LABORATORIO DIRIGIDO - SEMANA 09

1. Caso: Computadora

Una empresa de cómputo vende laptop cuyo precio por unidad depende de la marca según se muestra a continuación:

Marca	Precio (S/.)
Dell	11000.00
HP	9000.00
Apple	13000.00
Asus	12500.00

La empresa ofrece un porcentaje de descuento sobre el importe de la compra según lo indicado en el cuadro siguiente:

Cantidad	% Descuento
≤ 3	3.5%
$\geq 4 y < 6$	5.0%
≥ 6 <i>y</i> < 9	6.5%
≥ 9	8.0%

Además, la empresa otorga mouse pad de obsequio según lo indicado en el cuadro siguiente:

Marca	Mouse pad de obsequio	
HP	3 mouse pad por cada cuarto de docena de laptops	
	comprados	
Otro	0 mouse pad	

Empleando métodos con valor de retorno con variables locales y/o globales, desarrolle un programa que calcule el importe de la compra, el importe del descuento, el importe de pago y la cantidad de mouse pad de obsequio que corresponde.

Adicionalmente muestre:

- Cantidad total de productos vendidos por marca de laptop.
- Importe de pago total vendido por marca de laptop.
- Número de ventas totales por marca de laptop.

2. Caso: Olimpiadas

En los juegos olímpicos de París 2024 se considera un puntaje por cantidad y tipo de medalla obtenido y según el puntaje acumulado alcanzado se ofrece un reconocimiento al deportista.

El puntaje acumulado se obtiene considerando la tabla que se muestra a continucación:

Medalla	Puntaje acumulado
Oro	10 puntos por cada medalla
Plata	6 puntos por cada medalla
Bronce	3 puntos por cada medalla
Mención honrosa	1 punto por cada medalla

El reconocimiento al deportista se obtiene según la tabla siguiente:

Puntaje acumulado	Reconocimiento
< 7	Diploma
$\geq 7 \ y < 14$	Cena doble
$\geq 14 \ y < 31$	Pasaje turístico doble
≥ 31	Paquete turístico integral

Empleando métodos con valor de retorno con variables locales y/o globales, desarrolle un programa que calcule el puntaje acumulado y el reconocimiento que le corresponde al deportista.

Adicionalmente muestre:

- Cantidad de deportistas por tipo de medalla.
- Puntaje acumulado total por tipo de medalla.

3. Caso: Tecnología

La empresa TechSoft vende licencias de un software a los precios mostrados en el cuadro siguiente:

Tipo	Precio S/.
Académico	45.0
Negocios	75.0
Plus	100.0

La empresa ofrece un porcentaje de descuento sobre el importe de la compra según se indica en el cuadro siguiente:

Cantidad	Descuento
< 4	4.5%
$\geq 4 y < 12$	7.0%
≥ 12	10.5%

Considerando las variables óptimas y métodos convenientes, desarrolle un programa que muestre lo siguiente:

- Importe de compra
- Importe de descuento
- Importe de pagar
- Cantidad de licencias vendidas de cada tipo entre todas las ventas.
- Cantidad de ventas efectuadas de cada tipo entre todas las ventas
- Importe total acumulado de cada tipo de licencia entre todas las ventas

4. Caso: Universidad

Una universidad oferta carreras a un costo mensual mostrados en el siguiente cuadro:

Carrera	Costo S/.
Administración	1200.00
Ingeniería de sistemas	2100.00
Ciencia de datos	1900.00

La universidad ofrece un porcentaje de descuento sobre el importe de compra inicial según la cantidad de matriculados que se muestra en el cuadro siguiente:

Cantidad matriculados	Descuento
≥ 8	8%
$\geq 5 y < 8$	4.5%
$\geq 3 \ y < 5$	3.5%
< 3	2%

Considerando las variables óptimas y métodos convenientes, desarrolle un programa que muestre lo siguiente:

- Importe de compra inicial
- Importe del descuento
- Importe de pago final
- Cantidad de matriculados de cada carrera entre todas las matrículas
- Cantidad de matriculas realizadas de cada carrera entre todas las matrículas
- Importe total de pago acumulado de cada carrera entre todas las matrículas

5. Caso: Estadio

Desarrolle un programa que permita ingresar la cantidad asistentes al estadio monumental en varias fechas de futbol y calcule:

- La cantidad de fechas donde asistieron menos de 22000
- La cantidad de fechas donde asistieron entre 22000 y 35000
- La cantidad de fechas donde asistieron entre 35001 y 43000
- La cantidad de fechas donde asistieron más de 43000

6. Caso: Vuelos

Desarrolle un programa que lea, por cada vuelo de avión, que pasa por un control, el tipo de vuelo y la cantidad de pasajeros que transporta. Seguidamente genere un reporte que muestre:

- La cantidad total de vuelos de cada tipo que pasaron el control
- La cantidad total de vuelos entre todos los tipos
- El número total de pasajeros por cada tipo de vuelo

Considerar los tipos de vuelos: comercial, militar, carga, privado y especial.