WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERA

THE THE PROPERTY OF THE PROPER	neu '	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6: C07K 14/00, 16/18, G01N 33/574, A61K	A1	(11) International Publication Number: WO 98/35985
39/00 39/00	Ai	(43) International Publication Date: 20 August 1998 (20.08.98)
(21) International Application Number: PCT/IB	98/003	TO THE PROPERTY OF THE PROPERT
(22) International Filing Date: 12 February 1998 (12.02.9	8) BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ
(30) Priority Data: 60/038,819 12 February 1997 (12.02.97)) τ	LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(71) Applicant: ELECTROPHORETICS INTERNATION [GB/GB]: Coveham House, Downside Bridge Po-	AL PL	(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NI, PT, SF), OAPI patent (BE, BI, CE, CC, CI, CM,

ham, Surrey KT11 3EP (GB).

[GB/GB]; Coveham House, Downside Bridge Road, Cob-

(71)(72) Applicant and Inventor: HANASH, Samir, M. [US/US]; University of Michigan, Comprehensive Cancer Center, 101 Simpson Drive, Ann Arbor, MI 48109-0752 (US).

(74) Agent: MURRAY, Robert, B.; Nikaido, Marmelstein, Murray & Oram LLP, Metropolitan Square, Suite 330, "G" Street Lobby, 655 15th Street N.W., Washington, DC 20005-5701

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

GA, GN, ML, MR, NE, SN, TD, TG).

(54) Title: PROTEIN MARKERS FOR LUNG CANCER AND USE THEREOF

(57) Abstract

Computerized analysis of 2-D gels, both carrier ampholyte (CA) and immobilized pH gradient (IPG) based, of the proteins in tissue from lung tumors, reveals proteins which are different types of tumors and in control tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI AM Armenia FI Finland LT Lithuania SK AT Austria FR France LU Luxembourg SN AU Australia GA Gabon LV Larvia SZ AZ Azerbaijan GB United Kingdom MC Monaco TD BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG BB Barbados GH Ghana MG Madagascar TJ BE Belgium GN Guinea MK The former Yugoslav TM BF Burkina Faso GR Greece Republic of Macedonia TR BG Bulgaria HU Hungary ML Mali TT BJ Benin IE Ireland MN Mongolia UA BR Brazil IL Israel MR Mauritania UG BY Belarus IS Iceland MW Malawi US CA Canada IT Italy MW Malawi US CA Canada IT Italy MW Malawi US CF Central African Republic JP Japan NE Niger VN CG Congo KE Kenya NL Netherlands YU CI Cote d'Ivoire KP Democratic People's NZ New Zealand CN Cameroon Republic of Korea PL Poland CC Cuba KR Republic of Korea PL Poland CC Czecc Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudae						•	•	-pproductions didect file (C)
CZ Czech Republic LC Saint Lucia RU Russian Federation DE Germany LI Liechtenstein SD Sudan	AM AT AU AZ BA BB BE BF BG BJ CA CF CG CH CCI CM CN CU	Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China	FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP	Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea	LT LU LV MC MC MD MG MK ML MN MR MW NE NL NO NZ PL PT	Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mainia Mongolia Mauritania Malawi Makico Niger Netherlands Norway New Zealand Poland	SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
DK Denmark LK Sri Lanka SE Sweden EE Estonia LR Liberia SG Singapore	BE BF BG BJ BR BY CA CF CG CH CI CM CU CZ DE DK	Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark	GN GR HU IE IL IS IT JP KE KG KP KR LC LC LI LK	Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka	MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE	The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mcxico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	TM TR TT UA UG US VN YU	Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia

WO 98/35985 PCT/IB98/00361

PROTEIN MARKERS FOR LUNG CANCER AND USE THEREOF Background of the Invention

Field of the Invention

5

10

15

20

25

The present invention relates to proteins which are markers for lung cancer.

A large number of polypeptides that are differentially expressed between the three major lung tumor types have been identified. A small number of these polypeptides overlap with markers previously identified as markers for esophageal tumors. However, the majority (some thirty polypeptides) are new to the present analysis.

Description of Related Art

Lung cancer is the major cause of cancer deaths in men over 35 years of age and is a leading cause of death in women in this age group. There are several sub-types of lung cancer. Squamous cell carcinoma, adenocarcinoma and small cell carcinoma represent major sub-types. In view of the overall high incidence and mortality of lung cancer, approaches to screen and detect this type of cancer at an early stage would be quite beneficial. However the benefits of currently available screening strategies are doubtful and there remains much need for more effective strategies. To that effect, the identification of biochemical markers with a high degree of specificity for tumors and specific subtypes of tumors would be beneficial.

At the present time, lung cancer is diagnosed primarily by biopsy. Unfortunately, by the time the cancer is diagnosed it is often far advanced. Survival after diagnosis is poor.

Thus, a need exists for the diagnosis of lung cancer at an early stage. Markers which correspond to the advance of the illness may be used to monitor therapeutic regimens.

Summary of the Invention

15

20

25

The strategy of the present invention involves analyzing several hundr d cellular proteins expressed in different lung cancer sub-types to identify proteins that are subtypes(s) specific. Using the procedure of two-dimensional gel electrophoresis, a subset of proteins that appear to distinguish between the major sub-types in a statistically significant manner has been detected. These proteins have utilities in many areas, including the following:

- 1. Screening normal individuals or individuals at an increased risk for lung cancer.
- 2. Establishing the specific lung cancer sub-type at the time of diagnosis.
 - 3. Providing an indication of prognosis for individuals diagnosed with a specific lung cancer sub-type.
 - 4. Providing novel approaches for therapy, based on understanding of the role of these proteins in different lung cancer sub-types.

By comparison of 2-D gels showing proteins from normal lung and different types of lung tumors such as squamous, small cell, and adenocarcinoma, a set of proteins have been identified in the different source tissues. These proteins provide information on the pathogenesis of lung tumors, and have utility as markers to monitor therapeutic regimens. The proteins can also be purified and used as immunogens to generate antibodies which can be used as diagnostic reagents. In addition, some of the proteins or antibodies thereto may have therapeutic applications.

Brief Description of the Drawings

Figure 1 shows an Isoelectric-Focusing (IEF) gel of a sample from a patient with Squamous cell lung cancer.

Figure 2 shows an IEF gel of a sample from a patient with classical small cell lung cancer.

10

15

20

25

Figure 3 shows an IEF gel of a sample from a patient with adenocarcinoma of the lung.

Detailed Description of the Invention

One aspect of the invention is a new diagnostic method for lung tumors. The diagnostic method is based on the detection of at least one protein which is overexpressed in lung tumors relative to non-tumor lung tissues and which is specific for a lung tumor sub-type. In order to identify the protein(s) to be used in lung tumor diagnosis, proteins expressed in 60 lung tumors were analyzed using 2-D gel electrophoresis. By comparing the protein gel electrophoresis profiles of lung tumors and non-tumor lung tissues, proteins which are overexpressed in lung tumors were located. demonstrated below, some of the specific proteins over-expressed also correlate with the lung tumor sub-type. Therefore, by concentrating on a plurality of protein markers which are overexpressed in different specific lung tumor subtypes, a diagnosis of the lung tumor sub-type can be made. For instance, relying on at least three protein markers each specific for one of three major lung tumor subtypes, i.e. squamous cell carcinoma, adenocarcinoma or small cell carcinoma, a diagnosis of the major lung tumor subtype can be made. It should be emphasized that the protein markers can be determined using gel electrophoresis in the absence of antibodies, an immunoassay if antibodies specific for the protein markers are available or any other method of detecting the protein markers. Antibodies specific for the protein markers allow in vitro or in vivo applications of the diagnostic method.

Another aspect of the invention is a method to monitor the progress of treatment of lung tumors by monitoring the appearance of at least one specific protein marker for the lung tumor sub-type being treated. Some of the protein markers identified in the instant invention can be monitored during the course of treatment of a lung tumor with an emphasis on the protein markers specific for the lung tumor sub-type under treatment. As the treatment progresses,

the presence of at least one of these specific protein markers can be followed as another way to judge the treatment effectiveness.

Carrier ampholyte (CA) based 2-D gels of lung cancer.

Tissue from over 60 lung tumors was obtained for 2-D analysis.

5

Most of the tumors have a pair of replicate silver stained gels available, in which the first dimension gel was an iso-electric focusing gel. In addition, most of the tumors were analyzed using immobilized pH gradients. The common tumor types are well represented: classical Small Cell (SC), Adenocarcinoma (Ad) and Squamous (Sq) tumors of the lung. Rarer tumor types were represented by fewer samples.

10

15

The analysis of the three main lung tumor types employed visual analysis of 3 large batches of gels that contained the largest numbers of the tumor types of interest (more than 10 of each of the three types). Images were also studied on the computer, one small close-up section at a time, matching those spots between images that appears to hold the most promise on a subset of the very best images. For the computerized analysis, spots were matched to image Ab6148, a SC sample, from which the "lung" spot numbering system used here is derived. This master is also matched to the master image used in the tumor studies including esophagus, colon, pancreas, leukemia, brain and breast tumors, so that each spot of interest in lung also has a spot number in the other systems. At the time spots of interest were identified, comments about each spot were made, largely concerning which samples had the largest or smallest spots.

25

20

It appears that certain sets of interesting spots should be treated as groups, that is, that they are likely to be the product of a single gene, differing only in their post-translational modification. This interpretation is based on the proximity of the spots on the gel, the geometry of the constellation that they form (e.g., a "charge chain"), their identical color with silver staining, and the fact that the quantities in different samples are correlated. In such cases, only

15

20

25

a single spot has been selected for quantitation, typically the largest in the group or the spot that exhibits the least overlap with other spots thought to be unrelated. The groups and the representatives chosen for quantitation are:

	Group	Spot Quantitated
5	37-40	40
	28-30	29
	52-54	53
	33-35	33
	87-89	87,88 the P18 protein spots

Figures 1-3 show the location of the candidate spots. These are labeled with spot numbers specific to the lung tumor matching.

