

Prof.: Dr. Rudinei Goularte

(rudinei@icmc.usp.br)

Aula 2 - Visão geral: computador e programação

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 4-229

- 1. Sistemas de Numeração
- 2. Tipos de dados e informação
- 3. O Computador
- 4. Programação e Níveis de Linguagem

1. Sistemas de Numeração

- O sistema de numeração usual, o sistema decimal, é um sistema posicional.
- Usa-se dez dígitos 0, 1, 2, ..., 9, sendo que um número maior que 9 é representado usando uma convenção que atribui significado à posição ou lugar ocupado por um dígito.

1

1. Sistemas de Numeração

No sistema decimal, o número 2562 tem a seguinte interpretação:

```
2 \times 1000 (10^{3}) = 2000
5 \times 100 (10^{2}) = 500
6 \times 10 (10^{1}) = 60
2 \times 1 (10^{0}) = 2
```

1. Sistemas de Numeração

- Sistema decimal
 - 10 dígitos: 0 1 2 3 4 5 6 7 8 9
 - Casas decimais: ... 10³ 10² 10 1
- Sistema binário
 - 2 dígitos: 0 1
 - Casas binárias: 2³ 2² 2 1
- Sistema Octal
 - 8 dígitos: 0 1 2 3 4 5 6 7
 - Casas octais: 8³ 8² 8 1
- Sistema hexadecimal
 - 16 dígitos: 0 1 2 3 4 5 6 7 8 9 A B C D E F
 - Casas hexadecimais: ... 16³ 16² 16 1

1. Sistemas de Numeração

decimal	octal	hexadecimal	binário		
0	0	0	0000		
1	1	1	0001		
2	2	2	0010		
3	3	3	0011		
4	4	4	0100		
5	5	5	0101		
6	6	6	0110		
7	7	7	0111		
8	10	8	1000		
9	11	9	1001		
10	12	Α	1010		
11	13	В	1011		
12	14	С	1100		
13	15	D	1101		
14	16	E	1110		
15	17	F	1111		

4

Conversão binário-decimal

- No sistema binário de numeração a base é
 2.
- Assim o valor do número 110101 é:

```
1 \times 32 (2^{5}) = 32

1 \times 16 (2^{4}) = 16

0 \times 8 (2^{3}) = 0

1 \times 4 (2^{2}) = 4

0 \times 2 (2^{1}) = 0

1 \times 1 (2^{0}) = 1

= 32 + 16 + 0 + 4 + 0 + 1 = 53
```


Conversão decimal-binário

 Converta o número 53 (decimal) para seu respectivo valor binário.

Para Pensar...

E como fazer as conversões entre os outros sistemas?

- Um algoritmo computacional deve ser uma sequência de instruções manipulando dados.
 - Instruções: comandos que definem integralmente uma operação a ser executada. Determinam a forma pela qual os dados devem ser tratados.
 - Dados: elementos conhecidos de um problema.
 Podem ser recolhidos/fornecidos por diversos meios e serão processados pelo computador através das instruções.
 - Informação: Um conjunto estruturado de dados, transmitindo conhecimento.
 - Exemplos: média de notas e previsão do tempo.

Como representar os dados computacionalmente?

- Os dados são computacionalmente representados através de constantes e variáveis, as quais possuem um tipo de dado associado.
 - Dizemos que uma determinada constante ou variável é de um determinado tipo.

Definição:

Tipos de dados são métodos para interpretar o conteúdo da memória do computador. Definem o conjunto de valores que uma variável pode assumir.

- Um tipo de dado especifica:
 - A quantidade de memória que deve ser reservada para uma constante ou variável.
 - Como o dado representado na memória deve ser interpretado (o que significa a cadeia de bits).

- As linguagens de programação conseguem manipular um conjunto de tipos de dados.
- Dentre eles, os tipos primitivos de dados (básicos) são classificados em dados literais (não numéricos), numéricos e lógicos.

Como são organizados na memória do computador?

- Dados são organizados na memória através de sequências binárias, chamadas palavras.
- Uma palavra é uma unidade de informação de comprimento fixo n.
- Cada dígito binário é chamado de bit (binary digit). É o componente básico da representação de dados.
 - O conjunto de 8 bits é chamado de byte.

- Dados literias
 - São usados dois códigos padrões de caracteres de 8 bits:
 - EBCDIC (Extended Binary Coded Decimal Interchange Code) desenvolvido pela IBM, e
 - ASCII (American Standard Code for Information Interchange).

_

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	٠.
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	С
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d.
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	£	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	#	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	đ
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	พ	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	1
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	٨	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F		127	7F	

Dec	Hex	Char	Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char
128	80	Ç	160	AO	á	192	CO	L	224	EO	CX:
129	81	ü	161	A1	í	193	C1	土	225	E1	ß
130	82	é	162	A2	ó	194	C2	т	226	E2	Г
131	83	â	163	A3	ú	195	C3	F	227	E3	п
132	84	ä	164	A4	ñ	196	C4	_	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	2	198	C6	F	230	E6	μ
135	87	ç	167	A7	۰	199	C7	⊩	231	E7	τ
136	88	ê	168	A8	č	200	C8	L	232	E8	Φ
137	89	ë	169	A9	_	201	C9	F	233	E9	•
138	8 A	è	170	AA	¬	202	CA	쁘	234	EA	Ω
139	8B	ï	171	AB	1∕2	203	CB	T	235	EB	δ
140	8 C	î	172	AC	¹ «	204	CC	ŀ	236	EC	00
141	8 D	ì	173	AD	i	205	CD	=	237	ED	9
142	8 E	Ä	174	AE	«<	206	CE	#	238	EE	ε
143	8 F	Å	175	AF	>>	207	CF	ㅗ	239	EF	n
144	90	É	176	BO	88 88	208	DO	Т	240	FO	=
145	91	æ	177	B1		209	D1	〒	241	F1	±
146	92	Æ	178	B2		210	D2	т	242	F2	≥
147	93	ô	179	В3	1	211	DЗ	L	243	F3	≤
148	94	ö	180	В4	4	212	D4	L	244	F4	ſ
149	95	ò	181	B5	4	213	D5	F	245	F5	J
150	96	û	182	В6	1	214	D6	г	246	F6	÷
151	97	ù	183	В7	П	215	D7	#	247	F7	æ
152	98	ÿ	184	В8	٦	216	D8	+	248	F8	•
153	99	Ö	185	В9	4	217	D9	7	249	F9	•
154	9A	ΰ	186	BA		218	DA	Г	250	FA	-
155	9B	¢	187	ВВ	า	219	DB		251	FB	4
156	9C	£	188	ВC	ᆁ	220	DC	-	252	FC	Þ.
157	9D	¥	189	BD	П	221	DD	ı	253	FD	z
158	9E	R.	190	BE	7	222	DE	ı	254	FE	-
159	9F	f	191	BF	٦	223	DF	-	255	FF	

- Dados numéricos
 - Podem ser basicamente de dois tipos:
 - Inteiros: não possuem partes decimais. Ex.: 27 e 456
 - Reais: possuem partes decimais. Ex: 213,53 e
 8,5

- Dados lógicos
 - Utilizados para representar dois valores únicos: verdadeiro ou falso (true ou false)
 - Tipo de dado: lógico (boolean).
 - Também conhecido como tipo booleano, em referência à álgebra de Boole.

MEMÓRIA Arquitetura de MEMÓRIA AUXILIAR Von Neumann MEMÓRIA PRINCIPAL UNIDADE DE UNIDADE DE UNIDADE DE CONTROLE SAÍDA **ENTRADA** UNIDADE LÓGICA E **ARITMÉTICA CPU** 22

- CPU (Central Processing Unit), ou Unidade de Processamento Central:
 - Responsável pelo gerenciamento de todas as funções do sistema.
 - Capaz de somar grandezas representadas por 0's e 1's e comparar grandezas. Para isto trabalha em velocidades altíssimas.
 - CPU (microprocessador): velocidade alcança 50.000 MIPS (Milhões de Instruções por Segundo).

4

3. O Computador

Memória

- Principal
 - RAM Random Access Memory (volátil)
 - ROM Read Only Memory
- Secundária
 - HDs Hard Disks
 - CDs Compact Disks
 - DVDs Digital Versartile Disks

...

- Memória medidas de capacidade
 - K = Kilo (KB = Kilobytes = 2¹⁰ bytes)
 - $M = Mega (MB = Megabytes = 2^{20} bytes)$
 - G = Giga (GB = Gigabytes = 2³⁰ bytes)
 - T = Tera (TB = Terabytes = 2⁴⁰ bytes)
 - $P = Peta (PB = Petabytes = 2^{50} bytes)$
 - $E = Exa (EB = Exabytes = 2^{60} bytes)$
 - Z = Zetta (ZB = Zettabytes = 2⁷⁰ bytes)
 - Y = Yotta (YB = Yottabytes = 2⁸⁰ bytes)

4. Programação e Níveis de Linguagem

Etapas da Construção de Programas

DEFINIÇÃO (o que)

DESENVOLVIMENTO (como)

Definição do Problema

- Projetar a Solução (ALGORITMO)
- Codificar a Solução (Programar em Linguagem de Computador)
- Testar o Programa

ıtação

4. Programação e Níveis de Linguagem

4. Programação e Níveis de Linguagem

Linguagem de máquina

- É o conjunto das instruções primitivas projetadas para um computador.
 Uma CPU somente pode compreender instruções que sejam expressas em termos de sua LINGUAGEM DE MÁQUINA.
- Um programa escrito em linguagem de máquina consiste de uma série de números binários e é muito difícil de ser entendido pelas pessoas.
- Exemplo: Cada instrução é constituída de 2 partes:

```
o código da operação e o operando 0010 (Load) 011000 (endereço) 0110 (multiplica) 000101 (valor) ... 0010011000 0110000101
```


- Linguagem de baixo nível
 - Os programas são escritos em uma notação que está próxima da linguagem de máquina

Exemplo:

```
código da operação operando significado
LD A load A
MPI 5 multiplica 5
```

4. Programação e Níveis de Linguagem

- Linguagem de alto nível
 - Se pode escrever programas em uma notação próxima à maneira natural de expressar o problema que se deseja resolver.
 - Exemplo: RESULT = D-((A+B)/C)
 - Aplicações Científicas : FORTRAN, ALGOL, BASIC, APL, LISP, PASCAL, ADA, C, PROLOG, PLI, Java, ...
 - Aplicações Comerciais: COBOL, RPG, PLI, C, Java, ...

COMPILADOR

 Traduz os comandos simbólicos de uma linguagem de alto nível, para linguagem de máquina.

MONTADOR

 Traduz os comandos simbólicos de uma linguagem de baixo nível, para linguagem de máquina.

INTERPRETADOR

- Lê e executa uma declaração do programa por vez.
- Nenhuma fase intermediária de compilação é necessária.
- A execução do programa interpretado requer que o interpretador da linguagem esteja sendo executado no computador.

 Agradecimentos à Profa. Dra. Rosely Sanches e ao Prof. Dr. João Luís G. Rosa.