Подавление шума на изображениях с использованием алгоритма K-SVD

Никита Дроздов ВМК МГУ

9 января 2024 г.

Содержание

Разреженное кодирование

- Orthogonal Matching Pursuit
- K-SVD

Шумоподавление с помощью K-SVD

Постановка задачи разреженного кодирования

Пусть $D \in \mathbb{R}^{m \times K}$ – словарь, $y \in \mathbb{R}^m$ – сигнал.

Цель – найти разреженный вектор $\alpha \in \mathbb{R}^K$, т.ч. $||y - D\alpha||$ мала.

Можно рассматривать одну из двух постановок задачи разреженного кодирования:

$$\underset{\alpha}{\operatorname{argmin}} ||\alpha||_{0} \quad \text{subject to} \quad ||y - D\alpha|| \le \epsilon, \tag{1}$$

$$\underset{\alpha}{\operatorname{argmin}} ||y - D\alpha|| \quad \text{subject to} \quad ||\alpha||_{0} \leq T. \tag{2}$$

Здесь $||\cdot||_0 - \#$ ненулевых компонент вектора (I_0 - "норма").

Для N входных сигналов — y заменяем на матрицу $Y \in \mathbb{R}^{m \times N}$, α на $A \in \mathbb{R}^{K \times N}$. На практике словарь часто бывает переопределен (m < K).

Sparse dictionary learning (SDL)

В постановках 1 и 2 можно оптимизировать по α и D сразу (задача sparse dictionary learning). Классические алгоритмы SDL итеративно повторяют два шага:

- Обновление элементов словаря по некоторому алгоритму.

Для задания такого алгоритма нужно задать алгоритмы для обеих шагов.

Sparse dictionary learning (SDL)

В постановках 1 и 2 можно оптимизировать по α и D сразу (задача sparse dictionary learning). Классические алгоритмы SDL итеративно повторяют два шага:

- Разреженное кодирование сигналов с текущим словарем D;
- Обновление элементов словаря по некоторому алгоритму.

Для задания такого алгоритма нужно задать алгоритмы для обеих шагов.

Рассмотрим подробно этап разреженного кодирования.

Содержание

Разреженное кодирование

- Orthogonal Matching Pursuit
- K-SVD

Шумоподавление с помощью K-SVD

Matching Pursuit

Построим жадный алгоритм решения задачи разреженного кодирования (1 или 2).

Пусть $f \in E = (\mathbb{R}^m, \langle \cdot
angle)$, $D = \{d_i\}_{i=1}^K$ – словарь, причем $||d_i|| = 1 \ orall i$.

Ортопроекция $f:=R^0f$ на произвольный $d_{\gamma_{\mathbf{0}}}\in D$:

$$f = \langle f, d_{\gamma_0} \rangle d_{\gamma_0} + R^1 f$$

В силу ортогональности: $||f||^2=|\langle f,d_{\gamma_0}\rangle|^2+||R^1f||^2\Rightarrow$ для локальной минимизации $||R^1f||$ нужно выбрать $d_{\gamma_0}=\operatorname{argmax}_{d\in D}|\langle f,d\rangle|.$

Применим данную процедуру к $R^1 f$ и следующим p-2 невязкам:

$$f = \sum_{n=0}^{p-1} \langle R^n f, d_{\gamma_n} \rangle d_{\gamma_n} + R^p f.$$
 (3)

Matching Pursuit

Algorithm 1 Matching Pursuit

Require: dictionary $D \in \mathbb{R}^{m \times K}$ with elements d_i , signal $f \in \mathbb{R}^m$, stop condition

Ensure: sparse coefficient vector $\alpha \in \mathbb{R}^K$

$$\begin{split} R^0 &\leftarrow f \\ n \leftarrow 0 \\ \alpha \leftarrow \mathbf{0} \in \mathbb{R}^K \\ \text{while not stop condition do} \\ d_{\gamma_n} &\leftarrow \operatorname{argmax}_{d_k \in D} |\langle R^n, d_k \rangle| \\ \alpha_{\gamma_n} &\leftarrow \langle R^n, d_{\gamma_n} \rangle \\ R^{n+1} &\leftarrow R^n - \alpha_{\gamma_n} d_{\gamma_n} \\ n \leftarrow n+1 \end{split}$$

end while

Matching Pursuit – жадный алгоритм решения задачи разреженного кодирования.

В силу (3) $||R^n||$ монотонно убывает \Rightarrow локальная сходимость гарантированна.

Orthogonal Matching Pursuit (OMP)

Algorithm 1 Orthogonal Matching Pursuit

Require: dictionary $D \in \mathbb{R}^{m \times K}$ with elements d_i , signal $f \in \mathbb{R}^m$, stop condition **Ensure:** sparse coefficient vector $\alpha \in \mathbb{R}^K$

$$R^{0} \leftarrow f$$

$$n \leftarrow 0$$

$$\alpha \leftarrow \mathbf{0} \in \mathbb{R}^{K}$$
while not stop condition **do**

$$d_{\gamma_{n}} \leftarrow \operatorname*{argmax}|\langle R^{n}, d_{k} \rangle|$$

$$D_{n} \leftarrow [d_{\gamma_{0}}, \dots, d_{\gamma_{n}}] \in \mathbb{R}^{m \times (n+1)}$$

$$\alpha[\gamma_{0}, \gamma_{1}, \dots, \gamma_{n}] \leftarrow \operatorname*{argmin}_{a \in \mathbb{R}^{n+1}} ||f - D_{n}a||_{2}$$

$$R^{n+1} \leftarrow f - D\alpha$$

$$n \leftarrow n + 1$$
end while

OMP – модификация MP с дополнительным обновлением *всех* коэффицентов. Это более затратно с точки зрения вычислений, но дает лучший результат.

40 × 40 × 40 × 40 × 00 0

Содержание

Разреженное кодирование

- Orthogonal Matching Pursuit
- K-SVD

Шумоподавление с помощью K-SVD

K-SVD: введение

K-SVD – обобщение метода кластеризации K-Means на задачу sparse dictionary learning.

Входные данные: матрица сигналов $Y \in \mathbb{R}^{m \times N}$, начальный словарь $D_{init} \in \mathbb{R}^{m \times K}$. **Выход:** матрица коэффицентов $A \in \mathbb{R}^{K \times N}$, оптимальный словарь D_{final} .

Общий алгоритм:

- Разреженное кодирование с помощью любого метода (мы используем ОМР);
- Обновление словаря поэлементно путем последовательных вычислений SVD;
- Повторять п.1-2 нужное число раз.

K-SVD: введение

K-SVD – обобщение метода кластеризации K-Means на задачу sparse dictionary learning.

Входные данные: матрица сигналов $Y \in \mathbb{R}^{m \times N}$, начальный словарь $D_{init} \in \mathbb{R}^{m \times K}$.

Выход: матрица коэффицентов $A \in \mathbb{R}^{K \times N}$, оптимальный словарь D_{final} .

Общий алгоритм:

- Разреженное кодирование с помощью любого метода (мы используем ОМР);
- Обновление словаря поэлементно путем последовательных вычислений SVD;
- Повторять п.1-2 нужное число раз.

П.1. рассмотрели ранее, рассмотрим подробнее п.2.

Пусть A и D фиксированы. Рассмотрим элемент словаря d_k и строку матрицы A α_T^k . Тогда

$$||Y - DA||_F^2 = \left| \left| Y - \sum_{j=1}^K d_j \alpha_T^j \right| \right|_F^2 = \left| \left| \left(Y - \sum_{j \neq k} d_j \alpha_T^j \right) - d_k \alpha_T^k \right| \right|_F^2 = ||E_k - d_k \alpha_T^k||_F^2.$$
 (4)

Хотим минимизировать (4) по d_k и α_T^k .

Пусть A и D фиксированы. Рассмотрим элемент словаря d_k и строку матрицы A α_T^k . Тогда

$$||Y - DA||_F^2 = \left| \left| Y - \sum_{j=1}^K d_j \alpha_T^j \right| \right|_F^2 = \left| \left| \left(Y - \sum_{j \neq k} d_j \alpha_T^j \right) - d_k \alpha_T^k \right| \right|_F^2 = ||E_k - d_k \alpha_T^k||_F^2.$$
 (4)

Хотим минимизировать (4) по d_k и α_T^k .

Делать это с помощью прямого вычисления SVD нельзя!

Пусть A и D фиксированы. Рассмотрим элемент словаря d_k и строку матрицы A α_T^k . Тогда

$$||Y - DA||_F^2 = \left| \left| Y - \sum_{j=1}^K d_j \alpha_T^j \right| \right|_F^2 = \left| \left| \left(Y - \sum_{j \neq k} d_j \alpha_T^j \right) - d_k \alpha_T^k \right| \right|_F^2 = ||E_k - d_k \alpha_T^k||_F^2.$$
 (4)

Хотим минимизировать (4) по d_k и α_T^k .

Делать это с помощью прямого вычисления SVD **нельзя!** В этом случае мы не учитываем ограничение на разреженность коэффицентов.

Пусть A и D фиксированы. Рассмотрим элемент словаря d_k и строку матрицы A α_T^k . Тогда

$$||Y - DA||_F^2 = \left| \left| Y - \sum_{j=1}^K d_j \alpha_T^j \right| \right|_F^2 = \left| \left| \left(Y - \sum_{j \neq k} d_j \alpha_T^j \right) - d_k \alpha_T^k \right| \right|_F^2 = ||E_k - d_k \alpha_T^k||_F^2.$$
 (4)

Хотим минимизировать (4) по d_k и α_T^k .

Делать это с помощью прямого вычисления SVD **нельзя!** В этом случае мы не учитываем ограничение на разреженность коэффицентов.

Идея: обновлять только ненулевые элементы α_T^k

Пусть A и D фиксированы. Рассмотрим элемент словаря d_k и строку матрицы $A \alpha_L^k$. Тогда

$$||Y - DA||_F^2 = \left| \left| Y - \sum_{j=1}^K d_j \alpha_T^j \right| \right|_F^2 = \left| \left| \left(Y - \sum_{j \neq k} d_j \alpha_T^j \right) - d_k \alpha_T^k \right| \right|_F^2 = ||E_k - d_k \alpha_T^k||_F^2.$$
 (4)

Хотим минимизировать (4) по d_k и α_T^k .

$$I_k := \operatorname{supp} \alpha_T^k = \{i : \alpha_T^k(i) \neq 0\}.$$

 $\widetilde{E_k}$, $\widetilde{\alpha}_{\tau}^k$ – составлены из столбцов соотв. матриц с индексами из I_k .

Пара $\{d_k, \widetilde{\alpha}_T^k\}$, доставляющая минимум выражению $||\widetilde{E_k} - d_k \widetilde{\alpha}_T^k||_F^2$, находится с помощью SVD.

K-SVD: полный алгоритм

Algorithm 2 K-SVD

```
Require: initial dictionary D_{init} \in \mathbb{R}^{m \times K} with elements d_i, signals Y \in \mathbb{R}^{m \times N}, stop condition for
   OMP. maximum iterations n
Ensure: sparse coefficient matrix A \in \mathbb{R}^{K \times N}, final dictionary D_{final}
   iter \leftarrow 0
   D \leftarrow D_{init}
   while iter < n do
         A \leftarrow OMP(D, Y, stopcond)
         k \leftarrow 1
         while k < K do
               D[k] \leftarrow \mathbf{0}
               E_k \leftarrow Y - DA
               I_k \leftarrow \operatorname{supp} \alpha_T^k
               \widetilde{E_k}, \widetilde{\alpha_T^k} \leftarrow E_k and \alpha_T^k restricted by I_k
               \{d_k, \widetilde{\alpha_T^k}\} \leftarrow \operatorname{argmin}_{d,\alpha_T} ||\widetilde{E_k} - d\alpha_T||_2^2
               D[k] \leftarrow d_k
               \alpha_T^k \leftarrow \widetilde{\alpha_T^k} zero-padded according to I_k
               k \leftarrow k + 1
         end while
         iter \leftarrow iter + 1
   end while
   D_{final} \leftarrow D
```

K-SVD и K-Means

K-Means:

- Каждый элемент кодируется ближайшим центроидом,
 т.о. образуются кластера;
- Центроиды пересчитываются как среднее по своему кластеру;
- Повторять п.1-2 до сходимости.

K-Means – частный случай K-SVD (покажите!)

Содержание

Разреженное кодирование

- Orthogonal Matching Pursuit
- K-SVD

Шумоподавление с помощью K-SVD

Постановка задачи

Пусть $\mathbf{x}_0 \in \mathbb{R}^N$ – ч/б изображение, $\mathbf{w} \in \mathbb{R}^N$ – аддитивный гауссовский шум, т.е. $\mathbf{w} \sim N(0, \sigma^2 I)$. Задача – по зашумленному изображению $\mathbf{y} = \mathbf{x}_0 + \mathbf{w}$ восстановить изображение $\widehat{\mathbf{x}}_0$, близкое к \mathbf{x}_0 по метрике $Peak\ Signal-to-Noise\ Ratio\ (PSNR)$:

$$PSNR(\mathbf{x}_0, \widehat{\mathbf{x}}_0) = 20 \cdot \log_{10} \left(\frac{\sqrt{N} \cdot 255}{||\mathbf{x}_0 - \widehat{\mathbf{x}}_0||_2 + \varepsilon} \right)$$

*255 – максимум диапазона интенсивностей 8-битных изображений.

Алгоритм шумоподавления

Рассматриваем все фрагменты изображения ${m y}$ размера $\sqrt{n} imes \sqrt{n}.$

 R_{ij} **у** – фрагмент изображения **у** с координатой левого верхнего пикселя (i,j), $R_{ij} \in \mathbb{R}^{n \times N}$. Алгоритм:

- Получаем множество фрагментов зашумленного изображения $\{R_{ij} {m y}\} o$ пропускаем через K-SVD o получаем множество $\{{m D}\alpha_{ij}\}$ очищенных от шума фрагментов;
- $oldsymbol{oldsymbol{eta}}$ Восстанавливаем изображение $\widehat{oldsymbol{x}}_{oldsymbol{\lambda}}$, решая задачу минимизации:

$$\widehat{\mathbf{x}}_{\lambda} = \underset{\mathbf{x}}{\operatorname{argmin}} \lambda ||\mathbf{y} - \mathbf{x}||_{2}^{2} + \sum_{i,j} ||\mathbf{D}\alpha_{ij} - R_{ij}\mathbf{x}||_{2}^{2}.$$
(5)

Аналитическое решение (5):
$$\hat{\mathbf{x}}_{\lambda} = \left(\lambda I + \sum\limits_{i,j} R_{ij}^T R_{ij}\right)^{-1} \left(\lambda \mathbf{y} + \sum\limits_{i,j} R_{ij}^T \mathbf{D} \alpha_{ij}\right).$$

Алгоритм шумоподавления

Аналитическое решение (5):
$$\hat{\mathbf{x}}_{\lambda} = \left(\lambda I + \sum\limits_{i,j} R_{ij}^T R_{ij}\right)^{-1} \left(\lambda \mathbf{y} + \sum\limits_{i,j} R_{ij}^T \mathbf{D} \alpha_{ij}\right).$$

Формула выглядит сложно, но на самом деле все очень просто!

- При $\lambda=0$ изображение $\widehat{\mathbf{x}}_0$ получается вставкой всех фрагментов из $\{\mathbf{D}\alpha_{ij}\}$ в соответствующие места с усреднением пикселей в пересекающихся областях;
- При $\lambda>0$ каждый пиксель на \widehat{x}_{λ} взвешенная сумма пикселей с \widehat{x}_0 и y; больше λ больше вклад зашумленного изображения.

 λ надо подбирать аккуратно, особенно при сильном шуме! Можно выбрать $\lambda = C/\sigma$ (в одной из статей C=30).

