Annexes Examens

Étienne Marceau, PhD, ASA Professeur titulaire, École d'actuariat

21 février 2019

Table des matières

1	Symboles, abréviations et limites	3
	1.1 Symboles	3
	1.2 Abréviations	3
	1.3 Limites	3
	1.4 Séries de Taylor connues	3
2	Définitions utiles	4
3	Théorèmes	5
4	Lois continues à support positif	6
	4.1 Loi uniforme	6
	4.2 Loi exponentielle	6
	4.3 Loi gamma	7
	4.4 Loi bêta	7
	4.5 Loi Erlang	9
	4.6 Loi Erlang généralisée	9
	4.7 Loi de Weibull	10
	4.8 Loi lognormale	11
	4.9 Loi inverse gaussienne	12
	4.10 Loi Pareto	13
	4.11 Loi F-généralisée	14
	4.12 Loi Burr	15
	4.13 Loi log-logistique	15
5	Lois continues à support réel	17
	5.1 Loi normale	17
	5.2 Loi de Student	17
6	Lois discrètes	19
	6.1 Loi avec support arithmétique	19
	6.2 Loi de Poisson	19
	6.3 Loi binomiale	19
	6.4 Loi de Bernoulli	20
	6.5 Loi binomiale négative	20

		Loi géométrique	
7			
/	LOIS	s univariées avec mélange	22
		Loi mélange d'exponentielles	
	7.2	Loi mélange d'Erlang	22
3		les de la loi normale	2 4
	8.1	Fonction de répartition	24
		Valeurs de la fonction quantile	
9	Tabl	les de la loi gamma	26
	9.1	Fonction de répartition	26
		Fonction quantile	
10		les de la loi de Poisson	30
	10.1	Fonction de répartition	30
		Fonction stop-loss	
11	Tabl	le de la loi du khi-deux	32

1 Symboles, abréviations et limites

1.1 Symboles

- 1. $\mathbb{N} = \{0, 1, 2...\}$ = ensemble des entiers naturels (incluant $\{0\}$)
- 2. $\mathbb{N}^+ = \{1, 2...\}$
- 3. \mathbb{R} = ensemble des nombres réels
- 4. \mathbb{R}^+ = ensemble des nombres réels positifs (incluant $\{0\}$)
- 5. $i = \sqrt{-1}$ = unité imaginaire
- 6. $\mathbb{C} = \{x + yi; \ x, y \in \mathbb{R}\}\$ = ensemble des nombres complexes
- 7. $\sum_{k=1}^{0} a_k = 0$
- 8. $\rho_P(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}}$
- 9. $\Phi(x)$ = fonction de répartition de la loi normale standard
- 10. $\Phi^{-1}(u)$ = fonction quantile de la loi normale standard

1.2 Abréviations

- 1. v.a. = variable(s) aléatoire(s)
- 2. i.i.d. = indépendant(e)s et identiquement distribué(e)s
- 3. fmp = fonction de masses de probabilité
- 4. fgp = fonction génératrice des probabilités
- 5. fgm = fonction génératrice des moments
- 6. TLS = transformée de Laplace-Stieltjes
- 7. MMV = méthode du maximum de vraisemblance

1.3 Limites

- 1. $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$
- 2. $\lim_{n\to\infty} \left(1+\frac{t}{n}\right)^{m\times n} = e^{mt}$
- 3. $\lim_{n\to\infty} \left(1 \frac{1}{n}\right)^n = e^{-1}$
- 4. $\lim_{n\to\infty} \left(1 \frac{t}{n}\right)^n = e^{-t}$

1.4 Séries de Taylor connues

- 1. Développement : $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} (x \in \mathbb{R})$
 - ullet approximation du premier ordre (intéressante pour des petites valeurs de |x|):

$$e^x \simeq 1 + x$$

• exemples:

$$\begin{array}{cccc} 1.1 & \simeq & e^{0.1} = 1.105171 \\ 1.01 & \simeq & e^{0.01} = 1.010050 \\ 0.9 & \simeq & e^{-0.1} = 0.904837 \\ 0.99 & \simeq & e^{-0.01} = 0.990050 \end{array}$$

3

2. Développement : $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{(k+1)} \frac{x^k}{k!} (|x| < 1)$

2 Définitions utiles

1. Fonction quantile : Soit une v.a. X avec une fonction de répartition F_X . La fonction quantile F_X^{-1} de X est définie par

$$F_X^{-1}(u) = \inf (x \in \mathbb{R}, F_X(x) \ge u)$$

pour $u \in (0,1)$.

2. Mesure TVaR (pour "Tail-VaR") : Soit une v.a. X, où $E[X] < \infty$, avec une fonction de répartition F_X et une fonction quantile F_X^{-1} . Le mesure TVaR de X est définie par

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} F_{X}^{-1}(u) du,$$

pour $u \in (0,1)$.

3. Mesure LTVaR (pour "Left Tail -VaR") : Soit une v.a. X, où $E[X] < \infty$, avec une fonction de répartition F_X et une fonction quantile F_X^{-1} . Le mesure LTVaR de X est définie par

$$LTVaR_{\kappa}\left(X\right) = \frac{1}{\kappa} \int_{0}^{\kappa} F_{X}^{-1}\left(u\right) du,$$

pour $u\in(0,1)$. On utilise parfois la notation " $ES_{\kappa}\left(X\right)$ " au lieu de " $LTVaR_{\kappa}\left(X\right)$ ", où "ES" est un acronyme pour "Expected-Shortfall".

3 Théorèmes

Théorème 1. Théorème de la fonction quantile Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X , i.e., $F_X^{-1}(U) \sim X$.

4 Lois continues à support positif

4.1 Loi uniforme

- Notation : $X \sim Unif(a, b)$
- Paramètres : $-\infty < a < b < \infty$
- Support : $x \in [a, b]$
- Fonction de densité : $f(x) = \frac{1}{b-a} \times 1_{\{x \in [a,b]\}}$
- Fonction de répartition : $F\left(x\right) = \left\{ \begin{array}{ll} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b \end{array} \right.$
- Espérance : $E[X] = \frac{a+b}{2}$
- Variance : $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$
- Fonction génératrice des moments : $M_X(t) = \frac{\mathrm{e}^{bt} \mathrm{e}^{at}}{(b-a)t}$
- Moments d'ordre $k:E\left[X^k\right]=\frac{b^{k+1}-a^{k+1}}{(k+1)(b-a)}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{d^2 a^2}{2(b-a)}$
- Mesure $VaR: VaR_{\kappa}(X) = a + (b a) \kappa$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = a + \frac{(b-a)}{2}\left(1 + \kappa\right)$
- Fonction $stop\text{-loss}:\pi_{d}\left(X\right)=\frac{(b-d)^{2}}{2(b-a)}$
- Fonction d'excès-moyen : $e_d(X) = \frac{b-d}{2}$

4.2 Loi exponentielle

- Notation : $X \sim Exp(\beta)$
- Paramètre : $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \beta e^{-\beta x}$
- Fonction de répartition : $F(x) = 1 e^{-\beta x}$
- Fonction de survie : $\overline{F}(x) = e^{-\beta x}$
- Espérance : $E[X] = \frac{1}{\beta}$
- Variance : $Var(X) = \frac{1}{\beta^2}$
- Fonction génératrice des moments : $M_X(t) = \frac{\beta}{\beta t}$, $t < \beta$
- Moments d'ordre $k: E\left[X^k\right] = \left(\frac{1}{\beta}\right)^k k!$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{1}{\beta}\left(1 \mathrm{e}^{-\beta d}\right) d\mathrm{e}^{-\beta d}$
- Mesure $VaR: VaR_{\kappa}(X) = -\frac{1}{\beta} \ln (1 \kappa)$
- Mesure $TVaR: TVaR_{\kappa}(X) = VaR_{\kappa}(X) + E[X]$
- Fonction $stop-loss: \pi_{X}\left(d\right) = \frac{1}{\beta}e^{-\beta d} = E\left[X\right]\overline{F}\left(d\right)$
- Fonction d'excès-moyen : $e_X(d) = \frac{1}{\beta}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{1}{\beta}\left(1 e^{-\beta d}\right)$

4.3 Loi gamma

• Notation : $X \sim Ga(\alpha, \beta)$

• Paramètres : $\alpha > 0, \beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f\left(x\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x},$ x>0

• Fonction de répartition : notée $H\left(x;\alpha,\beta\right)$, forme non explicite pour $\alpha\notin\mathbb{N}^{+}$

• Fonction de survie : notée $\overline{H}(x; \alpha, \beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$

• Espérance : $E[X] = \frac{\alpha}{\beta}$

• Variance : $Var(X) = \frac{\alpha}{\beta^2}$

• Fonction génératrice des moments : $M_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$, $t < \beta$

• Moments d'ordre $k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1} (\alpha+i)}{\beta^k}$

 • Espérance tronquée : $E\left[X\times 1_{\{X\leq d\}}\right]=\frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right)$

• Mesure VaR : outil d'optimisation si $\alpha \neq 1$

• Mesure $TVaR: TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa}\frac{\alpha}{\beta}\overline{H}\left(VaR_{\kappa}\left(X\right); \alpha+1, \beta\right)$

• Fonction $stop-loss:\pi_{d}\left(X\right)=\frac{\alpha}{\beta}\overline{H}\left(d;\alpha+1,\beta\right)-d\overline{H}\left(d;\alpha,\beta\right)$

• Fonction d'excès-moyen : $e_d\left(X\right)=\frac{\alpha}{\beta}\frac{\overline{H}(d;\alpha+1,\beta)}{\overline{H}(d;\alpha,\beta)}-d$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right) + d\overline{H}\left(d;\alpha,\beta\right)$

• Lois associées :

• la loi exponentielle est un cas particulier de la loi gamma (avec $\alpha=1$);

• la loi du khi-deux avec paramètre $\nu \in \mathbb{N}^+$ (nombre de degrés de liberté) correspond à une loi gamma de paramètres $\alpha = \frac{\nu}{2}$ et $\beta = 2$;

• la loi Erlang avec paramètre $n \in \mathbb{N}^+$ correspond à une loi gamma de paramètres $\alpha = n$ et β .

