数学

第一章函数极限和连续

1.函数

- y=f(x)
 - o x是自变量 x 的范围叫定义域
 - 。 y是因变量 y 的范围叫做值域
 - o f是对应法则
- $\frac{b}{a}$ 、 $\frac{x}{y}$ 、 $\frac{1}{x+1}$ ** $\sqrt[Hit]{$ 被开方数

常数函数

• y=c(常数) 偶函数 关于y轴对称

基本初等函数

幂函数

幂函数 y=x^μ (μ!= 0)

y=x¹=x 奇函数

注意 奇函数特点关于圆点对称

• y=kx+b (一条直线) 例子 y=2-x 如何判断是直线 x是一次幂

● y=x² 偶函数

注意偶函数特点关于y轴对称

y=x⁴ 偶函数

- y=ax² +bx +c(抛物线)
 - a>0 开口向上
 - a<0 开口向下
- y=-x² 偶函数

● y=x³ 奇函数

• $y=x^{-1} = \frac{1}{x}$ 奇函数 定义域 $(-\infty,0)\cup (0, +\infty)$

• y= \sqrt{x} =x^ $\frac{1}{2}$ ^ 非奇非偶 定义域 [0,+ ∞)

幂函数的性质

1.
$$(x^p)^q = x^{p*q}$$

2.
$$X^p * X^q = x^{p+q}$$

3.
$$x^{q} \setminus x^{p} = x^{p-q}$$

例子
$$x^3 \setminus x^2 = x$$

4.
$$x^p \setminus 1 = x^{-p}$$

例子
$$x \setminus 1 = x^{-1}$$
 (反比例函数) $x^3 \setminus 1 = x^{-3}$

5.
$$m\sqrt{-x^n} = x^{m \cdot n}$$

例子
$$2\sqrt{-x^1} = \sqrt{-x} = x^{2 \setminus 1}$$
 $3\sqrt{-x} = x^{3 \setminus 1}$ $4\sqrt{-x^3} = x^{4 \setminus 3}$

指数函数

• y= a \times (a>0 \perp , a!= 1) \times (- ∞ ,+ ∞) \times (0,+ ∞)

1. a⁰ =1 a必须大于0

2. a>1 y=2^x y=3^x

3. 0<a<1 y=($\frac{1}{2}$)^X y=($\frac{1}{3}$)^X

4. y=e^X e=2.718281... >1

注意: y=e^x<=>x=In^y

5. $y=e^{-x} = (e^{-1})^x = (e\1)^x e\1<1$ 和 $y=e^x$ 对称

指数函数性质

1.
$$(e^{x})^{y} = e^{xy}$$

2.
$$e^{x1} * e^{x2} = e^{x1+x2}$$

3.
$$e^{x1} \setminus e^{x2} = e^{x1-x2}$$

5.
$$m\sqrt{-}(e^x)^n = m\sqrt{-}e^{xn} = e^{m/xn}$$

6.
$$(a*b)^X = a^X * b^X$$

7. 例题

$$(e^x)^2 = e^{2x} != e^{x^2}$$

o
$$e^{3x} * e^{2x} = e^{5x}$$

o
$$e^{3x} - e^{2x} = e^{2x} (e^x - 1)$$
 ! = e^x

o
$$e^{3x} \setminus e^{2x} = e^x$$

o
$$3\sqrt{-}e^{2x} = e^{3\sqrt{2x}}$$

$$\circ 2^{x} * e^{x} = (2e)^{x}$$

对数函数

- y=log $^{x}_{a}$ x>0 x是对数里面的真数 a >0 a != 1 a是对数里面的底数 定义域 $(0, +\infty)$
- a>1

• 0<a<1

- $y = log_a^1 = 0$ $y = log_a^a = 1$
- a=e 时 y=log^X_e =ln^X

• a=10 时 y=log^X₁₀ =lg^X

对数性质

1.
$$\log^{x}_{a} + \log^{y}_{a} = \log^{xy}_{a}$$
 $\ln^{x} + \ln^{y} = \ln^{xy}$

$$ln^{x} + ln^{y} = ln^{xy}$$

$$2 \log^{X} a - \log^{y} a = \log^{y/X} a$$

$$\ln^x - \ln^y = \ln^{y/x}$$

2.
$$\log^{x} a - \log^{y} a = \log^{y/x} a$$
 $\ln^{x} - \ln^{y} = \ln^{y/x}$
3. $\log^{x} a = m \log^{x} a$ $\ln^{x} = m \ln^{x} X$

$$l_n x'' = m l_n x$$

4. 对数恒等式 e^{lnA} =A

5.
$$\log^b a = \frac{\log b}{\log a}$$

$$5. \log^{b} a = \frac{\log^{b} b}{\log^{a} a} \qquad \log^{3} 2 = \frac{\ln^{3}}{\ln^{2}} = \frac{\log^{4} 3}{\log^{4} 2}$$

