

1 The listing of claims below will replace prior versions of claims in the
2 application:

3

4 1. **(CURRENTLY AMENDED)** An apparatus comprising:
5 a first device;
6 a first connector coupled to the first device;
7 a second connector coupled to the first connector through a first plurality of
8 conductors, wherein alternating pairs of conductors are reversed such that at least
9 one pair of conductors is reversed at a any position closer to between the first
10 connector than the and second connector[[s]]; and
11 a second device coupled to the second connector through a second plurality
12 of conductors.

13

14 2. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the first
15 device includes a plurality of differential drivers.

16

17 3. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the second
18 device includes a plurality of differential receivers.

19

20 4. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the first
21 device is an integrated circuit.

22

23 5. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the first
24 device is an integrated circuit disposed on a substrate, wherein the substrate is
25 electrically coupled to the integrated circuit and the first connector.

1
2 6. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the second
3 device is an integrated circuit.

4
5 7. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the first
6 device has an inductive coupling coefficient substantially the same as the
7 inductive coupling coefficient of the second device.

8
9 8. **(ORIGINAL)** An apparatus as recited in claim 1 wherein the
10 alternating pairs of conductors are reversed once between the first connector and
11 the second connector.

12
13 9. **(ORIGINAL)** An apparatus as recited in claim 1 wherein alternating
14 pairs of conductors in the second plurality of conductors are reversed.

15
16 10. **(CURRENTLY AMENDED)** An apparatus comprising:
17 a first integrated circuit including a plurality of differential drivers;
18 a first connector coupled to the first integrated circuit;
19 a second connector coupled to the first connector through a plurality of
20 electrical conductors, wherein alternating pairs of the electrical conductors are
21 reversed such that at least one pair of conductors is reversed at a any position
22 closer to between the first connector than the and second connector[[s]]; and
23 a second integrated circuit coupled to the second connector, wherein the
24 second integrated circuit includes a plurality of differential receivers.

1 11. **(ORIGINAL)** An apparatus as recited in claim 10 further
2 comprising a second plurality of electrical conductors coupled between the second
3 connector and the second integrated circuit, wherein alternating pairs of the second
4 plurality of electrical conductors are reversed.

5
6 12. **(ORIGINAL)** An apparatus as recited in claim 10 further
7 comprising a second plurality of electrical conductors coupled between the second
8 connector and the second integrated circuit, wherein each pair of conductors
9 includes an inverted conductor and a non-inverted conductor, each inverted
10 conductor coupled to a non-inverted input of one of the differential receivers, and
11 each non-inverted conductor coupled to an inverted input of one of the differential
12 receivers.

13
14 13. **(ORIGINAL)** An apparatus as recited in claim 10 wherein the first
15 integrated circuit has an inductive coupling coefficient substantially the same as
16 the inductive coupling coefficient of the second integrated circuit.

17
18 14. **(ORIGINAL)** An apparatus as recited in claim 10 wherein the
19 alternating pairs of electrical conductors are reversed once between the first
20 connector and the second connector.

21
22 15. **(CURRENTLY AMENDED)** An apparatus comprising:
23 a printed circuit board;
24 a plurality of connectors disposed on the printed circuit board;

1 a first integrated circuit disposed on a first substrate, wherein the first
2 substrate is configured to be coupled to one of the plurality of connectors;

3 a second integrated circuit disposed on a second substrate, wherein the
4 second substrate is configured to be coupled to one of the plurality of connectors;
5 and

6 a first plurality of electrical conductors coupled to the plurality of
7 connectors, wherein alternating pairs of conductors between adjacent connectors
8 are reversed such that at least one pair of conductors is reversed at a position
closer to location offset toward one of the plurality of connectors than another of
9 the plurality of connectors.

10
11
12 16. **(ORIGINAL)** An apparatus as recited in claim 15 wherein the
13 printed circuit board is a backplane.

14
15 17. **(ORIGINAL)** An apparatus as recited in claim 15 further
16 comprising a second plurality of conductors coupled between the first integrated
17 circuit and one of the plurality of connectors, wherein alternating pairs of
18 conductors have reversed polarity.

19
20 18. **(ORIGINAL)** An apparatus as recited in claim 15 wherein the first
21 substrate is a printed circuit board.

22
23 19. **(ORIGINAL)** An apparatus as recited in claim 15 wherein the first
24 substrate is a memory module.

25

1 20. **(ORIGINAL)** An apparatus as recited in claim 15 wherein the first
2 integrated circuit is a memory device.

3
4 21. **(ORIGINAL)** An apparatus as recited in claim 15 wherein the first
5 integrated circuit has an inductive coupling substantially the same as the inductive
6 coupling of the second integrated circuit.

7
8 22 - 25. **(CANCELED)**

9
10 26. **(CURRENTLY AMENDED)** A method comprising:
11 generating a plurality of differential signals;
12 transmitting the plurality of differential signals through a first connector
13 and a second connector to a plurality of differential receivers;
14 reversing the polarity of alternating differential signals at a any position
15 closer to between the first connector than the and second connector[[s]]; and
16 reversing the polarity of alternating differential signals between the second
17 connector and the plurality of differential receivers.

18
19 27. **(ORIGINAL)** A method as recited in claim 26 wherein the first
20 connector generated inductive coupling noise as the differential signals are
21 transmitted through the first connector.

1 28. **(ORIGINAL)** A method as recited in claim 26 wherein the second
2 connector generated inductive coupling noise opposite the noise generated by the
3 first connector as the differential signals are transmitted through the second
4 connector.

5
6 29. **(ORIGINAL)** A method as recited in claim 26 further including
7 decoding the plurality of differential signals.

8
9 30. **(ORIGINAL)** A method as recited in claim 26 wherein a transmitter
10 package transmits the plurality of differential signals and a receiver package
11 receives the plurality of differential signals.

12
13 31. **(ORIGINAL)** A method as recited in claim 30 further including
14 modifying the transmitter package such that the coupling coefficient of the
15 transmitter package is substantially the same as the receiver package.

16
17 32. **(CURRENTLY AMENDED)** A method comprising:
18 modifying a transmitter package such that the coupling coefficient of the
19 transmitter package is substantially the same as the coupling coefficient of a
20 receiver package;

21 transmitting multiple pairs of differential signals using the transmitter
22 package;

23 reversing polarity of alternating pairs of differential signal conductors such
24 that at least one pair of conductors is reversed at a position closer to the transmitter
25 package than the receiver package; and

1 receiving the multiple pairs of differential signals using the receiver
2 package.

3
4 33. (ORIGINAL) A method as recited in claim 32 wherein the
5 transmitter package transmits multiple pairs of differential signals across a
6 plurality of conductors.

7
8 34. (ORIGINAL) A method as recited in claim 32 further comprising
9 decoding the multiple pairs of differential signals.

10
11 35. (ORIGINAL) A method as recited in claim 32 wherein the
12 differential signals are transmitted through a pair of connectors on a plurality of
13 conductors, wherein alternating pairs of conductors are reversed between the pair
14 of connectors.

15
16 36 - 38. (CANCELED)

17
18
19
20
21
22
23
24
25