

國立台灣科技大學營建工程系

博士學位論文

校舍耐震資料庫之資料探勘

Data Mining on Aseismic School Building Database

研究生:高偉格

學 號: D9505501

指導教授: 陳鴻明博士

中華民國一零二年七月七日

中文摘要

台灣國家實驗研究院地震工程研究中心(NCREE)在九二一大地震後,與教育部合作評估全台灣的各級學校校舍之耐震能力,在此計畫執行的過程中產生了大量的評估與調查資料,因此 NCREE 便建立了一個校舍耐震能力資料庫來收集各種相關的資料,收集了包括校舍的各種設計參數、材料強度、校舍現況及年齡、技師的評估與補強建議方案、實際補強的金額與補強方法等。收集的校舍資料數量龐大,除了當初設計的目的之外,應該還潛藏難以由人直接判斷取得的知識(knowledge)、模式(pattern)。資料探勘(Data Mining)就是用來分析這種數量龐大的資料,從中找出潛藏的知識的相關技術的統稱,本研究之目的即為利用資料探勘技術來發掘潛藏於此校舍耐震資料庫中的知識,本研究從資料探勘的四種主要分析方法:回歸、分類、分群、關聯出發,分別探討各種方法在此資料庫中有何可能的分析方向,有哪些可能的潛藏知識,並進行分析,最後得到了三個有用的預測模型,分別為校舍耐震能力預測模型、校舍破壞模式預測模型以及校舍補強經費預估模型。

ABSTRACT

Distributed querying and monitoring systems have been widely studied in recent years. These systems aim to maintain data sources, such as data set or log files, and allow users to query over those data sources. When the data sources are highly related and users only care some statistic results, like the sum or the average, it is consumed to transmit all data sources via the network. To minimize the network consumption, in-network aggregation technique is proposed. However, this technique is subject to some known attacks, such as the injection attack and the pollution attack. Prior works only considered the settings that data sources are trusted while the network is not. We study the way to relax the limitation and guarantee the aggregate queries robust to malicious or faulty data sources (also called polluted data sources).

誌謝

首先誠摯的感謝指導教授陳明明博士,老師悉心的教導使我得以一窺 WSN的深奧,不時的討論並指點我正確的方向,使我在這些年中獲益匪淺。老師對學問的嚴謹更是我輩學習的典範。本論文的完成另外亦得感謝老師們大力協助。因為有你們的體諒及幫忙,使得本論文能夠更完整而嚴謹。兩年裡的日子,實驗室裡共同的生活點滴,學術上的討論、言不及義的閒扯、讓人又愛又怕的宵夜、趕作業的革命情感、因為睡太晚而遮遮掩掩閃進實驗室.......,感謝眾位學長姐、同學、學弟妹的共同砥礪,你/妳們的陪伴讓兩年的研究生活變得絢麗多彩。最後絕對不能忘記最了解、最支持我的家人—我的父親、母親及姊姊,在我喪失動力之時,隨時都能給予我心靈上無窮盡的關心與鼓勵,讓我有勇氣堅持到最後,完成研究的旅途。還有很多曾經幫助過我的朋友,因為有大家的幫助,我才能有今天的成果。想要感謝的人真的太多太多,就只有感謝上天了!

錄

論	文摘号	Z
Αł	ostract	II
誌	謝	III
目	錄	
昌	目錄	
表	目錄	
1	緒論	
	1.1	動機與目的
	1.2	研究方法 2
	1.3	研究方法 2 論文架構 3
2	Preli	minaries
3	校舍	耐震資料庫 7
	3.1	建置目的 7
		3.1.1 簡易調查
4	資料	探勘 9
	4.1	Generalized Linear Model
	4.2	Support Vector Machine
	4.3	Artificial Neural Networks
	4.4	Genetic Programming
	4.5	Weighted Genetic Programming
	4.6	K-means
	4.7	Nearest Neightborhood

5	耐震能力預測	11
6	破壞構件預測	12
7	補強經費預測	13
8	結論與後續工作	14
	8.1 Future Work	14
參	考文獻	15
授	權書	1 <i>6</i>

圖 目 錄

圖 2.1 The diagram of "prototypical PHI query" 6

表 目 錄

表 1.1 The relation of aggregation overhead between different techniques ... 5

第1章 緒論

1.1 動機與目的

一九九九年九月二十一日發生的南投集集大地震,造成台灣將近半數校舍受損,其中南投地區更是有多數的校舍半毀或全毀,所幸地震發生時間為半夜,校舍並未在使用時間,並沒有因為校舍的受損而造成學生的傷亡,然而學校校舍的安全問題也因此浮現,學校的校舍建築物,除了在平時會有大量的學生在內使用外,也有很多校舍是兼作為緊急時期的避難或安置所,因此其安全性之需求應高於其他一般建物,然而有很多的校舍建築屋齡已經很大,以現今的建築法規來看,其耐震能力也顯得不足,因此教育部在九二一大地震後,便成立了校舍耐震能力補強計畫並與國家地震工程研究院合作執行,目標在找出所有安全性有疑慮的學校依舍,補強其安全性,甚至是拆除重建,而在計畫執行的過程中,產生了大量的校舍相關的資料,這些資料主要為校舍的設計參數和評估資料,數量龐大,因此國家地震工程研究院便建置了一個校舍耐震資料庫,收集此計畫執行間產生的各種校舍資料,此一資料庫收集了全台灣兩萬多棟校舍的設計與評估資料,其主要用途雖為輔助校舍耐震能力補強計畫,然而此一大量的資料,其中應當還有各種隱含的知識,難以由人工觀察判讀以取得。

資料探勘 (Data mining) 此一研究領域的發展是為了因應資料庫系統以及資料 倉儲系統的發展、資料量的急遽成長以及越來越複雜的資料性質,因而越來越難 從收集的資料中獲取有用的知識的情形。資料探勘的方法包括統計、線上分析處 理 (OLAP、on-line analytical processing)、情報檢索 (information retrieval)、機器學 習 (machine learning)、模式識別 (pattern recognition)等,根據其取得的知識形式, 可以分為四種:迴歸、分類、分群、關聯式法則。由前段敘述可以得知,校舍耐 震資料庫內的資料量非常多,其中隱含的知識難以直接由人工觀察取得,如果可 以使用資料探勘技術,從其各種分析方法的特性出發,配合各種實務上的需求, 應當可以從此資料庫中找出部分隱含的校舍建物知識。

在各式建築物結構中,校舍為結構形式上較具有規則性之一類,大多數的校舍建築之設計形式相近,為一字型、外有走廊、隔間形式類似,因此可以將建築物原本複雜多樣化的設計、尺寸等資訊轉為數個代表屬性,此一特性讓校舍建築物整體特性預測模型的建置變成可能,可以使用各種軟式運算 (heuristic computing) 技術來建置預測模型。台灣的國家地震工程研究中心 (NCREE, National

Center for Research on Earthquake Engineering) 已建立有一校舍耐震資料庫,此一資料庫收集有全台灣約兩萬棟校舍的各種資料,除了學校和校舍的基本資料如學校位置,校舍用途、使用人數等,還收集了各校舍的結構、設計資訊,如梁柱尺寸(beam column design)、數量、設計形式(design pattern)、樓層數、教室分布等,這些資料屬性皆為針對校舍特定建築形式之特性所定。

本研究之目的為基於校舍的建築形式以及已經收集大量校舍資料的校舍耐震 資料庫,利用各種資料探勘方法,針對校舍耐震資料庫挖掘隱藏於其中的隱含知 識。

1.2 研究方法

本研究之研究方法可以分為三個階段,第一個階段為分析規劃階段,此一階段的主要目標為假設各種可能的隱含知識,並且定義出不同隱含知識的探勘方式,資料探勘技術依照其特性,可以分為迴歸、分類、分群、關聯四大類,本研究的第一階段即根據此四種知識形式,以及校舍耐震補強計畫的執行流程與需求,假設並定出各種可能透過資料探勘技術取得的校舍耐震資料庫隱含的知識以及探勘方法,其中,迴歸形式的可能取得知識包括了校舍耐震能力預測、校舍破壞模式預測、校捨補強經費預測等,分類形式的可能知識包括了校舍是否需要補強的預測,分群形式的知識則是校舍的類型歸類條件,關聯式法則形式的可能知識則是校舍設計參數與其現狀的關連性,

