

Supervisor: Alex Liu

Lab: SISL

Outline

Voice Conversion

Sprocket

Authentic vs Converted

MFCC

Logistic Regression

Conclusion

Voice Conversion

Voice Conversion is the transformation of one speaker's voice (the source) to sound like another speakers voice (the target)

Image from https://slideplayer.com/slide/7589055/

target

Open-Source Voice Conversion Tool

- 1. Preparation of the parallel speech dataset
 - a. Same Linguistic Info with different individual speakers
- 2. Acoustic feature extraction
 - a. FO, MCC
- 3. Calculation of acoustic feature statistics
 - a. Mean, SD of log(f0)
- 4. Time alignment between the source and target signals
- 5. fOis linearly transformed frame by frame using the speaker-dependent statistics of the source and target speakers in the logarithmic space using GMM

Kazuhiro KOBAYASHI

k2kobayashi

Ph.D. in Engineering. Research interests: Voice conversion.

Follow

Image from: https://github.com/k2kobayashi

Open-Source Voice Conversion Tool

		0/0/2010 2 50 014	F1 5 11
1	SF1	8/8/2018 3:58 PM	File folder
5	SF2	8/8/2018 3:58 PM	File folder
5	5F3	8/8/2018 3:58 PM	File folder
S	SM1	8/8/2018 3:58 PM	File folder
S	5M2	8/8/2018 3:59 PM	File folder
	TF1	8/8/2018 3:59 PM	File folder
	TF2	8/8/2018 3:59 PM	File folder
1	ГМ1	8/8/2018 3:59 PM	File folder
1	TM2	8/8/2018 3:59 PM	File folder
	TM3	8/8/2018 3:59 PM	File folder

- Uses FO transformation
- Parallel Data Set
- Each folder has 216 of the same spoken sentences
- Sentences from The Call of the Wild by Jack London

*K. Kobayashi, T. Toda, "sprocket: Open-Source Voice Conversion Software," Proc. Odyssey, pp. 203-210, June 2018.

Kazuhiro KOBAYASHI

k2kobayashi

Ph.D. in Engineering. Research interests: Voice conversion.

Follow

Image from: https://github.com/k2kobayashi

Open-Source Conversion Tool

Open-Source Conversion Tool

Voice Conversion 101

Image From: https://kids.nationalgeographic.com/videos/real-or-fake/#real_or_fake__ep_1.mp4

Voice Conversion 101


```
import wave
from scipy.io import wavfile
import matplotlib.pyplot as plt
def signal(file):
   samplerate, data = wavfile.read(file)
   plt.plot(data)
   plt.xlabel("Time")
   plt.ylabel("Amplitude")
   plt.title("Signal For "+str(file))
   plt.show()
signal('sample real.wav')
signal('sample fake.wav')
```

Mel-Frequency Cepstrum Coefficients: Quantitative Representation of a Sound

Step 1: Take the Fourier transform of a signal.

Fourier Transform:

- Mathematical Transformation
- Sound Visualization
- Takes in a signal, outputs the frequencies of the signal (decomposition)

Image From: https://unacademy.com/lesson/fourier-transform/V8XBCM8H

Mel-Frequency Cepstrum Coefficients: Quantitative Representation of a Sound

Step 2: Place each frequency in a bin of the Mel-spaced filterbank (usually 40 bins)

Step 3: For each bin, sum the total weighted FFT energy

Step 4: cosine transform(log(bin amplitude))


```
C:\Users\sharath\Desktop\New folder\4Example\SF1>test.py
[[ 4.98309782
               4.48906841
                           3.08090581
                                      2.70519673
                                                   3.04931724
                                                                2.08110305
   2.65866915
               2.27108082
                           2.32199479
                                       1.6289689
                                                   1.51515088
                                                                0.68061874
               0.68847051 -0.23562629
                                       0.2801078
  0.91996503
                                                    0.69131802
                                                                1.08069291
  0.83015588
               1.27074578
                           1.5037787
                                       1.55149938
                                                   1.87316154
                                                                2.18517039
  2.55678033
               2.65081813]
  5.86651209
               4.11344819
                           3.32430422
                                       2.91667646
                                                   2.65467789
                                                                2.54477587
               2.27945961
                                       1.69420113
                                                                0.87106103
   2.49765907
                           2.15726025
                                                   1.38752178
  0.67452007
               0.81461573
                           0.52179871
                                       0.25989006
                                                   0.56495444
                                                                0.8932853
                                       1.63115796
  0.79781567
              1.1248368
                           1.69579586
                                                   1.88482033
                                                                2.19828251
   2.45063971 2.62355144]]
```


