COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of the Royal Melbourne Institute of Technology (RMIT University) pursuant to Part VB of the Copyright Act 1968

Assignment (the Age Ct Exam Help

The material in this to manipolation of the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice

TREE-STRUCTURE **INDEXING**

- What is the intuition behind tree-structured indexes? Why are they good for range selections?
- How does an ISAM index handle search, insert, and delete?

 SSIGNOR HELD LANGUE SEARCH, insert, and delete?
 - What is the impact of duplicate key values on index implementation?
 - What is bulk-loading, and why is it important?

 - What happens to record identifiers when dynamic indexes are upday of the standard in the end of the standard in the control of the standard in the standard in
 - Key concepts: ISAM, static indexes, overflow pages, locking issues; B+ trees, dynamic indexes, balance, sequence sets, node format; B+ tree insert operation, node splits, delete operation, merge versus redistribution, minimum occupancy; duplicates, overflow pages, including rids in search keys; key compression; bulk-loading; effects of splits on rids in clustered indexes.

One that would have the fruit must climb the tree.

Thomas Fuller

We now consider two index data structures, called ISAM and B+ trees, based on tree organizations. These structures provide efficient support for range searches, including sorted file scans as a special case. Unlike sorted files, these

index structures support efficient insertion and deletion. They also provide support for equality selections, although they are not as efficient in this case as hash-based indexes, which are discussed in Chapter 11.

An ISAM¹ tree is a static index structure that is effective when the file is not frequently updated, but it is unsuitable for files that grow and shrink a lot. We discuss ISAM in Section 10.2. The B+ tree is a dynamic structure that adjusts to changes in the file gracefully. It is the most widely used index structure because it adjusts well to changes and supports both equality and range queries. We introduce B+ trees in Section 10.3. We cover B+ trees in detail in the remaining sections. Section 10.3.1 describes the format of a tree node. Section 10.4 considers how to search for records by using a B+ tree index. Section 10.5 presents the algorithm for inserting records into a B+ tree, and Section 10.6 presents the deletion algorithm. Section 10.7 discusses how duplicates are handled. We conclude with a discussion of some practical issues concerning B+ trees in Section 10.8.

Assignment Project Exam Help

Notation: In the ISAM and B+ tree structures, leaf pages contain data entries, according to the terminology introduced in Chapter 8. For convenience, we denote a data entry with search one way value rate of the form \(\section \) search key value, page id \(\) and are used to direct the search for a desired data entry (which is stored in some leaf). We often simply use entry where the context walks the rature of the form \(\text{context} \) clear.

10.1 INTUITION FOR TREE INDEXES

Consider a file of Students records sorted by gpa. To answer a range selection such as "Find all students with a gpa higher than 3.0," we must identify the first such student by doing a binary search of the file and then scan the file from that point on. If the file is large, the initial binary search can be quite expensive, since cost is proportional to the number of pages fetched; can we improve upon this method?

One idea is to create a second file with one record per page in the original (data) file, of the form $\langle first\ key\ on\ page,\ pointer\ to\ page \rangle$, again sorted by the key attribute (which is gpa in our example). The format of a page in the second index file is illustrated in Figure 10.1.

We refer to pairs of the form $\langle key, pointer \rangle$ as index entries or just entries when the context is clear. Note that each index page contains one pointer more than

¹ISAM stands for Indexed Sequential Access Method.

Figure 10.1 Format of an Index Page

the number of keys—each key serves as a *separator* for the contents of the pages pointed to by the pointers to its left and right.

The simple index file data structure is illustrated in Figure 10.2.

https://powcoder.com

We can do a binary search of the index file to identify the page containing the first key (gpa) value that satisfies the range selection (in our example, the first student with graver 3.0) and follow the points of the page containing the first data record with that key value. We can then scan the data file sequentially from that point on to retrieve other qualifying records. This example uses the index to find the first data page containing a Students record with gpa greater than 3.0, and the data file is scanned from that point on to retrieve other such Students records.

Because the size of an entry in the index file (key value and page id) is likely to be much smaller than the size of a page, and only one such entry exists per page of the data file, the index file is likely to be much smaller than the data file; therefore, a binary search of the index file is much faster than a binary search of the data file. However, a binary search of the index file could still be fairly expensive, and the index file is typically still large enough to make inserts and deletes expensive.

The potential large size of the index file motivates the tree indexing idea: Why not apply the previous step of building an auxiliary structure on the collection of *index* records and so on recursively until the smallest auxiliary structure fits on one page? This repeated construction of a one-level index leads to a tree structure with several levels of non-leaf pages.

As we observed in Section 8.3.2, the power of the approach comes from the fact that locating a record (given a search key value) involves a traversal from the root to a leaf, with one I/O (at most; some pages, e.g., the root, are likely to be in the buffer pool) per level. Given the typical fan-out value (over 100), trees rarely have more than 3–4 levels.

The next issue to consider is how the tree structure can handle inserts and deletes of data entries. Two distinct approaches have been used, leading to the ISAM and B+ tree data structures, which we discuss in subsequent sections.

10.2 INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

The ISAM data structure is illustrated in Figure 10.3. The data entries of the ISAM index are in the leaf pages of the tree and additional overflow pages chained to some leaf page. Database systems carefully organize the layout of pages so that page boundaries correspond closely to the physical characteristics of the underlying spage device Projectal structure is despetely static (except for the overflow pages, of which it is hoped, there will be few) and facilitates such low-level optimizations.

Figure 10.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This corresponds to an index that uses Alternative (1) for data entries, in terms of the alternatives described in Chapter 8; we can create an index with Alternative (2) by storing the data records in a separate file and storing $\langle key, rid \rangle$ pairs in the leaf pages of the ISAM index. When the file is created, all leaf pages are allocated sequentially and sorted on the search key value. (If Alternative (2) or (3) is used, the data records are created and sorted before allocating the leaf pages of the ISAM index.) The non-leaf level pages are then allocated. If there are several inserts to the file subsequently, so that more entries are inserted into a leaf than will fit onto a single page, additional pages are needed because the

CHAPTER 10

index structure is static. These additional pages are allocated from an overflow area. The allocation of pages is illustrated in Figure 10.4.

