Input-files of makeDHexaMesh

Input-files of makeDHexaMesh

File name	Contents
meshgen.inp	Controlling parameters
obs_site.dat	Desired edge lengths around observation sites
Arbitrary name	Topography/bathymetry (The name is defined in the keyword 'TOPO' of 'meshgen.inp')

How to run makeDHexaMesh

You need to execute the following command in the directory where input files exist.

makeDHexaMesh

File format of 'meshgen.inp' (1/3)

Keyword	Content	Data type	Option	Default	Example
DIVISION_NUMBERS	Division numbers in the x, y, and z direction of the initial mesh.	Three positive integers			DIVISION_NUMBERS 53 59 73
X_COORDINATES	X-coordinates (km) of the edges of the initial mesh	Real values (division number + 1)			
Y_COORDINATES	Y-coordinates (km) of the edges of the initial mesh	Real values (division number + 1)			
Z_COORDINATES	Z-coordinates (km) of the edges of the initial mesh 1)	Real values (division number + 1)			
CUBOIDS	Information about the cuboids to control edge lengths	Shown in the next slide			Shown in the next slide
INITIAL_RESISTIVITY	Initial subsurface resistivity (Ωm)	Positive real value		100.0	INITIAL_RESISTIVITY 100.0

^{*1)} Z-coordinate 0.0 (km) must be exist. Also, z-coordinate identical to the depth defined in the keyword 'SEA_DEPTH' must be exist only when the sea layer is included in the mesh.

Keyword 'CUBOIDS'

CUBOIDS

Coordinate values (x,y, and z in km) of the center of the cuboids

Rotation angle around the x-y plane (deg.) of the cuboids

Number of cuboids (N_e)

Information about the 1st cuboid

:

Information about the N_e-th cuboid

[NOTE] Subsequent cuboids must cover the formers (must be larger than the formers) a b c l_h

a: Length along x-axis (km)

b: Length along y-axis (km)

c: Length along z-axis (km)

 l_h : The upper limit of the horizontal edge lengths within the cuboid (km)

Keyword 'CUBOIDS'

Cuboids are used to change the fineness of mesh (in other words, size of triangles) hierarchically.

Keyword 'CUBOIDS'

Example

CUBOIDS
-40.0 -30.0 3.5
30.0
3
30.0 30.0 20.0 1.0
50.0 50.0 30.0 2.0
100.0 100.0 50.0 5.0

File format of 'meshgen.inp' (2/3)

Keyword	Content	Data type	Option	Default	Example
AIR_RESISTIVITY	Resistivity of the air layer (Ωm)	Positive real value		1.0e+10	AIR_RESISTIVITY 1.0e+10
TOPO	Information about the topography/bathymetry data and the interpolation method of them 1)	Shown in the next slide			Shown in the next slide
SEA_DEPTH	Sea-floor depth of the initial mesh (km)	Positive real value			SEA_DEPTH 3.50
SEA_RESISTIVITY	Resistivity of the sea (Ωm)	Positive real value		0.25	SEA_RESISTIVITY 0.30
THRE_SEA_DEPTH	Threshold of the sea-floor depth (km) 2)	Positive real value		0.1	THRE_SEA_DEPTH 0.3
LEVEL_LIMIT_PARAM_CELL	Threshold about the partitioning of parameter cells ²⁾	Positive real value		100	LEVEL_LIMIT_PARAM_CELL 1

^{*1)} Details are described in the next slide. If this keyword is not defined, no topography/bathymetry is incorporated into the mesh.

^{*2)} Details are described in a later slide.

Keyword 'TOPO'

TOPO

File name of topography/bathymetry data

Maximum number of the points used for interpolation (N)

Search radius (km)

Small number to avoid zero divide (km) (ε)

Example

TOPO

topo.xyz

3

3.0

0.001

Inverse distance weighting method is used for interpolation of z-coordinates.

$$z = \frac{\sum_{i=1}^{N} w_i z_i}{\sum_{i=1}^{N} w_i}$$

$$w_i = \frac{1}{(r_i + \varepsilon)}$$

Keyword 'THRE_SEA_DEPTH'

Above the threshold of the sea-floor depth, the bathymetry is represented by a stair-like mesh.

Keyword 'LEVEL_LIMIT_PARAM_CELL'

By using this option, you can specify the level of partitioning of the parameter cell, based on the level of partitioning of the mesh.

If you set X as this option, the sub-elements generated at the X-th partitioning or later are forced to have the same resistivity.

*) In the figures below, different colors indicate different parameter cells.

Solid line indicates the edges of the initial mesh

If the option is zero, all sub-elements in each element of initial mesh are forced to have the same resistivity.

Solid line indicates the edges of the mesh after the 1st mesh partitioning

Solid line indicates the edges of the mesh after the 2nd mesh partitioning

If the option is large enough (default), respective subsurface elements are allowed to have different resistivity values.

