COSC 302: Analysis of Algorithms Lecture — Spring 2018 Prof. Darren Strash Colgate University

Worksheet 8 — Single-Source Shortest Paths (with Solutions)

1. Give a weighted graph and a source vertex s such that the Prim-Jarník algorithm and Dijk-stra's algorithm give different spanning subtrees when run from s.

2. Suppose you are given a shortest-paths tree from a source vertex s, which is stored in a predecessor array π . Give pseudocode to construct a shortest path from s to a given vertex v.

Algorithm 1 Construct shortest path.

proc Construct-Path (v, π)

- 1: path = v
- 2: while $\pi[v] \neq NIL$
- 3: path = $\pi[v]$ + path
- 4: $v = \pi[v]$
- 5: **return** path

- 3. (Previous exam question) In this problem we will solve the minimum spanning tree problem with edge weight constraints. Suppose you are given a connected, undirected, weighted graph G = (V, E, w).
 - (a) Suppose that all edge weights are 3. Describe an algorithm to compute a minimum spanning tree in G in O(V+E) time. Argue for, but do not formally prove, correctness of your algorithm.

(To be discussed in exam review.)

(b) Suppose that all edge weights are now 1 or 0. Describe an algorithm to compute a minimum spanning tree in G in O(V+E) time. Formally prove that your algorithm is correct.

(To be discussed in exam review.)

4. The Bellman-Ford algorithm may relax many edges that do not result in new shortest paths. For example, on graphs consisting of a single simple path $v_1v_2\cdots v_n$, Bellman-Ford will take $\Theta(n^2)$ time. Describe a change to Bellman-Ford that reduces the number of unnecessary edge relaxations. Your algorithm should have running time O(n) on simple paths. What is the running time of your algorithm on arbitrary graphs?

Solution: Intuitively, an edge (v, x) only needs to be relaxed if the value d[x] changes. Then, similar to BFS, we can create a queue of vertices whose $d[\cdot]$ values have changed. However, we also need to make sure that we do not add multiple copies of a vertex to the queue.

Algorithm 2 Compute single-source shortest paths tree.

```
proc Bellman-Ford(G, s)
 1: Q = \emptyset
 2: inQueue[1..n] = [false, false, ..., false]
 3: Q.enqueue(s)
 4: inQueue[s] = true
 5: while not Q.empty()
       v = Q.\text{dequeue}()
 6:
 7:
       inQueue[v] = false
       for x \in N(v)
 8:
           if d[x] > d[v] + w(v, x) then
 9:
               d[x] = d[v] + w(v, x)
10:
               Q.enqueue(x)
11:
               inQueue[x] = true
12:
```

The running time is still O(nm).