

Laboratorieoppgave 2, ELE142-2024 (bokmål)

Del av emnet: Elektrofaglig basis 2 Tema: Operasjonsforsterker

Utstyr

- Oscilloskop (med 2×10 måle prober)
- Digital multimeter
- Signalgenerator
- Koplingsbrett med spenningskilde
- Koblingsledninger
- Diverse motstander:
 - 3 stk. 1 $k\Omega$
 - 1 stk. 10 kΩ
 - 1 stk. 741 eller TL082CP (Operasjonsforsterker, IC-krets brikke)

Forarbeid

Studer oppgaveteksten på forhånd. Utføre alle teoretiske beregninger og finn datablad for IC-krets.

Det er lurt å utføre simulering av oppgaven i Multisim, før oppgaven utføres på laboratoriet.

Mål med oppgaven

I denne oppgaven skal studenten lære bruk av operasjonsforsterkeren. Bruk av oscilloskop, signalgenerator og multimeter for verifisering av resultatene. Konstruere og analysere forsterkerkretser som er konstruert med bruk av operasjonsforsterker. I oppgaven ser man på bruk av en inverterende forsterker og en spenningsfølger (Voltage buffer) i en spenningsdelekrets.

Krav til rapportering

Fyll ut svar/beregninger i oppgavesettet.

Det skal lages en laboratorierapport som besvarer oppgaven med bilder. Legg ved eventuelle vedlegg. Skannet versjon av rapporten skal legges inn i Canvas.

Godkjenning

Etter at den praktiske utføringa av laboratorieoppgava er gjennomført besvarelsen som inneholder bilder, tegninger, beregninger og målinger leveres i Canvas for godkjenning.

Dato:	 Bord nummer:
Studentar:	

Arbeidsoppgaver (bokmål)

Innledende arbeid

Identifiser nødvendig utstyr og komponenter som er nødvendig for å utføre arbeidet. Still opp utstyret på en hensiktsmessig måte. Det er fordelaktig å ha orden og ryddighet under utføring av oppgaven. Hver deltaker på laboratorieoppgaven må ha forstått oppgaven, så alle kan være delaktig i utførelsen av den.

HMS-reglene for arbeid på laboratoriet, skal være kjent for alle deltakerne. HMS-reglene skal være tilgjengelig i Canvas.

Oppgave 1

0 6 6 9 6	
a)	Dimensjoner en inverterende forsterker som i figur 1, ved hjelp av en LM741 operasjonsforsterker. Forsterkeren skal ha en forsterkning på -2 . Resistansene må være minst 1,0 k Ω . Koble opp den inverterende forsterkeren i figur 1.
b)	Bruk 5V som inngangssignal, og mål spenningen på utgangen med multimeter. Noter også fortegnet til spenninga. Vut:
c)	Skift ut én av resistansene slik at forsterkninga nå blir -10. Så skal det påføres et sinussignal fra en funksjonsgenerator på inngangen. Det er behov for å bruke et to kanals oscilloskop for måling av inn- og utgangssignalet til forsterkerkretsen. Inngangssignalet skal være 500 mV $_{pp}$ ved 1 kHz. Regn ut- og mål spenningen ut, V_{ut} , og noter verdiene i tabell 1.
d)	Hva menes med inverterende kobling?
e)	Gi en forklaring på hvorfor forsterkningen i den siste raden (V_S = 4.00 V) i tabell 2, ikke samsvare med den kalkulerte verdien.
f)	Utfør beregning for å finne det største inngangssignalet du kan ha før du får klipping på utgangen. Mål spenningen inn og observer for hvilken spenning forsterkeren klipper på utgangen.
g)	Dersom R_f = R_i = 10 k Ω , hvilken forsterkning vil man få i en ikke-inverterende forsterker og inverterende forsterker?

h) Hvilken utgangsspenning forventer man, dersom det var brudd i $R_{\rm f}$ til en ikke-inverterende forsterker og inverterende forsterker?

Inverterende forsterker __Rf__

Figur 1. En inverterende forsterker.

V _s [V _{pp}]	V _{ut} (Beregnet) [V _{pp}]	V _{ut} (Målt) [V _{pp}]
500 mV		
1.00 V		
4.00 V		

Tabell 1. Inverterende forsterker

Svar/Beregning: