Welcome to Lecture 08

Al503: Advanced Machine Learning

Summary – last week

SIMMALY

- Last week:
 - Mining Sequence Patterns

- This week:
 - -Time Series Data

Time-Series Data

Time-series databases

- Time series reveal temporal behavior of the underlying mechanism that produced the data
- Consists of sequences of values or events changing with time
- Data is recorded at regular intervals

Time-Series Data

Applications

- Financial
 - Stock market, sales forecasting, inflation

Industry

- Power consumption, workload projections, process and quality control
- Meteorological
 - Observation of natural phenomena such as precipitation, temperature, wind, earthquakes

Time-Series Data

- Goals of time-series data analysis
 - Modeling time-series

Get insight into the mechanisms or underlying forces that

generate the time series

- Forecasting time-series
 - Predict the future values of the time-series variables
- Methods
 - Trend analysis
 - Similarity search

- Application of statistical techniques e.g., regression analysis, to make and justify statements about trends in the data
- Construct a model, independent of anything known about the physics of the process, to explain the behavior of the measurement
 - E.g., increasing or decreasing trend, that can be statistically distinguished from random behavior: take daily average temperatures at a given location, from winter to summer

Regression analysis (RA)

- Popular tool for modeling time series, finding trends and outliers in data sets
- Analysis of numerical data consisting of values of a dependent variable (also called a response variable) and of one or more independent variables
 - The dependent variable in the regression equation is modeled as a function of the independent variables, corresponding parameters ("constants") and an error term

- RA, example: determine appropriate levels of advertising for a particular market segment
 - Consider the problem of managing sales of Coca
 Cola at large college campuses
 - Sales over one semester might be influenced by ads in the college paper, ads on the campus radio station, sponsorship of sports-related events, sponsorship of contests, etc.
 - Use data on advertising and promotional expenditures at many different campuses to extract the marginal value of dollars spent in each category

- Set up a model of the following type:
 - sales = b_0 + b_1 (print budget) + b_2 (radio budget) + b_3 (sports promo budget) + b_4 (other promo) + error
- This model is called **linear regression analysis**
 - $Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_n X_n$
 - Y = predicted score
 - b_0 = intercept/origin of regression line
 - b_i = regression coefficient representing unit of change in dependent variable with the increase in I unit on X variable. The values of these coefficient can be calculated using Ordinary Least Square method.

- Correlation (noted R)
 - Refers to the interdependence or co-relationship of Variables
 - The correlation is denoted by Pearson Correlation Coefficient (PCC).

• Reflects the closeness of the linear relationship between X

andY

• Lies between - I and I with

Regression trend channels (RTC)

Very useful in defining and containing the trend of the market

Beginning of RTC calculation

When the prices
 break a well
 established trend
 channel, the market
 usually changes
 trend

Upper & Lower trendline?

- What is RTC?
 - The mathematical **standard deviation** of the linear
 - regression
 - Basically it is made up of three parallel lines
 - The center line is the linear regression line
 - This center line is bracketed by two additional lines that represent the +/- standard deviation of the linear regression data

- The linear regression model is the most simple
- model, but there are others
 - Nonlinear regression (the model function is not linear in the parameters), Bayesian methods, etc.
- Regression analysis can't capture all trend movements that occur in real-world applications
 - The solution is to decompose time-series into basic movements
- Basic movements?

- Characteristic time-series movements (components)
 - Trend (T)
 - Reflects the long term progression of the series
 - Seasonal (S)
 - Seasonal fluctuations i.e., almost identical patterns that a time series appears to follow during corresponding months of successive years
 - Cycle (C)
 - Describes regular fluctuations caused by the economic cycle e.g., business cycles
 - Irregular (I)
 - Describes random, irregular influences

- Time-series decomposition
 - Additive Modal
 - Time-series =T + C + S + I
 - Multiplicative Modal
 - Time-series =T × C × S × I
- To perform decomposition we must identify each of the 4 movements in the time-series

Trend analysis (T), methods

- The freehand method
 - Fit the curve by looking at the graph
 - Costly and barely reliable for large-scaled data mining
- The least-square method
 - Find the curve minimizing the sum of the squares of the deviation of points on the curve from the corresponding data points
- The **moving-average** method
 - Eliminates cyclic, seasonal and irregular patterns
 - Loss of end data
 - Sensitive to outliers

- Moving average (MA) of order n

$$\underbrace{\frac{y_1 + y_2 + \dots + y_n}{n}, \, \frac{y_2 + y_3 + \dots + y_{n+1}}{n}, \, \frac{y_3 + y_4 + \dots + y_{n+2}}{n}, \dots}_{n}$$
 • E.g.,

Moving average

 Influence of extreme values can be reduced with weighted moving average (WMA)

WMA is MA with weights e.g., WMA(3) with (1,4,1) as weights

Moving average

- Other forms of MA
 - Cumulative moving average (CA), also called long running average $CA_i = \frac{x_1 + \cdots + x_i}{x}$.

$$CA_{i+1} = CA_i + \frac{x_{i+1} - CA_i}{i+1}$$
.

- Exponential weighted moving average (EWMA), applies weighting factors which decrease exponentially
 - Gives much more importance to recent observations while still not discarding older observations entirely

Estimation of seasonal variations (S)

- Seasonal index
 - Set of numbers showing the relative values of a variable during the months of the year
 - E.g., if the sales during October, November, and December are 80%, I 20%, and I 40% of the average monthly sales for the whole year, respectively, then 80, I 20, and I 40 are seasonal index numbers for these months
- Deseasonalized data
 - Data adjusted for seasonal variations
 - E.g., divide the original monthly data by the seasonal index numbers for the corresponding months

Estimation of seasonal variations (S)

- Estimation of cyclic variations (C)
 - If (approximate) periodicity of cycles occurs, cyclic index can be constructed in much the same manner as seasonal indexes
- Estimation of irregular variations (I)
 - By adjusting the data for trend, seasonal and cyclic variations
- With the systematic analysis of the trend, cyclic, seasonal, and irregular components, it is possible to make **long- or short-term predictions** (timeseries forecasting) with reasonable quality

- Time-series forecasting
 - Finds a mathematical formula that will approximately generate the historical patterns
 - Forecasting models:most popular, auto-regressive integrated moving average (ARIMA)
 - ARIMA can be applied in cases where data show evidence of non-stationarity

- Applications of trend analysis
 - Foreign exchange market (FOREX)
 - High data volume
 - Small granularity

hours a candle for FOREX E.g. Walmart Currency change

Granularity change

- Use Japanese candlesticks for data representation

- Simple moving average for trend analysis
 - E.g., SMA with window size of 21 bars

- Why do we need trends?
 - Once we have found a trend, we can trade
 - Open position when in the trend (buy if it will go up, or sell if it will go down)

• Close position on trend turns: detect turns with Bollinger bands, resistance lines, etc.

- Bollinger bands
 - Calculated based on the moving average
 - N standard deviations up, N down
 - Useful for detection of over-buy and over-sell

- Psychological pressure of the market
 - Resistance lines are determined by the reaction of the market participants to the previous evolution of the data

- And there are many more indicators for in the trend and on trend turns
 - E.g., momentum analysis

Similarity Search

Similarity search

- Normal database queries find exact matches
- Similarity search finds data
 sequences that differ only slightly
 from the given query sequence

 Problem: given a time-series database, identify all the sequences that are similar to one another

Similarity Search

Typical applications

- Financial market
 - Finding stock items with similar trends
- Market basket
 - Finding products with similar sales trends
- Scientific databases
 - Finding periods with similar temperature patterns, finding persons with similar voice clips

Summary

-Time Series Data

Next week

- Classification