Robotiks WS17/18

Assignment 12

Name	MatrNr	Mail
Sven Heinrichsen Alexander Hinze-Huettl		s.heinrichsen@fu-berlin.de hinze.alex@gmail.com

Repo: https://github.com/al-eax/robotik_ws1718

A* Tree

Step	Opend {g+h}	Closed
0	H{0+19}	
1	$G(10+1)$, $E\{10+20\}$, $D\{10+35\}$,	$H\{0+19\}$
	$C\{10+42\},$	
2	$E{10+20}, F{20+18}, D{10+35},$	$H\{0+19\}, G\{10+1\},$
	$C\{10+42\}$	
3	$F{20+18}, D{10+35}, C{10+42}$	$H\{0+19\}, G\{10+1\},$
		$E\{10+20\}$
4	$B{30+9}, D{10+35}, C{10+42}$	$H\{0+19\}, G\{10+1\},$
		$E\{10+20\},$
_	A (12 12) T (12 27) C (12 12)	$F\{20+18\},$
5	$A{40+0}, D{10+35}, C{10+42}$	$H\{0+19\}, G\{10+1\},$
		$E\{10+20\},$
		$F\{20+18\}, B\{30+9\}$

Shortest way under consideration of alphanumerical values: $h \to g \to e \to f \to h \to a$

This heuristic is **not** optimistic. Some heuristics are higher than the actual path costs. Have a look at C to A. This means, the graph is not consistent.

A non consistent graph doesnt find the optimal path, as you can see.

2. Voronoi-Diagrams

l1 metric

l2 metric

3. Potential Fields

$$F_G = d_G^2 = \left(\sqrt{(x-3)^2 + (x-4)^2}\right)^2 = (x-3)^2 + (y-4)^2$$

$$F_O = \frac{3}{d_O^2} = \frac{3}{(x-2)^2 + (y-3)^2}$$

derivation of F_G

$$F'_{xG}(x,y) = 2x - 6$$

$$F'_{yG}(x,y) = 2y - 8$$

derivation of F_O

$$u = 3; u' = 0$$

$$v = (x-2)^2 + (y-3)^2$$

$$v_x' = 2x - 4; v_y' = 2y - 6$$

$$F'_{xO}(x,y) = \frac{-3*(2x-4)}{((x-2)^2 + (y-3)^2)^2}$$

$$F'_{yO}(x,y) = \frac{-3*(2y-6)}{((x-2)^2+(y-3)^2)^2}$$

force vectors

$$\vec{F_O} = (F_{xO}'(1,1), F_{yO}'(1,1))^T = (\tfrac{6}{25}, \tfrac{6}{25})^T$$

$$\vec{F_G} = (F'_{xG}(1,1), F'_{yG}(1,1))^T = (-4, -6)^T$$

$$\vec{F} = \vec{F_O} + \vec{F_G} = (-3.76, -5.76)^T$$