

Fakultät für Elektrotechnik und Informationstechnik

Modulhandbuch

für den Masterstudiengang

Wirtschaftsingenieurwesen für Elektrotechnik und Informationstechnik

Version vom 01.03.2023

1	Pflic	chtmod	ule der Vertiefungen	2
	1.1	Vertie	fung "Automatisierungstechnik" (AT)	2
		1.1.1	Automatisierungssysteme	2
		1.1.2	Kommunikationssysteme	3
		1.1.3	Optimal Control	4
		1.1.4	Process Control	5
		1.1.5	Rechnerbasierter Reglerentwurf (ersetzt Hybride Discrete Event Systems)	6
		1.1.6	Struktur- und Verhaltensmodellierung von eingebetteten und medizinischen Systemen – UML	
			(ersetzt Automatisierungsgeräte)	7
	1.2	Vertie	fung "Elektrische Energietechnik" (EE)	8
		1.2.1	Elektrische Netze 1 - Stationäre Netzberechnung	8
		1.2.2	Regelung von Drehstrommaschinen	9
		1.2.3	Regenerative Elektroenergiequellen - Systembetrachtung	10
		1.2.4	Schaltungen der Leistungselektronik	11
		1.2.5	Systeme der Leistungselektronik	12
		1.2.6	Unkonventionelle elektrische Maschinen	13
	1.3	Vertie	fung "Informations- und Kommunikationstechnik" (IKT)	14
		1.3.1	Bildverarbeitung	14
		1.3.2	Hochfrequenzkomponenten und -systeme (bisher Hochfrequenztechnik II)	15
		1.3.3	Integrative Neuroscience II	16
		1.3.4	Sprachdialogsysteme	18
		1.3.5	System-on-Chip	19
		1.3.6	Technische Kognitive Systeme	20
2	Wal	nlpflich	tmodule	21
	2.1	Wahlp	flichtmodule aus dem ingenieurwissenschaftlichen Bereich	21
	2.2	Wahlp	flichtmodule der Fakultät für Wirtschaftswissenschaft	21
3	Mas	sterarbe	eit mit Kolloquium	22
	3.1	Maste	rarbeit mit Kolloquium	22

1 Pflichtmodule der Vertiefungen

Belegung: Alle Module der gewählten Vertiefung!

1.1 Vertiefung "Automatisierungstechnik" (AT)

1.1.1 Automatisierungssysteme

Qualifikatio	nsziele und
Inhalte des	Moduls

Lernziele und erworbene Kompetenzen:

Die Studenten verfügen am Ende der Lehrveranstaltung über Kernkompetenzen zum Entwurf und dem Aufbau von verteilten digitalen Automatisierungssystemen. Sie verstehen, wie die Integration verschiedenster automatisierungstechnischer Komponenten geplant und durchgeführt wird und welche Technologien der Automatisierungstechnik und Informationstechnik dafür eingesetzt werden. Die Studierenden erwerben die Fähigkeit, abstrakte automatisierungs- und informationstechnische Modelle zu erkennen, zu interpretieren und deren Zusammenhänge zu erfassen, um funktionsfähige Automatisierungssysteme zu erstellen. Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen.

Inhalte:

In der Automatisierungstechnik kommen modere Informations- und wissensverarbeitende Systeme zum Einsatz. Die Nähe der Automatisierung zu den dynamischen Prozessen der Maschinen und Produktionsanlagen erfordert für ihre Analyse, Entwurf und Betrieb spezifische Modelle und Methoden, die in diesem Modul vorgestellt werden.

Automatisierungssysteme setzen sich aus einer Vielzahl von Komponenten zusammen, die untereinander interagieren müssen. Diese Komponenten müssen deshalb hinsichtlich ihres Informationsaustausches integriert werden. Dazu stehen sowohl Technologien aus dem IT/Internet- als auch aus dem automatisierungstechnischen Umfeld zur Verfügung. Deshalb wird der Zusammenhang zwischen Modell, Beschreibungssprache und Werkzeug grundsätzlich dargelegt und für die Umsetzung von Steuerungs- und Regelungsentwürfen vertieft.

