

- Access to hospitals can save lives.
- The physical distance patients have to travel to get to a hospital is crucially important
- In the United States, the quality of healthcare received often depends on the socioeconomic status of the patient.
- Hospitals have an incentive to locate in high income areas

Introduction and Business Problem

Background

- I will explore whether there is any link between the physical distance one must travel to get to a hospital and the wealth of the person requiring treatment
- For this exercise, I will focus on hospitals in Dallas, Texas.
- I will explore whether any link exists between people's income and the physical distance they must travel to get to local hospitals

Introduction and Business Problem

Problem

 This information could be of interest to policymakers and hospital administrators who are looking to understand the scope of the issue and make decisions in the best interest of the public.

Introduction and Business Problem

Interest

- I needed two primary pieces of information to complete this analysis: income and hospital locations.
- Then, we need a way to geo-locate this data

Data

Feature Selection

- The US Census publishes a report of income as reported in tax filings. Kaggle has taken this data and compiled it into a user-friendly .csv format. This data can be accessed with a Kaggle account at:
- https://www.kaggle.com/goldenoakresearch/ushousehold-income-stats-geo-locations
- The locations of hospitals were taken using Foursquare's API.

Data

Data Sources

- Both datasets required cleaning and, eventually, merging.
- This was done using PANDAS software.
- I filtered out extranious columns, as the datasets were quite large.
- I selected the subset of data that applied to the Dallas Texas region. I defined and removed "NaN" values (records in which no income data was available).

Data

Data Cleaning

- First I imported PANDAS and cleaned the data.
 - This included dropping unnecessary columns, dropping rows with "NaN" values, and changing all data types to the correct format for analysis
- The following data table header summarizes the data from the Kaggle income table

	City	Lat	Lon	Median
0	Aledo	32.696186	-97.663302	120366.0
1	Bridgeport	33.209319	-97.772440	41754.0
2	Carrollton	32.988360	-96.899770	79305.0
3	Corsicana	32.081960	-96.467579	38775.0
4	Keene	32.355614	-97.292037	50201.0

Cleaning

• I then normalized the income data

	City	Lat	Lon	Median
0	Aledo	32.696186	-97.663302	0.152540
1	Bridgeport	33.209319	-97.772440	-0.648920
2	Carrollton	32.988360	-96.899770	-0.266082
3	Corsicana	32.081960	-96.467579	-0.679291
4	Keene	32.355614	-97.292037	-0.562801

Methodology

Normalizing Income Data

 Using Folium and the Folium heatmap plugin, I created a heatmap showing the dispersion of median incomes around the Dallas metro area

Methodology

Mapping Median Income

- Next, I imported the locations of Dallas-area hospitals using the Foursquare API.
- I imported the data to a PANDAS dataframe.
- I then cleaned the data, dropping unneeded columns.
 The following table header shows a sample of the data extracted

	name	location.lat	location.lng
0	Medical City Children's Hospital	32.911987	-96.774639
1	Texas Health Presbyterian Hospital Dallas	32.881813	-96.763005
2	Parkland Health & Hospital System	32.813022	-96.835212
3	Green Oaks Hospital	32.913076	-96.772017
4	JPS Hospital	32.727128	-97.326021

Importing and Cleaning
Hospital Data from
Foursquare

- Next, I overlaid the hospital locations on top of our income heatmap.
- A visual inspection shows that hospitals appear to be clustered around areas of high income.

Hospital Locations
Overlaying Income Map

- Next, I combined the two dataframes.
- I created a new column in the income dataframe to serve as a record number.

	Cit_City	Cit_Lat	Cit_Lon	Median	Record Number	Hospital	Hos_Lat	Hos_Lon
0	Aledo	32.696186	-97.663302	0.15254	0	Medical City Children's Hospital	32.911987	-96.774639
1	Aledo	32.696186	-97.663302	0.15254	0	Texas Health Presbyterian Hospital Dallas	32.881813	-96.763005
2	Aledo	32.696186	-97.663302	0.15254	0	Parkland Health & Hospital System	32.813022	-96.835212
3	Aledo	32.696186	-97.663302	0.15254	0	Green Oaks Hospital	32.913076	-96.772017
4	Aledo	32.696186	-97.663302	0.15254	0	JPS Hospital	32.727128	-97.326021

Combining Dataframes

- Next, I use Python's "geopy.distance" library to calculate the distance between each respondant and each hospital.
- The header of the resulting table is shown below.

	Cit_City	Cit_Lat	Cit_Lon	Median	Record Number	Hospital	Hos_Lat	Hos_Lon	Distance
0	Aledo	32.696186	-97.663302	0.15254	0	Medical City Children's Hospital	32.911987	-96.774639	53.812973
1	Aledo	32.696186	-97.663302	0.15254	0	Texas Health Presbyterian Hospital Dallas	32.881813	-96.763005	53.941990
2	Aledo	32.696186	-97.663302	0.15254	0	Parkland Health & Hospital System	32.813022	-96.835212	48.886519
3	Aledo	32.696186	-97.663302	0.15254	0	Green Oaks Hospital	32.913076	-96.772017	53.980066
4	Aledo	32.696186	-97.663302	0.15254	0	JPS Hospital	32.727128	-97.326021	19.764394

Calculating Hospital Distance

• Finally, I normalized the calculated distances.

