Results

An application to Insurance data

Introduction

Objectives:

- Comparison of 4 different model computing an Insurance Pure Premium
 - GLM,
 - Single Tree,
 - Random Forest,
 - GBM

Data in use

```
# Define columnn class for dataset
                                                                                                               40760 obs. of 27 variables:
                                                                                           ## 'data.frame':
colCls <- c("integer",
                              # row id
                                                                                           ## $ row.id
                                                                                                               : int 1 2 3 4 5 6 7 8 9 10 ...
           "character".
                              # analysis year
                                                                                                                     "2010" "2010" "2010" "2010" ...
           "numeric",
                              # exposure
                                                                                              $ exposure
                                                                                                                     1 1 1 0.08 1 0.08 1 1 0.08 1 ...
           "character",
                              # new business / renewal business
           "numeric",
                              # driver age (continuous)
                                                                                           ## $ driver.age
                                                                                                                     63 33 68 68 68 68 53 68 68 65 ...
           "character",
                              # driver age (categorical)
           "character",
                              # driver gender
                                                                                                                      "Male" "Male" "Male" ...
           "character",
                              # marital status
                                                                                                                      "Married" "Married" "Married"
                              # years licensed (continuous)
           "numeric",
                                                                                                                     5 1 2 2 2 2 5 2 2 2 ...
           "character",
                              # years licensed (categorical)
                                                                                           ## $ vrs.lic
                                                                                                                     "5" "1" "2" "2" ...
           "character",
                              # ncd level
                                                                                              $ ncd.level
           "character",
                              # region
           "character".
                              # body code
                                                                                              $ body.code
           "numeric",
                              # vehicle age (continuous)
                                                                                                                     3 3 2 2 1 1 3 1 1 5 ...
           "character",
                              # vehicle age (categorical)
           "numeric".
                              # vehicle value
                                                                                                                     21.4 17.1 17.3 17.3 25 ...
           "character".
                                                                                                                     "5" "3" "5" "5" ...
           rep("numeric", 6), # ccm, hp, weight, length, width, height (all continuous)
                                                                                           ## $ hp
                                                                                                                     70 94 90 90 85 85 70 85 85 65
           rep("numeric", 3) # prior claims, claim count, claim incurred (all continuous)
                                                                                              $ weight
                                                                                                                     1285 1670 1760 1760 1130 ...
                                                                                                                     4.32 4.79 4.91 4.91 4.04 ...
                                                                                           ## $ width
                                                                                                                     1.68 1.74 1.81 1.81 1.67 ...
                                                                                                                     1.8 1.97 1.75 1.75 1.82 ...
                                                                                                                      "Diesel" "Diesel" "Diesel" "Diesel" ...
                                                                                                                     0 0 0 0 0 0 4 0 0 0 ...
                                                                                           ## $ clm.incurred : num 0 0 0 0 0 0 0 0 0 ...
```

- Data: Predictive
 Modelling Applications
 in Actuarial Science,
 Vol.2 (E. Frees & al.):
 https://instruction.bus.wisc.edu/jf rees/jfreesbooks/PredictiveModelingVol1/glm/v2-chapter-1.html
- Data already explored in a previous study (cf. EDA for Insurance) stored in another repository where a description of the fields is also available.

Cross-Validation

- For each fold, we can compute a Poisson Deviance and compare between models.
- Here, a model with predictors is better than a Null model.

Single Lift Plot (Simple quantile plot)

Single Lift Plots

Definition

The Lift measures the "Economic value of a model".

Used to compare the relative performance of two models following 3 criteria:

- 1. Predictive accuracy,
- 2. Monotonicity,
- 3. Vertical distance between first and last quantile.

Models	Name	Lift
GLM	Α	3.23
Single Tree	В	1.44
Random Forest	С	1.66
GBM	D	2.32

Results

- 1. The plotted loss cost correspond more to the actual on the GBM plot. It seems to predict severity better than the other models.
- 2. No significant reversal. Pattern are stable.
- 3. The GLM's average predicted value for bin 1 is 0.61 and at the other extreme, in bin 10, the average predicted value is about 1.97 times the overall average predicted value: The lift that the GLM provides is 1.97-0.61=1.36, i.e. the distance between bin 1 and bin 10 is 36%, or a "lift of 1.97/0.61 = 3.23."

In Comparison, the single tree, random forest and GBM are more able to separate the risks than the GLM.

Double Lift Plot

Similar to the simple quantile plot, but it directly compares two models.

The "winning' model is the one that more closely matches the "Actual" model.

Loss Ratio Charts

Instead of plotting the Pure Premium for each bucket, the Loss Ratio is instead plotted.

Gini Indices

- Two-way comparison of Gini indices for all the methods tested and the GLM.
- We observe that the single Tree reaches the highest Gini index for all the benchmarks.

Sources

- Predictive Modelling Applications in Actuarial Science, Vol.2 (E. Frees & al.)
- Hands on ML with R (B. Broecke)
 https://bradleyboehmke.github.io/HOML/