Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs [1]

Никита Свербягин

НИУ Высшая Школа Экономики

17 октября 2019 г.

План

- 📵 Введение. Общая идея
- 2 Обнаруженное свойство функций потерь
- Поиск кривых с низкими значениями функции потерь между двумя оптимумами
- Эксперименты с поиском кривых
- 5 Fast Geometric Ensembling
- 6 Эксперименты с Fast Geometric Ensembling
- Выводы

Введение

В машинном обучении всё основано на оптимизации некой функции потерь. Проблемы функции потерь:

- зависит от миллионов параметров.
- Геометрические свойства практически не изучены
- Количество локальных экстремумов и седловых точек очень велико и может расти экспоненциально от количества параметров
- Вдоль отрезков, соединяющих локальные оптимумы, значения функции потерь велики.

Общая идея

Авторы статьи предлагают технику построения ансамбля, очень похожую на технику под названием Snapshot Ensembling [2].

Обнаруженное свойство функций потерь

функция потерь ResNet-164 на CIFAR-100 с L2-регуляризацией.

Обнаруженное свойство функций потерь

- Существуют пути, вдоль которых сохраняются низкие значения функции потерь
- Более того, существуют очень простые пути, например кривая из двух отрезков одинаковой длины.

Поиск кривых с низкими значениями функции потерь между двумя оптимумами

Введем нужные обозначения:

- ullet $w_1,w_2\in\mathbb{R}^{|net|}$ два локальных оптимума функции потерь $\mathcal{L}(w)$
- $\phi_{ heta}:[0,1] o\mathbb{R}^{|net|}$ кривая, соединяющая w_1 и w_2 , такая, что $\phi_{ heta}(0)=w_1,$; $\phi_{ heta}(1)=w_2$
- ullet параметры кривой

Формулировка задачи поиска кривой

Будем искать такой набор параметров θ , который минимизирует математическое ожидание функции потерь при равномерном распределении вдоль кривой.

$$egin{aligned} l(heta) &= rac{\int \mathcal{L}(\phi_{ heta}) d\phi_{ heta}}{\int d\phi_{ heta}} \ &= rac{\int\limits_{0}^{1} \mathcal{L}(\phi_{ heta}(t)) \|\phi_{ heta}'(t)\| dt}{\int\limits_{0}^{1} \|\phi_{ heta}'(t)\| dt} \ &= \int\limits_{0}^{1} \mathcal{L}(\phi_{ heta}(t)) q_{ heta}(t) dt \ &= \mathbb{E}_{t \sim q_{ heta}(t)} \mathcal{L}(\phi_{ heta}(t)) \end{aligned}$$

Формулировка задачи поиска кривой

$$q_{ heta}(t) = \|\phi_{ heta}'(t)\| \left(\int\limits_0^1 \|\phi_{ heta}'(t)\| dt
ight)^{-1}$$
 распределение t , соответствующее равномерному распределению вдоль кривой. Для некоторых кривых

$$\mathbb{E}_{t \sim q_{\theta}(t)} \mathcal{L}(\phi_{\theta}(t)) = \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathcal{L}(\phi_{\theta}(t))$$

Например, для кривой из двух отрезков одинаковой длины.

Процесс подбора параметра кривой θ

- f O Сэмплируем $\hat t \sim \mathcal U(0,1)$
- $oldsymbol{\circ}$ Обновляем веса в соответствии с $abla_{ heta}\mathcal{L}(\phi_{ heta}(\hat{t}))$
- повторяем, пока не сойдется

С помощью $\nabla_{\theta}\mathcal{L}(\phi_{\theta}(\hat{t}))$ получаем несмещенную оценку $\nabla_{\theta}l(\theta)$, т.к.

$$\nabla_{\theta} \mathcal{L}(\phi_{\theta}(\hat{t})) \approx \mathbb{E}_{t \sim \mathcal{U}(0,1)} \nabla_{\theta} \mathcal{L}(\phi_{\theta}(t)) = \nabla_{\theta} \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathcal{L}(\phi_{\theta}(t)) = \nabla_{\theta} l(\theta)$$

Параметризация кривой

Параметризация кривой, состоящей из двух отрезков:

$$\phi_{\theta}(t) = \begin{cases} 2(t\theta + (0.5 - t)w_1), & 0 \leqslant t \leqslant 0.5\\ 2((t - 0.5)w_2 + (1 - t)\theta), & 0.5 < t \leqslant 1 \end{cases}$$

Описание экспериментов

Все эксперименты, показанные дальше, проводились с сетью ResNet-164 на датасете CIFAR-100.

В статье есть эксперименты с другими моделями, но все эксперименты дали похожий результат.

