When Adversarial Perturbations meet Concept Drift: an Exploratory Analysis on ML-NIDS (Supplementary Document)

Abstract—We scrutinize the effects of "blind" adversarial perturbations against machine learning (ML)-based network intrusion detection systems (NIDS) affected by concept drift. There may be cases in which a real attacker – unable to access and hence unaware that the ML-NIDS is weakened by concept drift – attempts to evade the ML-NIDS with data perturbations. It is currently unknown if the cumulative effect of such adversarial perturbations and concept drift leads to a greater or lower impact on ML-NIDS. In this "open problem" paper, we seek to investigate this unusual, but realistic, setting—we are not interested in perfect knowledge attackers.

We begin by retrieving a publicly available dataset of documented network traces captured in a real, large (>300 hosts) organization. Overall, these traces include several years of raw traffic packets-both benign and malicious. Then, we adversarially manipulate malicious packets with problem-space perturbations, representing a physically realizable attack. Finally, we carry out the first exploratory analysis focused on comparing the effects of our "adversarial examples" with their respective unperturbed malicious variants in concept-drift scenarios. Through two case studies (a "short-term" one of 8 days; and a "long-term" one of 4 years) encompassing 48 detector variants, we find that, although our perturbations induce a lower detection rate in conceptdrift scenarios, some perturbations yield adverse effects for the attacker in intriguing use cases. Overall, our study shows that the topics we covered are still an open problem which require a re-assessment from future research.

Appendix A. Selection of Malicious PCAP traces

Let us explain the procedure we followed to derive the set of 5 malicious classes (i.e., Artemis, Dridex, Trickbot, Trickster, Wannacry) from MCFP [1] considered in our assessment.

A.1. Preliminary Investigation

First, we observe that MCFP contains PCAP captured since 2011 (i.e., it extends CTU13 [2]). Each PCAP¹ is associated with a specific *code* (e.g., "malware" or "normal") and *number*—which is unique and progressive (with some gaps) for each code; as of Feb 14th, 2024, the most recent malicious capture occurred on July 1st, 2021 (having number=410). To resemble a realistic and contemporary scenario, *we consider malicious PCAP starting from 2016*, and specifically from capture #200. Table 7 shows the timespans covered by these malicious traces.

1. Complete list of traces: https://mcfp.felk.cvut.cz/publicDatasets/

TABLE 7: Timespans covered by the malicious PCAP traces in MCFP.

Numbers	Timespan
200→210	Nov.→Dec. 2016
$211 \rightarrow 220$	Dec16→Feb17
$221 \rightarrow 230$	Feb→Mar 2017
$231 \rightarrow 240$	Mar 2017
$241 \rightarrow 250$	Mar→Apr 2017
$251 \rightarrow 260$	May 2017
$261 \rightarrow 270$	Jun 2017
$271 \rightarrow 280$	Jun 2017
$281 \rightarrow 290$	Jul 2017
$291 \rightarrow 300$	Jul 2017
$301 \rightarrow 310$	Jul→Aug 2017
$311 \rightarrow 320$	Aug→Dec 2017
$321 \rightarrow 330$	Jan→Feb 2018
$331 \rightarrow 340$	Feb→Mar 2018
$341 \rightarrow 350$	Mar→May 2018
$351 \rightarrow 360$	May 2018
$361 \rightarrow 368$	May18→Oct18
371	Feb 17
372 onwards	Dec 2018+
372 onwards	1 20101

A.2. Suitable Candidates

After our preliminary investigation, we proceeded to identify a subset of potential "candidate malicious classes" that could be used for a comprehensive assessment. Given that we are interested in concept drift, the *temporal aspect is crucial for our selection*. Hence, we inspected each malicious PCAP trace to determine (i) which malware class it captures, and (ii) when it was collected. Indeed, we must categorically exclude those classes for which there is a single capture, since they do not enable fair analyses. We report below the list of classes for which more than one PCAP exists in MCFP (alongside the specific number).

- Dridex.A: 218, 228, 248, 249, 251, 257, 259, 260, 263, 322, 326, 346
- TrickBot: 238, 239, 240, 241, 242, 243, 244, 247, 261.1, 261.2, 261.3, 261.4, 265, 266, 267, 273, 324, 325, 327.1, 327.2, 405
- WannaCry: 252, 253, 254, 256, 258, 270, 283, 284, 285, 286, 287, 290, 291, 292, 293, 294, 295, 296, 297
- Artemis: 275, 305, 306, 311, 316, 374
- Trickster: 277, 302, 309, 323
- Trojan.Yakes: 203, 310
- Pony: 223, 280
- Trojan.Wisdomeyes: 206, 210, 215.1, 215.2, 219.3
- OpenCandy: 208.1, 213
- Trojan.Locky: 214, 221, 222, 236
- Bladabindi: 230.1, 230.2
- TrojanSpyBanker: 235, 245
- Emotet: 264.1, 264.2, 268, 269, 271, 272.1, 272.2, 276.1, 276.2, 279
- TrojanStrictor: 281, 282
- NotPetya: 288, 289, 298, 299
- CCleaner Trojan: 320.1, 320.2

• HtBot: 348, 364, 369, 372, 373

• Sality: 319, 368.2, 368.3

• Simda: 353, 355

• CoinMiner: 329, 338, 342, 347, 351, 352, 367

• Tinba: 225, 233

Nettool.Netcut: 211.1, 211.2Kovter.B: 219.1, 219.2

In contrast, the following classes have only one PCAP (trace # in parentheses) in MCFP, and are hence excluded: Dr.Autoit (200) BundleApp (201) PUP.Adware (202) Toolbar.Google (204) Trojan.MSDILInjector (207) PUA.Adtoolbar (209) Trojan.Agent (216) Trojan.BIKF (217) Worm.Netsky (226) Trojandownloader (227) Trojan.Dynamer (229) W32CoreBot (231) Win32/Taobao.PUA (232) Dryeza (234) TaoBao (237) Tagarep (255) Sennoma (262) Razy (274) Trojan.Downloader (341) Trojan.Dynamer (371) Sathurbot (303) Trojan.Snojan (308) Zbot (312) Ursnif (313) Upatre (314) Graftor (315) MagicHound (318) Autolt (328) WebCompanion (339) Ramnit (343) Cobalt (345) AdwareAdload (349) Mansabo (350).

A.3. Final Selection

Next, we further inspect the capture date of each malicious class, scrutinizing "how close" these PCAP traces are to each other. We found that most of these (e.g., Emotet) are captured within the same day/week, so we exclude these from our analysis. We report in Table 8 the shortlist of our remaining "candidate" classes.

TABLE 8: List of "candidate" malicious classes.

Malware	Traces	FirstSeen	LastSeen
Trickbot	21	Mar 2017	Jul 2021
WannaCry	17	May 2017	Jul 2017
Dridex	13	Feb 2017	Apr 2018
Artemis	5	Jun 2017	Aug 2017
Trickster	3	Jun 2017	Jan 2018
Pony	2	Feb 2017	Jun 2017
Yakes	2	Nov 2016	Sept 2017
HTbot	5	Mar 2018	Dec 2018
CoinMiner	7	Feb 2018	Oct 2018
Locky	5	Sept 2016	Mar 2017
WisdomEyes	5	Dec 2016	Mar 2017

The final selection stems from our necessity to craft realistic adversarial perturbations in the "problem space": we need to preserve domain constraints when manipulating the PCAP traces, hence some packets cannot be manipulated without risking to create "unrealizable" NetFlows. As explained in our paper (in §4), we consider manipulations of TCP and UDP packets, which will be reflected in changes to UDP and TCP NetFlows. To provide a comprehensive analysis, we must hence ensure that our selected malicious classes have a large-enough number of TCP and UDP NetFlows for both the training/validation (because the ML model should exhibit a good performance to justify its deployment) and inference (to comprehensively assess the impact of concept drift and adversarial perturbations) phases. Therefore, we take the PCAP traces of our "candidates", generate the corresponding NetFlows (via Argus [3]), and analyse how many UDP and TCP NetFlows are included in each trace.

We found that only five of these classes (i.e., Artemis, Dridex, Trickbot, Trickster, Wannacry) have a sufficiently high number for our evaluation—motivating our selection. We report in Table 9 (which is an extension of Table 6 in the main paper) the actual number of UDP and TCP NetFlows generated by processing each PCAP trace of our considered malicious classes: these NetFlows will be used as the basis to craft our adversarial examples. We stress

that, in our assessment, the training/test phase of our ML models will consider *all* NetFlows (including, e.g., ICMP ones): the UDP and TCP NetFlows are merely the ones used for our adversarial evaluation.

TABLE 9: Low-level details of our chosen malicious classes.

IADL	L 9. LOW-	icvei uctaiis	or our eno	sen maner	mancious classes.			
Molynoso	Trace	Doto	PCAP	Flows	Adv. Flows			
Malware	(Link)	Date	Size	Total	(udp — tcp)			
			1					
	1	24 Jun 2017	37	23K	0 — 14K			
is.	2	1 Aug 2017	336	30K	100 — 30K			
Artemis	3	14 Aug 2017	772	226K	58 — 221K			
¥	4	16 Aug 2017	153	11K	39 — 11K			
	5	16 Aug 2017	146	10K	26 — 10K			
			1 70	100	1 10			
	1	13 Feb 2017	79	102	4 — 10			
	2 3	27 Feb 2017	57	2.5K	4 — 1.2K			
		11 Apr 2017	31	51K	4 — 14K			
	4	18 Apr 2017	66	30K	2 — 14K			
~	5	18 Apr 2017	47	35K	11 — 11K 2 — 10K			
Dridex	6	15 May 2017	7.4	43K	2 — 10K			
Ę.	7	15 May 2017	33	48K	0 — 13K			
	8	16 May 2017	52	63K	3 — 13K			
	9	24 Jun 2017	16	11K	6 — 4K			
	10	29 Jan 2018	310	73K	2K — 14K			
	11	30 Jan 2018	193	37K	749 — 8K			
	12	03 Apr 2018	223	52K	16 — 12K			
	1			1012				
	1	29 Mar 2017	83	40K	43 — 15K 48 — 15K			
	2 3	30 Mar 2017	90	41K	48 — 15K			
	3	30 Mar 2017	90	41K	78 — 15K			
	4	30 Mar 2017	81	38K	43 — 15K			
	5	12 Apr 2017	288	160K	5 — 114K			
	6	12 Apr 2017	115	53K	85 — 24K			
	7	17 Apr 2017	142	103K	4 — 83K			
	8	8 May 2017	214	127K	2 — 106K			
-	9	15 May 2017	204	79K	174 — 45K			
ရွ	10	7 Jun 2017	211	124K	0 — 104K			
Trickbol	11	15 Jun 2017	228	141K	6 — 101K			
F	12	24 Jun 2017	77	31K	10 — 25K			
	13	24 Jun 2017	76	33K	2 — 24K			
	14	24 Jun 2017	78	31K	0 — 25K			
	15	24 Jun 2017	44	27K	0 — 16K			
	16	30 Jan 2018	33	13K	6 — 11K			
	17	30 Jan 2018	212	62K	37 — 42K			
	18	2 Feb 2018	197	59K	18 — 39K			
	19	27 Mar 2018	410	122K	6 — 56K			
	20	30 Jul 2021	0.1	61	11 — 27			
		!	1		·			
ter	1	24 Jun 2017	52	24K	2 — 16K			
Trickste	2	3 Aug 2017	6.4	2K	2 — 2K			
Ĕ	3	29 Jan 2018	252	63K	22K — 0			
	1	14 May 2017	0.5	5K	2 — 5K			
	2	14 May 2017	11	15K	6 — 15K			
	3	15 May 2017	3.6	171	2 - 43			
	4	15 May 2017 15 May 2017	13	32K	4 — 30K			
	5	24 Jun 2017	444	9K	2 — 2K			
	6	11 Jul 2017	1.6	14K	2 — 2K 0 — 14K			
	7	11 Jul 2017 11 Jul 2017	7.6	14K	2 — 43			
≥								
WannaCry	8	11 Jul 2017	7.3	13K	12 — 13K			
Ę	9	11 Jul 2017	7.1	11K	0 — 10K			
Wa	10	11 Jul 2017	6.8	9.3K	12 — 9K			
	11	11 Jul 2017	3.1	35	0 — 16			
	12	11 Jul 2017	6.3	4K	0 — 4K			
	13	11 Jul 2017	14	17K	5 — 16K			
	14	12 Jul 2017	6.1	3.6K	8 — 3K			
	15	13 Jul 2017	6.2	210	69 — 4			
	16	13 Jul 2017	6.8	11K	0 — 11K			
	17	13 Jul 2017	6.7	10K	17 — 9K			

Our malicious classes have been discussed in prior work: Artemis [4], Dridex [5], Trickster [6], Trickbot [7], Wannacry [8].

Appendix B. Experimental Results

We report here additional tables that we could not insert in the main paper due to page limitations.

B.1. Complete Tables

We report in Tables 10–13 the complete results of our evaluation. Specifically, all these tables report the *standard deviation* (not provided in our paper), thereby allowing one to derive statistical comparisons among individual groups of results (thanks to our experiments being carried out 50 times each). Moreover for Table 13 we also provide the results for the "secondary" adversarially-manipulated traces. For transparency and benchmarking, these tables are provided without any marker highlighting statistical validation (used in Tables 1–4 of the paper).

B.2. Statistical Validation

We use t-tests to statistically confirm some of our claims. First, concerning the validation discussed in §5.1 and §5.2 of the main paper (resulting in the red-cells and/or \uparrow s/ \downarrow in Tables 2–4), we performed a pairwise comparison by using the average and standard deviation (all provided in Tables 10–13). Then, we carry out additional tests, revolving around four research questions (RQ):

- [RQ1] does the performance in "future" decreases w.r.t. "past"? (concept-drift check)
- [RQ2] on "future" data, do our perturbations have any impact? (perturbations+concept drift assessment)
- [RQ3] does the defense [9] provide a benefit against our blind perturbations? (defense effectiveness)
- [RQ4] do the TCP perturbations on the traffic generated by Artemis *improve* (*decrease*) the detection rate of the full-binary (ensemble) classifier using RF?

There are many ways to investigate these RQ via statistical tests. Here, we perform this verification by aggregating the results at the "architecture" level, and then comparing the results of the two considered "populations".

Method. We proceed as follows. For each architecture (i.e., full-binary, ensemble, and the various malwarespecific classifiers—across both LCS and SCS), we consider two groups (X and Y) for each RQ. Specifically: [RQ1] we aggregate the tpr (and the tnr) of all ML algorithms (RF and HGB) on all malicious NetFlows (and all benign NetFlows), differentiating only among the results on the validation set from "past" (i.e., group \boldsymbol{X}) and those on the test set from "future" (i.e., group Y); we will repeat this for both "vanilla" and "hardened" algorithms, and for both benign and malicious NetFlows. [RQ2] we aggregate the tpr of all (vanilla) ML algorithms (RF and HGB) on "future" data and, specifically, on the malicious UDP and TCP NetFlows originating from inside the network, differentiating only among the results for the non-adversarial NetFlows (i.e., group X) and the adversarial ones (i.e., group Y, which includes both "primary" and "secondary" batches of adversarial perturbations). [RQ3] similar to RQ2, but group Y is represented by the tpr achieved by the corresponding hardened variants of ML-NIDS. [RQ4] we aggregate the tpr of the full-binary classifier using the (vanilla) RF on the TCP NetFlows originating from inside the network and stemming from the Artemis malware: group X is for the non-adversarial ones, and group Y is for adversarial ones; then, we repeat this but by considering the ensemble classifier.

Results. After defining our groups, we carry out a t-test comparing the two groups: the output of the test is a statistic, t, which can be converted to a p-value: if p is found to be less than a given target α (which we set to 0.05 [10]), it means that the two groups are generated by a different stochastic process. Put simply: if p < 0.05, then $X \neq Y$ (and X=Y otherwise); plus, the sign of the statistic t is useful to determine whether X is lower/greater than Y. We report the results in Table 14. Here, cells report the resulting p-value (and, in a smaller font, the t statistic); boldface denotes that p < 0.05. We use $RQ1_b^v$, $RQ1_b^h$, $RQ1_m^v$, $RQ1_m^h$ to denote the variants of RQ1 corresponding to benign/malicious (b/m) and hardened/vanilla (h/v) groups. For RQ4 (not reported in Table 14): $\mathbf{p} < \mathbf{0.001}$ with t = -5.23 for the full-binary classifier; and p < 0.001 with t = +50.6 for the ensemble.

ANSWERS. By observing Table 14, it is apparent that most of the tests revealed that our compared groups can be considered as "statistically different". In other words: [RQ1]: concept drifts always causes a degradation to the defense; and it always affects the detection of malicious NetFlows for the vanilla detectors, and for all but one architecture (the Rbot-specific classifier in SCS) for benign NetFlows. [RQ2]: in the presence of concept drift, our blind perturbations always cause an increased drop to the tpr for SCS; for LCS, the Artemis- and Wannacry-specific binary classifiers are not further affected (but their performance was terrible to begin with due to concept drift) and, remarkably, the full-binary classifier appears to be robust to our perturbations (in the presence of concept drift). [RQ3]: in 3 architectures (full-binary and Virut-specific on SCS, and Trickster-specific on LCS) out of 12, the defense does not cause a statistically significant difference against our adversarial perturbations; however, the statistically significant differences reveal that the defense can be worse than the corresponding vanilla variant of the same architecture (as evidenced by the sign of t): this is the case for the full-binary classifier on LCS, and the Neris-specific and ensemble architectures on SCS. For the remaining 6 architectures (Rbot-specific classifier on SCS; and for the ensemble, Artemis-/Dridex-/Trickbot-/Wannacry-specific classifiers for LCS) the defense is better. [RQ4]: the fullbinary classifier is *better* in the presence of perturbations, whereas the ensemble is worse. [these results can be appreciated in our repository by observing a dedicated notebook, or watching our demonstrative 35s video [11].]

B.3. Extra Experiments

We also assessed our perturbations when tested on "past" data. This allows one to appreciate the extent to which concept drift helps in decreasing the tpr. However, this scenario is not very realistic (an organization would sanitize these datapoints), which is why we did not consider these results in our main paper. These results are included in our repository (as figures and raw data) [11].

References

- [1] "Mcfp," https://www.stratosphereips.org/datasets-malware.
- [2] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, "An empirical comparison of botnet detection methods," *Comput. Secur.*, 2014.
- [3] QoSient, "Argus NetFlow," https://qosient.com/argus/ argusnetflow.shtml, 2012.
- [4] M. J. De Lucia and C. Cotton, "Detection of encrypted malicious network traffic using machine learning," in *MILCOM*, 2019.
- [5] L. Rudman and B. Irwin, "Dridex: Analysis of the traffic and automatic generation of iocs," in ISSA, 2016.
- [6] S. K. Katherasala, V. S. Manvith, A. Therala, and M. Murala, "Netmd-network traffic analysis and malware detection," in *ICAIIC*, 2022.
- [7] A. Gezer, G. Warner, C. Wilson, and P. Shrestha, "A flow-based approach for trickbot banking trojan detection," *Comp. Secur.*, 2019.
- [8] Q. Chen and R. A. Bridges, "Automated behavioral analysis of malware: A case study of wannacry ransomware," in *ICMLA*, 2017.
- [9] G. Apruzzese, M. Andreolini, M. Colajanni, and M. Marchetti, "Hardening random forest cyber detectors against adversarial attacks," *IEEE TETCI*, 2020.
- [10] G. Apruzzese, P. Laskov, and J. Schneider, "Sok: Pragmatic assessment of machine learning for network intrusion detection," in *EuroS&P*, 2023.
- [11] "Our repository," https://github.com/hihey54/aisec24, 2024.

TABLE 10: Validation results. We assess the performance of our ML-NIDS on the test set from "past" data. We report the tpr (malicious) and tnr (benign) averaged over 50 trials (we also provide the standard deviation). Defense: \Box

Samples	CS		SCS: Au	g.10th→Aug.1	8th, 2011		LCS: Feb.2017→Jul.2021						
Samples	Arch.	Full	Ens	Neris	Rbot	Virut	Full	Ens	Artemis	Dridex	Trickbot	Trickster	Wannacry
B. 1	RF	0.999±0.000	0.999±0.000	0.999±0.000	1.000±0.000	1.000±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000
Benign	HGB	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000
Malicious	RF	0.994±0.001	0.992±0.002	0.993±0.000	0.998±0.000	0.966±0.011	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000
Mancious	HGB	0.992 ± 0.002	0.982±0.010	0.995 ± 0.000	0.999±0.000	0.763±0.151	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000
Benign	URF	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000
Delligh	∪HGB	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000
Malicious	URF	0.993 ± 0.002	0.992 ± 0.002	0.992±0.000	0.998±0.000	0.953±0.014	0.999±0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000	0.999±0.000
wantious	□HGB	0.989 ± 0.003	0.983±0.010	0.992±0.000	0.998±0.000	0.762±0.150	0.999±0.000	0.999 ± 0.000	0.999±0.000	0.999 ± 0.000	0.999 ± 0.000	0.999±0.000	0.999±0.000

TABLE 11: Concept Drift assessment. We assess the performance of our ML-NIDS on the test set from "past" data. We report the tpr (malicious) and tnr (benign) averaged over 50 trials (we also report the standard deviation). Defense: \Box

Samples	CS		SCS: Au	g.10th→Aug.13	8th, 2011		LCS: Feb.2017→Jul.2021							
Samples	Arch.	Full	Ens	Neris	Rbot	Virut	Full	Ens	Artemis	Dridex	Trickbot	Trickster	Wannacry	
Benign	RF	0.989±0.004	0.993±0.005	0.993±0.005	1.000±0.000	1.000±0.000	0.969±0.001	0.986±0.000	0.999±0.000	0.993±0.000	0.991±0.000	0.999±0.000	0.998±0.000	
	HGB	0.990±0.005	0.982±0.009	0.989±0.004	0.999±0.003	0.990±0.011	0.959±0.002	0.965±0.004	0.999±0.000	0.981±0.003	0.983±0.003	0.993±0.002	0.996±0.001	
Malicious	RF	0.675±0.007	0.587±0.028	0.701±0.084	0.028±0.000	0.691±0.099	0.927±0.015	0.988±0.008	0.000±0.000	0.982±0.009	0.956±0.038	0.031±0.000	0.994±0.000	
	HGB	0.673±0.007	0.757±0.154	0.768±0.068	0.020±0.012	0.663±0.206	0.859±0.068	0.991±0.015	0.010±0.031	0.977±0.016	0.970±0.032	0.031±0.000	0.995±0.000	
Benign	∪rf	0.990±0.007	0.996±0.001	0.996±0.001	0.999±0.000	0.999±0.000	0.955±0.002	0.951±0.004	0.995±0.000	0.965±0.000	0.986±0.002	0.992±0.001	0.997±0.000	
	∪hgb	0.985±0.012	0.991±0.007	0.995±0.001	0.998±0.003	0.995±0.006	0.955±0.003	0.946±0.004	0.995±0.000	0.962±0.003	0.984±0.001	0.992±0.001	0.996±0.000	
Malicious	∪rf	0.631±0.012	0.438±0.026	0.182 ± 0.041	0.024±0.000	0.769±0.002	0.786±0.012	0.957±0.036	0.121±0.026	0.947±0.009	0.920 ± 0.031	0.045±0.088	0.968±0.048	
	∪hgb	0.634±0.015	0.561±0.160	0.192 ± 0.054	0.025±0.000	0.665±0.210	0.791±0.013	0.958±0.035	0.130±0.027	0.944±0.016	0.935 ± 0.040	0.093±0.163	0.949±0.057	

TABLE 12: Non-adversarial results. We measure the tpr (avg 50 trials; we also report the standard deviation) on "future" data on the non-adversarial NetFlows. We only consider UDP and TCP NetFlows starting from within the network. Defense: \Box

Proto	CS		SCS: Au	g.10th→Aug.1	8th, 2011		LCS: Feb.2017→Jul.2021						
1100	Arch.	Full	Ens	Neris	Rbot	Virut	Full	Ens	Artemis	Dridex	Trickbot	Trickster	Wannacry
UDP	RF	0.980±0.034	0.791±0.268	0.941±0.141	0.151±0.094	0.384±0.325	0.823±0.295	0.807±0.284	0.000±0.000	0.785±0.132	0.832±0.021	0.000±0.000	0.166±0.056
ODF	HGB	0.824 ± 0.250	0.816±0.259	0.990±0.001	0.000±0.000	0.039±0.191	0.754±0.355	0.893±0.166	0.000±0.000	0.807±0.193	0.823 ± 0.042	0.000±0.000	0.593±0.000
TCP	RF	0.923±0.099	0.715 ± 0.228	0.366±0.032	0.436 ± 0.071	0.773±0.075	0.919 ± 0.127	0.988±0.024	0.000±0.000	0.937±0.041	0.922 ± 0.073	0.996±0.001	0.997±0.000
TCF	HGB	0.943±0.069	0.861 ± 0.126	0.458±0.146	0.615±0.089	0.861±0.198	0.983 ± 0.045	0.993±0.012	0.011±0.039	0.926±0.024	0.975 ± 0.041	0.999±0.000	0.998±0.000
UDP	Urf	0.892 ± 0.121	0.304 ± 0.329	0.031±0.040	0.117±0.128	0.000±0.000	0.698±0.380	0.908±0.158	0.000±0.000	0.894 ± 0.132	0.854 ± 0.018	0.040 ± 0.195	0.586±0.010
ODI	∪HGB	0.921 ± 0.088	0.478 ± 0.385	0.025±0.034	0.103±0.123	0.113±0.307	0.705±0.383	0.909±0.158	0.000±0.000	0.864±0.193	0.852 ± 0.020	0.060 ± 0.237	0.583±0.011
TCP	□RF	0.880 ± 0.086	0.814 ± 0.132	0.412±0.112	0.513±0.135	0.959±0.003	0.979 ± 0.041	0.958±0.071	0.128±0.032	0.741±0.041	0.940 ± 0.043	0.994±0.000	0.973±0.048
TCP	∪HGB	0.867±0.093	0.810±0.135	0.378±0.062	0.507±0.125	0.858±0.214	0.982±0.046	0.976±0.040	0.134±0.023	0.744±0.024	0.952 ± 0.046	0.994±0.000	0.945±0.058

TABLE 13: Adversarial results. We measure the tpr (avg 50 trials); we also report the standard deviation) on "future" data on the adversarial NetFlows. We only consider UDP and TCP NetFlows starting from within the network. Defense: \Box . The "primary" results are those in the main paper, whereas "secondary" are reported only here (there is no statistically significant differences between "primary" and "secondary").

Pert.	CS		SCS: Au	g.10th→Aug.1	8th, 2011		LCS: Feb.2017→Jul.2021						
Proto	Arch.	Full	Ens	Neris	Rbot	Virut	Full	Ens	Artemis	Dridex	Trickbot	Trickster	Wannacry
(primary)	RF	0.921 ± 0.112	0.602 ± 0.304	0.470±0.299	0.011±0.031	0.032±0.079	0.812±0.296	0.700±0.307	0.000±0.000	0.009 ± 0.002	0.587±0.047	0.000±0.000	0.128±0.075
UDP	HGB	0.824 ± 0.248	0.803 ± 0.265	0.975 ± 0.094	0.014±0.061	0.059±0.233	0.740 ± 0.363	0.899 ± 0.157	0.000 ± 0.000	0.660 ± 0.308	0.833±0.032	0.000±0.000	0.593±0.000
(primary)	RF	0.902±0.118	0.717 ± 0.229	0.381 ± 0.075	0.292±0.051	0.769±0.080	0.929 ± 0.116	0.934±0.060	0.000 ± 0.000	0.869 ± 0.055	0.778±0.004	0.841±0.052	0.991±0.000
TCP	HGB	0.934±0.080	0.861 ± 0.135	0.472±0.166	0.470±0.102	0.822±0.252	0.967 ± 0.047	0.980 ± 0.023	0.022 ± 0.046	0.910±0.030	0.856±0.071	0.298±0.095	0.992±0.001
(secondary)	RF	0.923±0.108	0.599 ± 0.307	0.457±0.312	0.015±0.043	0.054±0.104	0.807±0.302	0.715±0.307	0.000±0.000	0.010±0.004	0.628±0.061	0.000±0.000	0.138±0.073
UDP	HGB	0.824 ± 0.250	0.806 ± 0.264	0.989 ± 0.002	0.000±0.000	0.039±0.191	0.754±0.355	0.893 ± 0.166	0.000 ± 0.000	0.649 ± 0.295	0.833 ± 0.042	0.000±0.000	0.593±0.000
(secondary)	RF	0.901 ± 0.121	0.721 ± 0.227	0.369 ± 0.037	0.304±0.048	0.761±0.075	0.923±0.122	0.932 ± 0.062	0.000 ± 0.000	0.878 ± 0.052	0.777±0.006	0.853 ± 0.042	0.991±0.000
TCP	HGB	0.935 ± 0.077	0.875 ± 0.122	0.461±0.146	0.493±0.111	0.854±0.198	0.969 ± 0.050	0.981 ± 0.022	0.017 ± 0.046	0.919 ± 0.026	0.846±0.070	0.289±0.076	0.992±0.001
(primary)	Orf	0.873+0.147	0.334+0.360	0.052+0.030	0.050+0.078	0.000+0.000	0.698+0.380	0.908+0.158	0.000+0.000	0.881+0.002	0.855±0.015	0.020+0.139	0.586+0.010
UDP	UHGB	0.889±0.128	0.389+0.369	0.060+0.038	0.079+0.122	0.058+0.231	0.707+0.385	0.909±0.158	0.000±0.000	0.826+0.308	0.856+0.011	0.080+0.271	0.581±0.011
(primary)	URF	0.863±0.087	0.831+0.119	0.400+0.096	0.378+0.110	0.953±0.003	0.922+0.119	0.963+0.050	0.127+0.024	0.721±0.055	0.742+0.043	0.499+0.062	0.969±0.048
TCP	∪HGB	0.868±0.087	0.834±0.124	0.414±0.113	0.410±0.077	0.816±0.253	0.931±0.104	0.974±0.031	0.132 ± 0.024	0.651±0.030	0.762±0.042	0.507±0.115	0.949±0.058
(secondary)	Orf	0.868+0.147	0.312+0.340	0.061+0.039	0.101+0.137	0.000+0.000	0.699+0.380	0.908+0.158	0.000+0.000	0.885+0.004	0.854±0.018	0.040+0.195	0.586+0.010
UDP	UHGB	0.893±0.124	0.481±0.384	0.056±0.033	0.077±0.130	0.109±0.300	0.705±0.384	0.909±0.158	0.000±0.000	0.845±0.295	0.852±0.020	0.060±0.237	0.582±0.011
(secondary)	URF	0.867±0.085	0.834±0.119	0.414±0.112	0.387±0.084	0.953±0.003	0.907±0.130	0.954±0.062	0.132 ± 0.029	0.704±0.052	0.739±0.043	0.495±0.063	0.971±0.048
TCP	UHGB	0.862 ± 0.088	$0.832 \!\pm\! 0.121$	0.382 ± 0.062	0.387±0.068	0.854±0.218	0.919 ± 0.129	0.972 ± 0.036	0.135 ± 0.020	0.657 ± 0.026	0.751±0.045	0.470±0.052	0.943±0.058

TABLE 14: Statistical Validation. We validate our RQ with statistical t-tests. Cells report the resulting p-value of the test: numbers in boldface are when p < 0.05.

CS		SCS: Au	ıg.10th→Aug.18	th, 2011			LCS: Feb.2017→Jul.2021						
Arch.	Full	Ens	Neris	Rbot	Virut	Full	Ens	Artemis	Dridex	Trickbot	Trickster	Wannacry	
$RQ1_b^v$ $RQ1_b^h$ $RQ1_m^v$ $RQ1_m^h$	$< 0.001_{+27.9} \ < 0.001_{+15.9} \ < 0.001_{+539} \ < 0.001_{+326}$	$< 0.001_{+9.11} < 0.001_{+41.6}$	< 0.001+45.1	$< 0.001_{+2.70} < 0.001_{+1.5k}$	< 0.001+16.0	< 0.001+201	$< 0.001_{+145} $ $< 0.001_{+10.9}$	< 0.001 + 75.7 < 0.001 + 549	$< 0.001_{+120} < 0.001_{+24.1}$	$< 0.001_{+39.1}$ $< 0.001_{+61.2}$ $< 0.001_{+14.2}$ $< 0.001_{+28.0}$	$< 0.001_{+93.7} < 0.001_{+44k}$	$< 0.001_{+49.2} < 0.001_{+80.3}$	
RQ2 RQ3	< 0.001+3.56					0.405+0.83 < 0.001+4.25							