Примеры тестовых изображений

(a) Lenna, 512×512

(b) Peppers, 512×512

(c) Beacon, 512x384

Сравнение K-SVD с NLM и TV

σ/\textit{PSNR}	K-SVD	NLM	TV
5/34.15	37.58	36.31	34.96
10/28.13	33.81	32.46	32.01
15/24.61	31.77	30.65	29.80
20/22.11	30.29	29.50	28.48
25/20.17	29.08	28.53	27.26
50/14.15	24.93	24.30	23.92

PSNR в первой колонке — между \mathbf{x}_0 и \mathbf{y} , в остальных — между \mathbf{x}_0 и $\widehat{\mathbf{x}}_0$. Все значения усреднены по всему тестовому набору (8 изображений).

Сравнили K-SVD с алгоритмами:

- Total Variation (TV) минимизация регуляризирующего функционала со специальным стабилизатором;
- Non-Local Means (NLM) усреднение по достаточно большой окрестности каждого пикселя с весовой функцией.

Сравнение K-SVD с NLM и TV

σ/\textit{PSNR}	K-SVD	NLM	TV
5/34.15	37.58	36.31	34.96
10/28.13	33.81	32.46	32.01
15/24.61	31.77	30.65	29.80
20/22.11	30.29	29.50	28.48
25/20.17	29.08	28.53	27.26
50/14.15	24.93	24.30	23.92

PSNR в первой колонке – между \mathbf{x}_0 и \mathbf{y} , в остальных – между \mathbf{x}_0 и $\widehat{\mathbf{x}}_0$. Все значения усреднены по всему тестовому набору (8 изображений).

Сравнили K-SVD с алгоритмами:

- Total Variation (TV) минимизация регуляризирующего функционала со специальным стабилизатором;
- Non-Local Means (NLM) усреднение по достаточно большой окрестности каждого пикселя с весовой функцией.

В экспериментах K-SVD показал себя лучше, чем два классических алгоритма шумоподавления. Но у K-SVD есть свои недостатки.

Главный недостаток K-SVD

K-SVD очень медленный.

В моих экспериментах:

- NLM работает менее секунды, наивный TV 10 сек.;
- K-SVD 0.5 4 минуты.

В эпоху глубоких нейросетей это слишком долго!

Однако алгоритм все еще можно использовать offline.

Примеры работы K-SVD, NLM и TV

(d) K-SVD, PSNR 30.71

(e) NLM, PSNR 30.33

(f) TV, PSNR 29.55

(g) Reference

(h) Noisy, PSNR 20.24

Примеры работы K-SVD, NLM и TV

(i) K-SVD, PSNR 27.16

(j) NLM, PSNR 26.42

(k) TV, PSNR 26.21

(I) Reference

(m) Noisy, PSNR 20.29

Примеры работы K-SVD, NLM и TV

(n) K-SVD, PSNR 26.73

(o) NLM, PSNR 26.05

(p) TV, PSNR 25.88

(q) Reference

(r) Noisy, PSNR 14.72

Результат работы K-SVD на всем тестовом наборе

σ/\textit{PSNR}	fingerprint	houses	injun girl	beacon	boats	barbara	lenna	peppers
5/34.15	36.60	35.94	38.47	37.18	39.18	38.15	37.57	37.57
10/28.13	32.38	31.57	34.76	32.48	35.52	34.42	34.72	34.67
15/24.61	30.08	29.37	32.71	29.99	33.37	32.37	33.07	33.18
20/22.11	28.49	27.87	31.26	28.43	31.78	30.75	31.81	31.95
25/20.17	27.32	26.61	30.07	27.20	30.50	29.38	30.71	30.82
50/14.15	23.71	22.30	25.47	23.41	26.16	24.94	26.76	26.70

Результаты работы K-SVD на тестовом наборе изображений. Значения PSNR для каждого изображения усреднены по 5 запускам алгоритма с различными реализациями шума. В первой колонке – стандартное отклонение шума и PSNR между y и x_0 .

Заключение

Выводы:

- K-SVD хорошо справляется с подавлением шума, однако на данный момент существуют более эффективные алгоритмы (в основном нейросетевые);
- K-SVD проигрывает многим классическим алгоритмам в вычислительной сложности;
- Тем не менее, алгоритм имеет большое теоретическое значение и может использоваться в offline-задачах.

Материалы:

- Диск со статьями: https://clck.ru/36n9Sj
- Репозиторий с кодом: https://clck.ru/36n9tG

Спасибо за внимание!