Computer Vision

Nikita Kisialeu

fork by Tatiana Gaintseva (DLS)

ImageNet

Explore Download Challenges Publications Updates About

Not logged in. Login I Signup

База данных изображений, поделенных на 1000 классов.

http://www.image-net.org

http://image-net.org/explore

ImageNet Timeline

Класс	Вероятность
Самолет	0.40
Танк	0.25
Автомобиль	0.15
Велосипед	0.10
Корабль	0.05
Мотоцикл	0.04
Поезд	0.01

HOG (Histogram of Oriented Gradients)

HOG (Histogram of Oriented Gradients)

ImageNet Timeline

AlexNet

ImageNet Timeline

Сверточные нейронные сети

Датасет MNIST

Задача классификации на 10 классов черно-белых изображений размера 32*32

Черно-белая картинка представляется матрицей чисел из отрезка [0, 255] размера 32*32

Перцептрон

Входы $x_1 \longrightarrow w_1$ Функция активации $x_2 \longrightarrow w_2 \longrightarrow w_3 \longrightarrow w_3$ Сумматор $x_3 \longrightarrow w_n \longrightarrow w_n$

Полносвязная нейронная сеть

Sigmoid

SoftMax

$$S(x)=rac{1}{1+e^{-x}}$$

Растягивание картинки в вектор и подача на вход сети

Классификация картинок полносвязной сетью:

Недостатки:

- слишком много нейронов в 1 слое сети
- ломаются пространственные отношения на картинке, которые могли бы помочь сети в задаче классификации

Что отличает четверку от восьмерки?

Что отличает четверку от восьмерки?

У четверки преимущественно горизонтальные и вертикальные линии, у восьмерки линии плавные

Свертка

Изображение

Ядро (фильтр)

1	2	3
-4	7	4
2	-5	1

32

1 (stride)

Карта активации

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

30	3,	22	1	0			
02	0_2	10	3	1	12.0	12.0	17.0
30	1,	2_2	2	3	10.0	17.0	19.0
2	0	0	2	2	9.0	6.0	14.0
2	0	0	0	1			

Padding

Используется для манипуляции размерами карт активаций

Исходное изображение

Ядро

Карта активации

Свертка цветных изображений

Цветное (RGB) изображение трехмерное (h*w*3)

2d свертка отдельно по каждому цветовому каналу

Фильтры "реагируют" на паттерны на изображении. Если паттерн присутствует на изображении, то карта активации после соотв. фильтра будет содержать большие числа

Как мог бы выглядеть фильтр, реагирующий на горизонтальные линии

Как мог бы выглядеть фильтр, реагирующий на вертикальные линии

После получения карт активаций, мы развернем все карты в векторы, сконкатенируем и подадим на вход полносвязной сети

Сверточная нейросеть

Для real-world изображений одной операции свертки не хватит, чтобы выделить всю нужную информацию из изображения

Потребуется несколько слоев сверток

2 слой сверток

3 слой сверток

4 слой сверток

Низкоуровневые паттерны

Вырисовываются отдельные части

Выделены признаки изображения, важные для задачи

После сверточных слоев, как и после полносвязных, используется функция активации.

Самая популярная и хорошо работающая функция активации промежуточных слоев -- relu

max(0,x)

Свертки -- как лампочки, которые "загораются" сильнее, если на изображении есть определенный паттерн

На картах активации вы НЕ найдете никакого "понятного" рисунка: они есть индикаторы наличия некоего паттерна на картинке

Обучение нейросети

Нейросеть сама учится понимать, какие паттерны на изображении ей важно уметь находить.

Pooling

Pooling

Техника уменьшения размерности (downsampling'a) карт активаций

Используется для:

- уменьшения размерности очень больших изображений
- —уменьшения чувствительности сверток к положению объектов на картинке

Результат применения 2x2 MaxPooling'а к картам активаций:

Pooling layer

Image -> conv -> act -> pool -> conv ...

AlexNet

Задачи компьютерного зрения (CV)

Классификация, детекция, сегментация

Сегментация — важная задача для медицины

...и все эти задачи очень важны для беспилотных автомобилей.

- детекция
- классификация
- сегментация
- поиск по изображениям
- оценка положения

Optical Character Recognition

- автоматический перевод
- улучшение качества фотографий документов
- скан чеков/визиток/etc

GANs

Style transfer

Image generation/completion

Приятного продолжения изучения!