# Finite automata and language

- If M is a **FSM** and A is a **language**, The followings are same:
- The language that machine M accepts is A.
- A is the language of machine M.
- M recognizes A. → We prefer this.
- M accepts A. → "accept" is used for both string and language.

# Finite automata and language

- Empty string:
  - Called epsilon ( $\varepsilon$ )
  - The start state is a final state.

- Empty Language:
  - $\phi = \{\}$
  - The accept state is not reachable.
- Note:  $\{\varepsilon\} \neq \phi$  and  $\varepsilon \neq \phi$





Accept state, q3, is not reachable.

If a machine accepts "no string", then it recognizes the "empty language".

Can you find any pattern for the string that machine M accepts?



- The accepted strings:
  - 10, 1110,111110, ...
  - 10, 1000, 100000,...
  - 01, 0001, 000001, ...
  - 01, 0111, 011111, ...

•  $L(M_1) = \{w \mid \text{ string } w \text{ contains odd number of 1's or odd number of 0's.} \}$ 

• Example:



$$\Sigma = \{0,1\}$$
 $Q = \{q_1, q_2\}$ 
 $q_{start} = q_1$ 
 $F = \{q_2\}$ 

- What is the language of this machine?
- $L(M_2)=\{w \mid w \text{ ends in a 1}\}$

- language of machine
- Example:



$$\Sigma = \{0,1\}$$

$$Q = \{q_1, q_2\}$$

$$q_{start} = q_1$$

$$F = \{q_1\}$$

• L(M<sub>3</sub>)={w|w is the empty string **E** or ends in a 0}

• Example:



| $\Sigma = \{a, b\}$          |
|------------------------------|
| $Q = \{q_1, q_2, r_1, r_2\}$ |
| $q_{start} = s$              |
| $F = \{q_1, r_1\}$           |

|          | δ          | a     | b     |
|----------|------------|-------|-------|
| <b>→</b> | S          | $q_1$ | $r_1$ |
|          | $q_{1}$    | $q_1$ | $q_2$ |
|          | $q_2$      | $q_1$ | $q_2$ |
|          | <u>r_1</u> | $r_2$ | $r_1$ |
|          | $r_2$      | $r_2$ | $r_1$ |
|          |            |       |       |

- $L(M_4) = \{w \mid w \text{ start and end with } \mathbf{a} \text{ or that start and end with } \mathbf{b}.\}$
- $L(M_4) = \{\text{start and end with the same symbol.}\}$

Examples:



$$\Sigma = \{\langle RESET \rangle, 0, 1, 2\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$q_{start} = q_0$$

$$F = \{q_0\}$$

|    |                |                                                        | RESET                                                |
|----|----------------|--------------------------------------------------------|------------------------------------------------------|
| 70 | $q_1$          | $q_2$                                                  | $q_0$                                                |
| 1  | $q_2$          | $q_0$                                                  | $q_0$                                                |
| 12 | $q_0$          | $q_1$                                                  | $q_0$                                                |
|    | 70<br>71<br>72 | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

- The acceptable strings: <RESET>, 12, 21, 111, 1011, 1101, 1110,...
- L(M<sub>5</sub>) = {w|the sum of the symbols in w is 0 modulo 3,except (RESET) that resets the count to 0.}

- Example:
  - $L(M_5) = \{w \mid \text{the sum of the symbols in } w \text{ is 0 modulo 3,except that } \langle \text{RESET} \rangle \}$  resets the count to 0}.



Does M<sub>5</sub> accept 10(RESET)22(RESET)012 ?

- Design is a creative process.
- cannot be reduced to a simple recipe or formula.
- However, you might find a particular approach helpful when designing various types of automata.
- "Reader as automaton" approach

#### Example:

- construct a finite automaton E<sub>1</sub> to recognize language A, where
  - A = {w | binary string w has odd number of 1s.}
- $E_1 = (Q, \Sigma, \delta, q_0, F) = ?$
- 1.  $\Sigma = \{0,1\}$
- 2. Q =?
  - even so far, and  $\rightarrow q_{even}$
  - odd so far.  $\rightarrow q_{odd}$
  - $Q = \{q_{even}, q_{odd}\}$
- $q_0 = q_{even}$   $F = \{q_{odd}\}$





#### Example:

- construct a finite automaton E<sub>1</sub> to recognize language A, where
  - A = {w | binary string w has odd number of 1s.}
- $E_1 = (Q, \Sigma, \delta, q_0, F) = ?$

1. 
$$\Sigma = \{0,1\}$$

2. 
$$Q = \{q_{even}, q_{odd}\}$$

3. 
$$q_0 = q_{even}$$

4. 
$$F = \{q_{odd}\}$$

5. 
$$\delta$$
 =?