第二階段則是根據假設的各種隱含知識和資料探勘規劃,實際進行資料探勘的分析和測試,最後的第三階段則是探勘結果的驗證和隱含知識的整理,基於此一流程,本研究最後得到了三個隱含於校舍耐震資料庫中的知識,並且以預測模型的形式呈現,分別為:

- 校舍耐震能力預測模型
- 校舍優先破壞構件預測模型
- 校舍補強經費預估模型

校舍耐震能力預測模型為本研究最主要的資料探勘目標,因為校舍耐震能力補強計畫當中,最重要的資訊就是校舍的耐震能力,傳統上,如果要取得可靠的

校舍耐震能力,需要由專業的技師來評估,其過程需要先到現場調查,根據調查的資續建立完整的結構數值模型,並使用非線性的分析軟體分析,其過程耗時且所費不貲,因此現在校舍耐震能力補強計畫是以分階段篩選的機制,先讓所有校舍進行一個較為簡單的初步評估,再根據初步評估的結果來決定哪些校舍的耐震能力可能比較不足夠,需要詳細的非線性分析,才真的對這些校舍進行詳細的非線性分析與耐震能力評估,然而這種方法有個缺點是其初步的評估方法無法完全反映出校舍的耐震能力,可能有校舍已經因為年代久遠造成耐震能力低落,然而卻無法在初步評估的結果中真實的反映出來,因此,如果有一個方法可以快速的得到更為可靠的評估數據,甚至可以當作詳細評估的參考,可以大大的加速校舍耐震能力補強計畫的進行。

除了數值化的校舍耐震能力,本研究還建立一個預測模型,可以對校舍受到 地震力時,優先破壞的構件進行預測,這個資訊可以幫助對校舍進行耐震能力評 估的專業技師對目標的校舍弱點先有一些初步了解,不但可以協助詳細評估的進 行,對於校舍補強設計的方式也有一定程度的幫助。

最後,由於校舍補強所需的經費龐大,因此校舍耐震能力補強計畫不可能在 短期內就把所有耐震能力不足的校舍都完成補強,實務上會需要估算各個校舍補 強所需的經費,排定預算,然後才知道不同預算年度能夠完成多少的校舍補強作 業,因此校舍的補強經費在校舍補強計畫的決策中,是一個非常重要的數字,傳 統的經費預估方法是由過往的經驗、數據和所欲補強校舍的規模作為依據,經由 一些推估和統計所計算出來的,如果能夠建立一個預測模型,經由校舍的基本資 料就可以得到準確的補強經費預測值,那便可以大大的加速校舍耐震能力補強計 畫決策者的決策速度,也可以讓計畫執行人員能更快的了解補強作業的規模。

1.3 論文架構

網路發展興盛至今,小至個人,大至政府單位與各機關組織,都相當仰賴網路的使用,但許多人仍然對資安危機意識較低,針對資訊安全產品的投資也相對較少,加上對於資訊安全軟體工具缺乏有系統的整理,以致於未能有效運用。為此,本手冊蒐集整理相關開放源碼(Open Source)的資訊安全軟體工具,並透過專業人員實際操作演練,加以彙整並集結成冊,希冀透過本手冊的幫助,不僅能給予初學者對於資安工具軟體初步認識,也讓資訊從業人員在資訊安全工具上能有更多的選擇與應用。

資安開放源碼軟體的發展,往往會公開其發展技術及運用的原理,配合程式碼的開放,使得開放源碼軟體具有相當大的彈性,並根據個人使用情況所需,進行軟體的編修與整合,以求適應各種作業環境所需。使用開放源碼軟體所需負擔的金錢成本,遠低於商業付費軟體,可降低企業組織對資訊科技產品的部分支出,不需要過度仰賴軟體製造商的技術支援與更新,也能減少相對應的軟體開發時程[1]。由於目前多數的資安開放源碼軟體的開發多為國外組織,因此較缺乏中文化介面,且部分軟體工具的使用,需要具備相當程度的專業知識[2],並非人人皆可輕易上手。本手冊擬透過中文化的工具介紹,減緩國內使用者入門的負擔。

由於現今網路環境日益複雜,遭受網路攻擊的事件層出不窮,網路安全越來越受到各界重視。網路掃描是網路安全的根本,也是攻擊者對目標主機進行攻擊的首要步驟,因此,了解網路掃描的攻擊與防禦,將有助於網路管理者提升網域的安全管理。此外,網路流量代表所有網路訊息的傳送,能提供管理者即時了解網路狀況,藉此檢視網路情況正常與否。本手冊將針對以上兩類的開放源碼軟體,逐一介紹其功能、安裝、操作與軟體評比,令讀者對相關的資訊軟體能有所了解,並進一步應用於資訊安全的監測與控管。以下即對網路掃描及流量監控兩大類軟體,進行整理與原理說明[3-6]。

Insecure.org 網站曾於 2003 年及 2006 年間調查各使用者喜愛的工具軟體,其中 2006 年收到 3,243 位受訪者的回覆,受訪對象涵括各界對資安工具有持續研究與發展的學者及廠商,包括 Insecure.org 自身、研究網際網路議題的機構、發展開放源碼軟體的組織,與其他著名的資安網站(如 Open Source Security、Honeypots和 IDS Focus等),並根據調查結果選出前 100 大網路安全工具(Top 100 Network Security Tools)。本手冊從中篩選了數套較廣泛應用且屬於開放源碼的工具軟體進行蒐集整理,以提供使用者參考學習使用。以下針對各工具軟體予以介紹相關的資訊安全基礎知識(包括專業術語解釋、專有名詞解析)、軟體安裝與使用方式,以及防駭相關知識。使用者將能透過本手冊掌握並熟悉更多相關熱門工具,且對資訊安全攻防技術有更進一步的認識。如表 1.1所示。

表 1.1: The relation of aggregation overhead between different techniques

	Space usage	Communication	Query
	of root aggregator	overhead	requirement
Traditional warehouse n		O(n)	O(n)
AM-FM sketch technique	$\log a$	$O(\log n)$	$O(a \log n)$
"prototypical PHI query"	$\log a$	$O(\log n)$	$O(\log n)$

圖 2.1: The diagram of "prototypical PHI query"

第2章 Preliminaries

作業系統指紋辨識的方法,可分為主動式作業系統指紋辨識(Active OS Fingerprinting)與被動式作業系統指紋辨識(Passive OS Fingerprinting)。主動式作業系統指紋辨識,主動對目標主機送出自製的探測封包,並根據回傳的反應做判斷依據,軟體工具 Nmap 與 Xprobe2 即屬於此類。Nmap 主要控制 TCP 的參數值,做為探測用封包;Xprobe2 則是著重於送出 ICMP 封包,利用邏輯樹斷定作業系統的類型。被動式作業系統指紋辨識是監聽網路上目標主機的封包往來做為判斷的依據,POf 即屬於被動式,相對於主動式作業系統指紋辨識較不易被人察覺。不論是主動式或被動式的作業系統指紋辨識,皆利用 TCP/IP 堆疊進行辨識,包括封包存活時間(time to live,TTL)、Window Size、最大分割大小(Maximum Segment Size)、不分段標記(Don't Fragment flag)、Window Scale Option 等,因為不同的作業系統的fingerprint 有所不同,所以可做為判定作業系統的依據。如圖 2.1所示。

第3章 校舍耐震資料庫

學校是人才培育的場所,也是緊急災難時,居民避難的主要地方,但台灣地區學校建築在每次地震時之損壞卻非常嚴重,尤其是老舊校舍,因興建年代久遠,其設計時所依據規範較為老舊,耐震能力可能遠低於現今結構耐震安全上之要求,故教育部已委託國家地震工程研究中心進行全國學校校舍之耐震能力評估與補強研究,此研究著眼於校舍建築耐震能力評估補強機制及施行細節的建立,以對全國學校校舍耐震能力作一全面性普查,以篩選出耐震有疑慮之校舍,並儘速透過補強或拆除新建的手段來提昇校舍的耐震能力。

