Chapter 1: Digital Information, Number Systems A. Positional Number Systems Unsigned Numbers (non-negative) **Decimal System** D=342.12 = 3-100 + 4-10 + 2.1 + 1, 10 + 2, 10-2 whole freetisted part d: e 10, 1, 2, 3, 7, 5, 6, 7, 8, 9] ith digit Arobiz numerold radix point bose = 10 342.12 D = d2d, do.d.d. V(D) = d2 × 10 + d1 × 10 + d2 × 10 + d1 = 10 + d2, 10 octd: box 8 die 30, 2, 2, 4, 5, 6,77 342.12 = 3×32+4,81+2,8"+1,8"+2,7-1 **Binary System** booe 2 di E 70, 17 (bit) 8 bits = Byte O: +ransor off, voltage = low 1: on , " = high D = 10011 V(0) = 1.2" + 1.2" + 1.2" = 16+2+1 = 1910 0= 10011.0112 $V(0) = 19_{10} + 1 \times 2^{-2} + 1 \times 2^{-7} = (9 + 0.25 + 0.125 = 19.375_{10}$ Counting up decimol: 1-2-7-4-5-6-7-8-9-10-11-12--binary: 1-10-11-100 - --100111, = 3910

									1, 2					1	\								-
€	octd	digit	6			2-	- b ut		zi non	J	541	50	_										_
	0							00 0 0) O														
	Z							01	L 0														L
	7							0 s L e	- 2 > 0														
	5							L 0) (- 7														
	7						1	1	1														
	1232	=	001	. 01	. ο ε) 1 .	1,	Ξ	1 8	> 1	00	11	7										
		L.C												(5		.57	ວ)	LOT	. ככ	10	011	1 -	
											1	٦	L	1	~ 2 v	ملا.		لمد	n!	<i>(0)</i>	11960	a (J	-2
(001		- 0	12	<u>-</u>	٢	. 69	8			[4	58	di	g.	8 V	ए।		<i>)</i>	•		100	/\~P'	0.
narv	to Octa	Conve	rsion	4																			
																							-
tal to	o Binary	Conve	rsion																				
																							_
																							Т

exadecimal	System	Jase	16														
		di E	70,0	, 2, 3	ر4رح	, 6,	7, 8	9	λ	, B,	<i>C</i> ,	,כו	也,	F)		
									10	11	17	13	1	15			
					000	/ ବ୍ୟ	50 (0 0	1-			')					
モヒ	.107 binary	Te =	. ((1.1		, 00			2								
ex. 1.3.	binary	541193	/ (4	byt 1													
0	වවට	0															
1	000																
2	001																
3	001																
5	010																
6	011																
7	011	.1															
8	19 0	00															
g A	(3 0 (3 1 (3 1	C															
R 13	(5)	<i>ا</i>															
\frac{1}{C}	110	0															
D	110																
E	1115	2															
D E F	1111)															
	()	ion														
	xadecimal	Convers															
	xadecimal	Convers			5.4												
		Convers),	5.4	16											
	xadecimal	Convers),	5.4	16											
	xadecimal	Convers	12),	5.4	16											
	xadecimal	Convers	12),	5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12),	5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12)	5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											
	xadecimal	Convers	12		5.4	16											

General Base-r System

ase-r to Decimal Conversion
$$V(D) = \sum_{i=-n}^{p-1} d_i \Gamma^i$$

$$436.5_g = 4 \cdot 3 + 3 \cdot 8 + 6 \cdot 8 + 5 \cdot 3 = 4 \cdot 64 + 3 \cdot 8 + 6 + 6 \cdot 0.125$$

$$= 256 + 24 + 6 + 0.625 = 286.625_{13}$$
ecimal to Base-r Conversion

Decimal to Base-r Conversion

- Take decimal representation, keep dividing by r until quotient is zero
- Record the remainder at each step
- ullet Last remainder is the MSD. First remainder is the LSD

$179_{10} = (\cdot)_{2}?$		quotient	remainder
	179/2	39	1 -> 6512
	89/2	44	1 7
	44/2	22	0
	22/2	11	0
	11/2	5	(
	5/2	2	
	2/2	4	0