三角函数

1. 正弦函数 y=sinx 周期 $t=2\pi$ 有界函数 奇函数 最大1 最小-1

2. 余弦函数 y=cosx 周期 t= 2π 有界函数 偶函数 最大1 最小-1

cosπ=-1 必考

cos0=1 必考

3. 正切函数 y=tanx = $\frac{sinx}{cosx}$ 周期 t= π 奇函数

4. 余切函数 y=cotx= $\frac{1}{tanx}$ = $\frac{cosx}{sinx}$ 周期 t= π 奇函数

- 5. 正割函数 y=secx= $\frac{1}{cosx}$ 偶函数
- 6. 余割函数 y=cscx= $\frac{1}{sinx}$ 奇函数

记忆技巧

- $\sin^2 x + \cos^2 x = 1 \tan^2 x + 1 = \sec x^2 + 1 + \cot^2 x = \csc^2 x$ 三角形上顶点的平方等于下顶点的平方
- $tanx = \frac{sinx}{cosx}$ $cotx = \frac{cosx}{sinx}$ 任意一个顶点等于顺时针的两个相邻顶点的商
- $secx = \frac{1}{cosx}$ $tanx = \frac{1}{cotx}$ $cscx = \frac{1}{sinx}$ 对角线互为倒数

二倍角公式:

- sin2x=xsinx * cosx
- $\cos 2x = \cos^2 x \sin^2 x = 2\cos^2 1 = 1 2\sin^2 x$

降幂公式

- $\sin^2 x = \frac{1 \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$

三角函数值

角α	0°	30°	45°	60∘	90°	120°	135°	150°	180∘
弧度制	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinx	0	1/2	√2/2	√3/2	1	√3/2	√2/2	1/2	0
COSX	1	√3/2	√2/2	1/2	0	-1/2	-√2/2	-√3/2	-1
tanx	0	√3/3	1	√3	\	-√3	-1	-√3/3	0
cotx	\	√3	1	√3/3	0	-√3/3	-1	-√3	\
$cotx = \frac{1}{tanx}$									
$Secx = \frac{1}{cosx}$									
$Secx = \frac{1}{sinx}$									
◆									

反三角函数

1. 反正弦函数 y=arcsinx 奇函数 有界函数 定义域 x [-1,1] y[- $\frac{\pi}{2}$, $\frac{\pi}{2}$]

2. 反余弦 y=arccosx 定义域 x [-1,1] y[0,π]

3. **反正切函数** y=arctanx 奇函数 有界函数 定义域 x $[-\infty,\infty]$ y $[-\frac{\pi}{2},\frac{\pi}{2}]$

4. **反余切函数** y=arccotx 有界函数 定义域 $x [-\infty,\infty]$ $y[0,\pi]$

图像可能有差距

5. 考试题型

- 1. $\sin \frac{\pi}{6} = \frac{1}{2}$ $\arcsin \frac{1}{2} = \frac{\pi}{6}$ 2. $\tan \frac{\pi}{4} = 1$ $\arctan 1 = \frac{\pi}{4}$

复合函数

- 例 y=(x²+3)³ 由u=x²+3 和 y=u³ 复合
- 技巧符合拆分分单独的初等函数
- 例题
 - 1. y=sin(x+1) 由u=x+1 和 y=sinu 复合
 - 2. $y=log^{2x+2}$ 3 由u=^2x+2 和 y= log^u 3 复合

- 3. y=arssinx² 由u=x² 和 y=arssinu 复合
- 4. y=cos²x 由u=cosx 和 y=y=u² 复合
- 5. y=ln²x 由u=lnx 和 y=u² 复合

