Композиции алгоритмов. Бустинг.

Кантонистова Е.О.

БУСТИНГ

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

Решаем задачу регрессии с минимизацией квадратичной ошибки:

$$\frac{1}{2} \sum_{i=1}^{l} (a(x_i) - y_i)^2 \to \min_{a}$$

Ищем алгоритм a(x) в виде суммы N базовых алгоритмов:

$$a(x) = \sum_{n=1}^{N} b_n(x),$$

где базовые алгоритмы $b_n(x)$ принадлежат некоторому семейству A.

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на *i*-м объекте:

$$s_i^{(1)} = y_i - b_1(x_i)$$

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на *i*-м объекте:

$$s_i^{(1)} = y_i - b_1(x_i)$$

- Тогда $b_1(x_i) + s_i^{(1)} = y_i$
- ⇒ следующий алгоритм должен настраиваться на эти ошибки

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

• Ошибка на i-м объекте:

$$s_i^{(1)} = y_i - b_1(x_i)$$

- Тогда $b_1(x_i) + s_i^{(1)} = y_i$
- ⇒ следующий алгоритм должен настраиваться на эти ошибки:

если найдется алгоритм b_2 : $b_2(x_i) = s_i^{(1)}$, то алгоритм $a(x) = b_1(x) + b_2(x)$ будет идеально предсказывать ответ.

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на i-м объекте:

$$s_i^{(1)} = y_i - b_1(x_i)$$

<u>Шаг 2:</u> Ищем алгоритм $b_2(x)$, настраивающийся на ошибки s_i первого алгоритма:

$$b_2(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(1)})^2$$

Каждый следующий алгоритм настраиваем на ошибку предыдущих.

<u>Шаг N</u>: Ошибка: $s_i^{(N)} = y_i - \sum_{n=1}^{N-1} b_n(x_i) = y_i - a_{N-1}(x_i)$ Ищем алгоритм $b_N(x)$:

$$b_N(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(N)})^2$$

Каждый следующий алгоритм настраиваем на ошибку предыдущих.

<u>Шаг N</u>: Ошибка: $s_i^{(N)} = y_i - \sum_{n=1}^{N-1} b_n(x_i) = y_i - a_{N-1}(x_i)$ Ищем алгоритм $b_N(x)$:

$$b_N(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(N)})^2$$

Утверждение. Ошибка на N-м шаге — это антиградиент функции потерь по ответу модели, вычисленный в точке ответа уже построенной композиции:

$$s_i^{(N)} = y_i - a_{N-1}(x_i) = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \Big|_{z = a_{N-1}(x_i)}$$

ГРАДИЕНТНЫЙ БУСТИНГ

Пусть L(y,z) – произвольная дифференцируемая функция потерь. Строим алгоритм $a_N(x)$ вида

$$a_N(x) = \sum_{n=1}^N \gamma_n b_n(x),$$

где на *N*-м шаге

$$b_N(x) = \operatorname*{argmin}_{b \in A} \sum_{i=1}^{r} \left(b(x_i) - s_i^{(N)} \right)^2,$$
 $s_i^{(N)} = -\frac{\partial L}{\partial z}$

Коэффициент γ_N должен минимизировать ошибку:

$$\gamma_{N} = \min_{\gamma \in \mathbb{R}} \sum_{i=1}^{l} L(y_{i}, a_{N-1}(x_{i}) + \gamma_{N} b_{N}(x_{i}))$$

КОЛИЧЕСТВО ИТЕРАЦИЙ БУСТИНГА

СТОХАСТИЧЕСКИЙ ГРАДИЕНТНЫЙ БУСТИНГ

• Будем обучать базовый алгоритм b_N не по всей выборке X, а по случайной подвыборке $X^k \subset X$.

+: снижается уровень шума в данных

+: вычисления становятся быстрее

Обычно берут
$$|X^k| = \frac{1}{2}|X|$$
.

СМЕЩЕНИЕ И РАЗБРОС

- Бустинг целенаправленно уменьшает ошибку, т.е. смещение у него маленькое.
- Алгоритм получается сложным, поэтому разброс большой.

Значит, чтобы не переобучиться, в качестве базовых алгоритмов надо брать неглубокие деревья (глубины 3-6).