

信息安全数学基础

第六章 有限域

聂旭云 信息与软件工程学院 电子科技大学

信息安全数学基础

有限域的运算

聂旭云 信息与软件工程学院 电子科技大学

有限域上元素的表示

- 有限域上元素的三种表示方法:
 - 多项式表示法
 - 本原元表示法
 - 伴随矩阵表示法

多项式表示法

设p是素数, $q=p^n$ 。只要找到 F_p 上一个n次不可约多项式f(x),就有 $F_q=F_p[x]/\langle f(x)\rangle,$

取f(x)的一个根 α ,根据定理6.2.3, $F_p(\alpha)\cong F_q$,且 $1,\alpha,\alpha^2,\cdots,\alpha^{n-1}$ 是 $F_p[\alpha]$ 在 F_p 上的一组基。

因此, F_q 中的元素可以表示成 F_p 上 α 的次数小于n的多项式,其上的加法为多项式的加法,而乘法为模多项式 $f(\alpha)$ 的乘法。

多项式表示法(续)

例6.3.1 给出有限域F。的元素表示,并给出F。的乘法表。

解: F_9 可以看成是 F_3 通过添加一个二次不可约多项式的根 α 得到的2次扩张。 $f(x) = x^2 + 1$ 是 F_3 上一个不可约多项式,设 α 是f(x)的一个根,即 $f(\alpha) = \alpha^2 + 1 = 0$,则1, α 是 F_9 在 F_3 上的一组基,从而, F_9 中的元素可以表示成 F_3 上 α 的次数小于2的多项式,即

$$F_9 = \{0, 1, 2, \alpha, 1 + \alpha, 2 + \alpha, 2\alpha, 1 + 2\alpha, 2 + 2\alpha\}$$

多项式表示法 (续)

*	0	1	2	α	$1+\alpha$	$2 + \alpha$	2α	$1+2\alpha$	$2+2\alpha$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	$1 + \alpha$	$2 + \alpha$	2α	$1+2\alpha$	$2+2\alpha$
2	0	2	o ^C 1	2α	$2+2\alpha$	$1+2\alpha$	α	$2 + \alpha$	$1+\alpha$
α	0	α	2α	2	$2 + \alpha$	$2+2\alpha$	1	$1 + \alpha$	$1+2\alpha$
$1 + \alpha$	0	$1+\alpha$	$2+2\alpha$	$2 + \alpha$	2α	1	$1+2\alpha$	2	α
$2 + \alpha$	0	$2+\alpha$	$1+2\alpha$	$2+2\alpha$	1	α	$1+\alpha$	2α	2
2α	0	2α	α	-31	$1+2\alpha$	$1 + \alpha$	2	$2+2\alpha$	$2 + \alpha$
$1+2\alpha$	0	$1+2\alpha$	$2+\alpha$	$1 + \alpha$	2	2α	$2+2\alpha$	α	1
$2+2\alpha$	0	$2+2\alpha$	$1 + \alpha$	$1+2\alpha$	α	2	$2 + \alpha$	1	2α

本原元表示法

- 设 ξ 是 F_q 中的本原元,则 $F_q = \{0, \xi, \xi^2, \cdots, \xi^{q-1}\}$ 。在本原元表示下,乘法很容易实现,但加法需要结合 F_q 的多项式表示来计算。
- 例6.3.2 设 $F_9 = F_3(\xi)$,其中 $\xi \in F_9$ 中的本原元,且 $\xi \in S$ 项式 $x^2 + x + 2$ 的根,则有 $F_9 = \{0, \xi, \xi^2, \dots, \xi^8\}$ 。注意到,若 $\alpha^2 + 1 = 0$,则 $\xi = 1 + \alpha \in S$ 项式 $x^2 + x + 2$ 的根,可建立对应关系: $\xi = 1 + \alpha$, $\xi^2 = 2\alpha$, $\xi^3 = 1 + 2\alpha$, $\xi^4 = 2$, $\xi^5 = 2 + 2\alpha$, $\xi^6 = \alpha$, $\xi^7 = 2 + \alpha$, $\xi^8 = 1$,就可以很方便计算 F_9 中的加法。

伴随矩阵表示法

• 设 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$, 定义f(x)的伴随矩阵为

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

• 经过计算有, $f(x) = |xI - A| = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$,即f(x)是 A的特征多项式。因此, $f(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I = 0$,其中I是单位矩阵。所以A可以看作是f(x)的根。

有限域运算实现举例

例6.3.3考察阶为16的有限域 F_{24} 。容易验证多项式 $f(x)=x^4+x+1$ 在 F_2 上不可约。设 α 是f(x)的一个根。因此有限域 F_{24} 可以表示为 α 的所有 F_2 次数小于4的多项式集合,即

$$F_{2^4} = \{a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 | a_i \in \{0, 1\}\}$$

为方便起见,多项式 $a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0$ 可以用长度为4的向量 $(a_3a_2a_1a_0)$ 表示,且

$$F_{2^4} = \{(a_3 a_2 a_1 a_0) | a_i \in \{0, 1\}\}$$

有限域运算实现举例(续)

域 F_{24} 中算术的一些例子:

(1) 域中元素相加,即为对应分量的简单相加,例如

$$(1011)+(1001)=(0010);$$

(2) 要将域中元素(1101)与(1001)相乘,将它们做多项式乘法,再模去 $f(\alpha)$ 取其余式:

$$(\alpha^3 + \alpha^2 + 1)(\alpha^3 + 1) = \alpha^6 + \alpha^5 + \alpha^2 + 1$$

$$\equiv \alpha^3 + \alpha^2 + \alpha + 1 \pmod{f(\alpha)}$$

因此(1101) ×(1001) =(1111);

- (3) F₂₄的乘法单位元是(0001);
- (4) (1011) 的逆元是 (0101), 因为:

$$(\alpha^3 + \alpha + 1)(\alpha^2 + 1) = \alpha^5 + \alpha^2 + \alpha + 1$$

$$\equiv 1 \pmod{f(x)}$$

GF (28) 中运算的快速实现

- 域 F_2 上的8次不可约多项式 $f(x) = x^8 + x^6 + x^5 + x + 1$, $\alpha \in f(x)$ 的一个根
- 有限域 F_{28} 可以表示为 α 的所有 F_{2} 次数小于8的多项式集合,即 $F_{28} = \{a_7\alpha^7 + a_6\alpha^6 + a_5\alpha^5 + a_4\alpha^4 + a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 | a_i \in \{0, 1\}\}$
- 每一个元素都与一个字节的比特串 $a_7a_6a_5a_4a_3a_2a_1a_0$ 对应
- 可将每个字节表示为一个16进制数,即每4比特表示一个16进制数,代表较高位的4比特的符号仍在左边。例如,01101011可表示为6B
- 也可以用0-255这256个十进制整数来表示域中的元素
- 加法定义为二进制多项式的加法,且其系数模2
- 乘法定义为多项式的乘积模一个次数为8的不可约多项式

乘法的两种方法

- · 直接模多项式f(x)
 - · 需要64次GF(2)上乘法以及模多项式运算
- 建立乘法表
 - · 需要256×256字节 (64K) 的存储空间
- 建立指数对数表
 - 512个字节的存储,每次乘法仅需要查表3次和1次加法

指数对数表的建立

• 域GF(256)中的元素用0-255这256个十进制整数来表示

(1) 将元素'02'表示成为 α ,依次计算 $\alpha^i \mod(f(\alpha))$, $i = 0,1,\cdots,254$,将所

得结果转变为十进制数,设为 β_i , $i=0,1,\dots,254$;如下表所示:

(2) 建表。第一行为 $0,1,\dots,254,255$,第二行元素依次为 β_i , $i=0,1,\dots,254$ 。

由于 $\alpha^0 \equiv \alpha^{255} \mod(f(\alpha))$,约定第 2 行,第 255 列元素为 0。

i	0	1	2	3	• • •	253	254	255
α^i	1	2	4	8		233	177	0

指数对数表的建立(续)

(3) 按所建表的第二行元素的大小进行重排列,如下表所示:

25	5	0	1	197	×0.	72	230	104
0		1	2	3	• • •	253	254	255

(4)将(3)中表的第一行放在(2)中表的第三行,即

序号	0	1	2	3	• • •	253	254	255
$(02)^i$	1	2	4	8		233	177	0
$\log_{(02)}i$	255	0	1	197	•••	72	230	104

指数对数表的使用

例6.3.4 取 F_2 上的8次不可约多项式 $f(x) = x^8 + x^6 + x^5 + x + 1$, α 是f(x)的一个根。试求 F_{28} 中元素 $\alpha + 1$ 和 $\alpha^7 + \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + 1$ 的乘积,并计算 $\alpha + 1$ 的逆元。

解: $\alpha+1$ 对应于"03", $\alpha^7+\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+1$ 对应于"253"。 通过查指数对数表可得03 = $(02)^{197}$,253 = $(02)^{72}$,因此,

$$(03) \cdot (253) = (02)^{197+72 \pmod{255}} = (02)^{14} = 100$$

"100" 对应于 $\alpha^6 + \alpha^5 + \alpha^2$,即 $(\alpha + 1)(\alpha^7 + \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 + \alpha^2 + 1) \equiv (\alpha^6 + \alpha^5 + \alpha^2) \pmod{f(\alpha)}$

• 由 $03 = (02)^{197}$,而255 - 197 = 58,所以 $(03)^{-1} = (02)^{58} = 222$ 。 "222" 对应于

$$\alpha^7 + \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha$$
,

• $\mathbb{P}(\alpha+1)^{-1} \equiv (\alpha^7 + \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha) \mod(f(\alpha))$.

感謝聆听! xynie@uestc.edu.cn