

Computer Networks

Wenzhong Li, Chen Tian

Nanjing University

Material with thanks to James F. Kurose, Mosharaf Chowdhury, and other colleagues.

Chapter 2. Direct Link Networks

- Link Layer Service
 - Framing
 - Link access
 - Reliable delivery
 - Error detection and correction
- Local Area Network (LAN)
 - Token Ring
 - Ethernet
- Medium access control
- Bridges and Layer-2 switch
- Wireless Networks

Bridges and Layer-2 switch

Interconnection of LANs

- Ability to expand beyond single LAN
- Provide interconnection to other LANs/WANs
- Bridge is used (later Layer-2 switch)
 - Connects LANs, usually more than two LANs
 - Identical protocols for physical and MAC layers
 - Store, forward LAN frames
 - Exact bitwise copy of frame
 - Switch (route) functions needed

Bridge Operation

Requirements of a Bridge

Store and Forward

- Read frames transmitted on one LAN, Examine frames' MAC address, selectively store those address to other LANs
- Using MAC protocol of second LAN, retransmit each frame
- Transparent
 - Stations are unaware of presence of bridges
- Plug-and-play, self-learning
 - Bridges do not need to be configured

Bridge Protocol Architecture

- IEEE 802.1D, MAC level
 - Use MAC address for switching
- Relaying MAC frames

Mechanisms of a Bridge

- Mechanisms
 - Transparent bridge: 802.1D
 - Frame broadcasting
 - Loop resolution
 - Address learning

Broadcast Ethernet

- Sender transmits frame onto broadcast link
- Each receiver's link layer passes the frame to the network layer:
 - If destination address matches the receiver's MAC address OR if the destination address is the broadcast MAC address (ff:ff:ff:ff:ff)

Broadcast Ethernet

- Ethernet is "plug-n-play"
- A new host plugs into the Ethernet and is good to go
 - No configuration by users or network operators
 - Broadcast as a means of bootstrapping comm.

Broadcasting in extended LANs

The "broadcast storm" problem

What causes "broadcast storm"?

Loops!

Radia Perlman

Perlman's idea: eliminate loops in the topology

Easiest way to avoid loops

- Use a topology where loops are impossible!
- Take arbitrary topology and build a spanning tree
 - Sub-graph that includes all vertices but contains no cycles
 - Links not in the spanning tree are not used to forward frames

Consider a graph

A spanning tree

Another spanning tree

Yet another spanning tree

Spanning tree protocol (Perlman'85)

- Protocol by which bridges construct a spanning tree
- Nice properties
 - Zero configuration (by operators or users)
 - Self healing
- Still used today

Spanning tree algorithm

- Take arbitrary network topology as input
- Pick subset of links that form a spanning tree

Algorithm has two aspects

- Pick a root
 - Destination to which shortest paths go
 - Pick the one with the smallest identifier (MAC addr.)
- Compute shortest paths to the root
 - No shortest path can have a cycle
 - Only keep the links on shortest-paths
 - Break ties in some way (so we only keep one shortest path from each node)
- Ethernet's spanning tree construction does both with a single algorithm

Breaking ties

- When there are multiple shortest paths to the root, choose the path that uses the neighbor with the lower ID
 - One could use any tiebreaking system, but this is an easy one to remember and implement

Constructing a spanning tree

- Messages (Y, d, X)
 - From node X
 - Proposing Y as the root
 - And advertising a distance d to Y
- Switches elect the node with smallest identifier (MAC address) as root
- Each node determines if a link is on its shortest path to the root; excludes it from the tree if not

Steps in the spanning tree algorithm

- Initially, each node proposes itself as the root
 - Switch X announces (X, 0, X) to its neighbors
- Nodes update their view of the root
 - Upon receiving (Y, d, Z) from Z, check Y's id
 - If Y's id < current root: set root = Y</p>
- Nodes compute their distance from the root
 - Add 1 to the shortest distance received from a neighbor
- If root or shortest distance to it changed, send neighbors updated message (Y, d+1, X)

Robust spanning tree algorithm

- Algorithm must react to failures
 - Failure of the root node
 - Failure of other bridges and links
- Root sends periodic root announcement messages
 - Other bridges continue forwarding messages
- Detecting failures through timeout
 - If no word from root, time out and claim to be the root!

Flooding on a spanning tree

- Bridges flood using the following rule:
 - (Ignore all ports not on spanning tree!)
 - Originating bridge sends packet out all ports
 - When a packet arrives on one incoming port,
 send it out all ports other than the incoming port

Flooding on spanning tree

Flooding on spanning tree

But isn't flooding wasteful?

- Yes, but we can use it to bootstrap more efficient forwarding
- Idea: watch the packets going by, and learn from them
 - If node A sees a packet from node B come in on a particular port, it knows what port to use to reach B!
 - Works because there is only one path to B

Nodes can "learn" routes

- Switch learns how to reach nodes by remembering where flooding packets came from
 - If flood packet <u>from</u> Node A entered bridegroom on port 4, then bridge uses port 4 to send to Node A

Address Learning

- Each bridge maintains a forwarding database
- Forwarding database can be learned
- When frame arrives at port X, it has come from the LAN attached to port X
- Use the source address to update forwarding database for port X to include that address
- Timer on each entry in database, Entry deleted when timer is off
- Each time frame arrives, source address checked against forwarding database

S1→**S5**

S3→**S2**

S4→S3

S2→S1

Summary of bridge frame forwarding

- Maintain forwarding database for each port
 - <Mac Address, Port, Timestamp>: station addresses reached through each port
- For a frame arriving on port X
 - Search forwarding database to see if dest MAC address is listed for any port:
 - If address not found, forward to all ports (flooding) except X
 - If address listed for port X, drop it
 - If address listed for port Y, check port Y for Blocking or Forwarding state, transmit if Forwarding state
 - Blocking used to form a tree

Types of devices for interconnecting LANs

- Hubs: physical repeaters
- Bridges: connecting LANs (forwarding + address learning)
- Layer 2 switches: connecting Hosts or LANs (bridge functions + collision free)
- Layer 3 switches: involving router functions

- Active central element of star layout
- Each station connected to hub by two lines
 - Transmit and receive
- Hub acts as a repeater
 - When a station transmits, hub repeats signal on outgoing line to all other stations
- Physically star, logically bus
 - Transmission from any station received by all other stations
 - If two stations transmit at the same time, collision

Shared Medium Bus and Hub

Layer 2 Switch: Requirement

- Link-layer device: takes an active role
 - Store, forward Ethernet frames
 - Examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent
 - Hosts are unaware of presence of switches
- Plug-and-play, self-learning
 - Switches do not need to be configured
- Switch vs. Bridge
 - Bridge: connect LANs (normally 2-4 ports)
 - Switch: connect multiple hosts/subnets (a lot of ports, can achieve collision-free transmission)

Why switched Ethernet?

- Stations have dedicated, direct connection to switch
- Switches buffer and forward frames
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
- Multiplying capacity of LANs
 - Each port/link forms a LAN segment (no collisions)
 - More than one station transmitting at a time

Shared Medium Hub and Layer 2 Switch

Layer 2 Switch Benefits

- No change to attached stations to convert bus/hub
 LAN to switched LAN
 - For Ethernet LAN, each station uses Ethernet MAC protocol
- Station has dedicated capacity equal to original LAN
 - Assuming switch has sufficient capacity to keep up with all stations
- Layer 2 switch scales easily
 - New layer 2 switch added to accommodate additional stations

Interconnecting switches

Switches can be connected together

Loop resolution

- Example: A wants to broadcast a message
 - A sends packet to 1
 - 1 Floods to 2 and 4
 - 2 Floods to B and 3
 - 4 Floods to D and 3
 - 3 Floods packet from 2 to C and 4
 - 3 Floods packet from 4 to C and 2
 - 4 Floods packet from 3 to D and 1
 - 2 Floods packet from 3 to B and 1
 - 1 Floods packet from 2 to A and 4
 - 1 Floods packet from 4 to B and 2
 - **....**

- Broadcast storm still happens in a switched network if it contains a cycle of switches
- Loop resolution: spanning tree algorithm

Ethernet switches are "self learning"

Q: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

* Q: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4 (assuming they are empty in the beginning)

Summary of switch frame forwarding

when frame received at switch:

- 1. record incoming link, MAC address of sending host
- 2. index switch table using MAC destination address

```
3. if entry found for destination then { if destination on segment from which frame arrived then drop frame else forward frame on interface indicated by entry } else flood /* forward on all interfaces except arriving interface */
```


Layer 3 Switches

- As number of stations grows, layer 2 switches reveal inadequacies
 - Broadcast overload
 - Lack of multiple paths
- Layer 3 switch
 - Implement packet-forwarding (IP) logic of a router in hardware
 - Interconnecting similar LANs, as in layer 2 switches

Broadcast Overload

- Set of stations and LANs connected by layer 2 switches builds singular physical net
- All nodes share common MAC broadcast address
- Broadcast frame delivered to all stations attached to LANs connected by layer 2 switches
- Under broadcast, layer 2 switches become hubs
- IP causes many broadcasts under daily work, e.g.
 ARP, DHCP, IGMP

Lack of Multiple Paths

- Layer 2 switches uses spanning tree for routing (switching)
- Dictate no closed loops: only one path between any two stations
- Limits both performance and reliability

Solution:

- Break up LANs into sub-networks connected by switches using router functions (layer 3 switch)
- MAC broadcast frames limited to single sub-network
- Allow use of multiple paths between sub-networks

Typical Large LANs in an Organization

 Circles in diagram identify separate LAN subnetworks

MAC broadcast frame

limited to its subnetwork

Summary

- Bridge and Layer 2 Switch
 - 概念
 - ■广播风暴问题
 - ■生成树算法
 - ■地址学习机制

比较: Bridge, hub, Layer 2 Switch, Layer 3
 Switch (Router)

Homework

■ 第6章: P23, P24, P25, P26