Probabilità e statistica 12 giugno 2019

richiami di v.a.

Def Varianza. Sia X v.a. con legge P_X e alfabeto composto da elementi x_k . Si definisce la varianza:

$$Var(X) = \sum_{x_k} [x_k - E(X)]^2 P_X(x_k)$$

Valgono:

1.
$$Var(X) = E[(X - E(X))^2] = E(X^2) - (E(X))^2$$

2.
$$Var(X) \ge 0$$
, in particolare $Var(X) = 0 \Leftrightarrow X \equiv costante$

3.
$$Var(aX) = a^2 Var(X), a \in \mathbb{R}$$

4.
$$Var(X + a) = Var(X), a \in \mathbb{R}$$

$$5. \ X \bot Y \Longrightarrow Var(X + Y) = Var(X) + Var(Y)$$

Def Covarianza. Siano X, Y v.a.. Si definisce la covarianza:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Valgono:

$$\begin{array}{cccc} 1. & Cov(X,Y) & = & E(XY) & - \\ & E(X)E(Y) & & \end{array}$$

2.
$$Cov(Y, X) = Cov(X, Y)$$

3.
$$Cov(aX + b, Y) = aCov(X, Y)$$

$$\begin{array}{rcl} 4. & Cov(X+Y,Z) & = & Cov(X,Z) + \\ & Cov(Y,Z) \end{array}$$

5.
$$X \perp \!\!\! \perp \Longrightarrow Cov(X,Y) = 0$$

Def V.a. scorrelate. Le v.a. X, Y sono dette scorrelate se Cov(X, Y) = 0

Teorema Limite di Poisson

Siano $X \sim \mathcal{B}in(n, \frac{\lambda}{n})$ e $Y \sim \mathcal{P}o(\lambda)$. Allora $\lim_{n \to \infty} p_{X_0}(k) = p_Y(k)$, con $k \in \mathbb{N}_0$ fissato.

Ossia posso trattare come una Poisson le binomiali con n molto grande e p molto piccoli

Euristica: $n > 100; p < 0.01; np \le 20$

Vettori aleatori discreti

Def Vettore aleatorio discreto Sia (Ω, \mathbb{P}, P) uno spaz. di prob. discreto. Un vettore aleatoriio è una funzione: $V: \Omega \to \mathbb{R}^n$, ossia

$$\omega \mapsto V(\omega) = (X_1(w), \dots, X_n(\omega)).$$

D'ora in poi si assume $n = 2$

Def Densità congiunta. Siano X e Y v.a. con densità $P_X e P_Y$. Si definisce $P_{XY} : \mathcal{X} \times \mathcal{Y} \rightarrow [0,1]$, ossia

$$(x_i, y_j) \mapsto p_{XY}(x_i, y_j) = P(X = x_i, Y = y_j)$$

Def Densità marginale. Sia P_{XY} densità congiunta delle v.a. X e Y. Si dicono densità marginali P_X e P_Y . Valgono:

1.
$$P_X(x_i) = \sum_{y_i} P_{XY}(x_i, y_j)$$

2.
$$P_Y(y_i) = \sum_{x_i} P_{XY}(x_i, y_j)$$

Prop Siano X, Y v.a. $e sia g : \mathbb{R}^2 \to \mathbb{R}$. Allora:

$$E[g(X,Y)] = \sum_{x_i,y_j} g(x_i,y_j) P_{XY}(x_i,y_j)$$

Def Indipendenza. Siano X, Y v.a. con alfabeti composti da elementi x_i e y_i . Allora $X \perp \!\!\! \perp \!\!\! Y$ se:

$$P_{XY}(x_i, y_j) = P_X(x_i)P_Y(y_j) \quad \forall x_i, y_j$$

V.a. notevoli

v.a.	Def	$p_X(k)$	E(X)	Var(X)
Bernulli	$X \sim \mathcal{B}e(p)$	$p_X(1) = p$ $p_X(0) = 1 - p$	p	p(1-p)
Binomiale	$X \sim \mathcal{B}in(n,p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Geometrica	$X \sim \mathcal{G}e(p)$	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p}$
Poisson	$X \sim \mathcal{P}o(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

