

Kelompok 2 - ADW RA

Anggota Kelompok:

- Dimas Wahyu Saputro
- Dhea Sukma Agustiana
- Fadia Dilla Sabine
- Lis Nurani
- Rezki Pahala Manullang
- Taj Shavira H

» 01
Introduction

» 02
Methods

» 04

» 03Result and Discussion

Conclusion and Suggestions

Introduction

ARIMA

Penelitian ini menggunakan metode ARIMA. ARIMA (Autoregressive Integrated Moving Average) merupakan metode yang mengabaikan independen variabel dalam pembuatan peramalan. Metode ARIMA dibuat berdasarkan pada nilai-nilai suatu peubah yang telah terjadi pada masa lampau. Kemudian, data pada masa lampau tersebut digunakan untuk membuat/menentukan pola-pola historis data yang kemudian akan digunakan untuk mengekstrapolasikan pola tersebut di masa yang akan datang (Wulandari & Gernowo, 2019, 41-48).

Bentuk umum model ini adalah:

$$\phi_p(B)Y_t^* = \theta_0 + \theta_q(B)e_t$$

dengan:

$$Y_t^*$$
 = $(1-B)^d Y_t$
 Y_t^* = data deret waktu yang telah mengalami differencing
 $\phi_p(B)$ = $1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$
 $\theta_q(B)$ = $1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$
 $(1-B)^d$ = differencing non-musiman pada orde ke-d
 B = backshift operator
 e_t = nilai kesalahan pada waktu ke- t

02 Methods

Our Process

Data Collecting

Ambil dari BPS

Estimate Model and Visualization

Data Preprocessing

Periksa data, dan buang yang tidak dibutuhkan

Data Collecting

2006-2020

Tahun

Jawa, dan Sumatera

Lokasi

Decomposition Time Series

Ternyata terdapat efek musiman dan trend.

Saat dilakukan ADF Test, didapatkan nilai p-value = 0.7457

Tidak Stasioner

Saat dilakukan Differencing, didapatkan nilai p-value = 0.01

Stasioner

Determine of Order

> arimaAP <- auto.arima(data_ts, trace=TRUE, ic="aic")</pre>

Fitting models using approximations to speed things up...

ARIMA(2,1,2)(1,1,1)[12] : 2386.179 ARIMA(0,1,0)(0,1,0)[12]: 2424.681 ARIMA(1,1,0)(1,1,0)[12] : 2392.883 ARIMA(0,1,1)(0,1,1)[12] : 2385, 297 ARIMA(0,1,1)(0,1,0)[12]: 2407.306 ARIMA(0,1,1)(1,1,1)[12] : 2390.862 ARIMA(0,1,1)(0,1,2)[12] : 2384.577 ARIMA(0,1,1)(1,1,2)[12] : 2385.317 ARIMA(0,1,0)(0,1,2)[12] : 2408.152 ARIMA(1,1,1)(0,1,2)[12] : 2382.915 : 2384.756 ARIMA(1,1,1)(0,1,1)[12] ARIMA(1,1,1)(1,1,2)[12] : 2388.137 : 2390.359 ARIMA(1,1,1)(1,1,1)[12] ARIMA(1,1,0)(0,1,2)[12] : 2384.636 : 2380.63 ARIMA(2,1,1)(0,1,2)[12]ARIMA(2,1,1)(0,1,1)[12] : 2383.463 ARIMA(2,1,1)(1,1,2)[12]: 2387.489 ARIMA(2,1,1)(1,1,1)[12] : 2389.674 : 2379.265 ARIMA(2,1,0)(0,1,2)[12] ARIMA(2,1,0)(0,1,1)[12] : 2381.829 ARIMA(2,1,0)(1,1,2)[12] : 2385.843 ARIMA(2,1,0)(1,1,1)[12] : 2387.976 ARIMA(3,1,0)(0,1,2)[12] : 2381.437 ARIMA(3,1,1)(0,1,2)[12] : 2383.306 Now re-fitting the best model(s) without approximations...

ARIMA(2,1,0)(0,1,2)[12] : 2567.015

Best model: ARIMA(2,1,0)(0,1,2)[12]

Check Model Diagnostic

Model ARIMA cukup baik karena residual berpusat di sekitar nilai nol.

> forecastAP <- forecast(arimaAP, level = c(95), h = 30) > forecastAP

	orecastAP				
	Point 2020	Forecast	Lo 95	Hi 95	
Jan	2020	34922.34			
Feb	2020	32166.64	30097.92	34235.36	
Mar	2020 2020	35797.68	33525.73	38069.64	
Apr	2020	35644.68	33095.54	38193.81	
мау	2020	35924.69	33157.39	38691.99	
Jun	2020	35013.33	32049.52	37977.14	
วนไ	2020	37985.59	34828.87	41142.31	
Aug	2020 2020	35860.65	32524.59	39196.71	
Sep	2020	35655.45	32150.01	39160.88	
	2020				
Nov	2020	36321.81	32498.62	40145.00	
Dec	2020	38108.95	34136.59	42081.30	
Jan	2021	36331.42	31891.35	40771.48	
Feb	2021	33603.72	28889.30	38318.14	
Mar	2021	37285.91	32323.44	42248.38	
Apr	2021 2021	37079.90	31847.79	42312.02	
May	2021	37505.52	32028.83	42982.21	
Jun	2021	36412.80	30704.23	42121.36	
Jul	2021 2021	39183.95	33249.09	45118.80	
Aug	2021	37414.84	31263.01	43566.68	
sep	2021	37141.97	30780.89	43503.05	
0ct	2021	38532.47	31968.45	45096.49	
Nov	2021	37814.23	31053.43	44575.02	
	2021				
Jan	2022	37881.33	30556.62	45206.04	
Feb	2022	35146.90	27553.04	42740.76	
Mar	2022	38839.57	30992.61	46686.54	
Apr	2022	38630.52	30517.80	46743.24	
мау	2022	39055.04	30692.34	47417.73	
Jun	2022	37963.51	29359.52	46567.50	

4. Conclusion and Suggestions

Berdasarkan hasil dan pembahasan di atas, maka dapat diperoleh model terbaik untuk memprediksi jumlah penumpang kereta api di pulau jawa adalah dengan menggunakan model ARIMA (2,1,0)(0,1,2)[12] dengan nilai AIC 2379.265. Meskipun tidak menggunakan terlalu banyak data, 2006-2020, namun didapatkan hasil yang bagus.

References

Rizaty, M. A. (2021, November 4). Berapa Jumlah Stasiun Kereta Api Penumpang di Jawa dan Sumatera? | Databoks. Databoks. Retrieved May 9, 2022, from https://databoks.katadata.co.id/datapublish/20 21/11/04/berapa-jumlah-stasiun-kereta-api-pen umpang-di-jawa-dan-sumatera

Wulandari, R. A., & Gernowo, R. (2019, Januari). Berkala Fisika. METODE AUTOREGRESSIVE INTEGRATED MOVINGAVERAGE (ARIMA) DAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) DALAM ANALISIS CURAH HUJAN, Vol. 22, Hal. 41-48.

Thank You!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik