MA2202S Notes

Lou Yi

Last Edited by: December 17, 2024

Contents

1	Groups and Subgroups 1		
	1.1	Basics of a Group	1
	1.2	Subgroups	2
	1.3	Cosets	3
	1.4	Normal subgroups and Quotient Groups	5
	1.5	Product Groups	6
2	Hor	momorphism	8
	2.1	Group Homomorphism	8
	2.2	Isomorphism Theorems	8
3	Some Special Groups		
	3.1	Symmetric Group	9
	3.2	The Quaternion Group	12
	3.3	Matrix Groups	12
	3.4	The Group $\mathbb{Z}/n\mathbb{Z}$	14
	3.5	Cyclic Groups	14
	3.6	Dihedral Group	15
4	Group Actions 1		
	4.1	Basics of Group Actions	15
	4.2	Stabilizers, Normalizers, Centralizers, Centers and Orbits	17
	4.3	Action by Conjugation	18
	4.4	Automorphism	20
5	Free Groups		21
	5.1	Coproduct	22
6	Str	ucture of Finite Groups	22
	6.1	Sylow's Theorem	22
	6.2	Semi-direct Products	23
	6.3	More on Sylow Theorems	25
	6.4	Groups of Finite order	26
7	Group Decompositions		32
	7.1	Solvable Groups	32
	7.2	Composition Series	35
	7.3	Nilpotent Group	38
	7.4	Finitely Generated Abelian Groups	42
	7.5	Inverse Limit	44
8	Cat	tegory Theory	45

1 Groups and Subgroups

1.1 Basics of a Group

Definition: A binary operation \times of a set G is a function from $G \times G$ to G, such that $(a, b) \mapsto a \times b$. We often write $a \times b = ab = a \cdot b$ to simplify the notations.

Definition: A binary operation is called associative if for any $a, b, c \in G$, we have a(bc) = (ab)c. Definition: A binary operation is called commutative if for any $a, b \in G$, we have ab = ba.

Lemma 1.1 Let \times be an associative binary operation on G. Then the product $a_1a_2 \cdots a_n$ is independent of how the expression is bracketed.

Definition: a group is a set G with a binary operation \times on G satisfying the following conditions:

- a(bc) = (ab)c for any $a, b, c \in G$, i.e., multiplication is associative;
- there exists an identity element e such that ae = ea = a for any $a \in G$;
- for any $a \in G$, there exists an element a^{-1} , called the inverse of a, such that $a^{-1}a = aa^{-1} = e$.

If it is further known that multiplication is commutative, we say G is commutative or abelian. In this case, we usually use + for the group operation.

Definition: the order of G is the cardinality of the set G, often denoted by |G|. We say G is a finite group if |G| is finite.

Definition: let G be a group and $x \in G$. The order of x, denoted by |x| or $\operatorname{ord}(x)$, is the smallest positive integer such that $x^n = e$. We write $\operatorname{ord}(x) = \infty$ if such positive integer does not exist.

Lemma 1.2 Let G be a group, then the following are true:

- The identity element in G is unique.
- For any $a \in G$, the inverse of a is unique. b is the inverse of a if and only if ab = e.
- $(a^{-1})^{-1} = a \text{ for any } a \in G.$
- $(ab)^{-1} = b^{-1}a^{-1}$ for any $a, b \in G$.
- For any $a, x, y \in G$, if ax = ay, then x = y.
- For any $a, x, y \in G$, if xa = ya, then x = y.

Proposition 1.3 Let G be a set with a binary operation \times . Then G is a group if and only if

- the binary operation is associative;
- there exists an element $e \in G$ such that ea = a for any $a \in G$;
- for any $a \in G$, $\exists b \in G$, s.t., ba = e.

Definition: Let R be a set with two binary operations + and \times . Then $(R, +, \times)$ is called a ring if

- 1. (R, +) is an abelian group;
- 2. (R, \times) is associative;
- 3. We have $a \times (b+c) = a \times b + a \times c$ for any $a, b, c \in \mathbb{R}$;
- 4. We have $(b+c) \times a = b \times a + c \times a$ for any $a, b, c \in \mathbb{R}$.
- 5. (optional) there exists an element $0 \neq 1 \in R$ such that $1 \times a = a \times 1 = a$ for any $a \in R$.

Definition: a ring R is called a field, if $(R - \{0\}, \times)$ is an abelian group.

Definition: let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group with $g_1 = 1$. The multiplication table or group table of G is the $n \times n$ matrix whose i, j entry is the group element $g_i g_j$.

1.2 Subgroups

Definition: let G be a group. A non-empty subset $H \subset G$ is called a subgroup of G, denoted by $H \leq G$, if H is closed under multiplication and H is a group with respect to the same multiplication map.

Lemma 1.4 Let G be a group with a subgroup H.

- 1. Then $e_H = e_G$;
- 2. $\forall a \in H, (a^{-1})_H = (a^{-1})_G$.

Proposition 1.5 The arbitrary intersection of subgroups of G is still a subgroup of G.

Definition: let $A \subset G$ be a subset of G. We define the subgroup generated by A as the intersection of all subgroups containing A, denoted by $\langle A \rangle$.

Proposition 1.6 $\langle A \rangle = \{ a_1^{r_1} a_2^{r_2} \cdots a_n^{r_n} \mid n \in \mathbb{Z}, n \ge 0 \text{ and } a_i \in A, \ r_i = \pm 1 \}.$

Corollary 1.6.1 Suppose $H \leq G$, then $\langle H \rangle = H$.

Lemma 1.7 Let $x \in G$, we have $\langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$ and $|\langle x \rangle| = \operatorname{ord}(x) = |x|$

Lemma 1.8 Let H and K be subgroups of G. Then $H \cup K$ is a subgroup of G iff one of them is contained in the other.

Remark 1.8.1 A group can't be the union of two of its proper subgroups, however, a group can be the union of three of its proper subgroups.

Proof: To prove this one direction is easy. For the other direction, suppose $H \cup K$ is a group and none of them is a subset of the other. Then $\exists x, y \text{ s.t.}, x \in H \text{ but } x \notin K \text{ and } y \in K \text{ but } y \notin H.$ Notice $x, y \in H \cup K$, so $xy \in H \cup K$. Then either $xy \in H$ or $xy \in K$. However, this will leads to a contradiction, as it would either mean $y \in H$ or $x \in K$.

Definition: a proper subgroup M of G is called maximal if $M \leq G$ and the only subgroups of G which contain M are M and G.

Lemma 1.9 Every non-trivial finitely generated group possesses a maximal subgroup.

Proof: Zorn's Lemma.

Remark: finitely generated is essential. Suppose G do not need to be finitely generated, then $(\mathbb{Q}, +)$ has no maximal subgroup.

Definition: A nontrivial abelian group A (written multiplicatively) is called divisible if for each element $a \in A$, and each nonzero integer k there is an element $x \in A$ such that $x^k = a$.

Example: $(\mathbb{Q}, +)$ is divisible.

1.3 Cosets

Definition: let N be a subgroup of G. For any $g \in G$, we respectively define the left coset and right coset as

$$gN = \{gn \in G \mid n \in N\}, \ Ng = \{ng \in G : n \in \mathbb{N}\}.$$

The set of left cosets or right cosets of N is denoted by G/N or $N \setminus G$ respectively.

Lemma 1.10 Suppose $N \leq G$, $a, b \in G$, then aN = bN if and only if $a^{-1}b \in N$ or $b^{-1}a \in N$.

Lemma 1.11 Let N be a subgroup of G. We denote a relation on G by $g \sim h$ if and only if g = hn for some $n \in N$. Then \sim defines an equivalence relation on G with equivalence classes G/N, i.e., the set of equivalence class partition the group G.

Corollary 1.11.1 (Lagrange's Theorem) Let G be a finite group and $H \leq G$ be a subgroup of G. Then the order of H divides the order of G and the number of left cosets of H in G equals |G|/|H|. So |G/H|||G|.

Corollary 1.11.2 The order of any element $x \in G$ divides the order of the group. If G is a group with prime order, then $G \cong Z_p$ and the group is generated by any non-identity element.

Lemma 1.12 If H and K are finite subgroups of a group, then

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}.$$

Proof: Note $HK = \bigcup \{hK ; h \in H\}$ and every coset of K have the same element and different cosets of K are disjoint, hence we just need to find out how many cosets there are. We know $h_1K = h_2K$ iff $h_1^{-1}h_2 \in K$, that is $h_1^{-1}h_2 \in H \cap K$. Note $H \cap K$ again partitions H, and if h_1, h_2 are in the same coset $H \cap K$, then $h_1K = h_2K$. Thus we conclude there are $|H|/|H \cap K|$ many cosets of K, and our desired formula hence follows.

Definition: let G be a (potentially infinite) group with a subgroup H. The number of left cosets of H in G is called the index of H in G and is denoted by |G:H|.

Theorem 1.13 (Cauchy's Theorem) If G is a finite group and p is a prime dividing |G|, then |G| has an element of order p.

Proof: Consider the following steps:

- 1. Define $S = \{(x_1, x_2, \dots, x_p) \mid x_i \in G, x_1 x_2 \dots x_p = 1\}.$
- 2. Show S has $|G|^{p-1}$ elements, hence has order divisible by p.
- 3. Define a relation \sim on elements of S, such that $a \sim b$ if a is a cyclic permutation of b.
- 4. Show the cyclic permutation of an element of S is again an element of S.
- 5. An equivalence class contains only one element if and only if it is of the form $(x, \dots, x), x^p = 1$.
- 6. Show that every equivalence class is of order 1 or p.
- 7. Note $(1, \dots, 1)$ is an equivalence class of size 1, then there must also be at least one other equivalence class of size 1.

Lemma 1.14 *Let* $H \le K \le G$, *then* $|G:H| = |G:K| \cdot |K:H|$.

Proof: Construct explicit bijections using complete representation.

Definition: let H and K be subgroups of G, then we define the HK double coset of x in G to be the set

$$HxK = \{hxk \mid h \in H, k \in K\}.$$

The set of all HK double coset is denoted $H\backslash G/K$. Note HxK is the union of left cosets of K, or it is the union of right cosets of H.

Lemma 1.15 HxK and HyK are either the same or disjoint $\forall x, y \in G$. So the set of double cosets partition G. Furthermore, we have

- 1. $|HxK| = |K| \cdot |H| : H \cap xKx^{-1}|;$
- 2. $|HxK| = |H| \cdot |K: K \cap xHx^{-1}|$.

Proposition 1.16 Let H and K be subgroups of a group G, then the intersection $xH \cap yK$ of two cosets of H and K is either empty or else is a coset of the subgroup $H \cap K$.

Proof: Suppose $xH \cap yK \neq \emptyset$, then $\exists a$ in this inteserction. Then a = xh = yk for some $h \in H$ and $k \in K$, so $h = x^{-1}a$, $k = y^{-1}b$. Then aH = xH and aK = yK. Hence $xH \cap yK = aH \cap aK = a(H \cap K)$.

Proposition 1.17 Suppose H and K are two subgroups of a group G with finite index, then $H \cap K$ is a subgroup of G with finite index.

Proof: Establish a surjection between $G/H \times G/K$ and $G/H \cap K$.

Lemma 1.18 Let S be a non-empty subset of a group G, then S is a subgroup of G if and only if SS = S, $S = S^{-1}$, and $e \in S$.

Proof: Clear.

Corollary 1.18.1 Let H and K be subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. Proof: If HK is a subgroup, then

$$HK = (HK)^{-1} = K^{-1}H^{-1} = KH.$$

Conversely, if HK = KH, then

$$(HK)^{-1} = K^{-1}H^{-1} = KH = HK;$$

$$(HK)(HK) = H(KH)K = H(HK)K = HK$$

It is also clear that $e \in HK$ and $HK \neq \emptyset$. Hence HK is a subgroup of G.

1.4 Normal subgroups and Quotient Groups

Definition: let $g, n \in G$, then gng^{-1} is called the conjugate of n by g. If $N \leq G$, then gNg^{-1} is known as the conjugate of N by g.

Definition: let N be a subgroup of G. Then N is called a normal subgroup of G denoted by $N \subseteq G$, if for any $g \in G$, we have gN = Ng or $gNg^{-1} = N$.

Lemma 1.19 Let A be a subset of a group G, then $gAg^{-1} \subset A \forall g \in G$ if and only if $gAg^{-1} = A \forall g \in G$. Hence N is normal in G, if it is a subgroup of G and $\forall g \in G$, $gNg^{-1} \subset G$.

Lemma 1.20 The arbitrary intersection of normal subgroups of G is still a normal group of G.

Lemma 1.21 If $N \subseteq G$, then $N_G(N) = G$. In particular, if $N_G(N) = H$, then H is the largest subgroup of G which N is normal in.

Lemma 1.22 Suppose $N \subseteq G$, and H is any subgroup of G, then $N \cap H \subseteq H$.

Proposition 1.23 Suppose $|G| = p^n$, $n \ge 1$. Let $m \in \mathbb{Z}$, s.t., $0 \le m \le n$, then G has a normal subgroup of order p^m

Proof: Induction using the center of |G|.

Lemma 1.24 Let N be a subgroup of G. Then the naive multiplication map on G/N is well-defined if and only if N is a normal subgroup of G.

Theorem 1.25 Let N be a normal subgroup of G. Then G/N is a group with the naive multiplication map. Moreover, the projection map $\pi: G \to G/N$, $g \mapsto gN$ is a group homomorphism.

Definition: the group G/N is called the quotient group of G with respect to N.

Lemma 1.26 A subgroup of G is normal if and only if it is the kernel of some homomorphism.

Definition: let R be a subset of a group G. We define the normal closure of R in G as the intersection of all normal subgroups of G which contains R, denoted by $\langle R^G \rangle$.

Lemma 1.27
$$\langle R^G \rangle = \langle \bigcup_{g \in G} gRg^{-1} \rangle$$
.

Lemma 1.28 Suppose $N = \langle S \rangle$, then $N \subseteq G$ if and only if $gSg^{-1} \subseteq N$ for all $g \in G$.

Lemma 1.29 If H and K are normal groups of G and $H \cap K = 1$, then xy = yx for any $x \in H, y \in K$, and further we have $HK \cong H \times K$.

Proposition 1.30 Let P be a partition of a group G with the property that for any pair of element A, B of the partition, the product set AB is contained entirely within another element C of the partition. Let N be the element of P that contains the identity, then N is a normal subgroup of G and P is the set of its cosets.

Proof: Firstly, we show N is a subgroup of G. It is given the e is in N. For any $g \in G$, let [g] denote the equivalence class of g induced by this partition. So suppose $g, h \in N$, then $[g][h] = NN \subset N$, as $e \in N$, and the partitions are disjoint, so $gh \in N$. Next, suppose $g \in N$, then $[g][g^{-1}] = N[g^{-1}]$. $g^{-1} \in N[g^{-1}]$, so $N[g^{-1}] \subset [g^{-1}]$ and $e \in N[g^{-1}]$, so $N[g^{-1}] \subset N$. Hence $g^{-1} \in N$, and we conclude that N is a group.

Next, we show for all $g \in G$, gN = Ng. $[g]N \subset [g]$, but as $e \in N$, then $[g]N \supset [g]$, so [g]N = gN. Similarly, we can show N[g] = Ng. I.e., P is the set of cosets of N. I.e., [g] = gN. Then as $g \in gN$ and $g \in Ng$, we must have gN = [g] = Ng for any $g \in G$, hence N is normal.

1.5 Product Groups

Definition: let G and H be groups. The direct product $G \times H$ of G and H is defined as follows:

- $G \times H = \{(g,h) | g \in G, h \in H\}$ as a set;
- We define $(q_1, h_1) \cdot (q_2, h_2) = (q_1 q_2, h_1 h_2)$.

We can further define the product of multiple groups $G_1 \times G_2 \times \cdots \times G_n$ and the infinite product of groups in a similar way.

Lemma 1.31 Suppose G_1, G_2, \dots, G_n are groups and $\sigma \in \text{Perm}(n)$, then

$$G_1 \times \cdots \times G_n \cong G_{\sigma(1)} \times \cdots \times G_{\sigma(n)}.$$

Proposition 1.32 If G_1, \dots, G_n are groups, let $G = G_1 \times \dots \times G_n$ be their direct product, then:

1. G is a group of order $|G_1||G_2|\cdots|G_n|$.

2. For each fixed i, the set of elements of G which have the identity of G_j in the jth position for all $j \neq i$ and arbitrary elements of G_i in the position i is a subgroup of G isomorphic to G_i :

$$G_i \cong \{(1, \dots, g_i, \dots, 1) | g_i \in G_i\}.$$

If we identify G_i with this subgroup, then $G_i \subseteq G$ and

$$G/G_i \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$$
.

3. For each fixed i, the kernel of the canonical projection onto the ith coordinate is isomorphic to

$$G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$$
.

- 4. Let I be a proper, nonempty subset of $\{1, \dots, n\}$, and let $J = \{1, \dots, n\} \setminus I$. Define G_i to be the set of elements of G that have the identity of G_j in position j for all $j \in J$.
 - G_I is isomorphic to the direct product of the groups G_i , $i \in I$.
 - G_I is a normal subgroup of G and $G/G_I \cong G_J$.
 - $G \cong G_I \times G_J$.
 - If $K \subset J$, and $x \in G_I$, $y \in G_K$, then xy = yx.
- 5. $Z(G) = Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n)$.

Remark: the proposition can be generalized to infinite products.

Proposition 1.33 Let K_1, K_2, \dots, K_n be non-abelian simple groups and let $G = K_1 \times K_2 \times \dots \times K_n$. Then every normal subgroup of G is of the form $K_{i_1} \times K_{i_2} \times \dots \times K_{i_m}$ for some subset $I = \{i_1, i_2, \dots, i_m\}$ of $\{1, 2, \dots, n\}$.

Proof: Suppose H is a non-trivial normal subgroup of G. We prove the following:

For each $i \in \{1, 2, \dots, n\}$, either $K_i \leq H$, or every $h \in H$ can be written as $h = k_1 k_2 \cdots k_n$ with $k_j \in K_j$ and $k_i = 1$. WLOG, we show for the case i = 1.

Assume that there is some element $h = k_1 k_2 \cdots k_n$ with $k_1 \neq 1$. For any $g \in K_1$, by the normality of H, we know $ghg^{-1} = gk_1 \cdots k_n g^{-1} \in H$. So

$$[g, k_1] = gk_1g^{-1}k_1^{-1} = ghg^{-1}h^{-1} \in H$$

since g commutes with k_2, \dots, k_n . Hence the subgroup $[K_1, k_1]$ generated by $\{[g, k_1] : g \in K_1\}$ is a subgroup of $H \cap K_1$.

We show that $[K_1, k_1]$ is a normal subgroup of K_1 . let $x \in K_1$, then

$$xgk_1g^{-1}k_1^{-1}x^{-1} = (xg)k_1(xg)^{-1}k_1^{-1}(xk_1x^{-1}k^{-1})^{-1} \in [K_1, k_1].$$

So $[K_1, k_1]$ is normal and clearly not equal to $\{e\}$ because there must be some g not commutative with k_1 . Otherwise $\langle k_1 \rangle$ would be an abelian normal proper subgroup of K_1 (K_1 is not abelian), a contradiction. Thus $[K_1, k_1] = K_1$ so $K_1 \leq H$. We have thus proved the claim.

2 Homomorphism

2.1 Group Homomorphism

Definition: let G and H be two groups.

- A group homomorphism is a map $\phi: G \to H$, $g \mapsto \phi(g)$ such that $\phi(g \times_H h) = \phi(g) \times_H \phi(h)$ for any $g, h \in G$.
- A group homomorphism $\phi: G \to H$ is called invertible if there exists a group homomorphism $\psi: H \to G$ such that $\phi \circ \psi = id_H$ and $\psi \circ \phi = id_G$.
- We say G is isomorphic to H, denoted by $G \cong H$, if there is an invertible group homomorphism $\phi: G \to H$.
- Let $\phi: G \to H$ be a group homomorphism, then $\ker \phi^{-1}(e_H) = \{g \in G : \phi(g) = e\}$ is called the kernel of ϕ .

Lemma 2.1 Let G and H be two groups. Let $\phi: G \to H$ be a group homomorphism, then

- $\phi(e_G) = e_H$.
- $\phi(g^{-1}) = \phi(g)^{-1}$.
- The image $\phi(G)$ is a subgroup of H. Suppose K is a subgroup of G, then $\phi(K)$ is also a subgroup of H. If ϕ is surjective, then the image of a normal subgroup in G is normal in H.
- Let K be a subgroup of H, then the preimage of K under ϕ is a subgroup of G. The preimage of a normal subgroup in H is a normal subgroup of G.
- Let $\psi: H \to K$ be another group homomorphism. Then the composition $\psi \circ \phi: G \to K$ is a group homomorphism. In particular, if ϕ is a homomorphism from G and H, and $K \leq G$, then $\phi|_K$ is a homomorphism from K to H.
- The map ϕ is an isomorphism if and only if it is a bijective group homomorphism.
- $\ker \phi$ is a normal subgroup of G, and ϕ is injective if and only if $\ker \phi = \{e_G\}$.

2.2 Isomorphism Theorems

Theorem 2.2 (The First Isomorphism Theorem) Let $\phi : G \to H$ be a group homomorphism. Then $G / \ker \phi \cong \phi(G)$.

Lemma 2.3 Recall H and K are subgroups of G, then HK is a group if and only if HK = KH. Then if $K \subseteq G$, then HK is a group for any subgroup H of G.

Theorem 2.4 (The Second Isomorphism Theorem) Let G be a group. Let H and K be a subgroups of G such that $hKh^{-1} = K$ for any $h \in H$, i.e., (H is a subgroup of the normalizer of K). Then

- 1. HK is a subgroup of G;
- 2. K is a normal subgroup of HK;
- 3. $H \cap K$ is a normal subgroup of H;
- 4. $HK/K \cong H/(H \cap K)$.

Theorem 2.5 (The Third Isomorphism Theorem) Let G be a group. Let H and K be normal subgroups of G such that $H \leq K$. Then K/H is a normal subgroup of G/H and

$$(G/H)/(K/H) \cong G/K$$
.

Theorem 2.6 (The Fourth Isomorphism Theorem) Let G be a group with a normal subgroup N. Let π : $G \to G/N$ be the quotient map. Then π induces a bijection between

$$\{H \leq G \mid N \leq H\} \leftrightarrow \{subgroups \ of \ G/N\} = \{H/N \mid N \leq H \leq G\}$$

by $H \mapsto \pi(H)$, and $K \mapsto \pi^{-1}(K)$. Moreover, the bijection preserves the following properties $(N \leq A, B \leq G)$:

- 1. $\pi(A) \leq \pi(B) \Leftrightarrow A \leq B$;
- 2. $|A:B| = |\pi(A):\pi(B)|$ if $B \le A$.
- 3. $\pi(\langle A \cup B \rangle) = \langle \pi(A) \cup \pi(B) \rangle$;
- 4. $\pi(A \cap B) = \pi(A) \cap \pi(B);$
- 5. A is normal in G if and only if $\pi(A)$ is normal in G/N.

3 Some Special Groups

3.1 Symmetric Group

Definition: Let $X = \{1, 2, \dots, n\}$. Then the symmetric group of n letters are defined as $S_n = \text{Perm}(n)$. Where Perm is the set of all bijections on the set X.

Definition: Let A be an arbitrary set, we can define the symmetric group on A by $S_A = \text{Perm}(A)$.

Lemma 3.1 For any $\sigma \in S_n$, it can be written as a product of disjoint cycles. In particular, S_n is generated by the set

$$\{(i, i+1) : 1 \le i \le n-1\}.$$

Lemma 3.2 Suppose $(a_1a_2 \cdots a_n)$ is a cycle, then it can be decomposed into the following ways:

- $(a_1a_2)(a_2a_3)(a_3a_4)\cdots(a_{n-1}a_n)$
- $(a_1a_n)(a_1a_{n-1})\cdots(a_1a_2)$
- $(a_n a_{n-1})(a_n a_{n-2}) \cdots (a_n a_1)$

Lemma 3.3 Every permutation can be expressed as a product of even number $(2, 4, \cdots)$ cycles. The recipe is to square the cycle and then follow up with the appropriate cycle. For example, (12) = (1324)(1234)(1234).

Lemma 3.4 Let X be a set of n elements. Then $Perm(X) \cong S_n$.

Note one can think of a permutation of on the set $\{1, \dots, n\}$ as a permutation matrix of size $n \times n$. Then we have a natural group homomorphism $S_n \to GL_n(\mathbb{C})$ mapping elements in S_n to the subgroup of permutation matrices. Definition: we consider the composition of the group homomorphism $S_n \to GL_n(\mathbb{C})$ with the determinant map, we obtain a group homomorphism $\mathrm{sgn}: S_n \to \mathbb{C}^*$. It is clear that the image of this map is $\{\pm 1\}$.

Definition: we define the alternating subgroup A_n of S_n as the kernel of the map sgn.

Lemma 3.5 Suppose $\sigma \in S_n$ is the product of cycles $\sigma_1, \sigma_2, \dots, \sigma_n$ which are not necessarily disjoint, suppose σ_i is an k_i cycle, then

$$\operatorname{sgn}(\sigma) = \prod_{i=1}^{n} \operatorname{sgn}(\sigma_i) = \prod_{i=1}^{n} (-1)^{k_i - 1} = (-1)^{\sum_{i=1}^{n} (k_i - 1)}.$$

Lemma 3.6 Every element in the alternating group can be decomposed into a product of 2k many transpositions, and for each pair of transposition (ab)(cd), we have (ab)(bc)(bc)(cd) = (abc)(bcd), which means they can be decomposed into products of 3-cycles.

Definition: let n be a positive integer. A partition of n, denoted by $\lambda \vdash n$, is a nondecreasing sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ of positive integers such that $\sum \lambda_i = n$. We denote the set of partitions by $\mathcal{P}(n)$. Cycle Decomposition of Conjugate.

Conjugate Permutations have Same Cycle Type.

Theorem 3.7 The set of conjugacy classes of S_n is in natural bijection with $\mathcal{P}(n)$.

Proposition 3.8 For $n \in \mathbb{Z}^+$, S_n is isomorphic to a subgroup of A_{n+2} .

Proof: We construct an injective homomorphism ϕ from S_n to A_{n+2} , then S_n will be isomorphic to the image of ϕ . Define it in the following way: $\phi(\sigma) = \sigma$ if σ is an even permutation, $\phi(\sigma) = \sigma \circ ((n+1)(n+2))$ if σ is an odd permutation.

Proposition 3.9 The conjugacy class in S_n which consists of even permutations is either a single conjugacy class under the action of A_n or is a union of two classes of the same size in A_n . If $\sigma \in A_n$, then all elements in the conjugacy class of σ in S_n are conjugate in A_n if and only if σ commutes with an odd permutation.

Proposition 3.10 For $n \neq 6$, every automorphism on S_n is inner. $|Aut(S_6): Inn(6)| = 2$.

Lemma 3.11 The center of the symmetric group S_n is trivial for $n \geq 3$; the center of the alternating group A_n , is trivial for $n \geq 4$.

Theorem 3.12 For $n \geq 5$, A_n is simple.

Proof: We first prove that A_5 is simple. In fact, we show that if |G| = 60, and G has more than one Sylow 5-subgroup, then G is simple.

Suppose $n_5 > 1$, then n_5 can only be 6. Let $P \in Syl5(G)$, then $|N_G(P)| = 10$. Now suppose H is a normal subgroup of G that is not $\{e\}$ or G. If 5|H, then H contains a Sylow 5-subgroup of G. Since H is normal, then it contains all 6 conjugates of this subgroup, so $|H| \ge 1 + 6 \cdot 4 = 25$, which implies |H| = 30. But then any group of order 30 must have a unique Sylow 5-subgroup (by some further analysis). Hence 5 doesn't divide the order of H.

Now if |H| = 6 or 12, H has a normal, hence characteristic Sylow subgroup, which is therefore also normal in G. Replacing H by this subgroup if necessary, we may assume that |H| = 2, 3 or 4. Let $\bar{G} = G/H$, so $|\bar{G}| = 30, 20$ or 15. In each case, \bar{G} has a normal subgroup \bar{P} of order 5. If we let H_1 be the complete preimage of \bar{P} in G, then $H_1 \leq G$, $H_1 \neq G$ and $5|H_1$, which contradicts the preceding paragraph. Hence G must be simple. Now A_5 is simple because it has two distinct Sylow 5-subgroups, namely $\langle (12345) \rangle$ and $\langle (13245) \rangle$.

Next we show by induction that A_n is normal for n > 5. Assume there exists $H \leq G = A_n$ with $H \neq \{e\}$ or G. Then for each $i \in \{1, 2, \dots, n\}$ Let G_i be the stabilizer of i in the natural action of G on $i \in \{1, 2, \dots, n\}$. Thus $G_i \leq G$ and $G_i \cong A_{n-1}$. By induction, G_i is simple for $1 \leq i \leq n$.

Suppose first that there is some $\tau \in H$ with $\tau \neq 1$ but $\tau(i) = i$ for some $i \in \{1, 2, \dots, n\}$. Since $\tau \in H \cap G_i$ and $H \cap G_i \subseteq G_i$, by the simplicity of G_i , we must have $H \cap G_i = G_i$, so $G_i \subseteq H$. But as H is normal, then

$$\sigma G_i \sigma^{-1} = G_{\sigma(i)} \le \sigma H \sigma^{-1} = H.$$

So $G_j \leq H$ for all j. Note any $\lambda \in A_n$ can be written as a product of an even number, 2t, of transpositions, so

$$\lambda = \lambda_1 \lambda_2 \cdots \lambda_t$$

where λ_k is a product of two transpositions. Since n > 4, each λ_k is a three cycle, hence $\lambda_k \in G_j$ for some j, then we have that G is generated by G_1, \dots, G_n , hence G = H which is a contradiction. Therefore if $\tau \neq 1$ is an element of H, then $\tau(i) \neq i$ for all $i \in \{1, 2, \dots, n\}$, i.e., any non-identity element of H does not fix any element of $\{1, 2, \dots, n\}$.

It follows that if τ_1, τ_2 are elements of H with $\tau_1(i) = \tau_2(i)$ for some i, then $\tau_1 = \tau_2$, since $\tau_2^{-1}\tau_1(i) = i$. Suppose there exists a $\tau \in H$ such that the cycle decomposition of τ contains a cycle of length ≥ 3 , say

$$\tau = (a_1 a_2 a_3 \cdots)(b_1 b_2 \cdots) \cdots$$

Let $\sigma \in G$ be an element with $\sigma(a_1) = a_1$, $\sigma(a_2) = a_2$ but $\sigma(a_3) \neq a_3$. Then

$$\tau_1 = \sigma \tau \sigma^{-1} = (a_1 a_2 \sigma(a_3) \cdots) (\sigma(b_1) \sigma(b_2) \cdots) \cdots$$

So τ and τ_1 are distinct elements of H with $\tau(a_1) = \tau_1(a_1) = a_2$, which is a contradiction. This proves that only 2-cycles can appear in the cycle decomposition of non-identity elements of H.

Let $\tau \in H$ with $\tau \neq 1$, so

$$\tau = (a_1 a_2)(a_3 a_4)(a_5 a_6) \cdots$$

Such representation exists because τ do not fix any indices. Let $\sigma = (a_1 a_2)(a_3 a_5) \in G$. Then

$$\tau_1 = \sigma \tau \sigma^{-1} = (a_1 a_2)(a_5 a_4)(a_3 a_6) \cdots,$$

Hence τ and τ_1 are distinct elements of H with $\tau(a_1) = \tau_1(a_1) = a_2$, again a contradiction. Hence we must have that A_n is simple.

3.2 The Quaternion Group

Definition: the Quarternion Group Q_8 is defined as follows. As a set we define

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$$

We then define the multiplication map $Q_8 \times Q_8 \to Q_8$ as follows:

$$\forall a \in Q_8 \ 1a = a1 = a$$

$$\forall a \in Q_8 \ (-1)(-1) = 1, \ (-1)a = a(-1) = -a$$

$$i \cdot i = j \cdot j = k \cdot k = -1$$

$$i \cdot j = k, \ j \cdot i = -k,$$

$$j \cdot k = i, \ k \cdot j = -i$$

$$k \cdot i = j, \ i \cdot k = -j.$$

The quaternion group can be represented as the following:

$$Q_8 = \langle a, b \mid a^2 = b^2, a^{-1}ba = b^{-1} \rangle.$$

3.3 Matrix Groups

Definition: let k be a field, the general linear group over k is defined as

$$GL_n(K) = \{ A \in M_{n \times n}(k) \mid A \text{ is invertible} \}.$$

Definition: the orthogonal group over k is defined as

$$O_n(k) = \{ A \in M_{n \times n}(k) \mid AA^T = A^T A = I \}.$$

Definition: over the complex numbers, we define the unitary group as follows:

$$U_n = \{ A \in M_{n \times n}(\mathbb{C}) \mid AA^H = A^H A = I \}.$$

Definition: let \mathbb{F} be any field in which the determinant of a matrix over the field can be calculated, then we define the special linear group to be

$$SL_n(\mathbb{F}) = \{ A \in GL_n(\mathbb{F}) \mid \det(A) = 1 \}.$$

Definition: we define $Gr_{k,n}(\mathbb{F})$ be the set of k-dimensional subspace of \mathbb{F}^n .

Lemma 3.13 With A be an arbitrary matrix, we have the following results:

1.
$$e_{ij}A = \begin{bmatrix} 0 \\ \vdots \\ a_j \\ \vdots \\ 0 \end{bmatrix}$$
, i.e., the matrix whose ith row is the jth row of the matrix A .

- 2. Ae_{ij} is the matrix whose jth column is the ith column of A.
- 3. $e_j A e_k$ is the number that is the jk-entry of A.
- 4. $e_{ij}Ae_{kl}$ is the matrix whose il-entry is the jk-entry from A.

Lemma 3.14 The product of elements of finite order is a group need not have finite order.

Proof: Counter Example:

$$\left[\begin{array}{cc} 1 & -1 \\ 0 & -1 \end{array}\right] \cdot \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right].$$

The two matrices on the left have order 2, but the matrix on the right has an infinite order.

Lemma 3.15 Suppose \mathbb{F} is a field with order q, where q is a prime, then the order of

$$GL_n(\mathbb{F}) = \prod_{i=1}^n (q^n - q^{i-1}).$$

Lemma 3.16 Suppose \mathbb{F} is a field with order q, where q is a prime. Then $|GL_n(\mathbb{F})| : SL_n(\mathbb{F})| = q - 1$.

Lemma 3.17 The center of the general linear group over a field \mathbb{F} , $GL_n(\mathbb{F})$ is the collection of scalar matrices,

$$\{\lambda I_n : \lambda \in \mathbb{F} \setminus \{0\}\}.$$

The center of the orthogonal group is $\{I_n, -I_n\}$.

3.4 The Group $\mathbb{Z}/n\mathbb{Z}$

Definition: let $n \in \mathbb{Z}$ be an integer. We define an equivalence relation on \mathbb{Z} by $a \sim b$ iff n|(a-b). We denote the equivalent classes by $\mathbb{Z}/n\mathbb{Z}$. Note, $\mathbb{Z}/n\mathbb{Z}$ form an abelian group with respect to the addition map.

Lemma 3.18 The multiplication on $\mathbb{Z}/n\mathbb{Z}$ is well-defined. Moreover, $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ forms a commutative ring.

Definition: we define the set of units modulo $n (\mathbb{Z}/n\mathbb{Z})^*$ by

$$(\mathbb{Z}/n\mathbb{Z})^* = \{\bar{a} \mid \text{there exists } \bar{b} \in \mathbb{Z}/n\mathbb{Z} \text{ such that } \bar{b}\bar{a} = \bar{1}\}.$$

Lemma 3.19 $(\mathbb{Z}/n\mathbb{Z})^*$ forms an abelian group under the multiplication map, and the order of the group is $\varphi(n)$.