V.a. ass. continue

Def Una v.a. X si dice (ass.) continua si definisce associando una densità $f_x : \mathbb{R} \to \mathbb{R}$ tale che:

1.
$$f_X(x) \ge 0$$

2.
$$\int_{\mathbb{R}} f_X(x) dx = 1$$

Valgono:

1.
$$P(X \in I = P_X(I) = \int_I f_X(x) dx$$

2.
$$P_X(a) = 0 \quad \forall a \in \mathbb{R}$$

Def Funzione di distribuzione.

$$F_X : \mathbb{R} \to [0, 1]$$

 $x \mapsto F_X(x) = P(X \le x)$

Def Valor medio v.a.c..

$$E(X) = \int_{\mathbb{R}} x f_x(x) dx$$

Def Varianza v.a.c..

$$E(X) = \int_{\mathbb{R}} [x - E(X)]^2 f_x(x) dx$$

V.a.c. notevoli

Def V.a. uniformi. $X \sim U(a, b)$ con densità:

$$f_x(x) = \frac{1}{b-a} \mathbb{1}_{(a,b)}(x)$$

Valogono:

1.
$$P_X(I) = \frac{|I \cap (a,b)|}{b-a}$$

2.
$$E(X) = \frac{b+a}{2}$$

3.
$$Var(X) = \frac{(b-a)^2}{12}$$

Def V.a. esponenziale. $X \sim Exp(\lambda)$ con densità:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } t \ge 0\\ 0 & \text{altrimenti} \end{cases}$$

Descrive la durata della vita di un fenomeno privo di memoria. Valgono:

1.
$$E(X) = \frac{1}{\lambda}$$

2.
$$Var(X) = \frac{1}{\lambda^2}$$

3.
$$P(X \ge T + t \mid X \ge T) = P(X \ge t)$$

Def Gaussiana. $\mu \in \mathbb{R}, \ \sigma^2 \in \mathbb{R}^+ \ e \ densità$:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Valgono:

1.
$$E(X) = \mu$$

2.
$$Var(X) = \sigma^2$$

3.
$$\Phi(z) = P(X \le z) = 1 - \Phi(-z)$$

4.
$$P(\mu - 4\sigma \le X \le \mu + 4\sigma) \approx 1$$

Def Gaussiana standard. $X \sim N(0,1)$.

Prop Trasformazioni affini di v.a. normali. Sia $X \sim N(\mu, \sigma^2)$ e Y = aX + ballora

$$Y \sim N(a\mu + b, a^2\sigma^2)$$

quindi se $X \sim N(\mu, \sigma^2) \Rightarrow$

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Teoremi su v.a.c.

Media empirica/campionaria. Siano $X_1, ..., X_n$ v.a.. Si definisce:

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Cor. Siano $X_1, ..., X_n$ v.a. i.i.d.. Allora:

1.
$$E(\overline{X_n}) = E(X_1)$$

2.
$$Var(\overline{X_n}) = \frac{1}{n} Var(X_1)$$

Def Legge dei grandi numeri (LLN). Siano X_1, \ldots, X_n v.a. i.i.d. con media finita. Allora

$$\overline{X_n} \to E(X_1)$$

Def Metodo Monte Carlo.

$$\mathcal{I} = \int_{a}^{b} f(x)dx \quad b > a$$

$$\mathcal{I} = (b-a) \int_a^b \frac{f(x)}{b-a} dx = (b-a)E(f(x))$$

$$con \ X = U(a,b)$$

 $X \sim N(\mu, \sigma^2)$ con **Def** Teorema centrale del limite (CLT). indipendenti con $X_i \sim N(\mu_i, \sigma_i^2)$ e siano Siano X_1, \ldots, X_n v.a. i.i.d. $E(X_1) = \mu$, $Var(X_1) = \sigma^2$. Allora:

$$\sqrt{n}\left(\frac{\overline{X_n} - \mu}{\sigma}\right) \to N(0, 1)$$
 (1)

$$\frac{\sum_{i=1}^{n} (X_i - \mu)}{\sigma \sqrt{n}} \to N(0, 1) \tag{2}$$

$$\sqrt{n}(\overline{X_n} - \mu) \to N(0, \sigma^2)$$
 (3)

Prop Velocità di convergenza. X_1, \ldots, X_n v.a. i.i.d. $(X_i \sim \mathcal{B}e(p))$. Allora:

$$P(|\overline{X_n} - E(X_1)| \le \varepsilon) > \alpha$$

 $\iff n \ge \frac{Var(X_1)}{\varepsilon^2(1-\alpha)}$

Statistica descrittiva

Def Scarto quadratico medio. SiaX v.a. con alfabeto $\{x_1,\ldots,x_n\}$. Si definisce:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2}$$

Statistica inferenziale

Def Modello statistico. L'insieme didensità $\{f_{\theta}(x) \mid \theta \in \Theta\}$, dove $\theta \in un$ parametro (o n-pla di parametri) della $distribuzione \ e \ \Theta \ \dot{e} \ l'insieme \ dei \ possi$ bili θ .

Def Campione casuiale di ampiezza n. n-pla di v.a. i.i.d. di legge $f_{\theta}(x)$.

Def Statistica. Una qualsiasi funzione che si applica a un campione casuale.

Def Stimatore. Una statistica $\hat{\theta}(x)$ usata per approssimare il valore di θ in un $modello\ statistico.$

Def Stimatore corretto. Uno stimatore T(x) tale che $E^{\theta}(T) \to \theta$.

Def Stimatore consistente. Uno stimatore T(x) tale che $Var^{\theta}(T) \to 0$.

Prop Combinazioni lineari di Gaussiane Siano X_1, \ldots, X_n v.a. indipendenti.

 $a_1, \ldots, a_n \in \mathbb{R}$. Allora:

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

Def Maximum Likelihood Estimator. Siano X_1, \ldots, X_n v.a. i.i.d con $X_i \sim$ $f_{\theta}(X_i)$ e sia $Lik(\theta) = \prod_{i=1}^{n} f_{\theta}(X_i)$. Lo stimatore MLE $\hat{\theta}_{ML}(\cdot)$ è uno stimatore $di \theta che massimizza Lik(\theta).$

Nota θ continuo. Assumendo che il massimo sia l'unico punto critico, mas $simizzo \ Lik(\theta) \ ponendo \ \frac{\partial}{\partial \theta} Lik = 0.$ Poichè $\log x \nearrow$, conviene massimizzare $\log Lik(\theta)$ ponendo:

$$\frac{\partial}{\partial \theta} \log Lik = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{\theta}(X_i) = 0$$

Nel caso generale va scelto θ_{ML} mas $simo\ globale,\ i.e.\ \theta_{ML} = \max\{\theta_{max} \mid$ $\frac{\partial}{\partial \theta} Lik(\theta_{max}) = 0 \wedge \frac{\partial^2}{\partial \theta^2} Lik(\theta_{max}) < 0 \}.$

Nota θ discreto $Sia g(\theta) = \frac{Lik(\theta+1)}{Lik(\theta)}$ $Se \ g(\theta) \setminus massimizzo \ Lik(\theta) \ ponendo$ $g(\theta) = 1$.

Altro

Integrazione per parti

$$\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx$$

Integrazione per sostituzione

$$\int f(x)g'(x)dx = \int f(t)dt$$
con $t = g(x)$ e $dt = g'(x)dx$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)|$$

Integrali notevoli

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1}$$

$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$$

$$\int \sin^2(x) dx = \frac{1}{2} (x - \frac{1}{2} \sin(2x))$$