- (i) $y = e^x(2x-1)(x-2)$
- **B1** Correct factorisation of quadratic term (or formula, etc.)
- $(\frac{1}{2},0) & (2,0)$
- **B1** Noted or shown on sketch

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x (2x^2 - x - 3)$$

M1 Derivative attempted and equated to zero for TPs

$$= e^x(2x-3)(x+1)$$

- $(\frac{3}{2}, -e^{1.5}) \& (-1, 9e^{-1})$
- A1 A1 Noted or shown on sketch

(if y-coords. missing, allow one A1 for 2 correct x-coords.)

- **G1** for (0, 2) noted or shown on sketch
- for negative-x-axis asymptote

 (penalise curves that clearly turn up away from axis or that do not actually seem to approach it)

Give **M1** for either 0, 1, 2 or 3 solutions *OR* clear indication they know these arise from where a horizontal line meets the curve (e.g. by a line on their diagram) – implied by any correct answer(s)

Then
$$y = k$$
 has

NO solutions for
$$k < -e^{1.5}$$

ONE solution for
$$k = -e^{1.5}$$
 and $k > 9e^{-1}$

TWO solutions for
$$-e^{1.5} < k \le 0$$
 and $k = 9e^{-1}$

THREE solutions for
$$0 \le k \le 9e^{-1}$$

FT from their *y*-coords.of the Max. &Min. points.

(5)

- (ii) G1 Any curve clearly symmetric in y-axis
 - G1 Shape correct
 - **G1** A Max. TP at (0, 2) **FT**
 - **G1** Min. TPs at $(\pm \sqrt{\frac{3}{2}}, -e^{1.5})$ **FT**
 - **G1** Zeroes at $x = \pm \sqrt{\frac{1}{2}}$, $\pm \sqrt{2}$ **FT**

- (i) M1 Use of cos(A B) formula with $A = 60^{\circ}$, $B = 45^{\circ}$ OR $A = 45^{\circ}$, $B = 30^{\circ}$ or $2 cos^2 15^{\circ} 1$ etc.
 - A1 Exact trig.values used (visibly) to gain $\cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ legitimately (Given Answer)
 - M1 Similar method $OR \sin = +\sqrt{1-\cos^2}$ (as 15° is acute, no requirement to justify +vesq.rt.)
 - A1 $\sin 15^\circ = \frac{\sqrt{3} 1}{2\sqrt{2}}$ (however *legitimately* obtained)
- (ii) M1 Use of cos(A + B) formula and double-angle formulae OR de Moivre's Thm. (etc.)
 - **A1** $\cos 3\alpha = 4\cos^3 \alpha 3\cos \alpha$
 - A1 Justifying/noting that $x = \cos \alpha$ is thus a root of $4x^3 3x \cos 3\alpha = 0$
 - M1 For serious attempt to factorise $4(x^3 c^3) 3(x c)$ as linear × quadratic factors or via *Vieta's Theorem* (roots/coefficients)
 - **A1** $(x-c)\{4(x^2+cx+c^2)-3\}$
 - M1 Solving $4x^2 + 4cx + (4c^2 3) = 0$ FT their quadratic factor Remaining roots are $x = \frac{1}{2} \left(-c \pm \sqrt{c^2 - (4c^2 - 3)} \right)$
 - **M1** Use of $s = \sqrt{1 c^2}$ to simplify sq.rt. term
 - **A1** $x = \frac{1}{2} \left(-\cos \alpha \pm \sqrt{3} \sin \alpha \right)$

(iii) **M1**
$$\frac{1}{2}y^3 - \frac{3}{2}y - \frac{\sqrt{2}}{2} = 0$$

A1
$$4\left(\frac{1}{2}y\right)^3 - 3\left(\frac{1}{2}y\right) - \frac{\sqrt{2}}{2} = 0$$

- $\mathbf{M1} \quad \cos 3\alpha = \frac{\sqrt{2}}{2} = \cos 45^{\circ}$
- **A1** $\Rightarrow \alpha = 15^{\circ}$
- **M1** $\frac{1}{2}y = \cos\alpha$, $\frac{1}{2}(-\cos\alpha + \sqrt{3}\sin\alpha)$, $\frac{1}{2}(-\cos\alpha \sqrt{3}\sin\alpha)$ with their α
- **A1** $y = 2 \cos 15^\circ = \frac{\sqrt{3} + 1}{\sqrt{2}}$
- **A1** $\sqrt{3} \sin 15^{\circ} \cos 15^{\circ} = -\frac{\sqrt{3} 1}{\sqrt{2}}$
- **A1** $-\sqrt{3}\sin 15^{\circ} \cos 15^{\circ} = -\sqrt{2}$

(8)

- **B1** For correct lengths in smaller Δ
- M1 By similar Δs (*OR* trig.*OR*coord.geom.)
- **A1** $\frac{PQ}{b} = \frac{\frac{1}{2}(b-a)}{\frac{1}{2}(b+a)} \Rightarrow PQ = \frac{b(b-a)}{b+a}$
- **M1** so a guard at a corner can see 2(b + PQ)
- **A1** = $\frac{4b^2}{b+a}$ (might be given as all but $\frac{4ba}{b+a}$ or as a fraction of the perimeter)

- Lengths $\frac{1}{2}a$ and $\frac{1}{2}(b-a)$ in smaller Δ
- M1 By similar Δs (*OR* trig.*OR*coord.geom.)

A1
$$\frac{\frac{1}{2}b}{PQ} = \frac{\frac{1}{2}a}{\frac{1}{2}(b-a)} \Rightarrow PQ = \frac{b(b-a)}{2a}$$

- M1 so a guard at a midpoint can see b + 2PQ
- **A1** = $\frac{b^2}{a}$ (might be given as all but $\frac{b(4a b)}{a}$ or as a fraction of the perimeter)

- Lengths $\frac{1}{2}a$ and $\frac{1}{2}(b-a)$ in smaller Δ
- M1 By similar Δs (*OR* trig. *OR* coord.geom.)
- **A1** $\frac{PQ}{b} = \frac{\frac{1}{2}a}{\frac{1}{2}(b-a)} \Rightarrow PQ = \frac{ba}{b-a}$
- M1 so a guard at a midpoint can see 4b 2PQ
- **A1** = $\frac{2b(2b-3a)}{b-a}$ (might be given as all but $\frac{2ba}{b-a}$ or as a fraction of the perimeter)

M1A1 Relevant algebra for comparison of one case $\frac{4b^2}{b+a} - \frac{b^2}{a} = \frac{b^2}{a(b+a)} (3a-b)$

A1 Correct conclusion: Guard stands at C for b < 3a and at M for b > 3a

M1A1 Relevant algebra $\frac{4b^2}{b+a} - \frac{2b(2b-3a)}{b-a} = \frac{2ba}{(b+a)(b-a)} (3a-b)$

A1 Correct conclusion: Guard stands at C for b < 3a and at M for b > 3a

7

(5)

(4)

(4)

Overall, I am anticipating that most attempts will do the Corner scenario and **one** of the Middle scenarios. This will allow for a maximum of 12 = 5 (for the Corner work) + 4 (for the Middle work) + 3 (for the comparison). In this circumstance, it won't generally be suitable to give the **B1** for the b = 3a observation.

M1 When P is at $(x, \frac{1}{4}x^2)$... and makes an angle of θ with the positive x-axis

A1 ... the lower end, Q, is at $\left(x - b\cos\theta, \frac{1}{4}x^2 - b\sin\theta\right)$

M1 Also,
$$y = \frac{1}{4}x^2 \Rightarrow \frac{dy}{dx} = \frac{1}{2}x = \tan\theta$$

A1
$$\Rightarrow x = 2 \tan \theta$$
 i.e. $P = (2 \tan \theta, \tan^2 \theta)$

A1A1 so that $Q = (2 \tan \theta - b \cos \theta, \tan^2 \theta - b \sin \theta)$ obtained *legitimately* (**Given Answer**)

(6)

(4)

(10)

M1A1 When
$$x = 0$$
, $2 \tan \alpha = b \cos \alpha \Rightarrow b = \frac{2 \tan \alpha}{\cos \alpha}$

M1A1 Substg. into y-coordinate
$$\Rightarrow y_A = \tan^2 \alpha - 2 \tan \alpha \frac{\sin \alpha}{\cos \alpha} = -\tan^2 \alpha$$

M1A1 Eqn. of line AP is $y = x \tan \alpha - \tan^2 \alpha$

M1A1 Area between curve and line is $\int \left(\frac{1}{4}x^2 - \left[x \tan \alpha - \tan^2 \alpha\right]\right) dx$

B1 Correct limits $(0, 2\tan \alpha)$

A1A1
$$= \left[\frac{1}{12} x^3 - \frac{1}{2} x^2 \tan \alpha + x \tan^2 \alpha \right]$$
 (Any 2 correct terms; all 3)

A1A1 =
$$\frac{2}{3} \tan^3 \alpha - 2 \tan^3 \alpha + 2 \tan^3 \alpha$$
 (Any 2 correct terms; all 3 FT)

A1 = $\frac{2}{3} \tan^3 \alpha$ obtained *legitimately* (Given Answer)

M1 A1 for obtaining the "conversion factor" $b\cos\alpha = 2\tan\alpha$ or $\tan^2\alpha = \frac{1}{2}b\sin\alpha$

M1 A1 for distances $OB = BC \left(= \frac{1}{2}b\cos\alpha \right)$ and so $PC = OA = \tan^2\alpha$

M1 A1 giving $\triangle OAB = \triangle CPB$

A1 \Rightarrow Area is $\int \frac{1}{4} x^2 dx$

B1 Correct limits $(0, 2 \tan \alpha)$ used

A1 A1 Correct integration; correct Given Answer

ALTERNATIVE Translate whole thing up by $\tan^2 \alpha$ and calculate $\int_{0}^{b\cos\alpha} \left(\frac{1}{4}x^2 + \tan^2\alpha\right) dx - \Delta$

G1

(i) M1A1
$$f(x) = \left\lceil \frac{(t-1)^x}{x} \right\rceil_1^3$$

$$\mathbf{A1} \qquad = \frac{2^x}{x}$$

M1 Differentiating by use of *Quotient RuleOR* taking logs.anddiffg. implicitly)

B1 for
$$\frac{d}{dx}(2^x) = 2^x \cdot \ln 2$$
 seen at any stage

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x \cdot 2^x \cdot \ln 2 - 2^x}{x^2}$$

A1 TP at
$$\left(\frac{1}{\ln 2}, (e \ln 2)\right)$$
 (y-coordinate not required)

B1 Jusitfying that the TP is a minimum

G1 Generally correct ∪-shape

Asymptotic to *y*-axis and TP in **FT** correct position

(ii) M1 Let $u^2 = 1 + x^2 - 2xt$ A1 2u du = -2xdt

B1 $t: (-1, 1) \rightarrow u: (|1+x|, |1-x|)$ Correct limits seen at any stage

M1A1 Full substn. attempt; correct $g(x) = \frac{-1}{x} \int 1 \, du$

A1 $g(x) = \frac{1}{x}(|1+x|-|1-x|)$ In. may be done directly, but be strict on the limits

(Must have completely correct three intervals: x < -1, $-1 \le x \le 1$, x > 1)

M1 Graph split into two or three regions

A1 A1 Reciprocal graphs on LHS & RHS (must be asymptotic to x-axis)

(Allow even if they approach y-axis also)

A1 Horizontal line for middle segment

Let P, Q, R and S be the midpoints of sides (as shown)

Then

M1A1
$$p = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}, \ \mathbf{q} = \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{a}',$$

 $\mathbf{r} = \frac{1}{2}\mathbf{a}' + \frac{1}{2}\mathbf{b}', \ \mathbf{s} = \frac{1}{2}\mathbf{b}' + \frac{1}{2}\mathbf{a}$

and

M1A1
$$\overrightarrow{PQ} = \overrightarrow{SR} = \frac{1}{2}(\mathbf{a}' - \mathbf{a})$$

A1
$$\overrightarrow{QR} = \overrightarrow{PS} = \frac{1}{2}(\mathbf{b'} - \mathbf{b})$$

