related antigen polypeptides include those detectable by X-radiography, NMR, MRI, CAT-scans or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma. Where *in vivo* imaging is used to detect enhanced levels of reproductive system related antigen polypeptides for diagnosis in humans, it may be preferable to use human antibodies or "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using techniques described herein or otherwise known in the art. For example methods for producing chimeric antibodies are known in the art. See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).

[0422] Additionally, any reproductive system related antigen polypeptides whose presence can be detected, can be administered. For example, reproductive system related antigen polypeptides labeled with a radio-opaque or other appropriate compound can be administered and visualized *in vivo*, as discussed, above for labeled antibodies. Further such reproductive system related antigen polypeptides can be utilized for *in vitro* diagnostic procedures.

[0423] A reproductive system related antigen polypeptide-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ¹³¹I, ¹¹²In, ^{99m}Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a disorder of the reproductive system. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of ^{99m}Tc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain reproductive

system related antigen protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

With respect to antibodies, one of the ways in which the anti- reproductive [0424]system related antigen antibody can be detectably labeled is by linking the same to an enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, MD); Voller et al., J. Clin. Pathol. 31:507-520 (1978); Butler, J.E., Meth. Enzymol. 73:482-523 (1981); Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, FL,; Ishikawa, E. et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

[0425] Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect reproductive system related antigens through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by means including, but not limited to, a gamma

counter, a scintillation counter, or autoradiography.

[0426] It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, ophthaldehyde and fluorescamine.

- [0427] The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).
- [0428] The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.
- [0429] Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Methods for Detecting Diseases of the Reproductive System, Including Cancer

[0430] In general, a disease of the reproductive system or cancer may be detected in a patient based on the presence of one or more reproductive system related antigen proteins of the invention and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine, and/or tumor biopsies) obtained from the patient. In other words, such proteins and/or polynucleotides may be used as markers to indicate the presence or absence of a reproductive system disease or disorder, including cancer. Cancers that may be diagnosed, and/or prognosed using the compositions of the invention include but are not limited to, cancers of the

reproductive system. In addition, such proteins and/or polynucleotidse may be useful for the detection of other diseases and cancers, including cancers of tissues/cells corresponding to the library source disclosed in column 7 of Table 1A expressing the corresponding reproductive system related sequence disclosed in the same row of Table 1A. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding reproductive system related antigen polypeptides, which is also indicative of the presence or absence of a reproductive system disease or disorder, including cancer. In general, reproductive system related antigen polypeptides should be present at a level that is at least three fold higher in diseased tissue than in normal tissue.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *supra*. In general, the presence or absence of a reproductive system disease in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

immobilized on a solid support to bind to and remove the reproductive system related antigen polypeptide of the invention from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for

4

use within such assays include reproductive system related antigen polypeptides and portions thereof, or antibodies, to which the binding agent binds, as described above.

The solid support may be any material known to those of skill in the art to [0433] which reproductive system related antigen polypeptides of the invention may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for the suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 ug, and preferably about 100 ng to about 1 ug, is sufficient to immobilize an adequate amount of binding agent.

[0434] Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

Gene Therapy Methods

[0435] Also encompassed by the present invention are gene therapy methods for treating or preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of a reproductive system related antigen of the present invention. This method requires a polynucleotide which codes for a polypeptide of the present invention operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.

[0436] Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide of the present invention ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide of the present invention. Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al., J. Immunology 153: 4604-4615 (1994); Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura, H., et al., Cancer Research 50: 5102-5106 (1990); Santodonato, L., et al., Human Gene Therapy 7:1-10 (1996); Santodonato, L., et al., Gene Therapy 4:1246-1255 (1997); and Zhang, J.-F. et al., Cancer Gene Therapy 3: 31-38 (1996)), which are herein incorporated by reference. In one embodiment, the cells which are engineered are arterial cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.

[0437] As discussed in more detail below, the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

[0438] In one embodiment, the polynucleotide of the present invention is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or

facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotide of the present invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.

- [0439] The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEF1/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.
- [0440] Any strong promoter known to those skilled in the art can be used for driving the expression of the polynucleotide sequence. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter for the polynucleotide of the present invention.
- [0441] Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.
- [0442] The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and

connective tissue. Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

[0443] For the naked nucleic acid sequence injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.

[0444] The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

[0445] The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art.

[0446] The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.

- In certain embodiments, the polynucleotide constructs are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA (1989) 86:6077-6081, which is herein incorporated by reference); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192, which is herein incorporated by reference), in functional form.
- [0448] Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y., (see, also, Felgner et al., Proc. Natl Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).
- Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.
- [0450] Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC),

dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size. Other methods are known and available to those of skill in the art.

The liposomes can comprise multilamellar vesicles (MLVs), small [0452] unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated. When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA. The liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid

fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca²⁺-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell 17:77 (1979); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta 443:629 (1976); Ostro et al., Biochem. Biophys. Res. Commun. 76:836 (1977); Fraley et al., Proc. Natl. Acad. Sci. USA 76:3348 (1979)); detergent dialysis (Enoch, H. and Strittmatter, P., Proc. Natl. Acad. Sci. USA 76:145 (1979)); and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem. 255:10431 (1980); Szoka et al., Proc. Natl. Acad. Sci. USA 75:145 (1978); Schaefer-Ridder et al., Science 215:166 (1982)), which are herein incorporated by reference.

- [0453] Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10. Preferably, the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3:1 to about 1:3. Still more preferably, the ratio will be about 1:1.
- [0454] U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U.S. Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and International Publication No. WO 94/9469 provide methods for delivering DNA-cationic lipid complexes to mammals.
- In certain embodiments, cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding a polypeptide of the present invention. Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
- [0456] The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described

in Miller, Human Gene Therapy 1:5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

[0457] The producer cell line generates infectious retroviral vector particles which include polynucleotide encoding a polypeptide of the present invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express a polypeptide of the present invention.

In certain other embodiments, cells are engineered, ex vivo or *in vivo*, with polynucleotide contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses a polypeptide of the present invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz, et al., Am. Rev. Respir. Dis.109:233-238 (1974)). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha-1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143-155 (1991)). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green et al., Proc. Natl. Acad. Sci. USA 76:6606 (1979)).

[0459] Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Patent No. 5,652,224, which are herein incorporated by reference. For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the E1 region of adenovirus and constitutively

express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector. In addition to Ad2, other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.

[0460] Preferably, the adenoviruses used in the present invention are replication deficient. Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: E1a, E1b, E3, E4, E2a, or L1 through L5.

In certain other embodiments, the cells are engineered, ex vivo or *in vivo*, using an adeno-associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.

[0462] For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration. The polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989). The recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc. Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo or *in vivo*. The transduced cells will contain the

polynucleotide construct integrated into its genome, and will express a polypeptide of the invention.

heterologous control regions and endogenous reproductive system related antigen polynucleotide sequences (e.g., encoding a reproductive system related antigen polypeptide of the present invention) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), which are herein incorporated by reference. This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.

[0464] Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5' end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.

Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter. The amplified promoter and targeting sequences are digested and ligated together.

[0466] The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can

be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.

[0467] The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous sequence.

The polynucleotide encoding a polypeptide of the present invention may contain a secretory signal sequence that facilitates secretion of the protein. Typically, the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region. The signal sequence may be homologous or heterologous to the reproductive system related antigen polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.

[0469] Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery. For example, direct injection of naked calcium phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression of the foreign gene in the rat livers (Kaneda et al., Science 243:375 (1989)).

[0470] A preferred method of local administration is by direct injection. Preferably, a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries. Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.

[0471] Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound.

[0472] Therapeutic compositions useful in systemic administration, include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site. In specific embodiments, suitable delivery vehicles for use with systemic administration comprise liposomes comprising polypeptides of the invention for targeting the vehicle to a particular site.

[0473] Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.

[0474] Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.

[0475] Therapeutic compositions of the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.

Biological Activities

[0476] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, can be used in assays to test for one or more biological activities. If these polynucleotides or polypeptides, or agonists or antagonists of the present invention, do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides, and agonists or antagonists could be used to treat, prevent diagnose and/or prognose the associated disease.

[0477] The reproductive system related antigen polynucleotides and polypeptides of the invention are predicted to have predominant expression in tissues of the reproductive system.

[0478] Thus, the reproductive system related antigens of the invention may be useful as therapeutic molecules. Each would be useful for diagnosis, detection, treatment and/or prevention of diseases or disorders of the reproductive system, including, for example, injury and trauma, infections, neoplastic disorders, congenital defects, and diseases or disorders which result in infertility, complications with pregnancy, labor, or parturition, postpartum difficulties, and/or as described below in the section entitled "Reproductive System Disorders".

In a preferred embodiment, polynucleotides of the invention (e.g., a nucleic acid sequence of SEQ ID NO:X or the complement thereof; or the cDNA sequence contained in Clone ID NO:Z, or fragments or variants thereof) and/or polypeptides of the invention (e.g., an amino acid sequence contained in SEQ ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X, or the complement threof, an amino acid sequence encoded by the cDNA sequence contained in Clone ID NO:Z and fragments or variants thereof as described herein) are useful for the diagnosis, detection, treatement, and/or prevention of diseases or disorders of the tissues/cells corresponding to the library source disclosed in column 7 of Table 1A expressing the

corresponding reproductive system related sequence disclosed in the same row of Table 1A.

therapeutic for cancers of the reproductive system. Treatment, diagnosis, detection, and/or prevention of disorders of the reproductive system could be carried out using a reproductive system related antigen or soluble form of a reproductive system related antigen, a reproductive system related antigen ligand, gene therapy, or ex vivo applications. Moreover, inhibitors of a reproductive system related antigen, either blocking antibodies or mutant forms, could modulate the expression of the reproductive system related antigen. These inhibitors may be useful to treat, diagnose, detect, and/or prevent diseases associated with the misregulation of a reproductive system related antigen.

In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells (e.g., normal or diseased reproductive system cells) by administering polypeptides of the invention (e.g., reproductive system related antigen polypeptides or anti- reproductive system related antigen antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell (e.g., an aberrant reproductive system cell or reproductive system cancer cell). In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0482] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of aberrant reproductive system cells, including, but not limited to, reproductive system tumor cells) by administering polypeptides of the invention (e.g., reproductive system related antigen polypeptides or fragments thereof, or anti- reproductive system related antigen antibodies) in association with toxins or cytotoxic prodrugs.

[0483] By "toxin" is meant compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, cytotoxins (cytotoxic agents), or any molecules or enzymes not

normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, *Pseudomonas* exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. "Toxin" also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, ²¹³Bi, or other radioisotopes such as, for example, ¹⁰³Pd, ¹³³Xe, ¹³¹I, ⁶⁸Ge, ⁵⁷Co, ⁶⁵Zn, ⁸⁵Sr, ³²P, ³⁵S, ⁹⁰Y, ¹⁵³Sm, ¹⁵³Gd, ¹⁶⁹Yb, ⁵¹Cr, ⁵⁴Mn, ⁷⁵Se, ¹¹³Sn, ⁹⁰Yttrium, ¹¹⁷Tin, ¹⁸⁶Rhenium, ¹⁶⁶Holmium, and ¹⁸⁸Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

[0484] Techniques known in the art may be applied to label antibodies of the invention. Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety). A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU). cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.

It will be appreciated that conditions caused by a decrease in the standard or normal level of a reproductive system related antigen activity in an individual, particularly disorders of the reproductive system, can be treated by administration of a reproductive system related antigen polypeptide (e.g., such as, for example, the complete reproductive system related antigen polypeptide, the soluble form of the extracellular domain of a reproductive system related antigen polypeptide, or cells expressing the complete protein) or agonist. Thus, the invention also provides a method of treatment of an individual in need of an increased level of reproductive system related antigen activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated reproductive system related antigen polypeptide of the invention, or agonist thereof (e.g., an agonistic anti-reproductive system related antigen antibody), effective to increase the reproductive system related antigen activity level in such an individual.

It will also be appreciated that conditions caused by a increase in the standard or normal level of reproductive system related antigen activity in an individual, particularly disorders of the reproductive system, can be treated by administration of reproductive system related antigen polypeptides (e.g., such as, for example, the complete reproductive system related antigen polypeptide, the soluble form of the extracellular domain of a reproductive system related antigen polypeptide, or cells expressing the complete protein) or antagonist (e.g., an antagonistic reproductive system related antigen antibody). Thus, the invention also provides a method of treatment of an individual in need of an decreased level of reproductive system related antigen activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated reproductive system related antigen polypeptide of the invention, or antagonist thereof (e.g., an antagonistic

anti- reproductive system related antigen antibody), effective to decrease the reproductive system related antigen activity level in such an individual.

[0488] In certain embodiments, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose and/or prognose diseases and/or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1A, column 7 (Tissue Distribution Library Code).

[0489] More generally, polynucleotides, translation products and antibodies corresponding to this gene may be useful for the diagnosis, prognosis, prevention, and/or treatment of diseases and/or disorders associated with the following systems.

Reproductive System Disorders

[0490] The polynucleotides or polypeptides, or agonists or antagonists of the invention may be used for the diagnosis, treatment, or prevention of diseases and/or disorders of the reproductive system. Reproductive system disorders that can be treated by the compositions of the invention, include, but are not limited to, reproductive system injuries, infections, neoplastic disorders, congenital defects, and diseases or disorders which result in infertility, complications with pregnancy, labor, or parturition, and postpartum difficulties.

disorders of the testes, including, but not limited to, testicular atrophy, testicular feminization, cryptorchism (unilateral and bilateral), anorchia, ectopic testis, epididymitis and orchitis (typically resulting from infections such as, for example, gonorrhea, mumps, tuberculosis, and syphilis), testicular torsion, vasitis nodosa, germ cell tumors (e.g., seminomas, embryonal cell carcinomas, teratocarcinomas, choriocarcinomas, yolk sac tumors, and teratomas), stromal tumors (e.g., Leydig cell tumors), hydrocele, hematocele, varicocele, spermatocele, inguinal hernia, and disorders of sperm production (e.g., immotile cilia syndrome, aspermia, asthenozoospermia, azoospermia, oligospermia, and teratozoospermia).

[0492] Reproductive system disorders also include, but are not limited to, disorders of the prostate gland, such as acute non-bacterial prostatitis, chronic non-bacterial prostatitis, acute bacterial prostatitis, chronic bacterial prostatitis, prostatodystonia, prostatosis, granulomatous prostatitis, malacoplakia, benign prostatic hypertrophy or hyperplasia, and prostate neoplastic disorders, including adenocarcinomas, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas.

[0493] Additionally, the compositions of the invention may be useful in the diagnosis, treatment, and/or prevention of disorders or diseases of the penis and urethra, including, but not limited to, inflammatory disorders, such as balanoposthitis, balanitis xerotica obliterans, phimosis, paraphimosis, syphilis, herpes simplex virus, gonorrhea, non-gonococcal urethritis, chlamydia, mycoplasma, trichomonas, HIV, AIDS, Reiter's syndrome, condyloma acuminatum, condyloma latum, and pearly penile papules; urethral abnormalities, such as hypospadias, epispadias, and phimosis; premalignant lesions, including Erythroplasia of Queyrat, Bowen's disease, Bowenoid paplosis, giant condyloma of Buscke-Lowenstein, and varrucous carcinoma; penile cancers, including squamous cell carcinomas, carcinoma in situ, verrucous carcinoma, and disseminated penile carcinoma; urethral neoplastic disorders, including penile urethral carcinoma, bulbomembranous urethral carcinoma, and prostatic urethral carcinoma; and erectile disorders, such as priapism, Peyronie's disease, erectile dysfunction, and impotence.

[0494] Moreover, diseases and/or disorders of the vas deferens include, but are not limited to, vasculititis and CBAVD (congenital bilateral absence of the vas deferens); additionally, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders of the seminal vesicles, including but not limited to, hydatid disease, congenital chloride diarrhea, and polycystic kidney disease.

[0495] Other disorders and/or diseases of the male reproductive system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, Klinefelter's syndrome, Young's syndrome, premature ejaculation, diabetes mellitus, cystic fibrosis, Kartagener's syndrome, high fever, multiple sclerosis, and gynecomastia.

[0496] Further, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders of the vagina and vulva, including, but not limited to, bacterial vaginosis, candida vaginitis, herpes simplex virus, chancroid, granuloma inguinale, lymphogranuloma venereum, scabies, human papillomavirus, vaginal trauma, vulvar trauma, adenosis, chlamydia vaginitis, gonorrhea, trichomonas vaginitis, condyloma acuminatum, syphilis, molluscum contagiosum, atrophic vaginitis, Paget's disease, lichen sclerosus, lichen planus, vulvodynia, toxic shock syndrome, vaginismus, vulvovaginitis, vulvar vestibulitis, and neoplastic disorders, such as squamous cell hyperplasia, clear cell carcinoma, basal cell carcinoma, melanomas, cancer of Bartholin's gland, and vulvar intraepithelial neoplasia.

Disorders and/or diseases of the uterus that may be diagnosed, treated, [0497] and/or prevented with the compositions of the invention include, but are not limited to, dysmenorrhea, retroverted uterus, endometriosis, fibroids, adenomyosis, anovulatory bleeding, amenorrhea, Cushing's syndrome, hydatidiform moles, Asherman's syndrome, premature menopause, precocious puberty, uterine polyps, dysfunctional uterine bleeding (e.g., due to aberrant hormonal signals), and neoplastic disorders, such as adenocarcinomas, keiomyosarcomas, and sarcomas. Additionally, the polypeptides, polynucleotides, or agonists or antagonists of the invention may be useful as a marker or detector of, as well as in the diagnosis, treatment, and/or prevention of congenital uterine abnormalities, such as bicornuate uterus, septate uterus, simple unicornuate uterus, unicornuate uterus with a noncavitary rudimentary horn, unicornuate uterus with a non-communicating cavitary rudimentary horn, unicornuate uterus with a communicating cavitary horn, arcuate uterus, uterine didelfus, and T-shaped uterus.

[0498] Ovarian diseases and/or disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, anovulation, polycystic ovary syndrome (Stein-Leventhal syndrome), ovarian cysts, ovarian hypofunction, ovarian insensitivity to gonadotropins, ovarian overproduction of androgens, right ovarian vein syndrome, amenorrhea, hirutism, and ovarian cancer (including, but not limited to, primary and secondary cancerous growth, Sertoli-Leydig tumors, endometriod carcinoma of the ovary, ovarian papillary serous

adenocarcinoma, ovarian mucinous adenocarcinoma, and Ovarian Krukenberg tumors).

[0499] Cervical diseases and/or disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, cervicitis, chronic cervicitis, mucopurulent cervicitis, cervical dysplasia, cervical polyps, Nabothian cysts, cervical erosion, cervical incompetence, and cervical neoplasms (including, for example, cervical carcinoma, squamous metaplasia, squamous cell carcinoma, adenosquamous cell neoplasia, and columnar cell neoplasia).

[0500] Additionally, diseases and/or disorders of the reproductive system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, disorders and/or diseases of pregnancy, including miscarriage and stillbirth, such as early abortion, late abortion, spontaneous abortion, induced abortion, therapeutic abortion, threatened abortion, missed abortion, incomplete abortion, complete abortion, habitual abortion, missed abortion, and septic abortion; ectopic pregnancy, anemia, Rh incompatibility, vaginal bleeding during pregnancy, gestational diabetes, intrauterine growth retardation, polyhydramnios, HELLP syndrome, abruptio placentae, placenta previa, hyperemesis, preeclampsia, eclampsia, herpes gestationis, and urticaria of pregnancy. Additionally, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases that can complicate pregnancy, including heart disease, heart failure, rheumatic heart disease, congenital heart disease, mitral valve prolapse, high blood pressure, anemia, kidney disease, infectious disease (e.g., rubella, cytomegalovirus, toxoplasmosis, infectious hepatitis, chlamydia, HIV, AIDS, and genital herpes), diabetes mellitus, Graves' disease, thyroiditis, hypothyroidism, Hashimoto's thyroiditis, chronic active hepatitis, cirrhosis of the liver, primary biliary cirrhosis, asthma, systemic lupus eryematosis, rheumatoid arthritis, myasthenia gravis, idiopathic thrombocytopenic purpura, appendicitis, ovarian cysts, gallbladder disorders, and obstruction of the intestine.

[0501] Complications associated with labor and parturition that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, premature rupture of the membranes, pre-term labor, post-term pregnancy,

postmaturity, labor that progresses too slowly, fetal distress (e.g., abnormal heart rate (fetal or maternal), breathing problems, and abnormal fetal position), shoulder dystocia, prolapsed umbilical cord, amniotic fluid embolism, and aberrant uterine bleeding.

[0502] Further, diseases and/or disorders of the postdelivery period, that may be diagnosed, treated, and/or prevented with the compositions of the invention, include, but are not limited to, endometritis, myometritis, parametritis, peritonitis, pelvic thrombophlebitis, pulmonary embolism, endotoxemia, pyelonephritis, saphenous thrombophlebitis, mastitis, cystitis, postpartum hemorrhage, and inverted uterus.

[0503] Other disorders and/or diseases of the female reproductive system that may be diagnosed, treated, and/or prevented by the polynucleotides, polypeptides, and agonists or antagonists of the present invention include, but are not limited to, Turner's syndrome, pseudohermaphroditism, premenstrual syndrome, pelvic inflammatory disease, pelvic congestion (vascular engorgement), frigidity, anorgasmia, dyspareunia, ruptured fallopian tube, and Mittelschmerz.

Immune Activity

Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, diagnosing and/or prognosing diseases, disorders, and/or conditions of the immune system, by, for example, activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

[0505] In another embodiment, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to treat diseases and disorders of the immune system and/or to inhibit or enhance an

immune response generated by cells associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1A, column 7 (Tissue Distribution Library Code).

Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of [0506] the present invention may be useful in treating, preventing, diagnosing, and/or prognosing immunodeficiencies. including both congenital and acquired immunodeficiencies. Examples of B cell immunodeficiencies in which immunoglobulin levels B cell function and/or B cell numbers are decreased include: X-linked agammaglobulinemia (Bruton's disease), X-linked infantile agammaglobulinemia, X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, X-linked lymphoproliferative syndrome (XLP), agammaglobulinemia including congenital and acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, unspecified hypogammaglobulinemia. recessive agammaglobulinemia (Swiss type), Selective IgM deficiency, selective IgA deficiency, selective IgG subclass deficiencies, IgG subclass deficiency (with or without IgA deficiency), Ig deficiency with increased IgM, IgG and IgA deficiency with increased IgM, antibody deficiency with normal or elevated Igs, Ig heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), common variable immunodeficiency (CVID), common variable immunodeficiency (CVI) (acquired), and transient hypogammaglobulinemia of infancy.

[0507] In specific embodiments, ataxia-telangiectasia or conditions associated with ataxia-telangiectasia are treated, prevented, diagnosed, and/or prognosing using the polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof.

[0508] Examples of congenital immunodeficiencies in which T cell and/or B cell function and/or number is decreased include, but are not limited to: DiGeorge anomaly, severe combined immunodeficiencies (SCID) (including, but not limited to, X-linked SCID, autosomal recessive SCID, adenosine deaminase deficiency, purine nucleoside phosphorylase (PNP) deficiency, Class II MHC deficiency (Bare lymphocyte syndrome), Wiskott-Aldrich syndrome, and ataxia telangiectasia), thymic hypoplasia, third and fourth pharyngeal pouch syndrome, 22q11.2 deletion, chronic

mucocutaneous candidiasis, natural killer cell deficiency (NK), idiopathic CD4+ T-lymphocytopenia, immunodeficiency with predominant T cell defect (unspecified), and unspecified immunodeficiency of cell mediated immunity.

- [0509] In specific embodiments, DiGeorge anomaly or conditions associated with DiGeorge anomaly are treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides of the invention, or antagonists or agonists thereof.
- [0510] Other immunodeficiencies that may be treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, include, but are not limited to, chronic granulomatous disease, Chédiak-Higashi syndrome, myeloperoxidase deficiency, leukocyte glucose-6-phosphate dehydrogenase deficiency, X-linked lymphoproliferative syndrome (XLP), leukocyte adhesion deficiency, complement component deficiencies (including C1, C2, C3, C4, C5, C6, C7, C8 and/or C9 deficiencies), reticular dysgenesis, thymic alymphoplasia-aplasia, immunodeficiency with thymoma, severe congenital leukopenia, dysplasia with immunodeficiency, neonatal neutropenia, short limbed dwarfism, and Nezelof syndrome-combined immunodeficiency with Igs.
- [0511] In a preferred embodiment, the immunodeficiencies and/or conditions associated with the immunodeficiencies recited above are treated, prevented, diagnosed and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.
- [0512] In a preferred embodiment polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among immunodeficient individuals. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among B cell and/or T cell immunodeficient individuals.
- [0513] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, diagnosing and/or prognosing autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of polynucleotides and polypeptides of

the invention that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Autoimmune diseases or disorders that may be treated, prevented, [0514] diagnosed and/or prognosed by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, one or more of the following: systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, autoimmune thyroiditis, Hashimoto's thyroiditis, autoimmune hemolytic anemia, hemolytic anemia, thrombocytopenia, autoimmune thrombocytopenia purpura, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, purpura Henloch-Scoenlein (e.g., purpura), autoimmunocytopenia, Goodpasture's syndrome, Pemphigus vulgaris, myasthenia gravis, Grave's disease (hyperthyroidism), and insulin-resistant diabetes mellitus.

[0515] Additional disorders that are likely to have an autoimmune component that may be treated, prevented, and/or diagnosed with the compositions of the invention include, but are not limited to, type II collagen-induced arthritis, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease. neuritis. uveitis ophthalmia, polyendocrinopathies, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disorders.

[0516] Additional disorders that are likely to have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the compositions of the invention include, but are not limited to, scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.g., by antispermatozoal antibodies), glomerulonephritis (often characterized, e.g., by glomerular basement membrane antibodies or immune complexes), bullous

pemphigoid (often characterized, e.g., by IgG and complement in basement membrane), Sjogren's syndrome (often characterized, e.g., by multiple tissue antibodies, and/or a specific nonhistone ANA (SS-B)), diabetes mellitus (often characterized, e.g., by cell-mediated and humoral islet cell antibodies), and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis) (often characterized, e.g., by beta-adrenergic receptor antibodies).

- treated, prevented, diagnosed and/or prognosed with the compositions of the invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondria antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM antibodies to IgE), atopic dermatitis (often characterized, e.g., by IgG and IgM antibodies to IgE), asthma (often characterized, e.g., by IgG and IgM antibodies to IgE), and many other inflammatory, granulomatous, degenerative, and atrophic disorders.
- [0518] In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using for example, antagonists or agonists, polypeptides or polynucleotides, or antibodies of the present invention. In a specific preferred embodiment, rheumatoid arthritis is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.
- [0519] In another specific preferred embodiment, systemic lupus erythematosus is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. In another specific preferred embodiment, idiopathic thrombocytopenia purpura is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0520] In another specific preferred embodiment IgA nephropathy is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

- [0521] In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.
- [0522] In preferred embodiments, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a immunosuppressive agent(s).
- [0523] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, prognosing, and/or diagnosing diseases, disorders, and/or conditions of hematopoietic cells. Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells, including but not limited to, leukopenia, neutropenia, anemia, and thrombocytopenia. Alternatively, Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with an increase in certain (or many) types of hematopoietic cells, including but not limited to, histiocytosis.
- [0524] Allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated, prevented, diagnosed and/or prognosed using polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof. Moreover, these molecules can be used to treat, prevent, prognose, and/or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
- [0525] Additionally, polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, may be used to treat, prevent, diagnose and/or

prognose IgE-mediated allergic reactions. Such allergic reactions include, but are not limited to, asthma, rhinitis, and eczema. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to modulate IgE concentrations in vitro or in vivo.

[0526] Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention have uses in the diagnosis, prognosis, prevention, and/or treatment of inflammatory conditions. For example, since polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists of the invention may inhibit the activation, proliferation and/or differentiation of cells involved in an inflammatory response, these molecules can be used to prevent and/or treat chronic and acute inflammatory conditions. Such inflammatory conditions include, but are not limited to, for example, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome), ischemiareperfusion injury, endotoxin lethality, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, over production of cytokines (e.g., TNF or IL-1.), respiratory disorders (e.g., asthma and allergy); gastrointestinal disorders (e.g., inflammatory bowel disease); cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast); CNS disorders (e.g., multiple sclerosis; ischemic brain injury and/or stroke, traumatic brain injury, neurodegenerative disorders (e.g., Parkinson's disease and Alzheimer's disease); AIDS-related dementia; and prion disease); cardiovascular disorders (e.g., atherosclerosis, myocarditis, cardiovascular disease, and cardiopulmonary bypass complications); as well as many additional diseases, conditions, and disorders that are characterized by inflammation (e.g., hepatitis, rheumatoid arthritis, gout, trauma, pancreatitis, sarcoidosis, dermatitis, renal ischemia-reperfusion injury, Grave's disease, systemic lupus erythematosus, diabetes mellitus, and allogenic transplant rejection).

[0527] Because inflammation is a fundamental defense mechanism, inflammatory disorders can effect virtually any tissue of the body. Accordingly, polynucleotides, polypeptides, and antibodies of the invention, as well as agonists or antagonists thereof, have uses in the treatment of tissue-specific inflammatory disorders, including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis,

balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrositis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrinthitis, laryngitis, lymphangitis, mastitis, media otitis, meningitis, metritis, mucitis, myocarditis, myosititis, myringitis, nephritis, neuritis, orchitis, osteochondritis, otitis, pericarditis, peritendonitis, peritonitis, pharyngitis, phlebitis, poliomyelitis, prostatitis, pulpitis, retinitis, rhinitis, salpingitis, scleritis, sclerochoroiditis, tonsillitis, urethritis, and vaginitis.

In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat organ transplant rejections and graft-versus-host disease. Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. Polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD. In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing experimental allergic and hyperacute xenograft rejection.

[0529] In other embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat immune complex diseases, including, but not limited to, serum sickness, post streptococcal glomerulonephritis, polyarteritis nodosa, and immune complex-induced vasculitis.

[0530] Polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the invention can be used to treat, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation activation and/or differentiation of B and/or T cells, infectious diseases may be treated,

detected, and/or prevented. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may also directly inhibit the infectious agent (refer to section of application listing infectious agents, etc), without necessarily eliciting an immune response.

- [0531] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a vaccine adjuvant that enhances immune responsiveness to an antigen. In a specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance tumor-specific immune responses.
- In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-viral immune responses. Anti-viral immune responses that may be enhanced using the compositions of the invention as an adjuvant, include virus and virus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AIDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B). In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, respiratory syncytial virus, Dengue, rotavirus, Japanese B encephalitis, influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, herpes simplex, and yellow fever.
- [0533] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-bacterial or anti-fungal immune responses. Anti-bacterial or anti-fungal immune responses that may be enhanced using the compositions of the invention as an adjuvant, include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune

response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B.

[0534] In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Meisseria meningitidis, Streptococcus pneumoniae, Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli, and Borrelia burgdorferi.

[0535] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-parasitic immune responses. Anti-parasitic immune responses that may be enhanced using the compositions of the invention as an adjuvant, include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a parasite. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria) or Leishmania.

[0536] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat infectious diseases including silicosis, sarcoidosis, and idiopathic pulmonary fibrosis; for example, by preventing the recruitment and activation of mononuclear phagocytes.

[0537] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an antigen for the generation of antibodies to inhibit or enhance immune mediated responses against polypeptides of the invention.

[0538] In one embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production and

immunoglobulin class switching (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response.

- [0539] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell responsiveness to pathogens.
- [0540] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an activator of T cells.
- [0541] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.
- [0542] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to induce higher affinity antibodies.
- [0543] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to increase serum immunoglobulin concentrations.
- [0544] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to accelerate recovery of immunocompromised individuals.
- [0545] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among aged populations and/or neonates.
- [0546] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g., allogeneic or xenogeneic organ transplantation). With respect to transplantation, compositions of the invention may be administered prior to, concomitant with, and/or after transplantation. In a specific embodiment, compositions of the invention are administered after transplantation, prior to the beginning of recovery of T-cell populations. In another specific embodiment, compositions of the invention are first

administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.

In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function. Conditions resulting in an acquired loss of B cell function that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, HIV Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).

In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency. Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, and recovery from surgery.

[0549] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a regulator of antigen presentation by monocytes, dendritic cells, and/or B-cells. In one embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention enhance antigen presentation or antagonizes antigen presentation in vitro or in vivo. Moreover, in related embodiments, said enhancement or antagonism of antigen presentation may be useful as an anti-tumor treatment or to modulate the immune system.

[0550] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to direct an individual's immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.

[0551] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means to induce

tumor proliferation and thus make it more susceptible to anti-neoplastic agents. For example, multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly their susceptibility profile would likely change.

- [0552] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell production in pathologies such as AIDS, chronic lymphocyte disorder and/or Common Variable Immunodificiency.
- [0553] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in the pretreatment of bone marrow samples prior to transplant.
- [0554] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno-incompetence/immunodeficiency such as observed among SCID patients.
- [0555] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania.
- [0556] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of regulating secreted cytokines that are elicited by polypeptides of the invention.
- [0557] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in one or more of the applications decribed herein, as they may apply to veterinary medicine.
- [0558] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of blocking various aspects of immune responses to foreign agents or self. Examples of diseases or conditions in which blocking of certain aspects of immune responses may be

desired include autoimmune disorders such as lupus, and arthritis, as well as immunoresponsiveness to skin allergies, inflammation, bowel disease, injury and diseases/disorders associated with pathogens.

- [0559] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for preventing the B cell proliferation and Ig secretion associated with autoimmune diseases such as idiopathic thrombocytopenic purpura, systemic lupus erythematosus and multiple sclerosis.
- [0560] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a inhibitor of B and/or T cell migration in endothelial cells. This activity disrupts tissue architecture or cognate responses and is useful, for example in disrupting immune responses, and blocking sepsis.
- [0561] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for chronic hypergammaglobulinemia evident in such diseases as monoclonal gammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonal gammopathies, and plasmacytomas.
- [0562] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed for instance to inhibit polypeptide chemotaxis and activation of macrophages and their precursors, and of neutrophils, basophils, B lymphocytes and some T-cell subsets, e.g., activated and CD8 cytotoxic T cells and natural killer cells, in certain autoimmune and chronic inflammatory and infective diseases. Examples of autoimmune diseases are described herein and include multiple sclerosis, and insulin-dependent diabetes.
- [0563] The polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat idiopathic hypereosinophilic syndrome by, for example, preventing eosinophil production and migration.
- [0564] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit complement mediated cell lysis.

[0565] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit antibody dependent cellular cytotoxicity.

[0566] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed for treating atherosclerosis, for example, by preventing monocyte infiltration in the artery wall.

[0567] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed to treat adult respiratory distress syndrome (ARDS).

[0568] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be useful for stimulating wound and tissue repair, stimulating angiogenesis, and/or stimulating the repair of vascular or lymphatic diseases or disorders. Additionally, agonists and antagonists of the invention may be used to stimulate the regeneration of mucosal surfaces.

[0569] In a specific embodiment, polynucleotides or polypeptides, and/or agonists thereof are used to diagnose, prognose, treat, and/or prevent a disorder characterized by primary or acquired immunodeficiency, deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction. polynucleotides or polypeptides, and/or agonists thereof may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pneumocystis carnii. Other diseases and disorders that may be prevented, diagnosed, prognosed, and/or treated with polynucleotides or polypeptides, and/or agonists of the present invention include, but are not limited to, HIV infection, HTLV-BLV infection, lymphopenia, phagocyte bactericidal dysfunction anemia, thrombocytopenia, and hemoglobinuria.

[0570] In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention are used to treat, and/or diagnose an individual having common variable immunodeficiency disease ("CVID"; also known as "acquired agammaglobulinemia" and "acquired hypogammaglobulinemia") or a subset of this disease.

- In a specific embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to diagnose, prognose, prevent, and/or treat cancers or neoplasms including immune cell or immune tissue-related cancers or neoplasms. Examples of cancers or neoplasms that may be prevented, diagnosed, or treated by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL) Chronic lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, EBV-transformed diseases, and/or diseases and disorders described in the section entitled "Hyperproliferative Disorders" elsewhere herein.
- [0572] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for decreasing cellular proliferation of Large B-cell Lymphomas.
- [0573] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of decreasing the involvement of B cells and Ig associated with Chronic Myelogenous Leukemia.
- [0574] In specific embodiments, the compositions of the invention are used as an agent to boost immunoresponsiveness among B cell immunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy.
- [0575] Antagonists of the invention include, for example, binding and/or inhibitory antibodies, antisense nucleic acids, ribozymes or soluble forms of the polypeptides of the present invention (e.g., Fc fusion protein; see, e.g., Example 9). Agonists of the invention include, for example, binding or stimulatory antibodies, and soluble forms of the polypeptides (e.g., Fc fusion proteins; see, e.g., Example 9).

Polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as described herein.

[0576] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (including, but not limited to, those listed above, and also including transgenic animals) incapable of producing functional endogenous antibody molecules or having an otherwise compromised endogenous immune system, but which is capable of producing human immunoglobulin molecules by means of a reconstituted or partially reconstituted immune system from another animal (see, e.g., published PCT Application Nos. WO98/24893, WO/9634096, WO/9633735, and WO/9110741). Administration of polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention to such animals is useful for the generation of monoclonal antibodies against the polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention.

Blood-Related Disorders

[0577] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to modulate hemostatic (the stopping of bleeding) or thrombolytic (clot dissolving) activity. For example, by increasing hemostatic or thrombolytic activity, polynucleotides or polypeptides, and/or agonists or antagonists of the present invention could be used to treat or prevent blood coagulation diseases, disorders, and/or conditions (e.g., afibrinogenemia, factor deficiencies, hemophilia), blood platelet diseases, disorders, and/or conditions (e.g., thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment or prevention of heart attacks (infarction), strokes, or scarring.

[0578] In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to prevent, diagnose, prognose, and/or treat thrombosis, arterial thrombosis, venous thrombosis,

 ϵ

thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina. In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease. Other uses for the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, include, but are not limited to, the prevention of occlusions in extrcorporeal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines).

[0579] In another embodiment, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to prevent, diagnose, prognose, and/or treat diseases and disorders of the blood and/or blood forming organs associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1A, column 7 (Tissue Distribution Library Code).

[0580] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to modulate hematopoietic activity (the formation of blood cells). For example, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to increase the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets. The ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of anemias and leukopenias described below. Alternatively, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to decrease the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets. The ability to decrease the quantity of blood cells or subsets of blood cells

may be useful in the prevention, detection, diagnosis and/or treatment of leukocytoses, such as, for example eosinophilia.

[0581] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to prevent, treat, or diagnose blood dyscrasia.

[0582] Anemias are conditions in which the number of red blood cells or amount of hemoglobin (the protein that carries oxygen) in them is below normal. Anemia may be caused by excessive bleeding, decreased red blood cell production, or increased red blood cell destruction (hemolysis). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias. Anemias that may be treated prevented or diagnosed by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include iron deficiency anemia, hypochromic anemia, microcytic anemia, chlorosis, hereditary siderob;astic anemia, idiopathic acquired sideroblastic anemia, red cell aplasia, megaloblastic anemia (e.g., pernicious anemia, (vitamin B12 deficiency) and folic acid deficiency anemia), aplastic anemia, hemolytic anemias (e.g., autoimmune helolytic anemia, microangiopathic hemolytic anemia, and paroxysmal nocturnal hemoglobinuria). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias associated with diseases including but not limited to, anemias associated with systemic lupus erythematosus, cancers, lymphomas, chronic renal disease, and enlarged spleens. The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias arising from drug treatments such as anemias associated with methyldopa, dapsone, and/or sulfadrugs. Additionally, rhe polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias associated with abnormal red blood cell architecture including but not limited to, hereditary spherocytosis, hereditary elliptocytosis, glucose-6-phosphate dehydrogenase deficiency, and sickle cell anemia.

[0583] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or

diagnosing hemoglobin abnormalities, (e.g., those associated with sickle cell anemia, hemoglobin C disease, hemoglobin S-C disease, and hemoglobin E disease). Additionally, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating thalassemias, including, but not limited to major and minor forms of alpha-thalassemia and beta-thalassemia.

[0584] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating bleeding disorders including, but not limited to, thrombocytopenia (e.g., idiopathic thrombocytopenic purpura, and thrombotic thrombocytopenic purpura), Von Willebrand's disease, hereditary platelet disorders (e.g., storage pool disease such as Chediak-Higashi and Hermansky-Pudlak syndromes, thromboxane A2 dysfunction, thromboasthenia, and Bernard-Soulier syndrome), hemolytic-uremic syndrome, hemophelias such as hemophelia A or Factor VII deficiency and Christmas disease or Factor IX deficiency, Hereditary Hemorhhagic Telangiectsia, also known as Rendu-Osler-Weber syndrome, allergic purpura (Henoch Schonlein purpura) and disseminated intravascular coagulation.

or antagonists of the present invention on the clotting time of blood may be monitored using any of the clotting tests known in the art including, but not limited to, whole blood partial thromboplastin time (PTT), the activated partial thromboplastin time (aPTT), the activated clotting time, or the Lee-White Clotting time.

[0586] Several diseases and a variety of drugs can cause platelet dysfunction. Thus, in a specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating acquired platelet dysfunction such as platelet dysfunction accompanying kidney failure, leukemia, multiple myeloma, cirrhosis of the liver, and systemic lupus erythematosus as well as platelet dysfunction associated with drug treatments, including treatment with aspirin, ticlopidine, nonsteroidal anti-inflammatory drugs (used for arthritis, pain, and sprains), and penicillin in high doses.

[0587] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders characterized by or associated with increased or decreased numbers of white blood cells. Leukopenia occurs when the number of white blood cells decreases below normal. Leukopenias include, but are not limited to, neutropenia and lymphocytopenia. An increase in the number of white blood cells compared to normal is known as leukocytosis. The body generates increased numbers of white blood cells during infection. Thus, leukocytosis may simply be a normal physiological parameter that reflects infection. Alternatively, leukocytosis may be an indicator of injury or other disease such as cancer. Leokocytoses, include but are not limited to, eosinophilia, and accumulations of macrophages. In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukopenia. In other specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukocytosis

[0588] Leukopenia may be a generalized decreased in all types of white blood cells, or may be a specific depletion of particular types of white blood cells. Thus, in specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating decreases in neutrophil numbers, known as neutropenia. Neutropenias that may be diagnosed, prognosed, prevented, and/or treated by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, infantile genetic agranulocytosis, familial neutropenia, cyclic neutropenia, neutropenias resulting from or associated with dietary deficiencies (e.g., vitamin B 12 deficiency or folic acid deficiency), neutropenias resulting from or associated with drug treatments (e.g., antibiotic regimens such as penicillin treatment, sulfonamide treatment, anticoagulant treatment, anticonvulsant drugs, anti-thyroid drugs, and cancer chemotherapy), and neutropenias resulting from increased neutrophil destruction that may occur in association with some bacterial or viral infections, allergic disorders, autoimmune diseases, conditions in which an

individual has an enlarged spleen (e.g., Felty syndrome, malaria and sarcoidosis), and some drug treatment regimens.

[0589] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating lymphocytopenias (decreased numbers of B and/or T lymphocytes), including, but not limited lymphocytopenias resulting from or associated with stress, drug treatments (e.g., drug treatment with corticosteroids, cancer chemotherapies, and/or radiation therapies), AIDS infection and/or other diseases such as, for example, cancer, rheumatoid arthritis, systemic lupus erythematosus, chronic infections, some viral infections and/or hereditary disorders (e.g., DiGeorge syndrome, Wiskott-Aldrich Syndome, severe combined immunodeficiency, ataxia telangiectsia).

[0590] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with macrophage numbers and/or macrophage function including, but not limited to, Gaucher's disease, Niemann-Pick disease, Letterer-Siwe disease and Hand-Schuller-Christian disease.

[0591] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with eosinophil numbers and/or eosinophil function including, but not limited to, idiopathic hypereosinophilic syndrome, eosinophilia-myalgia syndrome, and Hand-Schuller-Christian disease.

[0592] In yet another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukemias and lymphomas including, but not limited to, acute lymphocytic (lymphpblastic) leukemia (ALL), acute myeloid (myelocytic, myelogenous, myeloblastic, or myelomonocytic) leukemia, chronic lymphocytic leukemia (e.g., B cell leukemias, T cell leukemias, Sezary syndrome, and Hairy cell leukenia), chronic myelocytic (myeloid, myelogenous, or granulocytic) leukemia, Hodgkin's lymphoma, non-hodgkin's lymphoma, Burkitt's lymphoma, and mycosis fungoides.

[0593] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders of plasma cells including, but not limited to, plasma cell dyscrasias, monoclonal gammaopathies, monoclonal gammopathies of undetermined significance, multiple myeloma, macroglobulinemia, Waldenstrom's macroglobulinemia, cryoglobulinemia, and Raynaud's phenomenon.

- [0594] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing myeloproliferative disorders, including but not limited to, polycythemia vera, relative polycythemia, secondary polycythemia, myelofibrosis, acute myelofibrosis, agnogenic myelod metaplasia, thrombocythemia, (including both primary and seconday thrombocythemia) and chronic myelocytic leukemia.
- [0595] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as a treatment prior to surgery, to increase blood cell production.
- [0596] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to enhance the migration, phagocytosis, superoxide production, antibody dependent cellular cytotoxicity of neutrophils, eosionophils and macrophages.
- [0597] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase the number of stem cells in circulation prior to stem cells pheresis. In another specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase the number of stem cells in circulation prior to platelet pheresis.
- [0598] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase cytokine production.
- [0599] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in preventing, diagnosing, and/or treating primary hematopoietic disorders.

Hyperproliferative Disorders

[0600] Reproductive system associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, diagnose and/or prognose hyperproliferative diseases, disorders, and/or conditions, including neoplasms.

[0601] In a specific embodiment, reproductive system associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, and/or diagnose hyperproliferative diseases, disorders, and/or conditions of the reproductive system.

[0602] In a preferred embodiment, reproductive system associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, and/or diagnose reproductive system neoplasms.

[0603] Reproductive system associated polynucleotides or polypeptides, or agonists or antagonists of the invention, may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, reproductive system associated polynucleotides or polypeptides, or agonists or antagonists thereof, may proliferate other cells, which can inhibit the hyperproliferative disorder.

[0604] For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative diseases, disorders, and/or conditions can be treated, prevented, and/or diagnosed. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating, preventing, and/or diagnosing hyperproliferative diseases, disorders, and/or conditions, such as a chemotherapeutic agent.

[0605] Examples of hyperproliferative diseases, disorders, and/or conditions that can be treated, prevented, and/or diagnosed by reproductive system associated polynucleotides or polypeptides, or agonists or antagonists thereof, include, but are not limited to neoplasms located in the: prostate, colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

[0606] Similarly, other hyperproliferative disorders can also be treated or detected by polynucleotides or polypeptides, or agonists or antagonists of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the Renal Pelvis and Ureter, Central Nervous System (Primary) Lymphoma, Central Nervous System Lymphoma, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Childhood (Primary) Hepatocellular Cancer, Childhood (Primary) Liver Cancer, Childhood Acute Lymphoblastic Leukemia, Childhood Acute Myeloid Leukemia, Childhood Brain Stem Glioma, Childhood Cerebellar Astrocytoma, Childhood Cerebral Astrocytoma, Childhood Extracranial Germ Cell Tumors, Childhood Hodgkin's Disease, Childhood Hodgkin's Lymphoma, Childhood Hypothalamic and Visual Pathway Glioma, Childhood Lymphoblastic Leukemia, Childhood Medulloblastoma, Childhood Non-Hodgkin's Lymphoma, Childhood Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood Primary Liver Cancer, Childhood Rhabdomyosarcoma, Childhood Soft Tissue Sarcoma, Childhood Visual Pathway and Hypothalamic Glioma, Chronic Lymphocytic Leukemia, Chronic Myelogenous Leukemia, Colon Cancer, Cutaneous T-Cell Lymphoma, Endocrine Pancreas Islet Cell Carcinoma, Endometrial Cancer, Ependymoma, Epithelial Cancer, Esophageal Cancer, Ewing's Sarcoma and Related Tumors, Exocrine Pancreatic Cancer, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Eye Cancer, Female Breast Cancer, Gaucher's Disease, Gallbladder Cancer, Gastric Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Tumors, Germ Cell Tumors, Gestational Trophoblastic Tumor, Hairy Cell Leukemia, Head and Neck Cancer, Hepatocellular Cancer, Hodgkin's Disease, Hodgkin's Lymphoma, Hypergammaglobulinemia,

Hypopharyngeal Cancer, Intestinal Cancers, Intraocular Melanoma, Islet Cell Carcinoma, Islet Cell Pancreatic Cancer, Kaposi's Sarcoma, Kidney Cancer, Laryngeal Cancer, Lip and Oral Cavity Cancer, Liver Cancer, Lung Cancer, Lymphoproliferative Disorders, Macroglobulinemia, Male Breast Cancer, Malignant Mesothelioma, Malignant Thymoma, Medulloblastoma, Melanoma, Mesothelioma, Metastatic Occult Primary Squamous Neck Cancer, Metastatic Primary Squamous Neck Cancer, Metastatic Squamous Neck Cancer, Multiple Myeloma, Multiple Myeloma/Plasma Cell Neoplasm, Myelodysplastic Syndrome, Myelogenous Leukemia, Myeloid Leukemia, Myeloproliferative Disorders, Nasal Cavity and Paranasal Sinus Cancer, Nasopharyngeal Cancer, Neuroblastoma, Non-Hodgkin's Lymphoma During Pregnancy, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Occult Primary Metastatic Squamous Neck Cancer, Oropharyngeal Cancer, Osteo-/Malignant Fibrous Sarcoma, Osteosarcoma/Malignant Fibrous Histiocytoma, Osteosarcoma/Malignant Fibrous Histiocytoma of Bone, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Pancreatic Cancer, Paraproteinemias, Purpura, Parathyroid Cancer, Penile Cancer, Pheochromocytoma, Pituitary Tumor, Plasma Cell Neoplasm/Multiple Myeloma, Primary Central Nervous System Lymphoma, Primary Liver Cancer, Prostate Cancer, Rectal Cancer, Renal Cell Cancer, Renal Pelvis and Ureter Cancer, Retinoblastoma, Rhabdomyosarcoma, Salivary Gland Cancer, Sarcoidosis Sarcomas, Sezary Syndrome, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Neck Cancer, Stomach Cancer, Supratentorial Primitive Neuroectodermal and Pineal Tumors, T-Cell Lymphoma, Testicular Cancer, Thymoma, Thyroid Cancer, Transitional Cell Cancer of the Renal Pelvis and Ureter, Transitional Renal Pelvis and Ureter Cancer, Trophoblastic Tumors, Ureter and Renal Pelvis Cell Cancer, Urethral Cancer, Uterine Cancer, Uterine Sarcoma, Vaginal Cancer, Visual Pathway and Hypothalamic Glioma, Vulvar Cancer, Waldenstrom's Macroglobulinemia, Wilms' Tumor, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

[0607] In another preferred embodiment, polynucleotides or polypeptides, or agonists or antagonists of the present invention are used to diagnose, prognose, prevent, and/or treat premalignant conditions and to prevent progression to a neoplastic or malignant state, including but not limited to those disorders described

above. Such uses are indicated in conditions known or suspected of preceding progression to neoplasia or cancer, in particular, where non-neoplastic cell growth consisting of hyperplasia, metaplasia, or most particularly, dysplasia has occurred (for review of such abnormal growth conditions, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W. B. Saunders Co., Philadelphia, pp. 68-79.)

[8090] Hyperplasia is a form of controlled cell proliferation, involving an increase in cell number in a tissue or organ, without significant alteration in structure or function. Hyperplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, angiofollicular mediastinal lymph node hyperplasia, angiolymphoid hyperplasia with eosinophilia, atypical melanocytic hyperplasia, basal cell hyperplasia, benign giant lymph node hyperplasia, cementum hyperplasia, congenital adrenal hyperplasia, congenital sebaceous hyperplasia, cystic hyperplasia, cystic hyperplasia of the breast, denture hyperplasia. ductal hyperplasia, endometrial hyperplasia, fibromuscular hyperplasia, focal epithelial hyperplasia, gingival hyperplasia, inflammatory fibrous hyperplasia, inflammatory papillary hyperplasia, intravascular papillary endothelial hyperplasia, nodular hyperplasia of prostate, nodular regenerative hyperplasia, pseudoepitheliomatous hyperplasia, senile sebaceous hyperplasia, and verrucous hyperplasia.

[0609] Metaplasia is a form of controlled cell growth in which one type of adult or fully differentiated cell substitutes for another type of adult cell. Metaplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, agnogenic myeloid metaplasia, apocrine metaplasia, atypical metaplasia, autoparenchymatous metaplasia, connective tissue metaplasia, epithelial metaplasia, intestinal metaplasia, metaplastic anemia, metaplastic ossification, metaplastic polyps, myeloid metaplasia, primary myeloid metaplasia, secondary myeloid metaplasia, squamous metaplasia, squamous metaplasia of amnion, and symptomatic myeloid metaplasia.

[0610] Dysplasia is frequently a forerunner of cancer, and is found mainly in the epithelia; it is the most disorderly form of non-neoplastic cell growth, involving a loss

in individual cell uniformity and in the architectural orientation of cells. Dysplastic cells often have abnormally large, deeply stained nuclei, and exhibit pleomorphism. Dysplasia characteristically occurs where there exists chronic irritation or inflammation. Dysplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, anhidrotic ectodermal dysplasia, anterofacial dysplasia, asphyxiating thoracic dysplasia, atriodigital dysplasia, bronchopulmonary dysplasia, cerebral dysplasia, cervical dysplasia, chondroectodermal dysplasia, cleidocranial dysplasia, congenital ectodermal dysplasia, craniodiaphysial dysplasia, craniocarpotarsal dysplasia, craniometaphysial dysplasia, dentin dysplasia, diaphysial dysplasia, ectodermal dysplasia, enamel dysplasia, encephalo-ophthalmic dysplasia, dysplasia epiphysialis hemimelia, dysplasia epiphysialis multiplex, dysplasia epiphysialis punctata, epithelial dysplasia, faciodigitogenital dysplasia, familial fibrous dysplasia of jaws, familial white folded dysplasia, fibromuscular dysplasia, fibrous dysplasia of bone, florid osseous dysplasia, hereditary renal-retinal dysplasia, hidrotic ectodermal dysplasia, hypohidrotic ectodermal dysplasia, lymphopenic thymic dysplasia, mammary dysplasia, mandibulofacial dysplasia, metaphysial dysplasia, Mondini dysplasia, monostotic fibrous dysplasia, mucoepithelial dysplasia, multiple epiphysial dysplasia, oculoauriculovertebral dysplasia, oculodentodigital dysplasia, oculovertebral dysplasia, odontogenic dysplasia, ophthalmomandibulomelic dysplasia, periapical cemental dysplasia, polyostotic fibrous dysplasia, pseudoachondroplastic spondyloepiphysial dysplasia, retinal dysplasia, septo-optic dysplasia, spondyloepiphysial dysplasia, and ventriculoradial dysplasia.

[0611] Additional pre-neoplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, benign dysproliferative disorders (e.g., benign tumors, fibrocystic conditions, tissue hypertrophy, intestinal polyps, colon polyps, and esophageal dysplasia), leukoplakia, keratoses, Bowen's disease, Farmer's Skin, solar cheilitis, and solar keratosis.

[0612] In another embodiment, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to

diagnose and/or prognose disorders associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1A, 7 (Tissue Distribution Library Code).

In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat cancers and neoplasms, including, but not limited to those described herein. In a further preferred embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat acute myelogenous leukemia.

[0614] Additionally, polynucleotides, polypeptides, and/or agonists or antagonists of the invention may affect apoptosis, and therefore, would be useful in treating a number of diseases associated with increased cell survival or the inhibition of apoptosis. For example, diseases associated with increased cell survival or the inhibition of apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma. chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) and viral infections (such as herpes viruses, pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection.

[0615] In preferred embodiments, polynucleotides, polypeptides, and/or agonists or antagonists of the invention are used to inhibit growth, progression, and/or metastasis of cancers, in particular those listed above.

[0616] Additional diseases or conditions associated with increased cell survival that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma. papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, emangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.

[0617] Diseases associated with increased apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis)

myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.

- [0618] Hyperproliferative diseases and/or disorders that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include, but are not limited to, neoplasms located in the liver, abdomen, bone, breast, digestive system, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.
- [0619] Similarly, other hyperproliferative disorders can also be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.
- [0620] One preferred embodiment utilizes polynucleotides of the present invention to inhibit aberrant cellular division, by gene therapy using the present invention, and/or protein fusions or fragments thereof.
- [0621] Thus, the present invention provides a method for treating cell proliferative diseases, disorders, and/or conditions by inserting into an abnormally proliferating cell a polynucleotide of the present invention, wherein said polynucleotide represses said cell proliferation, disease, disorder, and/or condition.
- [0622] In a preferred embodiment, the present invention provides a method for treating cell proliferative diseases, disorders and/or conditions of the reproductive system by inserting into a cell, a polynucleotide of the present invention, wherein said polynucleotide represses said cell proliferation, disease and/or disorder.
- [0623] Another embodiment of the present invention provides a method of treating cell-proliferative diseases, disorders, and/or conditions in individuals comprising

administration of one or more active gene copies of the present invention to an abnormally proliferating cell or cells. In a preferred embodiment, polynucleotides of the present invention is a DNA construct comprising a recombinant expression vector effective in expressing a DNA sequence encoding said polynucleotides. In another preferred embodiment of the present invention, the DNA construct encoding the polynucleotides of the present invention is inserted into cells to be treated utilizing a retrovirus, or more preferably an adenoviral vector (see, e.g., G J. Nabel, et. al., PNAS 96: 324-326 (1999), which is hereby incorporated by reference). In a most preferred embodiment, the viral vector is defective and will not transform non-proliferating cells, only proliferating cells. Moreover, in a preferred embodiment, the polynucleotides of the present invention inserted into proliferating cells either alone, or in combination with or fused to other polynucleotides, can then be modulated via an external stimulus (i.e., magnetic, specific small molecule, chemical, or drug administration, etc.), which acts upon the promoter upstream of said polynucleotides to induce expression of the encoded protein product. As such the beneficial therapeutic affect of the present invention may be expressly modulated (i.e., to increase, decrease, or inhibit expression of the present invention) based upon said external stimulus.

[0624] Polynucleotides of the present invention may be useful in repressing expression of oncogenic genes or antigens. By "repressing expression of the oncogenic genes" is intended the suppression of the transcription of the gene, the degradation of the gene transcript (pre-message RNA), the inhibition of splicing, the destruction of the messenger RNA, the prevention of the post-translational modifications of the protein, the destruction of the protein, or the inhibition of the normal function of the protein.

[0625] For local administration to abnormally proliferating cells, polynucleotides of the present invention may be administered by any method known to those of skill in the art including, but not limited to transfection, electroporation, microinjection of cells, or in vehicles such as liposomes, lipofectin, or as naked polynucleotides, or any other method described throughout the specification. The polynucleotide of the present invention may be delivered by known gene delivery systems such as, but not limited to, retroviral vectors (Gilboa, J. Virology 44:845 (1982); Hocke, Nature

320:275 (1986); Wilson, et al., Proc. Natl. Acad. Sci. U.S.A. 85:3014), vaccinia virus system (Chakrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Yates et al., Nature 313:812 (1985)) known to those skilled in the art. These references are exemplary only and are hereby incorporated by reference. In order to specifically deliver or transfect cells which are abnormally proliferating and spare non-dividing cells, it is preferable to utilize a retrovirus, or adenoviral (as described in the art and elsewhere herein) delivery system known to those of skill in the art. Since host DNA replication is required for retroviral DNA to integrate and the retrovirus will be unable to self replicate due to the lack of the retrovirus genes needed for its life cycle. Utilizing such a retroviral delivery system for polynucleotides of the present invention will target said gene and constructs to abnormally proliferating cells and will spare the non-dividing normal cells.

- [0626] The polynucleotides of the present invention may be delivered directly to cell proliferative disorder/disease sites in internal organs, body cavities and the like by use of imaging devices used to guide an injecting needle directly to the disease site. The polynucleotides of the present invention may also be administered to disease sites at the time of surgical intervention.
- [0627] By "cell proliferative disease" is meant any human or animal disease or disorder, affecting any one or any combination of organs, cavities, or body parts, which is characterized by single or multiple local abnormal proliferations of cells, groups of cells, or tissues, whether benign or malignant.
- [0628] Any amount of the polynucleotides of the present invention may be administered as long as it has a biologically inhibiting effect on the proliferation of the treated cells. Moreover, it is possible to administer more than one of the polynucleotide of the present invention simultaneously to the same site. By "biologically inhibiting" is meant partial or total growth inhibition as well as decreases in the rate of proliferation or growth of the cells. The biologically inhibitory dose may be determined by assessing the effects of the polynucleotides of the present invention on target malignant or abnormally proliferating cell growth in tissue culture, tumor growth in animals and cell cultures, or any other method known to one of ordinary skill in the art.

[0629] The present invention is further directed to antibody-based therapies which involve administering of anti-polypeptides and anti-polynucleotide antibodies to a mammalian, preferably human, patient for treating one or more of the described diseases, disorders, and/or conditions. Methods for producing anti-polypeptides and anti-polynucleotide antibodies polyclonal and monoclonal antibodies are described in detail elsewhere herein. Such antibodies may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

- [0630] A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g., as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.
- [0631] In particular, the antibodies, fragments and derivatives of the present invention are useful for treating a subject having or developing cell proliferative and/or differentiation diseases, disorders, and/or conditions as described herein. Such treatment comprises administering a single or multiple doses of the antibody, or a fragment, derivative, or a conjugate thereof.
- [0632] The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors, for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
- [0633] It is preferred to use high affinity and/or potent *in vivo* inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of diseases, disorders, and/or conditions related to polynucleotides or polypeptides, including fragments thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5X10⁻⁶M, 10⁻⁶M, 5X10⁻⁷M, 10⁻⁷M, 5X10⁻⁷M, 5X10⁻⁷M,

 8 M, 10^{-8} M, $5X10^{-9}$ M, 10^{-9} M, $5X10^{-10}$ M, 10^{-10} M, $5X10^{-11}$ M, 10^{-11} M, $5X10^{-12}$ M, 10^{-12} M, 10^{-12} M, $5X10^{-13}$ M, 10^{-13} M, $5X10^{-14}$ M, 10^{-14} M, $5X10^{-15}$ M, and 10^{-15} M.

[0634] Moreover, reproductive system antigen polypeptides of the present invention or fragments thereof, are useful in inhibiting the angiogenesis of proliferative cells or tissues, either alone, as a protein fusion, or in combination with other polypeptides directly or indirectly, as described elsewhere herein. In a most preferred embodiment, said anti-angiogenesis effect may be achieved indirectly, for example, through the inhibition of hematopoietic, tumor-specific cells, such as tumor-associated macrophages (see, e.g., Joseph IB, et al. J Natl Cancer Inst, 90(21):1648-53 (1998), which is hereby incorporated by reference). Antibodies directed to polypeptides or polynucleotides of the present invention may also result in inhibition of angiogenesis directly, or indirectly (see, e.g., Witte L, et al., Cancer Metastasis Rev. 17(2):155-61 (1998), which is hereby incorporated by reference)).

[0635] Polypeptides, including protein fusions, of the present invention, or fragments thereof may be useful in inhibiting proliferative cells or tissues through the induction of apoptosis. Said polypeptides may act either directly, or indirectly to induce apoptosis of proliferative cells and tissues, for example in the activation of a death-domain receptor, such as tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNFrelated apoptosis-inducing ligand (TRAIL) receptor-1 and -2 (see, e.g., Schulze-Osthoff K, et.al., Eur J Biochem 254(3):439-59 (1998), which is hereby incorporated by reference). Moreover, in another preferred embodiment of the present invention, said polypeptides may induce apoptosis through other mechanisms, such as in the activation of other proteins which will activate apoptosis, or through stimulating the expression of said proteins, either alone or in combination with small molecule drugs or adjuvants, such as apoptonin, galectins, thioredoxins, antiinflammatory proteins (See for example, Mutat. Res. 400(1-2):447-55 (1998), Med Hypotheses.50(5):423-33 (1998), Chem. Biol. Interact. Apr 24;111-112:23-34 (1998), J. Mo. Med. 76(6):402-12 (1998), Int. J. Tissue React. 20(1):3-15 (1998), which are all hereby incorporated by reference).

[0636] Polypeptides, including protein fusions to, or fragments thereof, of the present invention are useful in inhibiting the metastasis of proliferative cells or tissues.

Inhibition may occur as a direct result of administering polypeptides, or antibodies directed to said polypeptides as described elsewhere herein, or indirectly, such as activating the expression of proteins known to inhibit metastasis, for example alpha 4 integrins, (See, e.g., Curr Top Microbiol Immunol 1998;231:125-41, which is hereby incorporated by reference). Such therapeutic affects of the present invention may be achieved either alone, or in combination with small molecule drugs or adjuvants.

[0637] In another embodiment, the invention provides a method of delivering compositions containing the polypeptides of the invention (e.g., compositions containing polypeptides or anti-reproductive system antigen polypeptide antibodies associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs) to targeted cells expressing the polypeptide of the present invention: reproductive system antigen polypeptides or anti- reproductive system antigen polypeptide antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions.

[0638] Polypeptides, protein fusions to, or fragments thereof, of the present invention are useful in enhancing the immunogenicity and/or antigenicity of proliferating cells or tissues, either directly, such as would occur if the polypeptides of the present invention 'vaccinated' the immune response to respond to proliferative antigens and immunogens, or indirectly, such as in activating the expression of proteins known to enhance the immune response (e.g. chemokines), to said antigens and immunogens.

Urinary System Disorders

[0639] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose disorders of the urinary system, including but not limited to disorders of the renal system, bladder, ureters, and urethra. Renal disorders include, but are not limited to, kidney failure, nephritis, blood vessel disorders of kidney, metabolic and congenital kidney disorders, urinary disorders of the kidney, autoimmune disorders, sclerosis and necrosis, electrolyte imbalance, and kidney cancers.

Kidney failure diseases include, but are not limited to, acute kidney failure, [0640] chronic kidney failure, atheroembolic renal failure, and end-stage renal disease. Inflammatory diseases of the kidney include acute glomerulonephritis, postinfectious glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, membranous glomerulonephritis, familial nephrotic syndrome, membranoproliferative glomerulonephritis I and II, mesangial proliferative glomerulonephritis, chronic glomerulonephritis, acute tubulointerstitial nephritis, chronic tubulointerstitial nephritis, acute post-streptococcal glomerulonephritis (PSGN), pyelonephritis, lupus nephritis, chronic nephritis, interstitial nephritis, and post-streptococcal glomerulonephritis.

- Blood vessel disorders of the kidneys include, but are not limited to, kidney infarction, atheroembolic kidney disease, cortical necrosis, malignant nephrosclerosis, renal vein thrombosis, renal underperfusion, renal ischemia-reperfusion, renal artery embolism, and renal artery stenosis. Kidney disorders resulting form urinary tract problems include, but are not limited to, pyelonephritis, hydronephrosis, urolithiasis (renal lithiasis, nephrolithiasis), reflux nephropathy, urinary tract infections, urinary retention, and acute or chronic unilateral obstructive uropathy.
- [0642] Metabolic and congenital disorders of the kidneys include, but are not limited to, renal tubular acidosis, renal glycosuria, nephrogenic diabetes insipidus, cystinuria, Fanconi's syndrome, vitamin D-resistant rickets, Hartnup disease, Bartter's syndrome, Liddle's syndrome, polycystic kidney disease, medullary cystic disease, medullary sponge kidney, Alport's syndrome, nail-patella syndrome, congenital nephrotic syndrome, CRUSH syndrome, horseshoe kidney, diabetic nephropathy, nephrogenic diabetes insipidus, analgesic nephropathy, kidney stones, and membranous nephropathy, Kidney disorders resulting from an autoimmune response include, but are not limited to, systemic lupus erythematosus (SLE), Goodpasture syndrome, IgA nephropathy, and IgM mesangial proliferative glomerulonephritis.
- [0643] Sclerotic or necrotic disorders of the kidney include, but are not limited to, glomerulosclerosis, diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), necrotizing glomerulonephritis, and renal papillary necrosis. Kidneys may also develop carcinomas, including, but not limited to, hypernephroma, nephroblastoma, renal cell cancer, transitional cell cancer, squamous cell cancer, and Wilm's tumor.

[0644] Kidney disorders may also result in electrolyte imbalances, including, but not limited to, nephrocalcinosis, pyuria, edema, hydronephritis, proteinuria, hyponatremia, hypernatremia, hypokalemia, hyperkalemia, hypercalcemia, hypophosphatemia, and hyperphosphatemia.

[0645] Bladder disorders include, but are not limited to, benign prostatic hyperplasia (BPH), interstitial cystitis (IC), prostatitis, proteinuria, urinary tract infections, urinary incontinence, urinary retention. Disorders of the ureters and urethra include, but are not limited to, acute or chronic unilateral obstructive uropathy. The bladder, ureters, and urethra may also develop carcinomas, including, but not limited to, superficial bladder cancer, invasive bladder cancer, carcinoma of the ureter, and urethra cancers.

[0646] Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Cardiovascular Disorders

[0647] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose cardiovascular disorders, including, but not limited to, peripheral artery disease, such as limb ischemia.

[0648] Cardiovascular disorders include cardiovascular abnormalities, such as arterio-arterial fistula, arteriovenous fistula, cerebral arteriovenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome. Congenital heart defects include aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot,

transposition of great vessels, double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, total anomalous pulmonary venous connection, hypoplastic left heart syndrome, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, atrioventricular canal defect, trilogy of Fallot, ventricular heart septal defects.

Cardiovascular disorders also include heart disease, such as arrhythmias, [0649] carcinoid heart disease, high cardiac output, low cardiac output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, sudden cardiac death, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post-infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, diastolic dysfunction, enlarged heart, heart block, J-curve phenomenon, rheumatic heart disease, Marfan syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.

[0650] Arrhythmias include sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaimtype pre-excitation syndrome, Wolff-Parkinson-White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation. Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, ectopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.

[0651] Heart valve disease include aortic valve insufficiency, aortic valve stenosis, heart murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, tricuspid valve stenosis, and bicuspid aortic valve.

[0652] Myocardial diseases include alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, Barth syndrome, myocardial reperfusion injury, and myocarditis.

- [0653] Myocardial ischemias include coronary disease, such as angina pectoris, Prinzmetal's angina, unstable angina, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
- [0654] Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-Trenaunay-Weber Syndrome, Sturge-Weber Syndrome, angioneurotic edema, aortic diseases, Takayasu's Arteritis, aortitis, Leriche's Syndrome, arterial occlusive diseases, arteritis, enarteritis, polyarteritis nodosa, cerebrovascular disorders, diabetic angiopathies, diabetic retinopathy, embolisms, thrombosis, erythromelalgia, hemorrhoids, hepatic veno-occlusive disease, hypertension, hypotension (shock), ischemia, peripheral vascular diseases, phlebitis, superficial phlebitis, pulmonary veno-occlusive disease, chronic obstructive pulmonary disease, Buerger's disease, Raynaud's disease, CREST syndrome, retinal vein occlusion, Scimitar syndrome, superior vena cava syndrome, telangiectasia, atacia telangiectasia, hereditary hemorrhagic telangiectasia, deep vein thrombosis, varicocele, varicose veins, varicose ulcer, vasculitis, and venous insufficiency.
- [0655] Aneurysms include dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.
- [0656] Arterial occlusive diseases include arteriosclerosis, arteriolosclerosis, atherosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.
- [0657] Cerebrovascular disorders include carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformation, cerebral artery diseases, cerebral embolism and

thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.

- [0658] Embolisms include air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms. Thrombosis include coronary thrombosis, hepatic vein thrombosis, deep vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.
- [0659] Ischemia includes cerebral ischemia, ischemic colitis, silent ischemia, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfusion injuries, and peripheral limb ischemia. Vasculitis includes aortitis, arteritis, Behcet's Syndrome, Churg-Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch purpura, allergic cutaneous vasculitis, and Wegener's granulomatosis.
- [0660] Cardiovascular diseases can also occur due to electrolyte imbalances that include, but are not limited to hyponatremia, hypernatremia, hypokalemia, hyperkalemia, hypocalcemia, hypercalcemia, hypercalcemia, hyperphophatemia. Neoplasm and/or cancers of the cardiovascular system include, but are not limited to, myxomas, fibromas, and rhabdomyomas.
- [0661] Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Respiratory Disorders

[0662] Polynucleotides or polypeptides, or agonists or antagonists of the present invention may be used to treat, prevent, diagnose, and/or prognose diseases and/or disorders of the respiratory system.

106631 Diseases and disorders of the respiratory system include, but are not limited to, nasal vestibulitis, nonallergic rhinitis (e.g., acute rhinitis, chronic rhinitis, atrophic rhinitis, vasomotor rhinitis), nasal polyps, and sinusitis, juvenile angiofibromas, cancer of the nose and juvenile papillomas, vocal cord polyps, nodules (singer's nodules), contact ulcers, vocal cord paralysis, laryngoceles, pharyngitis (e.g., viral and bacterial), tonsillitis, tonsillar cellulitis, parapharyngeal abscess, laryngitis, laryngoceles, and throat cancers (e.g., cancer of the nasopharynx, tonsil cancer, larynx cancer), lung cancer (e.g., squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and adenocarcinoma), allergic disorders (eosinophilic pneumonia, hypersensitivity pneumonitis (e.g., extrinsic allergic alveolitis, allergic interstitial pneumonitis, organic dust pneumoconiosis, allergic bronchopulmonary aspergillosis, asthma, Wegener's granulomatosis (granulomatous vasculitis), Goodpasture's syndrome)), pneumonia (e.g., bacterial pneumonia (e.g., Streptococcus pneumoniae (pneumoncoccal pneumonia), Staphylococcus aureus (staphylococcal pneumonia), Gram-negative bacterial pneumonia (caused by, e.g., Klebsiella and Pseudomas spp.), Mycoplasma pneumoniae pneumonia, Hemophilus influenzae pneumonia, Legionella pneumophila (Legionnaires' disease), and Chlamydia psittaci (Psittacosis)), and viral pneumonia (e.g., influenza, chickenpox (varicella).

[0664] Additional diseases and disorders of the respiratory system include, but are not limited to bronchiolitis, polio (poliomyelitis), croup, respiratory syncytial viral infection, mumps, erythema infectiosum (fifth disease), roseola infantum, progressive rubella panencephalitis, german measles, and subacute sclerosing panencephalitis), fungal pneumonia (e.g., Histoplasmosis, Coccidioidomycosis, Blastomycosis, fungal infections in people with severely suppressed immune systems (e.g., cryptococcosis, caused by Cryptococcus neoformans; aspergillosis, caused by Aspergillus spp.; candidiasis, caused by Candida; and mucormycosis)), Pneumocystis carinii (pneumocystis pneumonia), atypical pneumonias (e.g., Mycoplasma and Chlamydia spp.), opportunistic infection pneumonia, nosocomial pneumonia, chemical

pneumonitis, and aspiration pneumonia, pleural disorders (e.g., pleurisy, pleural effusion, and pneumothorax (e.g., simple spontaneous pneumothorax, complicated spontaneous pneumothorax, tension pneumothorax)), obstructive airway diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), emphysema, chronic or acute bronchitis), occupational lung diseases (e.g., silicosis, black lung (coal workers' pneumoconiosis), asbestosis, berylliosis, occupational asthsma, byssinosis, and benign pneumoconioses), Infiltrative Lung Disease (e.g., pulmonary fibrosis (e.g., fibrosing alveolitis, usual interstitial pneumonia), idiopathic pulmonary fibrosis, desquamative interstitial pneumonia, lymphoid interstitial pneumonia, histiocytosis X (e.g., Letterer-Siwe disease, Hand-Schüller-Christian disease, eosinophilic granuloma), idiopathic pulmonary hemosiderosis, sarcoidosis and pulmonary alveolar proteinosis), Acute respiratory distress syndrome (also called, e.g., adult respiratory distress syndrome), edema, pulmonary embolism, bronchitis (e.g., viral, bacterial), bronchiectasis, atelectasis, lung abscess (caused by, e.g., *Staphylococcus aureus* or *Legionella pneumophila*), and cystic fibrosis.

Anti-Angiogenesis Activity

The naturally occurring balance between endogenous stimulators and [0665] inhibitors of angiogenesis is one in which inhibitory influences predominate. Rastinejad et al., Cell 56:345-355 (1989). In those rare instances in which neovascularization occurs under normal physiological conditions, such as wound healing, organ regeneration, embryonic development, and female reproductive processes, angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail. Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases. A number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al., Biotech. 9:630-634 (1991); Folkman et al., N. Engl. J. Med., 333:1757-1763 (1995); Auerbach et al., J. Microvasc. Res. 29:401-411 (1985); Folkman, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203 (1985); Patz, Am. J. Opthalmol. 94:715-743 (1982); and

Folkman et al., Science 221:719-725 (1983). In a number of pathological conditions, the process of angiogenesis contributes to the disease state. For example, significant data have accumulated which suggest that the growth of solid tumors is dependent on angiogenesis. Folkman and Klagsbrun, Science 235:442-447 (1987).

The present invention provides for treatment of diseases or disorders [0666] associated with neovascularization by administration of the polynucleotides and/or polypeptides of the invention, as well as agonists or antagonists of the present Malignant and metastatic conditions which can be treated with the invention. polynucleotides and polypeptides, or agonists or antagonists of the invention include, but are not limited to, malignancies, solid tumors, and cancers described herein and otherwise known in the art (for a review of such disorders, see Fishman et al., Medicine, 2d Ed., J. B. Lippincott Co., Philadelphia (1985)). Thus, the present invention provides a method of treating an angiogenesis-related disease and/or disorder, comprising administration to an individual in need thereof a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist of the invention. For example, polynucleotides, polypeptides, antagonists and/or agonists may be utilized in a variety of additional methods in order to therapeutically treat a cancer or tumor. Cancers which may be treated with polynucleotides, polypeptides, antagonists and/or agonists include, but are not limited to solid tumors, including prostate, lung, breast, ovarian, stomach, pancreas, larynx, esophagus, testes, liver, parotid, biliary tract, colon, rectum, cervix, uterus, endometrium, kidney, bladder, thyroid cancer; primary tumors and metastases; melanomas; glioblastoma; Kaposi's sarcoma; leiomyosarcoma; non- small cell lung cancer; colorectal cancer; advanced malignancies; and blood born tumors such as leukemias. For example, polynucleotides, polypeptides, antagonists and/or agonists may be delivered topically, in order to treat cancers such as skin cancer, head and neck tumors, breast tumors, and Kaposi's sarcoma.

[0667] Within yet other aspects, polynucleotides, polypeptides, antagonists and/or agonists may be utilized to treat superficial forms of bladder cancer by, for example, intravesical administration. Polynucleotides, polypeptides, antagonists and/or agonists may be delivered directly into the tumor, or near the tumor site, via injection or a catheter. Of course, as the artisan of ordinary skill will appreciate, the appropriate

mode of administration will vary according to the cancer to be treated. Other modes of delivery are discussed herein.

Polynucleotides, polypeptides, antagonists and/or agonists may be useful in treating other disorders, besides cancers, which involve angiogenesis. These disorders include, but are not limited to: benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osler-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis.

[0669] For example, within one aspect of the present invention methods are provided for treating hypertrophic scars and keloids, comprising the step of administering a polynucleotide, polypeptide, antagonist and/or agonist of the invention to a hypertrophic scar or keloid.

[0670] Within one embodiment of the present invention polynucleotides, polypeptides, antagonists and/or agonists of the invention are directly injected into a hypertrophic scar or keloid, in order to prevent the progression of these lesions. This therapy is of particular value in the prophylactic treatment of conditions which are known to result in the development of hypertrophic scars and keloids (e.g., burns), and is preferably initiated after the proliferative phase has had time to progress (approximately 14 days after the initial injury), but before hypertrophic scar or keloid development. As noted above, the present invention also provides methods for treating neovascular diseases of the eye, including for example, corneal neovascularization, neovascular glaucoma, proliferative diabetic retinopathy, retrolental fibroplasia and macular degeneration.

[0671] Moreover, ocular disorders associated with neovascularization which can

be treated with the polynucleotides and polypeptides of the present invention (including agonists and/or antagonists) include, but are not limited to: neovascular glaucoma, diabetic retinopathy, retinoblastoma, retrolental fibroplasia, uveitis, retinopathy of prematurity macular degeneration, corneal graft neovascularization, as well as other eye inflammatory diseases, ocular tumors and diseases associated with choroidal or iris neovascularization. See, e.g., reviews by Waltman et al., Am. J. Ophthal. 85:704-710 (1978) and Gartner et al., Surv. Ophthal. 22:291-312 (1978).

Thus, within one aspect of the present invention methods are provided for [0672] treating neovascular diseases of the eye such as corneal neovascularization (including corneal graft neovascularization), comprising the step of administering to a patient a therapeutically effective amount of a compound (as described above) to the cornea, such that the formation of blood vessels is inhibited. Briefly, the cornea is a tissue, which normally lacks blood vessels. In certain pathological conditions however, capillaries may extend into the comea from the pericorneal vascular plexus of the limbus. When the cornea becomes vascularized, it also becomes clouded, resulting in a decline in the patient's visual acuity. Visual loss may become complete if the cornea completely opacitates. A wide variety of disorders can result in corneal neovascularization, including for example, corneal infections (e.g., trachoma, herpes simplex keratitis, leishmaniasis and onchocerciasis), immunological processes (e.g., graft rejection and Stevens-Johnson's syndrome), alkali burns, trauma, inflammation (of any cause), toxic and nutritional deficiency states, and as a complication of wearing contact lenses.

[0673] Within particularly preferred embodiments of the invention, may be prepared for topical administration in saline (combined with any of the preservatives and antimicrobial agents commonly used in ocular preparations), and administered in eyedrop form. The solution or suspension may be prepared in its pure form and administered several times daily. Alternatively, anti-angiogenic compositions; prepared as described above, may also be administered directly to the cornea. Within preferred embodiments, the anti-angiogenic composition is prepared with a muco-adhesive polymer, which binds to cornea. Within further embodiments, the anti-angiogenic factors or anti-angiogenic compositions may be utilized as an adjunct to conventional steroid therapy. Topical therapy may also be useful prophylactically in

corneal lesions which are known to have a high probability of inducing an angiogenic response (such as chemical burns). In these instances the treatment, likely in combination with steroids, may be instituted immediately to help prevent subsequent complications.

[0674] Within other embodiments, the compounds described above may be injected directly into the corneal stroma by an ophthalmologist under microscopic guidance. The preferred site of injection may vary with the morphology of the individual lesion, but the goal of the administration would be to place the composition at the advancing front of the vasculature (i.e., interspersed between the blood vessels and the normal cornea). In most cases this would involve perilimbic corneal injection to "protect" the cornea from the advancing blood vessels. This method may also be utilized shortly after a corneal insult in order to prophylactically prevent corneal neovascularization. In this situation, the material could be injected in the perilimbic cornea interspersed between the corneal lesion and its undesired potential limbic blood supply. Such methods may also be utilized in a similar fashion to prevent capillary invasion of transplanted corneas. In a sustained-release form, injections might only be required 2-3 times per year. A steroid could also be added to the injection solution to reduce inflammation resulting from the injection itself.

Within another aspect of the present invention, methods are provided for treating neovascular glaucoma, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. In one embodiment, the compound may be administered topically to the eye in order to treat early forms of neovascular glaucoma. Within other embodiments, the compound may be implanted by injection into the region of the anterior chamber angle. Within other embodiments, the compound may also be placed in any location such that the compound is continuously released into the aqueous humor. Within another aspect of the present invention, methods are provided for treating proliferative diabetic retinopathy, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eyes, such that the formation of blood vessels is inhibited.

[0676] Within particularly preferred embodiments of the invention, proliferative

diabetic retinopathy may be treated by injection into the aqueous humor or the vitreous, in order to increase the local concentration of the polynucleotide, polypeptide, antagonist and/or agonist in the retina. Preferably, this treatment should be initiated prior to the acquisition of severe disease requiring photocoagulation.

[0677] Within another aspect of the present invention, methods are provided for treating retrolental fibroplasia, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. The compound may be administered topically, via intravitreous injection and/or via intraocular implants.

[0678] Additionally, disorders which can be treated with the polynucleotides, polypeptides, agonists and/or agonists include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osler-Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.

[0679] Moreover, disorders and/or states, which can be treated, prevented, diagnosed and/or prognosed with the polynucleotides, polypeptides, agonists and/or agonists of the invention include, but are not limited to, solid tumors, blood born tumors such as leukemias, tumor metastasis, Kaposi's sarcoma, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, rheumatoid arthritis, psoriasis, ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, and uvietis, delayed wound healing, endometriosis, vascluogenesis, granulations, hypertrophic scars (keloids), nonunion fractures, scleroderma, trachoma, vascular adhesions, myocardial angiogenesis, coronary collaterals, cerebral collaterals, arteriovenous malformations, ischemic limb angiogenesis, Osler-Webber Syndrome, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma fibromuscular dysplasia, wound granulation, Crohn's disease, atherosclerosis, birth control agent by preventing vascularization required for embryo implantation controlling menstruation, diseases that have angiogenesis as a pathologic consequence

such as cat scratch disease (Rochele minalia quintosa), ulcers (Helicobacter pylori), Bartonellosis and bacillary angiomatosis.

[0680] In one aspect of the birth control method, an amount of the compound sufficient to block embryo implantation is administered before or after intercourse and fertilization have occurred, thus providing an effective method of birth control, possibly a "morning after" method. Polynucleotides, polypeptides, agonists and/or agonists may also be used in controlling menstruation or administered as either a peritoneal lavage fluid or for peritoneal implantation in the treatment of endometriosis.

[0681] Polynucleotides, polypeptides, agonists and/or agonists of the present invention may be incorporated into surgical sutures in order to prevent stitch granulomas.

[0682] Polynucleotides, polypeptides, agonists and/or agonists may be utilized in a wide variety of surgical procedures. For example, within one aspect of the present invention a compositions (in the form of, for example, a spray or film) may be utilized to coat or spray an area prior to removal of a tumor, in order to isolate normal surrounding tissues from malignant tissue, and/or to prevent the spread of disease to surrounding tissues. Within other aspects of the present invention, compositions (e.g., in the form of a spray) may be delivered via endoscopic procedures in order to coat tumors, or inhibit angiogenesis in a desired locale. Within yet other aspects of the present invention, surgical meshes, which have been coated with anti- angiogenic compositions of the present invention may be utilized in any procedure wherein a surgical mesh might be utilized. For example, within one embodiment of the invention a surgical mesh laden with an anti-angiogenic composition may be utilized during abdominal cancer resection surgery (e.g., subsequent to colon resection) in order to provide support to the structure, and to release an amount of the antiangiogenic factor.

[0683] Within further aspects of the present invention, methods are provided for treating tumor excision sites, comprising administering a polynucleotide, polypeptide, agonist and/or agonist to the resection margins of a tumor subsequent to excision, such that the local recurrence of cancer and the formation of new blood vessels at the site is inhibited. Within one embodiment of the invention, the anti-angiogenic compound is administered directly to the tumor excision site (e.g., applied by swabbing, brushing or

otherwise coating the resection margins of the tumor with the anti-angiogenic compound). Alternatively, the anti-angiogenic compounds may be incorporated into known surgical pastes prior to administration. Within particularly preferred embodiments of the invention, the anti-angiogenic compounds are applied after hepatic resections for malignancy, and after neurosurgical operations.

- [0684] Within one aspect of the present invention, polynucleotides, polypeptides, agonists and/or agonists may be administered to the resection margin of a wide variety of tumors, including for example, breast, colon, brain and hepatic tumors. For example, within one embodiment of the invention, anti-angiogenic compounds may be administered to the site of a neurological tumor subsequent to excision, such that the formation of new blood vessels at the site are inhibited.
- [0685] The polynucleotides, polypeptides, agonists and/or agonists of the present invention may also be administered along with other anti-angiogenic factors. Representative examples of other anti-angiogenic factors include: Anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel, Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter "d group" transition metals.
- [0686] Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.
- [0687] Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.
- [0688] Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable

tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.

A wide variety of other anti-angiogenic factors may also be utilized within [0689] the context of the present invention. Representative examples include platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51:22-26 (1991)); Sulphated Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha,alpha-dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326 (1992)); Chymostatin (Tomkinson et al., Biochem J. 286:475-480 (1992)); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557 (1990)); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446 (1987)); anticollagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4):1659-1664 (1987)); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4chloroanthronilic acid disodium or "CCA"; Takeuchi et al., Agents Actions 36:312-316, 1992); Thalidomide; Angostatic steroid; AGM-1470; carboxynaminolmidazole; and metalloproteinase inhibitors such as BB94.

Musculoskeletal System Disorders

[0690] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose

disorders of the musculoskeletal system, including but not limited to, disorders of the bone, joints, ligaments, tendons, bursa, muscle, and/or neoplasms and cancers associated with musculoskeletal tissue.

- [0691] Diseases or disorders of the bone include, but are not limited to, Albers-Schönberg disease, bowlegs, heel spurs, Köhler's bone disease, knock-knees, Legg-Calvé-Perthes disease, Marfan's syndrome, mucopolysaccharidoses, Osgood-Schlatter disease, osteochondroses, osteochondrodysplasia, osteomyelitis, osteopetroses, osteoporosis (postmenopausal, senile, and juvenile), Paget's disease, Scheuermann's disease, scoliosis, Sever's disease, and patellofemoral stress syndrome.
- [0692] Joint diseases or disorders include, but are not limited to, ankylosing spondylitis, Behçet's syndrome, CREST syndrome, Ehlers-Danlos syndrome, infectious arthritis, discoid lupus erythematosus, systemic lupus erythematosus, Lyme disease, osteoarthritis, psoriatic arthritis, relapsing polychondrites, Reiter's syndrome, rheumatoid arthritis (adult and juvenile), scleroderma, and Still's disease.
- [0693] Diseases or disorders affecting ligaments, tendons, or bursa include, but are not limited to, ankle sprain, bursitis, posterior Achilles tendon bursitis (Haglund's deformity), anterior Achilles tendon bursitis (Albert's disease), tendinitis, tenosynovitis, poplieus tendinitis, Achilles tendinitis, medial or lateral epicondylitis, rotator cuff tendinitis, spasmodic torticollis, and fibromyalgia syndrome.
- [0694] Muscle diseases or disorders include, but are not limited to, Becker's muscular dystrophy, Duchenne's muscular dystrophy, Landouzy-Dejerine muscular dystrophy, Leyden-Möbius muscular dystrophy, Erb's muscular dystrophy, Charcot's joints, dermatomyositis, gout, pseudogout, glycogen storage diseases, Pompe's disease, mitochondrial myopathy, periodic paralysis, polymyalgia rheumatica, polymyositis, Steinert's disease, Thomsen's disease, anterolateral and posteromedial shin splints, posterior femoral muscle strain, and fibromyositis.
- [0695] Musculoskeletal tissue may also develop cancers and/or neoplasms that include, but are not limited to, osteochondroma, benign chondroma, chondroblastoma, chondromyxoid fibroma, osteoid osteoma, giant cell tumor, multiple myeloma, osteosarcoma, fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's tumor, and malignant lymphoma of bone.

Neural Activity and Neurological Diseases

The polynucleotides, polypeptides and agonists or antagonists of the [0696] invention may be used for the diagnosis and/or treatment of diseases, disorders, damage or injury of the brain and/or nervous system. Nervous system disorders that can be treated with the compositions of the invention (e.g., polypeptides, polynucleotides, and/or agonists or antagonists), include, but are not limited to, nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and nonhuman mammalian patients) according to the methods of the invention, include but are not limited to, the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems: (1) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia; (2) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries; (3) malignant lesions, in which a portion of the nervous system is destroyed or injured by malignant tissue which is either a nervous system associated malignancy or a malignancy derived from non-nervous system tissue; (4) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, or syphilis; (5) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to, degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis (ALS); (6) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including, but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration; (7) neurological lesions associated with systemic diseases including, but not limited to, diabetes (diabetic neuropathy,

Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis; (8) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and (9) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including, but not limited to, multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

In one embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to protect neural cells from the damaging effects of hypoxia. In a further preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to protect neural cells from the damaging effects of cerebral hypoxia. According to this embodiment, the compositions of the invention are used to treat or prevent neural cell injury associated with cerebral hypoxia. In one non-exclusive aspect of this embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention, are used to treat or prevent neural cell injury associated with cerebral ischemia. In another non-exclusive aspect of this embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with cerebral infarction.

[0698] In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with a stroke. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent cerebral neural cell injury associated with a stroke.

[0699] In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with a heart attack. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent cerebral neural cell injury associated with a heart attack.

[0700] The compositions of the invention which are useful for treating or preventing a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way

of limitation, compositions of the invention which elicit any of the following effects may be useful according to the invention: (1) increased survival time of neurons in culture either in the presence or absence of hypoxia or hypoxic conditions; (2) increased sprouting of neurons in culture or in vivo; (3) increased production of a neuron-associated molecule in culture or in vivo, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or (4) decreased symptoms of neuron dysfunction in vivo. Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may routinely be measured using a method set forth herein or otherwise known in the art, such as, for example, in Zhang et al., Proc Natl Acad Sci USA 97:3637-42 (2000) or in Arakawa et al., J. Neurosci., 10:3507-15 (1990); increased sprouting of neurons may be detected by methods known in the art, such as, for example, the methods set forth in Pestronk et al., Exp. Neurol., 70:65-82 (1980), or Brown et al., Ann. Rev. Neurosci., 4:17-42 (1981); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., using techniques known in the art and depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

[0701] In specific embodiments, motor neuron disorders that may be treated according to the invention include, but are not limited to, disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including, but not limited to, progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

[0702] Further, polypeptides or polynucleotides of the invention may play a role in neuronal survival; synapse formation; conductance; neural differentiation, etc. Thus, compositions of the invention (including polynucleotides, polypeptides, and agonists

or antagonists) may be used to diagnose and/or treat or prevent diseases or disorders associated with these roles, including, but not limited to, learning and/or cognition disorders. The compositions of the invention may also be useful in the treatment or prevention of neurodegenerative disease states and/or behavioural disorders. Such neurodegenerative disease states and/or behavioral disorders include, but are not limited to, Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, compositions of the invention may also play a role in the treatment, prevention and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

[0703] Additionally, polypeptides, polynucleotides and/or agonists or antagonists of the invention, may be useful in protecting neural cells from diseases, damage, disorders, or injury, associated with cerebrovascular disorders including, but not limited to, carotid artery diseases (e.g., carotid artery thrombosis, carotid stenosis, or Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis (e.g., carotid artery thrombosis, sinus thrombosis, or Wallenberg's Syndrome), cerebral hemorrhage (e.g., epidural or subdural hematoma, or subarachnoid hemorrhage), cerebral infarction, cerebral ischemia (e.g., transient cerebral ischemia, Subclavian Steal Syndrome, or vertebrobasilar insufficiency), vascular dementia (e.g., multi-infarct), leukomalacia, periventricular, and vascular headache (e.g., cluster headache or migraines).

[0704] In accordance with yet a further aspect of the present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate neurological cell proliferation and/or differentiation. Therefore, polynucleotides, polypeptides, agonists and/or antagonists of the invention may be used to treat and/or detect neurologic diseases. Moreover, polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used as a marker or detector of a particular nervous system disease or disorder.

[0705] Examples of neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include brain diseases, such as metabolic brain diseases which includes phenylketonuria such as maternal phenylketonuria, pyruvate carboxylase deficiency, pyruvate dehydrogenase complex deficiency, Wernicke's Encephalopathy, brain edema, brain neoplasms such as cerebellar neoplasms which include infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms, supratentorial neoplasms, canavan disease, cerebellar diseases such as cerebellar ataxia which include spinocerebellar degeneration such as ataxia telangiectasia, cerebellar dyssynergia, Friederich's Ataxia, Machado-Joseph Disease, olivopontocerebellar atrophy, cerebellar neoplasms such as infratentorial neoplasms, diffuse cerebral sclerosis such as encephalitis periaxialis, globoid cell leukodystrophy, metachromatic leukodystrophy and subacute sclerosing panencephalitis.

[0706] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include cerebrovascular disorders (such as carotid artery diseases which include carotid artery thrombosis, carotid stenosis and Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis such as carotid artery thrombosis, sinus thrombosis and Wallenberg's Syndrome, cerebral hemorrhage such as epidural hematoma, subdural hematoma and subarachnoid hemorrhage, cerebral infarction, cerebral ischemia such as transient cerebral ischemia, Subclavian Steal Syndrome and vertebrobasilar insufficiency, vascular dementia such as multi-infarct dementia, periventricular leukomalacia, vascular headache such as cluster headache and migraine.

[0707] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include dementia such as AIDS Dementia Complex, presentile dementia such as Alzheimer's Disease and Creutzfeldt-Jakob Syndrome, senile dementia such as Alzheimer's Disease and progressive supranuclear palsy, vascular dementia such as multi-infarct dementia, encephalitis which include encephalitis periaxialis, viral

encephalitis such as epidemic encephalitis, Japanese Encephalitis, St. Louis Encephalitis, tick-borne encephalitis and West Nile Fever, acute disseminated encephalomyelitis, meningoencephalitis such as uveomeningoencephalitic syndrome, Postencephalitic Parkinson Disease and subacute sclerosing panencephalitis, encephalomalacia such as periventricular leukomalacia, epilepsy such as generalized epilepsy which includes infantile spasms, absence epilepsy, myoclonic epilepsy which includes MERRF Syndrome, tonic-clonic epilepsy, partial epilepsy such as complex partial epilepsy, frontal lobe epilepsy and temporal lobe epilepsy, post-traumatic epilepsy, status epilepticus such as Epilepsia Partialis Continua, and Hallervorden-Spatz Syndrome.

[0708] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include hydrocephalus such as Dandy-Walker Syndrome and normal pressure hydrocephalus, hypothalamic diseases such as hypothalamic neoplasms, cerebral malaria, narcolepsy which includes cataplexy, bulbar poliomyelitis, cerebri pseudotumor, Rett Syndrome, Reye's Syndrome, thalamic diseases, cerebral toxoplasmosis, intracranial tuberculoma and Zellweger Syndrome, central nervous system infections such as AIDS Dementia Complex, Brain Abscess, subdural empyema, encephalomyelitis such as Equine Encephalomyelitis, Venezuelan Equine Encephalomyelitis, Necrotizing Hemorrhagic Encephalomyelitis, Visna, and cerebral malaria.

[0709] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include meningitis such as arachnoiditis, aseptic meningitis such as viral meningititis which includes lymphocytic choriomeningitis, Bacterial meningitis which includes Haemophilus Meningitis, Listeria Meningitis, Meningococcal Meningitis such as Waterhouse-Friderichsen Syndrome, Pneumococcal Meningitis and meningeal tuberculosis, fungal meningitis such as Cryptococcal Meningitis, subdural effusion, meningoencephalitis such as uvemeningoencephalitic syndrome, myelitis such as transverse myelitis, neurosyphilis such as tabes dorsalis, poliomyelitis which includes bulbar poliomyelitis and postpoliomyelitis syndrome, prion diseases (such as

Creutzfeldt-Jakob Syndrome, Bovine Spongiform Encephalopathy, Gerstmann-Straussler Syndrome, Kuru, Scrapie), and cerebral toxoplasmosis.

[0710] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include central nervous system neoplasms such as brain neoplasms that include cerebellar neoplasms such as infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms and supratentorial neoplasms, meningeal neoplasms, spinal cord neoplasms which include epidural neoplasms, demyelinating diseases such as Canavan Diseases, diffuse cerebral sceloris which includes adrenoleukodystrophy, encephalitis periaxialis, globoid cell leukodystrophy, diffuse cerebral sclerosis such as metachromatic leukodystrophy, allergic encephalomyelitis, necrotizing hemorrhagic encephalomyelitis, progressive multifocal leukoencephalopathy, multiple sclerosis, central pontine myelinolysis, transverse myelitis, neuromyelitis optica, Scrapie, Swayback, Chronic Fatigue Syndrome, Visna, High Pressure Nervous Syndrome, Meningism, spinal cord diseases such as amyotonia congenita, amyotrophic lateral sclerosis, spinal muscular atrophy such as Werdnig-Hoffmann Disease, spinal cord compression, spinal cord neoplasms such as epidural neoplasms, syringomyelia, Tabes Dorsalis, Stiff-Man Syndrome, mental retardation such as Angelman Syndrome, Cri-du-Chat Syndrome, De Lange's Syndrome, Down Syndrome, Gangliosidoses such as gangliosidoses G(M1), Sandhoff Disease, Tay-Sachs Disease, Hartnup Disease, homocystinuria, Laurence-Moon-Biedl Syndrome, Lesch-Nyhan Syndrome, Maple Syrup Urine Disease, mucolipidosis such fucosidosis, neuronal ceroid-lipofuscinosis, oculocerebrorenal syndrome, phenylketonuria such as maternal phenylketonuria, Prader-Willi Syndrome, Rett Syndrome, Rubinstein-Taybi Syndrome, Tuberous Sclerosis, WAGR Syndrome, nervous system abnormalities such as holoprosencephaly, neural tube defects such as anencephaly which includes hydrangencephaly, Arnold-Chairi Deformity, encephalocele, meningocele, meningomyelocele, spinal dysraphism such as spina bifida cystica and spina bifida occulta.

[0711] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include hereditary motor and sensory neuropathies which include Charcot-Marie

Disease, Hereditary optic atrophy, Refsum's Disease, hereditary spastic paraplegia, Werdnig-Hoffmann Disease, Hereditary Sensory and Autonomic Neuropathies such as Congenital Analgesia and Familial Dysautonomia, Neurologic manifestations (such as agnosia that include Gerstmann's Syndrome, Amnesia such as retrograde amnesia, apraxia, neurogenic bladder, cataplexy, communicative disorders such as hearing disorders that includes deafness, partial hearing loss, loudness recruitment and tinnitus, language disorders such as aphasia which include agraphia, anomia, broca aphasia, and Wernicke Aphasia, Dyslexia such as Acquired Dyslexia, language development disorders, speech disorders such as aphasia which includes anomia, broca aphasia and Wernicke Aphasia, articulation disorders, communicative disorders such as speech disorders which include dysarthria, echolalia, mutism and stuttering, voice disorders such as aphonia and hoarseness, decerebrate state, delirium, fasciculation, hallucinations, meningism, movement disorders such as angelman syndrome, ataxia, athetosis, chorea, dystonia, hypokinesia, muscle hypotonia, myoclonus, tic, torticollis and tremor, muscle hypertonia such as muscle rigidity such as stiff-man syndrome, muscle spasticity, paralysis such as facial paralysis which includes Herpes Zoster Oticus, Gastroparesis, Hemiplegia, ophthalmoplegia such as diplopia, Duane's Syndrome, Horner's Syndrome, Chronic progressive external ophthalmoplegia such as Kearns Syndrome, Bulbar Paralysis, Tropical Spastic Paraparesis, Paraplegia such as Brown-Sequard Syndrome, quadriplegia, respiratory paralysis and vocal cord paralysis, paresis, phantom limb, taste disorders such as ageusia and dysgeusia, vision disorders such as amblyopia, blindness, color vision defects, diplopia, hemianopsia, scotoma and subnormal vision, sleep disorders such as hypersomnia which includes Kleine-Levin Syndrome, insomnia, and somnambulism, spasm such as trismus, unconsciousness such as coma, persistent vegetative state and syncope and vertigo, neuromuscular diseases such as amyotonia congenita, amyotrophic lateral sclerosis, Lambert-Eaton Myasthenic Syndrome, motor neuron disease, muscular atrophy such as spinal muscular atrophy, Charcot-Marie Disease and Werdnig-Hoffmann Disease, Postpoliomyelitis Syndrome, Muscular Dystrophy, Myasthenia Gravis, Myotonia Atrophica, Myotonia Confenita, Nemaline Myopathy, Familial Periodic Paralysis, Multiplex Paramyloclonus, Tropical Spastic Paraparesis and Stiff-Man Syndrome, peripheral nervous system diseases such as acrodynia, amyloid neuropathies,

autonomic nervous system diseases such as Adie's Syndrome, Barre-Lieou Syndrome, Familial Dysautonomia, Horner's Syndrome, Reflex Sympathetic Dystrophy and Shy-Drager Syndrome, Cranial Nerve Diseases such as Acoustic Nerve Diseases such as Acoustic Neuroma which includes Neurofibromatosis 2, Facial Nerve Diseases such as Facial Neuralgia, Melkersson-Rosenthal Syndrome, ocular motility disorders which includes amblyopia, nystagmus, oculomotor nerve paralysis, ophthalmoplegia such as Duane's Syndrome, Horner's Syndrome, Chronic Progressive External Ophthalmoplegia which includes Kearns Syndrome, Strabismus such as Esotropia and Exotropia, Oculomotor Nerve Paralysis, Optic Nerve Diseases such as Optic Atrophy which includes Hereditary Optic Atrophy, Optic Disk Drusen, Optic Neuritis such as Neuromyelitis Optica, Papilledema, Trigeminal Neuralgia, Vocal Cord Paralysis, Demyelinating Diseases such as Neuromyelitis Optica and Swayback, and Diabetic neuropathies such as diabetic foot.

[0712] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include nerve compression syndromes such as carpal tunnel syndrome, tarsal tunnel syndrome, thoracic outlet syndrome such as cervical rib syndrome, ulnar nerve compression syndrome, neuralgia such as causalgia, cervico-brachial neuralgia, facial neuralgia and trigeminal neuralgia, neuritis such as experimental allergic neuritis, optic neuritis, polyneuritis, polyradiculoneuritis and radiculities such as polyradiculitis, hereditary motor and sensory neuropathies such as Charcot-Marie Disease, Hereditary Optic Atrophy, Refsum's Disease, Hereditary Spastic Paraplegia and Werdnig-Hoffmann Disease, Hereditary Sensory and Autonomic Neuropathies which include Congenital Analgesia and Familial Dysautonomia, POEMS Syndrome, Sciatica, Gustatory Sweating and Tetany).

Endocrine Disorders

[0713] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose disorders and/or diseases related to hormone imbalance, and/or disorders or diseases of the endocrine system.

growth, sexual function, metabolism, and other functions. Disorders may be classified in two ways: disturbances in the production of hormones, and the inability of tissues to respond to hormones. The etiology of these hormone imbalance or endocrine system diseases, disorders or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy, injury or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular disease or disorder related to the endocrine system and/or hormone imbalance.

[0715] Endocrine system and/or hormone imbalance and/or diseases encompass disorders of uterine motility including, but not limited to: complications with pregnancy and labor (e.g., pre-term labor, post-term pregnancy, spontaneous abortion, and slow or stopped labor); and disorders and/or diseases of the menstrual cycle (e.g., dysmenorrhea and endometriosis).

[0716] Endocrine system and/or hormone imbalance disorders and/or diseases include disorders and/or diseases of the pancreas, such as, for example, diabetes mellitus, diabetes insipidus, congenital pancreatic agenesis, pheochromocytoma--islet cell tumor syndrome; disorders and/or diseases of the adrenal glands such as, for example, Addison's Disease, corticosteroid deficiency, virilizing disease, hirsutism, Cushing's Syndrome, hyperaldosteronism, pheochromocytoma; disorders and/or diseases of the pituitary gland, such as, for example, hyperpituitarism, hypopituitarism, pituitary dwarfism, pituitary adenoma, panhypopituitarism, acromegaly, gigantism; disorders and/or diseases of the thyroid, including but not limited to, hyperthyroidism, hypothyroidism, Plummer's disease, Graves' disease (toxic diffuse goiter), toxic nodular goiter, thyroiditis (Hashimoto's thyroiditis, subacute granulomatous thyroiditis, and silent lymphocytic thyroiditis), Pendred's syndrome, myxedema, cretinism, thyrotoxicosis, thyroid hormone coupling defect, thymic aplasia, Hurthle cell tumours of the thyroid, thyroid cancer, thyroid carcinoma, Medullary thyroid carcinoma; disorders and/or diseases of the parathyroid, such as, for example, hyperparathyroidism, hypoparathyroidism; disorders and/or diseases of the hypothalamus.

[0717] In addition, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases of the testes or ovaries, including cancer. Other disorders and/or diseases of the testes or ovaries further include, for example, ovarian cancer, polycystic ovary syndrome, Klinefelter's syndrome, vanishing testes syndrome (bilateral anorchia), congenital absence of Leydig's cells, cryptorchidism, Noonan's syndrome, myotonic dystrophy, capillary haemangioma of the testis (benign), neoplasias of the testis and neo-testis.

- [0718] Moreover, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases such as, for example, polyglandular deficiency syndromes, pheochromocytoma, neuroblastoma, multiple Endocrine neoplasia, and disorders and/or cancers of endocrine tissues.
- [0719] In another embodiment, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose, prognose, prevent, and/or treat endocrine diseases and/or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1A, column 7 (Tissue Distribution Library Code).

Gastrointestinal Disorders

- [0720] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose gastrointestinal disorders, including inflammatory diseases and/or conditions, infections, cancers (e.g., intestinal neoplasms (carcinoid tumor of the small intestine, non-Hodgkin's lymphoma of the small intestine, small bowl lymphoma)), and ulcers, such as peptic ulcers.
- [0721] Gastrointestinal disorders include dysphagia, odynophagia, inflammation of the esophagus, peptic esophagitis, gastric reflux, submucosal fibrosis and stricturing, Mallory-Weiss lesions, leiomyomas, lipomas, epidermal cancers, adeoncarcinomas, gastric retention disorders, gastroenteritis, gastric atrophy, gastric/stomach cancers, polyps of the stomach, autoimmune disorders such as pernicious anemia, pyloric stenosis, gastritis (bacterial, viral, eosinophilic, stressinduced, chronic erosive, atrophic, plasma cell, and Ménétrier's), and peritoneal diseases (e.g., chyloperioneum, hemoperitoneum, mesenteric cyst, mesenteric

lymphadenitis, mesenteric vascular occlusion, panniculitis, neoplasms, peritonitis, pneumoperitoneum, bubphrenic abscess).

[0722] Gastrointestinal disorders also include disorders associated with the small intestine, such as malabsorption syndromes, distension, irritable bowel syndrome, sugar intolerance, celiac disease, duodenal ulcers, duodenitis, tropical sprue, Whipple's disease, intestinal lymphangiectasia, Crohn's disease, appendicitis, obstructions of the ileum, Meckel's diverticulum, multiple diverticula, failure of complete rotation of the small and large intestine, lymphoma, and bacterial and parasitic diseases (such as Traveler's diarrhea, typhoid and paratyphoid, cholera, infection by Roundworms (Ascariasis lumbricoides), Hookworms (Ancylostoma duodenale), Threadworms (Enterobius vermicularis), Tapeworms (Taenia saginata, Echinococcus granulosus, Diphyllobothrium spp., and T. solium).

Liver diseases and/or disorders include intrahepatic cholestasis (alagille [0723] syndrome, biliary liver cirrhosis), fatty liver (alcoholic fatty liver, reye syndrome), hepatic vein thrombosis, hepatolentricular degeneration. hepatomegaly, hepatopulmonary syndrome, hepatorenal syndrome, portal hypertension (esophageal and gastric varices), liver abscess (amebic liver abscess), liver cirrhosis (alcoholic, biliary and experimental), alcoholic liver diseases (fatty liver, hepatitis, cirrhosis), parasitic (hepatic echinococcosis, fascioliasis, amebic liver abscess), jaundice (hemolytic, hepatocellular, and cholestatic), cholestasis, portal hypertension, liver enlargement, ascites, hepatitis (alcoholic hepatitis, animal hepatitis, chronic hepatitis (autoimmune, hepatitis B, hepatitis C, hepatitis D, drug induced), toxic hepatitis, viral human hepatitis (hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E), Wilson's disease, granulomatous hepatitis, secondary biliary cirrhosis, hepatic encephalopathy, portal hypertension, varices, hepatic encephalopathy, primary biliary cirrhosis, primary sclerosing cholangitis, hepatocellular adenoma, hemangiomas, bile stones, liver failure (hepatic encephalopathy, acute liver failure), and liver neoplasms (angiomyolipoma, calcified liver metastases, cystic liver metastases, epithelial tumors, fibrolamellar hepatocarcinoma, focal nodular hyperplasia, hepatic adenoma, hepatobiliary cystadenoma, hepatoblastoma, hepatocellular carcinoma, hepatoma, liver cancer, liver hemangioendothelioma, mesenchymal hamartoma, mesenchymal tumors of liver, nodular regenerative hyperplasia, benign liver tumors (Hepatic cysts [Simple

cysts, Polycystic liver disease, Hepatobiliary cystadenoma, Choledochal cyst], Mesenchymal tumors [Mesenchymal hamartoma, Infantile hemangioendothelioma, Hemangioma, Peliosis hepatis, Lipomas, Inflammatory pseudotumor, Miscellaneous], Epithelial tumors [Bile duct epithelium (Bile duct hamartoma, Bile duct adenoma), Hepatocyte (Adenoma, Focal nodular hyperplasia, Nodular regenerative hyperplasia)], malignant liver tumors [hepatocellular, hepatoblastoma, hepatocellular carcinoma, cholangiocellular, cholangiocarcinoma, cystadenocarcinoma, tumors of blood vessels, angiosarcoma, Karposi's sarcoma, hemangioendothelioma, other tumors, embryonal sarcoma, fibrosarcoma, leiomyosarcoma, rhabdomyosarcoma, carcinosarcoma, teratoma, carcinoid, squamous carcinoma, primary lymphoma]), peliosis hepatis, erythrohepatic porphyria, hepatic porphyria (acute intermittent porphyria, porphyria cutanea tarda), Zellweger syndrome).

- [0724] Pancreatic diseases and/or disorders include acute pancreatitis, chronic pancreatitis (acute necrotizing pancreatitis, alcoholic pancreatitis), neoplasms (adenocarcinoma of the pancreas, cystadenocarcinoma, insulinoma, gastrinoma, and glucagonoma, cystic neoplasms, islet-cell tumors, pancreoblastoma), and other pancreatic diseases (e.g., cystic fibrosis, cyst (pancreatic pseudocyst, pancreatic fistula, insufficiency)).
- [0725] Gallbladder diseases include gallstones (cholelithiasis and choledocholithiasis), postcholecystectomy syndrome, diverticulosis of the gallbladder, acute cholecystitis, chronic cholecystitis, bile duct tumors, and mucocele.
- [0726] Diseases and/or disorders of the large intestine include antibiotic-associated colitis, diverticulitis, ulcerative colitis, acquired megacolon, abscesses, fungal and bacterial infections, anorectal disorders (e.g., fissures, hemorrhoids), colonic diseases (colitis, colonic neoplasms [colon cancer, adenomatous colon polyps (e.g., villous adenoma), colon carcinoma, colorectal cancer], colonic diverticulitis, colonic diverticulosis, megacolon [Hirschsprung disease, toxic megacolon]; sigmoid diseases [proctocolitis, sigmoin neoplasms]), constipation, Crohn's disease, diarrhea (infantile diarrhea, dysentery), duodenal diseases (duodenal neoplasms, duodenal obstruction, duodenal ulcer, duodenitis), enteritis (enterocolitis), HIV enteropathy, ileal diseases (ileal neoplasms, ileitis), immunoproliferative small intestinal disease, inflammatory bowel disease (ulcerative colitis, Crohn's disease), intestinal atresia, parasitic diseases

(anisakiasis, balantidiasis, blastocystis infections, cryptosporidiosis, dientamoebiasis, amebic dysentery, giardiasis), intestinal fistula (rectal fistula), intestinal neoplasms (cecal neoplasms, colonic neoplasms, duodenal neoplasms, ileal neoplasms, intestinal polyps, jejunal neoplasms, rectal neoplasms), intestinal obstruction (afferent loop syndrome, duodenal obstruction, impacted feces, intestinal pseudo-obstruction [cecal volvulus], intussusception), intestinal perforation, intestinal polyps (colonic polyps, gardner syndrome, peutz-jeghers syndrome), jejunal diseases (jejunal neoplasms), malabsorption syndromes (blind loop syndrome, celiac disease, lactose intolerance, short bowl syndrome, tropical sprue, whipple's disease), mesenteric vascular occlusion, pneumatosis cystoides intestinalis, protein-losing enteropathies (intestinal lymphagiectasis), rectal diseases (anus diseases, fecal incontinence, hemorrhoids, proctitis, rectal fistula, rectal prolapse, rectocele), peptic ulcer (duodenal ulcer, peptic esophagitis, hemorrhage, perforation, stomach ulcer, Zollinger-Ellison syndrome), postgastrectomy syndromes (dumping syndrome), stomach diseases (e.g., achlorhydria, duodenogastric reflux (bile reflux), gastric antral vascular ectasia, gastric fistula, gastric outlet obstruction, gastritis (atrophic or hypertrophic), gastroparesis, stomach dilatation, stomach diverticulum, stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, hyperplastic gastric polyp), stomach rupture, stomach ulcer, stomach volvulus), tuberculosis, visceroptosis, vomiting (e.g., hematemesis, hyperemesis gravidarum, postoperative nausea and vomiting) and hemorrhagic colitis.

[0727] Further diseases and/or disorders of the gastrointestinal system include biliary tract diseases, such as, gastroschisis, fistula (e.g., biliary fistula, esophageal fistula, gastric fistula, intestinal fistula, pancreatic fistula), neoplasms (e.g., biliary tract neoplasms, esophageal neoplasms, such as adenocarcinoma of the esophagus, esophageal squamous cell carcinoma, gastrointestinal neoplasms, pancreatic neoplasms, such as adenocarcinoma of the pancreas, mucinous cystic neoplasm of the pancreas, pancreatic cystic neoplasms, pancreatoblastoma, and peritoneal neoplasms), esophageal disease (e.g., bullous diseases, candidiasis, glycogenic acanthosis, ulceration, barrett esophagus varices, atresia, cyst, diverticulum (e.g., Zenker's diverticulum), fistula (e.g., tracheoesophageal fistula), motility disorders (e.g., CREST syndrome, deglutition disorders, achalasia, spasm, gastroesophageal reflux), neoplasms, perforation (e.g., Boerhaave syndrome, Mallory-Weiss syndrome),

stenosis, esophagitis, diaphragmatic hemia (e.g., hiatal hemia); gastrointestinal diseases, such as, gastroenteritis (e.g., cholera morbus, norwalk virus infection), hemorrhage (e.g., hematemesis, melena, peptic ulcer hemorrhage), stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, stomach cancer)), hernia (e.g., congenital diaphragmatic hernia, femoral hernia, inguinal hernia, obturator hernia, umbilical hernia, ventral hernia), and intestinal diseases (e.g., cecal diseases (appendicitis, cecal neoplasms)).

Developmental and Inherited Disorders

[0728] Polynuceotides or polypeptides, or agonists or antagonists of the present invention may be used to treat, prevent, diagnose, and/or prognose diseases associated with mixed fetal tissues, including, but not limited to, developmental and inherited disorders or defects of the nervous system, musculoskelelal system, execretory system, cardiovascular system, hematopoietic system, gastrointestinal system, reproductive system, and respiratory system. Compositions of the present invention may also be used to treat, prevent, diagnose, and/or prognose developmental and inherited disorders or defects associated with, but not limited to, skin, hair, visual, and auditory tissues, metabolism. Additionally, the compositions of the invention may be useful in the diagnosis, treatment, and/or prevention of disorders or diseases associated with, but not limited to, chromosomal or genetic abnormalities and hyperproliferation or neoplasia.

Or inherited abnormalities that may be diagnosed, treated, and/or prevented with the compostions of the invention include, but are not limited to, adrenoleukodystrophy, agenesis of corpus callosum, Alexander disease, anencephaly, Angelman syndrome, Arnold-Chiari deformity, Batten disease, Canavan disease, cephalic disorders, Charcot-Marie-Tooth disease, encephalocele, Friedreich's ataxia, Gaucher's disease, Gorlin syndrome, Hallervorden-Spatz disease, hereditary spastic paraplegia, Huntington disease, hydranencephaly, hydrocephalus, Joubert syndrome, Lesch-Nyhan syndrome, leukodystrophy, Menkes disease, microcephaly, Niemann-Pick Type C1, neurofibromatosis, porencephaly, progeria, proteus syndrome, Refsum

disease, spina bifida, Sturge-Weber syndrome, Tay-Sachs disease, tuberous sclerosis, and von Hippel-Lindau disease.

the musculoskeletal system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, achondroplasia, atlanto-occipital fusion, arthrogryposis mulitplex congenita, autosomal recessive muscular dystrophy, Becker's muscular dystrophy, cerebral palsy, choanal atresia, cleft lip, cleft palate, clubfoot, congenital amputation, congenital dislocation of the hip, congenital torticollis, congenital scoliosis, dopa-repsonsive dystonia, Duchenne muscular dystrophy, early-onset generalized dystonia, femoral torsion, Gorlin syndrome, hypophosphatasia, Klippel-Feil syndrome, knee dislocation, myoclonic dystonia, myotonic dystrophy, nail-patella syndrome, osteogenesis imperfecta, paroxysmal dystonia, progeria, prune-belly syndrome, rapid-onset dystonia parkinsonism, scolosis, syndactyly, Treacher Collins' syndrome, velocardiofacial syndrome, and X-linked dystonia-parkinsonism.

[0731] Developmental or hereditary disorders or defects of the excretory system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, Alport's syndrome, Bartter's syndrome, bladder diverticula, bladder exstrophy, cystinuria, epispadias, Fanconi's syndrome, Hartnup disease, horseshoe kidney, hypospadias, kidney agenesis, kidney ectopia, kidney malrotation, Liddle's syndrome, medullary cystic disease, medullary sponge, multicystic kidney, kidney polycystic kidney disease, nail-patella syndrome, Potter's syndrome, urinary tract flow obstruction, vitamin D-resistant rickets, and Wilm's tumor.

[0732] Cardiovascular disorders or defects of developmental or hereditary origin that may be diagnosed, treated, and/or prevented with the compositions of the inventtion include, but are not limited to, aortic valve stenosis, atrial septal defects, artioventricular (A-V) canal defect, bicuspid aortic valve, coarctation or the aorta, dextrocardia, Ebstein's anomaly, Eisenmenger's complex, hypoplastic left heart syndrome, Marfan syndrome, patent ductus arteriosus, progeria, pulmonary atresia, pulmonary valve stenosis, subaortic stenosis, tetralogy of fallot, total anomalous pulmonary venous (P-V) connection, transposition of the great arteries, tricuspid

atresia, truncus arteriosus, ventricular septal defects. Developmental or inherited disorders resulting in disorders involving the hematopoietic system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but not limited to, Bernard-Soulier syndrome, Chédiak-Higashi syndrome, hemophilia, Hermansky-Pudlak syndrome, sickle cell anemia, storage pool disease, thromboxane A2 dysfunction, thrombasthenia, and von Willebrand's disease.

[0733] The compositions of the invention may also be used to diagnose, treat, and/or prevent developmental and inherited disorders resulting in disorders or defects of the gastrointestinal system, including, but not limited to, anal atresia, biliary atresia, esophageal atresia, diaphragmatic hernia, Hirschsprung's disease, Meckel's diverticulum, oligohydramnios, omphalocele, polyhydramnios, porphyria, situs inversus viscera. Developmental or inherited disorders resulting in metabolic disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, alpha-1 antitrypsin deficiency, cystic fibrosis, hemochromatosis, lysosomal storage disease, phenylketonuria, Wilson's disease, and Zellweger syndrome.

[0734] Disorders of the reproductive system that are developmentally or hereditary related that may also be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, androgen insensitivity syndrome, ambiguous genitalia, autosomal sex reversal, congenital adreneal hyperplasia, gonadoblastoma, ovarian germ cell cancer, pseudohermphroditism, true hermaphroditism, undescended testis, XX male syndrome, and XY female type gonadal dysgenesis. The compositions of the invention may also be used to diagnose, treat, and/or prevent developmental or inherited respiratory defects including, but not limited to, askin tumor, azygos lobe, congenital diaphragmatic hernia, congenital lobar emphysema, cystic adenomatoid malformation, lobar emphysema, hyaline membrane disease, and pectus excavatum.

[0735] Developmental or inherited disorders may also result from chromosomal or genetic aberration that may be diagnosed, treated, and/or prevented with the compositions of the invention including, but not limited to, 4p- syndrome, cri du chat syndrome, Digeorge syndrome, Down's syndrome, Edward's syndrome, fragile X syndrome, Klinefelter's syndrome, Patau's syndrome, Prader-Willi syndrome,

progeria, Turner's syndrome, triple X syndrome, and XYY syndrome. Other developmental disorders that can be diagnosed, treated, and/or prevented with the compositions of the invention, include, but are not limited to, fetal alcohol syndrome, and can be caused by environmental factors surrounding the developing fetus.

The compositions of the invention may further be able to be used to [0736] diagnose, treat, and/or prevent errors in development or a genetic disposition that may result in hyperproliferative disorders or neoplasms, including, but not limited to, acute childhood lymphoblastic leukemia, askin tumor, Beckwith-Wiedemann syndrome, childhood acute myeloid leukemia, childhood brain stem glioma, childhood cerebellar astrocytoma, childhood extracranial germ cell tumors childhood (primary), gonadoblastoma, hepatocellular cancer, childhood Hodgkin's disease, childhood Hodgkin's lymphoma, childhood hypothalamic and visual pathway glioma, childhood (primary) liver cancer, childhood lymphoblastic leukemia, childhood medulloblastoma, childhood non-Hodgkin's lymphoma, childhood pineal and supratentorial primitive neuroectodermal tumors, childhood primary liver cancer, childhood rhabdomyosarcoma, childhood soft tissue sarcoma, Gorlin syndrome, familial multiple endrocrine neoplasia type I, neuroblastoma, ovarian germ cell cancer, pheochromocytoma, retinoblastoma, and Wilm's tumor.

[0737] Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Diseases at the Cellular Level

[0738] Diseases associated with increased cell survival or the inhibition of apoptosis that could be treated, prevented, diagnosed and/or prognosed using polynucleotides or polypeptides, as well as antagonists or agonists of the present

invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) and viral infections (such as herpes viruses, pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection.

[0739] In preferred embodiments, polynucleotides, polypeptides, and/or antagonists of the invention are used to inhibit growth, progression, and/or metastasis of cancers, in particular those [listed above] involving reproductive system tissues.

Additional diseases or conditions associated with increased cell survival [0740] that could be treated or detected by polynucleotides or polypeptides, or agonists or antagonists of the present invention include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma. angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma. Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary

carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.

prevented, diagnosted, and/or prognosed using polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, include, but are not limited to, AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.

Wound Healing and Epithelial Cell Proliferation

[0742] In accordance with yet a further aspect of the present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns

resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associated with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote dermal reestablishment subsequent to dermal loss.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that polynucleotides or polypeptides, agonists or antagonists of the present invention, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, can be used to promote skin strength and to improve the appearance of aged skin.

It is believed that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intestine, and large intestine. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Polynucleotides or polypeptides, agonists or antagonists of the present invention, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.

[0745] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Polynucleotides or

polypeptides, as well as agonists or antagonists of the present invention, may have a cytoprotective effect on the small intestine mucosa. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.

Polynucleotides or polypeptides, as well as agonists or antagonists of the [0746] present invention, could further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to treat gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases, which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. Treatment with polynucleotides or polypeptides, agonists or antagonists of the present invention, is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat diseases associate with the under expression.

[0747] Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to prevent and heal damage to the lungs due to various pathological states. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the

progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated using polynucleotides or polypeptides, agonists or antagonists of the present invention. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.

[0748] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).

In addition, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.

Infectious Diseases

[0749] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or [0750] symptoms that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention. Examples of viruses, include, but are not limited to Examples of viruses, include, but are not limited to the following DNA and RNA viruses and viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Dengue, EBV, HIV, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza A, Influenza B, and parainfluenza), Papiloma virus, Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, respiratory syncytial virus, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), Japanese B encephalitis, Junin, Chikungunya, Rift Valley fever, yellow fever, meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat: meningitis, Dengue, EBV, and/or hepatitis (e.g., hepatitis B). In an additional specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat patients nonresponsive to one or more other commercially available hepatitis vaccines. In a further specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat AIDS.

[0751] Similarly, bacterial and fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but not limited to, the following Gram-

Negative and Gram-positive bacteria, bacterial families, and fungi: Actinomyces (e.g., Norcardia), Acinetobacter, Cryptococcus neoformans, Aspergillus, Bacillaceae (e.g., Bacillus anthrasis), Bacteroides (e.g., Bacteroides fragilis), Blastomycosis, Bordetella, Borrelia (e.g., Borrelia burgdorferi), Brucella, Candidia, Campylobacter, Chlamydia, Clostridium (e.g., Clostridium botulinum, Clostridium dificile, Clostridium perfringens. Clostridium tetani), Coccidioides, Corynebacterium (e.g., Corynebacterium diptheriae), Cryptococcus, Dermatocycoses, E. coli (e.g., Enterotoxigenic E. coli and Enterohemorrhagic E. coli), Enterobacter (e.g. Enterobacter aerogenes), Enterobacteriaceae (Klebsiella, Salmonella (e.g., Salmonella typhi, Salmonella enteritidis, Salmonella typhi), Serratia, Yersinia, Shigella), Erysipelothrix, Haemophilus (e.g., Haemophilus influenza type B), Helicobacter, Legionella (e.g., Legionella pneumophila), Leptospira, Listeria (e.g., Listeria monocytogenes), Mycoplasma, Mycobacterium (e.g., Mycobacterium leprae and Mycobacterium tuberculosis), Vibrio (e.g., Vibrio cholerae), Neisseriaceae (e.g., Neisseria gonorrhea, Neisseria meningitidis), Pasteurellacea, Proteus, Pseudomonas (e.g., Pseudomonas aeruginosa), Rickettsiaceae, Spirochetes (e.g., Treponema spp., Leptospira spp., Borrelia spp.), Shigella spp., Staphylococcus (e.g., Staphylococcus aureus), Meningiococcus, Pneumococcus and Streptococcus (e.g., Streptococcus pneumoniae and Groups A, B, and C Streptococci), and Ureaplasmas. These bacterial, parasitic, and fungal families can cause diseases or symptoms, including, but not limited to: antibiotic-resistant infections, bacteremia, endocarditis, septicemia, eye infections (e.g., conjunctivitis), uveitis, tuberculosis, gingivitis, bacterial diarrhea, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, dental caries, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, dysentery, paratyphoid fever, food poisoning, Legionella disease, chronic and acute inflammation, erythema, yeast infections, typhoid, pneumonia, gonorrhea, meningitis (e.g., mengitis types A and B), chlamydia, syphillis, diphtheria, leprosy, brucellosis, peptic ulcers, anthrax, spontaneous abortions, birth defects, pneumonia, lung infections, ear infections, deafness, blindness, lethargy, malaise, vomiting, chronic diarrhea, Crohn's disease, colitis, vaginosis, sterility, pelvic inflammatory diseases, candidiasis, paratuberculosis, tuberculosis, lupus, botulism, gangrene, tetanus,

impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections, noscomial infections. Polynucleotides or polypeptides, agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, agonists or antagonists of the invention are used to treat: tetanus, diptheria, botulism, and/or meningitis type B.

Moreover, parasitic agents causing disease or symptoms that can be treated, [0752] prevented, and/or diagnosed by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but not limited to, the following families or class: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardias, Helminthiasis, Leishmaniasis, Schistisoma, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas and Sporozoans (e.g., Plasmodium virax, Plasmodium falciparium, Plasmodium malariae and Plasmodium ovale). These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), malaria, pregnancy complications, and toxoplasmosis. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat, prevent, and/or diagnose any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat, prevent, and/or diagnose malaria.

[0753] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

[0754] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention can be used to differentiate, proliferate, and attract cells, leading to

the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

[0755] Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vasculature (including vascular and lymphatics), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

[0756] Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

[0757] Similarly, nerve and brain tissue could also be regenerated by using polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotides or polypeptides, as well as agonists or antagonists of the present invention.

Chemotaxis

[0758] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

[0759] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

[0760] It is also contemplated that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

[0761] A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

[0762] Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology

1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

- [0763] Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.
- [0764] The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.
- [0765] Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.
- [0766] Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.
- [0767] Additionally, the receptor to which the polypeptide of the present invention binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)). For example, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NIH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the

polypeptides. Transfected cells which are grown on glass slides are exposed to the polypeptide of the present invention, after they have been labeled. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase.

[0768] Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and retransfected using an iterative sub-pooling and re-screening process, eventually yielding a single clones that encodes the putative receptor.

[0769] As an alternative approach for receptor identification, the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.

Moreover, the techniques of gene-shuffling, motif-shuffling, exon-[0770] shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling") may be employed to modulate the activities of the polypeptide of the present invention thereby effectively generating agonists and antagonists of the polypeptide of the present See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, invention. 5,834,252, and 5,837,458, and Patten, P. A., et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson L. O., et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo, M. M. and Blasco, R. Biotechniques 24(2):308-13 (1998); each of these patents and publications are hereby incorporated by reference). In one embodiment, alteration of polynucleotides and corresponding polypeptides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments into a desired molecule by homologous, or site-specific, recombination. In another embodiment, polynucleotides and corresponding polypeptides may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections,

parts, domains, fragments, etc., of the polypeptide of the present invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are family members. In further preferred embodiments, the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor (FGF), TGF-beta, bone morphogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dpp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS, inhibin-alpha, TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta5, and glial-derived neurotrophic factor (GDNF).

- [0771] Other preferred fragments are biologically active fragments of the polypeptide of the present invention. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
- [0772] Additionally, this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide of the present invention. An example of such an assay comprises combining a mammalian fibroblast cell, the polypeptide of the present invention, the compound to be screened and ³[H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate. A control assay may be performed in the absence of the compound to be screened and compared to the amount of fibroblast proliferation in the presence of the compound to determine if the compound stimulates proliferation by determining the uptake of ³[H] thymidine in each case. The amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of ³[H] thymidine. Both agonist and antagonist compounds may be identified by this procedure.
- [0773] In another method, a mammalian cell or membrane preparation expressing a receptor for a polypeptide of the present invention is incubated with a labeled polypeptide of the present invention in the presence of the compound. The ability of

the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of a compound to be screened and the receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.

[0774] All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptides of the invention from suitably manipulated cells or tissues.

[0775] Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the present invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the present invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Targeted Delivery

[0776] In another embodiment, the invention provides a method of delivering compositions to targeted cells expressing a receptor for a polypeptide of the invention, or cells expressing a cell bound form of a polypeptide of the invention.

[0777] As discussed herein, polypeptides or antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions. In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (including antibodies) that are associated with heterologous polypeptides or nucleic acids. In one

example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0778] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention (e.g., polypeptides of the invention or antibodies of the invention) in association with toxins or cytotoxic prodrugs.

By "toxin" is meant compounds that bind and activate endogenous [0779]cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.

Drug Screening

[0780] Further contemplated is the use of the polypeptides of the present invention, or the polynucleotides encoding these polypeptides, to screen for molecules which modify the activities of the polypeptides of the present invention. Such a method would include contacting the polypeptide of the present invention with a selected compound(s) suspected of having antagonist or agonist activity, and assaying

the activity of these polypeptides following binding.

[0781] This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the present invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and a polypeptide of the present invention.

Other agents which affect activities mediated by the polypeptides of the present invention. These methods comprise contacting such an agent with a polypeptide of the present invention or a fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or a fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the present invention.

for compounds having suitable binding affinity to the polypeptides of the present invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is incorporated herein by reference herein. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with polypeptides of the present invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.

[0784] This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the present

invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.

Antisense And Ribozyme (Antagonists)

[0785] In specific embodiments, antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ID NO:X, or the complementary strand thereof, and/or to cDNA sequences contained in cDNA Clone ID NO:Z identified for example, in Table 1A. In one embodiment, antisense sequence is generated internally, by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1300 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.

[0786] For example, the use of c-myc and c-myb antisense RNA constructs to inhibit the growth of the non-lymphocytic leukemia cell line HL-60 and other cell lines was previously described. (Wickstrom et al. (1988); Anfossi et al. (1989)). These experiments were performed in vitro by incubating cells with the oligoribonucleotide. A similar procedure for in vivo use is described in WO 91/15580. Briefly, a pair of oligonucleotides for a given antisense RNA is produced as follows: A sequence complimentary to the first 15 bases of the open reading frame is flanked by an EcoR1 site on the 5' end and a HindIII site on the 3' end. Next, the pair of oligonucleotides is heated at 90°C for one minute and then annealed in 2X ligation buffer (20mM TRIS HCl pH 7.5, 10mM MgCl2, 10MM dithiothreitol (DTT)

and 0.2 mM ATP) and then ligated to the EcoR1/Hind III site of the retroviral vector PMV7 (WO 91/15580).

[0787] For example, the 5' coding portion of a polynucleotide that encodes the polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.

[0788] In one embodiment, the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in vertebrate cells. Expression of the sequence encoding the polypeptide of the present invention or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981), the regulatory sequences of the metallothionein gene (Brinster, et al., Nature 296:39-42 (1982)), etc.

[0789] The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of a gene of the present invention. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded antisense nucleic acids, a single

strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with a RNA it may contain and still form a stable duplex (or triplex as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

[0790] Oligonucleotides that are complementary to the 5' end of the message, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994, Nature 372:333-335. Thus, oligonucleotides complementary to either the 5'- or 3'- non- translated, noncoding regions of polynucleotide sequences described herein could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of mRNA of the present invention, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.

[0791] The polynucleotides of the invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT

Publication No. WO89/10134, published April 25, 1988), hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

- The antisense oligonucleotide may comprise at least one modified base [0792] moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine. 1-methylguanine. 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine. 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine. 7-methylguanine, 5-methylaminomethyluracil. 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
- [0793] The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.
- [0794] In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothicate, a phosphorodithicate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
- [0795] In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The

oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

[0796] Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothicate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

[0797] While antisense nucleotides complementary to the coding region sequence could be used, those complementary to the transcribed untranslated region are most preferred.

Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published October 4, 1990; Sarver et al, Science 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, Nature 334:585-591 (1988). There are numerous potential hammerhead ribozyme cleavage sites within the nucleotide sequence of SEQ ID NO:X. Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

[0799] As in the antisense approach, the ribozymes of the invention can be composed of modified oligonucleotides (e.g. for improved stability, targeting, etc.) and should be delivered to cells which express in vivo. DNA constructs encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA. A preferred method of delivery involves

using a DNA construct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

- [0800] Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects of the polypeptides of the present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth.
- [0801] The antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention of the mitogenic activity of the polypeptides of the present invention may also be desirous in cases such as restenosis after balloon angioplasty.
- [0802] The antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.
- [0803] The antagonist/agonist may also be employed to treat the diseases described herein.
- [0804] Thus, the invention provides a method of treating disorders or diseases, including but not limited to the disorders or diseases listed throughout this application, associated with overexpression of a polynucleotide of the present invention by administering to a patient (a) an antisense molecule directed to the polynucleotide of the present invention, and/or (b) a ribozyme directed to the polynucleotide of the present invention.

Binding Peptides and Other Molecules

[0805] The invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind reproductive system related antigen polypeptides, and the reproductive system related antigen binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists of the reproductive system related antigen polypeptides. Such agonists and

antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below.

[0806] This method comprises the steps of: contacting reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides with a plurality of molecules; and identifying a molecule that binds the reproductive system related antigen polypeptides or reproductive system related antigen polypeptides.

The step of contacting the reproductive system related antigen polypeptides [0807] or reproductive system related antigen-like polypeptides with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides on a solid support and bringing a solution of the plurality of molecules in contact with the immobilized reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised of the immobilized reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides. The molecules having a selective affinity for the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides can then be purified by affinity selection. The nature of the solid support, process for attachment of the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides to the solid support, solvent, and conditions of the affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.

[0808] Alternatively, one may also separate a plurality of polypeptides into substantially separate fractions comprising a subset of or individual polypeptides. For instance, one can separate the plurality of polypeptides by gel electrophoresis, column chromatography, or like method known to those of ordinary skill for the separation of polypeptides. The individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage). Individual isolates can then be "probed" by the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides, optionally in the presence of an inducer should one be required for expression, to

determine if any selective affinity interaction takes place between the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides and the individual clone. Prior to contacting the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience. Such a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon. In this manner, positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA construct encoding a polypeptide having a selective affinity for reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides. Furthermore, the amino acid sequence of the polypeptide having a selective affinity for the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides can be determined directly by conventional means or the coding sequence of the DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy.

[0809] In certain situations, it may be desirable to wash away any unbound reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides, or alternatively, unbound polypeptides, from a mixture of the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides and the plurality of polypeptides prior to attempting to determine or to detect the presence of a selective affinity interaction. Such a wash step may be particularly desirable when the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides or the plurality of polypeptides is bound to a solid support.

[0810] The plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind reproductive system related antigen polypeptides. Many libraries are known in the art

that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and *in vitro* translation-based libraries. Examples of chemically synthesized libraries are described in Fodor et al., 1991, Science 251:767-773; Houghten et al., 1991, Nature 354:84-86; Lam et al., 1991, Nature 354:82-84; Medynski, 1994, Bio/Technology 12:709-710; Gallop et al., 1994, J. Medicinal Chemistry 37(9):1233-1251; Ohlmeyer et al., 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91:11422-11426; Houghten et al., 1992, Biotechniques 13:412; Jayawickreme et al., 1994, Proc. Natl. Acad. Sci. USA 91:1614-1618; Salmon et al., 1993, Proc. Natl. Acad. Sci. USA 90:11708-11712; PCT Publication No. WO 93/20242; and Brenner and Lerner, 1992, Proc. Natl. Acad. Sci. USA 89:5381-5383.

- [0811] Examples of phage display libraries are described in Scott and Smith, 1990, Science 249:386-390; Devlin et al., 1990, Science, 249:404-406; Christian, R. B., et al., 1992, J. Mol. Biol. 227:711-718); Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al., 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated Aug. 18, 1994.
- [0812] In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058 dated Apr. 18, 1991; and Mattheakis et al., 1994, Proc. Natl. Acad. Sci. USA 91:9022-9026.
- [0813] By way of examples of nonpeptide libraries, a benzodiazepine library (see e.g., Bunin et al., 1994, Proc. Natl. Acad. Sci. USA 91:4708-4712) can be adapted for use. Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91:11138-11142).
- [0814] The variety of non-peptide libraries that are useful in the present invention is great. For example, Ecker and Crooke, 1995, Bio/Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta-mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.

[0815] Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers. Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine structure.

- [0816] Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and morpholinos. Peptoids, peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries. The first non-peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility.
- [0817] Screening the libraries can be accomplished by any of a variety of commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Parmley and Smith, 1989, Adv. Exp. Med. Biol. 251:215-218; Scott and Smith, 1990, Science 249:386-390; Fowlkes et al., 1992; BioTechniques 13:422-427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci. USA 89:5393-5397; Yu et al., 1994, Cell 76:933-945; Staudt et al., 1988, Science 241:577-580; Bock et al., 1992, Nature 355:564-566; Tuerk et al., 1992, Proc. Natl. Acad. Sci. USA 89:6988-6992; Ellington et al., 1992, Nature 355:850-852; U.S. Pat. No. 5,096,815, U.S. Pat. No. 5,223,409, and U.S. Pat. No. 5,198,346, all to Ladner et al.; Rebar and Pabo, 1993, Science 263:671-673; and CT Publication No. WO 94/18318.
- [0818] In a specific embodiment, screening to identify a molecule that binds reproductive system related antigen polypeptides can be carried out by contacting the library members with a reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides immobilized on a solid phase and harvesting those library members that bind to the reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides. Examples of such screening methods, termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992,

BioTechniques 13:422-427; International Publication No. WO 94/18318; and in references cited herein.

- [0819] In another embodiment, the two-hybrid system for selecting interacting proteins in yeast (Fields and Song, 1989, Nature 340:245-246; Chien et al., 1991, Proc. Natl. Acad. Sci. USA 88:9578-9582) can be used to identify molecules that specifically bind to reproductive system related antigen polypeptides or reproductive system related antigen-like polypeptides.
- [0820] Where the reproductive system related antigen binding molecule is a polypeptide, the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries. The term "biased" is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity of the resulting collection of molecules, in this case peptides.
- [0821] Thus, a truly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position of the peptide is the same for all 20 amino acids. A bias can be introduced into the library, however, by specifying, for example, that a lysine occur every fifth amino acid or that positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine. Clearly, many types of biases can be contemplated, and the present invention is not restricted to any particular bias. Furthermore, the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA construct comprising a lambda phage vector with a DNA insert.
- [0822] As mentioned above, in the case of a reproductive system related antigen binding molecule that is a polypeptide, the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids. In another embodiment, a reproductive system related antigen binding polypeptide has in the range of 15-100 amino acids, or 20-50 amino acids.
- [0823] The selected reproductive system related antigen binding polypeptide can be obtained by chemical synthesis or recombinant expression.

Other Activities

[0824] A polypeptide, polynucleotide, agonist, or antagonist of the present invention, as a result of the ability to stimulate vascular endothelial cell growth, may be employed in treatment for stimulating re-vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. The polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.

[0825] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for treating wounds due to injuries, burns, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.

[0826] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to stimulate neuronal growth and to treat and prevent neuronal damage which occurs in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease, Parkinson's disease, and AIDS-related complex. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may have the ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts.

[0827] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.

[0828] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth. Along the same lines, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.

[0829] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to maintain organs before transplantation or for

supporting cell culture of primary tissues. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos.

- [0830] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.
- [0831] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.
- [0832] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.
- [0833] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.
- [0834] The above-recited applications have uses in a wide variety of hosts. Such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, carnel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human. In specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.

Other Preferred Embodiments

[0835] Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in Clone ID NO:Z.

- [0836] Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ID NO:X as defined in column 4, "ORF (From-To)", in Table 1A.
- [0837] Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ID NO:X as defined in columns 8 and 9, "NT From" and "NT To" respectively, in Table 2.
- [0838] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in Clone ID NO:Z.
- [0839] Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in Clone ID NO:Z.
- [0840] A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ID NO:X defined in column 4, "ORF (From-To)", in Table 1A.
- [0841] A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ID NO:X defined in columns 8 and 9, "NT From" and "NT To", respectively, in Table 2.

[0842] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in Clone ID NO:Z.

- Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in Clone ID NO:Z, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.
- [0844] Also preferred is a composition of matter comprising a DNA molecule which comprises the cDNA contained in Clone ID NO:Z.
- [0845] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides of the cDNA sequence contained in Clone ID NO:Z.
- [0846] Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of an open reading frame sequence encoded by cDNA contained in Clone ID NO:Z.
- [0847] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in Clone ID NO:Z.
- [0848] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in Clone ID NO:Z.
- [0849] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by cDNA contained in Clone ID NO:Z.

[0850] A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in Clone ID NO:Z; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

[0851] Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

[0852] A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of the cDNA contained in Clone ID NO:Z.

[0853] The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto; or the cDNA contained in Clone ID NO:Z which encodes a protein, wherein the method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of cDNA contained in Clone ID NO:Z.

[0855] The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

[0856] Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 4 of Table 1A or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in Clone ID NO:Z. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

[0857] Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a DNA microarray or "chip" of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 500, 1000, 2000, 3000, or 4000 nucleotide sequences, wherein at least one sequence in said DNA microarray or "chip" is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected

from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1A; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA "Clone ID" in Table 1A.

- [0858] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in Clone ID NO:Z.
- [0859] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in Clone ID NO:Z.
- [0860] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in Clone ID NO:Z.
- [0861] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in Clone ID NO:Z.
- [0862] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a polypeptide encoded by contained in Clone ID NO:Z
- [0863] Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a portion of said polypeptide encoded

by cDNA contained in Clone ID NO:Z; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or the polypeptide sequence of SEQ ID NO:Y.

- [0864] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of a polypeptide encoded by the cDNA contained in Clone ID NO:Z.
- [0865] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of a polypeptide encoded by cDNA contained in Clone ID NO:Z.
- [0866] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of a polypeptide encoded by the cDNA contained in Clone ID NO:Z.
- [0867] Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.
- polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the conded by the conded by the contained in Clone ID NO:Z; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of

said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

[0869] Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.

[0870] Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.

[0872] Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

[0873] Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleic acid sequence identified in Table 1A or Table 2 encoding a polypeptide, which method comprises a

step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.

- [0874] In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.
- Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.
- [0876] Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.
- [0877] Also preferred is a polypeptide molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z.
- [0878] Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a human protein comprising an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in Clone ID NO:Z. The isolated polypeptide produced by this method is also preferred.

- [0880] Also preferred is a method of treatment of an individual in need of an increased level of a protein activity, which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to increase the level of said protein activity in said individual.
- [0881] Also preferred is a method of treatment of an individual in need of a decreased level of a protein activity, which method comprised administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to decrease the level of said protein activity in said individual.
- [0882] Also preferred is a method of treatment of an individual in need of a specific delivery of toxic compositions to diseased cells (e.g., tumors, leukemias or lymphomas), which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide of the invention, including, but not limited to a binding agent, or antibody of the claimed invention that are associated with toxin or cytotoxic prodrugs.
- [0883] Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

TABLE 6

ATCC Deposits	Deposit Date	ATCC Designation Number
LP01, LP02, LP03,	May-20-97	209059, 209060, 209061, 209062, 209063,
LP04, LP05, LP06,		209064, 209065, 209066, 209067, 209068,
LP07, LP08, LP09,		209069
LP10, LP11,		
LP12	Jan-12-98	209579
LP13	Jan-12-98	209578
LP14	Jul-16-98	203067
LP15	Jul-16-98	203068
LP16	Feb-1-99	203609
LP17	Feb-1-99	203610
LP20	Nov-17-98	203485
LP21	Jun-18-99	PTA-252
LP22 ·	Jun-18-99	PTA-253
LP23	Dec-22-99	PTA-1081

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

[0884] Each Clone ID NO:Z is contained in a plasmid. Table 7 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The following correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 7 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

Vector Used to Construct Library	Corresponding Deposited Plasmid
Lambda Zap	pBluescript (pBS)
Uni-Zap XR	pBluescript (pBS)
Zap Express	pBK
lafmid BA	plafmid BA
pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR [®] 2.1	pCR [®] 2.1

[0885] Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer

sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the fl origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the fl ori generates sense strand DNA and in the other, antisense.

Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the vector sequences identified for the particular clone in Table 7, as well as the corresponding plasmid vector sequences designated above.

[0887] The deposited material in the sample assigned the ATCC Deposit Number cited by reference to Tables 1A, 2, 6 and 7 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each Clone ID NO:Z.

TABLE 7

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HUKA HUKB HUKC HUKD HUKE HUKF HUKG	Human Uterine Cancer	Lambda ZAP II	LP01
HCNA HCNB	Human Colon	Lambda Zap II	LP01
HFFA	Human Fetal Brain, random primed	Lambda Zap II	LP01
HTWA	Resting T-Cell	Lambda ZAP II	LP01

Libraries owned by Catalog	Catalog Description	11/	1,000
Libraries owned by Catalog	Catalog Description	Vector	ATCC
11004			Deposit
нвоа	Early Stage Human Brain, random primed	Lambda ZAP II	LP01
HLMB HLMF HLMG HLMH	breast lymph node CDNA library	Lambda ZAP II	LP01
HLMI HLMJ HLMM HLMN			
HCQA HCQB	human colon cancer	Lamda ZAP II	LP01
HMEA HMEC HMED HMEE	Human Microvascular Endothelial	Lambda ZAP II	LP01
нмег нмес нмеі нмеј	Cells, fract. A		
HMEK HMEL			
HUSA HUSC	Human Umbilical Vein Endothelial Cells, fract. A	Lambda ZAP II	LP01
HLQA HLQB	Hepatocellular Tumor	Lambda ZAP II	LP01
HHGA HHGB HHGC HHGD	Hemangiopericytoma	Lambda ZAP II	LP01
HSDM	Human Striatum Depression, re-rescue	Lambda ZAP II	LP01
HUSH	H Umbilical Vein Endothelial Cells,	Lambda ZAP II	LP01
	frac A, re-excision		
HSGS	Salivary gland, subtracted	Lambda ZAP II	LP01
HFXA HFXB HFXC HFXD	Brain frontal cortex	Lambda ZAP II	LP01
HFXE HFXF HFXG HFXH			
HPQA HPQB HPQC	PERM TF274	Lambda ZAP II	LP01
HFXJ HFXK	Brain Frontal Cortex, re-excision	Lambda ZAP II	LP01
HCWA HCWB HCWC HCWD	CD34 positive cells (Cord Blood)	ZAP Express	LP02
HCWE HCWF HCWG HCWH			
HCWI HCWJ HCWK			1
HCUA HCUB HCUC	CD34 depleted Buffy Coat (Cord	ZAP Express	LP02
	Blood)		
HRSM	A-14 cell line	ZAP Express	LP02
HRSA	A1-CELL LINE	ZAP Express	LP02
HCUD HCUE HCUF HCUG	CD34 depleted Buffy Coat (Cord	ZAP Express	LP02
НСИН НСИІ	Blood), re-excision		
HBXE HBXF HBXG	H. Whole Brain #2, re-excision	ZAP Express	LP02
HRLM	L8 cell line	ZAP Express	LP02
НВХА НВХВ НВХС НВХD	Human Whole Brain #2 - Oligo dT >	ZAP Express	LP02
HUDA HUDB HUDC	1.5Kb Testes	740 5	7 000
HHTM HHTN HHTO		ZAP Express	LP02
	H. hypothalamus, frac A;re-excision	ZAP Express	LP02
HHTL	H. hypothalamus, frac A	ZAP Express	LP02
HASA HASD	Human Adult Spleen	Uni-ZAP XR	LP03
HFKC HFKD HFKE HFKF	Human Fetal Kidney	Uni-ZAP XR	LP03
HFKG	<u> </u>		

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HE8A HE8B HE8C HE8D HE8E	Human 8 Week Whole Embryo	Uni-ZAP XR	LP03
HE8F HE8M HE8N			1
HGBA HGBD HGBE HGBF	Human Gall Bladder	Uni-ZAP XR	LP03
HGBG HGBH HGBI			
HLHA HLHB HLHC HLHD	Human Fetal Lung III	Uni-ZAP XR	LP03
HLHE HLHF HLHG HLHH			
нгнб	<i>\ \ \</i>	1	
HPMA HPMB HPMC HPMD	Human Placenta	Uni-ZAP XR	LP03
НРМЕ НРМГ НРМС НРМН			i
HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP03
HSIA HSIC HSID HSIE	Human Adult Small Intestine	Uni-ZAP XR	LP03
HTEA HTEB HTEC HTED HTEE	Human Testes	Uni-ZAP XR	LP03
НТЕF НТЕG НТЕН НТЕІ НТЕЈ			
нтек			
НТРА HTPB HTPC HTPD HTPE	Human Pancreas Tumor	Uni-ZAP XR	LP03
HTTA HTTB HTTC HTTD HTTE	Human Testes Tumor	Uni-ZAP XR	LP03
нттғ			
НАРА НАРВ НАРС НАРМ	Human Adult Pulmonary	Uni-ZAP XR	LP03
НЕТА НЕТВ НЕТС НЕТО НЕТЕ	Human Endometrial Tumor	Uni-ZAP XR	LP03
нетг нетс нетн неті		Ì	
нн <mark>гв н</mark> нгс ннгр ннге ннгг	Human Fetal Heart	Uni-ZAP XR	LP03
ннгс ннгн ннгі			
ННРВ ННРС ННРО ННРЕ ННРF	Human Hippocampus	Uni-ZAP XR	LP03
ННРG ННРН			
HCE1 HCE2 HCE3 HCE4 HCE5	Human Cerebellum	Uni-ZAP XR	LP03
HCEB HCEC HCED HCEE HCEF			
HCEG			
HUVB HUVC HUVD HUVE	Human Umbilical Vein, Endo. remake	Uni-ZAP XR	LP03
HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP03
HTAA HTAB HTAC HTAD	Human Activated T-Cells	Uni-ZAP XR	LP03
HTAE			
HFEA HFEB HFEC	Human Fetal Epithelium (Skin)	Uni-ZAP XR	LP03
НЈРА НЈРВ НЈРС НЈРО	HUMAN JURKAT MEMBRANE	Uni-ZAP XR	LP03
	BOUND POLYSOMES		
HESA	Human epithelioid sarcoma	Uni-Zap XR	LP03
HLTA HLTB HLTC HLTD HLTE	Human T-Cell Lymphoma	Uni-ZAP XR	LP03
HLTF			
HFTA HFTB HFTC HFTD	Human Fetal Dura Mater	Uni-ZAP XR	LP03
HRDA HRDB HRDC HRDD	Human Rhabdomyosarcoma	Uni-ZAP XR	LP03
		L	

Libraries owned by Catalog	Catalog Description	Vector	ATCC
HDDE HDDE			Deposit
HRDE HRDF			
HCAA HCAB HCAC	Cem cells cyclohexamide treated	Uni-ZAP XR	LP03
HRGA HRGB HRGC HRGD	Raji Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HSUA HSUB HSUC HSUM	Supt Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HT4A HT4C HT4D	Activated T-Cells, 12 hrs.	Uni-ZAP XR	LP03
НЕ9А НЕ9В НЕ9С НЕ9D НЕ9Е	Nine Week Old Early Stage Human	Uni-ZAP XR	LP03
не9f не9g не9h не9м не9n			
HATA HATB HATC HATD	Human Adrenal Gland Tumor	Uni-ZAP XR	LP03
HATE			
HT5A	Activated T-Cells, 24 hrs.	Uni-ZAP XR	LP03
HFGA HFGM	Human Fetal Brain	Uni-ZAP XR	LP03
HNEA HNEB HNEC HNED	Human Neutrophil	Uni-ZAP XR	LP03
HNEE			"
HBGB HBGD	Human Primary Breast Cancer	Uni-ZAP XR	LP03
HBNA HBNB	Human Normal Breast	Uni-ZAP XR	LP03
HCAS	Cem Cells, cyclohexamide treated,	Uni-ZAP XR	LP03
	subtra	7	15, 05
HHPS	Human Hippocampus, subtracted	pBS	LP03
HKCS HKCU	Human Colon Cancer, subtracted	pBS	LP03
HRGS	Raji cells, cyclohexamide treated,	pBS	LP03
	subtracted		5. 03
HSUT	Supt cells, cyclohexamide treated,	pBS	LP03
	differentially expressed	,	-
IT4S	Activated T-Cells, 12 hrs, subtracted	Uni-ZAP XR	LP03
HCDA HCDB HCDC HCDD	Human Chondrosarcoma	Uni-ZAP XR	LP03
HCDE		o Dr. i	24 05
IOAA HOAB HOAC	Human Osteosarcoma	Uni-ZAP XR	LP03
ITLA HTLB HTLC HTLD HTLE		Uni-ZAP XR	LP03
ITLF		J 2. 1. 7.1.	2, 03
ILMA HLMC HLMD	Breast Lymph node cDNA library	Uni-ZAP XR	LP03
I6EA H6EB H6EC	HL-60, PMA 4H	Uni-ZAP XR	LP03
ITXA HTXB HTXC HTXD	Activated T-Cell (12hs)/Thiouridine	Uni-ZAP XR	LP03
ITXE HTXF HTXG HTXH	labelledEco	J 2A1 AK	2,03
INFA HNFB HNFC HNFD	Human Neutrophil, Activated	Uni-ZAP XR	LP03
INFE HNFF HNFG HNFH HNFJ		Jul-2Ar AR	12,03
ТОВ НТОС	HUMAN TONSILS, FRACTION 2	Uni-ZAP XR	LP03
IMGB	Human OB MG63 control fraction I	Uni-ZAP XR	LP03
IOPB	Human OB HOS control fraction I	Uni-ZAP XR	LP03
IORB	Human OB HOS treated (10 nM E2)	Uni-ZAP XR	LFU3

Libraries owned by Catalog	Catalog Description	Vector	1,000
) Caming	Catalog Description	vector	ATCC
	fraction I		Deposit
HSVA HSVB HSVC			
HROA	Human Chronic Synovitis	Uni-ZAP XR	LP03
	HUMAN STOMACH	Uni-ZAP XR	LP03
НВЈА НВЈВ НВЈС НВЈО НВЈЕ НВЈF НВЈС НВЈН НВЈЈ НВЈЈ НВЈК	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP03
HCRA HCRB HCRC	human corpus colosum	Uni-ZAP XR	LP03
HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP03
HDSA	Dermatofibrosarcoma Protuberance	Uni-ZAP XR	LP03
HMWA HMWB HMWC HMWD		Uni-ZAP XR	LP03
HMWE HMWF HMWG HMWH HMWI HMWJ		OIII-ZAI XIX	LFUS
HSOA	stomach cancer (human)	Uni-ZAP XR	LP03
HERA	SKIN	Uni-ZAP XR	LP03
HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP03
HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP03
HEAA	H. Atrophic Endometrium	Uni-ZAP XR	LP03
НВСА НВСВ	H. Lymph node breast Cancer	Uni-ZAP XR	LP03
HPWT	Human Prostate BPH, re-excision	Uni-ZAP XR	LP03
HFVG HFVH HFVI	Fetal Liver, subtraction II	pBS	LP03
HNFI	Human Neutrophils, Activated, re- excision	pBS	LP03
НВМВ НВМС НВМD	Human Bone Marrow, re-excision	pBS	LP03
HKML HKMM HKMN	H. Kidney Medulla, re-excision	pBS	LP03
НКІХ НКІҮ	H. Kidney Cortex, subtracted	pBS	LP03
HADT	H. Amygdala Depression, subtracted	pBS	LP03
H6AS	HI-60, untreated, subtracted	Uni-ZAP XR	LP03
H6ES	HL-60, PMA 4H, subtracted	Uni-ZAP XR	LP03
H6BS	HL-60, RA 4h, Subtracted	Uni-ZAP XR	LP03
H6CS	HL-60, PMA 1d, subtracted	Uni-ZAP XR	LP03
TTXJ HTXK	Activated T-cell(12h)/Thiouridine-re- excision	Uni-ZAP XR	LP03
IMSE HMSF HMSG HMSH IMSI HMSJ HMSK	Monocyte activated	Uni-ZAP XR	LP03
IAGE HAGF	Human Amygdala	Uni-ZAP XR	LP03
ISRA HSRB HSRE	STROMAL -OSTEOCLASTOMA	Uni-ZAP XR	LP03
ISRD HSRF HSRG HSRH	Human Osteoclastoma Stromal Cells -	Uni-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
	unamplified		
HSQA HSQB HSQC HSQD	Stromal cell TF274	Uni-ZAP XR	LP03
HSQE HSQF HSQG			
HSKA HSKB HSKC HSKD	Smooth muscle, serum treated	Uni-ZAP XR	LP03
HSKE HSKF HSKZ			
HSLA HSLB HSLC HSLD HSLE	Smooth muscle,control	Uni-ZAP XR	LP03
HSLF HSLG			
HSDA HSDD HSDE HSDF	Spinal cord	Uni-ZAP XR	LP03
HSDG HSDH			
HPWS	Prostate-BPH subtracted II	pBS	LP03
HSKW HSKX HSKY	Smooth Muscle- HASTE normalized	pBS	LP03
HFPB HFPC HFPD	H. Frontal cortex,epileptic;re-excision	Uni-ZAP XR	LP03
HSDI HSDJ HSDK	Spinal Cord, re-excision	Uni-ZAP XR	LP03
HSKN HSKO	Smooth Muscle Serum Treated, Norm	pBS	LP03
HSKG HSKH HSKI	Smooth muscle, serum induced,re-exc	pBS	LP03
HFCA HFCB HFCC HFCD HFCE	<u> </u>	Uni-ZAP XR	LP04
HFCF			
НРТА НРТВ НРТО	Human Pituitary	Uni-ZAP XR	LP04
НТНВ НТНС НТНD	Human Thymus	Uni-ZAP XR	LP04
НЕ6В НЕ6С НЕ6D НЕ6Е НЕ6F	Human Whole Six Week Old Embryo	Uni-ZAP XR	LP04
HE6G HE6S			
HSSA HSSB HSSC HSSD HSSE	Human Synovial Sarcoma	Uni-ZAP XR	LP04
HSSF HSSG HSSH HSSI HSSJ			
HSSK			
НЕ7Т	7 Week Old Early Stage Human,	Uni-ZAP XR	LP04
	subtracted		
НЕРА НЕРВ НЕРС	Human Epididymus	Uni-ZAP XR	LP04
HSNA HSNB HSNC HSNM	Human Synovium	Uni-ZAP XR	LP04
HSNN			
HPFB HPFC HPFD HPFE	Human Prostate Cancer, Stage C	Uni-ZAP XR	LP04
	fraction	1	
HE2A HE2D HE2E HE2H HE2I	12 Week Old Early Stage Human	Uni-ZAP XR	LP04
HE2M HE2N HE2O			
HE2B HE2C HE2F HE2G HE2P	12 Week Old Early Stage Human, II	Uni-ZAP XR	LP04
HE2Q		1	
HPTS HPTT HPTU	Human Pituitary, subtracted	Uni-ZAP XR	LP04
HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP04
HAQA HAQB HAQC HAQD	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP04
HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP04

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HBSD	Bone Cancer, re-excision	Uni-ZAP XR	LP04
HSGB	Salivary gland, re-excision	Uni-ZAP XR	LP04
HSJA HSJB HSJC	Smooth muscle-ILb induced	Uni-ZAP XR	LP04
HSXA HSXB HSXC HSXD	Human Substantia Nigra	Uni-ZAP XR	LP04
HSHA HSHB HSHC .	Smooth muscle, IL1b induced	Uni-ZAP XR	LP04
HOUA HOUB HOUC HOUD	Adipocytes	Uni-ZAP XR	LP04
HOUE .			
HPWA HPWB HPWC HPWD	Prostate BPH	Uni-ZAP XR	LP04
HPWE .			
HELA HELB HELC HELD HELE	Endothelial cells-control	Uni-ZAP XR	LP04
HELF HELG HELH			
HEMA HEMB HEMC HEMD	Endothelial-induced	Uni-ZAP XR	LP04
НЕМЕ НЕМГ НЕМС НЕМН			
HBIA HBIB HBIC	Human Brain, Striatum	Uni-ZAP XR	LP04
HHSA HHSB HHSC HHSD	Human Hypothalmus, Schizophrenia	Uni-ZAP XR	LP04
ннѕе]		
HNGA HNGB HNGC HNGD	neutrophils control	Uni-ZAP XR	LP04
HNGE HNGF HNGG HNGH		Ī	
HNGI HNGJ			
HNHA HNHB HNHC HNHD	Neutrophils IL-1 and LPS induced	Uni-ZAP XR	LP04
HNHE HNHF HNHG HNHH			
НИНІ НИНЈ			
HSDB HSDC	STRIATUM DEPRESSION	Uni-ZAP XR	LP04
ННРТ	Hypothalamus	Uni-ZAP XR	LP04
HSAT HSAU HSAV HSAW	Anergic T-cell	Uni-ZAP XR	LP04
HSAX HSAY HSAZ			
НВМЅ НВМТ НВМО НВМО	Bone marrow	Uni-ZAP XR	LP04
нвму нвмх			
HOEA HOEB HOEC HOED	Osteoblasts	Uni-ZAP XR	LP04
HOEE HOEF HOEJ			
HAIA HAIB HAIC HAID HAIE	Epithelial-TNFa and INF induced	Uni-ZAP XR	LP04
HAIF			
HTGA HTGB HTGC HTGD	Apoptotic T-cell	Uni-ZAP XR	LP04
HMCA HMCB HMCC HMCD	Macrophage-oxLDL	Uni-ZAP XR	LP04
HMCE			
HMAA HMAB HMAC HMAD	Macrophage (GM-CSF treated)	Uni-ZAP XR	LP04
HMAE HMAF HMAG			
НРНА	Normal Prostate	Uni-ZAP XR	LP04
HPIA HPIB HPIC	LNCAP prostate cell line	Uni-ZAP XR	LP04

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
НРЈА НРЈВ НРЈС	PC3 Prostate cell line	Uni-ZAP XR	LP04
HOSE HOSF HOSG	Human Osteoclastoma, re-excision	Uni-ZAP XR	LP04
HTGE HTGF	Apoptotic T-cell, re-excision	Uni-ZAP XR	LP04
HMAJ HMAK	H Macrophage (GM-CSF treated), re- excision	Uni-ZAP XR	LP04
HACB HACC HACD .	Human Adipose Tissue, re-excision	Uni-ZAP XR	LP04
HFPA	H. Frontal Cortex, Epileptic	Uni-ZAP XR	LP04
HFAA HFAB HFAC HFAD HFAE	Alzheimers, spongy change	Uni-ZAP XR	LP04
HFAM	Frontal Lobe, Dementia	Uni-ZAP XR	LP04
HMIA HMIB HMIC	Human Manic Depression Tissue	Uni-ZAP XR	LP04
HTSA HTSE HTSF HTSG HTSH	Human Thymus	pBS	LP05
НРВА НРВВ НРВС НРВО НРВЕ	Human Pineal Gland	pBS	LP05
HSAA HSAB HSAC	HSA 172 Cells	pBS	LP05
HSBA HSBB HSBC HSBM	HSC172 cells	pBS	LP05
HJAA HJAB HJAC HJAD	Jurkat T-cell G1 phase	pBS	LP05
НЈВА НЈВВ НЈВС НЈВD	Jurkat T-Cell, S phase	pBS	LP05
HAFA HAFB	Aorta endothelial cells + TNF-a	pBS	LP05
HAWA HAWB HAWC	Human White Adipose	pBS	LP05
HTNA HTNB	Human Thyroid	pBS	LP05
HONA	Normal Ovary, Premenopausal	pBS	LP05
HARA HARB	Human Adult Retina	pBS	LP05
HLJA HLJB	Human Lung	pCMVSport 1	LP06
ногм ного ного	H. Ovarian Tumor, II, OV5232	pCMVSport 2.0	LP07
HOGA HOGB HOGC	OV 10-3-95	pCMVSport 2.0	LP07
HCGL	CD34+cells, II	pCMVSport 2.0	LP07
HDLA	Hodgkin's Lymphoma I	pCMVSport 2.0	LP07
HDTA HDTB HDTC HDTD HDTE	Hodgkin's Lymphoma II	pCMVSport 2.0	LP07
HKAA HKAB HKAC HKAD HKAE HKAF HKAG HKAH	Keratinocyte	pCMVSport2.0	LP07
HCIM	CAPFINDER, Crohn's Disease, lib 2	pCMVSport 2.0	LP07
HKAL	Keratinocyte, lib 2	pCMVSport2.0	LP07
HKAT	Keratinocyte, lib 3	pCMVSport2.0	LP07
HNDA	Nasal polyps	pCMVSport2.0	LP07
HDRA	H. Primary Dendritic Cells, lib 3	pCMVSport2.0	LP07
НОНА НОНВ НОНС	Human Osteoblasts II	pCMVSport2.0	LP07
HLDA HLDB HLDC	Liver, Hepatoma	pCMVSport3.0	LP08

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HLDN HLDO HLDP	Human Liver, normal	pCMVSport3.0	LP08
НМТА	pBMC stimulated w/ poly I/C	pCMVSport3.0	LP08
HNTA	NTERA2, control	pCMVSport3.0	LP08
HDPA HDPB HDPC HDPD	Primary Dendritic Cells, lib 1	pCMVSport3.0	LP08
HDPF HDPG HDPH HDPI HDP.	ı	1	
HDPK			
HDPM HDPN HDPO HDPP	Primary Dendritic cells,frac 2	pCMVSport3.0	LP08
HMUA HMUB HMUC	Myoloid Progenitor Cell Line	pCMVSport3.0	LP08
ННЕА ННЕВ HHEC HHED	T Cell helper I	pCMVSport3.0	LP08
ННЕМ ННЕЙ ННЕО ННЕР	T cell helper II	pCMVSport3.0	LP08
HEQA HEQB HEQC	Human endometrial stromal cells	pCMVSport3.0	LP08
НЈМА НЈМВ	Human endometrial stromal cells-	pCMVSport3.0	LP08
<u></u>	treated with progesterone		
HSWA HSWB HSWC	Human endometrial stromal cells-	pCMVSport3.0	LP08
	treated with estradiol		
HSYA HSYB HSYC	Human Thymus Stromal Cells	pCMVSport3.0	LP08
HLWA HLWB HLWC	Human Placenta	pCMVSport3.0	LP08
HRAA HRAB HRAC	Rejected Kidney, lib 4	pCMVSport3.0	LP08
НМТМ	PCR, pBMC I/C treated	PCRII	LP09
НМЈА	H. Meniingima, M6	pSport 1	LP10
HMKA HMKB HMKC HMKD	H. Meningima, MI	pSport 1	LP10
НМКЕ			
HUSG HUSI	Human umbilical vein endothelial cells,	pSport 1	LP10
	IL-4 induced		
HUSX HUSY	Human Umbilical Vein Endothelial	pSport 1	LP10
	Cells, uninduced	ľ	
HOFA	Ovarian Tumor I, OV5232	pSport 1	LP10
ICFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport 1	LP10
ICFL HCFM HCFN HCFO	T-Cell PHA 24 hrs	pSport I	LP10
ADA HADC HADD HADE	Human Adipose	pSport I	LP10
IADF HADG			
IOVA HOVB HOVC	Human Ovary	pSport 1	LP10
ITWB HTWC HTWD HTWE	Resting T-Cell Library,II	pSport 1	LP10
ITWF			J
IMMA	Spleen metastic melanoma	pSport 1	LP10
ILYA HLYB HLYC HLYD		pSport 1	LP10
ILYE		s rentit t	
ICGA	CD34+ cell, I	pSport 1	LP10
EOM HEON		pSport l	LP10

Libraries owned by Catalog	Catalog Description	Vector	ATCC
		ļ	Deposit
HTDA	Human Tonsil, Lib 3	pSport 1	LP10
HSPA	Salivary Gland, Lib 2	pSport 1	LP10
НСНА НСНВ НСНС	Breast Cancer cell line, MDA 36	pSport 1	LP10
нснм нсни	Breast Cancer Cell line, angiogenic	pSport I	LP10
HCIA	Crohn's Disease	pSport 1	LP10
HDAA HDAB HDAC	HEL cell line	pSport 1	LP10
НАВА	Human Astrocyte	pSport 1	LP10
HUFA HUFB HUFC	Ulcerative Colitis	pSport 1	LP10
HNTM	NTERA2 + retinoic acid, 14 days	pSport 1	LPIO
HDQA	Primary Dendritic cells,CapFinder2,	pSport 1	LP10
	frac 1		
HDQM	Primary Dendritic Cells, CapFinder,	pSport 1	LP10
	frac 2		
HLDX	Human Liver, normal,	pSport I	LP10
HULA HULB HULC	Human Dermal Endothelial	pSport1	LP10
•	Cells, untreated		ł
HUMA	Human Dermal Endothelial cells,treated	pSport1	LP10
HCJA	Human Stromal Endometrial	pSport1	LP10
	fibroblasts, untreated		
НСЈМ	Human Stromal endometrial fibroblasts,	pSport1	LP10
	treated w/ estradiol		
HEDA	Human Stromal endometrial fibroblasts,	pSport1	LP10
	treated with progesterone		
HFNA	Human ovary tumor cell OV350721	pSport1	LP10
HKGA HKGB HKGC HKGD	Merkel Cells	pSport1	LP10
HISA HISB HISC	Pancreas Islet Cell Tumor	pSport1	LP10
HLSA	Skin, burned	pSport1	LP10
HBZA	Prostate,BPH, Lib 2	pSport 1	LP10
HBZS	Prostate BPH,Lib 2, subtracted	pSport 1	LP10
HFIA HFIB HFIC	Synovial Fibroblasts (control)	pSport 1	LP10
HFIH HFII HFIJ	Synovial hypoxia	pSport 1	LP10
HFIT HFIU HFIV	Synovial IL-1/TNF stimulated	pSport 1	LP10
HGCA	Messangial cell, frac 1	pSport1	LP10
HMVA HMVB HMVC	Bone Marrow Stromal Cell, untreated	pSport1	LP10
HFIX HFIY HFIZ	Synovial Fibroblasts (III/TNF), subt	pSport1	LP10
HFOX HFOY HFOZ	Synovial hypoxia-RSF subtracted	pSport1	LP10
HMQA HMQB HMQC HMQD	Human Activated Monocytes	Uni-ZAP XR	LP11
HLIA HLIB HLIC	Human Liver	pCMVSport 1	LP012
ННВА ННВВ ННВС ННВD	Human Heart	pCMVSport 1	LP012

HWAE HYAA HYAB HYAC B Cell lymphoma PCMVSport 3.0 LP012 HWHG HWHH HWHI Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision (control) HBIM Olfactory epithelium; nasalcavity HWDA Healing Abdomen wound; 70&90 min post incision HWHAEA Healing Abdomen Wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 21&29 days HWAIA Healing Abdomen Wound; 21&29 days HWAS HOFTA HAMA HEALING ABDOMEN HWAS HOFTA HAMA HAMAB HMKC HMKD HAMAING HAMAB HMKC HMKD HAMAING HAMAB HMKC HMKD HAMAING HAMAB HMKC HMKD HAMAING HAMAB HMKC HOFTA HAMAB HMMC Spleen metastic melanoma PSport1 LP012 HMMA HMMB HMMC PSpleen metastic melanoma PSport1 LP012 HMDA HUMAN HUMAN PETICATION HUMAN POPORTI HUMAN POPORT HUMAN POPORTI HUMAN POP	Libraries owned by Catalog	Catalog Description	Vector	ATCC
HBBA HBBB				Deposit
HUJA HLIB HLJC HLID HLJE HUMAN LUNS HOGA HOGB HOGC HOVARIAN HUMAN TUMBNIS, Lib 2 HOMAN Sport 1.0 HUMAN HAMG HUMAN HAMB HAMG HAMB HAMB HWBC HWBD HWBB HWBC HWAD HWBA HWAB HWAC HWAD HWHIP HWHI Healing groin wound, 6.5 hours post incision HARM HEARM HWBH HWHI HEARM HEARM HEARING groin wound, 7.5 hours post incision HARM HEARM HWBDA HEARM HWBD HWHH HWHI Healing groin wound, 7.5 hours post incision HARM HEARM HORD HOWNSport 3.0 LP012 HWYSport 3.0 LP012 PCMVSport 3.0 LP012 HWYSport 3.0 LP012	ННВЕ		 	-
HOGA HOGB HOGC	НВВА НВВВ	Human Brain	pCMVSport I	LP012
HTJM	HLJA HLJB HLJC HLJD HLJE	Human Lung	pCMVSport 1	LP012
HAMF HAMG HAJA HAJB HAJC L428 PCMVSport 3.0 LP012 HWBA HWBB HWBC HWBD HWBE HWAA HWAB HWAC HWAD HWAA HWAA HYAB HYAC B Cell lymphoma HYAA HYAB HYAC Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound; 7.5 hours post incision HWBDA HEALING groin wound; 7.5 hours post incision HWHDA Healing groin wound; 7.5 hours post incision HWHDA Healing groin wound; 7.5 hours post incision HWHDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 70.890 min post incision HWEA Healing Abdomen Wound; 70.890 min post incision HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 HWBA HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 PCMVSport 3.0 LP012 LP012 HWBA HWBA HWBA HEALING Abdomen Wound; 70.890 min post incision LP012 PCMVSport 3.0 LP012 PCMVSport 3.0 LP012 LP012 PCMVSport 3.0 LP012 LP012 PCMVS	HOGA HOGB HOGC	Ovarian Tumor	pCMVSport 2.0	LP012
HAJA HAJB HAJC	МІТН	Human Tonsils, Lib 2	pCMVSport 2.0	LP012
HWBA HWBB HWBC HWBD HWBE HWBA HWBB HWBC HWBD HWBE HWAA HWAB HWAC HWAD HWAE HYAA HYAB HYAC B Cell lymphoma Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound, 7.5 hours post incision HWHP HWHQ HWHR Healing groin wound, 7.5 hours post incision HWBB HARM Healing groin wound, 7.5 hours post incision HWBB Olfactory epithelium; nasalcavity HWDA Healing Abdomen wound; 70&90 min poMVSport 3.0 LP012 HWBA Healing Abdomen wound; 70&90 min poMVSport 3.0 LP012 HWBA Healing Abdomen Wound; 15 days post incision HWBA Healing Abdomen Wound; 15 days post incision HWBA Healing Abdomen Wound; 21&29 days HWJA Healing Abdomen Wound; 21&29 days HWJA Healing Abdomen Wound; 21&29 fays HMJA Healing Abdomen Wound; 21&29 fays HMJA Healing Abdomen Wound; 20 HMJA HMRA HWHAN HMRA HWHAN HMRA HWHAN HMRA HWHAN HMRA HWHAN HMRA HWHAN HMRA HWAB HMKC HMKD HMKE HMFA Ovarian Tumor I, OV5232 PSport1 LP012 HMFA HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HMMA HMMB HMMC Pericardium pSport1 LP012 HDDA HUMAN Forstat, Bib 2 PSport1 LP012 HDDA HWBA HUMAN Pormal lung PSport1 LP012 HWCA Larynx tumor PSport1 LP012 HWCA HWKA	HAMF HAMG	КМН2	pCMVSport 3.0	LP012
HWBE HWAA HWAB HWAC HWAD HUMAN HWAB HYAC B Cell lymphoma HWHG HWHH HWHI Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision HARM Healing groin wound - zero hr post-incision HWDA Healing Abdomen wound; 70&90 min poMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min poMVSport 3.0 LP012 HWDA Healing Abdomen Wound; 15 days post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days HMJA Healing Abdomen Wound; 21&29 days HMJA Healing Abdomen Wound; 21&29 days HMJA Healing Abdomen Wound; 15 days post incision HWBA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days HNAL HUMAN Healing Abdomen Wound; 21 &29 days HMJA H. Meningima, M6 PSport1 LP012 HMJA H. Meningima, M6 PSport1 LP012 HMKE HOFA HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 24 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 25 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 26 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 27 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 26 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 27 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 27 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 27 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 28 hrs PSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO T-Cell PHA 29 pSport1 LP012 HCPL HCFM HCFN HCFO HC	НАЈА НАЈВ НАЈС	L428	pCMVSport 3.0	LP012
HWAA HWAB HWAC HWAD HWAE HYAA HYAB HYAC HWAE HYAA HYAB HYAC HEaling groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision HARM Healing groin wound - zero hr post-incision HOWDA Healing Abdomen wound; 70.890 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWEA Healing Abdomen Wound; 15 days post incision HWHA Healing Abdomen Wound; 15 days post incision HWHA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 HMAIA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCMVSport 3.0 LP012 HMAIA HEALING ABDOMEN WOUND; 15 days post pCM	HWBA HWBB HWBC HWBD	Dendritic cells, pooled	pCMVSport 3.0	LP012
HWAE HYAA HYAB HYAC B Cell lymphoma PCMVSport 3.0 LP012 HWHG HWHH HWHI Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision (control) HBIM Olfactory epithelium; nasalcavity HWDA Healing Abdomen wound; 70&90 min post incision HWHAEA Healing Abdomen Wound; 70&90 min post incision HWHAA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 21&29 days HWAS HOFA HORA HAMING HIMB HMKC HMKD H. Meniingima, M6 H. Meniingima, M6 H. Meniingima, M1 HoFA HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HKE HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 16 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma PSport1 LP012 HTDA Human Tonsil, Lib 3 PSport1 LP012 HDBA Human Fetal Thymus PSport1 LP012 HDDA HDBA Human Fetal Thymus PSport1 LP012 HWCA Larynx tumor PSport1 LP012 HWCA LARYNX tumor PSport1 LP012 HWCA HWKA Normal lung PSport1 LP012	HWBE			
HYAA HYAB HYAC B Cell lymphoma pCMVSport 3.0 LP012 HWHG HWHH HWHI Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision (control) HBIM Olfactory epithelium; nasalcavity HWDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWEA Healing Abdomen Wound; 15 days post incision HWHAA Healing Abdomen Wound; 21&29 days HWAA Healing Abdomen Wound; 21&29 days HWAA Healing Abdomen Wound; 21&20 pSport1 LP012 HMJA H. Meniingima, M6 H. Meniingima, M6 H. Meniingima, M1 H. Meniingima, M1 HMKE HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDDA Human Fetal Thymus pSport1 LP012 HDO12 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HP012 HWKA Normal lung PSport1 LP012 HP012 HWCA HUMCA Larynx tumor pSport1 LP012 HP012 HWKA Normal lung	HWAA HWAB HWAC HWAD	Human Bone Marrow, treated	pCMVSport 3.0	LP012
HWHG HWHH HWHI Healing groin wound, 6.5 hours post incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision HARM Healing groin wound - zero hr post-incision HOMA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWHA Healing Abdomen Wound; 15 days post incision HWHA Healing Abdomen Wound; 21&29 days HOMAL HUMA Healing Abdomen Wound; 21&29 days PCMVSport 3.0 LP012 HMJA Healing Abdomen Wound; 21&29 days PCMVSport 3.0 LP012 HMJA Healing Abdomen Wound; 10 days post incision HWJA HOMAL HUMAN HOMAL HUMAN TONGUE, frac 2 PSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M6 PSport1 LP012 HMKA HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma PSport1 LP012 HTDA Human Tonsil, Lib 3 PSport1 LP012 HDBA Human Fetal Thymus PSport1 LP012 HBZA Prostate,BPH, Lib 2 PSport1 LP012 HWKA Normal lung PSport1 LP012	HWAE			
incision HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision (control) HBIM Olfactory epithelium; nasalcavity PCMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min post-incision HWEA Healing Abdomen Wound; 15 days post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days PCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 PSport1 LP012 HMJA H. Meningima, M6 PSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 PSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma PSport1 LP012 HTDA Human Tonsil, Lib 3 PSport1 LP012 HDDA Human Tonsil, Lib 3 PSport1 LP012 HDDA Human Fetal Thymus PSport1 LP012 HDDA Human Fetal Thymus PSport1 LP012 HDUA Pericardium PSport1 LP012 HWCA Larynx tumor PSport1 LP012 HWKA Normal lung PSport1 LP012	НУАА НУАВ НУАС	B Cell lymphoma	pCMVSport 3.0	LP012
HWHP HWHQ HWHR Healing groin wound; 7.5 hours post incision HARM Healing groin wound - zero hr post-incision (control) HBIM Olfactory epithelium; nasalcavity Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days PCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 PSport1 LP012 HMMA HMKB HMKC HMKD H. Meningima, M6 PSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 24 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HTDA Human Tonsil, Lib 3 PSport1 LP012 HTDA Human Fetal Thymus PSport1 LP012 HDDBA Human Fetal Thymus PSport1 LP012 HBZA Prostate,BPH, Lib 2 PSport1 LP012 HWKA Normal lung PSport1 LP012	нwнg нwнн нwні	Healing groin wound, 6.5 hours post	pCMVSport 3.0	LP012
incision Healing groin wound - zero hr post- incision (control) HBIM Olfactory epithelium; nasalcavity pCMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min pCMVSport 3.0 LP012 HWDA Healing Abdomen Wound; 70&90 min pCMVSport 3.0 LP012 HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDDA Human Fetal Thymus pSport1 LP012 HDDA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012		incision		
HARM Healing groin wound - zero hr post- incision (control) HBIM Olfactory epithelium; nasalcavity pCMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 HWJA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 HNJA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDDA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	нwнр нwнQ нwнr	Healing groin wound; 7.5 hours post	pCMVSport 3.0	LP012
incision (control) HBIM Olfactory epithelium; nasalcavity pCMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 21&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDDA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012		incision		
HBIM Olfactory epithelium; nasalcavity pCMVSport 3.0 LP012 HWDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 12&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HTDA Human Tetal Thymus pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWCA Larynx tumor pSport1 LP012	HARM	Healing groin wound - zero hr post-	pCMVSport 3.0	LP012
HWDA Healing Abdomen wound; 70&90 min post incision HWEA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 15 days post incision HWJA Healing Abdomen Wound; 12&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012		incision (control)		
post incision HWEA Healing Abdomen Wound; 15 days post pCMVSport 3.0 LP012 incision HWJA Healing Abdomen Wound; 21 & 29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDDA Pericardium pSport1 LP012 HDUA Pericardium pSport1 LP012 HDUA Pericardium pSport1 LP012 HD012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012 HWKA Normal lung pSport1 LP012 HWKA LP012 HWKA Normal lung pSport1 LP012 HD012 HWKA Normal lung pSport1 LP012 HWKA LP012 LP012 HWKA Normal lung pSport1 LP012 LP012 LP012 HWKA Normal lung pSport1 LP012 LP012 LP012 HWKA Normal lung PSport1 LP012 LP012 LP012 LP012 HWKA Normal lung PSport1 LP012 LP0	НВІМ	Olfactory epithelium; nasalcavity	pCMVSport 3.0	LP012
HWEA Healing Abdomen Wound;15 days post incision HWJA Healing Abdomen Wound;21&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HWDA	Healing Abdomen wound; 70&90 min	pCMVSport 3.0	LP012
incision HWJA Healing Abdomen Wound;21&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate, BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012		post incision		
HWJA Healing Abdomen Wound;21&29 days pCMVSport 3.0 LP012 HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HWEA	Healing Abdomen Wound;15 days post	pCMVSport 3.0	LP012
HNAL Human Tongue, frac 2 pSport1 LP012 HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012		incision		
HMJA H. Meniingima, M6 pSport1 LP012 HMKA HMKB HMKC HMKD H. Meningima, M1 pSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HWJA	Healing Abdomen Wound;21&29 days	pCMVSport 3.0	LP012
HMKA HMKB HMKC HMKD H. Meningima, M1 PSport1 LP012 HMKE HOFA Ovarian Tumor I, OV5232 PSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs PSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs PSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma PSport1 LP012 HTDA Human Tonsil, Lib 3 PSport1 LP012 HDBA Human Fetal Thymus PSport1 LP012 HDUA Pericardium PSport1 LP012 HBZA Prostate,BPH, Lib 2 PSport1 LP012 HWCA Larynx tumor PSport1 LP012 HWKA	HNAL	Human Tongue, frac 2	pSportI	LP012
HMKE HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA	НМЈА	H. Meniingima, M6	pSport1	LP012
HOFA Ovarian Tumor I, OV5232 pSport1 LP012 HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	НМКА НМКВ НМКС НМКО	H. Meningima, M1	pSport1	LP012
HCFA HCFB HCFC HCFD T-Cell PHA 16 hrs pSport1 LP012 HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA	НМКЕ			
HCFL HCFM HCFN HCFO T-Cell PHA 24 hrs pSport1 LP012 HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA	HOFA		pSport1	LP012
HMMA HMMB HMMC Spleen metastic melanoma pSport1 LP012 HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HCFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport1	LP012
HTDA Human Tonsil, Lib 3 pSport1 LP012 HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HCFL HCFM HCFN HCFO		pSport1	LP012
HDBA Human Fetal Thymus pSport1 LP012 HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	НММА НММВ НММС	1 -	pSport1	LP012
HDUA Pericardium pSport1 LP012 HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HTDA		pSport1	LP012
HBZA Prostate,BPH, Lib 2 pSport1 LP012 HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HDBA	<u> </u>	I	LP012
HWCA Larynx tumor pSport1 LP012 HWKA Normal lung pSport1 LP012	HDUA	<u> </u>	L	LP012
HWKA Normal lung pSport1 LP012	HBZA	Prostate,BPH, Lib 2	pSport1	LP012
	HWCA	Larynx tumor	pSport1	LP012
HSMB Bone marrow stroma, treated pSport1 LP012	HWKA	Normal lung	pSport1	LP012
	НЅМВ	Bone marrow stroma,treated	pSport1	LP012

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
НВНМ	Normal trachea	pSport1	LP012
HLFC	Human Larynx	pSport1	LP012
HLRB	Siebben Polyposis	pSport1	LP012
HNIA	Mammary Gland	pSport1	LP012
HNJB	Palate carcinoma	pSport1	LP012
HNKA	Palate normal	pSport1	LP012
HMZA	Pharynx carcinoma	pSport1	LP012
HABG	Cheek Carcinoma	pSport1	LP012
НМZМ	Pharynx Carcinoma	pSport1	LP012
HDRM	Larynx Carcinoma	pSport1	LP012
HVAA	Pancreas normal PCA4 No	pSport1	LP012
HICA	Tongue carcinoma	pSport1	LP012
HUKA HUKB HUKC HUKD	Human Uterine Cancer	Lambda ZAP II	LP013
HUKE			- 5.5
HFFA	Human Fetal Brain, random primed	Lambda ZAP II	LP013
HTUA	Activated T-cell labeled with 4-thioluri	Lambda ZAP II	LP013
HBQA	Early Stage Human Brain, random	Lambda ZAP II	LP013
	primed		
НМЕВ	Human microvascular Endothelial cells,	Lambda ZAP II	LP013
	fract. B		
HUSH	Human Umbilical Vein Endothelial	Lambda ZAP II	LP013
	cells, fract. A, re-excision		
HLQC HLQD	Hepatocellular turnor, re-excision	Lambda ZAP II	LP013
HTWJ HTWK HTWL	Resting T-cell, re-excision	Lambda ZAP II	LP013
HF6S	Human Whole 6 week Old Embryo (II),	pBluescript	LP013
	subt		
HHPS	Human Hippocampus, subtracted	pBluescript	LP013
HLIS	LNCAP, differential expression	pBluescript	LP013
HLHS HLHT	Early Stage Human Lung, Subtracted	pBluescript	LP013
HSUS	Supt cells, cyclohexamide treated,	pBluescript	LP013
	subtracted		
HSUT	Supt cells, cyclohexamide treated,	pBluescript	LP013
	differentially expressed		
HSDS	H. Striatum Depression, subtracted	pBluescript	LP013
HPTZ	Human Pituitary, Subtracted VII	pBluescript	LP013
HSDX	H. Striatum Depression, subt II	pBluescript	LP013
ISDZ	H. Striatum Depression, subt	pBluescript	LP013
НРВА НРВВ НРВС НРВО НРВ		pBluescript SK-	LP013
HRTA	Colorectal Tumor	pBluescript SK-	LP013

