

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity

Sang-Hee Park^{a,1}, Seung Su Shin^{a,1}, Chan Hyung Park^{a,1}, Sungkwon Jeon^a, Jaegyoung Gwon^b, Sun-Young Lee^b, Sung-Jun Kim^{a,c}, Hyung-Ju Kim^c, Jung-Hyun Lee^{a,*}

- ^a Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- ^b Department of Forest Products, National Institute of Forest Science, Seoul, 02455, Republic of Korea
- ^c Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea

GRAPHICAL ABSTRACT

ARTICLE INFO

Editor: Daniel CW Tsang

Keywords:
Cellulose nanocrystal
Atom transfer radical polymerization
Adsorbents
Cr(VI) removal

ABSTRACT

In this study, we prepared poly(acryloyl hydrazide) (PAH)-grafted cellulose nanocrystal (CNC-PAH) particles via the atom transfer radical polymerization method for application to Cr(VI) adsorption. The closely-packed PAH chains grafted on the cellulose nanocrystal (CNC) surface provide a high density of amine groups that can adsorb Cr(VI) through strong electrostatic, hydrogen bonding and chelating interactions. CNC-PAH exhibited the optimum Cr(VI) adsorption capacity at the solution pH = 3, where its electrostatic attraction with Cr(VI) was maximized. Cr(VI) was chemisorbed in CNC-PAH by following the Langmuir isotherm mechanism (homogeneous monolayer adsorption). The Cr(VI) adsorption kinetics of CNC-PAH was controlled predominantly by intra-particle diffusion resistance imparted by the PAH shell layer. Thermodynamic analysis revealed that Cr(VI) adsorption of CNC-PAH is a spontaneous and endothermic process. Importantly, CNC-PAH grafted with the higher M_w (~ 50 kg mol $^{-1}$) PAH exhibited a rapid Cr(VI) adsorption rate and remarkably high Cr(VI) adsorption capacity (~ 457.6 mg g $^{-1}$ at 298.15 K), exceeding those of previously reported adsorbents owing to its numerous Cr(VI)-adsorptive amine groups provided by the closely-packed grafted PAH polymers. Furthermore, CNC-PAH showed excellent reusability to maintain its high adsorption ability during repeated adsorption–desorption cycles owing to the covalently binding nature of the PAH polymers.

E-mail address: leejhyyy@korea.ac.kr (J.-H. Lee).

^{*} Corresponding author.

¹ These authors contributed equally.