

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ_	Информатика и системы управления (ИУ)
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии (ИУ7)

Лабораторная работа №2

Тема: Построение и программная реализация алгоритма многомерной интерполяции табличных функций

Студент: Хамзина Р.Р.

Группа: ИУ7-43Б

Оценка (баллы): _____

Преподаватель: Градов В.М.

Цель работы: получение навыков построения алгоритма интерполяции таблично заданных функций двух переменных.

1 Исходные данные

1. Таблица функции.

y\x	X ₀	X ₁	•••
y_0	$f(x_0,y_0)$	$f(x_1,y_0)$	•••
y_1	$f(x_0,y_1)$	$f(x_1,y_1)$	•••
•••	•••	•••	•••

Для отладки:

y∖x	0	1	2	3	4
0	0	1	4	9	16
1	1	2	5	10	17
2	4	5	8	13	20
3	9	10	13	18	25
4	16	17	20	25	32

2. Степень аппроксимирующих полиномов.

Степень полинома по координате $x-n_x$, степень полинома по координате $y-n_y$.

Для отладки: n_i = 1, 2, 3, где $i \in \{x, y\}$.

3. Значение аргументов х, у, для которого выполняется интерполяция.

Для отладки: x = 1.5, y = 1.5.

2 Код программы

Код программы представлен на листингах.

 $\it Листинг 1 - NewtonInterpolation.py$

```
def SortTable(Table, SizeTable):
         Сортировка таблицы по возрастанию.
    for i in range(SizeTable - 1):
         MinIndex = i
         for j in range(i + 1, SizeTable):
              if Table[j][0] < Table[MinIndex][0]:</pre>
                   MinIndex = j
         Table[MinIndex], Table[i] = Table[i], Table[MinIndex]
     return Table
def CreateConfig(Table, SizeTable, power, argument):
     0.00
         Построение конфигурации узлов из таблицы Table
         размера SizeTable для построение полинома степени
         power при аргументе argument.
    center = 0
    while center < SizeTable:</pre>
         if Table[center][0] >= argument:
              break
          center += 1
    if center == 0:
          return Table[:power + 1]
    if center == SizeTable:
          return Table[SizeTable - power - 1:]
    if abs(Table[center][0] - argument) > abs(argument - Table[center - 1][0]):
          center -= 1
    low = center - power // 2 - 1
    top = center + power // 2 + 1
    if power % 2 == 0:
```

```
return Table[center - power // 2:top]
    if abs(Table[top][0] - argument) > abs(argument - Table[low][0]):
         return Table[low:top]
    return Table[low: top + 1]
def CreateSplitDiff(Table, power):
     0.00
         Построение таблицы разделенных разностей.
         Параметры выбираются из таблицы Table,
         степень полинома power.
    SplitDiff = []
    diffs = []
    for i in range(power + 1):
         diffs.append(Table[i][1])
    SplitDiff.append(diffs)
    for i in range(power):
         size = len(SplitDiff)
         diffs = []
         DiffX = Table[0][0] - Table[i + 1][0]
         for j in range(1, len(SplitDiff[size - 1])):
              DiffY = SplitDiff[size - 1][j - 1] - SplitDiff[size - 1][j]
              diffs.append(DiffY/DiffX)
         SplitDiff.append(diffs)
     return SplitDiff
def NewtonPolynomial(Config, power, argument, SplitDiff):
     0.00
         Получение значения интерполяционного полинома
         Ньютона степени power при аргументе argument.
         Начальная конфигурация Config, таблица разде-
```

```
ленных разностей SplitDiff.
     result = SplitDiff[0][0]
     factor = 1
    for i in range(power):
         factor *= argument - Config[i][0]
         result += SplitDiff[i + 1][0] * factor
     return result
def NewtonInterpolation(Table, SizeTable, power, argument):
         Значение интерполяцинного полинома Ньютона
         при заданной степени power и аргументе argument.
         Параметры выбираются из таблицы Table размером
         SizeTable.
     0.00
    Table = SortTable(Table, SizeTable)
    Config = CreateConfig(Table, SizeTable, power, argument)
    SplitDiff = CreateSplitDiff(Config, power)
     result = NewtonPolynomial(Config, power, argument, SplitDiff)
    return result
Листинг 2 — TwoNewtonInterpolation.py
from NewtonInterpolation import NewtonInterpolation
def TwoNewtonIntrepolation(StartTable, X, Y, PowerX, PowerY,
ArgumentX, ArgumentY):
        Интерполяция функции двух переменных.
        Х, Y - значения координат х и у соответственно.
        StartTable - таблица со значениями z(x,y).
        PowerX, PowerY - степени по координатам x и y
        соответственно.
        ArgumentX, ArgumentY - значения аргументов х и у
        соотвественно.
```

```
TableY = []
for i in range(len(Y)):
    column = []
     column.append(Y[i])
    TableY.append(column)
for i in range(len(StartTable)):
    TableX = []
     for j in range(len(StartTable[i])):
          row = []
          row.append(X[j])
          row.append(StartTable[i][j])
         TableX.append(row)
    ResultX = NewtonInterpolation(TableX, len(TableX), PowerX, ArgumentX)
    TableY[i].append(ResultX)
result = NewtonInterpolation(TableY, len(TableY), PowerY, ArgumentY)
return result
```

3 Результаты работы

- 1) Интерполяция по координате х.
 - 1. Строим таблицу из значений x и значений $f(x, y_j)$, $j = 0, 1, ..., n_y$.
 - 2. Сортируем таблицу в порядке возрастания/убывания.
- 3. Из заданной таблицы TableX строим конфигурацию узлов Config, которые примыкают к заданному значению аргумента х:

X	$f(x, y_j)$
X_0	$f(x_0, y_j)$
X_1	$f(x_1, y_j)$

4. Из конфигурации узлов Config строим таблицу разделенных разностей $(z(x_i, x_t) = (f(x_i, y_j) - f(x_t, y_j) / (x_i - x_t))$ SplitDiff:

$f(x_0, y_j)$	$(f(x_0, y_j) - f(x_1, y_j)) / (x_0)$	
$f(x_1, y_j)$	$-x_1$	$(-x_1)$ $(-(x_1, y_1)$ $(-(x_2, y_1))$
$f(x_2, y_j)$	$(f(x_1, y_j) - f(x_2, y_j)) / (x_1)$	$(y_j)) / (x_1 - x_2)) / (x_0 - x_2)$
	— X ₂)	

5. Выбираем значения из первой строки каждого столбца таблицы разделенных разностей и для значения аргумента х находим полином Ньютона степени n_x:

$$P_n(x) = y_0 + \sum_{k=0}^n (x - x_n) \dots (x - x_{k-1}) y(x_0, x_1, \dots, x_k)$$

6. Пункты 1-5 повторяем ј раз, строя таблицу TableY:

у	$z(x, y_j)$
y ₀	$z(x, y_0)$
y_1	$z(x, y_1)$
•••	

- 2) Интерполяция по координате у.
 - 1. Повторяем пункты 2-5 к таблице TableY, для значения у и степени n_v.

Для x = 1.5 и y = 1.5 получается следующая таблица значений:

n _x	$n_{\rm y}$	Значение полинома
1	1	5.0
1	2	4.75
1	3	4.75
2	1	4.75
2	2	4.5
2	3	4.5

3	1	4.75
3	2	4.5
3	3	4.5

4 Вопросы при защите лабораторной работы

1. Пусть производящая функция таблицы : $z(x, y) = x^2 + y^2$. Область определения по x и y 0-5 и 0-5. Шаги по переменным равны 1. Степени $n_x = n_y = 1$, x = y = 1.5. Приведите по шагам те значения функции, которые получаются в ходе последовательных интерполяций по строкам и столбцу.

Из условия задания строим таблицу:

y∖x	0	1	2	3	4	5
0	0	1	4	9	16	25
1	1	2	5	10	17	26
2	4	5	8	13	20	29
3	9	10	13	18	25	34
4	16	17	20	25	32	41
5	25	26	29	34	41	50

Так как x=y=1.5 и степени $n_x=n_y=1$, то рабочая таблица :

y\x	1	2
1	2	5
2	5	8

1. Проведем интерполяцию по х:

1)
$$y = 1$$
, $x = 1$, 2

$$p(x_0, x_1, y_0) = (f(x_0, y_0) - f(x_1, y_0)) / (x_0 - x_1) = (2 - 5) / (1 - 2) = 3$$

$$z(x_0, x_1, y_0) = f(x_0, y_0) + p(x_0, x_1, y_0)(x - x_0) = 2 + 3(1.5 - 1) = 3.5$$

2)
$$y = 2$$
, $x = 1$, 2

$$p(x_0, x_1, y_1) = (f(x_0, y_1) - f(x_1, y_1)) / (x_0 - x_1) = (5 - 8) / (1 - 2) = 3$$

$$z(x_0, x_1, y_1) = f(x_0, y_1) + p(x_0, x_1, y_1)(x - x_0) = 5 + 3(1.5 - 1) = 6.5$$

Получилась таблица:

у	$z(x, y_j)$
1	3.5
2	6.5

2. Проведем интерполяцию по у:

$$z(x_0, x_1, y_0, y_1) = (z(x_0, x_1, y_0) - z(x_0, x_1, y_0)) / (y_0 - y_1) = (3.5 - 6.5) / (1 - 2) = 3$$

$$P_1(x, y) = z(x_0, x_1, y_0) + z(x_0, x_1, y_0, y_1)(y - y_0) = 3.5 + 3(1.5 - 1) = 5.0$$

Результат : $P_1(x, y) = 5.0$

2. Какова минимальная степень двумерного полинома, построенного на четырех узлах? На шести узлах?

Исходя из условия можно построить полином 0-ой степени $P_0(x, y) = f(x_0, y_0)$, поэтому минимальная степень при заданных условиях — 0 (и для четырех узлов, и для шести узлов).

3. Предложите алгоритм двумерной интерполяции при хаотичном расположении узлов, т.е. когда таблицы функции на регулярной сетке нет, и метод последовательной интерполяции не работает. Какие имеются ограничения на расположение узлов при разных степенях полинома?

Алгоритм:

- 1. Представляем интерполяционный полином по формуле, например для первой степени : z = a + bx + cy:
- 2. Выбираем шесть узлов, ближайших к точке интерполяции, с учетом ограничений для степени полинома.
- 3. Составляем систему уравнений выбранных шести узлов: z_i = a + bx_i + cy_i , i = 0, 1, 2.
- 4. Находим коэффициенты a, b, c из системы уравнений пункта 3.
- 5. Подставляем значения х и у и коэффициенты а, b, c в формулу из пункта 1.

Ограничения: при интерполяции полиномом первой степени узлы не должны лежать на одной прямой в плоскости.

4. Пусть на каком-либо языке программирования написана функция, выполняющая интерполяцию по двум переменным. Опишите алгоритм использования этой функции для интерполяции по трем переменным.

Пусть нужно провести интерполяцию по переменным x, y и z, и написана функция, выполняющая интерполяцию по переменным x и y. Степени по координатам — n_x , n_y , n_z .

- 1) $n_z + 1$ раз проводим интерполяцию по переменным x и y, используя написанную функцию: фиксируя значение z_k , найдем значение $p(x, y, z_k)$, где $k = 0, 1, ..., n_z$.
- 2) 1 раз интерполируем по переменной z по полученным значениям $p(x, y, z_k)$, привязанным к z_k , где $k=0,1,...,n_z$.
- 5. Можно ли при последовательной интерполяции по разным направлениям использовать полиномы несовпадающих степеней или даже разные методы одномерной интерполяции, например, полином Ньютона и сплайн?

При последовательной интерполяции по разным направлениям можно использовать полиномы несовпадающих степеней, алгоритм интерполяции при этом не изменяется. Отличается только начальная таблица: у совпадающих степеней число столбцов и строк совпадает, а у несовпадающих — нет.

При последовательной интерполяции по разным направлениям нельзя использовать разные методы одномерной интерполяции, так как алгоритмы интерполяции различны.

- 6. Опишите алгоритм двумерной интерполяции на треугольной конфигурации узлов.
- 1. Определяем число узлов. При двумерной интерполяции на треугольной конфигурации степень полинома п минимальная из степеней по каждой координате. Число узлов, определяющих многочлен n-ой степени, равно (n + 1) (n + 2) / 2.
- 2. Вводим разделенные разности функции двух переменных:

$$z(x_0, x_1, y) = (z(x_0, y) - z(x_1, y)) / (x_0 - x_1) - \pi o x,$$

 $z(x, y_0, y_1) = (z(x, y_0) - z(x, y_1)) / (y_0 - y_1) - \pi o y$

3. Строим полином п-ой степени по формуле

$$P_{n}(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{n-1} z(x_{0},...,x_{i},y_{0},...,y_{j}) \prod_{p=0}^{i-1} (x-x_{p}) \prod_{q=0}^{j-1} (y-y_{q})$$