

A MILANO TEAM LTD* Production

A long time ago in papers far, far away....

Theorem IV

UNBOUNDED DEPTH

Confluent P systems with active membranes with UNBOUNDED-DEPTH membrane structures characterise PSPACE in polynomial time....

Theorem V

SHALLOW DEPTH

Confluent P systems with active membranes with SHALLOW (i.e., depth-1) membrane structures characterise P^{#P} in polynomial time....

Theorem VI

MILANO THEOREM

Confluent P systems with active membranes with DEPTH-0 membrane structures (i.e., single membranes) characterise P in polynomial time....

Theorem I

A NEW RESULT

SHALLOW NON-CONFLUENT P systems with active membranes can simulate polynomial-SPACE nondeterministic Turing machines in polynomial TIME, and thus solve all PSPACE problems and restore efficiency to the galaxy....

Definition I

P SYSTEMS WITH ACTIVE MEMBRANES

OBJECT EVOLUTION

SEND-OUT

SEND-IN

ELEMENTARY DIVISION

UNIFORM FAMILY **I**

$$x \mapsto w_{x}$$

$$n = |x| \mapsto \Pi_{n}$$
no

UNIFORM FAMILY **I**

TM COMPUTATIONS

TM COMPUTATIONS

TM COMPUTATIONS

Algorithm I

SIMULATING PSPACE TMs

Given configurations C_i and C_j of a TM

- \cdot if i = j then ACCEPT
- · if i + 1 = j then CHECK if $C_i \rightarrow C_j$
- · else GUESS midpoint and go on in parallel

Given configurations C_i and C_j of a TM

- \cdot if i = j then ACCEPT
- · if i + 1 = j then CHECK if $C_i \rightarrow C_j$
- · else GUESS midpoint and go on in parallel

ENCODING TM CFGs

ENCODING TM CFGs

ENCODING TWO TM CFGs

Algorithm I

IMPLEMENTATION

Algorithm I

IMPLEMENTATION

After T = log(max time) many, many steps....

Algorithm I IMPLEMENTATION

ENCODING TWO TM CFGs

$$\delta(r, \$) = (s, c, +1)$$

Theorem I

A NEW RESULT

SHALLOW NON-CONFLUENT P systems with active membranes can simulate polynomial-SPACE nondeterministic Turing machines in polynomial TIME, and thus solve all PSPACE problems and restore efficiency to the galaxy....

Theorem I'

MORE SPECIFICALLY

SHALLOW MONODIRECTIONAL NON-CONFLUENT P systems with active membranes can simulate polynomial-SPACE nondeterministic Turing machines in polynomial TIME, and thus solve all PSPACE problems and restore efficiency to the galaxy....

Theorem I'

MORE SPECIFICALLY

SHALLOW MONODIRECTIONAL NON-CONFLUENT P systems with active membranes can simulate polynomial-SPACE nondeterministic Turing machines in polynomial TIME, and thus solve all PSPACE problems and restore efficiency to the galaxy....

NON-CONFLUENT

NON-CONFLUENT

CONFLUENT

NON-CONFLUENT

CONFLUENT

Open Problem I

UPPER BOUNDS

UPPER BOUNDS for polynomial-time non-confluent P systems of depth 1 and unbounded depth are still unknown....

Open Problem II

INTERMEDIATE CLASSES

Find a combination of features (e.g., available rules) in order to characterise non-confluently COMPLEXITY CLASSES between NP and PSPACE....

Open Problem III

OTHER MODELS

TISSUE P SYSTEMS with division look similar to P systems with active membranes of depth 1. Maybe they have the same power when non-confluent too....

Thanks for your Attention! Grazie per la vostra Attenzione! ANY QUESTIONS?