初等函数

• 初等函数:由基本初等函数及常数,经过有限次的加,减,乘,除及有限次的复合运算所构成,并能用一个式子表示的函数

分段函数

$$\bullet \quad y = \begin{cases} x & x > 0 \\ 1 - x & x <= 0 \end{cases}$$

考点一求函数定义域

1. 求初等函数及分段函数的定义域

1.
$$\frac{1}{\Box}$$
 口 != 0 例 $\frac{1}{x}$!= 0

2. $\frac{2n}{\sqrt{}}$ 口 \Rightarrow 0 例 $y=\sqrt{}$ x x>=0

3.
$$2n+1\sqrt{-}$$
口 口 $[-\infty,\infty]$ 例 $y=3\sqrt{-}x$ $[-\infty,\infty]$

4.
$$y = log^{\square}_a$$
 口 > 0 或者 $y = ln^x x > 0$ $y = lg^x x > 0$

5. arcsin口 或者 arccos口 口 [-1,1] 例子 arcsinx [-1,1] arccosx [-1,1]

6. 例子

$$y=\sqrt{2}-x$$
 2-x>=0 -> x<=2 -> ∞

$$y=ln(x-3)$$
 $x-3>0$ -> $x>3$ -> $x>0$

$$y = \frac{1}{x+1}$$
 $x+1 !=0 ->x!=-1 -> (-\infty,-1)U(-1,\infty)$

$$y = \frac{\sqrt{-64 - x^2}}{\ln(x - 5)} \begin{cases} 64 - x^2 > 0 \Rightarrow x_*^2 \le 64 & -8 \le x \le 8 \\ x - 5 > 0 \Rightarrow x > 5 & x > 5 \\ \ln(x - 5) \Rightarrow x - 5 + 1 & x \ne 6 \end{cases}$$

注意In算法是 In¹ =0 所以 x-5!=1 大于取两边小于取中间

$$y = \sqrt{16-x^2 + \ln(x-2)}$$

$$y = \sqrt{16-x^2 + \ln$$

$$y = \frac{\arcsin(\frac{x-1}{3})}{\sqrt[3]{x-2}} \quad \begin{cases} -1 \leqslant \frac{x-1}{3} \le 1 \implies -3 \leqslant x - 1 \leqslant 3 \\ x - 2 \ne 0 \implies x \ne 2 \end{cases} \xrightarrow{-2 \leqslant x \le 4} \xrightarrow{-2 \implies 4}$$

y=\$ \begin{cases}

$$\end{cases}$$
\$ (- \end{C} .5]

分段函数求定义域 就是把所有加一起

7. 真题

1. 2017.11
$$y = \frac{\sqrt{x-1}}{\ln x}$$
 $(1.+\infty)$

2. 2018.11 $y = \frac{\ln (x-1)}{\sqrt{2-x}}$ $(x-1) = \frac{x^{2}}{\sqrt{2-x}}$ $(x-1) = \frac{x^{2}}{\sqrt{2-x}}$

3. 2019.11
$$y = \frac{\sqrt{16-x^2}}{\ln(x+3)}$$

$$\frac{\sqrt{16-x^2}}{\ln(x+3)}$$

$$\frac{\sqrt{16-x^2}}{\ln(x+3)}$$

$$\frac{\sqrt{16-x^2}}{\sqrt{x+3}}$$

$$\frac{\sqrt$$

- 7. 第6题 分段函数取并集
- 8. 求抽象函数的定义域
 - 1. 定义域x的取值范围
 - 2. f对()内的范围一致

例: y=f(x)的定义域 (0, 1]则f(x+1)的定义域 (-1, 0]

0 < x < = 1

0 < x+1 <= 1 -> -1 < x <= 0

例: y=f(x)的定义域[0, 1]则f(ln^x)的定义域 [1,e]

0 <= x <= 1

 $0 <= \ln^{x} <= 1 -> 1 <= x <= e$

注In^x 函数性质 x=1 时y=0 x=e时y=1

例: y=f(2x-1)的定义域[0,1], 求f(x)的定义域[-1,1]

0 <= x <= 1 0 <= 2x <= 2 -1 <= 2x -1 <= 1 [-1,1]

解题思路: f(2x-1)=f(x) 需要用当前x的定义域去还原

考点二

单调性

• 定义:若对任意 $x_1, x_2 \in (a,b)$,当 $x_1 < x_2 \cup f(x_1) < f(x_2)$ 称f(x)在a,b单调递增若对任意 $x_1, x_2 \in (a,b)$,当 $x_2 < x_1 \cup f(x_2) < f(x_1)$ 称f(x)在a,b单调递减

