	Name: Vidhe Shah Reg. No.: 21BCE1297 Batch: L3+L4 Dataset: 2
	EXPERIMENT: 8 Solar Cell Characteristics Date 25 04 22
•	AIM: To determine I-V characteristics and the suitability of the solar cell in electric power generation.
	the solar cell in electric power generation.
	APPARATUS: Solar cell characteristic Kit, light source, LEDs
•	FORMULA USEO:
\rightarrow	Pmax = Im x Vm (Watts)
	Pmax -> Maximum Power [Area of largest rectangle under the I-V curve]
	In-> Moximum Current
	Im→ Moximum Current Vm→ Moximum Voltage
→	FF = Pmax (No unit)
	Voc X Isc
	FF → Fill Factor
	Voe → Open Gravit Voltage
	Voe → Open Gravit Voltage Isc → Short Circuit Voltage
	m - / Par / 100%
7	$ \eta = \left(\frac{P_{\text{max}}}{A \times I_0}\right) \times 100\% $
	The Efficiency (01) (n3)
	A -> Area of solar cell (m2) To -> Trotonsity of solar light radiation (Watts/m2)
	Io → Intensity of Solar light radiation (Watts/m²) Maximum efficiency is when power delivered to solar cell is form

· OBSERVATION TABLE:

(i)
$$d = 10 \text{cm}$$
: $I_0 = 11.49 \text{ W}_{cm^2}$ $A = 6 \times 10^{-6} \text{ cm}^2$

S.No.	Resistance (si)	Voltage (V)	Current (mA)	Power (w)
1.	300	0.8	2.4	1.42 × 10-3
2.	400	1.2	2	2.4 x 10-3
3.	500	1.3	1.8	2.34 × 10-3
4.	600	1.4	1.6	2.24 X10-3
5.	900	1.5	1.2	1.8 × 10-3

(ii)
$$d=15 \text{cm}$$
: $I_0 = 6.12 \frac{W}{\text{cm}^2}$ $A = 6 \times 10^{-6} \text{ cm}^2$ $V_{0c} = 1.5 \text{ V}$ $I_{sc} = 1.5 \text{ mA}$

S.No.	Resistance (12)	Voltage (V)	Current (mA)	Power (W)
1.	300	0.4	1.2	0.48x 10-3
2.	400	0.7	1.1	0.77× 10-3
3.	500	0.8	1	0.8×10-3
4.	600	1	0.9	0.9×10-3
5.	900	1.2	0.7	0.84×10-3

· CALCULATIONS :

①
$$d = low$$
: $I_{m} = 2.2 \times 10^{-3} A$, $V_{m} = 1.05 V$, $I_{5c} = 2.8 \times 10^{-3} A$, $V_{0c} = 1.8 V$
 $A = 6 \times 10^{-5} \text{ cm}^2$, $I_{0} = 11.59 \text{ W}$
 $P_{max} = (2.2 \times 10^{-3} A) \times (1.05 V)$
 $P_{max} = 2.31 \times 10^{-3} \text{ W}$

$$FF = \frac{2.31 \times 10^3}{1.8 \times 2.8 \times 10^3}$$

=) $FF = 0.46$

$$h = \left(\frac{2.31 \times 10^{-3}}{6 \times 10^{-5} \times 11.54}\right) \times 100$$

$$h = (0.335) \times 100$$

$$= n = 33.5\%$$

②
$$d=15\text{cm}$$
: $Im=1\times10^{-3}$ A, $Vm=0.88V$, $Isc=1.5\times10^{-3}$ A, $Voc=1.5V$

$$A=6\times10^{-6} \text{ cm}^2$$
, $I_o=6.12 \text{ W}$

$$cm^2$$

$$n = \left(\frac{0.86 \times 10^{-3}}{6 \times 10^{-4} \times 6.12}\right) \times 100$$

$$n = (0.24) \times 100 = n = 24\%$$

1. For
$$d = 10 \text{ cm}$$
;
a) $l_{\text{max}} = 2.31 \times 10^{-3} \text{ W}$
b) $FF = 0.46$
c) $n = 33.5\%$

RESULT:

For d=15cm: a) Pmax = 0.86 × 10-3 W

b) FF = 0.39

c) n = 24%