A11102 145880

NAT'L INST OF STANDARDS & TECH R.I.C.

A11102145880

COMMANDE PSetto/atok NSRDS—NBS 35 Volume I 1H-23 V

ATOMEC EMERGY LEVELS

As Darived From the Analyses of Optical Spectra

U.S. DEPARTMENT OF COMMENCE

National Parecu of Standards

Author's Note on the Reprinting of Atomic Energy Levels: Volume I, 1949; Volume II, 1952; Volume III, 1958, Circular National Bureau of Standards 467

Although twelve years have elapsed since the publication of Volume III, there is a continuing steady demand for these Volumes. The data they contain on atomic spectra cover all elements in the Periodic Table except the two groups of rare-earths: the lanthanides (Z = 58-71) and the actinides (Z = 90-?). Similar data for these spectra will be handled in a forth-coming Volume IV, now in course of preparation by W. C. Martin and his colleagues.

One of the rewarding aspects of these compilations has been the stimulation they have provided to further research on the analyses of atomic spectra. Gaps in the knowledge of spectra, and needs for investigation of additional spectra are immediately apparent in this comprehensive compendium.

Many additional spectra have been studied and numerous extended analyses have been published that supersede the material contained in Circular 467. A bibliography in the National Bureau of Standards Special Publication 306, Sections 1 to 4 (1968–1969), provides later reference material on individual spectra. It will be some years, however, before the entire set of Volumes will be superseded. The existing supply of these books is low. In order to meet the steady flow of requests, it has been decided to reissue the three Volumes as part of the National Standard Reference Data System. They are reprinted here as NSRDS–NBS 35, Volumes I, II, III.

The first Volume, issued in 1952, is in great demand, and more seriously in need of extensive revision than are the others. As new analyses appear for spectra of the lighter elements, the lists of revised energy levels, together with revised Multiplet Tables, are being published by the National Bureau of Standards under the title "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," as Sections of NSRDS-NBS 3. Section 1 contains these data for the spectra Si II, Si III, Si IV; Section 2 for Si I; Section 3 for C I, C II, C III, C IV, C V, C VI. Similar data on the nitrogen spectra of higher ionization will be presented in Section 4. A number of other spectra are partially completed for inclusion in this Series.

Wherever the individual spectra in Volume I have been revised and reported in the NSRDS-NBS 3 Series, indication of this fact is clearly stated for each spectrum, in this reprinted issue.† Readers are urged to use the revised material for the spectra thus marked and to take note of further revisions of selected spectra as they appear in this series.

Washington, D.C. November 30, 1970

Charlotte E. Moore

Abstract

ATOMIC ENERGY LEVELS, VOLUME I. 1H to 23V

This series of three volumes is a critical compilation of atomic energy levels prepared at the National Bureau of Standards from the analyses of optical spectra. Volume I contains data on the spectra of hydrogen, deuterium, tritium, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, argon, potassium, calcium, scandium, titanium, and vanadium (¹H to ²³V). Volume II covers the spectra of chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, krypton, rubidium, strontium, yttrium, zirconium, and niobium (²⁴Cr to ⁴¹Nb). Volume III includes the spectra of molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, iodine, xenon, cesium, barium, lanthanum; hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, polonium, radon, radium, and actinium (⁴²Mo to ⁵¬La; ¬²²Hf to 89Ac).

Key words: Energy levels; H-V.

†EDITORIAL NOTE: See revision note on pages 21, 24, 26, 29, 30, 31, 144, 147, 148, and 150, Volume I.

Library of Congress Catalog Card Number 75-609945

UNITED STATES DEPARTMENT OF COMMERCE • Maurice H. Stans, Secretary
NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

ATOMIC ENERGY LEVELS

As Derived From the Analyses of Optical Spectra

Volume I

The Spectra of Hydrogen, Deuterium, Tritium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, Chlorine, Argon, Potassium, Calcium Scandium, Titanium, and Vanadium

BY CHARLOTTE E. MOORE

NSRDS-NBS 35

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35/V.I 359 pages (Dec. 1971) CODEN: NSRDA

Reissued December 1971

Reprint of NBS Circular 467, Volume I. See author's note opposite title page

Preface

The present volume is the first of a series being prepared at the National Bureau of Standards as part of a general program on atomic energy levels derived from observations of optical spectra. This program can be traced back to 1924 when the Division of Physical Sciences of the National Research Council created a Committee on Line Spectra of the Elements. The general plan was to encourage and contribute to the structural analysis of atomic spectra and eventually to publish the results in a series of monographs. For twenty years the lure of complex spectra gave emphasis to analysis rather than to compilation and publication of Committee Reports.

In 1932 an extremely timely and useful book entitled "Atomic Energy States as Derived from the Analyses of Optical Spectra" was published by Robert F. Bacher and Samuel Goudsmit. That book set a precedent for omitting experimental details (wavelengths, intensities, Zeeman patterns, etc.) and summarized the terms then known for 231 spectra of 69 elements. Now structure has been recognized in more than 460 spectra, representing 83 elements, and the earlier analyses have in almost all cases been greatly extended.

The accumulation of spectroscopic data is now too vast for publication in a reasonable number of monographs, but the energy levels derived from them are so important for physics, chemistry, and astronomy that a revision of "Bacher and Goudsmit" is urgently needed; it can probably be condensed into three or four volumes. In the spring of 1946 it was determined that neither Bacher nor Goudsmit contemplated such a revision, and it was decided to undertake this at the National Bureau of Standards. Details of this project were discussed at a meeting of the National Research Council Committee on Line Spectra of the Elements, called by the Chairman, Henry Norris Russell, and held in Washington in May 1946. It was then decided to send to interested workers in various fields a questionnaire regarding the most useful form of presentation of the data on atomic energy levels. The present form represents the majority vote resulting from that inquiry.

It was originally planned to issue sections in pamphlet form as the manuscript was completed, and to assemble the sections into volumes of about 400 pages each. Section 1 has been published separately.

This volume comprises the first three sections of Circular 467 of the National Bureau of Standards as follows:

Section 1. The Spectra of Hydrogen, Deuterium, Tritium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, and Fluorine. (Pages 1 to 75.)

Section 2. The Spectra of Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, and Chlorine. (Pages 76 to 210.)

Section 3. The Spectra of Argon, Potassium, Calcium, Scandium, Titanium, and Vanadium. (Pages 211 to 309.)

It has since been decided not to publish sections 2 and 3 separately because they are simultaneously in press and complete Volume I.

The manuscript has been prepared by Charlotte E. Moore under the direction of William F. Meggers, Chief of the Spectroscopy Section of the Atomic and Molecular Physics Division. Sincere appreciation is hereby expressed for the cordial cooperation of the National Research Council Committee on Line Spectra of the Elements, and for the heretofore unpublished contributions of many spectroscopists. Because the current volumes of Atomic Energy Levels disclose many gaps in our knowledge in addition to some uncertainties and occasional irregularities, it seems certain that they will inspire further researches in experimental and theoretical spectroscopy, and thus in turn advance the specialized subjects of atomic and nuclear physics.

E. U. CONDON, Director.

Contents

	Dage	Page
Preface	Page _ II	7. Tables of Predicted and Observed Arrays of
1. Introduction		Terms—Continued
2. Scope of the Present Tables		7.3. Arrays of predicted terms of the sequences Mg1 through A1 (tables 12
3. Nomenclature (atomic energy levels, spectro scopic terms, multiplets)		to 18) xvi 7.4. Arrays of predicted levels of the Nei
4. Arrangement 4.1. Headings, remarks	VIII	and A1 sequences (tables 11 and 18)_ xvi 7.5. Arrays of predicted terms of the se-
4.2. References4.3. Reference symbols		quences Car through Vr (tables 19 to 22)xvi
5. Spectroscopic Notation	_ X	8. The Periodic Table xvii
5.2. Inert gases	XII	8.1. The chemical elements by atomic number, ionization potentials (table 23) xvii
6.1. Author	XII	8.2. The chemical elements by chemical symbol (table 24) xvii
6.2. Configuration 6.3. Designation		8.3. The periodic system (table 25) xvii
6.4. Inner quantum number $J_{}$ 6.5. Atomic energy level	XIII	8.4. Index—isoelectronic sequences (table 26) xvii
6.6. Interval	é	9. Future Investigations xvii 9.1. Need for further analysis xvii
7. Tables of Predicted and Observed Arrays of		9.2. Term intervalsxviii
Terms	_ xv	9.3. Series spectra—Rydberg denominators_xvIII
7.1. Shells 7.2. Arrays of predicted terms of the se)-	9.4. Observed Zeeman patterns xviii 9.5. Energy or Grotrian diagrams xviii
quences Bei through Nei (tables to 11)		10. Acknowledgments xix

List of Tables

Table	Subject	Page	Table	Subject	Page
1 to 4	Landé g-values	XX to XXVII			
				PREDICTED TERMS—continued	
	PREDICTED TERMS		16	Sı	xxxiv
	D	3/3/1/11			
5	Вет	XXVIII	17	Clı	XXXIV
6	Ві	XXVIII	18	AI	XXXV
7	С і	XXIX	19	Сал	XXXV
8	N I	XXIX			XXXVI
9	0 т	XXX	20	Sc 1	
10	Fı	XXXI	21	Ti 1	XXXVII
11	Ne I	XXXI	22	VI	XXXVIII
12	MgI	XXXII	23	Ionization Potentials	XL
13	Al ı	XXXII	24	Chemical Symbols	XLI
				•	
14	Si I	XXXIII	25	The Periodic System	XLII
15	Рі	XXXIII	26	Index—Isoelectronic Sequences	XLIII

Index to Spectra

Element	Z	Spectrum	Page	Element	Z	Spectrum	Page
Hydrogen	1	H D	1 3 3	Neon	10	Ne 1 Ne 11 Ne 111	81 83
Helium	2	He I He II	4 6			Ne IV Ne v Ne vI	86
Lithium	3	Li 11 Li 11 Li 111	8 10 11	Sodium	11	Na II	91 93
Beryllium	4	Be I Be II Be III Be IV	12 14 14 15			Na 1V	96 98 100 103
Boron	5	B II B III B IV	16 17 19 19	Magnesium	12	Na ix	106 108 109
Carbon	6	В v С п С п	20 21 24 26			Mg IV Mg V Mg VI Mg VII Mg VIII	113 114 117 119
Nitrogen	7	C IV C v C vI	29 30 31	Aluminum	13	Mg 1x Mg x Mg xI Al I	$\begin{array}{ccc} & 122 \\ & 123 \end{array}$
1111105011	·	N II	35 38 40 42 43 44	·		Al IIAl IIIAl IVAl VIAl VIAl VIAl VIIAl VII	126 129 130 131 133 135
Oxygen	8	O I	45 47 50 53			Al viii Al ix Al x Al xi Al xii	138 140 142
		O v O vi O vii O viii	56 58 59 59	Silicon	14	Si 1 Si 11 Si 111 Si 111	144 147 148
Fluorine	9	F r	60 62 64 66 69 71			Si v. Si vI. Si vII. Si vIII. Si IX. Si X. Si X.	151 152 154 156 157
		F vii F viii	74 75			Si x1Si x11	160

Element	Z	Spectrum	Page	Element	Z	Spectrum	Page
Phosphorus	15	Р 1	163	Potassium—	19	К іх	239
-		P III	164 166	(Continued)		K x	$\frac{239}{241}$
		P IVP V	168 169 170	Calcium	20	Ca 1 Ca 11	$\frac{242}{245}$
		P vi P vii P viii	171 173			Ca III	$ \begin{array}{r} 247 \\ 248 \end{array} $
		P ixP x	174 176			Ca v	$\frac{249}{251}$
		P xi	177 179			Ca viii	253
Q 16	1.0	P xIII	180			Ca IX	254 255
Sulfur	16	S I	181 183 185			Ca xi	$255 \\ 257 \\ 258$
		S IV S v	187 188			Ca xv	258
		S vi	189 190	Scandium	21	Sc 1	$\frac{259}{262}$
		S viiiS ix	191 193			Sc III Sc IV	263 264
		S xS xii	$\begin{array}{c} 194 \\ 194 \end{array}$			Sc v Sc vi Sc vii	$ \begin{array}{r} 265 \\ 266 \\ 267 \end{array} $
Chlorine	17	Cl 1	195 197			Sc viii Sc ix	268 269
		Cl III	199 201			Sc x Sc xi	$\frac{270}{271}$
		Cl v	202 204	 Titanium	22	Sc x11 Ti 1	272 273
		Cl viii	205 206	Titamum	22	Ti II	279 281
		Cl x Cl x	$207 \\ 209 \\ 210$			Ti ıv Ti v	283 284
Argon	18	A 1	211			Ti vii	$\begin{array}{c} 285 \\ 286 \end{array}$
		A III	216 218			Ti IX.	288
		A IV	$ \begin{array}{c} 220 \\ 222 \\ 223 \end{array} $			Ti x Ti xi Ti xii	289
		A viiA viii	224 224			Ti xiii	290
		A ix	$\frac{225}{226}$	Vanadium	23	V 1	291 298
		A XI A XIV	$\begin{array}{c} 226 \\ 226 \end{array}$			V III V IV V v	303
Potassium	19	К 1 К 11	227 230			V vi V vii	304
		K III K IV	231 233			V viii	$\frac{306}{306}$
		K v	$\begin{array}{c} 234 \\ 236 \end{array}$			V xI V xII	307 307
		K vii	237 238			V XIII	308 309

1. Introduction

Since the publication in 1932 by Bacher and Goudsmit of their book "Atomic Energy States," ¹ the number of energy levels determined from the analyses of optical spectra has increased by a factor of perhaps 4 or 5 and yet no critical compendium of these data exists. In order to meet this need, the present compilation has been undertaken at the National Bureau of Standards.

A handbook of "Atomic Energy Levels" is an indispensable tool for workers in many fields of science today. For the spectroscopist it reveals the gaps in our knowledge of atomic spectra—both those spectra that are incompletely analyzed because of insufficient observations and those that have not yet been observed. For the theoretical as well as the experimental investigators, the detailed comparison of data on related spectra, uniformly arranged, is a useful guide in the study of series, intervals, electron configurations, and many other related problems of atomic structure.

Many interesting spectroscopic problems also arise in connection with microwave spectroscopy, with ultraviolet solar spectra observed from rockets, with infrared spectra observed with a sensitive detector, and in general with types of observation that have developed comparatively recently. If the analysis of a spectrum is complete the positions of the lines can be calculated from the known energy levels, including in many cases those of lines in the far infrared or ultraviolet. The present term tables are now being used in connection with some problems of this sort.

The needs of the nuclear as well as the atomic physicist, of the chemist interested in atomic structure, of the astrophysicist interested in the study of stellar structure and cosmical abundances, and of those in many other fields of science all provide the inspiration for this work.

2. Scope of the Present Tables

Ten of the fourteen members of the National Research Council Committee on Line Spectra of the Elements attended the meeting held in Washington in May 1946, to consider details of this program. Two members who were unable to attend, I. S. Bowen and R. A. Sawyer, made personal visits to the Bureau before the meeting for this purpose. A number of other spectroscopists, including B. Edlén, have also been consulted in private conference.

On the recommendation of the committee a questionnaire regarding details of arrangement of the tables was sent to 94 interested workers in various fields of science. Sixty-one replied to this inquiry. The scope, uses, and format of the book have been discussed at length and the general form adopted is a direct outgrowth of these conferences and recommendations.

The cordial collaboration of those who have been contacted is gratifying. The Chairman of the Committee, H. N. Russell, has read all of the manuscript, provided much material, and made many helpful suggestions. The writer has had the benefit of his broad experience with spectroscopic problems. The committee and others as well are giving their wholehearted support to this program.

Requests to extend the scope of the tables have been seriously considered. It was finally decided to include only the energy levels derived from observations of atomic spectra, exclusive of hyperfine structure ascribed to atomic nuclei (with the exception of H, D). With full

appreciation of the importance of critical data on nuclear and X-ray spectra, on isotopes, and on other subjects related to atomic structure the present policy was adopted for several reasons. The usefulness of the tables might well be vitiated by the inclusion of too many kinds of data. The critical editing of the enormous amount of literature entailed by extending the program would of necessity delay by years the publication of data on any one phase of the subject. Finally, the preparation of the volumes of "Atomic Energy Levels" is an appropriate sequel to the work on the revised edition of "A Multiplet Table of Astrophysical Interest," 2 hereinafter referred to as RMT.³ These two types of tables used in conjunction with each other provide a condensed and unified picture of many atomic spectra—the one containing the energy levels and term designations used to compile the multiplets and excitation potentials recorded in the other.

In view of the limitations imposed here, reference is made under the relevant spectra to the excellent summary and bibliography of data on hyperfine structure by Meggers, in his paper entitled "Spectroscopy, Past, Present, and Future." ⁴ In addition, selected later papers on hyperfine structure and isotope shifts are listed for certain spectra. The reader is warned, however, that the individual references on these subjects included here are highly selected and that the present book is inadequate for workers in these fields.

² Princeton Univ. Obs. Contr. No. 20 (1945).

³ This edition is limited to lines of wavelength longer than 3000 A. Along with the tabulation of energy levels, the writer is also preparing an ultraviolet extension to the Revised Multiplet Table.

⁴ J. Opt. Soc. Am. 36, 431 (1946).

¹ McGraw-Hill Book Co., Inc., New York, N. Y., and London (1932).

3. Nomenclature

(Atomic Energy Levels, Spectroscopic Terms, Multiplets)

Briefly summarized, the atoms of a gas or vapor, when excited by radiation, absorb certain wavelengths corresponding to transitions of their outer electrons from lower energy levels to higher ones. When the transitions are from higher to lower energy levels the lines are emitted. Each chemical element can emit as many atomic spectra as it has electrons. If, for example, a sample of pure vanadium is placed in an electric arc and light from the arc is observed through a spectroscope, a complex array of spectral lines of various intensities appears. Most of these lines are produced by neutral vanadium atoms and are characteristic of the first (or arc) spectrum of vanadium, VI.

If vanadium atoms are excited by an electric spark instead of an arc the higher energy of the spark will cause a large proportion of them to lose an electron. The atoms with one less electron in turn exhibit their own characteristic array of spectral lines, i. e., the second spectrum of vanadium, VII. Similarly, with suitable sources of excitation, spectra of higher ionization can be observed corresponding to the loss of 2, 3, etc., electrons, the total number possible being equal to the atomic number of the element in question, in the case of vanadium, 23. To date, however, nothing is known about the vanadium spectra beyond VxIV. The present volume contains the energy levels of all atomic and ionic spectra in which structure has been recognized, for the 23 chemical elements hydrogen through vanadium, H, HeI, HeII, LiI, . . . Vxiv, and includes 206 spectra.

The wavelengths, or positions of the lines observed in a given spectrum are carefully measured, and estimated intensities of the lines recorded. The wavelengths are then converted into wave numbers in vacuo from standard tables.⁵ By studying differences among the wave numbers of the observed lines the energy levels can be found, since each spectral line is produced by a transition between two such levels. From a careful study of groups of lines that have similar characteristics, such as intensity behavior when produced at different temperatures in the laboratory, the levels involved in the production of the lines are grouped to form spectroscopic terms. The terms result from definite configurations and motions of the outer electrons of the atom and are explained by a well-established theory of spectral structure.6 For any given electron configuration the array of terms to be expected in a given spectrum can be predicted from the quantum theory. Conversely, the energy levels and the terms formed from them furnish fundamental information. based on observation, concerning the outer electrons of the atom. The energy levels are, therefore, important constants of nature.

A group of related lines produced by transitions between two complex terms was first called a *multiplet* by M. A. Catalán in 1922.⁷ The Multiplet Tables mentioned above (RMT, sec. 2) give the observed wavelengths of the lines that form the leading multiplets of many different spectra.

4. Arrangement

An attempt has been made to follow the general plan adopted by Bacher and Goudsmit in 1932, but some major changes have been introduced. In the present work the elements are arranged in order of increasing atomic number rather than in the alphabetical order of their chemical symbols. The tables on pages XL and XLI should facilitate cross reference to the earlier book. For a given element the arc spectrum is followed by the successive spark spectra in order of increasing stage of ionization, as was done previously. Gaps occurring in the run of spark spectra for a given element indicate that structure has not yet been recognized in the missing spectrum.

Contrary to the earlier arrangement, in the present compilation the energy levels of all spectra are listed upward from the ground state zero. Absolute values are not given, but can be found for series spectra by consulting the references to the analysis or by subtracting the tabulated values from the limit quoted for a given spectrum.

4.1. Headings, Remarks

For each spectrum descriptive remarks which are self-explanatory, are preceded by headings as follows: Those on the left give (1) the number of electrons in the atom, and, except for arc spectra, the isoelectronic sequence to which the spectrum belongs (see sec. 8.4); (2) the ground state of the atom with its complete electron configuration; (3) the absolute value of the ground level in cm⁻¹, i. e., the limit referred to the ground state of the ion of next higher ionization. The headings on the right give (1) the atomic number Z and (2) the ionization potential in electron volts obtained by multiplying the limit quoted

⁵ H. Kayser, Tabelle der Schwingungszahlen, Revised Edition (Edwards Brothers, Inc., Ann Arbor, Mich., 1944).

⁶ F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

¹ Phil. Trans. Roy. Soc. London (A) 223,, 127 (1922); Rev. Acad. Madrid 25, 20 (1922).

on the left by the factor 0.00012395, which was recommended by Birge in 1941.89

In the remarks the word "author" refers to the investigator who has worked on the analysis of the spectrum, in contrast to the word "writer," which applies to the present compiler of these data.

4.2. References

In 1914 W. F. Meggers started a card catalog of all literature references on the description and analysis of atomic spectra, which has been carefully kept up to date and is doubtless the most complete of its kind in existence today. This catalog, together with the valuable and extensive collection of spectroscopic reprints of Meggers and Kiess, furnish the basic material requisite to the present program.

Following the descriptive remarks, literature references are given for each spectrum. It is not the purpose of this book to list all references to the analysis of each spectrum. The writer has attempted to make a careful appraisal of the literature and to list all the references needed to cover the complete analysis, including, of course, those used in the present work, and those giving the classified lines, energy or Grotrian diagrams, and observed g-values. A few selected references to hyperfine structure and isotope shift are also included, as mentioned in sec. 2.

In many spectra important regularities have been found by an author whose name does not appear in the references quoted here. This occurs when later and more complete papers include the earlier results and references. For example, Bowen and Millikan first discussed a number of the spectra described in Edlén's Monograph, 10 but only the later reference is listed. Full recognition should be given to all such contributors in spite of the arbitrary limitations imposed here.

4.3 Reference Symbols

Most of the literature references are followed by letters in parentheses, which describe the scope and content of the paper, as follows:

ΙP	Ionization potential.
\mathbf{T}	Terms.
CL	Classified lines.
G D	Grotrian diagram.
ED	Energy diagram.
Z E	Zeeman effect.
IS	Isotope shift.

hfs

classified lines.

Several of these topics are frequently discussed in one paper, in which case all the symbols that are applicable are mentioned with the reference. If, for example, the symbols (I P) (T) (C L) follow a reference, it signifies that the paper gives an ionization potential, terms, and

Hyperfine structure.

In a few selected cases, self-explanatory descriptions follow the reference, as, for example, in C I "(Solar data)."

Some papers are described in abstracts or letters to the editor in the Physical Review. These are indicated by (A) or (L) preceding the date in the reference, as is customary, but they should not be confused with the above symbols.

References for which no symbol is given are described in the remarks on the spectrum. Many of these are theoretical in character, as for example, the one to Racah's paper (see Ne I) which deals with jl-coupling in the spectra of the Ne I type (sec. 5.2). Symbols have been omitted in general from references that are specialized in character as compared with those that can be more concisely described by the array of letters given above.

5. Spectroscopic Notation

Some details of spectrum analysis should perhaps be mentioned in order to explain the plan of presentation of spectroscopic data adopted here. According to the quantum theory each energy level is defined by an inner quantum number commonly known as J. The terms (groups of related levels) have multiplicities which are all odd $(1, 3, 5, 7, \ldots)$ or all even $(2, 4, 6, 8, \ldots)$ in a given spectrum. For terms of odd multiplicity the J-values are always integers, $0, 1, 2, 3, \ldots$; for those of even multiplicity the J-values are odd multiples of the fraction $\frac{1}{2}$, denoted as $\frac{1}{2}$, $\frac{1}{2}$, $\frac{2}{2}$, $\frac{3}{2}$, etc. Terms are further de-

fined by azimuthal quantum numbers L that have for terms labeled S, P, D, F, G, H, I, K, etc., the values 0, 1, 2, 3, 4, 5, 6, 7, etc., respectively.

A term of a given kind and multiplicity consists of a definite number of energy levels whose inner quantum numbers are stipulated by the quantum theory. For example, an "S" term of multiplicity three has only one level with J-value equal to 1. This term is designated as ${}^{3}S_{1}$. A "D" term of multiplicity four consists of four levels whose J-values are $3\frac{1}{2}$, $2\frac{1}{2}$, $1\frac{1}{2}$, $\frac{1}{2}$, respectively, designated as ${}^{4}D_{3\frac{1}{2}}$, ${}^{4}D_{2\frac{1}{2}}$, ${}^{4}D_{1\frac{1}{2}}$, ${}^{4}D_{1\frac{1}{2}}$. Tables giving the J-values of terms of each multiplicity are discussed in sec. 6.7.

The designation is further described by two other quantities discussed in sec. 5.1 and sec. 5.3: (1) a prefix that

⁸ Rev. Mod. Phys. 13, No. 4, 233 (1941).

The discrepancies between the ionization potentials in this book and those given by the writer in the RMT are, in general, due to the use of the older factor, 0.00012345, in calculating data for the Multiplet Tables.

¹⁰ Nova Acta Reg. Soc. Sci. Uppsala (IV) 9, No. 6 (1934).

serves to distinguish terms of the same type and multiplicity from each other and which, for simpler spectra, gives information about the electron configuration, and (2) a superscript "" denoting that a term belongs to the odd set (sec. 5.1). The complete multiplet designation of any spectral line includes all of these quantities: multiplicity, azimuthal quantum number, and inner quantum numbers for both the lower and higher energy levels involved in the production of the line.

The lines normally observed in a spectrum, i. e., the permitted lines, do not result from differences among the levels of each term and every other term, but from differences (called combinations) between two sets of terms, one "even" and one "odd." Permitted lines are further restricted by the rules governing the J-values. Only those J-value combinations between even and odd terms for which J changes by 0 or ± 1 are permitted, and normally no combinations occur between levels with J=0. Under special conditions "Forbidden" lines are observed, in which case these selection rules for odd and even terms and for J-values do not hold.

A relatively limited number of terms can thus account for a complex array of spectral lines. It is obviously desirable to describe these terms by a uniform notation that defines the quantum properties as completely as possible, and is also adaptable to all the varieties of spectra that have been and are likely to be observed.

A general scheme of notation was outlined in 1929,¹¹ which has been widely used. This scheme has been interpreted so freely by various investigators that a serious lack of uniformity has resulted in the literature. When this question arose in connection with the RMT the writer did not anticipate the present project, which is far wider in scope. She did, however, attempt to introduce uniformity and, in order to avoid further confusion, she has adopted here the notation of the RMT with only slight modifications. It is admittedly far from ideal, but is perhaps justifiable if it serves only to stimulate serious consideration of the question and the general adoption of a more satisfactory scheme.

The "Designation" (sec. 6.3) adopted for the less complex spectra that exhibit conspicuous series differs from that used for the more complex spectra that do not.

5.1. Series Spectra

For many elements the spectra become more complex as the degree of ionization decreases. The terms of each spark spectrum are the parent terms or "limits" of the series of terms in the spectrum of next lower degree of ionization. The term arrays resulting from the addition of s, p, d, f, etc., electrons to each limit are well known from theory (sec. 7). Consequently, for the simpler spectra the electron configurations of the observed terms

can be assigned without ambiguity by a study of the limits in the spectrum of next higher degree of ionization.

The spectrum of Ovi may be used as an illustration. Here the lowest term of Ovii, $1s^2$ S, is so much lower than any other that no other limit need be considered. The addition of a "running" s, p, d, f, etc., electron to this state produces a series of doublet S, P°, D, F°, etc., terms in Ovi. In this case the electrons and terms are of the same type. The ground term of Ovi is $1s^2$ (S) $2s^2$ S, the next term is $1s^2$ (S) $2p^2$ P°, etc., where (S) signifies the parent term or limit in Ovii. The "Designations" adopted for these terms are $2s^2$ S, $2p^2$ P°, etc. The number "2" in the prefix 2s, etc., denotes the total quantum number, which depends on the shell occupied by the outer electrons giving rise to the term (see sec. 7). This number increases by unity for the series terms of a given type, as for example, for the series $2s^2$ S, $3s^2$ S, $4s^2$ S, etc.

An additional electron is effective in the production of the spectrum of Ov. The configuration $1s^2 2s^2$ gives the ground term ¹S, designated here as $2s^2$ ¹S; and $1s^2 2p^2$ gives the terms $2p^2$ ³P, $2p^2$ ¹D and $2p^2$ ¹S. The spectrum of Ov is more complex because, in addition, there are two low terms in Ov1, both of which are important parent terms or "limits" giving rise to terms in Ov. The addition of running electrons to these limits gives, among others, the following theoretical or predicted array of terms:

0	Ovi		Ov					
Config.	Limit	Added Electron	Config.	Terms				
1s² 2s	2S	38	1s ² 2s(² S)3s	{3S 1S				
"	"	2p	1s ² 2s(² S)2p	{	³ P° ¹ P°			
"	"	3d	1s ² 2s(² S)3d	{		³D		
1s2 2p	²P°	38	1s ² 2p(² P°)3s	{	³P° ¹P°			
"	"	3p	1s ² 2p(² P°)3p	${^{3}S}_{^{1}S}$	³P ¹P	³ D		
	"	3d	$1s^2 \ 2p(^2\mathrm{P^o})3d$	{	³ P°	³ D°	³F°	

Terms are "odd" (denoted by the superscript "o") when the configuration contains an odd number of p, f, h, etc. electrons, $^3P^{\circ}$, for example. In the case of Ov, since one limit is even and the other one odd, no ambiguity occurs if a designation consisting of the running electron and term is used for terms from both limits, i. e., for terms from 2S in Ovi, $3s\,^3S$, $3s\,^1S$, $2p\,^3P^{\circ}$, $2p\,^1P^{\circ}$,

¹¹ H. N. Russell, A. G. Shenstone, and L. A. Turner, Phys. Rev. 33, 900 (1929).

¹² In the RMT the notation 2 ²S, 2 ²P°, etc. was used for series of this kind when the term and running electron were of the same type.

3d ³D, 3d ¹D; and for terms from ²P° in Ovi, 3s ³P°, 3s ¹P°, 3p ³S, 3p ³P, . . . 3d ¹F°. This notation has been adopted for those spectra that have two low limits, one even and one odd.

When two or more of the effective limits are all even or all odd, an addition to this notation is required. The limit terms are always listed in the term arrays (sec. 7) from lowest to highest, i. e., according to increasing value of the terms, starting from zero. In Ov the ground term is 2S and the next higher is 2P°. Consequently, 2S is listed first in the above array and in the one on page 57. For terms from the lowest of a group of limits the running electron is used as described above. For those from the next higher or second limit a prime is affixed to the running electron, for those from the third limit a double prime, etc. The use of primes is well illustrated by the term arrays: (1) of Oiv, p. 55, where the lowest limit is even and the next odd, in which case primes are first introduced for the third limit; and (2) that of OII, p. 50, where the primes are used for the second limit, since the two lowest limits are even.

With the exception of the spectra of the inert gas type (sec. 5.2), the notation giving the running electron with primes affixed as described above has been used for the spectra of all isoelectronic sequences through K and for the spectrum of Cai. The rest of the Cai sequence and the Sci, Tii, and Visequences have the notation adopted for complex spectra (secs. 5.3 and 7.5).

5.2. Inert Gases

The first spectra of the inert gases form a special class of series spectra that must be discussed separately. In these neutral atoms the last electron required to close the different shells is added. Terms are not definitely distinguishable for many types of higher series members owing to the departure from LS-coupling, and the J-values of the components of the limit term must be indicated. A detailed account of the theory of the couplings of various types will not be attempted here. Briefly summarized, when LS-coupling does not hold, $\jmath l$ - or $\jmath \jmath$ -coupling becomes important, the Landé g-values (tables 1 to 4), (sec. 6.7) do not hold, and levels are grouped by pairs rather than by terms. For further details, special treatises on the subject should be consulted.¹³

The present volume contains two sequences of this type: Ne I and A I. In these spectra the last of the six *p*-electrons is added and completes these shells.

¹³ E. Back and A. Landé, Zeemaneffekt und Multiplettstruktur der Spektrallinien, (Julius Springer, Berlin, 1925).

As stated in the remarks for Nei, Edlén suggested that a pair-coupling notation be adopted for Nei-like spectra to take into account the departure from LS-coupling. The jl-coupling notation in the general form suggested by Racah ¹⁴ has, consequently, been adopted, on Shortley's suggestion. Shortley has also prepared a detailed array of the theoretical arrangement of the pairs, for the writer to use as a guide in preparing the tables of spectra of this type.

A few general remarks will suffice to explain the general plan of presentation. All levels from a given configuration are in one group. The groups are listed in order of increasing value of the smallest level in each group. Within a group the levels are paired and the pairs form two subgroups, each of which has as a limit one of the two components of a 2P° term, 2P134 and 2P36, the former being the lower. Within the subgroup members of a pair are listed together in order of increasing value of the lower member, unless they are widely separated numerically, in which case the lower pairs precede the higher member of the wide pair. Each pair consists of two levels whose J-values are known from theory, and differ by only one unit. The designation of the pair gives the running electron, followed by the mean value of the two quantum numbers given in brackets. As usual, a prime is used with the running electron to indicate the higher limit.

The spectrum of Ne I may be used as an illustration. The pairs from the 3s-configuration form one group. The next group in order of increasing numerical value of the lowest member is 3p, the next is 4s, etc. Within the 3s group one pair having J=2, 1, respectively, has the limit (2P_{1½}) in Ne II, and is designated as 3s[1½]°, where the "" has the usual meaning. The second pair in the 3s group has the higher limit (2P%) in Ne II and J-values 0 and 1, respectively. The designation is, therefore, 3s'[½]°. In the group having the 3p-configuration the components of pair 1, 0 are widely separated, 148259 and 150919, respectively. They are listed separately in numerical order within the subgroup having the limit (2P°11), each member being labeled $3p[\frac{1}{2}]$. Then follows the related subgroup $3p'[1\frac{1}{2}]$, etc., with the pairs listed in increasing order.

The spectra to which the pair-coupling applies are listed under the Ne I and A I isoelectronic sequences in table 26.

For convenience of cross reference to Bacher and Goudsmit's book and to other publications, the Paschen notation for these spectra has been retained in column 1. Unfortunately, the *jl*-coupling notation was not used in the RMT, but it is hoped that the style adopted there can be translated into the present form by means of the table on page xVII of that Contribution.¹⁵

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

R. F. Bacher and S. Goudsmit, Atomic Energy States (McGraw-Hill Book Co., Inc., New York, N. Y. and London, 1932).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra* (The Macmillan Co., New York, N. Y.; The University Press, Cambridge, Eng., 1935).

¹⁴ Phys. Rev. 61, 537 (L) (1942).

¹⁵ A Multiplet Table of Astrophysical Interest, Princeton Univ. Obs. Contr. No. 20 (1945).

5.3. Complex spectra

In the majority of complex spectra the terms are so numerous that it is impracticable to designate them by their configurations. For these spectra the prefixes, a, b, c, d are assigned to the low terms of each type (even or odd) and z, y, x, etc., to those that combine with them (odd or even). The high terms of the same type as the low ones start with the prefix e and continue through f, g, etc.

This notation for complex spectra is first used for Sc II in the present volume. It is also used for all subsequent spectra of the Ca I sequence and for the spectra of the Sc I, Ti I, and V I sequences. These spectra are discussed further in sec. 7.5.

In many complex spectra it is impossible to group all known levels into spectroscopic terms. Miscellaneous levels are assigned numbers, and the superscript "o" if they belong to the odd set.

6. Columns of the Table

The data on atomic energy levels are presented in a maximum number of seven columns in the tables. These columns may be described as follows, although the numbers on the left serve only as a guide to the order of presentation, since all are not needed for every spectrum.

	Tabular Entry
	Edlén, Paschen, Author
	Config. Desig.
	J
-	Level
nterval	Interval
bserved g-value	Obs. g
	uthor onfiguration designation ner Quantum Number tomic Energy Level nterval bserved g-value

6.1. Author

Column one gives the notation used in individual papers on the analysis of certain spectra. For many spectra discussed by Edlén, i. e., mostly spectra of the light elements, the heading "Edlén" is used to indicate his notation.

As stated above, the heading "Paschen" is given for spectra of the inert gas type, meaning that the column contains Paschen's notation.

Frequently "Author" or "Authors" and, occasionally, initials are used as a heading. This is explained in the remarks and references for the spectrum in question.

This column is used only when necessary to enable the reader to translate the notation in the literature into that adopted in the "Designation" column for the sake of uniformity. It is omitted for the simpler spectra and for those in which no ambiguity can occur in the interpretation of the individual papers on analysis.

6.2. Configuration

Column two gives the electron configuration. For the simpler spectra, where only one limit term is involved, the limit is not repeated in the configuration for each term.

Similarly, the electrons in closed shells are given only when necessary. For example, in Li 1, p. 9, all terms have the limit (1 S) in Li 11, and two electrons form the closed 1s shell. The complete configuration of the ground term $2s^{2}$ S is $1s^{2}(^{1}$ S)2s, here called 2s for brevity. Similarly, for the next term, $2p^{2}$ P°, it is $1s^{2}(^{1}$ S)2p, called 2p, etc. For each spectrum, any electrons not mentioned in the configuration column may be found in the heading giving the ground state.

In more complex spectra, all electrons and limits needed to explain the terms are given, the limit terms being in parentheses, as usual. In C II, p. 24, for example, the term at 116537.88 has the limit ('S) in C III, as indicated by the configuration $2s^2$ ('S)3s. The rules governing the use of primes for terms from different limits have been described in detail in sec. 5.1.

The *J*-value indicating the component of the limit term responsible for certain terms or levels is of considerable theoretical interest. Many papers discuss this question. No attempt has been made to list here the *J*-values for the limit terms except in the case of inert gas spectra (sec. 5.2).

6.3. Designation

The designation column has been explained in sec. 5. Spectra have been divided into three classes and a uniform designation adopted for each class. For series spectra, the running electron without or with primes is given as a prefix to the term. For inert gas spectra the jl-coupling notation of the related pairs of levels is used. For complex spectra the prefixes $a, b, \ldots e, f; z, y, x, \ldots$ are given.

Miscellaneous levels are assigned numbers and odd levels are indicated throughout by the symbol "°."

Other miscellaneous designations, which are usually self-explanatory, are also used. In F I, p. 60, for example, the type of notation adopted by Edlén for miscellaneous levels from the 3d and 4d configurations, 3d X_2 , etc., has been retained. Edlén remarks that it is impos-

sible to assign term designations to these levels because of the departure from LS-coupling.

6.4. Inner Quantum Number J

This column gives the inner quantum number J for each level when known, or the quantum numbers of all components of a term if the term is unresolved into its component levels. For brevity the end quantum numbers of a term are frequently given for unresolved terms. For example, the term of F II, p. 63, at 264610 is an unresolved ⁵F term. A ⁵F term consists of 5 components with J-values of 5, 4, 3, 2, 1, respectively. They are denoted as "5 to 1" in the column headed J. The J-values for terms of the various types, S, P, D, etc., and multiplicities are given in tables 1 and 2. A blank in this column indicates that the author has not defined the J-value. In sec. 6, following, J-values are discussed further.

As a rule, J-values can be determined from the observed combinations. In the spectra of Ne I and A I, however, Shortley has suggested that special care be taken to indicate those that are verified by observation in the case of levels produced by f-electrons, since some pairs overlap and some are unresolved. As an aid in the theoretical interpretation of these spectra, the J-values that are derived from the observed combinations involving f-electrons are entered in italics in the tables.

6.5. Atomic Energy Level

This column gives the atomic energy levels of the individual spectra, odd levels being in italics throughout. With the exception of H-like spectra they are, in general, observed values. In a number of spectra extrapolated values estimated from isoelectronic sequence data are also included to supplement incomplete observational results. Brackets are used to denote extrapolated values.

For every spectrum the levels are listed from the ground state zero, i. e., absolute values are not given in these tables. The levels are grouped by terms, or by pairs in the case of the inert gas spectra (sec. 5.2). The terms are listed in order of increasing numerical value of the smallest level in each. Miscellaneous levels are given in proper numerical order between terms. For unresolved levels the effective mean value of the components is given. For terms in which only certain components have been observed, those levels that are known are listed with the known J-value, and blanks occur in the table opposite the J-values of the missing members.

The value of the limit referred to the ground state of the atom of next higher stage of ionization, i. e., the limit

giving the principal ionization potential, is entered in bold face in the table. In spectra having terms with negative absolute values, the limit appears in the correct numerical place in the table and is followed by higher terms. More often, it appears at the end of the table, following a row of leaders which indicate that many high terms have not yet been found. The value of the limit given in the heading is repeated in the table, throughout. Two limits are given for Ne_I- and A_I-like spectra, when the absolute values of both components of the limit term ²P^o_{1,2,3} are known, the lower limit being in bold-face type (see sec. 5.2).

The selection of the numerical value of the limit adopted here is frequently arbitrary, and those who are seriously interested in the best value should consult the references. The length and type of the series, the series formula used, the type of extrapolation, and many other factors affect the accuracy of the limit. The remarks contain relevant details regarding the evaluation of the limit. Higher limits, if any, can be calculated by the addition of the appropriate term values of the succeeding spectrum to the limit quoted here.

In many spectra no intersystem combinations connecting the terms of different multiplicity within a spectrum, have been observed. For these spectra a constant correction, x, which may be either positive or negative, must, therefore, be applied to the terms of one multiplicity, and a different constant y to those of another in spectra where terms of three multiplicities have been detected, in order to put all terms on the same scale. In the tables the entries "+x" and "+y" follow the levels of all such sets of terms.

If long series have been observed the relative positions of the terms of different multiplicity can be determined accurately from the series limits, and the correction x is small.¹⁷ In many cases series are short or lacking and the error may be considerable. Estimated relative positions of terms have, however, frequently been used in order to place all terms in the order that is approximately correct. The remarks on the spectrum and the use of brackets to denote estimated values should suffice to explain the procedure in the individual cases.

The uncertainty x is also occasionally used to indicate groups of detached terms that have not yet been connected by observation with the rest of the spectrum, but whose multiplicity is the same as that of terms that are known. This is true for a group of terms of Sc I, for example (p. 260).

6.6. Interval

The term intervals in this column are, with a very few exceptions, the differences between the level values of the

¹⁶ For spectra of the H sequence the values calculated by J. E. Mack from the series formula are given, as is explained in the remarks.

¹⁷ In a few spectra x has been omitted for this reason, as noted in the remarks.

components of terms in the preceding column. If, for a given term, the level of smallest J has the smallest numerical value, and this succession holds for all components from the lowest to the highest, the intervals are positive and the term is normal. On the contrary, if the level of smallest numerical value has the largest J, etc., thoughout the term, the intervals are negative and the term is inverted. The general run of intervals is positive or negative in a given spectrum according to whether the shell of outer electrons is less than or greater than half full (see sec. 7.1), although many exceptions to this general rule occur.

If some components of a term are missing, the order in which the *J*-values are listed is governed either by the foregoing rules concerning the shell, or by the behavior of other series members of the same type within the spectrum or the sequence.

The *J*-values are always given either in increasing or decreasing order for a term, even if the term may be partially inverted. For example, a ³P term has its *J*-values listed either in the order 2, 1, 0 or 0, 1, 2 even if this arrangement causes the levels to be given out of numerical order. For such terms the signs of the intervals call attention to the irregularity, since both positive and negative intervals occur whenever the term is partially inverted. The term 3d ⁵D of O III, p. 52, starting with the value 398135.0, is a term of this kind.

Estimated intervals are in brackets and are explained in the remarks.

6.7 Observed g-Value (Tables 1 to 4, Landé g-Values)

When a spectrum is observed in a magnetic field of suitable strength most lines are broken up into groups of related components arranged in definite patterns. The separations of the components are proportional to the magnetic field strength and to magnetic splitting factors (g-values) characteristic of the atomic energy levels. The g-values can be derived from a study of the observed patterns. These determine the multiplicity and the azimuthal and inner quantum numbers of the individual atomic energy levels. The theoretical g-values are well known for the individual levels of terms of all types. Consequently Zeeman patterns furnish one of the most reliable criteria for the correct interpretation of a complex spectrum.

Details of the theoretical and experimental aspects of this important subject will not be given here. Back and Landé, Bacher and Goudsmit, H. E. White,¹⁸ and many others discuss it.

Observed g-values are given in the last column of the tables. There is a surprising scarcity of reliable data on observed Zeeman patterns among the spectra of the light elements. The first entries in the table are for N_I.

Some papers state that the analysis is confirmed by the observed Zeeman effect but give no details. The general policy is to list here only those references that give observed g-values or sufficient data from which to calculate them. The accuracy of the Zeeman material varies greatly and depends on such factors as the determination of the magnetic field used for the observational data, the resolving power of the spectroscope, the interpretation of the observed effect, and many others. As a result the listed g-values vary greatly in accuracy.

For spectra in which LS-coupling holds the observed values agree well with the Landé theoretical g-values. Because of their importance in spectrum analysis, these theoretical values are given in tables 1, 2, 3, and 4. Table 1 contains J- and g-values for terms of types S, P, D . . . Q of odd multiplicity, i. e., singlet, triplet, quintet, . . . undecet terms. For example, the theoretical g-value of a ${}^{3}F_{4}$ level is 1.250; that of a ${}^{7}I_{6}$ level is 1.143. Since the data are identical for odd and even terms alike, one table suffices for both sets of terms. Table 2 gives similar data for terms of even multiplicity: doublets, quartets, . . . decets.

For the convenience of those who are analyzing spectra, the theoretical g-values are also given in order of increasing numerical value followed by the designation of the level or levels for each g, for terms of odd multiplicity in table 3; and for those of even multiplicity in table 4. These g-values are quoted from the "Tables of Theoretical Zeeman Effects" by Kiess and Meggers, ¹⁹ supplemented by their unpublished data for terms of multiplicity greater than eight.²⁰ Their tables give also the theoretical Zeeman patterns for practically all of the multiplet designations that have been observed within the range of multiplicity they cover.

Tables of theoretical g-values for jj-coupling may be found in papers by J. B. Green and his collaborators.²¹

Finally, the date of completion of the manuscript of each spectrum is given at the end of the table of energy levels of the spectrum.

¹⁸ E. Back and A. Landé, Zeemaneffekt und Multiplettstruktur der Spektrallinien (Julius Springer, Berlin, 1925).

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

R. F. Bacher and S. Goudsmit, Atomic Energy States (McGraw-Hill Book Co., Inc., New York, N. Y. and London, 1932).

H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (The Macmillan Co., New York, N. Y.; The University Press, Cambridge, Eng., 1935).

¹⁹ Bur. Std. J. Res. 1, 641, RP23 (1928).

 $^{^{20}}$ They have extended their tables of theoretical Landé $\it g$ -values to include all types of terms and multiplicities (up to $^{11}Q)$ that are likely to be needed, in order that tables 1 to 4 may be complete. The writer is indebted to them for this useful contribution.

²¹ Phys. Rev. 52, 736 (1937); 54, 876 (1938); 58, 1094 (1940); 59, 72 (1941); 64, 151 (1943).

7. Tables of Predicted and Observed Arrays of Terms

With the exception of the simpler spectra and of those for which the analysis is seriously incomplete, arrays of observed terms are given following the individual tables of energy levels, the first being that of Be 1, p. 13.

As stated above, the arrays of terms to be expected for a given configuration are well known from theory. A comparison of the terms observed in a given spectrum with those predicted reveals at once the completeness of the analysis. To facilitate this comparison, arrays of predicted terms arranged similarly to those of the observed terms are included here.

7.1. Shells

In the discussion of notation (sec. 5) reference was made to the "shells" of electrons and their importance in the production of spectroscopic terms. A clear description of these shells is quoted from White, 22 p. 80: "The various electrons are classified under so-called shells of electrons. All electrons belonging to the same shell are characterized by the same total quantum number n. . . ."

"The shells $n=1, 2, 3, 4, \ldots$ are sometimes called (from x-ray spectra) the K, L, M, N, \ldots shells, respectively."

"The electrons in any shell n are further divided into subshells so that electrons belonging to the same subshell have the same azimuthal quantum number l. Electrons for which $l=0, 1, 2, 3, \ldots$ are called s, p, d, f, \ldots electrons, respectively, ...". For example, 2s is used to specify one electron with l=0 and in the shell n=2.

No shell can contain more than 2 type-s electrons starting with n=1, 6 type-p electrons starting with n=2, 10 type-d electrons starting with n=3, or 14 type-f electrons starting with n=4, etc. The successive periods 1 to 7 in the periodic system (sec. 8.3) can, therefore, contain only 2, 8, 8, 18, 18, 32, and 32 elements, respectively. These are consequences of Pauli's exclusion principle.

This is illustrated in the following brief tabular excerpt from White's complete Table of Electron Configurations:

S	hell	$\begin{bmatrix} K \\ n=1 \end{bmatrix}$	L $n=2$		
Sul	oshell	l=0	=0 l=0 l=		
1	Н	18			
2	He	182			
3	Li	1s ²	28		
4	Ве	1s ²	282		
5	В	182	282	2 <i>p</i>	
6	C	182	282	$2p^2$	

²² H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

Superscripts denote the number of electrons of a given type. Where no superscript is given unity is understood. He I, for example, has two electrons of the type 1s, as indicated by 1s² in the above array. These similar electrons are known as equivalent electrons. The terms produced by equivalent and nonequivalent electrons and detailed discussions of Pauli's exclusion principle may be found in many standard treatises on atomic spectra.²³

All spectra having the same shells of electrons are similar. An isoelectronic sequence consists of spectra of different elements having the same shells of electrons. Each arc spectrum sets the pattern for the sequence, so far as the effective electrons are concerned. For example, the spectra of Be i, B ii, C iii, etc., form an isoelectronic sequence for which Be I, the arc spectrum of beryllium, sets the pattern, i. e., the Be I isoelectronic sequence. In B II, the first spark spectrum of B, the boron atoms have lost the outer electron, 2p. This spectrum, therefore, resembles that of Be I having two 2s electrons (denoted by 2s2) outside the closed shell 1s2. Similarly the carbon atoms have lost both outer 2p-electrons when the spectrum of C III is observed. This spectrum thus belongs in the same sequence. An array of predicted terms of each arc spectrum suffices, therefore, for all spectra of the sequence, as, for example, Be 1.

No arrays are given for spectra of the H, He I, Li I, and similar sequences. Since only 1s, 1s², and 2s electrons are involved, the arrays of predicted and observed terms are simple.

7.2. Arrays of Predicted Terms of the Sequences Be 1 Through Ne 1 (Tables 5 to 11)

Starting with Be I, predicted arrays of terms of the isoelectronic sequences from Be through Ne are given in the following tables (pages xxvIII to xxxI):

Table	Sequence
5 6 7 8 9 10	Be I B I C I N I O I F I Ne I

In all of these tables the closed shells are indicated immediately under the heading "Config." ("1s²+" for this group of spectra). The tables are divided into two sections. The upper half gives the terms from equivalent

²³ H. N. Russell, Phys. Rev. 29, 782 (1927).

R. C. Gibbs, D. T. Wilbur, and H. E. White, Phys. Rev. 29, 790 (1927).

F. Hund, Linienspektren und Periodisches System der Elemente (Julius Springer, Berlin, 1927).

C. L. B. Shudeman, J. Franklin Inst. 224, 501 (1937). (Terms from equivalent g, h, and i electrons.)

electrons and, for simpler spectra, the first low series members. The lower half indicates the series to be expected from the various limit terms (sec. 5.1), with the running electron denoted as nx, where n is the total quantum number, and x the type of electron, s, p, d, f, . . ., etc.

The quantities n and x are indicated in the headings, nx ($n\geq 3$), etc., above the columns of the tables and are evaluated in the arrays of observed terms of the separate spectra of the sequence. For example, the ns^3S series of BeI, p. 13, with the configuration $2s(^2S)nx$ has been observed from n=3 through n=8.

Many more terms can be predicted than are likely to be observed. The present tables are designed to contain enough predicted terms to suffice for all terms thus far observed in any spectrum of the sequence.

7.3. Arrays of Predicted Terms of the Sequences Mg_I Through A_I, (Tables 12 to 18)

Starting with Mg I, arrays of predicted terms of the isoelectronic sequences from Mg through A are given in the following tables (pages xxxII to xxxv):

Table	Sequence
12	Mg1
13	Al1
14	Si1
15	P1
16	S1
17	Cl1
18	A1

A comparison of these tables with the set described above, tables 5 to 11, shows that the same terms are predicted for spectra having the same numbers and types of electrons outside the closed shells. Beginning with table 12, the closed shells are $1s^2 2s^2 2p^6$ (entered directly under the heading "Config." in the tables). The total quantum number n of the running electron is one unit larger, but the term arrays are identical for similar spectra in the two sets of tables. For example, tables 5 and 12, 6 and 13, etc., are alike, except for the total quantum numbers and for the number of predicted terms included, which is governed by the terms that have been observed within the sequence.

7.4. Arrays of Predicted Levels of the Ne₁ and A₁ Sequences (Tables 11 and 18)

These tables give both predicted terms (*LS*-coupling) and predicted pairs of levels (*jl*-coupling) sec. 5.2. In the arrays of predicted and observed pairs of levels for these spectra, the pairs are listed in the general order of increasing value of the lower member of the pair, as suggested by Shortley. As some spectra in this sequence are

of an intermediate type, more nearly LS-coupling, this order is not always obeyed numerically among the observed levels, but is retained in these tables for uniformity.

Similarly, in all of these tables (5 to 18, inclusive) and the corresponding arrays of observed terms, the limit terms are listed in the general order of increasing numerical value with primes added to indicate higher limits, as described in section 5.1.

7.5. Arrays of Predicted Terms of the Sequences Ca₁ Through V₁ (Tables 19 to 22)

Brief mention has been made of the special notation adopted for complex spectra (sec. 5.3). An examination of the tables for the sequences Cai, Sci, Tii, and Vi, tables 19 to 22, inclusive, reveals the rapid increase in the number of terms after d electrons are included in the structure of the unexcited atom. The use of primes is retained to indicate the different limits in Cai and in table 19. For Scii and subsequent spectra in the sequence, the notation for complex spectra is introduced (see below). Since the limits are carefully specified, no difficulty should arise in comparing the arrays of observed and predicted terms in this sequence.

For the configurations involving equivalent electrons, listed in the upper section of each array, Pauli's principle restricts the array of resulting terms, and the latter cannot be unequivocally assigned to specific limits.

When only s and p electrons appear in the low configurations the ground state is always to be found in the upper section, but in the lower, when d electrons are present in a configuration involving one s electron. Examples among arc spectra may be found in table 23, and others occur for singly ionized atoms.

Beginning with the Sci sequence terms from eight limits must be considered. For this reason, a simple type of prefix $a, b, c, \ldots z, y, x$, etc., is adopted for the terms from the different limits. In the Tii group 15 limits must be handled, and in Vi the number increases to 22. For these complex spectra the limits in the tables of predicted terms are tabulated in order of increasing numerical value of the terms in the arc spectrum of the sequence, Tii for example. The same order does not makessarily apply to the other spectra in the sequence. In the arrays of observed terms the prefixes a, b, etc., of the *limit* terms are given in order to avoid confusion in comparing the different sets of tables.

As the complexity of the spectra increases there is a serious overlapping of families of terms from the various limits. The assignment of electron configurations is ambiguous in many cases. Beginning with Ti1, a number of question marks and colons appear in the arrays of observed terms, denoting the uncertainty of many suggested configurations.

8. The Periodic Table

8.1. The Chemical Elements by Atomic Number, Ionization Potentials (Table 23)

In the present work the elements are handled in order of increasing atomic number and they are listed in this order in table 23. Column one gives this number, Z; column two, the name of the element; and column three, the chemical symbol. Columns four and five give, respectively, the principal ionization potential and configuration of the ground state of the neutral atom. For elements with Z>23, i. e., for those beyond the range of the present volume, these data are taken from table 1, columns 5 and 9, respectively, of the key to the Periodic Chart of the Atoms revised in 1947 by Meggers.²⁴ Additional data on the ground states of the rare earths are given in his paper on this subject.²⁵

8.2. The Chemical Elements by Chemical Symbol (Table 24)

Bacher and Goudsmit arranged the spectra in the alphabetical order of the chemical symbol of the element. Table 24 gives the elements in this order, with the chemical symbol in column one followed by the name of the element in column 2 and the atomic number in column 3.

8.3. The Periodic System (Table 25)

The Periodic System in table 25 is arranged in the form suggested by Catalán, who generously furnished an unpublished copy for inclusion here.

8.4. Index—Isoelectronic Sequences (Table 26)

This table contains the index to the data in Volume I of this work, the spectra from H through V. In the left

margin the atomic number is given, followed by the chemical symbol. Across the top the successive stages of ionization appear, I denoting arc spectra, II first spark spectra, III second spark spectra, etc. The numbers in the table indicate the pages on which the individual spectra may be found. For example, FVIII is on page 75.

In this table, isoelectronic spectra appear on the diagonals. Every other diagonal is printed in bold face type in order to emphasize the spectra of each sequence. For example, Six belongs to the Oi sequence, printed in boldface along the diagonal. Similarly, Mgvi can be traced to Ni along the diagonal not printed in boldface. Blanks occur for spectra that have not yet been analyzed.

No sequences are carried beyond V in this volume, but they will be continued in later volumes and indicated in tables arranged similarly to this one. The sequences started in Volume I but not completed there are listed below. The last spectrum in each sequence for which any data on analysis are known is indicated.

Sequence	Spectrum	Sequence	Spectrum
Nei	Coxviii Cuxix Coxvi Nixvi Nixv (Vix) ¹ Nixiii	Cli	Ni xII
Nai		Ai	Fe IX
Mgi		Ki	Fe VIII
Ali		Cai	Ni IX
Sii		Sci	Ni VIII
Pi		Tii	Ni VII
Si		Vi	Cu VII

¹ This sequence is completed in the present volume.

9. Future Investigations

9.1. Need for Further Analysis

During the course of this compilation many interesting problems have presented themselves. The gaps in the sequences call attention to some spectra in which no structure has as yet been recognized. Within the sequences these gaps include the following spectra: Nevii, viii, ix; Nax; Sxi; Clxii, xiii; Axii, xiii; Kxii, xiii, xiv; Caxiv; and Vx. If, in addition, Fix and Nex could be observed, the spectra of all possible stages of ionization would be represented for these two elements.

A careful study of the configurations in which a 3d electron becomes effective, is desirable. In the F_I se-

quence the terms with 3d and 4d electrons for Na III. Mg IV, Al V, and Si VI should be verified, as there are marked irregularities along this sequence.

In Si the 3d 3D° term is lower than 3p³ 3D°, but the reverse is true for the rest of the sequence.

In the PI sequence the configuration assignments of terms in which $3p^4$, 3d, and 4s electrons are involved, should be examined along the sequence. More observations are also needed to verify the extensive extrapolations from K v on.

Similar remarks apply to some spectra of the Cl I sequence, particularly to Ca IV, where various authors disagree on the interpretation. Analogous terms along this sequence are strikingly irregular as regards both position and intervals. Many such irregularities could be pointed out. It is hoped that the present work will stimulate further study along these lines.

²⁴ W. M. Welch Scientific Co., 1515 Sedgwick St., Chicago 10, Ill., U. S. A. (Chart and key, \$7.50; key, \$1.00). For Mn 1 and Mo 1 Catalán's revised values are quoted. The data on Te 1 are from Meggers.

²⁵ Electron Configurations of "Rare-Earth" Elements, Science 105, 514, No. 2733 (May 16, 1947).

The arrays of observed terms enable one to detect a number of conspicuous missing terms whose positions can be estimated by analogy with neighboring related terms. For example, Russell ²⁶ has suggested that the $3d^{\prime\prime\prime}$ ²G term in O IV might be found. To quote him "It should give a strong combination with $3p^{\prime\prime\prime}$ ²F°, lying in the violet or near ultraviolet." Similarly, the absence of the 3d ²F term of Cl III is conspicuous. Russell has also commented on the incompleteness of the analyses of S III and S IV.

In HeI the term 11s S is missing from the series. In MgI Shortley has called attention to the fact that the triplets are higher than the singlets, an anomaly that

appears to be unexplained.

The general need for further analysis can perhaps best be visualized by a comparison of the arrays of observed and predicted terms of the various spectra. This procedure enables the user to grade each analysis for himself. For spectra whose energy levels are not yet tabulated for this program it is recommended that he consult the existing surveys of spectrum analysis.²⁷

Perhaps the most urgent needs of the astrophysicist are extensions to the work on the second and third spark spectra in the first long period (except for Fe III, which is well known). Many spectra of the heavier elements are incompletely analyzed and much work remains to be done on the highly complex spectra of the rare earths.

9.2. Term Intervals

A careful examination of the term intervals within a spectrum and in related spectra affords a useful check on the correctness of the analysis. In regular terms the intervals are roughly proportional to the larger J-values of the term, and term separations of similar terms usually increase smoothly along the sequence. Enough data are presented here for an extensive survey of this subject. The theoretical as well as observational aspects of this topic and its important relation to configuration assignments need not be emphasized to workers on spectrum analysis.

9.3. Series Spectra—Rydberg Denominators

Requests have been made for a tabulation of absolute term values and Rydberg denominators of the series members of each spectrum in which series have been detected, including the *J*-values of the limit terms. The need for a critical compilation of this material is fully appreciated. It is felt, however, that such a project can best be handled

26 Letter (Aug. 1947).

in a program restricted to the study of series in atomic spectra. Standard treatises such as Fowler's Report on Series in Line Spectra and Paschen-Götze's Seriengesetze der Linienspektren, the paper by Catalán and Poggio, 28 etc., together with other references included under the separate spectra should provide some data for those who are interested.

9.4. Observed Zeeman Patterns

A glance at the data on Zeeman effect in this volume alone, reveals a glaring need of further observations. The first entry of g-values occurs in the spectrum of N I. An outstanding example may be found in Ti I. The best observed g-values obtainable from existing data are given, and they serve remarkably well to confirm the analysis. For Ti, and also for other elements, however, Harrison 29 has made extensive observations that doubtless show many excellently resolved patterns and would yield precise observed g-values, but his data for a number of complex spectra have not yet been utilized. A wealth of information is in store for future study in this field.

9.5. Energy or Grotrian Diagrams

There have been urgent requests to prepare a homogeneous set of energy diagrams to accompany these tables. This topic is handled very inadequately here. If the individual authors have included either an energy level diagram or a Grotrian diagram, 30 this fact is indicated by the symbol (E D) or (G D) following the references. If not, recourse to general references such as Grotrian's classical publication 31 or White's Introduction to Atomic Spectra 32 must be had. Readers are warned that the existing diagrams are far from uniform in style and scale and that many of them are not up to date, i. e., they do not represent the analysis as given in the tables. In many cases, the most notable being probably that of A1, the writer has been unable to locate diagrams representing the analysis.

The present work would be seriously delayed by the inclusion of diagrams, but the energy levels as recorded here furnish the requisite material for such a project.

Only a few of the many interesting subjects for future investigation have been touched upon. If this work provides the inspiration and stimulus for at least some of them, it will have been justified.

²⁷ W. F. Meggers, J. Opt. Soc. Am. 36, 433 (1946); C. E. Moore, RMT (1945).

²⁸ Zeit. Phys. 102, 461 (1936).

²⁰ Reports on Progress in Physics 8, 228 (1941).

³⁰ In energy diagrams only the positions of the levels or terms are indicated. In Grotrian diagrams lines indicating observed combinations connect the terms.

³¹ Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei und drei Valenzelektronen, Part II (Julius Springer, Berlin, 1928).

²² H. E. White, Introduction to Atomic Spectra (McGraw-Hill Book Co., Inc., New York, N. Y., and London, 1934).

10. Acknowledgments

Many scientific workers and many institutions at home and abroad are represented in this work. The cordial collaboration and generous supply of unpublished material have been extremely gratifying.

Members of the National Research Council Committee on Line Spectra of the Elements have given enthusiastic support to the program. The chairman, H. N. Russell, has placed at the disposal of the writer the large collection of spectroscopic data accumulated at Princeton from the time the committee was formed in 1924. He has furnished unpublished analyses (Ca I, Sc I, Ti I, Ti II) and read all of the manuscript. Throughout the work he has been a valued and keenly interested consultant.

This undertaking has been made possible by the enthusiastic support of E. U. Condon, Director of the Bureau of Standards, and W. F. Meggers, Chief of the Spectroscopy Section. The personal interest taken by Dr. Condon has been a continual source of encouragement. The careful supervision and valued suggestions of Meggers, based on his wide experience and expert judgment, greatly enhance the value of this Circular. C. C. Kiess has also been ever ready to give the writer unpublished material (NI, OI) and authoritative and helpful suggestions on many important and troublesome questions. Other members of the Committee who have responded generously with data and stimulated further research for this program are J. E. Mack, who calculated all of the data on the spectra of the H sequence especially for inclusion here; and A. G. Shenstone, who submitted important unpublished results on CI, and CaII.

The most extensive contributions in manuscript form have come from Sweden, from B. Edlén and his colleagues. The writer had the benefit of a conference with Edlén during his visit to Washington shortly after this project had been started. From that time he has continuously supplied unpublished analyses and valuable comments as each section of the book was being prepared. His contributions include data on selected spectra from Be through O, on all the spectra of F, and complete term arrays of the arc spectra of Ne, S, and A. It has also been possible to include the spectra of higher ionization of Al, Si, and S only because E. Ferner submitted his unpublished manuscript on these spectra. H. A. Robinson supplied his material on the spectra P vI through P xIII

together with comments on related spectra of Ne through Si; and K. Lidén furnished his data on Fr.

The writer has had much helpful advice from G. Shortley on spectra of the Ner and Ar sequences. M. A. Catalán of the University of Madrid has been a most helpful consultant throughout his entire stay in the United States. He calculated the g-values of Sci, Sch and Tim for inclusion here.

Manuscripts by H. R. Kratz (K1), by K. W. Meissner, L. G. Mundie and P. Stelson (Li1), by E. R. Thackeray (Na1), by W. E. Lamb, Jr., and R. C. Retherford (H), by H. E. Clearman, Jr., (B1) and by F. Rohrlich (Ti1); and a reprint on N1 sent from Japan by T. Takamine have been submitted especially for use in connection with this program. The writer has attempted to record her gratitude to each one in the pages of the book itself.

No project of this kind can be completed without the cooperation of experts in many lines. One of the greatest rewards has been the pleasure afforded by these contacts. Miss Sarah A. Jones, Librarian at the Bureau, and her competent staff deserve special mention for the splendid assistance they have so willingly given in locating hundreds of references. Mrs. Isabel D. Murray has also provided much expert technical assistance.

The details of publication of spectroscopic data such as those included here present a most taxing and difficult problem; one which has been ably and efficiently handled by Publications Section of the Bureau, the Department of Commerce, and the Government Printing Office. The painstaking care, cordial cooperation, and skill of J. L. Mathusa and his staff in the Publications Section of the Bureau are lasting contributions that can be fully appreciated only by the many users of this Circular. In the Department of Commerce, V. Vasco, and, in the Government Printing Office, H. D. Merold, have been equally cooperative. The book reflects their personal interest and skill and those of all whose services they have enlisted.

It is a pleasure to the writer to record here her appreciation of the enormous amount of assistance all have so graciously given her.

She is also extremely grateful to her husband, B. W. Sitterly, for his many helpful suggestions and cordial cooperation throughout this work.

Table 1. Landé g-values

						Multip	olicity					
Term	Sir	nglets	Tr	iplets	Qu	intets 5	Se	ptets	N	onets	Un	decets
	J	g	J	g	J	g	J	g	J	g	J	g
s	0	0/0	1	2. 000	2	2. 000	3	2. 000	4	2. 000	5	2. 000
Р	1	1. 000	2 1 0	1. 500 1. 500 0/0	3 2 1	1. 667 1. 833 2. 500	$\begin{smallmatrix}4\\3\\2\end{smallmatrix}$	1. 750 1. 917 2. 333	5 4 3	1. 800 1. 950 2. 250	6 5 4	1. 833 1. 967 2. 200
D	2	1. 000	3 2 1	1. 333 1. 167 0. 500	$\begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array}$	1. 500 1. 500 1. 500 1. 500 0/0	5 4 3 2 1	1. 600 1. 650 1. 750 2. 000 3. 000	6 5 4 3 2	1. 667 1. 733 1. 850 2. 083 2. 667	7 6 5 4 3	1. 714 1. 786 1. 900 2. 100 2. 500
F	3	1. 000	4 3 2	1. 250 1. 083 0. 667	5 4 3 2 1	1. 400 1. 350 1. 250 1. 000 0. 000	6 5 4 3 2 1 0	1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 0/0	7 6 5 4 3 2	1. 571 1. 595 1. 633 1. 700 1. 833 2. 167 3. 500	8 7 6 5 4 3 2	1. 625 1. 661 1. 714 1. 800 1. 950 2. 250 3. 000
G	4	1. 000	5 4 3	1. 200 1. 050 0. 750	6 5 4 3 2	1. 333 1. 267 1. 150 0. 917 0. 333	7 6 5 4 3 2 1	1. 429 1. 405 1. 367 1. 300 1. 167 0. 833 -0. 500	8 7 6 5 4 3 2 1	1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 0/0	9 8 7 6 5 4 3 2	1. 556 1. 569 1. 589 1. 619 1. 667 1. 750 1. 917 2. 333 4. 000
н	5	1. 000	6 5 4	1. 167 1. 033 0. 800	7 6 5 4 3	1. 286 1. 214 1. 100 0. 900 0. 500	8 7 6 5 4 3 2	1. 375 1. 339 1. 286 1. 200 1. 050 0. 750 0. 000	9 8 7 6 5 4 3 2	1. 444 1. 431 1. 411 1. 381 1. 333 1. 250 1. 083 0. 667 -1. 000	10 9 8 7 6 5 4 3 2	1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 1. 500 0/0
I	6	1. 000	7 6 5	1. 143 1. 024 0. 833	8 7 6 5 4	1. 250 1. 179 1. 071 0. 900 0. 600	9 8 7 6 5 4 3	1. 333 1. 292 1. 232 1. 143 1. 000 0. 750 0. 250	10 9 8 7 6 5 4 3 2	1. 400 1. 378 1. 347 1. 304 1. 238 1. 133 0. 950 0. 583 0. 333	11 10 9 8 7 6 5 4 3 2	1. 455 1. 445 1. 433 1. 417 1. 393 1. 357 1. 300 1. 200 1. 000 0. 500 -1. 500
K	7	1. 000	8 7 6	1. 125 1. 018 0. 857	9 8 7 6 5	1. 222 1. 153 1. 054 0. 905 0. 667	10 9 8 7 6 5 4	1. 300 1. 256 1. 194 1. 107 0. 976 0. 767 0. 400	11 10 9 8 7 6 5 4 3	1. 364 1. 336 1. 300 1. 250 1. 179 1. 071 0. 900 0. 600 0. 000	12 11 10 9 8 7 6 5 4 3	1. 417 1. 402 1. 382 1. 356 1. 319 1. 268 1. 191 1. 067 0. 850 0. 417 -0. 667

Table 1. Landé g-values—Continued

			,			Multip	licity					
Term		glets	Tri	plets	Qu	intets	Se	ptets	No	onets		decets
	J	g	J	g	J	g	J	g	J	g	J	g
L	8	1. 000	9 8 7	1. 111 1. 014 0. 875	10 9 8 7 6	1. 200 1. 133 1. 042 0. 911 0. 714	11 10 9 8 7 6 5	1. 273 1. 227 1. 167 1. 083 0. 964 0. 786 0. 500	12 11 10 9 8 7 6 5 4	1. 333 1. 303 1. 264 1. 201 1. 139 1. 036 0. 881 0. 633 0. 200	13 12 11 10 9 8 7 6 5 4 3	1. 385 1. 365 1. 341 1. 309 1. 267 1. 208 1. 125 1. 000 0. 800 0. 450 -0. 250
M	9	1. 000	10 9 8	1. 100 1. 011 0. 889	11 10 9 8 7	1. 182 1. 118 1. 033 0. 917 0. 750	12 11 10 9 8 7 6	1. 250 1. 205 1. 145 1. 067 0. 958 0. 804 0. 571	13 12 11 10 9 8 7 6 5	1. 308 1. 276 1. 235 1. 182 1. 111 1. 014 0. 875 0. 667 0. 333	14 13 12 11 10 9 8 7 6 5 4	1. 357 1. 335 1. 308 1. 273 1. 227 1. 167 1. 083 0. 964 0. 786 0. 500 0. 000
N	10	1. 000	11 10 9	1. 091 1. 009 0. 900	12 11 10 9 8	1. 167 1. 106 1. 027 0. 902 0. 778	13 12 11 10 9 8 7	1. 231 1. 186 1. 129 1. 055 0. 906 0. 819 0. 625	14 13 12 11 10 9 8 7 6	1. 236 1. 253 1. 212 1. 159 1. 091 1. 000 0. 875 0. 696 0. 429	15 14 13 12 11 10 9 8 7 6 5	1. 333 1. 310 1. 280 1. 244 1. 197 1. 136 1. 056 0. 944 0. 786 0. 548 0. 167
0	11	1. 000	12 11 10	1. 083 1. 008 0. 909	13 12 11 10 9	1. 154 1. 096 1. 023 0. 927 0. 800	14 13 12 11 10 9 8	1. 214 1. 170 1. 115 1. 045 0. 955 0. 833 0. 667	15 14 13 12 11 10 9 8 7	1. 267 1. 233 1. 192 1. 141 1. 076 0. 991 0. 878 0. 722 0. 500	16 15 14 13 12 11 10 9 8 7 6	1. 312 1. 288 1. 257 1. 220 1. 173 1. 114 1. 036 0. 933 0. 792 0. 589 0. 286
Q	12	1. 000	13 12 11	1. 077 1. 006 0. 917	14 13 12 11 10	1. 143 1. 088 1. 019 0. 932 0. 818	15 14 13 12 11 10 9	1. 200 1. 157 1. 104 1. 038 0. 955 0. 845 0. 700	16 15 14 13 12 11 10 9 8	1. 250 1. 217 1. 176 1. 126 1. 064 0. 985 0. 882 0. 744 0. 556	17 16 15 14 13 12 11 10 9 8 7	1. 294 1. 268 1. 238 1. 200 1. 154 1. 096 1. 023 0. 927 0. 800 0. 625 0. 375

Table 2. Landé g-values

					Multipli	city				
Term	Do	ıblets	Qua	artets	Se	extets	o	ctets		ecets
	J	g	J	g	J	g	J	g	J	g
S	1/2	2. 000	1½	2. 000	2½	2. 000	3½	2. 000	4½	2. 000
P	1½ ½ ½	1. 333 0. 667	$egin{array}{c} 2^{1/2} \\ 1^{1/2} \\ 1^{1/2} \\ 1^{1/2} \end{array}$	1. 600 1. 733 2. 667	$3^{1/2}_{1/2} \ 2^{1/2}_{1/2}$	1. 714 1. 886 2. 400	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	1. 778 1. 937 2. 286	$\begin{array}{c} 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	1. 818 1. 960 2. 222
D	2½ 1½	1. 200 0. 800	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1. 429 1. 371 1. 200 0. 000	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1. 556 1. 587 1. 657 1. 867 3. 333	$5\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	1. 636 1. 697 1. 809 2. 057 2. 800	$\begin{array}{c} 6\frac{1}{2} \\ 5\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1. 692 1. 762 1. 879 2. 098 2. 572
F	3½ 2½	1. 143 0. 857	4½ 3½ 2½ 1½	1. 333 1. 238 1. 029 0. 400	5½ 4½ 3½ 2½ 1½ 1½	1. 455 1. 434 1. 397 1. 314 1. 067 -0. 667	6½ 5½ 4½ 3½ 2½ 1½ ½	1. 538 1. 552 1. 576 1. 619 1. 714 2. 000 4. 000	7½ 6½ 5½ 4½ 3½ 2½ 1½	1. 600 1. 633 1. 678 1. 758 1. 908 2. 228 3. 200
G	4½ 3½	1. 111 0. 889	5½ 4½ 3½ 2½	1. 273 1. 172 0. 984 0. 571	6½ 5½ 4½ 3½ 2½ 1½	1. 385 1. 343 1. 273 1. 143 0. 857 0. 000	7½ 6½ 5½ 4½ 2½ 1½ 1½ ½ 1½ ½	1. 467 1. 456 1. 441 1. 414 1. 365 1. 257 0. 933 -1. 333	8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	1. 529 1. 53' 1. 549 1. 566 1. 590 1. 65 1. 77' 2. 13' 4. 66'
Н	5½ 4½	1. 091 0. 909	6½ 5½ 4½ 3½	1. 231 1. 133 0. 970 0. 667	7½ 6½ 5½ 4½ 3½ 2½	1. 333 1. 282 1. 203 1. 071 0. 825 0. 286	8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	1. 412 1. 388 1. 354 1. 301 1. 212 1. 048 0. 686 -0. 400	9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	1. 474 1. 46' 1. 459 1. 444' 1. 42' 1. 394 1. 333 1. 200 0. 800 -2. 000
I	6½ 5½	1. 077 0. 923	7½ 6½ 5½ 4½ 4½	1. 200 1. 108 0. 965 0. 727	8½ 7½ 6½ 5½ 4½ 3½	1. 294 1. 239 1. 159 1. 035 0. 828 0. 444	9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½	1. 368 1. 337 1. 294 1. 231 1. 133 0. 970 0. 667 0. 000	10½ 9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½	1. 429 1. 414 1. 393 1. 363 1. 323 1. 259 1. 152 0. 952 0. 514
K	7½ 6½	1. 067 0. 933	8½ 7½ 6½ 5½	1. 176 1. 090 0. 964 0. 769	9½ 8½ 7½ 6½ 5½ 4½	1. 263 1. 207 1. 129 1. 015 0. 839 0. 545	10½ 9½ 8½ 7½ 6½ 5½ 4½ 3½	1. 333 1. 298 1. 251 1. 184 1. 087 0. 937 0. 687 0. 222	11½ 10½ 9½ 8½ 7½ 6½ 4½ 3½ 2½	1. 391 1. 371 1. 343 1. 307 1. 255 1. 179 1. 063 0. 869 0. 508

Table 2. Landé g-values—Continued

				1	Multiplicity	7				
Term	Dot	ıblets	Qua	artets		xtets	Od	etets		ecets
	J	g	J	g	J	g	J	g	J	g
L	8½ 7½	1. 059 0. 941	9½ 8½ 7½ 6½	1. 158 1. 077 0. 965 0. 800	10½ 9½ 8½ 7½ 6½ 5½	1. 238 1. 183 1. 108 1. 004 0. 851 0. 615	11½ 10½ 9½ 8½ 7½ 6½ 5½ 4½	1. 304 1. 267 1. 218 1. 152 1. 059 0. 923 0. 713 0. 364	12½ 11½ 10½ 10½ 9½ 8½ 7½ 6½ 5½ 4½ 3½	1. 360 1. 336 1. 304 1. 263 1. 207 1. 129 1. 015 0. 839 0. 545 0. 000
М	9½ 8½	1. 053 0. 947	10½ 9½ 8½ 8½ 7½	1. 143 1. 068 0. 966 0. 824	11½ 10½ 9½ 8½ 7½ 6½	1. 217 1. 164 1. 093 0. 997 0. 863 0. 667	12½ 11½ 10½ 9½ 8½ 7½ 6½ 5½	1. 200 1. 242 1. 193 1. 128 1. 040 0. 918 0. 738 0. 462	13½ 12½ 11½ 11½ 10½ 9½ 8½ 7½ 6½ 5½ 4½	1. 333 1. 307 1. 273 1. 230 1. 173 1. 096 0. 988 0. 831 0. 587 0. 182
N	10½ 9½	1. 048 0. 952	11½ 10½ 9½ 8½ 8½	1. 120 1. 060 0. 967 0. 842	12½ 11½ 10½ 9½ 8½ 7½	1. 200 1. 148 1. 081 0. 992 0. 873 0. 706	13½ 12½ 11½ 10½ 9½ 8½ 7½ 6½	1. 259 1. 221 1. 172 1. 110 1. 028 0. 916 0. 761 0. 533	14½ 15½ 15½ 11½ 10½ 11½ 10½ 9½ 8½ 7½ 6½ 5½	1. 310 1. 282 1. 247 1. 203 1. 147 1. 073 0. 972 0. 831 0. 623 0. 303
0	11½ 10½	1. 043 0. 957	12½ 11½ 10½ 9½	1. 120 1. 054 0. 969 0. 857	13½ 12½ 11½ 11½ 10½ 9½ 8½	1. 185 1. 135 1. 071 0. 990 0. 882 0. 737	14½ 13½ 12½ 12½ 11½ 10½ 9½ 8½ 7½	1. 241 1. 203 1. 156 1. 096 1. 019 0. 917 0. 780 0. 588	15½ 14½ 13½ 13½ 12½ 11½ 10½ 9½ 8½ 7½ 6½	1. 290 1. 261 1. 226 1. 182 1. 127 1. 056 0. 962 0. 836 0. 659 0. 400
Q	12½ 11½	1. 040 0. 960	13½ 12½ 11½ 11½ 10½	1. 111 1. 049 0. 970 0. 870	14½ 13½ 12½ 11½ 10½ 9½	1. 172 1. 124 1. 064 0. 988 0. 890 0. 762	15½ 14½ 13½ 12½ 11½ 10½ 9½ 8½	1. 226 1. 188 1. 142 1. 084 1. 012 0. 919 0. 797 0. 632	16½ 15½ 14½ 13½ 12½ 11½ 10½ 9½ 8½ 7½	1. 273 1. 243 1. 208 1. 165 1. 111 1. 043 0. 957 0. 842 0. 687 0. 471

Table 3. Landé g-values—Terms of Odd Multiplicity in Order of Increasing g

g	Desig.	g	Desig.	g	Desig.	g	Desig.
-1. 500	¹¹ I ₁	0. 744	9Q,	0. 955	⁷ O ₁₀ ⁷ Q ₁₁	1. 076	⁹ O ₁₁
-1.000	⁹ H ₁	0. 750	³ G ₃ ⁵ M ₇ ⁷ H ₃	0. 958	$^7\mathrm{M_8}$	1. 077	$^3\mathrm{Q}_{13}$
-0. 667	$^{11}\mathrm{K}_2$		$^7\mathrm{I}_4$	0. 964	$^7\mathrm{L_7}$ $^{11}\mathrm{M_7}$	1. 083	³ F ₃ ³ O ₁₂ ⁷ L ₈
-0.500	$^{7}G_{1}$	0. 767	$^7\mathrm{K}_5$	0. 976	$^7\mathrm{K}_6$		$^9{ m H_3}\ ^{11}{ m M_8}$
-0. 333	⁹ I ₂	0. 778	$^5\mathrm{N}_8$	0. 985	⁹ Q ₁₁	1. 088	$^5\mathrm{Q}_{13}$
-0. 250	$^{11}\mathrm{L}_3$	0. 786	$^7{ m L_6}^{11}{ m M_6}^{11}{ m N_7}$	0. 991	⁹ O ₁₀	1. 091	³ N ₁₁ ⁹ N ₁₉
0. 000	⁵ F ₁ ⁷ H ₂ ⁹ K ₃	0. 792	¹¹ O ₈	1. 000	${}^{1}\mathrm{P}_{1}$ ${}^{1}\mathrm{D}_{2}$ ${}^{1}\mathrm{F}_{3}$	1. 096	$^{5}\mathrm{O}_{12}$ $^{11}\mathrm{Q}_{12}$
	$^{11}\mathrm{M}_4$	0. 800	³ H ₄ ⁵ O ₉ ¹¹ L ₅		¹G₄ ¹H₅ ¹I ₆	1. 100	³ M ₁₀ ⁵ H ₅
0. 167	$^{11}\mathrm{N}_{5}$		$^{11}\mathrm{Q}_{9}$		¹ K ₇ ¹ L ₈ ¹ M ₉	1. 104	$^7\mathrm{Q}_{13}$
0. 200	9 L 4	0. 804	$^7\mathrm{M}_7$		¹ N ₁₀ ¹ O ₁₁ ¹ Q ₁₂	1. 106	$^5\mathrm{N}_{11}$
0. 250	⁷ I ₃	0. 818	$^{5}\mathrm{Q}_{10}$		${}^{5}\mathrm{F}_{2}$ ${}^{7}\mathrm{I}_{5}$ ${}^{9}\mathrm{N}_{9}$	1. 107	$^7\mathrm{K}_7$
0. 286	¹¹ O ₆	0. 819	$^7\mathrm{N_8}$		$^{11}\mathrm{I}_3$ $^{11}\mathrm{L}_6$	1. 111	³ L ₉ ⁹ M ₂
0. 333	⁵ G ₂ ⁹ M ₅	0. 833	³ I ₅ ⁷ G ₂ ⁷ O ₉	1. 006	$^{3}\mathrm{Q}_{12}$	1. 114	¹¹ O ₁₁
0. 375	$^{11}\mathrm{Q}_7$	0. 845	$^7\mathrm{Q}_{10}$	1. 008	³ O ₁₁	1. 115	⁷ O ₁₂
0. 400	$^{7}\mathrm{K}_{4}$	0. 850	$^{11}{ m K}_4$	1. 009	³ N ₁₀ -	1. 118	⁵ M ₁₀
0. 417	¹¹ K ₃	0. 857	${}^3\mathrm{K}_6$	1. 011	$^3\mathbf{M}_9$	1. 125	³K ₈ ¹¹L ₇
0. 429	$^9\mathrm{N}_6$	0. 875	³ L ₇ ⁹ M ₇ ⁹ N ₈	1. 014	³ L ₈ ⁹ M ₈	1. 126	$^{9}\mathrm{Q}_{13}$
0. 450	11⊥₄	0. 878	8O8	1. 018	$^3\mathrm{K}_7$	1. 129	$^7\mathrm{N}_{11}$
0. 500	³ D ₁ ⁵ H ₃ ⁷ L ₅	0. 881	$^9\mathrm{L}_6$	1. 019	$^{5}\mathrm{Q}_{12}$	1. 133	5L ₉ 9I ₅
	$^{9}\mathrm{O}_{7}$ $^{11}\mathrm{I}_{2}$ $^{11}\mathrm{M}_{5}$	0. 882	$^9\mathrm{Q}_{10}$	1. 023	⁵ O ₁₁ ¹¹ Q ₁₁	1. 136	$^{11}N_{10}$
0. 548	$^{11}\mathrm{N}_{6}$	0. 889	$^3\mathrm{M}_8$	1. 024	$^3\mathrm{I}_6$	1. 139	$^{6}\Gamma^{8}$
0. 556	$^9\mathrm{Q}_8$	0. 900	³ N ₉ ⁵ H ₄ ⁵ I ₅	1. 027	⁵ N ₁₀	1. 141	⁹ O ₁₂
0. 571	$^7{f M_6}$		${}^9\mathrm{K}_5$	1. 033	³ H ₅ ⁵ M ₉	1. 143	³ I ₇ ⁵ Q ₁ , ⁷ I ₆
0. 583	${}^{9}\mathrm{I}_{3}$	0. 902	⁵ N ₉	1. 036	⁹ L ₇ ¹¹ O ₁₀	1. 145	$^7\mathrm{M}_{10}$
0. 589	¹¹ O ₇	0. 905	$^5{ m K}_6$	1. 038	$^{7}\mathrm{Q}_{12}$	1. 150	⁵ G ₄
0. 600	⁵ I ₄ ⁹ K ₄	0. 906	$^7\mathrm{N}_9$	1. 042	⁵ L ₈	1. 153	${}^5\mathrm{K}_8$
0. 625	$^{7}N_{7}$ $^{11}Q_{8}$	0. 909	³ O ₁₀	1. 045	⁷ O ₁₁	1. 154	⁵ O ₁₃ ¹¹ Q ₁₃
0. 633	$^9\mathrm{L}_5$	0. 911	⁵ L ₇	1. 050	³G₄ ⁷ H₄	1. 157	$^{7}\mathrm{Q}_{14}$
0. 667	³ F ₂ ⁵ K ₅ ⁷ O ₈	0. 917	³ Q ₁₁ ⁵ G ₃ ⁵ M ₈	1. 054	⁵ K ₇	1. 159	$^{9}N_{11}$
	⁹ H ₂ ⁹ M ₆	0. 927	$^{5}\mathrm{O}_{10}^{11}\mathrm{Q}_{10}$	1. 055	⁷ N ₁₀	1. 167	³ D ₂ ³ H ₆ ⁵ N ₁₂
0. 696	$^9\mathrm{N}_7$	0. 932	$^5\mathrm{Q}_{11}$	1. 056	¹¹ N ₉		⁷ G ₃ ⁷ L ₉ ¹¹ M ₉
0. 700	⁷ Q,	0. 933	¹¹ O ₉	1. 064	$^{9}\mathrm{Q}_{12}$	1. 170	⁷ O ₁₃
0. 714	⁵ L ₆	0. 944	$^{11}{ m N}_{8}$	1. 067	⁷ M ₉ ¹¹ K _δ	1. 173	¹¹ O ₁₂
0. 722	⁹ O ₈	0. 950	⁹ I ₄	1. 071	⁵ I ₆ ⁹ K ₆	1. 176	⁹ Q ₁₄

Table 3. Landé g-values—Terms of Odd Multiplicity in Order of Increasing g—Continued

g	Desig.	g	Desig.	g	Desig.	g	Desig.
1. 179	⁵ I ₇ ⁹ K ₇	1. 268	¹¹ K ₇ ¹¹ Q ₁₆	1. 381	⁹ H ₆	1. 625	11F ₈
1. 182	⁵ M ₁₁ ⁹ M ₁₀	1. 273	$^7{ m L_{11}}$ $^{11}{ m M_{11}}$	1. 382	¹¹ K ₁₀	1. 633	9F ₅
1. 186	$^7\mathrm{N}_{12}$	1. 276	$^9\mathrm{M}_{12}$	1. 385	$^{11}\mathrm{L}_{13}$	1. 650	$^7\mathrm{D_4}$
1. 191	$^{11}\mathrm{K}_6$	1. 280	$^{11}N_{13}$	1. 393	11 I ₇	1. 661	¹¹ F ₇
1. 192	⁹ O ₁₃	1. 286	⁵ H ₇ ⁷ H ₆ ⁹ N ₁₄	1. 400	⁵ F ₅ ⁹ I ₁₀	1. 667	⁵ P ₃ ⁹ D ₆ ¹¹ G ₅
1. 194	$^7\mathrm{K}_8$	1. 288	¹¹ O ₁₅	1. 402	"K"	1. 700	$^9\mathrm{F}_4$
1. 197	¹¹ N ₁₁	1. 292	⁷ I ₈	1. 405	$^{7}\mathrm{G}_{6}$	1. 714	¹¹ D ₇ ¹¹ F ₆
1. 200	${}^3{ m G}_5$ ${}^5{ m L}_{10}$ ${}^7{ m H}_5$	1. 294	$^{11}\mathrm{Q}_{17}$	1. 411	⁹ H ₇	1, 733	$^9\mathrm{D}_5$
	$^{7}\mathrm{Q}_{15}\ ^{11}\mathrm{I}_{4}\ ^{11}\mathrm{Q}_{14}$	1. 300	⁷ G ₄ ⁷ K ₁₀ ⁹ K ₉	1. 417	¹¹ I ₈ ¹¹ K ₁₂	1. 750	$^{7}P_{4}$ $^{7}D_{3}$ $^{11}G_{4}$
1. 201	$^9\mathrm{L}_9$		¹¹ I ₅	1. 429	⁷ G ₇	1. 786	$^{11}\mathrm{D}_{6}$
1. 205	$^7\mathrm{M}_{11}$	1. 3 03	$^9\mathrm{L}_{11}$	1. 431	⁹ H ₈	1. 800	⁹ P ₅ ¹¹ F ₅
1. 208	$^{11}\mathrm{L_8}$	1. 304	⁹ I ₇	1. 433	1119	1. 833	⁵ P ₂ ⁹ F ₃ ¹¹ P ₆
1. 212	${}^{9}\mathrm{N}_{12}$	1. 308	$^{9}\mathrm{M}_{13}$ $^{11}\mathrm{M}_{12}$	1. 444	⁹ H ₉	1. 850	$^9\mathrm{D_4}$
1. 214	⁵ H ₆ ⁷ O ₁₄	1. 309	$^{11}{ m L}_{10}$	1. 445	¹¹ I ₁₀	1. 900	$^{11}\mathrm{D}_{5}$
1. 217	$^{9}\mathrm{Q}_{15}$	1. 31 0	¹¹ N ₁₄	1. 455	11I11	1. 917	⁷ P ₃ ¹¹ G ₃
1. 220	¹¹ O ₁₃	1. 312	¹¹ O ₁₆	1. 500	³ P ₂ ³ P ₁ ⁵ D ₄	1. 950	⁹ P ₄ ¹¹ F ₄
1. 222	⁵ K ₉	1. 3 19	$^{11}{ m K_8}$		⁵ D ₃ ⁵ D ₂ ⁵ D ₁	1. 967	$^{11}\mathrm{P}_{5}$
1. 227	$^{7}\mathrm{L}_{10}$ $^{11}\mathrm{M}_{10}$	1. 3 33	$^3\mathrm{D}_3$ $^5\mathrm{G}_6$ $^7\mathrm{I}_9$		⁷ F ₆ ⁷ F ₅ ⁷ F₄	2. 000	${}^{3}\mathrm{S}_{1}$ ${}^{5}\mathrm{S}_{2}$ ${}^{7}\mathrm{S}_{3}$
1. 231	$^{7}N_{13}$		$^9\mathrm{H}_5$ $^9\mathrm{L}_{12}$ $^{11}\mathrm{N}_{15}$		⁷ F ₃ ⁷ F ₂ ⁷ F ₁		${}^{9}\mathrm{S_{4}}$ ${}^{11}\mathrm{S_{5}}$ ${}^{7}\mathrm{D_{2}}$
1. 232	⁷ I ₇	1. 33 5	$^{11}{ m M}_{13}$		⁹ G ₈ ⁹ G ₇ ⁹ G ₆	2. 083	$^9\mathrm{D}_3$
1. 233	⁹ O ₁₄	1. 33 6	${}^9\mathrm{K}_{40}$		⁹ G ₅ ⁹ G ₄ ⁹ G ₃	2. 100	$^{11}{ m D_4}$
1. 235	$^9\mathrm{M}_{11}$	1. 339	$^7\mathrm{H}_7$		⁹ G ₂ ⁹ G ₁ ¹¹ H ₁₀	2. 167	${}^9\mathrm{F}_2$
1. 238	${}^{9}\mathrm{I}_{6}$ ${}^{11}\mathrm{Q}_{15}$	1. 34 1	¹¹ L ₁₁		11H ₉ 11H ₈ 11H ₇	2. 200	¹¹ P ₄
1. 244	$^{11}\mathrm{N}_{12}$	1. 347	⁹ I ₈		11H ₆ 11H ₅ 11H ₄	2. 250	⁹ P ₃ ¹¹ F ₃
1. 250	³ F ₄ ⁵ F ₃ ⁵ I ₈	1. 350	$^5\mathrm{F_4}$		11H ₃ 11H ₂ 11H ₁	2. 333	⁷ P ₂ ¹¹ G ₂
	⁷ M ₁₂ ⁹ H ₄ ⁹ K ₈	1. 356	$^{11}{ m K_9}$	1. 556	¹¹ G ₉	2. 500	⁵ P ₁ ¹¹ D ₃
	$^9\mathrm{Q}_{16}$	1. 357	¹¹ I ₆ ¹¹ M ₁₄	1. 569	¹¹ G ₈	2. 667	$^9\mathrm{D}_2$
1. 253	$^{9}\mathrm{N}_{13}$	1. 364	${}^{9}\mathrm{K}_{11}$	1. 571	9F ₇	3. 000	⁷ D ₁ ¹¹ F ₂
1. 256	${}^{7}\mathrm{K}_{9}$	1. 365	$^{11}{ m L}_{12}$	1. 589	¹¹ G ₇	3. 500	9F1
1. 257	¹¹ O ₁₄	1. 367	$^7\mathrm{G}_5$	1. 595	$^9\mathrm{F}_6$	4. 000	11 G 1
1. 264	$^9\mathrm{L}_{10}$	1. 375	$^7\mathrm{H}_8$	1. 600	$^7\mathrm{D}_5$		
1. 267	⁵ G ₅ ⁹ O ₁₅ ¹¹ L ₉	1. 378	δ Ι δ	1. 619	¹¹ G ₆		
1							

Table 4. Landé g-values for Terms of Even Multiplicity in Order of Increasing g

g	Desig.	g	Desig.	g	Desig.	g	Desig.
-2. 000	¹⁰ H _{1/2}	0. 713	8L _{51/2}	0. 937	⁸ K ₅ ;₄	1. 059	² L _{8¾} ⁸ L _{7¾}
-1. 333	8G⅓	0. 727	4I ₄₃₄	0. 941	²L _{7⅓}	1. 060	⁴ N ₁₀₁
-0.800	¹⁰ I ₁₁	0. 737	6O8¾	0. 947	² M _{8⅓}	1. 063	¹0K₅⅓
-0. 667	⁶ F,∕₂	0. 738	8M _{63∕2}	0. 952	² N ₉₁ , ¹⁰ I ₃₁ ,	1. 064	⁶ Q ₁₂₁
-0.400	8H₁⅓	0. 761	⁸ N ₇₁₄	0. 957	² O _{10½} ¹⁰ Q _{10¾}	1. 067	²K _{7⅓} ⁶ F _{1⅓}
-0. 2 86	¹⁰ K ₂₃	0. 762	⁶ Q _{9⅓}	0. 960	² Q ₁₁ ;	1. 068	⁴ M ₉₁₄
0. 000	4D1/4 6G11/4 8I21/4	0. 769	4K514	0. 962	¹⁰ O ₉₃₄	1. 071	⁶ H ₄ ₁ , ⁶ O ₁ ,
	10L ₃₁₄	0. 780	8O834	0. 964	⁴ K ₆ ⅓	1. 073	¹⁰ N _{9½}
0. 182	¹⁰ M ₄₁	0. 797	8Q934	0. 965	⁴ I ₅₁ , ⁴ L ₇ ,	1. 077	² I ₆ , ⁴ L ₈ ,
0. 222	8K₃¾	0. 800	² D _{11/4} ⁴ L _{61/4} ¹⁰ H _{11/4}	0. 966	⁴M _{8⅓}	1. 081	⁶ N ₁₀₁
0. 286	⁶ H ₂₃ ∕₂	0. 824	⁴ M _{73∕2}	0. 967	4N _{91/2}	1. 084	⁸ Q ₁₂₃
0. 308	¹⁰ N ₅₃₄	0. 825	⁶ H ₃₁ ,	0. 969	4O _{10½}	1. 087	8K ₆₁₄
0. 364	8L41/2	0. 828	⁶ I ₄₁ ,	0. 970	4H414 4Q1114 8I414	1. 090	4K714
0. 400	4F ₁ 16 10O ₆ 16	0. 831	¹⁰ M _{61/2} ¹⁰ N _{71/2}	0. 972	¹⁰ N ₈₃	1. 091	²H₅₃₃
0. 444	⁶ I _{3⅓}	0. 836	¹⁰ O _{8½}	0. 984	⁴G₃¾	1. 093	6M _{93∕2}
0. 462	⁸ M _{51/2}	0. 839	⁶ K _{5⅓} ¹⁰ L _{5⅓}	0. 988	⁶ Q ₁₁₁ , ¹⁰ M ₇₁ ,	1. 096	⁸ O ₁₁ ½ ¹⁰ M ₈ ⅓
0. 471	¹0Q7⅓	0. 842	⁴ N _{8½} ¹⁰ Q _{9¾}	0. 990	⁶ O _{10⅓}	1. 108	⁴ I _{6⅓} ⁶ L _{8⅓}
0. 508	¹0K₃¾	0. 851	6L ₆ ¾	0. 992	⁶ N _{9⅓}	1. 110	⁸ N _{101/2}
0. 514	¹⁰ I ₂₃	0. 857	² F _{2½} ⁴ O _{9½} ⁶ G _{2½}	0. 997	⁶ M ₈ ⋅ ⋅	1. 111	² G ₄₁ , ⁴ Q ₁₃ , ¹⁰ Q ₁₂ ,
0. 533	⁸ N ₆₃₄	0. 863	⁶ M _{73∕2}	1. 004	⁶ L _{7⅓}	1. 120	⁴ O ₁₂₃
0, 545	⁶ K _{4½} ¹⁰ L _{4½}	0. 869	¹⁰ K ₄₁	1. 012	⁸ Q ₁₁ ;	1. 124	⁶ Q ₁₃₁₄
0. 571	⁴G ₂₃₄	0. 870	⁴ Q ₁₀₃	1. 015	⁶ K _{6½} ¹⁰ L _{6½}	1. 127	¹⁰ O ₁₁ %
0. 587	¹⁰ M _{51/2}	0. 873	⁶ N _{8⅓}	1. 019	8O ₁₀₃	1. 128	⁸ M _{9⅓}
0. 588	8O714	0. 882	6O _{93∕2}	1. 028	8N934	1. 129	6K _{7⅓} 10L _{7⅓}
0. 615	⁶ L ₅ ;∕	0. 889	²G₃⅓	1. 029	4F ₂ 14	1. 130	⁴ N ₁₁₁ ,
0. 626	¹⁰ N ₆₁₄	0. 890	⁶ Q ₁₀ 1∕2	1. 035	⁶ I _{5⅓}	1. 133	⁴ H ₅₁ , ⁸ I ₅₁ ,
0. 632	⁸ Q ₈ 14	0. 909	²H₄¼	1. 040	² Q _{12⅓} ⁸ M _{8⅓}	1. 135	⁶ O ₁₂₁
0. 659	¹⁰ O ₇₁	0. 916	⁸ N ₈₁₄	1. 043	² O _{11½} ¹⁰ Q _{11½}	1. 142	⁸ Q ₁₃₁ ,
0. 667	² P _{1/2} ⁴ H _{31/2} ⁶ M _{61/2}	0. 917	8O974	1. 048	² N _{10⅓} ⁸ H _{3⅓}	1. 143	² F _{3½} ⁴ M _{10½} ⁶ G _{3½}
	⁸ I _{31⁄2}	0. 918	⁸ M _{7⅓}	1. 049	⁴ Q ₁₂ ⋅	1. 147	¹⁰ N ₁₀₁
0. 686	⁸ H _{21/2}	0. 919	⁸ Q ₁₀ ,	1. 053	²M _{9⅓}	1. 148	⁶ N ₁₁₁
0. 687	⁸ K _{4½} ¹⁰ Q _{8½}	0. 923	² I _{5⅓} ⁸ L _{6¾}	1. 054	4O ₁₁₁₆	1. 152	8L ₈₁₄ 10I ₄₁₄
0. 706	6N715	0. 933	² K _{6½} ⁸ G _{1½}	1. 056	10O1034	1. 156	8O ₁₂₁

Table 4. Landé g-values for Terms of Even Multiplicity in Order of Increasing g—Continued

g	Desig.	g	Desig.	g	Desig.	g	Desig.
1. 158	4L934	1. 255	¹⁰ K ₇ 1/2	1. 394	¹⁰ H ₄₁ ,	1. 714	⁶ P _{3½} ⁸ F _{2½}
1. 159	⁶ I _{6⅓}	1. 257	$^8{ m G}_{^2}$	1. 397	⁶ F _{31∕2}	1. 733	4P11/2
1. 164	⁶ M _{101∕2}	1. 259	⁸ N _{13½} ¹⁰ I _{5½}	1. 412	⁸ H _{8⅓}	1. 758	¹⁰ F _{41/2}
1. 165	¹⁰ Q _{131∕2}	1. 261	¹⁰ O _{141⁄2}	1. 414	8G _{4½} 10I _{9½}	1. 762	¹0D₅⅓
1. 172	⁴ G ₄₁ , ⁶ Q ₁₄₁ , ⁸ N ₁₁ ,	1. 263	$^6\mathrm{K}_{912}$ $^{10}\mathrm{L}_{912}$	1. 427	¹0H₅⅓	1. 772	¹0G₂⅓
1. 173	$^{10}{ m M}_{91/2}$	1. 267	$^8\mathrm{L}_{10\%}$	1. 429	⁴ D _{3½} ¹⁰ I _{10½}	1. 778	⁸ P _{41/2}
1. 176	⁴K _{81∕2}	1. 273	⁴ G _{51/2} ⁶ G _{41/2} ¹⁰ M _{111/2}	1. 434	⁶ F₄⅓	1. 809	⁸ D _{31∕2}
1. 179	¹⁰ K ₆ ⅓		¹⁰ Q _{16⅓}	1. 441	8G₅1∕2	1. 818	¹0P₅⅓
1. 182	¹⁰ O ₁₂ 1⁄ ₃	1. 280	⁸ M _{121⁄2}	1. 446	¹0H _{6⅓}	1. 867	⁶ D₁⅓
1. 183	⁶ L ₉ ⅓	1. 282	⁶ H _{6⅓} ¹⁰ N _{13⅓}	1. 455	⁶ F ₅ ⅓	1. 879	$^{10}\mathrm{D}_{41/2}$
1. 184	⁸ K ₇ ⅓	1. 290	¹0O₁5⅓	1. 456	8G _{6⅓}	1. 886	⁶ P _{21/2}
1. 185	⁶ O ₁₃ 1∕2	1. 294	⁶ I _{8⅓} ⁸ I _{7⅓}	1. 459	¹⁰ H ₇₁ / ₂	1. 905	¹ºF₃⅓
1. 188	⁸ Q ₁₄ ⅓	1. 298	8K _{91∕2}	1. 467	⁸ G _{7⅓} ¹⁰ H _{8⅓}	1. 937	⁸ P _{31/2}
1. 193	⁸ M ₁₀ ⅓	1. 301	⁸ H _{5⅓}	1. 474	¹⁰ H _{91∕2}	1. 960	¹⁰ P _{41/2}
1, 200	² D _{2½} ⁴ D _{1½} ⁴ I _{7½}	1. 304	⁸ L _{11⅓} ¹⁰ L _{10⅓}	1. 529	¹0G _{8⅓}	2. 000	² S ₁ , ⁴ S ₁ , ⁶ S ₂ ,
	⁶ N _{12⅓} ¹⁰ H _{2⅓}	1. 307	$^{10}\mathrm{K}_{81/2}$ $^{10}\mathrm{M}_{121/2}$	1. 537	¹0G _{7⅓}		⁸ S ₃₁ , ⁸ F ₁ , ¹⁰ S ₄ ,
1. 203	⁶ H ₅₁ , ⁸ O ₁₃ , ¹⁰ N ₁₁ ,	1. 310	$^{10}\mathrm{N}_{141/2}$	1. 538	8F ₆ ⅓	2. 057	8D₂⅓
1. 207	6K _{8⅓} 10L _{8⅓}	1. 314	⁶ F ₂ ⅓	1. 549	¹0G _{6⅓}	2. 095	¹0D₃½
1. 208	¹⁰ Q _{14⅓}	1. 323	¹⁰ I ₆ ⅓	1, 552	⁸ F _{51/2}	2. 133	¹0G₁⅓
1. 212	⁸ H _{41/4}	1. 333	² P _{1½} ⁴ F _{4½} ⁶ H _{7½}	1. 556	6D₄⅓	2. 222	¹0P₃⅓
1. 217	⁶ M ₁₁ ½		⁸ K ₁₀ ¹⁰ H ₃ ¹⁰ M ₁₃	1. 566	¹0G₅⅓	2. 229	¹⁰ F ₂₁ ,
1. 218	8L9⅓	1. 336	¹⁰ L ₁₁ ,	1. 576	8F₄⅓	2. 286	⁸ P _{21/2}
1. 221	⁸ N ₁₂₁	1. 337	8I _{81⁄2}	1. 587	6D₃⅓	2. 400	⁶ P ₁ ,,
1. 226	⁸ Q _{15⅓} ¹⁰ O _{13⅓}	1. 343	⁶ G _{51∕2} ¹⁰ K _{91∕2}	1. 596	10G4½	2. 572	¹0D₂⅓
1. 230	$^{10}{ m M}_{101/2}$	1. 354	⁸ H _{6⅓}	1. 600	⁴ P _{2½} ¹⁰ F _{7½}	2. 667	⁴P½
1. 231	⁴ H _{6½} ⁸ I _{6½}	1. 360	¹⁰ L ₁₂ / ₂	1. 619	8F _{3⅓}	2. 800	8D₁⅓
1. 238	⁴ F _{3⅓} ⁶ L _{10⅓}	1. 365	8G ₃₁₄ 10I ₇₁₄	1. 631	¹⁰ F _{61/2}	3. 200	¹ºF₁⅓
1. 239	⁶ I _{71∕2}	1. 368	8I _{91/2}	1. 636	⁸ D _{51∕2}	3. 333	⁶ D _⅓
1. 241	⁸ O ₁₄ ,	1. 371	⁴ D _{2½} ¹⁰ K _{10½}	1. 651	¹0G₃⅓	4. 000	8F⅓
1. 242	⁸ M ₁₁ ;₄	1. 385	⁶ G _{61∕2}	1. 657	$^6\mathrm{D}_{2\frac{1}{2}}$	4. 667	¹⁰ G ₁₄
1. 243	¹0Q _{15⅓}	1. 388	8H _{7⅓}	1. 678	¹⁰ F _{51⁄2}		
1. 247	$^{10}{ m N}_{121}$	1. 391	¹ºK₁₁⅓	1. 692	$^{10}{ m D}_{61/2}$		
1. 251	⁸ K _{81∕2}	1. 393	¹⁰ I _{81⁄2}	1. 697	⁸ D _{4⅓}		

Table 5. Predicted Terms of the Bei Isoelectronic Sequence

Config. 1s ² +			Predicted	Terms		
$2s^2$	1S					
2s(2S)2p	{					
$2p^2$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
	ns (n≥3)	$np (n \ge 3)$	nd (n≥3)	nf (n≥4)	$ng (n \ge 5)$	
2s(2S) nx	{3S 1S	3P°	¹ D ³ D	3F°	³ G ¹ G	
2p(2P°)nx	{ ³ P° ₁ P°	³ S ³ P ³ D ¹ D	¹ D ₀ ¹ D ₀ ¹ E ₀ ¹ B ₀ ¹ B ₀	³ D ³ F ³ G ¹ G	³ F° ³ G° ³ H°	

Table 6. Predicted Terms of the B1 Isoelectronic Sequence

Config. 1s ² +							Predic	$\operatorname{ted} \mathbf{T}_{\epsilon}$	erms						
2s ² (¹S) 2p			²P°												
28 2p2	$\left\{_{2\mathbb{S}}\right\}$		⁴ P ² P		$^2\mathrm{D}$										
$2p^3$	{*S°		²P°		$^2\mathrm{D}^\circ$										
		n	s (n≥	3)			nŢ	o (n≥3	3)				$nd (n \ge$	≥3)	
2s ² (¹S)nx	2S						²P°						$^2\mathrm{D}$		
2s 2p(3P°)nx	{		⁴ P° ² P°			4S 2S	⁴ P ² P	4 I 2 I				⁴ P° ² P°	⁴ D° ² D°	⁴F° ²F°	
2s 2p(1P°)nx'			²P°			$^2\mathrm{S}$	^{2}P	² I)			²P°	² D°	${}^2{ m F}^{\circ}$	
$2p^2(^3\mathrm{P})nx''$	{		⁴P 2P			4S° 2S°	⁴ P° ² P°	4I . 2I) ₀			⁴P ²P	$^{4}_{^{2}\mathrm{D}}$	⁴F ²F	
$2p^2(^1\mathrm{D})nx'''$					$^2\mathrm{D}$		²P°	² I	O°	${}^2\mathrm{F}^\circ$	2S	^{2}P	$^2\mathrm{D}$	$^2\mathrm{F}$	2G
$2p^2({}^1\mathrm{S})nx^{\mathbf{IV}}$	2S						²P°						² D		
		n	f (n≥	4)			ng	y (n≥5	5)						
2s ² (¹ S)nx			2F°					^{2}G							
2s 2p(3P°)nx	{	⁴ D ² D	⁴F ²F	4G 2G			⁴F° ²F°	4G° 2G°	⁴H° ²H°						
2s 2p(1P°)nx'		$^2\mathrm{D}$	$^2\mathrm{F}$	$^{2}\mathrm{G}$			$^2\mathrm{F}^\circ$	² G°	²H°						
$2p^2(^3\mathrm{P})nx''$	{	$^{4}\mathrm{D}^{\circ}_{^{2}\mathrm{D}^{\circ}}$	⁴F° ²F°	4G° 2G°			⁴F ²F	4G 2G	⁴ H ² H						
$2p^2(^1\mathrm{D})nx^{\prime\prime\prime}$	²P°	$^2\mathrm{D}^\circ$	${}^2\mathrm{F}^\circ$	2G°	²H°	$^{2}\mathrm{D}$	$^2\mathrm{F}$	^{2}G	$^{2}\mathrm{H}$	² I					
$2p^2(^1\mathrm{S})nx^{\mathrm{IV}}$			²F°					² G							

Table 7.—Predicted Terms of the Ci Isoelectronic Sequence

Config. 1s ² +									Pred	dicted '	Terms							
$2s^2 \ 2p^2$	{ _{us}	3P	1D															
2s 2p³	$\left\{ \begin{array}{l} {}^{5}S^{\circ} \\ {}^{3}S^{\circ} \end{array} \right.$	³ P° ¹ P°	3D°															
2p4	$\{_{1}$ S	3P	¹D															
	7	ns (n≥	3)		np ((n≥3)				$nd (n \ge$	≥3)			n_j	r (n≥4	1)		
2s ² 2p(² P°)nx	{	3P°		3S 1S	³ P ¹ P	¹ D			³ P° ¹ P°	³ D°	3F°			¹ D	3F 1F	³G ¹G		
2s 2p ² (4P)nx	{	δP δP		⁵ S° ³ S°	⁵ P° ³ P°	⁵ D°			⁵ P ³ P	⁵ D ³ D	5F 3F			⁵ D°	5F° 3F°	⁵G° ³G°		
$2s \ 2p^2(^2\mathrm{D})nx'$	{		^{1}D		³ P° ¹ P°	³ D°	3F°	³ S ¹ S	³P ¹P	³D	³F	³ G	³ P° ¹ P°	¹ D°	3F°	³ G°	3H° 1H°	
2s 2p ² (2S)nx''	$\left\{ ^{3}\overset{\circ}{\mathbf{S}}\right.$				³ P° ¹ P°					$^{1}\mathrm{D}$					³ F°			
2s 2p ² (2P)nx'''	{	³ P ¹ P		³ S° ¹ S°	³ P° ¹ P°	³D°			³P ¹P	$^{3}\mathrm{D}$	³F ¹F			³ D°	3F°	³G° ¹G°		
$2p^3(^4\mathrm{S}^\circ)nx^{\mathrm{IV}}$	{5S° 3S°				⁵ P ³ P					5D° 3D°					5F			

Table 8. Predicted Terms of the Ni Isoelectronic Sequence

Config. 1s ² +									Pred	licted '	Terms							
$2s^2 2p^3$	{4S°	²P°	² D°															
2s 2p4	$\left\{_{2S}\right\}$	⁴ P ² P	$^2\mathrm{D}$															
$2p^5$		²P°																1.
	7	ns (n≥	3)		np ((n≥3)			n	d (n≥	3)			n,	$f(n \geq$	4)		
$2s^2 2p^2(^3\mathrm{P}) nx$	[⁴ P ² P		4S° 2S°	⁴ P° ² P°	⁴ D° ² D°			⁴ P ² P	4D 2D	⁴F ²F			⁴ D° ² D°	4F° 2F°	⁴G° ²G°		
$2s^2 2p^2 (^1\mathrm{D}) nx'$			$^{2}\mathrm{D}$		²P°	$^2\mathrm{D}^{\circ}$	2F°	² S	²P	$^{2}\mathrm{D}$	${}^{2}\mathrm{F}$	² G	²P°	²D°	2F°	² G°	2H°	
$2s^2 \ 2p^2 (^1\mathrm{S}) nx''$	² S				²P°					$^{2}\mathrm{D}$					${}^{2}\mathrm{F}^{\circ}$			
$2s \ 2p^3(^5\mathrm{S}^\circ) nx'''$	${^{6}S^{\circ}}\atop{^{4}S^{\circ}}$			į	⁶ P ⁴ P					⁶ D°					¢F ⁴F			
2s 2p³(3D°)nx ^{IV}	{		$^{4}\mathrm{D}^{\circ}_{^{2}\mathrm{D}^{\circ}}$		⁴ P ² P	$^{4}_{^{2}\mathrm{D}}$	⁴F ²F	4S° 2S°	⁴ P° ² P°	⁴ D° ² D°	⁴ F° ² F°	4G° 2G°	⁴ P ² P	$^{4}_{^{2}\mathrm{D}}$	⁴ F ² F	⁴G ²G	⁴H ₂H	
2s 2p³(³P°) nx ^v	{	⁴ P° ² P°		4S 2S	⁴ P ² P	⁴ D ² D			⁴ P° ² P°	⁴D° ²D°	⁴F° ²F°			⁴ D ² D	⁴F ²F	⁴G ²G		

Table 9. Predicted Terms of the O i Isoelectronic Sequence

Config. 1s ² +						:	Predicted	l Terms						
2s² 2p⁴	{ _{1S}		3P		1D									
2s 2p ⁵	{		³P°											
		n	s (n≥:	3)			np (n≥3)			n	d (n≥3	3)	
28 ² 2p ³ (4S°)nx	{5S° 3S°						⁵ P ² P					⁵ D°		
2s ² 2p ³ (² D°)nx'	{				¹ D°		³P ¹P	¹D	²F ¹F	2S° 1S°	² P° ¹ P°	² D°	³F°	³G°
2s ² 2p ² (2P°)nx''	{		³P°			2S 1S	³P ¹P	1D			³P° ¹P°	²D°	³F°	
2s 2p4(4P)nx'''	{		⁵P ³P			5S° 2S°	³P°	$^{3}\mathrm{D}_{\circ}$ $^{2}\mathrm{D}_{\circ}$			⁵P ²P	⁵D 5D	⁵F ³F	
2s 2p4(2D)nxIV	{				2D 1D		3P° 1P°	¹D°	²F° ¹F°	² S ¹ S	³P ¹P	² D	³F	³G ¹G
2s 2p4(2S)nxV	{3S 1S						3P° 1P°					1D		
28 2p4(2P)nxVI	{		³P ¹P			3S° 1S°	3P°	¹ D° ³ D°			³₽ ¹₽	¹D	³F ¹F	
		n	$f(n \geq 1)$	4)						•				
2s ² 2p ³ (4S°)nx	{		⁵F ³F											
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{3P 1P	²D ¹D	³F ¹F	³G ¹G	²Н ¹Н									
28 ² 2p ³ (2P°)nx''	{	¹ D	*F 1F	¹ G										
2s 2p4(4P)nx'''	{	³D₀ ²D₀	\$E0	³G∘ ₂G∘										
$2s \ 2p^4(^2\mathrm{D})nx^{\mathrm{IV}}$	{2P°	¹ D° ³ D°	1F0	1G°	³H° ¹H°									
2s $2p^4(^2\mathrm{S})nx^{\nabla}$	{		² F° ¹ F°											
2s2p4(2P)nxVI	{	¹ D°	² F°	³G°										

TABLE 10. PREDICTED TERMS OF THE FI ISOELECTRONIC SEQUENCE

Config. $1s^2+$	Predicted Terms													
2s² 2p⁵			²P°											
$2s\ 2p^6$	² S			_										
	ns (n≥3)				np (n≥3)				nd (n≥3)					
2s ² 2p ⁴ (³ P)nx	{		4P 2P			4S° 2S°	4P° 2P°	4D° 2D°			4P 2P	⁴ D ² D	4F 2F	
$2s^2 \ 2p^4(^1\mathrm{D}) nx'$					$^{2}\mathrm{D}$		²P°	$^2\mathrm{D}^{\circ}$	2F°	²S	²P	$^2\mathrm{D}$	$^{2}\mathrm{F}$	2G
$2s^2 \ 2p^4(^1{ m S}) nx''$	2S						²P°					$^2\mathrm{D}$		
2s 2p ⁵ (³P°)nx'''	{		⁴ P° ² P°			4S 2S	4P 2P	⁴ D ² D			4P° 2P°	⁴ D° ² D°	⁴F° ²F°	
		nf (n≥4)						-, -						
2s ² 2p ⁴ (³ P)nx	{	⁴ D° ² D°	⁴F° ²F°	4G° 2G°										
$2s^2 \ 2p^4(^1\mathrm{D})nx'$	²P°	$^2\mathrm{D}^\circ$	${}^2\mathrm{F}^{\circ}$	2G°	$^2\mathrm{H}^\circ$									
$2s^2 \ 2p^4(^1S) nx''$			${}^2\mathrm{F}^{\circ}$											
2s 2p ⁵ (³P°)nx'''	{	$^{4}D_{^{2}D}$	⁴F ²F	4G 2G										

Table 11. Predicted Levels of the Nei Isoelectronic Sequence

Config. 1s ² +	Predicted Terms											
2s² 2p ⁶	18											
	ns (n≥3)	np (n≥3)	nd (n≥3)	$nf (n \ge 4)$								
$2s^2 \ 2p^5 (^2\mathrm{P}^\circ) nx$	{	3S 3P 3D 1S 1P 1D	¹ D ₀ ¹ D ₀ ¹ E ₀ ¹ E ₀	³ D ² F ³ G ¹ D ¹ F ¹ G								
28 2p ⁶ (² S)nx	{3S 1S	3P° 1P°	1D 5D	³F° ¹F°								
jl-Coupling Notation												
Config. 1s ² 2s ² +	Predicted Pairs											
	ns (n≥3)	np (n≥3)	nd (n≥3)	nf (n≥4)								
$2p^{5}(^{2}\mathrm{P_{14}^{o}})nx$	[1½]°	$[rac{1}{2}] \ [2rac{1}{2}] \ [1rac{1}{2}]$	[½]° [3½]° [1½]° [2½]°	[1½] [4½] [2½] [3½]								
$2p^{\mathfrak{b}}(^{2}\mathrm{P}_{2}^{\mathfrak{o}})$ nx'	[½]°	[1½] [½]	[2½]° [1½]°	[3½] [2½]								

Table 12. Predicted Terms of the Mg I Isoelectronic Sequence

Config. 1s ² 2s ² 2p ⁶ +	Predicted Terms										
382	1S										
$3s(^2\mathrm{S})3p$	{	³P° ¹P°						•			
$3p^2$	$\{_{iS}$	3P	¹D								
		$ns (n \ge 4)$)	1	$np (n \ge$	4)	1	$nd (n \geq 3)$	3)		
3s(2S)nx	${3S \atop 1S}$				³ P° ¹ P°			³D			
3p(2P°)nx	{	3P° 1P°		³ S ¹ S	³P ¹P	³D	³ P° ¹ P°	¹ D°	3F°		
	4	n_J $(n \ge 4)$)	1	ng (n≥	5)	1	$nh (n \geq 6$	3)		
3s(2S) nx	{	3F°			³G ¹G			³H°			
3p(2P°)nx	${\rm ^{3}D}_{\rm ^{1}D}$	³F ¹F	³G ¹G	3F° 1F°	³G°	3H° 1H°	³G ¹G	³ H ¹ H	³ <u>I</u> ¹ <u>I</u>		

Table 13. Predicted Terms of the Ali Isoelectronic Sequence

Config. 1s ² 2s ² 2p ⁶ +	Predicted Terms												
$3s^2(^1\mathrm{S})3p$ $3s\ 3p^2$	² P° {												
$3p^3$	2P° 2D° ns (n≥4)	$np (n \ge 4)$	nd (n≥3)	nf (n≥4)	ng (n≥5)								
$3s^2(^1S)nx$	2S	2P°	$^{2}\mathrm{D}$	2F°	² G								
3s 3p(3P°)nx	{	4S 4P 4D 2S 2P 2D	4P° 4D° 4F° 2P° 2D° 2F°	⁴ D ⁴ F ⁴ G ² D ² F° ² G	4F° 4G° 4H° 2F° 2G° 2H°								
$\begin{array}{c c} 3s \ 3p(^{3}P^{\circ}) nx \\ \hline \\ 3s \ 3p(^{1}P^{\circ}) nx' \end{array}$	2P°	$\begin{vmatrix} 2\ddot{S} & 2\dot{P} & 2\ddot{D} \\ 2\dot{S} & 2\dot{P} & 2\dot{D} \end{vmatrix}$	² P° ² D° ² F° ² P° ² D° ² F°	$\begin{vmatrix} 2D & 2F & 2G \\ 2D & 2F & 2G \end{vmatrix}$	² F° ² G° ² H° ² F° ² G° ² H°								

Table 14. Predicted Terms of the Si i Isoelectronic Sequence

$\begin{array}{c} \text{Config.} \\ 1s^2 \ 2s^2 \ 2p^6 + \end{array}$,					P	$\operatorname{redict}_{\epsilon}$	d Term	ns				
3s ² 3p ²	$\{_{1\mathbf{S}}$	³P	¹D										
3 s $3p^3$	5S° 3S°	³P°	1Do 3Do										
$3p^4$	$\{_{iS}$	³P	1D										
		ns (n≥	4)	1	np (n≥	4)	7	nd (n≥3	3)	n	ıf (n≥4	1)	
3s ² 3p(² P°)nx	{	³P°		³ S ¹ S	³P ¹P	³D	³P°	³D°	3F°	³D	³F ¹F	³G ¹G	
3s 3p ² (4P)nx	{	⁵ P ³ P		5S° 3S°	5P°	³ D°	⁵ P ³ P	⁵ D	5F 3F	3D°	5F°	⁵G° ³G°	

TABLE 15. PREDICTED TERMS OF THE P1 ISOELECTRONIC SEQUENCE

Config. $1s^2 2s^2 2p^6 +$									Pred	licted	. Ter	ms						
$3s^2 3p^3$	{4S°	²P°	²D°															
38 3p4	$\left\{_{2S}\right\}$	⁴ P ² P	$^2\mathrm{D}$															
$3p^5$		²P°																
	r	ıs (n≥	4)		np ((n≥4)			na	! (n≥	3)			n	$f(n \geq$	4)		
$3s^2 3p^2(^3P)nx$	{	⁴ P ² P		4S° 2S°	⁴ P° ² P°	⁴ D° ² D°			⁴ P ² P	⁴ D ² D	⁴F ²F			⁴ D° ² D°	⁴F° ²F°	⁴ G° ² G°		
$3s^2 \ 3p^2(^1{\rm D}) nx'$			^{2}D		²P°	$^2\mathrm{D}^{\circ}$	2F°	2S	^{2}P	$^2\mathrm{D}$	$^{2}\mathrm{F}$	² G	²P°	$^2\mathrm{D}^{\circ}$	$^2\mathrm{F}^{\circ}$	2G°	2H°	
$3s^2 3p^2(^1\mathrm{S})nx''$	² S		1		²P°					² D					²F°			

TABLE 16. PREDICTED TERMS OF THE SI ISOELECTRONIC SEQUENCE

Config. 1s ² 2s ² 2p ⁶ +									Pro	edicted	Term	s						
3s ² 3p ⁴	$\{_{1S}$	³P	1D															
3s 3p ⁵	{	1Po																
	,	ns (n≥	4)		np ((n≥4)			1	ıd (n≥	3)			n	af (n≥	4)		
3s ² 3p ³ (4S°)nx	{⁵S° ³S°				⁵ P ³ P					3D°					⁵F ³F			
$3s^2 3p^3(^2\mathrm{D}^\circ)nx'$	{		¹ D° ³ D°		³P	¹D §D	¹ F	So So	1P°	$^{1}\mathrm{D}_{\circ}$	1 E0 3 E0	³G°	³P	^{1}D	³F	³G ¹G	3H 1H	
3s ² 3p ³ (² P°)nx''	{	3P°		3S 1S	³P ¹P	1D 3D			3P°	³ D°	1F0 3E0			$^{1}\mathrm{D}_{9}\mathrm{D}$	³F	³G ¹G		•••••
3s 3p4(4P)nx'''	{	⁵P ₽P		5S°	⁵ P°	³ D°			⁵ P	$^5\mathrm{D}$	5F			$^{5}\mathrm{D}^{\circ}$	*F°	⁵G°		
$3s\ 3p^4(^2\mathrm{D})nx^{\mathrm{IV}}$	{		¹D		3P°	¹ D° ³ D°	¹ F°	3S 1S	³P ¹P	^{1}D	³F ¹F	³G ¹G	³P°	1D° 3D°	1F0	³G°	¹H°	
3s 3p4(2S)nxV	{3S 1S				3P°					^{1}D					1F0			
$3s \ 3p^4(^2\mathrm{P})nx^{VI}$	{	ъР 1Р		1S°	3P°	$^{1}\mathrm{D}^{\circ}$			³P	^{1}D	³F ¹F			1D° 3D°	³F°	³G°		•••••
$3p^5(^2\mathrm{P}^\circ)nx^{\mathrm{VII}}$	{	1P°		3S 1S	³P	¹ D			3P°	¹D° ³D°	3F° 1F°			1D 3D	³F ¹F	³G ¹G		

Table 17. Predicted Terms of the Cli Isoelectronic Sequence

Config. $1s^2 2s^2 2p^6 +$								Pr	edicted	Terms							
3s ² 3p ⁵ 3s 3p ⁶	² F	00															
	ns (1	ı≥4)		np ($(n \ge 4)$			1	$nd (n \ge 1)$	3)			γ	af (n≥	4)		
3s ² 3p ⁴ (³ P)nx	{ 4F 2F		4S° 2S°	4P° 2P°	⁴ D° ² D°			4P 2P	⁴ D ² D	4F 2F			⁴ D° ² D°	⁴F° ²F°	4G° 2G°		
$3s^2 3p^4(^1\mathrm{D})nx'$		$^2\mathrm{D}$		2P°	$^2\mathrm{D}^\circ$	${}^2\mathrm{F}^{\circ}$	2S	^{2}P	2 D	$^{2}\mathrm{F}$	² G	²P°	$^2\mathrm{D}^\circ$	${}^2\mathrm{F}^{o}$	2G°	²H°	
3s ² 3p ⁴ (¹ S)nx''	2S			²P°					$^2\mathrm{D}$					${}^2\mathrm{F}^{\circ}$			
3s 3p ⁵ (3P°)nx'''	{ 4F	0	4S 2S	⁴ P ² P	⁴ D ² D			⁴ P° ² P°	⁴ D° ² D°	⁴ F⁰ ² F°			⁴ D ² D	⁴F ²F	⁴G ²G		

TABLE 18. PREDICTED LEVELS OF THE AI ISOELECTRONIC SEQUENCE

Config. 1s ² 2s ² 2p ⁶ +			Predicted Term	S	
$3s^2\ 3p^6$	1S				
	$ns (n \ge 4)$	$np \ (n \ge 4)$	$nd (n \ge 3)$	$nf(n \ge 4)$	
$3s^2 \ 3p^5(^2{ m P}^\circ) nx$	{	³ S ³ P ³ D ¹ S ¹ P ¹ D	³ P° ³ D° ³ F°	³ D ³ F ³ G ¹ D ¹ F ¹ G	
3s 3p ⁶ (2S)nx	{3S 1S	³P° ¹P°	¹ D	3F°	
		jl-Coupling	Notation		
Config. 1s ² 2s ² 2p ⁶ 3s ² +			Predicted Pairs		
	$ns (n \ge 4)$	$np \ (n \ge 4)$	$nd (n \ge 3)$	$nf (n \ge 4)$	
$3p^6(^2\mathrm{Pi}_{i4})nx$	[1½]°	[½] [2½] [1½]	[½]° [3½]° [1½]° [1½]° [2½]°	$ \begin{bmatrix} 1\frac{1}{2} \\ 4\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{bmatrix} $	
$3p^5(^2\mathrm{P}^\circ_{^{\prime}\!\!\!/_{}})nx'$	[½]°	[1½] [½]	[2½]° [1½]°	$\begin{bmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{bmatrix}$	

TABLE 19. PREDICTED TERMS OF THE Ca I ISOELECTRONIC SEQUENCE

Config. $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 +$							Predic	cted T	erms						
4s2	1S														
$3d^2$	$\{_{1S}$	3P	1D	${}^3{ m F}$	¹G										
$4p^2$	$\{_{1S}$	³P	1D												
		n	s (n≥	4)			n_i	p (n≥	4)			n	ad (n≥	3)	
4s(2S)nx	{3S 1S						¹P°						³D		
$3d(^2\mathrm{D})nx'$	{		$^{3}\mathrm{D}$				³P°	3] 1]	D°	³F°	3S 1S	³P ¹P	$^{3}\mathrm{D}$	³F	³G ¹G
$4p(^2\mathrm{P}^\circ)nx''$	{	3P°				³ S ¹ S	³P ¹P	3] 1]	D D			3P° 1P°	¹ D°	³F°	
		n	$f(n \geq 4)$	4)			n	$g (n \geq 3)$	5)						
$4s(^2\mathrm{S})nx$	{		3F°					³G ¹G							
$3d(^2\mathrm{D})nx'$	{3P°	³D°	3F°	³G° ¹G°	³H°	³D	³F ¹F	³G ¹G	3H 1H	3 <u>I</u>					
4p(2P°)nx''	{	¹ D	³F ¹F	³G ¹G			³F° ¹F°	³G°	³H°		• • •	• • • • • •			

TABLE 20. PREDICTED TERMS OF THE SCI ISOELECTRONIC SEQUENCE

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$								Pred	icted 7	Γerms					
3d 4s ²			² D)											
$3d^3$	{{	⁴ P ² P	$^2\Gamma_{^2\mathrm{D}}$	4) 2	F F	G.	$^{2}\mathrm{H}$								
			ns	(n≥	4)					np	$(n \ge 4$)			
$3d \ 4s(^3D) nx$	{		4 L 2 L)					⁴ P° ² P°	⁴ D° ² D°					
$3d \ 4s(^{1}D)nx$			² L)					²P°	² D°	² F	10			
$3d^2(^3\mathrm{F})nx$	{			4	F					⁴ D° ² D°		10	4G° 2G°		
$3d^2(^1\mathrm{D})nx$			2∑)					² P°	² D°	² F	10			
$3d^2(^1\mathrm{S})nx$	2S								² P°						
$3d^2(^3\mathrm{P})nx$	{	⁴ P ² P	•					4S° 2S°	⁴ P° ² P°	⁴ D° ² D°					
$3d^2(^1\mathrm{G})nx$						^{2}G					2 F	10	2G°	2H°	
$4p^2(^3\mathrm{P})nx$	{	⁴ P ² P	,					4S° 2S°	⁴ P° ² P°	⁴ D° ² D°					
			na	l (n≥	3)					n_{j}	$f(n \geq 4)$	ł)			
3d 4s(3D) nx	$\begin{cases} {}^{4}S \\ {}^{2}S \end{cases}$	⁴ P ² P	⁴ D ² D	⁴F ²F	⁴ G ² G			4P° 2P°	⁴ D° ² D°	⁴ F° ² F°	⁴ G° ² G°	4H° 2H°			
3d 4s(1D) nx	² S	^{2}P	$^2\mathrm{D}$	$^2\mathrm{F}$	^{2}G			² P°	$^2\mathrm{D}^{\circ}$	${}^2\mathrm{F}^{\circ}$	2G°	²H°			
$3d^2(^3\mathrm{F})nx$	{	⁴ P ² P	$^{4}_{^{2}\mathrm{D}}$	⁴ F ² F	⁴ G ² G	⁴ H ² H			⁴ D° ² D°	⁴ F° ² F°	⁴ G° ² G°	⁴ Н° ² Н°	⁴ I° ² I°		
$3d^2(^1\mathrm{D})nx$	2S	^{2}P	$^{2}\mathrm{D}$	$^{2}\mathrm{F}$	^{2}G			²P°	$^2\mathrm{D}^\circ$	${}^2\mathrm{F}^{\circ}$	² G°	²H°			
$3d^2(^1\mathrm{S})nx$			$^{2}\mathrm{D}$							${}^2\mathrm{F}^{\circ}$					
$3d^2(^3\mathrm{P})nx$	{	⁴ P ² P	$^{4}_{^{2}\mathrm{D}}$	⁴ F ² F					⁴ D° ² D°	⁴ F° ² F°	⁴ G° ² G°				
$3d^2(^1\mathrm{G})nx$			$^{2}\mathrm{D}$	$^{2}\mathrm{F}$	^{2}G	$^{2}\mathrm{H}$	${}^{2}\mathbf{I}$			${}^2\mathrm{F}^{\circ}$	${}^2\mathrm{G}^{\circ}$	2H°	² I°	${}^2\mathrm{K}^{\circ}$	
$4p^2(^3\mathrm{P})nx$	{	⁴P ²P	$^{4}\mathrm{D}_{^{2}\mathrm{D}}$	⁴F ²F					$^{4}\mathrm{D}^{\circ}_{^{2}\mathrm{D}^{\circ}}$	⁴ F° ² F°	⁴ G° ² G°				

Table 21. Predicted Terms of the Til Isoelectronic Sequence

Config. 182 282 2p6 382 3p6+								Pr	adicted	Predicted Terms										
3d² 48³	dε Sτ }	Q ₁	3F 1G																	
	3P	G.	3F 3G	He																
3	Si Si	. 5	1F 1G	Ιτ																
		$ns (n \ge 4)$.≥4)				lu	$np \ (n \ge 4)$						u	nd $(n \ge 4)$	(1			:	
$3d^2 4s(^4\mathrm{F})nx$		5 8	6F 3F				, 10°	5 p.0	င့္ခ်င္ခ်				5p 5.	3D 3	ы 15 25 35	HH				
$3d^3({}^4{ m F})nx$	<u></u>	e.	5F 3F				⁵ D°	5F°	ဒ္ဓိဋ္ဌ				5P 3.	D D E	5F 5G	HH			::	
$3d^2 4s(^2\mathrm{F}) nx$	<i>ــب</i>	=	15 17				3D°	3]ro 1]ro	င္ခ်င္ခ				3P 3	6 6 7	1F 1G	EH.			: :	
$3d^24s(^1\mathrm{D})nx$		ű ű				3P°	3D°	3F0 1F0				ស៊ី <u>សី</u>	3P 3.	ë ë	3F 3G	78.78			::	
$3d^3(^3\mathrm{G})nx$	~		ధ్దా					3F° 1F°	င့္ခင္ခ	3H° 1H°			8 -1	űű E	3F 3G	HH		1. 11	::	
$3d^3(4P)nx$	 				သို့လ္ဆ	5P°	$^{b}D^{\circ}$						5P 5	ðű Z.E.	7. T.				: :	
$3d^3(^3\mathrm{P})nx$	3P				် လို့ လို့	3P° 1P°	3D°						r F F	ë ë	11.				: :	
$3d^2 4s(^4\mathrm{P})nx$	- SP				స్ట్రోస్ట్	5P°	3D°						5P 5	Č.	5F 3F				::	: :
$3d^3(^3\mathrm{D})nx$	<i>ــ</i> ــ	űű.				apo 1Po	°D°	3F° 1F°				ស៊ី <i>លី</i>	म स् ज्ञास	ë ë	3F 3G	pk pk			::	: :
$3d^3(^3{ m H})nx$	~			H. H.					င့်ငံ့	3H°	3I°			8 -	3F 3G	H.	I 3I	1 3K I 1K		: :
3d ³ 4s(² G)nx	<u></u>		ధేధే					3F°	င့်ငွိ	3H° 1H°			в =	ĞÜ T	3F 3G	H ₁	I 3I	HH	::	: :
3d ² 4s(² P) nx	3P				လ္ဆီလ္ လူ	3P° 1P°	3D°						유민	ë E	3 된 된				::	
$3d^3(^2\mathrm{F})nx$	<u></u>	σ =	3F FI				3D°	3F° 1F°	င့္ခင္ခ				F H	50 21	3F 3G	HH	H H		::	: :
3d ³ 4s(³ S)nx	~ & & &					3P° 1P°							κ ⊣	ëë					::	
$3d \ 4s^{3}(^{3}\mathrm{D})nx$	<u></u>	đ ^s Gi				3P°	³D°	3F° 1F°				នី និ	3P 3.	6 6 1	3F 3G	7 R + 1+			: :	
												-								

ŤΫ, 4<u>T</u> H⁴H ΉΉ Ή H²H 祖田 nd $(n \ge 4)$ ధీ**ధే** ధేద ధిద్ద \$\$ **దే** దే 취취 4 H F 4 FF 2 4년 4 F θŧ θÛ Ðΰ θű 4P 2P 4P ⁶р ůů. 4P ನಿ ನೆ Predicted Terms 4I o I z °H° 4G° $np (n \ge 4)$ స్త్రీస్త င့္မိင္မိ င့္မင့ 6F° 4F° 4F° 4F° 6F° éD° å D° 2 2 3 3 ůů ůů å å 6P° 4P° 2P° သို့သို့ ^{2}I H_{z} $^{2}\mathrm{H}$ ## H ಧಿಧಿಧಿ ధిధేధ 2 $ns (n \ge 4)$ 구 구 구 유 뉴 뉴 14 년 구 구 [1] **큐**쥬 2 4 4 4 4 4 4 4 4 4 ಕಿಶಕಿಕ űű θθ 644 4 7 2 7 **₽** 4P $\tilde{\Sigma}$ **សិសី** សី Š Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$ 3d3 4s(5F) nx $3d^3 4s(^3\mathrm{F})nx$ $3d^4(^5\mathrm{D})\,nx$ $3d^4(^3\mathrm{H})nx$ $3d^4(^3\mathrm{P})\,nx$ $3d^4(^3\mathrm{F})\,nx$ $3d^3 4p^2\dagger$ 3d3 483 $3d^5$

Table 22. Predicted Terms of the VI Isoelectronic Sequence

							2L								
							2K		¥¥				2K		
	1 4I 1 2I	14 H	Iz F		I ₂ F		I ₂ F		H 4I H 2I				I ₂ H		н
	4G 4H	4G 4H	rG 2H	てちてち	H ₂ 5		2G 2H		4G 4H	ధిద్ద	でち		2G 2H	5	2G 2H
유.	4F 4(4F 4(2F 2(2F 2(4F 4G 2F 2G	2F 2G	4 F	3(4F 4C	4F 4(2F 2(2F 2G	2F	2F 2(2F 2(2F 2(
ĎÛ 2.€.	1 50	Đũ 4.5	2D 2	₽ ₽ ₽	2D 2	₽ ₽ ₽		2D	4 61	ŮŰ 4.″.	2D 2	2D 2	64	2D 2	2D 2
94 9.4	41 (24	'ৰণ' তথ	(N)	4 P 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, (A)	4P 4 2P 2		, (4)		4 ⁴ T	2P 2	2P 2		2P 2	2P 2
∞ *				ស៊ីស * ន		4.01				₹. % \$. %	2 2 2	61		2 2	81
							2K°								
							² Io		4I°				٥I٥		
	4H° 2H°	4H° 2H°	2H°		2H°		2H°		4H°				2H°		
	2G° 2	2 G° 2	2G° 2		2G° 2		61		, Ç				2G° 2		2G°
	4F° 4	4F° 4	2F° 2(4F0 2F0	2F° 2(4 8	4F°	2F°		Ñ	2F°	2F° 2(
ůů Û	4.2	4.2	[2	4D° 4]	[2	ů,				4D° 4]	² D° ²]	$^{2}\mathrm{D}_{\circ}$		2D° 2]	2Ω° 2]
6P° 6I 4P° 4I				4P° 4I 2P° 2I				0							Iz
				4H TZ		0 4P°		$^2\mathrm{P}^{\circ}$		4P° 2P°	$^{2}\mathrm{P}^{\circ}$	o 2P°		$^2\mathrm{P}^{\circ}$	
 \hat{\displaysty}						လီလီ	1z					SS			
							81		Ħ Ħ				T,		
		-10 -10							2 [2				[2		
	ఫేస్ట	ሷሷ	2G		2,0										
															2 F
				4D 2D						Û Ü	2 D			2D	
ភូមិ						4P 2P						2 P			
<u>~</u> ~	<u>پ</u>			<u>~</u>		<u></u>		S ²	ب	<u> </u>					
S) nx	8	x) nx	8	8	x) ux	xu(21	ĸ	I) nx	m((8	m(c	I)nx	m()	8
$3d^3$ $4s(^6\mathrm{P})nx$	3d*(3G) nx	$3d^3 \ 4s(^3\mathrm{G})nx$	$3d^4(^1\mathrm{G})nx$	$3d^4(^3\mathrm{D})nx$	3d³ 4s(¹G) nx	$3d^3 \ 4s(^3\mathrm{P})nx$	$3d^4(1I)nx$	$3d^4(^1\mathrm{S})nx$	$3d^3 \ 4s(^3{ m H})nx$	$3d^3 \ 4s(^3\mathrm{D})nx$	$3d^4(^1\mathrm{D})nx$	3d³ 4s(¹P) nx	$3d^3 4s(^1\mathrm{H})nx$	$3d^3 4s(^1\mathrm{D})nx$	$3d^4(^1\mathrm{F})nx$

†Incomplete—only limits of higher multiplicity considered. *Two terms of this type predicted.

TABLE 23. THE CHEMICAL ELEMENTS—IONIZATION POTENTIALS*

\overline{z}	Element	Symbol	I. P.	Grou	nd Sta	ate	Z	Element	Symbol	I. P.	Grou	nd Sta	ate
1	Hydrogen	Н	13. 595		1s	² S ₁₄	36	Krypton	Kr	13. 996	(4s2	4p6)	¹ S ₀
2	Helium	Не	24. 580		$(1s^2)$	1S ₀	37	Rubidium	Rb	4. 176		58	2S14
3	Lithium	Li	5. 390		28	2S ₁₄	3 8	Strontium	Sr	5. 692		5s ²	1S ₀
4	Beryllium	Ве	9. 320		$2s^2$	$^{1}\mathrm{S}_{0}$	39	Yttrium	Y	6. 6	4d	5s ²	²D₁⅓
5	Boron	В	8. 296	282	2p	²P½	40	Zirconium	Zr	6. 95	$4d^2$	5s ²	$^3\mathrm{F}_2$
6	Carbon	C	11. 264	282	$2p^2$	3P0	41	Columbium	Cb	6. 77	444	58	6D ¹ %
7	Nitrogen	N	14. 54	282	$2p^3$	4S ₁₁₄	42	Molybdenum	Mo	7. 18	40.5	58	7S3
8	Oxygen	0	13. 614	282	2p4	$^3\mathrm{P}_2$	43	Technetium	Te		$4d^5$	5s ²	6S ₂ 1/2
9	Fluorine	F	17. 42	282	$2p^5$	²P ₁ %	44	Ruthenium	Ru	7. 5	4d7	58	$^5\mathrm{F}_5$
10	Neon	Ne	21. 559	$(2s^{2}$	$2p^{6})$	¹ S ₀	45	Rhodium	Rh	7. 7	4d8	58	4F414
11	Sodium	Na	5. 138		3 s	2S34	46	Palladium	Pd	8. 33		$4d^{10}$	¹ S ₀
12	Magnesium	Mg	7. 644		3s2	¹ S ₀	47	Silver	Ag	7. 574		58	$^2\mathrm{S}_{1/2}$
13	Aluminum	Al	5. 984	$3s^2$	3 p	²P⅓	48	Cadmium	Cd	8. 991		$5s^2$	$^{1}S_{0}$
14	Silicon	Si	8. 149	$3s^2$	$3p^2$	3P_0	49	Indium	In	5. 785	582	5p	$^2P_{\frac{1}{2}}^{\circ}$
15	Phosphorus	P	11. 0	382	$3p^3$	Si3	50	Tin	Sn	7. 332	582	$5p^2$	3P_0
16	Sulfur	S	10. 357	382	3p4	$^3\mathrm{P}_2$	51	Antimony	Sb	8. 64	582	$5p^3$	4S114
17	Chlorine	Cl	13. 01	$3s^2$	$3p^5$	² P _{1½}	52	Tellurium	Te	9. 01	582	$5p^4$	3P_2
18	Argon	A	15. 755	(382	3p6)	$^{1}S_{0}$	53	Iodine	i	10. 44	582	$5p^5$	$^2\mathrm{P}_{114}^{\circ}$
19	Potassium	K	.4. 339		48	$^2\mathrm{S}_{\frac{1}{2}}$	54	Xenon	Xe	12. 127	(582	$5p^{6})$	$^{1}S_{0}$
20	Calcium	Ca	6. 111		482	¹ S ₀	55	Cesium	Cs	3. 893		6 <i>s</i>	$^2\mathrm{S}_{12}$
21	Scandium	Sc	6. 56	3d	482	$^{2}\mathrm{D}_{1}$	56	Barium	Ba	5. 210		$6s^2$	$^{1}\mathrm{S}_{0}$
22	Titanium	Ti	6. 83	$3d^2$	482	³ F ₂	57	Lanthanum	La	5. 61	5d	6s²	$^2\mathrm{D}_{1\frac{1}{2}}$
23	Vanadium	v	6. 74	$3d^3$	432	4F11/2	58	Cerium	Ce	(6. 91)			
24	Chromium	Cr	6. 76	$3d^5$	48	$^{7}\mathrm{S}_{3}$	59	Praseodymium	Pr	(5. 76)			
25	Manganese	Mn	7. 432	$3d^{5}$	482	6S _{21/2}	60	Neodymium	Nd	(6. 31)	4f4	$6s^2$	5]4
26	Iron	Fe	7. 896	$3d^6$	482	$^5\mathrm{D_4}$	61	Prometheum	Pm				
27	Cobalt	Co	7. 86	347	482	4F434	62	Samarium	Sm	5. 6	4f6	6s²	$^{7}\mathrm{F_{0}}$
28	Nickel	Ni	7. 633	$3d^8$	482	³F4	63	Europium	Eu	5. 67	4f7	6s2	8S314
29	Copper	Cu	7. 723	(3d10)	48	2S _{1/2}	64	Gadolinium	Gd	6. 16	4f7 5d	6s²	$^9\mathrm{D}_2^\circ$
30	Zinc	Zn	9. 391		482	¹ S ₀	65	Terbium	Tb	(6. 74)			
31	Gallium	Ga	6. 00	482	4 <i>p</i>	²P.;;	66	Dysprosium	Dy	(6. 82)			
32	Germanium	Ge	8. 13	482	$4p^2$	³ P ₀	67	Holmium	Но				
33	Arsenic	As	10 ±	482	$4p^3$	4S ₁₁₄	68	Erbium	Er				
34	Selenium	Se	9. 750	482	4p4	³ P ₂	69	Thulium	Tm		4f 18	6s²	$^2\mathrm{F}^2_{31}$
35	Bromine	Br	11. 84	4s2	$4p^5$	²P°i¼	70	Ytterbium	Yb	6. 2	(4f 14)	6s²	$^{1}S_{0}$

TABLE 23. THE CHEMICAL ELEMENTS—IONIZATION POTENTIALS—Continued

Z	Element	Symbol	I. P.	Grou	nd St	ate	z	Element	Symbol	I. P.	Grou	ınd St	ate
71	Lutecium	Lu	5. 0	5d	6s²	$^{2}\mathrm{D}_{2\frac{1}{2}}$	88	Radium	Ra	5. 277		7s2	1S ₀
72	Hafnium	Hf	5. 5 ±	$5d^2$	6s²	$^3\mathrm{F}_2$	89	Actinium	Ac				
73	Tantalum	Та	6 ±	$5d^3$	$6s^2$	4F11/2	90	Thorium	Th		$6d^2$	$7s^2$	$^3\mathrm{F}_2$
74	Tungsten	W	7. 98	$5d^4$	$6s^2$	$^5\mathrm{D}_0$	91	Protactinium	Pa				
75	Rhenium	Re	7. 87	$5d^5$	$6s^2$	$^6\mathrm{S}_{2\frac{1}{2}}$	92	Uranium	U	4 ±	$5f^3 6d$	782	5L6
76	Osmium	Os	8. 7	$5d^6$	$6s^2$	$^5\mathrm{D_4}$	93	Neptunium	Np				
77	Iridium	Ir	9. 2	$5d^7$	$6s^2$	4F11/2	94	Plutonium	Pu				
78	Platinum	Pt	8. 96	$5d^9$	6 <i>s</i>	$^3\mathrm{D}_3$	95	Americium	Am				
79	Gold	Au	9. 223	$(5d^{10})$	6s	2S _{1/2}	96	Curium	Cm				
80	Mercury	Hg	10. 434		$6s^2$	¹ S ₀	97						
81	Thallium	Tl	6. 106	6s²	6p	²P [°] ⅓	98						
82	Lead	Pb	7. 415	$6s^2$	$6p^2$	3P_0	99						
83	Bismuth	Bi	8 ±	6s²	$6p^3$	4S _{11/2}	100						
84	Polonium	Po					101						
85	Astatine	At					102						
86	Radon	Rn	10. 745	(6s ²	6p6)	¹ S ₀	103						
87	Francium	Fa											

^{*}Parentheses denote values that have been determined experimentally, but not yet confirmed by series.

TABLE 24. CHEMICAL SYMBOLS

Symbol	Element	Z	Symbol	Element	Z	Symbol	Element	Z	Symbol	Element	Z
A	Argon	18	Dy	Dysprosium	66	Mn	Manganese	25	s	Sulfur	16
\mathbf{Ac}	Actinium	89	Er	Erbium	68	Mo	Molybdenum	42	Sb	Antimony	51
Ag	Silver	47	Eu	Europium	63	N	Nitrogen	7	Sc	Scandium	21
Al	Aluminum	13	F	Fluorine	9	Na	Sodium	11	Se	Selenium	34
Am	Americium	95	Fa	Francium	87	Nd	Neodymium	60	Si	Silicon	14
$\mathbf{A}\mathbf{s}$	Arsenic	33	Fe	Iron	26	Ne	Neon	10	Sm	Samarium	62
\mathbf{At}	Astatine	85	Ga	Gallium	31	Ni	Nickel	28	Sn	Tin	50
Au	Gold	79	Gd	Gadolinium	64	Np	Neptunium	93	Sr	Strontium	38
В	Boron	5	Ge	Germanium	32	0	Oxygen	8	Ta	Tantalum	73
Ba	Barium	56	H	Hydrogen	1	Os	Osmium	7 6	Tb	Terbium	65
Be	Beryllium	4	(D	Deuterium)	1}	P	Phosphorus	15	Tc	Technetium	43
Bi	Bismuth	83	(T	Tritium)	IJ	Pa	Protactinium	91	Te	Tellurium	52
\mathbf{Br}	Bromine	35	He	Helium	2	Pb	Lead	82	Th	Thorium	90
C	Carbon	6	Hf	Hafnium	72	Pd	Palladium	46	Ti	Titanium	22
Ca	Calcium	20	Hg	Mercury	80	Pm	Prometheum	61	Tl	Thallium	81
Cb	Columbium	41	Ho	Holmium	67	Po	Polonium	84	Tm	Thulium	69
Cd	Cadmium	48	I	Iodine	53	Pr	Praseodymium	59	U	Uranium	92
Ce	Cerium	58	In	Indium	49	Pt	Platinum	78	V	Vanadium	23
C1	Chlorine	17	Ir	Iridium	77	Pu	Plutonium	94	W	Tungsten	74
Cm	Curium	96	K	Potassium	19	Ra	Radium	88	Xe	Xenon	54
Co	Cobalt	27	Kr	Krypton	36	Rb	Rubidium	37	Y	Yttrium	39
Cr	Chromium	24	La	Lanthanum	57	Re	Rhenium	75	Yb	Ytterbium	70
Cs	Cesium	55	Li	Lithium	3	Rh	Rhodium	45	Zn	Zinc	30
Cu	Copper	29	Lu	Lutecium	71	Rn	Radon	86	Zr	Zirconium	40
			Mg	Magnesium	12	Ru	Ruthenium	44			

TABLE 25. THE PERIODIC SYSTEM*

	Cr Mn 24 25	Mo Tc 42 43		W Re 74 75			1
	7, 7						
	Fe 26	Ru 44		Os I			:
	Co Ni 27 28	Rh Pd 45 46		Ir Pt 77 78			-
	. Cu 29	l Ag 47		Au 79			+
	Zn 30	Cd 48		Hg 80			;
			 La 57			Ac 89	
			a Ce			o Th	
			Pr 59			Pa 91	
			py 09			U 92	
			Pm 61			Np 1	
			Sm Eu 62 63			Pu A 94 95	
			u Gd			Am Cm 95 96	
			d Tb			n 97	
			Dy 66			98	
			Ho 67			66	
			68 Er			100	
			Tm 69			101	
			A Vb			102	

*This arrangement is by Catalán. The electrons indicated in column two that are connected by braces have approximately the same binding energy. Consequently, for some elements one type of electron is preferred over another in the normal configuration, as for example, Cr, Cb, Pd, La, Ac, Th.

Table 26. Index—Isoelectronic Sequences
[The tabular entries are page numbers.]

	Element							S	pectrun	<u> </u>						
	Liement	I	II	III	IV	v	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	xv
1	Н, D, Т	1, 3														
2	He	4	6													
3	Li	8	10	11												
4	Ве	12	14	14	15											
5	В	16	17	19	19	20										
6	\mathbf{c}	21	24	26	29	30	31									
7	N	32	35	38	40	42	43	44						ł		
8	O	45	47	50	53	56	58	59	59							
9	${f F}$	60	62	64	66	69	71	74	75							
10	Ne	76	81	83	84	86	88									
11	Na	89	91	93	95	96	98	100	103	105						
12	Mg	106	108	109	111	113	114	117	119	121	122	123				
13	Al	124	126	129	130	131	133	135	136	138	140	142	143			
14	Si	144	147	148	150	151	152	154	156	157	159	160	162			
15	P	163	164	166	168	169	170	171	173	174	176	177	179	180		
16	S	181	183	185	187	188	189	190	191	193	194		194			
17	Cl	195	197	199	201	202	204	205	206	207	209	210				
18	A	211	216	218	220	222	223	224	224	225	226	226			226	
19	K	227	230	231	233	234	236	237	238	239	239	241				
20	Ca	242	245	247	248	249	251	252	253	254	255	255	257	258		258
21	Sc	259	262	263	264	265	266	267	268	269	270	271	272			
22	Ti	273	279	281	283	284	285	286	287	288	288	289	289	290		
23	v	291	298	301	303	304	304	305	306	306		307	307	308	309	

 \mathbf{H}

1 electron Z=1

Ground state 1s 2S16

 $1s \, ^2S_{1/2} \, 109678.758 \, \, \mathrm{cm}^{-1}$

I. P. 13.595 volts

This table deals only with the light isotope of hydrogen, H¹; cf. page 3 for the other isotopes. The levels through n=40 have been calculated by J. E. Mack, "using $R_{\rm H}^{1}=109677.581$ cm⁻¹ and $\alpha^{2}=5.3256\times10^{-5}$, and taking into account the Lamb-Retherford shift of the s-levels as well as the Sommerfeld-Dirac fine structure, according to the equation

$$\text{Level}_{\pi} - \text{Level}_{\infty} = R_A \left\{ -n^{-2}Z^2 + \alpha^2 n^{-3}Z^4 \left[-(J + \frac{1}{2})^{-1} + 3(4n)^{-1} + \Lambda_{nlZA} \right] + \cdot \cdot \cdot \right\} \cdot$$

Here A is the atomic weight, and α is the Sommerfeld fine-structure constant. The s-shift parameter Λ is appreciable only for l=0, and depends slowly upon n and Z and probably negligibly upon A; it is found from the work of Lamb and Retherford to be 0.0485 ± 0.0002 for the 2s-level of hydrogen, and in the calculation of this table it is assumed to be independent of n.

The intervals are carried one place farther than the level values, insofar as they are accurately known.

The 1s ${}^2S_{\frac{1}{2}}$ level consists of two hyperfine structure components separated by 0.0473824 ± 0.0000008 cm⁻¹, the lower of which has F=0 and the other F=1.

In any one-electron spectrum the correction arising from any modification ΔR of the value accepted for the Rydberg constant may be calculated to a close approximation from the equation

$$\Delta(\text{level}) = (1 - n^{-2})Z^2 \Delta R$$
."

- A. Fowler, Report on Series in Line Spectra, p. 89 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 22 (Julius Springer, Berlin, 1922). (T) (CL)
- H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- J. W. Drinkwater, O. Richardson, and W. E. Williams, Proc. Roy. Soc. (London) [A] 174, 164 (1940). (Fine structure)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
- H. A. Bethe, Phys. Rev. 72, 339 (1947). (T)
- D. E. Nagle, R. S. Julian, and J. R. Zacharias, Phys. Rev. 72, 971 (L) (1947). (hfs)
- J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948). (hfs)
- H. Kuhn and G. W. Series, Nature 162, 373 (1948). (Fine structure)
- W. E. Lamb, Jr., and R. E. Retherford, Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)
- M. M. Kroll and W. E. Lamb, Jr., Phys. Rev. 75, 388 (1949). (T)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config	Desig.	J	Level	Interval
18	1s 2S	1/2	0. 000		16s, etc.	16s ² S, etc.	½, etc.	109250. 33	
$egin{array}{c} 2m{p} \ 2m{s} \end{array}$	2p 2P°	1/2	82258. 907	770.0354	17s, etc.	17s ² S, etc.	½, etc.	109299. 25	
$2s \\ 2p$	2s ² S 2p ² P°	1½ 1½ 1½	82258. 942 82259. 272	ا_ا_0. 3651	18s, etc.	18s ² S, etc.	½, etc.	109340. 25	
3p	3p 2P°	1/2	97492. 198 97492. 208	770. 010	19s, etc.	19s ² S, etc.	½, etc.	109374. 94	
$egin{array}{c} 3p \ 3s \ 3p, \ 3d \ 3d \end{array}$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	97492. 208 97492. 306 97492. 342	0. 1082 الــــــــــــــــــــــــــــــــــــ	20s, etc.	20s ² S, etc.	½, etc.	109404. 57	
	4p 2P°		102823. 835	77	21s, etc.	21s ² S, etc.	½, etc.	109430. 06	
4p 4s	4s ² S 4d ² D, 4p ² P°	72 1/2 11/	102823. 839	0. 004	22s, etc.	22s ² S, etc.	½, etc.	109452. 15	
4p, 4d 4d, 4f 4f	4d 2D, 4f 2F° 4d 2P, 4f 2F°	1½ 1½ 1½ 2½ 3½	102823. 881 102823. 896 102823. 904	0. 0152 0. 0076	23s, etc.	23s ² S, etc.	½, etc.	109471. 428	
	5p 2P°			7-7	24s, etc.	24s ² S, etc.	½, etc.	109488. 346	
5 <i>p</i> 5 <i>s</i>	5s ² S 5d ² D, 5p ² P°	11/	105291. 615 105291. 617	0. 002	25s, etc.	25s ² S, etc.	½, etc.	109503. 274	
5p, 5d 5d, 5f 5f, 5g 5g	5d. 2D. 5f 2F°	1½ 1½ 2½ 3½	105291. 638 105291. 646	0. 0078 0. 0039	26s, etc.	26s ² S, etc.	½, etc.	109516. 513	
5g, 5g	5g' ² G, 5f ² F° 5g ² G	41/2	105291. 650 105291. 652	0. 0024	27s, etc.	27s ² S, etc.	½, etc.	109528. 309	
6p	6p 2P°	1/2	106632. 135	770. 001	28s, etc.	28s ² S, etc.	½, etc.	109538. 863	
6p, 6d	6s ² S 6d ² D, 6p ² P°	$1\frac{1}{2}$	106632. 136 106632. 148	$\begin{bmatrix} J \end{bmatrix} 0.0136 \\ 0.0045 \end{bmatrix}$	29s, etc.	29s ² S, etc.	½, etc.	109548. 345	
56p, 6d 56d, 6f 5f, 6g 5g, 6h 5h	6d ² D, 6f ² F° 6g ² G, 6f ² F°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{4}{2} \end{array}$	106632. 152 106632. 155	0. 0022 0. 0014	30s, etc.	30s ² S, etc.	½, etc.	109556. 894	
6h	6g 2G, 6h 2H° 6h 2H°	51/2	106632. 156 106632. 157	0. 0009	31s, etc.	31s ² S, etc.	½, etc.	109564. 629	-
7s, etc.	7s 2S, etc.	½, etc.	107440. 425 to . 439	0. 014	32s, etc.	32s ² S, etc.	½, etc.	109571. 651	
Pa sta	8s ² S, etc.	½, etc.	.107965. 036		33s, etc.	33s ² S, etc.	½, etc.	109578. 044	
8s, etc.	08 -15, etc.	72, 666.	to . 045	0. 009	34s, etc.	34s ² S, etc.	½, etc.	109583. 881	
9s, etc.	9s ² S, etc.	½, etc.	108324. 706	0. 008	35s, etc.	35s ² S, etc.	½, etc.	109589. 225	
10- 1-	10-29 -4-	1/ -4-	to . 714		36s, etc.	36s ² S, etc.	½, etc.	109594. 130	
10s, etc.	10s ² S, etc.	½, etc.	108581. 98		37s, etc.	37s ² S, etc.	½, etc.	109598. 643	
11s, etc.	11s ² S, etc.	½, etc.	108772. 33		38s, etc.	38s ² S, etc.	½, etc.	109602. 804	
12s, etc.	12s ² S, etc.	½, etc.	108917. 11		39s, etc.	39s ² S, etc.	½, etc.	109606. 649	
13s, etc.	13s ² S, etc.	½, etc.	109029. 78		40s, etc.	40s ² S, etc.	½, etc.	109610. 210	
14s, etc.	14s ² S, etc.	½, etc.	109119. 18						
15s, etc.	15s ² S, etc.	½, etc.	109191. 30			$\infty = Limit$		109678.758	

DEUTERIUM and TRITIUM

D and T

1 electron Z=1

Ground state 1s 2S14

 $1s\ ^2S_{\frac{1}{2}}\ D\ (H^2)\ 109708.596\ cm^{-1}$

I. P. D 13.598 volts

1s $^2S_{\frac{1}{2}}$ T (H³) 109718.526 cm $^{-1}$

I. P. T 13.600 volts

The term values have been calculated by J. E. Mack, "using $R_{\rm D} = 109707.419$ and $R_{\rm T} = 109717.348~{\rm cm}^{-1}$, and taking into account the same fine structure as in hydrogen. Lamb and Retherford have found that the 2s-shift in deuterium is the same as in light hydrogen within about 0.5 percent. Levels not given here may be calculated from the hydrogen table with the aid of the correction equations

$$\text{Level}_{\mathbf{D}} - \text{Level}_{\mathbf{H}} = (1 - n^{-2})29.838 \text{ cm}^{-1} \text{ and } \text{Level}_{\mathbf{T}} - \text{Level}_{\mathbf{H}} = (1 - n^{-2})39.768 \text{ cm}^{-1}.$$

Nafe and Nelson have kindly communicated the results of their hyperfine structure measurements in tritium in advance of publication. In both isotopes the 1s-level has two hyperfine-structure components, the lower of which has the lower F-value. In deuterium the separation is $0.01092095 \pm 0.00000023$ cm⁻¹, and the F-values are 1/2 and 3/2. In tritium the separation is 0.0505945 ± 0.0000010 cm⁻¹, the F-values 0 and 1."

REFERENCES

- J. W. Drinkwater, O. Richardson, and W. E. Williams, Proc. Roy. Soc. (London) [A] 174, 164 (1940). (Fine structure) (IS)
- D. E. Nagle, R. S. Julian, and J. R. Zacharias, Phys. Rev. 72, 971 (L) (1947). (hfs)
- J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948); 75, in press (1949). (hfs)
- R. E. Retherford and W. E. Lamb, Jr., Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

			D	T	
Config.	Desig.	J	Level	Level	Interval
1s	1s ² S	1/2	0.000	0.000	
$egin{array}{c} 2p \ 2s \ 2p \ \end{array}$	2s 2S 2p 2P° 2p 2P°	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$	82281.285 82281.320 82281.650	82288.733 82288.768 82289.098]] 0.0354 0.3652
$\begin{array}{c c} 3p \\ 3s \\ 3p, 3d \\ 3d \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1½ 1½ 1½ 2½	97518.721 97518.731 97518.829 97518.865	97527.547 97527.558 97527.656 97527.692]] 0.010 0.1082 0.0361
4p 4s 4p, 4d 4d, 4f 4f	$\begin{array}{c} 4p\ ^2\mathrm{P}^{\circ} \\ 4s\ ^2\mathrm{S} \\ 4d\ ^2\mathrm{D}, \ \ 4p\ ^2\mathrm{P}^{\circ} \\ 4d\ ^2\mathrm{D}, \ \ 4f\ ^2\mathrm{F}^{\circ} \\ 4f\ ^2\mathrm{F}^{\circ} \end{array}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	102851.808 102851.812 102851.854 102851.869 102851.877	$\begin{array}{c} 102861.118 \\ 102861.122 \\ 102861.163 \\ 102861.178 \\ 102861.186 \end{array}$	$ \begin{bmatrix} 0.004 \\ 0.0456 \\ 0.0152 \\ 0.0076 \end{bmatrix} $
5p 5s 5p, 5d 5d, 5f 5f, 5g 5g	5p ² P° 5s ² S 5d ² D, 5p ² P° 5d ² D, 5f ² F° 5g ² G, 5f ² F° 5g ² G	1½ ½ 1½ 2½ 3½ 4½	105320.260 105320.262 105320.283 105320.291 105320.294 105320.297	105329.792 105329.795 105329.816 105329.824 105329.827 105329.830	0.002 0.0233 0.0078 0.0039 0.0024
6p 6s 6p, 6d 6d, 6f 6f, 6g 6g, 6h 6h	$\begin{array}{c} 6p\ ^{2}\mathrm{P}^{\circ} \\ 6s\ ^{2}\mathrm{S} \\ 6d\ ^{2}\mathrm{D}, 6p\ ^{2}\mathrm{P}^{\circ} \\ 6d\ ^{2}\mathrm{D}, 6f\ ^{2}\mathrm{F}^{\circ} \\ 6g\ ^{2}\mathrm{G}, 6f\ ^{2}\mathrm{F}^{\circ} \\ 6g\ ^{2}\mathrm{G}, 6h\ ^{2}\mathrm{H}^{\circ} \\ 6h\ ^{2}\mathrm{H}^{\circ} \end{array}$	1½ ½ 1½ 2½ 3½ 4½ 5½	106661.144 106661.145 106661.158 106661.162 106661.164 106661.166 106661.167	106670.798 106670.800 106670.812 106670.816 106670.818 106670.820 106670.821	0.001 0.0136 0.0045 0.0022 0.0014 0.0009
7s, etc.	7s ² S, etc.	½, etc.	107469.654 to .669	107479.381 to .396	
	∞=Limit		109708.596	109718.526	

HELIUM

He I

 $2 ext{ electrons}$

Ground state 1s2 1S0

 $1s^2$ 1S_0 198305 ± 15 cm⁻¹

I. P. 24.580 volts

Most of the terms are taken from Paschen-Götze with the term values subtracted from Paschen's limit as quoted by Robinson in 1937. Higher members of the ${}^{1}F^{\circ}$ and ${}^{3}F^{\circ}$ series are taken from Meggers and Dieke. The term 2p ${}^{3}P^{\circ}$ has been calculated from its combination with 2s ${}^{3}S_{1}$, using the resolved triplet as observed by Meggers, the intervals being -0.078 cm⁻¹ and -0.996 cm⁻¹. The components of 3p ${}^{3}P^{\circ}$ are based on Paschen's value of 3p ${}^{3}P^{\circ}_{2}$ and the intervals observed by Gibbs and Kruger; -0.165 cm⁻¹ and -0.192 cm⁻¹.

Some doubt exists regarding the correct classifications of lines attributed to doubly excited helium, such as those observed at 309.04 A and 320.38 A by Compton and Boyce, and at 320.392 A and 357.507 A by Kruger. Approximate theoretical computations of the energies of doubly excited levels have been made by a number of authors and are summarized by Wu. His classification of the line observed at 320.4 A as 2p 3 P $^{\circ}$ - $2p^2$ 3 P has been adopted and used for the calculation of $2p^2$ 3 P.

Several references deal with intercombinations in He I, namely, those by Lyman, Hopfield, Paschen, Suga, and others. The term values based on the excellent long series have been adopted in the table, since it is believed that they are the most accurate.

- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 22 (Julius Springer, Berlin, 1922). (T) (C L)
- T. Lyman, Astroph. J. 60, 1 (1924). (T) (C L)
- K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 497 (1928). (C L)
- F. Paschen, Sitz. Berlin Akad. Wiss. 30, 662 (1929). (T) (C L)
- J. J. Hopfield, Astroph. J. 72, 133 (1930). (T) (C L)
- P. G. Kruger, Phys. Rev. 36, 855 (1930). (C L)
- R. C. Gibbs and P. G. Kruger, Phys. Rev. 37, 1559 (1931). (T)
- W. F. Meggers and G. H. Dieke, Bur. Std. J. Research 9, 121, RP462 (1932). (T) (C L)
- F. Paschen and R. Ritschl, Ann. der Phys. [5] 18, 888 (1933). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (G D)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (C L)
- T. Suga, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, No. 740, 16 (1937). (CL)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P)
- P. Jacquinot, Compt. Rend. 208, 1896 (1939). (C L)
- T.-Y. Wu, Phys. Rev. 66, 291 (1944). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

HeI

Config.	Desig.	J	Level	Config.	Desig.	J	Level
182	1s ² ¹S	0	0±15	1s 7s	7s ¹S	0	195973. 19
1s 2 s	2s 3S	1	159850. 318	1s 7p	7p ³P°	2, 1, 0	196021.72
1s 2s	2s ¹S	0	166271. 70	1s 7 d	7d ² D	3, 2, 1	196064. 00
1s 2p	2p 3P°	2	169081. 111	1s 7d	7d ¹D	2	196064. 31
		$\begin{vmatrix} 1 & 0 \end{vmatrix}$	169081. 189 169082. 185	1s 7f	7f ¹F°	3	196065. 4
1s 2p	2p ¹P°	1	171129.148	1s 7f	7f °F°	4, 3, 2	196065.51
1s 3s	3s ³S	1	183231. 08	1s 7p	7p ¹P°	1	196073. 41
18 38	3s ¹S	0	184859. 06	1s 8s	8s 3S	1	196455. 79
1s 3p	3p 3P°	2	185558. 92	1s 8s	8s ¹S	0	196529. 03
		0 1	185559. 085 185559. 277	1s 8p	8p 3P°	2, 1, 0	196561.08
1s 3d	3d ³D	3, 2, 1	186095. 90	1s 8d	8d ³D	3, 2, 1	196589. 42
1s 3d	3d ¹D	2	186099. 22	1s 8d	8d ¹D	2	196589. 73
1s 3p	3p ¹P°	1	186203. 62	1s 8f	8f ¹F°	3	196590. 3
1s 4s	4s 3S	1	190292. 46	1s 8f	8f 3F°	4, 3, 2	196590, 42
1s 4s	4s ¹S	0	190934. 50	ls 8p	8p ¹P°	1	196595.56
1s 4p	4p 3P°	2, 1, 0	191211. 42	1s 9s	9s ³S	1	196856. 37
1s $4d$	4d ³D	3, 2, 1	191438. 83	1s 9s	9s ¹S	0	196907. 13
1s 4d	4d ¹D	2	191440. 71	1s 9p	9p 3P°	2, 1, 0	196929. 68
1s 4f	4f ³F°	4, 3, 2	191446.61	1s 9d	9d ¹D	2	196949. 49
1s 4f	4f ¹F°	3	191447. 24	1s 9d	9d ³D	3, 2, 1	196949. 63
1s 4p	4p ¹P°	1	191486.95	1s 9f	9f ¹F°	3	196950. 3
1s 5s	5s 3S	1	193341. 33	1s 9f	9f ³F°	4, 3, 2	196950. 36
1s 5s	5s ¹S	0	193657. 78	1s 9p	9p ¹P°	1	19695 3. 95
1s 5p	5p 3P°	2, 1, 0	193795. 07	1s 10s	10s 3S	1	197139. 76
1s 5d	5d ³D	3, 2, 1	193911. 48	1s 10s	10s ¹S	0	197176. 36
ls 5d	5d ¹D	2	193912. 54	1s 10p	10p ³P°	2, 1, 0	197192.63
1s 5f	5f ¹F°	3	193914. 31	1s 10d	10d ¹D	2	197207. 08
1s 5f	5f 3F°	4, 3, 2	193915. 7 9	1s 10d	10d ³D	3, 2, 1	197207. 30
1s 5p	5p ¹P°	1	193936.75	1s 10f	10f ³F°	4, 3, 2	197208. 0
1s 6s	6s 3S	1	194930. 46	1s 10p	10p ¹P°	1	197210. 41
18 68	6s ¹S	0	195109. 17	1s 11s	11s 3S	1	197347. 05
1s 6 p	6p 3P°	2, 1, 0	195187. 21	1s 11p	11p ³P°	2, 1, 0	197386. 98
$1s\ 6d$	6d ³D	3, 2, 1	195254. 37	1s 11d	11d ¹D	2	197397. 62
1s 6d	6d ¹D	2	195255. 02	1s 11d	11d ³D	3, 2, 1	197397. 75
1s 6f	6f ¹F°	3	195256. 7	1s 11f	11f ³F°	4, 3, 2	197398. 6
ls 6f	6f 3F°	4, 3, 2	195256.82	1s 11p	11p ¹P°	1	197400. 18
18 6p	6p ¹P°	1	195269. 17	1 s 12s	12s ³S	1	197503. 69
1s 7 s	7s 2S	1	195862. 63	1s 12s	12s ¹S	0	197524, 26

He I—Continued

He I-Continued

Config.	Desig.	J	Level	Config.	Desig.	J	Level
1s 12p	12p ³P°	2, 1, 0	197534. 44	1s 16d	16d ³D	3, 2, 1	197876. 41
1s 12d	12d ¹D	2	197542. 54	1s 16p	16p ¹P°	1	197877. 04
1s 12d	12d ³D	3, 2, 1	197542. 67	1s 17p	17p ³P°	2, 1, 0	197922.51
1s 12p	12p ¹P°	1	197544. 56	1s 17d	17d ³D	3, 2, 1	197925. 33
1s 13s	13s 3S	1	197624. 98	1s 17p	17p ¹P°	1	197925.87
1s 13p	13p 3P°	2, 1, 0	197649. 07	1s 18p	18p ³P°	2, 1, 0	197964. 02
1s 13s	13s ¹S	0	197649. 78	1s 18d	18d ³D	3, 2, 1	197966. 75
1s 13d	13d ¹D	2	197655. 19	1s 18p	18p ¹P°	1	197966. 80
1s $13d$	13d ³D	3, 2, 1	197655. 47	1s 19p	19p ³P°	2, 1, 0	197999. 12
$1s \ 13p$	13p ¹P°	1	197656. 95	1s 19d	19d ³D	3, 2, 1	198001. 43
1s 14s	14s 3S	1	197721. 13	1s 19p	19p ¹P°	1	198001. 44
1s 14p	14p 3P°	2, 1, 0	197739. 90	1s 20p	20p ³P°	2, 1, 0	198029.07
ls 14d	14d ¹D	2	197744. 918	1s 20p	20p ¹P°	1	198031. 02
1s 14d	14d ³D	3, 2, 1	197744. 94	1s 20d	20d ³D	3, 2, 1	198031. 41
1s 14p	14p ¹P°	1	197746. 15	1s 21p	21p ³P°	2, 1, 0	198054.83
1s 15s	15s 3S	1	197796. 63	1s 21d	21d ³D	3, 2, 1	198056. 50
1s 15p	15p ³P°	2, 1, 0	197813. 11	1s 22p	22p ³P°	2, 1, 0	198077. 15
1s 15d	15d ³D	3, 2, 1	197817. 05				
1s 15p	15p ¹P°	1	197818. 12	Не п (² S ₁₄)	Limit		198305
1s 16p	16p ³P°	2, 1, 0	197872. 95	$2p^2$	$2p^2$ $^3\mathrm{P}$	2, 1, 0	481198

August 1946.

He II

(H sequence; 1 electron) Z=2Ground state 1s ${}^2S_{32}$ 1s ${}^2S_{32}$ He 3 438889.040 cm ${}^{-1}$ I. P. He 3 54.400 volts

1s ${}^2S_{32}$ He 4 438908.670 cm ${}^{-1}$ I. P. He 4 54.403 volts

The levels have been calculated by J. E. Mack, "using $R_{\rm He^4}=109722.264$ and taking into account the fine structure as in hydrogen, but with $\Lambda=0.0402\pm0.009$, from the work of Skinner and Lamb on the 2s-level. The tentative experimental indication that Λ decreases with increasing n has been neglected. Assuming $R_{\rm He^3}=109717.344$, the levels of He³ may be calculated to a close approximation from those of He⁴ by the equation

Level_{He³II}-Level_{He⁴II}=-
$$(1-n^{-2})19.630$$
 cm⁻¹."

REFERENCES

- A. Fowler, Report on Series in Line Spectra, p. 95 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 25 (Julius Springer, Berlin, 1922). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw-Hill Book Co., New York, N. Y., 1934). (G D)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
- H. A. Bethe, Phys. Rev. 72, 339 (1947). (T)
- J. E. Mack and N. Austern, Phys. Rev. 72, 972 (1947); 74, 1262 (A) (1948). (Fine structure)
- G. R. Fowles, Phys. Rev. 73, 639 (L) (1948); 74, 219 (L) (1948). (Fine structure)
- H. Kopfermann and W. Paul, Nature 162, 33 (L) (1948). (Fine structure)
 M. Skinner and W. E. Lamb, Jr., Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

			He ³ II	He 4 II	
Config.	Desig.	J	Level	Level	Interval
18	1s ² S	1/2	0.000	0.000	
$egin{array}{c} 2p \ 2s \ 2p \end{array}$	2s 2S 2p 2P° 2p 2P°	1½ 1½ 1½ 1½	329164.390 329164.860 329170.135	329179.102 329179.572 329184.945	0.470 5.8434
3p 3s 3p, 3d 3d	$\begin{array}{c} 3p\ ^2\mathrm{P}^{\circ} \\ 3s\ ^2\mathrm{S} \\ 3d\ ^2\mathrm{D}, \ \ 3p\ ^2\mathrm{P}^{\circ} \\ 3d\ ^2\mathrm{D} \end{array}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	390123.179 390123.318 390124.910 390125.487	390140.622 390140.761 390142.353 390142.930	$ \begin{bmatrix} 0.14 \\ 1.7314 \\ 0.5771 \end{bmatrix} $
4p 4s 4p, 4d 4d, 4f 4f	$\begin{array}{c} 4p\ ^2\mathrm{P}^{\circ} \\ 4s\ ^2\mathrm{S} \\ 4d\ ^2\mathrm{D},\ 4p\ ^2\mathrm{P}^{\circ} \\ 4d\ ^2\mathrm{D},\ 4f\ ^2\mathrm{F}^{\circ} \\ 4f\ ^2\mathrm{F}^{\circ} \end{array}$	1/2 1/2 11/2 21/2 31/2	411458.517 411458.576 411459.248 411459.491 411459.613	411476.917 411476.976 411477.648 411477.891 411478.013	$ \begin{bmatrix} 0.06 \\ 0.7304 \\ 0.2435 \\ 0.1217 \end{bmatrix} $
5 p 5 s 5 p, 5 d 5 d, 5 f 5 f, 5 g 5 g	5p ² P° 5s ² S 5d ² D, 5p ² P° 5d ² D, 5f ² F° 5g ² G, 5f ² F° 5g ² G,	1/2 1/2 1/2 2/2 3/2 4/2	421333.629 421333.659 421334.003 421334.128 421334.190 421334.228	421352.472 421352.502 421352.846 421352.971 421353.033 421353.071	0.03 0.3740 0.1247 0.0624 0.0374
6p 6s 6p, 6d 6d, 6f 6f, 6g 6g, 6h 6h	$6p ^2\mathrm{P}^{\circ}$ $6s ^2\mathrm{S}$ $6d ^2\mathrm{D}, 6p ^2\mathrm{P}^{\circ}$ $6d ^2\mathrm{D}, 6f ^2\mathrm{F}^{\circ}$ $6g ^2\mathrm{G}, 6f ^2\mathrm{F}^{\circ}$ $6g ^2\mathrm{G}, 6h ^2\mathrm{H}^{\circ}$ $6h ^2\mathrm{H}^{\circ}$	1½ 1½ 1½ 2½ 3½ 4½ 5½	426697.845 426697.862 426698.062 426698.134 426698.170 426698.192 426698.206	$\begin{array}{c} 426716.928 \\ 426716.945 \\ 426717.145 \\ 426717.217 \\ 426717.253 \\ 246717.275 \\ 426717.289 \end{array}$	$ \begin{bmatrix} 0.02 \\ 0.2164 \\ 0.0721 \\ 0.0361 \\ 0.0216 \\ 0.0144 \end{bmatrix} $
7s, etc.	7s ² S, etc.	½, etc.		429951.508 to .741	
8s, etc.	8s ² S, etc.	½, etc.		432050.863 to1.023	
9s, etc.	9s ² S, etc.	½, etc.		433490.169 to .283	
10s, etc.	10s ² S, etc.	½, etc.		434519.693 to .777	
11s, etc.	11s ² S, etc.	½, etc.		435281.423 to .486	
12s, etc.	12s ² S, etc.	½, etc.		435860.778 to .828	
13s, etc.	13s ² S, etc.	½, etc.		436311.653 to .692	
14s, etc.	14s ² S, etc.	½, etc.		436669.407 to .439	
15s, etc.	15s 2S, etc.	½, etc.		436957.026 to 8.052	
	∞=Limit			438908. 670	

LITHIUM

Li I

3 electrons

Z=3

Ground state 1s2 2s 2S4

 $2s {}^{2}S_{\frac{1}{2}}$ 43487.19 \pm 0.02 cm⁻¹

I. P. 5.390 volts

The analysis is from Fowler and Paschen-Götze. Meissner has generously furnished in advance of publication preliminary results of level splittings derived from observed fine structure of selected lines. These data are as follows:

Term	Interval (cm ⁻¹)	Line resolved (A)	Term	Line resolved (A)
$2p^{2}P^{\circ} \ 3d^{2}D \ 4d^{2}D \ 5d^{2}D \ 6d^{2}D$	$\begin{array}{c} 0.\ 3366\ \pm0.\ 0005*\\ 0.\ 037\ \pm0.\ 001\\ 0.\ 015\ \pm0.\ 002\\ 0.\ 010\ \pm0.\ 003\\ 0.\ 005\ \pm0.\ 003\\ \end{array}$	6707, 912, . 761 6103, 649, . 538 4602, 894, . 826 4132, 618, . 562† 3915, 346, . 295	3s ² S 4s ² S 5s ² S 6s ² S	8126. 452, . 231 4971. 745, . 661 4273. 127, . 066 3985. 538, . 485

*Average of 6 determinations.

†Edlén and Lidén derive a mean value of 4132.60 ± 0.02 A and the resulting corrected values quoted for 5d 2D and the limit.

The values in the table for the above terms have been calculated from these wavelengths, except for 5d ²D. Jackson and Kuhn state that the multiplet splitting of 2p ²P°=0.3372±0.0005 cm.⁻¹.

The remaining terms given to two decimals have been calculated from the measures by France. The terms ns ²S, n=7 to 11, and nd ²D, n=7 to 12, are from Werner. All other term values are from Fowler's Report.

- N. A. Kent, Astroph. J. 40, 337 (1914). (T) (Z E)
- A. S. King, Astroph. J. 44, 169 (1916). (T)
- A. Fowler, Report on Series in Line Spectra, p. 96 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 54, (Julius Springer, Berlin, 1922). (T) (C L)
- S. Werner, Studier over Spektroskopiske Lyskilder til Frembringelse af Gnistspektre med Resultater for Lithiums Gnistspektrum, p. 67 (A. Aschehoug & Co., Dansk Forlag, Kobenhavn, 1927). (I P) (T) (C L)
- R. W. France, Proc. Roy. Soc. (London) [A] 129, 354 (1930). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 77, 87, (McGraw-Hill Book Co., Inc., New York, N. Y. 1934). (G D)
- D. A. Jackson and H. Kuhn, Proc. Roy. Soc. (London) [A] 173, 278 (1939). (IS)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs).
- K. W. Meissner, L. G. Mundie, and P. Stelson, Phys. Rev. 74, 932 (1948); 75, 891 (L) (1949). (T) (C L)
- B. Edlén and K. Lidén, Phys. Rev. 75, 890 (L) (1949). (I P) (T)

Liı

Config.	Desig.	J	Level	Config.	Desig.	J	Level
2s	2s ² S	1/2	0. 00	12 <i>d</i>	12d ² D	1½, 2½	42725
2p	$2p$ $^2\mathrm{P}^\circ$	$1\frac{1}{2}$ $1\frac{1}{2}$	14903. 66	13p	13 <i>p</i> ² P°	1/2, 11/2	42832. 92
	9 10		14904.00	14p	14 <i>p</i> ² P°	1/2, 11/2	42923. 39
38	3s ² S	1/2	27206. 12	15p	15p 2P°	1/2, 11/2	42995. 51
3 <i>p</i>	3p 2P°	1/2, 11/2	30925. 38	16p	16p ² P°	1/2, 11/2	43055. 34
3d	$3d~^2\mathrm{D}$	$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	31283. 08 31283. 12	17p	17p 2P°	1/2, 11/2	43105. 42
48	4s 2S	1/2	3 5012. 06	18p	18p ² P°	1/2, 11/2	43146.96
4p	4p 2P°	1/2, 11/2	36469. 55	19p	19p ² P°	1/2, 11/2	43181.84
4d	$4d$ $^2\mathrm{D}$	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	36623. 38 36623. 40	20p	20p ² P°	1/2, 11/2	43211. 39
4.5	4f ² F°		36630. 2	21p	21p 2P°	1/2, 11/2	43237. 16
4 <i>f</i>	25 2S	2½, 3½	38299. 50	22p	$22p$ $^2\mathrm{P}^\circ$	1/2, 11/2	43259. 14
58	5p ² P°	1/ 11/	39015. 56	23p	23p ² P°	1/2, 11/2	43278.96
5p	5 <i>p</i> ² F ³	11/	39013. 56 39094. 93	24p	24p 2P°	1/2, 11/2	43296.03
5d	<i>ط-</i> 3 <i>a</i>	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	39094. 94	25p	$25p$ $^{2}\mathrm{P}^{\circ}$	1/2, 11/2	43311. 45
6 <i>f</i>	5f ² F°	2½, 3½	39104. 5	26p	$26p$ $^{2}\mathrm{P}^{\circ}$	1/2, 11/2	43324. 81
6s	6s ² S	1/2	39987. 64	27p	27p 2P°	1/2, 11/2	43336. 40
6 <i>p</i>	6p 2P°	1/2, 11/2	40390. 84	28p	28p ² P°	1/2, 11/2	43346. 39
6d	$6d$ $^2\mathrm{D}$	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	40437. 31	29p	29p ² P°	1/2, 11/2	43354. 91
7s	7s ² S	1/2	40437. 32 40967. 9	30p	$30p^{-2}P^{\circ}$	1/2, 11/2	43363.71
	7p 2P°			31p	31p ² P°	1/2, 11/2	43372.06
7p 7d	7p -1 7d 2D	1½, 1½	41217. 35 41246. 5	32p	$32p$ $^2\mathrm{P}^\circ$	1/2, 11/2	43378. 31
10 <i>d</i>	10 <i>d</i> ² D	1½, 2½	41489	33p	33p ² P°	1/2, 11/2	<i>43384</i> . 9
8s	8s ² S	1/2, 2/2	41587. 1	34p	$34p$ $^2\mathrm{P}^{\circ}$	1/2, 11/2	43390. 3
8p	8p 2P°	1/2, 11/2	41751.63	35p	$35p$ $^2\mathrm{P}^\circ$	1/2, 11/2	43395. 4
8d	8d ² D	1½, 2½	41771. 3	36p	36p ² P°	1/2, 11/2	43400.5
9s	9s ² S	172, 272	42003. 3	37p	$37p^{-2}P^{\circ}$	1/2, 11/2	43404.7
9p	9p 2P°	1/2, 11/2	42118. 27	38p	38p ² P°	1/2, 11/2	43408.6
9d	9d ² D	1½, 2½	42131. 3	39p	$39p$ $^2\mathrm{P}^{\circ}$	1/2, 11/2	43412. 4
10s	10s ² S	1/2, 2/2	42191. 3	40p	40p 2P°	1/2, 11/2	43416.9
10 <i>p</i>	103 °B 10p °P°	1/2, 11/2	42298 42379. 16	41p	41p 2P°	1/2, 11/2	43420.9
118	10p -1 11s 2S	72, 172	42510	42p	$42p$ $^2\mathrm{P}^\circ$	1/2, 11/2	43424. 3
11 <i>p</i>	11s -5 11p 2P°	1/2, 11/2	42510 42569. 1				
11 <i>p</i> 11 <i>d</i>	11p -1 11d 2D	1½, 2½	42578	Li 11 (¹S₀)	Limit		43487. 19
12p	11a ² D 12p ² P°						
P	12p -1	1/2, 11/2	42719. 14				

December 1948.

(He i sequence; 2 electrons)

Z=3

Ground state 1s2 1S0

 $1s^2$ 1S_0 610079 ± 25 cm⁻¹

I. P. 75.6193 ± 0.0031 volts

Singlet series have been published by both Schüler and Werner, the longer ones by Schüler. In the term list Schüler's rounded off values have been used for the terms 4s to 7s ¹S, 5d to 8d ¹D and 8f ¹F°. The limit is from Robinson and the 2p to 4p ¹P° terms are from Edlén. All the remaining terms are from Werner, who gives also an extrapolated value of 2s ¹S₀, entered in brackets in the table.

Intersystem combinations have not been observed, but the long series should give a reliable determination of the relative positions of the singlet and triplet terms.

- H. Schüler. Zeit. Phys. 37, 568 (1926). (T) (C L)
- S. Werner, Nature 116, 574 (L) (1925); 118, 154 (L) (1926). (T) (C L)
- S. Werner, Studier over Spektroskopiske Lyskilder til Frembringelse af Gnistspektre med Resultater for Lithiums Gnistspektrum, p. 59 (H. Aschehoug & Co., Dansk Forlag, Kobenhavn, 1927). (I P) (T) (C L).
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Li II

Li II

A - 47	C	Dorin	J	T1	Author	Config.	Dooin	7	T1
Author	Config.	Desig.	J	Level	Author	Conng.	Desig.	J	Level
18 ² ¹ S	$1s^2$	1s ² ¹ S	0	0	4F	1s 4f	4f 1F°	3	58264 5
28	1s 2s	2s 3S	1	476046	1s 4p ¹ P	1s 4p	4p ¹P°	1	5828 32
28	18 28	28 1S	0	[490079]	58	18 58	58 3S	1	591184
2p	1s 2p	2p 3P°	2, 1, 0	494273	5S	18 58	58 ¹ S	0	591984
1s 2p ¹ P	1s 2p	2p ¹P°	1	501816	5p	1s 5p	5p ³ P°	2, 1, 0	592141
38	1s 3s	3s 3S	1	554761	5d	1s 5d	$5d$ $^3\mathrm{D}$	3, 2, 1	592505
3S	1s 3s	3s 1S	0	558779	5D	1s 5d	5d ¹ D	2	592508
3p	1s 3p	3p 3P°	2, 1, 0	559501	5F	1s 5f	5f ¹ F°	3	592523
3d	1s 3d	3d 3D	3, 2, 1	561245	5 <i>f</i>	1s 5f	5f 3F°	4, 3, 2	592527
3D	1s 3d	3d ¹D	2	561276	5P	1s 5p	5p ¹P°	1	5 926 3 9
1s 3p ¹ P	1s 3p	3p 1P°	1	561749	68	1s 6s	68 ³ S	1	597122
48	1s 4s	4s 3S	1	579982	6S	1s 6s	6s ¹ S	0	5 97574
4S	1s 4s	4s ¹S	0	581590	6 <i>p</i>	1s 6p	6p ³ P°	2, 1, 0	5 97666
4p	1s 4p	4p 3P°	2, 1, 0	581897	6d	1s 6d	6d ³ D	3, 2, 1	597876
4d	1s 4d	4d ³ D	3, 2, 1	582612	6D	1s 6d	6d ¹ D	2	597877
4D	1s 4d	4d ¹D	2	582631	6 <i>f</i>	1s 6f	6f 3F°	4, 3, 2	597886
4 <i>f</i>	1s 4f	4f 3F°	4, 3, 2	582644	6 F	1s 6f	6f 1F°	3	597886

Li II—Continued

Li II—Continued

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
78	1s 7s	7s 3S	1	600641	8 <i>D</i>	1s 8d	8 <i>d</i> ¹ D	2	603214
7S	18 78	7s 1S	0	600925	8 <i>f</i>	1s 8f	8f ³F°	4, 3, 2	603221
7 <i>d</i>	1s 7d	7d ³ D	3, 2, 1	601115	8F	1s 8f	8f ¹ F°	3	603221
7D	1s 7d	7d ¹D	2	601115					
7 <i>f</i>	1s 7 f	7f 3F°	4, 3, 2	601121		Li 111 (2S1/2)	Limit		610079
7 F	1s 7f	7f ¹F°	3	601122					

May 1946.

Li III

(H sequence; 1 electron)

Z=3

Ground state 1s 2S14

18 2S1/2 Li6 III 987644.9 cm⁻¹

I. P. Li⁶ III 122.419 volts

18 2S₁₄ Li⁷ III 987657.8 cm⁻¹

I. P. Li⁷ III 122.420 volts

Edlén and Ericson found two lines of the Lyman series, and Gale and Hoag found three more and the first Balmer line. Edlén points out that careful measurement of the Lyman line in orders up to the twelfth showed it definitely to the red of the value calculated from the Dirac theory, with an average discrepancy of about 20 cm⁻¹. This disagreement vanishes when the 1s-shift, calculated at 19 cm⁻¹, is taken into account, according to Mack.

J. E. Mack has calculated the terms listed here, "using $R_{\rm Li}^7=109728.723$ and the same value of Λ as in He II, which probably makes the listed ionization energy too low by something between 0 and 2 cm⁻¹. Assuming $R_{\rm Li}^6=109727.295$, the levels of Li⁶ may be found from the equation

Level_{L1}6—level_{L1}7=
$$-(1-n^{-2})12.9$$
 cm⁻¹."

REFERENCES

- H. G. Gale and J. B. Hoag, Phys. Rev. 37, 1703 (A) (1931). (C L)
- B. Edlén and A. Ericson, Nature 125, 233 (1930); 127, 405 (1931); Zeit. Phys. 59, 656 (1930). (CL)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Li III

Li III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d 4p 4s	1s ² S 2p ² P° 2s ² S 2p ² P° 3p ² P° 3s ² S 3d ² D, 3p ² P° 3d ² D 4p ² P°	1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2	0. 0 740731. 2 740733. 6 740760. 8 877915. 9 877916. 6 877924. 7 877927. 6 925929. 4	2. 4 29. 58]] 0. 7 8. 77 2. 92]] 0. 3	5p 5s 5p, 5d 5d, 5f 5f, 5g 5g 6s, etc.	5p ² P° 5s ² S 5d ² D, 5p ² P° 5d ² D, 5f ² F° 5g ² G, 5f ² F° 5g ² G 6s ² S, etc. 7s ² S, etc.	1/2 1/2 1/2 1/2 2/2 3/2 4/2 4/2 1/2, etc.	948152. 2 948152. 4 948154. 1 948154. 8 948155. 1 948155. 3 960223. 7 to 5. 5	0. 2 1. 89 0. 64 0. 31 0. 19
4s 4p, 4d 4d, 4f 4f	4s ² S 4d ² D, 4p ² P° 4d ² D, 4f ² F° 4f ² F°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	925929. 7 925933. 1 925934. 3 925934. 9	3. 70 1. 23 0. 62		∞=Limit		987657.8	

BERYLLIUM

BeI

4 electrons

Z=4

Ground state 1s2 2s2 1So

2s² ¹S₀ 75192.29 cm⁻¹

I. P. 9.320 volts

All but four of the terms are from the work of Paschen or Paschen and Kruger. According to Paschen no intersystem combinations have been observed. The relative positions of the singlet and triplet terms are, however, excellently determined by long series with a relative uncertainty x not exceeding ± 2 cm⁻¹.

The predicted position of the resonance line, $2s^2 {}^{1}S_0 - 2p {}^{3}P_1^{\circ}$, is 4548.29 A. Paton and Nusbaum have observed a line at 4553.07 A to which they assign this classification, but their result has not been confirmed.

The term values of higher series members, calculated from the series formula but not substantiated by observation, are in brackets in the table.

Four terms are from Edlén's work: $2p^2$ ¹D, 3p ³P°, $2p^2$ ¹S, and 3p ³P.

REFERENCES

- R. F. Paton and R. E. Nusbaum, Phys. Rev. 33, 1093 (A) (1929). (C L)
- F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1005 (1931). (T) (C L)
- F. Paschen, Ann. der Phys. [5] 12, 514 (1932). (I P) (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 179 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Be I

Be I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ²	2s ² ¹ S	0	0. 00		2s(2S)3p	3p ¹ P°	1	[60187]	
2s(2S)2p	2p ³P°	0	21979. 43+x	0. 68	2s(2S)3d	$3d~^{3}\mathrm{D}$	1, 2, 3	62054.8 + x	
		1 2	21980. 11+x 21982. 46+x	0. 68 2. 35	2s(2S)3d	$3d$ $^{1}\mathrm{D}$	2	64428. 15	
2s(2S)2p	2p ¹P°	1	42565. 3		2s(2S)4s	4s 3S	1	64507.7 + x	
2s(2S)3s	3s ² S	1	52082. 07+x		2s (2S) 4s	4s ¹S	0	65245. 4	
2s(2S)3s	3s ¹ S	0	54677. 2		28 (2S) 4p	4p ³P°	0, 1, 2	[65949] + x	
$2p^2$	$2p^2$ ¹ D	2	56432. 5		2s (2S) 4p	4p ¹P°	1	[67228]	
2s(2S)3p	3p 3P°	0, 1, 2	58791.6 +x		2s (2S) 4d	4d ³D	1, 2, 3	67943. 6 +x	
$2p^2$	2p² ³P	0	59694. 61+x	1. 40	2s (2S) 4d	4d ¹D	2	68781. 2	
		$\frac{1}{2}$	59696.01+x $59698.04+x$	2. 03	28 (2S) 58	58 ² S	1	69009.3 + x	

Be I—Continued

Be I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s (2S) 5s	5s ¹S	0	69322. 3		2s (2S) 9d	9d ³D	1, 2, 3	73803. 2 +x	
2s (2S) 5p	5 <i>p</i> ⁴P°	0, 1, 2	[69634.5] + x	- 1	2s (2S) 9d	$9d~^{1}\mathrm{D}$	2	73866. 9	
2s (2S) 5d	5d ° D	1, 2, 3	70606. 7 $+x$		2s (2S) 10s	10s ¹S	0	73930. 4	
2s (2S) 5d	$5d$ $^{1}\mathrm{D}$	2	71002. 3		2s (2S) 10d	10 <i>d</i> ³D	1, 2, 3	74070. 6 $+x$	
2s (2S) 6s	6s 3S	1	71161. 9 $+x$		2s (2S) 10d	10 <i>d</i> ¹ D	2	74116. 7	
2s (2S) 6s	6s ¹S	0	71320. 7		2s (2S) 11s	11s ¹S	0	74163. 4	:
28 (2S) 6p	6p *P°	0, 1, 2	[71482.9] + x		2s (2S) 11d	11 <i>d</i> ³D	1, 2, 3	74268.6 + x	
$2p^2$	$2p^2$ $^1\mathrm{S}$	0	71498. 9		2s (2S) 11d	$11d$ $^{1}\mathrm{D}$	2	74301. 4	
2s (2S) 6d	6d ³ D	1, 2, 3	72030. 6 $+x$		2s (2S) 12d	$12d$ $^3\mathrm{D}$	1, 2, 3	74416.3 + x	
2s (2S) 6d	6d ¹D	2	72251. 1	i	2s (2S) 12d	$12d$ $^{1}\mathrm{D}$	2	74443. 2	
2s (2S) 7s	7s 3S	1	72355. 4 $+x$		Be 11 (2S _{1/2})	Limit		75192. 29	
2s (2S) 7s	7s ¹S	0	72448. 3		2p (2P°) 3s	3s ³P°	o o	85554.96+x	2. 05
2s (2S) 7d	7d ³D	1, 2, 3	72881. 9 $+x$				$\frac{1}{2}$	85557.01+x 85560.93+x	3. 92
2s (2S) 7d	7d ¹D	2	73017. 2		2p (2P°) 3p	3p ³P	0		
2s (2S) 8s	8s * S	1	73089. 1 $+x$				$\frac{1}{2}$	91901. 8 +x	
2s (2S) 8s	8s ¹S	0	73146. 7		2p (2P°) 3d	3d ³D°	1	[94189.51]+x	0. 60
2s (2S) 8d	8d *D	1, 2, 3	73429.6 + x				3	94190.11+x 94191.26+x	1. 15
2s (2S) 8d	8d ¹ D	2	73519. 7		2p (2P°) 3d	3d ³P°	0	95162.1 + x	1.0
2s (2S) 9s	9s ¹S	0	73608. 5				$\frac{1}{2}$	$\begin{vmatrix} 95163.1 + x \\ 95165.0 + x \end{vmatrix}$	1. 0 1. 9

May 1946.

Be I OBSERVED TERMS*

Config. 1s ² +	Observed Terms									
2s ² 2s(² S)2p 2p ²	$ \left\{ \begin{array}{ccc} 2s^2 {}^{1}\mathrm{S} & & & \\ 2p {}^{8}\mathrm{P}^{\circ} & & \\ 2p {}^{1}\mathrm{P}^{\circ} & & \\ 2p^2 {}^{1}\mathrm{S} & & 2p^2 {}^{3}\mathrm{P} \end{array} \right. $									
	$ns \ (n \geq 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$							
2 s(² S)nx	{3- 8s *S 3-11s *IS	3p *P°	3–12 <i>d</i> ³D 3–12 <i>d</i> ¹D							
2p(2P°)nx	38 ³P°	3p ³P	3d *P° 3d *D°							

^{*}For predicted terms in the spectra of the Be 1 isoelectronic sequence, see Introduction.

Be II

(Li 1 sequence; 3 electrons)

Z=4

Ground state 1s2 2s 2S12

28 2S₁₄ 146881.7 cm⁻¹

I. P. 18.206 volts

The analysis has been taken from the paper by Paschen and Kruger.

REFERENCES

F. Paschen and P. G. Kruger, Ann. der Phys. [5] 8, 1014 (1931). (I P) (T) (C L)

H. E. White, Introduction to Atomic Spectra p. 98 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

		Be II			Be II					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
2s 2p 3s 3p 3d 4s 4p 4d 4f	2s 2S 2p 2P° 3s 2S 3p 2P° 3d 2D 4s 2S 4p 2P° 4d 2D 4f 2F°	1½ 1½ ½ 1½ 1½ 1½, 2½ ½ 1½, 2½ 2½, 3½	0. 0 31928. 8 31935. 4 88231. 2 96496. 4 96498. 2 98053. 2 115465. 2 118760 119422. 2 119444. 6	6. 6	5f 6s 6p 6d 6f 7s 7p 7d 7f	5f ² F° 6s ² S 6p ² P° 6d ² D 6f ² F° 7s ² S 7p ² P° 7d ² D 7f ² F°	2½, 3½ ½ 1½ 1½ 2½, 3½ ½ 1½, 2½ 2½, 3½ ½ 1½ 1½, 2½ 2½, 3½	129321. 9 133559. 1 134485. 6 134682. 0 134688. 1 137226. 0 137796 137920. 0 137923. 1		
5s 5p 5d	5s ² S 5p ² P° 5d ² D	1½, 2½ 1½, 2½	127336. 1 128970. 2 129311. 3		8d 	8d ² D Limit	1½, 2½	140020. 4 146881. 7		

April 1946.

Be III

(He i sequence; 2 electrons)

 $1s^2$ 1S_0 1241225 ± 100 cm⁻¹

Ground state 1s2 1S0

I. P. 153.850 ± 0.012 volts

Z=4

Both Robinson and Edlén report six lines of the singlet series observed, although the earlier members have also been measured by others. The range is between 81 A and 100 A. The singlet terms have been taken from Robinson's paper.

The relative absolute values of the triplet and singlet terms have been determined by extrapolation of 3d 3D from He 1 and Li 11, according to Edlén, who has generously furnished his unpublished term values of the triplets. Apparently no intersystem combinations have been observed in Be III, but the existence of the observed line 1s² ¹S₀-2p ³P₁ in the related spectra from B IV to Al XII, within the errors of measurement of the predicted positions, indicates that the uncertainty x is small.

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

Be III

Ве пі

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s²	$1s^2$ $^1\mathrm{S}$	0	0		1s 4p	4p ¹ P°	1	1179830	
1s 2s	2s ³ S	1	956496 + x		1s 5p	5p ¹P°	1	1201894	
1s 2p	$2p$ $^3\mathrm{P}^\circ$	0	983348 + x	4	1s 6p	6p ¹P°	1	1213931	
		$\frac{1}{2}$	983363+x	15	1s 7p	7p ¹P°	1	1221135	
1s 2p	$2p$ $^1\mathrm{P}^\circ$	1	997466						-
1s 3p	3p ¹ P°	1	1132323		Be IV (2S½)	Limit		1241225	

September 1947.

Be IV

(H sequence; 1 electron)

Z=4

Ground state 18 2S1/2

 $1s^2S_{\frac{1}{2}}$ 1756004 cm⁻¹

I. P. 217.657 volts

Edlén and Ericson first observed this spectrum. Tyrén has observed three, and Robinson six, members of the principal series.

The terms in the table have been calculated by J. E. Mack, who has used $R_{\rm Be}{}^9=109730.623$ and $\Lambda=0.040$.

REFERENCES

- B. Edlén and A. Ericson, Nature 125, 233 (1930); 127, 405 (1931); Zeit. Phys. 59, 656 (1930). (C L)
- H. A. Robinson, Phys. Rev. 50, 99 (1936). (CL)
- F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

Be IV

Be IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d 4p 4s 4p, 4d 4d, 4f 4f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2 1/2 2/2 1/2 2/2 3/2	0 1316965 1316972 1317058 1560886 1560888 1560913 1560923 1646254 1646255 1646256 1646270 1646272	$ \begin{bmatrix} 7 \\ 93.5 \end{bmatrix} $ $ \begin{bmatrix} 2 \\ 27.6 \\ 9.2 \end{bmatrix} $ $ \begin{bmatrix} 1 \\ 11.7 \\ 3.9 \\ 1.9 \end{bmatrix} $	5p 5s 5p, 5d 5d, 5f 5f, 5g 5g 6s, etc. 7s, etc.	$5p {}^{2}P^{\circ}$ $5s {}^{2}S$ $5d {}^{2}D, 5p {}^{2}P^{\circ}$ $5d {}^{2}D, 5f {}^{2}F^{\circ}$ $5g {}^{2}G, 5f {}^{2}F^{\circ}$ $5g {}^{2}G$ $6s {}^{2}S, etc.$ $7s {}^{2}S, etc.$ $\infty = Limit$	1/2 1/2 1/2 2/2 3/2 4/2 4/2 1/2	1685766 1685767 1685772 1685774 1695775 1685776 1707229 to 234 1720170 to 173]]0. 5 6. 0 2. 0 1. 0 0. 6

BORON

BI

5 electrons

Z=5

Ground state 1s 22s2 2p 2P36

 $2p \, ^{2}P_{12}^{o} \, 66930 \, \mathrm{cm}^{-1}$

I. P. 8.296 volts

The spectrum is incompletely observed, but 34 lines have been classified in the interval between 1378 A and 2498 A. The terms for which there is an entry in the column of the table headed "Authors", are from Edlén, but a correction of 90 cm⁻¹ has been added to the limit as quoted from Selwyn (66840 cm⁻¹). Whitelaw and Mack have recalculated the limit and derived the value B I $2s^2 2p {}^2P_2^0$ —B II $2s^2 {}^1S_0$ =66930 cm⁻¹, using the 2D series alone because of extraconfigurational perturbations in the 2S series. Selwyn averaged the limits from both the 2S and 2D series.

The remaining terms are from an unpublished manuscript kindly furnished by Clearman, who has extended the doublet series by further observations and confirmed the correction to the limit mentioned above. Clearman has also found two quartet terms. No intersystem combinations have been observed, as indicated by x in the table. Edlén estimates that $2p^2P_{12}^2-2p^2^4P_{21}=28800$ cm⁻¹, by analogy with the observed intersystem combinations in C II and N III. The corresponding value of $2p^2$ $^4P_{12}$ is entered in brackets in the table and has been added to all of Clearman's values of quartet terms.

- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)
- E. W. H. Selwyn, Proc. Phys. Soc. (London) 41, 401 (1929). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (T)
- H. E. White, Introduction to Atomic Spectra p. 115 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (I P) (T)
- B. Edlén, Zeit. Phys. 98, 564 (1936). (C L)
- W. Opeschowski and D. A. DeVries, Physica 6, No. 9, 913 (1939). (IS)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- H. E. Clearman Jr., unpublished material (Aug. 1947). (T) (C L)

BI

Ві

Authors	Config.	Desig.	J	Level	Interval	Authors	Config.	Desig.	J	Level	Interval
$2p {}^{2}P_{1} \ {}^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	2p 2P°	1½ 1½	0 16	16	$5d$ $^2\mathrm{D}$	2s²(¹S)5d	5d ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 62481	
	2s 2p2	2p ² ⁴ P	1/2	[28805]+x	5		2s 2p2	$2p^2$ 2S	1/2	63561	
2p' 4P ₃			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{r} 28810 + x \\ 28816 + x \end{array} $	5 6	6d ² D	2s ² (¹ S)6d	6d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 63847	
38 ² S ₁	2s²(¹S)3s	3s ² S	1/2	40040			2s ² (¹S)7s	7s 2S	1/2	64156	
2p' 2D	2s 2p²	$2p^2$ ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 47857			$2s^2(^1\mathrm{S})7d$	7d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 64664	
3d 2D	$2s^2(^1\mathrm{S})3d$	3d ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 54765			2s²(¹S)8d	8d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	65195	
4s 2S1	2s ² (¹ S)4s	4s 2S	1/2	55009			2s ² (¹ S)9s	9s 2S	1/2	65553	
4d ² D	$2s^2(^1\mathrm{S})4d$	dd^2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 59989			B11 (1S ₀)	Limit		66930	
5s ² S ₁	2s ² (¹ S)58	5s 2S	1/2	60146			2s 2p ²	$2p^2$ ² P	1½ 1½	72535 72547	12
	2s ² (¹ S) 6s	6s 2S	1/2	62098			$2p^3$	2p ³ 4S°	1½	97037+x	

August 1947.

B I OBSERVED TERMS*

Config. 1s ² +		Observed Terms								
2s ² (¹ S)2p 2s 2p ² 2p ³	$2p\ ^2\mathrm{P}^{\circ} \ \left\{ egin{array}{cccc} & 2p^2\ ^4\mathrm{P} & & & & & & & & & & & & & & & & & & &$									
	ns	$(n \ge 3)$	$nd (n \ge 3)$							
2s ² (¹ S) nx	3-7s, 9s ² S	3-8 <i>d</i> ² D								

*For predicted terms in the spectra of the B $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

BII

(Be I sequence; 4 electrons)

Z=5

Ground state 1s2 2s2 1S0

2s² ¹S₀ 202895 cm⁻¹

I. P. 25.149 volts

The terms are from Edlén, who remarks that the observed series, especially in the singlet system, are too short for the precise determination of the limits. By analogy with Be I, C III, and N IV, he interpolates the value of $2s^2$ $^{1}S_0 - 2p$ $^{3}P_1^{\circ}$ as 37340 cm⁻¹, which places the limit $2s^2$ $^{1}S_0$ at 202895.0 cm⁻¹. The absolute values of the singlet terms as published in Edlén's Monograph have therefore been increased by 249 cm⁻¹. The relative uncertainty x is probably less than this. No intersystem combinations have been observed.

An extrapolated value of 3s ¹S₀ is given in brackets.

BII-Continued

REFERENCES

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (T) (C L) B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

Вп

Вп

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s ¹S ₀	282	2s2 1S	0	0. 0		4p 3P	2s(2S)4p	4p 3P°	0, 1, 2	171544.7+x	
2p P ₀	$2s(^2\mathrm{S})2p$	2p 3P°	0	37333.6+x	6.4	4d 3D	2s(2S)4d	4d ³D	1, 2, 3	174072. $6+x$	
² P ₁ ² P ₂			$\frac{1}{2}$	37340.0+x 37356.4+x	16. 4	4f ³F	2s(2S)4f	4f ³F°	2, 3, 4	174902. 5+x	
2p ¹ P ₁	$2s(^2\mathrm{S})2p$	2p ¹P°	1	73396. 7		4f ¹F₃	2s(2S)4f	4f ¹F°	3	174921.5	
2p′ ² P ₀	$2p^2$	2p² ²P	0	98910. 3+x	8. 4	$4d~^1\mathrm{D}_2$	2s(2S)4d	4d ¹D	2	175546. 0	
³ P ₁ ³ P ₂			2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14. 0	5s ³ S ₁	2s(2S)5s	58 3S	1	180896. $5+x$	
$2p'$ $^1\mathrm{D}_2$	$2p^2$	2p ² ¹ D	2	102362. 1		3s' 2P0	2p(2P°)3s	3s ³P°	0	181645. 2+x	9. 8
2p′ ¹S ₀	$2p^2$	2p ² ¹S	0	127662. 0		$^{3}P_{1}$ $^{3}P_{2}$			2	181655.0+x 181675.9+x	20. 9
38 ⁸ S ₁	$2s(^2\mathrm{S})3s$	3s ² S	1	129772. $9+x$		5d 2D	2s(2S)5d	5d 2D	1, 2, 3	$184633.\ 1+x$	
38 ¹ S ₀	2s(2S)3s	3s ¹S	0	[135946]		5f ³F	2s(2S)5f	5 <i>f</i> ³F°	2, 3, 4	184908. 2 +x	
3p ³ P ₀₁ ³ P ₂	$2s(^2S)3p$	3p ³P°	0, 1	143989.7+x	3. 7	3p′ ¹P₁	2p(2P°)3p	3p ¹P	1	189126. 6	
3p ¹ P ₁	$2s(^2\mathrm{S})3p$	3p ¹P°	1	143993. 4+x 144102. 0		3d' ³ F ₂₃ ³ F ₄	$2p(^2\mathrm{P}^\circ)3d$	3d ³F°	2, 3	194748? + x 194760? + x	12
3d *D	$2s(^2\mathrm{S})3d$	3d ³D	1, 2, 3	150649.0+x		$3d'$ $^{1}\mathrm{D}_{2}$	2p(2P°)3d	3d ¹D°	2	197721.0	
3d ¹ D ₂	$2s(^2\mathrm{S})3d$	3d ¹ D	2	154686. 9		3d′ ²D	2p(2P°)3d	3d ³D°	1, 2, 3	200484.6+x	
48 ² S ₁	2s(2S)4s	4s 3S	1	166344. 4+x							-
48 ¹ S ₀	2s(2S)4s	4s 1S	0	167934. 2			B III (2S _{1/2})	Limit		202895	

May 1946.

B II OBSERVED TERMS*

Config. 1s ² +			Observed Te	rms	
28 ²	28 ² ¹S	2n ³P°			
2s(2S)2p	Į(2p ² P° 2p ¹ P°			
2p ²	{ 2p² ¹S	2p ² ³ P 2p ² ¹ D			
		ns (n≥3)	$np (n \ge 3)$	nd (n≥3)	$nf(n \ge 4)$
2s (2S) nx	3-58 2S 48 1S		3, 4p ³ P° 3p ¹ P°	3–5d ³D 3, 4d ¹D	4, 5f ² F° 4f ¹ F°
2p(2P°)nx	{	38 ² P°	3p ¹P	3d ² D° 3d ² F° 3d ¹ D°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

ВШ

(Li I sequence; 3 electrons)

Z=5

Ground state 1s2 2s 2S4

28 2S 305931.1 cm-1

I. P. 37.920 volts

The terms are from Edlén. The absolute values are based on the assumption that n^* for 5g ²G equals that of the corresponding term in C IV, where 5g ²G-6h ²H $^{\circ}$ has been observed. The precision of this term in B III is estimated to be within ± 1 cm $^{-1}$. The series are well represented by a Ritz formula.

Edlén gives four extrapolated term intervals, which are entered in brackets in the table.

REFERENCES

A. Ericson and B. Edlén, Zeit. Phys. 59, 676 (1930). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 37 (1934). (I P) (T) (C L) (G D)

ВШ

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s ² S ₁	28	28 ² S	1/2	0. 0		5p ² P ₂	5p	5 <i>p</i> ² P°	1½ 1½ 1½	265719.7	[2. 2]
$2p {}^{2}P_{1}$ ${}^{2}P_{2}$	2 <i>p</i>	2p 2P°	1½	48 3 58. 5 48 392 . 6	34. 1	$5d^2\mathrm{D}_3$	5d	5d 2D	1½ 2½ 2½	266389. 5	
38 ² S ₁	38	38 2S	1/2	180201. 8		5f 2F	5 <i>f</i>	5f 2F°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	266416.5	
3p ² P ₁ ² P ₂	3p	3p 2P°	1½ 1½	192949. 2 192959. 4	10. 2	5 <i>g</i> ² G	5 <i>g</i>	5g ² G	$ \begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases} $	} 266427. 2	
$3d$ $^2\mathrm{D}_3$	3 <i>d</i>	3 <i>d</i> ² D	1½ 2½	196071. 2	[3. 4]	og a	6d	6d 2D	1½ 2½ 2½	200121.2	
48 ² S ₁	$egin{array}{cccc} 4s & & & & \\ 4p & & & & & \end{array}$	48 ² S 4p ² P°	1/2	237695. 5	F4 01	6d ² D ₃				278473. 7	
4p 2P2	4d	4d 2D	11/2	2 4 2 83 2 . 4	[4. 3]	6 <i>f</i> ² F	6 <i>f</i>	6f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	278491.7	
4d ² D ₃			1½ 2½	244138. 9	[1. 4]	6 <i>g</i> ² G	6 <i>g</i>	6g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	278497. 5	
4f 2F	4 <i>f</i>	4f 2F°	{ 2½ 3½ 1/2	244199. 2			D (10.)	72		004001	
58 ² S ₁	58	58 2S	1/2	263156. 2			B IV (1S ₀)	Limit		305931. 1	

April 1946.

BIV

(He I sequence; 2 electrons)

Z=5

Ground state 1s2 1S0

 $1s^2$ 1S_0 2091960 \pm 200 cm⁻¹

I. P. 259.298 ± 0.025 volts

The singlet terms are from Tyrén and the observed singlet combinations are in the range from 48 to 60 A. The unit adopted by Tyrén, 10³ cm⁻¹, has here been changed to cm⁻¹.

Relative absolute values of the triplet terms were derived by the extrapolation of 3d ³D from He I and Li II, according to unpublished material generously furnished by Dr. Edlén. These calculations have confirmed the classification by Tyrén of a line at 61 A as the intersystem combination $1s^2$ ¹S₀-2p ³P₁. The triplet terms have been taken from Edlén's 1947 manuscript.

B IV—Continued

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (T) (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

B IV

B IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s ² 1s 2s 1s 2p	1s ² ¹ S 2s ³ S 2p ³ P°	0 1 0	0 1601505 1636898	-16	1s 4p 1s 5p 1s 6p	4p ¹ P° 5p ¹ P° 6p ¹ P°	1 1 1	1982750 2022000 2043360	
1s 2p 1s 3p	2p ¹ P° 3p ¹ P°	1 2 1 1	1636882 1636934 1658020 1898180	52	B v (2S ₁₄)	Limit		2091960	

September 1947.

BV

(H sequence; 1 electron)

Z=5

Ground state 1s 2S14

18 2S_{1/2} 2744063 cm⁻¹

I. P. 340.127 volts

Edlén first observed the Lyman line. Tyrén has observed three members of the series. The listed term values have been calculated by J. E. Mack for $B^{11}v$, "using $R_B^{11}=109731.835$ and $\Lambda=0.040$; a change of 1 percent in Λ would change the series limit by 1.46 cm⁻¹. For B^{10} the series limit is less by 13.6 cm⁻¹ than for B^{11} ."

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 28, 152 (1934). (T) (C L)
- F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

 $\mathbf{B} \mathbf{v}$

B v

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d	$egin{array}{cccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ 1½ ½ ½ 1½ 2½	2439156	18 228. 3 3 5 67. 6 22. 6	4p 4s 4p, 4d 4d, 4f 4f 5s	$4p^{2}P^{\circ}$ $4s^{2}S$ $4d^{2}D$, $4p^{2}P^{\circ}$ $4d^{2}D$, $4f^{2}F^{\circ}$ $4f^{2}F^{\circ}$ $5s^{2}S$, etc.	1/2 1/2 1/2 21/2 21/2 3/2 1/2, etc,	2572561 2572563 2572589 2572599 2572603 2634306 to 330	2 28. 5 9. 5 4. 8

SEE REVISION IN NSRDS-NBS 3, Section 3, October 1970.

CARBON

CI

 $6 ext{ electrons}$

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2$ 3P_0 90878.3 cm⁻¹

I. P. 11.264 volts

The term assignments are taken from Edlén, who has revised and extended the earlier work on the analysis of this spectrum. Two extrapolated term values, derived from the irregular doublet law, are entered in brackets in the table.

The singlet and triplet terms are well connected by intersystem combinations. Only two quintet terms are known. They are connected with the rest by intersystem combinations based on the measures of the resonance lines by Shenstone.

One term, 5p 1S, has been revised as suggested in the 1939 reference listed below.

Selected term values of C I have been improved from a study of the lines that have been clearly identified in the Infrared Solar Spectrum. Such precision cannot be expected from terms based on lines in the ultraviolet. As a starting point the value of 3s $^3P_1^{\circ}=60353.00~\text{cm}^{-1}$ was adopted as correct, to agree with Shenstone's recent measures. Excellent agreement was found between the laboratory measures of Kiess (8335 A to 11330 A) and solar wave-numbers of lines identified as C I in the solar spectrum. Further to the red solar wavelengths surpass laboratory values in accuracy and give consistent internal separations within the multiplets.

In the course of this work all term values have been recalculated. Consequently, most of the listed values differ slightly from those published by Edlén. No changes have been made in his analysis, but the level 3d $^3P_0^\circ$, calculated from solar wave-numbers, has been added to his list.

- A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 118, 34 (1928). (T) (C L)
- S. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)
- F. Paschen and G. Kruger, Ann. der Phys. [5] 7, 1 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 104 (1934). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- C. C. Kiess, J. Research Nat. Bur. Std. 20, 33, RP1062 (1938). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1936). (Summary hfs)
- Y. Ishida, T. Tamura, and M. Fukushima, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 936, 417 (1939). (T) (C L)
- H. D. Babcock and C. E. Moore, Carnegie Inst. Wash. Publ. 579 (1947). (Solar data)
- B. Edlén, Nature 159, No. 4030, 129 (1947). (C L)
- A. G. Shenstone, Phys. Rev. 72, 411 (1947). (T) (C L)

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interva
2p 3P ₀	2s² 2p²	2p² ³P	0	0.0	16. 4	4d ¹ D ₂	2s ² 2p(² P°)4d	4d ¹D°	2	83500	
³ P ₁ ³ P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	16. 4 43. 5	27. 1	4d ³F₃	2s ² 2p(2P°)4d	4d ³F°	2 3	83761	
$2p$ $^{1}\mathrm{D}_{2}$	2s ² 2p ²	2p ² ¹ D	$\begin{vmatrix} 2 \end{vmatrix}$	10193. 70					4		
$2p^1$ S ₀	$2s^2 2p^2$ $2s 2p^3$	$egin{array}{c} 2p^2\ ^1\mathrm{S} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	21648. 4 33735. 2		$4d\ ^3\mathrm{D}_1\ ^3\mathrm{D}_2\ ^3\mathrm{D}_3$	2s ² 2p(² P°)4d	4d ³D°	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	8 3 830 8 3 837 8 3 847	1
3s ² P ₀	2s ² 2p(2P°)3s	3s ² P°	0	60333. 80		5s ¹P ₁	2s ² 2p(2P°)5s	5s ¹P°	1	83882, 5	
³ P ₁ ³ P ₂	26 2p(1)05	00 1	$\begin{vmatrix} 1\\2 \end{vmatrix}$	60353. 00 60393. 52	19. 20 40. 52	4d ¹ F ₃	2s ² 2p(2P°)4d	4d ¹F°	3	83949	
3s ¹ P ₁	2s ² 2p(² P°)3s	3s ¹P°	1	61982. 20		4d ¹ P ₁	2s ² 2p(² P°)4d	4d ¹P°	1	84032	
2p' ³ D ₃ ³ D ₂ ³ D ₁	2s 2p³	2p³ ³D°	3 2 1	64088. 56 64093. 19 64092. 01	-4. 63 1. 18	4d ³ P ₂ ³ P ₁ ³ P ₀	2s ² 2p(2P°)4d	4d ³P°	2 1 0	84102. 6 84112	-
3p ¹ P ₁	2s ² 2p(² P°)3p	3p ¹P	1	68858		5p ¹ P ₁	2s ² 2p(² P°)5p	5p ¹P	1	84852. 13	
3p ³ D ₁ ³ D ₂ ³ D ₃	2s ² 2p(2P°)3p	3p 3D	1 2 3	69689. 79 69710. 99 69744. 40	21. 20 33. 41	$5p\ ^3{ m D}_2\ ^2{ m D}_3$	2s ² 2p(2P°)5p	5p 3D	1 2 3	84952 84986. 2	3
3p 3S1	2s² 2p(²P°)3p	3p 3S	1	70744. 26		$5p$ $^1\mathrm{D}_2$	$2s^2 \ 2p(^2\mathrm{P}^\circ)5p$	5 <i>p</i> ¹ D	2	85400. 38	
3n 3Pa	2s² 2p(²P°)3p	3p 3P	0	71352. 81	12. 42	5p 1S0	2s ² 2p(2P°)5p	5 <i>p</i> ¹S	0	85625. 84	
³ P ₁ ³ P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	71365. 23 71385. 70	20. 47	$5d$ $^{1}\mathrm{D_{2}}$	2s ² 2p(² P°)5d	5d ¹D°	2	86187	
$3p$ $^1\mathrm{D}_2$	2s ² 2p(2P°)3p	3p 1D	2	72611. 06		5d ³ F ₂	2s ² 2p(2P°)5d	5d ³F°	2	86319	
3p 1S ₀	2s ² 2p(2P°)3p	3p 1S	0	73976. 23		² F ₃			$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	86326.9	
2p' 3P	2s 2p³	2p³ ³P°	2, 1, 0	75256. 3		*	2s ² 2p(² P°)5d	5d ³D°	1		
$3d$ $^{1}\mathrm{D}_{2}$	2s² 2p(²P°)3d	3 <i>d</i> ¹ D°	2	77680. 5		$5d {}^{3}\mathrm{D_{2}} \\ {}^{3}\mathrm{D_{3}}$			$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	86371. 3 86396	2
4s 3P0	2s ² 2p(² P°)4s	48 ³P°	0	78105. 23	11. 83	68 ¹P₁	282 2p(2P°)6s	6s ¹P°	1	86413.96	
³ P ₁ ³ P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	78117.06 78148.36	31. 30	$5d$ $^1\mathrm{F}_3$	2s ² 2p(² P°)5d	$5d~^{1}\mathrm{F}^{\circ}$	3	86450	
3d ³ F ₂	2s² 2p(²P°)3d	3d ³F°	2	78199. 34	16. 48	$5d$ $^{1}P_{1}$	2s ² 2p(2P°)5d	5 <i>d</i> ¹ P°	1	86491	
³ F ₃ ³ F ₄			3 4	78215. 82 78250. 22	34. 40	$5d\ ^{3}\mathrm{P}_{2}\ ^{3}\mathrm{P}_{1}$	2s ² 2p(² P°)5d	5d ³P°	2 1	86504 86517	-1
$3d \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	2s ² 2p(2P°)3d	3d ³D°	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	78300. 8 78307 78316	6 9	6d ¹ D ₂	2s ² 2p(² P°)6d	6d ¹D°	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	87632	
48 ¹ P ₁	2s ² 2p(2P°)4s	48 1P°	1	78338		6d 3F2	2s ² 2p(2P°)6d	6d ³F°	2	87706	
3d ¹ F ₃	2s ² 2p(² P°)3d	3d ¹ F°	3	78531		3F3			3 4	87713	
3d ¹ P ₁	2s ² 2p(2P°)3d	3d ¹P°	1	78727.91			2s² 2p(²P°)6d	6d ² D°	1		
3d ³ P ₂ ³ P ₁	2s ² 2p(2P°)3d	3d ³P°	2 1	79311. 10 79319. 06	-7. 96	6d ² D ₂ ² D ₃			3	87752 87773	2
-•			0	79323. 32	-4. 26	7s ¹ P ₁	2s ² 2p(² P°)7s	7s ¹ P°	1	87795.3	
$4p \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	2s ² 2p(2P°)4p	4p ³D	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	80173. 29 80192. 49 80222. 74	19. 20 30. 25	6d ¹ F ₃ 6d ² P ₂	$ \begin{vmatrix} 2s^2 & 2p(^2P^\circ)6d \\ 2s^2 & 2p(^2P^\circ)6d \end{vmatrix} $	6d ¹ F° 6d ² P°	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	87807 87830	
4p ¹ P ₁	2s ² 2p(² P°)4p	4p ¹P	1	80563. 57		³ P ₁	25° 2p(-1)0a	04 -1	$\begin{bmatrix} 1\\0 \end{bmatrix}$	87839	_
$4p$ 3 S ₁	$2s^{2} 2p(^{2}P^{\circ})4p$ $2s^{2} 2p(^{2}P^{\circ})4p$	4p 3S	1	81105. 70		6d ¹ P ₁	$2s^2 \ 2p(^2\mathrm{P}^\circ)6d$	6d ¹P°	1	87831.3	
	2s ² 2p(2P°)4p	4p 3P	0	81311, 52	14.01		2s ² 2p(2P°)7d	7d 3F°	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	88541.8	
4p ³ P ₀ ³ P ₁ ³ P ₂	25 20(2)20		$\begin{vmatrix} 1\\2 \end{vmatrix}$	81326. 33 81344. 48	14. 81 18. 15	7d ² F ₂ ² F ₃ ² F ₄			3 4	88547	
4p 1D2	2s ² 2p(² P°)4p	4p ¹D	2	81770. 36			282 2p(2P°)7d	7d ³D°	1		
4p 1S0	2s ² 2p(2P°)4p	4p 1S	101	82252. 31	1	7d *D3	Į.	1	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	88607	1

C I—Continued

C I—Continued

Edlén	Config.	Desig.	\int	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
7d ¹F ₃	2s ² 2p(2P°)7d	7 <i>d</i> ¹F°	3	88624			2s ² 2p(2P°)9d	9d ³D°	1		
7d ¹ P ₁	2s ² 2p(2P°)7d	7d ¹P°	1	88632. 44		9d 3D ₃			$\frac{2}{3}$	89514	
7d ³ P ₂	2s ² 2p(2P°)7d	7d ³ P°	2	88639		9d ¹ F ₃	2s ² 2p(² P°)9d	9d ¹F°	3	89517	
			0				2s ² 2p(² P°)10d	10 <i>d</i> 3D°	1		
0.7 217	2s² 2p(2P°)8d	8d 3F°	4 3	89081		10d ³D ₃			$\frac{2}{3}$	89779	
$8d$ ${}^{3}\mathrm{F}_{3}$ ${}^{3}\mathrm{F}_{2}$			2	89082	-1		2s ² 2p(2P°)11d	11d ³D°	1 2 3		
	2s ² 2p(2P°)8d	8d 3D°	1			$11d \ ^3\mathrm{D_3}$			3	89968. 4	
$8d$ $^3\mathrm{D}_3$			2 3	89146			C II (2P%)	Limit		90878. 3	
$8d$ $^{1}\mathrm{F}_{3}$	2s ² 2p(2P°)8d	8d ¹ F°	3	89155		2p' ¹D2	2s 2p³	$2p^3$ $^1\mathrm{D}^\circ$	2	[97878]	
$8d$ $^3\mathrm{P}_2$	2s ² 2p(2P°)8d	8d ³P°	2	89158			2s 2p ² (4P)3s	3s ⁵ P	1 2 3	103541. 8 103562. 5	20. 7 24. 8
	0.00 (0D0) 0.7	0.7.2770	0			0.420	0.0.2	0.2200	3	103587. 3	
0.3.00	2s ² 2p(2P°)9d	9d ³F°	$egin{array}{c} 4 \ 3 \ 2 \end{array}$	20.450		2p' 3S ₁	2s 2p³	2p³ 3S°	1	105800. 5	
9d 3F ₂			2	89450		2p' ¹ P ₁	2s 2p³	2p³ ¹P°	1	[119878]	

September 1947.

C I OBSERVED TERMS*

$rac{ ext{Config.}}{1s^2+}$	Observed Terms									
$2s^2 \ 2p^2$	$\begin{cases} 2p^{2} {}^{1}S & 2p^{2} {}^{3}P \\ 2p^{2} {}^{1}S & 2p^{2} {}^{1}D \end{cases}$									
2s 2p²	$\begin{cases} 2p^{3} {}^{5}S^{\circ} \\ 2p^{3} {}^{3}S^{\circ} & 2p^{3} {}^{3}P^{\circ} & 2p^{3} {}^{3}D^{\circ} \end{cases}$									
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	nd (n≥3)							
2s ² 2p(² P°)nx 2s 2p ² (⁴ P)nx	3, 4s ³ P° 3-7s ¹ P° 3s ⁵ P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-8d ³ P° 3-11d ³ D° 3-9d ³ F° 3-7d ¹ P° 3-6d ¹ D° 3-9d ¹ F°							

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

CII

(B r sequence; 5 electrons)

Z=6

Ground state $1s^2 2s^2 2p ^{2}P_{\frac{1}{2}}^{\circ}$

 $2p \, {}^{2}\mathrm{P}_{\frac{1}{2}}^{\circ}$ 196659. 0 cm⁻¹

I. P. 24.376 volts

The term values for the doublets are taken from Edlén's Monograph. He has since rejected his 5p' ²D term. Intersystem combinations have been observed by Edlén (1936) and the resulting correction to the quartet terms as published in his Monograph, $+19.3~\rm cm^{-1}$, has been applied.

REFERENCES

- A. Fowler and E. W. H. Selwyn, Proc. Roy. Soc. (London) [A] 120, 312 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 74 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 98, 561 (1936). (C L)
- B. Eldén, private communication (Dec. 1947). (T)

C II

Сп

							· · · · · · · · · · · · · · · · · · ·				
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}\mathrm{P}_{1} \ {}^{2}\mathrm{P}_{2}$	2s ² (¹ S)2p	2p 2P°	1½ 1½	0. 0 64. 0	64. 0	5s ² S ₁	2s ² (¹ S) 5s	5s 2S	1/2	173348. 18	
2p' 4P1	2s 2p²	2p ² ⁴ P		43000. 2	21. 6	$5p{}^2\mathrm{P}_1\ {}^2\mathrm{P}_2$	$2s^2(^1\mathrm{S})5p$	5p ²P°	$\frac{1/2}{1/2}$	175287. 9 175295. 2	7. 3
⁴ P ₂ ⁴ P ₃	<u>.</u>		$ \begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array} $	43021. 8 43050. 7	28. 9	3s' ² P ₁ ² P ₂	2s 2p(3P°)3s	3s ²P°	1½ 1½	178194. 1	26. 7
$2p' {}^{2}_{2}D_{2}^{3}$	2s 2p2	$2p^2$ ² D	$begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \end{array}$	74930. 9 74933. 2	-2.3	_	$2s^2(^1\mathrm{S})5d$	$5d$ $^2\mathrm{D}$		178220.8	
2p' 2S ₁	2s 2p²	$2p^2$ 2S	1/2	96494. 1		$5d$ $^2\mathrm{D_3}$			$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	178494. 8	
$2p'{}^{2}\!$	2s 2p2	2p ² ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	110625. 1 110666. 3	41. 2	5f ² F	$2s^{2}(^{1}S)5f$	5f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	178956.46	
3s ² S ₁	2s²(¹S)3s	3s ² S	1/2	116537. 88		6s ² S ₁	2s ² (¹S)6s	6s 2S	1/2	181258	
$3p {}^{2}P_{1} \ {}^{2}P_{2}$	$2s^2({}^1\mathrm{S})3p$	3p ² P°	1½ 1½ 1½	131724. 68 131735. 81	11. 13	$3p' ^{4}D_{1}$ $^{4}D_{2}$ $^{4}D_{3}$	2s 2p(3P°)3p	3p 4D	1½ 1½ 2½ 3½	181694. 50 181709. 20 181734. 21	14. 70 25. 01 36. 27
2p'' 4S2	$2p^3$	2p³ 4S°	1½	142024. 4		⁴ D ₄	0 0 (070) 0	0.00		181770. 48	30.21
$3d\ ^{2}\mathrm{D}_{2}^{2}$	2s² (¹S)3d	$3d ^{2}D$	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	145549. 99 145551. 44	1. 45	$3p' {}^{2}P_{1} \ {}^{2}P_{2}$	2s 2p(3P°)3p	3 <i>p</i> ² P	1½ 1½	182025. 0 182044. 5	19. 5
$2p^{\prime\prime}^2\mathrm{D_3}^2\mathrm{D_2}$	$2p^3$	$2p^3\ ^2\mathrm{D}^\circ$	$begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ \end{array}$	150462. 8 150467. 9	-5.1	$6d~^2\mathrm{D_2}$	2s ² (¹ S)6d	6 <i>d</i> ² D	1½ 2½	184064. 9	
4s ² S ₁	2s²(¹S)4s	48 2S	1/2	157234. 43		6 <i>f</i> ² F	$2s^2(^1S)6f$	6f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	184376. 20	
$4p\ ^2{ m P_1}\ ^2{ m P_2}$	$2s^2(^1\mathrm{S})4p$	4p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	162518.70 162524.62	5. 92	$3p'$ ${}^4\mathrm{S}_2$	2s 2p(3P°)3p	3p 4S	1½	184688. 69	
3s' ⁴ P ₁ ⁴ P ₂	2s 2p(3P°)3s	3 ₈ 4P°	$\frac{1}{1\frac{1}{2}}$ $1\frac{1}{2}$	166964. 70 166988. 46	23. 76 44. 97	$3p' {}^{4}P_{1} \ {}^{4}P_{2} \ {}^{4}P_{3}$	2s 2p(3P°)3p	3p 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	186425. 02 186441. 32 186463. 75	16. 30 22. 43
$^4\mathrm{P_3}^{}$ $4d\ ^2\mathrm{D_2}^{}$	$2s^2(^1\mathrm{S})4d$	4d 2D	$egin{array}{c c} 2\frac{1}{2} & & \\ & 1\frac{1}{2} & & \\ & & \end{array}$	167033. 43 168123. 92	0.41	$3p'{}^{2}{}^{2}{}^{0}{}^{2}{}^{0}{}^{2}{}^{0}{}^{3}{}^{2}{}^{0}$	2s 2p(3P°)3p	3p ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	188579. 3 188612. 7	33. 4
$^{2}\mathrm{D}_{2}^{3}$			2½	168124. 33	0. 41	3p' 2S ₁	2s 2p(3P°)3p	$3p\ ^2\mathrm{S}$	1/2	194571. 9	
${2p^{\prime\prime}} {^{2}\mathrm{P_{1}}} {^{2}\mathrm{P_{2}}}$	$2p^3$	$2p^3$ ² P°	1½ 1½	168731. 6 168750. 2	18. 6	3d' 4F ₂ 4F ₃	2s 2p(3P°)3d	3d 4F°	1	195750. 8 195765. 1	14. 3
4f 2F	$2s^2(^1\mathrm{S})4f$	4f 2F°	$\left\{\begin{array}{c c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right $	} 168979.05		4F ₄ 4F ₅			$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array}$	195784. 7 195812. 3	19. 6 27. 6

C II—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	\int	Level	Interval
3d' ⁴ D ₁ ⁴ D ₂ ⁴ D ₃	2s 2p(3P°)3d	3d 4D°	1½ 1½ 2½ 2½ 3½	196556. 2 196561. 8 196570. 5	5. 6 8. 7	4d′ 2F4	2s 2p(3P°)4d	4d 2F°	2½ 3½	221502	
⁴D₄*	C III (¹S₀)	Limit	3½	196580. 8 196659. 0	10. 3	4f' ⁴ G ₃ ⁴ G ₄ ⁴ G ₅	2s 2p(3P°)4f	4 <i>f</i> ⁴G	2½ 3½ 4½ 5½ 5½	221543. 0 221553. 2 221574. 5	10. 2 21. 3 29. 1
$3d' {}_{^3}^{2}D_{2}$	2s 2p(3P°)3d	3d ²D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	198426. 4 198437. 2	10. 8	⁴ G ₆ 4f′ ² G ₄	2s 2p(3P°)4f	4 <i>f</i> ² G	5½ 3½ 4½	221603. 6 221585	43
3d' ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p(3P°)3d	3d ⁴ P°	2½ 1½ ½ ½	198842. 0 198863. 5 198877. 7	$\begin{bmatrix} -21.5 \\ -14.2 \end{bmatrix}$	² G ₅ 4f' ⁴ D ₄ ⁴ D ₃	2s 2p(³P°)4f	4 <i>f</i> 4D		221628 221696. 5 221727. 4	-30.9
3d′ ² F ₃ ² F ₄	2s 2p(³P°)3d	3d ² F°	$egin{array}{c c} 7^2 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	199941. 4 199984. 2	42. 8	$^4\mathrm{D}_2$			3½ 2½ 1½ 1½ ½	221746. 3	-18. 9
3d′ ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ² P°	1½ ½ ½	202180.3 202204.4	-24.1	$4f' {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	2s 2p(3P°)4f	4f ² D	2½ 1½	221707. 9 221752. 9	-45. 0
4s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)4s	4s ⁴ P°	$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	209550. 26 209574. 28	24. 02 46. 08	$4d^{\prime}$ $^{2}\mathrm{P}_{2}$ $^{2}\mathrm{P}_{1}$	2s 2p(3P°)4d	4d ² P°	1½ ½ ½	222259. 1 222286. 0	-26. 9
⁴ P ₃ 4p' ² P ₁ ² P ₂	2s 2p(3P°)4p	4 <i>p</i> ² P	1½ 1½ 1½	209620. 36 214406. 6 214429. 7	23. 1	5s′ ⁴ P ₃	2s 2p(3P°)5s	5s ⁴ P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	225813	
4p' 4D ₁	2s 2p(³P°)4p	4p 4D		214758. 3 214772. 6	14. 3 22. 0	5p′ 2P	2s 2p(3P°)5p	5p 2P	$\left\{\begin{array}{c} \frac{1}{1} \\ 1 \frac{1}{2} \end{array}\right.$	227901	
$^4\mathrm{D}_3$ $^4\mathrm{D}_4$			1½ 1½ 2½ 3½	214794. 6 214828. 0	33. 4	<u>-</u>	2s 2p(3P°)5d	5d 4D°	$\begin{array}{c c} \frac{1}{1} & \frac{1}{1}$		
4p' 4S ₂	2s 2p(3P°)4p	4 <i>p</i> 4S	1½	215765. 6		$5d'$ $^4\mathrm{D_4}$			1	230763	
4p' 4P ₂ 4P ₃	2s 2p(3P°)4p	4 <i>p</i> 4P	$ \begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \end{array} $	216378. 0 216397. 7	19. 7	5d′ ⁴ P ₃	2s 2p(3P°)5d	5d ⁴ P°	2½ 1½ ½ ½	231050	
4p' 2D ₃	28 2p(3P°)4p	4p 2D	1½ 2½	216927		5f′ ² F	2s 2p(3P°)5f	5f ² F	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	331221	
$4d'^{4}F_{2}\ ^{4}F_{3}\ ^{4}F_{4}\ ^{4}F_{5}$	2s 2p(3P°)4d	4d 'F°	1½ 2½ 3½ 4½ 4½	219553. 8 219568. 5 219589. 2 219617. 0	14. 7 20. 7 27. 8	5f′ 4F5	2s 2p(3P°)5f	5f ⁴ F	1½ 2½ 3½ 4½	231226. 8	
$4d' ^4\mathrm{D}_2 \ ^4\mathrm{D}_3 \ ^4\mathrm{D}_4$	2s 2p(3P°)4d	4d 4D°	$egin{array}{c} langle rac{1}{2} \ 1rac{1}{2} \ 2rac{1}{2} \ 3rac{1}{2} \ \end{array}$	220127. 8 220137. 0 220147. 6	9. 2 10. 6	<i>5f′</i> ⁴G ₆	2s 2p(3P°)5f	5f ⁴ G	2½ 3½ 4½ 5½	231499. 3	
$4d'{}^2{ m D}_2 \ {}^2{ m D}_3$	2s 2p(3P°)4d	4d 2D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	220601. 1 220614. 2	13. 1	5f′ ⁴ D ₄	2s 2p(3P°)5f	5f *D	3½ 2½ 1½ ½	231520. 4	
4d′ ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p(3P°)4d	4d 4P°	2½ 1½ ½	220808. 47 220828. 97 220840. 87	-20. 50 -11. 90		2s 2p(3P°)6d	6d 4D°			
4f' ² F ₃ ² F ₄	2s 2p(3P°)4f	4f 2F	2½ 3½ 3½	221089. 6 221098. 8	9. 2	6d′ ⁴ D ₄	20 27 (1) 00	02	1½ 1½ 2½ 3½	236444	
	2s 2p(3P°)4f	4f 4F	1½ 2½ 3½ 4½			6d′ 4P ₃	2s 2p(3P°)6d	6d 4P°	2½ 1½ ½	236605	
4f′ ⁴ F ₄ ⁴ F _δ			41/2	221106. 3 221107. 4	1.1				72		1

December 1947.

Config. 1s ² +		Observed Terms												
$2s^{2}(^{1}\mathrm{S})2p$ $2s\ 2p^{2}$ $2p^{3}$	$2p\ ^2\mathrm{P}^{\circ} \ \left\{ egin{array}{lll} & 2p^2\ ^4\mathrm{P} & \\ 2p^2\ ^2\mathrm{S} & 2p^2\ ^2\mathrm{P} & 2p^2\ ^2\mathrm{D} \end{array} ight. \ \left\{ egin{array}{lll} & 2p^3\ ^4\mathrm{S}^{\circ} & \\ & & 2p^3\ ^2\mathrm{P}^{\circ} & 2p^3\ ^2\mathrm{D}^{\circ} \end{array} ight.$													
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$	$nf \ (n \ge 4)$										
2s ² (¹ S)nx 2s 2p(³ P°)nx	3-6s ² S { 3-5s ⁴ P° 3s ² P°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-6d ² D 3-6d ⁴ P° 3-6d ⁴ D° 3, 4d ⁴ F° 3, 4d ² P° 3, 4d ² D° 3, 4d ² F°	4-6f ² F° 4, 5f ⁴ D 4, 5f ⁴ F 4, 5f ⁴ G 4f ² D 4, 5f ² F 4f ² G										

^{*}For predicted terms in the spectra of the B I isoelectronic sequence, see Introduction.

C_{III}

SEE REVISION IN NSRDS-NBS 3, Section 3, October 1970.

(Be I sequence; 4 electrons)

Z=6

Ground state 1s2 2s2 1S0

282 1So 386159. 7 cm-1

I. P. 47.864 volts

All but three terms are from Edlén's Monograph. For the terms 7d 3D, 8d 3D, and 9d 3D the revised values of Whitelaw and Mack have been used. Edlén has since rejected his 4d' 1P term.

No intersystem combinations have been found with certainty. The long D-series determine the limits to about ± 25 cm⁻¹. The uncertainty x in the relative positions of the singlets and triplets is, therefore, less than ± 50 cm⁻¹ according to Edlén. No trace of the line predicted at 1910.7 ± 2 A, $2s^2$ $^{1}S_0-2p$ $^{3}P_1^{\circ}$, is visible on his plates. A line observed at 339 A (294314.1 cm⁻¹) agrees within 4 cm⁻¹ with the calculated combination 2p $^{3}P_1^{\circ}-5d$ $^{1}D_2$. This identification is uncertain, since it is not confirmed by other intersystem combinations.

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 51 (1934). (I P) (T) (C L) (G D)
- N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)
- B. Edlén, private communication (Dec. 1947). (T)

CIII	C III
------	-------

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interva
2s ¹ S ₀	282	2s² ¹S	0	0. 0		$2p'$ $^1\mathrm{D}_2$	$2p^2$	2p ² ¹ D	2	145875. 1	
$2p\ ^{8}\mathrm{P}_{0}\ ^{3}\mathrm{P}_{1}$	2s(2S)2p	2p ³P°	0	52315.0+x	23. 0	2p′ ¹S ₀	$2p^2$	2p ² ¹S	0	182520. 2	
$^{3}P_{1}$ $^{3}P_{2}$			$\frac{1}{2}$	52338.0+x 52394.8+x	56. 8	3s 3S1	2s(2S)3s	3s 3S	1	238160. 7+x	
2p ¹ P ₁	2s(2S)2p	2p ¹P°	1	102351. 4		3s ¹ S ₀	2s(2S)3s	3s ¹S	0	247169. 5	
$2p'\ ^{8}P_{0} \ ^{8}P_{1} \ ^{8}P_{2}$	2p2	2p ² ⁸ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29. 4 47. 1	3p ¹ P ₁	$2s(^2\mathrm{S})3p$	3p ¹P°	1	258931. 4	

C III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$3p {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	2s(2S)3p	3p 3P°	0 1 2	259653. 8+x 259659. 3+x 259672. 1+x	5. 5 12. 8	5d *D ₃	2s(2S)5d	5d *D	1 2 3	345444 +x	
$3d\ ^3\mathrm{D_1}\ ^3\mathrm{D_2}\ ^3\mathrm{D_3}$	2s(2S)3d	3d ³D	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 1 3. 2	5g ³ G ₄ ³ G ₅	2 s (2 S) $5g$	5g ³ G	3 4 5	$346525. \ 1+x$ $346526. \ 0+x$	0. 9
$3d$ $^1\mathrm{D}_2$	2s(2S)3d	3d ¹D	2	276482. 7		5g ¹G4	2s(2S)5g	5g ¹G	4	346577. 5	
3s' 3P0	2p(2P°)3s	3s ³P°	0	308162.9+x	33. 3	$5d$ $^1\mathrm{D}_2$	$2s(^2\mathrm{S})5d$	$5d$ $^{1}\mathrm{D}$	2	346656. 0	
² P ₁ ³ P ₂			$\begin{array}{ c c }\hline 1\\ 2\\ \end{array}$	308196.2+x 308264.8+x	68. 6	$3d'$ $^{1}\mathrm{P}_{1}$	2p(2P°)3d	3 <i>d</i> ¹ P°	1	346713. 1	
4s 3S1	2s(2S)4s	4s 3S	1	309404.5+x		$5f {}_{3}^{3}F_{2}$	2s(2S)5f	5f 3F°	2	347099.5+x	1.8
3s′ ¹P1	2p(2P°)3s	3s ¹P°	1	310005. 2		³ F ₃			3 4	347101.3+x 347103.7+x	2. 4
4s ¹ S ₀	2s(2S)4s	4s 1S	0	311720. 7		5f ¹ F ₃	2s(2S)5f	5f ¹F°	3	348859.5	
4p ⁸ P ₀₁	2s(2S)4p	4p 3P°	0,1	317743 +x	5	6s 3S1	2s(2S)6s	68 3S	1	354796 + x	
² P ₂	0 (2D0) 2	2m 1D		317748 + x		6p ¹ P ₁	2s(2S)6p	6p ¹P°	1	357088	
3p′ ¹P₁	2p(2P°)3p	3p 1P	1	319719. 4			2s(2S)6d	6d ³D	1		
4d ³ D ₁ ⁸ D ₂	2s(2S)4d	4d 3D	$\begin{vmatrix} 1 \\ 2 \\ 0 \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16. 3 23. 5	$6d~^3\mathrm{D_3}$			3	358046 + x	
³ D ₃ 4f ³ F ₂ ² F ₃ ³ F ₄	2s (2S)4f	4f ³F°	3 2 3 4	321398. 6+x 321949. 1+x 321955. 8+x	6. 7	6g ³ G ₄ ³ G ₅	2s(2S)6g	6 <i>g</i> *G	3 4 5	358638. 3+x 358639. 0+x	0. 7
	20/25) 4m	4p 1P°		321964.7+x		6g ¹G₄	2s(2S)6g	6 <i>g</i> ¹ G	4	35 8688. 9	
4p ¹ P ₁	2s(2S)4p	4f 1F°	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	322403. 1		$6d$ $^{1}\mathrm{D}_{2}$	2s(2S)6d	6d ¹D	2	358725. 5	
4f ¹ F ₈	2s(2S)4f	3p 3D		322701. 1			2s(2S)6f	6f ³F°	2		
$3p' \ ^{2}D_{1}$ $^{2}D_{2}$ $^{2}D_{3}$	$2p(^{2}\mathrm{P}^{\circ})3p$	op vD	$\begin{vmatrix} 1\\2\\3 \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25. 4 38. 8	6f 3F4			3 4	358800 +x	
4d ¹ D ₂	2s(2S)4d	4d ¹D	2	324212. 0		6f ¹ F ₃	2s(2S)6f	6f ¹F°	3	359122. 2	
$3p'$ 3S_1	$2p(^2P^\circ)3p$	3p 3S	1	327225.7+x		7s 2S1	2s(2S)7s	7s 3S	1	363561 + x	
$3p' \stackrel{\$}{\cdot} P_0$	$\begin{vmatrix} 2p(1)3p \\ 2p(2P^{\circ})3p \end{vmatrix}$	$3p^{3}P$	0	329633.1+x		7p ¹ P ₁	2s(2S)7p	7p ¹P°	1	364896	
³ P ₁ ³ P ₂	2p(-1)5p		1 2	$\begin{vmatrix} 329654. & 1+x \\ 329654. & 2+x \\ 329690. & 9+x \end{vmatrix}$	21. 1 36. 7	7d ³D	2s(2S)7d	7d ³D	1, 2, 3	365585 + x	
3d′ ¹D₂	2m (2D°) 2d	3d ¹D°				7d ¹ D ₂	2s(2S)7d	7d ¹D	2	366027. 0	
$3p'$ 1D_2	$2p(^{2}\mathrm{P}^{\circ})3d \ 2p(^{2}\mathrm{P}^{\circ})3p$	3p ¹ D	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	332690. 3 333116. 4		8p ¹ P ₁	2s(2S)8p	8p ¹P°	1	369926	
3d' ${}^{3}F_{2}$	$2p(^{1})3p$ $2p(^{2}P^{\circ})3d$	3d 3F°	2	333333. 4+x		8d 2D	2s(2S)8d	8d 3D	1, 2, 3	370438 + x	
3F ₂ 3F ₄	2p(-1)5a	Ja T	3 4	333358.4+x	25. 0 36. 6	9d ⁸ D	2s(2S)9d	9d ³D	1, 2, 3	373748 + x	
3d′ ³D ₁	$2p(^2\mathrm{P}^\circ)3d$	3d ³D°		333395. 0+x			2p(2P°)4s	4s ³P°	0		
³ D ₂ ³ D ₃		3 <i>a</i> 3 <i>D</i>	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	337602.9+x 337616.4+x	13. 5 20. 3	4s' ³ P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	376637 + x	
	2s(2S)5s	58 ³ S		337636.7+x 339881 +x		4p′ ¹P₁	2p(2P°)4p	4p 1P	1	381104. 8	
58 3S ₁			1			4(37)	2p(2P°)4p	4p 3D	1	201010	
3d′ ³ P ₂ ³ P ₁ ³ P ₀	2p(2P°)3d	3d 3P°	2 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -26.3 \\ -14.5 \end{bmatrix}$	$4p'\ ^3{ m D}_2\ ^3{ m D}_3$	$2p(^2\mathrm{P}^\circ)4p$	4p 3P	3 0	$\begin{vmatrix} 381919 & +x \\ 381958 & +x \end{vmatrix}$	39
3d′ ¹F ₃	2p(2P°)3d	3d ¹F°	3	341368. 5		4p' ³ P ₁ ³ P ₂	-p(1)1p	_p 1	1 2	$ \begin{array}{rrr} 384313 & +x \\ 384350 & +x \end{array} $	37
5p ¹ P ₁	2s(2S)5p	5p ¹P°	1	343255.7		4p' 1D ₂	$2p(^2\mathrm{P}^\circ)4p$	4p ¹D	2	385637. 5	
	$2s(^2\mathrm{S})5p$	5p *P°	0			$\begin{array}{c c} & 4p & D_2 \\ & 4d' & D_2 \end{array}$	$2p(^{2}P^{\circ})4d$	4d 1D°	2	385816. 2	
5p 8P2		1	2	344181 + x	1	10 -102	C IV (2S ₁₄)	Limit		386159. 7	
$3p'$ ${}^{1}\mathrm{S}_{0}$	2p(2P°)3p	3p 1S	0	345093. 9	1	l	017 (-101%)	Linet	1	300100.	1.

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
	2p(2P°)4d	4d ³D°	1 2 3			5d' ³ P ₂	2p(2P°)5d	5d ³P°	2	410841 +x	
4d' 3D3			3	387646 + x					Ō		
4d' 3P2	2p(2P°)4d	4d ³P°	2 1	388442 + x			2p(2P°)6p	6p 3D	1		
			0			6p′ ³D₃			3	421380 +x	:
4d′ ¹F ₃	2p(2P°)4d	4d ¹F°	3	388772. 2			2p(2P°)6p	6p ³P	0		
$5p'$ $^{1}\mathrm{P}_{1}$	$2p(^2\mathrm{P^o})5p$	5p ¹P	1	407430. 4		6p′ ³P2			$\begin{array}{ c c }\hline 1\\ 2\\ \end{array}$	421967 + x	
	2p(2P°)5p	5p 3D	1	-			2p(2P°)6d	6d ³D°	1		
5p' 3D ₃			1 2 3	407774 + x		6d′ ³D ₃			3	422881 +x	;
	2p(2P°)5p	5p ³P	0			6d′ ³ P ₂	2p(2P°)6d	6d ³P°	2	423058 +x	;
5p′ ³P ₂			$\frac{1}{2}$	408873 +x					0		
$5p'$ $^{1}\mathrm{D_{2}}$	2p(2P°)5p	5p ¹D	2	409505. 0			$2p(^2\mathrm{P}^\circ)7p$	7p ³D	1		
$5d'$ $^{1}\mathrm{D_{2}}$	2p(2P°)5d	5d ¹D°	2	409682. 1		7p' 3D3			3	429345 + x	;
	2p(2P°)5d	5d ³D°	1				2p(2P°)7p	7p 3P	0		
5d′ ³D₃			2 3	410534 +x		7p′ ³P₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	429712 + x	

December 1947.

C III OBSERVED TERMS*

Config. 1s2+		Observed Terms												
$2s^2$ $2s(^2\mathrm{S})2p$ $2p^2$	$2s^{2} {}^{1}S$ $\left\{ egin{array}{ccc} & 2p {}^{3}P^{\circ} & & & & & & & & & & & & & & & & & & &$													
	ns (n≥3)	$np \ (n \ge 3)$	$nd (n \ge 3)$											
$2s(^2\mathrm{S})nx$ $2p(^2\mathrm{P}^\circ)nx$	{3-7s 3S 3, 4s 1S } {3, 4s 3P° 3s 1P°	$3-5p\ ^{8}P^{\circ}\ 3-8p\ ^{1}P^{\circ}\ 3$ $3p\ ^{8}S\ 3-7p\ ^{3}P\ 3-7p\ ^{3}D\ 3p\ ^{1}S\ 3-5p\ ^{1}P\ 3-5p\ ^{1}D$	3-9d ³ D 3-7d ¹ D 3-6d ³ P° 3-6d ³ D° 3d ³ F° 3d ¹ P° 3-5d ¹ D° 3, 4d ¹ F°	4-6f ³ F° 5, 6g ³ G 5, 6g ¹ G										

^{*}For predicted terms of the Be I isoelectronic sequence, see Introduction.

C IV

(Li 1 sequence; 3 electrons)

Z=6

Ground state 1s2 2s 2S1

 $2s {}^{2}S_{\frac{1}{2}}$ 520177.8 cm⁻¹

I. P. 64.476 volts

The terms are from Edlén. His extrapolated values of three intervals and the term values of the two high series members 8f 2F ° and 8g 2G , etc., which were calculated from a well-determined series formula, are entered in brackets in the table.

REFERENCES

B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 40 (1934). (I P) (T) (C L) (G D)

T.-Y. Wu, Phys. Rev. 58, 1114 (1940). (C L)

C IV C IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
28 ² S ₁	28	2s 2S	1/2	0. 0		6d ² D	6 <i>d</i>	6d 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 471368	
$^{2p}^{^{2}P_{1}}_{^{^{2}P_{2}}}$	2p	2p ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	64484. 2 64591. 3	[107. 1	6f 2F	6 <i>f</i>	6f 2F°	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	} 471403.0	
3s 2S1	38	3s ² S	1/2	302847. 9		0.00		0.00	į) 4774074	
$3p {}^{2}P_{1} \ {}^{2}P_{2}$	3p	3p ²P°	$1\frac{1}{2}$	320048. 5 320080. 0	[31. 5	6g ² G	6 <i>g</i>	6 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	471407. 4	
$3d {}^{2}\mathrm{D}_{2}^{2}$	3d	3 <i>d</i> ² D	1½ 2½	324880. 2 324890. 9	[10. 7]	6h ² H	6h	6h ² H°	$\left\{\begin{array}{c}4\frac{1}{2}\\5\frac{1}{2}\end{array}\right.$	} 471407.9	
48 ² S ₁	48	4s 2S	1/2	401346. 7		7s 2S1	7s	7s 2S	1/2	482659	
$4p\ ^2{ m P_1}\ ^2{ m P_2}$	4 <i>p</i>	4p 2P°	1½ 1½ 1½	408308. 9 408322. 2	13. 3	7p 2P	7 <i>p</i>	7p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 483931	
$4d\ ^{2}\mathrm{D}_{2}^{2}$	4d	4d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	410333. 8 410338. 2	4. 4	7d 2D	7d	7d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 484309	
	4f	4f 2F°	$egin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$		[2. 1]	7f 2F	7 <i>f</i>	7f 2F°	$\left\{ egin{array}{l} 2\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	} 484343.8	
4f ² F ₄ 5s ² S ₁	58	5s 2S	$\frac{3\frac{1}{2}}{\frac{1}{2}}$	410434. 1 445366. 1	[2. 1]	7g ² G	7g	7g ² G	$\left\{ egin{array}{l} 3\frac{1}{2} \ 4\frac{1}{2} \end{array} \right.$	} 484346. 6	
5p 2P ₁ 2P ₂	5 <i>p</i>	5p ² P°	1½ 1½ 1½	448854 448861	[6. 7]	7h 2H	7 <i>h</i>	7h 2H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
5d ² D ₂	5d	5 <i>d</i> ² D	1½ 2½ 2½	449887. 4	[2. 2]	8p 2P	8 <i>p</i>	8 <i>p</i> ² P°	$ \begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases} $) } 492473	
5 <i>f</i> ² F	5 <i>f</i>	5f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right\}$	} 449938. 2		8F	8 <i>f</i>	8f 2F°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	 } [492743]	
5 <i>g</i> ² G	5 <i>g</i>	5 <i>g</i> ² G	$\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right\}$	} 449948. 4		8GHIK	Sa ota	8g2C 040	3½	[492745]	
6s ² S ₁	68	6s ² S	1/2	468765		SGRIK	8g, etc.	8g ² G, etc.	to 7½	[492140]	
6p 3P	6 <i>p</i>	6p ² P°	\begin{cases} \frac{1\frac{1}{2}}{1\frac{1}{2}} \end{cases}	} 470763			C v (1S ₀)	Limit		520177.8	

April 1946.

C v

(He I sequence; 2 electrons)

Z=6

Ground state 1s2 1S0

 $1s^2$ 1S_0 3162450 ± 300 cm⁻¹

I. P. 391.986 ± 0.037 volts

The singlet terms are from Tyrén, who has reported (1940) nine lines visible on his spectrograms. His limit has been calculated from the series members n=2 to 6. The remaining singlet terms have been calculated from three classified lines at 32 A given in his 1936 paper. He has also classified a line at 40.731 A as the intersystem combination $1s^2$ $^{1}S_0-2p$ $^{3}P_1^{\circ}$. His unit, 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from an unpublished manuscript kindly furnished by Edlén, who states that the absolute term values of the triplets are based on an extrapolation of 3d ³D from He I and Li II. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén.

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 31 (1934). (C L)
- F. Tyrén, Zeit. Phys. 98, 774 (1936). (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P) (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

Cv

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
182	1s ² ¹S	0	0		1s 4p	4p ¹P°	1	2991680	
1s 2s	28 3S	1	2411266		1s 5p	5p ¹P°	1	3053060	
1s 2p	2p ³P°	o	2455165	-13	1s 6p	6p ¹P°	1	3086420	
		$\frac{1}{2}$	2455152 2455288	136	1s 7p	7p ¹P°	1	3106750	
1s 2p	2p ¹P°	1	2483240		1s 8p	8p ¹P°	1	3118760	
1s 3d	$3d$ $^3\mathrm{D}$	3, 2, 1	2857308						
1s 3p	3p 1P°	1	2859350		C vi (2S _{1/2})	Limit		3162450	

September 1947.

C vi

(H sequence; 1 electron)

Z=6

Ground state 1s 2S1/2

 $1s~^2\mathrm{S}_{\frac{1}{2}}~\mathbf{3951950}~\mathrm{cm}^{-1}$

I. P. 489.84 volts

The first three members of the Lyman series have been observed by Tyrén. The terms listed below have been calculated by J. E. Mack, "using $R_{\rm C^{12}}{=}109732.286$ and $\Lambda{=}0.040$. The series limit of C¹³ is higher by 14.0 cm⁻¹ than the one shown here."

REFERENCES

F. Tyrén, Zeit. Phys. 98, 771 (1936). (C L)J. E. Mack, unpublished material (1949). (I P) (T) (C L)

C vi

C vi

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s 2p 2s 2p 3p 3s 3p, 3d 3d	1s ² S 2p ² P° 2p ² P° 3p ² P° 3s ² S 3d ² D, 3p ² P° 3d ² D	1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2	2963768 2963806 2964241 3512811 3512822 3512951 3512998	38 473. 3]] 11 140. 3 46. 7	4p 4s 4p, 4d 4d, 4f 4f 5s, etc.	$4p ^{2}P^{\circ}$ $4s ^{2}S$ $4d ^{2}D, 4p ^{2}P^{\circ}$ $4d ^{2}D, 4f ^{2}F^{\circ}$ $4f ^{2}F^{\circ}$ $5s ^{2}S, etc.$ $\infty = Limit$	½ ½ ½ 1½ 2½ 3½ ½, etc.	3704957 3704961 3705016 3705035 3705045 3793884 to 933	5 59. 2 19. 7 9. 9

February 1949.

NITROGEN

NI

7 electrons

Z=7

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

 $2p^3 \, {}^{4}S_{1\frac{1}{2}}^{\circ} \, 117345 \, \, \text{cm}^{-1}$

I. P. 14.54 volts

The terms have been taken chiefly from the list prepared by Ekefors with extensions calculated from the classifications published in Tokyo. Unfortunately, no term list was included in the Tokyo papers. Consequently, considerable editing has been done in compiling terms from all the observational material. Revised values are suggested for a few levels and tentative values not in the literature are listed for $5d \, ^4F_{2\frac{1}{2}}$, $5d \, ^4F_{1\frac{1}{2}}$, $5d \, ^4D_{3\frac{1}{2}}$, and $6d \, ^4D_{3\frac{1}{2}}$. Further study is needed to verify the numerous blends resulting from practically coincident levels.

Intersystem combinations have been observed.

Kiess and Shortley have generously furnished g-values derived from the observed Zeeman effects of 18 infrared lines.

REFERENCES

- O. S. Duffendack and R. A. Wolfe, Phys. Rev. 34, 409 (1929). (C L)
- S. B. Ingram, Phys. Rev. 34, 421 (1929). (T) (C L)
- E. Ekefors, Zeit. Phys. 63, 437 (1930). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 260 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- B. Edlén, Bergstrand's Festkskrift p. 135 (1938). (C L)
- M. Kamiyama, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 36, No. 933, 375 (1939). (C L)
- M. Kamiyama and T. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 37, Nos. 982 and 983, 479 (1940). (C L)
- M. Kamiyama and H. Noguchi, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, No. 1100, 475 (1942). (C L)
- J. R. Holmes, Phys. Rev. 63, 41 (1943). (I S)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 42, 190, RP1961 (1949). (Z E)

Νı

Νı

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2 \ 2p^3$ $2s^2 \ 2p^3$	$2p^{3} {}^{4}\mathrm{S}^{\circ} \ 2p^{3} {}^{2}\mathrm{D}^{\circ}$	1½ 2½ 1½	0	-8		2s 2p4	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	88109. 5 88153. 4 88173. 0	-43. 9 -19. 6	
$2s^2 \ 2p^3$	2p³ ²P°	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} \right. $	19231	Ü		$oxed{2s^2 \ 2p^2(^3\mathrm{P}) \ 3p} \ 2s^2 \ 2p^2(^3\mathrm{P}) \ 3p}$	3p 2S° 3p 4D°	½ ½	93582. 3 94772. 2	00.6	0. 002
$2s^2 \ 2p^2(^3\mathrm{P})3s$	3s 4P	$\begin{array}{ c c c }\hline & 1/2 & & \\ & 1/2 & & \\ & 1/2 & & \\ & 21/2 & & \\ \hline \end{array}$	83285. 5 83319. 3	33. 8 46. 7	2. 670 1. 735		•	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	94794. 8 94832. 1 94883. 1	22. 6 37. 3 51. 0	1. 19 1. 36 1. 44
$2s^2\ 2p^2(^3\mathrm{P})3s$	3s ² P	$\begin{array}{ c c c c c }\hline & 2\frac{1}{2} \\ & \frac{1}{2} \\ & 1\frac{1}{2} \\ & \end{array}$	83366. 0 86131. 4 86223. 2	91. 8	1. 603	$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 4P°	$egin{array}{c} langle rac{1}{2} \ 1 rac{1}{2} \ 2 rac{1}{2} \end{array}$	95476. 5 95494. 9 95533. 2	18. 4 38. 3	2. 671 1. 737 1. 598

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 4S°	1½	96751.7		2. 004	2s² 2p²(³P)4d	4d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	110325 110351	26	
$2s^2 \ 2p^2(^3P)3p$	3p 2D°	1½ 2½	96788. 2 96864. 2	76. 0					110403	52	
$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 2P°	1½ 1½ 1½	97770. 1 97805. 8	35. 7			4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	110448. 3 110470. 5	22. 2	
2s² 2p²(¹D)3s	3s′ 2D	2½ 1½	99665	_7		2s ² 2p ² (¹ D)3p	3p' 2D°	1½ 2½	110521. 9 110545. 8	23. 9	
$2s^2 \ 2p^2(^3{ m P})4s$	4s 4P		99658 103618. 1	50. 0		$2s^2 2p^2(^1D)3p$	3p' 2P°	1½ 1½	112294. 8 112320. 8	26. 0	
		1½ 1½ 2½	103668. 1 103736. 8	68. 7		2s ² 2p ² (³ P)6s	6s 4P	$\begin{array}{ c c c }\hline & 1\frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ \end{array}$	112565. 9 112610. 6	44. 7	
2s ² 2p ² (³ P)4s	4s ² P	1½	104142. 2 10422 7 . 4	85. 2		0-2 0-2 (3D) 6-	6s ² P	1	112682. 6	72. 0	
$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d ² P	1½ ½	104615. 4 104654. 9	-39. 5		2s ² 2p ² (³ P) 6s		1½	112735 112823	88	
2s² 2p²(³P)3d	3d 4F	1½ 2½ 3½ 4½	104665 104684 104718 104767	19 34 49		28 ² 2p ² (³ P)5d	5d 4F	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array}$	112751? 112763? 112799 112862	12 36 63	
$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 2F	$2\frac{1}{2}$	104810. 9	71. 8		2s ² 2p ² (³ P)5d	5d ² P	1½ ½ ½	112801 112816	-15	
$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 4P	3½ ½ 1½	104882. 7 104864	26		2s ² 2p ² (³ P)5d	5d ² F	2½ 3½	112820 112890. 2	70	
		$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	104890 10495 7	67		2s ² 2p ² (³ P)5d	5d 4D				
2s ² 2p ² (³P)3d	3d 4D	1½ 1½ 2½ 3½	10498 7 104998 105011	11 13 9				$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \end{array}$	112825 112892?	67	
2s ² 2p ² (³P)3d	3d 2D	3½ 1½ 2½	105020 105120. 8	23. 5		2s ² 2p ² (³ P)5d	5d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	112855 112874 112912	19 38	
$2s^2 \ 2p^2(^3\mathrm{P})4p$	4 <i>p</i> ² S°	1/2 1/2	105144. 3 106478. 6			2s ² 2p ² (³ P)5d	5d 2D	1½ 2½	112929. 2 112947. 5	18. 3	
2s ² 2p ² (³ P)4p	4p 4D°	1½ 1½ 2½ 3½	106760. 5 106780. 1 106816. 1 106870. 7	19. 6 36. 0 54. 6		2s ² 2p ² (³ P)7s	7s 4P	$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	114015? 114072? 114146	57 74	
$2s^2 \ 2p^2(^3{ m P})4p$	4p 4P°	1/2	10698 2. 7 106998. 3	15. 6		$2s^2 \ 2p^2(^3\mathrm{P})7s$	7s ² P	1½ 1½	114130 114163	33	
2s ² 2p ² (³P)4p	4p 4S°	1½ 2½ 1½	107039. 0 107447. 2	40. 7		$2s^2 2p^2(^3P)6d$	6d 4F	1½ to 4½	114160		}
2s² 2p²(³P)5s	5s ⁴ P	1½ 1½ 2½	109813. 5 109857. 8 109927. 9	44. 3 70. 1		2s ² 2p ² (³ P)6d	6d 4D	1½ 1½ 2½ 3½	114182	66	
2s ² 2p ² (³ P)5s	5s ² P	1½ 1½	110029. 2 110108. 5	79. 3		2s ² 2p ² (³ P)6d	6d ² P		114248? 114193		
28 ² 2p ² (³ P)4d	4d 4F	1½ 2½ 3½ 4½	110196 110214	18 34		$2s^2 2p^2(^3P)6d$	6 <i>d</i> ² F	$\begin{array}{c c} 1\frac{1}{2} \\ \frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	114209 114196	-16 70	
		$\begin{array}{ c c }\hline 3\frac{1}{2}\\ 4\frac{1}{2}\\ \end{array}$	110248 110304	56		2s² 2p²(³P)6d	6d 2D		114275 114232. 2	79	
2s ² 2p ² (³ P)4d	4d 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	110221 110275 110288	54 13 51		2s ² 2p ² (3P)6d	6d 4P	1½ 2½ ½	114290. 5	58. 3	
202 2m2/3D\ 4 J	14 2D	1	110339					1½ 1½ 2½	114259 1142 7 4	15	
28 ² 2p ² (³ P)4d	4d ² P	1½ ½ ½	110221. 7 110244. 6	-22.9		2s ² 2p ² (³ P)8s	8s 4P	$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \end{array}$	114809 114890	81 52	
$2s^2 \ 2p^2(^3\mathrm{P})4d$	4d 2F	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	110311 110373	62				21/2	114942	32	

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
2s² 2p²(³P)8s	8s ² P	11/2	} 114950			$2s^2 \ 2p^2(^3{ m P})11s$	11s ² P	$ \left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	} 116107		
$2s^2 \ 2p^2(^3\mathrm{P})7d$	7d 4D	$ \begin{cases} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases} $	114988			$2s^2 \ 2p^2(^3{ m P}) 11s$	11s ⁴ P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$	116124		
$2s^2 \ 2p^2(^3\mathrm{P})7d$	7d ² F	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 115004			$2s^2 \ 2p^2(^3{ m P}) 10d$	10 <i>d</i> ² P	{ 1½ ½ ½	} 116155		
2s ² 2p ² (³ P)7d	7d ² P	{ 1½ ½ ½	} 115017			2s ² 2p ² (³ P)10d	10d ² F	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 116159		-
$2s^2 \ 2p^2(^3\mathrm{P})7d$	7d 2D	1½ 2½	11505 7 . 5 115100. 1	42. 6			10d 4D	\ \begin{cases} \frac{1\frac{1}{2}}{\to} \\ 3\frac{1}{2} \end{cases} \]	116164		
28 ² 2p ² (³ P)7d	7d ⁴ P	1½ 1½ 2½	115103			$2s^2 \ 2p^2(^3{ m P})10d$	10d ² D	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	116240		
2s ² 2p ² (³ P)9s	9s ² P	11/2	115480			$2s^2 \ 2p^2(^3{ m P})10d$	10d ⁴ P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$	116259		
2s² 2p²(³P)9s	9s 4P	$ \begin{cases} \frac{1}{2} & \text{to} \\ 2\frac{1}{2} & \text{to} \end{cases} $	115483			$2s^2 \ 2p^2(^3{ m P})12s$	12s ² P	$\left\{\begin{array}{c}1/2\\1/2\\1/2\end{array}\right.$	} 116305		
2s² 2p²(³P)8d	8d 4D	{ to 3½ 3½	115524			$2s^2 \ 2p^2(^3{ m P}) \ 12s$	12s ⁴ P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$	116312		
2s ² 2p ² (³ P)8d	8d ² P	{ 1½ ½ ½	} 115530			$oxed{ 2s^2 \ 2p^2(^3{ m P})} 11d$	11d ² P	{ 1½ ½ ½	} 116351		
2s² 2p²(³P)8d	8d ² F	{ 2½ 3½	} 115535			$2s^2 2p^2(^3P) 11d$	11 <i>d</i> ² F	$\left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	} 116359		
2s ² 2p ² (³ P)8d	8d 2D	1½ 2½	115597 115622	25		$2s^2 \ 2p^2(^3{ m P})11d$	11d 4D	{ to 3½ 3½	116367		
2s² 2p²(³P)8d	8d 4P	$ \begin{cases} \frac{1/2}{\text{to}} \\ \frac{21/2}{2} \end{cases} $	115618			$2s^2 \ 2p^2(^3{ m P})11d$	11 <i>d</i> ² D	$ \left\{ \begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 116 4 36		
2s² 2p²(³P)10s	10s ² P	\begin{cases} \frac{1}{2} & \\ 1\frac{1}{2} & \\ \end{cases} \]	} 115842			$oxed{2} 2p^2(^3 ext{P})11d$	11d 4P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$	116441		
2s² 2p²(³P)10s	10s ⁴ P	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases}$	115855			$2s^2\ 2p^2(^3{ m P})13s$	13s ² P	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	116467		
$2s^2 \ 2p^2(^3\mathrm{P})9d$	9d 4D	{ to 3½ 3½	115887			$2s^2 \ 2p^2(^3{ m P})12d$	12d ² P	{ 1½ ½ ½	116502		
$2s^2 \ 2p^2(^3\mathrm{P})9d$	9 <i>d</i> ² P	{ 1½ ½ ½	} 115889			$2s^2 \ 2p^2(^3{ m P}) 12d$	12d 4P	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases}$	116581		
$2s^2 \ 2p^2(^3{ m P}) 9d$	9d ² F	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 115902			2s ² 2p ² (³ P)12d	12d ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 116625		
2s² 2p²(³P)9d	9d ² D	1½ 2½	1159 7 3 11 5 991	18		N x (3D)			117945		
$2s^2 \ 2p^2(^3\mathrm{P}) 9d$	9d 4P	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases}$	115990			N 11 (³ P ₀)	Limit		117345		

October 1947.

Config. 1s ² +		Observed Terms									
2s ² 2p ³ 2s 2p ⁴	$\begin{cases} 2p^{2} {}^{4}\mathrm{S}^{\circ} & \\ & 2p^{2} {}^{2}\mathrm{P}^{\circ} & 2p^{3} {}^{2}\mathrm{D}^{\circ} \\ & & 2p^{4} {}^{4}\mathrm{P} \end{cases}$										
	ns (n≥3)	$np \ (n \ge 3)$	nd (n≥3)								
2s ² 2p ² (³P)nx	{ 3–12s ⁴ P 3–13s ² P	3, 4p 4S° 3, 4p 4P° 3, 4p 4D° 3, 4p 2S° 3p 2P° 3p 2D°	3-12d ⁴ P 3-11d ⁴ D 3-6d ⁴ F 3-12d ² P 3-12d ² D 3-11d ² F								
$2s^2 \ 2p^2(^1\mathrm{D}) nx'$	3s′ ² D	3p′ ² P° 3p′ ² D°									

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

Νп

(C I sequence; 6 electrons)

Z=7

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2$ 3P_0 238846. 7 cm⁻¹

I. P. 29.605 volts

Edlén has revised and extended the earlier analysis of this spectrum. The terms are all taken from his Monograph, except those from the 4f configuration, which are from his 1936 paper, and his 3s' ³P and 5f-terms, which he has generously furnished in a private communication.

The singlet and triplet terms are well connected by intersystem combinations but the quintets are not so connected with the others. Edlén also suggests that by analogy with C I and O III the published absolute values of the quintet terms should be decreased by about 500 cm⁻¹. This correction has been applied in the table and should diminish the uncertainty x appreciably.

- A. Fowler and L. J. Freeman, Proc. Roy. Soc. (London) [A] 114, 662 (1927). (T) (C L)
- L. J. Freeman, Proc. Roy. Soc. (London) [A] 124, 666 (1929). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 109 (1934). (I P) (T) (C L) (G D of singlets)
- B. Edlén, Zeit. Phys. 98, 564 (1936). (T) (C L)
- J. B. Green and H. N. Maxwell, Phys. Rev. 51, 243 (1937). (Z E)
- B. Edlén, unpublished material (Dec. 1947). (T).