Figure 10.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are all quite straightforward. For an equality selection search, we start at the root node and determine which subtrees and properties the catual involvement fell of the given record with the key values in the node. (The search algorithm is identical to that for a B+ tree; we present this algorithm in more detail later.) For a range query, the starting the plant of the plant of the religious prince similarly, and data pages are then retrieved sequentially. For inserts and deletes, the appropriate page is determined as for a search, and the record is inserted or deleted with overflow pages and ded Weessahrat powcoder

The following example illustrates the ISAM index structure. Consider the tree shown in Figure 10.5. All searches begin at the root. For example, to locate a record with the key value 27, we start at the root and follow the left pointer, since 27 < 40. We then follow the middle pointer, since 20 <= 27 < 33. For a range search, we find the first qualifying data entry as for an equality selection and then retrieve primary leaf pages sequentially (also retrieving overflow pages as needed by following pointers from the primary pages). The primary leaf pages are assumed to be allocated sequentially—this assumption is reasonable because the number of such pages is known when the tree is created and does not change subsequently under inserts and deletes—and so no 'next leaf page' pointers are needed.

We assume that each leaf page can contain two entries. If we now insert a record with key value 23, the entry 23* belongs in the second data page, which already contains 20* and 27* and has no more space. We deal with this situation by adding an *overflow* page and putting 23* in the overflow page. Chains of overflow pages can easily develop. For instance, inserting 48*, 41*, and 42* leads to an overflow chain of two pages. The tree of Figure 10.5 with all these insertions is shown in Figure 10.6.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Figure 10.6 ISAM Tree after Inserts

The deletion of an entry k* is handled by simply removing the entry. If this entry is on an overflow page and the overflow page becomes empty, the page can be removed. If the entry is on a primary page and deletion makes the primary page empty, the simplest approach is to simply leave the empty primary page as it is; it serves as a placeholder for future insertions (and possibly non-empty overflow pages, because we do not move records from the overflow pages to the primary page when deletions on the primary page create space). Thus, the number of primary leaf pages is fixed at file creation time.

10.2.1 Overflow Pages, Locking Considerations

Note that, once the ISAM file is created, inserts and deletes affect only the contents of leaf pages. A consequence of this design is that long overflow chains could develop if a number of inserts are made to the same leaf. These chains can significantly affect the time to retrieve a record because the overflow chain has to be searched as well when the search gets to this leaf. (Although data in the overflow chain page that series is initially created so that about 20 percent of each page is free. However, once the free space is filled in with inserted records, unless space is fleettagain through deletes leverflow chains can be eliminated only by a complete reorganization of the file.

The fact that only leaf pages for modified also has an important advantage with respect to concurrent access. When a page is accessed, it is typically 'locked' by the requestor to ensure that it is not concurrently modified by other users of the page. To modify a page, it must be locked in 'exclusive' mode, which is permitted only when no one else holds a lock on the page. Locking can lead to queues of users (transactions, to be more precise) waiting to get access to a page. Queues can be a significant performance bottleneck, especially for heavily accessed pages near the root of an index structure. In the ISAM structure, since we know that index-level pages are never modified, we can safely omit the locking step. Not locking index-level pages is an important advantage of ISAM over a dynamic structure like a B+ tree. If the data distribution and size are relatively static, which means overflow chains are rare, ISAM might be preferable to B+ trees due to this advantage.

10.3 B+ TREES: A DYNAMIC INDEX STRUCTURE

A static structure such as the ISAM index suffers from the problem that long overflow chains can develop as the file grows, leading to poor performance. This problem motivated the development of more flexible, dynamic structures that adjust gracefully to inserts and deletes. The **B+ tree** search structure, which is widely used, is a balanced tree in which the internal nodes direct the search

and the leaf nodes contain the data entries. Since the tree structure grows and shrinks dynamically, it is not feasible to allocate the leaf pages sequentially as in ISAM, where the set of primary leaf pages was static. To retrieve all leaf pages efficiently, we have to link them using page pointers. By organizing them into a doubly linked list, we can easily traverse the sequence of leaf pages (sometimes called the **sequence set**) in either direction. This structure is illustrated in Figure 10.7.²

https://powcoder.com

The following are some of the main characteristics of a B+ tree:

- Operations (insert, delete) on the tree leep it balanced.
- A minimum occupancy of 50 percent is guaranteed for each node except the root if the deletion algorithm discussed in Section 10.6 is implemented. However, deletion is often implemented by simply locating the data entry and removing it, without adjusting the tree as needed to guarantee the 50 percent occupancy, because files typically grow rather than shrink.
- Searching for a record requires just a traversal from the root to the appropriate leaf. We refer to the length of a path from the root to a leaf—any leaf, because the tree is balanced—as the **height** of the tree. For example, a tree with only a leaf level and a single index level, such as the tree shown in Figure 10.9, has height 1, and a tree that has only the root node has height 0. Because of high fan-out, the height of a B+ tree is rarely more than 3 or 4.

We will study B+ trees in which every node contains m entries, where $d \le m \le 2d$. The value d is a parameter of the B+ tree, called the **order** of the

²If the tree is created by *bulk-loading* (see Section 10.8.2) an existing data set, the sequence set can be made physically sequential, but this physical ordering is gradually destroyed as new data is added and deleted over time.

CHAPTER 10

tree, and is a measure of the capacity of a tree node. The root node is the only exception to this requirement on the number of entries; for the root, it is simply required that $1 \le m \le 2d$.

If a file of records is updated frequently and sorted access is important, maintaining a B+ tree index with data records stored as data entries is almost always superior to maintaining a sorted file. For the space overhead of storing the index entries, we obtain all the advantages of a sorted file plus efficient insertion and deletion algorithms. B+ trees typically maintain 67 percent space occupancy. B+ trees are usually also preferable to ISAM indexing because inserts are handled gracefully without overflow chains. However, if the dataset size and distribution remain fairly static, overflow chains may not be a major problem. In this case, two factors favor ISAM: the leaf pages are allocated in sequence (making scans over a large range more efficient than in a B+ tree, in which pages are likely to get out of sequence on disk over time, even if they were in sequence after bulk-loading), and the locking overhead of ISAM is lower than that for **FASSIS MINERAL TURCHARLY TO SET STATE FOR STATE FOR SET STATE FOR STA**

10.3.1 Formattps://powcoder.com

The format of a node is the same as for ISAM and is shown in Figure 10.1. Non-leaf nodes with mindex entries contain m+1 pointers to children. Pointer P_i points to a subtree in which all key values K are such that $K_i \leq K < K_{i+1}$. As special cases, P_0 points to a tree in which all key values are less than K_1 , and P_m points to a tree in which all key values are greater than or equal to K_m . For leaf nodes, entries are denoted as k*, as usual. Just as in ISAM, leaf nodes (and only leaf nodes!) contain data entries. In the common case that Alternative (2) or (3) is used, leaf entries are $\langle K, I(K) \rangle$ pairs, just like non-leaf entries. Regardless of the alternative chosen for leaf entries, the leaf pages are chained together in a doubly linked list. Thus, the leaves form a sequence, which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be achieved using the record formats presented in Section 9.7; after all, each key—pointer pair can be thought of as a record. If the field being indexed is of fixed length, these index entries will be of fixed length; otherwise, we have variable-length records. In either case the B+ tree can itself be viewed as a file of records. If the leaf pages do not contain the actual data records, then the B+ tree is indeed a file of records that is distinct from the file that contains the data. If the leaf pages contain data records, then a file contains the B+ tree as well as the data.

10.4 SEARCH

The algorithm for search finds the leaf node in which a given data entry belongs. A pseudocode sketch of the algorithm is given in Figure 10.8. We use the notation *ptr to denote the value pointed to by a pointer variable ptr and & (value) to denote the address of value. Note that finding i in $tree_search$ requires us to search within the node, which can be done with either a linear search or a binary search (e.g., depending on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we assume that there are no *duplicates*. That is, no two data entries are allowed to have the same key value. Of course, duplicates arise whenever the search key does not contain a candidate key and must be dealt with in practice. We consider how duplicates can be handled in Section 10.7.

```
func find (search key value K) returns nodepointer

// Given a search key value, finds its leaf node

return tree_search (nodepointer, search key value K) returns nodepointer

func tree_search (nodepointer, search key value K) returns nodepointer

// Searches tree for entry P0 w P0 w
```

Figure 10.8 Algorithm for Search

Consider the sample B+ tree shown in Figure 10.9. This B+ tree is of order d=2. That is, each node contains between 2 and 4 entries. Each non-leaf entry is a $\langle key\ value,\ nodepointer \rangle$ pair; at the leaf level, the entries are data records that we denote by k*. To search for entry 5*, we follow the left-most child pointer, since 5 < 13. To search for the entries 14* or 15*, we follow the second pointer, since $13 \le 14 < 17$, and $13 \le 15 < 17$. (We do not find 15* on the appropriate leaf and can conclude that it is not present in the tree.) To find 24*, we follow the fourth child pointer, since $24 \le 24 < 30$.

Figure 10.9 Example of a B+ Tree, Order d=2

10.5 INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs, and inserts it there. Pseudocode for the B+ tree insertion algorithm is given in Figure 10.10. The basic idea behind the algorithm is that we recursively insert the angree by alling in the read of the basic idea behind the algorithm is that we recursively insert the angree by alling in the read of the basic idea behind the algorithm is that we recursively insert the angree by alling in the parent in going down to the leaf node where the entry belongs, placing the entry there, and returning all the way back to the root node. Occasionally the stranger of the read of the split must be inserted into its parent; this entry is pointed to by the pointer variable newchildentry. If the (old) root is split, Androot of this dreated at the fifth of the tree increases by 1.

To illustrate insertion, let us continue with the sample tree shown in Figure 10.9. If we insert entry 8^* , it belongs in the left-most leaf, which is already full. This insertion causes a split of the leaf page; the split pages are shown in Figure 10.11. The tree must now be adjusted to take the new leaf page into account, so we insert an entry consisting of the pair $\langle 5, pointer\ to\ new\ page \rangle$ into the parent node. Note how the key 5, which discriminates between the split leaf page and its newly created sibling, is 'copied up.' We cannot just 'push up' 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to split a non-leaf node when it is full, containing 2d keys and 2d+1 pointers, and we have to add another index entry to account for a child split. We now have 2d+1 keys and 2d+2 pointers, yielding two minimally full non-leaf nodes, each containing d keys and d+1 pointers, and an extra key, which we choose to be the 'middle' key. This key and a pointer to the second non-leaf node constitute an index entry that must be inserted into the parent of the split non-leaf node. The middle key is thus 'pushed up' the tree, in contrast to the case for a split of a leaf page.

```
proc insert (nodepointer, entry, newchildentry)
// Inserts entry into subtree with root '*nodepointer'; degree is d;
//'newchildentry' null initially, and null on return unless child is split
if *nodepointer is a non-leaf node, say N,
     find i such that K_i \leq \text{entry's key value} < K_{i+1}; // choose subtree
     insert(P_i, entry, newchildentry);
                                                  // recursively, insert entry
     if newchildentry is null, return; // usual case; didn't split child
                         // we split child, must insert *newchildentry in N
     else,
          if N has space,
                                                                 // usual case
              put *newchildentry on it, set newchildentry to null, return;
     Assignment Protecter by anyplitting obleaf page!
                             //2d+1 key values and 2d+2 nodepointers
              first d key values and d+1 nodepointers stay,
              Attosys and WGOGET GOTHEW node, N2;
              // *newchildentry set to guide searches between N and N2
              newchildentry = & (\langle \text{smallest key value on } N2, Add WeChiater <math>\langle \text{poly} \rangle, \text{coder}
                                                  // root node was just split
              if N is the root,
                   create new node with \langle pointer to N, *newchildentry \rangle;
                   make the tree's root-node pointer point to the new node;
              return;
if *nodepointer is a leaf node, say L,
    if L has space,
                                                                // usual case
    put entry on it, set newchildentry to null, and return;
     else,
                                           // once in a while, the leaf is full
          split L: first d entries stay, rest move to brand new node L2;
         newchildentry = & (\langle \text{smallest key value on } L2, \text{ pointer to } L2 \rangle);
         set sibling pointers in L and L2;
         return;
endproc
```

Figure 10.10 Algorithm for Insertion into B+ Tree of Order d

Figure 10.11 Split Leaf Pages during Insert of Entry 8*

The split pages in our example are shown in Figure 10.12. The index entry pointing to the new non-leaf node is the pair $\langle 17, pointer to new index-level page \rangle$; note that the key value 17 is 'pushed up' the tree, in contrast to the splitting key value 5 in the leaf split, which was 'copied up.'

Figure 10.12 Split Index Pages during Insert of Entry 8*

The difference in handling leaf-level and index-level splits arises from the B+ tree requirement that all data entries k* must reside in the leaves. This requirement prevents us from 'pushing up' 5 and leads to the slight redundancy of having some key values appearing in the leaf level as well as in some index level. However, range queries can be efficiently answered by just retrieving the sequence of leaf pages; the redundancy is a small price to pay for efficiency. In dealing with the index levels, we have more flexibility, and we 'push up' 17 to avoid having two copies of 17 in the index levels.

Now, since the split node was the old root, we need to create a new root node to hold the entry that distinguishes the two split index pages. The tree after completing the insertion of the entry 8* is shown in Figure 10.13.

One variation of the insert algorithm tries to redistribute entries of a node N with a sibling before splitting the node; this improves average occupancy. The **sibling** of a node N, in this context, is a node that is immediately to the left or right of N and has the same parent as N.

Figure 10.13 B+ Tree after Inserting Entry 8*

To illustrate redistribution, reconsider insertion of entry 8* into the tree shown in Figure 10.9. The entry belongs in the left-most leaf, which is full. However, the (only) sibling of this leaf node contains only two entries and can thus accommodate more entries. We can therefore handle the insertion of 8* with a redistribution. Note how the entry in the parent node that points to the second leaf has a new key value; we 'copy up' the new lew key value on the second leaf. This process is a little of the second leaf. This process is a little of the second leaf that the second leaf is the second leaf.

Figure 10.14 B+ Tree after Inserting Entry 8* Using Redistribution

To determine whether redistribution is possible, we have to retrieve the sibling. If the sibling happens to be full, we have to split the node anyway. On average, checking whether redistribution is possible increases I/O for index node splits, especially if we check both siblings. (Checking whether redistribution is possible may reduce I/O if the redistribution succeeds whereas a split propagates up the tree, but this case is very infrequent.) If the file is growing, average occupancy will probably not be affected much even if we do not redistribute. Taking these considerations into account, *not* redistributing entries at non-leaf levels usually pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor to adjust the previous and next-neighbor pointers with respect to the newly created leaf node. Therefore, a limited form of redistribution makes sense: If a leaf node is full, fetch a neighbor node; if it has space and has the same parent,

redistribute the entries. Otherwise (the neighbor has different parent, i.e., it is not a sibling, or it is also full) split the leaf node and adjust the previous and next-neighbor pointers in the split node, the newly created neighbor, and the old neighbor.

10.6 DELETE

The algorithm for deletion takes an entry, finds the leaf node where it belongs, and deletes it. Pseudocode for the B+ tree deletion algorithm is given in Figure 10.15. The basic idea behind the algorithm is that we recursively delete the entry by calling the delete algorithm on the appropriate child node. We usually go down to the leaf node where the entry belongs, remove the entry from there, and return all the way back to the root node. Occasionally a node is at minimum occupancy before the deletion, and the deletion causes it to go below the occupancy threshold. When this happens, we must either redistribute entries from an adjacent sibling or merge the node with a sibling to maintain minimum occupancy. If entries are redistributed between two nodes, their parent node must be uptlated to reflect this the key value in the index entry pointing to the second node must be changed to be the lowest search key in the second node. If two nodes are merged, their parent must be updated to reflect this by deliting the index entry for the second nede; this index entry is pointed to by the pointer variable oldchildentry when the delete call returns to the parent node. If the last entry in the root node is deleted in this manner because one of its hillien was detrot the height of the tree decreases by 1.

To illustrate deletion, let us consider the sample tree shown in Figure 10.13. To delete entry 19*, we simply remove it from the leaf page on which it appears, and we are done because the leaf still contains two entries. If we subsequently delete 20*, however, the leaf contains only one entry after the deletion. The (only) sibling of the leaf node that contained 20* has three entries, and we can therefore deal with the situation by redistribution; we move entry 24* to the leaf page that contained 20* and copy up the new splitting key (27, which is the new low key value of the leaf from which we borrowed 24*) into the parent. This process is illustrated in Figure 10.16.

Suppose that we now delete entry 24^* . The affected leaf contains only one entry (22^*) after the deletion, and the (only) sibling contains just two entries (27^*) and (29^*) . Therefore, we cannot redistribute entries. However, these two leaf nodes together contain only three entries and can be merged. While merging, we can 'toss' the entry ($(27, pointer\ to\ second\ leaf\ page)$) in the parent, which pointed to the second leaf page, because the second leaf page is empty after the merge and can be discarded. The right subtree of Figure 10.16 after this step in the deletion of entry (24^*) is shown in Figure 10.17.

```
proc delete (parentpointer, nodepointer, entry, oldchildentry)
// Deletes entry from subtree with root '*nodepointer'; degree is d;
// 'oldchildentry' null initially, and null upon return unless child deleted
if *nodepointer is a non-leaf node, say N,
     find i such that K_i \leq \text{entry's key value} < K_{i+1}; // choose subtree
     delete(nodepointer, P_i, entry, oldchildentry); // recursive delete
     if oldchildentry is null, return; // usual case: child not deleted
                               // we discarded child node (see discussion)
     else,
         remove *oldchildentry from N, // next, check for underflow
                                                              // usual case
         if N has entries to spare,
              set oldchildentry to null, return; // delete doesn't go further
                              // note difference wrt merging of leaf pages!
         else,
              get a sibling S of N:
                                      // parentpointer arg used to find S
     Assignment Project Exam Help parent;
                  set oldchildentry to null, return;
             here p_{S}^{erg} / p_{O}^{erg} coder. p_{O}^{erg} call node on rhs M oldchildentry = & (current entry in parent for M);
                  pull splitting key from parent down into node on left;
             A drove of etries atmosphered elect;
                  discard empty node M, return;
if *nodepointer is a leaf node, say L,
                                                              // usual case
    if L has entries to spare,
         remove entry, set oldchildentry to null, and return;
    else,
                            // once in a while, the leaf becomes underfull
                                          // parentpointer used to find S
       get a sibling S of L;
         if S has extra entries,
              redistribute evenly between L and S;
              find entry in parent for node on right;
                                                               // call it M
              replace key value in parent entry by new low-key value in M;
              set oldchildentry to null, return;
                                                    // call node on rhs M
         else, merge L and S
              oldchildentry = & (current entry in parent for M);
              move all entries from M to node on left;
              discard empty node M, adjust sibling pointers, return;
endproc
```

