

CS 115 Functional Programming

Lecture 6:

Algebraic Datatypes

Today

- Defining new datatypes in Haskell
- Enumeration-style datatypes
- Datatypes with arguments
- Constructor functions
- Record syntax
- Recursive and polymorphic datatypes
- Type synonyms
- newtype

Bool

- Consider the humble boolean type Bool
- It has two possible values: True and False
- The datatype Bool is thus a finite enumeration of these two values
- In fact, the Bool type is not "hard-wired" into Haskell; it is defined in the Haskell libraries as a new type definition

data

- New datatypes are defined in Haskell with the data declaration
- Definition of Bool:

```
data Bool = True | False
```

- The vertical bar | is used to separate alternative values of the datatype
- The name of the datatype (Bool) must begin with a capital letter

data

data Bool = True | False

- The two values True and False are constructors of the data
- Constructors also have to have names beginning with a capital letter
- Now Bool is a type just like Integer or Char, and True and False are values just like 0 or 'a'
- True and False are the only valid Bool values

ghci

Let's define Bool ourselves:

```
ghci> import Prelude hiding (Bool(..))
ghci> True
[error message]
ghci> data Bool = True | False deriving (Show)
ghci> True
True
```


ghci

```
ghci> :info Bool
```

data Bool = True | False

instance Show Bool (explained in later lecture)

ghci> :type True

True :: Bool

ghci> :type False

False :: Bool

Pattern matching

- Defining a new datatype with a data declaration not only defines a new type and new values of that type
- Also allows you to pattern-match against those values
- Example: not function:

```
not :: Bool -> Bool
not True = False
not False = True
```

• True/False on LHS are patterns (trivial patterns)

Aside: strictness

- A Haskell function can be lazy or strict in any of its arguments
- If it's strict in an argument, then evaluating a nonterminating expression in that argument position will force the entire function call to not terminate
- We represent non-termination by the ⊥ (bottom) value (not Haskell syntax)
- So a strict argument in function f has f ⊥ = ⊥

- Logical or function uses the | | operator
- One definition:

```
(||) :: Bool -> Bool -> Bool
True || True = True
True || False = True
False || True = True
False || False = False
```

Is this definition lazy or strict in either argument?


```
(||) :: Bool -> Bool -> Bool
True || True = True
True || False = True
False || True = True
False || False = False
```

- To pattern-match a boolean expression against either True or False, it must be evaluated completely
- Therefore, this definition is strict in both arguments

Alternative definition of | |:

```
(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x
```

- Is this definition lazy or strict in either argument?
- Clearly strict in first argument (must evaluate to True or False to do pattern matching)
- Lazy in second argument (1st equation: don't even need to evaluate 2nd argument)

- Moral: Just because Haskell is a "lazy language" doesn't mean that all functions are lazy in all arguments
- Structure of function may dictate that certain arguments will always have to be evaluated all the way, others not

Sum types

- Many datatypes in Haskell are a series of alternatives
- Each constructor (like <u>True</u> or <u>False</u>) represents one possible kind of data value of that type
- These are sometimes called "sum types" (the type as a whole is the "sum" of several disjoint constructors)
- Sum types where the constructors have no arguments are simply enumerations

More data examples

Easy to define enumeration-style datatypes:

```
data Color = Red | Green | Blue | Yellow
data Day = Mon | Tue | Wed | Thurs | Fri | Sat | Sun
data Beatle = John | Paul | George | Ringo
data Major = CS | Other
etc.
```

 All such definitions also define pattern-matching on the corresponding datatypes

More data examples

Example with Color:

```
data Color = Red | Green | Blue | Yellow

opposite :: Color -> Color

opposite Red = Green

opposite Green = Red

opposite Blue = Yellow

opposite Yellow = Blue
```


Beyond enumerations

- Enumeration types are trivial, but still more pleasant and well-typed than e.g. C-style enum values (aliases for integers)
- However, data declarations can do much more:
 - constructors can have one or more arguments (even of same type as the type being defined!)
 - different constructors don't have to have the same number of arguments

Product types

- Some datatypes consist of a single constructor which has one or more arguments
- This corresponds to what is usually called a "record" or "struct" in other languages
 - also similar to a Haskell tuple, but with a label
- Technically, these are called "product types" because the type is the Cartesian product of the types of the arguments to the constructor (where types conceptually represent sets of values)

