

Exploration Strategies: Motivation & Multi-Armed Bandits

Christopher Mutschler

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Problem Motivation: Exploration in Life

Restaurant Selection

Oil Drilling

Online Ad Placement

exploit:

go to your favorite restaurant vs.

try something new

drill at the best-known location vs.

drill at a new location

show most successful ads vs. show a different random ad

Taken from David Silver's Lecture on XX.

^[1] Berkeley Al course

^[2] https://medium.com/deep-math-machine-learning-ai/ch-12-1-model-free-reinforcement-learning-algorithms-monte-carlo-sarsa-q-learning-65267cb8d1b4

^[3] https://designrshub.com/2012/05/3-smart-advertising-tips-for-an-effective-ad-placement.html

Problem Motivation: RL so far

- Improving the policy with $\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi}(s, a)$ poses problems for bootstrapping the Q-function
- We used ε-greedy policy improvement

 ⇒ occasionally try something "suboptimal" (at least we think it is)

^[1] https://www.youtube.com/watch?v=V1eYniJ0Rnk

^[2] https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756

^[3] https://ljvmiranda921.github.io/projects/2018/09/14/pfn-internship/

Problem Motivation: RL so far

- Oops, I forgot to tell you:
 - ε-greedy exploration does not work well on many tasks and even fails for some of them!
- Some of the Atari 2600 series games known for their hard exploration:

Seaquest

Pitfall!

Why?

- Getting key = opening door → reward
- Getting killed by skull → nothing
- > Finishing the game only weakly correlates with reward structure of the game!

[1] Aytar et al.: Playing Hard Exploration Games by Watching Youtube. NeurIPS 2018

Problem Motivation

• But: there is a solution to this – spoiler!

Progress in Montezuma's Revenge

OpenAl Blog. Reinforcement Learning with Prediction-Based Rewards. October 31, 2018.

Problem Definition

- There are two potential definitions of the exploration problem:
 - 1. How can an agent **discover** high-reward strategies that require a temporally extended sequence of complex behaviors that, individually, are not rewarding?
 - 2. How can an agent **decide** whether to attempt new behaviors (to discover ones with higher reward) or continue to do the best thing it knows so far?
- Both definitions stem from the same problem:
 - **Exploration**: do things you haven't done before (in the hopes of getting even higher reward)
 - → increase knowledge
 - Exploitation: do what you know to yield highest reward
 - → maximize performance based on knowledge

Problem Definition

- The dilemma comes from incomplete information:
 - · we need to gather enough information to make best overall decisions,
 - ... while keeping the risk under control!
- With exploitation we take advantage of the best option we know
- With exploration we take risks to learn about unknown options.
- The best long-term strategy may involve short-term sacrifices
- Ok, we got it. Exploration can be very hard...
- But: how can we derive an optimal exploration strategy?
 - Mathematically: what does optimal even mean?
 - In online learning we use the term "regret" to express this (we will come to this later)

Multi-armed bandits (1-step stateless RL problems) Contextual bandits (1-step RL problems) Small, finite MDPs (e.g., tractable planning, model-based RL)

Large, infinite MDPs (e.g., continuous spaces)

theoretically tractable

theoretically intractable

(illustration adapted from Sergey Levine's CS285 class from UC Berkeley)

Problem Definition

How can an exploration problem be made tractable?

Multi-armed bandits Contextual bandits

- Exploration problem can be formalized as POMDP identification
- Then policy learning is then easy (even with POMDP)

Small & finite MDPs

- We can frame the exploration problem as a Bayesian model identification
- Then reason about value of information

Large & infinite MDPs

- Optimal methods do not work here
- We need to take them as inspiration, or we use hacks

Multi-Armed Bandits

- The multi-armed-bandit problem is a classic problem used to study the exploration vs. exploitation dilemma
- Imagine you are in a casino with multiple slot machines, each configured with an unknown reward probability:

https://www.gameroomshow.com

- Under the assumption of an infinite number of trials:
- → What is the best strategy to achieve highest long-term rewards?

Naive Solution:

- 1. Play each machine for many many many rounds
- 2. Estimate *true* reward probability of each machine (law of large numbers)
- 3. Act greedily with respect to the uncovered probabilities

Multi-Armed Bandits

A Bernoulli multi-armed bandit can be described as a tuple of $(\mathcal{A}, \mathcal{R})$, where:

- We have N machines and their associated reward probabilities $\{\theta_1, \dots, \theta_n\}$
- At each time step t we take an action a_t on a single slot machine and receive a reward r_t
- \mathcal{A} is a set of actions (i.e., arms): $\mathcal{A} = \{\text{pull}_1, \text{pull}_2, \dots, \text{pull}_n\}$
 - Each action refers to the interaction with one slot machine \rightarrow the true value of the action a is the expected reward $Q(a) = \mathbb{E}[r|a] = \theta$
 - If action a_t at the time step t is on the i-th machine, then $Q(a_t) = \theta_i$ (note: value function is unknown!)
- \mathcal{R} is a reward function:
 - We observe a reward r in a stochastic fashion. At the time step t, $r_t = \mathcal{R}(a_t) = p(r|a)$ \rightarrow returns reward 1 with a probability of $\theta_i = Q(a_t)$, or 0 otherwise (i.e., with probability $1 \theta_i$).
 - The distribution p(r|a) is fixed, but unknown
- Goal: maximize cumulative reward $\sum_{t=1}^{T} r_t$
- As usual, p(a|r) is unknown but we still want to estimate Q(a)
- → This is a simplified MDP (as there are no states)

POMDP interpretation:

this is the state, but we don't know it

- solving this yields the optimal exploration
- we could maintain a belief over the state (prob-distr. over the states → huge)

Regret

- Our goal is to maximize the cumulative reward $\sum_{t=1}^{T} r_t$
- The optimal reward probability θ^* of the optimal action a^* is

$$\theta^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a) = \max_{1 \le i \le K} \theta_i = \max_{a \in \mathcal{A}} \mathbb{E}[r_t | a_t = a]$$

- But how can we reason about the exploration-exploitation trade-off?
 - → Regret as a one-step opportunity loss
- Our loss function is the total regret we might have by not select the optimal action up to the time step *T*:

$$\mathcal{L}_T = \mathbb{E}\left[\sum_{t=1}^T \left(\theta^* - Q(a_t)\right)\right] = \sum_{a \in \mathcal{A}} N_T(a) \Delta_a \qquad \text{per-action regret}$$
 what we should have been doing
$$\text{action-selection counter}$$

Regret

- If we knew the optimal action with the best reward, then:
 - Maximize cumulative rewards ≡ minimize total regret
 - The agent cannot observe or sample the real regret directly
 - But we can use it to analyze different exploration strategies!
- Note:
 - The sum for the total regret extends beyond (single step) episodes
 - The view extends over "lifetime of learning", rather than over "current episode"
 - A good algorithm ensures small visitation counts for large action regrets (but action regrets are unknown...)
- From here, we can derive 3 different bandit strategies:
 - 1. No exploration: very naïve approach and a bad one usually
 - 2. Exploration at random
 - 3. Smart exploration with preference to explore actions with high uncertainty