Medical Neuroscience | Tutorial Notes

Auditory System—Central Processing

MAP TO NEUROSCIENCE CORE CONCEPTS¹

- NCC1. The brain is the body's most complex organ.
- NCC3. Genetically determined circuits are the foundation of the nervous system.
- NCC6. The brain makes it possible to communicate knowledge through language.
- NCC7. The human brain endows us with a natural curiosity to understand how the world works.

LEARNING OBJECTIVES

After study of the assigned learning materials, the student will:

- 1. Identify the neural mechanisms for localizing sounds in space.
- 2. Discuss the organization of the auditory cortex.

TUTORIAL OUTLINE

- I. Central processing of auditory information
 - A. subcortical pathways (see Figure 13.12²)
 - 1. first order neurons: spiral ganglion cells
 - a. peripheral process innervates inner hair cells
 - b. central process enters the pontine-medullary junction and bifurcates to innervate the **cochlear nucleus**
 - 2. second order neurons: cells in the cochlear nucleus that project to multiple targets on both sides of the brainstem
 - a. (contralateral) **nucleus of the lateral lemniscus** in the upper pons: involved in detecting presence and temporal properties of sound from one ear (a monaural pathway)
 - a. (bilateral) superior olivary complex in the mid-pons: different divisions
 of this complex are involved in localizing the sources of sounds in
 auditory space
 - (i) **medial superior olive** (MSO) (see **Figure 13.13**): localizes low frequency sounds based on interaural timing differences

¹ Visit **BrainFacts.org** for *Neuroscience Core Concepts* (©2012 Society for Neuroscience) that offer fundamental principles about the brain and nervous system, the most complex living structure known in the universe.

² Figure references to Purves et al., *Neuroscience*, 5th Ed., Sinauer Assoc., Inc., 2012. [click here]

- (ii) **lateral superior olive** (LSO) (see **Figure 13.14**): localizes sound based on interaural intensity differences
- inferior colliculus
 - a. all lower auditory projections converge on the inferior colliculus
 - b. here, for the first time in the auditory system, a complete map of auditory space is computed in the inferior colliculus
- 4. auditory thalamus
 - a. inferior colliculus projects to the **medial geniculate complex**
 - b. cells in the MGC are sensitive to particular combinations of sounds with distinct spectral and temporal characteristics

B. auditory cortex

- a. target of the MGC located on the superior aspect of the temporal lobe
- b. contains several subdivisions (see **Figure 13.15**)
 - i. "core" area or primary auditory cortex that receives highly tonotopic input from the MGC; also maps binaural interactions
 - ii. "belt" of additional, higher-order auditory areas
- c. asymmetry in structure and function
 - the posterior portion of the auditory belt contains Wernicke's area, a division of the auditory cortex that is specialized (in humans) for comprehending speech
 - ii. for most people (>99% of right-handers and >90% left-handers), functional Wernicke's area is in the left hemisphere
 - iii. there is a structural asymmetry associated with this functional asymmetry: the *planum temporale* (the superior plane of the temporal lobe)
 - the left planum temporale is larger in most humans than the right
 - the degree of asymmetry is associated with perfect pitch abilities (greater asymmetry in people with perfect pitch)
 - iv. activation of the right hemisphere is typically greater in the left when listening to music, compared to listening to speech and environmental sounds (see **Box 13E**)

STUDY QUESTIONS

- Q1. Which of the following most depends upon the utilization of bilateral auditory information?
 - A. frequency discrimination
 - B. sound localization
 - C. distinguishing pitch from timbre
 - D. encoding of speech sounds
 - E. detection of very faint sounds
- Q2. Which auditory structure first displays pronounced selectivity for specific combinations of sound frequencies in the auditory pathway?
 - A. cochlear nucleus
 - B. lateral superior olive
 - C. medial superior olive
 - D. nuclei of the lateral lemniscus
 - E. inferior colliculus
 - F. medial geniculate complex
 - G. auditory cortex