# Designing finite automata Example:

- construct a **finite automaton E<sub>2</sub>** to recognize **language** A, where
  - A = {w | binary string w has a substring 001.}
  - The strings 0010,1001,001,and11111110011111are all in the language.

- We start with the minimum number of the states that we need.
- Q =?
  - haven't just seen any symbols of the pattern,  $\rightarrow q$



- We start with the minimum number of the states that we need.
- Q =?
  - haven't just seen any symbols of the pattern,  $\rightarrow q$
  - have just seen a  $0, \rightarrow q_0$



- We start with the minimum number of the states that we need.
- Q =?
  - haven't just seen any symbols of the pattern,  $\rightarrow q$
  - have just seen a  $0, \rightarrow q_0$
  - have just seen  $00 \rightarrow q_{00}$



- We start with the minimum number of the states that we need.
- Q =?
  - haven't just seen any symbols of the pattern,  $\rightarrow q$
  - have just seen a  $0, \rightarrow q_0$
  - have just seen  $00 \rightarrow q_{00}$
  - have seen the entire pattern 001.  $\rightarrow q_{001}$



- We start with the minimum number of the states that we need.
- Q =?
  - haven't just seen any symbols of the pattern,  $\rightarrow q$
  - have just seen a  $0, \rightarrow q_0$
  - have just seen  $00 \rightarrow q_{00}$
  - have seen the entire pattern 001.  $\rightarrow q_{001}$
- Complete the transitions of the automata:



- We start with the minimum number of the states that we need.
- Q's : Done
- Complete the transitions of automata:



- We start with the minimum number of the states that we need.
- Q's : Done
- Complete the transitions of the automata:
  - q001



- We start with the minimum number of the states that we need.
- Q's : Done
- Complete the transitions of the automata:
  - q001
  - q00



- We start with the minimum number of the states that we need.
- Q's : Done
- Complete the transitions of the automata:
  - q001
  - q00
  - q0



- We start with the minimum number of the states that we need.
- Q's : Done
- Complete the transitions of the automata:
  - q001
  - q00
  - q0
  - q



#### Example:

- construct a finite automaton E<sub>2</sub> to recognize language A, where
  - A = {w | the binary string w has a substring 001.}

• 
$$E_2 = (Q, \Sigma, \delta, q_0, F) = ?$$

- $\Sigma = \{0,1\}$
- Q =  $\{q, q_0, q_{00}, q_{001}\}$
- $q_0 = q$
- $F = \{q_{001}\}$

| δ                  | 0         | 1                |
|--------------------|-----------|------------------|
| $\rightarrow q$    | $q_0$     | q                |
| $q_0$              | $q_{00}$  | $\boldsymbol{q}$ |
| $q_{00}$           | $q_{00}$  | $q_{001}$        |
| $\frac{q_{001}}{}$ | $q_{001}$ | $q_{001}$        |



# Designing finite automata Example 2:

- construct a finite automaton E<sub>3</sub> to recognize language A, where
  - A = {w | the binary string w does not contain substring 001 in it.}
- It is easier to construct the machine E<sub>2</sub> that accepts any string that contains a substring 001.
  - (previous example)



- Then, swap the accepting states with non-accepting states and vise versa.
  - See E<sub>3</sub> Below.



# Complementing a language

Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a DFA that accepts a language L. Then a DFA that accepts the complement of L, i.e.  $(\Sigma^*$  - L), can be obtained by **swapping** its accepting states with its non-accepting states, that is  $M=(Q,\Sigma,\delta,q_0,Q-F)$  is a DFA that accepts  $(\Sigma^*$  - L).



Question 1: What does this FSM recognize?

- Accepts Strings such as 10, 0<sup>+</sup>1, ...
- Recognizes A = {w | w is either 10 or a string of at least one 0 followed by a single 1.}

Question 2: what happens if w= 11 or 101



•  $\delta$ , formally, should be defined. How?

Question 1:  $\delta$ , formally, should be defined. How?

By adding the a "dead state".



|          | δ                | 0    | 1                          |
|----------|------------------|------|----------------------------|
| <b>→</b> | $\boldsymbol{A}$ | B    | D                          |
|          | B                | B    | $\boldsymbol{\mathcal{C}}$ |
| ,        | <u>C</u>         | Dead | Dead                       |
|          | D                | E    | Dead                       |
| _        | $E_{-}$          | Dead | Dead                       |
| I        | Dead             | Dead | Dead                       |

# Regular language

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a finite automaton and let  $w = w_1 w_2 \dots w_n$  be a string where each  $w_i$  is a member of the alphabet  $\Sigma$ .
- Then M accepts w if a sequence of states  $r_0$ ,  $r_1$ ,...,  $r_n$  in Q exists with three conditions:
  - 1.  $r_0 = q_0$ ,
  - **2.**  $\delta(r_i, w_{i+1}) = r_{i+1}$ , for  $i = 0, \ldots, n-1$ , and
  - 3.  $r_n \in F$ .

| W     | $w_1$ | $W_2$ | ••• | $W_n$            |                          |
|-------|-------|-------|-----|------------------|--------------------------|
| State | $r_0$ | $r_1$ | ••• | r <sub>n-1</sub> | r <sub>n</sub><br>accept |

- We say that M recognizes language L if L = {w | M accepts w}.
- A language is called a regular language if some finite automaton recognizes it.

