习题 3-1

1.试给出二维随机变量的实例.

见 3.1 节的课件

2. 已知二维随机变量(X,Y)的联合分布函数为

$$F(x,y) = \begin{cases} 1 - 2^{-x} - 2^{-y} + 2^{-x-y}, & x \ge 0, y \ge 0 \\ 0, & x \not \succeq \end{cases}.$$

求(1)(X,Y)关于X, Y的边缘分布函数 $F_X(x)$, $F_Y(y)$; (2) $P\{1 < X \le 2, 1 < y \le 2\}$.

$$\mathbf{R}$$
 (1) 由 $F_X(x) = \lim_{y \to +\infty} F(x, y)$,可得

当
$$x < 0$$
时, $F_X(x) = \lim_{v \to +\infty} 0 = 0$.

当
$$x \ge 0$$
时, $F_X(x) = \lim_{y \to +\infty} (1 - 2^{-x} - 2^{-y} + 2^{-x-y}) = 1 - 2^{-x}$.

所以

$$F_X(x) = \begin{cases} 1 - 2^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

同理可求得

$$F_{y}(y) = \begin{cases} 1 - 2^{-y}, y \ge 0 \\ 0, y < 0 \end{cases}.$$

(2)
$$P\{1 < X \le 2, 1 < y \le 2\} = F(2,2) - F(2,1) - F(1,2) + F(1,2) = \frac{1}{16}$$
.

3. 二元函数 $G(x,y) = \begin{cases} 0, x + y < 0 \\ 1, x + y \ge 0 \end{cases}$ 是否可以作为某个二维随机变量(X,Y)的联合分布函数? 说明理

由.

解 见下面图片或 3.1 节的课件.

3. 构造平面区域 {(x,y)|-1<x{1,-1<y\$1}, 好设(x,y)为(x,y)的分布凶和, [2] P { 1 < x < 1, -1 < y < 1 } = G(1,1) - G(1,1) - G(1,-1) + G(-1,-1) = [-1-1-1+0=-1, 矛盾, 节G(x,y)不是(x,y)们分布凼和。

4. 设(X,Y)的联合分布为

Y X	\mathcal{Y}_1	\mathcal{Y}_2	\mathcal{Y}_3	$p_i^{(1)}$
x_1 x_2	0.1 0.2	a 0.2	0.2 <i>b</i>	0.4 c
$p_j^{(2)}$	d	е	f	1

求a,b,c,d,e,f.

解 根据联合概率分布和边缘概率分布的性质,得

$$0.1 + a + 0.2 = 0.4$$
, $a = 0.1$; $e = a + 0.2 = 0.1 + 0.2 = 0.3$;

又
$$0.4+c=1$$
,故 $c=0.6$;而 $c=0.2+0.2+b$,得 $b=0.2$;

显然
$$d = 0.1 + 0.2 = 0.3$$
, $f = 0.2 + b = 0.2 + 0.2 = 0.4$.

故
$$a = 0.1$$
, $b = 0.2$, $c = 0.6$, $d = 0.3$, $e = 0.3$, $f = 0.4$.

5. 盒中装着标有号码 1, 2, 2, 3 的 4 个球,从中任取一个并且不再放回,然后再从盒中任取一球. 以 X, Y 分别表示第一、第二次取到的球上的号码数,求(X,Y)的联合分布(假设盒中各球被取到的机会相同).

解 由题意知,X, Y的可能取值均为 1,2,3,从而(X,Y)可取(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1) 和 (3,2).

利用乘法公式,可得

$$P{X=1,Y=1}=0$$
, (因为 ${X=1,Y=1}$ 是不可能事件)

$$P{X = 1, Y = 2} = P{X = 1}P{Y = 2 \mid X = 1} = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$$

$$P{X = 1, Y = 3} = P{X = 1}P{Y = 3 | X = 1} = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12};$$

$$P\{X=2,Y=1\} = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}, \qquad P\{X=2,Y=2\} = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6},$$

$$P{X = 2, Y = 3} = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6};$$
 $P{X = 3, Y = 1} = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12},$

$$P\{X=3,Y=2\}=\frac{1}{4}\times\frac{2}{3}=\frac{1}{6}$$
, $P\{X=3,Y=3\}=0$ (因为 $\{X=3,Y=3\}$ 是不可能事件).

故(X,Y)的联合概率分布为

Y	1	2	3
X			
1	0	$\frac{1}{6}$	1/12
2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

6. 将两封信投入 3 个邮箱,设 X, Y 分别表示投入第一、二号邮箱中信的数目,求 (1) X 和 Y 的联合概率分布; (2) X 和 Y 的边缘概率分布; (3) X 和 Y 的边缘分布函数; (4) X 和 Y 的分布函数值 F(1,1.2); (5) $P\{X=Y\}$.

