Research Subteam: Presentation 1

Maxwell Bach, Okubay Gebrelibanos, Yili Hui, Arjun Patel, Manley Roberts

Research Question

- To use various subsets of course data related to performance in a course (ISyE 6501, Introduction to Analytics Modeling), combined with various machine learning/statistical models, to predict final success in the course.
- Once these models are trained, we will attempt to make conclusions about particular predictors of success or failure in the course.
- The ultimate goal is to evaluate these models against one another with a range of methods, including naïve average, null hypothesis statistical testing, and ultimately, Bayesian Hierarchical Modeling.

Master Plan

- Aggregate/clean data
- Create a library of models
- Evaluate model success

Phase 1: Data

- Clickstream Data: MongoDB
 - Percentage of Total Video Duration Watched
 - Forum Views
 - Active Days
 - Quiz Views
 - Exam Views
- Assignment Data: Edx/Canvas on PostgreSQL
 - Pre-submission Lead Time (how far before deadline submitted)
 - Total Quiz Score
 - Total Assignment Score
 - Total Number of Quiz/Homework Submissions
 - Change in Weekly Average Grade

Phase 1: Data (Continued)

- Forum Data (EdX) w/ Natural Language Processing
 - Number of Posts
 - Number of Replies
 - Average Post Length
 - Average Post Sentiment
 - # of Positive, Negative, Neutral
 Posts
 - Threads Started
 - Unique Words/Bigrams
 - Flesch Reading Ease
 - How easy to understand?
 - Net Votes Received

Phase 2: Models

- If we want to compare models head-to-head...
 - These models must attempt to answer the same question:
 - Course success
 - Success on a particular assignment or quiz
- We aim to train numerous machine learning/statistical models
 - We will group these models by the question they are answering
- We'll mix and match data feature sets with models
 - For example, Adaboost applied to Forum Data to predict Overall Course Success
 - Alternatively, SVM applied to Clickstream Data to predict Quiz 2 Grade

Phase 2: Models

- Possible Models
 - Classification Trees
 - Logistic Regression
 - Adaboost
 - o SVM
 - Naïve Bayes
 - And beyond...
- Hyperparameter Tweaks
 - Modify the operation of models in a number of ways
 - Learning rates, number of iterations, style of cross-validation, etc.

Phase 3: Evaluation

[# of Feature Sets] X [# of Models] X [# of Tweaks] = Many possible observations

- We want to figure out how best to predict success on a given portion of the course (or the entire course).
- Compare models with one another
 - Naïve Average
 - Null hypothesis significance testing
 - Bayesian Hierarchical Method
- Looking for the family of best models
 - Perform better than any other model

What we've done so far...'

- Write research question
- Request data access EdX, Canvas
- Establish common Docker build system
 - All models built for a generic Linux virtual image
 - o Improves compatibility between developers' environments
- Split into sub-sub-teams
 - o Clickstream: Arjun, Maxwell
 - Assignment: Manley, Yili, Okubay

What comes next

- Data Cleaning
 - Focusing down on the particular data we're looking for
 - Inputs
 - Outputs
 - Separating by Student Group
 - Audit
 - Micro-Masters
 - OMSA