山东财经大学 2020-2021 学年第一学期期末试题

课程代码: 18300671 试卷 (A)

课程名称: 数据结构

题号	-	11	Ξ	四	五	六	七	八	九	+	总分
得分											
签字											

注意事项: 所有的答案都必须写在答题纸(答题卡)上,答在试卷上一律无效。

一、单项选择题(每小题1分,共15分)

1、与数据元素本身的形式、内容、相对位置、个数无关的是数据的()。

A、存储结构 B、存储实现 C、逻辑结构 D、运算实现

2、算法的时间复杂度取决于()。

A、问题的规模

B、待处理数据的初态

C、计算机的配置

D、A和B

- 3、在 n 个结点的顺序表中,算法的时间复杂度是 O (1) 的操作是 ()。
- A、访问第 i 个结点 $(1 \le i \le n)$ 和求第 i 个结点的直接前驱 $(2 \le i \le n)$
- B、在第i个结点后插入一个新结点 $(0 \le i \le n)$
- C、删除第 i 个结点 $(1 \le i \le n)$
- D、将 n 个结点从小到大排序
- 4、设计一个判别表达式中左右括号是否配对出现的算法,采用()数据结构最佳。

A、线性表的顺序存储结构 B、队列

C、线性表的链式存储结构 D、栈

- 5、用链式存储结构的队列,在进行删除运算时()。

A、仅修改头指针 B、仅修改尾指针

- C、头、尾指针都要修改 D、头、尾指针可能都要修改
- 6、对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左右孩子的 编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍 历实现编号。

- A、先序 B、中序 C、后序 D、从根开始按层次

驱为 ()。	
A、X 的双亲	B、X 的右子树中最左的结点
C、X 的左子树中最右结点	D、X 的左子树中最右叶子结点
8、n个顶点的连通图用邻接矩阵表示时,	该矩阵至少有()个非零元素。
A, n B, 2(n-1)	C, n/2 D, n ²
9、用邻接表表示图进行深度优先遍历时	,通常借助()来实现算法。
A、栈 B、队列	C、树 D、图
10、下面()方法可以判断出一个有向	可图是否有环。
A、广度优先遍历 B、拓扑排序	C、求关键路径 D、深度优先遍历
11、适用于折半查找的表的存储方式及方	元素排列要求为 ()。
A、链式存储,元素无序	B、链式存储,元素有序
C、顺序存储,元素无序	D、顺序存储,元素有序
12、设某哈希表的长度为100,哈希函数日	I(K)=k%P,则P通常情况下最好选择()。
A、99 B、97	C, 98 D, 96
13、从未排序序列中依次取出元素与已持	非序序列中的元素进行比较,将其放入已排
序序列的正确位置上的方法,这种排序方法和	7为()。
A、归并排序 B、冒泡排序	C、插入排序 D、选择排序
14、下述几种排序方法中,()是稳定	E的排序方法 。
A、希尔排序 B、快速排序	C、归并排序 D、堆排序
15、在二叉排序树中插入一个关键字值的	的平均时间复杂度为 ()。
A, O (n) B, O $(\log_2 n)$	C, O $(n\log_2 n)$ D, O (n^2)
二、填空题(每空2分,共20分)	
F	
1、双向循环链表中的结点结构如下:	prior。 data。 next。 ,则删除 p 所指结点
时须执行语句: p->next->prior=p->prior; _.	; •
2、若已知一个栈的入栈序列是1,2,3,…	··, n,其输出序列为 p1, p2, ·····, pn,若 p1=n,
则 p _i 为。	
3、设某棵二叉树的中序遍历的序列为 DB	EAC, 先序遍历的序列为 ABDEC, 则该二叉树
后序遍历的序列为:。	

7、若 X 是二叉中序线索树中一个有左孩子的结点,且 X 不是根结点,则 X 的直接前

4、设一棵完全二叉树中有 1001 个结点,其中叶子结点的个数是。
5、若一组记录的排序码为{46,79,56,38,25,84},则利用快速排序的方法,以第一
个记录为基准得到的一次划分结果为。
6、已知图的邻接矩阵如下图所示,则从顶点 v₀ 出发按深度优先遍历的结界
是。
v_{0} $[0 \ 1 \ 1 \ 1 \ 0 \ 1]$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$
$v_3 \begin{vmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{vmatrix}$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$
$v_6 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
7、设一组初始记录关键字序列为(15,17,18,22,35,51,60),折半成功查找时的平
均查找长度为。
8、设 F 是由 T1、T2 和 T3 三棵树组成的森林,与 F 对应的二叉树为 B, T1、T2 利
T3 的结点数分别为 N1、N2 和 N3,则二叉树 B 的根结点的左子树的结点数为。
9、设有向无环图 G 中的有向边集合 E={<1, 2>, <2, 3>, <3, 4>, <1, 4>}, 请给出一种可
能的拓扑排序序列。
10、设 n 是描述问题规模的非负整数,下面程序段的时间复杂度是 O ()。
x=2;
while(x <n)< th=""></n)<>
x=2*x;
三、判断题(每小题 1 分,共 5 分)
1、用二叉链表存储一棵具有 n 个结点的二叉树时,共有 $2n$ 个指针域,其中,有 $n+$
个指针域存放了地址,有 n -1 个指针是空指针。()
2、当向二叉排序树中插入一个结点,则该结点一定成为叶子结点。()
3、分块查找的基本思想是首先在索引表中进行查找,以便确定给定的关键字可能有
在的块号,然后再在相应的块内进行顺序查找。()
4、如果某个有向图的邻接表中第 i 条单链表为空,则第 i 个顶点的入度为零。()
5、不论线性表采用顺序存储结构还是链式存储结构,删除值为 x 的结点的时间复杂
度均为 0 (n)。 ()
四、分析设计题(共5小题,每小题10分,共50分)

- 1、设有如下图所示无向图 G,请
- (1)给出邻接矩阵;
- (2) 用普里姆算法构造最小生成树,并给出构造过程。

- 2、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
- 3、设用于通信的电文仅由 8 个字符组成,字符在电文中出现的频率分别为 7、19、2、6、32、3、21、10,根据这些频率作为权值构造哈夫曼树,并给出每个字符的哈夫曼编码。
 - 4、假定对有序表 {3, 4, 5, 7, 24, 30, 42, 54, 63, 72, 87, 95} 进行折半查找,请
 - (1) 画出描述折半查找过程的判定树;
 - (2) 若查找元素 54, 需依次与哪些元素比较?
 - 5、试找出满足下列条件的二叉树:
 - (1) 先序序列与中序序列相同;
 - (2) 先序序列与后序序列相同;
 - (3) 中序序列与后序序列相同。

五、算法设计题(10分)

设计并实现函数 Max,通过一趟遍历确定长度为 n 的带头结点的单链表 L 中数据元素值最大的结点,并返回该结点的地址。

函数 Max: LNode * Max(LinkList L); 其中,链表中结点结构的定义如下:

typedef struct LNode {//声明结点的类型和指向结点的指针类型

int data; //数据元素的类型

struct LNode *next; //指示结点地址的指针

}LNode, *LinkList;