Free Variables	Units	Description
A_{0h}	m^2	Horizontal bending area constant A0h
$A_{1h_{Land}}$	\mathbf{m}	Horizontal bending area constant A1h (landing case)
$A_{1h_{MLF}}$	\mathbf{m}	Horizontal bending area constant A1h (max aero load case)
$A_{2h_{Land}}$	[-]	Horizontal bending area constant A2h (landing case)
$A_{2h_{MLF}}$	<u>[</u> —]	Horizontal bending area constant A2h (max aero load case)
A_{floor}	$ m m^2$	Floor beam x-sectional area
A_{fuse}	m^2	Fuselage x-sectional area
$A_{hbendb_{Land}}$	m^2	Horizontal bending area at rear wingbox (landing case)
$A_{hbendb_{MLF}}$	m^2	Horizontal bending area at rear wingbox (max aero load case)
$A_{hbendf_{Land}}$	m^2	Horizontal bending area at front wingbox (landing case)
$A_{hbendf_{MLF}}$	m^2	Horizontal bending area at front wingbox (max aero load case)
A_{skin}	m^2	Skin cross sectional area
A_{vbend_b}	m^2	Vertical bending material area at rear wingbox
B_{0v}	m^2	Vertical bending area constant B0
$B_{1v}^{\circ\circ}$	\mathbf{m}	Vertical bending area constant B1
$C_{D_{fuse}}$	[-]	Fuselage drag coefficient
D_{fuse}^{Juse}	N	Fuselage drag
$I_{h_{shell}}$	m^4	Shell horizontal bending inertia
$I_{v_{shell}}$	m^4	Shell vertical bending inertia
$L_{ht_{max}}$	N	Horizontal tail maximum load
$L_{vt_{max}}$	N	Vertical tail maximum load
M	[—]	Cruise Mach number
M_{floor}	$ m N\cdot m$	Max bending moment in floor beams
P_{floor}	N	Distributed floor load
R_{fuse}	\mathbf{m}	Fuselage radius
S_{bulk}	m^2	Bulkhead surface area
S_{floor}	N	Maximum shear in floor beams
\vec{S}_{nose}	m^2	Nose surface area
V_{∞}	$\left[\frac{\mathbf{m}}{\mathbf{s}}\right]$	Cruise velocity
V_{bulk}	$\begin{bmatrix} \frac{m}{s} \end{bmatrix}$ m^3	Bulkhead skin volume
V_{cabin}	m^3	Cabin volume
V_{cone}	m^3	Cone skin volume
V_{cyl}	m^3	Cylinder skin volume
V_{floor}	m^3	Floor volume
V_{hbend_b}	m^3	Horizontal bending material volume b
V_{hbend_c}	m^3	Horizontal bending material volume c
V_{hbend_f}	m^3	Horizontal bending material volume f
V_{hbend}	m^3	Horizontal bending material volume
V_{nose}	m^3	Nose skin volume
	m^3	Vertical bending material volume b

```
\mathrm{m}^3
V_{vbend_c}
                          Vertical bending material volume c
                 \mathrm{m}^3
                          Vertical bending material volume
V_{vbend}
                          APU weight
                 lbf
W_{apu}
W_{buoy}
                 lbf
                          Buoyancy weight
                 lbf
W_{cone}
                          Cone weight
W_{fix}
                 lbf
                          Fixed weights (pilots, cockpit seats, navcom)
W_{floor}
                 lbf
                          Floor weight
W_{fuse}
                 lbf
                          Fuselage weight
                          Horizontal bending material weight
                 lbf
W_{hbend}
                 lbf
                          Insulation material weight
W_{insul}
W_{lugg}
                 lbf
                          Passenger luggage weight
W_{padd}
                 lbf
                          Misc weights (galley, toilets, doors etc.)
                 lbf
                          Passenger weight
W_{pass}
                          Payload weight
W_{payload}
                 lbf
W_{seat}
                 lbf
                          Seating weight
W_{shell}
                 lbf
                          Shell weight
W_{skin}
                 lbf
                          Skin weight
                 lbf
                          Total tail weight
W_{tail}
W_{vbend}
                 lbf
                          Vertical bending material weight
                 lbf
W_{window}
                          Window weight
                          Tailcone radius taper ratio
\lambda_{cone}
                 \begin{bmatrix} \frac{kg}{m^3} \\ \frac{kg}{m^3} \\ \frac{N}{m^2} \\ \end{bmatrix}
                          Freestream density
\rho_{\infty}
                          Cabin air density
\rho_{cabin}
                          Axial stress in skin
\sigma_x
                          Horizontal bending material stress
\sigma_{M_h}
                          Vertical bending material stress
\sigma_{M_v}
                          Skin hoop stress
\sigma_{\theta}
                          Shear stress in tail cone
\tau_{cone}
                          Root chord of the wing
c_0
                          Fuselage height
                  \mathbf{m}
h_{fuse}
                          Cone length
l_{cone}
                  \mathbf{m}
                  _{
m m}
                          Floor length
l_{floor}
                          Fuselage length
l_{fuse}
                  \mathbf{m}
                  _{
m m}
                          Shell length
l_{shell}
                  [-]
                          Number of rows
n_{rows}
                  [-]
                          Number of seats
n_{seat}
                          Shell thickness
t_{shell}
                  \mathbf{m}
                          Skin thickness
                  \mathbf{m}
t_{skin}
                  \mathbf{m}
                          Aisle width
w_{aisle}
                          Floor half-width
                  _{\mathrm{m}}
w_{floor}
                          Fuselage half-width
w_{fuse}
                  _{\mathrm{m}}
```

x_b	\mathbf{m}	x-location of back of wingbox
x_f	\mathbf{m}	x-location of front of wingbox
$x_{hbend_{Land}}$	ft	Horizontal zero bending location (landing case)
$x_{hbend_{MLF}}$	ft	Horizontal zero bending location (maximum aero load case)
x_{shell1}	\mathbf{m}	Start of cylinder section
x_{shell2}	\mathbf{m}	End of cylinder section
x_{tail}	\mathbf{m}	x-location of tail
x_{vbend}	ft	Vertical zero bending location
x_{wing}	m	x-location of wing $c/4$