Двухуровневое программирвоание

По мотивам Inverse Linear Programming S. Dempe and S. Lohse

Постановка задачи

- Пусть $\Psi(b,c) = \operatorname{argmax}\{c^Tx : Ax = b, x \ge 0\}$ множество решений ЗЛП $\{c^Tx : Ax = b, x \ge 0\}$, где A матрица $(n \times m)$
- Причем эта функция задана на множестве $(\mathcal{B},\mathcal{C})$, таком, что

$$\mathcal{B}=\{b\colon Bb=\overline{b}\}$$
 и $\mathcal{C}=\{c\colon Cc=\overline{c}\},$ где $B,C,\overline{b},\overline{c}\,$ - заранее заданные константные матрицы и вектора.

• Пусть $x_0 \in \mathbb{R}^m$. Тогда задача двухуровневой оптимизации - это найти b' и c', такие, что $x_0 \in \Psi(b',c')$ или, если это не возможно, он должен быть максимально близко к $\Psi(b',c')$.

Постановка задачи

• Другими словами, это следующая проблема

$$||x - x_0|| \to \min_{x,c,b}$$

$$Ax = b$$

$$Cc = \overline{c}$$

$$Bb = \overline{b}$$

$$x \in \operatorname{argmax}\{c^T x : Ax = b, x \ge 0\}$$

$$x \ge 0$$
(A.1)

Двойственная задача к задаче $\{c^Tx\colon Ax=b, x\geq 0\}$ такая: $\{b^Ty\colon A^Ty\geq c\}$

Если СЛАУ

$$Cc = \overline{c} \\
 A^T y = c
 \tag{1}$$

имеет решения, то в силу соотношений двойственности

$$x^{T}(A^{T}y - c) = 0$$
$$y^{T}(Ax - b) = 0$$

множество решений системы $\{Ax=b,Bb=b,x\geq 0\}$ будет в точности совпадать с $\arg\max\{c^Tx\colon Ax=b,x\geq 0\}$, т.е. будет допустимыми для (A.1).

• Тогда А.1 упростится до

$$||x - x_0|| \to \min$$

$$Ax = b$$

$$Bb = \overline{b}$$

$$x \ge 0$$
(A.2)

- Это задача выпуклой оптимизации, которая не интересна.
- Поэтому предполагаем, что (1) не имеет решения.

Переформулировка задачи

• Заменим условие оптимальности $x \in \operatorname{argmax}\{c^Tx \colon Ax = b, x \geq 0\}$ на эквивалентное с помощью соотношений нежескости

$$||x - x_0|| \to \min_{x,y,c,b}$$

$$Ax = b$$

$$A^T y \ge c$$

$$x^T (A^T y - c) = 0$$

$$x \ge 0$$

$$Cc = \overline{c}$$

$$Bb = \overline{b}$$
(A.3)

Дополнение к задаче

- Дополним задачу (А.3) так, чтобы ее можно было использовать для следующей нижней задачи $\{c^Tx\colon Ax=b, 0\leq x\leq u\}$. Т.е. учтем и верхние ограничения.
- u вектор, такого же размера как x
- Сделаем это простым способом, приведя ограничения $x \leq U$ к виду $x + \lambda = U$. λ вектор такого же размера как и x
- Соответственно двойственные переменные к этим ограничениям обозначим как ν .
- Примем следующие обозначения:

$$A' = \begin{pmatrix} A & 0 \\ \operatorname{diag}(x) & \operatorname{diag}(\lambda) \end{pmatrix}$$
$$b = \begin{pmatrix} b \\ u \end{pmatrix}, \quad y' = \begin{pmatrix} y \\ v \end{pmatrix}, \quad x' = \begin{pmatrix} x \\ \lambda \end{pmatrix}, c' = \begin{pmatrix} c \\ 0 \end{pmatrix}$$

Тогда задача примет вид:

$$||x - x_0|| \to \min_{x',y',c,b}$$

$$Ax' = b'$$

$$A'^T y' \ge c'$$

$$x'^T (A^T y' - c') = 0$$

$$x' \ge 0$$

$$Cc = \overline{c}$$

$$Bb = \overline{b}$$
(A.3)

Линеаризация условий доп. нежесткости.

$$x^{T}(A^{T}y - c) = 0$$

$$0 \le (A^{T}y - c) \le M\psi$$

$$0 \le x^{T} \le (1-)\psi$$

$$\psi \in \{0, 1\}$$