Figure 10.15 Algorithm for Deletion from B+ Tree of Order d

Figure 10.16 B+ Tree after Deleting Entries 19* and 20*

Figure 10.17 Partial B+ Tree during Deletion of Entry 24*

https://powcoder.com

Deleting the entry $\langle 27, pointer$ to second leaf page has created a non-leaf-level page with just one entry, which is below the minimum of d=2. To fix this problem, we must either reduction the problem of the problem. We must fetch a sibling. The only sibling of this node contains just two entries (with key values 5 and 13), and so redistribution is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite of the situation when we have to split a non-leaf node. We have to split a nonleaf node when it contains 2d keys and 2d + 1 pointers, and we have to add another key-pointer pair. Since we resort to merging two non-leaf nodes only when we cannot redistribute entries between them, the two nodes must be minimally full; that is, each must contain d keys and d+1 pointers prior to the deletion. After merging the two nodes and removing the key-pointer pair to be deleted, we have 2d-1 keys and 2d+1 pointers: Intuitively, the leftmost pointer on the second merged node lacks a key value. To see what key value must be combined with this pointer to create a complete index entry, consider the parent of the two nodes being merged. The index entry pointing to one of the merged nodes must be deleted from the parent because the node is about to be discarded. The key value in this index entry is precisely the key value we need to complete the new merged node: The entries in the first node being merged, followed by the splitting key value that is 'pulled down' from the parent, followed by the entries in the second non-leaf node gives us a total of 2d keys and 2d+1 pointers, which is a full non-leaf node. Note how the splitting

key value in the parent is pulled down, in contrast to the case of merging two leaf nodes.

Consider the merging of two non-leaf nodes in our example. Together, the non-leaf node and the sibling to be merged contain only three entries, and they have a total of five pointers to leaf nodes. To merge the two nodes, we also need to pull down the index entry in their parent that currently discriminates between these nodes. This index entry has key value 17, and so we create a new entry $\langle 17, left-most\ child\ pointer\ in\ sibling \rangle$. Now we have a total of four entries and five child pointers, which can fit on one page in a tree of order d=2. Note that pulling down the splitting key 17 means that it will no longer appear in the parent node following the merge. After we merge the affected non-leaf node and its sibling by putting all the entries on one page and discarding the empty sibling page, the new node is the only child of the old root, which can therefore be discarded. The tree after completing all these steps in the deletion of entry 24^* is shown in Figure 10.18.

Figure 10.18 B+ Tree after Deleting Entry 24*

The previous examples illustrated redistribution of entries across leaves and merging of both leaf-level and non-leaf-level pages. The remaining case is that of redistribution of entries between non-leaf-level pages. To understand this case, consider the intermediate right subtree shown in Figure 10.17. We would arrive at the same intermediate right subtree if we try to delete 24* from a tree similar to the one shown in Figure 10.16 but with the left subtree and root key value as shown in Figure 10.19. The tree in Figure 10.19 illustrates an intermediate stage during the deletion of 24*. (Try to construct the initial tree.)

In contrast to the case when we deleted 24* from the tree of Figure 10.16, the non-leaf level node containing key value 30 now has a sibling that can spare entries (the entries with key values 17 and 20). We move these entries³ over from the sibling. Note that, in doing so, we essentially push them through the

³It is sufficient to move over just the entry with key value 20, but we are moving over two entries to illustrate what happens when several entries are redistributed.

Figure 10.19 A B+ Tree during a Deletion

splitting entry in their parent node (the root), which takes care of the fact that 17 becomes the new low key value on the right and therefore must replace the old splitting key in the root (the key value 22). The tree with all these changes is shown in Figure 10.20.

In concluding our discussion of deletion, we note that we retrieve only one sibling of a node. If this node has spare entries, we use redistribution; otherwise, we merge. If the node has a second sibling, it may be worth retrieving that sibling as well to check for the possibility of redistribution. Chances are high that redistribution is possible, and unlike merging, redistribution is guaranteed to propagate no further than the parent node. Also, the pages have more space on them, which reduces the likelihood of a split on subsequent insertions. (Remember, files typically grow, not shrink!) However, the number of times that this case arises (the node becomes less than half-full and the first sibling cannot spare an entry) is not very high, so it is not essential to implement this refinement of the basic algorithm that we presented.

10.7 DUPLICATES

The search, insertion, and deletion algorithms that we presented ignore the issue of **duplicate keys**, that is, several data entries with the same key value. We now discuss how duplicates can be handled.

Duplicate Handling in Commercial Systems: In a clustered index in Sybase ASE, the data rows are maintained in sorted order on the page and in the collection of data pages. The data pages are bidirectionally linked in sort order. Rows with duplicate keys are inserted into (or deleted from) the ordered set of rows. This may result in overflow pages of rows with duplicate keys being inserted into the page chain or empty overflow pages removed from the page chain. Insertion or deletion of a duplicate key does not affect the higher index levels unless a split or merge of a non-overflow page occurs. In IBM DB2, Oracle 8, and Microsoft SQL Server, duplicates are handled by adding a row id if necessary to eliminate duplicate key values.

The basic search algorithm assumes that all entries with a given key value reside on a single leaf page. One way to satisfy this assumption is to use *overflow pages* to deal with duplicates. (In ISAM, of course, we have overflow pages in any case, and duplicates are easily handled.)

Assignment Project Exam Hep Typically, however, we use an alternative approach for duplicates. We handle them just like any other entries and several leaf pages may contain entries with a given key value Transfer entries with a given key value, we must search for the left-most data entry with the given key value and then possibly retrieve more than one leaf page (using the leaf sequence pointers). Modifying the search algorithm to find the left-thost data entry in an ladex with duplicates is an interesting exercise (in fact, it is Exercise 10.11).

One problem with this approach is that, when a record is deleted, if we use Alternative (2) for data entries, finding the corresponding data entry to delete in the B+ tree index could be inefficient because we may have to check several duplicate entries $\langle key, rid \rangle$ with the same key value. This problem can be addressed by considering the rid value in the data entry to be part of the search key, for purposes of positioning the data entry in the tree. This solution effectively turns the index into a unique index (i.e., no duplicates). Remember that a search key can be any sequence of fields—in this variant, the rid of the data record is essentially treated as another field while constructing the search key.

Alternative (3) for data entries leads to a natural solution for duplicates, but if we have a large number of duplicates, a single data entry could span multiple pages. And of course, when a data record is deleted, finding the rid to delete from the corresponding data entry can be inefficient. The solution to this problem is similar to the one discussed previously for Alternative (2): We can

maintain the list of rids within each data entry in sorted order (say, by page number and then slot number if a rid consists of a page id and a slot id).

10.8 B+ TREES IN PRACTICE

In this section we discuss several important pragmatic issues.

10.8.1 Key Compression

The height of a B+ tree depends on the number of data entries and the size of index entries. The size of index entries determines the number of index entries that will fit on a page and, therefore, the fan-out of the tree. Since the height of the tree is proportional to $log_{fan-out}(\# \ of \ data \ entries)$, and the number of disk I/Os to retrieve a data entry is equal to the height (unless some pages are found in the buffer pool), it is clearly important to maximize the fan-out to minimize the feature of the fan-out to feature of the feature of the fan-out to feature of the featu

An index entry contains a search key value and a page pointer. Hence the size depends primarly Sn the Size of the

On the other hand, search key values in index entries are used only to direct traffic to the appropriate leaf. When we want to locate data entries with a given search key value, we compare this search key value with the search key values of index entries (on a path from the root to the desired leaf). During the comparison at an index-level node, we want to identify two index entries with search key values k_1 and k_2 such that the desired search key value k falls between k_1 and k_2 . To accomplish this, we need not store search key values in their entirety in index entries.

For example, suppose we have two adjacent index entries in a node, with search key values 'David Smith' and 'Devarakonda . . . ' To discriminate between these two values, it is sufficient to store the abbreviated forms 'Da' and 'De.' More generally, the meaning of the entry 'David Smith' in the B+ tree is that every value in the subtree pointed to by the pointer to the left of 'David Smith' is less than 'David Smith,' and every value in the subtree pointed to by the pointer to the right of 'David Smith' is (greater than or equal to 'David Smith' and) less than 'Devarakonda '

B+ Trees in Real Systems: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support clustered and unclustered B+ tree indexes, with some differences in how they handle deletions and duplicate key values. In Sybase ASE, depending on the concurrency control scheme being used for the index, the deleted row is removed (with merging if the page occupancy goes below threshold) or simply marked as deleted; a garbage collection scheme is used to recover space in the latter case. In Oracle 8, deletions are handled by marking the row as deleted. To reclaim the space occupied by deleted records, we can rebuild the index online (i.e., while users continue to use the index) or coalesce underfull pages (which does not reduce tree height). Coalesce is in-place, rebuild creates a copy. Informix handles deletions by simply marking records as deleted. DB2 and SQL Server remove deleted records and merge pages when occupancy goes below threshold.

Oracle 8 also allows records from multiple relations to be co-clustered on the same page. The co-clustering can be based on a B+ tree search key or static hashing and up to 32 relations can be stored together.

Assignment Project Exam Help

To ensure such semantics for an entry is preserved, while compressing the entry with key 'David Smith,' we must examine the largest key value in the subtree to the left of 'David Smith' and the smallest key value in the subtree to the right of 'David Smith,' not just the index entries ('Daniel Lee' and 'Devarakonda ...') that are its neighbors. This point is illustrated in Figure 10.21; the value 'Davey Jones' is greater than 'Dav,' and thus, 'David Smith' can be abbreviated only to 'Davi,' not to 'Dav.'

Figure 10.21 Example Illustrating Prefix Key Compression

This technique. called **prefix key compression** or simply **key compression**, is supported in many commercial implementations of B+ trees. It can substantially increase the fan-out of a tree. We do not discuss the details of the insertion and deletion algorithms in the presence of key compression.

10.8.2 Bulk-Loading a B+ Tree

Entries are added to a B+ tree in two ways. First, we may have an existing collection of data records with a B+ tree index on it; whenever a record is added to the collection, a corresponding entry must be added to the B+ tree as well. (Of course, a similar comment applies to deletions.) Second, we may have a collection of data records for which we want to create a B+ tree index on some key field(s). In this situation, we can start with an empty tree and insert an entry for each data record, one at a time, using the standard insertion algorithm. However, this approach is likely to be quite expensive because each entry requires us to start from the root and go down to the appropriate leaf page. Even though the index-level pages are likely to stay in the buffer pool between successive requests, the overhead is still considerable.

For this reason many systems provide a bulk-loading utility for creating a B+ tree index on an existing collection of data records. The first step is to sort the data entries k* to be inserted into the (to be created) B+ tree according to the search key k. (If the entries are key-pointer pairs, sorting them does not mean sorting that are pairs are key-pointer pairs, sorting them does not mean sorting that are pairs are key-pointer pairs.) We assume that each data page can hold only two entries, and that each index page can hold two entries and an additional patrices (i.e., properties and that each index page can hold two entries and an additional patrices (i.e., properties and that each index page can hold two entries and an additional patrices (i.e., properties and that each index page can hold two entries and an additional patrices (i.e., properties and an additional patrices).

After the data entries have been sorted, we allocate an empty page to serve as the root and insert and intrivite the flat pacetwork of the flat pacetwork. We illustrate this process in Figure 10.22, using a sample set of nine sorted pages of data entries.

Figure 10.22 Initial Step in B+ Tree Bulk-Loading

We then add one entry to the root page for each page of the sorted data entries. The new entry consists of $\langle low \ key \ value \ on \ page, \ pointer \ to \ page \rangle$. We proceed until the root page is full; see Figure 10.23.

To insert the entry for the next page of data entries, we must split the root and create a new root page. We show this step in Figure 10.24.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Figure 10.24 Page Split during B+ Tree Bulk-Loading

We have redistributed the entries evenly between the two children of the root, in anticipation of the fact that the B+ tree is likely to grow. Although it is difficult (!) to illustrate these options when at most two entries fit on a page, we could also have just left all the entries on the old page or filled up some desired fraction of that page (say, 80 percent). These alternatives are simple variants of the basic idea.

To continue with the bulk-loading example, entries for the leaf pages are always inserted into the right-most index page just above the leaf level. When the right-most index page above the leaf level fills up, it is split. This action may cause a split of the right-most index page one step closer to the root, as illustrated in Figures 10.25 and 10.26.

Figure 10.25 Before Adding Entry for Leaf Page Containing 38*

Figure 10.26 After Adding Entry for Leaf Page Containing 38*

Note that splits occur only on the right-most path from the root to the leaf level. We leave the completion of the bulk-loading example as a simple exercise.

Let us consider the cost of creating an index on an existing collection of records. This operation consists of three steps: (1) creating the data entries to insert in the index, (2) sorting the data entries, and (3) building the index from the sorted entries. The first step involves scanning the records and writing out the corresponding data entries; the cost is (R+E) I/Os, where R is the number of pages containing records and E is the number of pages containing data entries. Sorting is discussed in Chapter 13; you will see that the index entries can be generated in sorted order at a cost of about 3E I/Os. These entries can then be inserted into the index as they are generated, using the bulk-loading algorithm discussed in this section. The cost of the third step, that is, inserting the entries into the index, is then just the cost of writing out all index pages.

10.8.3 The Order Concept

We presented B+ trees using the parameter d to denote minimum occupancy. It is worth noting that the concepts of drug C.C., the parameter d), while useful for teaching B+ tree concepts, must usually be relaxed in practice and replaced by a physical space criterion; for example, that nodes must be kept at least half-full.

**Notice of the parameter d to denote minimum occupancy. It is worth noting that useful for teaching B+ tree concepts, must usually be relaxed in practice and replaced by a physical space criterion; for example, that nodes must be kept at least half-full.

One reason for this is that leaf nodes and non-leaf nodes can usually hold different numbers of Green Reallings and power Good disk pages and non-leaf nodes contain only search keys and node pointers, while leaf nodes can contain the actual data records. Obviously, the size of a data record is likely to be quite a bit larger than the size of a search entry, so many more search entries than records fit on a disk page.

A second reason for relaxing the order concept is that the search key may contain a character string field (e.g., the *name* field of Students) whose size varies from record to record; such a search key leads to variable-size data entries and index entries, and the number of entries that will fit on a disk page becomes variable.

Finally, even if the index is built on a fixed-size field, several records may still have the same search key value (e.g., several Students records may have the same gpa or name value). This situation can also lead to variable-size leaf entries (if we use Alternative (3) for data entries). Because of all these complications, the concept of order is typically replaced by a simple physical criterion (e.g., merge if possible when more than half of the space in the node is unused).

10.8.4 The Effect of Inserts and Deletes on Rids

If the leaf pages contain data records—that is, the B+ tree is a clustered index—then operations such as splits, merges, and redistributions can change rids. Recall that a typical representation for a rid is some combination of (physical) page number and slot number. This scheme allows us to move records within a page if an appropriate page format is chosen but not across pages, as is the case with operations such as splits. So unless rids are chosen to be independent of page numbers, an operation such as split or merge in a clustered B+ tree may require compensating updates to other indexes on the same data.

A similar comment holds for any dynamic clustered index, regardless of whether it is tree-based or hash-based. Of course, the problem does not arise with nonclustered indexes, because only index entries are moved around.

10.9 REVIEW QUESTIONS

Assignment Project Exam Help Answers to the review questions can be found in the listed sections.

- Why are tree tructured indexes good for searches especially range selections? (Section 10.1)
- Describe how search, insert, and delete operations work in ISAM indexes. Discuss the mediar own pagest appole of the impact on performance. What kinds of update workloads are ISAM indexes most vulnerable to, and what kinds of workloads do they handle well? (Section 10.2)
- Only leaf pages are affected in updates in ISAM indexes. Discuss the implications for locking and concurrent access. Compare ISAM and B+trees in this regard. (Section 10.2-1)
- What are the main differences between ISAM and B+ tree indexes? (Section 10.3)
- What is the *order* of a B+ tree? Describe the format of nodes in a B+ tree. Why are nodes at the leaf level linked? (Section 10.3)
- How many nodes must be examined for equality search in a B+ tree? How many for a range selection? Compare this with ISAM. (Section 10.4)
- Describe the B+ tree insertion algorithm, and explain how it eliminates overflow pages. Under what conditions can an insert increase the height of the tree? (Section 10.5)
- During deletion, a node might go below the minimum occupancy threshold. How is this handled? Under what conditions could a deletion decrease the height of the tree? (Section 10.6)

Figure 10.27 Tree for Exercise 10.1

- Why do duplicate search keys require modifications to the implementation of the basic B+ tree operations? (Section 10.7)
- What is key compression, and why is it important? (Section 10.8.1)
- How can a new B+ tree index be efficiently constructed for a set of records? Describe the bulk-loading algorithm. (Section 10.8.2)
- Discuss the impact of splitt in Plustered Bt Exams Hedion 10.8.4)

EXERCISES https://powcoder.com

Exercise 10.1 Consider the B+ tree index of order d=2 shown in Figure 10.27.

- 1. Show the tree that well rewitting a little of the 9 into this tree.
- 2. Show the B+ tree that would result from inserting a data entry with key 3 into the original tree. How many page reads and page writes does the insertion require?
- 3. Show the B+ tree that would result from deleting the data entry with key 8 from the original tree, assuming that the left sibling is checked for possible redistribution.
- 4. Show the B+ tree that would result from deleting the data entry with key 8 from the original tree, assuming that the right sibling is checked for possible redistribution.
- 5. Show the B+ tree that would result from starting with the original tree, inserting a data entry with key 46 and then deleting the data entry with key 52.
- 6. Show the B+ tree that would result from deleting the data entry with key 91 from the original tree.
- 7. Show the B+ tree that would result from starting with the original tree, inserting a data entry with key 59, and then deleting the data entry with key 91.
- 8. Show the B+ tree that would result from successively deleting the data entries with keys 32, 39, 41, 45, and 73 from the original tree.

Exercise 10.2 Consider the B+ tree index shown in Figure 10.28, which uses Alternative (1) for data entries. Each intermediate node can hold up to five pointers and four key values. Each leaf can hold up to four records, and leaf nodes are doubly linked as usual, although these links are not shown in the figure. Answer the following questions.

1. Name all the tree nodes that must be fetched to answer the following query: "Get all records with search key greater than 38."

Figure 10.28 Tree for Exercise 10.2

2. Insert AssignmentoPircoject Exam Help

- 3. Delete the record with search key 81 from the (original) tree.
- 4. Name a search key value such that inserting it into the (original) tree would cause an increase in the height of the twe DOW COURT. COM
- 5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you infer about the contents and the shape of these trees?
- 6. How would your an Cloto My receil a dest DOMME Of Chere an ISAM index?
- 7. Suppose that this is an ISAM index. What is the minimum number of insertions needed to create a chain of three overflow pages?

Exercise 10.3 Answer the following questions:

- 1. What is the minimum space utilization for a B+ tree index?
- 2. What is the minimum space utilization for an ISAM index?
- 3. If your database system supported both a static and a dynamic tree index (say, ISAM and B+ trees), would you ever consider using the *static* index in preference to the *dynamic* index?

