Corrigé du devoir maison 8.

Exercice 1

Partie 1: Premiers exemples

- 1°) exp est de classe C^{∞} sur \mathbb{R} , et pour tout $n \in \mathbb{N}$, $\exp^{(n)} = \exp \geq 0$ sur \mathbb{R} . Donc $\exp \in \mathcal{A}(\mathbb{R}, \mathbb{R})$.
- **2°**) $f: x \mapsto \frac{1}{1-x}$ est définie et de classe \mathcal{C}^{∞} sur $\mathbb{R}\setminus\{1\}$. Elle est négative sur $]1, +\infty[$ donc si $f \in \mathcal{A}(I,\mathbb{R})$, alors l'intervalle I est inclus dans $]-\infty,1[$. Montrons que $f \in \mathcal{A}(]-\infty,1[$, $\mathbb{R})$, il n'y aura alors pas d'intervalle I plus grand pour lequel $f \in \mathcal{A}(I,\mathbb{R})$.

Posons, pour tout $n \in \mathbb{N}$, $H_n : \forall x \in]-\infty, 1[, f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}.$

- C'est vrai pour n = 0 car $\forall x \in]-\infty, 1[, \frac{0!}{(1-x)^{0+1}} = \frac{1}{1-x} = f(x).$
- Si c'est vrai au rang $n \in \mathbb{N}$, alors pour tout $x \in]-\infty, 1[$, $f^{(n)}(x) = n!(1-x)^{-n-1}$ donc $f^{(n+1)}(x) = -n!(-n-1)(1-x)^{-n-2} = \frac{n!(n+1)}{(1-x)^{n+2}} = \frac{(n+1)!}{(1-x)^{(n+1)+1}}$, donc H_{n+1} est vraie.
- Ainsi, pour tout $n \in \mathbb{N}$, et pour tout $x \in]-\infty, 1[$, $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}} \ge 0$.

Donc $f \in \mathcal{A}(]-\infty,1[,\mathbb{R}).$

Partie 2 : Stabilité par quelques opérations

- 3°) Les fonctions f+g et fg sont de classe C^{∞} sur I par somme et produit. Pour tout $n \in \mathbb{N}$, $(f+g)^{(n)} = f^{(n)} + g^{(n)} \geq 0$, donc $\boxed{f+g \in \mathcal{A}(I,\mathbb{R})}$. Par la formule de Leibniz, pour tout $n \in \mathbb{N}$, $(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$, et tous les termes de cette somme sont positifs par hypothèse; donc $(fg)^{(n)} \geq 0$. Donc $\boxed{fg \in \mathcal{A}(I,\mathbb{R})}$.
- **4°) a)** Par composition, exp étant de classe \mathcal{C}^{∞} sur \mathbb{R} et f sur I, φ est de classe \mathcal{C}^{∞} sur I.

 On a $\varphi' = f' \times (\exp \circ f)$ donc $\varphi' = f' \times \varphi$.
 - b) Soit $n \in \mathbb{N}$. La dérivée nième de φ' est $\varphi^{(n+1)}$. Appliquons par ailleurs la formule de Leibniz en voyant φ' comme le produit $f'\varphi$ (les fonctions f' et φ sont bien n fois dérivables):

$$(\varphi')^{(n)} = (f'\varphi)^{(n)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (f')^{(n-k)} \varphi^{(k)}$$

$$(n+1) \sum_{k=0}^{n} \binom{n}{k} c^{(n+1-k)} (k)$$

- $\varphi^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)} \varphi^{(k)}$
- c) On va raisonner par récurrence forte. On pose pour tout $n \in \mathbb{N}$, $\mathcal{P}_n : "\varphi^{(n)} \geq 0$ sur I.".

- Initialisation : \mathcal{P}_0 est vraie car $\varphi^{(0)} = \varphi = \exp \circ f \ge 0$ puisque exp est positive.
- Héredité : Supposons que \mathcal{P}_k soit vraie pour tout k entre 0 et n. Soit $x \in I$.

D'après la question précédente,
$$\varphi^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)}(x) \varphi^{(k)}(x)$$
.

