

UNCLASSIFIED

AD NUMBER

AD369098

CLASSIFICATION CHANGES

TO: **UNCLASSIFIED**

FROM: **CONFIDENTIAL**

LIMITATION CHANGES

TO:

**Approved for public release; distribution is
unlimited.**

FROM:

**Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; 15 OCT 1965.
Other requests shall be referred to Air Force
Rocket Propulsion Lab., Edwards AFB, CA.**

AUTHORITY

**31 Oct 1977, DoDD 5200.10 ; AFRPL per DTIC form
55**

THIS PAGE IS UNCLASSIFIED

SECURITY

MARKING

**The classified or limited status of this report applies
to each page, unless otherwise marked.
Separate page printouts MUST be marked accordingly.**

**THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.**

**NOTICE: When government or other drawings, specifications or other
data are used for any purpose other than in connection with a defi-
nitely related government procurement operation, the U. S. Government
thereby incurs no responsibility, nor any obligation whatsoever; and
the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use or sell any patented invention that
may in any way be related thereto.**

8
6
0
0
6
3

SYNTHESIS OF LMH-2
(Unclassified Title)

CONFIDENTIAL

Final Technical Report
January 15, 1964 - October 15, 1965
on Contract
AF 04(611)-9700
AFSC Project No. 3148
Program Structure No. 750G
Report No. AFRPL-TR-66-15

By

Jawad H. Murib

Research Division
U.S. INDUSTRIAL CHEMICALS CO.
Division of
NATIONAL DISTILLERS AND CHEMICAL CORP.
Cincinnati, Ohio

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE
DEFENSE CAPABILITY OF THE UNITED STATES WITHIN THE
MEANING OF THE ESPIONAGE LAWS, TITLE 18, U. S. C.,
SECTIONS 770 AND 774. THE TRANSMISSION OR REPRODUCTION
OF WHICH IS BY LAW ILLEGAL UNLESS A PERSON
IS AUTHORIZED BY L-6.

CONFIDENTIAL

FOREWORD

This report was prepared by the Research Division of U.S. Industrial Chemicals Co., Division of National Distillers and Chemical Corporation, Cincinnati, Ohio under USAF Contract No. AF04(611)-9700. The Project Monitor is 1st. Lt. J. Rombouts, Air Force Rocket Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, United States Air Force, Edwards, California.

The report covers work performed during the period January 15, 1964 to October 31, 1965 by Dr. Jawad H. Murib, Senior Research Associate, serving as principal investigator, assisted by Mr. C. A. Bonecutter, Chemist and Mr. B. Seeskin, Assistant Chemist. Dr. D. Horvitz, Assistant Research Manager, acted as a consultant on the project.

This effort is being continued under Air Force Contract AF04(611)-11402.

This technical report has been reviewed and is approved.

GEORGE F. BABITS, Lt. Colonel, USAF
Chief, Propellant Division

CONFIDENTIAL

DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
OBJECTIVE	2
PROJECT STATUS	2
Summary	2
Details	4
Preparation of Chloroberyllium Hydride (CBH)	4
Nature of the Reaction of BeCl ₂ with NaH in Ethers	4
Factors Influencing the Conversion of BeCl ₂ to CBH in Basic Solvents	5
Effect of Basic Solvents	5
Concentration of BeCl ₂	8
Molar Ratio NaH/BeCl ₂	9
Type of Mixing	9
Catalysts	9
Factors Affecting the Rate of Reduction of BeCl ₂ with NaH in Aromatic Solvents	9
Effect of Temperature on the Reduction Rate	9
Effect of Particle Size of NaH on the Reduction Rate	11
Effect of BeCl ₂ Concentration on the Reaction Rate	11
Effect of Incremental Addition of NaH on the Atomic Ratio H ⁻ /Be ⁺⁺	13
Effect of Complexing Ether on the Reaction Rate	13

DOWNGRADED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DOD DIR 5200.19

CONFIDENTIAL

CONFIDENTIALTABLE OF CONTENTS

(Continued)

Page No.

Purification Methods of Chloroberyllium Hydride	16
Fractional Crystallization of Unreacted $\text{BeCl}_2:\text{OEt}_2$	16
Reduction of Unreacted $\text{BeCl}_2\text{OEt}_2$ with NaH	16
Properties of Purified CBH-Etherate	16
Molecular Weight of CBH	16
Reaction of CBH with Iodine	17
Reaction of CBH with Protonic Hydrogen	17
Etherates of CBH	17
Behavior of CBH toward NaH	18
Infrared Absorption of CBH	18
Disproportionation of Chloroberyllium Hydride	19
Vacuum Disproportionation of CBH	20
Evidence for $\text{BeCl}_2:\text{OEt}_2$ as By-Product in the CBH Disproportionation	20
Factors Governing the Disproportionation of CBH	20
Effect of Ether on the Disproportionation	21
Effect of Temperature on the Extent of Disproportionation	22
Purity of the Disproportionation Product	24
Effect of Solvent on the Purity of BeH_2	24
Effect of Exposure to Atmospheric Conditions	25
Effect of Disproportionation Temperature on the Purity of BeH_2	26

DOWNGRADED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DOO DIR 5200.10

CONFIDENTIAL

CONFIDENTIALTABLE OF CONTENTS

(Continued)

Page No.

Disproportionation of Chloroberyllium Hydride in Solution	29
Solvent Effect on the Disproportionation	29
Effect of Temperature and time of Disproportionation on the Purity of BeH ₂	31
Removal of Retained Ether	33
Thermal Dissociation	
Chemical Displacement with Hydride Reagents	35
Reaction with Lithium Borohydride	36
Action of Lithium Aluminum Hydrides	36
Effect of 1,2-Dichloroethane	38
Effect of Nucleation with Crystalline BeH ₂ on the Nature of the CBH Disproportionation Product	39
Nature of Complexing Agents for CBH	39
Attempted Transformation of Amorphous to Crystalline BeH ₂	40
Effect of Solubilizing Agents	40
Dissociation of BeH ₂ :NMe ₃ in the Presence of Hydride Reagents	41
High Shear Extrusion	42
EXPERIMENTAL	43
Materials	43
Synthesis of CBH in Diethyl Ether Solvent	43
Rate of CBH Formation from the Reaction of NaH with BeCl ₂ in Diethyl Ether	44

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIALTABLE OF CONTENTS

(Continued)

Page No.

Rate of Formation of CBH from the Reaction of NaH with BeCl ₂ :2Et ₂ O in Aromatic Solvent	45
Rate of Formation of CBH in Me ₂ S	45
Preparation of ClBeH:OEt ₂	47
Evidence for the Existence of CBH-Dietherate	47
Evidence for the Existence of CBH-Monoetherate	47
Upgrading of ClBeH:OEt ₂	47
Disproportionation of ClBeH:OEt ₂ Under Vacuum	48
Disproportionation of ClBeH:OEt ₂ in Solution	48
Dissociation of BeH ₂ :NMe ₃ in the Presence of NaH	49
Displacement of Et ₂ O from CBH:OEt ₂ with Trimethyl Amine	49
Reaction of NaH with BeCl ₂ :NMe ₃	49
Dissociation of BeCl ₂ :2Et ₂ O	50
Decomposition Pressure of BeCl ₂ :2Et ₂ O	50
High Shear Extrusion of Beane Product	51

CONFIDENTIAL

DEGRADED AT 3 YEAR INTERVALS

CLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIAL**INTRODUCTION**

Considerable effort has been spent on the development of suitable processes for the manufacture of beryllium hydride of high purity and crystallinity for use in chemical propellant systems. The most successful process to date was developed by Ethyl Corporation and based on the pyrolytic method of Coates and co-workers utilizing di-t-butyl beryllium (prepared from Grignard reagents) as a starting material.

This method yields amorphous solid with an absolute density of 0.65 g/cc. and an over-all purity of 93 wt.%. The amorphous product is converted to crystalline BeH₂ by compaction-fusion at an ultra high pressure of 200,000 psi. and 200°C. These methods are uneconomical and time consuming and thus impractical for large scale production of crystalline BeH₂.

The objective of developing an economical and convenient method for the production of high purity beryllium hydride with high density and crystallinity, therefore, remains to be accomplished.

Investigation in this laboratory revealed the existence of a new soluble hydride, chloroberyllium hydride (CPH) which became the basis for an applied research program of contract AF 04(611)-9700 to develop a process for the manufacture of high purity BeH₂ from readily available materials such as beryllium chloride (BeCl₂) and sodium hydride (NaH).

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
CLASSIFIED AFTER 12 YEARS
DDU DIR 5200.10

CONFIDENTIAL

2

OBJECTIVE

The objective of this program is to develop a process for the manufacture of high purity beryllium hydride with a high degree of crystallinity and with a greater density than that obtained by pyrolytic methods. The proposed process for making BeH₂, under the contract, involves two steps:

- Step 1. Preparation of chloroberyllium hydride from the reaction of beryllium chloride with sodium hydride in ethers or thioethers,

Z = Ether or Thioether

- Step 2. Disproportionation of the soluble intermediate CBH, in the absence of residual sodium hydride or by-product sodium chloride, to give insoluble beryllium hydride and soluble beryllium chloride,

PROJECT STATUSSummary

This report describes the progress made toward the synthesis of BeH₂ outlined below:

Preparation of chloroberyllium hydride from beryllium chloride-etherate and sodium hydride was achieved in conversions up to 95.3% based on beryllium chloride.

CONFIDENTIAL

REF ID: A34921
DOD DR 5200.10
DECLASSIFIED AFTER 12 YEARS
REF ID: A34921

CONFIDENTIAL

3

Disproportionation of the CBH intermediate was demonstrated to give beryllium hydride in purities up to 85.1 wt. %. The product was amorphous with residual Be-Cl bonds, retained ether, and Be-O bonds as the major contaminants. The atomic ratio of active hydride to residual chloride (H^-/Cl^-) in the final product reached up to 142/1. This was realized by treatment with LiAlH₄.

Although no crystalline beryllium hydride has been conclusively isolated, crystalline material was evident in samples obtained from the disproportionation of CBH in 1,2-dichloroethane solvent. Because BeH₂ is difficult to identify by X-ray and since impurities tend to "mask" the desired product except in samples of high purity, it was not certain whether the observed diffraction lines were related to crystalline BeH₂ or to associated impurities. A definite judgment on the crystallinity of the product awaits preparation of high purity BeH₂.

The CBH intermediate was isolated in essentially pure state with observed atomic ratios of Cl:Be:H of 1.02:1.00:0.98 in good agreement with the theoretical value 1:1:1 for ClBeH.

The reaction time of Step 1 was decreased from 30 hrs., obtained in ether-kerosene at 25°C., using ball-milling to about 4 hrs. in benzene at 80°C. and 2 hrs. in toluene at 105°C. employing simple stirring.

The amount of ether was decreased to only that required to form the dietherate, $BeCl_2 \cdot 2Et_2O$. This is advantageous in that it avoids recycle of large volume of ether solvent.

Particle size of NaH was found to influence the reaction rate. Use of NaH of average particle size of 5 microns gave about 33-fold faster reaction rate than that obtained with an average size of 40 microns.

The character of the CBH disproportionation product was found to be highly dependent on the nature of solvents, temperature and type of disproportionation, whether carried out under vacuum or in solution.

Disproportionation of CBH under vacuum gave gelatinous products difficult to filter and transfer, with extreme reactivity toward moisture. However, when the disproportionation was carried out in different solvents the products exhibited various hydrolytic activities with different filtration and flow characteristics. In aromatic solvents the disproportionation products appeared to have larger particle size and lower hydrolytic activity than those obtained by vacuum disproportionation.

