

Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

J. A. Pellish¹, P. W. Marshall², K. P. Rodbell³, M. S. Gordon³, K. A. LaBel¹, J. R. Schwank⁴, N. A. Dodds⁴, C. M. Castaneda⁵, M. D. Berg⁶, H. S. Kim⁶, A. M. Phan⁶, and C. M. Seidleck⁶

- 1: NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
- 2: NASA consultant, Brookneal, VA USA
- 3: IBM Thomas J. Watson Research Center, Yorktown Heights, NY USA
- 4: Sandia National Laboratories, Albuquerque, NM USA
- 5: University of California at Davis, Davis, CA USA
- 6: ASRC Federal Space & Defense, Greenbelt, MD USA

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

www.nasa.gov

Acronyms

- CMOS: complementary metal oxide semiconductor
- CNL: Crocker Nuclear Laboratory
- CSDA: continuous slowing down approximation
- DBU: double-bit upset
- DUT: device under test
- IBM YKT: Yorktown Heights, NY
- ICRU: International Commission on Radiation Units & Measurements
- IEEE: Institute of Electrical and Electronics Engineers
- IUCF: Indiana University Cyclotron Facility
- LBNL: Lawrence Berkeley National Laboratory
- LEP: low-energy proton
- MCU: multi-cell upset (errors not necessarily in the same data word)
 - Different from multi-bit upset (MBU)

- NIST: National Institute of Standards and Technology
 - ASTAR and PSTAR are NIST tools, not acronyms
- NPTC: Northeast Proton Therapy Center
- SBU: single-bit upset
- SEEM: secondary electron emission monitor
- SEU: single-event upset
- SOI: silicon on insulator
- SRAM: static random access memory
- SRIM: Stopping and Range of Ions in Matter (software program)
- TNS: Transactions on Nuclear Science
- TRIUMF: not an acronym formerly the Tri-University Meson Facility, Vancouver, Canada
- UC Davis: University of California at Davis

Outline

- Introduction
 - Low-energy protons (LEPs)
 - Test facility setup
- Protons vs. alphas
- DUT is 32 nm SOI CMOS
 128 Mb SRAM
 - Heavy ion data baseline
 - DUT is in a flip-chip package
- SBU and MCU SRAM data
- Die thickness reverse engineering with SRIM
- Summary

UC Davis CNL Test Setup

Test board

User-Controlled Degrader Foil Chamber

Early Low-Energy Proton Data

D. F. Heidel et al., IEEE TNS, vol. 6, 2008.

B. D. Sierawski et al., IEEE TNS, vol. 6, 2009.

- Cross sections are plotted as a function of <u>incident</u> proton energy inversely proportional to degrader thickness.
 - Several implications: changes to the energy distribution shape, flux depletion near end-of-range, etc.
 - Can plot data as a function of degrader thickness.
- How do we know the mean energy and standard deviation?

The Problem with LEPs – Range & dE/dx

NIST PSTAR tool (ICRU Report 49, 1993).

- Greatest effect in the shortest distance
- Short range in region of interest implies flux depletion
- Cross sections tend to be uncorrected for flux loss and plotted as a function of known quantities (e.g., degrader thickness)

The Alpha (4He) Alternative

H⁺ starts at 6.5 MeV
- CNL uses
~13 MeV H₂⁺ to
generate LEPs

NIST ASTAR/PSTAR tool (ICRU Report 49, 1993).

 Hypothesis: Alpha particles can replace LEPs for direct ionization single-event effects testing.

In the context of LEPs, mentioned as early as 2009 – B. D. Sierawski et al., including J. Pellish.

UC Davis Crocker Nuclear Laboratory

Assuming Setup In-Air (can do vacuum)

- Beam diameter on 0.25 mil Ta foil is ~5/16 in.
- Defining collimator is 2.75 in with acceptance angle of 0.018 rad.
- Secondary electron emission monitor (SEEM) uses three
 0.25 mil Al foils.
- User-selected degraders can be Al or Mylar.
- Exit window is 5 mil Kapton.
- Air gap is user-selected within experimental parameters.

Courtesy of T. Essert and M. Van de Water (UCD/CNL).

30 MeV Alpha SEU Data 0x0000 Pattern

Error bars, if shown, are at the 90% confidence level.

6.5 MeV Proton SEU Data 0x0000 Pattern

Error bars, if shown, are at the 90% confidence level.

Data Comparison – Side-by-Side

- On the low-energy side of the Bragg peak, the cross sections are similar, but the type of events are not.
- One of the key features is the separation between SBUs and DBUs.

Alpha & Proton DBU Fraction

Shows both 0x0000 and 0xFFFF data patterns.

Physical Failure Maps – Alphas 0x0000 Pattern

- SGL
- MBU2
- MBU3
- MBU4

Single

WordLine BitLine Diagonal

- 30 MeV primary
 - No user degrader
 - Actual alpha energy below primary tune
- Only 14 total MCUs
 - All DBUs
 - 4 on left, 10 on right
- For alpha/proton comparison, remember, these plots are absolute event counts.
 - Total fluence and LET dependencies.

In legend – MBU = MCU

Physical Failure Maps – Protons 0x0000 Pattern

SGL
MBU2
MBU3
MBU4
Single
WordLine
BitLine
Diagonal

- 6.5 MeV primary
 - No user degrader
 - Actual proton energy below primary tune
- 32 total MCUs
 - 13 on left, 19 on right
- Most MCUs are word-line DBUs
 - One 3-bit MCU and one 4-bit
 MCU both word line
- For alpha/proton comparison, remember, these plots are absolute event counts.
 - Total fluence and LET dependencies.

In legend – MBU = MCU

Incorporation of SRIM Simulations to Calculate Die Thickness

- Fail mapping can be used to isolate areas of interest for analysis.
- Beam stopping degrader thickness can be used to "back out" silicon die thickness.

Summary

- Low-energy proton testing is challenging.
- At this point, there appears to be no suitable proxy for the observed single-event effects produced by low-energy protons.
 - While alpha particle and proton SBU behavior seems to be proportional to LET, the MCU behavior is not.
 - There are subsequent implications for radiation hardness assurance.
 - May be more room for compromise at CMOS technology nodes > 65 nm.
- Additional analysis techniques presented to aid data reduction efforts.
 - Many technologies are flip-chip (such as our SRAM DUT), and die thickness uncertainty has always been one of the larger sources of systematic error.

Acknowledgements

- NASA Electronic Parts and Packaging Program
- Defense Threat Reduction Agency
- National Reconnaissance Office

Questions?