      | -1               | -1    | 3636             | 3.56         |
| 250                          | 10                      | 40                | -1                     | 1                | -1    | 170              | 2.23         |
|                              | 10                      | 40                | 1                      | 1                | -1    | 1140             | 3.06         |
| 350                          | 8                       | 50                | -1                     | -1               | 1     | 292              | 2.47         |
| 250                          | 8                       | 50                | 1                      | -1               | 1     | 2000             | 3.30         |
| 350                          |                         | 50                | -1                     | 1                | 1     | 90               | 1.95         |
| 250                          | 10                      |                   | 1                      | 1                | 1     | 360              | 2.56         |
| 350                          | 10                      | 50                | 1                      | 1                | 1     | 360              | 2.56         |

| <br>I | 1 | 2 | 3 | 12 | 13 | 23 | 123 | y    |  |  |
|-------|---|---|---|----|----|----|-----|------|--|--|
| +     | _ | _ | _ | +  | +  | +  | _   | 2.83 |  |  |
| +     | + |   | _ | _  | _  | +  | +   | 3.56 |  |  |
| +     | _ | + | _ | _  | +  | _  | +   | 2.23 |  |  |
| +     | + | + | _ | +  | _  | _  | -   | 3.06 |  |  |
| +     | - | _ | + | +  | _  | _  | +   | 2.47 |  |  |
| +     | + | _ | + | _  | +  | _  | _   | 3.30 |  |  |
| +     | _ | + | + | _  | _  | +  | _   | 1.95 |  |  |
| +     | + | + | + | +  | +  | +  | +   | 2.56 |  |  |

3.

$$1 \leftarrow \frac{1}{4}(3.56 + 3.06 + 3.30 + 2.56) - \frac{1}{4}(2.83 + 2.23 + 2.47 + 1.95) = 0.75.$$

4

4

$$2 \leftarrow -0.59$$
,

$$3 \leftarrow -0.35$$
.

$$(1|x_3 = -1) \leftarrow \frac{1}{2}(3.56 + 3.06) - \frac{1}{2}(2.83 + 2.23) = 0.78.$$

Divisor

8

$$(1|x_3 = 1) \leftarrow \frac{1}{2}(3.30 + 2.56) - \frac{1}{2}(2.47 + 1.95) = 0.72.$$

$$12 \leftarrow -0.03$$
,

$$13 = \frac{1}{2} \{ (1|x_3 = 1) - (1|x_3 = -1) \} \leftarrow \frac{1}{2} \{ 0.72 - 0.78 \} = -0.03.$$

$$23 \leftarrow -0.04$$
.

$$(12|x_3 = -1) \leftarrow \frac{1}{2} \{ (3.06 - 2.23) - (3.56 - 2.83) \} = 0.05,$$

$$(12|x_3=1) \leftarrow \frac{1}{2}\{(2.56-1.95)-(3.30-2.47)\} = -0.11.$$

$$123 = \frac{1}{2} \{ (12|x_3 = 1) - (12|x_3 = -1) \} \leftarrow -0.08.$$

| _ |  |
|---|--|
| 2 |  |
| Э |  |

|         | I | 1 | 2 | 3 | 12 | 13 | 23 | 123 | $\mathbf{y}$ |
|---------|---|---|---|---|----|----|----|-----|--------------|
|         | + | _ | _ | _ | +  | +  | +  | _   | 2.83         |
|         | + | + |   | _ | _  | _  | +  | +   | 3.56         |
|         | + | _ | + | _ | _  | +  | _  | +   | 2.23         |
|         | + | + | + | _ | +  |    | _  | _   | 3.06         |
|         | + | - | _ | + | +  | _  | _  | +   | 2.47         |
|         | + | + | _ | + | _  | +  | _  | _   | 3.30         |
|         | + | _ | + | + | -  | _  | +  | ×   | 1.95         |
|         | + | + | + | + | +  | +  | +  | +   | 2.56         |
| Divisor | 8 | 4 | 4 | 4 | 4  | 4  | 4  | 4   |              |

4.

$$1 \leftarrow \frac{1}{4}(-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8).$$

$$2 \leftarrow \frac{1}{4}(-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8),$$

$$13 \leftarrow \frac{1}{4}(y_1 - y_2 + y_3 - y_4 - y_5 + y_6 - y_7 + y_8).$$

$$123 \leftarrow \frac{1}{4}(-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8).$$

5. suppose that an estimate 
$$s^2 = 0.0050$$
  $\longrightarrow \hat{V}(\bar{y}) = 0.000625$ ,  $\hat{V}(\text{effect}) = 0.0025$ ,  $\longrightarrow s(\bar{y}) = 0.025$ ,  $s(\text{effect}) = 0.05$ .

$$I \leftarrow \bar{y} = 2.745 \pm 0.025$$
,

$$1 \leftarrow 0.75 \pm 0.05$$
,

$$2 \leftarrow -0.59 \pm 0.05$$
,

$$3 \leftarrow -0.35 \pm 0.05$$

$$12 \leftarrow 0.03 \pm 0.05$$
,

$$13 \leftarrow 0.03 \pm 0.05$$
,

$$23 \leftarrow 0.04 \pm 0.05$$
,

$$123 \leftarrow 0.08 \pm 0.05$$
.

#### Regression gives:

fit a first degree polynomial

$$\hat{y} = 2.745 + 0.375x_1 - 0.295x_2 - 0.175x_3.$$

$$(0.025) \quad (0.025) \quad (0.025) \quad (0.025)$$

#### What have we learnt?

- How to create a design matrix for a 2-level factorial design
- How to analyse the data... we will look at more examples in the workshop...