Mock ARML I- Individual

Author:
PROBLEM WRITING
CLUB

March 7, 2014

Problem 1

Given circle ω , and that chords A_0A_1 and A_2A_3 intersect at A_4 , find $\frac{A_0A_1}{A_2A_3}$ if $\frac{A_0A_4}{A_1A_4} = \frac{1}{4}$ and $\frac{A_2A_4}{A_3A_4} = \frac{4}{9}$.

Problem 2

Brice has a sphere with radius $\frac{2014}{2013}$ and decides to magically place an octahedron with maximal volume in it. Let R be the ratio of the volume of the sphere to the volume of the octahedron. Compute $\lfloor R \rfloor$. ($\lfloor x \rfloor$ is the greatest integer less than or equal to x)

Problem 3

Let N be $\prod_{n=0}^{89} (1 - \cot^5(\frac{n\pi}{180}))$. Compute the value of 2014N.

Problem 4

The maximum value attained by the equation $\frac{18(x^2+x+1)^2}{x^2+2x+1}$ can be expressed as $A\sqrt[R]{M\cdot L}$. Compute the value $A\cdot R\cdot M\cdot L$.

Problem 5

A sector of a circle with radius 15 and central angle 216 degrees is formed into a cone. The cone is then cut parallel to its base by a plane. Find the probability that the area of the intersection of the plane and the cone is less than or equal to 9π .

Problem 6

In a parallel universe, the game of football begins with a coin flip. Each of the two teams sends out 4 players for the coin toss. Each of these eight players shakes hands with two other players (the players can be from the same or opposing team). A student watching TV sees this, and decides to write a list of all unordered pairs of players that shook hands with each other. How many different lists can this student come up with, given that order does not matter?

Problem 7

100! can be expressed as $p_1^{e_1} \cdot p_2^{e_2} \dots \cdot p_{25}^{e_{25}}$, where $p_1, p_2 \dots p_{25}$ are the n^{th} prime numbers, where n is the subscript of p_n . For instance, $p_1 = 2$, since the first prime number is 2. Compute $\sum_{i=1}^{25} e_i$.

Problem 8

Define an ARML-ish number as a number whose digits are all one's. For instance, 1, 11, 111 are all ARML-ish numbers. Let ω be the smallest ARML-ish number such that ω is divisible by 97. Compute the sum of the digits of ω .

Problem 9

The machine ARMLBOX was built in the year 2014. The ARMLBOX takes any real number x and returns the value $\frac{1}{201\sqrt[4]{1-x^{2014}}}$. A boy punches in 2014 into the ARMLBOX, and gets a value. He finds this value is a mess, and punches it again to get another value. He repeats this 2013 times. What is the value the ARMLBOX returns after the 2013th time he repeats this?

Problem 10

Let ABCDE be a regular pentagon and point M in its interior such that $\angle MBA = \angle MEA = 42^{\circ}$. Compute the measure of $\angle CMD$.

Answer Key 1) $\frac{15}{13}$

- 2) 3
- 3) 0
- 4) 1080
- $5) \frac{1}{3}$
- 6) 3507
- 7) 239
- 8) 96
- 9) 2014
- 10) 60°