METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEETS HAVING HIGH TENSILE STRENGTH OF 780MPA

Publication number: KR20010060651 (A)

Publication date:

2001-07-07

Inventor(s):

CHO YEOL RAE [KR]; PARK GI JONG [KR]; SUL GYEONG SIK [KR]

Applicant(s):

PO HANG IRON & STEEL [KR]

Classification:

- international:

C22C38/04; C21D8/02; C22C38/04; C21D8/02; (IPC1-7): C22C38/04; C21D8/02

- European:

Application number: KR19990063057 19991227 Priority number(s): KR19990063057 19991227

Abstract of KR 20010060651 (A)

PURPOSE: Provided is a method for manufacturing hot rolled steel sheets having high tensile strength of 780MPa for the application to structural member such as automobile frame and deck, crane boom, etc. CONSTITUTION: The hot rolled steel sheet is manufactured by reheating a steel slab comprising C 0.06-0.10wt.%, Si 0.2wt.% or less, Mn 1.4-2.0wt.%, P 0.02wt.% or less, S 0.005wt.% or less, Al 0.010-0.050wt.%, Ti 0.050-0.15wt.%, Nb 0.020-0.040wt.%, Mo 0.1-0.3wt.%, N 60ppm or less, a balance of Fe, and other inevitable impurities; finish hot rolling the steel slab at an austenite temperature zone; cooling it to 550-640deg.C; and then coiling.

Data supplied from the esp@cenet database — Worldwide

(19)대한민국특허청(KR) (12) 등록특허공보(B1)

(51) . Int. Cl.⁷ C22C 38/04 C21D 8/02

(45) 공고일자 (11) 등록번호 2004년01월31일 10-0415672

(24) 등록일자

2004년01월06일

(21) 출원번호 (22) 출원일자

10-1999-0063057 1999년12월27일

(65) 공개번호 (43) 공개일자

10-2001-0060651 2001년07월07일

(73) 특허권자

주식회사 포스코

경북 포항시 남구 괴동동 1번지

(72) 발명자

전라남도동광양시금호동700번지광양제철소내

박기종

전라남도동광양시금호동700번지광양제철소내

전라남도동광양시금호동700번지광양제철소내

(74) 대리인

특허법인씨엔에스

전준항

심사관: 박기학

(54) 인장강도 780M P a 급 구조용 열연강판 및 그 제조방법

요약

본 발명은 구조용 열연강판 및 그 제조방법에 관한 것으로서, 적정량의 망간, 티타늄, 너오븀 및 몰리브덴을 첨가하고 열간압연 및 권취온도를 제어함으로써, 높은 인장강도, 18% 이상의 연신율 및 우수한 굽힘성을 동시에 갖는 인장강 도 780MPa급 구조용 열연강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다. 본 발명은 중량%로 탄소 : 0.06~0.10%, 실리콘 : 0.2% 이하, 망간 : 1.4~2.0%, 인 : 0.02% 이하, 황 : 0.005% 이하. 알루미늄: 0.010~0.050%, 티타늄: 0.050~0.15%, 니오븀 : 0.020~0.040%, 몰리브덴 : 0.1~0.3%, 질소 : 50ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하고 페라이트 단상조직을 갖는 인장강도 780 MPa급 구조용 열연강 판 및 그 제조방법을, 그 기술적 요지로 한다. 색인어

굽힘성, 피로특성, 자동차 멤버, 프레임, 특장차 붕대

명세서

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 상용차의 프레임 및 데크, 특장차 크레인 붐(boom) 등의 구조용 강도부재로 적용되는 고강도 열연강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 강성분을 조정하고 열간압연 및 권취온도를 제어함으로써, 우수한 굽 힘성과 용접특성을 갖는 인장강도 780 MPa급 구조용 열연강판 및 그 제조방법에 관한 것이다.

열연강판의 가공성은 굽힘성, 장출성 및 연신플랜지성 등으로 구분하고 있는데, 구조용 열연강판에서 주로 요구되는 성질은 굽힘성이며, 이는 주로 비금속 개재물 및 밴드상의 퍼얼라이트 조직에 영향을 받게 된다. 또한, 구조체 접합의 측면에 있어서 용접과 리벳팅을 고려할 수 있는데, 구조체로의 안정성을 확보하기 위해서는 용접부의 연화량이 가능 한 작아야 한다.

최근에 개발되는 인장강도 780 MPa급 이상의 고강도 열연강판의 제조방법들은 상기한 연성과 연신 플랜지성을 동시에 해결하고자 하기 보다는, 각각의 변형특성에 적합한 조직을 이용하는데, 그 예로서 다음의 기술들이 있다.

즉, 일본특허 공개공보(소)61-15128호에 개시된 이상강(dual phase steel)은 석출강화형 열연강판에 비해, 강도-연신율 밸란스 특성이 우수하나 신장플랜지성은 베이나이트 단상강에 비하여 열위인 것으로 알려져 있다.

일본특허 공개공보91-358007호에서는 종래의 이상강과는 달리 TiC 탄화물로 석출강화된 페라이트와 제 2상을 마르텐사이트로 조직제어함으로써, 연신율 및 피로특성이 우수한 저항복비형 고강도 열연강판의 제조가 가능한 것으로 제안하고 있다.

일본특허 공개공보(평) 3-10049호에는 상기 이상강에 비해 더욱 고연성을 갖는 인장강도 780~980MPa의 잔류 오스테나이트강이 제안되어 있는데, 이 잔류오스테나이트강은 인장강도-연신율 밸란스가 극히 우수하나 인장특성이 잔류오스테나이트량에 의하여 크게 좌우되기 때문에, 열연강판의 폭방향. 길이방향으로 균일한 재질을 얻기가 어려운 제조상의 단점을 가지고 있다.

그러나, 상기한 이상강 또는 잔류오스테나이트강은 강도×연신을 발란스 측면에서는 대단히 우수하나, 열간압연후 페라이트의 조기석출을 위해 0.5~2.5wt% 범위의 Si이 첨가되므로, 표면 산화스케일결함 발생가능성이 높으며, 성형단계에서 잔류오스테나이트가 마르텐사이트로 유기변태되는 과정에서 구성 상간의 경도차이가 증가하기 때문에, 기존의 페라이트-퍼얼라이트 조직강 혹은 페라이트 단상강에 비해 신장플랜지성이 나쁘고 전단가공이 최종 가공면일 경우 굽힘성 역시 열위인 것으로 알려져 있다.

한편, 강도×신장플랜지성 발란스 측면에서는 일본강관(NKK) 등에서 제안된 페라이트-베이나이트 복합조직강이 가장 우수한 것으로 알려져있다. 이 강은 열간압연후 런 아웃 테이블(run out table) 상에서 3단 제어냉각패턴을 적용하고 450∼500℃의 온도 범위에서 권취를 행하여 제조함으로써, 페라이트 기지와 제 2상간의 경도차가 작고, 입계 세멘타이트의 생성이 억제되어 강도×연신플랜지성 발란스가 우수하다. 그러나, 가공용 용도에서 비교적 낮은 값인 18 % 전후의 연신율을 가지는 것이 단점으로 지적되고 있다.

발명이 이루고자 하는 기술적 과제

이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 적정량의 망간, 티타늄, 니오븀 및 몰리브덴을 첨가하고 열간압연 및 권취온도를 적절히 제어함으로써, 높은 인장강도, 18% 이상의 연신율 및 우수한 굽힘성을 동시에 갖는 구조용 열연강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.

