IV. 빅데이터 결과 해석

01. 분석 모형 평가 및 개선

1.1 분석 모형 평가

-	KeyWord
평가지표	회귀 모형 평가지표, SSE, SST, SSR, R²=결정계수, R²adj, Mallow's Cp, 분류 모형 평가지표, 혼 동 행렬, ROC 곡선, AUC, 이익도표
분석 모형 진단	홀드 아웃 교차 검증, 다중 교차 검증, 정확도, 오차비율, 민감도, 특이도, 거짓긍정률, 정밀도, F1-score, 카파통계량
교차검증	홀드 아웃 교차 검증, 랜덤 서브샘플링, K-Fold Cross Validation, LOOCV, LpOCV, RLT, 부트스 트랩
모수 유의 성 검정	모집단평균, Z-검정, T-검정, 분산분석, 모집단분산, 카이제곱검정, F-검정
 적합도 검 정	적합도 검정,정규성 검정, 샤피로-윌크 검정, 콜모고로프-스미르노프 검정(K-S검정), Q-Q Plot

<분석 모형 평가>

- 모형의 유용성 판단/비교/평가 과정은 매우 중요
- 모형을 만든 것으로 끝이 아님
 - ㅇ 객관적인 평가지표를 통해 실무에서 사용 가능한지 평가
 - ㅇ 기존 운영시스템과의 연계 / 통합을 통해 지속적인 개선
- 분석 모형 평가란? -> 다음 사항들에 대해 분석하는 것
 - ㅇ 구축된 모형이 임의의 모형보다 더 우수한 성과를 보이는가
 - 고려된 모형들 중 어느 것이 가장 우수한가
- 분석 모형 평가 기준
 - 일반화의 가능성: 데이터 확장 적용이 가능한가 -> 모집단 내 다른 데이터에서도 결과가 안정적인지 평가
 - 효율성: 필요한 입력변수가 적을수록 효율적
 - 이 예측&분류 정확성

1) 평가지표

모형 종류	회귀 모형 = 예측 모형	분류 모형
평가 지표	- 실제값(yi)/ 예측값(yi_hat)/ 평균값(y_bar) - 오차제곱합 SSE/ 전체제곱합 SST/ 회귀제곱합 SSR - R ² = SSR/SST, R ² adj, Mallow's Cp	- 혼동 행렬/ 정확도/ 민감도/ 정밀도/ F1-score - ROC Curve/ AUC (Area Under ROC) - 이익도표 (Gain Chart)

(1) 회귀 모형 평가지표

- SSE / SST / SSR / R² = 결정계수 / R²adj / Mallow's Cp
- 회귀 모형 평가 지표

• 회귀 모형 기본 평가지표

- SSE(오차제곱합)/SST(전체제곱합)/SSR(회귀제곱합)/AE/MAE/RMSE/MAPE/MPE
- SSE = 오차제곱합 = 예측값과 실젯값의 차이(오차) 제곱 합
- SST = 전체제곱합 = 실젯값과 평균값의 차이 제곱 합
- SSR = 회귀제곱합 = 예측값과 평균값의 차이 제곱 합
- AE = Average Error = 평균 오차
- o MAE = Mean Absolute Error = 평균 절대 오차
- RMSE = Root Mean Squared Error = 평균 제곱근 오차
- ㅇ MAPE = Mean Absolute Percentage Error = 평균 절대 백분율 오차
- ㅇ MPE = Mean Percentage Error = 평균 백분율 오차

• 회귀 모형 성능 검증지표

- R²(결정계수) / R²adj(수정된 결정계수) / Mallow's Cp
- ㅇ 결정계수
 - 회귀모형이 실제값을 얼마나 잘 나타내는지에 대한 비율(0~1)
 - 독립변수 개수가 많은 모형의 경우 부적합

■ 단점: 모형의 변수 개수가 증가할 때, 그 변수가 유의하지 않더라도 결정계수는 증가

- 수정된 결정계수
 - 결정계수의 단점을 보완함 -> 수정된 결정계수는 결정계수보다 항상 작음
 - 유의하지 않은 독립변수를 추가할수록, 패널티 부과 -> 감소
 - 모형이 유용한 독립변수를 추가할수록 증가
 - 따라서, 독립변수 개수가 많은 모형에 적합
- Mallow's Cp
 - 적절하지 않은 독립변수 추가에 대한 패널티를 부과한 통계량
 - 값이 작을수록, 실제값을 잘 설명하는 모형임

(2) 분류 모형 평가지표

- 혼동 행렬 / ROC 곡선 / AUC / 이익도표
- 혼동 행렬(Confusion Matrix)(정오 행렬)

		예측범주 (모델)		
		Pos.	Neg.	
실제 범주	Pos.	TP = True Positive Pos로 예측 = 실제로 Pos	FN = False Negative Neg로 예측 ≠ 실제로 Pos	
	Neg.	FP = False Positive Pos로 예측 ≠ 실제로 Neg	TN = True Negative Neg로 예측 = 실제로 Neg	

- 모델이 분류한 예측범주와 실제 분류범주를 교차표로 정리한 행렬(N×N)
- ㅇ 예측값과 실제값의 일치빈도를 통해 모델 정확도 평가
- 모델 성능을 평가할 수 있는 평가지표 도출
 - -> 정확도/오차비율/민감도/특이도/거짓긍정렬/정밀도/F1-score/카파통계량

평가지표	설명	계산	
정확도	실제 분류를 정확하게 예측한 비율	$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$	TP FN FP TN
오차비율	오차비율 = 1 - 정확도	$Error Rate = \frac{FP + FN}{TP + TN + FP + FN}$	TP FN FP TN
민감도 재현율	실제 P를 P로 예측한 비율	$Recall = \frac{TP}{TP + FN}$	TP FN FP TN
특이도	실제 N을 N으로 예측한 비율	$Specificity = \frac{TN}{TN + FP}$	TP FN FP TN
거짓긍정률	거짓긍정률 = 1 - 특이도	$FP \ Rate = \frac{FP}{TN + FP}$	TP FN FP TN
정밀도	P로 예측한 것들 중, 실제 P인 비율	$Precision = \frac{TP}{TP + FP}$	TP FN FP TN
F1-score F-measure	정밀도와 민감도(재현율)을 합한 평가지표 (조화평균)	$F1 - score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$	
카파 통계량 Kappa Statistics	두 관찰자가 측정한 범주값의 일치도를 측정	- 모형의 평가결과가 우연히 나온 결과가 아니라는 것을 설명하는 값 - 0이면 거의 일치하지 않음/ 1이면 좋은 일치	

• ROC 곡선(ROC Curve)

- 이익 도표(Gain Chart)
 - 그래프를 통해 분류모형의 성능을 평가함(이익 도표 = 이익 곡선 = 리프트 곡선)
 - o 이익(Gain)
 - 목표범주에 속한 개체들이 임의로 나눈 등급별로 얼마나 분포하고 있는지 나타내는 값

2) 분석 모형 진단

(1) 데이터 분석 모형의 오류

- 일반화 오류 / 학습 오류
- 일반화 오류(Generalization Error): 주어진 데이터의 특성을 지나치게 반영 -> 주변특성&단순잡음 묘사 > 과대 적합
- 학습 오류(Training Error): 주어진 데이터의 특성을 덜 반영하도록 모형 생성 -> 과소 적합

(2) 데이터 분석 모형 검증

- 홀드 아웃 교차 검증 / 다중 교차 검증
- 홀드 아웃 교차 검증
 - 데이터 집합 구분: 서로 겹치지 않는 학습집합, 시험집합으로 무작위 구분
 - ㅇ 학습집합으로 분석모형을 구축
 - 시험집합으로 분석모형의 성능 평가
- 다중 교차 검증
 - 데이터 집합 나눔: 같은 크기의 부분집합 k개로 무작위 나눔
 - k개 부분집합 = 1개는 시험집합 + (k-1)개는 학습집합
 - o 종류: Random Sub-Sampling/K-Fold Cross Validation/Leave-One-Out Cross Validation/Bootstrap

(3) 분석 모형 시각화

- 정보 구조화 -> 정보 시각화 -> 정보 시각표현
- 시각화: 그래프/그림과 같은 시각적 도구를 통해 의사결정자에게 제공하여, 분석결과를 쉽게 이해할 수 있게 함
- 정보 구조화: 데이터 수집 및 탐색/데이터 분류/데이터 배열/데이터 재배열
- 정보 시각화: 시각/분포/관계/비교/공간 시각화
- 정보 시각표현: 그래픽 7요소/그래픽디자인 기본원리/인터랙션(Interaction)/시각정보디자인 7원칙

