

Chapter 15: Genetic Engineering

Biology

TABLE OF CONTENTS

15.1 — Selective Breeding

Selective Breeding

Hybridization

Inbreeding

Increasing Variation

Bacterial Mutations

Polyploid Plants

15.2 — Recombinant DNA

Copying DNA

Finding Genes

Polymerase Chain Reaction

Changing DNA

Combining DNA Fragments

Plasmids & Genetic Markers

Transgenic Organisms

Transgenic Plants

Transgenic Animals

Cloning

15.3 — Applications of Genetic Engineering

Agriculture & Industry

Genetically-Modified (GM) Crops

Genetically-Modified (GM) Animals

Health and Medicine

Genetic Testing

Examining Active Genes

Personal Identification

Forensic Science

Establishing Relationships

15.4 — Ethics & Impacts of Biotechnology

Profits and Privacy

Patenting Life

Genetic Ownership

Safety of Transgenics

Pros of GM Foods

Cons of GM Foods

Ethics of the New Biology

15.1 — Selective Breeding

Selective Breeding

Selective Breeding: animals with wanted characteristics forced to produce offspring

Takes advantage of genetic variation → Passes on wanted traits

Hybridization

Hybridization: crossing dissimilar individuals to bring together the best of both organisms

- Luther Burbank → Over 800 varieties of plants
- **Hybrids:** the individuals produced through *hybridization*

Inbreeding

Inbreeding: the continued breeding of individuals with similar characteristics

- Ensures desired characteristics are preserved
- · Mostly genetically-similar

Increasing Variation

Breeders can introduce mutations → source of biological diversity

• **Biotechnology:** application of a technological process, invention, or method to living organisms

More variation than nature can provide

Bacterial Mutations

Mutations: heritable changes in DNA

- Chemicals or radiation can increase mutation rate
 - Most are harmful
 - Some can be desired by breeders

Polyploid Plants

Polyploid → more chromosomes than regular

Larger and stronger plants

15.2 — Recombinant DNA

Copying DNA

Previously, the only way to edit genes was to induce mutations.

 Now, genetic engineers can add certain genes to meet specific needs in organisms

Extracted DNA → cut into **restriction fragments** (uses *restriction enzymes*)

- Separated using **gel electrophoresis**
- Millions of restriction fragments to find one gene

Finding Genes

Douglas Prasher searched for a gene in jellyfish (**Green Fluorescent Protein - GFP**)

Visual marker of when proteins are made

Studied amino acid sequence \rightarrow Found probably mRNA base sequences \rightarrow Used complementary bases to "attract" mRNA to match his prediction \rightarrow Found the perfect sequence from the jellyfish

Southern blotting → uses gel to find where the gene is

Polymerase Chain Reaction

Polymerase Chain Reaction (PCR): technique to make copies of a gene once it is found

- Original piece of DNA → add primers
 - Primers: short pieces of DNA added to the beginning and end of the original strand
 - Prepare the DNA to be copied
- 1. Heat a piece of DNA (separates its strands)
- 2. Primers bind to the strands as it cools
- 3. DNA polymerase copies the region between the primers
 - Templates to make more copies

Changing DNA

Combining DNA Fragments

Scientists can make custom DNA molecules in labs.

Insert them and their genes into living cells

DNA Synthesizers → produce short fragments of DNA

- Allow you to add DNA from other organisms and attach it to DNA of another organism
 - Recombinant DNA Technology: joining together DNA from multiple sources (can change the genetic makeup of an organism)
- Any pair of complementary bases tends to bond despite which organism it comes from

Plasmids & Genetic Markers

Many cells with recombinant DNA didn't copy the added DNA.

- Scientists join recombinant DNA with another piece containing a "start" signal
 - Recombinant DNA is copied as well

Bacteria contain their chromosomes and **plasmids** (small circular DNA molecules).

• Joining recombinant DNA with the plasmid allows for better replication

Genetic Marker: a gene that makes it possible to distinguish bacteria that carry the plasmid from those that don't

• Transformed bacteria will survive an antibiotic

Transgenic Organisms

Transgenic → containing genes from other species

- Produced by insertion of recombinant DNA into the genome of a host organism
- Genetic engineers can produce transgenic organisms

Transgenic Plants

Agrobacterium → produces tumors in plants

· Changed to produce desired traits in plants

DNA can be injected into cells.

Transgenic Animals

DNA can be injected into the nucleus of egg cells.

Existing genes can also be eliminated

Specific genes in different organisms can be understood.

Cloning

Clone: a member of a population of genetically-identical cells produced from a single cell

• Uses a single cell from an adult organism to grow a new individual

15.3 — Applications of Genetic Engineering

Agriculture & Industry

Genetic modification → better, cheaper, and more nutritious food

Less harmful manufacture

Genetically-Modified (GM) Crops

Large percent of modern society (food)

Bt $toxin \rightarrow harmless$ to humans and animals (kills insects)

- Remove the need for pesticides
- Higher yields

Genetically-Modified (GM) Animals

Transgenic animals are becoming more important nowadays.

- Genes are put into different animals to specialize
 - GM animals can be cloned

Health and Medicine

Recombinant DNA-technology → useful for disease prevention and treatment

- Golden rice → beta-carotene with more vitamins
- Transgenic animals can be used as test subjects to simulate genetic disorders in humans
- · Can be used to create essential proteins

Gene Therapy: the process of changing a gene to treat a medical disease or disorder

- Absent/faulty genes and replaced with new, working ones
- 1. Create a harmless virus
- 2. Inject the correct DNA into the virus
- 3. Infect the patient's cells with the virus
 - Virus will put healthy gene into the cell

Genetic Testing

Find differences in normal or disease-causing genes.

Scanned using specific tests

Examining Active Genes

All cells in the human body have the same genetic material.

Not all genes are active/inactive in each cell

DNA Microarray technology → study many genes at once to understand their activity levels

- Glass slide/silicon chip where spots of DNA are attached
 - Each spot has different DNA fragments

mRNA of different colors (normal or disease-causing) will show complementary DNA (**cDNA**) and show the results in the gene.

More active color in the gene will show

Personal Identification

Except for identical twins, no two humans share the same genome.

- DNA fingerprinting → used to identify individuals
 - Analyzes sections of DNA that vary between individuals
- 1. Restriction enzymes cut a small sample of human DNA
- 2. Gel electrophoresis separates the fragments by size
- 3. DNA probe finds the highly variable regions(sized DNA bands)
 - Pattern can be distinguished from other people

Forensic Science

Forensics: the scientific study of crime scene evidence

- DNA fingerprinting helped to solve crimes and convict criminals
- Used in wildlife conservation as well

Establishing Relationships

Solves paterity disputes

Ancestry can be traced using **Y chromsomes** (come from the father with little changes) and **mitochondrial DNA / mtDNA** (come from the mother with little changes).

15.4 — Ethics & Impacts of Biotechnology

Profits and Privacy

Patent: a legal tool that gives an individual or a company the exclusive right to profit from its innovation

 Private biotechnology and pharmaceutical companies use patents to protect their discoveries and innovations

Patenting Life

Molecules, DNA sequences, and chromosomes can be patented.

Leads to ethical questions on privacy about genetic information

Genetic Ownership

Some soldiers are identified when they die.

- Biotechnology → no more unknown soldiers
 - U.S. military now takes DNA from each soldier when they begin service

U.S. Congress → Genetic Information Nondiscrimination Act (2008)

- Protects Americans from discrimination based on genetic information
- Hopefully leads to more effective uses of genetic information

Safety of Transgenics

Pros of GM Foods

- Higher yields (reduce land and energy needed)
 - Lowered cost of food
- Less insecticide required
 - Lessens environmental damage
- Better or safer than others

Cons of GM Foods

- · Unintended consequences on agriculture
 - Insect resistance (harmful to beneficial insects)

Currently, GM and non-GM foods are treated the same.

Ethics of the New Biology

Biotechnology allows us to learn more about ourselves.

People need to use the ability to change life responsibly