Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear

GABARITO da AP2 - Primeiro Semestre de 2016 Professores: Márcia Fampa & Mauro Rincon

(4.0)1. Considere a seguinte matriz:

$$A = \left[\begin{array}{cc} -3 & 4 \\ -1 & 2 \end{array} \right].$$

- (2.0)a. Calcule os autovalores e os correspondentes autovetores de A.
- (1.0)b. Determine os autovalores e os correspondentes autovetores de A^{-1} , sem calcular a matriz A^{-1} . Explique detalhadamente a solução.
- (0.5)c. Calcule o determinante de A.
- (0.5)d. Determine o determinante de A^{-1} , sem calcular a matriz A^{-1} . Explique detalhadamente a solução.

Solução:

a.

$$det(A - \lambda I) = det \begin{bmatrix} -3 - \lambda & 4 \\ -1 & 2 - \lambda \end{bmatrix} = (-3 - \lambda)(2 - \lambda) + 4$$
$$= \lambda^2 + \lambda - 2 = P(\lambda).$$

 $P(\lambda)=0\Rightarrow \lambda^2+\lambda-2=0\Rightarrow$ ou $\lambda=1$ ou $\lambda=-2$. Então os autovalores de A são 1 e -2. Procuramos agora os autovetores associados:

 $(i)\lambda = 1$. Temos

$$\left[\begin{array}{cc} -3 & 4 \\ -1 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = 1 \left[\begin{array}{c} x \\ y \end{array}\right].$$

Logo

$$\begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{cases} -4x + 4y = 0 \\ -x + y = 0 \end{cases}$$

Então temos que x = y. Portanto os autovetores associados a $\lambda = 1$ são os vetores $v = (x, x), x \neq 0$.

(ii) $\lambda = -2$. Temos

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -2 \begin{bmatrix} x \\ y \end{bmatrix}.$$

Logo

$$\begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} -2x \\ -2y \end{bmatrix} \Rightarrow \begin{cases} -x + 4y = 0 \\ -x + 4y = 0 \end{cases} \text{ ou } x = 4y.$$

Os autovetores associados a $\lambda = -2$ são os vetores da forma $v = (4y, y), y \neq 0$. (ou $v = (x, \frac{1}{4}x), x \neq 0$).

- b. De acordo com a propriedade demonstrada em aula, se λ é um autovalor de A, então λ^{-1} é um autovalor de A^{-1} e todo autovetor de A é também um autovetor de A^{-1} . Logo os autovalores e respectivos autovetores de A^{-1} são:
 - (i) $\lambda = 1, v = (x, x), x \neq 0$.
 - (ii) $\lambda = -\frac{1}{2}$, $v = (x, \frac{1}{4}x)$, $x \neq 0$.
- c. $Det(A) = -3 \times 2 4 \times (-1) = -2$.
- d. $Det(A^{-1}) = \frac{1}{Det(A)} = -\frac{1}{2}$.
- (3.0)2. Considere o sistema linear

$$\begin{cases} x_1 - x_2 + \alpha x_3 = -2 \\ -x_1 + 2x_2 - \alpha x_3 = 3 \\ \alpha x_1 + x_2 + x_3 = 2 \end{cases}$$

- (2.0)a. Determine a sua solução (em função de α), considerando $|\alpha| \neq 1$.
- (1.0)b. Determine para que valor de α este sistema não tem solução. Justifique.

Solução:

Apliquemos inicialmente operações elementares sobre as linhas da matriz aumentada correspondente ao sistema dado, como no método de eliminação de Gauss.

$$\begin{bmatrix} 1 & -1 & \alpha & -2 \\ -1 & 2 & -\alpha & 3 \\ \alpha & 1 & 1 & 2 \end{bmatrix}$$

Fazendo $L2 \leftarrow L1 + L2$ e $L3 \leftarrow \alpha L1 - L3$ temos:

$$\begin{bmatrix} 1 & -1 & \alpha & -2 \\ 0 & 1 & 0 & 1 \\ 0 & -\alpha - 1 & \alpha^2 - 1 & -2\alpha - 2 \end{bmatrix}$$

Fazendo $L3 \leftarrow L3 - L2(-\alpha - 1)$ temos:

$$\begin{bmatrix}
1 & -1 & \alpha & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & \alpha^2 - 1 & -\alpha - 1
\end{bmatrix}$$

(a) Considerando $\alpha \neq 1$ e $\alpha \neq -1$, temos pela linha 3, que $x_3 = \frac{-\alpha - 1}{\alpha^2 - 1} = \frac{-1}{\alpha - 1}$. Pela linha 2 temos que $x_2 = 1$. Substituindo x_2 e x_3 na linha 1 temos:

$$x_1 - 1 - \frac{\alpha}{\alpha - 1} = -2$$

Resolvendo essa equação temos que $x_1 = \frac{1}{\alpha - 1}$.

Neste caso, portanto, a solução do sistema é $(\frac{1}{\alpha-1}, 1, \frac{-1}{\alpha-1})$.

(b) O sistema original não terá solução única se o determinante das matrizes de coeficientes dos sistemas representados acima for igual a zero, isto é, se $\alpha^2 - 1 = 0 \Rightarrow \alpha = 1$ ou $\alpha = -1$.

Se $\alpha=1$ a linha 3 do último sistema não pode ser satisfeita, indicando que o sistema não tem solução.

(3.0)3. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^2$

$$(x, y, z) \to (x + 2z, 2y - x)$$

- (1.0)a. Determine o núcleo de T, uma base para esse subespaço e sua dimensão.
- (1.0)b. Determine a imagem de T, uma base para esse subespaço e sua dimensão.
- (1.0)c. T é injetora? T é sobrejetora? Justifique as respostas.

Solução:

a.

$$\begin{split} N(T) &= \{(x,y,z): T(x,y,z) = (0,0)\} \\ &= \{(x,y,z): (x+2z,2y-x) = (0,0)\} \\ &= \{(x,x/2,-x/2): x \in I\!\!R\} \\ &= \{x(1,1/2,-1/2): x \in I\!\!R\} \end{split}$$

Logo, $\{(1, 1/2, -1/2)\}$ é uma base para o núcleo de T e dim(N(T))=1.

b.

$$\begin{array}{ll} Im(T) &= \{(x+2z,2y-x): x,y,z \in I\!\!R\} \\ &= \{a(1,0)+b(0,1): a,b \in I\!\!R\} \end{array}$$

Logo,

$$\{(1,0),(0,1)\}$$

é uma base para a imagem de T e dim(Im(T))=2.

c. Uma vez que $N(T) \neq (0,0,0), T$ não é injetora. Uma vez que $\dim(Im(T)) = \dim(I\!\!R^2) \, (\dim(I\!\!R^2) = 2), \, T$ é sobrejetora.