Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	For a linked structure of edges and nodes to be a tree, which of the following is not required to be true?	1/1 point
	Every node has zero, one or two children.	
	Every node has a parent except for one single root node.	
	Every node is connected to every other node by some path of edges.	
	If any two nodes are connected, they are connected by only one path of unique nodes and edges.	
	♥ Correct This is true of a binary tree, but not of a tree in general.	
2.	Which data structure below supports the fastest run time for finding an item in a sorted list of items?	1/1 point
	(Array	
	C Linked List	
	O Binary Search Tree	
	All of these data structures have the same run time complexity for finding an item in a sorted list of items.	
	✓ Correct A sorted array has a worst-case run time of O(lg n) which is faster than the other options.	
3.	What is the height of the binary search tree created by inserting the following values one at a time in the following order of insertion: 1 2 3 4 5 6 7 ?	1/1 point
	O 2	
	O 3	
	⑥ 6	
	O 7	
	Correct The height of a tree is the number of edges from the root to its fathest descendant. Since these values are inserted one at a time and are already in sorted order, the binary search tree ends up resembling a linked list from the root following the right child link through the list, with six edges.	
4.	Which of the following is NOT true of a perfect binary search tree of a list of n ordered items?	1/1 point
	The worst-case run time to find an item is O(n).	
	Every non-leaf node has two children.	
	All of the leaf nodes are at the same level.	

	Corroc
(<)	Correct

The worst-case run time to find an item in a perfect binary search tree is $O(\lg n)$, because its height $h = \lg(n+1) - 1$.

5.	Which of the following is NOT a full binary tree?	1/1 point
	The binary tree consisting of the subtree of ancestors of any node in any perfect binary tree.	
	A single node.	
	The binary search tree created by inserting the following values one at a time: 4 2 3 5 1.	
	A perfect binary tree.	
	Correct Every node in a full binary tree has zero or two children, whereas the non-leaf nodes of the subtree of ancestors would consist of nodes each having only a single child.	
6.	Which of the following is not a true statement about a complete binary tree?	1/1 point
	The height of a complete binary tree of n nodes is floor(lg n).	
	Any tree that contains a node with a single child is not a complete binary tree.	
	The worst-case run time for finding an object in a complete binary search tree of an ordered list of n items is O(lg n).	
	O No node in a complete binary tree has only a right child.	
	 Correct A complete binary tree can have one node with a single child. 	
7.	Which one of the following functions outputs the keys of a binary search tree in item order when the root node is passed to it as its parameter.	1/1 point
7.	parameter.	1/1 point
_	<pre>parameter. 1 void print(TreeNode *node){ 2 if (!node) return; 3 std::cout << node->key << " "; 4 print(node->left); 5 print(node->right); 6 }</pre>	1/1 point
_	<pre>parameter. 1 void print(TreeNode *node){ 2 if (!node) return; 3 std::cout << node->key << " "; 4 print(node->left); 5 print(node->right);</pre>	1/1 point
_	<pre>parameter. 1 void print(TreeNode *node){ 2 if (!node) return; 3 std::cout << node->key << " "; 4 print(node->left); 5 print(node->right); 6 } 1 void print(TreeNode *node){ 2 if (!node) return; 3 print(node->left); 4 std::cout << node->key << " "; 5 print(node->right); 6 }</pre>	1/1 point
_	<pre>parameter. 1 void print(TreeNode *node){ 2 if (!node) return; 3 std::cout << node->key << " "; 4 print(node->left); 5 print(node->right); 6 } 1 void print(TreeNode *node){ 2 if (!node) return; 3 print(node->left); 4 std::cout << node->key << " "; 5 print(node->right);</pre>	1/1 point

- 925 is the root.
- 202 is 925's left child.
- 911 is 202's right child.
- 240 is 911's left child.
- 912 cannot be any child of 240 because that would place it in the left subtree of 911, but 912 is not less than 911.
- 10. Given any binary tree with 128 nodes where each node has a *left* pointer and a *right* pointer, how many of these pointers are set to **nullptr**?

1/1 point

129

√ Correct

The number of node pointers to **nullptr** is equal to the number of nodes plus one. For a tree with just one node (the root), the number of pointers to **nullptr** is two. Adding a child node to any tree replaces one pointer to **nullptr** with a pointer to the new node, which then has two pointers to **nullptr**. Hence, for every new node, there is a net increase of one pointer to **nullptr**.