(4) 분석 모형 진단

- 기본 가정 진단 / 잔차의 산점도
- 선정한 분석모형의 기본가정에 대한 진단이 필요
- 회귀모형은 잔차의 산점도를 이용하여 모형 진단
- 선형성 / 독립성 / 등분산성 / 정상성(정규성)
 - ㅇ 선형성: 잔차의 산점도
 - ㅇ 독립성: 잔차의 산점도 경향성 없이 일정한 분포인가?
 - 등분산성: 잔차의 산점도 전체적으로 고르게 흩어져있는가?
 - 정상성(정규성): 샤피로-윌크 검정 / 콜모고로프-스미르노프 검정 / Q-Q Plot

3) 교차 검증

(1) 교차 검증(Cross Validation)

• 모델의 일반화 오차에 대해 신뢰할만한 추정치를 구하기 위하여 훈련&평가 데이터를 기반한 검증 기법

• 홀드 아웃 교차 검증, 랜덤 서브샘플링, K-Fold Cross Validation, LOOCV, 부트스트랩

홀드 아웃 교차 검증	랜덤 서브샘플링	K-Fold	LOOCV	LpOCV	RLT	부트스트랩
Holdout Cross Validation	Random Sub-Sampling	K-Fold Cross Validation	Leave-One-Out Cross Valid.	Leave-p-Out Cross Valid.	Repeated Learning- Testing	Bootstrap
비복원추출 랜덤으로 나눔 - 데이터손실O - 계산/비용적음	무작위랜덤추출 홀드아웃반복 비용 가장적음	무작위추출 동등분할 부분집합 K개 평가집합 1개	전체데이터N개 평가데이터1개 작은데이터적합 비용 가장비쌈	전체데이터N개 평가데이터p개 계산시간부담↑ nCp 번 반복	비복원추출 랜덤추출 평균오류율계산	단순랜덤 복원추출(중복O) 동일크기표본을 여러개생성함

Holdout	K-Fold	LOOCV	LpOCV	RLT
Train Test	Train	1 Train 2 Train :: :: Train n	p Train p Train : : : Train p	Train

(2) 홀드 아웃 교차 검증(Holdout Cross Validation)

- 비복원추출로 랜덤하게 학습/평가 데이터를 나누어 검증
- 데이터를 나누는 방법에 따라 결과가 많이 달라짐(5:5, 3:7, 2:1)
 - 학습 데이터(Training set): 분류기 만들 때 사용
 - 검증 데이터(Validation set): 분류기들의 매개변수 최적화를 위해 사용
 - 평가 데이터(Test set): 최적화된 분류기 성능 평가를 위해 사용
- 데이터 손실O: 평가 데이터는 학습에 사용할 수 없음
- 계산량↓평가 쉬움↑

(3) 랜덤 서브샘플링(Random Sub-Sampling)

- 모집단에서 표본을 무작위 추출
- 홀드아웃 반복 -> 데이터 손실X
- 측정/평가 비용 가장 적음
- 각 샘플들을 학습/평가에 얼마나 사용할지 횟수 제한X -> 특정 데이터만 학습할 수 있음

(4) K-Fold Cross Validation

- 무작위/동일크기/K개 부분집합으로 나눔 -> 실험결과 K개를 종합
- 데이터 분할
 - o 전체 집합 = K개

- o 학습 집합 = K-1 개
- ㅇ 평가 집합 = 1 개
- 모든 데이터를 학습/평가에 사용 가능
- K값에 따라 달라짐
 - K값 증가할수록, 계산량도 증가함
 - o K = 10 이면, 데이터 10% 낭비됨
- LOOCV 보다 측정/평가 비용 적음
- 절차: 동등분할 -> 학습/평가데이터 구성 -> 분류기 학습 -> 분류기 성능확인
 - 학습/평가데이터 구성: (K-1)개 부분집합은 학습, 1개 부분집합은 평가에 쓰는 K개의 실험데이터 구성
 - 분류기 성능확인: 실험 결과 K개를 종합하여 분류기의 최종 성능을 확인

(5) LOOCV(Leave-One-Out Cross Validation)

- 전체 데이터 N개 중 샘플 1개만 평가 / (N-1)개는 학습 -> N번 반복
- 데이터 분할
 - o 전체 데이터 = N 개
 - o 학습 데이터 = N-1 개
 - ㅇ 평가 데이터 = 1 개
- 데이터 손실X
- 계산량 많음 -> 측정/평가 비용 가장 비쌈
- 작은 크기 데이터에 좋음
- 방법은 K-Fold랑 같음 -> K-Fold는 부분집합 개수 K / LOOCV는 데이터 개수 N

(6) LpOCV(Leave-p-Out Cross Validation)

- 전체 데이터 N개 중 샘플 p개만 평가 / (N-p)개는 학습 -> nCp번 반복
- 데이터 분할
 - ㅇ 전체 데이터 = N 개
 - 학습 데이터 = N-p 개
 - 평가 데이터 = p 개
- 계산량/시간 부담 큼

(7) RLT(Repeated Learning-Testing)

- 랜덤 비복원추출
- 절차: 데이터 분리 -> 훈련 -> 에러 계산 -> 반복 -> 평균오류율 계산
 - 데이터 분리: 랜덤하게 학습/검증 데이터 분리
 - ㅇ 데이터 훈련: 학습 데이터로만 훈련
 - o 에러 계산: 검증 데이터로 Error 계산
 - ㅇ 반복: 데이터 훈련과 에러 계산을 2회 더 반복
 - o 평균 오류율 E = ∑E / N

(8) 부트스트랩(Bootstrap)

- 단순랜덤 복원추출 -> 동일크기 표본 여러개 샘플링
- 랜덤 복원추출 -> 중복 허용 -> 특정 샘플이 학습 데이터에 포함될 확률 = 약 63.2%

• 학습 데이터에 한번도 포함되지 않는 데이터 발생 -> 평가에 사용함 = 약 36.8%

4) 모수 유의성 검정

<가설검정 유형>

검정 대상	모집단수	검정 유형	
	1개	T-검정	
모집단의 평균 μ	2개	T-검정	
02,	3개 이상	분산분석 (ANOVA)	
모집단의	1개	카이제곱검정 (χ^2)	
분산 σ	2개	F-검정	

(1) 모집단과 모수 관계

- 모집단(Population): 분석/관심 대상 전체 그룹
- 모수(Parameter): 모집단을 설명하는 어떤 값/ 모집단의 특성을 나타내는 값
- 표본(Sample): 모집단 일부/ 모집단 분석을 위해 추출한 한 집단의 관측치
- 통계량(Statistic): 모집단을 설명하는 어떤 값을 표본으로부터 구한 값/표본의 특성을 나타내는 값

(2) 모집단 평균에 대한 유의성 검정

• Z-검정 / T-검정 / 분산분석

Z-Test	T-Test	ANOVA
검정통계량 분포를 귀무가설 하에서 정규분포로 근사할 수 있는 통계검정	검정통계량이 귀무가설 하에서 T-분포를 따르는 통계검정	2개 이상 집단간 비교/ F-분포 이용
- 정규분포 가정 - 모분산을 이미 알고 있는 경우 - 추출된 표본이 같은 모집단에 속하는가	- 두 집단간 평균 비교 - 모분산을 모르는 경우/ 표본분산으로 대체 - 표본이 정규성/등분산성/독립성 등을 만족할 경우에 적용함	- 집단 내 분산/ 집단 간 분산 - 분산 비교로 얻은 F-분포를 이용함 - 일원 분산분석: 독립변수 1개 - 이원 분산분석: 독립변수 2개

• T-분포: 표준정규분포와 유사

- 0 중심 좌우대칭 but 꼬리가 더 길고 평평함
- ㅇ 정규분포의 평균을 측정할 때 많이 사용하는 분포
- ㅇ 적은 표본으로 모집단 평균을 추정하기 위해, 정규분포 대신 사용하는 확률분포
- 자유도(= 표본개수-1) 증가할수록, 표준정규분포에 가까워짐
- 중심극한정리: 표본개수가 충분히 크다면/자유도가 30이 넘으면, 정규분포에 가까워짐

(3) 모집단 분산에 대한 유의성 검정

• 카이제곱검정 / F-검정

카이제곱검정	F-검정
관찰빈도와 기대빈도가 유의하게 다른가	두 표본의 분산 차이가 통계적으로 유의한가 <u>두 모집단 분산 간 비율</u> 에 대한 검정
- 두 집단간 동질성 검정 - 모집단이 정규분포 따름 & 분산 알고 있는 경우 - 카이제곱분포에 기초	- F = S ₁ ² / S ₂ ² (S = 표본분산) - 활용사례: 동질성 검정/ 평균 벡터 검정/ 상관계수=0 ?

- 카이제곱분포: χ = Z₁² + Z₂² + Z₃² + ... + Zn²
 - \circ 각각 독립인 표준정규분포를 취하는 확률변수 Z의 제곱의 합인 χ 를 따르는 확률 분포
 - 자유도 n 이 작을수록, 왼쪽으로 치우침
 - 자유도 n이 클수록, 정규분포에 가까워짐

5) 적합도 검정

(1) 적합도 검정

- 표본집단 분포가 특정이론을 따르고 있는지 검정
- 기법 유형: 가정된 확률이 정해진 경우 & 아닌경우
 - 가정된 확률 검정: 카이제곱검정
 - 가정된 확률 없음 -> 정규성 검정: 샤피로-윌크 검정/콜모고로프-스미르노프 검정/Q-Q Plot

(2) 적합도 검정 기법

- chisq.test() -> p-value>0.05 -> 관측된 데이터가 가정된 확률을 따르
- 정규성 검정: 정규성 가정을 만족하지 못한다면, 모형 타당성이 떨어지고 신뢰성을 의심받을 수 있음 -> 검정 필요

샤피로-윌크 검정	콜모고로프-스미르노프 검정	Q-Q Plot
Shapiro-Wilk Test	K-S Test	Quantile-Quantile Plot
- shapiro.test() - 함수에서 수치형 벡터 1개만 사용가능 - 데이터가 <mark>적은</mark> 경우 사용 (5,000개 이하) - H0: 표본은 정규분포를 따른다	- ks.test() - 함수에서 x=검정할 데이터, y=이론적분 포 - y를 입력하지 않으면 표준정규분포로 계 산 - 데이터가 많은 경우 사용 (2,000개 이상)	- 그래프 이용 - 정규성가정을 시각적으로 검정 - 대각선 참조선을 따라서 값들이 분포하면, 정규성 가정을 만족한다고 판단함 - 기준 모호/ 주관적

• Q-Q Plot

1.2 분석 모형 개선

_	KeyWord
과대적합 방지	데이터증강, 모델복잡도감소, 가중치규제, L1규제, L2규제, 드롭아웃
매개변수 최적화	확률적 경사 하강법, 모멘텀, AdaGrad, Adam
분석 모형 융합	취합방법론, 다수결, 배깅, 페이스팅, 랜덤서브스페이스, 랜덤패치, 랜덤포레스트, 부스팅방법 론, 에이다부스트, 그래디언트부스트

1) 과대 적합 방지

(1) 과대 적합(Over-fitting)

- 지나친 학습 -> 일반화↓
- 제한된 학습데이터셋에 지나치게 특화되어 새로운 데이터에 대한 오차가 매우 커지는 현상
- 과대 적합이 발생하는 경우: 모델 파라미터 개수 많음 / 학습데이터셋 부족
- 일반화(Generalization): 테스트데이터에 대해 높은 성능을 갖춤/정상추정함/과소&과대적합X
 - ㅇ 과소 적합: 지나치게 단순한 모델/데이터에 내재된 구조를 학습하지 못함
 - ㅇ 과대 적합: 지나치게 학습데이터에 적합/ 일반화 떨어짐

(2) 과대 적합 방지

- 데이터 증강 / 모델 복잡도 감소 / 가중치 규제 / 드롭아웃
- 데이터 증강(Data Augmentation)
 - 데이터 양이 적을 경우, 데이터를 변형하여 양을 늘림
- 모델 복잡도 감소
 - 은닉층 개수 감소 / 모델 수용력 낮춤 -> 모델 복잡도 줄일 수 있음
- 가중치 규제 적용
 - ㅇ 개별 가중치 값을 제한 -> 복잡한 모델을 간단하게
 - 비용함수(Cost Function): 관측값과 연산값의 차이를 도출
 - -> 비용함수 최소화를 위해서, 가중치들이 작아져야 함
 - ο λ = 규제 강도를 정하는 하이퍼 파라미터
 - -> λ 값이 크면, 가중치 규제를 위해 추가한 항들을 작게 유지하는 것을 우선함
 - L1 규제: 모든 가중치들의 절댓값 합계를 비용함수에 추가 -> λlwl
 - L2 규제: 모든 가중치들의 제곱합을 비용함수에 추가 -> (1/2)λw²
- 드롭아웃(Dropout)
 - 학습 과정에서 신경망 일부를 사용하지 않음
 - 특정 뉴런/조합에 너무 의존적인 인공신경망이 되는 것을 방지
 - ㅇ 매번 랜덤으로 뉴런 선택 -> 서로 다른 신경망들을 앙상블하는 것과 같은 효과
 - 신경망 학습 과정에서만 사용하는 기법
 - 예측 과정에서는 드롭아웃을 사용하지 않음
 - 드롭아웃 유형: 초기(DNN) / 공간적(CNN) / 시간적(RNN) 드롭아웃
 - 초기 드롭아웃: DNN 에서 사용
 - p의 확률로 노드들을 생략하여 학습함
 - 일반적으로 p = 0.5
 - 공간적 드롭아웃: CNN 에서 사용
 - 피처맵 내 노드 전체에 대해 드롭아웃 적용 여부를 결정함
 - 시간적 드롭아웃: RNN 에서 사용
 - 노드가 아닌, 연결선 일부를 생략하여 학습함(Drop Connection)

2) 매개변수 최적화

(1) 매개변수(Parameter)

• 데이터 학습을 통해, 모델 내부에서 결정되는 변수

(2) 매개변수 최적화(Parameter Optimization)

- 손실함수(Loss Function): 학습모델의 출력값과 레이블 실제값의 차이(오차)
- 모델 학습의 목적 = 매개변수 최적화
 - 손실함수의 값을 최소화하는 매개변수를 찾는 것
 - 오차를 최소화하는 가중치와 편향을 찾는 것

(3) 매개변수 종류: 가중치 & 편향

- 가중치(Weight): "곱"
 - 입력값마다 각기 다르게 곱해지는 수치
 - y = ax+b 에서 기울기 a 해당
- 편향(Bias): "합"
 - ㅇ 가중합에 더해주는 상수
 - y = ax+b 에서 절편 b 에 해당

(4) 매개변수 최적화 기법

- 확률적 경사 하강법 / 모멘텀 / AdaGrad / Adam
- 2차원 손실함수 그래프를 이용하여 매개변수 최적화를 수행
 - X축 = 가중치(Wi)
 - Y축 = 손실값(=오차)
 - ㅇ 그래프에서 기울기가 0인 지점(= 손실값이 최소화되는 지점)에서 최적의 매개변수를 찾을 수 있음
- 매개변수 최적화 과정은 학습률에 따라서 달라짐
 - ㅇ 학습률 적음 -> 매우 느린 학습 -> 최적화에 많은 시간 소요
 - ㅇ 학습률 높음 -> 기울기=0 지점을 지나침 -> 최적화 실패
 - ㅇ 학습률 적당 -> 기울기=0 지점 찾음 -> 최적화 성공

확률적 경사 하강법	모멘텀	AdaGrad	Adam
SGD; Stochastic Gradient Descent	Momentum	Adaptive Gradient Algorithm	Adaptive Moment Estimation
x x	x	x	x
- 먼저 손실함수 기울기 구함 → 기울기따라 조금씩 아래로 → 손실함수 최소 지점 도달 - 최적점 근처에서 느리게 진행	- 모멘텀 = SGD + 속도 - 기울기방향으로 가속됨	 학습률 감소 기법을 적용 기울기 큰 부분에서 크게 학습 최적점에 가까워질수록 학습률 줄임→조금씩적게 학습 	- Adam = 모멘텀 + AdaGrad - 탐색경로 또한 모멘텀과 AdaGrad를 합친 양상
경로: 지그재그로 크게 변함	공이 그릇 바닥을 구르듯 움직임 지그재그 정도 덜함	처음에 큰폭이었다가 → 갱신 움직임 크게 줄어듦	공이 그릇 바닥을 구르듯 움직임 모멘텀모다 좌우 흔들림 적음