Эксперименты с кривыми

Рис.: Значения функции потерь на обучающей выборке вдоль кривых разного вида

Эксперименты с кривыми

Рис.: Значения ошибки на тестовой выборке вдоль кривых разного вида

Эксперименты с кривыми

Рис.: Ошибка ансамбля из двух сетей, одна из которых - $\phi_{ heta}(0)$, а вторая - $\phi_{ heta}(t)$

Выводы из экспериментов

- Т.к. эксперименты проводились на разных моделях с разными сидами, и во всех случаях находились хорошие кривые, можно предположить, что они существуют в большинстве случаев.
- ② По предыдущему слайду видно, что минимум функции потерь достигается при t=0.4. Это означает, что значительные изменения в модели проявляются при достаточно небольшом смещении от начальной модели.
- Можно генерировать ансамбль, идя вдоль кривой.

Fast Geometric Ensembling

Проблема построения ансамбля по кривым в том, что нужно независимо обученных модели.

В FGE кривые не строятся явно; используется предположение, что достаточно недалеко отойти от текущего оптимума, чтобы получить новую модель с отличиями от начальной.

Идея алгоритма: заставлять сошедшуюся модель выходить из минимума, увеличивая learning rate, затем уменьшать его и при его уменьшении до минимума сохранять очередную версию модели. Так повторяется несколько раз.

Fast Geometric Ensembling. Схема изменения learning rate

Рис.: Схема изменения LR и выбора моделей. c - количество итераций (батчей) в эпохе

Fast Geometric Ensembling. Отличие от Snapshot Ensembling

B SSE циклический LR имеет период 20-40 эпох и применяется на протяжении всего обучения. В FGE сначала находится локальный оптимум, и затем используется циклический LR с периодом 1 эпоха.

Cравнение Fast Geometric Ensembling и Snapshot Ensembling

Рис.: Крестики - отдельные модели из ансамбля, ромбы - ансамбль из всех накопленных к данному моменту моделей. $B=150\ {
m pmox}$

Сравнение разных моделей

		CIFAR-100			CIFAR-10		
DNN (Budget)	method	$\overline{1B}$	2B	3B	1B	2B	3B
VGG-16 (200)	Ind SSE FGE	27.4 ± 0.1 26.4 ± 0.1 25.7 ± 0.1	25.28 25.16 24.11	24.45 24.69 23.54	6.75 ± 0.16 6.57 ± 0.12 6.48 ± 0.09	5.89 6.19 5.82	5.9 5.95 5.66
ResNet-164 (150)	Ind SSE FGE	21.5 ± 0.4 20.9 ± 0.2 $\mathbf{20.2 \pm 0.1}$	19.04 19.28 18.67	18.59 18.91 18.21	4.72 ± 0.1 4.66 ± 0.02 4.54 ± 0.05	4.1 4.37 4.21	3.77 4.3 3.98
WRN-28-10 (200)	Ind SSE FGE	19.2 ± 0.2 17.9 ± 0.2 17.7 ± 0.2	17.48 17.3 16.95	17.01 16.97 16.88	3.82 ± 0.1 3.73 ± 0.04 3.65 ± 0.1	3.4 3.54 3.38	3.31 3.55 3.52

Рис.: Сравнение ошибки разных моделей с различными техниками ансемблирования; при бюджете kB модель независимо запускается k раз

ImageNet

Основной фокус авторов был на датасете CIFAR, но был проведен эксперимент с предобученной ResNet-50. Они запустили FGE на 5 эпох и это позволило уменьшить топ-1 ошибку на тесте на 0.56%

Выводы

- Между локальными минимумами функции потерь существуют простые пути, вдоль которых функция потерь остается низкой, но при этом модели имеют различия в разных точках кривой.
- На этом факте основан алгоритм Fast Geometric Ensembling.
- Данный алгоритм хорош, когда вычислительные мощности ограничены - он позволяет получить ансамбль, обучая одну модель.

Вопросы

- Алгоритм поиска кривой: формула функции потерь, что представляет собой итерация поиска кривой?
- Поиск среди кривых простого вида (два соединенных отрезка равной длины): как это позволяет упростить функцию потерь?
- Описание алгоритма Fast Geometric Ensembling.
- Как Fast Geometric Ensembling связан с поиском кривых?

Источники

- Timur Garipov и др. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. 2018. arXiv: 1802.10026 [stat.ML].
 - Gao Huang и др. "Snapshot Ensembles: Train 1, get M for free". в: CoRR abs/1704.00109 (2017). arXiv: 1704.00109. URL: http://arxiv.org/abs/1704.00109.