COSC 290 Discrete Structures

Lecture 8: Direct proof and proof by counter example

Prof. Michael Hay Friday, Feb. 9, 2018

Colgate University

Logistics

Plan for today

- 1. Logistics
- 2. Practice: nested and negated quantifiers
- 3. Proofs
- 4. Proof technique: direct proof
- 5. Proof technique: counter example

Logistics

Next topic on schedule: proofs!

Reading does not align neatly with lecture plan.

We will spend some time (roughly 1 lecture each) on several proof techniques:

- · direct proof
- · proof by contrapositive
- · proof by contradiction
- · proof by cases

We will return to Ch. 4.2 to apply these techniques to Hamming codes.

2

Practice: nested and negated quantifiers

True love, expressed mathematically

Predicate $loves(p_1, p_2)$ means " p_1 loves p_2 ." We can express the loves predicate visually using a graph.

Nodes are individuals. Edge from p_1 to p_2 indicates loves(u, v).

Example

The proposition

 $loves(Alice, Darmesh) \land loves(Bob, Chloe) \land loves(Chloe, Darmesh)$

can be shown as.

Poll: nested quantifiers, part 1

Predicate loves (p_1, p_2) means " p_1 loves p_2 ," shown by an arrow from p_1 to p_2 .

For which figure(s) is the following proposition true:

$$\forall p_1 \in P : \exists p_2 \in P : loves(p_1, p_2)$$

More than one/ None of the above

(d)

Poll: nested quantifiers, part 2

Predicate $loves(p_1,p_2)$ means " p_1 loves p_2 ," shown by an arrow from p_1 to p_2 .

For which figure(s) is the following proposition true:

$$\exists p_2 \in P : \forall p_1 \in P : loves(p_1, p_2)$$

More than one/ None of the above

(d)

Credit: Adapted from "Peer Instruction in Discrete Mathematics" by Cynthia Lee, licensed under CC BY-NC-SA 4.0

Credit: Adopted from "Peer Instruction in Discrete Mathematics" by Cynthia Lee, licensed under CC BY-NC-SA 4.0

Poll: showing a proposition is false

Consider the following proposition

$$\forall p_1 \in P : \exists p_2 \in P : loves(p_1, p_2)$$

How could we show that this proposition is false?

- A) Show there is a person who loves everyone
- B) Show there is a person who loves no one
- C) Show there is a person who nobody loves
- D) Show there is a person who everyone loves
- E) Other/more/none

Credit: Adapted from "Peer Instruction in Discrete Mathematics" by Cynthia Lee, licensed under CC BY-NC-SA 4.0

Proofs

Poll: negating nested quantifiers

Consider the following proposition

$$\varphi := \exists p_2 \in P : \forall p_1 \in P : loves(p_1, p_2)$$

What is the correct negation of φ ? In other words, which of the following is logically equivalent to $\neg \varphi$?

- A) $\forall p_2 \forall p_1 \neg loves(p_1, p_2)$
- B) $\forall p_2 \exists p_1 \neg loves(p_1, p_2)$
- C) $\exists p_2 \forall p_1 \neg loves(p_1, p_2)$
- D) $\forall p_2 \exists p_1 \neg loves(p_2, p_1)$
- E) Other/more/none

Credit: Adopted from "Peer Instruction in Discrete Mathematics" by Cynthia Lee, licensed under CC BY-NC-SA 4.0

Proof

A proof is a convincing argument that a proposition is true.

A good proof has three characteristics:

- readable
- valid
- · fluent use of appropriate concepts/terminology

Over next few weeks, we will study many proof techniques (styles of argument): direct, contrapositive, contradiction, cases, induction, strong induction, structural induction, counter example, etc.

Proof technique: direct proof

Proving an "if ... then ..." proposition

If we have a proposition of the form $A \Longrightarrow B$, we can employ a *direct proof* strategy where we assume the antecedent.

Terminology: with an "if A, then B" statement, the A part is the antecedent and the B part is the consequent.

Proof strategy of assuming the antecedent: assume that A is true, show that B must be true also

Poll: two propositions

Consider the following two propositions.

$$\exists x \in S : (P(x) \land Q(x)) \implies (\exists x \in S : P(x)) \land (\exists x \in S : Q(x))$$

and

$$(\exists x \in S : P(x)) \land (\exists x \in S : O(x)) \implies \exists x \in S : (P(x) \land O(x))$$

Which of the above propositions is *always* true, regardless of the meaning of the predicates *P* and *O*?

- A) first one only
- B) second one only
- C) both first and second
- D) neither: their truth values depends on P and Q which haven't been defined

Truth table for implication

Recall truth table for implication: $p \implies q$.

р	q	$p \implies q$	
Т	Т	T	
Т	F	F	Ru
F	Т	T	

Rule this row out!

The implication has one F row: when p is T and q is F.

To prove that a specific proposition $A\Longrightarrow B$ is true, we must show that, given the particular meanings of A and B, the F row cannot happen.

Direct Proof Template

- · Claim: Write the claim to be proved, "If p, then q"
- · Proof: We will prove this directly.
 - · Given: Assume that p is true.
 - Want to show: restate q
 - Write main body of proof... show how a logically follows from p
 - The body should lead reader to conclusion... "and therefore [restate q] is true."
 - End by restating claim or simply □

Proof technique: counter example

Example Proof

· Claim: The proposition

 $\exists x \in S : (P(x) \land Q(x)) \implies (\exists x \in S : P(x)) \land (\exists x \in S : Q(x))$ is true, regardless of the meaning of the predicates P and Q

- · Proof: We will prove this directly.
 - Given: Assume that $\exists x \in S : (P(x) \land Q(x))$ is true.
 - Want to show: $(\exists x \in S : P(x)) \wedge (\exists x \in S : Q(x))$ must be true. Since we are given that $\exists x \in S : (P(x) \wedge Q(x))$, let x_0 be an element in S such that $P(x_0) \wedge Q(x_0)$. Given that $P(x_0) \wedge Q(x_0)$ is true, we know that $P(x_0)$ is true

element in S such that $P(x_0) \land Q(x_0)$. Given that $P(x_0) \land Q(x_0)$ is true (because $p \land q$ is true only when both p and q are true). Since $P(x_0)$ is true and $x_0 \in S$, then $\exists x \in S : P(x)$. Using the same argument, we can show that $\exists x \in S : Q(x)$. Since both $\exists x \in S : P(x)$ is true and $\exists x \in S : Q(x)$ is true, we can conclude that $\exists x \in S : P(x)) \land (\exists x \in S : Q(x)) \Box$

13

Proving a claim is false

To show that proposition is false, present a counter example.

A counter example is a specific, concrete example that demonstrates that claim does not hold

Example

The claim $\forall x \in \mathbb{Z}$: isPrime(x) is false. Proof by counter example: the number 6 is in \mathbb{Z} and yet isPrime(6) is false because 2 divides 6.

Example: Proof that claim is false

· Claim: The claim that

$$(\exists x \in S : P(x)) \land (\exists x \in S : Q(x)) \implies \exists x \in S : (P(x) \land Q(x)) \text{ is true, regardless of the meaning of the predicates } P \text{ and } Q, \text{ is false.}$$

Proof: We will prove this using a counter example.
Let S be the set of all Colgate students, let P(x) be that student x is at least 6 feet tall; let Q(x) be that student x is less than 6

feet tall. Looking around the room, we can see that $(\exists x \in S : P(x))$ and $(\exists x \in S : Q(x))$ are both true.

Yet clearly $\exists x \in S : (P(x) \land Q(x))$ is false because someone can have only one height.