Stat 206: Linear Models

Lecture 4

October 7, 2015

Coefficient of Determination R²

 R² is a descriptive measure for linear association between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}.$$

- R² is the of the variation in Y by explaining Y using X through a linear regression model.
- Heights.

$$R^2 = \frac{1234}{5893} = 0.209.$$

20% of variation in child's height may be "explained" by the variation in parent's height.

Coefficient of Determination R²

 R² is a descriptive measure for linear association between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}.$$

- R² is the proportional reduction of the variation in Y by explaining Y using X through a linear regression model.
- · Heights.

$$R^2 = \frac{1234}{5893} = 0.209.$$

20% of variation in child's height may be "explained" by the variation in parent's height.

Properties of R²

Since $0 \le SSE, SSR \le SSTO$, it follows:

• If all observations Y_i s fall on one straight line, then

- The predictor variable X accounts for in the observations Y_is.
- If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then

- The predictor variable X is in explaining the variation in the observations Y_i s.
- There is linear association between X and Y in the data.

Properties of R²

Since $0 \le SSE$, $SSR \le SSTO$, it follows:

$$0 \le R^2 \le 1$$
.

- If all observations Y_i s fall on one straight line, then SSE = 0 $\implies R^2 = 1$.
 - The predictor variable X accounts for all variation in the observations Y_is.
- If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then $SSR = 0 \Longrightarrow R^2 = 0$.
 - The predictor variable X is of no use in explaining the variation in the observations Y_is.
 - There is no linear association between X and Y in the data.

Chapter 2 Inferences in Regression and Correlation Analysis 75

FIGURE 2.8 Scatter Plots when $R^2 = 1$ and $R^2 = 0$.

Misunderstandings about R²

- Misunderstanding 1. A large R² means useful predictions can be made.
 - A useful prediction means a prediction interval. If MSE is large, then the prediction interval would be
 - A large R² means that SSE is relatively compared to SSTO. However, it does not necessarily mean MSE is
- Misunderstanding 2. A large R² means that the estimated regression line is a good fit of the data.
- Misunderstanding 3. A near zero R² means that X and Y are not related.
 - R² measures the degree of between X and Y.
 - When the relation is , R^2 is not a meaningful measure.

Misunderstandings about R²

- Misunderstanding 1. A large R² means useful predictions can be made.
 - A useful prediction means a narrow prediction interval. If MSE is large, then the prediction interval would be wide.
 - A large R² means that SSE is relatively small compared to SSTO. However, it does not necessarily mean MSE is small.
- Misunderstanding 2. A large R² means that the estimated regression line is a good fit of the data.
- Misunderstanding 3. A near zero R² means that X and Y are not related.
 - R² measures the degree of linear association between X and Y.
 - When the relation is curvilinear, R² is not a meaningful measure.

Figure : \mathbb{R}^2 could be misleading when the relation between X and Y is curvilinear

R² and Correlation Coefficient r

Another measure of linear association between *X* and *Y* is the **correlation coefficient**:

$$r := \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}.$$

It can be shown:

$$R^2 = r^2$$
, $r = \operatorname{sign}\{\hat{\beta}_1\} \sqrt{R^2}$,

i.e., r is the signed square root of R^2 and the sign depends on the sign of the estimated slope $\hat{\beta}_1$.

Adjusted Coefficient of Determination R_a^2

 A modified measure for degree of linear association between X and Y:

- $0 \le R_a^2 \le R^2$.
- · Heights.

$$R_a^2 = 1 - \frac{927}{926} \times \frac{4659}{5893} = 0.2085.$$

Adjusted Coefficient of Determination R_a^2

 A modified measure for degree of linear association between X and Y:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-2} \frac{SSE}{SSTO}.$$

- $0 \le R_a^2 \le R^2$.
- · Heights.

$$R_a^2 = 1 - \frac{927}{926} \times \frac{4659}{5893} = 0.2085.$$

Model Diagnostics

- Assumptions of the simple linear model with Normal errors:

 - •
 - •
- In practice, one or more of these assumptions may be violated.
- Diagnostic plots to examine the appropriateness of the model.
 - Focus on residual plots.
 - Diagnostics for outliers and influential cases will be discussed later.
- Remedial measures: transformations.

Model Diagnostics

- Assumptions of the simple linear model with Normal errors:
 - linearity of the regression relation
 - normality of the error terms
 - constant variance of the error terms
 - independence of the error terms
- In practice, one or more of these assumptions may be violated.
- Diagnostic plots to examine the appropriateness of the model.
 - Focus on residual plots.
 - Diagnostics for outliers and influential cases will be discussed later.
- Remedial measures: transformations.

Departures from Model

Six important types of departures from the simple linear model with Normal errors.

- With regard to regression relation:
 - of the regression relation.of important predictor
 - variable(s).
- · With regard to error distributions:
 - Nonconstant variance ⇒
 Notes: a.k.a. heteroscedasticity or unequal variance
 - Nonnormality: small departures do not create serious problems due to , but major departures should be of concern.
 - Nonindependence ==>
- Outliers: can be serious for small data sets.

Departures from Model

Six important types of departures from the simple linear model with Normal errors.

- With regard to regression relation: serious.
 - Nonlinearity of the regression relation.
 - Omission of important predictor variable(s).
- With regard to error distributions: less serious.
 - Nonconstant variance

 loss of efficiency and invalid variance estimation.
 - Notes: a.k.a. heteroscedasticity or unequal variance
 - Nonnormality: small departures do not create serious problems due to CLT, but major departures should be of concern.
 - **Nonindependence** ⇒ biased variance estimation.
- Outliers: can be serious for small data sets.

Residual Plots

- Examine regression relation and error variance.
 - Residual vs. predictor variable, absolute (or squared residual) vs. predictor variable.
 - · Residual vs. fitted value.
 - In simple regression, residual vs. fitted value plot provides the same information as residual vs. predictor variable plot since the fitted value Y

 _i = β

 ₀ + β

 ₁X

 _i is a linear function of X

 _i.
 - Residual vs. omitted predictor variable(s). (Later)
- Examine error distributions.
 - Normality: normal probability plot (Q-Q plot) of residuals.

Detection of Nonlinearity

- If the residual vs. predictor variable plot shows a , then it is an indication of possible nonlinearity in regression relation.
- True model : $Y = 5 X + 0.1X^2 + \varepsilon$.
 - 30 cases with $X \sim N(100, 16^2)$ and $\varepsilon \sim N(0, 10^2)$.
 - Summary statistics:

$$\overline{X} = 104.13, \overline{Y} = 1004.79, \sum_i X_i^2 = 330962.9, \sum_i Y_i^2 = 32466188, \sum_i X_i Y_i = 3249512.$$

Simple linear regression model was fitted to this data.

Coefficients	Estimate	Std. Error	t-statistic	P-value
Intercept	-1021.3803	40.0648	-25.49	$< 2 \times 10^{-16}$
Slope	19.4587	0.3814	51.01	$< 2 \times 10^{-16}$

$$\sqrt{MSE} = 28.78, R^2 = 0.9894, R_a^2 = 0.989.$$

Note that R^2 is

Detection of Nonlinearity

- If the residual vs. predictor variable plot shows a clear nonlinear pattern, then it is an indication of possible nonlinearity in regression relation.
- True model : $Y = 5 X + 0.1X^2 + \varepsilon$.
 - 30 cases with $X \sim N(100, 16^2)$ and $\varepsilon \sim N(0, 10^2)$.
 - Summary statistics:

$$\overline{X} = 104.13, \overline{Y} = 1004.79, \sum_{i} X_{i}^{2} = 330962.9, \sum_{i} Y_{i}^{2} = 32466188, \sum_{i} X_{i} Y_{i} = 3249512.$$

Simple linear regression model was fitted to this data.

Coefficients	Estimate	Std. Error	t-statistic	P-value
Intercept	-1021.3803	40.0648	-25.49	$< 2 \times 10^{-16}$
Slope	19.4587	0.3814	51.01	$< 2 \times 10^{-16}$
$\sqrt{MSF} - 28.78$	$R^2 - 0.9894$	$B^2 - 0.989$		

Note that R^2 is very large.

Here, the scatter plot (left) is not effective in showing the nonlinearity: the observations Y_i are close to the fitted values \widehat{Y}_i due to the steep slope of the fitted regression line.

Detection of Nonconstancy in Variance

If the residual vs. predictor variable plot shows

, then this is an indication of unequal variance.

- Sometimes, the variance of the error may depend on the value of the predictor variable.
 - Variance increases (or decreases) with the value of X: E.g., in financial data, the volume of transactions usually has a role in the uncertainty of the market.
 - Data may come from different strata with different variabilities:
 E.g., different measuring instruments with different precisions may have been used to obtain the observations.

Detection of Nonconstancy in Variance

- If the residual vs. predictor variable plot shows an unequal spread of the residuals along the x-axis, then this is an indication of unequal variance.
- Sometimes, the variance of the error may depend on the value of the predictor variable.
 - Variance increases (or decreases) with the value of X: e.g., in financial data, the volume of transactions usually has a role in the uncertainty of the market.
 - Data may come from different strata with different variabilities:
 e.g., different measuring instruments with different precisions may have been used to obtain the observations.

True model : $Y = 2 + 3X + \sigma(X)\varepsilon$, where $\log \sigma^2(X) = 1 + 0.1X$.

- 100 cases with $X_i = \frac{i}{10}$ and $\varepsilon_i \sim N(0, 1), i = 1, ..., 100.$
- Simple linear regression model was fitted to this data.

	Coefficients	Estimate	Std. Error	t-statistic	P-value
	Intercept	1.0074	0.9729	1.035	0.303
	Slope	3.3382	0.1673	19.958	$< 2 \times 10^{-16}$
$\sqrt{MSE} = 4.828, R^2 = 0.8026.$					

Note how the error variance was over-estimated by \sqrt{MSE} .

Note the spread of the residuals X.

with the value of

Note the spread of the residuals increases with the value of X.

Detection of Nonnormality

- Normality of the errors can be examined by a normal probability plot, a.k.a. Q-Q plot.
 - An approximation of the expected value for the kth smallest residual $e_{(k)}$ under Normal $(0, \sqrt{MSE})$ is:

$$z_{(k)} = \sqrt{MSE} \cdot Z\left((k-0.375)/(n+0.25)\right), \;\; k=1,\cdots,n, \label{eq:sum_exp}$$

where $Z(\alpha)$ is the α -th quantile of N(0,1) distribution.

• Q-Q plot is simply a scatter plot of $z_{(k)}$ vs. $e_{(k)}$.

Notes: Q-Q stands for quantile-quantile.

Fitted regression line: y = 2.09 + 1.07x, n = 5, MSE = 0.8905.

Case i	Xi	Yi	\widehat{Y}_i	ei
1	0.22	1.79	2.33	-0.54
2	3.55	5.66	5.90	-0.23
3	1.86	3.34	4.09	-0.75
4	3.29	5.83	5.62	0.22
5	1.25	4.74	3.43	1.31

 $e_1 = -0.54$ is the second smallest residual, so k = 2 and the corresponding expected value under normality is

$$\sqrt{0.8905}Z((2-0.375)/(5+0.25))$$
= $0.944 \times Z(0.31) = 0.944 \times (-0.497) = -0.469$.

Can you calculate the expected values for other residuals and draw the Q-Q plot?

How to Read a Q-Q Plot?

- If the errors are indeed normally distributed, then the points on the Q-Q plot should be
- Departures from that could indicate skewed (non-symmetry) or heavy-tailed (more probability mass in tails than a Normal distribution) distributions.
- Other types of departures (e.g., nonlinearity) may affect the distribution of the residuals and render them non-normal.
 Thus it is better to examine other types of departures before checking normality.

How to Read a Q-Q Plot?

- If the errors are indeed normally distributed, then the points on the Q-Q plot should be nearly on a straight line.
- Departures from that could indicate skewed (non-symmetry) or heavy-tailed (more probability mass in tails than a Normal distribution) distributions.
- Other types of departures (e.g., nonlinearity) may affect the distribution of the residuals and render them non-normal.
 Thus it is better to examine other types of departures before checking normality.

P.d.f. of four distributions: N(0,1); $t_{(5)}$ – symmetrical but heavy tailed; $(\chi^2_{(5)} - 5)$ – right-skewed; $(5 - \chi^2_{(5)})$ – left-skewed.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim N(0, 1)$ – normal errors.

Q-Q plot shows a

pattern.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim t_{(5)}$ – symmetrical but heavy-tailed errors.

Q-Q plot shows than a Normal distribution.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim (\chi^2_{(5)} - 5)$ – right-skewed errors.

Q-Q plots shows

True model : $Y=2+3X+\varepsilon$. $\varepsilon\sim (5-\chi^2_{(5)})$ – left-skewed errors.

Q-Q plots shows

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim N(0, 1)$ – normal errors.

Q-Q plot shows a straight line pattern.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim t_{(5)}$ – symmetrical but heavy-tailed errors.

Q-Q plot shows more probabilities in the tails than a Normal distribution.

True model : $Y = 2 + 3X + \varepsilon$. $\varepsilon \sim (\chi^2_{(5)} - 5)$ – right-skewed errors.

Q-Q plots shows more probabilities in the right tail and less probabilities in the left tail.

True model : Y = 2 + 3X + ε . $\varepsilon \sim (5 - \chi^2_{(5)})$ – left-skewed errors.

Q-Q plots shows more probabilities in the left tail and less probabilities in the right tail.

Transformations to Treat Unequal Variance and Nornormality

- Unequal variance and nornormality often appear together.
- Transformations on Y may fix the error distributions.
 - $Y' = \sqrt{Y}$
 - $Y' = \log Y$
 - Y' = 1/Y
 - Sometimes, add a constant to the transformation, e.g., $Y' = \log(c + Y)$, to avoid negative or nearly zero values.
- A member from the family of power transformations may be chosen automatically by the Box-Cox procedure.
- Sometimes, a simultaneous transformation on X may be needed to maintain a linear relationship.

Box-Cox Procedure

- Power transformations: $Y^* = Y^{\lambda}, \ \lambda \in \mathbb{R}$.
- λ is chosen to make a regression model fit the transformed data as good as possible.
 - For each λ, standardize Y_i^λ such that the magnitude of SSE does not depend on λ:

$$Y_i^* = \left\{ \begin{array}{ll} K_1 \frac{Y_i^{\lambda} - 1}{\lambda}, & \text{if,} \quad \lambda \neq 0 \\ K_2 \log(Y_i), & \text{if,} \quad \lambda = 0 \end{array} \right.$$

with

$$K_2 = (\prod_{i=1}^n Y_i)^{1/n}, K_1 = 1/K_2^{\lambda-1}.$$

- For each λ, fit a regression model on the transformed data Y^{*}_i and derive SSE(λ).
- Find the λ that minimizes $SSE(\lambda)$.