A1 so that *PQSR* is a //gm. (opposite sides // and equal)

6)

M1
$$\overrightarrow{PQ} \bullet \overrightarrow{QR} = \overrightarrow{PQ} \bullet \overrightarrow{QS} = \frac{1}{2} (\mathbf{a'} - \mathbf{a}) \bullet \frac{1}{2} (\mathbf{b'} - \mathbf{b})$$
 for use of the scalar product

A1
$$= \frac{1}{4} (\mathbf{a}' \bullet \mathbf{b}' - \mathbf{a} \bullet \mathbf{b}' - \mathbf{a}' \bullet \mathbf{b} + \mathbf{a} \bullet \mathbf{b})$$
 Do not accept $\mathbf{a}' \mathbf{b}'$ etc.

$$= -\frac{1}{4} (\mathbf{a} \bullet \mathbf{b}' + \mathbf{a}' \bullet \mathbf{b})$$

M1
$$\angle AOB' = \theta \Rightarrow \angle A'OB = 180^{\circ} - \theta$$
; and $\cos(180^{\circ} - \theta) = -\cos\theta$

A1 = 0 since
$$\mathbf{a} \cdot \mathbf{b}' = ab' \cos \theta$$
 and $\mathbf{a}' \cdot \mathbf{b} = -a'b \cos \theta$

and we are given that a = b and a' = b'

A1 so that *PQRS* is a rectangle (adjacent sides perpendicular)

6)

B1
$$PQ^2 = SR^2 = \overrightarrow{PQ} \bullet \overrightarrow{PQ} = \frac{1}{4} (a^2 + (a')^2 - 2\mathbf{a} \bullet \mathbf{a}')$$

B1
$$QR^2 = PS^2 = \frac{1}{4}(b^2 + (b')^2 - 2\mathbf{b} \cdot \mathbf{b}')$$

M1 Since
$$a = b$$
, $a' = b'$ and $\mathbf{a} \cdot \mathbf{a}' = aa' \cos(90^\circ + \theta)$, $\mathbf{b} \cdot \mathbf{ab}' = bb' \cos(90^\circ + \theta)$

A1 it follows that *PQRS* is a square (adjacent sides equal)

(4)

M1A1 Area
$$PQRS = \frac{1}{4} (a^2 + (a')^2 - 2aa' \cos[90^\circ + \theta])$$

M1 ... which is maximal when
$$\cos[90^{\circ} + \theta] = -1$$

A1 i.e. when $\theta = 90^{\circ}$

4

M1
$$f'(x) = 6ax - 18x^{2}$$

$$= 6x(a - 3x)$$
A1A1
$$= 0 \text{ for } x = 0 \text{ and } x = \frac{1}{3}a$$
A1A1
$$f(0) = 0 \qquad f(\frac{1}{3}a) = \frac{1}{9}a^{3}$$
A1 (Min. TP) (Max. TP) since $f(x)$ is a 'negative' cubic ($f(0) = 0$ and the TPs may be shown on a sketch – award the marks here if necessary)

6

M1 Evaluating at the endpoints

A1A1
$$f(-\frac{1}{3}) = \frac{1}{9}(3a+2); \quad f(1) = 3a-6$$

(3)

M1
$$\frac{1}{9}(3a+2) \ge \frac{1}{9}a^3 \iff a^3 - 3a - 2 \le 0$$

$$\mathbf{M1} \qquad \Leftrightarrow (a+1)^2(a-2) \le 0$$

A1 and since $a \ge 0$, $a \le 2$

M1
$$\frac{1}{9}a^3 \ge 3a - 6 \iff a^3 - 27a + 54 \ge 0$$

$$\mathbf{M1} \qquad \Leftrightarrow (a-3)^2(a+6) \ge 0$$

A1 which holds for all $a \ge 0$

M1
$$\frac{1}{9}(3a+2) \ge 3a-6 \iff 3a+2 \ge 27a-54$$

$$\Leftrightarrow$$
 8(3 a – 7) \leq 0

A1 $\Leftrightarrow a \leq \frac{7}{3}$ (which, actually, affects nothing, but working should appear)

8

Thus

B1B1B1
$$M(a) = \begin{cases} \frac{1}{9}(3a+2) & 0 \le a \le 2\\ \frac{1}{9}a^3 & 2 \le a \le 3\\ 3a-6 & a \ge 3 \end{cases}$$
 (Ignore 'non-unique' allocation of endpoints) 3

(Do not award marks for correct answers unsupported or from incorrect working)

(i)
$$S = 1 + 2 + 3 + ... + (n-2) + (n-1) + n$$

M1
$$S = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$$
 Method

M1
$$2S = n \times (n+1)$$
 Adding

A1
$$S = \frac{1}{2} n(n+1)$$
 obtained *legitimately* (Given Answer)

(Allow alternatives using induction or the *Method of Differences*, for instance, but **NOT** by stating that it is an AP and just quoting a formula; ditto Δ -number formula)

$$(N-m)^k + m^k \quad (k \text{ odd})$$

M1A1
$$= N^{k} - \binom{k}{1} m N^{k-1} + \binom{k}{2} m^{2} N^{k-2} - \dots + \binom{k}{k-1} m^{k-1} N - m^{k} + m^{k}$$

E1 which is clearly divisible by
$$N$$
 (since each term has a factor of N) (Allow alternatives using induction, for instance)

Let
$$S = 1^k + 2^k + \dots + n^k$$
 an odd no. of terms

M1 =
$$0^k + 1^k + 2^k + ... + n^k$$
 an even no. of terms

M1 =
$$[(n-0)^k + 0^k] + [(n-1)^k + 1^k] + ... + [(\frac{1}{2}n + \frac{1}{2})^k + (\frac{1}{2}n - \frac{1}{2})^k]$$

(no need to demonstrate final pairing but must explain fully the pairing up or the single extra n^k term) and, by (ii), each term is divisible by n.

For
$$S = 1^k + 2^k + ... + n^k$$
 an even no. of terms

M1 =
$$0^k + 1^k + 2^k + ... + n^k$$
 an odd no. of terms

M1 =
$$[(n-0)^k + 0^k] + [(n-1)^k + 1^k] + ... + [(\frac{1}{2}n+1)^k + (\frac{1}{2}n-1)^k] + (\frac{1}{2}n)^k$$

(no need to demonstrate final pairing but must explain the pairing and note the separate, single term)

and, by (ii), each paired term is divisible by n

E1 and the final single term is divisible by $\frac{1}{2}n \Rightarrow$ required result

M1 By the above result ... for
$$n$$
 even, so that $(n + 1)$ is odd

A1
$$(n+1) | 1^k + 2^k + ... + n^k + (n+1)^k$$

E1
$$(n+1)|S+(n+1)^k \Rightarrow (n+1)|S$$

M1 By the above result ... for
$$n$$
 odd, so that $(n + 1)$ is even

A1
$$\frac{1}{2}(n+1) \mid 1^k + 2^k + \dots + n^k + (n+1)^k$$

E1
$$\frac{1}{2}(n+1) | S + (n+1)^k \implies \frac{1}{2}(n+1) | S \text{ (as } \frac{1}{2}(n+1) \text{ is an integer)}$$

E1 Since
$$hcf(n, n+1) = 1 \implies hcf(\frac{1}{2}n, n+1) = 1$$
 for n even

E1 and
$$hcf(n, \frac{1}{2}(n+1)) = 1$$
 for *n* odd

So it follows that
$$\frac{1}{2}n(n+1) \mid S$$
 for all positive integers n

SI/15/Q9

M1 Time taken to land (at the level of the projection) (from $y = ut\sin\alpha - \frac{1}{2}gt^2$, y = 0, $t \neq 0$)

A1 is $t = \frac{2u \sin \alpha}{g}$ (may be implicit)

M1 Bullet fired at time $t \left(0 \le t \le \frac{\pi}{6\lambda} \right)$ lands at time

