CSI2110 Data Structures and Algorithms

Trees

A graph G = (V,E) consists of an set V of VERTICES and a set E of edges, with $E = \{(u,v): u,v \in V, u \neq v\}$

A tree is a connected graph with no cycles.

 \rightarrow \exists a path between each pair of vertices.

- Graph S A graph is a pair (V, E), where
 - -V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a road
- Directed graph
 - all the edges are directed
 - e.g., flight network
- · Undirected graph
 - all the edges are undirected
 - e.g., road map

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Graphs

6

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- · Self-loop
 - j is a self-loop

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1=(V,b,X,h,Z)$ is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

· Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C_1 =(V,b,X,g,Y,f,W,c,U,a, \rightarrow) is a simple cycle
 - C_2 =(U,c,W,e,X,g,Y,f,W,d,V,a, \bot) is a cycle that is not simple

Properties

Property 1

 $\Sigma_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$

Proof: each endpoint is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n - 1)

Notation

n

m

deg(v)

number of vertices number of edges degree of vertex v

Example

$$- n = 4$$

$$- m = 6$$

$$- \deg(v) = 3$$

Connected Graphs

A (non-directed) graph is connected if there exists a path \forall u, v \in V.

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - aVertex()
 - incidentEdges(v)
 - endVertices(e)
 - isDirected(e)
 - origin(e)
 - destination(e)
 - opposite(v, e)
 - areAdjacent(v, w)

- Update methods
 - insertVertex(o)
 - insertEdge(v, w, o)
 - insertDirectedEdge(v, w, o)
 - removeVertex(v)
 - removeEdge(e)
- Generic methods
 - numVertices()
 - numEdges()
 - vertices()
 - edges()

There could be other methods

Representations

Edge List Adjacency List Adjacency Matrix Incidence Matrix

Edge List Structure (example)

Space:

$$n + m$$

Edge List Structure Vertex object

- - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- · Edge sequence
 - sequence of edge objects

Adjacency List (example)

Often, the node out-degree is kept at the node.

Edges augmented by link to node

Adjacency List

(another example -with undirected edges)

Adjacency List (example)

18

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

Adjacency Matrix (example)

If G is non-directed

	1	2	3	4	5
1	0	1	0	1	0
2	0	0	0	0	0
3	0	1	0	0	0
4	0	0	0	0	1
5	0 0 0 0	1	0	0	0

Adjacency Matrix (observation)

Space: n x n

Lots of waste space if the matrix is SPARSE ...

```
      1
      0
      0
      0
      0
      1
      0
      0
      0
      0

      0
      0
      1
      0
      0
      0
      1
      0
      1
      0
      0
      0
      0

      1
      0
      1
      1
      0
      1
      0
      0
      0
      0
      0
      0
      0

      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0

      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0

      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      <td
```

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices

Incidence Matrix (1)

	ℓ_{1}	ℓ_{2}	ℓ_3	$\ell_{f 4}$	ℓ_{5}	ℓ_{6}	ℓ ₇	ℓ ₈	ℓ_{9}
v ₁	-1	1	1	0	0	0	0	0	0
V ₂	1	0	0	1	0	1	0	0	0
V ₃	0	-1	0	-1	1	0	-1	0	0
V ₄	0	0	-1	0	-1	0	0	1	0
V ₅	0	0	0	0	0	0	1	-1	-1
v ₆	0	0	0	0	0	-1	0	0	1

Space:

n x m

Is (v_i, v_j) an edge?

Which nodes are adjacent to v.2

Adjacency Matrix:

O(n)

Adjacency

List:

25

Edge List:

Mark all Edges

Adjacency Matrix:

Adjacency List:

Edge List

Add an Edge (v_i, v_j)

Edge List:

Remove a given Edge $e=(v_i, v_j)$

Adjacency Matrix:

i O(1)

Adjacency

List:

Edge List

	Adjacency Matrix	Adjacency List	
Is (v _i , v _j) an edge?	O(1)	O(deg(i))	
Which nodes are adjacent to v_i ?	O(n)	O(deg(i))	
Mark all edges	O(n ²)	O(m)	
Add edge (v _i , v _j)	O(1)	O(1)	
Remove edge (v_i, v_j) $O(deg(i)) = OUT-degree of respectively.$	O(1) node vi	O(1) What are the	
G is directed		predecessors of v _i ?	29

Performance

 n vertices m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix	
Space	n+m	n + m	n^2	
incidentEdges(v)	m	deg(v)	n	
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1	
insertVertex(o)	1	1	n^2	
insertEdge(v, w, o)	1	1	1	
removeVertex(v)	m	deg(v)	n^2	
removeEdge(e)	1	O(deg(i))	1	

Special Graphs

Bipartite Graphs

Planar Graphs

$$n-1 \le m \le \frac{n(n-1)}{2}$$

$$1 \le d_i \le n-1$$

degree

connected, non-directed

$$n = |V|$$
 $m = |E|$

$$n-1 \le m \le n(n-1)$$

$$1 \le d_i \le n-1$$

OUT-degree

connected, directed

Special Graphs

Biconnected graph: A <u>connected graph</u> that is not broken into disconnected pieces by deleting any single <u>vertex</u> (and incident <u>edges</u>).

Any graph containing a node of degree 1 cannot be biconnected

Some Regular Graphs

— Ring —

Tree
$$m = O(n)$$

— Complete Graph —

$$m = \frac{n(n-1)}{2}$$

$$d_i = n-1 \quad \forall i$$

$$m = O(n^2)$$

— Hypercube —

Hypercube

n

 h_0

 h_1

 h_2

1x2 + 2 = 4

 h_3

8

4x2 + 4 = 12

 h_4

16

12x2 + 8 = 32

 $m_i = i \cdot 2^{i-1}$

h_i:

$$n_0 = 1$$

$$n_i = 2 n_{i-1}$$

$$\longrightarrow n_i = 2^i$$

$$n_i = 2^i$$

$$m_i = i \bullet 2^{i-1}$$

$$\begin{cases} m = \frac{n \log n}{2} \\ \text{degree} = \log n \end{cases}$$

$$m = O(n \log n)$$

— Grid —

Not regular

— Torus —

