ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 11/2
ALKALI-SILICA REACTION PRODUCTS FROM SEVERAL CONCRETES: OPTICAL--ETC(U)
MAY 76 A D BUCK, K MATHER
WES-MP-C-78-7
NL AD-A055 742 UNCLASSIFIED NL OF AD A055742 END DATE 8 -78 DDC

FOR FURTHER TRANSALL

MISCELLANEOUS PAPER C-78-7

ALKALI-SILICA REACTION PRODUCTS FROM SEVERAL CONCRETES: OPTICAL, CHEMICAL AND X-RAY DIFFRACTION DATA

Ьу

Alan D. Buck, Katharine Mather

U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

> May 1978 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

78 06 21 104

WES-MP-C-78-77

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Miscellaneous Paper C-78-7	<u> </u>	
4. TITLE (and Subtitle)	76	5. TYPE OF REPORT & PERIOD COVERED
ALKALI-SILICA REACTION PRODUCTS FE		Final repart.
CONCRETES: OPTICAL, CHEMICAL, AND	X-RAY	PERSONNING ORC REPORT NUMBER
DIFFRACTION DATA		8. CONTRACT OR GRANT NUMBER(*)
Alan D. Buck		
Katharine Mather		
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT TASK
U. S. Army Engineer Waterways Expe		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT HUMBERS
Concrete Laboratory		(12) I 8 P
P. O. Box 631, Vicksburg, Mississi	ippi 39180	7
1. CONTROLLING OFFICE NAME AND ADDRESS	(1)	May 178
Office, Chief of Engineers, U. S.	Army	10. NUMBER OF PAGES
Washington, D. C. 20314		15. SECURITY CLASS, (of this report)
4. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	Unclassified
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distr 17. DISTRIBUTION STATEMENT (of the abetract entered		
18. SUPPLEMENTARY NOTES		
CTIAC Report No. 31		
19. KEY WORDS (Continue on reverse side if necessary at	nd identify by block number)	
	t microscopy	
Chemical analysis X-ra Concretes	y diffraction	
Gels		
	d Ideal to the total	
Alkali-silica reaction product		rent concretes were eveningd
by X-ray diffraction and light mic	roscope, and fou	r of the gels were chemically
analyzed. Most of the reaction pr	oducts were crys	talline in considerable part
and were composed of one or more of		
tively identified as variants on C	SH(I) and CSH(II).

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

78 06 21 104 Hun

Preface

This paper was prepared for the Fourth International Conference on the "Effect of Alkalies in Cement and Concrete" to be held at Purdue University, West Lafayette, Indiana, 4-8 June 1978.

It was approved for presentation and publication by the Office, Chief of Engineers (OCE). Results in the paper were obtained under the sponsorship of the OCE, three Corps of Engineers Districts, Southeast Division, Bureau of Yards and Docks, U. S. Navy, and Tennessee Valley Authority.

Funds for this edition were provided by the Concrete Technology Information and Analysis Center. This is CTIAC report No. 31.

COL John L. Cannon was Commander and Director of the U. S. Army Engineer Waterways Experiment Station while this paper was prepared. Mr. F. R. Brown was Technical Director.

Contents

													Page
Preface					•								1
Introduction													3
Age of Specimens													3
Reactive Aggregates													4
X-Ray Diffraction Data		•											4
Light Microscopy and Chemica	1	An	al	ys	ses	3							6
Conclusions													6
Acknowledgement													7
References													8
Tables 1-3													

Introduction

Bryant Mather (1), McConnell, Mielenz, et al (2), (3), and Krogh (4) provided optical or chemical data or both on alkali-silica reaction products. Poole (5) reported electron-probe spot-microanalyses within rims developed on the Beltane opal in specimens containing high-alkali cement, stored at 40°C over water for periods up to 28 days. He found that in a specimen examined after 28 days at 40°C, containing cement with 6% NaCl added at the time of manufacture, there was 45.77% CaO in the reaction-rim material close to the cement interface. In the specimen examined after 7 days at 40°C containing cement with 2% NaCl added during manufacture there was 54.06% of CaO in the reaction-rim material close to the interface. In both specimens calcium had moved through the reaction rim into the opal. These electron-probe microanalyses clearly show the mobility of calcium into the alkali-silica reaction product.

