Uvod v računalništvo vaje

2. - 6. november 2015

Naloga 1

Algoritma A in B rešujeta isti problem. Pri vhodu velikosti n algoritem A izvrši $0,003n^2$ operacij, algoritem B pa 243n operacij. Poišči vrednost n, nad katero algoritem B postane bolj učinkovit kot algoritem A.

Naloga 2

Spodaj je podan algoritem za urejanje z izbiranjem.

Preberi vrednost *n* za velikost seznama.

Preberi vseh *n* elementov seznama.

Postavi oznako za neurejeni del seznama na konec seznama.

Dokler neurejeni del seznama ni prazen, ponavljaj

Najdi največji element v neurejenem delu seznama.

Zamenjaj ta element z zadnjim elementom v neurejenem delu seznama.

Premakni oznako za neurejeni del seznama en položaj v levo.

Ustavi se.

S pomočjo zgornjega algoritma uredi seznam z naslednjimi elementi:

Zapiši seznam po vsaki zamenjavi dveh elementov. V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.

Naloga 3

- a) Algoritem, katerega časovna zahtevnost je reda velikosti $\Theta(n)$, se pri vrednosti n=100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n=500?
- b) Algoritem, katerega časovna zahtevnost je reda velikosti $\Theta(n^2)$, se pri vrednosti n=100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n=500?

Podana je nekoliko posplošena različica algoritma za zaporedno iskanje oseb v telefonskem imeniku.

```
Preberi vrednosti za IME, n, N_1, N_2, ... N_n in T_1, T_2, ..., T_n.

Nastavi vrednost i na 1 in vrednost Najden na NE.

Dokler ((Najden = NE) IN (i \le n)), ponavljaj

Če se IME ujema z i-tim imenom v imeniku, N_i

Izpiši telefonsko številko te osebe, T_i.

Nastavi vrednost Najden na DA.

sicer (t.j. IME se ne ujema z N_i)

i povečaj za 1.

Če (Najden = NE)

Izpiši sporočilo "Oprostite, tega naročnika ni v imeniku."

Ustavi se.
```

S pomočjo zgornjega algoritma poišči Nadjino telefonsko številko v naslednjem imeniku.

oseba	telefonska številka
Iztok	03 3940510
Cvetko	04 9753020
Zmagoslav	02 7772892
Dana	01 8835648
Živa	05 5384947
Jaroslav	01 6624584
Tihomir	04 1112923
Zvezdana	08 8829374
Srečko	04 8264950
Svetlana	05 1287467
Mojca	07 8875566
Samo	07 3737560
Bojana	01 1727771
Gorazd	02 3376402
Nadja	02 1284533
Borut	03 2236790

V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.

Naloga 5

Spodaj je podan algoritem za binarno iskanje oseb v telefonskem imeniku.

- a) Za uporabo tega algoritma pri iskanju telefonskih številk oseb v imeniku iz naloge 4 moramo omenjeni imenik predhodno ustrezno obdelati. Kaj točno moramo narediti in čemu?
- b) Nadjino telefonsko številko v obdelanem imeniku poišči še s spodnjim algoritmom. V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.
- c) Nariši drevo, ki ponazarja binarno iskanje v obdelanem imeniku. Kakšno je število primerjav v najslabšem primeru? V najboljšem primeru?

- d) Koliko primerjav bi s tem algoritmom v najslabšem primeru potrebovali za iskanje osebe v telefonskem imeniku Slovenije? Predpostavimo, da je v omenjenem imeniku 2 milijona naročnikov.
- e) Kakšno pa bi bilo število primerjav v najslabšem primeru pri iskanju osebe v telefonskem imeniku Slovenije, če bi uporabili algoritem za zaporedno iskanje?

Preberi vrednosti za *IME*, n, N_1 , N_2 , ... N_n in T_1 , T_2 , ..., T_n .

Nastavi vrednost zacetek na 1 in vrednost Najden na NE.

Nastavi vrednost konec na n.

Dokler ((Najden = NE) IN (zacetek \leq konec)), ponavljaj

Nastavi vrednost *m* na sredinsko vrednost med vrednostma *zacetek* in *konec*.

Če se IME ujema z N_m , imenom na sredini med vrednostma zacetek in konec

Izpiši telefonsko številko te osebe, T_m .

Nastavi vrednost Najden na DA.

sicer, če je IME po abecednem vrstnem redu pred N_m

nastavi konec = m - 1.

sicer (t. j. IME je po abecednem vrstnem redu za N_m)

nastavi zacetek = m + 1.

Če (Najden = NE)

Izpiši sporočilo "Oprostite, tega naročnika ni v imeniku."

Ustavi se.

Naloga 6

Algoritem za mehurčno urejanje (angl. bubble sort) je podan spodaj.

Preberi vrednost *n* za velikost seznama.

Preberi vseh *n* elementov seznama.

Postavi oznako N za neurejeni del seznama na konec seznama.

Dokler velja, da ima neurejeni del seznama vsaj dva elementa, ponavljaj

Postavi oznako T za trenutni element na drugi element seznama.

Dokler oznaka T ne preskoči oznake N, ponavljaj

Če je element na položaju T manjši od elementa na njegovi levi zamenjaj ta dva elementa

Premakni oznako T eno mesto v desno.

Premakni oznako N eno mesto v levo.

Ustavi se.

- a) Seznam števil iz naloge 2 uredi še z zgornjim algoritmom. Zapiši seznam po vsakem obhodu zunanje zanke. V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.
- b) Recimo, da izvedemo algoritem za urejanje z izbiranjem in algoritem za mehurčno urejanje na seznamu, ki je že pravilno urejen po velikosti. Pri katerem izmed obeh algoritmov imamo manj <u>zamenjav</u> elementov? Utemelji?

V 2. tednu vaj smo si ogledali algoritem za iskanje največjega števila v seznamu z n števili.

- a) V kateri razred časovne zahtevnosti sodi ta algoritem? Upoštevajte, da je osnovna enota dela primerjava dveh števil v seznamu.
- b) Recimo, da želimo najti drugo največje število v seznamu. Kakšnega reda velikosti je količina dela, če uporabimo sledeči algoritem:
 - i. Uredi seznam z uporabo urejanja z izbiranjem, nato enostavno preberi drugo največje število.
 - ii. Dvakrat izvedi algoritem za iskanje največjega števila. V prvi izvedbi najdeš (in iz seznama odstraniš) največje število, v drugi pa drugo največje število.

Naloga 8

```
Preberi vrednost n.

Nastavi c na 0.

Nastavi a na vrednost n.

Dokler a \ge 1, ponavljaj

c = c + 1

b = n

Dokler b \ge 0, ponavljaj

c = c + 1

b = b / 2

a = a - 1

Ustavi se.
```

V kateri razred zahtevnosti sodi zgornji algoritem v primeru, da:

- a) za osnovno enoto dela izberemo odštevanje?
- b) za osnovno enoto dela izberemo celoštevilsko deljenje?
- c) za osnovno enoto dela izberemo seštevanje?