Comparative Analysis of BERT, sciBERT and secBERT Fine-Tuning for Cybersecurity Technique Classification By Michael Garrett

Project

- How does the baseline performance of BERT, sciBERT, and secBERT comparison a cybersecurity technique classification task?
- What improvements in classification performance can be achieved through fine-tuning a model that is pretrained on cybersecurity corpora?

Data

- Found on HuggingFace with no data card
- Highly skewed14k rows → 15k rows
 - TextAttack Data Augmentation for upscaling

Data

Figure 1: Original Distribution of the data before any preprocessing.

Models

- BERT Baseline
- sciBERT TRAM
- secBERT Experiment
- TensorFlow vs PyTorch

Hyperparameters Values

max_length 512
batch_size 10
epcochs 5
learning_rate 2e-5

Results

- Hypothesis
 - secBERT > others
- Conclusion
 - Failed to reject!

Results

Model	Test Acc	Precision	Recall	F1	F2
Baseline - BERT	0.90	0.90		0.90	
TRAM - secBERT	0.91	0.91	0.91	0.90	0.90
Experiment - sciBERT	0.90	0.89	0.89	0.89	0.89

Table 2: Results from 3 models.