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Elektrotechnik, Mechatronik oder Informatik
Verwendbarkeit des Moduls	Es gibt keine Wechselwirkung mit anderen Modulen. Anrechenbarkeit: Pflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS $/$ 5 CP $=$ 150 h (42 h Präsenzzeit $+$ 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)

1.1.2 Kommunikationssysteme

Qualifikationsziele und Inhalte des Moduls

Lernziele und erworbene Kompetenzen:

Die Studierenden verfügen am Ende der Lehrveranstaltung über Kenntnisse der industriellen Kommunikationssysteme. Dazu gehören Kenntnisse der prinzipiellen Wirkprinzipien von Kommunikationsprotokollen und –Diensten. Die Studierenden sind in der Lage die Strukturen und Dienste realer Kommunikationssysteme auf derBasis des ISO/OSI-Referenzmodell zu analysieren und zu verstehen. Die Studierenden haben Kenntnisse über unterschiedlichen physikalischen Realisierungsprinzipien, Buszugriffsverfahren und Anwendungsdienste typischer industrieller Kommunikationssysteme. Sie erlangen Basisfähigkeiten Ethernet/TCP/IP –Systeme zu konfigurieren und das Thema der "Security" einzuordnen. Die Studierenden erlangen Kenntnisse über Wirkprinzipien typischer industrieller Bussysteme.

Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen sowie verschiedene Kommunikationssysteme anzuwenden.

Inhalte:

- Übersicht des ISO/OSI-Referenzmodells
- Grundprinzipien von industriellen Kommunikationsprotokollen
- Spezifikationsmethode für Kommunikationsprotokolle
- Grundprinzipien von Ethernet/TCP/IP und gebräuchliche h\u00f6here Protokolle
- Struktur und Wirkprinzipien von industriellen Bussystemen (z.B. PROFI-BUS, CAN)
- Geräte- und Steuerungsintegration von industriellen Kommunikationssystemen

Literatur		
Lehrformen	Vorlesung, Übung	
Voraussetzungen für die Teilnahme	Die Lehrveranstaltung ist geeignet für Studierende ingenieurwissenschaftlicher Studiengänge ab dem 5. Semester. Es werden vorausgesetzt: • Elektrotechnik • Grundkenntnisse über Mikrorechner • Grundkenntnisse der Informationstechnik	
Verwendbarkeit des Moduls	Es gibt keine Wechselwirkung mit anderen Modulen. Anrechenbarkeit: Pflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.	
Prüfungsvorleistung	Keine	
Prüfungsleistung	Mündliche Prüfung	
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung	
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten Vorlesung, Lösen von Übungsaufgaben und Prüfungsvorbereitung	
Häufigkeit des Angebots	Jedes Jahr im Sommersemester	
Dauer des Moduls	Ein Semester	
Modulverantwortlicher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)	

1.1.3 Optimal Control

Qualifikationsziele und Inhalte des Moduls

Learning objectives and acquired competences:

The module provides an introduction to the formulation, theory, solution, and application of optimal control theory for dynamic systems subject to constraints. The students are enabled to mathematically formulate, analyse and solve optimal control problems appearing in many applications spanning from medicine, process control up to systems biology. Besides an understanding of the theoretical basis the students are enabled to derive numerical solutions for optimal control problems using different numerical solution algorithms.

The acquired methods are deepened in the exercises considering small example systems. In the frame of a mini-projects the students derive numerical solutions of small, practical relevant optimal control problems and compare them to analytic solutions.

Contents:

- Static optimization
- Numerical algorithms
- Dynamic programming, principle of optimality, Hamilton-Jacobi-Bellman equation
- Variational calculus
- Pontryagin maximum principle
- Numerical solution of optimal control problems
- Infinite and finite horizon optimal control, LQ optimal control
- Model predictive control
- Game theory
- Application examples from various fields such as chemical engineering, economics, aeronautics, robotics, biomedicine, and systems biology

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 120 Minuten
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben, Prüfungsvorbereitung und Projektarbeit
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Rolf Findeisen (FEIT-IFAT)

1.1.4 Process Control

1.1.4 Process Contro	
Qualifikationsziele und	Learning objectives and acquired competences:
Inhalte des Moduls	Students should
	 learn fundamentals of multivariable process control with special emphasis on decentralized control
	 gain the ability to apply above mentioned methods for the control of single and multi-unit processes
	 gain the ability to apply advanced software (MATLAB) for computer aided control system design
	Contents:
	1. Introduction
	2. Process control fundamentals
	 Mathematical models of processes
	 Control structures
	 Decentralized control and Relative Gain analysis
	 Tuning of decentralized controllers

• Control implementation issues

3. Case studies

4. Plantwide control

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik oder "Systems and Control"
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU und für Studierende der International Max-Planck Research School.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung und Projektbericht
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben, Vorbereitung Projektberichte und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. A. Kienle und Dr. I. Disli -Kienle (FEIT-IFAT)

1.1.5 Rechnerbasierter Reglerentwurf (ersetzt Hybride Discrete Event Systems)

Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Studierenden verfügen am Ende des Moduls über praktische Fertigkeiten zum rechnergestützten Entwurf von Regelungen und deren Implementierung unter Matlab/Simulink. Hierfür lernen Sie moderne Konzepte zur Synthese und Analyse von Regelungssystemen und deren Anwendung. Durch das Lösen von
	Übungsaufgaben und einer Belegaufgabe sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen.
	 Inhalte: Auto-Tuning von PI/PID-Reglern (zentral, dezentral, Implementierung) Robustheitsuntersuchung von Regelkreisen
	• Entwurf robuster Mehrgrößenregelungen (H-unendlich-Entwurf.

- Entwurf robuster Mehrgrößenregelungen (H-unendlich-Entwurf, u-Synthese H-unendlich-loopshaping Ordnungsreduktion)
- $\begin{array}{l} \mu\text{-Synthese, H-unendlich-loopshaping, Ordnungsreduktion)} \\ \bullet \ \ \text{Reglerentwurf mit Hilfe von linearen Matrixungleichungen (LMIs)} \end{array}$
- Echtzeitimplementierung

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik, Robuste Mehrgrößenregelungen wünschenswert
Verwendbarkeit des Moduls	Wahlpflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang ETIT sowie weiteren Masterstudiengängen der OvGU.
Prüfungsvorleistung	Übungsschein
Prüfungsleistung	Referat
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständiges Arbeiten) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 1 SWS Vorlesung, 2 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufgaben und der Belegaufgabe, Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Achim Kienle (FEIT-IFAT)

1.1.6 Struktur- und Verhaltensmodellierung von eingebetteten und medizinischen Systemen – UML (ersetzt Automatisierungsgeräte)

Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Studierenden verfügen am Ende des Moduls über detaillierte Kenntnisse zur objektorientierten Modellierung technischer Systeme allgemein und von Softwaresystemen am Beispiel mechatronischer Komponenten, industriell-eingebetteter und medizinischer Systeme im Besonderen. Sie sind in der Lage, für die Analyse und des Entwurfs komplexer Aufgabenstellungen die richtigen Struktur- und Verhaltensbeschreibungsmittel der UML auszuwählen und anzuwenden. Die Studierenden sind mit erfolgreicher Beendigung des Moduls in der Lage, für die Phasen des Entwicklungsprozesses (Analyse, Entwurf, Implementierung, Validierung (Test)) die geeigneten UML-Beschreibungsmittel auszuwählen und damit erfolgreiche Projekte durchzuführen. Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen.
	 Inhalte: Einführung objektorientierte Modellierungsparadigma Basisprinzipien der Struktur- und Verhaltensmodellierung UML-Sprachmittel (12 Diagrammtypen) UML basierter den Softwareentwicklungsprozess nach dem V- UML Metamodell UML Pattern
Literatur	 [1] Booch/ Rumbaugh/ Jacobson: Das UML- Benutzerhandbuch, Addison Wesley, 2006 [2] Harald Störrle: UML2 für Studenten, Pearson Studium, 2005
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelormodule Technische Informatik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung AT im Masterstudiengang ETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Erfolgreiche Durchführung der Übungen
Prüfungsleistung	Mündliche Prüfung (ohne Hilfsmittel)
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständiges Arbeiten) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)

1.2 Vertiefung "Elektrische Energietechnik" (EE)

1.2.1 Elektrische Netze 1 - Stationäre Netzberechnung

Qualifikationsziele und	Lernziele und erworbene Kompetenzen:
Inhalte des Moduls	Die Studenten werden durch den Abschluss des Moduls in die Lage versetzt,
	die systemischen Zusammenhänge und Verfahren zur stationären und quasi-
	stationären Berechnung elektrischer Energieversorgungsnetze zu verstehen bzw.
	umzusetzen. Sie lernen die dazu notwendigen mathematischen Berechnungsver-
	fahren und die Methoden zur Modellierung elektrischer Betriebsmittel kennen.
	Der Abschluss des Moduls befähigt die Studenten, die statischen Charakteris-
	tika während der Planungsphase und des Betriebs zu verstehen, modellhaft zu

Inhalte:

- Stationäre Betriebsmittelmodellierung
- Stationäre Netzberechnungsverfahren
 - o Modale Komponenten
 - o Topologiebeschreibung elektrischer Netze
 - Leistungsflussberechnung
 - o Kurzschlussstromberechnung
 - Netzzustandsschätzung (State Estimation)
 - o Winkelstabilität

beschreiben und zu berechnen.

- Fehlerberechnung
- Netzberechnung mit MATLAB

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der elektrischen Energietechnik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung EE im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Martin Wolter (FEIT-IESY)

1.2.2 Regelung von Drehstrommaschinen

Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Studierenden werden durch das Modul in die Lage versetzt, die Modelle der einzelnen Drehstrommaschinen und die damit verbundene Raumzeigerdarstellung nachzuvollziehen. Sie sind befähigt die Methoden zur Regelung von Drehstrommaschinen anzuwenden und die entsprechenden Regelkreise auszulegen. Sie können Vor- und Nachteile der unterschiedlichen Maschinentypen und Regelungsmethoden je nach Anwendung bewerten.
	 Inhalte: Optimierung von Regelkreisen Wechselrichter als Stellglied Raumzeigerdarstellung Modell der permanenterregten Synchronmaschine Feldorientierte Regelung der permanenterregten Synchronmaschine Modell der Asynchronmaschine Feldorientierte Regelung der Asynchronmaschine Direct Torque Control (DTC) Doppelt-gespeiste Asynchronmaschine als Generator Fremderregte Synchronmaschine als Generator

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung EE des Master WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	3 SWS $/$ 5 CP $=$ 150 h (42 h Präsenzzeit $+$ 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Roberto Leidhold (FEIT-IESY)

1.2.3 Regenerative Elektroenergiequellen - Systembetrachtung

Qualifikationsziele und	Lernziele und erworbene Kompetenzen:
Inhalte des Moduls	Die Studierenden verfügen am Ende des Moduls über Kenntnisse zur elektrischen
	Energieerzeugung aus regenerativen Quellen und zur Integration der regenerati-
	ven Elektroenergiequellen in das gesamte Energiesystem. Die Studierenden sind
	mit Beendigung des Moduls in der Lage, die qualitativen und quantitativen Aus-
	wirkungen der aus verschiedenen erneuerbaren Quellen erzeugten elektrischen
	Energie auf das Energieversorgungssystem zu erkennen und zu bewerten. Sie
	lernen die Nutzungsmöglichkeiten der regenerativ verfügbaren Energiepotentiale
	kennen und können Probleme der verstärkten Netzintegration durch Betrachtung
	des Gesamtsystems unter Einbeziehung von Energiespeichern und Brennstoffzel-
	lennachvollziehen und beeinflussen. Dies trägt zum Verständnis für so genannte

Inhalte:

"Smart-Grids" bei.

- Einführung, Energiebegriffe, Elektrische Energiesysteme, Smart Grid
- Grundlagen des regenerativen Energieangebots, Energiebilanz
- Photovoltaische Stromerzeugung
- Stromerzeugung aus Wind
- Stromerzeugung aus Wasserkraft
- Brennstoffzellen
- Elektrische Energiespeicher
- Netzintegration regenerativer Erzeuger
- Netzbetrieb lokaler Energieerzeuger

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefung EE im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Studiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Martin Wolter (FEIT-IESY)

1.2.4 Schaltungen der Leistungselektronik

Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Studierenden werden durch das Modul in die Lage versetzt, aus bekannten Grundschaltungen komplexere leistungselektronische Schaltungen zu entwickeln, verschiedene Schaltungen exemplarisch zu benennen, ihre Funktionsweise einschließlich der Steuer- und Regelverfahren nachzuvollziehen und ihre Anwendung einzuordnen - beispielsweise die Verwendung des Dreipunktumrichters zur Einspeisung von dezentral photovoltaisch erzeugter Energie ins Netz. Die Studierenden können entsprechende Schaltungen anwendungsspezifisch auslegen und regelungstechnisch modellieren. Sie sind befähigt, Zusammenhänge zwischen dem behandelten und benachbarten Fachgebieten zu erkennen und gewonnene Erkenntnisse auch interdisziplinär anzuwenden, wie sie sich beispielsweise durch Anwendung der Leistungselektronikzur Umformung aus erneuerbaren Quellen erzeugter elektrischer Energie ergeben.
	zeugter elektrischer Energie ergeben.

Inhalte:

- resonante Schaltungen
- Varianten selbstgeführte Brückenschaltungen
- Varianten netzgeführter Stromrichter
- Regelung von leistungselektronischen Schaltungen

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Leistungselektronik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung EE im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Andreas Lindemann (FEIT-IESY)

1.2.5 Systeme der Leistungselektronik

Qualifikationsziele und	Lernziele und erworbene Kompetenzen:
Inhalte des Moduls	Die Studierenden werden durch das Modul in die Lage versetzt, den Einsatz
	bekannter leistungselektronischer Schaltungen in komplexen Systemen zu imple-
	mentieren; aufgrund der Anwendungsbeispiele insbesondere von Systemen zur
	Versorgung mit aus erneuerbaren Quellen erzeugter elektrischer Energie sowie
	für Elektrofahrzeuge können die Studierenden die erworbenen Kompetenzen un-
	mittelbar in diesen Bereichen einsetzen und sich darüber hinaus in andere Gebiete
	einarbeiten. Die Studierenden sind in der Lage, die Funktionsweise der leistungs-
	elektronischen Systeme nachzuvollziehen; darüber hinaus können sie entsprechen-
	de Systeme anwendungsspezifisch auslegen. Sie sind befähigt, Zusammenhänge
	zwischen dem behandelten und benachbarten Fachgebieten zu erkennen und
	gewonnene Erkenntnisse auch interdisziplinär anzuwenden, wie sie sich beispiels-

Inhalte:

- Stromversorgungen
- leistungselektronische Systeme für aus erneuerbaren Quellen erzeugte elektrische Energie
 - o Photovoltaik-Anlagen
 - o Windenergie-Anlagen
 - o drehzahlvariable Wasserkraft-Anlagen

weise durch die oben genannten Anwendungsbereiche ergeben.

- o Brennstoffzellen und Speicher
- Hochspannungs-Gleichstrom-Übertragung (HGÜ)
- leistungselektronische Systeme in Fahrzeugen Elektromobilität
 - o elektrische Antriebstechnik
 - $\circ \ \ Ladeger\"{a}te$

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Leistungselektronik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung EE im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der OvGU. Wahlpflichtmodul in anderen Masterstudiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	$3~{\rm SWS}~/~5~{\rm CP}=150~{\rm h}~(42~{\rm h}~{\rm Pr\"{a}senzzeit}~+~108~{\rm h}~{\rm selbstst\"{a}ndige}~{\rm Arbeit})$ Notenskala gemäß Pr\"{u}fungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Andreas Lindemann (FEIT-IESY)

1.2.6 Unkonventionelle elektrische Maschinen

-	
Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Lehrveranstaltung vermittelt erweiterte Kenntnisse zu den elektrischen Maschinen und Aktoren, die in den Grundvorlesungen nicht angesprochen werden. Die Studenten können somit die Wirkungsweise, das dynamischen Verhalten und die Regelung der behandelten Maschinen nachvollziehen. Sie werden befähigt, die Integration der Maschinen in mechanischen Systemen zu analysieren und zu projektieren.
	Inhalte: Elektromechanische Energiewandlung Elektrische Maschinen mit begrenzter Bewegung Reluktanzmaschinen Schrittmotoren Elektronisch kommutierte Gleichstrommaschine Linearmotoren Piezoaktoren

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung EE im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Keine
Prüfungsleistung	Klausur 90 Minuten
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Roberto Leidhold (FEIT-IESY)

1.3 Vertiefung "Informations- und Kommunikationstechnik" (IKT)

1.3.1 Bildverarbeitung

Qualifikationsziele und	Lernziele und erworbene Kompetenzen:
Inhalte des Moduls	Die Studierenden verfügen am Ende des Moduls über Kenntnisse zur Bildauf-
	nahme, digitalen Repräsentation und Verarbeitung von Bildern sowie Methoden
	zur Auswertung und Informationsgewinnung aus Bildern. Mit erfolgreicher Be-
	endigung des Moduls sind die Studierenden in der Lage, Methodender Bildver-
	arbeitung verstehen anwenden zu können. In Seminaren wird den Studierenden
	das Verständnis der zu Grunde liegenden Prinzipien vertieft und Fähigkeiten ent-
	wickelt, um Algorithmen zur konkreten Lösung komplexer technischer Probleme
	auswählen, anpassen, neu entwickeln und kritisch bewerten zu können.

Inhalte:

- Bildeingabe für optische und andere Größen
- farbige Bilder
- Punktoperationen zur Bildmodifikation
- Bildfilterung, Leistungsfähigkeit von linearen und nichtlinearen Filtern
- Segmentierungsmethoden
- Hough-Transformation
- Texturanalyse
- Bildfolgen
- 3D-Vermessung
- Erkennungsprobleme, Methoden, Beispiele
- Ausblick, Anwendungsbeispiele

Literatur	
Lehrformen	Vorlesung, Seminar
Voraussetzungen für die Teilnahme	Mathematische Grundlagen Grundlagen der Informationstechnik Teil 2
Verwendbarkeit des Moduls	Pflichtfach in der Vertiefungsrichtung IKT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Studiengängen der OvGU.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Seminar Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	apl. Prof. DrIng. habil. Ayoub Al-Hamadi (FEIT-IIKT)

1.3.2 Hochfrequenzkomponenten und -systeme (bisher Hochfrequenztechnik II)

Qualifikationsziele und	
Inhalte des Moduls	

Lernziele und erworbene Kompetenzen:

Die Studierenden verfügen am Ende des Moduls über Kenntnisse zur Analyse von typischen Leitungsstrukturen der Hochfrequenztechnik. Sie sind mit erfolgreicher Beendigung des Moduls in der Lage, für eine konkrete Anwendung eine geeignete Leitungsstruktur auszuwählen und zu dimensionieren. Sie eignen sich des Weiterenauch Werkzeuge zur Analyse von komplexen Leitungsstrukturen an. Durch die intensive Beschäftigung mit kreiszylindrischen Strukturen können die Studenten sicher mit den verschiedenen Lösungsklassen der Besselschen Differenzialgleichung umgehen. Zum Abschluss des Moduls lernen die Studierenden noch die Unterschiede zwischen zylindrischen und nicht-zylindrischen Leitungsstrukturen kennen.

Inhalte:

- Eigenwellen in zylindrischen Wellenleitern
- Vollständige und orthogonale Mengen von Eigenfunktionen
- Verlustmechanismen in Leitungsstrukturen
- Analyse von Rechteckhohlleitern
- Besselsche Differenzialgleichung und Analyse von kreiszylindrischen Hohlleitern
- Untersuchung von Hohlleiterdiskontinuitäten
- Analyse von nicht-zylindrischen Wellenleitern

Literatur	
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Hochfrequenztechnik (vorher: Hochfrequenztechnik I)
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung IKT im Masterstudiengang WETIT sowie weiteren Studiengängen der FEIT. Wahlpflichtmodul in anderen Studiengängen der FEIT.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. Dr. habil. Holger Maune (FEIT-IIKT)

1.3.3 Integrative Neuroscience II

Qualifikationsziele und Inhalte des Moduls

Learning objectives and acquired competences:

Comprehension of tools and concepts of Dayan & Abbot, "Theoretical Neuroscience", Chapters 7 to 10. Comprehend weekly Matlab exercises to problems illustrating key concepts of lectures. Ability to independently apply theoretical tools and concepts presented in the lecture. Ability to write small computational applications including visualisation in Matlab.

Content:

- Feedforward networks
 - o Biological introduction, rate models, neural coordinate transforms
- Recurrent networks and associative memory
 - Eigenvalue treatment, examples, capacity, sparseness, stability, examples
- Excitatory-inhibitory networks
 - o Phase plane analysis of stability, olfactory bulb
- Plasticity and learning
 - o Biological introduction, plasticity rules, timing-based rules
- Unsupervised learning
 - Eigenproblem, principal component projection, competitive Hebbian learning, self-organised maps, feature-based models
- Supervised learning
 - o Classification, perceptron, robust perceptron, delta rule
- Stochastic learning
- Conditioning and reinforcement
 - Biological introduction, Rescorla-Wagner, temporal difference learning
- Competitive conditioning
 - Markov approximations, examples
- Policy learning
 - Actor-critic models, examples
- Representational learning
 - Biological introduction, priors/posterios, densities
- Expectation maximization
- Principal and independent components analysis
- Spiking networks
 - o Boltzmann machine, mean-field approach

Literatur	[1] Dayan & Abbot, "Theoretical Neuroscience" ,Chapters 7 to 10
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Erforderlich: Grundkenntnisse Calculus und Lineare Algebra. KURSMATERIAL IST IN ENGLISCH Nützlich: Grundkenntnisse Programmieren
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung IKT sowie weiteren Studiengängen der OvGU. Wahlpflichtmodul in anderen Studiengängen der OvGU.
Prüfungsvorleistung	Übungsschein
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS $/$ 5 CP $=$ 150 h (42 h Präsenzzeit $+$ 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung

weiter auf der nächsten Seite

Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Andreas Wendemuth (FEIT-IIKT) / Prof. Dr. Jochen Braun (FNW-IBIO)

1.3.4 Sprachdialogsysteme

Qualifikationsziele und Inhalte des Moduls	 Lernziele und erworbene Kompetenzen: Der Teilnehmer versteht die grundlegenden Konzepte und Methoden automatischer Dialogsysteme. Der Teilnehmer versteht die Wissensrepräsentation in Sprachgrammatiken und deren Erstellung. Der Teilnehmer kennt exemplarische Anwendungen und versteht deren prinzipielle Funktionsweise. Der Teilnehmer kann einfache Dialoge in VXML erstellen und beherrscht die Skill-Programmierung für Amazon Alexa.
	Inhalte: Die Vorlesung beginnt mit einer Einführung der notwendigen Techniken sowie den theoretischen Grundlagen. Behandelt werden die grundlegenden Konzepte der Dialogmodellierung von einfachen Zustandsautomaten über Formular-basierte Beschreibungen bis hin zu Agenten-Systemen. Weiterhin werden Architekturen von Dialogmanagern vorgestellt.
	Weitere Themen sind der Entwurf und die Implementierung von Dialog-Schnittstellen auf Basis der vorher erlernten Grundlagen. Hierzu werden anhand des W3C Standards VXML die Prinzipien eines Mensch-Maschine-Dialoges vermittelt und deren Dynamisierung aufgezeigt. Ein praktischer Teil wird dazu in den Übungen umgesetzt. Anschließend werden auch Umsetzungen in modernen Sprachassistenten behandelt, hierbei wird auf die Skills von Amazon Alexa fokussiert und es werden die vorher erlernten Konzepte angewendet. Außerdem wird behandelt, wie Benutzer mit solchen neuartigen Schnittstellen umgehen und mit welchen Methoden die Stärken und Schwächen solcher Systeme systematisch untersucht werden können.
Literatur	[1] Begleitend: Tobias Heinroth und Wolfgang Minker: Introducing Spoken Dialogue Systems into Intelligent Environments. Springer: New York (2014)
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine
Verwendbarkeit des Moduls	Es gibt keine Wechselwirkung mit anderen Modulen. Pflichtmodul in der Vertiefungsrichtung IKT im Masterstudiengang WETIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Übungsschein
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben, selbstständiges Programmieren von Dialoganwendungen und Prüfungsvor- bereitung
Häufigkeit des Angebots	Jedes Jahr im Sommersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	JunProf. DrIng. Ingo Siegert (FEIT-IIKT)

1.3.5 System-on-Chip

Qualifikationsziele und Inhalte des Moduls

Literatur

Lernziele und erworbene Kompetenzen:

Unter einem System-on-Chip (SoC) versteht man die Integration aller Komponenten eines elektronischen Systems auf einem Chip. Dieses Modul befasst sich mit dem prinzipiellen Aufbau von SoCs, der Hardwarearchitektur der einzelnen Komponenten sowie den Auswirkungen von Entwurfsentscheidungen auf das Chipdesign. Ein Schwerpunkt der Vorlesung liegt auf der Ausgestaltung des internen Kommunikationsnetzwerkers. Nach dem erfolgreichen Abschluss des Moduls sind die Studierenden in Lage, den grundlegenden Aufbau anwendungsspezifischer SoCs selbstständig zu definieren, Entwurfsalternativen zu erkennen und zu bewerten. Die Studierenden können Standards und Kriterien beim Entwurf und Einsatz von SoCs beschreiben und in den Gesamtkontext einordnen. Sie können Problemstellungen modellieren und eine systematische Entwurfsraumexploration durchführen. Dabei sind sie in der Lage, hierfür geeignete Optimierungsverfahren auszuwählen und zu parametrisieren. Durch theoretische und praktische Übungen sind die Studierenden in der Lage, ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen. Die Eigenschaften unterschiedlicher Kommunikationsarchitekturen werden mit Hilfe von Simulationswerkzeugen verdeutlicht.

Inhalte:

- Aufbau von System-on-Chips (SoCs)
- ARM-Prozessoren
- Busarchitekturen und Busstandards
- Network-on-Chips (NoCs)
- (heterogene) 3D Chips
- Entwurfsraumexploration
- Optimierungsverfahren

Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelorabschluss in Elektrotechnik, Mechatronik oder Informatik, Programmier- kenntnisse
Verwendbarkeit des Moduls	 Anrechenbarkeit: Masterstudiengänge der FEIT Pflichtmodul in der Vertiefungsrichtung IKT im Masterstudiengang ETIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständiges Arbeiten) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung (zweiwöchentlich) Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufgaben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Prof. DrIng. Thilo Pionteck (FEIT-IIKT)

1.3.6 Technische Kognitive Systeme

Qualifikationsziele und Inhalte des Moduls

Lernziele und erworbene Kompetenzen:

- Der Teilnehmer versteht die grundlegenden weiterführenden Konzepte und Methoden kognitiver intelligenter Systeme
- Der Teilnehmer versteht die Prinzipien kognitiver Intelligenz und ihrer Übertragung in Computerprogramme.
- Der Teilnehmer versteht die Arbeitsweise und Beeinflussbarkeit kognitiver Modellarchitekturen.
- Der Teilnehmer versteht Bedeutungszuweisung und Datenhandhabung in nutzerunterstützenden Systemen.
- Im Praktikumsteil setzt der Teilnehmer die erworbenen Fähigkeiten und Kenntnisse in solchen Programmen um.

Inhalte:

Die Lehrveranstaltung vermittelt weiterführende Konzepte kognitiver intelligenter Systeme. Dabei geht es um deren Konzeption und Organisation sowie um deren Beeinflussbarkeit. Dies wird in Analogie zu menschlichen Verarbeitungsprozessen und kognitivem Verhalten diskutiert. Hieraus lassen sich theoretische Repräsentationen menschlicher Kognition ableiten, die im Praktikum exemplarisch realisiert werden. Hierbei werden direkt praktische Umsetzungen erprobt, die später in ingenieurtechnische Systeme einfließen können.

