不同椭圆曲线的二次扭之比较

张神星

合肥工业大学

南京大学 金陵数论与代数几何会议 2022 年 9 月 25 日

给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等.

给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等.

那么反过来,从这些算术量中在多大程度上能决定原来的椭圆曲线 E/K 呢?

给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等.

- 那么反过来,从这些算术量中在多大程度上能决定原来的椭圆曲线 E/K 呢?
- 我们知道,如果 E₁ 和 E₂ 同源,那么

$$\operatorname{rank}_{\mathbb{Z}} E_1^{\chi}(K) = \operatorname{rank}_{\mathbb{Z}} E_2^{\chi}(K)$$

对任意 χ 均成立.

给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等.

- 那么反过来,从这些算术量中在多大程度上能决定原来的椭圆曲线 E/K 呢?
- 我们知道,如果 E₁ 和 E₂ 同源,那么

$$\operatorname{rank}_{\mathbb{Z}} E_1^{\chi}(K) = \operatorname{rank}_{\mathbb{Z}} E_2^{\chi}(K)$$

对任意 χ 均成立.

• Zarhin(1989) 提出了如下猜想: 给定阿贝尔簇 $A_1, A_2/K$, 如果对于任意有限扩张 F/K, 均有

$$\operatorname{rank}_{\mathbb{Z}} A_1(F) = \operatorname{rank}_{\mathbb{Z}} A_2(F),$$

给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等.

- 那么反过来,从这些算术量中在多大程度上能决定原来的椭圆曲线 E/K 呢?
- 我们知道,如果 E₁ 和 E₂ 同源,那么

$$\operatorname{rank}_{\mathbb{Z}} E_1^{\chi}(K) = \operatorname{rank}_{\mathbb{Z}} E_2^{\chi}(K)$$

对任意 χ 均成立.

 Zarhin(1989) 提出了如下猜想: 给定阿贝尔簇 A₁, A₂/K, 如果 对于任意有限扩张 F/K, 均有

$$\operatorname{rank}_{\mathbb{Z}} A_1(F) = \operatorname{rank}_{\mathbb{Z}} A_2(F),$$

那么 A_1 和 A_2 是否一定同源?

• Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.

- Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.
- 给定数域上椭圆曲线 E₁, E₂/K, 如果有
 - G_K 模同构 $E_1[m] \cong E_2[m]$, 其中 $m = \begin{cases} p^{k+1}, & p \leq 3 \\ p^k, & p > 3 \end{cases}$

 - 相同的 potential 乘性约化素位集合 S• $\forall \mathfrak{l} \in S, \left(E_1[m]/K_{\mathfrak{l}}\right)^{\circ} \cong \left(E_2[m]/K_{\mathfrak{l}}\right)^{\circ}$
 - 一个分歧条件

- Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.
- 给定数域上椭圆曲线 E₁, E₂/K, 如果有

•
$$G_K$$
 模同构 $E_1[m] \cong E_2[m]$, 其中 $m = \begin{cases} p^{k+1}, & p \leq 3 \\ p^k, & p > 3 \end{cases}$

- 相同的 potential 乘性约化素位集合 S• $\forall \mathfrak{l} \in S, \left(E_1[m]/K_{\mathfrak{l}}\right)^{\circ} \cong \left(E_2[m]/K_{\mathfrak{l}}\right)^{\circ}$
- 一个分歧条件

则 $\operatorname{Sel}_{n^k}(E_1/F) \cong \operatorname{Sel}_{n^k}(E_2/F), \forall F/K.$

- Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.
- 给定数域上椭圆曲线 E₁, E₂/K, 如果有

•
$$G_K$$
 模同构 $E_1[m] \cong E_2[m]$, 其中 $m = \begin{cases} p^{k+1}, & p \leq 3 \\ p^k, & p > 3 \end{cases}$

- 相同的 potential 乘性约化素位集合 S• $\forall \mathfrak{l} \in S, \left(E_1[m]/K_{\mathfrak{l}}\right)^{\circ} \cong \left(E_2[m]/K_{\mathfrak{l}}\right)^{\circ}$
- 一个分歧条件

 \mathbb{N} Sel_{pk} $(E_1/F) \cong \mathrm{Sel}_{pk}(E_2/F), \forall F/K$.

特别地,存在不同源的 E₁, E₂ 满足这个条件。

- Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.
- 给定数域上椭圆曲线 E₁, E₂/K, 如果有

•
$$G_K$$
 模同构 $E_1[m] \cong E_2[m]$, 其中 $m = \begin{cases} p^{k+1}, & p \leq 3 \\ p^k, & p > 3 \end{cases}$

- 相同的 potential 乘性约化素位集合 S• $\forall \mathfrak{l} \in S, \left(E_1[m]/K_{\mathfrak{l}}\right)^{\circ} \cong \left(E_2[m]/K_{\mathfrak{l}}\right)^{\circ}$
- 一个分歧条件

则 $\operatorname{Sel}_{n^k}(E_1/F) \cong \operatorname{Sel}_{n^k}(E_2/F), \forall F/K.$

- 特别地, 存在不同源的 E₁, E₂ 满足这个条件.
- Chiu(2020) 证明了: 如果 $Sel_n(E_1/F) \cong Sel_n(E_2/F)$ 对所有的 F/K 和几乎所有 p 成立, 那么 E_1 和 E_2 同源.

