DATE: 20-NOVEMBER-2024

LAB-5

Ouestion:

Configure RIP routing Protocol in Routers

Aim:

To Configure RIP routing Protocol in Routers by using routing table

Topology:

Topology Description:

- 1. Devices Involved:
 - Outers:
 - Router0
 - Router1
 - Router2
 - o 3 Switches:
 - Switch connected to Router0

- Switch connected to Router1
- Switch connected to Router2
- O 6 PCs:
 - PC0, PC1 connected to Router 0 via a switch
 - PC2, PC3 connected to Router 1 via a switch
 - PC4, PC5 connected to Router 2 via a switch
- 2. Connections:
 - o Router0 is connected to Router 1 via Serial (Se2/0) interface.
 - o Router1 is connected to Router 2 via Serial (Se3/0) interface.
 - Each router connects to a switch, which then connects to two PCs.
- 3. IP Address Schema:
 - o Router0 LAN: 10.0.0.0/24
 - Router0: 10.0.0.1
 - PC0: 10.0.0.2
 - PC1: 10.0.0.3
 - o Router1 LAN: 20.0.0.0/24
 - Router1: 20.0.0.1
 - PC2: 20.0.0.2
 - PC3: 20.0.0.3
 - o Router2 LAN: 30.0.0.0/24
 - Router2: 30.0.0.1
 - PC4: 30.0.0.2
 - PC5: 30.0.0.3
 - Serial links:
 - Between Router0 and Router1: 40.0.0.0/30
 - Between Router1 and Router2: 50.0.0.0/30

Procedure to Configure the Network:

Step 1: Configure Router Interfaces

- 1. Access each router using CLI (Command Line Interface).
- 2. Assign IP addresses to FastEthernet and Serial interfaces:

Step 2: Configure Routing:

Router 0:

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#router rip
Router(config-router)#network 40.0.0.0
Router(config-router)#network 10.0.0.0
Router(config-router)#
```

Router 1:

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#router rip
Router(config-router)#network 40.0.0.0
Router(config-router)#network 20.0.0.0
Router(config-router)#network 50.0.0.0
Router(config-router)#network 10.0.0.0
Router(config-router)#network 10.0.0.0
Router(config-router)#exit
Router(config)#
```

Router 2:

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#router rip
Router(config-router)#network 50.0.0.0
Router(config-router)#network 30.0.0.0
Router(config-router)#
```

Step 3: Routing

Step 4: Test Connectivity

- 1. Use the ping command to test communication between PCs in different subnets.
 - From PC0, ping PC4 (30.0.0.2).

Command Prompt

```
Pinging 20.0.0.3 with 32 bytes of data:
Request timed out.
Reply from 20.0.0.3: bytes=32 time=12ms TTL=126
Reply from 20.0.0.3: bytes=32 time=6ms TTL=126
Reply from 20.0.0.3: bytes=32 time=3ms TTL=126
Ping statistics for 20.0.0.3:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 3ms, Maximum = 12ms, Average = 7ms
PC>ping 30.0.0.2
Pinging 30.0.0.2 with 32 bytes of data:
Request timed out.
Reply from 30.0.0.2: bytes=32 time=2ms TTL=125
Reply from 30.0.0.2: bytes=32 time=2ms TTL=125
Reply from 30.0.0.2: bytes=32 time=11ms TTL=125
Ping statistics for 30.0.0.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 11ms, Average = 5ms
PC>ping 20.0.0.2
Pinging 20.0.0.2 with 32 bytes of data:
Request timed out.
Reply from 20.0.0.2: bytes=32 time=9ms TTL=126
Reply from 20.0.0.2: bytes=32 time=6ms TTL=126
Reply from 20.0.0.2: bytes=32 time=7ms TTL=126
Ping statistics for 20.0.0.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 6ms, Maximum = 9ms, Average = 7ms
PC>ping 30.0.0.3
Pinging 30.0.0.3 with 32 bytes of data:
Request timed out.
Reply from 30.0.0.3: bytes=32 time=15ms TTL=125
Reply from 30.0.0.3: bytes=32 time=2ms TTL=125
Reply from 30.0.0.3: bytes=32 time=2ms TTL=125
Ping statistics for 30.0.0.3:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
```

Observations

1. Network Segments:

- Each router manages its LAN segment with different subnets (10.0.0.0/24, 20.0.0.0/24, 30.0.0.0/24).
- Serial links use point-to-point subnets (/30).

2. Routing:

- Routing protocols (e.g., static routing or dynamic routing like RIP, OSPF, EIGRP) must be configured for communication between different LAN segments.
- PCs in one subnet need a gateway configured to communicate with PCs in another subnet.

3. Configuration Dependencies:

- o IP addresses must be correctly assigned to routers, switches, and PCs.
- Serial links must be configured with appropriate IP addresses and clock rates (for DCE interfaces).
- o Default gateways must be set on PCs.