Package 'IDSL.UFA'

May 18, 2023

Way 16, 2025
Type Package
Title United Formula Annotation (UFA) for HRMS Data Processing
Version 2.0
Depends R (>= 4.0)
Imports IDSL.IPA (>= 2.7), readxl
Suggests GA
Author Sadjad Fakouri-Baygi [aut] (https://orcid.org/0000-0002-6864-6911), Dinesh Barupal [cre, aut] (https://orcid.org/0000-0002-9954-8628)
Maintainer Dinesh Barupal <dinesh.barupal@mssm.edu></dinesh.barupal@mssm.edu>
Description A pipeline to annotate chromatography peaks from the 'IDSL.IPA' workflow <doi:10.1021 acs.jproteome.2c00120=""> with molecular formulas of a prioritized chemical space using an isotopic profile matching approach. The 'IDSL.UFA' workflow only requires mass spectrometry level 1 (MS1) data for formula annotation. The 'IDSL.UFA' methods was described in <doi:10.1021 acs.analchem.2c00563=""> .</doi:10.1021></doi:10.1021>
License MIT + file LICENSE
<pre>URL https://github.com/idslme/idsl.ufa</pre>
BugReports https://github.com/idslme/idsl.ufa/issues
Encoding UTF-8
Archs i386, x64
NeedsCompilation no
Repository CRAN
Date/Publication 2023-05-18 21:20:02 UTC
R topics documented:
aggregatedIPdbListGenerator

	formula_adduct_calculator	6
	formula_vector_generator	6
	hill_molecular_formula_printer	7
	identificationScoreCalculator	8
	ionization_pathway_deconvoluter	9
	isotopic_profile_calculator	9
	molecularFormula2IPdb	11
	molecular_formula_annotator	12
	molecular_formula_elements_filter	13
	molecular_formula_library_generator	14
	molecular_formula_library_search	14
	monoisotopicMassCalculator	
	scoreCoefficientsEvaluation	16
	scoreCoefficientsOptimization	16
	scoreCoefficientsReplicate	17
	UFA_enumerated_chemical_space	17
	UFA_enumerated_chemical_space_xlsxAnalyzer	18
	UFA_formula_source	18
	UFA_formula_source_xlsxAnalyzer	19
	UFA_IPdbMerger	19
	UFA_locate_regex	20
	UFA_PubChem_formula_extraction	21
	UFA_score_coefficients_corrector	21
	UFA_score_function_optimization	22
	UFA_score_function_optimization_xlsxAnalyzer	22
	UFA_workflow	23
	UFA_xlsxAnalyzer	
Index		24

 ${\tt aggregatedIPdbListGenerator}$

aggregated IPdbList Generator

Description

aggregated IPdbList Generator

Usage

 ${\tt aggregatedIPdbListGenerator(MassMAIso)}$

Arguments

MassMAIso MassMAIso

Value

AggregatedList

```
aligned_molecular_formula_annotator
```

Aligned Molecular Formula Annotator

Description

This function detects frequent molecular formulas across multiple samples on the aligned peak table matrix.

Usage

```
aligned_molecular_formula_annotator(PARAM)
```

Arguments

PARAM

a parameter driven from the UFA xlsxAnalyzer module.

detect_formula_sets

Organic Class Detection by Repeated Unit Patterns

Description

This function sorts a vector of molecular formulas to aggregate organic compound classes with repeated/non-repeated substructure units. This function only works for molecular formulas with following elements: c("As", "Br", "Cl", "Na", "Se", "Si", "B", "C", "F", "H", "I", "K", "N", "O", "P", "S")

Usage

```
detect_formula_sets(molecular_formulas, ratio_delta_HBrClFI_C = 2,
mixed.HBrClFI.allowed = FALSE, min_molecular_formula_class = 2,
max_number_formula_class = 100, number_processing_threads = 1)
```

Arguments

```
molecular_formulas
```

a vector of molecular formulas

```
ratio_delta_HBrClFI_C
```

c(2, 1/2, 0). 2 to detect structures with linear carbon chains such as PFAS, lipids, chlorinated paraffins, etc. 1/2 to detect structures with cyclic chains such as PAHs. 0 to detect molecular formulas with a fixed structures but changing H/Br/Cl/F/I atoms similar to PCBs, PBDEs, etc.

```
mixed.HBrClFI.allowed
```

mixed.HBrClFI.allowed = c(TRUE, FALSE). Select 'FALSE' to detect halogenated-saturated compounds similar to PFOS or select 'TRUE' to detect mixed halogenated compounds with hydrogen.

4 element_sorter

```
min_molecular_formula_class
```

minimum number of molecular formulas in each class. This number should be greater than or equal to 2.

max_number_formula_class

maximum number of molecular formulas in each class

number_processing_threads

Number of processing threads for multi-threaded computations.

Value

A matrix of clustered classes of organic molecular formulas.

Examples

```
molecular_formulas <- c("C3F703S", "C4F903S", "C5F1103S", "C6F903S", "C8F1703S",
"C9F1903S", "C10F2103S", "C7C1F1404", "C10C1F2004", "C11C1F2204", "C11C12F2104",
"C12C1F2404")
##
ratio_delta_HBrC1FI_C <- 2 # to aggregate polymeric classes
mixed.HBrC1FI.allowed <- FALSE # To detect only halogen saturated classes
min_molecular_formula_class <- 2
max_number_formula_class <- 20
##
classes <- detect_formula_sets(molecular_formulas, ratio_delta_HBrC1FI_C,
mixed.HBrC1FI.allowed, min_molecular_formula_class, max_number_formula_class,
number_processing_threads = 1)</pre>
```

element_sorter

Element Sorter

Description

This module sorts 84 non-labeled and 14 labeled elements in the periodic table for molecular formula deconvolution and isotopic profile calculation.

Usage

```
element_sorter(ElementList = "all", alphabeticalOrder = TRUE)
```

Arguments

ElementList

A string vector of elements needed for isotopic profile calculation. The default value for this parameter is a vector string of entire elements.

alphabeticalOrder

'TRUE' should be used to sort the elements for elemental deconvolution (default value), 'FALSE' should be used to keep the input order.

extendedSENIORrule 5

Value

Elements A string vector of elements (alphabetically sorted or unsorted)

 ${\tt massAbundanceList}$

A list of isotopic mass and abundance of elements.

Valence A vector of electron valences.

Examples

```
EL_mass_abundance_val <- element_sorter()</pre>
```

extendedSENIORrule

extended SENIOR rule check

Description

This function checks whether a molecular formula follows the extended SENIOR rule.

Usage

```
extendedSENIORrule(mol_vec, valence_vec, ionization_correction = 0)
```

Arguments

mol_vec A vector of the deconvoluted molecular formula

valence_vec A vector of the valences from the molecular formula. Valences may be acquired

from the 'IUPAC_Isotopes' data.

ionization_correction

A number to compensate for the ionization losses/gains. For example, '-1' for [M+H/K/Na] ionization pathways and '+1' for [M-H] ionization pathway.

Value

rule2 TURE for when the molecular formula passes the rule and FALSE for when the

molecular formula fails to pass the rule.

formula_adduct_calculator

Formula Adduct Calculator

Description

This function takes a formula and a vector of ionization pathways and returns the adduct formulas.

Usage

```
formula_adduct_calculator(molecular_formula, IonPathways)
```

Arguments

molecular_formula

molecular formula

IonPathways

A vector of ionization pathways. Pathways should be like [Coeff*M+ADD1-DED1+...] where "Coeff" should be an integer between 1-9 and ADD1 and DED1 may be ionization pathways. ex: 'IonPathways <- c("[M]+", "[M+H]+", "[2M-Cl]-", "[3M+CO2-H2O+Na-KO2+HCl-NH4]-")'

Value

A vector of adduct formulas

Examples

```
molecular_formula = "C15H1007"
IonPathways = c("[M+]","[M+H]","[M+H20+H]","[M+Na]")
Formula_adducts <- formula_adduct_calculator(molecular_formula, IonPathways)</pre>
```

formula_vector_generator

Molecular Formula Vector Generator

Description

This function convert a molecular formulas into a numerical vector

```
formula_vector_generator(molecular_formula, Elements, LElements = length(Elements),
allowedRedundantElements = FALSE)
```

molecular_formula

molecular formula

Elements a string vector of elements. This value must be driven from the 'element_sorter'

function.

LElements number of elements. To speed up loop calculations, consider calculating the

number of elements outside of the loop.

allowedRedundantElements

'TRUE' should be used to deconvolute molecular formulas with redundant elements (e.g. CO2CH3O), and 'FALSE' should be used to skip such complex

molecular formulas.(default value)

Value

a numerical vector for the molecular formula. This function returns a vector of -Inf values when the molecular formula has elements not listed in the 'Elements' string vector.

