





# همطراحی سختافزار نرمافزار

جلسه بیستوهفتم: زیرساختهای ارتباطی-۲

ارائهدهنده: آتنا عبدى

a\_abdi@kntu.ac.ir

#### مباحث این جلسه



- برقراری ارتباط بین اجزای سختافزاری و نرمافزاری
  - زیرساخت برقراری ارتباط بین اجزا
    - ارتباط از طریق باس
    - ارتباط نقطه به نقطه
    - شبکههای میان ارتباطی

#### باس



- تکنولوژی رایج و غالب در سیستمهای کوچک هستند
- سادگی، هزینه کم و پیادهسازی هماهنگی بهصورت ساده
  - محدودیتهای اصلی:
- تاخیر و شکل گیری یک ارتباط در هر لحظه که باس را گلوگاه سیستم می کند



- مقیاسپذیری که محدود به تعداد مشخصی از تجهیزات میشود
  - راهکارها، محدودیتها را بصورت نسبی حل می کنند

#### اتصال نقطه به نقطه



- همه ماژولها مستقیما به هم وصل هستند
  - تاخیر بسیار کمی دارد
  - هزینه بسیار بالا دارد و مقیاسپذیر نیست
    - توان مصرفی و مساحت زیاد
  - پیادهسازی و مسیریابی در تراشه واقعی؟



#### Crossbar



- هر ماژول به همه ماژولها وصل است ولی با پیچیدگی کمتر
  - تاخیر کم و هزینه بالا و مقیاسپذیری کم
    - مناسب سیستمهای کوچک
  - روی هر خط، یک ارتباط میتواند شکل بگیرد
    - بهبود با درنظر گرفتن بافر
      - ارتباطات موازی داریم



#### شبکههای میان ارتباطی



#### :Interconnection Networks •

- جدیدترین تکنولوژی در ارتباط اجزای سیستم روی تراشه
- رفع محدودیتهای روشهای پیشین بخصوص مسئله مقیاسپذیری
  - یک شبکه محلی روی تراشه ساخته می شود
    - نیاز به مکانیزمهای مسیریابی دقیق



#### شبکههای میان ارتباطی (ادامه)



- شبکه روی تراشه (NoC): مسیریابی پویای بسته ها بین فرستنده و گیرنده
- مهمترین چالش باس با مقیاسپذیری، برقراری ارتباط غیرانعطافپذیر بین اجزا بود
  - در اینجا مسیر توسط شبکه ساخته می شود و پویاست
  - تغییر نوع ارتباط از تراکنش به درخواست/پاسخ بستهها
  - متشکل از گرهها و کانالهای ارتباطی با اتصال مشخص
  - با انتقال مرحله به مرحله، بسته به مقصد رسانده میشود

### شبکههای میان ارتباطی (ادامه)









- در طراحی و پیادهسازی این شبکهها مشکلاتی وجود دارد:
  - توپولوژی شبکه روی تراشه
- آرایش ایستای المانهای پردازشی سیستم مانند Mesh یا درختی
  - مسیریابی بستههای ارسالی
  - مدیریت ازدحام، انتخاب مسیر مناسب، مسیر ایستا یا تطبیقپذیر
    - سوئیچینگ و بافرینگ بستهها
    - شیوه انتقال بستهها در مسیر انتخاب شده

#### توپولوژی شبکههای روی تراشه



- ساختارهای متفاوتی برای اتصال اجزای پردازشی روی شبکه ارتباطی وجود دارد
  - تاثیر این ساختار بر کارکرد و عملکرد نهایی سیستم







- انتخاب مسیر انتقال بسته روی شبکه
- تصمیم گیری گره به گره براساس ازدحام در شبکه وپردازش محلی در گرههای پردازشی
  - نمونه: مسیریابی X-Y در توپولوژی Mesh که قطعی است یا مسیریابی تطبیقپذیر



## سوئیچینگ در شبکههای روی تراشه



- مسیری که بسته در مسیر مشخص شده طی میکند را مشخص میکند
  - Circuit Switching •
  - مشخص کردن کل مسیر و رزرو آن
    - Packet Switching •
    - مسیریابی مجزای هر بسته
    - درنظر گرفتن مسیرهای مختلف



### سوئیچینگ در شبکههای روی تراشه



#### Packet Switching •

- با ورود بسته به هر گره، مسیر خروج آن مشخص می شود
  - افزایش تاخیر بهدلیل بافرینگ بستهها
  - دو شیوه سوئیچینگ رایج در این حیطه:
    - Store and Forward
      - Wormhole •







- روش Store and Forward.
- انتقال بستهها بهصورت گره به گره
- با رسیدن همه اجزای بسته و بررسی جامعیت آن، انتقال شروع می شود
  - نیاز به بافر در گرههای پردازشی



## سوئیچینگ در شبکههای روی تراشه (ادامه)



- روش Wormhole:
- ارسال اجزای یک بسته بهصورت سریال بین گرههای پردازشی
- برای هر جزء بسته، الگوریتم به صورت مجزا اجرا می شود (الگوریتم یکسان)
  - نیاز به بافرینگ کمتر و انتقال خطلوله و سرعت بالاتر

```
Node 0 H B B B T

Node 1 H B B B T

Node 2 H B B B T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycle
```





- باسها
- رایجترین و سادهترین مکانیزم ارتباطی برای شبکههای کوچک
  - اتصال نقطه به نقطه
- مناسب برای کاربردهایی که سرعت ارتباط اهمیت زیادی دارد
  - شبکه روی تراشه
  - مناسب برای کاربردهای مقیاس بزرگ