Leonardo Gallego 07/26/2025

Hot-Standby Redundancy Protocol Lab

Lab 1 – 24-1 HSRP Configuration – Lab Exercise

In this lab you will configure and test HSRP for a small campus network.

Basic HSRP

1. Configure basic HSRP for the 10.10.10.0/24 network using the IP addresses shown in the topology diagram.

IP-Address	OK? Method Status	
203.0.113.2	YES NVRAM up	up
10.10.10.2	YES NVRAM up	up
10.10.20.1	YES NVRAM up	up
unassigned	YES NVRAM adminis	tratively down
	203.0.113.2 10.10.10.2 10.10.20.1	203.0.113.2 YES NVRAM up 10.10.10.2 YES NVRAM up 10.10.20.1 YES NVRAM up

R2#show ip int brief				
Interface	IP-Address	OK? Method	Status	
Protocol				
GigabitEthernet0/0	203.0.113.6	YES manual	up	up
GigabitEthernet0/1	10.10.10.3	YES manual	up	up
GigabitEthernet0/2	10.10.20.2	YES manual	up	up
Vlan1	unassigned	YES unset	administratively down	
down				
R2#				
RZ#				

2. Wait for HSRP to come up on both routers and then check which is the active router

R1 is the active router:

```
R1#show standby
GigabitEthernet0/2 - Group 1
State is Active
5 state changes, last state change 00:06:33
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
Next hello sent in 1.612 secs
Preemption disabled
Active router is local
Standby router is 10.10.20.2
Priority 100 (default 100)
Group name is hsrp-Gig0/2-1 (default)
```

R2 is the standby router:

```
R2#show standby
GigabitEthernet0/2 - Group 1
State is Standby
3 state changes, last state change 00:12:36
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
Next hello sent in 0.667 secs
Preemption disabled
Active router is 10.10.20.1
Standby router is local
Priority 100 (default 100)
Group name is hsrp-Gig0/2-1 (default)
```

3. Verify that the PCs can ping their default gateway using the HSRP address 10.10.10.1.

PC1

```
C:\>ping 10.10.10.1
Pinging 10.10.10.1 with 32 bytes of data:
```

```
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Ping statistics for 10.10.10.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

PC2

```
C:\>ping 10.10.10.1
Pinging 10.10.10.1 with 32 bytes of data:
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Ping statistics for 10.10.10.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

4. Verify that the PCs have upstream connectivity via their HSRP default gateway. Ping SP1 at 203.0.113.1

PC1

```
C:\>ping 203.0.113.1
Pinging 203.0.113.1 with 32 bytes of data:
Reply from 203.0.113.1: bytes=32 time=1ms TTL=254
Reply from 203.0.113.1: bytes=32 time<1ms TTL=254
Reply from 203.0.113.1: bytes=32 time<1ms TTL=254
Reply from 203.0.113.1: bytes=32 time<1ms TTL=254
Ping statistics for 203.0.113.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

```
C:\>ping 203.0.113.1
Pinging 203.0.113.1 with 32 bytes of data:
Reply from 203.0.113.1: bytes=32 time<1ms TTL=254
Ping statistics for 203.0.113.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

5. What is the MAC address on the physical interface of the active router?

```
R2#show interface g0/1 | include address
Hardware is CN Gigabit Ethernet, address is 0001.6470.2502 (bia 0001.6470.2502)
Internet address is 10.10.10.3/24
```

6. What is the MAC address of the HSRP virtual interface?

```
R2#show standby
GigabitEthernet0/1 - Group 1
State is Active
5 state changes, last state change 00:03:51
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
Next hello sent in 1.479 secs
Preemption disabled
Active router is local
Standby router is 10.10.10.2
Priority 100 (default 100)
Group name is hsrp-Gig0/1-1 (default)
```

7. Verify the PCs are using the virtual MAC address for their default gateway.

PC2

Priority and Pre-emption

8. Configure HSRP so that R1 will be the preferred router. Use a single command.

```
R1(config)#interface G0/1
R1(config-if)#standby 1 priority 110
R1(config-if)#end
```

9. Which router do you expect will be active now? Verify this.

Router 1 since it has a higher priority of 110 whereas R2 has a priority of 100. It also has preemptive mode enabled therefore, it'll become the active router if it has a higher priority.

10. Ensure that R1 is the active router. Do not reboot

R1's Perspective

```
R1#
%SYS-5-CONFIG_I: Configured from console by console
%HSRP-6-STATECHANGE: GigabitEthernet0/1 Grp 1 state Standby -> Active.
R1#
%SYS-5-CONFIG_I: Configured from console by console
R1#show standby
GigabitEthernet0/1 - Group 1
State is Active
```

```
9 state changes, last state change 00:30:14
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
Next hello sent in 0.07 secs
Preemption enabled
Active router is local
Standby router is 10.10.10.3, priority 100 (expires in 8 sec)
Priority 110 (configured 110)
Group name is hsrp-Gig0/1-1 (default)
R1#
```

R2's perspective:

```
R2#show standby
GigabitEthernet0/1 - Group 1
State is Standby
9 state changes, last state change 00:30:31
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
Next hello sent in 2.507 secs
Preemption disabled
Active router is 10.10.10.2, priority 110 (expires in 8 sec)
MAC address is 0000.0C07.AC01
Standby router is local
Priority 100 (default 100)
Group name is hsrp-Gig0/1-1 (default)
```

Test HSRP

11. Run a continuous ping to the HSRP IP address from PC1 with the 'ping 10.10.10.1 –n 1000' command.

```
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
```

```
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Reply from 10.10.10.1: bytes=32 time=14ms TTL=255
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
Reply from 10.10.10.1: bytes=32 time=15ms TTL=255
Reply from 10.10.10.1: bytes=32 time<1ms TTL=255
```

12. Save the configuration on R1 then reboot.

```
R1#copy running-config startup-config
```

13. View the ping output on PC1. You should see a few dropped pings as R2 transitions to active following the outage of R1.

Yes it dropped two pings/packets when R1 rebooted though I'm not able to copy it as PC1 won't stop pinging the default gateway.

14. Verify R2 has transitioned to HSRP active.

```
R2#show standby
GigabitEthernet0/1 - Group 1
State is Active
   10 state changes, last state change 00:46:34
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
   Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
   Next hello sent in 1.873 secs
Preemption disabled
Active router is local
Standby router is unknown, priority 110
Priority 100 (default 100)
Group name is hsrp-Gig0/1-1 (default)
```

15. Wait for R1 to complete booting and HSRP to come up. Verify R1 transitions to HSRP active because pre-emption is enabled.

```
%HSRP-6-STATECHANGE: GigabitEthernet0/1 Grp 1 state Standby -> Active
end
R1#show standby
GigabitEthernet0/1 - Group 1
State is Active
   5 state changes, last state change 00:00:39
Virtual IP address is 10.10.10.1
Active virtual MAC address is 0000.0C07.AC01
   Local virtual MAC address is 0000.0C07.AC01 (v1 default)
Hello time 3 sec, hold time 10 sec
   Next hello sent in 2.273 secs
 Preemption enabled
 Active router is local
 Standby router is unknown, priority 100
 Priority 110 (configured 110)
 Group name is hsrp-Gig0/1-1 (default)
```

16. Hit 'Ctrl-C' to cancel the ping on PC1. If you scroll back you should see a dropped ping or two as R1 transitioned back to HSRP active.

It didn't allow me to cancel the ping on PC1 for some reason. Not sure if its a mac issue or just packet tracer itself though ctrl +c works on a normal terminal