Cryptography

Symmetric cryptography

Reference scenario

- Alice needs to send a message to Bob
- The communication channel is insecure
 - Active attacks: modification
 - Passive attacks: eavesdropping
- Alice and Bob use a system to secure the communication
 - Cryptographic system

Problems

- Which system to choose?
 - Cryptographic algorithms, e.g., encryption/decryption
- What is the complexity and security?
- How to agree on the keys used?

How to ensure security of communication over insecure medium?

Cryptology

- Etymologically, the art of secret writing
- Cryptology = cryptography + cryptanalyse
 - Cryptography: secret writing
 - Study of mathematic techniques to enforce security properties
 - Confidentiality, integrity, authentication, non-repudiation
 - Converts data into unintelligible (random-looking) form
 - Must be reversible (can recover original data)
 - Cryptanalyse: the art of revealing secret
 - How to break a cryptographic system
- If cryptography is combined with compression:
 - What to do first?

Cryptography vs. Steganography

- Steganography concerns existence
 - covered writing
 - hide existence of a message

Apparently neutral's protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on bypoducts, ejecting suets and vegetable oils.

Pershing sails from NY June I

- Cryptography concerns content
 - hidden writing
 - hide meaning of a message

Cryptographic system

- Plaintext: original message
- Ciphertext: coded message
- Cipher: algorithm transforming plaintext to ciphertext
- Key: info used in cipher known only to sender/receiver
- Encipher/encrypt: plaintext -> ciphertext
- Decipher/decrypt: ciphertext -> plaintext

Cryptanalysis

- Objective: reveal the plaintext without knowing keys
- Difficulty depends on
 - Security of the encryption/decryption algorithms
 - Information disposed by the attacker

4 attack models

- Ciphertext only
- Known plaintext
- Chosen plaintext
- Chosen ciphertext
- Chosen text

Attack models

- Ciphertext only
 - Attacker knows only ciphertext
 - Attacker intercepts some ciphertext
 - Breaking the system by analyzing intercepted ciphertext
 - Any algorithm vulnerable to this attack is completely insecure
- Known plaintext
 - Attacker has some plaintext and their ciphertext
- Chosen plaintext
 - Attacker can choose arbitrary plaintext to be encrypted and obtain the corresponding ciphertext
 - Standard security level: resistence to chosen plaintext attack
- Chosen ciphertext
 - Attacker can choose arbitrary ciphertext to be encrypted and obtain the corresponding plaintext
- Chosen text: chosen plaintext + chosen ciphertext

Perfect vs. Computational Security

- Perfectly secure cipher
 - No matter how computer power is powerful, it cannot break the cipher
 - Ciphertext does not reveal any information about plaintext
 - Resilience against ciphertext only attack

And

- Plaintext does not reveal any information about ciphertext
 - Resilience against known/chosen plaintext attack
- Computationally secure cipher
 - The cost of breaking the cipher > the value of the encrypted info

And/or

- The time required to break the cipher > the useful lifetime of the info
- Ad hoc security (heuristic security)

Secret Keys vs. Secret Algorithms

- Keep algorithms secret
 - Secret algorithms -> better security
 - Hard to keep secret if used widely
 - Every NATO and Warsaw Pact algorithm during Cold War
 - All digital cellular encryption
 - HD DVD, Blu-Ray

Publish algorithms

- Security depends on the secrecy of the keys
- Public examination helps to find flaws

- A cryptographic system should be secure even if everything about the system, **except the key**, is public knowledge.
- Reformulated by Claude Shannon as the enemy knows the system
 - Shannon's maxim

Kerckhoffs

- Auguste Kerckhoffs (1835-1903): Dutch-French cryptographer
 - Jean-Guillaume-Hubert-Victor-François-Alexandre-Auguste Kerckhoffs von Nieuwenhof
 - Dutch linguist of French nationality, got his Ph.D. in Germany, worked as professor in HEC Paris
- Major contribution: a practical, experience-based approach, including six design principles for military ciphers
 - The system must be practically, if not mathematically, indecipherable.
 - It must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.
 - Its key must be communicable and retainable without the help of written notes, and changeable or modifiable at the will of the correspondents.
 - It must be applicable to telegraphic correspondence.
 - Apparatus and documents must be portable, and its usage and function must not require the concourse of several people.
 - It is necessary, given the circumstances that command its application, that the system be easy to use, requiring neither mental strain nor the knowledge of a long series of rules to observe.

History of cryptographic systems

- First generation: classic ciphers, paper & ink based
 - Substitution cipher
 - Mono-alphabetic
 - Caesar
 - Poly-alphabetic
 - Vigenere
 - Permutation cipher
- Second generation: use cryptographic engines
 - Mechanic and electro-mechanic
 - Enigma, Hagelin C38
- Third generation: modern cryptography
 - Based on advanced math/TCS
 - Information-theoretic security
 - Computational security

Caesar cipher

Substitution, mono-alphabetic cipher

Plaintext: THIS IS THE CAESAR CIPHER

Ciphertext: WKLV LV WKH FDHVDU FLSKHU

Key: k (=3)

Caesar has never changed the key!

- Test: find the plaintext of the ciphertext below
 - VHFXULWBDQGSULYDFB

Caesar cipher: formalism

- \blacksquare P=C=K=Z₂₆
- Encription: $e_k(x) = x+k \mod 26$
- Decryption: and $d_k(y) = y-k \mod 26$
- \bullet $x \in P, y \in C, k \in K$
- Dominates the art of secret writing in the first millennium A.D.
 - Julius Caesar ~60 BC
 - Phonetic substitution used in India even earlier
- Thought to be unbreakable

Generalized Caesar cipher

- Substitution, mono-alphabetic cipher
 - Randomly map one letter in plaintext to ciphertext

- # combination
 - $-26! = 2^{88}$
- Key length: 88 bits
 - Need to specify which permutation

Generalized Caesar cipher: attack

- Vulnerable to known plaintext attack
- Ciphertext only
 - Attacker disposes ciphertext
- Technique: frequency analysis

UXGPOGZCFJZJTFADADAJEJNDZMZHBBGZGGKQGVVGXCDIWGX

Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	٧	W	X	Y	Z
3	2	2	4	1	2	8	1	1	4	1	0	1	1	1	1	1	0	0	1	1	2	1	3	0	5

A ≈ 8.2%	H ≈ 6.1%	O ≈ 7.5%	V ≈ 1.0%
B ≈ 1.5%	I ≈ 7.0%	P ≈ 1.9%	W ≈ 2.4%
C ≈ 2.8%	J ≈ 0.2%	$Q\approx 0.1\%$	$X \approx 0.2\%$
D ≈ 4.3%	K ≈ 0.8%	R ≈ 6.0%	Y ≈ 2.0%
E ≈ 12.7%	L ≈ 4.0%	S ≈ 6.3%	$Z \approx 0.1\%$
F ≈ 2.2%	M ≈ 2.4%	T ≈ 9.1%	
G ≈ 2.0%	N ≈ 6.7%	U ≈ 2.8%	

FREQUENCY
ANALYSIS IS
AMAZING NOW
WE NEED
BETTER CIPHER

Frequency analysis

- Earliest known in a book by the ninth-century scientist al-Kindi
- Rediscovered or introduced in Europe during Renaissance
- Frequency analysis made substitution cipher insecure
- Improvements
 - Using numbers as ciphertext alphabet, some representing nothing are inserted randomly
 - Deliberately misspell words
 - Thys haz thi ifekkt off diztaughting thi ballans off frikwenseas
 - Homophonic substitution cipher
 - Each letter replaced by a variety of substitutes
- Make frequency analysis more difficult, but not impossible
 - Mono-alphabetic cipher is still vulnerable to frequency analysis

From mono- to poly-alphabetic cipher

- Weaknesses of mono-alphabetic cipher
 - Each ciphertext letter corresponds to only one plaintext letter
 - Frequency attack easy to mount
- Idea for a stronger cipher
 - Use more than one cipher alphabet, and switch between them when encrypting different letters
 - 1460's by Alberti: The Alberti Cipher disk
 - Plaintext on inner, ciphertext on outer
 - Rotated to a new position periodically

Leon Battista Alberti

- 1404-1472, Italian Renaissance humanist author, artist, architect, poet, priest, linguist, philosopher and *cryptographer*
 - **■** The Renaissance man

Vigenere Cipher

- Substitution, poly-alphabetic cipher
 - Use multiple mono-alphabetic substitution rules
- Example: $key = (3 \ 1 \ 5)$
 - Replace first letter in plaintext by letter+3, second by 1, third letter by 5
 - Repeat the above cycle

Blaise de Vigenère

■ 1523-1596, French diplomat, cryptographer, translator and alchemist

Vigenere Cipher: formalism

- Encryption:
 - $e_k(p_1, ..., p_m) = (p_1 + k_1, ..., p_m + k_m) \pmod{26}$
- Decryption:
 - $d_k(c_1, \dots c_m) = (c_1-k_1, \dots c_m-k_m) \pmod{26}$
- Can be regarded as mutiple Caesar ciphers
 - But masks frequency
 - Frenquency analysis more difficult, but still possible

Vigenere Cipher: cryptanalysis

- Find the length of the key m
- Divide ciphertext into m Caesar ciphertexts
- Method 1: exaustive search
- Method 2: Kasiski test
 - First described in 1863 by Friedrich Kasiski
 - Key:

KINGKINGKINGKINGKING

Plaintext:

thesunandthemaninthemoon

Ciphertext:

DPRYEVNTN**BUK** WIAOX**BUK** W W B T

Frequency analysis made substitution cipher insecure

Permutation cipher

- 1D permutation
 - Permute each 5-letter block in plaintext according <+1,+3,-2,0,-2>

- 2D permutation
 - Arrange plaintext in n*m blocks
 - Permute columns in a block according to key

Permutation example: Scytale

- First mentioned by a poet in Greece, 7th century BC
 - Key: diameter of Scytale

2G: (electro-)mechanic cipher

Enigma

- Widely used in Germany during WWII
 - Rotor machine: enhanced Vigenère cipher
- Rotor machine:
 - Multiple rotating cylinders (rotors)
 - Each rotor implements a substitution cipher
 - Output of each rotor is fed into the next rotor

Single cylinder

- After a letter typed, rotates one position
 - Polyalphabetic substitution cipher with period 26

Multiple cylinders

- Output of cylinder i
 - -> input of cylinder i+1
 - Cylinder i+1 advances 1 position after a period of cylinder i
- Period of 3-cylinder rotor
 - $26^3 = 17576$
- Enigma
 - Input permuted before entering rotor
 - Output of last rotor reflected back
 - Make encryption symmetric
 - Initial rotor setting is secret
 - Depends on data
 - Broken by group at Bletchley Park
 - Alan Turing: Bombe, Colossus

Third generation: modern ciphers

- Based on advanced math/TCS
- Symmetric (secret) key cryptography
 - Single key for both encryption and decryption
- Asymmetric (public) key cryptography
 - A pair of keys: (public, private)
 - One for encryption, the other for decryption
- Hash Algorithm

Symmetric key crypto-systems

- A single key: secret key
- Technique: multiple applications of interleaved substitutions and permutations

plaintext
$$\longrightarrow$$
 S \longrightarrow P \longrightarrow S \longrightarrow ciphertext

- ②: fast encryption and decryption
- ⊗: key exchange
- Usage : confidentiality service

Stream vs. block ciphers

- Stream cipher
 - Encrypt plaintext message one symbol (e.g., 1 bit) at a time
- Block cipher
 - Divide plaintext into blocks (e.g., 64 bits), treats block as a unit to process

One-time-pad: stream cipher

- Created by Gilbert Vernam 1917
 - 1890-1960: US engineer, inventor of XOR
- M, C, K: same length
 - Encryption: $C = M \oplus K$
 - Decryption: $M' = C \oplus K = M \oplus K \oplus K = M$
 - Extended Vigenere cipher

- K is perfectly random
- K is used only once:
 - if K is reused?

■ ⊗ generation and transportation of K

а	b	a ⊕ b
0	0	0
0	1	1
1	0	1
1	1	0

One-time-pad

Teletypewriter used in US/Soviet Union hotline kept at US
 National Cryptological Museum

Names connected with OTP

- Co-inventors of OTP
 - Joseph Mauborgne (1881-1971) became a Major General in US Army
 - Gilbert Sandford Vernam (1890 -1960) was AT&T Bell Labs engineer

Security of OTP

 Claude Elwood Shannon (1916 -2001), American mathematician and electronic engineer, father of information theory

One-time-pad: test

- Alice wants to send a message M to Bob
- Difficult to agree/exchange the secret key K
- They think of the protocole below
 - Alice picks a random number K_1 and sends $S_1 = M \oplus K_1$ to Bob
 - Bob picks a random number K_2 and sends $S_2 = S_1 \oplus K_2$ to Alice
 - Alice sends $S_3 = S_2 \oplus K_1$ to Bob
 - Bob obtains $M : M = S_3 \oplus K_2$
- Is it secure? If not, give an attack

One-time-pad: random numbers

- Keys need to be random
- Random number generation is challenging
 - External randomness: noise
 - Pseudo-random generators

John vonNeumann

• Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

OTP: proof of security (secrecy)

- OTP is the only secure protocol proved so far
- What is security (secrecy), formally?
 - Intuition: attacker cannot obtain any information about M
 - Perfect secrecy
- A system is perfectly secret if for any m, c
 - Pr(M=m) = Pr(M=m|C=c)
- OTP is perfectly secret
 - $Pr(C=c|M=m) = Pr(K=m \oplus c|M=m) = 1/2^{1}$
 - Pr(C=c|M=m)*Pr(M=m) = Pr(M=m|C=c)*Pr(C=c)

DES: Data Encryption Standard

- Developed by IBM influenced by National Security Agency
- Standardized in 1977
- Block size: 64 bits
- Key size: 56 bits
- One of the most popular block cipher
- The best studied symmetric algorithm
- Nowadays considered insecure due to key length
 - But: 3DES yields very secure cipher, still widely used today
- Replaced by the Advanced Encryption Standard (AES) in 2000

Design criteria

- High level of security
- Security must reside in key, not algorithm
- Not patented
- Efficient to implement in hardware
- Slow to execute in software

Design rationale Confusion & Diffusion

Claude Shannon:

 There are two primitives with which strong encryption algorithms can be built: Confusion and Diffusion

Confusion

- Make relationship between (plaintext, key) and ciphertext output as complex (non-linear) as possible
- Acheived by substitution

Diffusion:

- Spread influence of each input bit across many output bits
- Acheived by permutation
- Confusion or diffusion along is not enough
 - Concatenate confusion and diffusion
 - Product ciphers

Product ciphers

- Most of today's block ciphers are product ciphers
 - Consist of rounds
 - Changing 1 bit in plaintext results on average changing half of bits in ciphertext

DES algorithm overview

derived from main key

44

Initial and Final Permutation

- Bitwise Permutations.
- Inverse operations.
- Described by tables IP and IP-1
- No security value: hardware consideration

Initial Permutation

			II)			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Final Permutation

	II	5 –1			
40 8 48	16	56	24	64	32
39 7 47	15	55	23	63	31
38 6 46					
37 5 45	13	53	21	61	29
36 4 44	12	52	20	60	28
35 3 43	11	51	19	59	27
34 2 42	10	50	18	58	26
33 1 41	9	49	17	57	25

Feistel Network

- An important template for block ciphers
- Can be used for both encryption and decryption

$$R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$$

Feistel Network

L and R swapped again at the end of the cipher

The Scrambling function f

Key component of DES

- 4 Steps:
 - Expansion E
 - XOR with round key
 - S-box substitution
 - Permutation P

The Expansion Function E

Main purpose: increases diffusion

	E									
32	1	2	3	4	5					
4	5	6	7	8	9					
8	9	10	11	12	13					
12	13	14	15	16	17					
		18								
20	21	22	23	24	25					
		26								
28	29	30	31	32	1					

XOR with Round Key

The S-Box

- 8 substitution tables.
- 6 bits of input, 4 bits of output.
- Non-linear and resistant to differential cryptanalysis
- Crucial element for DES security!
 - The only non-linear part of DES

S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
0	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

The permutation P

- Bitwise permutation
- Introduces diffusion
- Output of 1 S-Box affect several S-Boxes in next round
- Diffusion by E, S-Boxes and P guarantees that
 - after Round 5 every bit is a function of each key bit and plaintext bit.

P								
16	7	20	21	29	12	28	17	
16 1	15	23	26	5	18	31	10	
2	8	24	14	32	27	3	9	
19	13	30	6	22	11	4	25	

Sub-key generation

- 16 round keys (subkeys) k_i
 - 48 bits each
 - derived from original 56-bit key
- Input key size of the DES is 64 bit
 - 56 bit key + 8 bit parity

Parity bits removed in permutation PC-1

		PC	- 1			
57 49	9 41	33	25	17	9	1
58 50) 42	34	26	18	10	2
59 51	1 43	35	27	19	11	3
60 52	2 44	36	63	55	47	39
31 23	3 15	7	62	54	46	38
30 22						
29 21	1 13	5	28	20	12	4

Sub-key generation

- Split key into 28-bit C₀ and D₀
- Rounds i=1, 2, 9, 16,
 - C_i and D_i rotated left by 1 bit
- Other rounds
 - rotated left by 2 bits
 - all together 28 bits
 - $C_{16} = C_0$ and $D_{16} = D_0$
- Round key K_i
 - permuted subset of C_i and D_i

	PC-2								
14	17	11	24	1	5	3	28		
15	6	21	10	23	19	12	4		
26	8	16	7	27	20	13	2		
41	52	31	37	47	55	30	40		
51	45	33	48	44	49	39	56		
26 41 51 34	53	46	42	50	36	29	32		

Decryption

- Feistel ciphers
 - only keyschedule is modified for decryption
- Generate same round keys in reverse order

Implementation

- Operations
 - Permutation
 - Swapping
 - Substitution (S-box, table lookup)
 - Bit discard
 - Bit replication
 - Circular shift
 - XOR
- Hard to implement?
 - Hardware: easy
 - Software: hard

Avalanche Effect

- DES has a strong avalanche effect
 - Small change in plaintext/key leads to big change in ciphertext

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

DES attacks

- 2 criticisms
 - Key space too small: 56 bits
 - S-box design criteria kept secret
 - Are there any hidden attack/backdoor, only known to NSA?
- So far there is no known analytical attack in realistic scenarios
- 1998: DeepCrack: 50h, 250k\$
- 2006: COPACOBANA (Cost-Optimized Parallel COde Breaker): 6.4 days, 10k\$

DeepCrack, 1998 \$250,000 COPACOBANA, 2006 \$10,000

2 DES

$$P \longrightarrow \boxed{E_{K1}} \longrightarrow \boxed{E_{K2}} \longrightarrow \boxed{C}$$

- Key length: $56 \times 2 = 112$ bits
- Does 2DES "double" security? No!
- Meet-in-the-Middle Attack: suppose attacker disposes (P, C)
 - Encrypt P with all 2⁵⁶ possible keys for K1
 - Decrypt C with all 2⁵⁶ possible keys for K2
 - Until E_{K1} , $(P) = D_{K2}$, (C)
 - Complexity: $O(2^{56})$
- Mathematically, DES is not a group
 - Ceasar cipher is a group

3 DES

- 3 DES is used in practice
 - Effective key length 112 bits
 - Adequate for now
 - Reconsider MITM attack
- If $k_1 = k_2$, then becomes DES
 - Backward compatible
- If $k_1 = k_3$, then becomes 3 DES with 2 keys

The "key" problems: weak keys

- Below are keys which, after the first key permutation, are:
 - 28 0's followed by 28 0's
 - 28 1's followed by 28 1's
 - 28 0's followed by 28 1's
 - 28 1's followed by 28 0's
- Why they are weak
 - Easy clue for brute force attacks.
 - Sixteen identical subkeys.
 - Encrypting twice produces the original plaintext
- Weak keys
 - Alternating ones + zeros: 0x0101010101010101
 - Alternating 'F' + 'E': 0xFEFEFEFEFEFEFEFE
 - 0xE0E0E0E0F1F1F1F1
 - 0x1F1F1F1F0E0E0E0E

Semi-weak keys

- Below are keys which, after the first key permutation, are:
 - 1. 28 0's followed by alternating 0's and 1's
 - 2. 28 0's followed by alternating 1's and 0's
 - •
 - 12. Alternating 1's and 0's followed by alternating 1's and 0's
- Why they are weak
 - For a semi-weak key pair (K_1, K_2) , $K_1(K_2(m)) = m$
- Semi-weak keys
 - 0x011F011F010E010E and 0x1F011F010E010E01
 - 0x01E001E001F101F1 and 0xE001E001F101F101
 - 0x01FE01FE01FE01FE and 0xFE01FE01FE01
 - 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
 - 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
 - 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1

Test

• How to distinguish a 2-round Feistel system with a random number generator?

- Prove $DES_k(m) = \overline{DES_{\overline{k}}(\overline{m})}$
- Break a 1-round Feistel system, 2-round, 3-round.

Break 1-round Feistel system

Break 1-round Feistel system

Break 2-round Feistel system

Break 3-round Feistel system

Perform two attacks for L_0R_0 and $L_0^*R_0^*$ with $R_0=R_0^*$. Then, the outputs have the relation

$$R_3 \oplus R_3^* = L_0 \oplus L_0^* \oplus f(L_3, k_3) \oplus f(L_3^*, k_3)$$

We have $L_3 \oplus L_3^*$ and $f(L_3, k_3) \oplus f(L_3^*, k_3)$

Break 3-round Feistel system

Advanced Encryption Standard (AES)

- Objective: replace DES
 - DES key size and block size too small
 - Can use Triple-DES, but slow
- US NIST issued call for ciphers in 1997
 - 15 candidates accepted in 1998
 - 5 shortlisted in 1999
 - Rijndael selected in 2000
 - Standard in 2001

AES Requirements

- Symmetric key block cipher
- Block size: 128 bits
- Key length: 128/192/256 bits
- Stronger & faster than 3 DES
- Active life of 20-30 years
- Provide full specification & design details
- Both C & Java implementations
- NIST have released all submissions & unclassified analyses

AES Evaluation Criteria

• Initial criteria:

- Security: randomness, soundness, effort for practical cryptanalysis
- Cost: computational efficiency, no licensing fee, small memory
- Algorithm & implementation: flexibility, implementable in both software and hardware, simplicity

Final criteria

- General security: NIST relies on cryptanalysis by cryptologues
- Ease of software & hardware implementation
- Flexibility: encryption, decryption, keying
- Implementation attacks
 - Timing attacks: an algorithm takes different time on different inputs
 - Power analysis: power consumed depends on instructions
 - multiplication > addition, writing 1 > 0

Shortlisted algorithms

- MARS (IBM) complex, fast, high security margin
- RC6 (USA) very simple, very fast, low security margin
- Rijndael (Belgium) clean, fast, good security margin
- Serpent (Euro) slow, clean, very high security margin
- Twofish (USA) complex, very fast, high security margin
- Contrast between algorithms with
 - Few complex rounds vs. many simple rounds
 - Refined existing ciphers vs. new proposals

The winner: Rijndael

- Designed by Rijmen-Daemen in Belgium
- An iterative rather than Feistel Cipher
 - Processes data as block of 4 columns of 4 bytes
- Designed to be:
 - Resistant against known attacks
 - Speed and code compactness on many CPUs
 - Design simplicity
- Some similarities to DES
 - rounds, round keys, alternate permutation+substitution
 - but not a Feistel cipher
- Block size 128 bits
- Key sizes 128, 192, or 256

AES structure

- Best attacks work on 7-9 rounds
- For brute force attack, AES-128 needs much more effort than DES

Twofish: AES third place

Addition modulo-32

- Feistel
- S-boxes depend on key
- Slower than AES

Serpent: AES second place

- Constructed for security
 - not speed
- Feistel system, 32 rounds
- Four-bit S-boxes
 - $\bullet A_i = S(K_i \oplus P_i)$
- Adapted for parallel calculation
- Same speed as DES, 1/3 of AES

76