

Solution de l'examen de théorie des graphes

Session 1, jeudi 16 janvier 2020

▷ Exercice 1.

- **1.1.** Le graphe est le graphe complet K_5 . L'arête $\{i, j\}$ est l'arête qui correspond au domino (i, j).
- **1.2.** Le graphe est le graphe complet K_5 donc le degré de chaque sommet est de 4, donc pair. Par suite le graphe est eulérien et il possède un cycle eulérien.

▷ Exercice 2. (5 points)

- **2.1.** Si G est connexe, alors il possède un sous-arbre couvrant qui possède n-1 arêtes. Mais G possède exactement n-1 arêtes. G coïncide donc avec ce sous-arbre couvrant. Ce qui est impossible car G n'est pas un arbre.
- **2.2.** Soit p le nombre de composantes connexes de G; p est supérieur ou égal à 2. Notons n_1, \ldots, n_p le nombre de sommets de ces composantes connexes. On a $n = n_+ \cdots + n_p$. Si aucune composante connexes n'est un arbre alors le nombre d'arêtes de chaque composante connexe G_i est au moins égale à n_i . Par suite le nombre d'arêtes de G est au moins égale à n.
- **2.3.** Si chaque composante connexe est un arbre alors le nombre d'arête de G est de $(n_1 1) + \cdots + (n_p 1) = n p$ qui ne peut être égale à n 1 car $p \ge 2$. D'où la contradiction.
- **2.4.** Si p=2 alors la composante connexe G_1 qui est un arbre possède n_1-1 arêtes et la composante connexe G_2 qui n'est pas un arbre possède $(n-1)-(n_1-1)=n_2$ arêtes. Cette composante connexe possède n_2 sommets. Si on considère un sous-arbre couvrant de cette composante connexe, elle possède n_2-1 arêtes. Par suite l'ajout d'une arête crée un cycle qui est le seul cycle de cette composante connexe.
- \triangleright **Exercice 3.** On construit le graphe des rencontres : les sommets représentent les élèves ; une arête $\{i, j\}$ signale que les élèves i et j se sont rencontrés. Il

reste alors à proposer une coloration du graphe utilisant un nombre minimum de couleurs. Chaque couleur correspondra à une place assise. La coloration montre que la bibliothèque dispose d'au moins quatre places assises, car le graphe contient une clique à quatre sommets B - E - F - G. Ces quatre places assises sont suffisantes.

\triangleright Exercice 4.

4.1. Le nombre de chaînes fermées de longueur k allant de v_i à v_i est égale au i-ième terme de la diagonale de la matrice A^k . Donc la quantité recherchée est trace (A^k) . Or A est symétrique, donc diagonalisable dans une base orthonormée de vecteurs propres. Par suite trace $(A^k) = \sum_{i=1}^n \lambda_i^k$.

- **4.2.** 1. $c_1 = -\operatorname{trace}(A) = 0$.
 - 2. On a

$$(-1)^2 \sum_{J \subset \{1,\dots,n\}, Card(J)=2} \det(A_J).$$

Les seules matrices A_J d'ordre 2 non nuls sont de la forme

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

ce qui correspond au cas où on a une arête entre les sommets correspondants. D'où le résultat

3. On a

$$(-1)^3 \sum_{J \subset \{1,\dots,n\}, Card(J)=3} \det(A_J).$$

Les seules matrices A_J d'ordre 3 non nuls sont de la forme

$$\det \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}.$$

avec a, b et c dans $\{0, 1\}$. Son déterminant vaut 2abc. Le seul cas où il est non nul correspond à a = b = c = 1, c'est à dire où cette sous matrice correspond à un triangle. D'où le résultat.