Math 132 Homework 5

Jiaping Zeng

11/3/2020

$$3.4.13 \int_{C_1(0)} \frac{e^z}{z+2} dz$$

Answer: Since the discontinuity z = -2 is outside of $C_1(0)$, our function $f(z) = \frac{e^z}{z+2}$ is analytic on and inside $C_1(0)$. Therefore we have $\int_{C_1(0)} \frac{e^z}{z+2} dz = 0$ by Cauchy's integral theorem.

3.4.15
$$\int_{C_1(i)} \left(\frac{z-1}{z+1}\right)^2 z dz$$

Answer: Since the discontinuity z = -1 is outside of $C_1(i)$, our function $f(z) = \left(\frac{z-1}{z+1}\right)^2$ is analytic on and inside $C_1(i)$. Therefore we have $\int_{C_1(i)} \left(\frac{z-1}{z+1}\right)^2 z dz = 0$ by Cauchy's integral theorem.

$$3.6.2 \int_{C_3(0)} \frac{e^{z^2} \cos z}{z - i} dz$$

Answer: Let $f(z) = e^{z^2} \cos z$ and a = i, then by Cauchy's integral theorem, $\int_{C_3(0)} \frac{e^{z^2} \cos z}{z - i} dz = 2\pi i f(a) = 2\pi i e^{-1} \cos(i)$.

3.6.3
$$\frac{1}{2\pi i} \int_{C_2(1)} \frac{1}{z^2 - 5z + 4} dz$$

Answer: We have $\frac{1}{z^2 - 5z + 4} = \frac{1}{(z - 1)(z - 4)}$; since only z = 1 is inside $C_2(1)$, we can set $f(z) = \frac{1}{z - 4}$ and a = 1. Then by Cauchy's integral theorem, $\frac{1}{2\pi i} \int_{C_2(1)} \frac{1}{z^2 - 5z + 4} dz = f(a) = -\frac{1}{3}$.

$$3.6.4 \ \frac{1}{2\pi i} \int_{C_3(1)} \frac{\cos z}{(z-\pi)^4} dz$$

Answer: Let $f(z) = \cos z$ and $a = \pi$, then $f'(z) = -\sin z \implies f''(z) = -\cos z \implies f'''(z) = \sin z$. By Cauchy's integral theorem, $\frac{1}{2\pi i} \int_{C_3(1)} \frac{\cos z}{(z-\pi)^4} dz = \frac{1}{6} f'''(z) = 0$.

P1 Show that
$$\int_{C_2(i)} \frac{e^z}{z^2 + iz + 6} dz = \frac{2\pi e^{2i}}{5}$$
.

Answer: By factoring the denominator we have $\int_{C_2(i)} \frac{e^z}{z^2 + iz + 6} dz = \int_{C_2(i)} \frac{e^z}{(z+3i)(z-2i)} dz.$ Between the two discontinuities z=-3i and z=2i, only z=2i is inside $C_2(i)$. So we can let $f(z) = \frac{e^z}{z+3i} \text{ and } a=2i.$ Then we have $\int_{C_2(i)} \frac{e^z}{z^2 + iz + 6} dz = 2\pi i f(a) = 2\pi i \cdot \frac{e^{2i}}{5i} = \frac{2\pi e^{2i}}{5}$ by Cauchy's integral formula.

P2 Let γ be the rectangle [4+i, -1+i, -1-i, 4-i, 4+i].

(a) Sketch the path γ .

(b) Evaluate $\int_{\gamma} \frac{e^z \sin z}{z - 2i} dz$.

Answer: Since 2i is outside the path γ , we have $\int_{\gamma} \frac{e^z \sin z}{z - 2i} dz = 0$ by Cauchy's integral theorem.

(c) Find $A, B \in \mathbb{C}$ such that $\frac{1}{z(z-\pi)} = \frac{A}{z} + \frac{B}{z-\pi}$.

Answer: From $\frac{1}{z(z-\pi)} = \frac{A}{z} + \frac{B}{z-\pi}$, we have $1 = A(z-\pi) + Bz$. Then at z = 0 we have $1 = -A\pi \implies A = -\pi^{-1}$. Similarly, at $z = \pi$ we have $1 = B\pi \implies B = \pi^{-1}$.

(d) Evaluate $\int_{\gamma} \frac{e^z \sin z}{z(z-\pi)} dz$.

Answer: Using part (c) we have $\int_{\gamma} \frac{e^z \sin z}{z(z-\pi)} dz = \int_{\gamma} \frac{e^z \sin z}{-\pi z} + \int_{\gamma} \frac{e^z \sin z}{\pi(z-\pi)}$. We can now evaluate the two integrals separately. Let $f(z) = e^z \sin z$, a = 0 and $b = \pi$. Then by Cauchy's integral formula we have $\int_{\gamma} \frac{e^z \sin z}{-\pi z} = 2\pi i f(a) = 0$ and $\int_{\gamma} \frac{e^z \sin z}{\pi(z-\pi)} = 2\pi i f(b) = 0$. Therefore $\int_{\gamma} \frac{e^z \sin z}{z(z-\pi)} dz = 0$.

P3 Let γ be a simple closed path in $\mathbb C$ and suppose that f(z) and g(z) are analytic on and inside γ . Show that if f(z) = g(z) for all z on γ , then f(z) = g(z) for all z inside γ as well.

Answer: By Cauchy's integral formula, we have $f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$ for any point inside γ . Then by substituting f(z) = g(z), we have $f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz = \int_{\gamma} \frac{g(z)}{z-a} dz = g(a)$. Since a is arbitrary, this gives us f(z) = g(z) for all z inside γ .

P4 Consider the entire function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = \cos(z)$, which is not constant. Why doesn't this contradict Liouville's Theorem?

Answer: Let z = x + iy, then $\cos z = \cos(x + iy) = \cos(x)\cos(iy) - \sin(x)\sin(iy) = \cos(x)\cosh(y) - \sin(x)\sinh(y)$. Since $\cosh(y)$ and $\sinh(y)$ are not bounded, neither is $\cos(z)$. Therefore Liouville's Theorem does not apply.

P5 Let $f: \mathbb{C} \to \mathbb{C}$ be entire with $\text{Re}(f(z)) \leq 0$ for $z \in \mathbb{C}$.

(a) Show that $e^{f(z)} = \alpha$ for some constant $\alpha \in \mathbb{C}$.

Answer: Let $u = \operatorname{Re} f(z)$ and $v = \operatorname{Im} f(z)$. Then $|h(z)| = |e^{u+iv}| = |e^u \cdot e^{iv}| = e^u$. Since

2

 $u = \operatorname{Re} f(z) \leq 0$, we have $|h(z)| \leq 0$. Therefore h(z) is entire and bounded, then by Liouville's Theorem it is constant.

(b) Show that $f(z) = \beta$ for some constant $\beta \in \mathbb{C}$.

Answer: Since $e^{f(z)} = \alpha$, we can differentiate both sides which gives us $f'(z)e^{f(z)} = 0$. Since $e^{f(z)}$ is always nonzero, we must have f'(z) = 0. Therefore f(z) is constant.

P6 Let $f: \mathbb{C} \to \mathbb{C}$ be entire with $|f(z)| \leq e^{\operatorname{Re}(z)}$ for $z \in \mathbb{C}$. Show that either

- f(z) = 0 for every $z \in \mathbb{C}$, or
- $-f(z) \neq 0$ for any $z \in \mathbb{C}$.

Answer: Let z=x+iy and $g(z)=\frac{f(z)}{e^z}$, then since $|f(z)|\leq e^{\mathrm{Re}(z)}$ and $e^z>0$, we have $|g(z)|=\left|\frac{f(z)}{e^z}\right|\leq \left|\frac{e^x}{e^z}\right|=\left|\frac{e^x}{e^{x+iy}}\right|=|e^{-iy}|=1,$ i.e. |g(z)| is bounded by 1. Since g(z) is entire and bounded, it must be constant by Liouville's Theorem, so there exists an $\alpha\in\mathbb{C}$ such that $g(z)=\alpha$. Then we have $\alpha=g(z)=\frac{f(z)}{e^z}\implies f(z)=\frac{\alpha}{e^z}.$ Then if $\alpha=0,$ f(z)=0 for every $z\in\mathbb{C}$; else if $\alpha\neq0$, then $f(z)\neq0$ for any $z\in\mathbb{C}$.