

自然语言处理序列化标注

吴震

南京大学人工智能学院 南京大学自然语言处理研究组

2023年4月

目录

- 背景知识
- 基于统计学习的序列化标注
 - 隐马尔可夫模型(HMM)
 - 条件随机场(CRF)
- 基于深度学习的序列化标注

010

背景知识

BACKGROUND

• 问题描述

• 你有一个住得很远的朋友,他每天跟你打电话告诉你他那天做了什么。你的朋友仅仅 对三种活动感兴趣:公园散步,购物以及清理房间。他选择做什么事情只凭天气(晴 天、下雨)。你对于他所住的地方的天气情况并不了解,因此决定根据他每天的活动 情况来推测其所在地的天气情况。

状态:晴天、下雨

观测值:散步、购物、清理房间

问题二

• 问题描述

- 最近一个赌场的老板生意不顺,他发现有位大叔在自己的赌场玩得一手好骰子,总能 赢钱,几乎战无不胜。根据多年的经验,老板怀疑大叔使用了"偷换骰子大法"。老板是个冷静的人,看这位大叔也不是善者,不想轻易得罪他,又不想让他坏了规矩。正愁上心头,这时候进来一位名叫HMM的炼金术士,告诉老板他有一个很好的解决方案:不用近其身,只要在远处装个摄像头,把每局的骰子的点数都记录下来,然后运用其强大的数学功力,用这些数据推导出:
 - 该大叔是不是在出千?
 - 如果是在出千,那么他用了几个作弊的骰子? 还有当前是不是在用作弊的骰子。
 - 这几个作弊骰子出现各点的概率是多少?

状态:正常骰子,作弊骰子1,作弊骰子2,...

观测值:骰子的点数

问题三

• 智能拼音输入法

观测序列:nan jing da xue ren gong zhi neng xue yuan

状态序列:南京大学人工智能学院

问题总结:对于一个观测序列,如何知道观测序列背后对应的状态序列?

自然语言处理中典型的任务形式

序列化标注 (SEQUENCE LABELING)

• 定义:给定一个观测序列作为输入,输出是一个标记序列或状态序列。

• 目标:建立一个模型,使它能够对观测序列给出对应的标记序列。

输入:观测序列 $X = (x_1, x_2, ..., x_n)$

输出:标记序列 $Y = (y_1, y_2, ..., y_n)$

以词性标注为例

词性

- 词性又称词类,是词汇的一个基本的语法属性。
- 反映了词在句子中的语法功能和意义。
- 语言学界对词性的数量、性质和普遍性进行了大量的争论
 - 封闭类
 - 开放类

词性

- 封闭类 (closed class, function words, 每类词数有限)
 - Determiners (a/an, the, ...)
 - Pronouns (this, that, ...)
 - Prepositions (at, in, ...)
 - Conjunctions (and, but, ...)
 - Auxiliary verbs (do, does)
 - Particles (if, not, ...)
 - Numerals (one, two, ...)

词性

开放类(open class,每类词数不限)

Nouns

▶ 句法上:可作物主、可有限定词、有复数形式

▶ 语义上:人名、地名和物名等

Verbs

▶ 句法上:作谓语、有几种词形变化

▶ 语义上:动作、过程(一系列动作)

Adjectives

▶ 句法上:修饰Nouns等

▶ 语义上:性质

Adverbs

➤ 句法上:修饰Verbs等

▶ 语义上:方向、程度、方式、时间

PENN树库的词性集合

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],),\},>$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

词性标注 (PART-OF-SPEECH TAGGING)

• 定义:给一句话中的每个词 (word)标注上词性 (Part-of-Speech)

为什么需要词性标注?

- 为很多现实任务提供必要的信息
- 句法分析
 - 在对句子进行句法分析前需要知道每个词的词性
- 信息抽取
 - 帮助识别命名实体、关系
- 机器翻译
 - 帮助多义词进行更好的上下文翻译

词性标注的挑战

兼类词

- 一个词具有两个或者两个以上的词性
- 英文的Brown语料库中,10.4%的词是兼类词。例如:
 - > The back door
 - On my back
 - Promise to back the bill
- 汉语兼类词,例如:
 - ▶ 把门锁上 买了一把锁
 - ➤ 他研究xx 他的研究工作...
 - 由于缺少词形变化,汉语的兼类词更多!

词性标注语料库

- Brown Corpus: 语料来自于美国英语出版物上的文本,共500篇,每篇大约 2000个单词,合计100万词(1961)
- WSJ: 语料来自于华尔街日报,合计100万词(1989)
- Switchboard: 语料来自于电话对话文本,合计200万词(1990-1991)

Battle-tested/NNP industrial/JJ managers/NNS here/RB always/RB buck/VB up/IN nervous/JJ newcomers/NNS with/IN the/DT tale/NN of/IN the/DT first/JJ of/IN their/PP\$ countrymen/NNS to/TO visit/VB Mexico/NNP ,/, a/DT boatload/NN of/IN samurai/NNS warriors/NNS blown/VBN ashore/RB 375/CD years/NNS ago/RB ./.

"/" From/IN the/DT beginning/NN ,/, it/PRP took/VBD a/DT man/NN with/IN extraordinary/JJ qualities/NNS to/TO succeed/VB in/IN Mexico/NNP ,/, "/" says/VBZ Kimihide/NNP Takimura/NNP ,/, president/NN of/IN Mitsui/NNS group/NN 's/POS Kensetsu/NNP Engineering/NNP Inc./NNP unit/NN ./.

基于统计学习的序列化标注

STATISTICAL LEARNING-BASED SEQUENCE LABELING

决定一个词词性的因素

- 从语言学角度:由词的用法以及在句中的语法功能决定
- 统计学角度:
 - 和上下文的词性(前后词的标注)相关

和上下文单词(前后词)相关
 名词 动词 名词 共有16种可能 动名词 动词 动词 隐藏状态序列Y

教授

喜欢

画

观测序列X

画

词性标注

• 词性标注:给定句子X,求句子对应的词性序列Y

$$\operatorname{argmax}_{Y} P(Y|X) = \operatorname{argmax}_{Y} \frac{P(Y,X)}{P(X)}$$

$$= \operatorname{argmax}_{Y} P(Y, X)$$

$$= \operatorname{argmax}_{Y} P(Y)P(X|Y)$$

隐含马尔可夫模型

Hidden Markov Model, HMM

词性标注

• 词性标注:给定句子X,求句子对应的词性序列Y

P(名词 动词 动词 名词 | 教授 喜欢 画 画)

=P(名词 动词 动词 名词 教授 喜欢 画 画) / P(教授 喜欢 画 画)

∝ P(名词 动词 动词 名词 教授 喜欢 画 画)

=P(名词 动词 动词 名词) P(教授 喜欢 画 画 | 名词 动词 动词 名词)

马尔可夫过程

- 马尔可夫链
 - 描述在状态空间中,从一个状态到另一个状态转换的随机过程。

天气状态的马尔可夫链

- 马尔科夫假设
 - 马尔可夫链在任意时刻 t 的状态只依赖于它在前一时刻的状态,与其他时刻的状态 无关

$$P(y_t|y_1,...,y_{t-1}) = P(y_t|y_{t-1})$$

- HMM是一阶马尔可夫链的扩展
 - 状态序列不可见(隐藏)
 - 隐藏的状态序列满足一阶马尔可夫链性质
 - 可见的观察值与隐藏的状态之间存在概率关系

- 序列化标注的统计学模型
 - 描述了由隐马尔可夫链随机生成观测序列的过程,属于生成模型。
- 时序概率模型
 - 描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测值,从而产生观测序列的过程。

$$P(Y,X) = P(Y)P(X|Y)$$

• 计算*P*(*Y*):

$$P(Y) = P(y_1, y_2, ..., y_n)$$

$$= \prod_{t=1}^{n} P(y_t | y_1, ..., y_{t-1})$$

- 马尔可夫假设:
 - 描述从一个状态到转换另一个状态的随机过程。该过程具备"无记忆"的性质,即当前时刻状态的概率分布只能由上一时刻的状态决定,和更久之前的状态无关。

$$P(y_t|y_1,...,y_{t-1}) = P(y_t|y_{t-1})$$

• 计算*P*(*X*|*Y*):

$$P(X|Y) = P(x_1, x_2, \dots, x_n | y_1, y_2, \dots, y_n)$$

$$= \prod_{t=1}^{n} P(x_t | x_1, y_1, \dots, x_{t-1}, y_{t-1}, y_t)$$

- 观测独立性假设
 - 任意时刻的观测值只依赖于该时刻的马尔可夫链的状态,与其他观测及状态无关

$$P(x_t|x_1, y_1, ..., x_{t-1}, y_{t-1}, y_t) = P(x_t|y_t)$$

P(教授 喜欢 画 画 | 名词 动词 动词 名词)=P(教授|名词) * P(喜欢|动词) * P(画|动词) * P(画|名词)

• 计算*P*(*Y*, *X*):

$$P(Y,X) = P(Y)P(X|Y)$$

$$= P(y_1, y_2, ..., y_n)P(x_1, x_2, ..., x_n|y_1, y_2, ..., y_n)$$

发射概率

$$= \prod_{t=1}^{n} P(y_{t}|y_{t-1}) P(x_{t}|y_{t})$$

• 计算*P*(*Y*, *X*):

P(名词 动词 动词 名词, 教授 喜欢 画 画)

=P(名词) * P(动词|名词) * P(动词|动词) * P(名词|动词) *P(教授|名词) * P(喜欢|动词) * P(画|动词) * P(画|名词)

- 状态集合 $\mathbb{Q} = \{q_1, q_2, ..., q_Q\}$, 观测值集合 $\mathbb{V} = \{v_1, v_2, ..., v_V\}$
 - Q和V分别表示状态数量和观测值数量

- $Y = (y_1, y_2, ..., y_n)$ 是长度为 n 的状态序列 , $X = (x_1, x_2, ..., x_n)$ 是对应的观测序列
 - $y_t \in \mathbb{Q}$ 是一个随机变量,代表一个可能的状态值
 - $x_t \in V$ 是一个随机变量,代表一个可能的观测值

- 状态转移概率矩阵A:表示状态之间的转移概率
 - 其中 $a_{i,j} = P(y_{t+1} = q_j | y_t = q_i)$,表示在 t 时刻处于状态 q_i 的条件下,在 t+1 时刻转移到 q_j 的概率 P(动词|3G)

状态转移概率

- 发射概率矩阵B:表示某个状态下生成某个观测值的概率
 - 其中 $b_j(k) = P(x_t = v_k | y_t = q_j)$, 表示 t 时刻处于状态 q_j 的条件下生成观测值 v_k 的概率

$$\mathbf{B} = \begin{bmatrix} b_1(1) & b_1(2) & \dots & b_1(V) \\ b_2(1) & b_2(2) & \dots & b_2(V) \\ \vdots & \vdots & \vdots & \vdots \\ b_Q(1) & b_Q(2) & \dots & b_Q(V) \end{bmatrix}$$
初始状态

- 初始状态概率 π : $\pi = (\pi_1, \pi_2, ..., \pi_0)$
 - $\pi_i = P(y_1 = q_i)$ 表示开始时刻 t = 1 时处于状态 q_i 的概率

发射概率

P(喜欢|动词)

- 隐马尔可夫模型由初始状态概率 π 、状态转移矩阵 A 、以及发射概率矩阵 B 决定。一个隐马尔可夫模型可用三元符号表示: $\lambda = (A, B, \pi)$
 - 初始状态概率 π 和状态转移矩阵 A 确定了隐藏的马尔可夫链,生成了不可观测的状态序列;
 - 观测概率矩阵 B 确定了如何从状态生成观测值,与状态序列一起确定了如何产生观测序列。

状态转移概率

$$P(Y,X) = P(Y)P(X|Y)$$

$$= \prod_{t=1}^{n} P(y_t|y_{t-1})P(x_t|y_t)$$

发射概率

词性标注的HMM模型定义

- HMM : $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$
- 状态集合Q:预先定义的词性标签集
- 观测值集合♥: 词表集合
- 状态转移概率矩阵A:词性之间的转移概率
- 发射概率矩阵B:某个词性生成某个词的概率
- 初始状态概率π:以某个词性作为开始状态的概率

HMM的基本问题

- 概率计算
 - 给定HMM模型 $\lambda = (A, B, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,计算观测序列 X 出现的概率 $P(X|\lambda)$ P(教授 喜欢 画 画 $|\lambda)$
- 模型学习(参数估计)
 - 已知观测序列 $X = (x_1, x_2, ..., x_n)$,估计HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 的参数,使得该模型下观测序列的概率 $P(X|\lambda)$ 最大。 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$
- 预测(解码)
 - 已知HMM模型 $\lambda = (A, B, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,求该观测序列对应的最可能的状态序列 $Y = (y_1, y_2, ..., y_n)$ argmax $_Y$ P(Y| 教授 喜欢 画 画, λ)

HMM的概率计算-直接计算

- 概率计算
 - 给定HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 和观测序列 $X = (x_1, x_2, ..., x_n)$,计算观测序列 X 出现的概率 $P(X|\lambda)$

- 直接计算法
 - 枚举所有长度为n的状态序列,计算它们生成观测序列的概率并求和

$$P(X|\lambda) = \sum_{y_1, y_2, \dots, y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t, y_{t+1}} b_{y_t}(x_t)$$

计算复杂度 $O(n \times Q^n)$,不可行

HMM的概率计算-前向算法

- 定义前向概率
 - 给定HMM模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$,定义到 t 时刻部分观测序列为 $x_1, x_2, ..., x_t$ 且状态为 q_i 的概率为前向概率,记作:

$$\alpha_t(i) = P(x_1, x_2, ..., x_t, y_t = q_i | \lambda)$$

HMM的概率计算-前向算法

- 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$, 观测序列 $X = (x_1, x_2, ..., x_n)$
- 输出:观测序列概率 $P(X|\lambda)$
- 算法流程:
 - 初始化:

$$\alpha_1(i) = \pi_i b_i(x_1), \qquad i = 1, 2, ..., Q$$

• 递推:

$$\alpha_t(i) = \left[\sum_{j=1}^n \alpha_{t-1}(j)a_{j,i}\right]b_i(x_t)$$
 $i = 1, 2, ..., Q$ $t = 2, ..., n$

HMM的参数估计

- 模型学习(参数估计)
 - 已知观测序列 $X = (x_1, x_2, ..., x_n)$,估计模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 的参数,使得该模型下观测序列的概率 $P(X|\lambda)$ 最大。

- 根据训练数据的不同,隐马尔可夫模型的学习方法也不同
 - 监督学习:训练数据包括观测序列和对应的状态序列,通过监督学习来学习隐马尔可 夫模型。
 - 无监督学习:训练数据仅包括观测序列,通过无监督学习来学习隐马尔可夫模型。

HMM的参数估计—监督学习

- 假设数据集为 $\mathbb{D} = \{(X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N)\}$, 其中:
 - $X_1, ..., X_N$ 为N个观测序列; $Y_1, ..., Y_N$ 为对应的N个状态序列。
 - 序列 X_k , Y_k 的长度为 n_k 。
- 估计转移概率 a_{i,j}
 - 设样本中前一时刻处于状态 q_i 、且后一时刻处于 q_j 的频数为 $A_{i,j}$,则转移概率 $a_{i,j}$ 的估计是:

$$a_{i,j} = \frac{A_{i,j}}{\sum_{u=1}^{Q} A_{i,u}}, \qquad i = 1, 2, ..., Q; \ j = 1, 2, ..., Q$$

HMM的参数估计—监督学习

- 估计转移概率 a_{i,j}
 - 设样本中前一时刻处于状态 q_i 、且后一时刻处于 q_j 的频数为 $A_{i,j}$,则转移概率 $a_{i,j}$ 的估计是:

$$a_{i,j} = \frac{A_{i,j}}{\sum_{u=1}^{Q} A_{i,u}}, \qquad i = 1, 2, ..., Q; \ j = 1, 2, ..., Q$$

$$a_{33}$$
 a_{33} a

HMM的学习问题—监督学习

- 估计观测概率 $b_i(k)$
 - 设样本中状态为 q_j 且其对应观测值为 v_k 的频数为 $B_{j,k}$, 则状态为 q_j 并且观测值为 v_k 的概率 $b_j(k)$ 的估计为:

$$b_j(k) = \frac{B_{j,k}}{\sum_{v=1}^{V} B_{j,v}}, \qquad j = 1, 2, ..., Q; \ k = 1, 2, ..., V$$

$$b$$
动词(画) = $\frac{B$ 动词,画}{B动词 = $\frac{4046}{13124}$ = 0.308

HMM的学习问题—监督学习

- 估计初始状态概率 π_i
 - 设样本中初始时刻(t=1)处于状态 q_i 的频数为 C_i ,则初始状态概率 π_i 的估计为:

$$\pi_i = \frac{C_i}{\sum_{j=1}^{Q} C_j}, \qquad i = 1, 2, ..., Q;$$

$$\pi_{\text{⇒ii}} = \frac{C_{\text{⇒ii}}}{\sum_{j=1}^{Q} C_j} = \frac{3728}{8429} = 0.442$$

HMM的模型预测(解码)

