ANALIZA III - LISTA 5

1. Pokazać, że w układzie równań

$$3x + 2y + z^{2} + u + v^{2} = 0$$
$$4x + 3y + z + u^{2} + v + w + 2 = 0$$
$$x + z + w + u^{2} + 2 = 0$$

można wyrazić u,v,w jako funkcje od x,y,z w otoczeniu $x=y=z=0,\,u=v=0$ i w=-2.

Wyliczyć $\partial u/\partial x$, $\partial v/\partial x$, $\partial w/\partial x$ w punkcie x=y=z=0, u=v=0 i w=-2.

2. Zbadać czy z układu

$$u = x + xyz$$

$$v = y + xy$$

$$w = z + 2x + 3z^{2}$$

można obliczyć x, y, z względem u, v, w w otoczeniu x = y = z = 0.

3. Pokazać, że z układu

$$xy^2 + xzu + yv^2 = 3$$
$$u^3yz + 2xv - u^2v^2 = 2$$

można obliczyć u(x,y,z) i v(x,y,z) w otoczeniu (x,y,z)=(1,1,1), (u,v)=(1,1)? Obliczyć $\partial v/\partial y$ w (x,y,z)=(1,1,1).

- 4. Niech $f(x,y) = ((x^2 y^2)/(x^2 + y^2)), xy/(x^2 + y^2)), (x,y) \neq 0$. Czy f jest lokalnie odwracalne w pobliżu (x,y) = (0,1)?
- 5. Pokazać, że jeżeli $f: \mathbb{R} \to \mathbb{R}$ spełnia $f'(x) \neq 0$ dla wszystkich $x \in \mathbb{R}$, to f jest 1-1 na \mathbb{R} . Określmy $f: \mathbb{R}^2 \to \mathbb{R}^2$ wzorem $f(x,y) = (e^x \cos y, e^x \sin y)$. Pokazać, że det $Df(x,y) \neq 0$ dla wszystkich (x,y), lecz f nie jest 1-1.
- 6*. Określmy, funkcje $x,y:\mathbb{R}^2\to\mathbb{R}$ wzorami $x(r,\theta)=r\cos\theta$ i $y(r,\theta)=r\sin\theta.$ Pokazać, że

$$\frac{\partial(x,y)}{\partial(r,\theta)}\Big|_{r_0,\theta_0} = r_0$$

Kiedy można utworzyć C^1 funkcję odwrotną $r(x,y), \theta(x,y)$? Sprawdzić bezpośrednio i z użyciem twierdzenia o funkcji odwrotnej. Pokazać, że te odwzorowania dają odwzorowanie 1-1 i C^1 w obie strony między $(\mathbb{R}\setminus\{0\})\times(0,2\pi)$ i $\mathbb{R}^2\setminus\{(x,0):x\geq 0\}$. W tym sensie r,θ dają nowe współrzędne w \mathbb{R}^2 , zwane radialnymi.

7*. Rozważmy przekształcenia dla współrzędnych sferycznych w \mathbb{R}^3 : $x=\rho\sin\varphi\cos\theta$, $y=\rho\sin\varphi\sin\theta$, $z=\rho\cos\varphi$. Pokazać, że

$$\frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} = \rho^2 \sin \varphi$$

Kiedy możemy wyliczyć (ρ, φ, θ) jako funkcje od (x, y, z)? Analogicznie jak w poprzednim zadaniu znaleźć zbiory otwarte, gdzie mamy 1-1 i zrozumieć, że ρ, φ, θ dają nowe współrzędne.

8*. Dla $t \in \mathbb{R}$ rozważmy macierz $[a_{ij}(t)]$, której wyrazy są klasy C^1 . Założmy, że dla każdego t, $\det[a_{ij}(t)] \neq 0$, a $b_1, ..., b_n : \mathbb{R} \to \mathbb{R}$ są klasy C^1 . Niech $s_1, ..., s_n : \mathbb{R} \to \mathbb{R}$ będzie rozwiązaniem układu równań

$$\sum_{j=1}^{n} a_{ij}(t)s_j(t) = b_i(t), \quad i = 1, ..., n.$$

Pokazać bez rachunków, że funkcje $s_i(t)$ są klasy C^1 .

9*(5 punktów). Określmy funkcję $f(x) = \frac{1}{2}x + x^2 \sin \frac{1}{x}$, gdy $x \neq 0$ i f(0) = 0. Wykorzystać f by pokazać, że z twierdzenia o funkcji odwrotnej nie można wyeliminować ciągłości pochodnej. Wsk. Wyliczyć f', naszkicować jakościowo wykres funkcji f.

10*(5 punktów). Załóżmy, że funkcja $f:\mathbb{R}^2\to\mathbb{R}$ jest klasy C^1 . Pokazać, że nie jest wzajemnie jednoznaczna. Wsk. Rozważyć funkcję <math>g(x,y)=(f(x,y),y) lub g(x,y)=(x,f(x,y)). Można też zrobić topologicznie przy założeniu samej ciągłości. Czy to samo zachodzi, gdy f jest określona na zbiorze otwartym $U\subset\mathbb{R}^2$ tzn. $f:U\to\mathbb{R}$, f klasy C^1 ? Wtedy pytamy czy może być różnowartościowa.