Álgebra Moderna

José Antonio de la Rosa Cubero Doble Grado en Informática y Matemáticas Universidad de Granada

Álgebra Moderna

José Antonio de la Rosa Cubero Doble Grado en Informática y Matemáticas Universidad de Granada

Índice

1	intro	oduccion	4
	1.1	Generalidades sobre anillos	4
		1.1.1 Interpolación	7
		1.1.2 Transformada discreta de Fourier	8
2	Intro	oducción al concepto de módulo	9
	2.1	K[x]-módulos con K cuerpo	12
	2.2	Módulos abstractos	12
		2.2.1 Suma directa interna	14
		2.2.2 Módulos acotados sobre un DIP	15
	2.3	Homomorfismos de módulos	16
		2.3.1 Suma directa externa	18
3	Mód	lulos noetherianos, artinianos y de longitud finita	19
	3.1	Módulos noetherianos	19
	3.2	Módulos artinianos	22
	3.3	Módulos de longitud finita	23
		3.3.1 Módulos de longitud finita sobre un DIP	27
4	Teor	ría de módulos	35
	4.1	Presentaciones de módulos	38
	4.2	Módulos semisimples	49
		4.2.1 Anillos semisimples	53
	4.3	Descomposición de anillos en ideales indescomponibles	60
	4.4	Módulos a derecha	62
5	Algu	ınas aplicaciones	64
	5.1	C-álgebras de grupos finitos	64
	5.2	El caso de la circunferencia unidad	73

1 Introducción

Antes de comenzar con el contenido propio de la asignatura, debemos recordar ciertos conceptos y resultados relacionados con la estructura de anillo, impartidos en asignaturas básicas de álgebra.

1.1 Generalidades sobre anillos

Definición 1.1 (Anillo). Sea A un conjunto en el que existen dos operaciones $+, \cdot : A \times A \longrightarrow A$ tales que:

- 1. (A, +, 0) es un grupo aditivo (conmutativo):
 - (a+b)+c=a+(b+c) para todos $a,b,c \in A$.
 - a + b = b + a para todos $a, b \in A$.
 - a + 0 = a para todo $a \in A$.
 - Para todo $a \in A$ existe un $-a \in A$ tal que -a + a = 0.
- 2. $(A, \cdot, 1)$ es un monoide:
 - (ab)c = a(bc) para todos $a, b, c \in A$.
 - $a \cdot 1 = 1 \cdot a = a$ para todo $a \in A$.
- 3. Se cumplen las siguientes propiedades distributivas:
 - (a+b)c = ac + bc para todos $a, b, c \in A$.
 - a(b+c) = ab + ac para todos $a, b, c \in A$.

Definición 1.2 (Ideales). Sea A un anillo. Un subconjunto $I \subset A$ se dice ideal de A si cumple las siguientes propiedades:

- *I* es un subgrupo aditivo de *A* (es decir, *I* es un conjunto no vacío que cumple *a* + *b* ∈ *I* para todo *a*, *b* ∈ *I*).
- $ax, xa \in I$ para todo $a \in I$ y $x \in A$.

Observación. La primera condición para que un subconjunto de A sea un ideal suyo es equivalente a que $b-a \in I$ para todo $a,b \in I$. Recordemos que, dado cualquier anillo A, se verifica que 0a = (0+0)a = 0a + 0a, luego 0a = 0 para todo $a \in A$.

Esta propiedad, aunque evidentemente intuitiva, no viene explícita en la definición de anillo. Ahora bien, comprobemos que la propiedad de ideal anteriormente descrita se cumple.

Sean $a, b \in I$. Entonces $b - a = b + (-1)a \in I$, pues $(-1) \in A$ y $a \in I$.

Definición 1.3 (Homomorfismo de anillos). A, B anillos. Se dice que $f: A \longrightarrow B$ se dice un (homo)morfismo de anillos si para todos $a, a' \in A$ se tiene:

- 1. f(a + a') = f(a) + f(a')
- 2. f(aa') = f(a)f(a')
- 3. f(1) = 1

Teorema 1.1 (Teorema de Isomorfía). Sea $f:A\longrightarrow B$ un homomorfismo de anillos. Entonces:

- ker f es un ideal de A,
- Im f es un subanillo de B,
- Si $I \subset \ker f$ es un ideal de A, entonces existe un único homomorfismo de anillos $\tilde{f}: A/I \longrightarrow B$ definido por $\tilde{f}(a+I) = f(a)$.
- El homomorfismo \tilde{f} es inyectivo si, y solo si, $I = \ker f$.
- El homomorfismo \tilde{f} es sobreyectivo si, y solo si, lo es f.

Definición 1.4 (Producto de ideales). Sea A un anillo e I, J ideales de A. Definimos su producto por:

$$IJ = \{ \sum_{i} x_i y_i : x_i \in I, y_i \in J \} \subseteq I \cap J$$

Recordemos que tanto la suma como el producto de dos ideales de un anillo es un ideal del mismo anillo.

Definición 1.5 (Ideales coprimos). Sea A un anillo. Dos ideales de A I, $J \subset A$ se dirán primos entre sí o coprimos si I + J = A. Equivalentemente, existen $x \in I$ e $y \in J$ tales que 1 = x + y.

La motivación de la definición anterior reside en la identidad de Bezout, que estamos generalizando.

Lema 1.1. Sea A un anillo e I, J, K ideales de A. Entonces I+J=I+K=A si, y solo si, $I+(J\cap K)=I+J\cap K=A$.

Es decir, son coprimos entre sí si, y solo si, uno es coprimo con la intersección de los otros dos.

Demostración. Supongamos que I+J=I+K=A. Dados $x, x' \in I, y \in J$ y $z \in K$, se verifica que

$$1 = x + y = x' + z$$
.

Desarrollando la expresión anterior se obtiene que

$$1 = x + y = x + y1 = x + y(x' + z) = x + yx' + yz,$$

donde $x + yx' \in I$, e $yz \in J \cap K$.

Para el recíproco,
$$A \supseteq I + J \supseteq I + J \cap K = A$$
, luego $A = I + J$.

Lema 1.2. Sea A un anillo e I_1, \ldots, I_t ideales de A, donde $t \ge 2$. Entonces $I_1 \cap I_i = A$ si, y solo si, $I_1 + \bigcap_{i=2}^t I_i = A$.

Demostración. Se va a probar por inducción sobre el parámetro $t \ge 2$. Para t = 2, el caso base, es trivial.

Supongamos cierto que $I_1 \cap I_i = A$ implica que $I_1 + \bigcap_{i=2}^t I_i = A$ para $t \ge 2$. Veamos que se sigue cumpliendo para t + 1.

Llamo $I = I_1$, $J = \bigcap_{i=2}^t I_i$, $K = I_{t+1}$. Por hipótesis de inducción, I + J = A e I + K = A por ser coprimos (hipótesis del lema). Por el lema anterior tenemos:

$$I + J \cap K = I_1 + I_{t+1} \cap \bigcap_{i=2}^t I_i = I_1 + \bigcap_{i=2}^{t+1} I_i$$

La otra implicación es muy sencilla.

A continuación, se va a enunciar y demostrar el Teorema Chino del Resto, pero antes debemos establecer las hipótesis necesarias:

- 1. A un anillo.
- 2. A_1, \ldots, A_t anillos, con $t \ge 2$.
- 3. $f_i: A \longrightarrow A_i$ un homomorfismo de anillos para cada $i \in \{1, ..., t\}$.
- 4. Im $f_i \subseteq A_i$ es un subanillo.
- 5. A $\operatorname{Im} f_1 \times \cdots \times \operatorname{Im} f_t$ se le llama el anillo producto.
- 6. Definimos $f: A \longrightarrow \operatorname{Im} f_1 \times \cdots \times \operatorname{Im} f_t$, $f(x) = (f_1(x), \dots, f_t(x))$ para cada $x \in A$.
- 7. Tenemos que f es un homomorfismo de anillos, cuyo núcleo es la intersección de todos los núcleos. En efecto, dado $x \in A$, $x \in \ker f$ si, y solo si, $f_i(x) = 0$ para todo i, es decir, $x \in \bigcap_{i=0}^t \ker f_i$. Llamaremos $I = \ker f$.
- 8. Además, por el primer teorema de isomorfía, existe un homomorfismo $\tilde{f}:A/I\longrightarrow \operatorname{Im} f_1\times \cdots \times \operatorname{Im} f_t$, con $x+I\mapsto f(x)$. Por construcción, \tilde{f} es inyectiva, pero no sobreyectiva. El Teorema Chino del Resto se basa en demostrar que \tilde{f} es sobreyectiva bajo ciertas condiciones.
- 9. Cada $\ker f_i$ es coprimo con cualquier $\ker f_j$ para $j \neq i$.
- 10. Llamamos $I_i = \ker f_i$.

Teorema 1.2 (Teorema Chino del Resto). \tilde{f} es isomorfismo si y solo si $I_i + I_j = A$ para todo $i \neq j$.

Demostración. Probemos primero la implicación a la derecha. Vamos a suponer \tilde{f} sobreyectiva, es decir, que f lo es, pues $\tilde{f}(a + \ker f) = f(a)$.

Veamos que todos los I_i son coprimos entre sí.

Dado i, tomamos $x \in A$ tal que $f_i(x) = 1$ y $f_i(x) = 0$ para todo $j \neq i$.

Observemos que $1-x \in I_i$, ya que $f_i(1-x)=f_i(1)-f_i(x)=1-1=0$, y que $x \in \bigcap_{j \neq i} I_j$.

$$1=1-x+x\in I_i+\bigcap_{j\neq i}I_j$$

Por tanto, $I_i + \bigcap I_j = A$ y entonces por el lema anterior $I_i + I_j = A$.

Veamos el recíproco. Suponemos que $I_i + I_j = A$ para cualquier $i \neq j$. Por el lema anterior, $\forall i \in \{1, \dots, t\}$ $I_i + \bigcap_{i \neq j} I_j = A$.

Tomamos $(f(b_1), ..., f(b_t)) \in I_1 \times \cdots \times I_t$.

Para cada i, tomamos $a_i \in I_i$ y $p_i \in \bigcap I_j$ tales que $1 = a_i + p_i$ y sea $x = \sum_{i=1}^t b_i p_i$. Entonces

$$f_j(x) = \sum_{k=1}^t f_j(b_k) f_j(p_k) = f_j(b_j) f_j(p_j) = f_j(b_j(1-a_j)) = f_j(b_j) - f_j(b_j) - f_j(b_j) f_j(a_j) = f_j(b_j)$$

porque $f_j(p_k) = 0$ si $k \neq j$ y $a_j \in \ker f_j$.

Observación. Para anillos conmutativos denotamos

$$\langle a \rangle = \{ba : b \in A\}$$

el ideal generado por a.

Vamos a hacer un ejemplo, aplicando el teorema anterior.

1.1.1 Interpolación

Tomamos A = K[x], un anillo de polinomios con coeficientes en un cuerpo K.

Sea $A_i = K$ con $i \in \{1, ..., t\}$. Tomamos $\alpha_i \in K$ para cada i y definimos $\xi_i : K[x] \longrightarrow K$, $\xi_i(g) = g(\alpha_i)$, para cada $g \in K[x]$ y es un homomorfismo de anillos.

$$\operatorname{Im} \xi_i = K \text{ y } \xi : K[x] \longrightarrow K \times \cdots \times K = K^t.$$

 $\ker \xi_i = \langle x - \alpha_i \rangle$ que es ideal de un anillo de polinomios, luego principal. Está generado por el polinomio de grado menor, como las constantes no pueden anular a ξ_i , tiene que estar generado por ese, que es de grado uno.

$$I = \bigcap_{i=1}^{t} \langle x - \alpha_i \rangle = \langle p(x) \rangle$$

donde $p(x) = mcm\{x - \alpha_i : i \in \{1, ..., t\}\}.$

El teorema chino del resto nos asegura que $\tilde{\xi}: K[x]/\langle p(x)\rangle \longrightarrow K^t$ es un isomorfismo si y solo si $\mathrm{mcd}\{x-\alpha_i, x-\alpha_j\}=1$ para todo $j\neq i$, es decir, si $\alpha_i\neq\alpha_j$.

Lo que estamos viendo es que para cualquier tupla $(y_1, ..., y_t) \in K^t$, existe un $g \in K[x]$ tal que $g(\alpha_i) = y_i$, si y solo si $\alpha_i \neq \alpha_j$. En tal caso, $p(x) = \prod_{i=1}^t (x - \alpha_i)$.

Existe un único representante $g \in K[x]$ tal que $g(\alpha_i) = y_i$ de grado menor que t, siempre que $p(x) = \prod_{i=1}^{t} (x - \alpha_i)$.

 $\alpha_1, \ldots, \alpha_t \in K$ distintos dos a dos

$$\tilde{\xi}: K[x]/\langle p(x)\rangle \longrightarrow K^t$$

es un isomorfismo de anillos.

 $K[x]/\langle p(x)\rangle$ es un espacio vectorial cociente.

 $\ddot{\xi}$ es también un isomorfismo entre espacios vectoriales.

$$\tilde{\xi}(\alpha(g+p)) = \tilde{\xi}(\alpha g + p) = \tilde{\xi}((\alpha+p)(g+p)) =$$

$$\tilde{\xi}(\alpha+p)\tilde{\xi}(g+p) = (\alpha, \dots, \alpha)(g(\alpha_1), \dots g(\alpha_t)) = \alpha\tilde{\xi}(g+p)$$

Sea $\{1+p,x+p,x^2+p,\ldots,x^{t-1}+p\}$ *K*-base de $K[x]/\langle p(x)\rangle$. Notamos:

$$1 = 1 + p$$

$$x = x + p$$

Sea $\{e_1, ..., e_n\}$ es la base canónica de K^t . Nuestro objetivo es calcular sus preimágenes por ξ , en concreto un polinomio de grado menor que t.

$$g_i(x) = \prod_{j \neq i} (x - \alpha_j)$$

$$L_i(x) = \frac{g_i(x)}{g(\alpha_i)} = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

que vale 0 en α_i para cualquier j salvo en α_i que vale 1.

Tenemos que

$$g(x) = \sum_{i=1}^{t} y_i L_i(x)$$

satisface que $g(\alpha_i) = y_i$.

Finalmente vamos a ver que la matriz de $\tilde{\xi}$ en las bases consideradas es:

$$egin{pmatrix} 1 & \cdots & 1 \ lpha_1 & \cdots & lpha_t \ \cdots & \cdots & \ddots \ lpha_1^t & \cdots & lpha_t^t \end{pmatrix}$$

1.1.2 Transformada discreta de Fourier

Ahora vamos a reindexar. En lugar de usar 1, ..., t vamos a tomar los índices 0, ..., n-1.

Vamos a suponer que el cuerpo K contiene una raíz primitiva de 1, o sea, existe un $\omega \in K$ tal que $\omega^n = 1$ y $1, \omega, \omega^2, \ldots, \omega^{n-1}$ son distintos.

Seguro que car K / n ya que $1, \omega, \omega^2, \dots, \omega^{n-1}$ son las raíces de $x^n - 1$ y son distintas.

Vamos a interpolar las raíces de la unidad.

Tomo
$$\alpha_j = \omega^j$$
, $j \in \{0, \dots, n-1\}$ y

$$M = A_{\omega} = \begin{pmatrix} 1 & 1 & \cdots 1 \\ \omega^{0} & \omega^{1} & \cdots \omega^{n-1} \\ (\omega^{0})^{2} & (\omega^{1})^{2} & \cdots (\omega^{n-1})^{2} \\ \cdots & \cdots & \cdots \end{pmatrix} = (\omega^{ij})$$

Tenemos que $x^n - 1 = (x - 1)(x^{n-1} + \dots + x + 1)$ y evaluando en ω^j obtenemos

$$\omega^{(n-1)j} + \cdots + \omega^j + 1 = 0$$

Entonces $\sum_{k=0}^{n-1} \omega^{ik} = 0$ para 0 < i < n.

$$\begin{pmatrix} \omega^{0i} & \omega^i & \omega^{2i} & \cdots & \omega^{(n-1)i} \end{pmatrix} \begin{pmatrix} \omega^{-0j} \\ \omega^{-j} \\ \omega^{-2j} \\ \cdots \\ \omega^{-(n-1)j} \end{pmatrix} = \sum_{k=0}^{n-1} \omega^{k(i-j)} = 0$$

Tenemos entonces que $A_{\omega}A_{\omega^{-1}}^{T}=nI$, es decir, $A_{\omega}^{-1}=\frac{1}{n}A_{\omega^{-1}}^{T}$. $\tilde{\xi}:K[x]/\langle x^{n}-1\rangle\longrightarrow K^{n}$, con $\tilde{\xi}^{-1}(y)$ es el polinomio interpolador.

Tenemos unos datos $(y_0, \dots, y_{n-1}) \in K^n$. El polinomio interpolador de esos datos en los nodos $1, \omega, \dots, \omega^{n-1}$ viene dado por

$$\hat{y} = \sum_{j=0}^{n-1} \hat{y}_j x^j$$

donde $\hat{y} = y \frac{1}{n} A_{\omega^{-1}}^T$.

Explícitamente, se calcula que los coeficientes quedan:

$$\hat{y}_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega^{-jk}$$

Tomamos $K = \mathbb{C}$. $\omega = e^{i2\pi/n}$:

$$\hat{y}_{j} = \frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega^{-i2\pi jk/n}$$

que es la transformada de Fourier de y.

¿Qué interpretación le damos? Supongamos una función periódica de periodo $2\pi, f: [0, 2\pi] \longrightarrow \mathbb{C}$ con $f(0) = f(2\pi)$. Dividimos el intervalo en n partes iguales, una muestra: $y_j = f(\frac{2\pi j}{n})$ con j = 0, ..., n-1.

Tomamos $g:[0,2\pi] \longrightarrow \mathbb{C}$ con $g(t) = \sum_{j=0}^{n-1} \hat{y_j} e^{ijt}$. Tenemos entonces que $g(\frac{2\pi l}{n}) = \sum_{l=0}^{n-1} \hat{y_j} e^{i2\pi l j/n} = y_l = f(\frac{2\pi j}{n})$

A los \hat{y} también se le llama el espectro de y.

2 Introducción al concepto de módulo

Definición 2.1. Sean M, N grupos aditivos:

$$Ad(M, N) = \{f : M \longrightarrow N | f \text{ homomorfismo de grupos} \}$$

El conjunto anterior es no vacío porque $0 \in Ad(M, N)$. Ad(M, N) es un grupo aditivo con la suma:

$$(f+g)(m) := f(m) + g(m) \quad \forall m \in M$$

Definición 2.2 (Anillo de endomorfismo de M**).** Definimos directamente $\operatorname{End}(M) := \operatorname{Ad}(M, M)$.

Proposición 2.1. (End(M), +, 0, \circ , id) es un anillo.

Demostración. Se comprueba que es cerrado para composición. Es obvio que la composición es asociativa y tiene como elemento neutro la identidad.

Finalmente se ve que se cumplen las propiedades distributivas, que se siguen de que son homomorfismos. $\hfill\Box$

Observación. Consideramos el grupo $\{0\}$, es el anillo $\{0\}$ (anillo cero o trivial). Si $M \neq \{0\}$, entonces End(M) no es trivial.

Definición 2.3 (Módulo). Sea M un grupo aditivo y A un anillo. Una estructura de A-módulo sobre M es un homomorfismo de anillos $\rho: A \longrightarrow \operatorname{End}(M)$.

Ejemplo: los números enteros. M grupo aditivo, $A = \mathbb{Z}$. Existe un único χ : $\mathbb{Z} \longrightarrow \operatorname{End}(M)$ determinado por $\chi(1) = \operatorname{id}_M$, es decir, una única estructura de \mathbb{Z} -módulo sobre M (y su núcleo te da la característica del anillo).

Ejemplo: cuerpos. Sea K un cuerpo. Si V es un K-espacio vectorial, definimos $\rho: K \longrightarrow \operatorname{End}(V)$, tomamos $\rho(\alpha): V \longrightarrow V$ cumpliendo $\rho(\alpha)(v) = \alpha v$. Trivialmente se cumple que ρ es un homomorfismo por la estructura de espacio vectorial de V. Con lo cual tenemos una estructura de K-módulo sobre V. Se puede demostrar el recíproco trivialmente.

Observación. Sean X, Y, Z conjuntos. Map(X, Y) es el conjunto de aplicaciones de X en Y.

Entonces:

$$\psi: \operatorname{Map}(X \times Y, Z) \longrightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$$

es una biyección dada por $\psi(f)(x)(y) := f(x,y)$ y $\psi^{-1}(g)(x,y) := g(x)(y)$.

Ejercicio: comprobar que ψ^{-1} es realmente la inversa de ψ .

Observación. Sean M, N, L grupos aditivos.

$$\psi : \text{Biad}(M \times N, L) \longrightarrow \text{Ad}(M, \text{Ad}(N, L))$$

donde $b \in \text{Biad}(M \times N, L)$ si b es biaditiva:

$$b(m+m',n) = b(m,n) + b(m',n)$$

$$b(m, n + n') = b(m, n) + b(m, n')$$

Ejercicio, demostrar que la aplicación ψ es una biyección.

Teorema 2.1 (Caracterización de módulos). Sea A anillo, M un grupo aditivo. Sea Ring(A, End(M)), llamamos A-módulo a la imagen por ψ de ese conjunto.

Definición 2.4.

$$Ring(R, S) = {\phi : R \longrightarrow S, \phi \text{ es homomorfismo de anillos}}$$

Proposición 2.2. Dados un grupo aditivo M y un anillo A, se tiene una correspondencia biyectiva entre:

- 1. Homomorfismos de anillos $\rho : A \longrightarrow \operatorname{End}(M)$
- 2. Las aplicaciones $A \times M \longrightarrow M$ que satisfacen:
 - (a + a')m = am + a'm
 - a(m+m')=am+am'
 - (aa')m = a(a'm)
 - $1 \cdot m = m$

Demostración. Tomamos la biyección ψ^{-1} : Map $(A, \operatorname{Map}(M, M)) \longrightarrow \operatorname{Map}(A \times M, M)$. Tomamos $\rho \in \operatorname{Ring}(A, \operatorname{End}(M))$, su imagen por la biyección, $\psi^{-1}(\rho)$ son las aplicaciones que satisfacen justo las propiedades anteriores.

Llamamos a $\psi^{-1}(\rho)(a,m) = a \cdot m$. Tenemos que $\psi^{-1}(\rho)(a,m) = \rho(a)(m)$. Entonces $a \cdot m = \rho(a)(m)$.

Comprobamos la tercera propiedad como ejemplo:

Dados $a, a' \in A$ y $m \in M$:

$$(aa')m = \rho(aa')(m) = (\rho(a)\circ\rho(a'))(m) = \rho(a)(\rho(a')(m)) = \rho(a)(a'm) = a(a'm)$$

De forma análoga se demuestran el resto de propiedades.

Esta correspondencia responde a la fórmula
$$am = \rho(a)(m)$$
.

Un *A*-módulo lo veré de cualquiera de las maneras anteriores, que ya hemos visto que son equivalentes, según su conveniencia.

Ejemplo, si K es un cuerpo, un K-módulo es esencialmente un K espacio vectorial.

Otro ejemplo, el *A*-módulo regular. *A* es un *A*-módulo, vía $\lambda : A \longrightarrow (A)$ que lleva cada *a* a $\lambda(a)(a') := aa'$. La demostración es sencilla usando la segunda definición.

Proposición 2.3 (Restricción de escalares). Sea $\phi: R \longrightarrow S$ homomorfismo de anillos. Si M es un S-módulo, vía un homomorfismo de anillos $\rho: S \longrightarrow \operatorname{End}(M)$, tenemos que M es un R-módulo vía $\rho \circ \phi$.

Equivalentemente, si $r \in R$ y $m \in M$, definimos

$$rm = (\rho \circ \phi)(r)(m) = \rho(\phi(r))(m) = \phi(r)m$$

2.1 K[x]-módulos con K cuerpo

Tenemos K[x]-módulo M. O sea, M es un grupo aditivo y $\rho: K[x] \longrightarrow \operatorname{End}(M)$ es un homomorfismo de anillos.

K se puede ver como subanillo de K[x], aplicando la restricción de escalares aplicada a la aplicación inclusión, M es un K-espacio vectorial.

Veamos que ocurre con la indeterminada. $\rho(x) \in \text{End}(M)$.

Veamos que es un endomorfismo de espacios vectoriales:

$$\rho(x)(km) = x \cdot (km) = x \cdot (k \cdot m) = (xk) \cdot m = kx \cdot m = k(xm) = k\rho(x)(m)$$

Así que $\rho(x)$ es *K*-lineal.

Si $p = \sum_i p_i x^i \in K[x]$, tenemos que

$$pm = \rho(p)(m) = \sum_{i} p_{i} \rho(x)^{i}(m)$$

Proposición 2.4. Si tengo un K-espacio vectorial V y una aplicación lineal $T: V \longrightarrow V$, podemos definir para $p \in K[x]$ y $v \in V$ el operador

$$pv := p(T)(v) = \sum_{i} p_i T^i(v)$$

resulta que V es un K[x]-módulo.

Ejemplo, $\mathscr{C}^{\infty}(\mathbb{R})$ con $T = \frac{d}{dt}$ es un $\mathbb{R}[x]$ -módulo.

Observación. $\mathscr{C}^{\infty}(\mathbb{R})$ dotado de estructura de $\mathbb{R}[x]$ -módulo a través del endomorfismo lineal $T = \frac{d}{dt}$ es un ejemplo ilustrativo en el siguiente sentido.

Tomemos sin, $x \sin t = T(\sin t) = \cos t \ x^2 \sin t = -\sin t \ \text{con lo que}$

$$(x^2+1)\sin t=0$$

es decir, en un A-módulo M puede pasar que am = 0 $a \ne 0$, $m \ne 0$.

Ejemplo en el \mathbb{Z} -módulo \mathbb{Z}_4 tenemos que $2 \cdot \overline{2} = \overline{0}$.

2.2 Módulos abstractos

Sea A un anillo, ${}_AM$ un A-módulo, entonces si tenemos un homomorfismo de anillos $\varphi: A \longrightarrow \operatorname{End}(M)$ cuyo núcleo es un ideal de A.

Aplicando el primer teorema de isomorfía, tenemos:

$$A/\ker \varphi \longrightarrow \operatorname{Im} \varphi \subseteq \operatorname{End}(M)$$

y entonces M es un $A/\ker \varphi$ -módulo. De hecho $(a + \ker \varphi)m = \varphi(m)$.

$$\ker \varphi = \{a \in A : am = 0\} = \operatorname{Ann}_A(M)$$

se le llama el anulador de M.

Tenemos que $_{A}M$ entonces $M_{A/\operatorname{Ann}_{A}(M)}$

Ejercicio: si tenemos una plicación lineal entre espacios vectoriales de dimensión finita, entonces el anulador está generado por un único polinomio, el polinomio mínimo de T.

Definición 2.5. Un submódulo de un módulo ${}_AM$ es un subgrupo aditivo $N\subseteq M$ tal que $am\in N$ para cualquier $a\in A$ y $m\in N$. Los submódulos del módulo regular A se llaman ideales por la izquierda de A.

Observación. Todo ideal es un ideal a izquierda. Si *A* es conmutativo, los ideales a izquierda coinciden con los ideales.

Ejemplo: tomando $A = \mathcal{M}_2(K)$ con K un cuerpo.

$$\mathcal{M}_2(K) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in K \right\}$$

Tenemos que el conjunto:

$$\left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} : b, d \in K \right\}$$

es un ideal a izquierda de A.

Ejemplo: $T: V \longrightarrow V$, K-lineal. ¿Qué es un K[x]-submódulo de $V_{K[x]}$? Sea W un tal submódulo. W es un subespacio vectorial y además $T(w) = xw \in W$, es decir, un subespacio T-invariante (un ejemplo de subespacio T invariante es un subespacio propio). El recíproco es también cierto.

Definición 2.6 (Submódulo cíclico). Dado $_AM$, y un $m \in M$. Es claro que $Am = \{am : a \in A\}$ es un submódulo de $_AM$ que se llama submódulo cíclico generado por m.

Ejemplo: $\mathbb{R}[x]\sin t = \mathbb{R}\sin t + \mathbb{R}\cos t$.

Definición 2.7 (Submódulo finitamente generado). Dados $m_1, \ldots, m_n \in M$, el conjunto

$$Am_1 + \cdots + Am_n = \{a_1m_1 + \cdots + a_nm_n : a_i \in A\}$$

es un submódulo de $_{\scriptscriptstyle A}M$ llamado el submódulo generado por m_1,\ldots,m_n . Si

 $M = Am_1 + \cdots + Am_n$, diremos que M es finitamente generado con generadores m_1, \ldots, m_n .

2.2.1 Suma directa interna

Definición 2.8 (Módulo suma). Dados N_1, \ldots, N_n submódulos de ${}_{A}M$, defino:

$$N_1 + \cdots + N_n = \{m_1 + \cdots + m_n : m_i \in N_i\}$$

es un submódulo de M que se llama suma de $N_1 + \cdots + N_n$.

Nota. Se puede expresar $N_1 + \cdots + N_n$ como $\sum_{i=1}^n N_i$.

Proposición 2.5. Sean N_1, \ldots, N_t submódulos de A. Son equivalentes:

- 1. $N_i \cap \sum_{i \neq i} N_i = \{0\}$ para todo i.
- 2. Si $0 = n_1 + \cdots + n_t$, $n_i \in N_i$ entonces $n_i = 0$ para todo i.
- 3. Cada $n \in N_1 + \cdots + N_t$ admite una representación única como n = 1 $n_1 + \cdots + n_t \operatorname{con} n_i \in N_i$.

Demostración. Veamos que 1 implica 2. Tenemos que $0 = n_1 + \cdots + n_t$, si despejamos, $n_i = -\sum_{j \neq i} n_j \in N_i \cap \left(\sum_{j \neq i} N_j\right) = \{0\}.$ Veamos que 2 implica 3. Si $n = \sum n_i = \sum n_i'$, entonces $0 = \sum (n_i - n_i')$ lo que

implica que $n_i = n'_i$.

Finalmente, tomando $n \in N_i \cap \left(\sum_{j \neq i} N_j\right)$, es decir, $n = \sum_{j \neq i} n_j$ con lo que $0 = n - \sum_{i \neq i} n_i$ y como las descomposiciones son únicas, n = 0.

Definición 2.9 (Suma interna). Si $M = N_1 + \cdots + N_t$ tales que satisfacen una de las condiciones equivalentes anteriores, diremos que M es la suma directa interna y usaremos la notación $M = N_1 \dotplus \cdots \dotplus N_t$.

Definición 2.10. Si $\{N_1, \ldots, N_t\}$ verifican las condiciones equivalentes anteriores y $N_i \neq \{0\}$, se dice que el conjunto $\{N_1, \dots, N_t\}$ es una familia independiente.

Ejemplo: \mathbb{Z}_6 es un \mathbb{Z} módulo.

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5, 6\}$$

Tomamos

$$N_1 = \{0, 3\}$$

y

$$N_2 = \{0, 2, 4\}$$

Tenemos que N_1, N_2 es una familia independiente. Además es obvio que:

$$N_1 \dot{+} N_2 = \mathbb{Z}_6$$

ya que tienen como intersección {0} y su suma es el total.

2.2.2 Módulos acotados sobre un DIP

Definición 2.11 (Módulo acotado sobre un DIP). Sea A un dominio de ideales principales, ${}_AM$ un módulo, ${\rm Ann}_A(M) = \langle \mu \rangle$ para cierto $\mu \in A$. Si $\mu \neq 0$, diré que M es acotado.

Supongamos que ${}_{A}M$ es acotado y $\mu \notin \mathcal{U}(A)$, ya que si $\mu \in (A)$ entonces $M = \{0\}$.

Si $\mu = p_1^{e_1} \cdots p_t^{e_t}$, posible porque todo DIP es un dominio de factorización única (DFU), con $p_i \in A$ irreducible y $e_i > 0$.

Proposición 2.6 (Descomposición primaria del módulo). Tomamos $q_i = \frac{\mu}{p_i^{e_i}} \in A$.

Llamamos $M_i = \{q_i m : m \in M\} \subseteq M$. Veamos que $M_i \in \mathcal{L}(M) = \{\text{subm\'odulos de }_A M\}$.

Queremos que $M=M_1\dotplus\cdots\dotplus M_t$, con t>1 para evitar trivialidades. En ese caso, $\operatorname{mcd}\{q_1,\ldots,q_t\}=1$, donde se ha usado que estamos en un DFU.

Por la identidad de Bezout (válida porque estamos en un DIP), tenemos que $1=\sum_{i=1}^t q_ia_i$, para ciertos $q_i\in A$. Para en $m\in M$, $M=1\cdot m=\sum_i q_ia_im$, luego $M=M_1+\cdots+M_t$.

Vamos a ver que la suma es directa. $q_iq_j \in \langle \mu \rangle$ si $i \neq j$. Eso significa que si $m \in M_i$ y entonces $q_im = 0$ si $i \neq j$. Por tanto $M_i = \{m \in N : m = q_ia_im\}$.

Si $0 = \sum_{i=1}^{t} \operatorname{con} m_i \in M_i$, entonces

$$0 = q_i a_i 0 = m_i$$

y por tanto $M = M_1 \dotplus \cdots \dotplus M_t$.

Definición 2.12 (Componentes primarias). Tenemos que los M_i se llaman componentes primarias.

Proposición 2.7.

$$M_i = \{ m \in M : p_i^{e_i} m = 0 \}$$

Así,
$$\langle \mu \rangle = \operatorname{Ann}_A(M) = \bigcap_{i=1}^t \operatorname{Ann}_A(M_i) \supseteq \bigcap_{i=1}^t \langle p_i^{e_i} \rangle = \langle \mu \rangle$$

Ejercicio: Obtener la descomposición primaria usando \dotplus de \mathbb{Z}_{8000} . Ejemplo: T endomorfismo K-lineal. $V = {}_{K[x]}V$.

Un W es un submódulo de V es un subespacio vectorial tal que $T(W) \subseteq W$, es decir, W es T invariante.

Si $\operatorname{Ann}_{K[x]}(V) \neq \{0\}$, tomo $\mu(x) \in K[x]$, el polinomio mínimo de T. Es decir, $\operatorname{Ann}_{K[x]}(V) = \langle \mu(x) \rangle$.

$$\mu = p_1^{e_1} \cdots p_t^{e_t}$$

Entonces la descomposición primaria de V es $V = V_1 \dot{+} \cdots \dot{+} V_t$ con

$$V_i = \{ v \in V : p_i(x)v = 0 \}$$

Caso particular: $\dim(V) < \infty$ y que $\mu(x) = (x - \alpha_1) \cdots (x - \alpha_t)$ con $\alpha_i \neq \alpha_j$.

$$V_i = \{ v \in V : (x - \alpha_i)v = \{ v \in V : T(v) = \alpha_i v \}$$

es decir, el subespacio propio asociado al valor propio α_i .

Si el polinomio factoriza como producto de polinomios de grado 1 distintos, *T* es diagonalizable. Veremos en el futuro que el polinomio mínimo divide siempre al polinomio característico.

¿Cómo se calcula el polinomio mínimo de un endomorfismo lineal?

Ejercicio: Sea V un espacio vectorial real euclídeo (con producto escalar). Sea $T:V\longrightarrow V$ una isometría. Se pide demostrar que si W es un subespacio T invariante de V, entonces su ortogonal W^\perp es también T invariante. Entonces $V=W\dot{+}W^\perp$. Se usa inducción. Como consecuencia, usando el teorema fundamental del álgebra, deducir que V admite una base ortonormal con respecto de la cual la matriz de T es diagonal por bloques, con bloques de dimensión 1 o 2. ¿Qué aspecto tienen dichos bloques? Hay que ver que uno de los dos subespacios invariantes tienen dimensión 1 o 2.

2.3 Homomorfismos de módulos

Definición 2.13 (Módulo cociente o factor). Sea $_AM$ y $L \in \mathcal{L}(M)$. Consideramos M/L grupo aditivo y se define la acción:

$$a(m+L) := am + L$$

M/L es un módulo.

Definición 2.14 (Homomorfismo de módulos). Se dice que $f: {}_AM \longrightarrow {}_AN$ es un homomorfismo de módulos si respeta sumas y productos.

Definición 2.15 (Proyección canónica). Es la aplicación $\pi: M \longrightarrow M/L$ dada por $\pi(m) = m + L$ es un homomorfismo de módulos.

Teorema 2.2 (Teorema de isomorfía para módulos). $f: M \longrightarrow N$ un homorfismo de A-módulos. Entonces el núcleo $\ker f \in \mathcal{L}(_AM)$ y $\operatorname{Im} f \in \mathcal{L}(N)$. Para cada $L \in \mathcal{L}(_AM)$ tal que $L \subseteq \ker f$ existe un único homomorfismo de módulos

 $\tilde{f}: M/L \longrightarrow N$ tal que $\tilde{f} \circ \pi = f$. Finalmente, \tilde{f} es inyectiva si y solo si $L = \ker f$, en cuyo caso, \tilde{f} da un isomorfismo de A-módulos $M/\ker f \cong \operatorname{Im} f$.

Ejemplo ${}_{A}M$, definimos $f:A\longrightarrow M$ dada por:

$$f(a) = am \quad \forall a \in A$$

es un homomorfismo de A-módulos.

Tenemos $\operatorname{Im} f = Am$ y $\operatorname{ann}(a) = \ker f = \{a \in A : am = 0\}$ es un ideal izquierda y se tiene

$$A/\operatorname{ann}_A(m) \cong Am$$

$$a + \operatorname{ann}_{A}(m) \mapsto am$$

Ejemplo: $S = \text{Map}(\mathbb{N}, K)$, el conjunto de las sucesiones (que forman un K-espacio vectorial). Tomamos $T: S \longrightarrow S$ tal que T(s)(n) = s(n+1). Es lineal. Entonces S = T(s).

Para cualquier $f \in K[x]$, es decir $f = \sum_i f_i x^i$, se tiene:

$$(fs)(n) = \sum_{i} f_i s(n+i)$$

Imaginémosnos que s verifica que $\operatorname{ann}_{K[x]}(s) \neq \langle 0 \rangle$. Podemos tomar entonces un polinomio tal que fs=0 y que sea mónico. Tenemos entonces que $s(n+m)=-\sum_{i=0}^{m-1}f_is(n+i)$ para todo $n\in\mathbb{N}$. Es decir, la sucesión es linealmente recursiva. Caso particular, s(0)=s(1)=1, tenemos que

$$s(n+2) = s(n) + s(n+1)$$

$$x^2 - x - 1 \in \operatorname{ann}_{\mathbb{Q}[x]}(s)$$

Volviendo al caso general, tenemos que

$$K[x]/\operatorname{ann}_{K[x]}(s) \cong K[x]s$$

Tenemos que $\dim_K(K[x]s) < \infty$ si y solo si $\operatorname{ann}_{K[x]}(s) \neq \langle 0 \rangle$ si y solo si s es una sucesión linealmente recursiva.

El generador p(x) de $\operatorname{ann}_{K[x]}(s)$ se le llama el polinomio mínimo de s. El grado de dicho polinomio, coincide con $\dim_k(K[x]s)$ y se le llama complejidad lineal de s.

s,t dos sucesiones linealmente recursivas. $K[x](s+t) \subseteq K[x]s+K[x]t$, luego la primera tiene dimensión finita. Luego s+t es una sucesión linealmente recursiva, de complejidad menor o igual a la suma de las complejidades lineales. Puede argumentarse lo mismo para combinaciones lineales.

Las sucesiones linealmente recursivas forman un subespacio vectorial del espacio de sucesiones. De hecho forman un submódulo. Sea S^l el conjunto de las

sucesiones linealmente recursivas, forma un S^l es un K[x]-submódulo de S, ya que es ivariante por la acción de x (es T-invariante).

Otro ejemplo: T endomorfismo de $\mathscr{C}^{\infty}(\mathbb{R})$ tal que $T(\varphi) = \varphi'$. Tenemos que $\mathbb{R}^{[\chi]} \mathscr{C}^{\infty}(\mathbb{R})$. Dada φ , tenemos que

$$\operatorname{ann}_{\mathbb{R}[x]}(\varphi) = \{ f \in \mathbb{R}[x] : f(x)\varphi = 0 \} = \{ f = \sum_{i} f_{i} \frac{d^{i}}{dt^{i}} : f\varphi = 0 \}$$

ann $(\varphi) \neq \langle 0 \rangle$ si φ satisface una ecuación diferencial lineal homogénea con coeficientes constantes. Bla bla.

 $\mathbb{R}[x]/\operatorname{ann}_{\mathbb{R}[x]}(\varphi) \cong \mathbb{R}[x]\varphi$, donde φ satisface bla bla.

Tenemos que $\varphi'' - \varphi' - \varphi = 0$, cuya solución $\varphi(t) = e^{\phi t}$, donde ϕ es la razón aúrea.

2.3.1 Suma directa externa

Definición 2.16. Tomando el producto cartesiano de t módulos sobre el mismo anillo y tomando la suma usual de tuplas y definiendo el siguiente producto:

$$a(m_1,\ldots,m_t)=(am_1,\ldots,am_t)$$

Es un módulo que se llama suma directa externa de $M_1, ..., M_t$ con M^t si son todos iguales.

Se denota $M_1 \oplus \cdots \oplus M_t$.

Ejercicio: Sea $_AM$, $N_1, \ldots, N_t \in \mathcal{L}(_AM)$. Se pide demostrar que existe un homomorfismo $f: N_1 \oplus \cdots \oplus N_t \longrightarrow N_1 + \cdots + N_t$ sobreyectivo de A-módulos tal que entre la suma directa externa y la suma interna, tal que f es un isomorfismo si y solo si la suma interna es directa. Podría ser interesante usar coordenadas.

Definición 2.17 (Base de un módulo libre). Consideramos $A^n = A \oplus \cdots \oplus A$, donde la suma se repite n veces. Para cada $i = 1, \ldots, n$, tenemos que $\{e_i : e_i = (0, \ldots, 0, 1, 0, \ldots, 0)\}$ forman un sistema de generadores de A^n . Por tanto $a = \sum_i a_i e_i \in A^n$ es una expresión única.

Dicha base puede no existir.

Proposición 2.8. Dado un módulo cualquiera $_AM$ y $m_1, m_n \in M$, existe un único homomorfismo de módulos $f: A^n \longrightarrow M$ tal que $f(e_i) = m_i$.

Corolario 2.1. Si M es finitamente generado con generadores $\{m_i\}$, entonces $M \cong A^n/L$ para L un sierto submódulo.

Demostración. Unicidad: si existe una tal aplicación f, entonces para cualquier $a \in A^n$,

$$f(a) = \sum_{i} a_{i} f(e_{i}) = \sum_{i} a_{i} m_{i}$$

Veamos la existencia, Definiendo $f(a) = \sum_i a_i m_i$ obtenemos un homomorfismo de módulos que cumple lo exigido en el enunciado.

Si $M = Am_1 + \cdots + Am_n$ tenemos que $L = \ker f$ cumple lo que se pide por el teorema de isomorfía para módulos.

3 Módulos noetherianos, artinianos y de longitud finita

3.1 Módulos noetherianos

Definición 3.1 (Sucesiones exactas). Una suceión de homomorfismos de módulos $f_i: M_i \longrightarrow M_{i+1}$ se dice exacta en M_{i+1} si $\ker f_{i+1} = \operatorname{Im} f_i$.

Ejemplo: Dada una sucesión $\{0\} \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow \{0\}$ es exacta en L si y solo si ker $\alpha = \{0\}$, es decir, α es inyectiva, en N si y solo si Im $\beta = N$, es decir, β sobreyectiva y en M si y solo si ker $\beta = \text{Im } \alpha$.

A α se les llama monomorfismos de módulos y a β epimorfismos de módulos. A esta sucesión se le llama sucesión exacta corta.

Caso particular: Por ejemplo, si $f: M \longrightarrow N$ es un homorfismo de módulos, obtenemos:

$$0 \longrightarrow \ker f \xrightarrow{\iota} M \xrightarrow{f} \operatorname{Im} f \longrightarrow 0$$

Proposición 3.1. Sea $0 \longrightarrow L \stackrel{\psi}{\longrightarrow} M \stackrel{\varphi}{\longrightarrow} N \longrightarrow 0$ una sucesión exacta de *A*-módulos. Entonces:

- 1. Si *M* es finitamente generado, lo es también *N*.
- 2. Si *L* y *N* son finitamente generados, lo es también *M*.

Demostración. Veamos primero la primera afirmación. Sea $\{m_i\}$ generadores de M. Es claro que $\{\varphi(m_i)\}$ generan N.

Para la segunda, $\{n_i\}$ generadores de N, y tomamos $\{m_i\}\subseteq M$ tales que $\varphi(m_i)=n_i$.

Tomamos $\{e_i\}$ generadores de L. Tomamos $m \in M$.

$$\varphi(m) = \sum_{i=1}^{s} r_i n_i = \sum_{i=1}^{s} r_i \varphi(m_i) = \varphi\left(\sum r_i m_i\right)$$

con lo que $m-\varphi(\sum r_i m_i) \in \ker \varphi = \operatorname{Im} \psi$. Luego existen b_1,\ldots,b_t tales que

$$m - \varphi\left(\sum r_i m_i\right) = \psi\left(\sum_j b_j e_j\right)$$

y finalmente:

$$m = \varphi\left(\sum r_i m_i\right) + \sum r_j \varphi(e_j)$$

con lo que $\{m_i\} \cup \{\psi(e_i)\}.$

Ejemplo de que no se puede mejorar la proposición anterior: Sea I un conjunto infinito, K un cuerpo.

$$K^{I} = \{(\alpha_{i})_{i} \in I : \alpha_{i} \in K\}$$

 K^{I} es un anillo finitamente generado por (...,1,1,1,...). Definimos:

$$K^{(I)} = \{(\alpha_i)_i \in I : \alpha_i \in K \text{ y } \alpha_i = 0 \text{ salvo un número finito de } i \in I\}$$

Tenemos que $K^{(I)}$ es un ideal de K^{I} , y por tanto ideal a izquierda, pero no es finitamente generado como ideal a izquierda.

Es decir, *M* finitamente generado no implica que un submódulo suyo sea finitamente generado.

Definición 3.2 (Módulos Noetherianos). Un módulo finitamente generado M se dice Noetheriano si todo submódulo de M es finitamente generado.

El ejemplo anterior no era un módulo Noetheriano.

Proposición 3.2. Equivalen:

- 1. *M* es noetheriano.
- 2. Cualquier cadena ascendente $L_1 \subseteq L_2 \subseteq ... \subseteq L_n \subseteq ...$ se estabiliza, es decir, a partir de un cierto m las inclusiones se vuelven igualdades.
- 3. Cada subconjunto no vacío de $\mathcal{L}(M)$ tiene un elemento maximal con respecto de la inclusión.

Demostración. Veamos que la primera implica la segunda. Tomamos:

$$L = \bigcup_{n>1} L_n \in \mathcal{L}(M)$$

es un submódulo porque están encajados. Por hipótesis, es finitamente generado. Si tomamos un conjunto finito de generadores F tenemos que $F \subset L$ y como es finito, debe existir un m suficientemente grande tal que $F \subseteq L_m$ y como genera a F se tiene que $L \subseteq L_m \subseteq L$ con lo que $L_n = L_m = L$ para todo $n \ge m$.

Veamos que la segunda implica la primera. Sea $\Gamma \subseteq \mathcal{L}(M)$ no vacío. Si Γ no tiene elemento maximal y tomamos $L_1 \in \Gamma$, entonces existe $L_2 \in \Gamma$ tal que $L_1 \subsetneq L_2$.

Reiterando el proceso, tenemos que $L_1 \subsetneq L_2 \subsetneq \ldots \subsetneq L_n \subsetneq \ldots$ no se estabiliza.

Veamos que la tercera afirmación implica la primera. Sea $N \in \mathcal{L}(M)$. Tomamos el conjunto Γ el conjunto de todos los submódulos finitamente generados de N. Tenemos que el módulo trivial es finitamente generado, luego Γ es no vacío.

Sea L un elemento maximal de Γ . Veamos que L=N.

En caso contrario, tomamos $x \in N$ tal que $x \notin L$. Resulta que L + Ax es un submódulo de N y es finitamente generado. $L + Ax \in \Gamma$ y $L \neq L + Ax$, con lo que L no sería maximal.

Nota. $N \in \mathcal{L}(M)$, escribimos $N \leq M$.

Proposición 3.3 (Sucesiones exactas cortas en módulos noetherianos). Sea $0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0$.

Entonces M es noetheriano si y solo si L y N son noetherianos.

Demostración. Supongamos *M* noetheriano.

 $L \cong \operatorname{Im} \psi \leq M$ y entonces L es noetheriano trivialmente.

Tomamos $N_1 \subseteq N_2 \subseteq ... \subseteq N_n \subseteq ...$ una cadena ascendente en $\mathcal{L}(N)$.

Tenemos $\varphi^{-1}(N_1) \subseteq \varphi^{-1}(N_2) \subseteq \varphi^{-1}(N_n) \subseteq \dots$ cadena en $\mathcal{L}(M)$. Existe un m a partir del cual se estabiliza. Entonces, para todo $n \ge n$:

$$N_n = \varphi(\varphi^{-1}(N_n)) = \varphi(\varphi^{-1}(N_m)) = N_m$$

con lo cual N es noetheriano.

Supongamos ahora que N y L son noeherianos. Tomamos una cadena ascendente M_n de submódulos de M.

Por otro lado, $M_n \cap \operatorname{Im} \psi$ es una cadena de submódulos de M, que se estabiliza por ser noetheriano $\operatorname{Im} \psi \cong L$.

Tenemos $\varphi(M_n)$ es una cadena de submódulos de N, que también se estabiliza. Tomemos el menor natural tal que ambas cadenas se hayan estabilizado. Sea n mayor, $x \in M_n$, $\varphi(x) \in \varphi(M_n) = \varphi(M_m)$, debe existir $y \in M_m$. Luego $x - y \in \ker \varphi = \operatorname{Im} \psi$, con lo que $x - y \in M_n \cap \operatorname{Im} \psi = M_m \cap \operatorname{Im} \psi \subseteq M_m$ ya que $y \in M_m$.

Por tanto *M* es noetheriano.

Corolario 3.1. Dados dos módulos M_1 y M_2 . Entonces:

$$M_1 \oplus M_2$$

es noetheriano si y solo si M_1 y M_2 lo son.

Demostración. Sea la sucesión exacta corta

$$0 \longrightarrow M_1 \longrightarrow M_1 \oplus M_2 \longrightarrow M_2 \longrightarrow 0$$

donde la primera aplicación es $m_1 \mapsto (m_1, 0)$ y $(m_1, m_2) \mapsto m_2$ y el núcleo de la segunda es la imagen de la primera. Trivialmente se sigue el corolario.

Teorema 3.1. Sea A un anillo. Cada módulo sobre A finitamente generado es noetheriano si y solo si ${}_{A}A$ es noetheriano.

Demostración. Una de las implicaciones es obvia.

Veamos que si el módulo regular es noetheriano, veamos que cualquier otro lo es.

Sea M finitamente generado, existe un homomorfismo sobreyectivo ϕ tal que $A^n \longrightarrow M$.

Usando inductivamente el corolario, tenemos que A^n es noetheriano. La proposición nos dice que M es noetheriano, aplicandolo a la sucesión

$$0 \longrightarrow \ker \phi \longrightarrow A^n \longrightarrow M \longrightarrow 0$$

Definición 3.3 (Anillo noetheriano). A se dice noetheriano a izquierda si el módulo regular es noetheriano. Si A es conmutativo diremos simplemente noetheriano.

Corolario 3.2. Si *A* es noetheriano, equivalen para cualquier sucesión exacta corta:

- 1. *M* es finitamente generado.
- 2. *L* y *N* son finitamente generados.

Corolario 3.3. Todo dominio de ideales principales es noetheriano.

3.2 Módulos artinianos

Definición 3.4 (Módulo artinano). Para un $_{A}M$, son equivalentes:

- 1. Cada cadena descendente $L_1 \supseteq L_2 \supseteq \ldots \supseteq L_n \supseteq \ldots$ de submódulos de M se estabiliza, esto es, a partir de cierto natural m se tiene $L_n = L_m$ para todo $n \ge m$.
- 2. Cada subconjunto de $\mathcal{L}(M)$ tiene un elemento minimal.

A un tal módulo lo llamaremos artiniano.

Ejercicio: Sea *A* un dominio de integridad conmutativo. Si el módulo regular es artiniano, entonces *A* es un cuerpo.

En particular $\mathbb Z$ no es artiniano, aunque por ser un DIP, sí que es noetheriano. Ejercicio: K un cuerpo de característica $\mathbb Z$. Tomo K[x] anillo de polinomios. Veo K[x] como K-espacio vectorial. Tomamos T la aplicación lineal T(f):=f', donde f' es el polinomio derivado. Esto nos da una estructura de K[x]-módulo sobre K[x] que no es la del módulo regular. Se pide demostrar que ese módulo es artiniano y no finitamente generado.

En consecuencia, la estructura que hemos definido no es la misma que la del módulo regular.

Proposición 3.4. Sea

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

Entonces M es artiniano si y solo si L y N son artinianos.

Ejercicio: sea *p* un número primo. Definimos:

$$C_{n^{\infty}} = \{ z \in \mathbb{C} : z^{p^n} = 1 \text{ para algún } n \ge 1 \}$$

Se pide comprobar que es un subgrupo $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$ y demostrar que visto como \mathbb{Z} -módulo es artiniano pero no es finitamente generado.

3.3 Módulos de longitud finita

Definición 3.5 (Serie de composición). Sea M un módulo. Una serie de composición de M es una cadena de submódulos

$$M = M_n \supseteq M_{n-1} \supseteq \ldots \supseteq M_1 \supseteq M_0 = \{0\}$$

tal que si $M_i \supseteq N \supseteq M_{i-1}$ para N submódulo, entonces $N = M_i$ o $N = M_{i-1}$. Es decir, cada submódulo es maximal en el anterior.

A n le llamamos la longitud de la serie.

Ejemplo: serie de composición de \mathbb{Z}_{12} . Tiene como subgrupos a \mathbb{Z}_m con m divisor de 12.

$$M_3 = \mathbb{Z}_{12}$$

tiene como subgrupo maximal (argumentando por Lagrange):

$$M_2 = \langle 2 \rangle$$

que a su vez tiene como subgrupo maximal

$$M_1 = \langle 4 \rangle$$

y ya solo tiene

$$M_0 = \{0\}$$

Definición 3.6 (Módulo simple). M se dice simple si $M \supset \{0\}$ es una serie de composición. Es decir, si no tiene submódulos propios y no es el módulo 0.

Proposición 3.5. La condición de que cada submódulo sea maximal en el anterior es equivalente a que los factores M_i/M_{i-1} sean simples.

Teorema 3.2. Toda serie de composición del mismo módulo tiene la misma longitud y los mismos factores salvo isomorfismo y reordenación.

 \mathbb{Z}_{12} tiene como factores \mathbb{Z}_2 , \mathbb{Z}_2 y \mathbb{Z}_3 .

Proposición 3.6. Un módulo no nulo admite una serie de composición si y solo si es noetheriano y artiniano.

Demostración. Sea M_i una serie de composición. Inducción sobre n. Si n=1, tenemos que M es simple y en particular noetheriano y artiniano.

Si n > 1, entonces M_{n-1} admite una serie de composición de longitud n-1, luego es noetheriano y artiniano. Tomamos la sucesión exacta corta

$$0 \longrightarrow M_{n-1} \longrightarrow M_n \longrightarrow M_n/M_{n-1} \longrightarrow 0$$

El primer elemento es noetheriano y artiniano, el último es simple (luego noetheriano y artiniano), con lo que M_n es noetheriano y artiniano.

Para el recíproco, como M es artiniano, contiene un submódulo simple M_1 . Entonces hay un $M_2 \supsetneq M_1$ donde M_2/M_1 es simple. Reiterando el proceso, tenemos $0 \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots$ y como es noetheriano, habrá un M_n que termine la cadena.

Corolario 3.4. Dada una sucesión exacta corta, $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$, L y N admite serie de composición si y solo si M admite serie de composición.

Corolario 3.5. M_1 , M_2 admiten series de composición si y solo si $M_1 \oplus M_2$ admite serie de composición.

Teorema 3.3 (Jordan-Hölder). Supongan que *M* admite series de composición:

$$\{0\} = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_n = M$$

$$\{0\} = N_0 \subsetneq N_1 \subsetneq N_2 \subsetneq \dots \subsetneq N_m = M$$

Entonces n = m y existe una permutación σ tal que

$$M_i/M_{i-1} \cong N_{\sigma(i)}/N_{\sigma(i)-1}$$

Demostración. Si n=1, entonces M es simple y m=1 y el el único factor posible es el $M/\{0\}=M$.

Si n > 1, como M no es simple, m > 1.

Vamos a observar un caso particular. Supongamos que $N_{m-1}=M_{n-1}$. Por hipótesis de inducción aplicado a N_{m-1} , tenemos que n-1=m-1, luego n=m y se da el enunciado (tomando la permutación σ para los n-1 primeros elementos y extendiendola a una permutación de n elementos σ' tal que $\sigma'(n):=n$, $\sigma'(k):=\sigma(k)$).

Vamos ahora al caso general. Como hemos visto en el caso particular anterior, podemos suponer $M_{n-1} \neq N_{m-1}$, por lo que $M_{n-1} + M_{m-1} = M$ (ya que $M_{n-1} \subsetneq M_{n-1} + N_{m-1} \subseteq M$ y M_{n-1} es maximal).

Tomamos $N_{m-1} \cap M_{m-1}$ que admite una serie de composición:

$$\{0\} = L_0 \subsetneq L_1 \subsetneq \ldots \subsetneq L_k = N_{m-1} \cap M_{n-1}$$

y tenemos que, por el teorema de isomorfía:

$$N_m/N_{m-1} = M/N_{m-1} = (M_{n-1} + N_{m-1})/N_{m-1} \cong M_{n-1}/(M_{n-1} \cap N_{m-1})$$

que al ser un factor es simple.

Aplicando la inducción, n-1=k+1 y existe una permutación τ de n-1 elementos tal que

$$L_i/L_{i-1} \cong M_{\tau(i)}/M_{\tau(i)-1}$$

donde $i = 1, \dots, n-2$ y

$$M_{n-1}/L_{n-2} = M_{n-1}/(M_{n-1} \cap N_{m-1}) \cong M_{\tau(n-1)}/M_{\tau(n-1)-1}$$

Tenemos que, por el teorema de isomorfía:

$$M_n/M_{n-1} = M/M_{n-1} = (N_{m-1} + M_{n-1})/M_{n-1} \cong N_{m-1}/(N_{m-1} \cap M_{n-1})$$

que al ser un factor es simple.

Aplicando la inducción, m-1=k+1 y existe una permutación ρ de m-1 elementos tal que

$$L_i/L_{i-1} \cong N_{\rho(i)}/N_{\rho(i)-1}$$

donde $i = 1, \dots, n-2$ y

$$N_{n-1}/L_{n-2} = N_{n-1}/(M_{n-1} \cap N_{m-1}) \cong N_{o(n-1)}/N_{o(n-1)-1}$$

Tenemos ya que n = k+2 = m, y si definimos σ la permutación de n elementos:

$$\sigma(i) = \begin{cases} \rho \circ \tau^{-1}(i), & i \in \{1, \dots, n-1\}, \quad \tau^{-1}(i) \in \{1, \dots, n-2\} \\ n, & i \in \{1, \dots, n-1\}, \quad \tau^{-1}(i) = n-1 \\ \rho(n-1), & i = n \end{cases}$$

Definición 3.7 (Módulo de longitud finita). Un módulo se dice de longitud finita si tiene una serie de composición finita o es $\{0\}$. La longitud $\ell(M)$ es la de cualquiera de sus series de composición, o cero si $M = \{0\}$.

Ejercicio: sea M un módulo de longitud finita. Se pide demostrar que si $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ es una sucesión exacta corta, entonces:

$$\ell(M) = \ell(N) + \ell(M)$$

Si $U, V \in \mathcal{L}(M)$, entonces:

$$\ell(U+V) = \ell(U) + \ell(V) - \ell(U \cap V)$$

Ejemplo: si V es un K-espacio vectorial, $\ell(V) = \dim(V)$.

Ejemplo: $\ell(\mathbb{Z}_{12}) = 3$, ya que calculamos antes una serie de composición.

Otro ejemplo: $\ell(\mathbb{Z}_p) = 1$ si p es primo.

Ejercicio: $\ell(\mathbb{Z}_n)$ es la suma de los exponentes de su descomposición en primos.

Ejemplo: si $n = \prod p_i^{e_i}$ entonces $\mathbb{Z}_n \cong \mathbb{Z}_{p_t^{e_t}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{e_t}}$ Sea $_AM$ un módulo, $\mathscr{L}(M)$ es el conjunto de todos los submódulos de M.

Dado $\Gamma \subseteq \mathcal{L}(L)$ no vacío, tenemos $\bigcap_{N \in \Gamma} N \in \mathcal{L}(M)$ (no tiene por qué ocurrir que estén en Γ , $\bigcap_{n \geq 1} n\mathbb{Z} = \{0\} \notin m\mathbb{Z}$ para ningún $m \geq 1$).

Definición 3.8 (Zócalo). El zócalo de M es el menor submódulo de M que contiene a todos los submódulos simples de M.

Si M no tiene ningún submodulo simple, definimos el zócalo como $\{0\}$. En ambos casos usaremos la notación Soc(M).

Ejemplo: si V es un K-espacio vectorial, Soc(V) = V.

Ejemplo: Soc(\mathbb{Z}) = {0}, puesto que cada $n\mathbb{Z}$ contiene un $2n\mathbb{Z}$, luego no es simple.

De hecho, si A es un dominio de integridad que no es un cuerpo, $Soc(A) = \{0\}$. Tienes que sus submódulos son ideales. Para $x \in I$, el ideal generado por x^2 está dentro de I, luego I no es simple.

Proposición 3.7. Sea M de longitud finita. Existen submódulos S_i simples de M tales que

$$Soc(M) = S_1 \dotplus \cdots \dotplus S_n$$

Además si T_i son simples tales que $Soc(M) = T_1 \dotplus \cdots \dotplus T_m$, entonces n = m y tras reordenación, $S_i \cong T_i$.

Demostración. Si Γ es el conjunto de todos los submódulos de la forma $S_1 \dotplus \cdots \dotplus S_n$ Si $M \neq \{0\}$, entonces $\Gamma \neq \emptyset$, ya que M contiene algún submódulo simple. Como M es Notheriano, existe un $S_1 \dotplus \cdots \dotplus S_n$ maximal.

$$S_1 \dot{+} \cdots \dot{+} S_n \subseteq Soc(M)$$
. Sea $S \in \mathcal{L}(M)$ simple.

$$S \cap (S_1 \dot{+} \cdots \dot{+} S_n)$$

puesto que S es simple y la intersección es submódulo, se tiene que dicha intersección o es $\{0\}$ o es S.

Consideramos

$$S \cap (S_1 \dot{+} \cdots \dot{+} S_n) = \{0\}$$

luego

$$S \dotplus S_1 \dotplus \cdots \dotplus S_n \in \Gamma$$

con lo que no sería maximal.

Luego se tiene:

$$S \subseteq S_1 \dotplus \cdots \dotplus S_n \in \Gamma$$

luego, como S era un modulo simple arbitrario, tenemos que $Soc(M) = S_1 \dot{+} \cdots \dot{+} S_n$. Resulta que

$$\{0\} \subsetneq S_1 \subsetneq S_1 + S_2 \subsetneq \dots \subsetneq S_1 + \dots + S_n = \operatorname{Soc}(M)$$

es una serie de composición, ya que:

$$(S_1 \dotplus \cdots \dotplus S_i)/(S_1 \dotplus \cdots \dotplus S_{i-1}) \cong S_i$$

Aplicando Jordan-Hölder se obtiene el resultado.

Definición 3.9 (Módulo semisimple). Sea M de longitud finita. Decimos que M es semisimple si es Soc(M) = M.

Ejercicio: Sea A un DIP que no sea un cuerpo, I ideal de A. Se pide demostrar que A/I es de longitud finita si y solo si $I \neq \langle 0 \rangle$.

&Se puede deducir cuál es la longitud de A/I de un generador de I?

3.3.1 Módulos de longitud finita sobre un DIP

Sea de ahora en adelante A un dominio de ideales principales que no sea un cuerpo.

Lema 3.1. $_AM$ es de longitud finita si y solo si $_AM$ finitamente generado y acotado. *Demostración.* M distinto del 0, porque si no es trivial.

M de longitud finita, por tanto noetheriano, por tanto finitamente generado: $M = Am_1 + \cdots + Am_n$, con $m_i \in M$.

$$\langle \mu \rangle = \operatorname{Ann}_A(M) = \bigcap_{i=1}^n \operatorname{ann}_A(m_i)$$

porque el anillo *A* es conmutativo, donde ademas cada anulador de cada elemento es un ideal (a izquierdas en un conmutativo, luego ideal).

Sea $\langle f_i \rangle = \operatorname{ann}_A(m_i)$, entonces

$$\langle \mu \rangle = \bigcap_{i=1}^{n} \langle f_i \rangle$$

donde $\mu = \text{mcm}\{f_i : 1 \le i \le n\}.$

Veamos que $f_i \neq 0$ para cada i.

$$M \subseteq Am_i \cong A/\langle f_i \rangle$$

luego $\ell(Am_i) < \infty$, como A no es un cuerpo y por tanto M no es artiniano, entonces $\langle f_i \rangle \neq 0$.

Luego $\langle \mu \rangle \neq 0$ y por tanto M es acotado.

Veamos el recíproco: *M* acotado y finitamente generado.

$$M = Am_1 + \cdots + Am_n$$

Vemos que cada Am_i es de longitud finita ($\mu \neq 0$ por ser acotado, luego cada $\langle f_i \rangle \neq 0$). Tenmos que $Am_i \cong A/\langle f_i \rangle$ es de longitud finita.

Existe un epimorfismo entre $Am_1 \oplus \cdots \oplus Am_n$ (que es de longitud finita) y $Am_1 \oplus \cdots \oplus Am_n$, con lo que el segundo tiene longitud finita.

$$\ell_A(M) < \infty$$
, entonces es acotado, o sea $\langle \mu \rangle = \operatorname{Ann}_A(M) = \langle 0 \rangle$. Entonces

$$M = M_1 \dotplus \cdots \dotplus M_t$$

donde M_i es la componente p_i primaria que viene de $\mu = p_1^{e_1} \cdots p_t^{e_t}$ ($M_i = \{m \in M : m \cdot p_i^{e_i} = 0\}$). Además M_i es finitamente generado. ¿Se puede descomponer como suma directa de submódulos indescomponibles?

$$M=M_1\dot{+}\cdots\dot{+}M_t$$

donde

$$M_i = \{q_i m : m \in M\} = \{m \in M : p_i^{e_i} m = 0\} = \{m \in M : a_i q_i m = m\}$$

$$\text{con } q_i = \frac{\mu}{p_i^{e_i}} \text{ y } \sum_i a_i q_i = 1 \text{ y } \langle \mu \rangle = \text{Ann}_A(M). \text{ Se tiene que Ann}_A(M_i) = \langle p_i^{e_i} \rangle.$$

Definición 3.10 (Módulo p-primario). $_AM$ se dice p-primario si $\mathrm{Ann}_A(M) = \langle p^e \rangle$, p un irreducible.

Vamos a estudiar la estructura de módulos primarios de longitud finita.

Observación. $_{A}M$ p-primario, $\ell(M) < \infty$.

$$\operatorname{Ann}_{A}(M) = \langle p^{t} \rangle$$

Si $0 \neq m \in M$, $\operatorname{ann}_A(m) \supseteq \operatorname{Ann}_A(M) = \langle p^t \rangle$, tenemso que $\operatorname{ann}_A(m) = \langle p^r \rangle$ con $r \leq t$.

Si $M = Am_1 + \cdots + Am_m$, entonces $\langle p^t \rangle = \operatorname{ann}_A(m_1) \cap \ldots \cap \operatorname{ann}_A(m_m)$. Luego $\langle p^t \rangle = \operatorname{ann}_A(m_i)$ para algún i.

Corolario 3.6. Existe un x & M, $Ann_A(M) = ann_A(x)$.

Lema 3.2. $\ell(M) < \infty$, M p-primario. Para $0 \neq m \in M$, entonces:

$$Am$$
 es simple \iff ann_A $(m) = \langle p \rangle$

y como consecuencia

$$Soc(M) = \{ m \in M : pm = 0 \}$$

Demostración. Dado m, tenemos $Am \cong A/\operatorname{ann}_a(m)$. Si Am es simple, entonces $\operatorname{ann}_A(m)$ es ideal maximal (generado por irreducible o ideal primo) y $\operatorname{ann}_A(m) \supseteq \operatorname{Ann}_A(M) = \langle p^t \rangle$. Entonces $\operatorname{ann}_A(m) = \langle p \rangle$.

Recíprocamente, si ann_A $(m) = \langle p \rangle$ entonces $Am \cong A/\langle p \rangle$ es simple.

Soc $(M) = S_1 \dotplus \cdots \dotplus S_n$ con S_i simple. Sea m en el zócalo, ann $_A(m) \supseteq \operatorname{Ann}_A(S_1 \dotplus \cdots \dotplus S_n) = \bigcap_{k=1}^n \operatorname{Ann}_A(S_k)$. Tomamos s_i tal que $\operatorname{Ann}_A(S_i) = \operatorname{ann}_A(s_i)$, tenemos que $S_i = As_i$, luego $As_i \cong A / \operatorname{ann}_A(s_i)$ y es simple, luego $\operatorname{ann}_A(s_i) = \langle p \rangle$, tenemos que $\operatorname{ann}_A(m) \supseteq \langle p \rangle$ y finalmente pm = 0.

Tomamos ahora $m \in M$ tal que pm = 0. $\langle p \rangle \subseteq \operatorname{ann}_A(m)$ pero es maximal, luego se da la igualdad.

$$Am \cong A/\operatorname{ann}_A(m) = A/\langle p \rangle$$

luego es simple, y $Am \subseteq Soc(M)$ y en particular $m \in Soc(M)$.

Proposición 3.8. Suponemos que tenemos M p-primario y de longitud finita. Sea $x \in M$ tal que $\operatorname{Ann}_A(M) = \operatorname{ann}_A(x)$. Entonces Ax es un sumando directo interno de M.

Demostración. Por inducción sobre la longitud $\ell(M) < \infty$.

Si la longitud es 1, M es simple, entonces M = Ax.

Si $\ell(M) > 1$ y Ax = M, no hay nada que demostrar.

Veamos que pasa si $Ax \neq M$. Veamos que existe un $y \in M$ tal que $y \neq Ax$ y ann_A $(y) = \langle p \rangle$. $\ell(M/Ax) < \infty$, debe contener algún simple $S \subseteq M/Ax$. Tomamos

 $s \in S$ tal que S = As.

$$\langle p^t \rangle = \operatorname{Ann}_A(M) \subseteq \operatorname{Ann}_A(M/Ax) \subseteq \operatorname{Ann}_A(S) = \operatorname{ann}_A(S)$$

Y por tanto ann_A(s) = $\langle p \rangle$.

Tomamos $z \in M$ tal que s = z + Ax, es decir, $pz \in Ax$. Es decir, pz = ax para cierto $a \in A$. Afirmamos que p|a (no es obvio porque es un módulo).

Supongamos que no es así. Por Bezout, 1 = ua + vp para $u, v \in A$ adecuados. En dicho caso, x = uax + vpx = upz + vpx = p(uz + vx).

$$\operatorname{ann}_{A}(uz + vx) = \langle p^{t'} \rangle$$

para $t' \le t$. Se deduce que $p^{t'-1}x = 0$. $p^{t-1}x = 0$, y entonces como el anulador de x es el de M y está generado por p^t , no puede anularlo $p^{t'-1}$ ya que $t'-1 \le t-1 < t$.

Cuenta alternativa: $p^{t-1}ax = p^tz = 0$ entonces $p^{t-1}a \in \operatorname{ann}_A(x) = \langle p^t \rangle$, tenemos que a = pa'

Hemos obtenido un elemento $s = z + Ax \in M/Ax$ y que pz = ax y hemos visto que p|a. Así tenemos que pz = pa'x y entonces p(z - a'x) = 0. Llamo $y = z - a'x \neq 0$ y py = 0 con lo que $\operatorname{ann}_A(y) = \langle p \rangle$.

Tenemos que Ay es simple y $y \notin Ax$ asi que $Ay \cap Ax = \{0\}$.

$$Ax \cong Ax/(Ay \cap Ax) \cong (Ax + Ay)/Ay \cong A(x + Ay) \subseteq M/Ay$$

$$\langle p^t \rangle = \operatorname{ann}_A(x) = \operatorname{ann}_A(A(x+Ay)) \supseteq \operatorname{Ann}_A(M/Ay) \supseteq \operatorname{Ann}_A(M) = \langle p^t \rangle$$

con lo cual todas las inclusiones son igualdades.

Tenemos que $\operatorname{Ann}_A(M/Ay) = \langle p^t \rangle = \operatorname{ann}_A(x+Ay)$, que están en las mismas condiciones de la hipótesis pero con $\ell(M/Ay) < \ell(M)$. Aplicando la hipótesis de inducción, tenemos que M/Ay = (Ax + Ay)/Ay + N/Ay para cierto $N \in \mathcal{L}(M)$ tal que $N \supseteq Ay$. De aquí se deduce que M = Ax + Ay + N = Ax + N. Tomamos $Ax \cap N \subseteq (Ax + Ay) \cap N = Ay$. Entonces $Ax \cap N = Ax \cap N \cap Ay = Ax \cap Ay = \{0\}$.

Teorema 3.4. Sea $_AM$ p-primario de longitud finita. Existen $x_1, \ldots, x_n \in M \setminus \{0\}$ tales que $M = Ax_1 \dotplus \cdots \dotplus Ax_n$ y

$$\operatorname{Ann}_A(M) = \operatorname{ann}_A(x_1) \supseteq \operatorname{ann}_A(x_2) \supseteq \ldots \supseteq \operatorname{ann}_A(x_n)$$

Además, si $y_1, ..., y_n \in M$ no nulos son tales que $M = Ay_1 \dotplus ... \dotplus Ay_n$ y $Ann_A(M) = ann_A(y_1) \supseteq ann_A(y_2) \supseteq ... \supseteq ann_A(y_m)$, entonces n = m y $ann_A(x_i) = ann_A(y_i)$.

Demostración. Tomo $x_1 \in M$ tal que $\operatorname{Ann}_A(M) = \operatorname{ann}_A(x)$, por la proposición, $M = Ax_1 \dot{+} N$ para cierto submódulo N de M. Es claro que $\operatorname{Ann}_A(N) \supseteq \operatorname{Ann}_A(M) = \langle p^t \rangle$, con lo que $\operatorname{Ann}_A(N) = \langle p^{t'} \rangle$ con $t' \leq t$ y $\ell(N) < \ell(M)$.

Por inducción sobre $\ell(M)$, tenemos $x_1, x_2, \dots, x_n \in N$ y $N = Ax_2 \dotplus \dots \dotplus Ax_n$. De esto se deduce

$$M = Ax_1 \dotplus \cdots \dotplus Ax_n$$

 $y \operatorname{ann}_A(x_1) = \operatorname{Ann}_A(M) \subseteq \operatorname{ann}_A(x_2) \subseteq \ldots \subseteq \operatorname{ann}_A(x_n).$

Veamos la unicidad. Hacemos inducción sobre $\ell(M)$.

Si $\ell(M) = 1$, tenemso que es simple y M = Ax = Ay y n = 1 = m.

Si $\ell(M) > 1$, tenemos que M no es simple. Consideramos M/pM donde $pM := \{pm : m \in M\}$ que es un submódulo por ser A conmutativo. Ann_A $(pM) = \langle p \rangle$.

$$Soc(M/pM) = M/pM$$

luego M/pM es semisimple.

Tengo un homomorfismo de módulos $M \longrightarrow Ax_1/Apx_1 \oplus \cdots Ax_n/Apx_1$ tal que $\sum A - ix_i \mapsto (a_1x_1 + Apx_1, \dots, a_nx + Apx_n)$.

Se puede demotrar que dicha aplicación es sobreyectivo y su núcleo es pM.

$$M/pM \cong Ax_1/Apx_1 \oplus \cdots Ax_n/Apx_1$$

 $n = \ell(M/pM)$. Argumentando de forma análoga para y; obtenemos $n = \ell(M/pM) = m$.

Si $pM = \{0\}$, tenemos que todos los anuladores son iguales: $\operatorname{ann}_A(x_i) = \langle p \rangle = \operatorname{ann}_A(y_i)$.

Supongamos que $pM \neq \{0\}$.

$$pM = Apx_1 + \cdots + Apx_r$$

para cierto $r \leq n$.

Así, $\operatorname{ann}_A(x_i) = \langle p \rangle$ si solo si i > r. y también $\operatorname{ann}_A(y_i) = \langle p \rangle$ si solo si i > r. Para cualquier $i \le r$, tenemos que $\operatorname{ann}_A(px_i) = \langle p^{t_i-1} \rangle$ si $\operatorname{ann}_A(x_i) = \langle p^{t_i} \rangle$.

$$\operatorname{ann}_A(px_1) \supseteq \operatorname{ann}_A(px_2) \supseteq \ldots \supseteq \operatorname{ann}_A(px_r)$$

$$\operatorname{ann}_A(py_1) \supseteq \operatorname{ann}_A(py_2) \supseteq \ldots \supseteq \operatorname{ann}_A(py_s)$$

donde $\operatorname{ann}_A(y_i) = \langle p^{s_i} \rangle$ si y solo si i > s. Pero $\ell(pM) < \ell(M)$, por inducción s = r y que $s_i - 1 = r_i - 1$ y como sabemos que si i > r = s tenemos que $\operatorname{ann}_A(x_i) = \operatorname{ann}(y_i) = \langle p \rangle$.

Observación. Si $A = \mathbb{Z}$, M grupo abeliano, $x \in M$, $\operatorname{ann}_{\mathbb{Z}}(x) = n\mathbb{Z}$, n recibe el nombre de el orden.

Observación. Si A = K[x], $T: V \longrightarrow V$, $n = \dim_K V < \infty$, $v \in V$, $\operatorname{ann}_{K[x]}(v) = \langle f(x) \rangle$. Tenemos que f tiene grado n. $\{v, Tv, \ldots, T^{n-1}v\}$ es una base de V.

Ejemplo: $\mathcal{U}(\mathbb{Z}_8) = \{1, 3, 5, 7\}$. Viendo los ordenes de los elementos:

$$\mathscr{U}(\mathbb{Z}_8) = \langle 3 \rangle \dot{+} \langle 5 \rangle$$

donde $\langle \cdot \rangle$ es la generación como subgrupo.

Ejemplo: Suponemos un espacio vectorial V de dimensión 3 y un endomorfismo T cuyo polinomio mínimo es de la forma $(x - \lambda)^2$ con $\lambda \in K$. Sabemos que existen dos vectores v_1, v_2 tales que

$$V = K[x]v_1 + K[x]v_2$$

con ann_{K[x]} $v = \langle (x - \lambda)^2 \rangle \subsetneq \langle x - \lambda \rangle = \operatorname{ann}_{K[x]} v_2$.

Corolario 3.7. Si $_{A}M$ es un módulo p-primario, entonces

$$M \cong C_1 \oplus \cdots \oplus C_n$$

con C_i cíclico.

Si $M \cong D_1 \oplus \cdots \oplus D_m$, con D_i cíclico, entonces n=m y tras reordenación, $D_i \cong C_i$ para todo i.

Demostración. De $M \cong C_1 \oplus \cdots \oplus C_n$, se puede exigir que $x_1, \ldots, x_n \in M$ tales que

$$M = Ax_1 \dotplus \cdots \dotplus Ax_n$$

con $\operatorname{ann}_A(x_1) \subseteq \operatorname{ann}_A(x_2) \subseteq \ldots \subseteq \operatorname{ann}_A(x_n)$ Con $D_1 \oplus \cdots \oplus D_m$ hago lo mismo.

$$M = Ay_1 \dotplus \cdots \dotplus Ay_n$$

ordenados bajo el mismo criterio.

El enunciado se sigue de aplicar el teorema anterior. De $ann(x_i) = ann(y_i)$ se deduce

$$C_i \cong Ax_i \cong A / \operatorname{ann}(x_i) = A / \operatorname{ann}(y_i) \cong Ay_i \cong D_i$$

Ejercicio: Decimos que un módulo M es indescomponible si $M \cong L \oplus N$ implica que $L = \{0\}$ (o $N = \{0\}$). Razonar que en el corolario cada uno de los C_i es indescomponible.

Ejemplo: M grupo abeliano de longitud finita y p-primario. Aplicando el corolario, $M \cong C_1 \oplus \cdots \oplus C_n$ con C_i cíclico y de longitud finita p-primarios. Tenemos que $M \cong \mathbb{Z}_{p^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{m_n}}$, M es finito de cardinal $p^{m_1+\cdots+m_n}$.

