Computer Science

Theory of Computation

Regular Languages and Non-regular Languages

Lecture No.- 3

Recap of Previous Lecture

Topics to be Covered

Topic Regular Languages

Non-regular Languages

H.W.:

$$(46)$$
 $\{\omega\omega^{R} | \omega \in \{a,b\}^{*}\}$

We reverse of w If weabb. then we = bba

 $\{ww|w\in\{a,b\}^*\}=\{\epsilon,aa,bb,aaaa,abab,baba,bbbb,...\}$

(46) $\{\omega \omega^{R} | \omega \in \{a,b\}^{*}\} = \{\epsilon,aa,bb,aaaa,abba,...\}$ = Set of all even length palindernes

abbaabbaa

ww ao ah ah ab ba baab

W=ab W=jba

(48) {w#w | we {a, b}*?

aab #baa

EWW WEAT = JWW WEATS WWR WW aaaa = a4 MA MAL = al

(50) $\{\omega \# \omega | \omega \in a^*\} = \{\#, \alpha \# a, a^* \# a^*\} = \{a^* \# a^*\}$

(SI)
$$\left\{ \omega_1 \omega_2 \mid \omega_1, \omega_2 \in \left\{ a, b \right\}^* \right\} = \left(a + b \right)^*$$

(52)
$$\left\{ \omega \# \omega \middle| \omega, \# \in \left\{ a, b \right\}^* \right\} = \left(a + b \right)^*$$

(53)
$$\{\omega_1, \omega_2 \mid \omega_1, \omega_2 \in \{a, b\}^*, |\omega_1| = |\omega_2| \}$$

$$-\left((a+b)^2\right)^*$$

$$\begin{array}{l}
\omega_1 \omega_2 \\
\varepsilon \varepsilon = \varepsilon \longrightarrow 0 \\
\alpha \alpha \beta \alpha'' \quad \alpha'' \quad \alpha'' \quad \alpha'' \quad \beta \alpha \beta \alpha'' \quad \beta \alpha'' \quad \beta \alpha'' \quad \beta \alpha'' \quad \delta \alpha \beta \alpha'' \quad \delta \alpha'' \quad$$

$$(55)$$
 $\{\omega \times \omega \mid \psi \in \mathcal{F} \in \mathcal{F}$

$$(56)$$
 $\{xww\}$

$$(59)$$
 $d \times \omega^{R}$

- (n+6)

いこりりかなりり

= { wwas, wwob, www. I

10x

of wxwy
$$|w,x,y \in \{a,b\}^{+} \} = axay + bxby$$

11

$$7 = xaay + x 664$$

W

put min w

next min of w |WI=1 |w1 = 3

COM

Yerr

R

/(88) $S_{\omega}|_{\omega\in\{0,1\}^{*}}$ every prefix s of ω satisfies $|N_{o}(s)-N_{i}(s)|\leq 2$

(89) (89)

$$X(q)$$
 $\{\omega \mid \omega \in \{0,1\}^*, \eta_{00}(\omega) = \eta_{11}(\omega)\}$

9	(a) { w	IWEY	0,13*,	$N_{01}(\omega) = N_{10}(\omega) $	
		#01'5	#105	No.of ois =	no.o
	٤	0	0		
	0	0	0		
		0	0	V	0
	00	0	0		8
-	0)	1	0	×	
	10	00	7	×	
	000	Ó	00		
	001	1	0	×	
-	010	١	1		
	100				
	101				
	11.				

= no. os 10's

2 mins Summary

THANK - YOU