Ewald Sum

Notes:

- Large α makes first term converge faster
- <u>Small</u> α makes second term to need fewer terms (big α make sharp charge dist.)

Need a middle ground.

- Want α large enough to converge with only |n|
 =0 (within the original box)
- Typically, α = 5/L and need 100-200 terms in reciprocal space.

39

Ewald Sum

Caveats:

 Straighforward implementations of Ewald Sum scales as N²

Solution via other methods (modern techniques):

- Particle Mesh algorithm (to sum the long range part)
 - Layout a 3D grid in the box and approximate charge density in the fluid by assigning charges to the finely-spaced mesh points
 - Use FFT to solve Poisson's equation for potential at grid points
 - Calculate field at arbitrary points in the box by interpolation
 - Scales as O(N In N)

40

Dipolar Liquids

- Interaction is of order 1/r³
- Long ranged

Solution:

- Interact directly with nn in cavity
- Take the "rest" as a continuum with dielectric constant ε_ε

41

Dipolar Liquids

 The outside continuum creates a "reaction" field back inside center

$$E_i = \frac{2(\varepsilon_s - 1)}{2\varepsilon_s + 1} \frac{1}{r_c^3} \sum_{j \in E} \mu_j$$

- r_c radius of cavity
- µ_i particle dipole moments

12

Dipolar Liquids

 Reaction field contributes to the energy

$$-\frac{1}{2}\mu_i \cdot E_i$$

• Torque on particle i

$$\mu_i \times E_i$$

43

Dipolar Liquids

- To avoid the "jumps" in energy due to particles going in and out of the cavity, use tapering function
- <u>Linear tapering</u>: multiply interaction between particles i and j by:

$$f(r_{ij}) = \begin{cases} 1.0 & r_{ij} < r_t \\ (r_c - r_{ij})/(r_c - r_t) & r_t \le r_{ij} \le r_c \\ 0.0 & r_c < r_{ij} \end{cases}$$

 $r_t \sim 0.95 r_c$

Dipolar Liquids

- Pros:
 - Straightforward calculation in MD
 - Modest increase in execution time
- Cons:
 - The need for an *a priori* knowledge of ε_s (however, there is a certain freedom of choice since the thermodynamics of dipolar fluids is rather insensitive to the value of ε_s)

45

Dimensionless Units

- Offer convenience and simplicity of expressions
- Numerical values are close to unity
 - removes the risk of under or overflows dictated by computer hardware
- · No parameters in equations of motion
- Offers the concept of *scaling* where a single model can describe a whole class of problems

46

Dimensionless Units

 e.g. in LJ choose units of length (σ), mass (m), energy (ε) by:

 $\begin{array}{ll} - \mbox{ length :} & r \rightarrow r\sigma \\ - \mbox{ energy : } e \rightarrow e\epsilon \\ - \mbox{ time :} & t \rightarrow t \sqrt{(m\sigma^2/\epsilon)} \end{array}$

· Potential Energy:

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] \to V(r) = 4 \left[\left(\frac{1}{r}\right)^{12} - \left(\frac{1}{r}\right)^{6} \right]$$

43

Dimensionless Units

• Kinetic Energy per particle:

$$E_k = \frac{1}{2N} \sum_{i=1}^{N} m_i v_i^2 \to E_k = \frac{1}{2N} \sum_{i=1}^{N} v_i^2$$

• Temperature in units of $\epsilon/k_{_{\rm R}}$ (T \to T· $\epsilon/k_{_{\rm R}}$)

$$T = \frac{1}{dk_B N} \sum_i m_i \mathbf{v}_i^2 \to T = \frac{1}{dN} \sum_i \mathbf{v}_i^2$$

 $\mbox{equipartition} \quad d \cdot \frac{k_B T}{2} = \frac{1}{2} m v^2 \quad \mbox{} \m$

Dimensionless Units

• Force:

$$\mathbf{F}(r_{ij}) = \frac{48\varepsilon}{\sigma^2} \left[\left(\frac{\sigma}{r_{ij}} \right)^{14} - \frac{1}{2} \left(\frac{\sigma}{r_{ij}} \right)^8 \right] \mathbf{r}_{ij}$$

$$\rightarrow \ddot{\mathbf{r}}(r_{ij}) = 48 \left[\left(\frac{1}{r_{ij}} \right)^{14} - \frac{1}{2} \left(\frac{1}{r_{ij}} \right)^{8} \right] \mathbf{r}_{ij}$$

Other Dynamical Systems

- · Hard Spheres
 - · Particles interact via "hard" potentials
- · Langevin's Dynamics
 - Forces are not computed explicitly but are replaced by stochastic quantities

85

Hard Spheres

· Hard sphere potential

$$v^{HS}(r) = \begin{cases} \infty & (r < \sigma) \\ 0 & (\sigma \le r) \end{cases}$$

· Square well potential

$$v^{SW}(r) = \begin{cases} \infty & (r < \sigma_1) \\ -\epsilon & (\sigma_1 \le r < \sigma_2) \\ 0 & (\sigma_2 \le r) \end{cases}$$

86

Step-wise Potentials

$$v^{HS}(r) = \begin{cases} \infty & (r < \sigma) \\ 0 & (\sigma \le r) \end{cases}$$

Can be generalized to any number of steps!

$$v^{SW}(r) = \begin{cases} \infty & (r < \sigma_1) \\ -\epsilon & (\sigma_1 \le r < \sigma_2) \\ 0 & (\sigma_2 \le r) \end{cases}$$

Step-wise Potentials

- Dynamics are fundamentally different from continuous potentials:
 - There is no interaction when particles are separated by more than one diameter
 - In the case of steps, there is no interaction (or constant potential) when in one of the steps
 - \rightarrow force = 0
- Thus, free motion until there is a discontinuity.
- At discontinuity there is a collision. Treat them as billiard balls.
- Can be simulated as an event-driven system. **

Step-wise Potentials

General Scheme:

- · Find collision times
- · Move particles up to that collision time
- · Do collision dynamics
- · Calculate properties
- GOTO 1

Step-wise Potentials

General Scheme:

- · Find collision times (most time consuming)
 - Start by tabulating all collision times for all possible $N^{\,2}$ pairs
 - Sort in ascending order of time
 - Choose the shortest collision time
- · Move particles up to that collision time
- Do collision dynamics
- · Calculate properties
- GOTO 1

90

Step-wise Potentials

General Scheme:

- · Find collision times
- · Move particles up to that collision time
 - Advance positions of all particles following a rectilinear path (free motion) for a length of time corresponding to the shortest collision time
- · Do collision dynamics
- · Calculate properties
- GOTO 1

91

Step-wise Potentials

General Scheme:

- · Find collision times
- · Move particles up to that collision time
- · Do collision dynamics
 - Conservation of momentum, energy
- · Calculate properties
- GOTO 1

92

Step-wise Potentials

General Scheme:

- · Find collision times
- · Move particles up to that collision time
- · Do collision dynamics
- Calculate properties
 - Energy, temperature, pressure, ...
- GOTO 1

03

Step-wise Potentials

Collision time. For two particles to collide,

$$|\mathbf{r}_{ij}(t+t_{ij})| = |\mathbf{r}_{ij} + \mathbf{v}_{ij}t_{ij}| = \sigma$$

where
$$\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$$
 and $\mathbf{v}_{ij} = \mathbf{v}_i - \mathbf{v}_j$. If we define $\mathbf{b}_{ij} = \mathbf{r}_{ij} \cdot \mathbf{v}_{ij}$

$$v_{ij}^2 t_{ij}^2 + 2b_{ij}t_{ij} + r_{ij}^2 - \sigma^2 = 0$$

94

Step-wise Potentials

$$v_{ij}^2 t_{ij}^2 + 2b_{ij}t_{ij} + r_{ij}^2 - \sigma^2 = 0$$

- · Cases:
 - b_{ij} > 0 molecules are going away from each other, no collision
 - $-b_{ij} < 0$ but only complex roots, then no collision
 - b_{ii} < 0 two real roots where smallest is time of impact

$$t_{ij} = \frac{-b_{ij} - (b_{ij}^2 - v_{ij}^2 (r_{ij}^2 - \sigma^2))^{1/2}}{v_{ij}^2}$$

9:

Step-wise Potentials

<u>Collision Dynamics.</u> From conservation of energy and linear momentum:

$$\mathbf{v}_i(after) = \mathbf{v}_i(before) + \delta \mathbf{v}_i$$

 $\mathbf{v}_j(after) = \mathbf{v}_j(before) - \delta \mathbf{v}_i$

where

$$\delta \mathbf{v}_i = -(b_{ij}/\sigma^2)\mathbf{r}_{ij}$$