

Data vs Information

▶ Data:

Simply fact or figure

For example: a number 15

▶ Information:

Context + data

For example: 15 degree centigrade is the temperature of Montreal on 26th May 2018 at 09:35 AM.

Evolution in Data management

What's Big Data?

International Data Corporation (IDC) has measured data footprint in 2013: 4.4 zettabytes

- ▶ 1 zettabyte = 1 billion terabytes
- ▶ Forecast is to have 44 zettabytes by 2020
- ▶ Where does this data come from?

Characteristics of Big Data

Volume

- ▶ Velocity
- Variety
- Value

Characteristic: Volume

- Any guess how much amount of data we are producing within this room?
- Connected smart cars will generate 25GB data per hour

Characteristic: Velocity

- What happens in an internet second
 - > 54,907 Google searches
 - > 7,252 tweets
 - > 125,406 YouTube videos
 - > 2,501,018 emails sent

Characteristic: Variety

- ▶ Structured
- Semi structured
- Unstructured
- ► XML
- ▶ Json
- ▶ Web logs
- ▶ Sensor data

Characteristic: Value

Applications

- ▶ Finance
- ▶ Pharma
- ▶ Retail
- Manufacturing
- ▶ Insurance
- ▶ Travel industry

Course Outline

► Topics:

https://github.com/shyamkantesariya/big_data_course/blob/master/lecture1/Topics.p df

- ► Email: kantesariyashyam@gmail.com
- LinkedIn:
 https://www.linkedin.com/in/kantesariyashyam/

Compete to Innovate

- ► Go to <u>www.innovatank.com</u>
- Register as Innovator free trial
- Subscribe for NASA web log analysis challenge
- Make your team of two members
- Choose any programming language of your choice
- Submit your proposed solution
- ► Time Limit: two hours

What is next?

▶ The good news is "We have big data to analyze"

▶ But the challenge is "How to store and process it"

What's the solution

▶ Build a bigger system with increased computing power

"In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers" – Grace Hopper

Storage Technology

Grid computing

- ▶ Based on Message Passing Interface (MPI)
- Uses shared filesystem
- Programmer has to think at task level as opposed to data level

Missing abstraction of fault tolerance

Volunteer computing

- System is highly compute intensive
- Small amount of data on remote machine

▶ Low bandwidth

▶ Based on Internet

Distributed Computing

History of Hadoop

Major Vendors

MAPREDUCE (Processing using different languages)

HIVE & DRILL (Analytical SQL-on-Hadoop)

MAHOUT & SPARK MLlib (Machine learning)

HBASE (NoSQL Database)

ZOOKEEPER & AMBARI (Management & Coordination)

SPARK (In-Memory, Data Flow Engine)

KAFKA & STORM (Streaming)

SOLR & LUCENE (Searching & Indexing)

PIG

(Scripting)

OOZIE (Scheduling)

Resource Management **YARN**

Storage

Flume

Unstructured/ Semi-structured Data

RDBMS vs Hadoop

Attribute	RDBMS	Hadoop
Data Size	Gigabytes	Petabytes
Access	Interactive & Batch	Batch
Updates	Multiple Read/Write	Write once, Read multiple times
Transaction	ACID	None
Structure	Schema-on-write	Schema-on-read
Integrity	High	Low
Scaling	Nonlinear	Linear

Resources

▶ Intellij Idea

https://www.jetbrains.com/idea/download/#section=windows

▶ Git bash

https://git-scm.com/downloads

- ▶ Unix
 - ▶ http://www.ee.surrey.ac.uk/Teaching/Unix/