

Internacionalização da agricultura brasileira e os efeitos nos preços, disponibilidade e consumo de alimentos no Brasil

Pesquisador: Jonatan Alexandre Oliveira

Orientador: Prof. Dr. José Giacomo Baccarin

Responsáveis pela análise:

Alex Rodrigo dos Santos Souza Chang Chiann Gustavo de Oliveira Kanno Rodrigo Marcel Araujo Oliveira Victor Ribeiro Baião Decanini

CONTEXTO

- A agricultura no Brasil vem sofrendo mudanças ano após ano, principalmente na questão de importação e exportação.
- Essas mudanças refletem no mercado interno brasileiro, alterando:
 - preços
 - >qualidade dos produtos
 - ➤ disponibilidade
 - > forma de consumo

Aumento significativo dos preços relativos da alimentação quando comparado com outras despesas familiares

OBJETIVO

Procurar identificar quais cadeias de alimentos têm um maior impacto na variação de preços em função do IPCA para uma determinada cadeia de interesse

Verificar se há correlação entre a variação do preço em função do IPCA de diferentes cadeias agropecuárias de produtos ao longo do tempo

TÉCNICAS UTILIZADAS

- ❖ Média dos IPCA's dos subitens para descrever o IPCA de cada cadeia
- *Teste de Dickey-Fuller e Phillips-Perron para testar se há raiz unitária
- Função de Autocorrelação para identificar correlação dentro de uma única cadeia
- Função de Autocorrelação Parcial para identificar correlação dentro de uma única cadeia
- Correlação Cruzada para identificar correlação entre as cadeias
- *Regressão LASSO para ponderar o impacto (pesos) de cada cadeia em uma cadeia de interesse
- Regressão clássica no contexto de séries temporais para compreender melhor o funcionamento da série
- *Regressão com erros autocorrelacionados (ARIMA)
- Teste Ljung-Box para ARIMA(p,d,q)

TESTES DE DICKEY-FULLER e PHILLIPS-PERRON

- Hipótese nula: Afirma que há presença de raiz unitária, ou seja, série não estacionária
- Hipótese alternativa: Afirma que não há raiz unitária, ou seja, série é estacionária
- β_1 : Intercepto do modelo
- β₂: Coeficiente de tendência

- $\Delta y_t = eta_1 + eta_2 t + \delta y_{t-1} + \sum_{i=1}^m lpha_i \Delta y_{t-i} + arepsilon_t$
- δ : Coeficiente de presença de raiz unitária
- Estatística de teste T de Dickey-Fuller
- ❖ Tabelados por Dickey-Fuller através de simulação Monte Carlo

$$T=rac{\hat{\delta}}{se(\hat{\delta}\,)}$$

- Estatística de teste Z de Phillips-Perron
- Z é um ajuste na estatística de Dickey-Fuller

$$Z = n \hat{\delta}_{\,n} - rac{n^2 \hat{\sigma}^2}{2 s_n^2} \Bigg(\hat{\lambda}_n^2 - \hat{\gamma}_{0,n} \Bigg)$$

SÉRIETEMPORAL DA BOVINOCULTURA

Série Temporal da Bovinocultura

- Não há indícios de componente sazonal
- Observa-se uma grande variação do IPCA em torno de uma reta positiva, principalmente no período dos anos de 2013 a 2017, com destaque para 2011, indicando assim um aumento no preço continuamente.
- Teste de Dickey-Fuller e Teste de Phillips-Perron: o p-valor é de 0,01 para a série
- Rejeitamos a hipótese nula de que a série temporal contém uma raiz unitária.

FUNÇÃO DE ACF e PACF

- A autocorrelação é definida como correlação entre duas observações em instantes diferentes. A autocorrelação de lag um caracteriza séries onde uma observação está correlacionada com a observação imediatamente anterior ou posterior (fevereiro e janeiro, ou fevereiro e março, por exemplo)
- A função de autocovariância amostral entre duas observações de lag k é definida como:
 - $c_k = rac{1}{n} \sum_{t=1}^{n-k} \left(x_t ar{x}
 ight) \left(x_{t+k} ar{x}
 ight)$

- ❖A função de autocorrelação amostral de lag k é :
 - $r_k = rac{c_k}{c_0} = Corr(x_t, x_{t+k})$

