平成 27 年度 春中間試験問題・解答

試験実施日 平成 27 年 11 月 19 日 1 時限

出題者記入欄

試験科目名 応用数学 II-3	出題者名佐藤弘康					
試 験 時 間 <u>60</u> 分	平常授業	美 日 <u>木</u> 曜日 <u>1</u> 時限				
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください				
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()						
本紙以外に必要とする用紙 解答用紙 0 枚 計算用紙 0 枚						
通信欄						

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	31-3111 11 11 11 11 11 11 11 11 11 11 11 11
採点欄	評価

- 変数分離形微分方程式 y'=-2xy の一般解を求めなさい.
- |3| 次の $(1)\sim(4)$ の中から同次形の微分方程式を1つ選びな さい.

(1)
$$x^2y' = y^2 + \sqrt{x^2 + y^2}$$

(2)
$$y' = \sqrt{x^2 + y^2}$$

(3)
$$xy' = 2y + \sqrt{2x^2 + y^2}$$

(4)
$$xy' = y + \sqrt{x^2 + 3}$$

- $|\mathbf{4}|$ 同次形微分方程式 $xy\,dy (x^2 + y^2)\,dx = 0$ を適当に変 数変換して,変数分離形微分方程式に直しなさい.
- 2 変数分離形微分方程式 $y^3 dx x^2 dy = 0$ の解で、初期 条件 (x,y) = (1,1) を満たす特殊解を求めなさい.

5 線形微分方程式 $xy' + y = x(1 + 2x^2)$ の解を求めよ.

⑥ ベルヌーイの微分方程式 $y' + y = xy^2$ を適当に変数変換して、線形微分方程式に直しなさい.

7 次の各微分方程式に対し、完全ならば解を求め、完全でないならば積分因子を求めなさい.

(1)
$$\{(x^2 - 2y) dx + (y^2 - 2x) dy = 0$$

 $(2) (x^2 + y^2) dx - 2xy dy = 0$