Параллельное программирование

Принципы разработки параллельных алгоритмов

Методология РСАМ

Этапы разработки параллельного алгоритма

- Декомпозиция на подзадачи
- Анализ информационного взаимодействия
- Выбор вычислительной системы
- Масштабирование подзадач
- Распределение подзадач между процессорами

Декомпозиция на подзадачи

- Выявление возможностей для параллельного выполнения
- Размер подзадач выбирается минимальный
- Виды декомпозиции
 - По данным
 - о Функциональная
- Избегаем дублирования вычисления и данных

Выбор структуры алгоритма

- Выбор из существующих алгоритмов
- Декомпозиция
 - По заданиям
 - По данным
 - По потокам данных

Декомпозиция по заданиям

Drive and Conquer

Особенности

- Степень параллелизма изменяется в ходе выполнения алгоритма
- Операция split и merge потенциальные узкие места (закон Амдала)
- Задания порождаются динамически
- Большое количество заданий может привести к значительным накладным расходам

Декомпозиция по данным

Геометрическая декомпозиция

- Алгоритм основан на структуре данных, разбитой на набор одновременно обновляемых областей
- Подзадачами являются обновления отдельных областей структуры данных

Особенности

- Декомпозиция структуры данных на области
 - Размер подзадач обычно подпирается эмпирически
 - о Форма области влияет на накладные расходы
- Реализация обмена данными
 - Перед операцией обновления
 - Совместно с операцией обновления

Поток данных

Конвейерная обработка

- Параллелизм ограничен числом стадий
- В идеале время работы каждой стадии одинаково
 - Узкое место самая медленная стадия
 - Комбинирование и декомпозиция стадий
 - Распараллеливание медленных стадий
- Время заполнение и опустошение должно быть сильно меньше полного времени работы

Организация взаимодействия между подзадачами

- Выделение информационных зависимостей
- Граф «подзадачи-сообщения»
- Минимизация числа каналов и числа взаимодействий
- Распределение операций взаимодействия между процессами

Виды взаимодействий

- Локальные и глобальные
- Структурированные и неструктурированные
- Статические и динамические
- Синхронные и асинхронные

Выбор вычислительных систем

- Соблюдение баланса между
 - Абстрактностью и переносимостью алгоритма
 - Эффективность для целевой платформы

Выбор вычислительных систем

- Количество процессоров
 - Не должно превышать количество подзадач
 - о Может быть сильно меньше количества подзадач
- Обмен данными
 - Группировка по процессорам
- Соотношение между временами вычисления и обмена

Масштабирование подзадач

- Адаптация алгоритма для эффективного выполнения на целевой системе
 - Учет количества процессоров
 - Уменьшение накладных расходов на взаимодействие
- Укрупнение подзадач
- Репликация данных и вычислений

Масштабирование подзадач

Гибкость

- Отсутствие ограничений на количество подзадач
- Возможность легко изменять их количество
- Возможность автоматически изменять число подзадач в зависимости от количества процессоров

Распределение подзадач между процессорами

- Минимизация времени выполнения
- Размещения параллельных подзадач на разных процессорах
- Размещение часто взаимодействующих подзадач на одном процессоре
- Балансировка нагрузки
- NP-полная задача

Вопросы