3.1 建置目的

結構耐震評估的方法可分為兩類,第一類為初步評估 (preliminary evaluation), 其通常的方法是基於結構物之設計及現況填寫初評表格,所填寫資料再依評估方 程式計算出結構物耐震能力之評分等級或指數,此類方法主要的目的是對大量結 構物之耐震能力作排序與篩選;另一類為詳細評估 (detailed evaluation),此類方法 為對結構物進行詳細的結構耐震分析,通常是使用結構分析程式以電腦數值計算 的方式,準確詳細的檢驗評估出結構物的耐震能力,此二類耐震評估的方式通常 相輔相成,結合成為標準的結構耐震能力評估程序,其即是先對所有需評估之結 構物先以初步評估作耐震能力之評分與排序,以篩選出其中耐震能力有疑慮者, 再對其以詳細評估的方式做詳細的檢驗。

由於中小學校舍數量龐大,若直接大量投入人力物力,可能造成大量之資源浪費,也無法快速的鎖定耐震能力不足之校舍建築,故針對有效達成此一校舍耐震評估標準需求以及基於上述標準耐震評估程序之精神,國家地震工程研究中心提出之解決程序為:經由學校總務人員之簡易調查及工程專業人員之初步評估,有效的將校舍結構之耐震能力排序,以縮小問題之規模,對於耐震堪慮之校舍,依嚴重程度,由工程之專業人員,進行結構耐震之詳細評估,倘尚符合補強之經濟效益,即進一步作耐震補強之設計,若不符合補強之經濟效益,則將之列為拆除重建。

上述程序中之簡易調查與初步評估均屬填寫評估表方式之初步篩選階段,此一調查評估作業,將產生大量與校舍結構耐震相關之資料,包含 GPS 座標、樓地

板面積、柱量、牆量、興建年代、用途等,而後續之詳細耐震評估與補強工作,亦會產生大量分析模型,補強設計圖說等多媒體資料。故本研究的目標之一,即是針對以上校舍耐震評估作業中所欲收集及可能產生之資料,規劃建置校舍耐震資料庫,以對校舍耐震評估作業所產生大量的珍貴資料作有系統的維護、儲存與管理,以供研究團隊後續研擬詳細評估與補強作業之方法與策略,以及其他防災計畫與建物耐震相關研究參考使用,亦可為填表式的評估作業提供一個網路上傳式的作業平台,輔助資料收集與彙整之工作,以提昇作業之方便性,正確性及效率,並節省人力物力成本。

3.1.1 簡易調查

第4章 資料探勘

資料探勘技術方法繁多, Fayyad 根據其處理的問題形式基本上可以分為分類、分群、迴歸尋找關聯等四種主要的問題類型,分類

分群

迴歸

關聯

本研究後期確定主要的探勘目標後,使用的資料探勘方式為迴歸為主,分類 分群為輔助,以下分別介紹各種使用的的分析方法:

4.1 Generalized Linear Model

廣義線性模型是由 Nelder and Wedderburn [7] 所提出,比起迴歸分析 (simple regression) 更為彈性,此模型是假設資料點的分佈有一分佈模式,且 X 與 Y 之間的關係是由一連結函數 (Link Function) 建立,如 log function、power function等,其定義之 XY 關係模型如下:

$$g(E(y)) = x\beta + O, y F \tag{4-1}$$

g(.) 是為所選的鏈結函數,O 是偏移 (offset) 變數,F 則是 y 的分佈模型,其是用牛頓法 (Newton-Raphson Method) 不斷的調整 β 使的 $x\beta+O$ 逼近 g(E(y)),最後最接近的方程式即為 XY 兩者的關系式。比起迴歸分析,此方法還需要了解 Y 值分佈狀況,選擇出最適合的分佈函數,並假設 XY 間的鏈結函數形式,雖然越多的參數選擇代表了更多的模型不確定性,但廣義線性模型卻能夠提供比迴歸分析更廣的應用範圍,也可能得到更接近真實的關係模型。

4.2 Support Vector Machine

SVM 最早是 BOSER [8] 等人,在 1992 年的 COLT (Computational Learning Theory) 所提出,SVM 是一個基於統計學習理論的分類方法,用來處理二元分割

的問題,其原理是將原本無法線性分割的問題轉換到一個不同維度的空間 (kernel)後,假設該空間存在一超平面 (hyperplane),可以正確的將資料分開,並將尋找此一超平面的問題轉換為一最佳化問題,求解後即可得到二元分割邊界的方程式。而後 Harris Drucker, et. al.,[9] 將此二元分割問題轉換為迴歸分析問題,故 SVM 也可以處理迴歸問題。

4.3 Artificial Neural Networks

其是希望能模擬建構出人腦內的神經網路,以處理各種複雜的問題,人類大腦是由大約千兆個神經元 (Neuron) 所構成,而每個神經元又會和其他約一萬個神經元連結,構成一個龐大且複雜的神經網路,這樣複雜的一個神經網路讓人類可以學習並了解各種事物與知識。McCulloch and Pitts[6] 所提出的模型為後續類神經網路發展的雛形,一個標準的類神經網路可以分為輸入層 (input layer)、隱藏層 (hidden layer)、輸出層 (output layer),輸入層 (input layer) 負責接受各種求解問題需要的量化數據和資料,經由隱藏層 (hidden layer) 的不斷自我更新學習的模型處理過後,在輸出層 (output layer) 就可以得到想要的解答,類神經網路可以處理的問題種類多樣,其模型的品質多數也都不錯,缺點是學習時間長,且得到的模型為一個黑盒子,難以解釋其物理或是數學模型上的意義。

4.4 Genetic Programming

4.5 Weighted Genetic Programming

4.6 K-means

4.7 Nearest Neightborhood

第5章 耐震能力預測

第6章 破壞構件預測

第7章 補強經費預測

第8章 結論與後續工作

本論文蒐集了各類資訊安全工具軟體,目的是為了讓更多使用者了解資訊安全的重要性,以及如何更有效的運用網路資源。透過一系列的資訊安全基礎知識及專有名詞解釋,搭配軟體的安裝及實作步驟,讓初級使用者能更容易跨越資訊安全議題的門檻,對駭客攻防與妨駭相關知識有更深的了解。

對進階使用者而言,本手冊也針對開放源碼工具做介紹,大部分工具都有釋 出其原始碼,並歡迎有能力的使用者開發出更完善的程式。另外,使用者也可以 結合不同功能性的軟體,自行開發出一套符合其需求的軟體,例如利用作業系統 辨識工具搭配弱點掃描工具,能夠更快的找出目標主機的系統漏洞,以發揮 1+1 大於 2 的功效。

8.1 Future Work

使用安全工具軟體開創一個美好和階的社會。

參考 文獻

- [1] M. N. Garofalakis, J. M. Hellerstein, and P. Maniatis, "Proof sketches: Verifiable innetwork aggregation," in *Proceedings of IEEE 23rd International Conference on Data Engineering (ICDE)*, (Istanbul, Turkey), pp. 996–1005, Apr 2007.
- [2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "Tag: A tiny aggregation service for ad-hoc sensor networks," in *Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI)*, vol. 36, (Boston, Massachusetts, USA), pp. 131–146, ACM, Dec 2002.
- [3] Y. Kotidis, V. Vassalos, A. Deligiannakis, V. Stoumpos, and A. Delis, "Robust management of outliers in sensor network aggregate queries," in *Proceedings of the 6th ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE)*, (Beijing, China), pp. 17–24, ACM, Jun 2007.
- [4] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, "Online outlier detection in sensor data using non-parametric models," in *Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB)*, (Seoul, Korea), pp. 187–198, VLDB Endowment, Sep 2006.
- [5] B. Sheng, Q. Li, W. Mao, and W. Jin, "Outlier detection in sensor networks," in *Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)*, (Montreal, Quebec, Canada), pp. 219–228, ACM, Sep 2007.
- [6] D. Wagner, "Resilient aggregation in sensor networks," in *Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN)*, (Washington DC, USA), pp. 78–87, ACM, Oct 2004.
- [7] J. A. Nelder and R. W. M. Wedderburn, "Generalized Linear Models," *Journal of the Royal Statistical Society. Series A (General)*, vol. 135, no. 3, pp. 370–384, 1972.
- [8] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in *Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT'92)* (D. Haussler, ed.), (Pittsburgh, PA, USA), pp. 144–152, ACM Press, July 1992.