Artificial Intelligence I 2022/2023 Week 10 Tutorial and Additional Exercises

K-means & Hierarchical Clustering

School of Computer Science

May 6, 2023

In this tutorial...

In this tutorial we will be covering

- K-means Clustering.
- Hierarchical Clustering.
- Cutting the Dendrogram.

k-means clustering

Recall the formal algorithm of *K-means clustering*:

Algorithm 1: K-means clustering.

Input: $\mathbf{x}^{(1)},\dots,\mathbf{x}^{(N)}$: data set, K: number of clusters, $\mathbf{c}_1,\dots,\mathbf{c}_K$: initial centroids.

Output: Clusters.

1 repeat

2

3

Assignment step: For all i = 1, ..., N, form clusters by assigning

$$\textit{Cluster}(\mathbf{x}^{(i)}) \leftarrow \arg\min_{k=1,\dots,K} \textit{Dist}(\mathbf{x}^{(i)}, \mathbf{c}_k)$$

where $Dist(\cdot)$ is some distance function, e.g. squared Euclidean distance; Refitting step: For all $k=1,\ldots,K$ compute the centroid of the obtained clusters as

$$\mathbf{c}_k \leftarrow \frac{1}{n_k} \sum_{\{i: Cluster(\mathbf{x}^{(i)}) = k\}} \mathbf{x}^{(i)}$$

where n_k is the number of examples in the k-th cluster.

- 4 until c_1, \ldots, c_K "stop changing";
- 5 return Clusters.

Exercise 1

 Consider the following data set of 8 examples, each consisting of 2 features

$$\mathbf{x}^{(1)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{x}^{(2)} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}, \mathbf{x}^{(3)} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \mathbf{x}^{(4)} = \begin{bmatrix} 5 \\ 2 \end{bmatrix},$$
$$\mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{x}^{(6)} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \mathbf{x}^{(7)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{x}^{(8)} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}.$$

- Use K-means in algorithm 1 to cluster these examples.
- Use K=2, the squared Euclidean distance as the distance function, and the following initial centroids:

$$\mathbf{c}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 and $\mathbf{c}_2 = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$.

 Find the clusters and the new centroids at the end of one iteration of algorithm 1 (lines 2 and 3).

Exercise 1: Solution

• We first find the squared Euclidean distance of each example from the two centroids:

				$\mathbf{x}^{(4)}$				
$L^2(\cdot,\mathbf{c}_1)^2$	1	5	5	8	10	32	4	25
$L^2(\cdot,\mathbf{c}_2)^2$	40	36	26	25	25	13	65	58

• The assignment therefore is the following:

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$	$x^{(6)}$	$x^{(7)}$	x ⁽⁸⁾
$Cluster(\cdot)$	1	1	1	1	1	2	1	1

• The new centroids are the following:

$$\mathbf{c}_1 = \begin{bmatrix} 4 \\ 9/7 \end{bmatrix}, \text{ and } \mathbf{c}_2 = \begin{bmatrix} 7 \\ 4 \end{bmatrix}.$$

 Run a second iteration of algorithm 1. Find the new clusters and the new centroids.

Exercise 2

Reconsider the following set with 8 examples and 2 variables

$$\mathbf{x}^{(1)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{x}^{(2)} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}, \mathbf{x}^{(3)} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \mathbf{x}^{(4)} = \begin{bmatrix} 5 \\ 2 \end{bmatrix},$$

$$\mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{x}^{(6)} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}, \mathbf{x}^{(7)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{x}^{(8)} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}.$$

- Use K-means in algorithm 1 to cluster these examples.
- Use K = 2, the squared Euclidean distance as the distance function, but the initial centroids are now:

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ and } \mathbf{c}_2 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}.$$

• Find the clusters and the new centroids at the end of one iteration of algorithm 1 (lines 2 and 3).

Exercise 2: Solution

• We first find the squared Euclidean distances of each example from the two centroids:

	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	$x^{(3)}$	$\mathbf{x}^{(4)}$	$x^{(5)}$	$x^{(6)}$	$x^{(7)}$	x ⁽⁸⁾
$L^2(\cdot,\mathbf{c}_1)^2$	5	17	13	20	10	52	0	49
$L^2(\cdot,\mathbf{c}_2)^2$	2	2	4	5	13	25	9	16

• The assignment therefore is the following:

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$	$x^{(6)}$	$x^{(7)}$	$x^{(8)}$
$Cluster(\cdot)$	2	2	2	2	1	2	1	2

• The new centroids are the following:

$$\mathbf{c}_1 = \begin{bmatrix} 3/2 \\ 3/2 \end{bmatrix}, \text{ and } \mathbf{c}_2 = \begin{bmatrix} 16/3 \\ 5/3 \end{bmatrix}.$$

• Run a second iteration of algorithm 1. Find the new clusters and the new centroids.

Inter-Cluster Dissimilarity Metrics Revisited

- Distance metrics can be generalised for clusters to define inter-cluster dissimilarity measures. Let C_1 and C_2 be clusters containing n_{C_1} and n_{C_2} examples respectively. Some examples of distance metrics between C_1 and C_2 are:
 - Single linkage is defined as

$$d_{SL}(C_1, C_2) := \min_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

Complete linkage is defined as

$$d_{CL}(C_1, C_2) := \max_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

Group linkage is defined as

$$d_{GL}(C_1, C_2) := \frac{1}{n_{C_1} n_{C_2}} \sum_{\mathbf{x}^{(1)} \in C_1} \sum_{\mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

Dist(·) can be any distance function between vectors.

Hierarchical Clustering

Recall the formal algorithm of *Hierarchical Clustering*.

Algorithm 2: Hierarchical clustering.

Input: Distance matrix corresponding to the data set $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ **Output:** Dendrogram.

1 repeat

2

3

4

Find two clusters C_1 , C_2 with the smallest inter-cluster dissimilarity. That is,

$$\arg\min_{C_1,C_2}d_A(C_1,C_2)$$

where $A \in \{SL, CL, GL\}$ denotes single linkage (SL), complete linkage (CL) or group linkage (GL);

- Merge together C_1 , C_2 into a single cluster;
- Note the clusters merged and their corresponding linkage $d_A(\cdot, \cdot)$ in a dendrogram.
- 5 until Only one cluster remains.;
- 6 return Dendrogram.

Exercise 3

 Consider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$x^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 2 to merge all examples into a single cluster.
- Use single linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way clearly depicting the height at which two clusters fuse.

Exercise 3: Solution

 We start with each example in its own cluster and calculate the distance matrix for these clusters.

	$\{\mathbf{x}^{(1)}\}$	$\{x^{(2)}\}$	$\{x^{(3)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{x^{(1)}\}$	0	0.20	0.15	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.89	0.18	0.66	0.27
$\{x^{(3)}\}$	0.15	0.89	0	0.82	0.73	0.56
$\{x^{(4)}\}$	0.76	0.18	0.82	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.73	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}\}$ and $\{\mathbf{x}^{(3)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\},\{\boldsymbol{x}^{(2)}\},\{\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{x^{(2)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.20	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.18	0.66	0.27
$\{x^{(4)}\}$	0.76	0.18	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}\}$ and $\{\mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}, \{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}, \{\mathbf{x}^{(5)}\}, \{\mathbf{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	$\{\mathbf{x}^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.20	0.54	0.31
$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	0.20	0	0.42	0.27
$\{x^{(5)}\}$	0.54	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$ and $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	$\{\mathbf{x}^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	0	0.42	0.27
$\{x^{(5)}\}$	0.42	0	0.51
$\{x^{(6)}\}$	0.27	0.51	0

- The closest clusters are $\{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}\}\$ and $\{x^{(6)}\}\$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)},\boldsymbol{x}^{(6)}\},\{\boldsymbol{x}^{(5)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	$\{x^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	0	0.42
$\{x^{(5)}\}$	0.42	0

- The closest clusters are $\{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(6)}\}\$ and $\{x^{(5)}\}.$
- The new clusters are

$$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(5)},\mathbf{x}^{(6)}\}.$$

• Finally, we construct the dendrogram.

The dendrogram is the following:

Exercise 4

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$\mathbf{x}^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 2 to merge all examples into a single cluster.
- Use complete linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way.

Exercise 4: Solution

 We start with each example in its own cluster and calculate the distance matrix for these clusters.

	$\{\mathbf{x}^{(1)}\}$	$\{\mathbf{x}^{(2)}\}$	$\{\mathbf{x}^{(3)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{x^{(1)}\}$	0	0.20	0.15	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.89	0.18	0.66	0.27
$\{x^{(3)}\}$	0.15	0.89	0	0.82	0.73	0.56
$\{x^{(4)}\}$	0.76	0.18	0.82	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.73	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}\}$ and $\{\mathbf{x}^{(3)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\},\{\boldsymbol{x}^{(2)}\},\{\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{x^{(2)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.82	0.73	0.56
$\{x^{(2)}\}$	0.89	0	0.18	0.66	0.27
$\{x^{(4)}\}$	0.82	0.18	0	0.42	0.39
$\{x^{(5)}\}$	0.73	0.66	0.42	0	0.51
$\{x^{(6)}\}$	0.56	0.27	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}\}$ and $\{\mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\}, \{\boldsymbol{x}^{(2)},\boldsymbol{x}^{(4)}\}, \{\boldsymbol{x}^{(5)}\}, \{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.73	0.56
$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	0.89	0	0.66	0.39
$\{x^{(5)}\}$	0.73	0.66	0	0.51
$\{x^{(6)}\}$	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}$ and $\{\mathbf{x}^{(6)}\}$.
- The new clusters are

$$\{\boldsymbol{x^{(1)}},\boldsymbol{x^{(3)}}\}, \{\boldsymbol{x^{(2)}},\boldsymbol{x^{(4)}},\boldsymbol{x^{(6)}}\}, \{\boldsymbol{x^{(5)}}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	$\{x^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.73
$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	0.89	0	0.66
$\{x^{(5)}\}$	0.73	0.66	0

- The closest clusters are $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$ and $\{\mathbf{x}^{(5)}\}$.
- The new clusters are

$$\{\boldsymbol{x^{(1)}},\boldsymbol{x^{(3)}}\}, \{\boldsymbol{x^{(2)}},\boldsymbol{x^{(4)}},\boldsymbol{x^{(5)}},\boldsymbol{x^{(6)}}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}\}$
$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	0	0.89
$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}\}$	0.89	0

- \bullet The closest clusters are $\{\textbf{x}^{(1)},\textbf{x}^{(3)}\}$ and $\{\textbf{x}^{(2)},\textbf{x}^{(4)},\textbf{x}^{(5)},\textbf{x}^{(6)}\}.$
- The new clusters are

$$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(5)},\mathbf{x}^{(6)}\}.$$

• Finally, we construct the dendrogram.

The dendrogram is the following:

Cutting the Dendrogram

- In Hierarchical Clustering, we can impose a threshold on the inter-cluster distance or on the number of clusters.
- When this threshold is surpassed, the algorithm terminates without forming any further clusters, and returns the clusters formed so far.
- Different thresholds can result in different clusters.

Exercise 5

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering but impose a threshold of 0.35 on the inter-cluster distance. Write the final clusters.
- Use Hierarchical clustering but impose a threshold of 3 on the number of clusters. Write the final clusters.
- Use **single linkage** as the inter-cluster dissimilarity metric.

Exercise 5: Solution

 If we impose a threshold of 0.35 on the inter-cluster distance, the final clusters will be

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)},\boldsymbol{x}^{(6)}\},\{\boldsymbol{x}^{(5)}\}.$$

• We next draw the dendrogram with the horizontal cut.

The dendrogram with the horizontal cut is the following:

 If we impose a threshold of 3 on the number of clusters, the final clusters will be

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

• We next draw the dendrogram with the horizontal cut.

The dendrogram with the horizontal cut is the following:

Up next...

Optional Material

Optional Exercise 1

- Let C_1 , C_2 and C_3 be clusters. Prove the following:

 - $d_{CL}(C_1, C_2 \cup C_3) = \max\{d_{CL}(C_1, C_2), d_{CL}(C_1, C_3)\}.$
- Recall that

 - $d_{SL}(C,C') = \min_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - $d_{CL}(C,C') = \max_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - **1** Dist (\cdot, \cdot) is some distance function for vectors.

Optional Exercise 1: Solution

- We proceed as follows

 - ② $d_{CL}(C_1, C_2 \cup C_3) = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \cup C_3} Dist(\mathbf{x}, \mathbf{x}') = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \vee \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}') = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \vee \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}') = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2} Dist(\mathbf{x}, \mathbf{x}'), \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}')\} = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2, \mathbf{x}' \in C_3, \mathbf{x}' \in C_3,$

Any questions?

Until the next time...

Thank you for your attention!