Exo 27 p177

Dans cet exercice, les limites peuvent être indéterminées, on factorise par la plus grande puissance de x

1. Pour tout $x \neq 0, f(x) = x^2(1 - \frac{3}{x} + \frac{1}{x^2})$

Or
$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \frac{3}{x} = 0$$

Or
$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \frac{3}{x} = 0$$
Et $\lim_{x \to +\infty} \frac{1}{x^2} = 0$

Par somme :
$$\lim_{x \to +\infty} 1 - \frac{3}{x} + \frac{1}{x^2} = 1$$

Par produit : $\lim_{x \to +\infty} f(x) = +\infty$.

Par produit :
$$\lim_{x \to +\infty} f(x) = +\infty$$

De même on a
$$\lim_{x \to -\infty} x^2 = +\infty$$

et
$$\lim_{x \to -\infty} 1 - \frac{3}{x} + \frac{1}{x^2} = 1$$

et
$$\lim_{x \to -\infty} 1 - \frac{3}{x} + \frac{1}{x^2} = 1$$

Donc, par produit : $\lim_{x \to -\infty} f(x) = +\infty$.

2. Pour tout $x \neq 0, g(x) = -x^5(1 - \frac{10}{x} - \frac{1}{x^3} - \frac{1}{x^4})$ Or:

$$\lim_{x \to +\infty} \frac{10}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{r^3} = 0$$

$$\lim_{x \to +\infty} \frac{10}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^3} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^4} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^4} = 0$$
Donc par somme
$$\lim_{x \to +\infty} (1 - \frac{10}{x} - \frac{1}{x^3} - \frac{1}{x^4}) = 1 \text{ et}$$

$$\lim_{x \to +\infty} -x^5 = -\infty$$
Dong par produit
$$\lim_{x \to +\infty} a(x) = -\infty$$

$$\lim_{x \to +\infty} -x^5 = -\infty$$

Donc par produit
$$\lim_{x \to +\infty} g(x) = -\infty$$

$$\lim_{x \to -\infty} \frac{10}{x} = 0$$

De même :
$$\lim_{x \to -\infty} \frac{10}{x} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^3} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^4} = 0$$

Donc par somme
$$\lim_{x \to -\infty} (1 - \frac{10}{x} - \frac{1}{x^3} - \frac{1}{x^4}) = 1$$
 et

$$\lim_{x \to -\infty} -x^5 = +\infty$$

Donc par produit
$$\lim_{x \to -\infty} g(x) = +\infty$$

3. Pour tout
$$x \neq 0, h(x) = \frac{x^2(1 + \frac{2}{x} - \frac{3}{x^2})}{x(1 + \frac{1}{x})} = \frac{x(1 + \frac{2}{x} - \frac{3}{x^2})}{1 + \frac{1}{x}}$$

Décomposons chaque terme pour étudier la limite.
$$\lim_{x\to +\infty} x = +\infty \lim_{x\to +\infty} 1 + \frac{2}{x} - \frac{3}{x^2} = 1$$

donc, par produit le numérateur tend vers
$$+\infty$$
 et $\lim_{x\to+\infty} 1 + \frac{1}{x} = 1$

Par quotient,
$$\lim_{x \to +\infty} h(x) = +\infty$$

 $\lim_{x\to -\infty} x = -\infty$, les autres limites sont les mêmes en $-\infty$ qu'en $+\infty$ Donc, par quotient, $\lim_{x \to -\infty} h(x) = -\infty$

4. Pour tout
$$x \neq 0$$
; $k(x) = \frac{x^2(3 - \frac{1}{x^2})}{x^2(1 - \frac{2}{x^2})} = \frac{3 - \frac{1}{x^2}}{1 - \frac{2}{x^2}}$

$$\lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{2}{x^2} = 0$$

Donc par somme :
$$\lim_{x \to +\infty} \frac{3 - \frac{1}{x^2}}{1 - \frac{2}{x^2}} = 3$$

Soit
$$\lim_{x \to +\infty} k(x) = 3$$

On obtient le même résultat en $-\infty$.

Exo 28 p177

1. Pour tout
$$x \neq 0, f(x) = x^4(3 - \frac{3}{x^2} + \frac{5}{x^3} + \frac{1}{x^4})$$

$$\lim_{x \to +\infty} x^4 = +\infty$$

Chaque terme
$$\frac{a}{x^n}$$
 tend vers 0 en ∞ donc par somme $\lim_{x\to +\infty} 3 - \frac{3}{x^2} + \frac{5}{x^3} + \frac{1}{x^4} = 3$
Par produit $\lim_{x\to +\infty} f(x) = +\infty$

On obtient le même résultat en $-\infty$.

2. Pour tout
$$x \neq 0, g(x) = \frac{-x^3(1 - \frac{1}{x^2} + \frac{1}{x^3})}{x(2 + \frac{1}{x})} = \frac{-x^2(1 - \frac{1}{x^2} + \frac{1}{x^3})}{2 + \frac{1}{x}}$$

Par somme,
$$\lim_{x \to +\infty} 1 - \frac{1}{x^2} + \frac{1}{x^3} = 1$$
 et $\lim_{x \to +\infty} 2 + \frac{1}{x} = 2$. De plus $\lim_{x \to +\infty} -x^2 = -\infty$

De plus
$$\lim_{x \to +\infty} -x^2 = -\infty$$

Par produit
$$\lim_{x \to +\infty} -x^2 \left(1 - \frac{1}{x^2} + \frac{1}{x^3}\right) = -\infty$$
 et par quotient $\lim_{x \to +\infty} g(x) = -\infty$

On obtient le même résultat en $-\infty$.

3. Pour tout
$$x \neq 0, h(x) = \frac{x^2(4 - \frac{3}{x^2})}{x^7(1 - \frac{5}{x^3} + \frac{1}{x^5} + \frac{2}{x^6} - \frac{3}{x^7})} = \frac{4 - \frac{3}{x^2}}{x^5(1 - \frac{5}{x^3} + \frac{1}{x^5} + \frac{2}{x^6} - \frac{3}{x^7})}$$

On a
$$\lim_{x \to +\infty} 4 - \frac{3}{x^2} = 4$$

$$\lim_{x \to +\infty} x^5 = +\infty$$

et
$$\lim_{x \to +\infty} 1 - \frac{5}{x^3} + \frac{1}{x^5} + \frac{2}{x^6} - \frac{3}{x^7} = 1$$

Par produit
$$\lim_{x \to +\infty} x^5 (1 - \frac{5}{x^3} + \frac{1}{x^5} + \frac{2}{x^6} - \frac{3}{x^7}) = +\infty$$

Par quotient

$$\lim_{x \to +\infty} h(x) = 0$$

On obtient le même résultat en $-\infty$.

4. Pour tout
$$x \neq 0, k(x) = \frac{x^2(1 + \frac{1}{x} + \frac{1}{x^2})}{x^2(5 + \frac{2}{x^2})} = \frac{1 + \frac{1}{x} + \frac{1}{x^2}}{5 + \frac{2}{x^2}}$$

On a
$$\lim_{x \to +\infty} 1 + \frac{1}{x} + \frac{1}{x^2} = 1 \text{ et}$$

$$\lim_{x \to +\infty} 5 + \frac{2}{x^2} = 5$$
 Donc, par quotient
$$\lim_{x \to +\infty} k(x) = \frac{1}{5}$$

$$\lim_{x \to +\infty} k(x) = \frac{1}{5}$$

On obtient le même résultat en $-\infty$.