An HDP Model for Inducing Combinatory Categorial Grammars

Yonatan Bisk & Julia Hockenmaier University of Illinois at Urbana-Champaign

PRP VBD ADJ NN
She ate crunchy granola

Dependency Grammar Induction

PRP VBD ADJ NN
She ate crunchy granola

Dependency Grammar Induction

Dependency Grammar Induction

Problem for unsupervised Dependency Grammar learner:

Unlabeled dependencies provide no explicit structure

nola

CFG Induction

PRP VBD ADJ NN
She ate crunchy granola

CFG Induction

CFG Induction

Problem for unsupervised CFG learner:

CFG symbols and rewrite rules are arbitrary

nola

CFG Induction in Practice

CFG Induction in Practice

What kind of grammatical representation is suitable for unsupervised induction?

Categorial Grammar Induction

Categorial Grammar Induction

Categorial Grammar Induction

Linguistically motivated symbolic representation:

Linguistically motivated symbolic representation:

CCG captures core dependencies CCG captures basic word order

Linguistically motivated symbolic representation:

CCG captures core dependencies CCG captures basic word order

Rules and categories are heavily constrained:

Linguistically motivated symbolic representation:

CCG captures core dependencies CCG captures basic word order

Rules and categories are heavily constrained:

CCG categories are functions CCG rules = function application & composition

Advantages of CCG

Linguistically motivated symbolic representation:

Rules and categories are heavily constrained:

Advantages of CCG

Linguistically motivated symbolic representation:

CCG is more robust than DG on longer sentences CCG returns linguistically interpretable parses

Rules and categories are heavily constrained:

Advantages of CCG

Linguistically motivated symbolic representation:

CCG is more robust than DG on longer sentences CCG returns linguistically interpretable parses

Rules and categories are heavily constrained:

CCG has a simpler probability model than CFGs CCG allows fast variational inference

Categorial Grammar

CCG has two atomic categories:

CCG has two atomic categories:

S, N

CCG has two atomic categories:

S, N

All other CCG categories are functions:

CCG has two atomic categories:

S, N

All other CCG categories are functions:

CCG has two atomic categories:

S, N

All other CCG categories are functions:

CCG has two atomic categories:

All other CCG categories are functions:

Result Argument

CCG has two atomic categories:

S, N

All other CCG categories are functions:

S/N Result Dir. Argument

Rules: Function application

Rules: Function application

Inducing CCGs

Bisk & Hockenmaier, AAAI 2012

Atomic CCG category

Part-of-speech tag class

Atomic CCG category

Part-of-speech tag class

S

Verb

Atomic CCG category

Part-of-speech tag class

S

Verb

N

Det, Noun, Pron, Num

Atomic CCG category

Part-of-speech tag class

S

Verb

N

Det, Noun, Pron, Num

conj

Conj

The man ate quickly N S

The man ate quickly N S S\N

The man ate quickly?

N S
S\N

The man ate quickly?

N S ?

S\N

The man ate quickly N S ?

The man ate quickly N/N N S?

The man ate quickly N/N N S S\N

The man ate quickly N/N N S S\S S\N

The man ate quickly N/N N S S\S S\N N\N

. . .

An HDP Model for CCG

Nonparametric Bayesian model

Nonparametric Bayesian model

We do not need to fix the category inventory in advance

Nonparametric Bayesian model

We do not need to fix the category inventory in advance

Hierarchical model

Nonparametric Bayesian model

We do not need to fix the category inventory in advance

Hierarchical model

All distributions share a common base

Nonparametric Bayesian model

We do not need to fix the category inventory in advance

Hierarchical model

All distributions share a common base

Parameter tying (smoothing)

Liang et al. 2009

 X_0

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	
X ₁										
X ₂										
X ₃										
X ₄										
X ₅										
X ₆										
X ₇										
X ₈										
X 9										

	X ₁	X ₂	X ₃	X_4	X ₅	X ₆	X_7	X ₈	X 9	
X ₁	?	?-	?	?-	?-	?	?	?	?	?
X_2										
X ₃										
X_4										
X ₅										
X ₆										
X ₇										
X ₈										
X 9										

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	
X ₁	?	?	?	?	?	?	?	?	?	?
X_2	?	?-	?	?	?	?	?	?	?	?
X ₃										
X_4										
X ₅										
X ₆										
X ₇										
X ₈										
X 9										

	X ₁	X ₂	X ₃	X ₄	X 5	X 6	X_7	X ₈	X 9	
X ₁	?	?	?	?	?	?	?	?	?	?
χ_2	?	?	?	?	?	?	?	?	?	?
X ₃	?	?	?	?	?	?	?	?	?	?
X_4	?	?	?	?	?	?	?	?	?	?
X ₅	?	?	?	?	?	?	?	?	?	?
X ₆	?	?	?	?	?	?	?	?	?	?
X ₇	?	?	?	?	?	?	?	?	?	?-
X ₈	?	?	?	?	?	?	?	?	?	?
X ₉	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

Parameters for S\N →

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S	?	?	?	?	?	?	?	?	?	?
N	?	?	?	?	?	?	?	?	?	?
S/S	?	?	?	?	?	?	?	?	?	?
S\S	?	?	?	?	?	?	?	?	?	?
S/N	?	?	?	?	?	?	?	?	?	?
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N	?	?	?	?	?	?	?	?	?	?
S/S	?	?	?	?	?	?	?	?	?	?
S\S	?	?	?	?	?	?	?	?	?	?
S/N	?	?	?	?	?	?	?	?	?	?
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S	?	?	?	?	?	?	?	?	?	?
S\S	?	?	?	?	?	?	?	?	?	?
S/N	?	?	?	?	?	?	?	?	?	?
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S	?	?	?	?	?	?	?	?	?	?
S/N	?	?	?	?	?	?	?	?	?	?
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S										
S/N	?	?	?	?	?	?	?	?	?	?
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S										
S/N										
S\N	?	?	?	?	?	?	?	?	?	?
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S										
S/N										
S\N				?						
(S\N)/N	?	?	?	?	?	?	?	?	?	?
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
•••	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S										
S/N										
S\N				?						
(S\N)/N		?								
(S\N)\S	?	?	?	?	?	?	?	?	?	?
(S\N)\N	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	S	N	S/S	S\S	S/N	S\N	(S\N)/N	(S\N)\S	(S\N)\N	
S								?		
N									?	
S/S						?				
S\S										
S/N										
S\N				?						
(S\N)/N		?								
(S\N)\S										
(S\N)\N										
	?	?	?	?	?	?	?	?	?	?

Parent Combinator Left Right

Parent	Combinato	Left	Right
(S\N)/N	$>B_0$	((S\N)/N)/Y	Y

Parent	Combinato	r Left	Right
(S\N)/N	>B ₀	((S\N)/N)/Y	Y
(S\N)/N	>B ₁	(S\N)/Y	Y/N

Parent	Combinato	r Left	Right
(S\N)/N	>B ₀	((S\N)/N)/Y	Y
(S\N)/N	>B ₁	(S\N)/Y	Y/N
(S\N)/N	$>B_2$	S\Y	(Y \N)/N

Parent	Combinato	r Left	Right
(S\N)/N	>B ₀	((S\N)/N)/Y	Y
(S\N)/N	>B ₁	(S\N)/Y	Y/N
(S\N)/N	$>B_2$	S\Y	(Y\N)/N
(S\N)/N	<b<sub>0</b<sub>	Y	((S\N)/N)\Y

Parent	Combinator	Left	Right
(S\N)/N	>B ₀	((S\N)/N)/Y	Y
(S\N)/N	>B ₁	(S\N)/Y	Y/N
(S\N)/N	$>B_2$	S\Y	(Y\N)/N
(S\N)/N	<b<sub>0</b<sub>	Y	((S\N)/N)\Y
(S\N)/N	<b<sub>1</b<sub>	Y/N	(S\N)\Y

Parent	Combinator	Left	Right
(S\N)/N	>B ₀	((S\N)/N)/Y	Y
(SN)/N	>B ₁	(S\N)/Y	Y/N
(S\N)/N	>B ₂	S\Y	(<u>Y</u> \N)/N
(S\N)/N	$<$ B $_0$	Y	((S\N)/N)\Y
(S\N)/N	<b<sub>1</b<sub>	Y/N	(S\N)\Y
(S\N)/N	<B ₂	(Y\N)/N	S\Y

Parent
(S\N)/N
(S\N)/N
(S\N)/N
(S\N)/N
(S\N)/N
(S\N)/N

Parent	Y
(S\N)/N	S

Parent	Y	Combinator
(S\N)/N	S	>B ₀
(S\N)/N	S	>B ₁
(S\N)/N	S	>B ₂
(S\N)/N	S	$<$ B $_0$
(S\N)/N	S	<b<sub>1</b<sub>
(S\N)/N	S	<B ₂

Parent	Y	Combinator	Left	Right
(S\N)/N	S	>B ₀	((S\N)/N)/S	S
(S\N)/N	S	>B ₁	(S\N)/S	S/N
(S\N)/N	S	>B ₂	S\S	(S\N)/N
(S\N)/N	S	$<$ B $_0$	S	((S\N)/N)\S
$(S\N)/N$	S	<b<sub>1</b<sub>	S/N	(S\N)\S
(S\N)/N	S	<B ₂	(S\N)/N	S\S

CCG rules are heavily constrained:

For a **given parent** category, the **Y category** and **combinator** determine both children

Right S/N S/N S/N)/S S/S

(S

S

S

$$\begin{aligned} Y &= N \\ Combinator &= < B_0 \end{aligned}$$

CFG: doubly infinite $P(X_i \rightarrow X_j X_k \mid X_i)$

CFG: doubly infinite $P(X_i \rightarrow X_j X_k \mid X_i)$

	X1	X2	ХЗ	X4	X5	X6	X7	X8	X9	
X1	?	?	?	?	?	?	?	?	?	?
X2	?	?	?	?	?	?	?	?	?	?
ХЗ	?	?	?	?	?	?	?	?	?	?
X4	?	?	?	?	?	?	?	?	?	?
X5	?	?	?	?	?	?	?	?	?	?
X6	?	?	?	?	?	?	?	?	?	?
X7	?	?	?	?	?	?	?	?	?	?
X8	?	?	?	?	?	?	?	?	?	?
X9	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

CFG: doubly infinite $P(X_i \rightarrow X_j X_k \mid X_i)$

	X1	X2	ХЗ	X4	X5	X6	X7	X8	X9	
X1	?	?	?	?	?	?	?	?	?	?
X2	?	?	?	?	?	?	?	?	?	?
Х3	?	?	?	?	?	?	?	?	?	?
X4	?	?	?	?	?	?	?	?	?	?
X5	?	?	?	?	?	?	?	?	?	?
X6	?	?	?	?	?	?	?	?	?	?
X7	?	?	?	?	?	?	?	?	?	?
X8	?	?	?	?	?	?	?	?	?	?
Х9	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

CCG: infinite P(Y | Xi) and finite P(c | Y, Xi)

CFG: doubly infinite $P(X_i \rightarrow X_j X_k \mid X_i)$

	X1	X2	ХЗ	X4	X5	X6	X7	X8	X9	
X1	?	?	?	?	?	?	?	?	?	?
X2	?	?	?	?	?	?	?	?	?	?
Х3	?	?	?	?	?	?	?	?	?	?
X4	?	?	?	?	?	?	?	?	?	?
X5	?	?	?	?	?	?	?	?	?	?
X6	?	?	?	?	?	?	?	?	?	?
X7	?	?	?	?	?	?	?	?	?	?
X8	?	?	?	?	?	?	?	?	?	?
X9	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

CCG: infinite P(Y | Xi) and finite P(c | Y, Xi)

HDP-CFG vs HDP-CCG

The **HDP-CFG** base measure requires $\beta\beta^T$

The **HDP-CCG** base measure is the standard $\beta \sim \text{GEM}(\alpha)$ (akin to e.g. HDP-HMMs)

Computation parallels Inside-Outside:

Computation parallels Inside-Outside:

$$\mathbf{W}_{\mathbf{P}}(Y) = \Psi(C(P, Y) + \alpha^{P}\beta_{Y}) - \Psi(C(P, *) + \alpha^{P})$$

Computation parallels Inside-Outside:

$$W_{P}(Y) = \Psi(C(P, Y) + \alpha^{P}\beta_{Y}) - \Psi(C(P, *) + \alpha^{P})$$

Trivially parallelizeable; efficient

Computation parallels Inside-Outside:

$$W_{P}(Y) = \Psi(C(P, Y) + \alpha^{P}\beta_{Y}) - \Psi(C(P, *) + \alpha^{P})$$

Trivially parallelizeable; efficient

- Experiments in paper:
 - 1 min 4 hrs

Results

Trained and tested on

Trained and tested on

 $\leq 10 \leq 20$

Naseem et al. 71.9 50.4

Trained and tested on

	≤ 10	≤ 20
Naseem et al.	71.9	50.4
HDP-CCG	68.2	64.2

Trained and tested on

	≤ 10	≤ 20
Naseem et al.	71.9	50.4
HDP-CCG	68.2	64.2

Trained and tested on

	≤ 10	≤ 20
Naseem et al.	71.9	50.4
HDP-CCG	68.2	64.2

Can long sentences help performance on short sentences?

Trained and tested on

	≤ 10	≤ 20
Naseem et al.	71.9	50.4
HDP-CCG	68.2	64.2

Can long sentences help performance on short sentences?

Yes! HDP-CCG achieves 71.9 on ≤ 10 if trained on ≤ 20

Trained and tested on

	≤ 10	≤ 20
Naseem et al.	71.9	50.4
HDP-CCG	68.2	64.2

Can long sentences help performance on short sentences?

Yes! HDP-CCG achieves 71.9 on ≤ 10 if trained on ≤ 20

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

Average ≤10 accuracy on 10 languages

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

Dependencies		CCG
Blunsom & State of Cohn 2010 the Art*		Bisk & Hockenmaier 2012
55.2	62.3	54.2

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

Depend	dencies	CCG	CCG: new model
Blunsom & Cohn 2010	State of the Art*	Bisk & Hockenmaier 2012	MLE
55.2	62.3	54.2	50.9

^{*} Max over all best performing systems (extra data, tuning, etc.)

NAACL WILS Shared Task 2012

Depend	dencies	CCG	CCG: new	model
Blunsom & Cohn 2010	State of the Art*	Bisk & Hockenmaier 2012	MLE	HDP- CCG
55.2	62.3	54.2	50.9	64.5

^{*} Max over all best performing systems (extra data, tuning, etc.)

Induced Lexicons: Adjectives

English

Adj Obj

Big N/N Ball N

Induced Lexicons: Adjectives

English

Adj Obj

Big N/N Ball N

Arabic

كبيرة كرة

N N\N (ball) (big)

Obj Adj

Induced Lexicons: Verbs

English
The man wrote a letter
N (S\N)/N

Induced Lexicons: Verbs

S V O

English
The man

wrote (S\N)/N

a letter N

Child Directed Speech

write

S/N

a letter

N

Induced Lexicons: Verbs

English
The man wrote a letter
N (S\N)/N N

Child Directed Speech

write a letter
S/N N

Induced Lexicons: Adpositions

English

ran
on
beach
(S\N)/N

(S\S)/N

Induced Lexicons: Adpositions

English ADP beach ran on (S\N)/N (S\S)/N Japanese ADP 浜 を 走った (S/S)\N $(S\N)/N$ N (beach) (on) (ran)

A new probability model for CCG

A new probability model for CCG

Exploits CCG's functional constraints

A new probability model for CCG

- Exploits CCG's functional constraints
- Yields fast variational inference

A new probability model for CCG

- Exploits CCG's functional constraints
- Yields fast variational inference

State-of-the-Art accuracy

A new probability model for CCG

- Exploits CCG's functional constraints
- Yields fast variational inference
- State-of-the-Art accuracy
- Performs well on 15 languages

- A new probability model for CCG
- Exploits CCG's functional constraints
- Yields fast variational inference
- State-of-the-Art accuracy
- Performs well on 15 languages
- Can harness longer sentences

A new probability model for CCG

- Exploits CCG's functional constraints
- Yields fast variational inference
- State-of-the-Art accuracy
- Performs well on 15 languages
- Can harness longer sentences
- Induces linguistically informative lexicons

 Performance is robust beyond context-free CCG fragment

- Performance is robust beyond context-free CCG fragment
- Performance improves when generating words (not just POS tags)

- Performance is robust beyond context-free CCG fragment
- Performance improves when generating words (not just POS tags)
- Remove dependence on POS tags

- Performance is robust beyond context-free CCG fragment
- Performance improves when generating words (not just POS tags)
- Remove dependence on POS tags

Thank you!