18 Folders containing Parallel Speech Data

(8 converted/ 10 authentic)

216 WAV files in each Folder

3888 Total WAV Files

- 1728 Generated
- 2160 Authentic

1	Туре	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
2	real	4.983098	4.489068	3.080906	2.705197	3.049317	2.081103	2.658669	2.271081	2.321995	1.628969	1.515151	0.680619	0.919965	0.688471	-0.23563	0.280108
3	real	3.314698	-0.06731	-1.41503	-1.488	-2.01247	-1.1119	-1.50148	-2.18614	-0.74443	-0.68792	-0.39716	0.252342	0.440372	-0.30139	-0.27842	0.378102
4	real	4.550292	1.095015	-0.60739	-0.90986	-0.63432	-0.78976	-1.35809	-1.1733	-1.04979	-1.0442	-0.48244	-0.42573	0.263374	0.232708	0.497629	0.619203
5	real	4.749839	2.372827	1.315197	0.355386	0.050234	0.135686	-0.49658	-0.46441	-0.20285	-0.42562	-0.1245	0.345643	0.583021	0.533467	0.33706	-0.17954
6	real	5.535902	2.65094	1.074992	0.725572	0.558506	-0.09089	-0.18571	-0.32225	-0.8328	-0.26233	0.150567	0.264002	1.029821	1.051315	1.161307	0.293816
7	real	5.770577	2.342821	2.270461	2.009692	1.892082	2.063533	1.593983	1.247262	0.747946	0.922378	0.304684	0.987046	0.43662	0.160083	0.195957	0.291032
8	real	4.95503	1.600573	0.379949	-0.10311	-0.53827	-0.53635	-0.6365	-0.58182	-0.92122	-0.1504	-0.26131	-0.06378	0.397151	0.842921	0.564432	0.743246
9	real	3.897684	1.397563	-0.77849	0.119335	-1.49356	-0.2688	-0.2381	-0.47414	-0.56734	-0.17714	-0.23689	-0.00785	0.256228	0.341339	-0.24123	0.349786
10	real	3.684922	0.241989	-0.47044	-0.97043	-0.60976	-0.57284	-0.82467	-1.0243	-0.15505	-0.62275	-0.60039	-0.30864	0.858797	0.696079	0.345473	0.894775
11	real	4.941478	0.905687	0.334489	-0.49487	-0.63986	-0.91365	-1.15318	-0.93354	-0.71477	-0.72963	-0.32277	-0.00075	0.903851	0.232054	0.328084	0.550693
12	real	4.808288	2.686507	2.187295	2.057421	2.009557	2.034851	1.985161	1.665429	1.612475	1.344821	0.869291	0.533287	0.20495	0.581571	-0.15567	0.426671
13	real	4.527809	1.802199	0.821447	-0.08631	-0.25756	-0.49814	-0.41132	-0.18374	-0.65587	-0.95527	-0.43845	-0.60427	-0.26598	0.188272	0.559177	-0.3272
14	real	4.464064	1.815888	1.109144	0.496515	-0.57821	-0.58072	-0.54972	-0.59817	-0.35988	-0.66114	0.007674	-0.00437	-0.00925	0.476236	0.599886	0.290076
15	real	6.048739	2.97133	2.200134	1.055099	0.515096	0.447058	0.073658	0.173143	-0.20931	-0.27892	0.180882	0.032865	0.696579	0.547744	0.443815	0.680122
16	real	4.88094	2.153436	0.853172	0.385164	-0.12414	-0.56387	-0.68173	-0.4391	-0.7779	0.117604	0.366922	0.275437	0.580432	0.923758	0.596237	0.032365
17	real	4.830605	2.450225	1.358987	0.83337	0.013302	0.009603	0.066191	-0.02057	0.021858	-0.71416	0.430282	-0.28896	0.120816	0.326746	-0.02427	0.401616
18	real	4.648372	1.874	-0.69503	-1.18928	-1.08621	-1.62213	-0.42249	-0.57621	-0.57465	-0.9366	-0.7494	-0.52436	0.54078	0.710553	0.649634	0.806962
19	real	6.433318	3.917564	3.313918	2.090278	1.633197	1.754937	1.380551	0.60573	0.581155	0.71402	0.926527	0.663831	0.701624	0.854801	1.070711	0.573121
20	real	4.824956	1.495707	-0.25823	-0.72961	-0.75254	-1.49324	-0.74531	-0.97599	-0.22295	-0.16182	-0.51434	0.084583	0.252973	0.691631	0.410443	0.76529
21	real	4.295682	1.915804	0.848909	0.414462	-0.72583	-1.06559	-1.1903	-0.66534	-0.08727	-0.24052	0.309077	0.120964	0.626627	0.937172	0.945478	0.940304
22	real	5.810046	3.167758	1.697073	1.044547	0.78277	0.076173	0.257847	-0.20568	-0.08857	-0.0762	0.230601	-0.04124	0.463588	0.217836	0.042364	0.467227
23	real	3.470187	1.529184	0.475503	-0.29906	-0.62636	-0.74372	-1.03745	-0.58112	-0.3982	-0.6541	-0.05935	-0.27105	-0.2116	0.262873	0.278661	0.35186

```
# Connect to the MFCC CSV
mfcc <- read.csv("mfcc.csv", header=TRUE)

set.seed(126) # Set a Seed to make Results Reproducable

# Create a Partition with a 80/20 Train and Test Split
indexes <- createDataPartition(mfcc$Type, times = 1, p = .8, list = FALSE)

train_data <- mfcc[indexes, ] # Train Data
test_data <- mfcc[-indexes, ] # Test Data
```

80% Train 20% Test

```
# MODEL CREATION

# Logistic Regression Model
glm.out <- glm(fmla, data=train_data, family=binomial)

# Display Model Results
summary(glm.out)
```

```
coefficients:
                                                                    f24
                                                                                 -0.159135
                                                                                            0.528696
                                                                                                      -0.301 0.763418
             Estimate Std. Error z value Pr(>|z|)
                                                                                 -1.217319
                                                                                                      -2.477 0.013237 *
                                                                    f25
                                                                                            0.491385
(Intercept) -1.147019
                         0.312540
                                  -3.670 0.000243 ***
                                                                    f26
                                                                                 1.237061
                                                                                            0.155667
                                                                                                       7.947 1.91e-15 ***
f0
             1.343646
                         0.155454
                                    8.643 < 2e-16 ***
                                                                    f27
                                                                                 -0.484449
                                                                                            0.181778
                                                                                                      -2.665 0.007698 **
f1
            -0.447764
                         0.168947
                                  -2.650 0.008041 **
                                                                    f28
                                                                                 -0.025460
                                                                                            0.232281
                                                                                                      -0.110 0.912721
f2
            -0.073959
                         0.222231
                                   -0.333 0.739283
                                                                    f29
                                                                                 0.110565
                                                                                            0.217190
                                                                                                       0.509 0.610702
f3
             0.275166
                         0.225325
                                    1.221 0.222011
                                                                    f30
                                                                                 0.382974
                                                                                            0.215793
                                                                                                       1.775 0.075942 .
f4
                         0.232909
                                                                    f31
                                                                                 -0.238361
                                                                                            0.242999
                                                                                                      -0.981 0.326636
             0.222459
                                    0.955 0.339511
                                                                                            0.231132
                                                                    f32
                                                                                 0.431847
                                                                                                       1.868 0.061707 .
f5
             0.009015
                         0.253479
                                    0.036 0.971630
                                                                    f33
                                                                                 -0.270182
                                                                                            0.244673
                                                                                                      -1.104 0.269482
f6
             0.279762
                         0.243222
                                    1.150 0.250047
                                                                                            0.277391
                                                                    f34
                                                                                 -0.691284
                                                                                                      -2.492 0.012699 *
f7
            -0.455193
                         0.251779
                                   -1.808 0.070621 .
                                                                    f35
                                                                                 0.159514
                                                                                            0.286944
                                                                                                       0.556 0.578276
f8
            -0.271292
                         0.282378
                                   -0.961 0.336683
                                                                                            0.297473
                                                                    f36
                                                                                 -0.289484
                                                                                                      -0.973 0.330482
f9
            -0.270565
                         0.286234
                                   -0.945 0.344528
                                                                    f37
                                                                                 0.478282
                                                                                            0.309537
                                                                                                       1.545 0.122308
f10
             0.162280
                         0.296640
                                    0.547 0.584338
                                                                    f38
                                                                                 0.458000
                                                                                            0.332974
                                                                                                       1.375 0.168981
f11
             0.240621
                         0.320025
                                    0.752 0.452123
                                                                                            0.343405
                                                                    f39
                                                                                 -0.410817
                                                                                                      -1.196 0.231578
f12
             0.106190
                         0.322467
                                    0.329 0.741925
                                                                    f40
                                                                                 -0.167971
                                                                                            0.349815
                                                                                                      -0.480 0.631106
f13
            -0.072673
                         0.348726
                                   -0.208 0.834919
                                                                    f41
                                                                                 -0.214030
                                                                                            0.349534
                                                                                                      -0.612 0.540320
f14
             0.612167
                         0.362341
                                    1.689 0.091128 .
                                                                    f42
                                                                                 0.200394
                                                                                            0.378940
                                                                                                       0.529 0.596925
f15
            -0.055865
                         0.348631
                                   -0.160 0.872692
                                                                    f43
                                                                                 0.473407
                                                                                            0.378735
                                                                                                       1.250 0.211311
f16
            -0.100628
                         0.369034
                                   -0.273 0.785100
                                                                    f44
                                                                                 0.033142
                                                                                            0.445328
                                                                                                       0.074 0.940674
f17
                         0.396483
             0.461113
                                    1.163 0.244826
                                                                    f45
                                                                                 0.124820
                                                                                            0.399545
                                                                                                       0.312 0.754731
f18
            -0.486431
                         0.438879
                                   -1.108 0.267711
                                                                    f46
                                                                                 0.389209
                                                                                            0.444321
                                                                                                       0.876 0.381050
f19
             0.056419
                         0.428892
                                    0.132 0.895344
                                                                    f47
                                                                                 -1.611413
                                                                                            0.509740
                                                                                                      -3.161 0.001571 **
f20
            -0.355895
                         0.433357
                                   -0.821 0.411504
                                                                    f48
                                                                                 0.100661
                                                                                            0.485720
                                                                                                       0.207 0.835822
f21
            -0.017025
                         0.486384
                                                                    f49
                                                                                 -0.206162
                                                                                            0.463695
                                                                                                      -0.445 0.656604
                                   -0.035 0.972077
f22
            -0.103284
                         0.506796
                                   -0.204 0.838512
                                                                    f50
                                                                                  2.488942
                                                                                            0.500953
                                                                                                       4.968 6.75e-07 ***
                                                                    f51
                                                                                 -1.989800
                                                                                            0.499832
                                                                                                      -3.981 6.86e-05 ***
f23
            -0.192789
                         0.471939
                                   -0.409 0.682903
```


Confusion Matrix

	fake <int></int>	real <int></int>			
0	202	2			
1	143	430			

```
"Accuracy: 81.3%"
"Precision: 99.5%"
"Recall: 75%"
"f1: 85.6%"
```

Conclusion

Quantified Slight Differences in Signal of Real vs Converted using MFCC

- AUC of of .98 seems a little too high
- Artificial Data came from one source: Sprocket

Future Research

- Other Machine Learning Approaches
- Testing Model on New Data
- Using only Significant MFCC Features
- Discovering more features to include
- Gender / Age / Accent / Pitch
- MCC vs MFCC

