Họ tên HS:Số báo danh

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc 330° sang radian ta được kết quả bằng

A.
$$\frac{17\pi}{9}$$
.

B.
$$\frac{31\pi}{18}$$
.

C.
$$\frac{11\pi}{6}$$
.

D.
$$2\pi$$
 .

Áp dụng công thức chuyển đổi: $330^\circ = \frac{330.\pi}{180} = \frac{\text{Lời giải}}{6}$. Chọn đáp án CChọn đáp án C.

Câu 2. Tính $\sin \frac{103\pi}{2}$.

A.
$$\frac{\sqrt{3}}{3}$$
.

B.
$$\sqrt{3}$$
.

C.
$$\frac{\sqrt{3}}{2}$$
. Lời giải.

D.
$$\frac{1}{2}$$
.

Chọn đáp án C.

Câu 3. Cho α là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$
.

B.
$$\cos(-\alpha) = \sin \alpha$$
.

$$\mathbf{C.} \, \sin(\pi - \alpha) = -\sin\alpha \, .$$

D.
$$\cot\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$
.

Lời giải.

 $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ là khẳng định đúng. Chon đáp án A.

Câu 4. Cho γ là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\tan 2\gamma = \frac{\tan \gamma}{1 - 2 \tan^2 \gamma}$$
.

B.
$$\sin 2\gamma = 2 \sin \gamma$$
.

$$\mathbf{C.} \cos 2\gamma = 2\cos^2 \gamma - 1.$$

$$\mathbf{D.} \cos 2\gamma = 2\sin^2 \gamma - 1.$$

Lời giải.

 $\cos 2\gamma = 2\cos^2 \gamma - 1$ là khẳng định đúng.

Chọn đáp án C.

Câu 5. Cho α, β là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$
.

B. $\cos \alpha \cos \beta = -\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$.

C. $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$.

D. $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha + \beta)]$.

C.
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

D.
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$
.

 $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$ là khẳng định đúng. Chọn đáp án D.

Câu 6. Cho $\sin \alpha = \frac{9}{10}$ với $\alpha \in \left(2\pi; \frac{5\pi}{2}\right)$. Tính $\sin \left(\alpha - \frac{5\pi}{6}\right)$.

A.
$$-\frac{9\sqrt{3}}{20} - \frac{\sqrt{19}}{20}$$

B.
$$\frac{\sqrt{19}}{10} + \frac{9}{10}$$

A.
$$-\frac{9\sqrt{3}}{20} - \frac{\sqrt{19}}{20}$$
. **B.** $\frac{\sqrt{19}}{10} + \frac{9}{10}$. **C.** $-\frac{9}{20} - \frac{\sqrt{57}}{20}$. **D.** $-\frac{9\sqrt{3}}{20} + \frac{\sqrt{19}}{20}$.

D.
$$-\frac{9\sqrt{3}}{20} + \frac{\sqrt{19}}{20}$$

$$\begin{aligned} &\text{Vì } \alpha \in \left(2\pi; \frac{5\pi}{2}\right) \text{nên } \cos \alpha > 0. \\ &\cos \alpha = \sqrt{1 - \frac{81}{100}} = \frac{\sqrt{19}}{10}. \\ &\sin \left(\alpha - \frac{5\pi}{6}\right) = \sin \alpha \cos(-\frac{5\pi}{6}) + \cos \alpha \sin(-\frac{5\pi}{6}) = \frac{9}{10}.(-\frac{\sqrt{3}}{2}) + \frac{\sqrt{19}}{10}.(-\frac{1}{2}) = -\frac{9\sqrt{3}}{20} - \frac{\sqrt{19}}{20}. \end{aligned}$$
 Chon đáp án A.

Câu 7. Tìm tập xác định của hàm số $y = \tan(8x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{ \frac{11}{16}\pi + k\frac{1}{8}\pi \}$$
.
B. $D = \mathbb{R} \setminus \{ \frac{11}{8}\pi + k\frac{1}{8}\pi \}$.
C. $D = \mathbb{R} \setminus \{ \frac{3}{8}\pi + k\frac{1}{8}\pi \}$.
D. $D = \mathbb{R} \setminus \{ \frac{3}{4}\pi + k\frac{1}{8}\pi \}$.
Lòi giải.

Chọn đáp án A.

Câu 8. Nghiệm của phương trình
$$\cos\left(4x + \frac{\pi}{3}\right) = \sin\left(-2x - \frac{\pi}{4}\right)$$
 là

A. $x = \frac{17\pi}{72} + k2\pi, x = -\frac{5\pi}{24} + k2\pi(k \in \mathbb{Z})$.

B. $x = \frac{5\pi}{24} + k\pi, x = -\frac{13\pi}{72} + k\frac{\pi}{3}(k \in \mathbb{Z})$.

C. $x = \frac{17\pi}{72} + k\pi, x = -\frac{5\pi}{24} + k\frac{\pi}{3}(k \in \mathbb{Z})$.

Lời giải.