- 확률적 경사 하강법(SGD): 기울기를 구할 때 1개의 데이터를 무작위로 선택함(확률적)
 - 문제점: 지역극소점에 갇히는 문제 자주 발생
 - 손실함수 그래프에서 지역극소점(Local)에 갇혀서, 전역극소점(Global)을 찾지 못하는 경우가 많음
 - 손실함수가 방향에 따라 기울기가 달라지는 비등방성 함수일 경우 매우 비효율적
 - SGD의 단점 개선을 위해 고안된 방법론들이 모멘텀/AdaGrad/Adam
 - 탐색경로: 지그재그로 크게 변함
- 모멘텀(Momentum): SGD + 속도
 - 기울기가 줄어도 누적된 기울기 값에 의해 탐색경로의 변위가 줄어들어서 빠르게 최적점으로 수 렴
 - ∘ X축의 한 방향으로 일정한 가속 / Y축 방향 속도는 일정하지 않음
 - ㅇ 관성의 방향을 고려하여, 진동과 폭을 줄이는 효과
 - 모멘텀 갱신경로: 공이 그릇 바닥을 구르듯 움직임 -> SGD보다 지그재그 덜함
- AdaGrad(Adaptive Gradient Algorithm): 학습 진행할수록 학습률 감소시킴
 - ㅇ 학습률 감소 기법 적용
 - 손실함수 처음 부분: 기울기 큼 -> 학습률 큼
 - 최적점에 가까워짐: 기울기 감소 -> 학습률 줄여서 조금씩 작게 학습
 - ㅇ 최적점 탐색경로
 - 손실함수 처음 부분: y축 방향으로 기울기 큼 -> 큰 폭으로 움직임
 - 최적점에 가까워짐: y축 방향으로 갱신 강도 빠르게 감소 -> 큰 폭으로 작아짐
 - ㅇ 각각의 매개변수에 맞는 학습률 값을 만들어줌
 - 탐색경로: 지그재그 움직임이 빠르게 줄어듦

- Adam(Adaptive Moment Estimation): 모멘텀 + AdaGrad
 - Adam 갱신경로
 - 모멘텀처럼 공이 그릇 바닥을 구르듯 움직임
 - 모멘텀보다 좌우 흔들림 적음

3) 분석 모형 융함

(1) 취합 방법론(Aggregation)

• 다수결/배깅/페이스팅/랜덤 서브스페이스/랜덤 패치/랜덤 포레스트

다수결	배깅	페이스팅	랜덤	랜덤	랜덤
(Majority Voting)	(Bagging)	(Pasting)	서브스페이스	패치	포레스트
-여러모형 결과 종합 -다수결로 최종 설정 -직접투표: 단순투표 -간접투표: 가중치	-복원추출로 학습데이터 나눔 -중복 허용하므로 편향가능성 있음	-비복원추출로 학습데이터 나눔 -중복사용X	-다차원 독립변수중 일부 차원만 선택 -즉, 특성 샘플링! -학습데이터는 모두 사용함	-종속&독립변수 일부만 랜덤사용 -학습데이터,특성 모두 샘플링!	-의사결정나무결합 -독립변수 차원을 랜덤하게 감소시킴, 그중에서 선택! -모형성능 변동감소

(2) 부스팅 방법론(Boosting)

- 에이다 / 그래디언트 부스트
- 에이다 부스트(AdaBoost) = 적응 부스트(Adaptive Boost)
 - 약한 모형 각각을 순차적으로 적용하는 과정에서 잘 분류된 샘플 가중치 낮추고 오분류된 샘플 가 중치 높여서 샘플 분포를 변화시키는 기법
- 그레디언트 부스트(Gradient Boost)
 - ㅇ 약한 모형 각각을 순차적으로 적용하는 과정에서 오분류된 샘플 에러를 최적화하는 기법

4) 최종 모형 선정

(1) 최종 모형 선정 절차

- 최종 모형 평가 기준 선정 -> 최종 모형 분석 결과 검토 -> 알고리즘별로 결과 비교
- 평가 기준 선정: 정확도 / 재현율 / 정밀도 등의 평가지표 이용
- 분석 결과 검토: 평가 기준, 실질적인 활용 가능성에 대한 검토
- 알고리즘별 결과 비교: 알고리즘별로 파라미터를 변경하며 수행 -> 변경 전후의 차이점 비교, 결과 기록