CÓDIGOS DE GRUPO: USO DO CÓDIGO DE HAMMING

Tecnologia em Telecomunicações

CONTEÚDO

- 1. Introdução
- 2. Ruído e erros
- 3. Detecção e correção de erros
- 4. Tipos de códigos corretores de erro
- 5. Códigos de bloco lineares
- 6. Formulação matricial dos códigos de bloco
- 7. O que é um código de Hamming?
- 8. Exemplo de utilização do código de Hamming

Ruído Térmico ou de Johnson-Nyquist

Ruído Rosa

Ruído branco:

Podem ser úteis:

- Como sinais de teste
- Ruído cósmico no estudo da Radioastronomia
- Ruído no estudo de fenômenos microscópicos: teste de semicondutores, etc.

Curiosidade

Em uma transmissão digital:

DETECÇÃO E CORREÇÃO DE ERROS

DETECÇÃO E CORREÇÃO DE ERROS

Checagem de paridade

7 bits de dados	Qtde. de bits = 1	8 bits incluindo a paridade	
		Par	Ímpar
0000000	0	0 00000000 = 0	10000000
1010001	3	1 1010001 = 209	0 1010001
1101001	4	0 1101001 = 105	1 1101001
1111111	7	1 1111111 = 255	0 1111111

TIPOS DE CÓDIGOS CORRETORES DE ERROS

Cyclic redundancy check

Relembrando:

Grupo: a estrutura algébrica (G, *), em que G é um conjunto e * é uma operação binária definida em G, é um grupo se, ∀g,h,k ∈G,

- $G1 Fechamento: g * h \in G.$
- G2 Associatividade: g*h*k = g*(h*k) = (g*h)*k.
- G3 Elemento identidade:∃e∈G tal que e*g = g*e = g.
- G4 Elemento inverso: ∃ g-1 ∈ G tal que g * g-1 = g * g = e.

Exemplo: Grupo abeliano (G, +)

Um código de grupo é um subgrupo do grupo aditivo de todas as ênuplas p-árias.

- Representação do código: C(n,k,d)
- Detecção de erro: e = d 1
- Correção de erro: t = piso((d 1)/2)
- Número de palavras do código: M := 2^k
- Taxa de informação: R := k/n

O Código de repetição:

 $H2 = \{000, 111\}$

Palavra transmitida (v)	Palavra recebida (r)	Palavra estimada (v)	Decisão
000	000, 100, 010, 001	000	certa
000	110, 101, 011, 111	111	errada
111	111, 011, 101, 110	111	certa
111	000, 001, 010, 100	000	errada

O Código de repetição:

- Representação do código: C(3,1,3)
- Detecção de erro: e = 3-1 = 2
- Correção de erro: t = piso((3 1)/2) = 1
- Número de palavras do código: M := 2^1 = 2
- Taxa de informação: R := 1/3

```
O Código de um único símbolo de paridade:
H4 = {000, 110, 101, 011}
```

O Código de um único símbolo de paridade:

- Representação do código: C(3,2,2)
- Detecção de erro: e = 2-1 = 1
- Correção de erro: t = piso((2 1)/2) = 0
- Número de palavras do código: M := 2^2 = 4
- Taxa de informação: R := 2/3

FORMULAÇÃO MATRICIAL DOS CÓDIGOS CORRETORES DE BLOCOS

```
m = \{k1, k2, k3, k4\}
c1 = k1+k2+k3, c2 = k1 + k2 + k4, c3 = k1 + k3 + k4
v = \{k1, k2, k3, k4, c1, c2, c3\}
```


FORMULAÇÃO MATRICIAL DOS CÓDIGOS CORRETORES DE BLOCOS

G(kxn) é a matriz geradora do código H((n-k)xn) a matriz de paridade

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

$$G = [I_k|P]$$

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$H = [P^T | I_{n-k}].$$

O QUE É UM CÓDIGO DE HAMMING?

```
C(2^m-1, 2^m-1-m, 3), em que m \ge 3
```

FORMULAÇÃO MATRICIAL DOS CÓDIGOS CORRETORES DE BLOCO

$$S = eH^T = e_i h_i^T = h_i^T,$$

 $r = (0000111).$

$$S = (0000111) \ H = \begin{bmatrix} 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} = h_{1}.$$

$$v = r + e = (1000111)$$
 $v = r + e = (1000111)$

Código de Hamming C(7, 4, 3) na transmissão de uma imagem.

- Representação do código: C(7, 4, 3)
- Detecção de erro: e = 3-1 = 2
- Correção de erro: t = piso((3 1)/2) = 1
- Número de palavras do código: M := 2^4 = 16
- Taxa de informação: R := 4/7

Imagem em escala de cinza

```
function r = im2vec(A)
A = rgb2gray(A);
GRAY= reshape(A(:,:,1), [], 1);
VGRAY = GRAY.';
IVEC = reshape([GRAY],[],1);
IVECBIN = de2bi(IVEC);
r = IVECBIN(:);
end
```


Codificando o vetor da imagem e simulando a transmissão pelo

```
canal
                                                              function R = addnoise(I, SNR)
function mh = encode(vm,M,N)
                                                              aux = double(I);
%[H,G] = hammgen(3);
H = [1 1 1 0 1 0 0; 1 1 0 1 0 1 0; 1 0 1 1 0 0 1]
G = [1000111; 0100110; 0010101; 0001011]
                                                              for i=1:size(aux, 1)
vm = double(vm)
                                                                 if I(i)== 0
m1 = reshape(vm, [4, M*N*2]);
                                                                       aux(i) = -1;
m1 = m1';
for a = 1:M*N*2
                                                                 else
    maux = rem(m1(q,1:4)*G,2);
                                                                       aux(i) = 1;
    if q == 1
                                                                 end
       mh = maux;
    else
                                                              end
       mh = [mh, maux];
                                                              R = awgn(aux, SNR);
    end
                                                              end
end
end
```

```
function mh = decode(vhm,M,N)
%[H,G] = hammgen(3);
H = [1 1 1 0 1 0 0; 1 1 0 1 0 1 0; 1 0 1 1 0 0 1]
bola = vhm
for i=1:M*N*14
  if vhm(i)<0
      bola(i) = 0;
  else
      bola(i) = 1;
  end
end
vhm = bola;
ru = reshape(vhm, [7, M*N*2]);
ru = ru';
err = zeros(1, 7);
mh = [];
```

```
for q = 1:M*N*2
        synd = rem(ru(q,1:7)*H',2);
        aux = H';
        vc = ru(q, 1:7);
        if synd==0
        mc = vc;
    else
        for j = 1:7
            if rem(aux(j, 1:3) + synd, 2) == 0
                vc(j) = rem(1+vc(j),2);
            end
        end
        mc = vc;
        end
    mc(5)=[];
        mc(5)=[];
        mc(5)=[];
        mh = [mh, mc];
end
mh = uint8(mh);
mh = mh';
```

end

```
function A = vec2im(G, M, N)
IVECBIN = reshape(G, [M*N, 8]);
IVEC = bi2de(IVECBIN);
IVEC = mod(IVEC, 256);
VGRAY = IVEC(1:(M*N));
GRAY = VGRAY.';
A = reshape(GRAY, [M, N]);
end
```


Com Hamming

Original

Com Hamming

Sem Hamming

end

```
function plotCurve2 (A)
p = [0 \ 1 \ 2.5 \ 5]
noises = []
noises2 = []
                                                                                                  Taxa de erro por intensidade de ruido
B = encode(A, 512, 512)
                                                                                                                                                       Sem hamming
B = uint8(B')
                                                                                                                                                        Com Hamming
                                                          0.1
for i=1:size(p, 2)
                                                       bits errados/Total)
    C = addnoise2(A, p(i));
    C = bob(C, 512, 512);
    C = C'
    D = addnoise2(B, p(i));
                                                       a de erro (N de bi
    D = decode2(D, 512, 512)
    noises = [noises, noiserate(A, C)];
    noises2 = [noises2, noiserate(A, D)];
end
plot(p, noises);
title('Taxa de erro por intensidade de ruido')
                                                         0.02
xlabel('SNR')
vlabel('Taxa de erro (N de bits errados/Total)'
hold on
                                                                     0.5
                                                                                         1.5
                                                                                                    2
                                                                                                              2.5
                                                                                                                        3
                                                                                                                                  3.5
                                                                                                                                                      4.5
plot(p, noises2);
                                                                                                             SNR
hold off
legend('Sem hamming','Com Hamming')
```

REFERÊNCIAS

https://propi.ifto.edu.br/ocs/index.php/connepi/vii/paper/viewFile/2986/2540

https://en.wikipedia.org/wiki/Error detection and correction

https://www.elprocus.com/what-is-hamming-code-history-working-and-its-applications/

https://electronicsdesk.com/hamming-codes.html

https://www.guru99.com/hamming-code-error-correction-example.html

https://electrical.sdsu.edu/faculty websites/madhu-gupta/pdfs/PrIEEEJul75.pdf

Sistemas discretos, notas de aula cap.6, Prof. Ricardo Campello