• 我们想要构造一些 E_1, E_2 使得对于它们二次扭族的一个子族 具有相似的算术性质.

- 我们想要构造一些 E_1, E_2 使得对于它们二次扭族的一个子族 具有相似的算术性质.
- 考虑具有全部有理 2 阶点的椭圆曲线

$$E = \mathscr{E}_{a,b} : y^2 = x(x-a)(x+b), \quad a, b \in \mathbb{Z}.$$

设 c = -a - b.

- 我们想要构造一些 E_1, E_2 使得对于它们二次扭族的一个子族 具有相似的算术性质.
- 考虑具有全部有理 2 阶点的椭圆曲线

$$E = \mathscr{E}_{a,b} : y^2 = x(x-a)(x+b), \quad a, b \in \mathbb{Z}.$$

设
$$c = -a - b$$
.

• 通过一个平移可以看出, E 和 $\mathcal{E}_{b,c}$, $\mathcal{E}_{c,a}$ 同构.

- 我们想要构造一些 E_1, E_2 使得对于它们二次扭族的一个子族 具有相似的算术性质.
- 考虑具有全部有理 2 阶点的椭圆曲线

$$E = \mathscr{E}_{a,b} : y^2 = x(x-a)(x+b), \quad a, b \in \mathbb{Z}.$$

设 c = -a - b.

- 通过一个平移可以看出, E 和 $\mathcal{E}_{b,c}$, $\mathcal{E}_{c,a}$ 同构.
- 由于我们想要研究二次扭族,因此不妨设 gcd(a,b,c)=1 或 2, 且 n 是奇数.

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

• 由于作为 $G_{\mathbb{Q}}$ 模, $E_1[2] \cong E_2[2]$, 因此二者的 2-Selmer 群落在 同一个群 $\mathrm{H}^1(G_{\mathbb{Q}}, E_i[2])$ 中.

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

- 由于作为 $G_{\mathbb{Q}}$ 模, $E_1[2] \cong E_2[2]$, 因此二者的 2-Selmer 群落在 同一个群 $\mathrm{H}^1(G_{\mathbb{Q}}, E_i[2])$ 中.
- 由于技术上的原因,我们进一步假设有 $G_{\mathbb{Q}}$ 模同构 $E_1[4] \cong E_2[4]$.

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

- 由于作为 $G_{\mathbb{Q}}$ 模, $E_1[2] \cong E_2[2]$, 因此二者的 2-Selmer 群落在 同一个群 $\mathrm{H}^1(G_{\mathbb{Q}}, E_i[2])$ 中.
- 由于技术上的原因,我们进一步假设有 $G_{\mathbb{Q}}$ 模同构 $E_1[4] \cong E_2[4]$.
- 此时有

$$a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}.$$

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

- 由于作为 $G_{\mathbb{Q}}$ 模, $E_1[2] \cong E_2[2]$, 因此二者的 2-Selmer 群落在 同一个群 $\mathrm{H}^1(G_{\mathbb{Q}}, E_i[2])$ 中.
- 由于技术上的原因,我们进一步假设有 $G_{\mathbb{Q}}$ 模同构 $E_1[4] \cong E_2[4]$.
- 此时有

$$a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}.$$

• 不失一般性, 我们假设

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$

 $\mathbf{\exists} \gcd(A, B, C) = 1.$

定理

• 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q})\cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:
 - n 的素因子都模 8 余 1, 且 $E_i^{(n)}$ 没有 4 阶有理点;

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:
 - n 的素因子都模 8 余 1, 且 $E_i^{(n)}$ 没有 4 阶有理点;
 - a_i, b_i 是奇数且 $2 \parallel c_i$; (例如 $y^2 = x(x-1)(x+1)$)

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:

 - a_i, b_i 是奇数且 $2 \parallel c_i$; (例如 $y^2 = x(x-1)(x+1)$)
 - $2 \parallel a_i, b_i, 4 \mid c_i$, 且 $E_i^{(n)}$ 没有 4 阶有理点, (例如 $y^2 = x(x-2)(x+2)$)

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$, 有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:

 - a_i, b_i 是奇数且 $2 \parallel c_i$; (例如 $y^2 = x(x-1)(x+1)$)
 - $2 \parallel a_i, b_i, 4 \mid c_i$, 且 $E_i^{(n)}$ 没有 4 阶有理点, (例如 $y^2 = x(x-2)(x+2)$)
- $\mathbb{M} \operatorname{Sel}_2(E_1^{(n)}/\mathbb{Q}) \cong \operatorname{Sel}_2(E_2^{(n)}/\mathbb{Q}),$

- 假设 E_i 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_1b_1c_1a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_1b_1c_1a_2b_2c_2$,有 $\left(\frac{p}{q}\right) = 1$.
- 如果下述三种情形之一成立:

 - a_i, b_i 是奇数且 $2 \parallel c_i$; (例如 $y^2 = x(x-1)(x+1)$)
 - $2 \parallel a_i, b_i, 4 \mid c_i$, 且 $E_i^{(n)}$ 没有 4 阶有理点, (例如 $y^2 = x(x-2)(x+2)$)
- 则 $\operatorname{Sel}_2\left(E_1^{(n)}/\mathbb{Q}\right)\cong\operatorname{Sel}_2\left(E_2^{(n)}/\mathbb{Q}\right)$, 且下述等价
 - $\operatorname{rank}_{\mathbb{Z}} E_1^{(n)}(\mathbb{Q}) = 0, \operatorname{III}(E_1^{(n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t};$
 - $\operatorname{rank}_{\mathbb{Z}} E_2^{(n)}(\mathbb{Q}) = 0, \operatorname{III}(E_2^{(n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t}.$

• 证明所使用的方法仍然是传统的 2-下降法.

- 证明所使用的方法仍然是传统的 2-下降法.
- 由于我们假设 E 没有 4 阶有理点, 因此由正合列

$$0 \to E(\mathbb{Q})/2E(\mathbb{Q}) \to \mathrm{Sel}_2(E) \to \mathrm{III}(E/\mathbb{Q})[2] \to 0$$

可知 $E[2] \subseteq \operatorname{Sel}_2(E)$.

- 证明所使用的方法仍然是传统的 2-下降法.
- 由于我们假设 E 没有 4 阶有理点, 因此由正合列

$$0 \to E(\mathbb{Q})/2E(\mathbb{Q}) \to \mathrm{Sel}_2(E) \to \mathrm{III}(E/\mathbb{Q})[2] \to 0$$

可知 $E[2] \subseteq \operatorname{Sel}_2(E)$.

• 由于 $Sel_2(E)$ 通过一些局部条件刻画, 通过比较 E_i 和 $E_i^{(n)}$ 的这些局部条件, 可以得到 Sel_2 相等.

- 证明所使用的方法仍然是传统的 2-下降法.
- 由于我们假设 E 没有 4 阶有理点, 因此由正合列

$$0 \to E(\mathbb{Q})/2E(\mathbb{Q}) \to \mathrm{Sel}_2(E) \to \mathrm{III}(E/\mathbb{Q})[2] \to 0$$

可知 $E[2] \subseteq \operatorname{Sel}_2(E)$.

- 由于 $Sel_2(E)$ 通过一些局部条件刻画, 通过比较 E_i 和 $E_i^{(n)}$ 的这些局部条件, 可以得到 Sel_2 相等.
- 然后再通过计算可知二者的 Cassels 配对也是相同的, 从而可以得到我们的结论.

计算 Selmer 群

• 经典的下降理论告诉我们, Sel₂(E) 可以表为

$$\left\{\Lambda = (d_1, d_2, d_3) \in \left(\frac{\mathbb{Q}^{\times}}{\mathbb{Q}^{\times 2}}\right)^3 : D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset, d_1 d_2 d_3 \equiv 1 \bmod \mathbb{Q}^{\times 2}\right\},\,$$

计算 Selmer 群

• 经典的下降理论告诉我们, Sel₂(E) 可以表为

$$\left\{\Lambda = (d_1, d_2, d_3) \in \left(\frac{\mathbb{Q}^{\times}}{\mathbb{Q}^{\times 2}}\right)^3 : D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset, d_1 d_2 d_3 \equiv 1 \bmod \mathbb{Q}^{\times 2}\right\},\,$$

• 其中齐性空间

$$D_{\Lambda} = \begin{cases} H_1: & at^2 + d_2u_2^2 - d_3u_3^2 = 0, \\ H_2: & bt^2 + d_3u_3^2 - d_1u_1^2 = 0, \\ H_3: & ct^2 + d_1u_1^2 - d_2u_2^2 = 0. \end{cases}$$

计算 Selmer 群

• 经典的下降理论告诉我们, Sel₂(E) 可以表为

$$\bigg\{\Lambda = (d_1, d_2, d_3) \in \bigg(\frac{\mathbb{Q}^\times}{\mathbb{Q}^{\times 2}}\bigg)^3 : D_\Lambda(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset, d_1 d_2 d_3 \equiv 1 \bmod \mathbb{Q}^{\times 2}\bigg\},$$

• 其中齐件空间

$$D_{\Lambda} = \begin{cases} H_1: & at^2 + d_2u_2^2 - d_3u_3^2 = 0, \\ H_2: & bt^2 + d_3u_3^2 - d_1u_1^2 = 0, \\ H_3: & ct^2 + d_1u_1^2 - d_2u_2^2 = 0. \end{cases}$$

• 那么 $E[2] \to E(\mathbb{Q})/2E(\mathbb{Q}) \subseteq \mathrm{Sel}_2(E)$ 对应到

$$(1,1,1), (-c,-ac,a), (-bc,c,-b), (b,-a,-ab).$$

• 记 $D_{\Lambda}^{(n)}$ 为 $E^{(n)}$ 的齐性空间.

- 记 $D_{\Lambda}^{(n)}$ 为 $E^{(n)}$ 的齐性空间.
- 情形 $p \nmid abcn$. 此时 $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff p \nmid d_1d_2d_3$.

- 记 $D_{\Lambda}^{(n)}$ 为 $E^{(n)}$ 的齐性空间.
- 情形 $p \nmid abcn$. 此时 $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff p \nmid d_1d_2d_3$.
- 故可不妨设 $d_i \mid abcn$ 且无平方因子.

- 记 $D_{\Lambda}^{(n)}$ 为 $E^{(n)}$ 的齐性空间.
- 情形 $p \nmid abcn$. 此时 $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff p \nmid d_1d_2d_3$.
- 故可不妨设 $d_i \mid abcn$ 且无平方因子.
- 情形 $p=\infty$. 容易证明

$$D_{\Lambda}^{(n)}(\mathbb{R}) \neq \emptyset \iff \begin{cases} d_1 > 0, & \text{ if } b > 0, c < 0; \\ d_2 > 0, & \text{ if } c > 0, a < 0; \\ d_3 > 0, & \text{ if } a > 0, b < 0. \end{cases}$$

• 情形 $p \mid n$. 此时 $p \nmid abc$. $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff$ $\begin{cases} \left(\frac{d_1}{p}\right) = \left(\frac{d_2}{p}\right) = \left(\frac{d_3}{p}\right) = 1, & \text{若 } p \nmid d_1 d_2 d_3; \\ \left(\frac{-bcd_1}{p}\right) = \left(\frac{cn/d_2}{p}\right) = \left(\frac{bn/d_3}{p}\right) = 1, & \text{若 } p \nmid d_1, p \mid d_2, p \mid d_3; \\ \left(\frac{-cn/d_1}{p}\right) = \left(\frac{-acd_2}{p}\right) = \left(\frac{-an/d_3}{p}\right) = 1, & \text{若 } p \mid d_1, p \nmid d_2, p \mid d_3; \\ \left(\frac{bn/d_1}{p}\right) = \left(\frac{-an/d_2}{p}\right) = \left(\frac{-abd_3}{p}\right) = 1, & \text{若 } p \mid d_1, p \mid d_2, p \nmid d_3. \end{cases}$

• 第一种情形由希尔伯特符号容易得到,后面的情形可以通过 对 Λ 加上一个 E[2] 对应的齐性空间化为第一种情形.

计算 Selmer 群: 分离含 n 的部分

• 设

$$n = p_1 \cdots p_k,$$

$$d_1 = p_1^{x_1} \cdots p_k^{x_k} \cdot \tilde{d}_1, \quad x_i = v_{p_i}(d_1),$$

$$d_2 = p_1^{y_1} \cdots p_k^{y_k} \cdot \tilde{d}_2, \quad y_i = v_{p_i}(d_2),$$

$$d_3 = p_1^{z_1} \cdots p_k^{z_k} \cdot \tilde{d}_3, \quad z_i = v_{p_i}(d_3),$$

其中 $\tilde{d}_i \mid abc$ 且无平方因子, 则 $\tilde{d}_1 \tilde{d}_2 \tilde{d}_3 \in \mathbb{Q}^{\times 2}$.

计算 Selmer 群: 分离含 n 的部分

设

$$n = p_1 \cdots p_k,$$

$$d_1 = p_1^{x_1} \cdots p_k^{x_k} \cdot \tilde{d}_1, \quad x_i = v_{p_i}(d_1),$$

$$d_2 = p_1^{y_1} \cdots p_k^{y_k} \cdot \tilde{d}_2, \quad y_i = v_{p_i}(d_2),$$

$$d_3 = p_1^{z_1} \cdots p_k^{z_k} \cdot \tilde{d}_3, \quad z_i = v_{p_i}(d_3),$$

其中 $\tilde{d}_i \mid abc$ 且无平方因子, 则 $\tilde{d}_1 \tilde{d}_2 \tilde{d}_3 \in \mathbb{Q}^{\times 2}$.

设

$$\mathbf{x} = (x_1, \dots, x_k)^{\mathrm{T}}, \ \mathbf{y} = (y_1, \dots, y_k)^{\mathrm{T}}, \ \mathbf{z} = (z_1, \dots, z_k)^{\mathrm{T}} \in \mathbb{F}_2^k,$$

计算 Selmer 群: 比较 $\operatorname{Sel}_2'\!\left(E^{(n)}\right)$ 和 $\operatorname{Sel}_2'(E)$

• 假设 n 素因子均模 8 余 1.

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.
- $p \mid abc$. 由 $n, d_i/\tilde{d}_i \in \mathbb{Q}_p^{\times 2}$ 可知二者可解性相同.

计算 Selmer 群: 比较 $\operatorname{Sel}_2'(E^{(n)})$ 和 $\operatorname{Sel}_2'(E)$

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.
- $p \mid abc$. 由 $n, d_i/\tilde{d}_i \in \mathbb{Q}_p^{\times 2}$ 可知二者可解性相同.
- 如果 $\Lambda \in \operatorname{Sel}_2(E^{(n)})$, 则 $\widetilde{\Lambda} \in \operatorname{Sel}_2(E) = E[2]$.

计算 Selmer 群: 比较 $\operatorname{Sel}_2'ig(E^{(n)}ig)$ 和 $\operatorname{Sel}_2'(E)$

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.
- $p \mid abc$. 由 $n, d_i/\tilde{d}_i \in \mathbb{Q}_p^{\times 2}$ 可知二者可解性相同.
- 如果 $\Lambda \in \operatorname{Sel}_2(E^{(n)})$, 则 $\widetilde{\Lambda} \in \operatorname{Sel}_2(E) = E[2]$.
- 如果 $\tilde{\Lambda} = (-c, -ac, a)$, 则

$$\Lambda \cdot (-cn, -ac, an) = \left(\prod_{i=1}^k p_i^{1-x_i}, \prod_{i=1}^k p_i^{y_i}, \prod_{i=1}^k p_i^{1-z_i}\right).$$

其它情形也类似.

- 假设 n 素因子均模 8 余 1.
- 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.
- $p \mid abc$. 由 $n, d_i/\tilde{d}_i \in \mathbb{Q}_p^{\times 2}$ 可知二者可解性相同.
- 如果 $\Lambda \in \operatorname{Sel}_2(E^{(n)})$, 则 $\widetilde{\Lambda} \in \operatorname{Sel}_2(E) = E[2]$.
- 如果 $\tilde{\Lambda} = (-c, -ac, a)$, 则

$$\Lambda \cdot (-cn, -ac, an) = \left(\prod_{i=1}^k p_i^{1-x_i}, \prod_{i=1}^k p_i^{y_i}, \prod_{i=1}^k p_i^{1-z_i}\right).$$

其它情形也类似 因此

$$\operatorname{Sel}_{2}'(E^{(n)}) = \operatorname{Sel}_{2}(E^{(n)})/E[2]$$

中每个元素都有唯一代表元 (d_1, d_2, d_3) 满足 $0 < d_i \mid n$.

计算 Selmer 群: 得到 $\operatorname{Sel}_2'\left(E_i^{(n)}\right)$

• $p \mid n$.

计算 Selmer 群: 得到 $\mathrm{Sel}_2'ig(E_i^{(n)}ig)$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对应的 E_1, E_2 的齐性空间在 \mathbb{Q}_p 的可解性相同.

计算 Selmer 群: 得到 $\operatorname{Sel}_2'(E_i^{(n)})$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对应的 E_1, E_2 的齐性空间在 \mathbb{Q}_p 的可解性相同. 从而

$$\operatorname{Sel}_{2}'(E_{1}^{(n)}) \cong \operatorname{Sel}_{2}'(E_{2}^{(n)}).$$

计算 Selmer 群: 得到 $\operatorname{Sel}_2'(E_i^{(n)})$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对应的 E_1, E_2 的齐性空间在 \mathbb{Q}_p 的可解性相同. 从而

$$\operatorname{Sel}_{2}'(E_{1}^{(n)}) \cong \operatorname{Sel}_{2}'(E_{2}^{(n)}).$$

• 若用矩阵语言来表达则是:

$$\operatorname{Sel}_{2}'(E^{(n)}) \xrightarrow{\sim} \operatorname{Ker} \begin{pmatrix} \mathbf{A} + \mathbf{D}_{-c} & \mathbf{D}_{-bc} \\ \mathbf{D}_{-ac} & \mathbf{A} + \mathbf{D}_{c} \end{pmatrix}$$
$$(d_{1}, d_{2}, d_{3}) \mapsto \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix},$$

计算 Selmer 群: 得到 $\operatorname{Sel}_2'(E_i^{(n)})$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对应的 E_1, E_2 的齐性空间在 \mathbb{Q}_p 的可解性相同. 从而

$$\operatorname{Sel}_{2}'(E_{1}^{(n)}) \cong \operatorname{Sel}_{2}'(E_{2}^{(n)}).$$

• 若用矩阵语言来表达则是:

$$\operatorname{Sel}_{2}'(E^{(n)}) \xrightarrow{\sim} \operatorname{Ker} \begin{pmatrix} \mathbf{A} + \mathbf{D}_{-c} & \mathbf{D}_{-bc} \\ \mathbf{D}_{-ac} & \mathbf{A} + \mathbf{D}_{c} \end{pmatrix}$$
$$(d_{1}, d_{2}, d_{3}) \mapsto \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix},$$

• 这个矩阵便是 Monsky 矩阵, 其中

$$\mathbf{A} = ([p_j, -n]_{p_i})_{i,j}, \quad \mathbf{D}_u = \operatorname{diag}\left(\left[\frac{u}{p_1}\right], \dots, \left[\frac{u}{p_k}\right]\right) \in M_k(\mathbb{F}_2),$$

计算 Selmer 群: 得到 $\mathrm{Sel}_2'ig(E_i^{(n)}ig)$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对 应的 E_1, E_2 的齐性空间在 \mathbb{Q}_n 的可解性相同. 从而

$$\operatorname{Sel}_{2}'(E_{1}^{(n)}) \cong \operatorname{Sel}_{2}'(E_{2}^{(n)}).$$

• 若用矩阵语言来表达则是:

$$\operatorname{Sel}_{2}'(E^{(n)}) \xrightarrow{\sim} \operatorname{Ker} \begin{pmatrix} \mathbf{A} + \mathbf{D}_{-c} & \mathbf{D}_{-bc} \\ \mathbf{D}_{-ac} & \mathbf{A} + \mathbf{D}_{c} \end{pmatrix}$$
$$(d_{1}, d_{2}, d_{3}) \mapsto \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix},$$

这个矩阵便是 Monsky 矩阵, 其中

$$\mathbf{A} = \left([p_j, -n]_{p_i} \right)_{i,j}, \qquad \mathbf{D}_u = \operatorname{diag} \left(\left[\frac{u}{p_1} \right], \dots, \left[\frac{u}{p_k} \right] \right) \in M_k(\mathbb{F}_2),$$
• $[\cdot, \cdot]$ 是加性希尔伯特符号, $\left[\vdots \right]$ 是加性勒让德符号.

• Cassels 在 \mathbb{F}_2 线性空间 $\mathrm{Sel}_2'(E)$ 上定义了一个反对称双线性型.

- Cassels 在 F₂ 线性空间 Sel₂(E) 上定义了一个反对称双线性型.
- 对于 Λ, Λ', 选择

$$P = (P_v)_v \in D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}), \qquad Q_i \in H_i(\mathbb{Q}).$$

- Cassels 在 F₂ 线性空间 Sel₂(E) 上定义了一个反对称双线性型.
- 对于 Λ, Λ', 选择

$$P = (P_v)_v \in D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}), \qquad Q_i \in H_i(\mathbb{Q}).$$

• 令 L_i 为定义了 H_i 在 Q_i 处切平面的线性型, 定义

$$\langle \Lambda, \Lambda' \rangle = \sum_v \langle \Lambda, \Lambda' \rangle_v, \qquad \maltese \psi \ \langle \Lambda, \Lambda' \rangle_v = \sum_{i=1}^3 \Bigl[L_i(P_v), d_i' \Bigr]_v,$$

- Cassels 在 F₂ 线性空间 Sel₂(E) 上定义了一个反对称双线性型.
- 对于 Λ, Λ', 选择

$$P = (P_v)_v \in D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}), \qquad Q_i \in H_i(\mathbb{Q}).$$

• 令 L_i 为定义了 H_i 在 Q_i 处切平面的线性型, 定义

$$\langle \Lambda, \Lambda' \rangle = \sum_v \langle \Lambda, \Lambda' \rangle_v, \qquad \maltese \psi \ \langle \Lambda, \Lambda' \rangle_v = \sum_{i=1}^3 \Bigl[L_i(P_v), d_i' \Bigr]_v,$$

它不依赖 P 和 Q_i 的选取.

- Cassels 在 \mathbb{F}_2 线性空间 $\mathrm{Sel}_2'(E)$ 上定义了一个反对称双线性型.
- 对于 Λ, Λ', 选择

$$P = (P_v)_v \in D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}), \qquad Q_i \in H_i(\mathbb{Q}).$$

• 令 L_i 为定义了 H_i 在 Q_i 处切平面的线性型, 定义

• 它不依赖 P 和 Q_i 的选取.

引理 (Cassels1998)

如果 $p \nmid 2\infty$, H_i 和 L_i 的系数均是 p 进整数, 且模 p 后, \overline{D}_{Λ} 仍定义了一条亏格 1 的曲线并带有切平面 $\overline{L}_i = 0$, 则 $\langle -, - \rangle_p = 0$.

• 由正合列

$$0 \to E[2] \to E[4] \xrightarrow{\times 2} E[2] \to 0$$

• 由正合列

$$0 \to E[2] \to E[4] \xrightarrow{\times 2} E[2] \to 0$$

• 得到长正合列

$$0 \to \frac{E(\mathbb{Q})[2]}{2E(\mathbb{Q})[4]} \to \operatorname{Sel}_2(E) \to \operatorname{Sel}_4(E) \to \operatorname{Im} \operatorname{Sel}_4(E) \to 0.$$

• 由正合列

$$0 \to E[2] \to E[4] \xrightarrow{\times 2} E[2] \to 0$$

• 得到长正合列

$$0 \to \frac{E(\mathbb{Q})[2]}{2E(\mathbb{Q})[4]} \to \operatorname{Sel}_2(E) \to \operatorname{Sel}_4(E) \to \operatorname{Im} \operatorname{Sel}_4(E) \to 0.$$

• 注意到 Cassels 配对的核是 $rac{{
m Im}\,{
m Sel}_4(E)}{E[2]}$.

• 由正合列

$$0 \to E[2] \to E[4] \xrightarrow{\times 2} E[2] \to 0$$

• 得到长正合列

$$0 \to \frac{E(\mathbb{Q})[2]}{2E(\mathbb{Q})[4]} \to \operatorname{Sel}_2(E) \to \operatorname{Sel}_4(E) \to \operatorname{Im} \operatorname{Sel}_4(E) \to 0.$$

- 注意到 Cassels 配对的核是 $rac{{
 m Im}\,{
 m Sel}_4(E)}{E[2]}$.
- 因此 Cassels 配对非退化等价于

$$\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 0, \quad \operatorname{III}(E/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t}.$$

• 由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

• $\mathfrak{P} \Lambda = (d_1, d_2, d_3), \Lambda' = (d'_1, d'_2, d'_3).$

由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

- $\mathfrak{P} \Lambda = (d_1, d_2, d_3), \Lambda' = (d'_1, d'_2, d'_3).$
- 若能选取适当的 $Q_{i,j}$ 和 $P_{i,v}$, 使得

$$[L_{1,i}(P_{1,v}), d'_i]_v = [L_{2,i}(P_{2,v}), d'_i]_v,$$

则 E_1, E_2 对应的 Cassels 配对就相同了.

由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

- $\mathfrak{P} \Lambda = (d_1, d_2, d_3), \Lambda' = (d'_1, d'_2, d'_3).$
- 若能选取适当的 Q_{i,i} 和 P_{i,v}, 使得

$$[L_{1,i}(P_{1,v}), d'_i]_v = [L_{2,i}(P_{2,v}), d'_i]_v,$$

则 E_1, E_2 对应的 Cassels 配对就相同了.

• 在多数情形这不难证明, 我们仅说明相对复杂的一种情形.

由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

- $\mathfrak{P} \Lambda = (d_1, d_2, d_3), \Lambda' = (d'_1, d'_2, d'_3).$
- 若能选取适当的 Q_{i,i} 和 P_{i,v}, 使得

$$[L_{1,i}(P_{1,v}), d'_i]_v = [L_{2,i}(P_{2,v}), d'_i]_v,$$

则 E_1, E_2 对应的 Cassels 配对就相同了.

- 在多数情形这不难证明, 我们仅说明相对复杂的一种情形.
- 不妨设 $A \equiv B \equiv C \equiv 1 \mod 4$.

• $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$.

• $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$. 设

$$Q_{1,1} = (\alpha, \beta, \gamma) \in H_{1,1}(\mathbb{Q}), \quad Q_{2,1} = (\alpha, A\beta, A\gamma) \in H_{2,1}(\mathbb{Q}).$$

$$P_{1,p} = (1, 0, u, v), \quad L_{1,1}(P_{1,p}) = a_1 n\alpha - d_3 \gamma v + d_2 \beta u,$$

$$P_{2,p} = (1, 0, Cu, Bv), \quad L_{2,1}(P_{2,p}) = Aa_1 n\alpha - Bd_3 \gamma v + Cd_2 \beta u,$$

• $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$. 设

$$Q_{1,1} = (\alpha, \beta, \gamma) \in H_{1,1}(\mathbb{Q}), \quad Q_{2,1} = (\alpha, A\beta, A\gamma) \in H_{2,1}(\mathbb{Q}).$$

$$P_{1,p} = (1, 0, u, v), \quad L_{1,1}(P_{1,p}) = a_1 n\alpha - d_3 \gamma v + d_2 \beta u,$$

$$P_{2,p} = (1, 0, Cu, Bv), \quad L_{2,1}(P_{2,p}) = Aa_1 n\alpha - Bd_3 \gamma v + Cd_2 \beta u,$$

$$L_{1,1}(P_{1,p})L_{2,1}(P_{2,p}) = \frac{(A+B)(B+C)(C+A)}{2} \left(\frac{a_1 n\alpha}{b+c} + \frac{d_2\beta u}{a+b} - \frac{d_3\gamma v}{a+c}\right)^2.$$

• $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$. 设

$$Q_{1,1} = (\alpha, \beta, \gamma) \in H_{1,1}(\mathbb{Q}), \quad Q_{2,1} = (\alpha, A\beta, A\gamma) \in H_{2,1}(\mathbb{Q}).$$

$$P_{1,p} = (1, 0, u, v), \quad L_{1,1}(P_{1,p}) = a_1 n\alpha - d_3 \gamma v + d_2 \beta u,$$

$$P_{2,p} = (1, 0, Cu, Bv), \quad L_{2,1}(P_{2,p}) = Aa_1 n\alpha - Bd_3 \gamma v + Cd_2 \beta u,$$

$$L_{1,1}(P_{1,p})L_{2,1}(P_{2,p}) = \frac{(A+B)(B+C)(C+A)}{2} \left(\frac{a_1 n\alpha}{b+c} + \frac{d_2\beta u}{a+b} - \frac{d_3\gamma v}{a+c} \right)^2.$$

• 这里需要用到 $a_1A^2 + b_1B^2 + c_1C^2 = 0$.

• $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$. 设

$$Q_{1,1} = (\alpha, \beta, \gamma) \in H_{1,1}(\mathbb{Q}), \quad Q_{2,1} = (\alpha, A\beta, A\gamma) \in H_{2,1}(\mathbb{Q}).$$

$$P_{1,p} = (1, 0, u, v), \quad L_{1,1}(P_{1,p}) = a_1 n\alpha - d_3 \gamma v + d_2 \beta u,$$

$$P_{2,p} = (1, 0, Cu, Bv), \quad L_{2,1}(P_{2,p}) = Aa_1 n\alpha - Bd_3 \gamma v + Cd_2 \beta u,$$

$$L_{1,1}(P_{1,p})L_{2,1}(P_{2,p}) = \frac{(A+B)(B+C)(C+A)}{2} \left(\frac{a_1 n \alpha}{b+c} + \frac{d_2 \beta u}{a+b} - \frac{d_3 \gamma v}{a+c} \right)^2.$$

• 这里需要用到 $a_1A^2 + b_1B^2 + c_1C^2 = 0$.

引理

若 $A \equiv B \equiv C \equiv 1 \mod 4$, 则 $(A+B)(B+C)(C+A)/8 \equiv 1 \mod 4$ 是模 $p \mid n$ 的二次剩余.

• 对于一些特殊的 (a,b,c), 我们不需要 $p \equiv 1 \mod 8$, $\forall p \mid n$ 这么强的条件.

- 对于一些特殊的 (a,b,c), 我们不需要 $p \equiv 1 \mod 8$, $\forall p \mid n$ 这么强的条件.
- 例如 2 ∤ a_i, b_i, 2 || c_i (如奇数同余椭圆曲线情形).

- 对于一些特殊的 (a,b,c), 我们不需要 $p \equiv 1 \mod 8$, $\forall p \mid n$ 这么强的条件.
- 例如 2 ∤ a_i, b_i, 2 || c_i (如奇数同余椭圆曲线情形).
- 此时需要对 p=2 情形进行单独处理, 最后也可以得到该结论.

- 对于一些特殊的 (a,b,c), 我们不需要 $p \equiv 1 \mod 8$, $\forall p \mid n$ 这么强的条件.
- 例如 2 ∤ a_i, b_i, 2 || c_i (如奇数同余椭圆曲线情形).
- 此时需要对 p = 2 情形进行单独处理, 最后也可以得到该结论。
- 例如 $2 \parallel a_i, b_i, 4 \mid c_i$ (如偶数同余椭圆曲线情形).

- 对于一些特殊的 (a,b,c), 我们不需要 $p \equiv 1 \mod 8$, $\forall p \mid n$ 这么强的条件.
- 例如 $2 \nmid a_i, b_i, 2 \parallel c_i$ (如奇数同余椭圆曲线情形).
- 此时需要对 p=2 情形进行单独处理, 最后也可以得到该结论.
- 例如 $2 \parallel a_i, b_i, 4 \mid c_i$ (如偶数同余椭圆曲线情形).
- 此时除了需要对 p=2 情形进行单独处理, 还需要考虑齐性空间在 $p=\infty$ 的解的问题.

进一步的思考

• 对于一般的椭圆曲线 $E_1, E_2/\mathbb{Q}$, 假设有 Galois 模同构 $E_1[4] \cong E_2[4]$.

进一步的思考

- 对于一般的椭圆曲线 $E_1, E_2/\mathbb{Q}$, 假设有 Galois 模同构 $E_1[4] \cong E_2[4]$.
- 设 n 是无平方因子正整数且对于 E_1 或 E_2 的每个坏约化 v, 均有 $n \in \mathbb{Q}_{+}^{\times 2}$.

进一步的思考

- 对于一般的椭圆曲线 $E_1, E_2/\mathbb{Q}$, 假设有 Galois 模同构 $E_1[4] \cong E_2[4]$.
- 设 n 是无平方因子正整数且对于 E_1 或 E_2 的每个坏约化 v, 均有 $n \in \mathbb{Q}_{+}^{\times 2}$.
- 我们需要什么样的条件能够推出

$$\operatorname{Sel}_2(E_1^{(n)}) \cong \operatorname{Sel}_2(E_2^{(n)}),$$

$$\operatorname{rank}_{\mathbb{Z}} E_1^{(n)}(\mathbb{Q}) = \operatorname{rank}_{\mathbb{Z}} E_2^{(n)}(\mathbb{Q})?$$

感谢各位的倾听!