- 预测(解码)
 - 已知模型 $\lambda = (A, B, \pi)$ 和观测序列 $X(x_1, x_2, ..., x_n)$,求该观测序列对应的最可能的状态序列 $Y = (y_1, y_2, ..., y_n)$

• 计算目标

$$\operatorname{argmax}_{y_1, y_2, \dots, y_n} P(y_1, y_2, \dots, y_n, x_1, x_2, \dots, x_n) = \operatorname{argmax}_{y_1, y_2, \dots, y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t, y_{t+1}} b_{y_t}(x_t)$$

HMM的模型预测(解码)

• 计算目标

$$\operatorname{argmax}_{y_1, y_2, \dots, y_n} P(y_1, y_2, \dots, y_n, x_1, x_2, \dots, x_n) = \operatorname{argmax}_{y_1, y_2, \dots, y_n} \pi_{y_1} \prod_{t=1}^n a_{y_t, y_{t+1}} b_{y_t}(x_t)$$

HMM的模型预测—维特比算法

- 算法思想:最优子结构
 - 根据动态规划原理,最优路径具有这样的特性:如果最优路径在时刻 t 通过结点 y_t^* ,则这一路径从结点 y_t^* 到终点 y_n^* 的部分路径,对于从 y_t^* 到 y_n^* 的所有可能路径来说,也必须是最优的。

HMM的预测问题—维特比算法

• 对于观测序列 $X = (x_1, x_2, ..., x_n)$

时刻: 1

时刻: t-1

时刻: t

• t 时刻状态为 q_i 且已观测序列为 $x_1, x_2, ..., x_t$ 的所有可能路径 $(y_1, y_2, ..., y_t)$ 中概率最大值为:

$$\delta_t(i) = \max_{y_1, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = q_i, x_1, \dots, x_t), \qquad i = 1, 2, \dots, Q$$

时刻:n

HMM的预测问题—维特比算法

- 对于观测序列 $X = (x_1, x_2, ..., x_n)$
 - 得到变量 δ 的递推公式

$$\delta_t(i) = \max_{y_1, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = q_i, x_1, \dots, x_t) = \max_{1 \le j \le Q} \delta_{t-1}(j) \times a_{j,i} \times b_i(x_t)$$

t 时刻状态为 q_i 的所有单个路径中概率最大的路径的第 t-1 个结点为:

$$\Psi_t(i) = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i} , \qquad i = 1, 2, ..., Q$$

$$i = 1, 2, ..., Q$$

HMM的预测问题—维特比算法

- 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$, 观测序列 $X = (x_1, x_2, ..., x_n)$
- 输出:最优的状态路径 $Y^* = (y_1^*, y_2^*, ..., y_n^*)$
- 算法流程:
 - 初始化: $\delta_1(i) = \pi_i b_i(x_1), \Psi_1(i) = 0, \qquad i = 1, 2, ..., Q$
 - 递推: $\delta_t(i) = \max_{1 \le j \le Q} \delta_{t-1}(j) \times a_{j,i} \times b_i(x_t)$ i = 1, 2, ..., Q; t = 2, ..., n $\Psi_t(i) = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i}$
 - 终止: $P^* = \max_{1 \le i \le Q} \delta_n(i), \qquad y_n^* = \operatorname{argmax}_{1 \le j \le Q} \delta_{t-1}(j) a_{j,i}$
 - 最优路径回溯: $y_t^* = \Psi_{t+1}(y_{t+1}^*), t = n-1,...,1$
 - 获得最优路径 $Y^* = (y_1^*, y_2^*, ..., y_T^*)$ 。

HMM生成观测序列的过程

- 输入:隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \pi)$ 和观测序列长度n
- 输出:观测序列 $X = (x_1, x_2, ..., x_n)$
- 算法步骤:
 - 按照初始状态分布 π 产生状态 y_1
 - $\Diamond t = 1$, 开始迭代。迭代条件: $t \leq n$ 。迭代步骤为:
 - 按照状态 y_t 的观测概率分布 $b_j(k)$ 生成观测值 x_t
 - 按照状态 y_t 的状态转移分布 $a_{i,j}$ 产生状态 y_{t+1}
 - $\diamondsuit t = t + 1$

HMM的遗留问题

由于观测独立性假设(任意时刻的观测只依赖于该时刻的马尔可夫链的状态), 很难融入更多的特征(如上下文)以表示复杂的关系

 Label bias问题:由于马尔可夫假设使得在计算转移概率时做了局部归一化,算 法倾向于选择分支较少的状态

Thank you! Q&A

