ORACLE Academy

Database Foundations

3-4

Terminologia de Modelagem de Dados e Mapeamento

Roteiro

Objetivos

- Esta lição abrange os seguintes objetivos:
 - Aplicar o mapeamento de terminologia entre os modelos lógicos e físicos
 - -Entender e aplicar as convenções de nomenclatura Oracle para tabelas e colunas usadas em modelos físicos
 - Aplicar as regras de mapeamento de relacionamentos para transformar relacionamentos corretamente

Transformação de Lógico em Físico Exemplo

Кеу Туре	Optionality	Column name
pk	*	id
uk	*	payroll_id
	*	last_name
	*	first_name
fk	*	department_id

Implementação física: Banco de Dados Relacional DEPARTMENTS (DPT)

Кеу Туре	Optionality	Column name
pk	*	id
	*	name

Mapeamento de Terminologia

Uma Entidade e uma Tabela Correspondente

Atributos e Colunas Correspondentes

Uma Instância e uma Linha Correspondente

Entidade Instância

STUDENT J Smith

ID	FIRST_NAME	LAST_NAME	STREET_ADDRESS	CITY	
101	Sam	Linkin	99B, Chuah Street	LA	
102	Neena	Markin	44A, Church Street	NZ	
103	Rick	Austina	1 st Cross, Palm Street	SA	
104	J	Smith	Alpha Street	CA —	>Linha

Notações do Diagrama de Tabela

 Um diagrama de tabela é uma documentação adicional que é geralmente usada para explicar com mais detalhes chaves e colunas no banco de dados físico

Tabela **STUDENTS**

Key Type	Optionality	Column Name
pk	*	id
	*	first_name
	*	last_name
	*	street_address
	*	city

Convenções de Nomenclatura para Tabelas

- O nome da tabela é o plural do nome da entidade.
 - Exemplo: STUDENT torna-se STUDENTS
- Os nomes das colunas são idênticos aos dos atributos, sendo que caracteres especiais e espaços são substituídos por sublinhados

STUDENT

- # id
- * first name
- * last name
- * street address
- * city

STU	STUDENTS		
Key	Туре	Optionality	Column name
pk		*	id
		*	first_name
		*	last_name
		*	street_address
		*	city

Convenções de Nomenclatura para Colunas

- Os nomes das colunas são semelhantes aos dos atributos, sendo que caracteres especiais e
- espaços são substituídos por sublinhados
- Em geral, os nomes das colunas usam mais abreviações do que os nomes dos atributos
 - Exemplo: First name transforma-se em first_name ou fname

STUDENT

- # id
- * first name
- * last name
- * street address
- * city

STUDENTS		
Key Type	Optionality	Column name
pk	*	id
	*	first_name
	*	last_name
	*	street_address
	*	city

Nomes Curtos de Tabelas

 Um nome curto exclusivo para cada tabela é útil ao nomear colunas de chaves estrangeiras.

PRIVATE_HOMES (PHE)		
Кеу Туре	Optionality	Column name
pk	*	id
	*	address
	0	comments

- Crie nomes curtos com base em:
 - Nomes de entidades que contêm mais de uma palavra
 - Nomes de entidades que contêm uma palavra, mas mais de uma sílaba
 - Nomes de entidades que contêm uma sílaba, mas mais de um caractere

PRIVATE_HOMES (PHE)		
Кеу Туре	Optionality	Column name
pk	*	id
	*	address
	0	comments

Restrições de Nomenclatura com o Oracle

- Os nomes de tabelas e colunas:
 - -Devem começar com uma letra
 - -Podem conter até 30 caracteres alfanuméricos
 - -Não podem conter espaços, nem caracteres especiais como "!", mas "\$", "#" e "_" são permitidos
 - Não podem ser "palavras reservadas" no Oracle DB ou em SQL
- Os nomes de tabelas devem ser exclusivos em uma conta de usuário do banco de dados Oracle
- Os nomes de colunas devem ser exclusivos em uma tabela

Mapeamento de Relacionamentos

- Os relacionamentos são mapeados entre chaves primárias e chaves estrangeiras para permitir que uma tabela faça referência a outra
- Um relacionamento cria uma ou mais colunas de chave estrangeira na tabela, no lado muitos do relacionamento
- Usamos o nome curto da tabela para nomear a coluna de chave estrangeira
- No exemplo da próxima página, a coluna de chave estrangeira na tabela EMPLOYEES é dpt_id para o relacionamento com DEPARTMENT e mgr_id para o relacionamento recursivo com ela mesma

Ilustração do Mapeamento de Relacionamentos

chave estrangeira faz referência a

Mapeamento de Relacionamentos Associativos

- Um relacionamento associativo é mapeado para uma coluna de chave estrangeira no lado muitos, como qualquer outro relacionamento 1:M
- Nesse caso, a coluna de chave estrangeira desempenha um duplo papel porque também faz parte da chave primária
- No exemplo, bak_number é uma coluna de chave estrangeira em ACCOUNTS que faz referência à chave primária de BANKS
- Ela também faz parte da chave primária de ACCOUNTS

Mapeamento de Relacionamentos Associativos

Mapeando Relacionamentos Muitos para Muitos

- Um relacionamento M:M é resolvido com uma entidade de interseção, que é mapeada para uma tabela de interseção
- Essa tabela de interseção conterá as colunas de chave estrangeira que fazem referência às tabelas de origem
- No exemplo, REVIEWS contém todas as combinações que existem entre um CRITIC e um MOVIE

Mapeando Relacionamentos Muitos para Muitos

Mapeando Relacionamentos Um para Um

- Ao transformar um relacionamento 1:1, você cria uma chave estrangeira e uma chave exclusiva
- Todas as colunas dessa chave estrangeira também fazem parte da chave exclusiva
- Se o relacionamento for obrigatório em um lado, a chave estrangeira será criada na tabela correspondente
- No exemplo, cbe_code é uma coluna de chave estrangeira em EMPLOYEES que faz referência à chave primária de CUBICLES
- Cbe_code também seria exclusiva na tabela EMPLOYEES

Mapeando Relacionamentos Um para Um

EMPLOYEES (EPE)

Кеу Туре	Optionality	Column name
pk	*	id
	*	first_name
	*	last_name
fk,uk	*	cbe_code

CUBICLES (CBE)

Key Type	Optionality	Column name
pk	*	code
	*	description

Mapeando Arcos

- A entidade que tem o arco será mapeada para uma tabela que contém chaves estrangeiras das tabelas na extremidade "um" dos relacionamentos
- Observe que, mesmo se os relacionamentos do arco forem obrigatórios no lado muitos, as chaves estrangeiras resultantes terão que ser opcionais (porque uma delas estará sempre em branco). Uma restrição de verificação armazenada no banco de dados pode fazer isso facilmente.

MEMBERSHIPS (MBP)

Кеу Туре	Optionality	Column name
pk	*	id
	*	start_date
	*	expiration_date
	0	termination
fk1	0	cpe_id
fk2	0	cms_id

COMPANIES (CPE)

Кеу Туре	Optionality	Column name
pk	*	id
	*	name
	*	contact_name

CUSTOMERS (CMS)

Кеу Туре	Optionality	Column name
pk	*	id
	*	first_name
	*	last_name

Mapeando Supertipo/Subtipos

- Há várias maneiras de mapear entidades de supertipo/subtipo:
 - Implementação de tabela única: uma tabela é criada independentemente do número de subtipos; usada quando a maioria dos atributos e dos relacionamentos são compartilhados e, portanto, no nível de supertipo
 - Implementação de duas tabelas: uma tabela é criada para cada um dos subtipos (portanto, podem existir mais de duas tabelas); usada quando os subtipos têm pouco em comum e poucos atributos e relacionamentos compartilhados

Implementação de Tabela Única

- A tabela única tem uma coluna para cada atributo do supertipo, com a opcionalidade original do atributo
- A tabela também tem uma coluna para cada atributo pertencente ao supertipo, mas todas as colunas se tornam opcionais
- Além disso, uma coluna obrigatória deve ser criada para atuar como discriminatória, a fim de diferenciar os diferentes subtipos da entidade

Implementação de Tabela Única

DEPARTMENTS (DPT)

Кеу Туре	Optionality	Column name
pk	*	id

AGENCIES (AGY)

Кеу Туре	Optionality	Column name
pk	*	id

EMPLOYEES (EPE)

Кеу Туре	Optionality	Column name
pk	*	id
	*	first_name
	*	last_name
	0	salary
	0	hourly_rate
fk1	*	dpt_id
fk2	0	agy_id
	*	epe_type
fk3	0	mgr_id

- Uma tabela por subtipo de primeiro nível
- Cada tabela tem uma coluna para cada atributo do supertipo, com a opcionalidade original
- Cada tabela também tem uma coluna para cada atributo pertencente ao supertipo, com a opcionalidade original

Implementação de Duas Tabelas

SHIRTS (SHT)

Кеу Туре	Optionality	Column name
pk	*	id
	*	material
	*	sleeve_length
	*	neck_size
	0	collar_style
fk1	0	tlr_id
fk2	*	mnr_id

SHOES (SHE)

refere-se a

manufacturers

Кеу Туре	Optionality	Column name
pk	*	id
	*	material
	*	size
	*	buckle_style
	0	heel_height
fk1	0	clr_id
fk2	*	mnr_id

refere-se a tailors

refere-se a

cobblers

Exercício do Projeto

- DFo_3_4_Project
 - -Banco de Dados da Oracle Baseball League
 - -Aplicar as Regras de Mapeamento de Relacionamentos para Transformar Relacionamentos

Resumo

- Nesta lição, você deverá ter aprendido a:
 - Aplicar o mapeamento de terminologia entre os modelos lógicos e físicos
 - Entender e aplicar as convenções de nomenclatura Oracle para tabelas e colunas usadas em modelos físicos
 - Aplicar as regras de mapeamento de relacionamentos para transformar relacionamentos corretamente

ORACLE Academy