Data Mining Practical laboratory 1

EFREI – November 25, 2020

Instructions: Prepare a report including the source code and the results. Deposit your report on Moodle and don't forget your binome's name or to make 2 deposits if you did not work alone.

<u>Remark:</u> This lab can be done using either R or Python, but help on doing the exercices as well as the corrections will be provided for R language only.

A Discrete series

- 1. Generate a discrete series of 1000 random data (values included between 0 and 10):
 - A = round(runif(1000, 0, 10))
- 2. Represent this series in the form of a histogram: to do so, you may use the R functions **barplot** or **hist**. See R help to find the right parameters.
- 3. Determine the mode, the median and the mean of this series <u>without</u> using the predefined R functions.
- 4. Verify the mean and the median value of your series using the functions **mean(·)** and **median(·)**. The results should be identical with these of question 3.
- 5. Explain why the mean and median values of this series may be very different.
- 6. Determine the range, the variance and the standard deviation:
 - Without using the predefined R functions.
 - Using the predefined R functions: $range(\cdot)$, $var(\cdot)$ and $sd(\cdot)$.
 - Comment the results.

B Grouped discrete series

Let B be the following data set:

$Mark x_i$	5	8	9	10	11	12	13	14	16
Number n_i	10	12	48	23	24	48	9	7	13

- 1. Input this series and respresent it as a histogram.
 - The R function $\mathbf{c}(v_1, \dots, v_N)$ creates a vector with N values. Use this function to generate the vectors for the marks and number of students having each mark.
 - The function **plot(data1,data2,type="h")** is the only one available to generate a histogram from 2 vectors. You can use the command "? **plot**" to learn more about this function.
- 2. Determine the position and dispersion measures.
- 3. Explain why this series has a bimodal distribution.

C Normal distributions

The R function $\mathbf{rnorm}(n,m,sd)$ generates a sample of n random variables that follow a normal distribution of mean m and standard deviation sd. In this exercise, we propose to generate a sample to simulate the human IQ. Human IQ has a mean value of 100 and a variance of 225.

- 1. Use the function "**curve**(···)" to display the probability density function of this distribution $(dnorm(x, \mu, \sigma))$ for a Gaussian distribution).
- 2. Generate a sample of size 100000 and display its histogram.
- 3. Assess the mean value and the standard deviation of your sample. Comment.
- 4. Find the percentage of your sample that has an IQ bellow 60.
- 5. Find the percentage of your sample that has an IQ above 130.
- 6. Find the range of values that contains 95 percent of your sample around the mean.

D IQ analysis

In this exercise, we want to assess the affect of malnutrition on the human IQ. Knowing that the average IQ is of 100 with a standard deviation of 15, we will modelise the human population with random sample of different sizes and compare them with IQ sample data from people that suffered from malnutrition.

- 1 Generate 3 different samples of size 10, 1000 and 100000 with a mean value of 100 and a standard deviation of 15 (function $\mathbf{rnorm}(\cdot)$).
 - For each sample, evaluate its mean value and its standard deviation.
 - Compare the values you found for the mean and standard deviation with the theoretical values.
 - Calculate the standard error and IC_{95} of the estimated mean values of each sample.
 - Comment on your previous results.

We now want to assess the effect of malnutrition on the IQ. To this end, we will analyze the data from a sample of people that suffered from malnutrition during their childhood.

- 2 Using the command read.table(file), open the file malnutrition.csv.
- 3 Compute the mean and standard deviation of this new sample.
- 4 Using the statistical measures at your disposal, what can you conclude on the effect of malnutrition on the IQ when comparing this sample to your previous sample of 100000 elements?
 - Compare the mean and standard deviation of both samples.
 - Compute the confidence intervals for both comparisons.
 - Comment on your results.