Module 7 - Pneumatic System Design Week 12 Work Sheet

How heavy an object can be lifted with a suction cup having a 6-in lip outside diameter and a 5-in lip inside diameter with a - 10 psig suction pressure?

Case Study Air Pilot Control of Double-Acting Cylinder

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Cylinder Cycle Timing System

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Two-Step Speed Control System

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Two-Handed Safety Control

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Control of Air Motor

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Deceleration Air Cushion of Cylinder

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Cylinder extends and retracts continuously

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Controlled cylinder extension and retraction

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Cylinder Sequencing

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Double Rod Cylinder (1)

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

Case Study Double Rod Cylinder (2)

For your case study design, prepare a short (5-10 min) 'verbal' presentation on this circuit to include:

Performance:

- -how the circuit operates (if you get stuck, refer to the class lesson slides)
- -an example of an industrial application for your circuit

Safety:

-how the system incorporates safety, or what you would add to improve safety (for your chosen industrial application)

Efficiency:

-how you could make the circuit better, e.g. reduce components, different components

Costs and Losses

