Solutions for ST340 Lab 9

2019-20

Load in the required libraries for data manipulation and multivariate normal distribution:

```
require(MASS)

## Warning: package 'MASS' was built under R version 3.5.2

require(plyr)
require(reshape2)
require(ggplot2)

## Warning: package 'ggplot2' was built under R version 3.5.2

Set a seed for repeatable plots:
set.seed(12345)
```

Continuous observations

The squared exponential (SE, or RBF) covariance function with length scale ℓ can be calculated as follows:

```
calcK <- function(X1,X2,l=1) {
    K <- matrix(0, nrow=length(X1), ncol=length(X2))
    for (i in 1:nrow(K)) {
        for (j in 1:ncol(K)) {
            K[i,j] <- exp(-0.5*(abs(X1[i]-X2[j])/1)^2)
        }
    }
    return(K)
}</pre>
```

(a) Run the following code to plot some sample functions drawn from a GP:

```
x.star <- seq(-5,5,len=50)
Kmat <- calcK(x.star,x.star)</pre>
n.samples <- 3
values <- matrix(rep(0,length(x.star)*n.samples), ncol=n.samples)</pre>
for (i in 1:n.samples) {
  # Each column represents a sample from a multivariate normal distribution
  # with zero mean and covariance Kmat
  values[,i] <- mvrnorm(1, rep(0, length(x.star)), Kmat)</pre>
}
values <- cbind(x=x.star,as.data.frame(values))</pre>
values <- melt(values,id="x")</pre>
# Plot the result
ggplot(values,aes(x=x,y=value)) +
  geom_rect(xmin=-Inf, xmax=Inf, ymin=-2, ymax=2, fill="grey80") +
  geom_line(aes(group=variable)) +
  theme_bw() +
  scale_y_continuous(lim=c(-2.5,2.5), name="output, f(x)") +
  xlab("input, x")
```


Now let's assume that we have some known data points;

```
f <- data.frame(x=c(-4,-3,-1,0,2),

y=c(-2,0,1,2,-1))
```

(b) Calculate the covariance matrices using the same x.star values as above:

```
x <- f$x
k.xx <- calcK(x,x)
k.xxs <- calcK(x,x.star)
k.xxx <- calcK(x.star,x)
k.xxxs <- calcK(x.star,x.star)
f.star.bar <- k.xxx%*%solve(k.xx)%*%f$y
cov.f.star <- k.xxxx**%solve(k.xx)%*%k.xxx</pre>
```

(c) Draw 50 samples from the multivariate Normal distribution $\mathbf{f}^* \sim \mathcal{N}(\bar{\mathbf{f}}^*, \mathbf{\Sigma}^*)$ and plot them as above.

```
n.samples <- 50
values <- matrix(rep(0,length(x.star)*n.samples), ncol=n.samples)
for (i in 1:n.samples) {
   values[,i] <- mvrnorm(1, f.star.bar, cov.f.star)
}
values <- cbind(x=x.star,as.data.frame(values))
values <- melt(values,id="x")
ggplot(values,aes(x=x,y=value)) +
   geom_line(aes(group=variable), colour="grey80") +
   geom_point(data=f,aes(x=x,y=y)) +
   theme_bw() +
   scale_y_continuous(lim=c(-3,3), name="output, f(x)") +</pre>
```

```
xlab("input, x")
```

Warning: Removed 11 rows containing missing values (geom_path).

- (d) Try some different **known** data points (f) with the previous code, to see how that changes the resulting plot.
- (e) Now assume that each of the observed data points has some normally-distributed noise:

```
sigma.n <- 0.1
f.bar.star <- k.xsx%*%solve(k.xx + sigma.n^2*diag(1, ncol(k.xx)))%*%f$y
cov.f.star <- k.xsxs - k.xsx%*%solve(k.xx + sigma.n^2*diag(1, ncol(k.xx)))%*%k.xxs

values <- matrix(rep(0,length(x.star)*n.samples), ncol=n.samples)
for (i in 1:n.samples) {
   values[,i] <- mvrnorm(1, f.bar.star, cov.f.star)
}
values <- cbind(x=x.star,as.data.frame(values))
values <- melt(values,id="x")

ggplot(values, aes(x=x,y=value)) +
   geom_line(aes(group=variable), colour="grey80") +
   geom_errorbar(data=f,aes(x=x,y=NULL,ymin=y-2*sigma.n, ymax=y+2*sigma.n), width=0.2) +
   geom_point(data=f,aes(x=x,y=y)) +
   theme_bw() +
   scale_y_continuous(lim=c(-3,3), name="output, f(x)") +
   xlab("input, x")</pre>
```


(f) Try some different values for the noise standard deviation sigma.n with the previous code, to see how that changes the resulting plot.

GP classifier

Install the variational Bayes code from BioConductor:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("vbmp", version = "3.8")

# For older versions of R, use:
# source("https://bioconductor.org/biocLite.R")
# biocLite("vbmp")
```

(a) Generate some synthetic data:

```
th=runif(100,-pi,pi)
y= ifelse(th < 0, 1, 2)
x1=sin(th)-y/3+rnorm(100,sd=0.1)
x2=cos(th)+y/2+rnorm(100,sd=0.1)
x1=c(x1,rnorm(50,-2,0.2))
x2=c(x2,rnorm(50,1.5,0.2))
y=c(y,rep(3,50))
plot(x1,x2,asp=1,col=y,pch=y)</pre>
```



```
idx <- sample.int(length(y),length(y)/2)
train.X <- cbind(x1[idx],x2[idx])
train.Y <- y[idx]
test.X <- cbind(x1[-idx],x2[-idx])
test.Y <- y[-idx]</pre>
```

(b) Use a multinomial probit GP with ARD covariance to classify the points:

```
library(vbmp)
theta <- runif(ncol(train.X))
system.time(resSym <- vbmp(train.X, train.Y, test.X, test.Y, theta,</pre>
```

```
list(sKernelType="gauss", bThetaEstimate=TRUE, maxIts=50)))
            system elapsed
      user
    31.599
              5.775 37.508
##
covParams(resSym)
## [1] 0.4778355 0.9356164
predError(resSym)
## [1] 0.0666667
 (c) Try classifying the MNIST images as '1', '2', or '3':
load("mnist.tiny.rdata")
train.idx123 <- which(train.labels %in% c(1,2,3))</pre>
test.idx123 <- which(test.labels %in% c(1,2,3))
newXtrain <- train.X[train.idx123,]/255</pre>
newYtrain <- train.labels[train.idx123]</pre>
newXtest <- test.X[test.idx123,]/255</pre>
newYtest <- test.labels[test.idx123]</pre>
theta <- rep(1., ncol(train.X))</pre>
system.time(resMNIST <- vbmp(newXtrain, newYtrain, newXtest, newYtest, theta,</pre>
                  list(sKernelType="iprod", bThetaEstimate=FALSE, maxIts=50)))
##
      user system elapsed
##
     8.563
             0.119
                      8.722
predError(resMNIST)
## [1] 0.06644518
 (d) Fit a multiclass SVM and compare the results.
library(e1071)
fit.svm <- svm(newXtrain, newYtrain)</pre>
pred.svm <- predict(fit.svm, newXtest)</pre>
mean((pred.svm - newYtest)^2)
```

[1] 0.1242218