

Computer Graphics

Lecture 4:
Transformations:

M.C. Escher – Smaller and Smaller (1956)

Overview

2D Transformations

- Basic 2D transformations:
- Matrix representation
- Matrix composition

3D Transformations

- Basic 3D transformations
- Same as: 2D

Coordinates Scale **Translate** Scale Rotate **Translate**

World Coordinates

Coordinates

Let's look at this in detail...

World Coordinates

Coordinates

Initial location at (0, 0) with x- and y-axes aligned

Coordinates

Scale .3, .3

Coordinates

Rotate -90

Coordinates

Translate 5, 3

World Coordinates

Scaling

Scaling a coordinate means multiplying each of its components by a scalar

Uniform scaling means this scalar is the same for all components:

Scaling

Non-uniform scaling: different scalars per component:

How can we represent this in matrix form?

Scaling

Scaling operation:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

Or, in matrix form:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

2-D Rotation

2-D Rotation


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
```

Trig Identity...

 $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though sin(0) and cos(0) are nonlinear functions of 0,

- x'is a linear combination of x and y
- y'is a linear combination of x and y

15

Basic 2D Transformations

Translation:

- x^h=xx+t_x
- y'/'≡y/+tţ/,

Scale:

- y'n=y,*s;,

Shear::

- $x'' \equiv x + h_{x} + y$
- y'=y+hy*x

Rotation:

- x''=x*cos⊕-y*sin⊕
- y'=x*sin@+y*cos@

Transformations can be combined (with simple algebra)

Translation:

- x"=x:+t;
- $y_j'' \equiv y_j + t_{y_j}$

Scale:

- X['] = X['] * S_X
- y'₁=y/*;s;

Shear:

- $x'' = x + h_{x} y$
- **y**"≡y/+h_y*x

Rotation:

- x' = x*cos⊕ y*sin⊕
- y'/=x*sin@+y*cos@

Translation:

- x^h=x₁+t_k
- $y_j = y_j + t_{y_j}$

Scale:

- X¹'=X′**S_x
- y'⁄¹≡y/*:s_{y/}

Shear:

- $\chi'' = \chi + h_{\chi'} y$
- y''=y'+hy*x

$x' = x*s_x$ $y' = y*s_y$

Rotation:

- x' = x*cos⊕ y*sin⊕
- y' = x*sin⊕ + y*cos⊕

Translation:

- x';'=x<+t_k,
- y'/'= y/++ tţ/,

Scale:

- X¹ = X(**:S_X
- y'/=y/*:S_{y/}

Shear:

- $x' = x + h_x * y$

Rotation

- x\':=x*cos⊕-y*sin⊕
- y/'=x*sin@+y*cos@

$$x' = (x*s_x)*cos\Theta - (y*s_y)*sin\Theta$$
$$y' = (x*s_x)*sin\Theta + (y*s_y)*cos\Theta$$

Translation:

- x^h=xx+t_k
- $y'' = y' + t'_{yy}$

Scale:

- X' ≡ X * S_X
- y'n≡y,*;s_{y,}

Shear:

- $\chi'' = \chi + h_{\chi'} y$
- y'=y+hy*x

Rotation:

- x''=x*cos⊕-y*sin⊕
- y' = x*sin⊕ + y*cos⊕

$$x' = ((x*s_x)*cos\Theta - (y*s_y)*sin\Theta) + t_x$$

 $y' = ((x*s_x)*sin\Theta + (y*s_y)*cos\Theta) + t_y$

Translation:

- x''=xx+t_x
- y/¹=y/+tţ,

Scale:

- X['] = X['] * S_X
- y'n≡y,*;s_{y,}

Shear:

- $x' = x + h_x * y$
- $y'_{j'} = y_{j'} + h_{y_{j'}} \times x_{j'}$

Rotation:

- x''=x*cos⊕-y*sin⊕
- y'=x*sin@+y*cos@

$$x' = ((x*s_x)*cos\Theta - (y*s_y)*sin\Theta) + t_x$$

 $y' = ((x*s_x)*sin\Theta + (y*s_y)*cos\Theta) + t_y$

Overview

2D Transformations

- Basic 2D transformations:
- Matrix representation
- Matrix composition

3D Transformations

- Basic 3D transformations:
- Same as: 2D

Matrix Representation

Represent 2D transformation by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiply matrix by column vector = apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

$$x' = ax + by$$
$$y' = cx + dy$$

Matrix Representation

Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations!

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix? 2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$
$$y' = s_y * y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix? 2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

 $y' = \sin \Theta * x + \cos \Theta * y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2D Shear (an example)

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix? 2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$

$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix? 2D Translation?

$$x' = x + t_x$$

$$y' = y + t_y$$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

Linear Transformations

Linear transformations are combinations of

- Scale,
- Rotation,
- Shear, and
- Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Properties of linear transformations:

Satisfies::

$$T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$$

- Origin maps to origin
- Lines: map to lines:
- Parallel lines remain parallel
- Ratios are preserved.
- Associative but not commutative

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

Homogeneous: coordinates:

 represent coordinates in 2 dimensions with a 3-vector

