Corrent Total

corrente_total = corrente_f1 + corrente_f2 + corrente_f3 + corrente_neutra

Potência Aparente, Ativa e Reativa

potencia_aparente_fase = corrente_fase * tensão_fase
potencia_ativa_fase = potencia_aparente_fase * factor_potencia_fase;
potencia_reativa_fase = Math.sqrt((potencia_aparente_fase ^ 2) - (potencia_ativa_fase ^ 2))

Potências totais

potencia_aparente_total = potencia_aparente_f1 + potencia_aparente_f2 + potencia_aparente_f3
potencia_ativa_total = potencia_ativa_f1 + potencia_ativa_f2 + potencia_ativa_f3
potencia_reativa_total = potencia_reativa_f1 + potencia_reativa_f2 + potencia_reativa_f3
energia_aparente_total = energia_aparente_f1 + energia_aparente_f2 + energia_aparente_f3
energia_ativa_total = energia_ativa_f1 + energia_ativa_f2 + energia_ativa_f3
energia_reativa_total = energia_reativa_f1 + energia_reativa_f2 + energia_reativa_f3

Energias

```
energia_ativa_fase = tempo * (potencia_ativa_fase/1000.0);
energia_aparente_fase = tempo * (potencia_aparente_fase/1000.0);
energia_reativa_fase = tempo * (potencia_reativa_fase/1000.0);
```