# The regular operations

- Let A and B be languages. We define the regular operations union, intersection, concatenation, and star as follows:
  - Union:  $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
  - Intersection:  $A \cap B = \{x | x \in A \text{ and } x \in B\}.$
  - Concatenation:  $A \cdot B = \{x, y | x \in A \text{ and } y \in B\}.$ 
    - attaches a string from A in front of a string from B in all possible ways to get the strings in the new language.
  - Star:  $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and } x_i \in A\}.$ 
    - attaches any number of strings in A together to get a string in the new language.

- What languages are not regular?
- Answer: Any languages that requires memory.
  - FSM memory is very limited
    - Cannot store the string
    - Cannot count the symbols
  - Will be discussed later.
- **Examples**: Let L is a language over  $\Sigma = \{0,1\}$  and,
  - $L = \{ww | w \text{ is a binary string.}\} = \{0101,010010,1100111001\}$
  - $L = \{w | w = 1^n 0^n, where \ n \in N\} = \{10,1100,111000,11110000\}$
  - These languages are not regular.

**Example 3:** Is the following language regular?

- 0 3 6 9 12
- A = {w | the binary string w is a multiple of 3.} = {0,11,110,1001, 1100,...}
- Can we construct a FSM for that?
- If a number is divisible by 3,
  - it can be written as the expression 3X
- If a number is not divisible by 3,
  - it can be written as the expression 3X+1 or 3X+2
- Also
  - If we add a "0" at the right most of a binary integer, k, its value will be doubled, 2k. For example  $3 = 11 \rightarrow 6 = 110$
  - If we add a "1" at the right most of a binary integer, k, its value will be doubled, 2k+1. For example  $3 = 11 \rightarrow 7 = 111$

## **Example 3: (continue)**

- Q: {R0,R1,R2} // R0: 3X , R1: 3X+1 , R2: 3X+2
- $\delta$ : Transition function?
  - If the new input symbol is 0 or 1, then what will be the new state?
    - 11100101010001?

| $\delta$   | 0                      | 1                         |
|------------|------------------------|---------------------------|
| R0:3x      | 2(3x) : RO             | 2(3x)+1= 3(2x)+1 : R1     |
| R1: 3x + 1 | 2(3x+1) = 3(2x)+2 : R2 | 2(3x+1)+1 = 3(2x+1) : R0  |
| R2: 3x+2   | 2(3x+2) = 3(2x)+1 : R1 | 2(3x+2)+1 = 3(2x')+2 : R2 |
|            |                        |                           |
|            |                        | x' = x+1                  |

# **Example 3: (continue)**

- Q: {R0,R1,R2} // R0: 3X , R1: 3X+1 , R2: 3X+2
- $\delta$ : Transition function?

| δ           | 0  | 1  |
|-------------|----|----|
| → <u>R0</u> | RO | R1 |
| R1          | R2 | RO |
| R2          | R1 | R2 |
|             |    |    |

• Start state: R0

• Final states: {R0}



## The regular operations

- Example 1: Let
  - Alpahbet  $\Sigma = \{a, c, b, ..., z\}$
  - Languages over  $\Sigma : A = \{easy, difficult\}, and B = \{exam, quiz\}.$

- $A \cup B = \{easy, difficult, exam, quiz\}.$
- $A \cdot B = \{easyexam, easyquiz, difficultexam, difficultquiz\}.$
- $A^* = \{\varepsilon, easy, difficult, easyeasy, easydifficult, difficulteasy, difficultdifficult, easyeasy, ....\}.$

### The regular operations

- Example 2: Let
  - Alpahbet  $\Sigma = \{0,1\}$
  - Languages over  $\Sigma : A = \{00,000\}$ , and  $B = \{11,011,111\}$

- $A \cup B = \{00,000,11,011,111\}.$
- $A \cdot B = \{0011,00011,00011,000011,00111\}.$
- $A^* = \{\varepsilon, 00, 000, 0000, 00000, 000000...\}$ . (kleen star)
- $A^+ = \{00,000,0000,00000,000000...\}$ . (kleen plus)

#### Closure

- Generally speaking, a collection of objects is closed under some operation if applying that operation to members of the collection returns an object still in the collection.
- If for every x and y in set A,  $(x \diamond y)$  is in A, where  $\diamond$  is an operation defined on set A, then A is closure under  $\diamond$ .

#### Example :

• **N** is closed under **multiplication**, but it is not closed under **division**.

- Theorem
  - The class of regular languages is closed under the union operation.
  - In other words, if A1 and A2 are regular languages, so is  $A_1 \cup A_2$ .
- Proof :
  - This is a proof by construction.
  - To prove that  $A_1 \cup A_2$  is regular, we demonstrate a finite automaton, call it  $\mathbf{M} = (Q, \Sigma, \delta, q_0, F)$ , that recognizes  $A_1 \cup A_2$ .
  - Let  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$  recognize  $A_1$ , and  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$  recognize  $A_2$ .
  - We construct M from  $M_1$  and  $M_2$ .

- Approaches to build the machine:
  - 1. Combine the machines



- Approaches to build the machine:
  - 2. Cascading: First, Running  $M_1$ , then running  $M_2$

M



Cannot rewind input for M<sub>2</sub>

- 3. Simulate both  $M_1$  and  $M_2$  simultaneously:
  - Each state in new machine M represents two states; one from  $M_1$  and one from  $M_2$
  - Finding Q:  $\{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$



$$Q = Q_1 \times Q_2 \quad \text{m1} \quad \underline{\text{m2}}$$

$$\rightarrow r1 \quad (r1, m1) \quad (r1, m2)$$

$$r2 \quad (r2, m1) \quad (r2, m2)$$

- Machine M:
  - $Q = Q_1 \times Q_2 = \{(r1, m1), (r1, m2), (r2, m1), (r2, m2)\}$



- Machine M:
  - $Q = Q_1 \times Q_2 = \{(r1, m1), (r1, m2), (r2, m1), (r2, m2)\}$
  - Start state : (r1,m1)
  - Accept states : { (r1,m2),(r2,m1),(r2,m2)}



- Machine M:
  - $Q = Q_1 \times Q_2 = \{(r1, m1), (r1, m2), (r2, m1), (r2, m2)\}$
  - Start state : (r1,m1)
  - Accept states : { (r1,m2),(r2,m1),(r2,m2)}
  - the transition function ?  $\delta((r_1,r_2),a) = (\delta_1(r_1,a),\delta_2(r_2,a))$



- Machine M:
  - $Q = Q_1 \times Q_2 = \{(r1, m1), (r1, m2), (r2, m1), (r2, m2)\}$
  - Start state : (r1,m1)
  - Accept states : { (r1,m2),(r2,m1),(r2,m2)}
  - the transition function?



- Theorem
  - The class of regular languages is closed under the union operation.
  - In other words, if A1 and A2 are regular languages, so is  $A_1 \cup A_2$ .
- Proof (cont.):
  - proof by construction : The language of the following machine is  $A_1 \cup A_2$ .
  - FSM M =  $(Q, \Sigma, \delta, q_0, F)$ 
    - $\Sigma$ , the Alphabet
    - $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$
    - $\delta$  ,the transition function : $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$
    - $q_0 = (q_1, q_2).$
    - $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2).$
  - Since we could construct a FSM that recognizes  $A_1 \cup A_2$  is regular, then  $A_1 \cup A_3$  is regular.

- Theorem
  - The class of regular languages is closed under the union operation.
  - In other words, if A1 and A2 are regular languages, so is  $A_1 \cup A_2$ .
- Proof (cont.):
  - proof by construction : The language of the following machine is  $A_1 \cup A_2$ .
  - FSM M =  $(Q, \Sigma, \delta, q_0, F)$ 
    - $\Sigma$ , the Alphabet
    - $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$
    - $\delta$  , the transition function :  $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$
    - $q_0 = (q_1, q_2).$
    - $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_1) \neq F_1 \times F_2.$
  - Since we could construct a FSM that recognizes  $A_1 \cup A_2$  is regular, then  $A_1 \cup A_3$  is regular.

- Theorem
  - The class of regular languages is closed under the intersection operation.
  - In other words, if A1 and A2 are regular languages, so is  $A_1 \cap A_2$ .
- Proof (cont.):
  - **proof by construction :** The language of the following machine is  $A_1 \cap A_2$  .
  - FSM M =  $(Q, \Sigma, \delta, q_0, F)$ 
    - $\Sigma$ , the Alphabet
    - $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$
    - $\delta$  , the transition function :  $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$
    - $q_0 = (q_1, q_2).$
    - $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\} = F_1 \times F_2$ .
  - Since we could construct a FSM that recognizes  $A_1 \cap A_2$  is regular, then  $A_1 \cap A_2$  is regular.