МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Кафедра математического моделирования и управления

Шклярик Юрий Николаевич

Численное решение граничных задач е

Курсовая работа студента 3 курса 6 группы

Допустить к защите"	Научный руководителн
Руководитель проекта	Петров Петр Петрович
-	доцент кафедры ММАД
2012 г	канд. физмат. наук

РЕФЕРАТ

Курсовая работа, .

ЭЛЕКТРОСТАТИКА, ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, МЕТОД КОНЕЧ-НЫХ ЭЛЕМЕНТОВ, АСИМПТОТИЧЕСКИЕ ГРАНИЧНЫЕ УСЛОВИЯ, УРАВНЕНИЕ ЛАПЛАСА, FENICS, PYTHON

Объект исследования — двумерные электрические поля.

Методы исследования — использование свойств аналитических функций комплексного переменного.

Цель работы — расчёт потенциалов заряженных.

Результаты работы:

- Выведена формула для комплексной напряжённости поля зарядов, лежащих на прямой;
- Найдены выражения для комплексных потенциалов различных конфигураций двумерных электрических полей;
- Построены графики изолиний для соответствующих полей.

РЭФЕРАТ

Курсавая работа, стр. 17, крыніц 2.

ЭЛЕКТРАСТАТЫКА, ЭЛЕКТРЫЧНАЕ ПОЛЕ, МЕТАД КАНЧАТКОВЫХ ЭЛЕМЕНТАУ, АСІМПТАТЫЧНЫЯ МЕЖАВЫЯ УМОВЫ, РАУНАННЕ ЛАПЛАСА, FENICS, PYTHON

Аб'ект даследавання — двухмерныя электрычныя палі.

Метады даследвання — выкарыстанне ўласцівасцей аналітычных функцый комплекснага пераменнага.

Мэта работы — разлік асноўных канфігурацый двухмерных электрычных палёў з выкарыстаннем функцый комплекснага пераменнага.

Вынікі работы:

- Выведзена формула для комплекснай напружанасці поля зарадаў, якія ляжаць на прамой;
- Знойдзены выразы для комплексных патэнцыялаў розных канфігурацый двухмерных электрычных палёў;
- Пабудаваны графікі ізаліній для адпаведных палёў.

ABSTRACT

The course work, pp. 17, sources 2.

ELECTROSTATICS, ELECTRIC FIELD, FINITE ELEMENT METHOD, ASYMPTOTIC BOUDARY CONDITIONS, LAPLACE'S EQUATION, FENICS, PYTHON

 $Subject\ of\ research\ -\ {
m two-dimensional\ electric\ fields}.$

Methods — using properties of analytic functions of complex variables.

 $The\ purpose$ — calculation of basic configurations of two-dimensional electric field using a complex function.

The results:

- The formula for the complex field intensity charges lying on the line;
- Formulas for the complex potentials of different configurations of two-dimensional electric field;
- Contour plots for the corresponding fields.

Содержание

B	веде	ние	3
1	Pen	пение задачи Дирихле с разрывными граничными услови-	
	ями	и на прямоугольнике	4
	1.1	Постановка задачи	4
	1.2	Аналитическое решение	4
	1.3	Вариационная формулировка задачи	5
	1.4	Визуализация	5
	1.5	Оценка скорости сходимости численного решения	6
2	Прі	имеры оформления рисунков и таблиц	7
	2.1	Примеры оформления рисунков	7
	2.2	Пример таблицы	7

Введение

Текст введения.

1 Решение задачи Дирихле с разрывными граничными условиями на прямоугольнике

1.1 Постановка задачи

$$\begin{cases} \Delta u = 0, \\ u(0, y) = 0, & u(a, y) = 0, \\ u(x, 0) = 0, & u(x, b) = f(x), \end{cases}$$
 (1.1)

где $f(x) = \alpha I_{[l,r]}(x)$.

1.2 Аналитическое решение

Воспользуемся методом разделения переменных. Будем искать решение в виде

$$u(x,y) = X(x)Y(y).$$

Получаем систему уравнений

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda.$$
 (1.2)

Задача Штурма-Лиувилля для X(x):

$$\begin{cases} X''(x) + \lambda X(x) = 0, \\ X(0) = X(a) = 0. \end{cases}$$
 (1.3)

Получаем собственные значения:

$$\sqrt{\lambda_n} = \mu_n = \frac{\pi n}{a}.$$

Собственные функции для задачи (1.3) с точностью до константы имеют вид

$$X_n(x) = \sin \mu_n x.$$

3адача для Y(y):

$$\begin{cases} Y_n''(x) - \lambda_n Y_n(x) = 0, \\ Y_n(0) = 0. \end{cases}$$
 (1.4)

Имеем

$$Y_n(y) = C_{n_1}e^{-\mu_n y} + C_{n_2}e^{\mu_n y}$$

$$Y_n(0) = C_{n_1} + C_{n_2} = 0.$$
(1.5)

Значит,

$$Y_n(y) = C_n \sinh \mu_n y \tag{1.6}$$

$$u(x,y) = \sum_{n=1}^{\infty} C_n \sinh \mu_n y \sin \mu_n x$$
 (1.7)

$$C_n = \frac{2}{b \sinh \mu_n b} \int_0^b f(x) \sin \mu_n x \, dx = \frac{2\alpha}{b \sinh \mu_n b} \int_l^r \sin \mu_n x \, dx = \frac{2\alpha}{b \mu_n \sinh \mu_n b} (\cos \mu_n l - \cos \mu_n$$

Окончательное решение:

$$u(x,y) = \frac{4\alpha}{b} \sum_{n=1}^{\infty} \frac{\sin\left(\frac{\mu_n}{2}(l+r)\right) \sin\left(\frac{\mu_n}{2}(r-l)\right)}{\mu_n \sinh \mu_n b} \sinh \mu_n y \sin \mu_n x. \tag{1.9}$$

1.3 Вариационная формулировка задачи

Домножим уравнение $\Delta u = 0$ на тестовую функцию v и проинтегрируем по области $\Omega = (0, a) \times (0, b)$:

$$\int_{\Omega} v \Delta u \, d\Omega = 0. \tag{1.10}$$

По формуле интегрирования по частям,

$$\int_{\Omega} v \Delta u \, d\Omega = \int_{\partial \Omega} v \frac{\partial u}{\partial n} \, dS - \int_{\Omega} \nabla v \nabla u \, d\Omega = -\int_{\Omega} \nabla v \nabla u \, d\Omega.$$
 (1.11)

Слабая формулировка задачи:

$$\int_{\Omega} \nabla v \nabla u \, d\Omega = 0 \tag{1.12}$$

1.4 Визуализация

Визуализация для случая $a=b=1,\, n=30,\, \alpha=0.05.$

Рисунок 1 — Визуализация потенциала и напряжённости, полученных методом конечных элементов

1.5 Оценка скорости сходимости численного решения

Зададим шаг равномерной прямоугольной сетки $h=\frac{1}{n}$. Произведём эксперименты с $h_0>h_1>h_2>\dots$ и получим соответствующие невязки e_0,e_1,e_2,\dots Предположим, что $e_i=Ch_i^r$. По результатам 2-ух экспериментов можно оценить r:

$$r = \frac{\ln \frac{e_{i+1}}{e_i}}{\ln \frac{h_{i+1}}{h_i}}. (1.13)$$

Далее приведены результаты серии вычислений. Для вычисления погрешности использовалась L_2 -норма.

погрешность метода в серии вычислений heightn	e	r
8	0.00164702	1.9999999999973
16	0.00041175	1.9999999999987
32	0.00010294	1.99999999999994
64	0.00002573	1.9999999999997
128	0.00000643	1.99999999999982
256	0.00000161	1.9999999999999999999999999999999999999

2 Примеры оформления рисунков и таблиц

2.1 Примеры оформления рисунков

V_sigma.png

Рисунок 1 — Пример рисунка

Ссылка на рисунок 1.

2.2 Пример таблицы

Таблица 1 — Пример таблицы

No	MLE_6		MHK a		MHK b		MHK (a+b)/2	
	$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_1$	$\hat{ heta}_1$	$\hat{ heta}_1$	$\hat{ heta}_2$
1	0,53548	1,06137	0,72470	1,28297	0,31740	0,64983	0,52105	0,96640
2	0,91964	1,07928	0,98609	1,19080	0,64444	0,7597	0,81526	0,97525
3	1,42572	1,01403	1,39084	1,15258	0,99234	0,72147	1,19159	0,93702
4	0,99314	1,01525	1,08542	1,21208	0,74377	0,69347	0,91459	0,95276
5	0,85784	1,15244	1,18652	1,39875	0,47815	0,70121	0,83233	1,04998
6	0,86709	1,06494	1,21914	1,18477	0,68599	0,77675	0,95257	0,98076
7	0,99295	0,95015	1,21665	1,00739	0,59485	0,69720	0,90575	0,85230
8	1,17673	1,01723	1,25087	1,18790	0,75493	$0,\!59850$	1,00290	0,89320
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
100	1,28197	0,89892	1,21547	0,96368	0,97460	0,64711	1,09503	0,80539
Среднее	1,01641	0,99889	1,18388	1,14546	0,70156	0,68235	0,94272	0,91390
Вариация	0,04664	0,03752	0,07943	0,07556	0,12344	0,12383	0,04913	0,04874