4.4 Loi bêta

• Notation : $X \sim B\hat{e}ta(\alpha, \beta)$

• Paramètres : $\alpha > 0, \beta > 0$

• Support : $x \in [0, 1]$

• Fonction bêta incomplète : $I\left(x;\alpha,\beta\right)=\int_0^x u^{\alpha-1}\left(1-u\right)^{\beta-1}\mathrm{d}u$, $x\in[0,1]$

• Fonction bêta complète : $I\left(\alpha,\beta\right)=I\left(1;\alpha,\beta\right)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

• Fonction de densité : $f_X(x) = \frac{1}{I(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} \times 1_{\{x \in [0,1]\}}$

• Fonction de répartition : $F_{X}\left(x\right)=\frac{I\left(x;\alpha,\beta\right)}{I\left(\alpha,\beta\right)}$, notée $B\left(x;\alpha,\beta\right)$

• Si $\beta = 1$, $F(x) = \begin{cases} 0, & x < 0 \\ x^{\alpha}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si
$$\alpha = 1$$
, $F(x) = \begin{cases} 0, & x < 0 \\ 1 - (1 - x)^{\beta}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si α , $\beta \in \mathbb{N}^+$,

$$F(x) = \begin{cases} 0, & x < 0\\ \sum_{j=\alpha}^{\alpha+\beta-1} \frac{(\alpha+\beta-1)!}{j!(\alpha+\beta-1-j)!} x^{j} (1-x)^{\alpha+\beta-1-j}, & 0 \le x \le 1\\ 1, & x > 1 \end{cases}$$

- Espérance : $E[X] = \frac{\alpha}{\alpha + \beta}$
- Variance : $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Fonction génératrice des moments :

$$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{j=0}^{k-1} \frac{\alpha+j}{\alpha+\beta+j} \right) \frac{t^k}{k!}$$

- Moments d'ordre $k: E\left[X^k\right] = \frac{\Gamma(\alpha+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\alpha+\beta+k)}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{\alpha}{\alpha + \beta} B(d; \alpha + 1, \beta)$, $\alpha \leq d \leq \beta$
 - Si $\beta=1$, $E\left[X\times 1_{\{X\leq d\}}\right]=\frac{\alpha d^{\alpha+1}}{\alpha+1}$
 - Si $\alpha = 1$, $E\left[X \times 1_{\{X \le d\}}\right] = -d(1-d)^{\beta} + \frac{1-(1-d)^{\beta+1}}{\beta+1}$
- Mesure VaR: outil d'optimisation
 - Si $\beta = 1$, $VaR_{\kappa}(X) = \kappa^{\frac{1}{\alpha}}$
 - Si $\alpha = 1$, $VaR_{\kappa}(X) = 1 (1 \kappa)^{\frac{1}{\beta}}$
- Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+\beta} (1 B(VaR_{\kappa}(X); \alpha+1, \beta))$
 - Si $\beta = 1$, $TVaR_{\kappa}(X) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+1} (1 \kappa^{(\alpha+1)/\alpha})$
 - Si $\alpha = 1$, $TVaR_{\kappa}(X) = 1 \frac{\beta}{\beta+1} (1-\kappa)^{\frac{1}{\beta}}$
- Fonction stop-loss : $\pi_d(X) = \frac{\alpha}{\alpha + \beta}(1 B(d; \alpha + 1, \beta)) d(1 B(d; \alpha, \beta))$, $d \in [0, 1]$
 - Si $\beta = 1$, $\pi_d(X) = \frac{\alpha}{\alpha + 1}(1 d^{\alpha + 1}) d(1 d^{\alpha})$
 - Si $\alpha = 1$, $\pi_d(X) = \frac{(1-d)^{\beta+1}}{1+\beta}$
- Fonction d'excès-moyen : $e_d(X) = \frac{\alpha}{\alpha+\beta} \frac{1-B(d;\alpha+1,\beta)}{1-B(d;\alpha,\beta)} d$, $d \in [0,1]$
 - Si $\beta=1$, $e_{d}\left(X\right)=\frac{\alpha}{\alpha+1}\frac{1-d^{\alpha+1}}{1-d^{\alpha}}-d$
 - Si $\alpha = 1$, $e_d(X) = \frac{(1-d)}{1+\beta}$
- Espérance limitée : $E[\min{(X;d)}] = \frac{\alpha}{\alpha+\beta}B(d;\alpha+1,\beta) + \beta(1-B(d;\alpha,\beta))$, $d \in [0,1]$
 - Si $\beta = 1$, $E[\min(X; d)] = \frac{\alpha}{\alpha + 1} d^{\alpha + 1} + d(1 d^{\alpha})$
 - Si $\alpha = 1$, $E[\min(X;d)] = \frac{1 (1 d)^{\beta + 1}}{\beta + 1}$
- Loi associée : la loi uniforme avec a=0 et b=1 est un cas particulier de la loi bêta avec $\alpha=1$ et $\beta=1$.

4.5 Loi Erlang

• Notation : $X \sim Erl(n, \beta)$

• Paramètres : $n \in \mathbb{N}^+$, $\beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f\left(x\right) = \frac{\beta^n}{\Gamma(n)} x^{n-1} \mathrm{e}^{-\beta x}$

• Fonction de répartition : $F(x) = 1 - e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$

• Fonction de survie : $\overline{F}(x) = e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$

• Espérance : $E[X] = \frac{n}{\beta}$

• Variance : $Var(X) = \frac{n}{\beta^2}$

• Fonction génératrice des moments : $M_X(t) = \left(\frac{\beta}{\beta - t}\right)^n$, $t < \beta$

• Moments d'ordre $k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(n+i)}{\beta^k}$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{n}{\beta} \left(1 - e^{-\beta d} \sum_{j=0}^{n} \frac{(\beta d)^{j}}{j!}\right)$

• Mesure VaR: outil d'optimisation si $n \neq 1$

• Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \frac{n}{\beta} \left(e^{-\beta VaR_{\kappa}(X)} \sum_{j=0}^{n} \frac{(\beta VaR_{\kappa}(X))^{j}}{j!} \right)$

• Fonction $stop-loss:\pi_{d}\left(X\right)=\frac{n}{\beta}\overline{H}\left(d;n+1,\beta\right)-d\overline{H}\left(d;n,\beta\right)$

• Fonction d'excès-moyen : $e_d\left(X\right) = \frac{n}{\beta} \frac{\overline{H}(d;n+1,\beta)}{\overline{H}(d;n,\beta)} - d$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{n}{\beta}H\left(d;n+1,\beta\right) + d\overline{H}\left(d;n,\beta\right)$

4.6 Loi Erlang généralisée

• Notation : $X \sim ErlG(\beta_1, ..., \beta_n)$

• Paramètres : $\beta_1,...,\beta_n>0$ et $\beta_1,...,\beta_n$ distincts

• Support : $x \in \mathbb{R}^+$

• Fonction de densité de *X* :

$$f_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \beta_i e^{-\beta_i x}$$

• Fonction de répartition de *X* :

$$F_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \left(1 - e^{-\beta_i x} \right)$$

9

• Fonction de survie de $X : \overline{F}_X(x) = \sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j - \beta_i} \right) e^{-\beta_i x}$

• Espérance de $X: E[X] = \sum_{i=1}^{n} \frac{1}{\beta_i}$

- Variance de X : $\operatorname{Var}(X) = \sum_{i=1}^{n} \frac{1}{\beta_i^2}$
- Fonction génératrice des moments de $X: M_X(t) = \prod_{i=1}^n \left(\frac{\beta_i}{\beta_i t}\right)$
- Moments d'ordre $k: E\left[X^k\right] = \prod_{i=1}^n \frac{\Gamma(k+1)}{\beta_i^k}$
- Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} \left(\prod_{j=1, j \ne i}^{n} \frac{\beta_j}{\beta_j - \beta_i}\right) \left(-de^{-\beta_i d} + \frac{1 - e^{-\beta_i d}}{\beta_i}\right)$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_{j}}{\beta_{j} - \beta_{i}} \right) \left(VaR_{\kappa}(X) e^{-\beta_{i} VaR_{\kappa}(X)} + \frac{e^{-\beta_{i} VaR_{\kappa}(X)}}{\beta_{i}} \right)$$

- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^{n} \left(\prod_{j=1,j\neq i}^{n} \frac{\beta_{j}}{\beta_{j} \beta_{i}}\right) \left(\frac{1 \mathrm{e}^{-\beta_{i}d}}{\beta_{i}}\right)$
- Fonction $stop-loss: \pi_d(X) = \sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i} \right) \left(\frac{\mathrm{e}^{-\beta_i d}}{\beta_i} \right)$
- Fonction d'excès-moyen : $e_d(X) = \frac{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i} \right) \left(\frac{\mathrm{e}^{-\beta_i d}}{\beta_i} \right)}{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i} \right) \left(\mathrm{e}^{-\beta_i d} \right)}$
- Remarques:
 - les termes $\left(\prod_{j=1,j\neq i}^n \frac{\beta_j}{\beta_j-\beta_i}\right)$ sont négatifs ou positifs et $\sum_{i=1}^n \left(\prod_{j=1,j\neq i}^n \frac{\beta_j}{\beta_j-\beta_i}\right)=1$;
 - la loi Erlang généralisée de la v.a. X est l'équivalent de la loi d'une somme de n v.a. indépendantes $Y_1, ..., Y_n$ de lois exponentielles indépendantes avec paramètres $\beta_1, ..., \beta_n$, e.g. $X = \sum_{i=1}^n Y_i$ où $Y_i \sim Exp\left(\beta_i\right)$ pour i=1,...,n.

4.7 Loi de Weibull

• Notation : $X \sim We(\tau, \beta)$

• Paramètres : $\tau > 0$, $\beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \beta \tau (\beta x)^{\tau-1} e^{-(\beta x)^{\tau}}$

• Fonction de répartition : $F(x) = 1 - e^{-(\beta x)^{\tau}}$

• Fonction de survie : $\overline{F}(x) = e^{-(\beta x)^{\tau}}$

- Espérance : $E[X] = \frac{1}{\beta}\Gamma(1 + \frac{1}{\tau})$
- Variance: $\operatorname{Var}(X) = \frac{1}{\beta^2} \Gamma\left(1 + \frac{2}{\tau}\right) \left(\frac{1}{\beta} \Gamma\left(1 + \frac{1}{\tau}\right)\right)^2$
- Fonction génératrice des moments (pour $\alpha > 1$) :

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{\beta^k k!} \Gamma\left(1 + \frac{k}{\tau}\right)$$

- Moments d'ordre $k: E\left[X^k\right] = \frac{1}{\beta^k} \Gamma\left(1 + \frac{k}{\tau}\right)$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau})$
- Mesure $VaR: VaR_{\kappa}\left(X\right) = \frac{1}{\beta}(-\ln\left(1-\kappa\right))^{\frac{1}{\tau}}$
- Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{\beta(1-\kappa)}\Gamma(1+\frac{1}{\tau})\overline{H}(-\ln(1-\kappa);1+\frac{1}{\tau},1)$
- Fonction $stop\text{-loss}:\pi_d\left(X\right)=\frac{1}{\beta}\Gamma(1+\frac{1}{\tau})\overline{H}(d^{\tau};1+\frac{1}{\tau},\beta^{\tau})-d\mathrm{e}^{-(\beta d)^{\tau}}$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{e^{\left(\beta d\right)^{\tau}}}{\beta}\Gamma(1+\frac{1}{\tau})\overline{H}(d^{\tau};1+\frac{1}{\tau},\beta^{\tau}) d$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau}) + d\mathrm{e}^{-(\beta d)^{\tau}}$
- Cas particuliers:
 - la loi exponentielle est un cas cas particulier de la loi Weibull avec $\tau=1$;
 - la loi Raleigh est un cas cas particulier de la loi Weibull avec $\tau=2$.

4.8 Loi lognormale

- Notation : $X \sim LN(\mu, \sigma^2)$
- Paramètres : $-\infty < \mu < \infty, \sigma^2 > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \frac{1}{x\sqrt{2\pi}\sigma}e^{-\frac{(\ln x \mu)^2}{2\sigma^2}}$
- Fonction de répartition : $F(x) = \Phi(\frac{\ln(x) \mu}{\sigma})$
- Espérance : $E[X] = e^{\mu + \frac{\sigma^2}{2}}$
- Variance : $\operatorname{Var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} 1 \right)$
- Fonction génératrice des moments : forme non analytique
- Moments d'ordre $k: E[X^k] = e^{k\mu + k^2 \frac{\sigma^2}{2}}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \exp(\mu + \sigma^2/2)\Phi(\frac{\ln d \mu \sigma^2}{\sigma})$
- Mesure $VaR: VaR_{\kappa}(X) = \exp(\mu + \sigma VaR_{\kappa}(Z))$
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} e^{\mu+\sigma^2/2} (1 - \Phi(VaR_{\kappa}(Z) - \sigma))$$

• Fonction *stop-loss* :

$$\pi_d(X) = e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

• Fonction d'excès-moyen :

$$e_d(X) = \frac{1}{[1 - \Phi(\frac{\ln d - \mu}{\sigma})]} e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \mathrm{e}^{\mu + \sigma^2/2} \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma}) + d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

• Loi associée : $X = e^Y$, où $Y \sim N(\mu, \sigma^2)$, impliquant $E[X^k] = M_Y(k)$

4.9 Loi inverse gaussienne

• Notation : $X \sim IG(\mu, \beta)$

• Paramètres : $\mu, \beta \in \mathbb{R}^+$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\mu}{\sqrt{2\pi\beta x^3}} \exp\left(-\frac{1}{2\beta x}(x-\mu)^2\right)$

• Fonction de répartition :

$$F_X(x) = \Phi\left(\sqrt{\frac{1}{\beta x}}(x-\mu)\right) + e^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}(x+\mu)\right)$$

• Espérance : $E[X] = \mu$

• Variance : $Var(X) = \mu \beta$

Fonction génératrice des moments : $M_{X}\left(t\right)=e^{\frac{\mu}{\beta}\left(1-\sqrt{\left(1-2\beta t\right)}\right)}$

• Espérance tronquée :

$$\begin{split} E\left[X\times \mathbf{1}_{\{X\leq d\}}\right] &= d-(2d-\mu)\Phi\bigg(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \\ &-(2d+\mu)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\bigg(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \end{split}$$

• Mesure VaR: outil d'optimisation

• Mesure TVaR:

$$\begin{split} TVaR_{\kappa}(X) &= \frac{1}{1-\kappa}\left(\mu-d+(2d+\mu)\mathrm{e}^{\frac{2\mu}{\beta}}\right) \\ &+\frac{1}{1-\kappa}\left((2d-\mu)\Phi\left((d-\mu)\sqrt{\frac{1}{\beta d}}\right)\right), \end{split}$$

avec $d = VaR_{\kappa}(X)$

• Fonction *stop-loss* :

$$\pi_{d}(X) = (\mu - d) \left(1 - \Phi\left((d - \mu) \sqrt{\frac{1}{\beta d}} \right) \right) + (d + \mu) e^{\frac{2\mu}{\beta}} \Phi\left(- (d + \mu) \sqrt{\frac{1}{\beta d}} \right)$$

• Fonction d'excès-moyen :

$$\begin{split} e_{d}\left(X\right) &= \frac{\left(\mu-d\right)\left(1-\Phi\left(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\right)\right)}{1-\left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d-\mu\right)\right)+\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d+\mu\right)\right)\right)} \\ &+ \frac{+\left(d+\mu\right)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\right)}{1-\left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d-\mu\right)\right)+\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d+\mu\right)\right)\right)} \end{split}$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = d - (d-\mu)\Phi\left(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\right)$$
$$-(d+\mu)e^{\frac{2\mu}{\beta}}\Phi\left(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\right)$$

4.10 Loi Pareto

• Notation : $X \sim Pa(\alpha, \lambda)$

• Paramètres : $\alpha > 0$, $\lambda > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha+1}}$

• Fonction de répartition : $F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Fonction de survie : $\overline{F}(x) = \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda}{\alpha - 1}$

• Variance (pour $\alpha > 2$): Var $(X) = \frac{\alpha \lambda^2}{(\alpha - 1)^2(\alpha - 2)}$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre k (pour $\alpha>k\in\mathbb{N}^+$) : $E\left[X^k\right]=\frac{\lambda^k k!}{\prod\limits_{i=1}^k(\alpha-i)}$

• Moments d'ordre $k: E\left[X^k\right] = \frac{\lambda^k \Gamma(k+1)\Gamma(\alpha-k)}{\Gamma(\alpha)},$ si $-1 < k < \alpha$

• Espérance tronquée (pour $\alpha > 1$) :

$$E\left[X\times 1_{\{X\leq d\}}\right] = \frac{\lambda}{\alpha-1}\left(1-\frac{\lambda^{\alpha-1}}{(\lambda+d)^{\alpha-1}}\right) - d\left(\frac{\lambda}{\lambda+d}\right)^{\alpha}$$

• Mesure $VaR: VaR_{\kappa}\left(X\right) = \lambda\left(\left(1 - \kappa\right)^{-\frac{1}{\alpha}} - 1\right)$

• Mesure TVaR (pour $\alpha > 1$): $TVaR_{\kappa}(X) = \lambda \left(\frac{\alpha}{\alpha - 1} (1 - \kappa)^{-\frac{1}{\alpha}} - 1\right)$

• Fonction stop-loss (pour $\alpha > 1$): $\pi_d(X) = \frac{\lambda}{\alpha - 1} (\frac{\lambda}{\lambda + d})^{\alpha - 1}$

• Fonction d'excès-moyen (pour $\alpha > 1$) : $e_d(X) = \frac{\lambda + d}{\alpha - 1}$, si $\alpha > 1$

• Espérance limitée (pour $\alpha>1$) : $E\left[\min\left(X;d\right)\right]=\frac{\lambda}{\alpha-1}\left[1-(\frac{\lambda}{\lambda+d})^{\alpha-1}\right]$

4.11 Loi F-généralisée

• Notation : $X \sim FG(\alpha, \lambda, \tau)$

• Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\Gamma(\alpha+\tau)\lambda^{\alpha}x^{\tau-1}}{\Gamma(\alpha)\Gamma(\tau)(\lambda+x)^{\alpha+\tau}}$

• Fonction de répartition : $F_X(x) = B(\frac{x}{\lambda + x}; \tau, \alpha)$

• Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda \tau}{\alpha - 1}$

• Variance (pour $\alpha > 2$): Var $(X) = \frac{\lambda^2 \tau(\tau - \alpha + 1)}{(\alpha - 1)^2 (\alpha - 2)}$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre k (pour $\alpha > k$) : $E\left[X^k\right] = \lambda^k \frac{\prod\limits_{i=0}^{k-1} (\tau+i)}{\prod\limits_{i=1}^{k} (\alpha-i)}$

• Espérance tronquée (pour $\alpha > 1$) :

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{\lambda \tau}{\alpha - 1} B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)$$

• Mesure VaR: outil d'optimisation

• Mesure TVaR (pour $\alpha > 1$):

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \frac{\lambda \tau}{\alpha - 1} \overline{B}\left(\frac{VaR_{\kappa}(X)}{\lambda + VaR_{\kappa}(X)}; \tau + 1, \alpha - 1\right)$$

• Fonction *stop-loss* (pour $\alpha > 1$):

$$\pi_d(X) = \frac{\lambda \tau}{\alpha - 1} \overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) - d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

• Fonction d'excès-moyen (pour $\alpha > 1$) :

$$e_d(X) = \frac{\lambda \tau}{\alpha - 1} \frac{\overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)}{\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)} - d$$

• Espérance limitée (pour $\alpha > 1$) :

$$E\left[\min\left(X;d\right)\right] = \frac{\lambda\tau}{\alpha - 1}B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) + d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

• Loi associée : la loi de Pareto est un cas particulier de la loi F-généralisée avec $\tau=1$.

• Remarque : la loi F-généralisée est parfois appelée la loi de Pareto généralisée.

4.12 Loi Burr

• Notation : $X \sim Burr(\alpha, \lambda, \tau)$

• Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\alpha \tau \lambda^{\alpha} x^{\tau-1}}{(\lambda + x^{\tau})^{\alpha+1}}$

• Fonction de répartition : $F_X\left(x\right) = 1 - \left(\frac{\lambda}{\lambda + x^{\tau}}\right)^{\alpha}$

• Espérance : $E[X] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})$

• Variance : $\operatorname{Var}(X) = \frac{\lambda^{2/\tau}}{\Gamma(\alpha)} \left(\Gamma(1 + \frac{2}{\tau}) \Gamma(\alpha - \frac{2}{\tau}) - \frac{(\Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}))^2}{\Gamma(\alpha)} \right)$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre $k: E\left[X^k\right] = \frac{1}{\Gamma(\alpha)} \lambda^{k/\tau} \Gamma(1 + \frac{k}{\tau}) \Gamma(\alpha - \frac{k}{\tau}), -\tau < k < \alpha \tau$

• Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}) B(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau})$$

• Mesure $VaR: VaR_{\kappa}(X) = (\lambda \{(1-\kappa)^{-1/\alpha} - 1\})^{1/\tau}$

• Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{(1-\kappa)\Gamma(\alpha)} \left(\lambda^{1/\tau}\Gamma(1+\frac{1}{\tau})\Gamma(\alpha-\frac{1}{\tau})\overline{B}\left(\frac{VaR_{\kappa}(X)^{\tau}}{\lambda + VaR_{\kappa}(X)^{\tau}}; 1+\frac{1}{\tau}, \alpha-\frac{1}{\tau}\right)\right)$$

• Fonction *stop-loss* :

$$\pi_d\left(X\right) = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1+\frac{1}{\tau}) \Gamma(\alpha-\frac{1}{\tau}) \overline{B}(\frac{d^\tau}{\lambda+d^\tau}; 1+\frac{1}{\tau}, \alpha-\frac{1}{\tau}) - d(\frac{\lambda}{\lambda+d^\tau})^\alpha$$

• Fonction d'excès-moyen :

$$e_d(X) = \frac{(\lambda + d^{\tau})^{\alpha} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})}{\lambda^{\alpha - 1/\tau} \Gamma(\alpha)} \overline{B}(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}) - d$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \frac{1}{\Gamma(\alpha)}\lambda^{1/\tau}\Gamma(1+\frac{1}{\tau})\Gamma(\alpha-\frac{1}{\tau})B(\frac{d^{\tau}}{\lambda+d^{\tau}};1+\frac{1}{\tau},\alpha-\frac{1}{\tau}) + d(\frac{\lambda}{\lambda+d^{\tau}})^{\alpha}$$

15

• Loi associée : la loi de Pareto est un cas particulier de la loi Burr avec $\tau = 1$.

4.13 Loi log-logistique

• Notation : $X \sim LL(\lambda, \tau)$

• Paramètres : λ , $\tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f\left(x\right) = \frac{\frac{\tau}{\lambda}\left(\frac{x}{\lambda}\right)^{\tau-1}}{\left(1+\left(\frac{x}{\lambda}\right)^{\tau}\right)^2} = \frac{\tau x^{\tau-1}}{(\lambda^{\tau}+x^{\tau})^2}$

- Fonction de répartition : $F\left(x\right) = \frac{1}{1+\left(\frac{x}{\lambda}\right)^{-\tau}} = \frac{x^{\tau}}{\lambda^{\tau} + x^{\tau}}$
- Espérance (pour $\tau > 1$): $E[X] = \lambda \Gamma(1 + \frac{1}{\tau}) \Gamma(1 \frac{1}{\tau})$
- Variance (pour $\tau > 2$):

$$\operatorname{Var}(X) = \lambda^{2} \left(\Gamma \left(1 + \frac{2}{\tau} \right) \Gamma \left(1 - \frac{2}{\tau} \right) - \left(\Gamma \left(1 + \frac{1}{\tau} \right) \Gamma \left(1 - \frac{1}{\tau} \right) \right)^{2} \right)$$

- Fonction génératrice des moments : n'existe pas
- Moments d'ordre $k:E\left[X^k\right]=\lambda^k\Gamma\left(1+\frac{k}{ au}\right)\Gamma\left(1-\frac{k}{ au}\right)$, - au < k < au
- Espérance tronquée (pour $\tau > 1$) :

$$E\left[X\times 1_{\{X\leq d\}}\right] = \lambda\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

- Mesure $VaR: VaR_{\kappa}\left(X\right) = \lambda \left(\kappa^{-1} 1\right)^{-1/\tau}$
- Mesure TVaR (pour $\tau > 1$):

$$TVaR_{\kappa}\left(X\right) = \frac{\lambda}{1-\kappa}\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)\overline{B}\left(\kappa;1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

• Fonction *stop-loss* (pour $\tau > 1$):

$$\pi_{d}(X) = \lambda \Gamma \left(1 + \frac{1}{\tau} \right) \Gamma \left(1 - \frac{1}{\tau} \right) \overline{B} \left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau} \right) - \frac{d\lambda^{\tau}}{\lambda^{\tau} + d^{\tau}}$$

• Fonction d'excès-moyen (pour $\tau > 1$):

$$e_{d}\left(X\right) = \frac{\lambda^{\tau} + d^{\tau}}{\lambda^{\tau - 1}} \Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right) \overline{B}\left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau}\right) - d$$

• Espérance limitée (pour $\tau > 1$) :

$$\begin{split} E\left[\min\left(X;d\right)\right] &= \lambda \Gamma\left(1+\frac{1}{\tau}\right) \Gamma\left(1-\frac{1}{\tau}\right) B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right) \\ &+\frac{d\lambda^{\tau}}{\lambda^{\tau}+d^{\tau}} \end{split}$$

5 Lois continues à support réel

5.1 Loi normale

• Notation : $X \sim N(\mu, \sigma^2)$

• Paramètres : $-\infty < \mu < \infty$, $\sigma^2 > 0$

• Support : $x \in \mathbb{R}$

• Fonction de densité : $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• Fonction de répartition : notée $\Phi\left(\frac{x-\mu}{\sigma}\right)$, forme non explicite

• Espérance : $E[X] = \mu$

• Variance : $Var(X) = \sigma^2$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \mu \Phi\left(\frac{d-\mu}{\sigma}\right) - \sigma \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Mesure $VaR:VaR_{\kappa}\left(X\right) =\mu+\sigma\Phi^{-1}\left(\kappa\right) =\mu+\sigma VaR_{\kappa}\left(Z\right)$

• Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \mu + \frac{1}{1-\kappa}\sigma\frac{1}{\sqrt{2\pi}}e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}} = \mu + \sigma TVaR_{\kappa}\left(Z\right)$$

• Fonction stop-loss : $\pi_d(X) = (\mu + d)(1 - \Phi(\frac{d-\mu}{\sigma})) - \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Fonction d'excès-moyen : $e_d\left(X\right) = \mu + d - \frac{1}{1 - \Phi\left(\frac{d-\mu}{\sigma}\right)} \frac{\sigma}{\sqrt{2\pi}} \mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}}$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \mu\Phi\left(\frac{d-\mu}{\sigma}\right) - \frac{\sigma}{\sqrt{2\pi}}\mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}} + d\left[1 - \Phi\left(\frac{d-\mu}{\sigma}\right)\right]$

• Remarque :

• lorsque $\mu=0$ et $\sigma=1$, on dit par convention que X obéit à une loi normale standard;

• par convention, Φ est la notation pour la fonction de répartition d'une loi normale standard.

17

5.2 Loi de Student

• Notation : $X \sim St(\nu)$

• Paramètre : $\nu > 0$

• Support : $x \in \mathbb{R}$

• Fonction de densité : $f\left(x\right)=\frac{1}{\sqrt{\nu\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$

• Si $\nu = 1$, $f(x) = \frac{1}{\pi} \frac{1}{(1+x^2)}$

• Si $\nu = 2$, $f(x) = \frac{1}{(2+x^2)^{\frac{3}{2}}}$

• Fonction de répartition :

$$F(x) = 1 - \frac{1}{2}B\left(\frac{\nu}{x^2 + \nu}; \frac{\nu}{2}, \frac{1}{2}\right),$$

désignée par $t_{\nu}\left(x\right)$

• Si $\nu = 1$, $F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan(x)$

• Si
$$\nu = 2$$
, $F(x) = \frac{1}{2} \left(1 + \frac{x}{\sqrt{2+x^2}} \right)$

- Fonction de survie : $\overline{F}(x) = \frac{1}{2}B\left(\frac{\nu}{x^2+\nu}; \frac{\nu}{2}, \frac{1}{2}\right)$
- Espérance : $E[X] = 0, \nu > 1$
- Variance : $Var(X) = \frac{\nu}{\nu 2}, \nu > 2$
- Fonction génératrice des moments : n'existe pas
- Moments d'ordre *k* :

$$E\left[X^k\right] = \left\{ \begin{array}{ll} 0, & 0 < k \text{ impair} < \nu \\ \frac{1}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(\Gamma\left(\frac{k+1}{2}\right)\Gamma\left(\frac{\nu-k}{2}\right)\nu^{\frac{k}{2}}\right), & 0 < k \text{ pair} < \nu \end{array} \right.$$

• Espérance tronquée (pour $\nu > 1$):

$$E\left[X\times 1_{\{X\leq d\}}\right] = \left\{ \begin{array}{l} -\sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d<0\\ \sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d>0 \end{array} \right.$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR (pour $\nu > 1$):

$$TVaR_{\kappa}(X) = \begin{cases} -\frac{1}{1-\kappa} \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) < 0\\ \frac{1}{1-\kappa} \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) > 0 \end{cases}$$

• Espérance limitée (pour $\nu > 1$):

$$E\left[\min\left(X;d\right)\right] = \begin{cases} -\sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), & d < 0\\ \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), & d > 0 \end{cases}$$

18

• Note : la loi de Student converge en loi vers la loi normale lorsque $\nu \to \infty$.

6 Lois discrètes

6.1 Loi avec support arithmétique

- Support : $X \in \{0, 1h, 2h, ...\}$
- Fonction de masse de probabilité : $f(kh) = \Pr(X = kh), k \in \mathbb{N}, h \in \mathbb{R}^+$
- Espérance : $E[X] = \sum_{k=0}^{\infty} kh f_X(kh)$
- Variance : $\operatorname{Var}(X) = \sum_{k=0}^{\infty} (kh E[X])^2 f_X(kh)$
- Fonction génératrice des moments : $M_{X}\left(t\right)=\sum_{k=0}^{\infty}\mathrm{e}^{tkh}f_{X}\left(kh\right)$
- Fonction génératrice des probabilités : $P_{X}\left(t\right)=\sum_{k=0}^{\infty}t^{kh}f_{X}\left(kh\right)$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq k_0 h\}}\right] = \sum_{k=0}^{k_0} k h f_X\left(kh\right)$
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \left\{ E\left[X\right] - \sum_{k=0}^{k_0} khf_X\left(kh\right) + k_0h\left(\Pr\left(X \le k_0h\right) - \kappa\right) \right\},\,$$

où $VaR_{\kappa}(X) = k_0 h$ avec $k_0 \in \mathbb{N}$

6.2 Loi de Poisson

- Notation : $M \sim Pois(\lambda)$
- Paramètre : $\lambda > 0$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité : $\Pr(M=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Espérance : $E[M] = \lambda$
- Variance : $Var(M) = \lambda$
- Fonction génératrice des moments : $M(t) = \exp \left\{ \lambda (\mathbf{e}^t - 1) \right\}$
- Fonction génératrice des probabilités : $P(t) = \exp{\{\lambda(t-1)\}}$

6.3 Loi binomiale

- Notation : $M \sim Bin(n,q)$
- Paramètres : $n \in \mathbb{N}, q \in (0,1)$
- Support : $k \in \{0, 1, ..., n\}$
- Fonction de masse de probabilité : $\Pr(M = k) = \binom{n}{k} (q)^k (1 q)^{n-k}$
- Espérance : E[M] = nq
- Variance : Var(M) = nq(1-q)
- Fonction génératrice des moments : $M(t) = (qe^t + 1 q)^n$
- Fonction génératrice des probabilités : $P(t) = (qt + 1 q)^n$
- Loi associée : la loi de Bernoulli est un cas particulier de la loi binomiale avec n=1.

6.4 Loi de Bernoulli

• Notation : $M \sim Bern(q) \sim Bin(1,q)$

• Paramètre : $q \in (0,1)$

• Support : $k \in \{0, 1\}$

• Fonction de masse de probabilité : $Pr(M = k) = (q)^k (1 - q)^{1-k}$

• Espérance : E[M] = q

• Variance : Var(M) = q(1-q)

• Fonction génératrice des moments : $M(t) = (qe^t + 1 - q)$

• Fonction génératrice des probabilités : P(t) = (qt + 1 - q)

6.5 Loi binomiale négative

Selon les auteurs, on rencontre deux paramétrisations pour la loi binomiale négative qui sont équivalentes.

Les principales caractéristiques pour la première paramétrisation sont :

• Notation : $M \sim BN(r,q)$

• Paramètres : $r \in \mathbb{R}^+, q \in (0,1)$

• Support : $k \in \mathbb{N}$

• Fonction de masse de probabilité : $Pr(M = k) = {r+k-1 \choose k} (q)^r (1-q)^k$

• Espérance : $E[M] = r \frac{1-q}{q}$

• Variance : $\operatorname{Var}(M) = r \frac{1-q}{q^2}$

Fonction génératrice des moments : $M(t) = \left(\frac{q}{1-(1-q)\mathrm{e}^t}\right)^r$

• Fonction génératrice des probabilités : $P(t) = \left(\frac{q}{1 - (1 - q)t}\right)^r$

Les principales caractéristiques pour la deuxième paramétrisation sont :

• Notation : $M \sim BN(r, \beta)$

• Paramètres : $r \in \mathbb{R}^+$, $\beta \in \mathbb{R}^+$

• Support : $k \in \mathbb{N}$

• Fonction de masse de probabilité : $\Pr(X = k) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \left(\frac{1}{1+\beta}\right)^r \left(\frac{\beta}{1+\beta}\right)^k$

• Espérance : $E[X] = r\beta$

• Variance : $Var(X) = r\beta(1+\beta)$

• Fonction génératrice des moments : $M_X(t) = (1 - \beta(e^t - 1))^{-r}$

• Fonction génératrice des probabilités : $P_X(t) = (1 - \beta(t-1))^{-r}$

• Lien entre la 1^{re} paramétrisation et la 2^e paramétrisation : $q=\frac{1}{1+\beta}$ ou $\beta=\frac{1-q}{q}$

• Note:

• si $r \in \mathbb{N}^+$, la distribution binomiale négative est parfois appelée la distribution de Pascal;

• si $r \in \mathbb{R}^+$, la distribution binomiale négative est parfois appelée la distribution de Polya.

• Loi associée : la loi géométrique est un cas particulier de la loi binomiale négative avec r=1.

6.6 Loi géométrique

- Notation : $M \sim Geom(q)$
- Paramètre : $q \in (0,1)$
- Support : $k \in \mathbb{N}$
- Espérance : $E[M] = \frac{1-q}{q}$
- Variance : $Var(M) = \frac{1-q}{q^2}$
- Fonction génératrice des moments : $M(t) = \frac{q}{(1-(1-q)\mathrm{e}^t)}$

6.7 Loi logarithmique

- Notation : $M \sim Log(\gamma)$
- $\bullet \ \ {\rm Paramètre}: \gamma \in \]0,1[$
- Support : $k \in \mathbb{N}^+$
- Fonction de masse de probabilité : $\Pr(M=k) = \frac{-1}{\ln(1-\gamma)} \frac{\gamma^k}{k}$
- Espérance : $E\left[M\right] = \frac{-1}{\ln(1-\gamma)} \frac{\gamma}{1-\gamma}$
- Variance : $Var(M) = \frac{\gamma + \ln(1-\gamma)}{(1-\gamma)^2(\ln(1-\gamma))^2}$

7 Lois univariées avec mélange

7.1 Loi mélange d'exponentielles

- Notation : $X \sim MxExp(\{(p_i, \beta_i), i = 1, 2, ..., n\})$
- Paramètres : $\beta_i > 0, \, 0 \le p_i \le 1, \, p_1 + \ldots + p_n = 1$
- Fonction de densité : $f(x) = \sum_{i=1}^{n} p_i \beta_i e^{-\beta_i x}, x > 0$
- Fonction de répartition : $F(x) = \sum_{i=1}^{n} p_i \left(1 e^{-\beta_i x}\right), x > 0$
- Fonction de survie : $\overline{F}(x) = \sum_{i=1}^{n} p_i e^{-\beta_i x}, x > 0$
- Espérance : $E[X] = \sum_{i=1}^{n} p_i \frac{1}{\beta_i}$
- Variance: $\operatorname{Var}(X) = \sum_{i=1}^{n} p_i \frac{2}{\beta_i^2} \left(\sum_{i=1}^{n} p_i \frac{1}{\beta_i}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{i=1}^n p_i \frac{\beta_i}{\beta_i t}$
- Moments d'ordre $k : E[X^k] = \sum_{i=1}^n p_i \left(\frac{1}{\beta_i}\right)^k k!$
- Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} p_i \left(\frac{1}{\beta_i} \left(1 - e^{-\beta_i d}\right) - de^{-\beta_i d}\right)$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{i=1}^{n} p_{i} \left(\frac{1}{\beta_{i}} \left(e^{-\beta_{i}VaR_{\kappa}(X)} \right) + de^{-\beta_{i}VaR_{\kappa}(X)} \right)$$

- Fonction $stop-loss: \pi_X(d) = \sum_{i=1}^n p_i \frac{1}{\beta_i} e^{-\beta_i d}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^{n} p_{i} \frac{1}{\beta_{i}} \left(1 \mathrm{e}^{-\beta_{i}d}\right)$

7.2 Loi mélange d'Erlang

- Notation : $X \sim MxErl(\{(p_k, \beta), k = 1, 2, ...\})$
- Paramètres : $\beta>0,\,0\leq p_k\leq 1$ (k=1,2,...), $\sum_{k=1}^{\infty}p_k=1$
- Fonction de densité : $f\left(x\right) = \sum_{k=1}^{\infty} p_k h\left(x;k,\beta\right), \, x>0$
- Fonction de répartition : $F\left(x\right) = \sum_{k=1}^{\infty} p_k H\left(x;k,\beta\right), \, x>0$
- Fonction de survie : $\overline{F}\left(x\right)=\sum_{k=1}^{\infty}p_{k}\overline{H}\left(x;k,\beta\right),$ x>0
- Espérance : $E[X] = \sum_{k=1}^{\infty} p_k \frac{k}{\beta}$
- Variance : $\operatorname{Var}(X) = \sum_{k=1}^{\infty} p_k \frac{k(k+1)}{\beta} \left(\sum_{k=1}^{\infty} p_k \frac{k}{\beta}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{k=1}^{\infty} p_k \left(\frac{\beta_i}{\beta_i t}\right)^k$
- Moments $m: E[X^m] = \sum_{k=1}^{\infty} p_k \frac{k(k+1)...(k+m-1)}{\beta}$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{k=1}^{\infty} p_{k} \frac{k}{\beta} \overline{H}\left(VaR_{\kappa}(X); k+1, \beta\right)$$

• Fonction *stop-loss* :

$$\pi_{d}(X) = \sum_{k=1}^{\infty} p_{k} \left(\frac{k}{\beta} \overline{H}(d; k+1, \beta) - d\overline{H}(d; k, \beta) \right)$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \sum_{k=1}^{\infty} p_k \left(\frac{k}{\beta} H\left(d;k+1,\beta\right) + d\overline{H}\left(d;k,\beta\right)\right)$$

• Note : $H(x; k, \beta)$, $\overline{H}(x; k, \beta)$ et $h(x; k, \beta)$ sont les fonctions de répartition, de survie et de densité de la loi Erlang (k, β) .

8 Tables de la loi normale

8.1 Fonction de répartition

Table 1: Valeurs de la fonction de répartition de la loi normale standard à (x+u)

$x \setminus u$	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

8.2 Valeurs de la fonction quantile

Table 2: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.5	0.0000	0.0251	0.0502	0.0753	0.1004	0.1257	0.1510	0.1764	0.2019	0.2275
0.6	0.2533	0.2793	0.3055	0.3319	0.3585	0.3853	0.4125	0.4399	0.4677	0.4959
0.7	0.5244	0.5534	0.5828	0.6128	0.6433	0.6745	0.7063	0.7388	0.7722	0.8064
0.8	0.8416	0.8779	0.9154	0.9542	0.9945	1.0364	1.0803	1.1264	1.1750	1.2265
0.9	1.2816	1.3408	1.4051	1.4758	1.5548	1.6449	1.7507	1.8808	2.0537	2.3263

Table 3: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.99	2.3263	2.3656	2.4089	2.4573	2.5121	2.5758	2.6521	2.7478	2.8782	3.0902

Table 4: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009
0.999	3.0902	3.1214	3.1559	3.1947	3.2389	3.2905	3.3528	3.4316	3.5401	3.7190

9 Tables de la loi gamma

9.1 Fonction de répartition

Table 5: Valeurs de la fonction de répartition d'une v.a. $X \sim \operatorname{Gamma}(\alpha,1)$ à $x \in [0.1,5]$

$x \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.1	0.3453	0.0952	0.0224	0.0047	0.0009	0.0002	0.0000	0.0000	0.0000	0.0000
0.2	0.4729	0.1813	0.0598	0.0175	0.0047	0.0011	0.0003	0.0001	0.0000	0.0000
0.3	0.5614	0.2592	0.1036	0.0369	0.0120	0.0036	0.0010	0.0003	0.0001	0.0000
0.4	0.6289	0.3297	0.1505	0.0616	0.0230	0.0079	0.0026	0.0008	0.0002	0.0001
0.5	0.6827	0.3935	0.1987	0.0902	0.0374	0.0144	0.0052	0.0018	0.0006	0.0002
0.6	0.7267	0.4512	0.2470	0.1219	0.0551	0.0231	0.0091	0.0034	0.0012	0.0004
0.7	0.7633	0.5034	0.2945	0.1558	0.0757	0.0341	0.0144	0.0058	0.0022	0.0008
0.8	0.7941	0.5507	0.3406	0.1912	0.0988	0.0474	0.0214	0.0091	0.0037	0.0014
0.9	0.8203	0.5934	0.3851	0.2275	0.1239	0.0629	0.0299	0.0135	0.0058	0.0023
1	0.8427	0.6321	0.4276	0.2642	0.1509	0.0803	0.0402	0.0190	0.0085	0.0037
1.1	0.8620	0.6671	0.4681	0.3010	0.1792	0.0996	0.0521	0.0257	0.0121	0.0054
1.2	0.8787	0.6988	0.5064	0.3374	0.2085	0.1205	0.0656	0.0338	0.0165	0.0077
1.3	0.8931	0.7275	0.5425	0.3732	0.2386	0.1429	0.0806	0.0431	0.0219	0.0107
1.4	0.9057	0.7534	0.5765	0.4082	0.2692	0.1665	0.0971	0.0537	0.0283	0.0143
1.5	0.9167	0.7769	0.6084	0.4422	0.3000	0.1912	0.1150	0.0656	0.0357	0.0186
1.6	0.9264	0.7981	0.6382	0.4751	0.3308	0.2166	0.1341	0.0788	0.0442	0.0237
1.7	0.9348	0.8173	0.6660	0.5068	0.3614	0.2428	0.1543	0.0932	0.0537	0.0296
1.8	0.9422	0.8347	0.6920	0.5372	0.3917	0.2694	0.1755	0.1087	0.0643	0.0364
1.9	0.9487	0.8504	0.7161	0.5663	0.4214	0.2963	0.1975	0.1253	0.0759	0.0441
2	0.9545	0.8647	0.7385	0.5940	0.4506	0.3233	0.2202	0.1429	0.0886	0.0527
2.1	0.9596	0.8775	0.7593	0.6204	0.4790	0.3504	0.2435	0.1614	0.1022	0.0621
2.2	0.9641	0.8892	0.7786	0.6454	0.5066	0.3773	0.2673	0.1806	0.1168	0.0725
2.3	0.9680	0.8997	0.7965	0.6691	0.5334	0.4040	0.2914	0.2007	0.1323	0.0838
2.4	0.9715	0.9093	0.8130	0.6916	0.5592	0.4303	0.3156	0.2213	0.1486	0.0959
2.5	0.9747	0.9179	0.8282	0.7127	0.5841	0.4562	0.3400	0.2424	0.1657	0.1088
2.6	0.9774	0.9257	0.8423	0.7326	0.6080	0.4816	0.3644	0.2640	0.1835	0.1226
2.7	0.9799	0.9328	0.8553	0.7513	0.6310	0.5064	0.3887	0.2859	0.2019	0.1371
2.8	0.9820	0.9392	0.8672	0.7689	0.6529	0.5305	0.4128	0.3081	0.2208	0.1523
2.9	0.9840	0.9450	0.8782	0.7854	0.6738	0.5540	0.4367	0.3304	0.2402	0.1682
3	0.9857	0.9502	0.8884	0.8009	0.6938	0.5768	0.4603	0.3528	0.2601	0.1847
3.1	0.9872	0.9550	0.8977	0.8153	0.7128	0.5988	0.4834	0.3752	0.2803	0.2018
3.2	0.9886	0.9592	0.9063	0.8288	0.7308	0.6201	0.5061	0.3975	0.3007	0.2194
3.3	0.9898	0.9631	0.9142	0.8414	0.7479	0.6406	0.5283	0.4197	0.3213	0.2374
3.4	0.9909	0.9666	0.9214	0.8532	0.7641	0.6603	0.5500	0.4416	0.3421	0.2558
3.5	0.9918	0.9698	0.9281	0.8641	0.7794	0.6792	0.5711	0.4634	0.3629	0.2746
3.6	0.9927	0.9727	0.9342	0.8743	0.7938	0.6973	0.5916	0.4848	0.3837	0.2936
3.7	0.9935	0.9753	0.9398	0.8838	0.8074	0.7146	0.6115	0.5058	0.4045	0.3128
3.8	0.9942	0.9776	0.9450	0.8926	0.8203	0.7311	0.6308	0.5265	0.4251	0.3322
3.9	0.9948	0.9798	0.9497	0.9008	0.8324	0.7469	0.6494	0.5468	0.4456	0.3516
4	0.9953	0.9817	0.9540	0.9084	0.8438	0.7619	0.6674	0.5665	0.4659	0.3712
4.1	0.9958	0.9834	0.9579	0.9155	0.8544	0.7762	0.6847	0.5858	0.4859	0.3907
4.2	0.9962	0.9850	0.9616 0.9649	0.9220	0.8645	0.7898	0.7014	0.6046	0.5056	0.4102 0.4296
4.3	0.9966	0.9864 0.9877	0.9649	0.9281 0.9337	0.8739 0.8827	0.8026 0.8149	0.7173 0.7327	0.6228 0.6406	0.5250 0.5441	0.4296
4.4	0.9970	0.9877	0.9679	0.9337	0.8827	0.8149	0.7327	0.6406	0.5441	0.4488
4.5	0.9973	0.9889	0.9707	0.9389	0.8909	0.8264	0.7473	0.6577	0.5627	0.4868
4.6	0.9978	0.9899	0.9756	0.9437	0.9059	0.8477	0.7614	0.6903	0.5988	0.5054
4.7	0.9978	0.9909	0.9777	0.9482	0.9039	0.8575	0.7748	0.7058	0.6162	0.5034
4.9	0.9983	0.9926	0.9777	0.9523	0.9120	0.8667	0.7998	0.7038	0.6331	0.5418
5	0.9984	0.9933	0.9797	0.9596	0.9169	0.8753	0.7338	0.7350	0.6331	0.5595
ш	0.7704	0.7733	0.7014	0.2320	0.7440	0.0755	0.0114	0.7550	0.0453	0.5555

Relation : $H(x; \alpha, \beta) = H(x\beta; \alpha, 1)$. Exemple : H(0.5; 0.5, 10) = H(5; 0.5, 1) = 0.9984.

Table 6: Valeurs de la fonction de répartition d'une v.a. $X \sim \text{Gamma}(\alpha, 1)$ à $x \in [5.1, 10]$

$x \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
5.1	0.9986	0.9939	0.9831	0.9628	0.9302	0.8835	0.8225	0.7487	0.6655	0.5769
5.2	0.9987	0.9945	0.9845	0.9658	0.9353	0.8912	0.8330	0.7619	0.6809	0.5939
5.3	0.9989	0.9950	0.9859	0.9686	0.9401	0.8984	0.8430	0.7746	0.6959	0.6105
5.4	0.9990	0.9955	0.9871	0.9711	0.9445	0.9052	0.8524	0.7867	0.7103	0.6267
5.5	0.9991	0.9959	0.9883	0.9734	0.9486	0.9116	0.8614	0.7983	0.7243	0.6425
5.6	0.9992	0.9963	0.9893	0.9756	0.9524	0.9176	0.8699	0.8094	0.7378	0.6578
5.7	0.9993	0.9967	0.9903	0.9776	0.9560	0.9232	0.8779	0.8200	0.7507	0.6728
5.8	0.9993	0.9970	0.9911	0.9794	0.9593	0.9285	0.8855	0.8300	0.7632	0.6873
5.9	0.9994	0.9973	0.9919	0.9811	0.9624	0.9334	0.8927	0.8396	0.7752	0.7013
6	0.9995	0.9975	0.9926	0.9826	0.9652	0.9380	0.8994	0.8488	0.7867	0.7149
6.1	0.9995	0.9978	0.9933	0.9841	0.9679	0.9423	0.9058	0.8575	0.7977	0.7281
6.2	0.9996	0.9980	0.9939	0.9854	0.9703	0.9464	0.9119	0.8658	0.8083	0.7408
6.3	0.9996	0.9982	0.9944	0.9866	0.9726	0.9502	0.9175	0.8736	0.8184	0.7531
6.4	0.9997	0.9983	0.9949	0.9877	0.9747	0.9537	0.9229	0.8811	0.8281	0.7649
6.5	0.9997	0.9985	0.9954	0.9887	0.9766	0.9570	0.9279	0.8882	0.8374	0.7763
6.6	0.9997	0.9986	0.9958	0.9897	0.9784	0.9600	0.9326	0.8948	0.8462	0.7873
6.7	0.9997	0.9988	0.9962	0.9905	0.9801	0.9629	0.9371	0.9012	0.8547	0.7978
6.8	0.9998	0.9989	0.9965	0.9913	0.9816	0.9656	0.9412	0.9072	0.8627	0.8080
6.9	0.9998	0.9990	0.9968	0.9920	0.9831	0.9680	0.9451	0.9129	0.8704	0.8177
7	0.9998	0.9991	0.9971	0.9927	0.9844	0.9704	0.9488	0.9182	0.8777	0.8270
7.1	0.9998	0.9992	0.9974	0.9933	0.9856	0.9725	0.9523	0.9233	0.8846	0.8359
7.2	0.9999	0.9993	0.9976	0.9939	0.9867	0.9745	0.9555	0.9281	0.8912	0.8445
7.3	0.9999	0.9993	0.9978	0.9944	0.9878	0.9764	0.9585	0.9326	0.8975	0.8527
7.4	0.9999	0.9994	0.9980	0.9949	0.9887	0.9781	0.9613	0.9368	0.9034	0.8605
7.5	0.9999	0.9994	0.9982	0.9953	0.9896	0.9797	0.9640	0.9409	0.9091	0.8679
7.6	0.9999	0.9995	0.9983	0.9957	0.9905	0.9812	0.9665	0.9446	0.9144	0.8751
7.7	0.9999	0.9995	0.9985	0.9961	0.9912	0.9826	0.9688	0.9482	0.9195	0.8819
7.8	0.9999	0.9996	0.9986	0.9964	0.9919	0.9839	0.9710	0.9515	0.9243	0.8883
7.9	0.9999	0.9996	0.9988	0.9967	0.9926	0.9851	0.9730	0.9547	0.9288	0.8945
8	0.9999	0.9997	0.9989	0.9970	0.9932	0.9862	0.9749	0.9576	0.9331	0.9004
8.1	0.9999	0.9997	0.9990	0.9972	0.9937	0.9873	0.9766	0.9604	0.9372	0.9060
8.2	0.9999	0.9997	0.9991	0.9975	0.9942	0.9882	0.9783	0.9630	0.9410	0.9113
8.3	1.0000	0.9998	0.9991	0.9977	0.9947	0.9891	0.9798	0.9654	0.9446	0.9163
8.4	1.0000	0.9998	0.9992	0.9979	0.9951	0.9900	0.9813	0.9677	0.9481	0.9211
8.5	1.0000	0.9998	0.9993	0.9981	0.9955	0.9907	0.9826	0.9699	0.9513	0.9256
8.6	1.0000	0.9998	0.9994	0.9982	0.9959	0.9914	0.9838	0.9719	0.9543	0.9299
8.7	1.0000	0.9998	0.9994	0.9984	0.9962	0.9921	0.9850	0.9738	0.9572	0.9340
8.8	1.0000	0.9998	0.9995	0.9985	0.9965	0.9927	0.9861	0.9756	0.9599	0.9379
8.9	1.0000	0.9999	0.9995	0.9986	0.9968	0.9932	0.9871	0.9772	0.9624	0.9416
9	1.0000	0.9999	0.9996	0.9988	0.9971	0.9938	0.9880	0.9788	0.9648	0.9450
9.1	1.0000	0.9999	0.9996	0.9989	0.9973	0.9942	0.9889	0.9802	0.9671	0.9483
9.2	1.0000	0.9999	0.9996	0.9990	0.9975	0.9947	0.9897	0.9816	0.9692	0.9514
9.3	1.0000	0.9999	0.9997	0.9991	0.9977	0.9951	0.9905	0.9828	0.9712	0.9544
9.4	1.0000	0.9999	0.9997	0.9991	0.9979	0.9955	0.9912	0.9840	0.9731	0.9571
9.5	1.0000	0.9999	0.9997	0.9992	0.9981	0.9958	0.9918	0.9851	0.9748	0.9597
9.6	1.0000	0.9999	0.9998	0.9993	0.9982	0.9962	0.9924	0.9862	0.9765	0.9622
9.7	1.0000	0.9999	0.9998	0.9993	0.9984	0.9965	0.9930	0.9871	0.9780	0.9645
9.8	1.0000	0.9999	0.9998	0.9994	0.9985	0.9967	0.9935	0.9880	0.9795	0.9667
9.9	1.0000	0.9999	0.9998	0.9995	0.9986	0.9970	0.9940	0.9889	0.9808	0.9688
10	1.0000	1.0000	0.9998	0.9995	0.9988	0.9972	0.9944	0.9897	0.9821	0.9707

Relation : $H(x; \alpha, \beta) = H(x\beta; \alpha, 1)$. Exemple : H(0.5; 0.5, 10) = H(5; 0.5, 1) = 0.9984.

9.2 Fonction quantile

Table 7: Valeurs de la fonction quantile d'une v.a. $X \sim \mathrm{Gamma}(\alpha,1)$ à $\kappa \in [0.01,0.50]$

$\kappa \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.01	0.0001	0.0101	0.0574	0.1486	0.2771	0.4360	0.6195	0.8232	1.0440	1.2791
0.02	0.0003	0.0202	0.0924	0.2147	0.3759	0.5672	0.7821	1.0162	1.2662	1.5295
0.03	0.0007	0.0305	0.1225	0.2675	0.4515	0.6648	0.9008	1.1550	1.4242	1.7060
0.04	0.0013	0.0408	0.1501	0.3136	0.5157	0.7462	0.9986	1.2683	1.5523	1.8483
0.05	0.0020	0.0513	0.1759	0.3554	0.5727	0.8177	1.0837	1.3663	1.6626	1.9701
0.06	0.0028	0.0619	0.2006	0.3942	0.6250	0.8825	1.1602	1.4540	1.7607	2.0784
0.07	0.0039	0.0726	0.2244	0.4308	0.6736	0.9423	1.2305	1.5341	1.8502	2.1767
0.08	0.0050	0.0834	0.2475	0.4657	0.7195	0.9984	1.2961	1.6086	1.9331	2.2675
0.09	0.0064	0.0943	0.2700	0.4993	0.7632	1.0514	1.3578	1.6785	2.0107	2.3524
0.1	0.0079	0.1054	0.2922	0.5318	0.8052	1.1021	1.4166	1.7448	2.0841	2.4326
0.11	0.0096	0.1165	0.3140	0.5634	0.8456	1.1507	1.4727	1.8080	2.1540	2.5088
0.12	0.0114	0.1278	0.3355	0.5942	0.8849	1.1976	1.5268	1.8687	2.2210	2.5817
0.13	0.0134	0.1393	0.3568	0.6244	0.9231	1.2431	1.5791	1.9273	2.2854	2.6518
0.14	0.0156	0.1508	0.3779	0.6540	0.9604	1.2874	1.6298	1.9840	2.3478	2.7194
0.15	0.0179	0.1625	0.3989	0.6832	0.9969	1.3306	1.6791	2.0391	2.4083	2.7850
0.16	0.0204	0.1744	0.4197	0.7120	1.0328	1.3729	1.7274	2.0928	2.4671	2.8488
0.17	0.0230	0.1863	0.4405	0.7405	1.0681	1.4144	1.7745	2.1453	2.5246	2.9109
0.18	0.0259	0.1985	0.4612	0.7687	1.1029	1.4552	1.8208	2.1967	2.5808	2.9717
0.19	0.0289	0.2107	0.4819	0.7966	1.1373	1.4954	1.8663	2.2472	2.6359	3.0312
0.2	0.0321	0.2231	0.5026	0.8244	1.1713	1.5350	1.9112	2.2968	2.6900	3.0895
0.21	0.0355	0.2357	0.5233	0.8520	1.2049	1.5742	1.9554	2.3457	2.7433	3.1469
0.22	0.0390	0.2485	0.5439	0.8794	1.2383	1.6130	1.9990	2.3939	2.7958	3.2034
0.23	0.0427	0.2614	0.5647	0.9068	1.2715	1.6514	2.0422	2.4415	2.8476	3.2592
0.24	0.0467	0.2744	0.5854	0.9341	1.3045	1.6895	2.0850	2.4886	2.8988	3.3142
0.25	0.0508	0.2877	0.6063	0.9613	1.3373	1.7273	2.1274	2.5353	2.9494	3.3686
0.26	0.0551	0.3011	0.6272	0.9885	1.3700	1.7649	2.1695	2.5816	2.9996	3.4225
0.27	0.0596	0.3147	0.6482	1.0157	1.4026	1.8023	2.2114	2.6275	3.0494	3.4758
0.28	0.0642	0.3285	0.6693	1.0428	1.4351	1.8396	2.2530	2.6732	3.0988	3.5288
0.29	0.0691	0.3425	0.6905	1.0701	1.4675	1.8767	2.2944	2.7185	3.1478	3.5814
0.3	0.0742	0.3567	0.7118	1.0973	1.5000	1.9138	2.3357	2.7637	3.1967	3.6336
0.31	0.0795	0.3711	0.7333	1.1247	1.5324	1.9508	2.3768	2.8087	3.2452	3.6856
0.32	0.0851	0.3857	0.7549	1.1521	1.5648	1.9877	2.4179	2.8536	3.2937	3.7373
0.33	0.0908	0.4005	0.7767	1.1796	1.5973	2.0247	2.4589	2.8983	3.3419	3.7889
0.34	0.0968	0.4155	0.7987	1.2073	1.6299	2.0616	2.4998	2.9430	3.3901	3.8403
0.35	0.1030	0.4308	0.8208	1.2350	1.6626	2.0986	2.5408	2.9876	3.4381	3.8916
0.36	0.1094	0.4463	0.8431	1.2630	1.6953	2.1357	2.5818	3.0323	3.4862	3.9429
0.37	0.1160	0.4620	0.8656	1.2910	1.7282	2.1729	2.6229	3.0769	3.5342	3.9940
0.38	0.1229	0.4780	0.8884	1.3193	1.7612	2.2101	2.6640	3.1216	3.5822	4.0452
0.39	0.1301	0.4943	0.9114	1.3478	1.7944	2.2475	2.7053	3.1664	3.6303	4.0965
0.4	0.1375	0.5108	0.9346	1.3764	1.8277	2.2851	2.7466	3.2113	3.6785	4.1477
0.41	0.1452	0.5276	0.9581	1.4053	1.8613	2.3228	2.7881	3.2563	3.7268	4.1991
0.42	0.1531	0.5447	0.9818	1.4344	1.8951	2.3607	2.8298	3.3015	3.7752	4.2506
0.43	0.1613	0.5621	1.0058	1.4638	1.9291	2.3989	2.8717	3.3469	3.8239	4.3023
0.44	0.1699	0.5798	1.0301	1.4935	1.9634	2.4373	2.9139	3.3925	3.8727	4.3541
0.45	0.1787	0.5978	1.0547	1.5235	1.9980	2.4759	2.9563	3.4383	3.9217	4.4062
0.46	0.1878	0.6162	1.0797	1.5537	2.0328	2.5149	2.9989	3.4844	3.9710	4.4585
0.47	0.1972	0.6349	1.1050	1.5844	2.0680	2.5541	3.0419	3.5308	4.0206	4.5111
0.48	0.2069	0.6539	1.1306	1.6153	2.1036	2.5937	3.0852	3.5775	4.0705	4.5640
0.49	0.2170	0.6733	1.1566	1.6466	2.1394	2.6337	3.1289	3.6246	4.1208	4.6173
0.5	0.2275	0.6931	1.1830	1.6783	2.1757	2.6741	3.1729	3.6721	4.1714	4.6709

Table 8: Valeurs de la fonction quantile d'une v.a. $X \sim \mathrm{Gamma}(\alpha,1)$ à $\kappa \in [0.51,0.99]$

$\kappa \setminus \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.51	0.2383	0.7133	1.2098	1.7105	2.2124	2.7148	3.2174	3.7199	4.2225	4.7250
0.52	0.2494	0.7340	1.2370	1.7430	2.2496	2.7560	3.2623	3.7683	4.2740	4.7795
0.53	0.2610	0.7550	1.2647	1.7761	2.2872	2.7977	3.3077	3.8171	4.3260	4.8345
0.54	0.2729	0.7765	1.2929	1.8096	2.3253	2.8399	3.3536	3.8664	4.3785	4.8900
0.55	0.2853	0.7985	1.3215	1.8436	2.3639	2.8826	3.4000	3.9163	4.4316	4.9461
0.56	0.2981	0.8210	1.3507	1.8781	2.4030	2.9259	3.4470	3.9667	4.4853	5.0028
0.57	0.3114	0.8440	1.3804	1.9132	2.4428	2.9698	3.4946	4.0178	4.5396	5.0602
0.58	0.3252	0.8675	1.4107	1.9489	2.4832	3.0143	3.5429	4.0696	4.5946	5.1182
0.59	0.3394	0.8916	1.4416	1.9853	2.5242	3.0595	3.5919	4.1220	4.6503	5.1770
0.6	0.3542	0.9163	1.4731	2.0223	2.5659	3.1054	3.6416	4.1753	4.7068	5.2366
0.61	0.3695	0.9416	1.5053	2.0600	2.6084	3.1521	3.6921	4.2293	4.7642	5.2971
0.62	0.3854	0.9676	1.5382	2.0985	2.6516	3.1995	3.7435	4.2842	4.8224	5.3584
0.63	0.4018	0.9943	1.5718	2.1378	2.6957	3.2479	3.7957	4.3400	4.8816	5.4207
0.64	0.4189	1.0217	1.6063	2.1779	2.7407	3.2971	3.8489	4.3968	4.9417	5.4841
0.65	0.4367	1.0498	1.6416	2.2188	2.7865	3.3474	3.9031	4.4547	5.0030	5.5486
0.66	0.4552	1.0788	1.6777	2.2608	2.8334	3.3987	3.9583	4.5136	5.0654	5.6142
0.67	0.4744	1.1087	1.7148	2.3037	2.8813	3.4510	4.0147	4.5738	5.1290	5.6811
0.68	0.4945	1.1394	1.7529	2.3477	2.9304	3.5046	4.0724	4.6352	5.1940	5.7494
0.69	0.5153	1.1712	1.7921	2.3929	2.9807	3.5594	4.1314	4.6980	5.2603	5.8191
0.7	0.5371	1.2040	1.8324	2.4392	3.0322	3.6156	4.1917	4.7622	5.3282	5.8904
0.71	0.5598	1.2379	1.8740	2.4869	3.0851	3.6732	4.2536	4.8280	5.3977	5.9633
0.72	0.5835	1.2730	1.9168	2.5359	3.1396	3.7323	4.3171	4.8955	5.4689	6.0380
0.73	0.6084	1.3093	1.9610	2.5865	3.1956	3.7932	4.3823	4.9648	5.5420	6.1147
0.74	0.6344	1.3471	2.0068	2.6387	3.2533	3.8558	4.4494	5.0361	5.6171	6.1934
0.75	0.6617	1.3863	2.0542	2.6926	3.3128	3.9204	4.5186	5.1094	5.6944	6.2744
0.76	0.6903	1.4271	2.1033	2.7485	3.3744	3.9871	4.5899	5.1851	5.7740	6.3579
0.77	0.7204	1.4697	2.1544	2.8063	3.4382	4.0561	4.6637	5.2632	5.8563	6.4440
0.78	0.7522	1.5141	2.2075	2.8665	3.5043	4.1276	4.7400	5.3441	5.9414	6.5330
0.79	0.7857	1.5606	2.2629	2.9290	3.5730	4.2018	4.8193	5.4279	6.0295	6.6253
0.8	0.8212	1.6094	2.3208	2.9943	3.6446	4.2790	4.9016	5.5150	6.1211	6.7210
0.81	0.8588	1.6607	2.3815	3.0625	3.7194	4.3596	4.9875	5.6058	6.2163	6.8206
0.82	0.8988	1.7148	2.4452	3.1341	3.7976	4.4438	5.0771	5.7005	6.3158	6.9244
0.83	0.9415	1.7720	2.5123	3.2092	3.8797	4.5321	5.1711	5.7996	6.4198	7.0330
0.84	0.9871	1.8326	2.5833	3.2885	3.9662	4.6250	5.2698	5.9038	6.5290	7.1470
0.85	1.0361	1.8971	2.6585	3.3724	4.0576	4.7231	5.3739	6.0135	6.6440	7.2670
0.86	1.0890	1.9661	2.7387	3.4616	4.1546	4.8270	5.4842	6.1297	6.7657	7.3938
0.87	1.1463	2.0402	2.8244	3.5569	4.2580	4.9377	5.6016	6.2532	6.8949	7.5285
0.88	1.2087	2.1203	2.9167	3.6591	4.3688	5.0562	5.7271	6.3852	7.0330	7.6722
0.89	1.2771	2.2073	3.0167	3.7695	4.4883	5.1838	5.8621	6.5271	7.1813	7.8266
0.9	1.3528	2.3026	3.1257	3.8897	4.6182	5.3223	6.0085	6.6808	7.3418	7.9936
0.91	1.4372	2.4079	3.2457	4.0217	4.7605	5.4740	6.1686	6.8487	7.5171	8.1758
0.92	1.5325	2.5257	3.3793	4.1683	4.9183	5.6417	6.3456	7.0342	7.7105	8.3767
0.93	1.6415	2.6593	3.5302	4.3332	5.0955	5.8300	6.5439	7.2418	7.9269	8.6013
0.94	1.7687	2.8134	3.7034	4.5222	5.2981	6.0448	6.7699	7.4782	8.1730	8.8566
0.95	1.9207	2.9957	3.9074	4.7439	5.5352	6.2958	7.0336	7.7537	8.4595	9.1535
0.96	2.1089	3.2189	4.1556	5.0128	5.8222	6.5989	7.3515	8.0854	8.8041	9.5104
0.97	2.3546	3.5066	4.4736	5.3559	6.1873	6.9838	7.7545	8.5052	9.2398	9.9610
0.98	2.7059	3.9120	4.9187	5.8339	6.6941	7.5166	8.3112	9.0841	9.8395	10.5804
0.99	3.3174	4.6052	5.6724	6.6384	7.5431	8.4059	9.2377	10.0451	10.8330	11.6046

10 Tables de la loi de Poisson

10.1 Fonction de répartition

Table 9: Valeurs de la fonction de répartition de la v.a. $X \sim Pois(\lambda)$

$k \lambda$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.6065	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.9098	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9856	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9982	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9998	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	1.0000	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8	1.0000	1.0000	1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

10.2 Fonction stop-loss

Table 10: Valeurs de la fonction stop-loss de la v.a. $X \sim Pois(\lambda)$

$k \lambda$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.5000	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	4.0000	4.5000	5.0000
1	0.1065	0.3679	0.7231	1.1353	1.5821	2.0498	2.5302	3.0183	3.5111	4.0067
2	0.0163	0.1036	0.2810	0.5413	0.8694	1.2489	1.6661	2.1099	2.5722	3.0472
3	0.0019	0.0233	0.0898	0.2180	0.4132	0.6721	0.9869	1.3480	1.7458	2.1718
4	0.0002	0.0043	0.0242	0.0751	0.1708	0.3194	0.5236	0.7815	1.0881	1.4368
5	0.0000	0.0007	0.0056	0.0225	0.0619	0.1346	0.2490	0.4103	0.6202	0.8773
6	0.0000	0.0001	0.0011	0.0059	0.0199	0.0507	0.1066	0.1954	0.3231	0.4933
7	0.0000	0.0000	0.0002	0.0014	0.0057	0.0172	0.0413	0.0848	0.1542	0.2555
8	0.0000	0.0000	0.0000	0.0003	0.0015	0.0053	0.0146	0.0336	0.0676	0.1221
9	0.0000	0.0000	0.0000	0.0001	0.0004	0.0015	0.0047	0.0123	0.0273	0.0540
10	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0014	0.0041	0.0102	0.0222
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0013	0.0036	0.0085
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0012	0.0030
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0010
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0003
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

11 Table de la loi du khi-deux

TABLE 11: Valeurs critiques calculées avec la loi du khi-deux et avec un niveau de confiance de 5%

Degrés de liberté	$VaR_{0.95}(Z)$
1	3.841458821
2	5.991464547
3	7.814727903
4	9.487729037
5	11.070497694
6	12.591587244
7	14.067140449
8	15.507313056
9	16.918977605
10	18.307038053
11	19.675137573
12	21.026069817
13	22.362032495
14	23.684791305
15	24.995790140
16	26.296227605
17	27.587111638
18	28.869299430
19	30.143527206
20	31.410432844