lan J. Goodfellow

->google brain

->made GAN

->author of Deep Learning

. Deep generative models

- Autoencoder
- Generative Adversarial Networks

Not same!

https://github.com/gudrb/GAN/blob/master/autoencode r.ipynb

Deep generative models have had less of an impact

- Difficulty of Maximum likelihood estimation
- Difficulty of leveraging the benefits of piecewise linear units in the generative context

Succession of Deep generative models

- Backpropagation
- Drop out algorithm

Generative Adversarial Networks

Piecewised-linear

adversarial process

- 대립하는, 적대하는
- -> generator, discriminator (two models(G,D))

G:capture data distribution

D:estimates the probability of real sample

=>minimax two-player game

minimax two-player game

Maximizer, Minimizer

Maximizer: effort to get high score

Minimizer: effort to get low score

Max – right Min – left ⇒ 3

Max – left Min – right ⇒ 2

Choice: 3

Unique answer

Backtracking

(G,D)
G: make same data with training data
D: estimate probability = 1/2

D and G play the following two-player minimax game with value function V (G, D):

x: data variable, z: noise variable, G(z): fake data

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

D:

$$D(x)=1$$

$$D(G(x))=0$$

G:

$$D(x)=0$$

$$D(G(x))=1$$

$$D(x)=1/2$$

 $D(G(x))=1/2$

Optimizing D inner loop is prohibitive

sample from p_x

k steps of optimizing D and one step of optimizing G

D: near optimal solution

G: change slowly enough

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

If not,

D: overfitting

G: change fastly (yellow arrow)

Proof of optimal D

f(x)를 가지는 연속형 확률변수의 기대값(Expectation Value) $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

$$V(G,D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) dx + \int_{z} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) dz$$

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log (1 - D_{G}^{*}(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right]$$

$$\max(alog(y) + blog(1 - y))$$
-> $y = \frac{a}{a+b}$

Global min: $p_{data} = p_x$

-> -log4

For G to learn more well

G : log(1-D(G(z)) Minimize

G : log(D(G(z)): Maximize

Explicit, Implicit

Markov chains

• Markov chains or unrolled approximate inference networks during either training or generation of samples ??

• s. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples. ??

 and sample from the generative model using only forward propagation

MCMC(Markov Chain Monte Carlo)

• 어떤 목표 확률분포(Target Probability Distribution)로부터 샘플 링을 통해 랜덤 샘플을 얻는 방법이다

Monte Carlo

원의넓이: 원안의점 갯수 전체점 개수 Markov Chain <-> stochastic sampling(mini batch)

$$P(X_k|X_{k-1},X_{k-2},\ldots,X_1,X_0)=P(X_k|X_{k-1})$$

몇 가지 추가 조건이 만족한다면, k가 충분히 커지면 Xk의 분포는 특정한 값으로 수렴한다 즉, stationary distribution 된다.

목표분포를 stationary distribution으로 만들고 샘플링 한다. 샘플은 stationary distribution을 따른다

-> gradient 측정가능

Restricted Boltzmann Machines

- -> Markov chain
- While RBMs are occasionally used, most practitioners in the machine-learning community have deprecated them in favor of generative adversarial networks or variational autoencoders.

Restricted: no intra-layer communication

Undirected layer

Two Layers

Probability Density Function, PDF

	probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

	probability
1	1/∞
2	1/∞
3	1/∞
4	1/∞
5	1/∞
6	1/∞

	probability
0~1	1/6
1~2	1/6
2~3	1/6
3~4	1/6
4~5	1/6
5~6	1/6

	probability	likelyhood
0(MLE)	0	0.4
999	0	0

- 가능도의 직관적인 정의 : 확률분포함수의 y값
 - 셀 수 있는 사건: **가능도 = 확률**
 - 연속 사건: 가능도 ≠ 확률, 가능도 = PDF값

Maximum likelihood estimation

• **최대우도법**(最大尤度法)은 어떤 확률변수에서 표집한 값들을 토대로 그 확률변수의 모수를 구하는 방법이다. 어떤 모수가 주 어졌을 때, 원하는 값들이 나올 <u>가능도</u>를 최대로 만드는 모수를 선택하는 방법이다.

모수: 동전 앞면 나올 확률(p)

표집 값: 1000번 던짐

가능도: 모수에 따른 앞면이 나올 확률 $L=_{1000} C_{400} p^{400} (1-p)^{600}$