$$\begin{bmatrix} x \\ y \end{bmatrix} - \frac{\text{homogeneous coords}}{\text{homogeneous coords}} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous: coordinates: seem unintuitive, but they make graphics: operations: much easier

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- $(x_1, y_2, 0)$ represents a point at infinity

Convenient coordinate system to

represent many useful

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & \boldsymbol{t}_x \\ 0 & 1 & \boldsymbol{t}_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translation

Example of translation

O!

Homogeneous Coordinates

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} + \mathbf{t}_x \\ \mathbf{y} + \mathbf{t}_y \\ 1 \end{bmatrix}$$

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{s} \mathbf{h}_{\mathbf{x}} & 0 \\ \mathbf{s} \mathbf{h}_{\mathbf{y}} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Overview:

(1, 0)

(-1, 0)

(-1, 0)

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations:

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines: map to lines:
- Parallel lines: remain parallel
- Ratios are preserved
- Associative but not commutative

Overview

2D Transformations

- Basic 2D transformations:
- Matrix representation
- Matrix composition

3D Transformations

- Basic 3D transformations
- Same as: 2D

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Matrices are a convenient and efficient way to represent a sequence of transformations

- General purpose representation
- Hardware matrix multiply

Be aware: order of transformations matters

-Matrix multiplication is not commutative

What if we want to rotate and translate?

 Ex: Rotate line segment by 45 degrees about endpoint a and lengthen

Multiplication Order – Wrong Way

Our line is defined by two endpoints

- Applying a rotation of 45 degrees, R(45), affects both points:
- We could try to translate both endpoints to return endpoint at to its original position, but by how much?

Multiplication Order - Correct

Isolate endpoint a from rotation effects

First translate line so a is at origin: T (-3)

Then rotate line 45 degrees: R(45)

Then translate back so a is where it was: T (3)

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

$$p' = (T * (R * (S*p)))$$

 $p' = (T*R*S) * p$

- After correctly ordering the matrices Multiply matrices together
- What results is one matrix store it (on stack)!
- Multiply this matrix by the vector of each
 vertex
- All vertices easily transformed with one matrix multiply

Reflection about an arbitrary line

- Translate the line as well as the object so that the line passes through origin
- Rotate the line and the object about the origin until the line is coincident with one of the coordinate axes
- Reflect the object through the coordinate axis:
- Rotate back
- Translate back

Reverse Rotations

Q: How/do you undo a rotation of the R(th)?

A: Apply the inverse of the rotation... $R^{1}(\theta) = R(-\theta)$

How/to construct $R^{4}(\theta) \equiv R(-\theta)$

- Inside the rotation matrix: $cos(\theta) = cos(-\theta)$
 - The cosine elements of the inverse rotation matrix are unchanged
- The sign of the sine elements will flip: $sin(-\theta) = -sin(\theta)$

Therefore...
$$R^{4}(\theta) \equiv R(-\theta) \equiv R^{7}(\theta)$$

Overview

2D Transformations

- Basic 2D transformations:
- Matrix representation
- Matrix composition

3D Transformations

- Basic 3D transformations
- Same as: 2D

3D Transformations

Same idea as 2D transformations

- Homogeneous coordinates: (x,y,z,w))
- 4x4 transformation matrices:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Basic 3D Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Identity

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t}_x \\ 0 & 1 & 0 & \mathbf{t}_y \\ 0 & 0 & 1 & \mathbf{t}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Mirror about Y/Z plane

3-D Rotation About an Axis

Positive rotation is counterclockwise, when looking from positive direction along an axis.

Basic 3D Transformations

Rotate around Z axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 & 0 \\ \sin\Theta & \cos\Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotate around Y axis:

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \cos\Theta & 0 & \sin\Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\Theta & 0 & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Rotate around X axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta & 0 \\ 0 & \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Summary

Coordinate systems

World vs., modeling coordinates:

2-D and 3-D transformations

- Trigonometry and geometry
- Matrix representations:
- Linear vs. affine transformations:

Matrix operations

Matrix composition