Product types

Examples:

```
data Point = Pt Double Double -- x and y coords
data Person = Per String String -- first and last names
data Course = C String Int -- field, number
```

 Some programmers reuse the type name as the constructor name (legal in Haskell):

```
data Point = Point Double Double
data Person = Person String String
data Course = Course String Int
```


Product types

 Again, product types define pattern-matching over their constructors:

```
distance :: Point -> Point -> Double
distance (Pt x1 y1) (Pt x2 y2) =
   sqrt ((x1 - x2)^2 + (y1 - y2)^2)

pointX :: Point -> Double
pointX (Pt x _) = x

pointY :: Point -> Double
pointY (Pt y) = y
```


 Simple product types are common, but having to explicitly define accessors is a pain:

```
pointX :: Point -> Double
pointX (Pt x _) = x

pointY :: Point -> Double
pointY (Pt _ y) = y
```


 Haskell provides a shortcut where both the datatype and the accessors can be defined at the same time:

```
data Point = Pt { pointX :: Double, pointY :: Double }

ghci> :t pointX
Point -> Double
ghci> :t pointY
Point -> Double
```


Can pattern match using record syntax too:

 In pattern, can put fields of constructor in any order if name labels are included

You might wish that we could do this:

```
distance :: Point -> Point -> Double
distance p1 p2 =
sqrt((p1.x - p2.x)^2 + (p1.y - p2.y)^2)
```

- Alas, this is not legal Haskell syntax
- One of the most asked-for syntax extensions
- One proposal called "Type Directed Name Resolution" (see Haskell web pages)

 Similarly, can't have two different data definitions which use same field names:

Records are thus somewhat clumsy to use in Haskell

So far

- We've seen
 - simple sum types (enumerations)
 - simple product types (records)
- More generally, many types have both sum and product components
 - different constructors, each with different number of arguments
- We refer to these as "algebraic datatypes"

- Simple example: natural numbers
- A natural number is either
 - zero
 - the successor of a natural number
- Write this in Haskell as:


```
data Nat =
   Zero
   | Succ Nat
```

- This defines two constructors: Zero and Succ
- Zero is a value
- Succ is a "constructor function" with type
 Nat -> Nat
- Constructors like Succ that have type arguments can be used as regular functions (though they have capitalized names)


```
data Nat =
   Zero
   | Succ Nat
```

- Note that this type is "recursive"
 - Defining Nat, but one of the constructors assumes that Nat has been defined
 - Haskell has no problem with this


```
ghci> :t Zero
```

Zero :: Nat

ghci> :t Succ

Succ :: Nat -> Nat

ghci> :t Succ Zero

Succ Zero :: Nat

 Nat definition also defines pattern-matching on Nats:

```
addNat :: Nat -> Nat -> Nat
addNat Zero n = n
addNat (Succ m) n = Succ (addNat m n)

mulNat :: Nat -> Nat -> Nat
mulNat Zero _ = Zero
mulNat (Succ m) n = addNat n (mulNat m n)
```


More functions on Nats

```
natToInteger :: Nat -> Integer
natToInteger Zero = 0
natToInteger (Succ n) = 1 + natToInteger n
```

Note: Structure of a Nat:

```
Succ (Succ (Succ Zero)))
```

Want to convert to:

```
1 + (1 + (1 + (1 + 0)))
```

 What would be a more elegant way to define natToInteger?


```
Succ (Succ (Succ Zero)))
```

Want to convert to:

```
1 + (1 + (1 + (1 + 0)))
```

- Seems like we should be able to do something like foldr here...
- foldr works only on lists
- Let's define foldn to work on Nats
- It will specify:
 - a special value to be used in place of zero
 - a special unary function to be used in place of Succ


```
foldn :: (a -> a) -> a -> Nat -> a
foldn _ init Zero = init
foldn f init (Succ n) = f (foldn f init n)
```

Now we can define:

```
natToInteger :: Nat -> Integer
natToInteger = foldn (1+) 0
```


Polymorphic datatypes

- Algebraic datatypes can also depend on type variables
 - like polymorphic functions
- Recall the built-in list type
 - not specified to any particular list element type
- Want to be able to do this with user-defined types too
- Let's re-create the list type at the user level

