ML4Science Hackathon

Happy Holmes

K. Ganesh Chandan, Kartik Majila

Inputs	Representation	Architecture	Loss
SMILES		SVM	MSE/ RMSE
	SMILES2vec	Linear layers	
		ResNet	Metrics
	Fingerprints	Transformer Decoder	R2
		MPNN	Pearson corr.
			RMSE

Architecture

MPNN (Message Passing Neural Networks) based approach produced the best results.

Given a Graph G with node features such as atom type, #bonds, charge etc and bond features (e_vw).

$$m_{v}^{t+1} = \sum_{w \in N(v)} M_{t}(h_{v}^{t}, h_{w}^{t}, e_{vw})$$

$$h_{v}^{t+1} = U_{t}(h_{v}^{t}, m_{v}^{t+1})$$

$$\hat{y} = R(\{h_{v}^{T} | v \in G\})$$

Results

Property	R2	Pearson R
1	0.690	0.860
2	0.958	0.981
3	0.921	0.961
4	0.970	0.985

