## Преобразование частоты. Фильтрация.

На выходе смесителей (преобразователя частоты) наряду с полезными сигналами образуется целый ряд комбинационных составляющих (КС), являющихся паразитными, (Spurious Response). Ряд комбинационных составляющих с частотами **±mfpч ±n freт**, где m и n=1,2,3... Порядок КС равен сумме чисел m+n. Нежелательные компоненты на выходе смесителя за пределами полосы частот принимаемого сигнала отфильтровываются с помощью фильтров с необходимыми параметрами (селективность по соседнему каналу).

Однако, некоторые комбинационные составляющие попадают непосредственно в **полосу пропускания** выходных фильтров смесителей и не могут быть удалены.

Уровень таких составляющих на выходе смесителя зависит как от порядка КС, так и от типа смесителя, используемого активного элемента и режима его работы.

Для исключения этого явления необходима тщательная проработка **частотного плана** устройства и выбор таких значений частот гетеродинов и ПЧ, при которых обеспечивается подавление нежелательных КС до приемлемого уровня.



Определение наличия возможных комбинационных составляющих на выходе смесителя может быть произведено с помощью различного рода **номограмм**. При этом по осям откладываются **отношение** входной РЧ/Гет и выходной ПЧ/Гет.



По этой номограмме может быть определен частотный спектр сигнала на выходе смесителя и найдены **КС** до **восьмого порядка**.

Обычно на вход смесителя подается **многочастотный (многоканальный)** сигнал, занимающий достаточно широкую полосу частот. Причем сигнал может появиться в любом из рабочих каналов. Например, на вход смесителя подается многоканальный сигнал, занимающий полосу **1600 - 2000 МГц**. Тогда

- fpч min/freт max = 1800 : 1440 = 1,25;
- fpч max/freт max = 2000 : 1440 = 1,39,

Через найденную **апертуру (линию на номограмме)** проходят линии **КС пятого** и **седьмого** порядка. : **4fret - 3fpч** = 4 1440 - 3 1800 =**360** МГц = fпч и **3fret - 2fpч** = 3 1440 - 2 1980 =**360** МГц = fпч.

Таким образом, выбор такого значения промежуточной частоты **360** МГц является **неудачным** даже при **fret = const**.

Для того чтобы выделить на выходе смесителя сигнал **только одного рабочего канала** с частотой **fc**, частота сигнала гетеродина **изменяется** в диапазоне **1440 - 1640 МГц** так, чтобы выполнялось условие **fпч = fc - fr**.

- fpu min/fret min = 1800 : 1640 = 1,1;
- fpu min/fret max = 1800 : 1440 = 1,25;
- fpч max/freт min = 2000 : 1640 = 1,22;
- fpu max/fret max = 2000 : 1440 = 1,39;
- fпч/freт max = 360 : 1440 = 0,25;
- fпч/freт min = 360 : 1640 = 0,22.

Координаты точек на номограмме по которым строится рабочая область (апертура)



Количество мешающих КС, не превышающих восьмого порядка, в этом случае возрастает **до 8**.

| N | fрч  | fгет | КС            |
|---|------|------|---------------|
| 1 | 1800 | 1440 | 4fzem-3fpч    |
| 2 | 1807 | 1627 | -2fгет + 2fрч |
| 3 | 1818 | 1638 | -2fгет + 2fрч |
| 4 | 1844 | 1473 | 4fгет-3fрч    |
| 5 | 1888 | 1506 | 4fгет-3fрч    |
| 6 | 1932 | 1539 | 4fгет-3fрч    |
| 7 | 1976 | 1572 | 4fгет-3fрч    |
| 8 | 1980 | 1440 | Зfгет-2fрч    |

Для упрощения выбора ПЧ и расчёта ЕС создана программа Mixer\_Spur\_Calculator Пример на следующем слайде





| Fвых | F1   | Гарм1 | F2   | Гарм2 | Порядок |   |
|------|------|-------|------|-------|---------|---|
| 359  | 1901 | -9    | 1588 | 11    | 20      |   |
| 361  | 1902 | -9    | 1589 | 11    | 20      |   |
| 360  | 1907 | -9    | 1593 | 11    | 20      |   |
| 359  | 1912 | -9    | 1597 | 11    | 20      |   |
| 361  | 1913 | -9    | 1598 | 11    | 20      |   |
| 360  | 1918 | -9    | 1602 | 11    | 20      |   |
| 359  | 1923 | -9    | 1606 | 11    | 20      |   |
| 361  | 1924 | -9    | 1607 | 11    | 20      |   |
| 360  | 1929 | -9    | 1611 | 11    | 20      |   |
| 359  | 1934 | -9    | 1615 | 11    | 20      |   |
| 361  | 1935 | -9    | 1616 | 11    | 20      |   |
| 360  | 1940 | -9    | 1620 | 11    | 20      |   |
| 359  | 1945 | -9    | 1624 | 11    | 20      |   |
| 361  | 1946 | -9    | 1625 | 11    | 20      | + |

| Поиск комбинационных составляющих |  |  |  |  |  |  |
|-----------------------------------|--|--|--|--|--|--|
| Номограмма                        |  |  |  |  |  |  |
| Выход                             |  |  |  |  |  |  |
| выход                             |  |  |  |  |  |  |

| 0,2207317073170 | 1,2195121951219 |
|-----------------|-----------------|
| 0,2350649350649 | 1,2987012987013 |
| 0,2182926829268 | 1,1585365853658 |
| 0,2324675324675 | 1,2337662337662 |





## Цепи фильтрации

LC – фильтры, пьезокерамические, электромеханические, кварцевые, на керамических резонаторах

Фильтры на поверхностных акустических волнах (фильтры на ПАВ) широко используются в составе современных систем связи. Это обусловлено сочетанием высоких электрических характеристик таких устройств (в том числе малых вносимых потерь, высокой избирательности и малого коэффициента прямоугольности) с их малыми габаритными размерами. Кроме того, фильтры на ПАВ более устойчивы к внешним воздействующим факторам по сравнению с ПФ на LC-элементах и пьезокерамике.

Простейший ПАВ фильтр содержит два встречно-штыревых преобразователя (ВШП), предназначенных для взаимного преобразования электрических и акустических сигналов, расположенных на полированной пьезоэлектрической подложке (кварц, ниобат лития, танталат лития, лангасит и т.д.). ВШП состоит из двух вложенных друг в друга гребенок металлических электродов.



ПАВ фильтры используются в диапазоне частот от 10 МГц до 2 ГГц.

## Выбор конкретного ПАВ фильтра определяется совокупностью требований:

```
Центральная частота фильтра;
Вносимое затухание в полосе пропускания;
Ширина полосы пропускания по уровню -3 дБ;
Ширина полосы пропускания по уровню -40 дБ;
Неравномерность АЧХ фильтра в заданной полосе пропускания;
Ширина полосы задерживания;
Уровень подавления внеполосных сигналов в полосе задерживания;
Допустимость наличия гармонических составляющих и их уровень по отношению к
первой гармонике;
Неравномерность и форма характеристики группового времени запаздывания (ГВЗ) в
полосе пропускания фильтра;
Сопротивление нагрузки по входу и выходу;
Допустимость применения согласующих элементов;
Рабочий диапазон температур;
Желаемое конструктивное исполнение (тип корпуса)
```





Model No. Search Q Site Search Q



Products

Tools and Resources

Quality and Compliance

About Us

Contact and Support

Careers

Blog

Ħ

Hello. Sign in Your Account

### **RF Filters**

### Low-Pass, High-Pass, Band-Pass, Band-Stop, Diplexers and Triplexers

- · Patented MMIC Reflectionless Filters Eliminate Spurs
- · Sharp-Rejection Cavity and Suspended Substrate Filters
- · LTCC Filters as small as 0603
- · Passbands spanning DC to 86 GHz
- · Over 3000 models in stock!
- · Custom Designs with Fast Turnaround!

**New Products** 



**Table of Models** 



**Advanced Search** 



**Band Pass** 

Band Pass + Balun

**Dual Passband** 

Low Pass

High Pass

Band Stop

Diplexer

Triplexer

Low Pass Flat Time Delay

Low Pass Dual/Differential

All Pass/Thru Line

| Interface   | $Impedance(\Omega)$ | Tecl           | hnology                    |
|-------------|---------------------|----------------|----------------------------|
| □ SMT       | □ 50<br>□ 75        | Reflectionless | Ceramic<br>Resonator       |
| ☐ Plug-in   |                     | LTCC           | Suspended Substrate        |
| □Die        |                     | ☐ Lumped LC    | ☐ Cavity                   |
| □ Waveguide |                     | ☐ Microstrip   | ☐ Rectangular<br>Waveguide |
|             |                     | ☐ Thin Film    |                            |





Send to a Friend 🕢 Export to

|                |                      |                      |                      |                        |                      |                        | 74             |                   |
|----------------|----------------------|----------------------|----------------------|------------------------|----------------------|------------------------|----------------|-------------------|
| Model Number   | Passband F1<br>(MHz) | Passband F2<br>(MHz) | Stopband F3<br>(MHz) | Rejection @ F3<br>(dB) | Stopband F4<br>(MHz) | Rejection @ F4<br>(dB) | Filter Type    | Technology        |
| Å <sub>V</sub> | A <sub>V</sub>       | A <sub>V</sub>       | A <sub>W</sub>       | A <sub>V</sub>         | A <sub>V</sub>       | A <sub>V</sub>         | A <sub>V</sub> | *                 |
| ZX75BP-750-S+  | 600                  | 900                  | DC-500               | 30                     | 1000-6000            | 30                     | Band Pass      | Lumped LC         |
| ZX75BP-770-S+  | 760                  | 780                  | DC-705               | 20                     | 840-1700             | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-840-S+  | 790                  | 890                  | DC-665               | 20                     | 1070-1650            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-893-S+  | 870                  | 915                  | DC-750               | 20                     | 1050-1800            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-915-S+  | 902.5                | 927.5                | DC-830               | 20                     | 1005-1900            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-942-S+  | 875                  | 1010                 | 750                  | 20                     | 1160                 | 20                     | Band Pass      | Ceramic Resonator |
| ZX75BP-960-S+  | 30                   | 1890                 | DC-25                | 50                     | 2450-8000            | 50                     | Band Pass      | Lumped LC         |
| ZX75BP-1034-S+ | 978                  | 1090                 | DC-790               | 20                     | 1400-2000            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1062-S+ | 960                  | 1164                 | DC-735               | 20                     | 1620-2000            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1090-S+ | 1060                 | 1120                 | DC-955               | 20                     | 1255-2200            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1100-S+ | 1000                 | 1200                 | DC-25                | 20                     | 1500-1900            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1135-S+ | 900                  | 1370                 | DC-500               | 45                     | 2000-5600            | 40                     | Band Pass      | Lumped LC         |
| ZX75BP-1170-S+ | 1110                 | 1230                 | DC-900               | 20                     | 1560-2200            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1205-S+ | 1155                 | 1255                 | DC-1026              | 20                     | 1435-4500            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1250-S+ | 1215                 | 1285                 | DC-1055              | 20                     | 1510-2500            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1260-S+ | 1200                 | 1320                 | DC-1025              | 20                     | 1640-2500            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1280-S+ | 1170                 | 1390                 | DC-950               | 20                     | 1850-2550            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1307-S+ | 1215                 | 1400                 | DC-1000              | 20                     | 1820-3000            | 20                     | Band Pass      | Lumped LC         |
| ZX75BP-1350-S+ | 1300                 | 1400                 | DC-1125              | 20                     | 1665-2800            | 20                     | Band Pass      | Lumped LC         |
| 7Y75RD.1450.C± | 1220                 | 1590                 | DC-1100              | 46                     | 2000-2500            | 5.4                    | Rand Dace      | Caramic Deconstor |

# ZX75BP-893-S+



#### Filter characteristic



+7 (495) **280-02-06** butis.m@ru.net

Русский

English

Главная

О Компании ▼

Разработчикам •

Каталог

Статьи

Новости

Контакты

# Фильтры на ПАВ (Общий каталог)

**Печаты ≭** Excel Поиск: Показать ▼ записей Номинальная Полоса, МГц (по Вносимое Гарант. затухание, Типономинал Категория Тип корпуса 📤 Примечание частота, МГц уровню, дБ) затухание, дБ 📤 фильтра 📤 качества -137 Полоса, МГц (п... Вносимое за... Гарант. зату... Тип корпуса Типономинал ... Категория каче... Примечание 147 140,00 15,9 (-1) 22,50 53 SMD 20,0x9,8 FS-140B16 OTK 140,00 16,32 (-1) 22,70 53 SMD 20,0x9,8 OTK FS-140B16-2 9,25 (-1) OTI Отправьте нам сообщение jivo 140,00 25,60 55 34,7×12,6 DIP FS-140B9-2 140,00 9,4 (-3) 11,50 SMD 13,3x6,5 FP-140B10 OTK S2P 45 140,00 0,1 (-3) 6,00 SMD 7,0x5,0 FP-140B0100 OTK S2P 140,00 0,4 (-1) 8,00 35 SMD 19,0x6,5 FP-140B0400 OTK 140,00 25 (-3) 24,00 50 20,2x12,6 DIP FP-140B25 OTK OTK 140,00 6 (-3) 12,50 40 SMD 13,3x6,5 FP-140B6 140,00 12 (-3) 10,50 SMD 13,3x6,5 FP-140B12 OTK S2P 140,00 SMD 13,3x6,5 FP-140B15 OTK 15 (-3) 10,75 140,00 22 (-3) 11,00 SMD 13,3x6,5 FP-140B22 OTK 140,00 6,85 (-3) 7,50 SMD 13,3x6,5 FP-140B6-2 OTK S2P

ООО «БУТИС» производит фильтры на ПАВ до 1200 МГц.



Радиочастотные фильтры и ПАВ фильтры

Тел: (495)411-96-08 Факс: (495)411-96-09 121357, г. Москва ул. Верейская д.29

Web: www.butis-m.ru

## Фильтр на ПАВ - Частота 140 МГц

Название: Фильтр на ПАВ 140МГц, полоса пропускания 0,47 МГц

Корпус: SMD 19,0х6,5х1,93 мм

### 1. Основные технические параметры фильтра:

| Параметр                                          | Ед. | Мин.    | Тип. | Макс.   |  |
|---------------------------------------------------|-----|---------|------|---------|--|
| Центральная частота (Fo)                          | МГц | 139,915 | 140  | 140,085 |  |
| Вносимое затухание                                | дБ  | 0.0     | 7    | 8       |  |
| Ширина полосы пропускания по уровню -1,0 дБ       | МГц | 0,4     | 0,47 |         |  |
| Ширина полосы пропускания по уровню -40 дБ        | МГц | cone    | 1,47 | 1,6     |  |
| Неравномерность затухания в полосе Fo +/-0,12 МГц | дБ  | gaag    | 0,6  | 1,2     |  |
| Неравномерность ГВЗ в полосе Fo +/-0,15 МГц       | нс  | 000     | 200  | 350     |  |
| Гарантированное затухание                         | дБ  | 35      | 39   |         |  |

Максимальный уповень входного непревывного сигнада 10 дБм

### 4. Экспериментальные частотные характеристики фильтра:



- Максимальный уровень входного непрерывного сигнала 10 дБм
- $\circ$  Сопротивление нагрузки и генератора  $50 \pm 5$  Ом
- Диапазон рабочих температур: -40°С ... +85°С

### 2. Габариты и маркировка фильтра:



### 3. Схема согласования:



$$L1 = 22 \text{ H}\Gamma; L2 = 39 \text{ H}\Gamma; L3 = 33 \text{ H}\Gamma; L4 = 22 \text{ H}\Gamma$$

J –Вход

Е – Выход

A, B, C, D, F, G, H, I - Земля

Для преселектора выбираем ПФ с мин. затуханием. Например для БС можно взять ПФ на коаксиальных резонаторах.

# Coaxial Band Pass Filter ZX75BP-893-S+

Typical Performance Curves



## **INSERTION LOSS vs. TEMPERATURE**

INPUT POWER = 0 dBm



| Наименование                                                                                                                                                                                         | DFC22R14P06<br>OLHB                          | DFC32R14P06<br>OLHA                                   | SX-A091                                                   | SX-B233                              | TDF2140A01                                                       | TDF2140S21                                                                                                                           | TSM214PW-B                                                                                                                                                                | MBP23R2140S<br>60A                             | MBP43R2140S<br>60A                   | FAR-F6CE-<br>2G1400-L2ZQ                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Производитель                                                                                                                                                                                        |                                              | Mura                                                  | ita                                                       |                                      |                                                                  | Sanyo                                                                                                                                |                                                                                                                                                                           | Cor                                            | npoTron                              | Fujitsu                                                                                                                                                                    |
| Центральная частота, МГц                                                                                                                                                                             |                                              |                                                       |                                                           |                                      |                                                                  | 2140                                                                                                                                 |                                                                                                                                                                           |                                                |                                      |                                                                                                                                                                            |
| Полоса<br>пропускания, МГц                                                                                                                                                                           |                                              |                                                       |                                                           |                                      |                                                                  | 2110 2170                                                                                                                            | ס                                                                                                                                                                         |                                                |                                      |                                                                                                                                                                            |
| Потери в полосе пропускания, дБ                                                                                                                                                                      | 2,5 <sup>1,2</sup> / 2,7 <sup>1,3</sup>      | 3,7 <sup>1,2</sup>                                    | 2,45<br>2,56                                              | ,2 <sup>1</sup>                      | 2,4 <sup>6,7</sup><br>3,0 <sup>1,7</sup><br>/ 3,5 <sup>1,8</sup> | 2,6 <sup>6,9</sup><br>3,5 <sup>1,9</sup><br>/ 3,7 <sup>1,10</sup>                                                                    | 2,5 <sup>6,3</sup><br>3,5 <sup>1,3</sup>                                                                                                                                  | 2,5 <sup>6</sup><br>3,0 <sup>1</sup>           | 2,0 <sup>6</sup><br>2,5 <sup>1</sup> | 3,2 <sup>6</sup> 4,0 <sup>1</sup>                                                                                                                                          |
| Неравномерно<br>сть в полосе<br>пропускания, дБ                                                                                                                                                      | 1,2 <sup>1</sup>                             | 1,5¹                                                  | 0,7<br>0,8                                                | -                                    | 0,4<br>1,0                                                       | 0,6<br>1,5                                                                                                                           | 1,3 <sup>6,3</sup><br>2,3 <sup>1,3</sup>                                                                                                                                  | 0,5 <sup>6</sup><br>1,0 <sup>1</sup>           | 0,5 <sup>6</sup><br>1,0 <sup>1</sup> | 1,2 <sup>6</sup> 2,0 <sup>1</sup>                                                                                                                                          |
| Затухание в полосе частот, дБ, не хуже: - 0,3 500 МГц - 500 1500 МГц - 1500 1920 МГц - 1920 1980 МГц - 2215 2300 МГц - 2300 2360 МГц - 2490 2550 МГц - 2680 2740 МГц - 2870 2930 МГц - 4400 5700 МГц | -<br>-<br>26<br>-<br>13<br>22<br>-<br>-<br>- | 30<br>30<br>30<br>30<br>-<br>30<br>35<br>-<br>-<br>10 | -<br>36,9<br>38,8<br>36,9<br>38,8<br>40,5<br>44,4<br>51,6 | -<br>3<br>3<br>3<br>-<br>-<br>-<br>- | -<br>25 30<br>25 30<br>-<br>-<br>-<br>-<br>-<br>-                | 30 38 <sup>6</sup> 30 38 <sup>6</sup> 26 31 <sup>6</sup> 26 31 <sup>6</sup> 30 33 <sup>6</sup> 35 43 <sup>6</sup> 35 43 <sup>6</sup> | 20 22 <sup>6,3</sup> 20 22 <sup>6,3</sup> 25 27 <sup>6,3</sup> 30 35 <sup>6,3</sup> - 35 40 <sup>6,3</sup> 28 33 <sup>6,3</sup> 28 33 <sup>6,3</sup> 10 18 <sup>6,3</sup> | -<br>-<br>40 <sup>11</sup><br>-<br>-<br>-<br>- | 40 <sup>11</sup>                     | 21 23 <sup>6</sup> 20 21 <sup>6</sup> 20 21 <sup>6</sup> 25 28 <sup>6</sup> 20 30 <sup>6</sup> 25 27 <sup>6</sup> 25 27 <sup>6</sup> 25 27 <sup>6</sup> 25 27 <sup>6</sup> |