Propagating non-Markovian memory effects across spacetime with long-range tensor network models for open quantum systems

Thibaut LACROIX tfml1@st-andrews.ac.uk

Light-matter Interactions from scratch 22/11/2021

Biological Quantum Systems

Light-Harvesting Complexes

(Non-)Markovian Environment

Markovian

• $\tau_E << \tau_S$

Non-Markovian

• $\tau_E \sim \tau_S$

(Non-)Markovian Environment

Markovian

- $\tau_E << \tau_S$
- Weak Coupling

Non-Markovian

- $\tau_{\sf E} \sim \tau_{\sf S}$
- Strong Coupling

(Non-)Markovian Environment

Markovian

- $\tau_E << \tau_S$
- Weak Coupling
- Time-Local Master Equations (e.g. Lindblad)

Non-Markovian

- $\tau_{\text{E}} \sim \tau_{\text{S}}$
- Strong Coupling
- Non time-local Master Equations

Simplified Model

$$\hat{H} = \sum_{\alpha=1}^{N} E_{\alpha} |\alpha\rangle \langle \alpha|$$

$$\hat{H} = \sum_{\alpha=1}^{N} E_{\alpha} \left| \alpha \right\rangle \left\langle \alpha \right| + \sum_{\alpha=1}^{N-1} J\left(\left| \alpha \right\rangle \left\langle \alpha + 1 \right| + \text{h.c.} \right)$$

$$\begin{split} \hat{H} = & \sum_{\alpha=1}^{N} E_{\alpha} \left| \alpha \right\rangle \left\langle \alpha \right| + \sum_{\alpha=1}^{N-1} J\left(\left| \alpha \right\rangle \left\langle \alpha + 1 \right| + \text{h.c.} \right) \\ & + \int_{-k_{c}}^{+k_{c}} \omega_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} \mathrm{d}k \end{split}$$

$$\begin{split} \hat{H} &= \sum_{\alpha=1}^{N} E_{\alpha} \left| \alpha \right\rangle \left\langle \alpha \right| + \sum_{\alpha=1}^{N-1} J\left(\left| \alpha \right\rangle \left\langle \alpha + 1 \right| + \text{h.c.} \right) \\ &+ \int_{-k_{c}}^{+k_{c}} \omega_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} \mathrm{d}k + \sum_{\alpha} \left| \alpha \right\rangle \left\langle \alpha \right| \int_{-k_{c}}^{+k_{c}} (g_{k} \mathrm{e}^{\mathrm{i}kr_{\alpha}} \hat{a}_{k} + \text{h.c.}) \mathrm{d}k \end{split}$$

Methods

Environment-Chain Mapping

Chin et al., J. of Math. Phys. 51(9), 092109 (2010)
Tamascelli, et al., Phys. Rev. Lett., 123(9), 090402 (2019)
Lacroix et al., Phys. Rev. A, 104(5), 052204 (2021)

Environment-Chain Mapping

$$egin{aligned} \hat{H}_B + \hat{H}_{ ext{int}} &= \sum_n \omega_n (\hat{c}_n^\dagger \hat{c}_n + \hat{d}_n^\dagger \hat{d}_n) \ &+ t_n (\hat{c}_n^\dagger \hat{c}_{n+1} + \hat{c}_{n+1}^\dagger \hat{c}_n + \hat{d}_n^\dagger \hat{d}_{n+1} + \hat{d}_{n+1}^\dagger \hat{d}_n) \ &+ \sum_lpha |lpha
angle \left$$

Diagrammatic Notation

Tensor Network

$$|\psi\rangle = \sum_{\{i_k\}} \sum_{\{\alpha\}} T_{i_1}^{\alpha_1} T_{i_2}^{\alpha_1 \alpha_2} T_{i_3}^{\alpha_2 \alpha_3} \dots T_{i_N}^{\alpha_{N-1}} |\phi_{i_1} \dots \phi_{i_N}\rangle$$

$$\hat{H} = \sum_{\{\sigma\}, \{\sigma'\}, \{w\}} W_{1 \ w_{1}}^{\sigma_{1}\sigma'_{1}} W_{2 \ w_{1}w_{2}}^{\sigma_{2}\sigma'_{2}} \dots W_{N \ w_{N-1}}^{\sigma_{N}\sigma'_{N}} |\sigma_{1} \dots \sigma_{N}\rangle \langle \sigma'_{1} \dots \sigma'_{N}| .$$

Results

Couplings $\gamma_n(R)$ at Zero Temperature

Non-Markovian Dynamics

Lacroix et al., Phys. Rev. A, 104(5), 052204 (2021)

Environment Feedback

Environment Feedback II

Finite Temperature

Finite Temperature II

Conclusion

Conclusion

- Spatially extended system in a common environment
- MPS/MPO representation of $S = \{\text{system} + \text{environment}\}$
- Spatially correlated environment
- Zero- and finite-temperature
- Multi-sites dynamics & different topologies
- Allostery & other biological processes

Thank you for your attention!

tfml1@st-andrews.ac.uk

Acknowledgment: A. Dunnett (Sorbone U.), D. Gribben (St Andrews), B. Lovett (St Andrews) & A. Chin (Sorbonne U./CNRS).

This work is supported by dstl.

You want to know more?

Time-Dependent Variational Principle

$$\frac{\partial}{\partial t} |\psi\rangle = -\mathrm{i}\hat{P}_{T_{|\psi\rangle}} \hat{H} |\psi\rangle$$

Haegeman et al., Phys. Rev. Lett. 107(7), 070601 (2011)

Dunnet, MPSDynamics.jl, github.com/angusdunnett/MPSDynamics/

Matrix Product Operator I

The matrices W_k define the Hamiltonian MPO

$$\hat{H} = \sum_{\{\sigma\}, \{\sigma'\}, \{w\}} W_{1 \ w_1}^{\sigma_1 \sigma'_1} W_{2 \ w_1 w_2}^{\sigma_2 \sigma'_2} \dots W_{N \ w_{N-1}}^{\sigma_N \sigma'_N} |\sigma_1 \dots \sigma_N\rangle \langle \sigma'_1 \dots \sigma'_N| .$$

with, for the system

$$W_{1 < \alpha \le N} = \begin{pmatrix} \hat{\mathbb{1}} & J \hat{f}_{\alpha}^{\dagger} & 0 & 0 & \stackrel{2(\alpha - 2)}{\cdots} & |\alpha\rangle\langle\alpha| & |\alpha\rangle\langle\alpha| & E_{\alpha}|\alpha\rangle\langle\alpha| \\ & 0 & & & \hat{f}_{\alpha}^{\dagger} \\ & 0 & & & \hat{f}_{\alpha}^{\dagger} \\ & & \hat{\mathbb{1}} & & & 0 \\ & & & \ddots & & \vdots \\ & & & 0 & 0 & 0 \\ & & & \hat{\mathbb{1}} \end{pmatrix}$$

Matrix Product Operator II

And for the environment

$$W_{1 \leq n \leq N_m} = \begin{pmatrix} \hat{\mathbb{I}} & t_n \hat{c}_n^{\dagger} & t_n \hat{c}_n & 0 & 0 & \dots & 0 & \omega_n \hat{c}_n^{\dagger} \hat{c}_n \\ & 0 & & & \hat{c}_n \\ & & 0 & & & \hat{c}_n^{\dagger} \\ & & & \hat{\mathbb{I}} & & & \gamma_n^{1} \hat{c}_n \\ & & & & \hat{\mathbb{I}} & & & \gamma_n^{1*} \hat{c}_n^{\dagger} \\ & & & & \ddots & & \vdots \\ & & & & \hat{\mathbb{I}} & \gamma_n^{N*} \hat{c}_n^{\dagger} \\ & & & & & \hat{\mathbb{I}} \end{pmatrix}$$

Bath Spectral density

For an interaction Hamiltonian

$$\hat{\mathcal{H}}_{\mathsf{int}} = \hat{O} \sum_{k} (g_k \hat{a}_k + \mathsf{h.c.}) \; ,$$

the Bath Spectral Density is defined as

$$J(\omega) = \sum_{k} |g_{k}|^{2} \delta(\omega - \omega_{k}) .$$

Ohmic spectral density: $J(\omega) = 2\alpha\omega H(\omega_c - \omega)$

Incoherent Process

Incoherent Process II