DECLASSIFIED AFTER 12 YEARS
DDO DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

Complexing agents with different coordination strength toward ClBeH were found to be capable of effecting great variation in the chemical and physical properties of CBH intermediate. In the case of the adduct ClBeH:OEt₂ the disproportionation under vacuum gave amorphous products with H⁻ to residual Cl⁻ ratios of up to 137/1 and minor amounts of ether probably owing to terminal coordination. Likewise disproportionation of the dimethyl sulfide adduct ClBeH:SMe₂ led to an amorphous product retaining a large amount of residual chloride (H⁻/Cl⁻ = 6.5/1) but no Me₂S. When dimethyl ether was used as the complexing agent only a small amount of disproportionation product was obtained which was also amorphous to X-ray. Displacement of ether from ClBeH:OEt₂ by trimethyl amine resulted in the formation of a benzene-soluble adduct probably ClBeH:NMe₃ which appeared to be stable toward disproportionation. Its characteristics have not yet been determined.

Reduction of the adduct, BeCl₂:NMe₃ with sodium hydride in a mixed ether-benzene solvent at room temperature led to a soluble hydride presumably ClBeH:NMe₃ with conversions up to 40.7% based on initial BeCl₂:NMe₃.

DetailsPreparation of Chloroberyllium HydrideNature of the Reaction of BeCl₂ with NaH in Ethers

In order to establish whether chloroberyllium hydride undergoes transformation to beryllium hydride in the course of step (1) a rate study of this reaction was undertaken. Diethyl ether was employed in view of its marked influence on the conversion in contrast to those obtained in other basic solvents (see Table I). Kerosene was used as carrier for NaH.

The study revealed that two consecutive reactions are occurring as represented by equation (1) and (2). The course of the reaction was followed by analyzing for CBH. Its concentration rose to a maximum and then fell off, as shown in Fig. 1. The mole ratio of CBH to the total hydride in the reaction mixture is plotted against time. Curve 1 shows the change in content of CBH in Et₂O with ball-mill attrition. A maximum conversion of 74% occurred at 30 hrs. The concentration, then, diminished slowly via formation of insoluble hydride leaving a soluble amount of 15% of the total hydride at 110 hrs. The slow rate of diminution of soluble hydride permitted the isolation of CBH from the reaction mixture before it had changed into insoluble hydride.

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
BOB DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

5

**Factors Influencing the Conversion
of BeCl₂ to CBH in Basic Solvents**

The conversion of BeCl₂ to CBH at room temperature was found to depend on several factors: (a) nature of basic solvent, (b) concentration of BeCl₂, (c) type of mixing, (d) ratio of reactants and (e) catalysts. These factors are discussed below:

Effect of Basic Solvents: Several Lewis bases were tried such as dimethyl sulfide (Me₂S), diethyl ether (Et₂O), trimethyl amine (NMe₃), tetrahydrofuran (THF) and diglyme (see Table I). In Me₂S, formation of soluble CBH was accompanied by deposition of insoluble beryllium-hydride bonds. This would lead to a product contaminated with sodium and chloride ions. In diethyl ether, however, the rate of reaction (1) was faster than that of reaction (2). Thus, it was possible to isolate sodium-free, ether-soluble CBH in conversions up to 77.2% based on BeCl₂. Poor results were obtained in active ethers such as THF, and diglyme. The over-all results are shown in Table I.

TABLE I**Effect of Solvents on the Rate of CBH Production
from NaH and BeCl₂ at Room Temperature**

Solvent	Time, hrs.	% Conversion
Et ₂ O	31	77.2
Me ₂ S	5	25.7
ØH-Et ₂ O	17	13.0
Tetrahydrofuran	16	3.0
Diglyme	54	0.0
Et ₂ O-BEt ₃	15.5	72.5
Et ₂ O-AlEt ₃	20.0	33.0
Me ₂ S-BEt ₃	15.5	30.0

Extensive side reactions involving disproportionation of CBH or further reaction with NaH appear to dominate in active ethers. Table II shows the distribution of hydride content in both the liquid and solid phases of the reaction mixture.

CONFIDENTIAL

DECLASSIFIED AFTER 12 YEARS
DDO DIR 5290.10

TABLE II CONFIDENTIAL

Reaction of Sodium Hydride with Beryllium Chloride in Ether Solvents at Room Temperature

(Ratios and percentages expressed in mmoles.)

Expt. No.	Initial Ratio NaH/BeCl ₂	Solvent	Catalyst	Mixing	Reaction Time, hrs.	% Distribution of Hydride			
						C ₂ BeH Observed	Liquid Phase (a)	Solid Phase NaH Unreacted	Hydride Unaccounted for (b)
952-32	1.065	Me ₂ S	-	Ball-mill	15.5	24.20	37.30	38.50	
-33	1.020	Me ₂ S	BET ₃	Ball-mill	15.5	30.22	32.96	36.82	
-38	0.957	Et ₂ O	-	Magnetic stirrer	15.75	68.90	20.25	10.85	
-39	1.000	Et ₂ O	BET ₃	Magnetic stirrer	15.75	72.5	19.05	8.45	
946-28	0.943	Et ₂ O	-	Ball-mill	30.0	67.40	14.14	18.46	
-30	0.998	Et ₂ O	BET ₃	Magnetic stirrer	44.0	71.40	16.80	11.80	
952-63	0.988	Et ₂ O	AlEt ₃	Magnetic stirrer	164.75	36.10	-	-	
-52	0.750	Et ₂ O	-	Ultrasonic	29.75	54.80	33.50	11.70	
-71	1.795	Et ₂ O	-	Magnetic stirrer	45.25	69.40(c)	-	-	
-67	0.989	Et ₂ O	-	Magnetic stirrer	44.5	60.30	28.1	11.6	
-61	1.075	THF	-	Magnetic stirrer	16.0	2.97	-	-	
-58	1.015	Diglyme	-	Magnetic stirrer	54.0	0.0	59.20	40.80	

(a) Based on initial NaH.

(b) The difference between initial NaH and sum of HBeCl observed and NaH unreacted is believed to be BeH₂.

(c) Based on BeCl₂.

6
DOWNGRADED AT 3 YEAR INTERVALS
DECASSIFIED AFTER 12 YEARS
DDO DR 5200.10

CONFIDENTIAL

CONFIDENTIAL

FIGURE 1
RATE OF FORMATION OF CBH @ 25°C.

DOD INGRADED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

8

The data of Table II shows that some of the hydride (column 9) was unaccounted for and presumably deposited as insoluble beryllium hydride. This was confirmed by precipitation of a chloride-free, ether-insoluble, white solid by allowing a sodium-free, clear solution to stand at room temperature. The solid product exhibited an infrared absorption band at 5.8 μ , in contrast to a Be-H absorption near 5.9 μ . The solid generated hydrogen on treatment with aqueous acids. Since it is free of sodium the source of hydrogen must be BeH_2 . It is important to note that in the Et_2O experiments the unaccounted for hydride is much less than in DMS (column 9), making Et_2O the solvent of choice for carrying out step 1 at ambient temperature.

Concentration of BeCl_2 : The conversion of BeCl_2 to CBH in ether solutions increased with increasing initial concentration of BeCl_2 as shown in Table III.

TABLE III

Effect of Concentration of BeCl_2 in Ether on its Conversion to Chloroberyllium Hydride

(Temperature = 25°C., Reaction Time = 17.5 hrs., Ball-mill Attrition.)

Expt. No.	Concn. of BeCl_2 g. mole/1000 g. Et_2O	Ratio $\text{NaH}/$ BeCl_2	% Conv. to ClBeH	% Hydride Unaccounted for
952-114	0.595	1.03	61.2	22.0
946-28	0.650	0.93	68.5	-
952-113	0.935	1.03	77.2	5.7

These results (Table III) indicate that the disproportionation of CBH was repressed by increasing the concentration of BeCl_2 in Et_2O . A decrease in the unaccounted for hydride, from 22.0% to 5.7% (column 5), reflected an increase in conversion to 77.2% of soluble CBH. This is consistent with the reversal of the equilibrium reaction of Eq. 2.

- (1) CPIA, Specialized Fuel Meeting, (u) Sept. 17-18, 1963, page 6, Ethyl Corp., Baton Rouge, Louisiana.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOO DIR 8290.10

CONFIDENTIAL

9

Molar Ratio NaH/BeCl₂: The data presented in Table II (Expts. 952-71, and 952-67) show that 69.4% conversion to CBH was obtained at a molar ratio of NaH/BeCl₂=1.795 in contrast to 60.30% obtained at a ratio of 0.987. Although higher conversions can be obtained by employing higher ratios of NaH/BeCl₂, this would lead to coating of excess NaH by NaCl by-product. Recycle of excess hydride would be cumbersome.

Type of Mixing: Magnetic stirring was found to be suitable in dilute ethereal solutions of BeCl₂. In concentrated solutions, however, BeCl₂ forms two phases of etherates. The lower phase, being a heavy oil, prevents intimate mixing of reagents. In such cases ball-milling is preferred. Ultrasonic agitation did not give faster reaction rates than ball-mill attrition.

Catalysts: Attempts to catalyze the reaction by using BEt₃, to solubilize NaH, resulted only in a minor change in the conversion (Table II). Use of AlEt₃ (Fig. 1, Curve 3) lowered both the rate of formation of CBH and its subsequent transformation to insoluble Be-H bonds. Use of these alkyls was discouraged by the possibility of introducing undesirable impurities to BeH₂.

Factors Affecting the Rate of Reduction of BeCl₂:2Et₂O with NaH in Aromatic Solvents

Variables such as temperature, particle size of NaH, concentration, and type of complexing ether were found to be the most important factors influencing the rate of CBH formation. These are discussed below:

Effect of Temperature on the Reduction Rate: It is known that aromatic solvents dissolve BeCl₂-etherates. Consequently they were chosen as reaction media for the reduction of BeCl₂ with NaH at above ambient temperatures.

In toluene at 100-105° reaction (1) yielded a solution in which the atomic ratio of H⁻/Be⁺⁺ was 0.84 obtained in about 2 hours of reaction time (see Fig. 2, Curve 1). In benzene at 75-80°C. a ratio of 0.77 was obtained in 4.2 hrs. (Curve II). However, at room temperature in the ether-kerosene system a ratio of 0.66 was obtained in 19.7 hrs. and 0.82 in 45.7 hrs. (Curve III). Thus, reducing BeCl₂:2Et₂O with NaH in benzene and in toluene at reflux temperatures decreased the reaction time from days to hours.

CONFIDENTIAL

BU MERGED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 22 YEARS
DDB DIR 5200.10

CONFIDENTIAL

11

Effect of Particle Size of NaH on the Reaction Rate:
 Reduction of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ with NaH of different particle size was carried out under controlled conditions (Table IV). The results showed that using NaH of an average particle size of about 5.0μ gave 33-fold faster reaction rate than that obtained with 40μ . The rate data are shown in Fig 2 Curve IV for comparison.

TABLE IVEffect of Particle Size of NaH on the Rate of Formation of ClBeH

NaH Particle Size, μ	Temp., $^{\circ}\text{C}.$	Solvent	Reaction Time, hrs.	Ratio $\text{H}^-/\text{Be}^{++}$ c
40 a	80	Benzene	7.5	0.07
5 b	80	Benzene	2.25	0.71

{a) Commercial sample obtained from Metal Hydrides Inc.

{b) Made by US. Industrial Chemicals Co.

{c) Ratio of hydride to beryllium in solution.

Effect of BeCl_2 Concentration on the Reaction Rate:

The rate of formation of CH_2 from the reaction of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ with NaH in benzene was found to increase with increasing initial concentration of the dietherate. The trend is shown in Fig. 3. After 60-80% completion, the concentration of CH_2 did not increase, presumably due to coating of NaH by solid by-product NaCl.

Examination of the data of Fig. 3 indicated that about 80% conversion was obtained at $70-80^{\circ}\text{C}$. in 4 hrs. and 87.5% in 8 hrs. by employing an initial concentration of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ of 1.37 mmoles per 1000 grams of solution and a ratio of NaH/ BeCl_2 of 1/1. At a concentration of 0.85 molal the conversion was about 65% in 2 hrs. and 73% in 7 hrs. at $65-70^{\circ}\text{C}$. Decreasing the concentration to 0.45 molal, the conversion decreased to 46.7% in 2 hrs. at $70-80^{\circ}\text{C}$. In these experiments the concentration of soluble Be^{++} remained essentially constant indicating that the intermediate $\text{ClBeH} \cdot 2\text{Et}_2\text{O}$ was stable under the conditions of its formation.