奇偶性

- 定义: 设函数f(x)在定义域D关于圆点对称 (-a,a)
 f(x)=f(-x) 偶函数 关于y轴对称
 f(-x)=-f(x)或f(x)+f(-x)=0 奇函数 关于圆点对称
- 常见奇函数

 $x, x^3, x^5, ..., x^{2n+1}$, sinx, tanx, cotx, cscx, arcsinx, arctanx

g(x)=f(x)-f(-x) 例: $g(x)=e^{x}-e^{-x}-g(-x)=e^{-x}-e^{x}-g(x)=-g(x)=-g(x)=-g(x)$

• 常见偶函数

x²,x⁴,x⁶,...,x²ⁿ, cosx ,secx, |x| ,c(常数)

g(x)=f(x)+f(-x) 例: $g(x)=e^{X}+e^{-X} -> g(x)=e^{X}+e^{-X} -> g(x)=-g(x)=>偶函数$

计算

○ 加减奇偶性: 奇 +/- 奇=奇 偶 +/- 偶 =偶 奇 +/- 偶 =非奇, 非偶

○ 乘除奇偶性: 同偶异奇 , 奇 x/÷ 奇=偶 偶 x/÷ 偶 =偶 奇 x/÷ 偶 =奇

○ 复合函数奇偶性: 内偶则偶, 内奇同外 奇与奇复合=奇、

内层是偶的复合函数是偶

• 例题

判断奇偶性:

1.
$$y=x^3$$
-3sinx 奇-奇=奇
2. $y=\frac{1-x^2}{1+x^2}$ 偶 =偶

周期性

- € 定义:设函数的定义域D,若存在实数T>0,对于任意x∈恒有f(x+/-T)=f(x),则称 f(x)为周期函数
- 注意: 周期一般是最小正周期

• y=Asin(
$$\omega$$
x+ φ)+B T= $\frac{2\pi}{|\omega|}$

• y=Acos(
$$\omega x + \varphi$$
)+B T= $\frac{2\pi}{|\omega|}$

例子 y=sin2x 周期
$$T=\frac{2\pi}{2}=\pi$$

例子 y=cos(x+3)+4 周期
$$T=\frac{2\pi}{1}$$
 =2 π 看x前面系数

例子 y=sin2x+cos
$$\frac{x}{3}$$
 周期 T1= $\frac{2\pi}{2}$ = π T2= $\frac{2\pi}{\frac{1}{3}}$ =6 π 然后找最小公倍数 6 π

• y=Atan(
$$\omega$$
x+ φ)+B T= $\frac{\pi}{|\omega|}$

• y=Acot(
$$\omega$$
x+ φ)+B T= $\frac{\pi}{|\omega|}$

例子: y=tan2x+1 周期
$$\frac{\pi}{2}$$

有界性

- 定义:设函数f(x)在某个区间有定义,若存在实数M>0,对于改区间内任意的x恒有 | f(x) | < M 则称 函数f(x)在该区间内有界函数
- 例
 - o y=sinx -1<=sinx<=1 |sinx|<=1
 - o y=cosx |cosx|<=1
 - y=arctanx |arctanx|< $\frac{\pi}{2}$
 - \circ y=arccotx arccotx $<\pi$

2.极限

数列极限

- 分析下面几个数列的变化趋势 $n->\infty$

$$2, 2, 3, \dots, n$$
 n n

• 数列的定义: $\exists n--->\infty$ 时,若数列 $\{x_n\}$ 无限接近某个确定的常数a则称

$$n-->\infty$$
时, $\{x_n\}$ 收敛于a

$$\lim_{n \to +\infty} x_n$$
=a

若这样的a不存在,则称 $|x_n|$ 发散 $\lim_{n\to+\infty}x_n$ 不存在

结论:

$$\circ \lim_{n o +\infty} c$$
=c

$$\circ$$
 $\lim_{n o +\infty} c$ =c 例: $\lim_{n o +\infty} 6$ =6

$$\circ$$
 $\lim_{n o +\infty} q^n$ =0(|q|<1)例: $\lim_{n o +\infty} rac{1}{2}^n$ =0

$$\circ \lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\begin{array}{ll} \circ & \lim_{n \to +\infty} \frac{1}{n} = 0 \\ \circ & \lim_{n \to +\infty} \frac{1}{n^k} = 0 \text{ (k>0)} \end{array}$$

例:
$$\lim_{n \to +\infty} \frac{1}{n^2}$$
=0

• 收敛数列的性质:

2. 有界性, 若{xn}收敛则{xn}比有界, 反之不成立

注意: 有界不一定收敛()、()1.01-有暑 但它发药

无界一定发散 例如: 1²,2²,3³,...,n²,...发散

3. 单调有界数列必收敛

例:收敛是有界的充分不必要条件

箭头向右=>充分条件

箭头向左<=必要条件

箭头向左向右<=>充分必要条件

• 数列极限四则运算法则

o
$$\lim_{n o +\infty} x_n$$
=A , $\lim_{n o +\infty} y_n$ =B 则

1.
$$\lim_{n \to +\infty} (x_n + y_n)$$
=A +/- B

2.
$$\lim_{n \to +\infty} (x_n * y_n)$$
=A * B

3.
$$\lim_{n\to+\infty} \left(\frac{x_n}{y_n}\right) = \frac{A}{B}$$
 (B!= 0)

例题

$$\circ \lim_{n \to +\infty} \left(\frac{n-2}{3n+3}\right) \lim_{n \to \infty} \frac{\frac{1}{n} \cdot \frac{2}{n}}{\frac{3n}{n} + \frac{3}{n}} = \lim_{n \to \infty} \frac{1 - \frac{2}{n}}{3 + \frac{3}{n}} = \frac{1 - 0}{3 + 0} = \frac{1}{3}$$

技巧抓大头 $\frac{n}{3n} = \frac{1}{3}$

$$\circ \lim_{n \to +\infty} \left(\frac{n^2 + 2n + 3}{4n^2 + 5n + 6} \right) \frac{n^2}{4n^2} = \frac{1}{4}$$

$$\circ \lim_{n \to +\infty} \left(\frac{(n+1)(n+2)(n+3)}{5n^3} \right) \frac{n^3}{5n^3} = \frac{1}{5}$$

$$\circ$$
 2017.12 $\lim_{n\to+\infty} \left(\frac{2n^2+n-1}{3n^2-5n+7}\right) \frac{2n^2}{3n^2} = \frac{2}{3}$

$$\circ \ \lim_{n \to +\infty} \left(\frac{3n+1}{2n+5}\right)^2 \ \frac{9n^2}{4n^2} = \frac{9}{4}$$

$$\circ \lim_{n \to +\infty} \frac{(4n+5)(2n+8)}{(3n+6)(n+2)} \frac{8n^2}{3n^2} = \frac{8}{3}$$

$$\circ \lim_{n \to +\infty} \frac{3^n}{5^n} = \lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$$

$$\circ \lim_{n \to +\infty} \left(\frac{1}{2}\right) + \left(\frac{1}{2^2}\right) + \left(\frac{1}{2^3}\right) + \dots + \left(\frac{1}{2^n}\right) = \lim_{n \to \infty} \frac{1}{\left(-\frac{1}{2}\right)^n} = \lim_{n \to \infty} \left(-\frac{1}{2^n}\right)^n = \left(\frac{1}{2^n}\right)^n = \left(\frac{1}{2^n}\right)$$

等比数列求和公式
$$\frac{a_1(1-q^n)}{1-q}$$

$$\circ \lim_{n \to +\infty} \left(\frac{1}{n^2}\right) + \left(\frac{2}{n^2}\right) + \left(\frac{3}{n^2}\right) + \dots \left(\frac{n}{n^2}\right)$$

等差数列求和公式
$$\frac{(a_1+a_n)n}{2} = \lim_{n \to \infty} \frac{1+2+3+\cdots n}{n^2} = \lim_{n \to \infty} \frac{(1+n)n}{2}$$

$$0 \quad \lim_{N \to \infty} \frac{2^{n} + 6^{n}}{2^{n+1} + 6^{n+1}} = \frac{1}{6}$$

函数极限

x --> x₀ 时极限

● —.x --> x₀ 时极限

- x ——> x₀的含义:
 - 1. $x - > x_0$
 - 2. $x - > x_0^+$
 - 3. $x != x_0$
- 定义: 当x ——> x0时, 若f(x)无限接近某个确定常数A,则称x ——> x0时, t(x)以A为极限
- $i\exists$: $\lim_{x\to x_0} f(x) = A$
- 结论: $\lim_{x\to x_0}f(x)$ =A <=> $\lim_{x\to x_0^-}f(x)$ = $\lim_{x\to x_0^+}f(x)$ =A
- 真题: 2019.1 $\lim_{x\to a} f(x) = A$ 的充要条件 ()

A:
$$\lim_{x \to a^-} f(x)$$
=A B: $\lim_{x \to a^+} f(x)$ =A

C:
$$\lim_{x o a^-} f(x)$$
= $\lim_{x o a^+} f(x)$ D:C: $\lim_{x o a^-} f(x)$ = $\lim_{x o a^+} f(x)$ =A

- 极限的性质: 如果函数的极限存在, 则极限唯一
 - 1. $\lim_{x \to x_0} c$ =c
 - 2. $\lim_{x\to x_0} x=x_0$
- 函数极限四则运算法则:

设:
$$\lim_{x \to x_0} f(x)$$
=A $\lim_{x \to x_0} g(x)$ =B (均存在),则

$$\circ \lim_{x \to x_0} [f(x) + g(x)] = A + B$$

$$\circ \lim_{x \to x_0} [f(x) - g(x)] = A-B$$

$$\circ \ \lim_{x\to x_0} [f(x)*g(x)] = \mathsf{A}^\mathsf{+}\mathsf{B} \quad \lim_{x\to x_0} cf(x) = \mathsf{C}^\mathsf{+}\mathsf{A} \quad \lim_{x\to x_0} f^2(x) = \mathsf{A}^\mathsf{n}$$

$$\circ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \text{ (B !=0)}$$

• 例题:

1.
$$\lim_{x \to 2} [2x^3 - x^2 + 1]$$
= 2*2³-2²+1=16-4+1=13

2.
$$\lim_{x\to 1} [x^3 + 2\sqrt{x} + \frac{1}{x}] = 1 + 2 + 1 = 4$$

3.
$$\lim_{x\to -1} \frac{4x^2-3x+1}{2x^2-6x+4} = \frac{4+3+1}{2+6+4} = \frac{8}{12} = \frac{2}{3}$$

推广:
$$\lim_{x \to x_0} (a_n x^n + \ldots a_1 x^1 + a_0)$$
= $a_n x_0^n + \ldots a_1 x_0 + a_0$ (将 \mathbf{x}_0 代入)

4.
$$\lim_{x\to 3} \frac{x^2-4x+3}{x^2-9} = \frac{(x-1)(x-3)}{(x+3)(x-3)} = \frac{2}{6} = \frac{1}{3}$$

做题思路因为带入之后分母为0分母因式分解 $a^2-b^2=(a+b)(a-b)$ 分子十字相乘法

$$5. \ \lim_{x \to 2} \left(\frac{x^2}{x^2 - 4} - \frac{1}{x - 2} \right) = \lim_{x \to 2} \left(\frac{x^2}{(x - 2)(x + 2)} - \frac{1}{x - 2} \right) = \lim_{x \to 2} \left(\frac{x^2}{(x - 2)(x + 2)} - \frac{x + 2}{(x - 2)(x + 2)} \right) = \lim_{x \to 2} \frac{x^2 - x - 2}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)} = \frac{3}{4}$$

6. f(x)=
$$\begin{cases} x^2+1 & x!=0 \\ 2 & x=0 \end{cases}$$
 求 $\lim_{x \to 0} f(x)$ 找不等于0 的式子 = $\lim_{x \to 0} x^2+1$ =1

7. f(x)=
$$\begin{cases} 2x+5 & x>0\\ 0 & x=0 \ \ \text{求} \\ x^2+1 & x<0 \end{cases}$$
 求 im $_{x\to 0}\,f(x)$ 正方向 负方向分别求

=
$$\lim_{x \to 0^+} 2x + 5$$
=5

$$=\lim_{x \to 0^{-}} x^{2} + 1$$
=1

因为
$$\lim_{x o x_0^+}f(x)$$
 !**= $\lim_{x o x_0^-}f(x)$

所以 $\lim_{x\to 0} f(x)$ 不存在

x-->∞时的极限

• 含义
$$\begin{cases} x->+\infty \\ x->-\infty \end{cases}$$

● 定义:如果当 $x-->\infty$ 时,f(x)无限接近某个确定的常数A,则称 $x-->\infty$ 时,f(x)以A为极限

• 记作:
$$\lim_{x \to \infty} f(x)$$
=A

• 结论:
$$\lim_{x\to\infty} f(x) = A \iff \lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = A$$

• 例:

1.
$$\lim_{x\to\infty}1+\frac{1}{x^2}$$
=1 x^2 分之1相当于1

2.
$$\lim_{x\to\infty} \frac{2x^2-2x+1}{x^2+6x+5}$$
=抓大头 =2

3.
$$\lim_{x\to\infty} \frac{4x^2+5x-3}{2x^3+8} = \frac{4x^2}{2x^3} = \frac{4x^2}{2x^3} = \frac{2}{x} = 0$$

4.
$$\lim_{x\to\infty}\frac{3x^4-2x^2-7}{5x^2+3}=\infty$$
 5分之无穷大=无穷大

$$\lim_{X\to\infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_n x + a_n}{b_m x^m + b_{n-1} x^{n-1} + \cdots + b_n x + b_n} = \begin{cases} \frac{a_n}{b_m} & m=n \\ 0 & \frac{n < m}{n > m} \end{cases}$$

口诀分母大则为0 分子大则为 ∞ 相等看系数

5. 2020.12
$$\lim_{x \to \infty} \frac{2x^2 + 10x - 1}{3x^3 - 5x^2 + 8}$$
 =0

6. 2022.12
$$\lim_{x \to \infty} \frac{ax^2}{(x+2)^3 - x^3} = 2$$
 则a= $\frac{1}{\sqrt{6x^2 + 0x + 8}} = 2$ $0 = 2$ $0 = 12$

$$(0+b)^3 = 0^3 + 30^2b + 30b^2 + b^3$$

7.
$$\lim_{x\to\infty} \arctan x = x - \infty$$
 | In arctonx $\neq \lim_{x\to +\infty} \operatorname{arcton} x$ $x - x + \infty$

考点: 无穷大量与无穷小亮

无穷小量

• 若 $\lim_{x\to \Box} f(x) = 0$ 则称x-->口时,f(x)为**无穷小**量

注: 口表示x--> x_0 ,x--> x_0 ,x--> x_0 ,x-->- ∞ ,x-->+ ∞

• 例题:

$$\lim_{x\to\infty}\frac{1}{x+1}$$
= 0,所以当x--> ∞ 时,y= $\frac{1}{x+1}$ 是无穷小

 $\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$, 所以当x-->1时, y= $\frac{1}{x+1}$ 就不是无穷小 $\lim_{x \to 1} x - 1$ = 0, 所以当x-->1时, y=x+1是无穷小

- 若 $\lim_{x\to \Box} 0=0$,零是可作为无穷小的唯一常数
- 无穷小的性质:

1. 有限个无穷小的和,差,积,仍为无穷小

例1:
$$\lim_{x\to\infty}\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}$$
=0 例2: $\lim_{n\to\infty}\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}\dots+\frac{n}{n^2}=\lim_{n\to\infty}\frac{1+2+3\dots+n}{n^2}=\lim_{n\to\infty}\frac{\frac{(1+n)n}{2}}{n^2}=\lim_{n\to\infty}\frac{\frac{n^2+n}{2}}{\frac{n^2}{2n^2}}=\lim_{n\to\infty}\frac{n^2+n}{2n^2}=\frac{1}{2}$ 不是无穷小

2. 有界函数与无穷小的乘积为无穷小

例1:
$$\lim_{x\to\infty}\frac{\sin x}{x}=\lim_{x\to\infty}\sin x*\frac{1}{x}=0$$
例2: $\lim_{x\to\infty}\frac{\arctan x}{x}=\frac{1}{x}=0$
例3: $\lim_{x\to 0}x\sin *\frac{1}{x}=0$

3. 常数与无穷小的乘积还是无穷小

• 无穷小量

- 当x->口, 若 | f(x) | 无限增大,则称x->口时, f(x)为无穷大量
- 记作: $\lim_{x\to\Box} f(x) = \infty$ (不存在)
- 例:

1.
$$\lim_{x o 0^+} lnx$$
= ∞

2.
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$
(分母为0 是无穷大)

• 无穷大与无穷小的关系

1. 定理:
$$\lim_{x \to \Box} f(x) = \infty$$
 , 则 $\lim_{x \to \Box} \frac{1}{f(x)} = 0$ 反之: $\lim_{x \to \Box} f(x) = 0$, 则 $\lim_{x \to \Box} \frac{1}{f(x)} = \infty$
$$\frac{1}{0} = \infty \quad \frac{2}{0} = \infty \quad \frac{k(k!=0)}{0} = \infty$$

$$\frac{1}{\infty} = 0 \quad \frac{2}{\infty} = 0 \quad \frac{k(k!=0)}{\infty} = 0$$

考点: 无穷小的比较

• 定义: 设
$$\lim \alpha(x) = 0 \lim \beta(x) = 0 \ \exists \beta(x) = 0 \$$

1.
$$\lim \frac{\alpha(x)}{\beta(x)} = 0$$
 ,则 $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小

例子:
$$\lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0$$

2.
$$\lim \frac{\alpha(x)}{\beta(x)} = \infty$$
,则 $\alpha(x)$ 是 $\beta(x)$ 的低阶无穷小

例子:
$$\lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} x = \infty$$

3.
$$\lim \frac{\alpha(x)}{\beta(x)}$$
 = c (c!=0 c!=1 常数) ,则 $\alpha(x)$ 是 β (x) 的同阶无穷小

例子:
$$\lim_{x\to 0} \frac{2x}{x}$$
=2

4.
$$\lim \frac{\alpha(x)}{\beta(x)} = 1$$
 ,则称 $\alpha(x)$ 是 $\beta(x)$ 的等价无穷小,记: $\alpha(x) \sim \beta(x)$

例子:
$$\lim_{x\to 0} \frac{x}{x}$$
=1 (x~x)

• 必背八个等价无穷小代换

$$X \rightarrow 0$$
 $\begin{cases} \sin X \sim X \\ \tan X \sim X \end{cases}$ $1 - 1/35X \sim \frac{1}{2}X^{2}$ $1 - 1/35X \sim \frac$

o 例题:

1. f(x)=2x³+4x² g(x)=2x² 当x->0时f(x)是g(x)的___无穷小

注意: 不能抓大头无穷才能抓大头、

$$\lim_{X \to 0} \frac{2X^3 + 4X^2}{2X^2} = \lim_{X \to 0} \frac{2X^3}{2X^2} + \frac{4X^2}{2X^2} = \lim_{X \to 0} X + 2 = 2 \text{ and } X$$

2. $\lim_{x\to 0} \frac{\sin x}{x^2}$ = $\sin(x)$ 是 x^2 的___无穷小 低阶

$$\frac{13M}{13M} \cdot \frac{11M}{13M} \cdot \frac{51M}{13M} = \frac{11M}{13M} \cdot \frac{1}{13M} = \frac{1}{13M} = \frac{1}{13M}$$

$$= \frac{11M}{13M} \cdot \frac{1}{13M} = \frac$$

等价无穷小替换定理:

在同一极限过程中则 $\alpha(x) \sim \alpha_1(x) \beta(x) \sim \beta_1(x)$ 则

1.
$$\lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{\beta_1(x)}{\alpha_1(x)}$$
 必须 $\frac{0}{0}$

2. $\lim \alpha(x)\beta(x)=\lim \alpha_1(x)\beta_1(x)$

注意:乘积和除法是可以无穷小替换

加法和减法不可以替换

0 例题:

例1
$$\lim_{x\to 0} \frac{\tan 2x}{\sin 3x} = \frac{\lim_{x\to 0} \frac{\tan 2x}{5 + 3x}}{\frac{5}{2} + \frac{1}{2}} = \frac{2x}{5}$$

例2
$$\lim_{x\to 0} \frac{1-\cos x}{x\sin x} = \lim_{\chi \to \infty} \frac{\frac{1}{2}\chi^2}{\chi \cdot \chi} = \frac{1}{2}$$
例3 当x->0时 ax^2 与 $\sin^2 x$ 等价 $a = \lim_{\chi \to \infty} \frac{0\chi^2}{5\lambda\chi} = \lim_{\chi \to \infty} \frac{0\chi^2}{5\lambda\chi} = \lim_{\chi \to \infty} \frac{0\chi^2}{5\lambda\chi} = 0$

$$\frac{1}{2}\lim_{\chi \to \infty} \frac{0\chi^2}{5\lambda\chi} = \lim_{\chi \to \infty} \frac{0\chi^2}{5\lambda\chi} = 0$$

$$\frac{1}{2}\lim_{\chi \to \infty} \frac{0\chi^2}{2} = 0$$

$$\frac{1}{2}\lim_{\chi \to \infty} \frac{1}{2}\lim_{\chi \to \infty} \frac{1}$$

$$2 + \lambda = 1$$

$$\lambda = 1$$

$$\lambda = -1$$

0

•