수학 영역

정답

1	5	2	4	3	2	4	3	5	3
6	4	7	4	8	2	9	3	10	(5)
11	4	12	1	13	1	14	(5)	15	2
16	5	17	17	18	13	19	24	20	27
21	117	22	64						

해설

1. [출제의도] 지수와 로그 계산하기

$$4^{\frac{1}{2}} + \log_2 8 = 2 + 3 = 5$$

2. [출제의도] 정적분 계산하기

$$\int_{0}^{1} (2x+3)dx = \left[x^{2}+3x\right]_{0}^{1} = 1+3=4$$

3. [출제의도] 미분계수 계산하기

$$f'(x) = 2x - a$$

 $f'(1) = 2 - a = 0$
따라서 $a = 2$

4. [출제의도] 함수의 극한 이해하기

$$\lim_{x \to -1-} f(x) = 2, \lim_{x \to 1+} f(x) = -1$$

따라서
$$\lim_{x \to -1-} f(x) + \lim_{x \to 1+} f(x) = 1$$

5. [출제의도] 지수함수의 성질 이해하기

양변의 밑을 5로 같게 하면 $5^{2x-7} \le 5^{-x+2}$ $2x-7 \le -x+2$ 에서 $x \le 3$ 주어진 부등식을 만족시키는 자연수 x는 1, 2, 3 따라서 자연수 x의 개수는 3

6. [출제의도] 삼각함수 사이의 관계 이해하기

$$\cos(-\theta) + \sin(\pi + \theta) = \cos\theta - \sin\theta = \frac{3}{5}$$
$$(\cos\theta - \sin\theta)^2 = \cos^2\theta - 2\cos\theta\sin\theta + \sin^2\theta$$
$$= 1 - 2\sin\theta\cos\theta$$
$$1 - 2\sin\theta\cos\theta = \frac{9}{25}$$

따라서
$$\sin\theta\cos\theta = \frac{8}{25}$$

7. [출제의도] 수열의 귀납적 정의 이해하기

$$\begin{split} a_2 &= 5 - \frac{10}{10} = 4 \\ a_3 &= 5 - \frac{10}{4} = \frac{5}{2} \\ a_4 &= -2 \times \frac{5}{2} + 3 = -2 \\ a_5 &= 5 - \frac{10}{-2} = 5 + 5 = 10 \\ &\vdots \\ a_9 &= a_5 = a_1 = 10 \;, \; a_{12} = a_8 = a_4 = -2 \\ \text{WFA} &= 8 \end{split}$$

8. [출제의도] 등비수열의 일반항 이해하기

등비수열
$$\left\{a_{n}\right\}$$
의 일반항은 $a_{n}=ar^{n-1}$ $2a=S_{2}+S_{3}$ 이므로 $2a=(a+ar)+\left(a+ar+ar^{2}\right)$ $ar(2+r)=0$ $r^{2}=64a^{2}$ $(a>0)$ 에 의하여 $r\neq 0$ 이므로 $r=-2$, $a=\frac{1}{4}$ 따라서 $a_{5}=\frac{1}{4}\times(-2)^{4}=4$

9. [출제의도] 거듭제곱근과 지수법칙 이해하기

$$\left(\sqrt[n]{a}\right)^3 = a^{\frac{3}{n}}$$
(i) $a = 4$ 일 때 $4^{\frac{3}{n}} = 2^{\frac{6}{n}}$
 $n (n \ge 2)$ 가 6의 양의 약수이어야 하므로 $n = 2$, 3, 6
그러므로 $f(4) = 6$

(ii)
$$a=27$$
일 때 $27^{\frac{3}{n}}=3^{\frac{9}{n}}$ $n\ (n\geq 2)$ 가 9의 양의 약수이어야 하므로 $n=3$, 9 그러므로 $f(27)=9$ 따라서 $f(4)+f(27)=6+9=15$

10. [출제의도] 삼각함수를 활용하여 문제해결하기

$$\cos^2 x = 1 - \sin^2 x$$
 이 므로
 $3(1 - \sin^2 x) + 5\sin x - 1 = 0$
 $3\sin^2 x - 5\sin x - 2 = 0$
 $(3\sin x + 1)(\sin x - 2) = 0$
 $-1 \le \sin x \le 1$ 이므로 $\sin x = -\frac{1}{3}$... \bigcirc

①을 만족시키는 x의 값을 $x=\alpha$, β $(\alpha<\beta)$ 라 하면 $\frac{\alpha+\beta}{2}=\frac{3}{2}\pi$ 이므로 $\alpha+\beta=3\pi$ 따라서 모든 해의 합은 3π

11. [출제의도] 로그함수의 그래프의 성질을 활용하여 문제해결하기

직선 y=-2와 함수 y=f(x)의 그래프가 만나는 점이 A 이므로 $-2=\frac{1}{2}\log_a(x-1)-2$ 에서 x=2A(2, -2) B $\left(10,\,\frac{1}{2}\log_a9-2\right)$, C $\left(10,\,-\log_a8+1\right)$ 이고, 점 A 와 직선 x=10 사이의 거리는 8이므로 삼각형 ACB의 넓이는 $\frac{1}{2}\times8\times\left\{\left(\frac{1}{2}\log_a9-2\right)-\left(-\log_a8+1\right)\right\}$ $=4\times\left(\log_a24-3\right)=28$ $\log_a24=10$ 따라서 $a^{10}=24$

12. [출제의도] 연속함수의 성질을 활용하여 문제해결하기

$$\lim_{x \to \infty} \frac{f(x)}{x^2 - 3x - 5} = 2$$
이므로
$$f(x) = 2x^2 + ax + b$$

(분모) $\rightarrow 0$ 이고 극한값이 존재하므로 (분자) $\rightarrow 0$ $\lim_{x\to 3} (2x^2+ax+b)=0$ 이므로 18+3a+b=0

 $\lim f(x) g(x) = f(3) g(3)$

함수 f(x)g(x)는 실수 전체의 집합에서

연속이므로 x=3에서 연속이다.

 $\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = 18 + 3a + b \text{ old}$

$$\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = 0$$

$$b = -3a - 18 \circ | \Box \exists f(x) = (x - 3)(2x + a + 6)$$

$$\lim_{x \to 3} \frac{2x^2 + ax + b}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(2x + a + 6)}{x - 3}$$

$$= \lim_{x \to 3} (2x + a + 6) = 0$$

이므로 a=-12, b=18 $f(x)=2x^2-12x+18$ 따라서 f(1)=8

13. [출제의도] 수열의 합을 활용하여 추론하기

주어진 식 (*)에 의하여 n-1

$$nS_n = \log_2(n+1) + \sum_{k=1}^{n-1} S_k \quad (n \geq 2) \quad \cdots$$
 이다. $(*)$ 에서 ①을 빼서 정리하면 $(n+1)S_{n+1} - nS_n$
$$= \log_2(n+2) - \log_2(n+1)$$

$$+ \sum_{k=1}^n S_k - \sum_{k=1}^{n-1} S_k \quad (n \geq 2)$$

$$(\underbrace{n+1}) \times a_{n+1} = \log_2 \frac{n+2}{n+1} \quad (n \ge 2)$$

 $a_1=1=\log_22$ 이고, $2S_2=\log_23+S_1=\log_23+a_1$ 이므로 $2a_2=\log_2\frac{3}{2}$ 모든 자연수 n에 대하여

모든 자연수
$$n$$
 에 대하여
$$na_n = \log_2 \frac{n+1}{n}$$
이다 따라서

$$\sum_{k=1}^{n} k a_k = \sum_{k=1}^{n} \log_2 \frac{k+1}{k}$$

$$= \log_2 \frac{2}{1} + \log_2 \frac{3}{2} + \dots + \log_2 \frac{n+1}{n}$$

$$= \log_2 \left(\frac{2}{1} \times \frac{3}{2} \times \dots \times \frac{n+1}{n}\right)$$

$$= \left[\log_2 (n+1)\right]$$

이다. $f(n)=n+1\;,\;g(n)=\log_2\frac{n+1}{n}\;,$ $h(n)=\log_2(n+1)$ 따라서

$f(8) - g(8) + h(8) = 9 - \log_2 \frac{9}{8} + \log_2 9 = 12$

$$x(2) = 0 + \int_0^2 (3t^2 - 6t)dt = [t^3 - 3t^2]_0^2 = -4$$
 (참)

ㄷ. 시각 t에서의 점 P의 가속도를 a(t)라 하면 a(t) = 6t - 6

6t-6=12, t=3

t=0에서 t=3까지 움직인 거리를 s라 하면

$$s = \int_{0}^{3} |3t^{2} - 6t| dt$$

$$= -\int_{0}^{2} (3t^{2} - 6t)dt + \int_{2}^{3} (3t^{2} - 6t)dt$$

 $=4+\left[t^{3}-3t^{2}\right]_{2}^{3}=8$ (참) 따라서 옳은 것은 기, ㄴ, ㄷ

15. [출제의도] 정적분을 활용하여 문제해결하기

방정식 f'(x)=0의 서로 다른 세 실근

 α , 0, β (α < 0 < β)가 이 순서대로 등차수열을 이루므로 $\beta = -\alpha$

 $f'(x) = 4x(x-\alpha)(x+\alpha)$

 $f(x) = x^4 - 2\alpha^2 x^2 + C$ (단, C는 적분상수이다.) f(-x)=f(x)이므로 함수 y=f(x)의 그래프는 y 축에 대하여 대칭이고, 조건 (가)에 의하여 f(0) = 9, C = 9

조건 (나)에 의하여 $f(\alpha) = \alpha^4 - 2\alpha^4 + 9 = -16$ $\alpha = -\sqrt{5}$

함수 $f'(x) = 4x(x - \sqrt{5})(x + \sqrt{5})$ 의 그래프의 개형은 다음과 같다.

함수 g(x) = |f'(x)| - f'(x)이므로 함수

$$g(x) = \begin{cases} 0 & (f'(x) \ge 0) \\ -2f'(x) & (f'(x) < 0) \end{cases}$$

이고, 함수 y = g(x)의 그래프의 개형은 다음과 같다.

$$\int_{0}^{10} g(x)dx = -2 \int_{0}^{\sqrt{5}} f'(x)dx$$
$$= -2 [f(x)]_{0}^{\sqrt{5}} = -2 \{f(\sqrt{5}) - f(0)\}$$
$$= -2 \times (-16 - 9) = 50$$

16. [출제의도] 함수의 극한값 계산하기

$$\lim_{x \to -1} \frac{x^2 + 4x + a}{x + 1} = b \text{ 에서}$$
 (분모) $\to 0$ 이고 극한값이 존재하므로 (분자) $\to 0$ $\lim_{x \to -1} (x^2 + 4x + a) = 0$ 이므로 $1 - 4 + a = 0$, $a = 3$

$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x + 1} = \lim_{x \to -1} \frac{(x+1)(x+3)}{x+1}$$
$$= \lim_{x \to -1} (x+3) = 2 = b$$

따라서 a+b=5

17. [출제의도] 부정적분 이해하기

$$f(x) = \int (3x^2 + 6x - 4)dx$$

 $= x^3 + 3x^2 - 4x + C$
(단, C는 적분상수이다.)
 $f(1) = 1 + 3 - 4 + C = 5$, $C = 5$
 $f(x) = x^3 + 3x^2 - 4x + 5$
따라서 $f(2) = 8 + 12 - 8 + 5 = 17$

18. [출제의도] 미분계수 이해하기

 $f'(x) = 3x^2 + a$

x의 값이 1에서 3까지 변할 때의 함수 f(x)의 평균변화율이 f'(a)의 값과 같으므로

$$\frac{f(3) - f(1)}{3 - 1} = f'(a)$$
$$\frac{3^3 + 3a - (1^3 + a)}{2} = 3a^2 + a$$

따라서 $3a^2 = 13$

19. [출제의도] 곱의 미분법을 활용하여 문제해결하기

$$\lim_{x \to 2} \frac{f(x) - 4}{x^2 - 4} = 2 \text{ only}$$

(분모)→0 이고 극한값이 존재하므로 (분자)→0 $\lim \{f(x)-4\}=0$ 이므로 f(2)=4

$$\lim_{x \to 2} \frac{f(x) - 4}{x^2 - 4} = \lim_{x \to 2} \left\{ \frac{1}{x + 2} \times \frac{f(x) - f(2)}{x - 2} \right\}$$
$$= \frac{1}{4} f'(2) = 2$$

f'(2) = 8

$$\lim_{x \to 2} \frac{g(x) + 1}{x - 2} = 8 \text{ M/A}$$

(분모)→0이고 극한값이 존재하므로 (분자)→0 $\lim \{g(x)+1\}=0$ 이므로 g(2)=-1

$$\lim_{x \to 2} \frac{g(x)+1}{x-2} = \lim_{x \to 2} \frac{g(x)-g(2)}{x-2} = g'(2) = 8$$

