Nom, prénom: /10

Durée : 15 minutes. Accès à python et cours sur internet.

IMPORTANT! Pour l'exercice 1, vous devez nous envoyer la réponse sous la forme d'un script python (coeff_regression_lineaire.py) par mail (<u>albenhenni@gmail.com</u>).

- Pour avoir tous les points, le script doit tourner sans erreurs et retourner les bonnes valeurs.
- Vous ne pouvez utiliser numpy que lorsque c'est précisé (1.3)

Question 1: (6 points)

Soit le lot de données (x, y) défini de la façon suivante :

```
import numpy as np
params=(5,3)
x = 10*np.random.random(100)
```

y = params[0] + params[1]*x + np.random.normal(size=len(x))

Le résultat de la résolution analytique pour les coefficients de la régression linéaire est la suivante :

$$\hat{ heta}_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2} = rac{cov(x,y)}{var(x)} \ \hat{ heta}_0 = ar{y} - \hat{ heta}_1ar{x}$$

 $\hat{\theta}_1$ et $\hat{\theta}_0$ sont les coefficients que l'on souhaite estimer, tel que $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 \times$

 \overline{x} et \overline{y} sont les moyennes respectives des tableaux x et y.

La covariance et la variance sont définies par :

$$cov(x,y) = rac{1}{N} * \sum (x_i - \bar{x})(y_i - \bar{y})$$
 $var(x) = rac{1}{N} * \sum (x_i - \bar{x})^2$

avec N = len(x) - 1

Nous allons vous demander de créer plusieurs fonctions pour calculer au final les paramètres $\hat{\theta}_1$ et $\hat{\theta}_0$ de façon analytique. Les questions de cet exercice 1 sont dépendantes.

Question 1.1 : Créer la fonction moyenne (x) retournant la valeur de la moyenne du tableau x. (1 point)

Question 1.2 : Créer la fonction $produit_scalaire(x,y)$ permettant de retourner le résultat du produit scalaire du tableau x par le tableau y. (1 point)

Question 1.3 : Créer la fonction variance (x) permettant de retourner le résultat du calcul de la variance, définie plus haut. (1 point)

Indice: vous pouvez utiliser np.square(...) pour mettre un élément au carré.

Question 1.4 : Créer la fonction covariance (x,y) permettant de retourner le résultat du calcul de la covariance, définie plus haut. (1.5 point)

Question 1.5 : Créer la fonction linear_parameters (x,y) qui retourne les résultats de l'estimation des paramètres θ_1 et θ_2 , d'après l'équation définie plus haut, et l'appeler sur le jeu de données généré par le code fourni plus haut (1.5 point)

Question 2: Parmi les affirmations suivantes, cochez celles qui sont correctes (3 points)

git	сору	permet	de co	pier lo	calement	un de	pôt	distant

- [X] git add ajoute un fichier modifié à la liste du prochain commit
- [X] git commit -m "message" sauvegarde l'état actuel du code avec en commentaire le message "message"
- [] git commit pousse automatiquement les modifications sur le serveur distant du dépôt
- [] git get récupère les modifications poussées par les autres développeurs
- [X] qit permet de mieux gérer et partager les différents modifications au code d'un projet

Question 3: Quelle proposition permet de générer un nombre aléatoire distribué de façon uniforme entre 5 et 10 ? (1 points)

İ	rom	random	ımport	random
[] 5*	random()	
[] 10	*random	()	
[)	X] (1	10-5)*ra	ndom()+	5
[] 10	*random	()+5	