

Série d'exercices : Mouvements Plans

Exercice 1 On lance, à un instant $t_0 = 0$ avec une vitesse initiale V_0 horizontale, un solide (S) de petites dimensions, de masse \mathbf{m} , d'un point A qui se trouve à la hauteur h du sol. Le solide (S) tombe sur le sol au point d'impact I (**figure 1**). On étudie le mouvement du centre d'inertie G dans le repère $(O, 1 \rightarrow, J \rightarrow)$ lié à la terre supposé galiléen. - Tous les frottements sont négligeables;

 $A \xrightarrow{\tilde{V}_0} \tilde{V}_0$ $\tilde{I} \xrightarrow{\tilde{I}} X$

Données: $g = 9.8 \text{ m. s}^{-2}$; h = 0A = 1 m

- 1-En appliquant la deuxième loi de Newton, établir les expressions littérales des équations horaires x(t) et y(t) du mouvement de G.
- 2-En déduire l'expression littérale de l'équation de la trajectoire du mouvement de G.
- 3-Calculer la valeur de t_I , l'instant d'arrivé de (S) au sol en **I.**
- 4- On lance de nouveau, à un instant $t_0 = 0$, le solide (S) du point A avec une vitesse initiale $v \to 0$ Recopier sur votre copie le numéro de la question et écrire la lettre correspondante à la seule proposition vraie la valeur de l'instant d'arrivé de (S) au sol vaut:

Exercice 2 Un skieur glisse sur une montagne recouverte de glace au pied de laquelle se trouve un lac d'eau. La figure suivante donne l'emplacement du lac d'eau par rapport au point O où le skieur sera obligé de quitter le sol de la montagne avec une vitesse $V \rightarrow$ faisant un angle α avec l'horizontale skieur part d'un point D situé à la hauteur h par rapport au plan horizontal contenant le point O, (voir figure). La vitesse v du skieur lors de son passage au point O s'exprime par la relation $V = \sqrt{g.h.}$

Dans un essai le skieur passe par le point O origine du repère $(0, 1 \rightarrow, j \rightarrow)$ avec une certaine vitesse, alors il tombe dans le lac d'eau. On veut déterminer la hauteur minimale hm de la hauteur h du point D à partir duquel doit partir le skieur sans vitesse initiale pour qu'il ne tombe pas dans le lac.

Données: - Masse du skieur et ses accessoires : $\mathbf{m=60 \ kg}$; -La longueur du lac d'eau : AB = d = 10m.

- Accélération de la pesanteur : $\mathbf{g} = \mathbf{10} \, \mathbf{m} \cdot \mathbf{s}^{-2}$; - La hauteur : $\mathbf{H} = \mathbf{0.50} \, \mathbf{m}$; - L'angle : $\alpha = 30^{\circ}$

Pour cet exercice, on assimile le skieur et ses accessoires à un point matériel G et on néglige tous les frottements et toutes les actions de l'air. Le skieur quitte le point O à l'instant t=0 avec une vitesse $\bar{V}_0 \rightarrow$ faisant un angle α avec l'horizontale.

- **1-** En appliquant la deuxième loi de Newton, déterminer l'équation différentielle que vérifie chacune des coordonnées du vecteur vitesse dans le repère $(0, 1 \rightarrow, j \rightarrow)$.
 - 2- Montrer que l'équation de la trajectoire du skieur s'écrit dans le repère cartésien sous la forme

$$y(x) = -\frac{1}{2}g \cdot \frac{x^2}{v_0^2 \cdot \cos^2 \alpha} + x \cdot \tan \alpha$$

3- Déterminer la valeur minimale h_m de la hauteur h pour que le skieur ne tombe pas dans le lac d'eau.

Exercice 3 Deux particules chargées Li^+ et X^{2+} sont introduites en un point \mathbf{O} , avec la même vitesse initiale $V \rightarrow$, dans un espace où règne un champ magnétique uniforme $B \rightarrow$, perpendiculaire au vecteur $V \rightarrow \mathbf{q_X}$ et $\mathbf{m_X}$ sont respectivement la charge électrique et la masse de la particule X^{2+} . On considère que Li^+ et X^{2+} sont soumises seulement à la force de Lorentz.

- La charge élémentaire: $e = 1,6. \ 10^{-19} \ C$; La masse de Li^+ : $m_{Li} = 6,015 \ u$; $1u = 1,66. \ 10^{-27} \ kg$;
- La figure 1 représente les trajectoires des deux particules dans le champ $B \rightarrow$
- on rappelle l'expression de la force de Lorentz : $\vec{F} \rightarrow = \vec{q} \vec{V} \rightarrow \vec{\Lambda} \vec{B}$
- 1- Déterminer la direction, le sens et l'intensité du vecteur force F exercée sur la particule Li^+ au point O.
- 2-Préciser le sens du vecteur B en le représentant par 🕥 s'il est vers l'avant ou par s'il est vers l'arrière.
- 3-En appliquant la deuxième loi de Newton dans un référentiel galiléen, montrer que le mouvement de l'ion Li^+ est uniforme et de trajectoire circulaire de rayon $R_{Li} = \frac{mLi \ V}{e.B}$
- **4-**En exploitant les données de **la figure 1**, déterminer le rapport $\frac{R_X}{R_{Li}}$; avec R_X le rayon de la trajectoire de la particule

 R_X de la particule X^{2+} .

5-Sachant que la particule X^{2+} . se trouve parmi les trois ions proposés avec leurs masses dans le tableau ci-dessous, identifier X^{2+} . en justifiant la réponse.

Ion	24Mg24	26Mg ²⁴	^{≠0} Ca ²⁴
Masse (u)	23,985	25,983	39,952

Exercice 4 Dans le spectromètre de Dempster, on produit des ions positifs = , qui sortent de la chambre d'ionisation par une fente avec une vitesse négligeable. On considère deux types d'ions ${}_{11}^{21}Na^{+}$ et ${}_{11}^{21}Na^{+}$ de même charge \mathbf{q} et de masses différentes, notées respectivement m_{1} et m_{2} . Ces ions sont accélérés par une tension U , appliquée entre les deux plaques P et P': $V_{P} - V_{P}' = U > 0$

 $m_2=39,8.10^{-27} \text{ Kg} ; m_1=36,5.10^{-27} \text{ Kg}$ $e=1,6.10^{-19} \text{C}$ $V_2=89700 \text{ m.s}^{-1} \cdot V_1=93600 \text{m.s}^{-1} \cdot B=0,2 \text{T}$

Donnée :

Les ions traversent ensuite une zone de l'espace (appelée zone de déviation) où règne un champ magnétique transversal uniforme $\overline{B} = \overline{B} \overline{K}$. Dans tout l'exercice, on considérera deux types d'ions, de même charge q et de masses respectives m_1 et m_2 , arrivant dans la zone de déviation avec les vitesses respectives V_1 et V_2

- 1) Montrer que le mouvement des ions dans la zone de déviation est uniforme
- 2) En supposant que le mouvement des ions dans la zone de champ magnétique est circulaire, exprimer le rapport des rayons R_1 et R_2 de ces trajectoires en fonction de V_1 , V_2 , m_1 et m_2 .
- 3) En déduire la distance $d = A_1A_2$ entre les impacts des deux types d'ions.

Exercice 5 Un électron de charge q = -e, de masse **m**, arrive dans le vide, à l'instant t = 0 au point origine O d'un référentiel galiléen (voir schéma ci-dessous). Sa vitesse est $V_0 \rightarrow V_0 \rightarrow V_0$

Ce champ électrostatique uniforme est créé entre deux plaques P et N dans la région d'espace définie par : 0 < x < L et -d/2 < y < d/2 (voir schéma)

- 1- Montrer qu'entre les plaques la trajectoire de l'électron est parabolique.
- 2- Donner la condition sur la tension U pour que la particule sorte du champ sans heurter les plaques.
- **3-** Cette condition réalisée, la particule frappe un écran situé dans un plan x = D > L. Exprimer la déviation D_e du point d'impact I et montrer qu'elle est fonction linéaire de la tension $U = U_P U_N$ appliquée entre les plaques P et N.

 . •
•
 •
•
 ••
•
•
•
•
•
•
•
•