This file is made by me, to highlight different Q-Q plot shapes.

Part 1: Q-Q plots

Left tail ABOVE line is called a Light tail.

150

100

20

0

Frequency

Histogram of Sample

150 Frequency 100 20 2 6 8 10 -3 -2 -1 0 Sample Normal

Normal :-2.85402 Min. Min. 1st Qu.:-0.68906 Median : 0.01147 Mean : 0.01399

3rd Qu.: 0.73186 Max. : 2.75883 Sample :0.02769

1st Qu.:0.92246 Median :1.65324 :1.93777 Mean 3rd Qu.:2.58775 Max. :9.76855 In this case, the Q-Q plot (backed up the histograms and boxplots) shows us that we observed more positive extreme values than would be expected under the Normal distribution.

3

2

Histogram of Normal

Hence, distribution is right-skewed.

Left/Negative skewed distribution:

Right tail BELOW line is called a Light tail.

Left tail BELOW line is called a Heavy tail.

Histogram of Sample

Histogram of Normal

Normal Sample Min. :-2.85402 Min. :-9.64428 1st Qu.:-0.68906 1st Qu.:-2.73323 Median: 0.01147 Median :-1.68258 Mean : 0.01399 :-2.01163 Mean 3rd Qu.: 0.73186 3rd Qu.:-0.97950 Max. : 2.75883 Max. :-0.02393 In this case, the Q-Q plot (backed up the histograms and boxplots) shows us that we observed more negative extreme values than would be expected under the Normal distribution.

Hence, distribution is left-skewed.

Light-tailed distribution:

Histogram of Sample

Normal	Sampie
Min. :-2.85402	Min. :-31.2951
1st Qu.:-0.68906	1st Qu.: -7.1509
Median : 0.01147	Median : -0.1400
Mean : 0.01399	Mean : -0.3535
3rd Qu.: 0.73186	3rd Qu.: 6.2861
Max. : 2.75883	Max. : 32.8952

In this case, we don't observe as many extreme values as expected under it's Normal distribution.

Heavy-tailed distribution:

Histogram of Sample

Normal	
Min. :-2.85402	Min. :0.0000412
1st Qu.:-0.68906	1st Qu.:0.2425101
Median : 0.01147	Median :0.4919487
Mean : 0.01399	Mean :0.4965139
3rd Qu.: 0.73186	3rd Qu.:0.7463338
Max. : 2.75883	Max. :0.9999098

In this case, we observe too many extreme values than we'd expect under the Normal distribution.

Returning to the Co-op Salary ~ Work term model:

- No trends/patterns, so linearity assumptions seems valid
- Constant variance assumption looks good
- Residuals are scattered uniformly around 0, so normality seems ok.

Histogram of Residuals

Monthly Salary versus Work Term Number

Monthly Salary versus Work Term Number

