GPU Accelerated Fast and Compact Representation of Grant Actions in Movies

SAI SUDHEER GOTURU\*, JAGANNATH V\*, PALLAV K. BARUAH

SRI SATHYA SAI INSTITUTE OF HIGHER LEARNING Prasanthi Nilayam, Puttaparthi, India.



EPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

### ABSTRACT

- Most of the video captured is used only in a post-factum manner.
- Activities of concern might span a minor area in the spatio-temporal domain.
- Produce a compact clip containing all instances of such activities displayed concurrently.
- A parallel approach was taken to obtain such quick action based summary.
- A module speedup of 32x and an overall application speedup of 12.5x were observed.

#### RELATED WORK

- Motion analysis of human body structure.
- Tracking human motion without using body parts
- Recognizing human activities from image sequences
- Heavily applied in video surveillance, context based image storage and retrieval.

#### **ALGORITHM**

Input Video

Optical Flow Field in Clifford Fourier Domain

NVIDIA

G Obtain Dynamic Regions

Correlation with Template Video representing activity of interest

Generate Summary

## PARALLEL IMPLEMENTATION



#### RESULTS



Application and Module level speedups on Tesla K20c and AMD Opteron (2.3 GHz)



Application and Module level speedups on Tesla K20m and Intel SandyBridge

|         | Application (K20c, AMD) | Module<br>(K20c, AMD) | Application (K20m, ISB) | Module<br>(K20m, ISB) |
|---------|-------------------------|-----------------------|-------------------------|-----------------------|
| MATLAB  | 603.658                 | 598.295               | 685.746                 | 682.158               |
| MEX C   | 175.042                 | 169.061               | 69.9925                 | 66.504                |
| CUDA C  | 5.216                   | 2.163                 | 5.5817                  | 2.108                 |
| Speedup | 34x                     | 78x                   | 12.5x                   | 31.5x                 |

#### EXPERIMENTAL SETUP

- NVIDIA Tesla K20c and K20m GPU cards.
- ➤ MEX-interfaced MATLAB was used to write the parallel version of the sequential MATLAB code.
- The parallel version was run on Stampede supercomputer hosting K20m GPU and a node hosting K20c GPU card.
- The serial version was run on a node hosting AMD Opteron (2.3 GHz), and Intel Sandy Bridge.

# CONCLUSIONS AND FUTURE WORK

- Enhanced the application speed in obtaining a quick action specific summary.
- ➤ Use Dynamic parallelism of the K20 series and shared memory with multiple activities of interest and large input sequences.

#### **ACKNOWLEDGEMENT**

- We dedicate this work to our Founder Chancellor and guide, Bhagavan Sri Sathya Sai Baba.
- This work is partially supported by NVIDIA grant under CUDA Research Center Program.

#### REFERENCES

[1] Rodriguez, Mikel. "Cram: Compact representation of actions in movies." Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.

[2] Aggarwal, Jake K., and Quin Cai. "Human motion analysis: A review." Nonrigid and Articulated Motion Workshop, 1997.
Proceedings., IEEE. IEEE, 1997.

\*Student Author Contact: {gsaisudheer,jagansai1991}@gmail.com