DESIGN, FABRICATION, AND CHARACTERIZATION OF A LOW-DISTURBANCE, ACTIVELY-CONTROLLED, MACH 5 TO 8 WIND TUNNEL

A Dissertation Proposal

by

JACOB B. VAUGHN

Submitted to the Graduate and Professional School of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Edward White

Committee Members, Rodney Bowersox

Nathan Tichenor

Je Han

March 2024

Major Subject: Aerospace Engineering

Copyright 2024 Jacob B. Vaughn

TABLE OF CONTENTS

			P	Page
TA	BLE	OF COI	NTENTS	1
LIS	ST OI	F FIGUI	RES	3
LIS	ST OF	TABL	ES	4
1.	INTI	RODUC	TION	1
	1.1 1.2	Hypers	onicsonic Wind Tunnels	1 1
	1.3		ence	
2.	DES	IGN AN	ND FABRICATION OF ACE2.0	2
	2.1	Motiva 2.1.1	tion	2
			2.1.1.1 ACE Experimental Data 2.1.1.2 Mach Line Tracing	3
	2.2	2.1.2	2.1.1.3 Suspect Transition Mechanisms	4
	2.2	2.2.1	Nozzle Contour Codes	4
		2.2.22.2.3	CFD	4
		2.2.4	20-Ton Linear Actuators Design	4
			2.2.4.2Frame and Actuation2.2.4.3Final Design	
	2.3	Fabrica	ition	4
	2.4	Installa	tion and Calibration	4
		2.4.1	Assembly	5
		2.4.2	Actuation	
		2.4.3	Actuation Homing and Calibration	
		2.4.4	First Run	5
3.	EXP	ERIME	NTAL SETUP AND MEASUREMENTS	6
	3.1	Nozzle	Survey	6
	3.2	Mach S	Sween Hysterisis	6

	3.3	Mach Sweep Constant Unit Reynolds Number	6
4.	RES	ULTS AND DISCUSSION	7
	4.1 4.2	Maybe Possibly	7
5.	CON	NCLUSIONS AND RECOMMENDATIONS	8
	5.1 5.2	Maybe Possibly	8
RE	EFERI	ENCES	ç
ΑF	PPEN	DIX A. FIRST APPENDIX	10
ΑF		DIX B. THIS TITLE IS MUCH LONGER THAN THE FIRST AND EXTENDS THE WAY TO THE NEXT LINE	11
		Appendix Section	

LIST OF FIGURES

FIGURE					
2.1	A caption about this figure	2			
2.2	Another caption	3			
2.3	A caption about penguins	5			
4.1	A caption about penguins	7			
A.1	A caption here	10			
B.1	A caption here	11			

LIST OF TABLES

TABLE Page

1. INTRODUCTION

1.1 Hypersonics

Some stuff here about hypersonics

1.2 Hypersonic Wind Tunnels

Wind tunnel stuff

1.3 Turbulence

Turb stuff

2. DESIGN AND FABRICATION OF ACE2.0

2.1 Motivation

The conventional ACE (Actively Controlled Expansion) Tunnel was designed...

2.1.1 Turbulent Transition

Stuff

2.1.1.1 ACE Experimental Data

Stuff and figures

Figure 2.1: A caption about this figure

2.1.1.2 Mach Line Tracing

Stuff and figures

Figure 2.2: Another caption

2.1.1.3 Suspect Transition Mechanisms

Stuff here [1]

- 1. Throat
- 2. Stuff
- 3. Stuff
- 4. Stuff

2.1.2 Active Contol Capability

Stuff here

2.2 Design

Stuff

2.2.1 Nozzle Contour Codes

Stuff and figures

2.2.2 CFD

Stuff and figures

2.2.3 Design Requirments

Stuff and figures

2.2.4 20-Ton Linear Actuators Design

Stuff and figures

2.2.4.1 Nozzle and Settling Chamber

Stuff and figures

2.2.4.2 Frame and Actuation

Stuff and figures

2.2.4.3 Final Design

Stuff and figures

2.3 Fabrication

Stuff and images

2.4 Installation and Calibration

Stuff and figures

Figure 2.3: A caption about penguins

2.4.1 Assembly

Stuff and figures

2.4.2 Actuation

Stuff and figures

2.4.3 Actuation Homing and Calibration

Stuff and figures

2.4.4 First Run

Stuff and figures

3. EXPERIMENTAL SETUP AND MEASUREMENTS

3.1 Nozzle Survey

Stuff

3.2 Mach Sweep Hysterisis

Stuff

3.3 Mach Sweep Constant Unit Reynolds Number

Look into using control system (servo?) to control P0 to maintain constant Re' through Mach sweep. May need two valves in series and may need to anticipate mach change with P0 change ahead of time depending on response time.

4. RESULTS AND DISCUSSION

Stuff about experminet results

Figure 4.1: A caption about penguins

More stuff

- 4.1 Maybe
- 4.2 Possibly

5. CONCLUSIONS AND RECOMMENDATIONS

Stuff here

- 5.1 Maybe
- 5.2 Possibly

REFERENCES

[1] W. S. Saric, "Görtler vortices," *Annual Review of Fluid Mechanics*, vol. 26, no. 1, pp. 379–409, 1994.

APPENDIX A

FIRST APPENDIX

Text for the Appendix follows.

Figure A.1: A caption here

APPENDIX B

THIS TITLE IS MUCH LONGER THAN THE FIRST AND EXTENDS ALL THE WAY TO THE NEXT LINE

Text for the Appendix follows.

Figure B.1: A caption here

- **B.1** Appendix Section
- **B.2** Second Appendix Section