

大数据分析

实验二

(2019 年度春季学期)

姓	名_	朱明彦
学	号_	1160300314
学	院 _	计算机学院
教	师 _	杨东华、王金宝

计算机科学与技术学院

目录

第	1章	实验目的	3
第	2 章	实验环境	3
第	3 章	实验过程及结果	3
	3.1	聚类分析	3
		3.1.1 KMeans 聚类分析	3
		3.1.2 GMM (混合高斯模型) 聚类分析	4
	3.2	分类分析	4
		3.2.1 朴素贝叶斯	4
		3.2.2 逻辑回归	6
第	4 章	实验心得	6
A	参考	· 文献:	6

实验二 聚类与分类

第1章 实验目的

掌握对数据使用聚类分析和分类分析,并理解其在大数据环境下的实现方式。

第2章 实验环境

- Ubuntu 16.04
- Hadoop 2.7.1

第3章 实验过程及结果

3.1 聚类分析

3.1.1 KMeans 聚类分析

主要思想 利用两类 Mapper 和 Reducer, 其中第一对 Mapper-Reducer 主要用于中心点的选择,即初始化等工作;第二对 Mapper-Reducer 主要用于中心点的选择,即初始化等工作;第二对 Mapper-Reducer 主要用作迭代过程。

对于 K 值的选择,参考 CMU 在 2014 年春季的 10-605 [1],使用 8 或者 12 作为聚类中心数。

第一类 Mapper

- 输入: 原始数据
- 输出: (1, 原始数据中的一条), 共 K 个。
- 随机选择 K 个元素作为初始化的聚簇中心点, 利用 run 函数实现。

由于此处仅仅需要 K 个元素作为初始化的聚簇中心点, 所以只能使用 1 个第一类 Mapper 处理原始数据。

第一类 Reducer

- 输入: $(1, [c_0, c_1, \ldots, c_{k-1}])$, 其中 $c_i, i \in \{0, 1, k-1\}$ 为原始数据中的一条。
- 输出: $(i, c_i + \text{t} + \text{t} 1\text{t})$,其中 i 为聚簇编号,t 为制表符,加法为定义在 String 上的加法,即字符串的连接。

对于第一类 Reducer 而言, 其输入的元组 Key 均为 1, 所以仅有 1 个第一类 Reducer。

第二类 Mapper

• 输入: 原始数据

• 输出: (clusterCenterID, v; minDis), 其中 Key 为 clusterCenterID, 即该元组距离 最近的聚类中心的编号; Value 为 v; minDis, 其中 v 为该条原始数据, minDis 为该原始数据与最近的聚类中心的欧式距离, 二者以英文分号 ";" 分割。

第二类 Reducer

- 输入: (clusterCenterID, $[v_0; minDis_0, v_1; minDis_1, ...]$)
- 输出: (clusterCenterID, new_c + \t + disSum), 其中 new_c 为属于该聚簇的计算出的新的聚类中心,disSum 为所有属于该聚簇的元素到该中心的距离和,用于判断 Kmeans 迭代收敛。

最终的 Kmeans 实现步骤如下,相关结果如图3.1所示。

- 1. 使用 1 个第一类 Mapper 随机取 K 个聚类中心,利用 Reducer 将结果存入 HDFS。
- 2. 读入上一轮(或者随机取的 K 个元素)中心点,并利用 Configuration 保存中心点。
- 3. 利用第二类 Mapper 计算每个元素所属的聚簇。
- 4. 利用第二类 Reducer 重新计算聚簇中心。
- 5. 如果收敛, 算法结束; 否则重新返回第2步。

3.1.2 GMM (混合高斯模型) 聚类分析

3.2 分类分析

3.2.1 朴素贝叶斯

原理 由于使用的数据每一维特征都是连续型的数据,所以其处理与离散型的朴素贝叶斯处理有所不同。**因此,假设数据的每一维都符合高斯分布,而高斯分布的均值和方差均通过训练数据中的均值和方差来代替**。数据第 i 维取值为 x_i 的类条件概率为:

$$P(X_i = x_i | Y = y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

其中 y_j 为第 j 类, σ_{ij} , μ_{ij} 分别为第 j 类第 i 维样本数据的均值和方差。具体实现时,利用了两类不同的 Mapper 和 Reducer,其中第一对 Mapper 和 Reducer 主要用来计算训练数据中类别的先验;而第二对 Mapper 和 Reducer 用于处理计算后验并确定每一个样本所属的类别。

图 3.1: KMeans 聚类结果

第一类 Mapper

- 输入: 训练数据
- 输出: (label_k, v_k), 其中 label 为该样本中标记的类别编号, k 为属性的第 k 维, v_k 为该样本第 k 维属性的取值。

第一类 Reducer

- $\hat{\mathbf{m}}$ \(\) (label_k, [v_{k0}, v_{k1}, \dots])
- 输出: (label_k, $mean_k$ + $\$ + var_k), 即计算出属于 label 类的第 k 维训练数据的均值和方差,另加法为字符串的连接。

第二类 Mapper

- 输入: 测试数据
- 输出: (compute_label), 其中 compute_label 为朴素贝叶斯得到的类别编号, 而 label 为数据中原本标注的类别编号。

第二类 Reducer

• 输入: (compute_label, [label₀, label₁, ...])

大数据分析实验报告 实验二

图 3.2: GMM 聚类结果

• 输出: (compute_label, correct + $\$ + wrong), 其中 correct 为正确分类样本数目, wrong 为错误分类数目。

3.2.2 逻辑回归

第4章 实验心得

可以分享您在实验环境搭建、程序编写和调试以及结果分析过程中遇到的问题和解决方法。

A 参考文献

参考文献

[1] K-Means Clustering on MapReduce, CMU 10-605 2014 Spring.