

# Traffic sign detection and recognition using capsule networks

Navid Bamdad Roshan Robin Sulg Laura Liis Metsvaht Heidi Korp

09.12.2020



# Agenda

- Importance of traffic sign detection and recognition
- Dataset
- Our implementation using Capsule Network
- Our implementation using Convolutional Neural Network

# Traffic sign detection

- Increased importance of automobiles
  - More dense and complex traffic
  - Bigger number of annual traffic accidents
  - Most common causes of car accidents: distracted driving, reckless driving, speeding
- Advanced driver-assistance systems (ADAS) for increasing car and road safety
  - Traffic sign recognition
  - Interesting as it depends on the lighting conditions, weather conditions and also presence of other objects

### **Dataset**

- German Traffic Sign Recognition Benchmark dataset
  - More than 50000 images in total
  - More than 40 different classes
  - Each class represents a meaning of a traffic sign: "Stop", "Speed limit (20km/h)" etc.
  - Each image only includes one traffic sign
  - Size of the images varies
  - Traffic sign might not be in the center of the image









# Capsule Network

Traffic Sign Prediction using Capsule Networks

# Convolutional vs CapsNet

Convolutional
Neural Networks
DO NOT consider
the relational
positions of the
components





# CapsNet Encoder

- Output size of DigitCaps for Traffic Sign Dataset: [43, 16].
- Largest vector is the predicted class.



# CapsNet Decoder



# CapsNet Decoder for our dataset

```
Dense(512, activation='relu', input_dim= 43 * 16)
Dense(1024, activation='relu')
Dense(4096, activation='relu')
Dense((56 * 56 * 3), activation='sigmoid')
Reshape(target shape=(56, 56, 3))
```

Link to the Jupyter Notebook: <a href="https://colab.research.google.com/drive/11Fe-L7AI0cG7CQsr-qhDoCtHLOHJynVC">https://colab.research.google.com/drive/11Fe-L7AI0cG7CQsr-qhDoCtHLOHJynVC</a>

# **CapsNet Training Log Plot**



# CapsNet Accuracy and F1-Score

#### Train

Accuracy: 100 %

o F1-score: 100 %

#### Validation

Accuracy: 96 %

F1-score: 92 %

#### Test

Accuracy: 97 %

o F1-score: 95 %

# Convolutional Neural Network

Traffic Sign Classification using CNN

# Very Deep Convolutional Networks for Large-Scale Image Recognition



### **Dataset skewness**





# Train data after oversampling



# **Training for 25 epochs**



loss: 0.0373 accuracy: 0.9883

validation loss: 0.0442 validation accuracy: 0.9847

# Training for 25 epochs of oversampled data



loss: 0.0110 accuracy: 0.9964

validation loss: 0.0024 validation accuracy: 0.9986

# Accuracy

Test accuracy: 0.9883

Test accuracy on oversampled data: 0.9942

# Thank you for your attention!