18MAB101T- CALCULUS AND LINEAR ALGEBRA

Assignment

If
$$u = x^2$$
 and $v = y^2$ find $\frac{\partial(u, v)}{\partial(x, y)}$

- 1. If $x = u^2 v^2$ and y = 2uv find the Jacobian of x and y with respect to u and v.
- 2. If $u = x^2 2y$, v = x + y prove that $\frac{\partial(u, v)}{\partial(x, y)} = 2x + 2$
- 3. If x = u(1-v), y = uv, verify that $\frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(u, v)}{\partial(x, y)} = 1$
- 4. If $x = e^u \cos v$, $y = e^u \sin v$ find $\frac{\partial(x, y)}{\partial(u, v)}$
- 5. Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 if $y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3}$.
- 6. Determine whether $u = y + z, v = x + 2z^2, w = x 4yz 2y^2$ are functionally dependent. If so find the relation between them.
- 7. If $x = r\cos\theta$, $y = r\sin\theta$, z = z find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$.
- 8. Determine whether $u = \frac{x+y}{x-y}$ and $v = \frac{xy}{(x-y)^2}$ are functionally dependent. If so find the relation between them.
- 10. If F = xu + v y, $G = u^2 + vy + w$, H = zu v + vw. Compute $\frac{\partial (F, G, H)}{\partial (u, v, w)}$