

HOLY GUACAMOLE

Name

Location

- 1. Personal Information Examples
- 2. Major Biology/Chemistry
- 3. Orientation Trainer
- 4. Trainer on Compliance and Policy
- 5. Military Officer

CONTENTS

- **01** Data Collection
- **02** Data Wrangling
- **03 Exploration**
- 04 ANOVAs
- **05 Logistic Regression**

Avocado Consumption

Comparing Prices and Volume of Avocados in three different US Regions

- 1. Buffalo/Rochester, NY
- 2. Dallas/Ft Worth, TX
- 3. San Diego, CA

Methods - Data Collection

- Downloaded from the Woz-U Github repo
- CSV file
- Imported using Pandas library
- Original source is from Kaggle

Data Wrangling

- Original dataset contained 18249 rows
- Dataset includes 54 regions
- Over 4 years (2015, 2016, 2017, 2018)
- A subset of the three regions was used in this analysis
- Sample sizes were the same for each region (338)

Avocado Consumption per Region

Avocado Price Over Time

Average Avocado Price of all 54 regions and all 4 years was \$1.41

Avocado Consumption Over Time

Were the average avocado prices different between the regions?

One-Way ANOVA

ANOVA Assumption of Normality

Log Transformation seems to normalize the most.

One-Way ANOVA

ANOVA Assumption of Normality - CONT

However, a Bartlett's Test result is significant and the homogeneity of variance has been violated. We will continue anyway but be wary of our results.

One-Way ANOVA

ANOVA Assumptions

- Sample size has a least 20 cases per independent variable
- No overlap between groups (regions) and region testings are not related
- Sphericity is not applicable because it's not a between subjects design

One-Way ANOVA Comparing Region and Volume Sold

ANOVA Results

- ANOVA result was significant serving as evidence that there was a difference between average avocado consumption (volume sold) of the three regions
- There was also a significant difference in consumption BETWEEN each region

 Total Volume

region	
BuffaloRochester	67936.302959
DallasFtWorth	616625.108136
SanDiego	265656.567130

One-Way ANOVA Comparing Season and Price

ANOVA Results

- Assumption of normality was met
- Homogenity of Variance was violated, so made corrections using R software
- ANOVA was significant serving as evidence prices differ per season

	SeasonR	Mean
	<chr></chr>	<db7></db7>
1	Fall	1.45
2	Spring	1.29
3	Summer	1.38
4	Winter	1.24

```
Fall Spring Summer
Spring 3.0e-05 - - -
Summer 0.33582 0.09003 -
Winter 1.4e-09 0.59198 0.00032
```

Predicting Organic or Non-Organic with Logistic Regression

Logistic Regression Results

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
        0 506 0
        1 1 507
              Accuracy: 0.999
                95% CI: (0.9945, 1)
   No Information Rate: 0.5
   P-Value [Acc > NIR] : <2e-16
                 Kappa: 0.998
Mcnemar's Test P-Value : 1
```

Sensitivity: 0.998 Specificity: 1.000

- The model resulted in 99% accuracy.
- There was only one false-positive resulting in a sensitivity of 99.8%.
- The average price of organic avocados was \$1.57.
- The median price of organic avocados was \$1.52.
- The average price of conventional avocados was \$1.10.
- The median price of conventional avocados was \$1.07.

