Instructor: Sjoerd Bosma	Assignment: Huiswerkopdracht 4
Class #:	Section #:
Name:	Class: 151603

Question 1: (6 points)

Een satelliet in een geostationaire baan zendt op 5.7~GHz een signaal uit naar een grondstation. De afstand tussen satelliet en grondstation bedraagt 36000 km. Het communicatie-systeem is in figuur 1 weergegeven. Het EIRP vermogen van de satelliet is $P_{EIRP} = 39~\text{dBW}$.

Figuur 1: Satellietcommunicatiesysteem.

De opzet van het ontvangersysteem in het grondstation is gedetailleerd weergegeven in figuur 2.

Figuur 2: Blokschema van het ontvangstation.

Hierin gelden de volgende parameters :

- De paraboolantenne van het grondstation : effectief oppervlak $A_e = 10 \text{ m}^2$ antenneruistemperatuur (antenna noise temperature) $T_a = 120 \text{ K}$.
- Kabel: lengte = 6.6 m, demping 1.5 dB/m,
- Versterker: versterkingsfactor (gain) $G_a = 160$, ruisgetal (noise factor) $F_a = 3.5$,
- De ontvanger heeft een versterking van $G_{rx} = 20 \ dB$, ruisgetal $F_{rx} = 10 \ dB$ en de equivalente ruisbandbreedte is $BW_{rx} = 1.5 \ MHz$.

a. Bereken het beschikbare signaalvermogen op de ingang van de ontvanger (na de versterker).

Het beschikbare signaalvermogen is _____ dBm

b. Bereken de totale effectieve spectrale ruisvermogensdichtheid (enkelzijdig spectrum) N_0 van het systeem aan de uitgang van de ontvangantenne.

De totale effectieve spectrale ruisvermogensdichtheid is N_0 = _____ dBm/Hz .

c. Bereken het beschikbare ruisvermogen aan de uitgang van het systeem.

Het beschikbare ruisvermogen bedraagt _____dBm.

d. Bereken de signaal-ruisverhouding (SNR) aan de uitgang van het systeem.

De signaal-ruisverhouding SNR = _____ dB.

e. Bereken de SNR indien de versterker direct na de antenne, dus tussen de antenne en de kabel, wordt geplaatst.

De nieuwe SNR = _____ dB.

Question 2: (4 points)

De karakteristiek van een DC-gekoppelde breedbandige versterker is gegeven door :

$$v_{uit} = 11 v_{
m in} + 5 v_{
m in}^2 + 3.5 v_{
m in}^3$$

Aan deze versterker worden twee sinusvormige signalen aangeboden. Signaal A met frequentie f_1 en signaal B met frequentie f_2 .

a. Hoeveel signaalcomponenten met verschillende frequentie bevat het uitgangssignaal ?

Het aantal signaalcomponenten is ______.

b. Bereken het 3e orde interceptpunt **IP3** indien de ingangsimpedantie van de versterker 50Ω bedraagt.

IP3 = _____ dBm.

c. Bereken voor $v_{ ext{in}}=A_0\sin\left(2\cdot\pi\cdot f_1\cdot t\right)$ de waarde van A_0 waarbij de totale harmonische vervorming THD=2

$$A_0 = _{mV}$$

% bedraagt, indien $K_2 = 0$.