CDF of Gaussian Distribution

CDF of a Normal distribution looks like follows

we can notice following points from the graph:

1.
$$p(x \le \mu) = 0.5$$
 for $N(\mu, \sigma^2)$

2.
$$p(x>= \mu) = 0.5$$
 for $N(\mu, \sigma^2)$

3. As σ^2 increases the curve moves away from μ .

$$rac{1}{2}\left[1+ ext{erf}igg(rac{x-\mu}{\sigma\sqrt{2}}igg)
ight]$$

one intresting poin about Gaussian distribution is it follows 68-95-99.7 rule

68% of points lie in between μ - σ to μ + σ

95% of points lie in between μ -2 σ to μ +2 σ

99.7% of points lie in between μ -3 σ to μ +3 σ