毛法尧 第二版

习题一

- 1.1 把下列不同进制数写成按权展开式:
 - (1) $(4517.239)_{10} = 4 \times 10^3 + 5 \times 10^2 + 1 \times 10^1 + 7 \times 10^0 + 2 \times 10^{-1} + 3 \times 10^{-2} + 9 \times 10^{-3}$
 - (2) $(10110.0101)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$
 - (3) $(325.744)_8 = 3 \times 8^2 + 2 \times 8^1 + 5 \times 8^0 + 7 \times 8^{-1} + 4 \times 8^{-2} + 4 \times 8^{-3}$
 - (4) $(785.4AF)_{16}=7\times16^2+8\times16^1+5\times16^0+4\times16^{-1}+A\times16^{-2}+F\times16^{-3}$
- 1.2 完成下列二进制表达式的运算:
 - (1) 10111+101.101= 11100.101

(3) $10.01 \times 1.01 = 10.1101$

(2) 1100-111.011 = 100.101

(4) $1001.0001 \div 11.101 = 10.1$

- 1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:
 - (1) $(1110101)_2 = (165)_8 = (75)_{16} = 7 \times 16 + 5 = (117)_{10}$
 - (2) $(0.110101)_2 = (0.65)_8 = (0.D4)_{16} = 13 \times 16^{-1} + 4 \times 16^{-2} = (0.828125)_{10}$
 - (3) $(10111.01)_2 = (27.2)_8 = (17.4)_{16} = 1 \times 16 + 7 + 4 \times 16^{-1} = (23.25)_{10}$
- 1.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:
 - (1) $(29)_{10} = (1D)_{16} = (11101)_2 = (35)_8$
 - (2) $(0.207)_{10} = (0.34\text{FDF})_{16} = (0.001101)_2 = (0.15176)_8$
 - (3) $(33.333)_{10} = (21.553F7)_{16} = (100001.010101)_2 = (41.25237)_8$

1.5 如何判断一个二进制正整数 $B=b_6b_5b_4b_3b_2b_1b_0$ 能否被(4)₁₀ 整除?

解:一个二进制正整数被(2) $_{10}$ 除时,小数点向左移动一位,被(4) $_{10}$ 除时,小数点向左移动两位,能被整除时,应无余数,故当 $_{10}$ 和 $_{10}$ 时,二进制正整数 $_{10}$ B= $_{10}$ 的。 $_{10}$ 能否被(4) $_{10}$ 整除.

- 1.6 写出下列各数的原码、反码和补码:
 - (1) 0.1011

 $[0.1011]_{\mathbb{R}}$ =0.1011; $[0.1011]_{\mathbb{R}}$ =0.1011; $[0.1011]_{\mathbb{R}}$ =0.1011

(2) 0.0000

 $[0.000]_{\text{\tiny M}}$ =0.0000; $[0.0000]_{\text{\tiny M}}$ =0.0000; $[0.0000]_{\text{\tiny A}}$ =0.0000

(3) -10110

 $[-10110]_{\text{\tiny I}}=110110; [-10110]_{\text{\tiny $\not =$}}=101001; [-10110]_{\text{\tiny $\not =$}}=101010$

1.7 已知[N]¾=1.0110,求[N]ฐ,[N]ฐ和 N.

解:由[N]*=1.0110 得: [N]E=[N]*-1=1.0101, [N]E=1.1010,N=-0.1010

- 1.8 用原码、反码和补码完成如下运算:
 - (1) 0000101-0011010

 $[0000101-0011010]_{\bar{m}}=10010101;$

∴0000101-0011010=-0010101.

 $[0000101\text{-}0011010]_{\mathbb{R}} = [0000101]_{\mathbb{R}} + [-0011010]_{\mathbb{R}} = 00000101 + 11100101 = 11101010$

∴0000101-0011010=-0010101

∴0000101-0011010=-0010101

(2) 0.010110-0.100110

 $[0.010110 - 0.100110]_{\text{M}} = 1.010000;$

∴ 0.010110-0.100110=-0.010000 o

 $[0.010110-0.100110]_{\bar{\mathbb{Q}}} = [0.010110]_{\bar{\mathbb{Q}}} + [-0.100110]_{\bar{\mathbb{Q}}} = 0.010110 + 1.011001 = 1.101111$

∴ 0.010110-0.100110=-0.010000;

[0.010110-0.100110]*=[0.010110]*+[-0.100110]*=0.010110+1.011010=1.110000

∴ 0.010110-0.100110=-0.010000

- 1.9 分别用"对9的补数"和"对10的补数"完成下列十进制数的运算:
 - (1) 2550-123

∴2550-123=2427

$$[2550-123]_{10} + [2550]_{10} + [-123]_{10} = 02550+99877=02427$$

- ∴2550-123=2427
- (2) 537-846

- 1.10 将下列 8421BCD 码转换成二进制数和十进制数:
 - (1) $(0110,1000,0011)_{8421BCD} = (1010101011)_2 = (683)_{10}$
 - (2) $(0100,0101.1001)_{8421BCD} = (101101.11100110)_2 = (45.9)_{10}$
- 1.11 试用 8421BCD 码、余 3 码、和格雷码分别表示下列各数:
 - (1) $(578)_{10}$ = $(0101,0111,1000)_{8421BCD}$ =(1000,1010,1011) $\hat{}_{3}$ $\hat{}_{9}$ = $(1001000010)_{2}$ = $(1101100011)_{Grav}$
 - (2) $(1100110)_2 = (1010101)_{Gray} = (102)_{10} = (0001,0000,0010)_{8421BCD} = (0100,0011,0101)_{\text{± 3}} = (0100,0011,0101$

习题二

2.1 分别指出变量 (A,B,C,D) 在何种取值组合时,下列函数值为 1。

(1)
$$F = \overline{BD} + AB\overline{C}$$
 如下真值表中共有 6 种

(2)
$$F = (A + \overline{B} + \overline{AB})(A + \overline{B})\overline{AB} + D = D$$
 如下真值表中共有 8 种

(3)
$$F = (A + \overline{A} \cdot \overline{C})\overline{D} + (\overline{A} + \overline{B})\overline{C}D = \overline{AB} + \overline{C} + \overline{D}$$
 如下真值表中除 0011、1011、1111 外共有 13

种:

4000		1000	_	I LDGD	_	4 D C/D	_
ABCD	F	ABCD	F	ABCD	F	ABCD	F
0001	1	0001	1	0000	1	1000	1
0011	1	0011	1	0001	1	1001	1
1001	1	0101	1	0010	1	1010	1
1011	1	0111	1	0100	1	1100	1
1100	1	1001	1	0101	1	1101	1
1101	1	1011	1	0110	1	1110	1
		1101	1	0111	1		
(1)		1111	1			3)	
		(2)				,,	

2.2 用逻辑代数公理、定理和规则证明下列表达式:

(1)
$$\overline{AB + AC} = A\overline{B} + \overline{A} \cdot \overline{C}$$

证明:左边=
$$(\overline{A}+\overline{B})(A+\overline{C})=A\overline{A}+\overline{A}\cdot\overline{C}+A\overline{B}+\overline{B}\cdot\overline{C}=A\overline{B}+\overline{A}\cdot\overline{C}=$$
右边

:原等式成立.

(2)
$$AB + A\overline{B} + \overline{AB} + \overline{A} \cdot \overline{B} = 1$$

证明:左边=
$$(AB+A\overline{B})+(\overline{AB}+\overline{A}\cdot\overline{B})=A(B+\overline{B})+\overline{A}(B+\overline{B})=A+\overline{A}=1=$$
右边

∴原等式成立.

(3)
$$A\overline{ABC} = A\overline{B} \cdot \overline{C} + A\overline{BC} + AB\overline{C}$$

证明:左边=
$$A(\overline{A} + \overline{B} + \overline{C}) = A\overline{B} + A\overline{C}$$

= $A\overline{B}(C + \overline{C}) + A\overline{C}(B + \overline{B}) = A\overline{B}C + A\overline{B} \cdot \overline{C} + AB\overline{C} + A\overline{B} \cdot \overline{C}$
= $A\overline{B} \cdot \overline{C} + A\overline{B}C + AB\overline{C} =$ 右边

∴原等式成立.

(4)
$$ABC + \overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{AB + BC + AC}$$

证明:右边=
$$(\overline{A}+B)(\overline{B}+C)(A+\overline{C})=ABC+\overline{A}\cdot\overline{B}\cdot\overline{C}=$$
左边

∴原等式成立.

(5)
$$\overrightarrow{ABC} + \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{BC} = \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \overrightarrow{C}$$

证明:左边= $(ABC + \overline{A} \cdot \overline{B})(\overline{B} + \overline{C}) = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C} =$ 右边

∴原等式成立.

真值表(1)

真值表(2)

2.3	用真值表检验	下列表达式:
-----	--------	--------

(1)
$$\overline{A} \cdot \overline{B} + AB = (\overline{A} + B)(A + \overline{B})$$

(2)
$$\overline{AB + AC} = A\overline{B} + \overline{A} \cdot \overline{C}$$

74 1274					
ABC	左边	右边			
000	1	1			
001	0	0			
010	1	1			
011	1	1			
100	1	1			
101	1	1			
110	0	0			
111	0	0			

2.4 求下列函数的反函数和对偶函数:

(1)
$$F = A\overline{C} + \overline{B}C$$

$$\overline{F} = (\overline{A} + C)(B + \overline{C})$$

$$F' = (A + \overline{C})(\overline{B} + C)$$

(2)
$$F = \overline{AB} + B\overline{C} + A(C + \overline{D})$$

$$\overline{F} = (A + \overline{B})(\overline{B} + C)(\overline{A} + \overline{C}D)$$

$$F' = (\overline{A} + B)(B + \overline{C})(A + C\overline{D})$$

(3)
$$F = A[\overline{B} + (C\overline{D} + \overline{E}F)G]$$

$$\overline{F} = \overline{A} + B[(\overline{C} + D)(E + \overline{F}) + \overline{G}]$$

$$F' = A + \overline{B}[(C + \overline{D})(\overline{E} + F) + G]$$

2.5 回答下列问题:

(1) 已知 X+Y=X+Z, 那么, Y=Z。正确吗? 为什么?答: 正确。

因为X+Y=X+Z,故有对偶等式XY=XZ。所以

$$Y = Y + XY = Y + XZ = (X+Y)(Y+Z) = (X+Y)(Y+Z)$$

$$Z = Z + XZ = Z + XY = (X + Z)(Y + Z) = (X + Y)(Y + Z)$$

故 Y=Z。

(2) 已知 *XY=XZ*, 那么, *Y=Z*。正确吗? 为什么? 答: 正确。

因为 XY=XZ 的对偶等式是 X+Y=X+Z, 又因为

$$Y=Y+XY=Y+XZ=(X+Y)(Y+Z)=(X+Y)(Y+Z)$$

$$Z=Z+XZ=Z+XY=(X+Z)(Y+Z)=(X+Y)(Y+Z)$$

$$\exists \forall Y=Z \, .$$

(3)已知 *X+Y=X+Z*, 且 *XY=XZ*, 那么, *Y=Z*。正确吗? 为什么? 答: 正确。

因为X+Y=X+Z,且XY=XZ,所以

$$Y = Y + XY = Y + XZ = (X+Y)(Y+Z) = (X+Z)(Y+Z) = Z + XY = Z + XZ = Z$$

(4)已知 X+Y=XZ, 那么, Y=Z。正确吗? 为什么?

答:正确。

因为 X+Y=XZ, 所以有相等的对偶式 XY=X+Z。

$$Y = Y + XY = Y + (X + Z) = X + Y + Z$$

 $Z = Z + XZ = Z + (X + Y) = X + Y + Z$

故 Y=Z。

2.6 用代数化简法化简下列函数:

(1)
$$F = A\overline{B} + B + BCD = A\overline{B} + B = A + B$$

(2)
$$F = A + \overline{AB} + AB + \overline{A} \cdot \overline{B} = A(1+A) + \overline{A}(B+\overline{B}) = A + \overline{A} = 1$$

(3)
$$F = AB + AD + \overline{B} \cdot \overline{D} + A\overline{C} \cdot \overline{D} = A(B + D + \overline{C} \cdot \overline{D}) + \overline{B} \cdot \overline{D} = A(B + D + \overline{C}) + \overline{B} \cdot \overline{D}$$

 $= A(B + D) + A\overline{C} + \overline{B} \cdot \overline{D} = A\overline{B} \cdot \overline{D} + A\overline{C} + \overline{B} \cdot \overline{D} = A + A\overline{C} + \overline{B} \cdot \overline{D} = A + \overline{B} \cdot \overline{D}$

2.7 将下列函数表示成"最小项之和"形式和"最大项之积"形式:

(1)
$$F(A,B,C) = \overline{AB + AC} = \sum m(0,4,5,6,7) = \Pi M(1,2,3)$$
 (如下卡诺图 1)

(2)
$$F(A,B,C,D) = \overline{AB} + AB\overline{C}D + BC + B\overline{C} \cdot \overline{D} = \Sigma \text{ m}(4,5,6,7,12,13,14,15)$$

= $\Pi \text{M}(0,1,2,3,8,9,10,11)$ (如下卡诺图 2)

(3)
$$F(A, B, C, D) = (\overline{A} + BC)(\overline{B} + \overline{C} \cdot \overline{D}) = \sum m(0, 1, 2, 3, 4)$$

= **ПМ(5,6,7,8,9,10,11,12,13,14,15)** (如下卡诺图 3)

CA1	B ₀₀	01	11	10	
o	1	0	1	1	
1	0	0	1	1	
(1)					

CDAI	³ 00	01	\mathbf{n}	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0
		(2)		

CDAI	3 00	01	\mathbf{n}	10
00	1	1	0	0
01	1	0	0	0
11	1	0	0	0
10	1	0	0	0
(3)				

2.8 用卡诺图化简下列函数,并写出最简"与-或"表达式和最简"或-与"表达式:

(1)
$$F(A,B,C) = (\overline{A} + \overline{B})(AB + C) = \overline{AC} + \overline{BC} = C(\overline{A} + \overline{B})$$

CAE	³ 00	01	11	10
~o	10	10	01	10
1	11	11	01	11

CAE	00	01	11	10
o				
1	(1)	1)		(1

(2) $F(A,B,C,D) = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C}D + AC + B\overline{C} = \overline{A} \cdot \overline{B} + B\overline{C} + AC$ $\overrightarrow{\boxtimes} = AB + \overline{A} \cdot \overline{C} + \overline{B}C$

=(A+	B+C)(A	+B+C

CD^{AI}	B ₀₀	01	n	10
00		1	1	
01	1	l_l_		
\mathbf{n}	1		$ \overline{1} $	\Box
10	Ū		(i	1

CD^{A}	B ₀₀	01	n	10
00	1	$\overline{1}$		
01	u	_1	1	
\mathbf{n}_{-}	1)		1	$ \overline{1} $
10_	1		U	ū

(3) $F(A,B,C,D) = BC + D + \overline{D(B+C)}(AD+B) = B+D = (B+D)$

CD^{A}	B 00	01	11	10
00	0+110	0+111	0+111	0+110
01	1+010	1+011	1+011	1+011
11	1+010	1+001	1+011	1+011
10	0+110	1+101	1+101	0+110

CD ^{Al}	B ₀₀	01	11	10
00		1	$\overline{1}$	
01	$\overline{1}$	1	1	1
11	1	1	1	1
10		1	1	

2.9 用卡诺图判断函数 F(A,B,C,D) 和 G(A,B,C,D) 有何关系。

$$F(A,B,C,D) =$$

$$= \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{D} + \overline{C} \cdot \overline{D} + AC\overline{D}$$

$$G(A,B,C,D) =$$

$$= \overline{B}D + CD + \overline{A} \cdot \overline{C}D + ABD$$

CD	B ₀₀	01	11	10,
00	J	1	1	1
01				
11				
10	$\overline{1}$	1	1	1
	1			

$$F(A, B, C, D) = \overline{D}$$

CDA	B ₀₀	01	11	10
00				
01	$\overline{1}$	1	1	1
\mathbf{n}	L_	1	1	_1
10				

$$G(A, B, C, D) = D$$

可见, $F = \overline{G}$

2.10	CD^{A}	B ₀₀	01	11	10
卡诺图如	00	1	0	b	1
	01	1	0	1	1
下图所	11	0	0	0	0
示,回答	10	1	1	1	а
T = # A 23	H27				

下面两个问题:

CD^{A}	B ₀₀	01	n	10							
00	$\overline{1}$	0	0	1							
01	1	0	(I	1							
11	0	0	0	0							
10		1	1	1							
	a = 1(b = 0) B										

a = 0(b = 1) B†

(1) 若 $b=\bar{a}$,当a取何值时能得到取简的"与一或"表达式。

从以上两个卡诺图可以看出,当a=1时,能得到取简的"与一或"表达式。

(2) a和b各取何值时能得到取简的"与一或"表达式。

从以上两个卡诺图可以看出,当a=1 和b=1 时,

能得到取简的"与一或"表达式。

2.11 用卡诺图化简包含无关取小项的函数和多输出函数。

(1)
$$F(A,B,C,D) = \sum m(0,2,7,13,15) + \sum d(1,3,4,5,6,8,10)$$

 $\therefore F(A,B,C,D) = \overline{A} + BD$

(2)
$$\begin{cases} F_{I}(A,B,C,D) = \sum m(\theta,2,4,7,8,1\theta,13,15) \\ F_{2}(A,B,C,D) = \sum m(\theta,1,2,5,6,7,8,1\theta) \\ F_{3}(A,B,C,D) = \sum m(2,3,4,7) \end{cases}$$

CD^{A}	B ₀₀	01	11	10	
00	$\overline{1}$	d		d	
01	d	d	1		
11	d	1	1		
10	1	d		d	

10

CD ^{AB} 00 01 11 10	CD ^{AB} 00 01 11 10
00 1 1 1	00 1
01 1	01 1
\mathbf{n}	\mathbf{n}
10 1	10 1
$F_1(A,B,C,D)$	$F_2(A,B,C,D)$

CD^{AI}	B ₀₀	01	11	10							
00		(1)									
01											
11	\bigcirc	\bigcirc									
10	(1)										
$F_3(A,B,C,D)$											

$$\therefore \begin{cases}
F_1(A,B,C,D) = \overline{B} \cdot \overline{D} + ABD + \overline{A}B\overline{C} \cdot \overline{D} + \overline{A}BCD \\
F_2(A,B,C,D) = \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{C}D + \overline{A}C\overline{D} + \overline{A}BCD \\
F_3(A,B,C,D) = \overline{A} \cdot \overline{B}C + \overline{A}B\overline{C} \cdot \overline{D} + \overline{A}BCD
\end{cases}$$

习题三

3.1 将下列函数简化,并用"与非"门和"或非"门画出逻辑电路。

(1)
$$F(A, B, C) = \sum \mathbf{m}(0,2,3,7) = \overline{A \cdot C} + BC = \overline{\overline{A \cdot C} \cdot \overline{BC}}$$

$$\because \overline{F} = A\overline{C} + \overline{B}C \qquad \therefore F = \overline{\overline{A} + C} + \overline{B} + \overline{\overline{C}}$$

(2)
$$F(A,B,C) = \prod M(3,6) = \sum m(0,1,2,4,5,7) = \overline{B} + \overline{A} \cdot \overline{C} + AC = \overline{B \cdot \overline{A} \cdot \overline{C} \cdot AC}$$

$$=\overline{A+\overline{B}+\overline{C}}+\overline{A}+\overline{B}+\overline{C}$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$C \xrightarrow{AB} 00 \quad 01 \quad 11 \quad 10$$

$$F = \overline{B}+\overline{A}\cdot\overline{C}+AC$$

$$F = AB\overline{C}+\overline{A}BC$$

$$F(A,B,C)$$

$$F(A,B,C) = \overline{A+\overline{B}+\overline{C}+\overline{A}+\overline{B}+C}$$

$$F(A,B,C) = \overline{A+\overline{B}+\overline{C}+\overline{A}+\overline{B}+C}$$

(3)
$$F(A,B,C,D) = A\overline{B} + A\overline{C}D + \overline{A}C + B\overline{C} = A\overline{B} + \overline{A}C + B\overline{C} = \overline{A}\overline{B} \cdot \overline{B}\overline{C} \cdot \overline{A}\overline{C}$$

$$= \overline{\overline{A+B+C}} + \overline{\overline{\overline{A}+\overline{B}+\overline{C}}}$$

$$(4) F(A,B,C,D) = \overline{A} \cdot \overline{B} + \overline{AC} + \overline{BCD} = \overline{A} \cdot \overline{B} + \overline{AC} + \overline{CD} = \overline{\overline{A} \cdot \overline{B}} \cdot \overline{\overline{AC}} \cdot \overline{\overline{CD}}$$

3.2 将下列函数简化,并用"与或非"门画出逻辑电路。

(1)
$$F(A,B,C) = AB + (A\overline{B} + \overline{A}B)C = \overline{A \cdot B} + \overline{A \cdot C} + \overline{B \cdot C}$$

 $\overline{F} = \overline{A}B\overline{C} + \overline{B}CD + \overline{A} \cdot \overline{C} \cdot \overline{D} + B\overline{C} \cdot \overline{D}$

3.3 分析下图 3.48 所示逻辑电路图,并求出简化逻辑电路。

解:如上图所示,在各个门的输出端标上输出函数符号。则

$$Z_1 = B + \overline{C}$$
, $Z_2 = \overline{B} + C$, $Z_3 = Z_1 Z_2 = (B + \overline{C})(\overline{B} + C) = BC + \overline{B} \cdot \overline{C}$,

$$Z_4 = \overline{AC}, Z_5 = \overline{Z_3} = B\overline{C} + \overline{BC}, Z_6 = A + Z_5 = A + B\overline{C} + \overline{BC}, Z_7 = Z_3 + Z_4 = BC + \overline{B} \cdot \overline{C} + \overline{AC},$$

$$F = Z_6 \cdot Z_7 = (A + B\overline{C} + \overline{B}C)(BC + \overline{B} \cdot \overline{C} + \overline{A}C) = ABC + A\overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B}C$$

$$=A (B \odot C) + C (A \odot B)$$

真值表和简化逻辑电路图如下,逻辑功能为: 依照输入变量 ABC 的顺序, 若 A 或 C 为 1, 其余两个信号相同,则电路输出为 1,否则输出为 0。

	負化	在表			l F	
ABC	F	ABC	F		≱ 1	
000	0	100	1		عبر	
001	1	101	0	&.	&	&
010	0	110	0	ΤП,	$\top \top \top$	$\perp \perp \perp$
011	0	1111	1	ABC	$A \ \overline{B} \ \overline{C}$	$\overline{A} \ \overline{B} \ C$

3.4 当输入变量取何值时,图 3.49 中各逻辑电路图等效。

$$F_1 = \overline{AB}, \quad F_2 = A\overline{B}, \quad F_3 = \overline{AB} + A\overline{B}.$$

3.5 假定X = AB代表一个两位二进制正整数,用"与非"门设计满足如下要求的逻辑电路:

(1) $Y = X^2$: (Y 也用二进制数表示)

因为一个两位二进制正整数的平方的二进制数最多有四位,故输入端用 A、B 两个变量,输出端用 Y_3 、 Y_2 、 Y_1 、 Y_0 四个变量。

(1)真值表:

AB	$Y_{\mathcal{G}}$	Y_2	Y_I	$Y_{\mathcal{O}}$
00	0	0	0	0
01	0	0	0	1
10	0	1	0	0
ш	1	0	0	1

(2)真值表:

AB	Y_4	Y_{β}	Y_2	Y_I	$Y_{\mathcal{O}}$
00	0	0	0	0	0
01	0	0	0	0	1
10	0	1	0	0	0
11	1	1	0	1	1

 $\therefore Y_3 = AB$, $Y_2 = AB$, $Y_1 = 0$, $Y_0 = AB + AB = B$, 逻辑电路为:

(2) $Y = X^3$, (Y也用二进制数表示)

因为一个两位二进制正整数的立方的二进制数最多有五位,故输入端用 A、B 两个变量,输出端用 Y_4 、 Y_3 、 Y_2 、 Y_1 、 Y_0 五个变量。可列出真值表(2)

$$\therefore Y_4 = AB$$
, $Y_3 = AB + AB = A$, $Y_2 = 0$, $Y_1 = AB$, $Y_0 = AB + AB = B$, 逻辑电路如上图。

3.6 设计一个一位十进制数(**8421BCD** 码)乘以 **5** 的组合逻辑电路,电路的输出为十进制数 (**8421BCD** 码)。实现该逻辑功能的逻辑电路图是否不需要任何逻辑门?

解: 因为一个一位十进制数(**8421BCD** 码)乘以 **5** 所得的的十进制数(**8421BCD** 码)最多有八位,故输入端用 A 、 B 、 C 、 D 四个变量,输出端用 Y_7 、 Y_6 、 Y_5 、 Y_4 、 Y_3 、 Y_2 、 Y_1 、 Y_0 八个变量。

真值表:

								IH. VC.							
ABCD	Y_6	Y_5	Y_4	Y_3	Y_2	Y_I	$Y_{\mathcal{O}}$	ABCD	Y_6	Y5	Y_d	Y_3	Y_2	Y_I	$Y_{\mathcal{O}}$
0000	0	0	0	0	0	0	0	1010	×	×	×	×	×	×	×
0001	0	0	0	0	1	0	1	1011	×	×	×	×	×	×	×
0010	0	0	1	0	0	0	0	1100	×	×	×	×	×	×	×
0011	0	0	1	0	1	0	1	1101	×	×	×	×	×	×	×
0100	0	1	0	0	0	0	0	1110	×	×	×	×	×	×	×
0101	0	1	0	0	1	0	1	11111	×	×	×	×	×	×	×
0110	0	1	1	0	0	0	0								
0111	0	1	1	0	1	0	1								
1000	1	0	0	0	0	0	0								
1001	1	0	0	0	1	0	1								
CD AB ₀	0 0	1 1	1 1	0_	CD ^A	B ₀₀	01	11 10	_						

用

	,	_	_	_	-	_		
01	11	10		CD	B ₀₀	01	11	10
	×			00			X	
1	X	1		01	(1	1	X	1
1	X	X		11	1	1	X	X
	X	×		10			X	X
Y2=	Đ					$Y_{\mathcal{O}}$	-D	

卡诺图化

简: $Y_7=0$, $Y_6=A$, $Y_5=B$, $Y_4=C$, $Y_3=0$, $Y_2=D$, $Y_1=0$, $Y_0=D$ 。

逻辑电路如下图所示,在化简时由于利用了无关项,本逻辑电路不需要任何逻辑门。

3.7 设计一个能接收两位二进制 $Y=y_1y_0, X=x_1x_0$,并有输出 $Z=z_1z_2$ 的逻辑电路,当 Y=X 时,Z=11,当 Y>X 时,Z=10,当 Y<X 时,Z=01。用"与非"门实现该逻辑电路。

解:根据题目要求的功能,可列出真值表如下:

y1300	x_1x_0	Z1Z2
01	00	10
10	00	10
11	00	10
10	01	10
ш	01	10
11	10	10

y1,y0	x_1x_0	Z1Z2
00	01	01
00	10	01
00	11	01
01	10	01
01	11	01
10	11	01

y1y0	x_1x_0	Z1Z2
00	00	11
01	01	11
10	10	11
11	11	11

用卡诺图化简: $z_I = y_0 \overline{x_0} + y_1 \overline{x_0} + y_1 y_0 + \overline{y_1} \cdot \overline{y_0} \cdot \overline{x_1} \cdot \overline{x_0} + y_1 \overline{y_0} x_1 \overline{x_0}$

$$z_2 = x_0 \overline{y_0} + x_1 \overline{y_0} + x_1 x_0 + \overline{y_1} \cdot \overline{y_0} \cdot \overline{x_1} \cdot \overline{x_0} + y_1 \overline{y_0} x_1 \overline{x_0}$$

x_1x_0	y ₀ 00	01	11	10
x ₁ x ₀	1	1		1
01		ı	ı	1
11			$\ 1\ $	
10			Ū	1
		ż	j,	

:.转化为"与非与非"式为:

$$z_{I} = \overline{y_{0}\overline{x_{0}}} \overline{y_{I}\overline{x_{0}}} \overline{y_{I}\overline{y_{0}}} \overline{y_{I}\overline{y_{0}}} \overline{y_{I}\overline{y_{0}}} \overline{x_{I}\overline{x_{0}}} \overline{y_{I}\overline{y_{0}}x_{I}\overline{x_{0}}}$$

$$z_{I} = \overline{x_{0}\overline{y_{0}}} \overline{x_{I}\overline{y_{0}}} \overline{x_{I}\overline{y_{0}}} \overline{x_{I}\overline{x_{0}}} \overline{y_{I}\overline{y_{0}}\overline{x_{I}}\overline{x_{0}}} \overline{y_{I}\overline{y_{0}}x_{I}\overline{x_{0}}}$$

卡诺图不能化

逻辑电路为:

3.8 设计一个检测电路,检测四位二进制码中 1 的个数是否为奇数,若为偶数个 1,则输出为 1,否则为 0。

解:用A、B、C、D 代表输入的四个二进制码,F 为输出变量,依题意可得真值表:

0000 1 0100 0 1000 0 1100 1 00 1	ABCD	F	ABCD	F	ABCD	F	ABCD	F	CDA	B 00	01	11	10
0010 0 0110 1 1010 1 1110 0 11 1 1	0000	1	0100	0	1000	0	1100	1		1		1	
0010 0 0110 1 1010 1 110 0 1	0001	0	0101	1	1001	1	1101	0	01		1		1
0011 1 0111 0 1011 0 1111 1 10 1 1	0010	0	0110	1	1010	1	1110	0	11	1		1	
	0011	1	0111	0	1011	0	1111	1	10		1		1

筒:

 $F = \overline{ABCD} + \overline{ABCD}$

用"与非"门实现的逻辑电路为:

3.9 判断下列函数是否存在冒险,并消除可能出

现的冒险。

(1)
$$F_1 = AB + \overline{ACD} + BC$$

(2)
$$F_2 = \overline{ACD} + AB\overline{C} + ACD + \overline{ABC}$$

(3)
$$F_3 = (A + \overline{B})(\overline{A} + \overline{C})$$

解:(1)不存在冒险;

(2)存在冒险,消除冒险的办法是添加一冗余项 BD;

$$\mathbb{H}: \quad \boldsymbol{F}_2 = \overline{\boldsymbol{ACD}} + \boldsymbol{ABC} + \boldsymbol{ACD} + \overline{\boldsymbol{ABC}} + \boldsymbol{BD}$$

(3)也存在冒险,消除冒险的办法也是添加一冗余因子项($\overline{B}+\overline{C}$).

$$\mathbb{P}: \quad F_3 = (A + \overline{B})(\overline{A} + \overline{C})(\overline{B} + \overline{C}) .$$

激励函数:

$$T = Z = x_1 x_2 y_1 \overline{y}_3 ;$$

$$J = Y_1 = x_1 + y_1$$
;

$$K=Y_2=x_1\oplus y_2\;;$$

$$D=Y_1=x_1+y_1\ .$$

4.2 已知状态表如表 4.45 所示,作出相应的状态图。

解: 状态图为:

表 4.45 给定的状态表 次态/输出 现态 $x_1x_2=01 \mid x_1x_2=11 \mid x_1x_2=10$ $x_1x_2=00$ A/0B/0C/ID/0A В B/0C/1A/0D/ID/0C C/0B/0 D/0D/0C/0 C/0 A/1

4.3 已知状态图如图 4.56 所示,作出相应的状态表。

解:相应的状态表为:

.m →		次态/	输出	
现态	x ₁ x ₂ =00	x ₁ x ₂ =01	x ₁ x ₂ =11	x1x2=10
0	1/0	0/0	0/1	0/1
1	1/0	0/1	0/0	1/0

10/1 00/0 00/0 00/0 10/0 4.4 图 4.56 给定的状态图 4.57

所示状态图表示一个同步时序逻辑电路处于其中某一个未知状态,。为了确定这个初始状态,可加入一个输入序列,并观察输出序列。如果输入序列和相应的输出序列为 00/0、01/1、00/0、10/0、11/1,试确定该同步时序电路的初始状态。

解: 为分析问题的方便,下面写出状态表:

题4_4状态表

am ak		次态/	輸出	
现态	x ₁ x ₂ =00	x ₂ x ₂ =01	x2x2=11	x ₂ x ₂ =10
A	A/0	C/0	B/0	A/0
В	B/0	B/1	B/1	A/0
C	C/0	C/1	C/1	D/0
D	D/0	B/0	C/1	D/1

当输入序列和相应的输出序列为 00/0 A B C D 都符合条件,但当序列为 01/1 要转为 B 态或 C 态,就排除了 A D 态;

时, 时

下一个序列为 00/0 时,B、C 保持原态,接着序列为 10/0 时,B 态转为 A 态,C 态转为 D 态,但当最后一个序列为 11/1 时,只有 D 态才有可能输出 1,这就排除了 B 态。故确定该同步时序电路的初始状态为 C 态。

即 C (初态) \to (00/0) $\to C \to$ (01/1) $\to C \to$ (00/0) $\to C \to$ (10/0) $\to D \to$ (11/1) $\to C$ 4.5 分析图 4.58 所示同步电路,作出状态图和状态表,并说明该电路的逻辑功能。

解:激励方程:

$$J_1 = Q_1 \overline{Q}_2$$
; $K_1 = xQ_2 + Q_1 \overline{Q}_2$; $J_2 = xQ_2$; $K_2 = Q_2$;

输出方程: $Z_1 = Q_1; Z_2 = Q_2$ 。

:: 各触发器的状态方程为:

$$Q_I^{n+1} = J_I \overline{Q}_I + \overline{K}_I Q_I = Q_I \overline{Q}_2 \overline{Q}_I + \overline{xQ_2 + Q_I \overline{Q}_2} Q_I$$

 $=xQ_1Q_2$;

$$Q_2^{n+1} = J_2 \overline{Q}_2 + \overline{K}_2 Q_2 = \overline{x} Q_2 \overline{Q}_2 + \overline{Q}_2 Q_2 = 0;$$

题4_5 状态转移真值表	凝4	5	湺	太	蛛	移	直	徝	表
--------------	----	---	---	---	---	---	---	---	---

输入	现态		复励	遥菱	t	次志
x	Q_2Q_1	J_2	K_2	J_I	K_I	Q_2Q_1
0	00	0	0	0	0	00
0	01	0	0	1	1	00
0	10	1	1	0	0	00
0	11	1	1	0	0	01
1	00	0	0	0	0	00
1	01	0	0	1	1	00
1	10	0	1	0	1	00
1	11	0	1	0	1	00

現态	次态 Q	Q_I^{n+I}
Q_2Q_1	x= 0	x= 1
00	00	00
01	00	00
10	00	00
11	01	00
	14 大 圭	

由图可见,该电路的逻辑功能为:在时钟脉冲作用下,输入任意序列x均使电路返回00状

态。

4.6 图 4.59 为一个串行 oln((o 加法器逻辑框图, 试作 出其状态图和状态表。

解: 状态图和状态表为: 4.7 作 1010 序列检测

器的状态图,已知输入、输出序列为输入:00101001

 $0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0$ 输出: 000001000 010101000

解: 1010 序列检测器 的状态图如右。

4.8 设计一个代码检

题4-8 余三码代码检测器状态图

测器, 电路串行输入余 3 码, 当输入非法数字时电路输

出为 0, 否则输出为 1, 试作出状态图。

解: 余3码的非法数字有六个,即0000,0001,0010,1101,1110,1111。 故其原始状态图为:

4.9 简化表 4.46 所示的完全确定状态表。

解:表 4.46 所示的完全确定状态表的隐含表为:

考察给定的状态表,比较状态C和F。不论输入x是1还是0,它们所产生的输出都相同。 当 x=0 时,所建立的次态也相同:但当 x=1 时,它们的次态不相同:

$$N (C, 1) = A$$

$$N (F, 1) = D$$

于是状态 C, F 能否合并, 取决于状 态A, D 能否合并。

对于状态 A 和 D。不论输入 x 是 1还是 0, 它们所产生的输出都分别相 同。当 x=1 时,它们的次态为现态 的交错,但当 x=0 时,它们的次态 却不相同:

1.46	给定	的状:	态表					
现态 次态/输出								
*AC-62	x=0	x=1						
A	E/0	D/0						
В	A/1	F/0						
С	C/0	A/I						
D	B/0	A/0						
E	D/1	C/0						
F	C/0	D/1						
G	H/1	G/1						
HCF	▼ Al	ر —ټه ر	BE					
I AD BE								

$$N(A, 0) = E N(D, 0) = B$$

因此,状态A,D能否合并,取决于状态B,E能否合并。

对于状态 B 和 E。不论输入 x 是 1 还是 0,它们所产生的输出都分 别相同。但当x=0时,它们的次态不同:

$$N (B, 0) = A N (E, 0) = D$$

当 x=1 时,它们所建立的次态也不相同:

$$N(B, 1) = F$$
 $N(E, 1) = C$

可以发现:状态 CF、AD 和 BE 能否各自合并,出现如上循环关系: 显然,由于这个循环中的各对状态,在不同的现输入下所产生 的输出是分别相同的,因而从循环中的某一状态时出发,都能保证 所有的输入序列下所产生的输出序列都相同。所以,循环中各对状 态分别可以合并。令

題4_9最小化状态表

次态/输出			
<i>x</i> =0	<i>x</i> =1		
B/0	A/0		
A/l	C/0		
C/0	A/l		
E/1	D/1		
C/I	B/1		
	x=0 B/0 A/1 C/0 E/1		

$A = \{A, D\}, B = \{B, E\}$

代入原始状态表中简化后,再令D、

E 代替 G、H,可得最小化状态表。 4.10 简化表 4.47 所示的不完全确定 状态表。

解: 由给定的不完全确定状态表画 出隐含表,可以得出全部相容状态 对有五个,为:

(A, B),(C,D),(C,E), (A, D), (B, C). 从这五个相容 状态对可以看 出它们本身就

类。

给定的不完全确定状态表

 $C=\{C, F\}$

18 ¥	次态	/输出
现态	x=0	<i>x</i> =1
A	D/d	C/0
В	D/1	E/d
C	d/d	E/1
D	A/0	C/d
E	B/1	C/d

闭覆盖表

型 July n n n n + +	獲 盖				闭	会	
最大相容类	A	В	С	D	E	x=0	x=1
AB	>	>				D	CE
AD	>			>		AD	С
BC		>	>			D	E
CD			>	>		A	CE
CE			V		V	В	CE

作出闭覆盖表寻找最小闭覆盖。

从闭覆盖表可以得出两种最小化方案及对应的最小化状态表:

从这两个方案可以看出,方案一相容类数目最少,是最佳方案。

最	d	・化方	案	_
---	---	-----	---	---

% kalendrak		養 盖				闭	숌
最大相容类	A	В	С	D	E	x=0	x=1
AB	>	>				D	CE
CD			>	>		A	CE
CE			>		>	В	CE

方案一

取小16水芯水					
-0 ±	次态/输出				
現态	x=0	x=1			
A	B/1	C/0			
В	A/0	C/I			
С	A/1	C/I			

最小化方案二

4 . 1033 4.							
e⊈ Juden eNr d⊁		ŧ	i i	ž.		闭	숨
最大相容类	A	В	С	D	Е	x=0	x=1
AD	>			>		AD	С
BC		>	>			D	E
CE			V		V	В	CE

方案二

最小化状态表			
-a+	次态/输出		
现态	x=0	x=1	
A	A/0	B,C/0	
В	A/1	C/I	
С	B/1	C/I	

4.11 按照状态分配基本原则,将表 4.48 所示的状态表转换成二进制状态表。

解:给定的状态表中共有 A、B、C、D 表 4.48 给定的状态表 四个状态,其中B态和C态是可以合并 的最大相容类,可看成一个状态,如B

态。则根据状态分配原则 1), A 和 B 应 分配相邻代码;根据状态分配原则 2),

A 和 B, B 和 D 应分配相邻代码;根据 状态分配原则 3), A 和 B、B 和 D分配相邻代码,根据状态分配原则

状态 B 的代码应分配为 00。

从分配二进制代码的卡诺图得 码分配结果: B 为 00; A 为 01; D 10。C为 11 是不会出现的状态,可 无关项处理。

an de	太杰	/给出
观态	χ=0	<i>x</i> =1
A	A/0	B/0
В	D/0	B/0
С	D/0	B/0
D	B/1	A/0

题4_11 最小化状态表

			_
,, ,	决态	/输出	
現态	x=0	<i>x</i> =1	
A	A/0	B/0	l
В	D/0	B/0	
D	B/1	A/0	

观态	决态/输出			
y ₂ y ₁	x=0	<i>x</i> =1		
01	01/0	00/0		
00	10/0	00/0		
10	00/1	01/0		

二进制状态表 整理后的二进制状态表

現态	决态/输出			
y ₂ y ₁	<i>x</i> =0	<i>x</i> =1		
00	10/0	00/0		
01	01/0	00/0		
10	00/1	01/0		

ŊΫ 4),

代 为 作

于是可得二进制状态表。

4.12 若分别用 J-K、T 和 D 触发器作同步时序电路 的存储电路, 试根据表 4.49 所示的二进制状态表设 计同步时序电路,并进行比较。

解:下面画出了分别用 J-K、T 和 D 触发器作同步 时序电路的存储电路时的激励函数和输出函数卡诺

表 4.49 给定的二进制状态表

观态	次态/输出 y ₂ *+1 y ₁ *+1 / Z				
y 2 y 1	x=0	x=1			
00	01/0	10/0			
01	11/0	10/0			
11	01/0	00/0			
10	00/1	11/1			

冬:

y_2y_1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
00	0	(1	(d	d	\bigcirc	0	d	ď	0	$\widehat{1}$	1	0	0	u	$\widehat{\mathbf{n}}$	0	0	0
01	1	ı	d	d	q	d	0	1	ſĪ	Ð	0	\bigcirc		1	1	0	0	0
\mathbf{n}	d	d	1	1	d	(d)	0	1	(I)	1	0	\odot	0	0	Ū.	0	0	0
10	d	d	ı	0	0	ı	d	d	1	0	0	(I)	0	$\widehat{\mathbb{1}}$	0	1	(I	1)
					J													

:.各触发器的激励函数和输出函数的表达式如下:

$$J_2 = y_1 + x$$
; $K_2 = y_1 + \overline{x}$; $J_1 = \overline{x} \cdot \overline{y}_2 + xy_2 = \overline{x \oplus y}_2$; $K_1 = x$;

$$T_{2} = y_{1} + x \overline{y}_{2} + x y_{2} = y_{1} + x \oplus y_{2}; \quad T_{1} = \overline{x} \overline{y}_{2} \overline{y}_{1} + x y_{1} + x y_{2} = \overline{x} \overline{y}_{2} \overline{y}_{1} + x (y_{1} + y_{2});$$

$$D_{2} = \overline{y}_{2} y_{1} + x \overline{y}_{1};$$

$$D_{1} = \overline{x} \cdot \overline{y}_{2} + \overline{x} y_{1} + x y_{2} \overline{y}_{1} = \overline{x} (\overline{y}_{2} + y_{1}) + x y_{2} \overline{y}_{1} = \overline{x} \cdot \overline{y}_{2} \overline{y}_{1} + x y_{2} \overline{y}_{1} = \overline{x} \oplus (y_{2} \overline{y}_{1})$$

$$Z = y_{2} \overline{y}_{1}$$

各逻辑电路为:

由此可见,使用 JK 触发器线路较为简单,门电路较少,成本较低。

4.13 设计一个能对两个二进制数 $X=x_1,x_2,\cdots,x_n$ 和 $Y=y_1,y_2,\cdots,y_n$ 进行比较的同步时序电路,其中,X,Y串行地输入到电路的 x,y输入端。比较从 x_1 , y_1 开始,依次进行到 x_n , y_n 。电路有两个输出 Z_x 和 Z_y ,若比较结果 X>Y,则 Z_x 为 1, Z_y 为 0;若 X=Y,则 Z_x 和 Z_y 都为 1。要求用尽可能少的状态数作出状态图和状态表,并作尽可能的逻辑门和触发器来实现。

解:两个数进行比较时,先比较高位,然后比较低位。

若 $x_i=y_i=0$ 或 1,两个输出 Z_x 和 $Z_y=1$,还应比较低一位,若还相等,则两个输出不变。,若所有的位的数都相等,最后输出 Z_x 和 $Z_y=1$,表示比较结果 X=Y。

比较过程中若出现某一位数不等,则比较结束。 $x_i > y_i$ 时输出 $Z_x=1$, $Z_y=0$,比较结果 $X>Y_i$ $x_i < y_i$ 时输出 $Z_x=0$, $Z_y=1$,比较结果 $X< Y_i$ 。

因题意要求要求用尽可能少的状态数作出状态图和状态表,并作尽可能的逻辑门和触发器来实现,故采用 Moore 型电路,用两个 D 触发器,这两个触发器的输出就是电路的输出,其中 y_2 表示 Z_v , y_1 表示 Z_x 。用 A、B、C 三个状态分别表示 X=Y、X<Y、X>Y。

令 A=11,B=01,C=10,得二进制状态表。.采用 D 触发器,经卡诺图化简得激励方程:

$$D_2 = y_1 + x_i y_2 + y_i y_2; D_1 = y_2 + y_i y_1 + x_i y_1$$

题4_13 二进制状态表

		$y_2^{n+1} y_1^{n+1}$						
<i>y</i> 2 <i>y</i> 1	$x_i y_i = 00$	$x_i y_i = 01$	$x_i y_i = 11$	$x_{i}y_{i}=10$				
01	01	01	01	01				
11	11	01	11	10				
10	10	10	10	10				

题4_13 二进制状态表(含无关状态)

	$y_2^{n+1} y_1^{n+1}$							
<i>y</i> ₂ <i>y</i> ₁	$x_i y_i = 00$	$x_{i}y_{i}=01$	$x_i y_i = 11$	$x_{i}y_{i}=10$				
00	dd	dd	dd	dd				
01	01	01	01	01				
11	11	01	11	10				
10	10	10	10	10				

所设计的同步时序逻辑电路为:

题4_13 所设计的同步时序逻辑电路

习题六

6.1 用两个四位二进制并行加法器实现两位十进制数 8421BCD 码到余 3 码的转换.。

題6_1 两位十进制数8421BCD码到余3码的转换电路

6.2 用两块四位数值比较器蕊片实现两个七位二进制数的比较.。

題6_2 七位二进制数的比较电路

题6_3 用译码器实现逻辑函数

逻辑门实现下列逻辑函数表达式:

$$F_1(x, y, z) = \overline{x} \quad \overline{y} + xy\overline{z} \; ; \quad F_2(x, y, z) = \overline{x} + y \quad F_3(x, y, z) = xy + \overline{x} \quad \overline{y}$$
 $f_1(x, y, z) = \overline{x} \quad \overline{y} + xy\overline{z} = \overline{x} \quad \overline{y}z + \overline{x} \quad \overline{y} \quad \overline{z} + xy\overline{z} = m_0 + m_1 + m_6$
 $f_2(x, y, z) = \overline{x} + y = \overline{x} \quad yz + \overline{x} \quad yz + \overline{x} \quad yz + \overline{x} \quad yz + xy\overline{z} + \overline{x} \quad yz + xy\overline{z}$
 $f_2(x, y, z) = \overline{x} + y = \overline{x} \quad yz + \overline{x} \quad yz + \overline{x} \quad yz + \overline{x} \quad yz + xy\overline{z} + xy\overline{z}$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$
 $f_3(x, y, z) = xy + \overline{x} \quad y = xy\overline{z} + xy\overline{z} + \overline{x} \quad yz$

- 6.4 用四路选择器设计下列组合逻辑电路:
 - (1) 全加器;
 - (2) 三变量多数表决电路。

题6_4 (1)全加器真值表

	输入	豿	毦	
A_i	B_i	C_{i-t}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

题6_4(2)三变量表决器真值表

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

6.5 用四位二进制同步可逆计数器和必要的逻辑门构成模 12 加法计数器。

题6_5 用可逆计数器构成的模12加法器

6.6 用两块双向移位寄存器蕊片实现模8计数器。

题6_6 用两块双向移位寄存器蕊片实现的模8计数器

6.7 用 ROM 设计一个三位二进制平方器。

题6_7 平方器的阵列逻辑图

6.8 用 PLA 实现四位二进制并行加法器。

解:根据 P195 图 6.2 四位并行加法器逻辑电路,可得各输出函表达式:

$$F_I = \overline{A}_I \overline{B}_I C_\theta + \overline{A}_I B_I \overline{C}_\theta + A_I \overline{B}_I \overline{C}_\theta + A_I B_I C_\theta \; ,$$

$$C_1 = \ A_I B_I + A_I C_\theta + B_I C_\theta, \ \overline{C}_I = \overline{A}_I \overline{B}_I + \overline{A}_I \overline{C}_\theta + \overline{B}_I \overline{C}_\theta \, ;$$

设
$$IP_1 = \overline{A}_1 \overline{B}_1 C_0$$
; $IP_2 = \overline{A}_1 B_1 \overline{C}_0$; $IP_3 = A_1 \overline{B}_1 \overline{C}_0$; $IP_4 = A_1 B_1 C_0$; $IP_5 = A_1 B_1$;

$$1P_6 = A_1C_0;$$
 $1P_7 = B_1C_0;$ $1P_8 = \overline{A}_1\overline{B}_1;$ $1P_9 = \overline{A}_1\overline{C}_0;$ $1P_{10} = \overline{B}_1\overline{C}_0;$

$$F_2 = \overline{A}_2 \, \overline{B}_2 C_I + \overline{A}_2 B_2 \, \overline{C}_I + A_2 \, \overline{B}_2 \, \overline{C}_I + A_2 B_2 C_I \,,$$

$$C_2 = A_2B_2 + A_2C_1 + B_2C_1; \quad \overline{C}_2 = \overline{A}_2\overline{B}_2 + \overline{A}_2\overline{C}_1 + \overline{B}_2\overline{C}_1;$$

设
$$2P_1 = \overline{A}_2 \overline{B}_2 C_1$$
; $2P_2 = \overline{A}_2 B_2 \overline{C}_1$; $2P_3 = A_2 \overline{B}_2 \overline{C}_1$; $2P_4 = A_2 B_2 C_1$; $2P_5 = A_2 B_2$;

$$2P_6 = A_2C_1$$
; $2P_7 = B_2C_1$; $2P_8 = \overline{A_2}\overline{B_2}$; $2P_9 = \overline{A_2}\overline{C_1}$; $2P_{10} = \overline{B_2}\overline{C_1}$;

$$F_3 = \overline{A}_3 \, \overline{B}_3 C_2 + \overline{A}_3 B_3 \, \overline{C}_2 + A_3 \, \overline{B}_3 \, \overline{C}_2 + A_3 B_3 C_2 \; ,$$

$$C_3 = A_3B_3 + A_3C_2 + B_3C_2$$
; $\overline{C}_3 = \overline{A}_3\overline{B}_3 + \overline{A}_3\overline{C}_2 + \overline{B}_3\overline{C}_2$;

$$\stackrel{\text{th}}{\boxtimes} 3P_1 = \overline{A}_3 \overline{B}_3 C_2; \quad 3P_2 = \overline{A}_3 B_3 \overline{C}_2; \quad 3P_3 = A_3 \overline{B}_3 \overline{C}_2; \quad 3P_4 = A_3 B_3 C_2; \quad 3P_5 = A_3 B_3;$$

$$3P_6 = A_3C_2$$
; $3P_7 = B_3C_2$; $3P_8 = \overline{A}_3\overline{B}_3$; $3P_9 = \overline{A}_3\overline{C}_2$; $3P_{10} = \overline{B}_3\overline{C}_2$;

$$F_4 = \overline{A}_4 \overline{B}_4 C_3 + \overline{A}_4 B_4 \overline{C}_3 + A_4 \overline{B}_4 \overline{C}_3 + A_4 B_4 C_3$$
, $C_4 = FC_4 = A_4 B_4 + A_4 C_3 + B_4 C_3$;

设
$$4P_1 = \overline{A}_4 \overline{B}_4 C_3$$
; $4P_2 = \overline{A}_4 B_4 \overline{C}_3$; $4P_3 = A_4 \overline{B}_4 \overline{C}_3$; $4P_4 = A_4 B_4 C_3$;

$$4P_5 = A_4B_4$$
; $4P_6 = A_4C_3$; $4P_7 = B_4C_3$;

题6_8 用PLA实现的四位二进制并行加法器

6.9 用 PLA 实现图 6.33 所示的时序逻辑电路。

题6_9 图6.33 时序电路

解: D 触发器激励函数表达式为:

$$D = x_1 \oplus x_2 + x_3 Q = x_1 \overline{x_2} + \overline{x_1} x_2 + x_3 Q \; ;$$

题6_9 用PLA实现的时序逻辑电路

$$Q^{n+1} = D$$

输出函数表达式为:

$$Z = x_1 \oplus x_2 + x_3 Q = x_1 x_2 + x_1 x_2 + x_3 Q$$

设 $P_{1}=x_{1}x_{2}$; $P_{2}=x_{1}x_{2}$; $P_{3}=x_{3}Q$, 则根据激励函数和输出函数表达式,可画出用 PLA 实现的时序逻辑电路。

习题十 逻辑器件

- 10.1、什么是晶体二极管的静特性和动特性?
- 答: 二极管在导通和截止这两种稳定状态下的特性称为二极管的静态特性;
 - 二极管在导通和截止两种工作状态间转换过程的特性称为二极管的动态特性。
- 10.2、晶体二极管作开关时,同理想开关相比有哪些主要不同?

答:主要是当加在晶体二极管上的正向电压小于死区电压(硅管为 0.5V)或加反向电压时,二极管相当于处于断开的开关,但有电流流过二极管,不过这电流很小,可以忽略;当加在晶体二极管上的正向电压大于导通电压时,二极管充分导通,有一定的管压降(硅管为 0.7V),不过在此后在一个很大的范围内,管压降不随电流变化。

10.3、试述晶体三极管截止、放大、饱和三种工作状态的特点。说明晶体三极管的饱和条件和截止条件。

答:

习题解答

- 1-3: (1) (1110101) $_2$ = (117) $_{10}$ = (165) $_8$ = (75) $_{16}$
- (2) $(0.110101._2 = (0.828125)_{10} = (0.65)_8 = (0.D4)_{16}$
- (3) $(10111.01)_2 = (23.25)_{10} = (27.2)_8 = (17.4)_{16}$
- 1-7; [N] [N] [N] [N] [N] [N] [N=-0.1010
- 1-10: (1) (011010000011) $_{8421BCD}$ = (683) $_{10}$ = (1010101011) $_2$
- (2) $(01000101.1001)_{8421BCD} = (45.9)_{10} = (101101.1110)_{2}$
- 2-2: 略
- 2-3: 略

2-4: (1)
$$\overline{F} = (\overline{A} + C)(B + \overline{C}); F' = (A + \overline{C})(\overline{B} + C)$$

(2)
$$\overline{F} = (A + \overline{B})(\overline{B} + C)(\overline{A} + \overline{C}D); F' = (\overline{A} + B)(B + \overline{C})(A + C\overline{D})$$

(3)
$$\overline{F} = \overline{A} + B[(\overline{C} + D)(E + \overline{F}) + \overline{G}]; F' = A + \overline{B}[(C + \overline{D})(\overline{E} + F) + G]$$

- 2-6: (1) F = A + B
- (2) F=1
- (3) $\mathbf{F} = A + \overline{BD}$

2-7: (1) F (A, B, C) =
$$\overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C} + AB\overline{C} + ABC = \sum m(0,4,5,6,7);$$

F (A, B, C) =
$$(A+B+\overline{C})(A+\overline{B}+\overline{C})(A+\overline{B}+C)=\Pi M(1,2,3)$$

- (2) F (A, B, C, D) = $\sum m(4.5,6.7,12,13,14,15)$;
 - $F(A, B, C, D) = \prod M(0,1,2,3,8,9,10,11)$
- (3) F (A, B, C, D) = $\sum m(0,1,2,3,4)$;
 - F (A, B, C, D) = $\prod M(5,6,7,8,9,10,11,12,13,14,15)$

2-8: (1) F (A, B, C) =
$$\overline{AC} + \overline{BC} = (\overline{A} + \overline{B})C$$

(2) F (A, B, C, D) =
$$\overline{AB} + AC + B\overline{C} = (A + \overline{B} + \overline{C})(\overline{A} + B + C)$$

(3) F (A, B, C, D) =
$$B + D = B + D$$

2-11: (1) F (A, B, C, D) =
$$\overline{A} + BD$$
, $\sum d(1,3,4,5,6,8,10)=0$;

$$F_1(A, B, C, D) = \overline{BD} + \overline{ABCD} + \overline{ABCD} + ABD$$

(2)
$$F_2(A,B,C,D) = \overline{BD} + \overline{ABCD} + \overline{ACD} + \overline{ACD}$$
,
 $F_3(A,B,C,D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$

3-1: (1) F (A, B, C) =
$$\overline{AC} + BC = \overline{\overline{AC} \cdot \overline{BC}}$$

$$\mathbf{F}$$
 (A, B, C) = $(\overline{A} + C)(B + \overline{C}) = \overline{\overline{A} + C + B + \overline{C}}$

(2) F (A, B, C) =
$$\Pi$$
M(3,6)= \overline{B} + \overline{AC} + AC = $\overline{B \cdot \overline{AC} \cdot \overline{AC}}$

F (A, B, C) =
$$\Pi$$
M(3,6) = $(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C) = \overline{A + \overline{B} + \overline{C}} + \overline{A + \overline{B} + \overline{C}}$

(4) F (A, B, C, D) =
$$\overline{AB} + \overline{AC} + \overline{BCD} = \overline{AB}$$

$$\mathbf{F}$$
 (A, B, C, D) = $\overline{AB} + \overline{AC} + \overline{BCD} = \overline{A} + \overline{B} = \overline{\overline{A} + \overline{B} + 0}$

3-3: F (A, B, C) =
$$[A + \overline{(B+C)}\overline{(B+C)}] \cdot [\overline{AC} + (B+\overline{C})(\overline{B}+C)] = \overline{ABC} + A\overline{BC} + ABC$$

3-7: (1) 根据给定的逻辑功能建立真值表:

输入 Y X	输出 Z
$\mathbf{y_1}\mathbf{y_0} \qquad \mathbf{x_1}\mathbf{x_0}$	z_1z_0
00 00	11
00 01	01
00 10	01
00 11	01
01 00	10
01 01	11
01 10	01
01 11	01
10 00	10
10 01	10
10 10	11
10 11	01
11 00	10

11 01	10
11 10	10
11 11	11

(2)根据真值表,列出逻辑函数表达式,并化简为"与非"式。

	\mathbf{Z}_1						
y1 y0	$^{x1}_{00}$	01	11	10			
00	1	0	0	0			
01	1	1	0	0			
11	1	1	1	1			
10	1	1	0	1			

x0 00	Z ₂ 01	11	10
1	1	1	1
0	1	1	1
0	0	1	0
0	0	1	1

$$Z_1 = y_1 y_0 + \overline{x_1} \overline{x_0} + y_1 \overline{x_1} + \overline{y_1} y_0 \overline{x_1} x_0 + y_1 \overline{y_0} x_1 \overline{x_0} = \overline{y_1} \overline{y_0} \cdot \overline{x_1} \overline{x_0} \cdot \overline{y_1} \overline{x_1} \cdot \overline{y_1} \overline{y_0} \overline{x_1} x_0 \cdot \overline{y_1} \overline{y_0} \overline{x_1} \overline{x_0}$$

$$Z_2 = \overline{y_1} \overline{y_0} + x_1 x_0 + \overline{y_1} x_1 + \overline{y_1} y_0 \overline{x_1} x_0 + y_1 \overline{y_0} x_1 \overline{x_0} = \overline{\overline{y_1} \overline{y_0} \cdot \overline{x_1} x_0} \cdot \overline{\overline{y_1} x_1} \cdot \overline{y_1} \overline{y_0} \overline{x_1} x_0 \cdot \overline{y_1} \overline{y_0} \overline{x_1} \overline{x_0}$$

(3) 根据逻辑函数表达式画出逻辑电路图。(略)

3-9: (2) 存在冒险,增加冗余项 BD。

4-2: 状态图如下:

4-3:

现 态	次态 / 输出						
	x ₀ x ₁ =00	x ₀ x ₁ =01	$x_0x_1=11$	$x_0x_1=10$			
0	1/0	0/0	0/1	0/1			
ĺ	1/0	0/1	0/0	1/0			

4-5: (1)列出电路的输出函数和激励函数表达式:

$$Z_1 = Q_1 \ J_1 = Q_1 \overline{Q}_2 \ J_2 = x \overline{Q}_2 \ Z_2 = Q_2 \ K_1 = Q_1 \overline{Q}_2 + x \overline{Q}_2 \ K_2 = Q_2$$

(2)建立状态转移真值表:

输入	现	态	激励函数			次态		
x	Q_1	Q ₂	J_1	K ₁	J_2	K ₂	Q ₁ ⁽ⁿ⁺¹⁾	$Q_2^{(n+1)}$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	0	0
0	1	0	1	1	0	0	0	0
0	1	1	0	0	1	1	1	0

1	0	0	0	0	0	0	0	0
1	0	1	0	1	0	1	0	0
1	1	0	1	1	0	0	0	0
1	1	1	0	1	0	1	0	0

(3)作状态表如下:

现态	次态 Q	次态 $Q_1^{(n+1)} Q_2^{(n+1)}$					
Q_1 Q_2	X=0	X=1					
0 0	0 0	0 0					
0 1	0 0	0 0					
1 0	0 0	0 0					
1 1	1 0	0 0					

状态图如下:

4-9: 作隐含表,分别用状态 a, b, c, d, e 表示(A,D), (B,E), (C,F), G, H。可得简化后的状态表:

现态	次态 / 输出					
况 忿	X=0	X=1 a/0 c/0 a/1 d/1				
а	b/0					
b	a/1					
c	c/0					
d	e/1					
e	c/1	b/1				

4-13: (1)作原始状态图和状态表

现态		次态 /	输出	
	xy=00	xy=01	xy=11	xy=10

A	D/11	B/01	D/11	C/10
В	B/01	B/01	B/01	B/01
C	C/10	C/10	C/10	C/10
D	D/11	B/01	D/11	C/10

(2)状态简化

用 A 代替 A、D, 可得简化后的状态表

现态		输出		
- 7/L 1/LS	xy=00	xy=01	xy=11	xy=10
A	A/11	B/01	A/11	C/10
В	B/01	B/01	B/01	B/01
С	C/10	C/10	C/10	C/10

(3)状态编码

根据状态分配原则可以确定: A 的编码为 10; B 的编码为 01; C 的编码为 01, 得到二进制状态表:

现	态		次态 / 输出(Q ₁ ⁽ⁿ⁻	$^{+1)} Q_2^{(n+1)}/Z_xZ_y)$	
\mathbf{Q}_1	\mathbf{Q}_2	xy=00	xy=01	xy=11	xy=10
0	0	00/01	00/01	00/01	00/01
0	1	01/10	01/10	01/10	01/10
1	0	10/11	00/01	10/11	01/10

(4) 列出激励函数和输出函数表达式

$$D_{1} = Q_{1}\overline{xy} + Q_{1}xy$$

$$Z_{x} = Q_{2} + Q_{1}x + Q_{1}\overline{y}$$

$$D_{2} = Q_{2} + Q_{1}x\overline{y}$$

$$Z_{y} = \overline{Q}_{1}\overline{Q}_{2} + Q_{1}x + Q_{1}y$$

(5) 画逻辑图(略)

5-1: (1)列出电路的激励函数和输出函数表达式:

$$\begin{cases} J_{1} = K_{1} = 1 \\ CP_{1} = CP \end{cases}$$

$$\begin{cases} J_{2} = \overline{Q}_{3}, K_{2} = 1 \\ CP_{2} = Q_{1} \end{cases}$$

$$\begin{cases} J_{3} = Q_{2}\overline{Q}_{3}, K_{3} = 1 \\ CP_{3} = Q_{1} \end{cases}$$

(2)作状态真值表:

输入		现态			激励函数				次态						
CP	\mathbf{Q}_1	Q_2	Q_3	J_1	\mathbf{K}_{1}	CP ₁	J	CP ₂		J_3	\mathbf{K}_3	CP ₃	Q ₁ ⁽ⁿ⁺¹⁾	${Q_2}^{(n+1}$	Q3 ⁽ⁿ⁺¹⁾⁾
1	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0

1	0	0	1	1	1	1	0	1	0	0	1	0	1	0	1
1	0	1	0	1	1	1	1	1	0	1	1	0	1	1	0
1	0	1	1	1	1	1	0	1	0	0	1	0	1	1	1
1	1	0	0	1	1	1	1	1	1	0	1	1	0	1	0
1	1	0	1	1	1	1	0	2	2	0	1	1	0	0	0
1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	1	0	1	1	0	0	0

(3)作状态图表如下:

(4)功能描述:由状态图可知,此电路为一带自启动能力的六进制计数器。

6-1: 8421BCD 码加 3 即可得到余 3 码, 即加 0011, 用两个 74283 实现。

6-3:
$$F_{1}(x, y, z) = \overline{xyz} + \overline{xyz} + xy\overline{z} = m_{0} + m_{1} + m_{6} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}$$

$$F_{1}(x, y, z) = \overline{xyz} + \overline{xyz} + \overline{xyz} + \overline{xyz} + xy\overline{z} + xy\overline{z} + xy\overline{z}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{2}}\overline{m_{3}}\overline{m_{6}}\overline{m_{7}}$$

$$F_{1}(x, y, z) = \overline{xyz} + \overline{xyz} + xy\overline{z} + xy\overline{z}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

$$= m_{0} + m_{1} + m_{2} + m_{3} + m_{6} + m_{7} = \overline{m_{0}}\overline{m_{1}}\overline{m_{6}}\overline{m_{7}}$$

6-4: (1)设计全加器

$$\begin{cases} S_{i} = \overline{A}_{i} \overline{B}_{i} C_{i-1} + \overline{A}_{i} B_{i} \overline{C}_{i-1} + A_{i} \overline{B}_{i} \overline{C}_{i-1} + A_{i} B_{i} C_{i-1} \\ C_{i} = \overline{A}_{i} B_{i} C_{i-1} + A_{i} \overline{B}_{i} Q_{i-1} + A_{i} B_{i} \end{cases}$$

$$\mathbf{O11}$$

而四路选择器的输出表达式为: $W = \overline{A_1} \overline{A_0} D_0 + \overline{A_1} A_0 D_1 + A_1 \overline{A_0} D_2 + A_1 A_0 D_3$

将上式与全加器输出函数比较可知:

欲使
$$W=S_i$$
,则 $D_0=C_{i-1},D_1=\overline{C}_{i-1},D_2=\overline{C}_{i-1},D_3=C_{i-1}$

欲使
$$W = C_i$$
, 则 $D_0 = 0$, $D_1 = C_{i-1}$, $D_2 = C_{i-1}$, $D_3 = 1$

由此可得实现给定逻辑功能的逻辑电路。

(2)设计三变量多数表决电路

$$F(A,B,C) = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

而四路选择器的输出表达式为 $W=\overline{A_1}\overline{A_0}D_0+\overline{A_1}A_0D_1+A_1\overline{A_0}D_2+A_1A_0D_3$

比较可知: $D_0 = 0, D_1 = C, D_2 = C, D_3 = 1$

由此可以实现三变量多数表决功能的逻辑电路。

其中, M=1, 加法计数; M=0, 减法计数

加法计数: $Cr = MQ_DQ_C$

减法计数: $\overline{LD} = M + Q_D + Q_C + Q_B + Q_A$

DCBA=1100

6-9: 题目:

解:

M CP_D Q_D Q_C

741

 CP_{II} D

一. 填空

1.

2. 略

3. 时序逻辑电路,组合逻辑电路

4. 1. 0111, 1. 1000, -0. 0111

5.16 , log₂n

6. RS=0 P₁₀₅

7.6

8.3

9.30

10. 2ⁿ, 2ⁿ-1, 1

11. A, 1, 1

12. cp 脉冲来且输入信号 D=0

二.解析题

1.

CD AB	00	01	11	10	
00			d	1	
01		1	d	1	
11		1	d	d	
10		1	d	d	

如上图的卡诺图可知 F=BD+BC

2. 依题意可作出 110 序列检测器的状态表如下图

Tiil -k-	次态/输出				
现态	X=0	X=1			
A	A/0	B/0			
В	A/0	C/0			

С	A/1	C/0
	, -	-, -

如上图可作出状态表

3. 解:(方法: 隐含表中见课本 P₁₂₇) 从隐含表中可知,最大等级类有(B,E),(A,D),(F,C),(G),(H) 设 a 代表(A,D),b 代表(B,E),c 代表(C,F),d 代表((G),e 代表(F)

В	Х						
С	X	X					
D	EB, AD	X	X				
E	X	AD, FC	X	X			
F	X	X	AD	X	X		
G	X	X	X	X	X	X	
Н	X	X	X	X	X	X	HC/BG
	A	В	С	D	E	F	G

则简化组完全确定状态表如下图:

现态	次态/输出		
火心	X=0	X=1	
a	b/0	a/0	
b	a/1	c/0	
С	c/0	a/1	
d	e/1	d/1	
е	c/1	b/1	

4.

$$F = (A+B) (\overline{A}+C)$$

$$\pm \overline{A}F = (\overline{A}+B) (\overline{A}+C)$$

$$= (\overline{A}+B) + (\overline{A}+C)$$

$$= \overline{A}B + A\overline{C}$$

故F(注意是F)的卡诺图如下:

CAB	00	01	11	10
0		0	1	ĺ
1	1	0	0	0

如上图所示的卡诺图可 知应增BC来消除冒险 故F=AB+AC+BC 故F=AB+AC+BC 故F=AB+AC+BC =(A+B)+(A+C)+B+C)

Э.		
	T	
	0	
	1	
	1	

0

 $T{=}T\overline{Q}{+}\overline{T}Q$

二. 分析题

1. 解: 依题意可知

 $F_1 = \overline{\overline{m}_1 \ \overline{m}_2 \ \overline{m}_3 \ \overline{m}_4} = m_1 + m_2 + m_4 + m_7$

 $F_2 = \overline{m_3} \ \overline{m_5} \ \overline{m_6} \ \overline{m_7} = m_3 + m_5 + m_6 + m_7$

可化卡诺图化简 F1, F2

C AB	00	01	11	10
0		1		1
1	1	0 5	1	

 $_{\eta j}$ F_{i} = $A \oplus B \oplus C$

C AB	00	01	11	10
0			(1)	
1		1	0	1

可知 F2=AB+BC+AC 根据表达式可列出真值表为:

A B C	F1	F2
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

逻辑功能为:

当且仅当 ABC 输入相同的脉冲时, F1, F2 输出的值相同 ROM 图如下

四,设计题

1. 依题意可写出真值表为:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

根据真值表可化为卡诺图为:

C AB	00	01	11	10
0	0	0	1	0
1	0	0		

则化简可得 F=AB+AC

F的两次取反可得

 $F=\overline{AB}$ \overline{AC}

则用与非门实验的逻辑电路图为:

