

ECE2050 Digital Logic and Systems Tutorial 4

Yao Junguang

Contact: junguangyao@link.cuhk.edu.cn

Office Hour: 14:00-15:00 Tuesday, Rx902

- Outline
 - Intro to laws, rules and theorem about Boolean algebra
 - How to simplify the expressions

- Boolean Operations and Expressions
 - Addition -> OR; Multiplication -> AND

Inputs		Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	1
	HGH 0	I OW

$$1 = HIGH, 0 = LOW$$

OR

Inp	outs	Output
A	В	X
0	0	0
0	1	0
1	0	0
1	1	1

$$1 = HIGH, 0 = LOW$$

AND

Laws of Boolean Algebra

- Commutative laws

$$A + B = B + A$$
; $AB = BA$

- Associative laws

$$A + (B + C) = (A + B) + C; A(BC) = (AB)C$$

- Distributive law

$$A(B + C) = AB + AC$$

Boolean Operations and Expressions

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	<u>1</u> = 0	NOT
А3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Dual: Replace: • with +

Rules of Boolean Algebra

TABLE 4-1

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

A, B, or C can represent a single variable or a combination of variables.

Rules of Boolean Algebra-Extension

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

DeMorgan's Theorems

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\overline{X + Y} = \overline{X}\overline{Y}$$

$$\begin{array}{c}
A \\
B
\end{array}$$
Negative-OR

$$\begin{array}{c}
A \\
B
\end{array}$$
Negative-AND

Q1: Using Boolean Algebra to simplify the expression:

$$BCDE + BC(\overline{DE}) + (\overline{BC})DE$$

Q1: Using Boolean Algebra to simplify the expression:

$$BCDE + BC(\overline{DE}) + (\overline{BC})DE$$

A1: BC + DE (use rule 6 and 11.)

- Standard Forms of Boolean Expressions
 - SOP: Sum-of-Products
 - Standard SOP Form: Each product term has all variables
 - POS: Product-of-Sums
 - SOP form: A+BC
 - NOT SOP form: A+B(A+C)
 - Standard SOP form: ABC+ABC

Boolean Expressions and Truth Tables

Q2: Develop the truth table and the standard POS expression:

$$(A + \overline{B})(A + \overline{B} + \overline{C})(B + C + \overline{D})(\overline{A} + B + \overline{C} + D)$$

Boolean Expressions and Truth Tables

Q2: Develop the truth table and A2: the standard POS expression:

$$(A + \overline{B})(A + \overline{B} + \overline{C})(B + C + \overline{D})(\overline{A} + B + \overline{C} + D)$$

TABLE	P-8			
\boldsymbol{A}	В	\boldsymbol{C}	D	X
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

The Karnaugh Map (K-Map)

- Used to simplify Boolean expressions in a SOP/POS form.
- Karnaugh maps can be used for expressions with two, three, four, and five variables, and the number of cells in a Karnaugh map indicates the number of possible input variable combinations.
 - For three variables, the number of cells is 2^3 = 8. For four variables, the number of cells is 2^4 = 16.
- Adjacency is defined by a single-variable change between adjacent cells.

- Cell Adjacency of The Karnaugh Map (K-Map)
 - 1. Each cell is adjacent to the cells that are immediately next to it on any of its four sides
 - 2. Wrap-around adjacency

- SOP Minimization and POS Minimization
 - In SOP, focus on 1's
 - In POS, focus on 0's
- Grouping
 - Goal: Maximize the size of the groups and to minimize the number of groups
 - The number of cells in a group should be powers of 2
 - Overlapping is allowed
- Nonstandard SOP Expression
 - Expand each term

"Don't Care" Conditions

- some states will never occur in an application, they can be treated as "don't care" terms.

FIGURE 4-40 Example of the use of "don't care" conditions to simplify an expression.

Converting between POS and SOP with K-Map

Example 4-35 Using a Karnaugh map, convert the following standard POS expression into a min. POS expression, a standard SOP expression, and a minimum SOP expression.

$$(\bar{A} + \bar{B} + C + D)(A + \bar{B} + C + D)(A + B + C + \bar{D})(A + B + \bar{C} + \bar{D})(\bar{A} + B + C + \bar{D})(A + B + \bar{C} + D)$$

K-Map of SOP Minimization

Q3: Minimize the expression with a K-Map:

$$A\overline{B} + A\overline{B}\overline{C}D + CD + B\overline{C}D + ABCD$$

K-Map of SOP Minimization

Q3: Minimize the expression with a K-Map:

$$A\overline{B} + A\overline{B}\overline{C}D + CD + B\overline{C}D + ABCD$$

A3: $A\overline{B} + BD + CD$

ABCD	X
0000	0
0001	0
0010	0
0011	1
0100	0
0101	1
0110	0
0111	1
1000	1
1001	1
1010	1
1011	1
1100	0
1101	1
1110	0
1111	1

ARCD

K-Map of POS Minimization

Q4: Determine the minimum POS expression for the function in Table 4-17:

TABLE 4-17				
	Inp	Output		
A	B	C	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

K-Map of POS Minimization

Q4: Determine the minimum POS expression for the function in Table 4-17:

A4:	AB CD	00	01	11	10
	00	0		0	
	01	0	0		
	11				0
	10		0	0	

TABLE 4-17				
Inputs				Output
A	В	$\boldsymbol{\mathcal{C}}$	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$(A+C+D)(A+\bar{B}+C)(\bar{A}+B+\bar{D})(B+\bar{C}+\bar{D})(\bar{A}+\bar{B}+\bar{C}+D)$$

Q&A

Thank You!