Práctica 2

Sergio Guachalla

Método congruencial lineal

Ejercicio 1: Se pide generar números aleatorios

Datos:

$$c = 89;$$
 $x_0 = 5;$ $m = 10^2;$ $a = 81$

La fórmula para el método congruencial lineal es:

$$x_{i+1} = (ax_i + c) \mod m$$

Para n números aleatorios:

\overline{n}	X_n
0	5
1	$(81 \times 5 + 89) \mod 100 = 94$
2	$(81 \times 94 + 89) \mod 100 = 3$
3	$(81 \times 3 + 89) \mod 100 = 32$
4	$(81 \times 32 + 89) \mod 100 = 81$
5	$(81 \times 81 + 89) \mod 100 = 50$

Resultado del script:

Figure 1: *
Corresponde al script congruencial_linear.py

Método congruencial multiplicativo

Ejercicio 1

Datos:

$$c = 16;$$
 $x_0 = 13;$ $m = 10^8;$ $a = 211$

$$X_{n+1} = (211 \cdot x_n \cdot 16) \mod 10^8; \quad x_0 = 13$$

\overline{n}	X_n	
0	13	
1	$(211 \times 13 \times 16)$	$\mod 10^8 = 13$
2	$(211 \times 13 \times 16)$	$\mod 10^8 = 438$
3	$(211 \times 43 \times 16)$	$\mod 10^8 = 48$
4	$(211 \times 48 \times 16)$	$\mod 10^8 = 80$
5	$(211 \times 80 \times 16)$	$\mod 10^8 = 35$

Resultado del script:

Figure 2: *
Corresponde al script congruencial_multiplicativo.py

Algoritmo de cuadrados medios

Datos iniciales:

• Semilla: $X_0 = 9803$

• Constante: a = 6965

• Dígitos a considerar: D=4

• Cantidad de números a generar: 5

Cálculo de los números:

Paso 1:

$$Y_0 = 6965 \times 9803 = 68261895$$

Dígitos centrales: **2778**, $X_1 = 2778$, $R_1 = 0.2778$

Paso 2:

$$Y_1 = 6965 \times 2778 = 19345170$$

Dígitos centrales: **3487**, $X_2 = 3487$, $R_2 = 0.3487$

Paso 3:

$$Y_2 = 6965 \times 3487 = 24299155$$

Dígitos centrales: **2869**, $X_3 = 2869$, $R_3 = 0.2869$

Paso 4:

$$Y_3 = 6965 \times 2869 = 19979185$$

Dígitos centrales: **9825**, $X_4 = 9825$, $R_4 = 0.9825$

Paso 5:

$$Y_4 = 6965 \times 9825 = 68438625$$

Dígitos centrales: 4311, $X_5 = 4311$, $R_5 = 0.4311$

Resultado Final:

$$R_1 = 0.2778, \quad R_2 = 0.3487, \quad R_3 = 0.2869, \quad R_4 = 0.9825, \quad R_5 = 0.4311$$

Resultado del script:

Figure 3: *
Corresponde al script cuadrados_medios.py

Algoritmo de Productos Medios

Datos Iniciales:

• Semilla inicial: $X_0 = 5015$

• Segundo valor: $X_1 = 5734$

• Dígitos a considerar: D=4

Cálculo paso a paso:

Paso 1: $Y_0 = 5015 \times 5734 = 28723710$, dígitos centrales: **7560**, $X_2 = 7560$, $R_2 = 0.7560$

Paso 2: $Y_1 = 5734 \times 7560 = 43305040$, dígitos centrales: **3489**, $X_3 = 3489$, $R_3 = 0.3490$

Paso 3: $Y_2 = 7560 \times 3489 = 26334840$, dígitos centrales: **3844**, $X_4 = 3844$, $R_4 = 0.3844$

Paso 4: $Y_3 = 3489 \times 3844 = 13402056$, dígitos centrales: **4155**, $X_5 = 4155$, $R_5 = 0.4155$

Paso 5: $Y_4 = 3844 \times 4155 = 15992420$, dígitos centrales: **9718**, $X_6 = 9718$, $R_6 = 0.9718$

Resultado Final:

 $R_2=0.7560, \quad R_3=0.3490, \quad R_4=0.3844, \quad R_5=0.4155, \quad R_6=0.9718$ Resultado del script:

PS D:\I - 2025\Modelado\modelado\primer parcial\practicas\practica_final\practica_2> n X_n R_n
[[
2 7560 0.7560
3 3489 0.3490
4 3844 0.3844
5 4155 0.4155
6 9718 0.9718

Figure 4: *
Corresponde al script productos_medios.py