

Mehti Musayev musayev@selectel.com

About me

selectel.meetup

Education:

- Saint Petersburg Presidential Physics and Mathematics Lyceum №239
- Saint Petersburg State University, Mathematics and Mechanics Faculty

Work experience:

- 2011 2011, CoFiTe, Software Developer Intern
- o 2015 2016, Digital Security, Junior Research Software Engineer at Laboratory
- o 2016 present, Selectel, Junior Software Developer

GitHub contributions:

- o https://github.com/google/yapf, a formatter for Python files, owned by Google Inc.
- https://github.com/pycqa/redbaron, Bottom-up approach to refactoring in python, Python
 Code Quality Authority
- o https://github.com/PyCQA/baron, writing refactoring code, Python Code Quality Authority

Software metric

 a software metric is a standard of measure of a degree to which a software system or process possesses some property

 metrics are functions, while measurements are the numbers obtained by the application of metrics (often metrics and measurements are used as synonymous)

Main usages Selection

- scheduling
- software sizing
- programming complexity
- software development effort estimation
- software quality

Main metrics Selectel meetuo

- code coverage
- cohesion
- cyclomatic complexity (McCabe's complexity)
- Halstead complexity
- the maintainability index
- raw metrics (SLOC, comment lines, blank lines, &c.)

Code coverage Selectel meetuo

 a measure used to describe the degree to which the source code of a program is executed when a particular test suite runs

 higher coverage => more of program's source code executed during testing => a lower chance of containing undetected software bugs

Popular code coverage systems Selectel meetuo

- Coveralls https://coveralls.io
- Coco (C/C++/C#/Tcl) https://www.froglogic.com/coco/
- SonarQube (most famous languages) http://www.sonarqube.org/

Cohesion Selectel Meetup

- degree to which the elements of a module belong together
- i.e., cohesion measures the strength of relationship between pieces of functionality within a given module
- in highly cohesive systems functionality is strongly related

Cyclomatic complexity (McCabe's complexity)

- developed by Thomas J. McCabe, Sr. in 1976
- Measurement which used to indicate the complexity of a program
- a quantitative measure of the number of linearly independent paths through a program's source code

Cyclomatic complexity (McCabe's complexity)

computed using the control flow graph of the program

 may be applied to individual functions, modules, methods or classes within a program

Cyclomatic complexity (McCabe's complexity)

- M = E N + 2P
 - E = the number of edges of the graph.
 - N = the number of nodes of the graph.
 - P = the number of connected components.

Halstead complexity Selectel meetuo

- introduced by Maurice Howard Halstead in 1977
- depends on number of operators and operands in program
- the goal was to identify measurable properties of software, and the relations between them

Halstead complexity (calculation)

- n = n_1 + n_2 program vocabulary
- $N = N_1 + N_2 program length$
- $N_{-} = n_1 \log_2(n_1) + n_2 \log_2(n_2) \text{calculated program length}$
- V = N*log2(n) program volume
- D = $(n_1/2) * (N_2/n_2)$ program difficulty
- E = D * V program effort

- n_1 the number of distinct operators
- n_2 the number of distinct operands
- N_1 the total number of operators
- N_2 the total number of operands

Maintainability index Selectel meetup

- measures how maintainable the source code is
- calculated from lines-of-code measures, cyclomatic complexity measures and Halstead complexity measure
- used in several automated software metric tools such as MS Visual Studio

Maintainability index (the original formula)

$$MI = 171 - 5.2 \ln V - 0.23G - 16.2 \ln L$$

- V is the Halstead Volume
- G is the total Cyclomatic Complexity
- L is the number of Source Lines of Code (SLOC)

Maintainability index (the derivative used by SEI)

$$MI = 171 - 5.2 \log_2 V - 0.23G - 16.2 \log_2 L + 50 \sin(\sqrt{2.4C})$$

- V is the Halstead Volume
- G is the total Cyclomatic Complexity
- L is the number of Source Lines of Code (SLOC)
- C is the percent of comment lines (important: converted to radians).

(the derivative used by Visual Studio)

MI = max [0, 100
$$\frac{171 - 5.2 \ln V - 0.23G - 16.2 \ln L}{171}$$
]

- V is the Halstead Volume
- G is the total Cyclomatic Complexity
- L is the number of Source Lines of Code (SLOC)
- C is the percent of comment lines (important: converted to radians).

Raw metrics Selectel meetuo

- LOC: The total number of lines of code. It does not necessarily correspond to the number of lines in the file.
- LLOC: The number of logical lines of code. Every logical line of code contains exactly one statement.
- SLOC: The number of source lines of code not necessarily corresponding to the LLOC.

Raw metrics Selecte meetuo

- Comments: The number of comment lines. Multi-line strings are not counted as comment since, to the Python interpreter, they are just strings.
- Multi: The number of lines which represent multi-line strings.
- Blanks: The number of blank lines (or whitespace-only ones).

What to use to calculate measures?

selectel.meetup

- Radon (for Python code) https://github.com/rubik/radon
- SonarQube (>20 languages) https://blog.sonarsource.com/
- SourceMonitor (C++, C, C#, VB.NET, Java, Delphi, Visual Basic (VB6) or HTML) http://www.campwoodsw.com/sourcemonitor.html
- CAST http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx
- Klocwork Insight http://www.klocwork.com/products-services/klocwork

Why? selectel.meetup

- have numerous valuable applications in schedule
- planning budget
- cost estimation
- quality assurance testing
- software debugging
- software performance optimization
- optimal personnel task assignments

Demo Selectel meetup

- Using Radon as example
- Radon is a Python tool which computes various code metrics

Remark for measuring in Radon Selectel meetup

- Radon measures index with another formula
- It gets derivation from SEI and MS VS:

MI = max [0, 100
$$\frac{171 - 5.2 \ln V - 0.23G - 16.2 \ln L + 50 \sin(\sqrt{2.4C}))}{171}$$

References Selecte meetuo

- Joan C. Miller, Clifford J. Maloney (February 1963). "Systematic mistake analysis of digital computer programs". Communications of the ACM. New York, NY, USA
- McCabe (December 1976). "A Complexity Measure". IEEE Transactions on Software Engineering: 308–320.
- Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier North-Holland,
 Inc.
- Paul Omand and Jack Hagemeister. "Metrics for assessing a software system's maintainability".
 Proceedings International Conference on Software Mainatenance (ICSM), 1992. (doi)
- Don M. Coleman, Dan Ash, Bruce Lowther, Paul W. Oman. Using Metrics to Evaluate Software System Maintainability. IEEE Computer 27(8), 1994. (doi, postprint)
- Maintainability Index Range and Meaning. Code Analysis Team Blog, blogs.msdn, 20 November 2007.
- Arie van Deursen, Think Twice Before Using the "Maintainability Index".

Thank you! Selectel Meetuo

- Contact information:
 - Email: musayev[at]selectel(dot)com
 - Telegram: https://telegram.me/me_mu, @me_mu

- GitHub: https://github.com/b5y
- Code examples: https://github.com/b5y/selectel_meetup_2016