

V_{DS} 100 $R_{DS(on) max}$ 26 $\mathbf{m}\Omega$ $(@V_{GS} = 10V)$ 61 nC Q_{g (typical)} I_D 6.9 Α $(@T_A = 25^{\circ}C)$

HEXFET® Power MOSFET S III 8 ___ D 7 D SI 6 ____ D _5 ___ D Top View

 \Rightarrow

Features
Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits	
Multi-Vendor Compatibility	
Easier Manufacturing	
Environmentally Friendlier	
Increased Reliability	

Book Bort Number Bookson Type		Standard Pac	Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF7473PbF-1	SO-8	Tube/Bulk	95	IRF7473PbF-1
INF/4/3PDF-1	30-6	Tape and Reel	4000	IRF7473TRPbF-1

Absolute Maximum Ratings

	•		
	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.9	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.5	Α
I _{DM}	Pulsed Drain Current ①	55	
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ©	5.8	V/ns
T_J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	1

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient ④		50	°C/W

Notes ① through ⑥ are on page 8

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		22	26	mΩ	V _{GS} = 10V, I _D = 4.1A ③
V _{GS(th)}	Gate Threshold Voltage	3.5		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Inno	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 95V, V_{GS} = 0V$
IDSS	Brain to course Leanage Garrent			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	10			S	$V_{DS} = 50V, I_D = 4.1A$
Qg	Total Gate Charge		61			I _D = 4.1A
Q _{gs}	Gate-to-Source Charge		21		nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		19			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		24			$V_{DD} = 50V$
t _r	Rise Time		20		ns	$I_D = 4.1A$
t _{d(off)}	Turn-Off Delay Time		29			$R_G = 6.0\Omega$
t _f	Fall Time		11			V _{GS} = 10V ③
C _{iss}	Input Capacitance		3180			$V_{GS} = 0V$
C _{oss}	Output Capacitance		230			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		120		pF	f = 1.0MHz
Coss	Output Capacitance		830]	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		150]	$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		230] [V _{GS} = 0V, V _{DS} = 0V to 80V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		140	mJ
I _{AR}	Avalanche Current①		4.1	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.3		MOSFET symbol
	(Body Diode)			2.3	Α	showing the
I _{SM}	Pulsed Source Current			55		integral reverse
	(Body Diode) ①			ວວ		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 4.1A$, $V_{GS} = 0V$ 3
t _{rr}	Reverse Recovery Time		55		ns	$T_J = 25^{\circ}C, I_F = 4.1A$
Q _{rr}	Reverse RecoveryCharge		140		nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 B	ASIC
el	.025 B	ASIC	0.635 E	BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 16mH, $R_G = 25\Omega$, $I_{AS} = 4.1$ A.
- When mounted on 1 inch square copper board

Qualification information[†]

Qualification information							
Qualification level	Industrid (per JEDEC JESD47F ^{††} guidelines)						
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D ^{††})					
RoHS compliant	Yes						

- Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/