Teorema 3.5 (Estructura de módulos sobre un DIP). ${}_AM \neq \{0\}$ de longitud finita. Existen irreducibles distintos $p_1, \ldots, p_r \in A$ y enteros positivos n_1, \ldots, n_r , tales que $e_{i1} \geq \ldots \geq e_{in_i}$ con $i \in \{1, \ldots, r\}$ determinados por M:

$$M = \dot{+}_{i=1}^r \left(\dot{+}_{j=1}^{n_i} A x_{ij} \right)$$

A esa expresión se le llama la descomposición cíclica-primaria de M (la primaria sería la primera suma y luego cada factor primario se descompone en

factores cíclicos). Los $x_{ij} \in M$ son tales que verifican:

$$\operatorname{ann}_{A}(x_{ij}) = \langle p_{i}^{e_{ij}} \rangle$$

con $i \in \{1, ..., r\}, j \in \{1, ..., n_i\}$. Se le llaman divisores elementales de M y determinan M salvo isomorfismos.

Demostración. Supongamos otra descomposición:

$$M = N_1 \dot{+} N_t$$

con N_i s_i -primario para $s_1, \dots, s_t \in A$ irreducibles. Entonces

$$\langle \mu \rangle = \operatorname{Ann}_{A}(M) = \bigcap_{i=1}^{t} \operatorname{Ann}_{A}(N_{i}) = \bigcap_{i=1}^{t} \langle s_{i}^{t_{i}} \rangle = \langle \operatorname{mcm} \{ s_{i}^{t_{i}} \} \rangle = \langle \prod s_{i}^{t_{i}} \rangle$$

y μ es asociado con $s_1^{t_1} \cdots s_t^{t_t}$. Tras reordenación, por ser A un DFU, t = r y $s_i = p_i$. $N_i \subseteq \{m \in M : p_i^{e_i}m = 0\} = M_i$, entonces $N_i = M_i$, argumentando sobre las longitudes.

Observación. Sea M un grupo abeliano de longitud finita, $A = \mathbb{Z}$. Los grupos abelianos son de longitud finita si y solo si son finitos.

Demostración. $\mu = p_1^{e_1} \cdots p_r^{e_r}$

$$M = \dot{+}_{i=1}^r \dot{+}_{j=1}^{n_i} \mathbb{Z} x_{ij} \cong \bigoplus_{i=1}^r \bigoplus_{j=1}^{n_i} \mathbb{Z}_{p_i^{e_{ij}}}$$

con x_{ij} . Luego es finito de cardinal:

$$m = \prod_{i=1}^r \prod_{j=1}^{n_i} p_i^{e_{ij}} = p_1^{f_1} \cdots p_r^{f_r}$$

donde $f_i = \sum_{j=1}^{n_i} e_{ij}$. $\mu | m$.

Ejemplo: si m=12, $p_1=2$ y $p_2=3$. Entonces $M\cong \mathbb{Z}_4\oplus \mathbb{Z}_3\cong \mathbb{Z}_{12}$ o $M\cong \mathbb{Z}_2\oplus \mathbb{Z}_2\oplus \mathbb{Z}_3\cong \mathbb{Z}_2\mathbb{Z}_6$.

Ejemplo: A = K[x] y V un K[x]-módulo de longitud finita. V es dimensión finita:

$$V = \dot{+}_{i=1}^{r} \dot{+}_{j=1}^{n_i} K[x] x_{ij}$$

luego es suma directa de espacios de dimensión finita.

$$V_{ij} = K[x]x_{ij} \subseteq V$$

donde $T(V_{ij}) \subseteq V_{ij}$. Tenemos que

$$\min \operatorname{pol}(T|_{V_{ii}}) = p_i^{e_{ij}}$$

existen x_{ij} tales que $\{x_{ij}, Tx_{ij}, \dots, T^{\dim V - 1}x_{ij}\}$ base de V_{ij} .

Caso particular: dim V = n, minpol $(T) = (x - \lambda)^n$. Existe un $v \in V$ tal que

$$\{v, (T-\lambda)v, \ldots, (T-\lambda)^{n-1}v\}$$

Aplicamos $T(T-\lambda)^i v = (T-\lambda+\lambda)(T-\lambda)^i v = (T-\lambda)^{i+1} v + \lambda (T-\lambda)^i v$. La matriz asociada es:

$$M_B(T) = egin{pmatrix} \lambda & 1 & 0 & 0 & \cdots & 0 \ 0 & \lambda & 1 & 0 & \cdots & 0 \ 0 & 0 & \lambda & 1 & \cdots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \ 0 & 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

A matrices de este tipo las llamaremos bloque de Jordan.

Si le aplicamos al caso general en el que $\mu=(x-\lambda_1)^{e_1}\cdots(x-\lambda_r)^{e_r}$. Tomamos en cada $V_{ij} = K[x]x_{ij}$ la base $\{x_{ij}, \dots, (T-\lambda)^{e_{ij}-1}x_{ij}\}$ y obtenemos uniendo ordenadamente las bases una base de V, llámase B, tal que por bloques se expresa:

$$M_B(T) = egin{pmatrix} J_{e_{ij}}(\lambda_i) & 0 & 0 & 0 & \cdots & 0 \ 0 & J_{e_{ij}}(\lambda_i) & 0 & 0 & \cdots & 0 \ 0 & 0 & J_{e_{ij}}(\lambda_i) & 0 & \cdots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & 0 & \cdots & J_{e_{ij}}(\lambda_i) \end{pmatrix}$$

Ejemplo: Sea $V = \mathscr{C}^{\infty}(\mathbb{R})^n = \bigoplus_{i=1}^n \mathscr{C}^{\infty}(\mathbb{R}), B \in \mathscr{M}_n(\mathbb{R}), y = (y_1, \dots, y_n) \in V.$ Tenemos la ecuación diferencial y' = yB.

Sea $M = \{ y \in \mathscr{C}^{\infty}(\mathbb{R})^n : y' = yB \}$ es un subespacio vectorial de V. Entonces V es un $\mathbb{R}[x]$ -módulo. Sabemos que M es un submódulo $(xy = y' = yB \in$ M). Por análisis, sabemos que la dimensión es finita. Entonces M tiene una descomposición cíclica primaria.

Si $x \in \mathbb{R}^n$, tomamos $y = xe^{tB}$ y $y' = xe^{tB}B = yB$ donde $e^S = \sum_{m \ge 0} \frac{1}{m!} S^m$. Tomamos la forma canónica de Jordan J de B. Existe una matriz $P \in \mathscr{GL}_n(\mathbb{C})$ tal que $PBP^{-1} = J$ con lo que:

$$e^{tB} = P^{-1}e^{tJ}P$$

Se puede calcular e^{tJ} .

Caso particular: Sea n=2. Sea μ el polinomio mínimo de B sobre \mathbb{C} . Tenemos tres casos.

La primera posibilidad es que $\mu = (x - \lambda_1)(x - \lambda_2)$ o $\mu = x - \lambda$. En este segundo caso tomamos $\lambda_1=\lambda_2=\lambda$ y en cualquiera de las dos posibilidades podemos escribir:

$$J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

y por tanto

$$e^{tJ} = \begin{pmatrix} e^{t\lambda_1} & 0 \\ 0 & e^{t\lambda_2} \end{pmatrix}$$

La otra posibilidad es que $\mu = (x - \lambda)^2$ con $\lambda \in \mathbb{R}$. entonces:

$$J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

y por tanto

$$tJ = \begin{pmatrix} t\lambda_1 & t \\ 0 & t\lambda_2 \end{pmatrix} = \begin{pmatrix} t\lambda_1 & 0 \\ 0 & t\lambda_2 \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = tA + tC$$

que son dos matrices que conmutan, luego:

$$e^{tJ} = e^{tA+tC} = e^{tA}e^{tC} = \begin{pmatrix} e^{t\lambda_1} & te^{t\lambda_2} \\ 0 & e^{t\lambda_2} \end{pmatrix}$$

Por último puede suceder que $\mu = (x-z)(x-\bar{z})$ y tenemos

$$J = \begin{pmatrix} z & 0 \\ 0 & \bar{z} \end{pmatrix}$$

y por tanto

$$e^{tJ} = \begin{pmatrix} e^{tz} & 0 \\ 0 & e^{t\bar{z}} \end{pmatrix}$$

Alternativamente $\mu = x^2 + bx + c$, tenemos que $\alpha = \sqrt{\frac{c-b^2}{4}}$ y $\beta = -\frac{b}{2}$. Tenemos que $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que T(v) = vB. Tomamos $v \in \mathbb{R}^2 \setminus \{0\}$ y tomamos la base: $\mathscr{B} = \{-\beta v, (T-\alpha)v\}$. Vamos a calcular la matriz de T respecto de esta nueva base:

$$T(-\beta v) = -\beta (T - \alpha)v - \alpha \beta v$$
$$T((T - \alpha v)) = \dots = \alpha (T - v)v - \beta^2 v$$

Entonces

$$C = M_T(\mathcal{B}) = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \begin{pmatrix} 0 & -\beta \\ \beta & 0 \end{pmatrix} = A + B$$

que conmutan. Además existe $Q \in \mathcal{GL}_2(\mathbb{R})$ tal que $C = Q^{-1}BQ$. Tenemos que:

$$e^{tC} = e^{tA+tB} = e^{tA}e^{tB} = \begin{pmatrix} e^{t\alpha} & 0 \\ 0 & e^{t\alpha} \end{pmatrix} \begin{pmatrix} \cos(\beta t) & -\sin(\beta t) \\ \sin(\beta t) & \cos(\beta t) \end{pmatrix} = \begin{pmatrix} e^{t\alpha}\cos(\beta t) & -e^{t\alpha}\sin(\beta t) \\ e^{t\alpha}\sin(\beta t) & e^{t\alpha}\cos(\beta t) \end{pmatrix}$$

Ejercicio: Tomamos la sucesión $c_k = \cos(k \nu)$ con $\nu \in \mathbb{R}$ fijo.

$$c_k = \frac{e^{ik\nu} + e^{-ik\nu}}{2}$$

usando este hecho, demostrar que $\cos((k+2)\nu) = 2\cos((k+1)\nu)\cos\nu - \cos k\nu$ para $k \ge 0$. Se pide buscar el polinomio mínimo de la sucesión en $\mathbb{C}[x]$.

4 Teoría de módulos

Sea R un anillo, R un módulo. Sea la familia no vacía de submódulos $\Gamma \subseteq \mathcal{L}(M)$ entonces $\bigcap_{N \in \Gamma} N \in \mathcal{L}(M)$.

Definición 4.1 (Submódulo generado por un conjunto X**).** Si X es un subconjunto de M, el menor submódulo de M que contiene a X se llama submódulo generado por X. Lo denotaremos por RX.

Lema 4.1.

$$RX = \left\{ \sum_{x \in F} v_x x : F \subseteq X \text{ finito, } v_x \in R \right\}$$

Demostración. $X \subseteq RX$ por ser el menor submódulo que contiene a X.

$$C = \left\{ \sum_{x \in F} v_x x : F \subseteq X \text{ finito, } v_x \in R \right\}$$

Entonces $C \subseteq RX$. Tenemos que, como C es un submódulo, se tiene que dar la igualdad.

Si $X = \{x_1, \dots, x_n\}$, tenemos que $RX = Rx_1 + \dots Rx_n$.

Definición 4.2 (Módulo producto). Tomamos $I \neq \emptyset$ un conjunto de índices, tal que $i \in I$, tomamos un módulo M_i .

$$\prod_{i \in I} M_i = \{ (m_i)_{i \in I} : m_i \in M_i \}$$

Son tuplas, pero no ordenadas.

Proposición 4.1. El producto de módulos es un módulo, con la suma término a término y el producto por escalares también término a término.

Definición 4.3 (Proyecciones e inclusiones canónicas). Vamos a tomar M_i y $\prod_{i \in I} M_i$. Definimos la inclusión canónica ι_i mediante la aplicación que asigna $m_i \mapsto (a_j)_{j \in I}$ dado por $a_j = \delta_i^j m_i$. Del mismo modo, definimos la proyección canónica π_i como la aplicación que asigna $(a_j)_{j \in I} \mapsto a_i$.

Evidentemente $\pi_i \circ \iota_i = id$.

Definición 4.4 (Suma directa externa).

$$\bigoplus_{i\in I} M_i := \{(m_i)_{i\in I} : \text{ tiene soporte finito}\}$$

En el caso de I finito $\bigoplus_{i\in I}M_i=\prod_{i\in I}M_i$, y en el caso general $\bigoplus_{i\in I}M_i\subseteq\prod_{i\in I}M_i$

Definición 4.5 (Suma de módulos). Definimos $\sum_{i \in I} M_i$ como el menor submódulo que contiene a cualquier M_i o equivalentemente:

$$\sum_{i \in I} M_i = \left\{ \sum_{i \in F} m_i : F \subseteq I \text{ finito} \right\}$$

Proposición 4.2 (Relación entre sumas). Tomamos $\theta: \bigoplus M_i \longrightarrow \sum M_i$ tal que $\theta((m_i)_{i \in I}) = \sum_{i \in I} m_i$ es un homomorfismo sobreyectivo de R-módulos. Para $\{N_i: i \in I\} \subseteq \mathcal{L}(M)$, son equivalentes:

- 1. Para todo $j \in I$, $N_j \cap \sum_{i \in I \setminus \{j\}} N_i = \{0\}$.
- 2. Para todo $F \subseteq I$ finito, y para todo $j \in F$, $N_j \cap \sum_{i \in F \setminus \{j\}} N_i = \{0\}$.
- 3. Si $0 = \sum_{i \in I} m_i$ con $m_i \in M_i$ para todo $i \in I$, entonces $m_i = 0$ para todo $i \in I$.
- 4. θ es inyectivo y por tanto un isomorfismo.
- 5. Para cada par $J_1, J_2 \subseteq I$ con $J_1 \cap J_2 = \emptyset$, se tiene que $\left(\sum_{i \in J_1} N_i\right) \cap \left(\sum_{i \in J_2} N_i\right) = \{0\}$

Definición 4.6. En caso de satisfacerse cualquiera de las condiciones anteriores equivalentes, diremos que la suma $\sum_{i \in I} N_i$ es una suma directa interna, que notaremos por $\dot{+}_{i \in I} N_i$.

Corolario 4.1. Si la familia $\{N_i : i \in I\} \subseteq \mathcal{L}(M)$ verifican las condiciones y $N \in \mathcal{L}(M)$ tal que $N \cap \dot{+}_{i \in I} N_i = \{0\}$, entonces $\{N_i : i \in I\} \cup \{N\}$.

Definición 4.7 (Independencia). Si la familia $\{N_i : i \in I\}$ donde cada módulo es distinto de 0 y satisface alguna de las condiciones anteriores equivalente, entonces diremos que dicha familia es independiente.

Caso particular: El módulo regular $M_i = R$, llamamos:

$$R^{(I)} = \bigoplus_{i \in I} M_i = \{(r_i)_{i \in I} \in R^I : \text{ con soporte finito}\}$$

Definición 4.8. A es un DIP, $_{A}M$ módulo.

$$t(M) = \{m \in M : \operatorname{ann}_A(m) \neq \langle 0 \rangle \}$$

es un submódulo de M, que se llama submódulo de torsión de M.

Ejemplo: sea A un DIP, sea ${}_{A}M$ un módulo y consideramos su submódulo de torsión.

Supongamos que $t(M) \neq \{0\}$. Definimos P como el conjunto de representantes de las clases de equivalencia, bajo la relación ser asociados, de los irreducibles de A.

Sea $p \in P$, tomamos $M_p = \{m \in M : p^e m = 0 \text{ para algún } e \ge 1\}$. Tenemos que $M_p \subseteq t(M)$, M_p es un submódulo. Entonces:

$$t(M) = \dot{+}_{p \in P} M_p$$

Demostremos esto.

Tomemos un $m \in t(M)$, Am es un módulo de longitud finita.

$$Am = N_1 \dotplus \cdots \dotplus N_r$$

donde N_i es una componente p_i -primaria.

En particular, $m=m_1+\cdots+m_r$ de manera que $m_i\in N_i\subseteq M_{p_i}.$

Luego $M = \sum_{p \in P} M_p$. La unicidad es sencilla de deducir: cada m estará en una componente primaria.

Caso particular. Tomamos $M = \mathscr{C}^{\infty}(\mathbb{R})$, M es un $\mathbb{R}[x]$ -módulo si xf = f'. Entonces t(M) es el conjunto de las funciones que satisfacen una EDO con coeficientes constantes.

 $P = \{ \text{ Polinomios mónicos o bien lineales o bien cuadráticos irreducibles} \}$. Es decir, cualquier función que se puede definir mediante una EDO lineal con coeficientes constantes se puede escribir como suma de funciones que resuelven $(\alpha \frac{d^2}{dx^2} + \beta \frac{d}{dx} + \gamma)^e f = 0 \text{ con } e \in \mathbb{N}.$

Como hemos visto en ese caso particular, M_p no tiene por qué tener longitud finita.

Consideremos I un conjunto infinito y $R^{(I)}$ tal y como lo hemos definido antes.

Lema 4.2. Si *M* es un *R* módulo, existe una sucesión exacta de la forma

$$0 \longrightarrow L \longrightarrow R^{(I)} \longrightarrow M \longrightarrow 0$$

para *I* adecuado.

Demostración. Tomo $\{m_i: i \in I\}$ tal que $M = \sum_{i \in I} Rm_i$. Definimos $\varphi: R^{(I)} \longrightarrow M$ dada por $\varphi((r_i)_{i\in I}) = \sum_{i\in I} r_i m_i$. $L = \ker \varphi \xrightarrow{\iota} M$.

$$L = \ker \varphi \xrightarrow{\iota} M$$
.

Lema 4.3 (Existencia de bases). Para $\{m_i : i \in I\} \subseteq M$, son equivalentes:

- ∑_{i∈I} r_im_i = 0 implica que r_i = 0 para todo índice.
 El homomorfismo φ: R^(I) → M con φ((r_i)_{i∈I}) = ∑_i r_im_i es inyectiva.

Si se satisface 1, diremos que el conjunto $\{m_i : i \in I\}$ es linealmente independiente. Si además estos elementos son además un conjunto de generadores, diremos que forman una base.

La demostración es trivial.

Observación. M tiene una base si y solo si $M \cong \mathbb{R}^I$ para algún I.

Definición 4.9 (Módulo libre). Un módulo se llama libre si admite una base.

Observación. Advertencia: hay muchos módulos que no son libres.

Ejemplos de módulos no libres:

- 1. Ningún grupo abeliano finito es libre como \mathbb{Z} módulo.
- 2. t(M), ${}_{A}M$ con A un DIP, nunca es libre. En otras palabras $A^{(I)}$ no es nunca un módulo de torsión (por ser un dominio de integridad).

4.1 Presentaciones de módulos

Proposición 4.3 (Módulo presentado). Sea *M* un módulo. Existe una sucesión exacta

$$\cdots \xrightarrow{f_{-2}} F_{-1} \xrightarrow{f_{-1}} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

donde F_{-n} es libre para todo $n \in \mathbb{N}$. Esa sucesión se llama resolución libre de M.

Demostración. Tomo un conjunto de generadores de M, y tomo un homomorfismo de módulos sobreyectivo $F_0 \xrightarrow{p_0} M$.

$$F_{-1} \xrightarrow{p_{-1}} K_0 \xrightarrow{\iota} F_0 \xrightarrow{p_0} M \longrightarrow 0$$

y reiteramos el proceso.

Exactitud vista en F_{-1} ya que otro caso sería análogo. ker $f_{-1} =: K_{-1} = \operatorname{Im} p_{-2} =$ $\operatorname{Im} f_{-2}$.

La resolución puede pero no tiene por qué ser finita.

Definición 4.10 (Módulo finitamente presentado). *M* se dice finitamente presentado si existe un presentación finita que no es sino una sucesión exacta de la forma

$$F_{-1} \xrightarrow{f_{-1}} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

Ejercicio: dar una presentación finita del \mathbb{Z} -módulo $\mathbb{Z}_2 \oplus \mathbb{Z}_4$.

Proposición 4.4. Un anillo *R* es noetheriano a izquierda si y solo si todo módulo finitamente generado es finitamente presentado.

Demostración. Veamos solo una implicación: que si _RR es noetheriano entonces que submódulo finitamente generado es finitamente presentado.

Como M es finitamente generado, K_0 es finitamente generado $F_{-1} \xrightarrow{p_{-1}} K_0 \xrightarrow{\iota}$ $F_0 \xrightarrow{f_0} M \longrightarrow 0.$

Tenemos que $M \cong F_0 / \operatorname{Im} f_{-1}$. Tomemos E_s , F_t módulos libres con bases finitas de cardinales s y t respectivamente. Diremos que E_s tiene rango s (a pesar de

que no es una invariante del módulo, problema de la base de número invariante o INB, incluso se puede dar $R \cong R \oplus R$). Llamamos $e = \{e_1, \dots, e_s\}$ base de E_s , y $f = \{f_1, \dots, f_t\}$ base de F_t . Sea $\psi : E_s \longrightarrow F_t$, definido por $\psi(e_i) = \sum_{j=1}^t a_{ij} f_j$. Definimos la matriz $A_{\psi} = (a_{ij})_{1 \leq i \leq s, 1 \leq j \leq t} \in \mathcal{M}_{s \times t}(R)$.

Dado $u = \sum_{i=1}^{s} x_i e_i$, $x_i \in R$. Entonces

$$\psi(u) = \sum_{j=1}^{t} y_j f_j$$

Resulta que si $u_e = x = (x_1, ..., x_s)$ y $y = (y_1, ..., y_t)$, tenemos que $y = xA_{\psi}$ y por tanto $\psi(u)_f = u_e A_{\psi}$.

Tenemos que $(\cdot)A_{\psi} \circ (\cdot)_e = (\cdot)_f \circ \psi$.

Sean $E_s \xrightarrow{\psi} F_t \xrightarrow{\varphi} G_r$, entonces $A_{\varphi \circ \psi} = A_{\varphi} A_{\psi}$.

Ejemplo: Sea $T:V\longrightarrow V$ un endomorfismo de espacios vectoriales, y V de dimensión finita. $_{K[x]}V$ es un módulo finitamente presentado. Buscamos una presentación finita.

Ejemplo: $T: V \longrightarrow V$ aplicación K-lineal, $n = \dim_K(V) < \infty$. Queremos una presentación libre finita de $_{K[x]}V$. Tomo una K-base (base como espacio vectorial) $\{v_1, \ldots, v_n\}$ de V.

Tenemos que

$$T(v_i) = \sum_{i=1}^n b_{ij} v_i$$

donde $(b_{ij}) \in \mathcal{M}_n(K)$ es la matriz asociada a T. Tomo F_n un K[x]-módulo libre con base $\{f_1, \ldots, f_n\}$ y $\phi : F_n \longrightarrow V$ tal que $\phi(f_i) = v_i$ para todo $i \in \{1, \ldots, n\}$. ϕ es un homomorfismo de K[x]-módulos sobreyectivo.

Tenemos que $F_n \xrightarrow{\phi} V \longrightarrow 0$. Tomamos $Xf_i - \sum_{j=1}^n b_{ij} f_i \in \ker \phi$.

Afirmamos que $\{Xf_i - \sum_{j=1}^n b_{ij}f_i : i \in \{1, ..., n\}\}$ és un conjunto de generadores de $\ker \phi$.

Tomemos $x \in F_n$, tenemos que $x = \sum_{i=1}^n p_i(x) f_i$. Supongamos que $x \neq 0$, definimos el peso como $w(x) := \sum_{i=1}^n \operatorname{gr}(p_i) \geq 0$.

Observemos que w(x) = 0 es solo posible si $p_i \in K$ para todo i. Si w(x) = 0, entonces $x = \sum_{i=1}^{n} p_i f_i$. Entonces aplicando ϕ tenemos $0 = \sum_{i=1}^{n} p_i v_i$, y por tanto x = 0 lo que es una contradicción.

Así que si $x \in \ker \phi \setminus \{0\}, w(x) \ge 1$.

Vamos a aplicar inducción sobre w(x). w(x) = 1. Entonces existe un único índice $k \in \{1, ..., n\}$ tal que p_k no es constante y además $p_k = aX + b$ con $a, b \in K$.

$$x = \sum_{i \neq k} p_i f_i + (aX + b) f_k$$

=
$$\sum_{i \neq k} p_i f_i + a(X f_k - \sum_j b_{kj} f_j) + a \sum_j b_{kj} f_j + b f_k$$

Luego

$$\sum_{i \neq k} p_i f_i + a \sum_j b_{kj} f_j + b f_k \in \ker \phi$$

donde como son todos constantes, se tiene

$$\sum_{i \neq k} p_i f_i + a \sum_j b_{kj} f_j + b f_k = 0$$

y por tanto $x = a(Xf_k - \sum_j b_{kj}f_j)$.

Supongamos w(x) > 1. Existe algún $k \in \{1, ..., n\}$ para el que $gr(p_k) \ge 1$. Así, $p_k = q(X)X + b$, con $gr(q) = gr(p_k) - 1$ y $b \in K$.

$$x = \sum_{i \neq k} p_i f_i + q(X)(X f_k - \sum_j b_{kj} f_j) + q(X) \sum_j b_{kj} f_j + b f_k$$

Tenemos que $y=\sum_{i\neq k}p_if_i+q(X)\sum_jb_{kj}f_j+bf_k\in\ker\phi$ y $w(y)\leq w(x)-1< w(x)$. Por inducción, sabemos que $y=\sum_iq_i(Xf_i-\sum_jb_{ij}f_j)$, y tenemos:

$$x = q(X)(Xf_k - \sum_{j} b_{kj}f_j) + \sum_{i} q_i(Xf_i - \sum_{j} b_{ij}f_j)$$

con lo que se demuestra el enunciado, sacando factor común lo que haga falta y redondeando.

Definimos

$$F_n \xrightarrow{\psi} F_n \xrightarrow{\phi} V \longrightarrow 0$$

que es una representación libre finita, donde

$$\psi(f_i) = Xf_i - \sum_i b_{ij}f_j$$

Con lo que la matriz nos queda:

$$A_{\psi} = \begin{pmatrix} X - b_{11} & -b_{12} & \cdots & -b_{1n} \\ -b_{21} & X - b_{22} & \cdots & -b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{n1} & -b_{n2} & \cdots & X - b_{nn} \end{pmatrix} \in \mathcal{M}_n(K[x])$$

o si se quiere, $A_{\psi} = XI - A_T \cos A_T = (b_{ij})$.

Lema 4.4. Sea F un R-módulo libre y $\varphi: M \longrightarrow N$ un epimorfismo de R-módulos. Para cada homomorfismo de R-módulos $\alpha: F \longrightarrow N$ existe un homomorfismo de R-módulos $\beta: F \longrightarrow M$ tal que $\varphi \circ \beta = \alpha$. Es decir, α se levanta como homomorfismo a M.

Demostración. Tomo en F una base $\{e_i: i \in I\}$. Como φ es sobreyectivo para cada $\alpha(e_i)$ existe un $m_i \in M$ tal que $\varphi(m_i) = \alpha(e_i)$. Ahora tenemos β dado por $\beta(e_i) = m_i$.

Sean $_RM$ y $_RN$ finitamente presentados y $h:M\longrightarrow N$ homomorfismo de R-módulos.

$$E_s \xrightarrow{\psi} F_t \xrightarrow{\phi} M \longrightarrow 0$$

$$E_{s'} \xrightarrow{\psi'} F_{t'} \xrightarrow{\phi'} N \longrightarrow 0$$

Por el lema anterior, existe un q tal que $\phi' \circ q = h \circ \phi$. Observemos que Im $q \circ \psi \subseteq \ker \phi' = \operatorname{Im} \psi'$. Aplicando el lema sobre la imagen de ψ' , existe un p tal que $\psi' \circ p = q \circ \psi$. Donde $p: E_s \longrightarrow E_{s'}$ y $q: F_t \longrightarrow F_{t'}$.

Supongamos ahora que tenemos que existen p y q tales que $q\psi=\psi'p$. Vamos a construir un h homomorfismo. Tomamos $u\in F_t$ tal que $\phi(u)=m$. Queremos definir h(m) como $\phi'(q(u))\in N$. Hay que demostrar que está bien definida.

Tomamos $v \in F_t$, tal que $\phi(v) = m$. Tenemos que:

$$\phi'(q(v) - q(u)) = \phi'(q(u - v))$$

tomando un $x \in E_s$ tal que $v - u = \psi(x)$, ya que $0 = \phi(v - u) \in \ker \phi = \operatorname{Im} \psi$.

$$\phi'(q(v) - q(u)) = \phi'(q(u - v)) = \phi'(q(\psi(x))) = \phi'(\psi'(p(x))) = 0$$

y entonces h no depende del representante elegido. Es fácil ver que h es un homomorfismo de módulos y que $\phi \circ h = q \circ \phi'$.

Fijadas bases en E_s , F_t , $E_{s'}$, $F_{t'}$, definir h se reduce a dar dos matrices A_q y A_p tales que

$$A_{\psi}A_{q} = A_{p}A_{\psi'}$$

entonces $A_{\psi}, A_{\psi'}$ representan a los módulos M y N y A_q, A_p representan al homormorfismo h.

Concretamente, si $f = \{f_1, \dots, f_t\}$ es una base de F_t y $f' = \{f'_1, \dots, f'_t\}$ de $F_{t'}$ y $A_q = (q_{ij})$ y tomamos $m_i = \phi(f_i)$ y $n_j = \phi'(f'_j)$, tenemos:

- 1. $\{m_1, ..., m_t\}$ genera *M*.
- 2. $\{n_1, ..., n_{t'}\}$ genera *N*.
- 3. $h(m_i) = \sum_{j=1}^{t'} q_{ij} n_j$.

Proposición 4.5 (Teorema de Cayley-Hamilton). Sea $T:V\longrightarrow V$ un homomorfismo K-lineal, con la dimensión de V finita. Sea $d\in K[x]$ el polinomio característico de T. Entonces el polinomio mínimo de T divide a d(x). En particular, d(T)=0.

Demostración. Tomamos la presentación finita de $_{K[x]}V$ que vimos anteriormente:

$$F_n \xrightarrow{\psi} F_n \xrightarrow{\phi} V \longrightarrow 0$$

Tomamos A_{ψ} y P su matriz adjunta (o de cofactores), o sea, la que hace que se cumpla la ecuación $PA_{\psi} = d(x)I$.

Sea $\delta: F_n \longrightarrow F_n$ el homomorfismo que fijada bases f de F_n tiene como matriz d(x)I, o sea, $\delta(f_i) = d(x)f_i$. Consideramos la proyección canónica $\pi: F_n \longrightarrow F_n/\operatorname{Im} \delta$ y nos queda:

$$F_n \xrightarrow{\delta} F_n \xrightarrow{\pi} F_n / \operatorname{Im} \delta \longrightarrow 0$$

Tomando p la aplicación tal que $A_p = P$ y q = id, de aquí obtenemos que $\psi_p = id \circ \delta$, con lo que se induce h, un homomorfismo de módulos sobreyectivo $(h \circ \pi = \phi)$.

$$\operatorname{Ann}_{K\lceil x\rceil}(V) \supseteq \operatorname{Ann}_{K\lceil x\rceil}(F_n/\operatorname{Im}\delta) = \langle \delta(x) \rangle$$

donde la última igualdad viene de que $F_n/\operatorname{Im} \delta \cong \bigoplus_{i=1}^n K[x]f_i/K[x]d(x)f_i \cong \bigoplus_{i=1}^n K[x]/\langle d(x)\rangle$.

Por tanto, el polinomio mínimo de T (que es el anulador de V), divide a d(x). Como al evaluar en T el polinomio mínimo se anula, tenemos que el polinomio característico se anula también.

Definición 4.11 (Matriz quasidiagonal). Sea $A = (a_{ij}) \in \mathcal{M}_{s \times t}(R)$. Diremos que A es quasidiagonal si $a_{ij} = 0$ para todo $i \neq j$. Usaremos $d_i = a_{ii}$ para i = 1, ..., m con $m = \min\{s, t\}$. La notación

$$A = \operatorname{diag}_{s \times t}(d_1, \dots, d_m)$$

Ejemplos:

$$\operatorname{diag}_{3\times 2}(1,3) = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix}$$
$$\operatorname{diag}_{2\times 3}(1,3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

Nota. Denotaremos $GL_n(R)$ al grupo de unidades de $\mathcal{M}_n(R)$: es decir, las matrices Q tales que existe otra matriz Q^{-1} que cumpla $QQ^{-1} = Q^{-1}Q = I_n$.

Proposición 4.6. Sea la presentación finita:

$$E_s \xrightarrow{\psi} F_t \xrightarrow{\phi} M \longrightarrow 0$$

de $_RM$. Supongamos que existen $P \in GL_s(R)$, $Q \in GL_t(R)$ y $D = \operatorname{diag}_{s \times t}(d_1, \dots, d_m)$ tales que $PA_{\psi} = DQ$. Si $\{m_1, \dots, m_t\}$ es el conjunto de generadores de M y tales que $m_i = \phi(f_i)$ con

$$x_i = \sum_{i=1}^t q_{ij} m_j$$

entonces $M = \dot{+}_{i=1}^t Rx_i$ y ann_R $(x_i) = Rd_i$ si $i \le m$ y ann_R $(x_i) = \{0\}$ si i > m si se da el caso.

Demostración. Tomemos otra presentación:

$$E_s \xrightarrow{\psi_1} F_t \xrightarrow{\phi_1} M \longrightarrow 0$$

Tomemos id : $M \longrightarrow M$ y dos homomorfismos $p: E_s \longrightarrow E_s$ y $q: F_t \longrightarrow F_t$, tales que $A_p = P$, $A_q = Q$ y $A_\psi = D$ y que conmuten todas las aplicaciones.

Para que conmuten, definimos $\phi_1 = \phi \circ q$, con lo que $\phi_1(f_i) = \phi(q(f_i)) = \sum_{j=1}^t q_{ij} m_j = x_i$.

La condición de matrices $PA_{\psi} = DQ$ garantiza que $\psi \circ p = q \circ A_{\phi}$.

Hay que comprobar que la sucesión que nos hemos inventado es exacta en F_t . Para demostrarlo, usamos que P y Q son inversibles: p,q son isomorfismos y podemos recuperar la exactitud de la sucesión del enunciado.

$$M = Rx_1 + \cdots + Rx_t$$

porque $x_i = \phi_1(f_i)$ y ϕ_1 es sobreyectiva. Para ver que es directa, tomamos el $0 = r_1 x_1 + \dots + r_t x_t$. Hay que ver que cada $r_i x_i = 0$.

$$0 = \phi_1(r_1f_1 + \dots + r_tf_t) \implies r_1f_1 + \dots + r_tf_t \in \ker \phi_1 = \operatorname{Im} \psi_1$$

Por otro lado, $\operatorname{Im} \psi_1 = R\psi_1(e_1) + \cdots + R\psi_1(e_s)$. Ahora bien, $A_{\psi_1} = D$, con lo que $\operatorname{Im} \psi_1 = Rd_1f_1 + \cdots + Rd_mf_m$. Tenemos que esos módulos son independientes y la suma es directa: $\operatorname{Im} \psi_1 = Rd_1f_1 + \cdots + Rd_mf_m$. Entonces $r_i \in Rd_i$ para $i \leq m$, y si t > m, entonces $r_i = 0$ para i > m.

Así, cada $r_if_i=s_id_if_i$. Tomamos $r_1x_i\phi_1(r_if_i)$, tenemos que $r_if_i\in \operatorname{Im}\psi_1=\ker\phi_1$, luego $r_ix_i=0$. Luego:

$$M = Rx_1 \dot{+} \cdots \dot{+} Rx_t$$

Se deduce también que ann_R $(x_i) \supseteq Rd_i$.

$$M \cong F_t / \operatorname{Im} \psi_1 = (Rf_1 \dot{+} \cdots \dot{+} Rf_t) / (Rd_1 f_1 \dot{+} \cdots \dot{+} Rd_m f_m)$$

$$\cong Rf_1 / Rd_1 f_1 \oplus \cdots \oplus Rf_m / Rd_m f_m \oplus R / \{0\} \oplus \stackrel{(t-m)}{\cdots} \oplus R / \{0\}$$

$$\cong Rf_1 / Rd_1 \oplus \cdots \oplus R / Rd_m \oplus R \oplus \stackrel{(t-m)}{\cdots} \oplus R$$

Caso particular: $R=\mathbb{Z}$. Aquí siempre podemos calcular P y Q. Si M es un grupo abeliano finitamente generado como \mathbb{Z} -módulo, entonces existen $d_1,\ldots,d_m\in\mathbb{N}$ tales que

$$M \cong \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_m} \oplus \mathbb{Z}^{t-m}$$

si t > m y en otro caso:

$$M\cong \mathbb{Z}_{d_1}\oplus\cdots\oplus\mathbb{Z}_{d_m}$$

Es la suma de una parte de torsión y una libre de torsión.

¿Es posible encontrar P,Q cuadradas inversibles tales que $PA_{\psi}Q^{-1}$ sea una matriz quasidiagonal?

Definición 4.12 (Matrices y operaciones elementales). $E_{ij} \in \mathcal{M}_n(R)$ definida por su única entrada no nula es la (i,j)-ésima, que vale 1. Se verifica:

$$E_{ij} = \begin{cases} E_{ie}, & \text{si } j = k \\ 0, & \text{si } j \neq k \end{cases}$$

Para cualquier matriz B de entradas b_{ij} , se puede escribir:

$$B = \sum_{i,j} b_{ij} E_{ij} = \sum_{i,j} E_{ij} b_{ij}$$

Sea A una matriz rectangular de tamaño adecuado, $r \in R, u \in \mathcal{U}(R)$.

$$(E_{ij}A)_{rs} = \begin{cases} a_{is}, & \text{si } r = j \\ 0, & \text{si } r \neq j \end{cases}$$

La matriz $I + rE_{ij}$ es inversible para $i \neq j$. (multiplicando por $I - rE_{ij}$ sale). La matriz $I + E_{ij} + E_{ji} - E_{ii} - E_{jj}$ es inversible para $i \neq j$, pues al cuadrado es la identidad.

La matrix $I + (u-1)E_{ii}$ es inversible, se prueba multiplicando por $I + (u^{-1}-1)E_{ii}$.

A las siguientes matrices las llamamos matrices elementales:

- 1. $I + rE_{ij}$ (multiplicar por un escalar una fila o columna y sumársela a otra).
- 2. $I + E_{ij} + E_{ji} E_{ii} E_{jj}$ (intercambiar sus filas o columnas).
- 3. $I + (u-1)E_{ii}$ (multiplicar una fila o columna por una unidad).

es un grupo.

Ejemplo: Sea M un grupo aditivo generado por $\{m_1,m_2,m_3 \text{ sujeto a las relaciones:}$

- 1. $2m_1 + m_2 m_3 = 0$
- 2. $4m_1 + m_2 3m_3 = 0$

Tomamos \mathbb{Z} -módulos libres F_3 con bases $\{f_1, f_2, f_3\}$ y E_2 con bases $\{e_1, e_2\}$.

$$F_3 \xrightarrow{\psi} F_3 \xrightarrow{\phi} M \longrightarrow 0$$

Definimos $\phi(f_i) = m_i$ y

$$A_{\psi} = \begin{pmatrix} 2 & 1 & -1 \\ 4 & 1 & -3 \end{pmatrix}$$

Solo apuntamos las operaciones por columnas porque solo nos interesa la matriz *Q*. Para tener una sencilla, vamos a hacer el máximo número de matrices por filas.

$$\begin{pmatrix} 2 & 1 & -1 \\ 4 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & -1 \end{pmatrix} \sim$$

Ahora comenzamos a hacer operaciones por columnas, anotándolas:

$$\begin{pmatrix} 2 & 0 & -2 \\ 0 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

Tenemos que

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

y que

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = Q$$

$$x_1 = \sum_{i=1}^t q_{ij} m_j = m_1 - m3$$

$$x_2 = \sum_{i=1}^{t} q_{ij} m_j = m_2 + m3$$

$$x_3 = \sum_{j=1}^{t} q_{ij} m_j = m3$$

$$M = \mathbb{Z}x_1 \dot{+} \mathbb{Z}x_2 \dot{+} \mathbb{Z}x_3 \dot{+}$$

$$\operatorname{ann}_{\mathbb{Z}}(x_1) = 2\mathbb{Z}$$

$$\operatorname{ann}_{\mathbb{Z}}(x_2) = -1\mathbb{Z}$$

$$\operatorname{ann}_{\mathbb{Z}}(x_3) = \langle 0 \rangle$$

Con lo que

$$M = \mathbb{Z}x_1 \dot{+} \mathbb{Z}x_3 \dot{+} \cong \mathbb{Z}_2 \oplus \mathbb{Z}$$

Ejemplo: Sea K un cuerpo, $T:V\longrightarrow V$, con $\dim_K V=3$, $\{v_1,v_2,v_3\}$ es una base de V.

Sea

$$B = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

la matriz de T en dicha base. Obtengamos la descomposición cíclica primaria de $_{K[x]}V$.

Tenemos para

$$A = A_{\psi} = \begin{pmatrix} x - 1 & 1 & -1 \\ 1 & x + 1 & -1 \\ 1 & -1 & x - 1 \end{pmatrix} \in \mathcal{M}(K[x])$$

Busquemos P, Q y D. $v_i = \varphi(f_i)$. Al final obtendremos $PAQ^{-1} = D$.

Partimos de *A* y hacemos operaciones por filas:

$$A = \begin{pmatrix} x-1 & 1 & -1 \\ 1 & x+1 & -1 \\ 1 & -1 & x-1 \end{pmatrix} \sim$$

(colocamos el polinomio de menor grado como pivote)

$$\begin{pmatrix} 1 & -1 & x-1 \\ 1 & x+1 & -1 \\ x-1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & x-1 \\ 0 & x+2 & -x \\ 0 & x & -x^2-2x-2 \end{pmatrix} \sim$$

(Suponiendo que el cuerpo tiene característica distinta de 2)

$$\begin{pmatrix} 1 & -1 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & x+2 & -x \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & x+2 & -x \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & -1 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & 0 & -\frac{1}{2}x^3 + \frac{1}{2}x^2 + x - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & 0 & x^3 - x^2 - 2x + 4 \end{pmatrix}$$

Empezamos con las operaciones por columnas

$$\begin{pmatrix} 1 & -1 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & 0 & x^3 - x^2 - 2x + 4 \end{pmatrix} \stackrel{c_2 + c_1}{\sim} \begin{pmatrix} 1 & 0 & x-1 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & 0 & x^3 - x^2 - 2x + 4 \end{pmatrix} \stackrel{c_3 - (x-1)c_1}{\sim}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & x^2 - 3x + 2 \\ 0 & 0 & x^3 - x^2 - 2x + 4 \end{pmatrix} \stackrel{c_3 - (\frac{1}{2})(x^2 - 3x + 2)c_2}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & x^3 - x^2 - 2x + 4 \end{pmatrix} = D$$

Calculamos ahora Q:

$$Q = \begin{pmatrix} 1 & 1 & x \\ 0 & 1 & \frac{1}{2}(x^2 - 3x + 2) \\ 0 & 0 & 1 \end{pmatrix}$$

Quiero encontrar x_1, x_2, x_3 tales que $_{K[x]}V = K[x]x_1 \dotplus K[x]x_2 \dotplus K[x]x_3$. Tenemos que $\mathrm{ann}_{K[x]}(x_1) = K[x]$, $\mathrm{ann}_{K[x]}(x_2) = 2K[x] = K[x]$ y $\mathrm{ann}_{K[x]}(x_3) = \langle x^3 - x^2 - 2x + 4 \rangle$. Con esto, $x_1 = x_2 = 0$ y por tanto

$$_{K[x]}V = K[x]v_3$$

donde la última igualdad es porque $q_{33} = 1$.

Es cíclica primaria si $x^3 - x^2 - 2x + 4$ es una potencia del irreducible. Vamos a estudiar según quien sea el cuerpo K, al menos en un par de casos.

Caso particular $K = \mathbb{Q}$: Probando con $\pm 1, \pm 2, \pm 4$ vemos que no tiene raíces en \mathbb{Q} . Por tanto, como el grado es 3, $\mu = x^3 - x^2 - 2x + 4$ es el polinomio mínimo y es irreducible.

$$_{\mathbb{Q}[x]}V=\mathbb{Q}[x]\nu_3$$

es la descomposición cíclica primaria. Además, $_{\mathbb{Q}[x]}V$ es simple, al ser μ maximal y $\mathbb{Q}[x]v_3\cong\mathbb{Q}[x]/\langle\mu\rangle$.

Sobre \mathbb{Q} la matriz tomando la base $\{v_3, T(v_3), T^2(v_3)\}$:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 2 & 1 \end{pmatrix}$$

Caso particular $K=\mathbb{R}$: Por análisis, al ser grado impar, existe al menos una raíz real. $\mu'(x)=3x^2-2x-2$, que tiene como raíces $\frac{1\pm\sqrt{7}}{3}$ y tenemos una parábola con coeficiente líder positivo. Luego hay 1 raíces o 3 si los máximos y mínimos son positivos o negativos: $\mu(\frac{1+\sqrt{7}}{3})>0$ luego μ tiene una única raíz en \mathbb{R} .

Tenemos que, si α es la raíz real y $z \in \mathbb{C} \setminus \mathbb{R}$, $\mu = (x - \alpha)(x - z)(z - \bar{z}) = (x - \alpha)(x^2 - 2\operatorname{Re}(z)x + |z|^2)$ en $\mathbb{R}[x]$.

La descomposición cíclica primaria se consigue mediante el siguiente procedimiento. Sea $u_1=(x-\alpha)v_3=(T-\alpha)v_3$. ann $_{\mathbb{R}[x]}u_1=\langle x^2-2\operatorname{Re}(z)x+|z|^2\rangle$ y sea $u_2=(x^2-2\operatorname{Re}(z)x+|z|^2)v_3=(T^2-2\operatorname{Re}(z)T+|z|^2)v_3$. ann $_{\mathbb{R}[x]}u_1=\langle (x-\alpha)\rangle$.

La descomposición cíclica primaria queda:

$$_{\mathbb{R}[x]}V = \mathbb{R}[x]u_1 \dot{+} \mathbb{R}[x]u_2$$

Tomamos la base de V dada por $\{u_1, T(u_1), u_2\}$. La matriz de T con respecto de esa base por filas es:

$$\begin{pmatrix} 0 & 1 & 0 \\ -|z|^2 & 2\operatorname{Re}(z) & 0 \\ 0 & 0 & \alpha \end{pmatrix}$$

donde hemos usado que $T^2(u_1) = 2\operatorname{Re}(z)T(u_1) - |z|^2u_1$ y que $T(u_2) = \alpha u_2$. Como vemos es diagonal por bloques.

Caso particular, $K = \mathbb{C}$. Al ser algebraicamente cerrado, $\mu = (x-\alpha)(x-\bar{z})$ donde $x \in \mathbb{R}$ y $z \in \mathbb{C} \setminus \mathbb{R}$.

$$_{\mathbb{C}[x]}V = \mathbb{C}[x]u_1 \dot{+} \mathbb{C}[x]u_2$$

Pero podemos dividir $\mathbb{R}[x]u_1$ aún más. Llamamos $x_1 = (x-z)u_1$, $\operatorname{ann}_{\mathbb{C}[x]}(x_1) = \langle x - \bar{z} \rangle$ y $\operatorname{ann}_{\mathbb{C}[x]}(x_2) = \langle x - z \rangle$, con lo que queda

$$_{\mathbb{C}[x]}V=\mathbb{C}[x]x_1\dot{+}\mathbb{C}[x]x_2\dot{+}\mathbb{C}[x]u_2$$

En la base $\{x_1, x_2, u_2\}$ la matriz de T es:

$$\begin{pmatrix}
\bar{z} & 0 & 0 \\
0 & z & 0 \\
0 & 0 & \alpha
\end{pmatrix}$$

Caso particular, *K* con característica 2:

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Tenemos que

$$X - B = \begin{pmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & x+1 \\ 1 & x+1 & 1 \\ x+1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & x+1 \\ 0 & x & x \\ 0 & x & x^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & x+1 \\ 0 & x & x \\ 0 & 0 & x^2 + x \end{pmatrix}$$

Y ahora por columnas

$$\begin{pmatrix} 1 & 1 & x+1 \\ 0 & x & x \\ 0 & 0 & x^2+x \end{pmatrix} \stackrel{c_2+c_1}{\sim} \begin{pmatrix} 1 & 0 & x+1 \\ 0 & x & x \\ 0 & 0 & x^2+x \end{pmatrix} \stackrel{c_3+c_2}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & x & x \\ 0 & 0 & x^2+x \end{pmatrix} = D$$

$$Q = \begin{pmatrix} 1 & 1 & x+1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Tenemos que:

$$_{K[x]}V = K[x]x_2 + K[x]x_3$$

donde $\operatorname{ann}_{K[x]}(x_2) = \langle x \rangle$ y $\operatorname{ann}_{K[x]}(x_3) = \langle x^2 + x \rangle$, con lo que $x_2 = v_2 + v_3$ y $x_3 = v_3$ (como el anulador de x_1 es K[x], $x_1 = 0$ y no nos interesa).

Como $x^2 + x = x(x+1)$, tomamos $y_1 = (x+1)x_3 = (T+1)x_3$ y ann $_{K[x]}(y_1) = \langle x \rangle$. Como $x^2 + x = x(x+1)$, tomamos $y_2 = xx_3 = Tx_3$ y ann $_{K[x]}(y_2) = \langle x+1 \rangle$. La descomposición cíclica primaria queda:

$$V = K[x]x_2 + K[x]y_1 + K[x]y_2$$

Y la matriz de T en la base $\{x_2, y_1, y_2\}$ es:

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Teorema 4.1. Si A es un dominio euclídeo con función euclídea v y B es una matriz con coeficientes en A, existen P, Q inversibles de tamaño adecuado y D

quasidiagonal tal que:

$$PB = DQ$$

Demostración. Necesitamos demostrar que $PBQ^{-1} = D$. Suponemos que $B \neq 0$. Vamos a demostrar que mediante operaciones elementales sobre filas y columnas, podemos reducir B a una del tipo

$$\begin{pmatrix} b & O \\ O & B' \end{pmatrix}$$

Llamemos $\nu(B) = \min\{\nu(b_{ij}) : b_{ij} \neq 0\}$. Intercambiando filas y columnas en B podemos conseguir $\nu(B) = \nu(b_{11})$.

Caso a: Si $b_{11}|b_{i1}$ y $b_{11}|b_{1j}$ para todos i,j, entonces reduzco haciendo ceros en las filas y columnas.

Caso b: Si $b_{11}|b_{i1}$ o $b_{11}|b_{1i}$ para algún i o j (supongamos i), entonces

$$b_{i1} = qb_{11} + r$$

y tenemos que $v(r) < v(b_{11})$. Basta restar a la fila i la primera multiplicada por q e intercambiarlas.

Hacemos finalmente inducción sobre v(B).

4.2 Módulos semisimples

Proposición 4.7. Sea M un módulo. Sea $\{M_i : i \in I\}$ una familia no vacía de submódulos simples (no cero y que sus únicos submódulos son el 0 y el total).

Ponemos $M' = \sum_{i \in I} M_i$, es decir, el menor submódulo que los contiene a todos. Tomamos $N \subsetneq M'$. Entonces existe un $J \subseteq I$ tal que $\{M_i : i \in J\}$ es independiente, $N \cap (\dot{+}_{i \in J} M_i) = \{0\}$ y $M' = N \dot{+} (\dot{+}_{i \in J} M_i)$.

Demostración. La demostración pasa por utilizar el lema de Zorn. Sea Γ el conjunto de los subconjuntos J de I tales que $\{M_i: i \in J\}$ es independiente y $N \cap (\dot{+}_{i\in I}M_i) = \{0\}$.

Veamos que $\Gamma \neq \emptyset$. Si $N = \{0\}$, tomamos $i \in I$ y tenemos que $\{i\} \in \Gamma\}$, que cumple trivialmente ambas propiedades. Si $N \neq \{0\}$, pero $N \cap M_i = \{0\}$, tomamos de nuevo $\{i\} \in \Gamma$ que es otro caso trivial.

Supongamos que $N \neq \{0\}$ y $N \cap M_i = \{0\}$ para todo $i \in I$. Como cada M_i es simple, $N \cap M_i = M_i$ para todo $i \in I$, con lo que N = M', caso que hemos excluído.

El orden que definimos en Γ es la inclusión. Tenemos que ver que cualquier cadena (subconjunto totalmente ordenado) tiene un elemento maximal. Sea $\chi \subseteq \Gamma$. Definimos $J = \bigcup_{C \in \gamma} C$. Lo que tenemos que demostrar es que $J \in \Gamma$.

Veamos que $\{M_i: i \in J\}$ es independiente. Por una proposición anterior, basta ver que cualquier $\{M_i: i \in F\}$ es independiente para cualquier $F \subseteq J$ finito. Por

ser χ una cadena, existe un $C \in \chi$ tal que $F \subseteq C$. Pero $C \in \Gamma$, luego $\{M_i : i \in C\}$ es idependiente, y en particular, $\{M_i : i \in F\}$ es independiente.

Tomamos $m \in N \cap (\dot{+}_{j \in J} M_j)$. Entonces existe un $F \subseteq J$ finito tal que $m \in N \cap (\dot{+}_{j \in F} M_j)$, entonces existe un $C \in \chi$ tal que $F \subseteq C$ y por consiguiente $m \in N \cap (\dot{+}_{j \in C} M_j) = \{0\}$.

Por tanto Γ es inductivo y el lema de Zorn nos asegura que existe un $J \in \Gamma$ maximal.

Solo basta ver que $M' = N \dotplus (\dotplus_{j \in J} M_j)$ y basta ver que es la suma (ya sabemos que es directa). Para $i \notin J$, $M_i \cap (N + (\dotplus_{j \in J} M_j)) \neq \{0\}$. De lo contrario, $J \cup \{i\} \in \Gamma$ y J no sería maximal. Como M_i es simple, $M_i \subseteq (N + (\dotplus_{j \in J} M_j))$. Al final tenemos que $M_i \subseteq (N + (\dotplus_{j \in J} M_j))$ para todo $i \in I$, con lo que $M' = N \dotplus (\dotplus_{j \in J} M_j)$.

Definición 4.13 (Anillo de división). Un anillo D se dice que es un anillo de división si para todo $d \in D \setminus \{0\}$ existe un d^{-1} tal que

$$dd^{-1} = d^{-1}d = 1$$

Si D es además conmutativo, es entonces un cuerpo.

Corolario 4.2. Sea D un anillo de división y $_DV$ un D-espacio vectorial no nulo. Si $\{v_i: i \in I\}$ es un conjunto de generadores no nulos de V, existe $J \subseteq I$ tal que $\{v_j: j \in J\}$ es una base de $_DV$.

Demostración. Tomo la familia $\{Dv_i: i \in I\}$. Cada $Dv_i \cong D/\operatorname{ann}_D(v_i) \cong D/\operatorname{ann}_D(v_i) \cong D/\operatorname{ann}_D(v_i)$ que el anulador de cualquier elemento en un anillo de división es cero.

 $_{D}D$ es un módulo simple.

$$V = \sum_{i \in I} D\nu_i$$

Tomando $N = \{0\}$ en la proposición, existe un $J \in I$ tal que

$$V = \dot{+}_{j \in J} D \nu_j$$

o equivalentemente $\{v_j: j \in J\}$ es base de V.

Observación. En la proposición anterior se ve que $V \cong D^{(J)}$.

Definición 4.14 (Homomorfismo escindido). Dado homomorfismos de módulos $N \stackrel{g}{\longrightarrow} M \stackrel{f}{\longrightarrow} N$ tales que $f \circ g = \mathrm{id}_N$, diremos que f es un epimorfismo escindido (o roto o partido) y que g es un monomorfismo escindido (o roto o partido).

Lema 4.5. Todo módulo finitamente generado no nulo contiene un submódulo propio maximal.

Demostración. Sea M el módulo y Γ el conjunto de los submódulos propios de M, o sea,

$$\Gamma = \{N : N \in \mathcal{L}(M), N \neq M\}$$

Tenemos que $\{0\} \in \Gamma$, luego es no vacío. Tomamos χ cadena en Γ y $N = \bigcup_{C \in \chi} C$. Veamos que $N \in \Gamma$.

Tomamos m_1, \ldots, m_t generadores de M. Si N = M, tendríamos que $m_1, \ldots, m_t \in N$ y existiría en ese caso un $C \in \chi$ tal que $m_1, \ldots, m_t \in C$, con lo que $M \subseteq C \subseteq M$ con lo que C = M y en particular $C \notin \Gamma$, lo cuál es una contradicción.

Aplicando el lema de Zorn a Γ , tenemos que tiene elementos maximales.

Teorema 4.2. Las siguientes condiciones son equivalentes para un módulo M:

- 1. Todo submódulo de *M* es un sumando directo.
- 2. Todo monomorfismo $L \longrightarrow M$ es escindido.
- 3. Todo epimorfismo $M \longrightarrow N$ es escindido.
- 4. Soc(M) = M.
- 5. *M* es suma de una familia de submódulos simples.
- 6. M es suma directa interna de una familia de submódulos simples.

En cualquiera de los casos diremos que *M* es semisimple.

Demostración. Como todas las afirmaciones son triviales ciertas si $M = \{0\}$, suponemos que $M \neq \{0\}$.

Vamos a ver que la primera afirmación implica la tercera. Sea $\phi: M \longrightarrow N$. Tomemos $L = \ker \phi$. Por hipótesis $M = L \dotplus X$ para cierto $X \in \mathcal{L}(M)$. Tenemos que, por los teoremas de isomorfía:

$$N \cong M/L = (L \dotplus X)/L \cong X/(L \cap X) \cong X/\{0\} \cong X$$

Tenemos que para cada $x \in X$ se va identificando con $x + \{0\}$, y x + L, que se identifica con $\phi(x)$ a través de los isomorfismos anteriores.

Es decir, la aplicación anterior es $\phi|_X: X \longrightarrow N$.

Definimos $\varphi: N \longrightarrow M$ como $\varphi:=\iota \circ (\phi)^{-1}$, que cumple que $\phi \circ \varphi = \mathrm{id}_N$.

Veamos que la tercera afirmación implica la segunda. Sea $\varphi: L \longrightarrow M$ un monomorfismo. Consideramos la sucesión exacta corta dada por $0 \longrightarrow L \stackrel{\varphi}{\longrightarrow} M \stackrel{\kappa}{\longrightarrow} C \longrightarrow 0$ donde $C = M / \operatorname{Im} \varphi$ y κ es la proyección canónica.

Existe un $g: C \longrightarrow M$ tal que $\kappa \circ g = \mathrm{id}_C$. Defino $h = \mathrm{id}_M - g \circ \kappa : M \longrightarrow M$.

$$\kappa \circ h = \kappa - \kappa \circ g \circ \kappa = \kappa - \kappa = 0$$

con lo que $\operatorname{Im} h \subseteq \ker \kappa$.

Tenemos $f: M \longrightarrow L$ tal que $\varphi \circ f = h$ (es decir, h pero visto en L). Se dejan como ejercicio los detalles.

$$\varphi \circ (f \circ \varphi) = h \circ \varphi = \varphi - g \circ \kappa \circ \varphi = \varphi$$

donde el segundo sumando se anula por exactitud.

Por la inyectividad de φ , tenemos que podemos cancelar a izquierda y por tanto $f \circ \varphi = \mathrm{id}_L$.

Veamos que la segunda afirmación implica la primera, con lo que tendremos ya que las tres primeras son equivalentes.

Tomamos $X \in \mathcal{L}(M)$, tenemos que $\iota: X \longrightarrow M$ es un monomorfismo. Por hipótesis, existe un $p: M \longrightarrow X$ tal que $p|_X = \mathrm{id}_X$. Entonces se tiene que:

$$M = X + \ker p$$

que es un ejercicio sencillo.

Vamos a ver que de la cuarta afirmación se deduce la quinta. La cuarta afirmación dice que $M = \sum N_i$ donde N_i son los submódulos simples de M.

Veamos ahora que de la quinta se sigue la sexta. Por una proposición anterior (la 23) tomando N=0, tenemos que es cierta.

Trivialmente, la última afirmación implica la primera, tomando N cualquiera en la proposición 23.

Basta ver ahora que la primera afirmación implica la cuarta. Por hipótesis $M = \operatorname{Soc}(M) \dotplus X$ para cierto X. Veamos que $X = \{0\}$. Si no fuera así, tomamos $m \in X \setminus \{0\}$. El lema previo nos asegura que hay un epimorfismo $p : Rm \longrightarrow S$ para S simple.

De nuevo, Rm es un sumando directo de M, existe un epimorfismo $\pi: M \longrightarrow Rm$. Hacemos la composición $p \circ \pi: M \longrightarrow S$.

Como la hipótesis primera equivale a la tercera, existe $\iota: S \longrightarrow M$ (por una vez no es inclusión) tal que $p \circ \pi \circ \iota = \mathrm{id}_S$.

$$S \cong \operatorname{Im}(\pi \circ \iota) \subseteq Rm \subseteq X$$

donde hemos usado el primer teorema de isomorfía a una aplicación inyectiva. luego X contiene a una copia de un simple y no es simple. Así que X = 0 y M = Soc(M).

Corolario 4.3. Si M es finitamente generado y no nulo, existe un $N \le M$ tal que M/N es simple.

Corolario 4.4. Todo cociente de y todo submódulo de un módulo semisimple es semisimple.

Demostración. Sea M semisimple y tomamos N un submódulo. Veamos que M/N es también semisimple. M es semisimple, luego es suma de módulos simples:

$$M = \sum_{i \in I} S_i$$

Consideremos $p: M \longrightarrow M/N$ la proyección canónica $(m \mapsto m+N)$. Tenemos que $M/N = \sum_{i \in I} p(S_i)$. Para cada $i \in S_i$ puede que $p(S_i) = 0$ (que sobran de la suma) o $p(S_i) \neq 0$.

П

 $p(S_i)$ es simple porque $p: S_i \longrightarrow p(S_i)$ es un isomorfismo (inyectiva y definida sobre su imagen).

Veamos que pasa con los submódulos. $M = N \dotplus X$ para algún X. Esto implica que $m = n + x \stackrel{\pi}{\mapsto} n$ es un epimorfismo de módulos entre M y N. Entonces $N \cong N / \ker \pi$, luego es semisimple.

Corolario 4.5. M es semisimple finitamente generado si y solo si $M = S_1 \dot{+} \cdots \dot{+} S_n$ para S_i simple.

Demostración. La implicación hacia la izquierda es una aplicación directa del teorema.

Por otro lado, $M=\dot{+}_{i\in I}S_i$, por ser simple. Sean m_1,\ldots,m_t generadores de M. Entonces existe $F\subseteq I$ finito tal que

$$m_j \in \dot{+}_{i \in F} S_i$$

para todo *j*. Entonces

$$M \subseteq \dot{+}_{i \in F} \subseteq M$$

con lo que M es una suma finita.

4.2.1 Anillos semisimples

Definición 4.15 (Anillos semisimples). Un anillo R es semisimple si todo R-módulo es semisimple.

Observación. Todo anillo de división es semisimple. ¿Hay más?

Teorema 4.3. R es semisimple si y solo si $_RR$ es semisimple. Es decir, todos los módulos sobre R son semisimples si y solo si lo es el regular.

Demostración. Sea $_RM$ un módulo. Está claro que $Rm \cong R/\operatorname{ann}_R(m)$, que es un cociente de un semisimple, luego semisimple para cualquier m. Tenemos que para ciertos $m \in M$:

$$M = \sum_{m \in M} Rm$$

con lo que M es suma de semisimples, luego semisimple.

Definición 4.16 (Anillo de endomorfismos). Sea *M* un *R*-módulo, definimos:

 $\operatorname{End}_R(M) = \{f : M \longrightarrow M : f \text{ homomorfismo de módulos sobre } R\}$

es un subanillo de End(M).

Llamemos $S = \operatorname{End}_R(M)$, tenemos que M es un S-módulo puesto que $S \subseteq \operatorname{End}(M)$. $\operatorname{End}_R(M)$ es el anillo de endomorfismos de M.

¿Cuál es la acción en M? La inclusión: $f \in S$, tenemos f m = f(m).

Definición 4.17 (Biendomorfismos). ¿Quién es $\operatorname{End}_S(M)$? Obviamente, $\operatorname{End}_S(M) \subseteq \operatorname{End}(M)$ subanillo.

Dado $g \in \text{End}(M)$, $g \in \text{End}_S(M)$ si y solo si g(fm) = fg(m) para todo $f \in S = \text{End}_R(M)$. Pero g(f(m)) = g(fm) = fg(m) = f(g(m)) con $m \in M$. Pero esto es lo mismo que decir que $g \circ f = f \circ g$.

$$\operatorname{End}_S(M) = \{ g \in \operatorname{End}(M) : g \circ f = f \circ g \quad \forall f \in \operatorname{End}_R(M) \}$$

Llamaremos $T = \operatorname{End}_S(M)$.

Lema 4.6. $R \xrightarrow{\lambda} \operatorname{End}_{S}(M)$ dado por $\lambda(r) : M \longrightarrow M$ y $\lambda(r)(m) = rm$. Dicho λ es un homomorfismo de anillos.

Demostración. Basta con ver que $\operatorname{Im} \lambda \subseteq \operatorname{End}_{\mathcal{S}}(M)$. O sea que $\lambda(r) \circ f = f \circ \lambda(r)$ para todo $r \in R$. En efecto:

$$(\lambda(r) \circ f)(m) = rf(m) = f(rm) = (f \circ \lambda(r))(m)$$

para todo $f \in S$ y todo $m \in M$.

Observación. El conjunto de "triendomorfismos" coincide con el de endomorfismos. Es decir, $S = \operatorname{End}_T(M)$.

Proposición 4.8. Los R-sumandos directos de M son los mismos que los T-sumandos directos de M.

Como consecuencia, si $_{R}M$ es semisimple, entonces $_{T}M$ también lo es.

Demostración. Si N es un T-sumando directo de M tenemos que $M=N\dot{+}X$ para cierto $X\in \mathcal{L}(_TM)$. Entonces $N\dot{+}X=M$ como R-módulos.

Recíprocamente, $_RM=X\dot{+}Y$ con $X,Y\in\mathcal{L}(_RM)$. Basta ver que X es un T-módulo.

Tomo $p: M \longrightarrow M$, tal que p(m) = p(x+y) = x y $p \in S = \operatorname{End}_R(S)$, y $X = \operatorname{Im} p$. Tomo $g \in T$, $x \in X$,

$$gx = g(x) = g(p(x)) = (g \circ p)(x) = (p \circ g)(x) = p(g(x)) \in \text{Im } p = X$$

luego $X \in \mathcal{L}(_{\scriptscriptstyle T}M)$.

Veamos que si uno es semisimple lo es el otro. Entonces si N es un sumando directo de M visto como R-módulo, entonces lo es como sumando directo como T módulo, luego M es semisimple.

Corolario 4.6. Si $_RM$ es semisimple, $\ell(_RM) < \infty$, entonces $_TM$ y $\ell(_RM) = \ell(_TM)$.

Tenemos que, dado $_RM$, $_RM^n=M\oplus\overset{(n)}{\cdots}\oplus M$. Sea $S'=\operatorname{End}_R(M^n)$.

Sea ι_i la aplicación dada por $m \mapsto (0, \dots, 0, m, 0, \dots 0)$ y π_i la que aplica $m_i = 0$

 $(m_1,\ldots,m_j,\ldots,m_n)\mapsto m_j.$ Tenemos que $\mathrm{id}_{M^n}=\sum_{i=1}^n\iota_i\circ\pi_i\in S'.$ Dado $f\in\mathrm{End}_S(M),$ definimos $\bar{f}=\sum_{i=1}^n\iota_i\circ\pi_i\in S'.$ $\sum_{i=1}^{n} \iota_i \circ f \circ \pi_i \in \text{End}(M^n)$, en concreto

$$\bar{f}(m_1,\ldots,m_n) = (f(m_1),\ldots,f(m_n))$$

A partir de ahora prescindimos del símbolo o para indicar composición. Tomando $g \in S'$, tenemos que

$$g\bar{f} = \sum_{i,j=1}^{n} \iota_i \pi_i g \iota_j f \, \pi_j = \sum_{i,j=1}^{n} \iota_i f \, \pi_i g \iota_j \pi_j = \bar{f} \, g$$

con lo que $f \in \operatorname{End}_{S'}(M^n)$.

Teorema 4.4 (de densidad de Jacobson). Sea *M* un *R*-módulo semisimple. Sean $m_1, \ldots, m_n \in M$ y $S = \operatorname{End}_R(M)$. Para cada $f \in \operatorname{End}_S(M)$ existe un $r \in R$ tal que $f(m_i) = rm_i$ para todo $i \in \{1, ..., n\}$.

Demostración. Sea $m = (m_1, ..., m_n) \in M^n$. Sé que M^n es R-semisimple. Rm es un R-sumando directo de M^n . Entonces Rm es un $\operatorname{End}_{S'}(M^n)$ -submódulo de M^n .

Como $\bar{f} \in \text{End}_{S'}(M^n)$, entonces $(f(m_1), \dots, f(m_n)) = \bar{f}(m) = \bar{f}m \in Rm$, con lo que existe un $r \in R$ tal que $f(m_i) = rm_i$.

Lema 4.7 (de Schur). Sean $_RM$, $_RN$ y $f:M\longrightarrow N$ es homomorfismo de R-módulos, entonces f o es 0 o es un isomorfismo.

Así, $\operatorname{End}_{\mathbb{R}}(M)$ es una anillo de división.

Proposición 4.9. Sea R tal que $_{R}R$ es artiniano y $_{R}M$ un módulo simple. Si $_{R}M$ es fiel $(Ann_R(M) = \{0\})$, entonces $\lambda : R \longrightarrow End_D(M)$ es un isomorfismo, donde $D = \operatorname{End}_R(M)$. Además, $\dim_D M < \infty$.

Demostración. Supongamos que $_{D}M$ no fuera de dimensión finita. Entonces Madmite una base *B* infinita. Tomamos $\{x_i : i \in N\} \subseteq B$ linealmente independiente.

Dado $i \in \mathbb{N}$, tomamos $f_i : M \longrightarrow M$ la aplicación D-lineal que vale 0 sobre todo elemento de B y sobre $f_i(x_i) = x_i$.

Cada $f_i \in \operatorname{End}_D(M)$. El teorema de densidad nos permite asegurar que existe $r_i \in R$ tal que $f_i(x_i) = r_i x_i$ para j = 0, ..., i.

 $r_i \in \operatorname{ann}_R(x_0) \cap \ldots \cap \operatorname{ann}_R(x_{i-1})$, pero el $r_i \in \operatorname{ann}_R(x_0) \cap \ldots \cap \operatorname{ann}_R(x_{i-1}) \cap \ldots \cap \operatorname{ann}_R(x_{i-1})$ $\operatorname{ann}_{R}(x_{i})$. Tenemos que

$$\operatorname{ann}_R(x_0) \cap \ldots \cap \operatorname{ann}_R(x_{i-1}) \supseteq \operatorname{ann}_R(x_0) \cap \ldots \cap \operatorname{ann}_R(x_{i-1}) \cap \operatorname{ann}_R(x_i)$$

con $i \ge 1$ y tenemos una cadena descendente y por tanto $_{R}R$ no es artiniano.

Tomo $\{m_1, \ldots, m_n\}$ una base de M. Dado $f \in \operatorname{End}_D(M)$, el teorema de densidad asegura que existe $r \in R$, entonces $f(m_i) = rm_i$ para todo $i \in \{1, ..., n\}$. Basta

tomar $\lambda(r) = f$ y tenemos que es sobreyectivo. Como además M es fiel, λ es un isomorfismo.

Definición 4.18 (Idempotentes). Un elemento $e \in R$ se dice idempotente si $e^2 = e$.

Un conjunto $e_1, \ldots, e_n \in R$ de idempotentes se dice un conjunto completo de idempotentes ortogonales (CCIO) si:

$$e_i e_j = 0$$

siempre que $i \neq j$ y además:

$$e_1 + \cdots + e_n = 1$$

Proposición 4.10. Si $\{e_1, \dots, e_n\}$ es CCIO, entonces $R = Re_1 \dotplus \dots \dotplus Re_n$.

Demostración. Sea $r \in R$, tenemos que $r = r1 = re_1 + \cdots + ren$.

Por otro lado, si $0 = r_1 e_1 + \dots + r_n e_n$ para $r_i \in R$, entonces multiplicando la identidad por e_i nos queda $0 = r_i e_i^2 = r_i e_i$ para cada $i \in \{1, \dots, n\}$.

Definición 4.19 (Anillo simple). R es simple si y solo si los únicos ideales de R son $\{0\}$ y R.

Teorema 4.5. Son equivalentes, para un anillo no trivial:

- 1. _RR semisimple y todos los R-módulos simples son isomorfos entre sí.
- 2. R es isomorfo como anillo a $\operatorname{End}_D(M)$ con D de división y $_DM$ es de dimensión finita.
- 3. _RR artiniano y existe un R-módulo simple y fiel.
- 4. $_{R}R$ es artiniano y simple.

Además, para la segunda afirmación se da necesariamente que $D \cong \operatorname{End}_R(\Sigma)$ para cualquier $_R\Sigma$ el único sumódulo simple salvo isomorfismo dado en la primera afirmación. Por último, necesariamente, $\dim_D(M) = \ell(_RR)$.

Demostración. Veamos que la primera afirmación implica la cuarta. Sabemos que $_RR$ tiene longitud finita. Sea I un ideal de R propio ($R \neq \{0\}$). R/I es semisimple como R-módulo. Como es finitamente generado, es suma directa finita de simples. Todos esos submódulos son isomorfos entre sí.

$$R/I \cong \Sigma^n$$

donde $_{R}\Sigma$ es simple.

Tenemos que $I = \text{Ann}_R(R/I)$ (aquí es donde hace falta que sea ideal y no solo

ideal por la izquierda).

$$I = \operatorname{Ann}_R(R/I) = \operatorname{Ann}_R(\Sigma^n) = \operatorname{Ann}_R(\Sigma)$$

Por otro lado $R \cong \Sigma^m$, con $m = \ell({}_{\scriptscriptstyle R}R)$.

$$I = \operatorname{Ann}_{R}(\Sigma) = \operatorname{Ann}_{R}(\Sigma^{m}) = \operatorname{Ann}_{R}(R) = \{0\}$$

Demostremos ahora que la cuarta afirmación implica la tercera. Tomamos $_R\Sigma$ simple (existe tomando el primero de la serie de descomposición, por ser artiniano). $R \neq \operatorname{Ann}_R(\Sigma)$ por se simple, luego $\operatorname{Ann}_R(\Sigma) = \{0\}$. Luego $_R\Sigma$ fiel.

La segunda afirmación se deduce de la tercera por la proposición anterior.

Veamos finalmente que la cuarta afirmación implica la primera. Tomamos $S = \operatorname{End}_D(M)$. Si $m, m' \in M$ con $m \neq 0$, existe entonces un $f \in S$ tal que f(m) = m'.

Así, Sm = M con lo que $_SM$ es simple. Sea $\{m_1, \ldots, m_n\}$ D-base de M. Para $i \in \{1, \ldots, n\}$ defino $e_i \in S$ tal que

$$e_i(m_j) = \begin{cases} 0 & \text{si } j \neq i \\ m_i & \text{si } j = i \end{cases}$$

 $\{e_1,\ldots,e_n\}$ es CCIO de S, entonces $S=Se_1\dot{+}\cdots\dot{+}Se_n$. Veamos que Se_i es simple. Basta con demostrar que si $f\in S$ tal que $fe_i\neq 0$ entonces $Sfe_i=Se_i$.

$$f e_i = f(e_i) = \sum_{j=1}^n a_j m_j$$

con $a_j \in D$. Tomamos un índice k tal que $a_k \neq 0$ (posible porque $f e_i \neq 0$). Tenemos que $s(m_k) = a_k^{-1} m_i$ y $s(m_j) = 0$ si $j \neq k$.

Tenemos entonces

$$sfe_i(m_i) = s(\sum_i a_j m_j) = a_k^{-1} a_k m_i = m_i$$

con lo que $sfe_i = e_i$ y por tanto $Se_i = Sfe_i$ con lo que $_SS$ es semisimple.

Veamos que cualquier módulo simple es isomorfo a $_SS$. Para ver que cada Se_i es isomorfo a $_SM$, por el lema de Schur, basta encontrar un homomorfismo no nulo $Se_i \longrightarrow M$. Sea $F: Se_i \longrightarrow M$ dado por $F(f) := f(m_i) = fm_i$. Es fácil ver que F es un S-módulo. $F(e_i) = e_i(m_i) = m_i \neq 0$, con lo que $F \neq 0$ y por el lema de Schur es un isomorfismo.

Si $_S\Sigma$ es simple, luego existe un epimorfismo $p:S\longrightarrow \Sigma$ de S-módulos (descomponer por anuladores de cualquiera de sus elementos). Como $p\neq 0$, existe un i tal que $p|_{Se_i}\neq 0$ y por tanto es un isomorfismo.

Sea $\phi: S \longrightarrow R$ un isomorfismo de anillos. $\{\phi(e_1), \longrightarrow, \phi(e_n)\}$ es claramente CCIO de R. En particular, $R = \dot{+}_{i=1}^n R\phi(e_i)$. Cada $R\phi(e_i)$ es simple como R-módulo. $Se_i \cong {}_S M$, y ${}_R M$ por restricción de escalares. Comprobando que $\mathscr{L}({}_S M) = \mathscr{L}({}_R M)$, deducimos que ${}_R M$ es simple.

 $R\phi(e_i)$, veamos que $\mathcal{L}R\phi(e_i) \cong \mathcal{L}R\phi(e_i)$ dados por $I \mapsto \phi(I)$ y $J \mapsto \phi^{-1}(M)$, luego son dos conjuntos ordenados por la inclusión isomorfos. Luego como uno solo tiene dos elementos, en el otro también.

 $R\phi(e_i)$ es simple y por tanto _pR es semisimple. Además:

$$\dim_D(M) = n = \ell({}_{S}S) = \ell({}_{R}R)$$

Sea Σ un R-módulo simple. Mediante restricción de escalares es un S-módulo simple, luego $_S\Sigma\cong _SM$ con lo que $_R\Sigma\cong _RM$.

$$\lambda: D \longrightarrow \operatorname{End}_{S}(M) = \operatorname{End}_{R}(M)$$

es, por densidad, un isomorfismo.

Lema 4.8. Sea R un anillo. Existe un conjunto Ω_R (y es un conjunto y no una clase) de R-módulos simples no isomorfos entre sí tal que cualquier R-módulo simple es isomorfo a uno de los Ω_R .

Demostración. Sea $_R\Sigma$ simple. Tomo $0 \neq s \in \Sigma$ entonces $_R\Sigma \cong R/\operatorname{ann}_R(s)$. Tomo Ω_R un conjunto de representantes de los R-módulos R/I para I ideal izquierda maximales bajo la relación de equivalencia $I \sim J$ si y solo si $R/I \cong R/D$.

Proposición 4.11. $_RM$ un módulo. Para $\Sigma \in \Omega_R$, defino $\operatorname{Soc}_{\Sigma}(M)$ como la suma de todos los submódulos simples de M isomorfos a Σ . Entonces:

$$Soc(M) = \dot{+}_{\Sigma \in \Omega_R} Soc_{\Sigma}(M)$$

Demostración.

$$\operatorname{Soc}(M) = \sum_{\Sigma \in \Omega_R} \operatorname{Soc}_\Sigma(M)$$

por la definición de Ω_R . Muchos de ellos serán cero.

Llamamos $N = \operatorname{Soc}_{\Sigma'}(M) \cap \sum_{\Sigma \neq \Sigma'} \operatorname{Soc}_{\Sigma}(M)$. Tomamos $m \in N \setminus \{0\}$, suponiendo que $N \neq \{0\}$. Tenemos que Rm es semisimple y es finitamente generado y por tanto de longitud finita. Entonces contiene un S R-submódulo simple de Rm.

Tenemos que $S \subseteq \operatorname{Soc}_{\Sigma'}(M)$. Existe entonces $g : \operatorname{Soc}_{\Sigma'}(M) \longrightarrow S$ epimorfismo (porque escinde). Existe $S' \in \operatorname{Soc}_{\Sigma'}(M)$ tal que $S' \cong \Sigma'$ tal que $g|_{S'} \neq 0$ entonces por Schur $S' \cong S$. Análogamente, se demuestra que $S'' \cong \Sigma \neq \Sigma'$ tal que $S'' \cong S$. Resulta que $\Sigma' \cong S \cong \Sigma$ y están relacionados, lo que contradice la definición de Ω_R .

Observación. Sea $f \in \operatorname{End}_R(M)$. Entonces:

$$f(\operatorname{Soc}_{\Sigma}(M)) = f\left(\sum_{S \cong \Sigma, S \in \mathcal{L}(M)} S\right) = \sum_{S \cong \Sigma, S \in \mathcal{L}(M)} f(S) \subseteq \operatorname{Soc}_{\Sigma}(M)$$

Tomando M = R y $f = \rho_r$ para $\rho_r : R \longrightarrow R$ definida por $\rho_r(r') = r'r$, entonces $\rho_r(\operatorname{Soc}_{\Sigma}(R)) \subseteq \operatorname{Soc}_{\Sigma}(R)$ y tenemos que $\operatorname{Soc}_{\Sigma}(R)$ es un ideal de R.

Observación. $\Omega_{\mathbb{Z}}$ es biyectivo con $\{\mathbb{Z}_p : p \text{ es primo}\}$, luego es un conjunto infinito.

Teorema 4.6 (Estructura de anillos semisimples). Sea R un anillo semisimple. Entonces Ω_R es finito. Si ponemos $\Omega_R = \{\Sigma_1, \dots, \Sigma_t\}$ y $D_i = \operatorname{End}_R(\Sigma_i)$, entonces

$$R \cong \operatorname{End}_{D_t}(\Sigma_1) \times \cdots \times \operatorname{End}_{D_t}(\Sigma_t)$$

y $\dim_{D_i}(\Sigma_i)$ es finita.

Demostración. Sé que ${}_{R}R = S_{1} \dotplus \cdots \dotplus S_{n}$ donde ${}_{R}S_{i}$ es simple. Así, si ${}_{R}\Sigma$ es simple, entonces $\mathbb{R} \stackrel{p}{\longrightarrow} \Sigma$ epimorfismo, donde $p|_{S_{i}}$ es un isomorfismo para algún i y por Schur, $S_{i} \cong \Sigma$. Así que Ω_{R} es finito.

Tenemos que $\operatorname{Soc}_{\Sigma_i}(R)\operatorname{Soc}_{\Sigma_j}(R)\subseteq \operatorname{Soc}_{\Sigma_i}(R)\cap \operatorname{Soc}_{\Sigma_j}(R)=\{0\}$. Eso implica que $\operatorname{Soc}_{\Sigma_i}(R)\subseteq\operatorname{Ann}_R(\operatorname{Soc}_{\Sigma_i}(R))=\operatorname{Ann}_R(\Sigma_i)$.

Llamo a $I_i = \sum_{j \neq i} \operatorname{Soc}_{\Sigma_j}(R)$. Tenemos que $I_i + I_j = R$ si $i \neq j$. De la inclusión anterior se deduce $\operatorname{Ann}_R(\Sigma_i) + \operatorname{Ann}_R(\Sigma_i) = R$ si $i \neq j$. Se cumple que:

$$R \longrightarrow R/\operatorname{Ann}_R(\Sigma_1) \times \cdots \times R/\operatorname{Ann}_R(\Sigma_t)$$

tal que

$$r \mapsto (r + \operatorname{Ann}_R(\Sigma_1), \dots, r + \operatorname{Ann}_R(\Sigma_t))$$

es un homomorfismo de anillos cuyo núcleo es $\bigcap_{i=1}^t \operatorname{Ann}_R(\Sigma_i) = \bigcap_{i=1}^n \operatorname{Ann}_R(S_i) = \{0\}$. donde simplemente puede haber algún $\operatorname{Ann}_R(S_i)$ repetido.

Cada $R/\operatorname{Ann}_R(\Sigma_i)$ es artiniano (de longitud finita por ser cociente de uno de longitud finita). Σ_i es un $R/\operatorname{Ann}: R(\Sigma_i)$ -módulo simple fiel. Nuestro teorema nos garantiza que $R/\operatorname{Ann}_R(\Sigma_i) \cong \operatorname{End}_{D_i}(\Sigma_i)$ para $D_i = \operatorname{End}_{R/\operatorname{Ann}_R(\Sigma_i)}(\Sigma_i) \cong \operatorname{End}_R(\Sigma_i)$ y dim $_{D_i}(\Sigma_i)$ es finita.

Ejemplo: R, S dos anillos. Sea $T = R \times S$. Vamos a definir e = (1,0), $\mathcal{L}(_T Te) \longrightarrow \mathcal{L}(_R R)$ dada por $I \mapsto \pi(I)$ donde π es la proyección en la primera componente, es una biyección que preserva la inclusión.

Como consecuencia $_{T}Te$ es semisimple si y solo si $_{R}R$.

Así, T es semisimple si y solo si R y S si y solo si T son semisimples, ya que:

$$_{T}T = Te \dot{+} T(1-e)$$

Ejercicio: Sean D, E dos anillos de división, $_DM, _EN$ espacios vectoriales. Se pide demostrar que

$$\operatorname{End}_D(M) \cong \operatorname{End}_E(N) \iff \begin{cases} D \cong E \\ \dim_D(M) = \dim_E(N) \end{cases}$$

4.3 Descomposición de anillos en ideales indescomponibles

Definición 4.20 (El centro de un anillo). Sea R un anillo. El conjunto

$$Z(R) = \{r \in R : rs = sr \quad \forall s \in R\}$$

es un subanillo conmutativo de R que se llama centro de R.

Definición 4.21 (Idempotente central). Si $e \in Z(R)$ verifica $e^2 = e$ diremos que es un idempotente central de R.

Si *e* es un idempotente central, *Re* es ideal y de *R* y además es un anillo con la suma y el producto heredados de *R* cuyo 1 es *e*.

Ejemplo: dados R_1 y R_2 anillos, $R = R_1 \times R_2$, e = (1,0) que es idempotente central, entonces $Re = R_1 \times \{0\}$ es un anillo isomorfo a R_1 .

Observación. Si e es idempotente central, 1 - e es idempotente central.

Tenemos que $\{e, 1-e\}$ CCIO centrales. De hecho:

$$R = Re + R(1 - e) \cong Re \times R(1 - e)$$

Al revés, si $R = I \dotplus J$ con I, J son ideales, 1 = e + (1 - e), con $e \in I$, $1 - e \in J$ con ambos centrales y I = Re y J = R(1 - e).

Contraejemplo: $R = \mathcal{M}_{2\times 2}(K)$ con K un cuerpo.

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

es idempotente no central.

$$Re = \begin{pmatrix} K & 0 \\ K & 0 \end{pmatrix}$$

pero

$$eR = \begin{pmatrix} K & K \\ 0 & 0 \end{pmatrix}$$

Definición 4.22 (Ideal indescomponibles). Si $I = I_1 \dotplus I_2$ con I_i ideales implica que al menos uno de ellos es $\{0\}$, entonces diremos que es indescomponible.

Definición 4.23 (Anillos indescomponibles). Diremos que R anillo es indescomponible si lo es como ideal.

Definición 4.24 (Idempotentes indescomponibles). Sea e un idempotente central de R. e se dice indescomponible si e = e' + e'', e' y e'' idempotentes centrales ortogonales (e'e'' = 0), uno de ellos es cero.

Observación. Hay una equivalencia entre los ideales indescomponibles y los idempotentes indescomponibles.

Ejercicio: R es indescomponible si y solo si no es isomorfo a ningún anillo de la forma $R_1 \times R_2$ con R_1 , R_2 anillos no triviales.

Observación. Ningún dominio de integridad puede expresarse como producto de dos anillos. Luego es indescomponible.

Proposición 4.12. Si un anillo tiene un CCIO centrales indescomponibles, entonces es único. Además, si $\ell(_R R) < \infty$, entonces R admite un CCIO central indescomponibles.

Demostración. Supongamos que haya dos tales conjuntos $\{e_1, \ldots, e_n\}$ y $\{f_1, \ldots, f_m\}$. Basta ver que uno está incluido en el otro.

 $e_i f_i$ es idempotente central. Tenemos que

$$e_i = e_i f_j + e_i (1 - f_j)$$

es una descomposición de un idempotente indescomponible, así que o bien $e_i f_j$ o bien $e_i (1-f_j)$ es cero. Si ocurriera que $e_i f_j \neq 0$, $e_i = e_i f_j$. Análogamente $f_j = e_i f_j$, aplicando el razonamiento a f_j . Entonces $e_i = f_j$.

Dado e_i , $0 \neq e_i = e_i 1 = e_i (f_1 + \dots + f_m)$ y al menos hay algún j tal que $e_i f_j \neq 0$ con lo que $e_i = f_j$.

Para la segunda parte vamos a aplicar inducción sobre la longitud. Si R es indescomponible no hay nada que demostrar. Si no, es porque R = Re + R(1-e) para $e \notin \{0,1\}$ indepontente central. Tenemos que $\ell(R_e,R_e) < \ell(R_e,R_e)$, y podemos aplicar la hipótesis de inducción.

Observación. R, S anillos. Si es $\{e_1, \ldots, e_t\}$ CCIO centrales indescomponibles y $phi: R \longrightarrow S$ es un isomorfismo de anillos. Entonces $\{\phi(e_1), \ldots, \phi(e_t)\}$ es el CCIO centrales indescomponibles de S. Además se tiene

$$R = Re_1 \dotplus \cdots \dotplus Re_t$$

entonces

$$S = S\phi(e_1) \dot{+} \cdots \dot{+} S\phi(e_t)$$

donde $Re_i \cong S\phi(e_i)$ como anillos.

Imaginemos que sabemos que R es semisimple y que disponemos de un isomorfismo de anillos $R \cong R_1 \times \cdots \times R_s$ con R_i indescomponibles.

Por otra parte, $\Omega_R = \{\Sigma_1, \dots, \Sigma_t\}$, tengo un isomorfismo de anillos $R \cong \operatorname{End}_{D_1}(\Sigma_1) \times \cdots \times \operatorname{End}_{D_n}(\Sigma_t)$, donde $D_i = \operatorname{End}_R(\Sigma_i)$.

Se deduce de la observación:

$$\operatorname{End}_{D_1}(\Sigma_1) \times \cdots \times \operatorname{End}_{D_t}(\Sigma_t) \cong R_1 \times \cdots \times R_s$$

sin más que componer isomorfismos. En primer lugar, s = t y tras reordenación $\operatorname{End}_{D_i}(\Sigma_i) \cong R_i$. Conocemos los e_i CCIO centrales del segundo factor.

Teorema 4.7 (Teorema de Artin-Wedderburn). Si $R \cong \operatorname{End}_{D_1}(\Sigma_1) \times \cdots \operatorname{End}_{D_t}(\Sigma_t) \cong \operatorname{End}_{E_1}(T_1) \times \cdots \operatorname{End}_{E_s}(T_s)$ donde D_i , E_i son todos anillos de división y Σ_i , T_i de dimensión finita como espacios vectoriales.

Entonces s = t y tras reordenación $D_i \cong E_i$ y $\dim_{D_i}(\Sigma_i) = \dim_{T_i}(T_i)$.

La demostración consiste en juntar observaciones, comentarios y teoremas anteriores.

4.4 Módulos a derecha

Definición 4.25 (Anillo opuesto). Sea R un anillo. Mantengo su estructura de grupo aditivo, pero cambiamos el producto. El nuevo producto va a ser el producto opuesto dado por r * s := sr.

A R con este nuevo producto lo vamos a llamar R^{op} , el anillo opuesto.

Ejemplo:

$$R = \begin{pmatrix} \mathbb{Z} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix} \le \mathscr{M}_2(\mathbb{Q})$$

Tenemos que $_RR$ no es noetheriano, pero $_{R^{op}}R^{op}$ sí que lo es. Es decir, es noetheriano a derecha pero no a izquierda.

Definición 4.26 (Anillo noetheriano a derecha). Un anillo es noetheriano a derecha si el anillo opuesto es noetheriano a izquierda.

Definición 4.27 (Módulo a derechas). Definimos M módulo a derechas como $M_R := {}_{R^{op}}M$.

Definición 4.28 (Ideal bilátero). Un ideal bilátero es un ideal a izquierda que es ideal a derecha también.

Definición 4.29 (Dual de un módulo). Sea $_{\it R}M$ un módulo. Tomamos

$$^*M := \{f : M \longrightarrow R : f \text{ es homomorfismo de } R\text{-m\'odulos}\}$$

que es un grupo aditivo y un módulo a derechas, es decir, R^{op} -módulo, por la acción:

$$(r\varphi)(m) := \varphi(m)r$$

con $r \in R$, $m \in M$ y $\varphi \in {}^*M$. Es decir, *M_R .

Lema 4.9. $\theta: (\operatorname{End}_R(M))^{op} \longrightarrow \operatorname{End}_{R^{op}}(^*M)$ tenemos que $\theta(f)(\varphi) := \varphi \circ f$ es un homomorfismo de anillos. Nota: el producto en $(\operatorname{End}_R(M))^{op}$ es $f * g = g \circ f$.

Si $M = \mathbb{Z}_n$ como Z módulos, $^*M = \{0\}$ así que nos olvidamos de cualquier idea de reflexividad o isomorfismo.

Definición 4.30 (Módulos reflexivos). Un módulo en el que la anterior θ es un isomorfismo.

Proposición 4.13. Si $_RM$ tiene una base $\{v_1, \ldots, v_n\}$, puedo definir $\{^*v_1, \ldots, ^*v_n\}$, definidos mediante $v_i(^*v_j) = \delta_{ij}$. Los $_*v_i$ forman una base de *M_R . Además, θ es un isomorfismo de anillos.

Demostración. Veamos que es una base. Observemos que para cualquier $m \in M$:

$$m = \sum_{i=1}^{n} {}^*v_i(m)v_i$$

Sea $\varphi \in {}^*M$:

$$\varphi(m) = \sum_{i=1}^{n} {^*v_i(m)}\varphi(v_i) = \left(\sum_{i=1}^{n} \varphi(v_i)^*v_i\right)(m)$$

luego $\varphi = \sum_{i=1}^n \varphi(\nu_i)^* \nu_i$. Con lo que los $^*\nu_i$ generan $^*_{R^{op}}M$.

Si

$$0 = \sum_{i} r_i^* v_i$$

entonces:

$$0 = \sum_{i} (r_i * \nu_i)(\nu_j) = r_j$$

 $\operatorname{End}_R(M)^{op} \stackrel{\theta}{\longrightarrow} \operatorname{End}_{R^{op}}(^*M) \text{ dado por } \theta(f)(\varphi) := \varphi \circ f.$

Veamos que θ es inyectivo: tomo f tal que $\theta(f) = 0$. Dado $m \in M$ tenemos:

$$f(m) = \sum_{i} {}^{*}v_{i}(f(m))v_{i} = \sum_{i} \theta(f)({}^{*}v_{i})(m)v_{i} = 0$$

luego es inyectivo. Veamos que es sobreinyectivo.

Dado $\psi \in \operatorname{End}_{R^{op}}(^*M)$ definimos $f: M \longrightarrow M$ por:

$$f(m) = \sum_{i} \psi(^*v_i)(m)v_i$$

Es fácil ver que $f \in \operatorname{End}_{\mathbb{R}}(M) \cong \operatorname{End}_{\mathbb{R}}(M)^{op}$.

$$\theta(f)(\varphi)(m) = (\varphi \circ f)(m) = \sum_{i} \psi(^{*}v_{i})(m)\varphi(v_{i})$$

$$= \left(\sum_{i} \varphi(v_{i})\psi(^{*}v_{i})\right)(m)$$

$$= \psi\left(\sum_{i} \varphi(v_{i})^{*}v_{i}\right)(m)$$

$$= \psi(\varphi)(m)$$

Por lo tanto, $\theta(f)(\varphi) = \psi(\varphi)$, y se sigue $\varphi = \theta(f)$, con lo que θ es sobreyectivo.

Definición 4.31. Si $_RR$ es semisimple, entonces $R \cong \operatorname{End}_{D_1}(\Sigma_1) \times \cdots \times \operatorname{End}_{D_t}(\Sigma_t)$ donde D_i de dimensión y $n_i = \dim_{D_i}(\Sigma_i) z \infty$ con D_i únicos salvo isomorfismo y reordenación y n_i únicos. Diremos que R es de tipo $(D_1, \ldots, D_t, n_1, \ldots, n_t)$.

Teorema 4.8. Si R es semisimple de tipo $(D_1, \ldots, D_t, n_1, \ldots, n_t)$, entonces R^{op} es semisimple de tipo $(D_1^{op}, \ldots, D_t^{op}, n_1, \ldots, n_t)$.

Demostración. Tenemos que $R^{op} \cong \operatorname{End}_{D_1}(\Sigma_1)^{op} \times \cdots \times \operatorname{End}_{D_t}(\Sigma_t)^{op} \cong \operatorname{End}_{D_1^{op}}(^*\Sigma_1) \times \cdots \times \operatorname{End}_{D_t^{op}}(^*\Sigma_t)$ y $\dim_{D_i}(\Sigma_i) = \dim_{D_i^{op}}(^*\Sigma_i)$. R^{op} es semisimple con la estructura del enunciado.

Corolario 4.7. R es semisimple si y solo si R^{op} es semisimple.

Ejemplo: $(\mathbb{C}, \mathbb{R}, 1, 2)$. Tenemos que $R \cong \mathbb{C} \times \mathcal{M}_{2 \times 2}(\mathbb{R})$.

Ejemplo: $(\mathbb{H},2)$. Sea \mathbb{H}^V un espacio de dimensión 2. Cuidado que $\operatorname{End}_{\mathbb{H}}(V) \cong \mathcal{M}_{2\times 2}(\mathbb{H}^{op})^{op}$. Se puede demostrar que $\mathbb{H}^{\rtimes_{\mathbb{H}}} \cong \mathbb{H}$, pero no es automático, con lo que añadiendo la transposición $\operatorname{End}_{\mathbb{H}}(V) \cong \mathcal{M}_{2\times 2}(\mathbb{H})$.

5 Algunas aplicaciones

5.1 ℂ-álgebras de grupos finitos

Sea $\mathbb C$ el cuerpo de los números complejos y G un grupo con elemento neutro e. Sea $\mathbb C G$ el $\mathbb C$ espacio vectorial con base G.

 $\mu: \mathbb{C}G \times \mathbb{C}G \longrightarrow \mathbb{C}G$ la aplicación bilineal dada por $\mu(g,h) = gh$ para $g,h \in G$. Si para $r,s \in \mathbb{C}G$ denotamos $rs = \mu(r,s)$ donde si $r = \sum_{g \in G} r_g g$ y $s = \sum_{g \in G} s_g g$, $r_g,s_g \in \mathbb{C}$, se tiene:

$$rs = \sum_{g,h \in G} r_g s_h \mu(g,h) = \sum_{g,h \in G} r_g s_h gh$$

Tenemos que μ define un producto que es asociativo.

 $\mathbb{C}G \times \mathbb{C}G \times \mathbb{C}G \xrightarrow{\mu \times \mathrm{id}} \mathbb{C}G \times \mathbb{C}G \xrightarrow{\mu} \mathbb{C}G$ proporciona el mismo resultado que $\mathbb{C}G \times \mathbb{C}G \times \mathbb{C}G \xrightarrow{\mathrm{id} \times \mu} \mathbb{C}G \times \mathbb{C}G \xrightarrow{\mu} \mathbb{C}G$. Pero esto es trivial porque son dos aplicaciones trilineales que evaluadas en una base dan lo mismo (porque el producto en G es asociativo). Este es un ejemplo de un funtor del producto en G al producto en G.

Al ser bilineal, es distributiva respecto de la suma.

El elemento neutro de este producto es $1e \in \mathbb{C}G$.

Proposición 5.1. $\mathbb{C}G$ con la estructura que hemos discutido, es un anillo.

La aplicación $\eta: \mathbb{C} \longrightarrow \mathbb{C}G$ dada por $z \mapsto ze$ es un homomorfismo de anillos,

distinto de 0 y parte de un cuerpo, luego es inyectivo. Luego consideraremos que $\operatorname{Im} \eta$ es un subanillo de $\mathbb{C}G$ y $\operatorname{Im} \eta \cong \mathbb{C}$. Vamos a considerar entonces que 1e = 1 = e y que $\mathbb{C} \subseteq \mathbb{C}G$.

Además, $\mathbb{C} \subseteq \mathbb{C}G$. $gz = g\eta(z) = gze = zge = zg$, es decir, los complejos son centrales.

Definición 5.1 (\mathbb{C} **-álgebra del grupo** G**).** $\mathbb{C}G$ se llama \mathbb{C} -álgebra del grupo G.

Definimos $\mu(G) := \{f : G \longrightarrow \mathbb{C} : f \text{ es aplicación}\}$, es un \mathbb{C} -espacio vectorial con base G. Vamos a darle estructura de módulo.

 $\mu(G)$ es un $\mathbb{C}G$ -módulo definiendo para todo $g \in G$ y $\varphi \in \mu(G)$ y $x \in G$:

$$(g\varphi)(x) = \varphi(xg)$$

Vemos que $g(h\varphi)(x) = (h\varphi)(xg) = \varphi(xg)h = \varphi(x(gh)) = (gh)\varphi(x)$. Entonces $g(h\varphi) = (gh)\varphi$.

Hemos dado una aplicación $G \longrightarrow \operatorname{Map}(\mu(G), \mu(G))$ con $g \mapsto (\varphi \mapsto g\varphi)$. Queremos ver que $G \longrightarrow \operatorname{End}(\mu(G), \mu(G))$, es decir $g(\varphi + \psi) = g\varphi + g\psi$.

$$g(\varphi + \psi)(x) = (\varphi + \psi)(xg) = \varphi(xg) + \psi(xg)$$

y por otro lado

$$g\varphi(x) + g\psi(x) = \varphi(xg) + \psi(xg)$$

Además:

$$g(z\varphi)(x) = z\varphi(xg) = z(g\varphi)(x)$$

 $\mathbb{C}G \longrightarrow \operatorname{End}_{\mathbb{C}}(\mu(G), \mu(G))$, es \mathbb{C} -lineal.

En resumen, tenemos la siguiente proposición:

Proposición 5.2. $\mu(G)$ es un $\mathbb{C}G$ -módulo.

Nuestro objetivo es demostrar que si G es finito, $\mathbb{C}G$ es semisimple y $\mu(G)$ semisimple como $\mathbb{C}G$ -módulo.

Definición 5.2 (Producto hermítico). Sea V un espacio vectorial complejo de dimensión finita. Un producto interno hermítico es una aplicación $\langle \cdot | \cdot \rangle V \times V \longrightarrow \mathbb{C}$ cumpliendo:

- 1. $\langle v|w\rangle = \overline{\langle w|v\rangle}$.
- 2. $\langle v' + v | w \rangle = \langle v | w \rangle + \langle v' | w \rangle$.
- 3. $\langle av|w\rangle = a\langle v|w\rangle$.
- 4. $\langle v|v\rangle \implies v=0$.

Es decir, es un espacio de Hilbert complejo de dimensión finita.

Sea V un $\mathbb{C}G$ -módulo. Como $\mathbb{C}\subseteq\mathbb{C}G$ por restricción de escalares, $\mathbb{C}V$ es un espacio vectorial. $\rho:\mathbb{C}G\longrightarrow \mathrm{End}_{\mathbb{C}}(V), \, \rho$ de anillos y \mathbb{C} -lineal.

$$\rho(\sum_{g \in G} r_g g)(v) = \sum_{g \in G} r_g g v$$

¿Qué pasa si restringimos ρ a G? Como respeta el producto en G, $\rho|_G$: $G \longrightarrow GL_{\mathbb{C}}(V)$, donde $\rho|_G$ es un homomorfismo de grupos. Es una represantación lineal de G con espacio de representación V.

Si $W \subseteq V$, es un $\mathbb{C}G$ -submódulo si y solo si es un \mathbb{C} -subespacio vectorial y W es G invariante: para todo $w \in W$ y todo $g \in G$ se tiene que $gw \in W$.

 $\mu(G)$ es el espacio de representación $\rho: G \longrightarrow GL_{\mathbb{C}}(\mu(G))$ dado por:

$$\rho(g)(\varphi)(x) = \varphi(xg) =: g\varphi(x)$$

donde $g, x \in G$ y $\varphi \in \mu(G)$.

Teorema 5.1. Si G es finito entonces $\mathbb{C}G$ es semisimple.

Demostración. Supongamos que G es finito. Tomamos V un $\mathbb{C}G$ -módulo de dimensión finita. Tomamos $\langle\cdot|\cdot\rangle$ un producto interno en V.

Definimos $\langle \cdot | \cdot \rangle_G$ producto interno sobre *V* así:

$$\langle v|u\rangle_G = \sum_{g \in G} \langle gv|gu\rangle$$

que cumple la siguiente propiedad para todo $h \in G$:

$$\langle hv|hu\rangle_G = \sum_{g\in G} \langle ghv|ghu\rangle = \sum_{f\in G} \langle fv|fu\rangle = \langle v|u\rangle_G$$

con lo que es un operador unitario (es un operador que conserva el producto interno de un espacio de Hilbert) y una isometría.

Sea W un $\mathbb{C}G$ -submódulo de V. Se tiene:

$$V = W \dot{+} W^{\perp}$$

donde \perp se toma respecto al producto interno nuevo:

$$W^{\perp} := \{ v \in V : \langle v | w \rangle_G = 0 \quad \forall w \in W \}$$

O sea W^{\perp} es G-invariante. En otras palabras, hemos de ver que si $v \in W^{\perp}$, $g \in G$ entonces $gv \in \bot$, entonces para todo $w \in W$ tenemos que:

$$\langle gv|w\rangle_G = \langle gv|gg^{-1}w\rangle_G = \langle v|g^{-1}w\rangle = 0$$

ya que $g^{-1}w \in W$ y $v \in W^{\perp}$. Luego W^{\perp} es G-invariante.

Como hemos demostrado que cualquier submódulo es sumando directo, tenemos que es semisimple.

Corolario 5.1. Si G es finito, $\mu(G)$ es un $\mathbb{C}G$ -módulo semisimple.

Dotamos de a $\mu(G)$ del producto interno:

$$\langle \varphi | \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}$$

Sea G un grupo, V un $\mathbb{C}G$ -módulo, de dimensión finita como espacio vectorial complejo. Fijamos una vase de v_i . Tomamos $x \in G$:

$$xv_i = \sum_j t_{ij}(x)v_j$$

A las funciones $t_{ij} \in \mu(G)$ se les llama funciones matriciales de V en la base $\{v_1, \ldots, v_n\}$.

Definimos C(V) como el subespacio vectorial de $\mu(G)$ generado por $\{t_{ij}: 1 \le i, j \le n\}$. Veamos que C(V) no depende de la base fijada. Recordemos que todo cambio de bases puede interpretarse como un automorfismo.

Supongamos V' otro $\mathbb{C}G$ -módulo con otra base $\{v'_1,\ldots,v'_m\}$. Sea $f:V\longrightarrow V'$ homomorfismo de $\mathbb{C}G$ -módulos. Las funciones matriciales de V' fijaremos una base v'_i y denotamos las funciones matriciales t'_{ij} .

$$f(v_i) = \sum_j a_{ij} v_j'$$

y sea A la matriz con coeficientes a_{ij} .

Tenemos que $xf(v_i) = \sum_j a_{ij} \sum_k t'_{jk}(x) v'_k$ y $f(x) v'_k = \sum_j t_{ij}(x) \sum_k a_{ij} v'_j$. Igualando lo anterior $xf(v_i) = f(xv_i)$, tenemos que $A(t'_{ij}(x)) = (t_{ij}(x))A$ o si se quiere $A(t'_{ij}) = (t_{ij})A$.

Si f es un isomorfismo, entonces A es invertible y se tiene que los t'_{ij} y t_{ij} son combinaciones lineales los unos de los otros, luego si V' = V y $f = \mathrm{id}$ se tiene que C(V) no depende de la base elegida. Si $V' \cong V$, tenemos C(V) = C(V').

Lema 5.1. C(V) es un $\mathbb{C}G$ -submódulo de $\mu(G)$.

Demostración. Sean $x, y \in G$. $t_{ij}(xy)$ es la matriz de la aplicación lineal dada por hacer actuar xy sobre cualquier vector:

$$t_{ij}(xy) = \sum_{k} t_{ik}(y)t_{kj}(x)$$

es decir, el producto de matrices (por filas, es decir, con el orden al revés que en la composición).

$$yt_{ij}(x) = t_{ij}(xy) = \sum_{k} t_{ik}(y)t_{kj}(x) = (\sum_{k} t_{ik}(y)t_{kj})(x)$$

con lo que:

$$yt_{ij} = \sum_{k} t_{ik}(y)t_{kj} \in C(V)$$

Luego C(V) es un submódulo.

Lema 5.2. Sea $f:V\longrightarrow \mu(G)$ un homomorfismo de $\mathbb{C}G$ -módulos. Entonces $\mathrm{Im}\, f\subseteq C(V).$

Demostración. Sea v_i un elemento de la base de V.

$$f(v_i)(x) = f(v_i)(ex) = xf(v_i)(e) = f(xv_i)(e) = \sum_j t_{ij}(x)f(v_j)(e) = \left(\sum_j f(v_j)(e)t_{ij}\right)(x)$$
$$f(v_i) = \sum_j f(v_j)(e)t_{ij} \in C(V)$$

Lema 5.3. Sean G finito, U, W $\mathbb{C}G$ -módulos (no necesariamente de dimensión finita) y $f: U \longrightarrow W$ lineal. La aplicación $\tilde{f}: U \longrightarrow W$ dada por:

$$\tilde{f}(u) = \sum_{x \in G} x^{-1} f(xu), \quad u \in U$$

es un homomorfismo de $\mathbb{C}G$ -módulos.

Demostración. Hemos de ver que $\tilde{f}(yu) = y\tilde{f}(u)$ para todo $y \in G$ y todo $u \in U$.

$$\tilde{f}(yu) = \sum_{x \in G} x^{-1} f(xyu) = \sum_{z \in G} yz^{-1} f(zu) = y\tilde{f}(u)$$

donde z = xy.

Lema 5.4. Sea G finito y V un $\mathbb{C}G$ -módulo de dimensión finita. Existe un producto interno $\langle \cdot | \cdot \rangle$ en G tal que $\langle xv|xw \rangle = \langle v|w \rangle$ con $v, w \in V$ y $x \in G$.

Es decir, que la representación $G \longrightarrow U(V)$, donde U(V) es el grupo unitario.

Definición 5.3 (Espacio de coeficientes). A C(V) se le llama espacio de coeficientes.

Lema 5.5 (de Schur). Sea Σ un $\mathbb{C}G$ -módulo simple. Entonces:

$$\operatorname{End}_{\mathbb{C}G}(\Sigma) = \{\lambda \operatorname{id}_{\Sigma} : \lambda \in \mathbb{C}\} \cong \mathbb{C}$$

Demostración. Tenemos que dim_ℂ $\Sigma < \infty$. Tomamos $\phi : \Sigma \longrightarrow \Sigma$ homomorfismo de ℂG-módulos. Sea ϕ es ℂ lineal. Tomamos $\lambda \in \mathbb{C}$ valor propio de φ y sea V_{λ} el subespacio propio asociado.

Sea $g \in G$, $v \in V_{\lambda}$, $\phi(gv) = g\phi(v) = g\lambda v = \lambda gv$ con $gv \in V_{\lambda}$ entonces V_{λ} es un $\mathbb{C}G$ -submódulo de Σ . Si $\phi \neq 0$ entonces $V_{\lambda} \neq \{0\}$.

Como
$$\Sigma$$
 es simple, $V_{\lambda} = \Sigma$.

Definición 5.4 (Matriz unitaria). Su inversa coincide con su conjugada transpuesta

Teorema 5.2 (de Peter-Weyl). Dotemos a $\mu(G)$ con el producto interno:

$$\langle \varphi | \psi \rangle = \frac{1}{|G|} \sum_{x \in G} \varphi(x) \overline{\psi(x)}$$

Tomamos $\Omega_{\mathbb{C}G} = \{\Sigma_1, \ldots, \Sigma_t\}.$

Entonces $\mu(G) = C(\Sigma_1) \dot{+} \cdots \dot{+} C(\Sigma_t)$, suma directa ortogonal de $\mathbb{C}G$ -módulos.

Además, tomando en cada Σ_i un producto interno tal que la representación asociada a Σ_i sea unitaria, entonces $\{t_{jk}^{\Sigma_i}: i \in \{1,\ldots,s\}, j,k \in \{1,\ldots,d_i\}\}$ es una base ortonormal de $\mu(G)$ siempre que $d_i = \dim_{\mathbb{C}} \Sigma_i$ y $\{t_{jk}^{\Sigma_i}$ son las funciones matriciales asociados a Σ_i con respecto de una base otronormal de Σ_i .

Demostración. $\mu(G) = \operatorname{Soc}_{\Sigma_1}(\mu(G)) \dotplus \cdots \dotplus \operatorname{Soc}_{\Sigma_t}(\mu(G))$ y $\operatorname{Soc}_{\Sigma_i}(\mu(G)) \subseteq C(\Sigma_i)$. Es suma de módulos isomorfos a Σ_i cada uno en $C(\Sigma_i)$. Tenemos que:

$$\mu(G) = C(\Sigma_i) + \dots + C(\Sigma_t)$$

Tomo V con base $\{v_1, \ldots, v_n\}$ y W con base $\{w_1, \ldots, w_m\}$ $\mathbb{C}G$ -módulos simples. Para cada i, j definimos $p_{ij}: V \longrightarrow W$ lineal dada por $p_{ij}(v_k) = w_j \delta_{ki}$. Entonces tomamos \tilde{p}_{ij} la extensión dada por

$$\tilde{p}_{ij}(v) = \sum_{x \in G} x^{-1} p_{ij}(xv)$$

con $v \in V$.

$$\begin{split} \tilde{p}_{ij}(v_k) &= \sum_{x \in G} x^{-1} p_{ij}(x v_k) = \sum_{x \in G} x^{-1} p_{ij} \left(\sum_{l} t_{kl}^V(x) v_l \right) = \\ &\sum_{x \in G} x^{-1} \sum_{l} t_{kl}^V(x) p_{ij}(v_l) = \sum_{x \in G} x^{-1} t_{ki}^V(x) w_j = \sum_{l} \sum_{x \in G} t_{ki}^V(x) t_{jl}^W(x^{-1}) w_l \end{split}$$

En concreto si las bases v_i y w_j son ortonormales, entonces los coeficientes de t_{ki}^V y t_{il}^W son de matrices unitarias. En ese caso la expresión anterior queda:

$$\sum_{l}\sum_{x\in G}t_{ki}^{V}(x)\overline{t_{lj}^{W}(x)}w_{l}$$

Si $V \not\cong W$ entonces $\tilde{p}_{ij} = 0$ y por tanto

$$\sum_{l} \sum_{x \in G} t_{ki}^{V}(x) \overline{t_{lj}^{W}(x)} w_{l} = 0$$

Sean $a \neq b$ y tomamos $V = \Sigma_a$, $W = \Sigma_b$, entonces

$$0 = \sum_{x \in G} t_{ki}^{V}(x) \overline{t_{lj}^{W}(x)}$$

con lo que $C(\Sigma_a) \perp C(\Sigma_b)$.

Luego $\mu(G) = C(\Sigma_1) \dot{+} \cdots \dot{+} C(\Sigma_t)$.

Supongamos ahora $V = W = \Sigma_a$. En ese caso, por el lema de Schur $\tilde{p_{ij}}(v) = \alpha_{ij}v$. Entonces $(v_i = w_i)$:

$$\alpha_{ij}\nu_k = \tilde{p}_{ij}(\nu_k) \sum_{l} \sum_{x \in G} t_{ki}^{V}(x) \overline{t_{lj}^{V}(x)} \nu_l$$

Si $k \neq l$, entonces $\alpha_{ij} \nu_k = 0$ y por tanto:

$$\sum_{l} \sum_{x \in G} t_{ki}^{V}(x) \overline{t_{lj}^{V}(x)} v_{l} = 0$$

Si k = l e $i \neq j$, entonces:

$$0 = \sum_{x \in G} t_{ik}^{\Sigma_a}(x^{-1}) \overline{t_{jk}^{\Sigma_a}(x^{-1})} = \sum_{x \in G} t_{ki}^{\Sigma_a}(x) \overline{t_{kj}^{\Sigma_a}(x)}$$

luego $\{t_{ij}^{\Sigma_a}\}$ es un sistema ortogonal generador, en particular es una base ortogonal. Veamos que no es ortonormal.

$$\sum_{x \in G} t_{ki}^{\Sigma_a}(x) \overline{t_{ki}^{\Sigma_a}(x)} = |G|$$

Luego son una base ortogonal.

 $\tilde{p}_{ii}(v) = \sum_{x \in G} x^{-1} p_{ii}(xv)$, con lo que $\tilde{p}_{ii} = \sum_{x \in G} \rho(x^{-1}) \circ p_{ii} \circ \rho(x)$ donde $\rho: G \longrightarrow GL(\Sigma_a)$ donde $\rho(x)(v) := xv$. Por ser homomorfismo de grupos:

$$\tilde{p}_{ii} = \sum_{x \in G} \rho(x)^{-1} \circ p_{ii} \circ \rho(x)$$

Luego la traza del endomorfismo es $d_a \alpha_{ii} = |G|$. Tenemos:

$$\alpha_{ii} = \sum_{l} \sum_{x \in G} t_{ki}^{V}(x) \overline{t_{li}^{V}(x)} \sum_{l} \sum_{x \in G} |t_{ki}^{V}(x)|^{2}$$

con lo que $|t_{ij}^{\Sigma_a}|^2 = \langle t_{ij}^{\Sigma_a} | t_{ij}^{\Sigma_a} \rangle = \frac{1}{|G|} \alpha_{ii} = \frac{1}{d_a}$. Luego la base

$$\{\sqrt{d_a}t_{ij}^{\Sigma_a}: a \in \{1, \dots t\}, i, j \in \{1, \dots, d_a\}\}$$

es una base ortonormal.

Corolario 5.2.

$$|G| = d_1^2 + \dots + d_r^2$$

Demostración. $\mu(G) = C(\Sigma_1) \dot{+} \cdots \dot{+} C(\Sigma_t)$ con lo que:

$$|G| = \sum_{i=1}^{t} \dim_{\mathbb{C}} C(\Sigma_i) = \sum_{i=1}^{t} d_i^2$$

Proposición 5.3. Sea G abeliano finito, Σ un $\mathbb{C}G$ -módulo simple. Entonces $\dim_{\mathbb{C}} \Sigma = 1$.

Demostración. Σ tiene dimensión compleja finita, $x \in G$, $f_x : \Sigma \longrightarrow \Sigma$, $f_x(v) = xv$ con $y \in G$:

$$f_{x}(yv) = xyv = yxv = yf_{x}(v)$$

entonces $f_x \in \operatorname{End}_{\mathbb{C}G}(\Sigma) = \{\lambda \operatorname{id}_{\Sigma} : \lambda \in \mathbb{C}\}$. Así que $f_x = \lambda_x \operatorname{id}_{\Sigma}$ para cierto $\lambda_x \in \mathbb{C}$.

Sea $v \in \Sigma \setminus \{0\}$, $w \in \Sigma$, $w = (\sum_{x \in G} \alpha_x x)v$ porque todo módulo simple está generado por cualquiera de sus elementos. Pero entonces:

$$w = \sum_{x \in G} \alpha_x f_x(v) = \sum_{x \in G} \alpha_x \lambda_x v$$

luego $\dim_{\mathbb{C}} \Sigma = 1$.

Corolario 5.3. Si G es abeliano, n = |G|, entonces $|\Sigma_{\mathbb{C}G}| = n$.

Demostración. $\Sigma_{\mathbb{C}G} = \{\Sigma_1, \dots, \Sigma_t\}$, por el teorema de Webber-Artin,

$$\mathbb{C}G \cong \operatorname{End}_{\mathbb{C}G}(\Sigma_1) \times \cdots \times \operatorname{End}_{\mathbb{C}G}(\Sigma_t) \cong \mathbb{C} \times \stackrel{(t)}{\cdots} \times \mathbb{C}$$

con lo que n = t.

Ejemplo: $G = \mathbb{Z}_n = \{0, 1, \dots, n-1\}$. Tenemos que ver que $\Omega_{\mathbb{C}G} = \{\Sigma_0, \dots, \Sigma_{n-1}\}$, con $\dim_{\mathbb{C}} \Sigma_j = 1$ para todo $j \in \{1, \dots, n-1\}$.

Sea u_j una base de Σ_j ($\Sigma_j = \mathbb{C}u_j$). Sea $\omega = e^{2\pi i/n} \in \mathbb{C}$, ponemos $ku_j := \omega^{kj}u_j$ para $k \in \mathbb{Z}_n$.

Es claro que $(k + k')u_j = \omega^{kj+k'j}u_j = (k \circ k')u_j$ y el 0 va a la identidad. Σ_j es un $\mathbb{C}\mathbb{Z}_n$ -módulos simples (tiene dimensión 1). Basta ver que ningún par de ellos son isomorfos entre sí.

Supongamos $f: \Sigma_j \longrightarrow \Sigma_k \mathbb{C}G$ -lineal y no nulo. Veamos que k = j. $\exists \alpha \in \mathbb{C} \setminus \{0\}$ tal que $f(u_i) = \alpha u_k$.

$$\omega^{j}\alpha u_{k} = \omega^{j} f(u_{j}) = f(\omega^{j} u_{j}) = f(1u_{j}) = 1\alpha u_{k} = \alpha \omega_{k} u_{k}$$

Luego $\omega^j = \omega^k$ y por tanto j = k.

Cada $C(\Sigma_j)$ tiene como base $\{t^{\Sigma_j}\}$, donde $t^{\Sigma_j}(k) = ku_j = \omega^{kj}$. Son una base ortonormal de $\mu(\mathbb{Z}_n)$ respecto del producto interno:

$$\langle \varphi | \psi \rangle = \frac{1}{n} \sum_{k \in \mathbb{Z}_n} \varphi(k) \overline{\psi(k)}$$

Si $\varphi \in \mu(\mathbb{Z}_n)$, $\varphi = \sum_{j=0}^{n-1} \langle \varphi | t^{\Sigma_j} \rangle t^{\Sigma_j}$. Es decir, obtenemos la transformada de Fourier Discreta.

Además $t^{\Sigma_j}t^{\Sigma_k}=t^{\Sigma_j+\Sigma_k}$.

Si llamamos $\hat{\varphi}(j) = \langle \varphi | t^{\Sigma_j} \rangle = \frac{1}{n} \sum_{k=0}^{n-1} \varphi(k) \omega^{-kj}$ tenemos que

$$\varphi \psi = \sum_{j,k} \hat{\varphi}(j) \hat{\psi}(k) t^{\Sigma_j} t^{\Sigma_k} = \sum_{l=0}^{n-1} \left(\sum_{j=0}^{n-1} \hat{\varphi}(j) \hat{\psi}(e-j) \right) t^{\Sigma_e}$$

Ejercicio: Para $G = \mathbb{Z}_n \times \mathbb{Z}_m$, calcular $\Omega_{\mathbb{C}G}$ y deducir la correspondiente base ortonormal de $\mu(\mathbb{Z}_n \times \mathbb{Z}_m)$.

Ejemplo: $D_n = \langle r, s | r^n = s^2 = 1, sr = r^{-1}s \rangle$. $D_n = \{s^a r^j : a \in \{0, 1\}, j \in \{0, \ldots, n-1\}\}$. Veamos qué hacer con $\mu(D_n)$. Como el grupo no es conmutativo debe haber al menos una representación de un subgrupo simple de dimensión mayor que 1.

 $\alpha \in \mathbb{C}$, $\alpha^n = 1$, V_α un \mathbb{C} -espacio vectorial hermítico con base ortonormal $\{v_1, v_2\}$. Tenemos que buscar una representación: $D_n \longrightarrow U(V_\alpha)$ donde

$$r \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{pmatrix} \qquad s \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Comprobamos que (recordando que el producto por matrices se hace en el orden inverso porque trabajamos por filas):

$$\begin{pmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \alpha \\ \overline{\alpha} & 0 \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

¿Cuando V_a irreducible? (o sea, simple). No será simple si y solo si existe $v \in V_a$ tal que $\mathbb{C}v$ es un submódulo. Esto equivale a que $rv, sv \in \mathbb{C}v$.

Trabajando con coordenadas $v = (x, y) \in \mathbb{C}^2$.

$$(x \quad y) \begin{pmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{pmatrix} = \beta (x \quad y)$$

$$(x \quad y) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \gamma (x \quad y)$$

y resolviendo las ecuaciones obtenemos que $\alpha^2 = 1$.

Luego si $\alpha \neq \pm 1$ tenemos una representación irreducible.

Supongamos que bajo las mismas condiciones $V_{\alpha} \cong V_{\alpha'}$. Tomando trazas, tenemos que $\alpha + \overline{\alpha} = \alpha' + \overline{\alpha'}$. Es decir, si $\alpha + \overline{\alpha} \neq \alpha' + \overline{\alpha'}$ y entonces $V_{\alpha} \not\cong V_{\alpha'}$.

Funciones matriciales de V_a :

$$\begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}$$

tenemos que

$$s^a r^j \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \overline{\alpha} \end{pmatrix}^j \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^a$$

si a = 0 tenemos:

$$\begin{pmatrix} \alpha^j & 0 \\ 0 & \overline{\alpha}^j \end{pmatrix}$$

si a = 1 tenemos:

$$\begin{pmatrix} 0 & \alpha^j \\ \overline{\alpha}^j & 0 \end{pmatrix}$$

Tenemos entonces que $t_{11}(s^a r^j) = \chi_0(a)\alpha^j$, $t_{12}(s^a r^j) = \chi_1(a)\alpha^j$, $t_{21}(s^a r^j) = \chi_1(a)\overline{\alpha}^j$, $t_{22}(s^a r^j) = \chi_1(a)\overline{\alpha}^j$

Tomamos $\omega = e^{2\pi i/n} \in \mathbb{C}$. $(\omega^2)^j = \omega^{2j} = 1$ si y solo si $2j\frac{2\pi}{n}$ es un múltiplo entero de 2π , es decir, que 2j es múltiplo entero de n.

Luego si 2j no es múltiplo entero de n, V_{ω^j} es simple.

Caso A: si n es impar, entonces $n=2\nu+1$. Para $j\in\{1,\ldots,\nu\}$ se tiene que V_{ω^j} es simple. Si $j'\in\{1,\ldots,\nu\}$, tenemos que:

$$\omega^j + \omega^{-j} = \omega^{j'} + \omega^{-j'}$$

que significa que $\cos \frac{2\pi j}{n} = \cos \frac{2\pi j'}{n}$, y como entre 0 y π el coseno es biyectivo, j=j'.

Luego V_{ω^j} son simples y todos no isomorfos entre sí.

$$\Sigma_1, \ldots, \Sigma_{\nu} \in \Omega_{\mathbb{C}D_n}$$

Como $2n = |G| = d_1^2 + \dots + d_t^2$, luego $2n - 4\nu$ es el número de elementos que nos quedan. $2n - 4\nu = 4\nu + 2 - 4\nu = 2$, solo nos quedan por considerar dos módulos de dimensión 1.

Tenemos que considerar el módulo trivial Σ_0 , $\mathbb{C}D_n$ -módulo cuya representación es la trivial, es decir, cada $s^a r^k \mapsto 1 \in \mathbb{C}^{\times}$.

Por otro lado tenemos que Σ_{-1} definido por $s^a r^k \mapsto \operatorname{sgn}(1-2a) \in \mathbb{C}^{\times}$.

$$\Omega_{\mathbb{C}D_n} = \{\Sigma_{-1}, \Sigma_0, \Sigma_1, \dots, \Sigma_{\nu}\}$$

y la siguiente base es ortonormal:

$$\{t^{\Sigma_{-1}}, t^{\Sigma_0}\} \cup \{\sqrt{2}t_{bc}^{\Sigma_j} : j \in \{1, \dots, \nu\}, b, c \in \{1, 2\}\}\}$$

Donde:

$$t^{\Sigma_0}(s^a r^k) = 1$$

$$t^{\Sigma_{-1}}(s^a r^k) = \operatorname{sgn}(1 - 2a)$$

$$t^{\Sigma_j}_{11} = \chi_0(a) e^{2\pi i k j / n}$$

$$t^{\Sigma_j}_{12} = \chi_1(a) e^{2\pi i k j / n}$$

$$t^{\Sigma_j}_{21} = \chi_0(a) e^{-2\pi i k j / n}$$

$$t^{\Sigma_j}_{21} = \chi_0(a) e^{-2\pi i k j / n}$$

$$t^{\Sigma_j}_{22} = \chi_1(a) e^{-2\pi i k j / n}$$

5.2 El caso de la circunferencia unidad

&Y si G no es finito? En general es intratable. Lo más fácil es estudiar grupos compactos, habitualmente p-ádicos o grupos de Lie.

Veamos un ejemplo de un grupo de Lie compacto:

$$\mathbb{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \}$$

Tenemos \mathbb{CS}^1 . Tomamos \mathbb{CS}^1 -módulos de dimensión compleja finita que provengan de representaciones continuas de \mathbb{S}^1 . Estas son los homomorfismos continuos de grupos $\rho: \mathbb{S}^1 \longrightarrow GL(V)$ con dimensión finita.

Dada ρ quiero definir un producto directo $\langle \cdot | \cdot \rangle_{\mathbb{S}}$ en V tal que:

$$\langle \rho(z)(v)|\rho(z)(w)\rangle_{\mathbb{S}} = \langle v|w\rangle_{\mathbb{S}}$$

para todo $v, w \in V$. En notación de módulos:

$$\rho(z)(v) = zv$$

En efecto, tómese un producto interno cualquiera $\langle \cdot | \cdot \rangle$ y definimos:

$$\langle v|w
angle_{\mathbb{S}^1}:=\int_{\mathbb{S}^1}\langle zv|zw
angle dz$$

que es integrable por ser continua sobre un compacto. Se puede ver sin mucha dificultad que es un producto interno.

Veamos que es unitario. Sea z', tenemos:

$$\langle z'v|z'w\rangle_{\mathbb{S}^1} = \int_{\mathbb{S}^1} \langle zz'v|zz'w\rangle dz = \int_{\mathbb{S}^1} \langle uv|uw\rangle du = \langle v|w\rangle_{\mathbb{S}^1}$$

con un cambio de variable adecuado (es una isometría), la medida de \mathbb{S}^1 es invariante por la acción de \mathbb{S}^1 .

Dicha acción es unitaria.

Sea ahora U un subespacio invariante, es decir, \mathbb{CS}^1 -submódulo.

$$U^{\perp} = \{ v \in V : \langle v | u \rangle = 0 \quad \forall u \in U \}$$

En efecto, si $v \in U^{\perp}$ y $z \in \mathbb{S}$, he de ver que $zv \in U^{\perp}$. Tomo $u \in U$ con $\langle zv|u\rangle_{\mathbb{S}} = \langle zv|zz^{-1}u\rangle = \langle v|z^{-1}u\rangle = 0$ y que $\rho(z^{-1})(u) \in U$.

Tenemos entonces que $V = U \dot{+} U^{\perp}$ y haciendo inducción sobre la dimensión compleja de V, tenemos que V es semisimple como \mathbb{CS}^1 -submódulo.

Busquemos las funciones matriciales: tomamos $\{v_1, \ldots, v_n\}$ base de \mathbb{S}^1 .

$$zv_i = \sum_j t_{ij}(z)v_j$$

con $t_{ij}(z) \in \mathbb{C}$. Pero como la representación ρ es continua, son continuas. Es decir, $t_{ij} \in \mu(\mathbb{S}^1) \cap \mathscr{C}(\mathbb{S}^1)$.

Como consecuencia $C(V) \subset \mathscr{C}(V)$.

Definición 5.5 (Función representativa). Sea G un grupo. Llamaremos $\varphi \in \mu(G)$ representativa si el submódulo cíclico generado por φ , es decir, $\mathbb{C}G\varphi$, es de dimensión finita como \mathbb{C} -espacio vectorial. Denotaremos por $\mathcal{R}(G)$ al conjunto de las funciones representativas.

Ejercicio: φ es representativa si y solo si $\varphi \in C(V)$ para V cualquier $\mathbb{C}G$ -módulo de dimensión finita.

Proposición 5.4. $\mathcal{R}(G)$ es un $\mathbb{C}G$ -submódulo de $\mu(G)$.

Definición 5.6. $\mathscr{R}_c(\mathbb{S}) := \mathscr{R}(\mathbb{S}) \cap \mathscr{C}(\mathbb{S})$

Proposición 5.5. $\varphi \in \mathcal{R}_c(\mathbb{S})$ si y solo si $\varphi \in C(V)$ para $\rho : S \longrightarrow GL(V)$ continua $\mathcal{R}_c(\mathbb{S})$ es un \mathbb{CS} -submódulo de $\mathcal{R}(\mathbb{S})$.

Tenemos que $\Omega^c_{\mathbb{CS}^1}$ son homomorfismo continuos de grupos de dimensión uno, entre \mathbb{S} y \mathbb{C}^{\times} .

Vamos a parametrizarlo, $\theta \mapsto e^{i\theta}$ tenemos que todos los homomorfismos peridicos de \mathbb{R} en \mathbb{C}^{\times} son de la forma $\chi_k(e^{i\theta}) = e^{ik\theta}$ para cada $k \in \mathbb{Z}$. Es decir, $\chi_k(z) = z^k$ para todo $z \in \mathbb{S}^1$.

Entonces

$$\Omega^{c}_{\mathbb{CS}^{1}} = \{\chi_{k} : k \in \mathbb{Z}\}$$

son todas las representaciones irreducibles continuas.

Para cada una de ellas, tenemos $C(\chi_k) = \mathbb{C}\chi_k$ o parametrizando $C(\chi) = \mathbb{C}e^{i\theta}$. Tenemos que $\mathbb{C}\chi_k \cong \mathbb{C}\chi_{k'}$ si y solo si k = k'.

$$\dot{+}_{k\in\mathbb{Z}}\mathbb{C}\chi_k\subseteq\mathcal{R}_c(\mathbb{S}^1)\subseteq\mathcal{C}(\mathbb{S}^1)$$

donde se usa un producto interno

$$\langle \varphi | \psi \rangle = \int_{\mathbb{S}} \varphi \overline{\psi}$$

con lo que los χ_k son base ortogonal de $\dot{+}\mathbb{C}\chi_k$.

El análisis funcional, obtenemos la suma directa de espacios de Hilbert, con lo que $\dot{+}\mathbb{C}\chi_k = \mathcal{R}_c(\mathbb{S}) \cong \mathcal{L}^2(\mathbb{Z})$, mientras que $\mathscr{C}(\mathbb{S})$ se obtiene al completar $L^2(\mathbb{S})$. Finalmente se obtiene un isomorfismo entre ambos.