Industrie 4.0-Kommunikation mit OPC UA: Anwendungsfälle, Mehrwerte und Migrationsstrategie

Present	cation · June 2017	
DOI: 10.131	40/RG.2.2.27504.46080	
CITATION:	s REAL 252	
2 autho	rs:	
	Juergen Jasperneite Fraunhofer Institute of Optronics, System Technologies and Image Exploi 309 PUBLICATIONS 3,325 CITATIONS SEE PROFILE	Florian Pethig Fraunhofer Institute of Optronics, System Technologies and Image Explo 39 PUBLICATIONS 130 CITATIONS SEE PROFILE
Some of	f the authors of this publication are also working on these related projects:	
Project	Graduate School Intelligent Systems in Automation Technology (ISA) View pro	ject
Project	PLUGandWORK View project	

Industrie 4.0-Kommunikation mit OPC UA Anwendungsfälle, Mehrwerte und Migrationsstrategie

13. Fachtagung "Digital Engineering Technischer SystemeDer Weg zur Smart Factory

Magdeburg, 22.06.2017

Prof. Dr.-Ing. Jürgen Jasperneite, M. Sc. Florian Pethig

Fraunhofer-Anwendungszentrum Industrial Automation Langenbruch 6, 32657 Lemgo, Germany florian.pethig@iosb-ina.fraunhofer.de

www.bigdata-owl.de

Agenda

- Einleitung
- Anwendungsfälle und Mehrwerte
- Migrationsstrategie
- Zusammenfassung

VDMA-Leitfaden Industrie 4.0-Kommunikation mit OPC UA

Einleitung

Anwendungsfälle und Mehrwerte

Migrationsstrategie

Zusammenfassung

Industrie 4.0 Kommunikation mit OPC UA

Leitfaden zur Einführung in den Mittelstand

Industrie 4.0

- Migrationsstrategie -
 - Zusa

Zusammenfassung

- Industrie 4.0
 - Vernetzung von jeglichen Assets für höhere Effizienz und mehr Flexibilität
 - über alle Hierarchieebenen der Automatisierungspyramide...
 - ...und darüber hinaus
 - Smart Products
 - Connected World

[1] Plattform Industrie 4.0, "RAMI 4.0 – Eine Einführung", 2016

Stand der Technik

- Hoher Aufwand für
 - Systemintegration
 - Anbindung an Services, z.B. für
 - Condition Monitoring
 - Optimierung
- Zeitaufwand und Fehleranfälligkeit
 - Betreiber fordern eine standardisierte Industrie 4.0-Kommunikation

[2] Industrie 4.0-Kommunikation mit OPC UA – Leitfaden zur Einführung in den Mittelstand, 2017

Industrie 4.0-Kommunikation

- Industrie 4.0-Kommunikation
 - ist keine weitere Lösung für Echtzeitkommunikation
 - basiert auf neuen Konzepten
 - Serviceorientierte Architektur (SOA)
 - Informationsmodelle

OPC Unified Architecture (OPC UA)

- Der in der IEC 62541 spezifizierte offene Standard Open Platform
 Communications Unified Architecture (OPC UA) erfüllt diese Anforderungen
- Geräte- und Fähigkeitsbeschreibungen können in Form von Informationsmodellen erstellt werden
- Branchenspezifische Informationsmodelle k\u00f6nnen standardisiert werden
 - Companion Specifications

Anwendungsfall Condition Monitoring

Anwendungsfälle und Mehrwerte

Migrationsstrategie

Zusammenfassung

- Zustand von Maschinen überwachen
 - Standardisierter, feldbusunabhängiger Zugriff auf Informationen
 - z. B. Energieverbrauch,
 Umgebungstemperatur, Prozesswerte,
 Auftragsstatus, ...
 - Informationen Kunden auf mobilen Endgeräten zur Verfügung stellen
 - Wartung und Einstellung der Maschine wird vereinfacht
 - Datenanalyseverfahren lernen Verhaltensmodelle und können Abweichungen erkennen, die auf fehlerhaften Betrieb oder sich anbahnende Fehler hindeuten
 - Gesamtanlageneffektivität kann erhöht werden

Anwendungsfall Plug & Work

- Automatische Konfiguration von neuen Geräten in Netzwerken aus Feldgeräten, Steuerungen, Condition-Monitoring- und Optimierungssystemen
- Voraussetzung: Standardisierte Informationsbeschreibung

Anwendungsfall Plug & Work

Heute

- gleiche Information von verschiedenen Herstellern oft unterschiedlich bezeichnet, keine standardisierten Informationsmodelle
- Hoher Aufwand trotz einheitlicher Kommunikationsschnittstelle
- Beispiel: Informationsmodelle A und B müssen beide in übergeordneten Systemen bekannt sein

Anwendungsfall Plug & Work

- mit Industrie 4.0-Kommunikation
 - muss lediglich das standardisierte Informationsmodell A bekannt sein
- Industrie 4.0-Kommunikation beginnt nicht erst auf Maschinenebene
 - auch Komponenten einer Maschine, d.h. Steuerung und Feldgeräte, können mit Industrie 4.0-Kommunikation einfacher integriert werden

Anwendungsfall Optimierung

- Optimierung
 - z. B. von Energie und Taktzeit
 - Messwerte für die Optimierung können einfach via Industrie 4.0-Kommunikation integriert werden
 - Charakteristisches Verhalten kann mit Datenanalyseverfahren gelernt werden und Parameter für optimierten Betrieb können ermittelt werden

Beispiel: Optimierung eines Hochregallagers

- Automatisiertes Hochregallager
 - Leistungsspitzen minimieren und Energie einsparen
 - Industrie 4.0-Kommunikation: Einheitlicher Informationszugriff auf Steuerungen und Energiemessgeräte unterschiedlicher Hersteller

Optimierte Steuerungsparameter berechnen und an verteilte Steuerungen

übertragen

- OPC UA ist modular aufgebaut und kann als Interoperabilitäts-Framework für die Industrie 4.0-Kommunikation verstanden werden
- OPC UA besteht aus
 - Transport
 - Sicherheit
 - Informationszugriff
 - Companion Specifications
 - Erweiterten Informationsmodellen

Anwendungsfälle und Mehrwerte

Migrationsstrategie

Zusammenfassung

Einleitung

Migrationsstrategie für die Industrie 4.0-Kommunikation

- Umsetzung von Industrie 4.0-Kommunikation muss nicht in einem Schritt erfolgen
- Migrationsschritt 1: Informationszugriff
 - OPC UA als einheitliche Kommunikationsschnittstelle
 - Variablen werden manuell gefunden und abonniert
 - Maschinenbauer können z. B. Anwendungsfall Condition Monitoring implementieren

Migrationsschritt 1: Informationszugriff

Migrationsschritt 2: Companion Specification

- Migrationsschritt 2: Companion Specification
 - Mehrere Maschinenbauer und Endanwender einer Branche erarbeiten ein gemeinsames Informationsmodell
 - Verwendung von Companion Specifications erh\u00f6ht Interoperabilit\u00e4t und erm\u00f6glicht den Anwendungsfall Plug & Work

Migrationsschritt 2: Companion Specification

Migrationsschritt 2: Companion Specification

- Beispiel EUROMAP77
 - Companion Specification für Spritzgieß- und Gummimaschinen
 - enthält z. B. einheitliches Auftragsobjekt
 - Auftragsanfragen können somit einheitlich an Maschinen unterschiedlicher Hersteller gestellt werden

Migrationsschritt 3: Erweitertes Informationsmodell

- Migrationsschritt 3: Erweitertes Informationsmodell
 - Eine OPC UA-Anwendung kann mehrere Informationsmodelle beinhalten
 - Companion Specifications
 - herstellerspezifische Erweiterungen
 - Über den Standard hinausgehende Funktionen
 - Energie- und Taktzeitoptimierung
 - Erfahrung und Wissen der Hersteller kann geschützt werden

Migrationsschritt 3: Erweitertes Informationsmodell

Zusammenfassung

- Industrie 4.0-Kommunikation
 - ist keine weitere Lösung für Echtzeitkommunikation
 - basiert auf neuen Konzepten
 - Serviceorientierte Architektur (SOA)
 - Informationsmodelle
 - ermöglicht die einfache Implementierung der Anwendungsfälle
 - Condition Monitoring
 - Plug & Work
 - Optimierung
 - kann schrittweise eingeführt werden
 - bedarf der Zusammenarbeit von Unternehmen bei der Standardisierung!