Examples

```
molecular_formula <- "[13]C2C12H2Br5C130"
Elements_molecular_formula <- c("[13]C", "C", "H", "O", "Br", "Cl")
EL <- element_sorter(ElementList = Elements_molecular_formula, alphabeticalOrder = TRUE)
Elements <- EL[["Elements"]]
LElements <- length(Elements)
##
mol_vec <- formula_vector_generator(molecular_formula, Elements, LElements,
allowedRedundantElements = TRUE)
##
regenerated_molecular_formula <- hill_molecular_formula_printer(Elements, mol_vec)</pre>
```

hill_molecular_formula_printer

Print Hill Molecular Formula

Description

This function produces molecular formulas from a list numerical vectors in the Hill notation system

Usage

```
hill_molecular_formula_printer(Elements, MolVecMat, number_processing_threads = 1)
```

Arguments

Elements A vector string of the used elements.

MolVecMat A matrix of numerical vectors of molecular formulas in each row.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A vector of molecular formulas

Examples

```
Elements <- c("C", "H", "O", "N", "Br", "Cl")

MoleFormVec1 <- c(2, 6, 1, 0, 0, 0) # C2H60

MoleFormVec2 <- c(8, 10, 2, 4, 0, 0) # C8H10N402

MoleFormVec3 <- c(12, 2, 1, 0, 5, 3) # C12H2Br5Cl30

MolVecMat <- rbind(MoleFormVec1, MoleFormVec2, MoleFormVec3)

H_MolF <- hill_molecular_formula_printer(Elements, MolVecMat)
```

identification Score Calculator

Multiplicative Identification Score for the IDSL.UFA pipeline

Description

This function calculates the score values to rank candidate molecular formulas for a mass spectrometry-chromatography peak.

Usage

```
identificationScoreCalculator(scoreCoefficients, nIisotopologues, PCS, RCS, NEME,
R13C_PL, R13C_IP)
```

Arguments

scoreCoefficients

A vector of seven numbers equal or greater than 0

nIisotopologues

Number of isotopologues in the theoretical isotopic profiles.

PCS PCS (per mille)
RCS RCS (percentage)
NEME NEME (mDa)

R13C_PL R13C of the peak from IDSL.IPA peaklists

R13C_IP R13C from theoretical isotopic profiles

ionization_pathway_deconvoluter

Ionization Pathway Deconvoluter

Description

This function deconvolutes ionization pathways into a coefficient and a numerical vector to simplify prediction ionization pathways.

Usage

ionization_pathway_deconvoluter(IonPathways, Elements)

Arguments

IonPathways A vector of ionization pathways. Pathways should be like [Coeff*M+ADD1-

DED1+...] where "Coeff" should be an integer between 1-9 and ADD1 and DED1 may be ionization pathways. ex: 'IonPathways <- c("[M]+", "[M+H]+",

"[2M-Cl]-", "[3M+CO2-H2O+Na-KO2+HCl-NH4]-")'

Elements A vector string of the used elements

Value

A list of adduct calculation values for each ionization pathway.

Examples

```
Elements <- element_sorter(alphabeticalOrder = TRUE)[["Elements"]]
IonPathways <- c("[M]+", "[M+H]+", "[2M-C1]-", "[3M+C02-H20+Na-K02+HC1-NH4]-")
Ion_DC <- ionization_pathway_deconvoluter(IonPathways, Elements)</pre>
```

```
isotopic_profile_calculator
```

Isotopic Profile Calculator

Description

This function was designed to calculate isotopic profile distributions for small molecules with masses <= 1200 Da. Nonetheless, this function may suit more complicated tasks with complex biological compounds. Details of the equations used in this function are available in the reference[1]. In this function, neighboring isotopologues are merged using the satellite clustering merging (SCM) method described in the reference[2].

```
isotopic_profile_calculator(MoleFormVec, massAbundanceList, peak_spacing,
intensity_cutoff, UFA_IP_memeory_variables = c(1e30, 1e-12, 100))
```

MoleFormVec A numerical vector of the molecular formula massAbundanceList

A list of isotopic mass and abundance of elements obtained from the 'element_sorter' function

peak_spacing A maximum space between two isotopologues in Da intensity_cutoff

A minimum intensity threshold for isotopic profiles in percentage

UFA_IP_memeory_variables

A vector of three variables. Default values are c(1e30, 1e-12, 100) to manage memory usage. UFA_IP_memeory_variables[1] is used to control the overall size of isotopic combinations. UFA_IP_memeory_variables[2] indicates the minimum relative abundance (RA calculated by eq(1) in the reference [1]) of an isotopologue to include in the isotopic profile calculations. UFA_IP_memeory_variables[3] is the maximum elapsed time to calculate the isotopic profile on the 'setTime-Limit' function of base R.

Value

A matrix of isotopic profile. The first and second column represents the mass and intensity profiles, respectively.

References

- [1] Fakouri Baygi, S., Crimmins, B.S., Hopke, P.K. Holsen, T.M. (2016). Comprehensive emerging chemical discovery: novel polyfluorinated compounds in Lake Michigan trout. *Environmental Science and Technology*, 50(17), 9460-9468, doi:10.1021/acs.est.6b01349.
- [2] Fakouri Baygi, S., Fernando, S., Hopke, P.K., Holsen, T.M. and Crimmins, B.S. (2019). Automated Isotopic Profile Deconvolution for High Resolution Mass Spectrometric Data (APGC-QToF) from Biological Matrices. *Analytical chemistry*, 91(24), 15509-15517, doi:10.1021/acs.analchem.9b03335.

See Also

```
https://ipc.idsl.me/
```

Examples

```
EL <- element_sorter(alphabeticalOrder = TRUE)
Elements <- EL[["Elements"]]
massAbundanceList <- EL[["massAbundanceList"]]
peak_spacing <- 0.005 # mDa
intensity_cutoff <- 1 # (in percentage)
MoleFormVec <- formula_vector_generator("C8H10N4O2", Elements)
IP <- isotopic_profile_calculator(MoleFormVec, massAbundanceList, peak_spacing, intensity_cutoff)</pre>
```

molecularFormula2IPdb 11

molecularFormula2IPdb MolecularFormula to IPDB

Description

A function to calculate IPDBs from a vector of molecular formulas

Usage

```
molecularFormula2IPdb(molecularFormulaDatabase, retentionTime = NULL, peak_spacing = 0,
intensity_cutoff_str = 1, IonPathways = "[M]+", number_processing_threads = 1,
UFA_IP_memeory_variables = c(1e30, 1e-12, 100), allowedMustRunCalculation = FALSE,
allowedVerbose = TRUE)
```

Arguments

molecularFormulaDatabase

A vector string of molecular formulas OR a list of elements and molecular for-

mula matrix

retentionTime retention time

peak_spacing A maximum space between isotopologues in Da to merge neighboring isotopo-

logues.

intensity_cutoff_str

A minimum intensity threshold for isotopic profiles in percentage. This parameter may be a string piece of R commands using c, b, br, cl, k, s, se, and si

variables corresponding to the same elements.

IonPathways A vector of ionization pathways. Pathways should be like [Coeff*M+ADD1-

DED1+...] where "Coeff" should be an integer between 1-9 and ADD1 and DED1 may be ionization pathways. ex: 'IonPathways <- c("[M]+", "[M+H]+", "[MH]+", "[MH]+",

"[2M-Cl]-", "[3M+CO2-H2O+Na-KO2+HCl-NH4]-")'

number_processing_threads

number of processing cores for multi-threaded computations.

UFA_IP_memeory_variables

A vector of three variables. Default values are c(1e30, 1e-12, 100) to manage memory usage. UFA_IP_memeory_variables[1] is used to control the overall size of isotopic combinations. UFA_IP_memeory_variables[2] indicates the minimum relative abundance (RA calculated by eq(1) in the reference [1]) of an isotopologue to include in the isotopic profile calculations. UFA_IP_memeory_variables[3] is the maximum elapsed time to calculate the isotopic profile on the 'setTime-

Limit' function of the base R.

allowedMustRunCalculation

c(TRUE, FALSE). A 'TRUE' allowedMustRunCalculation applies a brute-force method to calculate complex isotopic profiles. When 'TRUE', this option may significantly reduce the speed for multithreaded processing.

allowedVerbose c(TRUE, FALSE). A 'TRUE' allowedVerbose provides messages about the flow of the function.

Value

An IPDB list of isotopic profiles

References

[1] Fakouri Baygi, S., Crimmins, B.S., Hopke, P.K. Holsen, T.M. (2016). Comprehensive emerging chemical discovery: novel polyfluorinated compounds in Lake Michigan trout. *Environmental Science and Technology*, 50(17), 9460-9468, doi:10.1021/acs.est.6b01349.

See Also

```
https://ipc.idsl.me/
```

Examples

```
library(IDSL.UFA, attach.required = TRUE)
molecular_formula <- c("C13F8N802", "C20H22", "C8HF16ClS03", "C12Cl10", "C123H193N35037")
peak_spacing <- 0.005 # in Da for QToF instruments
# Use this piece of code for intensity cutoff to preserve significant isotopologues
intensity_cutoff_str <- "if (s>0 & si>0) {min(c(c, 10, si*3, s*4))}
else if (s>0 & si=0) {min(c(c, 10, s*4))}
else if (s=0 & si>0) {min(c(c, 10, si*3))}
else if (s=0 & si=0) {min(c(c, 10))}"
UFA_IP_memeory_variables <- c(1e30, 1e-12, 100)
IonPathways <- c("[M+H]+", "[M+Na]+", "[M-H2O+H]+")
number_processing_threads <- 2
listIsoProDataBase <- molecularFormula2IPdb(molecular_formula, retentionTime = NULL,
peak_spacing, intensity_cutoff_str, IonPathways, number_processing_threads,
UFA_IP_memeory_variables, allowedMustRunCalculation = FALSE, allowedVerbose = TRUE)
save(listIsoProDataBase, file = "listIsoProDataBase.Rdata")</pre>
```

```
molecular_formula_annotator
```

Molecular Formula Annotator

Description

This module annotates candidate molecular formulas in the peaklists from the IDSL.IPA pipeline using isotopic profiles.

```
molecular_formula_annotator(IPDB, spectraList, peaklist, selectedIPApeaks,
massAccuracy, maxNEME, minPCS, minNDCS, minRCS, scoreCoefficients, RTtolerance = NA,
correctedRTpeaklist = NULL, exportSpectraParameters = NULL, number_processing_threads = 1)
```

IPDB An isotopic profile database produced by the IDSL.UFA functions.

spectraList a list of mass spectra in each chromatogram scan.

peaklist Peaklist from the IDSL.IPA pipeline

selectedIPApeaks

selected IPA peaklist

massAccuracy Mass accuracy in Da

maxNEME Maximum value for Normalized Euclidean Mass Error (NEME) in mDa

minPCS Minimum value for Profile Cosine Similarity (PCS)

minNDCS Minimum value for Number of Detected Chromatogram Scans (NDCS)
minRCS Minimum value for Ratio of Chromatogram Scans (RCS) in percentage

scoreCoefficients

A vector of five numbers representing coefficients of the identification score

RTtolerance Retention time tolerance (min)

correctedRTpeaklist

corrected retention time peaklist

exportSpectraParameters

Parameters for export MS/MS match figures

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe of candidate molecular formulas

Description

```
molecular_formula_elements_filter
```

Usage

```
molecular_formula_elements_filter(molecularFormulaMatrix, Elements)
```

Arguments

molecularFormulaMatrix

molecularFormulaMatrix

Elements Elements

Value

a list of molecularFormulaMatrix and elementSorterList.

```
molecular_formula_library_generator

Molecular Formula Database Producer
```

Description

This function generates an efficient database for molecular formula matching against a database.

Usage

```
molecular_formula_library_generator(entire_molecular_formulas)
```

Arguments

```
entire_molecular_formulas

A string vector of molecular formulas (redundancy is allowed)
```

Value

A vector of frequency of molecular formulas in the database.

Examples

```
entire_molecular_formulas <- c("C2H60", "C2H60", "C2H60", "C2H60", "CH40", "CH40", "CH40", "CH40", "NH4", "C6H12O6")
db <- molecular_formula_library_generator(entire_molecular_formulas)
freq <- db[c("C6H12O6", "CH40")]</pre>
```

```
molecular_formula_library_search

Molecular Formula Library Search
```

Description

This function attempts to match candidate molecular formulas against a library of molecular formulas using a set of ionization pathways.

```
molecular_formula_library_search(MolecularFormulaAnnotationTable, MFlibrary,
IonPathways, number_processing_threads = 1)
```

MolecularFormulaAnnotationTable

A molecular formula annotation table from the 'molecular_formula_annotator'

module.

MFlibrary A library of molecular formulas generated using the 'molecular_formula_library_generator'

module.

IonPathways A vector of ionization pathways. Pathways should be like [Coeff*M+ADD1-

DED1+...] where "Coeff" should be an integer between 1-9 and ADD1 and DED1 may be ionization pathways. ex: 'IonPathways <- c("[M]+", "[M+H]+",

"[2M-Cl]-", "[3M+CO2-H2O+Na-KO2+HCl-NH4]-")'

number_processing_threads

Number of processing threads for multi-threaded processing

monoisotopicMassCalculator

Monoisotopic Mass Calculator

Description

This function calculates monoisotopic mass of a molecular formula

Usage

```
monoisotopicMassCalculator(MoleFormVec, massAbundanceList,
LElements = length(massAbundanceList))
```

Arguments

MoleFormVec A numerical vector molecular formula

 ${\tt massAbundanceList}$

A list of isotopic mass and abundance of elements obtained from the 'element_sorter'

function

LElements length of elements

Value

The monoisotopic mass

Examples

```
Elements <- c("C", "H", "O")
MoleFormVec <- c(2, 6, 1) # C2H60
EL_mass_abundance <- element_sorter(ElementList = Elements, alphabeticalOrder = FALSE)
massAbundanceList <- EL_mass_abundance[["massAbundanceList"]]
MImass <- monoisotopicMassCalculator(MoleFormVec, massAbundanceList)</pre>
```

scoreCoefficientsEvaluation

Score Coefficient Evaluation

Description

This function evaluates the efficiency of the optimization process.

Usage

scoreCoefficientsEvaluation(PARAM_ScoreFunc)

Arguments

PARAM_ScoreFunc

PARAM_ScoreFunc is a variable derived from the 'UFA_coefficient_xlsxAnalyzer' function

scoreCoefficientsOptimization

Coefficients Score Optimization

Description

This function optimizes the coefficients of the score function.

Usage

scoreCoefficientsOptimization(PARAM_ScoreFunc)

Arguments

PARAM_ScoreFunc

PARAM_ScoreFunc is a variable derived from the 'UFA_score_function_optimization_xlsxAnalyzer' function

scoreCoefficientsReplicate

Zero Score Function

Description

This function generates the input for the score optimization.

Usage

scoreCoefficientsReplicate(PARAM_ScoreFunc)

Arguments

PARAM_ScoreFunc

PARAM_ScoreFunc is a variable derived from the 'UFA_coefficient_xlsxAnalyzer' function

UFA_enumerated_chemical_space

IPDBs from UFA Enumerated Chemical Space (ECS) approach

Description

This function produces the isotopic profile database using the UFA enumerated chemical space (ECS) approach.

Usage

UFA_enumerated_chemical_space(PARAM_ECS)

Arguments

PARAM_ECS A dataframe of the molecular formula constraints in the UFA spreadsheet

18 UFA_formula_source

UFA_enumerated_chemical_space_xlsxAnalyzer

IPDBs from UFA Enumerated Chemical Space (ECS) xlsx Analyzer

Description

This function evaluates the molecular formula generation constraints in the spreadsheet to create the isotopic profile database.

Usage

```
UFA_enumerated_chemical_space_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet UFA spreadsheet

UFA_formula_source

IPDB from a Molecular Formulas Source

Description

This function produces IPDB from a molecular formula source (a .csv/.txt/.xlsx file).

Usage

```
UFA_formula_source(PARAM_FormSource)
```

Arguments

PARAM_FormSource

PARAM_FormSource is an internal variable of the IDSL.UFA package.

Value

an IPDB is saved in the destination address

```
UFA_formula_source_xlsxAnalyzer
```

UFA Formula Source xlsxAnalyzer

Description

This function evaluates the parameter spreadsheet for score coefficients optimization.

Usage

```
UFA_formula_source_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet

The parameter spreadsheet in the .xlsx format.

Value

a processed parameter to feed the 'UFA_molecular_formulas_source' function.

UFA_IPdbMerger

UFA IPDB Merger

Description

To merge multiple IPDBs into one IPDB

Usage

```
UFA_IPdbMerger(path, vecIPDB)
```

Arguments

path path

vecIPDB a vector of IPDBs

Value

IPDB

20 UFA_locate_regex

gex UFA Locate regex	
----------------------	--

Description

Locate indices of the pattern in the string

Usage

```
UFA_locate_regex(string, pattern, ignore.case = FALSE, perl = FALSE, fixed = FALSE,
useBytes = FALSE)
```

Arguments

string a string as character
pattern a pattern to screen
ignore.case ignore.case
perl perl
fixed fixed

useBytes

Details

useBytes

This function returns 'NULL' when no matches are detected for the pattern.

Value

A 2-column matrix of location indices. The first and second columns represent start and end positions, respectively.

Examples

```
pattern <- "C1"
string <- "NaC1.5HC1"
Location_C1 <- UFA_locate_regex(string, pattern)</pre>
```

UFA_PubChem_formula_extraction

UFA PubChem Formula Extraction

Description

This module is to extract molecular formulas from a database.

Usage

```
UFA_PubChem_formula_extraction(path)
```

Arguments

path

path to store information

Value

Molecular formulas in https://pubchem.ncbi.nlm.nih.gov/ are stored in the provided 'path' in the .txt format.

References

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. *Nucleic Acids Res.*, 2021 Jan 8; 49(D1):D1388–D1395, doi:10.1093/nar/gkaa971.

UFA_score_coefficients_corrector

Score Coefficients Corrector for MolecularFormulaAnnotationTable

Description

This function updates ranking orders of the individual MolecularFormulaAnnotationTable when score coefficients changed.

```
UFA_score_coefficients_corrector(input_annotated_molf_address,
  output_annotated_molf_address, scoreCoefficients, number_processing_threads = 1)
```

input_annotated_molf_address

Address to load the individual MolecularFormulaAnnotationTables.

output_annotated_molf_address

Address to save the individual MolecularFormulaAnnotationTables.

scoreCoefficients

A vector of five numbers representing coefficients of the identification score function.

number_processing_threads

Number of processing threads for multi-threaded computations.

UFA_score_function_optimization

UFA Score Coefficient Workflow

Description

This function runs the score optimization workflow.

Usage

UFA_score_function_optimization(PARAM_ScoreFunc)

Arguments

PARAM_ScoreFunc

 $PARAM_ScoreFunc from the `UFA_score_function_optimization_xlsxAnalyzer` module$

UFA_score_function_optimization_xlsxAnalyzer

UFA Score Optimization xlsx Analyzer

Description

This function evaluates the parameter spreadsheet for score coefficients optimization.

Usage

UFA_score_function_optimization_xlsxAnalyzer(spreadsheet)

Arguments

spreadsheet The parameter spreadsheet in the .xlsx format.

Value

a processed parameter to feed the 'UFA_score_function_optimization' function.

UFA_workflow 23

UFA_workflow

UFA Workflow

Description

This function executes the UFA workflow in order.

Usage

```
UFA_workflow(spreadsheet)
```

Arguments

spreadsheet

UFA spreadsheet

Value

This function organizes the UFA file processing for better performance using the template spreadsheet.

UFA_xlsxAnalyzer

UFA xlsx Analyzer

Description

This function processes the spreadsheet of the UFA parameters to ensure the parameter inputs are consistent with the requirements of the IDSL.UFA pipeline.

Usage

```
UFA_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet

UFA spreadsheet

Value

This function returns the UFA parameters to feed the UFA_workflow function.

Index

```
aggregatedIPdbListGenerator, 2
                                              UFA_score_function_optimization_xlsxAnalyzer,
aligned_molecular_formula_annotator, 3
                                              UFA_workflow, 23
detect_formula_sets, 3
                                              UFA_xlsxAnalyzer, 23
detect_formula_sets
        (detect_formula_sets), 3
element_sorter, 4
extendedSENIORrule.5
formula_adduct_calculator, 6
formula_vector_generator, 6
hill_molecular_formula_printer, 7
identificationScoreCalculator, 8
ionization_pathway_deconvoluter, 9
isotopic_profile_calculator, 9
molecular_formula_annotator, 12
molecular_formula_elements_filter, 13
molecular_formula_library_generator,
molecular_formula_library_search, 14
molecularFormula2IPdb, 11
monoisotopicMassCalculator, 15
scoreCoefficientsEvaluation, 16
scoreCoefficientsOptimization, 16
scoreCoefficientsReplicate, 17
UFA_enumerated_chemical_space, 17
UFA_enumerated_chemical_space_xlsxAnalyzer,
        18
UFA_formula_source, 18
UFA_formula_source_xlsxAnalyzer, 19
UFA_IPdbMerger, 19
UFA_locate_regex, 20
UFA_PubChem_formula_extraction, 21
UFA_score_coefficients_corrector, 21
UFA_score_function_optimization, 22
```