## **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sun Aug 13 13:35:59 2017

Program finished at Sun Aug 13 14:58:39 2017 [Runtime:0000:01:22:40]



### **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1093297543

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population

1 1 Romanshorn 0

Order of parameters:

1 <displayed> Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains

Recorded steps [a]

50000

Increment (record every x step [b] 200

Number of concurrent chains (replicates) [c] 2

Visited (sampled) parameter values [a\*b\*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.8

Haplotyping is turned on:

Output file: outfile\_0.8\_0.7

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_0.8\_0.7
Print data: No

Print genealogies [only some for some data type]:

# Data summary

Data file: infile.0.8
Datatype: Sequence data
Number of loci: 100

| N/II | utationmode  | ч. |
|------|--------------|----|
| IVI  | atationinous | η. |

| Mutation                     | model: |               |                          |  |
|------------------------------|--------|---------------|--------------------------|--|
| Locus Sublocus Mutationmodel |        | Mutationmodel | Mutationmodel parameters |  |
| 1                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9                            | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34                           | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 35 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 36 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 37 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 38 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 39 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 40 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 41 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 42 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 43 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 44 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 45 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 46 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 47 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 48 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 49 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 50 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 51 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 52 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 53 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 54 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 55 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 56 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 57 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 58 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 59 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 60 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 61 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 62 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 63 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 64 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 65 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 66 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 67 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 68 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 69 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 70 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 71 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 72 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 73 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 74 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 75 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 76 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 77 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 78 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 79 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|    |   |              |                   |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| 21 | 10000 |  |
|----|-------|--|
| 22 | 10000 |  |
| 23 | 10000 |  |
| 24 | 10000 |  |
| 25 | 10000 |  |
| 26 | 10000 |  |
| 27 | 10000 |  |
| 28 | 10000 |  |
| 29 | 10000 |  |
| 30 | 10000 |  |
| 31 | 10000 |  |
| 32 | 10000 |  |
| 33 | 10000 |  |
| 34 | 10000 |  |
| 35 | 10000 |  |
| 36 | 10000 |  |
| 37 | 10000 |  |
| 38 | 10000 |  |
| 39 | 10000 |  |
| 40 | 10000 |  |
| 41 | 10000 |  |
| 42 | 10000 |  |
| 43 | 10000 |  |
| 44 | 10000 |  |
| 45 | 10000 |  |
| 46 | 10000 |  |
| 47 | 10000 |  |
| 48 | 10000 |  |
| 49 | 10000 |  |
| 50 | 10000 |  |
| 51 | 10000 |  |
| 52 | 10000 |  |
| 53 | 10000 |  |
| 54 | 10000 |  |
| 55 | 10000 |  |
| 56 | 10000 |  |
| 57 | 10000 |  |
| 58 | 10000 |  |
| 59 | 10000 |  |
| 60 | 10000 |  |
| 61 | 10000 |  |
| 62 | 10000 |  |
| 63 | 10000 |  |
| 64 | 10000 |  |
| 65 | 10000 |  |
|    |       |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

|    |   |   | 4 000 | 4.000 | 4.000 |  |
|----|---|---|-------|-------|-------|--|
| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1          | 1 | 1.000 | 1.000 | 1.000 |             |
|------------|------------|---|-------|-------|-------|-------------|
| 98         | 1          | 1 | 1.000 | 1.000 | 1.000 |             |
| 99         | 1          | 1 | 1.000 | 1.000 | 1.000 |             |
| 100        | 1          | 1 | 1.000 | 1.000 | 1.000 |             |
| Population |            | • | 1.500 | 1.000 | Locus | Gene copies |
|            | shorn_0    |   |       |       | 1     | 10          |
| - rtomar   | 10110111_0 |   |       |       | 2     | 10          |
|            |            |   |       |       | 3     | 10          |
|            |            |   |       |       | 4     | 10          |
|            |            |   |       |       | 5     | 10          |
|            |            |   |       |       | 6     | 10          |
|            |            |   |       |       | 7     | 10          |
|            |            |   |       |       | 8     | 10          |
|            |            |   |       |       | 9     | 10          |
|            |            |   |       |       | 10    | 10          |
|            |            |   |       |       | 11    | 10          |
|            |            |   |       |       | 12    | 10          |
|            |            |   |       |       | 13    | 10          |
|            |            |   |       |       | 14    | 10          |
|            |            |   |       |       | 15    | 10          |
|            |            |   |       |       | 16    | 10          |
|            |            |   |       |       | 17    | 10          |
|            |            |   |       |       | 18    | 10          |
|            |            |   |       |       | 19    | 10          |
|            |            |   |       |       | 20    | 10          |
|            |            |   |       |       | 21    | 10          |
|            |            |   |       |       | 22    | 10          |
|            |            |   |       |       | 23    | 10          |
|            |            |   |       |       | 24    | 10          |
|            |            |   |       |       | 25    | 10          |
|            |            |   |       |       | 26    | 10          |
|            |            |   |       |       | 27    | 10          |
|            |            |   |       |       | 28    | 10          |
|            |            |   |       |       | 29    | 10          |
|            |            |   |       |       | 30    | 10          |
|            |            |   |       |       | 31    | 10          |
|            |            |   |       |       | 32    | 10          |
|            |            |   |       |       | 33    | 10          |
|            |            |   |       |       | 34    | 10          |
|            |            |   |       |       | 35    | 10          |
|            |            |   |       |       | 36    | 10          |
|            |            |   |       |       | 37    | 10          |
|            |            |   |       |       | 38    | 10          |
|            |            |   |       |       | 39    | 10          |
|            |            |   |       |       | 40    | 10          |
|            |            |   |       |       |       |             |

