Ingeniería de los Computadores

Sesión 8. Redes de interconexión. Conceptos y clasificación

- Redes de Interconexión
 - ➤ Elemento fundamental en arquitecturas paralelas con varios elementos de proceso que se comunican
 - ➤ Eficiencia en la comunicación crítica: multiprocesadores, multicomputadores
 - ➤ Diseño de la red condiciona: escalabilidad de la arquitectura, complejidad, tolerancia a fallos, etc.
 - > Aspectos relacionados: control de flujo y encaminamiento

Conceptos

Estructura general del sistema de comunicación

- Parámetros básicos
 - > Tamaño de la red: número de nodos (EPs, memorias, computadores)
 - ➢ Grado del nodo (d − degree): número de canales de entrada y salida
 - > Nodos unidireccionales: grado de salida y grado de entrada
 - ➤ Grado del nodo -> puertos de E/S (¿coste?)
 - Diámetro de red: longitud máxima del camino más corto entre dos nodos cualquiera de una red.

- Parámetros básicos
 - Anchura de la bisección (B): mínimo número de canales que, al cortar, separa la red en dos partes iguales
 - El número de cables que cruzan la bisección es una cota inferior de la densidad de cableado
 - > Longitud del cable: efectos sobre la latencia
 - Simetría: Una red es simétrica si es isomorfa a ella misma independientemente del nodo considerado origen
 - > Rendimiento
 - Funcionalidad. Indica cómo la red soporta el encaminamiento de datos, tratamiento de las interrupciones, sincronización.
 - Latencia. Indica el retraso de un mensaje

- Parámetros básicos
 - > Rendimiento
 - > Ancho de banda. Velocidad máxima de transmisión de datos
 - Complejidad hardware. Coste de implementación (cables, conmutadores, conectores, etc.)
 - Escalabilidad. Capacidad de la red para expandirse de forma modular
 - Capacidad de transmisión. Número total de datos que se pueden transmitir a través de la red en una unidad de tiempo. (Punto caliente)

- Diseño de una red de inteconexión
 - > Topología -> grafo de interconexión
 - > Control de flujo -> método usado para regular el tráfico en la red
 - Mensaje
 - Paquete
 - > Flit
 - Encaminamiento -> método usado por un mensaje para elegir un camino entre los canales de la red
 - Determinista
 - Adaptativo

Conceptos

Diseño de una red de interconexión

- Diseño de una red de interconexión. Topología
 - Estructura de interconexión física de la red. Se puede modelar mediante un grafo cuyos vértices son conmutadores o interfaces de red (a nodos de cómputo, a módulos de memoria, o a dispositivos de E/S) y los aristas son los enlaces.

- Diseño de una red de interconexión. Encaminamiento
 - Determina el camino a seguir por un paquete desde el fuente al destino.

- Diseño de una red de interconexión
 - Determina cómo los datos en un paquete atraviesan el camino hacia el destino.

Conceptos

Diseño de una red de interconexión. Control de flujo

Determinan *cuándo* una unida se mueven entre componentes del Sist.

Comunicación, avanzando hacia el destino. *Arbitra* ante colisiones.

Determina cómo y cuándo se asignan recursos (intra- e inter-conmutadores)

Conceptos

Diseño de una red de interconexión. Niveles de servicios

Conceptos

Clasificación

• Clasificación de redes de interconexión

CLASES	Nº NODOS Y DISTANCIA	UTILIZACIÓN	DESARRO- LLO	EJEMPLOS	
Diseñadas a Nodos: unos pocos-decenas-cientos-miles		Multiprocesadores Multicomputadores Proc. matriciales	Arquitecturas de altas prestaciones.	-Cray X1 -Origin SGI -Sun Fire 15K	
SAN: System Area Network	Nodos: decenas- cientos-miles Dist. decenas o cientos metros	Conecta comp. en habitación Interfaz software "ligera" (<i>lightweight</i>)	Redes a medida y LAN	-Estándares: SCI, Infiniband -OEM: Myrinet, QsNet	
LAN: Local Area Network	Nodos: cientos Dist <decenas km<="" td=""><td>Conecta comp. en edificio o campus</td><td>Estaciones de trabajo</td><td>-Fast Eth. -Gigabit Eth.</td></decenas>	Conecta comp. en edificio o campus	Estaciones de trabajo	-Fast Eth. -Gigabit Eth.	
WAN: Wide Nodos: miles Area Network Dist. miles km		Conecta comp. a nivel Telecomuni- mundial caciones		-ATM	

