Mesures et incertitudes

Exercices 1. (vocabulaire)

Pour chacune des mesures ci-dessous, donner le mesurande, la valeur mesurée, le nombre de chiffres significatif et l'unité.

	Mesurande	Valeur mesurée	Nb chiffres sign.	Unité
L = 138,42 m				
T = 156, 1 ms				
$R=1063,4~\Omega$				
f = 568 Hz				
U = 10,748 V				

Exercices 2. (résultat d'un mesurage)

Les mesures de l'exercice précédent sont données avec leur incertitude type.

L = 138,42 m	u(L) = 0,256 m
T = 156, 1 ms	u(T) = 1,3 ms
$R=1063,4~\Omega$	$u(R) = 1,56 \Omega$
f = 568 Hz	u(f) = 1,63 Hz
U = 10,748 V	u(U) = 0,0356 V

1)	De quel t	type d'	incertitude	-type s	agit-il?
----	-----------	---------	-------------	---------	----------

2) Pour chacune de ces mesures, écrire le résultat sous la forme $X=x\pm U(x)$ pour un niveau de confiance de 95% en arrondissant l'incertitude-type élargie à 1 chiffre significatif.

.....

Sciences ₁	physiques			Mesure	es et ince	rtitudes				BTS CIEL
• • • •									• • • • • • • •	
• • • •								• • • • • • •	• • • • • • • •	
• • • •									• • • • • • • •	
• • • •									• • • • • • • •	
• • • •			• • • • • •		• • • • • • •	• • • • • • •				
• • •		• • • • • • •		• • • • • • •					• • • • • • • •	
D •	2 (1		4 4• 4•							
Exerci	ce 3. (cal	culs s	tatisti	(ques						
On consid	lère la série de	e mesure	suivante	e:						
	x	121	122	119	120	118	123	119	121	
1) Que	el type d'incer	titude es	st-il poss	ible de de	étermine	r avec ce	s mesure	es?		
			_						• • • • • • •	
2) Cal	culer la valeur	r moyenr	ne x							
• • • •								• • • • • • •	• • • • • • • •	
• • • •									• • • • • • • •	
3) Cac	cluler l'écart-t	ype s_x								
• • • •			• • • • • •					• • • • • • •	• • • • • • • •	
• • • •			• • • • • •			• • • • • • •		• • • • • • •	• • • • • • • •	
 1) E.									• • • • • • •	
4) En	déduire l'ince	rtitude-ty	ype $u(x)$.	•						
• • • •								• • • • • • •	• • • • • • • •	
• • • •									• • • • • • • •	

Exercice 4. (mesure le vitesse du son dans l'air)

En travaux pratiques, des étudiants de BTS CIEL réalisent des mesures de la célérité *v* du son dans l'air. Le professeur regroupe les résultats de chacun des étudiants dans le tableau ci-dessous.

$v\left(\mathbf{m}\cdot\mathbf{s}^{-1}\right)$	340	342	340	343	339	341	341	338	344	342	360	341	342	338	
` '									1						ı

Les erreurs systématiques sont supposées éliminées. Déterminer le résultat du mesurage de *v* avec un niveau de confiance proche de 95%.

D. THERINCOURT 3/5 Lycée Roland Garros

Exercice 5. (valeur d'une résistance)

On considère la résistance suivante :

1)	A partir du code couleur, determiner le premier chiffre, le deuxieme chiffre, le multiplicateur et la
	tolérance en pourcent de cette résistance.
2)	En déduire la valeur de la résistance.
2)	Coloulem la talámana
3)	Calculer la tolérance.
4)	En déduire incertitude type.
5)	Afficher la valeur de la résistance avec un niveau de confiance de 95%.

Exercice 6. (mesure d'une tension)

Une mesure de tension électrique est réalisée avec un multimètre GW Instek GDM-8145 en mode DC sur le calibre 20 V. On donne, ci-dessous, un extrait de la document technique de l'appareil.

L'afficheur de l'appareil indique : 12.567

1) A combien de digits est donné l'affichage de cet appareil?

GDM-8145 Specifications

The specifications apply when the GDM-8145 is powered on for at least 30 minutes under $+20^{\circ}\text{C}^{\sim}+30^{\circ}\text{C}$.

DC VOLTAGE		
Range	200mV, 2V, 20V, 200V, 1000V 5 ranges	
Accuracy	<u>+</u> (0.03% rdg + 4 digits)	
Input Impedance	10ΜΩ	
AC VOLTAGE (AC or AC + D	CTrue RMS)	
Range	200mV, 2V, 20V, 200V, 1000V 5 ranges	
Accuracy	200mV ~ 200V 4 ranges	
	20Hz ~ 45Hz: <u>+</u> (1% rdg + 15 digits)	
	45Hz ~ 2kHz: <u>+</u> (0.5% rdg + 15 digits)	
	2kHz ~ 10kHz: <u>+</u> (1% rdg + 15 digits)	
	10kHz ~ 20kHz: <u>+</u> (2% rdg + 30 digits)	
	20kHz ~ 50kHz: <u>+</u> (5% rdg + 30 digits)	
	1000V range	
	45Hz ~ 1kHz: <u>+(</u> 0.5% rdg + 15 digits)	
Input Impedance	10ΜΩ	

2)	Calculer la précision de la mesure.
3)	En déduire l'incertitude type.
4)	Donner le résultat du mesurage avec un niveau de confiance de 95%.

D. THERINCOURT 5/5 Lycée Roland Garros