Project 1 – Sudoku

8/30/2021

Group members

Zhijian Wang (90281052) Chongwei Shi

Mathematics Method

Method:

Deterministic Optimization formulation

Domain:

Column: [1, 2, 3, 4, 5, 6, 7, 8, 9] Row: [1, 2, 3, 4, 5, 6, 7, 8, 9] Value: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Variable:

Choices: x_{ijk} , $i \in Columns$, $j \in Rows$, $k \in Rows$

Range: [0, 1], $x_{ijk} = 1$ means that the postion of (i, j) in the Sudoku is k

Optimization Function

Maximize: f(choices) = 0 (This function can be arbitrary because we only need the only the constraint to be satisfied)

Constraint (Reference from sudoku.ipynb):

$$ullet$$
 Column, $\sum_{i=1}^9 x_{ijk} = 1$ for $1 \leq j, k \leq 9$

$$ullet$$
 Row, $\sum_{i=1}^9 x_{ijk} = 1$ for $1 \leq i, k \leq 9$

$$ullet$$
 Box, $\displaystyle\sum_{j=3p-2}^{3p} \displaystyle\sum_{i=3q-2}^{3q} x_{ijk} = 1$ for $1 \leq k \leq 9$ and $1 \leq p,q \leq 3$.

$$ullet$$
 Grid, $\sum_{k=1}^9 x_{ijk} = 1$ for $1 \leq i,j \leq 9$.

· Clues, should be given from the problem.

Result

	Data1	Data2	Total	Note
Small Data(A)	24/24	1011/1011	1035/1035	All the data
Large Data(B)	1000/1000	1000/1000	2000/2000	Random
				sample 1000
				data

```
Small Data1 Result:
Total: 24, Correct: 24, Correct_Percentage: 1.0
Small Data2 Result:
Total: 1011, Correct: 1011, Correct_Percentage: 1.0
All Small Data Result:
Total: 1035, Correct: 1035, Correct_Percentage: 1.0
Large Data Result
Large Data1 Result:
Total: 1000, Correct: 1000, Correct_Percentage: 1.0
Large Data2 Result
Total: 1000, Correct: 1000, Correct_Percentage: 1.0
All large Data Result:
Total: 2000, Correct: 2000, Correct_Percentage: 1.0
Process finished with exit code 0
```

This result seems too good, maybe pulp.solve is so strong. However, I do not know why in the lecture professor said that sometimes we could get wrong solution.

Reference

Code Reference

https://gist.github.com/allisonmorgan/c2f831cb01532fe51834f471634f4d58

Article Reference

Morgan, A. (2018, February 6). *Using integer linear programming to solve sudoku puzzles*. Medium.

https://towardsdatascience.com/using-integer-linear-programming-to-solve-sudoku-puzzles-15e9d2a70baa.