 $\cos\left(4x + \frac{\pi}{3}\right) = \sin\left(-2x - \frac{\pi}{4}\right) \Leftrightarrow \cos\left(4x + \frac{\pi}{3}\right) = \cos\left(2x + \frac{3\pi}{4}\right)$

$$\Leftrightarrow \begin{bmatrix} 4x + \frac{\pi}{3} = 2x + \frac{3\pi}{4} + k2\pi \\ 4x + \frac{\pi}{3} = -2x - \frac{3\pi}{4} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2x = \frac{5\pi}{12} + k2\pi \\ 6x = -\frac{13\pi}{12} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{12} + k\pi \\ x = -\frac{13\pi}{12} + k\pi \end{bmatrix}, k \in \mathbb{Z}$$

Chon đáp án B.

PHẨN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho $\sin x = \frac{\sqrt{7}}{9}, x \in (\frac{\pi}{2}; \pi)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = \frac{\sqrt{74}}{9}$.		X
$\mathbf{b)} \sin 2\gamma = -\frac{\sqrt{518}}{81} \ .$		X
$\mathbf{c)} \cos 2\gamma = -\frac{67}{81}.$		X
d) $\sin\left(\gamma + \frac{3\pi}{4}\right) = -\frac{\sqrt{37}}{9} - \frac{\sqrt{14}}{18}$.	X	

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Vì
$$x \in \left(\frac{\pi}{2}; \pi\right)$$
 nên $\cos x < 0$.

$$\cos x = -\sqrt{1 - \frac{7}{81}} = -\frac{\sqrt{74}}{9}.$$

b) Khẳng định đã cho là khẳng định sai.

$$\sin 2\gamma = 2\sin \gamma \cos \gamma = 2.\frac{\sqrt{7}}{9}.(-\frac{\sqrt{74}}{9}) = -\frac{2\sqrt{518}}{81}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2\gamma = 1 - 2\sin^2 \gamma = 1 - 2.\frac{7}{81} = \frac{67}{81}$$

d) Khẳng đinh đã cho là khẳng đinh đúng.

$$\sin\left(\gamma + \frac{3\pi}{4}\right) = \sin\gamma\cos(\frac{3\pi}{4}) + \cos\gamma\sin(\frac{3\pi}{4}) = \frac{\sqrt{7}}{9}.(-\frac{\sqrt{2}}{2}) + (-\frac{\sqrt{74}}{9}).(\frac{\sqrt{2}}{2}) = -\frac{\sqrt{37}}{9} - \frac{\sqrt{14}}{18}.$$

Chọn đáp án a sai | b sai | c sai | d đúng.

Câu 2. Cho hàm số $y = 6\cos(8x) - 2$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D=\mathbb{R}$.	X	
b) Hàm số đã cho là hàm số lẻ.		X
c) Tập giá trị của hàm số đã cho là $T = [-8; -8]$.	X	
d) Đồ thị cắt trục tung tại điểm có tung độ bằng 4.	X	

Lời giải.

a) Khẳng đinh đã cho là khẳng đinh đúng.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng định đã cho là khẳng định sai.

Ta có: Với moi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

 $f(-x) = 6\cos(8x) - 2 = 6\cos(8x) - 2$. Vây hàm số $y = 6\cos(8x) - 2$ là hàm số chẵn.

c) Khẳng định đã cho là khẳng định đúng.

Ta có: $-8 \le 6 \cos(8x) - 2 \le -8$ nên tập giá trị là [-8; -8]

d) Khẳng đinh đã cho là khẳng đinh đúng.

Cho $x = 0 \Rightarrow y = 4$. Suy ra đồ thị cắt trục tung tại điểm có tung độ bằng 4.

Chọn đáp án a đúng | b sai | c đúng | d đúng.

PHẨN III. Câu trắc nghiệm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 56 cm và quay được 7 vòng trong 3 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 4 giây (kết quả làm tròn đến hàng phần mười).

Một giây bánh xe quay được số vòng là: $\frac{7}{3}$. Một vòng quay ứng với quãng đường là $2\pi.0, 6 = 1, 2\pi$.

Sau 4 giây quãng đường đi được là: $\frac{7}{3}$.4.1, $2\pi = 35$, 2:

Câu 2. Số nghiệm thuộc đoạn $[-5\pi; 5\pi]$ của phương trình tan $(2x + \frac{\pi}{2}) = \sqrt{3}$ là

$$\tan\left(2x + \frac{\pi}{2}\right) = \sqrt{3} \Leftrightarrow 2x + \frac{\pi}{2} = \frac{\pi}{3} + k\pi \Leftrightarrow x = -\frac{\pi}{12} + k\frac{\pi}{2}, k \in \mathbb{Z}.$$

Do
$$x \in [-5\pi; 5\pi]$$
 nên $-5\pi \le -\frac{\pi}{12} + k\frac{\pi}{2} \le 5\pi \Rightarrow -\frac{59}{6} \le k \le \frac{61}{6}$.

Có 20 số k thỏa mãn nên phương trình có 20 nghiệm