Carrier ampholyte-based 2-D gels that cover the pH range of approximately 3.5-10.0 were prepared for all specimens.

Tissue was solubilized by addition of lysis buffer consisting of (per liter) 8 M urea, 20 ml of Nonidet P-40 surfactant, 20 ml of ampholytes (pH 3.5-10), 20 ml of 2-mercaptoethanol, and 0.2 mM of phenylmethylsulfonyl fluoride in distilled deionized water. Approximately 30 μ l aliquots containing 70 μ g of protein were loaded on individual gels.

Because isoelectric focusing is sensitive to charge modification, it is important to minimize protein alterations (e.g., proteolysis, deamidation of glutamine and asparagine, oxidation of cystine to cystic acid, carbamylation) that can result from improper sample preparation. Once solubilized, samples may be stored frozen at -80°C for short periods (<1 month) without significant protein modification).

2-D PAGE was done as previously described (Strahler et al, *Journal of Clinical Investigation*, 85:200-207, 1990). In most cases aliquots were immediately applied onto isofocusing gels. First-dimension gels contained 50 ml of ampholytes per liter (pH 3.5-10). Isofocusing was done at 1,200 V for 16 h and 1,500 V for the last 2 h. 20 gels were run simultaneously. For the

second-dimension separation, an acrylamide gradient of 11.4-14.0 g/dl was used. Protein spots in gels were visualized by the silver-staining technique of Merril et al. (Merril et al, <u>Science</u>, 211:1437-1438, 1981).

Immobilized pH gradient (IPG) 2-D gels of lung cancer

5

10

15

20

25

In addition to generating 2-D patterns that were carrier ampholytebased, a second set of patterns using immobilized pH gradients were generated for many of the tumors.

Samples were prepared as for the CA based 2-D gels of lung cancer discussed above. For first dimension separation an immobilized pH gradient covering the separation range of pH 4-10. The second dimension is the same as for the CA based 2-D gels.

IPG gels are prepared using derivatives of acrylamide having carboxyl or tertiary amino groups with specific pK values. A linear pH gradient is prepared from a dense, acidic solution and a light, basic solution using a two-chamber microgradient former. The pH gradient is stabilized during polymerization of the Immobiline-acryl-amide-bisacrylamide matrix by a colinear gradient of glycerol. Formulations of buffering Immobiline mixtures with titrating Immobiline for the pH limit solutions for narrow pH gradients (1 pH unit) or for broad pH gradients (>1 pH unit, up to 6 pH units) (Gianazza et al, Electrophoresis 6:113 (1985) and LKB application Note 324 (1984)) have been published.

The second dimension separates proteins on the basis of molecular weight in an SDS gel. An 11.5 to 14% T (2.6% cross-linking) acrylamide gradient provides effective separation of proteins of mass from 15,000 to 100,000. Proteins outside this range are less well resolved. Proteins with molecular weight less than 10,000 Da electrophorese close to the dye front and are not resolved.

Computer assisted analysis of 2-D gels

10

15

Each gel was scanned in a 1024 X 1024 pixel format, where each pixel can have one of 256 possible values representing different degrees of intensity. Spot lists for study images are matched to spot lists of master images so that the result is a hierarchy of matched protein spots. The purpose of the matching is to link the same polypeptide spot through the hierarchy to allow assessment of its presence, quantitative variation and specificity, as described in Strahler et al., 1990. For comparison of the amount of individual proteins between gels, an adjustment process is utilized. The integrated intensity of detected polypeptides, measured in units of optical density per square millimeter, is adjusted relative to the intensity of reference polypeptides that are ubiquitously expressed. The adjustment is made to compensate for any variation between gels due to protein loading or staining.

Most spots of interest were quantitated and the results are shown in Tables 1-5. A few spots that appear in Figures 1-3 as interesting do not appear in the Tables. Factors for not including spots are:

- They are part of a larger family of spots as explained above.
- Interest in them diminished after the quantitation results were analyzed (e.g., lung 32, 44, 46, 99).
- They have been studied previously. This includes lung spot numbers 23-26 (np65's), 56 (B23's), 87-89 (P18's), 97 (CRBP-I), 60 (PCNA), 78 (Hsp27), as well as NDPK-A. A few of these famous spots were quantitated to help characterize each tumor sample (P18, P18a, CRBP-I, Hsp27, Hsp27a).

Assessment of spots in other tissues

25

20

A variety of normal tissues and tumors have been studied in an effort to gain some insight into the spots found interesting in lung tumors. The spots included in the list below represent that subset of spots that were quantitated and are considered very interesting. Some quantitated spots are considered less interesting at this time because the differences between lung

10

20

tumors were not statistically very significant, the mean differences between tumor types w re not very large, or because the spots did not appear v ry much larger in tumors than in control lung samples.

Some spots are still included even though they did not give very small P-values. Usually this is because it is believed that there is potentially an interesting difference, but the fairly simple statistical tests employed are ignoring group (gel batch) effects or are affected by a few cases where the samples do not all agree perfectly (inflated variance measures). It was also in a spot's favor if it had been identified as interesting in previous studies, including studies of esophagus tumors.

GELS:

Brain: Medulloblastoma, Glioblastoma, and normal samples.

Breast Tumors.

Leukemias: AML=ANLL, CALL and normal PBL's

15 Lung Tumors: Squamous (Squ), Small Cell (SC), Adenocarcinomas (Adn) and normal lung samples (NM).

Neuroblastomas: Various stages and myc copy numbers.

Esophagus: Squamous Carcinomas of the Esophagus (SC), normal esophagus (NE), gastric mucosa (GM), Barrett's (BA), esophageal adenocarcinoma (EA) and tumor of the cardia (TC).

Entries:

L = Large, as big or bigger than in Esophageal adenocarcinoma or Tumor of the Cardia.

M = Medium, there but not as big as in tumors of interest.

S = Small

A = Absent

S? or A? indicates inability to identify the spot in some tissue, simply because there is nothing like what was seen in the tumors in the area.

10

15

20

25

Conversely L? means there is a big spot in the location, but it is uncertain whether it is the sample spot. A * indicates that there is a note below.

The first spot numbers are those used in matching lung tumors (Ab6148). The second spot numbers are from the master image from esophagus (Bb9779). A "@" by esophagus indicates that the spot was noted as interesting in that esophageal tissue. There are sometimes notes for these spots in esophagus samples in other reports. One general observation is that it is easiest to compare SC lung with neuroblastomas.

The first block of spots was initially thought to be larger in SQ or Ad lung (usually Ad) while the second block of spots was thought larger in SC lung samples. The quantitative results should be used to judge the exact status with regard to spot sizes in the different sample types, since sometimes a spot is larger in two of the types, or has a pattern of being largest in one type, smallest in another, and intermediate in the third tumor type.

Spot quantitation for lung tumors.

Spots in digital images of Lung Squamous tumors (Sq), Adenocarcinoma tumors (Ad), and Small Cell Lung cancers (SC) from 3 runs of IEF gels were quantitated. There were 9 Sq, 8 Ad and 9 SC samples in total. Sources of the samples were primary tumors (PT) or metastatic (MT). The groups of gels formed by electrophoretic runs are labeled, A, B and C in the first column of the table. "Stage" of the tumor is labeled under "stg".

The gels with images matched to a master lung pattern were largely those from the group labeled "A". Some spots were omitted because they are difficult to quantitate, because they seem to be a member of a family of spots only one of which appears in the table below, or because they are already known. Ten reference spots that appear to be more or less invariable between sample types were also quantitated, for use in adjusting the spot integrated intensity data. The spots are labeled in the order of another table in which other tissue types were surveyed. Four "famous spots" (L2 =

15

25

phosphorylated Hsp27, L4 = unphosphorylated Hsp27, P18 and P18a = phosphorylated P18) are also included to help characterize the samples.

Gel to gel adjustment using the ten reference spots was by what has become the usual method. A standard was formed by computing the average size of each spot across the gels in this study. To compute the adjustment for a particular gel, the ratios of each spot on the gel to the standard were calculated and the ratios were averaged (by taking antilogarithms of the average log ratio). Raw spot integrated intensities are divided by this adjustment factor to obtain the adjusted integrated intensities tabled below. For each gel the adjustment factor is tabled under "Dark".

10

For each spot the means and variances with each sample type are given as well as the p-value for an F-test of whether the 3 means are identical. There appear to be run effects and individual effects for some spots, which should probably be judged by eye, and this run effect is why the data is tabled in blocks according to groups formed by electrophoretic runs. Often one can see that the significance for tests considering group effects would be greater, or that omitting a single individual with an enormous value would reduce the variances enough to change the P-value considerably.

Potential Markers

- 20 Occurs as a large spot in small cell lung cancer. It is absent in 14. normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers with the exception of medulloblastoma where it is large, it occurs as a small intensity spot.
 - Has a similar intensity and tissue distribution pattern as spot 14. 15. It is likely to represent a group of related polypeptides which are not separated.
 - Occurs as a medium intensity spot in small cell lung cancer. It 16. is present in small amounts in normal lung tissue and occurs as a small spot

10

15

20

25

in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers with the exception of medulloblastoma where it is large, it is either absent or occurs as a small intensity spot.

- 17. Occurs as a large intensity spot in small cell lung cancer. It is present in small amounts in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers with the exception of medulloblastoma where it is large, it is either absent or occurs as a small intensity spot.
- 22. Occurs as a moderate intensity spot in small cell lung cancer. It is present in smaller amounts in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 27. Occurs as a moderate intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 31. It is a moderate to large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 33. Occurs as a moderate intensity spot in small cell lung cancer. It is absent in normal lung tissue and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 50. Occurs as a prominent spot in small cell lung cancer and occurs as a small spot in normal lung and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers with the

10

15

20

25

exception of brain and some brain tumors where it is large, it occurs as a mod rate to small intensity spot.

- 68. Occurs as a moderate size spot in small cell lung cancer and occurs as a smaller spot in normal lung and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers with the exception of brain and some brain tumors where it is large, it occurs as a moderate to small intensity spot.
- 47. Occurs as a large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers, it occurs as a small intensity spot.
- 57. Occurs as a moderate intensity spot in small cell lung cancer. It is smaller in normal lung tissue and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers, it occurs as a small intensity spot.
- 58. Occurs a large intensity spot in small cell lung cancer. It is smaller in normal lung tissue and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers, with the exception of brain in which it is large, it occurs as a small to moderate intensity spot.
- 59. Occurs as large intensity spot in small cell lung cancer and in esophageal adenocarcinoma. It is smaller in normal lung tissue and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers, with the exception of brain in which it is large, it occurs as a small to moderate intensity spot.
- 61. It is a moderate to large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.

10

15

20

25

- 66. It is a moderate to large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 67. Occurs as a large spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers except brain related, in which it is large, it is either absent or occurs as a small intensity spot.
- 73. Occurs as a moderate intensity spot in small cell lung cancer. It is absent or small in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers except brain related, in which it is moderate, it is either absent or occurs as a small intensity spot.
- 74. May be related to 73. Occurs as a moderate intensity spot in small cell lung cancer. It is absent or small in normal lung tissue and occurs as a small spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers except brain related in which it is moderate, it is either absent or occurs as a small intensity spot.
- 81. It is a large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 105. It is a moderate to large intensity spot in small cell lung cancer. It is small in normal lung tissue and in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 86. It is a large intensity spot in small cell lung cancer. It is small in normal lung tissue and in adenocarcinoma of the lung and in squamous cell

10

15

20

25

lung cancer. In most other tissues and canc rs it is either absent or occurs as a small intensity spot.

- 97. It is a large intensity spot in small cell lung cancer. It is absent in normal lung tissue and small in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 98. It is a moderate to large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 106. It is a moderate to large intensity spot in small cell lung cancer. It is absent in normal lung tissue and occurs as a smaller spot in adenocarcinoma of the lung and in squamous cell lung cancer. In most other tissues and cancers it is either absent or occurs as a small intensity spot.
- 109. Occurs as a moderate intensity spot in squamous cell lung cancer and is absent in normal lung and either absent or occurs as a small size spot in other cancers with the exception of squamous esophageal cancer in which it is large.
- 101. Occurs as a moderate intensity spot in squamous cell lung cancer and lung adenocarcinoma and is small in normal lung tissue. It is either absent or occurs as a small size spot in other cancers with the exception of squamous esophageal cancer in which it is large.
 - 102. Has a similar pattern of expression as 101.
- 107. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is absent or small in normal lung tissue. It is small in small cell lung cancer and moderate to large in a number of other cancers.
- Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is moderate in normal lung and small in small cell

10

15

20

25

lung cancer. It is also large in squamous and adenocarcinoma of the esophagus and occurs in variable size in other cancers.

- 62. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is moderate in normal lung and small in small cell lung cancer. It occurs in variable size in other cancers.
- 79. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is large in normal lung. It is small in small cell lung cancer. It occurs in variable size in other tissues and cancers.
- 80. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer. It is difficult to detect or absent in most other tissues.
- 90. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer and small in normal lung. It is variable in other tissues and cancers.
- 95. Occurs as a large spot near the dye front in squamous cell lung cancer and adenocarcinoma and it is small to moderate in small cell lung cancer and small in normal lung tissue. It is variable or undetectable in other tissues and cancers.
 - 43. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer. It is difficult to detect or absent in most other tissues.
 - 29. Occurs as a large spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer and normal lung tissue. It is variable in most other tissues.
 - 40. Occurs as a large spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer and normal lung tissue. It is variable in most other tissues.

15

20

25

- 42. It is an inconspicuous spot that is most prominent in squamous cell lung cancer and adenocarcinoma and is smaller or absent in most other tissues.
- 53. Part of a train of spots that is prominent in lung adenocarcinoma.
 - 83. This spot is prominent in squamous cell lung cancer and adenocarcinoma and it is smaller or absent in most other tissues.
 - 92. It is an inconspicuous spot that is most prominent in squamous cell lung cancer and adenocarcinoma and it is quite small or absent in most other tissues.
 - 94. This spot is prominent in squamous cell lung cancer and adenocarcinoma and it is difficult to detect or absent in most other tissues.
 - 84. This spot is most prominent in lung and esophageal adenocarcinoma and squamous cell cancer and is variable in other tissues and cancers.
 - 100. It is an inconspicuous spot that is most prominent in squamous cell lung cancer and adenocarcinoma and it is quite small or absent in most other tissues.
 - 96. Occurs as a large intensity spot in squamous cell lung cancer and adenocarcinoma and is small to moderate in small cell lung cancer and normal lung tissue. It is variable in most other tissues.

Antibody production

The proteins eluted from the gels, or peptide fragments thereof, may be used as immunogen for the production of antibodies. The antibodies may be polyclonal antibodies or may be monoclonal antibodies. The antibodies are made by methods known to those skilled in the art. Antibodies with very high affinity and specificity may be used for immunological tests for markers of cancer.

10

15

25

For the production of polyclonal antibodies, the immunogen, usually mixed with an adjuvant, is injected into a host animal, such as a mouse, guinea pig, rabbit, goat or horse. The injection is repeated at the same site or different sites at regular or irregular intervals. The host animal is bled periodically to assess antibody titer until it is determined that optimal titer has been reached. The antibodies are obtained either from antiserum taken from the host animal with bleeding or by somatic cell hybridization techniques known in the art.

Monoclonal antibodies can be produced by a method known in the art, e.g. Kohler and Milstein (*Nature*, vol. 256, pp. 495-497, 1975). Generally, spleen cells are obtained from a host animal injected with the immunogen or a fragment thereof. The spleen cells are immortalized by fusion with an immortal cell line, preferably a myeloma cell line, of the same or different species as the injected host animal. The fused cells are cloned and the resulting hybridomas are screened for production of monoclonal antibodies that specifically bind the immunogen.

In the instant application, the term "an immunological assay" means any method known in the immunology art for the quantitation of substances. An example of an immunological assay is radioimmunoassay.

20 <u>In vivo applications</u>

The antibodies produced may be conjugated with a radioactive tag and injected into a patient. With appropriate imaging techniques the tumor can be located using the radioactively conjugated antibody. If the amount of radioactivity attached to the antibody is increased considerably, or the antibody is conjugated to a toxin or an anti-tumor drug, the conjugate can be used to kill tumor cells *in vivo*. The antibody provides the targeting function, and the toxin, anti-tumor drug or radioactivity kills the cells which are targeted by the antibody. The radioactive tag can be any isotope giving off alpha particles, beta particles or gamma rays. The toxin can be any substance,

10

20

such as ricin, known to be toxic to cells. The anti-tumor drug includes any drug, e.g. daunorubicin, 5-fluorouracil, or derivatives thereof, or methotrexate, effective in treating tumors. Using an antibody conjugated with radioactivity, a toxin or drug for tumor therapy is known in the art, for instance see Roitt, I. et al, *Immunology*, pp. 20.8 and 20.9, Mosby, London, 1996, which is incorporated by reference. An effective dose can be 0.005 to 500 mg antibody per kg body weight. The conjugate can be administered by intravenous, intramuscular or subcutaneous injections.

The protein markers can also be used in immunotherapy of lung tumors. For instance, immunocompetent cells from the blood of a patient can be repeatedly exposed *in vitro* to one or more protein markers specific for the sub-type of lung tumor that the patient has. The challenged immunocompetent cells can later be injected into the same patient for immunotherapy of the lung tumor.

15 Gene Therapy

The gene corresponding to tumor specific proteins identified by the method of the present invention may be isolated and identified. Methods to isolate the gene corresponding to a given protein are well known to those skilled in the art. The gene can then be inactivated by molecular biological techniques and replaced into the body by gene therapy. Alternatively, antisense molecules can be made to genes of the tumor specific markers, and the anti-sense molecules can be used as therapeutics. By either of the above methods known to those skilled in the art, the tumor specific gene expression is decreased.

25 STUDIES OF MRP8 and MRP14 AND OF THEIR RELEVANCE TO TUMOR BIOLOGY AND AS TUMOR MARKERS

In studies comparing 2D protein patterns from various types of lung tumors (i.e., Squamous cell carcinoma, Adenocarcinoma and Small cell carcinoma) a protein spot was identified in these tumor types which was found

10

15

20

25

to be absent in the patient's normal lung tissue. This protein gave the sequence MLTELEKALN, which is 100% homologous with human MRP-8. Further, on the 2D protein patterns for lung tumors having a large MRP-8 spot, the presence of an additional low molecular weight pair of spots was noted consistent with the two forms of MRP-14 (MRP14 has two translation initiation sites situated 4 codons apart), as determined by comparison with published figures. Among the spot proteins overexpressed in lung tumors, the preferred spot proteins are MRP8 and MRP14.

Relationship of MRP8 and MRP14 to Tumor Biology

MRP8 (IO kDa) and MRP 14 (14 kDa) are both calcium binding proteins which belong to the S I00 family of EF-hand proteins, a family which consists of at least 17 members. Of interest, genes for this family of proteins have been localized to human chromosome Iq2I, a region of the chromosome which is frequently rearranged in different tumor types. These proteins are proposed to play a role during differentiation, regulation of the cell cycle and cytoskeletal/membrane interactions. Both of these proteins are composed of two distinct EF-hands flanked by hydrophobic regions at either terminus and separated by a central hinge region. MRP8 has been demonstrated to mediate chemotactic activity on macrophages. Interestingly, a peptide encoded by the hinge region (between the two EFhands) has been shown to specifically mediate this effect. As such, these proteins might play a role in diseases which cause chronic inflammation, including cancer.

Both the N-terminal and carboxy-terminal EF-hands are able to bind calcium, although the carboxy-terminal EF-hand does have a higher affinity. MRP8 and MRP14 have both been shown to be secreted from granulocytes and monocytes. It is presently unclear how these proteins are secreted as they do not possess a classical signal peptide. One possibility is that calcium binding may expose a hydrophobic domain which could allow an interaction with the membrane, thereby resulting in secretion of the molecules. It has

been demonstrated that both MRP8 and MRP14 homodimerize and heterodimerize with each other, thus forming complexes of various molecular weights. It is presently unclear as to the precise function of each homodimer and heterodimer form.

5

10

15

20

An antibody against the cystic fibrosis antigen (an epitope formed by heterodimerization of MRP8 and MRP14) also will react positively against a 14 kDa antigen which has been shown to be MRP14. The antibody is commercially. available This antibody has been utilized immunohistochemistry on sections of tumor tissue and corresponding normal tissue from the same patient. These stained tissue sections revealed minimal staining in the normal lung tissue. There was somewhat more reactivity in the tumor tissue, most probably due to the increased presence of infiltrative cells. Of note, however, there was a very large amount of immunoreactivity in the area of normal tissue immediately adjacent to the tumor, thus suggesting that infiltrative cells (i.e., granulocytes, monocytes and/or macrophages) were being recruited to the tumor. Moreover, whether the antibody would recognize a specific 14 kDa protein in the serum of lung tumor patients was explored, at levels greater than that which might be present in the serum of normal individuals. The serum of 14 lung tumor patients and 14 normal individuals was separated by 1D electrophoresis, the proteins were transferred to PVDF membranes and probed with the commercial antibody. Integrated intensity analysis of reactivity in a band visualized at 14 kDa revealed markedly increased reactivity in the serum from tumor patients (n= 14; mean intensity of 0.46) as compared to that in the serum from normal individuals (n=14; mean intensity of 0.09).

25

These findings indicate a role for antibodies against MRP in screening for different types of cancer in which the MRP's are detected in tumor tissue.

20

Sequencing

Amino acid sequencing of some of the above spot proteins was performed. The spots are eluted from the gels and subjected to sequence analysis. The amino acid sequences of some of the spot proteins are reported below. The correspondence of the spot protein and the Seq. ID No. is shown in the following table.

	Seq. ID No.	Spot Protein
	1	16
	2	59
10	3	67
	4	80
	5	84
	6	90
	7	92
15	8	95
	9	107
	10	109 (major component)
	11	109 (minor component)

Spot protein 109 has two components. The sequences of the major and minor components are listed in Seq. ID No. 10 and 11, respectively.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: HANASH, Sam
 - (ii) TITLE OF INVENTION: PROTEIN MARKERS FOR LUNG CANCER
 - (iii) NUMBER OF SEQUENCES: 11
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Nikaido, Marmelstein, Murray & Oram

LLP

- (B) STREET: 655 Fifteenth Street, N.W. Suite 330
- (C) CITY: Washington
- (D) STATE: D.C.
- (E) COUNTRY: USA
- (F) ZIP: 20005-5701
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/038,819
 - (B) FILING DATE: 12-FEB-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Wong, King L.
 - (B) REGISTRATION NUMBER: 37,500
 - (C) REFERENCE/DOCKET NUMBER: 8140-6002
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 638-5000
 - (B) TELEFAX: (202) 638-4810
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 1

- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Lys or His"
 - (ix) FEATURE:
- (A) NAME/KEY: Modified-site
 (B) LOCATION: 3
 (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Lys or Gly"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 4
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Glu or Asn"
- - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 6
- (D) OTHER INFORMATION: /product= "OTHER"

/note= "Xaa is Leu or Arg"

- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 8
- (D) OTHER INFORMATION: /product= "OTHER"
- /note= "Xaa is Gln or Pro"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 10
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Glu or Leu"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - Xaa Xaa Xaa Leu Xaa Ala Xaa Xaa
- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
 - Xaa Xaa Yaa Pro Gln Val Leu Asn Tyr Lys

.1

10

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Gln Leu Lys Pro Met Glu Ile Asn Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Lys His Ser Leu Pro Asp Leu Pro Tyr Asp 1 10

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /product= "OTHER"

/note= "Xaa is His or Asp or Ser or Gln"

- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /product= "OTHER"

/note= "Xaa is Glu or Gln"

- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 7
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Arg or Ile or Leu"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 9
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Lys or Ala or Arg"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 10
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Gln or Arg"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Xaa Glu Leu Pro Xaa Val Xaa Asp Xaa Xaa

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Xaa Xaa Ala Pro Leu Thr Ala Thr Ala Pro 5

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

```
(ii) MOLECULE TYPE: peptide
```

(ix) FEATURE:

- (A) NAME/KEY: Modified-site (B) LOCATION: 1
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Ser or Asp or Gly"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Xaa Xaa Val Leu Leu Met Lys Tyr Leu Gly 5

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(ix) FEATURE:

- (A) NAME/KEY: Modified-site
- (B) LOCATION: 1
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Gly or Ile or Lys or Met"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Glu or Arg"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site

 - (B) LOCATION: 3
 (D) OTHER INFORMATION: /product= "OTHER"

/note= "Xaa is Val or Leu"

(ix) FEATURE:

- (A) NAME/KEY: Modified-site
- (B) LOCATION: 4
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Lys or Gln or Thr or Glu"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 5
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Val or Gln"

- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 6
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Asp or Phe or Leu"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 9
- (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa is Arg or Ile"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 10
- (D) OTHER INFORMATION: /product= "OTHER"

/note= "Xaa is Gln or Lys or Phe or Ile"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Xaa Xaa Xaa Xaa Xaa Met Ala Xaa Xaa 1

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Leu Thr Glu Leu Glu Lys Ala Leu Asn

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS: (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Thr Thr Ser Ile Arg Gln Phe Thr Ser Ser
- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Xaa Thr Xaa Ile Leu Lys Phe Thr Leu

•	Ì
Щ	
0	
2	

30.0	_ :	Srall	_	Bre	Lenk	emra	_		Ľun	.	-		El es	esopha	agna	-	gamb	les	ME	PH
go	Med	G1 1	E CH	ast	AME	CLL	PBL	Squ	သွင	Adn	N.	_	SC	2	BA	EA	Σ	J.C	<u>8</u>	_
ŀ	!	1	1	1	111	1		1	1	1	-	i	-	1	1]	1	1	1	<u>i</u>
92 @	۷ -	Ą	∢.	¥	∢ -	æ	A	Σ	æ		4	¥	_	S		4	4	K	51	5
450	s	s	s	Σ	4	Æ	−	Σ	S		S	S	_	S		S	တ	S	35	4
466	s –	S	S	Σ	¥	Æ	<u> </u>	Σ	S		S	S	_	S		S	တ	S	36	4
99	A?	A ?	A?	M?	٠٠	۰،	<u>-</u>	-3	S		52	S	_			Σ	Σ	Σ	110	9
169	s	တ	S	7	J	٦	7	J	S	J	Σ	S	<u></u>	S	Σ	_	Σ	1	68	5.
1.70	s	လ	s	S	۰.	۰۰	<u>.</u>	7	S		Σ	S	_	s		s		_	27	5.
200	s	ı	- -	7	S	Ŋ	s	7	Σ			Z	Σ	Σ					25	5.
1713	7	-1	M?	1.2	٠.	۰.	<u>.</u>		Σ		<u>.</u>	٠.	<u>~</u>	٠.		٠.		~	25	7.
240	٠.	٠.	<u>-</u>	[7]	۰،	Ç,	-		Σ		S	A ?	Ξ	S		Σ		_	19	5.
72	A?	A?	A?	1.3	A?	A ?	A?	د.	S		s	4		7		Σ		_	10	9
1.73	s S	Σ	s	s	A ?	A ?	A?	7	Σ		A? 1	A?	4	K		\$3		_	75	9
650	Σ	٦	- -	7	S	s	_ Σ		Σ		_ Σ	Σ		Σ		Σ		_	49	<u>.</u>
1110	Σ	-1	_ _	s —	¥	Æ	-		I		_ Σ	Σ		Σ		ı	Σ	_	20	9
120	s S	J	-	s	٠.	٠.	-	_1	S		– z	S	_	s		J		_	53	9
74	S	-	L?	Σ	4	4	– 4	Σ	S		_ _	7	s	S		Y.		_	38	ς.
670	Σ	J	_ .J	L?	A ?	A?	A?		s		H.2	H.	s	S		Σ		Ξ	56	4
75	Æ	⋖	- 4	s	4	4	A?	Σ	တ		- 4	ď	A	¥		4		- 4	20	9
1631	Æ	4	- Ч	<u>ر.</u>	٠.	٠.	-	ı	Σ		<u>۔</u>	۰.	<u>د ·</u>	۸.		۲۰		٠.	20	7.
5361	٠٠	٠.	-	Σ	\$3	S?	23	Σ	Σ		-s	\$3	<u></u>	S				_ _	19	4
17	Æ	æ	- ∢	– Z	A ?	A ?	A?	Σ	s		— Ч	\$?	4	4				- S	16	4
5401	Σ	S	 S	_ Σ	Σ	S	<u>-</u> Σ	7	Σ	ין	 	S		Σ	Σ	_	- I	Σ	11	S
,	:	,	,	:	:	,	:	1	:		3	:	- - -		1					

