FREEDOM INTERNATIONAL SCHOOL **CHEMISTRY WORKSHEET**

CLASS-XI CHEMICAL BONDING AND MOLECULAR STRUCURE

1. Among the followard present in	owing mixtures, o	dipole-dipole as	the major	ınteractıc	on, 18	
(a) acetonitrile and acetone(c) KCl and water		` '	(b) benzene and ethanol(d) benzene and carbon tetrachloride			
2. Which of the folgeometry of bonds		=			()	
(a) sp	(b) sp ²	(c) sp^3	(d	l) None o	f these	
3. The maximum n is	number of hydrog	gen bonds that a	molecule	of water	can have	
(a) 4	(b) 2	(c) 3		d) 1		
4. The number of t is		~~	71		ı carbide	
(a) Two sigma, two pi(c) One sigma, one pi		_ 	(b) One sigma, two pi (d) Two sigma, one pi			
5. Based on lattice alkali metal chloric (a) NaCl			melting p			
6. Dipole-induced pairs?	dipole interactio	ns are present in	which of	the follow	ving	
(a) H ₂ O and alcoho	ol	(b) HC	I and He	atoms		
(c) Cl ₂ and CCl ₄	(d) Si	(d) SiF ₄ and He atoms				
7. The charge/size of the following se power of the cation (a) $K^+ < Ca^{2+} < Mg$ (c) $Be^{2+} < K^+ < Ca^{2+}$	equences represent representation species, K^+ , $G^{2+} < Be^{2+}$	nts the increasing	g order of ? e ²⁺ < K ⁺ <	the polar		
8. The species have (a) SO ₃	ing pyramidal sh (b) OSF ₂	_	SiO ₃ ² -	(d)	BrF ₃	
9. The structure of (a) Pentagonal bip			(b) Square	e pyramid	I	
(c) Trigonal bipyramid			(d) Octahedral			

10. Which of the formal (a) ClO ₂	ollowing is a linear (b) CO ₂	molecule? (c) NO ₂	(d) SO_2	
11. Which of these pairs of species have the same order of bond?				
(a)O ₂ -, CN-	(b)CN ⁻ , NO ⁺	(c) CO, N	$IO \qquad (d) N^+, CN^+$	
-	pecies are those whi species identify the		shape and hybridisation.	
(a) NF ₃ and BF ₃		(b)	BF ₄ ⁻ and NH ₄ ⁺	
(c) BCl ₃ and BrCl ₃	3	(d)	NH ₃ and NO ₃ ⁻	
13. Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule. Which of the following has the highest dipole moment?				
(a) CO ₂	(b) H ₂ O	(c) HI	(d) SO_2	
14. The types of hybrid orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are expected to be				
(a) sp, sp3 and sp2 (b) sp, sp2 and sp3				
(c) sp2, sp and sp3	3	(d)	sp2, sp3 and sp	
boiling point of su hydrogen bond and	ch compounds depe	nds to a large extrogen bonds. The	g., H ₂ O, HF, NH ₃ . The tent on the strength of e correct decreasing order	
(a) HF > $H_2O > N$	TH ₃	(b) I	$H_2O > HF > NH_3$	
(c) $NH_3 > HF > H$	c) $NH_3 > HF > H_2O$ (d) $NH_3 > H_2O > HF$		$NH_3 > H_2O > HF$	
16. In PO ₄ ³ ion the formal charge on the oxygen atom of P–O bond is				
(a)+1	(b) - 1	(c) - 0.75	(d) + 0.75	
17. In NO ₃ - ion, the nitrogen atom are	he number of bond p	pairs and lone pa	rs of electrons on	
(a) 2, 2	(b) 4, 0	(c) 1, 3	(d) 3, 1	
. , .	(b) 4, 0 following species ha	. , .	• • •	
. , .	` , .	. , .	• • •	
18. Which of the formal (a) NH ₂ ⁻	ollowing species ha	s tetrahedral geor (c) CO ₃ ²⁻	metry? (d) H_3O^+	

20. The bond lengt	th does not get at	ffected by	_		
(a) electron affinity	y (b) bond ord	er (c) hybridisation	on (d)) resonance	
21. In the protonat true	ion of NH3 mole	ecule, the following	state	ment is	
(a) shape of NH ₃ n	nolecule is chang	ged (b) hydrogen	bond	is formed	
(c) hybridization s	tate of N is chang	ged (d) a covalent	bond	is formed	
22. The shape of si	ulphate ion is				
(a) tetrahedral (b)	square planar (c) trigonal bipyram	idal ((d) hexagonal	
23. Which of the fo	ollowing halides	has the highest me	lting p	point?	
(a) NaF	(b) KCl	(c) NaBr	(0	d) NaCl	
24. CCl ₄ is more c	ovalent than LiC	l because			
(a) There is more p (c) CCl ₄ has more		l in CCl ₄ (b) more j (d) none	-	zation of Cl in LiCl options	
25. As compared to possess	_	ounds electrovalent	t comp	oounds generally	
(a) high m.p. and h	nigh b.p.	(b) low m.p. a	nd lov	v b.p.	
(c) low m.p. and high b.p. (d) high m.p. and low b.p.				v b.p.	
		low IP of cation, hand less charge (d)	_	•	
Conditions for ion	ic bond formatio	n is / are			
(a) a, d	(b) b, c and d	(c) b and	l c	(d) a, b	
27. The force response	onsible for dissol	lution of ionic com	pound	in water	
(a) ion - dipole force		(b) dipole - dipole forces			
(c) ion - ion force		(d) hydrogen bond			
28. An ionic comp	ound A+ B- is me	ost likely to be forr	ned w	hen	
(a) both (1) and (2))	(b) electron affin	ity of	B is high	

(c) electron affinity of B is low (d) ionization energy of A is low				
29. The pair of eler	ments which on	combination	are most	likely to form an ionic
(a) K and O	(b) Na and Ca	(c) O ar	nd Cl	(d) Al and I.
30. The boiling point of p-nitrophenol is higher than that of o-nitrophenol because				
31. The bond angle in NH ₃ is slightly less than that in NH ₄ ⁺ . This difference can best be explained on the basis of (a) difference in hybridisation of N in both species (b) lone pair—bond pair repulsion in NH ₃ but not in NH ₄ ⁺ (c) larger size of H in NH ₃ compared to NH ₄ ⁺ (d) difference in electronegativity of atoms bonded to nitrogen 32. In the molecule XeOF ₄ , xenon is the central atom. The number of lone pairs				
on xenon, the type of hybridisation and the geometry around Xe are respectively: (a) 2, sp ³ d ³ , distorted octahedral (b) 1, sp ³ d ² , square pyramidal (c) 1, sp ³ d ³ , square pyramidal (d) 2, sp ³ d ² , octahedral				
33. Which one of the following molecules has the maximum bond order according to MO theory?				
		(c) O_2^{2+}	(d)) CN ⁻
34. Which of the following changes lead to a decrease in bond angle in a molecule? (a) replacement of a bonded atom by a more electronegative one (b) increase in number of lone pairs on central atom (c) increase in multiple bonds between central atom and bonded atoms (d) both (a) and (b)				
35. In the compourare:	nd $[ICl_4]$, the ξ	geometry and	the hybrid	disation of central atom
(a) square planar, s(c) tetrahedral, sp₃	p_3d_2	, ,	e-saw, sp ₃ c luare pyrar	d nidal, sp ₃ d ₂
36. Among the following molecules, which one will have zero dipole moment despite having polar bonds? (a) XeF ₂				

- (b) NF₃
- (c) OF₂
- (d) ClF₃

37. In Al₂Cl₆, each aluminium atom is coordinated to four chlorine atoms. Which of the following is correct regarding its bonding?

- (a) Each Al is sp2 hybridised with a vacant p-orbital.
- (b) Each Al is sp3 hybridised with coordinate bonds from bridging Cl atoms
- (c) Al uses dsp2 hybridisation to bond
- (d) Bonding is purely ionic

38. Consider the species: O₂, O₂⁺, O₂⁻, O₂²⁻. Arrange them in the increasing order of bond length.

- (a) $O_2 2^- < O_2^- < O_2 < O_2^+$
- (b) $O_2^+ < O_2 < O_2^- < O$ (d) $O_2 < O_2^{2-} < O_2^-$
- (c) $O_2^- < O_2^{2-} < O_2^+ < O_2^-$

39. Which of the following pairs is *not* isostructural?

(a) SO_4^{2-} and SiO_4^{4-}

(b) ClO_4^- and PC

(c) XeF₄ and ICl₄⁻

(d) BF₄ and NH₄

40. Which of the following represents the correct order of increasing ionic character of the bonds?

- (a) H-F < H-Cl < H-Br < H-I
- (b) H-I < H-Br < H-Cl < H-F
- (c) H-C1 < H-I < H-F < H-Br
- (d) H-Br < H-I < H-Cl < H-F

Directions: In the given questions, a statement of Assertion (A) is followed by a statement of Reason(R). Of the statements given below mark the correct statements as.

A. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of the Assertion (A).

- B. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- C. Assertion (A) is true, but Reason (R) is false.
- D. Assertion (A) is false, but Reason (R) is true.
- E. Both Assertion (A) and Reason(R) is false.

lone pair-bond pair repulsion in H₂O.

41. **Assertion** (A): In BeCl₂ (vapour), the molecule is linear. **Reason** (**R**): The central Be atom is sp hybridised.

42. **Assertion** (A): The bond angle in water is less than in ammonia. **Reason** (R): Oxygen is more electronegative than nitrogen, leading to greater

- 43. **Assertion** (**A**): BF₃ molecule is planar but NH₃ molecule is pyramidal. **Reason** (**R**): BF₃ has sp² hybridisation while NH₃ has sp³ hybridisation with one lone pair.
- 44. **Assertion** (**A**): F₂ has a lower bond dissociation enthalpy than Cl₂. **Reason** (**R**): F–F bond is weak due to strong repulsion between lone pairs of fluorine atoms.
- 45. **Assertion** (**A**): In SF₆, all S–F bonds are equivalent. **Reason** (**R**): SF₆ has sp³d² hybridisation and octahedral geometry.
- 46. **Assertion** (**A**): O₂ molecule is paramagnetic. **Reason** (**R**): Molecular orbital theory shows the presence of two unpaired electrons in O₂.
- 47. **Assertion** (**A**): The bond angle in NF₃ is less than in NH₃. **Reason** (**R**): Higher electronegativity of fluorine reduces N+F bond pair electron density around nitrogen, increasing lone pair repulsion.
- 48. **Assertion** (A): Ionic bonds are stronger in compounds with higher lattice enthalpy.

Reason (**R**): Lattice enthalpy increases with smaller cation and anion size and higher charges.

- 49. **Assertion** (**A**): XeF₂ molecule is linear in shape. **Reason** (**R**): Xe atom in XeF₂ undergoes sp3d hybridisation with 3 lone pairs in equatorial positions.
- 50. **Assertion** (A): CO has higher bond dissociation energy than O_2 . **Reason** (R): CO has triple bond character with strong π -overlap while O_2 has double bond.
