

Features

- Compliant with AEC-Q200 Rev-C Stress Test Qualification for Passive Components in Automotive Applications
- Compact design to save board space -1206 footprint
- Small size results in very fast time to react to fault events
- Symmetrical design

- Low profile
- RoHS compliant* and halogen free**
- Agency recognition: **%** ♠

MF-NSMF Series - PTC Resettable Fuses

Electrical Characteristics

Model	V max. Volts	I max. Amps	lhold	I _{trip}	Resistance		Max. Time To Trip		Tripped Power Dissipation
			Amperes at 23 °C		Ohms at 23 °C		Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C
			Hold	Trip	R _{Min} .	R _{1Max} .			Тур.
MF-NSMF012	30.0	10	0.12	0.29	1.35	8.50	1.0	0.20	0.4
MF-NSMF020	24.0	10	0.20	0.46	0.60	2.60	1.0	0.60	0.6
MF-NSMF020X***	30.0	60	0.20	0.40	0.60	3.30	1.0	0.60	0.6
MF-NSMF035	6.0	100	0.35	0.75	0.30	1.20	8.0	0.10	0.6
MF-NSMF035X****	16.0	20	0.35	0.75	0.30	1.40	3.5	0.14	0.6
MF-NSMF050	13.2	100	0.50	1.00	0.15	0.70	8.0	0.10	0.4
MF-NSMF075	6.0	100	0.75	1.50	0.10	0.40	8.0	0.10	0.4
MF-NSMF110	6.0	100	1.10	2.20	0.06	0.20	8.0	0.10	0.6
MF-NSMF150	6.0	100	1.50	3.00	0.03	0.13	8.0	0.30	0.6
MF-NSMF200	6.0	100	2.00	4.00	0.02	0.085	8.0	1.00	0.7

^{****}Features Multifuse® freeXpansion Design™ for MF-NSMF Series (CSA/TÜV pending) *****Features Multifuse® freeXpansion Design™ for MF-NSMF Series (CSA pending)

Environmental Characteristics

Operating Temperature	40 °C to +85 °C	
in Tripped State	125 °C	
Passive Aging	+85 °C, 1000 hours	±5 % typical resistance change
Humidity Aging	+85 °C, 85 % R.H. 1000 hours	±5 % typical resistance change
Thermal Shock	+85 °C to -40 °C, 20 times	±10 % typical resistance change
Solvent Resistance	MIL-STD-202, Method 215	No change
Vibration	MIL-STD-883C, Method 2007.1,	No change
	Condition A	-

Test Procedures And Requirements For Model MF-NSMF Series

Test Vigual/Moch	Test Conditions . Verify dimensions and materials	Accept/Reject Criteria
	. In still air @ 23 °C	
	. At specified current, Vmax, 23 °C	
	. 30 min. at Ihold	
Trip Cycle Life	. Vmax, Imax, 100 cycles	. No arcing or burning
	. Vmax, 48 hours	
Solderability	. ANSI/J-STD-002	. 95 % min. coverage
UL File Number	. E174545	
	http://www.ul.com/ Follow link to Certifications, the	nen UL File No., enter E174545
CSA File Number	. CA110338	·
	http://directories.csa-international.org/ Under "Ce	rtification Record" and "File Number"
	enter 110338-0-000	
TÜV Certificate Number		
	http://www.tuvdotcom.com/ Follow link to "other of	certificates", enter File No. 2057213

^{*}RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

**Bourns follows the prevailing definition of "halogen free" in the industry. Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less;

(b) the Chlorine (CI) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (CI) content is 1500 ppm or less. Specifications are subject to change without notice.

Applications

- USB port protection USB 2.0, 3.0 & OTG
- Automotive electronic control modules
- HDMI 1.4 Source protection
- PC motherboards Plug and Play protection
- Mobile phones Battery and port protection
- PDAs / digital cameras
- Game console port protection

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Thermal Derating Chart - Ihold (Amps)

Model	Ambient Operating Temperature									
	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	
MF-NSMF012	0.19	0.17	0.15	0.12	0.11	0.10	0.09	0.08	0.07	
MF-NSMF020	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.11	
MF-NSMF020X	0.30	0.27	0.24	0.20	0.18	0.16	0.14	0.12	0.10	
MF-NSMF035	0.51	0.46	0.40	0.35	0.30	0.27	0.24	0.22	0.18	
MF-NSMF035X	0.58	0.51	0.44	0.35	0.31	0.28	0.24	0.21	0.16	
MF-NSMF050	0.76	0.68	0.59	0.50	0.44	0.40	0.35	0.32	0.26	
MF-NSMF075	1.11	1.00	0.85	0.75	0.67	0.61	0.52	0.50	0.42	
MF-NSMF110	1.64	1.46	1.30	1.10	0.92	0.83	0.80	0.65	0.52	
MF-NSMF150	2.20	1.99	1.77	1.50	1.34	1.23	1.10	1.01	0.84	
MF-NSMF200	2.88	2.61	2.28	2.00	1.80	1.66	1.51	1.39	1.19	

Typical Time to Trip at 23 °C

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

MF - NSMF 020 X - 2 Multifuse® Product Designator Series NSMF = 1206 Surface Mount Component Hold Current, Ihold 012-200 (0.12 Amps - 2.00 Amps) Options = Standard X = Multifuse® freeXpansion Design™ MF-NSMF Series

How to Order

Typical Part Marking

Represents total content. Layout may vary.

MF-NSMF Series - PTC Resettable Fuses

Product Dimensions

Model	-	4	l	3			D	Ctyle
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Style
MF-NSMF012	3.00	3.40	1.40	1.80	0.70	1.10	0.25	1
IVII -INSIVII UTZ	(0.118)	(0.134)	(0.055)	(0.071)	(0.028)	(0.043)	(0.010)	'
MF-NSMF020	3.00	3.40	1.40	1.80	_0.48_	_0.85_	_0.25_	1
IVII -INGIVII 020	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF020X	3.00	3.40	1.40	1.80	_0.40_	0.85	0.25	2
WII TVOIVII OZOX	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF035	3.00_	3.40	1.40	1.80_	_0.48_	_0.85_	_0.25_	1
IVII TVOIVII 000	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF035X	3.00	3.40	1.40	1.80_	_0.40_	0.85	_0.25_	2
IVII -INGIVII 000X	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.033)	(0.010)	
MF-NSMF050	_3.00_	3.40	1.40	1.80_	_0.48_	0.85	_0.25_	1
IVII TVOIVII 030	(0.118)	(0.134)	(0.055)	(0.071)	(0.019)	(0.033)	(0.010)	'
MF-NSMF075	3.00	3.40	1.40	1.80	_0.40_	0.70	0.25	1
IVII TVOIVII 073	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF110	3.00	3.40	1.40	1.80	_0.40_	0.70	0.25	1
	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	'
MF-NSMF150	3.00	3.40	1.40	1.80	_0.40_	0.70	0.25	1
IVII -INGIVII 130	(0.118)	(0.134)	(0.055)	(0.071)	(0.016)	(0.028)	(0.010)	<u>'</u>
MF-NSMF200	3.00	3.50	1.40	1.80	_0.70_	1.60	0.25	1
IVIF-INSIVIF200	(0.118)	(0.138)	(0.055)	(0.071)	(0.028)	(0.063)	(0.010)	'

Packaging: 3000 pcs. per reel.

MM DIMENSIONS: (INCHES)

Terminal material:

Electroless Ni under immersion Au

Termination pad solderability: Standard Au finish: Meets ANSI/J-STD-002 Category 2.

Recommended Storage:

40 °C max./70 % RH max.

MF-NSMF Series - PTC Resettable Fuses

BOURNS

Solder Reflow Recommendations

Notes:

- MF-NSMF models cannot be wave soldered. Please contact Bourns for hand soldering recommendations.
- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- · Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering.
 Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.

MF-NSMF Series Tape and Reel Specifications

	MF-NSMF012 & MF-NSMF200	MF-NSMF020 ~ MF-NSMF050	MF-NSMF075 ~ MF-NSMF150	MF-NSMF020X & MF-NSMF035X
Tape Dimensions	per EIA 481-1	per EIA 481-1	per EIA 481-1	per EIA 481-1
W	8.0 ± 0.30	8.0 ± 0.30	8.0 ± 0.30	$\frac{8.0 \pm 0.30}{(0.015)}$
	(0.315 ± 0.012)	(0.315 ± 0.012)	(0.315 ± 0.012)	(0.315 ± 0.012)
P ₀	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	$\frac{4.0 \pm 0.10}{4.0 \pm 0.10}$
	(0.157 ± 0.004)	(0.157 ± 0.004)	(0.157 ± 0.004)	(0.157 ± 0.004)
P ₁	4.0 ± 0.10	4.0 ± 0.10	4.0 ± 0.10	$\frac{4.0 \pm 0.10}{4.0 \pm 0.10}$
- 1	(0.157 ± 0.004)	(0.157 ± 0.004)	(0.157 ± 0.004)	(0.157 ± 0.004)
P_2	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$
A ₀	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$	$\frac{1.90 \pm 0.10}{(0.075 \pm 0.004)}$
	(0.073 ± 0.004) 3.50 ± 0.10		(0.075 ± 0.004) 3.45 ± 0.10	
В ₀	$\frac{3.50 \pm 0.10}{(0.138 \pm 0.004)}$	$\frac{3.45 \pm 0.10}{(0.136 \pm 0.004)}$	$\frac{3.45 \pm 0.10}{(0.136 \pm 0.004)}$	$\frac{3.55 \pm 0.10}{(0.140 \pm 0.004)}$
B ₁ max.	$\frac{4.35}{(0.171)}$	$\frac{4.35}{(0.171)}$	$\frac{4.35}{(0.171)}$	$\frac{4.35}{(0.171)}$
D_0	1.5 + 0.10/-0.0 (0.059 + 0.004/-0)	1.5 + 0.10/-0.0 (0.059 + 0.004/-0)	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$	$\frac{1.5 + 0.10/-0.0}{(0.059 + 0.004/-0)}$
	3.5 ± 0.05	3.5 ± 0.05	3.5 ± 0.05	3.5 ± 0.05
F	(0.138 ± 0.002)	(0.138 ± 0.002)	(0.138 ± 0.002)	(0.138 ± 0.002)
E ₁	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.10}{(0.069 \pm 0.004)}$
E ₂ min.	6.25 (0.246)	6.25 (0.246)	6.25 (0.246)	$\frac{6.25}{(0.246)}$
T max.	0.6 (0.024)	0.6 (0.024)	0.6 (0.024)	0.6 (0.024)
T ₁ max.	0.1 (0.004)	0.1 (0.004)	0.1 (0.004)	0.1 (0.004)
 K ₀	1.35 ± 0.10	1.04 ± 0.10	0.85 ± 0.10	0.80 ± 0.10
	(0.053 ± 0.004)	(0.041 ± 0.004)	(0.033 ± 0.004)	(0.032 ± 0.004)
Leader min.	<u>390</u> (15.35)	<u>390</u> (15.35)	390 (15.35)	390 (15.35)
Trailer min.	160 (6.30)	160 (6.30)	160 (6.30)	160 (6.30)
Reel Dimensions				
A max.	185 (7.28)	185 (7.28)	185 (7.28)	185 (7.28)
N min.	50 (1.97)	50 (1.97)	50 (1.97)	50 (1.97)
$\overline{w_1}$	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)	8.4 + 1.5/-0.0 (0.331 + 0.059/-0.0)
W ₂ max.	14.4 (0.567)	14.4 (0.567)	<u>14.4</u> (0.567)	14.4 (0.567)

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.