We have collected X-ray diffraction and light microscope data and made chemical analyses of reaction products from six different concretes affected by alkali-silica reaction. We have only four chemical analyses of the reaction products from these six concretes but we believe that the chemical analyses are reliable because every sample was hand-picked by a geologist or a chemist who knew how to recognize alkali-reaction product and understood that it was better to have a small pure sample than a larger contaminated one.

Age of Specimens

Five of the concretes came from structures ranging in age from 24 to 40 years when the samples were taken. The sixth sample was from a concrete beam prepared in the Concrete Laboratory and stored in seawater near St. Augustine, Florida, for about 2 years. A sample of reaction product from this concrete was examined when the beam was about 3 years old. A fresh reaction product sample, obtained from the beam after an additional 20 years of storage in laboratory air, was examined by X-ray diffraction.

Reactive Aggregates

The aggregates believed to be reactive in these concretes included three distinct groups. They were: opal; mixtures of quartzite and quartz with or without chert; and granite gneiss.

X-Ray Diffraction Data

Table 1 shows the X-ray diffraction data for eight samples from the six concretes. There are eight samples because three recognizably different types of gel from the Charleston dry dock (6) concrete were examined separately. X-ray diffraction spacings believed to be due to impurities such as quartz or forms of calcium carbonate are shown in Table 1 with the spacings underlined. The data suggest several dangers and possibilities:

- a. We can only comment where we have optical information as well as X-ray diffraction information or several X-ray diffraction patterns on how many phases may be present in the samples, leaving out obvious impurities and characteristic secondary reaction products such as calcite, vaterite, and aragonite. We suspect that most of the "gel" reaction products are mixtures of amorphous alkali-silica gel and slowly crystallizing calcium-silicate hydrates that may contain some alkali.
- b. Only the gel from the youngest concrete, about 3 years old, with opal as the reactive constituent (7) was amorphous to X-rays. The gel was still amorphous although some calcite, vaterite, and aragonite had formed when a new specimen was examined by X-ray diffraction after 20 more years of storage in laboratory air.
- c. The crystalline materials in the other reaction product samples may consist of three phases. One has long spacings at 0.132 and 0.122 nm. A second has a long spacing at 0.113 to 0.115 nm. The third and most abundant type has a 0.105-to 0.108-nm spacing. All three phases appear in the samples from the Charleston dry dock.

d. An 0.85- to 0.88-nm spacing occurs in five of the seven partly crystalline samples. It is associated with the 0.113- to 0.115-nm peak in two of these cases and with the 0.105- to 0.108-nm peak in two others. This association may mean that the 0.105- to 0.108-nm and the 0.113- to 0.115-nm peaks represent one phase with a variable long spacing and an 0.8+-nm spacing. Absence of a longer spacing with the 0.86-nm peak in one case may indicate a situation like that in CSH(I) where the long spacing does not always appear. The 0.85- to 0.88-nm peak may arise from an altogether different phase. This second possibility is considered probable.

The identification of the crystalline materials in the partly crystalline gel from the several concretes is uncertain. A thorough effort to identify the spacings in the diffraction charts of the gel from the New Savannah Bluff Lock and Dam concrete (9) with reactive granite gneiss coarse aggregate led to the possibility that the 0.105- to 0.108-nm material might be jennite (9) or a CSH(II) (14), and the 0.85- to 0.88-nm material tricalcium-silicate hydrate (9). No alkali silicate hydrates fitted. Tricalcium-silicate hydrate has been prepared by autoclaving at 200°C and is not known to have been reported from normal ambient temperature material. However time may proxy for temperature in some reactions, and it may be easier for a calcium-silicate hydrate to crystallize within an amorphous flexible alkali-silica gel than in a cement paste. Table 1 does show in almost all the samples the three familiar spacings at 0.307, 0.282, 0.182-nm, that appear in well hydrated cement paste. However in these patterns there are many other lines, usually representing substances less crystalline than quartz (the universal contaminant) but as well crystallized as most of the constituents of anhydrous portland cement.