| 41 | 10 |
|----|----|
| 42 | 10 |
| 43 | 10 |
| 44 |    |
| 45 |    |
| 46 |    |
| 47 |    |
| 48 |    |
| 49 |    |
| 50 |    |
| 51 |    |
| 52 |    |
| 53 |    |
| 54 |    |
| 55 |    |
| 56 |    |
| 57 |    |
| 58 |    |
| 59 |    |
| 60 |    |
| 61 |    |
|    |    |
| 62 |    |
| 63 |    |
| 64 |    |
| 65 |    |
| 66 |    |
| 67 |    |
| 68 |    |
| 69 |    |
| 70 |    |
| 71 |    |
| 72 |    |
| 73 |    |
| 74 |    |
| 75 |    |
| 76 |    |
| 77 |    |
| 78 |    |
| 79 |    |
| 80 |    |
| 81 |    |
| 82 |    |
| 83 |    |
| 84 |    |
| 85 | 10 |
|    |    |

|                          | 86       | 10       |  |
|--------------------------|----------|----------|--|
|                          | 87       | 10       |  |
|                          | 88       | 10       |  |
|                          | 89       | 10       |  |
|                          | 90       | 10       |  |
|                          | 91       | 10       |  |
|                          | 92       | 10       |  |
|                          | 93       | 10       |  |
|                          | 94       | 10       |  |
|                          | 95       | 10       |  |
|                          | 96       | 10       |  |
|                          | 97       | 10       |  |
|                          | 98       | 10       |  |
|                          | 99       | 10       |  |
|                          | 100      | 10       |  |
| Total of all populations | 1        | 10       |  |
|                          | 2        | 10       |  |
|                          | 3        | 10       |  |
|                          | 4        | 10       |  |
|                          | 5        | 10       |  |
|                          | 6        | 10       |  |
|                          | 7        | 10       |  |
|                          | 8        | 10       |  |
|                          | 9        | 10       |  |
|                          | 10       | 10       |  |
|                          | 11       | 10       |  |
|                          | 12       | 10       |  |
|                          | 13       | 10       |  |
|                          | 14       | 10       |  |
|                          | 15       | 10       |  |
|                          | 16       | 10       |  |
|                          | 17       | 10       |  |
|                          | 18       | 10       |  |
|                          | 19       | 10       |  |
|                          | 20       | 10       |  |
|                          | 21       | 10       |  |
|                          | 22       | 10       |  |
|                          | 23       | 10       |  |
|                          | 23<br>24 | 10       |  |
|                          | 24<br>25 |          |  |
|                          |          | 10<br>10 |  |
|                          | 26<br>27 | 10       |  |
|                          | 27       | 10       |  |
|                          | 28       | 10       |  |
|                          | 29       | 10       |  |
|                          | 30       | 10       |  |
|                          |          |          |  |

| 31 10          |  |
|----------------|--|
| 32 10          |  |
| 33 10          |  |
| 34 10          |  |
| 35 10          |  |
| 36 10          |  |
| 37 10          |  |
| 38 10          |  |
| 39 10          |  |
| 40 10          |  |
| 41 10          |  |
| 42 10          |  |
| 43 10          |  |
| 44 10          |  |
| 45 10          |  |
| 46 10          |  |
| 47 10          |  |
| 48 10          |  |
| 49 10          |  |
| 50 10          |  |
| 51 10          |  |
| 52 10          |  |
| 53 10          |  |
| 54 10          |  |
| 55 10          |  |
| 56 10          |  |
| 57 10          |  |
| 58 10          |  |
| 59 10          |  |
| 60 10          |  |
| 61 10          |  |
| 62 10          |  |
| 63 10          |  |
| 64 10          |  |
| 65 10          |  |
| 66 10          |  |
| 67 10          |  |
| 68 10          |  |
| 69 10          |  |
| 70 10          |  |
| 71 10          |  |
| 72 10          |  |
| 72 10 73 10    |  |
|                |  |
| 7/1 10         |  |
| 74 10<br>75 10 |  |

|     |    | A010 14 |
|-----|----|---------|
| 76  | 10 |         |
| 77  | 10 |         |
| 78  | 10 |         |
| 79  | 10 |         |
| 80  | 10 |         |
| 81  | 10 |         |
| 82  | 10 |         |
| 83  | 10 |         |
| 84  | 10 |         |
| 85  | 10 |         |
| 86  | 10 |         |
| 87  | 10 |         |
| 88  | 10 |         |
| 89  | 10 |         |
| 90  | 10 |         |
| 91  | 10 |         |
| 92  | 10 |         |
| 93  | 10 |         |
| 94  | 10 |         |
| 95  | 10 |         |
| 96  | 10 |         |
| 97  | 10 |         |
| 98  | 10 |         |
| 99  | 10 |         |
| 100 | 10 |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |
|     |    |         |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.01900 | 0.02893 | 0.03697 | 0.04560 | 0.05027 | 0.03550 | 0.04677 |
| 2     | $\Theta_1$ | 0.00640 | 0.00860 | 0.01350 | 0.02087 | 0.02727 | 0.01670 | 0.01890 |
| 3     | $\Theta_1$ | 0.01200 | 0.01687 | 0.02310 | 0.03313 | 0.04667 | 0.02730 | 0.03244 |
| 4     | $\Theta_1$ | 0.00760 | 0.00760 | 0.01437 | 0.02773 | 0.02773 | 0.01910 | 0.02255 |
| 5     | $\Theta_1$ | 0.01553 | 0.02167 | 0.03010 | 0.03800 | 0.04893 | 0.03110 | 0.03795 |
| 6     | $\Theta_1$ | 0.01260 | 0.01767 | 0.02457 | 0.03120 | 0.04320 | 0.02703 | 0.03192 |
| 7     | $\Theta_1$ | 0.00773 | 0.01487 | 0.01923 | 0.02460 | 0.04480 | 0.02297 | 0.02642 |
| 8     | $\Theta_1$ | 0.00653 | 0.01053 | 0.01737 | 0.02773 | 0.04280 | 0.02083 | 0.02360 |
| 9     | $\Theta_1$ | 0.00600 | 0.00773 | 0.01457 | 0.02547 | 0.03187 | 0.01750 | 0.01974 |
| 10    | $\Theta_1$ | 0.00327 | 0.00627 | 0.01410 | 0.02820 | 0.04533 | 0.01710 | 0.01940 |
| 11    | $\Theta_1$ | 0.02067 | 0.03773 | 0.04757 | 0.04907 | 0.05107 | 0.03910 | 0.06189 |
| 12    | $\Theta_1$ | 0.01020 | 0.01387 | 0.02050 | 0.03067 | 0.04113 | 0.02437 | 0.02799 |
| 13    | $\Theta_1$ | 0.01373 | 0.01740 | 0.02763 | 0.04253 | 0.04900 | 0.03003 | 0.03694 |
| 14    | $\Theta_1$ | 0.00860 | 0.02053 | 0.02437 | 0.02813 | 0.05087 | 0.02750 | 0.03237 |
| 15    | $\Theta_1$ | 0.01627 | 0.03000 | 0.03563 | 0.04440 | 0.05033 | 0.03430 | 0.04822 |
| 16    | $\Theta_1$ | 0.01253 | 0.02247 | 0.02970 | 0.03540 | 0.05013 | 0.03077 | 0.03777 |
| 17    | $\Theta_1$ | 0.01227 | 0.01840 | 0.02383 | 0.03300 | 0.04767 | 0.02823 | 0.03574 |
| 18    | $\Theta_1$ | 0.00760 | 0.01647 | 0.02177 | 0.02953 | 0.05053 | 0.02577 | 0.02980 |
|       |            |         |         |         |         |         |         |         |

