ЗАДАНИЕ ПО КУРСУ «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

От: 2 октября 2021 г.

Содержание

1	Неделя I	3
2	Неделя II	4
3	Неделя III	6
4	Семинар от 25.09.21	10
5	Приложение	13

ТеорМин

Вычеты. Интеграл по дуге может быть найден, как

$$\int_C f(z) dz = 2\pi i \sum_{z_j} \underset{z_j}{\text{res}} f(z), \quad \underset{z_j}{\text{res}} f(z) = \lim_{\varepsilon \to 0} \varepsilon \int_0^{2\pi} \frac{d\varphi}{2\pi} e^{i\varphi} f(z_j + \varepsilon e^{i\varphi})$$

$$= \frac{1}{(m-1)!} \lim_{z \to z_j} \left(\frac{d^{m-1}}{dz^{m-1}} (z - z_j)^m f(z) \right),$$

где m – степень полюса.

Lem 1 (лемма Жордана). Пусть f(z) непрерывна в замкнутой области $G = \{z \mid \text{Im } z \geqslant 0, |z| \geqslant R_0 > 0\}$. Обозначим через C_R полуокруженость |z| = R, $\text{Im } x \geqslant 0$ и пусть верно, что $\lim_{R \to \infty} \max |f(z)| = 0$. тогда при a > 0

$$\lim_{R \to \infty} \int_{C_R} f(z)e^{iaz} dz = 0,$$

аналогичное верно при C_R с $\operatorname{Im} x \leqslant 0$ и a < 0

Функция Грина. Всегда и всюду, уравнение вида

$$Lx(t) = \varphi(t), \quad x(t) = \int_{-\infty}^{t} G(t-s)\varphi(s) ds, \quad LG = \delta(t).$$

И, если хочется добавить начальные условия, то например, для $L=\partial_t^2$ будет

$$x(t) = \dot{x}(0)G(t) + x(0)\dot{G}(t) + \int_0^t G(t-s)\varphi(s) \, ds.$$

 ${f Matpuчнoe}$ уравнение. Решение линейного уравнения для векторной величины ${m y}$

$$\frac{d\boldsymbol{y}}{dt} + \hat{\Gamma}\boldsymbol{y} = \boldsymbol{\chi},$$

может быть найдено, через функцию Грина, вида

$$\hat{G}(t) = \theta(t) \exp\left(-\hat{\Gamma}t\right), \qquad \mathbf{y}(t) = \int_{-\infty}^{t} \hat{G}(t-s)\mathbf{\chi}(s) ds.$$

Преобразование Лапласа функциии $\Phi(t)$ определяется, как

$$\tilde{\Phi}(p) = \int_0^\infty \exp(-pt)\Phi(t) dt, \qquad \Phi(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt)\tilde{\Phi}(p),$$

где далее c выбираем правее всех особенностей для причинности.

Решение уравнения $L(\partial_t)G(t) = \delta(t)$ может быть найдено, как

$$G(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt) \tilde{G}(p), \qquad \quad \tilde{G}(p) = \frac{1}{L(p)}, \quad \Rightarrow \quad G(t) = \sum_{i} \mathop{\mathrm{res}}_{i} \frac{\exp(pt)}{L(p)},$$

где суммирование идёт по полюсам 1/L(p).

Важно, что можно делать функции маленькими

$$\int_{p_0 - i\infty}^{p_0 + i\omega} \tilde{f}(p) e^{pt} \frac{dp}{2\pi i} = \left(\frac{d}{dt}\right)^n \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{\tilde{f}(p)}{p^n} e^{pt} \frac{dp}{2\pi i}.$$
 (1)

Уравнение Вольтерра. Интегральное уравнение Вольтерра первого рода с однородным ядром:

$$\int_0^t K(t-s)f(s) \, ds = \varphi(t).$$

Решение может быть найдено через обратное преобразование Лапласа

$$f(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt)\tilde{f}(p), \qquad \quad \tilde{f}(p) = \frac{\tilde{\varphi}(p)}{\tilde{K}(p)}.$$

Ho есть один нюанс. При $K(t),\, \varphi(t) \stackrel{p \to \infty}{\to} K_0,\, \varphi_0$ получается, что $\tilde{K}(p),\, \tilde{\varphi}(p) \approx \frac{K_0}{p},\, \frac{\varphi_0}{p},\,$ тогда

$$f(t) = \frac{\varphi_0}{K_0} \delta(t) + \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt) \left(\frac{\tilde{\varphi}}{\tilde{K}} - \frac{\varphi_0}{K_0} \right),$$

при этом в отсутствие аналитичности в нуле нет ничего страшного.

Неоднородная релаксация. Для одномерного случая

$$(\partial_t + \gamma(t))x(t) = \varphi(t), \quad \Rightarrow \quad x(t) = \int_{-\infty}^{+\infty} G(t,s)\varphi(s) \, ds, \quad G(t,s) = \theta(t-s) \exp\left(-\int_s^t \gamma(\tau) \, d\tau\right),$$

 Φ_{M} ЗТ \mathbf{E} Х 1 НЕДЕЛЯ I

где всё также G(t,s>t)=0 в силу стремления к принципу причинности.

1 Неделя I

№1

Рассмотрим уравнение на G(t)

$$(\partial_t + \gamma)G(t) = \delta(t), \tag{2}$$

с учетом принципа причинности g(t < 0) = 0.