HJAA HJAB HJAC HJAD	Libraries owned by Catalog	Catalog Description	Vector	ATCC
HJAA HJAB HJAC HJAD				Deposit
HJBA HJBB HJBC HJBD	HSBA HSBB HSBC HSBM	HSC172 cells	pBluescript SK-	LP013
HTNA HTNB Human Thyroid pBluescript SK- LP013 HAHA HAHB Human Adult Heart Uni-ZAP XR LP013 HE6A Whole 6 week Old Embryo Uni-ZAP XR LP013 HFKC HFCD HFCE Human Fetal Brain Uni-ZAP XR LP013 HFKC HFKD HFKE HFKF Human Fetal Kidney Uni-ZAP XR LP013 HFKC HKD HFKE HFKF Human Gall Bladder Uni-ZAP XR LP013 HFKG HGBA HGBD HGBE HGBF Human Gall Bladder Uni-ZAP XR LP013 HTRA HTBB HFC HTED HTEE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Fetal Liver Uni-ZAP XR LP013 HFFA HHFB HHFC HHFF Human Fetal Heart Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HTHB HTHC HTTD HTVE Human Heal Heart Uni-ZAP XR LP013 HTHB HTHC HTHD HWVE Human Mubilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAA HTAB HFEC HUMAN Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTAB HFEC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAA HTBB HFC HIPD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HPTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HTTB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HEEB HEEC HEEP HEED HEEP W	HJAA HJAB HJAC HJAD	Jurkat T-cell G1 phase	pBluescript SK-	LP013
HAHA HAHB Human Adult Heart Uni-ZAP XR LP013 HFCA HFCB HFCC HFCD HFCE Human Fetal Brain HFKC HFKD HFKE HFKF Human Fetal Kidney Uni-ZAP XR LP013 HFKC HFKD HFKE HFKF Human Gall Bladder Uni-ZAP XR LP013 HFRA HPRB HPRC HPRD Human Fetal Kidney Uni-ZAP XR LP013 HFRA HPRB HPRC HPRD Human Fetal Kidney Uni-ZAP XR LP013 HFRA HPRB HPRC HPRD Human Fetal Boader Uni-ZAP XR LP013 HFRA HFRB HFRC HFRD HTEE Human Testes Uni-ZAP XR LP013 HFRA HTB HTTC HTTD HTTE Human Testes Tumor Uni-ZAP XR LP013 HFLA Human Fetal Bone Uni-ZAP XR LP013 HFLA HUMAN Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HTTAA HTB HTAC HTAD Human Activated T-cells HITAA HTB HTAC HTAD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTFAA HFB HFCC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HFFA HJPB HJPC HJPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HFFA HJPB HJPC HJPD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Bound Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Bound Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal Bound Uni-ZAP XR LP013 HFFA HFB HFFC HFD Human Fetal	НЈВА НЈВВ НЈВС НЈВD	Jurkat T-cell, S1 phase	pBluescript SK-	LP013
HE6A Whole 6 week Old Embryo Uni-ZAP XR LP013 HFCA HFCB HFCC HFCD HFCE Human Fetal Brain Uni-ZAP XR LP013 HFKC HFKD HFKE HFKF Human Fetal Kidney Uni-ZAP XR LP013 HFKC HFKD HFKE HFKF Human Fetal Kidney Uni-ZAP XR LP013 HFKG HGBA HGBD HGBF Human Gall Bladder Uni-ZAP XR LP013 HFRA HFRB HFRC HFRD Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Fetal Bone Uni-ZAP XR LP013 HFLA Human Fetal Liver Uni-ZAP XR LP013 HFLA Human Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HTHB HTHC HTHD HVVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD HUWE Human Skin Tumor Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAB HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAB HTBB HFFC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAB HTPB HFFC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HSSA HUMAN Activated T-cells Uni-ZAP XR LP013 HSSA HUMAN Activated T-cells Uni-ZAP XR LP013 HTAB HTPB HFFC HFTD Human Fetal Duna Meter Uni-ZAP XR LP013 HSSA HUMAN Adult Liver, Subtracted Uni-ZAP XR LP013 HSSA HUMAN Adult Liver, Subtracted Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HGAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HGAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HGAA HCAB HCAC Human Adrenal Gland Tumor Uni-ZAP XR LP013 HSFA HUMAN Fibrosarcoma Uni-ZAP XR LP013 HSFA HUMAN Fibrosarcoma Uni-ZAP XR LP013 HGAA HCAB HCAC Human Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC Human Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC Human Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HGAA HCAB HCAC HUMAN Adrenal Gland Tumor Uni-	HTNA HTNB	Human Thyroid	pBluescript SK-	LP013
HFCA HFCB HFCC HFCD HFCE Human Fetal Brain Uni-ZAP XR LP013 HFKC HFKD HFKE HFKF Human Fetal Kidney Uni-ZAP XR LP013 HFKG HGBA HGBD HGBE HGBF HGBG HHRA HPRB HPRC HPRD Human Prostate Uni-ZAP XR LP013 HFRA HPRB HPRC HPRD HUMAN Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Uni-ZAP XR LP013 HTHA HTB HTTC HTTD HTTE Human Fetal Bone Uni-ZAP XR LP013 HFLA Human Fetal Liver Uni-ZAP XR LP013 HFLA HUMAN Fetal Bone Uni-ZAP XR LP013 HFLA HUMAN Fetal Liver Uni-ZAP XR LP013 HFLA HUMAN HFB HHFC HHFF HHFF Human Fetal Heart Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HTHAB HTAC HTAD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAB HTAB HFFC HIPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HTAB HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HTAB HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFGA HGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA Human Human Adenal Gland Tumor Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA HESB HESC HESP HESE Uni-ZAP XR LP013 HESA HEBB HESC HESP HESE Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA HUMAN Adenal Gland Tumor Uni-ZAP XR LP013 HESA HEBB HESC HESP HESE HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA HEBB HESC HESF HESA HUMAN Adenal Gland Tumor Uni-ZAP XR LP013 HESA HEBB HESC HESP H	НАНА НАНВ	Human Adult Heart	Uni-ZAP XR	LP013
HFKC HFKD HFKE HFKF HUMAN Fetal Kidney Uni-ZAP XR LP013 HGBA HGBD HGBE HGBF HGBG HHMAN FORD HHMAN PROBLE HERD HTEA HPRB HPRC HPRD HUMAN Testes Uni-ZAP XR LP013 HTEA HTEB HTEC HTED HTEE HUMAN Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE HUMAN Testes Tumor Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF HUMAN Fetal Bone Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF HUMAN Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF HUMAN Testes Tumor Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF HUMAN Testel Heart Uni-ZAP XR LP013 HTHB HTHC HTHD HUMAN Thymus Uni-ZAP XR LP013 HTHB HTHC HTHD HUMAN Thymus Uni-ZAP XR LP013 HTAA HTAB HAC HTAD HUMAN Activated T-cells HTAA HTAB HTAC HTAD HUMAN Fetal Epithelium (skin) HJPA HJPB HJPC HJPD Human Fetal Epithelium (skin) HUMALS HUMAN Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HESA HUMAN FETAL DURA MATER HUMAN FETAL DURA MATER HUMAN FINOSCOMA HESA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HFTA HTTB HATC HATD HUMAN FINOSCOMA HESA HCAB HCAC Uni-ZAP XR LP013 HFTA HTTB HATC HATD HUMAN FINOSCOMA HATE HUMAN FINOSCOMA Uni-ZAP XR LP013 HTHA HUMAN FINOSCOMA HTHA HOMAN FINOSCO	HE6A	Whole 6 week Old Embryo	Uni-ZAP XR	LP013
HFKG HGBA HGBD HGBE HGBF HUman Gall Bladder HUni-ZAP XR LP013 HTEA HTEB HTEC HTED HTEE HUman Testes HUni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE HUman Testes Tumor HUni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Tumor HUni-ZAP XR LP013 HTFA HYBB HUman Fetal Bone HUni-ZAP XR LP013 HHFB HHFC HHFD HHFF HHFF Human Fetal Liver HUni-ZAP XR LP013 HHFB HHFC HHFD HHFF HHFF Human Fetal Heart HUNi-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Hetal Heart HUNI-ZAP XR LP013 HTHB HTHC HTHD Human Thymus HUNI-ZAP XR LP013 HTHB HTHC HTHD Human Skin Tumor HUni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells HTFA HFB HFFC Human Fetal Epithelium (skin) HIFA HJPB HJPC HJPD Human Hetal Epithelium (skin) HUNI-ZAP XR LP013 HFFA HFB HFFC Human Fetal Epithelium (skin) HUNI-ZAP XR LP013 HFFA HFB HFFC HIPD Human Activated T-cells HUNI-ZAP XR LP013 HFFA HFB HFFC HIPD Human Fetal Epithelium (skin) HUNI-ZAP XR LP013 HFFA HJPB HJPC HJPD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fibrosarcoma Uni-ZAP XR LP013 HFFA HFB HFC HFTD Human Fibrosarcoma Uni-ZAP XR LP013 HFFA HFB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HFFA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HFFA HATB HATC HATD Human Haren Trachea Tumor Uni-ZAP XR LP013 HFFA HEBD HEBD HEBD HEBD HEBD HEBD HEBD HEBD	HFCA HFCB HFCC HFCD HFCE	Human Fetal Brain	Uni-ZAP XR	LP013
HUMAN GAIL Bladder Uni-ZAP XR LP013 HUMAN FOSTATE HUMAN GAIL Bladder Uni-ZAP XR LP013 HUMAN FOSTATE HONISA HOSA HOSA HOSA HOSA HOSA HOSA HOSA HO	HFKC HFKD HFKE HFKF	Human Fetal Kidney	Uni-ZAP XR	LP013
HOBG HPRA HPRB HPRC HPRD Human Prostate HUmi-ZAP XR HP013 HTEA HTEB HTEC HTED HTEE Human Testes Humi-ZAP XR Hp013 HFLA Human Fetal Liver Humi-ZAP XR Hp013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Human Lumi-ZAP XR Hp013 HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Humi-ZAP XR Human Human Thymus Human Human Thymus Humi-ZAP XR Human HTAB HTHC HTHD Human Activated T-cells Humi-ZAP XR Human HTAB HTAC HTAD Human Activated T-cells Humi-ZAP XR Humi-ZAP XR Human Hetal Epithelium (skin) Humi-ZAP XR Humi-ZAP XR Human Human Humi-ZAP XR	HFKG			
HPRA HPRB HPRC HPRD Human Prostate Uni-ZAP XR LP013 HTEA HTEB HTEC HTED HTEE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Tumor Uni-ZAP XR LP013 HYBA HYBB Human Fetal Bone Uni-ZAP XR LP013 HFLA Uni-ZAP XR LP013 HFFB HHFC HHFD HHFE HHFF Human Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAA HTAB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HFFA HJPB HJPC HJPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HGAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HGAA HAGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HATE Human Trachea Tumor Uni-ZAP XR LP013 HEEA HEED HEEZ HEEZH HEEZI 12 Week Old Early Stage Human, 11 Uni-ZAP XR LP013 HEEA HEED HEEC HEEZH HEEZI 12 Week Old Early Stage Human, 11 Uni-ZAP XR LP013	HGBA HGBD HGBE HGBF	Human Gall Bladder	Uni-ZAP XR	LP013
HTEA HTEB HTEC HTED HTEE Human Testes Uni-ZAP XR LP013 HTTA HTTB HTTC HTTD HTTE Human Testes Tumor Uni-ZAP XR LP013 HYBA HYBB Human Fetal Bone Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Liver Human Fetal Liver Human Fetal Worl, End. remake HHFB HHFC HHFD HHFE HHFF Human Fetal Heart HUVB HUVC HUVD HUVE Human Thymus Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAB HTAB HFEA HFEB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HFFA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Human Human Human Human Human Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HGA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HGA HAGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HESA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HESA HUMAN Trachea Tumor Uni-ZAP XR LP013 HATE HUMAN Trachea Tumor Uni-ZAP XR LP013 HESA HUMAN Trachea Tumor Uni-ZAP XR LP013	HGBG			
HTTA HTTB HTTC HTTD HTTE Human Testes Tumor HYBA HYBB Human Fetal Bone Human Fetal Liver Human Fetal Liver Human Fetal Liver Human Fetal Heart Human Taymus Uni-ZAP XR LP013 HTTAB HTTC HTTD Human Skin Tumor Uni-ZAP XR LP013 HTTAB HTTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAB HTBB HFEC Human Fetal Epithelium (skin) Human Fetal Human Fetal Human	HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP013
HYBA HYBB Human Fetal Bone Uni-ZAP XR LP013 HHFLA Human Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAB HFEA HFEB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HEGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HEZA HEZO HEZE HEZH HEZI 12 Week Old Early Stage Human Uni-ZAP XR LP013 HEZA HEZO HEZE HEZH HEZI 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	HTEA HTEB HTEC HTED HTEE	Human Testes	Uni-ZAP XR	LP013
HFLA Human Fetal Liver Uni-ZAP XR LP013 HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAE HIPA HJPB HJPC HJPD Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HEGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HEBA HEBA HEBB HEBC HEBA HEBA HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HEBA HEBA HEBA HEBA HEBA HEBA HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HEBA HEBA HEBA HEBA HEBA HUMAN HUMAN Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HEBA HEBA HEBA HEBA HEBA HUMAN	HTTA HTTB HTTC HTTD HTTE	Human Testes Tumor	Uni-ZAP XR	LP013
HHFB HHFC HHFD HHFE HHFF Human Fetal Heart Uni-ZAP XR LP013 HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAE HIFEA HFEB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Uni-ZAP XR LP013 HALS Human Epithelioid Sarcoma Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HEZA HEZD HEZE HEZH HEZI 12 Week Old Early Stage Human Uni-ZAP XR LP013 HEZA HEZD HEZE HEZH HEZI 12 Week Old Early Stage Human, II Uni-ZAP XR LP013 HEZA HEZD HEZE HEZH HEZI 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	НҮВА НҮВВ	Human Fetal Bone	Uni-ZAP XR	LP013
HUVB HUVC HUVD HUVE Human Umbilical Vein, End. remake Uni-ZAP XR LP013 HTHB HTHC HTHD Human Thymus Uni-ZAP XR LP013 HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAE HIPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Humi-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HESA HABA HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2A HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I LP013 HE2A HE2D HE2E HE2H HE2I LP013 HE2A HE2D HE2E HE2H HE2I LP013	HFLA	Human Fetal Liver	Uni-ZAP XR	LP013
HTHB HTHC HTHD Human Thymus HTHB HTHC HTHD Human Skin Tumor Human Skin Tumor Human Activated T-cells Human Human Activated T-cells Human Human Activated T-cells Human H	ннгв ннгс ннго ннге ннгг	Human Fetal Heart	Uni-ZAP XR	LP013
HSTA HSTB HSTC HSTD Human Skin Tumor Uni-ZAP XR LP013 HTAA HTAB HTAC HTAD Human Activated T-cells Uni-ZAP XR LP013 HTAE HIFEA HFEB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Uni-ZAP XR LP013 Polysomes HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HATA HATB HATC HATD Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013	HUVB HUVC HUVD HUVE	Human Umbilical Vein, End. remake	Uni-ZAP XR	LP013
HTAA HTAB HTAC HTAD HUMAN Activated T-cells Uni-ZAP XR LP013 HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma HUMALS Human Adult Liver, Subtracted Human Fetal Dura Mater HCAA HCAB HCAC Cem cells, cyclohexamide treated HCAA HCAB HCAC Raji Cells, cyclohexamide treated HESA Human Fibrosarcoma HCAA HCBB HE9C HE9D HE9E Human Fibrosarcoma HCAA HCBB HCAC HUMAN Fibrosarcoma HUMAN HUMAN FIBROSAN HUMAN H	HTHB HTHC HTHD	Human Thymus	Uni-ZAP XR	LP013
HTAE HFEA HFEB HFEC Human Fetal Epithelium (skin) HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Human Epithelioid Sarcoma Human Adult Liver, Subtracted Human Adult Liver, Subtracted Human Fetal Dura Mater Holizap XR HP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Human Fetal Dura Mater Holizap XR HP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Human Fibrosarcoma Hespa Hespa Hespa Hespa Hespa Hespa Human Hata Hatb Hatc Hatb Human Fibrosarcoma Hata Hatb Hatc Hatb Human Adrenal Gland Tumor Hata Human Trachea Tumor Hespa Hespa Hespa Hespa Hespa Hespa Hespa Human Hata Human Trachea Tumor Hata Human Human Trachea Tumor Hespa Hespa Hespa Hespa Hespa Hespa Hespa Human Hata Hatb Hatc Hatb Human Trachea Tumor Hata Human Human Trachea Tumor Hespa Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hata Hatb Hatc Hatb Human Trachea Tumor Hata Human Trachea Tumor Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Hespa Human Hata Hatb Hatc Hatb Human Trachea Tumor Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Hespa Human Hespa Hespa Hespa Human Hespa Hespa Hespa Hespa Human Hespa Hespa Hes	HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP013
HFEA HFEB HFEC Human Fetal Epithelium (skin) Uni-ZAP XR LP013 HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE21 12 Week Old Early Stage Human Uni-ZAP XR LP013 LP013	HTAA HTAB HTAC HTAD	Human Activated T-cells	Uni-ZAP XR	LP013
HJPA HJPB HJPC HJPD Human Jurkat Membrane Bound Polysomes HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATB HATC HATD Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human Uni-ZAP XR LP013	HTAE			
Polysomes HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATE Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013	HFEA HFEB HFEC	Human Fetal Epithelium (skin)	Uni-ZAP XR	LP013
HESA Human Epithelioid Sarcoma Uni-ZAP XR LP013 HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATE Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	НЈРА НЈРВ НЈРС НЈРD	Human Jurkat Membrane Bound	Uni-ZAP XR	LP013
HALS Human Adult Liver, Subtracted Uni-ZAP XR LP013 HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATE HTRA Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human Uni-ZAP XR LP013				
HFTA HFTB HFTC HFTD Human Fetal Dura Mater Uni-ZAP XR LP013 HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATE Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	HESA	Human Epithelioid Sarcoma	Uni-ZAP XR	LP013
HCAA HCAB HCAC Cem cells, cyclohexamide treated Uni-ZAP XR LP013 HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Turnor Uni-ZAP XR LP013 HATE HUman Trachea Turnor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 LP013	HALS	Human Adult Liver, Subtracted	Uni-ZAP XR	LP013
HRGA HRGB HRGC HRGD Raji Cells, cyclohexamide treated Uni-ZAP XR LP013 HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATA HATA HUMAN Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	HFTA HFTB HFTC HFTD		Uni-ZAP XR	LP013
HE9A HE9B HE9C HE9D HE9E Nine Week Old Early Stage Human Uni-ZAP XR LP013 HSFA Human Fibrosarcoma Uni-ZAP XR LP013 HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HATE HTRA Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	НСАА НСАВ НСАС		Uni-ZAP XR	LP013
HATA HATB HATC HATD Human Adrenal Gland Tumor HATA HATA HUMAN Trachea Tumor HUMAN HUMAN Trachea Tumor HEZAP XR LP013 HEZA HEZD HEZE HEZH HEZI 12 Week Old Early Stage Human HEZB HEZC HEZF HEZG HEZP 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	HRGA HRGB HRGC HRGD	Raji Cells, cyclohexamide treated	Uni-ZAP XR	LP013
HATA HATB HATC HATD Human Adrenal Gland Tumor Uni-ZAP XR LP013 HTRA Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013	НЕ9А НЕ9В НЕ9С НЕ9D НЕ9E	Nine Week Old Early Stage Human	Uni-ZAP XR	LP013
HATE HUMAN Trachea Tumor HE2A HE2D HE2E HE2H HE2I HE2B HE2C HE2F HE2G HE2P HUMAN Trachea Tumor Uni-ZAP XR LP013 LP013	HSFA	Human Fibrosarcoma	Uni-ZAP XR	LP013
HTRA Human Trachea Tumor Uni-ZAP XR LP013 HE2A HE2D HE2E HE2H HE2I 12 Week Old Early Stage Human Uni-ZAP XR LP013 HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013		Human Adrenal Gland Turnor	Uni-ZAP XR	LP013
HE2A HE2D HE2E HE2H HE2I	HATE			
HE2B HE2C HE2F HE2G HE2P 12 Week Old Early Stage Human, II Uni-ZAP XR LP013			Uni-ZAP XR	LP013
				LP013
INEA HNEB HNEC HNED Human Neutrophil Uni-ZAP XR LP013			Uni-ZAP XR	LP013
		Human Neutrophil	Uni-ZAP XR	LP013
INEE 1144	HNEE			

Deposit	Libraries owned by Catalog	Catalog Description	Vector	ATCC
HPTS HPTT HPTU				
HMQA HMQB HMQC HMQD	HBGA	Human Primary Breast Cancer	Uni-ZAP XR	LP013
HOAA HOAB HOAC	HPTS HPTT HPTU	Human Pituitary, subtracted	Uni-ZAP XR	LP013
HTOA HTOD HTOE HTOF	НМQА НМQВ НМQС НМQD	Human Activated Monocytes	Uni-ZAP XR	LP013
HTOG HMGB Human OB MG63 control fraction I Uni-ZAP XR LP013 HOPB Human OB HOS control fraction I Uni-ZAP XR LP013 HOQB Human OB HOS treated (1 nM E2) Uni-ZAP XR LP013 HAUAH HAUB HAUC Amniotic Cells - TNF induced Uni-ZAP XR LP013 HAQA HAQB HAQC HAQD Amniotic Cells - Primary Culture Uni-ZAP XR LP013 HAQA HAQB HAQC HAQD Amniotic Cells - Primary Culture Uni-ZAP XR LP013 HBJA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HBJA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HSOA Stomach cancer (human) Uni-ZAP XR LP013 HSOA Stomach cancer (human) Uni-ZAP XR LP013 HBRA SKIN Uni-ZAP XR LP013 HBRA SKIN Uni-ZAP XR LP013 HBRA SKIN Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HABB HSIC Smooth muscle-ILb induced Uni-ZAP XR LP013 HAPN HAPW HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPUA HPUB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HAPI HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HMCJ HAGG HAGGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HACG HAGGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HAGG HAGGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	НОАА НОАВ НОАС	Human Osteosarcoma	Uni-ZAP XR	LP013
Human OB MG63 control fraction Uni-ZAP XR	HTOA HTOD HTOE HTOF	human tonsils	Uni-ZAP XR	LP013
HOPB Human OB HOS control fraction I Uni-ZAP XR LP013 HOQB Human OB HOS treated (1 nM E2) Uni-ZAP XR LP013 HAUA HAUB HAUC Armiotic Cells - TNF induced Uni-ZAP XR LP013 HAUA HAQB HAQC HAQD Armiotic Cells - Primary Culture Uni-ZAP XR LP013 HROA HROC HUMAN STOMACH Uni-ZAP XR LP013 HBJA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HODA HODB HODC HODD human ovarian cancer Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HSOA stomach cancer (human) Uni-ZAP XR LP013 HSOA STOMACH Uni-ZAP XR LP013 HAPA HAPA HOTB HWTC Wilm's tumor Uni-ZAP XR LP013 HAPA HAPB HWTC Wilm's tumor Uni-ZAP XR LP013 HAPA HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAPA HAPA HAPO HAPE HAPQ Human Adult Heart,re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HABB HSIC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Uni	нтос			
HUMAN DB HOS treated (1 nM E2) fraction I HAUA HAUB HAUC Amniotic Cells - TNF induced HAQA HAQB HAQC HAQD Amniotic Cells - Primary Culture HAQA HAQB HAQC HAQD HUMAN STOMACH Uni-ZAP XR LP013 HROA HROC HUMAN STOMACH Uni-ZAP XR LP013 HROA HROB HBJB HBJC HBJD HBJB HUMAN B CELL LYMPHOMA HODA HODB HODC HODD Human ovarian cancer Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HBJA HBJB HBJC HBJA HBJB HBJC HBJA HBJB HBJC HBJA HBJB HBJC HUMAN STOMACH Uni-ZAP XR LP013 HCPA LP0	НМGВ	Human OB MG63 control fraction I	Uni-ZAP XR	LP013
fraction I HAUA HAUB HAUC Amniotic Cells - TNF induced Uni-ZAP XR LP013 HROA HROC HUMAN STOMACH Uni-ZAP XR LP013 HROA HRDC HUMAN STOMACH Uni-ZAP XR LP013 HROA HRDB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HODA HODB HODC HODD human ovarian cancer Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC Wilm's tumor HAAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPP HAPP HLTG HLTH Human T-cell lymphoma;re-excision HAAGA HAGB HAGC HAGD Human Adult Heart;re-excision Human Adult Heart;re-excision Human Adult Heart;re-excision Uni-ZAP XR LP013 HUMAN HAPO HAPP HPWC Prostate BPH Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HERA Uni-ZAP XR LP013 HPP13 HPP13 HPP14 HPP18 HPP1C LNCAP prostate cell line Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HIMB HSHC Smooth muscle-ILb induced Uni-ZAP XR LP013 HPP15 HPP16 HPP16 HPP16 HPP16 HPP16 HPP16 HPP16 HPP16 HPP17 HPP18 HPP16 HPP16 HPP16 HPP18 HPP16 HPP16 HPP16 HPP18 HPP16 HPP16 HPP16 HPP18 HPP18 HPP16 HPP16 HERA HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013	НОРВ	Human OB HOS control fraction I	Uni-ZAP XR	LP013
HAQA HAQB HAQC HAQD Amniotic Cells - Primary Culture Uni-ZAP XR LP013 HROA HROC HUMAN STOMACH HDIA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HODA HODB HODC HODD Human ovarian cancer Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HBRA HBRA SKIN Uni-ZAP XR LP013 HBRA HBRA SKIN Uni-ZAP XR LP013 HBRA HBRA SKIN Uni-ZAP XR LP013 HBRA HBRA HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC Wilm's tumor Uni-ZAP XR LP013 HAAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPR HLTG HLTH Human Adult Pulmonary;re-excision HARD HAPB HAGC HAGD HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAPB HAFB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HUMI-ZAP XR LP013 HARCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HIMCI HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HIMCI HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HIMCI HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HUMI-ZAP XR LP013 HIMCI HUMI-ZAP XR LP013	ноов	1	Uni-ZAP XR	LP013
HROA HROC HUMAN STOMACH Uni-ZAP XR LP013 HBJA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HSOA Stomach cancer (human) Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HBJA HBJB HBJC B HGLD Glioblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGB HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HMC; HWG HAGG HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HIJ-ZAP XR LP013 HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HMC; HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HUI-ZAP XR LP013 HUI-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HOI-ZAP XR LP013 HOI-ZAP XR LP013 HMCF HMCG HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HUI-ZAP XR LP013 HUI-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HOI-ZAP XR LP013 HOI-ZAP XR LP013 HMCF HMCG HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP013
HBJA HBJB HBJC HBJD HBJE HUMAN B CELL LYMPHOMA Uni-ZAP XR LP013 HODA HODB HODC HODD human ovarian cancer Uni-ZAP XR LP013 HCPA Corpus Callosum Uni-ZAP XR LP013 HSOA stomach cancer (human) Uni-ZAP XR LP013 HBERA SKIN Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision HAPN HAPO HAPP HAPQ HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAPACH HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGB HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGB HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HFWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWE HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCJ HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HD13 HD13 HD14 HD15 HD15 HD16 HD17 HD18 HD17 HD18 HD17 HD18 HD18 HD16 HD18 HD17 HD18 HD17 HD18 HD17 HD18 HD18 HD18 HD18 HD19 HD19 HD19 HD19 HD19 HD19 HD19 HD19	HAQA HAQB HAQC HAQD	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP013
HODA HODB HODC HODD human ovarian cancer Uni-ZAP XR LP013 HSOA stomach cancer (human) Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision HAPR HLTG HLTH Human T-cell lymphoma;re-excision HAGA HAGB HAGC HAGD HUMAN Amygdala Uni-ZAP XR LP013 HAPR HAGA HAGB HAGC HAGD HUMAN Amygdala Uni-ZAP XR LP013 HAPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HMCJ HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013 HOT-ZAP XR LP013	HROA HROC	HUMAN STOMACH	Uni-ZAP XR	LP013
HCPA Corpus Callosum Uni-ZAP XR LP013 HSOA stomach cancer (human) Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHAH SHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCJ Human Amygdala;re-excision Uni-ZAP XR LP013 HMCJ Human Amygdala;re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	НВЈА НВЈВ НВЈС НВЈ D НВЈЕ	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP013
HSOA stomach cancer (human) Uni-ZAP XR LP013 HERA SKIN Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HMDA Uni-ZAP XR LP013 HWTA HWTB HWTC Wilm's tumor Uni-ZAP XR LP013 HEAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAHC HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGB HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCF HMCG HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP013
HERA SKIN Uni-ZAP XR LP013 HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HEAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAHC HAHD HAHE Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGB HAGB HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	НСРА	Corpus Callosum	Uni-ZAP XR	LP013
HMDA Brain-medulloblastoma Uni-ZAP XR LP013 HGLA HGLB HGLD Glioblastoma Uni-ZAP XR LP013 HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HEAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAHC HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGB HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HSWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCJ Human Amygdala;re-excision Uni-ZAP XR LP013	HSOA	stomach cancer (human)	Uni-ZAP XR	LP013
HGLA HGLB HGLD Glioblastorna HWTA HWTB HWTC Wilm's tumor HAAA H. Atrophic Endometrium HUNI-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision HAHPR HLTG HLTH Human T-cell lymphoma;re-excision HAHC HAHD HAHE Human Adult Heart;re-excision HAGA HAGB HAGC HAGD Human Amygdala HUNI-ZAP XR LP013 HAGA HAJB HSJC Smooth muscle-ILb induced HUNI-ZAP XR LP013 HSJA HSJB HSJC Smooth muscle, ILlb induced HUNI-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWA HPB HPIC LNCAP prostate cell line HIJ-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line HIJ-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HUNI-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013 HUNI-ZAP XR LP013 HUNI-ZAP XR LP013 HMCF HMCG HMCH HMCI Human Amygdala; re-excision Uni-ZAP XR LP013	HERA	SKIN	Uni-ZAP XR	LP013
HWTA HWTB HWTC wilm's tumor Uni-ZAP XR LP013 HEAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAHC HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGA HAJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSJA HSJB HSJC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP013
HEAA H. Atrophic Endometrium Uni-ZAP XR LP013 HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision Uni-ZAP XR LP013 HAPR HLTG HLTH Human T-cell lymphoma;re-excision Uni-ZAP XR LP013 HAHC HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HAGE HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP013
HAPN HAPO HAPP HAPQ Human Adult Pulmonary;re-excision HAPR HLTG HLTH Human T-cell lymphoma;re-excision HAHC HAHD HAHE Human Adult Heart;re-excision HAGA HAGB HAGC HAGD Human Amygdala Human Amygdala Human Amygdala Human Human Amygdala Human Human Amygdala Human Hum	HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP013
HAPR HLTG HLTH Human T-cell lymphoma;re-excision HAHC HAHD HAHE Human Adult Heart;re-excision HAGA HAGB HAGC HAGD Human Amygdala HAGE HSJA HSJB HSJC Smooth muscle-ILb induced HSHA HSHB HSHC HSHA HSHB HSHC HPWA HPWB HPWC HPWD HPWE HPIA HPIB HPIC HPJA HPJB HPJC HPJA HPJB HPJC HPJA HPJB HPJC HPJA HPJB HPJC HBTA Bone Marrow Stroma, TNF&LPS ind HMCF HMCG HMCH HMCI HMCJ HMCJ HMCG HAGH HAGI HUman Amygdala;re-excision Uni-ZAP XR LP013 L	HEAA	H. Atrophic Endometrium	Uni-ZAP XR	LP013
HAHC HAHD HAHE Human Adult Heart;re-excision Uni-ZAP XR LP013 HAGA HAGB HAGC HAGD Human Amygdala Uni-ZAP XR LP013 HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HAPN HAPO HAPP HAPQ HAPR	Human Adult Pulmonary;re-excision	Uni-ZAP XR	LP013
HAGA HAGB HAGC HAGD HUMAN Amygdala Uni-ZAP XR LP013 HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	HLTG HLTH	Human T-cell lymphoma;re-excision	Uni-ZAP XR	LP013
HAGE HSJA HSJB HSJC Smooth muscle-ILb induced Uni-ZAP XR LP013 HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	HAHC HAHD HAHE	Human Adult Heart;re-excision	Uni-ZAP XR	LP013
HSHA HSHB HSHC Smooth muscle, IL1b induced Uni-ZAP XR LP013 HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPJA HPJB HPJC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	HAGA HAGB HAGC HAGD HAGE	Human Amygdala	Uni-ZAP XR	LP013
HPWA HPWB HPWC HPWD Prostate BPH Uni-ZAP XR LP013 HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HSJA HSJB HSJC	Smooth muscle-ILb induced	Uni-ZAP XR	LP013
HPWE HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	НЅНА НЅНВ НЅНС	Smooth muscle, IL1b induced	Uni-ZAP XR	LP013
HPIA HPIB HPIC LNCAP prostate cell line Uni-ZAP XR LP013 HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	HPWA HPWB HPWC HPWD	Prostate BPH	Uni-ZAP XR	LP013
HPJA HPJB HPJC PC3 Prostate cell line Uni-ZAP XR LP013 HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	HPWE			
HBTA Bone Marrow Stroma, TNF&LPS ind Uni-ZAP XR LP013 HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCJ HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	НРІА НРІВ НРІС	LNCAP prostate cell line	Uni-ZAP XR	LP013
HMCF HMCG HMCH HMCI Macrophage-oxLDL; re-excision Uni-ZAP XR LP013 HMCJ HAGG HAGH HAGI Human Amygdala; re-excision Uni-ZAP XR LP013	НРЈА НРЈВ НРЈС	PC3 Prostate cell line	Uni-ZAP XR	LP013
HAGG HAGH HAGI Human Amygdala;re-excision Uni-ZAP XR LP013	НВТА	Bone Marrow Stroma, TNF&LPS ind	Uni-ZAP XR	LP013
	НМСГ НМСС НМСН НМСІ НМСЈ	Macrophage-oxLDL; re-excision	Uni-ZAP XR	LP013
H. Adipose Tissue Uni-ZAP XR LP013	HAGG HAGH HAGI	Human Amygdala;re-excision	Uni-ZAP XR	LP013
	HACA	H. Adipose Tissue	Uni-ZAP XR	LP013

Libraries owned by Catalog	Catalog Description	Vector	ATCC
		1	Deposit
HKFB	K562 + PMA (36 hrs),re-excision	ZAP Express	LP013
HCWT HCWU HCWV	CD34 positive cells (cord blood),re-ex	ZAP Express	LP013
HBWA	Whole brain	ZAP Express	LP013
HBXA HBXB HBXC HBXD	Human Whole Brain #2 - Oligo dT > 1.5Kb	ZAP Express	LP013
HAVM	Temporal cortex-Alzheizmer	pT-Adv	LP014
HAVT	Hippocampus, Alzheimer Subtracted	pT-Adv	LP014
HHAS	CHME Cell Line	Uni-ZAP XR	LP014
HAJR	Larynx normal	pSport 1	LP014
HWLE HWLF HWLG HWLH	Colon Normal	pSport 1	LP014
HCRM HCRN HCRO	Colon Carcinoma	pSport I	LP014
HWLI HWLJ HWLK	Colon Normal	pSport 1	LP014
HWLQ HWLR HWLS HWLT	Colon Tumor	pSport 1	LP014
НВГМ	Gastrocnemius Muscle	pSport 1	LP014
HBOD HBOE	Quadriceps Muscle	pSport 1	LP014
НВКО НВКЕ	Soleus Muscle	pSport 1	LP014
HCCM	Pancreatic Langerhans	pSport 1	LP014
HWGA	Larynx carcinoma	pSport I	LP014
HWGM HWGN	Larynx carcinoma	pSport 1	LP014
HWLA HWLB HWLC	Normal colon	pSport 1	LP014
HWLM HWLN	Colon Tumor	pSport I	LP014
HVAM HVAN HVAO	Pancreas Tumor	pSport 1	LP014
HWGQ	Larynx carcinoma	pSport 1	LP014
HAQM HAQN	Salivary Gland	pSport 1	LP014
HASM	Stomach; normal	pSport I	LP014
НВСМ	Uterus; normal	pSport 1	LP014
HCDM	Testis; normal	pSport 1	LP014
НОЈМ	Brain; normal	pSport I	LP014
HEFM	Adrenal Gland, normal	pSport 1	LP014
НВАА	Rectum normal	pSport I	LP014
HFDM	Rectum tumour	pSport 1	LP014
HGAM	Colon, normal	pSport I	LP014
ННММ	Colon, tumour	pSport 1	LP014
HCLB HCLC	Human Lung Cancer	Lambda Zap II	LP015
HRLA	L1 Cell line	ZAP Express	LP015
НАМ	Hypothalamus, Alzheimer's	pCMVSport 3.0	LP015
КВА	Ku 812F Basophils Line	pSport I	LP015
HS2S	Saos2, Dexamethosome Treated	pSport I	LP016

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HA5A	Lung Carcinoma A549 TNFalpha	pSport I	LP016
	activated		
НТЕМ	TF-1 Cell Line GM-CSF Treated	pSport I	LP016
HYAS	Thyroid Tumour	pSport I	LP016
HUTS	Larynx Normal	pSport 1	LP016
HXOA	Larynx Tumor	pSport I	LP016
НЕАН	Ea.hy.926 cell line	pSport I	LP016
HINA	Adenocarcinoma Human	pSport I	LP016
HRMA	Lung Mesothelium	pSport 1	LP016
HLCL	Human Pre-Differentiated Adipocytes	Uni-Zap XR	LP017
HS2A	Saos2 Cells	pSport 1	LP020
HS2I	Saos2 Cells; Vitamin D3 Treated	pSport I	LP020
HUCM	CHME Cell Line, untreated	pSport 1	LP020
HEPN	Aryepiglottis Normal	pSport 1	LP020
HPSN	Sinus Piniformis Tumour	pSport 1	LP020
HNSA	Stomach Normal	pSport 1	LP020
HNSM	Stomach Tumour	pSport 1	LP020
HNLA	Liver Normal Met5No	pSport 1	LP020
HUTA	Liver Tumour Met 5 Tu	pSport 1	LP020
HOCN	Colon Normal	pSport 1	LP020
HOCT	Colon Tumor	pSport 1	LP020
HTNT	Tongue Tumour	pSport 1	LP020
HLXN	Larynx Normal	pSport 1	LP020
HLXT	Larynx Tumour	pSport 1	LP020
HTYN	Thymus	pSport 1	LP020
HPLN	Placenta	pSport 1	LP020
HTNG	Tongue Normal	pSport I	LP020
HZAA	Thyroid Normal (SDCA2 No)	pSport I	LP020
HWES	Thyroid Thyroiditis	pSport 1	LP020
HFHD	Ficolled Human Stromal Cells, 5Fu	pTrip1Ex2	LP021
	treated		
нғнм,нғнх	Ficolled Human Stromal Cells,	pTrip1Ex2	LP021
	Untreated		
HPCI	Hep G2 Cells, lambda library	lambda Zap-CMV	LP021
	·	XR	
НВСА,НВСВ,НВСС	H. Lymph node breast Cancer	Uni-ZAP XR	LP021
нсок	Chondrocytes	pSPORT1	LP022
HDCA, HDCB, HDCC	Dendritic Cells From CD34 Cells	pSPORT1	LP022

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HDMA, HDMB	CD40 activated monocyte dendritic	pSPORT1	LP022
	cells		
HDDM, HDDN, HDDO	LPS activated derived dendritic cells	pSPORTI	LP022
HPCR	Hep G2 Cells, PCR library	lambda Zap-CMV	LP022
		XR	
НААА, НААВ, НААС	Lung, Cancer (4005313A3): Invasive	pSPORT1	LP022
	Poorly Differentiated Lung		
	Adenocarcinoma		
HIPA, HIPB, HIPC	Lung, Cancer (4005163 B7): Invasive,	pSPORT1	LP022
	Poorly Diff. Adenocarcinoma,		
	Metastatic	1	1
ноон, нооі	Ovary, Cancer: (4004562 B6) Papillary	pSPORT1	LP022
	Serous Cystic Neoplasm, Low		
	Malignant Pot		1
HIDA	Lung, Normal: (4005313 B1)	pSPORTI	LP022
HUJA,HUJB,HUJC,HUJD,HUJE	B-Cells	pCMVSport 3.0	LP022
HNOA,HNOB,HNOC,HNOD	Ovary, Normal: (9805C040R)	pSPORTI	LP022
HNLM	Lung, Normal: (4005313 B1)	pSPORTI	LP022
HSCL	Stromal Cells	pSPORTI	LP022
HAAX	Lung, Cancer: (4005313 A3) Invasive	pSPORTI	LP022
	Poorly-differentiated Metastatic lung		
	adenocarcinoma		
HUUA,HUUB,HUUC,HUUD	B-cells (unstimulated)	pTrip1Ex2	LP022
HWWA,HWWB,HWWC,HWWD,	B-cells (stimulated)	pSPORT1	LP022
HWWE,HWWF,HWWG			
HCCC	Colon, Cancer: (9808C064R)	pCMVSport 3.0	LP023
HPDO HPDP HPDQ HPDR HPD	Ovary, Cancer (9809C332): Poorly	pSport 1	LP023
	differentiated adenocarcinoma		
НРСО НРСР НРСQ НРСТ	Ovary, Cancer (15395A1F): Grade II	pSport 1	LP023
	Papillary Carcinoma		
носм носо носр носо	Ovary, Cancer: (15799A1F) Poorly	pSport 1	LP023
	differentiated carcinoma		
НСВМ НСВО	Breast, Cancer: (4004943 A5)	pSport 1	LP023
INBT HNBU HNBV	Breast, Normal: (4005522B2)	pSport 1	LP023
нвср нвсо	Breast, Cancer: (4005522 A2)	pSport 1	LP023
łBCJ	Breast, Cancer: (9806C012R)	pSport 1	LP023
ISAM HSAN	Stromal cells 3.88	pSport 1	LP023
IVCA HVCB HVCC HVCD	Ovary, Cancer: (4004332 A2)	pSport 1	LP023
ISCK HSEN HSEO	Stromal cells (HBM3.18)	pSport 1	LP023

Libraries owned by Catalog	Catalog Description	Vector	ATCC
			Deposit
HSCP HSCQ	stromal cell clone 2.5	pSport 1	LP023
HUXA	Breast Cancer: (4005385 A2)	pSport 1	LP023
НСОМ НСОО НСОР	Ovary, Cancer (4004650 A3): Well-	pSport 1	LP023
нсоQ	Differentiated Micropapillary Serous	ľ	
·	Carcinoma	1	
HBNM	Breast, Cancer: (9802C020E)	pSport 1	LP023
HVVA HVVB HVVC HVVD	Human Bone Marrow, treated	pSport 1	LP023
HVVE			

[0888] Two nonlimiting examples are provided below for isolating a particular clone from the deposited sample of plasmid cDNAs cited for that clone in Table 7. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to the nucleotide sequence of SEQ ID NO:X.

[0889] Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

[0890] Alternatively, two primers of 17-20 nucleotides derived from both ends of the nucleotide sequence of SEQ ID NO:X are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is

1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

- [0891] Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)
- [0892] Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.
- [0893] This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.
- [0894] This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the

gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

[0895] A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the sequence corresponding to SEQ ID NO:X according to the method described in Example 1. (See also, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edn., (1989), Cold Spring Harbor Laboratory Press).

Example 3: Tissue specific expression analysis

[0896] The Human Genome Sciences, Inc. (HGS) database is derived from sequencing tissue and/or disease specific cDNA libraries. Libraries generated from a particular tissue are selected and the specific tissue expression pattern of EST groups or assembled contigs within these libraries is determined by comparison of the expression patterns of those groups or contigs within the entire database. ESTs and assembled contigs which show tissue specific expression are selected.

in the case of an assembled contig, the clone from which the 5' most EST sequence was generated, is obtained from the catalogued library of clones and the insert amplified by PCR using methods known in the art. The PCR product is denatured and then transferred in 96 or 384 well format to a nylon membrane (Schleicher and Scheull) generating an array filter of tissue specific clones. Housekeeping genes, maize genes, and known tissue specific genes are included on the filters. These targets can be used in signal normalization and to validate assay sensitivity. Additional targets are included to monitor probe length and specificity of hybridization.

[0898] Radioactively labeled hybridization probes are generated by first strand cDNA synthesis per the manufacturer's instructions (Life Technologies) from mRNA/RNA samples prepared from the specific tissue being analyzed (e.g.,

reproductive system, cancers of the reproductive system, or, more specifically, prostate, prostate cancer, ovarian, ovarian cancer, etc.). The hybridization probes are purified by gel exclusion chromatography, quantitated, and hybridized with the array filters in hybridization bottles at 65°C overnight. The filters are washed under stringent conditions and signals are captured using a Fuji phosphorimager.

[0899] Data is extracted using AIS software and following background subtraction, signal normalization is performed. This includes a normalization of filterwide expression levels between different experimental runs. Genes that are differentially expressed in the tissue of interest are identified.

Example 4: Chromosomal Mapping of the Polynucleotides

[0900] An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions are analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

[0901] A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified

product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

- fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.
- [0903] Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D. 600) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.
- [0904] Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).
- [0905] Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8. The column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then

washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

- 10.06] The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.
- In addition to the above expression vector, the present invention further includes an expression vector, called pHE4a (ATCC Accession Number 209645, deposited on February 25, 1998) which contains phage operator and promoter elements operatively linked to a polynucleotide of the present invention. This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter and operator sequences are made synthetically.
- DNA can be inserted into the pHE4a by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.
- [0909] The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

[0910] The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

- [0911] Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.
- [0912] The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.
- [0913] The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.
- [0914] Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.
- [0915] To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH

6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

[0917] The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

[0918] In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal

of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

- [0919] Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an inframe AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).
- [0920] Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon, is amplified using the PCR protocol described in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).
- [0921] The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.
- [0922] The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).
- [0923] The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

[0925] After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 μl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

[0926] To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells

are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

[0927] Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

[0928] The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

[0929] Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

[0930] Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as DHFR, gpt, neomycin, or hygromycin allows the identification and isolation of the transfected cells.

[0931] The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

- [0932] Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.
- [0933] Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.
- [0934] A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.)
- [0935] The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment

then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

[0936] The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

[0937] Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μg of the expression plasmid pC6 or pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

[0938] The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time *in vivo*. Nuclear localization signals

fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

- [0939] Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.
- [0940] For example, if pC4 (ATCC Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.
- [0941] If the naturally occurring signal sequence is used to produce the polypeptide of the present invention, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.)

[0942] Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGC CCAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAA CCCAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTG GTGGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG

CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAAC
CCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC
AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTC
AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAG
TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGT
GCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA
GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGG
CTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAT
GAGTGCGACGCCGCGCGCTCTTAGAGGAT (SEQ ID NO: 1)

Example 10: Production of an Antibody from a Polypeptide

Hybridoma Technology

[0943] The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing polypeptide of the present invention are administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of polypeptide of the present invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

Monoclonal antibodies specific for polypeptide of the present invention are prepared using hybridoma technology (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, an animal (preferably a mouse) is immunized with polypeptide of the present invention or, more preferably, with a secreted polypeptide of the present invention-expressing cell. Such polypeptide-expressing cells are cultured in any suitable tissue culture medium, preferably in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide of the present invention.

Alternatively, additional antibodies capable of binding to polypeptide of the present invention can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the polypeptide of the present invention-specific antibody can be blocked by polypeptide of the present invention. Such antibodies comprise anti-idiotypic antibodies to the polypeptide of the present invention-specific antibody and are used to immunize an animal to induce formation of further polypeptide of the present invention-specific antibodies.

[0947] For in vivo use of antibodies in humans, an antibody is "humanized". Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric and humanized antibodies are known in the art and are discussed herein. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., International Publication No. WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Isolation Of Antibody Fragments Directed Against Polypeptide of the Present Invention From A Library Of scFvs

[0948] Naturally occurring V-genes isolated from human PBLs are constructed into a library of antibody fragments which contain reactivities against polypeptide of the present invention to which the donor may or may not have been exposed (see e.g., U.S. Patent 5,885,793 incorporated herein by reference in its entirety).

- Rescue of the Library. A library of scFvs is constructed from the RNA of human PBLs as described in International Publication No. WO 92/01047. To rescue phage displaying antibody fragments, approximately 10° E. coli harboring the phagemid are used to inoculate 50 ml of 2xTY containing 1% glucose and 100 μg/ml of ampicillin (2xTY-AMP-GLU) and grown to an O.D. of 0.8 with shaking. Five ml of this culture is used to inoculate 50 ml of 2xTY-AMP-GLU, 2 x 108 TU of delta gene 3 helper (M13 delta gene III, see International Publication No. WO 92/01047) are added and the culture incubated at 37°C for 45 minutes without shaking and then at 37°C for 45 minutes with shaking. The culture is centrifuged at 4000 r.p.m. for 10 min. and the pellet resuspended in 2 liters of 2xTY containing 100 μg/ml ampicillin and 50 ug/ml kanamycin and grown overnight. Phage are prepared as described in International Application No. WO 92/01047.
- M13 delta gene III is prepared as follows: M13 delta gene III helper phage does not encode gene III protein, hence the phage(mid) displaying antibody fragments have a greater avidity of binding to antigen. Infectious M13 delta gene III particles are made by growing the helper phage in cells harboring a pUC19 derivative supplying the wild type gene III protein during phage morphogenesis. The culture is incubated for 1 hour at 37° C without shaking and then for a further hour at 37°C with shaking. Cells are spun down (IEC-Centra 8,400 r.p.m. for 10 min), resuspended in 300 ml 2xTY broth containing 100 μg ampicillin/ml and 25 μg kanamycin/ml (2xTY-AMP-KAN) and grown overnight, shaking at 37°C. Phage particles are purified and concentrated from the culture medium by two PEG-precipitations (Sambrook et al., 1990), resuspended in 2 ml PBS and passed through a 0.45 μm filter (Minisart NML; Sartorius) to give a final concentration of approximately 10¹³ transducing units/ml (ampicillin-resistant clones).
- [0951] Panning of the Library. Immunotubes (Nunc) are coated overnight in PBS with 4 ml of either 100 µg/ml or 10 µg/ml of a polypeptide of the present invention. Tubes are blocked with 2% Marvel-PBS for 2 hours at 37°C and then washed 3 times

in PBS. Approximately 10¹³ TU of phage is applied to the tube and incubated for 30 minutes at room temperature tumbling on an over and under turntable and then left to stand for another 1.5 hours. Tubes are washed 10 times with PBS 0.1% Tween-20 and 10 times with PBS. Phage are eluted by adding 1 ml of 100 mM triethylamine and rotating 15 minutes on an under and over turntable after which the solution is immediately neutralized with 0.5 ml of 1.0M Tris-HCl, pH 7.4. Phage are then used to infect 10 ml of mid-log E. coli TG1 by incubating eluted phage with bacteria for 30 minutes at 37°C. The E. coli are then plated on TYE plates containing 1% glucose and 100 μg/ml ampicillin. The resulting bacterial library is then rescued with delta gene 3 helper phage as described above to prepare phage for a subsequent round of selection. This process is then repeated for a total of 4 rounds of affinity purification with tubewashing increased to 20 times with PBS, 0.1% Tween-20 and 20 times with PBS for rounds 3 and 4.

[0952] Characterization of Binders. Eluted phage from the 3rd and 4th rounds of selection are used to infect E. coli HB 2151 and soluble scFv is produced (Marks, et al., 1991) from single colonies for assay. ELISAs are performed with microtitre plates coated with 10 pg/ml of the polypeptide of the present invention in 50 mM bicarbonate pH 9.6. Clones positive in ELISA are further characterized by PCR fingerprinting (see, e.g., International Application No. WO 92/01047) and then by sequencing. These ELISA positive clones may also be further characterized by techniques known in the art, such as, for example, epitope mapping, binding affinity, receptor signal transduction, ability to block or competitively inhibit antibody/antigen binding, and competitive agonistic or antagonistic activity.

Example 11: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

[0953] RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in

SEQ ID NO:X; and/or the nucleotide sequence of the cDNA contained in Clone ID NO:Z. Suggested PCR conditions consist of 35 cycles at 95 degrees C for 30 seconds; 60-120 seconds at 52-58 degrees C; and 60-120 seconds at 70 degrees C, using buffer solutions described in Sidransky et al., Science 252:706 (1991).

- [0954] PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase (Epicentre Technologies). The intron-exon boundaries of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing.
- [0955] PCR products are cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.
- [0956] Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.
- [0957] Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 12: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

- [0958] A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.
- [0959] For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.
- [0960] The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbound polypeptide.
- [0961] Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate.
- [0962] Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 13: Formulation

[0963] The invention also provides methods of treatment and/or prevention of diseases or disorders (such as, for example, any one or more of the diseases or disorders disclosed herein) by administration to a subject of an effective amount of a Therapeutic. By "Therapeutic" is meant polynucleotides or polypeptides of the invention (including fragments, analogs, derivatives and variants thereof), agonists or antagonists thereof, and/or antibodies thereto (including fragments thereof), in combination with a pharmaceutically acceptable carrier type (e.g., a sterile carrier).

[0964] The Therapeutic will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the Therapeutic alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

[0965] As a general proposition, the total pharmaceutically effective amount of the Therapeutic administered parenterally per dose will be in the range of about 1ug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the Therapeutic is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

[0966] Therapeutics can be are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any. The term "parenteral" as used herein refers to modes of administration which include

intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

[0968] Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt).

[0969] Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988).

Therapeutics of the invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 317 -327 and 353-365 (1989)). Liposomes containing the Therapeutic are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. (USA) 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci.(USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small

(about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.

- [0971] In yet an additional embodiment, the Therapeutics of the invention are delivered by way of a pump (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)).
- [0972] Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).
- [0973] For parenteral administration, in one embodiment, the Therapeutic is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.
- [0974] Generally, the formulations are prepared by contacting the Therapeutic uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.
- [0975] The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its

derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

- [0976] The Therapeutic is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.
- [0977] Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutics generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- [0978] Therapeutics ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous Therapeutic solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized Therapeutic using bacteriostatic Water-for-Injection.
- [0979] The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the Therapeutics of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the Therapeutics may be employed in conjunction with other therapeutic compounds.
- [0980] The Therapeutics of the invention may be administered alone or in combination with adjuvants. Adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG, and MPL. In a specific embodiment, Therapeutics of the invention are administered in combination with alum. In another specific embodiment, Therapeutics of the invention are administered in combination with QS-21. Further adjuvants that may be

administered with the Therapeutics of the invention include, but are not limited to. Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the Therapeutics of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same Administration "in combination" further includes the separate individual. administration of one of the compounds or agents given first, followed by the second.

[0981] The Therapeutics of the invention may be administered alone or in combination with other therapeutic agents. Therapeutic agents that may be administered in combination with the Therapeutics of the invention, include but not limited to, other members of the TNF family, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, cytokines and/or growth factors. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or This includes presentations in which the combined agents are sequentially. administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

[0982] In one embodiment, the Therapeutics of the invention are administered in combination with members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the Therapeutics of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also

known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), TR6 (International Publication No. WO 98/30694), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/30693), TR6 (International Publication No. WO 98/30694), TR7 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.

[0983] In certain embodiments, Therapeutics of the invention are administered in combination with antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors. Nucleoside reverse transcriptase inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, RETROVIRTM (zidovudine/AZT), VIDEX™ (didanosine/ddI), HIVID™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T). **EPIVIR™** (lamivudine/3TC), and **COMBIVIR™** (zidovudine/lamivudine). Non-nucleoside reverse transcriptase inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, VIRAMUNE™ (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTIVA™ (efavirenz). Protease inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, CRIXIVANTM (indinavir), NORVIR™ (ritonavir), INVIRASE™ (saquinavir), and VIRACEPT™ (nelfinavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any combination with Therapeutics of the invention to treat AIDS and/or to prevent or treat HIV infection.

In other embodiments, Therapeutics of the invention may be administered [0984] in combination with anti-opportunistic infection agents. Anti-opportunistic agents that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, ATOVAQUONE™, ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™, ETHAMBUTOL™, RIFABUTIN™, CLARITHROMYCIN™, AZITHROMYCIN™, GANCICLOVIR™. FOSCARNET™, CIDOFOVIR™. FLUCONAZOLE™, ITRACONAZOLE™, KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™, PYRIMETHAMINE™, LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and LEUKINE™ (sargramostim/GM-CSF). In a specific embodiment, Therapeutics of the invention are used in any combination with TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, and/or ATOVAQUONE™ to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™, and/or ETHAMBUTOL™ to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection. In another specific embodiment, Therapeutics of the invention are used in any combination with RIFABUTIN™. CLARITHROMYCIN™. and/or AZITHROMYCIN™ to prophylactically treat or prevent an opportunistic Mycobacterium tuberculosis infection. In another specific embodiment, Therapeutics of the invention are used in any combination with GANCICLOVIR™, FOSCARNET™, and/or CIDOFOVIR™ to prophylactically treat or prevent an opportunistic cytomegalovirus infection. In another specific embodiment, Therapeutics of the invention are used in any combination with FLUCONAZOLE™, ITRACONAZOLE™, and/or KETOCONAZOLE™ to prophylactically treat or prevent an opportunistic fungal infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ACYCLOVIRTM and/or FAMCICOLVIR™ to prophylactically treat or prevent an opportunistic herpes simplex virus type I and/or type II infection. In another specific embodiment, Therapeutics of the invention are used in any combination

PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat or prevent an opportunistic *Toxoplasma gondii* infection. In another specific embodiment, Therapeutics of the invention are used in any combination with LEUCOVORIN™ and/or NEUPOGEN™ to prophylactically treat or prevent an opportunistic bacterial infection.

- [0985] In a further embodiment, the Therapeutics of the invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the Therapeutics of the invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine.
- [0986] In a further embodiment, the Therapeutics of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the Therapeutics of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim-sulfamthoxazole, and vancomycin.
- [0987] Conventional nonspecific immunosuppressive agents, that may be administered in combination with the Therapeutics of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells.
- In specific embodiments, Therapeutics of the invention are administered in combination with immunosuppressants. Immunosuppressants preparations that may be administered with the Therapeutics of the invention include, but are not limited to, ORTHOCLONETM (OKT3), SANDIMMUNETM/NEORALTM/SANGDYATM (cyclosporin), PROGRAFTM (tacrolimus), CELLCEPTTM (mycophenolate), Azathioprine, glucorticosteroids, and RAPAMUNETM (sirolimus). In a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation.

In an additional embodiment, Therapeutics of the invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the Therapeutics of the invention include, but not limited to, GAMMAR™, IVEEGAM™, SANDOGLOBULIN™, GAMMAGARD S/D™, and GAMIMUNE™. In a specific embodiment, Therapeutics of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).

- [0990] In an additional embodiment, the Therapeutics of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the Therapeutics of the invention include, but are not limited to, glucocorticoids and the nonsteroidal anti-inflammatories, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap.
- [0991] In an additional embodiment, the compositions of the invention are administered alone or in combination with an anti-angiogenic agent. Anti-angiogenic agents that may be administered with the compositions of the invention include, but are not limited to, Angiostatin (Entremed, Rockville, MD), Troponin-1 (Boston Life Sciences, Boston, MA), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter "d group" transition metals.
- [0992] Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.

[0993] Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.

include oxo complexes. Suitable oxo tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.

A wide variety of other anti-angiogenic factors may also be utilized within [0995] the context of the present invention. Representative examples include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51:22-26 (1991)); Sulphated Polysaccharide Peptidoglycan Complex (SP-PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha, alphadipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, (1992)); Chymostatin (Tomkinson et al., Biochem J. 286:475-480 (1992)); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557, 1990); Gold Sodium

Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, 1987); anticollagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4):1659-1664 (1987)); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; (Takeuchi et al., Agents Actions 36:312-316, 1992); and metalloproteinase inhibitors such as BB94.

[0996] Additional anti-angiogenic factors that may also be utilized within the context of the present invention include Thalidomide, (Celgene, Warren, NJ); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist (C. Storgard et al., J Clin. Invest. 103:47-54 (1999)); carboxynaminolmidazole; Carboxyamidotriazole (CAI) (National Cancer Institute, Bethesda, MD); Conbretastatin A-4 (CA4P) (OXiGENE, Boston, MA); Squalamine (Magainin Pharmaceuticals, Plymouth Meeting, PA); TNP-470, (Tap Pharmaceuticals, Deerfield, IL); ZD-0101 AstraZeneca (London, UK); APRA (CT2584); Benefin, Byrostatin-1 (SC339555); CGP-41251 (PKC 412); CM101; Dexrazoxane (ICRF187); DMXAA; Endostatin; Flavopridiol; Genestein; GTE; ImmTher; Iressa (ZD1839); Octreotide (Somatostatin); Panretin; Penacillamine; Photopoint; PI-88; Prinomastat (AG-3340) Purlytin; Suradista (FCE26644); Tamoxifen (Nolvadex); Tazarotene; Tetrathiomolybdate; Xeloda (Capecitabine); and 5-Fluorouracil.

Anti-angiogenic agents that may be administed in combination with the compounds of the invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis of the extracellular matrix, blocking the function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells. Examples of anti-angiogenic inhibitors that interfere with extracellular matrix proteolysis and which may be administered in combination with the compositons of the invention include, but are not lmited to, AG-3340 (Agouron, La Jolla, CA), BAY-12-9566 (Bayer, West Haven, CT), BMS-275291 (Bristol Myers Squibb, Princeton, NJ), CGS-27032A (Novartis, East Hanover, NJ), Marimastat (British Biotech, Oxford, UK), and Metastat (Aeterna, St-Foy, Quebec). Examples of anti-angiogenic inhibitors that act by blocking the function of endothelial cell-extracellular matrix adhesion molecules and which may be

administered in combination with the compositons of the invention include, but are not lmited to, EMD-121974 (Merck KcgaA Darmstadt, Germany) and Vitaxin (Ixsys, La Jolla, CA/Medimmune, Gaithersburg, MD). Examples of anti-angiogenic agents that act by directly antagonizing or inhibiting angiogenesis inducers and which may be administered in combination with the compositons of the invention include, but are not lmited to, Angiozyme (Ribozyme, Boulder, CO), Anti-VEGF antibody (Genentech, S. San Francisco, CA), PTK-787/ZK-225846 (Novartis, Basel, Switzerland), SU-101 (Sugen, S. San Francisco, CA), SU-5416 (Sugen/ Pharmacia Upjohn, Bridgewater, NJ), and SU-6668 (Sugen). Other anti-angiogenic agents act to indirectly inhibit angiogenesis. Examples of indirect inhibitors of angiogenesis which may be administered in combination with the compositons of the invention include, but are not limited to, IM-862 (Cytran, Kirkland, WA), Interferon-alpha, IL-12 (Roche, Nutley, NJ), and Pentosan polysulfate (Georgetown University, Washington, DC).

[0998] In particular embodiments, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of an autoimmune disease, such as for example, an autoimmune disease described herein.

[0999] In a particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of arthritis. In a more particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of rheumatoid arthritis.

[01000] In another embodiment, the polynucleotides encoding a polypeptide of the present invention are administered in combination with an angiogenic protein, or polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins that may be administered with the compositions of the invention include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.

In another embodiment, compostions of the invention are administered in [01001] combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the compositions of the invention include, but are not limited to, antibiotic derivatives (e.g., doxorubicin, bleomycin, daunorubicin, and dactinomycin); antiestrogens (e.g., tamoxifen); antimetabolites (e.g., fluorouracil, floxuridine, interferon alpha-2b, glutamic acid, plicamycin, methotrexate, mercaptopurine, and 6-thioguanine); cytotoxic agents (e.g., carmustine, BCNU, lomustine, CCNU, cytosine arabinoside, cyclophosphamide, estramustine. hydroxyurea, procarbazine, mitomycin, busulfan, cis-platin, and vincristine sulfate); hormones (e.g., medroxyprogesterone, estramustine phosphate sodium, ethinyl estradiol. estradiol, megestrol acetate, methyltestosterone, diethylstilbestrol diphosphate, chlorotrianisene, and testolactone); nitrogen mustard derivatives (e.g., mephalen, chorambucil, mechlorethamine (nitrogen mustard) and thiotepa); steroids and combinations (e.g., bethamethasone sodium phosphate); and others (e.g., dicarbazine, asparaginase, mitotane, vincristine sulfate, vinblastine sulfate, and etoposide).

- [01002] In a specific embodiment, Therapeutics of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or any combination of the components of CHOP. In another embodiment, Therapeutics of the invention are administered in combination with Rituximab. In a further embodiment, Therapeutics of the invention are administered with Rituxmab and CHOP, or Rituxmab and any combination of the components of CHOP.
- In an additional embodiment, the Therapeutics of the invention are administered in combination with cytokines. Cytokines that may be administered with the Therapeutics of the invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF-alpha. In another embodiment, Therapeutics of the invention may be administered with any interleukin, including, but not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21.
- [01004] In an additional embodiment, the Therapeutics of the invention are administered in combination with angiogenic proteins. Angiogenic proteins that may

be administered with the Therapeutics of the invention include, but are not limited to. Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor-B (PDGF-B), as disclosed in European Patent Number EP-282317; Placental Growth Factor (PIGF), as disclosed in International Publication Number WO 92/06194; Placental Growth Factor-2 (PIGF-2), as disclosed in Hauser et al., Gorwth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in International Publication Number WO 90/13649; Vascular Endothelial Growth Factor-A (VEGF-A), as disclosed in European Patent Number EP-506477; Vascular Endothelial Growth Factor-2 (VEGF-2), as disclosed in International Publication Number WO 96/39515; Vascular Endothelial Growth Factor B (VEGF-3); Vascular Endothelial Growth Factor B-186 (VEGF-B186), as disclosed in International Publication Number WO 96/26736; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/02543; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/07832; and Vascular Endothelial Growth Factor-E (VEGF-E), as disclosed in German Patent Number DE19639601. The above mentioned references are herein incorporated by reference in their entireties.

- [01005] In an additional embodiment, the Therapeutics of the invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the Therapeutics of the invention include, but are not limited to, LEUKINETM (SARGRAMOSTIMTM) and NEUPOGENTM (FILGRASTIMTM).
- [01006] In an additional embodiment, the Therapeutics of the invention are administered in combination with Fibroblast Growth Factors. Fibroblast Growth Factors that may be administered with the Therapeutics of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15.
- [01007] In additional embodiments, the Therapeutics of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.

Example 14: Method of Treating Decreased Levels of the Polypeptide

of an increased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an agonist of the invention (including polypeptides of the invention). Moreover, it will be appreciated that conditions caused by a decrease in the standard or normal expression level of a polypeptide of the present invention in an individual can be treated by administering the agonist or antagonist of the present invention. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a Therapeutic comprising an amount of the agonist or antagonist to increase the activity level of the polypeptide in such an individual.

[01009] For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the agonist or antagonist for six consecutive days. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 13.

Example 15: Method of Treating Increased Levels of the Polypeptide

[01010] The present invention also relates to a method of treating an individual in need of a decreased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an antagonist of the invention (including polypeptides and antibodies of the invention).

[01011] In one example, antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, due to a variety of etiologies, such as cancer.

[01012] For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5,

2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 13.

Example 16: Method of Treatment Using Gene Therapy-Ex Vivo

[01013] One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.

[01014] At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

[01015] pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

[01016] The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1 using primers and having appropriate restriction sites and initiation/stop codons, if necessary. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto

agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

[01017] The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

[01018] Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

[01019] The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

Example 17: Gene Therapy Using Endogenous Genes Corresponding To Polynucleotides of the Invention

[01020] Another method of gene therapy according to the present invention involves operably associating the endogenous polynucleotide sequence of the invention with a promoter via homologous recombination as described, for example, in U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411, published September 26, 1996; International Publication NO: WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA,

86:8932-8935 (1989); and Zijlstra et al., Nature, 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not expressed in the cells, or is expressed at a lower level than desired.

- Polynucleotide constructs are made which contain a promoter and targeting sequences, which are homologous to the 5' non-coding sequence of endogenous polynucleotide sequence, flanking the promoter. The targeting sequence will be sufficiently near the 5' end of the polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.
- [01022] The amplified promoter and the amplified targeting sequences are digested with the appropriate restriction enzymes and subsequently treated with calf intestinal phosphatase. The digested promoter and digested targeting sequences are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The construct is size fractionated on an agarose gel, then purified by phenol extraction and ethanol precipitation.
- [01023] In this Example, the polynucleotide constructs are administered as naked polynucleotides via electroporation. However, the polynucleotide constructs may also be administered with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, precipitating agents, etc. Such methods of delivery are known in the art.
- [01024] Once the cells are transfected, homologous recombination will take place which results in the promoter being operably linked to the endogenous polynucleotide sequence. This results in the expression of polynucleotide corresponding to the polynucleotide in the cell. Expression may be detected by immunological staining, or any other method known in the art.

is placed in DMEM + 10% fetal calf serum. Exponentially growing or early stationary phase fibroblasts are trypsinized and rinsed from the plastic surface with nutrient medium. An aliquot of the cell suspension is removed for counting, and the remaining cells are subjected to centrifugation. The supernatant is aspirated and the pellet is resuspended in 5 ml of electroporation buffer (20 mM HEPES pH 7.3, 137 mM NaCl, 5 mM KCl, 0.7 mM Na₂ HPO₄, 6 mM dextrose). The cells are recentrifuged, the supernatant aspirated, and the cells resuspended in electroporation buffer containing 1 mg/ml acetylated bovine serum albumin. The final cell suspension contains approximately 3X10⁶ cells/ml. Electroporation should be performed immediately following resuspension.

[01026] Plasmid DNA is prepared according to standard techniques. For example, to construct a plasmid for targeting to the locus corresponding to the polynucleotide of the invention, plasmid pUC18 (MBI Fermentas, Amherst, NY) is digested with HindIII. The CMV promoter is amplified by PCR with an XbaI site on the 5' end and a BamHI site on the 3' end. Two non-coding sequences are amplified via PCR: one non-coding sequence (fragment 1) is amplified with a HindIII site at the 5' end and an Xba site at the 3'end; the other non-coding sequence (fragment 2) is amplified with a BamHI site at the 5'end and a HindIII site at the 3'end. The CMV promoter and the fragments (1 and 2) are digested with the appropriate enzymes (CMV promoter - XbaI and BamHI; fragment 1 - XbaI; fragment 2 - BamHI) and ligated together. The resulting ligation product is digested with HindIII, and ligated with the HindIII-digested pUC18 plasmid.

[01027] Plasmid DNA is added to a sterile cuvette with a 0.4 cm electrode gap (Bio-Rad). The final DNA concentration is generally at least 120 µg/ml. 0.5 ml of the cell suspension (containing approximately 1.5.X10⁶ cells) is then added to the cuvette, and the cell suspension and DNA solutions are gently mixed. Electroporation is performed with a Gene-Pulser apparatus (Bio-Rad). Capacitance and voltage are set at 960 µF and 250-300 V, respectively. As voltage increases, cell survival decreases, but the percentage of surviving cells that stably incorporate the introduced DNA into their genome increases dramatically. Given these parameters, a pulse time of approximately 14-20 mSec should be observed.

[01028] Electroporated cells are maintained at room temperature for approximately 5 min, and the contents of the cuvette are then gently removed with a sterile transfer pipette. The cells are added directly to 10 ml of prewarmed nutrient media (DMEM with 15% calf serum) in a 10 cm dish and incubated at 37 degree C. The following day, the media is aspirated and replaced with 10 ml of fresh media and incubated for a further 16-24 hours.

[01029] The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product. The fibroblasts can then be introduced into a patient as described above.

Example 18: Method of Treatment Using Gene Therapy - In Vivo

methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to (i.e., associated with) a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata et al., Cardiovasc. Res. 35(3):470-479 (1997); Chao et al., Pharmacol. Res. 35(6):517-522 (1997); Wolff, Neuromuscul. Disord. 7(5):314-318 (1997); Schwartz et al., Gene Ther. 3(5):405-411 (1996); Tsurumi et al., Circulation 94(12):3281-3290 (1996) (incorporated herein by reference).

[01031] The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

[01032] The term "naked" polynucleotide, DNA or RNA, refers to sequences that 1188

are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

[01033] The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

[01034] The polynucleotide construct can be delivered to the interstitial space of tissues within an animal, including muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

[01035] For the naked polynucleotide injection, an effective dosage amount of

DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

- [01036] The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.
- [01037] Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.
- [01038] After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice.

The results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 19: Transgenic Animals

[01039] The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene [01040] (i.e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115:171-229 (1989), which is incorporated by reference herein in its entirety.

[01041] Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to

quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810-813 (1997)).

[01042] The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265:103-106 (1994)). The regulatory sequences required for such a celltype specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

[01043] Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

[01045] Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 20: Knock-Out Animals

"knocking out" the gene and/or its promoter using targeted homologous recombination. (See e.g., Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incorporated by reference herein in its entirety.) For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination,

results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.

[01047] In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient in vivo. Such cells may be obtained from the patient (i.e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc. The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

[01048] Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety).

[01049] When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

[01050] Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 21: Assays Detecting Stimulation or Inhibition of B cell Proliferation and Differentiation

[01051] Generation of functional humoral immune responses requires both soluble and cognate signaling between B-lineage cells and their microenvironment. Signals may impart a positive stimulus that allows a B-lineage cell to continue its programmed development, or a negative stimulus that instructs the cell to arrest its current developmental pathway. To date, numerous stimulatory and inhibitory signals have been found to influence B cell responsiveness including IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-13, IL-14 and IL-15. Interestingly, these signals are by themselves weak effectors but can, in combination with various co-stimulatory proteins, induce activation, proliferation, differentiation, homing, tolerance and death among B cell populations.

[01052] One of the best studied classes of B-cell co-stimulatory proteins is the TNF-superfamily. Within this family CD40, CD27, and CD30 along with their respective ligands CD154, CD70, and CD153 have been found to regulate a variety of immune responses. Assays which allow for the detection and/or observation of the proliferation and differentiation of these B-cell populations and their precursors are valuable tools in determining the effects various proteins may have on these B-cell populations in terms of proliferation and differentiation. Listed below are two assays

designed to allow for the detection of the differentiation, proliferation, or inhibition of B-cell populations and their precursors.

In vitro Assay- Agonists or antagonists of the invention can be assessed for its ability to induce activation, proliferation, differentiation or inhibition and/or death in B-cell populations and their precursors. The activity of the agonists or antagonists of the invention on purified human tonsillar B cells, measured qualitatively over the dose range from 0.1 to 10,000 ng/mL, is assessed in a standard B-lymphocyte costimulation assay in which purified tonsillar B cells are cultured in the presence of either formalin-fixed Staphylococcus aureus Cowan I (SAC) or immobilized antihuman IgM antibody as the priming agent. Second signals such as IL-2 and IL-15 synergize with SAC and IgM crosslinking to elicit B cell proliferation as measured by tritiated-thymidine incorporation. Novel synergizing agents can be readily identified using this assay. The assay involves isolating human tonsillar B cells by magnetic bead (MACS) depletion of CD3-positive cells. The resulting cell population is greater than 95% B cells as assessed by expression of CD45R(B220).

[01054] Various dilutions of each sample are placed into individual wells of a 96-well plate to which are added 10⁵ B-cells suspended in culture medium (RPMI 1640 containing 10% FBS, 5 X 10⁻⁵M 2ME, 100U/ml penicillin, 10ug/ml streptomycin, and 10⁻⁵ dilution of SAC) in a total volume of 150ul. Proliferation or inhibition is quantitated by a 20h pulse (1uCi/well) with 3H-thymidine (6.7 Ci/mM) beginning 72h post factor addition. The positive and negative controls are IL2 and medium respectively.

[01055] In Vivo Assay- BALB/c mice are injected (i.p.) twice per day with buffer only, or 2 mg/Kg of agonists or antagonists of the invention, or truncated forms thereof. Mice receive this treatment for 4 consecutive days, at which time they are sacrificed and various tissues and serum collected for analyses. Comparison of H&E sections from normal spleens and spleens treated with agonists or antagonists of the invention identify the results of the activity of the agonists or antagonists on spleen cells, such as the diffusion of peri-arterial lymphatic sheaths, and/or significant increases in the nucleated cellularity of the red pulp regions, which may indicate the activation of the differentiation and proliferation of B-cell populations. Immunohistochemical studies using a B cell marker, anti-CD45R(B220), are used to

determine whether any physiological changes to splenic cells, such as splenic disorganization, are due to increased B-cell representation within loosely defined B-cell zones that infiltrate established T-cell regions.

- [01056] Flow cytometric analyses of the spleens from mice treated with agonist or antagonist is used to indicate whether the agonists or antagonists specifically increases the proportion of ThB+, CD45R(B220)dull B cells over that which is observed in control mice.
- [01057] Likewise, a predicted consequence of increased mature B-cell representation *in vivo* is a relative increase in serum Ig titers. Accordingly, serum IgM and IgA levels are compared between buffer and agonists or antagonists-treated mice.
- [01058] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 22: T Cell Proliferation Assay

[01059] A CD3-induced proliferation assay is performed on PBMCs and is measured by the uptake of ³H-thymidine. The assay is performed as follows. Ninety-six well plates are coated with 100 μl/well of mAb to CD3 (HIT3a, Pharmingen) or isotype-matched control mAb (B33.1) overnight at 4 degrees C (1 μg/ml in .05M bicarbonate buffer, pH 9.5), then washed three times with PBS. PBMC are isolated by F/H gradient centrifugation from human peripheral blood and added to quadruplicate wells (5 x 10⁴/well) of mAb coated plates in RPMI containing 10% FCS and P/S in the presence of varying concentrations of agonists or antagonists of the invention (total volume 200 ul). Relevant protein buffer and medium alone are controls. After 48 hr. culture at 37 degrees C, plates are spun for 2 min. at 1000 rpm and 100 μl of supernatant is removed and stored –20 degrees C for measurement of IL-2 (or other cytokines) if effect on proliferation is observed. Wells are supplemented with 100 ul of medium containing 0.5 uCi of ³H-thymidine and cultured at 37 degrees C for 18-24 hr. Wells are harvested and incorporation of ³H-thymidine used as a measure of

1

proliferation. Anti-CD3 alone is the positive control for proliferation. IL-2 (100 U/ml) is also used as a control which enhances proliferation. Control antibody which does not induce proliferation of T cells is used as the negative control for the effects of agonists or antagonists of the invention.

[01060] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 23: Effect of Agonists or Antagonists of the Invention on the Expression of MHC Class II, Costimulatory and Adhesion Molecules and Cell Differentiation of Monocytes and Monocyte-Derived Human Dendritic Cells

[01061] Dendritic cells are generated by the expansion of proliferating precursors found in the peripheral blood: adherent PBMC or elutriated monocytic fractions are cultured for 7-10 days with GM-CSF (50 ng/ml) and IL-4 (20 ng/ml). These dendritic cells have the characteristic phenotype of immature cells (expression of CD1, CD80, CD86, CD40 and MHC class II antigens). Treatment with activating factors, such as TNF-α, causes a rapid change in surface phenotype (increased expression of MHC class I and II, costimulatory and adhesion molecules, downregulation of FCγRII, upregulation of CD83). These changes correlate with increased antigen-presenting capacity and with functional maturation of the dendritic cells.

[01062] FACS analysis of surface antigens is performed as follows. Cells are treated 1-3 days with increasing concentrations of agonist or antagonist of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).

[01063] Effect on the production of cytokines. Cytokines generated by dendritic cells, in particular IL-12, are important in the initiation of T-cell dependent immune responses. IL-12 strongly influences the development of Thl helper T-cell immune response, and induces cytotoxic T and NK cell function. An ELISA is used to measure the IL-12 release as follows. Dendritic cells (106/ml) are treated with increasing concentrations of agonists or antagonists of the invention for 24 hours. LPS (100 ng/ml) is added to the cell culture as positive control. Supernatants from the cell cultures are then collected and analyzed for IL-12 content using commercial ELISA kit (e.g., R & D Systems (Minneapolis, MN)). The standard protocols provided with the kits are used.

- [01064] Effect on the expression of MHC Class II, costimulatory and adhesion molecules. Three major families of cell surface antigens can be identified on monocytes: adhesion molecules, molecules involved in antigen presentation, and Fc receptor. Modulation of the expression of MHC class II antigens and other costimulatory molecules, such as B7 and ICAM-1, may result in changes in the antigen presenting capacity of monocytes and ability to induce T cell activation. Increased expression of Fc receptors may correlate with improved monocyte cytotoxic activity, cytokine release and phagocytosis.
- [01065] FACS analysis is used to examine the surface antigens as follows. Monocytes are treated 1-5 days with increasing concentrations of agonists or antagonists of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).
- [01066] Monocyte activation and/or increased survival. Assays for molecules that activate (or alternatively, inactivate) monocytes and/or increase monocyte survival (or alternatively, decrease monocyte survival) are known in the art and may routinely be applied to determine whether a molecule of the invention functions as an inhibitor or

activator of monocytes. Agonists or antagonists of the invention can be screened using the three assays described below. For each of these assays, Peripheral blood mononuclear cells (PBMC) are purified from single donor leukopacks (American Red Cross, Baltimore, MD) by centrifugation through a Histopaque gradient (Sigma). Monocytes are isolated from PBMC by counterflow centrifugal elutriation.

progressively lose viability when cultured in absence of serum or other stimuli. Their death results from internally regulated processes (apoptosis). Addition to the culture of activating factors, such as TNF-alpha dramatically improves cell survival and prevents DNA fragmentation. Propidium iodide (PI) staining is used to measure apoptosis as follows. Monocytes are cultured for 48 hours in polypropylene tubes in serum-free medium (positive control), in the presence of 100 ng/ml TNF-alpha (negative control), and in the presence of varying concentrations of the compound to be tested. Cells are suspended at a concentration of 2 x 10⁶/ml in PBS containing PI at a final concentration of 5 μg/ml, and then incubated at room temperature for 5 minutes before FACScan analysis. PI uptake has been demonstrated to correlate with DNA fragmentation in this experimental paradigm.

[01068] Effect cytokine release. on An important function of monocytes/macrophages is their regulatory activity on other cellular populations of the immune system through the release of cytokines after stimulation. An ELISA to measure cytokine release is performed as follows. Human monocytes are incubated at a density of 5x10⁵ cells/ml with increasing concentrations of agonists or antagonists of the invention and under the same conditions, but in the absence of agonists or antagonists. For IL-12 production, the cells are primed overnight with IFN (100 U/ml) in the presence of agonist or antagonist of the invention. LPS (10 ng/ml) is then added. Conditioned media are collected after 24h and kept frozen until use. Measurement of TNF-alpha, IL-10, MCP-1 and IL-8 is then performed using a commercially available ELISA kit (e.g., R & D Systems (Minneapolis, MN)) and applying the standard protocols provided with the kit.

Oxidative burst. Purified monocytes are plated in 96-w plate at 2-1x10⁵ cell/well. Increasing concentrations of agonists or antagonists of the invention are added to the wells in a total volume of 0.2 ml culture medium (RPMI 1640 + 10% FCS, glutamine and antibiotics). After 3 days incubation, the plates are centrifuged and the medium is removed from the wells. To the macrophage monolayers, 0.2 ml per well of phenol red solution (140 mM NaCl, 10 mM potassium phosphate buffer pH 7.0, 5.5 mM dextrose, 0.56 mM phenol red and 19 U/ml of HRPO) is added, together with the stimulant (200 nM PMA). The plates are incubated at 37°C for 2 hours and the reaction is stopped by adding 20 μl 1N NaOH per well. The absorbance is read at 610 nm. To calculate the amount of H₂O₂ produced by the macrophages, a standard curve of a H₂O₂ solution of known molarity is performed for each experiment.

[01070] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 24: Biological Effects of Agonists or Antagonists of the Invention

Astrocyte and Neuronal Assays.

[01071] Agonists or antagonists of the invention, expressed in *Escherichia coli* and purified as described above, can be tested for activity in promoting the survival, neurite outgrowth, or phenotypic differentiation of cortical neuronal cells and for inducing the proliferation of glial fibrillary acidic protein immunopositive cells, astrocytes. The selection of cortical cells for the bioassay is based on the prevalent expression of FGF-1 and FGF-2 in cortical structures and on the previously reported enhancement of cortical neuronal survival resulting from FGF-2 treatment. A thymidine incorporation assay, for example, can be used to elucidate an agonist or antagonist of the invention's activity on these cells.

[01072] Moreover, previous reports describing the biological effects of FGF-2 (basic FGF) on cortical or hippocampal neurons in vitro have demonstrated increases in both

neuron survival and neurite outgrowth (Walicke et al., "Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension." Proc. Natl. Acad. Sci. USA 83:3012-3016. (1986), assay herein incorporated by reference in its entirety). However, reports from experiments done on PC-12 cells suggest that these two responses are not necessarily synonymous and may depend on not only which FGF is being tested but also on which receptor(s) are expressed on the target cells. Using the primary cortical neuronal culture paradigm, the ability of an agonist or antagonist of the invention to induce neurite outgrowth can be compared to the response achieved with FGF-2 using, for example, a thymidine incorporation assay.

Fibroblast and endothelial cell assays.

Human lung fibroblasts are obtained from Clonetics (San Diego, CA) and [01073] maintained in growth media from Clonetics. Dermal microvascular endothelial cells are obtained from Cell Applications (San Diego, CA). For proliferation assays, the human lung fibroblasts and dermal microvascular endothelial cells can be cultured at 5,000 cells/well in a 96-well plate for one day in growth medium. The cells are then incubated for one day in 0.1% BSA basal medium. After replacing the medium with fresh 0.1% BSA medium, the cells are incubated with the test proteins for 3 days. Alamar Blue (Alamar Biosciences, Sacramento, CA) is added to each well to a final concentration of 10%. The cells are incubated for 4 hr. Cell viability is measured by reading in a CytoFluor fluorescence reader. For the PGE2 assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or agonists or antagonists of the invention with or without IL-1α for 24 hours. The supernatants are collected and assayed for PGE₂ by EIA kit (Cayman, Ann Arbor, MI). For the IL-6 assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or with or without agonists or antagonists of the invention IL-1\alpha for 24 hours. The supernatants are collected and assayed for IL-6 by ELISA kit (Endogen, Cambridge, MA).

[01074] Human lung fibroblasts are cultured with FGF-2 or agonists or antagonists of the invention for 3 days in basal medium before the addition of Alamar Blue to assess effects on growth of the fibroblasts. FGF-2 should show a stimulation at 10 - 2500 ng/ml which can be used to compare stimulation with agonists or antagonists of the invention.

Parkinson Models.

[01075] The loss of motor function in Parkinson's disease is attributed to a deficiency of striatal dopamine resulting from the degeneration of the nigrostriatal dopaminergic projection neurons. An animal model for Parkinson's that has been extensively characterized involves the systemic administration of 1-methyl-4 phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the CNS, MPTP is taken-up by astrocytes and catabolized by monoamine oxidase B to 1-methyl-4-phenyl pyridine (MPP⁺) and released. Subsequently, MPP⁺ is actively accumulated in dopaminergic neurons by the high-affinity reuptake transporter for dopamine. MPP⁺ is then concentrated in mitochondria by the electrochemical gradient and selectively inhibits nicotidamide adenine disphosphate: ubiquinone oxidoreductionase (complex I), thereby interfering with electron transport and eventually generating oxygen radicals.

[01076] It has been demonstrated in tissue culture paradigms that FGF-2 (basic FGF) has trophic activity towards nigral dopaminergic neurons (Ferrari et al., Dev. Biol. 1989). Recently, Dr. Unsicker's group has demonstrated that administering FGF-2 in gel foam implants in the striatum results in the near complete protection of nigral dopaminergic neurons from the toxicity associated with MPTP exposure (Otto and Unsicker, J. Neuroscience, 1990).

[01077] Based on the data with FGF-2, agonists or antagonists of the invention can be evaluated to determine whether it has an action similar to that of FGF-2 in enhancing dopaminergic neuronal survival in vitro and it can also be tested in vivo for protection of dopaminergic neurons in the striatum from the damage associated with MPTP treatment. The potential effect of an agonist or antagonist of the invention is first examined in vitro in a dopaminergic neuronal cell culture paradigm. The cultures are prepared by dissecting the midbrain floor plate from gestation day 14 Wistar rat embryos. The tissue is dissociated with trypsin and seeded at a density of 200,000 cells/cm² on polyorthinine-laminin coated glass coverslips. The cells are maintained in Dulbecco's Modified Eagle's medium and

F12 medium containing hormonal supplements (N1). The cultures are fixed with paraformaldehyde after 8 days *in vitro* and are processed for tyrosine hydroxylase, a specific marker for dopaminergic neurons, immunohistochemical staining. Dissociated cell cultures are prepared from embryonic rats. The culture medium is changed every third day and the factors are also added at that time.

[01078] Since the dopaminergic neurons are isolated from animals at gestation day 14, a developmental time which is past the stage when the dopaminergic precursor cells are proliferating, an increase in the number of tyrosine hydroxylase immunopositive neurons would represent an increase in the number of dopaminergic neurons surviving in vitro. Therefore, if an agonist or antagonist of the invention acts to prolong the survival of dopaminergic neurons, it would suggest that the agonist or antagonist may be involved in Parkinson's Disease.

[01079] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 25: The Effect of Agonists or Antagonists of the Invention on the Growth of Vascular Endothelial Cells

[01080] On day 1, human umbilical vein endothelial cells (HUVEC) are seeded at 2-5x10⁴ cells/35 mm dish density in M199 medium containing 4% fetal bovine serum (FBS), 16 units/ml heparin, and 50 units/ml endothelial cell growth supplements (ECGS, Biotechnique, Inc.). On day 2, the medium is replaced with M199 containing 10% FBS, 8 units/ml heparin. An agonist or antagonist of the invention, and positive controls, such as VEGF and basic FGF (bFGF) are added, at varying concentrations. On days 4 and 6, the medium is replaced. On day 8, cell number is determined with a Coulter Counter.

[01081] An increase in the number of HUVEC cells indicates that the compound of the invention may proliferate vascular endothelial cells, while a decrease in the number of HUVEC cells indicates that the compound of the invention inhibits vascular endothelial cells.

[01082] The studies described in this example tested activity of a polypeptide of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists of the invention.

Example 26: Rat Corneal Wound Healing Model

[01083] This animal model shows the effect of an agonist or antagonist of the invention on neovascularization. The experimental protocol includes:

Making a 1-1.5 mm long incision from the center of cornea into the stromal layer.

Inserting a spatula below the lip of the incision facing the outer corner of the eye.

Making a pocket (its base is 1-1.5 mm form the edge of the eye).

Positioning a pellet, containing 50ng- 5ug of an agonist or antagonist of the invention, within the pocket.

Treatment with an agonist or antagonist of the invention can also be applied topically to the corneal wounds in a dosage range of 20mg - 500mg (daily treatment for five days).

[01084] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 27: Diabetic Mouse and Glucocorticoid-Impaired Wound Healing Models

Diabetic db+/db+ Mouse Model.

[01085] To demonstrate that an agonist or antagonist of the invention accelerates the healing process, the genetically diabetic mouse model of wound healing is used. The full thickness wound healing model in the db+/db+ mouse is a well characterized, clinically relevant and reproducible model of impaired wound healing. Healing of the diabetic wound is dependent on formation of granulation tissue and re-epithelialization rather than

contraction (Gartner, M.H. et al., J. Surg. Res. 52:389 (1992); Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)).

The diabetic animals have many of the characteristic features observed in Type [01086]Il diabetes mellitus. Homozygous (db+/db+) mice are obese in comparison to their normal heterozygous (db+/+m) littermates. Mutant diabetic (db+/db+) mice have a single autosomal recessive mutation on chromosome 4 (db+) (Coleman et al. Proc. Natl. Acad. Sci. USA 77:283-293 (1982)). Animals show polyphagia, polydipsia and polyuria. Mutant diabetic mice (db+/db+) have elevated blood glucose, increased or normal insulin levels, and suppressed cell-mediated immunity (Mandel et al., J. Immunol. 120:1375 (1978); Debray-Sachs, M. et al., Clin. Exp. Immunol. 51(1):1-7 (1983); Leiter et al., Am. J. of Pathol. 114:46-55 (1985)). Peripheral neuropathy, myocardial complications, and microvascular lesions, basement membrane thickening and glomerular filtration abnormalities have been described in these animals (Norido, F. et al., Exp. Neurol. 83(2):221-232 (1984); Robertson et al., Diabetes 29(1):60-67 (1980); Giacomelli et al., Lab Invest. 40(4):460-473 (1979); Coleman, D.L., Diabetes 31 (Suppl):1-6 (1982)). These homozygous diabetic mice develop hyperglycemia that is resistant to insulin analogous to human type II diabetes (Mandel et al., J. Immunol. 120:1375-1377 (1978)).

[01087] The characteristics observed in these animals suggests that healing in this model may be similar to the healing observed in human diabetes (Greenhalgh, et al., Am. J. of Pathol. 136:1235-1246 (1990)).

[01088] Genetically diabetic female C57BL/KsJ (db+/db+) mice and their non-diabetic (db+/+m) heterozygous littermates are used in this study (Jackson Laboratories). The animals are purchased at 6 weeks of age and are 8 weeks old at the beginning of the study. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. The experiments are conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.

[01089] Wounding protocol is performed according to previously reported methods (Tsuboi, R. and Rifkin, D.B., J. Exp. Med. 172:245-251 (1990)). Briefly, on the day of wounding, animals are anesthetized with an intraperitoneal injection of Avertin (0.01 mg/mL), 2,2,2-tribromoethanol and 2-methyl-2-butanol dissolved in deionized water. The

dorsal region of the animal is shaved and the skin washed with 70% ethanol solution and iodine. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full-thickness wound is then created using a Keyes tissue punch. Immediately following wounding, the surrounding skin is gently stretched to eliminate wound expansion. The wounds are left open for the duration of the experiment. Application of the treatment is given topically for 5 consecutive days commencing on the day of wounding. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.

- [01090] Wounds are visually examined and photographed at a fixed distance at the day of surgery and at two day intervals thereafter. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.
- [01091] An agonist or antagonist of the invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.
- [01092] Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for histology and immunohistochemistry. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.
- [01093] Three groups of 10 animals each (5 diabetic and 5 non-diabetic controls) are evaluated: 1) Vehicle placebo control, 2) untreated group, and 3) treated group.
- [01094] Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total square area of the wound. Contraction is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 is 64mm², the corresponding size of the dermal punch. Calculations are made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

[01095] Specimens are fixed in 10% buffered formalin and paraffin embedded blocks are sectioned perpendicular to the wound surface (5mm) and cut using a Reichert-Jung microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of

bisected wounds. Histologic examination of the wounds are used to assess whether the healing process and the morphologic appearance of the repaired skin is altered by treatment with an agonist or antagonist of the invention. This assessment included verification of the presence of cell accumulation, inflammatory cells, capillaries, fibroblasts, reepithelialization and epidermal maturity (Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)). A calibrated lens micrometer is used by a blinded observer.

- [01096] Tissue sections are also stained immunohistochemically with a polyclonal rabbit anti-human keratin antibody using ABC Elite detection system. Human skin is used as a positive tissue control while non-immune IgG is used as a negative control. Keratinocyte growth is determined by evaluating the extent of reepithelialization of the wound using a calibrated lens micrometer.
- [01097] Proliferating cell nuclear antigen/cyclin (PCNA) in skin specimens is demonstrated by using anti-PCNA antibody (1:50) with an ABC Elite detection system. Human colon cancer served as a positive tissue control and human brain tissue is used as a negative tissue control. Each specimen included a section with omission of the primary antibody and substitution with non-immune mouse IgG. Ranking of these sections is based on the extent of proliferation on a scale of 0-8, the lower side of the scale reflecting slight proliferation to the higher side reflecting intense proliferation.
- [01098] Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant.

Steroid Impaired Rat Model

The inhibition of wound healing by steroids has been well documented in various in vitro and in vivo systems (Wahl, Glucocorticoids and Wound healing. In: Anti-Inflammatory Steroid Action: Basic and Clinical Aspects. 280-302 (1989); Wahl et al., J. Immunol. 115: 476-481 (1975); Werb et al., J. Exp. Med. 147:1684-1694 (1978)). Glucocorticoids retard wound healing by inhibiting angiogenesis, decreasing vascular permeability (Ebert et al., An. Intern. Med. 37:701-705 (1952)), fibroblast proliferation, and collagen synthesis (Beck et al., Growth Factors. 5: 295-304 (1991); Haynes et al., J. Clin. Invest. 61: 703-797 (1978)) and producing a transient reduction of circulating monocytes (Haynes et al., J. Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects,

Academic Press, New York, pp. 280-302 (1989)). The systemic administration of steroids to impaired wound healing is a well establish phenomenon in rats (Beck et al., Growth Factors. 5: 295-304 (1991); Haynes et al., J. Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects, Academic Press, New York, pp. 280-302 (1989); Pierce et al., Proc. Natl. Acad. Sci. USA 86: 2229-2233 (1989)).

- [01100] To demonstrate that an agonist or antagonist of the invention can accelerate the healing process, the effects of multiple topical applications of the agonist or antagonist on full thickness excisional skin wounds in rats in which healing has been impaired by the systemic administration of methylprednisolone is assessed.
- [01101] Young adult male Sprague Dawley rats weighing 250-300 g (Charles River Laboratories) are used in this example. The animals are purchased at 8 weeks of age and are 9 weeks old at the beginning of the study. The healing response of rats is impaired by the systemic administration of methylprednisolone (17mg/kg/rat intramuscularly) at the time of wounding. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. This study is conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.
- of wounding, animals are anesthetized with an intramuscular injection of ketamine (50 mg/kg) and xylazine (5 mg/kg). The dorsal region of the animal is shaved and the skin washed with 70% ethanol and iodine solutions. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full-thickness wound is created using a Keyes tissue punch. The wounds are left open for the duration of the experiment. Applications of the testing materials are given topically once a day for 7 consecutive days commencing on the day of wounding and subsequent to methylprednisolone administration. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.
- [01103] Wounds are visually examined and photographed at a fixed distance at the day of wounding and at the end of treatment. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically

using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.

- [01104] The agonist or antagonist of the invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.
- [01105] Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for histology. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.
- [01106] Three groups of 10 animals each (5 with methylprednisolone and 5 without glucocorticoid) are evaluated: 1) Untreated group 2) Vehicle placebo control 3) treated groups.
- [01107] Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total area of the wound. Closure is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 is 64mm², the corresponding size of the dermal punch. Calculations are made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

- [01108] Specimens are fixed in 10% buffered formalin and paraffin embedded blocks are sectioned perpendicular to the wound surface (5mm) and cut using an Olympus microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of bisected wounds. Histologic examination of the wounds allows assessment of whether the healing process and the morphologic appearance of the repaired skin is improved by treatment with an agonist or antagonist of the invention. A calibrated lens micrometer is used by a blinded observer to determine the distance of the wound gap.
- [01109] Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant.
- [01110] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified

studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 28: Lymphadema Animal Model

- [01111] The purpose of this experimental approach is to create an appropriate and consistent lymphedema model for testing the therapeutic effects of an agonist or antagonist of the invention in lymphangiogenesis and re-establishment of the lymphatic circulatory system in the rat hind limb. Effectiveness is measured by swelling volume of the affected limb, quantification of the amount of lymphatic vasculature, total blood plasma protein, and histopathology. Acute lymphedema is observed for 7-10 days. Perhaps more importantly, the chronic progress of the edema is followed for up to 3-4 weeks.
- [01112] Prior to beginning surgery, blood sample is drawn for protein concentration analysis. Male rats weighing approximately ~350g are dosed with Pentobarbital. Subsequently, the right legs are shaved from knee to hip. The shaved area is swabbed with gauze soaked in 70% EtOH. Blood is drawn for serum total protein testing. Circumference and volumetric measurements are made prior to injecting dye into paws after marking 2 measurement levels (0.5 cm above heel, at mid-pt of dorsal paw). The intradermal dorsum of both right and left paws are injected with 0.05 ml of 1% Evan's Blue. Circumference and volumetric measurements are then made following injection of dye into paws.
- [01113] Using the knee joint as a landmark, a mid-leg inguinal incision is made circumferentially allowing the femoral vessels to be located. Forceps and hemostats are used to dissect and separate the skin flaps. After locating the femoral vessels, the lymphatic vessel that runs along side and underneath the vessel(s) is located. The main lymphatic vessels in this area are then electrically coagulated or suture ligated.
- [01114] Using a microscope, muscles in back of the leg (near the semitendinosis and adductors) are bluntly dissected. The popliteal lymph node is then located. The 2 proximal and 2 distal lymphatic vessels and distal blood supply of the popliteal node are then ligated by suturing. The popliteal lymph node, and any accompanying adipose tissue, is then removed by cutting connective tissues.

[01115] Care is taken to control any mild bleeding resulting from this procedure. After lymphatics are occluded, the skin flaps are sealed by using liquid skin (Vetbond) (AJ Buck). The separated skin edges are sealed to the underlying muscle tissue while leaving a gap of ~0.5 cm around the leg. Skin also may be anchored by suturing to underlying muscle when necessary.

- Recovering animals are checked daily through the optimal edematous peak, which typically occurred by day 5-7. The plateau edematous peak are then observed. To evaluate the intensity of the lymphedema, the circumference and volumes of 2 designated places on each paw before operation and daily for 7 days are measured. The effect of plasma proteins on lymphedema is determined and whether protein analysis is a useful testing perimeter is also investigated. The weights of both control and edematous limbs are evaluated at 2 places. Analysis is performed in a blind manner.
- [01117] Circumference Measurements: Under brief gas anesthetic to prevent limb movement, a cloth tape is used to measure limb circumference. Measurements are done at the ankle bone and dorsal paw by 2 different people and those 2 readings are averaged. Readings are taken from both control and edematous limbs.
- [01118] Volumetric Measurements: On the day of surgery, animals are anesthetized with Pentobarbital and are tested prior to surgery. For daily volumetrics animals are under brief halothane anesthetic (rapid immobilization and quick recovery), and both legs are shaved and equally marked using waterproof marker on legs. Legs are first dipped in water, then dipped into instrument to each marked level, then measured by Buxco edema software(Chen/Victor). Data is recorded by one person, while the other is dipping the limb to marked area.
- [01119] Blood-plasma protein measurements: Blood is drawn, spun, and serum separated prior to surgery and then at conclusion for total protein and Ca2⁺ comparison.
- [01120] Limb Weight Comparison: After drawing blood, the animal is prepared for tissue collection. The limbs are amputated using a quillitine, then both experimental and control legs are cut at the ligature and weighed. A second weighing is done as the tibiocacaneal joint is disarticulated and the foot is weighed.
- [01121] Histological Preparations: The transverse muscle located behind the knee (popliteal) area is dissected and arranged in a metal mold, filled with freezeGel, dipped

into cold methylbutane, placed into labeled sample bags at - 80EC until sectioning. Upon sectioning, the muscle is observed under fluorescent microscopy for lymphatics..

[01122] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 29: Suppression of TNF alpha-induced adhesion molecule expression by a Agonist or Antagonist of the Invention

- involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.
- [01124] Tumor necrosis factor alpha (TNF-a), a potent proinflammatory cytokine, is a stimulator of all three CAMs on endothelial cells and may be involved in a wide variety of inflammatory responses, often resulting in a pathological outcome.
- [01125] The potential of an agonist or antagonist of the invention to mediate a suppression of TNF-a induced CAM expression can be examined. A modified ELISA assay which uses ECs as a solid phase absorbent is employed to measure the amount of CAM expression on TNF-a treated ECs when co-stimulated with a member of the FGF family of proteins.
- [01126] To perform the experiment, human umbilical vein endothelial cell (HUVEC) cultures are obtained from pooled cord harvests and maintained in growth medium (EGM-

2; Clonetics, San Diego, CA) supplemented with 10% FCS and 1% penicillin/streptomycin in a 37 degree C humidified incubator containing 5% CO₂. HUVECs are seeded in 96-well plates at concentrations of 1 x 10⁴ cells/well in EGM medium at 37 degree C for 18-24 hrs or until confluent. The monolayers are subsequently washed 3 times with a serum-free solution of RPMI-1640 supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin, and treated with a given cytokine and/or growth factor(s) for 24 h at 37 degree C. Following incubation, the cells are then evaluated for CAM expression.

- [01127] Human Umbilical Vein Endothelial cells (HUVECs) are grown in a standard 96 well plate to confluence. Growth medium is removed from the cells and replaced with 90 ul of 199 Medium (10% FBS). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 ul volumes). Plates are incubated at 37 degree C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min.
- [01128] Fixative is then removed from the wells and wells are washed 1X with PBS(+Ca,Mg)+0.5% BSA and drained. Do not allow the wells to dry. Add 10 μl of diluted primary antibody to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA.
- Then add 20 μl of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution) to each well and incubated at 37°C for 30 min. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA. 1 tablet of p-Nitrophenol Phosphate pNPP is dissolved in 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10°) > 10^{-0.5} > 10⁻¹ > 10^{-1.5}. 5 μl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pNNP reagent must then be added to each of the standard wells. The plate must be incubated at 37°C for 4h. A volume of 50 μl of 3M NaOH is added to all wells. The results are quantified on a plate reader at 405 nm. The background subtraction option is used on blank wells filled with glycine buffer only. The template is set up to indicate the concentration of AP-conjugate in each standard well [

5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

[01130] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 30: Production Of Polypeptide of the Invention For High-Throughput Screening Assays

- [01131] The following protocol produces a supernatant containing polypeptide of the present invention to be tested. This supernatant can then be used in the Screening Assays described in Examples 32-41.
- [01132] First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.
- [01133] Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.
- [01134] The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8-10, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to

each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

[01135] Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degree C for 6 hours.

[01136] While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or HGS CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO3; 62.50 mg/L of NaH2PO4-H20; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H20; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H20; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H₂0; and 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca

Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal Acetate. Adjust osmolarity to 327 mOsm) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

- [01137] The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37 degree C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.
- [01138] On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 32-39.
- [01139] It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide of the present invention directly (e.g., as a secreted protein) or by polypeptide of the present invention inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 31: Construction of GAS Reporter Construct

[01140] One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the

Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferonsensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

- [01141] GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.
- [01142] The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.
- The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xaa-Trp-Ser (SEQ ID NO:2)).
- [01144] Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.
- [01145] Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using

GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

<u>Ligand</u>	tyk2	<u>JAKs</u> <u>Jak1</u>	Jak2	Jak3	<u>STATS</u>	GAS(elements)	or ISRE
IFN family IFN-a/B IFN-g Il-10	+	+ + ?	- + ?	- - -	1,2,3 1 1,3	ISRE GAS (IRF1>Ly	s6>IFP)
gp130 family IL-6 (Pleiotropic) Il-11(Pleiotropic) OnM(Pleiotropic) LIF(Pleiotropic) CNTF(Pleiotropic) G-CSF(Pleiotropic) IL-12(Pleiotropic)	+ ? ? ? -/+ ?	+ + + + + -	+ ? + + + ? +	? ? ? ? ?	1,3 1,3 1,3 1,3 1,3 1,3	GAS (IRF1>Lys	;6>IFP)
g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) >>Ly6)(IgH) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - ?	+ + + + + + + +	- - - ? ?	+ + + + + ? +	1,3,5 6 5 5 6 5	GAS GAS GAS GAS GAS GAS	(IRF1=IFP
gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid) Growth hormone family		-	++++	-	5 5 5	GAS (IRF1>IFF GAS GAS	'>>Ly6)
GH PRL EPO CAS>IRF1=IFP>>Ly6)	? ? ?	- +/- -	+ + +	-	5 1,3,5 5	GAS(B-	
Receptor Tyrosine Kir EGF PDGF CSF-1	nases ? ? ?	+ + +	+ + +	- -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)	

in the Biological Assays described in Examples 32-33, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:

- 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO: 3)
- [01147] The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO: 4)
- [01148] PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:
- [01149] With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be used instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

[01150] The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

- [01151] Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 32-33.
- [01152] Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 34 and 35. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 32: High-Throughput Screening Assay for T-cell Activity.

[01153] The following protocol is used to assess T-cell activity by identifying factors, and determining whether supernate containing a polypeptide of the invention proliferates and/or differentiates T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 31. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152),

although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

- [01154] Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.
- [01155] Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.
- [01156] During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37 degree C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.
- [01157] The Jurkat: GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing polypeptide of the present invention or polypeptide of the present invention induced polypeptides as produced by the protocol described in Example 30.
- [01158] On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.
- [01159] Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

[01160] After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

- [01161] The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20 degree C until SEAP assays are performed according to Example 36. The plates containing the remaining treated cells are placed at 4 degree C and serve as a source of material for repeating the assay on a specific well if desired.
- [01162] As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.
- [01163] The above protocol may be used in the generation of both transient, as well as stable, transfected cells, which would be apparent to those of skill in the art.

Example 33: High-Throughput Screening Assay Identifying Myeloid Activity

- [01164] The following protocol is used to assess myeloid activity of polypeptide of the present invention by determining whether polypeptide of the present invention proliferates and/or differentiates myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 31. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.
- [01165] To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 31, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10⁷ U937 cells and

wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

- [01166] Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37 degrees C for 45 min.
- [01167] Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37 degree C for 36 hr.
- [01168] The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.
- [01169] These cells are tested by harvesting 1x10⁸ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5x10⁵ cells/ml. Plate 200 ul cells per well in the 96-well plate (or 1x10⁵ cells/well).
- [01170] Add 50 ul of the supernatant prepared by the protocol described in Example 30. Incubate at 37 degee C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 36.

Example 34: High-Throughput Screening Assay Identifying Neuronal Activity.

[01171] When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed by polypeptide of the present invention.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells by polypeptide of the present invention can be assessed.

- [01173] The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:
 - 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO: 6)
 - 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO: 7)
- [01174] Using the GAS:SEAP/Neo vector produced in Example 31, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes Xhol/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.
- [01175] To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.
- [01176] PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.
- [01177] Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 30. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

- [01178] To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.
- [01179] The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.
- [01180] Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1x10⁵ cells/well). Add 50 ul supernatant produced by Example 30, 37 degree C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 36.

Example 35: High-Throughput Screening Assay for T-cell Activity

- [01181] NF-KB (Nuclear Factor KB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-KB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- KB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.
- [01182] In non-stimulated conditions, NF- KB is retained in the cytoplasm with I- KB (Inhibitor KB). However, upon stimulation, I- KB is phosphorylated and degraded, causing NF- KB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- KB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

[01183] Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-KB promoter element are used to screen the supernatants produced in Example 30. Activators or inhibitors of NF-KB would be useful in treating, preventing, and/or diagnosing diseases. For example, inhibitors of NF-KB could be used to treat those diseases related to the acute or chronic activation of NF-KB, such as rheumatoid arthritis.

- [01184] To construct a vector containing the NF-KB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-KB binding site (GGGGACTTTCCC) (SEQ ID NO: 8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site:
 - 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGAC TTTCCATCCTGCCATCTCAATTAG:3' (SEQ ID NO: 9)
- [01185] The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:
 - 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO: 4)
- [01186] PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:
 - 5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCC
 ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCC
 ATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGA
 CTAATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTAT
 TCCAGAAGTAGTGAGGAGGCCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGC
 TT:3' (SEQ ID NO: 10)
- [01187] Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-KB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

[01188] In order to generate stable mammalian cell lines, the NF-KB/SV40/SEAP cassette is removed from the above NF-KB/SEAP vector using restriction enzymes Sall and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-KB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with Sall and NotI.

[01189] Once NF-KB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 32. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 32. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 36: Assay for SEAP Activity

- [01190] As a reporter molecule for the assays described in Examples 32-35, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.
- [01191] Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating.
- [01192] Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the Table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on a luminometer, thus one should treat 5 plates at each time and start the second set 10 minutes later.
- [01193] Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

[01194] Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12

47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 37: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

- [01195] Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.
- [01196] The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here.
- [01197] For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.
- [01198] A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4, 50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37 degrees C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.
- [01199] For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degrees C water bath for 30-60 min. The

cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley Cell Wash with 200 ul, followed by an aspiration step to 100 ul final volume.

[01200] For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4. The supernatant is added to the well, and a change in fluorescence is detected.

[01201] To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event caused by the a molecule, either polypeptide of the present invention or a molecule induced by polypeptide of the present invention, which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

Example 38: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

[01202] The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

[01203] Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

[01204] Because of the wide range of known factors capable of stimulating tyrosine kinase activity, identifying whether polypeptide of the present invention or a molecule induced by polypeptide of the present invention is capable of activating tyrosine kinase signal transduction pathways is of interest. Therefore, the following protocol is designed to identify such molecules capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford, MA), or calf serum, rinsed with PBS and stored at 4 degree C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford, MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

[01206] To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 30, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN)) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts

clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4 degree C at 16,000 x g.

- [01207] Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.
- [01208] Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.
- [01209] The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate (1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degree C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.
- [01210] The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.
- [01211] Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degree C for 20 min. This allows the streptavidin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase (anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degree C for one hour. Wash the well as above.
- [01212] Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 39: High-Throughput Screening Assay Identifying Phosphorylation Activity

- [01213] As a potential alternative and/or complement to the assay of protein tyrosine kinase activity described in Example 38, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.
- [01214] Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degree C until use.
- [01215] A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 30 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.
- After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive

incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation by polypeptide of the present invention or a molecule induced by polypeptide of the present invention.

Example 40: Assay for the Stimulation of Bone Marrow CD34+ Cell Proliferation

[01217] This assay is based on the ability of human CD34+ to proliferate in the presence of hematopoietic growth factors and evaluates the ability of isolated polypeptides expressed in mammalian cells to stimulate proliferation of CD34+ cells.

It has been previously shown that most mature precursors will respond to [01218] only a single signal. More immature precursors require at least two signals to respond. Therefore, to test the effect of polypeptides on hematopoietic activity of a wide range of progenitor cells, the assay contains a given polypeptide in the presence or absence of other hematopoietic growth factors. Isolated cells are cultured for 5 days in the presence of Stem Cell Factor (SCF) in combination with tested sample. SCF alone has a very limited effect on the proliferation of bone marrow (BM) cells, acting in such conditions only as a "survival" factor. However, combined with any factor exhibiting stimulatory effect on these cells (e.g., IL-3), SCF will cause a synergistic effect. Therefore, if the tested polypeptide has a stimulatory effect on hematopoietic progenitors, such activity can be easily detected. Since normal BM cells have a low level of cycling cells, it is likely that any inhibitory effect of a given polypeptide, or agonists or antagonists thereof, might not be detected. Accordingly, assays for an inhibitory effect on progenitors is preferably tested in cells that are first subjected to in vitro stimulation with SCF+IL+3, and then contacted with the compound that is being evaluated for inhibition of such induced proliferation.

[01219] Briefly, CD34+ cells are isolated using methods known in the art. The cells are thawed and resuspended in medium (QBSF 60 serum-free medium with 1% L-glutamine (500ml) Quality Biological, Inc., Gaithersburg, MD Cat# 160-204-101). After several gentle centrifugation steps at 200 x g, cells are allowed to rest for one hour. The cell count is adjusted to 2.5 x 10⁵ cells/ml. During this time, 100 µl of

sterile water is added to the peripheral wells of a 96-well plate. The cytokines that can be tested with a given polypeptide in this assay is rhSCF (R&D Systems, Minneapolis, MN, Cat# 255-SC) at 50 ng/ml alone and in combination with rhSCF and rhIL-3 (R&D Systems, Minneapolis, MN, Cat# 203-ML) at 30 ng/ml. After one hour, 10 μ l of prepared cytokines, 50 μ l of the supernatants prepared in Example 30 (supernatants at 1:2 dilution = 50 μ l) and 20 μ l of diluted cells are added to the media which is already present in the wells to allow for a final total volume of 100 μ l. The plates are then placed in a 37°C/5% CO₂ incubator for five days.

- [01220] Eighteen hours before the assay is harvested, 0.5 μCi/well of [3H] Thymidine is added in a 10 μl volume to each well to determine the proliferation rate. The experiment is terminated by harvesting the cells from each 96-well plate to a filtermat using the Tomtec Harvester 96. After harvesting, the filtermats are dried, trimmed and placed into OmniFilter assemblies consisting of one OmniFilter plate and one OmniFilter Tray. 60 μl Microscint is added to each well and the plate sealed with TopSeal-A press-on sealing film A bar code 15 sticker is affixed to the first plate for counting. The sealed plates are then loaded and the level of radioactivity determined via the Packard Top Count and the printed data collected for analysis. The level of radioactivity reflects the amount of cell proliferation.
- [01221] The studies described in this example test the activity of a given polypeptide to stimulate bone marrow CD34+ cell proliferation. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof. As a nonlimiting example, potential antagonists tested in this assay would be expected to inhibit cell proliferation in the presence of cytokines and/or to increase the inhibition of cell proliferation in the presence of cytokines and a given polypeptide. In contrast, potential agonists tested in this assay would be expected to enhance cell proliferation and/or to decrease the inhibition of cell proliferation in the presence of cytokines and a given polypeptide.
- [01222] The ability of a gene to stimulate the proliferation of bone marrow CD34+ cells indicates that polynucleotides and polypeptides corresponding to the gene are useful for the diagnosis and treatment of disorders affecting the immune system and

hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein.

Example 41: Assay for Extracellular Matrix Enhanced Cell Response (EMECR)

[01223] The objective of the Extracellular Matrix Enhanced Cell Response (EMECR) assay is to identify gene products (e.g., isolated polypeptides) that act on the hematopoietic stem cells in the context of the extracellular matrix (ECM) induced signal.

[01224] Cells respond to the regulatory factors in the context of signal(s) received from the surrounding microenvironment. For example, fibroblasts, and endothelial and epithelial stem cells fail to replicate in the absence of signals from the ECM. Hematopoietic stem cells can undergo self-renewal in the bone marrow, but not in in vitro suspension culture. The ability of stem cells to undergo self-renewal in vitro is dependent upon their interaction with the stromal cells and the ECM protein fibronectin (fn). Adhesion of cells to fn is mediated by the α₅.β₁ and α₄.β₁ integrin receptors, which are expressed by human and mouse hematopoietic stem cells. The factor(s) which integrate with the ECM environment and are responsible for stimulating stem cell self-renewal have not yet been identified. Discovery of such factors should be of great interest in gene therapy and bone marrow transplant applications

Briefly, polystyrene, non tissue culture treated, 96-well plates are coated with fin fragment at a coating concentration of 0.2 μg/ cm². Mouse bone marrow cells are plated (1,000 cells/well) in 0.2 ml of serum-free medium. Cells cultured in the presence of IL-3 (5 ng/ml) + SCF (50 ng/ml) would serve as the positive control, conditions under which little self-renewal but pronounced differentiation of the stem cells is to be expected. Gene products of the invention (e.g., including, but not limited to, polynucleotides and polypeptides of the present invention, and supernatants produced in Example 30), are tested with appropriate negative controls in the presence and absence of SCF(5.0 ng/ml), where test factor supernatants represent 10% of the total assay volume. The plated cells are then allowed to grow by incubating in a low

oxygen environment (5% CO₂, 7% O₂, and 88% N₂) tissue culture incubator for 7 days. The number of proliferating cells within the wells is then quantitated by measuring thymidine incorporation into cellular DNA. Verification of the positive hits in the assay will require phenotypic characterization of the cells, which can be accomplished by scaling up of the culture system and using appropriate antibody reagents against cell surface antigens and FACScan.

- [01226] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.
- [01227] If a particular polypeptide of the present invention is found to be a stimulator of hematopoietic progenitors, polynucleotides and polypeptides corresponding to the gene encoding said polypeptide may be useful for the diagnosis and treatment of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein. The gene product may also be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.
- [01228] Additionally, the polynucleotides and/or polypeptides of the gene of interest and/or agonists and/or antagonists thereof, may also be employed to inhibit the proliferation and differentiation of hematopoietic cells and therefore may be employed to protect bone marrow stem cells from chemotherapeutic agents during chemotherapy. This antiproliferative effect may allow administration of higher doses of chemotherapeutic agents and, therefore, more effective chemotherapeutic treatment.
- [01229] Moreover, polynucleotides and polypeptides corresponding to the gene of interest may also be useful for the treatment and diagnosis of hematopoietic related disorders such as, for example, anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. The uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia.

Example 42: Human Dermal Fibroblast and Aortic Smooth Muscle Cell Proliferation

[01230] The polypeptide of interest is added to cultures of normal human dermal fibroblasts (NHDF) and human aortic smooth muscle cells (AoSMC) and two coassays are performed with each sample. The first assay examines the effect of the polypeptide of interest on the proliferation of normal human dermal fibroblasts (NHDF) or aortic smooth muscle cells (AoSMC). Aberrant growth of fibroblasts or smooth muscle cells is a part of several pathological processes, including fibrosis, and restenosis. The second assay examines IL6 production by both NHDF and SMC. IL6 production is an indication of functional activation. Activated cells will have increased production of a number of cytokines and other factors, which can result in a proinflammatory or immunomodulatory outcome. Assays are run with and without co-TNFa stimulation, in order to check for costimulatory or inhibitory activity.

[01231] Briefly, on day 1, 96-well black plates are set up with 1000 cells/well (NHDF) or 2000 cells/well (AoSMC) in 100 μl culture media. NHDF culture media contains: Clonetics FB basal media, 1mg/ml hFGF, 5mg/ml insulin, 50mg/ml gentamycin, 2%FBS, while AoSMC culture media contains Clonetics SM basal media, 0.5 μg/ml hEGF, 5mg/ml insulin, 1μg/ml hFGF, 50mg/ml gentamycin, 50 μg/ml Amphotericin B, 5%FBS. After incubation at 37°C for at least 4-5 hours culture media is aspirated and replaced with growth arrest media. Growth arrest media for NHDF contains fibroblast basal media, 50mg/ml gentamycin, 2% FBS, while growth arrest media for AoSMC contains SM basal media, 50mg/ml gentamycin, 50μg/ml Amphotericin B, 0.4% FBS. Incubate at 37 °C until day 2.

[01232] On day 2, serial dilutions and templates of the polypeptide of interest are designed such that they always include media controls and known-protein controls. For both stimulation and inhibition experiments, proteins are diluted in growth arrest media. For inhibition experiments, TNFa is added to a final concentration of 2ng/ml (NHDF) or 5ng/ml (AoSMC). Add 1/3 vol media containing controls or polypeptides of the present invention and incubate at 37 degrees C/5% CO₂ until day 5.

[01233] Transfer 60μl from each well to another labeled 96-well plate, cover with a plate-sealer, and store at 4 degrees C until Day 6 (for IL6 ELISA). To the remaining 100 μl in the cell culture plate, aseptically add Alamar Blue in an amount equal to 10% of the culture volume (10μl). Return plates to incubator for 3 to 4 hours. Then measure fluorescence with excitation at 530nm and emission at 590nm using the CytoFluor. This yields the growth stimulation/inhibition data.

- [01234] On day 5, the IL6 ELISA is performed by coating a 96 well plate with 50-100 ul/well of Anti-Human IL6 Monoclonal antibody diluted in PBS, pH 7.4, incubate ON at room temperature.
- On day 6, empty the plates into the sink and blot on paper towels. Prepare Assay Buffer containing PBS with 4% BSA. Block the plates with 200 µl/well of Pierce Super Block blocking buffer in PBS for 1-2 hr and then wash plates with wash buffer (PBS, 0.05% Tween-20). Blot plates on paper towels. Then add 50 µl/well of diluted Anti-Human IL-6 Monoclonal, Biotin-labeled antibody at 0.50 mg/ml. Make dilutions of IL-6 stock in media (30, 10, 3, 1, 0.3, 0 ng/ml). Add duplicate samples to top row of plate. Cover the plates and incubate for 2 hours at RT on shaker.
- [01236] Plates are washed with wash buffer and blotted on paper towels. Dilute EU-labeled Streptavidin 1:1000 in Assay buffer, and add 100 µl/well. Cover the plate and incubate 1 h at RT. Plates are again washed with wash buffer and blotted on paper towels.
- [01237] Add 100 μl/well of Enhancement Solution. Shake for 5 minutes. Read the plate on the Wallac DELFIA Fluorometer. Readings from triplicate samples in each assay were tabulated and averaged.
- [01238] A positive result in this assay suggests AoSMC cell proliferation and that the polypeptide of the present invention may be involved in dermal fibroblast proliferation and/or smooth muscle cell proliferation. A positive result also suggests many potential uses of polypeptides, polynucleotides, agonists and/or antagonists of the polynucleotide/polypeptide of the present invention which gives a positive result. For example, inflammation and immune responses, wound healing, and angiogenesis, as detailed throughout this specification. Particularly, polypeptides of the present invention and polynucleotides of the present invention may be used in wound healing and dermal regeneration, as well as the promotion of vasculogenesis, both of the blood

vessels and lymphatics. The growth of vessels can be used in the treatment of, for example, cardiovascular diseases. Additionally, antagonists of polypeptides and polynucleotides of the invention may be useful in treating diseases, disorders, and/or conditions which involve angiogenesis by acting as an anti-vascular agent (e.g., antiangiogenesis). These diseases, disorders, and/or conditions are known in the art and/or are described herein, such as, for example, malignancies, solid tumors, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osler-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis. Moreover, antagonists of polypeptides and polynucleotides of the invention may be useful in treating anti-hyperproliferative diseases and/or anti-inflammatory known in the art and/or described herein.

[01239] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

Example 43: Cellular Adhesion Molecule (CAM) Expression on Endothelial Cells

[01240] The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves

intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.

[01241] Briefly, endothelial cells (e.g., Human Umbilical Vein Endothelial cells (HUVECs)) are grown in a standard 96 well plate to confluence, growth medium is removed from the cells and replaced with 100 µl of 199 Medium (10% fetal bovine serum (FBS)). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 µl volumes). Plates are then incubated at 37°C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 µl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min. Fixative is removed from the wells and wells are washed 1X with PBS(+Ca,Mg) + 0.5% BSA and drained. 10 µl of diluted primary antibody is added to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 µg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed three times with PBS(+Ca,Mg) + 0.5% BSA. 20 µl of diluted ExtrAvidin-Alkaline Phosphatase (1:5,000 dilution, referred to herein as the working dilution) are added to each well and incubated at 37°C for 30 min. Wells are washed three times with PBS(+Ca,Mg)+0.5% BSA. Dissolve 1 tablet of p-Nitrophenol Phosphate pNPP per 5 ml of glycine buffer (pH 10.4). 100 µl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10^{0}) > $10^{-0.5}$ > 10^{-1} > 10^{-1.5}. 5 µl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 µl of pNNP reagent is then added to each of the standard wells. The plate is incubated at 37°C for 4h. A volume of 50 ul of 3M NaOH is added to all wells. The plate is read on a plate reader at 405 nm using the background subtraction option on blank wells filled with glycine buffer only.

Additionally, the template is set up to indicate the concentration of AP-conjugate in each standard well [5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

Example 44: Alamar Blue Endothelial Cells Proliferation Assay

[01242] This assay may be used to quantitatively determine protein mediated inhibition of bFGF-induced proliferation of Bovine Lymphatic Endothelial Cells (LECs), Bovine Aortic Endothelial Cells (BAECs) or Human Microvascular Uterine Myometrial Cells (UTMECs). This assay incorporates a fluorometric growth indicator based on detection of metabolic activity. A standard Alamar Blue Proliferation Assay is prepared in EGM-2MV with 10 ng/ml of bFGF added as a source of endothelial cell stimulation. This assay may be used with a variety of endothelial cells with slight changes in growth medium and cell concentration. Dilutions of the protein batches to be tested are diluted as appropriate. Serum-free medium (GIBCO SFM) without bFGF is used as a non-stimulated control and Angiostatin or TSP-1 are included as a known inhibitory controls.

of 5000 to 2000 cells/well in a 96 well plate and placed at 37degrees C overnight. After the overnight incubation of the cells, the growth media is removed and replaced with GIBCO EC-SFM. The cells are treated with the appropriate dilutions of the protein of interest or control protein sample(s) (prepared in SFM) in triplicate wells with additional bFGF to a concentration of 10 ng/ml. Once the cells have been treated with the samples, the plate(s) is/are placed back in the 37° C incubator for three days. After three days 10 ml of stock alamar blue (Biosource Cat# DAL1100) is added to each well and the plate(s) is/are placed back in the 37°C incubator for four hours. The plate(s) are then read at 530nm excitation and 590nm emission using the CytoFluor fluorescence reader. Direct output is recorded in relative fluorescence units.

[01244] Alamar blue is an oxidation-reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth. As cells grow in culture, innate metabolic activity results in a chemical reduction of the immediate surrounding environment. Reduction related to growth

causes the indicator to change from oxidized (non-fluorescent blue) form to reduced (fluorescent red) form (i.e., stimulated proliferation will produce a stronger signal and inhibited proliferation will produce a weaker signal and the total signal is proportional to the total number of cells as well as their metabolic activity). The background level of activity is observed with the starvation medium alone. This is compared to the output observed from the positive control samples (bFGF in growth medium) and protein dilutions.

Example 45: Detection of Inhibition of a Mixed Lymphocyte Reaction

Lymphocyte Reaction (MLR) by gene products (e.g., isolated polypeptides). Inhibition of a MLR may be due to a direct effect on cell proliferation and viability, modulation of costimulatory molecules on interacting cells, modulation of adhesiveness between lymphocytes and accessory cells, or modulation of cytokine production by accessory cells. Multiple cells may be targeted by these polypeptides since the peripheral blood mononuclear fraction used in this assay includes T, B and natural killer lymphocytes, as well as monocytes and dendritic cells.

[01246] Polypeptides of interest found to inhibit the MLR may find application in diseases associated with lymphocyte and monocyte activation or proliferation. These include, but are not limited to, diseases such as asthma, arthritis, diabetes, inflammatory skin conditions, psoriasis, eczema, systemic lupus erythematosus, multiple sclerosis, glomerulonephritis, inflammatory bowel disease, crohn's disease, ulcerative colitis, arteriosclerosis, cirrhosis, graft vs. host disease, host vs. graft disease, hepatitis, leukemia and lymphoma.

[01247] Briefly, PBMCs from human donors are purified by density gradient centrifugation using Lymphocyte Separation Medium (LSM[®], density 1.0770 g/ml, Organon Teknika Corporation, West Chester, PA). PBMCs from two donors are adjusted to 2 x 10⁶ cells/ml in RPMI-1640 (Life Technologies, Grand Island, NY) supplemented with 10% FCS and 2 mM glutamine. PBMCs from a third donor is adjusted to 2 x 10⁵ cells/ml. Fifty microliters of PBMCs from each donor is added to wells of a 96-well round bottom microtiter plate. Dilutions of test materials (50 µl) is

added in triplicate to microtiter wells. Test samples (of the protein of interest) are added for final dilution of 1:4; rhuIL-2 (R&D Systems, Minneapolis, MN, catalog number 202-IL) is added to a final concentration of 1 μ g/ml; anti-CD4 mAb (R&D Systems, clone 34930.11, catalog number MAB379) is added to a final concentration of 10 μ g/ml. Cells are cultured for 7-8 days at 37°C in 5% CO₂, and 1 μ C of [³H] thymidine is added to wells for the last 16 hrs of culture. Cells are harvested and thymidine incorporation determined using a Packard TopCount. Data is expressed as the mean and standard deviation of triplicate determinations.

- [01248] Samples of the protein of interest are screened in separate experiments and compared to the negative control treatment, anti-CD4 mAb, which inhibits proliferation of lymphocytes and the positive control treatment, IL-2 (either as recombinant material or supernatant), which enhances proliferation of lymphocytes.
- [01249] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

Example 46: Assays for Protease Activity

- [01250] The following assay may be used to assess protease activity of the polypeptides of the invention.
- [01251] Gelatin and casein zymography are performed essentially as described (Heusen et al., Anal. Biochem., 102:196-202 (1980); Wilson et al., Journal of Urology, 149:653-658 (1993)). Samples are run on 10% polyacryamide/0.1% SDS gels containing 1% gelain orcasein, soaked in 2.5% triton at room temperature for 1 hour, and in 0.1M glycine, pH 8.3 at 37°C 5 to 16 hours. After staining in amido black areas of proteolysis apear as clear areas agains the blue-black background. Trypsin (Sigma T8642) is used as a positive control.
- [01252] Protease activity is also determined by monitoring the cleavage of n-a-benzoyl-L-arginine ethyl ester (BAEE) (Sigma B-4500. Reactions are set up in (25mMNaPO₄,1mM EDTA, and 1mM BAEE), pH 7.5. Samples are added and the change in adsorbance at 260nm is monitored on the Beckman DU-6 spectrophotometer

in the time-drive mode. Trypsin is used as a positive control.

[01253] Additional assays based upon the release of acid-soluble peptides from casein or hemoglobin measured as adsorbance at 280 nm or colorimetrically using the Folin method are performed as described in Bergmeyer, et al., Methods of Enzymatic Analysis, 5 (1984). Other assays involve the solubilization of chromogenic substrates (Ward, Applied Science, 251-317 (1983).

Example 47: Identifying Serine Protease Substrate Specificity

[01254] Methods known in the art or described herein may be used to determine the substrate specificity of the polypeptides of the present invention having serine protease activity. A preferred method of determining substrate specificity is by the use of positional scanning synthetic combinatorial libraries as described in GB 2 324 529 (incorporated herein in its entirety).

Example 48: Ligand Binding Assays

[01255] The following assay may be used to assess ligand binding activity of the polypeptides of the invention.

[01256] Ligand binding assays provide a direct method for ascertaining receptor pharmacology and are adaptable to a high throughput format. The purified ligand for a polypeptide is radiolabeled to high specific activity (50-2000 Ci/mmol) for binding studies. A determination is then made that the process of radiolabeling does not diminish the activity of the ligand towards its polypeptide. Assay conditions for buffers, ions, pH and other modulators such as nucleotides are optimized to establish a workable signal to noise ratio for both membrane and whole cell polypeptide sources. For these assays, specific polypeptide binding is defined as total associated radioactivity minus the radioactivity measured in the presence of an excess of unlabeled competing ligand. Where possible, more than one competing ligand is used to define residual nonspecific binding.

Example 49: Functional Assay in Xenopus Oocytes

[01257] Capped RNA transcripts from linearized plasmid templates encoding the polypeptides of the invention are synthesized *in vitro* with RNA polymerases in accordance with standard procedures. *In vitro* transcripts are suspended in water at a final concentration of 0.2 mg/mi. Ovarian lobes are removed from adult female toads, Stage V defolliculated oocytes are obtained, and RNA transcripts (10 ng/oocytc) are injected in a 50 nl bolus using a microinjection apparatus. Two electrode voltage clamps are used to measure the currents from individual *Xenopus oocytes* in response polypeptides and polypeptide agonist exposure. Recordings are made in Ca2+ free Barth's medium at room temperature. The Xenopus system can be used to screen known ligands and tissue/cell extracts for activating ligands.

Example 50: Microphysiometric Assays

[01258] Activation of a wide variety of secondary messenger systems results in extrusion of small amounts of acid from a cell. The acid formed is largely as a result of the increased metabolic activity required to fuel the intracellular signaling process. The pH changes in the media surrounding the cell are very small but are detectable by the CYTOSENSOR microphysiometer (Molecular Devices Ltd., Menlo Park, Calif.). The CYTOSENSOR is thus capable of detecting the activation of polypeptide which is coupled to an energy utilizing intracellular signaling pathway.

Example 51: Extract/Cell Supernatant Screening

[01259] A large number of mammalian receptors exist for which there remains, as yet, no cognate activating ligand (agonist). Thus, active ligands for these receptors may not be included within the ligands banks as identified to date. Accordingly, the polypeptides of the invention can also be functionally screened (using calcium, cAMP, microphysiometer, oocyte electrophysiology, etc., functional screens) against tissue extracts to identify its natural ligands. Extracts that produce positive functional responses can be sequentially subfractionated until an activating ligand is isolated and identified.

Example 52: Calcium and cAMP Functional Assays

have been shown to be coupled functionally to activation of PLC and calcium mobilization and/or cAMP stimulation or inhibition. Basal calcium levels in the HEK 293 cells in receptor-transfected or vector control cells were observed to be in the normal, 100 nM to 200 nM, range. HEK 293 cells expressing recombinant receptors are loaded with fura 2 and in a single day >150 selected ligands or tissue/cell extracts are evaluated for agonist induced calcium mobilization. Similarly, HEK 293 cells expressing recombinant receptors are evaluated for the stimulation or inhibition of cAMP production using standard cAMP quantitation assays. Agonists presenting a calcium transient or cAMP fluctuation are tested in vector control cells to determine if the response is unique to the transfected cells expressing receptor.

Example 53: ATP-binding assay

[01261] The following assay may be used to assess ATP-binding activity of polypeptides of the invention.

In a competition assay described in U.S. Patent 5,858,719, which is herein incorporated by reference in its entirety. Briefly, ATP-binding to polypeptides of the invention is measured via photoaffinity labeling with 8-azido-ATP in a competition assay. Reaction mixtures containing 1 mg/ml of the ABC transport protein of the present invention are incubated with varying concentrations of ATP, or the non-hydrolyzable ATP analog adenyl-5'-imidodiphosphate for 10 minutes at 4°C. A mixture of 8-azido-ATP (Sigma Chem. Corp., St. Louis, MO.) plus 8-azido-ATP (32P-ATP) (5 mCi/μmol, ICN, Irvine CA.) is added to a final concentration of 100 μM and 0.5 ml aliquots are placed in the wells of a porcelain spot plate on ice. The plate is irradiated using a short wave 254 nm UV lamp at a distance of 2.5 cm from the plate for two one-minute intervals with a one-minute cooling interval in between. The

reaction is stopped by addition of dithiothreitol to a final concentration of 2mM. The incubations are subjected to SDS-PAGE electrophoresis, dried, and autoradiographed. Protein bands corresponding to the particular polypeptides of the invention are excised, and the radioactivity quantified. A decrease in radioactivity with increasing ATP or adenly-5'-imidodiphosphate provides a measure of ATP affinity to the polypeptides.

Example 54: Small Molecule Screening

[01263] This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and polypeptide of the invention.

Other agents which affect activities mediated by the polypeptides of the invention. These methods comprise contacting such an agent with a polypeptide of the invention or fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the invention.

[01265] Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is herein incorporated by reference in its entirety. Briefly

stated, large numbers of different small molecule test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with polypeptides of the invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.

[01266] This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.

Example 55: Phosphorylation Assay

[01267] In order to assay for phosphorylation activity of the polypeptides of the invention, a phosphorylation assay as described in U.S. Patent 5,958,405 (which is herein incorporated by reference) is utilized. Briefly, phosphorylation activity may be measured by phosphorylation of a protein substrate using gamma-labeled ³²P-ATP and quantitation of the incorporated radioactivity using a gamma radioisotope counter. The polypeptides of the invention are incubated with the protein substrate, ³²P-ATP, and a kinase buffer. The ³²P incorporated into the substrate is then separated from free ³²P-ATP by electrophoresis, and the incorporated ³²P is counted and compared to a negative control. Radioactivity counts above the negative control are indicative of phosphorylation activity of the polypeptides of the invention.

Example 56: Detection of Phosphorylation Activity (Activation) of the Polypeptides of the Invention in the Presence of Polypeptide Ligands

[01268] Methods known in the art or described herein may be used to determine the phosphorylation activity of the polypeptides of the invention. A preferred method of

determining phosphorylation activity is by the use of the tyrosine phosphorylation assay as described in U.S. Patent 5,817,471 (incorporated herein by reference).

Example 57: Identification Of Signal Transduction Proteins That Interact With Polypeptides Of The Present Invention

[01269] The purified polypeptides of the invention are research tools for the identification, characterization and purification of additional signal transduction pathway proteins or receptor proteins. Briefly, labeled receptor PTK polypeptide is useful as a reagent for the purification of molecules with which it interacts. In one embodiment of affinity purification, receptor PTK polypeptide is covalently coupled to a chromatography column. Cell-free extract derived from putative target cells, such as carcinoma tissues, is passed over the column, and molecules with appropriate affinity bind to the receptor PTK polypeptides, or specific phosphotyrosine-recognition domains thereof. The receptor PTK polypeptide interacting protein-complex is recovered from the column, dissociated, and the recovered molecule subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.

Example 58: IL-6 Bioassay

[01270] To test the proliferative effects of the polypeptides of the invention, the IL-6 Bioassay as described by Marz et al. is utilized (Proc. Natl. Acad. Sci., U.S.A., 95:3251-56 (1998), which is herein incorporated by reference). Briefly, IL-6 dependent B9 murine cells are washed three times in IL-6 free medium and plated at a concentration of 5,000 cells per well in 50 μl, and 50 μl of the IL-6-like polypeptide is added. After 68 hrs. at 37°C, the number of viable cells is measured by adding the tetrazolium salt thiazolyl blue (MTT) and incubating for a further 4 hrs. at 37°C. B9 cells are lysed by SDS and optical density is measured at 570 nm. Controls containing IL-6 (positive) and no cytokine (negative) are utilized. Enhanced proliferation in the

test sample(s) relative to the negative control is indicative of proliferative effects mediated by polypeptides of the invention.

Example 59: Support of Chicken Embryo Neuron Survival

[01271] To test whether sympathetic neuronal cell viability is supported by polypeptides of the invention, the chicken embryo neuronal survival assay of Senaldi et al is utilized (Proc. Natl. Acad. Sci., U.S.A., 96:11458-63 (1998), which is herein incorporated by reference). Briefly, motor and sympathetic neurons are isolated from chicken embryos, resuspended in L15 medium (with 10% FCS, glucose, sodium selenite, progesterone, conalbumin, putrescine, and insulin; Life Technologies, Rockville, MD.) and Dulbecco's modified Eagles medium [with 10% FCS, glutamine, penicillin, and 25 mM Hepes buffer (pH 7.2); Life Technologies, Rockville, MD.], respectively, and incubated at 37°C in 5% CO2 in the presence of different concentrations of the purified IL-6-like polypeptide, as well as a negative control lacking any cytokine. After 3 days, neuron survival is determined by evaluation of cellular morphology, and through the use of the colorimetric assay of Mosmann (Mossman, T., J. Immunol. Methods, 65:55-63 (1983)). Enhanced neuronal cell viability as compared to the controls lacking cytokine is indicative of the ability of the inventive purified IL-6-like polypeptide(s) to enhance the survival of neuronal cells.

Example 60: Assay for Phosphatase Activity

[01272] The following assay may be used to assess serine/threonine phosphatase (PTPase) activity of the polypeptides of the invention.

[01273] In order to assay for serine/threonine phosphatase (PTPase) activity, assays can be utilized which are widely known to those skilled in the art. For example, the serine/threonine phosphatase (PSPase) activity is measured using a PSPase assay kit from New England Biolabs, Inc. Myelin basic protein (MyBP), a substrate for PSPase, is phosphorylated on serine and threonine residues with cAMP-dependent Protein Kinase in the presence of [32P]ATP. Protein serine/threonine phosphatase activity is

then determined by measuring the release of inorganic phosphate from 32P-labeled MyBP.

Example 61: Interaction of Serine/Threonine Phosphatases with other Proteins

[01274] The polypeptides of the invention with serine/threonine phosphatase activity as determined in Example 60 are research tools for the identification, characterization and purification of additional interacting proteins or receptor proteins, or other signal transduction pathway proteins. Briefly, labeled polypeptide(s) of the invention is useful as a reagent for the purification of molecules with which it interacts. In one embodiment of affinity purification, polypeptide of the invention is covalently coupled to a chromatography column. Cell-free extract derived from putative target cells, such as neural or liver cells, is passed over the column, and molecules with appropriate affinity bind to the polypeptides of the invention. The polypeptides of the invention -complex is recovered from the column, dissociated, and the recovered molecule subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.

Example 62: Assaying for Heparanase Activity

[01275] In order to assay for heparanase activity of the polypeptides of the invention, the heparanase assay described by Vlodavsky et al is utilized (Vlodavsky, I., et al., Nat. Med., 5:793-802 (1999)). Briefly, cell lysates, conditioned media or intact cells (1 x 10⁶ cells per 35-mm dish) are incubated for 18 hrs at 37°C, pH 6.2-6.6, with ³⁵S-labeled ECM or soluble ECM derived peak I proteoglycans. The incubation medium is centrifuged and the supernatant is analyzed by gel filtration on a Sepharose CL-6B column (0.9 x 30 cm). Fractions are eluted with PBS and their radioactivity is measured. Degradation fragments of heparan sulfate side chains are eluted from Sepharose 6B at 0.5 < K_{av} < 0.8 (peak II). Each experiment is done at least three times.

Degradation fragments corresponding to "peak II," as described by Vlodavsky et al., is indicative of the activity of the polypeptides of the invention in cleaving heparan sulfate.

Example 63: Immobilization of biomolecules

This example provides a method for the stabilization of polypeptides of the [01276] invention in non-host cell lipid bilayer constucts (see, e.g., Bieri et al., Nature Biotech 17:1105-1108 (1999), hereby incorporated by reference in its entirety herein) which can be adapted for the study of polypeptides of the invention in the various functional assays described above. Briefly, carbohydrate-specific chemistry for biotinylation is used to confine a biotin tag to the extracellular domain of the polypeptides of the invention, thus allowing uniform orientation upon immobilization. A 50uM solution of polypeptides of the invention in washed membranes is incubated with 20 mM NaIO4 and 1.5 mg/ml (4mM) BACH or 2 mg/ml (7.5mM) biotin-hydrazide for 1 hr at room temperature (reaction volume, 150ul). Then the sample is dialyzed (Pierce Slidealizer Cassett, 10 kDa cutoff; Pierce Chemical Co., Rockford IL) at 4C first for 5 h, exchanging the buffer after each hour, and finally for 12 h against 500 ml buffer R (0.15 M NaCl, 1 mM MgCl2, 10 mM sodium phosphate, pH7). Just before addition into a cuvette, the sample is diluted 1:5 in buffer ROG50 (Buffer R supplemented with 50 mM octylglucoside).

Example 64: TAQMAN

[01277] Quantitative PCR (QPCR). Total RNA from cells in culture are extracted by Trizol separation as recommended by the supplier (LifeTechnologies). (Total RNA is treated with DNase I (Life Technologies) to remove any contaminating genomic DNA before reverse transcription.) Total RNA (50 ng) is used in a one-step, 50ul, RT-QPCR, consisting of Taqman Buffer A (Perkin-Elmer; 50 mM KCl/10 mM Tris, pH 8.3), 5.5 mM MgCl₂, 240 μM each dNTP, 0.4 units RNase inhibitor(Promega),

8%glycerol, 0.012% Tween-20, 0.05% gelatin, 0.3uM primers, 0.1uM probe, 0.025units Amplitaq Gold (Perkin-Elmer) and 2.5 units Superscript II reverse transcriptase (Life Technologies). As a control for genomic contamination, parallel reactions are setup without reverse transcriptase. The relative abundance of (unknown) and 18S RNAs are assessed by using the Applied Biosystems Prism 7700 Sequence Detection System (Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. & Deetz, K. (1995) PCR Methods Appl. 4, 357-362). Reactions are carried out at 48°C for 30 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15s, 60°C for 1 min. Reactions are performed in triplicate.

[01278] Primers (f & r) and FRET probes sets are designed using Primer Express Software (Perkin-Elmer). Probes are labeled at the 5'-end with the reporter dye 6-FAM and on the 3'-end with the quencher dye TAMRA (Biosource International, Camarillo, CA or Perkin-Elmer).

Example 65: Assays for Metalloproteinase Activity

[01279] Metalloproteinases (EC 3.4.24.-) are peptide hydrolases which use metal ions, such as Zn²⁺, as the catalytic mechanism. Metalloproteinase activity of polypeptides of the present invention can be assayed according to the following methods.

Proteolysis of alpha-2-macroglobulin

[01280] To confirm protease activity, purified polypeptides of the invention are mixed with the substrate alpha-2-macroglobulin (0.2 unit/ml; Boehringer Mannheim, Germany) in 1x assay buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl₂, 25 μM ZnCl₂ and 0.05% Brij-35) and incubated at 37°C for 1-5 days. Trypsin is used as positive control. Negative controls contain only alpha-2-macroglobulin in assay buffer. The samples are collected and boiled in SDS-PAGE sample buffer containing 5% 2-mercaptoethanol for 5-min, then loaded onto 8% SDS-polyacrylamide gel. After electrophoresis the proteins are visualized by silver staining. Proteolysis is evident by the appearance of lower molecular weight bands as compared to the negative control.

Inhibition of alpha-2-macroglobulin proteolysis by inhibitors of metalloproteinases

Known metalloproteinase inhibitors (metal chelators (EDTA, EGTA, AND [01281] HgCl₂), peptide metalloproteinase inhibitors (TIMP-1 and TIMP-2), and commercial small molecule MMP inhibitors) are used to characterize the proteolytic activity of polypeptides of the invention. The three synthetic MMP inhibitors used are: MMP inhibitor I, $[IC_{50} = 1.0 \,\mu\text{M}$ against MMP-1 and MMP-8; $IC_{50} = 30 \,\mu\text{M}$ against MMP-9; IC₅₀ = 150 μ M against MMP-3]; MMP-3 (stromelysin-1) inhibitor I [IC₅₀ = 5 μ M against MMP-3], and MMP-3 inhibitor II [K_i = 130 nM against MMP-3]; inhibitors available through Calbiochem, catalog # 444250, 444218, and 444225, respectively). Briefly, different concentrations of the small molecule MMP inhibitors are mixed with purified polypeptides of the invention (50µg/ml) in 22.9 µl of 1x HEPES buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl₂, 25 μ M ZnCl₂ and 0.05%Brij-35) and incubated at room temperature (24 °C) for 2-hr, then 7.1 µl of substrate alpha-2macroglobulin (0.2 unit/ml) is added and incubated at 37°C for 20-hr. The reactions are stopped by adding 4x sample buffer and boiled immediately for 5 minutes. After SDS-PAGE, the protein bands are visualized by silver stain.

Synthetic Fluorogenic Peptide Substrates Cleavage Assay

[01282] The substrate specificity for polypeptides of the invention with demonstrated metalloproteinase activity can be determined using synthetic fluorogenic peptide substrates (purchased from BACHEM Bioscience Inc). Test substrates include, M-1985, M-2225, M-2105, M-2110, and M-2255. The first four are MMP substrates and the last one is a substrate of tumor necrosis factor-α (TNF-α) converting enzyme (TACE). All the substrates are prepared in 1:1 dimethyl sulfoxide (DMSO) and water. The stock solutions are 50-500 μM. Fluorescent assays are performed by using a Perkin Elmer LS 50B luminescence spectrometer equipped with a constant temperature water bath. The excitation λ is 328 nm and the emission λ is 393 nm. Briefly, the assay is carried out by incubating 176 μl 1x HEPES buffer (0.2 M NaCl, 10 mM CaCl₂, 0.05% Brij-35 and 50 mM HEPES, pH 7.5) with 4 μl of substrate solution (50 μM) at 25 °C for 15 minutes, and then adding 20 μl of a purified polypeptide of the invention into the assay cuvett. The final concentration of substrate

is 1 µM. Initial hydrolysis rates are monitored for 30-min.

Example 66: Characterization of the cDNA contained in a deposited plasmid

[01283]The size of the cDNA insert contained in a deposited plasmid may be routinely determined using techniques known in the art, such as PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the cDNA sequence. For example, two primers of 17-30 nucleotides derived from each end of the cDNA (i.e., hybridizable to the absolute 5' nucleotide or the 3' nucleotide end of the sequence of SEQ ID NO:X, respectively) are synthesized and used to amplify the cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 ul of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 uM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94 degree C for 1 min; annealing at 55 degree C for 1 min; elongation at 72 degree C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

[01284] Use of the above methodologies and/or other methodologies known in the art generates fragments from the clone corresponding to the approximate fragments described in Table 8, below. Accordingly, Table 8 provides a physical characterization of certain clones encompassed by the invention. The first column provides the unique clone identifier, "Clone ID NO:Z", for cDNA clones of the invention, as described in Table 1A. The second column provides the approximate size of the cDNA insert contained in the corresponding cDNA clone.

TABLE 8

Clone ID NO:Z	cDNA Insert Size:
H7MDD72	700
HBGMZ39	500
HEGAZ61	600
НЕРВАЗ 9	700
HEPCU32	1500
HLWAR77	1300
HPFDV71	700
HTECA32	800
HTEHC47	700
HTLIV78	700
HTTCT34	600
HUKEP18	900
HTEPE35	700
HPWCG85	1000
HPFCP82	700
HOFMU67	1400
HBZAI39	1100
HBGMG81	700

[01285] It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

[01286] The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference. In addition, the CD-R copy of the sequence listing submitted herewith and the corresponding computer readable form are both incorporated herein by reference in their entireties. The specification and Sequence Listing of each of the following U.S. applications are herein incorporated by reference in their entirety: Application No. 60/179,065, filed on 31-Jan-2000; Application No. 60/180,628, filed on 04-Feb-2000; Application No. 60/214,886, filed on 28-Jun-2000; Application No. 60/217,487, filed on 11-Jul-2000; Application No. 60/225,758, filed on 14-Aug-2000; Application No. 60/220,963, filed on 26-Jul-2000; Application No. 60/217,496, filed on 11-Jul-2000; Application No. 60/225,447, filed on 14-Aug-2000; Application No. 60/218,290, filed on 14-Jul-2000; Application No. 60/225,757, filed on 14-Aug-2000; Application No. 60/226,868, filed on 22-Aug-2000; Application No. 60/216,647, filed on 07-Jul-2000; Application No. 60/225,267, filed on 14-Aug-2000; Application No. 60/216,880, filed on 07-Jul-2000; Application No. 60/225,270, filed on 14-Aug-2000; Application No. 60/251,869, filed on 08-Dec-2000; Application No. 60/235,834, filed on 27-Sep-2000; Application No. 60/234,274, filed on 21-Sep-2000; Application No. 60/234,223, filed on 21-Sep-2000; Application No. 60/228,924, filed on 30-Aug-2000; Application No. 60/224,518, filed on 14-Aug-2000; Application No. 60/236,369, filed on 29-Sep-2000; Application No. 60/224,519, filed on 14-Aug-2000; Application No. 60/220,964, filed on 26-Jul-2000; Application No. 60/241,809, filed on 20-Oct-2000; Application No. 60/249,299, filed on 17-Nov-2000; Application No. 60/236,327, filed on 29-Sep-2000; Application No. 60/241,785, filed on 20-Oct-2000; Application No. 60/244,617, filed on 01-Nov-2000; Application No. 60/225,268, filed on 14-Aug-2000; Application No. 60/236,368, filed on 29-Sep-2000; Application No. 60/251,856, filed on 08-Dec-2000; Application No. 60/251,868, filed on 08-Dec-2000; Application No. 60/229,344, filed on 01-Sep-2000; Application No. 60/234,997, filed

on 25-Sep-2000; Application No. 60/229,343, filed on 01-Sep-2000; Application No. 60/229,345, filed on 01-Sep-2000; Application No. 60/229,287, filed on 01-Sep-2000; Application No. 60/229,513, filed on 05-Sep-2000; Application No. 60/231,413, filed on 08-Sep-2000; Application No. 60/229,509, filed on 05-Sep-2000; Application No. 60/236,367, filed on 29-Sep-2000; Application No. 60/237,039, filed on 02-Oct-2000; Application No. 60/237,038, filed on 02-Oct-2000; Application No. 60/236,370, filed on 29-Sep-2000; Application No. 60/236,802, filed on 02-Oct-2000; Application No. 60/237,037, filed on 02-Oct-2000; Application No. 60/237,040, filed on 02-Oct-2000; Application No. 60/240,960, filed on 20-Oct-2000; Application No. 60/239,935, filed on 13-Oct-2000; Application No. 60/239,937, filed on 13-Oct-2000; Application No. 60/241,787, filed on 20-Oct-2000; Application No. 60/246,474, filed on 08-Nov-2000; Application No. 60/246,532, filed on 08-Nov-2000; Application No. 60/249,216, filed on 17-Nov-2000; Application No. 60/249,210, filed on 17-Nov-2000; Application No. 60/226,681, filed on 22-Aug-2000; Application No. 60/225,759, filed on 14-Aug-2000; Application No. 60/225,213, filed on 14-Aug-2000; Application No. 60/227,182, filed on 22-Aug-2000; Application No. 60/225,214, filed on 14-Aug-2000; Application No. 60/235,836; filed on 27-Sep-2000; Application No. 60/230,438, filed on 06-Sep-2000; Application No. 60/215,135, filed on 30-Jun-2000; Application No. 60/225,266, filed on 14-Aug-2000; Application No. 60/249,218, filed on 17-Nov-2000; Application No. 60/249,208, filed on 17-Nov-2000; Application No. 60/249,213, filed on 17-Nov-2000; Application No. 60/249,212, filed on 17-Nov-2000; Application No. 60/249,207, filed on 17-Nov-2000; Application No. 60/249,245, filed on 17-Nov-2000; Application No. 60/249,244, filed on 17-Nov-2000; Application No. 60/249,217, filed on 17-Nov-2000; Application No. 60/249,211, filed on 17-Nov-2000; Application No. 60/249,215, filed on 17-Nov-Application No. 60/249,264, filed on 17-Nov-2000; Application No. 2000: 60/249,214, filed on 17-Nov-2000; Application No. 60/249,297, filed on 17-Nov-2000; Application No. 60/232,400, filed on 14-Sep-2000; Application No. 60/231,242, filed on 08-Sep-2000; Application No. 60/232,081, filed on 08-Sep-2000; Application No. 60/232,080, filed on 08-Sep-2000; Application No. 60/231,414, filed on 08-Sep-2000; Application No. 60/231,244, filed on 08-Sep-2000; Application No. 60/233,064, filed on 14-Sep-2000; Application No. 60/233,063, filed on 14-Sep-2000; Application

No. 60/232,397, filed on 14-Sep-2000; Application No. 60/232,399, filed on 14-Sep-2000; Application No. 60/232,401, filed on 14-Sep-2000; Application No. 60/241,808. filed on 20-Oct-2000; Application No. 60/241,826, filed on 20-Oct-2000; Application No. 60/241,786, filed on 20-Oct-2000; Application No. 60/241,221, filed on 20-Oct-2000; Application No. 60/246,475, filed on 08-Nov-2000; Application No. 60/231,243, filed on 08-Sep-2000; Application No. 60/233,065, filed on 14-Sep-2000: Application No. 60/232,398, filed on 14-Sep-2000; Application No. 60/234,998, filed on 25-Sep-2000; Application No. 60/246,477, filed on 08-Nov-2000; Application No. 60/246,528, filed on 08-Nov-2000; Application No. 60/246,525, filed on 08-Nov-2000; Application No. 60/246,476, filed on 08-Nov-2000; Application No. 60/246,526, filed on 08-Nov-2000; Application No. PT172, filed on 17-Nov-2000; Application No. 60/246,527, filed on 08-Nov-2000; Application No. 60/246,523, filed on 08-Nov-2000; Application No. 60/246,524, filed on 08-Nov-2000; Application No. 60/246,478, filed on 08-Nov-2000; Application No. 60/246,609, filed on 08-Nov-2000; Application No. 60/246,613, filed on 08-Nov-2000; Application No. 60/249,300, filed on 17-Nov-2000; Application No. 60/249,265, filed on 17-Nov-2000; Application No. 60/246,610, filed on 08-Nov-2000; Application No. 60/246,611, filed on 08-Nov-2000; Application No. 60/230,437, filed on 06-Sep-2000; Application No. 60/251,990, filed on 08-Dec-2000; Application No. 60/251,988, filed on 05-Dec-2000; Application No. 60/251,030, filed on 05-Dec-2000; Application No. 60/251,479, filed on 06-Dec-2000; Application No. PJ005, filed on 05-Dec-2000; Application No. PJ006, filed on 01-Dec-2000; Application No. 60/251,989, filed on 08-Dec-2000; Application No. 60/250,391, filed on 01-Dec-2000; and Application No. 60/254,097, filed on 11-Dec-2000.

[01287] Moreover, the microfiche copy and the corresponding computer readable form of the Sequence Listing of U.S. Application Serial No. 60/179,065, and the hard copy of and the corresponding computer readable form of the Sequence Listing of U.S. Application Serial No. 60/180,628 are also incorporated herein by reference in their entireties.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL			
(PCT Rule 13bis)			
A. The indications made below relate to the deposited mic description at Table 6.	croorganism or other biological material referred to in the		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution: American Type (Culture Collection		
Address of depositary institution (including posta 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	al code and country)		
Date of deposit May 20, 1997	Accession Number 209059		
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)		
until the publication of the mention of the grant of the Europ	is sought a sample of the deposited microorganism will be made available pean patent or until the date on which the application has been refused on e of such a sample to an expert nominated by the person requesting the Continued on additional sheets		
E. SEPARATE FURNISHING OF INDICATIONS (leav	ve blank (f not applicable)		
The indications listed below will be submitted to the internation Number of Deposit*)	nal Bureau later (specify the general nature of the indications e.g., "Accession		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:		
Authorized officer INTERNATIONAL DIVISION	Authorized officer		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description at Table 6. B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet Name of depositary institution: American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Accession Number Date of deposit May 20, 1997 209060 C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet \square D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) Europe In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the Continued on additional sheets sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") For receiving Office use only For International Bureau use only This sheet was received with the international application ☐ This sheet was received by the International Bureau on: Authorized officer TATIONAL PARAMETERS Authorized officer

INDICATIONS RE	LATING T	O A DEPOS OLOGICAL	ITED MICROORGANISM MATERIAL	
	(PCT Rule 13bis)			
A. The indications made below relate to the dep description at Table 6.	osited micro	oorganism or	other biological material referred to in th	e
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an addition	nal sheet 🗵
Name of depositary institution: America	an Type C	ulture Colle	ection	
Address of depositary institution (includ 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ing postal	code and c	country)	
Date of deposit May 20, 1997		Accession Nu	mber 209061	
C. ADDITIONAL INDICATIONS (leave blan.	k if not applic	cable)	This information is continued on an additio	nal sheet
D. DESIGNATED STATES FOR WHICH IN	DICATIO	NS ARE MA	DE (if the indications are not for all designated 2	States)
Europe In respect of those designations in which a Europe until the publication of the mention of the grant of withdrawn or is deemed to be withdrawn, only be sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICAT	f the Europe y the issue of IONS (leave l	an patent or unof such a samp	ntil the date on which the application has belie to an expert nominated by the person Continued on additional should	peen refused o requesting the eets
The indications listed below will be submitted to the Number of Deposit")	international	Bureau later (s	pecify the general nature of the indications	e.g., "Accession
For receiving Office use only			For International Bureau use only	
This sheet was received with the international appl	ication	☐ This sheet	was received by the International Bureau on:	
Authorized office MILYIM S. BROOKS SE TOT SENSTIONAL DEVIS 703.205.5163		Authorized off	icer	
Revised Form PCT/RO/134 (January 2001)	<u> </u>			Pctro134ep.solli

Pctro134ep.sollist

) A DEPOSIT LOGICAL M	TED MICROORGANISM IATERIAL	
(PCT Rule 13bis)				
A. The indications made below relate to the deposite description at Table 6.	ed micro	organism or o	ther biological material referred to in the	
B. IDENTIFICATION OF DEPOSIT		F	urther deposits are identified on an additional	sheet 🗵
Name of depositary institution: American I	Γуре Сι	ulture Colle	etion	
Address of depositary institution (including 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	postal	code and co	nuntry)	·
Date of deposit May 20, 1997		Accession Nun	nber 209062	
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet				I sheet
D. DESIGNATED STATES FOR WHICH INDIC	CATIO	NS ARE MAI	DE (if the indications are not for all designated Sta	ites)
Europe In respect of those designations in which a European Puntil the publication of the mention of the grant of the withdrawn or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC).	Europea	an patent or un	til the date on which the application has be	en refused or equesting the
E. SEPARATE FURNISHING OF INDICATION	NS Neave b	olank if not applicab	e)	
The indications listed below will be submitted to the international Number of Deposit")			,	z, "Accession
For receiving Office use only			For International Bureau use only	
This sheet was received with the international applicate AFIVIN S. BROOKS SR	ion	☐ This sheet	was received by the International Bureau on:	
Authorized officer TATE ON ALL PROPERTY OF THE	252	Authorized off	cer	

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

PCT/US01/01339 WO 01/55320

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis)			
A. The indications made below relate to the deposited middle description at Table 6.	croorganism or other biological material referred to in the		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution: American Type	Culture Collection_		
Address of depositary institution <i>(including post</i> 10801 University Boulévard Manassas, Virginia 20110-2209 United States of America	al code and country)		
Date of deposit May 20, 1997	Accession Number 209063		
C. ADDITIONAL INDICATIONS (leave blank if not app	licable) This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)		
until the publication of the mention of the grant of the Euro	is sought a sample of the deposited microorganism will be made available bean patent or until the date on which the application has been refused or a function of such a sample to an expert nominated by the person requesting the Continued on additional sheets		
E. SEPARATE FURNISHING OF INDICATIONS (1847	re blank if not opplicable)		
The indications listed below will be submitted to the internation Number of Deposit")	al Bureau later (specify the general nature of the indications e.g., "Accession		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:		
Authorized officer TINTERNATIONAL DIVISION 703-305-5768	Authorized officer		
Revised Form PCT/RO/134 (January 2001)	Petro134ep.sollist		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL				
	(PCT Rule 13bis)			
A. The indications made below relate to the deposite description at Table 6.	d micr	oorganism or o	ther biological material referred to i	n the
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an add	itional sheet 🗵
Name of depositary institution: American T	уре С	ulture Colle	ction	
Address of depositary institution (including page 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	postal	code and c	ountry)	
Date of deposit May 20, 1997		Accession Nur	nber 209064	
C. ADDITIONAL INDICATIONS (leave blank if no	t applic	cable)	This information is continued on an add	litional sheet
				
D. DESIGNATED STATES FOR WHICH INDIC	ATIO	NS ARE MAI	DE (if the indications are not for all designa	ted States)
Europe In respect of those designations in which a European Pauntil the publication of the mention of the grant of the withdrawn or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC).	Europe	an patent or un	til the date on which the application h	as been refused or son requesting the
E. SEPARATE FURNISHING OF INDICATION	S (leave l	blank if not applicabl	a)	
The indications listed below will be submitted to the international Number of Deposit")	iational	Bureau later (s)	pecify the general nature of the indication	ons e.g., "Accession
For receiving Office use only			For International Bureau use only	
This sheet was received with the international application		☐ This sheet v	vas received by the International Bureau	on:
Authorized officer 705-365-5163 M/2	M	Authorized offi	cer	
Revised Form PCT/RO/134 (January 2001)				Pctro134ep.sollis

PCT/US01/01339 WO 01/55320

	RELATING TO		ITED MICROORGANISM MATERIAL	
(PCT Rule 13bis)				
A. The indications made below relate to the description at Table 6.	deposited micr	oorganism or	other biological material referred to in th	e
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an addition	nal sheet 🗵
Name of depositary institution: Ame	erican Type C	Culture Colle	ection	
Address of depositary institution (inc 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	eluding posta	l code and c	country)	
Date of deposit May 20, 1997		Accession Nu	mber 209065	
C. ADDITIONAL INDICATIONS (leave b	blank if not applic	cable)	This information is continued on an additio	nal sheet
		*		
D. DESIGNATED STATES FOR WHICH	H INDICATIO	NS ARE MA	DE (if the indications are not for all designated	States)
Europe In respect of those designations in which a Euruntil the publication of the mention of the grawithdrawn or is deemed to be withdrawn, on sample (Rule 28(4) EPC).	ropean Patent is	sought a samp	le of the deposited microorganism will be	made available been refused o requesting the
E. SEPARATE FURNISHING OF INDIC	CATIONS (leave	blank if not applicat	ola)	
The indications listed below will be submitted to Number of Deposit")	the international	Bureau later (s	specify the general nature of the indications	e.g., "Accession
For receiving Office use only			For International Bureau use only	
This sheet was received with the international MEIVID S. BROOK	SSR	☐ This sheet	was received by the International Bureau on:	
Authorized officer TNTERNATIONALD 703-305-5163	PACKERVE	Authorized of	icer	
Revised Form PCT/RO/134 (January 2001)	MXS	l		Petrol 34ep.solli

Petrol 34ep.sollist

PCT/US01/01339 WO 01/55320

	G TO A DEPOSITED MICROORGANISM BIOLOGICAL MATERIAL	
(PCT Rule 13bis)		
A. The indications made below relate to the deposited redescription at Table 6.	nicroorganism or other biological material referred to in the	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution: American Type	e Culture Collection	
Address of depositary institution (including pos 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	etal code and country)	
Date of deposit May 20, 1997	Accession Number 209066	
C. ADDITIONAL INDICATIONS (leave blank if not ap	pplicable) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICAT	IONS ARE MADE (if the indications are not for all designated States)	
luntil the publication of the mention of the grant of the Eur	t is sought a sample of the deposited microorganism will be made available opean patent or until the date on which the application has been refused on the open such a sample to an expert nominated by the person requesting the Continued on additional sheets	
E. SEPARATE FURNISHING OF INDICATIONS (18	ave blank if not applicable)	
The indications listed below will be submitted to the internation Number of Deposit")	onal Bureau later (specify the general nature of the indications e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:	
Authorized office NTERNATIONAL DEVISION 703-505-5169	Authorized officer	
Revised Form PCT/RO/134 (January 2001)	Pctro134ep.solli	

Petro134ep.sollist

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description at Table 6. B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet Name of depositary institution: American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Date of deposit Accession Number May 20, 1997 209067 C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) Europe In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). Continued on additional sheets E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") For receiving Office use only For International Bureau use only This sheet was received with the international application ☐ This sheet was received by the International Bureau on: METHES BEOLES S Authorized officer 137 Authorized officer 702-915-9169

Revised Form PCT/RO/134 (January 2001)

453

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description at Table 6. B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet Name of depositary institution: American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Date of deposit Accession Number May 20, 1997 209068 C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) Europe In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). Continued on additional sheets E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") For receiving Office use only For International Bureau use only This sheet was received with the international application AMELYINGS. BROOKS S.R. This sheet was received by the International Bureau on: INTERNATIONAL DIVISION Authorized officer Authorized officer 708-205-5162 Ms

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL				
(PCT Rule 13bis)				
A. The indications made below relate to the d description at Table 6.	eposited micro	oorganism or c	ther biological material referred to in	the
B. IDENTIFICATION OF DEPOSIT	B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet			tional sheet X
Name of depositary institution: Ameri	can Type C	ulture Colle	ction .	
Address of depositary institution (inch 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	uding postal	code and c	ountry)	
Date of deposit May 20, 1997		Accession Nu	nber 209069	
C. ADDITIONAL INDICATIONS (leave bl	ank if not applic	cable)	This information is continued on an add	itional sheet
D. DESIGNATED STATES FOR WHICH Europe In respect of those designations in which a Euro until the publication of the mention of the grant withdrawn or is deemed to be withdrawn, only	pean Patent is of the Europe	sought a samp	e of the deposited microorganism will til the date on which the application h le to an expert nominated by the per	be made available as been refused or son requesting the
sample (Rule 28(4) EPC).		·	Continued on additional	sheets
E. SEPARATE FURNISHING OF INDICATION The indications listed below will be submitted to the Number of Deposit")				ons e.g., "Accession
For receiving Office use only			For International Bureau use only	
This sheet was received with the international a	SSR		vas received by the International Bureau	on:
Authorized officer	MA	Authorized off	cer	•
Revised Form PCT/RO/134 (January 2001)				Pctro134ep.sollis

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL					
	(PC	T Rule 13 <i>bis</i>)			
A. The indications made below relate to the depo description at Table 6.	sited micr	oorganism or	ther biological mater	rial referred to in the	
B. IDENTIFICATION OF DEPOSIT			Further deposits are ide	ntified on an additiona	l sheet 🗶
Name of depositary institution: American	Туре С	Sulture Colle	ction		·
Address of depositary institution (includir 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ig postai	l code and c	ountry)	·	
Date of deposit January 12, 1998		Accession Nu	nber	209579	
C. ADDITIONAL INDICATIONS (leave blank i	f not applie	cable)	This information is con	ntinued on an addition	al sheet 🔲
		<u> </u>			
D. DESIGNATED STATES FOR WHICH INI	ICATIO	NS ARE MA	E (if the indications are	not for all designated St	ates)
Europe In respect of those designations in which a Europear until the publication of the mention of the grant of t withdrawn or is deemed to be withdrawn, only by sample (Rule 28(4) EPC).	he Е иторе	an patent or ur	til the date on which t le to an expert nomir	the application has be	en refused or requesting the
E. SEPARATE FURNISHING OF INDICATION	ONS (leave i	blank if not applicab	e)	<u></u>	
The indications listed below will be submitted to the in Number of Deposit")	ternational	Burcau later (s	pecify the general natur	re of the indications e.	g., "Accession
For receiving Office use only			For International	Bureau use only	
This sheet was received with the international applic	ation	☐ This sheet	vas received by the Inte	rnational Bureau on:	
Authorized office The Control of the	1	Authorized off	cer		
Revised Form PCT/RO/134 (January 2001)	MES				Petro 134ep.sollist

	G TO A DEPOSITED MICROORGANISM BIOLOGICAL MATERIAL			
(PCT Rule 13bis)				
A. The indications made below relate to the deposited n description at Table 6.	microorganism or other biological material referred to in the			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution: American Typ	pe Culture Collection			
Address of depositary institution (including po. 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	estal code and country)			
Date of deposit January 12, 1998	Accession Number 209578			
C. ADDITIONAL INDICATIONS (leave blank if not a	applicable) This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)			
until the publication of the mention of the grant of the Eur	ent is sought a sample of the deposited microorganism will be made available propean patent or until the date on which the application has been refused or such a sample to an expert nominated by the person requesting the Continued on additional sheets			
E. SEPARATE FURNISHING OF INDICATIONS ((leave blank if not applicable)			
The indications listed below will be submitted to the internati Number of Deposit*) .	cional Bureau later (specify the general nature of the indications e.g., "Accession".			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application MRIVIN S. BROOKS SR	☐ This sheet was received by the International Bureau on:			
Authorized officer INTENNATIONAL DIVISION 703-305-5169	11			

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description at Table 6. B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet Name of depositary institution: American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Date of deposit Accession Number July 16, 1998 203067 C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet \Box D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) Europe In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). Continued on additional sheets E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") For International Bureau use only For receiving Office use only This sheet was received with the international application ☐ This sheet was received by the International Bureau on: Authorized officer Authorized officer

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL		
(PCT Rule 13bis)		
A. The indications made below relate to the deposite description at Table 6.	ted microorganism or other biological material referred to in the	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution: American T	Type Culture Collection	
Address of depositary institution (including 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	postal code and country)	
Date of deposit July 16, 1998	Accession Number 203068	
C. ADDITIONAL INDICATIONS (leave blank if n	not applicable) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDIC	CATIONS ARE MADE (if the indications are not for all designated States)	
until the publication of the mention of the grant of the withdrawn or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICATION		
The indications listed below will be submitted to the inter Number of Deposit")	mational Bureau later (specify the general nature of the indications e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the international application of the sheet was received with the sheet was received wi		
Authorized officer	MSA Authorized officer	
Revised Form PCT/RO/134 (January 2001)	Petrol34ep.sollis	

INDICATIONS:	RELATING T R OTHER BIO	O A DEPOS OLOGICAL	ITED MICROORGANISM MATERIAL	
	(PC	T Rule 13bis)		
A. The indications made below relate to the description at Table 6.	deposited micr	oorganism or	other biological material referred to in the	e
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an addition	al sheet 🗵
Name of depositary institution: Ame	rican Type C	ulture Colle	ection	
Address of depositary institution (inc.) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	luding postal	l code and c	ountry)	
Date of deposit February 1, 1999)	Accession Nu	mber 203609	
C. ADDITIONAL INDICATIONS (leave b	lank if not applic	cable)	This information is continued on an addition	al sheet
		·		
D. DESIGNATED STATES FOR WHICE	INDICATIO	NS ARE MA	DE (if the indications are not for all designated S	States)
Europe In respect of those designations in which a Euruntil the publication of the mention of the grar withdrawn or is deemed to be withdrawn, onl sample (Rule 28(4) EPC).	opean Patent is	sought a samp	le of the deposited microorganism will be	made available
E. SEPARATE FURNISHING OF INDIC	ATIONS Geave t	blank if not applicat	le)	
The indications listed below will be submitted to Number of Deposit")				2.g., "Accession
			,	
For receiving Office use only			For International Bureau use only	
This sheet was received with the international E	* *	☐ This sheet	was received by the International Bureau on:	
Authorized officer		Authorized off	ісет	
evised Form PCT/RO/134 (January 2001)	MEG			
2113CG 1 C1111 C 171CO/134 (January 2001)				Pctro134ep.solli

Pctro134ep.sollist

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL						
(PCT Rule 13bis)						
A. The indications made below relate to the deposite description at Table 6.	ed microorganism or other biological material referred to in the					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution: American 7	ype Culture Collection					
Address of depositary institution (including 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	postal code and country)					
Date of deposit February 1, 1999	Accession Number 203610					
C. ADDITIONAL INDICATIONS (leave blank if n	ot applicable) This information is continued on an additional sheet					
	· · · · · · · · · · · · · · · · · · ·					
D. DESIGNATED STATES FOR WHICH INDIC	CATIONS ARE MADE (If the indications are not for all designated States)					
until the publication of the mention of the grant of the withdrawn or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICATION	atent is sought a sample of the deposited microorganism will be made available European patent or until the date on which the application has been refused or e issue of such a sample to an expert nominated by the person requesting the Continued on additional sheets (S. (leave blank if not applicable) mational Bureau later (specify the general nature of the indications e.g., "Accession"					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	on					
Authorized officer MELVID S. SECONS SE. INTERNATIONAL TOPES 709-305-5168	M85					
Revised Form PCT/RO/134 (January 2001)	Pctro134ep.sollis					

	ING TO A DEPOSITED MICROORGANISM ER BIOLOGICAL MATERIAL
	(PCT Rule 13bis)
A. The indications made below relate to the deposited description at Table 6.	d microorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution: American Ty	ype Culture Collection
Address of depositary institution (including p 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	postal code and country)
Date of deposit November 17, 1998	Accession Number
C. ADDITIONAL INDICATIONS (leave blank if no	at applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDIC.	ATIONS ARE MADE (if the indications are not for all designated States)
Europe In respect of those designations in which a European Parantil the publication of the mention of the grant of the European or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICATIONS	atent is sought a sample of the deposited microorganism will be made available European patent or until the date on which the application has been refused or issue of such a sample to an expert nominated by the person requesting the Continued on additional sheets
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer	
	25.4
Revised Form PCT/RO/134 (January 2001)	Pctro134ep.sollis

Pctro134ep.sollist

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis)						
	tions made below relate to the at Table 6.	deposited micro	oorganism or o	ther biological materi	al referred to in the	
B. IDENTIFI	CATION OF DEPOSIT			Further deposits are iden	tified on an additional	sheet 🗵
Name of dep	positary institution: Ame	rican Type C	ulture Colle	ction		
10801 Unive Manassas, V	depositary institution <i>(incl</i> ersity Boulevard Virginia 20110-2209 s of America	uding postal	code and c	ountry)	·	
Date of deposit	June 18, 1999		Accession Nu	nber	PTA-252	
C. ADDITIO	NAL INDICATIONS (leave b	lank if not applic	able)	This information is con	tinued on an additional	sheet 🔲
Europe In respect of the until the public withdrawn or is	ose designations in which a Euration of the mention of the grants deemed to be withdrawn, onl	opean Patent is a	sought a samp an patent or ur	e of the deposited mic til the date on which t le to an expert nomin	roorganism will be ma ne application has bee ated by the person re	ade available on refused or equesting the
sample (Rule 28) E. SEPARAT	E FURNISHING OF INDIC	ATIONS (leave t	olank if not applicab		ed on additional sheet	<u>s</u>
The indications Number of Depo	listed below will be submitted to sit")	the international	Bureau later (s	vecify the general natur	e of the indications e.g	:, "Accession
	For receiving Office use only			For International	Bureau use only	
	as received with the international	•••		was received by the Inter	national Bureau on:	
Authorized office	"INTERNATIONALD! 703-385-5163	W 74.6	Authorized off	cer		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL							
	(PCT Rule 13bis)						
A. The indications made below relate to the d description at Table 6.	eposited micro	oorganism or o	ther biological material referred to in	the			
B. IDENTIFICATION OF DEPOSIT	·		Further deposits are identified on an addit	onal sheet 🗵			
Name of depositary institution: Ameri	can Type C	ulture Colle	ction				
Address of depositary institution <i>(incli</i> 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	uding postal	code and c	ountry)				
Date of deposit June 18, 1999		Accession Nu	nber PTA-253				
C. ADDITIONAL INDICATIONS (leave bld	ank if not applic	cable)	This information is continued on an additional	ional sheet			
		···					
D. DESIGNATED STATES FOR WHICH	INDICATIO	NS ARE MA	DE (if the indications are not for all designate	rd States)			
Europe In respect of those designations in which a Euro until the publication of the mention of the grant withdrawn or is deemed to be withdrawn, only sample (Rule 28(4) EPC). E. SEPARATE FURNISHING OF INDICA The indications listed below will be submitted to th Number of Deposit")	of the Europe by the issue	an patent or ur of such a samp	til the date on which the application ha de to an expert nominated by the pers Continued on additional	s been refused or on requesting the sheets			
,	· · · · · · · · · · · · · · · · · · ·						
For receiving Office use only			For International Bureau use only	•			
This sheet was received with the international at	oplication	☐ This sheet	was received by the International Bureau o	n:			
Authorized officer TOP-99-51(7)	MS	Authorized off	cer				
Revised Form PCT/RO/134 (January 2001)		l		Petro 134ep sollis			

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL							
	(PCT Rule 13bis)						
A. The indications made below relate to the deposited description at Table 6.	d micro	organism or o	ther biological	material referred to	o in the		
B. IDENTIFICATION OF DEPOSIT			Further deposits	are identified on an a	dditional sl	neet 🗵	
Name of depositary institution: American T	ype Cı	ulture Colle	ction				
Address of depositary institution (including p 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	oostal	code and co	ountry)				
Date of deposit December 22, 1999		Accession Nur	nber	PTA-10	81		
C. ADDITIONAL INDICATIONS (leave blank if no	t applic	able)	This information	n is continued on an a	additional s	heet 🔲	
D. DESIGNATED STATES FOR WHICH INDIC	ATIO	NS ARE MAI	DE (if the indicate	ons are not for all desig	gnated State	s)	
Europe In respect of those designations in which a European Pa until the publication of the mention of the grant of the l withdrawn or is deemed to be withdrawn, only by the sample (Rule 28(4) EPC).	Europea	an patent or un	til the date on vole to an expert	which the applicatio	n has been person теq	refused or	
E. SEPARATE FURNISHING OF INDICATION	S (leave b	lank if not applicab	le)		. =		
The indications listed below will be submitted to the interr Number of Deposit")	national	Bureau later (s _i	pecify the genero	al nature of the indic	ations e.g.,	"Accession	
For receiving Office use only			For Intern	ational Bureau use o	nly		
This sheet was received with the international application	NE P			the International Bure	eau on:		
Authorized officer 703-945-5168	Mrs	Authorized off	icer				

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

ORC	THER BIC	LOGICAL N	AATERIAL		
	(PC	TRule 13bis)			
A. The indications made below relate to the dependency description at page 19, paragraph [055].	posited micro	oorganism or c	ther biological material referred to in the		
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an additional	sheet 🗵	
Name of depositary institution: American Type Culture Collection					
Address of depositary institution (included 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ling postal	code and co	ountry)		
Date of deposit October 5, 2000 Accession Number PTA-2574					
C. ADDITIONAL INDICATIONS (leave blan	ık if not applic	able)	This information is continued on an additiona	l sheet \square	
D. DESIGNATED STATES FOR WHICH I	NDICATIO	NS ARE MAI	DE (if the Indications are not for all designated Sta	ites)	
Europe In respect of those designations in which a Europe until the publication of the mention of the grant of withdrawn or is deemed to be withdrawn, only be sample (Rule 28(4) EPC).	of the Europe	an patent or un	til the date on which the application has be	en refused or equesting the	
E. SEPARATE FURNISHING OF INDICAT	TIONS (leave l	lank if not applicab	ie)		
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")					
For receiving Office use only			For International Bureau use only		
This sheet was received with the important parts of	Cation	☐ This sheet	was received by the International Bureau on:		
Authorized officer Authorized officer Authorized officer					

Revised Form PCT/RO/134 (January 2001)

PCT/US01/01339 WO 01/55320

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis)					
A. The indications made below relate to the depdescription at page 19, paragraph [055].	osited micro	oorganism or	other biological material referred to in the		
B. IDENTIFICATION OF DEPOSIT			Further deposits are identified on an additional	sheet 🗵	
Name of depositary institution: America	n Type C	ulture Colle	ection		
Address of depositary institution (including 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ing postai	l code and c	ountry)		
Date of deposit October 5, 2000		Accession Nu	mber PTA-2575		
C. ADDITIONAL INDICATIONS (leave blank	if not appli	cable)	This information is continued on an additiona	al sheet	
D. DESIGNATED STATES FOR WHICH IN	DICATIO	NS ARE MA	DE (if the indications are not for all designated Sta	iles)	
Europe In respect of those designations in which a Europea until the publication of the mention of the grant of withdrawn or is deemed to be withdrawn, only by sample (Rule 28(4) EPC).	the Europe	an patent or u	itil the date on which the application has be	en refused o	
E. SEPARATE FURNISHING OF INDICAT	IONS (leave	blank if not applicat	ile)		
The indications listed below will be submitted to the Number of Deposit")	international	Bureau later (s	pecify the general nature of the indications e.	g., "Accessio	
		<u> </u>			
For receiving Office use only			For International Bureau use only	_	
This sheet was received with the international appl	ication	☐ This sheet	was received by the International Bureau on:		
Authorized officer MILVING. PROCESS ST INTERNATIONAL DIVI 707-895-5168		Authorized of	icer	11-73	
Revised Form PCT/RO/134 (January 2001)		<u></u>		otro 134ep.soll	

Pctro134ep.sollist

		RELATING TO ROTHER BIO			CROORGANISM IAL		
		(PC	ΓRule 13 <i>bis</i>)				
	ns made below relate to the o t page 19, paragraph [055].	deposited micro	oorganism or o	other biol	ogical material referre	d to in the	
B. IDENTIFIC	ATION OF DEPOSIT			Further de	posits are identified on a	n additional :	sheet 🗵
Name of depo	sitary institution: Amer	ican Type C	ulture Colle	ction			
10801 Univers	positary institution <i>(incl</i> sity Boulevard ginia 20110-2209 of America	uding postal	code and c	ountry)			
Date of deposit	January 5, 2001	4444	Accession Nu	mber	(HGS reference	code TS-	-1)
C. ADDITIONA	AL INDICATIONS (leave b	lank if not applic	able)	This info	ermation is continued on	an additional	sheet
D. DESIGNATI	ED STATES FOR WHICH	INDICATIO	NS ARE MA	DE (if the	indications are not for all a	lesignated Stat	es)
until the publicati	c designations in which a Euro on of the mention of the gran leemed to be withdrawn, only b) EPC).	t of the Europe	an patent or ur	itil the da	te on which the applica	ition has bee ne person re	en refused or questing the
E. SEPARATE	FURNISHING OF INDIC	ATIONS Seave E	olank if not applicat	le)			
The indications list Number of Deposit	ted below will be submitted to '	the international	Bureau later (s	pecify the	general nature of the in	dications e.g	:, "Accession
1	For receiving Office use only			Fo	r International Bureau us	se only	
This sheet was	received with the international a				ed by the International E	Bureau on:	
Authorized officer	TOP AND THE	Ma	Authorized off	icer			

Pctro134ep.sollist

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RELATIN OR OTHER		CPOSITED M CAL MATEI		
	(PCT Rule	13 <i>bis</i>)		
A. The indications made below relate to the deposited description at page 19, paragraph [055].	microorganis	sm or other bid	ological material referred to	o in the
B. IDENTIFICATION OF DEPOSIT		Further o	deposits are identified on an a	edditional sheet 🗵
Name of depositary institution: American Ty	pe Culture	Collection		
Address of depositary institution (including po 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ostal code (and country)	
Date of deposit January 5, 2001	Access	on Number	(HGS reference co	ode TS-2)
C. ADDITIONAL INDICATIONS (leave blank if not	applicable)	This in	formation is continued on an	additional sheet
D. DESIGNATED STATES FOR WHICH INDICA	TIONS AR	E MADE (if th	e indications are not for all desi	gnated States)
Europe In respect of those designations in which a European Pate until the publication of the mention of the grant of the Ewithdrawn or is deemed to be withdrawn, only by the issample (Rule 28(4) EPC).	uropean paten	t or until the d	late on which the applicatio	on has been refused of person requesting the
E. SEPARATE FURNISHING OF INDICATIONS	(leave blank if not	applicable)		
The indications listed below will be submitted to the interna Number of Deposit")	tional Bureau	later (specify th	e general nature of the indic	ations e.g., "Accessio
For receiving Office use only		F	or International Bureau use o	only
This sheet was received with the international application	This	sheet was rece	ived by the International Bure	eau on:
Authorized officer DITERIAL ONAL DATE:	H	zed officer		

Revised Form PCT/RO/134 (January 2001)

INDICATIONS RE		O A DEPOSI DLOGICAL I				
	(PC	Γ Rule 13 <i>bis</i>)				
A. The indications made below relate to the de description at page 19, paragraph [055].	posited micro	oorganism or o	ther bio	ogical material referm	ed to in the	
B. IDENTIFICATION OF DEPOSIT			Further de	posits are identified on	an additional	sheet 🗵
Name of depositary institution: Americ	an Type C	ulture Colle	ction	T		
Address of depositary institution (included 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ding postal	code and c	ountry)			
Date of deposit January 5, 2001		Accession Nu	nber	(HGS reference	e code AC	-1)
C. ADDITIONAL INDICATIONS (leave blace)	nk if not applic	eable)	This info	rmation is continued on	ı an additional	sheet
D. DESIGNATED STATES FOR WHICH I	NDICATIO	NS ARE MA	DE (if the	indications are not for all	designated Sta	les)
Europe In respect of those designations in which a Europ until the publication of the mention of the grant withdrawn or is deemed to be withdrawn, only sample (Rule 28(4) EPC).	of the Europe:	an patent or ur	til the da	te on which the applic	ation has been the person re	en refused or equesting the
E. SEPARATE FURNISHING OF INDICA	TIONS (leave i	olank if not applicab	le)			
The indications listed below will be submitted to the Number of Deposit")	e international	Bureau later (s	pecify the	general nature of the i	ndications e.g	., "Accession
Far receiving Office use only			For	International Bureau u	ise only	
This sheet was received with the international ap		☐ This sheet	was receiv	ved by the International	Bureau on:	
Authorized officer TOTALIST 708-395.5169	Sac.	Authorized off	icer			

PCT/US01/01339 WO 01/55320

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL (PCT Rule 13bis) A. The indications made below relate to the deposited microorganism or other biological material referred to in the description at page 19, paragraph [055]. **B. IDENTIFICATION OF DEPOSIT** Further deposits are identified on an additional sheet Name of depositary institution: American Type Culture Collection Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America Date of deposit Accession Number January 5, 2001 (HGS reference code AC-2) C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) Europe In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). Continued on additional sheets E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") For receiving Office use only For International Bureau use only This sheet was received with the international application ☐ This sheet was received by the International Bureau on: MINING SAMOOKS SE Authorized officer Authorized officer 707499999 Revised Form PCT/RO/134 (January 2001)

Pctro 134ep.sollist

ATCC Deposit No.: 209059, 209060, 209061, 209062, 209063, 209064, 209065, 209066, 209067, 209068, 209069, 209579, 209578, 203067, 203068, 203609, 203610, 203485, PTA-252, PTA-253, PTA-1081, PTA-2574, PTA-2575, TS-1, TS-2, AC-1, AC-2

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

ATCC Deposit No.: 209059, 209060, 209061, 209062, 209063, 209064, 209065, 209066, 209067, 209068, 209069, 209579, 209578, 203067, 203068, 203609, 203610, 203485, PTA-252, PTA-253, PTA-1081, PTA-2574, PTA-2575, TS-1, TS-2, AC-1, AC-2

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

What Is Claimed Is:

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence contained in Clone ID NO:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide fragment of a polypeptide encoded by SEQ ID NO:X or a polypeptide fragment encoded by the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X;
- (f) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (g) a polynucleotide which is a variant of SEQ ID NO:X;
 - (h) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (i) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (j) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a protein.

3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X.

- 4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence contained in cDNA Clone ID NO:Z, which is hybridizable to SEQ ID NO:X.
- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
- 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
 - 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence selected from the group consisting of:
- (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence contained in cDNA Clone ID NO:Z;
- (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence contained in cDNA Clone ID NO:Z, having biological activity;

(c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence contained in cDNA Clone ID NO:Z;

- (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence contained in cDNA Clone ID NO:Z;
- (e) a full length protein of SEQ ID NO:Y or the encoded sequence contained in cDNA Clone ID NO:Z;
 - (f) a variant of SEQ ID NO:Y;
 - (g) an allelic variant of SEQ ID NO:Y; or
 - (h) a species homologue of the SEQ ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
- 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
- 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polynucleotide of claim 1.
- 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.

- 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.
- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
 - (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;

- (c) detecting an activity in a biological assay; and identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 20.
- 24. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11.