| 19 | $\Theta_1$ | 0.02253 | 0.03913 | 0.04750 | 0.04873 | 0.05093 | 0.03930 | 0.05869 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.01473 | 0.02087 | 0.02783 | 0.03300 | 0.04713 | 0.02943 | 0.03533 |
| 21 | $\Theta_1$ | 0.01240 | 0.01720 | 0.02390 | 0.03353 | 0.04607 | 0.02783 | 0.03512 |
| 22 | $\Theta_1$ | 0.00500 | 0.00827 | 0.01097 | 0.01460 | 0.02287 | 0.01377 | 0.01549 |
| 23 | $\Theta_1$ | 0.01553 | 0.02073 | 0.02837 | 0.03787 | 0.04867 | 0.03077 | 0.03751 |
| 24 | $\Theta_1$ | 0.01440 | 0.02000 | 0.02617 | 0.03733 | 0.04860 | 0.03003 | 0.03680 |
| 25 | $\Theta_1$ | 0.01827 | 0.02760 | 0.03410 | 0.04153 | 0.04993 | 0.03430 | 0.04371 |
| 26 | $\Theta_1$ | 0.01827 | 0.03053 | 0.03550 | 0.04413 | 0.05040 | 0.03537 | 0.04682 |
| 27 | $\Theta_1$ | 0.01520 | 0.02407 | 0.03077 | 0.03927 | 0.04973 | 0.03230 | 0.04112 |
| 28 | $\Theta_1$ | 0.00840 | 0.01373 | 0.01963 | 0.02780 | 0.04347 | 0.02390 | 0.02831 |
| 29 | $\Theta_1$ | 0.01980 | 0.03540 | 0.04383 | 0.04827 | 0.05073 | 0.03730 | 0.05417 |
| 30 | $\Theta_1$ | 0.00413 | 0.00853 | 0.01330 | 0.01993 | 0.03660 | 0.01663 | 0.01884 |
| 31 | $\Theta_1$ | 0.01267 | 0.02173 | 0.02497 | 0.02807 | 0.04767 | 0.02797 | 0.03279 |
| 32 | $\Theta_1$ | 0.00700 | 0.01427 | 0.01890 | 0.02647 | 0.04853 | 0.02323 | 0.02679 |
| 33 | $\Theta_1$ | 0.02600 | 0.04160 | 0.04763 | 0.04933 | 0.05133 | 0.04203 | 0.06928 |
| 34 | $\Theta_1$ | 0.01900 | 0.03640 | 0.04110 | 0.04773 | 0.05067 | 0.03663 | 0.05336 |
| 35 | $\Theta_1$ | 0.00520 | 0.01113 | 0.01337 | 0.01587 | 0.03120 | 0.01670 | 0.01901 |
| 36 | $\Theta_1$ | 0.00567 | 0.01320 | 0.01523 | 0.01793 | 0.03860 | 0.01890 | 0.02142 |
| 37 | $\Theta_1$ | 0.01693 | 0.02593 | 0.03450 | 0.04313 | 0.05000 | 0.03370 | 0.04571 |
| 38 | $\Theta_1$ | 0.00473 | 0.01153 | 0.01170 | 0.01193 | 0.02613 | 0.01437 | 0.01601 |
| 39 | $\Theta_1$ | 0.01507 | 0.02460 | 0.03270 | 0.04153 | 0.04987 | 0.03263 | 0.04409 |
| 40 | $\Theta_1$ | 0.00520 | 0.01233 | 0.01310 | 0.01393 | 0.03140 | 0.01650 | 0.01867 |
