Generalization of stochastic calculus and its applications in large deviations theory

Sudip Sinha

2019-04-05

Advisors
Prof Hui-Hsiung Kuo
Prof Padmanabhan Sundar

Outline

1	Introduction and motivation	3
2	Generalization of Itô calculus	13
3	Large deviations theory	21
4	Possible directions	30

Section 1 Introduction and motivation

Quick revision and notations

- \triangleright Let *T* ∈ (0, ∞), and denote [0, *T*] as the index set for *t*.
- \triangleright Let $(\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space.
- \triangleright *B* is a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}, \mathcal{F})$.
- \triangleright Properties of B.
 - starts at 0
 - has independent increments
 - $\circ \quad B_t B_s \sim \mathcal{N}(0, t s)$
 - continuous paths

- has unbounded linear variation ②
- has bounded quadratic variation ©
- $\circ \quad \mathbb{E}(B_t B_s) = s \wedge t$
- martingale

- \triangleright Naive integration w.r.t. B_t : not possible.
- \triangleright A stochastic process X_{\bullet} is called adapted to \mathcal{F}_{\bullet} if X_t is measurable w.r.t. $\mathcal{F}_t \ \forall t$.

Wiener integral for $f \in L^2[0, T]$

> Definition

- 1. Step functions $f = \sum_{j=0}^{n-1} c_j \mathbb{1}_{[t_j, t_{j+1})}(t)$: Define $\int_0^T f(t) dB_t = \sum_{j=0}^{n-1} c_j \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
- 2. $f \in L^2[0,T]$: Use step functions approximating f to extend the integral a.s.

> Properties

- Linear.
- Gaussian distribution with mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- Corresponds to the Riemann–Stieltjes integral for continuous functions of bounded variation.
- \triangleright The associated process $I_{\bullet} = \int_0^{\bullet} f(t) dB_t$ has the following properties.
 - continuity
 - martingale
- > Problem: Cannot integrate stochastic processes.

Trying to integrate stochastic processes

 $ightharpoonup \int_0^T B_t \, \mathrm{d}B_t \stackrel{?}{=}$ Since B_t is continuous, let us try Riemann–Stieltjes integral. Consider a sequence of partitions Δ_n such that $\|\Delta_n\| \to 0$. Then

$$\int_{0}^{T} B_t dB_t = \lim_{j=0}^{n-1} B_{t_j^*} \Delta B_j.$$

 \triangleright Choosing different endpoints for t_j^* gives us different results.

t_j^*	$\int_0^t B_s \mathrm{d}B_s$	Intuitive?	E	Martingale?	Theory
left	$\frac{1}{2}\left(B_t^2 - t\right)$		0		Itô
mid	$\frac{1}{2}\left(B_t^2\right)$		$\frac{1}{2}t$		Stratonovich
right	$\frac{1}{2}\left(B_t^2 + t\right)$		t		

> Which one do we choose?

Itô integral for $X \in L^2_{ad}([0, T] \times \Omega)$

> Definition

- 1. Adapted step processes $X_t(\omega) = \sum_{j=0}^{n-1} \xi_j(\omega) \mathbb{1}_{[t_j,t_{j+1})}(t)$: define $\int_0^T X_t dB_t = \sum_{j=0}^{n-1} \xi_j \Delta B_j$.
- 2. $X \in L^2_{ad}([0,T] \times \Omega)$: use step processes approximating X to extend the integral in $L^2(\Omega)$.

> Properties

- Linear.
- Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- For X_{\bullet} continuous, $\int_{0}^{T} X_{t} dB_{t} = \lim \int_{0}^{T} X_{\lfloor \frac{tn}{n} \rfloor} dB_{t} = \lim \sum_{j=0}^{n-1} X_{t_{j}} \Delta B_{j}$.
- ▶ The associated process $I_{\bullet} = \int_{0}^{\bullet} X_{t} dB_{t}$ has the following properties.
 - continuity
 - martingale
- \triangleright Example: $\int_0^t B_s dB_s = \frac{1}{2}(B_t^2 t) \quad \forall t.$

Itô integral for X, such that $\int_0^T X_t^2 dt < \infty$ a.s.

- ▷ Definition: Use sequences of processes in $L^2_{ad}([0,T] \times \Omega)$ approximating X in probability to extend the integral in probability.
- > Properties
 - Linear.
 - Mean and variance? ②
- ► The associated process $I_{\bullet} = \int_{0}^{\bullet} X_{t} dB_{t}$ has the following properties.
 - continuity
 - local martingale
- > Example: $\int_0^T e^{B_t^2} dB_t = \int_0^{B_1} e^{t^2} dt \int_0^T B_t e^{B_t^2} dt$.

Itô formula

An Itô process is a process of the form $X_t = X_0 + \int_0^t m_s \, ds + \int_0^t \sigma_s \, dB_s$. Equivalently expressed as $dX_t = m_t \, dt + \sigma_t \, dB_t$.

Theorem ([Itô44]) Let X_t be a d-dimensional Itô process, and let $Y_t = f(X_t)$, where $f \in C^2(\mathbb{R})$. Then $f(X_t)$ is also a d-dimensional Itô process, and

$$\mathrm{d}f(X_t) = \left\langle (\mathrm{D}f)(X_t), \, \mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \, \mathrm{d}X_t, (D^2 f)(X_t) \, \, \mathrm{d}X_t \right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

 $> \text{ Example: For } \sigma \text{ constant, } \mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right), \ \mathrm{d}\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t \, \mathrm{d}t + \sigma \mathcal{E}_t \, \mathrm{d}B_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (\,\mathrm{d}B_t)^2.$

Exponential processes and Girsanov theorem

 \triangleright Let h_{\bullet} be a stochastic process. The associated exponential process is defined as

$$\mathcal{E}_t^{(h)} = \exp\left(\int_0^t h_s \, \mathrm{d}B_s - \frac{1}{2} \int_0^t h_s^2 \, \mathrm{d}s\right).$$

- \triangleright The exponential process is a martingale if and only if $\mathbb{E}\mathcal{E}_t^{(h)} = 1 \ \forall t$.
- ▷ (Novikov condition) The exponential process is a martingale if $\mathbb{E} \exp\left(\frac{1}{2}\int_0^T h_t^2 dt\right) < \infty$.
- \triangleright (Girsanov theorem) The translated stochastic process $W_t = B_t \int_0^t h(s) \, \mathrm{d}s$ is a Brownian motion under the probability measure $\tilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}} = \mathcal{E}_T^{(h)}$.

Stochastic differential equations

- Let $\xi \in L^2(\Omega)$ be independent of B_{\bullet} , and $m, \sigma : [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R}$ be $\mathcal{B}[0, T] \times \mathcal{B}(\mathbb{R}) \times \mathcal{F}$ measurable such that $m(t, \cdot, \cdot)$ and $\sigma(t, \cdot, \cdot)$ are $\mathcal{B}(\mathbb{R}) \times \mathcal{F}_t$ measurable $\forall t$. Then a \mathcal{F}_t -adapted stochastic process X_t is called a solution of the stochastic *integral* equation $X_t = \xi + \int_0^t m(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB_s$ if for each t, the X_t satisfies the integral equation a.s.
- ► The stochastic differential equation $dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t$, $X_0 = \xi$ is a symbolic representation of the stochastic integral equation.

Theorem (Existence and uniqueness, Markov property) The stochastic differential equation above has a unique solution if there exists an M > 0 such that the following two conditions are satisfied:

- (Lipschitz condition) $|m(t,x) m(t,y)|^2 + |\sigma(t,x) \sigma(t,y)|^2 \le M|x y|^2$ a.s.
- (growth condition) $|m(t,x)|^2 + |\sigma(t,y)|^2 \le M(1+|x|^2)$ a.s.

The solution is a Markov process.

Moreover if $\xi \in \mathbb{R}$ and m, σ are function of only x, then the solution is also stationary.

• Example: For σ constant, $d\mathcal{E}_t = \sigma \mathcal{E}_t dB_t$, $\mathcal{E}_0 = 1$ is solved by $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$.

Multiple Wiener-Itô integrals

- ➤ How do we define the double integral?
- Naive idea: $\int_0^T \int_0^T dB_s dB_t = \int_0^T dB_s \int_0^T dB_t = B_T^2$. But $\mathbb{E}B_T^2 = t \neq 0$, so no martingale property.
- ▶ Itô's idea: remove the diagonal to get $\int_0^T \int_0^T dB_s dB_t = 2 \int_0^T \int_0^t dB_s dB_t = B_T^2 T$. ②

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = n! \int_0^T \cdots \int_0^{t_{n-2}} \left(\int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) \, \mathrm{d}B_{t_n} \right) \, \mathrm{d}B_{t_{n-1}}... \, \mathrm{d}B_{t_1}.$$

> TODO

Section 2 Generalization of Itô calculus

Motivation

- ▷ Iterated integrals: Consider the iterated integral $\int_0^T \int_0^T dB_s dB_t = \int_0^T B_T dB_t \stackrel{?}{=} B_T B_t$.
- Note that $\mathbb{E}(B_TB_t) = T \land t = t \neq 0$, so no martingale property ③.

$$dX_t = X_t dB_t$$

$$X_0 = B_1$$

$$Y_0 = 1$$

- ▷ Problem: We want to define $\int_0^T X_t dB_t$, where X_{\bullet} is not adapted (anticipating).
- > Some approaches
 - Itô's decomposition of integrand $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} ds\right) + \int_0^t \frac{B_T B_s}{T s} ds$
 - Enlargement of filtration
 - White noise theory
 - 0

The new integral [AK08; AK10]: Idea

- A process Y and filtration \mathcal{F}_{\bullet} are called <u>instantly independent</u> if Y^t and \mathcal{F}_t are independent $\forall t$. Example: The process $(B_T B_{\bullet})$ is instantly independent of the filtration generated by B_{\bullet} .
- Ideas
 - 1. Decompose the integrand into adapted and instantly independent parts.
 - 2. Evaluate the adapted and the instantly independent parts at the left and right endpoints.
- Consider two continuous stochastic processes, X_t adapted and Y^t instantly independent w.r.t. \mathcal{F}_{\bullet} . Then the integral $\int_0^T X_t Y^t dB_t$ is defined as

$$\int_{0}^{T} X_{t} Y^{t} dB_{t} \triangleq \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} X_{t_{j}} Y^{t_{j+1}} \Delta B_{j},$$

provided that the limit exists in probability.

- Now, for any stochastic process $Z(t) = \sum_{k=1}^{n} X_t^{(k)} Y_{(k)}^t$ we extend the definition by linearity.
- This is well-defined [HKS+16].

A simple example

▶ In the following, denote $\Delta B_j = B_{t_{j+1}} - B_{t_j}$ and \lim is the \lim in L^2 .

$$\int_{0}^{t} B_{T} dB_{t} = \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) dB_{t} = \int_{0}^{t} B_{t} dB_{t} + \int_{0}^{t} (B_{T} - B_{t}) dB_{t}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} B_{t_{j}} \Delta B_{j} + \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - \Delta B_{j}) \Delta B_{j}$$

$$= B_{T} \lim_{t \to 0} \sum_{j=0}^{n-1} \Delta B_{j} - \lim_{t \to 0} \sum_{j=0}^{n-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t$$

- \triangleright Note that $\mathbb{E}(B_TB_t t) = 0$.
- \triangleright In general, $\mathbb{E} \int_0^t Z(s) dB_s = 0$.

Generalized Itô formula [HKS+16]

Process	Definition	Representation
Itô	$X_t = X_0 + \int_0^t m_s \mathrm{d}s + \int_0^t \sigma_s \mathrm{d}B_s$	$dX_t = m_t dt + \sigma_t dB_t$
instantly independent	$Y^t = Y^0 + \int_t^T \eta^s \mathrm{d}s + \int_t^T \zeta^s \mathrm{d}B_s$	$dY^t = -\eta^t dt - \varsigma^t dB_t$

Theorem ([HKS+16]) Let $dX_t = m_t dt + \sigma_t dB_t$ be an d-dimensional Itô process, $dY^t = -\eta^t dt - \varsigma^t dB_t$ be a \tilde{d} -dimensional instantly independent process. If $f(x,y) \in C^2(\mathbb{R}^2)$, then

$$\begin{split} \mathrm{d}f(X_t,Y^t) &= \left\langle (\,\mathrm{D}_x f)(X_t,Y^t),\,\mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \,\mathrm{d}X_t,(D_x^2 f)(X_t,Y^t)\,\,\mathrm{d}X_t \right\rangle \\ &+ \left\langle (\,\mathrm{D}_y f)(X_t,Y^t),\,\mathrm{d}Y^t \right\rangle - \frac{1}{2} \left\langle \,\mathrm{d}Y^t,(D_y^2 f)(X_t,Y^t)\,\,\mathrm{d}Y^t \right\rangle, \end{split}$$

where we use the rules $dB_t \otimes dB_t = I_d dt$.

