PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-016253

(43) Date of publication of application: 19.01.2001

(51)Int.CI.

H04L 12/56 H04L 12/28 H04L 12/66 H04Q 7/22 H04Q 7/24 H04Q 7/26 H04Q 7/30

(21)Application number: 11–182907

11 102001

(71)Applicant: HITACHI LTD

(22)Date of filing:

29.06.1999

(72)Inventor: MATSUMOTO NORIHISA

YANO TADASHI

HIRATA TETSUHIKO FUKUZAWA SHOJI MATSUI SUSUMU TAKAHASHI YOSUKE

(54) METHOD FOR INTERRUPTING REMAINING TCP CONNECTION

(57)Abstract:

PROBLEM TO BE SOLVED: To relieve a load of an exchange for mobile terminals when an IP address of a mobile terminal is changed attended with its movement by generating a TCP segment to interrupt a TCP connection for a received packet and transmitting the TCP segment to an IP network in the case that a destination address of the received packet is not assigned and contents of its data part point out TCP segment.

SOLUTION: In the case that no destination address is assigned to a packet received from an IP network and contents of a data part of the packet point out a TCP segment, a TCP segment to interrupt a TCP connection pointed out by the TCP segment of the contents of the data part is generated and transmitted to the IP network. A packet exchange PDSN 105 is provided with containing channel I/Fs 201a-201c to contain BSC and a network I/F 202 to control a network channel to a PDGN and also with a packet buffer 203 to temporarily store

ROLA (2018) 202 (2018) (2018

packets received from each channel, a CPU 204 and a memory 205 or the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

- the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

, • ··· j •

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-16253

(P2001 - 16253A)

(43)公開日 平成13年1月19日(2001.1.19)

(51) Int.Cl. ⁷		識別記号	FI				Ĩ	-7]-ド(参考)	
H04L	12/56		H04	L 1	1/20		102A	5K030	
	12/28	ţ		1	1/00		310B	5 K O 3 3	
	12/66			11/20			B 5K067		
H 0 4 Q	7/22	·	H04	Q	7/04		Α		
	7/24							<u></u>	
		審査請求	未請求	請求項	頁の数8	OL	(全 13 頁)	最終頁に続く	
(21) 出願番号		特顯平11-182907	(71)出	(71)出願人 000005108					
					株式会	社日立	製作所		
(22) 出願日		平成11年6月29日(1999.6.29)			東京都	千代田	区神田駿河台	四丁目6番地	
			(72)発明者 松本 謙尚				·		
		`			神奈川	県川崎	市麻生区王禅	寺1099番地 株	
					式会社	日立製	作所システム	開発研究所内	
			(72)発	明者	矢野	正		,	
					神奈川	県川崎	市麻生区王禅	寺1099番地 株	
	•				式会社	日立製	作所システム	開発研究所内	
			(74) ft	理人	100075	096			
					弁理士	作田	康夫		
		,							
								最終頁に続く	

(54) 【発明の名称】 残留TCPコネクション切断方法

【課題】 移動端末の移動にともなって I Pアドレスが

(57) 【要約】

変更になったときの移動交換機の負荷を減らす。また、 同一ユーザの同時複数アクセスを禁止したサーバに対 し、移動先での再アクセスを短時間で可能にする。 【解決手段】 PDSNに!Pアドレス割当テーブル (-3 O O) を設ける。インターネットから受信した!P パケット(600)のDestination Address(612) について!Pアドレス割当テーブル(300)の使用中 フラグ(302)が未使用となっており、かつ、1Pパ ケット(600)のDATA(615)の内容がTCPセグ メント(700)である場合は、当該TCPセグメント の示すTCPコネクションについてRST (710)が1 のTCPセグメントを作成し、インターネットに送信す る。

図8

•

【特許請求の範囲】

【請求項1】複数の移動端末が、移動交換機に接続された複数の無線基地局と無線通信を行い、前記移動交換機を介して1P網とパケット通信を行う移動パケット通信網の、前記移動交換機に、

当該移動交換機を介してパケット通信を行う移動端末に IPアドレスを動的に割り当てるダイナミックアサイン 手段と、

1 P網から受信したパケットの宛先アドレスが移動端末 に割当て済みか否かを判定するアドレス割当て状態判定 手段と、

受信したパケットのデータ部の内容がTCPセグメント であることを判定するTCP判定手段と、

受信した T C Pセグメントが示す T C Pコネクションを 切断するための、切断指示セグメント作成手段を設け、

IP網から受信したパケットの宛先アドレスが移動端末に割当てておらず、かつ、パケットのデータ部の内容がTCPセグメントである場合は、当該TCPセグメントの示すTCPコネクションを切断するための切断指示セグメントを作成し、IP網に送信することを特徴とする残留TCPコネクション切断方法。

【請求項2】複数の移動端末が、移動交換機に接続された複数の無線基地局と無線通信を行い、前記移動交換機を介して I P網とパケット通信を行う移動パケット通信網の、前記移動交換機に、