3.5 Cyclic Groups

Definition: a group G is called cyclic if G can be generated by single element, i.e., $G = \langle x \rangle$ for some $x \in G$. Let $G = \langle x \rangle$ throughout this section, then $|G| = \operatorname{ord}(x)$.

Lemma 3.20 If |G| = n, then $G \cong \mathbb{Z}/n\mathbb{Z}$, if $|G| = \infty$, then we have $G \cong \mathbb{Z}$.

Lemma 3.21 Let $p \in \mathbb{Z}$ be a prime. If G is a group of order p, then G is isomorphic to the cyclic group $\mathbb{Z}/p\mathbb{Z}$.

Lemma 3.22 The only group H that does not contain a proper subgroup are cyclic groups of prime order.

Proposition 3.23 Let $H \leq G$ be a subgroup. Then $H = \langle x^a \rangle$ for some $a \in \mathbb{Z}$ is also cyclic. Let $d \geq 0$ be the gcd of a and |G|, if $|G| = \infty$, then we set d = a. Then $H = \langle x^d \rangle$.

Corollary 3.23.1 Let $H = \langle x^d \rangle$ be a subgroup of G such that $d \geq 0$ and d|n. Then |G:H| = d.

Lemma 3.24 Suppose G is an arbitrary group and $x \in G$. If $m, n \in \mathbb{Z}$ is such that $x^n = 1$ and $x^m = 1$, then $x^{\gcd(m,n)} = 1$.

Corollary 3.24.1 Suppose $G = \langle x \rangle$ is a cyclic group of order n. Then $H = \langle x^s \rangle$ is a cyclic group of order $n/\gcd(s,n)$.

Theorem 3.25 Let $G = \langle x \rangle$ be a cyclic group of order n. Then $\{\langle x^d \rangle | d \geq 0, d | n\}$ is the set of all non-identical subgroups of G.

Proposition 3.26 Let $H_1 = \langle x^p \rangle$ and $H_2 = \langle x^q \rangle$, with $p, q \geq 0$, and p, q | n. Then we have

$$H_1 \cap H_2 = \langle x^{\operatorname{lcm}(p,q)} \rangle, \quad \langle H_1 \cup H_2 \rangle = \langle x^{\operatorname{gcd}(p,q)} \rangle.$$

Lemma 3.27 Suppose G is cyclic with order n. Let End(G) be the set of endomorphisms of G, we have a bijection

$$End(G) \cong \mathbb{Z}/n\mathbb{Z}, \ \sigma \mapsto a(\sigma) = \sigma(x), \quad such \ that \ \sigma \circ \sigma' \mapsto a(\sigma)a(\sigma').$$

Corollary 3.27.1 We have a group isomorphism

$$Aut(G) \cong (\mathbb{Z}/n\mathbb{Z})^* = \{\bar{a} \in \mathbb{Z}/nZ \mid \gcd(a, n) = 1\}.$$

Proposition 3.28 If G is abelian and simple, then $G \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.

Proof: Suppose G is abelian and simple. Let $x \neq e \in G$, we can find this x since G cannot be trivial (as it is simple). Now consider $\langle x \rangle$, we must have $\langle x \rangle \leq G$, so $\langle x \rangle = G$. So G is cyclic, so G is congruent to a subgroup of \mathbb{Z} . If G is infinite, then $G \cong \mathbb{Z}$ which is not simple. If |G| = n is a composite number, then |G| has an element of order p, where p is the smallest prime dividing n (By Cauchy's Theorem). Then the subgroup generated by that element is a proper normal subgroup of G, so G is not simple. Hence |G| = p for some prime p, i.e., $G \cong \mathbb{Z}/p\mathbb{Z}$. \square

3.6 Dihedral Group

Definition: we define the Dihedral group of order 2n by the following presentation: $\langle s, r | r^n = s^2 = e, rs = sr^{-1} \Leftrightarrow (rs)^2 = e \rangle$. The elements of the dihedral group of order 2n are

$$D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}.$$

Lemma 3.29 In any dihedral group, $r^i s = sr^{-i}$.

Lemma 3.30 Let r_i denote r^i and s_i denote r^is in a dihedral group, then the following holds:

$$r_i r_j = r_{i+j}, \ r_i s_j = s_{i+j}, \ s_i r_j = s_{i-j}, \ s_i s_j = r_{i-j}.$$

Proposition 3.31 Suppose n = 2k, then the conjugacy classes in D_{2n} are the following:

$$\{1\}, \{r^k\}, \{r^{\pm 1}\}, \cdots, \{r^{\pm (k-1)}\}, \{sr^{2b} \mid b = 1, \cdots, k\} \text{ and } \{sr^{2b-1} \mid b = 1, \cdots, k\}.$$

Suppose n = 2k + 1, then the conjugacy classes in D_{2n} are the following:

$$\{1\}, \{r^{\pm 1}\}, \cdots, \{r^{\pm (k-1)}\}, \{r^{\pm k}\}, \{sr^b \mid b = 1, \cdots, n\}.$$

4 Group Actions

4.1 Basics of Group Actions

Definition: a (left) group action of a group G on a set A is a map from $G \times A \Rightarrow A$ such that $(g, a) \mapsto g \cdot a = ga$ satisfying the following properties:

- 1. $q_1 \cdot (q_2 \cdot a) = (q_1 q_2) \cdot a$ for any $g_1, g_2 \in G$ and $a \in A$.
- 2. $e \cdot a = a$ for any $a \in A$.

If this is the case, we denote $G \curvearrowright A$.

Definition: a group (G, \times) act on itself by left multiplication if the map is from $G \times G \to G$ is defined to be $g \cdot h = g \times h$.

Theorem 4.1 Let G be a group acting on a set A. Then we have a group homomorphism $\varphi: G \to \operatorname{Perm}(A)$, $g \mapsto \varphi(g) = \sigma_g = (a \mapsto g \cdot a, \ \forall a \in A)$. In particular, each $g \in G$ is mapped to a bijective map $\sigma_g: A \to A$.

Corollary 4.1.1 Let $\varphi : G \to \operatorname{Perm}(A)$ be a group homomorphism. Then $g \cdot a = \varphi(g)(a)$ defines a group action of G on A.

Definition: let G be a group, we say G act on itself by conjugation if the map $G \times G \to G$ is defined by $g \cdot h = ghg^{-1}$.

Definition: a right action of a group G on a set A is a map from $A \times G \to A$ such that $(a, g) \mapsto a \cdot g = ag$ satisfying the following properties:

- 1. $(a \cdot g_1) \cdot g_2 = a \cdot (g_1 g_2);$
- $2. \ a \cdot e = a.$

Lemma 4.2 Let G acts on A from the right. The map $(g,a) \mapsto a \cdot g^{-1}$ defines a left action of G on A.

Lemma 4.3 $GL_n(\mathbb{R}) \curvearrowright \mathbb{R}^n$ naturally by left multiplication. $GL_n(\mathbb{R}) \curvearrowright Gr_{k,n}(\mathbb{R})$ naturally by sending it to the image of the linear transformation.

Proposition 4.4 (Burnside's Lemma) Let G be a finite group that acts on a set X. For each $g \in G$, let X^g denote the set of elements in X that are fixed by g and let |X/G| denote the number of orbits of this action, then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Proof: Note $\sum_{g \in G} |X^g| = \sum_{x \in X} |\operatorname{Stab}_G(x)|$, and so by orbit stabilizer theorem, we have

$$|G \cdot x| = |G : \operatorname{Stab}_G(x)| = \frac{|G|}{|\operatorname{Stab}_G(x)|}.$$

Then the sum may therefore be rewritten as

$$\sum_{x\in X}\frac{|G|}{|G\cdot x|}=|G|\sum_{x\in X}\frac{1}{|G\cdot x|}=|G|\sum_{A\in X/G}\sum_{x\in A}\frac{1}{|A|}.$$

Note $\sum_{x \in A} \frac{1}{|A|} = 1$, so the term on the previous equation is equal to |G||X/G| and the desired equality follows. \square

Lemma 4.5 Let H be a subgroup of G with index n, then there exists a subgroup N of G, s.t., $N \leq H$ and $N \subseteq G$ with $|G:N| \leq n!$.

Proof: Let G act on the G/H by left multiplication. Then this establishes a homomorphism between G and S_n . Let N be the kernel of this homomorphism, then N is normal with $|G:N| \le n!$ by the first isomorphism theorem. $N \le H$ as if ngH = gH for all gH, then we must have nH = H, i.e., $n \in H$.

4.2 Stabilizers, Normalizers, Centralizers, Centers and Orbits

Definition: let $G \curvearrowright A$,

• For any $a \in A$, we define the stabilizer subgroup of G by

$$G_a = \operatorname{Stab}_G(a) = \{ g \in G \mid g \cdot a = a \}.$$

• For any subset $B \subset A$, we define the pointwise

$$\operatorname{Stab}_{G}(B) = \bigcap_{a \in B} \operatorname{Stab}_{G}(a) = \{ g \in G \mid g \cdot a, \text{ for any } a \in B \}.$$

• We define the kernel of the action as

$$\operatorname{Stab}_G(A) = \{ g \in G \mid g \cdot a = a \ \forall a \in A \}.$$

Lemma 4.6 G_a , $\operatorname{Stab}_G(B)$ are both subgroups of G and $\operatorname{Stab}_G(A) = \ker(G \to \operatorname{Perm}(A))$.

Definition: let $\phi \neq A \subset G$ be a subset. We define the centralizer of A,

$$C_G(A) = \{ g \in G \mid gag^{-1} = a, \ \forall a \in A \}.$$

Definition: the center of G is defined as

$$Z(G) = \{g \in G \mid, gag^{-1} = a \ \forall a \in G\} = C_G(G).$$

I.e., if $G \curvearrowright G$ by the conjugate action, then Z(G) is the kernel of this action so Z(G) is normal in G, and $C_G(A) = \operatorname{Stab}_G(A)$.

Definition: We define the normalizer of A to be

$$N_G(A) = \{ g \in G \mid gAg^{-1} = A \} \supset \bigcap_{a \in A} C_G(a).$$

If we consider the conjugation action $G \curvearrowright \mathcal{P}(G)$, then the normalizer of a subset A is equal to the stabilizer of A under this action, as under this action, we have $\operatorname{Stab}_G(A) = \{g \in G \mid g \cdot A = gAg^{-1} = A\}$.

Lemma 4.7 Suppose A is a subset of G, then $C_G(A) \leq N_G(A)$. If H is a subgroup of G, then $H \leq N_G(H)$ and H is normal in $N_G(H)$.

Definition: let $G \curvearrowright A$. Let $a \in A$. The orbit of a is defined as $\mathcal{O}(a) = G \cdot a = \{g \cdot a \mid g \in G\}$.

Definition: we say G act on A transitively if $G \cdot a = A$ for some $a \in A$.

Definition: a group action is called **faithful** if the kernel of the action is only the identity.

Theorem 4.8 Let G act on A, then

- 1. for any two orbits $\mathcal{O}(a)$ and $\mathcal{O}(b)$, we have either $\mathcal{O}(a) = \mathcal{O}(b)$, or $\mathcal{O}(a) \cap \mathcal{O}(b) = \emptyset$. So we have an equivalence relation \sim on A by $a \sim b$ if there is a $g \in G$ such that $a = g \cdot b$, i.e., A is partitioned by orbits.
- 2. For any $a \in A$, we have a bijection between

$$G/\operatorname{Stab}_G(a) \leftrightarrow \mathcal{O}(a)$$
.

(Note the stabilizer subgroup is generally not normal, $G/\operatorname{Stab}_G(a)$ denotes the set of left cosets).

- 3. Assume G is a finite group, then the cardinality of $\mathcal{O}(a)$ has to be finite.
- 4. Let $G \curvearrowright A$, where A is finite. Let $I \subset A$ be a set of representatives of G-orbits, that is $A = \bigsqcup_{a \in I} \mathcal{O}(a)$. Ten

$$|A| = \sum_{I} |\mathcal{O}(a)|.$$

Lemma 4.9 Suppose G is a group acting on a set A, and $a, b \in A$ are in the same orbit. Then

$$\operatorname{Stab}_{G}(a) \cong \operatorname{Stab}_{G}(b).$$

In particular, if $b = g \cdot a$, then $\operatorname{Stab}_G(b) = g \operatorname{Stab}_G(a) g^{-1}$.

Proposition 4.10 Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is the smallest prime that divides the order of G, then $H \leq Z(G)$.

Proof: Consider G acting on elements of H by conjugation, let e, a_1, \dots, a_k be the complete list of representatives of the orbits, then

$$p = |H| = |\{e\}| + \sum_{k} |\mathcal{O}(a_k)|.$$

Now the size of each orbit divides |G| and is less than p. Hence the size of each orbit must be 1, which implies $H \leq Z(G)$.

4.3 Action by Conjugation

Definition: let G be a group, we say a map $\phi: G \to G$ is an Endomorphism if ϕ is a homomorphism. We say ϕ is an automorphism if ϕ is an isomorphism. We denote the set of all endomorphisms on G by $\operatorname{End}(G)$, and the set of all automorphism by $\operatorname{Aut}(G)$.

Definition: let $g \in G$, a map ψ_g defined by $\psi_g : G \to G$, $h \mapsto ghg^{-1}$ is known as an inner automorphism. We denote the set of all inner automorphism on G by Inn(G).

Lemma 4.11 Suppose $g, x \in G$, $H \leq G$, then $|gxg^{-1}| = |x|$ and $|gHg^{-1}| = |H|$. If H is the unique subgroup of order n in G, then $H \leq G$.

Lemma 4.12 End(G), Aut(G), Inn(G) are groups. And Inn(G) is normal in Aut(G).

Definition: we define the set of outer automorphism to be Aut(G)/Inn(G).

Theorem 4.13 (Cayley's Theorem) Any group is isomorphic to a subgroup of some permutation group. If G is finite of order n, then G is isomorphic to a subgroup of S_n .

Proposition 4.14 Let G be a finite group of order n. Let p be the smallest prime factor of n. Then any subgroup of index p is normal (provided such a subgroup exists).

Proof: Let H be a subgroup of G with such index p. Then consider G acting on G/H by left multiplication. Let K be the kernel of this action, then $\forall k \in K$, we have kgH = gH for all $g \in G$, so $g^{-1}kg \in H$, $k \in gHg^{-1}$. Thus $K = \bigcap_{g \in G} gHg^{-1} \subset H$. Now the action induce a group homomorphism $\phi : G \to S_p$ such that $G/K \cong \phi(G)$. Since $\phi(G)|p!$ and p is the smallest prime that divides |G|, then we must have |G:K| = p or 1. But as $K \leq H$, then it follows that |G:K| = p and K = H.

Corollary 4.14.1 Let G be a finite group. Then any subgroup of index 2 must be normal.

Definition: the orbits of G acting on itself by conjugation is called conjugacy class of G.

Lemma 4.15 The number of conjugates of a subset S in a group G is the index of normalizer of S, $|G:N_G(S)|$. In particular, the number of conjugates of an element s of G is the index of the centralizer of s, $|G:C_G(s)|$.

Proposition 4.16 Let G be a finite group and let g_1, \dots, g_n be representations of conjugacy classes of G not contained in the center. Then we have

$$|G| = |Z(G)| + \sum_{i=1}^{n} |G : C_G(g_i)|.$$

Corollary 4.16.1 Let G be a group of order p^n for some prime p. Then Z(G) is non-trivial.

Proposition 4.17 Suppose $S \subseteq G$ and $g \in G$, then $gN_G(S)g^{-1} = N_G(gSg^{-1})$ and $gC_G(S)g^{-1} = C_G(gSg^{-1})$.

Proposition 4.18 Assume H is a normal subgroup of G, K is a conjugacy class of G contained in H and $x \in K$. Then K is a union of k conjugacy class of equal size in H, where $k = |G: HC_G(x)|$.

Proof: Let $x \in \mathcal{K}$. Then

$$|\mathcal{K}| = \frac{|G|}{|C_G(x)|}.$$

Now we consider the orbit of x under conjugation by H.

$$|\mathcal{O}_H(x)| = \frac{|H|}{|C_H(x)|}.$$

We first show that each H orbit have the same size. Let $g \in G$, then $gxg^{-1} \in \mathcal{K}$. So $C_H(gxg^{-1}) = gC_H(x)g^{-1}$. As $C_H(gxg^{-1}) \leq H$, H is normal, then $gC_H(x)g^{-1} \leq H$. Thus there is a bijection between the two, then by the orbit stabilizer theorem, we know there orbit have the same size.

Next since H is normal in G, then by the second isomorphism theorem

$$\frac{C_G(x)H}{H} \cong \frac{C_G(x)}{C_G(x) \cap H} = \frac{C_G(x)}{C_H(x)}.$$

Then

$$\frac{|\mathcal{K}|}{|\mathcal{O}_H(x)|} = \frac{|G|}{|C_G(x)|} \cdot \frac{|C_H(x)|}{|H|}$$

$$= \frac{|G|}{|H|} \cdot \frac{|H|}{|C_G(x)H|}$$

$$= \frac{|G|}{|C_G(x)H|}$$

$$= |G: HC_G(x)|$$

Lemma 4.19 Suppose M is a maximal subgroup of G, then either $N_G(M) = M$ or $N_G(M) = G$. If M is a maximal subgroup of G that is not normal in G, then the number of nonidentity elements of G that are contained in conjugates of M is at most (|M| - 1)|G : M|.

Corollary 4.19.1 Assume H is a proper subgroup of the finite group G, then G is not the union of conjugates of H, that is

$$G \neq \bigcup_{g \in G} gHg^{-1}.$$

Corollary 4.19.2 Let g_1, g_2, \dots, g_r be representatives of the conjugacy class of the finite group G and assume these elements pairwise commutes, then G is abelian.

4.4 Automorphism

Proposition 4.20 Let H be a normal subgroup of the group G. Then G acts by conjugation on H as automorphisms of H. More specifically, the action of G on H by conjugation is defined for each $g \in G$ by $h \mapsto ghg^{-1}$. The kernel of the homomorphism is $C_G(H)$. In particular, $G/C_G(H)$ is isomorphic to a subgroup of Aut(H).

Corollary 4.20.1 For any subgroup H of a group G, the quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

Definition: a subgroup H of a group G is called characteristic in G, denoted H char G, if every automorphism of G maps H to itself, i.e., $\sigma(H) = H$ for all $\sigma \in \text{Aut}(G)$.

Lemma 4.21

- 1. Characteristic subgroups are normal.
- 2. If H is the unique subgroup of G of a given order, then H is characteristic in G.
- 3. If K char H and $H \subseteq G$, then $K \subseteq G$.
- 4. If K char H and H char G, then K char G.
- 5. If $K \subseteq H$ and H char G, then K is not necessarily normal in G.

Lemma 4.22 Let G be a group. Then Z(G) char G.

Proof: We show for any $\phi: G \to G \in \text{Aut}(G)$, $\phi(Z(G)) \leq Z(G)$. Then apply ϕ^{-1} , we would get $\phi^{-1}(Z(G)) \leq Z(G)$, so $Z(G) \leq \phi(Z(G))$, which implies $\phi(Z(G)) = Z(G)$ for all ϕ .

Let $x \in Z(G)$ and $y \in G$ be arbitrary. Since $\phi(y)\phi(x) = \phi(yx) = \phi(xy) = \phi(x)\phi(y)$. And ϕ is an automorphism, then $\phi(x)$ commutes with every element in G hence $\phi(x) \in Z(G)$, thus $\phi(Z(G)) \leq Z(G)$. Then Z(G) is characteristic in G.

Proposition 4.23 Let $n \in \mathbb{Z}^+$, then $|\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})| = \varphi(n)$ and $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. Moreover, if G is cyclic of order p^k , then $\operatorname{Aut}(G) \cong \mathbb{Z}_{p^{k-1}(p-1)}$.

Proof: An automorphism on $\mathbb{Z}/n\mathbb{Z}$ is uniquely determined by the image of $\overline{1}$, which must be mapped to a generator of $\mathbb{Z}/n\mathbb{Z}$, thus $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, so $|\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})| = \varphi(n)$.

Proposition 4.24 Let p be a prime and let V be an abelian group with the property that $pv = (v)^p = 0$ for all $v \in V$. If $|V| = p^n$, then V is an n-dimensional vector space over the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. The automorphisms of V are precisely the nonsingular linear transformations from V to itself, that is

$$Aut(V) \cong GL(V) \cong GL_n(\mathbb{F}_p).$$

Corollary 4.24.1 Aut $(\prod_{i=1}^n \mathbb{Z}/p\mathbb{Z}) \cong GL_n(\mathbb{F}_p)$.

5 Free Groups

Definition: let S be a set. A free group F(S) over S is a group generated by $S \subset F(S)$ satisfying the following universal property: for any group G with a map of sets $\phi: S \to G$, there exists a unique group homomorphism $\tilde{\phi}$ such that the following diagram commutes:

The set S is often called a basis of F(S).

Theorem 5.1 For any set S, the free group F(S) exists and F(S) is unique up to isomorphism.

Definition: let G be a group with a generating set S, that is $\langle S \rangle = G$.

- 1. A presentation of G is a pair (S, R), where R is a set of relations in F(S) such that the normal closure of R is the kernel of the natural map $F(S) \to G$.
- 2. We say G is finitely generated if there exists a presentation (S,R) such that both S and R are finite.

Theorem 5.2 (Nielsen-Schreier theorem) Subgroups of free groups are free.

5.1 Coproduct

Theorem 5.3 For any two groups G and H, there exists a unique (up to isomorphism) G*H together with group homomorphisms $H \to G*H$ and $G \to G*H$ satisfying the following properties: for any group homomorphisms $\phi_1: G \to K$ and $\phi_2: H \to K$, there exists a unique group homomorphism $\phi: G*H \to K$ such that the following diagram commutes:

Let $G \cong F(G)/R(G)$ for a free group G. Similarly, we have $H \cong F(H)/R(H)$. Then we claim that $G * H = F(G \mid H)/N$, where N is the normal subgroup generated by $R(G) \cup R(H)$.

6 Structure of Finite Groups

6.1 Sylow's Theorem

Definition: let G be a finite group with order p^n , where p is a prime, then it is called a p-group.

Definition: a subgroup of a group G that has order p^n is known as a p-subgroup.

Definition: assume $|G| = p^n m$, where $p \nmid m$, n > 0, then a subgroup of G of order p^n is known as a Sylow p-subgroup.

Definition: the set of all Sylow p-subgroup of G is denoted by Sylp(G). We denote the cardinality of the set of all Sylp(G), by $n_p = n_p(G)$.

Lemma 6.1 Let G be an abelian finite group, and let p be prime that divides the order of |G|, then Sylow p-subgroup exists.

Theorem 6.2 (First Sylow Theorem) Let G be a finite group and let p be a prime such that p||G|, then a Sylow p-subgroup of G exists.

Lemma 6.3 Let G be a finite group and p be a prime such that p||G|, let Q be Sylow p-subgroup. Let P be a p-subgroup of G. Then we have $P \cap N_G(Q) = P \cap Q$.

Theorem 6.4 (Second Sylow Theorem) Any two Sylow p-subgroup are conjugate to each other. In other words, the conjugate action $G \curvearrowright Sylp(G)$ is transitive, i.e., $G \cdot Q = Sylp(G)$ for any Sylow p-subgroup Q.

Theorem 6.5 (Thrid Sylow Theorem) $|Sylp| = n_p \equiv 1 \mod p$, $n_p |\frac{|G|}{|Q|}$, in particular $n_p = |G: N_G(Q)|$, where Q is any $Sylow \ p$ -subgroup.

Corollary 6.5.1 Let $Q \in Sylp(G)$ be a Sylow p-subgroup, then $|G \cdot Q| \equiv 1 \mod p$, we can show this by considering $Q \curvearrowright G \cdot Q$ by conjugation.

Theorem 6.6 Any p-subgroup is contained in some Sylow p-subgroup of G.

Corollary 6.6.1 Let G be a finite group and p be a prime, then

- 1. let P be a p-subgroup and Q be a Sylow p-subgroup. Then $P \subset gQg^{-1}$ for some $g \in G$.
- 2. G has a unique Sylow p-subgroup if and only if a Sylow p-subgroup is normal, if and only if a Sylow p-subgroup is characteristic in G, if and only if all subgroups generated by elements of p-power order are p-groups, i.e., if X is any subset of G such that |x| is a power of p for all $x \in X$, then $\langle X \rangle$ is a p-group.

6.2 Semi-direct Products

Definition: let H and K be two groups. Let $\phi: K \to \operatorname{Aut}(H)$ be a group homomorphism, we define a binary operation on the set $H \times K$ by $(h_1, k_1) \cdot (h_2, k_2) = (h_1 \cdot \phi(k_1)(h_2), k_1k_2)$ and setting the inverse of (h, k) to be $((\phi(k^{-1})(h))^{-1}, k^{-1})$.

Theorem 6.7 The binary operation above defines a group structure on $H \times K$.

Definition: we denote this group by $H \rtimes_{\phi} K$ ($H \rtimes K$ if ϕ is clear). This is called the semi-direct product of H and K with respect to ϕ .

Remark: if ϕ is the trivial group homomorphism, then $H \rtimes_{\phi} K = H \times K$ is the direct product.

Remark: we could have $H \rtimes_{\phi_1} K \cong H \rtimes_{\phi_2} K$ for different homomorphism $\phi_1 \neq \phi_2$.

Proposition 6.8 Let $H \rtimes_{\phi} k$ be the semi-direct product, then

- 1. $|H \rtimes_{\phi} K| = |H||K|$.
- 2. $\{(h, e_K) | h \in H\}$ is a normal subgroup in $H \rtimes_{\phi} K$ isomorphic to H. We often identify this subgroup with H $(H \leq H \rtimes_{\phi} K)$.
- 3. $\{(e_H, k) | k \in K\}$ is a subgroup of $H \rtimes_{\phi} K$ isomorphic to K, we identify this group with K $(K \leq H \rtimes_{\phi} K)$.
- 4. $H \cap K = \{e\}$.
- 5. For any $k \in K$ and $h \in H$, we have $khk^{-1} = \phi(k)(h)$, i.e., $(e_H, k)(h, e_K)(e_H, k^{-1}) = (\phi(k)(h), e_K)$.
- 6. $C_K(H) = \ker \phi \ and \ C_H(K) = N_H(K)$.

Remark: let $H \leq G$, then we have $G \to \operatorname{Aut}(H)$, $g \mapsto (h \mapsto ghg^{-1})$, where $K \subset G$.

Example: let G be a group, we consider the product $G^n = G \times G \times \cdots \times G$. Then we define $\phi : S_n \to \operatorname{Aut}(G^n)$, $\sigma \mapsto ((g_i) \mapsto (g_{\sigma(i)}))$. Then we have $(G^n) \rtimes_{\phi} S_n$, this is called the wreath product of G by S_n , denoted $G \wr S_n$. We have

$$((g_i), \sigma) \cdot ((h_i), \tau) = ((g_i h_{\sigma(i)}), \sigma \tau).$$

Proposition 6.9 Let G be a group with two subgroups H and K. Assume

- 1. H is normal in G;
- 2. $H \cap K = \{e\};$
- 3. $H \cdot K = G$.

Then $G \cong H \rtimes_{\phi} K$, where $\phi : K \to \operatorname{Aut}(H)$, $k \mapsto (h \mapsto khk^{-1})$.

Proof: consider the map $\psi: H \rtimes_{\phi} K \to G$, $(h,k) \mapsto hk$. Then one can show ϕ is an isomorphism.

Proposition 6.10 Let H and K be groups and let $\varphi: K \to \operatorname{Aut}(H)$ be a homomorphism. Then the following are equivalent:

- 1. The identity (set) map between $H \rtimes_{\varphi} K$ and $H \times K$ is a group homomorphism.
- 2. φ is the trivial homomorphism from K into Aut(H).
- 3. $K \leq H \rtimes_{\varphi} K$.

Proposition 6.11 Let p and q both be primes. Let $H = \mathbb{Z}/p\mathbb{Z}$ and $K = \mathbb{Z}/q\mathbb{Z}$. Given two group homomorphism

$$\phi_i: \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}), \quad i = 1, 2,$$

such that $\phi_1(H) = \phi_2(H)$. Then $K \rtimes_{\phi_1} H \cong K \rtimes_{\phi_2} H$.

Proposition 6.12 Suppose K is a cyclic group, H is arbitrary. Let ϕ_1 and ϕ_2 be homomorphism from K into $\operatorname{Aut}(H)$, such that $\phi_1(K)$ and $\phi_2(K)$ are conjugate subgroups of $\operatorname{Aut}(H)$. (If K is infinite, then assume ϕ_1 and ϕ_2 are also injective). Then $H \rtimes_{\phi_1} K \cong H \rtimes_{\phi_2} K$.

Proof: Let $\sigma \in \text{Aut}(H)$, s.t., $\sigma \phi_1(K)\sigma^{-1} = \phi_2(K)$. Let p the generator of K, then $\phi_1(K)$, $\phi_2(K)$ is generator by $\phi_1(p)$, $\phi_2(p)$ respectively. Furthermore, since $\sigma \phi_1(p)\sigma^{-1} \in \phi_2(K)$, then $\sigma \phi_1(p)\sigma^{-1} = \phi_2(p)^a$ for some $a \in \mathbb{Z}$. Then we can easily show that $\sigma \phi_1(k)\sigma^{-1} = \phi_2(k)^a$ for all $k \in K$.

Now we define a map $\psi: H \rtimes_{\phi_1} K \to H \rtimes_{\phi_2} K$, by $(h, k) \mapsto (\sigma(h), k^a)$ and it has inverse $\psi^{-1}((h, k)) = (\sigma^{-1}(h), k^{-a})$. We show ψ is a homomorphism, clearly identity is mapped to identity. Now suppose $(h_1, k_1), (h_2, k_2) \in H \rtimes_{\phi_1} K$, then

$$\psi((h_1, k_1)(h_2, k_2)) = \psi((h_1\phi_1(k_1)(h_2), k_1k_2))
= (\sigma(h_1\phi_1(k_1)(h_2)), (k_1k_2)^a)
\psi((h_1, k_1))\psi((h_2, k_2)) = (\sigma(h_1), k_1^a)(\sigma(h_2), k_2^a)
= (\sigma(h_1)\phi_2(k_1^a)(\sigma(h_2)), k_1^a k_2^a)
= (\sigma(h_1)\phi_1(k_1)(\sigma(h_2)), (k_1k_2)^a)
= (\sigma(h_1)\sigma(\phi_1(k_1)(\sigma^{-1}(\sigma(h_2)))), (k_1k_2)^a)
= (\sigma(h_1\phi_1(k_1)(h_2)), (k_1k_2)^a)$$

As desired.

Definition: Let H be a group, we define the semidirect product $H \rtimes_{\phi} \operatorname{Aut}(H)$, where $\phi : \operatorname{Aut}(H) \to \operatorname{Aut}(H)$ is the identity map, to be the Holomorph of H, denoted $\operatorname{Hol}(H)$.

Proposition 6.13 If H is any group, then there is a group G contains H as a normal subgroup with the property that for every automorphism σ of H there is an element $g \in G$, such that conjugation by g when restricted to H is the given automorphism σ , i.e., every automorphism of H is obtained as an inner automorphism of G restricted to H.

Proof: Take Hol(H).

6.3 More on Sylow Theorems

Definition: a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself.

Proposition 6.14 Let P be a Sylow p-subgroup of H and H be a subgroup of K. If $P \subseteq H$ and $H \subseteq K$, then P is normal in K. If $P \in Sylp(G)$, and $H = N_G(P)$, then $N_G(H) = H$.

Proof: Since P is normal in H, then P is characteristic in H and $H \subseteq K$, so $P \subseteq K$. Next, if $P \in \text{Sylp}(G)$, and $H = N_G(P)$. Suppose $g \in G$ is such that $gHg^{-1} = H$, then $gPg^{-1} = P$, since P is characteristic in H. Therefore, we conclude that $g \in N_G(P) = H$.

Proposition 6.15 There are exactly 2 groups (up to isomorphism) of order 6, namely $\mathbb{Z}/6\mathbb{Z}$ and S_3 . Any groups of order 15 is cyclic.

Lemma 6.16 Let p be a prime and G be a group of order p^2 . Then $G \cong \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. In particular, such group has to be abelian.

Lemma 6.17 Let G be a group (potentially infinite), such that G/Z(G) is cyclic, then G is abelian. In other words, G/Z(G) cannot be a non-trivial cyclic group.

Proposition 6.18 Suppose G is a group of order 12, then one of the following holds:

- $G \cong A_4$.
- $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.
- $G \cong \mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3 \times \mathbb{Z}/2\mathbb{Z}$, where $\phi : \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ is given by $(a,b) \mapsto a$.
- $G \cong \mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$, where $\phi : \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$, $x \mapsto y$, where x, y are the generators for $\mathbb{Z}/4\mathbb{Z}$ and $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ respectively.

Lemma 6.19 Let G be a finite group with $H \subseteq G$ and $P \in Sylp(G)$. Then $H \cap P$ is a Sylow p-subgroup of H and HP/H is a Sylow p-subgroup of G/H.

Proof: By the second isomorphism theorem, we have

$$PH/H \cong P/(P \cap H)$$
.

Then $|PH||P \cap H| = |H||P|$. Now $P \cap H \subset H$, and |PH| divides p at most as many times as |P|, as $PH \leq G$. Hence it must be the case that $|P \cap H|$ divides p as many times as H, as $H \cap P$ is a p-group, $((H \cap P) \leq P)$ so $H \cap P$ is a Sylow p-subgroup of H. Then HP/H is a Sylow p-subgroup is clear by the above isomorphism. \square

Proposition 6.20

- 1. If $P \in \text{Sylp}(G)$ and $H \leq G$. Then there exists some $g \in G$, s.t., $gPg^{-1} \cap H$ is a Sylow p-subgroup of H.
- 2. If P is a normal Sylow p-subgroup of G and H is any subgroup of G, then $P \cap H$ is the unique Sylow p-subgroup of H.

Proposition 6.21 Let N be a normal subgroup of a finite group G. Then $n_p(G/N)|n_p(G)$ for any prime p.

Proof: Firstly, note that for any Sylow p-subgroup Q of G/N, let $K = \pi^{-1}(Q)$. Then $\pi(K) = Q$, and for any Sylow p-subgroup of K, call it P, we have $\pi(PN) = Q$ (the projection map maps Sylow p-subgroups to Sylow p-subgroups). Finally, we show that for any Sylow p-subgroup Q of G/N, equal number of Sylow p-subgroup in G maps to Q. Let Q_1, Q_2 be two Sylow p-subgroup of G/N, s.t., $Q_1 = xNQ_1x^{-1}N$, then we can show that there is a bijection between the Sylow p-subgroup of $\pi^{-1}(Q_1)$ and $\pi^{-1}(Q_2)$ constructed using conjugation by x and x^{-1} respectively.

6.4 Groups of Finite order

Proposition 6.22 let G be of order 2n for an odd integer n > 1. Then G is not simple.

Proof: Let G be of order 2n, we know G is isomorphic to a subgroup of S_{2n} , denote this isomorphism to be ϕ . Then we would have a natural homomorphism $\psi: G \to S_{2n}, g \mapsto \phi(g)$, since $\phi(G) \leq S_{2n}$, and ϕ is a homomorphism. Again recall the homomorphism $\operatorname{sgn}: S_{2n} \to \mathbb{Z}/2\mathbb{Z}$ defined in class, then by composing ψ and sgn , we get the a new homomorphism $f = \operatorname{sgn} \circ \psi: G \to \mathbb{Z}/2\mathbb{Z}, f(g) = \operatorname{sgn}(\phi(g))$.

Next, to show G is not simple, it suffices to show f is not the trivial map. We know $\ker(f) \leq G$. If f is not trivial, then $\ker(f) \neq G$. Since n > 1, and the order of G is 2n which is greater than the order of $\mathbb{Z}/2\mathbb{Z}$, then $\ker(f) \neq \{e\}$, as the map cannot be injective. So we get that $\ker(f)$ is a normal subgroup of G that is not $\{e\}$ or G itself, hence G is not simple.

We proceed to show this map is trivial. By Sylow's Theorem, we know that G has a Sylow 2-group P_2 , since n is odd, then $|P_2| = 2$. Hence P_2 is cyclic and contains an element x with order 2. We show f(x) = 1 by showing $\phi(x)$ is an odd permutation. Since x is order 2, and ϕ being an isomorphism, then $\phi(x)$ order 2. As $\phi(x)$ is a permutation, we can write it as the product of disjoint cycles. As $|\phi(x)| = 2$, then these cycles have length 2. Now recall the isomorphism ϕ is constructed from the group action G acting on itself by left multiplication. Then for any $g \in G$, $xg \neq g$, since $x \neq e_G$. So x permutes every element of G, i.e., $\phi(x)$ do not fix any element, that is every number from $\{1, \dots, 2n\}$ appears in some cycle of the disjoint cycle representation for $\phi(x)$. And because each cycle is length 2, every number $\{1, \dots, 2n\}$ appears in some cycles and the cycles are disjoint, then there are exactly 2n/2 = n transpositions. As n is odd, then we conclude $\phi(x)$ is an odd permutation. Hence $f(x) = \text{sgn}(\phi(x)) = 1$. So f is not trivial, and it follows from the previous analysis that G is not simple

Proposition 6.23 (Group of order pq, p < q) Suppose a group G is of order pq, where p and q are primes. Then either $G \cong \mathbb{Z}_{pq}$ or $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$. If $p \nmid q - 1$, then $G \cong \mathbb{Z}_{pq}$.

Proof: G has a normal Sylow q-subgroup, since $n_q = 1 \mod q$ and $n_q|pq$, so $n_q|p$, but as p < q, we have $n_p = 1$. Thus the only Sylow p- subgroup is normal in G. If $p \nmid q - 1$, then it follows that the Sylow p-subgroup is also normal, hence G must be cyclic of order pq. Otherwise, we may have $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$.

Remark: the case when p=2 and q=3 is shown in the previous section.

Proposition 6.24 (Group of order p^3) Suppose a group G is of order p^3 , where p is a prime, then one of the following holds:

- 1. $G \cong \mathbb{Z}/p^3\mathbb{Z}$.
- 2. $G \cong \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- 3. $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- 4. $G \cong (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/p\mathbb{Z}$.
- 5. $G \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$.

Proof: If G is of order p^3 , then G is a p-group, hence it has non-trivial center. If $Z(G) = p^2$ or p^3 then G/Z(G) is cyclic, hence G is abelian, in this case $G \cong \mathbb{Z}/p^3\mathbb{Z}$ or $G \cong \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ or $G \cong \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Now suppose G is not abelian, then Z(G) = p. Hence $|G/Z(G)| = p^2$ and cannot be cyclic. So, we have $G/Z(G) \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. We consider two cases:

Case 1: G has an element of order p^2 , denote it by x.

Let $H = \langle x \rangle$, then H is normal as it is index p. If E is the kernel of the pth power map, that is $g \mapsto g^p$, then $E \cong Z_p \times Z_p$ and $E \cap H = \langle x^p \rangle$. Let g be any element of E - H and let $K = \langle g \rangle$. By construction, $H \cap K = 1$ and so G is isomorphic to $Z_{p^2} \rtimes Z_p$, for some $g : K \to \operatorname{Aut}(H)$. However, up to the choice of a generator for the cyclic group K, there is only one nontrivial homomorphism, given by

$$\varphi(y)(g) = g^{1+p}.$$

Hence up to isomorphism, there is a unique non-abelian group $H \rtimes K$ in this case.

Case 2: every nonidentity element of G has order p.

In this case, let H be any subgroup of G of order p^2 . Then $H \cong Z_p \times Z_p$ (no element of p^2). Let $K = \langle y \rangle$ for any element y of G - H. Since H has index p, then $H \subseteq G$, and K is not contained in H, so $H \cap K = 1$. Then $G \cong (Z_p \times Z_p) \rtimes Z_p$ for some $\varphi : K \to \operatorname{Aut}(H)$. But we know

$$\operatorname{Aut}(H) \cong GL_2(\mathbb{F}_p)$$

So $|\operatorname{Aut}(H)| = (p^2 - 1)(p^2 - p)$. Note that a Sylow p-subgroup of $\operatorname{Aut}(H)$ has order p so all subgroups of order p in are conjugate in $\operatorname{Aut}(H)$ by Sylow's Theorem. Hence no matter what φ is, the resulting group are all isomorphic. We pick one representative of this, if $H = \langle a \rangle \times \langle b \rangle$. Let $\langle \gamma \rangle$ generated the image of φ , then

$$\gamma(a) = ab$$
 and $\gamma(b) = b$.

Finally, since the two non-abelian groups have different orders for the kernels of the pth power map, they are not isomorphic.

Proposition 6.25 (Groups of order p^2q) Let G be a non-abelian group of order p^2q .

- 1. If p > q, then $G \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/q\mathbb{Z}$ or $G \cong (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/q\mathbb{Z}$
- 2. If p < q, if the Sylow q-subgroup is not normal, then |G| = 12, and $G \cong A_4$; if the Sylow q-subgroup is normal, then $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z})$.

Proof: Suppose G is of order p^2q :

- 1. If p > q, then the Sylow p-subgroup of G is normal and it is abelian as it is of order p^2 . Since G is non-abelian, then the Sylow q-subgroup of G is not normal otherwise G is the direct product of two abelian groups. Hence $G \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/q\mathbb{Z}$ or $G \cong (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/q\mathbb{Z}$.
- 2. If p < q, then $n_q = 1$ or p^2 . $n_q = p^2$ if and only if $q|p^2 1$ so q|p + 1. But as p, q are prime, then we conclude that p, q, p = 2, q = 3. So |G| = 12. But then by Proposition 6.18, we know $G \cong A_4$. In this case the Sylow

2- subgroup is normal.

Now suppose $n_q = 1$. Then the Sylow q-subgroup is normal again, so $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z})$. Of course further analysis can be made based on the kernel and image of φ .

Proposition 6.26 Let G be a finite nonabelian simple group. Let $H \leq G$ by a proper subgroup, then $|G:H| \geq 5$.

Proof: G acts on the left cosets of H by left multiplication. This action is nontrivial, since H is a proper subgroup. Since G is simple, the action has trivial kernel. It thus defines an embedding of G into $S_{|G:H|}$. Since S_4 (S_4 is not simple, subgroup of order 12 is A_4 and not simple, subgroup of order 6 is isomorphic to S_3), S_3 (S_3 is not simple, and any proper subgroup of S_3 is abelian), S_2 (abelian) and S_1 have no nonabelian simple subgroups, hence $|G:H| \geq 5$.

Ways to prove a groups is not normal: Under the assumption that |G| is not a cyclic group of order p, then we can use the following to determine when G is not a simple group.

- 1. Group of order 2n, n being odd, is not simple.
- 2. Group of order pq is not simple.
- 3. p-group is not simple.

isomorphism theorem.

- 4. Group of order p^2q is not simple.
- 5. If G has a subgroup H of index p, where p is the smallest prime dividing G, then H is normal, hence G is not simple.
- 6. Let p be a prime dividing |G|. If the only solution to $n_p \equiv 1 \mod p$, and $n_p | \frac{n}{p^m}$, is $n_p = 1$, then the Sylow p-subgroup must be normal, hence G is not simple.
- 7. Counting elements of each order: if $|G| = p^m e$, where $p \nmid e$. Then when m = 1, then every Sylow p-subgroup is a cyclic group of order p, hence they do not intersect, which contributes to $(p-1) \cdot n_p$ elements. If m > 1, then the Sylow p-subgroups may intersect, which contributes to at least $p^m 1 + p$ elements. Using a counting argument, we can conclude that certain Sylow p-subgroup must be normal, hence G is not simple.
- 8. Suppose the Sylow p-subgroup of G be $P = \{P_1, \dots, P_m\}$. Then consider G acting on P by conjugation, which induce a map $\varphi : G \to S_m$. If $|G| \nmid m!$, then the kernel of φ cannot be trivial, thus $\ker(\varphi)$ is a normal subgroup of G. So G is not simple.
- 9. Suppose the Sylow p-subgroup of G be $P = \{P_1, \dots, P_m\}$. Then consider G acting on P by conjugation, which induce a map $\varphi : G \to S_m$. G should not contain a subgroup of index 2 (as that subgroup would be normal), then $\varphi(G) \leq A_m$. So if $|G| \nmid |A_m| = m!/2$, then G is not simple.

We show a quick proof why $\varphi(G) \leq A_m$ or more simply denote $G \leq A_n$: If G is not contained in A_m , then A_m is a proper subgroup of GA_m , so $GA_m = S_m$. But now by the second

$$2 = |S_m : A_m| = |GA_m : A_m| = |G : G \cap A_m|.$$

So G has a subgroup $G \cap A_m$ of index 2.

- 10. Let P be a Sylow p-subgroup, then $N_G(P) \leq G$. Then consider G acting on $G/N_G(P)$ by left multiplication, which induces a homomorphism $\varphi: G \to S_i$ where $i = |G:N_G(P)|$. If φ is not injective, then $\ker(\varphi)$ is a normal subgroup of G hence G is not simple. We can even expand this by applying the action to the left cosets of any subgroup of G. So if a group G is of order G, then it cannot have any subgroup with index G where G is not simple.
- 11. We first prove a lemma which states: in a finite group G, if $n_p \neq 1 \mod p^2$, then there are distinct Sylow p-subgroup P and R of G such that $P \cap R$ is of index p in both P and R (hence is normal in each).

Proof: Let P act by conjugation on the set Sylp(G). Let $\mathcal{O}_1, \dots, \mathcal{O}_s$ be the orbits under this actions with $\mathcal{O}_1 = \{P\}$. If p^2 divides $|P: P \cap R|$ for all Sylow p-subgroups R of G different from P, then each \mathcal{O}_i has size divisible by p^2 , $i = 2, 3, \dots, s$. In this case, since n_p is the sum of the lengths of the orbits we have $n_p = 1 + kp^2$ which is a contradiction.

Now suppose two Sylow p-subgroups P and Q be such that $K = P \cap Q$ have index p in P and Q respectively. Then K is normal in P and Q. Then consider $N = N_G(K)$ which contains P and Q. Now if N has only one Sylow p-subgroup, then we immediately get a contradiction. Otherwise, |P|||N| and |N| > |P|. Now if |N| = |G|, then $P \cap Q$ is normal, hence G is not simple; If |N| < |G|, then consider |G| > N which is small enough. Then we can apply the previous technique to analysis the group.

12. Let the sylow p-subgroup of G be $X = \{P_1, \dots, P_m\}$, where m < 2p. Then consider $\varphi : G \to S_m$ which has image in A_m . $|N_G(P)| = \frac{|G|}{n_p}$. Now we claim that $|N_{A_m}(P_i)| = \frac{1}{2}|N_{S_m}P_i|$ when p is an odd prime. Proof: we know $\varphi(P_i)$ need to be a Sylow p-subgroup of S_m and A_m (if φ is not injective, then G is not simple), because $m \le 2p$. Then by Frattini's Argument, we have

$$S_m = N_{S_m}(P_i)A_m$$

so $N_{s_m}(P_i)$ is not contained in A_m , hence $N_{S_m}(P_i) \cap A_m = N_{A_m}(P_i)$ has index 2 in $N_{s_m}(P_i)$. Next we compute $|N_{s_m}(P_i)|$, since it is a p-group, then $|O_{p_i}|$ under the conjugation action is $\frac{m!}{p(p-1)(m-p)!}$, which gives $|N_{s_m}(P_i)| = p(p-1)(m-p)!$. Then $|N_{A_m}(P_i)| = \frac{1}{2}p(p-1)(m-p)!$ which must be divisible by $\frac{|G|}{n_p}$. Now if m=p+1, this implies $\frac{1}{2}p(p-1)$ must be divisible by $\frac{|G|}{n_p}$.

- 13. Suppose the normalizer N of a Sylow p-subgroup P of G is cyclic of order pq where q is also a prime. Then N is cyclic, consider $\varphi: G \to S_{|G:P|}$ induced by G acting on the Sylow p-subgroups by conjugation. The image of N under this map is of order pq if φ is injective, which requires |G:P| > p + q.
- 14. Suppose the normalizer of N of a Sylow p-subgroup P of G is of order $pqr\cdots$. Then let Q be a Sylow q-subgroup of N. If $q \nmid p-1$, then PQ is a cyclic subgroup of N hence abelian. This implies the Sylow q-subgroup of G, if it is of order q, will have P lying inside the normalizer of Q. Hence we can restrict the possible index of $N_G(Q)$.

- 15. Burnside's normal complement theorem: Suppose G is a finite group and P is a Sylow p-subgroup of G. Then if $C_G(P) = N_G(P)$, then there exists $Q \subseteq G$ such that $P \cap Q = \{e\}$ and G = PQ. So if $C_G(P) = N_G(P)$, then G is not simple.
- 16. Recall proposition: Suppose H is a subgroup of G, then $N_G(H)/C_G(H) \subseteq \text{Aut}(H)$. E.g.: consider group of order $525 = 3 \cdot 5^2 \cdot 7$. Then $n_3 \in \{1, 7, 25, 175\}$.
 - $n_3 = 7$, then $|N(P_3)| = 3 \cdot 5^2$. But gcd(5,2) = 1, then $C(P_3) = N(P_3)$, then by the Burnside's normal complement theorem, G is not simple.
 - $n_3 = 25$, then $N_G(P_3)/C_G(P_3) \subset \text{Aut}(P_3) = Z_2$. And $|N_G(P_3)| = 21$, $\gcd(21,2) = 1$, hence $C_G(P_3) = N_G(P_3)$. So G is not simple.
 - $n_3 = 175$, similar to the previous case, we have $N_G(P_3) = C_G(P_3)$, so G is simple.

Further Techniques for analysing the structure of a group:

- 1. Suppose we know a group G has a normal Sylow p-subgroup P of order p, and Q is a Sylow q-subgroup of order q. Then consider the group PQ which has order pq. If PQ is normal in G, then P and Q are characteristic in PQ, hence normal in G. We know PQ has to be normal if |G:PQ| is equal to the smallest prime dividing |G|.
- 2. Once we establish PQ is a subgroup of G as above, we can also proceed with counting argument, as PQ is cyclic hence can only contain 1 Sylow subgroup of each type.
- 3. We can also study the centralizer of an element of a Sylow p-subgroup P, where |P| = p. Let $x \in P$, then $x \in C_G(x) \le N_G(P)$. Since $N_G(P)$ acts on P by conjugation, then if some element of $N_G(P)$ has order that doesn't divides p-1 then it must commute with every element in P.
- 4. Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is the smallest prime that divides the order of G, then $H \leq Z(G)$.
- 5. Suppose P is a normal Sylow p-subgroup of G. Then G act on P by conjugation, hence there is homomorphism from G to $\operatorname{Aut}(P)$, thus an isomorphism from $G/C_G(P)$ to a subgroup of $\operatorname{Aut}(P)$. However, if $\gcd(|\operatorname{Aut}(P)|, |G|/p)$ is 1, then the map has to be trivial. Hence $P \leq Z(G)$.
- 6. Recall for any subgroup H of a group G, the quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).

Theorem 6.27 For n < 100, if |G| = n is a non-abelian simple group, then |G| = 60 and $G \cong A_5$.

Proof: By using the preceding techniques, we can rule out all possibility except |G| = 60. Now we show that if G is a simple group of order 60, then $G \cong A_5$.

Firstly G has no proper subgroup H of index less than 5 by Proposition 6.26. So $n_2 = 5$ or 15. Let $P \in Syl2(G)$ and let $N = N_G(P)$, so $|G: N| = n_2$.

If $n_2 = 5$, then N has index 5 so the action of G by left multiplication on the set of left cosets of N gives a permutation representation of G into S_5 . The kernel must be trivial, then G is isomorphic to a subgroup of S_5 .

Then $G \leq A_5 \Rightarrow G \cong A_5$. (G cannot be another subgroup of order 2 in S_5).

If $n_2 = 15$. Then if for every pair of distinct Sylow 2-subgroups P and Q of G, $P \cap Q = 1$. Then the number of nonidentity elements in Sylow 2-subgroups would be $(4-1) \cdot 15 = 45$ which is not possible. This contradiction proves that there exists distinct Sylow 2-subgroups P and Q such that $|P \cap Q| = 2$. Let $M = N_G(P \cap Q)$, then $P, Q \leq M$. So |M| > 4 and 4|M, which implies |M| = 12. I.e., M has index 5 in G. But now the argument of the preceding paragraph applied to M in place of N gives $G \cong A_5$. This leads to a contradiction because $n_2(A_5) = 5$.

7 Group Decompositions

7.1 Solvable Groups

Definition: let G be a group,

- A (normal) tower/series of G is a sequence of subgroups $G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_m = \{e\}$. Such that G_{i+1} is a normal subgroup of G_i . We have the subquotient/factor group G_i/G_{i+1} .
- The normal tower is called abelian (resp. cyclic) if G_i/G_{i+1} is abelian (resp. cyclic) for all i.
- a refinement of a given tower of G is a tower obtained by inserting a finite number of subgroups in the given tower.
- Let $G = G_0 \supset G_1 \supset \cdots \supset G_m = \{e\}$ and $G = H_0 \supset H_1 \supset \cdots \supset H_n = \{e\}$, be normal towers of G. They are called equivalent if m = n, and up to permutation of indices $i \mapsto i' \in S_n$, we have

$$G_i/G_{i+1} \cong H_{i'}/H_{i'+1}$$

for all i.

• A group G is called solvable if it admits a normal tower $G = G_0 \supset G_1 \supset \cdots \supset G_m = \{e\}$ such that G_i/G_{i+1} is abelian.

Lemma 7.1 S_3 is solvable, we have $S_3 \supset A_3 \cong \mathbb{Z}/3\mathbb{Z} \supset \{e\}$. S_5 is NOT solvable.

Lemma 7.2 Let G be a finite group. Then any abelian tower of G admits a cyclic refinement.

Corollary 7.2.1 Let G be finite. Then G is solvable if and only if G admits a cyclic tower.

Definition: suppose $x, y \in G$, then $x^{-1}y^{-1}xy$ is called the commutator of x and y and is denoted [x, y]. The group generated by the set of all commutators in G is known as the commutator subgroup of G and is denoted by $G^{(1)} = [G, G]$.

Lemma 7.3 Let $G^{(1)}$ denote the commutator subgroup of G. Then $G^{(1)} \subseteq G$, and $G/G^{(1)}$ is an abelian group. In particular, any group homomorphism from G to an abelian group factors through G/[G,G].

Notation: $G^{(1)} = [G, G], G^{(0)} = G, G^{(i+1)} = [G^{(i)}, G^{(i)}] \le G_i$.

Theorem 7.4 A group G is solvable, if and only if $G^{(n)} = \{e\}$ for some n.

Proof: \Leftarrow : we consider the normal tower

$$G = G^{(0)} \supset G^{(1)} \supset G^{(2)} \supset \cdots \supset G^{(n)} = \{e\}.$$

We know $G^{(i)}/G^{(i+1)}$ is abelian, so G is solvable.

 \Rightarrow : assume G is solvable. Then we have an abelian tower. $G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}$, such that G_i/G_{i+1} is abelian for all i. We claim $G^{(i)} \subset G_i$. By induction on n.

The base case is trivial, $G^{(0)} = G_0$ by definition. Note that since G_i/G_{i+1} is abelian, we have $[G_i, G_i] \subset G_{i+1}$ (The image of $[G_i, G_i]$ under the quotient map $G_i \to G_i/G_{i+1}$ is $e \cdot G_{i+1}$). Then by induction hypothesis, $G^{(i)} \subset G_i$. Then $G^{(i+1)} = [G^{(i)}, G^{(i)}] \subset [G_i, G_i] \subseteq G_{i+1}$.

Then
$$G^{(n)} \subseteq G_n = \{e\} \Rightarrow G^{(n)} = \{e\}.$$

Lemma 7.5 Let G be a group and $N \subseteq G$, then $\forall n \in \mathbb{N}$, $(G/N)^{(n)} = G^{(n)}N/N$.

Proof: When n = 0, the statement clearly holds.

Suppose the statement holds for some $n \in \mathbb{N}$, then consider the case for n+1. Firstly, it is clear that N is normal in $G^{(n+1)}N$ because it is normal in G.

Now since $(G/N)^{(n+1)} = [(G/N)^n, (G/N)^n] = [G^{(n)}N/N, G^{(n)}N/N]$. We show that generator of $(G/N)^{(n+1)}$ is in $G^{(n+1)}N/N$. Let $xnN, y\tilde{n}N \in G^{(n)}N/N$, then

$$xnN \cdot y\tilde{n}N \cdot n^{-1}x^{-1}N \cdot \tilde{n}^{-1}y^{-1}N = xyx^{-1}y^{-1}n'N \in G^{(n+1)}N/N.$$

Now if $gnN \in G^{(n+1)}N/N$, then $g = \prod_{i=1}^{k} (x_i y_i x_i^{-1} y_i^{-1})$, so

$$gnN = \prod_{i=1}^k (x_i y_i x_i^{-1} y_i^{-1}) nN = \prod_{i=1}^k (x_i y_i x_i^{-1} y_i^{-1}) N = \prod_{i=1}^k \left[x_i N y_i N x_i^{-1} N y_i^{-1} N \right] \in [G^{(n)} N / N, G^{(n)} N / N].$$

Hence by induction the statement holds for all $n \in \mathbb{N}$.

Theorem 7.6 Let G be a solvable group, then any subgroup of G or any quotient group of G is solvable. Conversely, if a normal subgroup N of G is solvable, and G/N is solvable, then G is solvable.

Proof: Let H be a subgroup of G, suppose G is solvable, then let

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}$$

be a normal tower such that G_i/G_{i+1} is abelian. Then consider $H_i = H \cap G_i$. Then clearly

$$H = H_0 \supset H_1 \supset \cdots \supset H_n = \{e\}.$$

 H_{i+1} is normal in H_i , because let $h \in H_{i+1}$ and $g \in H_i$, then $h \in H$ and $h \in G_{i+1}$, $g \in H$ and $g \in G_i$, so $ghg^{-1} \in H$ and $ghg^{-1} \in G_{i+1}$ as G_{i+1} is normal in G_i . Next, G_{i+1} is normal in $H \cap G_i$ as it is normal in G_i , then by the

second isomorphism theorem, we have

$$\frac{(H \cap G_i)}{G_{i+1}} \cong \frac{H \cap G_i}{H \cap G_i \cap G_{i+1}} = \frac{H \cap G_i}{H \cap G_{i+1}}.$$

But notice $\frac{H \cap G_i}{G_{i+1}} \le \frac{G_i}{G_{i+1}}$ which is abelian, then we conclude that $\frac{H_i}{H_{i+1}} = \frac{H \cap G_i}{H \cap G_{i+1}}$ is abelian.

Next, let Q = G/N be a quotient group of G, then $N \subseteq G$. Consider $Q_i = G_i N/N$, then $Q_i \subseteq Q_{i+1}$ because N is normal in $G_i N$ (since it is normal in G) and $G_{i+1} N$ is normal in $G_i N$ (can do direct verification), so Q_i is normal in Q_{i+1} . Also by the third isomorphism theorem, we have

$$\frac{G_i N/N}{G_{i+1} N/N} \cong \frac{G_i N}{G_{i+1} N}.$$

Now we show for any $x, y \in G_{i+1}$ and $n, m \in N$, the commutator [xn, ym] is in G_iN , then it would imply $G_iN/G_{i+1}N$ is abelian.

$$[xn, ym] = xnymn^{-1}x^{-1}m^{-1}y^{-1}$$

= $xyx^{-1}y^{-1}\tilde{n} \in G_{i+1}N$

This is because N is normal, so we can shift every element of n to the right, and $xyx^{-1}y^{-1} \in G_iN$ because G_i/G_{i+1} is abelian. Hence we conclude Q_i/Q_{i+1} is also abelian.

On the other hand, if $N \subseteq G$ and both N and G/N are solvable. Then $(G/N)^{(n)} = e = \{N\}$ for some $n \in \mathbb{N}$, by Theorem 7.4. So by theorem 7.5, we have

$$G^{(n)}N/N = (G/N)^{(n)} = \{N\}.$$

That is $G^{(n)} \leq N$. Then $G^{(n)}$ is solvable because it is a subgroup of N, so $(G^{(n)})^{(m)} = \{e\}$ for some $m \in \mathbb{N}$. But then observe $(G^{(n)})^{(m)} = G^{(m+n)} = \{e\}$. Hence G is solvable.

Proposition 7.7 Let G and K be groups, let H be a subgroup of G and let $\varphi: G \to K$ be a surjective homomorphism.

- 1. $H^{(i)} \leq G^{(i)}$ for all $i \geq 0$. In particular, if G is solvable, then so is H, i.e., subgroups of solvable groups are solvable (and the solvable length of H is less than or equal to the solvable length of G).
- 2. $\varphi(G^{(i)}) = K^{(i)}$. In particular, homomorphic images and quotient groups of solvable groups are solvable (of solvable length less than or equal to that of the domain group).

Theorem 7.8 Let G be a finite group

- 1. (Burnside) If $|G| = p^a q^b$ for some primes p and q, then G is solvable.
- 2. (Philip Hall) If for every prime p dividing |G| we factor the order of G as $|G| = p^a m$ where (p, m) = 1, and G has a subgroup of order m, then G is solvable.

- 3. (Feit-Thompson) If |G| is odd then G is solvable.
- 4. (Thompson) If for every pair of elements $x, y \in G$, $\langle x, y \rangle$ is a solvable group, then G is solvable.

Remark: the proof of these theorems are generally difficult!

Theorem 7.9 A finite group G is solvable if and only if for every divisor n of |G| such that $gcd(n, \frac{|G|}{n}) = 1$, G has a subgroup of order n.

Proposition 7.10 Let G be any group, then $G^{(i)}$ is characteristic in G.

Proof: G is clearly characteristic in G. Now suppose $G^{(n)}$ is characteristic in G, we show $G^{(n+1)}$ is characteristic in G. Let $\phi: G \to G$ be any automorphism, we show that any generator element of $G^{(n+1)}$ is mapped to $G^{(n+1)}$ under ϕ . But this is clear, as if $x, y \in G^{(n)}$, then $\phi(x), \phi(y) \in G^{(n)}$ as $G^{(n)}$ is characteristic in G. Hence $\phi(x)\phi(y)\phi(x)^{-1}\phi(y)^{-1} \in G^{(n+1)}$.

Lemma 7.11 Let G be a group and $H \subseteq G$, then $H^{(n)} \subseteq G$.

Proof: When n = 0, then $H \leq G$. Suppose the statement hold for some n, we show it holds for n + 1. It suffices to show that for any $g \in G$, and $x, y \in H^{(n)}$, we have $gxyx^{-1}y^{-1}g^{-1} \in H^{(n+1)}$, as such $xyx^{-1}y^{-1}$ generates $H^{(n+1)}$. Notice

$$gxyx^{-1}y^{-1}g^{-1} = gxg^{-1}gyg^{-1}gx^{-1}g^{-1}gy^{-1}g^{-1}.$$

Since $H^{(n)}$ is normal in G, then $gxg^{-1} = x' \in H^{(n)}$ and $gyg^{-1} = y' \in H^{(n)}$, so $gxyx^{-1}y^{-1}g^{-1} = x'y'(x')^{-1}(y')^{-1} \in H^{(n+1)}$ as desired.

Proposition 7.12 Suppose H is a nontrivial normal subgroup of a solvable group G, then there is a nontrivial subgroup A of H with $A \subseteq G$ and A abelian.

Proof: If H is abelian, then we done. Otherwise $[H, H] \neq \{e\}$. Since G is solvable, then $H^{(n)} = \{e\}$ for some $n \in \mathbb{N}$. Then consider $H^{(n-1)}$ which is abelian. Then $A := H^{(n-1)}$ is the group we are looking for.

7.2 Composition Series

Definition: a normal tower $G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_m = \{e\}$ is called a composition series if each factor group G_i/G_{i+1} is simple. The factor groups G_i/G_{i+1} are called composition factors of G.

Note: later we will show that the composition factors are well-defined independent of the normal tower we choose. The composition series always exist if G is finite. However the group $(\mathbb{Z}, +)$ has no composition series.

Theorem 7.13 Every finite non-trivial group G has a composition series. In particular, if $H \subseteq G$, then there is a composition series of G containing H.

Proof: We proceed with induction on |G|. Firstly, note if G is simple then $G = G_0 \supset G_1 = \{e\}$ is a composition series. And if G is of prime order, then G is simple. Now suppose G it not simple, then let H be a nontrivial normal subgroup of G. Then $|H| \leq |G|$ and $|G/H| \leq G$. Then let

$$H = H_0 \supset H_1 \supset \cdots \supset H_n = \{e\};$$

$$G/H = K_0 \supset K_1 \supset \cdots \supset K_m = \{e\}.$$

Then consider the tower:

$$G = \pi^{-1}(K_0) \supset \cdots \supset \pi^{-1}(K_m) = H = H_0 \supset \cdots \supset H_n = \{e\}.$$

The tower is normal because $K_{i+1} \leq K_i$ so $\pi^{-1}(K_{i+1}) \leq \pi^{-1}(K_i)$ by the fourth isomorphism theorem. Moreover, $\pi^{-1}(K_i)/\pi^{-1}(K_{i+1})$ is simple, because

$$\pi^{-1}(K_i)/\pi^{-1}(K_{i+1}) \cong K_i/K_{i+1}$$

by the third isomorphism theorem. Thus we have derived a composition series for G.

Theorem 7.14 (Jordan-Hölder Theorem) Let G be a group with two composition series.

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\};$$

$$G = H_0 \supset H_1 \supset \cdots \supset H_m = \{e\}.$$

Then they are equivalent. So the composition factors of G is well-defined if G has a composition series.

Definition: let G be a group with a composition series

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}.$$

Then the composition factors of G is $\{G_i/G_{i+1}\}$.

Proposition 7.15 Let G be a group with two (normal) towers,

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\};$$

$$G = H_0 \supset H_1 \supset \cdots \supset H_m = \{e\}.$$

Then they have equivalent refinement.

Proof: Consider

$$(G_0 \cap H_0)G_1 \supset (G_0 \cap H_1)G_1 \supset \cdots \supset (G_0 \cap H_m)G_1 \cup (G_1 \cap H_0)G_2 \supset \cdots$$

$$(H_0 \cap G_0)H_1 \supset (H_0 \cap G_1)H_1 \supset \cdots \supset (H_0 \cap G_n)H_1 \supset (H_1 \cap G_0)H_2 \supset \cdots$$

More specifically, define $G_{i,j} = (H_i \cap G_i)G_{i+1}$, $H_{j,i} = (G_i \cap H_j)H_{j+1}$. Since G_1 is normal in G_0 , then $G_0 \cap H_0 \subset N(G_1)$, hence $(G_0 \cap H_0)G_1$ is a group. Similarly, we have $G_{i,j}$, $H_{j,i}$ are groups. And $G_{i,j+1} \supset G_{i,j}$, $H_{j,i+1} \supset H_{j,i}$. (This is just a sketch, we also need to consider when the other index changes).

We claim that $G_{i,j+1}$ is normal in $G_{i,j}$; $H_{j,i+1}$ is normal in $H_{j,i}$, and $G_{i,j}/G_{i,j+1} \cong H_{j,i}/H_{j,i+1}$. This follows precisely from the Butterfly Lemma.

Lemma 7.16 (Butterfly Lemma) Let G be a group, let U, V be subgroups of G, and let $u \leq U$, and $v \leq V$. Then $u(U \cap v)$ is normal in $u(U \cap V)$; $(u \cap V)v$ is normal in $(U \cap V)v$. We also have $u(U \cap V)/u(U \cap v) \cong (U \cap V)v/(u \cap V)v$.

Theorem 7.17 If G is finite, then the following are equivalent:

- 1. G is solvable;
- 2. G has a normal tower:

$$\{e\} = H_s \trianglelefteq H_{s-1} \trianglelefteq \cdots H_0 = G$$

such that H_{i+1}/H_i is cyclic;

- 3. All compositions factors of G are of prime order;
- 4. G has a normal tower:

$$\{e\} = N_0 \le N_1 \le \cdots \le N_t = G$$

such that N_i is normal in G and N_i/N_{i+1} is abelian.

Proof: $1 \Rightarrow 2$: suppose G is solvable, then

$$G = G_0 \supset G_1 \supset \cdots \supset G_m = \{e\}$$

and G_i/G_{i+1} is abelian. Then for any i, if G_i/G_{i+1} is simple, then $G_i/G_{i+1} \cong \mathbb{Z}/p\mathbb{Z}$, so it is cyclic. Suppose not, then let P be any normal group of G_i/G_{i+1} that is not $\{e\}$ or G_i/G_{i+1} . Then consider $G_{i+1} \subseteq \pi^{-1}(P) \subseteq G_i$, it is clear that $\pi^{-1}(P)/G_{i+1}$ and $G_i/\pi^{-1}(P)$ are abelian. Hence by inserting $\pi^{-1}(P)$, we get an refined of the normal tower. Repeating this process, evetually we get that

$$G = G'_0 \supset G'_1 \supset \cdots \supset G'_n = \{e\}$$

and G'_i/G'_{i+1} is simple hence cyclic. Thus we have $1 \Rightarrow 2$.

- $2 \Rightarrow 3$: Similar to the previous part, we can extend the normal tower by finding an refinement each time. H_{i+1}/H_i is cyclic, hence abelian. It is simple iff $|H_i/H_{i+1}| = p$ for some prime p. So if the quotient is not simple, then we can find a P that is normal in H_i/H_{i+1} .
- $3 \Rightarrow 4$: If G is simple, then we done (we can easily see that G is abelian), otherwise, let N_0 be a nontrivial normal group of G with smallest order. We can always find such N_0 by the well-ordering principle. Now we know there exists a composition series of G that contains N_0 , denote it

$$\{e\} = G_0 \le \cdots \le G_k \le N_0 \le G_{k+1} \le \cdots G_v = G.$$

We show N_0 has to be abelian. This is because $N_0/G_k \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p. Then let $x, y \in N_0$, we consider $xyx^{-1}y^{-1}$ acting on the cosets N_0/G_k by left multiplication. Since $|N_0:G_k|=p$ is a prime, by some thinking, we conclude that $xyx^{-1}y^{-1}G_k=G_k$, so $xyx^{-1}y^{-1}\in G_k$. Since N_0 , is normal in G, $gG_kg^{-1}\leq N_0$ with index p. Then by a similar argument, we have $xyx^{-1}y^{-1}\in gG_kg^{-1}$ (acting on the subgroup gG_kg^{-1}). So consider $\bigcap_{g\in G}gG_kg^{-1}$ which contains $xyx^{-1}y^{-1}$. But $\bigcap_{g\in G}gG_kg^{-1}$ is normal, then by the minimality of N_0 , we conclude that $xyx^{-1}y^{-1}=e$, thus $[N_0,N_0]=\{e\}$. Hence N_0 is abelian.

Lastly, we proceed the same procedure on G/N_0 , to get N_1, N_2 and so on, and resultingly, we get the normal tower

$$\{e\} = N_0 \le N_1 \le \cdots N_t = G$$

such that N_i is normal in G and N_i/N_{i+1} is abelian.

$$4 \Rightarrow 1$$
: Clear.

7.3 Nilpotent Group

Definition: for any group G, we define the following subgroups of G inductively:

- $Z_0(G) = \{e\},\$
- $Z_1(G) = Z(G)$,
- Then consider $\pi: G \to G/Z(G)$ and define $Z_2(G)$ to be $\pi^{-1}(Z(G/Z(G)))$ Then note that $Z_2(G)$ is normal in G.
- We define $Z_{i+1}(G) = \pi^{-1}(Z(G/Z_i(G))).$
- And we get a tower of (normal) subgroups:

$$Z_0(G) = \{e\} \le Z_1(G) = Z(G) \le Z_2(G) \le Z_3(G) \le \cdots$$

This tower is called the upper central series of G.

Definition: a group is called nilpotent if $Z_n(G) = G$ for some n. The smallest such n is called the nilpotence class of G. In other words, we have

$$Z_0(G) < Z_1(G) < Z_2(G) < \dots < Z_n(G) = G < Z_{n+1}(G) = G.$$

Remark: there are various other equivalent characterization of nilpotent groups.

Remark: if G is a finite group, then eventually $Z_n(G) = Z_{n+1}(G) = Z_{n+2}(G) = \cdots$, for some $n \in \mathbb{Z}^+$. If G is infinite, then it may happen that $Z_n(G) \neq G$ for any $n \in \mathbb{Z}$, but $G = \bigcup_{i=0}^{\infty} Z_i(G)$. Such group is known as hypernilpotent.

Lemma 7.18 $Z_i(G)$ is a characteristic hence normal group in G.

Proof: Note $Z_1(G) = Z(G)$ char in G by Lemma 4.22. Now suppose $Z_i(G)$ is characteristic, we show $Z_{i+1}(G)$ is also characteristic in G. $Z(G/Z_i(G))$ is characteristic in $G/Z_i(G)$ again by Lemma 4.22. Now consider an automorphism ϕ on G. $\phi(Z_i(G)) = Z_i(G)$. Now if $x \in Z_{i+1}(G)$, then for any $y \in G$, we have $xyx^{-1}y^{-1} \in Z_i(G)$, as $xyZ_i(G) = yxZ_i(G)$. We show $\phi(x) \in Z_{i+1}(G)$. suffices to show $\phi(xyx^{-1}y^{-1}) \in Z_i(G)$ for any $y \in G$. But since $xyx^{-1}y^{-1} = g \in Z_i(G)$, and $\phi(g) = g' \in Z_i(G)$, then $\phi(x)\phi(y)\phi(x)^{-1}\phi(y)^{-1} = \phi(xyx^{-1}y^{-1}) = g' \in Z_i(G)$. Hence we conclude that $\phi(x) \in Z_{i+1}(G)$, so $Z_{i+1}(G)$ is characteristic in G.

Lemma 7.19 If G is nilpotent, then G is solvable. If G is abelian, then G is nilpotent.

Lemma 7.20 Let G be a finite p-group for some prime p, then G is nilpotent of nilpotence class at most n-1, where $|G| = p^n$.

Theorem 7.21 Let G be a finite group of order $p_1^{n_1} \cdots p_k^{n_k}$ for primes p_i and $n_i > 0$. Let P_i be a Sylow p_i -subgroup of G, then the following are equivalent:

- G is nilpotent:
- If H is a proper subgroup of G, then H is a proper subgroup of $N_G(H)$.
- Every Sylow p_i -subgroup is normal.
- $G \cong P_1 \times P_2 \times \cdots \times P_k$.

Proof:

- 1. $1 \Rightarrow 2$: we proceed by induction on |G|. The base case is vacuously true (no proper subgroup). We know $Z(G) \neq \{e\}$, as G is nilpotent. Note $Z(G) \subset N_G(H)$, hence $HZ(G) \subset N_G(H)$. We can assume $Z(G) \subset H$, otherwise H is clearly a proper subgroup of $N_G(H)$. We consider the quotients H/Z(G) which is a proper subgroup of G/Z(G). Let K/Z(G) be the normalizer of H/Z(G), then H/Z(G) is a proper subgroup of K/Z(G) by induction hypothesis (since G/Z(G) is also nilpotent). Hence H is a proper subgroup of K, and clearly $K \subset N_G(H)$.
- 2. $2 \Rightarrow 3$: Let P_I by any Sylow p_i -subgroup of G. Let $N = N_G(P_i)$. We know $N_G(N) = N$, hence N must be G. So P_i is normal in G.

- 3. $3 \Rightarrow 4$: Direct Product.
- 4. $4 \Rightarrow 1$: Clear.

Corollary 7.21.1 Let p be a prime and let P be a group of order p^a , $a \ge 1$. Then every proper subgroup H of P is a proper subgroup of $N_P(H)$.

Corollary 7.21.2 A finite abelian group is the direct product of its Sylow subgroups.

Lemma 7.22 (Frattini's Argument) Let G be a finite group, H be normal in G, P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and |G:H| divides $|N_G(P)|$.

Proof: Firstly $HN_G(P)$ is a subgroup of G and $HN_G(P) = N_G(P)H$. Let $g \in G$. Since $gPg^{-1} \leq gHg^{-1} = H$, both P and gPg^{-1} are Sylow p-subgroups of H. Then there exists $x \in H$, s.t., $gPg^{-1} = xPx^{-1}$ that is $gx^{-1} \in N_G(p)$. Hence $g \in N_G(P)x$. Since g is arbitrary, then $G = N_G(P)H$.

Next apply the second isomorphism theorem to $G = N_G(P)H$, we obtain

$$|G:H| = |N_G(P): N_G(P) \cap H|.$$

So
$$|G:H|$$
 divides $|N_G(P)|$.

Definition: let G be a group. A proper subgroup M of G is called maximal if whenever $M \leq H \leq G$, then H = M or H = G.

Let S be the set of all proper subgroup ordered by inclusion.

Proposition 7.23 Let G be a finite group. Then G is nilpotent if and only if all maximum subgroups of G are normal.

Proposition 7.24 If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proof: Let $|G| = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ and let P_i be a Sylow p_i -subgropu of G for $i = 1, 2, \dots, s$. Since $p_i^{\alpha_i} ||G|$ and the $p_i^{\alpha_i}$ elements of P_i are solutions of $x^{p_i^{\alpha_i}} = 1$, by hypothesis P_i must contain all solutions to this equation in G. It follows P_i is the unique (hence normal) Sylow p_i -subgroup of G. Then G is the direct product of its Sylow subgroups. Now each P_i possesses a normal subgroup M_i of index p_i , that is $|M_i| = p_i^{\alpha_i - 1}$ and G has at most $p_i^{\alpha_i - 1}$ solutions to $x^{p_i^{\alpha_i - 1}} = 1$. So M_i contains all elements x satisfying this equation, then for any elements in P_i but not contained in M_i , it must satisfy $x^{p_i^{\alpha_i}} = 1$ but $x^{p_i^{\alpha_i - 1}} \neq 1$, i.e., x is an element of order $p_i^{\alpha_i}$. This proves P_i is cyclic for all i. So G is the direct product of cyclic groups of relatively prime order, hence is cyclic.

Definition: for any group G, we define the following subgroups inductively:

$$G^0 = G$$
, $G^1 = [G, G]$ and $G^{i+1} = [G, G^i]$.

The chain of groups

$$G^0 \ge G^1 \ge G^2 \ge \cdots$$

is called the lower central series of G.

Lemma 7.25 G^i is characteristic in G for all $i \in \mathbb{N}$.

Proof: It is clear that G^1 is characteristic in G. Next if G^i is characteristic in G, we show G^{i+1} is characteristic in G. Let $\phi \in Aut(G^{i+1})$ It suffices to show that the image under ϕ for set of generators of G^{i+1} is contained G^{i+1} . Let $x \in G$ and $y \in G^i$. Then

$$\phi(xyx^{-1}y^{-1}) = \phi(x)\phi(y)\phi(x)^{-1}\phi(y)^{-1} = \phi(x)y'\phi(x)^{-1}(y')^{-1} \in G^{i+1}$$

as G^i is characteristic in G. Hence we conclude that G^{i+1} is characteristic in G for all $i \in \mathbb{N}$.

Lemma 7.26 Let H be a subgroup of G, if [H,G] or [G,H] is trivial, then $H \leq Z(G)$.

Proof: If $[H,G] = \{e\}$ then $\forall g \in G$ and $h \in H$, we have gh = hg. Hence $h \in Z(G)$. Similarly, the statement holds for $[G,H] = \{e\}$.

Theorem 7.27 The following are equivalent:

- 1. G has an upper central series with $Z_n(G) = G$ for some $n \in N$.
- 2. G has a central series of finite length, that is

$$\{e\} = G_0 < G_1 < G_2 < \dots < G_n = G$$

such that $G_{i+1}/G_i \leq Z(G/G_i)$;

3. G has a lower central series with $G^n = \{e\}$ for some $n \in \mathbb{N}$.

Proof: $1 \Rightarrow 2$: Suppose 1 holds, then

$$Z_0(G) \le Z_1(G) \le Z_2(G) \le \dots \le Z_n(G) = G.$$

And $Z_i(G) \leq Z_{i+1}(G)$ with $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G)) \leq Z(G/G_i)$. Hence 2 holds.

 $2 \Rightarrow 1$: Suppose G has a central series of finite length, that is

$$\{e\} = G_0 \le G_1 \le G_2 \le \dots \le G_n = G$$

such that $G_{i+1}/G_i \leq Z(G/G_i)$. We prove $G_i \leq Z_i(G)$.

When i=0, The statement clearly holds, as $Z_0(G)=G_0=\{e\}$. Now assume $Z_i(G)\geq G_i$ for some $i\in\mathbb{N}$, we show $Z_{i+1}(G)\geq G_{i+1}$. Since $G_{i+1}/G_i\leq Z(G/G_i)$, then $[G,G_{i+1}]\leq G_i\leq Z_i(G)$. So under the projection $\pi:G\to G/Z_i(G)$, the image of elements of G_i are in the center of $G/Z_i(G)$ (as they are mapped to identity in $G/Z_i(G)$. Thus $G_{i+1}Z_i(G)/Z_i(G)$ is in the center of $G/Z_i(G)$ (since $[G,G_{i+1}]\leq Z_i(G)$), so $G_{i+1}Z_i(G)\leq Z_{i+1}(G)\Rightarrow G_{i+1}\leq Z_{i+1}(G)$.)

 $2 \Rightarrow 3$: Suppose G has a finite central series, by reordering we have

$$G = G_0 \ge G_1 \ge G_2 \ge \dots \ge G_n = \{e\}$$

for some $n \in \mathbb{N}$. Then we show that $G^i \leq G_i$. Then we could conclude that $G^n \leq G_n = \{e\}$, so $G^n = \{e\}$. When i = 0, the $G = G_0 \geq G^0 = G$. Suppose $G_i \geq G^i$ for some $i \in \mathbb{N}$, consider the case for i + 1. $G^{i+1} = [G, G^i]$, because $G_i \geq G^i$, then $[G, G_i] \geq [G, G^i]$. Now since $G_i/G_{i+1} \leq Z(G/G_{i+1})$ (as we reordered), then $[G/G_{i+1}, G_i/G_{i+1}] = G_{i+1}/G_{i+1}$ (easy evaluation), so $[G, G_i] \leq G_{i+1}$, hence $G_{i+1} \geq G^{i+1}$.

 $3 \Rightarrow 2$: A lower central series is a central series in inverse order, that is we claim that

$$\{e\} = G^n \le G^{n-1} \le \dots \le G^0 = G$$

is a central series. We just need to verify $G^i/G^{i+1} \leq Z(G/G^{i+1})$. Suffices to show

$$[G/G^{i+1},G^i/G^{i+1}] \leq G^{i+1}/G^{i+1} = \{e\} \implies [G,G^i] \leq G^{i+1},$$

but this is clear from the definition of G^{i} 's.

Corollary 7.27.1 G is nilpotent of class c if and only if c is the smallest nonnegative integer such that $G^c = 1$. If G is nilpotent of class c, then

$$Z_i(G) \leq G^{c-i-1} \leq Z_{i+1}(G)$$
 for all $i \in \{0, 1, \dots, c-1\}$.

Corollary 7.27.2 Let G be a nilpotent group and N be a normal subgroup of G, then N and G/N are both nilpotent. If $N \leq G$ is nilpotent, and G/N is nilpotent, then G is not necessarily nilpotent.

Proof: Suppose G is nilpotent, then $G^i = 1$ for some $i \in \mathbb{N}$. Then it is easy to show that for any $N \subseteq G$, we have $N^k \subseteq G^k$, $\forall k \in \mathbb{N}$ by an argument using generators and induction. Hence $N^i \subseteq G^i = 1$, hence N is nilpotent.

Next if N is normal. It is easy to show that $(G/N)^n = (G^n N)/N$. Then it follows that $(G/N)^i \leq G^i N/N = 1$. Hence G/N is nilpotent.

Lastly consider S_3 as a counter example for the last statement. $A_3 \subseteq S_3$, and $A_3 \cong \mathbb{Z}/3\mathbb{Z}$, $S_3/A_3 \cong \mathbb{Z}/2\mathbb{Z}$ are both nilpotent, but S_3 is not nilpotent.

Proposition 7.28 Let G be a nilpotent group, then for any nontrivial $N \subseteq G$, $N \cap Z(G)$ is non-trivial.

Proof: Consider the upper central series of G, since G is nilpotent, then $\exists c \in \mathbb{N}$, s.t., $Z_c(G) = G$. Then there exists some $i \geq 0$, s.t., $N \cap Z_i(G)$ is trivial and $N \cap Z_{i+1}(G)$ is nontrivial, as N is nontrivial. Now by definition of upper central series, we have $[G, Z_{i+1}(G)] \leq Z_i(G)$. Now since N is normal in G, we also have $[G, N] \leq N$. Note

$$[G, N \cap Z_{i+1}(G)] \le [G, N] \cap [G, Z_{i+1}(G)] \le N \cap Z_i(G).$$

So

$$[G, N \cap Z_{i+1}(G)]$$

is trivial by assumption, which implies $N \cap Z_{i+1}(G) \leq Z(G)$. But as $N \cap Z_{i+1}(G)$ is nontrivial, then $N \cap Z(G) \neq \{e\}$. Moreover, we conclude that i = 1.

7.4 Finitely Generated Abelian Groups

Definition: for each $r \in \mathbb{Z}$ with $r \geq 0$, let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of \mathbb{R} copies of the group \mathbb{Z} , where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the free abelian group of rank r.

Theorem 7.29 (Fundamental Theorem of Finitely Generated Abelian Groups) Let G be a finitely generated abelian group. Then

1.

$$G \cong \mathbb{Z}^r \times Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_s}$$
.

for some integers r, n_1, n_2, \cdots, n_s , satisfying the following condition:

- (a) $r \ge 0$ and $n_j \ge 2$ for all j;
- (b) $n_{i+1}|n_i$ for $1 \le i \le s-1$.
- 2. the representation in (1) is unique. And we call the integer r be the free rank or Betti Number of G, and the integers n_1, \dots, n_s the invariant factors of G. Such Decomposition is called the invariant factor decomposition of G.

Theorem 7.30 Let G be a finite abelian group of order n > 1 and $|G| = n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Then

- 1. $G \cong A_1 \times A_2 \times \cdots \times A_k$, where $|A_i| = p_i^{a_i}$.
- 2. for each A_i ,

$$A_i \cong Z_{p_i^{b_1}} \times \cdots \times Z_{p_i^{b_t}}$$

with $b_1 \ge b_2 \ge \cdots \ge b_t \ge 1$ and $b_1 + b_2 + \cdots + b_t = a_i$. These are known as the elementary divisors of G.

3. the decomposition is unique, and is known as the elementary divisor decomposition of G.

Proof: Suffices to prove the statement on abelian p-groups. We denote |G| by p^n and induct on n. We show G can be written as the direct product of $\langle a \rangle$ and K. If n=1, then $G=\langle a \rangle \times \langle e \rangle$, where a is an element of maximum order in G. Now assume that the statement is true for all Abelian p-groups of order p^k , where k < n. Among all elements of G, let a have the maximum order, denote $|a| = p^m$. If m = n, then G is cyclic, then $G = \langle a \rangle \times \langle e \rangle$. So assume m < n, then $x^{p^m} = e$ for all $x \in G$. Now we choose b to be an element of the smallest order such that $b \notin \langle a \rangle$. Then $|b^p| = |b|/p$ which has order less than b (note clearly p||b|). This implies $|b^p| \in \langle a \rangle$ Now say $b^p = a^i$, then $e = b^{p^m} = (b^p)^{p^{m-1}} = (a^i)^{p^{m-1}}$, so $|a^i| \leq p^{m-1}$. Thus a^i is not a generator of $\langle a \rangle$, therefore $\gcd(p^m, i) \neq 1$, so p|i. Let i = pj, then $b^p = a^i = a^{pj}$. But then if $j \neq 1$, then $b \in \langle a \rangle$ which is a contradiction, hence |b| = p, thus $\langle a \rangle \cap \langle b \rangle = e$ (As any element in $\langle b \rangle b$ would generate $\langle b \rangle$).

Now consider $\bar{G} = G/\langle b \rangle$. Denote $\bar{x} = x\langle b \rangle$ $inG/\langle b \rangle$, $x \in G$. If $|\bar{a}| < |a| = p^m$, $\bar{a}^{p^{m-1}} = \bar{e}$. This means that $(a\langle b \rangle)^{p^{m-1}} = a^{p^{m-1}}\langle b \rangle = \langle b \rangle$, which implies the order of a is p^{m-1} . So order of \bar{a} is equal to p^m , therefore \bar{a} is an element of maximum order in \bar{G} .

