期末复习

一、选择题

1. 设随机事件 A 与 B 互	五不相容,且 $P(A) > 0, P(B)$	3)>0,则()	
(A) $P(A B) = P(A)$	(B) $P(AB) = P(A)P(B)$	$(C) P(A B) = \frac{P(A)}{P(B)}$	(D) $P(A B) = 0$
2. 在区间(0,1)中随机均	也取两个数,则"两数之和	大于1.2"的概率为()	
(A) 0.28	(B) 0.72	(C) 0.32	(D) 0.68
3. 已知随机变量 X 的概	既率密度函数为 $f_X(x)$,令	Y = -3X,则 Y 的概率密度	度函数 $f_{Y}(y)$ 为()
(A) $3f_X(-3y)$	(B) $f_X(-\frac{y}{3})$	(C) $\frac{1}{3}f_X(-\frac{y}{3})$	(D) $-\frac{1}{3}f_X(-\frac{y}{3})$
4. 设随机变量 $X \sim U[1]$	$,7], Y \sim e(\frac{1}{2}), 且 X 与 Y$	相互独立,则 D(2X-Y)=	= ()
(A) 2	(B) 8	(C) 10	(D) 16
	X X	0 1 2	
5. 设二维随机向量(2	(X,Y) 的概率分布为 $(1,Y)$	0.2 0,2 b , 若事件 a 0.1 0.	{max {X }Y }⊨ 1与事件
{min{X Y }	(立,则 b = ()		
(A) 0.1	(B) 0.2	(C) 0.3	(D) 0.4
6. 设随机变量 X 与 Y x	相互独立,且 X 的概率分布	式为 $P{X = 1} = P{X = -1}$	$=0.5$, $Y \sim P(2)$,
♦ $Z = XY$, \bigvee cov(X	(Z,Z) = (
(A) 1	(B) 2	(C) 3	(D) 4
7. 设(X ₁ ,X ₂ ,X ₃)是来	自总体 X 的简单随机样本,	α 是未知参数,以下函数	不是统计量的是(
(A) $X_1 + X_2 + X_3$	(B) $\alpha X_1 + X_2 + X_3$	(C) $X_1 X_2 X_3$	(D) $\max\{X_1, X_2, X_3\}$
8. 设(X ₁ , X ₂ , X ₃) 是来	自正态总体 X 的简单随机构	羊本,则下列估计总体 X 的	均值 μ 的估计量中最好
的是()			
(A) $\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$		(B) $\frac{1}{12}X_1 + \frac{3}{4}X_2 + \frac{1}{6}X_3$	
(C) $\frac{1}{2}X_1 + \frac{2}{3}X_2 - \frac{1}{6}$	X_3	(D) $\frac{1}{2}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3$	ı

二、计算题

- 1. 甲、乙、丙三人各自独立破译一份密码,已知三人能破译出密码的概率分别为 0.5, 0.6, 0.7, 求:密码能被破译出来的概率.
- 2. 已知连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x \le 0 \\ Ax^2, & 0 < x < 1, \ x : 1, & x \ge 1 \end{cases}$
 - (1) 常数 A, (2) $P{0.5 < X < 0.8}$
- 3. 设总体 X 的概率密度函数为 $f(x;\theta) = \begin{cases} \theta x^{-\theta-1}, & x>1 \\ 0, & x\leq 1 \end{cases}$, $(\theta>1)$, (X_1,X_2,\cdots,X_n) 为取自该总体 X 的简单随机样本,试求 θ 的最大似然估计量.
- 4. 设工厂生产的螺钉长度服从正态分布,现从中随机抽取 6 个,测得长度(单位: mm)分别为:
- 55, 54, 54, 56, 53, 52, 求方差 σ^2 的 95% 置信区间. (最终计算结果请保留小数点后 2 位)

三、应用题

- 1. 设某种元件的使用寿命 X (单位: 小时)的概率密度函数为 $f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000 \\ 0, & x \le 1000 \end{cases}$,求:
- (1) 该元件使用寿命不超过 1500 小时的概率:
- (2) 若有 5 个独立工作的这种元件, 求在使用 1500 小时后, 恰好有一个元件损坏的概率.
- 2. 假设一生产线生产的产品的次品率为p=0.1,求:在新生产的 400 件产品中,次品有 40~46 件的概率.
- 3. 假设考生数学成绩服从正态分布,现随机抽取 25 位考生的数学成绩,算得平均成绩 \overline{X} = 71分,标准差 S = 10 分,问:是否可以认为全体考生的数学平均成绩高于 70 分? (α = 0.05)

四、解答题

- 1. 设二维连续型随机向量(X,Y)的概率密度函数为 $f(x,y) = \begin{cases} 8xy^3, & 0 < x < 1, & 0 < y < 1 \\ 0, &$ 其他
- (1) 边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) X 与 Y 是否相互独立,说明理由;(3) $P\{X < Y\}$.
- 2. 设随机变量 X 与 Y 均服从参数 $p=\frac{2}{3}$ 的 0-1 分布,且 X 与 Y 的相关系数 $\rho_{X,Y}=\frac{1}{4}$,求:
- (1) cov(X,Y); (2) (X,Y)的概率分布.

五、证明题

- 1. 设 A, B 为随机事件,且 0 < P(B) < 1,若 $P(A|B) > P(A|\overline{B})$,证明: P(A|B) > P(A)
- 2. 设 (X_1,X_2,\cdots,X_n) 为来自正态总体 $N(0,\sigma^2)$ 的简单随机样本, \overline{X} 与 S^2 分别为该样本的样本均值

与样本方差,证明:
$$Y = \frac{n(\overline{X})^2}{S^2} \sim F(1, n-1)$$

附表:

$\Phi_0(1) = 0.8413$	$t_{0.025}(24) = 2.064$	$\chi^2_{0.025}(5) = 12.833$	$F_{0.025}(1,5) = 10.01$
$\Phi_0(1.64) = 0.95$	$t_{0.025}(25) = 2.06$	$\chi^2_{0.025}(6) = 14.449$	$F_{0.025}(1,6) = 8.81$
$\Phi_0(1.96) = 0.975$	$t_{0.05}(24) = 1.711$	$\chi^2_{0.975}(5) = 0.831$	$F_{0.05}(1,5) = 6.61$
$\Phi_0(2) = 0.97725$	$t_{0.05}(25) = 1.708$	$\chi^2_{0.975}(6) = 1.237$	$F_{0.05}(1,6) = 5.99$

一、选择题

DCCDBBBA

二、计算题

1.
$$M$$
: $p = 1 - (1 - 0.5)(1 - 0.6)(1 - 0.7) = 0.94$

2. 解: (1) 由
$$\lim_{x\to 1^-} F(x) = \lim_{x\to 1^+} F(x) = F(1)$$
, 得 $A=1$

(2)
$$P{0.5 < X < 0.8} = F(0.8) - F(0.5) = 0.39$$

3. 解:
$$L(\theta) = \theta^n x_1^{-\theta-1} x_2^{-\theta-1} \cdots x_n^{-\theta-1}$$
$$\ln L(\theta) = n \ln \theta - (\theta+1) \sum_{i=1}^n \ln x_i$$
$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} - \sum_{i=1}^n \ln x_i = 0$$

其唯一解是 $\hat{\theta} = \frac{n}{\sum_{i=1}^n \ln x_i}$

4. 解:
$$\overline{X} = 54$$
, $S^2 = 2$

置信区间:
$$\left(\frac{5S^2}{\chi^2_{0.025}(5)}, \frac{5S^2}{\chi^2_{0.975}(5)}\right) = (0.78, 12.03)$$

三、应用题

1.
$$\Re$$
: (1) $P\{X \le 1500\} = \int_{1000}^{1500} \frac{1000}{x^2} dx = \frac{1}{3}$

(2) 设Y 表示使用 1500 小时后损坏的元件数,则 $Y \sim b(5, \frac{1}{3})$

$$P{Y = 1} = 5 \times (\frac{1}{3}) \times (1 - \frac{1}{3})^4 = \frac{80}{243}$$

2. 解:设X表示等外品的件数,则 $X \sim b(400,0.1)$

$$\begin{split} P\{40 \le X \le 46\} &\approx \varPhi_0\Bigg(\frac{46 - 400 \times 0.1}{\sqrt{400 \times 0.1 \times 0.9}}\Bigg) - \varPhi_0\Bigg(\frac{40 - 400 \times 0.1}{\sqrt{400 \times 0.1 \times 0.9}}\Bigg) \\ &= \varPhi_0(1) - \varPhi_0(0) = 0.3413 \end{split}$$

3. 解: $H_0: \mu \le 70$

$$\therefore \alpha = 0.05$$
, $\therefore t_{0.05}(24) = 1.711$

又
$$\overline{X} = 71$$
, $S = 10$,则 $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = 0.5 < t_{0.05}(24) = 1.711$

接受 H_0

四、解答题

1. 解: (1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(y, y) dx \begin{cases} 4y^3, & 0 < y < 0, \\ 0, & \text{##} \end{cases}$$

(2) $:: f(x,y) = f_X(x)f_Y(y)$, 所以 X 与 Y 相互独立

(3)
$$P{X < Y} = \int_0^1 dx \int_x^1 8xy^3 dy$$

= $\int_0^1 (2x - 2x^5) dx = \frac{2}{3}$

2.
$$\Re$$
: (1) $\operatorname{cov}(X,Y) = \rho \sqrt{DX} \sqrt{DY} = \frac{1}{4} \sqrt{\frac{2}{9}} \sqrt{\frac{2}{9}} = \frac{1}{18}$

(2)
$$E(XY) = cov(X,Y) + EX \cdot EY = \frac{1}{18} + \frac{2}{3} \cdot \frac{2}{3} = \frac{1}{2}$$

$$P\{X=1,Y=1\}\frac{1}{2}$$

$$P\{X=1,Y=0\}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6},P\{X=0,Y=1\}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$$

$$X$$

$$(X,Y)$$
 的概率分布为
$$\frac{X}{0}$$

$$\frac{1/6}{1/6}$$

$$\frac{1/6}{1/2}$$

五、证明题

1. 证明: 若
$$P(A|B) > P(A|\overline{B})$$
, 则有 $\frac{P(AB)}{P(B)} > \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{1 - P(B)}$

$$\mathbb{P}[P(AB)[1-P(B)] > [P(A)-P(AB)]P(B)$$

则 P(AB) > P(A)P(B), 所以 P(A|B) > P(A)

2. 证明:
$$\overline{X} \sim N(0, \frac{1}{n}\sigma^2)$$
,则 $\frac{\overline{X}}{\sigma/\sqrt{n}} \sim N(0, 1)$,所以 $\left(\frac{\overline{X}}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2(1)$

又
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,且 $\left(\frac{\overline{X}}{\sigma/\sqrt{n}}\right)^2$ 与 $\frac{(n-1)S^2}{\sigma^2}$ 相互独立

$$\therefore Y = \frac{n(\overline{X})^2}{S^2} = \frac{\left(\frac{\overline{X}}{\sigma/\sqrt{n}}\right)^2}{\frac{(n-1)S^2}{\sigma^2}/(n-1)} \sim F(1, n-1)$$