

Figure 1: Original (nondeterministic) automaton

- 1. The original automaton is shown in Figure 1. The determinized version of it is shown in Figure 2.
 - Number of states of determinized automaton is $(O)(2^n)$, where n is the number of places before the end where '1' must occur.
 - No. We always need to remember last n letters. Assume we were able to build a deterministic automaton accepting the same language as the original (nondeterministic) one with $k < 2^n$ states. Then there are two inputs $x = \overline{x_1 \dots x_n}$ and $y = \overline{y_1 \dots y_n}$, $x \neq y$ that lead to the same state. There is index i such that $i = \max(j : x_j \neq y_j)$. Without loss of generality assume $x_i = 1, y_i = 0$. Now add both to x and y in ones $x_i = x_1 = x_1$
- 2. Assume $w=\overline{a_1a_2\dots a_m}$. We are using the notion of traces as defined in lectures: $t_N=q_0^Na_1q_1^N\dots a_mq_m^N$, $t_D=q_0^Da_1q_1^Da_1\dots a_mq_m^D$. (Note that for the same input there are multiple t_N , traces of a nondeterministic automaton possible). We claim $\forall p\in q_i^D.\exists t_N:p=q_i^N$ and we prove it by induction on the length of trace. In order to prove the base of induction we consider the definition of initial state of the deterministic automaton, $q_0^D=\{q_0^N\}$ and note that the claim holds. Now assume the claim for the trace of length smaller than i+1. Let $p\in q_{i+1}^D$. According to the definition of q_{i+1}^D we have $p\in \{q^N:\exists \tilde{q}^N\in q_i^D,q^N\in \delta_N(\tilde{q}^N,a_{i+1})\}$. From the definition we see that p was a state to which we transferred upon reading a_{i+1} in (some) state \tilde{q}^N . But according to our induction assumption that was also a q_i^N in some nondeterministic trace. Therefore, p is q_{i+1}^N in the extension of that trace.

Having this claim, assume $w \in L(D)$. This gives $q_m^D \in F_D \Rightarrow q_m^D \cap F_N \neq \emptyset \Rightarrow \exists r \in q_m^D \cap F_N$. From what we've just proven, there is a trace t_N such that $q_m^N = r \Rightarrow q_m^N \in F_N \Rightarrow w \in L(N)$

Figure 2: Deterministic automaton

Figure 3: Product automaton

3. The problem with directly applying the definition of a product automaton is that thread 1 would be able to unlock the lock made by thread 0. Therefore, the alphabet needs to change a bit so that lock^i is followed by a corresponding unlock, unlock^i . The final product of lock spec and control flow automaton is shown in 3.