

planetmath.org

Math for the people, by the people.

quotient ring modulo prime ideal

 ${\bf Canonical\ name} \quad {\bf Quotient Ring Modulo Prime Ideal}$

Date of creation 2013-03-22 17:37:09 Last modified on 2013-03-22 17:37:09

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 7

Author pahio (2872) Entry type Theorem Classification msc 13C99

Related topic CharacterisationOfPrimeIdeals

Related topic QuotientRing

Theorem. Let R be a commutative ring with non-zero unity 1 and \mathfrak{p} an ideal of R. The quotient ring R/\mathfrak{p} is an integral domain if and only if \mathfrak{p} is a prime ideal.

- *Proof.* 1º. First, let \mathfrak{p} be a prime ideal of R. Then R/\mathfrak{p} is of course a commutative ring and has the unity $1 + \mathfrak{p}$. If the product $(r + \mathfrak{p})(s + \mathfrak{p})$ of two residue classes vanishes, i.e. equals \mathfrak{p} , then we have $rs + \mathfrak{p} = \mathfrak{p}$, and therefore rs must belong to \mathfrak{p} . Since \mathfrak{p} is , either r or s belongs to \mathfrak{p} , i.e. $r + \mathfrak{p} = \mathfrak{p}$ or $s + \mathfrak{p} = \mathfrak{p}$. Accordingly, R/\mathfrak{p} has no zero divisors and is an integral domain.
- $2^{\underline{\varrho}}$. Conversely, let R/\mathfrak{p} be an integral domain and let the product rs of two elements of R belong to \mathfrak{p} . It follows that $(r+\mathfrak{p})(s+\mathfrak{p})=rs+\mathfrak{p}=\mathfrak{p}$. Since R/\mathfrak{p} has no zero divisors, $r+\mathfrak{p}=\mathfrak{p}$ or $s+\mathfrak{p}=\mathfrak{p}$. Thus, r or s belongs to \mathfrak{p} , i.e. \mathfrak{p} is a prime ideal.