A1 $T_L = t + \frac{2u}{g} \sin\left(\frac{\pi}{3} - \lambda t\right)$

M1A1 $\frac{\mathrm{d}T_L}{\mathrm{d}t} = 1 - \frac{2\lambda u}{g} \cos\left(\frac{\pi}{3} - \lambda t\right) = \frac{1}{k} \left\{ k - \cos\left(\frac{\pi}{3} - \lambda t\right) \right\}$

A1 = 0 when $k = \cos\left(\frac{\pi}{3} - \lambda t\right)$

M1A1 Horizontal range is $R = \frac{2u^2 \sin \alpha \cos \alpha}{g}$ (from $y = ut \sin \alpha - \frac{1}{2}gt^2$ with above time)

A1 $\Rightarrow R_L = \frac{2u^2}{g}k\sqrt{1-k^2}$ obtained *legitimately* (**Given Answer**)

M1A1 $\frac{d^2T_L}{dt^2} = -\frac{2\lambda^2 u}{g} \sin\left(\frac{\pi}{3} - \lambda t\right) < 0 \Rightarrow \text{ maximum distance}$

M1A1 $0 \le t \le \frac{\pi}{6\lambda}$ in $k = \cos\left(\frac{\pi}{3} - \lambda t\right) \Rightarrow \frac{1}{2} \le k \le \frac{\sqrt{3}}{2}$

M1 If $k < \frac{1}{2}$ then $\frac{dT_L}{dt} < 0$ throughout the gun's firing ...

A1 ... and T_L is a (strictly) decreasing function.

M1 Then T_L max. occurs at t = 0

A1 i.e. $\alpha = \frac{\pi}{3}$

M1A1 and $R_L = \frac{2u^2}{g} \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{u^2 \sqrt{3}}{2g}$

B1 Speed of rain relative to bus is $v\cos\theta - u$ (or $u - v\cos\theta$ if negative)

M1A1 When u = 0, $A \propto hv\cos\theta + av\sin\theta$ (width of bus and time units may be included as factors)

When $v\cos\theta - u > 0$, rain hitting top of bus is the same, and rain hits back of bus as before, but with $v\cos\theta - u$ instead of $v\cos\theta$

When $v\cos\theta - u < 0$, rain hitting top of bus is the same, and rain hits front of bus as before, but with $u - v\cos\theta$ instead of $v\cos\theta$

A1 Together, $A \propto h |v\cos\theta - u| + av\sin\theta$ Fully justified (**Given Answer**)

6

M1 Journey time $\propto \frac{1}{u}$ so we need to minimise

A1 $J = \frac{av\sin\theta}{u} + \frac{h|v\cos\theta - u|}{u}$ (Ignore additional constant-of-proportionality factors)

M1 For $v\cos\theta - u > 0$,

if $w \le v \cos \theta$, we minimise $J = \frac{av \sin \theta}{u} + \frac{hv \cos \theta}{u} - h$

E1 and this decreases as u increases

E1 and this is done by choosing u as large as possible; i.e. u = w

M1 For $u - v\cos\theta > 0$,

we minimise $J = \frac{av\sin\theta}{u} - \frac{hv\cos\theta}{u} + h$

E1 and this decreases as *u* increases if $a \sin \theta > h \cos \theta$

E1 so we again choose u as large as possible; i.e. u = w

[Note: minimisation may be justified by calculus in either case or both.]

8

M1 If $a \sin \theta < h \cos \theta$, then *J* increases with *u* when *u* exceeds $v \cos \theta$

A1 so we choose $u = v\cos\theta$ in this case

2

M1A1 If $a \sin \theta = h \cos \theta$ then J is independent of u, so we may as well take u = w

'

M1 Replacing θ by $180^{\circ} - \theta$ gives $J = \frac{av \sin \theta}{u} + \frac{hv \cos \theta}{u} + h$

A1 Which always decreases as u increases, so take u = w again

(i) **B1**
$$\circlearrowleft O_1$$
: $F = F_1$

$$\circlearrowleft O_2$$
: $F = F_2$

(Both, with reason)

(4)

(ii) **B1** Res^g. ||plane (for
$$C_1$$
): $F_1 + R = W_1 \sin \alpha$

B1 Res^g.
$$\perp$$
^r. plane (for C_1): $R_1 + F = W_1 \cos \alpha$

B1 Res^g.||plane (for
$$C_2$$
): $F_2 - R = W_2 \sin \alpha$ ③

B1 Res^g.
$$\perp$$
^r. plane (for C_2): $R_2 - F = W_2 \cos \alpha$

Max 4 marks to be given for four independent statements (though only 3 are required). One or other of

Res^g.||plane (for system):
$$F_1 + F_2 = (W_1 + W_2)\sin \alpha$$

Res^g.
$$\perp$$
^r. plane (for system): $R_1 + R_2 = (W_1 + W_2)\cos\alpha$

may also appear instead of one or more of the above.

$$(F_1 \text{ and } F_2 \text{ may or may not appear in these statements as } F$$
, but should do so below)

M1A1 Equating for
$$\sin \alpha$$
: $\frac{F+R}{W_1} = \frac{F-R}{W_2}$ using ① and ③

M1A1 Re-arranging for *F* in terms of *R*:
$$F = \left(\frac{W_1 + W_2}{W_1 - W_2}\right)R$$

M1 Use of the Friction Law, $F \le \mu R$

A1
$$\Rightarrow \frac{W_1 + W_2}{W_1 - W_2} \le \mu$$
 obtained legitimately (Given Answer)

M1A1 (e.g.)
$$\textcircled{1} \div \textcircled{2} \Rightarrow \tan \alpha = \frac{F + R}{R_1 + F}$$

M1A1 Subst^g. for R =
$$\frac{F + F\left(\frac{W_1 - W_2}{W_1 + W_2}\right)}{R_1 + F} \text{ using } R = \left(\frac{W_1 - W_2}{W_1 + W_2}\right)F$$

$$=\frac{F\left(\frac{2W_1}{W_1+W_2}\right)}{R_1+F_1}$$

M1A1 Subst^g. for R_1 (correct inequality) using Friction Law $F_1 \le \mu_1 R_1 \iff R_1 \ge \frac{F_1}{\mu_1}$

$$\leq \frac{F\left(\frac{2W_1}{W_1 + W_2}\right)}{\frac{F_1}{\mu_1} + F_1}$$

$$= \frac{F\left(\frac{2W_1}{W_1 + W_2}\right)}{\frac{2W_1}{W_1 + W_2}}$$

M1 Tidying-up algebra
$$= \frac{F\left(\frac{2W_1}{W_1 + W_2}\right)}{F\left(\frac{1 + \mu_1}{\mu}\right)}$$

A1
$$\Rightarrow \tan \alpha \leq \frac{2\mu_1 W_1}{\left(1 + \mu_1\right)\left(W_1 + W_2\right)}$$
 obtained *legitimately* (**Given Answer**)

(i) M1A1 P(exactly r out of n need surgery) =
$$\binom{n}{r} \left(\frac{1}{4}\right)^r \left(\frac{3}{4}\right)^{n-r}$$
 (A binomial prob. term; correct)

2

(ii) M1
$$P(S=r) = \sum_{n=r}^{\infty} \frac{e^{-8}8^n}{n!} \times \frac{n!}{r!(n-r)!} \left(\frac{1}{4}\right)^r \left(\frac{3}{4}\right)^{n-r}$$
 Attempt at sum of appropriate product terms

B1B1A1 Limits \checkmark All internal terms correct; allow ${}^{n}C_{r}$ for the A mark

M1
$$= \frac{e^{-8}}{r!} \sum_{n=r}^{\infty} \frac{8^n}{(n-r)!} \times \left(\frac{1}{4}\right)^r \left(\frac{3}{4}\right)^{n-r}$$
 Factoring out these two terms

M1
$$= \frac{e^{-8}}{r!} \sum_{n=r}^{\infty} \frac{8^n}{(n-r)!} \times \frac{3^{n-r}}{4^n}$$
 Attempting to deal with the powers of 3 and 4

A1
$$= \frac{e^{-8}}{r!} \sum_{n=r}^{\infty} \frac{2^n \times 3^{n-r}}{(n-r)!}$$
 Correctly

M1
$$= \frac{e^{-8} \times 2^r}{r!} \sum_{n=r}^{\infty} \frac{6^{n-r}}{(n-r)!}$$
 Splitting off the extra powers of 2 ready to ...

