Exame 2ª época

27-06-2012

1. A função $u(\rho, \phi)$ satisfaz a equação diferencial:

$$\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} + \lambda u = 0 , \qquad u(\rho, 0) = u(\rho, 2\pi) .$$

- a) Aplique o método de separação de variáveis a esta equação e encontre as equações diferenciais a que devem obedecer as funções de ρ e de ϕ utilizadas nesse método.
- **b)** Concretize esses resultados aplicando a condição fronteira $u(\rho, 0) = u(\rho, 2\pi)$, determinando a dependência explícita de $u(\rho, \phi)$ em ϕ .
- **2.** As funções $y_n(x) = e^{i n \pi x/\ell}$, $n \in \mathbb{Z}$, definidas no intervalo $[-\ell, \ell]$, são funções próprias do operador d/dx.
- a) Calcule os produtos internos de funções $\langle y_n | y_m \rangle$.
- b) Seja u(t,x) uma função escrita como combinação linear das funções y_n : $u(t,x) = \sum_n c_n(t) y_n(x)$.

Demonstre como se determinam os coeficientes $c_n(t)$ a partir da expressão de u(t,x).

c) Admita que u(t,x) satisfaz a equação diferencial

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \ .$$

Encontre as equações diferenciais a que devem satisfazer os coeficientes $c_n(t)$ e as respetivas soluções em termos dos valores iniciais $c_n(0)$. Escreva a solução u(t,x) em termos dos coeficientes $c_n(0)$.

3. Considere a equação diferencial

$$xy''(x) + (2-x)y'(x) + \lambda y(x) = 0$$
, $x \in [0, +\infty]$.

Os valores próprios desta equação são os números inteiros, $\lambda_n = n \in \mathbb{N}_0$, sendo as respetivas funções próprias $y_n(x)$ normalizadas de modo a que $\langle y_n | y_n \rangle = n + 1$.

- a) Coloque a equação acima na forma de Sturm-Liouville.
- **b)** Escreva, justificando, a expressão do produto interno de funções adequado ao problema.
- c) Calcule o produto interno $\langle y_n|u\rangle$ para a função $u(x)=\delta(x-z)$, e determine os coeficientes $c_n(z)$ da expansão da função delta: $\delta(x-z)=\sum_n c_n(z)\,y_n(x)$.
- 4.a) Calcule as transformadas de Fourier das funções

$$f(x) = \begin{cases} x/|x| & , \ 0 < |x| < a \\ 0 & , \ |x| \ge a \end{cases}, \qquad g(x) = \begin{cases} \sqrt{2} \sin\left(\frac{\pi x}{a}\right) & , \ |x| < a \\ 0 & , \ |x| \ge a \end{cases}.$$

b) Aplique o teorema de Parseval à função f(x) e utilize o resultado obtido para calcular o integral $\int_{-\infty}^{+\infty} x^{-2} \sin^4 x \ dx$.

$$\tilde{f}(k) = \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx , \qquad f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k) e^{ikx} dk
\int_{-\infty}^{+\infty} e^{ikx} dk = 2\pi \, \delta(x) , \qquad \int_{-\infty}^{+\infty} f^*(x) g(x) dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k)^* \, \tilde{g}(k) dk$$