| 41 | $\Theta_1$ | 0.00547 | 0.01360 | 0.01657 | 0.01987 | 0.04587 | 0.02083 | 0.02459 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.01893 | 0.03360 | 0.03957 | 0.04473 | 0.05040 | 0.03597 | 0.04888 |
| 43    | $\Theta_1$ | 0.02007 | 0.03467 | 0.04077 | 0.04680 | 0.05060 | 0.03690 | 0.05036 |
| 44    | $\Theta_1$ | 0.01047 | 0.01607 | 0.02183 | 0.02973 | 0.04320 | 0.02563 | 0.03017 |
| 45    | $\Theta_1$ | 0.01340 | 0.01687 | 0.02577 | 0.03673 | 0.04600 | 0.02843 | 0.03423 |
| 46    | $\Theta_1$ | 0.01813 | 0.02973 | 0.03710 | 0.04413 | 0.05020 | 0.03503 | 0.04707 |
| 47    | $\Theta_1$ | 0.01120 | 0.01193 | 0.02290 | 0.04327 | 0.04547 | 0.02643 | 0.03079 |
| 48    | $\Theta_1$ | 0.00560 | 0.01087 | 0.01590 | 0.02473 | 0.04287 | 0.02063 | 0.02406 |
| 49    | $\Theta_1$ | 0.01627 | 0.02373 | 0.02937 | 0.03927 | 0.04940 | 0.03217 | 0.04043 |
| 50    | $\Theta_1$ | 0.00580 | 0.01127 | 0.01410 | 0.01687 | 0.03087 | 0.01710 | 0.01923 |
| 51    | $\Theta_1$ | 0.02507 | 0.04080 | 0.04757 | 0.04893 | 0.05113 | 0.04103 | 0.06426 |
| 52    | $\Theta_1$ | 0.02353 | 0.03933 | 0.04757 | 0.04900 | 0.05107 | 0.04010 | 0.06217 |
| 53    | $\Theta_1$ | 0.01387 | 0.02020 | 0.02317 | 0.03040 | 0.04433 | 0.02823 | 0.03351 |
| 54    | $\Theta_1$ | 0.01053 | 0.01780 | 0.02170 | 0.02813 | 0.04693 | 0.02623 | 0.03061 |
| 55    | $\Theta_1$ | 0.01360 | 0.01707 | 0.02637 | 0.04187 | 0.04880 | 0.02970 | 0.03845 |
| 56    | $\Theta_1$ | 0.00407 | 0.00893 | 0.01357 | 0.02040 | 0.03920 | 0.01697 | 0.01917 |
| 57    | $\Theta_1$ | 0.01247 | 0.01527 | 0.02603 | 0.04127 | 0.04833 | 0.02883 | 0.03670 |
| 58    | $\Theta_1$ | 0.01607 | 0.02607 | 0.03257 | 0.04033 | 0.04973 | 0.03290 | 0.04247 |
| 59    | $\Theta_1$ | 0.00060 | 0.00320 | 0.00503 | 0.00747 | 0.01480 | 0.00623 | 0.00696 |
| 60    | $\Theta_1$ | 0.01060 | 0.01413 | 0.02230 | 0.03540 | 0.04673 | 0.02643 | 0.03159 |
| 61    | $\Theta_1$ | 0.01980 | 0.03007 | 0.03770 | 0.04420 | 0.05020 | 0.03570 | 0.04617 |

| 62 | $\Theta_1$ | 0.01580 | 0.02300 | 0.03030 | 0.03767 | 0.04913 | 0.03157 | 0.03912 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.01293 | 0.01867 | 0.02483 | 0.03100 | 0.04413 | 0.02750 | 0.03238 |
| 64 | $\Theta_1$ | 0.00233 | 0.00573 | 0.00863 | 0.01240 | 0.02400 | 0.01070 | 0.01203 |
| 65 | $\Theta_1$ | 0.00913 | 0.01333 | 0.02030 | 0.03140 | 0.04613 | 0.02423 | 0.02786 |
| 66 | $\Theta_1$ | 0.00447 | 0.01120 | 0.01397 | 0.01727 | 0.03747 | 0.01703 | 0.01920 |
| 67 | $\Theta_1$ | 0.01760 | 0.02800 | 0.03597 | 0.04373 | 0.05027 | 0.03463 | 0.04519 |
| 68 | $\Theta_1$ | 0.01280 | 0.01807 | 0.02490 | 0.03587 | 0.04840 | 0.02863 | 0.03425 |
| 69 | $\Theta_1$ | 0.01400 | 0.02113 | 0.02743 | 0.03593 | 0.04880 | 0.03023 | 0.03769 |
| 70 | $\Theta_1$ | 0.00540 | 0.00600 | 0.01157 | 0.02127 | 0.02320 | 0.01430 | 0.01605 |
| 71 | $\Theta_1$ | 0.01727 | 0.02627 | 0.03110 | 0.03927 | 0.04973 | 0.03330 | 0.04237 |
| 72 | $\Theta_1$ | 0.00413 | 0.00873 | 0.01237 | 0.01767 | 0.03340 | 0.01537 | 0.01715 |
| 73 | $\Theta_1$ | 0.01327 | 0.02067 | 0.02657 | 0.03507 | 0.04927 | 0.02997 | 0.03733 |
| 74 | $\Theta_1$ | 0.01820 | 0.02720 | 0.03423 | 0.04087 | 0.04993 | 0.03403 | 0.04347 |
| 75 | $\Theta_1$ | 0.01587 | 0.01827 | 0.02823 | 0.04480 | 0.04867 | 0.03103 | 0.03800 |
| 76 | $\Theta_1$ | 0.00527 | 0.00707 | 0.01190 | 0.01987 | 0.02527 | 0.01503 | 0.01698 |
| 77 | $\Theta_1$ | 0.02053 | 0.03240 | 0.03957 | 0.04787 | 0.05047 | 0.03677 | 0.05003 |
| 78 | $\Theta_1$ | 0.01540 | 0.02060 | 0.02843 | 0.03793 | 0.04860 | 0.03063 | 0.03735 |
| 79 | $\Theta_1$ | 0.00533 | 0.01207 | 0.01310 | 0.01427 | 0.02913 | 0.01590 | 0.01785 |
| 80 | $\Theta_1$ | 0.01180 | 0.01840 | 0.02510 | 0.03033 | 0.04720 | 0.02723 | 0.03194 |
| 81 | $\Theta_1$ | 0.00933 | 0.01600 | 0.01910 | 0.02287 | 0.03887 | 0.02310 | 0.02673 |
| 82 | $\Theta_1$ | 0.01040 | 0.01787 | 0.02177 | 0.02760 | 0.04627 | 0.02617 | 0.03114 |
| 83 | $\Theta_1$ | 0.01940 | 0.03640 | 0.04110 | 0.04800 | 0.05067 | 0.03690 | 0.05270 |
| 84 | $\Theta_1$ | 0.02147 | 0.03920 | 0.04750 | 0.04873 | 0.05107 | 0.03950 | 0.06107 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.00707 | 0.01473 | 0.01817 | 0.02213 | 0.04453 | 0.02157 | 0.02421 |
| 86    | $\Theta_1$ | 0.01193 | 0.01600 | 0.02097 | 0.02953 | 0.03927 | 0.02543 | 0.02947 |
| 87    | $\Theta_1$ | 0.01807 | 0.02740 | 0.03577 | 0.04207 | 0.04993 | 0.03423 | 0.04365 |
| 88    | $\Theta_1$ | 0.01020 | 0.01553 | 0.02017 | 0.02833 | 0.04200 | 0.02477 | 0.02880 |
| 89    | $\Theta_1$ | 0.01247 | 0.02033 | 0.02477 | 0.03000 | 0.04720 | 0.02803 | 0.03353 |
| 90    | $\Theta_1$ | 0.00787 | 0.01287 | 0.01963 | 0.02753 | 0.04307 | 0.02283 | 0.02625 |
| 91    | $\Theta_1$ | 0.01807 | 0.02787 | 0.03337 | 0.04173 | 0.05000 | 0.03430 | 0.04464 |
| 92    | $\Theta_1$ | 0.01780 | 0.02893 | 0.03663 | 0.04360 | 0.05020 | 0.03463 | 0.04634 |
| 93    | $\Theta_1$ | 0.00740 | 0.01333 | 0.01777 | 0.02467 | 0.04433 | 0.02290 | 0.02834 |
| 94    | $\Theta_1$ | 0.00567 | 0.01420 | 0.01637 | 0.01887 | 0.04127 | 0.02003 | 0.02288 |
| 95    | $\Theta_1$ | 0.00467 | 0.00947 | 0.01270 | 0.01747 | 0.03220 | 0.01663 | 0.01905 |
| 96    | $\Theta_1$ | 0.00820 | 0.01553 | 0.01730 | 0.01887 | 0.03333 | 0.02043 | 0.02296 |
| 97    | $\Theta_1$ | 0.01140 | 0.01313 | 0.02230 | 0.03680 | 0.04273 | 0.02577 | 0.02984 |
| 98    | $\Theta_1$ | 0.01540 | 0.02100 | 0.02890 | 0.04253 | 0.04967 | 0.03197 | 0.04029 |
| 99    | $\Theta_1$ | 0.00900 | 0.01180 | 0.02043 | 0.03507 | 0.04520 | 0.02423 | 0.02797 |
| 100   | $\Theta_1$ | 0.01133 | 0.01727 | 0.02197 | 0.03273 | 0.04860 | 0.02770 | 0.03460 |
| All   | $\Theta_1$ | 0.02040 | 0.02260 | 0.02397 | 0.02513 | 0.02727 | 0.02397 | 0.02387 |

#### Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |

## Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| ocus. | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15168.62 | -14882.61 | -14948.30 | -15005.08 |
| 2     | -14189.60 | -13974.50 | -14028.79 | -14099.14 |
| 3     | -14518.58 | -14227.85 | -14278.61 | -14342.89 |
| 4     | -15455.15 | -15101.97 | -15145.09 | -15216.47 |
| 5     | -14634.31 | -14351.58 | -14408.34 | -14468.89 |
| 6     | -15244.91 | -14790.82 | -14818.01 | -14879.79 |
| 7     | -14573.38 | -14291.58 | -14341.43 | -14407.33 |
| 8     | -14286.57 | -14091.38 | -14154.61 | -14221.37 |
| 9     | -14144.01 | -13947.19 | -14005.29 | -14074.93 |
| 10    | -14369.15 | -14104.90 | -14151.25 | -14221.80 |
| 11    | -16180.61 | -15668.76 | -15705.18 | -15755.39 |
| 12    | -14776.36 | -14527.98 | -14589.76 | -14653.04 |
| 13    | -14688.96 | -14418.33 | -14475.84 | -14537.07 |
| 14    | -14593.03 | -14364.20 | -14430.28 | -14491.54 |
| 15    | -15135.18 | -14794.14 | -14845.94 | -14905.71 |
| 16    | -16054.53 | -15248.53 | -15214.96 | -15274.68 |
| 17    | -14911.91 | -14671.73 | -14735.11 | -14798.84 |
| 18    | -14368.14 | -14143.67 | -14206.41 | -14268.64 |
| 19    | -16074.95 | -15427.67 | -15434.55 | -15486.92 |
| 20    | -14638.56 | -14353.30 | -14407.77 | -14468.87 |
| 21    | -16087.53 | -15467.62 | -15471.71 | -15533.01 |
| 22    | -14099.17 | -13906.88 | -13962.36 | -14037.06 |
| 23    | -14909.72 | -14510.09 | -14546.77 | -14608.43 |
| 24    | -14487.74 | -14274.34 | -14340.80 | -14401.44 |
| 25    | -15225.05 | -14727.92 | -14749.93 | -14808.27 |
| 26    | -15338.51 | -14899.08 | -14934.43 | -14991.73 |
| 27    | -15290.54 | -14745.97 | -14755.85 | -14817.03 |
| 28    | -14525.85 | -14250.93 | -14302.30 | -14368.96 |
| 29    | -32918.47 | -23888.79 | -22368.51 | -22436.15 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 13:35:59]

| 30 | -15423.24 | -14731.40 | -14704.28 | -14773.52 |
|----|-----------|-----------|-----------|-----------|
| 31 | -14574.21 | -14300.38 | -14357.41 | -14420.90 |
| 32 | -14454.52 | -14179.57 | -14228.30 | -14297.11 |
| 33 | -18982.77 | -18045.90 | -18031.19 | -18080.45 |
| 34 | -20304.02 | -18715.09 | -18575.55 | -18630.66 |
| 35 | -14083.44 | -13903.32 | -13962.06 | -14033.92 |
| 36 | -14414.19 | -14136.87 | -14182.51 | -14251.69 |
| 37 | -16576.04 | -15981.66 | -16001.87 | -16056.23 |
| 38 | -14269.10 | -14044.81 | -14096.42 | -14169.64 |
| 39 | -15104.32 | -14778.28 | -14832.59 | -14891.33 |
| 40 | -14119.04 | -13926.40 | -13983.65 | -14054.93 |
| 41 | -15094.42 | -14712.84 | -14746.53 | -14813.64 |
| 42 | -14971.37 | -14631.65 | -14682.49 | -14738.97 |
| 43 | -15147.23 | -14772.58 | -14819.46 | -14875.69 |
| 44 | -14317.73 | -14106.76 | -14168.98 | -14233.30 |
| 45 | -15128.28 | -14734.44 | -14773.25 | -14834.50 |
| 46 | -15700.77 | -15028.95 | -15020.89 | -15078.67 |
| 47 | -14914.27 | -14461.55 | -14483.61 | -14546.57 |
| 48 | -14129.78 | -13952.50 | -14013.80 | -14083.21 |
| 49 | -14395.68 | -14185.23 | -14253.29 | -14312.79 |
| 50 | -14566.71 | -14338.77 | -14395.69 | -14465.41 |
| 51 | -44726.97 | -31236.26 | -28960.75 | -29006.98 |
| 52 | -21883.31 | -19439.06 | -19152.84 | -19199.89 |
| 53 | -14586.31 | -14273.34 | -14321.76 | -14383.50 |
| 54 | -14343.02 | -14132.53 | -14196.40 | -14259.10 |
| 55 | -26393.00 | -23642.02 | -23336.28 | -23392.36 |
| 56 | -15224.10 | -14614.05 | -14600.61 | -14670.18 |
| 57 | -14498.44 | -14274.69 | -14336.75 | -14400.16 |
| 58 | -15081.14 | -14734.16 | -14782.46 | -14842.50 |
| 59 | -13965.26 | -13782.23 | -13823.58 | -13910.42 |
| 60 | -14301.66 | -14093.43 | -14157.72 | -14223.24 |
| 61 | -15576.64 | -14934.89 | -14933.01 | -14988.63 |
| 62 | -14592.88 | -14314.29 | -14371.38 | -14432.20 |
| 63 | -14587.17 | -14311.07 | -14365.46 | -14428.43 |
| 64 | -14094.91 | -13901.67 | -13953.14 | -14029.95 |
| 65 | -14362.11 | -14120.20 | -14178.15 | -14241.68 |
| 66 | -14132.28 | -13930.50 | -13986.89 | -14057.37 |
| 67 | -14660.00 | -14367.98 | -14426.17 | -14483.13 |
| 68 | -14769.82 | -14438.64 | -14485.28 | -14546.56 |
| 69 | -14649.28 | -14358.85 | -14411.38 | -14473.07 |
| 70 | -14119.32 | -13927.53 | -13983.31 | -14058.16 |
| 71 | -15625.89 | -15037.01 | -15045.02 | -15103.89 |
| 72 | -14323.99 | -14055.89 | -14100.08 | -14174.02 |
| 73 | -14476.35 | -14233.40 | -14294.43 | -14355.68 |
| 74 | -14992.03 | -14599.59 | -14640.44 | -14698.20 |
|    |           |           |           |           |