Exponential processes and generalized Girsanov theorem

> TODO

Iterated integrals

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = n! \int_0^T \cdots \int_0^{t_{n-2}} \left(\int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) \, \mathrm{d}B_{t_n} \right) \, \mathrm{d}B_{t_{n-1}}... \, \mathrm{d}B_{t_1}.$$

Theorem ([AK10]) Let $f \in L^2([0,T]^n)$. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = \int_0^T \cdots \int_0^T f(t_1,...,t_n) \, \mathrm{d}B_{t_n}... \, \mathrm{d}B_{t_1}.$$

Near-martingale property [HKS+17]

- Duestion: What are the analogues of the martingale property and the Markov property?
- ➤ Answer for martingales: "near-martingales".
- ▶ Let Z(t) be a stochastic process such that $\mathbb{E}|Z(t)| < \infty \ \forall t$, and $0 \le s \le t \le T$. Then, with respect to \mathcal{F}_{\bullet} , the process Z(t) is called a
 - near-martingale if $\mathbb{E}(Z(t) \mid \mathcal{F}_s) = \mathbb{E}(Z(s) \mid \mathcal{F}_s)$,
 - near-submartingale if $\mathbb{E}(Z(t) \mid \mathcal{F}_s) \geq \mathbb{E}(Z(s) \mid \mathcal{F}_s)$, and
 - near-supermartingale if $\mathbb{E}(Z(t) \mid \mathcal{F}_s) \leq \mathbb{E}(Z(s) \mid \mathcal{F}_s)$.

Theorem ([HKS+17]) Let $Z(\cdot)$ be a stochastic process bounded in L^1 , and $X_{\bullet} = \mathbb{E}(Z(\cdot) | \mathcal{F}_{\bullet})$. Then X_{\bullet} is a martingale if and only if $Z(\cdot)$ is a near-martingale.

Section 3 Large deviations theory

What is it about?

- > A theory of characterization of rare events by providing exponential bounds on their probability.
- > Started by Swedish actuarials Fredrik Esscher, Harald Cramér, Filip Lundberg.
- ➤ Unified by Varadhan in his 1966 paper [Var66].
- ➤ Example: A problem faced by the insurance industry.
 - Value of claims received on the nth day: X_n \$.
 - Steady income from premium: x\$/day.
 - Planning period: *n* days.
 - Average expenditure: $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j \$/\text{day}$.
 - Question: How should the company decide on the premium?
 - *Idea*: Choose x such that $\mathbb{P}\left\{\bar{X}_n > x\right\}$ is exponentially low.

Insurance problem: setup

1. Let the following hold:

- \circ $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
- (X_n) is a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with finite moment generating function M.
- $\circ \quad \mathbb{E}X_1 = m, \ \mathbb{V}X_1 = \sigma^2, \ \text{and} \ X_1 \sim \mu.$
- $\circ \quad \bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j.$

2. Asymptotic behavior of \bar{X}_n :

- Weak law of large numbers: $\bar{X}_n \stackrel{\mathbb{P}}{\to} m$.
- Central limit theorem: $\sqrt{n}(\bar{X}_n m) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, \sigma^2)$.

3. But at what rate?

4. We want to "control large deviations from the mean".

Insurance problem: large deviation bounds

1. For x > m and an arbitrary $\theta > 0$, we get

$$\mathbb{P}\left\{\bar{X}_n \geq x\right\} = \mathbb{P}\left\{e^{\theta n\bar{X}_n} \geq e^{\theta nx}\right\} \leq e^{-\theta nx}\mathbb{E}\left(e^{\theta n\bar{X}_n}\right) = e^{-\theta nx}M_X(\theta)^n = e^{-n(\theta x - \log M_X(\theta))}.$$

2. Since θ was arbitrary, we have

$$\mathbb{P}\left\{\bar{X}_n \geq x\right\} \leq \inf_{\theta} e^{-n(\theta x - \log M_X(\theta))} = e^{-n\sup_{\theta} (\theta x - \log M_X(\theta))} =: e^{-nI(x)}.$$

3. Generalizing, we get the large deviation upper bound

$$\overline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \bar{X}_{n} \in E \right\} \le -\inf_{\overline{E}} I \qquad \forall E \in \mathcal{B}.$$

4. We can also obtain a lower bound using an exponential change of measure

$$\underline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \bar{X}_{n} \in E \right\} \ge -\inf_{E^{\circ}} I \qquad \forall E \in \mathcal{B}.$$

5. We formally write $\mathbb{P}\left\{\bar{X}_n \in dx\right\} = e^{-nI(x)} dx$ for $x \in \mathbb{R}$.

Definition of large deviation principle

- \triangleright The setup: (X_n) is a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a Polish space (\mathcal{X}, d) .
- \triangleright A function $I: X \rightarrow [0, ∞]$ is called a rate function if it has compact level sets.

Definition (X_n) is said to satisfy the large deviation principle on X with rate function I if the following two conditions hold.

(upper bound)
$$\overline{\lim} \frac{1}{n} \log \mathbb{P} \{ \bar{X}_n \in F \} \le -\inf_F I \quad \forall F \text{ closed}$$

(lower bound) $\underline{\lim} \frac{1}{n} \log \mathbb{P} \{ \bar{X}_n \in E \} \ge -\inf_G I \quad \forall G \text{ open}$

Laplace principle and equivalence to LDP

Definition (Laplace principle) (X_n) is said to satisfy the Laplace principle on \mathcal{X} with rate function I if for all bounded continuous functions h, we have

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \exp(-nh(X_n)) = \inf_{\mathcal{X}} (h+I)$$

Theorem (X_n) satisfies LP on \mathcal{X} with rate function I if and only if (X_n) satisfies LDP on \mathcal{X} with the same rate function I.

Some important results

- Uniqueness of the rate function.
- Continuity principle.
- Superexponential approximation preserves Laplace principle.

Cramér theorem

Theorem ([Cra38]) Let (X_n) be a sequence of i.i.d. real random variables with finite moment generating function M. Then (X_n) follows LDP with rate function $I(x) = \sup_{\theta} (\theta x - \log M(\theta))$.

Rate functions for some common distributions

Distribution	$M(\theta)$	I(x)
Bern(p)	$1 - p + pe^{\theta}$	$\left(x \log \frac{x}{1-p} + (x-1) \log \frac{p}{x-1}\right) \mathbb{1}_{[0,1]}(x) + \infty \mathbb{1}_{[0,1]^{\mathbb{C}}}(x)$ $\left(\lambda - x + x \log \frac{x}{\lambda}\right) \mathbb{1}_{[0,\infty)}(x) + \infty \mathbb{1}_{(-\infty,0)}(x)$
$Pois(\lambda)$	$e^{\lambda(e^{\theta}-1)}$	$\left(\lambda - x + x \log \frac{x}{\lambda}\right) \mathbb{1}_{[0,\infty)}(x) + \infty \mathbb{1}_{(-\infty,0)}(x)$
$Exp(\lambda)$		$(\lambda x - 1 + x \log(\lambda x)) \mathbb{1}_{[0,\infty)}(x) + \infty \mathbb{1}_{(-\infty,0)}(x)$
$\mathcal{N}(m,\sigma^2)$	$e^{m\theta+\frac{1}{2}\sigma^2\theta^2}$	$\frac{(x-m)^2}{2\sigma^2}$
$\chi^2(k)$	$(1-2\theta)^{-\frac{k}{2}}$	$\frac{1}{2}\left(x-k+k\log\frac{k}{x}\right)$

Schilder theorem

- > Setup
 - Let B_{\bullet} be a d-dimensional Brownian motion, so $B_{\bullet} \in C_0 = C_0([0,T]; \mathbb{R}^d)$
 - $\circ \quad \forall \varepsilon > 0, \text{ let } \sqrt{\varepsilon} B_t \sim W^{(\varepsilon)}. \text{ Then } W^{(\varepsilon)} = \mathcal{N}(0, \varepsilon t) \overset{\mathfrak{D}}{\to} \delta_0 \text{ as } \varepsilon \to 0.$
 - Let CM = $\{\omega \in C_0 : \omega \text{ is absolutely continuous and } \dot{\omega}_t \in L^2[0, T]\}$.

Theorem On the Banach space $(C_0, \|\cdot\|_{\infty})$, the family of probability measures $\{W^{(\varepsilon)} : \varepsilon > 0\}$ satisfies LDP with the rate function $I : C_0 \to \overline{\mathbb{R}}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\dot{\omega}(t)|^{2} dt\right) \mathbb{1}_{CM}(\omega) + \infty \mathbb{1}_{CM^{\mathbb{C}}}(\omega)$$

Freidlin-Wentzell theorem

> Setup

- $\forall \varepsilon > 0, \text{ let } X_{\bullet}^{(\varepsilon)} \text{ be the solution of the SDE } dX_{t}^{(\varepsilon)} = m(X_{t}^{(\varepsilon)}) dt + \sigma(X_{t}^{(\varepsilon)}) \sqrt{\varepsilon} dB_{t}, \ X_{0}^{(\varepsilon)} = x,$ where m, σ are sufficiently nice.
- Let $W_x^{(\varepsilon)}$ denote the law of $X_{\bullet}^{(\varepsilon)}$ starting at x.
- As $\varepsilon \to 0$, $W_{\chi}^{(\varepsilon)} \xrightarrow{\mathcal{D}} \delta_{\xi}$, where ξ solves the ODE $\dot{\xi}(t) = m(\xi(t))$, $\xi(0) = x$.

Theorem For x fixed, the family of probability measures $\{W_x^{(\varepsilon)} : \varepsilon > 0\}$ satisfies LDP with the rate function $I_x : C_0 \to \mathbb{R}$ given by

$$I_{x}(\omega) = \left(\frac{1}{2}\int_{0}^{T} \left\langle \dot{\omega}_{t} - b(\omega_{t}), A^{-1}(\omega_{t})(\dot{\omega}_{t} - b(\omega_{t})) \right\rangle dt \right) \mathbb{1}_{\mathrm{CM} \cap \{\omega_{0} = x\}}(\omega) + \infty \mathbb{1}_{\mathrm{CM}^{\complement} \cup \{\omega_{0} \neq x\}}(\omega),$$

where $A = \sigma \sigma^*$.

Section 4 Possible directions

Open problems

- ➤ Near-Markov property.
- > Extension to stochastic differential equations with anticipating coefficients.
- > Freidlin–Wentzell type results for stochastic differential equations with anticipation.
- ▶ Identification of the class of integrable processes under the new integral.
- ➤ Girsanov theorem for anticipating integrals.

Bibliography

- Ayed, W. & Kuo, H. H. (2008). An extension of the Itô integral. *Communications on Stochastic Analysis*, 2(3). doi:10.31390/cosa.2.3.05
- (2010). An extension of the Itô integral: Toward a general theory of stochastic integration. *Theory of Stochastic Processes*, 16(32), 17–28. Retrieved from http://mi.mathnet.ru/thsp56
- Cramér, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. *Actualités Scientifiques et Industrielles*, 736, 5–23.
- Hwang, C. R., Kuo, H. H., Saitô, K., & Zhai, J. (2016). A general Itô formula for adapted and instantly independent stochastic processes. *Communications on Stochastic Analysis*, 10(3). doi:10.31390/cosa.10.3.05
- _____ (2017). Near-martingale Property of Anticipating Stochastic Integration. *Communications on Stochastic Analysis*, 11(4). doi:10.31390/cosa.11.4.06
- Itô, K. (1944). Stochastic integral. *Proc. Imp. Acad.*, 20(8), 519–524. doi:10.3792/pia/1195572786
- _____ (1951). Multiple Wiener Integral. *J. Math. Soc. Japan*, 3(1), 157–169. doi:10.2969/jmsj/00310157

Varadhan, S. R. S. (1966). Asymptotic probabilities and differential equations. *Communications on Pure and Applied Mathematics*, 19, 261–286. doi:https://doi.org/10.1002/cpa.3160190303