Predicting Amazon Ratings Based on Review Text

Adithyan Subramanian Mentor: Mukesh MIthrakumar

Background and Goals

- Amazon
- Sells over 100 million products
- 4000 orders placed every minute
- Based on the text of the reviews can we predict the rating of the review?

Data

- Data from data.world
- Product reviews of AmazonBasics products.
- 28,332 rows

Data Wrangling and Cleaning

Cleaning

- Dropped irrevelant columns such as URLs
- No Nan values in relevant columns

Processing

- Used NLTK library
- Deleted numerical values, as well as periods and commas from text data
 - Chose to keep exclamation points and question marks
- Tokenized by sentence and words
- Removed stop words

nostop	tokenized_word_text	tokenized_sentence_text	title_word_count	text_word_count	reviews.username	reviews.title	reviews.text	reviews.rating
order one item bad quality missing backup spri	[i, order, of, them, and, one, of, the, item,	[i order of them and one of the item is bad q	20	31	Byger yang	3 of them and one of the item is bad quali	i order of them and one of the item is bad qu	3
bulk always less expensive way go products like	[bulk, is, always, the, less, expensive, way,	[bulk is always the less expensive way to go f	11	13	ВуМС	always the less expensive way to go for pr	bulk is always the less expensive way to go fo	4
well duracell price happy	[well, they, are, not, duracell, but, for, the	[well they are not duracell but for the price	11	12	BySharon Lambert	are not Duracell but for the price i am ha	well they are not duracell but for the price i	5
seem work well name brand batteries much bette	[seem, to, work, as, well, as, name, brand, ba	[seem to work as well as name brand batteries	11	14	Bymark sexson	as well as name brand batteries at a much	seem to work as well as name brand batteries a	5
batteries long lasting price great	[these, batteries, are, very, long, lasting, t	[these batteries are very long lasting the pri	10	10	Bylinda	batteries are very long lasting the price	these batteries are very long lasting the pric	5

Exploratory Data Analysis

Distribution of ratings

- Data highly skewed to 5 star reviews
 - Roughly 20,000 reviews of 28,332 reviews were 5 star reviews
- 4 star ratings had the next highest number of reviews
 - o 6,000 reviews
- Chose to assume that this distribution was indicative of the population

Categories of Products

- Most products were electronics
- Health and beauty products also had a significant percentage

Word count

- Maximum word count was 719
- Average was close to eight
- There was no significant difference in word counts between each of the 5 ratings

Machine Learning

Initial Processing

- Initialized countvectorizer and tfidfvectorizer
- Used vectorizers to create test and train sets (80/20 split)
- Converted sets to dataframes

Initial modeling

- Chose three initial models
 - Naive bayes
 - 0.75 accuracy
 - Logistic regression
 - 0.77 accuracy
 - Decision tree
 - 0.82 accuracy
- Chose to use decision tree

#naive bayes print(classi		<pre>#Logistic Regression Classification report print(classification_report(y_test, predlr))</pre>				#Decision Tre								
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
1 2 3 4 5	0.55 0.65 0.71 0.55 0.78	0.52 0.12 0.08 0.31 0.95	0.53 0.20 0.14 0.40 0.86	184 128 259 1118 3978	1 2 3 4 5	0.72 0.75 0.70 0.66 0.79	0.52 0.31 0.25 0.33 0.96	0.60 0.44 0.36 0.44 0.87	184 128 259 1118 3978	1 2 3 4 5	0.61 0.55 0.62 0.68 0.88	0.59 0.48 0.54 0.65 0.91	0.60 0.52 0.57 0.67 0.90	184 128 259 1118 3978
accuracy macro avg weighted avg		0.39 0.75	0.75 0.43 0.71	5667 5667 5667	accuracy macro avg weighted avg	0.72 0.76	0.47 0.77	0.77 0.54 0.74	5667 5667 5667	accuracy macro avg weighted avg	0.67 0.82	0.63 0.82	0.82 0.65 0.82	5667 5667 5667

Model optimization

- Used gridsearchCV to determine best parameters
 - Max depth of 5000, and minimum samples split of 2
 - Training accuracy = 0.984
 - Testing accuracy = 0.818
- Concerns of overfitting

	precision	recall	f1-score	support
1 2 3 4 5	0.57 0.51 0.62 0.69 0.88	0.59 0.45 0.53 0.65 0.91	0.58 0.48 0.57 0.67 0.89	184 128 259 1118 3978
accuracy macro avg weighted avg	0.65 0.81	0.63 0.82	0.82 0.64 0.82	5667 5667 5667

Compensating for overfitting

- Eventually settled on hyperparameters
 - o Max depth = 20
 - Min samples split=2
- Training set accuracy = 0.775
- Testing set accuracy = 0.736
- Overfitting largely solved, but lower accuracy

р	recision	recall	f1-score	support
1 2 3 4 5	0.64 0.74 0.59 0.65 0.74	0.29 0.18 0.15 0.14 0.98	0.40 0.29 0.24 0.23 0.85	184 128 259 1118 3978
curacy ro avg ed avg	0.67 0.72	0.35 0.74	0.74 0.40 0.67	5667 5667 5667

Oversampling

- Used SMOTE to oversample reviews with lower than a 5-star rating
- Training set accuracy = 0.627
- Testing set accuracy = 0.624
- Overfitting completely solved but accuracy extremely low
- Chose to recommend compensated decision tree model with no oversampling

	precision	recall	f1-score	support
1 2 3 4 5	0.24 0.18 0.24 0.42 0.85	0.54 0.52 0.38 0.47 0.69	0.33 0.27 0.29 0.45 0.76	184 128 259 1118 3978
accuracy macro avg weighted avg	0.39 0.70	0.52 0.62	0.62 0.42 0.65	5667 5667 5667

Conclusion

Possible next steps

- Get more data on 1-star and 2-star reviews
- Feature and parameter optimization

Final thoughts

- Final model has a testing set accuracy of 0.736
- Far better than chance (0.20)
- This is even better when focusing only on 5-star reviews (0.85)
- Other 4 classifications were above chance as well