Sciences

Télécabine à stabilité accrue : le funitel

Mines Ponts PSI - 2003

Savoirs et compétences :

Mod2.C18.SF1 : Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.

Chapitre 1 - Approche énergétique

Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Objectif On étudiera la situation suivante (qui correspond à la situation la plus défavorable) : redémarrage de l'installation après un incident avec une accélération de $0,15\,\mathrm{m\,s^{-2}}$. On se place à l'instant ou la vitesse de $7,2\,\mathrm{m\,s^{-1}}$ va être atteinte, 8 cabines chargées de passagers sont en montée, 8 cabines vides sont en descente et un vent de vitesse $V_e = 30 \,\mathrm{m\,s^{-1}}$ souffle parallèlement à la ligne dans le sens de la descente.

Question 1 Déterminer l'énergie cinétique galiléenne, notée $E_{c_{\tau}}$, des 4 brins de câble, de l'ensemble des cabines sur la ligne et de la motorisation, en fonction de M_c , M_p , μ , L, V, D_P et I_M .

Correction

- Énergie cinétique des 4 brins de câbles : \mathcal{E}_c (cables/0) = $\frac{1}{2}4L\mu V^2$.
- Énergie cinétique des 8 cabines montantes : $\mathcal{E}_c(C_m/0) = \frac{1}{2}8(M_c + M_p)V^2$.
- Énergie cinétique des 8 cabines descendantes : $\mathscr{E}_c(C_d/0) = \frac{1}{2}8M_cV^2$.
- Énergie cinétique de la motorisation : $\mathcal{E}_c(M/0) = \frac{1}{2}I_M\omega_M^2$.

On a par ailleurs $V = \omega_M \cdot \frac{D_p}{2}$.

On a donc $\mathscr{E}_c(\Sigma/0) = \frac{1}{2} \left(4L\mu + 16M_c + 8M_p + I_M \frac{4}{D_p^2} \right) V^2$.

On a donc $M_{\text{eq}} = 4L\mu + 16M_c + 8M_p + I_M \frac{4}{D_c^2} = 4 \times 1669 \times 8,47 + 16 \times 2500 + 8 \times 2080 + 575 \times 10^3 \frac{4}{16} = 256936 \text{ kg}$ et $\mathcal{E}_c(\Sigma/0) = 6.7 \,\mathrm{MJ}$.

Question 2 Déterminer la puissance galiléenne, notée P_p , des actions de pesanteur sur l'installation en fonction de M_p , V, h, g et L.

Correction

Les puissances de la pesanteur sur les cabines montantes s'exprime ainsi :

$$\mathscr{P}(\text{pes} \to C_m/0) = \{\mathscr{T}(\text{pes} \to C_m)\} \otimes \{\mathscr{V}(C_m/0)\} = 8\left\{\begin{array}{c} -(M_c + M_p)g\overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_{G_c} \otimes \left\{\begin{array}{c} \overrightarrow{0} \\ V\overrightarrow{i} \end{array}\right\}_{G_c}$$

 $= -8 \big(M_c + M_p \big) g \, V \, \overrightarrow{z} \cdot \overrightarrow{i} = -8 \big(M_c + M_p \big) g \, V \sin \alpha.$ Les puissances de la pesanteur sur les cabines descendantes s'exprime ainsi :

$$\mathscr{P}(\mathrm{pes} \to C_d/0) = \{\mathscr{T}(\mathrm{pes} \to C_d)\} \otimes \{\mathscr{V}(C_d/0)\} = 8\left\{\begin{array}{c} -M_c g \overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_{G_c} \otimes \left\{\begin{array}{c} \overrightarrow{0} \\ -V \overrightarrow{i} \end{array}\right\}_{G_c} = 8M_c g V \overrightarrow{z} \cdot \overrightarrow{i}$$

 $=8M_c g V \sin \alpha$.

Remarque : la puissance de la pesanteur sur le câble sont opposées pour la partie montante et la partie descendante.

Ainsi, $\mathscr{P}(\text{pes} \to C_d + C_m/0) = 8M_c g V \sin \alpha - 8(M_c + M_p) g V \sin \alpha = -8M_p g V \sin \alpha = -359289 W.$

Question 3 Après avoir évalué la vitesse relative et l'action du vent sur une cabine en montée et une cabine en descente, déterminer la puissance galiléenne, notée P_v des actions du vent sur l'ensemble des cabines en fonction de ρ , S_f , V, V_e et $\alpha = \arcsin(h/L)$.

Au final, \mathscr{P} (vent $\to C_m + C_d/0$) = $8S_f V \frac{1}{2} \rho \left((V - V_e)^2 - (V + V_e)^2 \right) \cos \alpha = 8S_f V \frac{1}{2} \rho \left(-4VV_e \right) \cos \alpha$ = $-16S_f \rho V^2 V_e \cos \alpha$. On a donc \mathscr{P} (vent $\to C_m + C_d/0$) = -218677 W

Question 4 En déduire une estimation de la puissance galiléenne nécessaire, notée P_T pour l'entrainement de la ligne entre les gares dans la situation étudiée. La puissance effectivement installée par le constructeur est de 1560 kW, commentez vos résultats par rapport à cette valeur.

Correction On applique le théorème de l'énergie cinétique :

 $\frac{\mathrm{d}\mathscr{E}_c\left(\Sigma/0\right)}{\mathrm{d}t} = \mathscr{P}\left(\mathrm{vent} \to C_m + C_d/0\right) + \mathscr{P}\left(\mathrm{pes} \to C_m + C_d/0\right) + \mathscr{P}\left(\mathrm{frottement} \to \Sigma/0\right) + \mathscr{P}\left(\mathrm{moteur} \to \Sigma/0\right).$

On a donc, en régime permanent : $0 = -229672 - 359289 - 400000 + P_T P_T = 218677 + 359289 + 400000 = 977966 W \approx 1000 kW$.

En tenant compte de l'accélération, on a $P_T = 1000 \,\text{kW} + M_{\rm eq} \, V \, \dot{V} = 1000 \,\text{kW} + M_{\rm eq} \, 7.2 \cdot 0.15 \simeq 1266 \,\text{kW}$.

Le surplus de puissance est nécessaire en cas de situation plus défavorable (plus de vent, dépassement du nombre de passagers...).

Question 5 Quelle est alors la durée t de la phase d'accélération? Exprimer la longueur x (en mètre) de la zone rectiligne en fonction de a, v_0 , t et V. Pour que l'accélération de $1,3\,\mathrm{m\,s^{-2}}$ permette le lancement des cabines de $v_0=0,3\,\mathrm{m\,s^{-1}}$ à $V=7,2\,\mathrm{m\,s^{-1}}$, l'application numérique donne environ : $x=20\,\mathrm{m}$.

Correction

On a
$$v(t) = at + k$$
. Par ailleurs, $v(t_2) = V = at_2 + k$ et $v(t_1) = v_0 = at_1 + k$. On a donc $V - v_0 = a\tau$ soit $\tau = \frac{V - v_0}{a} = \frac{6.9}{1.3} = 5.3$ s.

La distance parcourue pendant la durée τ correspond à l'intégrale de la vitesse soir à l'aire sous la courbe. On a donc $x = \tau \cdot \frac{1}{2}(V + v_0) = 5, 3 \times 0, 5 \times 7, 5 = 19,875 \,\mathrm{m}.$