The group G is isomorphic to the group labelled by [26, 2] in the Small Groups library. Ordinary character table of $G\cong {\bf C26}$:

	13a	13b	13c	13d	13e	13f	13g	13h	13i	13j	13k	13l	2a	26a	26b	26c	26d	26e	26f	26g	26h	26i	26j	26k	26l
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2 1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_3 1	E(13)	$E(13)^{2}$	$E(13)^{3}$	$E(13)^4$	$E(13)^{5}$	$E(13)^{6}$	$E(13)^{7}$	$E(13)^{8}$	$E(13)^9$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{12}$	1	E(13)	$E(13)^{2}$	$E(13)^{3}$	$E(13)^4$	$E(13)^{5}$	$E(13)^{6}$	$E(13)^{7}$	$E(13)^{8}$	$E(13)^9$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{12}$
χ_4 1	E(13)	$E(13)^{2}$	$E(13)^{3}$	$E(13)^4$	$E(13)^{5}$	$E(13)^{6}$	$E(13)^{7}$	$E(13)^{8}$	$E(13)^9$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{12}$	-1	-E(13)	$-E(13)^2$	$-E(13)^3$	$-E(13)^4$	$-E(13)^5$	$-E(13)^6$	$-E(13)^7$	$-E(13)^{8}$	$-E(13)^9$	$-E(13)^{10}$	$-E(13)^{11}$	$-E(13)^{12}$
χ_5 1	$E(13)^2$	$E(13)^4$	$E(13)^{6}$	$E(13)^{8}$	$E(13)^{10}$	$E(13)^{12}$	E(13)	$E(13)^{3}$	$E(13)^{5}$	$E(13)^{7}$	$E(13)^9$	$E(13)^{11}$	1	$E(13)^{2}$	$E(13)^4$	$E(13)^{6}$	$E(13)^{8}$	$E(13)^{10}$	$E(13)^{12}$	E(13)	$E(13)^{3}$	$E(13)^{5}$	$E(13)^{7}$	$E(13)^9$	$E(13)^{11}$
χ_6 1	$E(13)^{2}$	$E(13)^4$	$E(13)^{6}$	$E(13)^{8}$	$E(13)^{10}$	$E(13)^{12}$	E(13)	$E(13)^{3}$	$E(13)^{5}$	$E(13)^{7}$	$E(13)_{-}^{9}$	$E(13)^{11}$	-1	$-E(13)^2$	$-E(13)^4$	$-E(13)^{6}$	$-E(13)^{8}$	$-E(13)^{10}$	$-E(13)^{12}$	-E(13)	$-E(13)^3$	$-E(13)^5$	$-E(13)^{7}$	$-E(13)^9$	$-E(13)^{11}$
χ_7 1	$E(13)^3$	$E(13)^{6}$	$E(13)^9$	$E(13)^{12}$	$E(13)^{2}$	$E(13)^{5}$	$E(13)^{8}$	$E(13)^{11}$	E(13)	$E(13)^4$	$E(13)^{7}$	$E(13)^{10}$	1	$E(13)^{3}$	$E(13)^{6}$	$E(13)^9$	$E(13)^{12}$	$E(13)^{2}$	$E(13)^{5}$	$E(13)^{8}$	$E(13)^{11}$	E(13)	$E(13)^4$	$E(13)^{7}$	$E(13)^{10}$
700	$E(13)^3$	$E(13)^{6}$		$E(13)^{12}$	$E(13)^{2}$	$E(13)^{5}$	$E(13)^{8}$	$E(13)^{11}$	E(13)	$E(13)^4$	$E(13)^{7}$	$E(13)^{10}$	-1	$-E(13)^3$	$-E(13)^{6}$	$-E(13)^9$	$-E(13)^{12}$	$-E(13)^2$	$-E(13)^5$	$-E(13)^{8}$	$-E(13)^{11}$	-E(13)	$-E(13)^4$	$-E(13)^{7}$	$-E(13)^{10}$
700	$E(13)^4$	$E(13)^{8}$	$E(13)^{12}$	$E(13)^{3}$	$E(13)^{7}$	$E(13)^{11}$	$E(13)^{2}$	$E(13)^{6}$	$E(13)^{10}$	E(13)	$E(13)^{5}$	$E(13)^9$	1	$E(13)^4$	$E(13)^{8}$	$E(13)^{12}$	$E(13)^3$	$E(13)^{7}$	$E(13)^{11}$	$E(13)^2$	$E(13)^{6}$	$E(13)^{10}$	E(13)	$E(13)^{5}$	$E(13)^9$
7010	$E(13)^4$	$E(13)^{8}$	$E(13)^{12}$	$E(13)^3$	$E(13)^{7}$	$E(13)^{11}$	$E(13)^{2}$	$E(13)^{6}$	$E(13)^{10}$	E(13)	$E(13)^{5}$	$E(13)^9$	-1	$-E(13)^4$	$-E(13)^{8}$	$-E(13)^{12}$	$-E(13)^3$	$-E(13)^7$	$-E(13)^{11}$	$-E(13)^2$	$-E(13)^6$	$-E(13)^{10}$	-E(13)	$-E(13)^5$	$-E(13)^9$
/(11	$E(13)^5$	$E(13)^{10}$	$E(13)^2$	$E(13)^{\gamma}$	$E(13)^{12}$	$E(13)^4$	$E(13)^9$	E(13)	$E(13)^6$	$E(13)^{11}$	$E(13)^3$	$E(13)^{8}$	1	$E(13)^5$	$E(13)^{10}$	$E(13)^2$	$E(13)^{7}$	$E(13)^{12}$	$E(13)^4$	$E(13)^9$	E(13)	$E(13)^{6}$	$E(13)^{11}$	$E(13)^3$	$E(13)^{8}$
/(12	$E(13)^5$	$E(13)^{10}$	$E(13)^2$	$E(13)^{\gamma}$	$E(13)^{12}$	$E(13)^4$	$E(13)^9$	E(13)	$E(13)^6$	$E(13)^{11}$	$E(13)^3$	$E(13)^8$	-1	$-E(13)^5$	$-E(13)^{10}$	$-E(13)^2$	$-E(13)^7$	$-E(13)^{12}$	$-E(13)^4$	$-E(13)^9$	-E(13)	$-E(13)^6$	$-E(13)^{11}$	$-E(13)^3$	$-E(13)^{8}$
7.0-0	$E(13)^6$	$E(13)^{12}$	$E(13)^5$	$E(13)^{11}$	$E(13)^4$	$E(13)^{10}$	$E(13)^{3}$	$E(13)^9$	$E(13)^2$	$E(13)^8$	E(13)	$E(13)^7$	1	$E(13)^6$	$E(13)^{12}$	$E(13)^5$	$E(13)^{11}$	$E(13)^4$	$E(13)^{10}$	$E(13)^3$	$E(13)^9$	$E(13)^2$	$E(13)^8$	E(13)	$E(13)^7$
/ (1 1	$E(13)^6$	$E(13)^{12}$	$E(13)^5$	$E(13)^{11}$	$E(13)^4$	$E(13)^{10}$	$E(13)^3$	$E(13)^9$	$E(13)^2$	$E(13)^8$	E(13)	$E(13)^7$	-1	$-E(13)^6$	$-E(13)^{12}$	$-E(13)^5$	$-E(13)^{11}$	$-E(13)^4$	$-E(13)^{10}$	$-E(13)^3$	$-E(13)^9$	$-E(13)^2$	$-E(13)^8$	-E(13)	$-E(13)^{7}$
/ 0 = 0	$E(13)^7$	E(13)	$E(13)^8$	$E(13)^2$	$E(13)^9$	$E(13)^3$	$E(13)^{10}$	$E(13)^4$	$E(13)^{11}$	$E(13)^5$	$E(13)^{12}$	$E(13)^6$	1	$E(13)^7$	E(13)	$E(13)^8$	$E(13)^2$	$E(13)^9$	$E(13)^3$	$E(13)^{10}$	$E(13)^4$	$E(13)^{11}$	$E(13)^5$	$E(13)^{12}$	$E(13)^6$
7010	$E(13)^7$	E(13)	$E(13)^8$	$E(13)^2$	$E(13)^9$	$E(13)^3$	$E(13)^{10}$	$E(13)^4$	$E(13)^{11}$	$E(13)^5$	$E(13)^{12}$	$E(13)^6$	-l	$-E(13)^7$	-E(13)	$-E(13)^8$	$-E(13)^2$	$-E(13)^9$	$-E(13)^3$	$-E(13)^{10}$	$-E(13)^4$	$-E(13)^{11}$	$-E(13)^5$	$-E(13)^{12}$	$-E(13)^{6}$
7011	$E(13)^8$	$E(13)^3$	$E(13)^{11}$	$E(13)^6$	E(13)	$E(13)^9$	$E(13)^4$	$E(13)^{12}$	$E(13)^7$	$E(13)^2$	$E(13)^{10}$	$E(13)^5$	1	$E(13)^8$	$E(13)^3$	$E(13)^{11}$	$E(13)^6$	E(13)	$E(13)^9$	$E(13)^4$	$E(13)^{12}$	$E(13)^{7}$	$E(13)^2$	$E(13)^{10}$	$E(13)^5$
/ 0 - 0	$E(13)^8$	$E(13)^3$	$E(13)^{11}$	$E(13)^6$	E(13)	$E(13)^9$	$E(13)^4$	$E(13)^{12}$	$E(13)^7$	$E(13)^2$	$E(13)^{10}$	$E(13)^5$	-l	$-E(13)^8$	$-E(13)^3$	$-E(13)^{11}$	$-E(13)^6$	-E(13)	$-E(13)^9$	$-E(13)^4$	$-E(13)^{12}$	$-E(13)^7$	$-E(13)^2$	$-E(13)^{10}$	$-E(13)^{5}$
1	$E(13)^9$	$E(13)^5$	E(13)	$E(13)^{10}$	$E(13)^6$	$E(13)^2$	$E(13)^{11}$	$E(13)^7$	$E(13)^3$	$E(13)^{12}$	$E(13)^8$	$E(13)^4$	1	$E(13)^9$	$E(13)^5$	E(13)	$E(13)^{10}$	$E(13)^6$	$E(13)^2$	$E(13)^{11}$	$E(13)^7$	$E(13)^3$	$E(13)^{12}$	$E(13)^8$	$E(13)^4$
7620	$E(13)^9$	$E(13)^5$	E(13) $E(13)^4$	$E(13)^{10}$	$E(13)^6$	$E(13)^2$ $E(13)^8$	$E(13)^{11}$	$E(13)^7$	$E(13)^3$	$E(13)^{12}$	$E(13)^8$ $E(13)^6$	$E(13)^4$	-1 1	$-E(13)^9$	$-E(13)^5$	-E(13)		$-E(13)^6$	$-E(13)^2$	$-E(13)^{11}$	$-E(13)^7$	$-E(13)^3$	$-E(13)^{12}$	$-E(13)^8$ $E(13)^6$	$-E(13)^4$
1 1 1	$E(13)^{10}$ $E(13)^{10}$	$E(13)^7$ $E(13)^7$	$E(13)^4$	$E(13) \\ E(13)$	$E(13)^{11}$ $E(13)^{11}$	$E(13)^8$	$E(13)^5$ $E(13)^5$	$E(13)^2$ $E(13)^2$	$E(13)^{12}$ $E(13)^{12}$	$E(13)^9$ $E(13)^9$	$E(13)^6$	$E(13)^3$ $E(13)^3$	1	$E(13)^{10}$ - $E(13)^{10}$	$E(13)^7 - E(13)^7$	$E(13)^4$	E(13) - E(13)	$E(13)^{11}$ - $E(13)^{11}$	$E(13)^8 - E(13)^8$	$E(13)^5 - E(13)^5$	$E(13)^2 - E(13)^2$	$E(13)^{12}$ - $E(13)^{12}$	$E(13)^9$ - $E(13)^9$	$-E(13)^6$	$E(13)^3 - E(13)^3$
1 1 1	$E(13)^{11}$	_ `	$E(13)^7$	$E(13)^5$	$E(13)^3$	E(13)	$E(13)^{12}$	$E(13)^{10}$	$E(13)^8$	$E(13)^6$	$E(13)^4$	$E(13)^{2}$ $E(13)^{2}$	-1 1	$E(13)^{11}$	$E(13)^9$	$-E(13)^4$ $E(13)^7$	$E(13)^5$	$E(13)^3$	E(13)	$E(13)^{12}$	$E(13)^{10}$	$E(13)^8$	$E(13)^6$	$E(13)^4$	$E(13)^2$
	$E(13)^{11}$	$E(13)^9$ $E(13)^9$	$E(13)^7$	$E(13)^5$	$E(13)^3$	E(13) $E(13)$	E(13) $E(13)^{12}$	$E(13)^{10}$	$E(13)^8$	$E(13)^6$	$E(13)^4$	$E(13)^2$	_1	$-E(13)^{11}$	$-E(13)^9$	$-E(13)^7$	$-E(13)^5$	$-E(13)^3$	-E(13)	$-E(13)^{12}$	$-E(13)^{10}$	$-E(13)^8$	$-E(13)^6$	$-E(13)^4$	$-E(13)^{2}$
1 1 1	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^9$	$E(13)^8$	$E(13)^7$	$E(13)^6$	$E(13)^5$	$E(13)^4$	$E(13)^3$	$E(13)^2$	E(13) $E(13)$	- ₁	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^9$	$E(13)^8$	$E(13)^7$	$E(13)^6$	$E(13)^5$	$E(13)^4$	$E(13)^3$	$E(13)^2$	E(13)
7020	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^9$	$E(13)^8$	$E(13)^7$	$E(13)^6$	$E(13)^5$	$E(13)^4$	$E(13)^3$	$E(13)^2$	E(13) $E(13)$	_1 _1	$-E(13)^{12}$	$-E(13)^{11}$	$-E(13)^{10}$	$-E(13)^9$	$-E(13)^8$	$-E(13)^7$	$-E(13)^6$	$-E(13)^5$	$-E(13)^4$	$-E(13)^3$	$-E(13)^2$	-E(13) - E(13)

Trivial source character table of $G \cong C26$ at p = 13:

The fourtee character table of $a = 0.20$ at $p = 10$.				
Normalisers N_i	N	1	N_2	
p-subgroups of G up to conjugacy in G	P	1	P_2	
Representatives $n_j \in N_i$	1 <i>a</i>	2a	1a 2a	a
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 $	13	13	0 0	\bigcap
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{19} + 0 \cdot $	13	-13	0 ()
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $		1	1 1	-
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26}$	1	-1	1 –	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)]) \cong C13$

 $N_1 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15)]) \cong C26$ $N_2 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15)]) \cong C26$