	Cit_City	Cit_Lat	Cit_Lon	Median	Record Number	Hospital	Hos_Lat	Hos_Lon	Distance
0	Aledo	32.696186	-97.663302	0.15254	0	Medical City Children's Hospital	32.911987	-96.774639	0.471591
1	Aledo	32.696186	-97.663302	0.15254	0	Texas Health Presbyterian Hospital Dallas	32.881813	-96.763005	0.472721
2	Aledo	32.696186	-97.663302	0.15254	0	Parkland Health & Hospital System	32.813022	-96.835212	0.428418
3	Aledo	32.696186	-97.663302	0.15254	0	Green Oaks Hospital	32.913076	-96.772017	0.473055
4	Aledo	32.696186	-97.663302	0.15254	0	JPS Hospital	32.727128	-97.326021	0.173205

Methodology

Normalizing Data

- Applying a statistical analysis to the distances and median incomes, we find that in fact, there is a relationship.
- Lower median income is significantly correlated with hospital distance.

- We see that using least squares, the analysis returns a standard error of 0.002
 - This implies statistical significance.
- The coefficient value is negative, implying that the lower one's income, the farther they live from a hospital

OLS Regression Results

Dep.	. Variable	:	Distanc	e	R-squ	ared (unc	entered):	0.006
	Model	:	OL	S Adj	. R-squ	ared (unc	entered):	0.006
	Method	l: Lea	ast Square	es		F	-statistic:	164.0
	Date	: Thu, 2	6 Mar 202	20		Prob (F-	statistic):	1.86e-37
	Time	:	21:17:2	27		Log-Li	kelihood:	-5853.0
No. Obse	ervations	:	2942	24			AIC:	1.171e+04
Df R	Residuals	:	2942	23			BIC:	1.172e+04
	Df Model	:		1				
Covaria	nce Type	:	nonrobu	st				
		-4-1	_	Ds I4I	FO 005	0.0751		
	coet	std err	t	P> t	[0.025	0.975]		
Median	-0.0221	0.002	-12.808	0.000	-0.025	-0.019		
Or	nnibus:	3295.18	5 Durk	oin-Wat	son:	0.203		
Prob(Om	nibus):	0.000	O Jarque	e-Bera ((JB): 4	562.191		
	Skew:	0.898	8	Prob((JB):	0.00		
K	urtosis:	3.70	6	Cond	No.	1.00		

- On the other hand, we calculated a rather low R-squared value of 0.006.
- This implies that although income may be one factor, other factors also influence hospital location.

OLS Regression Results

Dep	. Variable	:	Distanc	e	R-squ	ared (unc	entered):	0.006
	Model	l:	OL	S Adj	. R-squ	ared (unc	entered):	0.006
	Method	l: Lea	ast Square	es		F	-statistic:	164.0
	Date	: Thu, 2	6 Mar 202	20		Prob (F-	statistic):	1.86e-37
	Time	:	21:17:2	27		Log-Li	kelihood:	-5853.0
No. Obs	ervations	::	2942	24			AIC:	1.171e+04
Df F	Residuals	:	2942	23			BIC:	1.172e+04
	Df Model	l:		1				
Covaria	nce Type	:	nonrobu	st				
	coef	std err	t	P> t	[0.025	0.975]		
Median	-0.0221	0.002	-12.808	0.000	-0.025	-0.019		
Oı	mnibus:	3295.18	5 Durk	oin-Wat	son:	0.203		
Prob(On	nnibus):	0.000	Jarque	e-Bera ((JB) : 4	562.191		
	Skew:	0.898	3	Prob((JB):	0.00		
K	urtosis:	3.70	3	Cond	No.	1.00		

Results

- On the other hand, we calculated a rather low Rsquared value of 0.006.
- This implies that although income may be one factor, other factors also influence hospital location.

- We continue this analysis by looking at the distance of each income respondent to the hospital nearest to them.
- ∘ To do this, I used PANDAS groupby method.

- We see that using least squares, the analysis returns a standard error of 0.005.
- This implies that the relationship between income and distance to hospitals is statistically significant

OLS Regression Results

Dep. Variable:	Distance	R-squared (uncentered):	0.018
Model:	OLS	Adj. R-squared (uncentered):	0.016
Method:	Least Squares	F-statistic:	11.27
Date:	Thu, 26 Mar 2020	Prob (F-statistic):	0.000838
Time:	21:52:06	Log-Likelihood:	416.62
No. Observations:	613	AIC:	-831.2
Df Residuals:	612	BIC:	-826.8
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]	
Median	-0.0167	0.005	-3.357	0.001	-0.026	-0.007	
Oı	mnibus:	311.930	Durb	oin-Wats	on:	0.035	
Prob(On	nnibus):	0.000	Jarque	e-Bera (JB): 14	455.240	
Skew:		2.378	Prob(JB):		JB):	0.00	
K	urtosis:	8.862		Cond.	No.	1.00	

- R-squared value in this case was a bit higher at 0.018, this is still low.
- This implies that while income is important, other factors also influence hospital location

- There is a statistically significant relationship between median income and hospital distance.
- However, as our low r-squared value shows, income is only one factor that models hospital location.
- In order to build a stronger model, we would want to look at other factors that could influence hospital location such as population, tax incentives to build hospitals, highway access, and other things.
- We must also question whether Dallas is a good representation of the United States as a whole
- Further study would have to be done in other cities to see whether this is the case.

Discussion

Further Study

- Distance to hospital is a critical factor in likelihood of patient recovery.
- We reviewed whether there was a link between median income and distance of travel to hospitals in Dallas, TX
- We found that the relationship was statistically significant.
- We found that income only explains a small part of why hospitals are located where they are
- Further study should be done to examine other factors

Conclusion

Significant, but not the whole story.