First Order Logic

Beyond Propositional logic

- Propositional logic not expressive enough
 - In Wumpus world we needed to explicitly write every case of Breeze & Pit relation
 - Facts = propositions
 - "All squares next to pits are breezy"
- "Regular" programming languages mix facts (data) and procedures (algorithms)
 - World[2,2]=Pit
 - Cannot deduce/compose facts automatically
 - Declarative vs. Procedural

Natural Language

- Natural language probably not used for representation
 - Used for communication
 - "Look!"

First-Order Logic

- Idea:
 - Don't treat propositions as "atomic" entities.
- First-Order Logic:
 - Objects: cs4701, fred, ph219, emptylist ...
 - Relations/Predicates: is_Man(fred), Located(cs4701, ph219), is_kind_of(apple, fruit)...
 - Note: Relations typically correspond to verbs
 - Functions: Best_friend(), beginning_of() : Returns object(s)
 - − Connectives: \land , \lor , \neg , \Rightarrow , \Leftrightarrow
 - Quantifiers:
 - Universal: ∀x: (is_Man(x)) is_Mortal(x))
 - Existential: ∃y: (is_Father(y, fred))

Predicates

- In <u>traditional grammar</u>, a <u>predicate</u> is one of the two main parts of a <u>sentence</u> the other being the <u>subject</u>, which the predicate modifies.
- "John is yellow" John acts as the subject, and is yellow acts as the predicate.
- The predicate is much like a <u>verb phrase</u>.
- <u>In linguistic semantics</u> a **predicate** is an expression that can be *true of* something

Types of formal mathematical logic

- Propositional logic
 - Propositions are interpreted as true or false
 - Infer truth of new propositions
- First order logic
 - Contains predicates, quantifiers and variables
 - E.g. Philosopher(a) → Scholar(a)
 - $\forall x$, King(x) \land Greedy (x) \Rightarrow Evil (x)
 - Variables range over individuals (domain of discourse)
- Second order logic
 - Quantify over predicates and over sets of variables

Other logics

- Temporal logic
 - Truths and relationships change and depend on time
- Fuzzy logic
 - Uncertainty, contradictions

Wumpus

- Squares neighboring the wumpus are smelly
 - Objects: Wumpus, squares
 - Property: Smelly
 - Relation: neighboring
- Evil king john rules England in 1200
 - Objects: John, England, 1200
 - Property: evil, king
 - Relation: ruled

Example: Representing Facts in First-Order Logic

- 1. Lucy* is a professor
- 2. All professors are people.
- 3. John is the dean.
- 4. Deans are professors.
- 5. All professors consider the dean a friend or don't know him.
- 6. Everyone is a friend of someone.
- 7. People only criticize people that are not their friends.
- 8. Lucy criticized John.

^{*} Name changed for privacy reasons.

Same example, more formally

Knowledge base:

- is-prof(lucy)
- \forall x (is-prof(x) \rightarrow is-person(x))
- is-dean(John)
- \forall x (is-dean(x) \rightarrow is-prof(x))
- \forall x (\forall y (is-prof(x) \land is-dean(y) \rightarrow is-friend-of(y,x) \lor \neg knows(x, y)))
- ∀ x (∃ y (is-friend-of (y, x)))
- $\forall x (\forall y (is-person(x) \land is-person(y) \land criticize (x,y) \rightarrow \neg is-friend-of (y,x)))$
- criticize(lucy, John)

Question: Is John no friend of Lucy? —is-friend-of(John ,lucy)

How the machine "sees" it:

Knowledge base:

```
P1(A)
∀ x (P1(x) → P3(x))
P4(B)
∀ x (P4(x) → P1(x))
∀ x (∀ y (P1(x) ∧ P4(y) → P2(y,x) ∨ ¬P5(x, y)))
∀ x (∃ y (P2(y, x)))
∀ x (∀ y (P3 (x) ∧ P3(y) ∧ P6(x,y) → ¬P2(y,x)))
P6(A, B)
```

Question: $\neg P2(B,A)$?

Knowledge Engineering

- 1. Identify the task.
- 2. Assemble the relevant knowledge.
- 3. Decide on a vocabulary of predicates, functions, and constants.
- 4. Encode general knowledge about the domain.
- Encode a description of the specific problem instance.
- 6. Pose queries to the inference procedure and get answers.
- 7. Debug the knowledge base.

Knowledge Engineering

- 1. All professors are people.
- 2. Deans are professors.
- 3. All professors consider the dean a friend or don't know him.
- 4. Everyone is a friend of someone.
- 5. People only criticize people that are not their friends.
- 6. Lucy* is a professor
- 7. John is the dean.
- 8. Lucy criticized John.
- 9. Is John a friend of Lucy's?

General Knowledge

Specific problem

Query

Inference Procedures: Theoretical Results

- There exist complete and sound proof procedures for propositional and FOL.
 - Propositional logic
 - Use the definition of entailment directly. Proof procedure is exponential in *n*, the number of symbols.
 - In practice, can be much faster...
 - Polynomial-time inference procedure exists when KB is expressed as **Horn clauses**: $P_1 \wedge P_2 \wedge \ldots \wedge P_n \Rightarrow Q$ where the P_i and Q are non-negated atoms.
 - First-Order logic
 - Godel's completeness theorem showed that a proof procedure exists...
 - But none was demonstrated until Robinson's 1965 resolution algorithm.
 - Entailment in first-order logic is semidecidable.

Types of inference

- Reduction to propositional logic
 - Then use propositional logic inference, e.g. enumeration, chaining
- Manipulate rules directly

Universal Instantiation

- $\forall x$, King(x) \land Greedy (x) \Rightarrow Evil (x)
 - King(John) \land Greedy (John) \Rightarrow Evil (John)
 - King(Richard) ∧ Greedy (Richard) ⇒ Evil (Richard)
 - King(Father(John)) ∧ Greedy (Father(John)) ⇒ Evil
 (Father(John))
- Enumerate all possibilities
 - All must be true

Existential Instantiation

- ∃ x, Crown(x) ∧ OnHead(x, John)
 - Crown (C) ∧ OnHead(C, John)
 - Provided C is not mentioned anywhere else
- Instantiate the one possibility
 - One must be true
 - Skolem Constant (skolemization)

Resolution Rule of Inference

Example:

Assume: $E_1 \lor E_2$ playing tennis or raining and $\neg E_2 \lor E_3$ not raining or working

Then: $E_1 \lor E_3$ playing tennis or working "Resolvent"

General Rule:

Assume: $E \lor E_{12} \lor ... \lor E_{1k}$ and $\neg E \lor E_{22} \lor ... \lor E_{2l}$ Then: $E_{12} \lor ... \lor E_{1k} \lor E_{22} \lor ... \lor E_{2l}$

Note: E_{ii} can be negated.

Algorithm: Resolution Proof

- Negate the original theorem to be proved, and add the result to the knowledge base.
- Bring knowledge base into conjunctive normal form (CNF)
 - CNF: conjunctions of disjunctions
 - Each disjunction is called a clause.
- Repeat until there is no resolvable pair of clauses:
 - Find resolvable clauses and resolve them.
 - Add the results of resolution to the knowledge base.
 - If NIL (empty clause) is produced, stop and report that the (original) theorem is true.
- Report that the (original) theorem is false.

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Resolution Example: Propositional Logic

- To prove: ¬P
- Transform Knowledge Base into CNF

```
Regular CNF Sentence 1: P \to Q \neg P \lor Q Sentence 2: Q \to R \neg Q \lor R Sentence 3: \neg R
```

Proof

1.	$\neg P \lor Q$	Sentence 1
2.	$\neg Q \lor R$	Sentence 2
3.	$\neg R$	Sentence 3
4.	Р	Assume opposite
<i>5.</i>	Q	Resolve 4 and 1
6.	R	Resolve 5 and 2
7.	nil	Resolve 6 with 3

Therefore original theorem ($\neg P$) is true

Resolution Example: FOL

Axioms: Regular CNF

$$\forall x : feathers(x) \rightarrow bird(x)$$
 $\neg feathers(x) \lor bird(x)$ $feathers(tweety)$ $feathers(tweety)$

Is bird(tweety)?

A: True B: False

Resolution Example: FOL

Example: Prove bird(tweety)

Axioms: Regular CNF

1: $\forall x : feathers(x) \rightarrow bird(x)$ $\neg feathers(x) \lor bird(x)$

 $\exists: \neg bird(tweety) \qquad \neg bird(tweety)$

4: $\neg feathers(tweety)$

Resolution Proof

- 1. Resolve 3 and 1, specializing (i.e. "unifying") tweety for x. Add :feathers(tweety)
- 2. Resolve 4 and 2. Add NIL.

Resolution Theorem Proving

Properties of Resolution Theorem Proving:

- sound (for propositional and FOL)
- (refutation) complete (for propositional and FOL)

Procedure may seem cumbersome but note that can be easily automated. Just "smash" clauses until empty clause or no more new clauses.

A note on negation

- To prove theorem θ we need to show it is never wrong:
 - we test if there is an instance that satisfies $\neg \theta$
 - if so report that θ is false
- But we are not proving that $\neg \theta$ is true
 - Just that θ is false
 - Showing instance of $\neg \theta$ is not the same as showing that $\neg \theta$ is *always* true
- E.g. prove theorem θ that says "x+y=4 \rightarrow x=2 \land y=2"
 - We find a case x=1∧y=3 so theorem is not true
 - But $\neg \theta$ is also not always true either

Substitutions

- Syntax:
 - SUBST (A/B, q) or SUBST (θ , q)
- Meaning:
 - Replace All occurrences of "A" with "B" in expression "q"
- Rules for substitutions:
 - Can replace a variable by a constant.
 - Can replace a variable by a variable.
 - Can replace a variable by a function expression, as long as the function expression does not contain the variable.

$$v_1/C$$
; v_2/v_3 ; $v_4/f(...)$