当該移動交換機を介してパケット通信を行う移動端末に IPアドレスを動的に割り当てる、ダイナミックアサイン手段と、

移動端末とIP網の間で送受信するパケットのデータ部がTCPセグメントである場合に、当該TCPセグメントを解析してTCPコネクション状態を管理する、TCPコネクション管理手段と、

TCPコネクションを切断するための、切断指示セグメント作成手段を設け、移動端末に対するIPアドレスの割当てを解消したときに、当該IPアドレスに関するTCPコネクションが存在する場合は、IP網に当該TCPコネクションを切断するための切断指示セグメントを作成し送信することを特徴とする残留TCPコネクション切断方法。

【請求項3】請求項1または2に記載の残留TCPコネクション切断方法であって、

前記切断指示セグメントが、TCPへッダ内の制御フラグのRSTビットを1に設定したTCPセグメントであることを特徴とする残留TCPコネクション切断方法。

【請求項4】請求項1または3に記載の残留TCPコネクション切断方法であって、

I P網から受信したパケットの宛先アドレスが移動端末に割り当てておらず、かつ、パケットのデータ部の内容がTCPセグメントであり、かつ、当該TCPセグメントが、TCPコネクションの確立要求を示すセグメント

であった場合は、当該TCPセグメントの示すTCPコネクションを切断するための切断指示セグメントをIP網に送信しないことを特徴とする残留TCPコネクション切断方法。

• 3

【請求項5】請求項4に記載の残留TCPコネクション 切断方法であって、

I P網から受信したパケットに含まれるTCPセグメントの、制御フラグのSYNフラグが1で、かつACKフラグがOである場合に、当該TCPセグメントをTCPコネクションの確立要求を示すセグメントと判定することを特徴とする残留TCPコネクション切断方法。

【請求項6】請求項1または3または4または5に記載の残留TCPコネクション切断方法であって、

前記移動交換機に、

移動端末に割当てていない I Pアドレスの、その割当てていない時間を計測する、I Pアドレス空き時間計測手段と、

TCPセグメントを受信しなくなってからTCPコネクションは消滅したとみなすまでの時間を記憶する、TCPコネクション消滅みなし時間記憶手段を設け、

IPアドレス空き時間がTCPコネクション消滅みなし時間以上になった場合は、当該IPアドレス宛てのTCPセグメントを受信しても、受信したTCPセグメントの示すTCPコネクションを切断するための、切断指示セグメントをIP網に送信しないことを特徴とする残留TCPコネクション切断方法。

【請求項7】請求項1または3または4または5または6に記載の残留TCPコネクション切断方法であって、前記移動交換機に、

切断指示セグメントを I P網に送信する対象となる受信パケットの送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを記憶する、TCPコネクション記憶手段と、

TCPコネクション記憶手段に記憶する送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを有するパケットをカウントする、切断コネクション上パケットカウント手段と、

切断指示セグメント送信のインターバル値をパケット数で記憶する、インターバルパケット数記憶手段を設け、 切断コネクション上パケットカウント手段でカウントした値がインターバルパケット数に選したときに、切断指

示セグメントを送信することを特徴とする残留TCPコ

ネクション切断方法。

前記移動交換機に、

【請求項8】請求項1または3または4または5または6に記載の残留TCPコネクション切断方法であって、

切断指示セグメントを I P網に送信する対象となる受信パケットの送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを記憶する、T C P コネクション記憶手段と、

前記切断指示セグメントを送信してからの経過時間を計測する、切断指示送信後経過時間計測手段と、

切断指示セグメント送信のインターバル値を時間で記憶する、インターバル時間記憶手段を設け、

Ⅰ P網から受信したパケットの宛先アドレスが移動端末に割当てておらず、かつ、パケットのデータ部の内容が T C P セグメントであり、かつ、当該 T C P セグメントが示す T C P コネクションに関する切断指示送信後経過時間計測手段で計測した値がインターバル時間記憶手段に記憶する値を越えていた場合は、当該 T C P セグメントの示す T C P コネクションを切断するための切断指示セグメントを作成し、 I P網に送信することを特徴とする残留 T C P コネクション切断方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複数の無線ソーンでサービスエリアをカバーする陸上移動体通信に関し、特に移動体通信上でのパケット通信に関する。

[0002]

【従来の技術】現在、第2世代と呼ばれる携帯電話シス テムがある。NTT DoCoMoテクニカル・ジャー ナルVol. 5No. 2の「移動パケット通信システム 特集」によると、このシステムでは、端末が携帯電話ネ ットワークを介して、インターネットに接続、パケット 通信を行うことができる。 | P網とのゲートウエイはあ る「Pアドレスを持ち、そのアドレスと同じネットワー ク番号をもつIPアドレスを宛先とするパケットが、! P網ではこのゲートウエイにルーティングされてくる。 【0003】したがって、このゲートウエイを介してイ ンターネットに接続したい端末には、ゲートウエイの1 Pアドレスと同じネットワーク番号をもつIPアドレス を割り当てる必要がある。割り当てる機会としては、サ ービス加入時に、加入者に対し固定的にIPアドレスを 割り当てる方法と、端末が I P網との通信 (パケットサ ービス)を要求したときに動的に割り当てる方法があ る。動的に割り当てる場合、端末がパケットサービスを 利用している間は、端末が携帯電話システムのサービス エリア内のどこに移動しようとも同一のIPアドレスを 使用し続けることができるが、パケットサービスを終了 したときは、再度パケットサービスを要求しても同一の I Pアドレスが割り当てられる保証はない。

【0004】一方、第3世代と呼ばれる携帯電話システムが開発中である。このシステムは I MT-2000と呼ばれている。米国で開発中の c d m a 2000も、I MT-20001種である。

【0005】cdma2000では、端末からPDSNと呼ばれるパケット用交換機までは移動網特有のルーティング方式でパケットを転送するが、PDSNから、インターネットへのゲートウエイとなるPDGNまでは、インターネット同様にIPによるルーティングでパケッ

トの転送を行う。したがって、各PDSNが、第2世代におけるゲートウエイと同じようにIPアドレスを持ち、そのIPアドレスによって、そのPDSN配下に位置する端末が使用できるIPアドレスが限定される。

[0006]

【発明が解決しようとする課題】 cdma2000では、携帯電話システムのサービスエリア内を端末がパケット通信を行いながら移動した場合、IPアドレスを変更しなければならないことがある。すなわち、異なるPDSNが管理するサービスエリア間を端末が移動した場合である。cdma2000では、端末がパケットサービスを要求すると、端末からPDSNまでのパケット通信用パスを移動網特有のプロトコルで設定した後、端末ーPDSN間にPPPリンクを確立し、IPCPにより端末のIPアドレスを割り当てる。

【OOO7】したがって、端末がインターネットとパケット通信を行いながらPDSN間を移動した場合も、端末と移動先のPDSNとの間で再度PPPリンクを確し、あらたなIPアドレスを割り当てる。このとき、パケットがインターネットから送られ続けている。これらのパケットは無意味にPDSNの負荷を高くし、またののクセスを禁止している場合には、端末がせっからを移動先PDSN配下から新しいIPアドレスでサーバにアクセスしようとしても、TCPコネクションがサーバ側でタイムアウト(一般的には3分)して以前のアセスが終了するまではアクセスできないことになる。

[8000]

【〇〇〇9】あるいは、移動交換機に、当該移動交換機を介してパケット通信を行う移動端末にIPアドレスを動的に割り当てるダイナミックアサイン手段と、移動端末とIP網の間で送受信するパケットのデータ部がTCPセグメントである場合に、当該TCPセグメントを解析してTCPコネクション状態を管理するTCPコネクション管理手段と、TCPコネクションを切断するため

の切断指示セグメント作成手段を設け、移動端末に対する I Pアドレスの割当てを解消したときに、解放されずに残っている T C Pコネクションに対し切断指示セグメントを送信する。

【0010】また、移動交換機の、切断指示セグメント送信にともなう負荷を減らすために、移動端末に割り当てていないIPアドレス宛てのパケットの内容がTCPコネクションの確立要求を示すセグメントであった場合は、コネクションはまだ確立されていないとみなして切断指示セグメントは送信せず、受信パケットを破棄する。

【0011】また、移動交換機に、移動端末に割当てていない | Pアドレスの、その割当てていない時間を計測する、 | Pアドレス空き時間計測手段と、 TCPセグメントを受信しなくなってからTCPコネクションは消滅したとみなすまでの時間を記憶する、 TCPコネクション消滅みなし時間記憶手段を設け、 | Pアドレス空き時間がTCPコネクション消滅みなし時間以上になった場合は、 当該 | Pアドレス宛てのTCPセグメントを受信しても、切断指示セグメントを送信せずに、 受信パケットを破棄する。

【0012】また、移動交換機に、切断指示セグメントを1P網に送信する対象となる受信パケットの送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを記憶する、TCPコネクション記憶手段に記憶する送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを有するパケットをカウントする、切断コネクション上パケットカウント手段と、切断指示セグメント送信のインターバル値をパケット数で記憶する、インターバルパケット数記憶手段を設け、一度切断指示セグメントを送信してからインターバルパケット数だけのパケットを同一TCPコネクション上で受信するまでは、切断指示セグメントを送信・せずに、受信パケットを破棄する。

【0013】また、移動交換機に、切断指示セグメントを I P網に送信する対象となる受信パケットの送信元アドレス、送信元ポート、送信先アドレス、送信先ポートを記憶する、T C Pコネクション記憶手段と、前記切断指示セグメントを送信してからの経過時間を計測する、切断指示送信後経過時間計測手段と、切断指示セグメントを送信のインターバル値を時間で記憶する、インターバル時間記憶手段を設け、一度切断指示セグメントを送信してからインターバル時間経過するまでは、同一T C P コネクション上でパケットを受信しても切断指示セグメントを送信せずに、受信パケットを破棄する。

[0014]

【発明の実施の形態】以下、本発明の実施の1 形態を説明する。

【0015】図1はcdma2000で開発中の移動パケット通信網100の構成を示している。PC101は

MS102と有線回線で接続され、IPパケットをMS 102に送信あるいはMS102から受信する。MS1 02は移動パケット通信網100が収容する移動機であ り、BTS103とCDMA方式による無線通信を行 う。BTS103は無線基地局装置であり、BSC10 4に有線回線で接続されている。移動パケット通信網1 OO内の各BTSはそれぞれが無線ゾーンを形成し、そ れらの無線ゾーンで地域を面的にカバーすることで、移 動パケット通信網100のサービスエリアを構成する。 BTS103は、自装置が形成する無線ゾーンに位置す る複数のMS102と同時通信を行う。BSC104は 基地局制御装置であり、複数のBTS103を収容す る。MS102とBTS103の間の無線プロトコルの レイヤ2は、実際にはMS102とBSC104で終端 する。PDSN105はパケット用の移動交換機であ り、複数のBSC104を収容する。MS102からP DSN105までは、コネクションオリエンテッドな通 信パスを設定して、その上でIPパケット送受信するの で、この範囲ではIPパケットのヘッダ情報に基づいた IPルーティングは行わない。

【0016】一方、PDSN105からPDGN10 6、インターネット107まではIPルーティングを行 うため、各PDSNにはグローバルなIPアドレスが割 り当てられている。PDSN105において、MS10 2側のプロトコルとインターネット107側のプロトコ ルの変換を行う。PDGN106は移動パケット通信網 100のインターネット107へのゲートウエイであ る。PDGN106は複数のPDSN105に接続す る。PC101はMS102、BTS103、BSC1 04、PDSN105、PDGN106を介してインタ ーネット107にあるサーバとIPパケット通信を行う ことができる。MSC108は回線交換用の移動交換機 であり、HLR110に接続されている。HLR110 はPC101宛てのパケットがインターネット107か らPDSN105にルーティングされてきたときにMS 102を呼び出すための位置情報を管理している。

【0017】インターネット107からPDSN105に1Pパケットが着信すると、宛先アドレスからMS102の識別番号を求めて配下のBSC104に着信要求を送信する。BSC104はMSC108にMS102の識別番号を通知し、MSC108がHLR110を検索、BSC104、BTS103経由でMS102のページングを行う。MS102がページングに応答すると、MS102-PDSN105間の通信パスが設定される。

【0018】図2はPDSN105の構成例を示す図である。PDSN105は、BSC104を収容する収容回線 I / F201と、PDGN106へのネットワーク回線を制御するネットワーク I / F202と、各回線から受信したパケットを一時的に格納するためのパケット

バッファ203と、CPU204と、メモリ205と、これらを接続するパケット用バス207と、制御用バス206からなる。収容回線 I / F201は、収容回線上の通信パス設定プロトコルの制御、PPPリンク制御では、PC101に割り当て600円では、PC101に割り当て01に通知し、CPU204はメモリ205に格納している I Pアドレス割当テーブルを参照して、空いる I Pアドレスを収容回線 I / F201に通知する。図3に、当該 I Pアドレス割当テーブル300を示す。

【〇〇19】 I Pアドレス割当テーブル3〇〇は、PC 1〇1に対しダイナミックアサインする I Pアドレス3〇1と、その I Pアドレスが割当済み (使用中)か否かを示す使用中フラグ3〇2と、I Pアドレスが使用中であった場合にその I Pアドレスを使用しているPC1〇1がどの収容回線に収容されているかを示す収容回線番号3〇3と、使用中 I Pアドレスが解放されたときの時刻を示す割当解除時刻3〇4で構成する。

【0020】CPU204は、IPアドレス割当テーブル300内の使用中フラグ302が未使用であるIPアドレスを、割当要求のあった収容回線I/Fに通知し、使用中フラグ302を使用中に設定、収容回線番号303を格納する。

【0021】また、パケット通信終了等の要因で収容回線 I / F 201が C P U 204に I P アドレス解放を要求したときは、C P U 204は 当該 I P アドレスに対応した使用中フラグ302を未使用にし、割当解除時刻304に現時刻を格納する。

【0022】ネットワーク I / F202は、ネットワーク回線からのパケットの受信、あるいは送信を行う。パケットを受信した場合、受信パケットはパケット用バス207を介してパケットバッファ203に格納される。CPU204は I Pアドレス割当テーブル300を参照し、受信パケットの宛先アドレスを I Pアドレス301として収容回線番号303を求め、それに相当する収容回線 I / F201に当該パケットを送信する。

【〇〇23】収容回線 I / F 2 O 1 が収容回線からパケットを受信した場合は、パケット用バス 2 O 7を介してパケットバッファ 2 O 3 に格納し、ネットワーク I / F 2 O 2 に送出する。本例ではネットワーク I / F 2 O 2 はひとつのみであるが、複数ある場合は、パケットの宛先アドレスに基づいてネットワーク I / F を選択する必要があり、そのためのルーティングテーブルは I P アドレス割当テーブル3 O O 同様、メモリ 2 O 5 に格納する。

【 O O 2 4 】 図 5 は、P C 1 O 1 がインターネット1 O 7 内のサーバ5 O 4 とパケット通信を開始するときのシーケンス図である。P C 1 O 1 が、接続しているM S 1 O 2 に対しパケット通信要求を送信すると、M S 1 O 2 は P D S N 1 (5 O 3)までの通信パス確立を行う(5

05)。通信パスの確立が終わると、MS102はPC101にパス確立応答を送信する。その後、PC101はPDSN1(503)との間にPPPリンクの確立をLCPプロトコルにより行う(506)。PPPリンクの確立が完了すると、PC101はIPCPプロトコルにより自分が使用するIPアドレスをPDSN1(503)に割り当ててもらう。これによりPC101はインターネット内のサーバ504とIP通信が行える。本図ではIP上でTCPコネクションをPC101とサーバ504の間で確立(508)する例を示している。

【0025】図6は、PC101とサーバ504の間で 送受信するIPパケットのフォーマットを示す。フォー マット上部の整数値はビット番号を表す。 I Pパケット 600において、先頭4ビットのVersion601はIP ヘッダのバージョンを示す。本図ではパージョン4のヘ ッダフォーマットを示しており、Version601には4 をコーディングする。IHL602はIPヘッダの長さを 4オクテット単位で示す。例えば、IPヘッダがオプシ ョン613を持たない場合はDestination Address61 2までがヘッダであるので、5をコーディングする。Ty pe of Service 6 O 3 は、このパケットに与えられるサ ービス品質を表す。Total Length 6 O 4 は、IPパケッ トの全長をオクテット単位で表す。Identification 6 O 5は、PC101またはサーバ504が送信したいデー タを複数のパケットに分割した場合に、受信側でもとの データに再構成するための情報を示す。Flags 6 O 6 は、データを複数パケットに分割するときの制御に用い る。Fragment Offset 6 0 7 はデータを複数に分割した ときの、もとのデータ内での位置を示す。Time to Live 608は、当該パケットがネットワーク内に存在するこ とができる残り時間を示す。Protocol609は1Pの上 位層のプロトコルを示し、例えば、TCPの場合は6で ある。Header Checksum 6 1 0は、I Pヘッダのチェッ クサムを示す。Source Address 6 1 1 は、I Pパケット の送信元のIPアドレスを示す。Destination Address 612は、IPパケットの宛先アドレスを示す。Option s613は、標準のヘッダには含まれないオプション情 報を示すために用いられる。IPヘッダにOption 613 が含まれない場合もある。Padding 6 1 4は I P ベッダ の長さを4オクテットの倍数に調整するためのものであ り、Options 6 1 3 が 4 オクテットの倍数にならない場 合に含まれる。DATA 6 1 5 は、IPの上位層で必要な情 報が設定される。

【OO26】図7はTCPセグメントのフォーマットを示す。フォーマット上部の整数値はビット番号を示す。source Port701は送信ホストのポート番号を示す。Destination Port702は受信ホストのポート番号を示す。Sequence Number703はTCPコネクション上で送信するデータ(各TCPセグメント700のDATA718に設定して送信する)にオクテット単位に連続番号を

割り当てた時の、そのセグメントにおけるDATA 7 1 8 の 先頭オクテットの番号を示す。Acknowledgment Number 7 0 4 は、当該TCPセグメントの送信ホストが通信相手からデータを受信する際の、次に受信することを期待しているセグメントのSequence Numberを示す。Data Offset 7 0 5 は、TCPヘッダの長さを 4 オクテット単位で示し、例えばOptions 7 1 6 を含まないセグメントの場合は5 となる。Reserved 7 0 6 はゼロをコーディングする。URG 7 0 7 は、Urgent Pointer 7 1 5 が設定されているか否かを示す。ACK 7 0 8 は、Acknowledgment Number 7 0 4 が設定されているか否かを示す。

【OO27】PSH709は、本セグメントを受信したT CPに対し、すぐにDATA718を上位層に渡すことを要 求するためのビットである。RSTフ10は、本セグメン トを受信したTCPに対しコネクションのリセットを指 示するためのビットである。SYNフ11は、TCPコネ クションを確立するためのセグメントであることを示す ·ビットである。FIN712は、コネクションの解放を行 うためのセグメントであることを示すビットである。Wi ndow713は、本セグメントの送信ホストが、Acknowle dgment Number 7 0 4 によって示すデータを 1 オクテッ ・ト目として受信可能なデータ量を示す。Checksumフ14 は、TCPセグメントのチェックサムである。Urgent P ointer 7 1 5 は、緊急情報が本セグメントのDATA 7 1 8 から始まる場合、そのデータ量をオクテット単位で示 す。Options 7 1 6は受信できる最大セグメント長を示 す場合等に用いられる。Paddingフ1フはTCPヘッダ が4オクテットの整数倍になるように調節するためのも のである。

【OO28】DATA718は上位層で必要な情報が設定される。

【0029】図8はPC101およびMS102がPD SN間を移動した場合に、移動前のTCPコネクション を切断するシーケンス図である。まず、PC101はM S102, BTS1 (501), BSC1 (502), PDSN1 (503) を介してサーバ504とTCP通 信を行っていたものとする。ここで、MS102がPD SN1 (503) 配下のBTS1 (501) からPDS 🕚 N2(803)配下のBTS2(801)に移動する と、MS102はハンドオフ要求を網に送信し、PDS N1(503)までの通信パスを切断する(804)。 PDSN1 (503) では、それまでPC101に割り 当てていたIPアドレスを解放する(805)。MS1 02は移動先のBTS2(801)、BSC2(80 2)を介してPDSN2(803)までの通信パスを確 立する(806)。MS102はPC101に確立完了 を通知し、PC101はPDSN2(803)との間で PPPリンク確立(807)、 IPアドレス割り当て (808)、TCPコネクション確立(809)を行う ことで、新しい I PアドレスであるBを用いてサーバ5

04と通信することができる。

【〇〇3〇】一方、PDSN1(5〇3)とサーバ5〇4の間には、MS1〇2が移動する前に使用していたAという IPアドレス、pというポートに対するTCPコネクションが残っている。サーバ5〇4がこのコネクションでTCPセグメントをPDSN1(5〇3)に送信した場合、PDSN1(5〇3)は判定81〇を行い、このコネクションを解放するためにRST71〇が1のTCPセグメント7〇〇をDATA615に持つIPパケット6〇〇をサーバ5〇4に対して送信する。これによりサーバ5〇4はIPアドレスA、ポートpに関するTCPコネクションを解放することができる(811)。なお、本例ではRST71〇が1のセグメントを用いているが、FIN712が1のセグメントを使用することも可能である。

【〇〇31】図9は判定810の内容を示すための図で ある。まず、ネットワーク回線からIPパケットを受信 すると(901)、IPパケット600のDestination Address 6 1 2 を I Pアドレス割当テーブル 3 O O の I Pアドレス301として、使用中フラグ302が未使用 かどうかを判定する(902)。使用中であれば収容回 線番号303が示す収容回線に、当該IPパケットをP PPフレーミングを行って送出する(913、91 4)。ステップ902において使用中フラグ302が未 使用の場合は、IPパケット600のProtocol609を みて上位プロトコルがTCPかどうかを判定する(90 3)。TCPでない場合は、受信パケットを破棄(91 1) して当該 I Pパケットに関する処理を終了する。 【〇〇32】ステップ9〇3において、上位プロトコル がTCPである場合は、現在時刻とIPアドレス割当テ ーブル300の割当解除時刻304の差から1Pアドレ スが解放されてからの経過時間を求め、それがあるしき い値Tdより大きいかどうかを判定する(904)。こ こでいうしきい値Tdとは、TCPセグメントの送受信 がTd時間以上行われない場合はTCPコネクションは すでにサーバ504で独自に解放してしまっているとみ なす時間である。IPアドレスが解放されてからの経過 時間がTdよりおおきい場合は受信パケットを破棄し (911)、処理を終了する。ステップ904におい て、IPアドレスが解放されてからの経過時間がTd以 下の場合は、受信したTCPセグメントのSYNフ11が 1 で、かつACK 7 O B が O であるかを判定する(9 O 5)。これが成り立つ場合は、このTCPセグメントは サーバ504がTCPコネクションの確立を要求してい るものであり、したがってTCPコネクションは未確立 であるので、コネクション切断要求を積極的に送信する 必要がなく、よって受信パケットを破棄し(911)、 処理を終了する。

【 0 0 3 3 】 ステップ 9 0 5 において、受信した T C P セグメントがサーバ 5 0 4 からのコネクション確立要求

でなかった場合は、サーバ504はTCPコネクションは維持しており、そのコネクションを用いてTCPセグメントを送信してきたと考えられる。その場合、基本的にはRST710が1のTCPセグメントを含む1Pパケットを作成(909)し、ネットワークに送信(910)すればよいが、サーバ504が、RST710が1のTCPセグメントを受信してコネクションを切断するのはで、外1(503)がRSTパケット送信したパケットを受信したパケットに対していちRST710が1のTCPセグメントを送信するので、外理ブロック912でそれを抑制する。処理ブロック912では図4に示すコネクション管理テーブル400を使用する。

【0034】コネクション管理テーブル400は、移動端末1Pアドレス401と、移動端末ポート402と、通信相手1Pアドレス403と、通信相手ポート404と、RST送信後受信パケット数405と、RST送信時刻406からなる。コネクション管理テーブルの初期化は、1Pアドレス割当テーブル300の1Pアドレス301が使用中になったとき、その1Pアドレスに関して移動端末ポート402、通信相手1Pアドレス403、通信相手ポート404、RST送信後受信パケット数405、RST送信時刻406をゼロクリアすることで行う。

- 【0035】図9の処理ブロック912では、まず、受 信セグメントと同じTCPコネクションのセグメントを I Pアドレス解放後に受信しているかどうか判定するた めに、コネクション管理テーブル400のコネクション 情報(移動端末 IPアドレス401、移動端末ポート4 02、通信相手アドレス403、通信相手ポート40 4) に受信パケットのコネクションと一致するものがあ るかどうか調べる(915)。なければ、コネクション 管理テーブル400にコネクション情報として、受信パ ケットのDestination Address 6 1 2に一致する移動端 末IPアドレス401について、受信パケットのSource Address 6 1 1 を通信相手 I Pアドレス 4 0 3に、DATA 6 1 5内のTCPセグメント7 0 0 のDestination Port 702を移動端末ポート402に、Source Port701 を通信相手ポート404にそれぞれ格納する。また、RS T送信後受信パケット数405には、あるしきい値Nよ り大きい値を設定し、RST送信時刻406には現在時刻 よりあるしきい値Tth昔の時刻を設定し(916)、 ステップ906に移る。

【0036】ステップ915において、受信パケットと一致するコネクションがあった場合はそのままステップ906ではコネクション管理テーブル400のRST送信後受信パケット数405をしきい値Nと比較し、Nよりも大きければRST送信後受信パケット数405をゼロに設定し(908)、RST710が1のTCPセグメントを含む1Pパケットを作成する

(909)。ステップ906においてRST送信後受信パケット数405がしきい値Nより小さかった場合は、RST送信後受信パケット数405の値をインクリメントし、RST710が1のパケットは作成せずに受信パケットを破棄する(911)。

【OO37】しきい値NはRST710が1のパケットを 送信する頻度を調節するもので、Nが大きいほど同一コ ネクションに対するRSTパケットの送信は抑えられる。 ステップ909においてRSTパケットは次のように作成 する。Version 6 O 1 には 4 を設定する。IHL 6 O 2 には 5を設定する。Type of Service 6 0 3 には2 進数で 1 1100000を設定する。Total Length 604には4 Oを設定する。Flags 6 O 6 にはゼロを設定する。Fragm ent Offset 6 0 7 にはゼロを設定する。Protocol 6 0 9 には6を設定する。Source Address 6 1 1 にはコネクシ ョン管理テーブル400の移動端末IPアドレス401 を設定する。Destination Address 6 1 2には通信相手 IPアドレス 4 0 3を設定する。Options 6 1 3、Paddi ng 6 1 4 は I Pヘッダに含めない。DATA 6 1 5 内のTC Pセグメント700については、Source Port701に は移動端末ポート402を設定する。Destination Port 702には通信相手ポート404を設定する。Sequence Number 7 0 3 には受信セグメントのAcknowledgment Nu mber 7 O 4 を設定する。Data Offset 7 O 5 には5 を設 定する。URG 7 O 7、ACK 7 O 8、PSH 7 O 9、SYN 7 1 1、FIN712はゼロに設定する。RST710は1に設定 する。Options 7 1 6、Padding 7 1 7、DATA 7 1 8 はT CPセグメント700に含めない。RSTパケット作成 後、ネットワーク回線に送出し(910)、受信パケッ トを破棄し(911)、処理を終了する。

【0038】図8の判定810として図9を説明した が、図10でもよい。図10は図9における処理ブロッ ク912を処理ブロック1012に置き換えたものであ り、それ以外は全く同じである。処理ブロック1012 において、ステップ1015、1016は、それぞれス テップ915、916と同じである。ステップ1006 ではコネクション管理テーブル400のRST送信時刻4 06と現在時刻との差がしきい値 Tth以上であればRS T送信時刻406に現在時刻を設定し(1008)、RST 710が1のTCPセグメントを含む I Pパケットを作 成する(909)。ステップ1006においてRST送信 時刻406と現在時刻との差がしきい値Tthより小さ かった場合は、RST710が1のパケットは作成せずに 受信パケットを破棄する(911)。しきい値Tthは RST710が1のパケットを送信する頻度を調節するも ので、Tthが大きいほど同一コネクションに対するRS Tパケットの送信は抑えられる。

【0039】以上、図8のシーケンスに基づいた残留下 CPコネクション切断方法を説明したが、別の実施の方 法を図11に示す。図11は、図8同様、PC101お よびMS102がPDSN間を移動した場合に、移動前のTCPコネクションを切断するシーケンス図であるが、図8と異なるのは、PC101のIPアドレスをPDSN1(503)で解放した時に判定1101を行い、その時点で解放されていないTCPコネクション全てに対しリセット要求を送信する点である。

【0040】この方法では、PDSN1(503)にお いて、PC101に関するTCPコネクションをあらか じめ管理しておく必要があり、そのためにコネクション 管理テーブル400を使用する。ここでのコネクション 管理テーブル400の使用法は図8での使用法と全く異 なり、まず、図5においてPC101とサーバ504が TCPコネクションを確立(508)したときに、サー バ504からの受信パケットのDestination Address 6 12と一致する移動端末 1 Pアドレス 4 0 1 について、 受信パケットのSource Address 6 1 1 を通信相手 I Pア ドレス403に、DATA615内のTCPセグメント70 OのDestination Port702を移動端末ポート402 に、Source Port701を通信相手ポート404にそれ ぞれ格納する。RST送信後受信パケット数405、RST送 信時刻406は使用しない。そして、PC101とサー バ504がTCPコネクションを解放したときに、ゼロ クリアする。

【0041】なお、TCPのコネクション確立はSYN711が1のTCPセグメントがPC101ーサーバ504間で互いに送受信されるのを検出することで認識することができる。また、コネクション解放は、FIN712が1のTCPセグメントがPC101ーサーバ504間で互いに送受信されるのを検出することで認識することができる。コネクション管理テーブル400にコネクション情報が格納された状態でIPアドレスが解放されたときの判定1101の内容を図12に示す。

【0042】図12において、割当済み I Pアドレスの解放が発生すると(1201)、コネクション管理テーブル400に、コネクションが登録されているかを判定する(1202)。登録されていない場合は I Pアドレス割当テーブル300の使用中フラグ302を未使用にして処理を終える(1206)。ステップ1202においてTCPコネクションが登録されていた場合は、登録されている全てのコネクションに対し、RST(710)が1のTCPセグメントを含むパケットを作成(1203)、ネットワーク回線に送出する(1204)。その後、コネクション管理テーブル400において、解放された I Pアドレスに一致する移動端末 I Pアドレス401について、移動端末ポート402、通信相手 I Pアドレスにのいて、移動端末ポート402、通信相手 I Pアドレスにのいて、

レス403、通信相手ポート404をゼロクリアし(1205)、IPアドレス割当テーブル300の使用中フラグ302を未使用にする(1206)。

[0043]

【発明の効果】移動端末の移動にともなって! Pアドレスが変更になったときの移動交換機の負荷を減らす。

【OO44】また、同一ユーザの同時複数アクセスを禁止したサーバに対し、移動先での再アクセスを短時間で可能にする。

【図面の簡単な説明】

【図1】移動パケット通信網の構成を示す図である。

【図2】パケット用移動交換機の構成を示す図である。

【図3】 I Pアドレス割当テーブルを示す図である。

【図4】コネクション管理テーブルを示す図である。

【図5】 PC101がインターネット107内のサーバ 504とパケット通信を開始するときのシーケンス図で ある。

【図6】 I Pパケットのフォーマットを示す図である。

【図7】 T C P セグメントのフォーマットを示す図である。

【図8】 PC101およびMS102がPDSN間を移動した場合に、インターネットからのパケット受信をトリガにして移動前のTCPコネクションを切断するシーケンス図である。

【図9】図8において、PDSN105がネットワーク 回線からIPパケットを受信したときのフローチャート であって、TCPのRSTセグメントの送信間隔を受信 パケット数で制御する場合のフローチャートを示す。

【図10】図8において、PDSN105がネットワーク回線からIPパケットを受信したときのフローチャートであって、TCPのRSTセグメントの送信間隔を時間で制御する場合のフローチャートを示す。

【図11】PC101およびMS102がPDSN間を 移動した場合に、IPアドレスの解放をトリガにして移 動前のTCPコネクションを切断するシーケンス図であ る。

3'1.

【図12】図11において、IPアドレスの解放を行ったときのフローチャートである。

【符号の説明】

101…PC、102…MS、105…PDSN、107…インターネット、300…IPアドレス割当テーブル、400…コネクション管理テーブル、600…IPパケット、700…TCPセグメント、708…ACK、710…RST、711…SYN。

1,

【図2】

[図3]

[図4]

400

図4

		図 3	•
301	302	300	3 04 ·
ロアドレス	使用中フラグ	収容回接番号	割当解除時刻
A	未使用	-	TA
В	使用中	a	-
C ·	使用中	ъ	_

4	01 40	2 4	03	404 4	05 406
移動端末 IP アト゚レス	移職端末	通信相手 IP パ*以	通信相手	RST 送信後 受信パケット数	RST 送信 時刻
A	D	х	đ	N+1	Trees Tth
	p	Y	q	N+1	T reel - Tub
	p'	Y .	ď,	N+1	T rest -Tuh
В	-	-	-	_	-
	-	_			-
	_	_	-	-	-

【図5】

【図6】.

図11

図12

フロントページの続き

(51) Int. CI. 7

識別記号

テーマコート*(参考)

HO4Q 7/26

7/30 (72)発明者 平田 哲彦

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(72) 発明者 福沢 尚司

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(72) 発明者 松井 進

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所内

FΙ

(72)発明者 ▲高▼橋 陽介

神奈川県横浜市戸塚区戸塚町216番地 株式会社日立製作所通信システム事業本部内

Fターム(参考) 5K030 GA03 HA08 HC09 HC14 HD05

HD06 JL01 JT09

5K033 CCO1 DA05 DA19 ECO3

5K067 AA11 BB21 CC08 DD11 DD26

EEO2 EE10 EE16

FLESHNER & KIM, LLP
P. O. Box 221200
Chantilly, VA 20153-1200
(Tel. 703 502-9440)

New U.S. Patent Application Filed: July 8, 2003

Title: SYSTEM AND METHOD FOR MULTI-ACCESSING RADIO

COMMUNICATION DATA CALL Inventor: JUNG, Kwang-IL Docket No. P-0486