On sait que $f \in \mathcal{A}(I,\mathbb{R})$ donc pour tout $k \in \{0,\ldots,n\}$, $f^{(n+1-k)}(x) \geq 0$. Par ailleurs, par hypothèses de récurrence, pour tout k entre 0 et n, $\varphi^{(k)}(x) \geq 0$. Ainsi, $\varphi^{(n+1)}(x)$ est positif comme somme et produit de termes positifs, et ceci pour tout $x \in I : \mathcal{P}_{n+1}$ est vraie.

• Conclusion : pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

On en déduit que $\varphi \in \mathcal{A}(I,\mathbb{R})$

Partie 3 : Quelques propriétés - prolongement à gauche

5°) Supposons que $f \in \mathcal{A}(I, \mathbb{R})$. Soit $n \in \mathbb{N}$.

On sait que f est de classe \mathcal{C}^{∞} sur I, c'est-à-dire qu'elle est indéfiniment dérivable, donc $f^{(n)}$ aussi.

Pour tout $k \in \mathbb{N}$, $(f^{(n)})^{(k)} = f^{(n+k)}$, et cette fonction est positive sur I puisque $f \in \mathcal{A}(I, \mathbb{R})$. Donc $f^{(n)} \in \mathcal{A}(I, \mathbb{R})$.

- **6°)** Soit $f \in \mathcal{A}(I, \mathbb{R})$. En particulier $f^{(0)} = f \geq 0$ sur I, donc f est minorée. Elle est aussi dérivable et sa dérivée est positive sur l'intervalle I, donc f est croissante.
- 7°) a) Soit $f \in \mathcal{A}([a, b[, \mathbb{R})]$.

D'après la question précédente, f est croissante et minorée sur]a,b[; d'après un théorème du cours sur les fonctions monotones, f admet une limite finie ℓ_0 en a.

Pour tout $x \in]a, b[, f(x) \ge 0, \text{ donc } \boxed{\ell_0 \ge 0}$ par passage à la limite.

- **b)** Soit $f:[a,b[\to \mathbb{R} \text{ continue, telle que } f\in \mathcal{A}(]a,b[,\mathbb{R}).$
 - f est continue sur [a, b[.
 - f est dérivable sur]a, b[
 - Comme $f \in \mathcal{A}(]a, b[, \mathbb{R})$, on sait par la question 5 que f' est également dans $\mathcal{A}(]a, b[, \mathbb{R})$. On peut donc appliquer à f' le résultat de la question précédente : $f'(x) \xrightarrow[x \to a]{} \ell_1$ avec ℓ_1 réel positif.

Par le théorème de la limite de la dérivée, $\frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} \ell_1$.

Comme $\ell_1 \in \mathbb{R}$, cela signifie que f est dérivable en a et que $f'(a) = \ell_1$. On a bien $f'(a) \geq 0$. L'information $f'(x) \xrightarrow[x \to a]{} \ell_1$ se réécrit $f'(x) \xrightarrow[x \to a]{} f'(a)$, donc f' est continue en a.

Comme de plus, f est de classe C^1 sur]a,b[(puisqu'elle est de classe C^∞ sur]a,b[), on en déduit que f est de classe C^1 sur [a,b[].

c) Soit $f \in \mathcal{A}(]a, b[, \mathbb{R})$.

D'après la question 7a, f a une limite finie positive ℓ_0 en a, donc f est prolongeable par continuité en a en posant $f(a) = \ell_0$.

On pose, pour tout $n \in \mathbb{N} : H_n : f$ est de classe C^n sur [a, b] et $f^{(n)}(a) \ge 0$.