M1
$$= \frac{e^{-8} \times 2^r}{r!} \sum_{m=0}^{\infty} \frac{6^m}{m!} \dots \text{ adjust the lower limit (i.e. using } m = n - r)$$

A1 =
$$\frac{e^{-8} \times 2^r}{r!} \times e^6$$
 i.e. $\frac{e^{-2} \times 2^r}{r!}$

A1 ... which is Poisson with mean 2 (Give **B1** for noting this without the working)

11)

(iii) M1
$$P(M = 8 | M + T = 12)$$
 Identifying correct conditional probability outcome

A1A1A1
$$= \frac{\frac{e^{-2} \times 2^8}{8!} \times \frac{e^{-2} \times 2^4}{4!}}{\frac{e^{-4} \times 4^{12}}{12!}}$$
 One A mark for each correct term (& no extras for 3rd A mark)

A1A1
$$= \frac{2^{12} \times 12!}{4^{12} \times 8! \times 4!}$$
 Powers of e cancelled; factorials in correct part of the fraction – (unsimplified is okay at this stage)

A1
$$=\frac{495}{4096}$$

Reminder

A: the 1st6 arises on the n^{th} throw

B: at least one 5 arises before the 1st6

C: at least one 4 arises before the 1st6

D: exactly one 5 arises before the 1st6

E: exactly one 4 arises before the 1st6

(i) M1A1
$$P(A) = (\frac{5}{6})^{n-1} (\frac{1}{6})$$

- (ii) M1A1 By symmetry (either a 5 or a 6 arises before the other), $P(B) = \frac{1}{2}$
- (iii) M1 The first 4s, 5s, 6s can arise in the orders <u>456</u>, 465, <u>546</u>, 564, 645, 654

 A1 $\Rightarrow P(B \cap C) = \frac{1}{3}$ (i.e. "by symmetry" but with three pairs)

(iv) M1A1A1 $P(D) = (\frac{1}{6})(\frac{1}{6}) + {2 \choose 1}(\frac{1}{6})(\frac{4}{6})(\frac{1}{6}) + {3 \choose 1}(\frac{1}{6})(\frac{4}{6})^2(\frac{1}{6}) + \dots$

M1 for infinite series with 1st term \checkmark ; A1 for 2nd term \checkmark ; A1 for 3rd term and following pattern \checkmark

M1 = $\left(\frac{1}{36}\right)\left\{1 + 2\left(\frac{2}{3}\right) + 3\left(\frac{2}{3}\right)^2 + \dots\right\}$ For factorisation and an infinite series

M1 = $\left(\frac{1}{36}\right)\left(1-\frac{2}{3}\right)^{-2}$ Use of the given series result

 $\mathbf{A1} \qquad \qquad = \frac{1}{4}$

(v) M1 $P(D \cup E) = P(D) + P(E) - P(D \cap E)$ Stated or used

B1 P(E) = P(D) = answer to (iv) Stated or used anywhere

M1A1A1 $P(D \cap E) = \left(\frac{2}{6}\right)\left(\frac{1}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{3}{1}\right)\left(\frac{3}{6}\right)\left(\frac{2}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{4}{2}\right)\left(\frac{3}{6}\right)^2\left(\frac{2}{6}\right)\left(\frac{1}{6}\right)\left(\frac{1}{6}\right) + \dots$

M1 for infinite series with 1stterm \checkmark ; A1 for 2nd term \checkmark ; A1 for 3rd term and following pattern \checkmark

M1 = $\left(\frac{1}{108}\right)\left\{1+3\left(\frac{1}{2}\right)+6\left(\frac{1}{2}\right)^2+...\right\}$ For factorisation and an infinite series

M1 = $\left(\frac{1}{108}\right)\left(1 - \frac{1}{2}\right)^{-3}$ Use of the given series result

A1 \Rightarrow P($D \cup E$) = $\frac{1}{2} - \frac{2}{27} = \frac{23}{54}$

2

(6)