File format of 'meshgen.inp' (3/3)

Keyword	Content	Data type	Option	Default	Example
ANOMALIES	Information about the resistivity anomalies in the initial model	Shown in the next slide			Shown in the next slide
END	Indication of the end of controlling parameters				END

Keyword 'ANOMALIES'

ANOMALIES

Number of anomalies (N_a)

Information about the 1st anomaly

:

Information about the N_a-th anomaly

 x_{min} x_{max} y_{min} y_{max} z_{min} z_{max} ρ_{ano} IFIX

 x_{min} : The minimum x value of the anomaly (km)

 x_{max} : The maximum x value of the anomaly (km)

 y_{min} : The minimum y value of the anomaly (km)

 y_{max} : The maximum y value of the anomaly (km)

 z_{min} : The minimum z value of the anomaly (km)

 z_{max} : The maximum z value of the anomaly (km)

 ρ_{ano} : Electrical resistivity of the anomaly (Ωm)

IFIX: 1 if the resistivity is fixed in the inversion / 0 if the resistivity is modifiable in the inversion.

NOTE

Location determination of anomalies is performed based on the coordinates prior to the incorporation of topography/bathymetry.

Example

ANOMALIES

2

10.0 20.0 10.0 20.0 5.0 10.0 100.0 1 -20.0 -10.0 -20.0 -10.0 5.0 10.0 100.0 1

File format of 'obs_site.dat' (1/3)

Number of observation points (N_{site})

lengths around the N_{site} -th point

*) Subsequent cuboids must cover the formers (must be larger than the formers)

File format of 'obs_site.dat' (2/3)

Number of lines (N_{line})

^{*)} Subsequent cylinders must cover the formers (must be larger than the formers)

File format of 'obs_site.dat' (3/3)

Cuboid for an observation points

Horizontal length $\,\ell_h\,$ ℓ_h ℓ_v Center point

f: Oblateness

Cylinder for a line

The cuboids at the observing sites are used to make the area around observation sites even finer.

The 1st cuboid specified by keyword 'CUBOIDS'

Format of the files including topography/bathymetry data

Z-coordinates are positive in the downward direction.

Example

```
76.2046151595
                                  2.100000e-003↓
-106.824031915
-106.824276161
                 76.1651038245
                                  6.000000e-003↓
-106.824459262
                 76.1354703228
                                  8.500000e-003↓
-106.824642292
                 76.1058368206
                                  7.400000e-003↓
-106.824886221
                 76.0663254836
                                  9.000000e-003↓
                 76.0366919804
-106.825069084
                                  9.300000e-003↓
-106.825251877
                 76.0070584767
                                  8.600000e-003↓
-106.825495489
                 75.9675471378
                                  8.600000e-003↓
-106.825678115
                 75.9379136331
                                  9.400000e-003↓
-106.82586067
                 75.908280128
                                   .040000e-002↓
-106.826103966
                 75.8687687872
                                   .070000e-002↓
-106.826286354
                 75.839135281
                                  9.300000e-003↓
                 75.8095017744
-106.826468671
                                  1.110000e-002↓
                 75.7699904316
-106.82671165
```

Output-files of makeDHexaMesh

Output-files of makeDHexaMesh

File name	Contents
mesh.dat	Data of computational mesh (Input file of FEMTIC)
resistivity_block_iter0.dat	Information about parameter cells and the initial resistivity values (Input file of FEMTIC)
MeshData.vtk	Data of computational mesh (For the visualization by ParaView)
depth.vtk	Data of the surface mesh of the computational mesh (For the visualization by ParaView)

Algorithm of makeDHexaMesh (1/2) - Image for land MT -

- *1) Subdivision is performed based on the coordinates prior to the incorporation of topography. Therefore, you need to set the coordinates in the keyword 'CUBOIDS' of 'meshgen.inp' and the coordinates in 'obs_site.dat' based on the flat mesh. Therefore, z-coordinate values of 'obs_site.dat' should be usually equal to 0 (km).
- *2) This step requires significant time because the coordinates of each node and each point of topography data are compared.

(4) Output input data for FEMTIC

Algorithm of makeDHexaMesh (2/2) - Image for ocean bottom MT -

- *1) Subdivision is performed based on the coordinates prior to the incorporation of bathymetry. Therefore, you need to set the coordinates in the keyword 'CUBOIDS' of 'meshgen.inp' and the coordinates in 'obs_site.dat' based on the flat mesh. Therefore, z-coordinate values of 'obs_site.dat' should be SEA_DEPTH.
- *2) This step requires significant time because the coordinates of each node and each point of bathymetry data are compared.

Averaging of sea conductivity and land conductivity

If 'SEA_DEPTH' is NOT defined and there is sea area in topography data, the average conductivity of the sea and land sides is assigned to each element under the sea area.

How to make a mesh without topography

If TOPO data is not included, topography/bathymetry is not incorporated into the mesh.

How to make a conforming hexahedral mesh

END↓

```
meshgen.inp

obs_site.dat

AIR_RESISTIVITY+

1.0e+10+
CENTER+
-40.0 -30.0 3.5+
ROTATION+
0.0+
CUBOIDS+
0+
LEVEL_LIMIT_PARAM_CELL+
0+
TOPO+
ETOPO1_Ice_g_int_prjected_mod.xyz+
3+
3.0+
0.001+
```

If you set the number of cuboids as 0 in 'meshgen.inp' and set both numbers of points and lines as zeros in 'obs_site.dat', we can make a conforming hexahedral (subdivision is not performed)

Cautions

When both land topography and bathymetry are incorporated into mesh, some elements that originally belong to the sea are changed to the land elements in the program.

However, the algorithm of the above procedure is NOT robust.

Please check the surface mesh by using 'depth.vtk before you perform inversion.