

Kreuzungen in Cluster-Level-Graphen

Michael Forster forster@fmi.uni-passau.de

Lehrstuhl für Theoretische Informatik Prof. Dr. Franz J. Brandenburg

Beispiel

- Vorlesungsgraph
 - Informatik Grundstudium
 - Universität Passau
- Knoten
 - Vorlesungen
- Kanten
 - Inhaltliche Abhängigkeiten
 - "Vorlesung X soll vor Vorlesung Y gehört werden"
- Eigenschaften
 - Gerichtet
 - Azyklisch
- → Gerichteter azyklischer Graph (DAG)
 - Typisch für Abhängigkeitsgraphen
 - Führt beim Zeichnen zu Level-Graphen

Level-Graphen

- Problemstellung
 - Gegeben: Gerichteter azyklischer Graph (DAG)
 - Gesucht: Übersichtliche Zeichnung
- Hauptziele
 - Wenig Kantenkreuzungen
 - Uniforme Kantenrichtung
- Standardalgorithmus
 - Sugiyama-Algorithmus
 - Methode: Einteilung in Level
- Level-Graph
 - Graph + Level-Enteilung
 - Zwischenergebnis des Sugiyama-Algorithmus
 - Manchmal: Level sind vorgegeben

Cluster-Graphen

- Cluster-Graph
 - (Un)gerichteter Graph
 - Menge von Clustern

- Eigenschaften
 - Verboten: Überlappung
 - Erlaubt: Schachtelung

Problemstellung

- Gegeben: Cluster-Level-Graph
 - Graph + Level + Cluster
 - Gerichtet oder ungerichtet
- Ziel
 - Übersichtliche Zeichnung
 - Insbesondere: Wenig Kreuzungen

Anwendung: Biochemical Pathways

- Biochemische Reaktionsnetze
- Knoten
 - (Co-)Substanzen
 - Enzyme
- Gerichtete Kanten
 - Reaktionen
 - Regulation
- Cluster
 - "Kompartimente
 - Abgegrenzte Zellbereiche
 - Ineinander geschachtelt

Anwendung: UML Klassen-Diagramme

- Knoten
 - Klassen
 - Interfaces
- Gerichtete Kanten
 - Vererbung
 - Assoziation
- Cluster
 - Packages

Überblick

- Einleitung
- Grundlagen
 - Notation
 - Charakterisierung von Kreuzungen
- Kreuzungsreduzierung
 - In Cluster-Level-Graphen
 - In Level-Graphen mit Constraints
- Cluster-Level-Planarität
 - Frage: Gibt es eine Zeichnung ohne Kreuzungen?
- Ausblick

Level: Global oder Lokal?

- Globale Level
 - Eine Menge von Level für alle Knoten
 - Cluster können über mehrere Level gehen

- Kompaktere Zeichnungen
- Algorithmus: Sander (1996)

- Lokale Level
 - Jeder Cluster enthält seine eigenen Level
 - Cluster dürfen nicht über mehrere Level gehen

- Weniger Knoten pro Level
- Algorithmus: Sugiyama/Misue (1991)

Cluster-Level-Graphen

- Cluster-Level-Graph: G = (V, E, C, I, φ)
 - Gerichteter Graph
 - Knoten: V
 - Kanten: E ⊆ V□V
 - Cluster-Baum: $T = (V \cup C, I)$
 - Blätter: Knoten V
 - Innere Knoten: Cluster C
 - Kanten: Inklusionsrelation I
 - Level-Einteilung: φ: V → □
 - Level eines Knoten: φ(v)
 - Knoten eines Levels: V_i = φ⁻¹(i)
 - Alle Kanten (u, v) zeigen nach unten: φ(u) < φ(v)
- Eigenschaften
 - Kanten verlaufen nur zwischen Knoten, nicht zwischen Clustern
 - Cluster können sich gegenseitig enthalten aber nicht überlappen

Einbettung

- Gesucht: Einbettung
 - Lineare Ordnung der Knoten innerhalb jedes Levels
- Ziel
 - Wenig Kreuzungen
- Problem
 - Kreuzungen sind nicht direkt aus der Einbettung ablesbar
- Definition: "Proper"
 - Keine langen Kanten
 - Keine leeren Level innerhalb eines Clusters
- Graphen können mit Dummy-Knoten proper gemacht werden
 - Bis zu O(n²) viele!

Cluster-Regionen

- Weiteres Ziel
 - "Einfache" Cluster-Regionen
 - Hier: Konvexe Regionen
- Satz
 - Eine Einbettung kann mit konvexen Cluster-Regionen gezeichnet werden
 ⇒ Sie kann sogar mit rechteckigen Cluster-Regionen gezeichnet werden
- Beweisidee
 - Schiebe Cluster unter Beibehaltung der partiellen Ordnung horizontal auseinander ⇒ Einbettung ändert sich nicht
 - Benutze umbeschriebare Rachtecke als neue Cluster-Regionen
- Frage
 - Welche Einbettungen erlauben konvexe Cluster-Regionen?

Bedingungen für die Einbettung

- Konvexe Cluster-Regionen
 - Cluster/Level-Bedingung

Cluster/Cluster-Bedingung

- Verboten
 - Vermeidung immer möglich
 - Folge: Cluster können als Rechtecke gezeichnet werden

- Kreuzungen
 - Kanten/Kanten-Bedingung

Kanten/Cluster-Bedingung

- Erlaubt aber unerwünscht
 - Vermeidung nicht immer möglich
 - Ziel: Minimierung

Problemstellungen

Kreuzungsreduzierung

Wie hält man die Anzahl an Kreuzungen gering? [GD 2002]

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")

- Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart
 - Meist: 2-Level-Kreuzungsreduzierung ("Level Sweep")
 - Selbst das ist schon NP-hart
 - Sogar wenn man die Reihenfolge eines Levels fixiert
 - Sehr viele existierende Heuristiken
- Cluster-Level-Graphen
 - Minimierung von Kantenkreuzungen ist NP-hart (trivialerweise)
 - Minimierung von Cluster/Kanten-Kreuzungen ist NP-hart

Cluster/Kanten-Kreuzungen sind NPhart

Reduktion von einseitiger2-Level-Kreuzungsreduzierung

Heuristik

- Existierende Heuristik von Sander
 - Vorgehensweise
 - 1. Ignoriere Cluster-Bedingungen → Keine gültige Einbettung
 - 2. Korrigiere die Einbettung durch Umsortieren
 - Ergebnis
 - Cluster/Kanten-Kreuzungen werden komplett ignoriert
 - Unnötige Kreuzungen durch das Umsortieren
- Neue Heuristik
 - Vorgehensweise
 - Allgemeines Schema zur Anwendung bestehender 2-Level-Heuristiken auf Cluster-Level-Graphen
 - Integrierte Berücksichtigung der Cluster-Bedingungen
 - Ergebnis
 - Cluster/Level-Kreuzungen werden berücksichtigt
 - Keine unnötigen zusätzlichen Kreuzungen
 - Vergleichbare Laufzeit

Experimentelle Ergebnisse

Experimentelle Ergebnisse

Ergebnis

- Kreuzungsreduzierung für Cluster-Level-Graphen
 - NP-hartes Problem
- Neue Heuristik
 - Anwendung von 2-Level-Kreuzungsreduzierung auf Cluster-Level-Graphen
- Ergebnisse
 - Deutlich weniger Kreuzungen als existierende Heuristiken
 - Etwas höhere Laufzeit
 - Bei k=2: Optimum wird erreicht
 - Bei beschränktem Grad der Hierarchie: Optimale Lösung in Polynomialzeit O(kn)
- Benötigt als Zwischenschritt:
 - Kreuzungsreduzierung in 2-Level-Graphen mit Constraints

Kreuzungsreduzierung in Level-Graphen mit Constraints

Erfüllung von Nebenbedingungen [GD 2004]

Einseitige 2-Level Kreuzungsreduzierung

- Wichtiges und gut untersuchtes Problem
 - Gegeben: 2-Level-Graph, feste Reihenfolge des ersten Levels
 - Gesucht: Reihenfolge des zweiten Levels mit wenig Kreuzungen
- NP-hart → Heuristiken
- Barycenter Heuristik
 - Sortiere den zweiten Level nach dem Schwerpunkt der Nachbarn

Kreuzungsreduzierung mit Constraints

- Zusätzlich: Constraints
 - Vorgegebene Reihenfolge
 - Verletzt / erfüllt
- Anwendungen
 - Cluster-Level-Graphen
 - Gegeben vom Benutzer
 - Inkrementelle Verfahren ("Mental Map")

- Ziel
 - Erfülle alle Constraints
 - Wenig Kantenkreuzungen
- Constraint-Graph
 - Muss azyklisch sein
 - Wichtiger Spezialfall: Einzelner Pfad + isolierte Knoten

Einfache Heuristiken

- Sander (1996)
 - Erweiterung beliebiger iterativer 2-Level-Kreuzungsreduzierung
 - Beginne mit beliebiger zulässiger Reihenfolge
 - Lasse einen Schritt weg, falls Constraints verletzt würden
- Waddle (2000)
 - Berechne Barycenter-Werte
 - Bei verletztem Constraint: Ändere einen Barycenter-Wert
- Bewertung
 - Sehr schnell
 - Mittelmäßige Qualität
 - Besonders schlecht bei vielen Constraints

Penalty-Graph Heuristik

- Schreiber (2001), Finocchi (2001)
 - Berechne den Penalty-Graphen
 - Behandle Constraints als ∞-Kanten
 - Mache den Penalty Graphen azyklisch durch Entfernen von Kanten mit minimalem Gewicht ("weighted feedback arc set", NP-hart)
 - Topologische Sortierung der Knoten
- Bewertung
 - Sehr gute Qualität (bis zu 15% weniger Kreuzungen)
 - Signifikant langsamer

Idee

- Neue Erweiterung der Barycenter-Heuristik
- Erster Schritt: Berechnen Barycenter-Werte b(v) für alle Knoten
- Betrachte ein Constraint (s, t)
 - \blacksquare b(s) > b(t) \rightarrow wird durch Sortierung verletzt
 - $b(s) < b(t) \rightarrow wird durch Sortierung erfüllt$
- Verletzung muss verhindert werden
 - Sander: Verbiete das Vertauschen von s und t
 - Waddle: Ändere den Barycenter-Wert von s

Idee

- Annahme
 - Verletztes Constraint → Kein anderer Knoten sollte dazwischen liegen
- Stimmt das?
 - In einigen Spezialfällen: Ja
 - Im Allgemeinen: Nein
- Aber: Gerechtfertigt durch gute experimentelle Ergebnisse (siehe später)

Algorithmus

- Für jedes verletzte Constraint
 - Ersetze betroffene Knoten durch einen einzelnen Knoten
 - $b(c) = b(s) \cdot deg(s) + b(t) \cdot deg(t)$ Berechne dessen Barycenter-Wert in O(1):
- Es dürfen keine Constraint-Zyklen entstehen
 - Constraints müssen in der richtigen Reihenfolge berücksichtigt werden
 - Modifizierte topologische Sortierung
- Wenn es keine verletzten Constraints mehr gibt
 - Sortiere verbliebene Knoten nach dem Barycenter-Wert
 - Füge entfernte Knoten wieder ein

Experimentelle Ergebnisse

04.02.2004

Experimentelle Ergebnisse

Ergebnis

- Einseitige 2-Level-Kreuzungsreduzierung mit Constraints
 - Neue Heuristik
 - Basis: Barycenter-Heuristik
- Qualität
 - Besser als bisherige einfache Erweiterungen
 - Geringere Abhängigkeit von der Anzahl von Constraints
 - Ähnlich zur Penalty-Graph-Heuristik
- Laufzeit
 - $O(|V_2| \log |V_2| + |E| + |C|^2)$
 - Wesentlich schneller als Penalty-Graph Heuristik
- ☐ Einfache Implementierung (~ 100 LOC)

Cluster-Level-Planarität

Kommt man ohne Kreuzungen aus? [SOFSEM 2004]

Cluster-Level-Planarität: Überblick

- Kann man einen Cluster-Level-Graph ohne Kreuzungen zeichnen?
 - Bisher nicht betrachtetes Problem
- Verwandte Probleme
 - Cluster-Planarität (c-Planarity)
 - Kann man einen Cluster-Graphen ohne Kreuzungen zeichnen?
 - Komplexität: offen für den allgemeinen Fall
 - Θ(n), falls das Innere jedes Clusters zusammenhängend ist
 - Level-Planarität
 - Kann man einen Level-Graphen ohne Kreuzungen zeichnen?
 - Komplexität: Θ(n)
- Ergebnis
 - Erweiterung eines existierenden Algorithmus für Level-Planarität
 - Komplexität: offen für den allgemeinen Fall
 - Lösung für eingeschränkte Problemstellung: "ele

Cluster-Level-Planarität: Bedingungen

Kanten/Kanten-Bedingung

Kanten/Cluster-Bedingung

Cluster/Level-Bedingung

Cluster/Cluster-Bedingung

- Forderung an den Graphen: Level-Zusammenhang
 - Je zwei aufeinander folgende Level in einem Cluster müssen durch mindestens eine Kante verbunden sein
 - Abgeschwächte Form von Cluster-Zusammenhang (c-Connectivity)
 - Ähnlich zu Cluster-Planarität
- Zusätzlich: Proper und nur eine Quelle

Überblick

	Eigenschaften	Komplexität
Cluster-Planarität	beliebig	offen
	Cluster- Zusammenhang	Θ(V)
Level-Planarität	beliebig	Θ(V)

Zusammenfassung Ausblick

Ergebnisse und offene Probleme

Zusammenfassung

- Charakterisierung von Kreuzungen in Cluster-Level-Graphen
- Kreuzungsreduzierung in Cluster-Level-Graphen
 - Einordnung bzgl. der Komplexität
 - Neue Heuristik
- Kreuzungsreduzierung in Level-Graphen mit Constraints
 - Neue Heuristik
- Neues Problem: Cluster-Level-Planarität
 - Für eine eingeschränkte Problemstellung
 - Planaritätstest und Berechnung einer Einbettung
 - Laufzeit O(k |V|)
 - Im allgemeinen Fall: offen
 - Ähnlich zu Cluster-Planarität (c-Planarity)

Fragen?

Vielen Dank für Ihre Aufmerksamkeit!