物理化学(下册)复习、练习题答案

选择题答案

电化学	动力学选择题	表面及胶体	相平衡
1, b	24, d	46, a	64、b
2, c	25, b	47、b	65, a
3, c	26, a	48、c	66, с
4、 c	27, b	49、b	67, c
5, c	28, b	50√ a	68, a
6, b	29、b	51, a	69、c
7、 c	30, b	52、 d	70√ a
8, c	31、 d	53 _v c	71、b
9. d	32, b	54、c	72、b
10、 d	33, b	55、b	
11\ a	34, b	56√ a	
12, b	35, b	57、d	
13, a	36, c	58, c	
14、 d	37, b	59、d	
15、 d	38, с	60, c	
16, b	39, b	61, b	
17, c	40, b	62, b	
18, a	41、b	63, a	
19, с	42, b		
20, b	43, b		
21, c	44, b		
22, b	45, b		
23 _x c			

计算题部分:

电化学部分:

1、三种盐 NaCl、KCl 与 KNO₃ 分别溶于水,其极稀溶液的摩尔电导率 Λ_m /(10⁻⁴S \mathbf{m}^2 \mathbf{mol}^{-1}) 分别为: 126 、150 和 145。且 NaCl 溶液中 Na⁺迁移数为 0.39 。求 NaNO₃ 极稀溶液的摩尔电导率与此溶液中 Na⁺的迁移数。

在 NaNO₃中,
$$t(Na^+) = \Lambda_m(Na^+)/\Lambda_m(NaNO_3) = 49.14/121 = 0.406$$
 [2分]

2、计算 AgBr 饱 和 水 溶 液 在 25 ℃ 时的电导率。已知其在此温度下的溶度积 K_{SP} =4.81×10⁻¹³ mol²·dm⁻⁶; AgNO₃, KBr, KNO₃的无限稀释摩尔电导率分别等于 133.3×10⁻⁴ S m² mol⁻¹, 151.9×10⁻⁴S m² mol⁻¹, 144.9×10⁻⁴S m² mol⁻¹, 所用水的电导率为 4.40×10⁻⁶ S m⁻¹。

2, **M**:
$$c \text{ (AgBr)} = K_{SP}^{1/2} = 6.94 \times 10^{-7} \text{mol dm}^{-3}$$

$$\Lambda_{\rm m}^{\infty}({\rm AgBr}) = \Lambda_{\rm m}^{\infty} ({\rm AgNO_3}) + \Lambda_{\rm m}^{\infty} ({\rm KBr}) - \Lambda_{\rm m}^{\infty} ({\rm KNO_3})$$

$$= 140.3 \times 10^{-4} \, {\rm S m^2 mol^{-1}}$$
[2 \(\frac{\(\frac{1}{2}\)}{\(\frac{1}{2}\)}\)

$$K (\mathbf{AgBr}) = \Lambda_{\mathrm{m}} (\mathbf{AgBr}) \times c (\mathbf{AgBr}) = \Lambda_{\mathrm{m}}^{\infty} (\mathbf{AgBr}) \times c (\mathbf{AgBr}) = 9.74 \times 10^{-6} \mathrm{S m}^{-1}$$
 [2 \(\frac{\psi}{2}\)]

$$K$$
 (溶液) = K (AgBr) + K (H₂O)=1.414×10⁻⁵S m⁻¹ [1分]

- 3、某电池, 其反应为: Pb(s)+Hg₂Cl₂(s)= PbCl₂(a)+ 2Hg(l), 在 25℃电动势为 0.5357V; 温度升高 1℃, 电动势增加 1.45×10⁻⁴V, 计算:
 - (1) 1mol Pb 溶解后,电池最多能做多少功?
 - (2) 25°C 时, 电池反应的 ΔH 与 ΔS。
 - (3) 1mol Pb 可逆溶解时,电池吸热多少?

3、解:
$$(1)W(\text{max}) = \Delta_{\text{r}}G_{\text{m}} = -zFE$$

= $-2 \times 96500 \times 0.5357 = -1.034 \times 10^{5} \text{J}$

(2)
$$(\partial E/\partial F)_P = 1.45 \times 10^{-4} \text{V K}^{-1}$$

$$\Delta_{\rm r} S_{\rm m} = z F (\partial E/\partial F)_{\rm p}$$
=2×96500×1.45×10⁻⁴=28.0 J K⁻¹ mol⁻¹

$$\Delta_{\rm r} H_{\rm m} = \Delta_{\rm r} G_{\rm m} + zFT (\partial E/\partial F)_{\rm P}$$

=-1.034×10⁵+28.0×298=-95.1×10³J mol⁻¹
(3)
$$Q_R = T\Delta_r S_m = 298 \times 28.0 = 8.34 \times 10^3 \text{J mol}^{-1}$$
 [各 1

分]

4、已知水的活度积常数 $K_w=1\times10^{-14}$, 求 25℃时电极 OH $(H_2O)\mid H_2$ 的标准电极电电势 E^{\ominus} 。

4、解: 设计电池
$$H_2(g,p^{\ominus}) \mid H^+(aq) \parallel OH^-(aq) \mid H_2(g,p^{\ominus})$$
 [2分]

负极:
$$\frac{1}{2}$$
 H₂(p^{\ominus})—→H⁺(aq)+e⁻
+)正极: H₂O+e⁻ → $\frac{1}{2}$ H₂(p^{\ominus})+OH⁻(aq)

$$E^{\ominus} = E^{\ominus} [OH'(aq) \mid H_2] - E^{\ominus} [H^{+}(aq) \mid H_2] = E^{\ominus} [OH'(aq) \mid H_2]$$

$$= RT/F \times \ln K_w = -0.828 \text{ V}$$
[2 \(\Delta\)]

5、已知 298 K 时, E^{\ominus} ($Hg_2^{2+}|Hg$)=0.7959 V, E^{\ominus} ($Hg_2^{+}|Hg$)=0.851 V, Hg_2SO_4 (s)的活度积为 8.20×10^{-7} 。试计算 E^{\ominus} ($Hg_2SO_4|Hg$) 及 E^{\ominus} ($Hg_2^{+}|Hg_2^{-2+}|Pt$) 。

5、解: (1) Hg_2SO_4 (s)溶解平衡式: Hg_2SO_4 (s) === $Hg_2^{2+} + SO_4^{2-}$ 设计成一电池反应,则电池反应为:

负极:
$$2Hg(l)$$
 $\longrightarrow Hg_2^{2+}+2e^-$
正极: $Hg_2SO_4(s)+2e^- \longrightarrow 2Hg(l)+SO_4^{2-}$ [2 分]

$$E^{\ominus} = E^{\ominus} (Hg_2SO_4|Hg) - E^{\ominus} (Hg_2^{2+}|Hg) = (RT/2F)\ln K_{SP}$$
 [2 $\%$]

$$E^{\ominus}$$
 (Hg₂SO₄|Hg)= (0.02958 lg8.2×10⁻⁷ +0.7959)= 0.6159 V [2 $\%$]

(2) 电极反应:
$$Hg(l) \longrightarrow Hg_2^+ + 2e^-$$
 (1)
2 $Hg(l) \longrightarrow Hg_2^{2+} + 2e^-$ (2)

(1) ×2 - (2) 得:
$$Hg_2^{2+} \rightarrow Hg_2^{+} + 2e^{-}$$
 (3) [2分]

$$\Delta_r G_m^{\ominus}$$
,3=2 $\Delta_r G_m^{\ominus}$,1 $-\Delta_r G_m^{\ominus}$,2

$$-2 \mathbf{F} E_3^{\Theta} = -4 \mathbf{F} E_1^{\Theta} + 2 \mathbf{F} E_2^{\Theta}$$

$$E_3^{\ominus} = (4 E_1^{\ominus} - 2 E_2^{\ominus})/2 = 2 E_1^{\ominus} - E_2^{\ominus}$$

 $=(0.851\times2-0.7959) V = 0.9061 V$

$$E^{\ominus}$$
 (Hg₂⁺| Hg₂²⁺|Pt)=0.9061V [2 分]

6.已知 298 K 时 $2H_20(g) = 2H_2(g) + O_2(g)$ 反应的平衡常数为 9.7×10^{-81} ,这时 H_2O 的 饱和蒸气压为 3200 Pa,试求 298 K 时下述电池的电动势 E。

$$Pt|H_2(p^{\ominus})|H_2SO_4(0.01 \text{ mol kg}^{-1})|O_2(p^{\ominus})|Pt$$

(298 K 时的平衡常数是根据高温下的数据间接求出的。由于氧电极上反应不易达到平衡,不能测出 E 的精确值,所以可通过上法来计算 E 值) (在计算过程中, $H_2SO_4(0.01 \text{ mol kg}^{-1})$ 的活度系数假设为 1,所有的气体视为理想气体)

解 6: 电池反应
$$2H_2(p^{\ominus}) + O_2(p^{\ominus}) \longrightarrow 2H_2O(1, 3.2 \text{ kPa})$$
 [2 分]

又
$$O_2(p^{\ominus}) + 2H_2(p^{\ominus}) \xrightarrow{\Delta_r G_m^{\ominus}} 2H_2O(1,3.2 \text{ kPa})$$
 $\uparrow \Delta G_3 \qquad |\Delta G_1|$
 $\downarrow \qquad \qquad \downarrow$
 $2H_2O(g, p^{\ominus}) \xleftarrow{\Delta G_2} \qquad 2H_2O(g, 3.2 \text{ kPa})$
 $\therefore -\Delta_r G_m = \Delta G_1 + \Delta G_2 + \Delta G_3$
 $= 0 + zRT\ln(p_2/p_1) - RT\ln K^{\ominus}$
 $= 473.6 \text{ kJ} \cdot \text{mol}^{-1}$
 $E = -\Delta_r G_m^{\ominus} / zF = 1.227 \text{ V}$

7. 欲从镀银废液中回收金属银,废液中 $AgNO_3$ 的浓度为 $1\times10^{-6}mol\ kg^{-1}$ (设 $\gamma_{\pm}=1$),还含有少量 Cu^{2+} 。今以银为阴极,石墨为阳极用电解法回收银,要求银的回收率达 99%,试问阴极电位应控制在什么范围之内? Cu^{2+} 离子浓度低于多少才不至使 Cu(s) 和 Ag(s) 同时析出?已知 E^{\ominus} $(Ag^{+}/Ag) = 0.799V$ 、 E^{\ominus} $(Cu^{2+}/Cu) = 0.337V$ 。

解 7:
$$E(Ag^+/Ag) = E^{\ominus}(Ag^+/Ag) + 0.05915 \lg a(Ag^+)$$

= 0.799+0.05915 $\lg (10^{-6} \times 0.01)$
= 0.3258V 阴极电势应低于 0.3258 V [2 分]
在该阴极电位下,0.3258= $E(Cu^{2+}/Cu) = E^{\ominus}(Cu^{2+}/Cu) + RT/2F \times n a(Cu^{2+})$
 $a(Cu^{2+}) = 0.4181 \quad [Cu^{2+}]$ 要小于 0.4181 mol/kg [3 分]

8. 298K、 P^{\ominus} 时,以 Pt 为阴极,C (石墨) 为阳极,电解含 CdCl₂(0.01mol kg⁻¹) 和 CuCl₂ (0.02mol kg⁻¹)的水溶液,若电解过程中超电势可忽略不计,试问:(设活度系数均为 1,已 知 E^{\ominus} (Cd²⁺/Cd) = -0.402V 、 E^{\ominus} (Cu²⁺/Cu) = 0.337V 、 E^{\ominus} (Cl₂/Cl) = 1.36V 、 E^{\ominus} (O₂/H₂O,H⁺) = 1.229V)

- (甲)何种金属先在阴极析出?
- (乙) 第二种金属析出时,至少须加多少电压?
- (丙) 当第二种金属析出时,第一种金属离子在溶液中的浓度为若干?
- (丁) 事实上 $O_2(g)$ 在石墨上是有超电势的,若设超电势为 0.6V,则阳极上首先应发生什么反应?

铜析出后,[H⁺]=2×0.02 mol/kg

$$E(O_2) = E^{\ominus} (O_2/H_2O) + RT/F \times \ln a(H^+)$$

 $=1.229+0.05915 \log 0.04=1.1463 \text{ V}$;

 $E(Cl_2)=1.36-0.05915 lg0.06=1.4323 V$

:.
$$E_{\beta ff} = E(O_2) - E(Cd) = 1.6075 \text{ V}$$
 [3 分]

(3) E(Cd) = E(Cu)

-0.4612=
$$E^{\ominus}$$
 (Cu²⁺/Cu)+0.05915/2×lg a (Cu²⁺)

$$[Cu^{2+}] = 0.103 \times 10^{-26} \text{ mol/kg}$$
 [2 分]

$$(4) E(\mathbf{O}_2) = E^{\ominus}(\mathbf{O}_2/\mathbf{H}_2\mathbf{O})] + \eta$$

=1.229+0.05915 lg10⁻⁷+0.6=1.415 V;
$$E(Cl_2)$$
=1.4323 V