By induction, we know that $\bar{G} = \langle a \rangle \times \bar{K}$ for some subgroup $\bar{K} \leq \bar{G}$. Then let K be the pullback of \bar{K} under the canonical projection. We claim that $\langle a \rangle \cap K = e$. As if $x \in \langle a \rangle \cap K$, then $\bar{x} \in \langle \bar{a} \rangle \cap \bar{K} = e = \langle b \rangle$, so $x \in \langle a \rangle \cap \langle b \rangle b = e$. lastly, by an order argument we have $G = \langle a \rangle K$, because $|K| = |\bar{K}| \cdot |\langle b \rangle|$, and $|a| |\bar{K}| = |G| / |\langle b \rangle|$. So $G = \langle a \rangle \times K$, as $\langle a \rangle$, K are both normal and their intersection is trivial.

Proposition 7.31 Suppose $m, n \in \mathbb{Z}^+$, then $Z_m \times \mathbb{Z}_n \cong Z_{mn}$ if and only if (m, n) = 1.

7.5 Inverse Limit

Definition: We consider a sequence of groups $\{G_n\}_{n=1}^{\infty}$ together with group homomorphism $f_n: G_n \to G_{n-1}$. We define the inverse limit, $\lim G_i$ of the sequence as follows:

- As a set, $\lim_{\leftarrow} G_i = \{(x_i)_{i=1}^{\infty} | x_i \in G_i, f_i(x_i) = x_{i-1}\}.$
- We define multiplication on $\lim_{\leftarrow} G_i$ as $(x_i) \cdot (y_i) = (x_i y_i)$

Proposition 7.32 $\lim_{\leftarrow} G_i$ is a group.

Definition: let $G_n = \mathbb{Z}/p^n\mathbb{Z}$ and $\pi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ be the quotient map. Then $\lim_{\leftarrow} \mathbb{Z}/p^n\mathbb{Z} = \mathbb{Z}_p$ is called the p-adic integers.

Take P=3. Then elements in Z_3 is a sequence (x_n) such that $x_n\mapsto x_{n-1}$ under the quotient. E.g.,

$$(0, 2 \times 3 + 0, 3^2 + 2 \times 3 + 0, \cdots).$$

So we often write $x \in \mathbb{Z}_p$ as a power series, $x = \sum_{n=0}^{\infty} a_n p^n$. Then (x_n) is obtained by $x_n = \sum_{i=0}^{n-1} a_i p^i$.

Proposition 7.33 Let $\{G_n\}_{n=1}^{\infty}$ with $f_n: G_n \to G_{n-1}$ be a sequence of groups. Let H be a group with group homomorphisms $h_i: H \to G_i$ such that the following diagram commute for all i:

Then there exists a unique group homomorphism $\phi: H \to \lim_{\leftarrow} G$ such that following diagrams commute:

In addition $\phi(h) = (h_i(h)) \in \lim_{\leftarrow} G$ and $\ker \phi = \bigcap \ker h_i$.

8 Category Theory

Definition: a category \mathfrak{C} consists of a collection of objects $\mathrm{ob}(\mathfrak{C})$ and for any two objects $A, B \in \mathrm{ob}(\mathfrak{C})$ a set of morphisms $\mathrm{Mor}(A, B) = \mathrm{Hom}(A, B)$; and for any $A, B, C \in \mathrm{ob}(\mathfrak{C})$ a composition map:

$$\operatorname{Mor}(B,C) \times \operatorname{Mor}(A,B) \to \operatorname{Mor}(A,C), \quad g \times f \mapsto g \circ f$$

such that

- 1. two sets Mor(A, B) and Mor(A', B') are disjoint, unless A = A' and B = B'.
- 2. For any $A \in ob(\mathfrak{C})$, there exists $1_A \in Mor(A, A)$ such that for any $f \in Mor(A, B)$, $f \circ 1_A = f$; and for any $g \in Mor(B, A)$, $1_A \circ g = g$.
- 3. The composition is associative, $(f \circ g) \circ h = f \circ (g \circ h)$.

Examples:

- 1. We have the category of sets, denoted by Set. ob(Set): is all sets. For any $A, B \in ob(Set)$, we define Mor(A, B) = functions from A to B.
- 2. We have the category of groups denoted Grp. ob(Grp): is all groups. $A, B \in ob(Grp)$: Mor(A, B) is all the group homomorphism from A to B.
- 3. We have the category of abelian groups, denoted Ab.
- 4. We can define a category by diagrams:

The objects are the dots, the Morphism are the arrows, e.g., $\operatorname{Hom}(A,B)=\{f\}, \operatorname{Hom}(B,A)=\emptyset, \text{ and } g\circ f=h.$

- 5. Let k be a field. Then we have the category of all k-vector spaces, denoted by $Vect_k$. The object consists of all vector spaces over k. For $V, W \in \text{ob}$, we have Mor(V, W) = all k-liner maps between V and W.
- 6. Let P be a poset (partially ordered set). We can define a category associated to P. The object is the set P, for any $a, b \in \text{ob}$, we define $\text{Mor}(a, b) = \{*_{a,b}\}$ if $a \leq b$, $\text{Mor}(a, b) = \emptyset$ if $a \not\leq b$.
- 7. Let G be a group, we define a category G with one object * and Mor(*,*) = G (the set of elements of G). The composition is given by group multiplication.

Definition: let \mathfrak{C} be a category. A morphism $f:A\to B$ is called an isomorphism if there exists $g:B\to A$ such that $f\circ g:B\to B=id_B$ and $g\circ f:A\to A=id_A$. Example:

1. Set, Grp, Ab.

- 2. Let P be a poset. Then if $a \cong b$, we have a = b.
- 3. Let \mathfrak{C} be a category with $A \in ob(\mathfrak{C})$, then Aut(A) = the set of isomorphism from A to A is a group. If \mathfrak{C} is a set, then Aut(A) = Perm(A).

Definition: let \mathfrak{C} be a category.

- 1. We say an object I of \mathfrak{C} is initial in \mathfrak{C} if for any object A in \mathfrak{C} , there exists a unique morphism $I_A:I\to A$.
- 2. We say an object T of \mathfrak{C} is terminal in \mathfrak{C} if for any object $A \in \mathfrak{C}$, there exists a unique morphism $T_A : A \to T$.

Example:

- 1. In Grp, the trivial group $\{e\}$ is both initial and terminal.
- 2. Let $A = \{a, b\}$ and $\mathcal{P}(A)$ be a poset, then $\{a, b\}$ is the initial element, and \emptyset is the terminal element.
- 3. In Set, the empty set \emptyset is an initial object, and any singleton set is a terminal object.

Lemma 8.1 If \mathfrak{C} be a category. If \mathfrak{C} has an initial (terminal) object, then it is unique up to isomorphism.

Proof: Let I, I' be initial objects in \mathfrak{C} . Then we have unique $f: I \to I'$ and $g: I' \to I$. Then $f \circ g: I \to I = id_I$, since $f \circ g \in \operatorname{Mor}(I, I)$ is unique. Similarly, we get $g \circ f = id_{I'}$. Hence I and I' are isomorphic.

Definition: let \mathfrak{C} and \mathfrak{B} be categories. A (covariant) functor $F:\mathfrak{C}\to\mathfrak{B}$ consists of the following data:

- 1. A map $F : ob(\mathfrak{C}) \to ob(\mathfrak{B}), A \mapsto F(A)$.
- 2. For any $A, B \in ob(\mathfrak{C})$, we have a map

$$F: \operatorname{Mor}(A, B) \to \operatorname{Mor}(F(A), F(B)), \quad f \mapsto F(f)$$

and maps identity to identity. Note we are abusing notation a little bit here.

3. For any $A, B, C \in ob(\mathfrak{C})$ and $f: A \to B, g: B \to C$. We have $F(g \circ f) = F(g) \circ F(f)$.

Example:

1. We have the forgetful functor:

$$For: Grp \to Set, \quad G \mapsto G, \quad f: G \to H \mapsto f: G \to H.$$

2. (Adjoint Functor) we have the free group functor

$$F: Set \to Grp, A \mapsto F(A)$$
 free group over $A, f: A \to B \mapsto F(f): F(A) \to F(B)$.

We have a natural bijection $\operatorname{Hom}_{Set}(A, For(G)) \cong \operatorname{Hom}_{Grp}(F(A), G)$.

Suppose $f \in \text{Hom}_{Set}(A, For(G))$, then by universal property, we have a homomorphism from F(A) to G (G is a group).

3. We have the forgetful functor from Ab to Grp.

4. We have the abelization functor:

$$F: Grp \rightarrow Ab, \quad G \mapsto G/[G,G], \quad f: G \rightarrow H \mapsto F(f): G/[G,G] \rightarrow H/[H,H]$$

Where F(f) is induced by first mapping G to H, then to H/[H,H], then [G,G] will be mapped to a subgroup of [H,H].

We have the trivial functor: $Grp \to Ab$, $G \mapsto \{e\}$, $f: G \to H \mapsto id: \{e\} \to \{e\}$.

- 5. We have a forgetful functor $Ab \to Set$, $G \mapsto G$. We have the free abelian group functor, $Set \to Ab$, $A \mapsto \prod_A \mathbb{Z}$, $\{a,b\} \mapsto \mathbb{Z} \times \mathbb{Z}$.
- 6. Let \mathfrak{C} be a category with $A \in \mathrm{ob}(\mathfrak{C})$. Then we have a functor $\mathrm{Hom}_{\mathfrak{C}}(A,-) : \mathfrak{C} \to Set, \ B \mapsto \mathrm{Hom}_{\mathfrak{C}}(A,B)$, $f: B \to C \mapsto \mathrm{Hom}_{\mathfrak{C}}(A,f) : \mathrm{Hom}_{\mathfrak{C}}(A,B) \to \mathrm{Hom}_{\mathfrak{C}}(A,C)$, induced by $g \mapsto f \circ g$.
- 7. We have the functor of taking invertible elements from Ring (the category of rings) to Grp, $R \mapsto R^*$.
- 8. The general linear group is a functor $GLn: Ring \to Grp, R \to GL_n(R), \text{ e.g., } \mathbb{Z} \mapsto GL_n(\mathbb{Z}).$
- 9. Let G be a group. Then we have the category \underline{G} (ob($\underline{G} = \{*\}$, and $\operatorname{Mor}(*,*) = G$). Then a functor $f: \underline{G} \to Set, * \mapsto A$ is just a group on F(A) if $F(1_*) = F(e) = 1_A$. $F: \operatorname{Mor}(*,*) \to (F(*), F(*)) = \operatorname{Mor}(A, A)$. Then we have $F(f \circ g) = F(f) \circ F(g)$, $F: G \to Perm(A) \subset \operatorname{Mor}(A, A)$ is a group homomorphism.
- 10. A functor $F: G \to Vect_k$ such that $F(e) = 1_V$, $* \mapsto V$ is the same as a group representation on V, is the same as a group homomorphism $G \to GL(V)$.
- 11. We have the category of all categories, denoted by Cat. ob(Cat) is the set of all categories, $Mor(\mathfrak{C}, \mathfrak{B})$: functors between \mathfrak{C} and \mathfrak{B} .

Proposition 8.2 Let $G: \mathfrak{C} \to \mathfrak{D}$ and $F: \mathfrak{B} \to \mathfrak{C}$ be two functors. Then $G \circ F$ is a functor from $\mathfrak{B} \to \mathfrak{D}$.

Definition: let \mathfrak{C} and \mathfrak{B} be two categories. A contravariant functor $F:\mathfrak{C}\to\mathfrak{B}$ consists of the following data:

- $F : ob(\mathfrak{C}) \to ob(\mathfrak{B})$
- $F: \operatorname{Mor}(A, B) \to \operatorname{Mor}(F(B), F(A))$ such that the following diagram commutes:

Example:

1. Let \mathfrak{C} be a category and $A \in ob(\mathfrak{C})$, we have the ocntravariant functor $\operatorname{Hom}(-,A) : \mathfrak{C} \to Set$, $\operatorname{Hom}(-,A) : \operatorname{ob}(\mathfrak{C}) \to \operatorname{ob}(Set)$, $B \mapsto \operatorname{Hom}(B,A)$; $\operatorname{Hom}(-,A) : \operatorname{Mor}(B,C) \to \operatorname{Mor}(\operatorname{Hom}(C,A),\operatorname{Hom}(B,A))$, $f : B \to C \mapsto (g : C \to A \mapsto g \circ f : B \to A)$.

2. Let $Vect_k$ be the category of k-vector spaces. We consider the functor $(\cdot)^*: Vect_k \to Vect_k, V \mapsto \operatorname{Hom}_k(V, k) = V^*$ (the dual of V).

We define categories in order to define functors and we define functors in order to define natural transformations.

Definition: Let \mathfrak{C} and \mathfrak{B} be categories. Let $F, G : \mathfrak{C} \to \mathfrak{B}$ be functors, a natural transformation $\alpha : F \to G$ consists of a collection of morphisms $\alpha_A : F(A) \to G(A)$ for any $A \in \mathfrak{C}$, such that the following diagram commutes: for any $A, B \in \mathfrak{C}$, $f : A \to B$,

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

Example:

- 1. We have two functors $(\cdot)^*$, $GL_n(\cdot): CommutRing \to Grp$, then $\det: GL_n(\cdot) \to (\cdot)^*$ is a natural transformation. E.g. $\det_{\mathbb{R}}: GL_n(\mathbb{R}) \to \mathbb{R}^*$, $\det_{\mathbb{C}}: GL_n(\mathbb{C}) \to \mathbb{C}^*$.
- 2. For any categories \mathfrak{C} (and Set). $A, B \in \mathfrak{C}$, we consider the functors: $\operatorname{Hom}(A, -) : \mathfrak{C} \to Set$ and $\operatorname{Hom}(B, -) : \mathfrak{C} \to Set$. Then any $\alpha : A \to B$ (in \mathfrak{C}) defines a natural transformation $\alpha : \operatorname{Hom}(A, -) \to \operatorname{Hom}(B, -)$, by for any $x \in \mathfrak{C}$, $\alpha_x : \operatorname{Hom}(A, x) \to \operatorname{Hom}(B, x)$, $f \mapsto f \circ \alpha$.

We check this is indeed a natural transformation. For any $g: x \to y$, we have the following diagram commute:

Definition: let \mathfrak{C} be a category, let H and G be two objects. The product of H and G (if exists) is an object denoted $H \times G$ in \mathfrak{C} together with morphisms $H \times G \to H$ and $H \times G \to G$ satisfying the following universal property:

For any $\phi_1: K \to G$ and $\phi_2: K \to H$, there exists a unique morphism $\phi: K \to H \times G$ such that the following diagram commutes:

Example:

- 1. In Set, we know $H \times G$ is the Cartesian Product.
- 2. In Grp, we know $H \times G$ is just the product group.
- 3. In Ab, we know $H \times G$ is also the product group.
- 4. Let \mathbb{Z} be a poset with the usual ordering. We consider \mathbb{Z} as a category $\underline{\mathbb{Z}}$, we show the product exists in $\underline{\mathbb{Z}}$ for any a, b. We define $a \times b = \max(a, b)$. Then one can show that this definition is the desired definition we want.

Definition: we say a category $\mathfrak C$ has (finite) product, if any two object in $\mathfrak C$ admits a product.

Lemma 8.3 Let \mathfrak{C} be a category with product. Then for any A, B, C in \mathfrak{C} , we have a canonical isomorphism $A \times (B \times C) \cong (A \times B) \times C$.

Lemma 8.4 Let \mathfrak{C} be a category with a terminal object T, then we have $T \times A \cong$ for any object A. And there is a canonical choice of this isomorphism.

Definition: let \mathfrak{C} be a category. Let H and G be two objects. The coproduct of H and G (if exists), is an object $H \sqcup G$ in \mathfrak{C} together with two morphisms $f_1: H \to H \sqcup G$, $f_2: G \to H \sqcup G$ satisfying the following universal properties:

For any $\phi_1: G \to K$, and $\phi_2: H \to K$ there exists a unique $\phi: H \sqcup G \to K$ such that the following diagram commutes:

Examples:

- 1. In Set, the coproduct $H \sqcup G$ is the disjoint union.
- 2. In Grp, $H \sqcup G$ is the free product. Assume $H = F\langle H \rangle / \langle R(H) \rangle$, $G = F\langle G \rangle / \langle R(G) \rangle$, then $H \sqcup G = F\langle H \cup G \rangle / \langle R(H) \sqcup R(G) \rangle$.
- 3. In Ab, $H \sqcup G \cong H \times G$.
- 4. We consider \mathbb{Z} as a poset, we have a category \mathbb{Z} . Then $a \sqcup b = \min(a, b)$.

Definition: Let \mathfrak{C} be a category with (finite) product and a terminal object I. A group object in \mathfrak{C} consists of an object $G \in \mathfrak{C}$ together with morphisms

$$m: G \times G \to G, \ e: I \to G, \ \iota: G \to G$$

such that the following diagrams commutes: Associativity:

and Identity:

and Inverse:

where $id \times m$ is defined as follows, and $m \times id$ is defined similarly

and \triangle is defined as follows:

Examples:

- 1. A group object G in Set is a (traditional) group.
- 2. A group object G in the category of topological spaces is a topological group.
- 3. A group object G in the category of Grp is an abelian group.
- 4. Let G and H be group objects in \mathfrak{C} . A group homomorphism $f:G\to H$ is a morphism $f:G\to H$ such that

the following diagram commute

Definition: let J be an index category (a category used for index). Let $\mathfrak C$ be a category and $F:J\to\mathfrak C$ be a functor. An (inverse) limit of $F:J\to\mathfrak C$ consists of an object $\lim_{\longleftarrow}F\in\mathfrak C$ together with a cone $\lim_{\longleftarrow}F\to F$ (a cone is such that $\forall i,j\in J,\ f:i\to j$, the following diagram commutes)

The cone need to satisfy the following universal property: For any cone $c \to F$, $c \in \mathfrak{C}$, there exists a unique $\phi: c \to \lim_{\leftarrow} F$ such that the following diagram commutes, $\forall i \overset{f}{\to} j$,

Definition: a colimit is defined similarly as the (inverse) limit but reversing the arrows.