Statistical Learning Theory

Omar Montasser

Lecture 5
Non-Uniform Learning

Fundamental Theorem of Statistical Learning

Theorem. For any hypothesis class *H* with finite VC dimension:

• *H* is (realizably)-PAC-learnable with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\text{vc}(H) + \ln(1/\delta)}{\epsilon}\right)$$
. ERM incurs a multiplicative $\log(1/\epsilon)$.

• *H* is (agnostically)-PAC-learnable with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\operatorname{vc}(H) + \ln(1/\delta)}{\epsilon^2}\right).$$

Achieved by ERM.

• *H* satisfies the uniform convergence property with sample complexity

$$m(\epsilon, \delta) = \Theta\left(\frac{\text{vc}(H) + \ln(1/\delta)}{\epsilon^2}\right)$$

Key Takeaways / Implications

- What is learnable? VC classes.
- How to learn? ERM.
- Tight quantitative understanding of sample complexity.

(Efficient) Proper Learning

Definition. A family of classes $\{H_n\}_{n\in\mathbb{N}}$ is efficiently-properly-PAC-learnable in the realizable setting if there exists a learning algorithm A such that $\forall n\,\forall (\epsilon,\delta)\in (0,1)^2, \exists m(n,\epsilon,\delta)\in \mathbb{N}, \forall D \text{ s.t. } \inf_{h\in H} L_D(h)=0, \ \mathbb{P}_{S\sim D^{m(\epsilon,\delta)}}\left\{L_D(A(S))\leq \epsilon\right\}\geq 1-\delta,$

and A runs in time polynomial in $n, 1/\epsilon, \log(1/\delta)$, and A always outputs a predictor in H_n .

We assume that RP \neq NP. Then, for any family $\{H_n\}_{n\in\mathbb{N}}$:

- If $vc(H_n) \le poly(n)$ and there is a poly-time algorithm implementing Consistent Learning, then family H_n is efficiently-properly-PAC learnable.
- If solving $CONS_{H_n}(S)$ is NP-hard, then family H_n is *not* efficiently-properly-PAC learnable.

What about *improper* learning?

Hardness of Improper Learning

- Based on Cryptographic Assumptions:
 - "If crypto is possible, then efficient learning is impossible."
- General Recipe:
 - Take a cryptographic problem that is assumed to be computationally intractable (in an average-case sense).
 - Define an appropriate hypothesis class family, and show that an efficient-PAC-learning algorithm for this family can be used to efficiently solve the cryptographic problem.
- Examples:
 - Assuming "Discrete Cube Root" is computationally intractable (the RSA public-key crypto system is based on this assumption), then
 - the class of log-depth polynomial-size circuits (AND/OR networks) is not efficiently-PAC-learnable (even improperly).
- Suggested Reading:
 - M. Kearns and U. Vazirani, An Introduction to Computational Learning Theory
 - Chapter 1 (Sections 1.3 1.5), and Chapter 6.

Relizable vs. Agnostic Learning

Definition. A family of classes $\{H_n\}_{n\in\mathbb{N}}$ is efficiently-properly-PAC-learnable in the realizable setting if there exists a learning algorithm A such that $\forall n \, \forall (\epsilon, \delta) \in (0, 1)^2, \exists m(n, \epsilon, \delta) \in \mathbb{N}, \forall D \text{ s.t. } \inf_{h \in H} L_D(h) = 0,$ $\mathbb{P}_{S \sim D^{m(\epsilon, \delta)}} \left\{ L_D(A(S)) \leq \epsilon \right\} \geq 1 - \delta,$

$$\mathbb{P}_{S \sim D^{m(\epsilon,\delta)}} \left\{ L_D(A(S)) \le \epsilon \right\} \ge 1 - \delta$$

and A runs in time polynomial in $n,1/\epsilon,\log(1/\delta)$, and A always outputs a predictor in H_n .

Definition. A family of classes $\{H_n\}_{n\in\mathbb{N}}$ is efficiently-properly-PAC-learnable in the agnostic setting if there exists a learning algorithm A such that $\forall n \forall (\epsilon, \delta) \in (0,1)^2, \exists m(n, \epsilon, \delta) \in \mathbb{N}, \forall D$

$$\mathbb{P}_{S \sim D^{m(\epsilon,\delta)}} \left\{ L_D(A(S)) \leq \inf_{h \in H_n} L_D(h) + \epsilon \right\} \geq 1 - \delta,$$

and A runs in time polynomial in $n,1/\epsilon,\log(1/\delta)$, and A always outputs a predictor in H_n .

Conditions for Efficient Agnostic Learning

$$ERM_{H_n}(S) = \arg\min_{h \in H_n} \frac{1}{|S|} \sum_{(x,y) \in S} \mathbf{1} \{ h(x_i) \neq y_i \}$$

Claim.

- If $vc(H_n) \le poly(n)$, and
- there is a poly-time algorithm implementing ERM for $\{H_n\}_{n\in\mathbb{N}}$, then $\{H_n\}_{n\in\mathbb{N}}$ is efficiently-agnostically-properly-PAC-Learnable.

For a family $\{H_n\}_{n\in\mathbb{N}}$ consider the decision problem:

AGREEMENT_{$$H_n$$} $(S, k) = 1 \text{ iff } \exists h \in H_n, L_S(h) \le 1 - \frac{k}{|S|}.$

Claim. If H_n is efficiently-agnostically-properly-PAC-learnable then AGREEMENT $_{H_n} \in \text{RP}$.

Corollary. If RP \neq NP and AGREEMENT_{H_n} is NP-hard, then H_n is not efficiently-agnostically-properly-PAC-learnable.

What is Efficiently Properly Agnostically PAC Learnable?

- Poly-time functions? No! (Not even in the realizable case)
- Poly-size depth-2 neural networks? No! (Not even in the realizable case)
- Halfspaces (linear predictors)?
 - $X_n = \{0,1\}^n, H_n = \{x \mapsto \mathbf{1}[\langle w, x \rangle > 0] : w \in \mathbb{R}^n\}.$
 - Claim: AGREEMENT $_{H_n}$ is NP-hard.
 - No!
- Conjunctions? No!
- Unions of segments on the line?
 - $X_n = [0,1], H_n = \{x \mapsto \bigvee_{i=1}^n \mathbf{1}[a_i \le x \le b_i] \mid a_i, b_i \in [0,1] \}.$
 - Yes! Efficiently Properly Agnostically PAC Learnable.

Surrogate Losses

$$\min_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \mathcal{C}(h(x_i), y_i)$$

- For example, instead of the 0-1 loss $\ell^{01}(z, y) = \mathbf{1}[yz \le 0]$, use:
 - Squared Loss: $\ell(z, y) = (z y)^2$
 - Hinge Loss: $\ell(z, y) = \max\{0, 1 yz\}$.
 - Logistic Loss: $\ell(z, y) = \log(1 + \exp(-yz))$
 - Exponential Loss: $\ell(z, y) = \exp(-yz)$.

High-Level Picture

- Computational efficiency is a major challenge in Machine Learning.
- In the face of worst-case hardness results, we sometimes need to use heuristics (e.g., surrogate losses).
- Hardness results help illuminate what is not possible computationally, so we should direct our efforts elsewhere.
- One major challenge in machine learning theory is to reconcile the success of deep learning methods (based on local search procedures, e.g. Stochastic Gradient Descent) with worst-case hardness results.
 - It must be that learning problems where deep learning succeeds are not worst-case in nature, but understanding what makes these problems efficiently learnable is a major open research direction.

Non-Uniform Bias

- So far: a uniform prior over H, each $h \in H$ is equally likely.
- Instead: prior p(h) that encodes "preference" or "bias",

•
$$p: H \to [0,1], \sum_{h \in H} p(h) \le 1.$$

- A more general way of encoding our prior knowledge.
- Bias towards simple predictors, p(h) encodes "simplicity".
- Bias towards shorter explanations, p(h) encodes "description length".

Non-Uniform Bias

- So far: a uniform prior over H, each $h \in H$ is equally likely.
- Instead: prior p(h) that encodes "preference" or "bias",

•
$$p: H \to [0,1], \sum_{h \in H} p(h) \le 1.$$

- A more general way of encoding our prior knowledge.
- Bias towards simple predictors, p(h) encodes "simplicity".
- Bias towards shorter explanations, p(h) encodes "description length".

Occam's Razor: A short explanation is preferred over a longer one.

Bias to Shorter Description

- Let *H* be a countable union of hypotheses.
- Let $d: H \to \{0,1\}^*$ be a description language for H that is *prefix-free*: for any $h, h' \in H$, d(h) is not a prefix of d(h').
 - Define prior $p(h) = 2^{-|d(h)|}$.
 - Kraft's Inequality: $\sum_{h} 2^{-|d(h)|} \le 1$.

Bias to Shorter Description

- Let *H* be a countable union of hypotheses.
- Let $d: H \to \{0,1\}^*$ be a description language for H that is *prefix-free*: for any $h, h' \in H$, d(h) is not a prefix of d(h').
 - Define prior $p(h) = 2^{-|d(h)|}$.
 - Kraft's Inequality: $\sum_{h} 2^{-|d(h)|} \le 1$.

$$MDL_p(S) = \arg \max_{L_S(h)=0} p(h) = \arg \min_{L_S(h)=0} |d(h)|.$$

Bias to Shorter Description

$$MDL_p(S) = \arg \max_{L_S(h)=0} p(h) = \arg \min_{L_S(h)=0} |d(h)|.$$

Theorem. For prior p over a countable H s.t. $\sum_h p(h) \le 1$ (e.g., $p(h) = 2^{-|d(h)|}$ for a prefix-

free d), any $\delta \in (0,1)$, $m \in \mathbb{N}$, and any distribution D s.t. $\exists h^* \in H, L_D(h^*) = 0$, with probability $\geq 1 - \delta$ over $S \sim D^m$,

$$L_D(\mathrm{MDL}_p(S)) \leq \frac{\ln\left(\frac{1}{p(h^\star)}\right) + \ln(1/\delta)}{m} = \frac{|d(h^\star)|\ln(2) + \ln(1/\delta)}{m}.$$

Proof. For any
$$h \in H$$
 such that $L_D(h) > \epsilon_h := \frac{\ln(1/p(h)) + \ln(1/\delta)}{m}$. Then, $\mathbb{P}_{S \sim D^m} \{L_S(h) = 0\} \le (1 - \epsilon_h)^m \le e^{-\epsilon_h m} = p(h) \cdot \delta$. By a union bound, $\mathbb{P}_{S \sim D^m} \{\exists h, L_D(h) > \epsilon_h : L_S(h) = 0\} \le \sum_{h \in H} \mathbb{P}_{S \sim D^m} \{L_S(h) = 0\} \le \sum_{h \in H} p(h)\delta \le \delta$. Finally, since $\exists h^* \in H, L_D(h^*) = 0$, it follows that $p\left(\text{MDL}_p(S)\right) \ge p(h^*)$.

MDL and Universal Learning

Theorem. For prior p over a countable H s.t. $\sum_h p(h) \le 1$ (e.g., $p(h) = 2^{-|d(h)|}$ for a prefixfree d), any $\delta \in (0,1), m \in \mathbb{N}$, and any distribution D s.t. $\exists h^* \in H, L_D(h^*) = 0$, with probability $\ge 1 - \delta$ over $S \sim D^m$, $L_D(\text{MDL}_p(S)) \le \frac{\ln\left(\frac{1}{p(h^*)}\right) + \ln(1/\delta)}{m} = \frac{|d(h^*)| \ln(2) + \ln(1/\delta)}{m}.$

- Can learn any countable class!
 - Class of all computable functions.
 - Class numerable with $n: H \to \mathbb{N}$ with $p(h) = 2^{-n(h)}$.
- But the VC dimension of all computable functions is infinite!
- Why no contradiction to Fundamental Theorem?
 - PAC Learning: sample complexity $m(\epsilon, \delta)$ is uniform over all $h \in H$. Depends on H, but not on any specific $h^* \in H$
 - MDL: sample complexity $m(\epsilon, \delta, h)$ depends on $h \in H$.

Uniform and Non-Uniform Learning

Definition. A hypothesis class H is agnostically-PAC-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2$, $\exists m(\epsilon, \delta) \in \mathbb{N}$, $\forall h \in H$, $\forall D$, $\mathbb{P}_{S \sim D^{m(\epsilon, \delta)}} \left\{ L_D(A(S)) \leq L_D(h) + \epsilon \right\} \geq 1 - \delta$.

Definition. A hypothesis class H is non-uniformly-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2, \forall h \in H, \exists m(h, \epsilon, \delta) \in \mathbb{N}, \forall D,$ $\mathbb{P}_{S \sim D^{m(h,\epsilon,\delta)}} \left\{ L_D(A(S)) \leq L_D(h) + \epsilon \right\} \geq 1 - \delta.$

Corollary. For any prior p over a countable H s.t. $\sum_h p(h) \leq 1$ and any $h^* \in H$. With sample complexity $m(h^*, \epsilon, \delta) = \frac{\ln\left(\frac{1}{p(h^*)}\right) + \ln(1/\delta)}{\epsilon},$ for any distribution D s.t. $L_D(h^*) = 0,$ $\mathbb{P}_{S \sim D^{m(h^*, \epsilon, \delta)}} \left\{ L_D(\mathrm{MDL}_p(S)) \leq \epsilon \right\} \geq 1 - \delta \, .$

So far: guarantee in the realizable setting. What about general non-uniform learning?

Allowing Errors: Structural Risk Minimization

Given a prior *p* over *H*, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$L_D(h) \le L_S(h) + \sqrt{\frac{\ln(1/p(h)) + \ln(2/\delta)}{2m}}.$$

Minimized by ERM Minimized by MDL

Allowing Errors: Structural Risk Minimization

Given a prior p over H, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$L_D(h) \le L_S(h) + \sqrt{\frac{\ln(1/p(h)) + \ln(2/\delta)}{2m}}.$$

Minimized by ERM

Minimized by MDL

$$SRM_{p}(S) = \arg\min_{h} L_{S}(h) + \sqrt{\frac{\ln(1/p(h))}{2m}}$$
Fit data

Match the prior/simple
/short description

Theorem. For prior p over a countable H s.t. $\sum_{h} p(h) \le 1$, any distribution

D, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$L_D(\operatorname{SRM}_p(S)) \le \inf_h \left(L_D(h) + 2\sqrt{\frac{\ln(1/p(h)) + \ln(2/\delta)}{2m}} \right)$$

Non-Uniform Learning: Beyond Cardinality

- So far: we considered countable classes *H*.
- Essentially, we generalized a cardinality-based bound using a prior $p: H \rightarrow [0,1]$.
- What about *uncountable* classes?
 - Example: $H = \{x \mapsto \text{sign}(f(x)) \mid f : \mathbb{R}^d \to \mathbb{R} \text{ is a polynomial} \}.$
 - $\operatorname{vc}(H) = \infty$.
 - *H* is uncountable, and there is no prior *p* such that $\forall_{h \in H} p(h) > 0$.
 - What if we bias towards lower order polynomials?
- Answer 1: use a prior over *hypothesis classes*.
 - Describe $H = \bigcup_{r \in \mathbb{N}} H_r$ (e.g., H_r is degree-r polynomials).
 - Use prior $p(H_r)$ over hypothesis classes.

Prior Over Hypothesis Classes

- VC bound: $\forall_r \mathbb{P}_{S \sim D^m} \left[\forall h \in H_r : L_D(h) \leq L_S(h) + \epsilon_r \right] \geq 1 \delta_r$, where $\epsilon_r = O\left(\sqrt{\frac{\text{vc}(H_r) + \ln(1/\delta_r)}{m}}\right)$.
- Setting $\delta_r = p(H_r) \cdot \delta$ and taking a union bound over r implies:

$$\mathbb{P}_{S \sim D^m} \left[\forall r \forall h \in H_r : L_D(h) \le L_S(h) + \epsilon_r \right] \ge 1 - \delta, \text{ where } \epsilon_r = O\left(\sqrt{\frac{\text{vc}(H_r) + \ln(1/p(H_r)) + \ln(1/\delta)}{m}}\right).$$

$$SRM_p(S) = \arg\min_{r,h \in H_r} L_S(h) + c\sqrt{\frac{\operatorname{vc}(H_r) + \ln(1/p(H_r))}{m}}$$

Theorem. For $H = \bigcup_{r \in \mathbb{N}} H_r$ and prior $p(H_r)$ s.t. $\sum_r p(H_r) \le 1$, any distribution D, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\ge 1 - \delta$ over $S \sim D^m$:

$$L_D(\operatorname{SRM}_p(S)) \le \inf_{r,h \in H_r} \left(L_D(h) + c\sqrt{\frac{\operatorname{vc}(H_r) + \ln(1/p(H_r)) + \ln(1/\delta)}{m}} \right).$$

Prior Over Hypothesis Classes

Theorem. For $H = \bigcup_{r \in \mathbb{N}} H_r$ and prior $p(H_r)$ s.t. $\sum_r p(H_r) \le 1$, any distribution D, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\ge 1 - \delta$ over $S \sim D^m$: $L_D(\text{SRM}_p(S)) \le \inf_{r,h \in H_r} \left(L_D(h) + c\sqrt{\frac{\text{vc}(H_r) + \ln(1/p(H_r)) + \ln(1/\delta)}{m}} \right).$

- When $H_r = \{h_r\}$, $vc(H_r) = 0$, reduces to "standard" SRM guarantee over countable class.
- When there is r_0 such that $p(H_{r_0}) = 1$, reduces to ERM over H_r .
- $H = \{x \mapsto \text{sign}(f(x)) \mid f : \mathbb{R}^d \to \mathbb{R} \text{ is a polynomial} \}$
 - $H = \bigcup_{r \in \mathbb{N}} H_r$ (H_r is degree-r polynomials), and prior $p(H_r) = 2^{-r}$.

•
$$m(h, \epsilon, \delta) = O\left(\frac{d^{\deg(h)} + \deg(h) + \ln(1/\delta)}{\epsilon^2}\right).$$

SRM in Practice

$$SRM_p(S) = \arg\min_{r,h \in H_r} L_S(h) + c\sqrt{\frac{\operatorname{vc}(H_r) + \ln(1/p(H_r))}{m}}$$

• Typically, $vc(H_r)$ and $ln(1/p(H_r))$ are monotone in "complexity" $r: H \to \mathbb{N}$.

$$\mathcal{H}_r = \{h | r(h) \leq r\}$$
 (or $\mathcal{H}_r = \{h | r(h) = r\}$)

- View as a bi-criterion optimization problem:
 - arg min{ $L_S(h)$ and r(h)}, where $r(h) = \min\{r \in \mathbb{N} \mid h \in H_r\}$.

SRM in Practice

 $arg min L_S(h) and r(h)$

Regularization-Path = {arg min $L_S(h) + \lambda r(h) \mid 0 \le \lambda < \infty$ }, or: {arg min $L_S(h)$ s.t. $r(h) \le r \mid 0 \le r < \infty$ }

Uniform and Non-Uniform Learning

Definition. A hypothesis class H is agnostically-PAC-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2$, $\exists m(\epsilon, \delta) \in \mathbb{N}$, $\forall h \in H$, $\forall D$, $\mathbb{P}_{S \sim D^{m(\epsilon, \delta)}} \left\{ L_D(A(S)) \leq L_D(h) + \epsilon \right\} \geq 1 - \delta$.

Definition. A hypothesis class H is non-uniformly-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2, \forall h \in H, \exists m(h, \epsilon, \delta) \in \mathbb{N}, \forall D,$ $\mathbb{P}_{S \sim D^{m(h,\epsilon,\delta)}} \left\{ L_D(A(S)) \leq L_D(h) + \epsilon \right\} \geq 1 - \delta.$

Theorem. A hypothesis class H is non-uniformly-learnable if and only if H is a countable union of finite VC classes $(H = \bigcup_{r \in \mathbb{N}} H_r \text{ and } \forall_r \text{vc}(H_r) < \infty)$.

Definition. A hypothesis class H is consistently-learnable if there exists a learning rule A such that $\forall (\epsilon, \delta) \in (0,1)^2, \forall h \in H, \forall D, \exists m(h,D,\epsilon,\delta) \in \mathbb{N},$ $\mathbb{P}_{S \sim D^{m(h,\epsilon,\delta)}} \left\{ L_D(A(S)) \leq L_D(h) + \epsilon \right\} \geq 1 - \delta.$

Claim. There exists domain *X* and a class *H* that is consistently-learnable but **not** non-uniformly-learnable.

Non-Uniform Learning: Beyond Cardinality

- So far: we considered countable classes *H*.
- Essentially, we generalized a cardinality-based bound using a prior $p: H \rightarrow [0,1]$.
- What about *uncountable* classes?
- Answer 1: use a prior over *hypothesis classes*.
- Answer 2: PAC-Bayes Theory.
 - Prior *P* (not necessarily discrete) over *H*.

PAC-Bayes

- So far we have used a discrete prior/distribution over hypotheses, or discrete prior over hypothesis classes (in MDL and SRM).
- What about arbitrary distributions/priors over uncountable *H*?
- Consider randomized (average) predictor h_O defined as:
 - $h_Q(x) = y$ w.p. $\mathbb{P}_{h \sim Q}(h(x) = y)$.
 - $L_D(h_Q) = \mathbb{E}_{(x,y)\sim D} \mathbb{E}_{h\sim Q} \mathbf{1}[h(x) \neq y] = \mathbb{E}_{h\sim Q} L_D(h).$

Theorem. For any class H and any prior distribution P over H, any distribution D over $X \times Y$, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$\forall \text{ posterior dist'ns } Q \text{ over } H: \mid L_D(h_Q) - L_S(h_Q) \mid \leq \sqrt{\frac{\mathrm{KL}(Q \mid \mid P) + \log(2m/\delta)}{2(m-1)}}.$$

PAC-Bayes

Theorem. For any class H and any prior distribution P over H, any distribution D over $X \times Y$, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$\forall \text{ posterior dist'ns } Q \text{ over } H: \mid L_D(h_Q) - L_S(h_Q) \mid \leq \sqrt{\frac{\text{KL}(Q \mid |P) + \log(2m/\delta)}{2(m-1)}}.$$

- Non-vacuous only when $supp(Q) \subseteq supp(P)$.
- Finite *H* with *P* being uniform over *H*.
 - For *Q* being point mass on some $h \in H$, $KL(Q | | P) = \log |H|$.
- ullet More generally, for discrete distributions P and point-mass Q,
 - KL(Q | | P) = log(1/P(h)).
- For continuous *P* (e.g., over linear predictors or polynomials)
 - If Q is point mass, then KL(Q | | P) is infinite.

PAC-Bayes

Theorem. For any class H and any prior distribution P over H, any distribution D over $X \times Y$, any $\delta \in (0,1), m \in \mathbb{N}$, with probability $\geq 1 - \delta$ over $S \sim D^m$:

$$\forall \text{ posterior dist'ns } Q \text{ over } H: \mid L_D(h_Q) - L_S(h_Q) \mid \leq \sqrt{\frac{\text{KL}(Q \mid \mid P) + \log(2m/\delta)}{2(m-1)}}.$$

SRM-style: $\underset{Q}{\operatorname{arg \, min}} L_{S}(h_{Q}) + \lambda \operatorname{KL}(Q \mid \mid P)$

Claim. Solution is $Q_{\lambda}(h) \propto P(h)e^{-\eta L_{S}(h)}$, for some "inverse temperature" η .

Summary

- Non-uniform Learning.
- Occam's Razor.
- Minimum-Description-Length and Structural-Risk-Minimization.
- Takeaway: any target concept is learnable with sample complexity depending on its description length.