IST 3420: Introduction to Data Science and Management

Langtao Chen, Fall 2017

9. Unsupervised Machine Learning

Reading

- "Data Mining For Business Intelligence": http://proquest.safaribooksonline.com/book/databases/business-intelligence/9780470526828
 - Chapter 14: Cluster Analysis
 - Chapter 13: Association Rule
- If off campus, you need S&T VPN for free access

Learning Objectives

Cluster analysis

- Understand cluster analysis (both hierarchical and nonhierarchical)
- Be able to use R to conduct cluster analysis

Association rules

- Understand association rules and measures including support, confidence, and lift; Be able to manually calculate them
- Be able to use arules R package to conduct market basket analysis and properly interpret results
- Be able to use aruleViz R package to visualize association rules and properly interpret results

AGENDA

- ➤ Cluster Analysis
- Association Rules

Cluster Analysis

Cluster analysis is to segment data into a set of clusters in such a way that objects in the same cluster are more similar.

It is an unsupervised machine learning algorithm since the data are not labelled.

Clustering Algorithms

- Hierarchical clustering
- Non-hierarchical clustering: K-means algorithm

Hierarchical Clustering Analysis (HCA)

Hierarchical clustering analysis aims to build a hierarchy of clusters.

Agglomerative:

 Start with n clusters and sequentially merge similar clusters until all records are merged into one single cluster.

Divisive

 Start with one single cluster containing all records, then divide clusters into sub-clusters.

Non-Hierarchical Clustering Analysis

Non-hierarchical clustering analysis aims to obtain a set of clusters which maximizes or minimizes some evaluating criterion.

▶ K-means clustering:

• Assign records to a user-defined number of clusters (k) in such a way that maximizes the separation of those clusters while minimizing intra-cluster distances.

K-Means Clustering

Step I. k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

Step 2. k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

Source: https://en.wikipedia.org/wiki/K-means_clustering

K-Means Clustering (cont.)

▶ Step 3. The centroid of each of the *k* clusters becomes the new mean.

Step 4. Steps 2 and 3 are repeated until convergence has been reached.

Source: https://en.wikipedia.org/wiki/K-means_clustering

Measuring Similarity between Records

- In the clustering process, similarity or distance needs to be assessed.
- For continuous variables, a commonly used distance metric is Euclidean distance.

$$d(p,q) = d(q,d) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

We can use other metrics such as standardized Euclidean distance, Mahalanobis distance, Minkowski distance, Chebychev distance, Cosine distance, Hamming distance, Manhattan distance, Jaccard distance, Spearman distance etc.

Market Segmentation: A Popular Use of Cluster Analysis

- Market segmentation is the process of dividing a broad consumer or business market, normally consisting of existing and potential customers, into sub-groups of consumers (known as segments) based on some type of shared characteristics.
- Consumers in a segment behave in similar way or have similar demands.

S-T-P Approach

Market Segmentation Sample Data

Data source:

- https://archive.ics.uci.edu/ml/datasets/Online+Retail
- This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.
- The company mainly sells unique all-occasion gifts.
- Many customers of the company are wholesalers.

Dataset

Attributes:

- InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation.
- StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product.
- Description: Product (item) name. Nominal.
- Quantity: The quantities of each product (item) per transaction. Numeric.
- InvoiceDate: Invice Date and time. Numeric, the day and time when each transaction was generated.
- UnitPrice: Unit price. Numeric, Product price per unit in sterling.
- CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer.
- Country: Country name. Nominal, the name of the country where each customer resides.

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate [‡]	UnitPrice	CustomerID	Country [‡]
1	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850	United Kingdom
2	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850	United Kingdom
3	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850	United Kingdom
4	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850	United Kingdom
5	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850	United Kingdom
6	536365	22752	SET 7 BABUSHKA NESTING BOXES	2	12/1/2010 8:26	7.65	17850	United Kingdom
7	536365	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6	12/1/2010 8:26	4.25	17850	United Kingdom
8	536366	22633	HAND WARMER UNION JACK	6	12/1/2010 8:28	1.85	17850	United Kingdom

RFM Method for Market Segmentation

- RFM (Recency, Frequency, Monetary value) analysis is a popular technique to market segmentation.
- RFM analysis tries to cluster customers with similar buying patterns based on the following characteristics:
 - Recency How recently did the customer purchase?
 - Frequency How often do they purchase?
 - Monetary Value How much do they spend?

Data Analysis

Refer to "Market_Segmentation.pdf"

AGENDA

- Cluster Analysis
- ► Association Rules

Market Basket Analysis

- Association rules are used to conduct market basket analysis
- The objective is to identity item clusters in transaction-type database (a.k.a. "affinity analysis").
- It is an unsupervised learning method since we don't need to guide the machine learning process.

 Having such customer behavior knowledge would help so many decision making cases in business especially in marketing

- What items should be placed together in retail stores?
- What items should be offered in post-transaction coupons?
- What products should be recommended in online shopping sites?
-

Why Market Basket Analysis?

- Transactional data are readily available in databases of many companies.
- Transactional data are objective (not like subjective data collected from customer survey).

Application Case: Amazon

The Target

To generate clear and simple rules of the form:

IF X is purchased, THEN Y is also likely to be purchased.

```
For example:

LHS RHS

{beef, dairy produce} => {vegetables}
```

- General Steps:
 - Generate a set of candidate rules based on frequent itemsets (Apriori is the most popular algorithm);
 - Select the rules that indicate the strongest association between items.

Example: 10 Association Rules

lhs	rhs	support	confidence	lift
<pre>[I] {beef,dairy produce}</pre>	=> {vegetables}	0.030	0.61	2.2
[2] {poultry}	=> {vegetables}	0.029	0.57	2.1
[3] {dairy produce, fruit, sausage}	=> {vegetables}	0.027	0.57	2.1
[4] {beef}	=> {vegetables}	0.046	0.56	2.0
<pre>[5] {dairy produce, vinegar/oils}</pre>	=> {vegetables}	0.031	0.54	2.0
[6] {fruit,sausage}	=> {vegetables}	0.034	0.53	1.9
[7] {bread and backed goods, dairy produce, fruit}	<pre>> => {vegetables}</pre>	0.041	0.53	1.9
[8] {pork}	=> {vegetables}	0.030	0.52	1.9
[9] {cheese,fruit}	=> {vegetables}	0.027	0.52	1.9
<pre>[10] {dairy produce,fruit,non-alc. drinks}</pre>	=> {vegetables}	0.033	0.52	1.9

Association Rule Measures

lhs	rhs	support confidence	lift
[1] {beef,dairy produce}	=> {vegetables}	0.030 0.61	2.2

Support: The fraction of which the item set occurs in the transaction dataset.

$$Support(X => Y) = \frac{\# of \ transactions \ containing \ X \ and \ Y}{\# of \ alll \ transactions}$$

Confidence: The probability that a rule is correct for a new transaction with items on the left hand side.

$$Confidence(X => Y) = \frac{\# \ of \ transactions \ containing \ X \ and \ Y}{\# \ of \ transactions \ containing \ X}$$

Lift: The ratio of the confidence of a rule and the expected confidence of the rule.

$$Lift(X => Y) = \frac{Confidence(X => Y)}{Support(Y)} = \frac{(\# \ of \ transactions \ containing \ X \ and \ Y) * (\# \ of \ all \ transactions)}{(\# \ of \ transactions \ containing \ X) * (\# \ of \ transactions \ containing \ Y)}$$

Exercise

▶ Given a transaction database:

Transaction	Items Purchased			
1	fruit	coffee		
2	yogurt	milk	bread	
3	coffee	cheese		
4	fruit	drink		
5	coffee			

- Calculate measures of the rule {fruit}=>{coffee}
 - Refer to "Association Rule Exercise.xlsx"

Frequency

The arules and arulesViz R Packages

arules Package

- Call read.transactions() to read in transaction data file and create a transactions object for association rule mining
- Call itemFrequencyPlot() to draw frequency plot
- Call apriori() to mine associations rules using Apriori algorithm
- arulesViz Package
 - Call plot() to visualize association rules and itemsets
- To learn more, refer to:

Introduction to arules.pdf
Visualizing Association Rules.pdf

Case: Grocery Basket

▶ 9835 transactions, 169 items, 10 level 1 item categories, 55 level 2 item categories

	TransactionID	Item	ItemCategory1 ‡	ItemCategory2
1	7	citrus fruit	fruit and vegetables	fruit
2	1	semi-finished bread	fresh products	bread and backed goods
3	1	margarine	processed food	vinegar/oils
4	1	ready soups	processed food	soups/sauces
5	2	tropical fruit	fruit and vegetables	fruit
6	2	yogurt	fresh products	dairy produce
7	2	coffee	drinks	coffee
8	3	whole milk	fresh products	dairy produce
9	4	pip fruit	fruit and vegetables	fruit
10	4	yogurt	fresh products	dairy produce
11	4	cream cheese	fresh products	cheese
12	4	meat spreads	canned food	meat spreads

Data Analysis

Refer to "Market Basket Analysis.pdf"