Algorytmy Ewolucyjne

Dawid Bugajny, Wojciech Woszczek,
Igor Ratajczyk
AiR EAIiIB AGH

Evolutionary Algorithms

Algorytmy ewolucyjne to cała klasa algorytmów inspirowanych poniekąd naturą procesu ewolucji zaprojektowanych do rozwiązywania problemów głównie optymalizacyjnych.

Algorytmy genetyczne to podklasa algorytmów ewolucyjnych dla binarnego kodowania problemu.

EA topics overview

- Fenotyp p, genotyp g
- Funkcja przystosowania F, przystosowanie f
- Populacja, osobnik X
- Chromosomy
- Geny
- Reprodukcja
- Sukcesja
- Mutacja
- Krzyżowanie

Genotype

Genotyp (g) – kod, przepis na utworzenie fenotypu. Jest reprezentowany przez punkt w przestrzeni kodów.

Phenotype

Fenotyp (**p**) – zestaw cech określanych przez genotyp, podlegających ocenie środowiska. Jest reprezentowany przez punkt w przestrzeni rozwiązań problemów.

Genotype & Phenotype

 W prostych problemach lub w niektórych schematach ewolucyjnych genotyp i fenotyp mogą być tożsame.

Genotype & Phenotype

$$\exists H: \mathcal{G} \to \mathcal{P} ; H(\boldsymbol{g}) = \boldsymbol{p}$$

$$\forall p \in \mathcal{P} \exists g \in \mathcal{G} ; H(g) = p$$

$$\rho_g(\boldsymbol{g_1},\boldsymbol{g_2}) \geq \rho_g(\boldsymbol{g_1},\boldsymbol{g_3}) \Rightarrow \rho_p(\boldsymbol{p_1},\boldsymbol{p_2}) \geq \rho_p(\boldsymbol{p_1},\boldsymbol{p_3})$$

Genotype & Phenotype metrics

Aby genotypy i fenotypy miały dobre własności, potrzebne są odpowiednie metryki. (Zasadniczo zakłada się lokalność mutacji.)

Do (teoretycznej) analizy działania algorytmów przydatne są metryki różnorodności genotypu:

- wartości własne macierzy kowariancji genotypów
- Odległość między najbardziej oddalonymi od siebie osobnikami

Genotype & Phenotype

Sposoby kodowania genotypu:

- kod binarny $g \in \{0,1\}^n$
- kod Gray'a
- wektor liczb rzeczywistych/całkowitych $g \in \mathbb{R}^n$
- struktury drzewiaste
- listy
- słowniki
- ogólnie jakiekolwiek struktury danych*

Fitness function

Funkcja przystosowania – (czasem *krajobraz adaptacyjny*) rzeczywista (często dodatnia (?)) funkcja określająca jak dobrze do środowiska przystosowany jest dany osobnik (a raczej jego fenotyp). Funkcja rzeczywista, w najprostszym przypadku stacjonarna i deterministyczna. W zależności od problemu może być funkcją niestacjonarną, stochastyczną. W bardzo zaawansowanych problemach może nie być dana explicite.

Fitness function – Modern Approach

Funkcje przystosowania rzeczywistych problemów wymagają przeprowadzenia kosztownych symulacji. W takich wypadkach można stosować przybliżone funkcje przystosowania albo przybliżone modele lub ich połączenia (amalgamation).

Population

Populacja osobników jest najczęściej rozróżniana na:

P Parents – populacja rodzicielska

O Offspring – populacja potomna

T Temporal – tymczasowa populacja po reprodukcji **P** ale przed działaniem operatorów genetycznych

Genetic Operators

Operatory genetyczne

Mutacja

$$D \rightarrow D$$

Krzyżowanie (rekombinacja)

$$D^l \to D^k$$

- Inwersja (?)
- Cięcie
- Shift

Genetic Operators

Pożądanymi cechami operatorów genetycznych są:

- Spójność możliwość wygenerowania dowolnego chromosomu z dowolnego innego posługując się jedynie operatorami genetycznymi
- Nieobciążenie żaden kierunek poszukiwań nie jest faworyzowany.

Mutation

Mutacja – losowe zakłócenie działające na fenotypu osobnika.

Mutation

Metody mutacji obejmują:

- Negację bitu
- Zamiana bitu na losowy
- Szum Gausowski
- Szum Cauchy'ego
- Próbkowanie podprzestrzeni (dla znanych ograniczeń wartości genotypów)

Cauchy Distibution

Rozkład Cauchy'ego – ciągły rozkład prawdopodobieństwa, w którym funkcja gęstości przyjmuje postać:

$$f(x) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$

Rozkład Cauchy'ego nie posiada określonych żadnych momentów (w klasycznym sensie)(!).

Uogólnieniem jest rozkład Cauchy'ego – Lorenza:

$$f(x) = \frac{1}{\gamma \pi} \frac{1}{\left(\frac{x - \mu}{\gamma}\right)^2 + 1}$$

Crossover

Krzyżowanie - operator genetyczny działający na co najmniej dwóch osobnikach rodzicielskich i prowadzący do powstania co najmniej jednego osobnika potomnego.

Crossover

Warianty operatorów krzyżowania obejmują:

• Para rodziców, para potomków:

$$D^2 \rightarrow D^2$$

Para rodziców, jeden potomek:

$$D^2 \rightarrow D^1$$

- Krzyżowanie globalne:
 - osobnik wiodący parzy się z każdym innym osobnikiem

Crossover

Metody krzyżowania obejmują:

- Krzyżowanie jednopunktowe
- Krzyżowanie dwu- i wielopunktowe
- Krzyżowanie równomierne
- Krzyżowanie uśredniające

Selection

Selekcja –proces ogólnie polegający na wyborze osobników do reprodukcji. Powinna odzwierciedlać fakt, że przetrwać powinny osobniki lepiej przystosowane.

- Selekcja progowa
- Selekcja proporcjonalna/ruletkowa
- Losowanie ze zwracaniem powyższych
- Całkowite zastępowanie
- Częściowe zastępowanie
- Sukcesja Elitarna

Elitism

Elityzm, sukcesja elitarna – strategia sukcesyjna gwarantująca przetrwanie w niezmienionej formie co najmniej najlepszego osobnika.

Selective pressure

Nacisk selektywny – tendencja algorytmu to poprawiania średniej wartości przystosowania.

Simple Genetic Algorithm (SGA)

Prosty algorytm genetyczny zaproponowany w 1975 roku przez J.Holland'a, celu modelowania procesu ewolucji.

Simple Genetic Algorithm (SGA)

```
t=0
P = new P()
f = F(P)
while not Stop:
  T = reproduce(P,f)
  O = genetic operators(T)
  f = F(O)
  P = succession(P,O,f)
  t++
```

Premature Convergence

Przedwczesna/niedojrzała zbieżność zachodzi gdy algorytm ewolucyjny nie eksploatuje przestrzeni rozwiązań w stopniu wystarczającym i zaczyna eksploatować obszar przyciągania niezadowalającego minimum.

Stop condition

Analogia do ewolucji może sugerować, że algorytm ewolucyjny nie powinien mieć warunku stopu.

Z uwagi na wyjątkowo subtelną użyteczność tego powiązania za warunki stopu można uznawać:

- Liczba iteracji
- Poprawa względna rozwiązania
- Ograniczoną lub niezmienną różnorodność genotypu

Exploration & Exploitation tradeoff

Kompromis między eksploracją a eksploatacją – kompromis między dalszym przeszukiwaniem przestrzeni rozwiązań a zbieganiem do minimum obszaru przeciągania, w którym się znajduje.

Hybrid Evolutionary Algorithm

Hybrydowe Algorytmy Ewolucyjne – idea uzupełniająca algorytmy genetyczne o element zachłanny/eksploatujący.

HEA – Modern Approach

Lamarckian Learning – stosowanie lokalnej optymalizacji do poprawy genotypu osobnika.

Baldwinian Learning – stosowanie lokalnej optymalizacji do poprawy wartości funkcji celu przy niezmienionym genotypie osobnika.

$$\Delta L < D$$

$$0 \le L$$

L: $f, g \in \mathcal{G}$ $X(f,g) = \frac{1}{2}(f+g) = h$ $X_{\alpha}(f,g) = \alpha f + (1-\alpha)g = h$

$$f > 0 \land g > 0 \Longrightarrow h > 0$$
?
 $\Delta f < D \land \Delta g < D \Longrightarrow \Delta h < D$?

ΔL : $f,g \in \mathcal{G}$ $X(f,g) = \frac{1}{2}(f+g) = h$ $X_{\alpha}(f,g) = \alpha f + (1-\alpha)g = h$ $f < D \land g < D \Rightarrow h < D$? $If > 0 \land Ig > 0 \Longrightarrow Ih > 0$?

Krzyżowanie jednopunktowe:

$$X(f,g) = H(x)f + H(-x-1)g$$
?

$$L_0 = 2$$

 $f = [-1, -1, 1, 1]$
 $g = [1, 1, -1, -1]$

Dwu- i wielopunktowe krzyżowania są analogicznie bezużyteczne.

Konstrukcja rozwiązań początkowych:

$$\forall t > 0 \ \Delta L(t) \sim U(-BL(t), D)$$

$$\forall t > 0 \ \Delta L(t) \sim U(-L(t-1), D)$$

Mutacja:

- Szum Cauchy'ego
- Szum Gaussowski
- Z rzutowaniem na rozwiązania dopuszczalne
- Bez projekcji
- Szum jednostajny w dopuszczalnym przedziale

Elitism

Baldwinian Learning

HEA – greedy search

Literature

- J.Arabas "Wykłady z algorytmów ewolucyjnych"
- K.F.Man K.S.Tang S.Kwong "Genetic Algorithms Concepts and Designs"
- Cormen et al. "Wprowadzenie do algorytmów"
- S.Skiena "The Algorithm Design Manual"
- El-Mihoub et al. "Hybrid Genetic Algorithms: A Rewiew"