반명의 구성 및 작용

본 발명은 중량%로 탄소: 0.06~0.10%, 실리콘: 0.2% 이하, 망간: 1.4~2.0%, 인: 0.02% 이하, 황: 0.005% 이하, 알루미늄: 0.010~0.050%, 티타늄: 0.051~0.15%, 니오븀: 0.020~0.040%, 몰리브덴: 0.11~0.3%, 질소: 60ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, 페라이트 단상조직을 갖는 인장강도 780 MPa급 구조용 열연강 판에 관한 것이다.

또한, 본 발명은 중량%로 탄소: 0.06~0.10%, 실리콘: 0.2% 이하, 망간: 1.4~2.0%, 인: 0.02% 이하, 황: 0.005% 이하, 알루미늄: 0.010~0.050%, 티타늄: 0.051~0.15%, 니오븀: 0.020~0.040%, 몰리브덴: 0.11~0.3%, 질소: 60ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를 재가열하고 오스테나이트온도역에서 마무리 열간압연한 다음, 550~640℃의 온도범위까지 냉각하고 이 온도에서 권취하는 것을 특징으로 하는 인장강도 780 MP a급 구조용 열연강판의 제조방법에 관한 것이다.

이하, 본 발명에 대하여 상세히 설명한다.

상기 탄소(C)는 열연강판의 강도를 얻는데 기본적으로 필요한 원소인데, 본 발명강에서는 굽힘성을 열화시키는 퍼얼라이트조직의 생성억제, 즉 페라이트 단상조직화 및 입계 세멘타이트의 저감을 위하여 티타늄 및 니오븀 탄화물의 석출에 필요한 최소량으로 제어하기 위하여, 그 함량은 0.06~0.10%로 제한하는 것이 바람직하다.

상기 망간(Mn)은 고용강화에 유효한 원소로, 그 함량이 1.4% 미만인 경우에 는 기대되는 강도가 얻어지지 않고, 2.0%를 초과하면 강도는 780MPa 이상이나 연신율이 급격히 감소된다. 즉, 망간 함유량이 증가하면 강의 소입성이 증가되어 베이나이트 단상화의 가능성이 높아지고, 티타늄 탄화물의 석출이 억제되어 강도가 오히려 저하되기 때문에, 그함량은 1.4~2.0%로 설정하는 것이 바람직하다.

상기 규소(Si)는 연성의 열화없이 강도를 상승시키는 고용강화원소이나, 열연강판 표면에 산화스케일 결함을 유발하므로, 본 발명에서는 유화물의 형상제어를 위하여 불가피하게 첨가되는 경우를 고려하여 그 함량을 0.20% 이하로 제

한하는 것이 바람직하다. 실리콘이 상기 범위로 첨가되면, 양호한 표면성상을 얻을 수 있다. 상기 알루미늄은 탈산제로 첨가되는 원소로서, 그 함량이 0.010%미만인 경우에는 탈산효과가 미흡하고, 그 함량이 0.050%를 초과하는 경우에는 탈산효과가 포화되어 비경제적이기 때문에, 알루미늄의 첨가량은 0.010-0.050%로 제한하는 것이 바람직하다. 상기 인이 너무 많이 함유되는 경우에는 입계취화현상을 야기시키므로, 그 함량은 0.02%이하로 제한하는 것이 바람직하다.

상기 니오븀(Nb)은 열간압연동안 석출되거나 고용상태로 존재하면서 오스테나이트의 결정립 미세화에 기여할 뿐만아니라 페라이트상의 석출강화에도 유효한 원소로서, 그 첨가량이 0.020%미만인 경우에는 첨가효과가 미흡하고, 그 첨가량이 0.04%를 초과하면 연속주조 슬라브의 제조과정에서 주편크랙을 생성시킬 가능성이 높아지기 때문에, 그 첨가량은 0.02-0.04%로 규제하는 것이 바람직하다.

상기 티타늄(Ti)은 본 발명강에 있어 중요한 원소로, 열간압연후 냉각과정에서 페라이트 조직내 티타늄-니오비움 탄화물 또는 티타늄-니오븀-몰리브덴 복합탄화물로 석출하여 페라이트 기지의 강화에 기여하게 된다. 그 함량이 0.051%미만인 경우에는 석출강화효과를 충분히 기대할 수 없고, 그 함량이 0.15%를 초과하여도 무방하나 석출강화효과가 포화되기 때문에, 상기 티타늄의 첨가량은 0.051~0.15%로 제한하는 것이 바람직하다.

상기 몰리브덴(Mo)은 Mn과 더불어 강의 소입성을 증가시키는 동시에, 본 발명의 압연후 권취온도범위에서는 티타늄 및 니오븀과 더불어 석출강화에 기여하는 원소이다. 본 발명에서는 인장강도 780MPa급 열연강판의 강도수준과 용접성을 고려하여 몰리브덴은 0.11%이상 첨가되는 것이 바람직하지만, 그 함량이 0.3%를 초과하면 몰리브덴에 의한 소입성증가의 역기능인, 용접부 균열의 발생 가능성이 높아지게 되기 때문에, 몰리브덴(Mo)의 첨가량은 0.11-0.3%로 제한하는 것이 바람직하다.

본 발명에서는 상기와 같이 조성된 강 슬라브를 재가열한 후 열간압연하는데, 바람직하게는 Ar 3 이상인 840℃ 이상에서 마무리열간압연하고, 550~640℃의 온도범위에서 권취하는 것이 중요하다.

즉, 종래 HSLA강의 제조에서는, 석출강화원소가 미세한 탄화물로 석출되면서 강도상승에 기여하도록 하기 위해, 열 간압연후 600℃전후에서 권취하였는데, 본 발명도 기본적으로는 페라이트상에서의 탄화물을 석출시키는 것은 동일 개념이기 때문에, 상기 권취온도를 550~640℃범위로 설정하였다. 상기 온도가 이보다 낮으면 석출이 억제되고, 반대로 높으면 석출물크기는 조대화되어 인장강도가 저하되는 문제가 있다.

이와 같은 본 발명의 열연강판은, 최종조직에서 티타늄-니오븀-몰리브덴 복합탄화물로 석출강화된 페라이트 단상조직을 갖고, 기계적성질에 있어서는 인장강도 780 MPa 이상, 항복강도 690 MPa 이상, 인장강도×연신율 발란스가 1 5000 MPa· % 이상의 우수한 특성을 제공할 수 있다.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.

(실시예)

하기 표1의 화학성분을 갖는 강 슬라브를 하기 표2의 조건으로 열간압연하여 냉각한 후 권취온도를 달리하여, 최종 판 두께가 3.2~6.0mm인 열연강판을 제조하였다.

그 후, 제조된 열연강판의 기계적성질을 측정하고, 그 결과를 하기 표2에 나타내었다.

이 때, 인장강도는 압연방향에 대하여 수직인 방향으로 JIS 5호 인장시편을 제작한 후 상온에서 10mm/min의 속도로 인장하여 평가하였다.

굽힘시험은 압연 직각방향의 35W×240L×t(mm) 크기의 시편의 버(burr) 발생부위를 굽힘부의 외측에 오도록하여 굽힘부 크랙이 발생되는 최소 반경을 측정하였다.

[丑]

강종 :	화학성분(중량%)										
	С	Mn	Si	Р	S	Al	Ti	Nb	Мо	N(ppm)	
종래강1	0.075	1.45	0.16	0.009	0.006	0.043	_	0.035	_	14	
종래강2	0.078	1.68	0.08	0.013	0.001	0.031	0.105	0.033		40	
발명강	0.073	1.69	0.05	0.017	0.002	0.034	0.088	0.030	0.20	38	
비교강1	0.074	1.65	0.10	0.010	0.005	0.037	0.082	0.031	0.10	36	
비교강2	0.075	1.70	0.01	0.010	0.003	0.032	0.050	0.030	0.22	40 .	

