$$|) s = ut + \frac{1}{2}ut^{2}$$

$$(5 = 5t + \frac{1}{2}(9.81)t^{2}$$

$$4.905t^{2} + 5t - 15 = 0$$

$$5 = 1.31821357s$$

$$21.31s$$

$$v = u + ut$$

$$= 5 + 9.81(1.311821357)$$

= 17.86896751

~ 17.9 ms-1

2)
$$N = t^4 - 12t^2 - 40$$

$$V = \frac{d^4}{dt} = 4t^3 - 24t$$

$$\alpha = \frac{dv}{dt} = 12t^2 - 24$$

$$\chi = (2)^4 - 12(2)^2 - 40$$

$$V = 4(2)^3 - 24(2)$$

$$= -16 \, \text{ms}^{-1}$$

$$a = 12(2)^2 - 24$$

$$(2) = -72$$

$$\overline{\alpha}(2) = 24i$$

3)
$$\alpha = 25 - 3x^2$$
, $v_0 = 0$, $x_0 = 0$ u^+ $t = 0$

$$\alpha = \sqrt{\frac{dv}{dk}}$$

$$25 - 3k^2 = \sqrt{\frac{dv}{dk}}$$

$$\int 25-3x^2 dx = \int v dv$$

25x-x³ =
$$\frac{\sqrt{2}}{2}$$
 + C

when
$$\kappa_0 = 0$$
, $v_0 = 0$,

$$v^{2} = 50 \text{ N} - 2 \text{ N}^{3}$$

$$v = \sqrt{50 \text{ N} - 2 \text{ N}^{3}}$$

a) When
$$x = 2mm$$
,
 $v = \sqrt{50(2) - 2(2)^3}$
 $= 9.16515139ms^{-1}$

$$0 = \sqrt{50 \kappa^{-2\kappa^3}}$$

$$25-x^2=0$$

$$\gamma_{r} = \sqrt{25}$$

$$\sqrt{2} = 50 \times - 2 \times^{3}$$

$$\frac{dv^2}{dx} = 50 - 6x^2$$

when
$$\frac{dv^2}{dn} = 0$$
,

$$0 = 50 - 6n^2$$

$$6\pi^{2} = 50$$

$$\pi = \sqrt{\frac{25}{3}}$$

x	3	25	$\int \frac{25}{3}$
dv ²	0+	0	6
lope			

4)
$$\alpha = 9(v_{f^2}^2 - v_{f^2}^2)$$
 V_{f^2}
 V_{f^2}

$$\frac{dv}{dt} = \frac{g(v_t^2 - v^2)}{v_t^2}$$

$$\frac{\sqrt{4^2}}{g(v_f^2-v^2)}\frac{dv}{dt}=1$$

$$\frac{V_{\xi^{2}}}{g} \int \frac{1}{V_{\xi^{2}} - V^{2}} dV = \int \int dt$$

$$\frac{v_{f}^{x}}{g}\left(\frac{1}{2y_{f}}\left|n\left|\frac{v_{f}+v}{v_{f}-v}\right|\right)=t+c$$

$$\frac{\sqrt{f}}{2g} |n| \frac{\sqrt{f+0}}{\sqrt{f-0}} | = 0+c$$

$$\therefore t = \frac{\sqrt{\xi}}{2g} \left| n \right| \frac{\sqrt{\xi + v}}{\sqrt{\xi - v}} \right|$$

$$\vec{v}_{c} = -400i$$
, $\vec{\alpha}_{c} = 600i$, $\vec{r}_{A} = 80j$, $\vec{r}_{B} = 50j$
 $\vec{v}_{A} = \vec{v}_{B} = \vec{v}_{c} = -400i$
 $\vec{\sigma}_{A} = \vec{\sigma}_{B} = \vec{\sigma}_{C} = 600i$

a) Assuming
$$\vec{w}_1 = w_1 k_1 \vec{w}_2 = w_2 k_1 \vec{x}_1 = \alpha_1 k_1 \vec{x}_2 = \alpha_2 k_2$$

$$\vec{v}_A = \vec{w}_1 \times \vec{v}_A$$
Tangential acceleration

$$A + A = A \times A$$

$$A = A \times A$$

 $\alpha_1 = -7.5 \, \text{rads}^{-2}$

x. = -7.5k rads-2

$$5a)$$
 $\overrightarrow{V}_B = \overrightarrow{W}_2 \times \overrightarrow{r}_B$ Tangential acceleration at B is \overrightarrow{a}_B^{t}

$$-400 = -50w_{2}i$$
 $w_{2} = 8 \text{ rads}^{-1}$

$$\frac{7}{4} = \frac{7}{2} \times \frac{7}{8}$$

$$\frac{7}{600i} = \frac{1}{2} \times \frac{50}{2}$$

$$600i = -50 \text{ mads}^{-1}$$

 $00i = -50 \text{ rads}^{-1}$
 $00i = -50 \text{ rads}^{-1}$
 $00i = -50 \text{ rads}^{-1}$

the tangential and centripetal acceleration of

$$=600i+(-w_1^2r_A)$$

6) Let
$$\vec{x} = \vec{1}$$
, $\vec{y} = \vec{j}$, $\vec{z} = \vec{k}$
 $\vec{x} = 5\vec{k}$
 $\vec{x} = \omega_0 + 5(t)\vec{k}$

Since $\omega_0 = 0$,

 $\vec{x} = 5t\vec{k}$

Let \vec{a}_T be the tangential acceleration,

 \vec{a}_c be the centripetal acceleration

 $\vec{a} = \vec{a}_T + \vec{a}_c$
 $= (\alpha \hat{e}_T + \omega^2 - \hat{e}_c)$
 $= 250 \times 10^{-3} (5) \hat{e}_T + (5t)^2 (250 \times 10^{-3}) \hat{e}_c$
 $= 1.25 \hat{e}_T + 6.25 t^2 \hat{e}_C$
 $|\vec{a}| = \sqrt{1.25^2 + (6.25t^2)^2}$
 $|\vec{a}| = \sqrt{1.25^2 + (6.25t^2)^2}$

6)
$$\vec{w} = 5 \pm k$$

when $t = 6.7797$,
 $\vec{w} = 5(0.7797)k$
 $= 3.898548981k$
 $\approx 3.90k$ rads⁻¹