При t>0 $\delta(t)=0$, так что

$$\partial_t G(t) = -\gamma G(t), \quad \Rightarrow \quad G(t) = A \exp(-\gamma t).$$

Проинтегрируем уравнение (2) от $-\varepsilon$ до ε :

$$G(\varepsilon) - G(\varepsilon) + \int_{-\varepsilon}^{\varepsilon} \gamma G(t) \, dt = \int \delta(t) \, dt = 1, \quad \Rightarrow \quad G(\varepsilon) = 1, \quad \Rightarrow \quad A = 1.$$

Таким образом, искомая функция Грина G(t):

$$G(t) = \theta(t) \cdot \exp(-\gamma t)$$
,

где $\theta(t)$ обеспечивает G(t) = 0 при t < 0.

№2

Рассмотрим уравнение, вида

$$(\partial_t^2 + \omega^2)\varphi(t) = g(t), \quad g(t) = \begin{cases} 0, & t \notin [0, \tau]; \\ -\frac{v}{\tau l}, & t \in [0, \tau], \end{cases}$$

с нулевым начальным условием $\varphi(t<0)=0$. Функция Грина G(t) для оператора $(\partial_t^2+\omega^2)$ равна $(\partial_t^2+\omega^2)$

$$G(t) = \theta(t) \frac{1}{\omega} \sin(\omega t), \tag{3}$$

Далее найдём вид $\varphi(t)$ при $t < \tau$ (красная линия рис. 1):

$$\varphi(t < \tau) = \frac{1}{\omega} \int_{-\infty}^{t} \sin \omega(t - s) \ g(s) dt = \frac{1}{\omega} \int_{0}^{t} \sin \omega(t - s) \frac{v}{2l} d(t - s) = \frac{v}{l\tau} \frac{1}{\omega^{2}} \left(\cos(\omega t) - 1\right).$$

Рис. 1: Сшивка решений в І.2

Теперь решим² задачу Коши с начальным условием при $t = \tau$, введя переменную $T = t - \tau$:

$$\varphi(T) = \varphi(t - \tau) = \dot{\varphi}(\tau)G(t - \tau) + \varphi(\tau)\dot{G}(t - \tau) + 0 = \frac{v}{lt}\frac{1}{\omega^2}\left(\cos\omega t - \cos\omega(t - \tau)\right).$$

получая синюю кривую на рис. 1.

 $^{^{1}}$ Конспект, уравнение (1.11).

²Конспект, уравнение (1.12).

Итого, решение уравнения (1) (фиолетовая кривая, рис 1):

$$\varphi(t) = \frac{v}{l\tau} \frac{1}{\omega^2} \begin{cases} 0, & t < 0; \\ \cos \omega t - 1, & t \in [0, \tau]; \\ \cos \omega t - \cos \omega (t - \tau), & t > \tau. \end{cases}$$

№3

І. Найдём значение интеграла, вида

$$I_1 = \int_{-\infty}^{+\infty} \frac{1}{(x^2 + a^2)^2} \, dx.$$

Заметим, что уравнение $z^2 + a^2 = 0$ имеет корни в $z_{1,2} = a^{\pm i\pi/2}$, тогда

$$I_1 = 2\pi i \cdot \operatorname{res}_{z_1} = 2\pi i \lim_{z \to z_1} \cdot \left(\frac{1}{(z - z_2)^2}\right)' = -4\pi i \cdot \lim_{z \to z_1} \left(\frac{1}{(z - z_2)^3}\right) = -4\pi i \frac{1}{(2ia)^3} = \frac{\pi}{2a^3}.$$

II. Теперь найдём значение интеграла, вида

$$I_2 = \int_{-\infty}^{+\infty} \frac{e^{ipx}}{x^2 + a^2} dx \stackrel{p>0}{=} 2\pi i \cdot \underset{ia}{\text{res }} f(z) = 2\pi i \cdot \frac{e^{-ap}}{2ai} = \frac{\pi}{a} e^{-ap},$$

где мы считали p > 0. В случае p < 0:

$$I_2 \stackrel{p<0}{=} -2\pi i \cdot \underset{-ia}{\text{res}} f(z) = -2\pi i \cdot \frac{e^{ap}}{-2ai} = \frac{\pi}{a} e^{ap}, \quad \Rightarrow \quad I_2 = \frac{\pi}{a} e^{-a|p|}.$$

2 Неделя II

№1 (1.1.4)

Найдём функию Грина G(t) уравнения

$$L(\partial_t)x(t) = \varphi(t), \quad L(\partial_t) = \partial_t^4 + 4\nu^2\partial_t^2 + 3\nu^4.$$

Функция Грина может быть найдена, как решение уравнения

$$L(\partial_t)G(t) = \delta(t), \quad \Rightarrow \quad G(t) = \theta(t) \cdot \left(b_1 e^{-\nu t} + b_2 e^{i\nu t} + b_3 e^{-i\sqrt{3}\nu t} + b_4 e^{i\sqrt{3}\nu t}\right)$$

где воспользовались разложением

$$L(z) = (z + i\nu)(z - i\nu)(z - i\sqrt{3}\nu)(z + i\sqrt{3}\nu).$$

Интегрируя от $-\varepsilon$ до $+\varepsilon$ уравнение на G(t) находим, что

$$\partial_t^3 G(+0) = 1, \quad \partial_t^2 G(+0) = \partial_t^1 G(+0) = G(+0) = 0,$$

откуда получаем СЛУ на $\{b_1, b_2, b_3, b_4\}$:

$$b_1 + b_2 + b_3 + b_4 = 0,$$

$$b_1 - b_2 + \sqrt{3} (b_3 - b_4) = 0,$$

$$b_1 + b_2 + 3 (b_3 + b_4) = 0,$$

$$b_1 - b_2 + 3\sqrt{3} (b_3 - b_4) = -\frac{i}{\nu^3},$$

$$b_1 = \frac{i}{4\nu^3},$$

$$b_2 = -\frac{i}{4\nu^3},$$

$$b_3 = -\frac{i}{4\sqrt{3}\nu^3},$$

$$b_4 = \frac{i}{4\sqrt{3}\nu^3}.$$

Так получаем решение, вида

$$G(t) = \frac{\theta(t)}{2\sqrt{3}\nu^3} \left(\sqrt{3}\sin(\nu t) - \sin(\sqrt{3}\nu t)\right).$$

№2 (1.1.5)

Найдём функцию Грина для уравнения, вида

$$(\partial_t^2 + \nu^2)^2 x(t) = \varphi(t).$$

Аналогично предыдущему номеру, сначала находим G(t > 0):

$$G(t>0) = b_1 e^{i\nu t} + b_2 t e^{i\nu} + b_3 e^{-i\nu t} + b_4 t e^{-i\nu t}$$

где секулярные члены возникли из-за кратности корней.

Также, интегрируя уравнение на G(t) от $-\varepsilon$ до ε , получаем аналогичное условие

$$\partial_t^3 G(+0) = 1, \quad \partial_t^2 G(+0) = \partial_t^1 G(+0) = G(+0) = 0,$$

и приходим к СЛУ на коэффициенты $\{b_1, b_2, b_3, b_4\}$:

$$\begin{vmatrix}
b_1 + b_3 = 0, \\
i (b_1 - b_3) \nu + b_2 + b_4 = 0, \\
\nu ((b_1 + b_3) \nu - 2i (b_2 - b_4)) = 0, \\
\nu^2 (-3 (b_2 + b_4) - i (b_1 - b_3) \nu) = 1,
\end{vmatrix}
\Rightarrow b_1 = -\frac{i}{4\nu^3}, b_2 = -\frac{1}{4\nu^2}, b_3 = \frac{i}{4\nu^3}, b_4 = -\frac{1}{4\nu^2}.$$

Получаем решение, вида

$$G(t) = \frac{\theta(t)}{2\nu^3} \left(\sin(\nu t) - \nu t \cos(\nu t) \right).$$

№3 (1.1.8)

 $\Phi_{\rm W}$ 3 $T_{\rm F}$ X

Для системы уравнений, вида

$$(\partial_t + \hat{\Gamma}) \mathbf{y}(t) = \boldsymbol{\xi}(t), \quad \Gamma = \lambda \delta_{i,j} + \delta_{i,j-1},$$

найдём функцию Грина G(t), как решение уравнения

$$(\partial_t + \hat{\Gamma})G(t) = \delta(t)\mathbb{E}, \quad \Rightarrow \quad G(t) = \theta(t)\exp\left(-\hat{\Gamma}t\right).$$

Осталось найти $\exp(-\hat{\Gamma}t)$, как матричную экспоненту, от жордановой клетки.

Для начала заметим, что

$$\delta_{i,j-1}^2 = \delta_{i,j-1}\delta_{j,k} = \delta_{i+1,k-1} = \delta_{i,k-2},$$

и так далее, то есть $\delta_{i,j-1}$ – нильпотентный оператор, с $\delta^4_{i,i-1}=0.$

Посмотрим на степени $\hat{\Gamma}$:

$$\hat{\Gamma}^2 = \delta_{i,j} + 2\delta_{i,j-1} + \delta_{i,j-2}$$

$$\hat{\Gamma}^3 = \delta_{i,j} + 3\delta_{i,j-1} + 3\delta_{i,j-2} + \delta_{i,j-3}$$

$$\hat{\Gamma}^4 = \delta_{i,j} + 4\delta_{i,j-1} + 6\delta_{i,j-2} + 4\delta_{i,j-3} + \delta_{i,j-4},$$

но $\delta_{i,j-4}=0$, так что можем явно выделить на побочных диагоналях соответсвтующие экспоненты:

$$G(t) = \theta(t)e^{-\lambda t} \begin{pmatrix} 1 & -t & \frac{t^2}{2} & -\frac{t^3}{6} \\ 0 & 1 & -t & \frac{t^2}{2} \\ 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

где появившиеся t^k – секулярные члены.

№4

В частотном представлении для оператора $\partial_t^2 + \omega_0^2$ можем «найти» функцию Грина, приводящую к

$$G(\omega) = \frac{1}{\omega_0^2 - \omega^2}, \quad \Rightarrow \quad G(t) = \int_{-\infty}^{+\infty} \frac{e^{-i\omega t}}{\omega_0^2 - \omega^2} \frac{d\omega}{2\pi}$$

с особенностями на вещественной оси.

Регуляризуем интеграл, рассмотрением «затухающего» осцилятора, тогда

$$G(t) = \int_{-\infty}^{+\infty} \underbrace{\frac{e^{-i\omega t}}{(\omega_0 - \omega + i\varepsilon_1)(\omega_0 + \omega + i\varepsilon_2)}}_{F(v)} \frac{d\omega}{2\pi}.$$

Получилось два полюса:

$$\omega_1 = \omega_0 + i\varepsilon_1, \quad \omega_2 = -\omega_0 - i\varepsilon_2.$$

Соответсвенно, по лемме Жордана, наличие/отсутствие вклада от $\varepsilon_{1,2}$ будет зависеть от выбора знаков в $\varepsilon_{1,2} \to \pm 0$.

Для начала найдём вычеты по каждому полюсу:

$$2\pi i \cdot \mathop{\rm res}_{\omega_1} F(\omega) = i\varepsilon e^{i\varphi} F(\omega_1) = -i\varepsilon e^{i\varphi} \frac{e^{it\omega_0}}{2\omega_0 + i(\varepsilon_1 + \varepsilon_2) + \varepsilon e^{i\varphi}} \stackrel{\varepsilon \to 0}{\approx} -\frac{i}{2\omega_0} e^{-it\omega_0}.$$

Аналогично, для второго полюса:

$$2\pi i \cdot \mathop{\mathrm{res}}_{\omega_2} F(\omega) = \ldots = \frac{i}{2\omega_0} e^{it\omega_0}.$$

Сразу заметим, что при вхождение только отного вычета невозможно выполнение условия о G(0) = 0, тогда рассмотрим $\varepsilon_1 \to +0$ и $\varepsilon_2 \to -0$, тогда оба полюча находятся в верхней полуплоскости, по которой и происходит обход *по* часовой стрелке:

$$G(t) = \theta(-t) \frac{1}{\omega_0} \sin(-\omega_0 t),$$

что соответствует опережающей функции Грина ($\partial_t G(t=0) = -1$).

Теперь найдём, что при $\varepsilon_1 \to -0$ и $\varepsilon_2 \to +0$ оба вычета в нижней полуплоскости, что приведет к смене знака:

$$G(t) = \theta(t) \frac{1}{\omega_0} \sin(\omega_0 t),$$

что и соответствует запаздывающей функции Грина (см. ур. (3), $\partial_t G(t=0)=1$), что не может не радовать.

3 Неделя III

№1 (1.3.4)

Найдём решение уравнения

$$\int_0^t K(t-s)f(s) ds = \varphi(t), \qquad K(t) = t, \quad \varphi(t) = \sin(t).$$

Решение может быть найдено, как

$$\tilde{f}(p) = \frac{\tilde{\varphi}(p)}{\tilde{K}(p)}, \qquad f(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt)\tilde{f}(p).$$

Для начала найдём, что

$$\tilde{\varphi}(p) = \int_0^\infty e^{-pt} \frac{e^{it} - e^{-it}}{2i} \, dt = \frac{-1}{2i} \left(\frac{1}{i-p} + \frac{1}{i+p} \right) = \frac{1}{1+p^2}.$$

А также изображение для возмущения

$$\tilde{K}(p) = -\left(\int_0^\infty \exp(-pt)\right)_p' = \left(\frac{1}{p}e^{-pt}\Big|_0^\infty\right)_p' = \frac{1}{p^2}.$$

Заметим, что $\lim_{p \to \infty} \tilde{f}(p) = 1$, тогда

$$f(t) = \delta(t) + \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} e^{pt} \left(\frac{p^2}{1+p^2} - 1 \right) = \delta(t) - \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} e^{pt} \left(\frac{1}{1+p^2} \right) = \delta(t) - \sin(t),$$

где воспользовались уже известным значением изображения синуса.

Для галочки можем посчитать оригинал напрямую. Тогда заметим, что полюса находятся в $p=\pm i$, соответственно возьмём c=1 и сделаем замену $p=1+i\omega$, тогда придём к интегралу

ственно возьмём
$$c=1$$
 и сделаем замену $p=1+i\omega$, тогда придём к интегралу
$$-e^t \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \frac{e^{i\omega t}}{[\omega-(1+i)][\omega-(-1+i)]} = -e^t \left(\frac{1}{2} i e^{(-1-i)t} - \frac{1}{2} i e^{(-1+i)t}\right) = \sin(t),$$

в общем, всё сходится.

№2 (1.4.2)

Найдём функцию Грина

$$G(t, s) = \theta(t - s) \exp\left(-\int_{s}^{t} \gamma(\tau) d\tau\right),$$

для $\gamma(t)=a/t$, где $a={
m const.}$ Нетрудно найти, что

$$G(t,s) = \theta(t-s) \exp\left(-a \ln \frac{t}{s}\right) = \theta(t-s) \left(\frac{s}{t}\right)^a.$$

№3 (1.5.1)

Общее замечание. Ограничимся здесь проверкой свойств δ -функции (обобщенной функции/функционала), а именно локализованность ($\delta(t)=0 \ \forall t\neq 0$) и нормировку: $\int_{-\infty}^{+\infty} \delta(t)=1$.

І. Докажем, что

$$\frac{\pi}{2}\delta(t) = \lim_{\varepsilon \to 0} \frac{t^2 \varepsilon}{(t^2 + \varepsilon^2)^2}.$$

Для начала проверим нормировку, полюса второй степени находятся в точках $\pm i \varepsilon$, замыкая дугу сверху, находим:

$$\varepsilon \int_{-\infty}^{+\infty} \frac{t^2}{(t^2 + \varepsilon^2)^2} = 2\pi i \varepsilon \cdot \lim_{t \to i \varepsilon} \left(\frac{d}{dt} \frac{t^2}{(t + i \varepsilon)^2} \right) = 2\pi i \varepsilon \cdot \lim_{t \to i \varepsilon} \frac{2it\epsilon}{(t + i\epsilon)^3} = 2\pi i \varepsilon \cdot \frac{1}{4i\varepsilon} = \frac{\pi}{2},$$

что доказывает нормировку δ -последовательности на единицу.

Теперь покажем локализованность:

$$\lim_{\varepsilon \to 0} \frac{t^2 \varepsilon}{(t^2 + \varepsilon^2)^2} \stackrel{t \neq 0}{=} \lim_{\varepsilon \to 0} t^2 \varepsilon = 0, \quad \forall t \neq 0.$$

II. Аналогично, докажем, что

$$\sqrt{\pi}\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\sqrt{\varepsilon}} \exp\left(-\frac{t^2}{\varepsilon}\right).$$

Можно заметить, что нормировка выполняется, так как гауссов интеграл равен $\sqrt{\pi}$, осталось показать локализованность:

$$\lim_{\varepsilon \to 0} \frac{1}{\sqrt{\varepsilon}} \exp\left(-\frac{t^2}{\varepsilon}\right) \stackrel{t \neq 0}{=} \lim_{\varepsilon \to 0} \exp\left(-\frac{t^2 + \frac{1}{2}\varepsilon\ln\varepsilon}{\varepsilon}\right) = \lim_{\varepsilon \to 0} \exp\left(-\frac{t^2}{\varepsilon}\right) = 0, \quad \forall t \neq 0.$$

III. Наконец, покажем, что

$$\pi\delta(t) = \lim_{n \to \infty} \frac{1 - \cos(nt)}{nt^2}.$$

Начнём с нормировки:

$$\int_{-\infty}^{+\infty} \frac{\cos(nt) - 1}{n} d\frac{1}{t} = \int_{-\infty}^{+\infty} \frac{\sin(nt)}{t} dt = \pi,$$

как разность пределов на $\pm\infty$ интегрального синуса.

Проверяем локализованность:

$$0\leqslant \lim_{n\to\infty}\frac{1-\cos(nt)}{nt^2}\leqslant \left/1-\cos(nt)\leqslant 2\right/\leqslant \frac{2}{\pi nt^2}=0,\quad \Rightarrow\quad \lim_{n\to\infty}\frac{1-\cos(nt)}{nt^2}=0.$$

$N_{2}4$ (1.5.8)

Найдём обратное преобразование Лапласа некоторых функций.

I. Первое изображение:

$$\tilde{f}(p) = \frac{\nu}{p^2 + \nu^2}, \quad \Rightarrow \quad f(t) = \int_{c - i\infty}^{c + i\infty} \frac{dp}{2\pi i} \exp(pt) \tilde{f}(p) = \int_{c - i\infty}^{c + i\infty} \frac{dp}{2\pi i} \exp(pt) \frac{\nu}{p^2 + \nu^2},$$

что выбором c=1, заменой $p=\nu(i\omega+1)$, сводится к уже рассмотренному интегралу (w3, №1), тогда

$$\mathcal{L}^{-1}(t) \left[\frac{\nu}{p^2 + \nu^2} \right] = \sin(\nu t).$$

II. Второе изображение:

$$\tilde{f}(p) = \frac{p}{p^2 + \nu^2}, \quad \Rightarrow \quad f(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt) \frac{p}{p^2 + \nu^2}.$$

Аналогично выбираем c=1, делаем замену $p=\nu(i\omega+1)$, так приходим к интегралу, вида

$$f(t) = -e^{\nu t} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \exp(i\nu\omega t) \frac{1 + i\omega}{[\omega - (1+i)][\omega - (-1+i)]}$$

с полюсами в $\omega = i \pm 1$. Тогда, находим, что

$$\underset{\omega=i+1}{\operatorname{res}}\,f(t)=\frac{i}{4\pi}e^{(i-1)\nu t}, \quad \underset{\omega=i-1}{\operatorname{res}}\,f(t)=\frac{i}{4\pi}e^{(-i-1)\nu t}, \quad \Rightarrow \quad f(t)=2\pi i \sum_{\pm} \underset{i\pm 1}{\operatorname{res}}\,f(t)=\cos(\nu t).$$

III. Третье изображение:

$$\tilde{f}(p) = \frac{\nu}{p^2 - \nu^2}, \quad \Rightarrow \quad f(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt) \frac{\nu}{p^2 - \nu^2}.$$

Делая замену $p=i\nu\omega,$ и выбирая c=0 находим,

$$f(t) = \int_{-i\infty}^{+i\infty} \frac{d\omega}{2\pi} e^{i\nu\omega t} \frac{-1}{(\omega - i)(\omega + i)},$$

а тогда

$$\underset{\omega=-i}{\operatorname{res}} f(t) = \frac{e^{\nu t}}{4\pi i}, \quad \underset{\omega=i}{\operatorname{res}} f(t) = -\frac{e^{\nu(-t)}}{4\pi i}, \quad \Rightarrow \quad f(t) = 2\pi i \sum_{+} \underset{\pm i}{\operatorname{res}} f(t) = \operatorname{sh}(\nu t).$$

IV. Четвертое изображение:

$$\tilde{f}(p) = \frac{p}{p^2 - \nu^2}, \quad \Rightarrow \quad f(t) = \int_{c-i\infty}^{c+i\infty} \frac{dp}{2\pi i} \exp(pt) \frac{p}{p^2 - \nu^2}.$$

Делая замену $p=i\nu\omega$, и выбирая c=0 находим,

$$f(t) = -\int_{-i\infty}^{+i\infty} \frac{d\omega}{2\pi} e^{i\nu\omega t} \frac{i\omega}{(\omega - i)(\omega - i)},$$

а тогда

$$\mathop{\rm res}_{\omega=i} f(t) = \frac{e^{\nu t}}{4\pi i}, \quad \mathop{\rm res}_{\omega=-i} f(t) = \frac{e^{\nu(-t)}}{4\pi i}, \quad \Rightarrow \quad f(t) = 2\pi i \sum_{\pm} \mathop{\rm res}_{\pm i} f(t) = \mathop{\rm ch}(\nu t).$$

V. Пятое изображение (оставлено на следующую неделю):

$$\mathcal{L}^{-1}(t)\left[\frac{1}{\sqrt{p+\alpha}}\right] = \frac{e^{-\alpha t}}{\sqrt{\pi t}}.$$

№5

Рассмотрим маятник, совершающий маленькие колебания под действием вынуждающей силы $f(t) = Fe^{-t^2/ au^2}$:

$$\left(\partial_t^2 + \omega^2\right)\varphi(t) = f(t),$$

где мы знаем, что при $t \to -\infty$:

$$\varphi(t) = A_{-}\sin(\omega t + \theta_{-}).$$

Функция Грина, как известно,

$$G(t) = \theta(t) \frac{1}{\omega} \sin(\omega t).$$

Тогда, после возмущения, при $t \to \infty$:

$$\varphi(t) = A_{-}\sin(\omega t + \theta_{-}) + \int_{T}^{T_{+}} \frac{F}{\omega}\sin[\omega(t-s)]\exp\left(-\frac{s^{2}}{\tau^{2}}\right) ds,$$

где $\omega T_{-}\ll 0$ и $\omega T_{+}\gg 0$, так что экспонента там ноль. Раскрывая и группируя, находим

$$\varphi(t) - A_{-}\sin(\omega t + \theta_{-}) = \sin(\omega t) \int_{T}^{T_{+}} \frac{F}{\omega}\cos(\omega s) \exp\left(-\frac{s^{2}}{\tau^{2}}\right) ds,$$

где интеграл по $\sin \omega s$ опустили, так как интеграл о произведения четной и нечетной функции ноль. Далее,

$$\int \cos(\omega s) \exp\left(-\frac{s^2}{\tau^2}\right) ds = \frac{1}{2} \int \exp\left(-\frac{1}{4}\tau^2\omega^2 - \frac{\left(s + \frac{1}{2}i\tau^2\omega\right)^2}{\tau^2}\right) ds + \frac{1}{2} \int \exp\left(-\frac{1}{4}\tau^2\omega^2 - \frac{\left(s - \frac{1}{2}i\tau^2\omega\right)^2}{\tau^2}\right) ds,$$

раскрывая два гауссовых интеграла, находим

$$\int \cos(\omega s) \exp\left(-\frac{s^2}{\tau^2}\right) \, ds = \frac{1}{\omega} \sqrt{\pi} F \tau e^{-\frac{1}{4}\tau^2 \omega^2}.$$

Тогда, искомое поведение при $t \to \infty$

$$\varphi(t) = A_{-}\sin(\omega t + \theta_{-}) + \frac{1}{\omega}\sqrt{\pi}F\tau e^{-\frac{1}{4}\tau^{2}\omega^{2}}\sin(\omega t),$$

что осталось засунуть в один синус.

Рис. 2: Изменение амплитуды и фазы синса в w3, №5

На 2 явно видно, как невозмущенный синус (красная линяя) переходит в возмущенный синус (синяя линяя), в итоге и получается наше решение (фиолетовая линия).

4 Семинар от 25.09.21

Про Фурье. Как раньше нашли

$$L(\partial_t)G(t) = \delta(t), \quad \Rightarrow \quad \hat{x}(\omega) = \int_{\mathbb{R}} e^{-i\omega t} x(t) dt, \quad x(t) = \int_{\mathbb{R}} e^{i\omega t} \hat{x}(\omega) \frac{d\omega}{2\pi}.$$

Для этого должно выполняться

$$\int |x(t)| \, dd < +\infty.$$

Hanpumep, для $\partial_t + \gamma$:

$$(\partial_t + \gamma)G(t) = \delta(t), \quad \Rightarrow \quad \int_{\mathbb{R}} \frac{dt}{dt} e^{-i\omega t} dt = x(t)e^{-i\omega t} \Big|_{-\infty}^{+\infty}, \quad \Rightarrow \quad (i\omega + \gamma)\hat{G}(\omega) = 1, \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{i\omega + \gamma}.$$

Так приходим к уравнению

$$G(t) = \int_{\mathbb{R}} \frac{e^{i\omega t}}{\omega - i\gamma} \frac{d\omega}{2\pi} = \left\{ e^{-\gamma t}, \quad t > 00, \quad t < 0 \qquad \Rightarrow \qquad \hat{G}(\omega) = \theta(t)e^{-|t|}.$$

Однако, при $\hat{L} = \partial_t - \gamma$ мы бы получили

$$G_A(t) = \theta(-t)e^{\gamma t},$$

хотя вообще должно быть (если посчитать через неопределенные коэффициенты)

$$G_R(t) = \theta(t)e^{\gamma t}$$
,

которая растёт.

В методе с Фурье будут получаться функции Грина затухающие, но, возможно, без причинности. В методе неопределенных коэффициентов исходим из причинности, но может быть рост $\sim e^{\gamma t}$.

Кроме того, в Фурье всегда предполагается $x(t \to -\infty) = 0$ и $x(t \to +\infty) = 0$. Также может случиться

$$(\partial_t^2 + \omega_0^2)G(t) = \delta(t), \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{\omega^2 - \omega_0^2},$$

с особенностями на вещественной оси, что можно решить, сместив полюса в С.

Свёртка. Рассмотрим уравнение

$$L(\partial_t)x(t) = f(t), \quad L(\partial_t)G(t) = \delta(t).$$

Фурье переводит

$$\int_{\mathbb{R}} \partial_x^n x(t) e^{-i\omega t} dt = (i\omega)^n \hat{x}(\omega).$$

Тогда

$$L(i\omega)\hat{x}(\omega) = \hat{f}(\omega), \quad L(i\omega)\hat{G}(\omega) = 1, \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{L(i\omega)}.$$

Также нашли, что

$$\hat{x}(\omega) = \frac{\hat{f}(\omega)}{L(i\omega)} = \hat{f}(\omega)\hat{G}(\omega), \quad \Rightarrow \quad x(t) = \int_{-\infty}^{+\infty} G(t-s)f(s) ds.$$

Преобразование Лапласа. Пусть есть некоторое преобразование

$$\tilde{f}(p) = \int_0^\infty e^{-pt} f(t) \, dt,$$

где подразумевается, что $\operatorname{Re} p \geqslant 0$ и, вообще, в Фурье можно $p \in \mathbb{C}$.