DECLASSIFIED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DDO DM 8200.10

CONFIDENTIAL

CONFIDENTIAL

Fig. 3

12

Effect of Initial Concentration of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ on the Reaction Rate in Benzene Solution

Curve	Expt. No.	Initial Concn. $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ Moles/1000g. Solution	Temp. °C.	Molar Ratio NaH/BeCl_2
A	93	1.37	70-80	1.06
B	78	0.85	65-70	1.02
C	87	0.45	70-80	1.14

CONFIDENTIAL

13

Effect of Incremental Addition of NaH on the Atomic Ratio H⁻/Be⁺⁺: In order to increase the ratio of H⁻/Be⁺⁺ in solution, additional NaH was added to the reaction mixture (Step 1) after the concentration of CBH reached a constant value. The results are shown in Fig. 4. Curve A describes the variation H⁻/Be⁺⁺ ratio with time. When the ratio reached a constant level of 0.84, introduction of 33% additional NaH resulted in an increase to 0.95 approaching the theoretical value 1.00 to ClBeH. Curve B describes the results of a second experiment where an addition of 48% excess of NaH increased the H⁻/Be⁺⁺ ratio from 0.58 to 0.89.

Effect of Complexing Ether on the Reaction Rate: Comparative study of the reduction of BeCl₂:2Et₂O, BeCl₂:2Me₂S, BeCl₂:2Me₂O with NaH in benzene solution at 65-95°C. showed that the use of Et₂O gave soluble ratios of H:Be of up to 0.90. When Me₂S or Me₂O were used low values were obtained, 0.41 and 0.44 respectively. The intermediate HBeCl:2Et₂O seemed to undergo little or no side reaction during its formation in benzene solution, shown by an increase in the soluble hydride concentration with time while the beryllium content remained practically unchanged. The results of a typical experiment are plotted in Figure 5.

However, the dimethyl sulfide adduct ClBeH:2Me₂S, appeared to undergo side reaction as shown by simultaneous diminution of hydride and beryllium concentrations as shown in Fig. 6. The dimethyl sulfide probably promotes side reactions which consume the hydride.

In the case of dimethyl ether difficulties were encountered due to the low solubility of BeCl₂:20Me₂ in benzene (about 0.16% at 25°C.). Crystallization of the solute as it cools upon sampling led to clogging of the passages resulting in unreliable analytical results. This difficulty was overcome by operating at 90-95°C. A ratio of H⁻/Be⁺⁺ of 0.44 was obtained after 4 hours of reaction time. A decrease in the concentration of soluble hydride and of soluble beryllium was observed during the course of the reaction. This indicates the occurrence of side reactions by which soluble Be-H bonds are rendered insoluble. This was confirmed by the presence of beryllium in the solid phase. This amount of the insoluble beryllium was 26% of the total. Thus, dimethyl ether appears to promote undesirable side reactions which consume CBH. This behavior is analogous to that of tetrahydrofuran and of diglyme observed earlier (Table II).

DECLASSIFIED AFTER 12 YEARS
DOD DMR 8200.10

CONFIDENTIAL

CONFIDENTIAL

P15-4
Effect of Incremental Addition of NaOH
on the Atomic Ratio H^-/Be^{++}

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIAL

Fig. 5

Variation of Soluble Be⁺⁺ and C₁BeH:2Hg₂O
with Reaction Time

CONFIDENTIAL

DECLASSIFIED A TLR 12 YEARS
000 000 5200 10

Fig. 6

Variation of Soluble Be⁺⁺ and C₁BeH:2Mg₂O with Reaction Time

REACTION TIME, HOURS

CONFIDENTIAL

16

Purification Methods of Chloroberyllium Hydride

The intermediate CBH isolated from the reaction mixture of (Step 1) was always contaminated by small amounts of unreacted $\text{BeCl}_2\text{-etherate}$. It can be upgraded by two methods:

1. Fractional crystallization of unreacted $\text{BeCl}_2\text{:OEt}_2$: The liquid phase isolated from the reaction mixture ($\text{NaH} + \text{BeCl}_2$) after vacuum removal of the solvent was seeded with preformed $\text{BeCl}_2\text{:OEt}_2$. This resulted in the deposition of a crystalline solid and a liquid having the following atomic ratios:

	Atomic Ratios		
	Be^{++}	H^-	Cl^-
Found:	1.00	1.037	1.005
	1.00	0.978	1.015
Theory for ClBeH :	1.00	1.00	1.00

The solid phase was not analyzed.

2. Reduction of Unreacted $\text{BeCl}_2\text{OEt}_2$ with NaH : Incremental addition of NaH to the reaction mixture of Step 1 afforded a convenient route to upgraded CBH in one step. Reduction of beryllium chloride with 20-30% excess sodium hydride over that required by Eq. 1 gave a product with an atomic ratio of Cl/Be of 1.04/1.00 approaching the theoretical values 1/1 for ClBeH . This result confirms other observations that incremental addition of excess of NaH to the reaction mixture of step 1 afforded a soluble ratio of $\text{H}^-/\text{Be}^{++}$ of 0.95/1.00 (Fig. 4).

Properties of Purified CBH-Etherate

Molecular weight of CBH: Having isolated CBH-OEt₂ in essentially pure form, determination of its molecular weight was desirable. An attempt to determine its degree of association in benzene solution was hampered by the deposition of a white solid, presumably due to formation of BeH₂ according to the equilibrium:

Other solvents such as dichloromethane and chlorobenzene in which CBH does not undergo disproportionation should be used as media for molecular weight determination.

CONFIDENTIAL

C: NGACLD AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DIR 8200.10

CONFIDENTIAL

17

Reaction of CBH with Iodine: Iodine (I_2) reacted instantaneously and quantitatively with 2 moles of chloroberyllium hydride with release of one mole of gaseous hydrogen (H_2) as described below:

Theory (mmoles)	2.00	1.00	-	1.00
Found (mmoles)	2.04	1.00	-	0.97

Oxidation of CBH with iodine* provides a convenient and rapid method for its quantitative determination. The procedure is simple. It involves titrating a solution of CBH in Et_2O with a standard solution of I_2 in toluene or other inert solvents. The end point is taken when a yellow color persists due to slight excess of iodine. The accuracy of the method depends on absolute exclusion of moisture from reagents and equipment.

Reaction of CBH with Protonic Hydrogen: Like other active hydrides, CBH-etherates undergo protonolysis generating gaseous hydrogen and hydrogen chloride.

This reaction is violent and accompanied by heat evolution.

Etherates of CBH: Like beryllium chloride, ClBeH forms di- and monoetherates. The dietherate, ClBeH:2OEt_2 can be isolated from its ether or benzene solution by pumping in high vacuum at 0°C . to remove unbound ether. The ratio of bound ether to beryllium was 2/1. The dietherate upon pumping at 25°C . loses one mole of ether per mole of adduct to form the monoetherate according to the equation

* We wish to thank Dr. D. Horvitz of this laboratory for suggesting use of iodine as an oxidizing agent for chloroberyllium hydride.

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DIR 5200.10

CONFIDENTIAL

18

The dimeric nature of beryllium chloride monoetherate 2

suggests a dimeric structure for ClBeH:OEt_2

which accounts for the formation of BeH_2 on disproportionation.

Behavior of CBH toward NaH: Synthesis of CBH at room temperature in the presence of a large excess of NaH indicated that this intermediate undergoes little or no reaction with NaH. At a stoichiometry of 1.795 NaH to 1.0 BeCl_2 , the conversion of BeCl_2 to CBH was 69.4%, higher than the 60.3% obtained at the ratio of 0.987 to 1.0 (Table II), Expts. No. 752-71, -67).

The behavior of CBH:20Et₂O toward NaH was also examined in benzene solution at 70-80°C. (Figs. 3 and 4). Increasing the molar ratio of NaH/BeCl₂ from 1.06 to 1.33 increased the soluble ratio of H/Be from 0.84 to 0.95 without an observed diminution in the beryllium concentration. These observations indicate that even at these temperatures the CBH intermediate is remarkably stable toward NaH.

Infrared Absorption of CBH: An IR spectrum of ClBeH -etherate exhibited a band at 5.6μ , close to 5.63μ observed for i-PrBeH .³

(2) NAVWEPS Report No. 7227, page 6, 1962.
(3) LPIA Abstracts, C61-403, 1961.

DEGRADED AT 3 YEAR INTERVALS

DECASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

19

Disproportionation of Chloroberyllium Hydride

Two methods for the preparation of beryllium hydride from CBH were investigated: (1) vacuum disproportionation in the absence of solvents and (2) disproportionation in various solvents at atmospheric pressure. Factors studied include:

- (1) Temperature of disproportionation
- (2) Type of solvent used for extracting $\text{BeCl}_2 \cdot \text{OEt}_2$ (Eq. 7)
- (3) Effect of temperature on removal of solvents from the final product.
- (4) Treatment of BeH_2 with hydride reagents to remove residual chloride and retained ether.
- (5) Nature of complexing agents for the CBH intermediate, e.g., Et_2O , Me_2S , Me_2O and NMe_3
- (6) Type of disproportionation media e.g., ether, dimethyl-sulfide, diphenyl sulfide, benzene, toluene, dichloro-methane, 1,2-dichloroethane, 1,1-dichloroethane, chlorobenzene, cyclohexane and kerosene.

To date, all methods examined for the disproportionation of CBH, except that in which 1,2-dichloroethane was used as a solvent, gave products amorphous to X-ray with purities ranging from 23 to 85 wt. % BeH_2 . In the case of 1,2-dichloroethane the disproportionation products exhibited crystalline structure to X-ray. However, the purity was 31 wt. % BeH_2 (or 76.6 mole % based on total Be). This result was somewhat encouraging in view of the fact that the other products with comparable purity were totally amorphous to X-ray. It is not certain whether the observed diffraction lines are related to crystalline species of BeH_2 or to unknown impurities. Therefore, judgement on the crystallinity awaits preparation of pure BeH_2 .

In order to establish the chemistry involved in the disproportionation step most of the work was carried out under vacuum in the absence of solvents to avoid possible complication by solvent effects. The details are described below:

CONFIDENTIAL

6. ENCRAGED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIALVacuum Disproportionation of CBH

Subjecting $\text{ClBeH}:\text{OEt}_2$ to vacuum heating with distillation of the ether as soon as formed yielded BeH_2 in conversions up to 63.9% based on initial CBH:

The beryllium hydride produced was a white solid having extreme sensitivity toward atmospheric conditions. When freshly isolated, it sparked and glowed on exposure to moist air with enormous evolution of heat. The major impurities were attributed to Be-O and residual Be-Cl bonds. The source of the oxide contaminant was most likely due to the incomplete exclusion of air and moisture during handling of the solid.

Ether cleavage was not observed during the disproportionation of the CBH-etherate, indicating that the oxide impurity was not derived from ether cleavage.

Evidence for $\text{BeCl}_2:\text{OEt}_2$ as By-Product in the CBH Disproportionation: While investigating the thermal stability of CBH-etherate in a closed system, a crystalline material sublimed and deposited above the heated zone. Beryllium and chlorine content in the sublimate corresponded closely to that of beryllium chloride-monoetherate, $\text{BeCl}_2\text{-Et}_2\text{O}$. Anal: Calculated for $\text{BeCl}_2(\text{C}_2\text{H}_5)_2$: Be, 5.85%; Cl, 46.0%. Found: Be, 5.78%; Cl, 44.78%.

Factors Governing the Disproportionation of CBH in Vacuum: The disproportionation of CBH to BeH_2 and BeCl_2 was found to depend on several factors: (a) presence of excess ether, (b) effect of temperature, and (c) type of solvents.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 8200.10

CONFIDENTIAL

21

Effect of Ether on the Disproportionation: It was found that the disproportionation of CBH was retarded in diethyl ether solvent, presumably due to the equilibrium reaction indicated by (Eq. 7). In the presence of excess ether, $\text{BeCl}_2:\text{Et}_2\text{O}$ reacted reversibly with BeH_2 forming soluble CBH -etherate. However, removal of the ether from the system shifted the equilibrium to the direction of BeH_2 formation. Hydrogen bonds, being more stable than chlorine bonds provide a driving force for the formation of solid BeH_2 . Liberation of the stable etherate $\text{BeCl}_2:\text{Et}_2\text{O}$ further promotes production of BeH_2 .

Removal of the ether as a prerequisite for the disproportionation is supported by the following observations:

(1) Addition of BeCl_2 dissolved in dimethyl sulfide to CBH -etherate resulted in immediate precipitation of BeH_2 , indicating that Et_2O forms a stronger coordination bond with BeCl_2 than with ClBeH .

This reaction gave a solid product with an observed H/Be ratio of 2.16, in close agreement with the theoretical value 2.00 for BeH_2 . The purity was 54.0% by weight. Small amounts of diethyl ether and dimethyl sulfide were detected in the products of hydrolysis.

(2) Removal of Et_2O by complexing with AlEt_3 also led to precipitation of solid BeH_2 .

CONFIDENTIAL

CONFIDENTIAL

22

Use of AlEt₃ as the ether acceptor was discouraged by the possibility of inducing ethyl-hydride exchange between aluminum and beryllium.

Effect of Temperature on the Extent of Disproportionation: Thermal dissociation of CBH-etherate under vacuum also resulted in the disproportionation to BeH₂ and BeCl₂ monoetherate. The disproportionation product exhibited improved H/Be ratio with increasing temperature. The percent conversion of CBH to BeH₂ and the percent purity were improved with higher temperatures. These trends are shown in Table V.

TABLE V

Effect of Temperature on the Extent of Disproportionation of CBH Under Vacuum

Expt. No.	Temp. of Disproportionation, °C.	Ratio a H/Be	Ratio a H/Cl	% Conversion of CBH to BeH ₂	Purity, Wt. % as BeH ₂
952-164	25	1.52	-	20.6	49.9
237	55.5	1.68	6.75	31.4	--
238	80	1.74	14.25	58.2	--
134	85	--	--	63.9	69.2
212	95	1.86	15.05	--	--

(a) Aqueous acetic acid solutions were used in the hydrolysis.

Formation of the monoetherate during the disproportionation step is consistent with previous findings² describing the dissociation of beryllium chloride-dietherate to the mono-etherate and ether.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

23

In order to extract the by-product $\text{BeCl}_2:\text{Et}_2\text{O}$ from BeH_2 (Eq. 7) several solvents were investigated such as benzene, dimethyl sulfide and diethyl ether. It was found that removal of the monoetherate from BeH_2 was best accomplished by treating the disproportionation reaction mixture with benzene first to extract most of the mono-etherate followed by extraction with Me_2S to remove residual $\text{Be}-\text{Cl}$ bonds. The effect of benzene and of dimethyl sulfide on the over-all conversions of CBH to BeH_2 and on the removal of residual $\text{Be}-\text{Cl}$ bonds is presented in Table VI.

TABLE VI

Comparative Data on the Conversion of CBH to BeH_2 Using Benzene and Dimethyl Sulfide to Separate $\text{BeCl}_2:\text{Et}_2\text{O}$ from BeH_2

Dispr'n. a Temp., °C.	Initial d Solvent	Extraction Solvent	Ratio c H/Cl	% Convn. of b CBH to BeH_2
85	Benzene	Me_2S	25.6	63.9
75	Me_2S	Me_2S	43.2	20.1

- a. Temperature at which Et_2O was pumped from the reaction mixture.
- b. Based on initial CBH
- c. Atomic ratio of active hydride to residual chloride
- d. To extract $\text{BeCl}_2:\text{OEt}_2$

The decrease in percent conversion may be attributed to a reversal of the disproportionation reaction. In the presence of dimethyl sulfide and BeCl_2 , solid BeH_2 undergoes dissolution to form a soluble CBH dimer postulated with mixed hydride and chloride bridges.

Solid Solution

Solution

This is analogous to the solution of BeH_2 in the system $\text{BeCl}_2:\text{OEt}_2-\text{OEt}_2$

DEGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

24

In the absence of free Et_2O or Me_2S using benzene as the extracting solvent, $\text{BeCl}_2:\text{OEt}_2$ can be mostly washed away from BeH_2 without dissolution of the latter. For this reason, the conversion of CBH to BeH_2 is higher than in dimethyl sulfide (Table VI). These results showed that benzene is preferred for the initial removal of $\text{BeCl}_2:\text{OEt}_2$ from BeH_2 . Residual Be-Cl bonds may be minimized by additional extraction with ether or thioether.

Purity of the Disproportionation Product: The purity of the product appeared to depend on several factors:
(a) Effect of solvent. (b) Inertness of atmosphere under which the product is handled. (c) Temperature of disproportionation.

Effect of Solvent on the Purity of BeH_2 : Although BeCl_2 -monoetherate was extracted from BeH_2 by benzene, some Be-Cl bonds were retained in the solid. This indicated that some residual Be-Cl bonds were either physically occluded in the solid or chemically bound in the structure, postulated as:

The effect of solvents on the removal of retained Be-Cl bonds and on the purity of produced BeH_2 is shown in Table VII.

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

25

TABLE VII

Analytical Data on the Effect of Solvents on the Removal of Residual Be-Cl Bonds and on the Purity of BeH₂

Extraction Solvent	Sample Wt., mg.	Composition, mmoles	Ratio H ⁺ /Cl ⁻	Purity of BeH ₂ , Wt.%		
	H ⁺	Be ⁺⁺	Cl ⁻			
Benzene ^a	48.4	1.42	1.70	0.35	4.0	16.1 ^c
Et ₂ O ^b	187.0	20.88	11.59	0.85	25.2	61.4 ^c
Me ₂ S ^b	117.2	12.92	7.64	0.30	43.2	60.4 ^c
Me ₂ S ^b	56.4	7.66	4.25	0.15	51.2	74.7 ^d
Me ₂ S + Benzene ^e	14.5	11.53	6.11	0.16	72.2	85.1 ^d
Me ₂ S ^b	63.4	8.33	4.67	0.12	69.4	72.3 ^d

- (a) Washing with benzene until filtrate is free of soluble chloride.
- {(b)} Soxhlet extraction.
- {(c)} Handled in a polyethylene bag filled with nitrogen.
- {(d)} Handled in a dry box filled with nitrogen.
- {(e)} Washed with Me₂S followed by extraction with benzene.

These results show that the observed beryllium content in the final product was always larger than that required to combine with total hydride and chloride ions. This indicated the presence of beryllium compounds other than BeH₂ and BeCl₂. The major impurity appeared to consist of beryllium oxide or Be(OH)₂ resulting from exposure of the product to atmospheric conditions during handling. This point was demonstrated by an observed decrease in the purity with continued manipulation of the product as shown below.

Effect of Exposure to Atmospheric Conditions:
 Handling and weighing of the solid in a dry box, using nitrogen, gave higher purities (Table VII) than obtained with plastic bags filled with nitrogen. Continued handling of the solid resulted in diminution of the active hydride and chloride content of the product with corresponding increase in Be(OH)₂. This trend is shown in Table VIII.

DECLASSIFIED AT 3 YEAR INTERVALS
 DECLASSIFIED AFTER 12 YEARS
 DOD DIR 8300.10

CONFIDENTIAL

CONFIDENTIAL

26

TABLE VIIIData on the Decrease in Purity of BeH₂ with Further Handling

Extraction Solvent	Extraction Time, hrs.	Distribution of Be Mole %			Purity of BeH ₂ Wt. %	
		BeH ₂	BeCl ₂	Be(OH) ₂ b	Calc. c	Obs. d
Et ₂ O	16	90.10	3.65	6.25	63.5	61.4
Me ₂ S	16 a	-	-	-	-	54.1
Me ₂ S	16 a	82.60	3.20	14.20	50.8	50.3

(a) Duplicate samples analyzed 24 hrs. apart.

(b) Obtained by difference from beryllium balance.

(c) Based on BeCl₂ and Be(OH)₂ as the only impurities.(d) Heated at 100°C. with pumping (10⁻⁵ mm. Hg.) to remove residual solvents.

The results presented in Table VIII show that further manipulation of the solid led to a decrease of 7.5% in the molar content of BeH₂ and a 0.45% decrease in BeCl₂ with a corresponding increase of 7.95% in Be(OH)₂. It is significant to note that the percent purity calculated on the basis of BeCl₂ and Be(OH)₂, being the only contaminants, is in good agreement with the observed purity based on sample weight. This indicated that other impurities derived from ether cleavage or solvent retention were negligible. It is therefore essential to maintain absolutely moisture- and oxygen-free conditions during handling (isolation, transfer, and weighing) of the solid.

Effect of Disproportionation Temperature on the Purity of BeH₂: The possibility of ether cleavage under the conditions of CBH disproportionation was studied. Cleavage of Et₂O was not observed when the disproportionation step was carried out at 75°C. for a period of 1 hr. However, when the reaction mixture was pumped at 85°C for 20 hrs. ethyl chloride was detected (Eq. 13). Sublimation of BeCl₂-monoetherate and generation of free ether were also observed. No trace of ethane was found. The latter substance would be present if ether were cleaved by Be-H bonds.

CONFIDENTIAL

U - GRADED AT 3 YEAR INTERVALS
 DECLASSIFIED AFTER 12 YEARS
 DOD DIR 8200.10

CONFIDENTIAL

27

The residual Cl⁻ content in BeH₂ was found to be a function of disproportionation temperature. The results are compiled in Table IX.

TABLE IX

Effect of Disproportionation Temperature on the Purity of BeH₂ and on the Retention of Residual Cl⁻ Ions

Disproportionation Temperature, °C.	Atomic Ratio H ⁻ /Cl ⁻ ^c	H/Be ⁺⁺	Purity of BeH ₂ , Wt.%
125	20.0	1.97	43.3
80	39.5	1.88	70.9
74	51.0	1.80	74.7
60	107.5	1.94	77.8
58	72.2	1.89	85.1
45	37.6	1.91	61.7

- (a) Extracted with solvents such as toluene, benzene and/or dimethyl sulfide
- (b) Removed by vacuum distillation.
- (c) Atomic ratio of active H⁻ to residual Cl⁻ in final product.

These data (Table IX) show that the atomic ratio of active H⁻ to residual Cl⁻ increases with decreasing temperature reaching a maximum value of 107.5 at 60°C. At a lower disproportionation temperature (45°C.) the ratio decreased to 37.6. These observations indicate existence of an optimum temperature at which residual Be-Cl bonds are at minimum.

In view of the increase in residual chloride content at the high temperatures, and the report of Turova et al.⁴

(4) Turova et al., Russian J. Inorg. Chem. 8, 275-7 (1963).

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

28

on the thermal decomposition of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ to form polymeric ethoxyberyllium chloride, ethyl chloride, and ether

without formation of BeCl_2 -monoetherate, it was suspected that cleavage of ether might contribute to the chloride impurity. Accordingly, the thermal behavior of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ was investigated under the conditions of the disproportionation of CBH.

Dissociation of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ with removal of Et_2O as soon as it is formed gave one mole of Et_2O per mole of adduct according to (Eq. 10) without formation of EtCl . However, when the decomposition was carried out in a closed system at up to 113°C. (without ether removal) ethyl chloride formation was observed. Consequently, the decomposition was studied at various temperatures to determine the lowest temperature at which the monoetherate can be formed without inducing ether cleavage. Thus, the dietherate was heated at different temperatures, trapping the volatiles at -196°C., and examining the condensates for the presence of EtCl . The results are shown in Table IX.

TABLE IX**Data on Thermal Stability of $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$** (Initial $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O} = 12.5$ mmoles)

Heating Temp., °C.	Heating Time, hrs.	Et_2O Evolved ^a mmoles	Ratio ^b $\text{Et}_2\text{O}/\text{BeCl}_2$
25.8	1.00	3.54	1.72
30.5	1.00	5.77	1.25
49.0	1.16	2.85	1.03

- (a) No trace of EtCl was found by mass spectra
(b) Molar ratio $\text{Et}_2\text{O}/\text{BeCl}_2$ in the residue

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
800 DIR 5200.18

CONFIDENTIAL

These data indicate that even at 49°C. the adduct $\text{BeCl}_2 \cdot 2\text{Et}_2\text{O}$ readily loses ether to form the monoetherate without elimination of EtCl . Additional heating of the residue ($\text{BeCl}_2 \cdot \text{Et}_2\text{O}$) at 74°C. for 1.0 hr. gave no sign of cleavage. However, continued heating at 76°C. for long periods of time (24 hrs.) resulted in considerable amounts of EtCl elimination. This is in agreement with the previous finding on the formation of ethyl chloride when CBH -etherate was heated at 85°C. (p.28). Thus, the disproportionation under vacuum should be conducted at temperatures lower than 75°C.

Disproportionation of Chloroberyllium Hydride in Solution

Solvent Effect on the Disproportionation: The study of the disproportionation of CBH in solution was encouraging because the product exhibited improved properties over those obtained by vacuum-heating. The disproportionation in solution rendered the product BeH_2 less reactive, more compact and readily filtrable and hence easier to handle than observed previously.

Etherates of ClBeH and BeCl_2 dissolve in ether, diphenyl-sulfide, benzene, toluene, chlorobenzene, 1,2-dichloroethane and dichloromethane. Consequently, the disproportionation was carried out in these solvents with the objective of obtaining crystalline BeH_2 .

Heating a solution of CBH in Et_2O produced an ether-insoluble white solid. Infrared spectra of the solid in Nujol mulls exhibited a $\text{Be}-\text{H}$ absorption band between 5.60 and 5.75 μ . The disproportionation product was found to be sensitive to atmospheric conditions. An infrared spectrum of its KBr pellet made under atmospheric conditions resulted in disappearance of this band and appearance of an O-H absorption band. This spectrum was identical to that of $\text{Be}(\text{OH})_2$ indicating that the solid hydride had hydrolyzed to hydroxide. This was confirmed by evolution of gaseous hydrogen on treatment of the solid with dilute aqueous acids.

Analysis of another sample, after Soxhlet extraction with ether, gave a product analyzing 71.3 wt.% BeH_2 with a ratio of H^- to residual Cl^- of 90.5/1.0. These results indicate that dimeric CBH undergoes facile disproportionation in liquid media which dissolve the by-product $\text{BeCl}_2 \cdot \text{OEt}_2$. The conversion of $\text{ClBeH} \cdot 2\text{OEt}_2$ to the dimeric form $(\text{ClBeH} \cdot \text{OEt}_2)_2$ was found to be a prerequisite for the disproportionation (Eq. 7).

DOD/NRCDID AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIAL

30

The disproportionation reaction in Et₂O is slow. Only 9.5% of the active soluble hydride was rendered insoluble on heating at reflux for 16 hrs. Chloride concentration remained constant indicating that the disproportionation step proceeded as anticipated. The product was X-ray amorphous.

In diphenylsulfide the disproportionation gave gelatinous products difficult to filter, wash and process. However, treatment with polar solvents such as diethyl ether and dimethyl sulfide resulted in transformation from a gel to a powder with discrete particles which could be readily filtered, extracted and transferred. Although, the Et₂O-treated products had better flow characteristics than the gelatinous materials, they exhibited amorphous structure toward X-ray.

Disproportionation of CBH:OEt₂ in benzene and toluene with or without small amount of biphenyl also produced amorphous products.

When the disproportionation was carried out in 1,2-dichloroethane solvent the product exhibited considerable amount of crystallinity toward X-ray. Analysis of a sample, kept for several weeks in a glass container stoppered with a serum cap, gave a purity of 31 wt-% BeH₂. It is not certain whether the X-ray lines are derived from crystalline BeH₂ or from contaminants. The role of 1,2-dichloroethane needs to be clarified.

Use of 1,1-dichloroethane as a disproportionation medium was explored and found to give a product totally amorphous to X-ray in contrast to the crystalline product obtained in 1,2-dichloroethane.

Other solvents tried were *A,A'*-dichloroethyl ether and diisopropyl ether. In the former disproportionation of CBH could not be effected to give solid products even upon heating at 112°C. At this temperature darkening of solvent was observed. In the case of diisopropyl ether the disproportionation of CBH gave a solid product highly rich in chloride content presumably forming insoluble BeCl₂-isopropyl etherates.

In chlorobenzene solvent, no evidence of CBH disproportionation was observed as shown by lack of solid formation even upon heating at 75°C. for 8 hrs. At reflux temperature (132°C.) only an insignificant amount of solid was formed. This indicated that chlorobenzene is a good solvent for CBH:OEt₂ and that it should provide a good medium for

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DR 5200.10

CONFIDENTIAL

31

molecular weight determination of the adduct. Another solvent in which the disproportionation could not be effected was found to be dichloromethane which should also be a good medium for determining the degree of association of $\text{CBH}:\text{OEt}_2$.

In non-solvent media such as cyclohexane and kerosene, the disproportionation led to solid products. Soxhlet extraction with benzene left insoluble amorphous BeH_2 with extreme reactivity toward moisture similar to that exhibited by the product obtained from vacuum-disproportionation.

These results point to the specific effects of various solvents on the course of CBH disproportionation as well as the nature of product.

Effect of Temperature and Time of Disproportionation on the Purity of BeH_2 : In addition to the effect of solvents, other variables such as temperature and time of disproportionation seemed to influence the purity of the product as shown in Table X. The product obtained in benzene solution at 80-83°C. after 16.8 hrs. of reaction time had a maximum purity of 75.3 wt. % BeH_2 , compared to 48.4% obtained in 0.9 hrs. By contrast the vacuum-disproportionation gave 70.9% at 80°C. and 85.1% at 58°C. Attempts to increase the purity by conducting the disproportionation in benzene solution at a lower temperature, 54°C., under reduced pressure, gave 23.1 wt.% BeH_2 with a ratio of H/Cl^- of 6.55.

The data of Table X showed that the atomic beryllium distribution in the isolated products reached up to 96 mole % BeH_2 , 3.22 mole % BeCl_2 and 0.78 mole % of Be^{++} bound to anions other than Cl^- . It was observed that the product retained Et_2O as evidenced by mass spectral analysis conducted on the gaseous products resulting from hydrolysis. Ethane was also detected indicating cleavage of the ether by the heat generated during acid hydrolysis. This result implied that the ether underwent cleavage by Be-H bonds rather than by Be-Cl bonds. Efforts were directed to remove the residual Be-Cl impurity which, most likely, provides the sites for ether coordination.

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS

DDO DR 5200.10

CONFIDENTIAL

CONFIDENTIAL

TABLE X

Data on the Disproportionation of CBH in Refluxing Benzene

Expt. No.	Disproportion- ation Time, hrs.	Vacuum Heating of Solid		Be Distribution			Purity d Wt. % BeH ₂
		Temp., °C.	Time, hrs.	BeH ₂	Mole % BeCl ₂	BeOH e	
966- 163 e	0.9	140	16	78.18 f	3.42	18.40	48.4 h
157	3.3	122	16	77.20 g	3.18	19.60	54.2 i
151	3.3	96	1.3	96.00 g	3.22	0.78	55.2 i
134	16.8	25	16.0	93.84 f	2.65	3.51	61.0 i
131	16.8	160	12	93.20 f	2.42	4.38	75.3 i

(a) Ether distilled off at a reflux ratio of 30/1.

(b) To remove residual solvents.

(c) Beryllium impurity other than BeCl₂, possibly Be(OH)₂ or Be-OEt bonds derived from ether cleavage products.

(d) Ether detected in the hydrolysis products.

(e) CBH-etherate added dropwise to refluxing benzene with simultaneous distillation of Et₂O (reflux ratio 10/1).(f) Soxhlet-extracted with Me₂S followed by benzene.

(g) Electrostatic with extreme hydrolytic activity.

(h) Non-electrostatic, readily filtrable with low activity toward water.

16

REFINED AT 3 YEAR INTERVALS

REFINED AT 12 YEAR INTERVALS

CONFIDENTIAL

CONFIDENTIAL

33

Removal of Retained Ether: The retained ether probably coordinates with the hydride at terminal positions, thereby preventing build-up of long chains of polymeric beryllium hydride.

In view of the fact that linear high polymers are generally crystalline materials, it is likely that long linear chains of (BeH₂)_n will assume crystalline structure. Accordingly methods were sought to remove the ether thereby permitting linear chain growth.

Two methods for the removal of the ether were investigated: (a) Thermal dissociation, and (b) Chemical displacement with hydride reagents.

Thermal Dissociation: In order to remove ether, the thermal behavior of the linkages BeH₂:OEt₂ (retained ether) and Et₂O:BeHCl (residual Cl⁻) was studied by subjecting the products to pumping at various temperatures (97-177°C.). The study showed that the extent of ether removal depends on the temperature and time of heating. The results are shown in Table XI.

The data of Expt. 198 show that subjecting a sample of BeH₂ to pumping at 100°C. for 4 hrs. left a hydride residue with 72 wt. % BeH₂, and an ether content of 4.47 wt. % Et₂O (evolved on hydrolysis). Heating another sample at 97° for 16 hrs. under vacuum (Expt. 194) removed considerable amount of the ether leaving a product with 1.46 wt. % Et₂O but decreased the purity to 68.8% BeH₂. This result was traced to side reaction involving ether-cleavage producing involatile Be-OEt bonds with liberation of ethane and small amount of ethyl chloride (Expt. 199). These vapors including ether and benzene were condensed in traps cooled by liquid N₂ and finally analyzed by mass spectra.

In Expt. 201 a product obtained from CBH disproportionation at 54°C. in benzene solution suffered considerable cleavage reaction when vacuum-heated for 47 hrs. at 104°C. as shown by an increase in the percentage of ethane and ethyl chloride and a decrease in the purity to 23.1% BeH₂. Thus, it is evident that the product could not be freed from retained ether by thermal means, since the involatile cleavage

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

TABLE XI

Data on the Removal of Residual Chloride and Ether from the CBH Disproportionation Product
Effect of Temperature on Cleavage of Retained Ether

Expt.	Vacuum-Heating Time, Temp., h	Residual Cl-% Wt. %	Retained Et ₂ O, Wt. %	Atomic Ratio H-/Cl-	Purity BaH ₂ Wt. %	Condensables Evolved ^g	
						on Heating, Et ₂ O	on Heating, EtH
996- 198	4	100	3.6 ^b	4.5	130.0	72.0	-
194	16	97	3.2 ^b	1.5	137.5	68.8	-
199	17	107	3.6 ^b	1.4	113.2	64.5	6.7
201	47	104	22.8 ^c	2.80	6.55	23.1	57.8
177	17.5	142	15.1 ^d	0.5 ^e	19.8	46.2	59.0
192	18.5	177	12.9 ^d	0.3 ^f	43.3	30.0 (H ₂)	32.0
							0.2

^a Ether evolved on hydrolysis, based on weight of solid hydrolyzed

^b Disproportionation of CBH carried out under vacuum at 45-55°C.

^c Disproportionation of CBH carried out in benzene solution at 54°C.

^d Disproportionation of CBH carried out in benzene solution at reflux (80-82°C.).

^e Product treated with LiBH₄ at 25°C.

^f Product treated with LiBH₄ at 52°C.

^g Percent of total condensables including benzene.

h To remove solvents.

REMOVED AT 3 MM MERCURY
DECOMPOSED AFTER 12 YEARS
100 gm EtOH

CONFIDENTIAL

CONFIDENTIAL

35

products, Be-OEt bonds, render the hydride impure. Consequently chemical means were investigated to displace the ether and residual chloride.

Chemical Displacement of Ether with Hydride Reagents: It is known that hydride reagents displace ligands such as Et₂O and NMe₃ from their adducts.⁵

Therefore, the action of hydride reagents was explored as a means to remove chloride and ether impurities in accordance with the following equations:

Reduction with ether-soluble hydrides such as LiBH₄ and LiAlH₄ was briefly examined

(5) Bell, N.A., and Coates, G. E., J. Chem. Soc., 692 (1965)

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DIR 5200.10

CONFIDENTIAL

36

Reaction with Lithium Borohydride: Preliminary results with LiBH₄ indicated incorporation of BH₃ groups to the BeH₂ structure without retention of Li⁺ ions. Treatment of an impure product, 55.2 wt. % BeH₂, with LiBH₄ in Et₂O increased the purity to 80.0 wt.% based on BeH₂ (as 100%). Its atomic ratio of H/Be was 2.28 indicating a composition (BeH₂)₂₁·B₂H₆. The residual chloride content decreased from an initial value of 26.7 to 12.9 wt. % Cl. The retained ether amounted to 0.3 wt.% (C₂H₅)₂O.

The experimental results are presented in Table XI for comparison. Expt. 192 shows results obtained with a product treated with LiBH₄ at 52°C. followed by Soxhlet extraction with ether. Heating of the product at 177°C. in a closed system for 18.5 hrs. decomposed the hydride to metallic beryllium and gaseous hydrogen. The pyrolytic H₂ was measured and the solid was hydrolyzed to release hydrolytic H₂. About 46.5% of the initial hydride underwent decomposition showing that hydride was unstable at 177°C. The data of Expt. 177 (Table XI) show results related to the reaction of LiBH₄ with a sample of BeH₂ (prepared from CBH disproportionation in refluxing benzene at 80-81°C.). In this experiment the product was treated with an ether solution of LiBH₄ at 25°C., Soxhlet-extracted with ether, pumped at 25°C. to remove most of the solvent and finally heated at 142°C. for 17.5 hrs. The volatile gases were condensed at -196°C. and measured. The -196 condensate consisted of 59.0% Et₂O, 32.0% C₂H₆ and 0.2 C₂H₅Cl pointing to ether cleavage at 146°C. forming Et₂-Be bonds which account for the observed low purity of 46.2 wt.% BeH₂. The chloride and ether contents were 15.1 wt.% Cl and 0.5 wt.% (C₂H₅)₂O.

In view of incorporating BH₃ groups as well as imparting thermal instability to the final product, use of LiBH₄ as a reagent for removing ether and chloride impurities was suspended.

Action of Lithium Aluminum Hydride: Treatment of the CBH disproportionation product with LiAlH₄ in ether solutions diminished both the residual chloride and ether with little or no retention of lithium and aluminum ions. This treatment led to an increase in the atomic ratio H/Cl from 107/1 to 142/1 and a decrease in the ether content from 9.16 to 0.86 wt.% C₂H₅O.

In this experiment, a product having a purity of 77.7 wt.% BeH₂ was treated with LiAlH₄ in ether solution in a sealed bulb at 54°C. (bath temperature) for 16 hrs. The solid residue was extracted with ether to remove soluble

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD BMR 5200.10

CONFIDENTIAL

37

chloride. The ether solvent was vacuum-distilled at room temperature and the solid was finally heated under vacuum at 130°C. for 12 hours. The product was then weighed in a dry box for analysis. Comparative results obtained with and without LiAlH₄ are given in Table XII.

TABLE XII

Effect of LiAlH₄ on the Residual Chloride Content
in BeH₂ Obtained from the Disproportionation of CBH

Expt. No. 1054-	Sample Wt., mg.	Weight Percent				Atomic Ratios		
		BeH ₂	BeCl ₂	Be(OH) ₂	Et ₂ O	H/Be	H/Cl	(H+Cl)/Be
11 ^a	73.0	77.70	5.47	7.67	9.16 ^c	1.94	107.5	1.96
12 ^b	35.0	69.3 ^e	3.44	27.10	0.86 ^d	1.82	142.2	1.89

- (a) Before treatment with LiAlH₄.
- {(b) After treatment with LiAlH₄ at 54°C.
- {(c) Determined by difference.
- {(d) Determined by vapor phase chromatography on the hydrolysate.
- (e) The solid contained undetectable amount of Li⁺ and small amount of Al⁺³ (0.4 mg.) as shown by spectrographic analysis.

Although a decrease in the ether and chloride was observed (Table XII), the purity suffered a decrease from 77.7 to 69.3 wt. % BeH₂. This was attributed to possible attack by moisture during work-up, isolation and sampling of the final product as shown by a decrease in the atomic ratio of H/Be from 1.94 to 1.82 and of (H+Cl)/Be from 1.96 to 1.89. This is in contrast to the theoretical value 2.00 for (H+Cl)/Be if exposure to moisture is avoided. From these observations it was not certain whether the decrease in ether content was related to displacement by hydride ions (H⁻) or to hydrolysis.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DMR 5200.10

CONFIDENTIAL

38

It was surprising to note that treatment with LiAlH₄ led to diminution in both residual chloride and ether without retention of lithium ions. Displacement of ether from the BeH₂ product was expected to result in the incorporation of lithium hydride as represented by Eq. 17. The absence of lithium ions in the product indicates that the ether lost was not due to displacement by lithium hydride. Displacement of the ether via formation of new hydrogen bonds with concomitant increase in molecular weight of the (BeH₂)_n polymer provides an alternate explanation which fits the observations. It might also be possible that the lithium content was too small to detect.

It is recommended that the action of LiAlH₄ should be further investigated toward obtaining chloride- and ether-free BeH₂.

Effect of 1,2-Dichloroethane: Of all the solvents tried (p. 30-31) for the disproportionation of CBH only 1,2-dichloroethane gave a crystalline product toward X-ray. Initial experiments with 1,2-dichloroethane gave a product containing high residual chloride content (H/Cl = 8.6). This ratio was improved to 51/1 by treating the product with LiAlH₄ in ether solvent at 55-60°C. The purity however, was 34.1 wt.% BeH₂. Some of the impurities were identified to be Et₂O (by vapor phase chromatography) and LiCl (by X-ray diffraction). Retention of the latter in this sample may be due to incomplete extraction with Et₂O. The X-ray diffraction pattern exhibited a number of lines in addition to those attributed to LiCl. In efforts to determine the origin of these lines it was suspected that BeCl₂:OEt₂, a by-product in the CBH disproportionation step (Eq. 2) could be insoluble in 1,2-dichloroethane and hence it would constitute a crystalline contaminant. However, it was found that BeCl₂:OEt₂ was completely soluble in 1,2-dichloroethane under the conditions of CBH disproportionation and that the X-ray pattern of the product excludes presence of BeCl₂:OEt₂. Other suspected impurities such as BeCl₂:2Et₂O, Be(OH), BeCO₃:4H₂O and BeO have been excluded from the X-ray lines. These observations are encouraging in that the observed X-ray lines might be related to crystalline BeH₂.

It is also possible that the observed X-ray diffraction might be related to residual Be-Cl bonds incorporated in a crystalline structure:

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
RECLASSIFIED AFTER 12 YEARS
800 000 5200.18

CONFIDENTIAL

39

It was hoped that treatment with LiAlH₄ might transform the residual Be-Cl bonds to the corresponding Be-H bonds without alteration in the basic structure of the polymer. Thus, it was observed that treatment of the product resulting from CBH disproportionation in 1,2-dichloroethane with LiAlH₄ gave a different X-ray diffraction pattern than that obtained without LiAlH₄.

Further work is necessary to determine the effect of 1,2-dichloroethane on the course of disproportionation and of LiAlH₄ on the nature of the final product.

Effect of Nucleation with Crystalline BeH₂ on the Nature of the CBH Disproportionation Product

CBH disproportionation was carried out in benzene, toluene, diphenyl sulfide, chlorobenzene, chloromethane, 1,2-dichloroethane in the presence of a few nuclei of crystalline BeH₂ (obtained from Ethyl Corporation). Thus far, the disproportionation in the presence of a few seeds of phase 378 gave amorphous products with the exception of 1,2-dichloroethane. In this solvent with or without seeding the products had similar X-ray diffraction patterns. It seems that seeding had no effect on the nature of the product.

Nature of Complexing Agents for CBH: A study of complexing ClBeH with Lewis bases of different coordination strength toward the central Be atom might lead to a disproportionation system to produce crystalline beryllium hydride.

where Z = Et₂O, Me₂S, Me₂O, Me₃N.

The products obtained from the disproportionation of ClBeH:OEt₂, ClBeH:SMe₂, and ClBeH:OMe₂ under vacuum were all amorphous to X-ray. This indicated that coordination of ClBeH with different ligands such as Et₂O, Me₂S, and Me₂O did not alter the nature of the disproportionation product.

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.1B

CONFIDENTIAL

40

The behavior of ClBeH:OEt_2 toward trimethylamine was investigated in benzene solution with the hope of displacing ether by the amine with simultaneous disproportionation to soluble $\text{BeH}_2:\text{NMe}_3$ and slightly soluble $\text{BeCl}_2:\text{NMe}_3$.

To test this hypothesis, a benzene solution containing ClBeH:OEt_2 in admixture with some $\text{BeCl}_2:\text{OEt}_2$ was treated with trimethyl amine. In a preliminary experiment the displacement proceeded at room temperature to the extent of 87% based on the ether evolved. After removal of the ether and cooling of the benzene solution to 10°C. a small amount of a crystalline solid deposited which gave no hydrogen on hydrolysis, but the hydrolysate contained Be^{++} and Cl^- ions. The benzene solution contained both Be-H and Be-Cl bonds indicating that the intermediate, ClBeH:NMe_3 , if formed, did not undergo disproportionation as expected.

Attempted transformation of Amorphous to Crystalline BeH_2

Other areas related to possible transformation of amorphous BeH_2 to crystalline product were briefly examined. These are:

- (1) Solubilizing agents for BeH_2 , e.g., $\text{BeCl}_2:2\text{OEt}_2$, ClBeH:2OEt_2 , ClBeH:2SMe_2 and $\text{BeH}_2:\text{NMe}_3$.
- (2) Dissociation of $\text{BeH}_2:\text{NMe}_3$ in the presence of sodium hydride.
- (3) High shear extrusion of amorphous BeH_2 suspended in molten polystyrene.

Effect of Solubilizing Agents: Digestion of amorphous BeH_2 in mixed benzene-ether solvents containing

-
- (6) Ethyl Corp., Quarterly Progress Report No. 2, contract AF 04(611)-9888, p. 5, August-October 1964.

DO NOT GRADE AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DMR 5200.10

CONFIDENTIAL

CONFIDENTIAL

41

small amounts of solubilizing agents such as $\text{BeCl}_2:\text{OEt}_2$, $\text{HBeCl}:\text{SMc}_2$, $\text{HBeCl}:\text{OEt}_2$ or $\text{BeH}_2:\text{NMe}_3$ did not effect a noticeable change even after heating at 100°C . for several weeks.

Dissociation of $\text{BeH}_2:\text{NMe}_3$ in the Presence of Hydride Reagents: Dissociation of $\text{BeH}_2:\text{NMe}_3$ is known to proceed according to the equilibrium,

and since hydride reagents are known to displace ligands such as NMe_3 and Et_2O from their adducts e.g.,

it was hoped that use of catalytic amounts of NaH or LiAlH₄ as initiators for the displacement of NMe₃ from the adduct Me₃N:BeH₂ might produce ionic sites which might polymerize BeH₂

It is hoped that the ionic sites could propagate linear polymerization of BeH₂ chains with crystalline structure. Thus, the dissociation of BeH₂:NMe₃ (obtained from Ethyl Corporation) was studied in benzene solution in the

-
- (7) Ethyl Corporation, Annual Technical Summary Report No. 2 Contract AF 04(611)9376, page 44, June 1965.
 - (8) J. K. Ruff and M. F. Hawthorne, J. Amer. Chem. Soc., 83, 535 (1961).

DOWNLOADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 8200.10

CONFIDENTIAL

CONFIDENTIAL

42

presence of NaH. Only small amounts of solid were obtained at room temperature. However, carrying out the dissociation at reflux temperatures increased the amount of solid. Unfortunately, the product was amorphous to X-ray except for diffraction lines attributed to possible impurities in the hydride reagent used. It is of interest to note that $\text{BeH}_2:\text{NMe}_3$ underwent dissociation into its components in ether solution at reflux even in the absence of hydride reagents. The latter type of reaction to produce amorphous BeH_2 may have proceeded instead of the desired ionic growth reaction.

High Shear Extrusion

The amorphous nature of the hydride polymer may be due to the short chain lengths or to branching. Since linear high polymers are generally crystalline materials, it is likely that linear chains of $(\text{BeH}_2)_n$ will assume crystalline structure. Accordingly, an attempt was made to linearize the hydride product by stretching it through a small orifice at 180°C., hoping to attain a crystalline structure. At this temperature crystallization of the hydride was not realized. High shear extrusion at higher temperatures may be required to effect the desired transformation.

STATUS

This effort is being continued under Air Force Contract AF04(611)-11402.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

~~CONFIDENTIAL~~

43

EXPERIMENTAL

Materials: Two sources of BeCl_2 were used: (a) BeCl_2 -etherate prepared by reacting metallic beryllium with hydrogen chloride in anhydrous ether according to the known reaction.

The product had a ratio of $\text{Cl}/\text{Be} = 1.955$. (b) Beryllium chloride obtained from Brush Beryllium with 99.8% purity. Sodium hydride suspensions in heptane or in kerosene (18.15% NaH) was prepared in this laboratory with ratios of H/Na of 0.95 to 1.00.

Synthesis of CBH in Diethyl Ether Solvent: In a typical experiment, a solution of 49.4 mmoles of BeCl_2 in 106.6 g. of ether was treated with a suspension of 47.3 mmoles of NaH in kerosene. The reaction mixture was stirred with a magnetic stirrer at room temperature for 15.75 hrs. It was then filtered, and the solid phase was washed twice with fresh ether, and the filtered washings combined with the main filtrate. The volatile materials were distilled off under high vacuum leaving a clear residue, consisting of two colorless liquid layers with the upper layer being kerosene. Hydrolytic analysis of the bottom layer gave 32.58 mmoles of hydrogen,* 44.70 mmoles Be , 58.67 mmoles Cl^- and no sodium. These data show that the ether solution consisted of 32.58 mmoles CBH and 6.07 mmoles of unchanged BeCl_2 . Thus, the conversion to CBH was 68.9% based on initial NaH . The ratio of $(\text{Cl} + \text{H})/\text{Be}$ was 2.04 in close agreement with the theoretical value 2.00 for a mixture of ClBeH and BeCl_2 .

Analysis of the solid phase disclosed presence of 9.59 mmoles of unreacted NaH and 40.10 mmoles of NaCl . The hydride balance showed that 5.13 mmoles of hydride (or 10.8% of total hydride) was unaccounted for and presumably deposited as BeH_2 during step 1.

* Passed through 4 U-tubes held in liquid N_2 , collected by a Toepler pump into a flask of calibrated volume and measured. The H_2 was identified by combustion with CuO at 275-300°C. to give H_2O .

~~CONFIDENTIAL~~

DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

44

Rate of CBH Formation from the Reaction of NaH with BeCl₂ in Diethyl Ether: In this study a mixture of sodium hydride and beryllium chloride in ether was attrited with steel balls in a glass reactor for specified intervals of time. The reaction mixture was allowed to stand for a few minutes to permit settling of the solid phase. A sample of the clear liquid phase was withdrawn periodically for analysis of soluble active hydride and chloride. After all of the liquid fractions were withdrawn, the solid phase was filtered and extracted with fresh ether. The ether extract was also analyzed. The results of a typical experiment are presented in Table XIII.

TABLE XIII

Rate Study of the Formation of Chloroberyllium Hydride from the Reaction of Beryllium Chloride with Sodium Hydride in Diethyl Ether at Room Temperature. (Initial amounts: BeCl₂, 66.7 mmoles, NaH, 62.8 mmoles. Solvent: Et₂O, 104.1 g.; kerosene, 6.8 g.)

Time, hrs.	Wt. of Filtrate grams	Moles		Atomic Ratio H ⁻ /Cl ⁻
		H ⁻	Cl ⁻	
3.75	19.09	3.87	14.12	0.203
19.75	18.80	7.48	14.07	0.532
45.42	29.13	13.50	19.64	0.693
62.42	19.17	8.60	12.96	0.664
110.42	Ether extract	9.86	15.14	0.652

The ratio H⁻/Cl⁻ in solution increased with time reaching a maximum value of 0.693 at an interval of 45.4 hrs. The ratio decreased to 0.652 after an interval of 110.4 hrs. It is evident that CBH undergoes very slow change over extended periods of time at room temperature in diethyl ether.

Composition of the Solid Phase: Hydrolytic analysis showed that the ether-insoluble solid contained 8.88 moles of unreacted NaH (14.1% of initial NaH), 54.33 mmoles of NaCl and 6.64 mmoles of Be. The ratio of undetected hydride (11.61 mmoles by total hydride balance) to the Be was 1.75, indicating, again, formation of BeH₂ during step (1). Infrared spectra on the solid before hydrolysis had a Be-H absorption of 5.8 μ .

DOWNLOADED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DDO DIR 5200.10

CONFIDENTIAL

CONFIDENTIAL

45

Rate of Formation of CBH from the Reaction of NaH with BeCl₂:ZnCl₂ in Aromatic Solvents: Two types of apparatus were used - (a) A 250 ml. 4-neck Morton flask provided with an electric stirrer fitted with a Teflon sleeve, a water cooled condenser, a thermometer, and a serum cap for sample withdrawal. (b) A 2-liter stainless steel reactor (Parr bomb) equipped with 2-inch diameter Gowles dispersator, a dip tube for sample removal, a thermocouple well and a heating mantle.

In this study a suspension of sodium hydride in kerosene was added to a stirred solution of BeCl₂-etherate in benzene, toluene or ether at a certain temperature. Samples of the reaction mixture were withdrawn periodically, weighed, filtered, and the clear filtrates analyzed for soluble active hydride and beryllium. The hydride content was determined by iodimetric titration and the beryllium by the conventional precipitation as Be(OH)₂ and ignited to the oxide. The ratios of soluble hydride to beryllium were then plotted vs. time (Fig. 2). Experimental details are given in Table XIV.

Rate of Formation of CBH in Me₂S: In this study a mixture of NaH and BeCl₂ was stirred with steel balls in a glass reactor for specified intervals of time. Samples of the reaction mixture were withdrawn periodically, filtered and the clear liquid phase was analyzed for soluble active hydride content. The data of a typical experiment is shown in Table XV.

TABLE XVRate of Formation of CBH in Dimethyl Sulfide

Time, hrs.	3.42	4.25	5.42	7.08	12.58	25.80	50.33
% Conversion to HBeCl	17.80	25.50	25.20	24.15	23.00	21.10	20.15

These data are plotted in Fig. 1. The shape of the curve obtained from plotting % conversion vs. time indicates occurrence of two consecutive reactions. The first portion of the curve represents rate of formation of CBH, and the

CONFIDENTIAL

b6 b7c
UNCLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

TABLE XIV

Experimental Details on the Rate of CBH Formation in Aromatic Solvents

Expt.	Reaction Time, hrs.	Temp., °C.	Solvent	Molar Ratio Et ₂ O/BeCl ₂ /NaH		Conc. BeCl ₂ b	Ratio H ⁻ /Be ⁺⁺ c
				Et ₂ O/BeCl ₂	BeCl ₂ /NaH		
1005-	65	4.0	65-80	Toluene	4.58	1.02	2.16
	91	3.5	96-100	Toluene	2.57	0.90	0.55
	84	2.0	100-105	Toluene	2.00	1.02	0.62
	96	3.3	78-80	Benzene	2.01	0.87	0.84
1015-	48	7.50	80	Toluene	2.2	1.0 d	0.7
	41	1.25	100-103	Toluene	1.0 e	1.0	0.07
	52	4.57	65-84	Benzene	2.02	0.96	0.41
	60	4.2	73-80	Benzene	3.3	0.96	0.72
						1.55	0.77

a Average particle size of NaH = 5 u, with kerosene carrier.

b Moles per 1000 grams of solvent.

c Ratio of hydride to beryllium in solution.

d Average particle size of NaH = 40 u.

e Dimethyl ether as complexing agent.

E. MEASURED AT 3 SEC. AFTER
REACTION AFTER 0.10
MOLE ET₂O

CONFIDENTIAL

CONFIDENTIAL

47

last represents rate of consumption of CBH due to either disproportionation to insoluble BeH₂ or further reaction of CBH with NaH. A similar peaked curve occurs when Et₂O is the solvent although at higher conversion level. In Me₂S the maximum conversion of NaH to CBH is 25.5% at 4.25 hours, in contrast to 74% obtained in Et₂O at 30 hours. This indicates that Me₂S solvent is unsuitable for CBH production but it would be more suitable for extracting BeCl₂:OEt₂.

Preparation of ClBeH:OEt₂: Solutions of ClBeH:2OEt₂ were prepared routinely from the reaction of NaH (suspended in benzene) with solution of BeCl₂:2OEt₂ (1 molal) in benzene at 50-60°C. The reaction mixture was filtered and the clear filtrate vacuum-distilled at room temperature to strip the solvent and any ether of dissociation. This leaves a slightly viscous liquid consisting of ClBeH:OEt₂ with small amounts of unconverted BeCl₂:OEt₂, as shown below.

Evidence for the Existence of CBH-Dietherate: An ether solution, 49 g., containing 31.3 mmoles of chloroberyllium hydride and 16.0 mmoles of beryllium chloride, was cooled to -78°C. and pumped for 17 hrs. to remove unbound ether. The residue was then pumped at 0°C./10⁻⁵ mm.Hg. for 1.0 hr. The weight of the final residue was 9.72 g. in close agreement with 9.44 g. calculated for 31.3 mmoles ClBeH:2Et₂O and 16 mmoles BeCl₂:2Et₂O.

Evidence for the Existence of ClBeH-Monoetherate: Evidence for the existence of ClBeH-monoetherate has similarly been substantiated. A benzene solution containing known amounts of ClBeH:2Et₂O (23.25 mmoles) and BeCl₂:2Et₂O (5.65 mmoles) was slowly pumped at 25°C. under high vacuum (10⁻⁴ mm Hg) to remove the solvent and any ether of dissociation. The weight of the residue was found to be (3.68 g.) in good agreement with the total weight calculated (3.65 g.) for the monoetherates, i.e., 23.25 mmoles of ClBeH:OEt₂ and 5.65 mmoles of BeCl₂:OEt₂. The molar ratio of Et₂O/Be was 1.02 in contrast to the theoretical value 1.00 for the mono-etherates.

Upgrading of ClBeH:OEt₂: The viscous liquid obtained above was seeded with preformed BeCl₂:OEt₂ and cooled to 0°C. depositing a crystalline solid which can be readily centrifuged. Analysis of the supernatant liquid gave ratios of Cl:Be:H of 1.01:1.00:1.04 and 1.02:1.00:0.98 in contrast to theoretical values 1:1:1 for ClBeH. Composition of the solid phase was not determined.

CONFIDENTIAL

DOWNLOADED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DOD DIR 8200.10

CONFIDENTIAL

48

Disproportionation of ClBeH:OEt₂ Under Vacuum: Solutions of ClBeH:2Et₂O in various solvents such as ether, benzene or toluene were vacuum-distilled at room temperature to strip the solvents and any ether of dissociation. Two colorless liquid layers were obtained. The upper phase was found to be kerosene. The bottom phase consisted of a mixture of monoetherates, ClBeH:OEt₂ and unconverted BeCl₂:OEt₂. The monoetherates, freed from kerosene by decantation, were subjected to various disproportionation temperatures under high vacuum to give white solid products. The products were then digested with various solvents, e.g., toluene, benzene and/or dimethyl sulfide. The insoluble solids were filtered and washed with fresh solvents or subjected to Soxhlet extractions. Residual solvents were removed by vacuum-heating at 100-125°C. The final products were analyzed for active hydrogen, beryllium and residual chloride. Results of representative experiments are recorded in Tables V to VII.

Disproportionation of ClBeH:OEt₂ in Solution: Samples of CBH:OEt₂ were added to various solvent and nonsolvent media (benzene, toluene, chlorobenzene, diphenyl sulfide, dichloromethane, 1,2-dichloroethane, cyclohexane, kerosene). The reaction mixtures were then slowly subjected to fractional distillation at one atmosphere to partially remove coordinated ether. The distillations were terminated when evolution of ether had ceased. The solid products were filtered and Soxhlet-extracted with benzene, ether and/or dimethyl sulfide until free of soluble chloride ions. Removal of residual solvents was carried out by vacuum-heating at 110° to 130°C. overnight. The products were finally transferred to a dry-box filled with nitrogen (6-15 ppm moisture) for loading into capillary tubes for X-ray diffraction and for chemical analysis.

The samples were mounted in a Debye Scherrer camera and exposed to nickel-filtered copper radiation for 6 hrs. The spectrographic settings were 45 kv, 15 ma. The capillaries were rotated during the entire exposure time. All diffraction patterns contained an amorphous halo at 4.13°A with the exception of the disproportionation product obtained in 1,2-dichloroethane solvent. This product exhibited a number of diffraction lines in addition to a faint halo at 4.13°A. This experiment was repeated and the product gave the same X-ray diffraction pattern. Origin of the X-ray lines has not yet been determined.

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS

RECLASSIFIED AFTER 12 YEARS

DDC-BR 5200.10

CONFIDENTIAL

49

Dissociation of $\text{BeH}_2:\text{NMe}_3^*$ in the Presence of NaH: To 1.05 g. sample of $\text{BeH}_2:\text{NMe}_3$ (15 mmoles) dissolved in benzene solution was added 0.14 mmoles of NaH suspended in heptane. The reaction mixture was heated in a distillation apparatus under argon. The distillation was stopped when the head temperature reached 78°C. The reaction mixture was filtered and the solid was extracted with benzene for 16-1/2 hrs. X-ray analysis of the solid showed a halo at a d spacing of 4.130 \AA .

Dissociation of the amine adduct in the absence of NaH in refluxing ether solution also gave an amorphous product.

When catalytic amount of LiAlH_4 was used as the hydride reagent, only a small amount of solid was formed.

Displacement of Et_2O from $\text{CBH}:\text{OEt}_2$ with Trimethyl Amine: A 25.8 g. benzene solution containing 62.9 mmoles of $\text{HBeCl}:\text{OEt}_2$ and 7.1 mmoles of $\text{BeCl}_2:\text{OEt}_2$ was cooled to -196°C. and evacuated. Onto the frozen mixture was condensed 75.5 mmoles of trimethyl amine. The reaction mixture was warmed under vacuum and stirred at room temperature overnight. The volatile materials were removed by condensation at -80°C. leaving a solid residue. The -80°C. condensate contained 61.0 mmoles of Et_2O (by vapor phase chromatography) indicating displacement of 87% of total coordinated ether. The solid residue was redissolved in benzene and cooled to 10°C. depositing a crystalline solid which was filtered and washed with benzene at 10°C. Hydrolysis of the solid disclosed absence of active hydride indicating that hydride remained in solution which contained both active H^- and Cl^- ions. Exact composition of the solution was not determined.

Reaction of NaH with $\text{BeCl}_2:\text{NMe}_3$: The reaction of NaH with $\text{BeCl}_2:\text{NMe}_3$ was attempted in benzene by Ethyl Corp.⁶ to produce $\text{BeH}_2:\text{NMe}_3$ directly. The desired product $\text{BeH}_2:\text{NMe}_3$ was not obtained since no soluble hydride was isolated. The difficulty was attributed to the insolubility of the reactants in the reaction solvent. During the course of investigating the behavior of ClBeH toward NMe_3 we observed that the adduct $\text{BeCl}_2:\text{NMe}_3$ dissolves readily in a mixed ether-benzene solvent. Consequently its reaction with NaH was carried out to produce $\text{ClBeH}:\text{NMe}_3$ according to the equation

* Obtained from Ethyl Corp.

CONFIDENTIAL

CONFIDENTIAL

50

To 8.00 g. of BeCl_2 (100 mmoles) suspended in 82.3 g. of dry benzene was added 5.54 g. of NMMe_3 (94 mmoles). To this mixture dry ether (155.5 g.) was added. The solid went into solution except for slight cloudiness. The mixture was filtered under dry N_2 and charged into a ball-mill. To this mixture 2.45 g. of sodium hydride (102 mmoles suspended in 22.5 g. of benzene) was added and ball-milling was applied at room temperature. Samples of the reaction mixture were withdrawn at certain intervals, filtered and both the filtrate and the solid phase analyzed for H, Be, Cl and Na, the latter in solid phase only. The analysis indicated that after 18.5 hrs. of reaction time 24.1% of the initial $\text{BeCl}_2:\text{NMMe}_3$ underwent transformation to soluble hydride presumably $\text{HBeCl}:\text{NMMe}_3$. After 33 hrs. the conversion of soluble hydride was 33.5% and increased to 40.7% after 75.0 hrs. Most of the beryllium remained in solution except for a small amount which was not completely washed out from the solid phase consisting of by-product NaCl and unconsumed NaH .

Dissociation of $\text{BeCl}_2:2\text{Et}_2\text{O}$: A sample of 12.5 mmoles of $\text{BeCl}_2:2\text{Et}_2\text{O}$ was heated under vacuum at different temperatures: 25.8°, 36.5° and 49.0°C. for a period of 1 hour each. The volatile materials were removed from the heating zone and condensed in a trap held at -196°C. Mass spectral analysis of the condensates disclosed presence of pure ether. Ethyl chloride was not detected. The cumulative amount of Et_2O evolved was 12.16 mmoles leaving a molar ratio of $\text{Et}_2\text{O}/\text{BeCl}_2$ of 1.03 in the residual adduct.

Decomposition Pressure of $\text{BeCl}_2:2\text{Et}_2\text{O}$: A sample of the dietherate was prepared in a closed system provided with a mercury manometer. The solid etherate having a ratio of $\text{Et}_2\text{O}/\text{BeCl}_2 = 1.97$ was heated at various temperatures and decomposition pressures developed were recorded (Table XV).

TABLE XV

Decomposition Pressure of Beryllium Chloride-Dietherate
($\text{BeCl}_2:2\text{Et}_2\text{O} = 6.13$ mmoles, Vapor Space = 526.1 cc.)

t, °C.	31	32	41	45	49	55	61	65	72	86	89
P, mm.Hg.	3	4	6	9	13	14.5	20	22.5	32	45	49
t, °C.	90	93	94	98	100	104	105	108	111	113	
P, mm.Hg.	52	56	60	66	70	78	81	90	95	100	

CONFIDENTIAL

DECLASSIFIED AT 3 YEAR INTERVALS
DECLASSIFIED AFTER 12 YEARS
DDO DIR 6200.10

CONFIDENTIAL

51

Upon cooling to room temperature the pressure decreased to 12 mm., indicating presence of a volatile material other than Et₂O. The vapor phase was removed while the solid was reheated to 88°C. Analysis by mass spectra showed that the vapor consisted of 2.5 mole % ethyl chloride and 97.5 mole % Et₂O.

The molar ratio of Et₂O/BeCl₂ left in the solid residue was 0.95, in contrast to the theoretical value 1.00 for the monoetherate, BeCl₂:Et₂O.

High Shear Extrusion of Beane Product: 1-2 g. Beane product (obtained from Ethyl Corp.) was suspended in 110 g. solution of 9% polystyrene in toluene. After evaporation of the toluene the polymer (containing BeH₂) was forced through an orifice of 0.6 mm. diameter and 8.3 cm. length at 180°C. and at a rate of 2.5 cm/min. The pressure delivered to a 1/2 in. diameter ram was in the range of 2500-3000 pounds. The polystyrene was finally Soxhlet-extracted with toluene leaving solid BeH₂. The solid was amorphous to X-ray.

STATUS

This effort is being continued under Air Force Contract AF04(611)-11402.

CONFIDENTIAL

DOWNGRADED AT 3 YEAR INTERVALS

DECLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

CONFIDENTIAL

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) U.S. Industrial Chemicals Company Division of National Distillers & Chemical Corporation, Cincinnati, Ohio		2a. REPORT SECURITY CLASSIFICATION CONFIDENTIAL
2b. GROUP 4		
3. REPORT TITLE SYNTHESIS OF LMH-2 (UNCLASSIFIED TITLE)		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Technical Report, January 15, 1964 - October 15, 1965		
5. AUTHOR(S) (Last name, first name, initial) Murib, Jawad H.,		
6. REPORT DATE October 15, 1965	7a. TOTAL NO. OF PAGES 58	7b. NO. OF REPS 8
8a. CONTRACT OR GRANT NO AF04(611)-9700	8b. ORIGINATOR'S REPORT NUMBER(S) AFRPL-TR-66-15	
9. PROJECT NO. AFSC Project No. 3148	10. OTHER REPORT NO(S) (Any other numbers that may be assigned to this report) Monitor Report No. AFRPL-TR-66	
11. AVAILABILITY/LIMITATION NOTICES 12		
11. SUPPLEMENTARY NOTES None	12. SPONSORING MILITARY ACTIVITY AFRPL (RPCS) Edwards Air Force Base, Calif. 93523	
13. ABSTRACT <p>Preparation of chloroberyllium hydride (CBH) from beryllium chloride-etherate and sodium hydride was achieved in conversions up to 95.3% based on initial beryllium chloride (C).</p> <p>Disproportionation of the CBH intermediate was demonstrated to give beryllium hydride in purities up to 85.1 wt.% BeH₂. The product was amorphous with residual Be-Cl bonds, retained ether, and Be-O bonds as the major contaminants. The atomic ratio of active hydride to residual chloride (H⁻/Cl⁻) in some samples of the final product reached up to 137/1 corresponding to an impurity of 5.0 wt. % BeCl₂ (C).</p>		
14. DOWNGRADED AT 3 YEAR INTERVALS DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10		

DD FORM 1 JAN 66 1473

CONFIDENTIAL

Security Classification

CONFIDENTIAL

Security Classification

14 KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Complex compounds, Metal Hydrides, Metal Chlorides, Disproportionation, Synthesis, Benzene, 1,2-Dichloroethane, Ethers, Thioethers.						

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DOD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be issued, if fed and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those listed at 3 years intervals.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that each item of classified material be unclassified. Each paragraph of the abstract shall end with an indicator of the military security classification of the information in the paragraph, represented as (T.S.), (S), (C), (U).

There is no limitation on the length of the abstract; however, the suggested length is from 100 to 325 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no country classification is indicated. Markers, such as equipment model designators, code names, military project codes, geographic location, may be used as key words but will be followed by an indicator of the technical context. The assignment of links, roles, and weights is optional.

CLASSIFIED AFTER 12 YEARS

DOD DIR 5200.10

SECURITY CLASSIFICATION