

DÉTECTION AUTOMATIQUE DE FAUX BILLETS

Contexte

- L'Organisation nationale de lutte contre le faux-monnayage – association publique
- Il y a des différences de dimensions entre les faux et les vrais billets.
- Objectif du projet créer un algorithme capable de différencier automatiquement les vrais et les faux billets en utilisant les dimensions des billets.

Pourcentage de vrais et faux billets Vrai 66.7% (1000)33.3% (500)Faux

Le Fichier

1500 billets

• 1000 vrais, 500 faux

7 colonnes

- is_genuine : si le billet est vrai ou faux
- length: la longueur du billet
- height_left : la hauteur du billet sur le côté gauche
- height_right : la hauteur du billet sur le côté droit
- margin_up : la marge entre le bord supérieur du billet et l'image de celui-ci
- margin_low : la marge entre le bord inférieur du billet et l'image de celui-ci
- diagonal : la diagonale du billet

Analyse Descriptive

- Les vrais et faux billets pour « length »,
 « margin_up » et « margin_low » sont assez différenciés.
- Les vrais et faux billets pour
 « diagonal », « height_left », et
 « height_right » sont assez similaires.

Analyse Descriptive

Variables les plus pertinentes pour « is_genuine » :

- « length »
- « margin_low »
- « margin_up »

Variable la moins pertinente pour « is_genuine » :

• « diagonal »

Analyse Descriptive

Graphiques de densité noyau

- Les vrais et les faux billets sont bien différenciés par les variables « length », et « margin_low »
- L'inverse est vrai pour « diagonal »,
 « height_left » et « height_right ».

Scatterplots

- Les scatterplots qui contiennent « length »,
 « margin_low » et « margin_up » ont des clusters assez bien séparés.
- Utiles pour déterminer quels billets sont réels et lesquels sont faux.

OLS Regression Results								
Dep. Variabl	e:	margin	low	R-sq	uared:		0.617	
Model:		OLS		Adj.	R-squared:	0.616		
Method:		Least Squares		F-st	atistic:	1174.		
		nu, 08 Feb	2024	Prob (F-statistic):			1.24e-304	
			8:57	Log-Likelihood: -774				
No. Observat	ions:		1463	AIC:			1555.	
Df Residuals	: :		1460	BIC:			1571.	
Df Model:			2					
Covariance T	ype:	nonro	bust					
========			======			======		
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	5.9263	0.198	30.	.003	0.000	5.539	6.314	
margin_up	-0.2119	0.059	-3.	612	0.000	-0.327	-0.097	
is_genuine	-1.1632	0.029	-40.	477	0.000	-1.220	-1.107	
Omnibus:	=======	 22	 .365	Durb	======== in-Watson:	======	2.041	
Prob(Omnibus	s):	0	.000	Jarq	ue-Bera (JB):		39.106	
Skew:		0	.057		(JB):		3.22e-09	
Kurtosis:		3	.793	Cond	. No.		65.0	
========	.=======					======		

Bar plot

- « is_genuine » influence beaucoup la variable
 « margin_low »
- « margin_up » a aussi une légère influence.

Modèle

- Le meilleur modèle utilise seulement
 « margin_up et » « is_genuine »
- $R^2 = 0.617$
- Statistiquement significatif (1,24e-403<0,05)
- Coefficients « margin_up» = -0,2119, is_genuine = -1,1632

Outliers de la distance de Cook

• 79 faux billets et 14 vrais billets sont des outliers

Processus

- Valeurs aberrantes pour les faux billets ne sont pas très surprenantes
- Mais les différences relatives entre les outliers des vrais billets et les autres vrais billets sont plus surprenantes.
- Donc, après avoir examiné les différences, j'ai supprimé les 14 vrais billets qui étaient des outliers.

93 outliers

Avant

OLS Regression Results							
Dep. Variable:	margin lo	===: DW	R-squ	======== ared:		0.617	
Model:	0 _	LS		R-squared:	0.616		
Method:	Least Square	es	F-sta	tistic:	1174.		
Date: Thu, 08 Feb 20		24	Prob	(F-statistic)	1.24e-304		
Time:	17:48:5	17:48:57 Log-Likelihood:				-774.73	
No. Observations:	146	53	AIC:			1555.	
Df Residuals:	146	50	BIC:			1571.	
Df Model:		2					
Covariance Type:	nonrobus	st					
=======================================							
coef	std err		t	P> t	[0.025	0.975]	
Intercent 5 9263	0.198	36	0.003	0.000	5.539	6.314	
margin_up -0.2119	0.059	-3	3.612	0.000	-0.327	-0.097	
is genuine -1.1632	0.029	-40	0.477	0.000	-1.220	-1.107	
Omnibus:	22.36	55	Durbi	n-Watson:		2.041	
Prob(Omnibus):	0.00	90		e-Bera (JB):		39.106	
Skew:	0.0	57	Prob(JB):		3.22e-09	
Kurtosis:	3.79	93	Cond.	No.		65.0	
					=======		