Пусть $p = i\omega$, где $\omega \in \mathbb{R}$. Тогда

$$\tilde{f}(i\omega) = \int_{\mathbb{R}} e^{-i\omega t} f(t) dt = \hat{f}(\omega), \quad \Rightarrow \quad f(t) = \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{\mathbb{R}} \tilde{f}(i\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{-i\infty}^{i\infty} e^{pt} \tilde{f}(p) \frac{dp}{2\pi}.$$

В вычислениях выше мы предполагали, что $f(t \to \infty) = 0$.

Обойдём это, пусть $|f(t)| < Me^{st}$, при s > 0. Возьмём $p_0 > s$, тогда

$$\tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p-p_0)t} f(t) dt = \tilde{g}(p-p_0),$$

где вводе $g(t) = e^{-ip_0t}f(t)$, которая уже убывает на бесконечности. Обратно:

$$g(t) = \int_{-i\infty}^{+i\infty} \tilde{g}(p)e^{pt} \frac{dp}{2\pi} = \int_{p_0 - i\omega}^{p_0 + i\omega} \tilde{g}(p - p_0)e^{-p_0 t}e^{pt} \frac{dp}{2\pi i}.$$

Так пришли к форме обращения

$$f(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \tilde{f}(p) \frac{dp}{2\pi i}, \qquad \tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p - p_0)t} f(t) dt = \tilde{g}(p - p_0), \tag{4}$$

где $g(t) = e^{-ip_0t} f(t)$.

Забавный факт, из леммы Жордана: при t < 0 f(t < 0) = 9, по замыканию дуги по часовой стрелке (вправо). Выбирая p_0 так, чтобы все особенности лежали левее p_0 , можем получать причинные функции.

Производная. Найдём преобразование Лапласа для $\partial_t f(t)$:

$$\int_0^\infty \frac{df}{dt} e^{-pt} dt = f e^{-pt} \bigg|_0^\infty + p \int_0^\infty f(t) e^{-pt} dt = p\tilde{f}(p) - f(+0).$$

Но, для функции Грина $L(\partial_t)G(t) = \delta(t)$, тогда

$$L(\partial_t)G_{\varepsilon}(t) = \delta(t-\varepsilon), \qquad G_{\varepsilon}(t) = G(t-\varepsilon), \quad \Rightarrow \quad G_{\varepsilon}(0) = 0,$$

где $G_{\varepsilon} \to G(t)$ при $\varepsilon \to 0$.

Преобразуем³ по Лапласу уравнения выше

$$L(p)G(p) = e^{p\varepsilon} = 1, \quad \Rightarrow \quad G_{\varepsilon}(p) = \frac{1}{L(p)}, \quad \stackrel{\varepsilon \to 0}{\Rightarrow} \quad G(p) = \frac{1}{L(p)}.$$

Так получаем

$$G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{\tilde{L}(p)} \frac{dp}{2\pi i},\tag{5}$$

где p_0 правее всех особенностей.

Пример. Рассмотрим $L = \partial_t + \gamma$, тогда

$$(p+\gamma)G(p) = 1, \quad \Rightarrow \quad G(p) = \frac{1}{p+\gamma}, \quad \Rightarrow \quad G(t) = \int_{-i\infty}^{i\infty} \frac{e^{pt}}{p+\gamma} \frac{dp}{2\pi i} = \theta(t)e^{-\gamma t}.$$

Аналогично, пусть $L = \partial_t^2 + \omega^2$, тогда $LG(t) = \delta(t)$, и

$$G(p) = \frac{1}{p^2 + \omega^2}, \quad \Rightarrow \quad G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{p^2 + \omega^2} \frac{dp}{2\pi i} = \begin{cases} 0, & t < 0 \\ \dots, & t > 0 \end{cases} = \theta(t) \left(\frac{e^{i\omega t}}{2i\omega} + \frac{e^{-i\omega t}}{-2i\omega t} = \theta(t) \frac{\sin \omega t}{\omega} \right)$$

В общем виде, пусть $L(\partial_t)G(t) = \delta(t)$, тогда

$$L(p)G(p) = 1, \quad \Rightarrow \quad G(p)\frac{1}{L(p)}, \quad \Rightarrow \quad G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{L(p)} \frac{dp}{2\pi i}.$$

Поговорим про свёртку:

$$Lx = f, \quad \Rightarrow \quad L(p)x(p) = f(p), \quad L(p)G(p) = 1, \quad \Rightarrow \quad G(p) = \frac{1}{L(p)}.$$

Тогда получается

$$x(p) = \frac{f(p)}{L(p)} = f(p)G(p), \quad \Rightarrow \quad x(t) = \int_0^t G(t-s)f(s) ds.$$

Уравнение Вольтера. Иногда бывает уравнения на x(s) вида

$$f(t) = \int_0^t x(s)K(t-s) ds. \tag{6}$$

Через преобразрвание Лапласа, находим

$$f(p) = x(p)K(p), \quad \Rightarrow \quad x(p) = \frac{f(p)}{K(p)}.$$
 (7)

В общем виде тогда находим

$$x(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{f(p)}{K(p)} e^{pt} \frac{dp}{2\pi i}.$$

Кстати, забавный факт:

$$\int_{p_0 - i\infty}^{p_0 + i\omega} 1 \cdot e^{pt} \frac{dp}{2\pi i} = e^{p_0 t} \int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i} = e^{p_0 t} \int_{-\infty}^{+\infty} e^{i\omega t} \frac{d\omega}{2\pi} = \delta(t), \tag{8}$$

то есть преобразование Лапласа от константы – дельта функция.

³Здесь и далее f(t) – функция, $f(\omega) = \hat{f}(\omega)$ – Фурье образ, $f(p) = \tilde{f}(p)$ – преобразование Лапласа.

Рассмотрим, например

$$\int_{-i\infty}^{i\infty} \frac{p+1-1}{p+1} e^{pt} \frac{dp}{2\pi i} = \int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i} - \int_{-i\infty}^{+i\infty} \frac{e^{pt}}{p+1} \frac{dp}{2\pi} = \delta(t) - \theta(t)e^{-t}.$$

Также верно, что

$$\int_{-i\infty}^{i\infty} pe^{pt} \frac{dp}{2\pi i} = \delta'(t).$$

Действительно,

$$\frac{d}{dt} \left(\int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i} \right) = \frac{d}{dt} \delta(t) = \delta'(t).$$

Важно, что можно делать функции маленькими

$$\int_{p_0 - i\infty}^{p_0 + i\omega} f(p)e^{pt} \frac{dp}{2\pi i} = \left(\frac{d}{dt}\right)^n \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{f(p)}{p^n} e^{pt} \frac{dp}{2\pi i}.$$
 (9)

Неоднородная релаксация. Рассмотрим уравнение

$$(\partial_t + \gamma(t))G(t,s) = \delta(t-s), \qquad x(t) = \int_{-\infty}^{+\infty} G(t,s)f(s) ds,$$

где продолжаем требовать причинность G(t,s>t)=0. Для начала, рассмотрим t>s, тогда

$$(\partial_t + \gamma(t))G(t) = 0, \quad \Rightarrow \quad \frac{dG}{G} = -\gamma(t) dt, \quad \Rightarrow \quad G(t,s) = A(s) \exp\left(-\int_{t_0}^t \gamma(t') dt'\right).$$

Также записываем граничные условия:

$$\int_{s-\varepsilon}^{s+\varepsilon} \dots ds, \quad \Rightarrow \quad G(s+0,s) = 1.$$

Так можем найти

$$A(s)\exp\left(-\int_{t_0}^{s} \gamma(t') dt'\right) = 1, \quad \Rightarrow \quad G(t,s) = \theta(t-s)\exp\left(-\int_{s}^{t} \gamma(t') dt'\right), \tag{10}$$

где мы разбили

$$\int_{t_0}^t = \int_{t_0}^s + \int_s^t,$$

и получили, что хотели.

Комментарий про дельта функцию. Главное, нужно показать, что

$$\int_{-\infty}^{+\infty} \delta_a(x) = 1, \qquad \lim_{a \to 0} \delta_a(x) = 0, \text{ при } x \neq 0.$$

Вообще можем плодить дельтаобразные последовательности, взяв f с единичным интегралом и

$$\delta_a(x) = \frac{1}{a} f\left(\frac{x}{a}\right).$$

Комментарий про преобразование Лапласа. Для функции вида

$$\frac{1}{\sqrt{p+\alpha}}$$
,

необходим аппарат разрезов, так что её можно сделать с шифтом на неделю.

На следующей недели будет контрольная. Необходим аппарат метода неопределенных коэффициентов, матричные экспоненты, решение диффуров через Фурье (не всегда причинный результат), а также преобразование Лапласа. Вычеты скорее всего в районе второго порядка и меньше. Ещё полезно вспонить, как записывать начальные условия: осцияллятор, осциллятор с затуханием.

5 Приложение

Преобразование Лапласа. Выпишем несколько пар оригинал-изображение:

$$\mathcal{L}\left[t^n e^{\lambda t}\right] = \frac{n!}{(p-\lambda)^{n+1}}, \quad \mathcal{L}\left[t^\alpha e^{\lambda t}\right] = \frac{\Gamma(\alpha+1)}{(p-\lambda)^{n+1}}, \quad \mathcal{L}\left[\frac{(1-e^{-t})}{t}\right] = \ln\left(1+\frac{1}{p}\right), \qquad \mathcal{L}\left[\frac{\sin t}{t}\right] = \operatorname{arctg} p$$

$$\mathcal{L}\left[\sin(\nu t)\right] = \frac{\nu}{p^2+\nu^2}, \qquad \mathcal{L}\left[\cos(\nu t)\right] = \frac{p}{p^2+\nu^2}, \qquad \mathcal{L}\left[t\sin(\nu t)\right] = \frac{p\nu}{(p^2+\nu^2)^2}, \qquad \mathcal{L}\left[t\cos(\nu t)\right] = \frac{p^2-\nu^2}{(p^2+\nu^2)^2},$$

$$\mathcal{L}\left[\sinh(\nu t)\right] = \frac{\nu}{p^2-\nu^2}, \qquad \mathcal{L}\left[\cosh(\nu t)\right] = \frac{p}{p^2-\nu^2}, \quad \mathcal{L}\left[e^{\lambda t}\sin(\nu t)\right] = \frac{\nu}{(p-\lambda)^2+\nu^2}, \quad \mathcal{L}\left[e^{\lambda t}\cos(\nu t)\right] = \frac{p-\lambda}{(p-\lambda)^2+\nu^2},$$

Также помним, что $\mathcal{L}[\delta(t)]=1,$ и $L[\delta(t-a)]=e^{-ap},$ при a>0.