

LEARNING POINTS

- 1. Introduction
- 2. Normal Forms
- 3. Normalization

LEARNING OBJECTIVES

Upon completion of this lesson, students will be able to:

- 1. Know why we need normalization in relational DB
- 2. Identify normal forms such as 1st NF, 2nd NF, 3rd NF
- 3. Know how to normalize a relational DB into 3NF

Keywords

Keyword	Description
1 st Normal Form	The domain of an attribute must include only atomic (simple, indivisible) values and the value of any attribute in a tuple must be a single value
	from the domain of that attribute.
2 nd Normal Form	A relation that is in 1NF and every non-prime attribute is fully
2 nd NOTHIAI FOTHI	functionally dependent on any candidate key.
3 rd Normal Form	A relation that is in 1NF and 2NF and in which no non-prime
3 rd NOTHIAI FOTHI	attribute is transitively dependent on any candidate key.
Normalization	Normalization is the process of removing anomalies and redundancie s from DB

- 1.1. Motivation
- 1.2. Full & Partial Dependency
- 1.3. Transitive Dependency

- Designing DB: one of the most difficult tasks
- One simplest design approach is to use a big table and store all data
- But what's the problem with this?
 - Anomalies
 - Redundancies

- Insertion Anomalies
 - PK: (student_id, subject_id)
 - We can not insert a new subject if we do not have a student assigned to it yet
 - We can not insert a null value into PK attributes

student id	full_name	dob	subject id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

- Update anomalies
 - An instance where the same information must be updated in several different places
 - If you update the name of subject "Databases", you need to update in two diff erent places (not efficient)

student_id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	А
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

- Deletion Anomalies
 - Where deleting one piece of data inadvertently causes other data to be lost
 - If we delete student Margaret Thatcher, then we will lose information abou
 t subject "Introduction to ICT"

student id	full_name	dob	subject id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

1.1. Motivation

Normalization is the process of removing anomalies and redundancies
 from DB

1.2. Full & Partial Dependency

student id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	А
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

Key: (student id, subject id)

Full Key Dependency: (student_id, subject_id) → result

Partial Key Dependency: student_id → full_name

1.3. Transitive dependency

- If $A \rightarrow B$ and $B \rightarrow C$
 - Attribute A must be the determinant of C.
 - Attribute A transitively determines attribute C or
 - C is transitively dependent on A

- 2.1. Introduction
- 2.2. 1st Normal Form
- 2.3. 2nd Normal Form
- 2.4. 3rd Normal Form

2.1. Introduction

- Each form was designed to eliminate one or more of the anomalies: First NF; Second NF; Third NF
- Unnormalized Form (UNF)

A table that contains one or more repeating groups. I.e., its cell may contain

multiple values

Multi Value Or repeating groups

student id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090, IT4868	Databases, Web mining	A, C
1238	Theresa May	08/06/1998	IT4843, IT4868	Data integration, Web mining	B, B
1497	Tony Blair	03/01/1999	IT3090	Databases	А
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

2.2. First Normal Form (1NF)

- A cell in a relation contains one and only one value.
 - Disallows composite attributes, multivalued attributes or nested relations

student_id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

2.3. Second Normal Form (2NF)

- Based on the concept of full functional dependency
- A prime attribute
 - It is an attribute that is member of some candidate key
- 2NF relation is
 - in 1NF and every non-prime attribute is fully functionally dependent on the primary key

2.4. Third Normal Form (3NF)

- A relation that is
 - In 2NF and in which no non-prime attribute is transitively dependent on the primary key.
 - I.e, all non-prime attributes are fully & directly dependent on the PK.

- 3.1. Properties of relational decompositions
- 3.2. An algorithm decomposes a universal relation into 3NF
- 3.3. Some examples

3.1. Properties of relational decompositions

- A single universal relation schema $R = \{A_1, A_2, ..., A_n\}$ that includes all the attributes of the DB
- F is a set of FDs holds on R
- Using the FDs, the algorithms decompose the universal relation schema R into a set of relation schemas $D = \{R_1, R_2, ..., R_m\}$; D is called **a decomposi** tion of R

3.1. Properties of relational decompositions

- 3 properties:
 - Attribute preservation
 - Each attribute in *R* will appear in at least one relation schema R_i in the decomposition so that no attributes are *lost*
 - Dependency preservation
 - Each FD $X \rightarrow Y$ specified in F either appeared directly in one of the R_i in the decomposition D or could be inferred from the dependencies that appear in some R_i .
 - Lossless join
 - $r = \Pi_{R1}(r) \bowtie \Pi_{R2}(r) \bowtie ... \bowtie \Pi_{Rm}(r)$

3.1. Properties of relational decompositions

- An example
 - Suppose we have a relation:

```
Learn(<u>student id</u>, full_name, dob, <u>subject id</u>, name, result)
```

- We split it into two relations:

```
Student(<u>student id</u>, full_name, dob)
Subject(subject_id, name)
```

- This decomposition does not warrant:
 - Attribute preservation: Lost information about "result"
 - Dependency preservation condition, for instance, (student_id, subject_id) → result is loss.
 - Lossless join property, i.e., we can join these two relations

3.2. An algorithm decomposes a universal relation into 3NF

- **Input**: A universal relation R and a set of FDs F on the attributes of R.
 - Find a minimal cover G for F
 - For each left-hand-side X of a FD that appears in G, create a relation schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} ... \cup \{A_k\} \}$, where $X \to A_1, X \to A_2, ..., X \to A_k$ are the only dependencies in G with X as the left-hand-side (X is the key of this relation);
 - Place any remaining attributes (that have not been placed in any relation)
 in a single relation schema to ensure the attribute preservation property.

3.2. An algorithm decomposes a universal relation into 3NF

- If none of the relation schemas in D contains a key of R, then create one more relation schema in D that contains attributes that form a key of R.
- Eliminate redundant relations from the resulting set of relations in the relational database schema.
 - A relation R is considered redundant if R is a projection of another relation S in the schema; alternately, R is subsumed by S

3.3. Some examples

Example 1:

- Given R = {A, B, C, D, E, F, G}, F = {A \rightarrow B; ABCD \rightarrow E; EF \rightarrow G; ACDF \rightarrow EG}
- A minimal cover of F is $G = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G\}$
- Find a minimal key: K = ACDF
- We have $R_1(AB)$, $R_2(ACDE)$, $R_3(EFG)$
- Since K is not a subset of R_i , we have a new relation R_4 (ACDF)
- In conclusion, we have a decomposition $D = \{R_1, R_2, R_3, R_4\}$

3.3. Some examples

• Example 2:

- Given R(student_id, name, birthday, advisor, department, semester, course, grade)
- F = { student_id → (name, birthday); advisor → department; (student_id, semester, course) → (grade, advisor, department)}
- We denote like this: student_id (A), name (B), birthday (C), advisor (D), department
 (E), semester (F), course (G), grade (H)
- F is rewritten as $\{A \rightarrow BC; D \rightarrow E; AFG \rightarrow HDE\}$
- A minimal cover of F is G = $\{A \rightarrow B; A \rightarrow C; D \rightarrow E; AFG \rightarrow DH\}$
- Find a minimal key: K = AFG
- We have $R_1(ABC)$, $R_2(DE)$, $R_3(AFGDH)$
- Since K is a subset of R_3 , we have a decomposition $D = \{R_1, R_2, R_3\}$ or $\{R_1(student_id, name, birthday), R_2(advisor, department), R_3(student_id, semester, course, advisor, grade)\}$

Remark

- Motivation of normalization
- Full & Partial Dependency
- Transitive dependency
- 1NF, 2 NF, 3 NF
- Properties of relational decompositions
- An algorithm decomposes a universal relation into 3NF

Quiz 1.

Quiz Number	1	Quiz Type	OX	Example Select		
4 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	Quiz Type				
Question	How many kinds of anomalies have we just studied?					
Example	A. 1 B. 2 C. 3 D. 4					
Answer						
Feedback	Insert anomalies, Update anomalies, Delete anomalies					

Quiz 2.

	Quiz Number	2	Quiz Type	OX	Example Select	
	Question	A relation	is under the f	orm of 3NF must s	satisfy:	
-	Example	A. A cell in a relation contains one and only one value B. All non-prime attributes fully depend on the primary key C. All non-prime attributes directly depend on the primary key D. 1, 2, 3 together				
	Answer					
	Feedback					

Summary

1. Introduction

- Normalization is the process of removing anomalies and redundanci es from DB
- Full & Partial Dependency
- Transitive dependency

2. Normal Forms

• 1NF, 2NF, 3NF

3. Normalization

- Properties of relational decompositions
- An algorithm decomposes a universal relation into 3NF
- Some examples

Solution Congratulation!You've already completed the 9 of lesson of Database

Next lesson guide...

Storage - Indexing

reference

- Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3rd edition, Mc Graw Hill, 2003.
- Elmasri and Navathe, Fundamentals of Database Systems, 6th edition, Addis on-Wesley, 2011.