同调论

刘博文

目录

1	奇异同调		
	1.1	范畴与函子	2
	1.2	链复形与链映射	4
	1.3	奇异同调群	5
	1.4	简约奇异同调群	8
	1.5	奇异同调的同伦不变性	9
	1.6	与基本群的关系	9

1 奇异同调

1.1 范畴与函子

定义 1.1.1. 一个范畴 C 是由以下要素组成:

- 1. 一类数学对象 $ob(\mathcal{C})$;
- 2. 对于每两个对象 X,Y, 给定了一个集合 Mor(X,Y), 其元素称为从 X 到 Y 的 射, 记 $f \in Mor(X,Y)$ 为 $f: X \to Y$;
- 3. 一个复合规则 $\operatorname{Mor}(X,Y) \times \operatorname{Mor}(Y,Z) \to \operatorname{Mor}(X,Z)$, 记作 $(f,g) \mapsto g \circ f$, 并且满足以下性质:
 - (1) 结合律: 对任意的 $f: X \to Y, g: Y \to Z, h: Z \to W$, 满足

$$h \circ (g \circ f) = (h \circ g) \circ f$$

(2) 单位律: 每个对象 X 有一个单位射 $\mathrm{id}_X: X \to X$, 满足对任何 $f: Y \to X$ 有

$$id_X \circ f = f$$

对于任何 $g: X \to Z$, 满足

$$g \circ \mathrm{id}_X = g$$

在下面的例子中,都以 {对象,射}的形式展示:

- 例 1.1.1. 集合的范畴: {集合, 函数}
- 例 1.1.2. 光滑流形的范畴: {光滑流形,光滑映射}
- 例 1.1.3. 拓扑空间的范畴: {拓扑空间, 连续映射}
- 例 1.1.4. 单纯复形的范畴: {单纯复形,单纯映射}
- 例 1.1.5. 阿贝尔群的范畴: {阿贝尔群, 群同态}
- 例 1.1.6. 群的范畴: {群, 群同态}; 环的范畴: {环, 环同态}
- **例 1.1.7.** 域 F 上线性空间的范畴: $\{F$ 线性空间, F 线性映射 $\}$
- **例 1.1.8.** 域 F 上的代数的范畴: $\{F$ 代数, F 代数同态 $\}$
- **例 1.1.9.** 拓扑空间的范畴: $\{ \text{拓扑空间}, X \text{ 到 } Y \text{ 映射的同伦类} \}$
- 例 1.1.10. 带基点的拓扑空间的范畴: {带基点的拓扑空间, 保持基点的连续映射}

- **例 1.1.11.** 取定拓扑空间 X, 考虑: $\{X \text{ 中的点}, \text{ 从点 } a \text{ 到点 } b \text{ 的道路的同伦类, 其中 } a, b \in X\}$ **定义 1.1.2.** 假设 C, D 是两个范畴,一个协变函子 $F: C \to D$ 是一个对应:
 - 1. C 中的每个对象 X 对应于 D 的一个对象 F(X);
 - 2. C 的每个射 $f: X \to Y$ 对应于 \mathcal{D} 的一个射 $F(f): F(X) \to F(Y)$, 满足以下性质:
 - (1) 复合律: 对于射 $f: X \to Y, g: Y \to Z$, 有

$$F(g \circ f) = F(g) \circ F(f)$$

(2) 单位律: 对于任意对象 X, 有

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$

- 例 1.1.12. 遗忘函子: {拓扑空间,映射} → {集合,函数}
- **例 1.1.13.** 基本群函子 π_1 : {带基点的拓扑空间,保持基点的连续映射} → {群,群同态}
- **例 1.1.14.** 单纯同调函子 H_* : {单纯复形,单纯映射} \rightarrow {阿贝尔群,群同态}
- **定义 1.1.3.** 假设 C, D 是两个范畴, 一个反变函子 $F: C \to D$ 是一个对应:
 - 1. C 中的每个对象 X 对应于 D 的一个对象 F(X);
 - 2. C 的每个射 $f: X \to Y$ 对应于 \mathcal{D} 的一个射 $F(f): F(Y) \to F(X)$, 满足以下性后:
 - (1) 复合律: 对于射 $f: X \to Y, g: Y \to Z$, 有

$$F(g \circ f) = F(f) \circ F(g)$$

(2) 单位律:对于任意对象 X,有

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$

- M 1.1.15. 对偶函子: {域 F 上的线性空间, F 线性映射} \rightarrow {对偶空间, 映射的拉回}
- **例 1.1.16.** 给定拓扑空间 X, 考虑 $C(X) = \{$ 连续函数 $X \to \mathbb{R} \}$, 则有反变函子 $C^* : \{$ 拓扑空间,连续映射 $\} \to \{$ 实代数,实代数同态 $\}$
- **定义 1.1.4.** 称一个射 $f: X \to Y$ 是可逆的,如果存在射 $g: Y \to X$,使得:

$$g \circ f = \mathrm{id}_X, \quad f \circ g = \mathrm{id}_Y$$

- 定义 1.1.5. 称两个对象是同构的,如果它们之间存在一对互逆的射。
- **命题 1.1.1.** 协变 (反变) 函子总是把单位射变成单位射,把可逆射变成可逆射,把 同构的对象变成同构的对象。

1.2 链复形与链映射

定义 1.2.1. 一个链复形 $C = \{C_q, \partial_q\}$ 是一串阿贝尔群 C_q 以及一串群同态 ∂_q : $C_q \to C_{q-1}$ (称为 q 维边缘算子),满足 $\partial_q \circ \partial_{q+1} = 0, \forall q$,写法上有:

$$\cdots \to C_{q+1} \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \to \cdots$$

定义 1.2.2. 链复形 $C=\{C_q,\partial_q\}$ 的 q 维闭链群定义为 $Z_q(C)=\operatorname{Ker}\partial_q;\ q$ 维边缘链群定义为 $B_q(C)=\operatorname{Im}\partial_{q+1}$

定义 1.2.3. 链复形 C 的 q 维同调群定义为 $H_q(C) = Z_q(C)/B_q(C)$,其元素称为 C 的 q 维同调类。

约定 1.2.1. 我们约定, $z_q \in Z_q(C)$ 所代表的同调类为 $[z_q] \in H_q(C)$,记 $H_*(C) = \{H_q(C)\}$,实际上, $H_*(C)$ 是一个分次群。

定义 1.2.4. 分次群指的是一个阿贝尔群序列 $G_* = \{G_q \mid q \in \mathbb{Z}\}$,分次群同态 $\phi_*: G_* \to G'_*$ 指的是一个同态序列 $\{\phi_q: G_q \to G'_q \mid q \in \mathbb{Z}\}$

定义 1.2.5. 设 C,D 是链复形,一个链映射 $f:C\to D$ 是一串同态 $f_q:C_q\to D_q$,满足:

$$\partial_q \circ f_q = f_{q-1} \circ \partial_q, \quad \forall q$$

即下面的图表交换:

命题 1.2.1. 链映射 $f: C \to D$ 诱导出同调群的同态 $f_*: H_*(C) \to H_*(D)$,映射为 $f_*([z_q]) = [f_q(z_q)], \forall z_q \in Z_q(C)$

至此,我们得到了一个新的范畴,即链复形的范畴 {链复形,链映射},以及一个新的函子,同调函子: {链复形,链映射}→ {分次群,分次群同态}。

定义 1.2.6. 两个链映射 $f,g:C\to D$ 称为是链同伦的,如果存在一串同态 $T=\{T_q:C_q\to C_{q+1}\}$,如下面图表:

使得对任意 q 满足 $\partial_{q+1} \circ T_q + T_{q-1} \circ \partial_q = g_q - f_q$, 称 T 为联结 f,g 得一个链同伦,记作 $f \simeq g: C \to D$ 或者 $T: f \simeq g: C \to D$

定理 1.2.1. 假设 $f \simeq g : C \to D$, 则 $f_* = g_* : H_*(C) \to H_*(D)$, 即链同伦的链映射诱导出相同的同调群同态。

命题 1.2.2. 链映射之间的链同伦关系是一个等价关系。

定义 1.2.7. 两个链复形 C,D 称为是链同伦等价的,如果存在链映射 $f:C\to D,g:D\to C$,使得 $f\circ g\simeq \mathrm{id}_D,g\circ f\simeq \mathrm{id}_C$

命题 1.2.3. 链同伦等价诱导同调群的同构,因而链同伦等价的链复形有同构的同调群。

1.3 奇异同调群

定义 1.3.1. q 维标准单形 $\Delta_q = \{(x_0, x_1, \dots, x_q) \in \mathbb{R}^{q+1} \mid 0 \le x_i \le 1, \sum_{i=0}^q x_i = 1\}$

定义 1.3.2. 拓扑空间 X 中的 q 维奇异单形指的是一个连续映射 $\sigma: \Delta_q \to X$

例 1.3.1. (线性奇异单形) C 是 \mathbb{R}^n 中的凸集, $c_0, c_1, \ldots, c_q \in C$, 则有唯一的线性 映射 $\Delta_q \to C$, 把顶点 e_0, \ldots, e_q 映射成 c_0, \ldots, c_q , 记为 $(c_0c_1 \ldots c_q): \Delta_q \to C$, 定义为 $\sum_i x_i e_i \mapsto \sum_i x_i c_i$

在下面的讨论中, 我们取定拓扑空间 X

定义 1.3.3. X 的 q 维奇异链群 $S_q(X)$ 定义为以 X 中所有 q 维奇异单形为基生成的自由阿贝尔群, 其元素称为 q 维奇异链, 具有形式

$$c_q = k_1 \sigma_q^{(1)} + \dots + k_r \sigma_q^{(r)}, \quad k_i \in \mathbb{Z}, \sigma_q^{(i)} : \Delta_q \to X, q \ge 0$$

并且规定负维数的 $S_q(X) = 0$

定义 1.3.4. X 中 q 为奇异单形 $\sigma: \Delta_q \to X$ 的边缘定义为如下 q-1 维奇异链

$$\partial \sigma = \partial (\sigma \circ (e_0 \dots e_q)) = \sum_{i=0}^q (-1)^i \sigma \circ (e_0 \dots \hat{e_i} \dots e_q)$$

做 Z 线性扩张得到

$$\partial_q: S_q(X) \to S_{q-1}(X)$$

是阿贝尔群同态。

命题 1.3.1. $S_*(X) = \{S_q(X), \partial_q\}$ 是链复形。

证明. 即验证 $\partial_{q-1} \circ \partial_q = 0$,由于 ∂ 是群同态,因此只需要在奇异单形上验证即可。 先在标准单形上看:

$$\begin{split} \partial_{q-1} \circ \partial_{q}(e_{0} \dots e_{q}) &= \sum_{i=0}^{q} (-1)^{i} \partial_{q-1}(e_{0} \dots \widehat{e_{i}} \dots e_{q}) \\ &= \sum_{i=0}^{q} (\sum_{j < i} (-1)^{j} (e_{0} \dots \widehat{e_{j}} \dots \widehat{e_{i}} \dots e_{q}) + \sum_{j > i} (-1)^{j-1} (e_{0} \dots \widehat{e_{i}} \dots \widehat{e_{j}} \dots \widehat{e_{j}} \dots e_{q})) \\ &= \sum_{0 \le j < i \le q} (-1)^{i+j} (e_{0} \dots \widehat{e_{j}} \dots \widehat{e_{i}} \dots e_{q}) + \sum_{0 \le i < j \le q} (-1)^{i+j-1} (e_{0} \dots \widehat{e_{i}} \dots \widehat{e_{j}} \dots e_{q}) \\ &= 0 \end{split}$$

将上式用映射 $\sigma: \Delta_q \to X$ 复合就得到 $\partial_{q-1} \circ \partial_q(\sigma) = 0$

定义 1.3.5. 链复形 $S_*(X) = \{S_q(X), \partial_q\}$ 称为 X 的奇异链复形。由 X 的奇异链复形决定的同调群称为 X 的奇异同调群,记作 $H_*(X) := H_*(S_*(X))$

定义 1.3.6. 设 $f: X \to Y$ 是映射, 它把 X 中的奇异单形 $\sigma: \Delta_q \to X$ 变成 Y 中的奇异单形 $f \circ \sigma$, 记为 $f_{\#}(\sigma)$ 。通过线性扩张可以得到同态

$$f_{\#}: S_q(X) \to S_q(Y)$$

命题 1.3.2. $f_{\#}$ 与 ∂ 可交换, 即 $f_{\#}: S_{*}(X) \to S_{*}(Y)$ 是链映射。

定义 1.3.7. 映射 $f: X \to Y$ 诱导的同调群的同态 $f_*: H_*(X) \to H_*(Y)$ 指的是链映射 $f_\#: S_*(X) \to S_*(Y)$ 所诱导的同调群同态。

命题 1.3.3 (奇异同调群的拓扑不变性). 同胚的拓扑空间有着同构的奇异同调群。

 $\mathbf{\dot{t}}$ 1.3.1. 协变函子 S_* 把拓扑空间范畴变到链复形范畴,同调函子把链复形范畴变成分次群范畴,将这两个协变函子复合得到协变函子称为奇异同调函子 H_* 。因此用这种观点,命题 1.3.3 是直接的,因为函子是保同构的。

例 1.3.2. 单点空间的奇异同调群 $H_*(pt)$ 如下

$$H_*(\mathrm{pt}) = \begin{cases} \mathbb{Z}, & q = 0\\ 0, & q > 0 \end{cases}$$

这是因为对于每一个维度,都只有一个奇异单形 $\sigma: \Delta_q \to \{\text{pt}\}$,因此 $S_q(X) = \mathbb{Z}, \forall q$,对于边缘同态 ∂_q 来说,我们有

$$\partial_q = \begin{cases} 1, & q = 2k + 1 \\ 0, & q = 2k \end{cases}$$

因此我们有如下的链复形

$$0 \longleftarrow \mathbb{Z} \stackrel{0}{\longleftarrow} \mathbb{Z} \stackrel{1}{\longleftarrow} \mathbb{Z} \stackrel{0}{\longleftarrow} \mathbb{Z} \stackrel{1}{\longleftarrow} \dots$$

因此可以得到我们期待的结果。

定义 1.3.8. 克罗内克同态 $\varepsilon: S_0(X) \to \mathbb{Z}$ 定义为

$$\varepsilon(k_1a_1 + \dots + k_ra_r) = k_1 + \dots + k_r$$

注 1.3.2. ε : $S_0(X) \to \mathbb{Z}$ 诱导出满同态 $H_0(X) \to \mathbb{Z}$,因为 $S_0(X) = Z(X)$,并且每个 1 维奇异单形的边缘的克罗内克指标为零。

命题 1.3.4. 如果空间 X 道路连通,则 $\varepsilon: H_0(X) \to \mathbb{Z}$ 是同构。

证明. 任取基点 $p \in X$,任意 $c_0 = k_1 a_1 + \cdots + k_r a_r \in \text{Ker}(\varepsilon)$,则 $c_0 = c_0 - \varepsilon(c_0)b = k_1(a_1 - b) + \cdots + k_r(a_r - b)$,由于 X 道路连通,因此存在道路连接 a_i 和 b,对于每个 i 成立,记作 σ_i ,因此

$$\partial(\sum_i k_i \sigma_i) = c_0$$

因此 c_0 是一个边缘链, 因此 $\operatorname{Ker} \varepsilon = 0$, 即 ε 是同构。

定义 1.3.9. 一蔟链复形 $\{C_{\lambda}: \lambda \in \Lambda\}$, 其中 $C_{\lambda} = \{C_{\lambda q}, \partial_{\lambda q}\}$ 这蔟链复形的直和定义为 $\bigoplus C_{\lambda} = \{\bigoplus_{\lambda \in \Lambda} C_{\lambda q}, \bigoplus \partial_{\lambda q}\}$

命题 1.3.5.

$$H_*(\bigoplus_{\lambda} C_{\lambda}) = \bigoplus_{\lambda} H_*(C_{\lambda})$$

证明. 我们具体写出链复形的直和如下:

$$\cdots \bigoplus_{\lambda} C_{\lambda q+1} \stackrel{\oplus_{\lambda} \partial_{\lambda q+1}}{\longrightarrow} \bigoplus_{\lambda} C_{\lambda q} \stackrel{\oplus_{\lambda} \partial_{\lambda q}}{\longrightarrow} \bigoplus_{\lambda} C_{\lambda q-1} \rightarrow \cdots$$

因此可以注意到

$$H_q(\bigoplus_{\lambda} C_{\lambda}) = \operatorname{Ker} \bigoplus_{\lambda} \partial_{\lambda q} / \operatorname{Im} \bigoplus_{\lambda} \partial_{\lambda q+1} = \bigoplus_{\lambda} \operatorname{Ker} \partial_{\lambda q} / \operatorname{Im} \partial_{\lambda q+1}$$

最后一个等式成立是因为核与像是可以与直和交换的,因此

$$H_q(\bigoplus_{\lambda} C_{\lambda}) = \bigoplus_{\lambda} H_q(C_{\lambda})$$

定理 1.3.1. 设 $X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$ 是 X 的道路连通分支分解,则有同调群的直和分解 $H_*(X) = \bigoplus_{\lambda \in \Lambda} H_*(X_{\lambda})$

证明. 用 \sum_X 记 X 中全体奇异单形的集合,则可以分解为 $\sum_X = \coprod_{\lambda \in \Lambda} \sum_{X_\lambda}$,从而有直和分解 $S_*(X) = \bigoplus_{\lambda \in \Lambda} S_*(X_\lambda)$

推论 1.3.1. 拓扑空间 X 道路连通当且仅当 $H^0(X) = \mathbb{Z}$

1.4 简约奇异同调群

定义 1.4.1. 拓扑空间 X 的增广链复形 $\widetilde{S}_*(X) = \{\widetilde{S}_q(X), \widetilde{\partial}_q\}$ 定义为

$$\widetilde{S}_q(X) = \begin{cases} S_q(X), & q > -1 \\ \mathbb{Z}, & q = -1 \end{cases} \qquad \widetilde{\partial}_q = \begin{cases} \partial_q, & q > 0 \\ \varepsilon, & q = 0 \end{cases}$$

注 1.4.1. $f: X \to Y$ 诱导的 $f_\#: S_q(X) \to S_q(Y)$ 保持零维的克罗内克指数,因此 $f_\#: \widetilde{S}_*(X) \to \widetilde{S}_*(Y)$ 是链映射 $(f_\#: \widetilde{S}_{-1}(X) \to \widetilde{S}_{-1}(Y)$ 规定为 id)

定义 1.4.2. 拓扑空间 X 的简约同调群定义为增广链复形 $\widetilde{S}_*(X)$ 对应的同调群,记作 $\widetilde{H}_*(X)$ 。 $f:X\to Y$ 诱导的同态 $f_*:\widetilde{H}_*(X)\to\widetilde{H}_*(Y)$ 规定为链映射 $f_\#:\widetilde{S}_*(X)\to\widetilde{S}_*(Y)$ 所诱导的同调群同态

命题 1.4.1. 对于拓扑空间 X,简约同调群与同调群有如下关系

$$H_q(X) = \begin{cases} \widetilde{H}_q(X), & q \neq 0 \\ \widetilde{H}_q(X) \oplus \mathbb{Z}, & q = 0 \end{cases}$$

证明. 由于增广链复形与链复形相比只改变了链群 C_{-1} 以及 ∂_0 ,因此对于 q > 0 时的同调群都是不改变的。

对于零维的情况, 我们有

$$H_0(X) = C_0(X) / \operatorname{Im} \partial_1, \quad \widetilde{H}_0(X) = \operatorname{Ker} \varepsilon / \operatorname{Im} \partial_1$$

而由于 ε 是满射, 我们有

$$C_0(X)/\operatorname{Ker}\varepsilon\cong\mathbb{Z}$$

因此可以得到

$$H_0(X) \cong \widetilde{H}_0(X) \oplus \mathbb{Z}$$

推论 1.4.1. 拓扑空间 X 是道路连通当且仅当 $\widetilde{H}_0(X)=0$

1.5 奇异同调的同伦不变性

定义 1.5.1. 映射 $f: X \to Y, g: X \to Y$ 称为同伦的,如果存在映射 $F: X \times I \to Y$,使得 F(x,0) = f(x), F(x,1) = g(x),记作 $f \cong g$

定义 1.5.2. 两个拓扑空间 X,Y 称为同伦等价,或者是有相同的同伦型,如果存在映射 $f: X \to Y, g: Y \to X$,使得 $f \circ g \cong \mathrm{id}_Y, g \circ f \cong \mathrm{id}_X$

定义 1.5.3. 拓扑空间 X 称为是可缩的,如果它与单点集有相同的同伦型。

定义 1.5.4. 拓扑空间 X 的子空间 A 称为是 X 的收缩形变核¹,如果存在收缩 $r: X \to A^2$,使得 $i \circ r$ 同伦于 id_X ,并且同伦的过程中固定 A^3 ,其中 $i: A \to X$ 是 嵌入。

例 1.5.1. S^n 是 $\mathbb{R}^n \setminus \{0\}$ 的收缩形变核。

定理 1.5.1 (同伦不变性). 假定 $f \cong g$ 是同伦的映射,则 $f_{\#} \cong g_{\#} : S_{*}(X) \to S_{*}(Y)$ 是链同伦的,因而诱导相同的同调群同态。

推论 1.5.1 (同伦型不变性). 设拓扑空间 X,Y 有相同的同伦型 $X \cong Y$, 则它们的同调群同构。

推论 1.5.2. 设拓扑空间 X 的子空间 $A \in X$ 的收缩形变核,则嵌入映射 $i: A \to X$ 诱导了同调群的同构。

1.6 与基本群的关系

定义 1.6.1. X 是拓扑空间, $x_0 \in X$ 是取定的基点,则 X 的基本群为

$$\pi_1(X, x_0) = \{ \gamma$$
的同伦类 $| \gamma$ 是 x_0 处的闭路 $\}$

如果我们将 [0,1] 等同于 1 维标准单形,则 X 中的每条道路都是 X 中的 1 维奇异单形,若 γ 是闭道路,则 γ 是闭链,因此 $H_1(X)$ 关心的也是 X 中的闭路的情况。以 $[\gamma]_h \in H_1(X)$ 表示 γ 代表的同调类, $[\gamma]$ 代表 γ 的同伦类。

易知

$$[\gamma \gamma']_h = [\gamma]_h + [\gamma']_h$$

故我们有同态:

$$h_*: \pi_1(X, x_0) \to H_1(X)$$

定义为 $[\gamma] \mapsto [\gamma]_h$, 称为 Hurewicz 同态。

定理 1.6.1. 假设拓扑空间 X 道路连通,则 Hurewicz 同态是满同态,并且 $Ker h_*$ 是 $\pi_1(X,x_0)$ 的换位子群,即 $H_1(X)$ 就是 $\pi_1(X,x_0)$ 的交换化。

¹这里的定义有时也被称为强形变收缩核

 $^{^{2}}$ 映射 $r:X \to A$ 被称为收缩,如果 $r \circ i = \mathrm{id}_{A}$

 $^{^3}$ 这意味着同伦 $F: X \times I \to X$ 满足对于任意的 $t \in I, F(a,t) = a, \forall a \in A$