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

따라서 h'(2)=f'(2)g(2)+f(2)g'(2)=24

20. [출제의도] 삼각함수를 활용하여 문제해결하기

선분 AB는 삼각형 ABC의 외접원의 지름이므로 삼각형 ABC 는 직각삼각형이다.

$$\angle BCA = \frac{\pi}{2}$$
, $\angle CAB = \alpha$ 라 하면

$$\cos \alpha = \frac{1}{3}$$
 이코, $\sin^2 \alpha = 1 - \cos^2 \alpha = \frac{8}{9}$ 이므로

$$\sin\alpha = \frac{2\sqrt{2}}{3}$$

 $\overline{BC} = \overline{AB} \times \sin \alpha$ 이므로 $\overline{AB} = 18$ 이고, $\overline{AC} = 6$ 점 D는 선분 AB를 5:4로 내분하는 점이므로 $\overline{AD} = 10$

삼각형 CAD 에서 코사인법칙에 의하여

$$\overline{DC}^2 = 6^2 + 10^2 - 2 \times 6 \times 10 \times_{COS} \alpha = 96$$

$$\overline{DC} = \sqrt{96} = 4\sqrt{6}$$

삼각형 CAD 의 외접원의 반지름의 길이를 R라 하면, 사인법칙에 의하여

$$\frac{\overline{DC}}{\sin \alpha} = 2R \, \text{old} \, R = 3\sqrt{3}$$

삼각형 CAD 의 외접원의 넓이 $S=27\pi$ 따라서 $\frac{S}{\pi} = 27$

21. [출제의도] 등차수열과 등비수열의 성질을 활용하여 문제해결하기

 $a_1 = a$ 라 하면

조건 (나)에 의하여

 $\{a + (k-1)d\}^2 = (a+d)\{a + (3k-2)d\}$

 $d(k^2 - 5k + 3) = a(k+1) \cdots \bigcirc$

모든 항이 자연수이므로

조건 (γ) 에서 $0 < a \le d$

 $a(k+1) \le d(k+1)$

 $k^2 - 5k + 3 \le k + 1$

 $k^2 - 6k + 2 \le 0$

 $3 - \sqrt{7} \le k \le 3 + \sqrt{7}$ $k \geq 3$ 이므로 자연수 k = 3, 4, 5

 \cap 에서 $k^2-5k+3>0$ 이므로 k=5, d=2a

 $90 \le a_{16} \le 100$, $a_{16} = a + 15d = 31a$

이므로 a=3, d=6

따라서 $a_{20} = a + 19d = 117$

22. [출제의도] 도함수를 활용하여 문제해결하기

$$f(x) = \frac{2\sqrt{3}}{3}x(x-3)(x+3)$$

 $f'(x) = 2\sqrt{3}(x-\sqrt{3})(x+\sqrt{3})$ 이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}		$-\sqrt{3}$		$\sqrt{3}$	
f'(x)	+	0		0	+
f(x)	1	12 (극대)	>	-12 (극소)	1

함수 y = g(x)의 그래프의 개형은 다음과 같다.

자연수 k에 대하여 $6k-3 \le x < 6k+3$ 일 때

함수
$$g(x) = \frac{1}{k+1} f(x-6k)$$

k+1이 12의 양의 약수가 될 때 함수 g(x)의 극댓값이 자연수이므로

k=1, 2, 3, 5, 11일 때 함수 g(x)의 극댓값은

각각 6, 4, 3, 2, 1이다

 $a_1 = 2 \times 11 + 1 = 23$

 $a_2 = 2 \times 5 + 1 = 11$

 $a_3 = 2 \times 3 + 1 = 7$

 $a_4 = 2 \times 2 + 1 = 5$

 $a_5 = 2 \times 2 = 4$ $a_6 = 2 \times 1 + 1 = 3$

 $7 \le n \le 11$ 일 때 $a_n = 2 \times 1 = 2$

$$\sum_{n=1}^{12} a_n = 23 + 11 + 7 + 5 + 4 + 3 + 2 \times 5 + 1 = 64$$

확률과 통계 정답

23	(5)	24	3	25	2	26	1	27	4
28	(5)	29	25	30	51				

확률과 통계 해설

23. [출제의도] 확률 계산하기

두 사건 A와 B는 서로 배반사건이므로 $P(A \cup B) = P(A) + P(B)$

$$\frac{11}{12} = \frac{1}{12} + P(B)$$

따라서 $P(B) = \frac{5}{6}$

24. [출제의도] 이항정리 이해하기

전개식의 일반항은 $_{7}\mathsf{C}_{r}(2x)^{7-r}\times 1^{r}={}_{7}\mathsf{C}_{r}2^{7-r}x^{7-r}$ $(r=0,\,1,\,2,\,\cdots,\,7)$ $x^{7-r}=x^{2}$ 에서 r=5 따라서 x^{2} 의 계수는 $_{7}\mathsf{C}_{5}\times 2^{2}=84$

25. [출제의도] 확률분포 이해하기

주어진 확률분포표에서

$$a + \frac{1}{2}a + \frac{3}{2}a = 3a = 1$$
 $a = \frac{1}{2}$

따라서 $\operatorname{E}(X) = (-1) \times a + 0 \times \frac{1}{2}a + 1 \times \frac{3}{2}a$ $= \frac{1}{2}a = \frac{1}{6}$

26. [출제의도] 확률의 뜻 이해하기

 $(a-2)^2+(b-3)^2+(c-4)^2=2 \ {\ensuremath{\text{=}}}$ 만족시키려면

세 수 $(a-2)^2$, $(b-3)^2$, $(c-4)^2$ 중 한 개의 수가 0이고 두 개의 수가 1이어야 한다. $(a-2)^2=0$, $(b-3)^2=0$, $(c-4)^2=0$ 이

될 확률은 각각 $\frac{1}{6}$

 $(a-2)^2=1\,,\ (b-3)^2=1\,,\ (c-4)^2=1\, \circ$ 된 확률은 각각 $\frac{1}{3}$

따라서 구하는 확률은 $_3C_1 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{18}$

27. [출제의도] 같은 것이 있는 순열의 수 추론하기

3 개의 문자 A , B , C 를 같은 문자 X 라 하고 6 개의 문자를 모두 한 번씩 사용하여 일렬로 나열하는 경우의 수는 $\frac{6!}{3!}$ = $6\times5\times4$ = 120 가운데 문자 X 에 문자 A 를 놓고 첫 번째 문자 X 와 세 번째 문자 X 에 두 문자 B , C 를 나열하는 경우의 수는 2!= 2 따라서 구하는 경우의 수는 120×2 = 240

28. [출제의도] 정규분포의 성질 이해하기

조건 (가)에서 Y=3X-a이므로 $\mathrm{E}(Y)=\mathrm{E}(3X-a)=3\mathrm{E}(X)-a=3m-a$ m=3m-a 에서 a=2m $\sigma(Y)=\sigma(3X-a)=3\sigma(X)=6$

$$P(X \le 4) = P\left(Z \le \frac{4-m}{2}\right)$$

 $P(Y \ge a) = P(Y \ge 2m) = P\left(Z \ge \frac{m}{6}\right)$

조거 (나)에 의하여

$$\frac{4-m}{2} = -\frac{m}{6}$$
 에서 $m = 6$

그러므로 확률변수 Y는 정규분포 $N(6,6^2)$ 을 따른다. 따라서

 $P(Y \ge 9) = P\left(Z \ge \frac{9-6}{6}\right) = P(Z \ge 0.5)$ $= P(Z \ge 0) - P(0 \le Z \le 0.5)$ = 0.5 - 0.1915 = 0.3085

29. [출제의도] 조건부확률을 활용하여 문제해결하기

두 수의 곱의 모든 양의 약수의 개수가 3 이하인 사건을 X, 두 수의 합이 짝수인 사건을 Y라하자. 사건 X를 만족시키는 경우는 두 수 중하나가 1 이거나 두 수가 같은 소수일 때이다.

(i) 두 수 중 하나가 1일 때

$$\frac{{}_{1}C_{1} \times {}_{14}C_{1}}{{}_{15}C_{2}} = \frac{2}{15}$$

- (ii) 두 수가 같은 소수일 때
 - (1) 두 수가 2일 때

$$\frac{{}_{2}\mathsf{C}_{2}}{{}_{15}\mathsf{C}_{2}} = \frac{1}{105}$$

(2) 두 수가 3일 때

$$\frac{{}_{3}\mathsf{C}_{2}}{{}_{15}\mathsf{C}_{2}} = \frac{1}{35}$$

(3) 두 수가 5일 때

$$\frac{{}_{5}\mathsf{C}_{2}}{{}_{15}\mathsf{C}_{2}} = \frac{2}{21}$$

(i), (ii)에 의하여 $P(X) = \frac{4}{15}$

두 사건 X와 Y를 동시에 만족시키는 경우는 (i)에서 두 수가 1, 3이거나 두 수가 1, 5인 경우 또는 (ii)인 경우이므로 $P(X \cap Y)$

$$= \frac{{}_{1}C_{1} \times {}_{3}C_{1} + {}_{1}C_{1} \times {}_{5}C_{1} + {}_{2}C_{2} + {}_{3}C_{2} + {}_{5}C_{2}}{{}_{15}C_{2}}$$

 $=\frac{22}{105}$

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)} = \frac{11}{14}$$

따라서 p+q=25

30. [출제의도] 중복조합을 활용하여 문제해결하기

학생 A 가 받는 검은 공의 개수와 흰 공의 개수를 각각 b, w라 하자. 조건 (가), (나)를 만족시키는 순서쌍 (b, w) 중학생 A가 홀수 개의 공을 받는 경우는

(4, 3), (4, 1), (3, 2), (2, 1)

- (i) 순서쌍 (b, w)가 (4, 3)일 때 흰 공 2개, 빨간 공 5개가 남으므로 조건 (가)를 만족시키지 않는다.
- (ii) 순서쌍 (b, w)가 (4, 1)일 때 흰 공 4개와 빨간 공 5개가 남으므로 세 명의 학생 B, C, D에게 흰 공과 빨간 공을 각각 1개씩 나누어 주고 남은 흰 공 1개, 빨간 공 2개를 나누어 주는 경우의 수는 다음과 같다. 흰 공 1개를 받는 학생을 정하는 경우의 수는 ₃C₁ = 3 세 명의 학생 B, C, D에게 빨간 공 2개를 나누어 줄 때, 흰 공을 받는 학생에게 빨간 공 2개를 모두 나누어 주는 경우를

제외해야 하므로 경우의 수는 $_{3}$ H₂ $- 1 = {}_{4}$ C₂ - 1 = 5

3H₂-1-₄U₂-1-5 그러므로 구하는 경우의 수는 3×5=15

(iii) 순서쌍 (b, w)가 (3, 2)일 때 검은 공 1개, 흰 공 3개, 빨간 공 5개가

남으므로 다음의 (1)과 (2)의 경우로 나누어 볼 수 있다.

(1) 세 명의 학생 B, C, D 중에서 한 명의 학생이 검은 공과 흰 공을 받는 경우 검은 공과 흰 공을 받는 학생을 정하는 경우의 수는 $_3C_1=3$

점은 공과 흰 공을 받는 학생이 B일 때 남은 흰 공 2개와 빨간 공 5개는 학생 B를 제외한 두 명의 학생 C, D에게 나누어 준다.

(2) 세 명의 학생 B, C, D 중에서 한 명의학생이 검은 공과 빨간 공을 받는 경우검은 공과 빨간 공을 받는 학생을 정하는경우의 수는 3C1 = 3

검은 공과 빨간 공을 받는 학생이 B일 때두 명의 학생 C, D에게 흰 공 1개, 빨간 공 1개씩을 각각 나누어 준다. 남은 흰 공 1개, 빨간 공 2개에 대하여 흰 공은 학생 B를 제외한 두 명의 학생 C, D 중에서 한 명을 택하여 나누어 주고, 빨간 공은 세 명의 학생 B, C, D 중에서 한 명을 택하여 나누어 준다. 이 때, 마지막에 흰 공을 받는 학생에게 빨간 공 2개를 모두 나누어 주는 경우를 제외해야 하므로 경우의 수는 $2 \times (_3H_2-1) = 2 \times (_4C_2-1) = 10$

그러므로 구하는 경우의 수는 $3 \times 10 = 30$ (iv) 순서쌍 (b, w)가 (2, 1)일 때

조건 (다)를 만족시키지 않는다. 따라서 (i), (ii), (iii), (iv)에 의하여 구하는 경우의 수는 15+6+30=51