Exercise 10.4 Suppose that a page can contain at most four data values and that all data values are integers. Using only B+ trees of order 2, give examples of each of the following:

- 1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your structure before and after the insertion.
- 2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show your structure before and after the deletion.
- 3. A B+ tree in which the deletion of the value 25 causes a merge of two nodes but without altering the height of the tree.
- 4. An ISAM structure with four buckets, none of which has an overflow page. Further, every bucket has space for exactly one more entry. Show your structure before and after inserting two additional values, chosen so that an overflow page is created.

Figure 10.29 Tree for Exercise 10.5

Exercise 10.5 Consider the B+ tree shown in Figure 10.29.

- 1. Identify a list of five data entries such that:
 - (a) Inserting the entries in the order shown and then deleting them in the opposite order (e.g., insert a, insert b, delete b, delete a) results in the original tree.
 - (b) I the structure order (e.g., insert a, insert b, delete b, delete a) results in a different tree.
- 2. What is the minimum number of insertions of data entries with distinct keys that will cause the height of the Signal to Web 1 feet its or an value (of 1) to 3?
- 3. Would the minimum number of insertions that will cause the original tree to increase to height 3 change if you were allowed to insert duplicates (multiple data entries with the same key), assuming hat overflow pages are not received handing duplicates?

Exercise 10.6 Answer Exercise 10.5 assuming that the tree is an ISAM tree! (Some of the examples asked for may not exist—if so, explain briefly.)

Exercise 10.7 Suppose that you have a sorted file and want to construct a dense primary B+ tree index on this file.

- 1. One way to accomplish this task is to scan the file, record by record, inserting each one using the B+ tree insertion procedure. What performance and storage utilization problems are there with this approach?
- 2. Explain how the bulk-loading algorithm described in the text improves upon this scheme.

Exercise 10.8 Assume that you have just built a dense B+ tree index using Alternative (2) on a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte string, and it is a candidate key. Pointers (i.e., record ids and page ids) are (at most) 10-byte values. The size of one disk page is 1000 bytes. The index was built in a bottom-up fashion using the bulk-loading algorithm, and the nodes at each level were filled up as much as possible.

- 1. How many levels does the resulting tree have?
- 2. For each level of the tree, how many nodes are at that level?
- 3. How many levels would the resulting tree have if key compression is used and it reduces the average size of each key in an entry to 10 bytes?

sid	name	login	age	gpa
53831	Madayan	madayan@music	11	1.8
53832	Guldu	guldu@music	12	3.8
53666	Jones	jones@cs	18	3.4
53901	Jones	jones@toy	18	3.4
53902	Jones	jones@physics	18	3.4
53903	Jones	jones@english	18	3.4
53904	Jones	jones@genetics	18	3.4
53905	Jones	jones@astro	18	3.4
53906	Jones	jones@chem	18	3.4
53902	Jones	jones@sanitation	18	3.8
53688	Smith	smith @ee	19	3.2
53650	Smith	smith @math	19	3.8
54001	Smith	smith@ee	19	3.5
54005	Smith	smith@cs	19	3.8
54009	Smith	smith@astro	19	2.2

Assignment Project Exam Help

Figure 10.30 An Instance of the Students Relation

4. How many levels would the resulting tree have without key compression but with all pages 70 percent full?

Exercise 10.9 The Agorithms the insertion and deletiquinton degree are presented as recursive algorithms. In the code for *insert*, for instance, a call is made at the parent of a node N to insert into (the subtree rooted at) node N, and when this call returns, the current node is the parent of N. Thus, we do not maintain any 'parent pointers' in nodes of B+ tree. Such pointers are not part of the B+ tree structure for a good reason, as this exercise demonstrates. An alternative approach that uses parent pointers—again, remember that such pointers are *not* part of the standard B+ tree structure!—in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the entry and split if necessary, with splits propagated to parents if necessary (using the parent pointers to find the parents).

Consider this (unsatisfactory) alternative approach:

- 1. Suppose that an internal node N is split into nodes N and N2. What can you say about the parent pointers in the children of the original node N?
- 2. Suggest two ways of dealing with the inconsistent parent pointers in the children of node N.
- 3. For each of these suggestions, identify a potential (major) disadvantage.
- 4. What conclusions can you draw from this exercise?

Exercise 10.10 Consider the instance of the Students relation shown in Figure 10.30. Show a B+ tree of order 2 in each of these cases, assuming that duplicates are handled using overflow pages. Clearly indicate what the data entries are (i.e., do not use the k* convention).

- 1. A B+ tree index on age using Alternative (1) for data entries.
- 2. A dense B+ tree index on gpa using Alternative (2) for data entries. For this question, assume that these tuples are stored in a sorted file in the order shown in the figure: The first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and so on. Each page can store up to three data records. You can use $\langle page-id, slot \rangle$ to identify a tuple.

Exercise 10.11 Suppose that duplicates are handled using the approach without overflow pages discussed in Section 10.7. Describe an algorithm to search for the left-most occurrence of a data entry with search key value K.

Exercise 10.12 Answer Exercise 10.10 assuming that duplicates are handled without using overflow pages, using the alternative approach suggested in Section 9.7.

PROJECT-BASED EXERCISES

Exercise 10.13 Compare the public interfaces for heap files, B+ tree indexes, and linear hashed indexes. What are the similarities and differences? Explain why these similarities and differences exist Assignment Project Exam Help

Exercise 10.14 This exercise involves using Minibase to explore the earlier (non-project) exercises further.

- 1. Create the trees shown in earlier exercises and visualize them using the B+ tree visualizer in Minibase.
- 2. Verify your answers to exercises that require insertion and deletion of data entries by doing the insertions and deletions is Minibage and looking at the tesulting trees using the visualizer.

Exercise 10.15 (Note to instructors: Additional details must be provided if this exercise is assigned; see Appendix 30.) Implement B+ trees on top of the lower-level code in Minibase.

BIBLIOGRAPHIC NOTES

The original version of the B+ tree was presented by Bayer and McCreight [69]. The B+ tree is described in [442] and [194]. B tree indexes for skewed data distributions are studied in [260]. The VSAM indexing structure is described in [764]. Various tree structures for supporting range queries are surveyed in [79]. An early paper on multiattribute search keys is [498].

References for concurrent access to B+ trees are in the bibliography for Chapter 17.