Literatur	
Lehrformen	Vorlesung, Übung/Kurzpraktikum
Voraussetzungen für die Teilnahme	Erwünscht sind: Kognitive Systeme (Modul des Bachelors), Grundlagen der Informationstechnik, Datenverarbeitende Systeme, Digitale Signalverarbeitung, Nachrichten- und Kommunikationstechnik
Verwendbarkeit des Moduls	Pflichtmodul in der Vertiefungsrichtung IKT im Masterstudiengang WETIT sowie weiteren Masterstudiengängen der FEIT. Wahlpflichtmodul in anderen Masterstudiengängen der FEIT.
Prüfungsvorleistung	Keine
Prüfungsleistung	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 CP = 150 h (42 h Präsenzzeit + 108 h selbstständiges Arbeiten) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung/Kurzpraktikum Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösen von Übungsaufga- ben und Prüfungsvorbereitung
Häufigkeit des Angebots	Jedes Jahr im Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	PD DrIng. habil. Ronald Böck (FEIT-IIKT)

2 Wahlpflichtmodule

2.1 Wahlpflichtmodule aus dem ingenieurwissenschaftlichen Bereich

Im Bereich der ingenieurwissenschaftlichen Wahlpflichtmodule sind insgesamt Module im Umfang von 10 CP zu belegen. Die Module können dem Studiengangskatalog des Masterstudiengangs Elektrotechnik und Informationstechnik entnommen werden. Details zu den Wahlpflichtmodulen entnehmen Sie Bitte den entsprechenden Modulhandbuch. Wir empfehlen Wahlpflichtmodule zu wählen, die der Wahl Ihrer Vertiefungsrichtung bei den Pflichtmodulen entspricht.

Auf Antrag des Studierenden an den Prüfungsausschuss können im Einvernehmen mit dem Studienfachberater oder der Studienfachberaterin auch weitere Module aus allen Fakultäten der Otto-von-Guericke-Universität Magdeburg als Wahlpflichtmodul anerkannt werden.

2.2 Wahlpflichtmodule der Fakultät für Wirtschaftswissenschaft

Im Bereich der Wirtschaftswissenschaftlichen Wahlpflichtmodule sind insgesamt Module im Umfang von 20 CP zu belegen. Die Module können frei aus den Profilierungsschwerpunkten (PSP) des Masterstudienganges "Betriebswirtschaftslehre / Business Economics" der Fakultät für Wirtschaftswissenschaft ausgewählt werden. Die in den PSP genannten Seminare sowie das Wissenschaftliche Projekt können nicht belegt werden. Die Modulbeschreibungen sind dem Modulhandbuch des Masterstudienganges "Betriebswirtschaftslehre / Business Economics" der Fakultät für Wirtschaftswissenschaft in der gültigen Fassung zu entnehmen.

3 Masterarbeit mit Kolloquium

3.1 Masterarbeit mit Kolloquium

Qualifikationsziele und Inhalte des Moduls	Lernziele und erworbene Kompetenzen: Die Studierenden können forschungsorientiert und wissenschaftlich arbeiten. Sie können zur Lösung einer abgegrenzten Problemstellung geeignete wissenschaftliche Methoden auswählen und anwenden sowie die erzielten Ergebnisse kritisch bewerten und einordnen. Sie können Informationsbedarf erkennen, Informationen finden und beschaffen. Die Studierenden sind in der Lage, einen forschungsorientierten wissenschaftlichen Text im Umfange einer Masterabschlussarbeit zu erstellen. Der Teilnehmer ist in der Lage, diese Arbeit zu präsentieren und auf Fragen wissenschaftlich zu antworten.
	Inhalte: nach Absprache mit der/die Betreuer/Betreuerin
Lehrformen	Hausarbeit, Referat
Voraussetzungen für die Teilnahme	siehe Studien- und Prüfungsordnung
Verwendbarkeit des Moduls	Es gibt keine Wechselwirkung mit anderen Modulen.
Prüfungsvorleistung	Entsprechend den Vorgaben der Studien- und Prüfungsordnung
Prüfungsleistung	Hausarbeit, Referat Vorlage eines vom Teilnehmer selbst erstellten wissenschaftlichen Textes mit Neuheitscharakter, im Umfange einer Masterabschlussarbeit sowie die Präsen- tation und Verteidigung der Arbeit.
Leistungspunkte und Noten	30 CP = 900 h selbstständige Arbeit Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Nach themenspezifischer Vereinbarung mit dem Betreuer / der Betreuerin Selbstständiges Arbeiten: Forschungsorientierte wissenschaftliche Arbeit
Häufigkeit des Angebots	Jedes Jahr im Sommersemester oder Wintersemester
Dauer des Moduls	Ein Semester
Modulverantwortlicher	Aufgabensteller / Aufgabenstellerin der Masterabschlussarbeit