COL380

Introduction to Parallel & Distributed Programming

Supercomputer Node

Supercomputer Node

Modern Multi-Processor

100+ GF/core 32 cores = 3TF 8 channels of DDR4-3200 DIMM 25.6 * 8 GB/s

Memory

Memory Bottleneck

Fused Multiply Add

- → Double Precision A += B * C
- → 2 FLOPS, 3+1 Operands (32 bytes)

Example

- → 2x AVX512 on Intel core = 32 FLOP/cycle
- → 96 GF/core @3GHz
 - ▶ Needed 1536 GB/s memory bandwidth/core
- → Compare DDR4: Throughput ~25GB/s

Latency can be hidden A[i] += B[i]*C[i] A[i+1] += B[i+1]*C[i+1] A[i+2] += B[i+2]*C[i+2] A[i+3] += B[i+3]*C[i+3]

Caches can help with throughput but working set can be large

* Must be used wisely

Memory Gap Mitigation

AMD AI Engine

High Bandwidth Memory

~600 GB/site

Flynn's Classification

- A number of instruction streams
- A number of data/operand streams

Instructions • • •

Mem Mgmt Unit

Network Controllers

DMA Engines

10 controller

State

Routing algorithm

→ Address, Low latency, High bandwidth

Routing algorithm

→ Address, Low latency, High bandwidth

Routing algorithm

→ Address, Low latency, High bandwidth

Metrics

- → Number of links required
- → Number of ports on a node
- → Distance between nodes
- → Redundancy in routes

Routing algorithm

→ Address, Low latency, High bandwidth

Metrics

- → Number of links required
- → Number of ports on a node
- → Distance between nodes
- → Redundancy in routes

- · Diameter: Longest path
- · Bisection width: Min #links failures to bi-partition the nodes
- · Blocking: If independent pairs can communicate at each step

Memory Organization

- Unified memory addressing
 - → Non-uniform access (NUMA)
- Address-based mapping
 - → Requires memory agents/controllers
 - And a network path to them (with routers)
- Distributed memory
 - → Goes through a thread of control (code)