L I S Lighting Integration System Lighting The World

特性

- 去辅助绕组的专利采样及供电技术
- 新颖的数字电流环路控制技术
- 集成变压器感量补偿功能
- 集成前沿导通消隐功能(LEB)
- 集成频率抖动功能
- 超低工作电流(110uA)
- 超宽输出电压范围
- 芯片欠压和过压保护功能
- 逐周期初级侧峰值电流保护功能

- 输出开路,短路保护功能
- 过温保护功能
- 优化的恒流精度
- 优化的线电压及负载调整率
- 优化的电流温度系数
- 优化的系统成本
- 内置600V高压MOS
- DIP-8封装

概述

LIS8516 是一款专用于 LED 恒流驱动的控制芯片,通过采用专有的初级侧 LED 恒流控制技术,使得系统架构得到了最大程度的精简。它不但省去了传统二次侧控制所需的光耦和 431 等反馈器件,而且还进一步省去传统初级侧控制架构中用于实现反馈的辅助绕组,反馈电阻以及为 IC 供电的整流二极管等无源器件,使系统成本得到极大程度的降低。由于采用高压直接供电,LIS8516系统的输出电压范围得到极大的拓宽,同一驱动系统可以驱动 16~24 颗串联 LED,方便系列机种应用。右图示出了这种芯片的典型应用。LIS8516还集成了完善的保护功能,包括输入电流的逐周期过流保护,电流检测管脚的开路保护,IC 过温保护,以及输出端的开路和短路保护等。

典型应用电路

应用

- LED射灯驱动
- LED橱柜灯驱动
- LED轨道灯驱动

- LED天花灯驱动
- LED景观灯驱动

	输入电压	输出功率
推荐功率应用	90VAC-264VAC	16-24W
	160VAC-264VAC	18-26W

版权©莱士电子科技有限公司

功能框图

引脚俯视图 (DIP-8)

引脚功能描述

引脚顺序	引脚名	输入/输出	功能
1	GND	-	芯片地
2	CS	输入	初级侧电流检测
3	NC	-	空脚
4	VDD	输入	芯片供电
5	NC	-	空脚
6	Drain	输入\输出	内部 MOS 漏极
7	Drain	输入\输出	内部 MOS 漏极
8	Drain	输入\输出	内部 MOS 漏极

版权©莱士电子科技有限公司

极限工作范围

电源电压 (引脚 1)	-0.3V~35V
最大结温 (T _{JMAX})	150 °C
工作环境温度(T _a)	-40 °C~85 °C
存储温度范围(TSTO)	-55 °C~150 °C
引线温度(无铅封装,焊接,10秒)	260 °C
CS 引脚电压范围	-0.3V~7V
Drain 引脚电压范围	-0.3V~600V

标识和订购信息

订购序号	封装类型	封装编带
LIS8516-D-G-TB	DIP-8	Tube

版权©莱士电子科技有限公司

电气参数(TA=25℃, unless otherwise stated, VDD=16V)

符号	参数	测试条件	Min.	Тур.	Max.	Unit
供电		•				
I _{START}	启动电流	VDD=14V	-	200	250	μΑ
I _{OP}	工作电流	内部驱动浮空	-	110	150	uA
UVLO(ON)	进入 VDD 欠压保护的阈值	从高往低扫描 VDD 电压	8.0	8.8	9.6	V
UVLO(OFF)	退出 VDD 欠压保护的阈值	从低往高扫描 VDD 电压	14.8	15.6	16.4	V
OVP	VDD 过压保护阈值	从低往高扫描 VDD 电压	26	28	30	V
VDD_clamp	VDD 钳位电压	I_{cc} =5mA	31	33	35	V
时钟和频率			·			
FCLK	内部时钟频率		1.85	2	2.15	MHz
$f_{ m MAX}$	最大工作频率		65	70	75	KHz
$f_{ m MIN}$	最低工作频率		8.05	8.75	9.45	KHz
Δf	频率抖动范围		-	±6	-	%
采样和时序	1	1			<u> </u>	
t_{LEB}	导通前沿消隐时间		-	450	-	ns
Vth	初级侧电压阈值		970	1000	1030	mV
t_{SS}	软启动时间		-	8	-	ms
保护			·			
ОТР	过温保护		-	150	-	°C
OOP	输出开路保护延迟时间			100		us
OSP	输出短路保护延迟时间			10		ms
内部 MOS						
$\mathrm{BV}_{\mathrm{DSS}}$	漏极-源极击穿电压	I _D =250uA, Vgs=0V	600			V
I_{DSS}	漏极-源极漏电流	V _{DS} =600V, Vgs=0V			1	uA
R _{DS(ON)}	漏极-源极静态导通阻抗	I _D =1.0A, Vgs=10V		2.0		Ω
I_D	漏极-源极连续电流				4	A
Tr	上升时间			85		nS
Tf	下降时间			112		nS

典型工作特性曲线

由于不受辅助线圈供电限制,并且具有宽范围的工作频率,系统输出 16 颗灯至 24 颗灯的额定电压情况下,仍能保证良好的恒流特性,为设计系列机种提供良好基础。

功能描述

启动和供电

LIS8516 是通过启动电阻从线电压直接供电。通过图 2 可以了解到,当采用这种供电方式启动时,芯片 VDD 的供电电容 C1 首先通过启动电阻 R1 由线电压充电,当其上的电压达到阈值 UVLO(off)后,芯片启动,并开始输出脉冲驱动内部功率开关,由于IC 的耗电极小,当 R1 取值适当时,VDD 电压便可维持在某一值上,保证 IC 正常工作,采用这种供电方式,图 2 虚线框中变压器的辅助绕组和芯片供电整流二极管 D1 可以去除。

欠压锁定(UVL0)

LIS8516 内部有一个欠压锁定迟滞比较器,其迟滞曲线如图 3 所示。当 VDD 电压从低于 UVLO(on)往上升高到 UVLO(off)时,芯片才开始启动;而当 VDD 电压从高于 UVLO(off)往下降低到 UVLO(on)时才锁定,因此形成图中所示的迟滞窗口。

LIS8516

两绕组-初级侧控制 LED 驱动开关

L I S Lighting Integration System Lighting The World

软启动

LIS8516 提供软启动功能。每次启动之后,芯片从最低工作频率逐渐建立到最终恒流所需的开关频率。整个软启动过程大约在 8mS 左右。软启动可以抑制启动时的电流过冲,以降低 LED 在启动时承受的应力,从而提升 LED 的寿命。另一方面,软启动也能抑制启动时内部 MOSFET 漏极的电压过冲,从而增加系统可靠性。

振荡器

LIS8516 有一个振荡频率为 2MHz 的内部振荡器, 其输出的时钟作为系统的同步时钟,芯片开关管 0N/0FF 的导通周期和这个基本频率的周期成正 比。

前沿消隐 (LEB)

LIS8516 内部集成了前沿消隐功能,在开关管打开的前 450nS 内,由 CS 引脚感应到的干扰信号被屏蔽。从而可以很好地抑制开关管导通瞬间 CS 上的噪声尖峰。

恒流操作

LIS8516 采用专利的恒流驱动技术,通过采用这种技术,可以使输出电压在极宽的的范围内恒流。而且可以确保输出电流和变压器感量无关,从而加大了系统设计的容差。系统的输出电流可以表示为:

$$I_0 = 0.25 \times \frac{N_p}{N_s} \times I_p$$

其中 Io 是输出电流, Np 是变压器初级侧线圈的圈数; Ns 是变压器次级侧线圈的圈数; Ip 是初级侧线圈的峰值电流。

VDD 过压保护

LIS8516 也集成了 VDD 的过压保护功能,当 VDD 电压超过保护阈值后,开关管会关断,进入自动重起保护模式。当错误条件消失,系统自动恢复正常工作状态。

过温保护

LIS8516 集成了过温保护功能,当芯片温度超过保护阈值后,开关管会关断,进入自动重起保护模

版权©莱士电子科技有限公司

式。当错误条件消失,系统自动恢复正常工作状态。

CS 开路保护

LIS8516 集成了 CS 引脚的开路保护功能,当芯片的 CS 引脚开路,开关管会关断,进入自动重起保护模式。当错误条件消失,系统自动恢复正常工作状态。

输出开路/短路保护

LIS8516 集成了对输出开路和短路的保护。一旦输出开路或短路, 开关管会关断,进入自动重起保护模式。当错误条件消失,系统自动恢复正常工作状态。

封装信息

1PIN INDEX

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	_	-	4.80
A1	0.50	_	_
A2	3.10	3.30	3.50
A3	1.40	1.50	1.60
b	0.38	_	0.55
b1	0.38	0.46	0.51
b2	1.47	1.52	1.57
b3	0.89	0.99	1.09
С	0.21	_	0.35
c1	0.20	0.25	0.30
D	9.10	9.20	9.30
D1	0.13	_	_
E	7.62	7.87	8.25
E1	6.25	6.35	6.45
е	2.54BSC 7.62BSC		
eA			
eB	7.62	8.80	10.90
ec	0	-	1.52
L	2.92	3.30	3.81

NOTES:

ALL DIMENSIONS MEET JEDEC STANDARD MS-001 BA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

修改历史

版本	日期	状态描述
V1. 0	January, 2013	初始版本

声明:

无锡莱士电子科技股份有限公司保留本 DATA SHEET 变更权。客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。