Departamento de Análisis Matemático, Universidad de Granada

Propuesta de solución a la convocatoria extraordinaria de Variable Compleja I Grado en Matemáticas y Grado en Física y Matemáticas

Ejercicio 1. (2.5 puntos) Sean S un conjunto finito de puntos en un dominio Ω homológicamente conexo y f una función holomorfa en $\Omega \setminus S$. Prueba que f tiene una primitiva en $\Omega \setminus S$ si y solo si

$$\operatorname{Res}(f, w) = 0, \quad \forall w \in S.$$

Si f tiene primitiva F en $\Omega \setminus S$, fijado $w \in S$, tomamos r > 0 suficientemente pequeño para que $\overline{D}(w,r) \subset \Omega$ y $\overline{D}(w,r) \cap S = \{w\}$. Entonces

$$\operatorname{Res}(f, w) = \frac{1}{2\pi i} \int_{C(w, r)} f(z) dz = 0$$

por la caraterización de existencia de primitiva pues C(w,r) es un camino cerrado en $\Omega \setminus S$.

Recíprocamente, supuesto que Res(f, w) = 0 para cada $w \in S$, fijamos γ un camino cerrado arbitrario en $\Omega \setminus S$. Como Ω es homológicamente conexo, γ es nul-homólogo con respecto a Ω ; como además $f \in \mathcal{H}(\Omega \setminus S)$, el teorema de los residuos nos dice que

$$\int_{\gamma} f(z)dz = \frac{1}{2\pi i} \sum_{w \in S} \operatorname{Ind}_{\gamma}(w) \operatorname{Res}(f, w) = 0.$$

El teorema de caracterización de existencia de primitiva garantiza la existencia de primitiva para f en $\Omega \setminus S$.

Ejercicio 2. (2.5 puntos) Sea $f : \overline{D}(0,1) \longrightarrow \mathbb{C}$ continua en $\overline{D}(0,1)$ y holomorfa en D(0,1) de modo que $f(z) \in \mathbb{R}$ para cada $z \in \mathbb{C}$ con |z| = 1. Prueba que f es constante.

Suponemos que f no es constante para llegar a contradicción. Como $\overline{D}(0,1)$ es compacto y Im f es continua, existen $z_1, z_2 \in \overline{D}(0,1)$ de modo que

$$\operatorname{Im} f(z_1) = \min \{ \operatorname{Im} f(z) \colon z \in \overline{D}(0,1) \}$$
$$\operatorname{Im} f(z_2) = \max \{ \operatorname{Im} f(z) \colon z \in \overline{D}(0,1) \}.$$

Como f no es constante, el teorema de la aplicación abierta asegura que f(D(0,1)) tiene interior no vacío y, por tanto, tenemos que $\operatorname{Im} f(z_1) < \operatorname{Im} f(z_2)$. Entonces existe $j \in \{1,2\}$ de modo que $\operatorname{Im} f(z_j) \neq 0$ y la hipótesis nos dice que $z_j \in D(0,1)$. Usando de nuevo el teorema de la aplicación abierta obtenemos que $f(z_j)$ es un punto interior de f(D(0,1)) pero esto contraviene la definición de z_j .

Ejercicio 3. (2.5 puntos) Demuestra que no puede existir una función f entera verificando

$$|f(z)| \ge |z| + |\operatorname{sen}(z)|, \quad \forall z \in \mathbb{C}.$$

Suponemos que existe una función entera cumpliendo la hipótesis para encontrar una contradicción. La hipótesis implica que se cumplen las siguientes desigualdades para cada $z \in \mathbb{C}$:

$$|f(z)| \ge |z|$$
 y $|f(z)| \ge |\operatorname{sen}(z)|$.

La primera desigualdad nos dice que f diverge en infinito y, por tanto, es un polinomio (*). Con esta información, la segunda desigualdad nos dice que el seno tiene crecimiento sub-polinómico y entonces también es un polinomio (**), una clara contradicción.

- (*) Es consecuencia inmediata del corolario del teorema de Casorati para funciones enteras no polinómicas.
 - (**) Es consecuencia de las desigualdades de Cauchy (Ejercicio 2 de la relación 9).

Ejercicio 4. (2.5 puntos) Sean f, g holomorfas en $\mathbb{C} \setminus \{0\}$ verificando $f(n) = n^2 g(n)$ para cada $n \in \mathbb{N}$. Supongamos que existen $\lim_{z\to\infty} f(z) \in \mathbb{C}$ y $\lim_{z\to\infty} z^2 g(z) \in \mathbb{C}$. Prueba que $f(z) = z^2 g(z)$ para cada $z \in \mathbb{C} \setminus \{0\}$.

En primer lugar observamos que $\lim_{z\to\infty} f(z) = \lim_{z\to\infty} z^2 g(z)$ como consecuencia de la hipótesis y de que $\{n\}_{n\in\mathbb{N}}$ es una sucesión divergente. Definimos las funciones $h_1, h_2 : \mathbb{C} \longrightarrow \mathbb{C}$ por

$$h_1(w) = f\left(\frac{1}{w}\right)$$
 y $h_2(w) = \frac{1}{w^2}g\left(\frac{1}{w}\right)$ $\forall w \in \mathbb{C}^*$

У

$$h_1(0) = \lim_{w \to 0} h_1(w) = \lim_{w \to 0} f\left(\frac{1}{w}\right) = \lim_{z \to \infty} f(z)$$
$$h_2(0) = \lim_{w \to 0} h_2(w) = \lim_{w \to 0} \frac{1}{w^2} g\left(\frac{1}{w}\right) = \lim_{z \to \infty} z^2 g(z).$$

Es claro que $h_1, h_2 \in \mathcal{H}(\mathbb{C}^*)$ y que son funciones continuas en cero. El teorema de extensión de Riemann nos dice entonces que son enteras. Por otro lado, el conjunto donde h_1 y h_2 coinciden contiene al conjunto $\left\{\frac{1}{n} \colon \mathbb{N}\right\} \cup \{0\}$ luego el principio de identidad nos dice que $h_1(w) = h_2(w)$ para cada $w \in \mathbb{C}$. Basta evaluar la igualdad anterior en $\frac{1}{z}$ con $z \in \mathbb{C}^*$ para obtener la igualdad buscada.