Das Verfahren der konjugierten Gradienten

Michael Bauer

11. November 2013

Richtung des steilsten Abstiegs

Sei f wie in (1). Die Richtung des steilsten Abstiegs von f an der Stelle x, d.h. $s \in \mathbb{R}^n$ so, dass die Richtungsableitung

$$\frac{d}{dt}f(x+t\frac{s}{\|s\|_2})|_{t=0} = (\nabla f(x))^T(\frac{s}{\|s\|_2})$$
 (1)

minimal ist, wird durch $s = -\nabla f(x) = b - Ax$ gegeben.

Projektionssatz (Numerik 1)

Für $U \subset V$, U sei ein n-dim. Teilraum von V und ϕ_j eine ONB. Dann existiert ein eindeutiges $u^* \in U$, welches $\|u^* - v\| = \min_{u \in U} \|u - v\|$ erfüllt. Für jedes $v \in V$ wird dieses Problem durch

$$P_U(v) := \sum_{j=1}^n \langle v, \phi_j \rangle \phi_j \tag{2}$$

gelöst. $P_U(v)$ ist die <u>orthogonale Projektion bzgl. $\langle \cdot, \cdot \rangle$.</u>

Gram-Schmidt-Orthonormalisierung

$$w'_{k} := v_{k} - \sum_{i=1}^{k-1} \langle v_{k}, w_{i} \rangle w_{i},$$

$$w_{k} = \frac{w'_{k}}{\|w'_{k}\|_{2}}$$

Algorithmus der konjugierten Gradienten

Die folgenden Teilschritte definieren die Vorgehensweise zur Erzeugung der Lösung x^* durch Näherungen x^1, x^2, \dots

 $U_1 := span\{r^0\}$, wobei $r^0 = b - Ax^0$ dann gilt für k = 1, 2, 3, ..., falls $r^{k-1} = b - Ax^{k-1} \neq 0$:

 CG_a : Bestimme A-orthogonale Basis

$$p^0, ..., p^{k-1} \text{ von } U_k$$
 (3)

 CG_b : Bestimme $x^k \in U_k$, so dass

$$||x^k - x^*||_A = \min_{u \in U_k} ||x - x^*||_A \tag{4}$$

 CG_c : Erweitung des Teilraumes:

$$U_{k+1} := span\{p^0, ..., p^{k-1}, r^k\} \text{ wobei } r^k := b - Ax^k$$
 (5)

d.h.

$$x^{k} = \sum_{j=0}^{k-1} \frac{\langle x^*, p^j \rangle_A}{\langle p^j, p^j \rangle_A} p^j \tag{6}$$

Krylovraum

$$\mathcal{K}_k(r,A) := span\{r, Ar, ..., A^{k-1}r\} \quad \text{mit} \quad k \ge 1$$

$$\mathcal{K}_k(r,A) := \{0\} \quad \text{mit} \quad k = 0$$

heißt Krylovraum zur Matrix A und zum Vektor r.