Day 14

Which *n*-gon?

Turn to someone sitting next to you and take about 4 minutes to discuss:

Let G be the subgroup of rotations inside D_n for some $n \geq 3$. Suppose G has exactly three distinct subgroups: G itself, the trivial subgroup $\{R_0\}$, and a subgroup of order 11. What is n?

Permutation groups

- 1. What is the order of $(1 \ 4 \ 6)$ in S_7 ?
- (A) 6
- (B) 3
- (C) 7
- (D) None of the above

- 2. How do you write $(1\ 2\ 4)(2\ 4\ 6)(6\ 7)$ in S_7 as a product of disjoint cycles?
- (A) (12)(467)
- (B) (1 2 4)(6 7)
- (C) (1 2 4 6 7)
- (D) None of the above

- 3. The permutation $(1 \ 2 \ 3 \ 7)$ in S_7 is...
- (A) even.
- (B) odd.