Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича

Кафедра сетей связи и передачи данных

Разработка публичного децентрализованного реестра с использованием технологии blockchain

Выполнил:

Научный руководитель:

студент гр. ИКВТ-62 Гарифуллин В.Ф.

к.т.н., доцент Владимиров С.С.

Цель работы

 Проектирование и разработка кроссплатформенного программного обеспечения для организации публичного децентрализованного реестра с использованием технологии blockchain.

Задачи работы

- 1. Анализ преимуществ и недостатков существующих электронных реестров.
- Анализ существующих решений для организации публичных децентрализованных реестров.
- 3. Рассмотрение принципов организации распределённых реестров на основе технологии blockchain.
- 4. Сравнительный анализ и выбор технологий для использования в реестре.
- Разработка программного обеспечения для организации реестра и графического интерфейса для удобной работы с ним.

Электронные реестры

- Преимущества:
 - Экономия времени
 - Экономия средств
- Недостатки:
 - Ненадёжность
 - Непрозрачность

Клиент-серверная архитектура

Распределённые системы

- Существующие решения для распределённого обмена данными:
 - Gnutella
 - BitTorrent
 - IPFS

Децентрализованная сеть

- Отсутствующий функционал:
 - Ограничение на добавление информации только уполномоченными лицами
 - Обеспечение достоверной последовательности записей

Технология Blockchain

 Blockchain – цепочка блоков, которые связаны между собой с помощью хеш-сумм.

Выбор хеш-функции

Параметр	SHA-256	SHA-384	SHA-512
Устойчивость к коллизиям	Да	Да	Да
Время хеширования миллиона строк одинаковой длины, с	9,88	36,14	35,98
Размер хеш-суммы, бит	<mark>64</mark>	96	128

Цифровая подпись (1)

- Криптографические алгоритмы с открытым ключом:
 - RSA
 - DSA
 - Алгоритмы, основанные на эллиптических кривых

Длина открытого ключа в битах при сопоставимой криптостойкости

Эллиптическая криптография	RSA
163	1024
233	2240
283	3072
409	7680
571	15360

Цифровая подпись (2)

 Ed25519 – схема подписи EdDSA, основанная на эллиптической кривой Curve25519 и использующая SHA-512.

Преимущества:

- Эллиптическая кривая Curve25519 считается полностью безопасной.
- Не используются ветвления и потенциально опасные операции с памятью.
- В процессе подписи не используется генератор случайных чисел.
- Используемая длина открытого ключа в 256 бит обеспечивает криптостойкость, сопоставимую с RSA с длиной ключа в 3000 бит (разница в 12 раз).

Структура сети

- Два типа узлов: обычные узлы хранения и мастер-узлы.
- Обычные узлы обращаются к мастер-узлам для получения новых блоков, а также для получения информации о новых мастер-узлах.
- Процесс добавления нового мастер-узла:

Транзакции

- Транзакция данные, добавляемые пользователем в сеть, и служебная информация.
- Транзакции нужны для предотвращения коллизий.
- Блоки состоят из транзакций.
- Ещё не занесённая в блок транзакция называется неподтверждённой.
- Данные, хранящиеся в транзакции:
 - Временная метка
 - Тип транзакции
 - Передаваемая информация
 - Публичный ключ отправителя
 - Хеш транзакции
 - Цифровая подпись отправителя

Алгоритм консенсуса (1)

- Алгоритм консенсуса нужен для предотвращения коллизий.
- Алгоритм консенсуса позволяет удостовериться, что участник сети, подписавший новый блок, сделал это правомерно.
- Алгоритм доказательства полномочий (Proof of Authority).
 подразумевает наличие ограниченного числа валидаторов.
- Валидаторы мастер-узлы, которые имеют право подписывать блоки.

Алгоритм консенсуса (2)

- Используется следующий алгоритм выбора валидатора для подписи блоков:
 - 1. Фиксируем текущую временную метку
 - 2. Делим на время валидации одного валидатора
 - 3. Округляем до ближайшего целого
 - 4. Берём результат пункта 3 по модулю числа валидаторов
 - 5. Получившийся результат номер валидатора, который может подписывать блоки в данный момент

Временная метка, мс	Время GMT+3	Валидатор
1590266468000	20:41:08	1
1590266469000	20:41:09	2
1590266470000	20:41:10	2
1590266471000	20:41:11	0
1590266472000	20:41:12	0
1590266473000	20:41:13	1

Генезис-блок

- Генезис-блок самый первый блок в цепочке.
- Данные, хранящиеся в генезис-блоке:
 - Время
 - Хеш генезис-блока
 - Генезис-транзакция:
 - Тип транзакции (genesis)
 - Открытые ключи валидаторов
 - Открытые ключи отправителей (людей, имеющих право добавлять записи в реестр)

Структура блоков

- Блоки хранят следующие данные:
 - Время подписи блока
 - Транзакции (неограниченное количество)
 - Публичный ключ валидатора
 - Хеш предыдущего блока
 - Хеш данного блока
 - Цифровая подпись валидатора

Добавление новой информации

- 1. Узел добавляет в транзакцию данные, подписывает её и отправляет мастер-узлам.
- 2. Мастер-узлы проверяют транзакцию и заносят в пул неподтверждённых транзакций.
- 3. Валидатор, который согласно алгоритму консенсуса в данный момент может подписывать блоки, проверяет транзакции, которые находятся в пуле неподтверждённых транзакций, формирует из них блок, подписывает его и заносит в цепочку.
- 4. Все остальные узлы во время синхронизации получат этот блок, проверят его и занесут его в цепочку.

Разрабатываемые приложения

Интерфейс	Консольный	Графический	Веб
Поддерживаемые операционные системы	Windows, Linux	Windows, Linux	Все ОС с наличием браузера
Хранение всей цепочки блоков	Да	Да	Нет
Проверка блоков и транзакций	Да	Да	Нет
Взаимодействие с сетью	Со всеми мастер-узлами	Со всеми мастер-узлами	С одним мастер-узлом
Запуск обычного узла	Нет	Да	Нет
Запуск мастер-узла	Да	Да	Нет
Запуск узла валидации	Да	Нет	Нет
Запуск веб-интерфейса	Да	Нет	Нет
Отправка транзакций	Нет	Да	Да
Удобный просмотр транзакций	Нет	Да	Да

Средства разработки

- Критерии выбора средств разработки:
 - Поддержка асинхронности
 - Кроссплатформенный графический интерфейс
- Для разработки было решено использовать следующие средства:
 - Язык программирования JavaScript
 - Среда исполнения Node.js
 - Фреймворк Electron для создания графического приложения
 - Фреймворк Bootstrap для создания интерфейса графического приложения и веб-версии

Хранение и создание ключей

- Все закрытые ключи хранятся в зашифрованном с помощью алгоритма симметричного шифрования AES виде.
- Для создания ключей было разработано консольное и веб-приложение, доступное по адресу https://gval98.github.io

Графическое приложение (1)

Графическое приложение (2)

Веб-приложение (1)

Веб-приложение (2)

Веб-приложение для уже запущенной сети доступно по адресу: https://blockchain-registry.ru/web

Заключение

- В ходе выполнения работы были решены следующие задачи:
 - Рассмотрены существующие решения для децентрализованного обмена данными, в том числе с использованием технологии blockchain.
 - Произведён сравнительный анализ технологий, используемых в blockchain проектах и децентрализованных сетях.
 - Разработано кроссплатформенное программное обеспечение для организации публичных децентрализованных реестров и графический интерфейс для удобной работы с ним.
- Разработанные приложения могут быть успешно применены для создания публичных реестров на базе технологии
 Blockchain с целью их децентрализации, увеличения надежности и прозрачности.

Кафедра сетей связи и передачи данных

Спасибо за внимание!

Разработка публичного децентрализованного реестра с использованием технологии blockchain

Выполнил: студент гр. ИКВТ-62 Гарифуллин В.Ф.

Научный руководитель: к.т.н., доцент Владимиров С.С.

Санкт-Петербург 2020