

Funkcionális programozás EA+GY Őszi szemeszter, 2024/2025 Programozási Nyelvek és Fordítóprogramok, IP-18FUNPEG, IKSEK-22FUNPEG Időpont és hely: beosztás szerint

Óratartók neve: Dr. Horváth Zoltán, Dr. Bozó István

Szobaszáma: Déli épület 2.518

E-mail: hz@inf.elte.hu, bozo i@inf.elte.hu

Fogadóóra ideje, helye, formája:

Bozó István: (TEAMS - előzetes egyeztetés alapján, illetve a félév eljén

kihirdetettek szerint)

Demonstrátorok neve, kontakt infó, fogadóóra:

-**Óra kredit értéke:** 5

Előzetes követelmények: nincs előzetes követelmény

Kurzus anyagok:

- A gyakorlatok vázlata és gyakorlófeladatok: http://lambda.inf.elte.hu/Index.xml
- Christopher Allen, Julie Moronuki: Haskell Programming from First Principles
- Miran Lipovaca: Learn You a Haskell for Great Good!: A Beginner's Guide
- Graham Hutton: Programming in Haskell (ISBN 978-1316626221)
- Peyton Jones, J., Hughes J., et al.: Report on the Programming Language Haskell 98. (A Non-strict, Purely Functional Language, February 1999)
- Nyékyné G. J. (szerk.): Programozási nyelvek (Kiskapu 2003), Horváth Z.: Funkcionális programozás nyelvi eszközei fejezet
- Plasmeijer,R. et al.: Functional Programming in Clean (July 1999. Draft)
- http://www.cs.kun.nl/~clean/
- Thompson, S.: Haskell: The Craft of Functional Programming (Addison-Wesley, 1999)

Kurzus leírás: A tárgy célja, hogy betekintést adjon a funkcionális programozási módszer elveibe, matematikai alapjaiba és nyelvi eszközeibe. A nyelvi eszközök használatát Haskell és Clean nyelven megfogalmazott programok elkészítése során gyakorolják be a hallgatók.

Kimeneti követelmények: A hallgató a kurzus elvégzésével elsajátítja a funkcionális programozás alapjait. Az alapok Haskell és Clean nyelvben kerülnek bemutatásra, de a módszerek és koncepciók könnyen alkalmazhatók más programozási nyelvekben is.

Elvárások a hallgatóval szemben a sikeres elvégzéshez:

- A hallgató aktívan részt vesz az előadásokon és a gyakorlatokon egyaránt.
- A hallgatónak heti szinten kisebb feladatok kerülnek kiírásra, ezek segítik az órán hallottak elmélyítését/gyakorlását. A TMS (tms.inf.elte.hu) beadandó kezelő rendszerbe feltöltött megoldások automatikusan kiértékelésre kerülnek.
- A félév során a gyakorlatokon röpdolgozatok kerülnek megírásra (jellemzően 12 alkalommal). Röpdolgozatonként egy-két kérdésre kell röviden válaszolni, vagy a megadott lehetséges válaszok közül kiválasztani a helyeset. Minden helyes válasz egy pontot ér. A tárgy teljesítéséhez szükséges feltétel, hogy a kérdések legalább 50%-át helyesen kell megválaszolni. A röpdolgozatok javítására/pótlására nincs lehetőség, így 50%-nál rosszabb eredmény esetén a hallgató nem szerezhet jegyet a félév során.
- A szorgalmi időszak vége előtt egy nagybeadandó kerül meghirdetésre. A nagybeadandó egy kötelező és egy opcionálisan megoldható részből áll. A kötelező rész megoldása szükséges a tárgy teljesítéséhez, az extra feladatokkal 5 pont szerezhető, ami beszámítható az érdemjegybe. A feladat megoldását önállóan kell elkészíteni! A beadandókat személyesen is be kell mutatni a gyakorlat oktatójának. A nem önállóan elkészített feladatok elutasításra kerülnek, aminek az a következménye, hogy a hallgató nem teljesítheti a tárgyat az adott félévben.
- A vizsgára a félév végén Neptuban kell jelentkezni. Csak az a hallgató vizsgázhat, aki megoldotta és beadta a nagybeadandót, a félévközi elméleti kérdések legalább 50%-át helyesen válaszolta meg és eleget tett az óralátogatási kötelezettségeinek.
- A félév során maximum **35 pont** szerezhető az alábbiak szerint:
 - 5 pont a nagybeadandóból,
 - 30 pont a vizsga megírásával (12 pont elméleti kérdésekből, 18 pont programozási feladatokból).
- A vizsga az alábbiak szerint történik:

(ik) ELTE Informatikai Kar

- A vizsga az elméleti teszt megírásával kezdődik. A teszt 12 kérdésből áll és minden helyes válasz 1 pontot ér. Az elméleti kérdésekből legalább 7 kérdést helyesen kell megválaszolni a sikeres vizsgához.
- A vizsga a programozási résszel folytatódik, ahol a félév során érintett eszközökkel és módszerekkel kell egyszerűbb és összetettebb feladatokat megoldani. A feladatok megoldásával összesen 18 pont szerezhető. A programozási részből legalább 7 pont elérése szükséges (de nem elégséges) feltétele a sikeres vizsgának. A megoldott függvények között legalább egy rekurzív definíciónak kell lennie.

Kurzus Management és szabályozás:

A félévközi kérdések a TMS rendszerben vagy papíros formában kerülnek megírásra. Az eredmények a Canvas rendszerben kerülnek adminisztrálásra.

A félévközi beadandókhoz és a vizsga programozási részéhez a TMS rendszert használjuk (tms.inf.elte.hu).

Feladatok és értékelési metódus:

Feladat, értékelés vagy tevékenység	A jegy százaléka, illetve pontok	Beadási határidő
Beadandók		Hetente
Heti számonkérés	Előfeltétele a jegyszerzésnek.	~12 alkalom a félév során a gyakorlatokon
Nagybeadandó	Az alapfeladat megoldása kötelező. Az extra feladatok megoldásával 5 pont szerezhető (~14,3%).	A szorgalmi időszak végén.
Elméleti teszt (vizsga része)	Maximum 12 pont szerezhető (~34,3%). Minimum 7 pont elérése szükséges a sikeres	A vizsga elején 20 perc alatt 12 kérdésre kell válaszolni.

	vizsgához.	
Programozási rész (vizsga része)	Maximum 18 pont szerezhető (~51,4%). Legalább 7 pont elérése és egy rekurzív megoldás szükséges a sikeres vizsgához.	A sikeres elméleti tesztet követően kell megírni. 90 perc áll rendelkezésre.

Kurzus értékelés:

A félév során 35 pont szerezhető:

- 5 pont a nagybeadandóból,
- 12 pont az elméleti kérdésekből,
- 18 pont a programozási feladatokból.

A jegy a következő ponthatárok alapján kerül meghatározásra:

Elért pontszám	Jegy
30-tól	Jeles (5)
26-tól	Jó (4)
22-től	Közepes (3)
18-tól	Elégséges (2)
< 18	Elégtelen (1)

Kurzus terv (előadás)

Hét	Téma
1.	Bevezetés, követelmények ismertetése
2.	Alapvető fogalmak
3.	Egyszerű függvények bemutatása (lusta és mohó kiértékelés)
4.	Fontosabb fogalmak tárgyalása (rekurzió, Curry-féle módszer, margószabály, stb.)
5.	Zermelo-Frankel halmazkifejezések (listakifejezések), egyszerű modul felépítése
6.	Esetszétválasztás, összetettebb függvények bemutatása
7.	8 királynő problémájának megoldása funkcionális stílusban
8.	Alapvető típusok, parametrikus polimorfizmus, mintaillesztés, egyszerű listafüggvények
9.	Túlterhelés, esetleges ("ad-hoc") polimorfizmus, példányosítás
10.	Magasabb-rendű függvények
11.	Listák reprezentációja, mintaillesztés és műveletek bemutatása ezen keresztül
12.	Beszúrásos rendezés, összefésüléses rendezés, gyorsrendezés bemutatása listák segítségével.
13.	Algebrai adattípusok definiálása és típusosztályok példányosítása

Kurzus terv (gyakorlat)

Hét	Téma	
1.	Alapvető fogalmak, alaptípusok, kifejezések, egyszerű függvények, polimorfizmus bemutatása.	
2.	Operátorok, kötési erősség, kötés iránya, asszociativitás, zárójelezés, konverziók, mintaillesztés.	
3.	Rendezett n-esek, egyszerű listák, pont-pont kifejezések, polimorfizmus, típusosztályok.	
4.	Rekurzió	
5.	Lokális definíciók, láthatóság, végrekurzió.	
6.	Összetettebb rekurzív feladatok, típusszinonimák.	
7.	Algebrai adattípus, típusosztályok szerepe és példányosítása.	
8.	Összetettebb, rekurzív algebrai adattípusok.	
9.	Magasabb-rendű függvények, kapcsolódó fogalmak.	
10.	Magasabb-rendű függvények, kompozíció művelete.	
11.	Magasabb-rendű függvények, hajtogatások.	
12.	Összetettek magasabb-rendű függvények, más programozási nyelvekben megjelenő funkcionális nyelvi elemek.	
13.	Összegzés, gyakorlás, LLM.	