❖O intervalo de confiança de aproximadamente 95% para ACF pode ser construído por:

$$r_k \pm \frac{2}{\sqrt{n}}$$

❖ A função de autocorrelação parcial (PACF) mede a correlação entre X_(t) e X_(t-k) eliminando a influência X_(t-1), ... X_(t-k+1):

$$f_k = \left\{ egin{array}{ll} Corr(X_t, X_{t+k}) = r_1 & ext{se k} = 1 \ Corr(X_{t+k} - X_t^{k-1}, X_t - X_t^{k-1}) & ext{se k} > 1 \end{array}
ight.$$

FUNÇÃO DE AUTOCORRELAÇÃO

Notamos que temos um pico no primeiro lag do ACF e do PACF, ambos fora do intervalo de confiança, isso significa que esta observação está correlacionada positivamente com a observação imediatamente anterior.

CORRELAÇÃO CRUZADA

- Representa as correlações entre duas séries temporais em diferentes períodos de tempo
- Pode ajudar a entender se uma série de dados "conduz" uma outra série, e até que ponto isso acontece
- Correlação cruzada amostral dada por:

$$\hat{\rho}_{xy}(h) = \frac{\hat{\gamma}_{xy}(h)}{\sqrt{\hat{\gamma}_x(0)\hat{\gamma}_y(0)}}.$$

Com:

$$\hat{\gamma}_{xy}(h) = n^{-1} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(y_t - \bar{y}),$$

CORRELAÇÃO CRUZADA DA BOVINOCULTURA

Bovinocultura e Avicultura de Corte

CORRELAÇÃO CRUZADA DA BOVINOCULTURA

Bovinocultura e Lácteos

Bovinocultura e Pescados

Bovinocultura e Suinocultura

MAIORES CORRELAÇÕES

Tendo analisado os gráficos de autocorrelação e correlações cruzadas da série de Bovinocultura, vê-se que as principais correlações entre as cadeias (e seus respectivos

Lags) são dados por:

Cadeia	Lags	
Avicultura de Corte	Lag 0	
Avicultura de Postura	Lag 9	
Pescado	Lag 3	
Pescado	Lag 10	
Suinocultura	Lag 0	
Bovinocultura	Lag 1	

REGRESSÃO LASSO

- A Regressão Lasso tem o efeito de fazer com que alguns coeficientes (os menos importantes para o modelo) diminuam em módulo até ficar exatamente igual a zero
- A ideia aqui é inferir as correlações mais importantes entre as cadeias com base nas variáveis que restam.

REGRESSÃO LASSO

Generalização da Regressão Linear

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

 \diamond Fixado um $\lambda > 0$, queremos β que minimize:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \boldsymbol{X_i}\boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|.$$

O estimador será dado por:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

VALIDAÇÃO CRUZADA

- \diamond Antes de aplicar a Regressão Lasso, precisamos fixar um valor de λ ;
- Através de um método conhecido como validação cruzada, conseguimos escolher λ de tal forma que minimizamos o erro.

VALIDAÇÃO CRUZADA

❖ Para nosso caso, fizemos validação cruzada com nfolds = 10

	Measure: Mean-Squared Error				
	Lambda	Measure	SE	Nonzero	
min	0.0504	2.955	1.067	8	
1se	0.7489	3.976	1.625	2	

REGRESSÃO LASSO

Os coeficientes obtidos para as variáveis através do modelo foram:

Library(glmnet)

Variáveis	Estimativas	
(Intercept)	0.31262107	
`Avicultura de Corte`	0.39843764	
`Avicultura de Postura`	0	
`Pescado`	-0.15329263	
`Lácteos`	-0.1509418	
`Suinocultura`	0.24605653	
`Avicultura de Postura 9`	0.14932952	
`Pescado 3`	-0.01311084	
`Pescado 10`	0.01739267	
`Bovinocultura 1`	0.35784156	

REGRESSÃO LASSO

Os coeficientes obtidos para as variáveis através do modelo foram: Library(islasso)

Variáveis	Estimativa	Erro Padrão	Valor Z	Pr(> Z)
(Intercepto)	0.28555	0.20359	1.403	0.160748
`Avicultura de Corte`	0.41319	0.11348	3.641	0.000271
`Avicultura de Postura`	0.04527	0.06032	0.750	0.452995
`Pescado`	-0.25994	0.11192	-2.323	0.020202
`Lácteos`	-0.20752	0.12319	-1.685	0.092067
`Suinocultura`	0.27996	0.21147	1.324	0.185555
`Avicultura de Postura 9`	0.17970	0.05358	3.354	0.000796
`Pescado 3`	-0.0226	0.10177	-0.217	0.828397
`Pescado 10`	0.07148	0.10156	0.704	0.481548
`Bovinocultura 1`	0.37949	0.09756	3.890	0.000100

REGRESSÃO CLÁSSICA NO CONTEXTO DE SÉRIES TEMPORAIS

A regressão simples no contexto de séries temporais pode ser expressa por:

$$x_t = \beta_0 + \beta_1 z_{t1} + \dots + \beta_q z_{tq} + w_t = \beta' z_t + w_t.$$

O erro de mínimos quadrados é dado por:

$$Q = \sum_{t=1}^{n} w_t^2 = \sum_{t=1}^{n} (x_t - \beta' z_t)^2,$$

* As estimativas dos coeficientes são explicadas por:

$$\hat{\beta} = \left(\sum_{t=1}^n z_t z_t'\right)^{-1} \sum_{t=1}^n z_t x_t.$$

REGRESSÃO CLÁSSICA NO CONTEXTO DE SÉRIES TEMPORAIS

Os coeficientes obtidos para as variáveis através do modelo foram:

Variáveis	Estimativa	Erro Padrão	Valor t	Pr(> t)
(Intercepto)	0.28536	0.20364	1.401	0.163405
`Avicultura de Corte'	0.41328	0.11349	3.642	0.000384
`Avicultura de Postura'	0.04542	0.06035	0.753	0.452982
`Pescado`	-0.26037	0.11194	-2.326	0.021498
`Lácteos`	-0.20785	0.12322	-1.687	0.093939
`Suinocultura`	0.28048	0.21162	1.325	0.187266
`Avicultura de Postura 9'	0.17980	0.05358	3.356	0.001026
`Pescado 3'	-0.02202	0.10186	-0.216	0.829147
`Pescado 10'	0.07166	0.10163	0.705	0.481954
`Bovinocultura	0.37950	0.09758	3.889	0.000157

REGRESSÃO CLÁSSICA NO CONTEXTO DE SÉRIES TEMPORAIS

Agora precisamos analisar as funções de autocorrelação e autocorrelação parcial dos resíduos do modelo.

O modelo de Regressão também pode ser escrito como

$$y_t = \sum_{j=1}^r \beta_j z_{tj} + x_t$$

 x_t é um processo com alguma função de covariância $y_x(s,t)$. Como nesse caso o resíduo do modelo é x_t o modelo com erros autocorrelacionados é dado por

$$y^* = Z^*\beta + \delta,$$

Essa função é composta por

$$\Gamma = \{ \gamma_x(s,t) \}, \qquad y^* = \Gamma^{-1/2} y, Z^* = \Gamma^{-1/2} Z, \qquad \delta = \Gamma^{-1/2} x.$$

A estimativa do método quadrados ponderados é dada por

$$\hat{\beta}_w = (Z^{*'}Z^*)^{-1}Z^{*'}y^* = (Z'\Gamma^{-1}Z)^{-1}Z'\Gamma^{-1}y,$$

Para o caso autoregressivo de ordem p temos

$$\phi(B)x_t = w_t,$$
 $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$ $BX_t = X_{t-1} \quad B^m X_t = X_{t-m}$

Portando a regressão fica

$$\underbrace{\phi(B)y_t}_{y_t^*} = \sum_{j=1}^r \beta_j \underbrace{\phi(B)z_{tj}}_{z_{tj}^*} + \underbrace{\phi(B)x_t}_{w_t},$$

O erro é minimizado em função da soma de mínimos quadrados a seguir

$$S(\phi, \beta) = \sum_{t=1}^{n} w_t^2 = \sum_{t=1}^{n} \left[\phi(B) y_t - \sum_{j=1}^{r} \beta_j \phi(B) z_{tj} \right]^2$$

Os parametros são respectivamente

$$\phi = \{\phi_1, \dots, \phi_p\} \qquad \beta = \{\beta_1, \dots, \beta_r\}$$

Os coeficientes obtidos para as variáveis através do modelo foram:

Variáveis	Estimativa	Erro Padrão	Valor t	Pr(> t)
ar1	0.4691	0.1227	3.8246	2.00E-04
Intercept	0.4196	0.2895	1.4497	0.1495
`Avicultura de Corte`	0.5589	0.1131	4.9432	0
`Avicultura de Postura`	0.0076	0.054	0.14	0.8889
Pescado	-0.1639	0.0963	-1.7023	0.091
Lácteos	-0.1834	0.1454	-1.2614	0.2093
Suinocultura	0.3054	0.2012	1.5182	0.1313
Avicultura de Postura 9	0.1548	0.0492	3.1468	0.002
Pescado 3	0.0282	0.0856	0.329	0.7427
Pescado 10	0.1139	0.0844	1.3496	0.1794
Bovinocultura 1	0.0712	0.1194	0.596	0.5521

TESTE DE LJUNG-BOX PARA ARIMA(p,d,q)

- ❖ H₀: Dados são independentemente distribuídos (não tem autocorrelação)
- ❖ H₁: Dados não são independentemente distribuídos (tem autocorrelação)
- A estatística de teste é dada por:

$$Q=n\left(n+2
ight)\sum_{k=1}^{h}rac{\hat{
ho}_{k}^{2}}{n-k}$$

Com

$$Q>\chi^2_{1-lpha,h}$$

 $\hat{
ho}_k$:= autocorrelação amostral no lag k

h := número de lags sendo testados

 ❖ Aplicando sobre os resíduos, passamos a testar se os erros são não correlacionados (são ruído branco). Aqui, os g.l são corrigidos para h − p − q.

• O modelo final fica com forma:

Variáveis	Estimativa	Erro Padrão	Valor z	Pr(> z)
ar1	0,526516959	0,094723828	5,558442603	2,72192E-08
`Avicultura de Corte`	0,541743138	0,106565796	5,083649347	3,70251E-07
`Suinocultura`	0,422422157	0,194655795	2,170098032	0,02999942
`Avicultura de Postura 9`	0,133101239	0,047602027	2,796125466	0,005171932

Temos então para o modelo final:

Temos então para o modelo final:
$$\phi(B)y_t = \sum_{j=1}^r \beta_j \ \phi(B)z_{tj} + \phi(B)x_t, \\ y_t^* \qquad \sum_{j=1}^r \beta_j \ \phi(B)z_{tj} + \phi(B)x_t, \\ w_t \qquad \qquad \text{Sendo:} \quad \beta_1 = \alpha = 0.54 \quad \beta_2 = \beta = 0.42 \quad \beta_3 = \gamma = 0.13$$
 Temos:
$$(1 - 0.53B)y_t = \sum \beta_i (1 - 0.53B)z_{ti} + (1 - 0.53B)z$$

Com:
$$\phi(B)=1-0.53B$$

Sendo:
$$eta_1=lpha=0.54$$
 $eta_2=eta=0.42$ $eta_3=\gamma=0.13$

Temos:
$$(1-0.53B)y_t = \sum \beta_j (1-0.53B)z_{tj} + (1-0.53B)x_t$$

Por fim:

$$y_t = 0.54 AVC_t - 0.29 AVC_{t-1} + 0.42 SUINO_t - 0.22 SUINO_{t-1} + 0.13 AVP_{t-9} - 0.07 AVP_{t-10} + 0.53 y_{t-1} + w_t$$
 $w_t \sim RB(0, \sigma_\epsilon^2)$

- Passo a passo para regressão com erros autocorrelacionados:
 - 1. Primeiramente, rodar a regressão ordinária (clássica) para y_t com z_{t1}, \dots, z_{tr} (considerando os erros como não correlacionados);
 - 2. Guardar os resíduos $\hat{x}_t = y_t \sum_{j=1}^r \hat{\beta}_j z_{tj}$.;
 - 3. Identificar o(s) modelo(s) ARMA para os resíduos \hat{x}_t ;
 - 4. Aplicar o método dos mínimos quadrados ponderados no modelo de regressão com erros autocorrelacionados usando o modelo especificado na etapa 3.;
 - 5. Inspecionar os resíduos \hat{w}_t para verificar se os erros formados são do tipo ruído branco e caso necessário, ajustar um novo modelo.