Analiza danych ankietowych Raport 1

Klaudia Janicka 262268, Natalia Iwańska 262270

2023-03-17

Część I Tablice liczności dla zmiennej A1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1 n prop -2 0.12195126 -1 0.14634150 8 0.19512201 19 0.46341463 0.0731707

Tab. 1: Tablica liczności dla A1.

Tab. 2: Tablica liczności dla A1 ze względu na Wyk=1.

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 3: Tablica liczności dla A1 ze względu na Wyk=2. Tab. 4: Tablica liczności dla A1 ze względu na Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 5: Tablica liczności dla A1 ze względu na D=Z. Tab. 6: Tablica liczności dla A1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 7: Tablica liczności dla A1 ze względu na D=S. Tab. 8: Tablica liczności dla A1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 9: Tablica liczności dla A1 ze względu na P=k. Tab. 10: Tablica liczności dla A1 ze względu na P=m.

Tablice liczności dla zmiennnej W1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1 n prop -2 5 0.1219512-1 6 0.14634150 8 0.19512201 19 0.46341462 3 0.0731707

Tab. 11: Tablica liczności dla W1.

Tab. 12: Tablica liczności dla W1 ze względu na Wyk=1.

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 13: Tablica liczności dla W1 ze względu na
Tab. 14: Tablica liczności dla W1 ze względu na Wyk=2. Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 15: Tablica liczności dla W1 ze względu na D=Z.Tab. 16: Tablica liczności dla W1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 17: Tablica liczności dla W1 ze względu na D=S. $^{\rm Tab}$. 18: Tablica liczności dla W1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 19: Tablica liczności dla W1 ze względu na P=k.Tab. 20: Tablica liczności dla W1 ze względu na P=m.

Tabele wielodzielcze

Tab. 21: Tabela wielodzielcza uzwlgędniająca zmienną W1 i P.

	-2	-1	1	2	Sum
K	25	10	1	35	71
M	49	10	1	69	129
Sum	74	20	2	104	200

Tab. 22: Tabela wielodzielcza uzwlgędniająca zmienną W1 i S.

	-2	-1	1	2	Sum
0	64	18	0	91	173
1	10	2	2	13	27
Sum	74	20	2	104	200

Tab. 23: Tabela wielodzielcza uzwlgędniająca zmienną A1 i D.

	-2	-1	0	1	2	Sum
О	0	2	4	15	5	26
Р	9	10	17	51	11	98
S	3	3	14	15	10	45
Z	2	2	5	19	3	31
Sum	14	17	40	100	29	200

Wykres słupkowy

```
daneW1 <- personel %>% count(W1) %>% data.frame()

ggplot(daneW1, aes(x=W1, y=n)) +
    geom_bar(stat = "identity", fill="hotpink") +
    ggtitle("Wykres słupkowy dla W1")
```

Wykres slupkowy dla W1

Wykres slupkowy dla W2

Jakieś dwa zdanie tak jak mówiła, ale jej nie słuchałam, więc nie wiem.

Wykres kołowy

```
ggplot(daneW1, aes(x="", y=n, fill=W1)) +
    geom_bar(stat="identity", width=1) +
    coord_polar("y", start=0) +
    theme_void() +
    scale_fill_brewer(palette="RdPu") +
    ggtitle("Wykres kołowy dla W1")
```

Wykres kolowy dla W1

Wykres kolowy dla W2

Wykresy mozaikowe

mosaic(~D+A1, personel)

Część II

Funkcja losująca ze zwracaniem i bez

```
f <- function(x='bez'){</pre>
  if (x=='zwracanie'){
    s <- sample(1:nrow(mtcars),3,replace=TRUE)</pre>
  } else{
    s <- sample(1:nrow(mtcars),3)</pre>
  }
 mtcars[s, ]
f('zwracanie')
##
                        mpg cyl disp hp drat
                                                  wt qsec vs am gear carb
## Honda Civic
                       30.4
                             4 75.7 52 4.93 1.615 18.52 1 1
                                                                          2
                                                                          4
## Chrysler Imperial
                       14.7
                              8 440.0 230 3.23 5.345 17.42 0 0
## Chrysler Imperial.1 14.7
                              8 440.0 230 3.23 5.345 17.42 0 0
```

Funkcja likert

plot(likt_atmo,type='density')

Podgrupa ze względu na dział

```
##
     Group
                             low neutral
                  Item
                                              high
## 1
         O personel.A1 7.692308 15.38462 76.92308 3.884615 0.8161825
## 2
         O personel.A2 3.846154 19.23077 76.92308 3.884615 0.8638020
## 3
         P personel.A1 19.387755 17.34694 63.26531 3.459184 1.1138155
         P personel.A2 21.428571 13.26531 65.30612 3.438776 1.1671299
## 4
## 5
         S personel.A1 13.333333 31.11111 55.55556 3.577778 1.1178081
         S personel.A2 13.333333 24.44444 62.22222 3.600000 1.1361818
## 6
## 7
         Z personel.A1 12.903226 16.12903 70.96774 3.612903 0.9891889
## 8
         Z personel.A2 9.677419 19.35484 70.96774 3.645161 1.0503456
```


Podgrupa ze względu na płeć

Group Item low neutral high mean sd

```
## 1 K personel.A1 14.08451 19.71831 66.19718 3.633803 1.003415

## 2 K personel.A2 14.08451 16.90141 69.01408 3.591549 1.102950

## 3 M personel.A1 16.27907 20.15504 63.56589 3.527132 1.097423

## 4 M personel.A2 16.27907 17.82946 65.89147 3.550388 1.117763
```


Przedział ufności Cloppera-Pearsona

```
p.lower <- function(x, n, a){</pre>
  if(x == 0){
    return(0)
  }
  else{
    return(qbeta(a/2,x,n-x+1))
}
p.upper <- function(x, n, a){</pre>
  if(x == n){
    return(1)
  else{
    return(qbeta(1-a/2, x+1, n-x))
}
clopper_pearson_ci <- function(x, n=NULL, a=0.05){</pre>
  if(is.null(n)){
    n <- length(x)
    x \leftarrow sum(x==1)
    return(c(p.lower(x, n, a), p.upper(x, n, a)))
  }
  else{
    return(c(p.lower(x, n, a), p.upper(x, n, a)))
}
```

Funkcja wbudowana

```
## method x n mean lower upper
## 1 exact 10 20 0.5 0.2719578 0.7280422

Funkcja clopper_pearcon_ci
## [1] 0.2719578 0.7280422
```