Polymorphic datatypes

- This defines a family of types called List a
- "List of elements of some particular type a"
- Isomorphic to normal Haskell list type, which could be written as:

```
data [a] =
  []
  [a : [a]
```


Polymorphic datatypes

 Could define foldr version to work on this List type:

```
foldr2 :: (a -> b -> b) -> b -> List a -> b
foldr2 _ init Nil = init
foldr2 f init (Cons h t) = f h (foldr2 f init t)
```

Moral: built-in list type is not special, except for syntax

Kinds

- Note that List is not a type
 - List Integer is a type
 - List Float is a type
 - List Char is a type
 - but List by itself is not a type!
- List is a "type constructor"
 - like a "function on types"
 - Give it a type (like Integer) and it will return a type (List Integer)

Kinds

- Type constructors do not have "types", they have "kinds"
- A "kind" is a "type of types"
- Simple types (non-type constructors) have the kind *
- Type constructors have the kind (* -> *),
 (* -> * -> *) etc. depending on how many type variables they have
- ghci will tell you what the kind of a type constructor is

Kinds

```
ghci> :info List
data List a = Nil | Cons a (List a)
ghci> :kind List
List :: * -> *
ghci> :kind List Integer
List Integer :: *
ghci> :kind Integer
Integer :: *
```

Can abbreviate : kind as just : k

Maybe

- Another useful polymorphic type constructor is Maybe
- Used to represent values that "may or may not exist"

```
data Maybe a =
    Nothing
    | Just a
```

- Mostly useful as a function return argument
- Functions of type a -> Maybe b represent computations that may fail
- Maybe is also a monad (as we'll see later)

Maybe

Let's ask ghci about Maybe

Either

- Polymorphic datatypes can depend on more than one type variable
- Simplest example: Either type constructor

```
data Either a b =
   Left a
   | Right b
```

- Either allows us to define a type which can be either of two arbitrary types
- For instance, Either Int String is either an Int or a String

Either

- Again, Either is often used as a return type from a function
- Functions with the type a -> Either String b
 can represent functions that either
 - succeed with a value of type b
 - fail with an error message (String value)
- This also constitutes a monad (as we'll see later)

```
ghci> :k Either
Either :: * -> * -> *
```


Trees

- Polymorphic datatypes very often used to represent generic data structures
- For instance, binary trees of some type a

For now, we won't worry about balancing or ordering

Trees

Function to collect Tree values into a list in order:

```
treeToList :: Tree a -> [a]
treeToList Leaf = []
treeToList (Node x left right) =
   treeToList left ++ [x] ++ treeToList right
```

Again, note pattern matching on Tree constructors

Type aliases

- data declarations are the normal way to create new Haskell datatypes
- Sometimes, we have an existing type with an unpleasant name (too long, not descriptive enough) but don't want/need to define a completely new type
- We can define a type alias using the type keyword:

```
type String = [Char]
```

This defines String as another name for [Char]

Type aliases

- Type aliases mean that ghci may not always choose the name for a type you might prefer
- Type aliases also may mean that error messages involving types may refer to the aliased name or the unaliased name
- Therefore, type aliases are mainly a convenience for the person writing the code

newtype

- Type aliases only provide a new name for an old type, not a new type
- Sometimes, we want to define a new type for a previously-existing type in such a way that the new type is identifiably distinct from values of the old type but the contents are the same
- Can do this with a data declaration e.g.:
- data Label = Lbl String
- Now Haskell considers <u>Label</u> and <u>String</u> to be distinct types

newtype

data Label = Lbl String

- Difference between a value of type Label and a value of type String:
 - Label value is "wrapped" in the constructor Lbl, String value is not
 - This "wrapping" means that Label values take up more space than Strings, and must be unwrapped to get the contents (space and time costs)
 - What if we wanted to keep the Label and String types distinct, but not pay this cost?

newtype

• Define Label as a newtype:

```
newtype Label = Lbl String
```

- Differences between data and newtype:
 - newtype only allowed for datatypes with one constructor which has exactly one type argument
 - newtype defined datatypes are just as efficient as the type they wrap (no wrapping/unwrapping penalty), but are distinct to the type checker
 - (and a few other subtle issues you're unlikely to run into for a long time)

Next time

Type classes!