These diffraction patterns show a gel-like hump, suggesting that the important part of the compositions including Na_2O , K_2O , part of the SiO_2 , and part of the water remain as gels or the equivalent to hydrated glasses.

If Table 1 contains items that seem recognizable to people who see it, we would very much appreciate some discussion from any of them.

Light Microscopy and Chemical Analyses

The light microscope and chemical results in Tables 2 and 3 complete the information that we have on the reaction products in these six concretes affected by alkali-silica reaction. We always look for gel in concrete suspected of alkali-silica reaction since if gel is present it is unequivocal evidence that the reaction took place, and therefore have considerable familiarity with appearance of gel in immersion mounts in plane light, and with crossed polarizers, and have determined a number of indices of refraction of gel. We are also very familiar with gel viewed using the stereomicroscope. We also usually analyze the reaction products to assure that they contain considerable SiO₂ and some alkali. No determination of alkalies was made on the samples from Oliver Lock probably because we did not yet have a flame photometer.

Conclusions

Our tentative conclusions are as shown below. It appears that alkalisilica reaction product in its early stages contains very little calcium, a high concentration of silica, and more total alkali than calcium (Table 3, Beam 1850). Calcium moves into the product from the large supply available in the cement paste and calcium hydroxide, but moves at varying rates over unknown distances. Examination of concrete thin sections, comparing sections of normal concrete and that affected by alkali-silica reaction, shows that crystalline Ca(OH)₂ is depleted in parts of the mortar where reaction has proceeded.

Ultimately, at ages in field structures at least as low as 24 years (Table 1, Charleston Naval Dry Dock No. 2) complex products develop. They include products giving X-ray diffraction spacings that suggest that part at least of the products is related to CSH(I) (13) and possibly to CSH(II) (14). CSH(I) and CSH(II) both have variable long spacings. It may be a consequence of the composition of these complex, probably mixed, products that they differ from sample to sample in their crystalline parts but share a family resemblance. This similarity which exists regardless of

the type of reactive aggregate, with the possible exception of opal, suggests that the same mechanism is involved in five of the cases discussed here. This in turn suggests that division of silica bearing aggregates into those that participate in the alkali-silica reaction and those that participate in an alkali-silicate reaction may be a misleading practice.

Acknowledgment

The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Civil Works Research and Development Program of the United States Army Corps of Engineers by the U. S. Army Engineer Waterways Experiment Station. Permission was granted by the Chief of Engineers to publish this information.

References

- (1) Mather, Bryant, Cracking of Concrete in the Tuscaloosa Lock, Highway Research Board Proc Thirty-First Annual Meeting, 1952, pp 218-233.
- (2) McConnell, D.; Mielenz, R. C.; Holland, W. Y.; and Greene, K. T.; Cement Aggregate Reaction in Concrete, Proc. Am. Conc. Inst. vol 44, Journal ACI vol 19 No. 2, pp 93-128.
- (3) McConnell, D.; Mielenz, R. C.; Holland, W. Y.; and Greene, K. T.; Petrology of Concrete Affected by Cement-Aggregate Reaction, The Geological Society of America, Engineering Geology (Berkey) Volume, Nov. 1950, pp 225-250.
- (4) Krogh, Hanne, Examination of synthetic alkali-silica gels, pp 131-163, Symposium on Alkali-Aggregate Reaction: Preventive Measures, Reykjavik, August 1975, The Building Research Institute, Keldnaholt/ Reykjavik, Iceland.
- (5) Poole, A. B.; Electron Probe Microanalyses of reaction zones at cement/opal interfaces, The Effect of Alkalies on the Properties of Concrete, Proceedings of a Symposium Held in London, Sept. 1976.
- (6) Buck, Alan D.; and Mather, Katharine; Concrete Cores from Dry Dock No. 2, Charleston Naval Shipyard, S. C., Miscellaneous Paper C-69-6, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. 39180, USA.
- (7) Buck, A. D., Seawater Exposure Tests, Alkali-Aggregate Reactivity; draft report, U. S. Army Engineer Waterways Experiment Station, Concrete Laboratory, June 1958.
- (8) Buck, Alan D., Tests of Concrete Core, Fort Meade, Md., 21 January 1977; letter report to U. S. Army Engineer District, Baltimore, Md.
- (9) Buck, A. D., Tests of Cores from New Savannah Bluff Lock and Dam, 18 October 1977; letter report to U. S. Army Engineer District, Savannah, Ga.
- (10) Mather, K. and B., Disintegration of Concrete from Tuscaloosa Lock and Dam, U. S. Army Engineer Waterways Experiment Station, 25 August 1949.

- (11) McDonald, J. E.; Campbell, Roy L.; An Investigation of Concrete Condition, William Bacon Oliver Lock and Spillway, Miscellaneous Paper C-77-5, June 1977, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss. 39180.
- (12) Buck, Alan D.; and Mather, Katharine; Examination of Fontana Dam Concrete Cores, 3 May 1974; letter report to Tennessee Valley Authority.
- (13) Taylor, H. F. W., The Calcium Silicate Hydrates, Proc. International Symposium on the Chemistry of Cement, Tokyo, 1968, The Cement Association of Japan, Dec. 31, 1969, vol II, pp 1-26.
- (14) Gard, J. A.; and Taylor, H. F. W.; Calcium Silicate Hydrate (II) (C-S-H(II)), Cement and Concrete Research, vol 6, pp 667-678, 1976.

Table 1

X-Ray Diffraction Data on Alkali-Silica Reaction Products from Six Concretes*

-		. 1850	3 and 23 Years		ᆈ											Amorphous; crest	lo at	Ø	3			3		3		3					6
		Beam No. 1850	3 and 2	+ **IIIA	р											Amorpho	of halo at	0.390	0.386			0.359		0.341	0.334	0.330					0.302
	te for	Analysis	-	+	니.	75	3	M	3	MA	M	3	3		MA		3			*		3	3		s			30			3
No. 2	Composite for	Chemical Analysis		+ **IIA	0	1.318	1.217	1.150	1.072	0.858	969.0	0.664	979.0		0.501		0.426			0.379		0.358	0.351		0.334			0.318			0.304
rv Dock	ered,	it Gel			ыl				3				MA															MA		3	3
Charleston Naval Dry Dock No. 2	Tan, Layered,	Translucent Gei		IV	ָל נ				1.077				0.646															0.318		0.306	0.301
Charles		bicy .	S	-	ᆈ			3	MA	3		3			3		MA				MA	3	3		3		MA		3		3
		From 1/4-in. Void	24 Years	+ **^	-p			1.147	1.064	0.858		099.0			667.0		0.425				0.368	0.359	0.354		0.335		0.324		0.312		0.303.
		а Даш	ars	+	니			3		3		3			30	3			3			3			7	3			MA	E	
		Fontana Dam	33 Years	+ **VI	p			1.132		0.861		0.660			0.498	0.472			0.386			0.357			0.335	0.329			0.314	0.305	
		Lock	ars	_	ы				8	3		3		30	30							3								2	E
		Oliver Lock	38 Years	1111	٦				1.052	0.884		0.660		0.564	0.501							0.359								0.307	0.303
	nnah	and D	Irs	+	ᆈ				3	NS		3			37		s				3		E	3	VS	E		3		6	80
	New Savannah	Bluff L and D	40 Years	11** +	Р				1.077	0.850		0.661			0.498		0.424				0.366		0.356	0.339	0.333	0.328		0.318		0.306	0.303
1		ade	ILS		اب					Ø		3			3								s		s		3		3		
		Fort Meade	45 Years	I**	P					0.858		0.665			0.503								0.356		0.335		0.324		0.311		

(Continued)

Table 1 (Continued)

		Beam No. 1850	3 and 23 Years	VIII** +							M 51	71 w				30 es	38 vw								WA 70		3 86		38		82 w	
		Bear	3 a		اح						0.274	0.271				0.250	0.238								0.207		0.198		0.188		0.182	
	Composite for	Chemical Analysis		+ **IIV		3	E	E	3			3		37	3>		3	35	35	3		30			75	30	30		30	35	3	
k No. 2	Compos	Chemica		IA	פי	0.300	0.293	0.289	0.282			0.271		0.261	0.253		0.245	0.232	0.228	0.223		0.213			0.206	0.200	0.198		0.187	0.183	0.182	
Dry Doc	yered,	ent Gel			Ы					3>																				35		
Charleston Naval Dry Dock No. 2	Tan, Layered,	Translucent Gel		IV	p					0.278																				0.183		
Charles		n. Void	rs			3		Ħ	3					35			37		30		44		3	40	35			30	30		3	3
		From 1/4-in. Void	24 Years	+ **^	P	0.298		0.290	0.283					0.261			0.245		0.227		0.221		0.212	0.209	0.205			0.192	0.188		0.182	0.181
		Dam	rs		11			3			3					3	3		3	3	3			3	3		3	E	3	3	3	
		Fontana Dam	33 Years	+ **VI	P			0.290			0.274					0.250	0.241		0.229	0.223	0.221			0.210	0.206		0.198	0.192	0.188	0.184	0.182	
		Lock	rs		ы				3	3												3					3			3		3
		Oliver Lock	38 Years	1111	P				0.283	0.279												0.214					0.198			0.184		0.181
	nnah	and D	rs	+		3	8	E	3			E	3			3>	3		E	3		3	s	3	E		E	3	3	3	9	
	New Savannah	Bluff L and	40 Years	+ **11	ъ	0.298	0.293	0.290	0.282			0.272	0.270			0.248	0.245		0.228	0.223		0.215	0.212	0.209	0.206		0.197	0.191	0.188	0.183	0.182	
		Fort Meade	45 Years	I**I	I P	0.299 ш		0.291 в	0.284 w	0.276 vw				0.263 w	0.255 W		Pattern	not run	to higher	angles												

(Continued)

Table 1 (Concluded)

		West Consense			Charte	Charleston Naval pry book No.	K NO. 2	
		New Savannan				lan, Layered,	composite tor	
	Fort Meade	Bluff L and D	Oliver Lock	Fontana Dam	From 1/4-in. Void	Translucent Gel	Chemical Analysis	Beam No. 1850
	45 Years	40 Years	38 Years	33 Years	24 Years			3 and 23 Years
	1**	+ **II	+III	1V** +	+ **^	VI	+ **II^	+ **IIIA
	I P	I P	d I	I P	rl P	I P	Ġ,	d I
				0.178 m				
		0.175 m			0.175 w			0.175 w
		0.174 w					0.174 w	
		0.167 w	0.167 vw					
			0.164 vw	0.163 w				
				0.160 w				
				0.159 vw				
				0.157 vw				
				0.156 vw				
		0.154 s	0.154 vw	0.154 vw			0.154 vw	
Aggregate:	Aggregate: Quartzite,	Granite gneiss,	Quartzite,	Metamorphic	Quartzit	Quartzite, quartz, and quartz sand	rtz sand	5% opal-bonded
	quartz;	natural sand	sandstone,	subgraywacke				quartzite,
	sand		chert	coarse and fine				quartz sand
Alkal1:	Alkali: Not known	Not known	Not known	0.75% max		Not known		1.0%

-

* Spacings are given in nanometres. Nanometres times 10^{-1} = Angstroms.
** Sample contained quartz.
† Sample contained quartz.
† Sample contained calcium carbonate as calcite, vaterite, or aragonite. Lines of the compounds mentioned in these notes are underlined. Only the sample in column VIII contains aragonite in recognizable amounts. It was stored for two years in warm seawater. The quartz, calcite, vaterite, and aragonite spacings are underlined. Spacings at left and estimated intensities on right within each column. Intensities: vs = very strong; s = strong; m = moderate; w = weak; vw = very weak.

Table 2

Light Microscope Data on Alkali-Silica

Reaction Products from Six Concretes*

Source of Gel	Description of Gel
Fort Meade (8)	Clear to brownish in plane light. With crossed polarizers, crystalline material black, gray, and white in a texture like finely granular chert. Amorphous material also present. n < 1.520
New Savannah Bluff Lock and Dam (9)	Apparently crystalline with crossed polarizers, texture like finely granular chert. n = 1.460 - 1.500
Oliver Lock (10)(11)	White to translucent bluish, laminated, often with shrinkage cracks, brittle where dry. Also in pockets and lining cracks, clear to translucent, rubbery to brittle; usually the outer shell of the lining if two varieties are present in one void. By microscope, there were three varieties: with crossed polarizers one anisotropic, with aggregate polarization, low birefringence, and wavy extinction with a misshapen black cross as in strained glass; the second with crossed polarizers had a very fine-grained pepper and salt appearance resembling chert or fine grained calcium hydroxide; the third variety was clear, isotropic, with fewer inclusions than the other types. Ranges of indices of refraction: pepper and salt type n = 1.478 to n = 1.511; in the type with aggregate polarization n = 1.480 to n = 1.502; isotropic gel formed after the cores were drilled n = 1.465 to n = 1.487. The 1976 samples were similar.
Fontana Dam (12)	Semicrystalline; first order gray birefringence in crossed polarized light. n < 1.480 Salt and pepper type in crossed polarized light.
	1.482 > n < 1.502
	Alternating growth layers of clear and of tan translucent gel; some of the clear material is amorphous. 1.480 > n < 1.520

(Continued)

Table 2 (Concluded)

Source of Gel	Description of Gel
Charleston Dry Dock (6) Gel from 1/4-in. void	Transparent in plane light, crystalline salt and pepper texture with crossed polarizers. n about 1.494
Tan layered gel	Layered structure with fibers normal to layers; fibers appear to be uniaxial +; 1.510 < n < 1.544
Composite	Amorphous and crystalline material in clear and brownish fragments.
Beam 1850 (7)	Amorphous with 1.460 < n < 1.500

^{*} See Table 1 for type of aggregate.

Table 3

Chemical Analyses of Alkali-Silica Reaction Products from Four Concretes

Constituents, Percent by Weight	Olive Sample 1*	Oliver Lock e 1* Sample 2**	Fontana Dam 33 Years	Charleston Dry Dock 24 Years	Beam 1850 3 Years
S10 ₂	49.82	61.73	50.70	00.99	85.91
A1203	1.15	2.17	not determined	1.88†	not determined
Fe ₂ 0 ₃	0.81	0.47	not determined	not determined	not determined
Ca0	21.11	12.28	4.76	11.54	1.25
so ₃	0.16	00.00	not determined	not determined	not determined
c1 -	not de-	not de-	not determined	0.39	not determined
Na ₂ 0	not de-	not de-	6.75	1.30	2.41
K ₂ 0	not de-	not de-	6.68	19.00	0.60
Insoluble residue	5.58	8.1	not determined	not determined	not determined
Moisture loss at 105°C	34.6	9.81	not determined	not determined	5.22
Moisture loss at 200°C	1	1	not determined	not determined	3.09
Moisture loss at 450°C	1	1	not determined	17.23	
Ignition loss	1	14.84	24.80 at 550°C	not determined	

* Scraped from the wall of the 36-in. core hole 16-19 June 1948. ** Collected from pockets in cores from holes 20-1 and 60-1 after cores dried in laboratory air. Analyses made in 1948 and 1949. † Assumed to be Al_20_3 but contained at least some fron. Structure was 10 to 11 years old.

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Buck, Alan D

Alkali-silica reaction products from several concretes: Optical, chemical, and X-ray diffraction data / by Alan D. Buck, Katharine Mather. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1978.

9, C6.7 p. : 27 cm. (Miscellaneous paper - U. S. Army Engineer Waterways Experiment Station ; C-78-7)

Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C.

CTIAC Report No. 31. References: p. 8-9.

1. Alkali silica reactions. 2. Chemical analysis. 3. Concretes. 4. Gels. 5. Light microscopy. 6. X ray diffraction. I. Mather, Katharine, joint author. II. United States. Army. Corps of Engineers. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper; C-78-7. TA7.W34m no.C-78-7

A