Conceptos

- Clasificación de redes de interconexión
 - Redes de medio compartido
 - Redes de área local
 - Bus de contención (Ethernet)
 - > Token bus (Arcnet)
 - Token ring (IBM Token ring)
 - > Bus de sistema (backplane bus) (Sun Gigaplane)
 - > Redes directas (estáticas basadas en router)
 - > Topologías ortogonales (Malla, Toro, Hipercubo)
 - > Otras topologías (Árbol, CCC, Estrella, ...)
 - > Redes indirectas (dinámicas basadas en conmutador)

Conceptos

- Clasificación de redes de interconexión
 - Redes de medio compartido
 - Redes directas
 - Redes indirectas (dinámicas basadas en conmutador)
 - Topologías regulares
 - Barra cruzada (Crossbar)
 - Redes de interconexión multietapa (MIN)
 - Con bloqueos (unidireccionales y bidireccionales)
 - Sin bloqueos (red de Clos)
 - > Topologías irregulares
 - Redes híbridas (redes jerárquicas)

- Redes de medio compartido
 - Medio de transmisión compartido
 - Arbitraje (resolución de conflictos)
 - Sencillo Broadcast
 - Ancho de banda limitado (escalabilidad limitada) -> cuello de botella
 - Bus de sistema (arquitectura UMA: Proc -> Mem)
 - Redes de área local
 - Ethernet (no determinista)
 - ➤ Token bus (determinista □aplic. tiempo real)
 - Token ring (estructura en anillo)

- Redes de medio compartido (arbitraje del bus)
 - > Prioridad estática. Señales de control:
 - > BRQ
 - > BGNT
 - > BBSY común

- Redes de medio compartido (arbitraje del bus)
 - > Prioridad estática. Daisy Chain (centralizada-serie):
 - > BRQ común
 - > BGNT propagada
 - BBSY común

- Redes de medio compartido (arbitraje del bus)
 - Prioridad estática. Codificador-decodificador de prioridad (centralizada-paralela)
 - > BRQ individual
 - BGNT individual
 - BBSY común

- Redes de medio compartido (arbitraje del bus)
 - Prioridad estática. Codificador-decodificador de prioridad (centralizada-paralela)
 - > BRQ individual
 - BGNT individual
 - BBSY común

Conceptos

- Redes de medio compartido (arbitraje del bus)
 - Prioridad estática. Autoarbitraje (distribuido-paralelo)
 - BRQ individual
 - BGNT individual
 - BBSY común

Conceptos

- Redes de medio compartido (arbitraje del bus)
 - Multiplexación temporal
 - Ventajas
 - Asignación equitativa
 - > Simplicidad
 - Inconvenientes
 - Infrautilización del ancho de banda
 - Prioridad dinámica
 - > LRU
 - > RDC
 - > FCFS

Conceptos

- Redes de medio compartido (arbitraje del bus)
 - Prioridad dinámica (LRU)

P ₀	P ₁	P ₂	P ₃	Acción
0	1	2	3	P ₀ utiliza bus
0	1	2	3	P ₂ solicita bus
1	2	0	3	P ₂ utiliza bus
1	2	0	3	P ₁ y P ₃ solicitan bus
2	3	1	0	P ₃ utiliza bus

Conceptos

- Redes directas
 - Nodos conectados a subconjuntos de nodos
 - Escalabilidad
 - > Router -> comunicación entre los nodos
 - > Canales unidireccionales o bidireccionales
- Redes indirectas
 - Comunicación a través de conmutadores
 - > Topologías regulares (matriciales) e irregulares (NOWs)
- Redes híbridas (combinación de las anteriores)
- Redes multibus
- Redes jerárquicas (jerarquía de buses conectados mediante routers)
- Redes basadas en clusters
 - ➤ Nodos conectados (buses fácil broadcast) formando clusters
 - Clusters conectados entre sí (red directa escalabilidad)