- H_0 est vraie car f est continue sur [a,b[et $f^{(0)}(a)=f(a)=\ell_0\geq 0.$
- Supposons H_n vraie pour un rang n fixé dans \mathbb{N} . Par hypothèse de récurrence, on sait que $f^{(n)}$ existe et est continue sur [a, b[. Par ailleurs, puisque $f \in \mathcal{A}(]a, b[, \mathbb{R})$, $f^{(n)}$ est aussi dans $\mathcal{A}(]a, b[, \mathbb{R})$ d'après la question

D'après la question 7b, $f^{(n)}$ est donc de classe \mathcal{C}^1 sur [a,b[et $(f^{(n)})'(a) \geq 0$. Autrement dit f est de classe \mathcal{C}^{n+1} sur [a,b[et $f^{(n+1)}(a) \geq 0$. Ainsi, H_{n+1} est vraie.

• Conclusion : pour tout $n \in \mathbb{N}$, f est de classe C^n sur [a, b[et $f^{(n)}(a) \ge 0$.

Ainsi f est de classe C^{∞} sur [a, b[; et comme on sait déjà que pour tout $n \in \mathbb{N}$, $f^{(n)} \ge 0$ sur [a, b[, on a maintenant, pour tout $n \in \mathbb{N}$, $f^{(n)} \ge 0$ sur [a, b[.

Autrement dit, $f \in \mathcal{A}([a, b[, \mathbb{R})])$

d) Avec $f: x \mapsto \frac{1}{1-x}$, on a vu que $f \in \mathcal{A}(]a, b[, \mathbb{R})$ avec $a = -\infty$ et b = 1. Mais elle n'est même pas prolongeable par continuité en 1 puisque $f(x) \xrightarrow[x \to 1^{-}]{} +\infty$. Donc le même raisonnement ne sera pas possible pour la borne de droite.

Exercice 2

$$\mathbf{1}^{\circ}) \ A^{2} = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 3 & -3 \\ -9 & 10 & -9 \\ -3 & 3 & -2 \end{pmatrix} = 3 \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

$$Ainsi, A^{2} = 3A - 2I_{3}.$$

2°)
$$A^2 = 3A - 2I_3$$
 donc $\frac{1}{2}(A^2 - 3A) = I_3$ d'où $A \times \left(\frac{1}{2}(A - 3I_3)\right) = I_3$.
On a aussi $\left(\frac{1}{2}(A - 3I_3)\right) \times A = I_3$.

On en déduit que A est inversible et $A^{-1} = \frac{1}{2}(A - 3I_3)$.

- **3°) a)** Pour $n \in \mathbb{N}$, on pose $H_n : A^{n+1} 2A^n = A 2I_3$.
 - \bigstar Pour $n=0:A^1-2A^0=A-2I_3$ donc H_0 est vraie.
 - \star On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} .

$$A^{n+2} - 2A^{n+1} = A \times (A^{n+1} - 2A^n) = A(A - 2I_3)$$
 par H_n
= $A^2 - 2A$
= $3A - 2I_3 - 2A = A - 2I_3$

Donc, H_{n+1} est vraie.

- \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}, A^{n+1} 2A^n = A 2I_3$
- **b)** Soit $n \in \mathbb{N}$.

$$G_{n+1}=A^{n+1}+A-2I_3=2A^n+A-2I_3 \qquad \text{par ce qui précède}$$

$$=2(A^n+A-2I_3)$$

$$=\boxed{2G_n}$$

Ainsi, (G_n) est une suite « géométrique » de matrices.

On pose, pour $n \in \mathbb{N}, H_n : G_n = 2^n G_0$.

- ★ Pour n = 0, $G_0 = 2^0 G_0$ donc H_0 est vraie.
- ★ On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} . $G_{n+1} = 2G_n = 2(2^nG_0)$ par H_n donc $G_n = 2^{n+1}G_0$. Ainsi, H_{n+1} est vraie.
- ★ On a montré par récurrence que : $\forall n \in \mathbb{N}, G_n = 2^n G_0$.

Soit $n \in \mathbb{N}$. $A^n = G_n - A + 2I_3$ donc $A^n = 2^n G_0 - A + 2I_3$.

Or
$$G_0 = A^0 + A - 2I_3$$
 donc $G_0 = A - I_3$.

Finalement,
$$A^n = 2^n(A - I_3) - A + 2I_3 = (2^n - 1)A + (2 - 2^n)I_3$$

4°) a) On a
$$2B + C = 2A - 2I_3 + 2I_3 - A$$
 donc $A = 2B + C$

b)
$$B = \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix}$$
, donc $B^2 = \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix} = B$. $C = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$, donc $C^2 = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} = C$.

Posons, pour tout $n \in \mathbb{N}^*$, $P_n : B^n = B$ et $C^n =$

• C'est vrai pour n = 1.

• Si c'est vrai au rang $n \in \mathbb{N}^*$, alors $B^{n+1} = B^n B = BB$ par hypothèse de récurrence, donc $B^{n+1} = B$. De même $C^{n+1} = C$.

• Conclusion : pour tout $n \in \mathbb{N}^*$, $B^n = B$ et $C^n = C$

c) Vérifions que 2B et C commutent :

$$2B \times C = 2 \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$C \times (2B) = 2CB = 2 \begin{pmatrix} 2 & -1 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 & -1 \\ -3 & 3 & -3 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Soit $n \in \mathbb{N}^*$. On peut donc appliquer la formule du binôme :

$$A^{n} = (2B + C)^{n} = \sum_{k=0}^{n} \binom{n}{k} (2B)^{k} C^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} 2^{k} B^{k} C^{n-k}$$

$$= \binom{n}{0} 2^{0} B^{0} C^{n-0} + \dots + \binom{n}{n} 2^{n} B^{n} C^{n-n}$$

(Comme $n \ge 1$, il y a au moins les deux termes extrêmes écrits dans la dernière ligne).

Les éventuels termes B^kC^{n-k} avec $k \in \{1, \dots, n-1\}$ peuvent se réécrire, puisque $k-1 \in \mathbb{N}$ et $n-1-k \in \mathbb{N}$: $B^kC^{n-k} = B^{k-1} \times BC \times C^{n-1-k}$.

Ces termes sont donc nuls puisque BC = 0.

Ainsi
$$A^n = \binom{n}{0} 2^0 B^0 C^n + \binom{n}{n} 2^n B^n C^0 = I_3 C + 2^n B I_3 = \boxed{C + 2^n B}$$

On peut vérifier qu'on retrouve la même expression qu'à la question 3: pour tout $n \in \mathbb{N}^*$, $A^n = 2I_3 - A + 2^n(A - I_3) = (2^n - 1)A + (2 - 2^n)I_3$.

Complément : Pour la question 3.b, avec la première version de l'énoncé $(G_n = A^n + 2A - 2I_3)$, on trouvait , pour tout $n \in \mathbb{N}$, $G_{n+1} = 2A^n + 3A - 4I_3 = 2(A^n + 2A - 2I_3) - A = 2G_n - A$.

On pouvait alors faire une analogie avec les suites arithmético-géométriques de nombres : • On commence par chercher une matrice $L \in \mathcal{M}_3(\mathbb{R})$ telle que L = 2L - A : L = A

- On commence par chercher une matrice $L \in \mathcal{M}_3(\mathbb{R})$ telle que L = 2L A : L = A est la solution.
- On pose alors, pour tout $n \in \mathbb{N}$, $\tilde{G}_n = G_n L = G_n A$. Pour tout $n \in \mathbb{N}$, $\tilde{G}_{n+1} = G_{n+1} - A = 2G_n - A - A = 2(G_n - A) = 2\tilde{G}_n$. Une récurrence comme dans le corrigé ci-dessus montre alors que pour tout $n \in \mathbb{N}$, $\tilde{G}_n = 2^n \tilde{G}_0$. (Attention à ne pas l'affirmer sans preuve : nous ne connaissons aucun résultat sur des "suites géométriques de matrices").

Et $\tilde{G}_0 = G_0 - A = A^0 + 2A - 2I_3 - A = A - I_3$.

• D'où, pour tout $n \in \mathbb{N}$, $G_n = \tilde{G}_n + A = 2^n(A - I_3) + A$, puis $A^n = G_n - 2A + 2I_3 = 2^n(A - I_3) - A + 2I_3 = (2^n - 1)A + (2 - 2^n)I_3$.