更多嵌入式 Linux 学习资料,请关注:一口 Linux 回复关键字:1024

一、CC2530的串口资源

在无线传感网络中, CC2530 需要将采集到的数据发送给上位机(即 PC)处理,同时上位机需要向 CC2530 发送控制信息。这一切都离不开两者之间的信息传递。

CC2530 包括 2 个串行通信接口 USARTO 与 USART1, 每个串口包括两个模式: UART(异步)模式、SPI(同步)模式,两个 USART 具有同样的功能,可以设置在单独的 I/O 引脚。

【本篇仅涉及 UART 模式】

二、CC2530 UART 驱动编写

1. 电路图

串口芯片是 ch340, 其中与软件编程密切相关的引脚是 TXD、RXD, 分别连接 CC2530 的 P02, P03。

从 SOC CC2530 侧来看: PO_2、 PO_3 配置为外设功能时: PO_2 为 RX, PO_3 为 TX.

2. UART 相关寄存器

对于每个 USART 外设,相关的寄存器 (x时 USART 的编号,0或1)

UxCSR: USARTx 控制状态寄存器

UxUCR: USARTx UART 控制寄存器

UxGCR: USARTx 通用控制寄存器

UxBUF: USARTx UART 接受/发送数据缓冲区

UxBAUD: USARTx 波特率控制寄存器

1) UOCSR (0x86) -USART 0 控制和状态

位	名称	复位	R/W	描述	
7	MODE	0	R/W	USART模式选择	
				0: SPI模式	
				1: UART模式	
6	RE	0	R/W	UART接收器使能。注意在UART完全配置之前不使能接收。	
				0: 禁用接收器	
				1: 接收器使能	
5	SLAVE	0	R/W	SPI主或者从模式选择	
				0: SPI主模式	
				1: SPI从模式	
4	FE	0	R/W0	UART帧错误状态	
				0: 无帧错误检测	
				1: 字节收到不正确停止位级别	
3	ERR	0	R/W0	UART奇偶错误状态	
				0: 无奇偶错误检测	
				1: 字节收到奇偶错误	
2	RX_BYTE	0	R/W0	接收字节状态。URAT模式和SPI从模式。当读U0DBUF该位	
				自动清除,通过写0清除它,这样有效丢弃U0DBUF中的数据。	
				0: 没有收到字节	
				1: 准备好接收字节	
1	TX_BYTE	0	R/W0	传送字节状态。URAT模式和SPI主模式	
				0 字节没有被传送	
				1 写到数据缓存寄存器的最后字节被传送	
0	ACTIVE	0	R	USART传送/接收主动状态、在SPI从模式下该位等于从模式	
				选择。	
				0: USART空闲	
				1: 在传送或者接收模式USART忙碌	\rfloor_{M}

MODE

设置为: 1 即 UART 模式

设置 RE 1: 接收器使能; 0: 禁用接收器

2) UOUCR (0xC4) - USART 0 UART 控制

位	名称	复位	R/W	描述
7	FLUSH	0	R0/W1	清除单元。当设置时,该事件将会立即停止当前操作并且返回单元的空闲状态。
6	FLOW	0	R/W	UART硬件流 使能。 用RTS和CTS引脚选择硬件流控制的使用。 0: 流控制禁止 流控制使能
5	D9	0	R/W	UART奇偶校验位。当使能奇偶校验,写入D9的值决定发送的第9位的值,如果收到的第9位不匹配收到字节的奇偶校验,接收时报告ERR。如果奇偶校验使能,那么该位设置以下奇偶校验级别。 0: 奇校验 1: 偶校验
4	BIT9	0	R/W	UART 9位数据使能。当该位是1时,使能奇偶校验位传输(即第9位)。如果通过 PARITY使能奇偶校验,第9位的内容是通过D9给出的。 0: 8位传送 1: 9位传送
3	PARITY	0	R/W	UART奇偶校验使能。除了为奇偶校验设置该位用于计算,必须使能9位模式。 0: 禁用奇偶校验 1: 奇偶校验使能
2	SPB	0	R/W	UART停止位的位数。选择要传送的停止位的位数 0: 1位停止位 1: 2位停止位
1	STOP	1	R/W	UART停止位的电平必须不同于开始位的电平 0: 停止位低电平 1: 停止位高电平
0	START	0	R/W	UART起始位电平。闲置线的极性采用选择的起始位级别的电平的相反的电平。 0: 起始位低电平 1: 起始位高电平

3) UOBUF (0xC1) - USART 0 接收/传送数据缓存

UART 收发时读写数据的缓冲区,当写入数据到该寄存器的时候,控制器会自动写入到内部并传送数据寄存器。

读取该寄存器时,数据同样来自控制器内部的数据寄存器。

位	名称	复位	R/W	描述
7:0	DATA[7:0]	0x00	R/W	USART接收和传送数据。当写这个寄存器的时候数据被写到内部,传送数据寄存器。当读取该寄存器的时候,数据来自内部读取的数据寄存器。

4) UOGCR (0xC5)、 UOBAUD (0xC2) - USART 0 波特率控制

位	名称	复位	R/W	描述
7	CPOL	0	R/W	SPI 的时钟极性 0: 负时钟极性 1: 正时钟极性
6	СРНА	0	R/W	SPI 时钟相位 0: 当 SCK 从 CPOL 倒置到 CPOL 时数据输出到 MOSI, 并且当 SCK 从 CPOL 倒置到 CPOL 时数据输入抽样到 MISO。 1: 当 SCK 从 CPOL 倒置到 CPOL 时数据输出到 MOSI, 并且当 SCK 从 CPOL 倒置到 CPOL 时数据输入抽样到 MISO。
5	ORDER	0	R/W	传送位顺序 0: LSB 先传送 1: MSB 先传送
4:0	BAUD_E[4:0]	0 0000	R/W	波特率指数值。BAUD_E 和 BAUD_M 决定了 UART 波特率 和 SPI 的主 SCK 时钟频率。

位	名称	复位	R/W	描述
7:0	BAUD_M[7:0]	0x00	R/W	波特率小数部分的值。BAUD_E和 BAUD_M决定了UART的波特率和SPI的主SCK时钟频率。

波特率计算

CC2530 的波特率有 BAUD_E 和 BAUD_M 共同决定:

Baud Rate =
$$\frac{(256 + BAUD_M) \times 2^{BAUD_E}}{2^{28}} \times f$$

选择外部 32MHz 晶振时,具体值可参阅下表:

表 16-1 32 MHz 系统时钟常用的波特率设置

波特率 (bps)	UxBAUD.BAUD_M	UxGCR.BAUD_E	误差(%)
2400	59	6	0.14
4800	59	7	0.14
9600	59	8	0.14
14400	216	8	0.03
19200	59	9	0.14
28800	216	9	0.03
38400	59	10	0.14
57600	216	10	0.03
76800	59	11	0.14
115200	216	11	0.03
230400	216	12	0.03

由计算公式可以计算出 32MHz 系统时钟频率,,波特率 115200 对应的参数值:

UxBAUD.BAUD_M: U0BAUD = 216

UxGCR.BAUD_E: U0GCR = 11

3. 其他寄存器

除了要配置 UART 相关的 5 个寄存器,要使能 UART 功能,还有其他功能寄存器 需要配置:

1) PERCFG (0xF1) - 外设控制

~~~~ 位	全	复位	R/W	描述
7	-	0	R0	没有使用
6	T1CFG	0	R/W	定时器1的I/O位置
				0: 备用位置 1
				1: 备用位置 2
5	T3CFG	0	R/W	定时器 3 的 I/O 位置
				0: 备用位置 1
				1: 备用位置 2
4	T4CFG	0	R/W	定时器 4 的 I/O 位置
				0: 备用位置 1
				1: 备用位置 2
3:2	-	00	R0	没有使用
1	U1CFG	0	R/W	USART 1的I/O位置
				0 备用位置1
				1 备用位置2
0	U0CFG	0	R/W	USART 0的I/O位置
				0: 备用位置1
				1: 备用位置2

两个 USART 接口具有相同的功能,通过 PERCFG 寄存器可以设置两个 USART 接口对应外部 I/O 引脚的映射关系:

我们选用 p0 端口位置 1, 所以设置 bit [0]为 0 即可。

2. POSEL (0xF3) - 端口 0 功能选择

位	名称	复位	R/W	描述
7: 0	SELP0_[7:0]	0x00	R/W	P0.7到 P0.0功能选择
				0: 通用I/O
				1: 外设功能

P0_2, P0_3 用作串口(外设功能) 设置 bit[2]、bit[3]为 1,即

POSEL = 0x0c;

3) P2DIR (0xFF) - 端口 2 方向和端口 0 外设优先级控制

位	名称	复位	R/W	描述
7:6	PRIP0[1:0]	00	R/W	端口0外设优先级控制。当PERCFG分配给一些外设到相同
7.0	TRITO[1.0]	00	IO W	引脚的时候,这些位将确定优先级。
				Mail 1997
				详细优先级列表:
			1	00:
				第1优先级: USART 0
				第2优先级: USART 1
				第3优先级: 定时器1
				01:
				第1优先级: USART I
				第2优先级: USART 0
				第3优先级: 定时器1
				10:
				第1优先级: 定时器1通道0-1
				第2优先级: USART 1
				第3优先级: USART 0
				第4优先级: 定时器1通道2-3
				11:
				第1优先级: 定时器1通道2-3
				第2优先级: USART 0
				第3优先级: USART 1
				第4优先级: 定时器1通道0-1
5	-	0	R0	不使用
4:0	DIRP2_[4:0]	0 0000	R/W	P2.4到P2.0的I/O方向
				0: 输入
				1: 输出

P0 优先作为 UARTO, 所以设置 bite [7:6] 为 00, 参考代码:

P2DIR &= ~0xC0;

4. CC2530 配置串口的一般步骤:

- 1、 配置 IO, 使用外部设备功能。此处配置 PO_2 和 PO_3 用作串口 UARTO
- 2、 配置相应串口的控制和状态寄存器。
- 3、 配置串口工作的波特率。

UART 相关寄存器具体配置如下:

PERCFG = 0x00; //位置 1 P0 口
POSEL = 0x0c; //P0_2,P0_3 用作串口 (外部设备功能)
P2DIR &= ~0XC0; //P0 优先作为UARTO

U0CSR |= 0x80; //设置为UART 方式
U0GCR |= 11;
U0BAUD |= 216; //波特率设为115200 根据上面表中获得的
UTX0IF = 0; //UARTO TX 中断标志初始置位 0

时钟配置如下:

```
      CLKCONCMD &= ~0x40;
      // 设置系统时钟源为 32MHZ 晶振

      while(CLKCONSTA & 0x40);
      //等待晶振稳定为 32M

      CLKCONCMD &= ~0x47;
      //TICHSPD128 分频, CLKSPD 不分期
```

1. USART 发送

UxBUF 寄存器是双缓冲的。

发送数据写入到 UODBUF 后,控制器就自动将数据写入到内部,并传输数据寄存器,同时置 UTXOIF 为 1,

如果传输完毕,UTXOIF 会被置 0,

所以每次写入数据到 UODBUF 后就循环监测 UTXOIF 是否为 0;

UTXOIF 定义在寄存器 IRCON2 (0xE8) 中。

1 UTX0IF 0 R/W USART 0 TX中断标志 0: 无中断未决	1					A 1 MY 17 17 17 17 17 17 17 17 17 17 17 17 17
	1	1	UTX0IF	0	R/W	0: 无中断未决

参考发送代码:

2. USART 接收

当 USART 检测出有效起始位时,收到的字节就传入到接收寄存器。

每当 USART 收到 1 个数据后,就会产生一个中断,所以必须在中断函数中清除中断标志 URXOIF,同时读走缓冲区 UODBUF 中数据。

URXOI 定义在寄存器 TCON (0x88):

	1		1	the state of the s
3	URX0IF	0	R/WH0	USART 0 RX中断标志。当USART0中断发生时设为1且CPU指向中断向量例程时
				清除。
				0: 无中断未决
				1: 中断未决

清中断并读走代码:

5. 代码实现

下面代码主要功能: 通过串口向 CC2530 发送字符串,并以#结尾,然后 CC2530 会将该字符串再回传给 pc。

核心代码如下:

```
#define UARTO_RX 1
#define UARTO_TX 2
#define SIZE 51

char RxBuf;
char UartState;
uchar count;
char RxData[SIZE]; //存储发送字符单
void InitUart(void)

{

PERCFG = 0x00; //外设控制寄存器 USART 0 的 IO 位置:0 为 PO 口位置 1

POSEL = 0x0c; //PO_2,PO_3 用作串口 (外设功能)

P2DIR &= ~0xCO; //PO 优先作为 UARTO
```

```
U0CSR |= 0x80; // 设置为 UART 方式
   U0GCR |= 11;
 U0BAUD |= 216;
   U0CSR |= 0x40;
 IEN0 = 0x84;
void UartSendString(char *Data, int len)
uint i;
 for(i=0; i<len; i++)
  U0DBUF = *Data++;
   while(UTX0IF == 0);
  UTX0IF = 0;
#pragma vector = URX0_VECTOR
__interrupt void UART0_ISR(void)
{
URX0IF = 0;
RxBuf = U0DBUF;
}
void main(void)
 CLKCONCMD &= ~0x40;
 while(CLKCONSTA & 0x40);
 CLKCONCMD &= ~0x47;
 InitUart();
 UartState = UART0_RX;
 memset(RxData, 0, SIZE);
 while(1)
      if(UartState == UARTO_RX) //接收状态
     if(RxBuf != ∅)
            if((RxBuf!= '#')&&(count < 50))//以'#'为结束符,一次最多接收50个
           RxData[count++] = RxBuf;
```

实验步骤: 烧入代码后, usb 线插入到 cc2530 的 mini USB, windows 会是被该串口, 笔者为 COM3 实际操作结果如下:

