# **Causal Complexity**

Another important benefit of set theoretic analysis is that it is much more compatible with the analysis of causal complexity than conventional techniques. Example: a researcher studies production sites in a strike-prone industry and considers four possible causes of strikes:

> technology = the introduction of new technology wages = stagnant wages in times of high inflation overtime = reduction in overtime hours sourcing = outsourcing portions of production

## Possible findings include:

- (1) technology → strikes
- (2) technology wages → strikes
- (3) technology + wages → strikes
- (4) technology wages + overtime sourcing → strikes

In (1) technology is necessary and sufficient; in (2) technology is necessary but not sufficient; in (3) technology is sufficient but not necessary; in (4) technology is neither necessary nor sufficient. The fourth is the characteristic form of causal complexity: no cause is either necessary or sufficient.

1

#### **INUS Causation**

In situations of *causal complexity*, no single cause may be either necessary or sufficient, as in the logic equation:

TECHNOLOGY\*WAGES + OVERTIME\*SOURCING → STRIKES

In *The Comparative Method*, this situation is called "multiple conjunctural causation."

In *The Cement of the Universe*, Mackie labels these causal conditions INUS causes because each one is:

Insufficient (not sufficient by itself) but

Necessary components of causal combinations that are

Unnecessary (because of multiple paths) but

Sufficient for the outcome

## The Problem with Examining INUS Causes One at a Time

|                 | X absent                                                                                                               | X present                                                                                                                                    |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Outcome present | There are cases here because there are several recipes for the outcome, including some that do not involve X           | There are cases here because X is an INUS conditionan ingredient in at least one of the recipes for the outcome                              |  |
| Outcome absent  | There are cases here because some cases lack the outcome and also lack membership in the recipes that do not include X | There are cases here because X sometimes occurs without the other ingredients that it must be combined with in order to generate the outcome |  |

Don't forget: Almost all conventional statistical procedures are based on matrices of bivariate correlations. If INUS causes are involved, these correlations are almost completely useless.

## **Assessing Causal Complexity**

- **I. Logical equation:** technology wages + overtime sourcing → strikes
- II. Formulated as a partial crosstabulation:

|                    | Second causal combination absent | Second causal combination present |
|--------------------|----------------------------------|-----------------------------------|
| Strike present (1) | Cell 1: 20 cases                 | Cell 2: 23 cases                  |
| Strike absent (0)  | Cell 3: 18 cases                 | Cell 4: 0 cases                   |

## III. Expressed as a Venn diagram:



The key to assessing the sufficiency of a combination of conditions, even if it is one among many recipes, is to select on instances of the combination and assess whether these instances agree on the outcome.

#### SIMPLE EXAMPLE OF QCA USING HYPOTHETICAL DATA

#### A. Truth Table:

| C | L | Н | G | U | N of Cases |
|---|---|---|---|---|------------|
| 0 | 0 | 0 | 0 | 0 | 4          |
| 0 | 0 | 0 | 1 | 0 | 3          |
| 0 | 0 | 1 | 0 | 0 | 6          |
| 0 | 0 | 1 | 1 | 1 | 2          |
| 0 | 1 | 0 | 0 | 1 | 3          |
| 0 | 1 | 0 | 1 | 1 | 4          |
| 0 | 1 | 1 | 0 | 0 | 3          |
| 0 | 1 | 1 | 1 | 1 | 5          |
| 1 | 0 | 0 | 0 | 0 | 7          |
| 1 | 0 | 0 | 1 | 0 | 8          |
| 1 | 0 | 1 | 0 | 0 | 1          |
| 1 | 0 | 1 | 1 | 1 | 7          |
| 1 | 1 | 0 | 0 | 1 | 3          |
| 1 | 1 | 0 | 1 | 1 | 2          |
| 1 | 1 | 1 | 0 | 0 | 7          |
| 1 | 1 | 1 | 1 | 1 | 6          |

C = Corporatist wage negotiations

L = At least five years of rule by Left or Center-Left parties

H = Ethnic-cultural homogeneity

G = At least ten years of sustained economic growth

U = Adoption of universal pension system

### B. Table simplified through row-wise comparisons (positive outcomes only)

```
-10- (or L•h: Left rule combined with ethnic diversity)
-1-1 (or L•G: Left rule combined with economic growth)
--11 (or H•G: ethnic homogeneity combined with economic growth)
```

Dashes indicate that a condition has been eliminated (found to be irrelevant)

#### C. Finding redundant terms:

Terms to be Covered (Rows with Outcome = 1) 0100 1100 0101 1101 0011 1011 0111 1111 Simplified -10-Χ Χ Χ Χ Terms (from B) -1-1 X X Χ X --11 X X X

### D. Final results (logically minimal):

$$U = L \cdot h + H \cdot G$$

Lower-case letters indicate condition must be absent. Upper-case letters indicate that condition must be present. Multiplication (•) indicates combined conditions (logical and). Addition (+) indicates alternate combinations (logical or).