~
-
•
• .)
-
_
-
~
()
u
⋍
_
1
7
1
ш
_
==1
m
_
U
. 7
_

3D#	ap#		Brair	.	Bre		Leukemi	- n		Lung	_		NB	Lles	NBL esophagus	agu		samples	lea	¥	ЬH	_
lung	esopiMed	Med .	G1 <u>i</u>	Nrm	_	ast AML	CLL	PBL	Squ	$_{\rm SC}$	Adn	ΣX	_	l sc	Z.	BA	EA	G.	Ţ	S S	_	
1 1	1	-	1	1	1		!!	1	1	ļ	1	1	į		!	1	1		Ï			
14	178		c	c									:			1	ı			1 5		! 4
	,		. ;			-		<	7			<	Ξ	2					'n	59	4	0
13	- 4	_	S.	S.	-	-		M?	s			S	.	S					S	43	<u>.</u>	σ
91	1570	Σ	-1	83	S	_		A A	S	Σ		s	Σ	<u> </u>					4	52	4	2
11	179	Σ	\$3	S?	S	_		-				s	Ľ	S						57	4	8
22	180	Σ	Σ	S	ß	_		s				S	Σ	7						67	4	_
27	101	Σ	\$3	A?	K	_		S				A .	Σ	s						61	5	7
31	182	4	Æ	A	Σ			s				- 4	ت	<u>s</u>						20	4	8
	183	A?	A ?	A?	⋖	_		-				_ &	٠.	¥						52	5	S
	16201	.1	긔	- 7	æ	_		- 4				S	J	1					-	45	'n	80
	15	J	1	Ξ	S	_		<u>.</u>				- s	Σ	s					_	41	S	80
47	186	s	S	s	Σ	33	\$?	1:5	Σ		Σ	A	Σ	7	S	s	Σ	S	Σ	137	4	ហ
	187	Σ	ı	Z	S	_		 σ				_ s	'n	<u>s</u>					_	31	4	~
	188	-	٦	L?	Z	_		- s				<u>-</u> Σ	Z	Σ					_	30	4.	₩.
	189	,	7	L?	Σ			-				<u>-</u> Σ		Σ					_	59	4	ın
	190	Σ	Σ	- د.	S	_		- :				-	Σ	4					_	59	5	~
	193	S	S	ۍ 	Σ			-				_ «	S	4					_	25	4	10
. 69	194	<u>.</u>		1:1	S			A?				<u> </u>	Ľ	₹					_	26	S.	_
73	195	Σ	Σ	Ξ	S ?			<u>.</u>				231	[]						_	32 (6.3	_
4	1961	Σ	Σ	_ Σ	S.			<u>-</u>				_	Ľ	Ā					_	32	6.7	_
_	197	4	4	- ⊌	۰.			A?				<u>-</u>	A ?	٠.					_	26	6.9	_
S	198 1	4	4	- 4	Σ			- s				-	L?	Σ					_	20	4.1	
86 1	1 661	S	S	- s	Σ			A?				_	Σ						-	15	4.9	_
. 76	200 1	Σ	¥	٦ -	4			- s				_	<u>.</u>	×S.					_	13	5.2	
. •	101	s	ç.	- s	ø,			- 4				<u>-</u>	J	₹					_	12	5.5	
106 2	202	Σ	Σ	٠٠ -	٠.	ж. Н		1:5	Σ	ت	-	_	Σ	4	W.	ιn	7 5	A	<u> </u>	101	5.8	

66: probably is the same as in lung. There is the possibility that a polymorphism here is confounding. If so it has the other allele to the right of 66 and lands at nearly, the same postion as a common spot.
67: Very big in brain, neuroblastoma, and SC.
97: is CRBP-I. Neuroblastomas have it big, but not as big as SC.

SUBSTITUTE SHEET (RULE 26)

TABLE 2

пота						
and/or adenocarcinoma s80 s90 s95	22.89	06 33 45	88 19 19	65 94 21 89	15	52 87
s95	6.29 2.68 7.52	w 4 4.	3.1	5.65 3.94 3.21 1.89	2.15	. 2.
2 oc	1.68 1.77 0.40	0.42 0.87 0.23	1.22	. 81 . 28 . 53 53	0.69	0.00
17 O	1 7 0 0	6 0. 7 0. 8 0.		00 1 03 1 20 0 93 1	7.4	24.0
s80	2.02 1.87 1.47	1.5	2.97 0.49 1.55	2.4.0	4	44
800s 9	1.12 2.43 1.78	44 04 72		3.55 4.72 2.66 4.28	.97	. 56
ruam S7	2.5.		404	040H	1 8 0	4 0
in squamous s62 s79	0.13 1.12 2.02 0.17 2.43 1.87 0.26 1.78 1.47	0.90 3.44 1.26 5 0.52 1.04 1.57 7 0.37 1.72 1.68	0.48 0.69 0.14	2.09 3.55 2.00 1.81 0.24 4.72 4.03 1.28 0.40 2.66 1.20 0.53 0.31 4.28 2.93 1.71	0.21 1.49 1.57 0.38 0.97 1.74	0.5
		20 16 17	1.30 0.23 0.48 4.57 0.38 0.05 0.69 2.47 3.66 0.15 0.14 2.91	2 11	2 8	08
arg s2	000	0 0 0	0.0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	71	210
1 1	3.0710.17 0.4810.32 3.6110.08	1.57 0.20 1.71 0.16 0.80 0.17	1.30 0.36 3.66	0.2710.24 2.23 1.00 0.11	0.4	7.0
thought large s102 s107 s21			81 50 47	0.37 0.27 0.24 1.07 2.23 0.13 1.00 0.11 0.18 1.20	0.14 0.371	07
the sl(0.71 1.14 .0.34	0.12 0.48 0.48	0.81 0.50 0.47		00	~ ~ ~
Initially P18a s109 s101	0.59 1.14 0.32	0.14 0.42 0.28	0.10 0.00 0.94 0.04 0.26 0.47 0.06 1.99 0.33	0.13 0.72 0.20 0.53	0.18	0.83 2.12 0.22 0.00 2.13 2.07 0.72 0.08 0.51 4.56 1.94 0.00 7.52 0.67 0.73 0.23 1.78 1.18 1.18 3.72 0.27 0.90 2.43 1.71 0.55 2.87
iti 09		59 77 35	00 26 99	00	90	78
In	0.00	10.	0.0.0.	3 0 0	4 0 1	2 0 2 10
182	0.3910.65 0.0410.08 0.0810.51	0.04710.59	0.10 0.00 0.04 0.26 0.06 1.99	1000	0.0	0.2
		0.46		41 58 46 47	34	12
ots P18	2.18 0.48 0.49	000		0.00	00	3 2.
famous spots L2 L4 Pl	1.02 2.18 0.46 0.48 0.23 0.49	0.90 0.46 2.98 0.75 .2.29 0.48	0.71 0.41 0.50 0.60 2.93 0.35	1.98 1.41 0.13 0.00 (3 0.60 0.58 0.03 0.36 (1 2.10 2.46 0.27 0.00 (7 0.81 0.47 0.03 0.00	2.04 0.46 0.04 0.00 0.44 0.34 0.01 0.41	0 0
nom	57 57 24	07 56 29		89. 88. 78.	.40	
£8 L2	0.571 1. 0.485 0. 0.796 0.	1.681[2. 1.034[2. 1.326[2.	<u> </u>	510	111	0.797!1.35 81.11013.18
Dark	0.571 0.485 0.796	1.68: 1.03:	. 533 . 552 . 947	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	73	.79
Ž o			77H	0000		
તા ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦	A PT A PT MT	NSH	NO G	C F F F F F F F F F F F F F F F F F F F	Ad PT Ad PT	Ad UN
stg c	1 54 3 54 3 54	1 59 3 59 3 59	2 Sq 2 Sq 3 Sq	2 Ad 3 Ad 3 Ad	# # M M	4 A
				1	_	
pat :	5 % C	Ca Ka Du	Arc Por Guy			1 Ber Dam
group gel	155 143 156	180 171 179	225 235 237	141 150 144 158	167 172	C 241 C 234
<u> 1</u>	A A A	шшш	ပပပ	IAAAA	μщ	O C

TABLE 2 (Cont'd)

			32	:		•
ша						
inc						
rc						
0C2 5	0.42 0.842 0.45 0.59 0.16	.17	0.09	3.93 3.49	3.71 4.78 .133	00
a a o	4.8.4.2.0.0	-				000
) a	0.28 0.13 0.00 0.00 0.00	0.00	57	.779 .886 .248	.411 .412 .260	.079
/or a	00000		ч о			_
and/or adenocarcinoma s80 s90 s95	0.50 0.76 0.85 0.74 0.67	0.51	. 33	.405 2.38 1.65 .630 3.08 2.13 .057 1.10 .735	. 435 . 828 . 064	.017 .004 .000
S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		о п 0	1 8 9 7		•
amoi 879	0.41 0.16 0.55 1.03 1.31	1.38	0 m	3.08	1.29 2.01 .514	00
enb:	000000000000000000000000000000000000000	5	2.4	50.00	0 10 4	
in squamous s62 s79 s	00000	0.05	0.7	. 63	.070 1.29 .395 2.01 .004 .514	.0.
		12	19	70 96 64		05
arg s2	000000	<u>.</u>	0.0	1.1.0.	0.00	0.
15	0.3110.02 0.1610.04 0.2810.08 0.0010.04 1.2010.03	0.4310.12	12	1.841.170 1.311.196 .3391.064	1.681.006 1.301.008 .1181.003	14
ght s1	000040			E .	444	0.
thought large s102 s107 s21	0.00 0.11 0.18 0.45 0.00	0.71	.32	. 559 . 679 . 238	.084 .489 .052	123
⊅ ′0			00		- · · ·	.106 .123 .0141.005
103	0.00 0.13 0.19 0.48 0.00	0.35	0.23 0.32 0.12[0.19 0.20 2.01 0.72 1.57 0.20 0.22 0.30[0.00 0.11 2.30 1.33 0.00	. 515 . 664 . 205	.108 .475	106
Initially s109 s101	00000			1		
ni 10	0.0000	0.0	0.0	31	1.48 380 005	.40
a 13	4 10 4 10 7 10	010	270	9.67	7 1 1 1.	<u>.</u>
Initi P18a s109	0.8310.00 1.1410.23 2.6610.00 2.4410.00 0.5710.00	1.3010.00	0.3	.1401.910 .1191.319	.027 1.48 .011 .380 .736 .005	.0001.077
	0.07 4.65 (0.02 1) 0.67 6.02 1) 0.56 8.33 2) 0.21 7.41 2) 0.18 4.42 (0.18 4.71 2)		0.69 4.27 0.37 0.00 0.55 0.62 0.21 0.00			
famous spots L2 L4 P18	4.000-4.4	4.94	4	1.33 .686 1.18 1.07 .556 5.04	.326 .680 4.77	000.
gs.	07 67 56 21 21 18 82	26	69 55	1.33 1.18 .556	1.19 .516 .137	108
us L4		-1		1		۲.
amc 2	756 0.13 734 0.42 791 0.50 599 0.21 783 0.03	0.65210.54	2.06810.12 1.72211.03	1.59 .948 .349	1.904 1.134 1.097	001
	75610.1 73410.4 79110.5 59910.2 78310.0	210	810			-
Dark	0.756 0.1: 0.734 0.4: 0.791 0.5: 0.599 0.2: 0.783 0.0:	65	06			İ
					1 1 1	i
so so	H H H H H H H H H H H H H H H H H H H	UN	PT MT	Sq Ad SC	Sq Ad SC	es
di ag	80 80 80 80 80 80	သွင	SC SC	ins ins	5 1 5	alı
stg : - 2	M 4 4 4 4 7	m	w 4	Means Means Means	varianc varianc varianc	P-values[.001
pat st ient	Bai Cha Bri Moy Boua Couc	Boul	Ney Pil	-	4 4 4 4 4 4 4 4 4 4 4 4 4	1
				1 1 1	1 1 1	1
group gel	145 146 151 152 157	164	224 242	1 1 1	1 1 1	1
øı −	AAAAAA	m	ပပါ	1 4 1	1 1 1	1

TABLE 3

	10 C C	m m a:	~ ~ ~	0040	00	2 5
96s	31.90	1.53 2.13 1.82	4 6 4	9 0 4 W	4. W.	w.r.
S	440	424	w 64 H	H 4 4 0	н м	е
5100	21 46 44	17 10 12	12 02 00	87 37 50 60	00	14
5]	0.21 1.15 0.46 1.30 0.44 0.90	0.17 0.10 0.12	0.12 3.42 0.02 2.33 0.00 1.10	0000	00	00
_	74 04 36	4 6 5	55 5	2008	17	ທ ຜ
s84	9 -	0 0 0	0 0 0	0.4.0	00	00
	208	w w 4. 	479	L 0 4 E	H 0	4.0
594	6.0	5.5	4.6.6	0.4.6		9. 2.
	246	806	484	мана	0 80	9.
a 92	5.20	H 0 0	0.00	L 00 44 41	0.0.	v. o.
EO S	000	000	000	0000	00	~ ~
1.1.1 83	. 55 . 44	. 27	9.0.6	9.0	36.	w 83
in Adenocarcinoma s76 s53 s83 s92	000	000	л 0	0 1 0 1	00	70
ပ္က က	09 43 50	24 24 3	63 65 36	61 70 78 08 63	17 26	52 13
Jen s5	9.0	000	000	4440	00	00
و ب ه	50 75 95	26 95 61	52 49 59	85 43 72 69	39	42 91
in s7	000	цо. 0.	000	O 3	о. Ч	. o
н	PT 0.08 0.26 0.08 0.91 0.08 0.50 0.09 0.41 0.02 0.92 0.74 PT 0.00 1.48 0.15 2.57 0.04 0.75 0.43 0.55 0.24 2.00 1.04 MT 0.07 0.36 0.12 1.81 0.04 0.95 1.50 0.44 0.57 1.38 1.36	UN 0.11 1.33 0.54 4.16 0.28 1.26 0.24 1.42 0.18 2.23 0.54 UN 0.03 2.09 0.19 0.83 0.05 0.95 0.14 0.27 0.00 0.53 0.79 PT 0.11 0.96 0.24 1.51 0.08 0.61 0.13 0.52 0.05 0.64 0.45	UN 0.12 2.04 0.51 3.70 0.21 0.52 0.63 1.87 0.54 6.11 0.65 UN 0.04 1.48 0.24 2.32 0.09 0.49 0.65 1.06 0.98 3.67 0.56 PT 0.08 0.96 0.35 2.50 0.13 0.59 0.36 0.99 0.61 3.59 0.37	PT 0.11 0.65 0.20 2.93 0.07 5.85 1.61 0.93 0.73 3.67 2.02 0.87 1.80 PT 0.06 0.76 0.34 4.72 0.16 1.43 2.70 1.16 0.61 4.46 1.40 0.37 2.67 PT 0.15 6.85 0.26 2.96 0.08 3.72 2.08 0.64 0.41 3.24 2.09 0.60 4.41 UN 0.03 1.20 0.32 4.56 0.19 0.69 0.63 1.07 0.41 2.43 0.78 0.13 0.30	Ad PT[0.06 1.52 0.19 1.26 0.15 0.39 0.17 0.26 0.00 0.51 0.14 0.00 1.40 Ad PT[0.07 0.76 0.30 1.02 0.07 1.12 0.26 0.36 0.08 0.32 0.17 0.03 3.30	Ad UNIO.12 2.01 0.37 3.94 0.13 0.42 0.52 1.33 0.59 7.94 0.93 0.14 3.30 Ad PTIO.09 1.04 0.19 1.85 0.05 0.91 0.13 0.53 0.07 2.59 0.58 0.17 1.75
:9e :42	0.00	2.00	0.0	9.6.6	0	۲. ٥
thought larger s36 s40 s42		9 6 4	0 7 0	8 2 9 9	9 2	4-10
., 64	or iv ee	4 80 (0)	٠. w. ٠.	9,49,0	0.7	9, 89
gh s	0 7 4	404	W 44 4	4444	44	т П
36 36	95.7	24	24	32	9.5	37
	000	000	000	0000	00	00
אַ פּ	26 48 36	33 09 96	0 4 8 8 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9	65 76 85 20	52 76	01
8.52 S.52	0 4 0	2.60	0.10	0. 9.	ب. 0.	2.4
a it.	08 00 07	111	12 04 08	11 06 03 03	90	12 09
In S4	000	000	000	0000	00	00
<u> </u>	프	N N N	N N N	FFF	Et Et	N F
년 10 13	Sq 1 Sq 1 Sq 1	59 1 89 1 89 1	54 t	Ad E	70 73	שכ
מ מ	พัพัพ	พัพัพั			ĀĀ	ă ă
. st	<u>'</u> 4 w w	нмм	226	4488	ო ო _	H W
pat stg di Initially ient ag so s43 s29	Duc Mor Chi	Cav Wae Dur	Arc Por Guy	Del Bog Des Suc	Coul Bon	Ber 1 1 Dam 3 1
ΩÄ			מֿמֿס		υğ	à Ã
group gel	155 143 156	180 171 179	225 235 237	141 150 144 158	167	241
grc c	444		000	4444 4444	# # T T	C C
•			J J J I	~~~~	Per 104	9

TABLE 3 (Cont'd)

	. 50 . 50 . 35 . 11	34 76 49	4 9 8	8 6 9	S
s96	0.16 0.49 0.50 0.88 0.35	2.34 1.76 0.49	1.74 2.36 .898	. 621 1. 69 . 52	.015
s 001s	0.01 0.13 0.17 0.05 0.00	0.14	.182 .287 .058	.003	.078
	0.33 (0.43 (0.75 (0.85 (0.66 (0.64 (0.13 (0.10 (.721 1.01 .513	.096 .579 .076	.127
s 8 4	00000	0 00		-, -; -, 	• •
5.04	0.20 0.06 0.45 0.59 0.63	0.62	3.14	3.34 5.83	.032
. 8	0.00 0.00 0.00 0.13 0.00	0.00	.354 2.34 .385 3.14 .043 .793	.113 3.34 .096 5.81 .007 .430	. 024
rcinor s83	0.13 0.07 0.15 0.26 0.20 0.20	0.29	.837 .784 .297	.292 .155	.021 .024
in Adenocarcinoma s76 s53 s83 s9	0.00 0.13 0.09 0.32	0.39 0.22 0.29 0.00 0.62 0.22 0.11 0.40 0.00 1.54 0.24 0.20 0.94 0.20 2.12	.463 1.01	.195 .968 .011	.020
in Ade s76 s	4.00 0.71 0.16 0.25 0.25	0.39 (0.22 (0.24 (.736 1.81 .706	3.79	.166
	0.03 0.00 0.02 0.01 0.03 0.00	0.09 0.00 0.00 0.00 0.00	111.	.000	.013
æ	0.26 0.18 0.41 0.99 0.58 0.87	1.00 0	2.25 . 2.90 . .870 .	1.30 . 2.06 . .350 .	.002
thought s36 s40	0.18 (0.09 (0.04 (0.17 (0.17 (0.14 (0.17 1 0.31 1 0,26 1	.270 .271 .168	.005	.120
	0.22 0.28 0.30 0.41 0.21 0.59	1.07		.423 4.28 .205	.144
g di Initially ag so s43 s29	00.000	UN 0.00 PT 0.14 MT 0.00	.070 .085	Sql.001 Adj.001 SCj.002	-values .006
sol	H H H H H H H H H H H H H H H H H H H	UNI PTI MTI	Sq.	Sq!	es
di. ag	8 8 8 8 8 8 8 8 8 8	သင္လ နင	ans	anc	aln
- s	W 4 4 4 4 V	m m 44	Mea Mea	ria ria ria	P-4
pat ient	Bai Cha Bri Moy Boua Couc	Boul Ney Pil	111	- vari - vari - vari	1
group gel	145 146 148 151 152	164 224 242	111	1 1 1	i i
<u> </u>	**	m 00	111	111	i

TABLE 4

oma.					•	
in Adenocarcinoma. s68 s75	30 28 28	4 65 62 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 42 35	1 4 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40	0.60
eno(s7	000	000	000	0000	00	00
n Ades	0.02 0.05 0.09	0.06 0.03 0.03	0.09 0.01 0.03	0.06	0.07	0.17
big i	0.06 0.00 0.01	0.14 0.12 0.06	0.06 0.10 0.00	0.12 0.06 0.06 0.03	0.50	0.05
also s49	0.09 0.17 0.12	0.12 0.21 0.11	0.35	0.18 0.21 0.25 0.13	0.28	0.31
	0.39 0.52 0.14	0.59 0.59 0.63	0.51 0.38 0.56	0.22 0.26 0.27 0.37	0.16 0.46 0.36 0.42	0.32
that s41	0.06 0.09 0.06	0.45 0.33 0.17	0.11 0.06 0.10	0.07 0.25 0.34 0.11	0.16 0.36	0.12
except that 103 s33 s41 s48	0.15 0.00 0.00	0.00	0.00	0.00	0.00	0.00
cell e	0.10 0.16 0.00	0.10	0.05 0.10 0.00	0.10 0.15 0.15	0.12	0.39
Small C 2 s27	0.00	0.05	0.06 0.06 0.03	0.03	0.00	0.18
in Sm s22	0.15 0.21 0.07	0.11 0.09 0.15	0.13 0.05 0.10	0.19 0.06 0.21 0.14	0.18	0.11
rger s17	0.23 0.16 0.04	0.49 0.12 0.80	0.35 0.28 0.22	0.09 0.00 0.14	0.57	0.05
thought lassif	0.59 0.53 0.30	0.16	0.49	0.33 1.01 0.78 0.19	0.03	1.16
thoug s15	0.38 0.26 0.11	0.22 0.16 0.31	0.37 0.28 0.05	0.48 0.40 0.26 0.12	0.11	0.10 1.16
ally s14	0.30 0.18 0.24	0.22 0.14 0.25	21 11 06	0.26 0.31 0.35 0.12	0.00	0.37
Initial S103 s14	0.18 0.23 0.00	0.50 0.20 0.39	.30 .48	. 79	.32	.43
S	PT 0 PT 10 MT 10	UNIC	UNIO UNIO PTIO	PTIO PTIO PTIO	PT 0 PT 0	OI ND
stg di ag	3 Sq 3	1 Sq 3 Sq 3 Sq	2 Sq 2 Sq 3 Sq	3 Ad 3 Ad 3 Ad 3 Ad	3 Ad	1 Ad 3 Ad
_pat s ient	Duc Mor Chi	Cav Wae Dur	Arc Por Guy	el og uc	Coul	er
group p	155 D 143 N 156 O	180 C 171 W 179 D	25 35 37	5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	167 C 172 B	241 B 234 D
gr.	444		000		# #	00

TABLE 4 (Cont'd)

nou.						
except that 103 also big in Adenocarcinom s33 s41 s48 s49 s50 s68 s75	0.30 0.56 0.84 0.41 0.32	0.49	0.92	.455 .588	.007 .005 .055	.046
Aden 68 s	0.14 0.20 0.28 0.16 0.14	1.15			.000	000
19 1n 50 s(0.35 0.87 0.36 0.36 0.36 0.44	.44 (0.56 (0.75 (.061 .045 .114 .097 .658 .191	.002	000
150 D 49 s	.04 .11 .27 .35 .35	0.36 0.44 0.15	0.05	.150 .242 .245	.009	299
103 a 48 s	0 0.16 0.33 0.22 0 2 0.21 0.44 0.61 0 0 0.27 0.35 0.54 0 9 0.18 0.13 0.49 0 0 0.11 0.23 0.23 0 9 0.05 0.08 0.57 0	0.64	0.25 0.33 0.07 0.21 0.49 0.05 0.56 0.13 0.09 0.12 0.00 0.16 0.55 0.29 0.75 0.27	.077 .023 .157 .477 .150 .169 .000 .187 .328 .242 .456 .117 .249 .483 .245	.023 .007 .023	000 000 000 000 000 000 000 000 000 00
that :41 s	0.33 (0.44 (0.35 (0.13 (0.13 (0.08 (0.13 (0.32 0.64	0.21	157 187 249	. 018 .023 . 013 .007	797
ccept	0.16 0.21 0.27 0.18 0.10	00.0	0.00	.023 .000 .117	.002	000
Cell es	0.50 0.32 0.50 0.49 1.00	0.45	0.33	.077 .169	.003 .010 .056	000
111 Ce	0.12 0.21 0.29 0.22 0.23	0.44	0.25	.039	.001	000
in Small s22 s27	0.13 0.42 0.44 0.39 0.25	0.12	0.37	.118	.002	000
rger i	0.53 0.96 0.83 0.68 0.75	1.23	1.94 1.82 0.44 1.59 0.37 0.20 0.48 0.83 0.67 0.04	. 299 . 202 . 874	.052 .039	000
thought larger s15 s16 s17	1 1.06 0.53 0 1.84 0.96 1 1.95 0.83 0.60 0.68 1 1.15 0.75	0.29	0.44	.364 .504 1.04	.032 .177 .335	900
thougl s15 :	0.64 1.10 2.67 1.28 3.31 0.48	0.46	1.82 0.48	.188 .239 .220 .216 .915 1.35	5 .012 .032 5 .022 .177 5 1.08 .335	000
group pat stg di Initially gel ient ag so s103 s14	0.47 0.83 2.35 0.86 0.70	0.67	1.94	.188 .220	.005 .016 .556	003
. Initisologia	MT 0.10 MT 1.02 MT 0.24 MT 0.45 MT 0.79	UN 10.53	PT 0.22 MT 1.02	.266 .449 .521	Sql.027 Adj.030 SCj.120	P-vz]mes 000
30.1	H H H H H H H H H H H H H H H H H H H		PT MT	Sq Ad SC	Sql Adl SCl	201
pat stg di ient ag	S S S S S S	သွင	နွင့ နွင့	Means Means Means	varianc varianc varianc	ננאט
: st 	W 44 44 44 44 44 44 44 44 44 44 44 44 44	1 3	(L) 44	N N N	varianc varianc varianc	ا م
patien	Bai Cha Bri Moy Boua Couc	Boul	Ney Pil	111		1
gel	145 146 148 151	164	224	1 1 1	1 1 1	1
Z		_				•

w	
ш	
8	
⋖	
. 7	

s106	0.52 0.46 0.41	0.30 0.55 0.34	0.44 0.24 0.15	0.24 0.25 0.64 0.19	0.29	0.55
898 :	0.58	0.16	0.36	0.45 0.33 0.64	0.13	0.62
s 76s	0.22 0 0.34 0	0.55 C 0.71 C 0.40 C	0.57 C 1.18 C 0.27 C	0.43 C 0.43 C 0.52 C	0.17 (0.07)	50 (
s 96 s	97 46 00	332 48 88	0.23 0 0.19 1 0.38 0	0.50 0.15 0.16 0.16 0.16	0.24 C	0.44 0.50
ı,	31 0. 34 0. 22 0.	0.73 0. 0.15 0. 0.22 0.	1.53 0 0.19 0 0.21 0	0.64 0 0.43 0 0.26 0	0.59 0	32 0
88	000		400	7000	00	0 0
\$105	0.46 0.30 0.43	0.34 0.20 0.37	0.28 0.20 0.15		0.35	0.17 0.32
581	0.10 0.11 0.00	0.10 0.27 0.41	0.00	0.00	0.17	0.12
574	0.11 0.27 0.15	0.09 0.00 0.13	0.15 0.30 0.19	0.36 0.00 0.24 0.19	0.00	0.20
cell.	0.09	0.09	0.00	0.15 0.13 0.00 0.25	0.08	0.11
	0.08 0.41 0.04	10 07 36	27 04 05	0.43 0.19 0.66 0.09	11	07 (0.
Small s s67		004	0 0 0	0000	0.0	0 0
in s66	0.00 0.00 0.31	0.28 0.27 0.64	0.23 0.34 0.21	0.00 0.19 0.38 0.48	0.58	0.05 0.07
larger s61	0.32 0.00 0.00	0.23 0.14 0.29	0.07 0.07 0.06	00.00	0.15	0.16
at la s59	1.35 0.84 0.34	2.03 0.93 2.35	0.85 1.58 1.04	0.94 0.55 0.35 0.91	1.82	1.19
thought l s58 s59	0.71	0.78 0.68 1.64	0.46 (0.32] 0.44]	34 47 117 65	0.77]	0.48 1
		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0000	4 0	0 0
Initially s47 s57	0.60 0.31 0.14	0.5 0.4 0.7	0.4	0.40 0.54 0.34	0.4	0.36
nit 47	10.29	10.20 10.15	10.11 10.14 10.16	.16 .07 .10	.12	.42
စိ	PT 0 PT 0 MT 0	UNIO UNIO PTIO	UN O UN O PT O	PTIO PTIO UNIO	PT10.12 PT10.25	UN 10.42
di ag		გ ა გ ა	% % %	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ad	Ad
stg 	нмм	нвы	999	4000	mm	<u>ц</u> е
pat stg ient a	Duc Mor Chi	Cav	Arc Por Guy	Del Bog Des Suc	Coul	Ber Dam
group gel	55 43 56	180 171 179	225 235 237	44 58 58	167	41
gr(444		000	4444 4444	а п п	C 2

TABLE 5 (Cont'd)

s106	0.88 1.56 0.92 0.95	96.0	0.59	.380 .345	.017 .025 .145	.001
60	000 000 000 000 000 000	0.43	0.21	.367 .369 .808	.012	.005
1 s9.	0.17 1. 1.74 0. 1.65 1. 1.33 1. 0.16 0.	0.860	63 0	. 374	.116 .026 .341	.042
s97	6 0. 28 1. 32 1. 25 0.		7 0.47 0.63 7 0.36 0.63	75 .4 63 .3 06 .1		
s 8 6	0.76 1.01 1.98 1.92 1.92	1.35	00	.375 .263 1.06	.070	.001
s85	0.35 1.27 1.31 0.66 0.49	0.29	0.3	.434 .710 .610	.200 .825 .183	. 652
s105	0.45 0.83 1.15 0.88 1.08	0.39	0.34	.302 .376 .657	.011 .035	.007
s81 :	0.21 0.74 0.55 1.03 0.74	0.21	0.30	.121 .130	.018 .069 .096	.010
s74 s	0.32 0.82 0.43 0.43	0.24	0.15	.154	.008	.046
cell. s73 s	0.16 0.28 0.44 0.21 0.25 0.19	0.08	0.12 0.15	.046 :095 .209	.001	.001
O	1.32 (0.07 (1.50 (1.95 (1.30 (1.23	0.81	.268 .203 1.08	.050 .397	000
Small 6 s67	60 17 14 07 50	0.77	25 (51 (253 252 860	036	
in s6	044040		0.25			.002
rger s61	0.68 1.38 1.03 0.27 0.63	0.45	0.07	.132 .100	.014	.001
nt 12 s59	1.35 3.75 2.84 2.40 3.39 2.46	2.47	1.36 1.91	1.25 1.06 2.43	.405 .238 .677	000
thought larger s58 s59 s61	0.74 1.34 1.36 1.36 0.69	1.42	1.11 1.36 0.66 1.91	.616 .466 1.09	.189 .033	.001
Initially sols47 s57	0.38 0.95 1.53 0.74 0.87	0.66	0.74	.435 382 929	.032 .006 .148	000
niti 17	34471		PT 0.32 MT 0.21	151 175 385	.005	
11r	MT 0.33 MT 0.51 MT 0.51 MT 0.34 WI 0.34	UN 10.40	0.0	1		3.1.
di g			Z Z	1		Lues
stg di : I ag so	8 4 4 8 8 C C C C C C C C C C C C C C C	3 SC	3 SC 4 SC	Means Means Means	ian(fan(ian(-Va
pat st ient	Bai Cha Bri Moy Boua Couc	Boul	Ney Pil	X X X	varianc varianc varianc	P-values1.000
roup p			4 7 Z U		111	1
group gel	нанана	164	224		1 1 1	i
<u>p —</u>	**	m	ပပ	i	1 1 1	1

CLAIMS

We claim:

- 1. A protein which is overexpressed in lung tumors compared to non-tumor tissue selected from the group consisting of Spot 14, 15, 16, 17, 21, 22, 27, 29, 31, 33, 40, 42, 43, 47, 50, 53, 57, 58, 59, 61, 62, 66, 68, 73, 74, 79, 81, 83, 84, 86, 90, 94, 95, 96, 97, 98, 100, 101, 102, 105 and 106.
- 2. An antibody or antigen binding fragment thereof which specifically binds a protein of claim 1.
- 3. A method of screening for, establishing subtype of, or monitoring the progression of lung tumor comprising:
- a) determining an amount of at least one protein selected from the group consisting of Spot 14, 15, 16, 17, 21, 22, 27, 29, 31, 33, 40, 42, 43, 47, 50, 53, 57, 58, 59, 61,62, 66, 67, 68, 73, 74, 79, 80, 81, 83, 84, 86, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102,105, 106, 107 and 109 in an animal or human or in a sample from an animal or human; and
- b) correlating the amount with the presence, subtype, or stage of lung tumor.
- 4. The method of claim 3 wherein the amount of said protein is determined with an immunological assay.
- 5. The method of claim 3 wherein the amount of said protein is determined with 2-D gel electrophoresis.
- 6. The method of claim 3 wherein said at least one protein is a plurality of proteins selected from the group consisting of Spot 14, 15, 16, 17, 21, 22, 27, 29, 31, 33, 40, 42, 43, 47, 50, 53, 57, 58, 59, 61, 62, 66, 67, 68, 73, 74, 79, 80, 81, 83, 84, 86, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107 and 109 in an animal or human or in a sample from an animal or human.
- 7. The method of claim 6 wherein the amounts of proteins are determined with an immunological assay.

- 8. The method of claim 6 wh rein the amounts of proteins are determined with 2-D gel electrophoresis.
- 9. A method of making an antibody or antigen binding fragment thereof which specifically binds a protein of claim 1, comprising:
 - a) immunizing an animal with a protein of claim 1;
 - b) collecting serum from said animal; and
- c) isolating an antibody or antigen binding fragment which specifically binds a protein of claim 1 from the serum.
- 10. A method of making a monoclonal antibody or antigen binding fragment thereof which specifically binds a protein of claim 1, comprising:
 - a) immunizing an animal with a protein of claim 1;
 - b) isolating splenocytes from the animal;
 - c) fusing said splenocytes with myeloma cells;
 - d) growing the fused cells;
- e) testing the fused cells for antibodies which specifically bind a protein of claim 1; and
- f) isolating any antibody or an antigen binding fragment which specifically binds a protein of claim 1.
- 11. A method of detecting tumor tissue in a tissue section comprising:
- a) treating a tissue section with an antibody specific for an epitope formed by heterodimerization of MRP8 and MRP14;
 - b) washing away any unbound antibody; and
- c) determining the amount of bound antibody in the tissue section as an indication of the presence of tumor tissue.
 - 12. The method of claim 11 wherein the tumor is a lung tumor.

- 13. A method of detecting a tumor in an animal or human comprising:
- a) separating proteins in a serum sample from said animal or human;
 - b) transferring said proteins to a membrane;
- c) probing said proteins with an antibody specific for an epitope formed by heterodimerization of MRP8 and MRP14;
 - d) determining the amount of bound antibody;
 - e) integrating the intensity of reactivity in a band; and
- f) correlating the integrated intensity with the presence or stage of tumor.
 - 14. The method of claim 13 wherein the tumor is a lung tumor.
 - 15. The method of claim 14 wherein said band is 14 kDa.
- 16. An isolated gene encoding for a protein of claim 1, wherein said protein comprises an amino acid sequence selected from the group consisting of
 - a) Seq. ID No. 1;
 - b) Seq. ID No. 2;
 - c) Seq. ID No. 5;
 - d) Seq. ID No. 6; and
 - e) Seq. ID No. 8.
- 17. A method of treating tumor in an animal or human in need thereof comprising:
- a) conjugating the antibody or antigen binding fragment thereof as described in claim 2 with a radioactive substance, toxin or anti-tumor drug;
 and
- b) administering an effective amount of the conjugate into said animal or human.

- 18. A method of treating tumor in an animal or human in need thereof comprising:
- a) exposing immunocompetent cells from the animal or human to at least one protein selected from the group consisting of Spot 14, 15, 16, 17, 21, 22, 27, 29, 31, 33, 40, 42, 43, 47, 50, 53, 57, 58, 59, 61, 62, 66, 67, 68, 73, 74, 79, 80, 81, 83, 84, 86, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107 and 109; and
- b) injecting said immunocompetent cells into the animal or human to treat a tumor.

1/3

FIG. 1

b6155 Squamous cell lung cancer sample "Duc"

2/3

FIG. 2

Ab6148,Classical small cell lung cancer "Bri"

3/3

FIG. 3

b6141 Adenocarcinoma sample "Del"

In: itional Application No PCT/IB 98/00361

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07K14/00 C07K16/18 G01N33/574 A61K39/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07K G01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ T. HIRANO ET AL: "Detection of 1-10,17,polypeptides associated with the histopathological differentiation of primary lung carcinoma" BRITISH J. CANCER. vol. 72, 1995, pages 840-848, XP002070782 see the whole document 11-15 X B. FRANZEN ET AL: "Two-dimensional 1-10,17,polyacrylamide gel-electrophoresis of 18 human lung cancer" ELECTROPHORESIS, vol. 12, 1991, pages 509-515, XP002070783 Υ see the whole document 11-15 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to Involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 8 July 1998 27/07/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Cervigni, S

1

in tilonal Application No PCT/IB 98/00361

Citation of document, with indication, where appropriate, of the relevant passages US 5 171 665 A (MARQUARDT HANS ET AL) 15	Relevant to claim No.
	1-10 17
December 1992 see the whole document	1-10,17,
US 5 019 497 A (OLSSON LENNART) 28 May 1991 see the whole document	1-10,17, 18
EP 0 184 906 A (NOVO INDUSTRI AS) 18 June 1986 see the whole document	1-10,17, 18
EP 0 695 760 A (HOFFMANN LA ROCHE) 7 February 1996 see the whole document	1-10,17, 18
Database: Emest9 ID: HSAA83401 AC:AA181619 Homo sapiens cDNA clone 613065 5' XP002070784 *compare with seq ID n 2*	16
Database: Emest8 ID: HS845338 AC:W24845 Homo sapiens cDNA clone 308303 5' XP002070785 *compare with seq ID n 6*	16
EP 0 585 201 A (BMA BIOMEDICALS AG) 2 March 1994 see the whole document	11-15

INTERNATIONAL SEARCH REPORT

international application No.

PCT/IB 98/00361

B x I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 17,18 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Ir atlorial Application No PCT/IB 98/00361

				i i	,
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5171665	Α	15-12-1992	AU	639458 B	29-07-1993
,			AU	5671490 A	16-11-1990
			CA	2014304 A	17-10-1990
			EP	0597829 A	25-05-1994
			GR	90100221 A,B	27-09-1991
			IL	93840 A	31-07-1995
			JP	4505102 T	10-09-1992
			PT	93776 A	08-02-1991
			WO	9012594 A	01-11-1990
US 5019497	Α	28-05-1991	AU .	4949085 A	15-05-1986
			DK	514985 A	10-05-1986
			EP	0184906 A	18-06-1986
			FI	854405 A	10-05-1986
			PT	81454 B	17-09-1987
			JP	61160060 A	19-07-1986
EP 0184906	Α	18-06-1986	AU	4949085 A	15-05-1986
			DK	514985 A	10-05-1986
			FI	854405 A	10-05-1986
			PT	81454 B	17-09-1987
			US	5019497 A	28-05-1991
***************************************			JP	61160060 A	19-07-1986
EP 0695760	Α	07-02-1996	WO	9604302 A	15-02-1996
EP 0585201	Α	02-03-1994	CH	685959 A	15-11-1995