| 75  | -14626.37   | -14360.33   | -14420.93   | -14480.52   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -14083.10   | -13902.99   | -13959.48   | -14032.55   |
| 77  | -15003.71   | -14717.39   | -14782.40   | -14839.44   |
| 78  | -15461.73   | -14825.80   | -14820.24   | -14879.59   |
| 79  | -14299.13   | -14040.57   | -14087.36   | -14158.12   |
| 80  | -14508.84   | -14229.56   | -14282.69   | -14345.82   |
| 81  | -14195.60   | -13997.04   | -14057.94   | -14125.92   |
| 82  | -14304.10   | -14088.30   | -14150.03   | -14213.22   |
| 83  | -16798.84   | -15912.66   | -15876.61   | -15932.90   |
| 84  | -15026.58   | -14757.06   | -14828.39   | -14880.26   |
| 85  | -14475.29   | -14187.90   | -14236.33   | -14301.81   |
| 86  | -14691.94   | -14322.03   | -14357.49   | -14422.66   |
| 87  | -15543.72   | -15174.38   | -15227.25   | -15284.32   |
| 88  | -14358.57   | -14163.06   | -14229.31   | -14295.62   |
| 89  | -14519.35   | -14264.21   | -14323.13   | -14387.37   |
| 90  | -14199.94   | -14000.93   | -14062.60   | -14128.77   |
| 91  | -15177.57   | -14725.74   | -14757.45   | -14813.73   |
| 92  | -14888.77   | -14567.75   | -14621.30   | -14679.30   |
| 93  | -25599.34   | -22658.05   | -22261.46   | -22347.88   |
| 94  | -14551.80   | -14217.32   | -14252.89   | -14323.34   |
| 95  | -14759.17   | -14439.81   | -14479.91   | -14550.74   |
| 96  | -14548.58   | -14231.60   | -14273.64   | -14340.76   |
| 97  | -14749.94   | -14448.02   | -14497.56   | -14561.33   |
| 98  | -14615.00   | -14328.51   | -14383.68   | -14443.60   |
| 99  | -14466.63   | -14189.63   | -14239.92   | -14305.58   |
| 100 | -19125.38   | -17333.98   | -17134.56   | -17194.98   |
| All | -1570043.83 | -1504499.91 | -1503458.62 | -1509791.78 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 61.251402]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

## Acceptance ratios for all parameters and the genealogies

| Parameter   | Accepted changes     | Ratio   |
|-------------|----------------------|---------|
| $\Theta_1$  | 360954942/399997917  | 0.90239 |
| Genealogies | 162416497/1600002083 | 0.10151 |

## MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter              | Autocorrelation    | Effective Sampe Size     |
|------------------------|--------------------|--------------------------|
| $\Theta_1$ Genealogies | 0.57160<br>0.15482 | 2807926.21<br>7411915.84 |

## Average temperatures during the run

### Chain Temperatures

- 1 0.00000
- 2 0.00000
- 3 0.00000
- 4 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have                                                                                                             |
| a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou                                                                                                                    |
| tes are estimated poorly because the data contains little or no information for that route. Increasing the range will                                                                                                         |
|                                                                                                                                                                                                                               |
| not help in such situations, reducing number of parameters may help in such situations.                                                                                                                                       |
|                                                                                                                                                                                                                               |
| No warning was recorded during the run                                                                                                                                                                                        |
| Two warning was recorded during the run                                                                                                                                                                                       |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |