Recap: Comparison when we know o

Recap: Comparison when we do NOT know σ

Recap: Comparison when we do NOT know σ

Two-Sample t-Test Procedure (Two-Sided)

$$t_0 = \frac{(\bar{y}_1 - \bar{y}_2) - 0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

- 1) To determine whether to reject H_0 : $\mu_1=\mu_2$, we would compare t_0 to the t-distribution with (n_1+n_2-2) degrees of freedom.
- 2) If $t_0 > t_{\frac{\alpha}{2}, n_1 + n_2 2}$ OR $t_0 < -t_{\frac{\alpha}{2}, n_1 + n_2 2}$, then we will reject H_0 : $\mu_1 = \mu_2$

Recap: Comparison when we do NOT know σ

Two-Sample t-Test Procedure (Two-Sided) using Confidence Interval

$$P\left(-t_{\alpha/2,n_1+n_2-2} \leq \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \leq t_{\alpha/2,n_1+n_2-2}\right) = 1 - \alpha$$

or

$$P\left(\bar{y}_{1} - \bar{y}_{2} - t_{\alpha/2, n_{1} + n_{2} - 2} S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \le \mu_{1} - \mu_{2}\right)$$

$$\leq \bar{y}_{1} - \bar{y}_{2} + t_{\alpha/2, n_{1} + n_{2} - 2} S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right) = 1 - \alpha$$

Comparing Equations 2.29 and 2.27, we see that

$$\bar{y}_1 - \bar{y}_2 - t_{\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \leq \mu_1 - \mu_2
\leq \bar{y}_1 - \bar{y}_2 + t_{\alpha/2, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

is a $100(1 - \alpha)$ percent confidence interval for $\mu_1 - \mu_2$.

Recap

Recap: One-sided Tests

Left Tailed Test: The alternative hypothesis H_a contains the less-than inequality symbol (<).

A water faucet manufacturer announces that the mean flow rate of a certain type of faucet is less than 2.5 gallons per minute.

$$H_0$$
: $\mu \ge 2.5$ H_a : $\mu < 2.5$

Right Tailed Test: The alternative hypothesis H_a contains the less-than inequality symbol (>). $H_0: \mu \le k$

A cereal company says: Mean weight of box is more than 20 oz.

$$H_0$$
: $\mu \le 20$
 H_a : $\mu > 20$

8

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

Larson/Farber 4th ed.

(df) degrees of freedom for selected right-tail (greater-than) probabilities (p).

Example 2

Comparative Exper

•		df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
			0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
Who is a better ODI batsman, Virat or Babai		2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
		3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
Batsman	One sample each	4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
Virat	00, 53, 34, 31, 00,	5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
		6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
Babar	12, 09, 91, 79, 51,	7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
What is the hypothesis test?		8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
		9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
		10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
What is the statistical (mathematical) mo c		11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
		12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
		13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
What's the statistical conclusion?			0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
			0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
		16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
		17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
OTE: You do NOT have permission to share this file or any of its o			0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216

Example 3

Given that 9 bearings made by a certain process have an average diameter of 0.305 cm and the sample standard deviation of 0.003 cm, construct a 99 % confidence interval for the true mean diameter of bearings made by the process. What is the width of the confidence interval?

	Degrees of	Amount of area in one tail ($lpha$)								
	freedom (V)	0.0005	0.001	0.005	0.010	0.025	0.050	0.100	0.200	
	1	636.6192	318.3088	63.65674	31.82052	12.70620	6.313752	3.077684	1.376382	
	2	31.59905	22.32712	9.924843	6.964557	4.302653	2.919986	1.885618	1.060660	
	3	12.92398	10.21453	5.840909	4.540703	3.182446	2.353363	1.637744	0.978472	
	4	8.610302	7.173182	4.604095	3.746947	2.776445	2.131847	1.533206	0.940965	
	5	6.868827	5.893430	4.032143	3.364930	2.570582	2.015048	1.475884	0.919544	
	6	5.958816	5.207626	3.707428	3.142668	2.446912	1.943180	1.439756	0.905703	
	7	5.407883	4.785290	3.499483	2.997952	2.364624	1.894579	1.414924	0.896030	
	-8	5.041305	4.500791	3.355387	2.896459	2.306004	1.859548	1.396815	0.888890—	
	9	4.780913	4.296806	3.249836	2.821438	2.262157	1.833113	1.383029	0.883404	
	10	4.586894	4.143700	3.169273	2.763769	2.228139	1.812461	1.372184	0.879058	
	_11	4.436979	4.024701	3.105807	2.718079	2.200985	1.795885	1.363430	0.875530	
	12	4.317791	3.929633	3.054540	2.680998	2.178813	1.782288	1.356217	0.872609	
	—13	4.220832	3.851982	3.012276	2.650309	2.160369	1.770933	1.350171	0.870152-	
	14	4.140454	3.787390	2.976843	2.624494	2.144787	1.761310	1.345030	0.868055	
	15	4.072765	3.732834	2.946713	2.602480	2.131450	1.753050	1.340606	0.866245	
	16	4.014996	3.686155	2.920782	2.583487	2.119905	1.745884	1.336757	0.864667	
	17	3.965126	3.645767	2.898231	2.566934	2.109816	1.739607	1.333379	0.863279	
https://www.mathsisfun.com/data/standard-normal-distribution-table.html										

ME 794 Statistical Design of Experiments

Choice of Sample Size

- Selection of appropriate sample size 'n' is critical in any experimental design
- In the previous example, have a look at the length of $100*(1-\alpha)\%$ confidence interval for difference in means $(\mu_1 \mu_2)$
- It was determined by

$$t_{\alpha/2, n_1+n_2-2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

• What is the effect of sample size on this width?

- $\bar{y}_1 \bar{y}_2 t_{\alpha/2, n_1 + n_2 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 \mu_2$ $\le \bar{y}_1 \bar{y}_2 + t_{\alpha/2, n_1 + n_2 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- is a $100(1 \alpha)$ percent confidence interval for $\mu_1 \mu_2$.
- Say n1 = n2 = n, and $\alpha = 0.05$, Sp could be anything (we don't have control over it)
- So essentially, the width is a function of

$$t_{\alpha/2, 2n-2} S_p \sqrt{\frac{2}{n}}$$

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on in

Assumptions in t-test

- In using the t-test procedure, we make the assumption that
 - both samples are random samples that are drawn from independent populations with normal distribution, and
 - the standard deviation or variances of both populations are equal.
- The assumption of independence is critical, and if the run order is randomized (and, if appropriate, other experimental units and materials are selected at random), this assumption will usually be satisfied.
- The equal variance and normality assumptions are easy to check using a normal probability plot.

Normal Probability Plot

• The equal variance and normality assumptions are easy to check using a normal probability plot.

To construct the Normal Probability Plot

• First the sample $y_1, y_2, y_3, ..., y_n$ is arranged in the increasing order $y_{(1)}, y_{(2)}, ..., y_{(n)}$ where $y_{(1)}$ is the smallest observation and $y_{(n)}$ is the largest observation

- These ordered observations $y_{(i)}$ are plotted on X-axis
- On the Y-axis, we plot their cumulative frequency (i-0.5)/n (empirically, it should be = i/n, but we use correction for discrete data)
- Then you arrange the Y-axis so that if the hypothesized distribution adequately describes the data, the plotted points will follow a Straight line
- If the slopes of both the lines is approx. same, then the assumption of equal variances is valid

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload