Numerical Optimisation:

Assignment Project Exam Help

https://eduassistpro.github.

Add Western of Computer Schulle Ground Control of Inverse Proble
University College London

Lecture 10 & 11

Least squares problem

Assignment Project Exam Help

Let's assemble the individual components r_i into the residual vector $r: \mathbb{R}^n \to \mathbb{R}^m$

$$r(x) = (r_1(x), r_2(x), \dots, r_m(x))^{\mathrm{T}}.$$

Using this vector, f becomes $f(x) = \frac{1}{2} \| r(x) \|_2^2$. The derivatives of Assangeral relation to the local part of the local part

https://eduassistpro.github.

$$\mathbf{Add}^{\nabla f(x)} = \sum_{j=1}^{m} r_j(x) \nabla r_j(x) = \mathbf{edu}_{assist_pr}$$

$$\nabla^2 f(x) = \sum_{j=1}^{m} \nabla r_j(x) \nabla r_j(x)^{\mathrm{T}} + r_j(x) \nabla^2 r_j(x)$$

M.M. Betcke

 $=J(x)^{\mathrm{T}}J(x)+\sum_{j=0}^{m}r_{j}(x)\nabla^{2}r_{j}(x),$

Example

Model of concentration of drug in bloodstream

$$\phi(x;t) = x_1 + tx_2 + t^2x_3 + x_4 \exp^{-x_5 t}.$$

https://eduassistpro.github.

Add WeChat edu_assist_pr

Figure: Nocedal Wright Fig 10.1 (left), Fig 10.2 (right)

Bayesian perspective

Bayes' theorem

Assignment
$$Project Exam Help$$

Den

at dahttps://eduassistpro.github.

Assume that ϵ_j s are independent and identic variance σ^2 and propability density function of a particular set of observations j, j \in CU_assist_propagate parameter vector x is given by

$$\pi(y|x) = \prod_{j=1}^m g_{\sigma}(\epsilon_j) = \prod_{j=1}^m g_{\sigma}(\phi(x;t_j) - y_j).$$

The maximum a posteriori probability (MAP) estimate vs the maximum likelyhood estimate

$$x_{\text{MAP}} = \max_{x} \pi(x|y) = \max_{x} \pi(y|x)\pi(x).$$

Assignment Project Exam Help

https://eduassistpro.github.

$$\underbrace{Add}_{x_{\text{MAP}}} \underbrace{weChat}_{(\sqrt{2\pi}\sigma)^m} \underbrace{edu_assist_pt}_{j=1}$$

$$= \min_{x} \sum_{i=1}^{m} (\phi(x; t_j) - y_j)^2.$$

Linear least squares

Asising nment Project Exam Help

The re

https://eduassistpro.github.

where

- the matrix J with rows J at edu_assist_pr

are both independent of x.

The linear least squares has the form

$$f(x) = \frac{1}{2} ||Jx - y||^2.$$

Assignment Project Exam Help The gradient and Hessian are

https://eduassistpro.github.

Note: f(x) is convex i.e. the stationary point is th

**WeChat edu_assist_pr

Normal equations

$$\nabla f(x^*) = J^{\mathrm{T}}(Jx^* - y) = 0 \quad \Leftrightarrow \quad J^{\mathrm{T}}Jx^* = J^{\mathrm{T}}y.$$

Roadmap: solution of linear least squares

- ullet Solve the normal equations $J^{\mathrm{T}}J\!x^{\star}=J^{\mathrm{T}}y$
 - + If $m\gg n$, computing $J^{
 m T}J$ explicitly results is a smaller matrix

Assignment Project Exam Help
Formulating J^T J squares the condition number.

https://eduassistpro.github.

• Solve the least squares $x^* = \arg \min$

All deposition of the depositi

- + If *J* is large and sparse or given in operato use iterative methods like CGLS or LSQR.
- + Does not square the condition number.
- + In particular SVD and iterative methods e.g. LSQR can easily deal with ill-conditioning.

QR factorizarion

Let

$$JP = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \\ Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R,$$

Assignment Project Exam Help

https://eduassistpro.github.

Recall: Multiplication with orthogonal mat

Add WeChat edu_assist_pr

$$||Jx - y||_2^2 = ||Q^{\mathrm{T}}(JPP^{\mathrm{T}}x - y)||_2^2 = ||(Q JP)P x - Q y||_2^2$$

= $||RP^{\mathrm{T}}x - Q_1^{\mathrm{T}}y||_2^2 + ||Q_2^{\mathrm{T}}y||_2^2$.

Solution: $x^* = PR^{-1}Q_1^Ty$. In practice we perform backsubstitution on $Rz = Q_1^Ty$ and permute for $x^* = Pz$.

Singular value decomposition

Let

Assignment
$$P_{r}$$
 oject E_{xam} $Help$

https://eduassistpro.github.

Solution: $x^* = VS^{-1}U_1^{\mathrm{T}}y = \sum_{i=1}^n \frac{u_i^{\mathrm{T}}y}{\sigma_i}v_i$. If σ_i are small, they would undue amplify the noise and can be omitted from the sum. Picard condition: $|u_i^{\mathrm{T}}y|$ should decay faster than σ_i .

LSQR [Paige, Saunders '82]

LSQR applied to

Assignment Project Exam, Help

wher equi avoi https://eduassistpro.github.

G-K bidiagonalisation yields the projected lens
$$\min_{y_i} \left\| \begin{bmatrix} B_i \\ \sqrt{\tau}I \end{bmatrix} y_i - \beta_1 e_1 \right\|,$$
 (P-LS)

which is then solved using QR decomposition yielding the approximation for the solution of the original problem, $f_i = V_i y_i$.

Golub-Kahan bidiagonalization

G-K bidiagonalization with a starting vector g for $\min_f \|g - Af\|$

Assignment $V_{i+1}(\beta_1 e_1)$ Project Exam Help $A^{T}U_{i+1} = V_{i}B^{T} + \alpha_{i+1}V_{i+1}e^{T},$

 $u_i = \frac{e_i}{\|u_i\|}$ https://eduassistpro.github.

$$B_{i} = \begin{bmatrix} \alpha_{1} \\ A^{2} \\ \beta_{3} \end{bmatrix} \underbrace{We}_{j} \underbrace{Chat}_{0_{i} = [u_{1}, edu_assist_{v_{i}}]}_{Chat} \underbrace{edu_assist_{v_{i}}}_{0_{i} = [u_{1}, edu_assist_{v_{i}}]}$$

(1)

Preconditioned LSQR

$Assignment Project Exam Help \\ \hat{f} = \operatorname{argmin} \|g - AL^{-1} \hat{f}\|.$

prec https://eduassistpro.github.

$$L^{-\mathrm{T}}A^{\mathrm{T}}AL^{-1}\hat{f} = L^{-\mathrm{T}}A^{\mathrm{T}}g \tag{2}$$

Similari Grace Constitution algorithm [Arridge, B, Harhanen '14].

MLSQR [Arridge, B, Harhanen '14]

```
1: Initialization:
                                            2: \beta_1 u_1 = g
Assignment, Project Exam Help
5: \hat{\vec{w}_1} = \tilde{v}_1, f_0 = 0, \bar{\phi}_1 = \hat{\beta}_1, \bar{\rho}_1 = \alpha_1
                                                                     https://eduassistpro.github.
                                                                           \tilde{\mathbf{v}}_{i+1} = \mathbf{M}^{-1} \tilde{\mathbf{p}}, \ \alpha_{i+1} = (\tilde{\mathbf{v}}_{i+1}, \tilde{\mathbf{p}})^{1/2},
                                      10:
                                                                          And the last of th
                                      11:
                                      12:
                                      13:
                                                                   Update:
                                      14: f_i = f_{i-1} + (\phi_i/\rho_i)\tilde{w}_i
                                      15: \tilde{w}_{i+1} = \tilde{v}_{i+1} - (\theta_{i+1}/\rho_i)\tilde{w}_i
                                                                             Break if stopping criterion satisfied
                                      16:
                                      17: end for
```

LSQR with explicit regularization $(\tau \neq 0)$

- \bullet In preconditioned formulation, Tikhonov (explicit) regularization amounts to damping. For a fixed value of $\tau,$
- Assignment of Gods To Sande s of Due to the shift invariance of Krylov spaces, V_i are the same

https://eduassistpro.github.

- Solving (P-LS) with a variable τ i using singular value decomposition of the b (see afficient W) that even the OU_assist_prow and a column in each iteration). Those que obtained at the cost $\mathcal{O}(i^2)$ at the i^{th} iteration.
- For larger i, the algorithm described in [Elden '77] for the least squares solution of (P-LS) at the cost of $\mathcal{O}(i)$ for each value of τ is the preferable option.

Stopping LSQR / MLSQR

[Saunders Paige '82] discusses three stopping criteria:

S1: $\|\bar{r}_i\| \leq \text{BTOL}\|g\| + \text{ATOL}\|\bar{A}\|\|f_i\|$ (consistent systems),

 $Assign{subarranteent systems}{} \underbrace{ATOL_{\text{(in Prisistent systems)}}^{\text{S21}} \underbrace{Exam_{\text{(A)}}^{\text{ATOL_{(in Prisistent Systems)}}}_{\text{(both)}} Exam_{\text{(both)}}^{\text{S21}}$

wher

[Arri https://eduassistpro.github. (suitable for ill-posed problems)

S4: $||r_i|| \le \eta \delta$, $\eta > 1$, where $A : \bigcirc A$ is the chiral endough of the constant of the co

- + if $\tau = 0$, $r_i = \bar{r}_i$ and the sequence $||r_i|| = ||\bar{r}_i||$ is monotonically decreasing. Moreover if initialised with f_0 , $||f_i||$ is strictly monotonically growing (relevant for damped problem),
- + priorconditioning does not alter the residual.

Gauss-Newton (GN) method

Gauss-Newton (GN) can be viewed as a modified Newton method with line search.

Assument Project Exam Help

 ∇f

https://eduassistpro.github.

Subs
$$\nabla^2 f(x_k) p_k = -$$
 and using the opposition of the term assist production of the term as a substitution of the term as

Implementations of GN usually perform a line search along p_{ν}^{GN} requiring the step length to satisfy e.g. Armijo or Wolfe conditions.

- Does not require computation of the individual Hessians $\nabla^2 r_j, j=1,\ldots,m$. If the Jacobian J_k has been computed when evaluating the gradient no other derivatives are needed.
- Frequently the first term $J_k^T J_k$ dominates the second term in Figure 1. This happens if either the residual r_j or $\nabla^2 f_k$
 - . https://eduassistpro.github.
 f and hence suitable for line search

 $Add^{N})W^{k}e^{C_{k}}h^{T}a^{T}r_{k}edu_assist_produ_{k}^{N}$

The final inequality is strict unless $J_k p_k^{\text{GN}} = 0$ in which case by the GN equation and J_k being full-rank we have $0 = J_k^{\text{T}} r_k = \nabla f_k$ and x_k is a stationary point.

Interpretation of GN step

The GN equation

$$J_k^{\mathrm{T}} J_k p_k^{\mathrm{GN}} = -J_k^{\mathrm{T}} r_k$$

Assignmentu Projector Exsumprillelp

Henchttps://eduassistpro.github.

We can view an investigation as the tained from a linear assist_precion function $r(x_k + b) = r_k + \frac{1}{2} \frac$

$$f(x_k + p) = \frac{1}{2} ||r_k(x_k + p)||^2 \approx \frac{1}{2} ||J_k p + r_k||^2$$

and $p_k^{\text{GN}} = \arg\min_{p} \frac{1}{2} ||J_k p + r_k||^2$.

Global convergence of GN

The global convergence is a consequence of the convergence theorem for line search methods [Zoutendijk].

Assignments Proposite Terxune the p following assumptions:

.https://eduassistpro.github.

Add We Chat edu_assist_properties the for the iterates x_k generated by the length satisfying Wolfe conditions, we have

$$\lim_{k\to\infty} J_k^{\mathrm{T}} r_k = \nabla f(x_k) = 0.$$

Similarly as for the line search, we check that the angle $\theta_k = \angle(p_k^{\rm GN}, -\nabla f_k)$ is uniformly bounded away from $\pi/2$

$Assign(p_k^{GN})^T\nabla f_k P_k p_k^{GN}|^2 E_k x_k^2 p_k^{GN}|^2 H^2 P_k p_k^2 p_k^2$

wher r_j of the littps://eduassistpro.github.

Then from $\sum_{k\geq 0}\cos^2\theta_k\|\nabla f_k\|^2<\infty$ follows WeChat edu_assist_pr

If J_k for some k is rank deficient, the matrix k is singular and the system has infinitely many solutions, however $\cos\theta_k$ is not necessarily bounded away from 0.

Convergence rate GN

The convergence of GN can be rapid if $J_k^{\mathrm{T}}J_k$ dominates the second term in the Hessian. Similarly as showing the convergence rate of Newton iteration, if x_k is sufficiently close to x^* , J(x) satisfies the

Newton iteration, if x_k is sufficiently close to x^* , J(x) satisfies the Ausifre following form $f(x_k)^T J(x_k)$

https://eduassistpro.gjthub.

Using A(x) to delege the second active the secon

$$abla f(x_k) -
abla f(x^*) = \int_0^1 J^{\mathrm{T}} J(x^* + t(x_k - x^*))(x_k - x^*) dt + \int_0^1 H(x^* + t(x_k - x^*))(x_k - x^*) dt,$$

Putting everything together and assuming Lipschitz continuity of $H(\cdot)$ near x^* and using L.c.d. of $r_i \Rightarrow$ L.c. of $J^{\mathrm{T}}r(x)$

$$||x_k + p_k^{GN} - x^*|| \le \int_0^1 ||[J^T J(x_k)]^{-1} H(x^* + t(x_k - x^*))|| ||x_k - x^*|| dt$$

Henchttps://eduassistpro.github.i quic

is quadratic (Newton).

When the dad bian (e) Chat edu_assist_properties and sparse and sp equation can be replaced by an inexact solve as in inexact Newton

methods but with the true Hessian $\nabla^2 f(x_k)$ replaced with $J(x_k)^{\mathrm{T}}J(x_k)$. The positive semidefinitness of $J(x_k)^{\mathrm{T}}J(x_k)$ simplifies the algorithms. Instead of (preconditioned) CG, (preconditioned) LSQR should be used.

Levenberg-Marquardt (LM) method

Levenberg-Marquardt (LM) makes use of the same Hessian approximation as GN but within the framework of trust region

A smethods Trust region to the standard of the

The c

https://eduassistpro.github.

where Add We Chat edu_assist_pr

Note: The least squares term corresponds to q

$$m_k(p) = \frac{1}{2} ||r_k||^2 + p^{\mathrm{T}} J_k^{\mathrm{T}} r_k + \frac{1}{2} p^{\mathrm{T}} J_k^{\mathrm{T}} J_k p.$$

Solution of the constraint model problem

The solution of the constraint model problem (CM-LM) is an immediate consequence of the general result for trust region methods [More, Sorensen]:

Assignment Prejecton Fexantisis Help trust region i.e. $p_k^{\rm GN} < \Delta_k$, then $p_k^{\rm LM} = p_k^{\rm GN}$ solves

• https://eduassistpro.github. (CM-LM) satisfies $||p_k|| = \Delta_k$ and

Note: And a equation is the normal equation assist property squares problem

$$\min_{p} \frac{1}{2} \left\| \begin{bmatrix} J_k \\ \sqrt{\lambda}I \end{bmatrix} p + \begin{bmatrix} r \\ 0 \end{bmatrix} \right\|^2,$$

which gives us a way of solving (CM-LM) without computing $J_k^T J_k$.

Global convergence LM

Global convergence is a consequence of the corresponding trust region global convergence theorem.

Assimption of that theorem we make the following that the following the following that the following the following that the following the followi

.https://eduassistpro.github.

We then have that

$$\lim_{k\to\infty} \nabla f_k = \lim_{k\to\infty} J_k^{\mathrm{T}} r_k = 0.$$

- As for trust region methods, there is no need to evaluate the right hand side of the ecrease condition, but it is sufficient to personal condition of a least become by point, addidness the personal calculated inexpensively. If the iterative CG-Steighaus
 - https://eduassistpro.github. solution x, at which the first term J(x) J(x) of the Hessian $\nabla^2 f(x^*)$ dominates the secon belonginative and the legal the GL assist process convergence.

References

• [Paige, Saunders '82] Link to website with papers and codes https://web.stanford.edu/group/SOL/software/lsqr/

Assi Biorck '96] A Biorch "Numerical Met Tods for Least Stulies 1p

https://eduassistpro.github.

- ill-conditioned least squares problems"
- [Arige B, War 14 SRARGE MM BSSIST_PI Harhanen, "Iterated preconditioned L problems on unstructured grids", Inverse Problems, 30(7) 2014
- [Hansen '98] P. C. Hansen "Rank-Deficient and Discrete III-Posed Problems", SIAM, 1998