# Machine learning I, supervised learning: logistic regression



# General classification problem

- $\mathcal{X} = \mathbb{R}^d$
- $\mathcal{Y} = \{-1, 1\}$  or  $\mathcal{Y} = \{0, 1\}$ .
- $I(y,z) = 1_{y\neq z}$  ("0-1" loss)
- $F = \mathcal{Y}^{\mathcal{X}}$

#### Problem

Optimizing on  $F = \mathcal{Y}^{\mathcal{X}}$  is equivalent to optimizing in the set of subsets of  $\mathcal{X}$ .

We cannot differentiate on this hypothesis space and it is not clear how to regularize.

#### Subsets

#### Exercice 1: Combinatorial problem

If we wanted to try all applications in  $\mathcal{Y}^{\mathcal{X}}$ , if  $|\mathcal{X}| = n$ , how many applications would there be?

#### Real-valued function

Instead of an application in  $\mathcal{Y}^\mathcal{X}$  , we will learn  $g:\mathcal{X}\to\mathbb{R}$  and define  $f(x)=\mathrm{sign}(g(x))$  with

$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

#### Risk

The risk (generalization error) of  $f = sign \circ g$  is defined as

$$R(g) = P(\operatorname{sign}(g(x)) \neq y)$$

$$= E \left[ 1_{\operatorname{sign}(g(x)) \neq y} \right]$$

$$= E \left[ 1_{yg(x) < 0} \right]$$
(1)

#### Several solutions

There might be many optimal functions g, i.e : such that  $sign(g(x)) = f^*(x)$ .

Here,  $f^*(x)$  is the Bayes predictor, which is the optimal predictor : it minimizes the generalization error (risque réel).

# Margin based 0-1 loss function $\Phi_{0-1}$

$$R(g) = E \left[ 1_{\operatorname{sign}(g(x)) \neq y} \right]$$

$$= E \left[ 1_{yg(x) < 0} \right]$$

$$= E \left[ \Phi_{0-1}(yg(x)) \right]$$
(2)



## Empirical risk minimization

The corresponding empirical risk writes:

$$\frac{1}{n} \sum_{i=1}^{n} \Phi_{0-1}(y_i g(x_i)) \tag{3}$$



Issue with this objective function?

- non-convex
- not continuous

# Convex surrogate

Key idea : replace  $\Phi_{0-1}$  by another function  $\Phi$  that is easier to optimize (convexity) but still represents the correctness of the classification.

Natural question : but does minimizing the  $\Phi\text{-risk}$  lead to a good "0-1" loss prediction? Answering this question requires an advanced study.

## Most common convex surrogates

#### **Définition**

Logistic loss

$$\Phi(u) = \log(1 + e^{-u}) \tag{4}$$

With linear predictors  $(g(x_i) = \langle \theta, x_i \rangle)$ , this loss will lead to **logistic regression** (which is classification despite its name).

## Most common convex surrogates

If  $\mathcal{Y} = \{0,1\}$ ,  $\hat{y}$  is the prediction and y is the correct label, then we sometimes write :

$$I(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
 (5)

(cross entropy loss)

# Logistic function



#### Most common convex surrogates

#### **Définition**

Hinge loss

$$\Phi(u) = \max(1 - u, 0) \tag{6}$$

With linear predictors, this loss will lead to **Support vector** machines.

#### **Définition**

Squared hinge loss

$$\Phi(u) = (\max(1 - u, 0))^2 \tag{7}$$

# Hinge loss



## Logistic regression

$$g(x) = \langle x, \theta \rangle = x^T \theta.$$

• 
$$f(x) = sign(\langle x^T \theta \rangle)$$

▶ It can be seen as "linear regression applied to classification".

## Logistic regression

In this section we use the setting  $\mathcal{Y} = \{0,1\}$ .

• prediction : 
$$\hat{y} = x^T \theta$$

$$I(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
 (8)

(cross entropy loss)

#### Logistic regression estimator

If I is the logistic loss, it is defined as

$$\hat{\theta}_{logit} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n I(x_i^T \theta, y_i)$$

#### Logistic regression

We can show that the logistic loss is stricly convex in  $\theta$ :

$$\theta \mapsto y \log(1 + e^{-x^T \theta}) + (1 - y) \log(1 + e^{x^T \theta})$$
 (9)

This means that if we manage to fing  $\theta$  that cancels the **gradient** of the empirical risk,  $\theta$  is a global minimizer.

# Sigmoid

#### **Définition**

Sigmoid function

$$\sigma: \mathbb{R} \to \mathbb{R}$$
.

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{10}$$



#### No closed-form solution

Since the loss is convex, to minimize it is sufficient to look for the cancellation of the gradient. However, the corresponding equation has no closed-form solution.

We thus need to use iterative algorithms (Gradient descent, Newton's method)

# Practical usage of logistic regression

In practice, it is common practice to :

- ► regularize the logistic loss to avoid overfitting, for instance with a *L*2 penalty (as in ridge regression)
- use feature maps and classify with  $\phi(x)$  instead of x.