

FCC TEST REPORT

Test report No.:

EMC-FCC-R0196

FCC ID:

2AAXO-SMCHOME1

Type of equipment:

Singing Machine Home

Basic Model Name:

SMC HOME

Applicant:

The Singing Machine Company, Inc.

Max.RF Output Power:

21.68 dBm

FCC Rule Part(s):

FCC Part 15 Subpart C 15.247

Frequency Range:

 $2412 \text{ MHz} \sim 2462 \text{ MHz} / 2422 \text{ MHz} \sim 2452 \text{ MHz}$

Test result:

Complied

The above equipment was tested by EMC compliance Testing Laboratory for compliance with the requirements of FCC Rules and Regulations.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of receipt: 2014. 10. 16

Date of test: 2014. 10. 28 ~ 10. 28

Issued date: 2014. 10. 31

Tested by:

SEO, SU HYUN

Approved by

YU, SANG HOON

[Contents]

1. Client information	3
2. Laboratory information	4
3. Description of E.U.T.	5
3.1 Basic description	5
3.2 General description	5
3.3 Test frequency	6
3.4 Test Voltage	6
4. Summary of test results	7
4.1 Standards & results	7
4.2 Uncertainty	7
5. Test results	8
5.1 Antenna Requirement	8
5.2 Maximum Peak Output Power	9
5.3 Peak Power Spectral Density	17
5.4 6 dB Bandwidth(DTS Channel Bandwidth)	25
5.5 Spurious Emission, Band Edge and Restricted bands	39
5.6 Conducted Emission	62
6. Test equipment used for test	64

1. Client information

Applicant: The Singing Machine Company, Inc.

Address: 6301 NW 5th Way, Suite 2900, Fort Lauderdale FL 33309

Telephone number: +82-31-326-6715

Facsimile number: +82-31-326-6799

Contact person: Kim Young Joon / yjkim@ist.re.kr

Manufacturer: The Singing Machine Company, Inc.

Address: 6301 NW 5th Way, Suite 2900, Fort Lauderdale FL 33309

2. Laboratory information

Address

EMC compliance Ltd.

80-5, Sin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

Telephone Number: 82-31-336-9919 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: 231

FCC Site Designation No.: KR0040 FCC Site Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.:8035A-2

SITE MAP

3. Description of E.U.T.

3.1 Basic description

Applicant:	The Singing Machine Company, Inc.
Address of Applicant	6301 NW 5th Way, Suite 2900, Fort Lauderdale FL 33309
Manufacturer	The Singing Machine Company, Inc.
Address of Manufacturer	6301 NW 5th Way, Suite 2900, Fort Lauderdale FL 33309
Type of equipment	Singing Machine Home
Basic Model	SMC HOME
Serial number	N/A

3.2 General description

Frequency Range	2 412 MHz ~ 2 462 MHz (802.11b/g/n-HT20) 2 422 MHz ~ 2 452 MHz (802.11n_40)	
Type of Modulation	IEEE 802.11b/g/n_HT20, HT40	
Number of Channels	79 channels	
Type of Antenna	PCB Antenna	
Antenna Gain	2.882 dBi	
Transmit Power	21.68 dBm	
Power supply	AC 120 V*	

^{*} Declared by the applicant.

3.3 Test frequency

For all test items, the low, middle and high channels of the modes were tested with above worst case data rate.

802.11b/g/n_HT20

	Frequency
Low frequency	2 412 吨
Middle frequency	2 437 Mb
High frequency	2 462 Mb

802.11n_HT40

	Frequency
Low frequency	2 422 Mb
Middle frequency	2 437 Mb
High frequency	2 452 Mb

3.4 Test Voltage

mode	Voltage
Norminal voltage	AC 12 V

4. Summary of test results

4.1 Standards & results

FCC Rule Reference	IC Rule Reference	Parameter	Report Section	Test Result
15.203, 15.247(b)(4)	RSS-GEN, 7.1.2	Antenna Requirement	5.1	С
15.247(b)(3)	RSS-210, A8.4(2)	Maximum Peak Output Power	5.2	С
15.247(e)	-	Peak Power Spectral Density	5.3	С
15.247(a)(2)	RSS-GEN,4.6.2	6 dB Channel Bandwidth	5.4	С
-	RSS-210, A1.1	Occupied Bandwidth	5.4	С
15.247(d), 15.205(a), 15.209(a)	RSS-210, A8.5 RSS-210, A2.9 RSS-GEN, 7.2.3	Spurious Emission, Band Edge and Restricted bands	5.5	С
15.207(a)	RSS-GEN, 7.2.4	Conducted Emissions	5.6	С

Note: C = complies

NC = Not complies NT = Not tested NA = Not Applicable

4.2 Uncertainty

Measurement Item	Expanded Uncertainty $U = KUc \ (K = 2)$		
Conducted RF power	±	1.36 dB	
Occupied Bandwidth	± 2.54 kHz		
Conducted Spurious Emissions	± 1.52 dB		
Conducted Emission	9 kHz ~ 150 kHz	± 3.75 dB	
Conducted Emission	150 kHz ~ 30 MHz	± 3.36 dB	
	30 Mz ~ 300 Mz	3 m: + 4.94 dB, - 5.06 dB 10 m: + 4.93 dB, - 5.05 dB	
Radiated Spurious Emissions	300 MHz ~ 1 000 MHz	3 m: + 4.97 dB, - 5.08 dB 10 m: + 4.84 dB, - 4.96 dB	
	1 GHz ~ 6 GHz	3 m: + 6.03 dB, - 6.05 dB	

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBI. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

- Complied

The transmitter has a wire type of antenna. The directional peak gain of the antenna is 2.882 dBi.

Page: 8 of 64

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

These test measurement settings are specified in section 9.0 of 558074 D01 DTS Meas Guidance.

5.2.2.1 Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a) Set the RBW = 1 MHz.
- b) Set the VBW $\geq 3 \times RBW$
- c) Set the span $\geq 1.5 \text{ x DTS}$ bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Page: 9 of 64

5.2.3 Test Result

- Complied

* 802.11b

Channel	Frequency (Mt)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2 412	17.87	30.00	12.13
Middle	2 437	18.18	30.00	11.82
High	2 462	18.28	30.00	11.72

* 802.11g

Channel	Frequency (畑)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2 412	21.68	30.00	8.32
Middle	2 437	21.58	30.00	8.42
High	2 462	21.68	30.00	8.32

* 802.11n HT20

Channel	Frequency (Mb)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2 412	20.38	30.00	9.62
Middle	2 437	20.58	30.00	9.42
High	2 462	20.78	30.00	9.22

* 802.11n HT40

Channel	Frequency (Mt/z)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2 422	20.48	30.00	9.52
Middle	2 437	20.68	30.00	9.32
High	2 452	20.78	30.00	9.22

-NOTE:

- 1. Since the directional gain of the integral antenna declared by the manufacturer ($G_{ANT} = 2.882 \, \mathrm{dBi}$), does not exceed 6.0 dBi , there was no need to reduce the output power.
- 2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.2.4 Test Plot

Figure 1. Plot of the Maximum Peak Output Power

* 802.11b

Lowest Channel (2 412 Mz)

Middle Channel (2 437 Mz)

Highest Channel (2 462 Mb)

*802.11g

Lowest Channel (2 412 MHz)

Middle Channel (2 437 吨)

Highest Channel (2 462 Mz)

*802.11n HT20

Lowest hannel (2 412 MHz)

Middle Channel (2 437 MHz)

Highest Channel (2 462 吨)

*802.11n HT40

Lowest Channel (2 422 Mb)

Middle Channel (2 437 吨)

Highest Channel (2 452 Mz)

5.3 Peak Power Spectral Density

5.3.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.2 Measurement Procedure

These test measurement settings are specified in section 10.0 of 558074 D01 DTS Meas Guidance.

5.3.2.1 Method PKPSD (peak PSD)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set the span to 1.5 times the DTS bandwidth.
- 3) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Page: 17 of 64

5.3.3 Test Result

- Complied

* 802.11b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	4.73	8.00	3.27
Middle	4.82	8.00	3.18
High	4.86	8.00	3.14

* 802.11g

002:115			
Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	-1.55	8.00	9.55
Middle	-1.72	8.00	9.72
High	-1.71	8.00	9.71

* 802.11n HT20

002:1111 11120					
Channel	Result [dBm]	Limit [dBm]	Margin [dBm]		
Low	-2.70	8.00	10.70		
Middle	-2.53	8.00	10.53		
High	-2.76	8.00	10.76		

* 802.11n HT40

Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	-6.32	8.00	14.32
Middle	-6.40	8.00	14.40
High	-6.35	8.00	14.35

-NOTE:

- 1. Since the directional gain of the integral antenna declared by the manufacturer ($G_{ANT} = 2.882 \, \mathrm{dBi}$), does not exceed 6.0 dBi, there was no need to reduce the output power.
- 2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3.4 Test Plot

Figure 3. Plot of the Power Density

* 802.11b

Lowest Channel (2 412 Mb)

Middle Chnnel (2 437 Mb)

Highest Chnnel (2 462 Mb)

* 802.11g

Lowest Channel (2 412 Mb)

Middle Chnnel (2 437 吨)

Highest Chnnel (2 462 妣)

* 802.11n HT20

Lowest Channel (2 412 Mb)

Middle Chnnel (2 437 吨)

* 802.11n HT40

Lowest Channel (2 422 Mb)

Middle Chnnel (2 437 Mb)

Highest Chnnel (2 452 Mb)

5.4 6 dB Bandwidth(DTS Channel Bandwidth)

5.4.1 Regulation

According to \$15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2 Measurement Procedure

These test measurement settings are specified in section 8.0 of 558074 D01 DTS Meas Guidance.

5.4.2.1 DTS Channel Bandwidth-Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \geq 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.4.2.2 DTS Channel Bandwidth Measurement Procedure-Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $VBW \geq 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \text{ dB}$.

Page: 25 of 64

5.4.3 Test Result

- Complied

* 802.11b

Channel	Frequency (Mb)	6 dB Bandwidth (Mb)	Min. Limit (쌘)	Occupied Bandwidth (99 % BW) (地)
Low	2 412	10.07	0.50	13.39
Middle	2 437	10.05	0.50	13.35
High	2 462	10.03	0.50	13.35

* 802.11g

Channel	Frequency (Mb)	6 dB Bandwidth (Mb)	Min. Limit (배2)	Occupied Bandwidth (99 % BW) (順)
Low	2 412	16.56	0.50	16.46
Middle	2 437	16.52	0.50	16.42
High	2 462	16.58	0.50	16.42

* 802.11n HT20

Channel	Frequency (雕)	6 dB Bandwidth (Mb)	Min. Limit (Mb)	Occupied Bandwidth (99 % BW) (地)
Low	2 412	17.78	0.50	17.66
Middle	2 437	17.82	0.50	17.66
High	2 462	17.74	0.50	17.66

* 802.11n HT40

Channel	Frequency (Mb)	6 dB Bandwidth (Mb)	Min. Limit (배z)	Occupied Bandwidth (99 % BW) (地)
Low	2 422	36.42	0.50	36.28
Middle	2 437	36.60	0.50	37.24
High	2 452	37.54	0.50	37.24

-NOTE:

^{1.} We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.4.4 Test Plot

Figure 4. Plot of the 6dB Bandwidth & Occupied Bandwidth

* 802.11b (6 dB Bandwidth)

Lowest Channel (2 412 Mb)

Middle Channel (2 437 Mz)

Highest Channel (2 462 Mb)

* 802.11g (6 dB Bandwidth)

Lowest Channel (2 412 吨)

Middle Channel (2 437 Mb)

Highest Channel (2 462 Mz)

* 802.11n HT20 (6 dB Bandwidth)

Lowest Channel (2 412 吨)

Middle Channel (2 437 Mb)

Highest Channel (2 462 Mb)

* 802.11n HT40 (6 dB Bandwidth)

Lowest Channel (2 422 Mz)

Middle Channel (2 437 Mb)

Highest Channel (2 452 Mz)

* 802.11b (Occupied Bandwidth)

Lowest Channel (2 412 Mb)

Middle Channel (2 437 Mz)

* 802.11g (Occupied Bandwidth)

Lowest Channel (2 412 Mb)

Middle Channel (2 437 Mz)

Highest Channel (2 462 吨)

* 802.11n HT20 (Occupied Bandwidth)

Lowest Channel (2 412 Mb)

Middle Channel (2 437 Mb)

Highest Channel (2 462 Mb)

* 802.11n HT40 (Occupied Bandwidth)

Lowest Channel (2 422 吨)

Middle Channel (2 437 Mz)

Highest Channel (2 452 吨)

5.5 Spurious Emission, Band Edge, and Restricted bands

5.5.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency (Mbz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mz, 76–88 Mz, 174–216 Mz or 470–806 Mz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

Page: 39 of 64

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	$2\ 200 - 2\ 300$	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2483.5 - 2500	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Page: 40 of 64

5.5.2 Measurement Procedure

5.5.2.1 Band-edge Compliance of RF Conducted Emissions

5.5.2.1.1 Reference Level Measurement

Establish a reference level by using the following procedure:

- 1) Set instrument center frequency to DTS channel center frequency.
- 2) Set the span to ≥ 1.5 times the DTS bandwidth.
- 3) Set the RBW = 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum PSD level.

5.5.2.1.2 Emissions Level Measurement

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz.
- 3) Set the VBW \geq 3 x RBW.
- 4) Detector = peak.
- 5) Ensure that the number of measurement points \geq span/RBW
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.5.2.2 Conducted Spurious Emissions

Set the spectrum analyzer as follows:

- 1) Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2) RBW = 100 kHz
- 3) VBW ≥ RBW
- 4) Sweep = auto
- 5) Detector function = peak
- 6) Trace = max hold
- 7) Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 8) Each frequency found during preliminary measurements was re-examined and investigated.

 The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

5.5.2.3 Radiated Spurious Emissions

- 1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2) The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
- 4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- Sample calculation

The field strength is calculated adding the antenna Factor, cable loss and, Antenna pad adding, subtracting the amplifier gain from the measured reading.

** The sample calculation is as follow:

Result = M.R + C.F(A.F + C.L + 3 dB Att - A.G)

M.R = Meter Reading

C.F = Correction Factor

A.F = Antenna Factor

C.L = Cable Loss

A.G = Amplifier Gain

3 dB Att = 3 dB Attenuator

Page: 42 of 64

5.5.3 Test Result

- Complied

- 1. Conducted Spurious Emissions was shown in figure 5.

 Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Band edge compliance of Radiated Emissions(Restricted Bands) was shown in figure 6.
- 3. Measured value of the Field strength of spurious Emissions (Radiated)

* Below 1 (#z data (worst-case: 802. 11n HT40)

Low channel (2 412 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin				
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]				
Quasi-Peak DATA.	Quasi-Peak DATA. Emissions below 30 Mb (3 m Distance)										
Below 30.00	Not Detected	-	-	-	-	-	-				
Quasi-Peak DATA. Emissions below 1 (Hz											
38.0	120	V	43.6	-14.9	28.7	39.0	10.3				
62.7	120	V	40.8	-15.2	25.6	39.0	13.4				
151.6	120	V	46.5	-18.0	28.5	43.5	15.0				
277.4	120	Н	52.5	-12.2	40.3	46.5	6.2				
288.0	120	Н	51.0	-11.9	39.1	46.5	7.4				
293.4	120	Н	54.0	-11.7	42.3	46.5	4.2				
* 330.7	120	Н	49.3	-10.6	38.7	46.5	7.8				
351.9	120	Н	47.9	-10.0	37.9	46.5	8.6				
389.4	120	Н	49.0	-9.1	39.9	46.5	6.6				
410.7	120	Н	47.1	-8.7	38.4	46.5	8.1				
480.1	120	Н	42.5	-7.5	35.0	46.5	11.5				
Above	Not										
500.00	Detected	-									

^{*}Asterisks mean Restricted Band

* Above 1 Hz data

802.11b_Low channel (2 412 **M**b)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]			
Peak DATA. Emissions above 1 @z										
* 2 386.1	1 000	Н	43.8	-3.9	39.9	74.0	34.1			
* 4 824.1	1 000	Н	41.8	-1.1	40.7	74.0	33.3			
7 236.2	1 000	Н	40.4	2.7	43.1	74.0	30.9			
Above	Not	_	-	-	_	-	-			
8 000.00	Detected									
Average DATA. Em	nissions above 1	GHz								
* 2 386.1	1 000	Н	31.9	-3.9	28.0	54.0	26.0			
* 4 824.1	1 000	Н	37.5	-1.1	36.4	54.0	17.6			
7 236.2	1 000	Н	32.0	2.7	34.7	54.0	19.3			
Above	Not	_	ı	_	_					
8 000.00	Detected	-	_	-	_	-	-			

^{*}Asterisks mean Restricted Band

802.11b_ Middle channel (2 437 Mb)

Frequency	Receiver Bandwidth [kltz]	Pol. [V/H]	Reading [dB(μ V)]	Factor [dB]	Result [dB(μ V/m)]	Limit [dB(μV/m)]	Margin [dB]			
Peak DATA. Emissions above 1 @z										
* 4 874.1	1 000	Н	41.5	-1.1	40.4	74.0	33.6			
* 7 311.6	1 000	Н	41.2	2.8	44.0	74.0	30.0			
Above 8 000.00	Not Detected	-	-	-	-	-	-			
Average DATA. Em	issions above 1	Hz								
* 4 874.1	1 000	Н	37.4	-1.1	36.3	54.0	17.7			
* 7 311.6	1 000	Н	33.1	2.8	35.9	54.0	18.1			
Above 8 000.00	Not Detected	-	-	-	-	-	-			

^{*}Asterisks mean Restricted Band

802.11b_High channel (2 462 吨)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	[dB (μ V/m)]	$[dB(\mu V/m)]$	[dB]			
Peak DATA. Emissions above 1 @z										
* 2 484.5	1 000	Н	47.8	-3.7	44.1	74.0	29.9			
* 4 924.4	1 000	Н	39.9	-1.0	38.9	74.0	35.1			
* 7 386.1	1 000	Н	42.2	2.8	45.0	74.0	29.0			
Above 8 000.00	Not Detected	-	-	-	-	-	-			
Average DATA. Em	issions above 1 (Hz								
* 2 484.5	1 000	Н	33.1	-3.7	29.4	54.0	24.6			
* 4 924.4	1 000	Н	38.1	-1.0	37.1	54.0	16.9			
* 7 386.1	1 000	Н	32.6	2.8	35.4	54.0	18.6			
Above 8 000.00	Not Detected	-	-	-	-	-	-			

^{*}Asterisks mean Restricted Band

802.11g_Low channel (2 412 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
* 2 389.0	1 000	Н	54.9	-3.9	51.0	74.0	23.0		
* 4 824.8	1 000	Н	39.5	-1.1	38.4	74.0	35.6		
7 236.9	1 000	Н	41.8	2.7	44.5	74.0	29.5		
Above 8 000.00	Not Detected	-	-	-	-	-	-		
Average DATA. En	nissions above 1 (Hz							
* 2 389.0	1 000	Н	35.6	-3.9	31.7	54.0	22.3		
* 4 824.8	1 000	Н	37.9	-1.1	36.8	54.0	17.2		
7 236.9	1 000	Н	33.1	2.7	35.8	54.0	18.2		
Above 8 000.00	Not Detected	-	-	-	-	-	-		

^{*}Asterisks mean Restricted Band

802.11g_ Middle channel (2 437 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	[dB(<i>µ</i> V/m)]	[dB]		
Peak DATA. Emissions above 1 @									
* 4 874.3	1 000	Н	40.2	-1.1	39.1	74.0	34.9		
* 7 311.9	1 000	Н	41.6	2.8	44.4	74.0	29.6		
Above	Not								
8 000.00	Detected	ı	-	-	-	-	-		
Average DATA. Em	issions above 1 (Hz							
* 4 874.3	1 000	Н	38.2	-1.1	37.1	54.0	16.9		
* 7 311.9	1 000	Н	33.7	2.8	36.5	54.0	17.5		
Above 8 000.00	Not Detected	-	-	-	-	-	-		

^{*}Asterisks mean Restricted Band

802.11g High channel (2 462 Mb)

002.11g_111gii Chan	Her (2 102 ME)								
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
* 2 484.5	1 000	Н	63.1	-3.7	59.4	74.0	14.6		
* 4 924.1	1 000	Н	40.5	-1.0	39.5	74.0	34.5		
* 7 382.3	1 000	Н	40.6	2.8	43.4	74.0	30.6		
Above	Not								
8 000.00	Detected	-	ı	-	-	-	-		
Average DATA. Em	issions above 1 (Hz							
* 2 484.5	1 000	Н	41.9	-3.7	38.2	54.0	15.8		
* 4 924.1	1 000	Н	38.0	-1.0	37.0	54.0	17.0		
* 7 382.3	1 000	Н	32.9	2.8	35.7	54.0	18.3		
Above	Not								
8 000.00	Detected	ı	-	-	-	-	-		

^{*}Asterisks mean Restricted Band

802.11n HT20_Low channel (2 412 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin				
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]				
Peak DATA. Emissi	Peak DATA. Emissions above 1 @z										
* 2 390.0	1 000	Н	53.6	-3.9	49.7	74.0	24.3				
* 4 824.5	1 000	Н	42.2	-1.1	41.1	74.0	32.9				
7 236.6	1 000	Н	42.8	2.7	45.5	74.0	28.5				
Above 8 000.00	Not Detected	-	-	-	-	-	-				
Average DATA. Em	issions above 1 (Hz									
* 2 390.0	1 000	Н	34.9	-3.9	31.0	54.0	23.0				
* 4 824.5	1 000	Н	40.5	-1.1	39.4	54.0	14.6				
7 236.6	1 000	Н	34.1	2.7	36.8	54.0	17.2				
Above 8 000.00	Not Detected	-	1	-	-	-	-				

^{*}Asterisks mean Restricted Band

802.11n HT20 Middle channel (2 437 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 GHz									
* 4 874.8	1 000	Н	41.1	-1.1	40.0	74.0	34.0		
* 7 311.3	1 000	Н	42.7	2.8	45.5	74.0	28.5		
Above	Not								
8 000.00	Detected	-	-	-	_	-	-		
Average DATA. Em	issions above 1 (Hz							
* 4 874.8	1 000	Н	38.9	-1.1	37.8	54.0	16.2		
* 7 311.3	1 000	Н	33.9	2.8	36.7	54.0	17.3		
Above	Not						•		
8 000.00	Detected	ı	-	-	_	-			

^{*}Asterisks mean Restricted Band

802.11n HT20_ High channel (2 462 吨)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]			
Peak DATA. Emissi	Peak DATA. Emissions above 1 GHz									
* 2 486.0	1 000	Н	58.8	-3.7	55.1	74.0	18.9			
* 4 924.9	1 000	Н	39.3	-1.0	38.3	74.0	35.7			
* 7 382.1	1 000	Н	40.3	2.8	43.1	74.0	30.9			
Above 5 000.00	Not Detected	-	-	-	-	-	-			
Average DATA. Em	issions above 1 (Hz								
* 2 486.0	1 000	Н	39.7	-1.0	38.7	54.0	15.3			
* 4 924.9	1 000	Н	33.5	2.8	36.3	54.0	17.7			
* 7 382.1	1 000	Н	39.7	-1.0	38.7	54.0	15.3			
Above 8 000.00	Not Detected	-	-	-	-	-	-			

^{*}Asterisks mean Restricted Band

802.11n HT40_Low channel (2 422 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin	
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	
Peak DATA. Emissi	Peak DATA. Emissions above 1 @z							
* 2 387.3	1 000	Н	46.2	-3.9	42.3	74.0	31.7	
* 4 844.0	1 000	Н	42.1	-1.1	41.0	74.0	33.0	
* 7 266.8	1 000	Н	42.2	2.7	44.9	74.0	29.1	
Above 8 000.00	Not Detected	-	-	-	-	-	-	
Average DATA. Em	Average DATA. Emissions above 1 @z							
* 2 387.3	1 000	Н	40.3	-3.9	36.4	54.0	17.6	
* 4 844.0	1 000	Н	39.5	-1.1	38.4	54.0	15.6	
* 7 266.8	1 000	Н	34.0	2.7	36.7	54.0	17.3	
Above 8 000.00	Not Detected	-	1	-	-	-	-	

^{*}Asterisks mean Restricted Band

802.11n HT40_ Middle channel (2 437 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin	
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]	
Peak DATA. Emissi	Peak DATA. Emissions above 1 @							
* 2 372.8	1 000	V	62.2	-3.9	58.3	74.0	15.7	
* 4 874.3	1 000	Н	39.3	-1.1	38.2	74.0	35.8	
* 7 311.0	1 000	Н	40.2	2.8	43.0	74.0	31.0	
Above 8 000.00	Not Detected	-	-	-	-	-	=	
Average DATA. Em	Average DATA. Emissions above 1 (lbz							
* 2 372.8	1 000	V	49.3	-3.9	45.4	54.0	8.6	
* 4 874.3	1 000	Н	40.2	-1.1	39.1	54.0	14.9	
* 7 311.0	1 000	Н	33.1	2.8	35.9	54.0	18.1	
Above 8 000.00	Not Detected	-	-	-	-	-	-	

^{*}Asterisks mean Restricted Band

802.11n HT40_ High channel (2 452 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin	
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	
Peak DATA. Emissi	Peak DATA. Emissions above 1 @z							
* 2 485.8	1 000	Н	40.1	-1.0	39.1	74.0	34.9	
* 4 905.6	1 000	Н	40.6	2.8	43.4	74.0	30.6	
* 7 356.1	1 000	Н	40.1	-1.0	39.1	74.0	34.9	
Above 8 000.00	Not Detected	-	-	-	-	-	-	
Average DATA. Em	Average DATA. Emissions above 1 @z							
* 2 485.8	1 000	Н	39.1	-3.7	35.4	54.0	18.6	
* 4 905.6	1 000	Н	40.4	-1.0	39.4	54.0	14.6	
* 7 356.1	1 000	Н	33.3	2.8	36.1	54.0	17.9	
Above 8 000.00	Not Detected	-	1	-	-	-	-	

^{*}Asterisks mean Restricted Band

5.5.4 Test Plot

Figure 5. Plot of the Band-edge & Conducted Spurious Emissions

* 802.11b

Lowest Channel (2 412 Mz)

Reference

Band-edge

Middle Channel (2 437 Mb)

Reference

* 802.11g

Lowest Channel (2 412 吨)

Reference

Band-edge

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 462 眦)

Reference

Band-edge

* 802.11n HT20

Lowest Channel (2 412 吨)

Reference

Band-edge

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 462 Mz)

Reference

Band-edge

* 802.11n HT40

Lowest Channel (2 422 吨)

Reference

Band-edge

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 452 吨)

Reference

Band-edge

5.6 Conducted Emission

5.6.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu H/50~\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Enguerary of omission (MIII)	Conducted limit (dBµV)				
Frequency of emission (Mb)	Qausi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			

^{*} Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.6.2 Measurement Procedure

- 1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2) Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mz to 30 Mz.
- 5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page: 62 of 64

5.6.3 Test Result

- Complied

*Conducted worst-case data: 802.11g_Lowest Channel (2 412 Mz)

ii nesuri									
N Phase Frequency	Reading	Reading CAV	c.f	Result	Result	Limit OP	Limit AV	Margin OP	Margin CAV
[MHz] 23.18486	[dB(uV)] 8.7	[dB(uV)] 3.8	[dB] 10.0	[dB(uV)] 18.7	[dB(uV)] 13.8	[dB(uV)] 60.0	[dB(uV)] 50.0	[dB] 41.3	[dB] 36.2
L1 Phase	_								
Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
0.16404	34.3	17.1	9.8	44.1		65.3	55.3	21.2	28.4
0.18257	32.4	16.1	9.9	42.3		64.4	54.4	22.1	28.4
0.20288	30.5	15.2	9.9	40.4	25.1	63.5	53.5	23.1	28.4
0.22283	28.7	14.4	9.8	38.5	24.2	62.7	52.7	24.2	28.5
0.4485	15.3	7.4	9.9	25.2		56.9	46.9	31.7	29.6
0.46623	19.3	15.5	9.9	29.2	25.4	56.6	46.6	27.4	21.2
	Frequency [MHz] 23.18486 L1 Phase Frequency [MHz] 0.16404 0.18257 0.20288 0.22283 0.4485	N Phase Frequency Reading QP [MHz] [dB(uV)] 23.18486 8.7 L1 Phase Frequency Reading QP [MHz] [dB(uV)] 0.16404 34.3 0.18257 32.4 0.20288 30.5 0.22283 28.7 0.4485 15.3	N Phase Frequency Reading QP CAV [MHz] [dB(uV)] [dB(uV)] 23.18486 8.7 3.8 L1 Phase Frequency Reading QP CAV [MHz] [dB(uV)] [dB(uV)] 0.16404 34.3 17.1 0.18257 32.4 16.1 0.20288 30.5 15.2 0.22283 28.7 14.4 0.4485 15.3 7.4	N Phase Frequency Reading Reading C.f QP CAV [MHz] [dB(uV)] [dB(uV)] [dB] 23.18486 8.7 3.8 10.0 L1 Phase Frequency Reading Reading C.f QP CAV [MHz] [dB(uV)] [dB(uV)] [dB] 0.16404 34.3 17.1 9.8 0.18257 32.4 16.1 9.9 0.20288 30.5 15.2 9.9 0.22283 28.7 14.4 9.8 0.4485 15.3 7.4 9.9	N Phase Frequency Reading Reading C.f Result QP (AV QP) [MHz] [dB(uV)] [dB(uV)] [dB] [dB(uV)] 23.18486 8.7 3.8 10.0 18.7 L1 Phase Frequency Reading Reading QP (AV QP) [MHz] [dB(uV)] [dB(uV)] [dB] [dB(uV)] 0.16404 34.3 17.1 9.8 44.1 0.18257 32.4 16.1 9.9 42.3 0.20288 30.5 15.2 9.9 40.4 0.22283 28.7 14.4 9.8 38.5 0.4485 15.3 7.4 9.9 25.2	N Phase Frequency Reading QP QP (B(uV)) Reading (QP) c.f (AV) Result QP (QP) Result (QP) Result (AV) 1 MHz] [dB(uV)] [dB(uV)]	N Phase Frequency Reading QP QP (BMHz] Reading QP (BMHz) Reading QP (BMHz) C.f QP (BMHz) Result QP (BMHz) Result QP (BMHz) Limit QP (BMHz) [MHz] [dB(uV)] [dB(uV)] <td>N Phase Frequency Reading QP CAV QP CAV QP AV QP QP</td> <td>N Phase Frequency Reading Reading C.f Result Result Limit Limit Margin QP CAV QP CAV QP AV QP QP</td>	N Phase Frequency Reading QP CAV QP CAV QP AV QP	N Phase Frequency Reading Reading C.f Result Result Limit Limit Margin QP CAV QP CAV QP AV QP

6. Test equipment used for test

	Description	Manufacturer	Model No.	Serial No.	Next Cal Date.
•	WIDEBAND POWER SENSOR	R&S	NRP-Z81	100677	15.05.28
	Attenuator	НР	8491A	18591	15.05.08
	Spectrum Analyzer	R&S	FSW26	101353	15.07.11
	AC Powe Supply	KIKUSUI	PCR2000W	GB001619	15.10.14
	Signal generator	R&S	SMR40	100007	15.06.10
	Spectrum Analyzer	R&S	FSV40	100989	15.01.29
	EMI Test Receiver	R&S	ESCI	100710	15.10.13
	Amplifier	Sonoma Instrument	310N	293004	15.09.25
	Turn Table	Innco Systems	DT2000S-1t	79	-
	Antenna Mast	Innco Systems	MA4000-EP	303	-
	Loop Antenna	R&S	HFH2-Z2	100355	15.06.19
	Bi-Log Antenna	Schwarzbeck	VULB9163	552	16.05.14
	Horn Antenna	ETS - Lindgren	3115	86706	15.09.01
	Horn Antenna	ETS - Lindgren	3115	62589	15.10.16
	Horn antenna	ETS - Lindgren	3116	00086635	15.02.26
	Broadband Preamplifier	SCHWARZBECK	BBV9721	2	15.05.09
	Broadband Preamplifier	Schwarzbeck	BBV9718	216	15.08.12
	Attenuator	НР	8491A	16861	15.05.08
	Highpass Filter	Wainwright Instruments GmbH	WHKX3.0 /18G-12SS	44	15.02.05
	TWO-LINE V- NETWORK	R&S	ENV216	101358	15.10.02