Data Structures and Algorithms Lab

Lab 04 Credit: Umair Babar Marks 80

Instructions

Work on this lab individually. You can use your books, notes, handouts etc. but you are not allowed to borrow anything from your peer student.

Marking Criteria

Show your work to the instructor before leaving the lab to get some or full credit.

What you have to do

Program the following task in your C++ compiler and then compile and execute them. Write the *main* function first and keep on testing the functionality of each function once created.

ADT: Collection

Write a class named Collection for which each object can hold positive numbers and zero as a default value.

- 1. The class should have following two private data members.
 - 1. An integer pointer named data that holds an array of integers allocated dynamically according to the size.
 - 2. An integer named size that holds the size of the array (amount of memory allocated to data).
- 2. Provide the implementation of following constructors and a destructor
 - 1. A constructor which accepts an **integer** as argument to represent the **size of an array** and initializes it to the so-called "empty collection," i.e., a collection whose array representation **contain all zeroes**.
 - 2. An additional **constructor** that receives an **array of integers** and the **size of that array** as its arguments and uses the array to initialize a **collection object**.
 - 3. A copy constructor to initialize a collection object with already existing object.
 - **4.** A **destructor** to **free any memory resources** occupied by the **collection** object.
- **3.** Provide the implementation of following member functions and operators
 - 1. **getSize** returns the size of collection.
 - 2. printCollection to display the contents of data on the screen of a collection.
 - **3. getCollection** to take input from user for the **data** of a **collection** as per its **size**.
 - **4. insertElement** that **inserts** a new integer **k** at index **i** (both passed as argument) into a **collection**, if possible, otherwise give an appropriate error message.
 - **5. findElement** accepts an integer **key** as argument and return **true**, if the key element exists in the collection, **false** otherwise if the key does not exist.
 - 6. Assignment (=) operator which copies the data of right-hand side object to the left-hand side object. If the size of left-hand side object is different from right-hand side object. Free any previous memory resources occupied by left-hand side object and reallocate the memory to it according to the size of right-hand side object. Eventually copy the data and return the result as per the standard implementation of assignment operator. Don't forget to update the size of left-hand side object.
 - 7. Addition (+) binary operator which perform the addition of two collections (right-hand side from left-hand side) and return a new Collection containing the result of addition. This addition should only be performed, if both objects have same size, give appropriate error message otherwise and return a new Collection with size and data set to -1 and NULL respectively.
 - **8.** Comparison (==) operator that determines whether two collections (*left-hand and right-hand*) are **equal** or **not**. The operator should return **true** if both the collections are equal, **false** otherwise.

In main function, create few objects of Collection class and demonstrate the working of each function clearly.