解 (1) 由题意知,X, Y 的可能取值均为 0, 1, 2, 从而(X,Y) 可取 (0, 0)、(0, 1)、(0, 2)、(1, 0)、 (1, 1)、(1, 2) 和 (2, 0). 由乘法原理和古典概型公式可得

$$P{X = 0, Y = 0} = \frac{1}{3^2} = \frac{1}{9}$$
,

 $P\{X=0,Y=1\}=rac{C_2^lC_1^l}{3^2}=rac{2}{9}$ (第 1 封信往 3 个邮箱中投放有 3 中放法,第 2 封信往 3 个邮箱中投放也有 3 中放法,故基本事件总数为 $3^2=9$,而事件 $\{X=0,Y=1\}$ 表示第一号邮箱中有 0 封信,第二号邮箱中有 1 封信,该事件等价于 2 封信中有 1 封信放入第二号邮箱,另 1 封信放入第三号邮箱。从 2 封信中取 1 封信投入第二号邮箱中有 C_2^l 种取法,从剩下的 1 封信中取 1 封信投入第三号邮箱中有 C_1^l 种取法,则有利于事件 $\{X=0,Y=1\}$ 的基本事件数为 $C_2^lC_1^l$ 种取法)。同理理解下列概率:

$$P{X = 0, Y = 2} = \frac{C_2^2}{3^2} = \frac{1}{9}$$

$$P\{X=1,Y=0\} = \frac{C_2^1C_1^1}{3^2} = \frac{2}{9} \;, \quad P\{X=1,Y=1\} = \frac{2!}{3^2} = \frac{2}{9} \;, \quad P\{X=1,Y=2\} = 0 \ \ (\text{§\$#特不可能事件}),$$

$$P\{X=2,Y=0\}=\frac{1}{9}\;,\quad P\{X=2,Y=1\}=0\;,\ P\{X=2,Y=2\}=0\;.$$

X和Y的联合概率分布为

Y	0	1	2
X			
0	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$
1	$\frac{2}{9}$	$\frac{2}{9}$	0
2	$\frac{1}{9}$	0	0

(2) 关于 X 和 Y 的边缘概率分布分别为

X	0	1	2
P	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

X	0	1	2
P	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

由X和Y的边缘概率分布可得X和Y的边缘分布函数分别为

$$F_{X}(x) = \begin{cases} 0, & x < 0 \\ \frac{4}{9}, 0 \le x < 1 \\ \frac{8}{9}, 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

$$F_{Y}(y) = \begin{cases} 0, & y < 0 \\ \frac{4}{9}, 0 \le y < 1 \\ \frac{8}{9}, 1 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

6. (4)
$$F(1,1,2) = \sum_{\substack{X_1 \leq 1 \\ Y_2 \leq 1}} P_{ij} = P(X=0, Y=0) + P(X=0, Y=1) + P(X=1, Y=0)$$

 $+P(X=1, Y=1) = \frac{1}{9} + \frac{2}{9} + \frac{2}{9} + \frac{2}{9} = \frac{7}{9}$

(5)
$$P\{X=Y\} = P\{X=0, Y=0\} + P\{X=1, Y=1\} + P\{X=2, Y=2\} = \frac{3}{9} = \frac{1}{3}$$
.

7. 设 X 和 Y 均服从[0,4]上的均匀分布,且 $P\{X \le 3, Y \le 3\} = \frac{9}{16}$,求 $P\{X > 3, Y > 3\}$.

解见3.1节的课件。

8. 设 (X,Y) 的分布函数为 $F(x,y) = A(B + \arctan \frac{x}{2})(\frac{\pi}{2} + \arctan y)$, 求(1)常数 A,B;(2)边缘分布函数 $F_X(x)$, $F_Y(y)$;(3) $P\{X \leq 2, Y > \frac{\sqrt{3}}{3}\}$. 解 见 3. 1 节的课件。

9. 设二维随机变量(X,Y)的密度为

$$f(x,y) = \begin{cases} ce^{-2(x+y)}, & x > 0, y > 0 \\ 0, & \text{ 其它} \end{cases},$$

求(1)常数c;(2)(X,Y)的分布函数F(x,y);(3)边缘密度函数 $f_X(x),f_Y(y)$;(4) $P\{(X,Y)\in G\}$,其中G 是由x+y=1,x=0,y=0 围成的平面区域.

解 见下面图片.

9. 11)
$$1 = \int_{-\infty}^{+\infty} ds \int_{-\infty}^{+\infty} f(x,y) dx dy = \int_{0}^{+\infty} dx \int_{0}^{+\infty} c e^{-2(x+y)} dy = c \int_{0}^{+\infty} e^{-2x} dx \int_{0}^{+\infty} e^{-2y} dy$$
 $= C \cdot (-\frac{1}{2}e^{-2x}|_{0}^{+\infty}) \cdot (-\frac{1}{2}e^{-2y}|_{0}^{+\infty}) = \frac{1}{2}C$
 $to c = 4$

(2) $F(x,y) = \int_{-\infty}^{x} \int_{0}^{x} f(x,y) dx dy$
 $to x < 0 = x$
 $to x <$

10. 如果 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 那么 (X, Y) 一定服从二维正态分布吗?分析下面的例子: $(X, Y) \sim f(x, y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} (1 + \sin x \sin y).$

解 见下面图片.

10.
$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2y^2}{2}} (1+\sin x \sin y) dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} dy + \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} (1+\sin x \sin y) dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} dy + \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} dy = \frac{1}{2\pi} e^{-\frac{x^2y^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{x^2y^2}{2}} \int_$$