[丑2]

		권취온도 (두께 (m	기계적성질			인장강도× 연신율발	굽힘최소
구분		(C)	m)	항복강도 (MPa)	인장강도 (MPa)		란스 (MPa×%)	반경
종래재1	종래강1	580	3.6	510	617	27	16659	1T
8 -11-111	18-401	1000		1010	1011	<u> 12</u>	10003	1.,

종래재2	종래강2	594	1.0	657	745	21	15649
종래재3		585	5.0	666	735	21	15435
비교재1	발명강	650	5.0	627	774	23	17802
발명재1		620	3.2	764	833	21	17493
발명재2		580	4.5	735 ·	794	20	15880
비교재2	1	550		666	764	18	13752
비교재3	비교강1	600	74.0	696	754	18	13752
비교재4	비교강2		725	774	21	16254	

상기 표2에 나타난 바와 같이, 본 발명강으로 제조된 발명재(1),(2)는 모두 인장강도 780MPa이상, 연신율 18%이상, 인장강도×연신율 밸런스가 15000(MPa×%) 이상이고, 1t 굽힘에서도 균열이 발생되지 않는 조건을 동시에 만족하였다.

반면에, 본 발명강의 성분범위를 모두 만족시키지 않는 종래강 및 비교강으로 제조된 종래재(1),(2) 및 비교재(3),(4) 는 기계적 성질이 본 발명 수준에 도달하지 못하였다.

발명강을 이용하지만 권취온도가 본 발명범위보다 높은 비교재(1)의 경우에는, 석출물들이 조대화되면서 석출강화효과가 저하되어 인장강도가 저하되었다. 또 한, 발명강을 이용하지만 권취온도가 본 발명범위보다 낮은 비교재(2)의 경우에는, (Ti,Nb,Mo)C계 석출물의 석출이 억제되고 베이나이트 등의 저온변태조직이 생성되어 기계적 성질이 본 발명 수준에 미치지 못하였다.

한편, 상기 표2의 모든 시편들은 0.1%C 이하의 저탄소를 함유한 페라이트 단상조직강이기 때문에, 굽힘성이 대단히 우수하였다. 즉, 180° 완전밀착 굽힘시험에서 균열은 발생되지 않았다.

발명의 효과

상기한 바와 같이, 본 발명은 강성분을 조정하고 열간압연 및 권취온도를 제어함으로써, 티타늄-니오븀-몰리브덴 복합탄화물로 석출강화된 페라이트 단상조직강을 갖고 기계적 성질이 우수한 인장강도 780MPa급 열연강판을 제공할수 있는 효과가 있는 것이다.

(57) 청구의 범위

청구항 1.

중량%로, 탄소: 0.06~0.10%, 실리콘: 0.2% 이하, 망간: 1.4~2.0%, 인: 0.02% 이하, 황: 0.005% 이하, 알루미늄: 0.010~0.050%, 티타늄: 0.051~0.15%, 니오븀: 0.020~0.040%, 몰리브덴: 0.11~0.3%, 질소: 60ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, 티타늄-니오븀-몰리브덴 복합탄화물로 석출강화된 페라이트 단상조직을 갖는 인장강도 780 MPa급 구조용 열연강판

청구항 2.

중량%로, 탄소: 0.06~0.10%, 실리콘: 0.2% 이하, 망간: 1.4~2.0%, 인: 0.02% 이하, 황: 0.005% 이하, 알루미늄: 0.010~0.050%, 티타늄: 0.051~0.15%, 니오븀: 0.020~0.040%, 몰리브덴: 0.11~0.3%, 질소: 60ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를 재가열하고 오스테나이트온도역에서 마무리열간압연한 다음, 550~640℃의 온도범위까지 냉각하고 이 온도에서 권취하는 것을 특징으로 하는 인장강도 780 MPa급 구조용 열연강판의 제조방법