Weighted Model Counting Without Parameter Variables

Paulius Dilkas Vaishak Belle

University of Edinburgh, Edinburgh, UK

SAT 2021

Weighted Model Counting (WMC)

- Generalises propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neural-symbolic artificial intelligence

$$w(x) = 0.3, \ w(\neg x) = 0.7, w(y) = 0.2, \ w(\neg y) = 0.8$$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

The Problem with Assigning Weights to Literals

A Simple Bayesian Network

- ► from 2 binary variables
- ▶ to 8 variables and 17 clauses
- with lots of redundancy

Its WMC Encoding

```
p cnf 8 17
-2 -1 0
1 2 0
-3 1 0
-1 \ 3 \ 0
-5 -1 0
-5 -4 0
1 4 5 0
-6 -1 0
-6 4 0
-4160
-7 1 0
-7 -4 0
-1 4 7 0
-810
-8 \ 4 \ 0
-4 -1 8 0
-40
c weights 1.0 \ 1.0 \ 0.5 \ 1.0 \ \setminus
0.5 1.0 1.0 1.0 0.6 1.0 \
0.4 1.0 0.1 1.0 0.9 1.0
```

The Problem with Assigning Weights to Literals

A Simple Bayesian Network

- ► from 2 binary variables
- ▶ to 8 variables and 17 clauses
- with lots of redundancy

Its WMC Encoding

```
p cnf 8 17
-2 -1 0
                      \neg x_1 \Leftrightarrow x_2
1 2 0
-310
                       x_1 \Leftrightarrow x_3
-1 3 0
-5 -1 0
-5 -4 0
                    \neg x_1 \land \neg x_4 \Leftrightarrow x_5
1 4 5 0
-6 -1 0
-640
                      \neg x_1 \land x_4 \Leftrightarrow x_6
-4 1 6 0
-7 -4 0
                      X_1 \land \neg X_4 \Leftrightarrow X_7
-1 4 7 0
-840
                       x_1 \wedge x_4 \Leftrightarrow x_8
-4 -1 8 0
                        \neg x_4
-40
c weights 1.0 1.0 0.5 1.0 \
0.5 1.0 1.0 1.0 0.6 1.0 \
041001100910
```

A More Expressive Alternative

Definition (Pseudo-Boolean Projection (PBP))

A PBP instance is a tuple (F, X, ω) , where X is the set of variables, F is a set of two-valued pseudo-Boolean functions $2^X \to \mathbb{R}$, and $\omega \in \mathbb{R}$ is the scaling factor.

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) := \begin{cases} p & \text{if } Y \models \phi \\ q & \text{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Example

- ► Indicator variable: x
- Parameter variables: p, q
- ▶ Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause

- ► Indicator variable: x
- Parameter variables: p, q
- ▶ Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause	In CNF
$\neg x \Rightarrow p$	$x \lor p$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$
$x \Rightarrow q$	$\neg x \lor q$
$q \Rightarrow x$	$x \vee \neg q$
$\neg \chi$	$\neg X$
	1/X

- ► Indicator variable: x
- Parameter variables: p, q
- ▶ Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Pseudo-Boolean Function	In CNF	WMC Clause
$x \Rightarrow q$ $\neg x \lor q$ $[x]_1^{0.8}$ $q \Rightarrow x$ $x \lor \neg q$	$[\neg x]_1^{0.2}$	$x \lor p$	$\neg x \Rightarrow p$
$q \Rightarrow x$ $x \lor \neg q$		•	$p \Rightarrow \neg x$
	$[x]_1^{0.8}$	•	$x \Rightarrow q$
Г 11		$x \vee \neg q$	$q \Rightarrow x$
$\neg x \qquad \neg x \qquad [\neg x]_0^{\dagger}$	$[\neg x]_0^1$	$\neg x$	$\neg x$

- ► Indicator variable: x
- Parameter variables: p, q
- ▶ Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

In CNF	Pseudo-Boolean Function	
$x \lor p$	$[\neg x]_1^{0.2}$	
$\neg x \lor \neg p$. 10.0	$[x]_{0.2}^{0.8}$
•	$[x]_1^{0.8}$	
$x \vee \neg q$		
$\neg x$	$[\neg x]_0^1$	$[\neg x]_0^1$
	$\neg x \lor \neg p$ $\neg x \lor q$ $x \lor \neg q$	$ \begin{array}{cccc} \neg x \lor \neg p \\ \neg x \lor q \\ x \lor \neg q \end{array} $

Brief Summary

- ► Fewer variables and clauses/functions
- ▶ Improved state of the art for Bayesian network inference
- Some conditions need to be satisfied

Brief Summary

- ► Fewer variables and clauses/functions
- ▶ Improved state of the art for Bayesian network inference
- Some conditions need to be satisfied

Thank You!