Après

OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	margin_low OLS Least Squares Sat, 10 Feb 2024 16:42:32 1486 1483 2 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	0.627 0.627 1249. 1.00e-318 -749.04 1504.			
	ef std err	t P> t	[0.025 0.975]			
Intercept 6.01 margin_up -0.23 is_genuine -1.16	77 0.058 -4		5.632 6.393 -0.351 -0.124 -1.222 -1.112			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	30.919 0.000 0.087 3.967	Jarque-Bera (JB): Prob(JB):	2.046 59.806 1.03e-13 66.0			

Normalité des résidus

- En termes de statistique, le modèle est bon.
- Mais la valeur p < 0,05 remet en question la normalité des résidus.
- Les résidus ne sont pas très différents d'une distribution symétrique et l'échantillon a plus de 30 individus
- Donc, les résultats obtenus par le modèle ne sont pas absurdes

Conclusion

 Je vais utiliser ce modèle pour imputer les valeurs manquantes

Pas de problème avec la colinéarité = Validé

VIF pour les coefficients = [1,6202, 1,6202] (Inférieure à 10)

L'homoscédasticité = Pas validé

Le test de p-valeur de Breusch Pagan: 1,9624e-39

La normalité des résidus = Pas validé

Statistique = 0,9928 p-valeur = 1,7644e-06

CRÉATION DES ALGORITHMES


```
is_genuine ~ margin_up + height_right + length + margin_low + 1
Optimization terminated successfully.
         Current function value: 0.026782
         Iterations 13
is the final model!
                            Logit Regression Results
Dep. Variable:
                                          No. Observations:
                                                                             1500
Model:
                                 Logit
                                         Df Residuals:
                                                                             1495
                                         Df Model:
Method:
                                   MLE
                      Thu, 08 Feb 2024
Date:
                                         Pseudo R-squ.:
                                                                           0.9579
                              17:49:00
                                         Log-Likelihood:
Time:
                                                                          -40.173
                                  True
                                         11-Nu11:
                                                                           -954.77
converged:
                             nonrobust
                                         LLR p-value:
                                                                            0.000
Covariance Type:
                                                     P> z
                                                                 [0.025
                    coef
                            std err
                                                                             0.975]
               282 4740
                                                     0.043
                                                               -555.731
                                                                             -9.217
Intercent
                            139,419
                                         -2.026
margin up
                -10.4098
                              2.197
                                         -4.738
                                                     0.000
                                                                -14.716
                                                                             -6.103
height right
                -3.3512
                              1.123
                                         -2.984
                                                     0.003
                                                                -5.553
                                                                             -1.150
length
                  6.1592
                              0.889
                                         6.931
                                                                 4.418
                                                                              7.901
                                                     0.000
margin low
                 -6.3058
                              0.963
                                         -6.550
                                                     0.000
                                                                 -8.193
                                                                             -4.419
```

Statsmodels : Régression Logistique

Bar plot

 « margin_up », « margin_low » et « length » ont une influence relativement forte sur « is_genuine »

Modèle

- Le meilleur modèle utilise « margin_up »,
 « margin_low », « length » et « height_right».
- Pseudo $R^2 = 0.9579$
- Statistiquement significatif (0,00<0,05)
- Coefficients « margin_up » = -10,41,
 « height_right » = -3,35, « length » = 6,16,
 « margin_low » = -6,31

Statsmodels – Régression Logistique

Accuracy: 99,33%

Précision: 98,96%

Recall: 100%

Statsmodels : Régression Logistique

Augmenter le seuil = Réduire les faux positifs Abaisser le seuil = Réduire les faux négatifs

Seuil de 0,7

- Pas de faux positifs
- MAIS 1 faux négatif

```
Seuil 0.3 - Nombre de True Negative = 106
Seuil 0.3 - Nombre de True Positive = 190
Seuil 0.3 - Nombre de False Negative = 0
Seuil 0.3 - Nombre de False Positive = 4
Seuil 0.4 - Nombre de True Negative = 106
Seuil 0.4 - Nombre de True Positive = 190
Seuil 0.4 - Nombre de False Negative = 0
Seuil 0.4 - Nombre de False Positive = 4
Seuil 0.5 - Nombre de True Negative = 108
Seuil 0.5 - Nombre de True Positive = 190
Seuil 0.5 - Nombre de False Negative = 0
Seuil 0.5 - Nombre de False Positive = 2
Seuil 0.6 - Nombre de True Negative = 108
Seuil 0.6 - Nombre de True Positive = 189
Seuil 0.6 - Nombre de False Negative = 1
Seuil 0.6 - Nombre de False Positive = 2
Seuil 0.7 - Nombre de True Negative = 110
Seuil 0.7 - Nombre de True Positive = 189
Seuil 0.7 - Nombre de False Negative = 1
Seuil 0.7 - Nombre de False Positive = 0
Seuil 0.8 - Nombre de True Negative = 110
Seuil 0.8 - Nombre de True Positive = 187
Seuil 0.8 - Nombre de False Negative = 3
Seuil 0.8 - Nombre de False Positive = 0
```

Statsmodels – Régression Logistique

Accuracy: 99,67%

Précision: 100%

Recall: 99,47%

	Accuracy	Précision	Recall	Score de ROC-AUC
Length, margin_low, margin_up, height_right, height_left, diagonal	0,9933	0,9896	1	0,9909
Length, margin_low, margin_up, height_right, height_left	0,9933	0,9896	1	0,9909
Length, margin_low, margin_up, height_right	0,99	0,9845	1	0,9864
Length, margin_low, margin_up	0,9933	0,9896	1	0,9909
Length, margin_low	0,9867	0,9794	1	0,9818
Length	0,9533	0,94	1	0,9402

SciKitLearn: Régression Logistique

Bar plot

 « length », « margin_low » et « margin_up » sont les variables avec la plus forte influence sur « is_genuine »

Modèle

- Le meilleur modèle utilise « length »,
 « margin_low » et « margin_up », et « height_right».
- Moins de variables simplifie le modèle et réduit les risques de overfitting.

SciKitLearn – Régression Logistique

Accuracy: 99%

Précision: 98,45%

Recall: 100%

Statsmodels : Régression Logistique

Augmenter le seuil = Réduire les faux positifs Abaisser le seuil = Réduire les faux négatifs

Seuil de 0,6 ou 0,7

- Pas de faux négatif
- 2 faux positif

```
Seuil 0.3 - Nombre de True Negative = 102
Seuil 0.3 - Nombre de True Positive = 190
Seuil 0.3 - Nombre de False Negative = 0
Seuil 0.3 - Nombre de False Positive = 8
Seuil 0.4 - Nombre de True Negative = 105
Seuil 0.4 - Nombre de True Positive = 190
Seuil 0.4 - Nombre de False Negative = 0
Seuil 0.4 - Nombre de False Positive = 5
Seuil 0.5 - Nombre de True Negative = 107
Seuil 0.5 - Nombre de True Positive = 190
Seuil 0.5 - Nombre de False Negative = 0
Seuil 0.5 - Nombre de False Positive = 3
Seuil 0.6 - Nombre de True Negative = 108
Seuil 0.6 - Nombre de True Positive = 190
Seuil 0.6 - Nombre de False Negative = 0
Seuil 0.6 - Nombre de False Positive = 2
Seuil 0.7 - Nombre de True Negative = 108
Seuil 0.7 - Nombre de True Positive = 190
Seuil 0.7 - Nombre de False Negative = 0
Seuil 0.7 - Nombre de False Positive = 2
Seuil 0.8 - Nombre de True Negative = 109
Seuil 0.8 - Nombre de True Positive = 187
Seuil 0.8 - Nombre de False Negative = 3
Seuil 0.8 - Nombre de False Positive = 1
```

SciKitLearn – Régression Logistique

Accuracy: 99,33%

Précision: 98,96%

Recall: 100%

K-means

Nombre de clusters

• Pas besoin de la méthode du coude : 2 clusters, les vrais et les faux billets

K-means Plot

• 2 clusters bien définis

K-means

Accuracy: 98,67%

Précision: 99,49%

Recall: 98,48%

Conclusion

Meilleur algorithme:

Régression logistique de Statsmodels

- Le meilleur score d'accuracy
- Le meilleur score de précision
- Le meilleur score de ROC-AUC

	Accuracy	Précision	Recall	Score de ROC-AUC
Régression logistique de Statsmodels	0,9967	1	0,9947	0,9974
Régression logistique de SciKitLearn	0,9933	0,9896	1	0,9909
K-means	0,9867	0,9802	1	0,9804