Section 4.5 – Polar Coordinates

To reach the point whose address is (2, 1), we start from origin and travel 2 units right and then 1 unit up. Another way to get to that point, we can travel $\sqrt{5}$ units on the terminal side of an angle in standard position and this type is called *Polar Coordinates*.

Definition of Polar Coordinates

To define polar coordinates, let an *origin* O (called the *pole*) and an *initial ray* from O. Then each point P can be located by assigning to it a *polar coordinate pair* (r, θ) in which r gives the directed from O to P and θ gives the directed angle from the initial ray to yay OP.

Polar Coordinates

A point lies at (4,4) on a rectangular coordinate system. Give its address in polar coordinates (r,θ)

Solution

$$r = \sqrt{4^2 + 4^2}$$
$$= \sqrt{32}$$
$$= 4\sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{4}{4}\right)$$
$$= \tan^{-1}\left(1\right)$$
$$= 45^{\circ}$$

The address is $(4\sqrt{2}, 45^{\circ})$

Graph the points $(3,45^{\circ})$, $(2, -\frac{4\pi}{3})$, $(-4, \frac{\pi}{3})$, and $(-5, -210^{\circ})$ on a polar coordinate system

Give three other order pairs that name the same point as $(3, 60^{\circ})$

$$(3, 60^{\circ}), (-3, 240^{\circ}), (-3, -120^{\circ}), (3, -300^{\circ})$$

Polar Coordinates and Rectangular Coordinates

To Convert Rectangular Coordinates to Polar Coordinates

Let
$$r = \pm \sqrt{x^2 + y^2}$$
 and $\tan \theta = \frac{y}{x}$

Where the sign of r and the choice of θ place the point (r, θ) in the same quadrant as (x, y)

To Convert Polar Coordinates to Rectangular Coordinates

Let
$$x = r\cos\theta$$
 and $y = r\sin\theta$

Example

Convert to rectangular coordinates. (4, 30°)

Solution

$$x = r\cos\theta$$

$$= 4\cos 30^{\circ}$$

$$= 4\left(\frac{\sqrt{3}}{2}\right)$$

$$= 2\sqrt{3}$$

$$y = r\sin\theta$$

$$= 4\sin 30^{\circ}$$

$$= 4\left(\frac{1}{2}\right)$$

$$= 2$$

The point $(2\sqrt{3}, 2)$ in rectangular coordinates is equivalent to $(4, 30^{\circ})$ in polar coordinates.

Convert to rectangular coordinates $\left(-\sqrt{2}, \frac{3\pi}{4}\right)$.

Solution

$$x = -\sqrt{2} \cos \frac{3\pi}{4}$$

$$= -\sqrt{2} \left(-\frac{1}{\sqrt{2}} \right)$$

$$= 1$$

$$y = -\sqrt{2} \sin \frac{3\pi}{4}$$

$$= -\sqrt{2} \left(\frac{1}{\sqrt{2}} \right)$$

$$= -1$$

The point (1, -1) in rectangular coordinates is equivalent to $\left(-\sqrt{2}, \frac{3\pi}{4}\right)$ in polar coordinates.

Example

Convert to rectangular coordinates (3, 270°).

<u>Solution</u>

$$x = 3\cos 270^{\circ}$$

$$= 3(0)$$

$$= 0$$

$$y = 3\sin 270^{\circ}$$

$$= 3(-1)$$

$$= -3$$

The point (0, -3) in rectangular coordinates is equivalent to $(3, 270^{\circ})$ in polar coordinates.

Convert to polar coordinates (3, 3).

Solution

$$r = \pm \sqrt{3^2 + 3^2}$$

$$= \pm \sqrt{9 + 9}$$

$$= \pm 3\sqrt{2}$$

$$\tan \theta = \frac{3}{3} = 1$$

$$\theta = \tan^{-1} 1$$

$$= 45^{\circ}$$

The point $(3\sqrt{2}, 45^{\circ})$ is just one.

Example

Convert to polar coordinates (-2, 0).

Solution

$$= \pm 2$$

$$\theta = \tan^{-1} \frac{0}{-2}$$

$$= 0^{\circ}$$

 $r = \pm \sqrt{4+0}$

The point r = 2, $\theta = 180^{\circ}$

Convert to polar coordinates $(-1, \sqrt{3})$.

Solution

$$r = \pm \sqrt{1+3}$$
$$= \pm 2$$

$$\theta = \tan^{-1} \frac{\sqrt{3}}{-1}$$
$$= 120^{\circ}$$

The point r = 2, $\theta = 120^{\circ}$

Example

 $r^2 = 4\sin 2\theta$ Write the equation in rectangular coordinates

Solution

$$r^{2} = 4\sin 2\theta$$

$$= 4(2\sin\theta\cos\theta)$$

$$= 8\left(\frac{y}{r}\right)\left(\frac{x}{r}\right)$$

$$= 8\frac{xy}{r^{2}}$$

$$r^{4} = 8xy$$

$$= 8\frac{xy}{r^2}$$

$$r^4 = 8xy$$

$$(x^2 + y^2)^2 = 8xy$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos \theta = \frac{x}{r} \quad \sin \theta = \frac{y}{r}$$

$$r^2 = x^2 + y^2$$

Example

Write the equation in polar coordinates x + y = 4

Solution

$$r\cos\theta + r\sin\theta = 4$$

$$r(\cos\theta + \sin\theta) = 4$$

$$r = \frac{4}{\cos\theta + \sin\theta}$$

$$x = r\cos\theta \quad y = r\sin\theta$$

Exercises Section 4.5 – Polar Coordinates

1. Convert to rectangular coordinates
$$(2, 60^{\circ})$$

2. Convert to rectangular coordinates
$$(\sqrt{2}, -225^{\circ})$$

3. Convert to rectangular coordinates
$$\left(4\sqrt{3}, -\frac{\pi}{6}\right)$$

4. Convert to polar coordinates
$$(-3, -3)$$
 $r \ge 0$ $0^{\circ} \le \theta < 360^{\circ}$

5. Convert to polar coordinates
$$\left(2, -2\sqrt{3}\right)$$
 $r \ge 0$ $0^{\circ} \le \theta < 360^{\circ}$

6. Convert to polar coordinates
$$(-2, 0)$$
 $r \ge 0$ $0 \le \theta < 2\pi$

7. Convert to polar coordinates
$$\left(-1, -\sqrt{3}\right)$$
 $r \ge 0$ $0 \le \theta < 2\pi$

8. Write the equation in rectangular coordinates
$$r^2 = 4$$

9. Write the equation in rectangular coordinates
$$r = 6\cos\theta$$

10. Write the equation in rectangular coordinates
$$r^2 = 4\cos 2\theta$$

11. Write the equation in rectangular coordinates
$$r(\cos\theta - \sin\theta) = 2$$

12. Write the equation in polar coordinates
$$x + y = 5$$

13. Write the equation in polar coordinates
$$x^2 + y^2 = 9$$

14. Write the equation in polar coordinates
$$x^2 + y^2 = 4x$$

15. Write the equation in polar coordinates
$$y = -x$$