Formelsammlung Physik 2

Tim Hilt

29. Juni 2018

Inhaltsverzeichnis

T	5cn	ıwıngur	igen i
	1.1	Formel	zeichen
	1.2	Konsta	anten
	1.3	Formel	ln
		1.3.1	Allgemein
			k_{Ges} , wenn Federn parallel
			k_{Ges} , wenn Federn seriell
			Eigenkreisfrequenz
			Umrechnung $f \ / \ T$
			Allgemeine Schwingungsdgl
			Drehmoment
		1.3.2	Ungedämpfte Systeme
			Kriterium für harmonische Schwingung:
			Weg-Zeit-Gesetz
			Geschwindigkeit-Zeit-Gesetz
			Beschleunigung-Zeit-Gesetz
			Schwingungsdauer beim Federpendel
			Schwingungsdauer beim Fadenpendel
			Energie beim Federpendel
			Maximale Geschwindigkeit im Schwingvorgang
			Amplitude x_m
			Kreisfrequenz ungedämpft
			Hookesches Gesetz
			Hookesches Gesetz bei Drehbewegungen
			U-Rohr
			Schwingungsdgl am U-Rohr
			Fadenpendel
			Grad zu Radien
			Rückstellkraft F_R beim Fadenpendel
			Auslenkungswinkel-Zeit-Gesetz
			Winkelgeschwindigkeit-Zeit-Gesetz
			Winkelbeschleunigungs-Zeit-Gesetz
			$v_{ m max}$ beim Fadenpendel
			Anfangsauslenkung $arphi_0$
		1.3.3	Gedämpfte Systeme
			Abklingfunktion Federpendel
			Abklingfunktion Fadenpendel
			Kreisfrequenz gedämpft
			Abklingkoeffizient
			Dämpfungskonstante

			Schwingungszeit gedämpft	4
			Reibkonstante	4
			Logarithmisches Dekrement	4
				4
				5
				5
				5
		1.3.4	•	5
		1.5.7	Lizwungen senwingende Systeme	J
2	Akı	ıstik		6
	2.1			6
	2.2			6
	2.3	Formel		6
	2.5	1 Office		6
				7
			1 0	
			· ·	7
			·	7
			. •	7
				7
			<u> </u>	7
			-	8
			• ,	8
			Schalldruckamplitude	8
			Umrechnung vom Effektivwert	8
			Dopplereffekt	8
				8
				8
				8
3	We	llen	•	9
	3.1	Formel	zeichen	9
	3.2	Formel		9
4	Ste	hende	Wellen 1	0
	4.1	Formel	zeichen	0
	4.2	Konsta	inten	0
	4.3	Formel		
			Schallgeschwindigkeit	
			Länge der Saite/des Rohres (gleiche Enden)	
			Länge der Saite/ des Rohres (ungleiche Enden)	
			Länge einfachster Fall (gleiche Enden)	
			,	
			Länge einfachster Fall (ungleiche Enden)	
			Grundschwingung/Wellenlänge gleiche Enden	
			Grundschwingung ungleiche Enden	
			Frequenzverhältnis	
			Wellenzahl	
			Wellengeschwindigkeit 1	1

U	ptik		12
5.1	Forme	llzeichen	. 12
5.2	2 Konst	anten	. 12
5.3	3 Forme	ıln	. 13
		Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit	. 13
		Abstand berechnen (Radarpistole u.Ä.)	. 13
		Frequenzverschiebung	. 13
		Geschwindigkeit Zielfahrzeug	. 13
	Freque	enzverschiebung beim Dopplereffekt	. 13
		Optischer Dopplereffekt	. 13
		Violett- / Rotverschiebung	. 13
		Reflexionsgrad R	. 13
		Transmissionsgrad T	. 13
		Transmissionsgrad durch Medium	. 13
	5.3.1	Entspiegelung	. 14
		Brechungsindex von Entspiegelungsschicht	. 14
		Gangunterschied zwischen den beiden Schichten	. 14
		Schichtdicke d	. 14
	5.3.2	Brechung	. 14
		Umrechnungen	. 14
		Ausbreitungsgeschwindigkeit im Medium	. 14
		Grenzwinkel der Totalreflexion	. 15
		Brewsterwinkel	. 15
	5.3.3	Beugung	. 15
		Einzelspalt	. 15
		Doppelspalt	. 15
		Intensitätsmaxima	. 15
		Intensitätsminima	. 15
		Gitter	. 15
		Intensitätsmaxima	. 15
		Schirmposition x_k der Maxima	. 15
		Spektralijherlappungen ab dem k -ten Maximum am Schirm	15

Abbildungsverzeichnis

5.1	Farbspektrum							 											12
5.2	Entspiegelung							 											14

1 Schwingungen

1.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
f	Frequenz	Hz
T	Schwingungsdauer	s
ω_0	Winkelgeschwindigkeit (ungedämpftes System)	s^{-1}
ω_d	Winkelgeschwindigkeit (gedämpftes System)	s^{-1}
\overline{k}	Federkonstante	$\frac{N}{m}$
\overline{x}	Auslenkung	\overline{m}
\overline{l}	Länge Fadenpendel	\overline{m}
D	Dämpfungskonstante	(Einheitenlos)
δ	Abklingkoeffizient	s^{-1}
b	Reibkonstante	$\frac{kg}{s}$
$\overline{F_E}$	Anregende Kraft	N
\overline{E}	Energie	J
E_v/E_n	Energie davor / Energie danach	
\overline{J}	Massenträgheitsmoment	$kg*m^2$
φ	Drehwinkel	Bogenmaß
M	Drehmoment	Nm

1.2 Konstanten

 $\bullet \ \ {\rm Gravitationskonstante} \ g = 9.81 \frac{m}{s^2}$

1.3 Formeln

1.3.1 Allgemein

 $m{k_{Ges}}$, wenn Federn seriell $\ldots \ldots \ldots \dfrac{1}{k_{Ges}} = \dfrac{1}{k_1} + \dfrac{1}{k_2} + \dfrac{1}{k_3} + \cdots + \dfrac{1}{k_n}$

Eigenkreisfrequenz $\omega = 2\pi * f = \frac{2\pi}{T}$

1.3.2 Ungedämpfte Systeme

Kriterium für harmonische Schwingung: $\frac{x}{F}$, bzw. $\frac{\varphi}{M}$ muss linear sein!

 $\mbox{Weg-Zeit-Gesetz} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad x(t) = x_0 * \cos(\omega_0 t + \varphi_0)$

Geschwindigkeit-Zeit-Gesetz $v(t) = -x_0 * \omega_0 * \sin(\omega_0 t + \varphi_0)$

Energie beim Federpendel $E = \frac{1}{2}k_{\text{ges}} * x^2$ Maximale Geschwindigkeit im Schwingvorgang $v_{\text{max}} = x_m * \omega_0$ v_{\min} ist immer = 0! Amplitude x_m $x_m = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_0}\right)^2}$ Hookesches Gesetz $F_R = k * x$ Hookesches Gesetz bei Drehbewegungen $\dots M = k * \varphi$ **U-Rohr** Schwingungsdgl am U-Rohr $\underbrace{\rho*A*l}_{\mathsf{m}}*\ddot{x} + \underbrace{\rho*A*g*2}_{\mathsf{k}}x = 0$ $(x = x_0 * \cos(\omega_0 * t))$ **Fadenpendel** Grad zu Radien $\varphi \to \frac{\varphi \pi}{180}$ Rückstellkraft F_R beim Fadenpendel $F_R = m * g * \sin(\varphi) = F_G * \sin(\varphi)$ Auslenkungswinkel-Zeit-Gesetz $\varphi(t) = \varphi_0 * \cos(\omega_0 t * \alpha_0)$ Wobei α_0 die anfängliche Phasenverschiebung beschreibt, diese gilt nur bei angeregten Schwingungen

Winkelbeschleunigungs-Zeit-Gesetz $\dots \dots \alpha(t) = -\varphi_0 * \omega_0^2 * \cos(\omega_0 \ t * \alpha_0)$ $v_{
m max}$ beim Fadenpendel $\dots v_{
m max} = \sqrt{2*g*h} = \frac{\varphi_0\pi}{180}*\omega_0*l$ Wobei h der Wert ist, um den sich das Pendel anhebt l =Länge d. Pendels Anfangsauslenkung $arphi_0$ $arphi_0 = \sqrt{\frac{2h}{\imath}}$ 1.3.3 Gedämpfte Systeme Abklingfunktion Federpendel $\dots x_m = x_0 * e^{-\delta * m * T_0}$ Abklingfunktion Fadenpendel $\varphi_m = \varphi_0 * e^{-\delta * m * T_0}$ Kreisfrequenz gedämpft $\ldots \ldots \omega_d = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - D^2}$ Abklingkoeffizient $\delta = \frac{b}{2m} = D * \omega_0$ Reibkonstante $b = \delta * 2m$ Logarithmisches Dekrement $\Lambda = \delta * T_0$ $Q = \frac{\pi}{\delta * T} = \frac{1}{2D}$

Schwingungsenergie $E=\frac{1}{2}*c*x^2$ Energieverlust $\frac{\Delta E}{E}=1-\frac{E_n}{E_v}=1-\frac{\frac{1}{2}}{\frac{1}{2}}\frac{c}{c}\frac{x_1^2}{x_0^2}$ Kann noch gekürzt werden! $1-\frac{x_1^2}{x_0^2}$

Aperiodischer Grenzfall

$$D = 1$$

$$\delta = \omega_0$$

$$b = 2m * \omega_0$$

1.3.4 Erzwungen schwingende Systeme

2 Akustik

2.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
\overline{f}	Frequenz	Hz
L	Schallpegel	dB
C	Ausbreitungsgeschwindigkeit	$\frac{m}{s}$
λ	Wellenlänge	m
I	Schallintensität	$\frac{W}{m^2}$
\overline{P}	Schallleistung	\overline{W}
\overline{A}	Oberfläche (Kugelwelle)	m^2
\overline{Z}	Wellenwiderstand/Schallkennimpedanz	$\frac{kg}{m^2s}$
ρ	Dichte	$\frac{kg}{m^3}$
p	Schalldruckamplitude	Pa
Ma	Machzahl	Einheitenlos

2.2 Konstanten

•
$$I_0 = 10^{-12} \frac{W}{m^2}$$

2.3 Formeln

 ${\sf Schallgeschwindigkeit} \qquad \qquad c = \lambda * f$

Wichtigste Formel für Rechnung mit Schallwellen!

Summe mehrerer unterschiedlich lauter Schallquellen $10*\log(10^{L_1/10}+10^{L_2/10}+10^{L_3/10}+\cdots+10^{L_n/10})$

Beispiel:

$$L_1 = 90dB, L_2 = 80dB, L_3 = 65dB$$

$$L_{\Sigma} = 10 * \log(10^9 + 10^8 + 10^{6.5})$$

$$L_{\Sigma} = 90.426dB$$

Schallpegeldifferenz:

$$\Delta L = L_2 - L_1$$
$$= 10 \log \left(\frac{I_2}{I_1}\right)$$

Und bei unterschiedlichem Radius/Abstand:

$$=20\log\left(\frac{r1}{r2}\right)$$

wobei L_2 der größere beider Werte ist

Schallintensität $I = \frac{P}{A} = \frac{\rho * x^2 * \omega^2 * c}{2}$

Bei allen fahrenden / mit der Erde verbundenen Schallquellen gilt $A=2\pi r^2$. Dies entspricht der Oberfläche einer Halbkugel. Dementsprechend gilt für alle fliegenden oder in der Luft aufgehängten Schallquellen $A=4\pi r^2$

Schallintensität Halbkugel $I = \frac{P}{2\pi * r^2}$

 ${\sf Schallkennimpedanz} \ / \ {\sf Wellenwiderstand} \qquad \ldots \qquad Z = \rho * c$

 ${\sf Schalldruckamplitude} \qquad \qquad p = Z*\omega*x$

Dopplereffekt

Ruhender Empfänger, bewegter Sender: $f_E = f_S rac{1}{1 \mp rac{v_S}{c}}$

Runder Sender, bewegter Empfänger: $f_E = f_S \left(1 \pm rac{v_E}{c}
ight)$

Bewegter Sender, bewegter Empfänger: $f_E = f_S \frac{c \pm v_E}{c \mp v_S}$

Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Machscher Kegel

3 Wellen

3.1 Formelzeichen

$\lambda = \dots $			Wellenlänge
Umrechung von Bogensekunden in Grad:	$0^{\circ}0^{\circ}$ Wert	Danach is	t Wert für weitere
Berechnungen nutzbar			

3.2 Formeln

4 Stehende Wellen

4.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit				
λ	Wellenlänge	m				
ρ	Dichte	$\frac{kg}{m^3}$				
f	Frequenz	Hz				
l	Länge	m				
k	Anzahl d. Wellenbäuche	Wellen/m				
\overline{p}	Luftdruck	Pa				
ĸ	Isentropenexponent; $\frac{c_p}{c_v}$	Einheitenlos				

4.2 Konstanten

• Menschlicher Hörbereich: 16 - 20000Hz

4.3 Formeln

$$\text{Schallgeschwindigkeit} \qquad \ldots \\ c = \sqrt{\frac{\kappa*p}{\rho_T}} = 331 \frac{m}{s} * \sqrt{\frac{273K + \cdots \circ C}{273K}}$$

Länge der Saite/des Rohres (gleiche Enden)
$$l=(k+1)*\frac{\lambda}{2}=(k+1)*\frac{c}{2f}$$
 $k\in {0,1,2,\ldots}$

Länge der Saite/ des Rohres (ungleiche Enden) $l = (2k+1) * \frac{\lambda}{4} = (2k+1) * \frac{c}{4f}$ " 1. Harmonische" \equiv " Grundschwingung " \equiv " 0. Oberschwingung" Gilt nur für Grundschwingung! Gilt nur für Grundschwingung! , Wenn nicht die gesamte, sondern die Geschwindigkeit an einer bestimmten Stelle gesucht ist

5 Optik

5.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
c	Lichtgeschwindigkeit	$\frac{m}{s}$
\overline{f}	Frequenz	Hz
\overline{R}	Reflexionsgrad	Gibt reflektierten Anteil
\overline{T}	Transmissionsgrad	Gibt transmittierten Anteil
\overline{g}	Gitterkonstante / Abstand der Spaltmitten	m
α_k	Ablemkungswinkel am k-ten Maximum	rad

5.2 Konstanten

- Lichtgeschwindigkeit $c_0 = 3*10^8 \frac{m}{s}$
- \bullet Wellenlängenempfindlichkeit des Auges: $400-750 \ nm$

Abbildung 5.1: Farbspektrum und menschlicher Sehbereich

5.3 Formeln

Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit $c = f * \lambda$

Abstand berechnen (Radarpistole u.Ä.) $s = \frac{c*t}{2}$ Aus Formel der Kinetik $v = \frac{s}{t}$

Frequenzverschiebung $\Delta f = \frac{2*f_s*v}{c} = \frac{2*v}{\lambda_s}$

Frequenzverschiebung beim Dopplereffekt

Annäherung ightarrow höhere Frequenz / kleinere Wellenlänge ightarrow Violett-Verschiebung

 ${\sf Entfernung} \quad \to \quad {\sf niedrigere} \,\, {\sf Frequenz} \,\, / \,\, {\sf gr\"{o}Bere} \,\, {\sf Wellenl\"{a}nge} \quad \to \quad {\sf Rot-Verschiebung}$

Reflexionsgrad ${m R}$ $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$

Gibt jeweils nur **einen** Übergang an!

Falls Medium nicht transparent gilt mit dieser Formel der Absorptionsgrad

5.3.1 Entspiegelung

Hierbei sei n_1/λ_1 die Wellenlänge und Brechzahl in Luft, n_2/λ_2 die Brechzahl und Wellenlänge in der Entspiegelungsschicht der Dicke d und n_3/λ_3 die Wellenlänge und Brechzahl des Brillenglases.

Bei perfekt entspiegelten Oberflächen beträgt der Gangunterschied an der Oberfläche immer $\frac{\lambda_1}{2}$

Abbildung 5.2: Grafik zur Veranschaulichung der Entspiegelung

Brechungsindex von Entspiegelungsschicht $n_2 = \sqrt{n_1*n_3}$ Gangunterschied zwischen den beiden Schichten $\Delta x = 2*n_2*d$ Schichtdicke d $d = \frac{\lambda_1}{4n_2}$

5.3.2 Brechung

Umrechnungen $\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$

Von dünn nach dicht ightarrow zum Lot hin; von dicht nach dünn ightarrow vom Lot weg

Grenzwinkel der Totalreflexion $\sin \alpha = \frac{n_1}{n_2}$ Von dichtem nach dünnem Medium Brewsterwinkel $\tan \alpha = \frac{n_2}{n_1}$ Gilt jeweils, wenn vollständig polarisierter Winkel gefragt ist 90° zwischen reflektiertem und gebrochenem Strahl Der reflektierte Strahl ist vollständig linear polarisiert, der transmittierte Anteil wird vorwiegend parallel polarisiert. 5.3.3 Beugung **Einzelspalt Doppelspalt** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ Intensitätsminima $\ldots g \sin(\alpha_k) = \left(k + \frac{1}{2}\right)\lambda$ $k \in \mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$ **Gitter** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ $k \in 0, 1, 2, \dots$ α kann maximal 90° sein arcsin muss zwischen -1 und 1 liegen! L ist Abstand des Gitters zum Schirm