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₀	2s² 2p²	2p2 3P	0	0. 0	40.1	4p 3S1	$\boxed{ 2s^2 \ 2p(^2\mathrm{P}^{\mathrm{o}})4p}$	4p 3S	1	203532. 8	
³ P ₁ ² P ₂	•	1	1 2	49. 1 131. 3	49. 1 82. 2	$4p$ $^1\mathrm{D}_2$	2s² 2p(²P°)4p	4p ¹D	2	205350. 7	
$2p\ ^1\mathrm{D}_2$	$2s^2 \ 2p^2$	$_{2p^2}$ ¹ D	2	15315. 7		3s' ⁵ P ₁	2s 2p ² (4P)3s	3s ⁵ P	1	205982. 1+x	70.0
2p ¹S ₀	2s² 2p²	2p² ¹S	0	32687. 1		⁵ P ₂ ⁵ P ₃			2 3	206038.1+x 206108.7+x	56. 0 70. 6
2p' 5S2	2s 2p²	2p³ 5S°	2	47167.7+x		4p 1S ₀	2s² 2p(²P°)4p	4p ¹S	0	206327. 5	
2p' ² D ₃ ³ D ₂ ² D ₁	2s 2p³	2p³ ³D°	3 2 1	92237. 9 92251. 3 92252. 9	-13. 4 -1. 6	4d ³ F ₂ ³ F ₃ ³ F ₄	2s ² 2p(² P°)4d	4d 3F°	2 3 4	209675. 3 209739. 5 209825. 3	64. 2 85. 8
2p' 3P12	2s 2p³	2p3 3P°	2, 1	109218. 2	-6.6	$4d~^1\mathrm{D}_2$	2s² 2p(²P°)4d	4d ¹D°	2	209926. 92	
$2p'$ 1 D ₂	2s 2p³	2p³ ¹D°	0 2	109224. 8		$4d ^{3}\mathrm{D}_{1} \ ^{3}\mathrm{D}_{2}$	2s² 2p(²P°)4d	4d ³D°	1 2	210239. 8 210266. 3	26. 5 35. 6
3s ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p(²P°)3s	38 P°	0 1 2	148909. 37 148940. 97 149077. 33	31. 60 136. 36	² D ₃ 4d ² P ₂ ² P ₁ ² P ₀	2s² 2p(²P°)4d	4d ³P°	3 2 1 0	210301. 9 210705. 4 210751. 5 210777. 0	-46. 1 -25. 5
3s ¹P1	2s² 2p(2P°)3s	3s ¹P°	1	149188.74		4f ¹ F ₃	$oxed{2s^2 \ 2p(^2\mathrm{P}^\circ)4f}$	4f ¹F	3	211030. 90	
2p' 3S1	2s 2p³	2p³ 3S°	1	155129. 9		4f ³ F ₂	$\begin{vmatrix} 2s^2 & 2p(^21) & 4f \\ 2s^2 & 2p(^2P^\circ) & 4f \end{vmatrix}$	4f 3F	2	211033. 71	
3p ¹ P ₁	$2s^2 2p(^2\mathrm{P}^\circ)3p$	3p ¹P	1	164611. 60		² F ₃ ² F ₄	28° 2p(°F')4j	4) °I	3 4	211057. 07 211061. 03	23. 36 3. 96
$3p \ ^{3}D_{1}$	28 ² 2p(2P°)3p	3p 3D	1 2	166522. 48 166583. 26	60. 78 96. 19	4d ¹ F ₃	2s² 2p(²P°)4d	4d ¹ F°	3	211104. 8	
³ D ₃	2s 2p³	2p³ 1P°	3	166679. 45 166765. 7		4f 3G3	2s ² 2p(2P°)4f	4f ³G	3 4	211288. 02 211295. 65	7. 63
3p 3S ₁	2s ² 2p(2P°)3p	3p 3S	1	168893. 04		³G₅			5	211390. 77	95. 12
3p P ₀	$2s^2 \ 2p(^2P^0)3p$	3p 3P	0	170573. 38	25 05	4d ¹ P ₁	2s ² 2p(2P°)4d	4d ¹P°	1	211335.5	
*P ₁ *P ₂	20 2p(1)0p	op 1	1 2	170608. 63 170667. 00	35. 25 58. 37	4f ¹ G ₄	2s ² 2p(2P°)4f	4f 1G	4	211402. 89	
$3p$ $^{1}\mathrm{D}_{2}$	2s ² 2p(² P°)3p	3p ¹D	2	174212. 93		4f ³ D ₃ ² D ₂ ³ D ₁	2s ² 2p(² P°)4f	4f ³D	3 2 1	211411. 25 211416. 20 211487. 28	-4. 95 -71. 08
3p 1S ₀	$2s^2 \ 2p(^2P^\circ)3p$	3p 1S	0	178274. 17		$4f^{1}\mathrm{D}_{2}$	2s ² 2p(² P°)4f	4f ¹D	2	211491, 16	
3d *F ₂ *F ₃ *F ₄	2s ² 2p(2P°)3d	3d *F°	2 3 4	186512. 38 186571. 80 186653. 35	59. 42 81. 55	38' P0 P1 P1 P2	2s 2p ² (4P)3s	3s P	0 1 2	211750. 2 211780. 6 211828. 8	30. 4 48. 2
$3d$ $^1\mathrm{D}_2$	2s2 2p(2P°)3d	3d ¹D°	2	187092. 20		5s ² P ₀	2s ² 2p(2P°)5s	5s ³P°	0	214212. 4	
3d ² D ₁ ² D ₂ ² D ₃	2s ² 2p(² P°)3d	3d *D°	1 2 3	187438. 34 187462. 38 187492. 72	24. 04 30. 34	³ P ₁ ³ P ₃	28° 2p(°1°)38	08 -1	1 2	214258. 2 214385. 3	45. 8 127. 1
3d ³ P ₂	2s² 2p(²P°)3d	3d P°	2	188858. 09		5s ¹ P ₁	2s ² 2p(2P°)5s	5s ¹P°	1	214828.0	
3P ₁ 3P ₀	25° 2p(-1)0a	5 <i>a</i> -1	0	188909. 89 188937. 95	-51. 80 -28. 06	5d ² D ₃	2s ² 2p(² P°)5d	5 <i>d</i> ³ D °	1 2 3	220717	
3d ¹ F ₃	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d ¹F°	3	189336. 0		5f 3F ₂	2s ² 2p(2P°)5f	5f *F	2		
$3d$ $^{1}P_{1}$	2s ² 2p(² P°)3d	3d ¹ P°	1	190121. 15		*F ₃			3 4	221070. 2 221074. 3	4. 1
48 ³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p(² P°)4s	4s *P°	0 1 2	196541. 09 196592. 88 196712. 17	51. 79 119. 29	5d ¹ F ₃	2s ² 2p(² P°)5d	5 <i>d</i> ¹ F°	3	221137.6	
4s ¹ P ₁	2s ² 2p(² P°)4s	48 ¹P°	1	197859. 28		5f ² G ₃ ² G ₄ ² G ₅	2s ² 2p(2P°)5f	5f 3 G	3 4 5	221227. 7 221232. 7 221302. 2	5. 0 69. 5
4p ¹ P ₁	2s ² 2p(² P°)4p	4p ¹P	1	202169. 9		5f 1G ₄	2s ² 2p(2P°)5f	5 <i>f</i> ¹G	4	221312. 1	
$4p \ ^{3}D_{1} \ ^{3}D_{2} \ ^{2}D_{3}$	2s ² 2p(² P°)4p	4p 3D	1 2 3	202714. 94 202765. 86 202862. 06	50. 92 96. 20	3p' 5D0 5D1	2s 2p ² (4P)3p	3p 5D°	0	224027. 1+x 224042. 9+x	15. 8 29. 4
4p ³ P ₀ ³ P ₁ ³ P ₂	2s ² 2p(2P°)4p	4p *P	0 1 2	203164. 7 203188. 8 203259. 7	24. 1 70. 9	⁵ D ₂ ⁵ D ₃ ⁵ D ₄			2 3 4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43. 1 53. 9

N II—Continued

N II—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3p	3p ⁵ P°	1 2 3	225987. 1+x 226011. 2+x 226055. 2+x	24. 1 44. 0	3d′ ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)3d	3d ⁵ P	3 2 1	$\begin{array}{c} 244737.\ 4+x \\ 244775.\ 9+x \\ 244802.\ 0+x \end{array}$	- 30. 3
3p' ⁵ S ₂	$2s \ 2p^2(^4\mathrm{P})3p$ N III $(^2\mathrm{P}_{\frac{1}{2}}^\circ)$	3p ⁵ S° Limit	2	230223. 0+x 238846. 7		$\begin{array}{c c} 3d' \ ^5\mathrm{D_0} \\ \ ^5\mathrm{D_1} \\ \ ^5\mathrm{D_2} \\ \ ^5\mathrm{D_3} \\ \ ^5\mathrm{D_4} \end{array}$	2s 2p ² (4P)3d	3d ⁵ D	0 1 2 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7. 9
$3d' {}^{5}F_{1} \ {}^{5}F_{2} \ {}^{5}F_{3} \ {}^{5}F_{4} \ {}^{5}F_{5}$	2s 2p ² (4P)3d	3d ⁵ F	1 2 3 4 5	$\begin{array}{c} 243355.\ 5+x \\ 243371.\ 2+x \\ 243396.\ 6+x \\ 243430.\ 2+x \\ 243470.\ 8+x \end{array}$	15. 7 25. 4 33. 6 40. 6	$^{5}\widetilde{\mathrm{D}_{4}}^{3}$			4	245356. 9+x	14. 0

December 1947.

N II OBSERVED g-Values

Desig.	J	Obs. g	Desig.	J	Obs. g	Desig.	J	Obs. g
3s ² P°	1 2	1. 455 1. 502	3p 3S	1	2. 015	3d ¹D°	2	0. 986
3s ¹P°	1	1. 051	3 <i>p</i> ³P	2	1. 530 1. 497	3a •D	2 3	0. 494 1. 114 1. 329
3p ¹P 3p ³D	1 1 2	1. 005 0. 494 1. 166	3p ¹D 3d ³F°	2 3 4	1. 002 1. 079 1. 250	3 <i>d</i> ³P°	2 1	1. 529 1. 504 1. 487
	3	1. 330		1	1. 200	3d ¹ P°	1	1. 026

N II OBSERVED TERMS*

Config. 1s ² +		Observ	red Terms	
2s² 2p²				
2s 2p³	$\begin{bmatrix} 2p^{3} {}^{5}S^{\circ} \\ 2p^{3} {}^{3}S^{\circ} & 2p^{3} {}^{3}P^{\circ} & 2p^{3} {}^{3}D^{\circ} \\ & 2p^{3} {}^{1}P^{\circ} & 2p^{3} {}^{1}D^{\circ} \end{bmatrix}$			
	ns $(n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$	$nf \ (n \ge 4)$
2s ² 2p(2P°)nx	{ 3-58 ³ P° 3-58 ¹ P°		3, 4d ³ P° 3–5d ³ D° 3, 4d ³ F° 3, 4d ¹ P° 3, 4d ¹ D° 3–5d ¹ F°	4f 3D 4, 5f 3F 4, 5f 3G 4f 1D 4f 1F 4, 5f 1G
2s 2p ² (4P)nx	3s ⁵ P 3s ³ P	3p 5S° 3p 5P° 3p 5D°	$3d$ $^{5}\mathrm{P}$ $3d$ $^{5}\mathrm{D}$ $3d$ $^{5}\mathrm{F}$	

^{*}For predicted terms in the spectra of the C I isolectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z=7

Ground state 1s2 2s2 2p 2P20

 $2p \, ^{2}P_{\frac{1}{2}}^{\circ} \, 382625.5 \, \mathrm{cm}^{-1}$

I. P. 47.426 volts

All of the terms except those with a 4f-electron, have been taken from Edlén's Monograph. In 1936 Edlén published a revised and extended list of 4f-terms and the corresponding classified lines, including intersystem combinations. The observed correction to his previously published quartet terms $-396.4~{\rm cm}^{-1}$, connecting them with the doublet terms has been incorporated into the present list.

REFERENCES

L. J. Freeman, Proc. Roy. Soc. (London) [A] 121, 318 (1928). (T) (C L)

B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 78 (1934). (I P) (T) (C L) (G D)

B. Edlén, Zeit. Phys. 98, 561 (1936). (T) (C L)

NIII

NIII

	A \ 111												
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval		
$2p {}^{2} ext{P}_{1} \ {}^{2} ext{P}_{2}$	2s ² (¹ S)2p	2p 2P°	1½ 1½	0. 0 174. 5	174. 5	3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)3s	3s 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	287535. 6 287598. 1 287713. 9	62. 5 115. 8		
$2p'{}^4 ext{P}_1\ {}^4 ext{P}_2\ {}^4 ext{P}_3$	28 2p2	2p ² ⁴ P	$\frac{\frac{1}{2}}{\frac{1}{2}}$	57192. 1 57252. 0 57333. 2	59. 9 81. 2	3s' ² P ₁ ² P ₂	2s 2p(³P°)3s	3s ² P°	1/2 1/2	297150. 2 297263. 1	112. 9		
$2p' {}_{^{2}\mathrm{D}_{3}}^{2}$	2s 2p2	$2p^2$ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	101023. 8	-7.7	4s 2S1	2s ² (¹S)4s	4s 2S	1/2	301088. 2			
$^2\mathrm{D}_2$ $2p'$ $^2\mathrm{S}_1$	2s 2p²	$2p^2$ 2S	1/2	101031. 5 131003. 5		$3p'{}^{2}{}^{2}{}^{1}{}_{2}{}^{2}$	2s 2p(3P°)3p	3p ² P	1½ 1½	309132. 6 309185. 8	53. 2		
${2p'{}^{2} m P_{1}} \over {}^{2} m P_{2}}$	2s 2p ²	$2p^2$ $^2\mathrm{P}$	1½ 1½	145876. 1 145986. 5	110. 4	$3p' ^4\mathrm{D}_1 \ ^4\mathrm{D}_2 \ ^4\mathrm{D}_2$	2s 2p(³P°)3p	3p 4D	$\begin{array}{c c} 1/2 \\ 1/2 \\ 2/2 \\ 2/2 \\ 3/2 \end{array}$	309662. 8 309698. 3 309760. 5	35. 5 62. 2		
$2p^{\prime\prime}$ $^4\mathrm{S}_2$	$2p^3$	$2p^3$ $^4\mathrm{S}^\circ$	1½	186802. 3	1	$^4\mathrm{D}^2_4$			$\frac{272}{3\frac{1}{2}}$	309856. 7	96. 2		
$2p^{\prime\prime}^2\mathrm{D_3}\ ^2\mathrm{D_2}$	$2p^3$	$2p^3\ ^2\mathrm{D}^\circ$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	203072. 2 203088. 9	-16.7	$4p\ ^{2} ext{P}_{1}\ ^{2} ext{P}_{2}$	$2s^2(^1\mathrm{S})4p$	4 <i>p</i> ² P°	1½ 1½	311691. 3 311716. 1	24. 8		
$3s$ 2S_1	2s ² (¹S)3s	3s 2S	1/2	221302. 4		$3p'$ ${}^4\mathrm{S}_2$	2s 2p(3P°)3p	3p 4S	1½	314224. 0			
$2p^{\prime\prime}{}^{^{2}}\!$	$2p^3$	2p³ 2P°	1½ 1½	230404. 5 230408. 6	4. 1	$3p' {}^4 ext{P}_1 \ {}^4 ext{P}_2 \ {}^4 ext{P}_3$	2s 2p(3P°)3p	3p 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	317299. 9 317343. 4 317402. 3	43. 5 58. 9		
$3p {}^{2}\mathrm{P}_{1} \ {}^{2}\mathrm{P}_{2}$	$2s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	245665. 7 245701. 7	36. 0	$4d\ ^{2}\mathrm{D}_{2}^{2}$	2s ² (¹ S)4d	$4d~^2\mathrm{D}$	1½ 2½ 2½	317750. 8 317781. 8	31. 0		
$3d {}^{2}\mathrm{D}_{2} \ {}^{2}\mathrm{D}_{3}$	2s ² (¹ S)3d	3 <i>d</i> ² D	1½ 2½	267238. 5 267244. 4	5. 9	4f ² F ₄	$2s^2(^1\mathrm{S})4f$	4f ² F°	2½ 3½	320287. 5			

N III—Continued

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	esig. J $\stackrel{\text{2D}}{=} 1\frac{1}{2}$	Level	Interval
$3p' ^2\mathrm{D}_2 \ ^2\mathrm{D}_2 \ ^2\mathrm{D}_3 \ ^2\mathrm{D} \ ^3p ^2\mathrm{D} \ ^1\frac{1}{2} \ ^320977. \ 4 \ ^321065. \ 88. \ 4 \ ^4p' ^2\mathrm{D}_2 \ ^2\mathrm{D}_3 \ ^2\mathrm{S} \ 2p ^3\mathrm{P}^\circ) 4p \ ^4p$	₂ D 1½		
	^{2}D $\frac{1\frac{1}{2}}{2\frac{1}{2}}$	377883. 7 377970. 8	87. 1
$3p' {}^2S_1 \mid 2s 2p ({}^3P^\circ) 3p \mid 3p {}^2S \mid \frac{1}{2} \mid 327056. 8 \mid \qquad \qquad$	4S 1½	378440. 5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4P ½ 1½ 1½ 2½	379307. 3 379352. 1 379405. 0	44. 8 52. 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mit ⁴ F° 1½ 2½ 3½ 4½ 4½	382625.5 384016 384065	49 74
$5s\ ^2\mathrm{S}_1$ $2s^2(^1\mathrm{S})5s$ $5s\ ^2\mathrm{S}$ $\frac{1}{2}$ $333713.\ 1$		384139	
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^2\mathrm{D}^\circ \left\{ \begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array} \right\}$	385126	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁴ D°	385296 385323 385352	27 29
$3d' {}^{2}F_{3} \atop {}^{2}F_{4} = 2s 2p (^{3}P^{\circ}) 3d = 3d ^{2}F^{\circ} = 2\frac{1}{2} = 3\frac{339744}{39855} \cdot \frac{4}{7} = 111. 3 = 4d' {}^{4}P_{3} = 2s 2p (^{3}P^{\circ}) 4d = 4$	⁴ P° 2½ 1½ 1½ ½ ½	386246	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 F $\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	386953. 4 386974	21
$3d' ^2P_2 \mid 2s 2p(^3P^\circ)3d \mid 3d ^2P^\circ \mid 1\frac{1}{2} \mid 342693.0 \mid 70.7 \mid 10.7 \mid 10$	4F 1½ 2½ 3½ 3½	387000. 8	
$5f {}^{2}\text{F}_{4} \left egin{array}{c cccc} 2s^{2}({}^{1}\text{S}) 5f & 5f {}^{2}\text{F}^{\circ} & 2\frac{1}{2} \\ 3\frac{1}{2} & 3\frac{1}{2} & 3\frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{4$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	387010. 3 387042. 3	9. 5 32. 0
$5g {}^2{ m G} \left[2s^2 ({}^1{ m S}) 5g \right] \left[\left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right] \right] 343116 \left[\left\{ \begin{array}{c} 4d' {}^2{ m F}_3 \\ {}^2{ m F}_4 \end{array} \right] 2s 2p ({}^3{ m P}^{\circ}) 4d 4d 4d 4d 4d 4d 4d 4$	² F° 2½ 3½	387728. 7 387811. 5	82. 8
$6d\ ^2\mathrm{D}_3$ $2\frac{1}{2}$ 354517 $4\frac{4}{4}$ $4\frac{4}{6}$ $4\frac{4}{6}$	2 ¹ / ₂ 3 ¹ / ₂ 4 ¹ / ₂ 5 ¹ / ₂	388039. 2 388082. 9 388134. 8	43. 7 51. 9 63
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		388198	05
$\left\{ egin{array}{c ccccccccccccccccccccccccccccccccccc$	² G 3½ 4½ 4½	388190. 3 388290. 0	99. 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3½ 2½ 1½ ½ ½	388273. 4 388310. 9 388359. 2 388386. 6	-37. 5 -48. 3 -27. 4
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	^{2}D $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	388376. 9 388442. 4	-65. 5
$4p' ^2P_1 \mid 2s 2p(^3P^\circ)4p \mid 4p ^2P \mid \frac{1}{2} \mid 374747.4 \mid _{FR} _{O} \mid \mid _{C} \mid $	$^{2}D^{\circ}$ $\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	396574. 9 396584. 8	9. 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4D°		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	372	409017	

June 1946.

N III OSBERVED TERMS*

Config. 1s ² +		Observed Terms	
2s² (¹S)2p 2s 2p²	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$2p^3$	$\left\{ \begin{array}{lll} 2p^2 ^2 \mathrm{S} & \overline{2} p^2 ^2 \mathrm{P} & 2p^2 ^2 \mathrm{D} \\ & & & & & & \\ & & & & & & \\ & & & & $		
	$ns (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$
2s ² (¹ S)nx	3–5s ² S	3, 4p ² P°	3-6 <i>d</i> ² D
2s 2p(3P°)nx 2s 2p(1P°)nx'	{ 3, 4s 4P° 3s 2P°	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3, 4d ^4P^{\circ} 3-5d ^4D^{\circ} 3, 4d ^4F^{\circ} \ 3d ^2P^{\circ} 3, 4d ^2D^{\circ} 3, 4d ^2F^{\circ} \ 3d' ^2D^{\circ}$
	$nf \ (n \ge 4)$	ng (n≥5)	
2s² (¹S)nx 2s 2p(³P°)nx	$egin{array}{cccccccccccccccccccccccccccccccccccc$	5, 6 <i>g</i> ² G	

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

NIV

(Be I sequence; 4 electrons)

Z=7

Ground state 1s2 2s2 1S0

28² ¹S₀ 624851 cm⁻¹

I. P. 77.450 volts

The terms are from Edlén's papers. The absolute values of the singlet terms are uncertain, since only two members of the ¹D-series have been observed. No intersystem combinations have been found. By analogy with N III, Edlén (1936) estimates that $2s^2$ ¹S₀-2p ³P₁°=67200 cm⁻¹, which gives the absolute value of $2s^2$ ¹S₀ as 624851 cm⁻¹ instead of the earlier value 624499 cm⁻¹. The relative uncertainty x, therefore probably does not exceed ± 300 cm⁻¹.

The terms 4p 3 P°, 4f 3 F°, 5g 3 G, and 3d 3 F° are from the 1936 reference. Edlén obtains the 4f 3 F° term by assuming that 5g 3 G is hydrogen-like (absolute value 70500 cm⁻¹) and adopting Freeman's identification of the 4f 3 F° -5g 3 G group of lines. The listed value of 5g 3 G has been adjusted to fit Edlén's adopted value of 4f 3 F°.

The estimated value of 3d 3F° is included in the table in brackets.

- L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (T) (C L)
- B. Edlén, Zeit. Phys. 98, 561 (1936). (I P) (C L)

N iv

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Leve	1	Interval
2s ¹ S ₀	282	2s ² ¹ S	0	0		3d′ ³F	2p(2P°)3d	3d ³F°	2, 3, 4	[499851]	+x	
$2prac{{}^{3}{ m P}_{0}}{{}^{3}{ m P}_{1}}$	2s(2S)2p	2p ³P°	0	67136.4+x 67199.6+x	63. 2	4p 3P	2s(2S)4p	4p 3P°	0, 1, 2	503625	+x	
${}^{3}P_{2}^{1}$			2	67343.8+x	144. 2	3d' ³ D ₁ ³ D ₂	2p(2P°)3d	3d ³D°	1 2	505487 505518	$+x \\ +x$	31
2p ¹ P ₁	2s(2S)2p	2p ¹P°	1	130695		$^{3}\mathrm{D}_{3}^{2}$			3	505561	+x	43
$2p'{}^3 ext{P}_0\ {}^3 ext{P}_1$	$2p^2$	2p² ³P	0	175463.5+x $175536.7+x$	73. 2	3d′ ¹F ₃	2p(2P°)3d	3d ¹ F°	3	506292		
$^{3}P_{2}^{1}$			2	175661.5 + x	124. 8	4p ¹ P ₁	2s(2S)4p	4p ¹P°	1	507022		
$2p'$ $^{1}\mathrm{D}_{2}$	$2p^2$	$2p^2$ ¹ D	2	188885			2s(2S)4d	4d 3D	1 2			
2p′ ¹S ₀	2 p²	$2p^2$ $^1\mathrm{S}$	0	235370		$4d \ ^3\mathrm{D}_3$			3	511384	+x	
3s ³ S ₁	2s(2S)3s	3s 3S	1	377206+x		3d′ ³ P ₂ ³ P ₁	2p(2P°)3d	3d P°	2	511440 511493	$+x \\ +x$	-53
3s ¹ S ₀	2s(2S)3s	3s ¹ S	0	388858					Ô	011400	, 20	
$3p$ $^{1}P_{1}$	2s(2S)3p	3p ¹P°	1	404521		4d ¹ D ₂	2s(2S)4d	4d ¹D	2	514638		
$rac{3p}{^3 ext{P}_0} \ ^{3 ext{P}_1} \ ^{3 ext{P}_2}$	2s(2S)3p	3p ³P°	0 1 2	405893. 2+x 405909. 0+x 405944. 4+x	15. 8 35. 4	$4f {}^3F_2 \over {}^3F_3 \over {}^3F_4$	2s(2S)4f	4f ³F°	2 3 4	516631 516639 516650	$\begin{array}{c} +x \\ +x \\ +x \end{array}$	8 11
$3d {}_{3}^{3}D_{1}$	2s(2S)3d	$3d$ $^3\mathrm{D}$	1	419967. 8+x	3. 5	3d′ ¹P₁	2p(2P°)3d	3d ¹P°	1	519414		
$^3\mathrm{D}_2 \ ^3\mathrm{D}_3$			3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8, 1	4f ¹ F ₃	2s(2S)4f	4f ¹F°	3	521868		
$3d$ $^1\mathrm{D}_2$	2s(2S)3d	3d ¹D	2	429158		5p ¹ P ₁	2s(2S)5p	5p ¹P°	1	550218		
$3s' {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	2p(2P°)3s	3s ³P°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	$\begin{array}{c} 465223.\ 0+x \\ 465300.\ 6+x \\ 465463.\ 4+x \end{array}$	77. 6 162. 8	5d ³ D ₃	2s(2S)5d	5d 3D	1 2 3	552731	+x	
3s' 1P1	2p(2P°)3s	3s ¹P°	1	473032		5g ³G	2s(2S) 5g	5g ³ G	3, 4, 5	554419	+x	
3p' ¹ P ₁	2p(2P°)3p	3p ¹P	1	480880			2s(2S)6d	6d ³D	1			
$3p'$ $^3\mathrm{D}_2$	2p(2P°)3p	3p 3D	$\frac{1}{2}$	484394 +x		$6d$ $^3\mathrm{D}_3$			3	574940	+x	
5p $^{5}\mathrm{D}_{3}^{2}$			3	$\begin{vmatrix} 484394 & +x \\ 484525 & +x \end{vmatrix}$	131	4p' 1D2	2p(2P°)4p	4p ¹D	2	591043		
3p' 3S ₁	2p(2P°)3p	3p 3S	1	487542 + x		$4d'{}^3{ m D}_{12}{}^3{ m D}_3$	2p(2P°)4d	4d ³D°	1, 2	593665 593704	$+x \\ +x$	39
3p' ³ P ₁	2p(2P°)3p	3p 3P	0	494240 +x		103	N v (2S ₁₄)	Limit	0	624851	Tw	
3p $^{3}P_{2}$			2	$\begin{vmatrix} 494240 & +x \\ 494338 & +x \end{vmatrix}$	98		2p(2P°)5d	5d 3D°	1	024001		
$3d'$ $^1\mathrm{D}_2$	2p(2P°)3d	3d ¹D°	2	498315		5d' 3D ₃	2p(-1 -) 5a	3a D	2 3	69/100	_1 ~-	
$3p'$ 1D_2	2p(2P°)3p	3p ¹D	2	499708		$a \cdot D_3$			3	634198	+x	
			1						1	1		

May 1946.

Config. 1s ² +		Observed '	Terms	
$2s^2$ $2s(^2S)2p$	$\begin{cases} 2s^2 {}^{1}S \\ 2p {}^{3}P^{\circ} \\ 2p {}^{1}P^{\circ} \end{cases}$			
$2p^2$	$ \begin{vmatrix} 2p & P^2 \\ 2p^2 & P \\ 2p^2 & P \end{vmatrix} = 2p^2 & 1D $			
	ns (n≥3)	np (n≥3)	$nd (n \ge 3)$	
2s(2S)nx	{ 3s 3S 3s 1S	3, 4p ³ P° 3–5p ¹ P°	3-6 <i>d</i> ³ D 3, 4 <i>d</i> ¹ D	4f ³F° 5g ³G
2p(2P°)nx	{ 3s 3P° 3s 1P°	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3d ³ P° 3-5d ³ D° 3d ¹ F°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

Nv

(Li I sequence; 3 electrons)

Z=7

Ground state 1s2 2s 2S14

28 2S_{1/4} 789532.9 cm⁻¹

I. P. 97.863 volts

Both Edlén and Cady have published analyses of this spectrum. Edlén has recently extended the earlier work and has generously furnished his revised term list in manuscript form. The observed term values in the table are from this unpublished list.

Edlén's extrapolated intervals and the term values for higher series members based on his calculations from the series formula are entered in brackets in the table. These have been taken from his 1933 and 1934 papers.

- W. Cady, Phys. Rev. 44, 821 (1933). (T) (C L)
- B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 41 (1934). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (I P) (T)

N v N v

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2s {}^2\mathrm{S}_1$ $2p {}^2\mathrm{P}_1$	2s 2p	2s ² S 2p ² P°	1/2 1/2 1/2	0. 0 80464. 9	258. 4	6GH	6g, 6h	6g ² G, etc.	3½ to 5½	[713335]	
$\begin{bmatrix} ^{2}\mathrm{P}_{2} \\ 3s \ ^{2}\mathrm{S}_{1} \end{bmatrix}$	38	3s 2S	1½	80723.3 456134		7S	78	7s 2S	1/2	[731432]	
3p ² P ₁ 3P ₂	3p	3p 2P°	1½ 1½	477777. 2 477851. 4	74. 2	7P	7p	7p 2P°	1½	32993	
$3d \stackrel{^2\mathrm{D}_2}{^2\mathrm{D}_3}$	3d	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	484403 484427	[24]	7D	7 <i>d</i>	7d 2D	$\left\{egin{array}{c} 1\frac{1}{2} \ 2\frac{1}{2} \end{array} ight.$	[733516]	
4s ² S ₁	48	4s 2S	1/2	606337		7 F	7 <i>f</i>	7f 2F°	$\left\{egin{array}{c} 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	733547]	
4p ² P ₂	4 <i>p</i>	4p 2P°	11/2	} 61515 0	[32]	7GHI	7g, etc.	7g 2G, etc.	$ \begin{cases} 3\frac{1}{2} \\ \text{to} \\ 6\frac{1}{2} \end{cases} $	[733552]	
$4d$ $^2\mathrm{D}_3$	4d	$4d$ $^{2}\mathrm{D}$	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	617905	[10]	88	88	8s 2S	1/2	[745260]	
	58	5s 2S	1/2	673882		8P	8 <i>p</i>	8p 2P°	{ ½ 1½ 1½	[746311]	
5p ² P ₂	5p	5p 2P°	{ ½ 1½ 1½	678297	[16]	8D	8 <i>d</i>	8d 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} [746649]	
5d ² D ₃	5d	$5d$ $^2\mathrm{D}$	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	679725	[5]	8F	8 <i>f</i>	8f 2F°	$\left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	\ \} [746670]	
6S	6s	6s 2S	1/2	[709947]						1	
6 <i>p</i> ² P	6p	6 <i>p</i> ² P°	{ ½ 1½ 1½	712464		8GHIK	8g, etc.	8g ² G, etc.	$ \begin{cases} 3\frac{1}{2} \\ \text{to} \\ 7\frac{1}{2} \end{cases} $	[746674]	
6d 2D	6d	6d ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	713289			N VI (¹S₀)	Limit		789532. 9	
6F	6 <i>f</i>	6f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	713327]			14 41 (-130)	Dillett	, ,	103902. 3	

September 1947.

N vi

(He I sequence; 2 electrons)

Z=7

Ground state 1s2 1S0

 $1s^2$ 1S_0 4452800 \pm 500 cm⁻¹.

I. P. 551.925 ± 0.062 volts

Tyrén has observed the first three members of the singlet series. They are in the region from 23 A to 28 A. He lists also one intersystem combination—a line at 29.084 A classified as $1s^2$ $^1S_0-2p$ $^3P_1^\circ$. His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

Edlén has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The 2s ^3S-2p 3P ° combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

- F. Tyrén, Nova Acta Reg. Soc. Sci Uppsala [IV] 12, No. 1, 24 (1940). (I P) (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

N VI

N vi

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s² 1s 2s	1s ² ¹S 2s ³S	0	0 [3385890]		1s 3p 1s 4p	3p ¹P° 4p ¹P°	1	4016390 4206810	
1s 2p	2p ³P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	[3438270] 3438280 [3438570]	[10] [290]	N vii (2S½)	Limit		4452800	
1s 2p	2 <i>p</i> ¹P°	1	3473790						

September 1947.

N VII

(H sequence; 1 electron)

Z=7

Ground state 1s 2S14

 $1s\ ^2S_{\frac{1}{2}}\ 5379860\ cm^{-1}$

I. P. 666.83 volts

The first Lyman line has been observed by Tyrén. J. E. Mack has calculated the terms in the table, "using $R_{\rm N^{14}}$ =109733.004 and Λ =0.040. The series limit of N¹⁵ is higher by 14.0 cm⁻¹ than the value given here."

REFERENCES

- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

N VII

Config.	Desig.	J	Level	Interval
18	1s ² S	1/2	0	
$egin{array}{c} 2p \ 2s \ 2p \end{array}$	$2s\ ^2{ m S} rac{2p\ ^2{ m P}^{\circ}}{2p\ ^2{ m P}^{\circ}}$	1/2 1/2 1/2 1/2	4034535 4034605 4035412	70 876. 9
3s, etc.	3s ² S, etc.	½, etc.	4782035 to 381	
4s, etc.	4s ² S, etc.	½, etc.	5043625 to 789	
	∞=Limit		5379860	

February 1949.

OXYGEN

01

8 electrons

Z=8

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^4$ 3P_2 **109836.7** cm⁻¹

I. P. 13.614 volts

01

Edlén has published a detailed analysis of this spectrum in which he has revised and extended the earlier work by others. The terms have all been taken from his paper. For the higher series members not included in his main term table, ns $^5S^{\circ}$ and ns $^3S^{\circ}$ (n=8 to 11), and nd $^5D^{\circ}$ and nd $^3D^{\circ}$ (n=8 to 10) the observed values taken from his discussion of the series formulas (p. 15), in which he compares observed and calculated values, are listed below.

Two terms not derived from observed lines are entered in brackets: 11s 5 S°, which is calculated from the series formula and 2s $2p^5$ 1 P°, which is extrapolated.

Intersystem combinations connect the terms of the singlet, triplet, and quintet systems. Kiess and Shortley have observed g values for four levels as follows:

Desig.	Obs. g
3s 5S2	1.999
3p ⁵ P ₁	2.506
⁵ P ₂ ⁵ P ₂	1.836 1.666

REFERENCES

- A. Fowler, Report on Series in Line Spectra p. 166 (Fleetway Press, London, 1922). (T) (C L)
- R. Frerichs, Phys. Rev. 34, 1239 (1929); 36, 398 (1930). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 266 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- K. R. More and C. A. Rieke, Phys. Rev. 50, 1054 (1936). (Standard wavelengths)
- B. Edlén, Kungl. Svenska Vetenskapsakad. Handl. [3] 20, No. 10, 31 pp. (1943). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

01

C. C. Kiess and G. Shortley, J. Research Nat. Bur. Std. 42, 190, RP1961 (1949). (Z E)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p4 3P	2 1 0	0. 0 158. 5 226. 5	-158. 5 -68. 0	2s ² 2p ³ (⁴ S°)4s 2s ² 2p ³ (⁴ S°)3d	4s 3S° 3d 5D°	1 4 3, 2	96225. 5 97420. 24 97420. 37	-0. 13
2s ² 2p ⁴	$2p^4$ ¹ D	2	15867. 7				2, 1, 0	97420.50	-0. 13
$2s^2 \ 2p^4$	2p4 1S	0	33792. 4		2s ² 2p ³ (4S°)3d	3d ³D°	3, 2, 1	97488. 14	
2s ² 2p ³ (4S°)3s	38 5S°	2	73767. 81		$2s^2 \ 2p^3({}^4{ m S}^\circ)4p$	4p ⁵ P	1 2	99092. 64 99093. 31	0. 67
2s ² 2p ³ (4S°)3s	38 3S°	1	76794. 69				3	99094. 52	1. 21
$2s^2 \ 2p^3(^4S^\circ)3p$	3p ⁵ P	1	86625. 35 86627. 37	2. 02 3. 67	$2s^2 \ 2p^3 ({}^4{ m S}^\circ) 4p$	4p ³P	2, 1, 0	99680. 4	
		$\frac{2}{3}$	86631. 04	3. 67	2s ² 2p ³ (² D°)3s	3s′ ³D°	3 2	101135.04 101147.21	-12. 17
$2s^2 \ 2p^3(^4{ m S}^\circ)3p$	3p 3P	2	88630. 84 88630. 30	0. 54			1	101155. 10	-7. 89
		Ō	88631. 00	-0.70	2s ² 2p ³ (4S°)5s	58 ⁵ S°	2	102116. 21	
$2s^2 \ 2p^3(^4S^\circ)4s$	48 ⁵ S°	2	95476. 43		2s ² 2p ³ (4S°)5s	58 3S°	1	102411. 65	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s² 2p³(²D°)3s	3s′ ¹D°	2	102661. 63		2s ² 2p ³ (² D°)3p	3p' ¹D	2	116630. 51	
2s² 2p³(4S°)4d	4d ⁵ D°	4 3	102865.09		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 4s$	48′ ¹D°	2	122798. 7	
		$\begin{bmatrix} & 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$			$2s^2\ 2p^3(^2\mathrm{D^o})3d$	3d′ ³P°	2 1 0	123296. 6 123355. 2 123386. 9	-58. 6 -31. 7
$2s^2 \ 2p^3(^4\mathrm{S}^\circ)4d$	4d ³D°	3, 2, 1	102908. 14		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³F°	4	124213. 18	
$2s^2 \ 2p^3(^4S^\circ)5p$	$5p$ $^3\mathrm{P}$	2, 1, 0	103869. 4	Ì			$\begin{bmatrix} 4\\3\\2 \end{bmatrix}$		
2s ² 2p ³ (4S°)6s	6s ⁵S°	2	105019. 0		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ¹G°	4	124238. 21	
2s ² 2p ³ (4S°)6s	6s ³ S°	1	105164.90		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³G°	5	124239. 66	-18. 71
2s ² 2p ³ (4S°)5d	5d ⁵D°	4 to 0	105385. 3				$\frac{4}{3}$	124258.37 124252.52	5. 85
2s ² 2p ³ (4S°)5d	5d ³D°	3, 2, 1	105408. 58		$oxed{2}_{\mathbf{S}^2\ 2p^3(^2\mathrm{D}^\circ)3d}$	3d′ ¹F°	3	124326. 32	
2s ² 2p ³ (4S°)6p	6p ³ P	2, 1, 0	105911. 3		$oxed{2s^2 2p^3 (^2\mathrm{D}^\circ) 4p}$	$4p'$ $^3\mathrm{D}$	3	125774. 51	7 FC
2s ² 2p ³ (4S°)7s	7s ⁵ S°	2	106545. 1			•	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	125782. 09 125787. 14	-7.58 -5.05
2s ² 2p ³ (4S°)7s	7s ³S°	1	106627. 9		2 s $2p^5$	2p⁵ ³P°	2	126266. 48	70.44
2s ² 2p ³ (4S°)6d	6d ⁵D°	4 to 0	106751. 2		•	•	1 0	126339. 92 126383. 44	-73.44 -43.52
2s ² 2p ³ (⁴ S°)6d	6d ³D°	3, 2, 1	106765, 8		$oxed{2 ext{s}^2\ 2p^3(^2 ext{P}^\circ)3p}$	3 <i>p</i> ′′ ³D	3	127281. 85	
2s ² 2p ³ (4S°)8s	8s ⁵ S°	2	107445. 4			-F	$\frac{2}{1}$	127287. 62 127290. 93	-5.77 -3.31
2s ² 2p ³ (4S°)8s	8s 3S°	1	107497.1		$oxed{2s^2\ 2p^3(^2\mathrm{P}^\circ)3p}$	3 <i>p</i> ′′ ¹P	1	127667. 85	
2s ² 2p ³ (4S°)7d	7d ⁵ D°	4 to 0	107573. 1		$oxed{2\tilde{s}^2 \ 2p^3 (^2{ m P}^{\circ}) 3p}$	3p'' ¹D	2	128595. 02	
2s ² 2p ³ (4S°)7d	7d ³ D°	3, 2, 1	107582.7		$2s^2 2p^3 (^2D^\circ)5s$	58′ ¹D°	2	129134 ±	
2s ² 2p ³ (4S°)9s	9s ⁵ S°	2	108021. 4		$oxed{2s^2 \ 2p^3(^2{ m D}^{\circ})4d}$	4d′ ³F°	4	129666.55	
2s ² 2p ³ (4S°)9s	9s 3S°	1	108057. 6	to the management of the	25 2p (15)40	14 1	3 2	123000.55	
2s ² 2p ³ (4S°)8d	8d ⁵ D°	4 to 0	108105. 7		$oxed{2s^2\ 2p^3(^2\mathrm{D}^\circ)4d}$	4d′ ¹G°	4	129679. 49	
2s ² 2p ³ (4S°)8d	.8d 3D°	3, 2, 1	108105. 7		$2s^{2} 2p^{3} (^{2}D^{\circ}) 4d$	4d′ 3G°	5	129680. 14	
$2s^2 2p^3 (^4S^\circ) 10s$	10s ⁵ S°	3, 2, 1	108110.0		25° 2p° (°15')4a	4a - G	$\frac{3}{4}$	129699. 16 129693. 08	-19.02 6.08
2s ² 2p ³ (4S°)10s	10s 3S°	1	108436. 1		0-2 0-3/2T)0\43	4 JL 1770			
2s ² 2p ³ (4S°)9d	9d ⁵ D°	4 to 0	108470. 2		$2s^2 2p^3(^2D^\circ)4d$	4d′ ¹F°	3	129736.60	
2s² 2p³(4S°)9d	$9d~^3\mathrm{D}^{\circ}$	3, 2, 1	108477.8		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ)4d$	4d′ ³P°	$\frac{2}{1}$	129969. 60 129979. 04	-9.44 -5.11
2s ² 2p ³ (⁴ S°)11s	11s ⁵ S°	2	[108688. 4]		0.00.100000	0.44.0	0	129984. 15	0.22
2s ² 2p ³ (4S°)11s	11s 3S°	1	108707. 3		2s ² 2p ³ (² P°)3p	3p'' 1S	0	130943. 21	
2s ² 2p ³ (4S°)10d	10 <i>d</i> ⁵ D°	4 to 0	108731.5		2s ² 2p ³ (² D°)6s	68′ ¹D°	2	131927 ±	
2s ² 2p ³ (4S°)10d	10 <i>d</i> ³D°	3, 2, 1	108734. 4		$2s^2 2p^3(^2\mathrm{D}^\circ)5d$	5d′ ³F°	$\frac{4}{3}$	132190.7 ±	
O II (4Si ₁₄)	Limit		109836. 7 113294. 42		0.00.000001	* * * * * * * * * * * * * * * * * * * *	2		
2s ² 2p ³ (² D°)3p	$3p'$ $^3\mathrm{D}$	3 2	113294. 55	$\begin{vmatrix} -0.13 \\ -3.46 \end{vmatrix}$	2s ² 2p ³ (² D°)5d	5d′ ¹G° 5d′ ³G°	4	132197.6 ±	
2s² 2p³(²D°)3p	3p′ ³F	1	113298. 01 113714. 06		$2s^2 \ 2p^3 (^2\mathrm{D}^\circ)5d$	5a • G	5 4	132198. 1 132217. 8	-19.7
28- 2p-(-D-)3p	3 <i>p</i> -1	3	113721. 06	$\begin{bmatrix} -7.00 \\ -5.75 \end{bmatrix}$	202 2m3/2D0\5d	5d′ ³P°	3	100010 1	
2s² 2p³(²P°)3s	3s'' ³P°	$egin{array}{c} 2 \\ 2 \end{array}$	113726. 81 113910. 20		$2s^2 2p^3(^2\mathrm{D}^\circ)5d$	5u -1	2, 1 0	132310 ±	
	00 1	1 0	113920. 63 113926. 80	$ \begin{array}{c c} -10.43 \\ -6.17 \end{array} $	2s ² 2p ³ (2D°)7s	7s′ ¹D°	2	133413 ±	
$2s^2 2p^3(^2\mathrm{D}^\circ)3p$	3 <i>p′</i> ¹F	3	113995. 81		$2s^2 2p^3(^2\mathrm{D}^\circ)6d$	6d′ ³P°	2, 1 0	133618 ±	
2s ² 2p ³ (² P°)3s	3s'' ¹P°	1	115918.30		2s 2p ⁵	2p ⁵ ¹P°	1	[189837]	

August 1947.

Config. 1s ² +					0	bserved Te	rms				
$2s^2 \ 2p^4$ $2s \ 2p^5$	{ 2p4 1S	2p ⁴ ³ P 2p ⁵ ³ P°	$2p^4$ $^1\mathrm{D}$								
		$ns (n \ge 3)$		$np \ (n \ge 3)$				nd (n≥3)			
$2s^2 \ 2p^3(^4\mathrm{S}^\circ)nx$	3-10s ⁵ S° 3-11s ³ S°				$^{3, 4p ^5\mathrm{P}}_{3-6p ^3\mathrm{P}}$				3-10d ⁵ D° 3-10d ³ D°		
2s ² 2p ³ (² D°)nx'	{		3s' ³ D° 3-7s' ¹ D°			$^{3,4p'^{3}\mathrm{D}}_{3p'^{1}\mathrm{D}}$	$\frac{3p'}{3p'}$ 3 F	3-6d′ ³P°		3-5d′ ³F° 3, 4d′ ¹F°	3–5d′ ³G° 3–5d′ ¹G°
2s ² 2p ³ (² P°)nx''	{	3s'' ³ P° 3s'' ¹ P°		3p'' ¹S	3 <i>p</i> ′′ ¹P	$3p^{\prime\prime} {}^{3}\mathrm{D} \ 3p^{\prime\prime} {}^{1}\mathrm{D}$					

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

0 II

(N i sequence; 7 electrons)

Z=8

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}$

 $2p^3 \, {}^4S_{1\frac{1}{2}}^{\circ} \, 283550.9 \, \, \mathrm{cm}^{-1}$

I. P. 35.146 volts

The terms are from Edlén's publications. He has summarized the earlier work on analysis by others and extended it by his observations in the far ultraviolet.

Edlén states that a number of the 5f-terms are very uncertain. These are followed by a "?" in the table. His estimated values of three terms from the (1S) limit in O III are given in brackets.

Mihul lists the observed Zeeman effects for 111 lines, which in general agree well with the theoretical patterns for the adopted classifications. From his data a number of g-values could be calculated, but many of the observed patterns are unresolved.

Although the analysis of O II is fairly complete, the measures by different observers are discordant. The term values could be greatly improved by a set of homogeneous observations. A monograph containing all classified lines of this spectrum is also needed.

The doublet and quartet terms are connected by intersystem combinations, but the sextet terms are not so connected with the rest. The relative uncertainty, x, may be a few hundred cm⁻¹.

- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)
- A. Fowler, Proc. Roy. Soc. (London) [A] 110, 476 (1926). (T) (C L)
- C. Mihul, Ann. de Phys. [10] 9, 294 (1928). (T) (C L) (Z E)
- H. N. Russell, Phys. Rev. 31, 27 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 136 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 93, 728 (1935). (T) (C L)

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 4S ₂	2s ² 2p ³	2p³ 4S°	1½	0.0		$3d_{{}^{2}\mathrm{P}_{2}^{2}\mathrm{P}_{1}}$	2s ² 2p ² (³ P)3d	3d ² P	1½ ½ ½	233430. 10 233544. 09	-113.99
$^{2p}^{^{2}\mathrm{D}_{3}}_{^{^{2}\mathrm{D}_{2}}}$	$2s^2 2p^3$	$2p^3\ ^2\mathrm{D}^{\circ}$	$2\frac{1}{2}$ $1\frac{1}{2}$	26808. 4 26829. 4	-21.0	$3d_{{}^{2}\mathrm{D}_{2}\atop {}^{2}\mathrm{D}_{3}}$	$2s^2 \ 2p^2(^3P)3d$	3d ² D	1½ 2½	234402. 48 234454. 45	51. 97
$^{2p}^{^{2}\mathrm{P_{2}}}_{^{^{2}\mathrm{P_{1}}}}$	$2s^2 2p^3$	2p³ 2P°	1½ ½ ½	40466. 9 40468. 4	-1.5	4s ⁴ P ₁ ⁴ P ₂	2s ² 2p ² (³ P)4s	4s 4P	1½ 1½ 1½	238626. 32 238731. 54	105. 22
$2p'{}^4 ext{P}_3\ {}^4 ext{P}_2\ {}^4 ext{P}_1$	2s 2p4	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	119837. 7 120001. 1 120083. 5	$ \begin{array}{c c} -163.4 \\ -82.4 \end{array} $	4P ₃ 4s ² P ₁	$2s^2 \ 2p^2(^3P)4s$	4s ² P	$2\frac{1}{2}$	238892. 96 240328. 75	161. 42
$2p'{}^{2}{ m D}_{3} \ {}^{2}{ m D}_{2}$	2s 2p4	$2p^4$ ² D	2½ 1½	165987. 7 165996. 0	-8.3	38' 6S ₃	2s 2p ³ (⁵ S°)3s	38"" 6S°	$egin{array}{c} langle rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	240516.28 $245395.5 +x$	187. 53
3s ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s² 2p²(³P)3s	3s 4P	1½ 1½ 2½	185235. 36 185340. 68 185499. 20	105. 32 158. 52	$4p \ ^4\mathrm{D_1} \ ^4\mathrm{D_2} \ ^4\mathrm{D_3}$	$2s^2 2p^2(^3P)4p$	4p 4D°	1½ 1½ 2½ 2½ 3½	245767. 80 245816. 29 245902. 85	48. 49 86. 56 126. 10
$3s$ $^{2}P_{1}$ $^{2}P_{2}$	$2s^2 \ 2p^2(^3{ m P})3s$	3s ² P	1½ 1½	188888. 38 189 0 68. 3 7	179. 99	$4D_4$ $4p ^2D_2$	$2s^2 \ 2p^2(^3{ m P})4p$	4p 2D°	$egin{array}{c} 3\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	246028. 95 248009. 1	176. 2
2p' 2S ₁	2s 2p4	$2p^4$ ² S	1/2	195710. 4		$^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^3P)4p$	4p 2P°		248185. 3 248425. 35	
$3p$ $^2\mathrm{S}_1$	$2s^2 \ 2p^2(^3\mathrm{P}) \ 3p$	3p 2S°	1/2	203942. 21		$4p\ ^{2}P_{1}\ ^{2}P_{2}$	28 2p (1)±p	1p -1	1½	248514. 23	88. 88
$3p\ ^4{ m D}_1\ ^4{ m D}_2\ ^4{ m D}_3$	2s ² 2p ² (³ P)3p	3p 4D°	1½ 1½ 2½ 3½	206730. 80 206786. 34 206877. 90	55. 54 91. 56		$2s^2 \ 2p^2(^1\mathrm{S})3p$	3p" 2P°	11/2	}[<i>250251</i>]	
$^4\mathrm{D}_4$	0.00000000	0.4.07		207002. 52	124. 62	$\overline{3d}$ ${}^2\mathrm{F}_4$ ${}^2\mathrm{F}_3$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d′ ² F	3½ 2½	251220. 9 251224. 1	-3.2
$\overline{3s}$ $^{2}\mathrm{D}_{3}$ $^{2}\mathrm{D}_{2}$	$\begin{cases} 2s^2 \ 2p^2(^1D)3s \end{cases}$	3s′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	206971. 3 206972. 3	-1.0	$\overline{3d}^{2} \operatorname{G}_{5}^{5}$	$2s^2 \ 2p^2(^1{ m D}) 3d$	3d′ 2G	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	252607. 7 252608. 9	-1.2
$3p {}^{4}P_{1} \ {}^{4}P_{2} \ {}^{4}P_{3}$	2s ² 2p ² (³ P)3p	3p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	208346. 17 208392. 27 208484. 24	46. 10 91. 97	$\overline{3d}\ ^2\mathrm{D}_2\ ^2\mathrm{D}_3$	$oxed{2s^2\ 2p^2(^1\mathrm{D})3d}$	3d′ 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	253046. 23 253048. 3 5	2. 12
$3p\ ^2{ m D}_2^{ m 2}{ m 2D}_3^{ m 2}$	$2s^2\ 2p^2(^3\mathrm{P})3p$	3p ²D°	$1\frac{1}{2}$ $2\frac{1}{2}$	211521. 98 211712. 66	190. 68	$\overline{3d}\ ^2\mathrm{P_1}\ ^2\mathrm{P_2}$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d′ ² P	1½ 1½	253789. 51 253791. 87	2. 36
3p 4S ₂	$2s^2 \ 2p^2(^3P)3p$	3p 4S°	1½	212161.94			$2s^2 \ 2p^2(^3{ m P})4d$	4d 4F	1½		
$2p'$ ${}^{2}P_{2}$ ${}^{2}P_{1}$	2s 2p4	2p4 2P	1½ ½	212593. 2 212762. 4	-169.2	4d 4F ₄ 4F ₅			$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	254481. 5 254590. 7	109. 2
$3p {}^{2}P_{1} \ {}^{2}P_{2}$	$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 2P°	1½ 1½	214169.74 214229.48	59. 74	4d 4D _{2,3}	$2s^2 \ 2p^2(^3{ m P})4d$	4d 4D	$\left\{ \begin{array}{c} \frac{1}{1} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \frac{3}{2} \end{array} \right\}$	}254895. 2	
	$2s^2 \ 2p^2({}^1\mathrm{S})3s$	3s'' 2S	1/2	[226851]					31/2	J	
3p 2F ₃ 2F ₄	$2s^2 \ 2p^2(^1{ m D})3p$	3p′ 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	228723. 3 228746. 9	23. 6	38′ 4S ₂	1 ' '	3s''' 4S°	1½	254982. 2	
$\overline{3p}\ ^2\mathrm{D_3}\ ^2\mathrm{D_2}$	$2s^2 \ 2p^2(^1\mathrm{D})3p$	3p′ 2D°	2½ 1½	229946. 6 229968. 2	-21.6	4d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	$2s^2 \ 2p^2(^3P)4d$	4d 4P	2½ 1½ ½ ½	255104. 6 255140. 9 255162. 6	$\begin{bmatrix} -36.3 \\ -21.7 \end{bmatrix}$
$3d\ ^4\mathrm{F}_2\ ^4\mathrm{F}_3$	$2s^2\ 2p^2(^3\mathrm{P})3d$	$3d$ $^4{ m F}$	1½ 2½ 3½ 4½	231296. 05 231350. 08	54. 03 77. 91	$4d\ ^{2}\mathrm{P}_{2}\ ^{2}\mathrm{P}_{1}$	$2s^2 2p^2(^3\mathrm{P})4d$	4d ² P	11/2 1/2	255172. 5 255281. 4	-108.9
⁴F₄ ⁴F₅				231427. 99 231530. 26	102. 27	4d ² F ₃ ² F ₄	$2s^2 \ 2p^2(^3{ m P})4d$	4d 2F	2½ 3½	255301. 3 255465. 2	163. 9
$3d\ ^4 ext{P}_3\ ^4 ext{P}_2\ ^4 ext{P}_1$	$2s^2 \ 2p^2(^3\mathrm{P}) \ 3d$	3d ⁴ P	2½ 1½ ½ ½	232462. 83 232536. 06 232602. 57	-73. 23 -66. 51	$\overline{3d}$ ${}^2\!\mathrm{S}_1$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d′ 2S	1/2	255622. 4	
$\overline{3p} {}_{^2\mathrm{P_1}}^{^2\mathrm{P_1}}$	$2s^2 \ 2p^2(^1\mathrm{D})3p$	3p′ ² P°	1½ 1½	232480. 1 232526. 7	46. 6	$4f {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	$2s^2 \ 2p^2(^3\mathrm{P})4f$	4f 2D°	2½ 1½	255689. 6 255812. 2	-122.6
3d ⁴ D ₁ ⁴ D ₂ ² D ₃ ⁴ D ₄	28 ² 2p ² (³ P)3d	3d 4D	1½ 1½ 2½ 3½	232711. 70 232745. 98 232747. 51 232753. 86	34. 28 1. 53 6. 35	4f ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	2s ² 2p ² (³ P)4f	4f ⁴ D°	3½ 2½ 1½ ½ ½	255691. 4 255813. 1 255913 ± 255912. 0	-121.7 -100 1
$3d {}^{2}{ m F_{3}} \ {}^{2}{ m F_{4}}$	2s ² 2p ² (³ P)3d	3d ² F	2½ 3½	232796. 27 232959. 26	162. 99						

O 11—Continued

Eldén	Config.	Desig.	J	Level	Interval	Eldén	Config.	Desig.	J	Level	Interval
4f 4Go 4G4 4G5	$2s^2 \ 2p^2(^3\mathrm{P})4f$	4f 4G°	2½ 3½ 4½ 5½	255755. 8 255759. 4 255827. 6	3. 6 68. 2	5f ² G ₄ ² G ₅	2s ² 2p ² (³ P)5f	5f 2G°	3½ 4½ 4½	265763. 0 265930. 2	167. 2
⁴G ₆				255977.5	149. 9	$5d$ $^2\mathrm{D}_3$	$2s^2 \ 2p^2(^3P)5d$	5 <i>d</i> ² D	1½ 2½	265856	
4f ² G ₄ ² G ₅	$oxed{2s^2 \ 2p^2(^3\mathrm{P})4f}$	4f 2G°	$\begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	255829. 4 25598 3. 6	154. 2	$5f_{\stackrel{4}{4}F_2}$	$2s^2 \ 2p^2(^3\mathrm{P})5f$	5f 4F°	1½ 2½	265928?	33
$^{ m 4}d^{ m 2}{}^{ m 2}{ m D_{3}}$	$2s^2\ 2p^2(^3\mathrm{P})4d$	4 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	255843. 1 255897. 2	54. 1	⁴ F ₃ ⁴ F ₄ ⁴ F ₅			$\begin{array}{c c} 272 \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	265961? 265985 265999	24 14
4f 4F ₂ 4F ₃	$2s^2~2p^2(^3\mathrm{P})4f$	4f 4F°	1½ 2½ 3½ 4½	256083. 5 256087. 6	4. 1 35. 5	$5f{}^{2}{ m F}_{3}^{2}{ m F}_{4}^{2}$	$2s^2 \ 2p^2(^3P) 5f$	5f 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	265988? 265999?	11
⁴ F ₄ ⁴ F ₅			3½ 4½	256123. 1 256136. 2	13. 1	$3p^\prime {}^6 ext{P}_2 \ {}^6 ext{P}_3$	2s 2p³(⁵ S°)3p	3p''' ⁶ P	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{vmatrix} 267763.39 + a \\ 267770.85 + a \end{vmatrix}$. 7.40
$4f{}^{2}{ m F}_{3}{}^{2}{ m F}_{4}$	$2s^2 \ 2p^2(^3{ m P})4f$	4f 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	256125. 8 256143. 3	17. 5	6P ₄				267783. 40+a	
5s ⁴ P ₁ ⁴ P ₂	2s² 2p²(³P)5s	5s 4P	$egin{array}{c} langle rac{1}{2} \ 1rac{1}{2} \ 2rac{1}{2} \end{array}$	257693. 7 257797. 9	104. 2	4d ² F ₃ ² F ₄	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4d′ ² F	2½ 3½	274739. 2 274782. 4	43. 2
⁴ P ₃				257963. 8	165. 9	$\overline{4d}\ ^2\mathrm{D}_{23}$	$2s^2 \ 2p^2(^1\mathrm{D}) 4d$	4d′ 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	274920	
5 s $^{2}P_{1}$ $^{2}P_{2}$	2s² 2p²(³P)5s	5s ² P	1½ 1½	258408. 6 258601. 7	193. 1	$\overline{4d}\ ^2\mathrm{P}_{1\ 2}$	2s² 2p²(¹D)4d	4d′ ²P	{ ½ 1½	275611?	
$\overline{4s}$ $^2\mathrm{D_3}$ $^2\mathrm{D_2}$	$2s^2 \ 2p^2(^1D)4s$	48′ 2D	2½ 1½	259286. 2 259287. 0	-0.8	$\overline{4f}$ $^2\mathrm{G}$	$2s^2 \; 2p^2(^1{ m D})4f$	4f′ 2G°	$\begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
$5p {}^{4}\mathrm{D}_{2} \ {}^{4}\mathrm{D}_{3} \ {}^{4}\mathrm{D}_{4}$	$2s^2 \ 2p^2(^3\mathrm{P})5p$	5p ⁴ D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	260959 261042 261180	83 138	$\overline{4f}{}^2\mathrm{F}$	2s² 2p²(¹D)4f	4f′ 2F°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	275879. 6	
$5p$ $^4\mathrm{P}_2$	$2s^2 \ 2p^2(^3{ m P})5p$	5p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	261261.7			$2s^2 \ 2p^2(^1\mathrm{S})3d$	3d'' ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	[275951]	
⁴ P ₃				261354.3	92. 6	$\overline{4d}\ ^2\mathrm{S}_1$	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4d′ 2S	1/2	275997?	
$5p$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	$\left \begin{array}{cc} 2s^2 \; 2p^2 (^3{ m P}) 5p \\ \end{array}\right $	5p ² D°	1½ 2½	261697. 5 261869. 4	171. 9	$\overline{4f}{}^{2}\mathrm{D}$	$2s^2 \ 2p^2(^1D)4f$	4f′ 2D°	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	276066.3	
5d 4D2,3	2s ² 2p ² (³ P)5d	5d 4D	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{3}{2} \end{array} \right. $	265220. 3		$\overline{4f}$ $^2\mathrm{H}$	$2s^2\ 2p^2(^1\mathrm{D})4f$	4f′ 2H°	{ 4½ 5½	276109. 1	
						$\overline{4f}$ ² P	$2s^2 \ 2p^2(^1{ m D})4f$	4f′ 2P°	{ ½ 1½ 1½	276263. 9?	
5d ⁴ P ₃ ⁴ P _{1 2}	$2s^2 \ 2p^2(^3{ m P}) \ 5d$	5d 4P	2½ 1½ ½	265431. 5 265468. 2	-36.7	$\overline{5s}$ $^2\mathrm{D}_{23}$	$2s^2\ 2p^2(^1{ m D})5s$	5s' ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	278140	
$5d$ $^2\mathrm{F_4}$	$2s^2 2p^2(^3P)5d$	5d 2F	2½ 3½	265578?			O III (3P ₀)	Limit		283550.9	
5f ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	$2s^2 \ 2p^2(^3\mathrm{P})5f$	5f *D°	3½ 2½ 1½ ½	265639 265705? 265762? 265859?	-66 -57 -97	3d' ⁶ D ₅ ⁶ D ₄ ⁶ D ₃ ⁶ D ₂ ⁶ D ₁	2 ₈ 2p ³ (⁵ S°)3d	3d''' ⁶ D°	4½ 3½ 2½ 1½ ½	291895. 90+2 291896. 78+2 291898. 01+2 291899. 11+2 291899. 81+2	$\begin{bmatrix} -0.88 \\ -1.23 \\ -1.10 \\ -0.70 \end{bmatrix}$
5f ⁴ G ₃ ⁴ G ₄ ⁴ G ₅ ⁴ G ₆	2s ² 2p ² (³ P)5f	5f 4G°	2½ 3½ 4½ 5½	265665? 265691 265761 265925	26 70 164	4s′ ⁶ S ₃	2s 2p ³ (⁵ S°)4s	48''' ⁶ S°	2½	298849. 2 +	

December 1947.

OII OBSERVED TERMS*

Config. 1s ² +	Observed	l Terms
2s² 2p³ 2s 2p⁴	$\left\{egin{array}{cccccccccccccccccccccccccccccccccccc$	
	ns (n≥3)	$np \ (n \ge 3)$
$2s^2\ 2p^2(^3\mathrm{P})nx$ $2s^2\ 2p^2(^1\mathrm{D})nx'$ $2s\ 2p^3(^5\mathrm{S}^\circ)nx'''$	{ 3-5s ⁴ P 3-5s ² P 3-5s' ² D {3, 4s''' ⁶ S° 3s''' ⁴ S°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	nd (n≥3)	$nf\ (n \ge 4)$
$2s^2\ 2p^2(^3\mathrm{P})nx$ $2s^2\ 2p^2(^1\mathrm{D})nx'$ $2s\ 2p^3(^5\mathrm{S}^\circ)nx'''$	$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4, 5f ⁴ D° 4, 5f ⁴ F° 4, 5f ⁴ G° 4f ² D° 4, 5f ² F° 4, 5f ² G° 4f' ² P° 4f' ² D° 4f' ² F° 4f' ² G° 4f' ² H°

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

ОШ

(C 1 sequence; 6 electrons)

Z=8

Ground state 1s2 2s2 2p2 3P0

$2p^2$ 3P_0 443193.5 cm⁻¹

I. P. 54.934 volts

The terms are from the papers by Edlén. The singlet, triplet and quintet terms are connected by intersystem combinations. Edlén has kindly furnished some unpublished results for inclusion here, namely, that intersystem combinations with quintet terms indicate that his published absolute values of these terms should be decreased by 418 cm⁻¹. This correction has been incorporated into the tabular values of the quintet terms.

- C. Mihul, Ann. de Phys. [10] 9, 326 (1928). (T) (C L) (Z E)
- A. Fowler, Proc. Roy. Soc. (London) [A] 117, 317 (1928). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci Uppsala [IV] 9, No. 6, 115 (1934). (I P) (T) (C L) (G D)
- B. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L)B. Edlén, Naturwiss. 30, 279 (1942). (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (T)

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p²	2p ² ³P	0 1 2	0. 0 113. 4 306. 8	113. 4 193. 4	3s' ³ P ₀ ³ P ₁ ² P ₂	2s 2p ² (4P)3s	3s ³P	0 1 2	350026. 1 350122. 9 350302. 3	96. 8 179. 4
$rac{2p\ ^{1} ext{D}_{2}}{2p\ ^{1} ext{S}_{0}}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^2\ ^1{ m D}$ $2p^2\ ^1{ m S}$	2 0	20271. 0 43183. 5		$48 {}^{3}P_{0} \ {}^{3}P_{1} \ {}^{3}P_{2}$	2s ² 2p(² P°)4s	4s ³P°	0 1 2	356732 356838 357111	106 273
2p′ ⁵ S ₂	2s 2p³	2p³ 5S°	2	60312.1		48 ¹ P ₁	2s² 2p(²P°)4s	48 ¹P°	1	358667.4	
2p' 3D ₃	2s 2p³	$2p^3$ $^3\mathrm{D}^\circ$	3	120025. 4	-27. 2	3p′ 3S1	2s 2p2(4P)3p	3p 3S°	1	363266. 8	1
$^{3}\mathrm{D}_{2}$ $^{3}\mathrm{D}_{1}$			$\frac{2}{1}$	120052. 6 120058. 5	-5. 9	$3p' {}^{5}D_{0}$	2s 2p ² (4P)3p	3p ⁵D°	0	365515.76	34. 84
$2p'{}^3 ext{P}_2\ {}^3 ext{P}_1\ {}^3 ext{P}_0$	2s 2p³	2p³ ³P°	2 1 0	142381. 7 142382. 8 142396. 9	-1. 1 -14. 1	⁵ D ₂ ⁵ D ₃ ⁵ D ₄			1 2 3 4	365550. 60 365619. 12 365719. 16 365846. 46	68. 52 100. 04 127. 30
2p' 1D2	2s 2p³	$2p^3$ $^1\mathrm{D}^{\circ}$	2	187049. 4		4p ¹ P ₁	Zs ² 2p(2P°)4p	4p ¹P	1	365723. 9	
2p' 3S1	2s 2p³	2p³ 3S°	1	197086.7		$4p\ ^3{ m D_1} \ ^3{ m D_2}$	2s ² 2p(2P°)4p	$4p$ $^3\mathrm{D}$	$\frac{1}{2}$	366486. 91 366594. 01	107. 10
2p′ ¹P1	2s 2p³	2p³ ¹P°	1	210458.5		${}^{\natural}\mathrm{D}_{2}^{2}$			3	366801. 04	207. 03
3s ³ P ₀ ³ P ₁	2s ² 2p(2P°)3s	3s ³P°	0	267257. 29 267375. 65	118. 36	$4p$ $^3\mathrm{S}_1$	2s ² 2p(2P°)4p	4p 3S	1	367952. 20	
3s ¹ P ₁	2s² 2p(²P°)3s	3s ¹P°	1	267632. 59 273080. 07	256. 94	$3p' {}^{5}P_{1} \ {}^{5}P_{2} \ {}^{5}P_{3}$	2s 2p ² (4P)3p	3p ⁵ P°	1 2 3	368526.37 368583.63 368684.75	57. 26 101. 12
$2p^{\prime\prime}{}^3 ext{P}_2\ {}^3 ext{P}_1\ {}^3 ext{P}_0$	2p4	2p4 3P	2 1 0	283758. 9 283976. 6 284073. 3	-217. 7 96. 7	$4p\ ^3{ m P}_0\ ^3{ m P}_1\ ^3{ m P}_2$	2s ² 2p(2P°)4p	4p 3P	0 1 2	370326. 7 370415. 7 370524. 2	89. 0 108. 5
3p ¹ P ₁	2s ² 2p(2P°)3p	3 <i>p</i> ¹P	1	290956. 62		$4p$ $^1\mathrm{D}_2$	2s ² 2p(2P°)4p	4p 1D	2	370900. 6	
$3p ^3D_1$	2s² 2p(²P°)3p	3p 3D	1	293865. 26	136. 34	4p ¹S ₀	2s ² 2p(² P°)4p	4p 1S	0	373046. 2	
$^3\mathrm{D}_2^2$ $^3\mathrm{D}_3^2$			$\begin{vmatrix} 2\\3 \end{vmatrix}$	294001. 60 294221. 65	220. 05	$3p'\ ^3{ m D_1} \ ^3{ m D_2}$	2s 2p ² (4P)3p	3p ³D°	1 2	374575 374662.5	88
$3p$ $^3\mathrm{S}_1$	$2s^2 2p(^2\mathrm{P}^\circ)3p$	3p 3S	1	297557. 50		$^3\overline{\mathrm{D}}_3^2$			3	374798.6	136. 1
$2p^{\prime\prime}$ $^{1}\mathrm{D}_{2}$	2p4	2p4 1D	2	298289. 4		3p' 5S2	2s 2p ² (4P)3p	3p 5S°	2	376067.66	
$rac{3p}{^3 ext{P}_0} \ ^3 ext{P}_1 \ ^3 ext{P}_2$	2s ² 2p(2P°)3p	3p 3P	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	300228. 21 300310. 31 300440. 85	82. 10 130. 54	4d 3F ₂	2s ² 2p(² P°)4d	4d ³F°	2 3 4	377375	
$3p$ $^{1}D_{2}$	$2s^2 2p(^2\mathrm{P}^\circ)3p$	3p ¹D	2	306584. 8		$4d~^{1}\mathrm{D}_{2}$	2s ² 2p(2P°)4d	4d ¹D°	2	377687	
3p 1S ₀	28 ² 2p(2P°)3p	3p 1S	0	313801. 07		3p' ³ P ₂ ³ P ₁	2s 2p ² (4P)3p	3p ⁸ P°	2	378408. 5 378420. 9	12. 4
$3d\ {}^3{ m F}_2\ {}^3{ m F}_3\ {}^3{ m P}_4$	2s ² 2p(2P°)3d	3d ³F°	2 3 4	324462. 46 324658. 25 324836. 41	195. 79 178. 16	³ P ₀ 4d ³ D ₁	2s ² 2p(2P°)4d	4d ³D°	0 1	378438. 1	17. 2
3d ¹ D ₂	2s² 2p(2P°)3d	3d ¹D°	2	324734. 22		$^{3}D_{2}$ $^{2}D_{3}$			$\begin{vmatrix} \bar{2} \\ 3 \end{vmatrix}$	379293 379356	61 63
$3d {}^{3}\mathrm{D}_{1} \ {}^{3}\mathrm{D}_{2}$	2s ² 2p(2P°)3d	3d ³D°	1 2	327227.94 327277.18	49. 24 73. 72	4d ³ P ₂	2s ² 2p(² P°)4d	4d ³P°	2	380706	
³ D ₃	0.00 (070) 0.3	0.7.070	3	327350.90	10.12	4247	0.0.0 (0700) 4.7	4.3.4770	0	DOOROG	
3d ³ P ₂ ² P ₁ ³ P ₀	2s ² 2p(² P°)3d	3d ⁸ P°	1	329467.98 329581.98	-114. 00 -61. 45	4d ¹ F ₃ 4d ¹ P ₁	2s ² 2p(² P°)4d	4d ¹ F° 4d ¹ P°	3	380782 381086	
3d ¹ F ₂	2s ² 2p(² P°)3d	3d ¹F°	0 3	329643. 43 331820. 2		40 ·P1	2s ² 2p(2P°)4d 2s ² 2p(2P°)5s	5s ² P°	0	301000	
3d ¹ P ₁	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3d ¹ P°	1	332777.1		58 ² P ₂	20 2p(-1)08	05 -1	1 2	392221	
38′ 5P1	2s 2p ² (⁴ P)3s	38 ⁵ P	1	338565. 87	104 15	5s ¹P ₁	2s² 2p(²P°)5s	5s ¹P°	1	392778	
⁵ P ₂ ⁵ P ₃ 2p" ¹ S ₀	$2p^4$	2p4 1S	3 0	338690. 34 338851. 50 343302. 6?	124. 47 161. 16	38' 3D ₁ 3D ₂ 3D ₃	2s 2p ² (² D)3s	38′ ³D	1 2 3	394090 394126 394195	36 6 9

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d′ ⁵ F ₁ ⁵ F ₂	2s 2p ² (⁴ P)3d	3d ⁵ F	1 2	394516. 45 394555. 15	38. 70 57. 55	7d ¹ F ₃	2s ² 2p(² P°)7d	7d ¹F°	3	422977	
5F ₃			3 4	394612. 70 394688. 44	75. 74	3p' ¹ F ₃	$2s \ 2p^2(^2\mathrm{D})3p$	3p′ ¹F°	3	424998	
⁵ F ₄ ⁵ F ₅			5	394780. 47	92. 03	$3\overline{p}'$ ¹ D ₂	$2s \ 2p^2(^2\mathrm{D})3p$	3p′ ¹D°	2	426338	
$3d' {}^5\mathrm{D}_0 \ {}^5\mathrm{D}_1 \ {}^5\mathrm{D}_2$	2s 2p ² (4P)3d	3d ⁵ D	0 1 2	398135. 0 398131. 4 398127. 3	-3. 6 -4. 1 10. 1	48′ ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (⁴ P)4s	48 ⁵ P	1 2 3	428487 428606 428769	119 163
$^{5}\mathrm{D}_{4}$			3 4	398137. 4 398218. 8	81. 4	$\overline{3p}' {}^{1}P_{1}$	2 s $2p^2(^2\mathrm{D})3p$	3p' 1P°	1	430025	
$3d'{}^{5}\mathrm{P}_{3}$ ${}^{5}\mathrm{P}_{2}$ ${}^{5}\mathrm{P}_{1}$	2s 2p ² (4P)3d	3d ⁵ P	3 2 1	398474. 3 398544. 3	-70.0 -38.5	4p′ 3S ₁	2s 2p ² (4P)4p	4p 3S°	1	43701 5. 0	
3d′ ³ P ₂	2s 2p ² (⁴ P)3d	3d ³ P	2	398582. 8 400354. 8	-109, 9	$4p'\ ^5{ m D}_0\ ^5{ m D}_1\ ^5{ m D}_2$	$2s \ 2p^2(^4\mathrm{P})4p$	4p 5D°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	438241.0	62. 2
${}^3P_1^{"}$ 3P_0			0	400464. 7 400518. 4	-53. 7	⁵ D ₃ ⁵ D ₄			$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	438303. 2 438395. 2 438517. 5	92. 0 122. 3
$3d' {}^{3}F_{2} \\ {}^{3}F_{3} \\ {}^{3}F_{4}$	2s 2p ² (⁴ P)3d	3d 3F	$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	401379 401475. 4 401609. 1	96 133. 7	$4p'{}^{5}\mathrm{P_{1}}_{}^{}$	2s 2p ² (⁴ P)4p	4p 5P°	1 2	439278. 1 439329. 5	51. 4 98. 1
$5d ^3\mathrm{F}_2$	2s ² 2p(² P°)5d	$5d$ $^3\mathrm{F}^\circ$	2 3	401530		$^5\mathrm{P}_3^-$			3	439427.6	
			4				2s 2p ² (4P)4p	4p 3D°	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$		
$5d$ $^{1}\mathrm{D}_{2}$	2s² 2p(2P°)5d	$5d$ $^{1}\mathrm{D}^{\circ}$	2	401787		$4p'$ $^3\mathrm{D}_3$			3	442710	
	2s ² 2p(² P°)5d	$5d$ $^3\mathrm{D}^\circ$	$\frac{1}{2}$				O IV (2P.)	Limit		443193. 5	
$5d$ $^3\mathrm{D_3}$			3	402530		4 d' 5P3	2s 2p ² (4P)4d	4d ⁵ P	3	450167	-70
$5d$ $^1\mathrm{F}_3$	2s ² 2p(² P°)5d	$5d$ $^1\mathrm{F}^{\mathrm{o}}$	3	403374		⁵ P ₂ ⁵ P ₁			$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	450237 450291	-54
$5d$ $^{1}\mathrm{P}_{1}$	2s ² 2p(² P°)5d	5d ¹P°	1	403526		3 d ′ ³F	0.0.1/27\0.1	0.74.073			
3d′ 3D1	2s 2p2(4P)3d	$3d$ $^3\mathrm{D}$	1	405805. 1	29.0		$2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³F	2, 3, 4	452855	
$^3\mathrm{D}_2$ $^3\mathrm{D}_3$			3	405834. 1 405883. 0	48. 9	3₫′ ³D —	$2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³D	1, 2, 3	454174	
6d ¹ D ₂	2s ² 2p(² P°)6d	6d ¹D°	2	414675		3d′ ³P	$2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³P	0, 1, 2	457634	
	2s ² 2p(² P°)6d	6d ³ D°	1			5d′ ⁵ P ₃	$2s\ 2p^2(^4\mathrm{P})5d$	5d ⁵ P		473750	
$6d~^3\mathrm{D_3}$			3	415181					1		

December 1947.

O III OBSERVED TERMS*

Config. 1s ² +					Ol	oserved Ter	ms			
2s² 2p²	$\left\{ 2p^{2} \right. ^{1}S$	2p² ³P	$2p^2$ ¹ D							
2s 2p³	$\begin{cases} 2p^{3} {}^{5}\text{S}^{\circ} \\ 2p^{3} {}^{3}\text{S}^{\circ} \end{cases}$	$2p^3 {}^3{ m P}^{ m o} \ 2p^3 {}^1{ m P}^{ m o}$	${2p^3}\ {^3{ m D}^\circ} \ {2p^3}\ {^1{ m D}^\circ}$							
2p4	$\left\{_{2p^{4}}\right{\mathrm{IS}}$	2p4 3P	2p4 ¹D							
		ns (n≥3)		np (n	≥3)			$nd (n \ge 3$)
28 ² 2p(² P°)nx	{	3–58 ³ P° 3–58 ¹ P°		3, 4p ³ S 3, 4p ¹ S	3, 4p ³ P 3, 4p ¹ P	3, 4p ³ D 3, 4p ¹ D		3, 4d ³ P° 3–5d ¹ P°	3-6d ³ D° 3-6d ¹ D°	3–5 <i>d</i> ³ F° 3–5, 7 <i>d</i> ¹ F°
28 2p ² (4P)nx	{	3, 4s ⁵ P 3s ³ P		3p ⁵ S° 3, 4p ³ S°	3, 4p ⁵ P° _{3p ³P°}	$^{3,4p}_{3,4p}^{5}{ m D}^{\circ}_{3}$		$^{5-5d}$ $^{5}\mathrm{P}$ 3d $^{3}\mathrm{P}$	$^{3d}_{3d}^{5}\mathrm{D}$	$rac{3d}{3d}{}^5\mathrm{F}$
2s 2p ² (2D)nx'	{		3s′ ³D		3p′ ¹P°	3p′ ¹D°	3p′ ¹F°	3d′ ³P	3d′ ³D	3d′ ³F

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z = 8

Ground state 1s2 2s2 2p 2P1

 $2p^{2}P_{\frac{1}{2}}^{\circ}$ 624396.5 cm⁻¹

I. P. 77.394 volts

Most of the terms are from Edlén's Monograph, corrected to agree with his 1935 paper, in which he adds several terms from $2p^2(^1D)$ and relabels his $2p^2(^3P)3s$ 2P term as $2p^2(^1D)3s$ 2D . He also lists a combination in the visible, 3s' $^2P^\circ - 3p'$ 2D , from which a revised value of 3s' $^2P^\circ$ has been calculated. A few other additions and corrections kindly communicated by Edlén have been incorporated into the table.

The term 6f 2F° is from the paper by Whitelaw and Mack.

No intercombinations between the doublet and quartet terms have been observed, but the limits adopted by Edlén are based on well-established series, and the relative positions of the two groups of terms differ by probably only a small constant x.

REFERENCES

- L. J. Freeman, Proc. Roy. Soc. (London) [A] 127, 330 (1930). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Uppsala [IV] 9, No. 6, 87 (1934). (I P) (T) (C L) (G D)
- P. G. Kruger and W. E. Shoupp, Phys. Rev. 44, 105 (1933). (T) (C L)
- E. Edlén, Zeit. Phys. 93, 726 (1935). (T) (C L)
- N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935). (T)
- B. Edlén, unpublished material (Dec. 1947). (T)

O IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₁ ² P ₂	2s ² (¹ S)2p	2p 2P°	1½ 1½	0. 0 386. 5	386. 5	3s' ² P ₁ ² P ₂	2s 2p(3P°)3s	3s ² P°	1½	452808. 0 453073. 0	265. 0
$2p' {}^4 ext{P}_1 \ {}^4 ext{P}_2 \ {}^4 ext{P}_3$	$2s\ 2p^2$	2p² 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	71177.0+x $71308.4+x$ $71492.9+x$	131. 4 184. 5	$3p' {}^{2}P_{1} \ {}^{2}P_{2}$	2s 2p(3P°)3p	3 p 2 P	11/2	467231. 1 467346. 5	115. 4
$2p'{}^{2}{ m D_{3}}{}^{2}{ m D_{2}}$	2s 2p²	2p² ²D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	126936. 3 126950. 3	-14.0	$\begin{array}{ c c c c c }\hline 3p' & ^4D_1 & \\ & ^4D_2 & \\ & ^4D_3 & \\ & ^4D_4 & \\ \hline \end{array}$	2s 2p(3P°)3p	3p 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} 468075.\ 4+x \\ 468154.\ 2+x \\ 468289.\ 7+x \\ 468499.\ 4+x \end{array}$	78. 8 135. 5 209. 7
$2p'$ ${}^2\mathrm{S}_1$	2s 2p2	2p² 2S	1/2	164366. 9		3 p' 4S ₂	2s 2p(3P°)3p	3p 4S	11/2	474217. 8+x	
$2p'$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p2	2p² ²P	1½ 1½	180481. 3 180724. 6	243. 3	3p' 4P1	2s 2p(3P°)3p	3p 4P	1/2	478587.7+x	94. 5
2p'' 4S2	$2p^3$	2p³ 4S°	1½	231275.1+x		⁴ P ₂ ⁴ P ₃			$1\frac{1}{2}$ $2\frac{1}{2}$	478682. 2+x $478811. 3+x$	129. 1
$2p^{\prime\prime}{}^{2}{ m D_{3}}{}^{2}{ m D_{2}}$	$oxed{2p^3}$	2p³ 2D°	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	255156. 7 255186. 0	-29.3	$3p' {}_{^{2}\mathrm{D}_{3}}^{2}$	2s 2p(3P°)3p	3p 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	482667. 5 482923. 1	255. 6
$2p^{\prime\prime}$ $^{2}P_{1}$ $^{2}P_{2}$	$2p^3$	2p³ ²P°	1½ 1½	289016. 1 289024. 0	7. 9	4s 2S1	2s ² (¹ S)4s	4s 2S	1/2	485823. 1	
3s 2S1	2s ² (¹S)3s	3s 2S	1/2	357614. 8		3p′ 2S ₁	2s 2p(3P°)3p	$3p$ $^2\mathrm{S}$	1/2	492880	
$3p\ ^{2}P_{1}^{2}P_{2}$	$2s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	390161. 1 390248. 2	87. 1	3d' 4F ₂ 4F ₃ 4F ₄	2s 2p(3P°)3d	3d 4F°	1½ 2½ 3½ 4½	494907. 5+x 494986. 3+x 495098. 7+x	78. 8 112. 4
$3d {}^{2}\mathrm{D_{2}} \\ {}^{2}\mathrm{D_{3}}$	2s ² (¹ S)3d	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	419533. 5 419550. 2	16. 7	${}^4\overline{\mathrm{F}}_5$			41/2	495252.8 + x	154. 1
3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)3s	38 ⁴ P°	1½ 1½ 2½ 2½	438588. 5+x 438723. 6+x 438970. 5+x	135. 1 246. 9	3d' ⁴ D ₁ ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)3d	3d ⁴ D°	$egin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	499506.4+x $499535.3+x$ $499582.0+x$ $499646.6+x$	28. 9 46. 7 64. 6

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$3d' {}^{2}D_{2} {}^{2}D_{3}$	2s 2p(3P°)3d	3d ² D°	1½ 2½	501511. 3 501566. 4	55. 1	4d′ ² D ₂ ² D ₃	2s 2p(3P°)4d	4d 2D°	1½ 2½	593627 593708	81
3d′ ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s 2p(3P°)3d	3 <i>d</i> 4P°	2½ 1½ ½	503834.5+x 503947.9+x 504021.7+x	-113. 4 -73. 8	$4f'{}^{2}{ m F_{3}}\ {}^{2}{ m F_{4}}$	2s 2p(3P°)4f	4f ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	594007 594080	73
$4d\ ^{2}\mathrm{D}_{2}$	2s ² (¹S)4d	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	510560 510567	7	$4f' {}^{2}\mathrm{D}_{2} \atop {}^{2}\mathrm{D}_{3}$	2s 2p(3P°)4f	4f ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	594337 594542	205
3d' ² F ₃ ² F ₄	2s 2p(3P°)3d	3d ² F°	2½ 3½	510746. 1 510978. 5	232. 4	4d′ ² F ₃ ² F ₄	2s 2p(3P°)4d	4d ² F°	2½ 3½	596299 596477	178
3d′ ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ² P°	1½ ½	514217 514368	-151	3p'' 2S ₁ 8f 2F	$2p^{2}(^{3}P)3p$ $2s^{2}(^{1}S)8f$	3p'' 2S° 8f 2F°	$ \begin{cases} \frac{1}{2} \\ \frac{21}{2} \\ \frac{31}{2} \end{cases} $	597254 }597352	
$3s' {}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(¹P°)3s	38′ ²P°	1½ 1½	518684 518690	6	4d' ² P ₂ ² P ₁	2s 2p(3P°)4d	4d ² P°	1½ ½ ½	597726	-137
58 ² S ₁	2s ² (¹ S)5s	5s 2S	1/2	539368		$\frac{3s^{\prime\prime}}{2D_2}$	$2p^{2}(^{1}\mathrm{D})3s$	3s''' 2D		597863 600092	
$\overline{3p'}_{^2\mathrm{D}_3}^2$	2s 2p(1P°)3p	3p′ ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	547311 547336	25	² D ₃			$1\frac{1}{2}$ $2\frac{1}{2}$	600106	14
3p' ² P ₁ ² P ₂	2s 2p(¹P°)3p	3p′ ²P	1½ 1½	549792 549855	63	3p'' ⁴ D ₄	2p ² (³ P)3p	3p'' 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ \end{array}$	602977 +x	
$5d$ $^2\mathrm{D}_3$	$2s^2(^1\mathrm{S})5d$	5 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	552034		3p -D4	$2p^2(^3\mathrm{P})3p$	3p'' 4P°		$\begin{vmatrix} 602977 + x \end{vmatrix}$	
5f 2F	$2s^2(^1\mathrm{S})5f$	5f ²F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} <i>552490</i>		3p'' 4P ₃		· F	$1\frac{1}{2}$ $2\frac{1}{2}$	606434 +x	
$\overline{3p'}$ $^2\mathrm{S}_1$	2s 2p(1P°)3p	3p′ 2S	1/2	554461		3p'' ² D ₃	$2p^{2}(^{3}\mathrm{P})3p$	3p'' ² D°	$2\frac{1}{2}$ $1\frac{1}{2}$	615431	-29
4s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)4s	4s ⁴ P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{rrrr} 568638 & +x \\ 568773 & +x \\ 569020 & +x \end{array} $	135 247	$3p^{\prime\prime}$ 4S_2	$2p^2(^3\mathrm{P})3p$	3p'' 4S°	1½ 1½ 1½	$\begin{vmatrix} 615460 \\ 616588 + x \end{vmatrix}$	
	2s 2p(1P°)3d	3 <i>d′</i> ² F°					O v (1S ₀)	Limit		624396.5	
3d' 2F4		4 .000	2½ 3½	570791		3p″ ³F	$2p^2(^1\mathrm{D})3p$	3p''' 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	624882	
4s' ² P ₁ ² P ₂	2s 2p(3P°)4s	4s ² P°	$1\frac{1}{2}$	573696 573907	211		2s 2p(3P°)5p	5 <i>p</i> ² P			
6d ² D ₃	2s ² (¹ S)6d	6d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	574373		5p′ ² P ₂	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> 2F	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	628496	
4p' ² P ₁ ² P ₂	2s² 2p(³P°)4p	4p 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	575204 575373	169	3d'' ² F ₄			2½ 3½	630095	
$\overline{3d'}$ $^{2}D_{2}$ $^{2}D_{3}$	2s 2p(1P°)3d	3d′ ² D°	1½ 2½	575819 575853	34	$\begin{array}{c c} 5p' \ ^2\mathrm{D_2} \\ ^2\mathrm{D_3} \end{array}$	2s 2p(3P°)5p	5p 3D	$1\frac{1}{2}$ $2\frac{1}{2}$	630703 630879	176
38" ⁴ P ₁ ⁴ P ₂	2p²(8P)3s	3s" 4P		576591 + x	144	$3d'' {}^{2}D_{3}$ ${}^{2}D_{2}$	$2p^2(^3\mathrm{P})3d$	3d'' ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	632426 632594	-168
${}^{4}P_{2}$ ${}^{4}P_{3}$			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	576735 + x $576947 + x$	212		2s 2p(3P°)5d	5d 4D°	11/2		
$\overline{3d'}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(¹P°)3d	3d′ ² P°	$1\frac{1}{2}$	581721 581743	22	5d′ ⁴ D ₄			$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	633896 +x	
$4p' {}^{2}\mathbf{D_{2}} \ {}^{2}\mathbf{D_{3}}$	2s 2p(3P°)4p	4 <i>p</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	584552 584768	216	5d′ ⁴ P ₃	2s 2p(3P°)5d	5d ⁴ P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	634245.5+x	
7f ³F	$2s^2(^1\mathrm{S})7f$	7f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	}587850		5d′ ² F ₈	2s 2p(3P°)5d	5d ² F°	2½ 3½	636024	212
4p′ 2S	2s 2p(8P°)4p	4p 2S	1/2	590071		² F ₄ 5d′ ² P ₂	2s 2p(3P°)5d	5d ² P°		636236	
	2s 2p(3P°)4d	4d 4D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$						1½ ½		
4d′ ⁴ D ₄			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	591767 + x		3d" ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	$2p^2(^3\mathrm{P})3d$	3d'' 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-99 -62
4d' 4P ₃	2s 2p(8P°)4d	4d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	592999 + x		$3d^{\prime\prime} {}^{2}D$	$2p^2(^1\mathrm{D})3d$	3d''' ¹D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	}6468 5 9	

				_
\sim	TV-	A	4:	
	. v —	a an		100

Edlén	Config.	Desig.	J	Level	Interval
3d" ² F ₃ ² F ₄	$2p^2(^1\mathrm{D})3d$	3d''' ² F	2½ 3½	651098 651117	19
$\overline{3d}^{\prime\prime}_{^{2}\mathrm{P}_{1}}^{^{2}\mathrm{P}_{2}}$	$2p^2(^1\mathrm{D})3d$	3d''' ² P	1½ ½	653328 653411	-83
	2s 2p(3P°)6d	6d ⁴D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$		
6d' 4D4			$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	656328 + x	
4p′ ²D₃	2s 2p(¹P°)4p	4p′ 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	656748	
$\overline{3d^{\prime\prime}}$ ² S ₁	$2p^2(^1\mathrm{D})3d$	3d''' 2S	1/2	659998	
$\overline{4d'}$ $^2\mathrm{D_3}$	2s 2p(¹P°)4d	4d′ ²D°	$1\frac{1}{2}$ $2\frac{1}{2}$	668538	
	2s 2p(3P°)7d	7d ⁴ D°	$1\frac{1}{2}$ $1\frac{1}{2}$		
7d′ 4D4	l R		1½ 1½ 2½ 3½	669705 +x	

December 1947.

O IV OBSERVED TERMS*

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$np \ (n \ge 3)$ $nd \ (n \ge 4)$
$ \begin{cases} 2p^{2} \text{ 1S} & 2p^{2} \text{ 1P} \\ 2p^{3} \text{ 2P} & 2p^{2} \text{ 2D} \\ \\ 2p^{3} \text{ 4S} & 2p^{3} \text{ 2D} \\ \\ 3-5s \text{ 2S} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$nd \ (n \geq 3)$
$\begin{cases} 2p^{3} + \mathbb{S}^{\circ} & 2p^{3} 2 \mathbf{D}^{\circ} \\ & ns \ (n \ge 3) \end{cases} \qquad np \ (n \ge 3) $ $3-5s 2 \mathbb{S}$ $\begin{cases} 3, 4s ^{4} \mathbf{P}^{\circ} \\ 3, 4s ^{2} \mathbf{P}^{\circ} \\ 3, 4s ^{2} \mathbf{P}^{\circ} \\ 3s' ^{2} \mathbf{P}^{\circ} \\ 3s' ^{4} \mathbf{P}^{\circ} \\ 3s' ^$	$nd \ (n \geq 3)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$nd (n \ge 3)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{cases} 3, 48.4 \text{P} & 3p + 4 \text{S} & 3p + 4 \text{D} & 3p + 4 \text{D} \\ 3, 48.1 \text{P} & 3, 4p 2 \text{S} & 3-5p 2 \text{P} & 3-5p 2 \text{D} \\ 38' 2 \text{P} & 3p' 2 \text{S} & 3p' 2 \text{P} & 3, 4p' 2 \text{D} \\ \end{cases} $	2P° 3-6d 2D 5, 7, 8f 2F°
$38' ^2\mathrm{P}^\circ$ $3p' ^2\mathrm{S}$ $3p' ^2\mathrm{P}$ $3, 4p' ^2\mathrm{D}$ $3p'' ^4\mathrm{P}$ $3p'' ^4\mathrm{P}$ $3p'' ^4\mathrm{D}^\circ$	15 15 15 15 15 15 15 15 15 15 15 15 15 1
{ 38" 4P 3p" 4S° 3p" 4P° 3p" 4D°	3, 4p' 2D 3d' 2P° 3, 4d' 2D°
$3p'' 2S^{\circ}$ $3p'' 2D^{\circ}$	3p" 4D° 3d" 4P
$2p^{2}(1D)nx'''$ $3p'''$ $2D$ $3q'''$ $2D$ $3q'''$ $2D$	3p''' 2F° 3d''' 2S 3d''' 2P 3d''' 2D 3d''' 2F

*For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction,

(Be I sequence; 4 electrons)

Z=8

Ground state 1s2 2s2 1S0

2s² ¹S₀ 918702 cm⁻¹

I. P. 113.873 volts

Edlén has revised and extended his published analysis and has generously furnished a manuscript copy of his complete term list in advance of publication, for inclusion here. He states that no intersystem combinations have been observed and that the relative uncertainty x in the position of the triplet terms with respect to the singlets may be ± 100 cm⁻¹.

In the published papers Edlén has used a prime to designate the terms from the ${}^2P^{\circ}$ limit in O v1.

REFERENCES

- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 62 (1934). (I P) (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (IP) (T)

O V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
282	2s ² ¹S	0	0		2p(2P°)3p	3p 3S	1	684124 + x	
$2s(^2\mathrm{S})2p$	2p *P°	$\begin{bmatrix} & 0 \\ & 1 \\ & 2 \end{bmatrix}$	82121.2+x 82257.9+x 82564.1+x	136. 7 306. 2	2p(2P°)3p	3p ³ P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	689585.6+x $689699.6+x$ $689890.3+x$	114. 0 190. 7
2s(2S)2p	2p ¹ P°	1	158798		2p(2P°)3d	3 <i>d</i> ¹ D°	2	694646	
$2p^2$	$2p^2$ $^3\mathrm{P}$	0	213641.7+x	155. 7	2p(2P°)3p	3p ¹D	2	697170	
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	$213797. \ 4+x$ $214066. \ 2+x$	268. 8	2p(2P°)3d	3d 3D°	$\frac{1}{2}$	$704360 + x \\ 704424 + x$	64
$2p^2$	$2p^2$ ¹ D	2	231722				3	$704424 + x \\ 704527 + x$	103
2 p2	$2p^2$ $^1\mathrm{S}$	0	287 909		2p(2P°)3p	3p ¹ S	0	707630	
2s(2S)3s	38 3S	1	547150.0+x		2p(2P°)3d	3d ³ P°	2	708154 + x 708296 + x	-142
2s(2S)3s	3s 1S	0	561278				1 0	708296 + x 708379 + x	-83
$2s(^2\mathrm{S})3p$	3p ¹ P°	1	580826		2p(2P°)3d	$3d$ $^1\mathrm{F}^{\circ}$	3	712967	
2s(2S)3p	3p 3P°	0	582983.6+x 583019.9+x	36. 3	2p(2P°)3d	3 <i>d</i> ¹P°	1	719277	
		$\begin{array}{c c} 1 \\ 2 \end{array}$	583019.9 + x 583097.2 + x	77. 3	2s(2S)4s	48 3S	1	722666 + x	
$2s(^2\mathrm{S})3d$	3d ³ D	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	600925.5+x 600936.3+x	10. 8	2s(2S)4s	4s ¹S	0	731667	
		3	600956.1+x	19. 8	2s(2S)4p	4p 3P°	0 1	736108 + x	
2s(2S)3d	3d ¹ D	2	612617				2	736108 + x 736126 + x	18
2p(2P°)3s	3s ³P°	0 1	653099.7+x 653262.2+x	162. 5	2s(2S)4p	4p ¹P°	1	7 3 7883	
		2	653605.0+x	342. 8	$2s(^2\mathrm{S})4d$	4d ³D	$\frac{1}{2}$	742401 + x 742407 + x	6
2p(2P°)3s	3s ¹ P°	1	664486				3	742407 + x $742421 + x$	14
2p(2P°)3p	3p ¹P	1	672695		2s(2S)4d	4d ¹D	2	746280	
2p(2P°)3p	3p 3D	1 2 3	$677333 + \omega \\ 677532 + x$	199	2s(2S)4f	4f ¹F°	3	749857	
		3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315	2s(2S)5s	5s ² S	1	796263 + x	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s(^2\mathrm{S})5p$	5p ¹P°	1	802452		2s(2S)7p	7p ¹P°	1	860874	
2s(2S) 5d	5d ³D	1 2 3	806625 + x		2s(2S)7d	7d ³D	1 2 3	861975 + x	
$2s(^2\mathrm{S})5d$	5d ¹D	2	808351		2s(2S)7d	7d ¹D	2	862419	
2p(2P°)4s	48 ¹P°	1	824280		2s(2S)8p	8p ¹P°	1	874447	
$2p(^2\mathrm{P}^\circ)4p$	4p ¹P	1	829588		2s(2S)8d	8d 3D	1		
$2p(^2\mathrm{P}^\circ)4p$	4p 3D	1	831047 +x	166			3	875365 +2	;
		3	$831213 + x \\ 831504 + x$	291	2p(2P°)5p	5 <i>p</i> ¹P	1	898580	
$2p(^2\mathrm{P}^\circ)4p$	4p 3S	1	832251 + x		2p(2P°)5p	5p 3D	1		
$2p(^2\mathrm{P}^\circ)4p$	4p ³P	0					3	899671 +2	;
		1 2	$ \begin{array}{rrr} 835151 & +x \\ 835321 & +x \end{array} $	170	2p(2P°)5p	5p 3P	0		
$2p(^2\mathrm{P}^{\circ})4d$	4d ¹D°	2	837834				$\frac{1}{2}$	901344 +2	;
$2p(^2\mathrm{P}^\circ)4p$	4p ¹D	2	837864		2p(2P°)5p	5p ¹D	2	902442	
$2s(^2\mathrm{S})6p$	6p ¹P°	1	839616		2p(2P°)5d	5d ¹D°	2	902592	
$2s(^2\mathrm{S})6f$	6f ¹F°	3	840832		2p(2P°)5d	5d ³D°	1		
2s(2S)6d	6d 3D	$\frac{1}{2}$					3	904497 +2	,
		$\begin{vmatrix} 2\\3 \end{vmatrix}$	841220 + x		2p(2P°)5d	5d ¹F°	3	906404	
$2p(^2\mathrm{P}^{o})4d$	4d ³D°	1	841280 + x	94	O vi (2S½)	Limit		918702	
		3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	123	$2p(^2\mathrm{P}^\circ)6p$	6p 1P	1	935093	
2s(2S)6d	6d ¹D	2	842105		$2p(^2\mathrm{P}^\circ)6p$	6p 3D	1		
$2p(^2\mathrm{P}^\circ)4d$	4d ³P°	2	843290 + x	-107			2 3	935945 +	5
		1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-52	2p(2P°)6p	6p 3P	0		
$2p(^2\mathrm{P}^\circ)4d$	4d ¹F°	3	847129				$\frac{1}{2}$	936805 +4	
2p(2P°)4d	4d ¹P°	1	847465		$2p(^2\mathrm{P}^\circ)6p$	6 <i>p</i> ¹ D	2	937341	

December 1947.

O v Observed Terms*

Config. 1s ² +					Observ	red Terms				
282	28 ² 1S									
28(2S)2p	{	$\begin{array}{cc} 2p & ^3\mathrm{P}^{\circ} \\ 2p & ^1\mathrm{P}^{\circ} \end{array}$								
$2p^2$	$\left\{ \begin{array}{cc} & & & & 2p^2 \ ^1\mathrm{S} \end{array} ight.$	$2p^2$ °P	$2p^2$ ¹ D							
		ns (n≥3)			$np (n \ge 3)$			$nd (n \ge 3)$		$nf(n \ge 4)$
2s(2S)nx	3-5s ³ S 3, 4s ¹ S				3, 4p ³ P° 3-8p ¹ P°			3-8d ³ D 3-7d ¹ D		4, 6f 1F°
2p(2P°)nx		38 ³ P° 3, 48 ¹ P°		3, 4p 3S 3p 1S	^{3-6}p $^{3}\mathrm{P}$ ^{3-6}p $^{1}\mathrm{P}$	3-6p ³ D 3-6p ¹ D	3, 4d ³ P° 3, 4d ¹ P°	3-5d ³ D° 3-5d ¹ D°	3-5d ¹F°	

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Z=8

Ground state 1s2 2s 2S1

2s 2S₃ 1113999.5 cm⁻¹

I. P. 138.080 volts

This spectrum has been analyzed by Edlén. The observed term values have all been taken from a manuscript generously furnished by him in advance of publication. He remarks that the np $^2P^{\circ}$ and nd 2D series have been observed in the vacuum spark further than given in the table. For series members beyond n=6 he states that the term values calculated from a Ritz formula are probably to be preferred.

In the table, extrapolated intervals and calculated term values are entered in brackets. They have been taken from the 1933 and 1934 references below, as have also the entries in column one.

REFERENCES

- B. Edlén, Zeit. Astroph. 7, 378 (1933). (T) (C L)
- B. Edlén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 6, 44 (1934). (T) (C L)
- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

		0	VI			O vi						
Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval	
2s 2S1	28	2s ² S	1/2	0. 0		6 F	6 <i>f</i>	6f ²F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	[1004265]		
$2p\left ^{2}\mathrm{P_{1}} ight ^{2}\mathrm{P_{2}}$	2p	2p 2P°	11/2	96375. 0 96907. 5	532. 5	6 GH	6g, $6h$	6 <i>g</i> ² G, etc.	{ 3½ to	[1004276]		
3s ² S ₁	38	3s 2S	1/2	640039. 8			-3,		5½] [200]		
$3p$ $^2\mathrm{P_1}_{^2\mathrm{P_2}}$	3p	3p ² P°	1½	666113. 2 666269. 8	156. 6	7 S	7s	7s 2S	1/2	1030780		
$3d\ ^2{ m D_2} {^2{ m D_3}}$	3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	674625. 7 674676. 8	51. 1	7 P	7 <i>p</i>	7 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{1} \\ 1\frac{1}{2} \end{array}\right.$	} 1032630		
4s 2S1	48	4s 2S	1/2	852696		7 D	7d	7d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	1033324		
$4p\ ^2{ m P}_1\ ^2{ m P}_2$	4p	4p 2P°	$1\frac{1}{2}$	863333. 8 863397. 7	63. 9	7 F	7 f	7f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	[1033382]		
$rac{4d\ ^2{ m D}_2}{^2{ m D}_3}$	4d	4d ² D	1½ 2½	866880. 1 866901. 5	21. 4	7 GHI	7g, etc.	7g ² G, etc.	$ \begin{cases} 3\frac{1}{2} \\ \text{to} \\ 6\frac{1}{2} \end{cases} $	[1033389]		
$4f{}^{2}{ m F}_{3}{}^{2}{ m F}_{4}$	4f	4f 2F°	2½ 3½	867077.7 867087.5	9.8	8 S	88	8s ² S	1/2	[1050543]		
	58	5s ² S	1/2	948690		8 P	8 p	8p 2P°	11/2] 1051724		
5p ² P ₂	5p	5p 2P°	11/2	} 954080	[33]	8 F	8 <i>f</i>	8f 2F°	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	[] [1052280]		
$5d$ $^2\mathrm{D_3}$	5d	5d 2D	$\left \left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right \right.$	955856	[11]				31/2			
6 S	68	68 ² S	1/2	1000080		8 GHIK	8g, etc.	8g ² G, etc.	to 7½	[1052285]		
6 P	6p	6p 2P°	\begin{cases} \frac{1}{2} & \\ 1\frac{1}{2} & \\ \end{cases}	} 1003130		8 D	8d	$8d$ $^2\mathrm{D}$	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	1052296		
6d ² D ₃	6d	6d ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	} 1004178			O vII (¹S₀)	Limit		1113999. 5		

September 1947.

(He I sequence; 2 electrons)

Ground State 1s² ¹S₀

I. P. 739.114 ±0.074 volts

Z=8

 $1s^2$ 1S_0 **5963000** \pm **600** cm⁻¹

Five singlet lines have been observed by Tyrén in the interval 17 A to 21 A. He has also observed one intersystem combination—a line at 21.804 A classified as $1s^2$ $^1S_0-2p$ $^3P_1^\circ$. His unit 10^3 cm⁻¹ has here been changed to cm⁻¹.

The triplet terms are from Edlén, who has kindly furnished them in advance of publication. He remarks that the extrapolated absolute term values of the triplets relative to those of the singlets confirm the intersystem combination reported by Tyrén. The $2s^3S-2p^3P^\circ$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to indicate extrapolated values not yet confirmed by observation.

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L)

B. Edlén, unpublished material (Sept. 1947). (T)

		O VII			O VII						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
182	1s ² ¹ S	0	0		1s 3p	3p ¹P°	1	5368550			
1s 2s	2s ³ S	1	4525340		1s 4p	4p ¹P°	1	5628100			
$1s\ 2p$	$2p\ ^3\mathrm{P}^{\circ}$	0	[4586170]	[60]	1s 5p	5p ¹P°	1	5748450			
		2	4586230 [4586780]	[60] [550]	1s 6p	6p ¹P°	1	5813950			
1s $2p$	2p ¹P°	1	4629200				-				
1s 3p	$3p\ ^3\mathrm{P}^\circ$	0, 1, 2	5356380		O vIII (2S ₁₅)	Limit		5963000			
1s 3d	3d ³D	3, 2, 1	5364990								
		1	I -	1			4.				

September 1947.

O VIII

(H sequence; 1 electron)

Z=8

Ground state 1s ²S₁₆

18 2S₁₆ 7027970 cm⁻¹

I. P. 871.12 volts

Tyrén has observed the first Lyman line. J. E. Mack has calculated the terms in the table, "using R_0^{16} =109733.539, and Λ =0.040. The last digit is arbitrary, since the extrapolated 1s-shift is 957 cm⁻¹. The series limits of O¹⁷ and O¹⁸ are higher than that for O¹⁶ by 14.3 and 25.8 cm⁻¹, respectively."

REFERENCES

F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 24 (1940). (C L) J. E. Mack, unpublished material (1949). (I P) (T) (C L)

		O VIII			O VIII					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
1s $2p$ $2s$ $2p$	1s ² S 2p ² P°	1/2 1/2 1/2 1/2	5270363 5270483	77 120	3s, etc.	3s ² S, etc.	½, etc.	6246978 to 7569		
2 <i>p</i>	2p ² P°	1½	5271859	1496		∞ =Limit		7027970		

February 1949.

FLUORINE

F_I

9 electrons

Z=9

Ground state 1s2 2s2 2p5 2P11

 $2p^{5} \, {}^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ} \, 140553.5 \, \, \mathrm{cm}^{-1}$

I. P. 17.42 volts

This spectrum is incompletely analyzed, but the terms from the ³P limit in F II are fairly well established. The terms listed have been taken from Edlén's later paper, supplemented by levels from further recent analysis by Lidén. The new levels have been generously furnished in manuscript form by Edlén, for inclusion here.

Intersystem combinations have been observed, connecting the doublet and quartet terms. Edlén remarks that it is impossible to assign term designations to the levels labeled 3d X and 4d X, because of the departure from LS-coupling. He also states that the terms from 1D in F II need further confirmation. They are connected with the rest by only two ultraviolet lines, those observed by Bowen at 806.92 A and 809.60 A.

REFERENCES

- G. H. Carragan, Astroph. J. 63, 145 (1926). (Z E)
- I. S. Bowen, Phys. Rev. 29, 231 (1927). (T) (C L)
- B. Edlén, Zeit. Phys. 93, 447 (1935). (C L)
- B. Edlén, Zeit. Phys. 98, 445 (1936). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- B. Edlén, unpublished material (Dec. 1947). (T)
- K. Lidén, Ark. Mat. Astr. Fys. (Stockholm) 35A, No. 24, p. 5 (1948). (T)

Fι

FI

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₂ ² P ₁	2s ² 2p ⁵	$2p^5\ ^2\mathrm{P}^\circ$	1½ ½ ½	0. 0 404. 0	-404. 0	$3p {}^{2}\mathrm{D}_{3} \ {}^{2}\mathrm{D}_{2}$	2s 2p4(3P)3p	3p 2D°	2½ 1½	117623. 73 117873. 75	-250. 02
3s 4P ₃	2s ² 2p ⁴ (³ P)3s	3s 4P	2½	102406. 50	-274. 74	$3p$ $^2\mathrm{S}_1$	2s ² 2p ⁴ (³ P)3p	3 <i>p</i> ² S°	1/2	118406. 09	
$^{4}P_{2}$ $^{4}P_{1}$			$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	102681. 24 102841. 20	-159.96	$3p$ $^4\mathrm{S}_2$	2s ² 2p ⁴ (³ P)3p	3p 4S°	1½	118428.62	
$3s {}^{2}P_{2} \atop {}^{2}P_{1}$	2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½ ½	104731. 86 105057. 10	-325. 24	$3p {}^{2}P_{2} \ {}^{2}P_{1}$	2s ² 2p ⁴ (³ P)3p	3p ² P°	1½ ½	118937. 61 119082. 63	-145. 02
3p ⁴ P ₃ ⁴ P ₂	28 ² 2p ⁴ (³ P)3p	3p 4P°	2½ 1½ ½ ½	115918.70 116041.69	-122.99 -102.70	$\overline{3s} \ ^2\mathrm{D_3} \ ^2\mathrm{D_2}$	2s ² 2p ⁴ (¹ D)3s	3s′ 2D	2½ 1½	123925. 50 123926. 56	-1.06
⁴ P ₁ 3p ⁴ D ₄ ⁴ D ₃ ⁴ D ₂ ⁴ D ₁	2s ² 2p ⁴ (³ P)3p	3p 4D°	3½ 2½ 1½ ½	116144. 39 116988. 21 117164. 83 117309. 37 117392. 77	$ \begin{array}{c cccc} -176. & 62 \\ -144. & 54 \\ -83. & 40 \end{array} $	$\begin{array}{c c} 3d \ ^4\mathrm{D_4} \\ ^4\mathrm{D_3} \\ ^4\mathrm{D_2} \\ ^4\mathrm{D_1} \end{array}$	2s ² 2p ⁴ (³ P)3d	3d 4D	3½ 2½ 1½ ½ ½	128064. 90 128088. 63 128123. 51 128185. 80	-23. 73 -34. 88 -62. 29

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3d X ₈ 3d ⁴ F ₅ ⁴ F ₄	$2s^{2} \ 2p^{4} (^{3}\mathrm{P}) 3d$ $2s^{2} \ 2p^{4} (^{3}\mathrm{P}) 3d$	3d Z ₄ 3d ⁴ F	4½ 3½ 2½ 1½	128141. 27 128219. 92 128515. 55	-295. 63 -10. 60		2s ² 2p ⁴ (³ P)4d	4d ⁴ F	4½ 3½ 2½ 1½	133606. 39 133923. 83 133932. 56 133972. 06	-317. 44 -8. 73 -39. 50
⁴ F ₃ ⁴ F ₂			$1\frac{2\frac{1}{2}}{1\frac{1}{2}}$	128526. 15 128612. 73	-86.58		2s ² 2p ⁴ (³ P)4d	$4d$ \mathbb{Z}_3		133607. 33	
3d X ₇	2s ² 2p ⁴ (³ P)3d	$3d \mathbf{Z_2}$		128220. 65			$2s^2 \ 2p^4(^3{ m P})4d$	4d Z ₂		133624. 61	
$3d X_6$	2s ² 2p ⁴ (³ P)3d	$3d~{f Z_3}$		128221, 16			$2s^2 \ 2p^4(^3{ m P})4d$	4d Z ₁		133644. 4	
$3d X_5$	2s ² 2p ⁴ (³ P)3d	$3d \; \mathbf{Y_3}$		128339. 53			2s² 2p⁴(³P)4d	4d Y ₃		133911. 08	
3d X ₄	2s ² 2p ⁴ (³ P)3d	$3d Y_2$	1½	128524. 09			$2s^2 \ 2p^4(^3{ m P})4d$	$4d \mathrm{Y}_2$		133920. 20	
$3d X_3$	2s ² 2p ⁴ (³ P)3d	3d Y ₁		128606. 88			$2s^2 \ 2p^4(^3{ m P})4d$	4d Y ₁		133966. 47	
$3d X_2$	2s ² 2p ⁴ (³ P)3d	$3d X_2$		128698. 68			$2s^2 \ 2p^4(^3{ m P})4d$	$4d { m X_2}$		134085. 53	
$3d X_1$	2s ² 2p ⁴ (³ P)3d	$3d X_1$		128713. 12			2s ² 2p ⁴ (³ P)4d	4d X ₁		134092. 03	
	2s ² 2p ⁴ (³ P)5s	5s ⁴ P	2½ 1½ ½	132596. 26 132745. 77 133009. 96	-149.51 -264.19	$\overline{3p}_{^{2}\mathrm{F}_{4}}^{2\mathrm{F}_{3}}$	$2s^2 \ 2p^4(^1{ m D})3p$	3p′ 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	137594. 63 137603. 44	8. 81
	2s ² 2p ⁴ (³ P)5s	5s ² P	1½ ½ ½	132999. 16 133224. 10	-224. 94	$\overline{3p} ^2\mathrm{D}_2 \ ^2\mathrm{D}_3$	$2s^2 \ 2p^4(^1{ m D})3p$	3p′ 2D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	138700. 15 138708. 01	7. 86
	2s ² 2p ⁴ (³ P)4d	4d 'D	3½ 2½ 1½ ½	133545. 27 133558. 14 133578. 15	$\begin{vmatrix} -12.87 \\ -20.01 \\ -35.95 \end{vmatrix}$		F 11 (3P ₂)	Limit		140553.5	
	0.0.0.4(2D).4.7	42.77	1/2	133614. 10	50. 95	$2p'$ ${}^2\mathrm{S}_1$	2s 2p ⁶	$2p^6$ ² S	1/2	[168554]	
	$2s^2 2p^4(^3P)4d$	4 7 Z;		133584. 35							

December 1947.

F I OBSERVED TERMS*

Config. 1s²+		Observed Terms	
$2s^2 \ 2p^5$	2p ⁵ ² P°		
	ns (n≥3)	np (n≥ 3)	nd (n≥3)
2s ² 2p ⁴ (³ P)nx	3, 5s ⁴ P 3, 5s ² P	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4d ⁴ D 3, 4d ⁴ F
2s ² 2p ⁴ (¹ D)nx'	3s′ ² D	3p' 2D° 3p' 2F°	

^{*}For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

(O I sequence; 8 electrons)

Z=9

Ground state 1s2 2s2 2p4 3P2

2p4 3P2 282190.2 cm-1

I. P. 34.98 volts

Bowen, Dingle, and Edlén have all contributed to the analysis of this spectrum. The singlet and triplet terms are taken from Edlén, who has revised and extended the earlier work. The quintet terms, except 5f F, are from Dingle's paper. The term 5f F derived by Edlén agrees well with the 4f F term and Dingle's series limit.

The singlet and triplet terms are connected by intersystem combinations. The relative position of the quintets is determined by the series with the uncertainty x probably not exceeding 200 cm⁻¹.

Edlén lists a number of combinations that probably involve 2s² 2p³(2D°)4f terms at about $288600 \pm \text{cm}^{-1}$ above the ground state.

In a private communication Edlén has stated that his term published as $\overline{3d}$ 3D should have the designation $\overline{4s}$ ³P. He has also revised his published value of 3d' ¹S°.

REFERENCES

- H. Dingle, Proc. Roy. Soc. (London) [A] 128, 600 (1930). (T) (C L)
- I. S. Bowen, Phys. Rev. **45**, 82 (1934). (T) (C L) B. Edlén, Zeit. Phys. **93**, 433 (1935). (I P) (T) (C L)
- B. Edlén, private communication (Dec. 1947). (T)

F_{II} F_{II}

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ³ P ₂ ³ P ₁ ³ P ₀	2s ² 2p ⁴	2p4 3P	2 1 0	0. 0 341. 8 490. 6	-341. 8 -148. 8		2s ² 2p ³ (⁴ S°)3d	3d ⁵ D°	4 3 2 1	231158. 08+x 231158. 99+x 231160. 19+x 231160. 87+x	$ \begin{array}{c c} -0.91 \\ -1.20 \\ -0.68 \\ -0.52 \end{array} $
$2p$ $^{1}\mathrm{D}_{2}$	282 2p4	2p4 1D	2	20873		0.7.270	0.10.24(00).01	0.1.270.0	0	231161.39 + x	0.02
2p 1S ₀	282 2p4	2p4 1S	0	44919		$3d ^{3}\mathrm{D}_{1}$	$2s^2 2p^3(^4\mathrm{S}^\circ)3\mathrm{d}$	$3d$ $^3\mathrm{D}^\circ$	$\frac{1}{2}$	232064. 18 232064. 98	0. 80 2. 08
$2p' {}^{3}P_{2} \ {}^{3}P_{1} \ {}^{3}P_{0}$	28 2p ⁵	$2p^5$ $^3\mathrm{P}^\circ$	$\frac{2}{1}$	164797. 7 165107. 1	-309.4 -173.9	$^{3}\mathrm{D}_{3}$	0.1.0.2(400).4	4 500	3	232067.06	
*P ₀			0	165281.0		_	$2s^2 \ 2p^3 (^4S^{\circ}) 4s$	4s ⁵ S°	2	235311.15+x	
	$2s^2 2p^3(^4S^\circ)3s$	38 5S°	2	176654.2 + x		$\overline{3p}$ ¹ P ₁	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3p′ ¹P	1	235643. 1	
38 3S1	2s ² 2p ³ (4S°)3s	38 3S°	1	182865. 2		$\overline{3p} ^{3}\mathrm{D}_{1}$	$2s^22p^3(^2\mathrm{D}^\circ)3p$	$3p'$ $^3\mathrm{D}$	$\frac{1}{2}$	236170. 35 236173. 07	2. 72
	$2s^2 \ 2p^3 (^4S^{\circ}) 3p$	3p ⁵ P	$\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11. 33	$^{3}\mathrm{D}_{3}^{2}$			3	236195. 57	22. 50
			3	202640.53 + x	19. 55	.4s 3S1	2s ² 2p ³ (4S°)4s	4s 3S°	1	236961.63	
$rac{3p}{^3 ext{P}_0} rac{^3 ext{P}_0}{^3 ext{P}_1} rac{^3 ext{P}_2}{^3 ext{P}_2}$	$2s^2 \ 2p^3(^4\mathrm{S}^\circ)3p$	3p 3P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	207702. 91 207699. 91 207704. 61	-3. 00 4. 70	$\overline{3p} {}^{3}F_{4} \ {}^{3}F_{3} \ {}^{3}F_{2}$	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3p′ ³F	4 3 2	237507. 91 237508. 72 237509. 37	-0.81 -0.65
$\overline{3s}$ $^3\mathrm{D}_3$	2s² 2p³(²D°)3s	38′ ³D°	3	211866.62	-21. 07	3p 1F3	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3p' ¹ F	3	238323. 6	
$^3\mathrm{D}_2$ $^3\mathrm{D}_1$			$\frac{2}{1}$	211887. 69 211900. 72	-13. 03	2p' ¹P₁	$2s\ 2p^5$	$2p^5$ $^1\mathrm{P}^\circ$	1	239605.0	
$\overline{3s}$ $^{1}\mathrm{D}_{2}$	2s² 2p³(2D°)3s	38′ ¹D°	2	215069.8		$\overline{3p} {}_{^3\mathrm{P}_1}^{^2}$	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3p′ ³P	2	240093. 10	-60. 24
38 ¹P₁	2s² 2p³(²P°)3s	38'' ¹P°	1	227228. 2		$^{3}P_{0}$			$\begin{array}{c} 1 \\ 0 \end{array}$	240153. 34 240179. 91	-26.57
38 3P2	28 ² 2p ³ (2P°)38	38′′ ³P°	2	229550. 83	-1.61	$\overline{3p}$ $^{1}\mathrm{D}_{2}$	$2s^22p^3(^2\mathrm{D}^\circ)3p$	3p' ¹ D	2	246283. 9	
³ P ₁ ⁸ P ₀			0	229552. 44 229555. 10	-2.66	$4p\ ^{3}P_{0}\ ^{3}P_{1}\ ^{3}P_{2}$	$2s^2~2p^3(^4\mathrm{S}^\circ)4p$	4p ³P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	246655. 10 246662. 55 246682. 67	7. 45 20. 12
						$\overline{\overline{3p}}$ 3S_1	$2s^2 2p^3(^2P^\circ)3p$	3p'' 3S	1	253313. 2	

		F II—Co	ntinue	d						4)				
Edlén	Config.	Desig.	J	Level	Interval					nf $(n \ge 4$	4, 5f 5F 4f 3F			
4d ³D₃	$2s^2 2p^3(^4S^\circ)4d$	4d ³D°	1 2 3	254016								స్త్రీప్తి		-
4f ³F	$2s^2 \ 2p^3(^4S^\circ)4f$	4f 3F	4, 3, 2	254547. 3								3d' 3		
$\overline{\overline{3p}} {}^{3}\mathrm{D}_{3} {}^{3}\mathrm{D}_{2} {}^{3}\mathrm{D}_{1}$	2s ² 2p ³ (² P°)3p	3 <i>p''</i> ³D	3 2 1	254702. 30 254717. 36 254723. 96	-15. 06 -6. 60							3F°	3F0 1F0	
	$2s^2 \ 2p^3(^4S^\circ)4f$	$4f$ $^5\mathrm{F}$	5 to 1	254703.1+x								3d'	3 <i>d''</i> 3 <i>d''</i>	
<u>3p</u> ¹P₁	$2s^2 \ 2p^3(^2\mathrm{P}^\circ) \ 3p$	3p'' ¹P	1	255606. 0						3)	00	0 0		
3p ³ P ₀ ³ P ₁ ³ P ₂	$2s^2 \ 2p^3(^2{ m P}^\circ) 3p$	3p'' ³P	0 1 2	257253. 9 257268. 8 257292. 7	14. 9 23. 9					$\leq u$) pu	$3d ^b\mathrm{D}^\circ$ 3, $4d ^3\mathrm{D}^\circ$	$3d' ^3D^\circ$ $3d' ^1D^\circ$	3 <i>d''</i> 1D°	
$\overline{\overline{3p}}$ $^{1}\mathrm{D_{2}}$	$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3p$	3 <i>p</i> ′′ ¹D	2	258930. 0								0 0	0.0	
5f ⁵ F	$2s^2 \ 2p^3(^4S^\circ)5f$	5 <i>f</i> ⁵F	5 to 1	264610 + x								/ 3P°	/ 3P°	
3d 3F ₂ 3F ₃ 3F ₄	$2s^22p^3(^2\mathrm{D^\circ})3d$	3d′ ³F°	2 3 4	264953. 12 264958. 63 264965. 91	5. 51 7. 28							。 3 <i>d</i> ′ 。 3 <i>d</i> ′	3d" 3d"	
$\overline{3d}$ ${}^{1}\mathrm{S}_{0}$	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹S°	0	264994 . 9								1, 3S°		
3d 3G ₅ 3G ₄ 3G ₃	$2s^2 2p^3 (^2 \mathrm{D}^\circ) 3d$	3d′ ³G°	5 4 3	265255. 8 265267. 8 265289. 3	-12.0 -21.5	<u>.</u>	Terms					34, 1F 3d'		_
3d 1G4	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ¹G°	4	265310. 1		Terms*						$\frac{3p'}{3p'}$		
$\overline{3d} {}^{3}\mathrm{D}_{3} \ {}^{3}\mathrm{D}_{2} \ {}^{3}\mathrm{D}_{1}$	$2s^22p^3(^2{ m D}^\circ)3d$	3d′ ³D°	3 2 1	265472.70 265498.74 265517.14	-26. 04 -18. 40	Овзекуер Тел	Observed					ë ë	U.D.	:
$\overline{3d}$ $^{1}\mathrm{D}_{2}$	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹D°	2	266270. 2		SEER				(8)		$\frac{3p}{3p}$	$\frac{3p''}{3p''}$	
$\overline{\overline{3p}}$ ${}^{1}\!\mathrm{S}_{0}$	$2s^2\ 2p^3(^2{ m P}^\circ)3p$	3p'' ¹S	0	266338. 4						$\leq u)$ du	0.0	0.0.		,
3d ²S₁	$2s^22p^3(^2{ m D}^\circ)3d$	3d′ 3S°	1	266360. 69		FI				n'.	3p ⁶ P $4p$ ³ P	$3p'$ 3P $3p'$ 1P	// 3P	
3d ³ P ₂ ³ P ₁ ³ P ₀	$2s^22p^3(^2{ m D}^\circ)3d$	3d′ ³P°	2 1 0	266454. 27 266499. 12 266516. 35	-44. 85 -17. 23						ູ້ຕໍ	ක්ත	38 3p''	
3d ¹F₃	$2s^22p^3(^2{ m D}^\circ)3d$	3d′ ¹F°	3	266548.7									3p" 3	
3d ¹P₁	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹P°	1	267400.3										
$\overline{48}\ ^{3}\mathrm{D}_{3}\ ^{3}\mathrm{D}_{2}\ ^{3}\mathrm{D}_{1}$	2s ² 2p ³ (² D°)4s	48′ ³D°	3 2 1	269548.7 269564.2 269574.5	-15. 5 -10. 3			$2p^4$ 1D				4s' 3D° 4s' 1D°		
$\overline{4s}$ $^{1}\mathrm{D}_{2}$	$2s^22p^3(^2\mathrm{D}^\circ)4s$	48' 1D°	2	270508. 4								က်က်		
	F III (4S°11/2)	Limit		282190. 2						33				
3d F ₄ F ₃ F ₃ F ₂	$2s^2\ 2p^3(^2{ m P}^{\circ})3d$	3d''*F°	4 3 2	282544. 7 282569. 7 282586. 9	$ \begin{array}{c c} -25.0 \\ -17.2 \end{array} $			$2p^4$ $^3\mathrm{P}$	$2p^{6} ^{3}P^{\circ} \ 2p^{5} ^{1}P^{\circ}$	$ns \ (n \ge 3)$			48" 3P° 38" 1P°	
$\overline{\overline{3d}}$ $^{1}\mathrm{D}_{2}$	2s² 2p³(²P°)3d	3d'' ¹D°	2	282774.7									က်	:
3d ³ P ₀ ³ P ₁ ³ P ₂	2s² 2p³(²P°)3d	3d'' ³P°	0 1 2	282897. 0 282913. 4 282947. 9	16. 4 34. 5			2p4 1S			4s 5S° 4s 3S°			
$\overline{\overline{3d}}$ ${}^{1}\mathrm{F}_{3}$	2s² 2p³(²P°)3d	3d'' ¹F°	3	283409 . 4				-2	ا پــ		6,6,	<u></u>	<u></u>	
$\overline{\overline{3}}\overline{\overline{d}}\ ^{1}\mathrm{P}_{1}$	2s² 2p³(²P°)3d	3d'' ¹P°	1	284224.8							22	nx,	"x"	;
$\begin{array}{c} \overline{\overline{3}}\overline{\overline{d}} \ ^{2}\mathrm{D}_{3} \\ ^{2}\mathrm{D}_{2} \\ ^{2}\mathrm{D}_{1} \end{array}$	2s² 2p³(²P°)4s	4s" 3P°	2 1 0	286701. 9 286706. 6 286707. 3	-4.7 -0.7		Config. 1s ² +	2s ² 2p ⁴	$2s~2p^{6}$		$2s^{2} 2p^{3}(^{4}S^{\circ})nx$	$2s^2 \ 2p^3 (^2 { m D}^{\circ}) nx'$	$2s^2 \ 2p^3 (^2{ m P}^{\circ}) nx''$	9
Dece	ember 1947.					Į)		28	28		285	28	283	

*For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N I sequence; 7 electrons)

Z=9

Ground state 1s2 2s2 2p3 4S11

$$2p^3 \, {}^4S^{\circ}_{1\frac{1}{2}} \, 505410 \, \, \mathrm{cm}^{-1}$$

I. P. 62.646 volts

The terms are from the paper by Edlén. With the aid of observations in the extreme ultraviolet he has extended the analysis by Bowen and Dingle and derived improved values of the series limits. He has found the sextet terms and estimated their position relative to the other terms. The value of x is somewhat uncertain. Bowen found 14 intersystem combinations connecting the doublet and quartet terms.

The term 3p'' ²P° depends upon the combination with 3s'' ²S, assigned to a pair of lines at 2920 A. According to Edlén this classification is somewhat uncertain.

REFERENCES

- H. Dingle, Proc. Roy. Soc. (London) [A] 122, 144 (1929). (T) (C L)
- I. S. Bowen, Phys. Rev. 45, 82 (1934). (T) (C L)
- B. Edlén, Zeit. Phys. 93, 433 (1935). (I P) (T) (C L)

F III F III

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p 4S ₂	$2s^2 \ 2p^3$	2p³ 4S°	1½	0		3s ² P ₁ ² P ₂	2s² 2p²(³P)3s	3s ² P	1½ 1½	324489. 9 324874. 4	384. 5
$2p\ ^2{ m D}_3\ ^2{ m D}_2$	2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	34084 34120	-36	$\frac{\overline{3s} ^2 D_3}{^2 D_2}$	2s² 2p²(¹D)3s	3s' 2D	2½ 1½	344016. 2 344019. 5	-3.3
$2p$ $^2\mathrm{P}_{12}$	$2s^2 \ 2p^3$	$2p^3$ $^2\mathrm{P}^{o}$	$\left\{\begin{array}{c}1\frac{1}{2}\\\frac{1}{2}\end{array}\right.$	51558		$3p {}^{2}\mathrm{S}_{1}$	$2s^2 \ 2p^2(^3{ m P})3p$	3 <i>p</i> ² S°	1/2	344438. 4	
$2p'{}^4 ext{P}_3\ {}^4 ext{P}_2\ {}^4 ext{P}_1$	2s 2p4	2p4 4P	2½ 1½ ½	151897. 9 152235. 3 152410. 0	$\begin{bmatrix} -337.4 \\ -174.7 \end{bmatrix}$	$egin{array}{c} 3p\ ^4\mathrm{D}_1\ ^4\mathrm{D}_2\ ^4\mathrm{D}_3\ ^4\mathrm{D}_4 \end{array}$	$2s^2\ 2p^2(^3{ m P})3p$	3p 4D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	348700. 5 348815. 4 349005. 1 349264. 0	114. 9 189. 7 258. 9
$rac{2p'}{^2\mathrm{D_3}} rac{^2\mathrm{D_3}}{^2\mathrm{D_2}} \ 2p'}{^2\mathrm{S_1}}$	2s 2p4 2s 2p4	$2p^4$ $^2\mathrm{D}$ $2p^4$ $^2\mathrm{S}$	$ \begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} $	210240 210256 248260	-16	3p ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s² 2p²(³P)3p	3p 4P°	$1\frac{1}{2}$ $2\frac{1}{2}$	351234. 1 351328. 4 351517. 1	94. 3 188. 7
$2p'{}^2\mathrm{P}_2 \ {}^2\mathrm{P}_1$	2s 2p4	$2p^4$ $^2\mathrm{P}$	1½ ½ ½	266559 266943	-384	$3p {}^{2}\mathrm{D}_{2} \ {}^{2}\mathrm{D}_{3}$	$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	355979. 6 356370. 0	390. 4
$3s \stackrel{4}{}^{4}P_{1} \\ \stackrel{4}{}^{4}P_{2} \\ \stackrel{4}{}^{4}P_{3}$	2s² 2 p²(³P)3s	3s 4P	1½ 1½ 2½	316707. 3 316918. 6 317237. 5	211. 3 318. 9	3p 4S ₂	$2s^2\ 2p^2(^3{ m P})3p$	3p 4S°	1½	357477.0	

F III—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
3p ² P ₁ ² P ₂	$2s^2 \ 2p^2(^3\mathrm{P}) 3p$	3p ² P°	1½ 1½	360346. 2 360433. 1	86. 9	$rac{4p\ ^4\mathrm{D_1}}{^4\mathrm{D_2}}$	$2s^2 \ 2p^2(^3\mathrm{P})4p$	4p 4D°	$egin{array}{c} langle rac{1}{2} \ 1rac{1}{2} \ 2rac{1}{2} \end{array}$	426426. 0 426556. 4 426730. 7	130. 4 174. 3 256. 8
₹ 2S ₁	$2s^2 \ 2p^2(^1\mathrm{S})3s$	38'' 2S	1/2	372673. 0		$^4\mathrm{D_4}$			3½	426987.5	250. 8
$\frac{\overline{3p}}{{}^{2}F_{4}}^{2}$	$2s^2 2p^2(^1D)3p$	3p' 2F°	2½ 3½	376806. 2 376871. 0	64. 8	$rac{4p}{^4P_1} rac{^4P_2}{^4P_3}$	$2s^2 \ 2p^2(^3\mathrm{P})4p$	4p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	427456. 7 427542. 4 427729. 3	85. 7 186. 9
$\overline{\stackrel{3p}{p}}{^2\mathrm{D_3}}{^2\mathrm{D_2}}$	$2s^2 \ 2p^2(^1\mathrm{D}) 3p$	3p' 2D°	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	380242. 9 380299. 1	-56. 2	$4p\ ^2{ m D}_2 {}^2{ m D}_3$	$2s^2 \ 2p^2(^3\mathrm{P})4p$	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	429105. 3 429500. 6	395. 3
$\overline{3p} {}^{2}\mathrm{P}_{1} \ {}^{2}\mathrm{P}_{2}$	$2s^2 \ 2p^2(^1\mathrm{D})3p$	3p' ² P°	1½ 1½	384350. 9 384485. 2	134. 3	$4p\ ^2{ m P_1} {}^2{ m P_2}$	$2s^2 \ 2p^2(^3\mathrm{P})4p$	4p 2P°	1½ 1½	431057. 1 431224. 2	167. 1
$3d\ {}^{4} ext{F}_{2}\ {}^{4} ext{F}_{3}\ {}^{4} ext{F}_{4}\ {}^{4} ext{F}_{5}$	2s ² 2p ² (³ P)3d	3d 4F	1½ 2½ 3½ 4½	387257. 3 387366. 2 387521. 8 387725. 5	108. 9 155. 6 203. 7	3p' 4P ₃ 4P ₂ 4P ₁	2s 2p³(5S°)3p	3p''' 4P	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	434546. 3 434567. 0 434581. 6	$\begin{bmatrix} -20.7 \\ -14.6 \end{bmatrix}$
$rac{3d\ ^2 ext{P}_2}{^2 ext{P}_1}$	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d ² P	1½ ½	389523. 5 389735. 7	-212. 2	$\overline{4s}$ $^2\mathrm{D}_{23}$	2s ² 2p ² (¹ D)4s	48′ 2D	$\left\{ egin{array}{ll} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} ight.$	} 440830	
$3d {}^{4}\mathrm{D}_{1} \ {}^{4}\mathrm{D}_{2} \ $	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	390118. 4 390078. 3 390075. 7	$\begin{bmatrix} -40.1 \\ -2.6 \end{bmatrix}$	$^{ m 4}d^{ m \ ^{2}P_{2}}_{ m ^{2}P_{1}}$	2s ² 2p ² (³ P)4d	4d 2P	1½ ½ ½	441159 441384	-225
$\frac{^{4}\mathrm{D_{3}}}{^{4}\mathrm{D_{4}}}$ $3d$ $^{4}\mathrm{P_{3}}$	$2s^22p^2(^3\mathrm{P})3d$	3d 4P		390208. 4 390832. 3	132. 7	$4d\ ^4 ext{P}_3\ ^4 ext{P}_2\ ^4 ext{P}_1$	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4d 4P	2½ 1½ ½	442153 442300 442378	-147 -78
⁴ P ₂ ⁴ P ₁	20 2p (1)0a	00 1	2½ 1½ ½ ½	390974. 0 391045. 2	$ \begin{array}{c c} -141.7 \\ -71.2 \end{array} $	$4d\ ^{2}\mathrm{F_{3}}\ ^{2}\mathrm{F_{4}}$	2s ² 2p ² (³ P)4d	4d 2F	2½ 3½ 3½	442280 442634	354
$rac{3d\ ^{2} ext{F}_{3}}{^{2} ext{F}_{4}}$	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d ² F	2½ 3½	391255. 6 391625. 5	369. 9	$\overline{\overline{\overline{3}}}_{2}^{2}D_{23}$	$2s^2\ 2p^2(^1\mathrm{S})3d$	3d'' ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 442760	
38′ 6S3	$2s\ 2p^3(^5\mathrm{S}^\circ)3s$	3s''' ⁶ S°	2½	391910.0 + x		$4d~^2\mathrm{D}_2$	$2s^2\ 2p^2(^3\mathrm{P})4d$	4d 2D		444960	40
$3d \stackrel{^2\mathrm{D}_2}{^2\mathrm{D}_3}$	$2s^2 2p^2(^3P)3d$	$3d$ $^{2}\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	395266, 1 395384, 1	118. 0	$^2\mathrm{D}_3^2$	F ()		1½ 2½	445008	48
$2p^{\prime\prime}{}^2 ext{P}_2^2 ext{P}_1^2$	$2p^5$	$2p^5\ ^2\mathrm{P}^{\circ}$	1½ ½ ½	401203 401721	-518	$3d'\ ^6\mathrm{D}_5\ ^6\mathrm{D}_4\ ^6\mathrm{D}_3\ ^6\mathrm{D}_2$	2s 2p³(5S°)3d	3d''' [©] D°	$\begin{array}{ c c c }\hline & 4\frac{1}{2} \\ & 3\frac{1}{2} \\ & 2\frac{1}{2} \\ & 1\frac{1}{2} \\ \end{array}$	462930.1+x $462932.7+x$ $462936.5+x$ $462939.9+x$	-2. 6 -3. 8 -3. 4
38′ ⁴ S ₂	2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	404778		$^6\overline{\mathrm{D}}_1^{^2}$			1/2	462942. 4+x	-2.5
$\overline{\overline{3p}}_{^{2}\mathrm{P}_{1}}^{^{2}\mathrm{P}_{1}}$	$2s^2 \ 2p^2(^1\mathrm{S}) \ 3p$	3p'' ² P°	1½ 1½	406899. 2 406903. 3	4. 1	5d ⁴ P ₃ ⁴ P ₁₂	2s ² 2p ² (³ P)5d	5d 4P	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right.$	465409 }465541	-132
3d ² F ₄ ² F ₃	$2s^2 2p^2(^1\mathrm{D})3d$	3d′ ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	413136. 1 413187. 1	-51.0	$5d~^2\mathrm{D_{23}}$	$2s^2 \ 2p^2(^3{ m P}) \ 5d$	5 <i>d</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	}466293	
3d 2G ₅ 2G ₄	$2s^2 2p^2(^1{ m D}) 3d$	$ m 3\it d'~^2G$	4½ 3½	414887. 0 414890. 1	-3.1	$\overline{4d}\ ^2\mathrm{F}_{34}$	2s ² 2p ² (¹ D)4d	4 <i>d′</i> ² F	$ \left\{ \begin{array}{l} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	}466810	
4s ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	$2s^2 \ 2p^2(^3{ m P})4s$	4s ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	415188 415714		$\overline{4d}\ ^2\mathrm{D}_{23}$	$2s^2\ 2p^2(^1\mathrm{D})4d$	4d′ ²D	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} }466964	
$\overline{3d}^{2}\mathrm{D}_{2}^{2}\mathrm{D}_{3}^{2}$	$2s^2\ 2p^2(^1\mathrm{D})3d$	3d′ ²D	$1\frac{1}{2}$ $2\frac{1}{2}$	416160. 7 416178. 1	17. 4	$\overline{4d}\ ^2\mathrm{P}_{12}$	$2s^2\ 2p^2(^1\mathrm{D})4d$	4d′ ²P	{ ½ 1½ 1½	} }467798	
$48\ {}^{2}P_{1}\ {}^{2}P_{2}$	2s² 2p²(³P)4s	4s ² P	$\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	417581 417968	387	$3d'{}^4{ m D}_4\ {}^4{ m D}_3$	2s 2p³(⁵ S°)3d	3d''' ⁴ D°		467868. 9 467869. 3	-0.4
$\overline{3d}_{^{2}\mathrm{P}_{1}}^{_{2}}$	$2s^2\ 2p^2(^1\mathrm{D})3d$	3d′ ²P	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	418180. 6 418240. 9	60. 3	$^4D_{12}$			$ \begin{cases} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{cases} $	467870.3	-1.0
$\overline{3d} {}^2\mathrm{S}_1$	$2s^2\ 2p^2(^1{ m D})3d$	3d′ 2S	1/2	420997. 9		$\overline{3s'}\ ^2\mathrm{D_3}\ ^2\mathrm{D_2}$	2s 2p³(³D°)3s	381A 5D0	2½ 1½	474369 474413	-44
3p' ⁶ P ₂ ⁶ P ₃ ⁶ P ₄	$2s \ 2p^3(^5\mathrm{S}^\circ)3p$	3p''' ⁶ P	1½ 2½ 3½	$\begin{array}{c} 425239.6 + x \\ 425261.3 + x \\ 425297.4 + x \end{array}$	26.1	$\overline{5d}$ ${}^2\mathrm{F}_{34}$	$2s^2 \ 2p^2(^1{ m D})5d$	5d′ 2F	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right\}$	489494	
4p 2S ₁	$2s^2\ 2p^2(^3{ m P})4p$	4p 2S°	1/2	425297.4 + x 425388.9		$\overline{5d}\ ^2\mathrm{D}_{23}$	$2s^2 \; 2p^2(^1{ m D}) 5d$	5d′ ² D	$\left\{ egin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} 490140	
							F IV(3P0)	Limit		505410	

January 1947.

F III Observed Terms*

Config. 1s ² +		Observed Terms	
$2s^2 \ 2p^3$	$ \begin{cases} 2p^{3} {}^{4}S^{\circ} \\ 2p^{3} {}^{2}P^{\circ} & 2p^{3} {}^{2}D^{\circ} \end{cases} $		
2s 2p ⁴	$\left\{egin{array}{cccc} 2p^4 & ^4{ m P} \ 2p^4 & ^2{ m S} & 2p^4 & ^2{ m P} & 2p^4 & ^2{ m D} \end{array} ight.$		
$2p^5$	$2p^5$ $^2\mathrm{P}^{\circ}$		
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$
$2s^2 \ 2p^2(^3\mathrm{P})nx$	3, 4s ⁴ P 3, 4s ² P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$2s^2 \ 2p^2(^1{\rm D})nx'$	3, 4s' ² D	3p' ² P° $3p'$ ² D° $3p'$ ² F°	3d' 2S 3, 4d' 2P 3-5d' 2D 3-5d' 2F 3d' 2G
2s ² 2p ² (¹ S)nx''	3s'' 2S	3 <i>p</i> ′′ ²P°	3d′′ ²D
2s 2p³(5S°)nx'''	{3s''' ⁶ S° (3s''' 4S°	$rac{3p^{\prime\prime\prime}}{3p^{\prime\prime\prime}}rac{6}{4P}$	3d''' ⁶ D° 3d''' ⁴ D°
2s 2p³(3D°)nx ^{IV}	381A 3Do		

^{*}For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

F IV

(C I sequence; 6 electrons)

Z=9

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2$ 3P_0 703766.4 cm⁻¹

I. P. 87.23 volts

The first work on this spectrum was by Bowen. Edlén has greatly extended the earlier analysis. About 250 lines in the intervals 140 to 679 A and 2171 to 3176 A are now classified. The terms are from Edlén, who has rejected two terms in his published list, 4d' 3S and 3s' 3S. Extrapolated values are entered in brackets in the table.

The singlet and triplet terms are connected by intersystem combinations. No such combinations involving quintet terms have been observed. The uncertainty x may reach 50 to 100 cm^{-1} .

- B. Edlén, Zeit. Phys. 92, 19 (1934). (I P) (T) (C L)
- B. Edlén, private communication (Dec. 1947). (T)

F IV

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p{}^3 ext{P}_0\ {}^3 ext{P}_1\ {}^3 ext{P}_2$	2s ² 2p ²	2p ² ³ P	0 1 2	0. 0 225. 2 613. 4	225. 2 388. 2	3p' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3p	3p 5P°	1 2 3	542578. 3+x 542693. 2+x 542895. 2+x	114. 9 202. 0
$rac{2p\ ^{1}{ m D}_{2}}{2p\ ^{1}{ m S}_{0}}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^2 {}^1{ m D} \ 2p^2 {}^1{ m S}$	2	25241 53544		3p' 3D ₁	2s 2p ² (4P)3p	3p 3D°	1 2	550918 551098	180 268
$2p \cdot S_0$ $2p' \cdot S_2$	2 s $2p^3$	$2p^3$ $5S^{\circ}$	2	74506 + x		$^{3}D_{3}$	2s 2p²(4P)3p	3 <i>p</i> ³P°	3 0	551366	-50
$2p' ^{3}\mathrm{D}_{3}^{3}$	2s 2p³	$2p^3$ $^3\mathrm{D}^\circ$	3 2	147841.8 147888.9	-47. 1	3p' ³ P ₁ ³ P ₂			$\frac{1}{2}$	556051 556316	265
$^3\mathrm{D}_1$		0 0 0 000	1	147901.6	-12.7	4s ³ P ₀ ³ P ₁	2s ² 2p(2P°)4s	4ε ³P°	0 1	559747 559881	134
$2p'{}^3 ext{P}_2\ {}^3 ext{P}_1\ {}^3 ext{P}_0$	2s 2p³	2p³ ³P°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	175237.0 175242.0 175264.1	$\begin{bmatrix} -5.0 \\ -22.1 \end{bmatrix}$	³ P ₂	9-2 9-/2D0\4-	4s ¹P°	2	560304	423
$2p' {}^{1}\mathrm{D}_{2}$	2s 2p³	$2p^3$ $^1\mathrm{D}^\circ$	2	228908		4s ¹ P ₁ 3s' ³ D ₁	$2s^2 \ 2p(^2{ m P}^{\circ}) 4s$ $2s \ 2p^2(^2{ m D}) 3s$	3s' 3D	1	567900	
2p′ 3S ₁	2s 2p³	2p³ 3S°	1	238297. 2		$^{3}D_{2}^{1}$ $^{3}D_{3}^{2}$	20 2p (D)00	00 D	2 3	568019 568175	119 156
2p′ ¹P₁	2s 2 p³	2p³ ¹P°	1	257390		3d′ 5F1	2s 2p2(4P)3d	3d ⁵ F	1	5765811 + x	[75]
$2p'' {}^{3}P_{2} \\ {}^{3}P_{1} \\ {}^{3}P_{0}$	$2p^4$	2p4 3P	2 1 0	348327. 0 348770. 0 348963. 0	-443. 0 -193. 0	⁵ F ₂ ⁵ F ₃ ⁵ F ₄ ⁵ F ₅			2 3 4 5	576656.1 + x 576768.2 + x 576916.6 + x 577100.1 + x	112. 1 148. 4 183. 5
${3s} {^3P_0} \ {^3P_1} \ {^3P_2}$	2s² 2p(²P°)3s	3s ³P°	0 1 2	416417. 3 416639. 8 417143. 4	222. 5 503. 6	$3d' {}^5\mathrm{D}_0 \ {}^5\mathrm{D}_1 \ {}^5\mathrm{D}_2$	2s 2p ² (4P)3d	3d ⁵D	0 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5. 4 17. 1 43. 7
38 ¹ P ₁	2s² 2p(²P°)3s	3 ₈ ¹ P°	1	<i>423606.</i> 4		⁵ D ₃ ⁵ D ₄			$\frac{3}{4}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	105. 3
$3p {}^{3}\mathrm{D}_{1} \ {}^{3}\mathrm{D}_{2} \ {}^{3}\mathrm{D}_{3}$	2s² 2p(²P°)3p	3p 2D	1 2 3	451819. 6 452081. 1 452517. 1	261. 5 436. 0	3d′ ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)3d	3 <i>d</i> ⁵P	3 2 1	$\begin{bmatrix} 583547 & +x \\ 583697 & +x \\ 583798 & +x \end{bmatrix}$	-150 -101
3p 3S1	$2s^2 \ 2p(^2\mathrm{P}^\circ)3p$	$3p$ $^3\mathrm{S}$	1	456884. 3		3d′ ³ P ₂ ³ P ₁	2s 2p2(4P)3d	3d ³P	2 1	585201 585425	-224
$3p {}_{^{3}\mathrm{P}_{1}}^{3}$	$2s^2 2p(^2\mathrm{P}^\circ) 3p$	3p 3P	0	460215. 2 460385. 8	170. 6	³ P ₀			ō	585531	-106
$^3\mathrm{P}_2$	0.00 (770)		2	460640. 6	254. 8	38' 1D2	2s 2p ² (2D)3s	3s' ¹D	2	586263	
$3p \ ^{1}\mathrm{D}_{2}$ $3d \ ^{3}\mathrm{F}_{2}$	$2s^2 \ 2p (^2{ m P}^{\circ}) 3p$ $2s^2 \ 2p (^2{ m P}^{\circ}) 3d$	3p ¹D 3d ³F°	2	469644. 2 492395. 1		$4d~^3\mathrm{F}_2$	$2s^2 \ 2p(^2\mathrm{P}^\circ)4d$	4d ³F°	3	586641	
3a °F ₂ °F ₃ °F ₄	28° 2p(2r°)3a	5a °F	2 3 4	492858. 8 493206. 2	463. 7 347. 4	4d ¹D₂	$2s^2 \ 2p(^2\mathrm{P}^\circ)4d$	4d ¹D°	2	587130	
$3d$ $^{1}\mathrm{D}_{2}$			2	492864		$3d' {}^3 ext{F}_2 \ {}^3 ext{F}_3$	2 s 2 p ² (⁴ P)3d	3d ³F	2 3	588021 588223	202 255
$3d \ ^{3}D_{1} \ ^{2}D_{2}$	$2s^2 2p(^2\mathrm{P}^\circ)3d$	3d ³D°	$\frac{1}{2}$	497481. 4 497575. 6	94. 2 153. 5	³ F ₄	0-2 0/2700 4.7	4.7.2700	4	588478	200
$^3\mathrm{D}_3^2$ $3d$ $^3\mathrm{P}_2$	2s² 2p(²P°)3d	3d ³P°	3 2	497729. 1 500390. 1		$\begin{array}{c c} & 4d \ ^3\mathrm{D}_1 \\ & ^3\mathrm{D}_2 \\ & ^3\mathrm{D}_3 \end{array}$	2s ² 2p(² P°)4d	4d ³D°	$\begin{array}{c c} 1 \\ 2 \\ 3 \end{array}$	589109 589188 589406	79 218
³ P ₁ ³ P ₀	20 2p(1)0w	00 1	1 0	500602. 1 500716. 5	$\begin{bmatrix} -212.0 \\ -114.4 \end{bmatrix}$	$4d ^3\mathrm{P}_2$	$2s^2\ 2p(^2\mathrm{P^o})4d$	4d ³P°	2	590024	-177
38' 5P1 5P2	2s 2p²(4P)3s	38 ⁵ P	1 2	$502723. \ 0+x$ $502964. \ 4+x$	241. 4 318. 0	³ P ₁ ³ P ₀			0	590201 590262	-61
δP ₃	0-2 0/2TD0\0.7	9.7.1730	3	503282. 4+x	510, 0	4d ¹ F ₃	2s ² 2p(² P°)4d	4d 'F°	3	592240	
$3d {}^{1}\mathrm{F}_{3}$ $3d {}^{1}\mathrm{P}_{1}$	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$ $2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d 'F° 3d 'P°	3 1	505421.4 506514		4d ¹ P ₁	$2s^2 2p(^2P^\circ)4d$	4d ¹ P°	1	592674 595331	
3s' ³ P ₀	2s 2p(4P)3s	3s 3P	0	519341		3d′ ³ D ₁ ³ D ₂ ³ D ₃	2s 2p ² (4P)3d	3d *D	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	595403 595481	72 78
${}^{3}P_{1}^{1}$ ${}^{3}P_{2}^{2}$	1 (1) 2 0		1 2	519539 519890	198 351	$\overline{3p'} {}^{1}F_{3}$	$oxed{2 ext{s}\ 2p^2(^2 ext{D})3p}$	3p′ ¹F°	3	609811	
3p′ 3S ₁	2s 2p2(4P)3p	3p 3S°	1	534686		$\overline{3p}'$ $^{1}\mathrm{D}_{2}$	2 s $2p^2(^2\mathrm{D})3p$	3p′ ¹D°	2	612830	
3p' ⁵ D ₀ ⁵ D ₁	2s 2p ² (4P)3p	3p ⁵D°	0	[538507] +x 538573.3+x	[66]	3p′ ¹P₁	$2s\ 2p^2(^2\mathrm{D})3p$	3p′ ¹P°	1	618889	
$^{5}D_{2}$ $^{5}D_{3}$ $^{5}D_{4}$			2 3 4	538709. 2+x 538909. 8+x 539166. 1+x	135. 9 200. 6 256. 3	5d ³ F ₂	2s ² 2p(² P°)5d	5d ³F°	2 3 4	629547	

F IV—Continued

F IV—Continued

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$5d$ $^{1}\mathrm{D_{2}}$	2s ² 2p(² P°)5d	5d ¹D°	2	630019		3 d ′ ¹F₃	2 s $2p^2(^2\mathrm{D})3d$	3d′ ¹F	3	657546	
	2s ² 2p(2P°)5d	5d ³D°	1			$\overline{3d}'$ $^{1}\mathrm{D}_{2}$	$2s\ 2p^2(^2\mathrm{D})3d$	3d′ ¹D	2	657800	
$5d$ $^3\mathrm{D_3}$			3	631126		3d′ ¹P₁	$2s\ 2p^2(^2\mathrm{D})3d$	3d′ ¹P	1	658629	
$5d\ ^{3}\mathrm{P}_{2}\ ^{3}\mathrm{P}_{01}$	2s² 2p(²P°)5d	5d ³P°	2 1, 0	[631426] 631546	[-120]		2s 2p ² (4P)4p	4p 3D°	1 2		
$5d$ $^1\mathrm{F}_3$	$2s^22p(^2\mathrm{P}^\circ)5d$	5 <i>d</i> ¹ F°	3	632730		$4p'$ $^3\mathrm{D}_3$			3	66284 3	
5d ¹ P ₁	2s ² 2p(² P°)5d	5 <i>d</i> ¹ P°	1	632740		4p' 3P2	$2s~2p^2(^4\mathrm{P})4p$	4p 3P°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	665409	
$\overline{3d'}$ ${}^3\mathrm{F}_{234}$	$2s\ 2p^2(^2\mathrm{D})3d$	3d′ ³F	2, 3, 4	644224		4d' ⁵ P ₃	2s 2p²(4P)4d	4d ⁵ P	3		
4s' ⁵ P ₂	2s 2p ² (4P)4s	4s ⁵ P	1 2 3	$\begin{vmatrix} 645504 & +x \\ 645827 & +x \end{vmatrix}$	323	$\begin{bmatrix} & ^{1d} & ^{13}_{5\mathrm{P}_{12}} \ & ^{4}d' ^{3}\mathrm{F}_{2} \end{bmatrix}$	$2s \ 2p^2(^4\mathrm{P})4d$	4d 3F	2, 1	$ \begin{array}{r} 675110 & +x \\ 675309 & +x \\ 677467 \end{array} $	
$^5\mathrm{P}_3$	2 s $2p^2(^2\mathrm{D})3d$	3 <i>d′</i> ³P	0	043027 72		³ F ₃ ³ F ₄	28 2 p - (-1) 4 u	4a F	2 3 4	677667 677906	200 239
3d′ ³P₂			$\begin{vmatrix} 1\\2 \end{vmatrix}$	648827		$4d'{}^{3}{ m D}_{3} \ {}^{3}{ m D}_{12}$	$2s~2p^2(^4\mathrm{P})4d$	4d 3D	1, 2	679798 679994	196
$\overline{3d'}_{^{3}D_{3}}^{^{3}D_{12}}$	$2s~2p^2(^2\mathrm{D})3d$	3d′ ³D	1, 2	650196 650342	146		F v (2P½)	Limit		703766.4	
	$2s^2 2p(^2\mathrm{P}^\circ) 6d$	6d ³D°	1 2				$2s \ 2p^2(^4{ m P})5p$	5p 3D°	$\frac{1}{2}$		
$6d \ ^3\mathrm{D_3}$			3	653606		$5p'$ $^3\mathrm{D}_3$			3	710760	
6d ³ P ₂ ³ P ₀₁	2s ² 2p(2P°)6d	6d ³P°	2 1, 0	653772 653833	-61	5d' ⁵ P ₃ ⁵ P ₁₂	$2s~2p^2(^4\mathrm{P})5d$	5d ⁵ P	3 2, 1	$ \begin{array}{c cccc} 716878 & +x \\ 717080 & +x \end{array} $	-202
$6d$ $^1\mathrm{F}_3$	2s² 2p(²P°)6d	6d ¹F°	3	654469		$\overline{4d}'$ ${}^3\mathrm{F}_{234}$	$2s~2p^2(^2\mathrm{D})4d$	4d′ ³F	2, 3, 4	738996	
3d′ 3S₁	$2s\ 2p^2(^2\mathrm{D})3d$	3d′ 3S	1	654739							

December 1947.

F IV OBSERVED TERMS*

	1				F IV OBSE	TED TERM	3				
$\frac{\text{Config.}}{1s^2+}$						Observe	d Terms				
2s² 2p²	$\left\{{}_{2p^2}\right.^{1}\!\mathrm{S}$	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D								
$2s\ 2p^3$	$\begin{cases} 2p^{3} {}^{5}\mathrm{S}^{\circ} \\ 2p^{3} {}^{3}\mathrm{S}^{\circ} \end{cases}$	$2p^3\ ^3{ m P}^{\circ} \ 2p^3\ ^1{ m P}^{\circ}$	$2p^3 {}^3{ m D}^{\circ} \ 2p^3 {}^1{ m D}^{\circ}$								
$2p^{i}$		2p4 3P									
		$ns (n \ge 3)$			n_I	o (n≥3)				nd $(n \geq 3)$	
2s² 2p(2P°)nx	{	3, 4s ³ P° 3, 4s ¹ P°		3p 3S	3p 3P	$3p$ $^3\mathrm{D}$ $3p$ $^1\mathrm{D}$			3-6d ³ P° 3-5d ¹ P°	3-6d ³ D° 3-5d ¹ D°	3-5d ³ F° 3-6d ¹ F°
2s 2p²(4P)nx	{	3, 4s ⁵ P 3s ³ P		3p 3S°	3 <i>p</i> ⁵ P° 3, 4 <i>p</i> ³ P°	$^{3p}_{3-5p}^{5}{ m D}^{\circ}_{3}$			$^{3-5d}_{3d}^{5}{ m P}_{}$	$^{3d}_{3,\ 4d}^{5}\mathrm{D}$	$^{3d}_{3,~4d}$ $^{5}\mathrm{F}$
2s 2p2(2D)nx'	{		3s′ ³D 3s′ ¹D		3p′ ¹P°	3p′ ¹D°	3p′ ¹F°	3d′ 3S	3d′ ³P 3d′ ¹P	$\frac{3d'}{3d'}$ $^{3}\mathrm{D}$ $\frac{3d'}{1}$ $^{1}\mathrm{D}$	3, 4d′ ³F 3d′ ¹F

^{*}For predicted terms in the spectra of the C I isoélectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z=9

Ground state 1s2 2s2 2p 2P3

2p 2P 3 921450 cm-1

I. P. 114.214 volts

All of the terms are from an unpublished manuscript kindly furnished by Edlén. He has revised and extended his earlier analysis. The notation in the left column is from his published papers.

No intersystem combinations have been observed. The position of the quartet terms relative to the doublets may be in error by ± 100 cm⁻¹ according to Edlén. This uncertainty is indicated by x in the table.

REFERENCES

- B. Edlén, Zeit. Phys. 89, 597 (1934); 92, 26 (1934); 94, 56 (1935). (I P) (T) (C L).
- B. Edlén, unpublished material (Dec. 1947). (I P) (T).

F V F V

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$2p{}^{2}\!$	$2s^2(^1\mathrm{S})2p$	2 <i>p</i> ² P°	1½ 1½	0 746	746	3s' ² P ₁ ² P ₂	2s 2p(³P°)3s	3s ² P°	1½ 1½	638856 639365	509
$2p' {}^{4}P_{1} \ {}^{4}P_{2} \ {}^{4}P_{3}$	2s 2p2	2p² 4P	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	86035 + x $86287 + x$ $86651 + x$	252 364	$3p'{}^{2}\mathrm{P}_{1} \ {}^{2}\mathrm{P}_{2}$	2s 2p(³P°)3p	3 <i>p</i> ² P	1½ 1½	656208 656436	228
$2p' \ ^{2}D_{3}^{3}$ $^{2}D_{2}$	2s 2p²	2p² ²D	2½ 1½ 1½	152876 152898	-22	$\begin{array}{c c} 3p' \ ^4D_1 \\ ^4D_2 \\ ^4D_3 \\ ^4D_4 \end{array}$	2s 2p(3P°)3p	3p 4D	$\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	$\begin{array}{r} 657988 + x \\ 658134 + x \\ 658390 + x \\ 658791 + x \end{array}$	256
$2p'$ $^2\mathrm{S}_1$	2s 2p2	$2p^2$ ² S	1/2	197565		_	0- 0 (2D0\2	9 40			
$2p^{\prime}^{2}\mathrm{P}_{1}^{2}$	2s 2p²	2p² ²P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	214881 215348	467	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2s 2p(3P°)3p 2s 2p(3P°)3p	$\begin{array}{c c} 3p & ^4S \\ 3p & ^2D \end{array}$	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{ c c c c }\hline 666240+x \\ 675932 \\ 676422 \\ \end{array}$	490
$2p^{\prime\prime}$ $^4\mathrm{S}_2$	$2p^3$	2p³ 4S°	1½	276657 + x			0~ 0~ (3D0\ 2~	9 20	1/2	687806	
$2p^{\prime\prime}{}^{2}{ m D}_{3}\ {}^{2}{ m D}_{2}$	$2p^3$	2p³ 2D°	$2\frac{1}{2}$ $1\frac{1}{2}$	307226 307273	-47	$3p' {}^{2}S_{1}$ $3d' {}^{4}D_{12}$	2s 2p(3P°)3p 2s 2p(3P°)3d	3p 2S 3d 4D°		697817+x	102
$2p^{\prime\prime}{}^{2}\mathrm{P_{1}}\ {}^{2}\mathrm{P_{2}}$	$2p^2$	2p³ 2P°	1½ 1½	347418 347438	20	⁴ D ₃ ⁴ D ₄			$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right.$	$\begin{vmatrix} 697919 + x \\ 698055 + x \end{vmatrix}$	126
38 ² S ₁	2s ² (¹S)3s	3s 2S	1/2	524751		3d′ ² D ₂	2s 2p(3P°)3d	3 <i>d</i> ² D°	1½ 2½	699293	96
$3p\ ^{2}\mathrm{P_{1}}^{2}\mathrm{P_{2}}$	$2s^2(^1\mathrm{S})3p$	3 <i>p</i> ² P°	1½ 1½	565367 565544	177	² D ₃ 3d' ⁴ P ₃	2s 2p(3P°)3d	3d 4P°	1	699389 702908+x	- 209
$3d {}^{2}{ m D}_{2} \ {}^{2}{ m D}_{3}$	2s²(¹S)3d	$3d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	602476 602516	40	⁴ P ₂ ⁴ P ₁			2½ 1½ ½ ½	703117 + x 703259 + x	
$\begin{array}{c} 3s' \ ^4P_1 \\ ^4P_2 \\ ^4P_3 \end{array}$	2s 2p(3P°)3s	3s ⁴ P°	$egin{array}{c} rac{1/2}{1/2} \ 2/2 \ \end{array}$	621138 + x 621395 + x 621863 + x	257 468	3s' ² P ₁₂	2s 2p(¹P°)3s	3s′ 2P°	11/2	712755	

Edlén	Config.	Desig.		Level	Interval	Eglén	Config.	Desig.		Level	Interval
											Interval
$3d'$ ${}^2\mathrm{F}_3$ ${}^2\mathrm{F}_4$	2s 2p(3P°)3d	3d ² F°	2½ 3½	712840 713306	466		2s 2p(3P°)4d	4d ² D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	841598 841695	97
4s ² S ₁	$2s^2(^1S)4s$	4s 2S	1/2	712936		4d′ ⁴ P ₃	2s 2p(3P°)4d	4d 4P°	2½ 1½ ½ ½	842452+x	
$3d'{}^{2}\mathrm{P}_{2}\ {}^{2}\mathrm{P}_{1}$	2s 2p(3P°)3d	3d ² P°	1½ 1/2 1/2	718472 718691	-219		0-2/10) 0.7	0.700	1		
$4d\ ^{2}\mathrm{D}_{2}^{2}$	$2s^2(^1\mathrm{S})4d$	4d 2D	1½ 2½	744010 744036	26		$2s^2(^1\mathrm{S})6d$	6 <i>d</i> ² D	1½ 2½	843497	
$\overline{3p}' {}^{2}\mathrm{D}_{2}$	2s 2p(1P°)3p	3p′ 2D	1½ 2½	7 51406	46	$\overline{3p}^{\prime\prime}{}_{^2\mathrm{F}_4}^{^2\mathrm{F}_3}$	$2p^2(^1\mathrm{D})3p$	3p''' 2F°	$egin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	844112 844266	154
$^{2}D_{3}$	2s 2p(¹P°)3p	3p′ 2P		751452 752529		4d′ ² F ₃ ² F ₄	2s 2p(3P°)4d	4d ² F°	2½ 3½	847506 847817	311
$\overline{3p}'^2\mathrm{P_1}_{^2\mathrm{P_2}}$	28 2p(-1)5p		1½	752529 753656	127	- 4	$2p^2(^3\mathrm{P})3d$	3d'' 2P	11/2	853035	-407
$\overline{3p}'$ ² S ₁	2s 2p(1P°)3p	3p′ 2S	1/2	760342			$2p^2(^1\mathrm{D})3p$	3p''' 2D°	1/2	853442	-407
$\overline{3d}'$ ${}^2\mathrm{F}_{34}$	2s 2p(1P°)3d	3d′ 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right\}$	783650					1½ 2½	854971	
38" ⁴ P ₁ ⁴ P ₂	$2p^2(^3\mathrm{P})3s$	3s'' 4P	$egin{array}{c} label{1/2} \ 1/2 \ 2/2 \ \end{array}$	784343+x $784604+x$	410	$3d^{\prime\prime} {}^{4}P_{3} \ {}^{4}P_{2} \ {}^{4}P_{1}$	$2p^2(^3\mathrm{P})3d$	3d'' ⁴ P	$\begin{array}{ c c c c }\hline & 2\frac{1}{2} \\ & 1\frac{1}{2} \\ & \frac{1}{2} \\ & & \frac{1}{2} \\ \end{array}$	$\begin{array}{c} 860421 + x \\ 860619 + x \\ 860725 + x \end{array}$	- 198
$\frac{^{4}\mathrm{P_{3}^{2}}}{3d'}_{^{2}\mathrm{D_{2}}}_{^{2}\mathrm{D_{3}}}$	2s 2p(¹P°)3d	3d′ 2D°	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	785014+x 787725 787764	39	3d'' ²D	$2p^2(^1\mathrm{D})3d$	3d''' ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right\}$	873904	
$\overline{3d}' {}^{2}\mathrm{P}_{12}$	2s 2p(¹P°)3d	3d′ 2P°	$\left\{\begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	793308		3d′′ ² F ₃₄	$2p^2(^1\mathrm{D})3d$	3d''' 2F	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right\}$	880312	
3s'' ² P ₁ 2P ₂	2p ² (³ P)3s	3s'' 2P	$ \begin{array}{c c} 1\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \end{array} $	797059 797519	460	$\overline{3d}^{\prime\prime}_{^{2}\mathrm{P_{1}}}^{^{2}\mathrm{P_{1}}}$	$2p^2(^1\mathrm{D})3d$	3d''' ² P	1½ 1½	882930 883083	153
$5d ^2\mathrm{D_3}$	$2s^2(^1\mathrm{S})5d$	5d ² D	$egin{array}{c} 1_{1/2} \\ 1_{1/2} \\ 2_{1/2} \\ \end{array}$	808663 808677	14		2s 2p(3P°)5s	5s ⁴ P°	$egin{array}{c} label{1/2} & rac{1/2}{1/2} \ 2^{1/2} & \end{array}$	892180+x	
	2s 2p(3P°)4s	4s 4P°	1				2s 2p(3P°)5p	5 <i>p</i> ² D	1½ 2½	901487	525
4s' 4P ₃			$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	810298+x			2s 2p(3P°)5d	5d 4D°	1	902012	020
38″²D	$2p^2(^1\mathrm{D})3s$	3s''' ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2} \end{array}\right\}$	811075		* 11 15			$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$		
	$2p^2(^3\mathrm{P})3p$	3p'' ⁴D°	1½ 1½ 1½	816518+x		5d′ 4D	2s 2p(3P°)5d	5d 4P°	$\begin{vmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	906074 + x 906565 + x	
3p'' 4D ₄			$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	$816759 + x \\ 817101 + x$			20 2p(1)0w		11/2	000000 2	
	$2p^2(^3\mathrm{P})3p$	3p'' 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	823375+x			Fvi (1S ₀)	Limit		921450	
3p'' 4P ₃				823625 + x	250		2s 2p(3P°)6d	6d 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \end{array}$		
	$2s \ 2p(^3\mathrm{P}^\circ)4p$	4 <i>p</i> ² P	1½	829436 829707	271				$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \ 3\frac{1}{2} \ \end{array}$	940921 + x	
$4p' {}^{2}_{2}D_{2} \over {}^{2}_{2}D_{3}$	2s 2p(3P°)4p	4 <i>p</i> ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	833501 833920	419		2s 2p(3P°)6d	6d 4P°	2½ 1½ ½ ½	941286 + x	
3p'' 4S ₂	$2p^2(^3\mathrm{P})3p$	3p'' 4S°	1½	834790+x			$2p^2(^3\mathrm{P})4d$	4d'' 4P		998189 + x	
	2s 2p(3P°)4p 2s 2p(3P°)4d	4p 2S 4d 4D°	1/2	838036					2½ 1½ ½		
4d′ 4D4	20 2p(1)40	IW ID	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right\}$	841037 + x 841095 + x 841305 + x	58 210						

December 1947.

F v OBSERVED TERMS*

$\frac{\text{Config.}}{1s^2+}$					Obser	rved Terms				
$2s^2(^1\mathrm{S})2p$		2p 2P°								
2s 2p ²	$\Big \Big\{_{2p^2} _{^2\mathrm{S}}$	$rac{2p^2}{2p^2} rac{4}{^2\mathrm{P}}$	$2p^2$ ² D							
$2p^3$	${2p^3 \text{ 4S}^{\circ}}$	2p³ ²P°	2p³ 2D°							
		ns (n≥3)			np ((n≥3)			nd (n≥3)	
$2s^2(^1\mathrm{S})nx$	3, 4s ² S				3p ² P°				3-6 <i>d</i> ² D	
2s 2p(3P°)nx	{	3-5s ⁴ P° 3s ² P°		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3, 4p ² P	$^{3p}_{3-5p}^{4}{}^{ m D}_{2}$		3-6d ⁴ P° 3d ² P°	3-6d ⁴ D° 3, 4d ² D°	3, 4d ² F°
2s 2p(1P°)nx′		3s′ 2P°		3p′ 2S	3p' ² P	3p′ 2D		3d′ ²P°	3 <i>d′</i> ² D°	3d′ 2F°
$2p^2(^3\mathrm{P})nx''$	{	3s'' ⁴ P 3s'' ² P		3p''4S°	3p'' 4P°	3 <i>p</i> ′′⁴D°		3, 4 <i>d''</i> ⁴ P 3 <i>d''</i> ² P		
$2p^2(^1\mathrm{D})nx'''$			38′′′ 2D			3 <i>p</i> ′′′ ²D°	3p''' 2F°	3d''' 2P	3d''' ² D	3d''' 2F

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

F VI

(Be r sequence; 4 electrons)

Z=9

Ground state 1s2 2s2 1S0

 $2s^2 \, {}^1S_0 \, 1267581 \, \, cm^{-1}$

I. P. 157.117 volts

Edlén has revised and extended his published analysis and has generously furnished a manuscript copy of his complete term list in advance of publication, for inclusion here.

In the published papers he has used a prime to designate the terms from the ²P° limit in F vII.

Intersystem combinations connecting the singlet and triplet systems of terms, have been observed.

- B. Edlén, Zeit. Phys. 89, 179 (1934). (I P) (T) (C L)
- B. Edlén, Zeit. Phys. 94, 56 (1935). (T) (C L)
- B. Edlén, unpublished material (Dec. 1947). (I P) (T)

F VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2$ $2s(^2\mathrm{S})2p$	$2s^2$ $^1\mathrm{S}$ $2p$ $^3\mathrm{P}^\circ$	0	96601	000	2p(2P°)3d	3d ³P°	2 1 0	938524 938811 938958	-287 -147
-0(×)-P	-F -	1 2	96861 97437	260 576	2p(2P°)3d	3d ¹F°	3	947305	
2s(2S)2p	2p ¹P°	1	186841		2p(2P°)3d	3d ¹P°	1	953402	
$2p^2$	$2p^2$ $^3\mathrm{P}$	0	251341 251635	294	2s(2S)4s	4s 3S	1	989928	
		1 2	252145	510	2s(2S)4s	4s ¹S	0	997693	
$2p^2$	$2p^2$ ¹ D	2	274597		$2s(^2\mathrm{S})4p$	4p ¹P°	1	1007852	
$2p^2$	$2p^2$ ¹ S	0	340424		$2s(^2\mathrm{S})4d$	4d ³ D	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$		
2s(2S)3s	38 3S	1	747298				3	1014439	
2s(2S)3s	38 ¹S	0	764392		$2s(^2\mathrm{S})4d$	4d ¹ D	2	1019363	
2s(2S)3p	3p ¹P°	1	787833		2s(2S)5s	5s 3S	1	1093463	
$2s(^2S)3p$	3p 3P°	0	790326		$2s(^2\mathrm{S})5p$	5p ¹P°	1	1099409	
		2	790474	148	$2s(^2\mathrm{S})5d$	5d ³D	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$		
2s(2S)3d	3d ³ D	1, 2	812169 812208	39			3	1106417	
2s(2S)3d	$_{ m 3}d~^{ m 1}{ m D}$	2	826853		$2s(^2\mathrm{S})5d$	5d ¹ D	2	1108712	
2p(2P°)3s	38 3P°	0	871160		2p(2P°)4s	4s ¹P°	1	1112328	
20(2)00	55 2	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	871441 872078	281 637	2p(2P°)4p	4p ¹P	1	1115967	
2p(2P°)3s	3s ¹P°	1	884290		$2p(^2\mathrm{P}^\circ)4p$	4p 3D	$\frac{1}{2}$	1117498 1117741 1118273	243 532
2p(2P°)3p	3p ¹P	1	895287		$2p(^{2}\mathrm{P}^{\circ})4p$	4p 3S	1	1121377	
2p(2P°)3p	3 <i>p</i> ³D	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	900442 900785 901397	343 612	2p(2P°)4p	4p ³ P	$\begin{smallmatrix}0\\1\\2\end{smallmatrix}$	$\begin{array}{c} 1122468 \\ 1122662 \end{array}$	194
2p(2P°)3p	3p 3S	1	909316		$2p(^2\mathrm{P}^\circ)4p$	$4p$ $^{1}\mathrm{D}$	2	1126152	
2p(2P°)3p	3p 3P	0 1	$915196 \\ 915420$	224	$2p(^2\mathrm{P}^\circ)4d$	$4d ^{1}\mathrm{D}^{\circ}$	2	1126168	
		$\bar{2}$	915770	350	$2p(^2\mathrm{P}^\circ)4d$	4d ³D°		11.0100	
2p(2P°)3d	3d ¹ D°	2	921821		F(- /		1 2 3	1130339	
2p(2P°)3p	3p ¹D	2	925393		$2p(^2\mathrm{P^o})4d$	4d ³P°	2	1131653	20.4
2p(2P°)3d	3d ³D°	1 2 3	933586 933717 933920	131 203			0	1131857	-204
2p(2P°)3p	3p ¹S	0	934633		2p(2P°)4d	4d ¹F°	3	113595 3	
-100	~ ~ ~				$2p(^2\mathrm{P}^\circ)4d$	4d ¹ P°	1	1137535	-

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s(2S)6p	6p ¹P°	1	1154428		2p(2P°)5d	5d ³D°	1		
$2s(^2\mathrm{S})6d$	6d ³D	1					1 2 3	1220940	
		$\frac{1}{2}$	1156097		2p(2P°)5d	5d ³P°	2 1	1221541	
$2s(^2\mathrm{S})6d$	6d ¹ D	_ 2	1157385				Ō		
$2s(^2\mathrm{S})7p$	7p ¹P°	1	1184469		2p(2P°)5d	5d ¹F°	3	1223598	
$2s(^2\mathrm{S})7d$	7d ³D	1 2 3			2p(2P°)5d	5d ¹P°	1	1224285	
		3	1185884		2p(2P°)6p	6p 3D	1		
$3s(^2\mathrm{S})7d$	7d ¹D	2	1186611				1 2 3	1266672	
$2\mathrm{s}(^2\mathrm{S})8d$	8d ³D	$\frac{1}{2}$			F vII (2S _{1/2})	Limit		1267581	
		3	1205139		$2p(^2\mathrm{P}^\circ)6p$	6p 3P	0		
$2p(^2\mathrm{P}^\circ)5p$	5p 3D	1					$\frac{1}{2}$	1267616	
		$\frac{1}{2}$	1215055		2p(2P°)6p	6 <i>p</i> ¹ D	2	1268554	
$2p(^3\mathrm{P}^\circ)5p$	5 <i>p</i> ³ P	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$			2p(2P°)6d	6d ³D°	1		
		2	1216995				1 2 3	1269888	
$2p(^{2}\mathrm{P}^{\circ})5p$	5 <i>p</i> ¹ D	2	1218588		2p(2P°)6d	6d ¹F°	3	1271437	
2p(2P°)5d	5d ¹D°	2	1218786		2p(2P°)7d	7d ³D°	1		1
							2 3	1299418	

December 1947.

F vi Observed Terms*

Config. 1s ² +		Observed Terms	
$2s^2$	2s ² ¹ S		
2s(2S)2p	$\left\{egin{array}{c} 2p\ ^3\mathrm{P}^\circ\ 2p\ ^1\mathrm{P}^\circ \end{array} ight.$		
2p2	$\left\{\begin{array}{ccc} & 2p^2 {}^{3}\mathrm{P} \\ & 2p^2 {}^{1}\mathrm{S} & & 2p^2 {}^{3}\mathrm{P} \end{array}\right.$		
	ns (n≥3)	np (n≥3)	nd (n≥3)
$2s(^2\mathrm{S})nx$	$ \left\{ \begin{array}{c} 3-5s {}^{3}S \\ 3, 4s {}^{1}S \end{array} \right. $	3p ³P° 3−7p ¹P°	3–8 <i>d</i> ³D 3–7 <i>d</i> ¹D
2p(2P°)nx	3s 3P° 3, 4s 1P°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-5d ³ P° 3-7d ³ D° 3-6d ¹ F°

^{*}For predicted terms in the spectra of the Be $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Z=9

Ground state 1s2 2s 2S1

 $2s {}^{2}S_{\frac{1}{2}}$ 1493656 cm⁻¹

I. P. 185.139 volts

The analysis is by Edlén, who, in 1934, published a list of nine classified lines in the range between 86 A and 134 A. He has recently extended the analysis and has generously furnished his unpublished term list for use in the present compilation. All terms in the table have been taken from the later list, although the entries in column one are from the earlier paper.

Edlén remarks that the np ²P° and nd ²D series have been observed in the vacuum spark further than indicated in the table, but beyond n=6 the term values calculated from a Ritz formula are probably to be preferred.

REFERENCES

- B. Edlén, Zeit. Phys. 89, 179 (1934). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (I P) (T)

F VII

F VII

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2s ² S	2 s	2s ² S	1/2	0			6s	6s 2S	1/2	1339216	
$2p\ ^2{ m P_1}\ ^2{ m P_2}$	2p	2 <i>p</i> ² P°	1/2	112258 113235	977		6p	6 <i>p</i> ² P°	$\begin{cases} \frac{1}{2} \\ 1\frac{1}{2} \end{cases}$	342877	
3s ² S	38	3s 2S	1/2	854625	s.		6d	$6d~^2\mathrm{D}$	$\left\{ egin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	1344141	
$3p\ ^{2}\mathrm{P_{1}}^{2}\mathrm{P_{2}}$	3p	3 <i>p</i> ² P°	1½ 1½	885136 885418	282		7s	7s 2S	1/2	1380775	
$3d\ ^2{ m D}_2^2{ m D}_3^2$	3d	$3d$ $^2\mathrm{D}$	1½ 2½	895632 895722	90		7p	7 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	382858	
4s 2S	4 s	4s 2S	1/2	1140416			7d	$7d~^2\mathrm{D}$	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	} 1383841	
4p 2P2	4p	4 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	1152977			8p	8 <i>p</i> ² P°	\begin{cases} \frac{1}{2} \\ \frac{1}{1}{2} \\ \frac{1}{2} \\ \fra	} 1408848	
$4d~^2\mathrm{D_3}$	4d	$4d~^2\mathrm{D}$	1½ 2½	$\begin{array}{c} 1157223 \\ 1157255 \end{array}$	32		8d	8d 2D	$ \left\{ \begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 1409538	
	58	5s 2S	1/2	1269826			, ou	3 <i>a</i> -15	2½	1409556	
	5p	5p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	1276194			F vIII (¹S ₀)	Limit		1493656	
$5d$ $^2\mathrm{D_3}$	5d	$5d~^2\mathrm{D}$	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right\}$	} 1278404							

September 1947.

(Her sequence; 2 electrons)

Z=9

Ground state 1s21S0

 $1s^2$ $^{1}S_0$ 7693400 ± 800 cm⁻¹

I. P. 953.60 ± 0.10 volts

Flemberg has classified three lines between 13 A and 16 A as the first three members of the singlet series. Tyrén has also observed the first two members of this series and classified a line at 16.951 A as the intersystem combination $1s^2 {}^1S_0 - 2p {}^3P_1^{\circ}$. Tyrén's value of the limit is quoted here. The unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

Edlén has extended the analysis and has generously furnished his unpublished manuscript containing absolute values of the triplet terms extrapolated along the He I isoelectronic sequence. The relative positions of the singlet and triplet terms thus determined confirm the intersystem combination reported by Tyrén. The $2s^3S-2p^3P^\circ$ combination has apparently not been observed, but Edlén regards the extrapolation from the irregular doublet law as very reliable. Brackets are used in the table to denote extrapolated values not yet confirmed by observation.

REFERENCES

- F. Tyrén, Nova Acta Reg. Soc. Sci. Uppsala [IV] 12, No. 1, 25 (1940). (I P) (T) (C L)
- H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18 p. 34 (1942). (T) (C L)
- B. Edlén, unpublished material (Sept. 1947). (T)

F vIII

F VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
1s ² 1s 2s	1s ² ¹S 2s ³S	0	0 [5829920]		1s 3d 1s 3p	3d ³D 3p ¹P°	3, 2, 1	[6912360] 6916590	
1s 2p	2p ³P°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	[5899150] 5899310 [5900260]	[160] [950]	1s 4p	4p ¹P°	1	7256680	
1s 2p	2p ¹P°	1	5949900		F ix (2S ₁₄)	Limit		7693400	

September 1947.

NEON

Ne I

10 electrons Z=10

Ground state 1s2 2s2 2p6 1S0

 $2p^{6} \, {}^{1}\text{S}_{0} \, 173931.7 \, \text{cm}^{-1}$ I. P. 21.559 volts

The present list has been compiled from an unpublished manuscript kindly furnished by Edlén, who has made a study of the terms of this spectrum and interpreted them with the aid of present atomic theory. His term array is based on that published by Meggers and Humphreys in 1933, although he has revised and extended their list. Three place values are from measures made with the interferometer. His predicted values of five f-levels are entered in brackets in the table.

Edlén has determined the new values of the series limits quoted here.

The classical work by Paschen on Ne I forms the basis of all subsequent investigations. His notation has, therefore, been retained in column one of the table, except for his fractional numerical prefixes for levels from an s-configuration, m=1.5, 2.5, etc., which are listed as 1, 2, etc., in accord with the 1933 term table mentioned above. The letters U, V, X, Y, Z adopted later when configurations involving f-electrons were found, are also entered in this column. Eleven levels in the latter group have J-values fixed by the observed combinations listed in the 1933 reference below. These J-values are entered in italics in the table.

Edlén suggested that a pair-coupling notation be adopted for Ne-like spectra to take into account the departure from LS-coupling. According to Shortley, LS-designations can be significantly assigned in only a few cases, in particular, for the following groups of levels:

Paschen	Desig.	Paschen	Desig.	Paschen	Desig.
$(n-2)s_{5} (n-2)s_{4} (n-2)s_{3} (n-2)s_{2}$	ns ³ P ₂ ns ³ P ₁ ns ³ P ₀	$egin{array}{c} 2p_{10} \ 2p_{9} \ 2p_{8} \ 2p_{7} \ 2p_{6} \ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} 2p_5 \ 2p_4 \ 2p_3 \ 2p_2 \ 2p_1 \ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Consequently, the jl-coupling notation in the general form suggested by Racah is here introduced. The present arrangement has been suggested by Shortley, who has made a detailed investigation of the theoretical arrangement of the "pairs," to be used as a guide in preparing the present table. Pairs are separated only the case of np [½], where the interval is large.

Twenty lines of Ner in the range between 5852 A and 7032 A have been measured relative to the primary standard, and are regarded as accurate to eight figures. They have been adopted by the International Astronomical Union as secondary standards of wavelength.

Ne I-Continued

REFERENCES

- F. Paschen, Ann. der Phys. [4] 60, 405 (1919). (T) (C L)
- W. Grotrian, Phys. Zeit. 21, 638 (1920). (G D)
- F. Paschen, Ann. der Phys. [4] 63, 201 (1920). (T) (C L)
- E. Back, Ann. der Phys. [4] 76, 330 (1925). (Z E)
- N. Ryde, Zeit. Phys. 59, 836 (1929). (T) (C L)
- K. Murakawa and T. Iwama, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 13, No. 254, 289 (1930). (Z E)
- W. F. Meggers and C. J. Humphreys, Bur. Std. J. Research 10, 429, RP540 (1933). (T) (C L)
- J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 490, RP781 (1935). (C L)
- Trans. Intern. Astr. Union 5, 86 (1935).
- Y. Ishida and T. Tamura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 29, 9 (1936). (T) (C L)
- P. Jacquinot, Compt. Rend. 202, 1578 (1936). (Z E)
- R. Ritschl und H. Schober, Phys. Zeit. 38, 6 (1937). (IS)
- C. J. Humphreys, J. Research Nat. Bur. Std. 20, 24, RP1061 (1938). (T) (C L)
- J. B. Green and J. A. Peoples, Jr., Phys. Rev. 54, 602 (1938). (Z E)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- B. Edlén, Ark. Mat. Astr. Fys. (Stockholm) 29A, No. 32, p. 2 (1943). (C L)
- J. B. Green, Phys. Rev. 64, 151 (1943). (Z E)
- B. Edlén, unpublished material (March 1948). (I P) (T)
- G. Shortley, unpublished material (Aug. 1947).

Ne I

Ne I

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
·	2p6	2p ⁶ ¹S	0	0		3s'''' 3s'''	$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})3d$	3d' [2½]°	2 3	162410. 617 162412. 1 3 8	0. 781 1. 125
$1s_5 \\ 1s_4$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})3s$	3s [1½]°	2 1	134043. 790 134461. 237	1. 503 1. 464	3s'' ₁ 3s' ₁	"	3d' [1½]°	2 1	162421. 944 162437. 642	1. 242 0. 752
$1s_3 \\ 1s_2$	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})3s$	38' [½]°	0 1	134820. 591 135890. 670	1. 034	$3p_{10}$	$2p^5(^2\mathrm{P}_{1\!\!\:\!$	4p [½]	1	162519. 850	1. 929
$2p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1\!\!\:\!$	3p [½]	1	148259. 746	1. 984	$\begin{array}{c c}3p_9\\3p_8\end{array}$	"	4p [2½]	$\frac{3}{2}$	162832. 683 162901. 093	1. 328 1. 112
$\begin{array}{c}2p_{9}\\2p_{8}\end{array}$	"	$3p [2\frac{1}{2}]$	3 2	149659. 000 149826. 181	1. 329 1. 137	$\begin{array}{c} 3p_7 \\ 3\mathrm{p}_6 \end{array}$	"	4p [1½]	${f 1} \\ {f 2}$	163014. 600 163040. 330	0. 974 1. 360
$\begin{array}{c}2p_7\\2p_6\end{array}$	"	3p [1½]	$\frac{1}{2}$	150123. 551 150317. 821	0. 669 1. 229	$3p_3$	"	4p [½]	0	163403. 281	
$2p_{6}$ $2p_{3}$,,	3p [½]	0	150919. 391	1. 229	$\begin{array}{c}3p_5\\3p_4\end{array}$	$2p^{5}(^{2}\mathrm{P}_{5/2}^{\circ})4p$	4p' [1½]	$\frac{1}{2}$	163659. 248 163710. 581	0. 685 1. 184
$\begin{array}{c}2p_5\\2p_4\end{array}$	$2p^{5}(^{2}\mathrm{P}_{eta}^{\circ})3p$	3p' [1½]	$\frac{1}{2}$	150774. 072 150860. 468	0. 999 1. 30 1	$\begin{array}{c c}3p_2\\3p_1\end{array}$	"	4p' [½]	1 0	163709. 699 164287. 864	1. 397
$\begin{array}{c}2p_2\\2p_1\end{array}$	"	3p' [½]	1 0	151040. 413 152972. 697	1. 340	38 ₅ 38 ₄	$2p^{5}(^{2}\mathrm{P_{ik}^{s}})5s$	5s [1½]°	2 1	165830. 144 165914. 756	1. 492 1. 207
$\begin{array}{c}2s_5\\2s_4\end{array}$	$2p^5(^2\mathrm{P^{\circ}_{114}})4s$	4s [1½]°	$\frac{2}{1}$	158603. 070 158797. 954		3s ₃ 3s ₂	$2p^{5}(^{2}\mathrm{P}_{56}^{\circ})5s'$	58' [½]°	0 1	166608. 309 166658. 484	1. 295
$2s_3 \\ 2s_2$	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})4s$	48' [½]°	0 1	159381. 94 159536. 57		$\begin{array}{c c} 4d_6 \\ 4d_5 \end{array}$	$2p^{5}(^{2}\mathrm{P_{14}^{\circ}})4d$	4d [½]°	0 1	166969. 639 166977. 321	1. 391
$3d_6 \ 3d_5$	$2p^{5}(^{2}\mathrm{P_{i_{1}}^{\circ}})3d$	3d [½]°	0 1	161511. 590 161526. 134	1. 397	$\begin{array}{c} 4d_4'\\4d_4\end{array}$	"	4d [3½]°	4 3	167002. 007 167003. 104	1. 251 1. 040
$3d_4^\prime \ 3d_4$	"	3d [3½]°	4 3	161592. 308 161594. 081	1. 249 1. 034	$\begin{array}{c}4d_3\\4d_2\end{array}$	"	4d [1½]°	2 1	167013. 535 167028. 957	1. 322 0. 812
$egin{array}{c} 3d_3 \ 3d_2 \end{array}$	"	3d [1½]°	2	161609. 222 161638. 581	1. 356 0. 860	$\begin{array}{c c}4d_1''\\4d_1'\end{array}$	"	4d [2½]°	2 3	167049. 580 167050. 639	0. 990 1. 248
3d'' ₁ 3d' ₁	"	3d [2½]°	2 3	161701. 623 161703. 413	0. 948 1. 249	4s''' 4s'''	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})4d$	4d' [2½]°	2 3	167796. 939 167797. 865	0. 783 1. 116

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
$\begin{array}{c} 4s_1'' \\ 4s_1' \end{array}$	$2p^{5}(^{2}\mathrm{P}_{rac{1}{2}}^{\circ})4d$	4d' [1½]°	2	167798. 914 167809. 722	1. 230 0. 797	$5p_3$	$2p^5(^2\mathrm{P}_{^1\cancel{5}\cancel{2}})6p$	6p [½]	0	169978. 70	
					0. 191	$\begin{array}{c c}5p_5\\5p_4\end{array}$	$2p^{5}(^{2}\mathrm{P}_{leph}^{\circ})6p$	6p' [1½]	$\frac{1}{2}$	170586. 94 170599. 19	
4X	$2p^{5}(^{2}\mathrm{P}_{1}^{2})4f$	4f [1½]	1, 2	167054. 59		$5p_2$	"	6p' [½]	1	170580. 35	
4V	//	$4f [4\frac{1}{2}]$	4, 5	[167062. 5]		$5p_1$			0	170691. 32	
4Y	"	$4f [2\frac{1}{2}]$	2, 3	167071. 08		585	$2p^{5}(^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ})7s$	7s [1½]°	2 1	170534. 694	
4 Z	//	4f [3½]	3, 4	[167079. 1]		584				170559.032	
4U	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})4f$	4f' [2½]	2, 3	167848. 67		$5s_3$ $5s_2$	$2p^{5}(^{2}\mathrm{P}_{\cancel{5}}^{\circ})78$	78' [½]°	0 1	171314. 84 171325. 997	1. 315
$4p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{2})5p$	5p [½]	1	167451. 44		$6d_6$	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}}^{st})6d$	6d [½]°	0	170950 050	
$\begin{array}{c} 4p_9 \\ 4p_8 \end{array}$	"	$5p \ [2\frac{1}{2}]$	$\frac{3}{2}$	167561. 03 167593. 18		$6d_5$			0	170850. 252 170853. 315	1. 389
$\begin{array}{c}4p_{7}\\4p_{6}\end{array}$	"	5p [1½]	$\frac{1}{2}$	167641. 53 167650. 60		$\begin{array}{c c} 6d_4' \\ 6d_4 \end{array}$	"	6d [3½]°	4 3	170860. 447 170860. 850	
$4p_3$	"	5p [½]	0	167869. 17		$\begin{array}{c} 6d_3 \\ 6d_2 \end{array}$	"	6d [1½]°	2 1	170864. 959 170869. 927	1. 331 0. 783
$\begin{array}{c}4p_5\\4p_4\end{array}$	$2p^{5}(^{2}\mathrm{P}_{\!$	5p' [1½]	$\frac{1}{2}$	168357. 44 168380. 69		$\begin{array}{c c} 6d_1'' \\ 6d_1' \end{array}$	"	6d [2½]°	2 3	170874. 840 170875. 216	0. 971
$\begin{array}{c}4p_2\\4p_1\end{array}$	"	5p' [½]	1 0	168360. 57 168588. 83		6s'''' 6s'''	$2p^5(^2\mathrm{P}_{\mathcal{B}}^{\circ})6d$	6d' [2½]°	2 3	171644. 139 171644. 434	
$4s_{5} \\ 4s_{4}$	$2p^{5}(^{2}\mathrm{Pi}_{1/2})6s$	6s [1½]°	2 1	168926. 626 168969. 328	1. 500 1. 184	6s'' ₁ 6s' ₁	".	6d' [1½]°	2 1	171641. 951 171646. 87	0. 857
483	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})6s$	6s' [½]°	0	169707. 899 169729. 602	1 919	6X	$2p^{5}(^{2}\mathrm{P}_{1\!\!1\!\!2\!\!2}^{\circ})6f$	6f [1½]	1, 2	170877. 72	
$4s_2$			1	109729.002	1. 313	6V	"	$6f [4\frac{1}{2}]$	4, 5	170879. 95	
$5d_{6} \ 5d_{5}$	$2p^{5}(^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ})5d$	5d [½]°	· 0	169484. 98 169490. 414	1. 383	6Y	"	$6f [2\frac{1}{2}]$	2, 3	170882. 65	
	,,	5d [3½]°	4	169503. 612	1. 505	6 Z	"	6f [3½]	3, 4	170884. 95	
$5d_4'$ $5d_4$			3	169504. 258	1. 093	6U	$2p^{5}(^{2}\mathrm{P}_{56}^{\circ})6f$	6f' [3½]	3, 4	171661. 87	
$\begin{array}{c} 5d_3 \\ 5d_2 \end{array}$	"	5d [1½]°	$\frac{2}{1}$	169510. 540 169518. 977	1. 298 0. 791		"	6f' [2½]	2, 3	171661. 66	
	"	5d [2½]°	2	169528. 241	0. 131	$6p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1\!\!1\!\!2}^{\circ})7p$	7p [½]	1	171011. 31	
$5d_1'' \\ 5d_1'$			3	169528. 862		$6p_9 6p_8$	"	$7p \ [2\frac{1}{2}]$	$\frac{3}{2}$	171034. 80 171045. 65	
5s'''' 5s'''	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})5d$	5d' [2½]°	2 3	170291. 291 170291. 650		$6p_7 6p_6$	"	7p [1½]	$\frac{1}{2}$	171059. 96 171062. 18	
$5s_1''$ $5s_1'$	"	5d' [1½]°	2 1	170290. 934 170297. 98	1. 251 0. 809	$6p_3$	"	7p [½]	0	171150. 81	
5X	$2p^{5}(^{2}\mathrm{P}_{14}^{\circ})5f$	5f [1½]	1, 2	169532. 22		$\begin{array}{c}6p_5\\6p_4\end{array}$	$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})7p$	7p' [1½]	$\frac{1}{2}$	171824. 2 171830. 0	
5V	"	5f [4½]	4, 5	[169536, 3]		$6p_2$	"	7p' [½]	1	171832. 7	
5Y	"	5f [2½]	2, 3	169540. 88		$6p_1$			0	171915. 46	
$5\mathbf{Z}$	"	5f [3½]	3, 4	[169545. 0]		685	$2p^{5}(^{2}\mathrm{P}_{1\!\!1\!\!2}^{\circ})8s$	88 [1½]°	2	171475. 295	
5U	$2p^{5}(^{2}\mathrm{P}_{m{5}}^{\circ})5f$	5f' [2½]	2, 3	170319. 71		684	0.1(0700)0	0 / 5 1/10	1	171491. 464	
$5p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1}^{2})6p$	6p [½]	1	169750. 11		$6s_3$ $6s_2$	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})8s$	88' [½]°	0 1	172256.31 172263.720	
$egin{array}{c} 5p_9 \ 5p_8 \end{array}$	-p (1172) 0 p	$\begin{array}{c c} 6p & [2\frac{1}{2}] \\ \hline \end{array}$	3 2	169799. 15 169816. 60		$\begin{array}{c c} 7d_6 \\ 7d_5 \end{array}$	$2p^{5}(^{2}\mathrm{P}_{1lap{1}{2}}^{\circ})7d$	7d [½]°	0 1	171671. 14 171673. 90	
$5p_7$	"	6p [1½]	1	169841. 45		$7d'_4$	"	7d [3½]°		171677. 455	
$5p_6$			$\frac{1}{2}$	169845. 79		$7d_4$		1	3	171677. 714	1

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
$\begin{array}{c} -\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$2p^5(^2\mathrm{P}_{1lap{1}{2}})7d$	7d [1½]°	2 1	171683. 331 171684. 902		8U	$2p^5(^2\mathrm{P}^{\circ}_{\!$	$ \begin{cases} 8f' & [3\frac{1}{2}] \\ 8f' & [2\frac{1}{2}] \end{cases} $	3, 4 2, 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
$7d_1^{\prime\prime}\\7d_1^{\prime}$	"	7d [2½]°	2 3	171687. 268 171687. 518		8p ₁₀	$2p^{5}(^{2}\mathrm{P}_{1\!\!\cdot\!\!2}^{\circ})$ 9 p	9p [½]	1	172270. 4	
7s'''' 7s'''	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})7d$	7d' [2½]°	2 3	172460. 407 172460. 602		$8p_9 \ 8p_8$	"	9p [2½]	$\frac{3}{2}$	172284. 2 172288. 8	
$7s_1^{\prime\prime}\\7s_1^{\prime}$	"	7d' [1½]°	2	172459. 85		$8p_{7,6}$	"	9p [1½]	1, 2	172293. 4	
$7s_1'$			1	172463. 02		$8p_3$	"	9p [½]	0	172329. 3	
7X	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})7f$	7f [1½]	1, 2	171688. 57		0	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})9p$	9p' [1½]	1	150005 4	
7V	"	7f [4½]	4, 5	171689. 95		$ 8p_4 $,,	0 / 5 1/1	2	173067. 4	
7Y	"	7f [2½]	2, 3	171692. 07		$ $ $8p_1$		9p' [½]	0	173099. 3	
7Z	"	7f [3½]	3, 4	171693. 32			0. 5/0704 \10	10 511/10		100100 000	
7U	$2p^{5}(^{2}\mathrm{P}_{\cancel{1}\cancel{2}}^{\circ})7f$	$\left\{ egin{array}{ll} 7f' & [3lar{1}{2}] \ 7f' & [2lar{1}{2}] \end{array} ight.$	3, 4 2, 3	}172471. 45		88 ₅ 88 ₄	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})10s$	10s [1½]°	$\frac{2}{1}$	172477. 303 172483. 84	
, 0	2p (192).J	$\begin{bmatrix} 7f' & 2\frac{1}{2} \end{bmatrix}$	2, 3	, 1121111111111111111111111111111111111		883	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})10s$	10s' [½]°	0	173257. 24	
$7p_{10}$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})8p$	8p [½]	1	171754. 2		$8s_2$			1	173261. 41	
$7p_9 \\ 7p_8$	"	8p [2½]	3 2	171789. 0 171793. 7		$ \begin{vmatrix} 9d_6 \\ 9d_5 \end{vmatrix}$	$2p^{5}(^{2}\mathrm{P_{133}^{\circ}})9d$	9d [½]°	0 1	172566. 85 172567. 88	
$7p_7 \ 7p_6$	"	8p [1½]	$\frac{1}{2}$	171800. 3 171805. 1			"	9d [3½]°	4 3	172569. 840 172570. 064	
$7p_3$	"	8p [½]	0	171833. 0		$9d_3$	"	9d [1½]°	2	172571. 37	
$7p_4$	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})8p$	8p' [1½]	$\frac{1}{2}$	172575. 4		$egin{array}{cccc} 9d_2 & & & & & & & & & & & & & & & & & & &$	"	9d [2½]°	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	172572. 82 172574. 12 172574. 22	
$7p_2 \\ 7p_1$	"	8p' [½]	1 0	172564. 8 172601. 7		9s''' 9s''' 9s'''	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})9d$	9d' [2½]°	2 3	172374. 22 173351. 45 173351. 50	
7s ₅	$2p^{5}(^{2}\mathrm{P}_{15}^{\circ})9s$	9s [1½]°	2	172073. 375		11	,,	9d' [1½]°	2	173351. 50	
784	2p (1113)00	38 [1/2]	ĩ	172082. 895		9s'' ₁ 9s' ₁		50 [1/2]	ĩ	173352. 75	
$7s_3 \\ 7s_2$	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})98$	98' [½]°	0 1	172854. 12 172858. 96		9V	$2p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})9f$	9f [4½]	4, 5	172575. 83	
						9Y	"	9f [2½]	2, 3	172576. 8	
$8d_6 \ 8d_5$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})8d$	8d [½]°	0 1	172202. 33 172203. 86		9 Z	"	9f [3½]	3, 4	172577. 3	
$8d_4' \\ 8d_4$	"	8d [3½]°	4 3	172207. 110 172207. 278		9 p 10	$2p^{5}(^{2}\mathrm{P_{14}^{\circ}})10p$	10p [½]	1	172621. 0	
$\begin{array}{c} 8d_3 \\ 8d_2 \end{array}$	"	8d [1½]°	$\frac{2}{1}$	172208.77 172211.10		$9p_9$ $9p_8$	"	10p [2½]	$\frac{3}{2}$	172625. 2	
8d'' ₁ 8d' ₁	"	8d [2½]°	2	172213. 094		$9p_{7,6}$	"	10p [1½]	1, 2	172632. 2	
			3	172213. 249		$9p_3$	"	10p [½]	0	172667. 1	
8s'''' 8s'''	$2p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})8d$	8d' [2½]°	$\frac{2}{3}$	172989. 185 172989. 263							
8s'' ₁ 8s' ₁	"	8d' [1½]°	2 1	172989. 06 172990. 96		98 ₅ 98 ₄	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})11s$	11s [1½]°	$\begin{array}{c c} 2 \\ 1 \end{array}$	172761. 79 172766. 55	
						$9s_3$ $9s_2$	$2p^{5}(^{2}\mathrm{P}_{\cancel{1}}^{\circ})11s$	11s' [½]°	0 1	173542.00 173545.28	
8X	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})8f$	8 <i>f</i> [1½]	1, 2	172214. 66		_					
8V	"	8f [4½]	4, 5	172215. 54?		$10d_{6} \ 10d_{5}$	$2p^{5}(^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ})10d$	10d [½]°	0 1	172826.54 172827.42	
8 Y	"	8f [2½]	2, 3	[172216. 7]				1			
8 Z	"	8f [3½]	3, 4	172217. 64							1

Ne I—Continued

Ne I—Continued

Paschen	Config.	Desig.	J	Level	Obs. g	Paschen	Config.	Desig.	J	Level	Obs. g
$10d'_{4} \ 10d_{4}$	$2p^{5}(^{2}\mathrm{P}_{1})$	10d [3½]°	4 3	172829. 11 172829. 20		11s'''' 11s'''	$2p^5(^2\mathrm{P}^{\circ}_{5/2})11d$	11d' [2½]°	2 3	173802. 27 173802. 33	
$\begin{array}{c} 10d_3 \\ 10d_2 \end{array}$	"	10d [1½]°	$\frac{2}{1}$	172829. 87 172831. 28		11s'1	"	11d' [1½]°	2 1	173802.75	
$10d_{1}^{\prime\prime} \ 10d_{1}^{\prime\prime}$	"	10d [2½]°	$\frac{2}{3}$	172832. 20 172832. 24		$\begin{array}{c} 11s_5 \\ 11s_4 \end{array}$	$2p^5(^2\mathrm{P}_{14}^{\circ})13s$	13s [1½]°	2	173128. 02 173130. 76	
$10s_1^{\prime\prime\prime\prime} \\ 10s_1^{\prime\prime\prime}$	$2p^{5}(^{2}\mathrm{P}_{\mathcal{B}}^{\circ})10d$	10d' [2½]°	2 3	173610. 45 173610. 52		1104	9m5/2De \19d	194 [1/10		175150. 70	
$\begin{array}{c} 10s_1'' \\ 10s_1' \end{array}$	"	10d' [1½]°	$\frac{2}{1}$	173610.50 173611.54		$12d_5$	$2p^{5}(^{2}\mathrm{Pi}_{2})12d$	12d [½]°	0 1	173165. 56	
$10p_{7,6}$	$2p^{5}(^{2}\mathrm{P}_{1\!\!/\!2}^{st})11p$	11p [1½]	1, 2	172873. 9		$\begin{array}{c c}12d_4'\\12d_4\end{array}$	"	12d [3½]°	3	173166. 46 173166. 43	
						$12d_3$	"	12d [1½]°	2 1	173167. 03	
$10s_5$ $10s_4$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ}_{2})12s$	12s [1½]°	2 1	172970. 51 172974. 3.		$12d_{1}^{\prime\prime} \ 12d_{1}^{\prime\prime}$	"	12d [2½]°	2 3	173168. 14 173168. 43	
$\begin{array}{c} 11d_6 \\ 11d_5 \end{array}$	$2p^{5}(^{2}\mathrm{P}_{^{1}\!$	11d [½]°	0 1	173019. 37 173019. 86		$13d_5$	$2p^{5}(^{2}\mathrm{P_{14}^{\circ}})13d$	13d [½]°	0	173279. 46	
$\begin{array}{c} 11d_4' \\ 11d_4 \end{array}$	"	11d [3½]°	4 3	173020. 86 173020. 82		$13d_4' \\ 13d_4$	"	13d [3½]°	4 3	173280. 05 173280. 12	
$11d_3$	"	11d [1½]°	$\frac{2}{1}$	173022. 02		1544			0	170200.12	
$11d_1'' \\ 11d_1'$	"	11d [2½]°	$\frac{2}{3}$	173022. 95 173023. 27			Ne 11 (2P _{1½})	Limit		173931.7	
							Ne 11 (2P%)	Limit		174712. 2	

March 1948.

Ne i Observed Levels*

TO I OBSERVED LEVELS												
Config. 1s ² 2s ² +	Observed Terms											
2p6	$2p^{6}{}^{1}\!S$											
	$ns (n \ge 3)$ $np (n \ge 3)$											
2p ⁵ (2P°)nx	{3-13s ³ P° 3-11s ¹ P°	$rac{3p\ ^3\mathrm{S}}{3p\ ^1\mathrm{S}}$	$rac{3p^3\mathrm{P}}{3p^1\mathrm{P}}$	$3p$ $^3\mathrm{D}$ $3p$ $^1\mathrm{D}$								
	<i>jl</i> -Coupl	ing Notation										
		Observed Pa	airs									
	ns (n≥3)	$np (n \ge 3)$	nd (n≥3)	$nf(n \ge 4)$								
$2p^5(^2\mathrm{Pi}_{2})nx$	3–13s [1½]°	3-10 <i>p</i> [½] 3-10 <i>p</i> [2½] 3-11 <i>p</i> [1½]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4- 8f [1½] 6- 9f [4½] 4-7, 9f [2½] 6- 9f [3½]								
$2\mathrm{p}^{5}(^{2}\mathrm{P}_{5/2}^{\circ})$ nx'	3-11s'[½]°	3- 9p'[1½] 3- 9p'[½]	$\begin{vmatrix} 3-11d'[2\frac{1}{2}]^{\circ} \\ 3-11d'[1\frac{1}{2}]^{\circ} \end{vmatrix}$	6- 8f'[3½] 4- 8f'[2½]								

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

(F 1 sequence; 9 electrons)

Z = 10

Ground state 1s2 2s2 2p5 2P112

 $2p^5 \, {}^2 ext{P}^{\circ}_{1\frac{1}{2}} \, 331350 \, \, ext{cm}^{-1}$

I. P. 41.07 volts

The terms are from Boyce, who has extended the analysis by further observations in the ultraviolet, and improved the earlier term values. The series limit is estimated from series of two members, the 3s and 4s terms.

Intersystem combinations connecting the doublet and quartet terms have been observed. The values of the 3d' ²G and 3d' ²S terms have been corrected to agree with the observed combinations.

- K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 511 (1928). (T) (C L) (G D)
- T. L. de Bruin and C. J. Bakker, Zeit. Phys. 69, 19 (1931). (T) (C L) (Z E)
- J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)

Ne II

Ne II ·

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
2s ² 2p ⁵	2p ⁵ ² P°	1½ ½ ½	0 782	-782		2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4D	3½ 2½ 1½	279139. 1 279220. 6 279326. 8	$ \begin{array}{r} -81.5 \\ -106.2 \\ -98.3 \end{array} $	
28 2p6	$2p^6$ 2S	1/2	217050					1/2	279425. 1	-90. 5	
2s ² 2p ⁴ (³P)3s	3s ⁴ P	2½ 1½ ½ ½	219133. 0 219650. 8 219949. 9	$ \begin{array}{c c} -517.8 \\ -299.1 \end{array} $	1. 60 1. 73 2. 67	2s ² 2p ⁴ (³ P)3d	3d ⁴F	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	280174. 4 280702. 5 281028. 1 280949. 6	$\begin{bmatrix} -528. \ 1 \\ -325. \ 6 \\ 78. \ 5 \end{bmatrix}$	
2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½ ½	224089. 3 224701. 8	-612. 5	1. 33 0. 67	2s ² 2p ⁴ (³ P)3d	3 <i>d</i> ² F	$3\frac{1}{2}$ $2\frac{1}{2}$	280264. 0 280799. 3	-535. 3	
28 ² 2p ⁴ (3P)3p	3p 4P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	246194. 8 246417. 4 246599. 9	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 60 1. 73 2. 67	$2s^2 2p^4(^3\mathrm{P}) 3d$	$3d^{-2}D$	2½ 1½	280271. 0 280475. 6	-204. 6	
2s ² 2p ⁴ (¹ D)3s	3s′ ²D	$2\frac{1}{2}$ $1\frac{1}{2}$	246396. 5 246400. 0	-3. 5	1. 20 0. 80	2s ² 2p ⁴ (³ P)3d	3d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	280770. 2 280991. 7 281173. 5	221. 5 181. 8	
2s ² 2p ⁴ (³ P)3p	3p 4D°	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	249110.8 249448.0 249697.7 249841.8	$ \begin{vmatrix} -337. & 2 \\ -249. & 7 \\ -144. & 1 \end{vmatrix} $	1. 43 1. 37 1. 20 0. 00	2s ² 2p ⁴ (³P)3d	3 <i>d</i> ² P	1/2	281334. 5 281722. 3	387. 8	0. 70 1. 25
2s ² 2p ⁴ (³ P)3p	$3p^{-2}\mathrm{D}^{\circ}$	$ \begin{array}{c c} & 2\frac{1}{2} \\ & 1\frac{1}{2} \end{array} $	251013. 3 251524. 7	-511. 4	1. 20 0. 80	2s ² 2p ⁴ (³ P)4s	4s 4P	2½ 1½ ½ ½	282000. 0 282376. 7 282682. 2	$\begin{bmatrix} -376.7 \\ -305.5 \end{bmatrix}$	
$2s^2 \ 2p^4(^3\mathrm{P})3p$	3p 2S°	1/2	252800.8		1. 96	2s ² 2p ⁴ (³ P)4s	4s ² P	1½ ½ ½	283323. 7 283896. 5	-572.8	
$2s^2 \ 2p^4(^3{\rm P}) \ 3p$	3p 4S°	1½	252956.0			0-2 0-4/3D) 4 J	$_{ m 4d^{-2}D}$		302321?		
2s ² 2p ⁴ (³ P)3p	3p 2P°	1½ ½ ½	254167. 0 254294. 0	-127. 0	1. 33 0. 71	2s ² 2p ⁴ (³ P)4d		2½ 1½	302452?	-131	
2s ² 2p ⁴ (¹ D)3p	3p′ 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	274366. 9 274411. 3	44. 4	0. 86 1. 14	2s ² 2p ⁴ (³ P)4f	4f 'D°	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	302830. 6 302845. 5 302905. 2 302991. 2	$ \begin{array}{c c} -14.9 \\ -59.7 \\ -86.0 \end{array} $	
$2s^2 2p^4(^1D)3p$	3p′ ² P°	1½ ½ ½	276278. 6 276514. 1	-235. 5	1. 33 0. 67	2s ² 2p ⁴ (³ P)4d	4d ² P	{ 1½ ½ ½	302884?		
$2s^2 \ 2p^4(^1{ m S})3s$	38′′ 2S	1/2	276678. 0		2. 00		4.0 .770		200000		
2s ² 2p ⁴ (1D)3p	3p′ 2D°	$\begin{array}{ c c c c c }\hline 1\frac{1}{2} & & \\ 2\frac{1}{2} & & \\ & & \end{array}$	277327. 6 277346. 1	18. 5	0. 80 1. 20	28 ² 2p ⁴ (³ P)4f	4f 4F°	$\begin{array}{ c c c }\hline & 4\frac{1}{2} \\ & 3\frac{1}{2} \\ & 2\frac{1}{2} \\ & 1\frac{1}{2} \\ \end{array}$	302905. 8 303530. 8 303826. 6 303511. 6	$ \begin{array}{r} -625.0 \\ -295.8 \\ 315.0 \end{array} $	

Ne II—Continued

Ne II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$2s^2\ 2p^4(^3{ m P})4f$	4f 4G°	$5\frac{1}{2}$ $4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	303475. 7 303465. 1 303701. 1	$ \begin{array}{c c} 10.6 \\ -236.0 \end{array} $		$2s^22p^4(^1{ m D})4s$	4s′ ² D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	306018?		
		$2\frac{5}{2}$	303602.3	98. 8		$2s^2\ 2p^4(^1{ m D})3d$	$3d'$ $^2\mathrm{D}$	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	306244. 8 306689. 8	445. 0	
$2s^2 \ 2p^4 (^3{ m P}) \ 4f$	4f ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	303465. 4 303882. 3	416. 9		$2s^22p^4(^1{ m D})3d$	3d′ ²F	$\begin{vmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	307992. 2 308103. 3	-111. 1	
$2s^2\ 2p^4(^1{ m D})3d$	3d′ 2G	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	305366. 2 305367. 2	-1.0		$2s^2 \ 2p^4 (^1{ m D}) 3d$	3d' ² S	1/2	309049. 7		
$2s^2 \ 2p^4 (^1\mathrm{S}) 3p$	3p''2P°	1½ ½	305399. 2 305409. 3	-10.1	1. 33 0. 67	$2s^2\ 2p^4({}^1{ m S})3d$	$3d^{\prime\prime}{}^{2}\mathrm{D}$	2½ 1½	327954. 7 327968. 2	-13. 5	
$2s^22p^4(^1{ m D})3d$	3d′ ² P	1½ ½ ½	305568. 9 305584. 2	-15. 3							
		/2	000001. 2			Ne III $(^3\mathrm{P}_2)$	Limit		331350		

March 1947.

Ne II OBSERVED TERMS*

$rac{ ext{Config.}}{1s^2+}$,	Observed	Terms			
$2s^2 \ 2p^5$		2p ⁵ ² P°						
28 2p6	$2p^{6-2}\mathrm{S}$							
		$ns (n \ge 3)$				$np \ (n \ge 3)$		
$2s^2 \ 2p^4(^3{ m P}) nx$	{	3, 4s ⁴ P 3, 4s ² P		3p 4S° 3p 2S°	3p 4P° 3p 2P°	$\begin{array}{ccc} 3p & ^4\mathrm{D}^{\circ} \\ 3p & ^2\mathrm{D}^{\circ} \end{array}$		
$2s^2 \ 2p^4(^1{ m D}) nx'$			3, 4s′ ² D		3p′ ² P°	3p' ² D°	3p' ² F°	
$2s^2 \ 2p^4(^1\mathrm{S})nx''$	3s'' 2S				3 <i>p</i> ′′ ²P°			
		7	$nd \ (n \ge 3)$			n	$f(n \ge 4)$	
$2s^2 2p^4 (^3{ m P}) nx$	{	3d ⁴ P 3 , ⁴ d ² P	$^{3d}_{3,\ 4d}$ $^{4}_{2}D$	$\begin{array}{ccc} 3d & {}^4{ m F} \\ 3d & {}^2{ m F} \end{array}$		4f ⁴ D° 4f ² D°	4f 4F°	4f 4G
$2s^2 2p^4(^1{ m D})nx'$	3d′ 2S	3d' ² P	$3d'$ $^2\mathrm{D}$	3d' ² F	3d′ 2G			
2s ² 2p ⁴ (¹ S) nx''			3d'' 2D					

^{*}For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

Ne III

(O i sequence; 8 electrons)

Z = 10

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^4$ 3P_2 514148 cm⁻¹

I. P. 64 ± 1 volts

This spectrum is incompletely analyzed. The terms have been taken from two references: triplet and quintet terms, de Bruin (1935); and singlet terms, Boyce (1934). The latter are located with respect to the ground state by means of the nebular lines at 3343 A, 3868.74 A, and 3967.51 A. The relative positions of the quintet terms and the ionization potential are estimated, and the uncertainty, x, may be considerable.

REFERENCES

- T. L. de Bruin, Zeit. Phys. 77, 505 (1932). (T) (C L)
- V. v. Keussler, Zeit. Phys. 85, 1 (1933). (C L)
- J. C. Boyce, Phys. Rev. 46, 378 (1934). (I P) (T) (C L)
- T. L. de Bruin, Zeeman Verhandelingen p. 413 (Martinus Nyhoff, The Hague, 1935). (I P) (T)
- J. C. Boyce, Mon. Not. Roy. Astr. Soc. 96, 690 (1936). (C L)

Ne III Ne III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^4$	2p4 3P	2 1 0	0 650 927	-650 -277	$2s^2 \ 2p^3(^4{ m S}^\circ)3d$	3d ³D°	1 2 3	398192.70 398196.83 398210.74	4. 13 13. 91
$2s^{2} \ 2p^{4}$ $2s^{2} \ 2p^{4}$ $2s \ 2p^{5}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 2	25841 55747 204292		2 s 2 $2p^{3}(^{4}\mathrm{S}^{\circ})3d$	3 <i>d</i> ⁵ D°	4 3 2 1 0	398946. 98+x 398948. 51+x 398952. 34+x 398955. 75+x	-1. 53 -3. 83 -3. 41
$2s$ $2p^5$	$2p^{5-1}\mathrm{P}^{\circ}$	1 0	204879 205204 289479	$ \begin{array}{r} -587 \\ -325 \end{array} $	$2s^2\ 2p^3(^2{ m D}^\circ)3p$	3p′ ³P	2 1 0	398986. 64 399082. 57 399125. 12	-95. 93 -42. 55
$2s^2 \; 2p^3 ({}^4{ m S}^{\circ}) 3s$ $2s^2 \; 2p^3 ({}^4{ m S}^{\circ}) 3s$	38 ⁵ S° 38 ³ S°	2 1	314148 +x 319444.90		$2s^2\ 2p^3(^2\mathrm{P}^\circ)3p$	3p'' ³D	3 2 1	409847. 53 409845. 08 409855. 23	2. 45 -10. 15
2 s 2 $2p^{3}(^{4}\mathrm{S}^{\circ})3p$	3p 5P	1 2 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30. 88 52. 98	$2s^2\ 2p^3(^2\mathrm{P}^\circ)3p$ $2s^2\ 2p^3(^2\mathrm{P}^\circ)3p$	$3p^{\prime\prime}$ ³ S $3p^{\prime\prime}$ ³ P	0	410134. 7 2 412293. 59	19. 52
$2s^2 \ 2p^3(^2{\rm D}^\circ)3s$	38′ ³D°	3 2 1	353148.00 353177.16 353197.40	$ \begin{array}{c c} -29.16 \\ -20.24 \end{array} $	2 s² $2p^3$ (²D°) $3d$	3d′ ³F°	1 2 2	412313. 11 412320. 21 435527. 90	7. 10
$2s^2\ 2p^3(^4{ m S}^{\circ})3p$	3p 3P	2 1 0	356776. 52 356766. 20 356776. 52	10. 32 -10. 32	2 s 2 2 p 3 (2 D $^\circ$) $3d$	3d′ ³G°	3 4 5	435568. 00 435620. 80 436561. 35	52. 80 -26. 99
$2s^2~2p^3(^2\mathrm{D}^\circ)3s$	38′ ¹D°	2	357930				3	436588. 34 436611. 56	-23.22
2s ² 2p ³ (2P°)3s	3s'' ³P°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	374434.00 374460.75 374477.66	-26. 75 -16. 91	$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³D°	3 2 1	436844. 63 436914. 39 436959. 49	-69. 76 -45. 10
$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3s$	3s'' ¹P°	1	379834		$2s^2\ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³P°	2 1	439586. 00 439707. 81	-121. 81
$2s^2\ 2p^3(^2\mathrm{D^\circ})3p$	3p′ ³D	1 2 3	389058. 24 389069. 37 389139. 05	11. 13 69. 68	$2s^2\ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ 3S°	0 1	439760. 35 440064. 90	—52. 54
$2s^2 \ 2p^3(^2{\rm D}^{\circ})3p$	3p′ ³F	2 3 4	391414. 02 391429. 94 391450. 31	15. 92 20. 37	Ne iv (4S _{11/2})	Limit		514148	

February 1947.

Ne III OBSERVED TERMS*

Config.			Obser	ved Term	s		
2s ² 2p ⁴	$\left\{_{2p^4}\right{ ext{IS}}$	2p4 3P	$2p^4$ $^1\mathrm{D}$				
2s 2p ⁵	{	${2p^5}\ {}^3{ m P}^{\circ} \ 2p^5\ {}^1{ m P}^{\circ}$					
		ns $(n \ge 3)$			np ($n \ge 3$)	
$2s^2 \ 2p^3 (^4\mathrm{S}^\circ) nx$	38 5S° 38 3S°				$\begin{array}{ccc} 3p & ^5\mathrm{P} \\ 3p & ^3\mathrm{P} \end{array}$		
$2s^2 2p^3(^2\mathrm{D}^\circ)nx'$	{		$3s'$ $^3D^{\circ}$ $3s'$ $^1D^{\circ}$		3p′ ³P	3p′ ³D	3p′ ₃ F
$2s^2 2p^3 (^2\mathrm{P}^\circ) nx''$	{	3s'' ³ P° 3s'' ¹ P°		3p'' 3S	3 <i>p</i> ′′ ³P	$3p^{\prime\prime}$ $^3\mathrm{D}$	
			nd (n	n≥3)			
2s ² 2p ³ (4S°) nx			3d ⁵ D° 3d ³ D°				
$2s^2 \ 2p^3(^2\mathrm{D}^\circ) nx'$	3d′ 3S°	3d′ ³P°	$3d'$ $^3\mathrm{D}^\circ$	3d′ ³F°	3d′ ³G°		

^{*}For predicted terms in the spectra of the O_I isoelectronic sequence, see Introduction.

Ne IV

(N 1 sequence; 7 electrons)

Z = 10

Ground state 1s2 2s2 2p3 4S114

 $2p^3$ $^4S_{1\frac{1}{2}}^{\circ}$ 783880 cm⁻¹

I. P. 97.16 volts

The analysis is by Paul and Polster, who have extended the earlier work by Boyce and published 111 classified lines in the interval from 140 A to 786 A. From series they derive the limit 781714 cm⁻¹ and place the level $2p^3$ ²D₂° at 38540 cm⁻¹ above the ground state zero. No intersystem combinations have been observed.

On the basis of later analyses of the spectra in this sequence a slight adjustment in these values has been made by Robinson. The doublet terms have been increased by 2410 cm⁻¹ and the limit by 2166 cm⁻¹ to fit the isoelectronic sequence data. The later values have been adopted in the table. The uncertainty x, may be considerable.

REFERENCES

F. W. Paul and H. D. Polster, Phys. Rev. 59, 426 (1941). (I P) (T) (C L)

H. A. Robinson, unpublished material (March 1948). (I P) (T)

Ne IV

Ne IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ³	$2p^3$ ${}^4\mathrm{S}^{\circ}$	1½	0		$2s^2 \ 2p^2(^1{\rm D})3d$	3d′ 2S	1/2	616482 + x	
2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	$\begin{array}{ c c c c c }\hline & 2\frac{1}{2} \\ & 1\frac{1}{2} \\ & \end{array}$	40950 + x $40975 + x$	-25	$2s^2 \ 2p^2(^3P)4s$	4s ⁴ P	$\begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{2}{2} \end{vmatrix}$	633465 633790 634413	325 623
$2s^2 \ 2p^3$	$2p^3$ 2 P $^\circ$	11/2	$ \begin{array}{c c} 62157 + x \\ 62167 + z \end{array} $	10	$2s^2 \ 2p^2(^3\mathrm{P}) \ 4s$	4s 2P	$\begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{vmatrix}$	635866 + x	609
2s 2p4	2p4 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	183860 184477 184799	$ \begin{array}{c c} -617 \\ -322 \end{array} $	$2s^2 \ 2p^2(^3{ m P})4p$	4p 4D°	1/2 1/2 11/2 21/2	636475 + x 641908 642184	276 288
2s 2p4	$2p^4$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c c} 253807 + x \\ 253823 + x \end{array}$	-16			3½	642472 642934	462
2s 2p4	$2p^4$ 2S	1/2	299351+x		$2s^2 \ 2p^2(^3\mathrm{P})4p$	4p 4P°	$\begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	643239 643672	433 303
2s 2p4	2p4 2P	1½ ½ ½	$ \begin{array}{r} 319751 + x \\ 320452 + x \end{array} $	-701	$2s^2\ 2p^2(^3{ m P})4p$	4p 4S°	$\begin{vmatrix} 2\frac{1}{2} \\ 1\frac{1}{2} \end{vmatrix}$	643975 648060	
2s ² 2p ² (³ P)3s	3s 4P	$\begin{array}{c c} & \frac{1/2}{1/2} \\ & \frac{1/2}{2/2} \\ & \frac{21/2}{2} \end{array}$	478701 479079 479651	378 572	$2s^2 \ 2p^2(^1\mathrm{D})4s$	4s' ² D	$\left[\left\{\begin{array}{c}2\frac{1}{2}\\1\frac{1}{2}\end{array}\right]\right]$	$\left.\begin{array}{c} \\ \\ \\ \end{array}\right. 664124 + x$	
$2p^5$	$2p^5$ $^2\mathrm{P}^\circ$	1½ ½ ½	484623 + x $485585 + x$	- 962	$2s^2 \ 2p^2(^3{ m P}) 4d$	4d ² F	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	670595 + x $671252 + x$	657
2s ² 2p ² (3P)3s	3s ² P	1½ 1½ 1½	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	702	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4 <i>a</i> 4P	$ \begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array} $	671402 672102 672676	-700 -574
$2s^2 \; 2p^2(^1{ m D})3s$	3s' ² D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$			2s 2p³(5S°)3d	3d''' ⁴ D°	$\begin{cases} \frac{1}{2} \\ \text{to} \end{cases}$	672799	
$2s^2 \ 2p^2(^3\mathrm{P})3p$	3p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	524391 524676 525017	285 341	$2s^2\ 2p^2(^3\mathrm{P})4d$	4 <i>d</i> ² D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	673427 + x $673587 + x$	160
$2s^2 \ 2p^2(^3P)3p$	3p 4S°	1½	532978		$2s^2 \ 2p^2(^3{ m P}) 5s$	58 4P	$\begin{vmatrix} 1/2 \\ 1/2 \\ 1/2 \end{vmatrix}$	693106	611
$2s^2 \ 2p^2({}^1{ m S})3s$	3s'' 2S	1/2	551712+x				$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	693717 694353	636
$2s^2 \ 2p^2(^3P)3d$	3 <i>d</i> ² P	1½ ½ ½	575968 + x $576353 + x$	-385	$2s^2\ 2p^2(^1{ m D})4d$	4d′ ²F	$\left\{\begin{array}{c c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right\}$	697855+x	
$2s^2 \ 2p^2(^1{ m S})3d$	3 <i>d''</i> ² D	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $			$2s^2\ 2p^2(^1{ m D})4d$	4d′ ²D	$\left\{\begin{array}{c c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	$\left.\right\}$ 699622+x	
$2s^2 \ 2p^2(^3P)3d$	3d 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	579307 579626 579737	$-319 \\ -111$	$2s^2 \ 2p^2(^1{ m D})4d$	4d′ ²P	$\left\{\begin{array}{c c} \frac{1/2}{1/2} \\ 1/2 \end{array}\right\}$	$\left.\right\}$ 701223+x	
$2s^2 \ 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² F	$ \begin{array}{c c} & 2\frac{1}{2} \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \end{array} $	579375 + x $580095 + x$	720	$2s^2\ 2p^2({}^1\!\mathrm{S})4d$	4d'' ² D	$\left \left\{\begin{array}{c c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right \right\}$	709460+x	
					$2s^2\ 2p^2(^1{ m D})5s$	5s' 2D	$\left\{\begin{array}{c c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	724690+x	
$2s^2 \ 2p^2(^3P) 3d$	3d ² D	$\begin{array}{c c} & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	586685 + x $586918 + x$	233	$2s^2\ 2p^2(^1\mathrm{D})5d$	5d′ ² F	$\left. \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right\} \right.$	740607+x	
$2s \ 2p^3(^5\mathrm{S}^\circ)3s$	3s''' 4S°	1½	588021		0.00.04751.0			## 4 FOR 1	
$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d' ² F	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	$\bigg\} \qquad 605417 + x \bigg]$		$2s^2 \; 2p^2(^1{ m D}) 6s$	68' ² D	$\left\{egin{array}{c} 1lac{1}{2} \\ 2lac{1}{2} \end{array} ight\}$	754597+x	
$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d' ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$			Ne v (3P ₀)	Limit		783880	
$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d′ ²P	1½ 1½	$\begin{array}{c} 612668 + x \\ 612781 + x \end{array}$	113					

March 1948.

Ne IV OBSERVED TERMS*

Config. 1s ² +					Observed '	Terms					
2s ² 2p ³	$\begin{bmatrix} 2p^3 & ^4\mathrm{S}^{\circ} \end{bmatrix}$	2p³ ²P°	2p³ 2D°								
2s 2p4	$\left\{ _{2p^{4}}\right{^{2}\mathrm{S}}$	$^{2p^4}_{2p^4}{}^{4}{ m P}_{2}$	2p4 2D								
$2p^5$		$2p^5$ $^2\mathrm{P}^\circ$									
		ns $(n \ge 3)$			$np \ (n \ge 3)$				$nd (n \ge 3)$)	
$2s^2 \ 2p^2(^3\mathrm{P})nx$	{	3-5s ⁴ P 3, 4s ² P		3, 4p 4S°	3, 4p ⁴ P°	4p 4D°		3, 4d ⁴ P 3d ² P	3, 4d	$^2\mathrm{D}$	3, 4d ² F
$2s^2 \ 2p^2(^1\mathrm{D})nx'$			3-6s′ ² D				3d′ 2S	3, 4d′ ² P	3, 4d'	$^2\mathrm{D}$	3-5d′ ² F
$2s^2 \ 2p^2(^1{ m S})nx''$	38'' 2S								3, 4d''	$^{2}\mathrm{D}$	
2s 2p ³ (⁵ S°)nx'''	3s''' 4S°								3d''	′ 4D°	

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

Ne v

(C I sequence; 6 electrons)

Z = 10

Ground state 1s2 2s2 2p2 3P0

 $2p^2 {}^3P_0 1019950 \text{ cm}^{-1}$

I. P. 126.4 volts

Paul and Polster have classified a total of 56 lines of Ne v in the range 118 A to 572 A, as transitions among 47 energy levels. The absolute value of $2p^2$ 3P_0 is calculated from the nd $^3P^{\circ}$ and nd $^3D^{\circ}$ series, in each of which two members have been observed.

The singlet and triplet terms are connected by the intersystem lines $2p^2$ $^3P_{2,1}-2p^2$ 1D_2 observed in the spectra of gaseous nebula, as given by Bowen.

No intersystem combinations connecting the quintet terms with the rest have been observed, as indicated by the uncertainty x in the table. Paul and Polster estimate from isoelectronic sequence data that the term $2p^3$ $^5\text{S}^\circ_2$ is 86700 ± 300 cm⁻¹ above the ground state. From later data on this sequence Robinson places the value at 88842 cm⁻¹. The later value is entered in brackets and has been used in the present compilation for all quintet terms.

- I. S. Bowen, Rev. Mod. Phys. 8, 68 (1936). (C L)
- F. W. Paul and H. D. Polster, Phys. Rev. 59, 428 (1941). (I P) (T) (C L)
- H. A. Robinson, unpublished material (March 1948). (T)

Ne V

Config.	Desig.	J	Level	Interval	Config.	Desig.	\int	Level	Interval
2s ² 2p ²	$2p^2$ $^3\mathrm{P}$	0 1 2	0 414 1112	414 698	2s² 2p(²P°)3d	3d ³D°	1 2 3	698231 698382 698735	151 353
$2s^2 \ 2p^2$	$2p^2$ ¹ D	2	30294		2s ² 2p(² P°)3d	3d ³P°	2 1	701765	-309
2s ² 2p ²	$2p^2$ ¹ S	0	63900				$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	702074 702459	-385
$2s$ $2p^3$	2p³ 5S°	2	[88842]+x		$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d ¹P°	1	702412	
$2s$ $2p^3$	2p³ ³D°	3 2	175834 175905	-71	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d 1F°	3	709956	
		1	175927	-22	$2s$ $2p^2(^4\mathrm{P})3s$	3s 3P	0	719350 719527	177
$2s 2p^3$	2p³ ³P°	2, 1	208157 208193	-36			$\frac{1}{2}$	720011	484
$2s$ $2p^3$	$2p^{3}$ ¹ D°	2	270564		$2s^2 \ 2p(^2{ m P}^{\circ}) \ 4s$	4s ³P°	0, 1, 2	795279	
$2s 2p^3$	$2p^3$ 3 S°	1	279365		2s 2p ² (4P)3d	3d ⁵ P	3 2 1	799115+x $799286+x$ $799493+x$	$-171 \\ -207$
$2s$ $2p^3$	2p3 1P°	1	303812		$2s^2 \ 2p(^2\mathrm{P}^\circ)4s$	4s 1P°	1	805284	
$2p^4$	2p4 3P	2 1 0	412681 413466 413803	-785 -337	$2s \ 2p^{(4)} 1s$	4s ⁵ P	1, 2, 3	822976 + x	
$2s^2 \; 2p(^2\mathrm{P}^\circ) 3s$	3s ³P°	0	596230		2s ² 2p(² P°)4d	4d ¹D°	2	83862 3	
20 2p(1)00	00 1	$\frac{1}{2}$	596626 597492	396 866	2s ² 2p(² P°)4d	4d ³D°	1, 2, 3	842020	
2s² 2p(²P°)3s	3 ₈ ¹ P°	1	605231		$2s^2\ 2p(^2\mathrm{P}^\circ)4d$	4d ³P°	2, 1, 0	842914	
	3d ¹ D°	$\begin{bmatrix} & 1 \\ & 2 \end{bmatrix}$			$2s^2\ 2p(^2\mathrm{P}^\circ)4d$	4d 1F°	3	847207 ?	
2s ² 2p(² P°)3d			690691		$2s$ $2p^2(^4\mathrm{P})4d$	4d ⁵ P	3, 2, 1	865282 + x	
$2s \ 2p^2(^4{ m P})3s$	3s ⁵ P	1 2	$\begin{array}{ c c c c c c }\hline 697507 + x & \\ 698059 + x & \\ \hline \end{array}$	552 453					
		3	698512+x		Ne vi (2P½)	Limit		1019950	

March 1948.

Ne v Observed Terms*

Config. 1s ² +			Obser	ved Terms		
2s ² 2p ²	$\left\{_{2p^2} ight{ ext{S}} ight.$	$2p^2\ ^3\mathrm{P}$	$2p^2$ ¹ D			
2s 2p³	$\left\{egin{matrix} 2p^3 \ ^5\mathrm{S}^{ullet} \ 2p^3 \ ^3\mathrm{S}^{ullet} \end{matrix} ight.$	$2p^3\ ^3{ m P}^{\circ} \ 2p^3\ ^1{ m P}^{\circ}$	$2p^{3}\ ^{3}\mathrm{D}^{\circ} \ 2p^{3}\ ^{1}\mathrm{D}^{\circ}$			
2p4		2p4 3P				
		ns $(n \ge 3)$			$nd \ (n \ge 3)$	
2s ² 2p(² P°)nx	{	3, 4s ³ P° 3, 4s ¹ P°		3, 4d ³ P° 3d ¹ P°	3, 4d ³ D° 3, 4d ¹ D°	3, 4d ¹ F°
2s 2p ² (4P)nx	{	3, 4s ⁵ P 3s ³ P		3, 4d ⁵ P		

^{*}For predicted terms in the spectra of the $\operatorname{C}_{\text{I}}$ isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z = 10

Ground state 1s2 2s2 2p 2P2

 $2p \, ^{2}P_{1/2}^{\circ} \, 1274000 \pm 1000 \, \text{cm}^{-1}$

I. P. 157.91 ± 0.12 volts

This spectrum is incompletely analyzed. Paul and Polster have classified 23 lines in the range from 110 A to 562 A. They have estimated the limit and ionization potential from isoelectronic data. No intersystem combinations have been observed but the uncertainty x is approximately known from their estimated value of $2p^2$ ⁴P (entered in brackets in the table).

REFERENCE

F. W. Paul and H. D. Polster, Phys. Rev. 59, 429 (1941). (I P) (T) (C L)

		Ne vi			Ne VI					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
$2s^2(^1\mathrm{S})2p$	2p 2P°	1½	0 1316	1316	2s 2p(3P°)3s	3s ⁴ P°	$ \begin{bmatrix} \frac{1/2}{to} \\ to \\ 2\frac{1}{2} \end{bmatrix} $			
2s 2p ²	2p ² ⁴ P	$ \begin{cases} \frac{1/2}{to} \\ 2\frac{1}{2} \end{cases} $			2 s 2p(³P°)3p	3p 2P	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right $	} 878852		
$2s$ $2p^2$	$2p^2$ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	178998 179020	-22	2s 2p(3P°)3p	$3p^{-2}S$	1/2	900408		
2s 2p ²	$2p^{2}$ 2S	1/2	232587		2s 2p(3P°)3p	$3p^{-2}D$	$\left\{\begin{array}{c c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right $	906373		
2s 2p ²	2p² ²P	1½ 1½	249292 250112	820	2s 2p(3P°)3d	3d 4D°	$\left\{\begin{array}{c} \frac{1/2}{12} \\ \text{to} \\ 3\frac{1}{2} \end{array}\right\}$	924791+x		
$2s^2(^1\mathrm{S})3s$	3s 2S	1/2	722610				0/2)		
$2s^2(^1\mathrm{S})3p$	3p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	763096 763385	289	Ne vii (¹S₀)	Limit		1274000		
$2s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	816405							

October 1946

SODIUM

Na I

11 electrons Z = 11

Ground state $1s^2 2s^2 2p^6 3s ^2S_{1/2}$

 $3s {}^{2}S_{\frac{1}{2}}$ 41449.65 cm⁻¹

I. P. 5.138 volts

Thackeray has observed the ${}^{2}P^{\circ}$ series in absorption to n=73. His values are used for this series for n=4 to 59,* and for the ²D series for n=8 to 13.

Meissner and Luft have observed selected lines with an interferometer. Their results, including observed intervals of the 3-6d 2D terms (the four-place entries in the table) and improved absolute values of the 3-7s 2S, 3p 2P° and 3-7d 2D terms, have been used.

From infrared observations Rood and Sawyer have extended the nf^2F° series from n=5to n=11, except for n=8. Their values have been used, a calculated value of $8f^2F^{\circ}$ being entered in brackets in the table.

The rest of the terms are from Fowler and Paschen-Götze, who published detailed analyses. By analogy with other spectra the designations 5g 2G and 6h 2H° have been assigned to the terms calculated from Fowler's combinations labeled " $3\phi-4\phi$ " and " $4\phi-5\phi$ ", respectively.

REFERENCES

- A. Fowler, Report on Series in Line Spectra p. 99 (Fleetway Press, London, 1922). (I P) (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 56 (Springer, Berlin, 1922). (I P) (T) (C L)
- W. F. Meggers, Bur. Std. J. Research 10, 673, RP558 (1933). (C L)
- H. E. White, Introduction to Atomic Spectra p. 77 (McGraw-Hill Book Co., Inc., New York, 1934). (G D)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (CL)
- K. W. Meissner und K. F. Luft, Ann. der Phys. [5] 29, 698 (1937). (I P) (T) (C L)
- P. Rood and R. A. Sawyer, Astroph. J. 87, 70 (1938). (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs) E. R. Thackeray, Phys. Rev. (1949). (In press). (I P) (T) (C L)

NaI Na I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3 s	3s ² S	1/2	0. 000		5 p	5p ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	35040. 27 35042. 79	2. 52
3p	3p 2P°	1½ 1½	16956. 183 16973. 379	17. 1963	68	6s ² S	1/2	36372. 647	
48	4s 2S	1/2	25739. 86		5d	5 <i>d</i> ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	37036. 781 37036. 805	-0. 0230
3d	3d ² D	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	29172. 855 29172. 904	-0. 0494	5 <i>f</i>	5f 2F°	$\left\{ egin{array}{c} 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	} 37057.6	
4 <i>p</i>	4 p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	30266. 88 30272. 51	5. 63	5g	5 <i>g</i> ² G	$ \left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right. $	37060. 2	
58	58 ² S	1/2	3320 0. 696		6 <i>p</i>	6p 2P°		37296. 51	
4d	4d ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	34548. 754 34548. 789	-0. 0346) op		11/2	37297.76	1. 25
			,		78	78 ² S	1/2	38012. 074	
4f	4f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	34588.6		6d	6d ² D	2½ 1½	38387. 287 38387. 300	=0.0124

The last 14 members are not included because page proof had been prepared when the data were received.

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
6 <i>f</i>	6f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 38400. 1		14p	14p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 40814.47	
6 h	6h ² H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	38403. 4		14d	14d ² D	$ \left\{ \begin{array}{c} 1/2 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	} 40890. 0	
7p	7p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	38540. 40 38541. 14	0. 74	15p	15p ² P°	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	} 40901.11	
88	8s ² S	1/2	38968. 35				1)	
7d	7d ² D	2½ 1½	39200. 962 39200. 963	-0. 001	15d	15d ² D	$ \begin{cases} 2\frac{1}{2} \\ 1\frac{1}{2} \end{cases} $	} 40958	
7 _f	7f 2F°	$\left\{ egin{array}{c} 2^{1/2} \ 3^{1/2} \end{array} ight.$	39209. 2		16p	16p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	40971. 16	
8 <i>p</i>	8p 2P°	1½ 1½	39298. 54 39299. 01	0. 47	17 <i>p</i>	17p 2P°	11/2	} 41028.68	
98	9s ² S	1/2	39574. 51		18 <i>p</i>	18p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	41076.37	
8d	8d ² D	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	39729. 00		19 <i>p</i>	19p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41116. 28	
8 <i>f</i>	8f ² F°	$\left\{egin{array}{c} 2^{1/2}_{/2} \ 3^{1/2}_{/2} \end{array} ight.$] [39734. 0]		20p	20p 2P°	$\left\{\begin{array}{c} \frac{1/2}{1/2} \\ 1/2 \end{array}\right.$	} 41150.39	
9p	9p ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	39794. 53 39795. 00	0. 47	21p	21p 2P°	\[\begin{pmatrix} \frac{1/2}{1/2} \\ \frac{1}{1/2} \end{pmatrix} \]	} 41179.22	
10s	10s 2S	1/2	39983. 0		22p	$22p$ $^2\mathrm{P}^\circ$	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 11/2 \end{array}\right.$	} 41204. 28	
9d	9d ² D	$\left\{egin{array}{cc} 2^{1/2} \\ 1^{1/2} \end{array} ight.$	} 40090. 57		23p	23p 2P°	$ \begin{bmatrix} 1/2 \\ \frac{1}{2} \\ 1\frac{1}{2} \end{bmatrix} $	} 41225. 88	
9 <i>f</i>	9f 2F°	$\left\{\begin{array}{cc} 2^{1/2} \\ 3^{1/2} \end{array}\right.$	} 40093. 2		24p	24p 2P°	$ \left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right. $	} 41244.77	
10p	10p 2P°	$\left\{\begin{array}{c} \frac{1/2}{1/2} \\ 1\frac{1}{2} \end{array}\right.$	} 40137. 23		25p	25p 2P°	$ \left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 11/2 \end{array} \right. $	} 41261.42	
118	11s ² S	1/2	40273. 5	:	-				
10d	10d ² D	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 40349 . 17		26p	26p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	41276. 11	
10 <i>f</i>	10f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 40350. <i>9</i>		27p	27p ² P°	$\left\{\begin{array}{c} \frac{1/2}{1/2} \\ 1\frac{1/2}{2} \end{array}\right.$	} 41289.16	
11p	11p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	40383. 16		28p	28p ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1/2}{2} \end{array}\right.$	} 41300. 74	
128	12s ² S	1/2	40482. 9		29p	29p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	} 41311.09	
11 <i>f</i>	11f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 40539		30p	30p ² P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41320. 34	
11d	11d ² D	$\left\{egin{array}{c} 2^{1\!/\!2} \ 1^{1\!/\!2} \end{array} ight.$	} 40540. 35		31p	31p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41328.87	
12p	12p 2P°	$\left\{\begin{array}{c c} 1/2 \\ 1/2 \end{array}\right $	} 40566. 03		32p	32p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 41336. 50	
138	13s ² S	1/2	40644. 6		33p	33p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right $	} 41343. 49	
12d	12d ² D	$\left\{\begin{array}{c c}2\frac{1}{2}\\1\frac{1}{2}\end{array}\right]$	} 40685. 8		34p	34p ² P°	$ \left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right. $	} 41349. 70	
13p	13p ² P°	$\left\{\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 40705. 68		35p	35p 2P°	$ \begin{bmatrix} 1/2 \\ \frac{1/2}{1\frac{1}{2}} \end{bmatrix} $	} 41355. 50	
148	14s ² S	1/2	40769. 5				1	,	1
13 <i>d</i>	13d ² D	$\left \left\{egin{array}{c} 2lac{1/2}{1} \ 1lac{1}{2} \end{array} ight ight.$	} 40798.8		36p	36p ² P°	$\left \left\{ \begin{array}{c} \frac{1/2}{1/2} \\ 1/2 \end{array} \right \right.$	} 41360. 82	1

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
37p	37p 2P°	$ \left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	} 41365.66		49p	49p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41402. 25	
38 <i>p</i>	38p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41370. 11		50p	50p 2P°	$\left\{\begin{array}{c} \frac{1/2}{7/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41404. 18	
39p	39p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41374. 27		51 <i>p</i>	51p 2P°	$\left\{\begin{array}{c} \frac{1/2}{72} \\ 1\frac{1}{2} \end{array}\right.$	} 41406.03	
40 <i>p</i>	40p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41378. 04		52p	52p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41407.69	•
41 <i>p</i>	41p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41381.55		53 <i>p</i>	53p ² P°	$\left\{\begin{array}{c} \frac{1}{1} \\ 1 \frac{1}{2} \end{array}\right.$	} 41409.30	
42p	42p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41384.84		54p	54p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41410.81	
43p	43p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41387.91		55 <i>p</i>	55p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41412. 20	
44p	44p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41390. 73		56 <i>p</i>	56p 2P°	$\left\{\begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array}\right.$	} 41413.59	
45p	45p 2P°	$ \left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	} 41393. 34		57 <i>p</i>	57p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41414.89	
46p	46p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41395. 77		58p	58p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41416.06	
47p	47p 2P°	$ \begin{cases} \frac{1/2}{11/2} \end{cases} $	} 41398. 10		59p	59p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41417.18	
48p	48p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 41400. 28						
		'2			Na 11 (¹ S ₀)	Limit		41449.65	

January 1949.

Na II

(Ne i sequence; 10 electrons)

Z = 11

Ground state 1s2 2s2 2p6 1S0

 $2p^6 \, {}^{1}\mathrm{S_0} \, 381528 \, \, \mathrm{cm^{-1}}$

I. P. 47.29 volts

The analysis has been taken from Söderqvist's Monograph except for the 5s- and 6s-levels, which are quoted from Vance's paper.

The term designations assigned by Söderqvist on the assumption of LS-coupling are listed under the heading "Author," with corresponding assignments added for the 5s- and 6s-levels.

As for Ne 1, the jl-coupling notation in the general form suggested by Racah is adopted. Shortley has, however, pointed out that the configurations $2p^5 3s$, $2p^5 3p$, and $2p^5 3d$ are much closer to LS-coupling than they are to jl-coupling.

- I. S. Bowen, Phys. Rev. 31, 967 (1928). (T) (C L)
- S. Frisch, Zeit. Phys. 70, 498 (1931). (T) (C L)
- B. B. Vance, Phys. Rev. 41, 480 (1932). (T) (C L)
- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 22 (1934). (I P) (T) (C L) (G D)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- G. Shortley, unpublished material (1948).

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
$2p$ $^{1}\mathrm{S}_{0}$	$2p^6$	$2p^6$ $^1\mathrm{S}$	0	0. 00	3d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{^{1}\cancel{1}\cancel{2}})3d$	3d [1½]°	1	331748.77
$3s_{5}\ ^{3}\mathrm{P}_{2}\ 3s_{4}\ ^{3}\mathrm{P}_{1}$	$2p^5(^2\mathrm{Pi}_{11/2})3$ s	3s [1½]°	2 1	264928.00 265693.29	$3d^{-1}D_2 \ ^{3}D_3$	$2p^5(^2\mathrm{P}^{\circ}_{\!$	3d' [2½]°	2 3	332806.06 332845.80
${3s_3\atop 3s_2}\ {^3P_0\atop ^1P_1}$	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})3s$	38' [½]°	0	266285. 36 268766. 67	$\begin{array}{c c} 3d & ^{3}\mathrm{D}_{2} \\ & ^{3}\mathrm{D}_{1} \end{array}$	"	3d' [1½]°	1	332966. 42 333166. 7 0
$3p_{10}\ ^3{ m S}_1$	$2p^{5}(^{2}\mathrm{P_{11_{2}}^{\circ}})3p$	$3p \ [\ \frac{1}{2}]$	1	293224. 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})4s$	48 [1½]°	2 1	331500. 29 331877. 67
$rac{3p_9}{3p_8} rac{^3{ m D}_3}{^3{ m D}_2}$	<i>"</i>	$3p \ [2\frac{1}{2}]$	3 2	297252. 52 297639. 34	$\begin{array}{c c} 4s_3 & {}^3P_0 \\ 4s_2 & {}^1P_1 \end{array}$	$2p^5(^2\mathrm{P}^{\circ}_{5})4_8$	48' [½]°	0 1	332713.96 333111.60
$\frac{3p_7}{3p_6}^3\mathrm{D}_1\ \mathrm{3}p_2$	"	3p [1½]	1 2	298169. 14 299193. 75	584 3P1	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})^{2}$	5s [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	353260
$3p_3$ $^3\mathrm{P}_0$	//	3p [½]	0	300391. 59		$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})5s$	5s' [½]°	0	
$rac{3p_5}{3p_4} ^1\! ext{P}_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$2p^{5}(^{2}\mathrm{P}_{5/2}^{\circ})3p$	$3p' [1\frac{1}{2}]$	$\frac{1}{2}$	299889. 16 300107. 71	5s ₂ ¹ P ₁			1	354850
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	3p' [½]	0	300510. 92 308864. 54	4d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{_{1}^{1}\!$	4d [1½]°	1	<i>353573</i>
3d ³ P ₀ ³ P ₁	$2p^{5}(^{2}\mathrm{P_{11/2}^{o}})3d$	3d [½]°	0	330553. 18 330640. 60	68 ₄ ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})^{2}$ 68	6s [1½]°	2 1	363500
$3d$ 3P_2	"	3d [1½]°	2	330792. 85	6s ₂ ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{rac{1}{2}}^{\circ})6s$	6s' [½]°	0 1	364960
$3d$ ${}^3\mathbf{F_4}$ ${}^3\mathbf{F_3}$	"	3d [3½]°	4 3	331126.76 331190.49					
$3d$ ${}^3\mathrm{F}_2$ ${}^1\mathrm{F}_3$	"	3d [2½]°	2 3	331669. 40 331711. 75		Na III (2P°1/2)	Limit		381528
- *				331.11.70		Na III (2P½)	Limit		382892

August 1947.

Na II OBSERVED LEVELS*

ī—·		CH OBSERVED LEVELS											
Config. 1s ² 2s ² +		Observed Terms											
$2p^6$	$2p^6~^1\mathrm{S}$												
	$ns (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$										
$2p^5(^2\mathrm{P}^\circ)nx$	{ 3-6s ³ P° 3-6s ¹ P°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3d ³ P° 3d ³ D° 3d ³ F° 3, 4d ¹ P° 3d ¹ D° 3d ¹ F°										
		jl-Coupling Notation											
		Observed Pair	rs										
	$ns (n \geq 3)$	$np \ (n \ge 3)$	nd (n≥3)										
$2p^5(^2\mathrm{P}^{\circ}_{1})_{2})nx$	3-6s [1½]°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3d [½]° 3d [3½]° 3, 4d [1½]° 3d [2½]°										
$2p^5(^2 ext{P}_{15}^\circ)nx'$	3–6s′ [½]°	$egin{array}{c} 3p'\left[1\frac{1}{2} ight] \ 3p'\left[rac{1}{2} ight] \end{array}$	3d' [2½]° 3d' [1½]°										

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Na III

(F 1 sequence; 9 electrons)

Z = 11

Ground state is $1s^2 2s^2 2p^5 {}^{2}P_{1\frac{1}{2}}^{\circ}$

 $2p^5 {}^2P_{1\frac{1}{2}}^{\circ}$ 578033 cm⁻¹

I. P. 71.65 volts

The terms are taken from the paper by Tomboulian, who has revised and extended the analysis by Söderqvist, but adopts the limit estimated by Söderqvist. The ²P° term from the ¹S limit in Na IV has not been located to confirm Söderqvist's ²S and ²D terms from this limit. Intersystem combinations have been observed, connecting the doublet and quartet terms.

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (T) (C L) (G D)
- D. H. Tomboulian, Phys. Rev. 54, 347 (1938). (I P) (T) (C L)

Na III

Na III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^5$	$2p^5$ $^2\mathrm{P}^\circ$	1½ ½ ½	0 1364	-1364	$2s^2 \ 2p^4(^3{ m P}) 3p$	3p 4S°	1½	417415.5	
$2s$ $2p^6$	$2p^6$ 2S	1/2	264449		$2s^2\ 2p^4(^3{ m P})3p$	3p 2P°	1½ ½ ½	418418. 1 418556. 9	-138. 8
$2s^2\ 2p^4(^3{ m P})3s$	3s 4P	$egin{array}{c} 2^{1/2}_{1/2} \ 1^{1/2}_{1/2} \ \frac{1/2}{1/2} \end{array}$	366165. 3 367052. 3	─887. 0	$2s^2 \ 2p^4 ({}^1{ m S}) 3s$	38'' 2S	1/2	435031	
		1/2 1/2	367561. 9	-509. 6	$2s^2 2p^4 (^1{ m D}) 3p$	$3p'$ ${}^2\mathrm{F}^{o}$	2½ 3½	440472. 0 440552. 4	80. 4
2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½	373633. 0 374681. 4	-1048. 4	$2s^22p^4(^1{ m D})3p$	3p′ ²P°	11/2 1/2	442710.5 443261.6	-551. 1
$2s^2\ 2p^4(^1{ m D})3s$	38′ ² D	2½ 1½	399179. 4 399182. 7	-3. 3	$2s^22p^4(^1{ m D})3p$	3p′ 2D°	$egin{array}{c} 1^{1}\!\!\!/_{2} \ 2^{1}\!\!\!/_{2} \end{array}$	444748. 1 444825. 0	76. 9
$2s^2\ 2p^4(^3{ m P})3p$	3p 4P°	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	406200. 9 406562. 0 406876. 0	$ \begin{array}{r} -361.1 \\ -314.0 \end{array} $	$2s^22p^4(^3{ m P})3d$	3d 4D	3½ 2½ 1½ ½	460267. 8 460421. 0 460605. 6	-153. 2 -184. 6
$2s^2 \ 2p^4(^3{ m P}) \ 3p$	3p 4D°	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	410987. 9 411548. 2	-560. 3				460759. 3	-153. 7
		3½ 2½ 1½ ½	411963. 9 412201. 5	$ \begin{array}{c c} -415.7 \\ -237.6 \end{array} $	$2s^2 \ 2p^4(^3{ m P})3d$	3d 4F	$\begin{array}{ c c c }\hline & 4\frac{1}{2} \\ & 3\frac{1}{2} \\ & 2\frac{1}{2} \\ & 1\frac{1}{2} \\ \end{array}$	461877. 4? 463112. 8	-1235.4 -515.3
$2s^2 2p^4 (^3{ m P}) 3p$	$3p$ 2 D $^{\circ}$	2½ 1½	414281. 0 415173. 2	-892. 2			$1\frac{2\frac{1}{2}}{1\frac{1}{2}}$	463628. 1 463462. 2	165. 9
$2s^22p^4(^3{ m P})3p$	3p 2S°	1/2	416910. 2		$2s^22p^4(^3{ m P})3d$	3d 4P	$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ \end{array}$	462391. 2 462963. 6 463257. 4	572. 4 293. 8

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^4(^3{ m P}) 3d$	3 <i>d</i> ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	463968. 8 465768. 8	—1800. 0	$2s^2\ 2p^4(^1{ m D})3d$	3d′ 2S	1/2	497751. 2	
$2s^2 \ 2p^4(^3{ m P}) \ 3d$	3 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	464392. 1	-635. 8	$2s^2 \ 2p^4(^1{ m D})4s$	4s' ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	511410	
$2s^2\ 2p^4(^3{ m P})3d$	3 <i>d</i> ² P	1½ ½ 1½ 1½	4650 27 . 9 465988. 0	785. 0	$2s^2 \ 2p^4(^3{ m P}) 4d$	dd ^{2}D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	514652	
2s ² 2p ⁴ (³ P)4s	4s 4P		466773. 0 467773. 8		2s ² 2p ⁴ (³ P)4d	4d ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	515023 515379	356
		$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	4685 2 8. 5 468949. 5	$\begin{bmatrix} -754.7 \\ -421.0 \end{bmatrix}$	$2s^2\ 2p^4(^1{ m S})3d$	3d'' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	529465 529498	-33
$2s^2 \ 2p^4(^3\mathrm{P})4s$	4s ² P	1½ 1/2	471446. 6 472250. 6	-804. 0	$2s^2\ 2p^4(^1{ m D})4d$	4d' ² P	1/2	\$25458 \$544227	
$2s^2 \ 2p^4 (^1{ m D}) \ 3d$	3d′ ² G	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	491928. 2		$2s^2 \ 2p^4(^1{ m D}) 4d$	4d' ² D	$ \begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $) 01122.	
$2s^2 \ 2p^4 (^1{ m D}) \ 3d$	3d′ ²P	1½ 1½	493191. 3 493289. 3	98. 0			2½	544736	
$2s^2\ 2p^4(^1{ m D})3d$	3d' ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	493853. 2 494599. 0	745. 8	Na IV (3P ₂)	Limit		578033	
$2s^2 \ 2p^4 (^1{ m D}) 3d$	3d' ² F	$egin{array}{c} 2/2 \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	495446. 8 495668. 6	-221 . 8					

March 1947.

Na III OBSERVED TERMS*

Config. $1s^2+$	Observed Terms											
$2s^2 \ 2p^5$ $2s \ 2p^6$	$2p^{5}{}^{2}\mathrm{P}^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											
	$ns (n \ge 3)$)		np	$(n \ge 3)$				$nd \ (n \ge 3)$			
2s ² 2p ⁴ (3P)nx	$ \begin{cases} 3, 4s & {}^{4}P \\ 3, 4s & {}^{2}P \end{cases} $		$3p {}^{4}\mathrm{S}^{\circ} \ 3p {}^{2}\mathrm{S}^{\circ}$	3p ⁴ P° 3p ² P°	3p 4D° 3p 2D°			3d ⁴ P 3, 4d ² P	$^{3d}_{3,\ 4d}$ 4 2	3d ⁴ F 3d ² F		
$2s^2 \ 2p^4 (^1{ m D}) nx'$ $2s^2 \ 2p^4 (^1{ m S}) nx''$	3s'' 2S	3, 4s′ ² D		3p′ ² P°	3 <i>p</i> ′ ² D°	3p′ ² F°	3d′ 2S	3, 4d′ ²P	3, 4d′ ² D 3d′′ ² D	3d′ ² F 3d′ ² G		

^{*}For predicted terms in the spectra of the F 1 isoelectronic sequence, see Introduction.

(O i sequence; 8 electrons)

Z = 11

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^{4} {}^{3}P_{2} 797741 \text{ cm}^{-1}$

I. P. 98.88 volts

The terms are from Söderqvist who has extended Vance's early work on this spectrum. In the 1946 reference Söderqvist states that the absolute values of the singlets as published in his Monograph should be decreased by 1000 cm^{-1} . This correction has been applied in the present list. The analysis is incomplete but 74 lines have been classified in the range 129 Å to 412 Å, and 40 terms found. No intersystem combinations have been observed and the uncertainty, x, may be considerable. The term 3d''' 3D has been calculated from its combination with $2p^5$ $^3P^\circ$ and added to the published list.

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 51 (1934). (I P) (T) (C L) (G D)
- J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (CL)

Na IV Na IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	$2p^4$ $^3\mathrm{P}$	2	0 1106	-1106	$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3d'' ³P°	2, 1, 0	663592	
		0	1576	-470	$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹D°	2	664904 + x	
$2s^2 \ 2p^4$	$2p^4$ ¹ D	2	31118 + x		$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3 <i>d</i> ′′ ³D°	3, 2, 1	665362	
$2s^2 \ 2p^4$	$2p^4$ ¹ S	0	66780 + x		$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹P°	1	665640 + x	
$2s \ 2p^5$	$2p^5$ $^3\mathrm{P}^\circ$	2	243682	-1006	$2s^2 2p^3 (^2\mathrm{P}^\circ) 3d$	3d'' ¹F°	3	667696 + x	
		$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	244688 245238	-550	$2s^22p^3({}^4\mathrm{S}^\circ)4d$	4d ³D°	3, 2, 1	684649	
2s 2p ⁵	$2p^{5}$ ¹ P°	1	343972 + x		$2s^2\ 2p^3(^2{ m D}^\circ)4s$	4s' 3D°	3, 2, 1	689755	
$2s^2~2p^3(^4\mathrm{S}^\circ)3s$	38 3S°	1	486648		$2s^22p^3(^2\mathrm{D}^\circ)4s$	4s' ¹D°	2	692043 + x	
$2s^2\ 2p^3(^2{ m D}^\circ)3s$	38′ ³D°	3	525100	-19	2s² 2p³(²P°)4s	4s'' ³P°	2, 1, 0	714937	
		$\begin{vmatrix} 2\\1 \end{vmatrix}$	525119 525136	-17	$2s^2 \ 2p^3(^2{ m P}^\circ) \ 4s$	4s'' ¹P°	1	716773 + x	
$2s^2\ 2p^3(^2{ m D}^\circ)3s$	38′ ¹D°	2	531696 + x		$2s^2 2p^3 (^2{ m D}^\circ) 4d$	4d′ ³D°	3, 2, 1	730712	
$2s^2\ 2p^3(^2{ m P}^\circ)3s$	38'' 3P°	2, 1, 0	550176		$2s^2 2p^3(^2\mathrm{D}^\circ)4d$	4d′ ¹P°	1	731948 + x	
$2s^2\ 2p^3(^2{ m P}^\circ)3s$	38" ¹P°	1	557081 + x		$2s^2 2p^3 (^2{ m D}^\circ) 4d$	4d′ ³P°	2, 1, 0	732355	
$2s^2 2p^3(^4\mathrm{S}^\circ)3\mathrm{d}$	$3d$ $^3D^{\circ}$	1	594893	5	$2s^2 2p^3(^2\mathrm{D}^\circ)4d$	4d′ 3S°	1	732940	
		$\begin{vmatrix} 2\\3 \end{vmatrix}$	594898 594941	43	$2s^2 2p^3 (^2{ m D}^\circ) 4d$	4d′ ¹D°	2	733548 + x	
$2s^22p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ³D°	3	638831	-111	$2s^2 2p^3 (^2{ m D}^\circ) 4d$	4d′ ¹F°	3	734195 + x	
		$\begin{vmatrix} 2\\1 \end{vmatrix}$	638942 638977	-35	$2s^2 \ 2p^3 (^2{\rm D}^\circ) \ 5s$	5s' 3D°	3, 2, 1	753352	
$2s^2~2p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ¹P°	1	641468 + x		$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) 4d$	4d'' ¹D°	2	756045 + x	
$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ³P°	2	643029	-275	$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) 4d$	4d'' 3D°	3, 2, 1	756367	
		$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	643304 (643396)	(-92)	$2s^2 2p^3(^2\mathrm{P}^\circ)4d$	4d'' ¹F°	3	757261 + x	
$2s^2~2p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹D°	2	643912 + x		$2s^2 2p^3(^2D^\circ)5d$	5d′ ³D°	3, 2, 1	772415	
$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3 <i>d′</i> 3S°	1	644140		,				
$2s^22p^3({}^4{ m S}^\circ)4s$	4s 3S°	1	644792		Na v (4S ₁ 14)	Limit		797741	
$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	646711 + x		2s 2p4(4P)3d	3d''' ³D	3, 2, 1	813538	

February 1947.

Na IV OBSERVED TERMS*

Config. 1s²+			O	bserved Ter	rms		
2s ² 2p ⁴	$\left\{egin{array}{c} 2p^4 \ ^1\mathrm{S} \end{array} ight.$	$2p^4$ $^3\mathrm{P}$	$2p^{4}$ ¹ D				
$2s$ $2p^5$	{	${2p^5\ ^3{ m P}^\circ} \ {2p^5\ ^1{ m P}^\circ}$					
		ns $(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 2p^3 ({}^4\mathrm{S}^\circ) nx$	3, 4s 3S°					3, 4 <i>d</i> ³D°	
$2s^22p^3(^2\mathrm{D}^\circ)nx'$	{		3-5s′ ³ D° 3, 4s′ ¹ D°	3, 4d′ 3S°	3, 4d′ ³P° 3, 4d′ ¹P°	$^{3-5d'}_{3, 4d'}$ $^{^{3}D^{\circ}}_{1D^{\circ}}$	3, 4d′ ¹F°
$2s^2 2p^3 (^2\mathrm{P}^\circ) nx^{\prime\prime}$	{	3, 4s'' ³ P° 3, 4s'' ¹ P°			$3d^{\prime\prime}$ $^3\mathrm{P}^\circ$ $3d^{\prime\prime}$ $^1\mathrm{P}^\circ$	$^{3, 4d^{\prime\prime} ^{3}\mathrm{D}^{\circ}}_{3, 4d^{\prime\prime} ^{1}\mathrm{D}^{\circ}}$	3, 4 <i>d''</i> ¹F°
2s 2p4(4P)nx'''						3d′′′ ³D	

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

Na v

(N I sequence; 7 electrons)

Z = 11

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

$$2p^3 \, {}^4S_{11/2}^{\circ} \, 1118170 \, \, \mathrm{cm}^{-1}$$

I. P. 138.60 volts

Söderqvist has found 45 terms in this spectrum and classified 203 lines in the interval between 100 A and 514 A. No intersystem combinations have been observed. The series are short and the uncertainty, x, may be considerable.

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 75 (1934). (T) (C L) (G D)
 J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)

Na v

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
9 49	0-2 03	2p³ 4S°	11/	0						20,61	
$egin{array}{ccc} 2p & ^4\mathrm{S}_2 \ & 2p & ^2\mathrm{D}_3 \end{array}$	$egin{array}{c} 2s^2 \ 2p^3 \ 2s^2 \ 2p^3 \end{array}$	$egin{array}{c cccc} 2p^3 & ^2\mathrm{S}^3 \\ 2p^3 & ^2\mathrm{D}^{\circ} \end{array}$	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c c} 0 \\ 47570+x \end{array}$	25	38' 4D	2s 2p³(3D°)3s	381V 4D°	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases}$	878288	
${}^{2}\mathrm{D}_{2}$ ${}^{2}p_{1}$ ${}^{2}p_{2}$	$2s^2 \ 2p^3$	2p³ ²P°	$1\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	$\begin{array}{ c c c }\hline 48 & ^4P_1 \\ & ^4P_2 \\ & ^4P_3 \\ \hline \end{array}$	$2s^2 \ 2p^2(^3{ m P}) \ 4s$	4s 4P	$egin{array}{c} langle rac{1/2}{2!} \ 2rac{1/2}{2} \end{array}$	892244 892885 893822	641 937
$2p'~^4 ext{P}_3\ ^4 ext{P}_2\ ^4 ext{P}_1$	2s 2p4	2p4 4P	$egin{array}{c} 2^{1\!/\!2} \ 1^{1\!/\!2} \ \frac{1^{1\!/\!2}}{1^{1\!/\!2}} \end{array}$	215860 216896 217440	-1036 -544	$\overline{3s'}$ ² D	2s 2p³(³D°)3s	3 ₈ 1v 2D°	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$		
$2p'\ ^2{ m D}_3\ ^2{ m D}_2$	2s 2p4	$2p^{4-2}{ m D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	$ \begin{array}{c c} 297116+x \\ 297150+x \end{array} $	-34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2s^2 2p^2(^3P) 4s$	4s ² P	1½	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1203
$2p'$ $^2\mathrm{S}_1$	2s 2p4	2p4 2S	1/2	349987 + x		3d′ 4D	2s 2p³(5S°)3d	3 <i>d'''</i> 4D°	{ to	908717	
$rac{2p'}{^2 ext{P}_2}$	2s 2p4	2p4 2P	1½ ½ ½	371967 + x 373167 + x	-1200	_			3½	1	
$2p^{\prime\prime}{}^{_{2}}\!\mathrm{P}_{_{1}}^{_{2}}$	$2p^5$	$2p^5$ $^2\mathrm{P}^\circ$	1½ ½ ½	567583 + x 569211 + x	-1628	38 ⁴P	2s 2p ³ (³ P°)3s	38 ^v ⁴P°	$\begin{cases} to \\ 2\frac{1}{2} \end{cases}$	919070	
${}^{4}P_{1}$	2s ² 2p ² (³ P)3s	38 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	671136 671790	654	48 2D	$2s^22p^2(^1{ m D})4s$	4s′ 2D	$\left\{ egin{array}{ll} 2lac{1}{2} \ 1rac{1}{2} \end{array} ight.$	928053+x	
$^4\mathrm{P}_3$	0.00.000			672757	967	$4d$ $^2\mathrm{P}_2$	$2s^2\ 2p^2(^3\mathrm{P})4d$	4d ² P	1½ ½ ½	937669 + x	
$egin{array}{ccc} 3s & {}^2\mathrm{P}_1 \ {}^2\mathrm{P}_2 \end{array}$	$2s^2 2p^2(^3\mathrm{P})3s$	3s ² P	1½ 1½	$\begin{bmatrix} 682470 + x \\ 683673 + x \end{bmatrix}$	1203	(1, 45)	$2s^22p^2(^3{ m P})4d$	$4d$ $^4\mathrm{D}$	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$		
38 2D	$2s^2 \ 2p^2(^1{ m D}) \ 3s$	38′ 2D	$\left\{egin{array}{c} 2lac{1}{2} \ 1lac{1}{2} \end{array} ight.$			4d $^{4}D_{23}$			1 1/2	939055 939858	803
$\overline{\overline{3s}}$ ${}^{2}S_{1}$	$2s^2\ 2p^2({}^1\!\mathrm{S})3s$	38" 2S	1/2	748640+x		$\begin{array}{c c} 4d & {}^2\mathrm{F}_3 \\ {}^2\mathrm{F}_4 \end{array}$	$2s^2 \ 2p^2(^3{ m P}) 4d$	4d ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	940380 + x 941392 + x	1012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2s^2\ 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² P	1½ ½ ½	792337 + x $792849 + x$	-512	4d 4P ₃ 4P ₂	$oxed{2s^2 2p^2(^3{ m P})} 4d$	4d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$	940716 940929	-213
$3d$ $^4\mathrm{D}_{23}$ $^4\mathrm{D}_1$	$2s^22p^2(^3{ m P})3d$	3d 4D	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right.$	} 797060 797270	-210	$egin{array}{cccc} 4d & {}^2{ m D}_2 \ {}^2{ m D}_3 \end{array}$	$2s^22p^2(^3{ m P})4d$	$4d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{ c c c c c }\hline 944022+x \\ 944334+x \\ \end{array}$	312
$3d \ ^{2}F_{3} \ ^{2}F_{4}$	2s² 2p²(³P)3d	$3d$ 2 F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	$797288+x \ 798535+x$	1247	$\overline{3p'}$ ${}^2\mathrm{F}_4$ ${}^2\mathrm{F}_3$	$2s~2p^3(^3\mathrm{D}^\circ)3p$	$3p^{1V} {}^{2}\mathrm{F}$	$3\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-522
3d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	$2s^2 2p^2(^3\mathrm{P}) 3d$.3d 4P	2½ 1½ ½	798174 798620 798862	$ \begin{array}{r} -446 \\ -242 \end{array} $	$\overline{4d}$ $^2{ m F}$	$2s^22p^2(^1{ m D})4d$	4d′ ²F	$\left\{ egin{array}{l} 3 lac{1}{2} \ 2 lac{1}{2} \end{array} ight.$	} 973350+x	
38′ ⁴ S ₂	$2s \ 2p^3(^5{ m S}^\circ)3s$	38′′′ 4S°	1½	801950		$\overline{4d}$ ² D	$2s^22p^2(^1\mathrm{D})4d$	4d′ ²D	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	$\left.\right\}$ 974048+ x	
$egin{array}{ccc} 3d & ^2\mathrm{D}_2 \ ^2\mathrm{D}_3 \end{array}$	$2s^2 2p^2(^3\mathrm{P})3d$	3d ² D	1½ 2½	$808546 + x \\ 808920 + x$	374	$\overline{3d'}$ ${}^4 ext{P}_3$ ${}^4 ext{P}_2$ ${}^4 ext{P}_1$	2s 2p³(³D°)3d	3d ^{IV} ⁴ P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1004404 1004626 1004794	$-222 \\ -168$
$\overline{3d}$ ${}^{2}\mathbf{F_{4}}$ ${}^{2}\mathbf{F_{3}}$	$2s^22p^2(^1{ m D})3d$	3d′ ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	$\begin{array}{c} 828509 + x \\ 828692 + x \end{array}$	-183	<i>3d′</i> ⁴D	$2s~2p^3(^3{ m D}^\circ)3d$	3d ^{IV} 4D°	$\begin{cases} \frac{1}{2} \\ \text{to} \end{cases}$	1008214	
$egin{array}{ccc} ar{3}ar{d} & ^2\mathrm{D}_2\ ^2\mathrm{D}_3 \end{array}$	$2s^22p^2(^1{ m D})3d$	3d′ ² D	1½ 2½	$832075 + x \\ 832228 + x$	153	$\overline{3d'}$ ${}^4\mathrm{S}_2$	2s 2p³(³D°)3d	3dIV 4S°	$1\frac{1}{2}$	1008941	
$\overline{3d}$ ${}^2\mathrm{P_1}$ ${}^2\mathrm{P_2}$	$2s^22p^2(^1{ m D})3d$	3d′ ²P	1½	$837431 + x \\ 837723 + x$	292	$\overline{3d'}$ ${}^2\mathbf{F_4}$ ${}^2\mathbf{F_3}$	2s 2p³(³D°)3d	3d1V 2F°	$3\frac{1}{2}$ $2\frac{1}{2}$	1010088 + x $1010565 + x$	-47 7
$\overline{3d}$ $^2\mathrm{S}_1$	$2s^22p^2(^1{ m D})3d$	3d' ² S	1/2	842067+x		$\overline{5d}$ ² F	$2s^22p^2(^1\mathrm{D})5d$	5d′ ² F	$\left\{ egin{array}{c} 2_{72}^{72} \ 3_{1/2}^{1/2} \ 2_{1/2}^{1/2} \end{array} ight.$	$\begin{array}{c} 1010303+x \\ 1038208+x \end{array}$	
3 p ๋ ⁴P	28 2p³(5S°)3p	3 <i>p'''</i> 4P	$\left\{\begin{array}{c} \frac{1\!\!/2}{1\!\!/2}\\ \text{to}\\ 21\!\!/2 \end{array}\right $	847539		$\overline{5d}$ ² D	$2s^22p^2(^1\mathrm{D})5d$	5d′ ² D	$\left\{ egin{array}{c} 2lac{1}{2} \ 2lac{1}{2} \end{array} ight.$	$\left.\begin{array}{c} 1038845+x\end{array}\right $	
$\overline{\overline{3}}\overline{d}$ ² D	$2s^2\ 2p^2(^1{ m S})3d$	3d'' ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$				Na vi (³ P ₀)	Limit		1118170	

January 1947.

Config. 1s ² +				Observed Terms	3			
$2s^2 \ 2p^3$	$\begin{cases} 2p^3 & ^4\mathrm{S}^{\circ} \end{cases}$	$2p^3\ ^2\mathrm{P}^{\circ}$	$2p^3$ $^2\mathrm{D}^\circ$					
2s 2p4	{21 2S	$rac{2p^4}{2p^4} rac{4 ext{P}}{2 ext{P}}$	$2p^{4-2}\mathrm{D}$					
$2p^5$		$2p^5$ $^2\mathrm{P}^\circ$						
		ns $(n \ge 3)$		$np \ (n \ge 3)$		nd	$(n \ge 3)$	
$2s^2 \ 2p^2(^3\mathrm{P})nx$	{	3, 4s ⁴ P 3, 4s ² P		-		3, 4d ⁴ P 3, 4d ² P	3, 4 <i>d</i> ⁴ D 3, 4 <i>d</i> ² D	3, 4d ² F
$2s^2 \ 2p^2(^1\mathrm{D})nx'$			3, 4s′ ² D		3d′ 2S	3d′ ² P	3-5d' ² D	3-5d' ² F
$2s^2 \ 2p^2 ({}^1\!\mathrm{S}) nx''$	3s'' 2S						3d'' ² D	
2s 2p ³ (5S°)nx'''	3s''' 4S°			3p''' 4P			3d'''4D°	
$2s 2p^3(^3\mathrm{D}^\circ)nx^{\mathrm{IV}}$	{		$3_8^{\mathrm{IV}}{}^4\mathrm{D}^{\circ}$ $3_8^{\mathrm{IV}}{}^2\mathrm{D}^{\circ}$	3p1v 2F	3d1v 4S	3div 4P°	3d1v 4D°	3d ^{IV} ² F°
$2s \ 2p^3(^3\mathrm{P}^\circ)nx^\mathrm{V}$		3s ^v 4P°						

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

Na vi

(C I sequence; 6 electrons)

Z = 11

Ground state 1s² 2s² 2p² ³P₀

 $2p^2$ ³P₀ 1390558 cm⁻¹

I. P. 172.36 volts

The analysis is by Söderqvist, who has found 63 terms and classified 134 lines in the range between 80 A and 638 A. He determines the relative values of terms of different multiplicity from the series limits, although he lists a few observed singlet-triplet combinations. His term $2p^4$ ¹D has been corrected to agree with the two observed combinations.

Söderqvist gives the quintet term $2p^3$ $^5S_2^{\circ}$ at 103187 cm⁻¹ above the ground state zero. From isoelectronic sequence data Robinson estimates this value as 103508 cm⁻¹. The later value has been used in the table and all quintet terms adjusted accordingly. The uncertainty, x, may be a few hundred cm⁻¹.

REFERENCES

- J. Söderqvist, Ark, Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)
- H. A. Robinson, unpublished material (March 1948). (T)

Na vi

Autho	or Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2p ³ F ³ F ³ F	1	$2p^2$ $^3\mathrm{P}$	0 1 2	0 698 1858	698 1160	3p′ ³D	2s 2p ² (² D)3p 2s 2p ² (⁴ P)3d	3p′ ³D°	1, 2, 3	1040223	
$2p$ ^{1}L		$igg _{2p^2$ ¹ D	2	35358		3d′ ⁵ D ₂₃	20 2p (1)6u	oa D	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	1041771+x	
2p 1S	$\begin{vmatrix} 2s^2 & 2p^2 \end{vmatrix}$	$2p^2$ 1S	0	74274		04 223			\[\(\) 3 \\ 4 \\ \]	10111111	
2p′ 5S	$2 2s 2p^3$	2p3 5S	2	103508+x		3d′ 5P ₃	2s 2p2(4P)3d	3d ⁵ P	3	1045793 + x	-427
2p' 3I 3I 3I		$2p^3$ $^3\mathrm{D}$	$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$	204131 204222 204260	-91 -38	$\begin{array}{c c} {}^{5}\mathrm{P}_{2} \\ {}^{5}\mathrm{P}_{1} \end{array}$	2s 2p ² (4P)3d	$3d$ $^3\mathrm{P}$	2 1 2	$ \begin{array}{ c c c c c c } \hline 1046220 + x \\ 1046548 + x \\ \hline 1047408 \end{array} $	-328
$2p^{\prime}$ $^3\mathrm{F}$		$\begin{vmatrix} 2p^3 & ^3P \end{vmatrix}$	$\begin{vmatrix} 2 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix}$	241341		³ P ₁			1 0	1048104	-696
$2p'$ $^1\mathrm{I}$		$\begin{vmatrix} 1 \\ 2p^3 & {}^1D \end{vmatrix}$		312175		$3d'$ 3F_2	2s 2p ² (4P)3d	$3d$ 3 F	2	1053885	612
$2p^{\prime}$ 3S		$2p^3$ $^3\mathrm{S}^6$	1	320589		³ F ₃ ³ F ₄			3 4	1054497 1055260	763
2p′ ¹F	$2s 2p^3$	$2p^{3}$ ¹ P	1	350179		3d' 3D ₁	2s 2p ² (4P)3d	3 <i>d</i> ³ D	1	1067760	211
2p'' 3F	$2p^4$	$2p^4$ ³ P	2	477277	-1320	$^{3}D_{2}$ $^{3}D_{3}$			3	1067971 1068258	287
3F 3F	0		0	478597 479156	-559	$\overline{3p}'$ ${}^{1}\mathrm{F}_{3}$	$2s 2p^2(^2\mathrm{D})3p$	3p′ ¹F°	3	1071896	i.
2p'' ¹I	$\mathbf{p}_2 \mid 2p^4$	$2p^4$ ¹ D	2	539310		$\overline{3p}'$ ${}^{1}\mathrm{D}_{2}$	$2s 2p^2(^2\mathrm{D})3p$	3p′ ¹D°	2	1077752	
	$2s^2 2p(^2P^\circ)3s$	3s 3P	_	008/004			$2s^2 2p(^2\mathrm{P}^\circ)4s$	4s 3P°	0		
3s ³ F	2		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	807324 808795	1471	4s ³ P ₂			$\frac{1}{2}$	1090756	
3s ¹F	$2s^2 2p(^2\mathrm{P}^\circ)3s$	3s 1P	1	817598		3d′ ³F	$2s 2p^2(^2\mathrm{D})3d$	3d′ ³F	2, 3, 4	1125323	
3 <i>p</i> ³F	$\begin{vmatrix} 2s^2 & 2p(^2P^\circ) & 3p \\ 2 & \end{vmatrix}$	3p 3P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	872577 873287	710	$4d$ ${}^3\mathrm{F}_2$	$2s^2 2p(^2\mathbf{P}^\circ)4d$	4d ³F°	2 3 4	1128693	
3 <i>d</i> ³ F	$\frac{1}{2} \left[2s^2 2p(^2\mathrm{P}^\circ) 3d \right]$	3d 3F		919476		$\overline{3d}'$ ³ P	$2s 2p^2(^2D)3d$	3d′ ³P	0, 1, 2	1130631	
			$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$			4d ¹D2	$2s^2 2p(^2\mathrm{P}^\circ)4d$	4d ¹D°	2	1131032	
3 <i>d</i> ¹ I	$0_2 \left 2s^2 2p(^2\mathrm{P}^\circ) 3d \right $	3d ¹ D	° 2	920706		4d ³ D ₁	2s ² 2p(² P°)4d	4d ³D°	1	1133491	380
3s′ ⁵ F ⁵ F	2	3s ⁵ P	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	923059+x 923765+x 924708+x	706 943	$\overline{3}$ $\overline{0}$ $\overline{3}$ $\overline{0}$ $\overline{3}$ $\overline{0}$ $\overline{3}$ $\overline{0}$	2s 2p ² (² D)3d	3d′ ³D	$\begin{bmatrix} 2 \\ 3 \\ 1, 2, 3 \end{bmatrix}$	1133871 1134746 1134094	875
3d ³ I		24 31		929774		3 <i>a</i> -D	$\begin{vmatrix} 2s^{2} 2p^{-(^{2}D)} 3d \\ 2s^{2} 2p(^{2}P^{\circ}) 4d \end{vmatrix}$			1104094	
3I 3I)2		$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	929999 930510	225 511	$4d$ $^3\mathrm{P}_2$	25-27(-1)4a	40 1	1 2	1136378	i
3d ³ F	$2s^2 2p(^2\mathbf{P}^{\circ})3d$	3d 3P	$\begin{array}{c c} 2 & 1 \end{array}$	933915 934463	-548	4d ¹ F ₃	2s ² 2p(² P°)4d	4d ¹F°	3	1140721	
3 F	0		0	934745	-282	$\overline{3d}'$ ${}^3\mathrm{S}_1$	$2s 2p^2(^2\mathrm{D})3d$	3d′ ³S	1	1144276	
3 <i>d</i> ¹F	$2s^2 2p(^2P^\circ)3d$	3d ¹ F	3	945309		$\overline{3d}'$ ${}^{1}\mathrm{F}_{3}$	$2s 2p^2(^2\mathrm{D})3d$	3d′ ¹F	3	1147708	
3d ¹ F	$2s^2 2p(^2P^\circ)3d$	3d ¹ P	1	946392		$\overline{3d}'$ $^{1}\mathrm{D}_{2}$	$2s 2p^2(^2\mathrm{D})3d$	3d′ ¹D	2	1147735	
38′ 3F	$2s \ 2p^2(^4P)3s$	38 ³P	0	949778	589	3d' ¹P₁	$2s 2p^2(^2\mathrm{D})3d$	3d′ ¹P	1	1151140	
3 H 3 H	2		$\begin{array}{ c c }\hline 1\\2 \end{array}$	95036 7 951389	1022		2s 2p2(4P)4s	48 ⁵ P	1		
3p′ 3S	$2s \ 2p^2(^4P)3p$	$3p^{-3}S^{\circ}$	1	970835		4s′ ⁵ P ₃			3	1205485+x	
$3p^\prime$ $^3\mathrm{I}$	$\begin{vmatrix} 2s & 2p^2(^4P) & 3p \\ 2s & 3p^2 & 3p \end{vmatrix}$	$3p$ 3 D	$ \begin{array}{c c} \circ & 1 \\ 2 \\ 3 \end{array} $	996011 996734	723	$4s'$ $^3\mathrm{P}_2$	2s 2p ² (4P)4s	4s ³P	0 1 2	1214191	
	$2s \ 2p^2(^4P)3p$	$\begin{vmatrix} 3p & ^3P \end{vmatrix}$					$2s^2 2p(^2P^\circ) 5d$	5d ³D°	1		
3p′ ³ H	21		1 2	1005068 1005713	645	$5d$ $^3\mathrm{D}_3$	- P(1)00		3	1228205	
38' ³I	$2s \ 2p^2(^2\mathrm{D})3s$	38′ ³D	1, 2, 3	1016274			2s ² 2p(² P°)5d	5d ³P°	0		
3s′ ¹I	$2s \ 2p^2(^2\mathrm{D}) 3s$	38' 1D	2	1033221		5d ³ P ₂			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1228882	

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
5d ¹ F ₃	2s² 2p(2P°)5d	5d ¹F°	3	1230972		$\overline{4d}'$ ${}^3\mathrm{F}$	$2s \ 2p^2(^2\mathrm{D})4d$	4d′ ³F	2, 3, 4	1334585	
	$2s$ $2p^2(^4\mathrm{P})4d$	4d ⁵ P	$\begin{array}{ c c }\hline 1\\ 2\end{array}$			$\overline{4d}'$ ³ P	$2s \ 2p^2(^2D)4d$	4d′ ³P	0, 1, 2	1335519	
4d′ ⁵ P ₃			3	1250152+x		$\overline{4d}'$ $^{3}\mathrm{D}$	$2s \ 2p^2(^2\mathrm{D})4d$	$4d'$ $^3\mathrm{D}$	1, 2, 3	1337017	
$4d'$ 3F_2 3F_3 3F_4	2s 2p ² (4P)4d	4d ³F	2 3 4	1253369 1253947 1254750	578 803	5d′ ⁵ P ₃	2s 2p ² (4P)5d	5d ⁵ P	1 2 3	1343510+x	
4d′ ³D	2s 2p2(4P)4d	4d ³D	1, 2, 3	1258613			Na vII (2P.°)	Limit		1390558	
3p'' ³P	$1s^2 \ 2p^3(^4{ m S}^\circ)3p$	3p1v 3P	0, 1, 2	1265583		$\overline{5d}'$ ${}^3\mathrm{F}$	$2s \ 2p^2(^2{\rm D})5d$	5d′ ³F	2, 3, 4	1429862	
6d ¹ F ₃	2s ² 2p(² P°)6d	6d ¹F°	3	1279991							

March 1948.

Na vi Observed Terms*

Config. 1s ² +						Obs	served Te	rms				
$2s^2 \ 2p^2$	$\left\{_{2p^2}\right{ ext{IS}}$	$2p^2\ ^3\mathrm{P}$	$2p^2$ ¹ D									
28 2p³	$\begin{cases} 2p^3 {}^5S^{\circ} \\ 2p^3 {}^3S^{\circ} \end{cases}$	${2p^3\ ^3{ m P}^\circ} \ {2p^3\ ^1{ m P}^\circ}$	$2p^{3}\ ^{3}\mathrm{D}^{\circ} \ 2p^{3}\ ^{1}\mathrm{D}^{\circ}$									
2p4	{	2p4 3P	2p4 ¹D									
		ns $(n \ge 3)$				np ($n \ge 3$)			n	$d (n \ge 3)$	
$2s^2 2p(^2\mathrm{P}^\circ) nx$	{	3, 4s ³ P° 3s ¹ P°			3p	³P				3-5d ³ P° 3d ¹ P°	3-5 <i>d</i> ³ D° 3, 4 <i>d</i> ¹ D°	3, 4d ³ F° 3–6d ¹ F°
2s 2p ² (4P)nx	{	3, 48 ⁵ P 3, 48 ³ P		3p 3S°	3p	³P°	3p 3D°			$^{3-5d}$ $^{5}\mathrm{P}$ ^{3}d $^{3}\mathrm{P}$	$^{3d}_{3,\ 4d}$ $^{5}{\rm D}$	3, 4d ³F
$2s \ 2p^2(^2\mathrm{D})nx'$	{		3s′ ³D 3s′ ¹D				${3p'\ ^3\mathrm{D}^\circ} \ {3p'\ ^1\mathrm{D}^\circ}$	3p′ ¹F°	3d′ 3S	$^{3,\;4d'\;^{3}P}_{\;3d'\;^{1}P}$	$^{3,\;4d'\;^{3}{ m D}}_{\;3d'\;^{1}{ m D}}$	$^{3-5d'}_{3d'}^{_{1}}\!\mathrm{F}$
$2p^3({}^4\mathrm{S}^\circ)nx^{\mathrm{IV}}$					3p1	v 3P						

^{*}For predicted terms in the spectra of the C1 isoelectronic sequence, see Introduction.

Na VII

(B I sequence; 5 electrons)

Z = 11

Ground state $1s^2 2s^2 2p$ $^2P_{\frac{1}{2}}^{\circ}$

 $2p \, {}^{2}\mathrm{P}_{1/2}^{\circ} \, 1681679 \, \mathrm{cm}^{-1}$

I. P. 208.444 volts

All of the terms are taken from Söderqvist's later publication. The Grotrian diagram in the earlier paper should be extended to include the more complete analysis of 1944. He has classified 158 lines in the region between 62 A and 491 A.

The absolute values of the doublet terms are well determined. Those of the quartets are derived from the nd 4D $^\circ$ (n=3, 4, 5) series; and the relative uncertainty x, may be a few hundred cm $^{-1}$. No intersystem combinations have been observed.

Na VII—Continued

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 93 (1934). (T) (C L) (G D)
 J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11 p. 9 (1944). (I P) (T) (C L)

Na vII

Na VII

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$rac{2p}{2p} rac{^2 ext{P}_1}{^2 ext{P}_2}$	$2s^2(^1\mathrm{S})2p$	2p 2P°	1½ 1½	0 2139	2139	$\overline{\overline{3p'}}$ ${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s 2p(1P°)3p	3p′ ² D	1½ 2½	1251674 1252014	340
$2p'~^{4} ext{P}_{1}\ ^{4} ext{P}_{2}\ ^{4} ext{P}_{3}$	2s 2p ²	$2p^2$ $^4\mathrm{P}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	115187 + x $115920 + x$ $116987 + x$	733 1067	$\overline{3p'}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	$2s 2p(^{1}P^{\circ})3p$	3p′ ²P	1½ 1½	1253353 1253779	426
$2p'\ ^{2}{ m D}_{3}\ ^{2}{ m D}_{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^2$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	205412 205448	-36	$\overline{3p'}$ ² S ₁	$oxed{ egin{array}{cccccccccccccccccccccccccccccccccccc$	3p' 2S 3s'' 4P	½ ½	1258878	
$2p^{\prime}$ $^2\mathrm{S}_1$	28 2p2	$2p^2$ 2S	1/2	264400		3s" ⁴ P ₂ ⁴ P ₃			$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{ c c c c c }\hline 1290221 + x \\ 1291755 + x \\ \hline \end{array}$	1534
${rac{2p'}{^2}}{rac{^2P_1}{^2P_2}}$	$2s 2p^2$	$2p^2$ $^2\mathrm{P}$	$1\frac{1}{2}$	283869 285189	1320	3d' ²F	2s 2p(1P°)3d	3d′ ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 1292333	
$2p^{\prime\prime}$ $^4\mathrm{S}_2$	$2p^3$	$2p^3$ $^4\mathrm{S}^\circ$	1½	367481 + x		4s 2S1	2s ² (¹ S)4s	4s 2S	1/2	1294914	
$2p^{\prime\prime}^2\mathrm{D_3}\ ^2\mathrm{D_2}$	$2p^3$	$2p^3$ $^2\mathrm{D}^\circ$	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	412311 412395	-84	$\overline{3d'}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	2s 2p(1P°)3d	3 <i>d′</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	1303445 1303643	198
$^2p^{\prime\prime}^2\mathrm{P_1}\ ^2\mathrm{P_2}$	$2p^3$	$2p^3$ $^2\mathrm{P}^\circ$	$1\frac{1}{2}$ $1\frac{1}{2}$	465017 465111	94	$\overline{3d'}$ ² P	2s 2p(1P°)3d	3 <i>d'</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	306468	
3s ² S ₁	$2s^{2}({}^{1}\mathrm{S})3s$	3s ² S	1/2	951347		$\overline{3s^{\prime\prime}}$ $^{2}D_{2}$ $^{2}D_{3}$	$2p^2(^1\mathrm{D})3s$	3s''' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1331137 1331974	837
$3p$ 2P_2	$2s^2(^1\mathrm{S})3p$	3 <i>p</i> ² P°	1½ 1½	1008418		$egin{array}{cccc} 4d & {}^2{ m D}_2 \ {}^2{ m D}_3 \end{array}$	$2s^2(^1\mathrm{S})4d$	$oxed{4d^2 \mathrm{D}}$	$\begin{array}{ c c c }\hline & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ & \end{array}$	1335809 1335889	80
$^{ m 2}_{ m 2D_{3}}^{ m 2D_{2}}$	$2s^2(^1\mathrm{S})3d$	$3d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1060580 1060699	119	D ₃	$2p^2(^3\mathrm{P})3p$	3p'' 4D°		1999000	
${3s'}\ {^4P_1}\ {^4P_2}\ {^4P_3}$	2s 2p(3P°)3s	38 4P°	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	1077458+x $1078190+x$ $1079520+x$	732 1330	3p'' 4D ₄			$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	1338659+x	
$3s' \ ^{2}P_{1} \ ^{2}P_{2}$	2s 2p(3P°)3s	38 ² P°	1½ 1½	1103222 1104620	1398	3p'' 4P ₃	$2p^2(^3\mathrm{P})3p$	3p'' 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1345036+x	
$3p' \ ^{2}P_{2}^{1}$	2s 2p(3P°)3p	3p ² P	1½	1126810 1127431	621	$3p^{\prime\prime} {}^{2}\mathrm{D}$	$2p^2(^3\mathrm{P})3p$	3 <i>p''</i> ² D°	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	348721	
$3p'\ ^2{ m D}_2 \ ^2{ m D}_3$	2s 2p(3P°)3p	$3p$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1154779 1156180	1401	3p'' 4S ₂	$2p^2(^3\mathrm{P})3p$	3p'' 4S°	1½	1363160+x	
$3p'$ ${}^2\mathrm{S}_1$	2s 2p(3P°)3p	$3p$ $^2\mathrm{S}$	1/2	1172339		$\overline{3p^{\prime\prime}}{}^{2}\mathrm{F}_{3}{}^{2}\mathrm{F}_{4}$	$2p^2(^1\mathrm{D})3p$	$3p^{\prime\prime\prime}{}^{2}\mathrm{F}^{\circ}$	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1377822 1378295	473
$3d'$ $^4\mathrm{D}_2$	2s 2p(3P°)3d	3 <i>d</i> ⁴ D°	1½ 1½	1185931 + x	25 9	3d'' ² F ₃ ² F ₄	$2p^2(^3\mathrm{P})3d$	3 <i>d''</i> ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1388500? 1388969?	46 9
$^4\mathrm{D}_3$ $^4\mathrm{D}_4$			$egin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	1186190 + x $1186666 + x$	476	3 <i>d''</i> ² D	$2p^2(^3\mathrm{P})3d$	$3d^{\prime\prime}$ ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 1390448?	
$3d'$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s 2p(3P°)3d	3d ²D°	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1186628 1187885	1257	$\overline{3p^{\prime\prime}}$ ² D	$2p^2(^1\mathrm{D})3p$	3 <i>p</i> ′′′²D°	$ \left\{ \begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 1392764	
$3d'$ $^{4}P_{3}$ $^{4}P_{2}$ $^{4}P_{1}$	2s 2p(3P°)3d	3d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1192538 + x 1193059 + x 1193402 + x	-521 - 3 43	$3d^{\prime\prime} {}^{4}\mathrm{P}_{3} \ {}^{4}\mathrm{P}_{2} \ {}^{4}\mathrm{P}_{1}$	$2p^2(^3\mathrm{P})3d$	3d′′ ⁴P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	$ \begin{array}{c} 1399238 + x \\ 1399771 + x \\ 1400059 + x \end{array} $	-533 -288
38' ²₽	2s 2p(1P°)3s	3s′ ²P°	{ ½ 1½ 1½	} 1198287		$\overline{3d''}$ ² D	$2p^2(^1\mathrm{D})3d$	$3d^{\prime\prime\prime}{}^{2}{ m D}$	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 1415636	
$3d'\ ^2{ m F_3}\ ^2{ m F_4}$	2s 2p(3P°)3d	3d ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1209908 1211236	1328		2s 2p(3P°)4s	4s 4P°		,	
3d′ ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ² P°	1½ ½	1217189 1217955	-766	4s' 4P3			$ \begin{array}{c c} 1/2 \\ 11/2 \\ 21/2 \end{array} $	1423050+x	

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
3d'' ² F ₃ ² F ₄	$2p^2(^1\mathrm{D})3d$	3d′′′²F	$2\frac{1}{2}$ $3\frac{1}{2}$	1428717 1428798	81	4 p′ 2D	2s 2p(1P°)4p	4 p' 2D	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 1561885	
$\overline{3d^{\prime\prime}}\ ^{2}\mathrm{P}_{1}\ ^{2}\mathrm{P}_{2}$	$2p^2(^1\mathrm{D})3d$	3d'''²P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$1432135 \\ 1432606$	471	$7d$ $^{2}\mathrm{D}$	$2s^2(^1\mathrm{S})7d$	$7d$ $^2\mathrm{D}$	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 1570078	
4s' ² P ₂	2s 2p(3P°)4s	4s ² P°	1½ 1½	1432595		$\overline{4d'}$ ² F	2s 2p(¹P°)4d	4d′ ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 1577813 ?	
$^4p'\ ^2\mathrm{P_1}\ ^2\mathrm{P_2}$	2s 2p(3P°)4p	4p 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	$\begin{array}{c} 1442711 \\ 1443165 \end{array}$	454	5p′ ² P	2s 2p(3P°)5p	5p 2P	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 1578354	
$4p'\ ^2{ m D}_2\ ^2{ m D}_3$	2s 2p(3P°)4p	4p 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	145 20 95 1453349	1254	5p′ ² D	2s 2p(3P°)5p	$5p$ 2 D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	3 1583742	
$5d$ ${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	$2s^2(^1\mathrm{S})5d$	$5d$ $^2\mathrm{D}$	$\begin{array}{ c c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1461518 1461588	70	5d' 4D	2s 2p(3P°)5d	5d ⁴ D°	$ \begin{cases} \frac{1/2}{to} \\ \frac{31/2}{3} \end{cases} $		
$4d'$ $^{4}\mathrm{D}_{2}$ $^{4}\mathrm{D}_{3}$ $^{4}\mathrm{D}_{4}$	2s 2p(3P°)4d	4d 4D°	1½ 1½ 2½ 3½	$\begin{array}{c} 1462587 + x \\ 1462631 + x \\ 1463462 + x \end{array}$	44 831	5d′ 4P	2s 2p(3P°)5d	5d 4P°	$ \begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases} $		
$4d'$ $^2\mathrm{D}_3$	2s 2p(3P°)4d	4d ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1464051		5d′ ² F ₃ ² F ₄	2s 2p(3P°)5d	5d ² F°	2½ 3½	1592815 1593915	11
4d' 4P ₃	2s 2p(3P°)4d	4d ⁴ P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	1465059 + x		8 <i>d</i> ² D	$2s^2(^1\mathrm{S})8d$	8 <i>d</i> ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	} 1596400	
$4d'\ ^2{ m F_3}\ ^2{ m F_4}$	2s 2p(3P°)4d	4 <i>d</i> ² F°	$ \begin{array}{c c} & 72 \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \end{array} $	1471559 1472727	1168	4 p'' 4D	$2p^2(^3\mathrm{P})4p$	4p'' 4D°	$ \begin{cases} \frac{1/2}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases} $		
$^{2}P_{1}^{2}$	2s 2p(3P°)4d	4d ² P°	1½ ½ ½	1 473809 1 47 4526	-717	6d′ 4P 6d′ 4D		$\begin{bmatrix} 6d & ^4\mathrm{P}^{\circ} \\ 6d & ^4\mathrm{D}^{\circ} \end{bmatrix}$	$ \begin{cases} \frac{1/2}{\text{to}} \\ 3\frac{1}{2} \end{cases} $		
6 <i>d</i> ² D	$2s^2(^1\mathrm{S})6d$	6 <i>d</i> ² D	$\left\{ egin{array}{ll} 1\frac{1}{2} \ 2\frac{1}{2} \end{array} ight.$	} 1529463		4d'' ⁴ P ₃ ⁴ P ₂	$2p^2(^3\mathrm{P})4d$	4d'' 4P	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	$\begin{vmatrix} 1668514 + x \\ 1668855 + x \end{vmatrix}$	-341
48' 2P	2s 2p(1P°)4s	4s' ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 1538951			Na viii (¹S°)	Limit	1/2	1681679	

October 1946.

Na vii Observed Terms*

Config. 1s ² +		Observed Terms	
$2s^{2}(^{1}\mathrm{S})2p$ $2s^{2}2p^{2}$ $2p^{3}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$
$2s^2({}^1\mathrm{S})nx$	3, 4s ³ S	3p ²P°	$3-8d$ $^2\mathrm{D}$
2s 2p(3P°)nx	$ \begin{cases} 3, 48 & ^{4}P^{\circ} \\ 3, 48 & ^{2}P^{\circ} \end{cases} $	$3p$ ^{2}S $3-5p$ ^{2}P $3-5p$ ^{2}D	3-6d 4P° 3-6d 4D° 3, 4d 2P° 3, 4d 2D° 3-5d 2F°
2s 2p(1P°)nx'	3, 48′ ² P°	3p' ² S $3p'$ ² P $3, 4p'$ ² D	3d' ² P° 3d' ² D° 3, 4d' ² F°
2p ² (³ P)nx''	{ 38''4P	$3p'' {}^{4}S^{\circ}$ $3p'' {}^{4}P^{\circ}$ $3, 4p'' {}^{4}D^{\circ}$ $3p'' {}^{2}D^{\circ}$	3, 4d'' ⁴ P 3d'' ² D 3d'' ² F
$2p^2(^1\mathrm{D})nx'''$	3s''' ² D	$3p^{\prime\prime\prime} {}^{_{2}}\mathrm{D}^{\circ} {}^{_{3}}p^{\prime\prime\prime} {}^{_{2}}\mathrm{F}^{\circ}$	3d''' ² P 3d''' ² D 3d''' ² F

^{*}For predicted terms in the spectra of the B_I isoelectronic sequence, see Introduction.

Na viii

(Be I sequence; 4 electrons)

Z=11

Ground state 1s2 2s2 So

 $2s^2$ 1S_0 2131139 cm⁻¹

I. P. 264.155 volts

Eighty-six lines have been classified by Söderqvist, all but three of which are in the region between 51 A and 117 A. No intersystem combinations are known, but the absolute term values are well determined by the series, the relative uncertainty x being probably a few hundred cm⁻¹.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 7 (1944). (I P) (T) (C L)

Na viii

Na VIII

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2s ¹ S ₀	282	2s ² ¹S	0	0		3p' ¹P1	$2p(^{2}\mathrm{P}^{\circ})3p$	3p 1P	1	1432991	
$2p$ ${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$	$2s(^2\mathrm{S})2p$	2p 3P°	0 1 2	$ \begin{array}{r} 126053 + x \\ 126783 + x \\ 128387 + x \end{array} $	730 1604	$3p' \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	$2p(^2\mathrm{P^o})3p$	3p 3D	1 2 3	$ \begin{array}{r} 1439584 + x \\ 1440430 + x \\ 1442050 + x \end{array} $	846 1620
$2p^{-1}\mathrm{P}_1$	$2s(^2\mathrm{S})2p$	2p 1P°	1	243223		3 p′ 3S ₁	2p(2P°)3p	3p 3S	1	1452568+x	
$2p'{}^{3}{ m P_{0}}\ {}^{3}{ m P_{1}}\ {}^{3}{ m P_{2}}$	$2p^2$	2p ² ³ P	0 1 2	327667 + x $328494 + x$ $329899 + x$	827 1405	$3p' {}^{3}P_{1} {}^{3}P_{2}$	$2p(^2\mathrm{P^o})3p$	3p 3P	0 1 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	884
$2p'$ $^{1}\mathrm{D_{2}}$	$2p^2$	$2p^2$ ¹ D	2	361046		$3d'$ $^{1}\mathrm{D}_{2}$	$2p(^{2}\mathrm{P}^{\circ})3d$	3 <i>d</i> ¹ D°	2	1469055	
$2p'$ ${}^{1}\mathrm{S}_{0}$	$2p^2$	$2p^2$ ¹ S	0	446099		$3p'$ $^{1}\mathrm{D_{2}}$	$2p(^2\mathrm{P}^\circ)3p$	3p ¹D	2	1474598	
38 ³ S ₁	2s(2S)3s	38 3S	1	1240255+x		3 p′ ¹S ₀	$2p(^{2}\mathrm{P}^{\circ})3p$	3 <i>p</i> ¹ S	0	1481521	
$3s {}^{-1}S_0$ $3p {}^{-1}P_1$	$2s(^{2}{ m S})3s$ $2s(^{2}{ m S})3p$	3s ¹ S 3p ¹ P°	0	1 2627 99 1294214		$\begin{array}{c c} 3d' \ ^{3}D_{1} \\ \ ^{3}D_{2} \\ \ ^{3}D_{3} \end{array}$	2p(2P°)3d	3 <i>d</i> ³ D°	1 2 3	1485329 + x 1485621 + x 1486249 + x	292 628
$3d \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	2s(2S)3d	3d ³D	1 2 3	1327399 + x 1327436 + x 1327557 + x	37 121	3d' ³ P ₂ ³ P ₁ ³ P ₀	2p(2P°)3d	3d ³P°	2 1 0	$\begin{array}{c} 1492167 + x \\ 1492809 + x \\ 1493167 + x \end{array}$	$ \begin{array}{c c} -642 \\ -358 \end{array} $
$3d$ $^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})3d$	3 <i>d</i> ¹ D	2	1347756		3d′ ¹F₃	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ¹F°	3	1507690	
3s′ ³ P ₀	2p(2P°)3s	3s ³P°	0	1399858+x	805	3d′ ¹P₁	$2p(^{2}\mathrm{P}^{\circ})3d$	3d ¹P°	1	1513677	
${}^3\mathrm{P_1} \\ {}^3\mathrm{P_2}$			$\frac{1}{2}$	$ \begin{array}{r} 1400663 + x \\ 1402377 + x \end{array} $	1714	4s 3S1	$2s(^2\mathrm{S})4s$	4s 3S	1	1649682 + x	
38′ ¹P1	2p(2P°)3s	3s ¹ P°	1	1426049		4s ¹ S ₀	$2s(^2\mathrm{S})4s$	4s ¹ S	0	1656830	
3						$4p^{-1}P_1$	$2s(^2\mathrm{S})4p$	4 <i>p</i> ¹ P°	1	1673388	

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interva
4d ³D	$2s(^2\mathrm{S})4d$	4d ³ D	1, 2, 3	1683549 + x		$5d$ $^{1}\mathrm{D}_{2}$	2s(2S)5d	5 <i>d</i> ¹ D	2	1848978	
$4d$ $^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})4d$	4 <i>d</i> ¹ D	2	1689982		6p ¹ P ₁	2s(2S)6p	6p 1P°	1	1930912	
4p′ ¹P₁	2p(2P°)4p	4p ¹ P	1	1813205		6d ³D	2s(2S)6d	6d 3D	1, 2, 3	1933601 + x	
4 / 270	$2p(^2\mathrm{P}^\circ)4p$	4p 3D	1	1010170 1		$6d$ $^{1}\mathrm{D}_{2}$	2s(2S)6d	6 <i>d</i> ¹ D	2	1935242	
$^4p'\ ^3{ m D}_2\ ^3{ m D}_3$			$\frac{2}{3}$	$\begin{array}{ c c c c c }\hline 1816179 + x \\ 1817462 + x \\ \hline \end{array}$	1283	5p′ ³P	2p(2P°)5p	5p 3P	0, 1, 2	1988852+x	
	$2p(^2\mathrm{P}^\circ)4p$	4p 3P	0			$5p'$ $^{1}\mathrm{D}_{2}$	$2p(^2\mathrm{P}^\circ)5p$	5p ¹D	2	1990558	
$4p'$ 3P_2			$\frac{1}{2}$	1823044 + x		$5d'$ $^{1}\mathrm{D}_{2}$	2p(2P°)5d	5 <i>d</i> ¹ D°	2	1991118	
$4d'$ $^{1}\mathrm{D}_{2}$	$2p(^2\mathrm{P}^\circ)4d$	4d ¹D°	2	1827472		5d′ ³D	$2p(^2\mathrm{P}^\circ)5d$	5d ³D°	1, 2, 3	1994540+x	
$4p'$ $^1\mathrm{D}_2$	$2p(^2\mathrm{P}^\circ)4p$	$4p^{-1}\mathrm{D}$	2	1827658		5d′ ³P	$2p(^2\mathrm{P}^\circ)5d$	5d ³P°	2, 1, 0	1995095 + x	
	$2p(^2\mathrm{P}^\circ)4d$	4d ³D°	1			5d′ ¹F ₃	$2p(^2\mathrm{P}^\circ)5d$	5d ¹F°	3	1998029	
$4d'$ $^3\mathrm{D}_3$			$\frac{2}{3}$	1833704+x		6p′ ³D	$2p(^2\mathrm{P}^\circ)6p$	$6p^{-3}D$	1, 2, 3	2077097+x	
4d′ ³ P ₂	$2p(^2\mathrm{P}^\circ)4d$	4d ³ P°	2	1835175 + x		6d′ ³D	$2p(^2\mathrm{P}^\circ)6d$	6d 3D°	1, 2, 3	2080630+x	
			$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$			6d′ ³P	$2p(^2\mathrm{P}^\circ)6d$	6d ³P°	2, 1, 0	2081335 + x	
4d′ ¹F ₃	$2p(^2\mathrm{P}^\circ)4d$	4d ¹ F°	3	1838762		6d′ ¹F ₃	2p(2P°)6d	6d ¹ F°	3	2083106	
5p ¹ P ₁	$2s(^2\mathrm{S})5p$	5p ¹P°	1	1838911							-
4d' ¹ P ₁	$2p(^2\mathrm{P}^\circ)4d$	4d ¹ P°	1	1843384			Na 1x (2S _{1/2})	Limit		2131139	
5d ³ D	$2s(^2\mathrm{S})5d$	5d 3D	1, 2, 3	1848841 + x							

May 1946.

Na vIII OBSERVED TERMS*

Config. 1s ² +		Observed Terms	
$2s^2$ $2s(^2\mathrm{S})2p$	$2s^{2} {}^{1}\!\mathrm{S} \ \left\{ egin{array}{c} 2p {}^{3}\mathrm{P}^{\circ} \ 2p {}^{1}\mathrm{P}^{\circ} \end{array} ight.$		
$2p^2$	$\left\{ egin{array}{lll} 2p^{2} & & & & & & & & & & & & & & & & & & &$		
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$
2s(2S)nx	$\begin{cases} 3, \ 4s & ^3S \\ 3, \ 4s & ^1S \end{cases}$	3-6p ¹P°	$^{3-6d}_{3-6d}^{^{3}{ m D}}_{1}$
$2p(^2\mathrm{P}^\circ)nx$	$\begin{cases} 3s & ^{3}P^{\circ} \\ 3s & ^{1}P^{\circ} \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-6d ³ P° 3-6d ³ D° 3, 4d ¹ P° 3-5d ¹ D° 3-6d ¹ F°

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

NaIX

(Li 1 sequence; 3 electrons)

Z = 11

Ground state 1s² 2s ²S_{1/2}

 $2s \, ^2S_{1/2} \, 2418520 \, \mathrm{cm}^{-1}$

I. P. 299.78 volts

The analysis is by Söderqvist, who has classified 22 lines in this spectrum. They occur in the region 81 A to 44 A, with the exception of one line at 681 A.

Some of the relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 1 (1944). (I P) (T) (C L)

Na IX

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2s ² S ₁	2s	28 2S	1/2	0		5p 2P _{2 1}	5 <i>p</i>	5p ² P°	$ \begin{bmatrix} \frac{1/2}{11/2} \\ 1/2 \end{bmatrix} $	2059605	
$2p {}^2\mathrm{P_1} \ {}^2\mathrm{P_2}$	2p	2p 2P°	1½ 1½	144038 146688	2650	$5d_{{}^{2}\mathrm{D}_{3}}^{2}$	5d	5 <i>d</i> ² D	1½ 2½ 2½	2062835 2062911	76
38 ² S ₁	3 s	38 ² S	1/2	1375944		"D3				2002911	
$3p\ ^2{ m P_1} \ ^2{ m P_2}$	3p	3p 2P°	1½ 1½	1415368 1416130	762	$6p^{2}P_{21}$	6p	6p 2P°	$\left\{\begin{array}{c} \frac{1}{1} \\ 1 \\ \frac{1}{2} \end{array}\right.$	2169668	
$3d$ $^2\mathrm{D}_2$	3d	$3d^{-2}D$	1½ 1½ 2½	1429980	224	$6d {}^{2}\mathrm{D_{2}} \atop {}^{2}\mathrm{D_{3}}$	6d	6d ² D	1½ 2½	2171366 2171553	187
$^{2}\mathrm{D}_{3}$ $_{4s}$ $^{2}\mathrm{S}_{1}$	48	48 ² S	2½	1430204 1840336		7p 2P2 1	7 <i>p</i>	7p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 2235886	
`						7d ² D ₂	7d	7d 2D		2237139	00
$4p\ ^2\mathrm{P}_{2\ 1}$	4p	4p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 185666 5		$^{2}D_{3}^{2}$	• •	2	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2237165	26
$^{ m 4}d^{ m 2}{}^{ m 2}{ m D}_{ m 3}$	4d	$4d$ $^2\mathrm{D}$	$\begin{array}{ c c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1862222 18625 72	350						
5s ² S ₁	58	5s ² S	1/2	2051922?			Na x (1S ₀)	Limit		2418520	

May 1946.

MAGNESIUM

Mg I

12 electrons

Z = 12

Ground state 1s² 2s² 2p⁶ 3s² ¹S₀

3s2 1S0 61669.14 cm-1

I. P. 7.644 volts

The most complete term array is given in Paschen's 1931 paper, which has been extensively used in the present compilation.

Paschen lists the combinations $3d \, ^3D - nf \, ^3F^{\circ}$ (n=4,5) and $3d \, ^1D - nf \, ^1F^{\circ}$ (n=4-9), deriving from his infrared observations practically coincident values for the terms $nf \, ^3F^{\circ}$ and $nf \, ^1F^{\circ}$ for n=4 and n=5. Assuming that the two F-series were coincident throughout, Russell, Babcock, and the writer extended both series by the identification of Paschen's lines in the Infrared Solar Spectrum and by the discovery of the constant solar wave-number separation $3d \, ^3D - 3d \, ^1D$ for predicted successive series members. The constancy of this separation and the behavior of the solar lines in the disk and spot spectra leave no doubt as to the correctness of the identifications, although laboratory observations are lacking for confirmation of many of the lines. The term values in the table for the F-series $(nf \, ^1F^{\circ}$ to n=14 and $nf \, ^3F^{\circ}$ to n=12) have been calculated from solar data, with a slight adjustment to Paschen's absolute values of $3d \, ^3D$ and $3d \, ^1D$, as indicated in the 1945 reference below.

The three-decimal values listed for the terms 3p 3 P° and 3d 3 D are from Meissner's paper. Sawyer suggests that Paschen's 6d 1 D term (58023.27 cm $^{-1}$ in the table) may have the designation $3p^2$ 1 D, in which case the n-values of the higher series members should be decreased by one unit. In accordance with the observations of Shenstone and Russell on related series, the nd 1 D series may well have absorbed the $3p^2$ 1 D term. The present analysis indicates that throughout the D-series the singlets are lower than the corresponding triplet terms.

The singlet and triplet terms are well connected by intersystem combinations.

REFERENCES

- F. Paschen, Sitz. Preuss. Akad. Wiss. 32, 709 (1931). (IP) (T) (CL)
- F. Paschen, Ann. der Phys. [5] 12, 511 (1932). (T) (C L)
- A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 431 (1932).
- H. E. White, Introduction to Atomic Spectra p. 179 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- K. W. Meissner, Ann. der Phys. [5] 31, 518 (1938). (T) (C L)
- L. G. Mundie and K. W. Meissner, Phys. Rev. 65, 265 (1944). (I S)
- H. D. Babock and C. E. Moore, Astroph. J. 101, 374 (1945). (T) (C L)

Mg I

		MIG 1							
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹S	0	0. 00		3s'(2S)7d	7d 3D	3, 2, 1	59317. 4	
$3s(^2\mathrm{S})3p$	3p 3P°	0	21850, 368	20. 058	3s(2S)7f	7f ³F°	2, 3, 4	59400. 77	
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	21870. 426 21911. 140	40. 714	3s(2S)7f	7f ¹F°	3	59400.77	
$3s(^2\mathrm{S})3p$	3p 1P°	1	35051. 36		3s(2S)9s	9s 3S	1	59648. 2	
3s(2S)4s	4s 3S	1	41197. 37		3s(2S)8d	8d ¹D	2	59690. 02	
3s(2S)4s	48 1S	0	43503. 0		3s(2S)8d	8d 3D	3, 2, 1	59880. 3	
$\mathrm{B}s(^2\mathrm{S})3d$	3 <i>d</i> ¹ D	2	46403. 14		3s(2S)8f	8f ³F°	2, 3, 4	59935. 38	
$\mathrm{Bs}(^2\mathrm{S})4p$	4p 3P°	$\begin{bmatrix} 0,1\\2 \end{bmatrix}$	47847.7	4. 1	3s(2S)8f	8f ¹F°	3	59935. 38	
0 (0C) 0 3	0.7.20		47851.8		3s(2S)10s	10s 3S	1	60103. 5	
$3s(^2\mathrm{S})3d$	$3d$ $^3\mathrm{D}$	3 2	47957. 035 47957. 018	$\begin{bmatrix} 0.017 \\ -0.029 \end{bmatrix}$	3s(2S)9d	9d ¹D	2	60127. 31	
0 (00) 4	4. 1700	1	47957. 047		3s(2S)9d	9d ³D	3, 2, 1	60263. 0	
3s(2S)4p	4p 1P°	1	49346.6		3s (2S) 9f	9f ³F°	2, 3, 4	60301.30	
3s (2S) 5s	5s 3S	1	51872. 36		3s(2S)9f	9f ¹F°	3	60301.30	
Bs (2S) 5s	5s ¹S		52556. 37		3s(2S)11s	11s 3S	1	60420. 2	
3s(2S)4d	4d ¹ D	2	53134. 70		3s(2S)10d	10 <i>d</i> ¹D	2	60435. 15	
3s (2S) 4d	4d 3D	3, 2, 1	54192. 16		3s(2S)10d	10d ³D	3, 2, 1	60534. 5	
$3s(^2\mathrm{S})5p$	5p 3P°	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$			3s(2S)10f	10f ³F°	2, 3, 4	60562.64	
	44.0770	2	54252.6		3s(2S)10f	10f ¹F°	3	60562.64	
3s (2S) 4f	4f 3F°	2, 3, 4	54676. 38		3s(2S)12s	12s 3S	1	60649. 2	
8s (2S) 4f	4f 1F°	3	54676. 38		3s(2S)11d	11 <i>d</i> ¹D	2	60658. 37	
Ss (2S) 5p	5p 1P°	1	54699. 4		3s(2S)11d	11d ³D	3, 2, 1	60734. 0	
8s (2S) 6s	6s 3S	1	55891. 83		3s(2S)11f	11f ³F°	2, 3, 4	60755.78	
8s (2S) 6s	6s ¹ S	0	56187. 03		3s(2S)11f	11f ¹F°	3	60755.78	
3s(2S) 5d	5 <i>d</i> ¹ D	2	56308. 43		3s(2S)13s	13s 3S	1	60820. 9	
3s (2S) 5d	5d 3D	3, 2, 1	56968. 31		3s(2S)12d	12d ¹D	2	60826. 6	
8s (2S) 6p	6p 3P°	$\begin{bmatrix} 0,1\\2 \end{bmatrix}$	57018.8 57020.1	1. 3	3s(2S)12d	12d ³D	3, 2, 1	60884. 8	
Ss (2S) 5f	5f ³F°	2, 3, 4	57204. 22		3s(2S)12f	12f ³F°	2, 3, 4	60902. 53	
$3s(^2S)5f$	5f ¹F°	3	57204. 22		3s(2S)12f	12f ¹F°	3	60902. 53	
$3p^2$	3 <i>p</i> ² ³ P	0	57812. 72	20. 56	3s(2S)14s	14s 3S	1	60952. 0	
		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	57833. 28 57873. 89	40. 61	3s(2S)13d	13d ¹D	2	60955. 8	
3s(2S)7s	7s 3S	1	57853. 5		3s(2S)13d	13d ³D	3, 2, 1	61002. 2	
3s(2S)7s	7s 1S	0	58009. 46		3s(2S)13f	13f ¹F°	3	61016. 42	
$s(^2\mathrm{S})6d$	6 <i>d</i> ¹ D	2	58023. 27		3s(2S)14d	14d ³D	3, 2, 1	61094. 6	
$s(^2\mathrm{S})6d$	6d ³D	3, 2, 1	58442. 62		3s(2S)14f	14f ¹F°	3	61106.98	
$\mathrm{Ss(^2S)}7p$	7p 3P°	0, 1, 2	58478. 4						-
3s(2S)6f	6f ³F°	2, 3, 4	<i>58575. 54</i>		Мg п (2S _{1/2})	Limit		61669. 14	
Bs (2S) 6f	6f ¹F°	3	58575. 54		3p(2P°)3d	3 <i>d</i> ¹F°	3	80693. 2	
3s(2S)8s 3s(2S)7d	8s ² S 7d ¹ D	1 2	58962. 49 59041. 09		3p(2P°)3d	3d ³D°	1 2 3	83510. 73 83519. 98 83536. 22	9. 25 16. 24

July 1947.

Mgi Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Observe	d Terms	
$3s^2$	3s² ¹S			
3s(2S)3p	$ \begin{cases} 3p & ^3P^{\circ} \\ 3p & ^1P^{\circ} \end{cases} $			
$3p^2$	$3p^2$ $^3\mathrm{P}$			
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd \ (n \ge 3)$	$nf (n \ge 4)$
3s(2S) nx	{ 4-14s ³ S 4- 7s ¹ S	4-7p ³ P° 4, 5p ¹ P°	3–14 <i>d</i> ³ D 3–13 <i>d</i> ¹ D	4-12f ³ F° 4-14f ¹ F°
3p(2P°)nx	{		3d ³D° 3d ¹F°	

^{*}For predicted terms in the spectra of the Mg I isoelectronic sequence, see Introduction.

Mg II

(Na 1 sequence; 11 electrons)

Z = 12

Ground state 1s2 2s2 2p6 3s 2S2

3s ²S_{1/4} 121267.41 cm⁻¹

I. P. 15.03 volts

The analysis is from Fowler and Paschen-Götze. Mundie and Meissner calculate the separation of 3d ²D to be 1.000 ± 0.002 cm⁻¹ (entered in brackets in the table). In 1913 A. S. King observed the line at 4481 A (3d ²D -4f ²F°) as double, the violet component being about twice as strong as the red, thus indicating that the term 3d ²D is inverted.

REFERENCES

- A. S. King, Astroph. J. 38, 327 (1913).
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 103 (Julius Springer, Berlin, 1922). (T) (C L)
- A. Fowler, Report on Series in Line Spectra, p. 118 (Fleetway Press, London, 1922). (I P) (T) (C L)
- R. F. Bacher and S. Goudsmit, Atomic Energy States, p. 273 (McGraw-Hill Book Co., Inc., New York and London, 1932). (T)
- H. E. White, Introduction to Atomic Spectra, p. 98 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934). (G D)
- L. G. Mundie and K. W. Meissner, Phys. Rev. 65, 272 (1944). (I S)

Mg II

Mg II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0. 00		7d	7 <i>d</i> ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right $	} 112198. 0	
3p	3p 2P°	1½ 1½	35669. 42 35760. 97	91. 55	7f	7f ² F°	$\left\{ egin{array}{c} 2 lac{1}{2} \ 3 lac{1}{2} \end{array} ight.$	} 112301.8	
48	4s 2S	1/2	69805. 19			·			
3d	3d ² D	2½ 1½	71490. 41 71491. 32	[-1. 000]	7g	7g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 112310. 2	
4p	4p 2P°		80620.8		9s	9s ² S	1/2	114292. 2	
		1½	80651.3	30. 5	8 <i>d</i>	8d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 114335. 7	
5s $4d$	5s ² S 4d ² D	$ \left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	92786. 2		8 <i>f</i>	8f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	114403.6	
4f	4f 2F°	$\left\{egin{array}{c} 2lac{1}{2} \ 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	} 93800.0		8 <i>g</i>	8g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 114408. 6	
5p	5p 2P°	$\begin{array}{c c} 3\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \end{array}$	97454.9	14. 1	9 <i>f</i>	9f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 115845. 1	
68	6s ² S	1/2	97469. 0 103198. 1		9g	9 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 115848. 6	
5d	$5d^{-2}D$	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	} 103421. 1		10 <i>f</i>	10f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 116875. 7	
5 <i>f</i>	5f ² F°	$\left\{egin{array}{c} 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	} 103690. 2		10 <i>g</i>	10g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 116878. 2	
6p	6p 2P°	1½ 1½	105623. 1 105630. 7	7. 6	11 <i>f</i>	11f ² F°	$\left\{\begin{array}{cc}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 117638. 3	
78	7s 2S	1/2	108784. 7		11 <i>g</i>	11g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 117640. 6	
6d	6 <i>d</i> ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	3 108900. 9		12f	12f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	118218.5	
6 <i>f</i>	6f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 109062.6		12g	12g ² G	$ \left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right. $) } 118220. 2	
6 <i>g</i>	6 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 109073. 2						-
88	8s 2S	1/2	112129. 8		Mg III (¹S₀)	Limit		121267. 41	

May 1947.

Mg III

(Ne I sequence; 10 electrons)

Z = 12

Ground state 1s2 2s2 2p6 1So

 $2p^6$ 1S_0 646364 cm $^{-1}$

I. P. 80.12 volts

The analysis has been taken from Söderqvist's Monograph. The term designations he assigns on the assumption of LS-coupling are given with his notation under the heading "Author" in the table.

As for Ne 1, the jl-coupling notation is introduced in the general form suggested by Racah. Shortley has, however, pointed out that the configurations $2p^5$ 3s, $2p^5$ 3p, and $2p^5$ 3d are much closer to LS-coupling than to jl-coupling.

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 22 (1934). (I P) (T) (C L) (G D).
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- G. Shortley, unpublished material (1948).

Mg III

Mg III

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p ¹ S ₀	$2p^6$	2p ⁶ ¹S	0	0. 0	4d ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{2})4d$	4d [½]°	0	581747
3s ³ P ₂ ³ P ₁	$2p^{5}(^{2}\mathrm{P_{11/2}^{o}})3s$	38 [1½]°	2	425649. 1 426877. 0	4d ¹ P ₁	//	4d [1½]°	1	583448
3s ³ P ₀ ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})3s$	38' [½]°	0 1	427861. 1 431539. 0	$4d$ $^3\mathrm{D_1}$	$2p^{5}(^{2}\mathrm{P}_{55}^{\circ})4d$	4d′[1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	585473
$3p_{10}\ ^3{ m S}_1$	$2p^{5}(^{2}\mathrm{P_{11/2}^{s}})3p$	3p [½]	1	467387. 3	5s ³ P ₁	$2p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})5s$	5s [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	589116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	3p [2½]	$\frac{3}{2}$	474062. 6 474663. 6	58 ¹ P ₁	$2p^5(^2\mathrm{P}_{5/2}^{\circ})5s$	5s' [½]°	0 1	591191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	3p [1½]	1 2	475511. 4 477444. 9	$5d$ $^3\mathrm{P}_1$	$2p^{5}(^{2}\mathrm{P}_{1rac{1}{2}}^{\circ})5d$	5d [½]°	0 1	605345
$3p_3 ^3P_0$	"	3p [½]	0	479275. 3	5d ¹ P ₁	"	5d [1½]°	1	606230
${3p_5\atop 3p_4} {^1P_1\atop ^3P_2}$	$2p^5(^2\mathrm{P}_{5/2}^{\circ})3p$	3p'[1½]	1 2	478383. 8 478855. 5	-	$2p^{5}(^{2}\mathrm{P}_{2}^{\circ})5d$	5d'[1½]°	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	3p'[½]	1 0	479465. 4 484439. 3	$5d$ $^3\mathrm{D_1}$			1	608332
					68 ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1^{1}2}^{\circ})6s$	6s [1½]°	2 1	609166
$^{3}P_{0}$ $^{3}P_{1}$	$2p^{5}(^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ})3d$	3d [½]°	0	530186. 4 530429. 5	a 1D	$2p^{5}(^{2}\mathrm{P}_{2}^{\circ})6s$	6s' [½]°	0	244.000
$3d$ 3P_2	"	3d [1½]°	2	530972.0	68 ¹ P ₁			1	611299
3d ³ F ₄ ³ F ₃	"	3d [3½]°	4 3	531569. 9 531838. 5	6d ¹ P ₁	$2p^5(^2\mathrm{P^{\circ}_{11/2}})6d$	6d [1½]°	1	618483
3d ³ F ₂ ₁ F ₃	"	3d [2½]°	2 3	532731. 8 532978. 0	$6d$ $^3\mathrm{D_1}$	$2p^{5}(^{2}\mathrm{P}_{2}^{\circ})6d$	6d'[1½]°	1	620598
3d ¹ P ₁	"	3d [1½]°	1	534204.1	7d ¹ P ₁	$2p^{5}(^{2}\mathrm{Pi}_{1})7d$	7d [1½]°	1	625958
$^{1}D_{2}$ $^{3}D_{3}$	$2p^5(^2\mathrm{P}^{\circ}_{\!$	3d'[2½]°	2 3	534782. 2 534931. 0	$7d$ $^3\mathrm{D}_1$	$2p^{5}(^{2}\mathrm{P}_{2}^{\circ})7d$	7d'[1½]°	2 1	628105
$^{3}D_{2}$ $^{3}D_{1}$	"	3d'[1½]°	2	535185.9 536156.7	8d ¹ P ₁	$2p^{5}(^{2}\mathrm{P_{i_{24}}^{\circ}})8d$	8d [1½]°	1	630795
4s ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{2})4s$	4s [1½]°	2	546529		N/ (0Do)	T 2 2 &		0.469.0.4
4s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})4s$	48' [½]°	0 1	548727		Mg IV (2P ₁ %) Mg IV (2P ₂ %)	Limit Limit		646364 648590

July 1947.

Mg III OBSERVED LEVELS*

Config. 1s ² 2s ² +		Observed Terr	ns
$2p^6$	$2p^6~^1\mathrm{S}$		
	$ns (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$
$2p^5(^2\mathrm{P}^\circ)nx$	3-6s ³ P° 3-6s ¹ P°	3p ³ S 3p ³ P 3p ³ D 3p ¹ S 3p ¹ P 3p ¹ D	3-5d ³ P° 3-7d ³ D° 3d ³ F° 3-8d ¹ P° 3d ¹ F°
		jl-Coupling Notation	
		Observed Pair	rs
	$ns (n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$
$2p^5(^2 ext{P}_{14}^{\circ})nx$	3-6s [1½]°	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3-5d [\begin{array}{c} 1/2]^{\circ} \\ 3d [31/2]^{\circ} \\ 3-8d [11/2]^{\circ} \\ 3d [21/2]^{\circ} \end{array}$
$2p^5(^2 ext{P}^{\circ}_{5})nx'$	3-68' [½]°	$3p' \begin{bmatrix} 11/2 \end{bmatrix} \ 3p' \begin{bmatrix} 1/2 \end{bmatrix}$	3d' [2½]° 3–7d' [1½]°

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Mg IV

(F1 sequence; 9 electrons)

Z = 12

Ground state $1s^2 2s^2 2p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

 $2p^5 \, {}^{2}\text{P}_{1}^{\circ} 881759 \, \text{cm}^{-1}$

I. P. 109.29 volts

The analysis is by Söderqvist, who has classified more than 70 lines, 13 in the interval 1459 A to 1956 A, and the rest between 123 A and 323 A.

From later isoelectronic sequence data Robinson has revised Söderqvist's 3d' ²S and 4d ²D terms, rejected his 3d ⁴D term, and added 3d ²F; 3, 4d ⁴P; 3d ⁴F, and 3d' ²F. These revisions have been incorporated into the table.

Intersystem combinations connecting the doublet and quartet systems of terms, have been observed.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

Mg IV

Mg IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^5$	$2p^{5-2}\mathrm{P}^{\circ}$	1½ ½ ½	0 2226	-2226	$2s^2 \ 2p^4(^1\mathrm{D})3d$	3d′ ²P	1½ 1½	711622 711865	243
2s 2p6	2p ⁶ ² S	1/2	311527		$2s^2 2p^4({}^1{ m D})3d$	3d′ ²D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	712120 713389	1269
2s ² 2p ⁴ (³ P)3s	3s 4P	$egin{array}{c} 2^{1/2}_{1/2} \ 1^{1/2}_{1/2} \ \frac{1/2}{1/2} \end{array}$	543727. 0 545143. 5 545962. 1	-1416.5 -818.6	$2s^2 \ 2p^4(^1{ m D})3d$	3d′ ² F	$\begin{array}{c c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	713660	
2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½ ½	553659 555338	-1679	$2s^2 \ 2p^4(^1{ m D})3d$	3d′ 2S	1/2	714330	
$2s^2\ 2p^4(^1{ m D})3s$	3s′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	582571 582589	-18	$2s^2 2p^4(^3P)4s$	48 ² P	1½ ½ ½	723254 724809	-1555
$2s^2 2p^4 (^3\mathrm{P}) 3p$	3p 4P°	21/2	596527.3	544 C	$2s^2 2p^4({}^1{ m S})3d$	3d'' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	752927 752965	-38
_F (11/2 1/2	597071. 9 597589. 9	-544.6 -518.0	$2s^2 2p^4(^3\mathrm{P})4d$	4 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	767454 770799	-3345
$2s^2\ 2p^4(^3{ m P})3p$	3p 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	603143. 3 604007. 4 604666. 6	-864.1 -659.2	$2s^2 \ 2p^4(^3{ m P})4d$	4d 4P	$\begin{array}{c c} & 1/2 \\ & 1/2 \\ & 11/2 \\ & 21/2 \end{array}$	767769 768728	959
$2s^2 \ 2p^4(^3{ m P})3p$	3p 4S°	1½	612240. 3		$2s^2 \ 2p^4(^3{ m P})4d$	4d 2P	1½ 1½	769397 770056	659
$2s^2 \ 2p^4(^1{ m S})3s$	3s'' 2S	1/2	624102		$2s^2\ 2p^4(^1{ m S})4s$	4s'' 2S	1/2	797062	
$2s^2 \ 2p^4(^3\mathrm{P})3d$	3 <i>d</i> ⁴ P	$\begin{array}{ c c c c }\hline 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \end{array}$	676837 677805	-9 68	$28^{2} 2p^{4} {}^{(1}{\rm D})4d$	4d′ ² P	$ \left\{ \begin{array}{c} $	802272	
$2s^2 \ 2p^4(^3{ m P}) 3d$	3d 4F	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$			$2s^2 \ 2p^4 (^1{ m D}) 4d$	4d′ ²D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	803023	
		$1\frac{11/2}{1}$	677355		$2s^2 \ 2p^4(^1{ m D})4d$	4d′ 2S	1/2	803769	
$2s^2 \ 2p^4(^3\mathrm{P})3d$	3 <i>d</i> ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	678403 680030	-1627	2s ² 2p ⁴ (³ P)5d	$\int 5d^{-2}D$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	809677 811362	-1685
28 ² 2p ⁴ (³ P)3d	3d ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	680510		$2s^2 \ 2p^4(^3{ m P})5d$	5d 2P	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	810543	
$2s^2 \ 2p^4(^3\mathrm{P})3d$	3d 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	681024 682471	1447					
		172	002471		Mg v (3P ₂)	Limit		881759	

March 1948.

Mg IV OBSERVED TERMS*

Config. 1s ² +		Observed Terms												
$2s^2 \ 2p^5$ $2s \ 2p^6$	$2p^5~^2\mathrm{P}^{\circ}$ $2p^6~^2\mathrm{S}$													
	$ns (n \ge 3)$	$ns\ (n\geq 3)$ $np\ (n\geq 3)$					nd (n	≥≥3)						
28 ² 2p ⁴ (³ P)nx	$\left\{\begin{array}{ccc} 3s & {}^{4}P \\ 3, 4s & {}^{2}P \end{array}\right.$	37	3p 4S° 3	p ⁴ P°	3p 4D°		$^{3, 4d}_{3-5d}$ $^{4}P_{2}$	3-5 <i>d</i> ² D	3d ⁴ F 3d ² F					
$2s^2 \ 2p^4(^1\mathrm{D})nx'$ $2s^2 \ 2p^4(^1\mathrm{S})nx''$	3, 4s'' 2S	3s' ² D				3, 4d′ 2S	3, 4d′ ²P	$3, 4d' {}^{2}D$ $3d'' {}^{2}D$	3d′ ²F					

^{*}For predicted terms in the spectra of the F $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(O i sequence; 8 electrons)

Z = 12

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^4$ 3P_2 1139421 cm⁻¹

I. P. 141.23 volts

Söderqvist has found 53 terms and classified 113 lines in this spectrum in the interval between 92 A and 355 A. No intersystem combinations have been observed and the uncertainty, x, may be considerable.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)

Mg v

Mg v

	Mg v						NIG V					
Au	thor	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$\frac{}{2p}$	${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	2s ² 2p ⁴	$2p^4$ $^3\mathrm{P}$	2 1 0	0 1780 2519	-1780 -739	$\begin{array}{ c c } \hline \overline{\overline{3d}} & ^3\mathrm{D}_3 \\ & ^3\mathrm{D}_2 \\ & ^3\mathrm{D}_1 \\ \end{array}$	2s ² 2p ³ (² P°)3d	3d'' ³D°	3 2 1	902047 902441 902682	-394 -241
2p	$^{1}\mathrm{D_{2}}$	2s ² 2p ⁴	$2p^4$ $^1\mathrm{D}$	2	36348 + x		$\overline{\overline{3}}\overline{d}$ $^{1}P_{1}$	2s ² 2p ³ (² P°)3d	3d'' ¹P°	1	902907 + x	
2p	$^{1}\mathrm{S}_{0}$	2s ² 2p ⁴	$2p^4$ $^1\mathrm{S}$	0	77712 + x		$\overline{\overline{3d}}$ ${}^{1}\mathrm{F}_{3}$	2s ² 2p ³ (² P°)3d	3d'' ¹F°	3	905211 + x	
2p'	${}^{3}P_{2}$ ${}^{3}P_{1}$	2s 2p ⁵	$2p^5$ $^3\mathrm{P}^\circ$	$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$	283211 284827 285708	-1616 -881	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2s ² 2p ³ (4S°)4s	4s 3S° 3s''' 3P	1 2	910639	
2p'	³ P ₀	2s 2p ⁵	2p ⁵ ¹P°	1	397906 + x		³ P ₁	2s 2p4(4P)3s	98. 1	1 0	940455 941048	-593
38	3S_1	$2s^2\ 2p^3({}^4{ m S}^\circ)3s$	3s 3S°	1	684544		48 3D	2s ² 2p ³ (² D°)4s	48' 3D°	3, 2, 1	962027	
38	$^{3}D_{3}$ $^{3}D_{2}$ $^{3}D_{1}$	$2s^2 \ 2p^3 (^2\mathrm{D}^\circ)3s$	3s′ ³D°	3 2 1	727718 727763 727787	$ \begin{array}{c c} -45 \\ -24 \end{array} $	$\begin{array}{ c c c }\hline 4d & {}^{3}\mathrm{D}_{1} \\ & {}^{3}\mathrm{D}_{2} \\ & {}^{3}\mathrm{D}_{3} \\ \hline \end{array}$	2s ² 2p ³ (4S°)4d	4d ³D°	1 2 3	962378 962395 962427	17 32
$\overline{3s}$	$^{1}\mathrm{D}_{2}$	$2s^2 \ 2p^3 (^2\mathrm{D}^\circ)3s$	3s′ ¹D°	2	735976+x		$\overline{4s}$ $^{1}D_{2}$	$2s^2 2p^3 (^2{ m D}^{\circ}) 4s$	4s' 1D°	2	965189 + x	
= 3s	3 D	$2s^2\ 2p^3(^2\mathrm{P}^\circ)3s$	3s'' ³P°	0	756536		<u>=</u> 3P	2s ² 2p ³ (² P°)4s	48" 3P°	0, 1, 2	990599 *	
	${}^3\mathrm{P}_1$ ${}^3\mathrm{P}_2$			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	756589	53	<u>4s</u> ¹P₁	2s ² 2p ³ (² P°)4s	4s'' ¹P°	1	993795 + x	
38	¹ P ₁	2s² 2p³(²P°)3s	3s'' ¹P°	1 .	765049 + x		5s 3S1	2s ² 2p ³ (4S°)5s	5s 3S°	1	1002125	
3d	$^{3}D_{1}$ $^{3}D_{2}$	$2s^2 2p^3({}^4\mathrm{S}^\circ)3d$	3d 3D°	1 2	821963 821977	14 94	$\overline{4d}$ ^{3}D $\overline{4d}$ $^{1}P_{1}$	2s ² 2p ³ (² D°)4d	4d′ ³D° 4d′ ¹P°	1, 2, 3	1013878	
$\overline{3d}$	$^3\mathrm{D}^3$	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d' 3D°	3	822071 871221		$egin{array}{cccc} \overline{4d} & {}^{1}\mathrm{P}_{1} \ \overline{4d} & {}^{3}\mathrm{P}_{2} \end{array}$	$\begin{vmatrix} 2s^2 & 2p^3(^2D^{\circ}) & 4d \\ 2s^2 & 2p^3(^2D^{\circ}) & 4d \end{vmatrix}$	4d′ ¹P° 4d′ ³P°	1	1015981 + x	
$\frac{3a}{3d}$	¹ P ₁	$2s^2 2p^3 (^2D^\circ)3d$ $2s^2 2p^3 (^2D^\circ)3d$	$\begin{vmatrix} 3d & ^{1}\mathbf{P} \\ 3d' & ^{1}\mathbf{P} \end{vmatrix}$	1, 2, 3	873862 + x		4a $^{3}P_{1}^{2}$	28- 2p*(-D')4a	44 1	1 0	1017590 1017972	-382
$\frac{3a}{3d}$	$^{3}P_{2}$	$2s^2 2p^3 (^2D^\circ)3d$	$\begin{vmatrix} 3d & ^{-1} \\ 3d' & ^{3}P^{\circ} \end{vmatrix}$	2	876762		$\overline{4d}$ $^{1}D_{2}$	2s ² 2p ³ (² D°)4d	4 <i>d′</i> ¹D°	2	1018840+x	
- Ou	${}^{3}\overset{2}{\mathrm{P}}_{1}^{2}$ ${}^{3}\mathrm{P}_{0}^{2}$	20 2p (2)00	000 1	$\begin{vmatrix} 1\\0 \end{vmatrix}$	877244 877444	$\begin{vmatrix} -482 \\ -200 \end{vmatrix}$	$\overline{4d}$ ${}^{1}F_{3}$	$\begin{vmatrix} 2s^2 2p^3(^2D^\circ)4d \end{vmatrix}$	4d' 1F°	3	1010040 + x $1019913 + x$	
$\overline{3d}$	$^{1}\mathrm{D}_{2}$	$\begin{vmatrix} 2s^2 & 2p^3 & (^2\mathrm{D}^\circ) & 3d \end{vmatrix}$	3 <i>d′</i> ¹D°	2	878028+x		$\overline{3s}'$ 3D_1	2s 2p4(2D)3s	3s ^{IV} ³ D	1	1020311	0.4
$\overline{3d}$	$^3\mathrm{S}_1$	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ³S°	1	879485		$^{3}D_{2}^{2}$ $^{3}D_{3}^{3}$			3	1020375 1020468	64 93
$\overline{3d}$	${}^{1}\mathrm{F}_{3}$	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	883210+x		$3p'$ $^3\mathrm{D}$	2s 2p4(4P)3p	3p''' ³D°	1, 2, 3	1026283	
$\overline{\overline{3d}}$	³ P ₀ ³ P ₁	$2s^2 2p^3(^2{ m P}^{\circ})3d$	3d'' ³P°	0 1	898673 898904	231 387	5d ³D	2s ² 2p ³ (4S°)5d	5d ³D°	1, 2, 3	1026774	
$\overline{\overline{3d}}$	${}^{3}P_{2}^{2}$ ${}^{1}D_{2}$	2s ² 2p ³ (2P°)3d	3d'' ¹D°	$egin{bmatrix} 2 \\ 2 \end{bmatrix}$	899291 901872+x	301	$\left \begin{array}{cc} \overline{\overline{4d}} & {}^{3}\mathrm{P}_{1} \\ {}^{3}\mathrm{P}_{2} \end{array}\right $	$2s^2 \ 2p^3 (^2{ m P}^{\circ}) 4d$	4d'' ³P°	$\begin{array}{ c c }\hline 0\\1\\2\\\end{array}$	1042481 1042681	200

Au	ıthor	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$ \frac{\overline{\overline{4d}}}{\overline{4d}} $ $ \frac{\overline{\overline{4d}}}{\overline{4d}} $	³ D ¹ D ₂ ¹ P ₁	$2s^2 2p^3 (^2{ m P}^{ m o}) 4d$ $2s^2 2p^3 (^2{ m P}^{ m o}) 4d$ $2s^2 2p^3 (^2{ m P}^{ m o}) 4d$	4d'' ³ D° 4d'' ¹ D° 4d'' ¹ P°	1, 2, 3 2 1	$ \begin{array}{c} 1043818 \\ 1045766 + x \\ 1046201 + x \end{array} $		$ \begin{array}{ccc} \overline{5d} & {}^{1}\mathrm{D}_{2} \\ \overline{5d} & {}^{1}\mathrm{F}_{3} \\ \overline{5d} & {}^{1}\mathrm{D}_{2} \end{array} $		5d' 'D° 5d' 'F° 5d'' 'D°	2 3 2	$ \begin{array}{r} 1082461 + x \\ 1082855 + x \\ 1110358 + x \end{array} $	
$\overline{\overline{4d}}$ $\overline{5s}$ $3d'$	¹ F ₃ ³ D	$2s^{2} 2p^{3}(^{2}P^{\circ})4d$ $2s^{2} 2p^{3}(^{2}D^{\circ})5s$ $2s 2p^{4}(^{4}P)3d$	4d'' ¹F° 5s' ³D° 3d''' ³D	3 3, 2, 1 1, 2, 3	$ \begin{array}{c} 1046625 + x \\ 1054921 \\ 1075102 \end{array} $		4s' ³ P ₂	Mg vi (4S ₁₃₂) 2s 2p4(4P)4s	Limit 4s''' ³ P	2 1 0	1139421 1161768	
$\overline{5d}$ $\overline{5d}$	³ D ³ P ₂ ³ P ₁	$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 5d$ $2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 5d$	5d′ ³D° 5d′ ³P°	1, 2, 3 2 1 0	1079431 1081883 1082146	-263	$\begin{bmatrix} \overline{3d'} & {}^{3}D_{3} \\ {}^{3}D_{2} \\ {}^{3}D_{1} \end{bmatrix}$ $5s' {}^{3}P_{2}$	2s 2p4(2D)3d 2s 2p4(4P)5s	3d ¹ V ³ D 5s''' ³ P	3 2 1 2 1 0	1166471 1166552 1166626 1250956	-81 -74

February 1947.

Mg v Observed Terms*

Config. 1s ² +				Observe	ed Terms			
2s² 2p⁴	$\left\{\begin{array}{c} \\ 2p^{4} {}^{1}\text{S} \end{array}\right.$	2p4 3P	$2p^4$ ¹ D					
2s 2p ⁵	{	$2p^5$ $^3\mathrm{P}^\circ$ $2p^5$ $^1\mathrm{P}^\circ$						
		ns $(n \ge 3)$		$np \ (n \ge 3)$		nc	$l \ (n \ge 3)$	
2s ² 2p ³ (4S°)nx	3-5s 3S°						3–5 <i>d</i> ³D°	
2s ² 2p ³ (² D°)nx'	{		3-5s' ³ D° 3, 4s' ¹ D°		3d′ 3S°	3-5d′ ³P° 3, 4d′ ¹P°	$_{3-5d'}^{3-5d'}$ $_{1}^{3}D^{\circ}$	3–5d′ ¹F°
$2s^2 \ 2p^3(^2\mathrm{P}^\circ)nx''$	{	3, 4s'' ³ P° 3, 4s'' ¹ P°				$^{3, 4d^{\prime\prime} ^{3}\mathrm{P}^{\circ}}_{3, 4d^{\prime\prime} ^{1}\mathrm{P}^{\circ}}$	$_{3-5d''}^{3, 4d''}$ $_{1}^{3}$ D°	3, 4 <i>d''</i> ¹F°
2s 2p4(4P)nx'''		3-5s''' ³P		3p''' 3D°			$3d^{\prime\prime\prime}$ ³ D	
2s 2p4(2D)nx ^{IV}			3^{8} 1 3 D				$3d^{{\scriptscriptstyle { m IV}}}$ $^{3}{ m D}$	

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

Mg VI

(N i sequence; 7 electrons)

Z = 12

Ground state 1s2 2s2 2p3 4S114

$$2p^3$$
 $^4S_{1\frac{1}{2}}^{\circ}$ **1507520** cm⁻¹

I. P. 186.86 volts

The analysis is by Söderqvist, who has found 56 terms and classified 124 lines in the range 72 A to 403 A. No intersystem combinations have been observed. The observations indicate an evident typographical error in the published absolute value of $2p^4$ P, which has been corrected. The series are short and the uncertainty, x, may be considerable.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L)

							T				
Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p$ $^4\mathrm{S}_2$	2s² 2p³	2p ³ 4S°	1½	0		$\overline{3d}$ ${}^{2}\mathrm{S}_{1}$	$2s^2 2p^2(^1\mathrm{D})3d$	3d′ ² S	1/2	1097978+x	
$2p$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	2½ 1½ 1½	54150 + x 54171 + x	-21	3p′ 4P	$2s 2p^3(^5\mathrm{S}^\circ)3p$	3p''' 4P	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{cases}$	1100146	
$2p$ ${}^2\mathrm{P_1}$ ${}^2\mathrm{P_2}$	2s ² 2p ³	$2p^3$ $^2\mathrm{P}^\circ$	$1\frac{1}{2}$	$82710+x \\ 82832+x$	122	3s' 4D	2s 2p ³ (³ D°)3s	3s ^{IV} ⁴ D°	1/2 to	1122023	
$2p'$ 4P_3 4P_2 4P_1	2s 2p4	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	247945 249578 250445	$-1633 \\ -867$	$\frac{3\overline{3}}{\overline{3}\overline{d}}$ ² D		3d'' 2D	3½		
$2p'\ ^2{ m D_3}\ ^2{ m D_2}$	2s 2p4	2p4 2D	2½ 1½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-33	$\frac{3a}{3s'}$ ² D	$\begin{bmatrix} 2s^2 \ 2p^2(^1S)3d \\ \\ 2s \ 2p^3(^3D^\circ)3s \end{bmatrix}$	3s ^{IV} ² D°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	1123683+x 1149638+x	
$2p'$ $^2\mathrm{S}_1$	2s 2p4	2p4 2S	1/2	400619+x					2/2] ,	
$2p^\prime$ $^2\mathrm{P_2}$ $^2\mathrm{P_1}$	2s 2p4	2p4 2P	1½ ½ ½	$\begin{array}{c c} 423981+x \\ 425938+x \end{array}$	-1957	= 3s' ⁴P	2s 2p³(³P°)3s	3s ^v 4P°	$\begin{cases} \frac{1/2}{10} \\ 2\frac{1}{2} \end{cases}$	1172608	
$\begin{array}{ccc} 3s & {}^4P_1 \\ {}^4P_2 \\ {}^4P_3 \end{array}$	$2s^2 \ 2p^2(^3{ m P})3s$	3s 4P	$1\frac{1}{12}$ $1\frac{1}{2}$ $2\frac{1}{2}$	893943 894887 896443	944 1556	3d′ ⁴ D	2s 2p ³ (⁵ S°)3d	3d''' 'D°	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases}$	1175396	
${3s} {^2P_1} \ {^2P_2}$	2s ² 2p ² (³ P)3s	3s ² P	1½ 1½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1894	$\overline{\overline{3s'}}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p ³ (³ P°)3s	3s [∇] ² P°	1½ 1½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	306
3s 2D	$2s^2 2p^2(^1\mathrm{D})3s$	3s' 2D	11/2) 937628+x			$2s^2 \ 2p^2(^3{\rm P})4s$	4s 4P	1½ 1½		
_			2½	P		4s 4P ₃			$\frac{172}{2\frac{1}{2}}$	1196740	
= 3s 2S₁	$2s^2 2p^2({}^1S)3s$	3s'' 2S	1/2	982218+x			$2s^2 2p^2(^3P)4s$	4s ² P	1/2		
3d ² P ₂ ² P ₁	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² P	1½ ½ ½	$\begin{vmatrix} 1038855 + x \\ 1039472 + x \end{vmatrix}$	-617	4s ² P ₂			1½	1198265+x	·
	$2s^2 2p^2(^3\mathrm{P})3d$	3d 4D	3½ 2½)			$egin{array}{ccc} \overline{3p}' & {}^2\mathrm{F}_4 \ {}^2\mathrm{F}_3 \end{array}$	$2s 2p^{3}(^{3}D^{\circ})3p$	$3p^{1V}$ ² F	$\begin{array}{ c c c c }\hline 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-635
$3d$ ${}^4\mathrm{D}_{23}$ ${}^4\mathrm{D}_1$			$\left(\begin{array}{c} 272 \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right)$	1045205 1045620	-415	4s 2D	$2s^2 2p^2(^1\mathrm{D})4s$	4s' 2D	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	$\left.\right $ $\left $ \left	
3d ² F ₃ ² F ₄	$2s^2 2p^2(^3P)3d$	$3d$ $^2\mathrm{F}$	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	$\begin{vmatrix} 1045212 + x \\ 1047179 + x \end{vmatrix}$	1967	4d 4D ₂₃	$2s^2 \ 2p^2(^3{\rm P})4d$	4d 4D	$ \begin{cases} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{cases} $	1248829	
38′ 4S2	2s 2p ³ (⁵ S°)3s	3s''' 4S°	1½	1046634		4D1			1 1/2 1/2	1249500	-671
3d ⁴ P ₃ ⁴ P ₂	$2s^2 2p^2(^3\mathrm{P})3d$	3d 4P	$2\frac{1}{2}$	1047307 1047987	-680 -396	$oxed{4d} egin{array}{cccccccccccccccccccccccccccccccccccc$	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4d 2F	2½ 3½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1645
$^{4}P_{1}$ $_{2}^{2}D_{2}$ $_{2}^{2}D_{3}$	$2s^2 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² D	$\begin{array}{ c c c }\hline & 72 \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	$ \begin{vmatrix} 1048383 \\ 1060848 + x \\ 1061411 + x \end{vmatrix} $	563	$\begin{array}{ c c c c }\hline & 4d & ^4\mathrm{P}_3 \\ & ^4\mathrm{P}_2 \\ & ^4\mathrm{P}_1 \\ \hline \end{array}$	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4d 4P	2½ 1½ ½ ½	1252238 1252662 1252866	$\begin{vmatrix} -424 \\ -204 \end{vmatrix}$
$\overline{3d}$ ${}^2\mathrm{F}_4$ ${}^2\mathrm{F}_3$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d' ² F	3½ 2½ 2½	$\begin{vmatrix} 1082132 + x \\ 1082438 + x \end{vmatrix}$	-306	$4d$ $^2\mathrm{D_3}$	$2s^2 2p^2(^3\mathrm{P})4d$	4d ² D	1½ 2½	1257189+x	
$\overline{3d}$ $^{2}\mathrm{D}_{2}$	$2s^2 2p^2(^1D)3d$	3d′ 2D	1½	1085361 + x		11	2s 2p³(³D°)3d	3dIV 4P°		1282028	
$^2\mathrm{D}_3$			2½	1085718 + x	357	$\begin{bmatrix} \overline{3}d' & {}^4\mathrm{P}_3 \\ {}^4\mathrm{P}_2 \\ {}^4\mathrm{P}_1 \end{bmatrix}$	20 2p (D) 30	000 1	$\begin{array}{ c c c }\hline 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \end{array}$	1282398 1282668	$\begin{vmatrix} -370 \\ -270 \end{vmatrix}$
$\overline{3d}$ ${}^2\mathrm{P}_1$ ${}^2\mathrm{P}_2$	$2s^2 2p^2(^1\mathrm{D})3d$	3d' ² P	$1\frac{1}{2}$	$\begin{vmatrix} 1092558 + x \\ 1093046 + x \end{vmatrix}$	488				1		

Mg VI—Continued

Mg VI—Continued

Author	Config.	Desig.	J	Level	Inter- val	Au	thor	Config.	Desig.	J	Level	Inter- val
$\overline{3d}'$ ⁴ D	2s 2p³(³D°)3d	3div 4D°	$\begin{cases} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{cases}$	1287044		5d	⁴ D ₂₃	2s ² 2p ² (³ P)5d	5d 4D	$\begin{bmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	}1342 98 5	
$\overline{4d}$ ² F	$2s^2 \ 2p^2(^1\mathrm{D})4d$	4d′ ² F	$\left\{egin{array}{l} 3lac{1}{2} \ 2lac{1}{2} \end{array} ight.$	$\left.\right $ 1287104+ x		5 <i>d</i>	${}^{2}F_{3} \ {}^{2}F_{4}$	$2arepsilon^32p^2(^3\mathrm{P})5d$	$5d$ $^2\mathbf{F}$	$2\frac{1}{2}$ $3\frac{1}{2}$	1344310 + x $1346056 + x$	1746
$\overline{3d}'$ ${}^4\mathrm{S}_2$	2s 2p ³ (³ D°)3d	3dIV 4S°	1½	1287889		F 7		0.2 0.2/2D\#.1	F 7 4D			
$\overline{3d}'$ ${}^2\mathbf{F_4}$ ${}^2\mathbf{F_3}$	2s 2p ³ (³ D°)3d	3d¹v ₂ F °	3½ 2½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-861	5d	⁴ P ₃	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5d 4P	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	1345550	
$\overline{4d}$ ² D	$2s2p^2(^1\mathrm{D})4d$	4 <i>d′</i> ² D	$\left\{ egin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	$\left.\right\} 1289787 + x$		4d'	4D	2s 2p ³ (⁵ S°)4d	4d''' ⁴ D°	$\begin{cases} 1\frac{1}{2} & \text{to} \\ 3\frac{1}{2} & \text{to} \end{cases}$	1373760	
$\overline{4d}$ ² P	$2s^2 2p^2(^1\mathrm{D})4d$	4d′ ²P	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right.$	$\left.\right\}$ 1292939+ x				2s ² 2p ² (³ P)6s	6s 4P		,	
$\overline{4d}$ $^2\mathrm{S}_1$	$2s^2 \ 2p^2(^1{ m D})4d$	4d′ 2S	1/2	1295321 + x		68	$^4\mathrm{P}_3$			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1380643	
5s ⁴ P ₂ ⁴ P ₃	$2s^2 \ 2p^2(^3{ m P})5s$	5s 4P	$egin{array}{c} rac{1/2}{1/2} \ 1\frac{1/2}{2} \ 2\frac{1/2}{2} \end{array}$	1317697 1318670	973	$\overline{5d}$	$^2\mathrm{F}$	$2s^2 \ 2p^2(^1{ m D})5d$	$5d'$ $^2\mathbf{F}$	$\left\{\begin{array}{l} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right\}$	$\left.\right $ 1381572+ x	
4s' 4S2	2s 2p ³ (⁵ S°)4s	4s''' 4S°	1½	1323609		$\overline{5d}$	$^{2}\mathrm{D}$	$2s^2 \ 2p^2(^1\mathrm{D})5d$	$5d'$ 2 D	$\left\{egin{array}{c} 1^{1}_{/2} \ 2^{1}_{/2} \end{array} ight.$	1383088 + x	
$\overline{\overline{4d}}$ ² D	$2s^2 \ 2p^2(^1{ m S})4d$	4 <i>d''</i> ² D	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	$\left.\right\} 1332285+x$		5d'	4D	2s 2p³(5S°)5d	5d''' 4D°	1/2 to 31/2	1463928	
4p' .4P	2s 2p ³ (⁵ S°)4p	4 <i>p'''</i> 4P	$\left\{\begin{array}{c} \frac{1}{2}\\ \text{to}\\ 2\frac{1}{2}\end{array}\right.$	1340950				Mg vii (3P ₀)	Limit		1507520	

February 1947.

Mg vi Observed Terms*

Config. $1s^2 +$				Observ	ed Terms			
$2s^2 \ 2p^3$	$\left\{\begin{array}{ccc} 2p^3 & {}^4\mathrm{S}^{\circ} \end{array}\right.$	$2p^3$ $^2\mathrm{P}^\circ$	$2p^3$ $^2\mathrm{D}^\circ$					
2s 2p4	$\left\{ \begin{array}{ccc} 2p^4 & {}^2\mathrm{S} \end{array} \right.$	$rac{2p^4}{2p^4}rac{4}{^2} ext{P}$	$2p^{4}$ ² D					
		ns $(n \ge 3)$		$np \ (n \ge 3)$		nd	$(n \ge 3)$	
$2s^2 \ 2p^2(^3P) nx$	{	3-6s ⁴ P 3, 4s ² P				3-5d 4P 3d ² P	3–5 <i>d</i> ⁴ D 3, 4 <i>d</i> ² D	3-5d ² F
$2s^2 \ 2p^2(^1\mathrm{D})nx'$			3, 4s′ ² D		3, 4d′ 2S	3, 4d′ ² P	3–5d′ ²D	3-5d′ ² F
$2s^2 \ 2p^2({}^1{ m S})nx''$	3s'' 2S						3, 4d'' ² D	
2s 2p ³ (⁵ S°)nx'''	3, 4s''' 4S°			3, 4p''' ⁴ P			3-5d''' ⁴ D°	
2s 2p ³ (³ D°)nx ^{1V}	{		$3s^{\mathrm{IV}}$ $^{4}\mathrm{D}^{\circ}$ $3s^{\mathrm{IV}}$ $^{2}\mathrm{D}^{\circ}$	$3p^{{\scriptscriptstyle { m IV}}}$ ${}^2{ m F}$	3d ^{IV} 4S°	3dIV 4P°	3d ^{IV} ⁴D°	3d ¹ 2F°
2s 2p ³ (³ P°)nx ^V	{	38 ^V 4P° 38 ^V 2P°						

^{*}For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

(C 1 sequence; 6 electrons)

Z = 12

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2$ 3P_0 1817734 cm⁻¹

I. P. 225.31 volts

Söderqvist has found 56 terms and classified 114 lines in this spectrum in the range 58 A to 434 A. He determines the relative values of the singlet, triplet, and quintet systems of terms from the series limits.

Söderqvist gives the quintet term $2p^3$ $^5S_2^\circ$ at 118134 cm⁻¹ above the ground state zero. From isoelectronic sequence data Robinson estimates this value as 118620 cm⁻¹. The later value has been used in the table and all quintet terms adjusted accordingly.

The uncertainties x and y may be considerable.

REFERENCES

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 32A, No. 19 p. 4 (1946). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T)

Mg VII Mg VII

Auth	or Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$\begin{array}{ccc} \hline 2p & ^3] \\ \hline & ^3] \\ & ^3] \\ \end{array}$	P_1	2p ² ³P	0 1 2	0 1127 2939	1127 1812	$\begin{array}{c c} 3d & ^3\mathrm{D_1} \\ & ^3\mathrm{D_2} \\ & ^3\mathrm{D_3} \end{array}$	2s² 2p(²P°)3d	3d 3D°	1 2 3	1191753 1192185 1193061	432 876
2p 1]	$egin{array}{c c} D_2 & 2s^2 \ 2p^2 \ S_0 & 2s^2 \ 2p^2 \end{array}$	$egin{array}{cccc} 2p^2 & {}^1\mathrm{D} \ 2p^2 & {}^1\mathrm{S} \end{array}$	0	41459 + x 85647 + x		$3d$ ${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	2s ² 2p(² P°)3d	3d 3P°	2 1 0	1196770 1197469 1197872	$ \begin{array}{r r} -699 \\ -403 \end{array} $
	$\mathbf{D_3} \mathbf{2_8} \mathbf{2p^3}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 3	118620+y 232865	-110	3s' ³ P ₀ ³ P ₁ ³ P ₂	2s 2p ² (*P)3s	3s ³P	0 1 2	1211173 1212055 1213679	882 1624
	$ \begin{bmatrix} D_2 \\ D_1 \end{bmatrix} $		2	232975 233027	-52	3d ¹ F ₃	2s ² 2p(² P°)3d	3d ¹F°	3	1212323+x	
2p' 3]	P $2s 2p^3$	$2p^3$ $^3\mathrm{P}^\circ$	2, 1, 0	27492 2		3d ¹ P ₁	2s ² 2p(² P°)3d	3d ¹P°	1	1213297 + x	
2p' 1]	D_2 2s $2p^3$	$2p^3$ $^1\mathrm{D}^\circ$	2	354923 + x		3p′ ⁵S₁	2s 2p ² (4P)3p	3p 3S°	1	1235329	
2p' 38 $2p'$ 1]		$egin{array}{cccc} 2p^3 & {}^3\mathrm{S}^{\circ} \ 2p^3 & {}^1\mathrm{P}^{\circ} \end{array}$	1 1	362128 397655 + x		3p' ³ D ₂ ³ D ₃	2s 2p ² (4P)3p	3p 3D°	1 2 3	1264827 1266076	1249
3]	$egin{array}{cccccccccccccccccccccccccccccccccccc$	38 3P°	0 1 2	1047624 1048385 1050906	761 2521	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$oxed{2s \ 2p^2(^4\mathrm{P})3p} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3p 3P° 3s' 3D	0, 1, 2	1276520 1285196	
38 1]	P ₁ 2s ² 2p(2P°)3s	3s ¹P°	1	1061534 + x		$\frac{3p'}{3p'}$ 3D	$\begin{vmatrix} 2s & 2p & (D) & 3p \\ 2s & 2p^2 & (^2D) & 3p \end{vmatrix}$	3p' 3D°	1, 2, 3	1299244	
3]	$egin{array}{cccc} {\sf P}_0 & {\sf 2s^2} \ 2p({}^2{\sf P}^\circ) \ 3p & {\sf P}_1 \ {\sf P}_2 & & & \end{array}$	3p 3P	0 1 2	1123745 1124937 1125850	1192 913	$\frac{3p}{3s'}$ $^{1}D_{2}$	$2s \ 2p^2(^2\mathrm{D})3s$	3s' ¹ D	2	1305806 + x	
	$\mathbf{F_2} = 2s^2 2p(^2\mathbf{P}^\circ) 3d$	3d ³F°	2 3 4	1178758+x		3d′ ⁵ D ₂₃	2s 2p ² (4P)3d	3d ⁵ D	0 1 2 3	$\left.\right\}$ 1317618+ y	
5]	$egin{array}{c cccc} P_1 & 2s & 2p^2(^4P)3s \\ P_2 & & & & \\ P_3 & & & & \\ \end{array}$	3s ⁵ P	1 2 3	$\begin{vmatrix} 1179696 + y \\ 1180484 + y \\ 1181963 + y^{\prime} \end{vmatrix}$	788 1479	$3d' \ ^{5}P_{2} \ ^{5}P_{1}$	2s 2p ² (4P)3d	3d 5P	$\begin{bmatrix} 4\\3\\2\\1\end{bmatrix}$	1323222+y $1323889+y$ $1324311+y$	$-667 \\ -422$
3d 1	D_2 2s ² 2 p (2P°)3 d	3d ¹D°	2	1181424+x		T ₁		1	1	2021011 9	

A	uthor	Config.	D	esig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
3d'	${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	2s 2p ² (4P)3d	3d	3P	2 1 0	1324975 1326033 1326568	-1058 -535	4s' ⁵ P ₃	2s 2p ² (4P)4s	4s ⁵ P	1 2 3	1549235+y	
3d'	${}^{3}F_{2}$ ${}^{3}F_{3}$ ${}^{3}F_{4}$	2s 2p ² (4P)3d	3d	3F	2 3 4	1333173 1334115 1335328	942 1213	$4p'$ $^3\mathrm{D}_3$	2s 2p ² (4P)4p	4p 3D°	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1579211	
$\overline{3p'}$	$^{1}\mathrm{F}_{3}$	$2s \ 2p^2(^2\mathrm{D})3p$	3p'	¹F°	3	1350497 + x		5d 3P	2s ² 2p(² P°)5d	5d ³P°	0, 1, 2	1597937	
3d'	$^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	2s 2p ² (4P)3d	3d	$^3\mathrm{D}$	1 2 3	1350626 1350948 1351359	322 411	$\begin{array}{ c c c c }\hline 4d' & {}^5\mathrm{P}_3 \\ & {}^5\mathrm{P}_2 \\ & {}^5\mathrm{P}_1 \\ \hline \end{array}$	2s 2p ² (4P)4d	4d ⁵ P	3 2 1	$\begin{vmatrix} 1600167 + y \\ 1600760 + y \\ 1601134 + y \end{vmatrix}$	-593 -374
$\overline{3p'}$	$^{1}\mathrm{D}_{2}$	$2s \ 2p^2(^2\mathrm{D})3p$	3p'	¹D°	2	1357681 + x		5d ¹ F ₃	2s ² 2p(² P°)5d	5d ¹F°	3	1600986 + x	
$\overline{3d'}$	$^3\mathrm{F}$	$2s 2p^2(^2\mathrm{D})3d$	3 <i>d</i> ′	$^3\mathrm{F}$	2, 3, 4	1414307		4d' 3F2	2s 2p ² (4P)4d	4d ³F	2	1604844	777
$\overline{3d'}$	3P	$2s \ 2p^2(^2\mathrm{D})3d$	3d'	³P	0, 1, 2	1420669		³ F ₃ ³ F ₄			$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	1605621 1606747	1126
$\overline{3d'}$	$^3\mathrm{D}_2$	$2s$ $2p^2(^2\mathrm{D})3d$	3d'	$^3\mathrm{D}$	1	1 4000 40		6d ³P	2s ² 2p(² P°)6d	6d ³P°	0, 1, 2	1665781	
3a	$^{3}\mathrm{D}_{3}^{2}$				3	1422040 1422614	574	$\overline{4d'}$ ${}^3{ m F}$	2s 2p ² (2D)4d	4d′ ³F	2, 3, 4	1695880	
$\overline{3d'}$	3S_1	$2s$ $2p^2(^2\mathrm{D})3d$	3d'	3S	1	1435724			2s 2p ² (4P)5p	5p 3D°	1		
$\overline{3d'}$	¹ F ₃	$2s \ 2p^2(^2\mathrm{D})3d$	3d'	$^{1}\mathbf{F}$	3	1438863 + x		$5p'$ $^3\mathrm{D}_3$			$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	1717734	
$\overline{3d'}$	$^{1}\mathrm{D}_{2}$	$2s \ 2p^2(^2\mathrm{D})3d$	3d'	$^{1}\mathrm{D}$	2	1439116 + x			2s 2p ² (4P)5d	5d ⁵ P	$\frac{1}{2}$		
4d	$^{1}\mathrm{D}_{2}$	$2s^2\ 2p(^2\mathrm{P}^\circ)4d$	4d	¹D°	2	1466102 + x		5d′ ⁵ P ₃			3	1727216 + y	
4d	$^{3}D_{2}$ $^{3}D_{3}$	2s² 2p(²P°)4d	4d	3D°	1 2 3	1469556 1470420	864	5d′ ³F ₄	2s 2p ² (4P)5d	5d 3F	2 3 4	1730140	
		2s ² 2p(² P°)4d	4d	³P°	0				2s 2p ² (4P)6d	6d ⁵ P	1		
4d	³ P ₂				$\frac{1}{2}$	1472144		6d′ ⁵ P ₃			3	1795 347 +y	
4d	¹ F ₃	2s ² 2p(² P°)4d	4d	1F°	3	1477931 + x							
4d	¹ P ₁	2s ² 2p(² P°)4d	4d	¹P°	1	1478676 + x			Mg vIII (2P.°)	Limit		1817734	

March 1948.

Mg vii Observed Terms*

Config. 1s ² +						Observed	d Terms					
2s ² 2p ²	$\left\{_{2p^2}\right{^{1}\mathrm{S}}$	$2p^2\ ^3\mathrm{F}$	$2p^{2}$ $^{1}\mathrm{D}$									
2s 2p³		$2p^{3}\ ^{3}\mathrm{F} \ 2p^{3}\ ^{1}\mathrm{F}$	$2p^{3} \ ^{3}D^{\circ}$ $2p^{3} \ ^{1}D^{\circ}$									
		ns (n≥ s	3)		np	(n≥3)			n d	! (n≥3)		
2s ² 2p(2P°)nx	{	3s ³P 3s ¹P	0		3p 3P				3-6d ³ P° 3, 4d ¹ P°	3, 4d ³ D° 3, 4d ¹ D°	$\begin{array}{ccc} 3d & ^{3}\\ 3-5d & ^{1} \end{array}$	F°
2s 2p ² (4P)nx	{	3, 4s ⁵ P 3s ³ P		3p 3S°	3p 3P°	3-5p ³D°			$^{5\mathrm{P}}_{3d}$	$\begin{array}{cc} 3d & ^5\mathrm{D} \\ 3d & ^3\mathrm{D} \end{array}$	3-5d ³	F
2s 2p2(2D)nx'	{		3s' ³ D 3s' ¹ D			$3p'$ $^3D^{\circ}$ $3p'$ $^1D^{\circ}$	3p′ ¹F°	3d′ ³S	3d′ ³P	$\frac{3d'}{3d'}$ D	$3, 4d' \stackrel{3}{3}d' \stackrel{1}{1}$	F

^{*}For predicted terms in the spectra of the C1 isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z = 12

Ground state 1s² 2s² 2p ²P_½

2p ²P_{1/2} 2145679 cm⁻¹

I. P. 265,957 volts

The analysis is by Söderqvist, who has classified 118 lines, all but 9 of which lie between 52A and 97 A. He remarks that the term values of $2p^3$ ²P° and $2p^3$ ²D° need further confirmation, since no combination of these terms with the doublets of the $2p^2$ configuration have been observed. These two terms and those calculated from combinations with them may require a slight adjustment but they are not seriously in error, as compared with the errors of measurement. Apparently the values extrapolated from the law of irregular doublets and those obtained from observed combinations confirm the terms fairly well.

The absolute values of the doublet terms are well determined from the nd ²D series and nd ²F° series, both of which extend to n=5.

The absolute values of the quartet terms are obtained from the nd ⁴D° series (n=3, 4, 5). No intersystem combinations have been observed, and a small correction x may be needed to connect the doublet and quartet terms.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 13 (1944). (I P) (T) (C L)

Mg VIII Mg VIII

	uthor	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.		Level	Interval
		Comig.	Desig.				Author	Coning.	Desig.			
2p	${}^{2}P_{1}$ ${}^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	2p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 3304	3304	3p′ ² S ₁	2s 2p(3P°)3p	3 <i>p</i> ² S	1/2	1460911	
2p'	$^{4}P_{1}$ $^{4}P_{2}$ $^{4}P_{3}$	2s 2p²	2p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{r} 130598 + x \\ 131763 + x \\ 133481 + x \end{array} $	1165 1718	3d' ⁴ D ₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)3d	3 <i>d</i> ⁴ D°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{ c c c c c c }\hline 1476964+x \\ 1477341+x \\ 1478182+x \\ \hline \end{array}$	377 841
2p'	$^2\mathrm{D_3} \\ ^2\mathrm{D_2}$	2s 2p ²	$2p^2$ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	232281 232304	-23	$\begin{array}{c c} 3d' & {}^2\mathrm{D}_2 \\ & {}^2\mathrm{D}_3 \end{array}$	2s 2p(3P°)3d	3d ²D°	1½ 2½	1478358 1478706	348
2p'	$^2\mathrm{S}_1$	$2s \ 2p^2$	$2p^2$ 2S	1/2	298283		3d′ 4P ₃	2s 2p(3P°)3d	3d 4P°	$\frac{2\frac{1}{2}}{2}$	1484449+x	-704
2p'	${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p²	$2p^2$ $^2\mathrm{P}$	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	318747 320742	1995	⁴ P ₂ ⁴ P ₁			1 1/2 1/2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-486
$2p^{\prime\prime}$	4S ₂	$2p^3$	$2p^3$ $^4\mathrm{S}^\circ$	1½	414380+x		38' 2P	2s 2p(1P°)3s	38′ 2P°	$\left\{\begin{array}{c} \frac{1}{1} \\ 1 \frac{1}{2} \end{array}\right.$	1486995	
$2p^{\prime\prime}$	$^{^{2}\mathrm{D_{3}}}_{^{2}\mathrm{D_{2}}}$	2p³	$2p^3$ $^2\mathrm{D}^\circ$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	465598 465738	-140	$3d' {}^{2}{}^{2}{}^{3}{}^{2}{}^{4}$	2s 2p(3P°)3d	3d ²F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1504992 1507043	2051
2p''	$^{'}{}_{^{2}P_{2}}^{^{2}P_{1}}$	$2p^3$	$2p^3$ $^2\mathrm{P}^\circ$	11/2	524339 524486	147	3d′ ² P ₂ ² P ₁	2s 2p(3P°)3d	3d ²P°	11/2 1/2	1513099 1514266	-1167
38	$^2\mathrm{S}_1$	2s ² (¹ S)3s	3s ² S	1/2	1210689		$\overline{3p'}$ ${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s 2p(1P°)3p	$3p'$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1548027 1548851	824
3d	$^2\mathrm{D}_2^{}$ $^2\mathrm{D}_3^{}$	$2s^2(^1\mathrm{S})3d$	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1335863 1336033	170	$\overline{3p'}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(1P°)3p	3p′ ²P	1½ 1½ 1½	1549955 1550564	609
3s'	$^{4}P_{1}$ $^{4}P_{2}$ $^{4}P_{3}$	2s 2p(3P°)3s	3s 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1352123 + x $1353279 + x$ $1355296 + x$	1156 2017	$\overline{3p'}$ ² S ₁	2s 2p(¹P°)3p	3p′ 2S	1/2	1556517	
38′	${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(3P°)3s	3s ² P°	$\frac{1}{2}$ $1\frac{1}{2}$	1381466 1383731	2265	3s'' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2p ² (³ P)3s	3s'' 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{r} 1588737 + x \\ 1589965 + x \\ 1591973 + x \end{array} $	1228 2008
3p'	$^{2}_{^{2}\mathrm{P}_{2}}^{1}$	2s 2p(3P°)3p	3p 2P	1½ 1½	1408371 1409401	1030	$\overline{3d'}$ ² F	2s 2p(¹P°)3d	3d′ ² F°	$\left\{egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	}1597469	
3p'	$^2\mathrm{D}_2$	2s 2p(3P°)3p	3p ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1440561 1442836	2275	$\overline{3d'}$ $^{2}D_{2}$ $^{2}D_{3}$	2s 2p(¹P°)3d	$3d'$ $^2\mathrm{D}^\circ$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1607872 1608224	

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
	2s 2p(1P°)3d	3d′ ²P°	$\begin{bmatrix} \frac{1}{2} \\ 1\frac{1}{2} \end{bmatrix}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4s' ⁴ P ₃	2s 2p(3P°)4s	4s ⁴ P°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	1769549+x	
38″ ²D	$2p^2(^1\mathrm{D})3s$	3s''' ² D	$\left\{\begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	}1638646		$4p'$ $^2\mathrm{P}_2$	2s 2p(3P°)4p	4p 2P	1/2 1/2 1/2	1814176	
9// AT	$2p^2(^3\mathrm{P})3p$	3 <i>p</i> ′′ ⁴D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	16/2050 ~		$4p'$ $^2\mathrm{D}_3$	2s 2p(3P°)4p	$4p$ 2 D	$\begin{array}{ c c c c }\hline & 1\frac{1}{2} \\ & 2\frac{1}{2} \\ \end{array}$	1825262	
$3p'' \ ^{4}D_{4}$ $4s \ ^{2}S_{1}$	$2s^{2}({}^{1}\mathrm{S})4s$	4s ² S	1/2	$ \begin{array}{c c} 1647050 + x \\ 1647879 \end{array} $		4d′ 2D	2s 2p(3P°)4d	4d ² D°	$\left\{ egin{array}{l} 1\frac{1}{2} \ 2\frac{1}{2} \end{array} ight.$	31837649	
3p'' 4P ₃	$2p^2(^3\mathrm{P})3p$	3p′′ ⁴P°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	1653061+x		4d′ 4D	2s 2p(3P°)4d	4d ⁴ D°	$\begin{cases} \frac{1/2}{to} \\ \frac{31/2}{2} \end{cases}$	$\left.\right\} 1838017+x$	
3p'' 4S ₂	$2p^2(^3\mathrm{P})3p$	3p'' 4S°	1½	1674774+x		4d′ 4P	2s 2p(3P°)4d	4d 4P°	$\begin{cases} \frac{1}{2} \\ \text{to} \end{cases}$	${1840084+x}$	
3 <i>p</i> ′′ ²F	$2p^2(^1\mathrm{D})3p$	3p''' 2F°	$\left\{egin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} ight.$	1691070		4d′ ² F ₃	2s 2p(3P°)4d	4 <i>d</i> ² F°	21/2	1846146	10-6
$^{2}D_{2}$ $^{2}D_{3}$	$2s^2(^1\mathrm{S})4d$	dd ² D	$\begin{array}{ c c c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1693824 1693835	11	² F ₄			2½ 3½	1848025	1879
3d'' 2F4	$2p^2(^3\mathrm{P})3d$	3d'' ² F	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	1701860		$\begin{array}{c c} 5d & {}^2\mathrm{D}_2 \\ & {}^2\mathrm{D}_3 \end{array}$	$2s^2(^1S)5d$	$5d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1858322 1858419	97
3 <i>d''</i> ² D	$2p^2(^3\mathrm{P})3d$	3d'' ² D	$\left\{\begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	1703243?		4d′ ²F	2s 2p(1P°)4d	4d′ ²F°	$\left\{ egin{array}{l} 2\frac{1}{2} \ 3\frac{1}{2} \end{array} ight.$	}1964303?	
$\overline{3p''}$ ² D	$2p^2(^1\mathrm{D})3p$	3p''' ² D°	$ \begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $	}1708860		4d′ ²D	2s 2p(1P°)4d	4 <i>d′</i> ² D°	$\left\{ \begin{array}{l} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	}1968694?	
3d'' ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	$2p^2(^3\mathrm{P})3d$	3d'' 4P	2½ 1½ ½	$\begin{vmatrix} 1716667 + x \\ 1717481 + x \\ 1717923 + x \end{vmatrix}$	-814 -442	5d′ 4D	2s 2p(3P°)5d	5d 4D°	$\begin{cases} \frac{1/2}{10} \\ \text{to} \\ 3\frac{1}{2} \end{cases}$	$\left. \right \left. \right \left. \right 2002221 + x \right $	
3d" 2D	$2p^2(^1\mathrm{D})3d$	3d''' ² D	$\left\{ \begin{array}{c} 72 \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right.$	1717925+2		$^{2}{ m F_{3}}$ $^{2}{ m F_{4}}$	2s 2p(3P°)5d	5d ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	2005261 2006652	1391
3d'' ₂F	$2p^2(^1\mathrm{D})3d$	3d''' ² F	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	} } } 1751987			$2p^2(^3\mathrm{P})4p$	4p'' 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$		
$\overline{3d^{\prime\prime}}$ $^{2}P_{1}$ $^{2}P_{2}$	$2p^2(^1\mathrm{D})3d$	3d''' ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1754593 1755558	965	4p'' 4D4	Mg IX (¹ S ₀)	Limit	3½	2042060+x 2145679	

October 1946.

Mg vIII OBSERVED TERMS*

$\frac{\text{Config.}}{1s^2+}$				Observed Terms						
$2s^2(^1\mathrm{S})2p$		2p 2P°								
$2s$ $2p^2$	$\left\{ \begin{array}{cc} & & & \\ & 2p^2 \ ^2\mathrm{S} \end{array} \right.$	$rac{2p^2}{2p^2} rac{4}{2} ext{P}$	$2p^{z-2}\mathrm{D}$							
$2p^3$	$\left\{ -2p^{3}\ ^{4}\mathrm{S}^{\circ} ight.$	2p³ 2P°	2p³ 2D°							
		$ns (n \ge 3)$		$np \ (n \ge 3)$			nd ($n \ge 3$)		
$2s^2(^1\mathrm{S})nx$	3, 4s ² S						3–5 <i>d</i>	$^2\mathrm{D}$		
2s 2p(3P°)nx	{	3, 4s ⁴ P° 3s ² P°		$oxed{3p^{-2}S^{-3}, 4p^{-2}P^{-3}, 4p^{-2}D}$	3, 4 <i>d</i> 3 <i>d</i>	4P°	3-5d 3, 4d	⁴ D° ² D°	3– $5d$	$^2\mathrm{F}^{\circ}$
2s 2p(1P°)nx′		38′ 2P°		3p' ² S $3p'$ ² P $3p'$ ² D	3d'	2P°	3, 4d'	² D°	3, 4 <i>d</i> ′	2 F
$2p^2(^3\mathrm{P})nx''$	{	3s'' 4P		3p'' 4S° 3p'' 4P° 3, 4p'' 4D°	3d'	′ 4P	3d''	$^2\mathrm{D}$	3d''	² F
$2p^2(^1\mathrm{D})nx'''$			3 s''' ² D	. $3p^{\prime\prime\prime}~^2\mathrm{D}$ ° $3p^{\prime\prime\prime}~^2\mathrm{F}$ °	3 d'	′′ 2P	3d'''	² D	3 d'''	$^{2}\mathrm{F}$

^{*}For predicted terms in the spectra of the B $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Be I sequence; 4 electrons)

Z = 12

Ground state 1s² 2s² ¹S₀

282 1So 2645444 cm-1

I. P. 327.90 volts

Sixty-five lines have been classified by Söderqvist. All but three lie in the range between 46 A and 91 A. No intersystem combinations are known, but the absolute term values are determined from series that are fairly well established. The relative uncertainty, x, is probably a few hundred cm⁻¹.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11 p. 8 (1944). (I P) (T) (C L)

Mg IX

Mg IX

			1/15 12						1,19 111			
Au	thor	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2s 2p	¹ S ₀ ³ P ₀	$2s^2$ $2s(^2\mathrm{S})2p$	2s ² ¹ S 2p ³ P°	0	0 140786+x	1162	$3d'$ ${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{0}$	2p(2P°)3d	3d ³P°	2 1 0	1815552 + x $1816534 + x$ $1817062 + x$	-982 -528
	${}^{3}P_{1}^{1}$ ${}^{3}P_{2}^{2}$			$egin{array}{c} 1 \ 2 \end{array}$	141948 + x $144420 + x$	2472	3d′ ¹F ₃	2p(2P°)3d	3d ¹F°	3	1834337	
2p	¹ P ₁	$2s(^2\mathrm{S})2p$	2p ¹P°	1	271687		3d′ ¹P₁	2p(2P°)3d	3d ¹P°	1	1841286	
2p'	${}^{3}P_{0}$ ${}^{3}P_{1}$	$2p^2$	$2p^2$ $^3\mathrm{P}$	0	366194+x $367493+x$	1299	4p ¹ P ₁	2s(2S)4p	4p ¹P°	1	2068680	
	$^{3}P_{2}^{1}$			$\stackrel{1}{2}$	369650 + x	2157	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2s(2S)4d	$4d$ $^3\mathrm{D}$	$\frac{1}{2}$	2080274+x $2080328+x$	54
2p'	$^{1}\mathrm{D}_{2}$	$2p^2$	$2p^{2-1}\mathrm{D}$	2	404744		$^{3}D_{3}^{2}$			3	2080378 + x	50
2p'	$^{1}S_{0}$	$2p^2$	$2p^2$ ¹ S	0	499444		$4d$ $^{1}\mathrm{D_{2}}$	2s(2S)4d	4d ¹D	2	2087888	
38	3S_1	2s(2S)3s	38 3S	1	1532749+x			$2p(^2\mathrm{P}^\circ)4p$	$4p$ $^3\mathrm{D}$	$\frac{1}{2}$		
38	$^{1}S_{0}$	2s(2S)3s	38 ¹ S	0	1558076		$4p'$ $^3\mathrm{D_3}$			3	2230056+x	
3p	¹ P ₁	$2s(^2\mathrm{S})3p$	3p ¹P°	1	1593600			$2p(^2\mathrm{P}^\circ)4p$	4p 3P	0		
3d	$^{3}D_{1}$ $^{3}D_{2}$	2s(2S)3d	$3d$ $^3\mathrm{D}$	$\frac{1}{2}$	$ \begin{array}{r} 1631321 + x \\ 1631484 + x \end{array} $	163	$4p'$ $^3\mathrm{P}_2$			$\frac{1}{2}$	2235683	
	$^3D_3^2$			3	1631652 + x	168	$4d'$ $^{1}\mathrm{D}_{2}$	2p(2P°)4d	4d ¹D°	2	2240853	
3d	$^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})3d$	3 <i>d</i> ¹ D	2	1654583		$4p'$ $^{1}\mathrm{D}_{2}$	$2p(^2\mathrm{P}^\circ)4p$	4p ¹D	2	2241083	
38′	${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$	2p(2P°)3s	3s ³P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	1710478 + x 1711572 + x 1714105 + x	1094 2533	$4d'$ $^3\mathrm{D}_3$	2p(2P°)4d	4d ³D°	1 2 3	2248572+x	
3s'	¹ P ₁	2p(2P°)3s	3s 1P°	1	1742772		4d′ ³P ₂	2p(2P°)4d	4d ³P°	2	2249773+x	
3p'	$^{1}P_{1}$	$2p(^2\mathrm{P}^\circ)3p$	3p ¹P	1	1748116					0		
3p'	$^{3}D_{1}$ $^{3}D_{2}$	2p(2P°)3p	$3p$ $^3\mathrm{D}$	$\frac{1}{2}$	1755785 + x	1018	4d′ ¹F ₃	2p(2P°)4d	4d ¹F°	3	2256219	
	$^3\mathrm{D}_3^2$			3	1756803 + x $1759303 + x$	2500	4d′ ¹P₁	2p(2P°)4d	4d ¹P°	1	2258119	
3p'	$^3\mathrm{S}_1$	$2p(^2\mathrm{P}^\circ)3p$	$3p$ $^3\mathrm{S}$	1	1770688+x		$5d$ $^3\mathrm{D}$	$2s(^2\mathrm{S})5d$	$5d$ $^3\mathrm{D}$	1, 2, 3	2285243+x	
3p'	${}^{3}P_{0}$ ${}^{3}P_{1}$	$2p(^2\mathrm{P}^\circ)3p$	$3p$ $^3\mathrm{P}$	$0 \\ 1$	1777886 + x	1117	$5d$ $^{1}\mathrm{D}_{2}$	$2s(^2\mathrm{S})5d$	5 <i>d</i> ¹ D	2	2288385	
	$^{3}P_{2}^{1}$			$\overset{1}{2}$	$ \begin{vmatrix} 1779003 + x \\ 1780315 + x \end{vmatrix} $	1312	5d′ ³D, ³P	$2p(^2\mathrm{P}^\circ)5d$	5d 3P°,3D°	0 to 3	2451942+x	
3d'	$^{1}\mathrm{D}_{2}$	2p(2P°)3d	3 <i>d</i> ¹ D°	2	1789287		5d′ ¹F ₃	2p(2P°)5d	5d ¹F°	3	2454176	
3p'	$^1\mathrm{D}_2$	$2p(^2\mathrm{P}^\circ)3p$	$3p$ $^{1}\mathrm{D}$	2	1795868							
3d'	$^{3}D_{1}$ $^{3}D_{2}$ $^{3}D_{3}$	2p(2P°)3d	3d ³ D°	1 2 3	$ \begin{array}{r} 1807694 + x \\ 1808187 + x \\ 1809182 + x \end{array} $	493 995		Mg x (2S ₁₄)	Limit		2645444	

May 1946.

Mg IX OBSERVED TERMS*

Config. 1s ² +					Observed	Terms			
$2s^2$ $2s(^2\mathrm{S})2p$	2s ² ¹ S	2p ³ P° 2p ¹ P°							
$2p^2$	$\left\{_{2p^2}\right{\mathrm{1S}}$	$2p^2$ $^3\mathrm{P}$	$2p^2$ ¹ D						
		$ns \ (n \ge 3)$			$np \ (n \ge 3)$			$nd \ (n \ge 3)$	
$2s(^2\mathrm{S})nx$	$\begin{cases} 3s & {}^{3}S \\ 3s & {}^{1}S \end{cases}$				3, 4p ¹ P°			$^{3-5d}_{3-5d}^{^{3}{ m D}}_{1}$	
$2p(^2\mathrm{P}^\circ)nx$	{	3s ³ P° 3s ¹ P°		3p 3S	$^{3, 4p ^{3}P}_{3p ^{1}P}$	$^{3, 4p ^{3}\mathrm{D}}_{3, 4p ^{1}\mathrm{D}}$	3–5d ³ P° 3, 4d ¹ P°	$_{3,4d}^{3}^{1}\mathrm{D}^{\circ}$	3-5 <i>d</i> ¹ F°

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

Mg X

(Li 1 sequence; 3 electrons)

Z = 12

Ground state 1s2 2s 2S1/2

28 2S_{1/2} 2963810 cm⁻¹ ·

I. P. 367.36 volts

The present analysis results from the classification of nine lines in the region 65 A to 44 A. The transition 2s ^2S-2p $^2P^\circ$ has not been reported. The predicted positions of these lines are at 625 A and 609 A.

Some of the relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

J. Söderqvist, Ark. Mat. Astr. Fys. (Stockholm) 30A, No. 11, p. 3 (1944). (I P) (T) (C L)

Mg x

Author	Config.	Desig.	J	Level	In- ter- val
2s 2S1	28	2s 2S	1/2	0	
$2p {}^{2}P_{1} \ {}^{2}P_{2}$	2p	2p 2P°	1½ 1½	159929 163976	4047
38 2S1	38	3s 2S	1/2	1682648	
3p ² P ₁ ² P ₂	3p	3p 2P°	1½	1726519 1727832	1313
$3d_{^{2}\mathrm{D}_{2}}^{^{2}\mathrm{D}_{3}}$	3d	3d ² D	1½ 2½	1743410 1743880	470
4p ² P _{2,1}	4p	4p 2P°	{ ½ 1½ 1½	2270148	
$4d\ ^{2}\mathrm{D}_{2}^{2}$ $^{2}\mathrm{D}_{3}^{2}$	4d	4d ² D	1½ 2½	2277182 2277694	512
	Mg x1 (¹S₀)	Limit		2963810	

May 1946.

Mg XI

(He I sequence; 2 electrons)

Z = 12

Ground state 1s2 1S0

 $1s^2$ 1S_0 14209200 \pm 2500 cm⁻¹

I. P. 1761.23 ± 0.31 volts

Flemberg has observed the four leading lines in this spectrum; they lie between 7 A and 9 A. He has calculated absolute term values on the assumption that the P-terms can be represented by a Ritz formula. The fourth line appeared on only one plate and was not used in the calculation of the limit.

The unit adopted by Flemberg, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18, p. 34 (1942). (I P) (T) (C L)

Mg XI

Config.	Desig.	J	Level
1s2	1s ² ¹S	0	0
1s 2p	2p ¹P°	1	10907300
1s 3p	3p ¹P°	1	12738400
1s 4p	4p ¹P°	1	13381100
1s 5p	5p ¹P°	1	13680600
Mg XII (2S14)	Limit		14209200

October 1946.

ALUMINUM

Al I

13 electrons

Z = 13

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\frac{1}{2}}^{\circ}$

3p 2P^o_{1/2} 48279.16 cm⁻¹

I. P. 5.984 volts

The earlier analysis has been extended by Paschen and Ritschl, who have derived improved term values and extended the observations in the infrared and ultraviolet.

The terms $3p^2$ ²P and $3p^2$ ²S have been suggested by Bowen and Millikan and by Selwyn, respectively. The only combinations are with 3p ²P°.

Paschen discusses the possibility that the term here called 3d ²D may be 3p ²D, in which case all subsequent members of the ²D series must have n decreased by one unit.

Intersystem combinations connecting the doublet and quartet terms have been observed.

REFERENCES

- A. Fowler, Report on Series in Line Spectra, p. 156 (Fleetway Press, London, 1922). (T) (C L)
- I. S. Bowen and R. A. Millikan, Phys. Rev. 26, 160 (1925). (CL)
- E. W. H. Selwyn, Proc. Phys. Soc. (London) 41, Part 4, No. 229, 402 (1929). (C L)
- F. Paschen, Ann. der Phys. [5] 12, 516 (1932). (T) (C L)
- F. Paschen und R. Ritschl, Ann. der Phys. [5] 18, 886 (1933). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Al I

Al I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	0. 00 112. 04	112. 04	3s ² (¹S)4d	4 <i>d</i> ² D	1½ 2½	38929. 42 38933. 96	4. 54
$3s^2(^1\mathrm{S})4s$	4s 2S	1/2	25347. 69		$3s^2(^1\mathrm{S})5p$	5 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	40271. 98 40277. 92	5 . 94
3s 3p²	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	29020. 32 29066. 90 29142. 68	46. 58 75. 78	$3s^2(^1\mathrm{S})4f$	4f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 41318.74	
$3s^2(^1S)3d$	$3d$ $^{2}\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	32435. 45 32436. 79	1. 34	3s ² (¹S)6s	6s ² S	1/2	42144. 84	
3s ² (¹S)4p	4p 2P°	1/2 1/2	32949. 84 32965. 67	15. 83	$3s^2(^1\mathrm{S})5d$	5 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	42233. 72 42237. 71	3. 99
$3s^2(^1{ m S})5s$	5s ² S	1/2	37689. 32		$3s^2(^1S)6p$	6p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	43334. 95 43337. 77	2. 82

Al I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1{ m S})5f$	5f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 43831.08		3s 3p ²	3p ² ² S	1/2	51753. 0?	
$3s^2(^1\mathrm{S})6d$	6 <i>d</i> ² D	1½ 2½	44166. 48 44168. 88	2. 40	3s 3p ²	3p ² ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	56643. 0? 56 7 2 7 . 3?	84. 3
3s ² (¹ S) 7s	7s 2S	1/2	44273. 16		3s 3p(3P°)4s	4s 4P°	$egin{array}{c} rac{1}{2} \\ 1 rac{1}{2} \\ 2 rac{1}{2} \end{array}$	61691. 29 61747. 38	56. 09 96. 0 3
$3s^2(^1\mathrm{S})7p$	7p 2P°	1½ 1½	44928. 4 44930. 4	2. 0	3s 3p(3P°)3d	3 <i>d</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	61843. 41 67635. 3	27. 9
$3s^2(^1\mathrm{S})6f$	6f ² F°	$\left\{egin{array}{c} 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	} 45194.65		3s 3p(3P°)3d	3d ² P°	$\frac{2\frac{1}{2}}{\frac{1}{2}}$	67663. 2 71184. 7?	-76. 0
$3s^2(^1\mathrm{S})7d$	7d 2D	1½ 2½	45344. 16 45345. 60	1. 44	3s 3p(3P°)3d	3 <i>d</i> 4D°		71260. 7 71235. 63	8. 75
3s ² (¹ S)8s	8s 2S	1/2	45457. 27				$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	71244. 38 71260. 78 71286. 27	16. 40 25. 49
3s ² (¹ S)7f	7f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	46015. 73		3s 3p(3P°)3d	3d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	72203. 77 72250, 29	-46. 52
3s ² (¹ S)8d	8 <i>d</i> ² D	1½ 2½	46093. 9 46094. 27	0. 4	3s 3p(3P°)5s	5s ² P°		72277. 68 72979. 0	-27.39
3s ² (¹ S)9s	9s 2S	1/2	46184. 5		38 3p(°1)58	98 -1	$1\frac{1}{2}$	73077. 9	98. 9
$3s^2(^1S)9d$	9 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	46593. 28 46593. 83	0. 55	3s 3p(3P°)4d	4 <i>d</i> ² P°	$1\frac{1}{2}$	76521. 8 76553. 7	31. 9
3s ² (¹ S) 10s	10s 2S	1/2	46665. 7		3s 3p(3P°)6s	6s ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	78612. 5 78710. 5	98. 0
$3s^2(^1\mathrm{S})10d$	10d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	46942. 3		3s 3p(3P°)5d	5d ² F°	2½ 3½	80158. 0 80191. 9	33. 9
3s ² (¹ S)11d	11d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	} 47192. 0				372	00191.9	
Al 11 (1S ₀)	Limit		48279.16						1

August 1947.

Ali Observed Terms*

Config. $1s^2 2s^2 2p^6 +$		Observed Terms									
$3s^{2}(^{1}S)3p$ $3s\ 3p^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$										
	$ns (n \ge 4)$	$np \ (n \ge 4)$	$nd \ (n \ge 3)$	$nf (n \ge 4)$							
3s ² (¹ S)nx	4-10s ² S	4-7p 2P°	3–11 <i>d</i> ² D		4-7f ² F°						
3s 3p(3P°)nx	4s 4P° 5, 6s 2P°		3d ⁴ P° 3, 4d ² P° 3d ² D°	5d ² F°							

^{*}For predicted terms in the spectra of the Al $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 13

Ground state 1s² 2s² 2p⁶ 3s² ¹S₀

 $3s^2$ 1S_0 151860.4 \pm 0.5 cm⁻¹

I. P. 18.823 volts

Sawyer and Paschen published a detailed analysis in 1927, from which most of the terms have been taken. Since then some revisions and extensions have been made, especially regarding the terms from the 2 P° limit in Al III. The spectrum of Al II furnishes an excellent illustration of perturbed series and consequently is discussed in a number of theoretical papers on this subject. For example, Shenstone and Russell remark that one of the two lowest 1 D terms should be $3p^2$ 1 D. In accordance with their suggestions the terms labeled by Sawyer and Paschen 3 1 D, 7 3 F, and 12 1 P are here designated $3p^2$ 1 D, 3d 3 F°, and 4s 1 P°?, respectively. These changes cause a decrease of one unit in the published values of n for all following series members in each of the three series.

In the 1927 paper the higher series members of the ³P and ³D series are assigned the *J*-values of the leading components (2 and 3, respectively). As the term intervals are known to be small, all three *J*-values for each term are entered in the table on the assumption that the terms are unresolved.

In 1933 Paschen and Ritschl published the detailed hyperfine structure separations they observed for a number of the components of triplet terms. From this paper the three new H-terms have been taken, and also slightly improved values of the terms 4s 1 S, 6s 3 S, 8p 3 P°, 5f 1 F°, and 5g 1 , 3 G. It has been assumed that the singlet and triplet G-terms and also the singlet and triplet H-terms are coincident, since no multiplicities are assigned to them. Van Vleck and Whitelaw give the theoretical explanation of this for the G-terms.

Intersystem combinations connecting the singlet and triplet systems of terms have been observed.

REFERENCES

- R. A. Sawyer und F. Paschen, Ann. der Phys. [4] 84, 1 (1927). (I P) (T) (C L)
- F. Paschen, Ann. der Phys. [5] 12, 509 (1932). (T) (C L)
- A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 427 (1932). (T)
- F. Paschen und R. Ritschl, Ann. der Phys. [5] 18, 872 (1933). (T) (C L) (hfs)
- J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 551 (1933).
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

Al II Al II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	382 1S	0	0. 0		$3s(^2\mathrm{S})4p$	4p 3P°	0	105424. 3 105438. 4	14. 1 29. 3
$3s(^2\mathrm{S})3p$	3p 3P°	0 1	37392. 0 37453. 8	61. 8			2	105467. 7	29. 5
		1 2	37579.3	125. 5	$3s(^2S)4p$	4p ¹ P°	1	106918. 2	
$3s(^2\mathrm{S})3p$	3p ¹P°	1	59849. 7		$3s(^2\mathrm{S})3d$	3d ¹D	2	110087. 5	
$3p^2$	$3p^{2}$ ¹ D	2	85479. 0		3s(2S)5s	5s 3S	1	120089. 8	
3s(2S)4s	4s 3S	1	91271. 2		3s(2S)5s	5s ¹S	0	121365. 2	
$3p^2$	3p ² ³ P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	94084. 5 94146. 8 9426 7. 7	62. 3 120. 9	$3s(^2\mathrm{S})4d$	4d ³D	3 2 1	121480. 3 121480. 9 121481. 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$3s(^2S)4s$	4s 1S	0	95348. 2		$3s(^2\mathrm{S})4f$	4f ³F°	$\frac{2}{3}$	123415.9	2. 1
$3s(^2S)3d$	$3d$ ^{3}D	3	95546. 8	-1.1			3 4	123418. 0 123420. 8	2. 1 2. 8
		$\frac{2}{1}$	95547. 9 95548. 8	-0. 9	3s(2S)4f	4f 1F°	3	123468. 1	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interva
$3\mathfrak{s}(^2\mathrm{S})4d$	4d ¹D	2	124792. 0		3s(2S)9s	9s ² S	1	144524.3	
$3s(^2\mathrm{S})5p$	5p 3P°	0	125700. 5	5. 7	$3s(^2\mathrm{S})8d$	8d 3D	3, 2, 1	144638. 9	
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	125706. 2 125719. 0	12. 8	3s(2S)9s	98 1S	0	144641. 9	
$3s(^2\mathrm{S})5p$	5p ¹P°	1	125866.7		$3s(^2\mathrm{S})8d$	8d ¹D	2	144780. 2	
3s(2S)6s	6s 3S	1	132213. 2		$3s(^2\mathrm{S})8f$	8f ¹F°	3	144781.9	
3s(2S)6s	6s ¹S	0	132776. 4		$3s(^2\mathrm{S})9p$	9p ¹P°	1	144939. 1	
$3s(^2\mathrm{S})5d$	5d 3D	3	132819. 7	-0.2	$3s(^2\mathrm{S})8g$	8g ³G	3, 4, 5	144964. 7	
O (00) #4	F 4 2770	2, 1	132819. 9		$3s(^2\mathrm{S})8g$	8g ¹G	4	144964. 7	
$3s(^2\mathrm{S})5f$	5f ³F°	2 3	133435. 0 133440. 4	5. 4 6. 9	$3s(^2S)8h$	8h ³H°	4, 5, 6	144990.0	
o (00) #4	74.170	4	133447.3		$3s(^2\mathrm{S})8h$	8h ¹H°	5	144990. 0	
3s(2S) 5f	5f 1F°	3	133679.3		$3s(^2\mathrm{S})8f$	8f 3F°	2	145126. 5	2
3s(2S)5d	5d ¹D	2	133914. 1				3 4	145128.9 145132.1	2. 3.
3s(2S)5g	5g 3G	3, 4, 5	134181. 2		$3p(^2\mathrm{P}^\circ)3d$	3d ³D°	1, 2	145148	
$3s(^2S)5g$	5g ¹G	4	134181. 2		0. (00) 0	0.0700	3	145152	
$3s(^2S)6p$	6p 1P°	1	134917.3		$3s(^2S)9p$	9p 3P°	0, 1, 2	145185?	
$3s(^2\mathrm{S})6p$	6p 3P°	$egin{bmatrix} 0 \ 1 \ 2 \ \end{bmatrix}$	135009. 0 135012. 1 135018. 9	3. 1 6. 8	$3p(^2\mathrm{P^o})4$ 8	48 ³ P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	145773. 9 145832. 6 145959. 4	58. 126.
$3s(^2\mathrm{S})7s$	7s 3S	1	138496. 7		$3s(^2\mathrm{S})10s$	10s 3S	1	146108. 8	
$3s(^2\mathrm{S})6f$	6f ³F°	2 3	138518.7	17. 7	$3s(^2\mathrm{S})9d$	9d ³D	3, 2, 1	146185. 0	
		4	138536. 4 138559. 2	22. 8	$3s(^2\mathrm{S})10s$	10s ¹S	0	146190. 1	
$3s(^2S)7s$	78 ¹S	0	138799. 3		$3s(^2\mathrm{S})9d$	9d ¹D	2	146274. 4	
$3s(^2\mathrm{S})6d$	6d 3D	3, 2, 1	138811. 9		$3s(^2\mathrm{S})9f$	9f ¹F°	3	146276.5	
$3s(^2S)6f$	6f ¹F°	3	139242.9		$3s(^2\mathrm{S})10p$	10p ¹P°	1	146297.5	
$3s(^2\mathrm{S})6d$	6d ¹D	2	139286. 8		$3s(^2\mathrm{S})9g$	9g ³G	3, 4, 5	146414. 5	
$3s(^2S)6g$	6g 3G	3, 4, 5	139588. 7		$3s(^2\mathrm{S})9g$	9g ¹G	4	146414. 5	
$3s(^2\mathrm{S})6g$	6g ¹G	4	139588. 7		$3s(^2\mathrm{S})9h$	9h ³H°	4, 5, 6	146432.8	
$3s(^2\mathrm{S})7p$	7p 1P°	1	139916.7		$3s(^2\mathrm{S})9h$	9h ¹H°	5	146432.8	
$3s(^2\mathrm{S})7p$ $3p(^2\mathrm{P}^\circ)3d$	7p 3P° 3d 3F°	0, 1, 2	140091. 2 141082. 4		$3s(^2\mathrm{S})9f$	9f ³F°	$\frac{2}{3}$	146496. 7 146497. 8 146499. 2	1. 1.
op(1)00		$\begin{bmatrix} \overline{3} \\ 4 \end{bmatrix}$	141107. 5 141140. 5	25. 1 33. 0	$3s(^2\mathrm{S})10p$	10p 3P°	0, 1, 2	146577?	
3s(2S)8s	8s 3S	1	142179. 8		$3p(^{2}P^{\circ})3d$	3d 3P°	0, 1, 2	146595. 0?	
3s(2S)8s	8s 1S	0	142360. 8		<i>5p</i> (1)6 <i>a</i>	00 1	$\frac{1}{2}$	146596. 9 146599. 3	1. 2.
$3s(^2\mathrm{S})7d$	7d 3D	3, 2, 1	142362. 8		3s(2S)11s	11s 3S	1	147229. 0	
3s(2S)7f	7f 1F°	3	142601.6		$3s(^2\mathrm{S})11p$	11p 1P°	1	147268. 8	
$3s(^2\mathrm{S})7d$	7d ¹ D	2	142607. 0		3s(2S)10d	10 <i>d</i> ³ D	3, 2, 1	147282. 8	
$3s(^2\mathrm{S})7g$	7g ³ G	3, 4, 5	142849. 2		3s(2S)11s	11s ¹ S	0, 2, 1	147288. 8	
$3s(^2\mathrm{S})7g$	7g ¹G	4	142849. 2		3s(2S)10d	10d ¹ D	2	147343. 2	
$3s(^2S)8p$	8p 1P°	1	142958. 9		3s(2S)10d 3s(2S)10f	10 <i>t</i> B	3	147344. 2	
$3s(^2S)8p$	8p 3P°	0, 1, 2	142938. 9		3s(2S)10g	10 <i>g</i> ³ G	3, 4, 5	147451. 0	
$3s(^{2}S)7f$	7f3 F°	0, 1, 2			3s(2S)10g 3s(2S)10g	10g ¹ G	4	147451. 0	
00(-0)1]	1,5 F	$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	143262. 7 143269. 8 143280. 6	7. 1	3s(2S)10g 3s(2S)10h	10g 'G 10h 3H°	4, 5, 6	147464. 7	

	*** **	Continue			M M Conduct							
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval			
3s(2S)10h	10h ¹H°	5	147464.7		$3s(^2\mathrm{S})13f$	13f ¹ F°	3	149199. 2				
$3s(^2\mathrm{S})10f$	10f ³F°	2 3	147499. 8	0, 4	$3s(^2\mathrm{S})13g$	13g ³G	3, 4, 5	149252. 9				
		4	147500. 2 147500. 8	0. 4 0. 6	$3s(^2\mathrm{S})13g$	13g ¹G	4	149252. 9				
$3s(^2\mathrm{S})11p$	11p ³P°	0, 1, 2	147572?		3s(2S)13f	13f ³F°	2, 3, 4	149269.5				
3p(2P°)4s?	4s ¹P°	1	148002.0		$3s(^2\mathrm{S})14p$	14p ¹P°	1	149434. 8				
3s(2S)12s	12s 3S	1	148052. 5		3s(2S)15s	15s ¹S	0	149554. 7				
$3s(^2\mathrm{S})11d$	11d ³D	3, 2, 1	148090. 0		$3s(^2\mathrm{S})14f$	14f ¹F°	3	149568.6				
$3s(^2\mathrm{S})12s$	12s ¹S	0	148097. 1		$3s(^2\mathrm{S})14f$	14f ³F°	2, 3, 4	149625.5				
$3s(^2\mathrm{S})11f$	11f ¹F°	3	148132.6		$3s(^2S)15p$	15p ¹P°	1	149748.0				
$3s(^2\mathrm{S})11d$	11d ¹D	2	148132. 7		$3s(^2\mathrm{S})16s$	16s ¹S	0	149856. 6				
$3s(^2\mathrm{S})11g$	11 <i>g</i> ³G	3, 4, 5	148217. 6		$3s(^2\mathrm{S})15f$	15f ¹F°	3	149866. 2				
$3s(^2\mathrm{S})11g$	11 <i>g</i> ¹G	4	148217. 6		3s(2S)15f	15f ³F°	2, 3, 4	149913. 2				
$3s(^2\mathrm{S})11f$	11f ³F°	2	148248.7	0. 4	3s(2S)16p	16p ¹P°	1	150007. 6				
		$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	148249. 1 148249. 6	0. 5	3s(2S)16f	16f ¹F°	3	150109. 7				
$3s(^2\mathrm{S})12p$	12 <i>p</i> ¹P°	1	148579. 4		3s(2S)16f	16f ³F°	2, 3, 4	150148. 4				
$3s(^2\mathrm{S})13s$	13s 3S	1	148673. 7		3s(2S)17f	17f ¹F°	3	150311. 1				
$3s(^2\mathrm{S})13s$	13s ¹S	0	148706. 9		3s(2S)17f	17f 3F°	2, 3, 4	150343. 5				
$3s(^2\mathrm{S})12f$	12f ¹F°	3	148731. 6		3s(2S)18f	18f ¹F°	3	150479. 7				
$3s(^2\mathrm{S})12g$	12g ³G	3, 4, 5	148800. 4		3s(2S)19f	19f ¹F°	3	150622. 2				
$3s(^2\mathrm{S})12g$	12g ¹G	4	148800. 4		3s(2S)20f	20f ¹ F°	3	150744. 1				
3s(2S)12f	12f ³F°	2, 3, 4	148822.5									
$3s(^2\mathrm{S})13p$	13p ¹P°	1	149051.9		Al III (2S1/2)	Limit		151860. 4				
$3s(^2\mathrm{S})14s$	14s ¹ S	0	149179. 8									

July 1947.

Al II OBSERVED TERMS*

AI II OBSERVED TERMS												
Config. 1s ² 2s ² 2p ⁶ +		Observed Terms										
382	3s ² ¹S											
$3s(^2\mathrm{S})3p$	$\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$											
3p²	$\left\{ \begin{array}{ccc} 3p^2 \ ^3\mathrm{P} & & \end{array} \right.$	$3p^2$ $^1\mathrm{D}$										
	ns (n≥4)	$np (n \ge 4)$	nd (n≥3)									
3s(2S)nx	4-13s 3S 4-16s 1S	4-11p ³ P° 4-16p ¹ P°	3–11 <i>d</i> ³D 3–11 <i>d</i> ¹D									
3p(2P°)nx	4s ³ P° 4s ¹ P°?		$3d~^{\mathrm{s}}\mathrm{P}^{\mathrm{o}}$ $3d~^{\mathrm{s}}\mathrm{D}^{\mathrm{o}}$ $3d~^{\mathrm{s}}\mathrm{F}^{\mathrm{o}}$									
	$nf \ (n \ge 4)$	$ng \ (n \ge 5)$	$nh \ (n \ge 6)$									
3s(2S) nx	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-10h ³ H° 8-10h ¹ H°									

^{*}For predicted terms in the spectra of the Mg $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Na 1 sequence; 11 electrons)

Z = 13

Ground state 1s2 2s2 2p6 3s 2S14

3s $^2S_{\frac{1}{2}}$ 229453.99 cm $^{-1}$

I. P. 28.44 volts

The analysis is by Paschen. Three terms, 6s 2 S, 7s 2 S and 7p 2 P° are from the paper by Ekefors, who extended the observations in the ultra-violet to 486 A.

REFERENCES

F. Paschen, Ann. der Phys. [5] 71, 148 (1923) and unpublished material. (I P) (T) (C L)

E. Ekefors, Zeit. Phys. 51, 471 (1928). (T) (C L)

Al III Al III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0.00		6 <i>g</i>	6 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	202001. 32	
3p	3p 2P°	1½ 1½	53684. 1 53916. 6	232. 5	6 <i>h</i>	6 <i>h</i> ² H°	$ \left\{ \begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} \right. $	202007. 32	
3 <i>d</i>	3 <i>d</i> ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	115955. 03 115957. 31	-2. 28	7s	7s 2S	1/2	202904. 8	
48	4s 2S	1/2	126162. 58		7p	7 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	205360	
4p	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	143632. 25 143712. 38	80. 13	7 <i>d</i>	7d 2D	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	208880. 37	
4d	4d ² D	$ \begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	165785. 26 165786. 54	-1.28	7 <i>f</i>	7f 2F°	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	209260. 98	
4 <i>f</i>	4f ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	167612. 05 167612. 43	0. 38	7g	7g ² G	$ \left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right. $	209282. 17	
5s	5s 2S	1/2	170636. 38						
5p	5p ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	178430. 49 178469. 64	39. 15	7 <i>h</i>	7h ² H°	$ \left\{ \begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} \right. $	209287. 52	
5d	5d ² D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	188875. 52		8 <i>d</i>	8d 2D	$\left\{\begin{array}{c}2\frac{1}{2}\\1\frac{1}{2}\end{array}\right.$	213741. 42	
5 <i>f</i>	5f 2F°	$ \begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	189875. 34 189875. 46	0. 12	8 <i>f</i>	8f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	213992. 12	
5 <i>g</i>	5g ² G	$ \left\{ \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} \right. $	189927. 76		8 <i>g</i>	8g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	214010. 67	
6s	6s 2S	1/2	191478. 5		8 <i>h</i>	8h 2H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	214015.8	
6 <i>p</i>	6 <i>p</i> ² P°	11/2	195620. 94 195641. 53	20. 59	9 <i>h</i>	9h 2H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	217255. 2	
6d	6 <i>d</i> ² D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	201374. 37		41 (49)			200480 22	
6 <i>f</i>	6f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	201969. 52		Al IV (¹ S ₀)	Limit		229453.99	

May 1947.

(Ne i sequence; 10 electrons)

Z = 13

Ground state 1s2 2s2 2p6 1S0

 $2p^6$ 1S_0 967783 cm⁻¹

I. P. 119.96 volts

The analysis has been taken from Söderqvist's Monograph. The term designations he assigns on the assumption of LS-coupling are given with his notation under the heading "Author" in the table.

As for Ne 1, the jl-coupling notation in the general form suggested by Racah is introduced. Shortley has, however, pointed out that the configurations $2p^5$ 3s, $2p^5$ 3p, and $2p^5$ 3d are much closer to LS-coupling than to jl-coupling.

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 34 (1934). (I P) (T) (C L).
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- G. Shortley, unpublished material (1948).

Al IV Al IV

		1	ALIV			1.			ALIV		
Aut	hor	Config.	Desig.	J	Level	Aut	hor	Config.	Desig.	\int	Level
2p	¹ S ₀	2p ⁶	2p ⁶ ¹ S	0	0	48	³ P ₁	$2p^{5}(^{2}\mathrm{P}_{11/2}^{\circ})4s$	4s [1½]°	2 1	802936
38	${}^{3}P_{2}$ ${}^{3}P_{1}$	$2p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})3\mathrm{s}$	3s [1½]°	2 1	616646. 7 618477. 5	48	¹P ₁	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})4s$	4s' [½]°	0	806231
Bs :	³ P ₀ ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})3s$	38' [½]°	0	619947. 7 624720. 5	4d	$^3\mathrm{P}_1$	$2p^{5}(^{2}\mathrm{Pi}_{15})4d$	4d [½]°	0 1	851956
$3p_{10}$	3S_1	$2p^{5}(^{2}\mathrm{P}_{13})^{2}$	3p [½]	1	671635. 5	4d	¹ P ₁	"	4d [1½]°	1	855286
$3p_9 \ 3p_8$	$^3\mathrm{D_3}$ $^3\mathrm{D_2}$	"	$3p \ [2\frac{1}{2}]$	$\frac{3}{2}$	680862. 9 681686. 7	4d	$^3\mathrm{D}_1$	$2p^{5}(^{2}\mathrm{P}_{5/2}^{\circ})4d$	4d' [1½]°	2 1	858671
	$^3\mathrm{D_1}^{1}$	"	$3p [1\frac{1}{2}]$	1 2	682869. 3 685732. 8	58	³ P ₁	$2p^{5}(^{2}\mathrm{P}_{14}^{s})5s$	5s [1½]°	2 1	871391
$3p_3$	$^{8}P_{0}$	"	3p [½]	0	688313. 3	03	* 1	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})5s$	58' [½]°	0	071001
$3p_5 \ 3p_4$	${}^{1}P_{1}$ ${}^{3}P_{2}$	$2p^{5}(^{2}\mathrm{P}_{\mathcal{B}}^{\circ})3p$	$3p' [1\frac{1}{2}]$	$\frac{1}{2}$	687456. 8 687834. 7	58	¹ P ₁	2p*(-1 ½) 08	08 [72]		874669
$3p_2 \ 3p_1$	³ P ₁ ¹ S ₀	"	3p' [½]	1 0	688653. 0 690244. 9	5d	³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1lap{1}{2}})5d$	5d [½]°	0 1	894614
n.,	2T)	05/2Do \9.4	9.7 [1/10		250102 /	5 <i>d</i>	$^{1}P_{1}$	"	5d [1½]°	1	896138
3d	³ P ₀ ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1})3d$	3d [½]°	0	759197. 4 759600. 9	- ,	°T	$2p^{5}(^{2}\mathrm{P}_{5/2}^{\circ})5d$	5d' [1½]°	2	000001
3d	$^3\mathrm{P}_2$	"	3d [1½]°	2	761015. 4	5d	$^3\mathrm{D}_1$			1	899281
3d	³ F ₄ ³ F ₃	"	3d [3½]°	4 3	761694. 5 762277. 1	6 <i>d</i>	¹ P ₁	$2p^5(^2\mathrm{P}^\circ_{\mathrm{i}})6d$	6d [1½]°	1	918215
3d	${}^{3}F_{2}$ ${}^{1}F_{3}$	"	3d [2½]°	$\frac{2}{3}$	763502. 8 764304. 3	6 <i>d</i>	$^3\mathrm{D}_1$	$2p^{5}(^{2}\mathrm{P}_{55}^{\circ})6d$	6d' [1½]°	2 1	921362
3d	¹ P ₁	"	3d [1½]°	1	767040. 6						
	$^{3}D_{3}$ $^{1}D_{2}$	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})3d$	3d' [2½]°	3 2	767351. 9 767536. 2?			Al v (2P _{1½})	Limit		967783
3d	$^{3}D_{2}$ $^{3}D_{1}$	"	3d' [1½]°	2 1	767756. 1 770836. 1			Al v (2P½)	Limit		9 7 1 2 23

April 1947.

Al IV OBSERVED LEVELS*

Config. 1s ² 2s ² +		Observed Terms								
$2p^6$	$2p^6$ $^1\mathrm{S}$	$2p^6$ $^1\mathrm{S}$								
	$ns (n \ge 3)$	$np \ (n \ge 3)$	$nd (n \ge 3)$							
$2p^5(^2\mathrm{P}^\circ)nx$	3-5s ³ P° 3-5s ¹ P°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5d ³ P° 3-6d ³ D° 3d ³ F° 3-6d ¹ P° 3d ¹ F°							
		jl-Coupling Notation								
		Observed	Pairs							
	ns (n≥3)	$np \ (n \ge 3)$	$nd \ (n \ge 3)$							
$2p^5(^2\mathrm{P}_{^1\! ext{ iny }}^\circ)nx$	3-5s [1½]°	$egin{array}{cccc} 3p & [rac{1}{2}] \ 3p & [2rac{1}{2}] \ 3p & [1rac{1}{2}] \end{array}$	$3-5d [\frac{1}{2}]^{\circ}$ $3d [3\frac{1}{2}]^{\circ}$ $3-6d [\frac{1}{2}]^{\circ}$ $3d [\frac{2}{2}]^{\circ}$							
$2p^5(^2\mathrm{P}^\circ_{\!$	3-5s' [½]°	$3p'$ $\begin{bmatrix} 1\frac{1}{2} \end{bmatrix}$ $3p'$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$	3d' [2½]° 3-6d' [1½]°							

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Al v

(F 1 sequence; 9 electrons)

Z = 13

Ground state $1s^2 2s^2 2p^5 {}^2P_{11/2}^{\circ}$

$$2p^5 \, {}^2\mathrm{P}^{\circ}_{1}$$
 1240600 cm⁻¹

I. P. 153.77 volts

The analysis published by Söderqvist in 1934 has been extended by Ferner to include 78 classified lines in the region between 85 A and 281 A. The present list has been compiled from unpublished material kindly furnished by Ferner.

Intersystem combinations connecting the doublet and quartet terms have been observed. All but one of the observed combinations are with the ground term.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

By analogy with related spectra in the isoelectronic sequence Robinson has suggested the following changes in Ferner's term assignments:

Ferner	Robinson	Ferner	Robinson
3d 4P _{2½}	3d ² D ₂₁	3d′ ²S½	3d′ ² P _{1½}
$\begin{array}{c c} 3d \ ^{4}D_{1\frac{1}{2}} \\ ^{4}D_{2\frac{1}{2}} \end{array}$	3d ⁴ F _{1½} 3d ⁴ P _{2½}	3d′ ² P _{1½}	3d′ ²D₁⅓
3d ² D _{2½}	3d ² F _{2½}	3d′ ²D₁½	3d′ ²S⅓
4d ⁴ D _{1½} ⁴ D _{2½}	$\begin{array}{c c} 4d\ ^4\mathrm{P}_{1lag{1}} \\ 4d\ ^2\mathrm{D}_{2lag{1}} \end{array}$	3d′ ² D _{2½} 4d′ ² S½	$\frac{3d'}{4d'} {}^{2}\mathrm{D}_{2\frac{1}{2}} {}^{2}\mathrm{F}_{2\frac{1}{2}}$
$\begin{array}{c c} 4d \ ^2\mathrm{D}_{1\frac{1}{4}} \\ \ ^2\mathrm{D}_{2\frac{1}{4}} \end{array}$	$\begin{array}{c c} 4d\ ^{2}\mathrm{P}_{1}$ $& \\ 4d\ ^{2}\mathrm{D}_{1}$	$\frac{4d'}{4d'} {}^{2}P_{1}_{2}$ ${}^{2}S_{2}$ *	4d′ ²D

*1100620.

He has also suggested a correction of +1000 cm⁻¹ to Ferner's absolute term values. This correction has been made in the limit quoted here.

Al v—Continued

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 39 (1934). (T) (C L) E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 57 (1948). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

Al v

Al v

								221 1			
Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2p ² P ₂ ² P ₁	$2s^2 2p^5$	2p ⁵ ² P°	1½ ½ ½	0 3440 358810	-3440	$4d\ ^4{ m D}_3\ ^4{ m D}_2$	$2s^2 2p^i(^3\mathrm{P})4d$	4d 4D	3½ 2½ 1½ ½	1062510 1062820	-310
$2p'$ $^2\mathrm{S}_1$	2s 2p6										
${}^{4}P_{3}$ ${}^{4}P_{2}$ ${}^{4}P_{1}$	2s ² 2p ⁴ (³ P)3s	3 ₈ 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	751810 753960 755250	$ \begin{array}{c c} -2150 \\ -1290 \end{array} $	4d ⁴ P ₂ ⁴ P ₃	$2s^2 2p^4(^3\mathrm{P})4d$	4d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1063650 1064050	400
$\begin{array}{cc} 3_8 & {}^2\mathrm{P}_2 \\ & {}^2\mathrm{P}_1 \end{array}$	2s ² 2p ⁴ (³P)3s	3s ² P	1½ ½ ½	764240 766790	-2550	4d ² P ₁ ² P ₂	2s ² 2p ⁴ (³ P)4d	4d 2P	$1\frac{1}{2}$ $1\frac{1}{2}$	1065170 1067770	2600
$\overline{3s}$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	2s ² 2p ⁴ (¹ D)3s	3s' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	796650 796680	-30	$4d\ ^{2}\mathrm{D}_{2}\ ^{2}\mathrm{D}_{3}$	$2s^2 2p^4(^3P)4d$	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1065460 1066610	1150
$\overline{\overline{38}}$ ${}^{2}S_{1}$	2s ² 2p ⁴ (¹ S)3s	38'' 2S	1/2	843880		= 2S₁	$2s^2 2p^4({}^1{ m S})4s$	4s'' 2S	1/2	1089930	
3d ⁴ D ₃ ⁴ D ₂	2s ² 2p ⁴ (² P)3d	3d 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	919900 920680	-780	3s' ² P ₂ ² P ₁	2s 2p ⁵ (3P°)3s	3s''' 2P°	1½ ½ ½	1096180 1098350	-2170
*D2			1/2	920000		4d ² P₁	$2s^2 2p^4(^1{ m D}) 4d$	4d′ ²P	$\frac{1/2}{11/2}$	1101400	1980
3d ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s ² 2p ⁴ (³ P)3d	3d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	921440 922120 922640	680 520	$\begin{array}{c c} {}^{2}\mathrm{P}_{2}^{2} \\ \hline \overline{4d} {}^{2}\mathrm{S}_{1} \end{array}$	$2s^2 \ 2p^4(^1{ m D})4d$	4d′ 2S	1/2	1103380 1102540	
3d ² F ₃	2s ² 2p ⁴ (² P)3d	3d 2F	$ \begin{array}{c c} 2/2 \\ 3\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	923230		$\overline{4d}$ $^2\mathrm{D_3}$	$2s^2 2p^4(^1\mathrm{D})4d$	4d′ ² D	2½ 1½	1103190	
$3d^{2}D_{2}^{2}D_{3}$	28 ² 2p ⁴ (³ P)3d	3 <i>d</i> ² D	1½ 2½ 2½	925430 926400	970	5d ⁴ D ₃ ⁴ D ₂	$2s^2 2p^4(^3\mathrm{P})5d$	5d 4D	3½ 2½ 1½ ½	1127550 1127730	-180
$3d$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s ² 2p ⁴ (² P)3d	3d ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	925900 928410	2510	$5d$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s ² 2p ⁴ (³ P)5d	5 <i>d</i> ² D	1½ 2½ 2½	1129350 1130900	1550
$\overline{3d}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	2s ² 2p ⁴ (¹ D)3d	3d′ ²P	$1\frac{1}{2}$	960420 961630	1210	5d ² P ₁ ² P ₂	2s ² 2p ⁴ (³ P)5d	5d 2P	1/2 1/2 1/2	1129350 1131650	2300
$\overline{3d}$ ² S ₁	$2s^2 2p^4(^1{ m D})3d$	3d′ 2S	1/2	960860		$=$ $\overline{\overline{4d}}$ $^{2}\mathrm{D}_{3}$	$2s^2 \ 2p^4(^1{ m S})4d$	4d'' 2D		1149160	
$\overline{3d}$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	2s ² 2p ⁴ (¹ D)3d	3d′ ²D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	962640 963330	-690	$^{2}\mathrm{D}_{2}^{\circ}$			2½ 1½	1149260	-100
$^{2}P_{2}^{2}$	2s ² 2p ⁴ (3P)4s	48 ² P	1½ ½	1005760 1008040	-2280	6d ² D ₂ ² D ₃	2s ² 2p ⁴ (³ P)6d	6d ² D	1½ 2½	1163850 1165450	1600
$\overline{\overline{3d}}$ ² D ₂	$2s^2 2p^4 ({}^1{ m S}) 3d$	3d'' 2D	2½	1007150	140	$\overline{5d}$ ² S ₁	$2s^2 2p^4(^1D)5d$	5d′ 2S	1/2	1167380	
$\frac{^2\mathrm{D_2}}{48}$	2s ² 2p ⁴ (¹ D)4s	48' ² D	$2\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1007290 1043430	-140 -50	$\overline{5d}$ ² P ₂	2s ² 2p ⁴ (¹ D)5d	5d′ ²P	1½ 1½	1168060	
$^2\mathrm{D_2}$			1½	1043480			Al vi (3P ₂)	Limit		1240600	

March 1948.

Alv Observed Terms*

Config. 1s ² +			Obs	served Term	ıs		
2s ² 2p ⁵ 2s 2p ⁶	2p ⁶ ² S	2p ⁵ ² P°					
		ns $(n \ge 3)$			nd (n	ı≥3)	
2s ² 2p ⁴ (³ P)nx	{	3s ⁴ P 3, 4s ² P		6	3, 4d ⁴ P 3–5d ² P	3-5d ⁴ D 3-6d ² D	3d ² F
2s ² 2p ⁴ (¹ D)nx'			3, 4s' ² D	3-5d′ 2S	3–5d′ ² P	3, 4d′ ² D	
2s ² 2p ⁴ (¹ S)nx''	3, 4s" 2S					3, 4d'' ² D	
2s 2p ⁵ (3P°)nx'''		38''' 2P°					

^{*}For predicted terms in the spectra of the FI isoelectronic sequence, see Introduction.

Al vi

(O r sequence; 8 electrons)

Z = 13

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

$$2p^4$$
 3P_2 1536300 cm⁻¹

I. P. 190.42 volts

The analysis is by Ferner, who has extended the earlier work by Söderqvist. He has listed 45 terms and 89 classified lines. The later observations are in the region between 68 A and 113 A. Two intersystem combinations have been observed.

Ferner expresses all level values in units of 10³ cm⁻¹ but for uniformity all values listed below are given in cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 51 (1934). (T) (C L)
E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

Al VI

Al VI

Config.	De	esig.	J	Level	Interval	Config.	De	sig.	J	Level	Interval
2s ² 2p ⁴	$2p^4$	³P	2 1 0	0 2736 3831	-2736 -1095	2s² 2p³(²P°)3s	38"	3P°	0 1 2	993660 993880	220
2s ² 2p ⁴	2p4	$^{1}\mathrm{D}$	2	41600		2s² 2p³(²P°)3s	3s''	¹P°	1	1003700	
2s ² 2p ⁴	2p4	1S	0	88670		2s² 2p³(4S°)3d	3 <i>d</i>	$^3\mathrm{D}_\circ$	1	1079460	30
2s 2p ⁵	2p5	3 P °	2 1 0	323002 325470 326822	-2468 -1352	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d'	³F°	2 3 4	1079490 107961 0	120
2s 2p ⁵	2p5	¹P°	1	451 840					3 2	1132180	1-
$2s^2 2p^3 ({}^4{ m S}^{\circ}) 3s$	38	3S°	1	913130		$2s^2 2p^3 (^2{ m D}^\circ) 3d$	3d'	$^3\mathrm{D}_\circ$	3, 2, 1	1134170	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3s$	38'	$^{3}\mathrm{D}_{\circ}$	3, 2, 1	961100		$2s^2 \ 2p^3 (^2\mathrm{D^o}) 3d$	3d'	¹P°	1	1136500	
$2s^2 2p^3 (^2 \mathrm{D}^\circ) 3s$	38'	¹Do	2	970790							

						1			
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ³ (² D°)3d	3d′ ³P°	2 1 0	1140840 1141670 1141910	-830 -240	$2s^2 \ 2p^3 (^2{ m P}^{ m o}) 4s$ $2s^2 \ 2p^3 (^2{ m D}^{ m o}) 4d$	4s'' ¹ P° 4d' ³ D°	1 3, 2, 1	1312070 1339480	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ¹D°	2	1142220		2 s² $2p^3$ (²D°) $4d$	4d′ ¹P°	1	1341090	
$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ 3S°	1	1145020		2 s² $2p^3$ (² D°) $4d$	4d′ ³P°	2	1343320	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	1150250				0		
$2s^2 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³P°	0	1164220	400	$2s^22p^3(^2\mathrm{D^o})4d$	4d′ ³S°	1	1345030	
		$\begin{vmatrix} 1\\2 \end{vmatrix}$	1164620 1165260	640	2 s² $2p^3$ (²D°) $4d$	4d′ ¹D°	2	1345430	
$2s^2 \ 2p^3(^2{ m P}^{\circ}) 3d$	3d'' ³F°	4	1166530		2 s² $2p^3$ (²D°) $4d$	4d′ ¹F°	3	1346780	
		3 2	1168690	-2160	$2s \ 2p^4(^2{ m S})3s$	38 [♥] 3S	1	1359890	
$2s^2\ 2p^3(^2\mathrm{P}^{o})3d$	3d'' ¹D°	2	1169150		2 s² $2p^3$ (²P°) $4d$	4d'' ³P°	0		
$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³D°	3 2 1	1169390 1170650	-1260	$2s^22p^3(^2\mathrm{P^o})4d$	4d'' ³D°	1 2 3	1371220 1373440	-1700
$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹P°	1	1171050				$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	1375140	
$2s^2 2p^3 (^2\mathrm{P^o}) 3d$	3d'' ¹F°	3	1174450		$2s^22p^3({}^4{ m S}^\circ)5d$	5d ³D°	1, 2, 3	1375250	
2s 2p4(4P)3s	3s''' ³P	2	1204550	-950	$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) 4d$	4d'' ¹F°	3	1376860	
0-2 0-2/459) 4 -	4s 3S°	0	1205500		$2s^22p^3(^2\mathrm{D}^\circ)5s$	5s' ¹D°	2	1405220	
$2s^2 \ 2p^3 (^4S^\circ) 4s$		1	1218290		$2s^22p^3(^2\mathrm{P}^\circ)5d$	5d'' ³P°	0		
$2s^2 \ 2p^3 (^2\mathrm{D}^\circ) 4s$	4s' 3D°	3, 2, 1	1274550				$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1465780	
$2s^2 2p^3(^2D^\circ)4s$	4s' ¹D°	2	1279680		$2s^2 \ 2p^3(^2{ m P}^{ m o}) 5d$	5d'' ³D°	3 2	1466990	
$2s^2 \ 2p^3 (^4S^\circ)4d$	4d ³ D°	1, 2, 3	1282960				1		
2s 2p4(2D)3s	381A 3D	3, 2, 1	1293290		Al vII (4S _{11/2})	Limit		1536300	

February 1947.

Al vi Observed Terms*

Config. 1s ² +			Ol	eserved Terms			
2s ² 2p ⁴	$\left\{\begin{array}{c} \\ 2p^4 \ ^1\mathrm{S} \end{array}\right.$	2p4 3P	$2p^{4-1}\mathrm{D}$				
2s 2p ⁵	{	$rac{2p^{\mathfrak{s}}}{2p^5}$ $rac{^3\mathrm{P}^{f o}}{^1\mathrm{P}^{f o}}$					
		ns (n≥3)			7	nd (n≥3)	
$2s^2 \ 2p^3(^4\mathrm{S}^\circ)nx$	3, 4s 3S°					3-5d ³D°	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{		3, 4s′ ³D° 3–5s′ ¹D°	3, 4d′ ³ S° 3,	4d′ ³P° 4d′ ¹P°	3, 4d′ ³ D° 3, 4d′ ¹ D°	3d′ ³F° 3, 4d′ ¹F°
2s ² 2p ³ (² P°)nx''	{	3s'' ³ P° 3, 4s'' ¹ P°		3-	-5d'' ³ P° 3d'' ¹ P°	3–5 <i>d''</i> ³D° 3 <i>d''</i> ¹D°	3d'' 3F° 3, 4d'' 1F°
2s 2p4(4P)nx'''		38′′′ ³P					
$2s \ 2p^4(^2\mathrm{D})nx^{\mathrm{IV}}$			381A 3D				
2s 2p4(2S)nxV	38 ¥ 38						

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N I sequence; 7 electrons)

Z = 13

Ground state $1s^2 2s^2 2p^3 {}^4S_{11/2}^{\circ}$

 $2p^3$ $^4S^{\circ}_{1\frac{1}{2}}$ **1951830** cm⁻¹

I. P. 241.93 volts

The analysis is from Ferner who kindly furnished his manuscript in advance of publication. He has extended the earlier work by Söderqvist to include 76 classified lines between 58 A and 96 A. One intersystem combination has been observed, but the relative positions of the doublet and quartet terms are determined from the series.

The unit used by Ferner, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 64 (1934). (T) (C L)
 E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948). (I P) (T) (C L)

Al VII	Al vn

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p$ $^4\mathrm{S}_2$	2s ² 2p ³	2p3 4S°	1½	0		$3d^{-2}D_{2} \\ ^{2}D_{3}$	$2s^2 2p^2(^3P)3d$	$3d$ $^{2}\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1343710 1344530	820
$2p$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	$2s^2 2p^3$	$2p^3$ $^2\mathrm{D}^\circ$	1½ 2½	60700 60760	60	3d ² F ₄ ² F ₃	$2s^2 2p^2(^1D)3d$	3d′ ²F	3½ 2½ 2½	1366720 1367160	-440
$rac{2p}{^2 ext{P}_1}$	282 2p3	$2p^3$ $^2\mathrm{P}^\circ$	1½ 1½	93000 93270	270	$\overline{3d}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s^2 2p^2(^1\mathrm{D})3d$	3d' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1369270 1369960	690
$2p'\ ^4 ext{P}_3\ ^4 ext{P}_2\ ^4 ext{P}_1$	2s 2p4	2p4 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	280200 282660 283960	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3d ² P ₁ ² P ₂	$oxed{2s^22p^2(^1\mathrm{D})3d}$	3d′ ²P	1½ 1½ 1½	1378290 1379130	840
$2p^\prime{}^2\mathrm{D_3} \ {}^2\mathrm{D_2}$	2s 2p4	2p4 2D	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	384260 384310	-50	3p′ 4P	2s 2p³(5S°)3p	3p''' 4P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right\}$	1383700	
$2p'$ $^2\mathrm{S_1}$	2s 2p4	2p4 2S	1/2	451360		$\overline{3d}$ ${}^{2}S_{1}$	$2s^2 2p^2(^1\mathrm{D})3d$	3d′ 2S	1/2	1384370	
$2p^{\prime}{}^{^{2}\mathrm{P_{2}}}_{{}^{^{2}\mathrm{P_{1}}}}$	2s 2p4	2p4 2P	1½ ½	476090 479050	-2960	$\overline{\overline{3d}}$ ² D	$\begin{vmatrix} 2s^2 & 2p & (2) & 3d \\ 2s^2 & 2p^2 & (1S) & 3d \end{vmatrix}$	$3d^{\prime\prime}$ ² D	$\left\{\begin{array}{c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right\}$	1410380	
$\begin{array}{ccc} 3s & {}^4P_1 \\ & {}^4P_2 \\ & {}^4P_3 \end{array}$	2s ² 2p ² (³ P)3s	3s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1147100 1148630 1150920	1530 2290	3d′ ⁴ D	2s 2p ³ (⁵ S°)3d	3d''' ⁴ D°	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{array} \right\} $	1473060	
$\begin{array}{cc} 3s & ^2P_1 \\ & ^2P_2 \end{array}$	2s ² 2p ² (³ P)3s	3s ² P	1½ 1½	1162360 1165130	2770	4s 4P2	$2s^2 \ 2p^2(^3{ m P})4s$	4s 4P	$ \begin{array}{c c} 1/2 \\ 1/2 \\ 1/2 \\ 2/2 \end{array} $	1540740	0110
$\overline{3s}$ ² D	$2s^2 \ 2p^2(^1{ m D})3s$	3s′ 2D	$\left\{egin{array}{c} 1\frac{1}{2} \ 2\frac{1}{2} \end{array} ight\}$	1196680		4P ₃			$2\frac{1}{2}$	1542850	2110
$\frac{=}{3s}$ ${}^{2}S_{1}$	$2s^2 2p^2 ({}^1{ m S}) 3s$	3s'' 2S	1/2	1246840		4s ² P ₂	$2s^2 \ 2p^2(^3{ m P})4s$	4s ² P	1½ 1½	1540820	
$3d$ ${}^{2}P_{2}$ ${}^{2}P_{1}$	$2s^2 \ 2p^2(^3P)3d$	3 <i>d</i> ² P	1½ ½ ½	1315640 1316420	-780	$\overline{3d}'$ 4P_3 4P_2	2s 2p ³ (³ D°)3d	3d ^{IV} 4P°	$ \begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 1 \end{array} $	1591560 1592170 1592550	-610 -380
38′ 4S2	2s 2p3(5S°)3s	3s''' 4S°	1½	1322180		⁴ P ₁			1/2	1092000	
$3d_{{}^{2}\mathrm{F_{3}}^{2}\mathrm{F_{4}}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3d$ ${}^{2}\mathrm{F}$	2½ 3½	1323370 1326390	3020	<u>3</u> d′ ⁴D	2s 2p³(³D°)3d	3d ^{IV} ⁴D°	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 3\frac{1}{2} \end{array}\right\}$	1598270	
3d ⁴ D ₃₂	$2s^2 \ 2p^2(^3\mathrm{P}) 3d$	3d 4D	$\left\{ egin{array}{c} 3\frac{1}{2} \ 2\frac{1}{2} \ 1\frac{1}{2} \end{array} ight\}$	1323940		$4d^{-2}P_2$	$2s^2\ 2p^2(^3\mathrm{P})4d$	4d ² P	1½ ½ ½	1598890	
$^4\mathrm{D_1}$			1/2 1	1324710	-770	$\overline{3d}'$ ${}^4\mathrm{S}_2$	2s 2p3(3D°)3d	3d ^{IV} ⁴S°	1½	1599300	
3d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s ² 2p ² (³ P)3d	3d 4P	2½ 1½ ½ ½	1326960 1327990 1328550	$\begin{bmatrix} -1030 \\ -560 \end{bmatrix}$	4d ⁴ D ₃₂ ⁴ D ₁	$2s^2\ 2p^2(^3\mathrm{P})4d$	4d 4D	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right\}$	1600670 1601740	-1070

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
4d ² F ₃ ² F ₄ 4d ⁴ P ₃		4d ² F 4d ⁴ P	$2\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$	1603550 1606260 1605240	2710	5s ⁴ P ₃	2s ² 2p ² (³ P)5s	5s 4P	1½ 1½ 2½ 2½	1702070	
	• ` `		$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$			5d ² F ₃ ² F ₄	$\left \begin{array}{cc} 2s^2 \ 2p^2 (^3\mathrm{P}) \ 5d \end{array}\right $	5 <i>d</i> ² F	2½ 3½	1729840 1732410	2570
$^{2}D_{2}^{2}$	$2s^2 2p^2(^3\mathrm{P})4d$	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	1610820 1611560	740	$4d'$ $^4\mathrm{D_4}$ $^4\mathrm{D_3}$	2s 2p ³ (⁵ S°)4d	4d''' ⁴ D°	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right\}$	1739390 1739600	$ \begin{array}{r r} -210 \\ -370 \end{array} $
$\overline{4d}$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	$2s^2 \ 2p^2(^1{ m D})4d$	$4d'$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1646820 1647880	1060	⁴ D ₂₁				1739970	
4d ² F ₃₄	$2s^2 \ 2p^2(^1{ m D})4d$	4d′ ²F	$\left\{egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \end{array} ight\}$	1647439		5d 2F ₄₃	$2s^2 2p^2(^1D)5d$	5d′ ² F	$\left\{ \begin{smallmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \end{smallmatrix} \right\}$	1773560	
4d 2S₁	$2s^2 \ 2p^2(^1{ m D})4d$	4d′ 2S	1/2	1654160			Al VIII (3P ₀)	Limit		1951830	

March 1947.

Al VII OBSERVED TERMS*

Config. 1s²+				Obser	ved Terms					
$2s^2 \ 2p^3$	$\left\{ 2p^3 ight. ight. ^4 ext{S}^{\circ}$	2p³ ²P°	2p³ 2D°							
28 2p4	$\left\{2p^4 ^2\mathrm{S} ight.$	$rac{2p^4}{2p^4} rac{4}{2}{ m P}$	2p4 2D							
	1	ns $(n \ge 3)$		$np \ (n \ge 3)$			nd ($n \ge 3$)		
2s ² 2p ² (³ P)nx	{	3–5s ⁴ P 3, 4s ² P				3, 4d 3, 4d	⁴ P ² P	3, 4d 3, 4d	4D 2D	3-5 <i>d</i> ² F
$2s^2 \ 2p^2(^1D)nx'$			3s' ² D		3, 4d′ 2S	3d'	^{2}P	3, 4d'	$^2\mathrm{D}$	3-5d′ ² F
$2s^2 \ 2p^2({}^1{ m S}) nx''$	3s'' 2S							3d''	$^2\mathrm{D}$	
2s 2p3(5S°)nx'''	38′′′ 4S°			3p''' 4P				3, 4d'''	4D°	
2s $2p^3(^3\mathrm{D}^\circ)nx^{\mathrm{IV}}$					3d1v 4S°	$3d^{IV}$	4P°	$3d^{\text{IV}}$	4D°	

^{*}For predicted terms in the spectra of the N r isoelectronic sequence, see Introduction.

Al VIII

(C I sequence; 6 electrons)

Z = 13

Ground state 1s2 2s2 2p2 3P0

 $2p^2 \, ^3P_0 \, 2300390 \, \mathrm{cm}^{-1}$

I. P. 285.13 volts

The analysis is by Ferner, who has generously furnished his manuscript in advance of publication. He has extended the earlier work by Söderqvist to include 77 classified lines in the region between 53 A and 91 A. The relative values of the singlet, triplet, and quintet systems of terms are determined from the series limits.

Ferner's unit, 10³ cm⁻¹, has here been converted to cm⁻¹.

REFERENCES

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV], 9, No. 7, 77 (1934). (T) (C L)
E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 37 (1948). (I P) (T) (C L)

Al VIII

Al VIII

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p\ ^3 ext{P}_0\ ^3 ext{P}_1\ ^3 ext{P}_2$	$2s^2 2p^2$	$2p^2$ $^3\mathrm{P}$	0 1 2	0 1740 4440	1740 2700	3d′ ⁵ P ₃ ⁵ P ₂ ⁵ P ₁	2s 2p ² (4P)3d	3d ⁵ P	3 2 1	$ \begin{array}{r} 1631170 + y \\ 1632060 + y \\ 1632670 + y \end{array} $	-890 -610
$2p$ $^{1}\mathrm{D}_{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2p^2$ ¹ D	2	46690+x		3d′ ³ P ₂ ³ P ₁	2s 2p ² (4P)3d	3 <i>d</i> ³ P	2	1633840 1635440	-1600
$2p$ $^{1}\mathrm{S}_{0}$	$2s^2 2p^2$	$2p^2$ ¹ S	0	96170 + x		0.77.00	0.0000000	0.7 077	0	101000	
$2p'$ ${}^5\mathrm{S}_2$	$\begin{vmatrix} 2s & 2p^3 \\ 2s & 2p^3 \end{vmatrix}$	$2p^3$ ${}^5\mathrm{S}^{\circ}$	2	133510+y		3d′ ³ F ₂ ³ F ₃	2s $2p^2(^4P)3d$	3d ³F	3	1643590 1644990	1400 1800
$2p'\ ^{3}{ m D_{3}}{^{3}{ m D_{2}}}{^{3}{ m D_{1}}}$	$ig egin{array}{cccccccccccccccccccccccccccccccccccc$	$2p^3$ $^3\mathrm{D}^6$	$\begin{bmatrix} 3\\2\\1 \end{bmatrix}$	262190 262320 262390	-130 -70	$3\overline{F}_4$ $3\overline{p}'$ 1F_3	$oxed{2s} 2p^2(^2\mathrm{D})3p$	3p′ ¹F°	3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000
$2p'$ $^3\mathrm{P}$	$2s 2p^3$	$2p^3$ $^3\mathrm{P}^\circ$	0, 1, 2	309130		= 3s' 3S₁	2s 2p ² (² S)3s	3s'' 3S	1	1662740	
$2p'\ ^1\mathrm{D}_2$	$oxed{2s} 2p^3$	$2p^3$ $^1\mathrm{D}^6$	2	396990+x		$3d'$ 3D_1	2s 2p ² (4P)3d	$3d$ 3 D	1	1664880	500
$2p'$ $^3\mathrm{S}_1$	2s 2p³	$2p^3$ $^3\mathrm{S}^\circ$	1	404220		$^{3}D_{2}$ $^{3}D_{3}$			3	1665380 1665930	550
$2p'$ $^1\mathrm{P_1}$	2s 2p³	$2p^3$ $^1\mathrm{P}^\circ$	1	444550+x		$\overline{3p}'$ $^{1}\mathrm{D}_{2}$	$2s 2p^2(^2\mathrm{D})3p$	$3p'$ $^{1}\mathrm{D}^{\circ}$	2	1667490+x	
$\begin{array}{ccc} 3s & {}^3P_0 \\ {}^3P_1 \\ {}^3P_2 \end{array}$	$2s^2 2p(^2\mathrm{P}^\circ)3s$	3s ³P°	0 1 2	1319280 1320450 1324080	1170 3630	≡ 3s′ ³P₂	$2s$ $2p^2(^2\mathrm{P})3s$	3s''' ³P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	1682590	
3s ¹ P ₁	2s ² 2p(² P°)3s	3s ¹P°	1	1335270+x		3d′ ³F	$2s 2p^2(^2\mathrm{D})3d$	$3d'$ $^3\mathrm{F}$	2, 3, 4	1733950	
$3p$ $^3\mathrm{S_1}$	$2s^2 2p(^2\mathrm{P}^\circ)3p$	3p 3S	1	1402180		$\overline{3d}'$ $^3\mathrm{D}$	$2s 2p^2(^2D)3d$	$3d'$ $^3\mathrm{D}$	1, 2, 3	1742250	
3s' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3s	3s ⁵ P	1 2 3	$\begin{vmatrix} 1465810 + y \\ 1467470 + y \\ 1469680 + y \end{vmatrix}$	1660 2210	$\overline{3}d' {}^{3}P_{2} \ {}^{3}P_{1} \ {}^{3}P_{0}$	2s 2p ² (2D)3d	3d′ ³P	2 1 0	1745690 1747940 1749640	-1250 -1700
$3d$ $^3\mathrm{F}_2$	$2s^2 2p(^2\mathrm{P}^\circ)3d$	3d ³F°	2	1468700+x		$3\overline{d}'$ $^3\mathrm{S}_1$	$2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³S	1	1762090	
			3 4				2s² 2p(²P°)4s	4s ³ P°	0		
$3d$ $^{1}\mathrm{D}_{2}$	$2s^2 2p(^2\mathrm{P}^\circ)3d$	3d ¹ D°	2	1471980+x		48 ³ P ₂			$\frac{1}{2}$	1785380	
$\begin{array}{ccc} 3d & ^{3}\mathrm{D_{1}} \\ ^{3}\mathrm{D_{2}} \\ ^{3}\mathrm{D_{3}} \end{array}$	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	$3d$ $^3\mathrm{D}^\circ$	1 2 3	1484560 1485240 1486710	680 14 7 0	$ar{ar{ar{3}}}ar{d}'\ {}^3{ m D}_2 \ {}^3{ m D}_3$	$2s 2p^2(^2S)3d$	3d'' ³D	1 2 3	1815990 1816950	960
3d ³ P ₂	$2s^2 2p(^2\mathrm{P}^\circ) 3d$	3d ³P°	2	1490590	-980	3d/ 3F	2s 2p2(2P)3d	3d′′′ ³ F	2, 3, 4	1831700	
${}^{3}P_{1}^{1}$ ${}^{3}P_{0}$			0	1491570 1492140	-570	$\frac{\equiv}{3\overline{d}}$ 3D	2s 2p ² (² P)3d	3 <i>d</i> ′′′ ³D	1, 2, 3	1840570	
$3s' {}^3P_1 {}^3P_2$	2s 2p ² (4P)3s	3s ³P	0 1 2	1504810 150 72 20	2410	$\equiv \overline{3d}' {}^{3}\mathrm{P}_{2}$	2s 2p ² (² P)3d	3d''' ³P	0 1 2	1844390	
3d ¹ F ₃	2s ² 2p(² P°)3d	3d ¹F°	3	1509210+x		4.3.45	2s² 2p(²P°)4d	4d ³D°	1		
3d ¹ P ₁	2s ² 2p(² P°)3d	3d ¹P°	1	1510060+x		4d $^{^{3}\mathrm{D}_{2}}$ $^{^{3}\mathrm{D}_{3}}$			3	1846180 1847490	1310
$3p'$ $^3\mathrm{S_1}$	$2s \ 2p^2({}^4\mathrm{P})3p$	3p 3S°	1	1531270		4d ¹ P ₁	2s² 2p(²P°)4d	4d ¹P°	1	1853670 + x	
$3p' \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	2s 2p ² (4P)3p	3p 3D°	1 2 3	1564140 1564840 1566840	700 2000	$4d' {}^{5}\mathrm{P}_{3} \ {}^{5}\mathrm{P}_{2} \ {}^{5}\mathrm{P}_{1}$	2s 2p ² (4P)4d	4d ⁵ P	3 2 1	$\begin{array}{c} 1991450 + y \\ 1992250 + y \\ 1992760 + y \end{array}$	800 510
$3p'\ ^3\mathrm{P}_2$	2s 2p ² (4P)3p	3p ³P°	0 1 2	1577760		4d′ ³ F ₃ ³ F ₄	2s 2p ² (4P)4d	$4d$ $^3{f F}$	2 3 4	199 77 10 1999 7 10	2000
3̄s′ ³D	$oxed{2s} egin{array}{c c} 2p^2(^2\mathrm{D})3s \end{array}$	38′ ³D	1, 2, 3	1585400							
$\overline{3s}'$ $^{1}D_{2}$	$2s \ 2p^2(^2\mathrm{D})3s$	38′ ¹D	2	1608440+x			Al ix (2P ₃)	Limit		2300390	

March 1948.

Al VIII OBSERVED TERMS*

Config. $1s^2+$							ı	Observed 7	Terms							
2s² 2p²	$\left\{_{2p^2} ight.$	1S	$2p^2$	³P	2p² ¹D											
2s 2p³	$\begin{bmatrix} 2p^3 \\ 2p^3 \end{bmatrix}$	5S° 3S°	$2p^3 \ 2p^3$	³P°	$2p^{3}\ ^{3}\mathrm{D}^{\circ} \ 2p^{3}\ ^{1}\mathrm{D}^{\circ}$											
			ns (n	≥ 3)			np ($(n \ge 3)$				no	$l \ (n \geq 3)$,		
2s ² 2p(² P°)nx	{		3, 4s 3s	³P°		3p 3S					3 <i>d</i> 3, 4 <i>d</i>	3P°	3, 4d 3d	³D°	$egin{array}{c} 3d \ 3d \end{array}$	3F 1F
2s 2p ² (4P)nx	{		3s 3s	⁵ P ³ P		3p 3S°	3p 3P°	3p 3D°			$\begin{array}{c} 3,\ 4d \\ 3d \end{array}$	⁵ P ³ P	3d	$^3\mathrm{D}$	3, 4 <i>d</i>	$^3\mathrm{F}$
2s $2p^2(^2\mathrm{D})nx'$	{				38′ ³D 38′ ¹D			3p′ ¹D°	3 <i>p′</i> ¹F°	3d′ 3S	3d'	3P	3 d'	$^3\mathrm{D}$	3 d'	$^3\mathrm{F}$
2s $2p^2(^2\mathrm{S})nx''$	3s''	3S											3d''	$^3\mathrm{D}$		
2s $2p^2(^2P)nx'''$			3s''	' 3P							3d''	′ ³P	3 <i>d</i> ′′	′ ³D	3 d''	, 3I

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

Al IX

(B I sequence; 5 electrons)

Z = 13

Ground state $1s^2 2s^2 2p$ $^2P_{1/2}^{\circ}$

2p 2P 2 2663340 cm-1

I. P. 330.1 volts

Ferner has extended the preliminary analysis by Söderqvist and now has 74 classified lines in the range between 43 A and 77 A. He kindly furnished his manuscript in advance of publication.

No intersystem combinations have been observed, as indicated by x in the table, but the absolute values of the doublet and quartet terms are determined from series. The quartet terms are not all connected by observed combinations.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 90 (1934). (C L)
E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 30 (1948). (I P) (T) (C L)

Al IX

Au	thor	Config.	De	sig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$\frac{}{2p}$	${}^{2}P_{1}$ ${}^{2}P_{2}$	$2s^2(^1\mathrm{S})2p$	2p	²P°	1½ 1½	0 4890	4890	$\overline{3p'}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	2s 2p(¹P°)3p	3p' ² D	1½ 2½	1875340 1876710	1370
2p'	⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2 s $2p^2$	$2p^2$	4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{ c c c c c } \hline 146310 + x \\ 148000 + x \\ 150490 + x \end{array} $	1690 24 90	3 <i>p</i> ′ ²P	2s 2p(¹P°)3p	$3p'$ $^2\mathrm{P}$	$\left\{\begin{array}{c} \frac{1}{2}\\ 1\frac{1}{2} \end{array}\right $	<u>}</u> 1878390	
2p'	² D	2s 2p²	$2p^2$	$^2\mathrm{D}$	$\left\{\begin{array}{c} -72 \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	259720		3s" ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2p ² (³P)3s	3s'′ ⁴P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1917920 + x 1918850 + x 1921100 + x	930 2250
2p'	2S ₁	2s 2p²	$2p^2$	$^2\mathrm{S}$	1/2	332650		$\overline{3d}'$ ² F	2s 2p(1P°)3d	3d′ ²F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right $	} <i>1933050</i>	
2p'	$^{2}_{^{2}P_{2}}^{1}$	$2s\ 2p^2$	$2p^2$	²P	1½ 1½	353960 356950	2990	$\overline{3d}'$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s 2p(¹P°)3d	3d′ ²D°	$1\frac{1}{2}$ $2\frac{1}{2}$) 1943380	600
$2p^{\prime\prime}$	4S_2	$2p^3$	$2p^3$	4S°	1½	461910+x						1943980	
$2p^{\prime\prime}$	$^2\mathrm{D}_3$ $^2\mathrm{D}_2$	$2p^3$	$2p^3$	$^2\mathrm{D}^{\circ}$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	519560 519740	-180	$\overline{3d}'$ ² P	2s 2p(¹P°)3d	3d′ ²P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	1954710	
$2p^{\prime\prime}$	-	$2p^3$	$2p^3$	²P°	$\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	584150 584390	240		$2p^2(^3\mathrm{P})3p$	3p'' 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$		
38	$^{2}S_{1}$	2s ² (¹S)3s	38	2S	1/2	1501020		$3p^{\prime\prime}$ $^4\mathrm{D_4}$				1986800+x	
3d	$^2\mathrm{D}_2^2\mathrm{D}_3^2$	$2s^2(^1\mathrm{S})3d$	3d	$^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1642140 1642380	240	3p'' 4P ₃	$2p^2(^3\mathrm{P})3p$	3p'' 4P°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ \end{array}$	1991700+x	
3s′	4P ₁	2s 2p(3P°)3s	38	⁴ P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1657690 + x 1659350 + x	1660	3p'' 4S2	$2p^2(^3\mathrm{P})3p$	3p'' 4S°	1½	2017670+x	
	⁴ P ₂ ⁴ P ₃				$2\frac{1}{2}$	1662340+x	2990	$\overline{3p}^{\prime\prime}$ ² D	$2p^2(^1\mathrm{D})3p$	3p''' ² D°	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	2056120	
3 s′	$^{2}_{^{2}\mathrm{P}_{2}}^{1}$	2s 2p(³P°)3s	3s	² P°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \end{array}$	1690880 1694110	3230	3d′′ ⁴P	$2p^2(^3\mathrm{P})3d$	3d'' 4P	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	$\begin{vmatrix} 2065270 + x \\ 2066350 + x \end{vmatrix}$	-1080
3p'	${}^{2}P_{1}$ ${}^{2}P_{2}$	2s 2p(3P°)3p	3p	$^{2}\mathrm{P}$	$1\frac{1}{2}$ $1\frac{1}{2}$	1720900 1722400	1500				1/2	2067100+x	-7 50
3p'	$^{2}\mathrm{D}_{2}^{2}$ $^{2}\mathrm{D}_{3}^{2}$	2s 2p(³P°)3p	3p	$^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1757500 1760970	3470	$egin{array}{ccc} 4d & ^2\mathrm{D}_2 \ ^2\mathrm{D}_3 \end{array}$	2s ² (¹ S)4d	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2094020 2094490	470
3p'	2S_1	2s 2p(³P°)3p	3 <i>p</i>	2S	1/2	1780950			2s 2p(3P°)4d	4d ⁴ D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{array}$		
3d'	$^4\mathrm{D}_{12}$	2s 2p(3P°)3d	3d	⁴D°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	1799090+x	400	4d′ ⁴ D ₄			$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	2254250+x	
	$^{4}D_{3}$ $^{4}D_{4}$				$3\frac{2\frac{1}{2}}{3\frac{1}{2}}$	$\begin{vmatrix} 1799490 + x \\ 1800980 + x \end{vmatrix}$	400 1490	4d′ ⁴ P ₃	2s 2p(3P°)4d	4d ⁴ P°	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	2256240+x	
3d'	$^2\mathrm{D}_2^2\mathrm{D}_3$	2s 2p(3P°)3d	3 <i>d</i>	² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	1800460 1800910	450	$4d^{\prime}$ $^2\mathrm{F_4}$	2s 2p(3P°)4d	4d ² F°	2½ 3½ 3½	2265580	
$\overline{3s'}$	^{2}P	2s 2p(1P°)3s	38'	²P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			$2s^2(^1\mathrm{S})5d$	$5d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	000117	
3d'	⁴ P ₃	2s 2p(3P°)3d	3d	4P°		1807490+x	-1040	$\int 5d$ $^2\mathrm{D}_3$	0.0 (170) (7	47/ 2002		2301150	
	⁴ P ₂ ⁴ P ₁				2½ 1½ ½ ½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-680	$\overline{4d}'$ $^2\mathrm{D}_3$	2s 2p(¹P°)4d	4d′ ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2393860	
3d'	${}^{2}F_{3}$ ${}^{2}F_{4}$	2s 2p(3P°)3d	3d	2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1831260 1834300	3040		Al x (¹ S ₀)	Limit		2663340	
3d'	² P ₂ ² P ₁	2s 2p(3P°)3d	3d	²P°	1½ ½ ½	1840470 1842220	-1750						

August 1947.

Alix Observed Terms*

Config. 1s ² +					Observed	Terms			
$2s^2(^1\mathrm{S})2p$		2p 2P°							
2s 2p ²	$\left\{_{2p^2} {}^{\scriptscriptstyle 2}\mathrm{S} ight.$	$^{2p^2}_{2p^2}$ $^4\mathrm{P}_{2p^2}$ $^2\mathrm{P}$	$2p^2$ $^2\mathrm{D}$						
$2p^3$	$\left\{ 2p^3 {}^4\mathrm{S}^{\circ} \right\}$	$2p^3$ $^2\mathrm{P}^\circ$	$2p^3$ $^2\mathrm{D}^\circ$						
		ns $(n \ge 3)$			$np \ (n \ge 3)$			$nd (n \ge 3)$	
$2s^2(^1\mathrm{S})nx$	3s 2S							3–5 <i>d</i> ² D	
2s 2p(3P°)nx	{	3s ⁴ P° 3s ² P°		$3p$ $^2\mathrm{S}$	3p 2P	$3p$ $^2\mathrm{D}$	3, 4d ⁴ P° 3d ² P°	$^{3,~4d}$ $^{4}\mathrm{D}^{\circ}$ 3d $^{2}\mathrm{D}^{\circ}$	3, 4 <i>d</i> ² F°
2s 2p(1P°)nx'		3s′ ²P°			$3p'$ $^2\mathrm{P}$	3p' ² D	3d′ ²P°	3, 4d′ 2D°	$3d'$ ${}^2{ m F}^{\circ}$
$2p^2(^3\mathrm{P})nx''$		3s'' 4P		3p'' 4S°	3p′′ ⁴P°	$3p^{\prime\prime}$ $^4\mathrm{D}^\circ$	3d'' 4P		
$2p^2(^1\mathrm{D})nx'''$						3p''′ ²D°			

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

Al X

(Be I sequence; 4 electrons)

Z = 13

Ground state 1s2 2s2 1S0

 $2s^2$ 1S_0 3215340 cm $^{-1}$

I. P. 398.5 volts

Ferner has extended the preliminary analysis by Söderqvist and has classified 30 lines in the region between 44 A and 63 A. He has kindly furnished his manuscript in advance of publication.

No intersystem combinations have been observed, as indicated by x in the table, but absolute values of the singlet and triplet terms are known from the series.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci Uppsala [IV] 9, No. 7, 94 (1934). (T) (CL)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 27 (1948). (I P) (T) (C L)

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
2s ¹ S ₀	282	2s ² ¹ S	0	0		3p′ ¹P₁	2p(2P°)3p	3p ¹P	1	2094730	
$2p\ ^{3}\mathrm{P}_{0}\ ^{3}\mathrm{P}_{1}\ ^{3}\mathrm{P}_{2}$	2s(2S)2p	2p ³P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1690 3660	$3p' \ ^{3}\mathrm{D}_{1} \ ^{3}\mathrm{D}_{2} \ ^{3}\mathrm{D}_{3}$	2p(2P°)3p	3p 3D	1 2 3	$\begin{array}{c c} 2101950+x \\ 2103560+x \\ 2107290+x \end{array}$	1610 3730
$2p^{-1}P_{1}$	2s(2S)2p	2p ¹P°	1	300400		3p′ 3S ₁	2p(2P°)3p	3p 3S	1	2119440+x	
2p′ ³P	$2p^2$	$2p^2$ $^3\mathrm{P}$	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	$\begin{array}{c c} 404300 + x \\ 406270 + x \\ 409460 + x \end{array}$	19 7 0 3190	$3p' {}^{3}P_{1} {}^{3}P_{2}$	2p(2P°)3p	3p 3P	0 1 2	$\begin{array}{c} 2128300 + x \\ 2130180 + x \end{array}$	1880
$2p'$ $^1\mathrm{D}_2$	2p2	$2p^2$ ¹ D	2	448840		3d′ ¹D₂	2p(2P°)3d	3d ¹D°	2	2140690	
$2p'$ ${}^1\mathrm{S}_0$	$2p^2$	$2p^2$ $^1\mathrm{S}$	0	553270		$3p'$ $^1\mathrm{D}_2$	2p(2P°)3p	$3p$ $^{1}\mathrm{D}$	2	2148320	
$3s$ 3S_1	2s(2S)3s	3s 3S	1	1855510 + x		$3d'$ $^3\mathrm{D}_2$	2p(2P°)3d	3d ³D°	$\frac{1}{2}$	2161630+x	
3s ¹ S ₀	2s(2S)3s	3s ¹ S	0	1884330		$^{3}\mathrm{D}_{3}^{2}$			3	2163110+x	1480
$3p^{-1}P_{1}$	2s(2S)3p	3p ¹P°	1	1923850		$3d' {}^{3}P_{2} \\ {}^{3}P_{1}$	2p(2P°)3d	3d ³P°	2	2169960+x 2171350+x	-1390
$3d \ ^{3}D_{1} \ ^{3}D_{2}$	2s(2S)3d	3d 3D	$\frac{1}{2}$	1965560 + x $1965770 + x$	210	11			0	2171300+x	
$^3\mathrm{D}_3^2$			3	1966050 + x	280	$3d'$ ${}^{1}\mathrm{F}_{3}$	2p(2P°)3d	3d ¹F°	3	2192060	
$3d$ $^{1}\mathrm{D}_{2}$	2s(2S)3d	3d ¹D	2	1992250		$4d$ $^{1}\mathrm{D}_{2}$	2s(2S)4d	$4d$ $^{1}\mathrm{D}$	2	2527470	
	2p(2P°)3s	3s ³P°	0			4d′ ¹F₃	2p(2P°)4d	4d ¹F°	3	2714560	
3s′ ³ P ₂			$\frac{1}{2}$	2056910+x							
38′ ¹P1	2p(2P°)3s	3s ¹P°	1	2090980			Al xi (2S _{1/2})		Limit	3215340	

August 1947.

Al x Observed Terms*

Config. 1s ² +				(Observed 7	Γerms			
282	2s ² ¹ S								
2s(2S)2p	{	${2p\atop 2p} {^3\mathrm{P}^\circ} \atop {^1\mathrm{P}^\circ}$							
2p2	$\left \left\{_{2p^2}\right _{\mathrm{IS}}\right $	$2p^2\ ^3\mathrm{P}$	$2p^2$ ¹ D						
		ns $(n \ge 3)$			$np \ (n \ge 3)$			$nd \ (n \ge 3)$	
2s(2S)nx	$\begin{cases} 3s & {}^{3}S \\ 3s & {}^{1}S \end{cases}$				3p ¹P°			$^{3d}_{3,\ 4d}{}^{3}{ m D}_{1}$	
$2p(^{2}\mathrm{P}^{\circ})nx$	{	3s ³ P° 3s ¹ P°		3p 3S	${rac{3p}{3p}}^3\mathrm{P}$	$\begin{array}{ccc} 3p \ ^3\mathrm{D} \\ 3p \ ^1\mathrm{D} \end{array}$	3d ³ P°	$\begin{array}{c} 3d \ ^3\mathrm{D}^{\circ} \\ 3d \ ^1\mathrm{D}^{\circ} \end{array}$	3, 4 <i>d</i> ¹ F°

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

(Li 1 sequence; 3 electrons)

Z = 13

Ground state 1s2 2s 2S14

 $2s {}^2S_{\frac{1}{2}}$ 3564900 cm⁻¹

I. P. 441.9 volts

The analysis is by Ferner, who kindly furnished his manuscript in advance of publication. Seven lines have been classified between 39 A and 54 A. Observations of the resonance lines have not been reported. Some of the relative levels have been connected by a study of the behavior of the Rydberg denominators rather than by the Ritz combination principle.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 25 (1948). (I P) (T) (C L)

Al XI

Config.	Desig.	J	Level	Inter- val
2s	2s 2S	1/2	0	
2p	2p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	175900 181820	5920
38	3s ² S	1/2	2020460	
3 <i>p</i>	3p 2P°	1½ 1½	2068770 2070520	1750
3 <i>d</i>	$3d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2087980 2088540	560
4d	4d ² D	1½ 2½	2734140	
Al xII (1S ₀)	Limit		3564900	

August 1947.

(He I sequence; 2 electrons)

Z = 13

Ground state 1s2 1S0

 $1s^2$ 1S_0 16825000 ± 3000 cm⁻¹

I. P. 2085.46 ± 0.37 volts

Flemberg has observed the first three members of the singlet series; the lines are in the region between 6 A and 7 A. He has calculated absolute term values on the assumption that the P-terms can be represented by a Ritz formula.

The unit adopted by Flemberg, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H. Flemberg, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 18 p. 34 (1942). (I P) (T) (C L)

Al XII

Config.	Desig.	J	Level
182	1s ² ¹S	0	0
1s 2p	2p ¹P°	1	12891900
1s 3p	3p ¹P°	1	15072700
1s 4p	4p ¹P°	1	15838600
Al XIII (2S13)	Limit		16825000

October 1946.

SEE REVISION IN NSRDS-NBS 3, Section 2, November 1967.

SILICON

Si I

14 electrons Z=14

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 ^3P_0$

 $3p^2 \, ^3P_0 \, 65743.00 \, \mathrm{cm}^{-1}$

I. P. 8.149 volts

The terms are from Kiess, who has revised and extended the earlier work on analysis. He has published a complete list of classified lines extending from 1565 A to 12270 A. His notation has been adopted throughout, except for the following entries, which have been changed for uniformity:

Kiess	Desig.	Kiess	Desig.
3p 3P	$3p^2$ $^3\mathrm{P}$	3p′ ³D°	3p³ ³D°
3p ¹D	$3p^2$ $^1\mathrm{D}$	x'	1°
3p 1S	$3p^2$ ¹ S	x''	2°

The singlet and triplet terms are connected by numerous intersystem combinations. No quintet terms have been found.

The Si I sequence invites further study from the theoretical point of view. In Si I the 3d 3D ° term is lower than the $3p^3$ 3D ° term. In later members of the sequence the corresponding terms appear in the reverse order.

The extension by Kiess of the laboratory analysis to cover the infrared region has been of special astrophysical importance. The leading lines of Si I are strong in the solar spectrum. Conversely, the solar wave-number separations within the multiplets afford a valuable check on the accuracy of infrared solar wavelengths, provided the Si lines are unblended in the sun. The satisfactory internal agreement within the "solar" Si multiplets has also justified the use of this method to identify solar lines by prediction as unquestionably due to Si, although they have not yet been observed in the laboratory.

REFERENCES

- H. D. Babcock, C. E. Moore and W. P. Hoge, Mt. Wilson Contr. No. 534; Astroph. J. 83, 118 (1936).
- C. C. Kiess, J. Research Nat. Bur. Std. 21, 85, RP1124 (1938). (I P) (T) (C L) (E D)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^2$	3p ² ³ P	0 1 2	0. 00 77. 15 223. 31	77. 15 146. 16	3s² 3p(²P°)5p	5p 3D	1 2 3	56978. 00 57017. 26 57197. 94	39. 20 180. 68
$3s^2 3p^2$	3p ² ¹ D	2	6298. 81		$3s^2 \ 3p (^2\mathrm{P}^{\circ}) 5p$	5p 3P	0 1	57295. 76 57328. 64	32. 8
$3s^2 \ 3p^2$	$3p^2$ ¹ S	0	15394. 24				2	57468. 18	139. 5
3s ² 3p(2P°)4s	4s 3P°	$egin{matrix} 0 \ 1 \ 2 \end{matrix}$	39683. 10 39760. 20 39955. 12	77. 10 194. 92	$3s^2\ 3p(^2\mathrm{P^o})4d$	4d 3F°	$\begin{array}{c}2\\3\\4\end{array}$	57372. 44 57450. 70 57583. 85	78. 2 133. 1
3s ² 3p(2P°)4s	4s ¹P°	1	40991.74		$3s^2 \ 3p (^2\mathrm{P}^\circ) \ 5p$	5p 3S	1	57541. 86	
$3s^2 3p(^2\mathrm{P}^\circ)3d$	3d ³D°	1	45276. 20	17. 40	$3s^2 \ 3p (^2\mathrm{P}^\circ) 5p$	5p ¹D	2	57797. 82	
		$\frac{2}{3}$	45293. 60 45321. 86	28. 26	$3s^2 \ 3p(^2\mathrm{P}^{\circ}) 5p$	5p 1S	0	58311. 19	
$3s^2 \ 3p(^2{ m P}^{\circ})4p$	4p ¹P	1	47284. 20		$3s^2 \ 3p(^2\mathrm{P}^\circ)4f$	4f 1F	3	58774. 18	
$3s^2 \ 3p(^2\mathrm{P}^\circ)3d$	3d ¹D°	2	47351. 50		$3s^2 \ 3p(^2\mathrm{P}^\circ)4f$	4f ³ F	2	58775. 44	11. 3
$3s^2 \ 3p(^2\mathrm{P}^\circ)4p$	4p 3D	1	48020. 00	82. 38			$\begin{matrix} 3 \\ 4 \end{matrix}$	58786. 80 58789. 00	2. 2
		$\frac{2}{3}$	48102. 38 48264. 35	161. 97	$3s^2 \ 3p(^2\mathrm{P}^\circ)4d$	4d ¹P°	1	58802.00	
$3s 3p^3$	$3p^3$ 3 D $^{\circ}$	$rac{1}{2}$	48399. 15	178. 45	$3s^2 \ 3p(^2\mathrm{P}^\circ)4d$	4d 'F°	3	58893. 28	
		$\frac{2}{3}$	48577. 60 48873. 96	296. 36	$3s^2 \ 3p(^2{ m P}^{\circ})4f$	4f 3G	3	59035. 15	1. 8
$3s^2 \ 3p(^2\mathrm{P}^\circ)4p$	4p 3P	o o	49028. 17	32. 38			$\frac{4}{5}$	59037. 00 59053. 84	16. 8
0.00 (070) 4		$\frac{1}{2}$	49060. 55 49188. 61	128. 06	$3s^2 \ 3p(^2\mathrm{P}^\circ) 5d$	5 <i>d</i> ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	59056. 70 59032. 42	-24. 2 86. 0
$3s^2 \ 3p(^2P^\circ)4p$	4p 3S	1	49399. 66			44.00		59118.51	
3s ² 3p(² P°)3d	$3d$ 3 F $^{\circ}$	$\begin{array}{c}2\\3\\4\end{array}$	49850. 93 49934. 12 50071. 88	83. 19 137. 76	$3s^2 \ 3p(^2\mathrm{P}^\circ)4f$	$4f$ $^3\mathrm{D}$	$\begin{array}{c} 3 \\ 2 \\ 1 \end{array}$	59109. 75 59190. 84 59190. 40	-81. 0 0. 4
$3s^2 \ 3p(^2\mathrm{P}^\circ)4p$	4p ¹D	2	50189. 43			1°	?	59109.9	
3s ² 3p(² P°)3d	3d ³P°	2	50499. 44	-66. 51	$3s^2 \ 3p(^2\mathrm{P}^\circ)4f$	4f ¹D	2	59110. 91	
		1 0	50565. 95 50602. 15	-36. 20		2°	?	59132.5	
3s ² 3p(² P°)4p	4p 1S	0	51611. 77		$3s^2 \ 3p(^2{ m P}^{\circ})6s$	6s ³P°	0	59220. 76	52. 5
3s ² 3p(² P°)3d	3d ¹F°	3	53362. 41	,			$rac{1}{2}$	59273. 28 59506. 17	232. 8
$3s^2 \ 3p(^2\mathrm{P}^\circ)3d$	3d ¹ P°	1	53387.17		$3s^2 \ 3p(^2{ m P}^{\circ})6s$	6s ¹P°	1	59636.34	
3s ² 3p(² P°)4d	4d ³D°	1 2 3	54184. 97 54205. 12 54257. 40	20. 15 52. 28	3s ² 3p(² P°)5d	5d ³ P°	2 1 0	59917. 35 60010. 10 60042. 48	-92.7 -32.3
3s ² 3p(² P°)5s	5s 3P°	0	54244. 58	69. 32	$3s^2 \ 3p(^2{\rm P}^{\circ})5d$	5 <i>d</i> ¹D°	2	60299. 92	
		1 2	54313.90 54527.88	213. 98	$3s^2 \ 3p(^2{\rm P}^{\circ}) 5d$	5d ³ F°	2 3	60645. 49 60705. 90	60. 4 143. 2
$3s^2 \ 3p(^2P^\circ)5s$	5s ¹ P°	1	54870.99		0.4.0 ((20) 2.4		4	60849. 13	110. 2
$3s^2 3p(^2P^\circ)5p$	5p ¹P	1	56425. 1		3s ² 3p(² P°)5f	5f ¹D	2	61303. 28	
$3s^2 \ 3p(^2P^\circ)4d$	4 <i>d</i> ¹ D°	2	56503.00		3s ² 3p(2P°)5f	5f 3F	$\frac{2}{3}$	61304. 50 61304. 86	0. 3
3s ² 3p(² P°)4d	4d ³ P°	$\begin{smallmatrix}2\\1\\0\end{smallmatrix}$	56690. 94 56700. 84 56733. 24	$\begin{vmatrix} -9.90 \\ -32.40 \end{vmatrix}$			4	61306. 57	1. 7

Si I—Continued

Si I—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p(2P°)5d	5d ¹P°	1	61308. 32		3s ² 3p(² P°)6f	6f 3F		62668. 50	
$3s^2 \ 3p(^2{ m P}^{\circ})6d$	6d ³D°	1 2 3	61510.71 61423.93	-86.78 151.87			4		
$3s^2 \ 3p(^2\mathrm{P^o})5d$	5d ¹F°	3	61575. 80 61424. 00	131. 67	3s ² 3p(² P°)8s	8s ³P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	62753.05 62808.95 62923.75	55. 90 114. 80
$3s^2 3p(^2P^\circ)7s$	7s 3P°	0	61540.00	54. 80	3s² 3p(²P°)6d	6d ¹ F°	3	62802. 00	
		1 2	61594. 80 61823. 44	228. 64	3s ² 3p(² P°)7d	7d ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	62873. 90 62875. 18	1. 28 61. 12
$3s^2 \ 3p(^2P^\circ)5f$	5f ³G	3 4 5	61562. 37 61563. 75	1. 38	3s² 3p(²P°)8s	8s 1P°	3 1	62936. 30 63130. 60	01. 12
3s ² 3p(2P°)5f	5f 3D	3 2 1	61597. 12 61597. 90 61598. 60	-0.78 -0.70	$3s^2 3p(^2\mathrm{P}^\circ)7d$	7d ³ F°	2 3 4	63257. 61 63353. 70 63580. 63	96. 09 26. 93
$3s^2 \ 3p(^2\mathrm{P}^\circ)6d$	6d ³P°	2 1	61845. 96 61936. 86	-90.90	3s ² 3p(² P°)7d	7d ¹F°	3	63642. 55	
		0	61970. 28	-33. 42	3s ² 3p(2P°)8d	8d 3D°	1 2 3		
$3s^2 \ 3p(^2P^\circ)7s$	7s 'P°	1	61881. 50				3	63758. 35	
$3s^2 \ 3p(^2P^{\circ})6d$	6d ¹ D°	2	62155. 20		$3s^2 3p(^2P^\circ)9s$	98 1P°	1	63884.95	
$3s^2 \ 3p(^2\mathrm{P}^\circ)6d$	6d ³F°	2	62349. 27	27. 41					•
		2 3 4	62376. 68 62534. 46	157. 78	Si 11 (2P½)	Limit		65743.00	

October 1947.

Si i Observed Terms*

Config. $1s^2 2s^2 2p^6 +$	0	Observed Terms								
$3s^2 \ 3p^2$		$3p^2$ ¹ S $3p^2$ ¹ D								
3s 3p³	$3p^{3-3}$	$3p^3\ ^3\mathrm{D}^{\circ}$								
	ns (n≥ 4)	$np \ (n \ge 4)$								
$3s^2 3p(^2P^\circ)nx$	4-8s ³ P° 4-9s ¹ P°	$egin{array}{cccccccccccccccccccccccccccccccccccc$								
	nd (n≥3)	$nf \ (n \ge 4)$								
$3s^2 3p(^2P^\circ)nx$	3-6d ³ P° 3-8d ³ D° 3-7d ³ 3-5d ¹ P° 3-6d ¹ D° 3-7d	F° 4, 5f ³D 4-6f ³F 4, 5g ³C 4, 5f ¹D 4f ¹F								

^{*}For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

Si II

(Al 1 sequence; 13 electrons)

Z = 14

Ground state 1s2 2s2 2p6 3s2 3p 2P2

3p 2P 2 131818 cm-1

I. P. 16.34 volts

The doublet terms from the ¹S limit in Si III are from Fowler. His values of nf ²F°, n=7 to 9, are from his series formula and are indicated by brackets in the table, although they appear to be confirmed by observed combinations with $3p^2$ ²D.

The $3p^2$ ²P term has been calculated from the data given by Bowen and Millikan in 1925. The remaining terms are from Bowen, who pointed out in his 1928 paper that Fowler's term called "x" is $3p^2$ ²D; and listed the two lines classified as 3p ²P° $-3p^2$ ²S. This combination has been used to calculate $3p^2$ ²S.

The quartet terms are from Bowen's 1932 paper. No intersystem combinations have been observed and the uncertainty, x, may be considerable. Bowen remarks that the relative positions of the doublet and quartet terms are only approximately determined by assuming that the difference between the terms 4s ²S and 4s ⁴P° is equal to that between the terms 3s ² ¹S and 3p ³P° in Si III.

REFERENCES

- A. Fowler, Phil. Trans. Roy. Soc. London [A] 225, 20 (1925). (I P) (T) (C L)
- I. S. Bowen and R. A. Millikan, Phys. Rev. 26, 160 (1925). (T) (C L)
- I. S. Bowen, Phys. Rev. 31, 37 (1928). (C L)
- I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L)
- C. C. Kiess, J. Research Nat. Bur. Std. 21, 205, RP1124 (1938). (C L)

Si II Si II

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1S)3p$	3p 2P°	1½ 1½	0 287	287	$3s^2(^1\mathrm{S})5f$	5f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	113756. 60	
3s 3p ²	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{array}{c} 44080.\ 3+x \\ 44190.\ 9+x \\ 44364.\ 4+x \end{array}$	110. 6 173. 5	$3s^2(^1\mathrm{S})6p$	6p 2P°	1½ 1½	114048.7 114057.8	9. 1
$3s \ 3p^2$	$3p^2$ ² D		55303. 93		3s ² (¹S)7s	7s 2S	1/2	117908. 93	
os op-	3p ² ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	55319. 84	15. 91	3s 3p(3P°)4s	4s 4P°	1/2	118118.0+x	116. 0
3s ² (¹ S)4s	4s 2S	1/2	65495. 08				1½ 1½ 2½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199. 9
3s 3p ²	3p ² ² S	1/2	76663. 9		3s ² (¹S)6d	6 <i>d</i> ² D	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	118516. 6	
$3s^2(^1\mathrm{S})3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	79334. 89 79351. 49	16. 60	3s ² (¹ S)6f	6f ² F°	$ \begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases} $	} 119307.57	:
$3s^2(^1\mathrm{S})4p$	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	81185. 98 81245. 98	60. 00	3s ² (¹S)7f	7f ² F°	$ \begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases} $]]} [122649]	
3s 3p ²	3p ² ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	83800 84004	204	$3p^3$	3p3 4S°	1½	124291. 2+x	
3s ² (¹ S)5s	5s ² S	1/2	97966. 60		3s ² (¹S)8f	8f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	[124814]	
$3s^2(^1\mathrm{S})4d$	$4d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	101017. 58 101018. 88	1. 30	$3s^2(^1\mathrm{S})9f$	9f 2F°	$ \begin{cases} 3/2 \\ 3\frac{1}{2} \end{cases} $]]] [126294]	
$3s^2(^1\mathrm{S})4f$	4f ² F°	$\left\{egin{array}{c} 2lac{1}{2} \ 3lac{1}{2} \end{array} ight.$	103552. 58		Si 111 (¹S₀)	Limit		131818	
$3s^2(^1\mathrm{S})5p$	5p 2P°	1½ 1½	103855. 29 103879. 60	24. 31	3s 3p(3P°)4p	4p 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62. 2 134. 8
3s ² (¹S)6s	6s ² S	1/2	111178. 95		3s 3p(3P°)4p	4p 4S	1½	136161.1+x	
$3s^2(^1\mathrm{S})5d$	$\int 5d^{-2}D$	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 112389. 2		55 5p(51)4p	±μ -Ω	172	130101. 172	

Si II OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms										
$3s^{2}(^{1}S)3p$ $3s^{2}3p^{2}$ $3p^{3}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3p² ²D										
	ns (n≥ 4)		$np \ (n \ge 4)$	nd (n≥3)	$nf (n \ge 4)$							
3s ² (¹ S)nx 3s 3p(³ P°)nx	4-7s ² S 4s ⁴ P°		4-6p ² P° 4p ⁴ S 4p ⁴ P	3-6 <i>d</i> ² D	4–6f ² F°							

^{*}For predicted terms in the spectra of the Alı isoelectronic sequence, see Introduction.

Si III

SEE REVISION IN NSRDS-NBS 3, Section 1, June 1965.

(Mg I sequence; 12 electrons)

Z = 14

Ground state 1s2 2s2 2p6 3s2 1S0

 $3s^2$ 1S_0 269940.6 cm⁻¹

I. P. 33.46 volts

The analysis is from Bowen, who has extended the earlier work of Fowler, by observations in the ultraviolet. Ninety-six lines have been classified in the interval 566 A to 5739 A. One intersystem combination, $3s^2$ ^1S-3p $^3P_1^\circ$, is given, but Bowen states that the identification of this line is dubious. He remarks further that "the term values of the singlets and triplets can be independently determined with an accuracy that precludes any large shift in the relative position of the two systems, regardless of this identification." The irregular doublet law for the isoelectronic sequence through P IV confirms this classification, as has been pointed out by Robinson.

Van Vleck and Whitelaw, by analogy with Al II, using a rigorous series formula, have recalculated the absolute value of 5g 3G as equal to 39831 cm^{-1} as compared with Fowler's value 39741 cm^{-1} and Bowen's value 39734.0 cm^{-1} .

REFERENCES

R. A. Sawyer und F. Paschen, Ann. der Phys. [IV] 84,, 8 (1927). (T)

I. S. Bowen, Phys. Rev. 39, 8 (1932). (I P) (T) (C L)

H. A. Robinson, Phys. Rev. 51, 731 (1937).

J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 560 (1933). (T)

Si III

Si III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹S	0	0. 0		3s(2S)4d	4 <i>d</i> ¹D	2	204329. 6	
$3s(^2S)3p$	3p 3P°	0	52630 52758	128	3s(2S)5s	58 3S	1	206079. 6	
		$\begin{bmatrix} & 0 \\ & 1 \\ & 2 \end{bmatrix}$	53019	261	3s(2S)5s	5s ¹S	0	207872. 5	
$3s(^2\mathrm{S})3p$	3p ¹P°	1	82883.0		$3s(^2\mathrm{S})4f$	4f 3F°	2	209436. 7	27. 6
$3p^2$	$3p^2$ ¹ D	2	121946				2 3 4	209464.3 209503.8	39. 8
$3s(^2\mathrm{S})3d$	3 <i>d</i> ¹ D	2	122213. 0		$3p(^2\mathrm{P}^\circ)3d$	3d ³P°	2	216095	-98
$3p^{2}$	3p² ⁵P	0	129615	132			0	216193 216255	-62
		0 1 2	$\begin{array}{c} 129747 \\ 130006 \end{array}$	259	$3p(^2\mathrm{P}^{o})3d$	3d ³D°	1	217290	54
$3s(^2\mathrm{S})3d$	3d 3D	3	142847. 6	-2.1			1 2 3	217344 217395	54 51
		3 2 1	142849. 7 142851. 7	-2.0	3p(2P°)4s	48 ³P°	0	226305	127
3s(2S)4s	48 ³ S	1	153281. 0				$\begin{array}{c c} 1 \\ 2 \end{array}$	226432 226727	295
$3p^2$	$3p^2$ ¹ S	0	153443. 0		$3s(^2\mathrm{S})5g$	5g 3G	3, 4, 5	230206. 6	
3s(2S)4s	48 ¹S	0	159068. 4		3s(2S)6g	6g ³G	3, 4, 5	242379. 0	
$3s(^2\mathrm{S})4p$	4p 3P°	0	175134. 0	33.0	$3p(^2\mathrm{P}^{\circ})4p$	4p 3P	0	247776	83
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	175167. 0 175240. 2	33. 0 73. 2			$\frac{1}{2}$	$247859 \\ 248073$	214
3s(2S)4p	4p 1P°	1	176485. 9			4			
3s(2S)4d	4d 3D	3, 2, 1	201502. 5		Si IV (2S _{1/4})	Limit		269940. 6	

July 1947.

Si III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶		Observed Terms											
$3s^2$ $3s(^2\mathrm{S})3p$ $3p^2$	$3s^{2} {}^{1}\!S \ \left\{ egin{array}{cccc} 3p {}^{3}\!P^{\circ} \ 3p {}^{1}\!P^{\circ} \ \end{array} ight. \ \left\{ egin{array}{cccc} 3p^{2} {}^{3}\!P \ \end{array} ight. \end{array} ight.$	$3p^2$ $^1\mathrm{D}$											
	ns (n≥ 4)	$np \ (n \ge 4)$	$nd \ (n \ge 3)$	$nf (n \ge 4)$	$ng \ (n \ge 5)$								
3s(2S)nx 3p(2P°)np	{4, 5s 3S 4, 5s 1S 4s 3P°	4p 3P° 4p 1P° 4p 3P	3, 4d ³ D 3, 4d ¹ D 3d ³ P° 3d ³ D°	4f ³F°	5, 6 <i>g</i> ³ G								

^{*}For predicted terms in the spectra of the Mg $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

Si IV

(Na I sequence; 11 electrons)

Z = 14

Ground state 1s2 2s2 2p6 3s 2S14

 $3s^2S_{\frac{1}{2}}$ 364097.7 cm⁻¹

I. P. 45.13 volts

The first detailed analysis by Fowler was extended and improved by Edlén and Söderqvist, who observed the spectrum from 815 A to 4328 A. The terms have been taken from their paper, extrapolated values being entered in brackets. They estimate the accuracy of the limit as probably within 2 or 3 cm⁻¹. One additional term, 8f ²F°, has been taken from Fowler's paper and corrected slightly to agree with the rest.

The observations by McLennan and Shaver extend to the violet limit 458 A and those by Millikan and Bowen extend to 361 A.

REFERENCES

- R. A. Millikan and I. S. Bowen, Phys. Rev. 23, 1 (1924). (C L)
- J. C. McLennan and W. W. Shaver, Trans. Roy Soc. Canada [3] 18, Sec III p. 14 (1924). (C L)
- A. Fowler, Phil. Trans. Roy. Soc. (London) [A] 225, 38 (1925). (T) (C L)
- B. Edlén and J. Söderqvist, Zeit. Phys. 87, 217 (1933). (I P) (T) (C L)

Si IV

Si IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0. 0		6d	6 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	313923. 4	
3p	3 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	71289. 6 71749. 9	460. 3	6 <i>f</i>	6f ² F°	2½ 3½ 3½		
3d	$3d$ $^2\mathrm{D}$	$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	160376. 8		6g	6 <i>g</i> ² G	$ \begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases} $	315231. 6 315306. 8	
48	4s 2S	1/2	193981. 5		og .	oy a) 313300. 0	
4p	4p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	218269. 5 218431. 3	161. 8	6h	6h ² H°	$\left\{\begin{array}{cc} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	315320.0	
4d	43 20		210401.0		7 s	7s 2S	1/2	318744. 5	
4a	4d ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	250010. 6		7 p	7p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	[322347]	
4 <i>f</i>	4f 2F°	2½ 3½	254129. 4 254130. 7	1. 3	7 d	7d 2D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	[327369]	
58	5s 2S	1/2	265420. 4		7 <i>f</i>	7f 2F°	1	[021000]	
5p	5p ² P°	1½ 1½	276506. 5 276581. 8	7 5. 3	43	7) 2	2½ 3½	328201.5	
5d	$5d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	291499. 2		7g	7g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	3 2 8251. 7	
5 <i>f</i>	5f ² F°	2½ 3½	293721.0		7 <i>h</i>	7h ² H°	$\left\{\begin{array}{cc} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	328262	
5g	5 <i>g</i> ² G	$\left\{\begin{array}{c c} & 3\frac{1}{2} \\ & 4\frac{1}{2} \end{array}\right $	2 93839. 7		8 <i>f</i>	8f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} [<i>336619</i>]	
68	6s 2S	1/2	299679. 6		Q; _{vv} /1Q \	T imit		264007 7	-
6p	6p 2P°	$1\frac{1}{2}$	305645 305687.6	43	Si v (¹S₀)	Limit		364097.7	

June 1947.

(Ne i sequence; 10 electrons)

Z = 14

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

 $2p^6 \, {}^{1}\mathrm{S_0} \, 1345100 \, \, \mathrm{cm^{-1}}$

I. P. 166.73 volts

The analysis is by Ferner, who has extended the early work by Söderqvist. Thirteen lines have been classified in the region 78 A to 118 A, as combinations with the ground term.

Ferner's term designations assigned on the assumption of LS-coupling are given under the heading "Author" in the table.

As for Ne 1, the jl-coupling notation in the general form suggested by Racah is introduced. The unit used by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 4 (1941). (I P) (T) (C L).
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Si v

Si v

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2 <i>p</i> ¹S	$2p^6$	$2p^6$ ¹ S	0	0	4d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{1\!\!\:\!\!\!\!\:\!$	4d [1½]°	1	1168550
20 3D	$2p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})3$ s	3s [1½]°	2 1	840560	$4d$ $^3\mathrm{D}_1$	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})4d$	4d'[1½]°	1	1174050
3s ³P ₁	9m5/2D°\2a	3s'[½]°		540000	$5d$ $^{1}\mathrm{P}_{1}$	$2p^5(^2\mathrm{P}_{1\!\!+\!\!2})5d$	5d [1½]°	1	1232850
38 ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})3\mathrm{s}$	08 [72]	0 1	848460	$5d$ $^3\mathrm{D_1}$	$2p^5(^2\mathrm{P}_{55}^{\circ})5d$	5d'[1½]°	1	1237520
$3d\ ^3\mathrm{P}_1$	$2p^{5}(^{2}\mathrm{P_{11/2}^{*}})3d$	3d [½]°	0 1	1018240	6d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{^{1}\mathrm{H}})6d$	6d [1½]°	1	1267380
$3d$ $^{1}P_{1}$	"	3d [1½]°	1	1029410	$6d~^{3}\mathrm{D_{1}}$	$2p^5(^2\mathrm{P}_{\aleph})6d$	6d'[1½]°	1	1272090
$3d\ ^3\mathrm{D}_1$	$2p^5(^2\mathrm{P}_{5/2}^{\circ})3d$	3d'[1½]°	1	1036930					
4s ³P1	2p ⁵ (² P ₁₃)4s	4s [1½]°	2 1	1100690		Si vi (2P ₁ ; ₄) Si vi (2P; ₄)	Limit Limit		1345100 1350200
4s ¹ P ₁	$2p^5(^2\mathrm{P}_{52}^{\circ})4s$	4s'[½]°	0 1	1105550					

April 1947.

Si v Observed Levels*

Config. 1s ² 2s ² +	Observ	ed Terms
2p6	2p ⁶ ¹ S	
	$ns (n \ge 3)$	nd (n≥3)
2p ⁵ (2P°)nx	3, 4s ³ P° 3, 4s ¹ P°	3d ³ P° 3-6d ³ D° 3-6d ¹ P°
	jl-Coupling Notat	ion
	Observ	ved Pairs
	ns (n≥ 3)	$nd \ (n \ge 3)$
$2p^5(^2\mathrm{Pi}_{15})nx$	3, 4s [1½]°	3d [½]° 3–6d [1½]°
$2p^5(^2\mathrm{P}^{\circ}_{\!$	3, 48′ [½]°	3 –6d′ [1½]°

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Si vi

(F r sequence; 9 electrons)

Z = 14

Ground state 1s2 2s2 2p5 2P14

$$2p^5 \, {}^2\mathrm{P}^{\circ}_{1\frac{1}{2}}$$
 1654800 cm⁻¹

I. P. 205.11 volts

The terms are from Ferner's paper. He has extended the earlier analysis by Söderqvist to include 63 classified lines in the range between 65 A and 249 A. All but two of the observed combinations are with the ground term. According to Ferner some of the term assignments are somewhat uncertain. The unit adopted by Ferner, 10³ cm⁻¹, has here been changed to cm⁻¹.

By analogy with related spectra in the isoelectronic sequence Robinson has suggested the following changes in Ferner's term assignments:

Ferner	Robinson	Ferner	Robinson
1. et mer	LODINSON		
3d 4F ₂₁₄	3d 4P214	3d′ 2S ₁₄	3d′ ² P _{11/2}
3d 4P21/2	3d ² D ₂ ₃	3d′ ² P ₁ ,	$3d'$ $^2\mathrm{D}_{1\frac{1}{2}}$
3d ² D _{2½}	3d ² F ₂ ₁	$3d' {}^{2}\mathrm{D}_{^{2}}_{^{2}}$	$rac{3d'}{3d'} ^2 ext{F}_{^2 ext{14}} \ 3d' ^2 ext{S}_{ ext{14}}$
4d 4F _{2½}	4d ² D _{2½} 4d ⁴ P _{2½} *	3d′ ² F _{2½}	3d′ ² D _{21⁄2}
4d ² D _{2½} ² D _{1½}	4d ² D _{11/2} 4d ² P _{11/2}	4d′ 2S ₁₄	4d′ 2S½** 4d′ 2P1½
		$4d' {}^{2}{ m D}_{^{2}{ m i}}_{^{2}} \ {}^{2}{ m D}_{^{1}{ m i}}_{^{2}}$	4d′ ² D 4d′ ² P _½ ***

*1401250.

**1446330.

***1445500.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 5 (1941). (I P) (T) (C L) H. A. Robinson, unpublished material (March 1948). (T) (C L)

Si vi

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁵	$2p^5$ $^2\mathrm{P}^{\circ}$	1½ ½ ½	0 5100	-5100	2s² 2p⁴(³P)4s	4s ² P	1½ ½ ½	1329900	
2s 2p ⁶	2p6 2S	1/2	406500		$2s^22p^4(^1{ m D})4s$	4s' 2D	${ 2\frac{1}{2} \atop 1\frac{1}{2}}$	} 1371820	
2s ² 2p ⁴ (³ P)3s	3s ⁴ P	2½ 1½ ½	990460 993640	-3180	2s 2p ⁵ (³P°)3s	3s''' ²P°	1½ ½ ½	1375840 1378830	-2990
$2s^2 \ 2p^4(^3{ m P})3s$	3s ² P	1½ ½ ½	1005440 1009140	-3700	$2s^2 2p^4(^3\mathrm{P})4d$	4d 4F	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$		
$2s^2 \ 2p^4(^1{\rm D})3s$	3s′ ²D	$2\frac{1}{2}$ $1\frac{1}{2}$	1041450 1041500	-50			$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1399110 1399450	-340
2s ² 2p ⁴ (1S)3s	3s'' 2S	1/2	1094460		$2s^2 2p^4 (^3\mathrm{P}) 4d$	4d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1400880 1401740	860
2s ² 2p ⁴ (³ P)3d	$3d$ $^4\mathrm{F}$	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	119 32 90 1194330	-1040	$2s^2 2p^4(^3{ m P})4d$	4 <i>d</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	1402510 1406330	3820
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> 4P	$\begin{array}{c c} 1/2 & & \\ \frac{1}{2} & & \\ 1\frac{1}{2} & & \\ 2\frac{1}{2} & & \end{array}$	1194970 1196040	1070	$2s^2 \ 2p^4(^3\mathrm{P})4d$	$oxed{4d}$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1403050 1404870	1820
		$2\frac{1}{2}$	1197230	1190	$2s^2 \ 2p^4(^1{ m D})4d$	4d′ 2S	1/2	1444340	
2s² 2p⁴(²P)3d	3d ² P	$\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c} 1200720 \\ 1204740 \end{array}$	4020	$2s^2 2p^4 (^1\mathrm{D}) 4d$	4d′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1445000 1445590	-590
28 ² 2p ⁴ (³ P)3d	3 <i>d</i> ² D	1½ 2½	1201100 1202960	1860	$2s^2 2p^4(^1{ m D})4d$	4d′ ²P	$1\frac{1}{2}$ $1\frac{1}{2}$	1445030	
$2s^2 \ 2p^4(^1\mathrm{D})3d$	3d′ ²P	1½ 1½	$\begin{array}{c} 1239200 \\ 1242390 \end{array}$	3190	$2s^2\ 2p^4(^1{ m S})4d$	4d'' ²D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1497100	
$2s^2 \ 2p^4(^1{\rm D})3d$	3d′ 2S	1/2	1241060		$2s^2 2p^4(^3{ m P}) 5d$	5d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1497630	
$2s^2 \ 2p^4(^1D)3d$	3d′ ²D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	$\begin{array}{c} 1242220 \\ 1243860 \end{array}$	-1640	$2s^22p^4(^1{ m D})5d$	5d′ 2S	1/2	1538370	
$2s^2 \ 2p^4(^1{\rm D})3d$	3d′ ² F	3½ 2½	1243020		$2s^22p(^1\mathrm{D})5d$	5d′ ²P	1½ 1½	1538580	
2s ² 2p ⁴ (¹ S)3d	3d'' ² D	2½ 1½	1291510 1291800	-290	C! (2D.)	T 2 ma 24		105.4900	-
2s ² 2p ⁴ (³ P)4s	4s 4P	2½ 1½ ½	1322980		Si vII (³ P ₂)	Limit		1654800	

March 1948.

Si vi Observed Terms*

Config. 1s ² +			C	bserved Te	rms		
2s ² 2p ⁵ 2s 2p ⁶	2p ⁶ ² S	2p ⁵ ² P°					
		ns $(n \ge 3)$			nd	$(n \ge 3)$	
2s ² 2p ⁴ (³ P)nx	{	3, 4s ⁴ P 3, 4s ² P			3, 4d ⁴ P 3, 4d ² P	3–5 <i>d</i> ² D	3, 4 <i>d</i> ⁴ F
$2s^2 \ 2p^4(^1\mathrm{D})nx'$			3, 4s′ ² D	3-5d′ 2S	3– 5 <i>d′</i> ² P	3, 4 <i>d′</i> ² D	3 <i>d′</i> ²F
2s ² 2p ⁴ (¹ S)nx''	38" 2S					3, 4 <i>d''</i> ² D	
2s 2p ⁵ (3P°)nx'''		3s''' ² P°					

^{*}For predicted terms in the spectra of the F $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(O1 sequence; 8 electrons)

Z = 14

Ground state 1s2 2s2 2p4 3P2

 $2p^4$ 3P_2 1988000 cm⁻¹

I. P. 246.41 volts

In 1941 Ferner published an analysis of this spectrum including 71 classified lines—64 in the region between 54 A and 85 A and 7 between 217 A and 278 A. The present term list is, however, based on later work kindly furnished by him in manuscript form.

Two intersystem combinations have been observed, connecting the triplet and singlet terms.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 3 (1941). (T) (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

Si VII

Si VII

Config.	Desig.	J.	Level	Inter- val	Config.	Desig.	J.	Level	Inter- val
2s ² 2p ⁴	2p4 3P	2 1 0	0 4030 5570	$ \begin{array}{c c} -4030 \\ -1540 \end{array} $	$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³D°	3 2 1	1428020 1428090	-70
$2s^2 \ 2p^4$	2p4 ¹D	2	47000		$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹P°	1	1429680	
$2s^2 \ 2p^4$ $2s \ 2p^5$	$egin{array}{cccc} 2p^4 & {}^1\mathrm{S} \ 2p^5 & {}^3\mathrm{P}^{\mathrm{o}} \end{array}$	0 2	99780 36 170	-3610	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ³P°	$\begin{smallmatrix}2\\1\\0\end{smallmatrix}$	1435460 1436750 1437090	-1290 -340
•		2 1 0	366780 368760	-1980	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹D°	2	1436760	
$2s^2 \ 2p^5$	2p ⁵ ¹P°	1	506080		$2s^2 2 \mathcal{F}^3(^2\mathrm{D}^\circ) 3d$	3d′ 3S°	1	1441230	
$2s^2 \ 2p^3({}^4{ m S}^{\circ})3s$	3s 3S°	1	1172470		$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	1447870	
$2s^2\ 2p^3(^2{ m D}^{ m o})3s$ $2s^2\ 2p^3(^2{ m D}^{ m o})3s$	3s' ³ D° 3s' ¹ D°	1, 2, 3	1225150 1236320		$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	1460290 1460860 1461860	570 1000
2s² 2p³(²P°)3s	3s" ³P°	0 1 2	1261610 1262040	430	$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³F°	4 3 2	1463270 1466490	-3220
2s² 2p³(²P°)3s	3s'' ¹P°	1	1273170		$2s^2 \ 2p^3 (^2\mathrm{P}^\circ) 3d$	3d'' ¹D°	2	1466910	
$2s^2 \ 2p^3(^4\mathrm{S}^\circ)3d$	3d ³D°	1, 2 2, 3	1367360 1367560	200	$2s^2\ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³D°	$\frac{3}{2}$	1467390 1470050	-2660
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³F°	4 3 2	1426050		$2s^22p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹P°	1	1470490	
		2			$2s^2 \ 2p^3 (^2{ m P}^{\circ}) 3d$	3d" 1F°	3	1474100	

Si VII—Continued

Config.	Desig.	J.	Level	Inter- val	Config.	Desig.	J.	Level	Inter- val
2s 2p4(4P)3s	3s''' ³P	2 1 0	1499430			4d' ¹F° 4d'' ³P°	3	1714610	
2s 2p4(2D)3s	38IN 3D	3 2 1	1590930		$2s^2 2p^3 (^2\mathrm{P}^\circ)4d$	4d'' ³D°	1 2 3	1741130 1744440	
2s² 2p³(²D°)4s 2s² 2p³(²D°)4s	4s' ³ D° 4s' ¹ D°	1, 2, 3 2	1631160 1635820		$2s^22p^3(^2\mathrm{P^o})4d$	4d'' ¹F°	2 1 3	1748200	
$2s^2 \ 2p^3 (^4\mathrm{S}^\circ) 4d$	4d ³D°	1 2, 3	1643740		$2s^2 2p^3 ({}^4\mathrm{S}^\circ) 5d$	5d ³D°	1 2, 3	1769040	
2s² 2p³(²P°)4s	4s'' ³P°	0 1 2	1669900		2s ² 2p ³ (² D°)5d	5d' ³ D° 5d' ³ P°	3, 2	1834120	
$2s^22p^3(^2\mathrm{D}^\circ)4d$	4d′ ³D°	3, 2	1707070		2s ² 2p ³ (² D°)5d		2 1 0	1836140	
$2s^2\ 2p^3(^2{ m D}^{ m o})4d$ $2s^2\ 2p^3(^2{ m D}^{ m o})4d$	4d' ¹ P° 4d' ³ P°	1 2 1 0	1707550		2s 2p4(4P)4s	4s''' ³P	1 0	1887680	
$2s^22p^3(^2\mathrm{D^\circ})4d$	4d′ 3S°	1	1712680		Si viii (4S°14)	Limit		1988000	

February 1947.

Si vii Observed Terms*

Config. 1s²+				Observed Te	erms		
2s ² 2p ⁴ 2s 2p ⁵	$\left\{ 2p^{4} ^{1}\mathrm{S} \right.$	$2p^{4}$ $^{3}\mathrm{P}$ $^{2}p^{5}$ $^{3}\mathrm{P}^{\circ}$ $^{2}p^{5}$ $^{1}\mathrm{P}^{\circ}$	2p4 ¹D				
		ns $(n \ge 3)$			nd	$(n \ge 3)$	
$2s^2 \ 2p^3(^4\mathrm{S}^\circ) nx$	3s 3S°					3-5 <i>d</i> ³ D°	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{		3, 4s′ ³ D° 3, 4s′ ¹ D°	3, 4d′ 3S°	3-5d′ ³P° 3, 4d′ ¹P°	3-5d' ³ D° 3d' ¹ D°	$^{3d'}_{3,\ 4d'}\ ^{3}{ m F}^{\circ}_{1}$
$2s^2 \ 2p^3(^2\mathrm{P}^\circ)nx''$	{	3, 4s'' ³ P° 3s'' ¹ P°			3, 4d'' ³ P° 3d'' ¹ P°	$^{3,4d^{\prime\prime}\ ^{3}{ m D}^{\circ}}_{3d^{\prime\prime}\ ^{1}{ m D}^{\circ}}$	$^{3d''}_{3, 4d''} ^{3}F^{\circ}_{1}$
2s 2p4(4P)nx'''		3, 4s''' ³P					
2s 2p4(2D)nx1V			381A 3D				

^{*}For predicted terms in the spectra of the O $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(N I sequence; 7 electrons)

Z = 14

Ground state 1s2 2s2 2p3 4S146

 $2p^3 \, {}^4S_{11/2}^{\circ} \, 2451570 \, \, \mathrm{cm}^{-1}$

I. P. 303.87 volts

The terms published by Ferner in 1941 have been corrected as indicated in his 1948 paper. The absolute values of the quartet terms have been decreased by 250 cm⁻¹; those of the doublet terms increased by 250 cm⁻¹ as compared with the values he published in 1941.

Fifty-nine lines have been classified, all but 13 of which are in the region between 49 A and 76 A. No intersystem combinations have been published and the uncertainty, x, may be considerable.

The unit adopted by Ferner, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- J. Söderqvist, Nova Acta Reg. Soc. Sci. Uppsala [IV] 9, No. 7, 64 (1934). (T) (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 6 (1941). (I P) (T) (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948).

Si VIII Si VIII

		21 1111						SI VIII			
Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
2p 4S2	2s ² 2p ³	2p³ 4S°	1½	0	-	$3d^{-2}D_{2}^{-2}D_{3}^{-2}$	$2s^2 \ 2p^2(^3{ m P}) 3d$	$3d$ 2 D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1657290+x $1658460+x$	1170
$2p$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s ² 2p ³	$2p^3$ $^2\mathrm{D}^\circ$	$1\frac{1}{2}$ $2\frac{1}{2}$	$67140+x \\ 67420+x$	280	$\overline{3d}$ ${}^{2}F_{4}$ ${}^{2}F_{3}$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d′ ²F	$3\frac{1}{2}$ $2\frac{1}{2}$	$\begin{vmatrix} 1682560 + x \\ 1682780 + x \end{vmatrix}$	-220
$2p$ ${}^2\mathrm{P_1}$ ${}^2\mathrm{P_2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2p³ ²P°	1½ 1½	$\begin{array}{c c} 103320+x \\ 103900+x \end{array}$	580	$\overline{3d}$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	$\begin{vmatrix} 1683930 + x \\ 1685560 + x \end{vmatrix}$	1630
$2p' {}^4 ext{P}_3 \ {}^4 ext{P}_2 \ {}^4 ext{P}_1$	2s 2p4	2p4 4P	2½ 1½ ½ ½	312670 316260 318160	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\overline{3d}$ $^{2}P_{1}$ $^{2}P_{2}$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3d' ² P	1/2 1/2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1580
$^2p'\ ^2{ m D_3}\ ^2{ m D_2}$	28 2p4	$2p^{4-2}\mathrm{D}$	2½ 1½	$\begin{array}{c} 428300 + x \\ 428360 + x \end{array}$	-60	3p′ 4P	2s 2p ³ (⁵ S°)3p	3p''' 4P	$\left\{\begin{array}{c} \frac{1}{2} \\ \text{to} \\ 2\frac{1}{2} \end{array}\right.$	1698230	
2p′ 2S ₁	2s 2p4	2p4 2S	1/2	502360+x		$\overline{3d}$ ${}^2\mathrm{S}_1$	$2s^2 \ 2p^2(^1\mathrm{D})3d$	3 <i>d′</i> 2S	1/2	1701700+x	
${2p'} {^2\mathrm{P}_2} \ {^2\mathrm{P}_1}$	2s 2p4	2p4 2P	1½ ½ ½	$\begin{array}{c c} 528420+x \\ 532790+x \end{array}$	-4370	3d′ 4D	2s 2p ³ (⁵ S°)3d	3d''' 4D°	{ ½ to	1801710	
$\begin{array}{cc} 3s & ^4P_1 \\ ^4P_2 \\ ^4P_3 \end{array}$	2s ² 2p ² (³P)3s	3s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1430510 1432870 1436120	2360 3250	4s ² P ₂	$2s^2 \ 2p^2(^3{ m P})4s$	4s ² P	1½ 1½ 1½	$\begin{bmatrix} 1 \\ 1927190 + x \end{bmatrix}$	
$\begin{array}{cc} 3s & {}^2P_1 \\ {}^2P_2 \end{array}$	2s 2p ² (³ P)3s	3s ² P	1½ 1½	1447950+x 1451900+x	3950	4s ² P ₂ 4d ² F ₃ ² F ₄	$2s^2 \ 2p^2(^3{ m P})4d$	$4d$ $^2\mathrm{F}$	$2\frac{1}{2}$ $3\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4050
$\overline{3s}$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	$2s^2 \ 2p^2(^1\mathrm{D})3s$	38′ 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	$\begin{array}{ c c c c c c }\hline 1486120 + x \\ 1486710 + x \\ \hline \end{array}$	590	4d ⁴ P ₃ ⁴ P ₂	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4d 4P	2½ 1½ ½	1999240 2000520	-1280
$3d$ $^{2}P_{2}$	$2s^2 \ 2p^2(^3P)3d$	3 <i>d</i> ² P	1½ ½ ½	1622900+x						2000020	
38′ 4S2	2s 2p³(5S°)3s	3s''' 4S°	1½	1628660		$4d^{-2}\mathrm{D}_3$	$2s^2 \ 2p^2(^3\mathrm{P})4d$	$4d$ $^2\mathrm{D}$	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	2006710+x	
$3d_{2}^{2}F_{3}^{2}F_{4}$	$2s^2\ 2p^2(^3\mathrm{P})3d$	$3d$ $^2\mathrm{F}$	2½ 3½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4480	$\overline{4d}$ $^2\mathrm{D_3}$	$2s^2 \ 2p^2(^1\mathrm{D})4d$	$4d'$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2046680+x	
$3d$ $^4\mathrm{D}_{32}$	$2s^2 \ 2p^2(^3{ m P})3d$	3d 4D	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}\right.$	}16333 7 0			Si 1x (² P ₀)	Limit		2451570	
3d ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	$2s^2 \ 2p^2(^3\mathrm{P})3d$	3d 4P	2½ 1½ ½	1637470 1638830 1639640	-1360 -810						

July 1948.

Si VIII OBSERVED TERMS*

Config. 1s ² +				Observed 7	Terms
2s² 2p²	${2p^3}$ 4S°	2p³ ²P°	2p³ 2D°		
2s 2p4	$\left\{ 2p^{4} ^{2}\mathrm{S} \right.$	2p4 4P 2p4 2P	2p4 2D		
		$ns (n \ge 3)$		$np \ (n \ge 3)$	nd (n≥3)
2s ² 2p ² (³ P)nx	{	3s ⁴ P 3, 4s ² P			3, 4d ⁴ P 3d ⁴ D 3d ² P 3, 4d ² D 3, 4d ² F
$2s^2 \ 2p^2(^1\mathrm{D})nx'$			3s′ 2D		3d′ ² S 3d′ ² P 3, 4d′ ² D 3d′ ² F
2s 2p³(5S°)nx'''	3s''' 4S°			3p''' 4P	3d′′′ ⁴D°

^{*}For predicted terms in the spectra of the NI isoelectronic sequence, see Introduction.

Si IX

(C1 sequence; 6 electrons)

Z = 14

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2$ 3P_0 2838460 cm $^{-1}$

I. P. 351.83 volts

The terms have been taken from a manuscript by Ferner who generously submitted his revised analysis in advance of publication. A total of 42 lines have been classified, all but two of which are in the region between 44 A and 65 A. No combinations involving the terms $2p^3$ ¹D° and $2p^3$ ¹P° are listed.

The systems of terms of different multiplicity are not connected by intersystem combinations. Their relative positions are estimated by extrapolation along the isoelectronic sequence. The uncertainties, x and y, may be considerable.

Ferner's unit, 10³ cm⁻¹, has here been converted to cm⁻¹.

REFERENCES

- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 6 (1941). (T) (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 37 (1948). (I P) (T) (C L)

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
$2p \ ^{3}P_{0} \ ^{3}P_{1} \ ^{3}P_{2}$	2s ² 2p ²	2p ² ³ P	0 1 2	0 2590 6460	2590 3870	3d ¹ F ₃ 3d ¹ P ₁	2s ² 2p(² P°)3d 2s ² 2p(² P°)3d	3 <i>d</i> ¹ F° 3 <i>d</i> ¹ P°	3	$ \begin{array}{c c} \hline 1837810 + x \\ 1838540 + x \end{array} $	
$2p^{-1}\mathrm{D}_2$	2s ² 2p ²	$2p^2$ $^1\mathrm{D}$	2	52960 + x		3p′ 3S ₁	2s 2p ² (4P)3p	3p 3S°	1	1858590	
$2p$ ${}^{1}\mathrm{S}_{0}$	$2s^2 \ 2p^2$	$2p^2$ $^1\mathrm{S}$	0	107780 + x		2/ 3.D	2s 2p ² (4P)3p	3p 3D°	1	1000180	
$2p'$ ${}^5\mathrm{S}_2$	2s 2p3	2p³ 5S°	2	150010+y		$3p' {}^{3}\mathrm{D}_{2} \ {}^{3}\mathrm{D}_{3}$			$\begin{vmatrix} 2\\3 \end{vmatrix}$	1896170 1899040	2870
$2p'{}^{3}\mathrm{D}_{3}$	2s 2p3	$2p^3$ $^3\mathrm{D}^\circ$	3 2	292210 292360	150	3̄s′ ³D	$2s 2p^2(^2\mathrm{D})3s$	3s′ ³D	1, 2, 3	1917080	
$^3\mathrm{D}_2 \ ^3\mathrm{D}_1$			1	292360 292440	-80	3d′ ⁵ P ₃	2s 2p ² (4P)3d	3d ⁵ P	3 2	1971270 + y	-1230
2p′ ³P	2 s $2p^3$	$2p^3$ $^3\mathrm{P}^{\circ}$	2, 1, 0	344080		⁵ P ₂ ⁵ P ₁			1	$\begin{vmatrix} 1972500 + y \\ 1973460 + y \end{vmatrix}$	-960
$2p'$ $^1\mathrm{D}_2$	2s 2p³	$2p^3$ $^1\mathrm{D}^\circ$	2	440410+x		3d′ 3P ₂	2s 2p ² (4P)3d	3d ³ P	2	1973940	
$2p'$ $^3\mathrm{S}_1$	2s 2p³	2p³ 3S°	1	446980					0		
2p′ ¹P₁	2s 2p3	2p³ ¹P°	1	492820 + x		$3d' {}^3 ext{F}_2 \ {}^3 ext{F}_3$	2s 2p ² (4P)3d	3d 3F	2 3	1985150 1987160	2010
3s ³ P ₁	2s ² 2p(² P°)3s	3s ³P°	0	1623380		³ F ₄	:		4	1989830	2670
38 3 P ₂			2	1628550	5170	$\overline{3p}'$ ${}^1\mathrm{F}_3$	$2s 2p^2(^2\mathrm{D})3p$	3p′ ¹F°	3	1999930+x	
3s ¹ P ₁	2s ² 2p(² P°)3s	3s ¹ P°	1	1640920+x		$\overline{3p}'$ $^1\mathrm{D}_2$	$2s 2p^2(^2\mathrm{D})3p$	3p′ ¹D°	2	2009410 + x	
3s' ⁵ P ₁ ⁵ P ₂ ⁵ P ₃	2s 2p ² (4P)3s	3s ⁵ P	1 2 3	$\begin{vmatrix} 1784260 + y \\ 1786430 + y \\ 1789650 + y \end{vmatrix}$	2170 3220	$3d'$ $^3\mathrm{D}_{32}$	2s 2p ² (4P)3d	$3d$ 3D	1 2, 3	2011690	
$3d$ $^3\mathrm{F}_2$	$2s^2 2p(^3\mathrm{P}^{\mathrm{o}})3d$	3d ³F°	2	1789400+x		$3\overline{d'}$ $^3\mathrm{F}$	$2s \ 2p^2(^2\mathrm{D})3d$	$3d'$ $^3\mathrm{F}$	2, 3, 4	2084940	
0 12	2 0 2 p(1)0 a	0 1	$\frac{1}{3}$	1100400 2		$\overline{3d}'$ ³ D	$2s 2p^2(^2\mathrm{D})3d$	$3d'$ $^3\mathrm{D}$	1, 2, 3	2093650	
$3d^{-1}D_2$	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	$3d$ $^{1}D^{\circ}$	2	1794090+x		$\overline{\overline{\overline{3}d}}'$ ${}^3{ m F}$	$2s 2p^2(^2\mathrm{P})3d$	3d''' ³F	2, 3, 4	2190790	
$3d \ ^{3}D_{1} \ ^{3}D_{2} \ ^{3}D_{3}$	2s ² 2p(² P°)3d	$3d$ $^3\mathrm{D}^\circ$	1 2 3	1808160 1809080 1811480	920 2400	$4d\ ^{3}\mathrm{D}_{2}\ ^{3}\mathrm{D}_{3}$	2s² 2p(²P°)4d	4d ³ D°	1 2 3	2264270 2266400	2130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d ³ P°	2 1 0	1815690 1816940 1817670	-1250 -730		Si x (² P½)	Limit		2838460	

March 1948.

Si IX OBSERVED TERMS*

$\frac{ ext{Config.}}{1s^2+}$				Observed Terms				
2s ² 2p ²	$\left\{_{2p^2} ight{ ext{S}}$	2p ² ³ P	$2p^2$ ¹ D					
2s 2p³	$\left\{ egin{matrix} 2p^3 \ ^5\mathrm{S}^{\circ} \ 2p^3 \ ^3\mathrm{S}^{\circ} \end{matrix} ight.$	$2p^3\ ^3{ m P}^{\circ} \ 2p^3\ ^1{ m P}^{\circ}$	$2p^3\ ^3{ m D}^{\circ} \ 2p^3\ ^1{ m D}^{\circ}$					
		ns $(n \ge 3)$		$np \ (n \ge 3)$		$nd (n \ge 3$)	
$2s^2 \ 2p(^2\mathrm{P}^\circ)nx$	{	38 ³ P° 38 ¹ P°			3d ³ P° 3d ¹ P°	3, 4d ³ D° 3d ¹ D°	$rac{3d}{3d}$	³F°
2s $2p^2(^4\mathrm{P})nx$	{	3s ⁵ P		$3p$ $^3\mathrm{S}^\circ$ $3p$ $^3\mathrm{D}^\circ$	$egin{array}{c} 3d\ ^5\mathrm{P} \ 3d\ ^3\mathrm{P} \end{array}$	$3d$ $^3\mathrm{D}$	3d	$^3\mathrm{F}$
2s $2p^2(^2\mathrm{D})nx'$	{		3s′ ³D	3p' ¹D° 3p' ¹F°		$3d'$ $^3\mathrm{D}$	3 d′	$^3\mathrm{F}$
2s $2p^2(^2P)nx'''$							3d''	′ ³F

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

(B I sequence; 5 electrons)

Z = 14

Ground state 1s2 2s2 2p 2P2

2p 2P^o_{1/2} 3237400 cm⁻¹

I. P. 401.3 volts

Ferner has classified 29 lines in the range between 47 A and 57 A. He has kindly furnished his unpublished manuscript extending the analysis he published in 1941.

No intersystem combinations have been observed, as indicated by x in the table, but the absolute values of the doublet and quartet terms are determined from series. Extrapolated values are in brackets in the table.

The quartet terms are not all connected by observed combinations.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4, p. 18 (1941). (T) (C L)
 E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 30 (1948). (I P) (T) (C L)
 - Si x Si x

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
$2p$ $^2\mathrm{P_1}$ $^2\mathrm{P_2}$	$2s^2(^1\mathrm{S})2p$	2p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 6990	6990	3p' ² D ₃	2s 2p(3P°)3p	$3p$ 2 D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	2110260	
$2p'$ 4P_1 4P_2 4P_3	2s 2p²	2p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	162060 + x 164500 + x 168090 + x	2440 3590	3d′ ⁴ D ₁₂ ⁴ D ₃ ⁴ D ₄	2s 2p(3P°)3d	3 <i>d</i> ⁴D°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	$\begin{vmatrix} 2151950 + x \\ 2152370 + x \\ 2154860 + x \end{vmatrix}$	420
$2p'$ $^2\mathrm{D}$	2s 2p2	$2p^{2-2}\mathrm{D}$	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	} 287830		$3d'$ $^2\mathrm{D}_2$ $^2\mathrm{D}_3$	2s 2p(3P°)3d	3d ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	2153680 2154440	760
$2p'$ ${}^2\mathrm{S}_1$	2s 2p2	$2p^2$ ² S	1/2	367650						,	
$2p'\ ^2{ m P_1}\ ^2{ m P_2}$	2s 2p2	$2p^2$ $^2\mathrm{P}$	$1\frac{1}{2}$ $1\frac{1}{2}$	389740	4260	3s' 2P	2s 2p(1P°)3s	3s′ ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	2158290	
2p'' 4S ₂	$2p^2$	2p³ 4S°	1½	394000 510190+x		3d′ ⁴ P ₃	2s 2p(3P°)3d	3 <i>d</i> ⁴ P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	2161950+x	
$2p^{\prime\prime}~^{2}\mathrm{D}_{3}^{2}$	2p3	$2p^3$ $^2\mathrm{D}^\circ$	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	574360 574600	-240	$3d' {}^{2}{ m F_{3}} {}^{2}{ m F_{4}}$	2s 2p(3P°)3d	3d ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	2188570 2193140	4570
$2p^{\prime\prime}{}^2\mathrm{P}_1\ {}^2\mathrm{P}_2$	$2p^2$	2p ² ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	[644560] [644940]	380	$3d'$ $^{2}P_{1}$ $^{2}P_{1}$	2s 2p(3P°)3d	3d ² P°	$1\frac{1}{2}$	2199190 2201770	-2580
$3d$ ${}^{2}\mathrm{D}_{2}$ ${}^{2}\mathrm{D}_{3}$	2s ² (¹ S)3d	$3d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	1979260 1979730	470	$\overline{3d}'$ ${}^2\mathrm{F}$	2s 2p(1P°)3d	3d′ ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	}2299860	
3s' ⁴ P ₁ ⁴ P ₂ ⁴ P ₃	2s 2p(3P°)3s	3s 4P°	$egin{array}{c} \frac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	1993860+x 1996180+x	2320 4390	$\overline{3}\overline{d}'$ $^{2}\mathrm{D}_{2}$ $^{2}\mathrm{D}_{3}$	2s 2p(1P°)3d	3d′ ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	2310230 2311360	1130
⁴ P ₃			$2\frac{1}{2}$	2000570+x	1090	3d'' ⁴ P ₃	$2p^2(^3\mathrm{P})3d$	3d'' 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	2445320+x 2446860+x	-1540
3s' ² P ₂	2s 2p(3P°)3s	3s ² P°	$1\frac{1}{2}$	2035810		*F ₂			1/2 1/2	2440000+x	
3p′ ² P ₂	2s 2p(3P°)3p	3 <i>p</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	2066600			Si x1 (¹S₀)	Limit		3237400	

August 1947.

Si x Observed Terms*

Config. 1s ² +				Observed	l Terms			
2s ² (¹ S)2p 2s 2p ²	$\left\{_{2p^2} ight{ ext{S}}$	2p ² P° 2p ² ⁴ P 2p ² ² P	$2p^2$ $^2\mathrm{D}$					
$2p^3$	$2p^3$ 4S°	2p³ 2P°	2p³ ²D°	1				
		ns $(n \ge 3)$		np (n	≥ 3)		$nd \ (n \ge 3)$	
$2s^{2}(^{1}S)nx$ $2s \ 2p(^{3}P^{\circ})nx$ $2s \ 2p(^{1}P^{\circ})nx'$ $2p^{2}(^{3}P)nx''$	{	3s ⁴ P° 3s ² P° 3s' ² P°		3p 2P	3p 2D	3d 4P° 3d 2P°	3d ² D 3d ⁴ D° 3d ² D° 3d' ² D° 3d'' ⁴ P	3 <i>d</i> ² F° 3 <i>d'</i> ² F°

^{*}For predicted terms in the spectra of the BI isoelectronic sequence, see Introduction.

Si XI

(Be I sequence; 4 electrons)

Z = 14

Ground state 1s2 2s2 1S0

2s2 1S0 3840470 cm-1

I. P. 476.0 volts

Ferner has published a preliminary analysis giving the classifications of 12 lines in the region between 43 A and 49 A. He has recently extended the earlier work and generously furnished his revised term list in advance of publication, to be used in compiling the list below.

No intersystem combinations have been observed, as indicated by x in the table.

The unit adopted by Ferner, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 20 (1941). (T) (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 27 (1948). (I P) (T)

Si XI

Author	Config.	Desig.	J	Level	Inter- val	Author	Config.	Desig.	J	Level	Inter- val
2s ¹ S ₀	282	28 ² ¹S	0	0		$3d$ $^{1}\mathrm{D}_{2}$	2s(2S)3d	3 <i>d</i> ¹ D	2	2361010	
$2p$ 3P_0 3P_1 3P_2	2s(2S)2p	2p ³P°	0 1 2	$ \begin{array}{c} 169140 + x \\ 171560 + x \\ 176810 + x \end{array} $	2420 5250	3p′ ³D₃	2p(2P°)3p	3p 3D	1 2 3	2486810+x	
2p ¹P1	$2s(^2\mathrm{S})2p$	2p ¹P°	1	329400		$3d'$ $^1\mathrm{D}_2$	2p(2P°)3d	3d ¹D°	2	2523240	
2p' 3P ₀	$2p^2$	2 p² ³P	0	443020+x	2890	3p′ ¹D₂	2p(2P°)3p	3p ¹D	2	2532140	
${}^{3}P_{1} \ {}^{3}P_{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$2p^2$	$2p^2$ ¹ D	$\frac{1}{2}$	445910 + x 450470 + x 493400	4560	3d′ ³ D ₂ ³ D ₃	2p(2P°)3d	3d ³D°	1 2 3	2546810 + x 2548970 + x	2160
2p′ ¹S₀	$2p^2$	$2p^2$ $^1\mathrm{S}$	0	607630		3d′ ³P₂	2p(2P°)3d	3d ³P°	2	2556220+x	
3s ¹ S ₀	2s(2S)3s	3s 1S	0	2241480					0		
3p ¹P1	$2s(^2\mathrm{S})3p$	3p ¹P°	1	2285040		3d′ ¹F₃	2p(2P°)3d	3d ¹F°	3	2581130	
3d ³ D ₂ ³ D ₃	2s(² S)3d	3d ³ D	1 2 3	$2331390 + x \\ 2331940 + x$	550		Si XII (2S _{1/4})	Limit		3840470	

August 1947.

Si XI OBSERVED TERMS*

Config.			Observe	d Terms		
282	28 ² 1S				,	
2s(2S)2p	{	2p ³ P° 2p ¹ P°				
$2p^2$	$\left\{egin{array}{l} 2p^2 \ ^1\mathrm{S} \end{array} ight.$	2p² ³P	$2p^2$ ¹ D			
	$ns (n \ge 3)$	np (n	≥ 3)		nd (≥3)	
2s(2S) nx	{ 3s 1S	3p ¹P°			3d ³ D 3d ¹ D	
2p(2P°)nx	{		3p 3D 3p 1D	3d ³P°	$3d ^3\mathrm{D}^{\circ} \ 3d ^1\mathrm{D}^{\circ}$	3d ¹F°

^{*}For predicted terms in the spectra of the Be $\ensuremath{\text{\textbf{I}}}$ isoelectronic sequence, see Introduction.

(Li I sequence; 3 electrons)

Z = 14

Ground state 1s2 2s 2S14

 $2s~^2S_{\cancel{1}}~4221460~\rm cm^{-1}$

I. P. 523.2 volts

The classifications of three lines in the region 44 A to 45 A were published by Ferner in 1941, but no terms were given. His absolute term values based on later work, and kindly furnished in advance of publication, have been used in compiling the present list. Observations of the resonance lines have not been reported.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 28A, No. 4 p. 21 (1941). (C L)
E. Ferner, Ark Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 25 (1948). (I P) (T)

Si XII

Config.	Desig.	J	Level	Interval
28	28 2S	1/2	0	
2p	2p ² P°	1½ 1½	191900 200290	8390
38	3s 2S	1/2	2390580	
3d	3d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2463540 2464530	990
Si x111 (1S ₀)	Limit		4221460	

August 1947.

PHOSPHORUS

PΙ

15 electrons Z=15

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

 $3p^3 \, {}^4S_{1\frac{1}{2}}^{\circ} \, 88560 \, \text{cm}^{-1}$ I. P. 11.0 volts

Eleven terms have been found by Kiess, who extended earlier work on this spectrum by making the important observations in the infrared to 10813 A. Robinson observed the ultraviolet region as far as 1323 A and was able to extend the analysis.

The present list is taken from Robinson's paper, except for the term 4p ²P°, which has been adjusted to fit the observations by Kiess.

Intersystem combinations connecting the doublet and quartet terms have been observed. There is not complete agreement about the configuration assignments of 3d ²P and 3p⁴ ²P, and those entered in the table are tentative.

REFERENCES

- C. C. Kiess, Bur. Std. J. Research 8, 393, RP425 (1932). (I P) (T) (C L)
- H. A. Robinson, Phys. Rev. 49, 297 (1936). (I P) (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

		Pı					Pı		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^3$	3p³ 4S°	1½	0. 0		$3s^2 3p^2(^3\mathrm{P})4p$	4p 2P°	1½ 1½	67971. 1 68088. 3	117. 2
$3s^2 \ 3p^3$	$3p^3 {}^2\mathrm{D}^\circ$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	11361. 7 11376. 5	14. 8	$3s^23p^2(^3{ m P})4p$	4p 2S°	1/2	68473. 2	
$3s^2 3p^3$	3p² 2P°	1½ 1½	18722. 4 18748. 1	25. 7	$3s^2\ 3p^2(^3\mathrm{P})3d$	3d ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	70391. 3 70690. 0	298. 7
$3s^2 3p^2(^3{ m P}) 4s$	4s 4P	$1\frac{1}{2}$ $2\frac{1}{2}$	55939. 23 56090. 59 56339. 68	151. 36 249. 09	$3s^23p^2(^3{ m P})3d$	3d 4D	1½ 1½ 2½ 3½	70637. 5 70778. 6	141. 1
$3s^2 3p^2(^3\mathrm{P})4s$	4s ² P	1½ 1½	57876. 8 58174. 4	297. 6	3s 3p4	3p4 2D	$2\frac{1}{2}$	71168. 3 71202. 6	-34. 3
3s 3p4	3p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	59533. 4 59713. 6 59818. 6	$ \begin{array}{c c} -180.2 \\ -105.0 \end{array} $	$3s^23p^2(^3\mathrm{P})3d$	3d 4P	2½ 1½ ½	72386. 6 72494. 6 72571. 4	-108. 0 -76. 8
$3s^2 3p^2(^1{ m D}) 4s$	4s' ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	65156. 6		$3s^2 3p^2(^3\mathrm{P})3d$	3d ² P	1½ 1½	72741. 9 72883. 5	141. 6
$3s^2 \ 3p^2(^3{ m P})4p$	4p 4D°	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \ 3\frac{1}{2} \end{array}$	65373. 6 65450. 2 65585. 1	76. 6 134. 9	3s 3p4	3p4 2S	1/2	72943. 3	
• • • • • • •			65787. 3	202. 2	$3s^23p^2(^3\mathrm{P})3d$	3d ² D?	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	73248. 1	
$3s^2 3p^2 (^3\mathrm{P}) 4p$	4p 4P°	$1\frac{1}{2}$ $2\frac{1}{2}$	66343. 4 66360. 2 66544. 1	16. 8 183. 9	$3s^23p^2(^3{ m P})5s$	5s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	75064. 6? 75211. 3? 75533. 4?	146. 7 322. 1
$3s^23p^2(^3\mathrm{P})4p$	4p 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	66813. 1 66870. 2?	57. 1		-			_
$3s^2 \ 3p^2(^3{ m P}) 4p$	4p 4S°	1½	66834. 5		P II (8P ₀)	Limit		88560	
3s 3p4	3p4 2P	1½ ½	67908. 6 68126. 2	-217. 6					

November 1947.

PI OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +				Obs	erved Term	S			
3s ² 3p ³	{3p³ 4S°	3 <i>p</i> ³ ²P°	3p³ 2D°						
3s 3p4	$\left\{_{3p^{4-2}\mathrm{S}}\right.$	3p4 4P 3p4 2P	3p4 2D	_					
		ns $(n \ge 4)$			$np \ (n \ge 4)$			$nd (n \ge 3)$	
3s ² 3p ² (*P)nx	{	4, 5s ⁴ P 4s ² P		4p 4S° 4p 2S°	4p 4P° 4p 2P°	$^{4p}_{4p} ^{4}\mathrm{D}^{\circ}_{2}$	3d 4P 3d 2P	$\frac{3d}{3d}$ $^4\mathrm{D}$ $\frac{3d}{2}$ $^2\mathrm{D}$?	3d ² F
$3s^2 3p^2(^1\mathrm{D})nx'$			4s' 2D						

^{*}For predicted terms in the spectra of the P I isoelectronic sequence, see Introduction.

PII

(Si I sequence; 14 electrons)

Z = 15

Ground state 1s² 2s² 2p⁶ 3s² 3p² 3P₀

 $3p^2$ 3P_0 158550.0 cm⁻¹

I. P. 19.65 volts

The terms are mostly from the 1936 paper by Robinson, who has revised and extended the earlier analysis by Bowen. The singlet and triplet terms are well connected by intersystem combinations.

In his later paper Robinson adds two quintet terms, and makes a few corrections to his earlier list which have been incorporated here. The quintet terms are not connected by observation with the rest, as indicated by the uncertainty x and brackets denoting that the relative position of $3p^3$ S° is estimated.

REFERENCES

- I. S. Bowen, Phys. Rev. 29, 510 (1927). (T) (C L)
- S. Tolansky, Zeit. Pkys. 74, 336 (1932). (hfs)
- H. A. Robinson, Phys. Rev. 49, 297 (1936). (I P) (T) (C L)
- H. A. Robinson, Phys. Rev. 51, 726 (1937). (T)

РΠ

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382 3p2	$3p^2$ $^3\mathrm{P}$	0 1 2	0. 0 166. 6 470. 3	166. 6 303. 7	3s ² 3p(2P°)4d	4d ³D°	3 2 1	127333. 6 127890. 2 127935. 7	-556. 6 -45. 5
$3s^2 3p^2$	$3p^2$ ¹ D	2	8882. 6		$3s^23p(^2\mathrm{P^o})4d$	4d ³P°	0	127368.7	232. 5
$3s^2 3p^2$	$3p^2$ ¹ S	0	21576. 4				1 2	127601. 2 127951. 1	349. 9
3s 3p³	$3p^3$ $^5\mathrm{S}^\circ$	2	[52450.0]+x		$3s^23p(^2\mathrm{P^o})4d$	4d ¹D°	2	129612.0	
3s 3p³	$3p^3$ $^3\mathrm{D}^\circ$	1	65251. 8	21. 1	$3s^2 3p (^2\mathrm{P}^\circ) 5p$	1 (5p 3S?)	1	129625. 5?	
		3	65272. 9 65307. 7	34. 8		2	2	130239. 6	
3s 3p3	$3p^3$ $^3\mathrm{P}^\circ$	2	76764.9	-48.3		3	1, 2	130826. 2	
		0	76813. 2 76824. 4	-11. 2	$3s^23p(^2\mathrm{P^o})5p$	4 (5p ¹ D?)	2	130913. 9	
3s 3p³	$3p^3$ $^1\mathrm{D}^\circ$	2	77710.8			5	2	130949. 6	
3s ² 3p(² P°)4s	48 ³P°	0	86599. 0	146. 1	$3s^2 3p(^2\mathrm{P}^\circ) 5p$	6 (5p ¹ P?)	1	130970. 0	
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	86745. 1 87126. 1	381. 0		7	2	131320. 5	
3s ² 3p(² P°)4s	4s ¹ P°	1	88893. 5			8	1, 2	131601. 9	
3s 3p³	$3p^3$ ¹ P°	1	102798. 4			9	2	131633. 1	
3s ² 3p(² P°)4p	4p 3D	1	103166. 7	173. 5		10	?	131652. 1?	
		3	103340. 2 103668. 9	328. 7	$3s^2 3p (^2\mathrm{P}^\circ) 4d$	4d ¹P°	1	131729. 1	
3s ² 3p(² P°)3d	3d ³P°	2	103632. 3	-123, 1	$3s^2 3p(^2\mathrm{P}^\circ)4d$	4d ¹F°	3	131764. 4	
		0	103755. 4 104219?	-464	$3s^2 3p(^2\mathrm{P}^\circ) 4f$	11 (4f ¹ D?)	2	132082. 4	
3s ² 3p(² P°)3d	3d ³D°	1	103935. 8	117. 4		12	2, 3	132134. 1	
		3	104053. 2 104101. 4	48. 2		13	2	132163. 6	
3s ² 3p(² P°)4p	4p 3P	0	105225. 5	78. 1		14	2	132206. 9	
		$\frac{1}{2}$	105303. 6 105550. 9	247. 3	$3s^2 3p(^2\mathrm{P}^\circ)4f$	15 (4f ¹ F?)	3	132236. 0	
3s ² 3p(² P°)3d	3 <i>d</i> ¹ D°	2	105963. 1			16	2, 3	132354. 7	
3s ² 3p(² P°)4p	4p 3S	1	106002. 5			17	1	132371. 2	
3s ² 3p(² P°)4p	$4p^{-1}D$	2	107924. 2			18	2	132397. 0	
3s ² 3p(² P°)3d	3 <i>d</i> ¹ P°	1	108371. 8		$3s^2 3p(^2\mathrm{P}^\circ) 5p$	19 (5p ¹ S?)	0, 1	132641. 5?	
3s ² 3p(² P°)4p	4p ¹ P	1	108417. 4			20	1	133418. 8?	
3s 3p³	$3p^3$ $^3\mathrm{S}^{\circ}$	1	110254.9		3s ² 3p(² P°)6s	6s ³P°	0	137433	53
	2°	2, 3	110456. 9?				1 2	137486 138000	514
3s ² 3p(² P°)4p	4p 1S	0	111114.8		3s ² 3p(² P°)6s	6s ¹P°	1	138058. 4	
3s ² 3p(2P°)5s	5s ³P°	0 1 2	123345. 4 123456. 7 123892. 0	111. 3 435. 3	$3s^23p(^2\mathrm{P^o})5d$	5d ³P°	0 1 2	139091. 9	
3s ² 3p(² P°)5s	5s ¹P°	1	124433. 8		3s² 3p(²P°)6d	6d ³P°	0		
3s ² 3p(² P°)4d	4d ³F°	2	124955. 9	174 7			1 2	145519.8	
		3 4	125130. 6 125392. 7	174. 7 262. 1	Р пп (2P%)	Limit		158550.0	
					$3s 3p^2(^4P)3d$	3d ⁵ P	3 2 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-126. 5 -90. 5

October 1947.

P II OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +					Observed '	Γerms			
3s ² 3p ²	$\left\{_{3p^2}\right{^1\mathrm{S}}$	3p ² ³ P	3p ² ¹ D						
3s 3p³	$\left\{\begin{matrix}3p^3 & {}^5\mathrm{S}^\circ \\ 3p^3 & {}^3\mathrm{S}^\circ\end{matrix}\right.$	${3p^3}\ {^3{ m P}^{\circ}}\ {3p^3}\ {^1{ m P}^{\circ}}$	$3p^{3} {}^{3}\mathrm{D}^{\circ} \ 3p^{3} {}^{1}\mathrm{D}^{\circ}$						
		$ns (n \ge 4)$			$np \ (n \ge 4)$			$nd \ (n \ge 3)$	
3s ² 3p(² P°)nx 3s 3p ² (⁴ P)nx	{	4-6s ³ P° 4-6s ¹ P°		4p 3S 4p 1S	4p 3P 4p 1P	4p ³ D 4p ¹ D	3-6d ³ P° 3, 4d ¹ P° 3d ⁵ P	3, 4d ³ D° 3, 4d ¹ D°	4d ³ F° 4d ¹ F°

^{*}For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

PIII

(Al 1 sequence; 13 electrons)

Z = 15

Ground state 1s2 2s2 2p6 3s2 3p 2P2

 $3p \, {}^{2}\mathrm{P}^{\circ}_{\frac{1}{2}} \, 243290.0 \, \, \mathrm{cm}^{-1}$

I. P. 30.156 ± 0.003 volts

The terms have been taken from Robinson, who has revised and extended the earlier work on analysis. An evident misprint has been corrected here, i. e., the absolute term values of 4f ⁴D should have been printed as negative.

Robinson has classified two lines as the intersystem combination 3p ²P°-3p ²P. He remarks that these must be considered as tentative classifications, but that they are consistent with the analogous transition in Al I.

REFERENCES

R. A. Millikan and I. S. Bowen, Phys. Rev. 25, 600 (1925). (T) (C L)

I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L)

H. A. Robinson, Phys. Rev. 51, 726 (1937). (I P) (T) (C L)

РШ

РШ

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	0. 0 559. 6	559. 6	3s 3p(3P°)4s	4s ⁴ P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	184453. 4 184639. 3 185045. 2	185. 9 405. 9
$3s 3p^2$	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	56919. 3 57125. 8 57454. 5	206. 5 328. 7	3s 3p(3P°)3d	21°	1½	184854. 1	
$3s$ $3p^2$	$3p^2$ ² D	1½ 2½	74915. 1 74944. 6	29. 5	3s 3p(3P°)4s	4s ² P°	1½	186920. 7	
3s 3p2	$3p^{3}$ ² S	1/2	100201. 2		$3s^2(^1\mathrm{S})5p$	5p 2P°	1½	191639. 5	
3s 3p ²	3p ² ² P	1½ 1½	109035. 7 109409. 7	374. 0	$3s^2(^1\mathrm{S})5d$	5 <i>d</i> ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	200442. 8	
$3s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	116873. 6 116884. 9	11. 3	$3s^2(^1{ m S})6s$	6s 2S	1/2	201103. 4	
3s ² (¹ S)4s	4s 2S	1/2	117834. 5		$3s^2(^1\mathrm{S})5f$	5f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2}\\ 3\frac{1}{2} \end{array}\right.$	202906. 4	
$3s^2(^1\mathrm{S})4p$	4p 2P°	1½ 1½	141375. 7 141512. 8	137. 1	$3s^2(^1\mathrm{S})5g$	5g ² G	$\left\{\begin{array}{cc} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 203782. 7	
$3p^3$	$3p^3 {}^2\mathrm{D}^{\circ}$	1½ 2½	147322. 4 147384. 3	61. 9	3s 3p(3P°)4p	4p 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	209938. 9 210055. 8 210306. 1	116. 9 250. 3
$3p^3$	$3p^3$ 4S°	1½	159714.6		3s 3p(3P°)4p	4p 4S	1½	211339. 4	
$3p^3$	$3p^3 {}^2\mathrm{P}^{\circ}$	1½ ½ ½	170107. 2 170167. 0	-59.8	$3s^2(^1\mathrm{S})6d$	$6d^{-2}D$	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	213982. 8	
$3s^2(^1\mathrm{S})4d$	4d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	} 172429. 2		$3s^2(^1\mathrm{S})6f$	6f 2F°	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	} 215402. O	
3s 3p(3P°)3d	3d 4P°	2½ 1½ ½	173813. 4 173988. 4 174106. 2	$\begin{bmatrix} -175.0 \\ -117.8 \end{bmatrix}$	$3s^2(^1\mathrm{S})6g$	6 <i>g</i> ² G	$ \begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases} $	215863. 2	
3s 3p(3P°)3d	3d 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	175260. 8 175314. 1 175376. 6	53. 3 62. 5 50. 6	$3s^2(^1\mathrm{S})7g$	7g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	223131. 0	
2 2 4 3 7		1	175427. 2	30. 0	P IV (1S ₀)	Limit		243290.0	
$3s^{2}(^{1}S)5s$ $3s^{2}(^{1}S)4f$	5s 2S 4f 2F°	$ \left\{ \begin{array}{c} \frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	176041. 0 } 178653. 2		3s 3p(3P°)4f	4f 4D	3½ 2½ 1½ ½	248168. 4 248199. 4 248228. 4 248265. 5	$ \begin{array}{c c} -31.0 \\ -29.0 \\ -37.1 \end{array} $

September 1947.

P III OBSERVED TERMS*

Config. $1s^2 \ 2s^2 \ 2p^6 +$		Observed Terms											
$3s^{2}(^{1}S)3p$ $3s^{2}3p^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3p^2\ ^2\mathrm{D}$											
$3p^3$	$\left\{\begin{array}{cc} 3p^{3} \ ^{4}{\rm S}^{\circ} \\ & 3p^{3} \ ^{2}{\rm P}^{\circ} \end{array}\right.$	$3p^3$ $^2\mathrm{D}^\circ$											
	$ns (n \ge 4)$		np	$(n \ge 4)$	nd ((n≥3)	nf (<i>n</i> ≥ 4)	$ng \ (n \ge 5)$				
3s ² (¹ S)nx 3s 3p(³ P°)nx	4-6s ² S {		4p 4S	4-5p ² P° . 4p ⁴ P	3d ⁴ P°	3-6d ² D 3d ⁴ D°	4 <i>f</i> ⁴D°	4-6f ² F°	5-7g ² G				

^{*}For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^6 3s^2 {}^1S_0$

3s² ¹S₀ 414312.4 cm⁻¹

I. P. 51.354 ± 0.013 volts

The analysis published by Bowen in 1932 has been extended by Robinson to include a total of 105 classified lines in the range from 283 A to 4291 A.

Intersystem combinations connecting the singlet and triplet terms have been observed. Robinson remarks that the observed combination $3s^2$ $^1S_0-3p$ $^3P_1^\circ$ obeys the irregular doublet law very well.

REFERENCES

I. S. Bowen, Phys. Rev. **39**, 10 (1932). (T) (C L) H. A. Robinson, Phys. Rev. **51**, 727 (1937). (I P) (T) (C L)

P IV P IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹S	0	0. 0		3s(2S)4d	4d ¹D	2	296757. 8	
$3s(^2S)3p$	3p 3P°	0	67911.6	227. 4	$3p(^{2}\mathrm{P}^{\circ})3\mathrm{d}$	3d ¹P°	1	298327	
		1 2	68139. 0 68607. 4	468. 4	$3s(^2\mathrm{S})4f$	4f 3F°	2	303115 303350	235
$3s(^2\mathrm{S})3p$	3p ¹P°	1	105189. 9				3 4	303659	309
$3s(^2\mathrm{S})3d$	3d ¹D	2	1581 3 8. 2		3s(2S)5s	58 ⁸ S	1	309102. 4	
$3p^{2}$	3p ² ³ P	0	164935 1651 7 8	243	$3p(^2\mathrm{P}^\circ)4$ s	48 ¹P°	1	313078	
		1 2	165646	468	3s(2S)5s	58 ¹ S	0	316627. 0	
$3p^2$	$3p^2$ ¹ D	2	166144		$3p(^2\mathrm{P}^\circ)4s$	48 ³P°	0	317662 317948	286
$3s(^2\mathrm{S})3d$	3d 3D	3, 2, 1	189 3 89. 0				$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	318353	405
$3p^2$	3p ² ¹S	0	194588. 5		$3s(^2\mathrm{S})5p$	5p 3P°	0 1	<i>320053</i>	
3s(2S)4s	4s 3S	1	22 6888. 6				2	320126	73
3s(2S)4s	4s 1S	0	233995. 0		$3s(^2\mathrm{S})5p$	5p ¹P°	1	320063. 5	
$3s(^2\mathrm{S})4p$	4p 3P°	0	256544. 1 256602. 7	58. 6	$3s(^2\mathrm{S})5d$	5d 3D	3 2	339635. 5 3396 3 9. 3	-3.8
		2	256751.3	148. 6			1	339642. 1	-2.8
$3s(^2\mathrm{S})4p$	4p 1P°	1	257520. 2		$3s(^2\mathrm{S})5d$	5 <i>d</i> ¹ D	2	341004. 8?	
$3p(^{2}\mathrm{P}^{\circ})3d$	3d ¹F°	3	276270?		$3s(^2\mathrm{S})5f$	5f 3F°	2 3	343309	
$3p(^{2}\mathrm{P}^{\circ})3d$	3d ¹D°	2	276325?				4	343590	281
$3p(^{2}\mathrm{P}^{\circ})3d$	3d ³P°	2 1	2 81011 281251	-240	$3s(^2\mathrm{S})5g$	5g 3G	3, 4, 5	343688	
		0	28139 1	-140	$3s(^2\mathrm{S})6s$	6s 3S	1	346672	
$3p(^2\mathrm{P}^\circ)3d$	3d ³D°	1 2 3	283142 283239 283321	97 82	3s(2S)6p	6p ¹ P°	1	<i>352125</i> ?	-
3s(2S)4d	4d ⁸ D	1 2 3	293233. 5 293238. 9 293246. 6	5. 4 7. 7	P v (2S ₁₅)	Limit		414312.4	

July 1947.

Config. 1s ² 2s ² 2p ⁶ +	Observed Terms										
382	3s² ¹S										
3s(2S)3p	3p 3P° 3p°										
3p ²	$\begin{cases} 3p^2 {}^{1}S & 3p^2 {}^{3}P \\ 3p^2 {}^{1}D & 3p^2 {}^{1}D \end{cases}$										
	$ns (n \ge 4)$	$np \ (n \ge 4)$		$nd (n \ge 3)$		$nf (n \ge 4)$	$ng \ (n \geq 5)$				
$3s(^2\mathrm{S})nx$	{4-6s 3S 4, 5s 1S	4, 5p ³ P° 4–6p ¹ P°		3–5d ³ D 3–5d ¹ D		4, 5f ³F°	5g ³G				
$3p(^2P^\circ)nx$	4s 3P° 4s 1P°		3d ³ P° 3d ¹ P°	$3d$ $^3\mathrm{D}^\circ$ $3d$ $^1\mathrm{D}^\circ$	3d ¹F°						

^{*} For predicted terms in the spectra of the MgI isoelectronic sequence, see Introduction.

P v

(Na I sequence; 11 electrons)

Z = 15

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{1/2}$

$$3s \, ^2S_{1/2} \, 524462.9 \, \, cm^{-1}$$

I. P. 65.007 ± 0.003 volts

The analysis is from Robinson who has extended the earlier work by Bowen and Millikan. The total number of classified lines is 38, of which 31 are in the range between 210 A and 1610 A. The absolute value of 6h 2 H $^\circ$ was extrapolated along the Na I isoelectronic sequence.

REFERENCE

H. A. Robinson, Phys. Rev. 51, 732 (1937). (I P) (T) (C L)

		Pv					PV		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0. 0		68	6s 2S	1/2	427157	
3p	3p 2P°	1½ 1½	88651. 7 89446. 3	794. 6	6 <i>p</i>	6p 2P°	1½ 1½	435100. 4	
3 d	3d ² D	1½ 2½	204197. 1 204208. 3	11. 2	6d	6 <i>d</i> ² D	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	} 445814	
48	4s 2S	1/2	272961. 1		6 <i>f</i>	6f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 448061.7	
4 <i>p</i>	4p 2P°	1½ 1½	304161. 3 304445. 3	284. 0	6g	6 <i>g</i> ² G	$ \begin{cases} 3\frac{1}{4} \\ 4\frac{1}{2} \end{cases} $	} 448216. 8	
4 <i>d</i>	4d ² D	1½ 2½	345398. 4 345403. 3	4. 9	6h	6h ² H°	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	} } 448247.4	
4 <i>f</i>	4f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	352595.3		78	7s 2S	1/2	455573	
58	58 2S	1/2	376639. 2		7 _p	7p 2P°	\[\begin{pmatrix} \frac{1}{2} & \\ \frac{1}{2} & \\ \frac{1}{2} & \\ \end{pmatrix} \]	} 460363	
5p	5p ² P°	1½ 1½	391101.7 391242.4	140. 7	7d	7d ² D	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 466893	
5d	5d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	} 410631.1		7 <i>f</i>	7f 2F°	$ \begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases} $	} 4685 3 0	
5 <i>f</i>	5f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 414458.7		8 <i>p</i>	8p 2P°	$ \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases} $	} 476181	
5 <i>g</i>	5g ² G	$\left\{\begin{array}{cc} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 414684. 4						_
					P vi (1S0)	Limit		524462. 9	

June 1947.

(Ner sequence; 10 electrons)

Z = 15

Ground state $1s^2 2s^2 2p^6 {}^{1}S_0$

 $2p^6$ 1S_0 1778250 cm⁻¹

I. P. 220.414 volts

The analysis is by Robinson who has generously furnished his manuscript in advance of publication. He has classified 23 lines in the range 57 A to 91 A, as combinations with the ground term. The term designations he assigns on the assumption of *LS*-coupling are given in the table under the heading "Author".

As for Ne_I, the jl-coupling notation in the general form suggested by Racah is introduced. A predicted value of 7d [1½]°, is entered in brackets in the table, since the observed combination is a blend.

REFERENCES

G. Racah, Phys. Rev. 61, 537 (L) (1942).

H. A. Robinson, unpublished material (June 1947). (I P) (T) (C L)

P VI P VI

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p ¹S ₀	$2p^6$	2p ⁶ ¹ S	0	0	5s ¹P1	$2p^{5}(^{2}\mathrm{P}_{55}^{\circ})5\mathrm{s}$	5s'[½]°	0	1582860
3s 3P1	$2p^{5}(^{2}\mathrm{P}_{11/2}^{s})3s$	3s [1½]°	2 1	1093240	5d ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1lac{1}{2}}^{st})5d$	5d [½]°	0 1	1613680
3s ¹ P ₁	$2p^{\mathfrak z}(^2\mathrm{P}_{52}^{\circ})3$ ა	3s'[½]°	$0 \\ 1$	1103180	5d ¹ P ₁	"	5d [1½]°	1	1616320
3d ² P ₁	$2p^5(^2\mathrm{Pi_{5}})3d$	3d [½]°	0 1	1306610	5d ³ D ₁	$2p^{\scriptscriptstyle 5}(^{\scriptscriptstyle 2} ext{P}^\circ_{\!$	5d'[1½]°	1	1622800
3d ¹ P ₁	"	3d [1½]°	1	1321910	6s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{\mathcal{H}}^{\circ})6s$	6s'[½]°	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	1650930
3d ³ D ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{\!$	3d'[1½]°	1	1334210	6d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}$ ეკ $)6d$	6d [1½]°	1	16662 20
4s ³ P ₁	$2p^{5}(^{2}\mathrm{P}$ ეკე $)4$ გ	4s [1½]°	2 1	1439840	6d 3D ₁	$2p^{5}(^{2}\mathrm{P}_{\mathcal{A}}^{\circ})6d$	6d'[1½]°	1	1672940
45 1D	$2p^{\mathfrak z}(^2\mathrm{P}_{5}^{\circ})4\mathfrak s$	4s'[½]°	0 1	1446740	7d ¹ P ₁	$2p^5(^2\mathrm{P}^{\circ}_{1less)7d}$	7d [1½]°	1	[1696180]
48 ¹ P ₁			-	1440740	7d 3D1	$2p^{5}(^{2}\mathrm{P}_{22}^{\circ})7d$	7d'[1½]°	1	1702790
4d ³P1	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{2}4d$	4d [½]°	0 1	1516530	8d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{14}^{st})8d$	8d [1½]°	1	1715440
4d ¹ P ₁	"	4d [1½]°	1	1523460	9 <i>d</i> ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{14}^{st})9d$	9d [1½]°	1	1726160
4d ⁸ D ₁	$2p^{5}(^{2}\mathrm{P}^{\circ}_{5})4d$	4d'[1½]°	1	1531210		2p*(-1 1½) əu	94 [172]	1	1720100
5s *P ₁	$2p^{5}(^{2}\mathrm{P}_{1\%}^{s})5s$	5s [1½]°	$\frac{2}{1}$	1576040	-	P vii (2P ₁ %)	Limit		1778250
						P v11 (2P%)	Limit		1785518

June 1947.

P VI OBSERVED LEVELS*

Config. 1s ² 2s ² +	Obser	ved Terms								
$2p^6$	2p ⁶ ¹ S	2p ⁶ ¹S								
	$ns \ (n \ge 3)$	$nd \ (n \ge 3)$								
2p ⁵ (2P°)nx	3-5s ³ P° 3-6s ¹ P°	3-5d ³ P° 3-7d ³ D° 3-9d ¹ P°								
	jl-Coupling Nota	tion								
	Obser	rved Pairs								
	ns (n≥3)	nd (n≥3)								
$2p^5(^2\mathrm{Pi}_{14})nx$	3-5s [1½]°	3-5d [½]° 3-9d [1½]°								
$2p^5(^2\mathrm{P}^{\circ}_{32})nx'$	3-6s' [½]°	3–7d′ [1½]°								

^{*}For predicted levels in the spectra of the Ne $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

P vII

(F I sequence; 9 electrons)

Z = 15

Ground state ls² $2s^2 2p^5 {}^2P_{11/2}^{\circ}$

$$2p^5 \, ^2P_{1\frac{1}{2}}^{\circ} \, 2124300 \, \, \mathrm{cm}^{-1}$$

I. P. 263.31 volts

The analysis is by Robinson, who has generously furnished his manuscript in advance of publication. He has classified more than 70 lines in the region between 49 A and 223 A.

Intersystem combinations connecting the doublet and quartet terms have been observed.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁵	2p ⁵ ² P°	1½ ½	0 7268	-72 68	2s ² 2p ⁴ (³ P)4s	4s ² P	11/2 1/2	1695720 1701380	-5660
28 2p6	2p6 2S	1/2	454732		$2s^2 2p^4(^1{ m D})4s$	4s' 2D	$\left\{\begin{array}{cc}2\frac{1}{2}\\1\frac{1}{2}\end{array}\right.$	} 1741710	
2s ² 2p ⁴ (³ P)3s	3s 4P	2½ 1½ ½	1259730 1264170 1266000?	-4440 -1830	2s ² 2p ⁴ (³ P)4d	4d ² D	2½ 1½	1775510 1784030	-8520
2s ² 2p ⁴ (³P)3s	3s ² P	$1\frac{1}{2}$	1277380 1282550	-5170	2s ² 2p ⁴ (3P)4d	4d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	} 1778690	
2s ² 2p ⁴ (¹ D)3s	3s' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1317110		$2s^2 2p^4 (^3{ m P}) 4d$	4 <i>d</i> ² P	1½ 1½ 1½	1780190 1782260	2070
$2s^2 \ 2p^4(^1S)3s$	3s'' 2S	1/2	1375810		$2s^2 2p^4({}^1\mathrm{S})4s$	4s" 2S	1/2	1801570	
2s ² 2p ⁴ (³ P)3d	3d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1496890 1500040	-3150	$2s^2 2p^4(^1D)4d$	$4d'$ $^{2}\mathbf{P}$	1½ ½	1827890 1829190	-1300
2s ² 2p ⁴ (³ P)3d	3d 4F	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$			$2s^2 \ 2p^4(^1{ m D})4d$	$4d'$ $^2\mathbf{D}$	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 1828630	
		$\frac{1}{1}\frac{7}{2}$	1498400		$2s^2 2p^4 (^1\mathrm{D})4d$	4d′ 2S	1/2	1830190	
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1502040 1506730	-4690	2s ² 2p ⁴ (³ P)5s	5s ² P	1½ ½	1865680	
2s ² 2p ⁴ (³ P)3d	3 <i>d</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	1505300 1511310	6010	$2s^2\ 2p^4(^1{ m S})4d$	4d'' 2D	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 1885000	
2s ² 2p ⁴ (³ P)3d	3d ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	1510050		2s ² 2p ⁴ (¹ S)5s 2s 2p ⁵ (³ P°)3d	5s'' 2S 3d''' 1°	1/2	1913620 1919310?	
2s ² 2p ⁴ (¹ D)3d	3d′ ²P	$1\frac{1}{2}$ $1\frac{1}{2}$	1548480 155 2 1 7 0	3690	2s 2p ⁵ (3P°)3d 2s 2p ⁵ (3P°)3d	3d''' 2°		1919310?	
2s ² 2p ⁴ (¹ D)3d	3d′ ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	1550100		2s 2p ⁵ (3P°)3d	3d''' 3°		1922150?	
			1552120		2s 2p ⁵ (3P°)3d	3d''' 4°		1925560?	
$2s^2 2p^4(^1D)3d$	3d' ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1553740 15544 2 0	-680	2s 2p ⁵ (3P°)3d	3d''' 5°		1931070?	
2s ² 2p ⁴ (¹ D)3d	3d′ 2S	1/2	1555560		$2s^2 2p^4(^1{ m S}) 5d$	5d" ² D	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	2013690	
$2s^2 \ 2p^4(^1S)3d$	3d'' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	1606550 1606880	-330			1½		
2s 2p ⁵ (3P°)3s	3s''' 2P°	1½ ½	1692160 1696860	-4700	P VIII (3P2)	Limit		2124300	1

March 1948.

P vii Observed Terms*

Config. 1s ² +		Observed Terms									
2s ² 2p ⁵ 2s 2p ⁶	2p ⁶ ² S	2p ⁵ ² P°									
		ns $(n \ge 3)$			nd ($(n \ge 3)$					
2s ² 2p ⁴ (³ P)nx	{	3s ⁴ P 3–5s ² P			3, 4d ⁴ P 3, 4d ² P	3, 4 <i>d</i> ² D	3d ⁴ F 3d ² F				
$2s^2 \ 2p^4(^1\mathrm{D})nx'$			3, 4s' ² D	3, 4d′ 2S	3, 4d′ ² P	3, 4d′ ² D	3d′ ² F				
2s ² 2p ⁴ (1S)nx''	3-58′′ 2S					3–5 <i>d''</i> ² D					
2s 2p ⁵ (3P°)nx'''		3s''' 2P°									

^{*}For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

(O I sequence; 8 electrons)

Z = 15

Ground state $ls^2 2s^2 2p^4 {}^3P_2$

 $2p^4$ 3P_2 2495000 cm⁻¹

I. P. 309.26 volts

The terms are from an unpublished manuscript kindly furnished by Robinson. No intersystem combinations have been observed and the uncertainty, x, may be considerable. The unit adopted by Robinson, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

H A. Robinson, unpublished material (March 1948). (I P) (T)

		P vIII					P vIII		
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ⁴	2p4 3P	2 1 0	0 5757 7826	-5757 -2069	$2s^2 2p^3(^2\mathrm{P}^\circ)3d$	3d'' ³F°	4 3 2	1790480 1795030	-4550
2s ² 2p ⁴	2p4 ¹D	2	52450 + x		$2s^22p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹D°	2	1795430+x	
$2s^2 2p^4$ $2s 2p^5$	$2p^4$ ¹ S $2p^5$ ³ P°	0 2	110970 + x 403806		$2s^22p^3(^2\mathrm{P^\circ})3d$	3d'' ³D°	3 2 1	1796240 1800770	-4530
		0	408913 411736	$\begin{bmatrix} -5107 \\ -2823 \end{bmatrix}$	$2s^22p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹P°	1	1800760+x	
2s 2p5	2p ⁵ ¹P°	1	560680+x		$2s^22p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹F°	3	1804930 + x	
$2s^22p^3({}^4{ m S}^\circ)3s$	3s 3S°	1	1462340		$2s^22p^3({}^4{ m S}^\circ)4s$	4s 3S°	1	1958370	
$2s^2 2p^3 (^2 \mathrm{D}^\circ) 3s$	38′ ³D°	1, 2	1519740 1520030	290	$2s^2 2p^3 (^2{ m D}^\circ) 4s$	4s' 3D°	1 2 3	2029470	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3s$	3s′ ¹D°	2	1532020+x		$2s^2\ 2p^3(^2{ m D}^\circ)4s$	4s′ ¹D°	2	2023470 2033320+x	
2s² 2p³(²P°)3s	38" ³P°	0 1 2	1559500 1560070 1561260	570 1190	$2s^{2} 2p^{3}(^{4}S^{\circ})4d$	4d 3D°	1 2		
$2s^2\ 2p^3(^2{ m P}^\circ)3s$	3s'' ¹P°	1	1573270+x		0.00.0000000		3	2046710	
$2s^2 \ 2p^3(^4{ m S}^\circ)3d$	3d ³D°	1, 2	1685980 1686280	300	$2s^2\ 2p^3(^2{ m P}^\circ)4s$ $2s^2\ 2p^3(^2{ m D}^\circ)4d$	4s'' ¹P° 4d' ³D°	3, 2, 1	2073760+x 2115510	
$2s^2 2p^3 (^2{ m D}^\circ) 3d$	3d′ ³F°	4, 3, 2	1749870		$2s^22p^3(^2\mathrm{D}^\circ)4d$	4d′ ³P°	2	2119360	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³D°	3, 2, 1	1753090				1 0		
$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹P°	1	1753830+x		$2s^2 2p^3 (^2{ m D}^\circ) 4d$	4d′ 3S°	1	2122020	
$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³P°	2	1760530	-1870	$2s^22p^3(^2\mathrm{D}^\circ)4d$	4d′ ¹F°	3	2123570+x	
		1 0	1762400	10.0	$2s^2 \ 2p^3 ({}^4{ m S}^\circ) 5d$	5d ³D°	1		
$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹D°	2	1761680 + x				2 3	2210630	
$2s^2 2p^3 (^2{ m D}^\circ) 3d$	3d′ ³S°	1	1767880		$2s^2 2p^3 (^2{ m D}^\circ) 5s$	5s′ ¹D°	1	2240920+x	
$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	1776050+x						
2s² 2p³(²P°)3d	3d'' ³P°	0 1 2	1787090 1788090 1789690	1000 1600	P ix (4S _{11/2})	Limit		2495000	

March 1948.

P VIII OBSERVED TERMS*

Config. 1s²+			Observed Terms
2s ² 2p ⁴	$\left\{ \begin{array}{ccc} 2p^{4-3}\mathrm{P} & 2p^{4-3}\mathrm{P} \end{array} ight.$	2p4 1D	
2s 2p ⁵	$\left\{egin{array}{ccc} 2p^5 & ^3{ m P}^{\circ} \ 2p^5 & ^1{ m P}^{\circ} \end{array} ight.$		
	$ns (n \ge 3)$		$nd \ (n \ge 3)$
$2s^2 \ 2p^3(^4S^\circ)nx$	3, 4s ³ S°		3–5 <i>d</i> ³D°
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{	3, 4s' ³ D° 3-5s' ¹ D°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$2s^2 \ 2p^3(^2\mathrm{P}^\circ)nx''$	3s'' ³ P° 3, 4s'' ¹ P°		$3d'' {}^{3}P^{\circ} \qquad 3d'' {}^{3}D^{\circ} \qquad 3d'' {}^{3}F^{\circ} \\ 3d'' {}^{1}P^{\circ} \qquad 3d'' {}^{1}D^{\circ} \qquad 3d'' {}^{1}F^{\circ}$

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

PIX

(N I sequence; 7 electrons)

Z = 15

Ground state 1s2 2s2 2p3 4S114

$$2p^3$$
 $^4S_{1\frac{1}{2}}^{\circ}$ 3006200 cm $^{-1}$

I. P. 372.62 volts

The analysis is by Robinson, who has kindly furnished a manuscript copy in advance of publication. He has found 35 terms, and classified more than 100 lines in the region between 40 A and 314 A. Intersystem combinations connecting the doublet and quartet systems of terms have been observed.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

P IX

P IX

		1 12					. 121		
Config.	Desig.	J	Level	Internal	Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^3$	2p³ 4S°	1½	0		$2p^5$	$2p^5$ $^2\mathrm{P}^{\circ}$	1½ ½	898220 904700	-6480
$2s^2 \ 2p^3$	$oxed{2p^3}$ $^2\mathrm{D}^{oldown}$	$1\frac{1}{2}$ $2\frac{1}{2}$	73167 73730	563	$2s^22p^2(^3\mathrm{P})3s$	3s 4P	$egin{array}{c} langle rac{1/2}{21/2} \ 2\frac{1}{2} \end{array}$	1744000 1746250	2250 5600
28 ² 2p ²	$oxed{2p^3} \ ^2\mathrm{P}^{\circ}$	$1\frac{1}{2}$	113457 114430	973	$2s^22p^2(^3{ m P})3s$	3s ² P		1751850 1764370	
2s 2p4	2p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	345390 350440 353050	$ \begin{array}{c c} -5050 \\ -2610 \end{array} $	$2s^2 2p^2({}^1\mathrm{D})3s$	3s' 2D	1½ 1½	1768970 1805940	4600
2s 2p4	$2p^4$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	472580	-510			1½ 2½	1807340	1400
2s 2p4	$2p^4$ $^2\mathrm{S}$	1½ ½	473090 552540	525	$2s^22p^2(^3\mathrm{P})3d$	3 <i>d</i> ² P	1½ ½ ½	1962630 1963830	-1200
2s 2p4	2p4 2P		580710	0000	2s 2p ³ (⁵ S°)3s	38''' 4S°	1½	1965970	
		1½ ½ ½	587010	-6300	$2s^2 2p^2(^3\mathrm{P})3d$	3d ² F	2½ 3½	1970380 1976610	6230

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2 2p^2 (^3\mathrm{P}) 3d$	3d 4D	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	1973870 1975970	2100	2s 2p³(³D°)3p	3p ^{1V} ² F	2½ 3½	2224980	
			1970970		$2s 2p^3(^3\mathrm{D}^\circ)3d$	3d [™] 2F°	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	2309530 2312530	-3000
$2s^2 2p^2 (^3\mathrm{P}) 3d$	3d 4P	2½ 1½ ½ ½	1977830 1979750 1980870	$-1920 \\ -1120$	$2s^2 2p^2 (^3\mathrm{P}) 4s$	4s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$		
$2s^22p^2(^3\mathrm{P})3d$	$3d$ $^2\mathrm{D}$	1½ 2½	2000360 2001960	1600	$2s^22p^2(^3{ m P})4s$	4s ² P	$egin{array}{c} 2lac{1}{2} \ rac{1}{2} \ 1rac{1}{2} \end{array}$	2354100 2354120 2359520	5400
$2s^2 2p^2(^1\mathrm{D})3d$	3d' 2F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	2028530		$2s^22p^2(^3\mathrm{P})4d$	$4d$ $^2\mathrm{F}$	2½ 3½	2430900	5500
$2s^22p^2(^1{ m D})3d$	3d' ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	2031610				$ \begin{cases} \frac{3}{2} \\ \text{to} \end{cases} $	2436400	
$2s^22p^2(^1\mathrm{D})3d$	3d′ ²P	1½	2038670 2042470	3800	$2s^2 \ 2p^2(^3\mathrm{P})4d$	4 <i>d</i> 4P	$\left\{egin{array}{c} ext{to} \ 2\frac{1}{2} \end{array} ight.$	3435220	
2s 2p³(5S°)3p	3p''' 4P	1/2	2043950		$2s^2 2p^2(^3\mathrm{P})4d$	4d ² D	$\left\{egin{array}{c} 1^{1\!/\!2}_{2^1\!/\!2} \ 2^{1\!/\!2}_{2^2} \end{array} ight.$	2441100	
		to 2½	J		$2s^22p^2(^1{ m D})4d$	$4d^{\prime}$ $^2\mathrm{F}$	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	2480120	
$2s^2 2p^2(^1\mathrm{D})3d$	3d' ² S $3d''$ ² D	1½	2049150		$2s^2\ 2p^2(^1\mathrm{D})4d$	$4d'$ $^2\mathrm{D}$	$\left\{\begin{array}{cc} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	2487270	
$2s^2 \ 2p^2(^1\mathrm{S})3d$		$ \begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $			$2s^22p^2(^1\mathrm{S})4d$	4d'' 2D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	2547080	
2s 2p³(3D°)3s	3 ₈ 1v 2D°	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	2103110				472	,	
2s 2p³(5S°)3d	3d''' 4D°	$ \begin{cases} \frac{1/2}{\text{to}} \\ 3\frac{1}{2} \end{cases} $	2161390		P x (3P ₀)	Limit		3006200	

March 1948.

P IX OBSERVED TERMS*

$\frac{\text{Config.}}{1s^2+}$					Observed '	Terms				
2s² 2p³	$\left\{ 2p^3 ight. ight. ^4 ext{S}^{\circ}$	2p³ 2P°	2p³ 2D°							
2s 2p4	$\left\{ _{2p^{4}} ight{^{2}\mathrm{S}}$	$^{2p^4}_{2p^4}{}^{4}{ m P}_{}^{2}{ m P}$	$2p^{4-2}{ m D}$							
$2p^5$		$2p^5$ $^2\mathrm{P}^\circ$								
		ns $(n \ge 3)$		np (r	1≥3)		7	nd (n≥3)		
2s ² 2p ² (3P)nx	{	3, 4s ⁴ P 3, 4s ² P					3, 4d ⁴ P 3d ² P	$3d$ $^4\mathrm{D}$ $3,4d$ $^2\mathrm{D}$	3, 4d	2F
$2s^2 \ 2p^2(^1\mathrm{D})nx'$			$3s'$ 2D			3d′ 2S	3d' ² P	3, 4d′ ² D	3, 4d'	2 F
$2s^2 \ 2p^2(^1\mathrm{S})nx''$								3, 4 <i>d''</i> ² D		
2s 2p3(5S°)nx'''	38''' 4S°			3p''' 4P				3d''' 4D°		
$2s 2p^3(^3D^\circ)nx^{IV}$			3814 5D0		3p ^{IV 2} F				$3d^{\text{IV}}$	$^2\mathrm{F}$

^{*}For predicted terms in the spectra of the N I isoelectronic sequence, see Introduction.

(C I sequence; 6 electrons)

Z = 15

Ground state ls² 2s² 2p² ³P₀

 $2p^2$ 3P_0 3432500 cm⁻¹

I. P. 425.46 volts

The analysis is from unpublished material kindly furnished by Robinson. He has found 36 terms and classified more than 70 lines in the region between 43 A and 318 A.

The singlet and triplet terms are connected by intersystem combinations. The connection of the quintet terms with the rest is based on Robinson's extrapolation of isoelectronic sequence data, as indicated by the uncertainty, x, and brackets in the table. The position of the level $2p^3$ $^3D_2^\circ$ is also extrapolated and entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (March 1948). (I P) (T) (C L)

PX

Px

		PX							
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s ² 2p ²	2p ² ³ P	0 1 2	0 3390 8580	3390 5190	2s² 2p(²P°)3d	3d ³P°	2 1 0	2171630 2173040 2173990	-1410 -950
$2s^2 2p^2$	$2p^2$ ¹ D	2	59330		2s 2p ² (4P)3s	3s 3P	0	2178420 2182320	3900
$2s^2 \ 2p^2$	2p ² ¹S	0	119430				1 2	2182320 2188220	5900
2s 2p³	2p³ 5S°	2	[166580]+x		$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d ¹P°	1	2197500	
2s 2p3	2p³ ³D°	3 2	322790	[-220]	2s² 2p(²P°)3d	3d ¹F°	3	2197500	
		1	[323010] 323160	-150	2s 2p ² (4P)3p	3p 3S°	1	2216880	
2s 2p3	2p³ ³P°	2 1 0	379660		2s 2p ² (4P)3p	3p 3D°	3 2 1	2262660 2267280 2269510	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
2s 2p³	$2p^3$ $^1\mathrm{D}^\circ$	2	484377		2s 2p ² (4P)3p	3p 3P°	2	2275380	-5760
2s 2p³	2p³ 3S°	1	490100				0 0	2281140 22860807	-4940
2s 2p³	2p³ ¹P°	1	541090		$2s$ $2p^2(^2\mathrm{D})3s$	3s′ ³D	1, 2, 3	2281000	
$2s^2 2p(^2\mathrm{P}^\circ)3s$	3s ³P°	0	1954140	1840	$2s \ 2p^2(^1{ m D})3s$	3s′ ¹D	2	2307970	
		$\frac{1}{2}$	1955980 1963430	7450	2s 2p ² (4P)3d	3d 5D	0		
2s ² 2p(2P°)3s	3s ¹P°	1	1976578				1 2 3 4	2331040+x	
2s 2p ² (4P)3s	3s ⁵ P	1 2 3	$\begin{array}{c} 2132450 + x \\ 2135050 + x \\ 2139320 + x \end{array}$	2600 4270	$2s \ 2p^2(^4\mathrm{P})3d$	3d ⁵ P		2342240+x	1500
$2s^2 \ 2p(^2\mathrm{P}^\circ)3d$	3d ³F°		2140410				$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$	2343760+x $2344970+x$	$-1520 \\ -1210$
-F(-)		2 3 4			$2s \ 2p^2(^4\mathrm{P})3d$	3d 3P	2	2345800	5040
2s ² 2p(² P°)3d	3d ¹D°	2	2147190				1 0	2351740 2354640	$-5940 \\ -2900$
2s ² 2p(² P°)3d	3d 3D°	1 2 3	2162410 2163500 2166800	1090 3300	2s 2p ² (4P)3d	3d ³F	2 3 4	2355 7 50 2358400 2362900	2650 4500

P x-Continued

P x-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
2s 2p ² (² D)3p 2s 2p ² (² D)3p 2s 2p ² (⁴ P)3d	3p' ¹ F° 3p' ¹ D° 3d ³ D	3 2 1 2 3	2371790 2382480 2385080 2387080 2388630	2000 1550	$egin{array}{cccccccccccccccccccccccccccccccccccc$	3d′ ¹D 3d′ ¹F 3d′ ³S	2 3 1	2499250? 2499250? 2509590?	
$2s \ 2p^2(^2\mathrm{D})3d$ $2s \ 2p^2(^2\mathrm{D})3d$	3d′ ³F 3d′ ³D	2, 3, 4 1, 2, 3	2467290 2476100		P x1 (2P%)	Limit		3432500	

March 1948.

Px OBSERVED TERMS*

Config. 1s2+					Ob	served Teri	ms				
2s² 2p²	$\left\{_{2p^2}\right{\mathrm{IS}}$	2p ² ³ P	$2p^2$ ¹ D								
2s 2p³		2p ³ ³ P° 2p ³ ¹ P°	$2p^{3}\ ^{3}\mathrm{D}^{\circ} \ 2p^{3}\ ^{1}\mathrm{D}^{\circ}$								
		$ns (n \ge 3)$			np ((n≥3)			nd	(n≥3)	
2s ² 2p(2P°)nx	{	3s ³ P° 3s ¹ P°							3d ³ P° 3d ¹ P°	3d ³ D° 3d ¹ D°	3d ³ F° 3d ¹ F°
2s 2p ² (4P)nx	{	38 ⁵ P 38 ³ P		3p 3S°	3p 3P°	3p ³D°			$3d$ $^5\mathrm{P}$ $3d$ $^3\mathrm{P}$	$\begin{array}{cc} 3d & ^5\mathrm{D} \\ 3d & ^3\mathrm{D} \end{array}$	3d ³F
2s 2p ² (² D)nx'	{		38′ ³D 38′ ¹D			3p′ ¹D°	3p′ ¹F°	3d′ 3S		$3d'$ $^3\mathrm{D}$ $3d'$ $^1\mathrm{D}$	3d′ ³F 3d′ ¹F

^{*}For predicted terms in the spectra of the C I isoelectronic sequence, see Introduction.

P XI

(B I sequence; 5 electrons)

Z = 15

Ground state 1s2 2s2 2p 2P2

 $2p \, {}^{2}P_{\frac{1}{2}}^{\circ} 3867500 \, \, \mathrm{cm}^{-1}$

I. P. 479.4 volts

The analysis is by Robinson, who has generously furnished his manuscript in advance of publication. He has classified 31 lines in the range from 42 A to 325 A. Some of the relative levels have been connected by a study of the behavior of the Rydberg denominators, rather than by the Ritz combination principle.

No intersystem combinations, connecting the doublet and quartet terms, have been observed, as indicated by x in the table. Robinson's extrapolated value of $2p^2 \, ^4P_{14}$ is entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$2s^2(^1\mathrm{S})2p$	2p 2P°	1½ 1½	9700	9700	2s 2p(3P°)3d	3d ² D°	1½ 2½	2539140 2540050	910
2s 2p ²	$2p^2$ ⁴ P	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \end{array}$	$ \begin{bmatrix} 177900] + x \\ 181300 + x \\ 186400 + x \end{bmatrix} $	3400 5100	2s 2p(¹P°)3s	3s' ² P°	{ ½ 1½	} 2541040	
2s 2p²	$2p^2$ $^2\mathrm{D}$	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	317190		2s 2p(³P°)3d	3d ⁴ P°	1½ 1½ 2½	2547290 +x	
$2s\ 2p^2$	$2p^2$ $^2\mathrm{S}$	1/2	403330		2s 2p(3P°)3d	3d ² F°	2½ 3½	2578000 2584 0 00	6000
2s 2p ²	2p ² ² P	$1\frac{1}{2}$	425820 431650	5830	2s 2p(*P°)3d	3d ² P°	1½ ½ ½	2589460	-3630
$2p^{3}$	2p3 4S°	1½	559500 + x					2593090	
2s²(¹S)3s	3s ² S	1/2	2174060		2s 2p(¹P°)3d	3d′ ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	2697820	
$2s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	1½ 2½	2347470 2348130	660	2s 2p(¹P°)3d	3d′ ² D°	1½ 2½	2707510 2709400	1890
2s 2p(³P°)3s	3s 4P°	2½ 1½ ½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -6200 \\ -3600 \end{array} $	$2p^2(^3\mathrm{P})3d$	3d'' ⁴ P	2½ 1½ ½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2150
2s 2p(³P°)3s	3s ² P°	$\left\{\begin{array}{cc} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right.$	} 2410070						
2s 2p(2P°)3d	3 <i>d</i> 4D°	$\begin{array}{c c} 1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 31/2 \end{array}$	2536000 + x 2540500 + x	4500	P x11 (¹ S ₀)	Limit		3867500	

February 1948.

P XI OBSERVED TERMS*

Config. 1s ² +		Observed Terms						
2s ² (¹ S)2p		2 p	²P°					
28 2p2	$\left\{_{2p^2}\right{\mathrm{S}}$	$rac{2p^2}{2p^2}$	⁴P ²P	$2p^2$ ² D				
2p3	2p³ 4S°							
		ns (n	n≥3)				$nd (n \ge 3)$)
2s ² (¹ S) nx	3s 2S						3 <i>d</i> ² D	
2s 2p(3P°)nx	{	3 <i>s</i> 3 <i>s</i>	⁴ P° ² P°		3d $3d$	⁴ P° ² P°	3d 4D° 3d 2D°	3d ² F°
2s 2p(1P°)nx'		3s'	²P°				3d′ ²D°	3d′ ² F°
$2p^2(^3\mathrm{P})nx''$					3d'	′ 4P		

^{*}For predicted terms in the spectra of the ${\bf Bi}$ isoelectronic sequence, see Introduction.

(Be I sequence; 4 electrons)

Z = 15

Ground state 1s2 2s2 1So

 $2s^2$ 1S_0 4520500 cm⁻¹

I. P. 560.3 volts

The analysis is by Robinson, who has kindly furnished his manuscript on this spectrum in advance of publication. He has found 18 terms and classified 15 lines between 36 A and 44 A. Some of the relative terms have been connected by a study of the Rydberg denominators rather than by the Ritz combination principle.

No intersystem combinations have been observed, as indicated by the uncertainty x in the table. Robinson's extrapolated value of 2p $^3P_0^{\circ}$ is entered in brackets.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

P XII

P XII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interva
2s ²	2s ² ¹S	0	0		2s(2S)3d	3d ¹D	2	2760490	
$2s(^2\mathrm{S})2p$	2p 3P°	0	[183190]+x	3200	2p(2P°)3s	38 1P°	1	2876720	
		1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6600	2p(2P°)3p	3p ¹P	1	2888690?	
$2s(^2\mathrm{S})2p$	2p ¹P°	1	358840		2p(2P°)3p	3p 3D	1		
$2p^2$	2p ² ³ P	0					3	2897300 + x	
		$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	490990 + x		$2p(^2\mathrm{P}^\circ)3d$	3d ¹D°	2	2936160	
$2p^2$	$2p^{2}$ ¹ D	2	538190		$2p(^2\mathrm{P}^\circ)3p$	3p ¹D	2	2947770	
2s(2S)3s	38 3S	1	2594640 + x		$2p(^2\mathrm{P}^\circ)3d$	3d 3D°	1, 2, 3	2964340 + x	
2s(2S)3s	38 ¹ S	0	2629250		$2p(^2\mathrm{P}^\circ)3d$	3d ¹F°	3	3000210	
$2s(^2\mathrm{S})3p$	3p ¹P°	1	2677740		$2p(^2\mathrm{P}^\circ)3d$	3d ¹P°	1	30 11540	
$2s(^2\mathrm{S})3d$	3d ³D	1 2 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500 650	P XIII (2S ₁₅)	Limit		4520500	

February 1948.

P XII OBSERVED TERMS*

Config. 1s ² +				Observ	ed Terms			
282	2s2 1S							
2s(2S)2p	{	$\begin{array}{cc} 2p & ^3\mathrm{P}^{\circ} \\ 2p & ^1\mathrm{P}^{\circ} \end{array}$						
2p2	{	2p² ³P	$2p^2$ ¹ D					
		$ns (n \ge 3)$		np (r	<i>i</i> ≥3)		$nd (n \ge 3)$	
2s(2S)nx	3s 3S 3s 1S			3p ¹P°			3d ³ D 3d ¹ D	
2p(2P°)nx	{	3s 1P°		3p ¹P	$\begin{array}{ccc} 3p \ ^3\mathrm{D} \\ 3p \ ^1\mathrm{D} \end{array}$	3d ¹ P°	3d ³ D° 3d ¹ D°	3d ¹F°

^{*}For predicted terms in the spectra of the Be I isoelectronic sequence, see Introduction.

P XIII

(Li 1 sequence; 3 electrons)

Z = 15

Ground state 1s2 2s 2S14

 $2s \, ^2S_{14} \, 4933060 \, \, \mathrm{cm}^{-1}$

I. P. 611.45 volts

This spectrum is incompletely analyzed. Robinson has kindly furnished his unpublished manuscript giving seven classified lines; one at 110 A and six between 35 A and 38 A. The resonance lines have not been observed. The absolute value of the ground term has been extrapolated from isoelectronic sequence data. Similarly, other relative levels have been connected by a study of the Rydberg denominators in the isoelectronic sequence rather than by the Ritz combination principle.

REFERENCE

H. A. Robinson, unpublished material (Feb. 1948). (I P) (T) (C L)

P XIII

Config.	Desig.	J	Level	Interval
28	2s ² S	1/2	0	
2p	2p 2P°	1½ 1½	207720 219250	11530
38	38 ² S	1/2	2794900	
3 <i>p</i>	3p 2P°	1½ 1½	2844390 2850150	5760
3d	3 <i>d</i> ² D	1½ 2½	2870260 2871620	1360
4 <i>f</i>	4f ² F°	2½ 3½	3772770?	
P xIV (1S0)	Limit		4933060	

February 1948.

SULFUR

SI

16 electrons Z=16

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 ^3P_2$

 $3p^4$ 3P_2 83559.3 cm $^{-1}$

I. P. 10.357 volts

Edlén has revised and extended the earlier analyses and has generously furnished his manuscript term list in advance of publication, for inclusion here. Brackets denote values calculated from the series. For two such terms, however, 4f and 8f ⁵F, combinations with 3d ⁵D° have been observed.

Intersystem combinations connecting terms of all three multiplicities, have been observed.

REFERENCES

R. Frerichs, Zeit. Phys. 80, 150 (1933). (I P) (T) (C L)

K. W. Meissner, O. Bartelt und L. Eckstein, Zeit. Phys. 86, 54 (1933). (I P) (T) (C L)

J. E. Ruedy, Phys. Rev. 44, 757 (1933). (I P) (T) (C L)

B. Edlén, Phys. Rev. 62, 434 (1942). (T)

W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

B. Edlén, unpublished material (Nov. 1946). (I P) (T)

SI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^4$	3p4 3P	2 1	0. 0	-396.8	$3s^2\ 3p^3(^2{ m D}^\circ)4s$	48′ ¹D°	2	69238. 7	
		0	396. 8 573. 6	-176. 8	$3s^2 3p^3 (^4S^\circ) 3d$	3d ³D°	1	70165. 9	0.9
3s ² 3p ⁴	3p4 1D	2	9239. 0				2 3	70166. 8 70170. 7	0. 9 3. 9
3s ² 3p ⁴	3p4 1S	0	22181. 4		$3s^2 3p^3 ({}^4{ m S}^\circ) 5s$	58 5S°	2	[70706]	
$3s^2 3p^3 ({}^4{ m S}^\circ) 4s$	4s 5S°	2	52623. 88		$3s^2 3p^3 ({}^4{ m S}^\circ) 5s$	58 3S°	1	71352. 5	
$3s^2 3p^3 ({}^4{ m S}^\circ) 4s$	4s 3S°	1	55331. 15		3s 3p ⁵	3p ⁵ ³ P°	2	72025. 5 72382. 5	-357. 0
$3s^2 3p^3 ({}^4{ m S}^\circ) 4p$	4p 5P	1	63446. 36	10. 97			1 0	72572. 4	-189. 9
		1 2 3	63457. 33 63475. 26	17. 93	$3s^2 3p^3 (^4S^\circ) 5p$	5p 5P	1	73911. 53	3. 63
$3s^2 3p^3 ({}^4{ m S}^\circ) 4p$	4p 3P	0	64891. 71	-2. 48			2 3	73915. 16 73921. 14	5. 98
		$\frac{1}{2}$	64889. 23 64892. 89	3. 66	$3s^2 \ 3p^3 (4S^\circ) 5p$	5p 3P	2 1	74269. 20	-1.08
3s ² 3p ³ (² D°)4s	4s' 3D°	1	67816.87	0 05		_	1 0	74270. 28 74272. 32	-2.04
		$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	67825. 72 67843. 38	8. 85 17. 66	$3s^2 3p^3 ({}^4{ m S}^\circ) 4d$	4d 5D°	4	74973. 35	-0.95
3p³(4S°)3d	3d ⁵ D°	4	67878.03	10.10			3 2	74974. 30 74975. 43	-1.13
op (~) ou		$egin{array}{c} 4 \ 3 \ 2 \end{array}$	67890. 45 67888. 25	$\begin{vmatrix} -12.42 \\ 2.20 \end{vmatrix}$			1	74976. 31 74976. 90	-0.88 -0.59
		1	67885. 97 67884. 67	2. 28 1. 30			U	14910.90	

S I-Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ³ (4S°)4d	4d ³D°	1 2 3	75952. 16 75952. 67 75956. 80	0. 51 4. 13	3s ² 3p ³ (4S°)7p	7p ³P	2 1 0	80113. 23 80120. 51 80124. 16	-7. 28 -3. 65
3s ² 3p ³ (4S°)6s	6s 5S°	2	76464. 26		$3s^23p^3({}^4{ m S}^\circ)6d$	6d ³D°	3 2	80182. 54 80183, 93	-1. 39
$3s^2 3p^3(^4S^\circ)4f$	4f 5F	5 to 1	[76653]				ĩ	80185. 78	-1. 85
$3s^2 3p^3 (^4S^{\circ})4f$	4f 3F	4, 3, 2	[76655]		$2s^2 \ 3p^3 (^4{ m S}^{\circ}) 8s$	8s 5S°	2	80449. 30	
$3s^2 3p^3(4S^\circ)6s$	68 3S°	1	76720. 90		$3s^2 3p^3 ({}^4{ m S}^{\circ}) 6f$	6f 5F	5 to 1	80494. 73	
3s ² 3p ³ (² P°)4s	4s'' ³P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	77136. 10 77150. 59 77181. 41	14. 49 30. 82	$3s^2 3p^3 (^4{ m S}^{\circ}) 6f$ $3s^2 3p^3 (^4{ m S}^{\circ}) 8s$	6f ³F 8s ³S°	4, 3, 2 1	80495. 76 80521. 99	
3s ² 3p ³ (4S°)6p	6p ⁵ P	1 2 3	77851. 21 77856. 49	5. 28	3s ² 3p ³ (4S°)7d	7d ⁵ D°	4 3 2	80995. 48	
$3s^2 3p^3(4S^\circ)6p$	6p ³P	2	77 891. 10				1 0		
0.00 A(0D0) 4	4 4 35	0	20150 45		$3s^2 3p^3 ({}^4{ m S}^{\circ}) 8p$	8p 8P	0, 1 2	80995. 90 80996. 33	0. 43
$3s^2 3p^3 (^2 \mathrm{D}^\circ) 4p$	4p' ³ D	1 2 3	78152. 45 78152. 00 78203. 38	-0. 45 51. 38	$3s^2 3p^3 ({}^4{ m S}^\circ)7d$	7d ³D°	$\begin{matrix} 3\\2\\1\end{matrix}$	81080. 52 81082. 83 81084. 83	-2. 31 -2. 00
$3s^2 3p^3 (4S^\circ) 5d$	5d ⁵ D°	3, 2	78270. 30 78270. 72	$\begin{bmatrix} -0.42 \\ -0.47 \end{bmatrix}$	$3s^2 3p^3 ({}^4{ m S}^\circ) 9s$	98 5S°	2	81281.76	
		2, 1, 0	78271. 19	0.11	$3s^2 3p^3 ({}^4{ m S}^{ m o})7f$	7f 5F	5 to 1	81309. 23	
3s ² 3p ³ (² P°)4s	4s" ¹P°	1	78290. 4		$3s^2 \ 3p^3({}^4{ m S}^\circ)7f$	7f 3F	4, 3, 2	81310. 08	
$3s^2 \ 3p^3 (^2\mathrm{D}^\circ) 4p$	4p' *F	$\begin{array}{c} 2 \\ 3 \\ 4 \end{array}$	78410. 37 78436. 30	25. 93 27. 25	$3s^2 3p^3 ({}^4{ m S}^{\circ}) 9s$	98 3S°	1	[81327. 3]	
	4 4 47		78463. 55	223	$3s^23p^3({}^4{ m S}^\circ)8d$	8d 5D°	4	81628. 90	
$3s^2 3p^3(^2D^\circ)4p$ $3s^2 3p^3(^4S^\circ)5d$	4p' ¹ F 5d ³ D°	3 3 2	78638. 2 78692. 24 78691. 78	0. 46 -1. 21			3 2 1 0		
3s ² 3p ³ (4S°)7s	7s 5S°	1 2	78692. 99 79058. 24	-1, 21	$3s^23p^3(^4\mathrm{S}^\circ)8d$	8d ≱D°	3	8166 3 . 4 81666	$\begin{bmatrix} -3 \\ -2 \end{bmatrix}$
$3s^2 3p^3 (^4 \mathrm{S}^\circ) 5f$	5f 5F	5 to 1	79143. 18		0.00.0440010	10 500	1	81668	
3s ² 3p ³ (4S°)5f	5f *F	4, 3, 2	7 9144. 45		3s ² 3p ³ (4S°)10s	10s 5S°	2	81819. 40	
3s ² 3p ³ (4S°)7s	7s 3S°	1	79185.74		3s ² 3p ³ (4S°)8f	8f 5F	5 to 1	[81837. 3]	
$3s^2 3p^3(^2\mathrm{D}^\circ)4p$	4p′ ³P	2 1 0	79376. 34 79405. 74 79418. 45	$\begin{bmatrix} -29.40 \\ -12.71 \end{bmatrix}$	$3s^2 3p^3 (^4S^\circ) 8f$ $3s^2 3p^3 (^4S^\circ) 9d$	8f ³ F 9d ⁵ D°	4, 3, 2	[81837. 9] 82053. 94	
3s ² 3p ³ (4S°)7p	7p 5P	1 2 3	79785. 72				2 1 0		
$3s^23p^3(^4\mathrm{S}^\circ)6d$	6d ⁵ D°	4 3 2 1	79992. 36		$3s^2 3p^3 ({}^4{ m S}^\circ) 10d$	10 <i>d</i> ⁵ D°	4 3 2 1 0	82353. 3	
		Ü			S II (4S ₁₁₄)	Limit		83559. 3	-

December 1947.

SI OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +				Observed	Terms			
3s ² 3p ⁴ 3s 3p ⁵	{ 3p4 1S	3p ⁴ ³ P 3p ⁵ ³ P°	3p4 ¹D					
	ns	$(n \ge 4)$		n	$p \ (n \ge 4)$		nd (n≥3)	
3s ² 3p ³ (4S°)nx	{4, 6–10s ⁵ S° 4–8s ³ S°			4-7p ⁵ P 4-8p ³ P			3-10d ⁵ D° 3- 8d ³ D°	4-8f ⁵ F 5-7f ³ F
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)nx'$	{		4s' ³ D° 4s' ¹ D°	4p′ ³P	4p′ ³D	4p' 3F 4p' 1F		
$3s^2 \ 3p^3(^2\mathrm{P}^\circ)nx''$	{	4s'' ³ P° 4s'' ¹ P°						

^{*}For predicted terms in the spectra of the SI isoelectronic sequence, see Introduction.

SII

(P I sequence; 15 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S_{114}^{\circ}$

 $3p^3 \, {}^4S_{1\frac{1}{2}}^{\circ} \, 188824.5 \, \, \mathrm{cm}^{-1}$

I. P. 23.4 ± 0.1 volts

The terms are from the paper by Hunter. He has revised and extended the earlier analyses of this spectrum.

The level labeled "x" in his list is here designated "1". The configuration assignments for this level and for the term called " (^{2}P) " in the table are unknown. The latter is attributed by Robinson to $3s^{2}$ $3p^{2}$ (^{3}P) 3d instead of the term at 118146.50 cm⁻¹.

Intersystem combinations, connecting the doublet and quartet systems of terms, have been established by L. and E. Bloch and confirmed by Hunter. They indicate a correction of +317.17 cm⁻¹ to the absolute values of the doublet terms published by Ingram.

REFERENCES

- S. B. Ingram, Phys. Rev. 32, 172 (1928). (I P) (T) (C L)
- L. et E. Bloch, Ann. de Phys. [10] 12, 5 (1929). (T) (C L)
- M. Gilles, Ann. de Phys. [10] 15, 301 (1931). (I P) (T) (C L) (Z E)
- O. Bartelt und L. Eckstein, Zeit. Phys. 86, 77 (1933). (T) (C L)
- A. Hunter, Phil. Trans. Roy. Soc. London [A] 233, 303 (1934). (I P) (T) (C L)
- H. A. Robinson, Phys. Rev. 49, 297 (1936).

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interva
$3s^2 \ 3p^3$	3p ³ ⁴ S°	1½	0.0		$3s^2 \ 3p^2(^3\mathrm{P})4p$	4p 2P°	1½ 1½	133268. 53 133399. 82	131. 2
$3s^2 3p^3$	$3p^3 {}^2\mathrm{D}^{\circ}$	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	14851. 9 14883. 4	31. 5		1	1/2?	133359. 4	
$3s^2 \ 3p^3$	3p³ 2P°	$1\frac{1}{2}$	24524. 2 24572. 8	48. 6		2 (2P) 3	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	139845. 6 140015. 7	170. 1
3s 3p4	3p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	79394. 8 79757. 9 79968. 0	$\begin{bmatrix} -363.1 \\ -210.1 \end{bmatrix}$	$3s^2 \ 3p^2(^1{ m D})4p$	4p′ 2F°	2½ 3½	140229.78 140318.80	89. 0
3s 3p4	3p4 2P	1½ ½	105599. 02 106044. 16	-445. 14	$3s^2 \ 3p^2(^1D)4p$	4p′ 2D°	2½ 1½	140708. 51 140750. 00	-41.4
3s ² 3p ² (⁸ P)4s	4s 4P	$egin{array}{c} langle rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	109560. 50 109831. 28	270. 78 437. 05	$3s^2 \ 3p^2(^1\mathrm{D})4p$	4p′ ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	143488. 61 143623. 03	134. 4
$3s^2 \ 3p^2 (^3\mathrm{P}) 3d$	3d 4F		110268. 33 110176. 83	136. 30	$3s^2 \ 3p^2(^3P)5s$	5s ⁴ P	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	150258. 20 150531. 12 150996. 27	272. 9 465. 1
		$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	110313. 13 110508. 48 110766. 31	195. 35 257. 83	$3s^2 \ 3p^2(^3P)5s$	5s ² P	1½ 1½	151383. 83 151910. 67	526. 8
$3s^2 \ 3p^2(^3{ m P})4s$	4s ² P	$1\frac{1}{2}$	112937. 33 113461. 22	523. 89	$3s^2\ 3p^2(^3\mathrm{P})4d$	4d 4F	1½ 2½ 3½ 4½	151959. 41 152094. 34 152304. 71	134. 9 210. 3
$3s^2 \ 3p^2 (^3P)$ 3 a	3d 4D	$egin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	114162. 20 114200. 45 114230. 75	38. 25 30. 30 48. 36	$3s^2\ 3p^2(^3\mathrm{P})4d$	4d 4D		152615. 25 153153. 66	310. 8
$3s^2 \ 3p^2 (^3P) 3d$	3d 2F	$egin{array}{c c} 3\frac{1}{2} & & & \\ 2\frac{1}{2} & & & \\ 3\frac{1}{2} & & & \\ \end{array}$	114279. 11 114804. 11	481. 20			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	153201. 72 153282. 80 153413. 52	81. (
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d 4P	$egin{array}{c} 37_2 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	115285. 31 115817. 0 115870. 4	-53. 4 -21. 9	$3s^2\ 3p^2(^3\mathrm{P})4d$	4d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	155818. 37 156029. 28 156148. 19	-210. 9 -118. 9
$3s^2 \ 3p^2 (^3\mathrm{P}) 3d$	3d 2P	$egin{array}{c c} lac{1}{2} & & \\ & rac{1}{2} & \\ & 1rac{1}{2} & \\ \end{array}$	115892. 3 118146. 50		$3s^2 \ 3p^2(^3\mathrm{P})4d$	4d ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	156121. 33 156603. 67	482. 3
$3s^2\ 3p^2(^3\mathrm{P})3d$	3d 2D	$egin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	119242, 13 119294, 70	52. 57	$3s^2 3p^2(^3P)4d$	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	158666. 45 158826. 87	160. 4
$3s^2 \ 3p^2(^1\mathrm{D})4s$	4s' 2D	$egin{array}{c} 1^{1/2} \\ 2^{1/2} \\ 2^{1/2} \end{array}$	121528. 20 121529. 49	1. 29	$3s^2 \ 3p^2(^3\mathrm{P})5p$	5p 4D°	$\begin{array}{c} \frac{1}{12} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	164118. 6 164252. 0 164447. 3 164772. 7	133. 4 195. 3 325. 4
$3s^2 \ 3p^2(^3\mathrm{P})4p$ $3s^2 \ 3p^2(^3\mathrm{P})4p$	4p 2S° 4p 4D°	1/2	125485. 32 127824. 93		$3s^2\ 3p^2(^1\mathrm{D})4d$	4d′ 2F	$3\frac{1}{2}$ $2\frac{1}{2}$	164180. 63 164231. 78	51.
50 5p (1)1p		$egin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	127976. 21 128233. 07 128599. 11	151. 28 256. 86 366. 04	$3s^2\ 3p^2(^3{ m P})5p$	5p 4P°	$\begin{array}{c c} & \frac{2}{12} \\ & \frac{1}{12} \\ & \frac{1}{12} \\ & \frac{2}{12} \end{array}$	164279.3 164317.4	38. 1 142.
3s ² 3p ² (8P)4p	4p 4P°	$egin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	129787. 71 129858. 07 130134. 08	70. 36 276. 01	$3s^2\ 3p^2(^1{ m D})4d$	4d′ 2G	$egin{array}{c} 27_2 \ 4\frac{1}{2} \ 3\frac{1}{2} \end{array}$	164459. 5 164334. 94 164336. 71	-1. 7
$3s^2 \ 3p^2(^3P)4p$	4p 2D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	130641. 00 131186. 86	545. 86	$3s^2 \ 3p^2(^3P)5p$	5p 4S°	1½	165002. 45	
$3s^2 \ 3p^2(^3P)4p$	4p 4S°	1½	131028.76		S III (³ P ₀)	Limit		188824.5	

October 1947.

SII OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms	
$3s^2 \ 3p^3$ $3s \ 3p^4$	$\begin{cases} 3p^{3} {}^{4}S^{\circ} & 3p^{3} {}^{2}P^{\circ} & 3p^{3} {}^{2}D^{\circ} \\ & & 3p^{4} {}^{4}P & 3p^{4} {}^{2}P & \end{cases}$		
	$ns (n \ge 4)$	$np \ (n \ge 4)$	$nd (n \ge 3)$
$3s^2 \ 3p^2(^3\mathrm{P})nx$ $3s^2 \ 3p^2(^1\mathrm{P})nx'$	4, 5s ⁴ P 4, 5s ² P 4s' ² D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 4d ⁴ P 3, 4d ⁴ D 3, 4d ⁴ F 3d ² P 3, 4d ² D 3 4d ² F 4d' ² F 4d' ² G

^{*}For predicted terms in the spectra of the P1 isoelectronic sequence, see Introduction.

SIII

(Si I sequence; 14 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 ^3P_0$

 $3p^2 \, ^3P_0 \, 282752 \, \mathrm{cm}^{-1}$

I. P. 35.0 ± 0.4 volts

The present term list has been compiled from those published by Hunter and by Robinson, although Ingram, Gilles, and others have contributed to the analysis.

Intersystem combinations connecting the singlet and triplet terms have been observed. Robinson derives from his measures a correction of -6 cm^{-1} to be applied to all terms higher than 140000 cm⁻¹. This correction has been introduced here. An estimated value of the interval of $3p^3$ $^3P_{1,0}^{\circ}$ is entered in brackets in the table.

The quintet terms suggested by Gilles have been omitted, awaiting further confirmation.

REFERENCES

S. B. Ingram, Phys. Rev. 33, 907 (1929). (I P) (T) (C L)

M. Gilles, Ann. de Phys. [10] 15, 322 (1931). (I P) (T) (C L) (Z E)

A. Hunter, Phil. Trans. Roy. Soc. London [A] 233, 309 (1934). (I P) (T) (C L)

L. et E. Bloch, J. Phys. Rad. [7] 6, No. 11, 441 (1935). (C L)

H. A. Robinson, Phys. Rev. 52, 724 (1937). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^2$	$3p^2$ $^3\mathrm{P}$	0 1 2	0. 0 297. 2 832. 5	297. 2 535. 3	3s² 3p(²P°)3d	3d ³D°	1 2 3	147550. 32 147690. 99 147744. 54	140. 67 53. 55
$3s^2 3p^2$	$3p^2$ ¹ D	2	11320		$3s^2 3p(^2{ m P}^{\circ}) 4s$	4s ¹ P°	1	148397. 8	
$3s^2 3p^2$ $3s 3p^3$	$3p^2 {}^{1}S$ $3p^3 {}^{3}D^{\circ}$	0 1 2 3	27163 84018. 9 84046. 4	27. 5 53. 1	3s ² 3p(2P°)4p	4p 3D	1 2 3	169770. 04 170067. 31 170648. 94	297. 27 581. 63
3s 3p°	3p³ ³P°	2 1 0	84099. 5 98743. 0 98765. 6	-22. 6 [-6]	$3s^2 3p(^2{ m P}^{ m o}) 4p$ $3s^2 3p(^2{ m P}^{ m o}) 4p$	$4p^{-3}P$ $4p^{-3}S$	0 1 2	172631, 27 172785, 77 173191, 73 174036, 19	154. 50 405. 96
$3s \ 3p^3$ $3s \ 3p^3$	$3p^{3} {}^{1}\mathrm{D}^{\circ} \ 3p^{3} {}^{1}\mathrm{P}^{\circ}$	2 1	104159? 136839		$3s^2 3p (^2\mathrm{P^o}) 4d$	4d ³ F°	$\begin{smallmatrix}2\\3\\4\end{smallmatrix}$	204578. 89 205070. 75 205560. 67	491. 86 489. 92
3s 3p³ 3s² 3p(2P°)3d	$3p^3$ 3 S° $3d$ 3 P°	1 0 1	138061. 4 143095. 91 143116. 19	20. 28	3s² 3p(²P°)4d	4 <i>d</i> ³ D°	$\begin{array}{c}1\\2\\3\end{array}$	206538. 87 206671. 61 206910. 97	132. 74 239. 36
$3s^2 \ 3p(^2{ m P}^{\circ})4s$	4s 3P°	2 0	146696. 19 146736. 54	7. 74 40. 35	3s ² 3p(² P°)5s	58 3P°	$\begin{smallmatrix}0\\1\\2\end{smallmatrix}$	209773. 4 209926. 1 210697. 6	152. 7 771. 5
		1 2	147146.00	409. 46	$3s^2 3p(^2\mathrm{P}^\circ)5s$	5s ¹ P°	1	211326.8	
					S IV (2P½)	Limit		282752	

October 1947.

S III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +				C	bserved T	'erms			
3s ² 3p ²	$\left \left\{ _{3p^{2}}\right{^{1}\mathrm{S}}\right. \right $	$3p^2$ $^3\mathrm{P}$	$3p^2$ ¹ D						
3s 3p³	$\left\{ ^{3p^{3}}\ ^{3}\mathrm{S}^{\circ} ight.$	${3p^3} {^3{ m P}}^{\circ} \ 3p^3 {^1{ m P}}^{\circ}$	${3p^3} {^3}{^0}$						
		$ns (n \ge 4)$			$np \ (n \ge 4)$)		$nd \ (n \ge 3)$	
3s² 3p(²P°)nx	{	4, 5s ³ P° 4, 5s ¹ P°		4p 3S	4p ³P	4p ³D	3d ³P°	3, 4d ³ D°	4d ³F°

^{*}For predicted terms in the spectra of the $Si\ i$ isoelectronic sequence, see Introduction.

(Al 1 sequence; 13 electrons)

Z = 16

Ground state 1s2 2s2 2p6 3s2 3p 2P2

 $3p \, {}^{2}P_{\frac{1}{2}}^{\circ} 381541.4 \, \, \mathrm{cm}^{-1}$

I. P. 47.29 volts

This spectrum is incompletely analyzed but 53 lines have been classified in the range from 519 A to 3118 A. For the doublet terms the authors' notation is entered in the first column of the table. The configurations are as given in Bacher and Goudsmit.

The quartet terms are from Bowen's 1932 paper. No intersystem combinations have been observed, as indicated by the uncertainty x. Bowen remarks that the relative positions of the doublet and quartet terms are only approximately determined, by assuming that the difference between the terms 4s 2S and 4s 4P ° is equal to that between the terms 3s 2 1S and 3p 3P ° in S v.

REFERENCES

- R. A. Millikan and I. S. Bowen, Phys. Rev. 25, 600 (1925). (I P) (T) (C L)
- I. S. Bowen, Phys. Rev. 31, 37 (1928). (T) (C L)
- R. F. Bacher and S. Goudsmit, Atomic Energy States p. 404 (McGraw-Hill Book Co. Inc., New York, N. Y., and London, 1932). (T)
- I. S. Bowen, Phys. Rev. 39, 13 (1932). (T) (C L)
- L. Bloch et E. Bloch, J. Phys. Rad. [7] 6, No. 11, 441 (1935). (C L)

S IV

Authors	Config.	Desig.	J	Level	Inter- val	Authors	Config.	Desig.	J	Level	Inter- val
$3p_2 \ 3p_1$	$3s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	0. 0 950. 2	950. 2	$\begin{array}{c}4p_2\\4p_1\end{array}$	$3s^2(^1\mathrm{S})4p$	4p 2P°	1½ 1½ 1½	213507. 4 213717. 4	210. 0
	3s 3p ²	3p ² ⁴ P	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	344 547		3s 3p(3P°)3d	3d ⁴ P°	2½ 1½ ½ ½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-289
$b ext{D}_2 \ b ext{D}_3$	3s 3p ²	$3p^2$ ² D	1½ 2½	94101. 9 94148. 1	46. 2		3s 3p(3P°)3d	3d 4D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103 100
bS	38 3p2	$3p^2$ 2S	1/2	123503. 9					$\frac{272}{3\frac{1}{2}}$	$\begin{vmatrix} 225194 & +x \\ 225274 & +x \end{vmatrix}$	80
$\begin{array}{c} b\mathrm{P_1} \\ b\mathrm{P_2} \end{array}$	$3s\ 3p^2$	$3p^2$ ² P	1½ 1½	133617. 9 134243. 9	626. 0	4d	$3s^2(^1\mathrm{S})4d$	4d ² D	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	255389. 8	
$egin{array}{c} 3d_2 \ 3d_1 \end{array}$	$3s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	152127. 1 152141. 4	14. 3		3s 3p(3P°)4s	4s 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	263759 +x 264105 +x	346 636
48	$3s^2(^1S)4s$ $3p^3$	$4s$ $^2\mathrm{S}$ $3p^3$ $^4\mathrm{S}^\circ$	½ 1½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		58	3s ² (¹ S)5s	5s ² S	1/2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
cР	$3p^3$	3p³ ²P°	{ 1½ ½ ½	}211368			S v (¹S ₀)	Limit		381541.4	

September 1947.

S IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +			Observe	ed Terms		
3s ² (¹ S)3p		3p 2P°				
3s 3p2	$\left\{ \begin{array}{ccc} 3p^2 \ ^2\mathrm{S} \end{array} \right.$	$rac{3p^2}{3p^2} rac{4}{2} ext{P}$	$3p^2$ ² D			
$3p^3$	$\left\{\begin{array}{cc} 3p^3 \ ^4\mathrm{S}^{\circ} \end{array}\right.$	3p³ ²P°				
		ns $(n \ge 4)$		$np(n \ge 4)$	nd	$(n \ge 3)$
$3s^2(^1\mathrm{S})nx$	4, 5s ² S			4p 2P°		3, 4 <i>d</i> ² D
3s 3p(3P°)nx		4s 4P°			3d 4P°	3d ⁴ D°

*For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

SV

(Mg I sequence; 12 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^6 3s^2 {}^{1}S_0$

3s2 1S0 584700 cm-1

I. P. $72.5 \pm \text{ volts}$

This spectrum is incompletely analyzed, but Bowen has classified 30 lines in the range between 437 A and 905 A. He gives absolute values for only the triplet terms, but lists the singlet combination $3s^2 {}^{1}S_0 - 3p {}^{1}P_1^{\circ}$, which has been used to calculate $3p {}^{1}P_1^{\circ}$ in the table.

By extrapolation along the isoelectronic sequence the writer has estimated the limit $3s^2$ 1S_0 as approximately 584700 cm⁻¹, which places 3p $^3P_0^{\circ}$ at 83071 cm⁻¹ above the ground state zero. These estimated values are entered in brackets in the table. The uncertainty, x, may be several hundred cm⁻¹. Bowen has estimated the error of the limit as probably not greater than ± 1000 cm⁻¹.

REFERENCES

- I. S. Bowen, Phys. Rev. 39, 8 (1932). (T) (C L)
- I. S. Bowen, letter (Sept. 1947). (T)

SV

SV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹S	0	0		3s(2S)4s	4s 3S	1	311670 + x	
3s (2S) 3p	3p 3P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	$ \begin{bmatrix} 83071 \\ 83433 + x \\ 84200 + x \end{bmatrix} $	362 767	3p(2P°)3d	$3d$ $^3\mathrm{P}^\circ$	2 1 0	345376 + x 345750 + x 345987 + x	-374
$3s(^2\mathrm{S})3p$ $3p^2$	3p ¹P° 3p² ³P	1 0 1 2	$ \begin{array}{r} 127149 \\ 200000 + x \\ 200417 + x \\ 201186 + x \end{array} $	417 769	3p(2P°)3d	3 <i>d</i> ³ D°	1 2 3	347883 + x 348051 + x 348168 + x	117
3s(2S)3d	3d 3D	1, 2, 3	234987 + x		S VI (2S _{1/2})	Limit		[584700]	

September 1947.

S v Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +	Observe	Observed Terms								
382	3s ² ¹S									
3s(2S)3p	$\begin{cases} 3p & ^3P^{\circ} \\ 3p & ^1P^{\circ} \end{cases}$									
$3p^2$	3p ² ³ P									
	ns (n≥4)	nd ((n≥3)							
$3s(^2S)nx$	48 3S		3d ³ D							
3p(2P°)nx		3d ³P°	3d 3D°							

*For predicted terms in the spectra of the Mg $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

S VI

(Na I sequence; 11 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\frac{1}{2}}$

3s $^2\mathrm{S}_{1\!/2}$ 710194 cm $^{-1}$

I. P. 88.029 ± 0.003 volts

The terms are from Robinson, who has extended the earlier analysis by Bowen and Millikan. There are 29 classified lines, all but 2 of which are in the region between 171 A and 1117A. The absolute value of the ground state was extrapolated along the isoelectronic sequence.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 295 (1925). (T) (C L)
H. A. Robinson, Phys. Rev. 52, 724 (1937). (I P) (T) (C L)

~	371
0	A T

871
- v

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0		5 <i>f</i>	5f ² F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 551848	
3p	3p 2P°	1½ 1½	105874 107137	1263	5 <i>g</i>	5 <i>g</i> ² G	$ \begin{cases} 3\frac{1}{2} \\ 4\frac{1}{2} \end{cases} $	} 552106	
3d	$3d$ $^{2}\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	247420 247452	32	68	6s ² S	1/2	573823	
48	4s 2S	1/2	362983		6 <i>p</i>	6 <i>p</i> ² P°	1½ 1½	583679	
4p	4 <i>p</i> ² P°	1½ 1½	401164 401621	457	6d	$6d$ $^2\mathrm{D}$	$ \left\{ \begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 596877	
4d	$4d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	451785 451808	23	6 <i>f</i>	6f 2F°	$egin{cases} 2lar{1}{2} \ 2lar{1}{2} \ 3lar{1}{2} \end{cases}$	} 600170	
4f	4f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	} 462653						
58	5s ² S	1/2	504112		7 <i>d</i>	7d ² D	$ \begin{cases} 1\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $	627231	
5p	5p ² P°	1½ 1½	522030 522248	218	7 <i>f</i>	7f 2F°	$\left\{\begin{array}{cc}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	829395	
5d	5d 2D	1½ 2½	546021 546032	11	S vii (¹S₀)	Limit		710194	-

June 1947.

(Ne I sequence; 10 electrons)

Z = 16

Ground state 1s2 2s2 2p6 1S0

 $2p^6 \, {}^1\mathrm{S_0} \, \mathbf{2266990} \, \, \mathrm{cm^{-1}}$

I. P. 280.99 volts

Ferner has classified 16 lines between 46 A and 72 A as combinations with the ground term, and generously furnished his analysis in advance of publication. The term designations he assigns on the assumption of *LS*-coupling are given in the table under the heading "Author."

As for Ne 1, the jl-coupling notation in the general form suggested by Racah is introduced. Ferner's unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 62 (1948). (I P) (T) (C L)

S VII

S VII

Author	Config.	Desig.	J	Level	Author	Config.	Desig.	J	Level
2p ¹S ₀	$2p^{\mathfrak g}$	2p ⁶ ¹S	0	0	58 ² P ₁	$2p^{5}(^{2}\mathrm{P}_{13})5s$	5s [1½]°	2 1	1998920
3s ⁸ P ₁	$2p^{5}(^{2}\mathrm{P}_{14}^{\circ})3s$ $2p^{5}(^{2}\mathrm{P}_{2}^{\circ})3s$	3s [1½]° 3s' [½]°	2 1	1376220	$3p'$ ${^3P_1 \atop ^1P_1}$	$\Big\} = 2$ s $2p^{6}(^{2}\mathrm{S})3p$	3p { 3P° 1P°	} 1	2000400
3s ¹ P ₁			0	1388330	5d ¹ P ₁	$2p^{5}(\mathrm{P^{5}_{14}})5d$	5d [1½]°	1	2046080
3d ³ P ₁ 3d ¹ P ₁	2p⁵(²P ₁₃₄)3d "	3d [½]°	0 1 1	1624770	5d ³ D ₁	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})5d$	5d' [1½]°	1	2055630
$3d ^3D_1$	$2p^{5}(^{2}\mathrm{P}_{\mathcal{B}}^{\circ})3d$	3d [1½]° 3d' [1½]°	1	1644630 1662210	6d ¹ P ₁ 6d ³ D ₁	$rac{2p^{5}(^{2}\mathrm{P}_{15}^{\circ})6d}{2p^{5}(^{2}\mathrm{P}_{5}^{\circ})6d}$	6d [1½]° 6d' [1½]°	1 1	2113850 2123230
4s ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{135}^{\circ})4s$	48 [1½]°	2 1	1820230	7d ² D ₁	$2p^5(^2\mathrm{P}^\circ_{\!$	7d' [1½]°	1	2163940
4s ¹ P ₁	$2p^5(^2\mathrm{P}_{52}^{\circ})4s$	48' [½]°	0 1	1829760					
4d ¹P1	$2p^5(^2\mathrm{P}^{\circ}_{1\!s})4d$	4d [1½]°	1	1919500		S VIII (2P _{1/2}) S VIII (2P _{1/2})	Limit Limit		2266990 2277120
4d ³ D ₁	$2p^5(^2\mathrm{P}^{\circ}_{5\!2})4d$	4d' [1½]°	1	1930240		5 111 (1 1/2)	Bonoto		22.1120

August 1947.

S VII OBSERVED LEVELS*

Config. 1s ² 2s ² +		Observed Terr	ns
2p ⁶	$2p^6$ 1S		
	ns (n≥3)	nd (n≥3)	np (n≥3)
$2p^{\delta(2}\mathrm{P}^{\circ})nx$	{ 3-5s ³ P° 3-4s ¹ P°	3d ³ P° 3-7d ³ D° 3-6d ¹ P°	
$2p^{6}(^{2}\mathrm{S})nx$			$3p{3P^{\circ}\atop 1P^{\circ}}$
	j	l-Coupling Notation	
		Observed Pair	rs
	ns (n≥3)	$nd (n \ge 3)$	
$2p^5(^2\mathrm{P}_{14}^s)nx$	3-5s [1½]°	3d [½]° 3–6d [½]°	
$2p^5(^2\mathrm{P}^\circ_{5})nx'$	3-48′ [½]°	3–7d′ [1½]°	

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

S VIII

(F 1 sequence; 9 electrons)

Z = 16

Ground state 1s2 2s2 2p5 2P14

$$2p^5 \, {}^2\mathrm{P}^{\circ}_{1\frac{1}{2}} \, 2652720 \, \, \mathrm{cm}^{-1}$$

I. P. 328.80 volts

The analysis was furnished by Ferner in advance of publication. He has classified 44 lines in the interval between 44 A and 65 A. All but one of the observed combinations are with the ground term. In addition, Robinson has classified a pair of lines at 202.605 A and 198.550 A as $2p^5 \, ^2\text{P}^\circ - 2p^6 \, ^2\text{S}$.

Ferner's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- H. A. Robinson, Phys. Rev. 52, 724 (1937). (C L)
- E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 57 (1948). (I P) (T) (C L)

S VIII

S viii

Author	Config.	Desig.	J	Level	Interval	Author	Config.	Desig.	J	Level	Interval
${2p} {}_{^{2}P_{1}}^{^{2}P_{1}}$	2s ² 2p ⁵	2p ⁵ ² P°	1½ ½ ½	0 10130	-10130	$\overline{3d}$ ${}^2\mathrm{S}_1$	2s ² 2p ⁴ (¹ D)3d	3d′ 2S	1/2	1894330	
$2p'$ ${}^2\mathrm{S}_1$	2s 2p6	2p ⁶ ² S	1/2	503590		$\overline{3d}$ ${}^2\mathrm{F}_3$	$2s^2 2p^4(^1D)3d$	3d' ² F	$egin{array}{c} 3^{1/2}_{1/2} \ 2^{1/2}_{1/2} \end{array}$	1895520	
3s ⁴ P ₃ ⁴ P ₂ ⁴ P ₁	2s ² 2p ⁴ (³ P)3s	3s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1559580 1565250 1569290	$ \begin{array}{c c} -5670 \\ -4040 \end{array} $	$oxed{\overline{\overline{3}}ar{d}} \ ^2\mathrm{D}_3 \ ^2\mathrm{D}_2$	$2s^2 2p^4(^1S)3d$	3d'' ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	1952100 195 3 010	-910
3s ² P ₂ ² P ₁	2s ² 2p ⁴ (³ P)3s	3s 2P	1½ ½ ½	1579700 1586650	-6950	38′ ² P ₂ ² P ₁	2s 2p ⁵ (3P°)3s	38''' ² P°	1½ ½ ½	2038530 2045040	-6510
$\overline{3s}$ $^{2}D_{3}$ $^{2}D_{2}$	$2s^2 \ 2p^4 (^1\mathrm{D})3s$	3s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	1623380 1623610	-230	4s ² P ₂ ² P ₁	$2s^2 2p^4(^3P)4s$	4s ² P	1½ ½ ½	2102340 2111240	-8900
$\overline{\overline{3s}}$ 2S_1	$2s^2 \ 2p^4(^1\mathrm{S})3s$	3s'' 2S	1/2	1688170		4.7. AD	$2s^2 2p^4(^3P)4d$	4 <i>d</i> 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	9 4,000 9 0	
3d ⁴ D ₃	$2s^2 2p^4(^3P)3d$	3 <i>d</i> 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	1831370 1822510		$\begin{array}{ c c c c c }\hline 4d & {}^{4}\mathrm{P}_{3} \\ 4d & {}^{2}\mathrm{D}_{2} \\ & {}^{2}\mathrm{D}_{3} \\ \hline \end{array}$	2s ² 2p ⁴ (³ P)4d	$oxed{4d^{-2}D}$	$ \begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	2199830 2204100 2208530	4430
3d 4P2	$2s^2 2p^4(^3P)3d$	3d 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	1834830	0010	4d ² P ₂	2s ² 2p ⁴ (³ P)4d	4d ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	2207770	
⁴ P ₃			$2\frac{1}{2}$	1838740	3910	$\overline{4d}$ ${}^2\mathrm{S}_1$	$2s^2 2p^4(^1D)4d$	4d′ 2S	1/2	2253570	
$^{2}P_{1}$	$2s^2 2p^4(^3P)3d$	3 <i>d</i> ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	1839250 1847550	8300	$\overline{4d}$ ${}^2\mathrm{F}_3$	$2s^2 \ 2p^4(^1{ m D})4d$	4d′ ² F	$3\frac{1}{2}$ $2\frac{1}{2}$	2254790	
$^{2}D_{2}^{2}$	$2s^2 2p^4(^3P)3d$	3 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1842770 1847810	5040		Sur (3D)	Limit		2652720	-
$\overline{3d}$ ${}^{2}P_{1}$ ${}^{2}P_{2}$	$2s^2 2p^4(^1\mathrm{D})3d$	3d′ ²P	$1\frac{1/2}{1/2}$	1888460 1897460	9000		Six (3P ₂)	Limit		2032120	
$\overline{3d}$ $^2\mathrm{D}_3$ $^2\mathrm{D}_2$	$2s^2 \ 2p^4 (^1\mathrm{D}) 3d$	3d′ ²D	$2\frac{1}{2}$ $1\frac{1}{2}$	1892000 1898220	-6220						

August 1947.

S VIII OBSERVED TERMS*

Config.		Observed Terms							
2s ² 2p ⁵ 2s 2p ⁶	$2p^{6}$ 2S	$2p^5$	²P°						
		ns (n	≥ 3)			nd	(n≥3)		
2s ² 2p ⁴ (³ P)nx	{	3s 3, 4s	⁴ P ² P			3, 4d ⁴ P 3, 4d ² P	$^{ m 3}d^{ m 4}D \ m 3, 4}d^{ m 2}D$		
$2s^2 2p^4(^1D)nx'$				351 2D	3, 4d′ 2S	3d′ ² P	3d' ² D	3, $4d'$ ² F	
$2s^2 \ 2p^4(^1S) nx''$	3s'' 2S						$3d^{\prime\prime}$ ² D		
2s 2p ⁵ (3P°)nx'''		3s''	′ 2P°						

^{*}For predicted terms in the spectra of the F1 isoelectronic sequence, see Introduction.

(O I sequence; 8 electrons)

Z = 16

Ground state 1s2 2s2 2p4 3P2

 $2p^4$ 3P_2 3057300 cm $^{-1}$

1. P. 378.95 volts

Ferner has found 17 terms and classified 21 lines in this spectrum in the range from 46 A to 56 A. No intersystem combinations have been observed and the uncertainty, x, may be large. The unit adopted by Ferner, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 48 (1948). (I P) (T) (C L)

SIX

SIX

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
28 ² 2p ⁴	2p4 3P	2	0	-7970	2s ² 2p ³ (² D°)3d	3d′ ¹D°	2	2117140+x	
		0	7970 10630	-2660	$2s^2 \ 2p^3(^2D^\circ)3d$	3d′ 3S°	1	2125310	
2s ² 2p ⁴	2p4 1D	2	58000+x		$2s^2 \ 2p^3(^2{\rm D}^\circ)3d$	3d′ ¹F°	3	2134410+x	
2s ² 2p ⁴	2p4 1S	0	122300+x		2s ² 2p ³ (² P°)3d	3d'' ³P°	0		
2s ² 2p ³ (4S°)3s	38 3S°	1	1783150				$\frac{1}{2}$	2144820 2146610	1790
$2s^2 \ 2p^3 (^2 \mathrm{D}^\circ) 3s$	38′ ³D°	3 2	1845770 1846340	-570	$2s^2 \ 2p^3(^2\mathrm{P}^\circ)3d$	3d'' 3F°	4 3 2		
		1					2	2154570	
$2s^2 \ 2p^3(^2{ m D}^{\circ})3s$	3s′ ¹D°	2	1858500+x		$2s^2 \ 2p^3(^2{\rm P}^{\circ})3d$	3d'' 3D°	3	2156430	
$2s^2~2p^3(^2\mathrm{P}^\circ)3s$	38" 1P°	1	1904040+x				2 1		
$2s^2 2p^3(^4S^\circ)3d$	3d ³D°	1, 2 3	2035220 2035870	650	2s² 2p³(²P°)3d	3d'' ¹P°	1	2162470+x	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³D°	3, 2, 1	2108190		g _ (4ga)	Timit		9057900	
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³P°	2 1 0	2116450 2119180	-2730	S x (4S114)	Limit		- 3057300	

August 1947.

SIX OBSERVED TERMS*

Config. 1s²+		Observed Terms										
2s ² 2p ⁴	$\left\{_{2p^4}\right{ ext{IS}}$	2p4 3P	2p4 1D									
		ns $(n \ge 3)$			nd	$(n \ge 3)$						
$2s^2 2p^3({}^4\mathrm{S}^\circ)nx$	38 3S°					3 <i>d</i> ³D°						
$2s^2 \ 2p^3(^2\mathrm{D}^\circ) nx'$	{		38' 3D° 38' 1D°	3d′ ³S°	3d′ ³P°	$3d'$ $^3D^{\circ}$ $3d'$ $^1D^{\circ}$	3d′ ¹F°					
2s ² 2p ³ (² P°)nx''	{	3s'' ¹P°			3d'' ² P° 3d'' ¹ P°	3d'' ³D°	3d'' ³F°					

^{*}For predicted terms in the spectra of the O I isoelectronic sequence, see Introduction.

(N r sequence; 7 electrons)

Z = 16

Ground state $1s^2 2s^2 2p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

 $2p^3 \, {}^4S_{1}^{\circ}_{1} \, 3615900 \, \, \mathrm{cm}^{-1}$

I. P. 448.2 volts

The spectrum is very incompletely analyzed. Ferner has classified 4 lines between 44 A and 47 A and has generously furnished these classifications in advance of publication. The terms in the table have been derived from Ferner's data, adjusted by Robinson to fit the isoelectronic sequence data. All entries in brackets have been extrapolated along the isoelectronic sequence by Robinson. No intersystem combinations have been observed and the uncertainty, x, probably exceeds ± 1000 cm⁻¹.

Ferner's unit, 10³ cm⁻¹, has been changed to cm⁻¹ in deriving the term values.

REFERENCES

E. Ferner, Ark. Mat. Astr. Fys. (Stockholm) 36A, No. 1, p. 42 (1948). (C L) H. A. Robinson, unpublished material (March 1948). (I P) (T)

 $\mathbf{S} \mathbf{x}$

Config.	Desig.	J	Level	Interval
$2s^2 \ 2p^3$	2p³ 4S°	1½	0	
$2s^2 \ 2p^3$	2p³ ²P°	1½ 1½	$ \begin{bmatrix} 122230] + x \\ 123730] + x $	[1500]
2s ² 2p ² (³ P)3s	3s 4P	1½ 1½ 2½	2092360 2098460	6100
$2s^2 \ 2p^2(^3\mathrm{P})3d$	3 <i>d</i> ² D	1½ 2½	$\begin{array}{c} 2375140 + x \\ 2377300 + x \end{array}$	2160
S x1 (3P ₀)	Limit		[3615900]	

March 1948.

S XII

(B I sequence; 5 electrons)

Z = 16

Ground state 1s2 2s2 2p 2P2

2p ²P^o/₂ cm⁻¹

I. P. volts

By extrapolation along the B i isoelectronic sequence, Edlén estimates that the separation of the lowest term, $2p \, ^2P_{1/2}^{\circ} - 2p \, ^2P_{1/2}^{\circ}$, is 13266 cm⁻¹ (7536 A).

REFERENCE

B. Edlén, Zeit. Astroph. 22, 58 (1942). (T)

July 1948.

CHLORINE

Cl I

17 electrons Z=17

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

 $3p^5 {}^{2}P_{1\frac{1}{2}}^{\circ}$ 104991 cm⁻¹

I. P. 13.01 volts

Most of the terms are from the analysis by Kiess, who has revised and extended the earlier work on this spectrum. Green and Lynn have observed the Zeeman effect and, with the aid of g-values, added a few terms to the list by Kiess. They list 11 unclassified lines for which both g-values are known.

Their miscellaneous levels are labeled in the table with numbers assigned by the writer, followed by their tentative designations entered in parentheses.

Intersystem combinations, connecting the doublet and quartet terms, have been observed

REFERENCES

- L. A. Turner, Phys. Rev. 27, 401 (1926). (C L)
- O. Laporte, Nature 121, 1021 (1928). (C L)
- C. C. Kiess, Bur. Std. J. Research 10, 827, RP570 (1933). (I P) (T) (C L)
- B. Edlén, Zeit, Phys. 104, 413 (1937). (I P) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- J. B. Green and J. T. Lynn, Phys. Rev. 69, 165 (1946). (T) (C L) (Z E)
- L. Davis, Jr., B. T. Feld, C. W. Zabel, and J. R. Zacharias, Phys. Rev. 73, 525 (L) (1948). (hfs)

Cl I Cl I

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$38^2 3p^5$	3p ⁵ ² P°	1½ ½ ½	0 881	-881		3s ² 3p ⁴ (3P)4p	4p 2S°	1/2	85239. 98		1. 280
3s ² 3p ⁴ (³ P)4s	4s 4P		71954. 00	-530. 20	1. 599	3s ² 3p ⁴ (³ P)4p	4p 2P°	1½ ½ ½	85438. 04 85913. 44	-475. 40	1. 327 1. 379
		2½ 1½ ½ ½	72484. 20 72822. 64	-338. 44	1. 722 2. 652	3s ² 3p ⁴ (3P)4p	4p 4S°	1½	85730.68		1. 877
$3s^2 3p^4(^3\mathrm{P})4s$	4s ² P	1½ ½ ½	74221. 44 74861. 24	-639. 80	1. 340 0. 663	$3s^2 3p^4(^1\mathrm{D}) 4p$	4p′ 2P°	1½ ½ ½	94309. 67 94464. 50	-154. 83	1. 328 0. 872
3s ² 3p ⁴ (³P)4p	4p 4P°	2½ 1½ ½ ½	82914. 54 83126. 59 83360. 55	-212. 05 -233. 96	1. 591 1. 723 2. 617	$3s^2 3p^4(^3{ m P}) 5p$	5p 4P°	2½ 1½ ½ ½	94477. 93 94659. 28 94969. 43	-181. 35 -310. 15	1. 559 1. 722 2. 309
3s ² 3p ⁴ (³ P)4p	4p 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	83889. 64 84127. 90 84480. 91 84684. 27	-238. 26 -353. 01 -203. 36	1. 422 1. 308 1. 163 0. 059	3s ² 3p ⁴ (³ P)5p	5p 4D°	3½ 2½ 1½ ½ ½	94727. 91 94822. 75 95309. 43 95530. 51	-94. 84 -486. 68 -221. 08	1. 420 1. 247 1. 147 1. 409
$3s^2 3p^4(^1{ m D})4s$	4s' 2D	2½ 1½	84115. 68 84117. 38	-1. 70		3s ² 3p ⁴ (¹ D)4p	4p′ 2F°	2½ 3½	95140.05 95176.00	35. 95	
3s ² 3p ⁴ (³ P)4p	4p 2D°	2½ 1½	84643. 69 84984. 04	-340. 35	1. 269 0. 986	3s ² 3p ⁴ (³ P)5p	5p 2D°	2½ 1½	95396. 31 95702. 01	-305. 70	1. 352 1. 321

Cl I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3s^2 \ 3p^4(^3\mathrm{P})5p$ $3s^2 \ 3p^4(^3\mathrm{P})5p$	5p 2S° 5p 4S°	1½ 1½	95593. 28 95608. 30		0. 699 1. 531	$3s^2 3p^4(^3\mathrm{P})5d$	5 <i>d</i> 4F	$4\frac{1}{2}$ $3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	99513. 68 99664. 15 99761. 52	-150.47 -97.37	1. 310 1. 181 1. 149
3s ² 3p ⁴ (³ P)4d	4d 4D		95696. 49		1. 001			$1\frac{1}{2}$	99945. 42	—183. 90	1. 240
382 3p-(°1)4a	44 1	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	95782. 41 95893. 16 95991. 18	$ \begin{array}{r} -85.92 \\ -110.75 \\ -98.02 \end{array} $	1. 367 1. 209 0. 00	3s ² 3p ⁴ (³ P)4d	4d ² P	1½ ½	99530. 10 99707. 00	—17 6. 90	1. 306 1. 289
3s ² 3p ⁴ (³ P)5p	5p 2P°		96308. 84		1. 286	$3s^2 3p^4(^3P)6p$	1° (2D?)	$1\frac{1}{2}$	99564.7		1. 32
05° 0p (°1)0p	op 1	1½ ½ ½	96589. 64	-280.80	0. 712	$3s^2 3p^4(^3P)6p$	2° (4D°?)	$\frac{1}{2}$	99582.7		0.49
$3s^2 3p^4(^1D)4p$	4p′ 2D°	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	96478. 38 96481. 70	-3.32	0. 867	$3s^2 3p^4(^3P)7s?$	1 (4P?)	1½	99677. 1		1. 73
3s ² 3p ⁴ (³ P)4d	4d 4F		96490. 40	000 41		$3s^2 3p^4(^3P)6p$	6 <i>p</i> ² P°	$1\frac{1}{2}$	99819. 8 99899. 2	-79.4	1. 28 0. 81
0.		4½ 3½ 2½ 1½ 1½	96726. 81 96941. 30 97255. 55	-236.41 -214.49 -314.25	1. 097 0. 967	$3s^2 3p^4(^3P)7s?$	2 (2P?)	1/2	99968. 1		1. 21
$3s^2\ 3p^4(^3{ m P})4d$	$4d^{-2}\mathrm{F}$		96829, 85		0. 901	$3s^2 3p^4(^3\mathrm{P})5d$	5d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	99984. 30 100233. 00	-248.7 0	1. 589
03 0p (1)±u	Hu I	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	97179. 94	— 350 . 09				1/2 1/2	100253. 00	65. 88	1. 470
$3s^2 \ 3p^4(^3P)6s$	6s 4P	2½ 1½ ½ ½	97233. 37 97476. 20	—242 . 83	1. 500 1. 393	$3s^2 3p^4(^3\mathrm{P})7s?$	3 (2P?)	1½	100046. 5		1. 42
		1/2 1/2	98095. 96	619.76	1. 962	$3s^2 3p^4(^3\mathrm{P})5d$	5 <i>d</i> ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	100142. 41 100585. 28	-442.87	1. 210 1. 069
3s ² 3p ⁴ (³ P)4d	4d 4P	$\begin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	97334. 60 98040. 80 98641. 22	-706.20 -600.42	1. 241 1. 620	$3s^2 3p^4(^3{ m P}) 5d$	$5d$ $^2\mathrm{D}$	$2\frac{1}{2}$ $1\frac{1}{2}$	100245. 32 100342. 98	-97. 66	1. 003
$3s^2 3p^4(^3\mathrm{P})4d$	4 <i>d</i> ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	9 7 529. 85 9 7 803. 46	— 273 . 61	1. 355	$3s^2 \ 3p^4(^3\mathrm{P})5d$	5 <i>d</i> ² P	1½ ½	100700. 3 100733. 4	-33. 1	1. 65 1. 59
$3s^2 3p^4(^3P)6p$	6p 4P°	2½ 1½ ½	98911. 6		1. 91	$3s^2 3p^4(^3{ m P})6d$	6d 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	100941. 9 101041. 6 101048. 47 100985. 60	99. 7 6. 9 -62. 87	1. 010 1. 168 1. 364 1. 377
$3s^2 3p^4(^3P)6p$	6p 4D°	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$				$3s^2 3p^4(^3P)6d$	4 (4F?)	1½?	101219. 0		1. 20
		3½ 2½ 1½ ½ ½	99015. 1		1. 32	$3s^2 3p^4(^3{\rm P})6d$	5 (4P?)	$2\frac{1}{2}$	101422. 4		1. 60
3s ² 3p ⁴ (³ P)5d	5 <i>d</i> 4D		99196. 02	60.60	1. 392	$3s^2 3p^4(^3P)6d$	6	1/2	101587. 4		0. 69
1 (= / = .		3½ 2½ 1½ ½	99264. 7 1 99350. 22	-68.69 -85.51 -53.39	1. 358	3s ² 3p ⁴ (³ P)6d	7 (2F?)	$2\frac{1}{2}$	101855. 0		1. 45
		1/2	99403. 61		0. 363						
						Cl 11 (3P ₂)	Limit		104991		

January 1948.

Cli Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms								
$3s^2 \ 3p^5$	3p ⁵ ² P°									
	$ns (n \ge 4)$	$np \ (n \ge 4)$	nd (n≥3)							
3s ² 3p ⁴ (³ P)nx	4, 6s ⁴ P 4s ² P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4, 5d ⁴ P 4-6d ⁴ D 4, 5d ⁴ F 4, 5d ² P 4, 5d ² D 4, 5d ² F							
3s ² 3p ⁴ (¹ D)nx'	4s' 2D	4p' 2P° 4p' 2D° 4p' 2F°								

^{*}For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

(S I sequence; 16 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^3P_2$

 $3p^4$ 3P_2 192000 cm⁻¹

I. P. 23.80 volts

The terms are from the paper by Kiess and de Bruin, who have summarized, revised, and extended the earlier analysis by Murakawa and others. They give a complete list of classified lines; it extends from 558 A to 9483 A. Intersystem combinations connecting all three systems of terms, have been observed.

The two unclassified levels designated by them as x' and x'' are here labeled 1 and 2, respectively. The term they list as 4s' ³P is entered as "³P" since its configuration is not definitely known.

The estimated position of $3p^4$ S given by Edlén, is entered in brackets in the table.

REFERENCES

- C. C. Kiess and T. L. de Bruin, J. Research Nat. Bur. Std. 23, 443, RP1244 (1939). (I P) (T) (C L) (G D)
- B. Edlén, Phys. Rev. 62, 434 (1942). (T)
- S. Tolansky, Zeit. Phys. 74, 336 (1932). (hfs)
- S. Tolansky, Zeit. Phys. 73, 470 (1931). (I S)

Cl II Cl II

Config.	De	esig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38 ² 3p ⁴	3p4	3P	2 1	0 697	$ \begin{array}{c c} -697 \\ -299 \end{array} $	3s ² 3p ³ (² D°)3d	3d′ ¹P°	1	127726.9	
			0	996	-299	$3s^2 3p^3(^4S^\circ)4p$	4p ⁵ P	$\frac{1}{2}$	128621. 9 128662. 5	40. 6
3s ² 3p ⁴	3p4	1D	2	11652				3	128729. 8	67. 3
3s ² 3p ⁴	3p4	1S	0	[27900]		$3s^2 \ 3p^3(^2\mathrm{D}^\circ)4s$	4s' ¹D°	2	129065. 4	
$3s$ $3p^5$	3p5	3P°	2 1 0	93366. 6 93998. 7 94332. 8	$\begin{bmatrix} -632.1 \\ -334.1 \end{bmatrix}$	$3s^2 \ 3p^3 ({}^4{ m S}^\circ) 4p$	4p 3P	2 1 0	131767. 4 131754. 8 131768. 0	12. 6 -13. 2
$3s^2 \ 3p^3(^4\mathrm{S}^\circ)4s$	48	5S°	2	107878. 5		$3s^2 \ 3p^3(^2{\rm D}^\circ)3d$	3d′ ³G°	3 4	132162. 1 132173. 4	11. 3
$3s^2 \ 3p^3(^4S^\circ)3d$	3 <i>d</i>	⁵ D°	4 3	110295. 8 110296. 8	-1.0			5	132191. 3	17. 9
			1 0	110299. 5 110302. 0 110303. 5	-2. 7 -2. 5 -1. 5	3s ² 3p ³ (² P°)4s	4s'' ³ P°	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	137770. 1 137804. 4 137877. 6	34. 3 73. 2
3s ² 3p ³ (4S°)4s	48	3S°	1	112608.0		3s ² 3p ³ (² P°)4s	4s" 1P°	1	138623. 0	
3s 3p ⁵	3p5	¹P°	1	115656. 4		$3s^2 \ 3p^3 (^2{\rm P}^{\circ}) 3d$	3d'' ¹P°	1	139350. 0	
$3s^2 \ 3p^3({}^4{ m S}^\circ)3d$	3 <i>d</i>	$_3\mathrm{D}_\circ$	3	119809. 9	10, 9	$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹D°	2	140259. 1	
$3s^2 \ 3p^3(^2{ m D}^\circ)3d$	3 <i>d</i> ′	¹D°	$\begin{bmatrix} & 3 \\ 2 \\ 1 \\ & 2 \end{bmatrix}$	119799. 0 119842. 1	-43. 1	$3s^2 \ 3p^3 (^2{ m P}^{\circ}) 3d$	3d'' ³D°	1 2 3	140740. 0 141010. 0	270. 0 339. 6
		_		121498.6		0.00.0000000000000000000000000000000000	0.344 0.770		141349.6	
$3s^2 \ 3p^3(^2D^\circ)3d$	3d'	1F°	3	121635. 1		$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' 3F°	4 3	143996.3 144174.5	-178.2 -169.1
$3s^2 \ 3p^3(^2D^\circ)3d$	3d'	3Ł0	2 3	126031. 8 126219. 1	187. 3			2	144343.6	100.1
			4	126456.6	237. 5	$3s^2 \ 3p^3(^2D^\circ)4p$	4p' 1P	1	145468. 5	
3s ² 3p ³ (2D°)4s	48'	3D°	1 2 3	126725. 1 126743. 3 126782. 8	18. 2 39. 5	$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' ³P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	146012.9	

Cl II—Continued

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)4p$ $3s^2 \ 3p^3(^2\mathrm{D}^\circ)4p$	4p' 3D 4p' 3F	1 2 3	146330. 0 146333. 8 146469. 0 147053. 7	3. 8 135. 2	3s ² 3p ³ (4S°)5d	5d ⁵ D°	0 1 2 3 4	169799. 1 169799. 6 169800. 2	0. 5
		2 3 4	147125. 7 147198. 4	72. 0	$3s^2 \ 3p^3 (^2D^\circ) 5s$	58′ ³D°	1 2	170514.7 170535.1	20. 4 40. 4
$3s^2 \ 3p^3(^2D^\circ)4p$	4p' 'F	3	147605. 7				3	170575.5	40. 4
3s ² 3p ³ (2D°)4p	4p' 3P	2 1 0	149798. 3 149952. 4 150019. 0	$\begin{bmatrix} -154. \ 1 \\ -66. \ 6 \end{bmatrix}$	$3s^2 \ 3p^3 ({}^4{ m S}^{\circ}) 5d$	5 <i>d</i> ³ D°	3 2 1	170973. 6 171005. 8 171051. 5	-32. 2 -45. 3
$3s^2 \ 3p^3(^2D^\circ) 3d$	3d′ ³P°	$\frac{2}{1}$	150681. 4 150812. 7	-131. 3	$3s^2 \ 3p^3(^2{ m D}^{\circ})5s$	5s' ¹D°	2	171209. 2	
3s ² 3p ³ (² D°)3d	3d' ³D°	0	151092. 7		$3s^2 \ 3p^3(^2D^\circ)4d$	4d′ ³F°	2 3 4	172572.6 172650.3 172740.9	77. 5 90. 6
		3 2 1	151018. 6 151133. 8	74. 1 -115. 2	$3s^2 \ 3p^3(^2\mathrm{D}^\circ)4d$	4d′ ³G°	3 4 5	173222.7 173243.9	21. 2
3s ² 3p ³ (4S°)5s	5s 5S°	2	152233. 1		0.0 0.0(0D0) 4.7	4.74 4770		173277.5	g
$3s^2 3p^3(^2D^\circ)4p$	4p' ¹D	2	153257. 0		$3s^2 \ 3p^3(^2{\rm D}^{\circ})4d$	4d′ ¹F°	3	174045.0	
$3s^2 \ 3p^3(^2\mathbf{D}^\circ)3d$	3d' 3S°	1	153571. 2		0.0000000000000000000000000000000000000	2	2	174256. 3	
$3s^2 \ 3p^3(^4S^\circ)5s$ $3s^2 \ 3p^3(^4S^\circ)4d$	5s ³ S° 4d ⁵ D°	1 0 1	153633. 1 154616. 7 154617. 8	1. 1	$3s^2 \ 3p^3(^2{\rm D}^{\circ})4d$	4d′ ³D°	1 2 3	174785. 7 174820. 6 174852. 6	34. 32.
		2	154619. 6 154622. 6	1. 8 3. 0	$3s^2 \ 3p^3(^2{ m D}^{\circ})4d$	4d′ 3S°	1	177423. 1	
3p ⁵ (² P°)4s	4 _S VII 3P°	2 3 4	154623. 8 157076. 6	1. 2	$3s^2 \ 3p^3(^2{ m D}^{ m o})4d$	4d′ ³P°	0 1 2	177693. 6 177754. 2 177816. 9	60. 62.
Op (=) = 0		2 1 0	157666. 8 157956. 8	$\begin{bmatrix} -590.2 \\ -290.0 \end{bmatrix}$	$3s^2 \ 3p^3(^2{ m D}^\circ)4d$	4d′ ¹D°	2	178539. 1	
3s ² 3p ³ (² P°)4p	4p'' 3S	1	1581 77. 1		$3s^2 \ 3p^3(^2{ m D}^{\circ})4d$	4d′ ¹P°	1	179867. 0	
3s ² 3p ³ (² P°)4p	4p" *D	1 2 3	158723. 7 158768. 6 158786. 4	44. 9 17. 8	3s ² 3p ³ (² P°)5s	58" ³ P°	0 1 2	182337. 9 182372. 3 182448. 7	34. 76.
3s ² 3p ³ (² P°)4p 3s 3p ⁴ (?)4s	4p" ¹D 8p	2	159574. 2 159840. 3		$3s^2 \ 3p^3(^2{ m P}^{\circ})4d$	4d'' 3F°	4 3 2	184628. 1 184655. 2 184658. 4	-27. -3.
		1 2	159999. 6 16014 3 . 4	159. 3 143. 8	3s ² 3p ³ (² P°)4d	4d'' ³P°	2 1	185765. 0 1859 05 . 4	-140.
$3s^2 \ 3p^3(^2P^\circ)4p$	4p'' ¹P	1	161348. 4				0		
$3s^2 \ 3p^3(^2\mathrm{P}^\circ)4p$	4p'' ³ P	2 1 0	161634. 9 161654. 8 161671. 0	$\begin{bmatrix} -19.9 \\ -16.2 \end{bmatrix}$	3s ² 3p ³ (² P°)4d	4d'' ³D°	1 2 3	185865. 2	
3s² 3p³(4S°)4d	4d *D°	3 2 1	161796.5 161907.7 161989.8	-111. 2 -82. 1	$3s^2 \ 3p^3(^2{\rm D^o})6s$	6s' 3D°	1 2 3	186844. 3 186861. 0 186898. 3	16. 37.
	1	2	164210. 7		$3s^2 \ 3p^3(^2\mathrm{D}^\circ)6s$	68′ ¹D°	2	187141. 4	
3s2 3p3(2P°)4p	4p'' ¹S	0	165362. 1						-
3s ² 3p ³ (4S°)6s	6s 5S°	2	168673. 6		Cl III (4S ₁₃₄)	Limit		192000	
3s ² 3p ³ (4S°)6s	6s 3S°	1	169246.6						

January 1948.

Clii Observed Terms*

Config. $1s^2 2s^2 2p^6 +$	Observed Terms	
382 3p4	$\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$	
3s 3p ⁵	$\left\{\begin{array}{ccc} 3p^5 & {}^3\mathrm{P}^{\circ} \\ 3p^5 & {}^1\mathrm{P}^{\circ} \end{array}\right.$	
	$ns \ (n \ge 4)$ $np \ (n \ge 4)$	
3s ² 3p ³ (4S°)nx	$ \begin{cases} 4-6s {}^{5}S^{\circ} \\ 4-6s {}^{3}S^{\circ} \end{cases} $ $ 4p {}^{5}P \\ 4p {}^{3}P $	
3s² 3p³(²D°)nx′		p' ³ F p' ¹ F
3s ² 3p ³ (² P°)nx''	$ \begin{cases} 4,58'' & ^{3}P^{\circ} \\ 48'' & ^{1}P^{\circ} \end{cases} \qquad \begin{cases} 4p'' & ^{3}S & 4p'' & ^{3}P & 4p'' & ^{3}D \\ 4p'' & ^{1}S & 4p'' & ^{1}P & 4p'' & ^{1}D \end{cases} $	
3p ⁵ (2P°)nx ^{VII}	48 VII 3 P°	
	$nd \ (n \ge 3)$	
$3s^2 3p^3(^4S^\circ)nx$	$\left\{\begin{array}{cc} 3-5d & {}^{5}\mathrm{D}^{\circ} \\ 3-5d & {}^{3}\mathrm{D}^{\circ} \end{array}\right.$	
3s² 3p³(²D°)nx′	$ \begin{cases} 3,4d' ^3\mathrm{S}^\circ & 3,4d' ^3\mathrm{P}^\circ & 3,4\dot{d}' ^3\mathrm{D}^\circ & 3,4d' ^3\mathrm{F}^\circ \\ & 3,4d' ^1\mathrm{P}^\circ & 3,4d' ^1\mathrm{D}^\circ & 3,4d' ^1\mathrm{F}^\circ \end{cases} 3,4d' ^3\mathrm{G}^\circ $	
3s² 3p³(²P°)nx''	$ \begin{cases} 3, 4d'' {}^{3}P^{\circ} & 3, 4d'' {}^{3}D^{\circ} & 3, 4d'' {}^{3}F^{\circ} \\ 3d'' {}^{1}P^{\circ} & 3d'' {}^{1}D^{\circ} \end{cases} $	

^{*}For predicted terms in the spectra of the S I isoelectronic sequence, see Introduction.

Cl m

(P I sequence; 15 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S_{1\%}^{\circ}$

$$3p^3 \, {}^4S_{114}^{\circ} \, 321936 \, \, \mathrm{cm}^{-1}$$

I. P. 39.90 volts

The terms are from Bowen, who has greatly extended the early work on this spectrum. About 300 lines have been classified, and the observations range from 406 A to 4971 A. Intersystem combinations connecting the doublet and quartet terms have been observed.

Bowen remarks that because of perturbations the designations of the doublet levels of the 3d configuration are somewhat uncertain.

REFERENCES

- I. S. Bowen, Phys. Rev. 31, 35 (1928). (I P) (T) (C L)
- I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)

		Orm			Of III						
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval		
$3s^2 3p^3$	$3p^3 {}^4{ m S}^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1½	0. 0 18053		$3s^2 3p^2(^3\mathrm{P}) 4p$	4p 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	204021. 6 204124. 0	102. 4 417. 2		
$3s^2 3p^3$	3p° 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	18120	67	$3s^23p^2(^3{ m P})4p$	4p 2D°		204541. 2 205037. 3			
$3s^2 \ 3p^3$	3p³ ²P°	$1\frac{1}{2}$ $1\frac{1}{2}$	29812 29907	95			$1\frac{1}{2}$ $2\frac{1}{2}$	205946. 9	909. 6		
3s 3p4	3p4 4P		98520	-610	$3s^2 3p^2(^3P)4p$	4p 4S°	1½	205938. 5			
		$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	99130 99475	-345	$3s^2 3p^2(^3\mathrm{P}) 4p$	4p 2P°	11/2	209042. 1 209182. 8	140. 7		
$3s^2 \ 3p^2(^3P)3d$	3d 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	146525. 6 146749. 9 147073. 0	224. 3 323. 1	$3s^2\ 3p^2(^1{ m D})4p$	4p′ 2F°	$rac{2\frac{1}{2}}{3\frac{1}{2}}$	216524. 6 216710. 4	185. 8		
			147497. 9	424. 9	$3s^2\ 3p^2(^1{ m D})4p$	4p′ 2D°	$2\frac{1}{2}$ $1\frac{1}{2}$	217850. 2 217913. 1	-62. 9		
$3s^2\ 3p^2(^3\mathrm{P})3d$	3d 4D	$1\frac{1}{1}\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	151946. 4 151879. 9 151848. 6 151953. 5	-66. 5 -31. 3 104. 9	$3s^2 3p^2(^1{ m D})4p$	4p′ ² P°	1 1/2	221862. 9 222100. 7	237. 8		
3s² 3p²(³P)4s	4s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	173736. 0 174093. 8 174613. 9	357. 8 520. 1	$3s^23p^2(^3{ m P})4d$	4d 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	239506. 3 239729. 9 240075. 2 240568. 4	223. 6 345. 3 493. 2		
$3s^2 \ 3p^2(^3P)4s$	4s ² P	$1^{1/2}_{1/2}$	178369. 7 179076. 1	706. 4	$3s^23p^2(^3{ m P})4d$	4d 4D	1½ 1½ 2½ 2½ 3½	241559. 4 241572. 4 241685. 1	13. 0 112. 7		
$3s^2 \ 3p^2(^3P) \ 3d$	3d 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	179495. 2 179663. 5	-168.3 -117.5			1	242046. 2	361. 1		
0 0 0 9/2TD\ 0.7	9.1 970		179781. 0	-117. 5	$3s^2 3p^2(^3\mathrm{P})4d$	4d 4P	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	242822. 8 243080. 7	$ \begin{array}{r} -257.9 \\ -126.5 \end{array} $		
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	182076. 3 183042. 7	966. 4	$3s^2\ 3p^2(^3\mathrm{P})4d$	4 <i>d</i> ² F	i e	243207. 2 243828. 4			
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d ² P	$1\frac{1}{2}$	185838. 3 186 220 . 4	-382. 1	95- 9p-(-1) 4a	4 <i>a</i> -1	$egin{array}{c} 2\frac{1}{2} \ 3\frac{1}{2} \ \end{array}$	244684. 9	856. 5		
$3s^2 \ 3p^2(^1{\rm D})4s$	4s' 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	188390. 1 188448. 1	-58.0	$3s^23p^2(^3\mathrm{P})5s$	5s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	244951. 5 245392. 4 246137. 2	440. 9 744. 8		
$3s^2 3p^2(^1\mathrm{D}) 3d$	3d′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	194959. 5 195268. 2	-308. 7	$3s^2 \ 3p^2 (^3{ m P}) 4d$	4 <i>d</i> ² D	1½ 2½	248528. 2 248657. 7	129. 5		
$3s^2 \ 3p^2(^1D)3d$	3d′ ² F	$2\frac{1}{2}$ $3\frac{1}{2}$	196137. 9 196155. 8	17. 9	$3s^2\ 3p^2(^1{ m D})4d$	4d′ ² D	1½ 2½	254612. 7? 254683. 4?	70. 7		
$3s^2 \ 3p^2(^1{ m D})3d$	3d′ ² P	$1^{1/2}_{1/2}$	198835. 5 198983. 9	148. 4	$3s^2\ 3p^2(^1{ m D})4d$	4d′ ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	255086. 3 255140. 4	-54. 1		
$3s^2 3p^2(^3\mathrm{P}) 4p$	4p 4D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	201073. 4 201332. 0 201765. 1 202367. 6	258. 6 433. 1 602. 5	3s ² 3p ² (¹ D)5s	5s′ ² D	2½ 1½	258885. 8 258890. 8	-5.0		
		3/2		1	Cl iv (3P ₀)	Limit		321936			

November 1947.

Cl III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms								
$3s^2 \ 3p^3$	$\begin{cases} 3p^{3} {}^{4}S^{\circ} \\ & 3p^{3} {}^{2}P^{\circ} 3p^{3} {}^{2}D^{\circ} \end{cases}$									
3s 3p4	3p4 4P									
	$ns (n \ge 4)$		np ($n \ge 4$)			nd (n≥:3)			
$3s^2 3p^2(^3P)nx$	4, 5s ⁴ P 4s ² P	4p 4S°	4p 4P° 4p 2P°	$\begin{array}{cc} 4p & ^4\mathrm{D}^\circ \\ 4p & ^2\mathrm{D}^\circ \end{array}$		3, 4d ⁴ P 3d ² P	3, 4d ⁴ D 3, 4d ² D	3, 4d ⁴ F 4d ² F		
$3s^2 3p^2(^1D)nx'$	4, 5s′ ² D		4p′ 2P°	$4p'$ $^2\mathrm{D}^\circ$	4p′ 2F°	3d′ ² P	3, 4d′ ² D	3, 4d′ ² F		

^{*}For predicted terms in the spectra of the P $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 ^3P_0$

 $3p^2 \, ^3P_0 \, 431226 \, \, \mathrm{cm}^{-1}$

I. P. 53.5 volts

The analysis is by Bowen, who has classified 84 lines in the range between 318 A and 3167 A. The singlet and triplet terms are connected by intersystem combinations. Bowen classifies three lines (437 A-440 A) as $3p^3$ 5 S°-4s 5 P, but lists no quintet terms.

REFERENCES

I. S. Bowen, Phys. Rev. 31, 36 (1928). (C L)

S. C. Deb, Acad. Sci. Allahabad Bul. 2, 49 (1932). (I P) (T) (C L)

I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)

I. S. Bowen, Phys. Rev. 46, 377 (1934). (T) (C L)

Cl IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^2$	3p ² ³ P	0 1 2	0 491 1341	491 850	3s² 3p(²P°)4s	48 3P°	0 1 2	215026. 0 215389. 3 216468. 1	363. 3 1078. 8
$3s^2 3p^2$	3p ² ¹ D	2	13766		3s ² 3p(2P°)4s	48 P°	1	219454	
$3s^2 3p^2$ $3s 3p^3$	$3p^2 {}^{1}S$ $3p^3 {}^{3}D^{\circ}$	0	32550 102752		3s² 3p(²P°)4p	4p 3D	1 2 3	247575. 1? 248026. 1 248961. 2	451. 0 935. 1
		$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	102787 102869	35 82	3s² 3p(²P°)4p	4p ³P	0 1 2	251471. 4 251725. 8	254. 4 670. 9
$3s$ $3p^3$	3p³ ³P°	2 1 0	120256 120274 120300	$ \begin{array}{c c} -18 \\ -26 \end{array} $	3s² 3p(²P°)5s	5s ³P°	0	252396. 7 312747 312991	244
$3s \ 3p^3$	3p³ 3S°	1	16472 1				$\frac{1}{2}$	314225	1234
$3s 3p^3$	3p³ ¹P°	1	166742		3s² 3p(²P°)5s	5s ¹P°	1	315121	
38 ² 3p(² P°)3d	3d ³ P°	2 1 0	181643 182073 182300	$ \begin{array}{c c} -430 \\ -227 \end{array} $	Cl v (2P%)	Limit		431226	
$3s^2 3p(^2\mathrm{P}^\circ) 3d$	3d ³ D°	1 2 3	187008 187174 187346	166 172					

October 1947.

Cliv Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +	Observed Terms								
3s ² 3p ²	$\left\{_{3p^2}\right{^1\mathrm{S}}$	3p ² ³ P	$3p^2$ ¹ D						
3s 3p²	$\begin{bmatrix} 3p^3 \ ^3S^{\circ} \\ \end{bmatrix}$	3p ³ ³ P° 3p ³ ¹ P°	3p³ ³D°						
		$ns (n \ge 4)$		$np \ (n \ge 4)$	nd ((n≥3)			
3s ² 3p(2P°)nx	{	4, 5s ³ P° 4, 5s ¹ P°		4p 3P 4p 3D	3d ³P°	3d 3D°			

^{*}For predicted terms in the spectra of the Si I isoelectronic sequence, see Introduction.

Cl v

(Al 1 sequence; 13 electrons)

Z = 17

Ground state 1s2 2s2 2p6 3s2 3p 2P2

 $3p \, ^2\mathrm{P}^{\circ}_{1/2} \, 547000 \, \, \mathrm{cm}^{-1}$

I. P. 67.80 volts

The analysis is by Bowen except for the revision of 3d 4 P° and the addition of 5d 2 D suggested by Phillips and Parker. Forty-two lines have been classified in the interval between 236 A and 894 A.

No intersystem combinations connecting the doublet and quartet systems of terms have been observed, as indicated by x in the table.

REFERENCES

- I. S. Bowen, Phys. Rev. 31, 37 (1928). (C L)
- S. C. Deb, Acad. Sci. Allahabad Bull. 2, 43 (1932). (T) (C L)
- I. S. Bowen, Phys. Rev. 45, 401 (1934). (I P) (T) (C L)
- L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)

Config.	Desig.	J	Level	Interva	Config.	Desig.	J	Level	Interval
3s ² (¹ S)3p	3p 2P°	1½	0 1492	1492	3s 3p(3P°)3d	3d ⁴ P°	2½ 1½ ½	269986 + x $270423 + x$ $270745 + x$	$-437 \\ -322$
3s 3p ²	3p ² ⁴ P	1½ 1½ 2½	$86000+x \\ 86538+x \\ 87381+x$	538 843	3s 3p(³P°)3d	3d 4D°	1½ 1½ 2½ 2½ 3½	272596 + x 272757 + x	161 162
3s 3p2	$3p^2$ ² D	1½ 2½	113234 113306	72			3½	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	101
3s 3p2	3p ² ² S	1/2	146644		3s ² (¹S)4d	4d 2D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	349511	
3s 3p2	3p ² ² P	1½ 1½	15 7 931 15889 2	961	3s 3p(3P°)4s	4s 4P°	1½ 1½ 2½	353445 + x 353978 + x 354925 + x	533 947
3s ² (¹ S)3d	3d 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	185861 185893	32	$3s^2(^1S)5d$	5 <i>d</i> ² D	1½ 2½	422949 423022	73
$3p^3$	3p³ 4S°	1½	233757+x						-
3s ² (¹ S)4s	4s 2S	1/2	256313		Cl vi (1S0)	Limit		547000	

September 1947.

Cl v Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Ob	served Te	erms	
3s ² (¹S)3p		3p 2P°	-		
38 3p ²	$\left _{\left\{3p^2\ ^2\mathrm{S} ight.} ight }$	$rac{3p^2}{3p^2}rac{4}{2} ext{P}$	3p ² ² D		
$3p^3$	3p³ 4S°				
		ns $(n \ge 4)$		nd	(n≥3)
$3s^2(^1\mathrm{S})nx$	4s 2S				3–5d ² D
3s 3p(3P°)nx		48 4P°		3d 'P°	3d 4D°

*For predicted terms in the spectra of the Al $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 17

Ground state 1s2 2s2 2p6 3s2 1S0

 $3s^2 \, {}^{1}S_0 \, 780000 \pm \, \, \mathrm{cm}^{-1}$

I. P. $96.7 \pm \text{ volts}$

The analysis is incomplete. One singlet combination has been given by Bowen and Millikan, a line at 671.37 A classified as $3s^2 \, ^1S_0 - 3p \, ^1P_1^\circ$. The triplet terms are from Phillips and Parker, who have classified 34 lines in the range 194 A to 736 A.

From isoelectronic sequence data the writer has estimated the approximate value of the limit, and of 3p $^3P_1^{\circ}$ above the ground state zero. All triplet terms have, consequently, been increased by 98147 cm⁻¹. The estimated values are entered in brackets in the table. The uncertainty, x, may be several hundred cm⁻¹.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 597 (1925). (C L)
W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)

Cl vi Cl vi

Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² ¹S 3p ³P°	0	0 $[98147]+x$	550	3p(2P°)3d	3d ³D°	1 2 3	$\begin{array}{c} 411802 + x \\ 412075 + x \\ 412228 + x \end{array}$	273 153
	$\frac{1}{2}$	98700 + x 99865 + x	1165	3s(2S)4d	4d ³D	1 2	509868 + x $509896 + x$ $509847 + x$	51
$3p^{-1}P^{-1}$ $3p^{2-3}P$	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	636	3s(2S)4f	4f ³F°	2, 3, 4	509947 + x $529889 + x$	
3d ³D		$ \begin{array}{c cccccccccccccccccccccccccccccccccc$		3s(2S)5d	5d 3D	1 2 3	612058 + x $612089 + x$	
4s 3S	3 1	$ \begin{array}{r} 279888 + x \\ 407404 + x \end{array} $	28	Cl vii (2S ₁₄)	Limit		[780000]	
3d ³P°	$\begin{array}{c} 2 \\ 1 \\ 0 \end{array}$	$ \begin{array}{r} 409079 + x \\ 409975 + x \\ 410762 + x \end{array} $	-896 -787					
	3s ² ¹ S 3p ³ P° 3p ¹ P° 3p ² ³ P 3d ³ D 4s ³ S	$3s^{2}$ ¹ S 0 $3p$ ³ P° 0 1 2 2 $3p$ ¹ P° 1 2 2 $3d$ ³ D 1 2 2 $3d$ ³ D 1 2 2 $3d$ ³ S 1	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

July 1947.

Cl vi Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +	(Cbserved Terms									
$3s^{2}$ $3s(^{2}S)3p$ $3p^{2}$	$\begin{cases} 3s^{2} ^{1}S \\ 3p ^{3}P^{\circ} \\ 3p ^{1}P^{\circ} \\ 3p^{2} ^{3}P \end{cases}$										
	$ns (n \ge 4)$	nd (n≥3)	$nf \ (n \ge 4)$								
3s(2S)nx 3p(2P°)nx	4s 3S	3–5d ³D 3d ³P° 3d ³D°	4f %F°								

*For predicted terms in the spectra of the Mg I isoelectronic sequence, see Introduction.

Cl vII

(Na I sequence; 11 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{H}$

38 2S 2 921902 cm-1

I. P. 114.27 volts

The resonance lines were observed by Bowen and Millikan. The analysis was extended by Phillips to include 22 classified lines in the interval between 174 A and 813 A. Absolute term values were derived from the 3*d-nf* series.

REFERENCES

I. S. Bowen and R. A. Millikan, Phys. Rev. 25, 295 (1925). (C L)
L. W. Phillips, Phys. Rev. 53, 248 (1938). (I P) (T) (C L)

Cl vII

Cl VII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s	3s ² S	1/2	0		4 <i>f</i>	4f 2F°	2½ 3½	584086 584099	13
3p	3p 2P°	11/2	123001 124891	1890	58 -	58 2S	1/2	647677	
3 <i>d</i>	3d 2D	$1\frac{1}{2}$ $2\frac{1}{2}$	290166 290239	73	5 <i>d</i>	$5d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	697598 697619	21
48	48 ² S	1/2	464003		5 <i>y</i>	5f ² F°	2½ 3½	705398 705409	11
4 p	4p 2P°	1½	509197 509885	688	6 <i>f</i>	6f ² F°	$ \begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases} $	771549	
4d	4d 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	569142 569182	40					
					Cl vIII (1S ₀)	Limit		921902	

June 1947.

Cl vIII

(Ne i sequence; 10 electrons)

Z = 17

Ground state 1s2 2s2 2p6 1S0

 $2p^6$ 1S_0 2810000 ± 500 cm⁻¹

I. P. 348.3 ± 0.1 volts

Edlén has classified 13 lines in the region between 39A and 59A, as combinations with the ground term. The terms from the (2S) limit in Cl IX need further confirmation.

As for Ne 1 the jl-coupling notation in the general form suggested by Racah is introduced. The unit 10^3 cm⁻¹ used by Edlén has here been converted to cm⁻¹.

REFERENCES

- B. Edlén, Zeit. Phys. 100, 726 (1936). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Cl vIII Cl vIII

Edlén	Config.	Desig.	J	Level	Edlén	Config.	Desig.	J	Level
2p ¹S ₀	282 2p6	2p ⁶ ¹S	0	0	4d ¹ P ₁	$2s^22p^5(^2\mathrm{P}_{1\!\!\:\!$	4d [1½]°	1	2356820
a 170	2s ² 2p ⁵ (² P ₁ ;)3s	3s [1½]°	2 1	1000150	$4d$ $^3\mathrm{D}_1$	$2s^2 2p^5 (^2 ext{P}^{\circ}_{\!$	4d'[1½]°	1	2368550
3s ³ P ₁ 3s ¹ P ₁	2 s 2 $2p^5(^2\mathrm{P}_2^\circ)3$ s	3s'[½]°	0 1	1689450	3p′ ³P ₁	2s 2p ⁶ (2S)3p	3p 3P°	2 1 0	2371580?
	$2 s^2 2 p^5 (^2 ext{P}^*_{1\!$	3d [½]°	0	1972390	3p' ¹ P ₁	$2s \ 2p^6(^2{ m S})3p$	3p ¹P°	1	2401770?
3d ³ P ₁ 3d ¹ P ₁	"	3d [1½]°	1	1997040	5d ¹ P ₁	$2s^2 2p^5 (^2\mathrm{Pi}_{1\!\!\!/_{\!\!2}}) 5d$	5d [1½]°	1	2521750
$3d$ 3D_1	$2s^22p^5(^2\mathrm{P}^\circ_{\!$	3d'[1½]°	1	2020730	$5d$ 3D_1	$2s^2 2p^5 (^2\mathrm{P}_{\!$	5d'[1½]°	1	2534080
4s ³ P ₁	$2s^22p^5(^2 ext{P}^*_{11/2})4s$	4s [1½]°	2 1	2242000		Cl ix (² P ₁ ;)	Limit		2810000
48 ¹ P ₁	2 s 2 $2p^5(^2\mathrm{P}^{\circ}_{\!$	4s'[½]°	0 1	2254200		Cl IX (2P½)	Limit		2823600

April 1947.

Cl VIII OBSERVED LEVELS*

Config. 1s ² +		Observed Te	erms
2s ² 2p ⁶	2p ⁶ ¹S		
1	ns (n≥ 3)	$np \ (n \ge 3)$	nd (n≥3)
$2s^2 \ 2p^5(^2\mathrm{P}^\circ)nx$	{ 3, 4s ³ P° 3, 4s ¹ P°		3d ³ P° 3-5d ³ D° 3-5d ³ D°
2s 2p ⁶ (2S)nx	{	3p 3P° 3p 1P°	
	jl-Coupling	Notation	
		Observed P	airs
	$ns (n \ge 3)$		$nd \ (n \ge 3)$
$2s^2 \ 2p^5(^2\mathrm{P}^*_{\mathrm{15}}) nx$	3, 4s [1½]°		3d [½]° 3–5d [1½]°
$2s^2 \; 2p^5 (^2\mathrm{P}^{\circ}_{\!$	3, 4s' [½]°		3-5d' [1½]°

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

Cl IX

(F i sequence; 9 electrons)

Z = 17

Ground state 1s² 2s² 2p⁵ 2P^o_{1½}

 $2p^5 \, {}^{2}P^{\circ}_{1\frac{1}{2}} \, 3233000 \, \, \mathrm{cm}^{-1}$

I. P. 400.7 volts

Edlén has classified 34 lines in this spectrum in the interval 42 A to 53 A. The absolute value of the ground state has been extrapolated. Since no combinations between the two lowest terms have been observed, relative values have been extrapolated from the irregular doublet law for the three terms entered in brackets in the table. The uncertainty in the relative values may be large.

Levels from the 3d configurations with limits 3P and 1D in Cl x are labeled X since Edlén has been unable to assign term designations to them.

The unit used by Edlén, 10³ cm⁻¹, has here been converted to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 726 (1936). (I P) (T) (C L)

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
2p ² P ₂ ² P ₁ 2p' ² S ₁ 3s ⁴ P ₃ ⁴ P ₂ ⁴ P ₁ 3s ² P ₂ ² P ₁ 3s ² D ₃ ² D ₂ 3s ² S ₁ 3d X ₆ 3d X ₅ 3d X ₄	$\begin{array}{c} 2s^2 \ 2p^5 \\ 2s \ 2p^6 \\ 2s^2 \ 2p^4 (^3\mathrm{P}) \ 3s \\ \\ 2s^2 \ 2p^4 (^3\mathrm{P}) \ 3s \\ \\ 2s^2 \ 2p^4 (^1\mathrm{D}) \ 3s \\ \\ 2s^2 \ 2p^4 (^1\mathrm{S}) \ 3s \\ \\ 2s^2 \ 2p^4 (^3\mathrm{P}) \ 3d \\ \end{array}$	2p ⁵ ² P° 2p ⁶ ² S 3s ⁴ P 3s ² P 3s' ² D 3s'' ² S 3d X ₆ 3d X ₅ 3d X ₄	1½2 ½2 ½2 1½2 1½2 1½2 1½2 1½2 ½2	0 13600 [553400] 1888970 1896600 1901850 1911950 1921050 1959790 1959960 2031080 2196890 2199540 2203850	-7630 -5250 -9100 -170	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2s ² 2p ⁴ (³ P)3d 2s ² 2p ⁴ (³ P)3d 2s ² 2p ⁴ (¹ D)3d 2s ² 2p ⁴ (¹ S)3d 2s 2p ⁵ (³ P°)3s 2s 2p ⁵ (³ P°)3d	3d X ₂ 3d X ₁ 3d' X ₅ 3d' X ₄ 3d' X _{2,3} 3d' X ₁ 3d'' ² D 3s''' ² P° 3d''' ² P°	2½ 1½ 1½ ½ ½ ½	2209470 2216710 2259280 2263310 2268000 2272570 2328830 2330130 [2415740] [2424380] [2715940] [2722690]	-1300 -8640 6750
$3d X_3$	$2s^2 2p^4(^3P)3d$	$3d X_3$		2205950			Cl x (³ P ₂)	Limit		[3233000]	

March 1947.

Clix Observed Terms*

Config. 18 ² +	Observed Te	Observed Terms								
2s ² 2p ⁵ 2s 2p ⁶	$2p^{5-2}\mathrm{P}^{\circ}$ $2p^{6-2}\mathrm{S}$									
	ns (n≥3)	nd (n≥3)								
2s ² 2p ⁴ (³ P)nx	$\left\{\begin{array}{cc} 3s & ^4\mathrm{P} \\ 3s & ^2\mathrm{P} \end{array}\right.$									
$2s^2 \ 2p^4(^1\mathrm{D})nx'$	3s′ ² D									
$2s^2 \ 2p^4(^1S)nx''$	38'' 2S	3d'' ²D								
2s 2p ⁵ (3P°)nx'''	38′″ 2P°	3d''' 2P°								

^{*}For predicted terms in the spectra of the F I isoelectronic sequence, see Introduction.

(O i sequence; 8 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^4 {}^3P_2$

 $2p^4$ 3P_2 3673000 cm $^{-1}$

I. P. 455.3 volts

Edlén has classified 15 lines between 39 A and 47 A. The absolute value of the ground term has been extrapolated from the isoelectronic sequence. Similarly, the singlet and triplet terms are connected only through the extrapolated value of $2p^4$ $^3P_2-2p^4$ 4D_2 , and the uncertainty, x, may be large. The estimated value of $2p^5$ $^3P_2^\circ$ is given in brackets.

Edlén's term values expressed in units of 10³ cm⁻¹ are here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit, Phys. 100, 732 (1936). (I P) (T) (C L).

Cl x

Edlén	Config.	Desig.	J	Level	Interval	Edlén	Config.	Desig.	J	Level	Interval
$\frac{1}{2p} \frac{^{3}P_{2}}{^{3}P_{1}}$	2s ² 2p ⁴	2p4 3P	2	0 10880	-10880	3s ¹P₁	2s ² 2p ³ (² P°)3s	3s" ¹P°	1	2262140 + x	
±1			0	10000		$3d^{-3}D_2$	$2s^2 \ 2p^3({}^4{ m S}^{\circ})3d$	3 <i>d</i> ³ D°	1 2	2415360	
$2p$ $^{1}\mathrm{D}$	2s ² 2p ⁴	2p4 ¹D	2	61000 + x		$^{3}D_{3}^{2}$			2 3	2416040	680
2p ¹ S	2s ² 2p ⁴	2p4 1S	0	130310 + x		$\overline{3d}$ ³ D	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3d′ ³D°	3, 2, 1	2494700	
2p′ ³P	2s 2p ⁵	$2p^5$ $^3\mathrm{P}^\circ$	2	[487000]		$\overline{3d}$ $^{1}\mathrm{D}_{2}$	$2s^2 2p^3(^2\mathrm{D}^\circ)3d$	3 <i>d′</i> ¹D°	2	2500380 + x	
			0			$\overline{3d}$ ³ P	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3d′ ³P°	2, 1, 0	2502750	
3s 3S1	2s ² 2p ³ (4S°)3s	3s 3S°	1	2134700		$\overline{3d}$ ${}^{1}\mathrm{F}_{3}$	$2s^22p^3(^2\mathrm{D}^\circ)3d$	3d′ ¹F°	3	2520420 + x	
3s 3D	$2s^2 \ 2p^3(^2{ m D}^{\circ}) \ 3s$	3s′ ³D°	3, 2, 1	2202610		$\overline{\overline{3d}}$ ³ D	2s ² 2p ³ (² P°)3d	3d'' 3D°	3, 2, 1	2547580	
3s 1D	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3s$	3s′ ¹D°	2	2212650 + x							
							Cl XI (4Si14)	Limit		3673000	

March 1947.

Cl x Observed Terms*

Config. 1s ² +		Observed Terms								
2s ² 2p ⁴	$\left\{_{2p^4}\right.$ 'S	2p ⁴ ³ P	2p4 ¹D							
		ns $(n \ge 3)$			$nd \ (n \ge 3)$					
$2s^2 \ 2p^3(^4\mathrm{S}^\circ) nx$	3s 3S°				3d ³D°					
$2s^2 \ 2p^3(^2\mathrm{D}^\circ)nx'$	{		3s' 3D° 3s' 1D°	3d′ ³P°	$3d'$ $^3\mathrm{D}^\circ$ $3d'$ $^1\mathrm{D}^\circ$	3 <i>d′</i> ¹F°				
2s ² 2p ³ (² P°) nx''	{	3s'' ¹P°			3d′′ ³D°					

^{*}For predicted terms in the spectra of the $\operatorname{O}\xspace{1}\xspace{1}$ isoelectronic sequence, see Introduction.

(N i sequence; 7 electrons)

Z = 17

Ground state $1s^2 2s^2 2p^3 4S_{1\frac{1}{2}}^{\circ}$

$$2p^3 \, {}^4S_{1\frac{1}{2}}^{\circ}$$
 cm⁻¹

I. P. volts

This spectrum has not been analyzed, but Edlén has classified two lines as due to Clx:

A	Int.	Wave No.	Desig.
40. 787 40. 392	0	2451760 24 7 5740	$2p^3 ^2\mathrm{D}^{\circ} - 3s' ^2\mathrm{D} \ 2p^3 ^4\mathrm{S}_{154}^{\circ} - 3s ^4\mathrm{P}_{254}$

By extrapolation along the isoelectronic sequence, he lists combinations giving the relative positions of two other levels (entered in brackets in the table). From these data preliminary term values have been calculated and entered below. The uncertainty x is probably large.

The unit used by Edlén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 728 (1936). (C L)

Cl XI

Edlén	Config.	Desig.	J	Level
2p 4S2	$2s^2 2p^3$	2p³ 4S°	1½	o
$2p\ ^2\mathrm{D_3}$	$2s^2 2p^3$	2p³ 2D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	[94000]+x
2p ² P ₂	$2s^2 2p^3$	2p³ ²P°	1½ 1½	[143000]+x
2. 4D	$2s^2 2p^2(^3\mathrm{P})3s$	3s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	9475740
3s ⁴ P ₃ 	$2s^2 \ 2p^2(^1{ m D})3s$	3s′ ² D	$ \begin{cases} 2\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $	2475740 }2545760?+x
00 15	20 27 (15)00	00 B	$1 2\frac{1}{2}$]20101301 2

February 1947.

ARGON

18 electrons Z=18

Ground state 1s2 2s2 2p6 3s2 3p6 1S0

3p6 1S0 127109.9 cm-1

I. P. 15.755 volts

The present list has been compiled from an unpublished manuscript kindly furnished by Edlén, who has made a study of this spectrum and interpreted it with the aid of present atomic theory. His term array is based on those published by Humphreys (1938) and by Meggers and Humphreys (1933), although he has revised and extended their lists. Three place entries are from interferometer measurements. The values of $4f[4\frac{1}{2}]$, $4f[3\frac{1}{2}]$, and $4f'[3\frac{1}{2}]$ are from unpublished data by Humphreys based on observations by Sittner.

The terms $ns'[\frac{1}{2}]^{\circ}$ (n=11 to 16) and $nd'[\frac{1}{2}]^{\circ}$ (n=9 to 14) have been calculated by the writer from the absorption series observed by Beutler in the region between 871 and 876 A, and added to Edlén's list. Beutler lists these terms as blended.

Edlén has determined the new values of the series limits quoted here.

The Paschen notation used by Meissner, Rasmussen, Meggers, Humphreys, and others is entered in column one of the table in the same form as for Ne I. The letters U, V, W, X, Y, Z, adopted when configurations involving f electrons were found, are also entered in this column. Twenty-seven of these levels have J-values fixed by the observed combinations. These J-values are given in italics in the table.

Edlén suggested that a pair-coupling notation be adopted for Ne-like spectra to take into account the departure from LS-coupling. According to Shortley, LS-designations can be significantly assigned in only a few cases, in particular, for the following groups of levels:

Paschen	Desig.	Paschen	Desig.	Paschen	Desig.	Paschen	Desig.	Paschen	Desig.
$(n-3)s_5$	ns ⁸ P ₂ °	$2p_{10}$	4p 8S1	$2p_5$	4p *P ₀	4d6	4d ⁸ P ₀	4d''	4d ⁸ F ₂
(n-3)s ₄	ns ³Pi	$2p_9$	4p 3D3	2p4	4p ¹ P ₁	$4d_5$	4d ⁸ Pi	$4d_1'$	4d ¹ F ₃
$(n-3)s_3$	ns ³På	$2p_8$	4p 3D2	$2p_3$	4p 3P2	4d' ₄	4d 8F ₄	4s""	$4d$ $^{1}\mathrm{D}_{2}^{\circ}$
$(n-3)s_2$	ns ¹Pi	$2p_7$	4p 3D1	$2p_2$	4p 3P1	4d4	4d ⁸ F ₃	4s'''	$4d~^3\mathrm{D}_3^3$
		$2p_6$	$4p$ $^{1}\mathrm{D}_{2}$	$2p_1$	4p 1S0	$ 4d_3 $	4d ³P2°	4s''	$4d$ $^3\mathrm{D}_2^\circ$
						4d2	4d ¹Pi	481	$4d\ ^8\mathrm{D^\circ_i}$

Consequently, the jl-coupling notation in the general form suggested by Racah is here introduced. The present arrangement has been suggested by Shortley, who has made a detailed investigation of the theoretical arrangement of the "pairs", to be used as a guide in preparing the present table. The pairs nd [3½]° and nd[1½]° are partially inverted as compared with Nei.

No Grotrian diagram appears to have been published for this spectrum.

A I-Continued

REFERENCES

- K. W. Meissner, Zeit. Phys. 39, 172 (1926); 40, 839 (1927). (I P) (T) (C L)
- E. Rasmussen, Serier i de Aedle Luftarters Spektre med Saerligt Henblik paa Radiumemanation p. 22 (Danske Ervhervs Annoncebureau's Forlag, Kobenhavn, 1932) Dissertation, Copenhagen. (T) (C L)
- E. Rasmussen, Zeit. Phys. 75, 695 (1932). (T) (C L)
- W. F. Meggers and C. J. Humphreys, Bur. Std. J. Research 10, 437, RP540 (1933). (T) (C L)
- R. M. Woods and B. J. Spence, Phys. Rev. 45, 669 (1934). (C L)
- J. C. Boyce, Phys. Rev. 48, 396 (1935). (I P) (T) (C L)
- H. Beutler, Zeit. Phys. 93, 177 (1935). (I P) (T) (C L)
- H. Kopfermann und H. Krüger, Zeit. Phys. 105, 389 (1937). (IS)
- J. B. Green, Phys. Rev. 52, 736 (1937). (Z E)
- J. B. Green and B. Fried, Phys. Rev. 54, 876 (1938). (Z E)
- P. Jacquinot, Compt. Rend. 206, 1635 (1938). (Z E)
- C. J. Humphreys, J. Research Nat. Bur. Std. 20, 26, RP1061 (1938) and unpublished data. (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- B. Edlén, Ark. Mat. Astr. Fys. (Stockholm) 29A, No. 32 (1943). (C L)
- J. B. Green, Phys. Rev. 64, 151 (1943). (Z E)
- G. Shortley, unpublished material (Aug. 1947).
- B. Edlén, unpublished material (April 1948). (I P) (T) (C L)
- W. R. Sittner, unpublished material (1949).

		AI							ΑI		
Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
$1p_0$	3p6	3p ^{6 1} S	0	0. 0		$3p_{10}$	$3p^{5}(^{2}\mathrm{P}_{^{1}\mathcal{H}})5p$	5p [½]	1	116660. 054	1. 90
185	$3p^{5}(^{2}\mathrm{P}_{1\!-\!3})4s$	4s [1½]°	2	93143. 800 93750. 639	1. 506 1. 404	$\begin{array}{c}3p_9\\3p_8\end{array}$	"	5p [2½]	3 2	116942. 815 116999. 389	1. 09
$1s_4$ $1s_3$	$3p^5(^2\mathrm{P}^{\circ}_{2})4s$	4s' [½]°	0	94553. 707		$\begin{array}{c c}3p_7\\3p_6\end{array}$	"	5p [1½]	1 2	117151. 387 117183. 654	1. 01 1. 42
$1s_2$			1	95399. 870	1. 102	$3p_5$	"	5p [½]	0	117563. 020	
$2p_{10}$	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})4p$	4p [½]	1	104102. 144	1. 985	$\begin{array}{c} 3p_4 \\ 3p_3 \end{array}$	$3p^5(^2\mathrm{P}_{5}^{\circ})5p$	5p' [1½]	1 2	118407. 494 118469. 117	0. 61 1. 18
$egin{array}{c} 2 p_9 \ 2 p_8 \end{array}$	"	4p [2½]	3 2	105462. 804 105617. 315	1. 338 1. 112	$egin{array}{c} 3p_2 \ 3p_1 \end{array}$	"	5p' [½]	1 0	118459. 662 1188 70 . 981	1. 45
$egin{array}{c} 2p_7 \ 2p_6 \end{array}$	"	4p [1½]	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	106087. 305 106237. 597	0. 838 1. 305	$4d_6$	$3p^5(^2\mathrm{Pi_{3}})4d$	4d [½]°	0	118512, 17	
$2p_5$	"	4p [½]	0	107054. 319		$4d_5$	Op (11/2)12	200 [/2]	ĭ	118651. 447	1. 467
$\begin{array}{c}2p_4\\2p_3\end{array}$	$3p^{5}(^{2}\mathrm{P}_{55}^{\circ})4p$	4p' [1½]	1 2	107131. 755 107289. 747	0. 819 1. 260	$\begin{array}{c}4d_{4}'\\4d_{4}\end{array}$	"	4d [3½]°	3	119023. 699 119212. 93	1. 255 1. 077
$\begin{array}{c}2p_2\\2p_1\end{array}$	"	4p' [½]	1 0	107496. 463 108722. 668	1. 380	$\begin{array}{c} 4d_3 \\ 4d_2 \end{array}$	"	4d [1½]°	2 1	118906. 665 119847. 81	1. 437 0. 768
$3d_6$	$3p^5(^2\mathrm{P}_{13})3d$	3d [½]°	0	111667. 87 111818. 09		$\begin{array}{c} 4d_1'' \\ 4d_1' \end{array}$	"	4d [2½]°	2 3	119444. 88 119566. 11	0. 908
$egin{array}{c} 3d_5 \ 3d_4 \ 3d_4 \end{array}$	"	3d [3½]°	4 3	112750. 22		4s''' 4s'''	$3p^5(^2\mathrm{P}_{5})4d$	4d' [2½]°	2 3	120619. 076 120753. 52	0. 987 1. 133
$egin{array}{c} 3d_3 \ 3d_2 \end{array}$	"	3d [1½]°	2	113020. 39 112138. 98 114147. 75		4s'' ₁ 4s' ₁	"	4d' [1½]°	2 1	120600. 944 121011. 979	1. 057 0. 877
$3d_1'' \ 3d_1''$	"	3d [2½]°	2 3	113426. 05 113716. 61		38 ₅ 38 ₄	3p ⁵ (² P ₁ ²)6s	6s [1½]°	2 1	119683. 113 119760. 22	1. 500 1. 184
3s ₁ '''' 3s ₁ '''	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})3d$	3d' [2½]°	2 3	114641. 04 114821. 99		$3s_3 \ 3s_2$	$3p^5(^2\mathrm{P}^{\circ}_{\!$	6s' [½]°	0 1	121096. 67 121161. 356	1. 271
3s ₁ " 3s ₁	"	3d' [1½]°	2	114805. 18 115366. 90		4X 4X	$3p^5(^2\mathrm{P}_{14})4f$	4f [1½]	1 2	120188. 34 120188. 66	
$2s_5 \\ 2s_4$	3p ⁵ (² P ₁ ¹ / ₂)5s	5s [1½]°	2	113468. 55 113643. 26		4V	"	4f [4½]	5 4	120207. 32 120207. 77	
$2s_3 \\ 2s_2$	$3p^5(^2\mathrm{P}^\circ_{\!$	5s' [½]°	0	114861. 67 114975. 07		4 Y 4 Y	"	4f [2½]	$\frac{3}{2}$	120229. 81 120230. 07	

Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
4U	$3p^5(^2\mathrm{P^{\circ}_{1}}_{1})4f$	4f [3½]	3, 4	120250. 15		$\begin{array}{c}5p_2\\5p_1\end{array}$	$3p^5(^2\mathrm{P}_{\aleph})7p$	7p' [½]	1 0	124651. 05 124749. 89	
4W	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})4f$	4f' [3½]	3, 4	121653. 40							
4Z 4Z	"	4f' [2½]	3 2	121654. 32 121654. 58		$6d_6 \ 6d_5$	$3p^{5}(^{2}\mathrm{P}_{11/2}^{\circ})6d$	6d [½]°	0 1	123508. 96 123468. 034	1. 233
$4p_{10}$	$3p^5(^2\mathrm{P}_{15})6p$	6p [½]	1	121068. 804		$\begin{array}{c} 6d_4' \\ 6d_4 \end{array}$	"	6d [3½]°	4 3	123653. 238 123773. 920	1. 256 1. 052
$\begin{array}{c} 4 p_9 \\ 4 p_8 \end{array}$	"	$6p \ [2\frac{1}{2}]$	3 2	121165. 431 121191. 92		$6d_3$	"	6d [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	123808. 60	1. 206
$\begin{array}{c} 4p_7 \\ 4p_6 \end{array}$	"	6p [1½]	1 2	121257. 227 121270. 682		$\begin{array}{c} 6d_1^{\prime\prime} \\ 6d_1^{\prime} \end{array}$	"	6d [2½]°	2 3	123826. 85 123832. 50	1. 107 1. 245
$4p_{\mathfrak{d}}$	"	6p [½]	0	121470. 304		$6s_1^{\prime\prime\prime\prime} \\ 6s_1^{\prime\prime\prime}$	$3p^{5}(^{2}\mathrm{P}_{55}^{\circ})6d$	6d' [2½]°	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	125113. 48 125150. 00	0. 777 1. 098
$\begin{array}{c}4p_4\\4p_3\end{array}$	$3p^5(^2\mathrm{P}_{5}^{\circ})6p$	6p' [1½]	1 2	122609. 76 122635. 128		$\begin{array}{c c} 6s_1'' \\ 6s_1' \end{array}$	"	6d' [1½]°	$\begin{vmatrix} 2 \end{vmatrix}$	125066. 501	1. 098
$\begin{array}{c}4p_2\\4p_1\end{array}$	"	6p' [½]	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	122601. 290 122790. 612		081			1	125286. 28	
$5d_6$	$3p^5(^2\mathrm{P}_{11})5d$	5d [½]°	0	121794. 158	:	58 ₅ 58 ₄	$3p^{5}(^{2}\mathrm{Pi}_{1/2})8s$	8s [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	123903. 295 123935. 97	1. 50
$5d_5$,,	5d [3½]°	1 4	121932. 908 122036. 134	1. 400 1. 253	$5s_3$ $5s_2$	$3p^{5}(^{2}\mathrm{P}_{5})^{\circ})8s$	8s' [½]°	0 1	125334.75 125353. 3 1	1. 26
$5d_4' \ 5d_4$			3	122160. 22	1. 076	ev.	$3p^{5}(^{2}\mathrm{P}_{14}^{\circ})6f$	66 [11/]		124041. 20	
$5d_3 \ 5d_2$	"	5d [1½]°	2 1	122086. 974 122514. 29	1. 387 0. 813	6X 6X		6f [1½]	2	124041. 38	
$5d_1^{\prime\prime} \ 5d_1^{\prime\prime}$	"	5d [2½]°	2 3	122282. 134 122329. 72	0. 941 1. 199	6V 6Y	,,	6f [4½] 6f [2½]	3	124046. 64 124051. 44	
5s'''' 5s'''	$3p^5(^2\mathrm{P}_{m{ec{arphi}}})5d$	5d' [2½]°	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	123505. 536	0. 802 1. 127	6Y			2	124051. 65	
	,,	5d' [1½]°	$\begin{bmatrix} \mathbf{s} \\ 2 \end{bmatrix}$	123557. 459 123372. 987	1. 265	6U	// 0. f/0D%\0.c	6f [3½]	3, 4	124058. 36	
5s ₁ '' 5s ₁		00 [1/2]	1	123815. 53	0. 846	6W 6Z	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})6f$	6f' [3½] 6f' [2½]	3, 4	125482. 70 125483. 16	
$\begin{array}{c} 4s_5 \\ 4s_4 \end{array}$	$3p^{5}(^{2}\mathrm{P_{133}^{\circ}})7s$	7s [1½]°	2 1	122440. 109 122479. 459	1. 506 1. 164	6Z		Sy [=/2]	2	125483. 34	
$4s_3$	$3p^5(^2\mathrm{P}^{\circ}_{\!\!\!\cancel{>}\!\!\!\!/})7s$	7s' [½]°	0	123873. 07		$6p_{10}$	$3p^{5}(^{2}\mathrm{P}_{1\%}^{\circ})8p$	8p [½]	1	124311. 72	
$4s_2$			1	123882. 30	1. 296	$\begin{array}{c c}6p_9\\6p_8\end{array}$	"	8p [2½]	3 2	124349. 04 124356. 73	
5X 5X	$3p^5(^2\mathrm{P}_{13})5f$	5f [1½]	2	122686. 20 122686. 40		$\begin{array}{c c} 6p_7 \\ 6p_6 \end{array}$	"	8p [1½]	1 2	124376. 38 124381. 01	
5V	"	5f [4½]	4, 5	122695. 70		$6p_5$	"	8p [½]	0	124439. 41	
5Y 5Y	"	5f [2½]	3 2	122707. 94 122708. 18		$\begin{array}{c c}6p_4\\6p_3\end{array}$	$3p^5(^2\mathrm{P}_{\mathcal{H}}^{\circ})8p$	8p' [1½]	1 2	125783. 8 125791. 94	
5U	"	5f [3½]	3, 4	122717. 90		$6p_2$,,	8p' [½]	1	125777. 3	
5W	$3p^{5}(^{2}\mathrm{P}_{55}^{\circ})5f$	5f' [3½]	3, 4	124135. 74		$6p_1$		JF [/2]	0	125831. 45	
5Z 5Z	"	5f' [2½]	3 2	124137. 29 124137. 45		$\begin{array}{ c c }\hline 7d_6\\7d_5\end{array}$	$3p^{5}(^{2}\mathrm{P}_{134}^{\circ})7d$	7d [½]°	0 1	124526.75 124554.939	
$5p_{10}$	$3p^{5}(^{2}\mathrm{P_{114}^{\circ}})7p$	7p [½]	1	123172. 09		$7d_4'$ $7d_4$	"	7d [3½]°	4 3	124609. 917 124649. 549	
$5p_9 \ 5p_8$	"	7p [2½]	$\frac{3}{2}$	123205. 83 123220. 73		$7d_3$ $7d_2$	"	7d [1½]°	2 1	124603. 957 124788. 39	
$\begin{array}{c}5p_{7}\\5p_{6}\end{array}$	"	7p [1½]	$\frac{1}{2}$	123254. 99 123261. 593		$\begin{array}{c c} 7d_2 \\ 7d_1' \\ 7d_1' \end{array}$	"	7d [2½]°	2 3	124692. 02	
$5p_5$	"	7p [½]	0	123385. 13			$3p^5(^2\mathrm{P}_{5}^{\circ})7d$	7d' [2½]°	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	124715. 16 126064. 50	
$\begin{array}{c} 5p_{4} \\ 5p_{3} \end{array}$	$3p^5(^2 ext{P}_{5})7p$	7p' [1½]	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	124643. 54 124658. 52		7s'''' 7s'''	op (13)10	[2/2]	3	126089. 56	

		<u> </u>									<u> </u>
Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
7s'' ₁	$3p^5(^2\mathrm{Pg})7d$	7d' [1½]°	2 1	126053. 21		$\begin{array}{c} 9d_4'\\9d_4\end{array}$	$3p^5(^2\mathrm{P^{\circ}_{156}})9d$	9d [3½]°	4 3	125631. 69 125652. 04	
6s ₅ 6s ₄	$3p^{5}(^{2}\mathrm{P}_{1\!\!\:\!\!\!\:\!$	9s [1½]°	2 1	124771. 67 124782. 77		$\begin{array}{c c} 9d_3 \\ 9d_2 \end{array}$	"	9d [1½]°	2 1	125637. 93 125718. 12	
6s ₃ 6s ₂	$3p^{5}(^{2}\mathrm{P}_{\mathcal{H}}^{\circ})9s$	98' [½]°	0 1	126202. 82 126211. 57		$9d_1'' \\ 9d_1''$	"	9d [2½]°	2 3	125671. 53 125680. 52	
	$3p^{5}(^{2}\mathrm{P}_{1lac{1}{2}}^{2})7f$	7f [1½]	1	124857. 27		9s'_1	$3p^5(^2\mathrm{P}_{5/2}^{\circ})9d'$	9d' [1½]°	2 1	127130	
7X 7X 7V	"	7f [4½]	2 4, 5	124857. 42 124860. 64		8s ₅ 8s ₄	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})$ 11s	11s [1½]°	2 1	125709. 45 125715. 50	
7Y 7Y	"	7f [2½]	3 2	124865. 04 124865. 19		882	$3p^5(^2\mathrm{P}^{\circ}_{52})$ 11s	11s' [½]°	0 1	127130	
7U	"	7f [3½]	3, 4	124868. 77		9X	$3p^5(^2\mathrm{P}_{1lap{1}{2}})9f$	9f [1½]	1, 2	125748. 9	
7W	$3p^{5}(^{2}\mathrm{P}_{\cancel{5}\cancel{2}})7f$	7f' [3½]	3, 4	126294. 90		9V	"	9f [4½]	4, 5	125750, 39	
7 Z	"	7f' [2½]	3 2	126295. 02	:	9Y	"	9f [2½]	3 2	125752. 8	
$7p_{10}$	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})9p$	9p [½]	1	125039. 60		9 U	"	9f [3½]	3, 4	125754. 21	
$7p_{9} 7p_{8}$	"	9p [2½]	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	125054. 1 125059. 8		$9p_{10}$	$3p^{5}(^{2}\mathrm{P_{1}^{s}}_{2})11p$	11p [½]	1	125844. 3	
$\begin{array}{c} 7p_7 \\ 7p_6 \end{array}$	"	9p [1½]	$\begin{array}{ c c }\hline 1\\2 \end{array}$	1250 72 . 6 1250 74 . 9		$\begin{array}{ c c c c }\hline 9p_7\\ 9p_6\\ \end{array}$	"	11p [1½]	1 2	125853. 3 125853. 8	
$7p_5$	"	9p [½]	0	125122. 54		$9p_5$	"	11p [½]	0	125888. 9	
$7p_1$	$3p^{5}(^{2}\mathrm{P}_{\cancel{5}\cancel{2}}^{\circ})9p$	9p' [½]	1 0	126524. 2		$10d_{6} \ 10d_{5}$	$3p^{5}(^{2}\mathrm{P}_{1lag{1}2}^{\circ})10d$	10d [½]°	0 1	125895.72 125898.64	
$8d_6 \ 8d_5$	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})8d$	8d [½]°	0	125163. 00 125135. 898		$\begin{vmatrix} 10d_4' \\ 10d_4 \end{vmatrix}$,,	10d [3½]°	4 3	125922. 53 125932. 59	
$8d_{4}^{\prime}$ $8d_{4}$	"	8d [3½]°	4 3	125219. 88 125269. 52		$10d_3$	"	10d [1½]°	2 1	125906. 61	
$8d_3$	"	8d [1½]°	2 1	125282. 97		$10d_1'' \ 10d_1''$	"	10d [2½]°	2 3	125945. 72 125957. 40	
$\begin{array}{c} 8d_1'' \\ 8d_1' \end{array}$	"	8d [2½]°	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	125291. 45 125293. 65		10s ₁ '	3p ⁵ (² P½)10d	10d' [1½]°	2 1	127410	
785 784	$3p^{5}(^{2}\mathrm{P}_{11/2}^{2})10s$	10s [1½]°	2	125329. 99 125331. 93		9s ₅ 9s ₄	$3p^{5}(^{2}\mathrm{Pi}_{1lag{5}})12s$	12s [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	125979. 41 125984. 35	
8X 8V	3p ⁵ (² P _{11/2})8f	8f [1½] 8f [4½]	1, 2 4, 5	125386. 41 125388. 65		$9s_2$	$3p^{5}(^{2}\mathrm{P}_{5/2}^{\circ})12s$	12s' [½]°	0 1	127410	
8Y 8Y	"	8f [2½]	$\begin{bmatrix} 3\\2 \end{bmatrix}$	125391. 04 125391. 17	1 1	$10p_{10}$	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})12p$	12p [½]	1 0	126072. 6 126101. 7	
8U	"	8f [3½]	3, 4	125393. 79		$10p_5$				120101. 7	
$8p_{10}$	$3p^{5}(^{2}\mathrm{P}_{1\!\!\:\!$	10p [½]	1	125505. 5		$\begin{array}{c c} 11d_6 \\ 11d_5 \end{array}$	$3p^{5}(^{2}\mathrm{Pi}_{1})11d$	11d [½]°	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	126114. 66 126099. 49	
$8p_9$	"	10p [2½]	3 2	125519. 9		$\begin{array}{c} 11d_4'\\11d_4\end{array}$	"	11d [3½]°	3	126135. 42 126154. 55	
$\begin{array}{c} 8p_7 \\ 8p_6 \end{array}$	"	10p [1½]	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	125531. 5 125533. 8		$11d_3$	"	11d [1½]°	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	126159. 9	
$8p_{5}$	"	10p [½]	0	125561. 9		$\begin{vmatrix} 11d_1'' \\ 11d_1' \end{vmatrix}$	"	11d [2½]°	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	126162. 5 126163. 24	
$9d_{5}$ $9d_{5}$	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})9d$	9d [½]°	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	125595. 11 125613. 12							

Au- thors	Config.	Desig.	J	Level	Obs. g	Au- thors	Config.	Desig.	J	Level	Obs. g
11s'_1	$3p^5(^2\mathrm{P}^{\circ}_{5})11d$	11d' [1½]°	2 1	127610		$13d_3$	$3p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{2})13d$	13d [1½]°	2	126420. 8	
10s ₅ 10s ₄	3p⁵(²P°1½)13s	13s [1½]°	2 1	126178. 27 126181. 30		$13d_1'' \\ 13d_1'$	"	13d [2½]°	2 3	126432. 1 126435. 5	
$10s_2$	$3p^{5}(^{2}\mathrm{P}_{\cancel{5}}^{\circ})13s$	13s' [½]°	0	127610		$13s_1'$	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})13d$	13d' [1½]°	2 1	127880	
$11p_5$	$3p^{5}(^{2}\mathrm{P}_{1\frac{1}{2}}^{\circ})13p$	13p [½]	1 0	126270. 0		$\begin{array}{c c} 14d_6 \\ 14d_5 \end{array}$	$3p^5(^2\mathrm{P}_{1 extstyle 2}^{\circ})14d$	14d [½]°	0	126508. 1 126510. 06	
$12d_{\mathfrak{b}} \ 12d_{\mathfrak{b}}$	$3p^{5}(^{2}\mathrm{P}_{1rac{1}{2}})12d$	12d [½]°	0 1	126281. 3 126292. 71		$\begin{array}{c c} 14d_4' \\ 14d_4 \end{array}$	"	14d [3½]°	4 3	126517. 41 126521. 71	
$12d_{4}'$ $12d_{4}$	"	12d [3½]°	4 3	126295. 79 126305. 28		$14d_3$	"	14d [1½]°	2 1	126514. 8	
$12d_3$	$3p^5(^2\mathrm{Pi}_{5})13d$	12d [1½]°	$\frac{2}{1}$	126302.6		$14d_1'$	"	14d [2½]°	2 3	12653 0 . 1	
$12d_1'' \\ 12d_1'$	"	12d [2½]°	2 3	126313. 1 126316. 1		$14s_1'$	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})14d$	14d' [1½]°	2 1	127970	
12s'1	$3p^{5}(^{2}\mathrm{P}_{f lpha}^{\circ})12d$	12d' [1½]°	$\frac{2}{1}$	127760			A 11 (2P°1/2)	Limit		127109.9	
$\begin{array}{c} 11s_5 \\ 11s_4 \end{array}$	$3p^{5}(^{2}\mathrm{P}_{14}^{\circ})14s$	14s [1½]°	2	126328. 80 126332. 0		10-	$3p^{5}(^{2}\mathrm{P}_{\frac{1}{2}}^{\circ})15s$	15s' [½]°	0 1	10000	
$11s_2$	$3p^5(^2\mathrm{P}_{oldsymbol{arphi}}^{\circ})14s$	148' [½]°	0 1	127760		$12s_2$	95/2D°\10	16-/ [1/30		127880	
$13d_5$	3p⁵(²P°1⅓)13d	13d [½]°	0 1	126412.99		$13s_2$	$3p^5(^2\mathrm{P}_{12}^{\circ})16s$	16s' [½]°	0 1	127970	
$\begin{array}{c} 13d_{4}' \\ 13d_{4} \end{array}$	"	13d [3½]°	4 3	126419. 65 126426. 0 7			A II (2P½)	Limit		128541. 3	

April 1948.

A 1 OBSERVED LEVELS*

Config. $1s^2 2s^2 2p^6 3s^2 +$		Observed	1 Terms	
$3p^6$	$3p^6$ 1S			
	$ns\ (n \ge 4)$	$np \ (n \ge 4)$	nd (n≥ 3)	
3p ⁵ (² P°)nx	{ 4-16s ³ P° 4-9, 11-16s ¹ P°			1d 3F° 1d 1F°
		jl-Coupling	Notation	
		Observed	l Pairs	
	$ns (n \ge 4)$	$np \ (n \ge 4)$	$nd \ (n \ge 3)$	$nf (n \ge 4)$
$3p^5(^2\mathrm{Pi}_{1/2})nx$	4–14s [1½]°	4-13p [½] 4-10p [2½] 4-11p [1½]	$3-14d \ [\ \frac{1}{2}]^{\circ} \ 3-14d \ [3\frac{1}{2}]^{\circ} \ 3-14d \ [1\frac{1}{2}]^{\circ} \ 3-14d \ [2\frac{1}{2}]^{\circ} \ $	$\begin{array}{c} 4-9f \ [1\frac{1}{2}] \\ 5-9f \ [4\frac{1}{2}] \\ 4-9f \ [2\frac{1}{2}] \\ 5-9f \ [3\frac{1}{2}] \end{array}$
$3p^5(^2\mathrm{P}^{\circ}_{5})nx'$	4-9, 11-16s'[½]°	$\begin{array}{c} 4-8p'[1\frac{1}{2}]\\ 4-9p'[\frac{1}{2}] \end{array}$	3-7d'[2½]° 3-7, 9-14d'[1½]°	4-7f'[3½] 4-7f'[2½]

^{*}For predicted levels in the spectra of the A $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Cl i sequence; 17 electrons)

Z = 18

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^{2}P_{11/2}^{\circ}$

 $3p^5 {}^{2}P_{1\frac{1}{2}}^{\circ} 222820 \pm 300 \text{ cm}^{-1}$

I. P. 27.62 volts

A monograph containing the complete and detailed analysis of this spectrum is needed. Most of the analysis is by de Bruin, but his work has been revised and extended by a number of investigators who are not in complete agreement on all details of interpretation.

The term list published by Boyce forms the basis of the present compilation, but the later additions and revisions by Minnhagen, Edlén, and de Bruin have been incorporated into the present list. The writer has prepared a complete multiplet array for this spectrum and in dubious cases she has attempted to adopt the term assignments that appear to be best confirmed from the multiplet evidence.

One term labeled "2P" in the table, ("a 2P" in the published papers), has as yet no configuration assignment. Three miscellaneous levels assigned by de Bruin (1937) to the 4f configuration have been omitted pending further confirmation.

The doublet and quartet terms are well connected by observed intersystem combinations. Edlén has derived the series limit quoted here from the $(^{3}P)ns$ ^{4}P ^{2}P series (n=4, 5, 6).

REFERENCES

- T. L. de Bruin, Zeit. Phys. **51**, 108 (1928); Proc. Roy. Acad. Amsterdam **31**, No. **7**, 771 (1928). (I P) (C L)
- T. L. de Bruin, Zeit. Phys. 61, 307 (1930); Proc. Roy. Acad. Amsterdam 33, No. 2, 198 (1930). (I P) (T) (C L)
- A. H. Rosenthal, Ann. der Phys. [5] 4, 49 (1930). (T) (C L)
- J. C. Boyce, Phys. Rev. 48, 397 (1935). (I P) (T) (C L)
- T. L. de Bruin, Proc. Roy. Acad. Amsterdam 40, No. 4, 340 (1937). (T) (C L)
- B. Edlén, Zeit. Phys. 104, 413 (1937). (I P) (T) (C L)
- R. Bezler, Zeit. Phys. 116, 480 (1940). (Z E)
- L. Minnhagen, Ark. Mat. Astr. Fys. (Stockholm) 34A, No. 22 p. 4 (1947). (T) (CL)
- L. Minnhagen, Ark. Mat. Astr. Fys. (Stockholm) 35A, No. 16 p. 3 (1948). (E D)

AII

	1					<u> </u>	1	1	<u> </u>	1	
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3s^2 \ 3p^5$	3p ⁵ ² P°	1½ ½	0. 0 1432. 0	-1432. 0		$3s^2 3p^4 (^1{ m D}) 4s$	4s' ² D	1½ 2½	148620. 98 148843. 29	222. 31	0. 803 1. 202
$3s \ 3p^6$	$3p^{6-2}\mathrm{S}$	1/2	108722. 5			$3s^2 3p^4(^3P)3d$	$3d$ ${}^{2}\mathrm{F}$	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	149180. 18 150148. 54	-968.36	
$3s^2 3p^4(^3P)3d$	3 <i>d</i> 4D	$\begin{array}{c c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	132328. 22 132482. 12 132631. 64 132738. 60	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$3s^2 3p^4(^3{ m P}) 3d$	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	150475. 82 151088. 18	612. 36	
$3s^2 3p^4(^3P)4s$	4s 4P	$\begin{array}{ c c c }\hline & & & & & \\ & & 2\frac{1}{2} & \\ & & & 1\frac{1}{2} & \\ & & & & \frac{1}{2} & \\ & & & & \frac{1}{2} & \\ & & & & & \\ \hline \end{array}$	134242. 62 135086. 88 135602. 62	-844. 26 -515. 74	1. 598 1. 722 2. 650	3s ² 3p ⁴ (³ P)4p	4p 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	155044. 07 155352. 04 155709. 02	-307. 97 -356. 98	1. 599 1. 720 2. 638
3s² 3p⁴(³P)4s	4s ² P	$1\frac{1}{2}$ $\frac{1}{2}$		-1014.71	1. 334 0. 676	$3s^2 3p^4(^3\mathrm{P}) 4p$	4p 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	157234. 93 157674. 30 158168. 71 158429. 05	-439. 37 -494. 41 -260. 34	1. 427 1. 334 1. 199 0. 000
$3s^2 3p^4(^3P)3d$	3d 4F	$\begin{array}{c c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	142187. 42 142718. 01 143108. 63 143372. 48	-530. 59 -390. 62 -263. 85		$3s^2 3p^4 (^3\mathrm{P}) 4p$	$4p$ $^2\mathrm{D}^\circ$	2½ 1½ 1½	158731. 20 159394. 32	-663. 12	1. 241 0. 918
$3s^2 3p^4(^3\mathrm{P}) 3d$	3 <i>d</i> ² P	1/2	144710. 90	958. 94		$3s^2 3p^4(^3P)4p$	4p 2P°	$1\frac{1}{2}$	159707. 46 160240. 35	532. 89	0. 983 1. 244
0 0 0 4/0 D) 0 3	0.1 40	1½				$3s^2 3p^4(^3P)4p$	4p 4S°	1½	161049.65		1. 987
$3s^2 3p^4(^3P)3d$	3 <i>d</i> 4P	$\begin{array}{ c c } & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	147229. 17 147504. 12 147876. 98	274. 95 372. 86		$3s^2 3p^4(^3P)4p$	4p 2S°	1/2	161090. 31		1. 695

A II—Continued

			ontinueu -						ittinued		
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3s ² 3p ⁴ (¹ S)4s	4s'' 2S	1/2	167308. 66		1. 993	3s ² 3p ⁴ (³ P)4d	4d ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	192557. 77 192712. 93	— 155. 16	1. 198 0. 833
$3s^2 \ 3p^4(^1D)4p$	4p′ ² F°	2½ 3½	170401. 88 170531. 29	129. 41	0. 857 1. 140	3s ² 3p ⁴ (³ P)4f	4f 4F°	4½ 3½	194800. 97 194822. 95	-2 1. 98	
$3s^2 3p^4(^1D)4p$	4p' 2P°	1½ ½	172214.74 172817.14	-602.40	1. 332 0. 677			$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	194862.31 194997.65	-39. 36 -135. 34	
$3s^2 \ 3p^4(^1{ m D})3d$	3d′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	172336. 47 172830. 63	-494. 16		3s ² 3p ⁴ (³ P)4f	4f 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	194883.96	-148. 17 -266. 49	
$3s^2 \ 3p^4(^1{ m D}) \ 4p$	4p′ ² D°	1½ 2½	173348. 78 173394. 33	45. 55	0. 804 1. 202	0.20.4470.5	~ (07)	1/2	195298. 62 195282. 50	16. 12	
$3s^2 3p^4(^1{ m D}) 3d$	3d′ ²P	1½ ½	174410. 74 174821. 94?	-411. 20		3s ² 3p ⁴ (¹ D)5s	5s′ ² D	2½ 1½	195865. 61 195867. 73	-2. 12	
	² P	1½	179593. 09	990 74		$3s^2 3p^4(^3P)4f$	4f 1°	1½	196077.40		
		1/2	179932. 83	-339.74		$3s^2 3p^4(^3P)4f$	4f 2°	1/2	196091.04		
3s ² 3p ⁴ (³ P)5s	5s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	181595. 04 182223. 06 182952. 14	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1. 603 1. 609 2. 550	$3s^2 3p^4(^3P)4f$	4f ² D°	1½ 2½	196622. 78 196633. 93	11. 15	
3s ² 3p ⁴ (3P)5s	5s ² P	1½ ½	183091. 83 183915. 58	-823.75	1. 445 0. 816	3s ² 3p ⁴ (¹ D)4d	4d′ ² G	$3\frac{1}{2}$ $4\frac{1}{2}$	198595. 91 198604. 78	8. 87	
$3s^2 3p^4(^3{ m P})4d$	4d 4D		183676. 42 183798. 22	-121. 80	1. 427	3s ² 3p ⁴ (³ P)6s	6s ⁴ P	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	198813. 17 199138. 92	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
		3½ 2½ 1½ ½	183798. 22 183986. 83 184193. 12	-188.61 -206.29	1. 370 1. 198 0. 380	$3s^2 \ 3p^4(^1{ m D})4d$	4d′ ²P	1/2 1/2 1/2	200111. 16 199447. 56 199982. 96	535. 40	0. 670
$3s^2 3p^4(^1{ m D}) 3d$	3d′ 2S	1/2	184094. 10			9.29.4(17) 4.7	477 20				
$3s^2 3p^4(^3P)4d$	4d 4F	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	185093. 92 185625. 47	-531. 55 -449. 59	1. 330 1. 217	3s ² 3p ⁴ (¹ D)4d	4d′ ² D	1½ 2½	199525. 96 199680. 58	154. 62	1. 196
		2½ 1½	186075. 06 186341. 39	-266. 33	1. 045 0. 612	3s ² 3p ⁴ (³ P)6s	6s ² P	1½ ½	200032. 65 200624. 00	-591. 35	
$3s^2 3p^4(^3P)4d$	4d 4P	$1\frac{1}{2}$ $2\frac{1}{2}$	186172. 32 186471. 32 186891. 92	299. 00 420. 60	2. 600 1. 494 1. 588	$3s^2 3p^4(^1D)4d$	4d′ ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	200139. 84 200235. 70	-95. 86	0. 862
3s ² 3p ⁴ (¹ S)3d	3d'' 2D	2½ 1½	186728. 28 186750. 78	-22. 50	1.000	$3s^2 3p^4(^3P)5d$	5d ² P	1½ ½	204418. 50 204515. 81	−97.31	
3s ² 3p ⁴ (³P)4d	$4d$ $^2{ m F}$	$3\frac{1}{2}$ $2\frac{1}{2}$	186817. 12 187589. 62	-772 . 50	1. 167 0. 861	3s ² 3p ⁴ (³ P)5d	5 <i>d</i> ² D	2½ 1½	204586. 40		
						$3s^2 \ 3p^4(^1{ m D})4d$	4d′ 2S	1/2	205243. 96		2. 004
3s ² 3p ⁴ (³ P)4d	4 <i>d</i> ² P	1½	189935. 62 190593. 62	658. 00	0. 667 1. 322	$3s^2 3p^4(^1{ m D})4f$	4f′ ²P°	1½ ½ ½	208592.90		ļ
$3s^2 3p^4(^3P)5p$	5p ² P°	1½ ½	190106. 84 190196. 80	-89. 96		$3s^2 3p^4(^1{ m D})6s$	6s′ ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	212932. 88 212934. 30	1. 42	
3s ² 3p ⁴ (³ P)5p	5p 2D°	2½ 1½	190508. 00								
$3s^2 \ 3p^4(^3P) \ 5p$	5p 2S°	1/2	191708. 46			A III (3P2)	Limit		22282 0		
$3s^2 \ 3p^4 (^1{ m S}) 4p$	4p'' 2P°	1½ ½	191975. 16 192334. 09	—358. 93	1. 332 0. 760						

April 1948.

A II OBSERVED TERMS*

$\begin{array}{c} \text{Config.} \\ 1 \text{s}^2 \ 2 \text{s}^2 \ 2 p^6 \end{array}$	8				Observed	ed Terms						
$3s^2 \ 3p^5$ $3s \ 3p^6$	3p ⁶ ² S	3p ⁵ ² P°										
			$ns (n \ge 4)$				np	(n≥4)				
$3s^2 \ 3p^4(^3\mathrm{P})nx$ $3s^2 \ 3p^4(^1\mathrm{D})nx'$	{	4-6s ⁴ P 4-6s ² P	4–6s′ ² D			4p 4S° 4, 5p 2S°	4p 4P° 4, 5p 2P° 4p' 2P°	4p 4D° 4, 5p 2D° 4p' 2D°	4p′ 2F°			
3s² 3p⁴(¹S)nx''	4s" ² S		$nd \ (n \ge 3)$				4p'' ² P°	(n≥4)				
$3s^2 \ 3p^4(^3P) nx$	{	3, 4d ⁴ P 3-5d ² P	$^{3, 4d}_{3-5d}$ $^{4}_{2}D$	3, 4d ⁴ F 3, 4d ² F				$_{4f}^{4f}$ $_{^{2}\mathrm{D}^{\circ}}^{4}$	4f ⁴F°			
$3s^2 \ 3p^4 (^1{ m D}) nx' \ 3s^2 \ 3p^4 (^1{ m S}) nx''$	3, 4d′ 2S	3, 4d′ ² P	3, 4d′ ² D 3d″ ² D	4d′ ²F	4d′ 2G		4f′ ² P°					

^{*}For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

A III

(S I sequence; 16 electrons)

Z = 18

Ground state 1s² 2s² 2p⁶ 3s² 3p⁴ 3P₂

 $3p^4$ 3P_2 329965.80 cm⁻¹

I. P. 40.90 volts

The terms are from de Bruin's 1937 paper except for singlets which are from Boyce and Edlén. The 3p⁴ 'S term, according to Edlén, is derived from the nebular line at 5191.4 A, identified as the forbidden transition $3p^4$ ¹D- $3p^4$ ¹S.

Intersystem combinations connecting the three systems of terms have been observed.

Unfortunately, no complete or homogeneous list of classified lines exists. Such a list is needed to improve the present term values and to explain the numerical discrepancies in the various published papers. De Bruin's terms here designated 3d' 3P°, 4d'' 3P° D° F°, and 5s'' ³P° are apparently based on unpublished observational material.

REFERENCES

V. v. Keussler, Zeit. Phys. 84, 42 (1933). (I P) (T) (C L)

T. L. de Bruin, Proc. Roy. Acad. Amsterdam 36, No. 7, 724 (1933). (T) (C L)

- T. L. de Bruin, Zeeman Verhandelingen p. 414 (Martinus Nÿhoff, The Hague, 1935). (T) (C L)
- J. C. Boyce, Phys. Rev. 48, 397 (1935). (I P) (T) (C L)
 J. C. Boyce, Phys. Rev. 49, 351 (1936). (T) (C L)
- T. L. de Bruin, Proc. Roy. Acad. Amsterdam 40, No. 4, 343 (1937). (I P) (T) (C L)
- B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	$3p^4$ $^3\mathrm{P}$	2 1 0	0. 00 1112. 40 1570. 20	-1112. 40 -457. 80	3s ² 3p ³ (² D°)4p	4p′ ³P	2 1 0	231341. 80 231627. 30 231754. 80	-285.50 -127.50
$3s^2 \ 3p^4$	3p4 ¹D	2	14010		$3s^2 \ 3p^3 (^2{ m P}^{\circ}) 4p$	4p'' 3S	1	239193. 48	,
$3s^2 \ 3p^4$ $3s \ 3p^5$	$3p^{4}$ ¹ S $3p^{5}$ ³ P $^{\circ}$	0 2	33267 113800. 70		$3s^2 \ 3p^3 (^2{ m P}^{\circ}) 4p$	4p'' ³D	1 2 3	240150. 66 240257. 59 240291. 66	106. 93 34. 07
os op		1 0	114797. 60 115328. 40	-996. 90 -530. 80	$3s^2 \ 3p^3 (^2\mathrm{P}^\circ) 4p$	4p'' ³P	0 1	242923. 96 243145. 76	221. 80 279. 21
$3s 3p^5$	3p ⁵ ¹P°	1	144023				2	243424. 97	219. 21
$3s^2 \ 3p^3(^4{ m S}^\circ)3d$	3d ⁵ D°	0 1 2 3 4	144882. 93 144885. 97 144892. 95 144907. 00	3. 04 6. 98 14. 05	$3s^2 \ 3p^3 (^4{ m S}^{\circ})4d$	4d ⁵D°	0 1 2 3 4	246029. 76 246033. 79 246036. 64 246046. 57	4. 03 2. 85 9. 93
$3s^2 \ 3p^3(^4{ m S}^{\circ}) 3d$	3d ³D°	$\frac{3}{2}$	156917. 62	-7. 06	3s ² 3p ³ (4S°)5s	5s ⁵ S°	2	250712. 27	
$3s^2 \ 3p^3 ({}^4{ m S}^{\circ}) 4s$	4s 5S°	1 2	156924. 68 157031. 40 174375. 00	— 106. 72	3s² 3p³(⁴S°)4d	4d ³D°	$\frac{1}{2}$	252272, 92 252253, 69 252289, 02	-19. 23 35. 33
			,		$3s^2 3p^3(^4S^\circ)5s$	5s ³S°	1	252575. 88	
$3s^2 \ 3p^3 ({}^4{ m S}^{\circ}) 4s$	4s 3S°	1	180679. 00		$3s^2 3p^3(^2D^\circ)4d$	4d′ ³F°	2	266722. 80	154 50
$3s^2 \ 3p^3(^2{\rm D}^{\circ})3d$	3d′ ³F°	$\begin{matrix} 4\\3\\2\end{matrix}$	186402. 15 186657. 20 186903. 05	$ \begin{array}{r} -255.05 \\ -245.85 \end{array} $		100 1	3 4	266877. 50 267071. 22	154. 70 193. 72
$3s^2\ 3p^3(^2\mathrm{D}^\circ)3d$	3d′ ³D°	1 2	187171. 12 187823. 05	651. 93 891. 00	3s ² 3p ³ (² D°)4d	4d′ ³G°	3 4 5	267782. 10 267833. 20 267895. 82	51. 10 62. 62
$3s^2 \ 3p^3(^2{\rm D}^{\circ})3d$	3d′ ³P°	$egin{array}{c} 3 \\ 0 \\ 1 \\ 2 \end{array}$	188714. 05 188517. 32		$3s^2 3p^3(^2D^\circ)4d$	4d′ ³D°	$\begin{array}{c}1\\2\\3\end{array}$	268978. 80 269012. 80 269000. 80	34. 00 -12. 00
$3s^2\ 3p^3(^2{ m D}^{\circ})4s$	4s′ ³D°	1 2 3	196589. 20 196613. 91 196679. 80	24. 71 65. 89	$3s^2 3p^3(^2\mathrm{D}^\circ)4d$	4d′ ³P°	$\begin{smallmatrix}2\\1\\0\end{smallmatrix}$	271507. 88 271672. 08 271696. 22	$ \begin{array}{c c} -164.20 \\ -24.14 \end{array} $
$3s^2 \ 3p^3({}^4{ m S}^\circ)4p$	4p 5P	1	204563. 53		$3s^2 3p^3(^2D^\circ)4d$	4d′ 3S°	1	272068. 45	
		$\frac{1}{2}$	204503. 33 204649. 24 204797. 37	85. 71 148. 13	$3s^2 \ 3p^3(^2{ m D}^{\circ})5s$	5s′ ³D°	$\begin{array}{c}1\\2\\3\end{array}$	272127. 82 272188. 16 272250. 90	60. 34 62. 74
$3s^2 \ 3p^3(^2{\rm D}^{\circ})3d$	3d′ 3S°	1	204727. 47		$3s^2 3p^3(^2P^\circ)4d$	$\left \begin{array}{cc} 4d^{\prime\prime}\ ^3\mathrm{F}^{\circ} \end{array} \right $		281461.97	11 05
$3s^2 \ 3p^3 (^2{ m P}^{\circ}) 4s$	4s'' ³P°	$\begin{array}{c} 2\\1\\0\end{array}$	207233. 09 207532. 15 207673. 16	$ \begin{array}{c c} -299.06 \\ -141.01 \end{array} $			2 3 4	281473. 82	11. 85
$3s^2 \ 3p^3(^4\mathrm{S}^\circ)4p$	4p ³P	$\begin{smallmatrix}2\\1\\0\end{smallmatrix}$	209151. 82 209127. 04 209166. 35	24. 78 -39. 31		4d'' ³P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	281947. 88 282000. 26 282099. 14	52. 38 98. 88
$3s^2 \ 3p^3 (^2{ m P}^{\circ}) \ 3d$	3d'' ³D°	$egin{array}{c} 3 \ 2 \ 1 \end{array}$	210212. 26 211004. 85 211563. 83	-792. 59 -558. 98	$3s^2\ 3p^3(^2\mathrm{P}^\circ)4d$	4d'' ³D°	3 2 1	283919. 78 284096. 26 284118. 51	-176.48 -22.25
$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' ³P°	2 1 0	213950. 87 214346. 70 214568. 49	-395. 83 -221. 79	3s ² 3p ³ (² P°)5s	5s'' ³P°	$\begin{smallmatrix}0\\1\\2\end{smallmatrix}$	285831. 20 285882. 00 286009. 21	50. 80 127. 21
$3s^2 \ 3p^3(^2{\rm D}^{\circ})4p$	4p′ ³D	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	225155. 18 225147. 93 225402. 59	-7. 25 254. 66	A IV (4S ₁₃₄)	Limit		329965. 80	
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)4p$	$4p^{\prime}$ $^3\mathrm{F}$	$\begin{matrix}2\\3\\4\end{matrix}$	226355. 96 226503. 22 226646. 06	147. 26 142. 84					

February 1948.

A III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +				Observed '	Terms				
3s ² 3p ⁴	{ 3p4 1S	3p4 8P 3p5 3P°	$3p^4$ ¹ D						
3s 3p ⁵	[1	3p ^{5 3} P° 3p ^{5 1} P°	ns (n≥4)				<i>np</i> (<i>n</i> ≥		
	(4 50 500								
$3s^2 3p^3(^4S^\circ)nx$	{4, 5s 5S° 4, 5s 3S°						4p ⁵ P 4p ³ P		
$3s^2 3p^3(^2D^\circ)nx'$ $3s^2 3p^3(^2P^\circ)nx''$		4, 5s" ³ P°	4, 5s′ ³D°			4p" 3S	4p" ³ P 4p" ³ P	4p" 3D 4p" 3D	4p′ ³F
			$nd \ (n \ge 3)$						
3s ² 3p ³ (4S°)nx	{		3, 4d ⁵ D° 3, 4d ² D°						
3s ² 3p ³ (2D°)nx' 3s ² 3p ³ (2P°)nx''	3, 4d′ 3S°	3, 4d′ ³P° 3, 4d″ ³P°	3, 4d′ ³D° 3, 4d″ ³D°	3, 4d′ ³F° 4d″ ³F°	4d′ ³G°				

^{*}For predicted terms in the spectra of the S I isoelectronic sequence, see Introduction.

A IV

(P I sequence; 15 electrons)

Z = 18

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 4S_{114}^{\circ}$

I. P. 59.79 volts

The analysis is incomplete. Boyce has classified 26 lines in the range between 396 A and 1197 A and listed 8 terms.

De Bruin has extended the analysis and published the term list which is quoted here. Intersystem combinations connecting the doublet and quartet terms have been observed.

The ionization potential estimated by Edlén from isoelectronic sequence data has been used to calculate the limit (entered in brackets in the table).

REFERENCES

- J. C. Boyce, Phys. Rev. 48, 401 (1935). (I P) (T) (C L)
- B. Edlén, Zeeman Verhandelingen p. 91 (Martinus Nÿhoff, The Hague, 1935). (I P)
- T. L. de Bruin, Physica 3, No. 8, 809 (1936). (T) (C L)
- A. B. Rao, Ind. J. Phys. 12, 399 (1938). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	3p³ 4S°	1½	0. 00		$3s^2 \ 3p^2(^3P)4p$	4p 4D°	1/2	285960. 17	268. 63
3s ² 3p ³	 3p³ ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	21 0 90 21219	129			$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{array}$	286228. 80 286751. 68 287555. 83	522. 88 804. 15
$3s^2 \ 3p^3$	3p³ 2P°	1½ 1½	34854 35035	181	$3s^2 \ 3p^2(^3\mathrm{P})4p$	4p 4P°	$ \begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \end{array} $	289125. 88 289237. 82 289834. 68	111. 94 596. 86
3s 3p4	3p4 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	117564 118515 119044	-951 -529	$3s^2 \ 3p^2(^3\mathrm{P})4p$	4 <i>p</i> ² D°	$1\frac{1}{2}$ $2\frac{1}{2}$	290256. 45 291667. 73	1411. 28
3s 3p 4	$3p^4$ ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	145921 146000	79	$3s^2 3p^2(^3P)4p$	4p 4S°	1½	291748.70	
3s 3p4	3p4 2P	1½ ½	166356 167444	-1088	$3s^2 \ 3p^2(^3P)4p$	4p 2P°	1½ 1½	295674. 54 295806. 77	132. 23
2m4	3p4 2S	72 1/2	177833		$3s^2 3p^2(^3P)4p$	4 <i>p</i> ² S°	1/2	299563. 20	
$3p^4$ $3s^2 \ 3p^2(^3\mathrm{P})4s$	4s 4P		250219. 45	687. 15	$3s^2 3p^2(^1D)4p$	4p′ 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	304074. 29 304399. 90	325. 61
		$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	250906. 60 251972. 00	1065. 40	$3s^2 3p^2(^1D)4p$	4p′ 2D°	2½ 1½	306236. 28 306308. 25	—71. 97
$3s^2 \ 3p^2(^3P)4s$	4s ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	256093. 29 257348. 89	1255. 60					
$3s^2 \ 3p^2(^1{ m D}) 4s$	4s′ ² D	2½ 1½	268151. 38 268171. 38	20. 00	A v (3P ₀)	Limit		[482400]	

November 1947.

A IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +			Ol	oserved T	erms		
3s ² 3p ³ 3s 3p ⁴	$\begin{cases} 3p^{3} {}^{4}S^{\circ} \\ \\ 3p^{4} {}^{2}S \end{cases}$	$3p^3 \ ^2\mathrm{P}^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$3p^3\ ^2{ m D}^{\circ}$ $3p^4\ ^2{ m D}$				
		$ns (n \ge 4)$			np	$(n \ge 4)$	
3s ² 3p ² (³ P)nx 3s ² 3p ² (¹ D)nx'	{	4s 4P 4s 2P	48′ ² D	4p 4S° 4p 2S°	4p 4P° 4p 2P°	4p 4D° 4p 2D° 4p′ 2D°	4p′ 2F°

^{*}For predicted terms in the spectra of the P $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Si 1 sequence; 14 electrons)

Z = 18

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

 $3p^2$ 3P_0 605100 cm⁻¹

I. P. 75.0 volts

The terms have been taken from the paper by Phillips and Parker. This includes the earlier work by Boyce. Thirty-six lines have been classified in the region between 336 A and 836 A. Intersystem combinations connecting the singlet and triplet terms have been observed. No quintet terms have been found.

Using the method suggested by Edlén for extrapolation along the isoelectronic sequence, the writer has estimated the value of the limit quoted above and entered in brackets in the table.

REFERENCES

J. C. Boyce, Phys. Rev. 48, 401 (1935). (I P) (T) (C L)

B. Edlén, Zeeman Verhandelingen p. 91 (Martinus Nyhoff, The Hague, 1935). (I P)

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 301 (1941). (T) (C L)

A V A V

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ²	$3p^2$ $^3\mathrm{P}$	0 1 2	0 765 2032	765 1267	3s ² 3p(² P°)3d	3d ³ P°	2 1 0	217578 218286 218642	-708 -356
$3s^2 \ 3p^2$ $3s \ 3p^3$	$3p^2\ ^1{ m D} \ 3p^3\ ^3{ m D}^{\circ}$	2 1 2	16301 121632 121678	46 132	$3s^2\ 3p(^2\mathrm{P^\circ})3d$	3d ³ D°	1 2 3	224216 224505 224717	289 212
$3s 3p^3$	3p³ ³P°	2 3 2 1, 0	121810 141764 141773	—9	3s ² 3p(² P°)4s	4s ³ P°	$egin{bmatrix} 0 \ 1 \ 2 \ \end{bmatrix}$	295742 296249 297893	507 1644
3s 3p³	3p³ 3S°	1	191537		3s ² 3p(2P°)4s	4s ¹ P°	1	301300	
3s 3p³	3p³ ¹P°	1	195356		A vi (2P½)	Limit		[605100]	

October 1947.

(Al 1 sequence; 13 electrons)

Z = 18

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\frac{1}{2}}^{\circ}$

 $3p\ ^2\mathrm{P}_{1/2}^{\circ}\ 736600\ \mathrm{cm}^{-1}$

I. P. 91.3 volts

The analysis is by Phillips and Parker, who have classified 37 lines in the region between 180 A and 596 A. No intersystem combinations have been observed. They estimate that $3p^2$ $^4P_{\frac{1}{2}}$ is 100,000 cm⁻¹ above the ground state, with an uncertainty x equal to ± 1000 cm⁻¹. This value is entered in brackets in the table, and it has been added to the published values of all quartet terms.

Their limit, derived from the three members of the 3p $^2P^{\circ}-nd$ 2D series is 721300 ± 300 cm⁻¹ (I. P. 89.41 ± 0.04). Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large because of the incompleteness of the isoelectronic sequence data.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 301 (1941). (I P) (T) (C L)

		A VI			A VI					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
$3s^2(^1\mathrm{S})3p$	· 3p 2P°	1½ 1½	0 2210	2210	3s 3p(3P°)3d	3d 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	319121 + x 319393 + x 319615 + x	272 222 132	
38 3p²	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{c} [100000] + x \\ 100802 + x \\ 102034 + x \end{array} $	802 1232	$3s^2(^1{ m S})4s$	4s 2S	3½ 1/2	319747 + x 342286	102	
$3s \ 3p^2$ $3s \ 3p^2$	$3p^2\ ^2{ m S} \ 3p^2\ ^2{ m P}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$	169801 182182 183577	1395	3s 3p(3P°)4s	4s ⁴ P°	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	453954 + x $454716 + x$ $456115 + x$	7 62 1 3 99	
$3s^2(^1\mathrm{S})3d$	3 <i>d</i> ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	218592 218657	65	$3s^2(^1\mathrm{S})4d$	4d ² D	$\begin{array}{c c} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}$	454760 454810	50	
$3p^3$	3p³ 4S°	1½	270356 + x		$3s^2({}^1\mathrm{S})5d$	$5d$ $^2\mathrm{D}$	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	555 33 0 555555	2 25	
3s 3p(3P°)3d	3d 4P°	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	316199 + x 316815 + x 317298 + x	616 483	A vii (¹S₀)	Limit		[736600]		

September 1947.

A VI OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +	Observed Terms							
$3s^2(^1S)3p$	$3p$ $^2\mathrm{P}^\circ$							
3s 3p2	$\left\{ egin{array}{lll} 3p^2 & ^4\mathrm{P} \ 3p^2 & ^2\mathrm{P} \end{array} ight.$							
$3p^3$	3p ³ 4S°							
	ns $(n \ge 4)$ nd $(n \ge 3)$							
$3s^2(^1S)nx$	4s ² S 3–5d ² D							
3s 3p(3P°)nx	4s ⁴ P° 3d ⁴ P° 3d ⁴ D°							

^{*}For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 18

Ground state 1s2 2s2 2p6 3s2 1S0

3s2 1S0 1000400 cm-1

I. P. 124.0 volts

Phillips and Parker have classified 25 lines in the interval between 151 A and 644 A. No intersystem combinations have been observed.

From the D-series they derive an absolute value of 3p $^3P_0^{\circ}$ equal to 891000 ± 200 cm⁻¹, and by extrapolation along the isoelectronic sequence estimate the absolute value of $3s^2$ 1S_0 as 1005000 ± 1000 cm⁻¹.

From later data on this sequence the writer has extrapolated these values by the method suggested by Edlén, and adopted the revised entries given in the table in brackets.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 305 (1941). (I P) (T) (C L)

A VII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹ S	0	0		$3s(^2\mathrm{S})4p$	4p 1P°	1	566362	
$3s(^2\mathrm{S})3p$	3p 3P°	0 1 2	[113095] + x 113900 + x 115581 + x	805 1681	$3s(^2\mathrm{S})4d$	4d ³ D	1 2 3	$\begin{array}{r} 634584 + x \\ 634622 + x \\ 634697 + x \end{array}$	38 7 5
$3s(^2\mathrm{S})3p$	3p ¹P°	1	170720		$3s(^2\mathrm{S})4f$	4f 3F°	2, 3, 4	660092	
$3p^2$	3p ² ³ P	0 1 2	$\begin{array}{c} 269829 + x \\ 270770 + x \\ 272554 + x \end{array}$	941 1784	$3s(^2\mathrm{S})5d$	5d ³D	1 2 3	$\begin{array}{c} 772300 + x \\ 772325 + x \\ 772355 + x \end{array}$	25 30
$3s(^2\mathrm{S})3d$	3d 3D	1 2	$324097 + x \ 324136 + x$	3 9 48					
		3	324184 + x	48	A VIII (2S ₁₅)	Limit		[1000400]	
3s(2S)4s	4s 3S	1	514083 + x						

August 1947.

A VIII

(Na 1 sequence; 11 electrons)

Z = 18

Ground state 1s2 2s2 2p6 3s 2S16

 $3s {}^2S_{1/2} 1157400 \ cm^{-1}$

I. P. 143.46 ± 0.05 volts

Phillips and Parker classified 23 lines in the interval 120 A to 526 A. The resonance lines calculated at 700.398 A and 713.990 A, have not been observed. Absolute term values were derived from four members of the ²D-series.

REFERENCE

L. W. Phillips and W. L. Parker, Phys. Rev. 60, 305 (1941). (I P) (T) (C L)

A VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s ² S	1/2	0		58	5s 2S	1/2	812422	
3 <i>p</i>	3p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	140058 142776	2718	5p	5p 2P°	1½ 1½	832245 832691	446
3d	3 <i>d</i> ² D	1½ 2½	332576 332727	151	5d	5 <i>d</i> ² D	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	865084 865111	27
48	4s 2S	1/2	575910		5 <i>f</i>	5f ² F°	2½ 3½	875248 875277	29
4 <i>p</i>	4p 2P°	1½ 1½	628240 629237	997	6d	6 <i>d</i> ² D	$ \left\{ \begin{array}{c c} 3/2 \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 955560	
4d	$4d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	697471 697548	77				, 	
4f	4f 2F°	2½ 3½	716818 716852	34	A IX (¹ S ₀)	Limit		1157400	

June 1947.

A IX

(Ne I sequence; 10 electrons)

Z = 18

Ground state $1s^2 2s^2 2p^6$ 1S_0

 $2p^6 \, {}^1\!\mathrm{S}_0 \, \mathrm{cm}^{-1}$

I. P. 421 volts

Two lines observed at 49.180 A and 48.730 A have been classified by Phillips and Parker as combinations with the ground term. The measurements may be in error by ± 0.002 A or ± 100 cm⁻¹.

As for Ne i, the jl-coupling notation in the general form suggested by Racah is here introduced.

REFERENCES

- L. W. Phillips and W. L. Parker, Phys. Rev. 60, 306 (1941). (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).
- B. Edlén, Zeit. Astroph. 22, 62 (1942). (I P)

A IX

Authors	Config.	Desig.	J	Level
1S ₀	$2p^6$	2p6 1S	0	0
³P₁	$2p^5(^2\mathrm{P}_{13})3s$	38 [1½]°	2 1	2033350
¹ P ₁	$2p^5(^2\mathrm{P}_{55}^{\circ})3s$	38' [½]°	0	2052120

April 1947.

(F i sequence; 9 electrons)

Z = 18

Ground state 1s2 2s2 2p5 2P11/2

 $2p^{5} {}^{2}P_{14}^{\circ}$ cm⁻¹

I. P. volts

This spectrum has not been analyzed. By interpolation along the F I isoelectronic sequence from F I through Ca XII, Edlén derives a reliable estimated value of the interval of the ground term, $2p^5 \, ^2P_{1/2}^{\circ} - 2p^5 \, ^2P_{1/2}^{\circ}$, equal to 18063 cm⁻¹. The faint coronal line observed at 5536 A, wave number 18059 cm⁻¹, may thus be tentatively identified as this forbidden line of A x, according to Edlén.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

A XI

(O i sequence; 8 electrons)

Z = 18

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^{4} {}^{3}P_{2}$ cm⁻¹

I. P. volts

This spectrum has not been analyzed. By extrapolation along the O_I isoelectronic sequence Edlén estimates the separation $2p^4$ $^3P_2-2p^4$ 3P_1 to be approximately 14449 cm⁻¹, or 6919 A. This line has not been identified in the solar corona.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

A XIV

(B I sequence; 5 electrons)

Z = 18

Ground state 1s2 2s2 2p 2P2

 $2p \, ^{2}P_{\frac{1}{2}}^{\circ}$ cm⁻¹

I. P. volts

By extrapolation of the B_I isoelectronic sequence, Edlén estimates that the separation of the lowest term $2p^2P_{1/2}^{\circ}-2p^2P_{1/2}^{\circ}$, falls near enough to warrant tentative identification of the coronal line observed at 4359 A (wave number 22935 cm⁻¹) as [A xiv].

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947.

POTASSIUM

KI

19 electrons

Z = 19

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 4s {}^2S_{\frac{1}{2}}$

4s $^2S_{\frac{1}{2}}$ 35009.78 cm⁻¹

I. P. 4.339 volts

H. R. Kratz has observed in absorption the np ²P° series to n=79. He has generously furnished a list of his final term values in advance of publication, for inclusion here. His value of the limit is quoted. The series ns ²S (n=4 to 8), nd ²D (n=3 to 6), and nf ²F° (n=4 to 9) are from Edlén, who revised the older values. Edlén remarks that the ns ²S and nd ²D series can best be continued by an extrapolation of the appropriate series formula, since the observed wavelengths are uncertain. This comment applies to the listed values of ns ²S (n=9 to 13), which are from Fowler's Report. Mack has furnished revised values of nd ²D (n=8 to 13), derived from observations of the forbidden transitions 6s-nd on the plates of Kratz. The last two members of this series are, respectively, 34213.1 and 34332.6.

From Paschen's classifications of far infrared lines Edlén concludes that the 5g ²G and 6h ²H° terms are H-like. The terms derived from these calculations are entered in brackets in the table. Compared with all others, the terms 4f ²F°, 5f ²F°, and 5s ²S, derived from far infrared observations, are somewhat uncertain, according to Edlén.

No attempt has been made to give a complete bibliography of papers dealing with hyperfine structure of K I. From interferometric measures of the combinations 4p $^{2}P^{\circ}-nd$ ^{2}D (n=5 to 8) Masaki and Kobayakawa observe the following term intervals:

	n=5	6	7	8	
nd ² D	-0. 503	-0. 262	-0. 158	-0. 096	
4p ² P½-4p ² P½	57. 600	57. 600	57. 599	57. 600	

The papers on Zeeman effect deal only with forbidden transitions of K I. From observations in a magnetic field of the lines at 4642 A and 4641 A (4s 2 S-3d 2 D) Segrè and Bakker observe the interval of 3d 2 D to be 2.325 ± 0.015 cm⁻¹.

The K_I^b resonance lines have been observed in absorption by Beutler and Guggenheimer at 662.38 A and 653.31 A. The 4s² ²P° term in the table has been calculated from these lines.

REFERENCES

- S. Datta, Proc. Roy. Soc. London [A] 101, 539 (1922). (I P) (T) (C L)
- A. Fowler, Report on Series in Line Spectra p. 101 (Fleetway Press, London, 1922). (I P) (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 59 (Julius Springer, Berlin, 1922). (I P) (C L)
- W. Grotrian, Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei and drei Valenzelektronen, Part II, p. 29 (Julius Springer, Berlin, 1928). (G D)
- E. Segrè und C. J. Bakker, Zeit. Phys. 72, 724 (1931). (Z E)
- H. Beutler und K. Guggenheimer, Zeit. Phys. 87, 188 (1933). (T) (C L)
- W. F. Meggers, Bur. Std. J. Research 10, 673, RP558 (1933). (C L)
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 497, RP781 (1935). (C L)
- B. Edlén, Zeit. Phys. 98, 453 (1936). (I P) (T) (C L)
- O. Masaki and K. Kobayakawa, J. Sci. Hirosima Univ. [A] 6, 217 (1936). (C L)
- F. A. Jenkins and E. Segrè, Phys. Rev. 55, 545 (1939). (Z E)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)
- H. R. Kratz, unpublished material (Dec. 1947). (I P) (T)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3p6(1S)4s	4s 2S	1/2	0. 00		3p ⁶ (¹S)11s	11s ² S	1/2	33598. 17	
$3p^6(^1\mathrm{S})4p$	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	12985. 17 13042. 89	57. 72	$3p^6({}^1{ m S})9f$	9f 2F°	$\left\{\begin{array}{c c}3\frac{1}{2}\\2\frac{1}{2}\end{array}\right\}$	33652. 0	
$3p^6({}^1\!\mathrm{S})5s$	5s 2S	1/2	21026. 8		$3p^{6}({}^{1}\mathrm{S})11p$	11p ² P°	$\begin{bmatrix} \frac{1}{2} \\ 1\frac{1}{2} \end{bmatrix}$	33736. 60 33737. 44	0. 84
$3p^{\mathfrak{g}}(^{1}\mathrm{S})3d$	3d ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	21534. 42 21536. 75	-2. 33	$3p^6({}^1\!\mathrm{S})10d$	10 <i>d</i> ² D	\ 2½ \	33851. 76	
$3p^{6}({}^{1}\mathrm{S})5p$	5p ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	24701. 44 24720. 20	18. 76	$3p^6({}^1{ m S})12s$	12s ² S	$\left[\begin{array}{c c}1\frac{1}{2}&1\\&\frac{1}{2}&\end{array}\right]$	33869. 7	
$3p^6(^1\mathrm{S})4d$	4d ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	27397. 01 27398. 11	-1. 10	$3p^6({}^1{ m S})12p$	12 <i>p</i> ² P°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \end{array}$	33972. 34 33972. 94	0. 60
$3p^6({}^1{ m S})6s$	6s ² S	1/2	27450. 65		3p6(1S)11d	11 <i>d</i> ² D	$\left\{egin{array}{c} 2lac{1}{2} \ 1rac{1}{2} \end{array} ight\}$	34056. 9	
$3p^6({}^1{ m S})4f$	4f 2F°	$\left\{\begin{array}{c} 3\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	28127.7		3p ⁶ (¹ S)13s	13s ² S	1/2	34069. 3	
$3p^6(^1\mathrm{S})6p$	6 <i>p</i> ² P°	$\frac{1}{2}$ $1\frac{1}{2}$	28999. 29 29007. 70	8. 41	$3p^{6}({}^{1}\!S)13p$	13p ² P°	$1\frac{1}{2}$	34148. 15 34148. 63	0. 48
$3p^6(^1\mathrm{S})5d$	5d 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	30185. 18	-0. 51	3p ⁶ (¹ S)14p	14p ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	34282. 77 34283. 15	0. 38
3p ⁶ (¹ S)7s	7s 2S	1/2	30185. 69 30274. 26		$3p^6({}^1\mathrm{S})15p$	15 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	34388. 16 34388. 46	0. 30
$3p^6({}^1{ m S})5f$	5f 2F°	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	30605. 6		$3p^6({}^1\mathrm{S})16p$	16 <i>p</i> ² P°	$\frac{1/2}{11/2}$	34472. 18 34472. 43	0. 25
$3p^6({}^1\!\mathrm{S})5g$	5 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	30619. 8]		$3p^{6}({}^{1}\mathrm{S})17p$	17 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	34540. 23 34540. 44	0. 21
$3p^{\mathfrak{e}}({}^{1}\!\mathrm{S})7p$	7p 2P°	$\frac{1}{1\frac{1}{2}}$ $1\frac{1}{2}$	31069. 98 31074. 46	4. 48	$3p^6({}^1\!\mathrm{S})18p$	18 <i>p</i> ² P°	$\left\{ egin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} ight\}$	34596. 27	
$3p^{\mathfrak{g}}(^{1}\mathrm{S})6d$	6d 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	31695. 51 31695. 75	-0. 24	$3p^6({}^{1}\!\mathrm{S})19p$	19 <i>p</i> 2P°	$\left\{ egin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} ight\}$	· 34642.78	
$3p^6({}^1{ m S})8s$	8s 2S	1/2	317 64. 95		$3p^{6}({}^{1}\!\mathrm{S})20p$	20 <i>p</i> ² P°	$\left\{\begin{array}{c}1/2\\1/2\\1/2\end{array}\right\}$	· 34681.84	
$3p^6({}^1{ m S})6f$	6f 2F°	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	31953. 0		$3p^6({}^1\mathrm{S})21p$	21p ² P°	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} ight\}$	<i>34714.98</i>	
$3p^6(^1{ m S})6h$	6h ² H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	\ } [31960. 6]		$3p^6({}^1{ m S})22p$	22p ² P°	$\left\{ egin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} ight\}$	· 34743.37	
$3p^6({}^1\!\mathrm{S})6g$	6g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} [31960. 8]						
$3p^6({}^1\mathrm{S})8p$	8p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	32227. 42	2. 70	3p6(1S)23p	23p ² P°	$\left\{\begin{array}{cc} \frac{1}{2} \\ 1\frac{1}{2} \\ \end{array}\right\}$	34767.78	
$3p^6(^1\mathrm{S})7a$	7d 2D	$\left\{\begin{array}{c} 1_{2} \\ 2_{2} \\ 1_{2} \\ \end{array}\right.$	32230. 12 32598. 46		$3p^6({}^1\mathrm{S})24p$	24p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34789.03	
			32648. 17		$3p^{6}$ (1S)25 p	$25p~^2\mathrm{P}^{\circ}$	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34807.62	
$3p^6(^1{ m S})9s$ $3p^6(^1{ m S})7f$	9s 2S 7f 2F°	$ \begin{cases} 3\frac{1}{2} \\ 2\frac{1}{2} \end{cases} $	32048. 17		$3p^6({}^1\mathrm{S})26p$	26p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34823.83	
3p ⁶ (¹ S)9p	9p 2P°		32940. 34	1. 74	$3p^6({}^1\mathrm{S})27p$	27p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1 \end{array}\right\}$	34838.30	
		$1\frac{1}{2}$ $1\frac{1}{2}$	32942. 08	1. 74	$3p^6(^1\mathrm{S})28p$	28p ² P°	$\left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right\}$	34851.11	
3p ³ (¹ S)8d	8d ² D	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \end{array}\right.$	33178. 36		$3p^6(^1\mathrm{S})29p$	29p ² P°	$\left\{\begin{array}{c c} 1/2 \\ 11/2 \end{array}\right\}$	34862.52	
3p ⁶ (¹ S) 10s	10s 2S 8f 2F°	√2 ∫ 3½	33214. 39		$3p^6(^1\mathrm{S})30p$	30 <i>p</i> ² P°	$\left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right\}$	34872.70	
$3p^6(^1{ m S})8f$ $3p^6(^1{ m S})10p$	10p 2P°	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ \end{array}\right.$	33291. 04 33410. 34						
		1½ 1½ 2½	33411.54	1. 20	$3p^6(^1\S)31p$	31p ² P°	$\left\{\begin{array}{c} \frac{1}{1} \\ \frac{1}{1} \\ \end{array}\right\}$	3488 1. 9 4	
$3p^6({}^1\!\mathrm{S})9d$	9d ² D	$\left\{\begin{array}{c}2\frac{1}{2}\\1\frac{1}{2}\end{array}\right.$	33572. 11		$3p^6(^1S)32p$	32p 2P°	$\left\{\begin{array}{c c}1\frac{1}{2}\\1\frac{1}{2}\end{array}\right\}$	34890. 20	

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3p^6({}^1{ m S})33p$	33p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	} 34897.75		$3p^6({}^1{ m S})58p$	58p ² P°	$ \begin{bmatrix} \frac{1}{2} \\ 1\frac{1}{2} \end{bmatrix} $	} 34975. 15	
$3p^6({}^1{ m S})34p$	34p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	34904. 57		$3p^6({}^1{ m S})59p$	59p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34976.36	
$3p^6(^1{ m S})35p$	35p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	} 34910. 79		$3p^6({}^1{ m S})60p$	60p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34977. 50	
$3p^6(^1\mathrm{S})36p$	36p ² P°	$\left \left\{ \begin{array}{c} \frac{1/2}{11/2} \\ 1\frac{1}{2} \end{array} \right \right $	34916. 51		$3p^6({}^{1}{ m S})61p$	61p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	34978. 62	
$3p^6({}^1{ m S})37p$	37p ² P°	$\left \left\{ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array} \right \right.$	34921. 69		$3p^6({}^1{ m S})62p$	62 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	34979.60	
3p6(1S)38p	38p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34926. 47		$3p^6({}^1{ m S})63p$	63p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34980. 65	
3p ⁶ (¹S)39p	39p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	} 34930. 91		$3p^6({}^1{ m S})64p$	64p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34981.58	
3p6(1S)40p	40p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34934. 97		$3p^6({}^1{ m S})65p$	65p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34982.47	
3p6(1S)41p	41p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34938. 72		$3p^{6}({}^{1}{ m S})66p$	66p ² P°	$\left\{\begin{array}{c} \frac{1/2}{1\frac{1}{2}} \\ 1\frac{1}{2} \end{array}\right $	} 34983. 27	
$3p^6({}^1{ m S})42p$	42 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34942. 20		$3p^6({}^1{ m S})67p$	67p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34984. 10	
$3p^6(^1\mathrm{S})43p$	43p ² P°	$\left\{\begin{array}{c c} 1/2 \\ 11/2 \end{array}\right]$	34945. 49		3p ⁶ (¹S)68p	68p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	} 34984.83	
$3p^6({}^1{ m S})44p$	44p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34948. 48		$3p^6({}^1{ m S})69p$	69 <i>p</i> ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right $	34985. 57	
$3p^6({}^1\!\mathrm{S})45p$	45p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34951. 26		$3p^6({}^1{ m S})70p$	70 <i>p</i> ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34986. 25	
$3p^6(^1{ m S})46p$	46p 2P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34953. 85		$3p^6({}^1\!\mathrm{S})71p$	71p 2P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34986. 96	
$3p^{6}({}^{1}\mathrm{S})47p$	47p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	3 4956. 32		$3p^6({}^1\!\mathrm{S})72p$	72p ²P°	$\left\{\begin{array}{c c} \frac{1/2}{1/2} \\ 1/2 \end{array}\right]$	34987. 53	
$3p^6({}^1{ m S})48p$	48p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34958. 61		$3p^6({}^1{ m S})73p$	73p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34988. 19	
$3p^6(^1{ m S})49p$	49p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34960.73		$3p^6({}^1{ m S})74p$	74p ² P°	$\left\{\begin{array}{c c} 1/2 \\ 11/2 \end{array}\right]$	34988. 85	
$3p^6(^1{ m S})50p$	50p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34962.83		$3p^6({}^1{ m S})75p$	75p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34989. 4	
3p ⁶ (¹ S)51p	51 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34964.67		$3p^6({}^1{ m S})76p$	76p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34989. 9	
3p ⁶ (¹S)52p	52p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34966. 45		3p ⁶ (¹ S)77p	77p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34990.5	
$3p^6(^1{ m S})53p$	53p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34968.09		$3p^6({}^1{ m S})78p$	78 <i>p</i> ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right]$	34990.8	
$3p^6(^1{ m S})54p$	54p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34969. 69		$3p^6({}^1{ m S})79p$	79p ² P°	$\left\{\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \end{array}\right\}$	34991.2	
3p ⁶ (¹ S)55p	55p ² P°	$\left\{\begin{array}{c c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	<i>34971.17</i>		T/ (10.)	T:- ''		25000 70	
$3p^6({}^1{ m S})56p$	56p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	→ 34972.57		K II (¹ S ₀) 3p ⁵ (³ P ₂ °)4s ²	Limit 482 2P°	1½ ½	35009.78 150970	-2096
$3p^{6}({}^{1}\mathrm{S})57p$	5 7 p ² P°	$\left\{\begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \end{array}\right\}$	34973.88		$3p^5(^1 ext{Pi})4s^2$		7/2	153066	2000

May 1948.

(A I sequence; 18 electrons)

Z = 19

Ground state 1s2 2s2 2p6 3s2 3p6 1S0

 $3p^6$ $^{1}S_0$ 256637 cm⁻¹

I. P. 31.81 volts

Most of the levels were found by de Bruin, whose analysis is repeated in the three references listed under his name. The present list is taken from the paper by Bowen, who extended the earlier work by observations in the ultraviolet near 600 A, which served to connect de Bruin's levels with the ground term. Bowen also determined the limit from the 4s- and 5s-series and extended the assignments of the Paschen notation to all but 2 of the 20 levels thus far identified in this spectrum. This notation is entered in column one of the table under the heading "A 1".

As for A I, the jl-coupling notation in the general form suggested by Racah is adopted. The writer has suggested tentatively the tabular designation of the level labeled Y_{11} by de Bruin. The pairs $nd[3\frac{1}{2}]^{\circ}$ and $nd[1\frac{1}{2}]^{\circ}$ are partially inverted as compared with Ne I.

The LS-designations ns $^3P_{210}^{\circ}$, $^1P_1^{\circ}$ can probably be safely assigned to the levels ns_5 , ns_4 , ns_3 , ns_2 , respectively.

REFERENCES

- T. L. de Bruin, Zeit. Phys. 38, 94, 1926; Proc. Royal Acad. Amsterdam 29, No. 5, 713 (1926); Arch. Néerl. Sci. exactes et naturelles, [IIIA] 11, 75 (1928). (T) (C L) (E D) (Z E)
- I. S. Bowen, Phys. Rev. 31, 499 (1928). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Кп Кп

Аі	de Bruin	Config.	Desig.	J	Level	А 1	de Bruin	Config.	Desig.	J	Level
$1p_0$		$3p^6$	3p6 1S	0	0	$\begin{array}{c}2p_2\\2p_1\end{array}$	P ₉ P ₁₀	$3p^5(^2\mathrm{P}_{33}^{\circ})4p$	4p' [½]	1 0	190134. 8 194776. 1
$1s_5 \\ 1s_4$	$egin{array}{c} X_2 \ X_3 \end{array}$	3p ⁵ (² P ₁ , 4s	48 [1½]°	2 1	162507. 0 163237. 0	$2s_5 \\ 2s_4$	$egin{array}{c} Y_2 \ Y_3 \end{array}$	$3p^{5}(^{2}\mathrm{P_{134}^{\circ}})5s$	5s [1½]°	2 1	212575. 5 212992. 9
$\frac{1s_3}{1s_2}$	X_7 X_8	$3p^5(^2\mathrm{P}_{52}^{\circ})4\mathrm{s}$	48' [½]°	0 1	165149. 5 166461. 5	$egin{array}{c} 2s_3 \ 2s_2 \end{array}$	$egin{array}{c} \mathbf{Y_4} \\ \mathbf{Y_5} \end{array}$	$3p^5(^2\mathrm{P}_{5}^{\circ})5s$	5s' [½]°	0	214727. 0 215018. 8
$rac{3d_6}{3d_5}$	$X_4 X_5$	3p ⁵ (²P°1⅓)3d	3d [½]°	0	163436. 3 164496. 1	$4d_5$	$\mathbf{Y_6}$	3p⁵(²P°1⅓)4d	4d [½]°	$\left.\begin{array}{c} \\ 0 \\ 1 \end{array}\right $	215404. 9
$3d_4$ $3d_3$	X ₉	"	3d [3½]° 3d [1½]°	4 3	170835. 4 164932. 3	$4d_4$	Y ₉	"	4d [3½]°	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	217726. 4
				2 1		$4d_3$	Y_7	"	4d [1½]°	2 1	215855.8
$3d_1''$	X ₁₀	"	3d [2½]°	2 3	171526.8	4d''_1	Y ₁₀	11.	4d [2½]°	2 3	219196. 2
$2p_{10}$	P ₁	$3p^{5}(^{2}\mathrm{P_{11/2}^{\circ}})4p$	4p [½]	1	183208. 4		Y_8	$3p^5(^2\mathrm{P}_{5/2}^{\circ})4d$	4d' [?]°	2	217066.3
$egin{array}{c} 2p_{f 9} \ 2p_{f 8} \end{array}$	$\begin{array}{c} P_2 \\ P_3 \end{array}$	"	$4p$ $[2\frac{1}{2}]$	$\frac{3}{2}$	186388. 5 186685. 6		Y ₁₁	"	4d' [1½]°	2	223124. 1
$\begin{array}{c}2p_{7}\\2p_{6}\end{array}$	P ₄ P ₅	"	4p [1½]	$\frac{1}{2}$	187531. 1 188154. 4						
$2p_5$	P ₈	"	4p [½]	0	189772. 0			K III (2P ₁)	Limit		256637
$egin{array}{c} 2p_4 \ 2p_3 \end{array}$	P ₆ P ₇	$3p^5(^2\mathrm{P}_{55}^{\circ})4p$	4p' [1½]	$\frac{1}{2}$	189243. 7 189661. 7			K 111 (2P%)	Limit		258803

May 1948.

KII OBSERVED LEVELS *

Config. 1s ² 2s ² 2p ⁶ 3s ² +	Obser	ved Terms								
$3p^6$	$3p^6$ ¹ S									
	$ns (n \ge 4)$									
3p ⁵ (2P°)nx	4, 5s ³ P° 4, 5s ¹ P°									
	jl-Coupling Notation									
	Obser	ved Levels								
	$ns (n \ge 4)$	$np (n \ge 4)$	$nd (n \ge 3)$							
3p ⁵ (² P ₁ ¹ / ₂)nx	4, 5s [1½]°	$egin{array}{c} 4p \ [\ lap{1}{2}\] \ 4p \ [2lap{1}{2}\] \ 4p \ [1lap{1}{2}\] \end{array}$	3, 4d [½]° 3, 4d [3½]° 3, 4d [1½]° 3, 4d [2½]°							
3p ⁵ (² P ^o _H)nx′	4, 58'[½]°	$4p'[1\frac{1}{2}] 4p'[\frac{1}{2}]$	4d'[1½]°							

^{*}For predicted levels in the spectra of the A $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

КШ

(Cli sequence; 17 electrons)

Z = 19

Ground state 1s2 2s2 2p6 3s2 3p5 2P116

$$3p^5 {}^{2}P_{1\frac{1}{2}}^{\circ}$$
 369000 cm⁻¹

I. P. 46 volts

The analyses by various investigators are discordant, but nearly 80 lines have been classified in the range between 325 A and 3885 A.

From observed intersystem combinations Edlén has derived a correction of +667.7 cm⁻¹ to the absolute values of the doublet terms given by de Bruin, to connect them with the quartet terms. Edlén also states that the limit derived by extrapolation along the isoelectronic sequence is 369000 cm⁻¹. This limit (entered in brackets in the table), indicates a correction of about -8000 cm⁻¹ to the limit listed by de Bruin, 377000 cm⁻¹.

The doublet terms as given by Edlén and the quartet terms from de Bruin have been used in compiling the present list. The additional terms are from Tsien.

Kruger and Phillips designate as 4s'' $^2S_{\frac{1}{2}}$ the level at 246012 cm⁻¹, given by Tsien as 3d' $^2D_{\frac{1}{2}}$. Further study is needed to confirm the terms from the higher limits.

REFERENCES

- T. L. de Bruin, Zeit. Phys. 53, 658 (1929). (IP) (T) (C L)
- B. Edlén, Zeit. Phys. 104, 410 (1937). (I P) (T) (C L)
- P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)
- W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 118 (1939). (T) (C L)

Km

кш

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s² 3p⁵	3p ⁵ ² P°	1½ ½ ½	0 2162	-2162	3s ² 3p ⁴ (¹ S)4s	4s'' 2S	1/2	241667	
$3p^{6}$	$3p^6$ 2S	1/2	130609		$3s^2 \ 3p^4(^3P)4p$	4p 2D°	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	243120. 6 243448. 2	—327. 6
$3s^2 \ 3p^4(^3\dot{\mathbf{P}})3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	190916 192082	1166	$3s^2 \ 3p^4(^3P)4p$	4p 2P°	1½ ½	243947. 4 245382. 3	— 1434. 9
3s ² 3p ⁴ (³ P)3d	3d ² F	$\left\{\begin{array}{cc} 3\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	201165		$3s^2 \ 3p^4(^1D)3d$	3d′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	244523 246012	-1489
$3s^2 \ 3p^4(^3P)4s$	4s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	207421. 9 208687. 8	—1265. 9	$3s^2 3p^4(^3P)4p$	4p 4S°	1½	246625.6	
		1/2 1/2	209461. 3	0779 5	$3s^2 3p^4(^1D)3d$	3d′ 2S	1/2	250857	
$3s^2 \ 3p^4(^3P)4s$	4s ² P	1½ ½ ½	212725. 4 214232. 3	1506. 9		1		252040	
$3s^2 \ 3p^4(^1{\rm D})4s$	4s′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	225051 225082	-31	3s ² 3p ⁴ (3P)5s	5s 2P	1½ ½	262828 263770	-942
$3s^2 \ 3p^4(^3P)4p$	4p 4P°	2½ 1½ ½	237512. 0 237912. 2	-400. 2	3s ² 3p ⁴ (¹ D)5s	5s′ ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	289400 289515	-115
			238455. 1	-542. 9	$3s^2 \ 3p^4(^1S)3d$	3d'' 2D	2½ 1½	302404 303902	-1498
3s ² 3p ⁴ (3P)4p	4p 4D°	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	240829. 9 241443. 5 242165. 3 242526. 7	$ \begin{array}{c c} -613.6 \\ -721.8 \\ -361.4 \end{array} $		2	, -	307429	
3s ² 3p ⁴ (¹ D)3d	3d′ 2P	1½ ½	241039 242548	-1509	K IV (3P ₂)	Limit		[369000]	

January 1948.

K III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶		Observed Terms							
3s ² 3p ⁵ 3s 3p ⁶	$3p^5 {}^2{ m P}^{\circ}$ $3p^6 {}^2{ m S}$								
	$ns (n \ge 4)$			$np \ (n \ge 4)$			nd (r	ı≥3)	
3s ² 3p ⁴ (³ P)nx 3s ² 3p ⁴ (¹ D)nx'	4s ⁴ P 4, 5s ² P	4, 5s′ ² D	4p 4S ⁶	4p 4P° 4p 2P°	4p 4D° 4p 2D°	3d′ 2S	3d′ ²P	3 <i>d</i> ² D 3 <i>d</i> ′ ² D	3d ² F
$3s^2 \ 3p^4(^1S) nx''$	4s" 2S							3d″ ² D	

^{*}For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

(S I sequence; 16 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 ^3P_2$

 $3p^4$ 3P_2 491300 cm⁻¹

I. P. 60.90 volts

The terms are from the papers by Bowen and by Tsien, with the revised values of $3p^4$ S and $3p^5$ P° suggested by Edlén, and of 4s S° by Mrs. Beckman. Colons have been added by the writer to some levels that appear to need further confirmation.

Nearly 60 lines have been classified in the region between 271 A and 754 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

The limit is from Edlén's 1937 paper. He has derived it by extrapolation of isoelectronic sequence data.

REFERENCES

M. Ram, Indian J. Phys. 8, 155 (1933). (T) (C L)

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)

B. Edlen, Zeit. Phys. 104, 192 (1937). (I P)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 79 (Almqvist and Wiksells Boktryckeri-A.-B., Uppsala, 1937). (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 131 (1939). (T) (C L)

B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

K IV K IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2	0	1673	3s ² 3p ³ (4S°)4s	4s 3S°	1	260352	
		2 1 0	$1673 \\ 2324$	651	$3s^2 3p^3(^2P^\circ)3d$	3d'' ¹P°	1	261445	
3s2 3p4	3p4 ¹D	2	16386		$3s^2 3p^3(^2P^\circ)3d$	3d'' ³D°	3	000001	
3s ² 3p ⁴	3p4 1S	0	38548				2 1	262831 263659	-828
3s 3p5	3p ⁵ ³ P°	2	134181 135659	—1478	$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹D°	2	273409	
		1 0	136453	—794	3s ² 3p ³ (² D°)4s	4s′ ³D°	1 2	277795 277851	56
3s 3p ⁵	3p ⁵ ¹ P°	1	171140				3	277986	135
$3s^2 \ 3p^3(^4S^\circ)3d$	3d ³D°	$\frac{3}{2}$	189952 191204	-252	$3s^2 \ 3p^3(^2{\rm D}^{\circ})4s$	4s' ¹D°	2	282373	
		ĩ	191403	-199	3s ² 3p ³ (² P°)4s	4s'' ³ P°	0 1	293384 293473	89
$3s^2 \ 3p^3(^2D^\circ)3d$	3d′ ¹F°	3	222420				2	293720	247
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)3d$	3d′ ³P°	$\frac{2}{1}$	225445 226090	-645	3s ² 3p ³ (² P°)4s	4s'' ¹P°	1	298134	
		Ō	227652	-1562	$3s^2 \ 3p^3 (^4S^\circ)5s$	5s 3S°	1	367890	
$3s^2 \ 3p^3(^2D^\circ)3d$	3d′ ¹P°	1	235527:				-		
3s² 3p³(3P°)3d	3d'' ³P°	2 1 0	256034 257124 257811:	1090 687	K v (4S ₁ 33)	Limit		491300	

December 1947.

KIV OBSERVED TERMS*

Config. $1s^2 \ 2s^2 \ 2p^6 +$			Observe	d Terms		
3s ² 3p ⁴ 3s 3p ⁵	{ 3p4 1S {	$3p^4\ ^3{ m P}$ $3p^5\ ^3{ m P}^{\circ}$ $3p^5\ ^1{ m P}^{\circ}$	3p4 1D			
		ns $(n \ge 4)$			$nd \ (n \ge 3)$	
$3s^2 3p^3(^4S^\circ)nx$	4, 5s 3S°				3d ³D°	
$3s^2 3p^3(^2\mathrm{D}^\circ)nx'$	{		4s' ³ D° 4s' ¹ D°	3d′ ³P° 3d′ ¹P°		3d′ ¹F°
3s ² 3p ³ (² P°)nx''	{	4s'' ³ P° 4s'' ¹ P°		3d'' ³ P° 3d'' ¹ P°	3d'' ³ D° 3d'' ¹ D°	

^{*}For predicted terms in the spectra of the SI isoelectronic sequence, see Introduction.

K v

(Pr sequence; 15 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 4S_{11/4}^{\circ}$

 cm^{-1}

$$3p^{3} {}^{4}S^{\circ}_{1} \qquad \text{cm}^{-1}$$

I.P. volts

The analysis is incomplete. The terms are from the paper by Tsien, who includes those given earlier by Bowen. Seventy-two lines have been classified in the interval between 294 A and 825 A.

The relative position of the doublet terms with respect to the quartet terms was estimated from the irregular doublet law. Tsien lists combinations of 3p3 4S° and 3p3 2P° with the level labeled "3", which are not in disagreement with this estimate.

REFERENCES

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L) W.—Z. Tsien, Chinese J. Phys. 3, No. 2, 136 (1939). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	3p³ 4S°	1½	0		$3s^2 3p^2(^3P)3d$	3d ² F	2½ 3½	262487 262874	387
$3s^2 \ 3p^3$	3p³ 2D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	24000 24237	237	$3s^2 3p^2(^3P)3d$	3d ² D	$ \begin{array}{c c} 372 \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	264741	-191
$3s^2$ $3p^3$	3p³ ²P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	39745 40064	319		3	172	264932 268043	
3s 3p4	3p4 4P	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	136639 138042	$-1403 \\ -764$		4		274375	
9. 9.4	$3p^{4-2}\mathrm{D}$	1/2	138806 161199	-704	$3s^2 3p^2(^1D)3d$	3d′ ² D	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	281024	
3s 3p4	$3p^{4}$ ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	161564	365	$3s^2 3p^2(^1D)3d$	3d′ ²P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	290772	
	$\frac{1}{2}$		16970 3 169886		$3s^2 3p^2(^1D)3d$	3d′ ²F	$\begin{bmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{bmatrix}$	292710	
3s 3p4	3p4 2P	1½ ½	194792 196319	-1527	$3s^2 3p^2(^1D)3d$	3d′ 2S	1½	292968	
3s 3p4	3p4 2S	72 ½	205784		$3s^2 3p^2({}^{1}S)3d$	3d'' ² D	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	304461 305978	1517
$3s^2 \ 3p^2(^3\mathrm{P})3d$	3d 4F	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	206720 207165	445		5		307717	
		$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	201100			6		3 10120	
$3s^2\ 3p^2(^3{ m P})3d$	3d 4D	3½ 2½ 1½ ½	222367	-344	$3s^2 \ 3p^2(^3\mathrm{P})4s$	4s 4P	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	336628 3 37645 3391 7 2	101 7 1527
		$\left \begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \end{array} \right $	222711	011	$3s^2 3p^2(^3P)4s$	4s ² P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	343726 345526	1800
$3s^2\ 3p^2(^3\mathrm{P})3d$	3d 4P	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	257865 259276 259726	$-1411 \\ -450$	$3s^2 3p^2(^1\mathrm{D})4s$	4s' 2D	$egin{array}{c} 1/2 \ 2\frac{1}{2} \ 1\frac{1}{2} \ \end{array}$	356993 357033	-40
$3s^2 \ 3p^2(^3P)3d$	3d ² P	1½ ½ ½	259205 260868	-1663					

November 1947.

Kv Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +		Observed Terms						
$3s^2 \ 3p^3$	{3p³ 4S°	3p³ 2P°	3p³ 2D°					
3s 3p4	$\begin{cases} 3p^{4} \ ^{2}S \end{cases}$	3p4 4P 3p4 2P	3p4 2D	1				
		ns $(n \ge 4)$			nd (1	n≥ 3)		
$3d^2\ 3p^2(^3{ m P})nx$	{	4s ⁴ P 4s ² P			3d ⁴ P 3d ² P	$\begin{array}{cc} 3d & ^4\mathrm{D} \\ 3d & ^2\mathrm{D} \end{array}$	$\begin{array}{cc} 3d & {}^4{ m F} \\ 3d & {}^2{ m F} \end{array}$	
$3s^2 \ 3p^2(^1{\rm D})nx'$			4s' 2D	3d′ 2S	3d′ ² P	3d' ² D	3d' ² F	
$3s^2 \ 3p^2(^1S)nx''$						3d″ ² D		

^{*}For predicted terms in the P I isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 ^3P_0$

 $3p^2$ 3P_0 804513 cm⁻¹

I. P. 99.7 volts

The analysis is chiefly by Whitford, with singlet terms added from Robinson's paper. Twenty-seven lines have been classified in the interval between 256 A and 725 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

Using the method suggested by Edlén for extrapolation along the isoelectronic sequence, the writer has estimated the value of the limit quoted above and entered in brackets in the table.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L) H. A. Robinson, Phys. Rev. 52, 725 (1937). (T) (C L)

K VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s² 3p²	3p ² ³ P	0 1 2	0 1131 2924	1131 1793	3s 3p³ 3s² 3p(²P°)3d	3p³ ¹P° 3d ³P°	1 2	223840 252332 253504	-1172
$3s^2 \ 3p^2$	$3p^2$ ¹ D	2	18973				ō	254043	-539
3s 3p³	$3p^3$ $^3\mathrm{D}^\circ$	1 2 3	140743 140796 140966	53 170	3s² 3p(²P°)4s	4s ³P°	0 1 2	387421 388114 390493	693 2 37 9
$3s \ 3p^3$	3p³ ³P°	2, 1, 0	163434						
3s 3p³	3p³ 3S°	1	218316		K vII (²P%)	Limit		[804513]	

October 1947.

(Al 1 sequence; 13 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^6 3s^2 3p$ $^2P_{\frac{1}{2}}^{\circ}$

$$3p \, {}^{2}\mathrm{P}_{1/2}^{\circ} \, 950200 \, \, \mathrm{cm}^{-1}$$

I. P. 118 volts

Both Whitford and Phillips have worked on the analysis of this spectrum. Thirty lines have been classified in the interval between 175 A and 671 A. No intersystem combinations have been observed, but Phillips estimates that $3p^2$ $^4P_{\frac{1}{2}}$ is approximately 114000cm^{-1} above the ground state. This value is entered in brackets in the table. The uncertainty x may exceed ± 1000 cm⁻¹.

Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L)
L. W. Phillips, Phys. Rev. 55, 708 (1939). (T) (C L)

K vii

K vII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1\mathrm{S})3p$	3p 2P°	1½	0 3129	3129	3s 3p(3P°)3d	3d ⁴ D°	$\begin{array}{c} \frac{1}{1/2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	365092 + x 365463 + x 365778 + x	371 315
3s 3p ²	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	$ \begin{array}{r} [114000] + x \\ 115145 + x \\ 116871 + x \end{array} $	1145 1726	3s ² (¹ S)4s	4s ² S	$\frac{3\frac{72}{2}}{3\frac{1}{2}}$	365916 + x 439297	138
3s 3p ²	3p ² ² D	1½ 2½	151882 152049	167	3s 3p(3P°)4s	4s 4P°	$egin{array}{c} langle rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	$565314+x \ 566443+x \ 568375+x$	1129 1932
$3s \ 3p^2$ $3s \ 3p^2$	$3p^2 {}^2\mathrm{S} \ 3p^2 {}^2\mathrm{P}$	½ ½ 1½ 1½	193079 206507 208434	1927	3s ² (¹S)4d	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	570812 570969	157
3s ² (¹S)3d	3 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	250668 250787	119	K viii (¹S₀)	Limit		[<i>950200</i>]	
$3p^3$	3p³ 4S°	1½	307479 +x						

September 1947.

K VII OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +	Observed Terms	
$3s^{2}(^{1}S)3p$ $3s \ 3p^{2}$ $3p^{3}$	$3p^{-2}\mathrm{P}^{\circ} \ \begin{cases} 3p^{2} & ^{4}\mathrm{P} \\ 3p^{2} & ^{2}\mathrm{S} & ^{3}p^{2} & ^{2}\mathrm{P} & ^{3}p^{2} & ^{2}\mathrm{D} \end{cases} \ 3p^{3} & ^{4}\mathrm{S}^{\circ} \end{cases}$	
	$ns \ (n \ge 4)$	nd (n≥3)
3s ² (¹ S)nx 3s 3p(³ P°)nx	4s ² S 4s ⁴ P°	3, 4d ² D 3d ⁴ D°

^{*}For predicted terms in the spectra of the AlI isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 19

Ground state 1s2 2s2 2p6 3s2 1S0

 $3s^2$ 1S_0 $1247000 \pm cm^{-1}$

I. P. 155± volts

Twenty-six lines have been classified in the range between 155 A and 938 A. The triplet terms are from Parker and Phillips; the singlets from Tsien. By extrapolation along the sequence Mrs. Beckman has classified a line at 774.738 A as the intersystem combination $3s^2$ $^1S_0-3p$ $^3P_1^\circ$. The listed values of the triplet terms have been adjusted to fit this assignment.

From isoelectronic sequence data the writer has extrapolated the value of the limit, using the method suggested by Edlén. This value is entered in brackets in the table. Although this estimate may be in error by more than ± 1000 cm⁻¹, it gives an approximate value of the ionization potential.

REFERENCES

- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 55 (Almqvist and Wiksells Boktryckeri-A.-B., Uppsala, 1937). (C L)
- W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 142 (1939). (T) (C L)
- W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

K viii K viii Config. J Interval \boldsymbol{J} Interval Desig. Level Config. Desig. Level 3s2 1S 3d 3D $3s^2$ 0 0 $3s(^2S)3d$ 368004 56 72 368060 3n 3P° 3 368132 3s(2S)3p 0 127968 1112 129080 2372 2 131452 3s(2S)4s 4s 3S 1 631654 770165 3s(2S)3p 3n 1P° 1 192540. 2 3s(2S)4d 4d 3D 95 **1**41 770260 299117. 4 3 $3s(^2S)3d$ 3d 1D 2 770401 $3v^2$ ³P 4f 3F° $3p^2$ 0 304669 $3s(^{2}S)4f$ 2, 3, 4 801511 1366 306035 2573 308608 [1247000±] K IX (2S14) Limit

March 1948.

(Na 1 sequence; 11 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^6 3s {}^2S_{\frac{1}{2}}$

3s 2S_{1/4} 1419425 cm⁻¹

I. P. 175.94 volts

All but two of the terms are from the paper by Kruger and Phillips, who extended the earlier work by Edlén and Whitford. Absolute term values are based on three members of the ²D-series.

The two terms 5s ²S and 5g ²G have been added from the paper by Tsien, but adjusted to agree with the term array by Kruger and Phillips.

Twenty-five lines have been classified, in the range from 112 A to 636 A.

REFERENCES

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 145 (1939). (T) (C L)

P. G. Kruger and L. W. Phillips, Phys. Rev. 55, 352 (1939). (I P) (T) (C L)

K IX

K IX

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0		58	5s ² S	1/2	979901	
3p	3p 2P°	1½ 1½	157159 160925	3766	5 <i>g</i>	5g ² G	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	$\begin{array}{c} 1044250 \\ 1044298 \end{array}$	-48
3d	$3d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	374788 375080	292	5d	$5d^{-2}D$	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{c} 1049114 \\ 1049174 \end{array}$	60
48	4 <i>s</i> ² S	1/2	698902		5 <i>f</i>	5f 2F°	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	1061120 1061172	52
4p	$4p^{-2}\mathrm{P}^{\circ}$	$1\frac{1}{2}$	758174 759615	1441					4
4d	4 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	836703 836861	158	K x (1S ₀)	Limit		1419425	
4f	4f ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	860763 860842	79					

June 1947.

K x

(Ne i sequence; 10 electrons)

Z = 19

Ground state 1s2 2s2 2p6 1S0

 $2p^6$ 1S_0 4064300 cm⁻¹

I. P. 503.8 volts

Eleven lines between 29 A and 41 A have been classified by Edlén and Tyrén as combinations with the ground term. Their absolute term values have been extrapolated along the Ne I isoelectronic sequence.

By analogy with Ne 1, jl-coupling notation in the general form suggested by Racah is introduced.

The unit adopted by Edlén and Tyrén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

K x K x

Authors	Config.	Desig.	J	Level	Authors	Config.	Desig.	J	Level
$2p$ ${}^{1}\mathrm{S}_{0}$	$2s^2 \ 2p^6$	$2p^{\mathfrak{g}}$ ¹ S	0	0	$3p'$ $^3\mathrm{P}_1$	$2s \ 2p^6(^2{ m S})3p$	3p 3P°	2 1	3219400
3s ⁸ P ₁	$2s^2\ 2p^5(^2\mathrm{Pi}_{12})3s$	3s [1½]°	2 1	2407300	3p′ ¹P₁	$2s \ 2p^{\mathfrak{g}}(^2\mathrm{S})3p$	3p ¹P°	0 1	3237600
3s ¹ P ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{5/2}^{\circ}) 3s$	38' [½]°	0 1	2430300	4d ¹ P ₁	$2s^2 2p^5 (^2{ m P}_{132}^{\circ}) 4d$	4d [1½]°	1	3356400
3d ³ P ₁	$2s^2\ 2p^5(^2\mathrm{P}_{^5\!1\!2\!2})3d$	3d [½]°	0 1	2760200	$4d$ $^3\mathrm{D}_1$	$2s^2 2p^5 (^2\mathrm{P}_{5/2}^{\circ})4d$	4d' [1½]°	1	3 379700
3d ¹ P ₁	n	3d [1½]°	1	2794900		K xi (2P _{11/2})	Limit	-	4064300
3d ³ D ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{5/2}^{\circ}) 3d$	3d' [1½]°	1	2832300		K x1 (2P _{1/2})	Limit		4087775
48 ³P ₁	$2s^2\ 2p^5(^2\mathrm{P^s_{11/2}})4s$	4s [1½]°	2 1	3205100					
4s ¹ P ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{55}^{\circ}) 4s$	4s' [½]°	0	3232400					

April 1947.

K x Observed Levels*

Config. 1s ² +	OI	oserved Te	erms						
2s ² 2p ⁶	$2p^6$ 1S								
	ns (n≥3)	$np(n \ge 3)$	nd (n≥3)						
2s ² 2p ⁵ (² P°)nx	{ 3, 4s ³ P° 3, 4s ¹ P°		3d ³ P° 3, 4d ³ D° 3, 4d ³ D°						
2s 2p ⁶ (2S)nx	{	3p 3P° 3p 1P°							
	jl-Coupling No	tation							
·	0	bserved Pa	airs						
	$ns \ (n \ge 3)$		$nd (n \ge 3)$						
$2s^2 \ 2p^5(^2\mathrm{P}_{14}^\circ)nx$	3, 4s [1½]°		3d [½]° 3, 4d [1½]°						
$2s^2 \ 2p^5(^2\mathrm{P}_{5}^{\circ})nx'$	3, 4s'[½]°		3, 4d'[1½]°						

^{*}For predicted levels in the spectra of the Ne I isoelectronic sequence, see Introduction.

(F i sequence; 9 electrons)

Z = 19

Ground state $1s^2 2s^2 2p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

 $2p^{5} {}^{2}P_{1\frac{1}{2}}^{\circ}$

 cm^{-1}

I. P.

volts

Edlén and Tyrén have classified 8 lines, which lie between 32 A and 37 A. They give no term array because the analysis is so incomplete. In the 1942 reference Edlén states that the interval of the ground term is known from his unpublished material to be 23475 cm⁻¹. From these data, preliminary term values have been calculated and listed below

REFERENCES

B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (C L)

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

K XI

				<u> </u>	
Edlén	Config.	Desig.	J	Level	Inter- val
$2p \ ^{2}P_{2} \ ^{2}P_{1}$	$2s^2 \ 2p^5$	2p ⁵ ² P°	1½ ½ ½	0 23475	-23475
3s ⁴ P ₃ ⁴ P ₂	2s ² 2p ⁴ (³ P)3s	3s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	2640600? 2652800?	-12200
3s ² P ₂	$2s^2 2p^4(^3P)3s$	3s ² P	1½ ½ ½	2671300?	
3s' ² D ₃ ² D ₂	2s ² 2p ⁴ (1D)3s	3s′ 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	2727600? 2728300?	-700
3d	2s ² 2p ⁴ (³ P)3d	3d X		3047900?	
$\overline{3d}$	2s ² 2p ⁴ (¹ D)3d	3d' X		3107500?	

March 1947.

CALCIUM

Ca I

20 electrons Z=20

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² ¹S₀

4s² ¹S₀ 49304.80 cm⁻¹

I. P. 6.111 volts

The arc spectrum of calcium occupies an important place in the development of spectroscopic theory. In addition to the "regular" series, the terms involving two excited electrons were first discussed in the classical paper by Russell and Saunders in 1925.

Although the spectrum is well known, further observations in the infrared are urgently needed; and a monograph containing a homogeneous list of lines and term values should be prepared as soon as the analysis can be extended with the aid of these data.

The regular series terms, i. e., those from the ²S limit in Ca II, are from Fowler and Paschen-Götze. The rest are from Russell and Saunders and from unpublished analysis by Russell, who has generously furnished all of his data on this spectrum. The 6f ³F° term has been resolved by Grafenberger. Three-place entries in the table are quoted from Wagman, who derived them from observations made with the interferometer. The writer has prepared a complete multiplet array and calculated all other values from the best available wavelength material. Colons indicate that the term values should be confirmed by further observations.

The singlet and triplet terms are connected by observed intersystem combinations.

REFERENCES

- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 72 (Julius Springer, Berlin, 1922). (I P) (C L)
- A. Fowler, Report on Series in Line Spectra, p. 121 (Fleetway Press, London, 1922). (I P) (T) (C L)
- H. N. Russell and F. A. Saunders, Astroph. J. 61, 38 (1925). (I P) (T) (C L)
- E. Back, Zeit. Phys. 33, 579 (1925). (Z E)
- H. N. Russell, unpublished material (1927?). (T) (C L)
- A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 417 (1932). (T)
- W. F. Meggers, Bur. Std. J. Research 10, 676, RP558 (1933). (I P) (T) (C L)
- N. E. Wagman, Univ. Pittsburgh Bul. 34, 1 (1937). (T) (C L)
- H. Grafenberger, Ann. der Phys. [5] 30, 267 (1937). (C L)

Ca I

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs.
4s2	4s ² ¹ S	0	0. 000			4s(2S)4f	4f ¹F°	3	42343. 554		
4s(2S)4p	4p ³ P°	0 1 2	15157. 910 15210. 067 15315. 948	52. 157 105. 881		$4s(^2\mathrm{S})6p$	6p 3P°	0 1 2	42514. 79: 42518. 72 42526. 528	3. 93 7. 81	
4s(2S)3d	3d ³ D	1 2 3	20335. 344 20349. 247 20370. 987	13. 903 21. 740	0. 501 1. 162 1. 329	4s(2S)5d	5d ³D	1 2 3	42743. 058 42744. 776 42747. 443	1. 718 2. 667	
4s(2S)3d	3d ¹D	2	21849. 610		1. 007	$4s(^2\mathrm{S})5d$	5d ¹ D	2	42919. 074		
4s(2S)4p	4p ¹P°	1	23652. 324			$4s(^2\mathrm{S})6p$	6p ¹P°	1	43933. 341		
4s(2S)5s	5s 3S	1	31539. 510			$4s(^2\mathrm{S})7s$	7s 3S	1	43980. 798		
4s(2S)5s	5s ¹ S	0	33317. 25			$4s(^2\mathrm{S})7s$	7s ¹S	0	44276. 638		
$3d(^2\mathrm{D})4p$	4p' 3F°	2 3 4	35730. 450 35818. 712 35896. 890	88. 262 78. 178	0. 754 1. 076 1. 245	4s(2S)5f	5f ³F°	2 3 4	44762. 620 44762. 822 44763. 101	0. 202 0. 279	
3d(2D)4p	4p′ ¹D°	2	35835. 400		0. 893	$4s(^2\mathrm{S})5f$	5f ¹F°	3	44804. 786		
4s(2S)5p	5 <i>p</i> ³ P°	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	36547. 671 36554. 722 36575. 132	7. 051 20. 410		$4s(^2\mathrm{S})7p$	7p 3P°	0 1 2	44957.8 44961.6	3. 8	
$3d(^2\mathrm{D})4p$	4p′ ¹P°	1	36731. 622			4s(2S)6d	6d ¹D	2	44989. 882		
4s(2S)4d	$4d$ $^{1}\mathrm{D}$	2	37298. 312			$4s(^2\mathrm{S})6d$	6d ³D	1	45049. 066	1. 340	
4s(2S)4d	$4d~^3\mathrm{D}$	$\begin{array}{c c} 1 \\ 2 \\ 3 \end{array}$	37748. 192 37751. 884 37757. 462	3. 682 5. 578		$4s(^2\mathrm{S})7p$	7p ¹P°	$\begin{bmatrix} 2\\3\\1 \end{bmatrix}$	45050. 406 45052. 359 45425. 283	1. 953	
$3d(^2\mathrm{D})4p$	4p′ ³D°		38192. 373	20 -		4s(2S)8s	8s 3S	1	45738. 732		
0w(2)1p	1p 2	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	38219. 094 38259. 102	26. 721 40. 008		4s(2S)8s	8s 1S	0	45887. 31		
$4p^2$	$4p^2\ ^3\mathrm{P}$	0 1 2	38417. 585 38464. 844 38551. 588	47. 259 86. 744		4s(2S)6f	6f ³ F°	2 3 4	46164. 66 46164. 80 46164. 99	0. 14 0. 19	
$3d(^2\mathrm{D})4p$	4p′ ³P°	0	39333. 371	1. 945		$4s(^2\mathrm{S})6f$	6f ¹F°	3	46182. 23		
4-(25)6-	6s ³ S	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	39335. 316 39340. 078	4. 762		$4s(^2\mathrm{S})7d$	7d ³D	1 2 3	46302. 18 46303. 92 46306. 170	1. 74 2. 25	
4s(2S)6s			40474. 275			$4s(^2\mathrm{S})7d$	7d ¹D		46309. 9		
$3d(^2\mathrm{D})4p$	4p' ¹ F° 4p ² ¹ S	3	40537. 860				8p ¹ P°	2	46479. 95		
$4p^2$ $4p^2$	$4p^2$ 1S $4p^2$ 1D	$\begin{array}{c c} 0 \\ 2 \end{array}$	40690. 436 40719. 867			$4s(^2\mathrm{S})8p$ $4s(^2\mathrm{S})9s$	9s 3S	1 1	46748. 21		
$4s^2$ $4s(^2S)5p$	5p ¹ P°	1	41678. 997			4s(2S)9s 4s(2S)9s	98 1S	0	46835. 2		
4s(2S)6s	6s ¹ S	0	41786. 312			4s(2S)7f	7f 3F°	2, 3, 4	47006. 11		
4s(2S)4f	4f ³ F°	$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	42170. 183 42170. 531 42171. 006	0. 348 0. 475		4s(2S)7f	7f ¹ F°	3	47005. 11		

Ca I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
4s(2S)8d	8d 3D	1	47036. 32	3. 68		4s(2S)12f	12f ³F°	2, 3, 4	48531. 4		
		1 2 3	47040. 00 47045. 384	3. 68 5. 38		4s(2S)13d	13d ³D	1, 2, 3	48570. 7		
4s(2S)9p	9p ¹P°	1	47184. 26			$4s(^2S)13f$	13f ³F°	2, 3, 4	48647. 1		
4s(2S)10s	10s 3S	1	47382. 10			4s(2S)14d	14d ³ D	1, 2, 3	48676. 6		
4s(2S)10s	10s ¹ S	0	47436. 9			4s(2S)15d	$15d$ $^3\mathrm{D}$	1, 2, 3	48762. 4		
$3d(^2\mathrm{D})5\mathrm{s}$	5s′ ³D	1 2 3	47456. 1 47465. 9	9. 8 9. 8		$4s(^2\mathrm{S})16d$	$16d$ $^3\mathrm{D}$	1, 2, 3	48830. 7		
		3	47475. 7	9.8		Ca 11 (2S½)	Limit		49304. 80		
4s(2S)8f	8f 3F°	2, 3, 4	<i>47550. 11</i>			$3d(^2\mathrm{D})5p$	$5p'$ $^3\mathrm{F}^\circ$	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$	51235. 2: 51259. 5:	24. 3	
4s(2S)8f	8f ¹ F°	3	47554. 97					$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	51318. 7:	59. 2	
4s(2S)10p	10p ¹P°	1	47660.8			$3d(^2\mathrm{D})4d$	$4d'$ $^3\mathrm{D}$	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	51351. 1 51369. 6	18. 5	
4s(2S)9d	9d 3D	1 2	47753. 3 47757. 5	4. 2				$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	51395. 5	25. 9	
		3	47765. 5	8. 0		$3d(^2\mathrm{D})4d$	4d′ ³G	3 4 5	51553. 6: 51579. 0:	25. 4	
4s(2S)11s	11s 3S	1	47805. 85					5	51611. 5:	31. 5	
4s(2S)11s	11s ¹S	0	47 8 43 . 1			$3d(^2\mathrm{D})4d$	4d′ 3S	1	51571. 4		
4s(2S)9f	9f ³F°	2, 3, 4	47922. 2			$3d(^2\mathrm{D})5p$	$5p'$ $^3\mathrm{D}^\circ$	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	51710.9 51734.0	23. 1	
4s(2S)9f	9f ¹F°	3	47924. 9					3	51766. 5	32. 5	
4s(2S)11p	11 <i>p</i> ¹P°	1	47998. 6			$3d(^2\mathrm{D})4d$	$4d'$ $^3\mathrm{F}$	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$	53214. 6 53247. 9	33. 3	
4s(2S)10d	10d ³D	1 2	48032. 0 48033. 5	1. 5 2. 7				4	53260. 4	12. 5	
		3	48036. 2	2. 7		$3d(^2\mathrm{D})4d$	4d′ ³P	0 1	54282. 2 54288. 0	5. 8	
4s(2S)12s	12s 3S	1	48103. 89					2	54304. 2	16. 2	
4s(2S)12s	12s ¹ S	0	48128. 2			$3d(^2\mathrm{D})5d$	$5d'$ $^3\mathrm{D}$	$\frac{1}{2}$	56444. 8 56469. 1	24. 3	
4s(2S)10f	10f ³F°	2, 3, 4	48186.61					3	56494. 7	25. 6	
4s(2S)10f	10f ¹F°	3	48188. 3			$3d(^2\mathrm{D})5d$	5d′ ³G	3 4 5	56526. 3: 56546. 6:	20. 3	
4s(2S)12p	$12p$ $^1\mathrm{P}^\circ$	1	48222.9					5	56578. 2:	31. 6	
4s(2S)11d	11d ³D	1, 2, 3	48259. 2			$3d(^2\mathrm{D})5d$	$5d'$ $^3\mathrm{S}$	1	56558. 8		
4s(2S)13s	13s 3S	1	48320. 4			$3d(^2\mathrm{D})5d$	$5d'$ $^3\mathrm{F}$	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$	56900. 7: 56924. 1:	23. 4	
4s(2S)11f	11f ³F°	2, 3, 4	<i>48382.90</i>					4	56979. 5:	55. 4	
4s(2S)11f	11f 1F°	3	48385. 5			$3d(^2\mathrm{D})5d$	$5d'$ $^3\mathrm{P}$	0 1	57601. 0 57617. 8	16. 8	
4s(2S)13p	13p ¹P°	1	48416.0					$\stackrel{1}{2}$	57638. 2	20. 4	
4s(2S)12d	$12d~^3\mathrm{D}$	1, 2, 3	48434. 8			3d(2D)6d	6d′ ³P	0	59366. 8:	25.2	
4s(2S)14s	14s 3S	1	48484. 7					$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	59392. 0:	25. 2	
$3d^2$	3d ² ³ P	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	48524. 130 48537. 673 48563. 630	13. 543 25. 957							

May 1948.

Cai Observed Terms*

Config. 18 ² 28 ² 2p ⁶ 38 ² 3p ⁶ +	Observed Terms	
482	4s ² ¹S	
$3d^2$	3 <i>d</i> ² ³ P	
4p²	$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$ns \ (n \ge 5)$	$np \ (n \ge 4)$
$4s(^2\mathrm{S})nx$	$\begin{cases} 5-14s & ^3S \\ 5-12s & ^1S \end{cases}$	4- 7p ³ P° 4-13p ¹ P°
$3d(^2\mathrm{D})nx'$	{ 5s' ³D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$nd \ (n \ge 3)$	$nf (n \ge 4)$
$4s(^2\mathrm{S})nx$	$\left\{ \begin{array}{ccc} 3-16d & ^{3}\mathrm{D} \\ 3-& 7d & ^{1}\mathrm{D} \end{array} \right.$	4-13f ³ F° 4-11f ¹ F°
$3d(^2\mathrm{D})nx'$	4, 5d' 3S 4-6d' 3P 4, 5d' 3D 4, 5d' 3F 4, 5d' 3G	

^{*}For predicted terms in the spectra of the Ca I isoelectronic sequence, see Introduction.

Ca II

(K I sequence; 19 electrons)

Z = 20

Ground state 1s2 2s2 2p6 3s2 3p6 4s 2S4

 $4s {}^{2}S_{1/2} 95748.0 \ cm^{-1}$

I. P. 11.87 volts

The analysis is chiefly from the paper by Saunders and Russell, who extended the earlier work on this spectrum. Their estimated value of 5g 2G is entered in brackets. The terms nd 2D (n=11 to 16) and nf 2F $^\circ$ (n=8 to 10) have been added from an unpublished manuscript by Shenstone who made additional observations in the region between 2897 A and 3758 A. Shenstone has also generously furnished his recent unpublished observations of the pair of lines at 8927.34 A and 8912.10 A, having intensities 20 and 15, respectively, and classified as 4d ^2D-4f 2F $^\circ$. These lines have been used to calculate the value of 4f 2F $^\circ$ listed in the table.

The three-place entries are quoted from Wagman's paper. They are derived from his observations made with the interferometer. The writer has made slight adjustments in the rest of the term values in order to fit the various sets of observations together.

A monograph on this spectrum is needed.

REFERENCES

- F. A. Saunders and H. N. Russell, Astroph. J. 62, 1 (1925). (I P) (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 97 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
 (E D)
- N. E. Wagman, Univ. Pittsburgh Bul. 34, 1 (1937). (T) (C L)
- A. G. Shenstone, unpublished material (1930, 1946). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3p ⁶ (¹S)4s	48 ² S	1/2	0. 00		$3p^6(^1\mathrm{S})7g$	7g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right $	86780. 9	
$3p^{\mathfrak{g}}(^{1}\mathrm{S})3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	13650. 212 13710. 901	60. 689	$3p^6(^1\mathrm{S})8d$	8d 2D	$\begin{array}{ c c c c }\hline & 1/2 \\ & 1/2 \\ & 2/2 \\ \hline \end{array}$	87674. 0	1. 7
$3p^6(^1\mathrm{S})4p$	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	25191. 541 25414. 427	222. 886	$3p^6(^1\mathrm{S})8f$	8f 2F°	$\left\{\begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	87675. 7 } 88847. 6	
3p ⁶ (¹S)5s	58 2S	1/2	52166. 982			, , -			
$3p^6(^1\mathrm{S})4d$	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	56839. 309 56858. 511	19. 202	$3p^6(^1\mathrm{S})8g$	8g ² G	$\left\{\begin{array}{c}3\frac{1}{2}\\4\frac{1}{2}\end{array}\right $	} 88883. 8	
$3p^6(^1\mathrm{S})5p$	5p 2P°	1/2 1/2	60535. 0 60613. 2	78. 2	$3p^6(^1\mathrm{S})9d$	9d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	89489. 8 89490. 8	1. 0
$3p^6(^1\mathrm{S})4f$	4f 2F°	$ \begin{cases} 2\frac{1}{2} \\ 3\frac{1}{2} \end{cases} $	60613. z 68056. 96		$3p^6(^1\mathrm{S})9f$	9f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 90300.0	
3p ⁶ (¹ S)6s	6s ² S	1/2	7 0677. 61		$3p^6({}^1\!{ m S})9g$	9g ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	90326. 4	
$3p^{6}(^{1}\mathrm{S})5d$	5d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	72722. 11 72730. 77	8. 66	3p6(1S)10d	10d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	90755. 3 90756. 1	0. 8
$3p^6(^1\mathrm{S})6p$	6p 2P°	1½ 1½	74485. 8 74521. 7	35. 9	$3p^6({}^1\!\mathrm{S})10f$	10f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	91338. 0	
$3p^{6}(^{1}{ m S})5f$	5f ² F°	$\left\{\begin{array}{cc}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	} 78027.8		$3p^6({}^1{ m S})11d$	11d ² D	$\left\{\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}\right.$	91674. 0	
$3p^6(^1\mathrm{S})5g$	5g 2G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	[78163]		$3p^6(^1\mathrm{S})12d$	12d ² D	$\left\{\begin{array}{cc} 1\frac{1}{2}\\ 2\frac{1}{2}\end{array}\right.$	92360. 9	
$3p^6(^1{ m S})7s$	7s 2S	1/2	79449. 9		$3p^6({}^1{ m S})13d$	13d ² D	$\left\{\begin{array}{c}1\frac{1}{2}\\2\frac{1}{2}\end{array}\right.$	92885. 0	
$3p^{6}(^{1}\mathrm{S})6d$	6d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	80523. 47 80528. 06	4. 59	$3p^6(^1\mathrm{S})14d$	14d ² D	$ \left\{ \begin{array}{c} 272 \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	93299. 6	
$3p^6(^1\!{ m S})6f$	6f 2F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	83458. 4		$3p^6(^1\mathrm{S})15d$	15d ² D	$\left\{egin{array}{c} 2/2 \ 1/2 \ 2/2 \end{array} ight.$	} 93628. 8	
$3p^{6}(^{1}\mathrm{S})6g$	6 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	} 83540. 0		$3p^6(^1{ m S})16d$	16d ² D	$ \left\{ \begin{array}{c} 2/2 \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} \right. $	} 93896. 4	
$3p^6(^1\mathrm{S})8s$	8s 2S	1/2	84302. 6				272)	
$3p^6(^1\mathrm{S})7d$	7d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	84935. 4 84938. 3	2. 9	Ca III (¹S ₀)	Limit		95748.0	
$3p^6(^1\mathrm{S})7f$	7f 2F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	86727. 5						

May 1948.

(A r sequence; 18 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 {}^{1}S_0$

 $3p^6$ $^{1}S_0$ 413127 cm⁻¹

I. P. 51.21 volts

This spectrum is incompletely analyzed. The present list has been compiled from the paper by Bowen, who has classified 137 lines in the region between 403 A and 4081 A.

The Paschen notation as given by Bowen is entered in column one of the table, under the heading "A I". Bowen remarks, however, that these assignments are in many cases doubtful for levels having the 3d configuration. The writer has, nevertheless, adopted them tentatively in order to introduce the jl-coupling notation in the general form suggested by Racah, as in the case of all spectra like A1. The pairs $nd[3\frac{1}{2}]^{\circ}$ and $nd[1\frac{1}{2}]^{\circ}$ are partially inverted as compared with Ne 1.

The LS-designations ns $^3P_{210}^{\circ}$ $^1P_1^{\circ}$ can probably be safely assigned to the levels ns_5 , ns_4 , ns_3 , ns_2 , respectively.

REFERENCE

I. S. Bowen, Phys. Rev. 31, 499 (1928). (I P) (T) (C L)

Ca III

Ca III

Aı	Bowen	Config.	Desig.	J	Level	Αı	Bowen	Config.	Desig.	J	Level
$1p_0$	3p	3p6	3p6 1S	0	0. 0	$2p_5$	$4p_5$	$3p^5(^2\mathrm{P^{m{\circ}}_{15}})4p$	4p [½]	0	282072
$3d_5$	$3D_1$	$3p^5(^2\mathrm{Pi_{5}})3d$	3d [½]°	0 1	203845. 1	$\begin{array}{c}2p_4\\2p_3\end{array}$	$\begin{array}{ c c c c }\hline 4p_4 \\ 4p_3 \end{array}$	$3p^5(^2 ext{P}^{\circ}_{52})4p$	4p' [1½]	1 2	281136. 3 281878. 8
$3d_4$	$3D_3$	"	3d [3½]°	4 3	213378. 3	$2p_2$	$4p_2$	"	4p' [½]	1 0	282568. 4
$3d_3 \ 3d_2$	$3D_2 \ 3D_5$	"	3d [1½]°	2 1	204835. 4 224552. 4	$4d_5$	$4D_1$	$3p^5(^2\mathrm{P}_{134}^\circ)4d$	4d [½]°	0 1	322998.9
$3d_1^{\prime\prime}$	3D₄	"	3d [2½]°	2 3	214332. 3	4d4	$4D_3$	"	4d [3½]°	4 3	326182
$3s_1^{\prime\prime\prime\prime} \ 3s_1^{\prime\prime\prime}$	$3D_6$ $3D_8$	$3p^{5}(^{2}\mathrm{P}_{5}^{\circ})3d$	3d' [2½]°	2 3	225823. 2 228411. 6	$4d_3$	$4D_2$	″	4d [1½]°	2 1	323650. 6
$3s_1^{\prime\prime} \\ 3s_1^{\prime}$	$3D_7 3D_9$	"	3d' [1½]°	2 1	227387. 8 232831. 4	4d''	4D4	"	4d [2½]°	2 3	328086.5
$1s_5 \\ 1s_4$	485 484	$3p^{5}(^{2}\mathrm{Pi}_{5})4s$	4s [1½]°	2 1	242543. 5 243927. 0	4s'''	$4\mathrm{D}_5$	$3p^5(^2 ext{P}_{55}^{\circ})4d$	4d' [2½]°	2 3	<i>335285. 9</i>
$1s_3\\1s_2$	4s ₃ 4s ₂	$3p^5(^2\mathrm{P}_{5/2}^{\circ})4s$	48' [½]°	0 1	245608. 4 247693. 4	2s ₅ 2s ₄	5s ₅ 5s ₄	$3p^{5}(^{2}\mathrm{P_{11/2}^{5}})5s$	5s [1½]°	2 1	327917 328580. 4
$2p_{10}$	$4p_{10}$	$3p^5(^2\mathrm{P^\circ_{11/2}})4p$	4p [½]	1	272185. 4	$2s_3 \\ 2s_2$	$5s_3$ $5s_2$	$3p^5(^2\mathrm{P}^{\circ}_{56})5s$	58' [½]°	0	331042. 7 331398. 6
$\begin{array}{c} 2p_9 \\ 2p_8 \end{array}$	$\begin{array}{ c c c c }\hline 4p_9\\ 4p_8\\ \end{array}$	"	4p [2½]	3 2	277018. 8 277377. 5			G (0D)	¥		410107
$\begin{array}{c}2p_{7}\\2p_{6}\end{array}$	$\begin{array}{ c c c c }\hline 4p_7 \\ 4p_6 \\ \end{array}$	"	4p [1½]	1 2	278616. 7 279738. 2			Ca IV (2P ₁) Ca IV (2P ₂)	Limit Limit		413127 416261

May 1948.

Ca III OBSERVED LEVELS*

Config. 1s ² 2s ² 2p ⁶ 3s ² +	Observe	ed Terms	
$3p^6$	3p ⁶ ¹ S		
	$ns (n \ge 4)$		
3p ⁵ (² P°)nx	4, 5s ³ P° 4, 5s ¹ P°		
	jl-Coupling Notation	on .	
	Observe	ed Levels	
	$ns \ (n \ge 4)$	$np \ (n \ge 4)$	$nd \ (n \ge 3)$
3p ⁵ (² P ₁ ;;)nx	4, 5s [1½]°	$egin{array}{ccccc} 4p & [& \frac{1}{2}] \\ 4p & [& 2\frac{1}{2}] \\ 4p & [& & 1\frac{1}{2}] \\ \end{array}$	3, 4d [½]° 3, 4d [3½]° 3, 4d [1½]° 3, 4d [2½]°
$3p^5(^2 ext{P}_{55}^{\circ})nx'$	4, 58'[½]°	$4p'[1\frac{1}{2}] 4p'[\frac{1}{2}]$	3, 4d'[2½]° 3d'[1½]°

^{*}For predicted levels in the spectra of the AI isoelectronic sequence, see Introduction.

Ca IV

(Cli sequence; 17 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^2P_{144}^{\circ}$

$$3p^5 \ ^2P_{1\frac{1}{2}}^{\circ}$$
 542000 cm⁻¹

I. P. 67 volts

Various investigators disagree about the interpretation of this spectrum. Tsien has published 34 classified lines in the region between 249 A and 669 A, all but one of which are due to combinations from the ground term. His terms are listed except for 4s ⁴P, 4s ²P, and 4s' ²D, which are from the paper by Kruger and Phillips. Further study of this spectrum is desirable to confirm the present analysis.

The limit (entered in brackets in the table) is from Edlén, who has estimated it by extrapolation along the isoelectronic sequence.

REFERENCES

- I. S. Bowen, Phys. Rev. 31, 498 (1928). (C L)
- B. Edlén, Zeit. Phys. 104, 410 (1947). (I P)
- P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)
- W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 118 (1939). (T) (C L)

Ca IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^5$	3p ⁵ ² P°	1½ ½ ½	0 3115	-3115	3s ² 3p ⁴ (3P)4s	4s 2P	1½ ½ ½	298175 300249	-2074
3s 3p6	3p ⁶ ² S	1/2	152430		$3s^2 \ 3p^4(^1{\rm D}) 3d$	3d′ 2D	$2\frac{1}{2}$ $1\frac{1}{2}$	303591	
$3s^2 \ 3p^4(^3P)3d$	3d 4F	$egin{array}{c} 4\frac{1}{2} \\ 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$			$3s^2 \ 3p^4(^1{\rm D})3d$	3d′ 2S	1/2	303844	
			221944		3s ² 3p ⁴ (1D)4s	4s′ 2D	$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	314079 314373	294
3s ² 3p ⁴ (³ P)3d	3d 4D	$3\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	227427 227827 228691	400 864	$3s^2 \ 3p^4(^3{ m P})4p$	4p 2P°	1½ ½ ½	329277	
$3s^2 \ 3p^4(^3{ m P}) 3d$	$3d$ $^2\mathrm{D}$		228429		$3s^2 3p^4(^1S)4s$	4s'' 2S	1/2	337207	
38- 3p-(-1)3u	00 -15	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	230113	1684	$3s^2 \ 3p^4(^1\mathrm{D})5s$	5s′ ² D	$egin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	399755 400949	-1194
$3s^2 \ 3p^4(^3P) \ 3d$	3d ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	266840				172	100949	
3s ² 3p ⁴ (3P)4s	4s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	291373 293011 294291	$-1638 \\ -1280$	Ca v (3p4 3P2)	Limit		[542000]	

March 1948.

Ca IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶			0	bserved Te	rms		
$3s^2 3p^5$		3p ⁵ ² P°					
3s 3p6	$3p^6$ 2S						
		ns $(n \ge 4)$		$np \ (n \ge 4)$		$nd (n \ge 3)$	
3s ² 3p ⁴ (³ P)nx	{	4s ⁴ P 4s ² P		4p 2P°		$\begin{array}{cc} 3d & ^4\mathrm{D} \\ 3d & ^2\mathrm{D} \end{array}$	$\frac{3d}{3d}$ $^4\mathrm{F}$ $\frac{1}{3d}$ $^2\mathrm{F}$
$3s^2 3p^4(^1D)nx'$			4, 58′ ² D		3d′ 2S	$3d^{\cdot 2}D$	·
$3s^2 3p^4({}^{1}S)nx''$	4s" 2S						

^{*}For predicted terms in the spectra of the Cl I isoelectronic sequence, see Introduction.

Ca v

(S I sequence; 16 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^3P_2$

 $3p^4$ 3P_2 680800 cm⁻¹

I. P. 84.39 volts

The terms are from the papers by Bowen and by Tsien with the revised value of $3p^5$ ¹P° suggested by Edlén.

More than 70 lines have been classified in the interval 184 A to 656 A. Intersystem combinations connecting the singlet and triplet terms have been observed.

REFERENCES

M. Ram, Indian J. Phys. 8, 167 (1933). (T) (C L)

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)

B. Edlén, Zeit. Phys. 104, 192 (1937). (I P)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 131 (1939). (T) (C L)

B. Edlén, Phys. Rev. 62, 434 (1942). (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0 2404 3276	-2404 -872	$3s^2 \ 3p^3(^2{\rm D}^{\circ})4s$	4s' 3D°	1 2 3	369590 369696 369959	106 263
$3s^2 \ 3p^4$	3p4 ¹D	2	18831		$3s^2~3p^3(^2\mathrm{D}^\circ)4s$	4s′ ¹D°	2	374728	
3s ² 3p ⁴ 3s 3p ⁵	$3p^4$ ¹ S $3p^5$ ³ P°	0 2	43847 154664	-2092	$3s^2 \ 3p^3(^2{ m P}^{\circ})4s$	4s'' ³ P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	387039 387226 387652	187 426
		1 0	156756 157897	-1141	$3s^2 \ 3p^3(^2\mathrm{P}^\circ)4s$	4s'' ¹P°	1	392283	
$3s 3p^5$	3p⁵ ¹P°	1	197849		$3s^2 \ 3p^3(^4S^\circ) 5s$	58 3S°	1	501127	
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)3d$ $3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d′ ¹F° 3d′′ ³P°	3 2	254125 298204	-1331	3s ² 3p ³ (² D°)5s	5s′ ³D°	$\begin{array}{c}1\\2\\3\end{array}$	524651 524770 525053	119 283
		1 0	299535	1001	$3s^2 3p^3(^2D^\circ)5s$	58′ ¹D°	2	526523	
$3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$ $3s^2 \ 3p^3(^2\mathrm{P}^\circ)3d$	3d'' ¹P° 3d'' ³D°	1 3	302184		3s² 3p³(²P°)5s	5s'' ³P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	542249 542650	401
		$\frac{2}{1}$	309834 310945	-1111	$3s^2 \ 3p^3(^2\mathrm{P}^\circ)5s$	5s'' ¹P°	1	544143	
$3s^2 \ 3p^3(^2\mathrm{P}^\circ) 3d$	3d'' ¹D°	2	329230						
$3s^2 \ 3p^3 ({}^4{ m S}^\circ) 4s$	4s 3S°	1	350914		Ca vi (4S ₁ %)	Limit		680800	

December 1947.

Ca v Observed Terms*

Config. 1s ² 2s ² 2p ⁶ +			Observed T	Cerms		
3s ² 3p ⁴	$\left\{\begin{array}{c} 3p^{4} \ ^{1}S \end{array}\right.$	3p4 3P	3p4 1D			
3s 3p ⁵	{	$_{3p^{5}}^{3}{}^{3}{ m P}^{\circ} \ _{3p^{5}}^{3}{}^{1}{ m P}^{\circ}$				
		$ns (n \ge 4)$			$nd \ (n \ge 3)$	
$3s^2 3p^3(^4S^\circ)nx$	4, 5s 3S°					
$3s^2 \ 3p^3(^2\mathrm{D}^\circ)nx'$	{		4, 5s' ³ D° 4, 5s' ¹ D°			3d′ ¹F°
3s ² 3p ³ (² P°)nx''	{	4, 5s" ³ P° 4, 5s" ¹ P°		3d" ³ P° 3d" ¹ P°	3d" ³ D° 3d" ¹ D°	

^{*}For predicted terms in the spectra of the S I isoelectronic sequence, see Introduction.

(P I sequence; 15 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

 $3p^3 \, {}^4S_{11/2}^{\circ}$ cm⁻¹

I. P.

volts

The terms are from the paper by Tsien, who includes those given earlier by Bowen. Fifty-three lines have been classified in the interval between 228 A and 766 A. For the term $3p^4$ P the value given by Mrs. Beckman is quoted in place of that by Tsien.

The relative positions of the doublet and quartet systems of terms were estimated from the irregular doublet law. No intersystem combinations have been observed, as indicated by the uncertainty x in the table and the brackets around $3p^3$ $^2D_{14}^{\circ}$.

REFERENCES

I. S. Bowen, Phys. Rev. 46, 791 (1934). (T) (C L)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 74 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (C L) W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 136 (1939). (T) (C L)

Ca VI

Ca VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	3p³ 4S°	1½	0			3		303651+x	
$3s^2 \ 3p^3$	3p³ 2D°	$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	[27000] + x $27417 + x$	417	$3s^2 3p^2(^1D)3d$	3d′ 2S	1/2	320397+x	
$3s^2 \ 3p^3$	3p³ ²P°	$1\frac{1}{2}$ $1\frac{1}{2}$	44754+x	556	$3s^2 3p^2(^1\mathrm{D})3d$	3d' ² D	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$321084 + x \ 321584 + x$	-500
3s 3p4	3p4 4P		45310 + x 155792	— 1983	$3s^2 3p^2(^1D)3d$	3d′ ² P	1½ 1½	$332138 + x \\ 333492 + x$	1354
		$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	157775 158833	-1058	$3s^2 3p^2({}^1S)3d$	3d'' ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	360821+x	
	$\begin{array}{c c} 1 & (^2D) \\ 2 & \end{array}$	$egin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c c} 175758 + x \\ 176157 + x \end{array}$	-399	$3s^2 3p^2(^3P)3d$	3 <i>d</i> ² D	$egin{array}{c c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	383743+x	
3s 3p4	3p4 2D	$egin{array}{c} 1^{1/2}_{72} \ 2^{1/2}_{72} \end{array}$	$\begin{array}{c c} 193412 + x \\ 193613 + x \end{array}$	201	3s ² 3p ² (³ P)4s	4s 4P		433849 435286	1437
3s 3p4	3p4 2P	1½ ½	223170+x				$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \end{array}$	437392	2106
3s 3p4	$3p^4$ ² S	1/2	231318+x		$3s^2 \ 3p^2(^3P)4s$	4s ² P	$1\frac{1}{2}$	442423 + x $444890 + x$	2467
$3s^2 \ 3p^2(^3P)3d$	3d ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	291165+x		$3s^2 \ 3p^2(^1{ m D})4s$	4s' ² D	$2\frac{1}{2}$ $1\frac{1}{2}$	457458 + x 457525 + x	-67
$3s^2 \ 3p^2(^3P) \ 3d$	3 <i>d</i> ² P	1½ ½ ½	294798 + x $297250 + x$	-2452					

November 1947.

Ca vi Observed Terms*

Config. 18 ² 28 ² 2p ⁶ +		Observed Terms										
$3s^2 \ 3p^3$	$\left\{3p^3 \ ^4\mathrm{S}^{\circ} ight.$	3p³ 2P°	$3p^3$ ² D°									
3s 3p4	$\left\{_{3p^4}\right{^2\mathrm{S}}$	$rac{3p^4}{3p^4} m^4 P$	3p4 2D									
		$ns (n \ge 4)$			nd ($n \ge 3$)						
$3s^2 3p^2(^3P)nx$	{	4s ⁴ P 4s ² P			3d/ ² P	3 <i>d</i> ² D	3d ² F					
$3s^2 3p^2(^1\mathrm{D})nx'$			4s' 2D	3d′ 2S	3d′ ²P	3d′ ² D						
$3s^2 3p^2({}^1\mathrm{S})nx''$						3d′′ ²D						

^{*}For predicted terms in the spectra of the PI isoelectronic sequence, see Introduction.

Ca VII

(Si I sequence; 14 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2 ^3P_0$

$$3p^2$$
 3P_0 1030000 cm⁻¹

I. P. 128 volts

The terms are from the paper by Phillips, who includes those found by Whitford and by Robinson. In the interval between 202 A and 640 A, 33 lines have been classified in all. Intersystem combinations connecting the singlet and triplet terms have been observed.

The limit entered in brackets in the table has been estimated by Phillips.

REFERENCES

- A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L)
- H. A. Robinson, Phys. Rev. 52, 725 (1937). (T) (C L)
- L. W. Phillips, Phys. Rev. 55, 708 (1939). (I P) (T) (C L)

Ca VII

Ca VII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^2$	3p ² ³ P	0 1 2	0 1627 4070	1627 2443	3s ² 3p(² P°)3d	3d ³P°	2 1 0	286232 288169 289011	1937 842
$3s^2 \ 3p^2$ $3s \ 3p^3$	$3p^2 \ ^1{ m D} \ 3p^3 \ ^3{ m D}^{\circ}$	2 1 2 3	21870 160160 160228 160527	68 29 9	$3s^2 \ 3p(^2{ m P}^{ m o})3d$ $3s^2 \ 3p(^2{ m P}^{ m o})4s$	3d ³ D° 4s ³ P°	1 2 3	302663 303151 303349 490012	488 198 906
$3s \ 3p^3$ $3s \ 3p^3$	$3p^3 ^3\mathrm{P}^{\circ} \ 3p^3 ^3\mathrm{S}^{\circ}$	2, 1, 0	185405 245232				$\frac{1}{2}$	490918 494264	3346
$3s 3p^3$	3p ³ ¹ P°	1	252493		Ca viii (2P%)	Limit		[1030000]	

October 1947.

(Al 1 sequence; 13 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\frac{1}{2}}^{\circ}$

 $3p\ ^2\mathrm{P}_{1/2}^{\circ}\ 1189000\ \mathrm{cm}^{-1}$

I. P. 147 volts

The analysis is by Whitford and by Phillips. Thirty-five lines have been classified in the interval between 114 A and 596 A. No intersystem combinations have been observed, but Phillips estimates that $3p^2$ $^4P_{14}$ is approximately 128000 cm⁻¹ above the ground state. This value is entered in brackets in the table. The uncertainty x may exceed ± 1000 cm⁻¹.

Using the method suggested by Edlén, the writer has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

A. E. Whitford, Phys. Rev. 46, 793 (1934). (T) (C L)L. W. Phillips, Phys. Rev. 55, 708 (1939). (T) (C L)

Ca VIII

Ca VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² (1S)3p	3p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	0 4305	4305	3s 3p(3P°)3d	3d 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	410725 + x 411283 + x	558 381
3s 3p²	3p ² ⁴ P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	[128000] + x $129581 + x$ $131942 + x$	1581 2361	$3s^2({}^1{ m S})4s$	4s ² S	$2\frac{1}{2}$ $3\frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	118
$3s\ 3p^2$	$3p^2$ ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	171573 171828	255	3s 3p(3P°)4s	4s 4P°	$egin{array}{c} 7^2 \\ \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	687650 + x 689017 + x	1367
$3s \ 3p^2$	$3p^2 {}^2S$	1/2	216590		$3s^2(^1\mathrm{S})4d$	$4d^{-2}D$		691726 + x 697981 698172	191
3s ² (¹ S)3d	3d 2D		233584 282362		$3s^2(^1\mathrm{S})5d$	5 <i>d</i> ² D		872860 873070	210
$3p^3$	$3p^3$ ${}^4\mathrm{S}^\circ$	2½ 1½	282574 $344176 + x$	212	C (15.)	7 3mm 24		[110000]	
3s 3p ² 3s ² (¹ S)3d	3p ² ² P	1/2 1/2 1/2 1/2 2/2	216590 231012 233584 282362 282574	2572 212			1½ 2½ 1½ 2½ 1½ 2½	691726 + x 697981 698172 872860	

September 1947.

Ca vIII OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observe	d Terms	
$3s^2(^1S)3p$		3p 2P°		
3s 3p²	$\left\{_{3p^2}\right{\mathrm{S}}$	$rac{3p^2}{3p^2}rac{4}{2} ext{P}$	3p² ²D	
$3p^{3}$	3p³ 4S°			
		ns $(n \ge 4)$		$nd (n \ge 3)$
$3s^2(^1\mathrm{S})nx$	4s 2S			3-5d ² D
3s 3p(3P°)nx		4s 4P°		3d 4D°

^{*}For predicted terms in the spectra of the Al I isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 20

Ground state 1s2 2s2 2p6 3s2 1S0

 $3s^2$ 1S_0 1519000 \pm cm⁻¹

I. P. 188± volts

Twenty-eight lines have been classified in the range between 100 A and 828 A. The triplet terms are from Parker and Phillips; the singlets from Tsien. By extrapolation along the sequence, Mrs. Beckman has classified a line at 693.824 A as the intersystem combination $3s^2$ $^{1}S_0-3p$ $^{3}P_1^{\circ}$. The listed values of the triplet terms have been adjusted to fit this assignment.

From isoelectronic sequence data, the writer has extrapolated the value of the limit, using the method suggested by Edlén. This value is entered in brackets in the table. Although this estimate may be in error by more than ± 1000 cm⁻¹, it gives an approximate value of the ionization potential.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 55 (Almqvist and Wiksells Boktryckeri – A.–B., Uppsala, 1937). (C L)

W.-Z. Tsien, Chinese J. Phys. 3, No. 2, 142 (1939). (T) (C L)

W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

Ca IX Ca IX

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
382	3s ² ¹S	0	0		3s(2S)4s	4s 3S	1	760002	
$3s(^2\mathrm{S})3p$	3p 3P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	142635 144130 147370	1495 3240	3s(2S)4d	4d ³D	1 2 3	916652 916780 916990	128 210
$3s(^2\mathrm{S})3p$ $3s(^2\mathrm{S})3d$	3p ¹ P° 3d ¹ D	1 2	214487. 8 335195. 0		3s(2S)4f	4f ³ F°	2 3 4	954003 954023 954055	20 32
$3p^2$	$3p^2$ $^3\mathrm{P}$	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	339420 341333 344935	1913 3602	$3s(^2\mathrm{S})5d$	5 <i>d</i> ³ D	1 2 3	1137720 1137880	160
3s(2S)3d	3d ³D	1 2 3	411525 411652 411858	127 206	Ca x (2S _{1/2})	Limit		[1519000]	

March 1948.

(Na I sequence; 11 electrons)

Z = 20

Ground state 1s2 2s2 2p6 3s 2S14

3s $^2S_{\frac{1}{2}}$ 1704660 cm⁻¹

I. P. 211.29 volts

Kruger and Phillips extended the earlier analysis by Edlén. Their absolute term values are derived from three members of the ²D-series. One term, 5s ²S has been added from the work of Tsien but adjusted to agree with those by Kruger and Phillips.

Twenty-two lines have been classified in the range from 93 A to 574 A.

REFERENCES

W.-Z. Tsien, Chinese J. Phys 3, No. 2, 145 (1939). (T) (C L) P. G. Kruger and L. W. Phillips, Phys. Rev. 55, 352 (1939). (I P) (T) (C L)

Ca x

Ca X

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s	3s ² S	1/2	0		4 <i>f</i>	4f 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1016113 1016208	95
3p	3p ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	174214 179295	5081	5s	5s ² S	1/2	1170098	
3d	$3d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	417113 417527	414	5d	5 <i>d</i> ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1248686 1248 7 91	105
48	4s ² S	1/2	832838	,	5 <i>f</i>	5f ² F°	2½ 3½	1263323 1263383	60
4 <i>p</i>	4p 2P°	1½ 1½	899305 901210	1905	6 <i>f</i>	6f ² F°	2½ 3½ 3½	1398140	
4d	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	987259 987484	225					
					Ca x1 (1S ₀)	Limit		1704660	

June 1947.

Ca XI

(Ne I sequence; 10 electrons)

Z = 20

Ground state 1s2 2s2 2p6 1S0

 $2p^6$ 1S_0 4774300 cm⁻¹

I. P. 591.8 volts

Eleven lines between 25 A and 35 A have been classified by Edlén and Tyrén as combinations with the ground term. Their absolute term values have been extrapolated along the Ne I isoelectronic sequence.

By analogy with Ne 1, the jl-coupling notation in the general form suggested by Racah is introduced.

The unit adopted by Edlén and Tyrén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (I P) (T) (C L)
- G. Racah, Phys. Rev 61, 537 (L) (1942).

Ca XI

Ca XI

Authors	Config.	Desig.	J	Level	Authors	Config.	Desig.	J	Level
2p ¹ S ₀	$2s^2 \ 2p^6$	2p6 1S	0	0	3p' ¹ P ₁	2s 2p6(2S)3p	3p ¹P°	1	3708900
3s ³P ₁	2s ² 2p ⁵ (² P ₁ ²)3s	3s [1½]°	2 1	2810900	4s ³ P ₁	2s ² 2p ⁵ (² P _{11/2})4s	48 [1½]°	2 1	3753900
3s ¹ P ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{\mathcal{A}}^{\circ})3s$	3s' [½]°	0	2839900	4s ¹ P ₁	$2s^2 \ 2p^5 (^2 ext{P}_{ ext{ iny 2}}^{\circ}) 4s$	48' [½]°	0 1	3781900
3d ³ P ₁	$2s^2 \ 2p^5 (^2\mathrm{P}_{134}^\circ) 3d$	3d [½]°	0 1	3199300	4d ¹ P ₁	2s ² 2p ⁵ (² P _{11/2})4d	4d [1½]°	1	3919000
3d ¹ P ₁	"	3d [1½]°	1	3 239700	$4d$ $^3\mathrm{D_1}$	$2s^2 \ 2p^5 (^2\mathrm{P}_{m{arkappi}}^{m{\circ}}) 4d$	4d' [1½]°	1	3 9484 0 0
$3d$ $^3\mathrm{D}_1$	$2s^2 \ 2p^5 (^2\mathrm{P}_{55}^{\circ}) 3d$	3d' [1½]°	1	3284300					
3p′ ³P ₁	$2s \ 2p^6(^2\mathrm{S})3p$	3p 3P°	2 1 0	3692900		Ca xii (2P ₁ ;) Ca xii (2P;2)		Limit Limit	4774300 4804328

April 1947.

Caxi Observed Levels*

Config. $1s^2+$		Observed Terms											
2s ² 2p ⁶	2p ⁶ ¹S	2p ⁶ ¹S											
	$ns \ (n \ge 3)$	$np \ (n \ge 3)$	$nd \ (n \ge 3)$										
$2s^2 \ 2p^5(^2\mathrm{P^o})nx$	3, 4s ³ P° 3, 4s ¹ P°		3d ³ P° 3, 4d ³ D° 3, 4d ³ D°										
2s 2p ⁶ (2S)nx	{	3p 3P° 3p 1P°											
	jl-Coupling	Notation											
	C	Observed Pair	rs										
	$ns \ (n \ge 3)$		$nd \ (n \ge 3)$										
$2s^2~2p^5(^2\mathrm{Pi}_{15})nx$	3, 4s [1½]°		3d [½]° 3, 4d [1½]°										
$2s^2 \ 2p^5(^2\mathrm{P}_{55}^{\circ})nx'$	3, 4s'[½]°		3, 4d'[1½]°										

^{*}For predicted levels in the spectra of the Ne $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

Ca XII

(F 1 sequence; 9 electrons)

Z = 20

Ground state 1s² 2s² 2p⁵ ²P^o_{1½}

 $2p^{5} {}^{2}P_{1\frac{1}{2}}^{\circ}$ cm⁻¹

I. P. 655 volts

Edlén and Tyrén have classified 9 lines in the range 27 A to 32 A. They have published no term array because the analysis is so incomplete. In the 1942 paper Edlén lists the interval of the ground term as 30028 cm⁻¹, a value based on unpublished material. From these data preliminary term values have been calculated and entered in the table.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 206 (1936). (C L)
- B. Edlén, Zeit. Astroph. 22, 59 (1942). (I P) (T)

Ca XII

Edlén	Config.	Desig.	J	Level	Interval
$2p {}^{2}P_{2} \ {}^{2}P_{1}$	$2s^2\ 2p^5$	$2p^5$ $^2\mathrm{P}^\circ$	1½ ½ ½	0 30028	-30028
3s ⁴ P ₃ ⁴ P ₂	2s ² 2p ⁴ (³ P)3s	3s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	3062300 3077100	-14800
3s ² P ₂ ² P ₁	2s ² 2p ⁴ (³ P)3s	3s ² P	1½ ½ ½	3097900	
$\overline{3s}$ $^{2}D_{3}$ $^{2}D_{2}$	$2s^2 \ 2p^4(^1{ m D})3s$	3s′ 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	3158600 3158900	-300
$\overline{3d}$	$2s^2 \ 2p^4(^1{\rm D})3d$	3d' X		3574200	
$ \overline{\overline{\overline{3}}} {}^{2}\mathrm{D}_{3} \\ {}^{2}\mathrm{D}_{2} $	$2s^2 2p^4(^1S)3d$	3d'' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	3648000 3652400	-4400

March 1947.

Ca XIII

(O i sequence; 8 electrons)

Z = 20

Ground state 1s² 2s² 2p⁴ ³P₂

 $2p^4 \, {}^3P_2$ cm⁻¹

I.P.

volts

This spectrum has not been analyzed. Edlén suggests the possibility that the line observed in the coronal spectrum at 4086.3 A (24465 cm⁻¹) may be due to the forbidden transition $2p^4$ $^3P_2-2p^4$ 3P_1 of Ca XIII. This separation for the leading components of the ground term is not inconsistent with that extrapolated along the O I isoelectronic sequence.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 62 (1942). (T)

March 1947.

Ca xv

(C i sequence; 6 electrons)

Z = 20

Ground state $1s^2 2s^2 2p^2 {}^3P_0$

 $2p^2 {}^3P_0$ cm⁻¹.

I. P. volts

An extrapolation of the ground term interval along the C_I isoelectronic sequence indicates that the separations of the components of the ground term, $2s^2 2p^2$ ³P, should be approximately 17700 cm⁻¹, according to Edlén. He suggests that the line observed in the solar corona at 5694.42 A, wave number 17556 cm⁻¹, may tentatively be identified as [Ca xv]?, $2s^2 2p^2$ ³P₀— $2s^2 2p^2$ ³P₁.

REFERENCE

B. Edlén, Zeit. Astroph. 22, 59 (1942). (T)

March 1947

SCANDIUM

Sc I

Z=21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d 4s^2 {}^2D_{1\frac{1}{2}}$

 $a^{2}D_{1\frac{1}{2}}$ 52920 cm⁻¹ I. P. 6.56 volts

The analysis is chiefly from the paper by Russell and Meggers with some additions from unpublished manuscript generously furnished by Russell. In the published analysis the terms a 4 P, y 4 P°, and z 4 S° were unconnected with the rest and a 4 P $_{>2}$ was assigned the value x. The connection is now established from observed combinations.

Similarly, the group a ²P, v ²D°, z ²S° and u ²D° were connected with the rest only by the relation a ²P, y = y. Ufford has predicted the relative position of a ²P. His estimated value, a ²P, y = 21400, is entered in brackets in the table and has been added to all levels in this group of terms. The uncertainty is indicated by y since the group is not connected with the rest by observed combinations.

The two terms, f ⁴P and x ⁴D° have been added from the unpublished material mentioned above. The limit is also from a recalculation of the series recently made by Russell for inclusion here.

Russell and Meggers have noted that the assignment of the limit terms to the two triads z ²P° z ²D° z ²F°, y ²P° y ²D° y ²F° is uncertain. One triad has the limit a ³D in Sc II and the other, a ¹D. Russell, in discussing the behavior of the d electrons in related spectra, concludes that the higher triad has as its limit the term of higher multiplicity. (See 1927 reference below.)

The doublet and quartet terms are connected by observed intersystem combinations.

In the 1925 paper mentioned below some observed Zeeman patterns are given. Catalán has calculated from these patterns the g-values listed in the table.

REFERENCES

- S. Goudsmit, J. van der Mark, and P. Zeeman, Proc. Roy. Acad. Amsterdam 28, No. 2, 127 (1925). (Z E)
- H. N. Russell and W. F. Meggers, Sci. Papers Bur. Std. 22, No. 558, 340 (1927). (I P) (T) (C L) (G D)
- H. N. Russell, Astroph. J. 66, 201 (1927); Mt. Wilson Contr. No. 341 (1927).
- C. W. Ufford, unpublished material (July 1941). (T)
- H. N. Russell, unpublished material (Jan. 1934, May 1948). (I P) (T) (C L)
- M. A. Catalân, unpublished material (June 1948). (Z E)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs.)

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d 4s ²	a 2D	1½ 2½	0. 00 168. 34	168. 34	0. 79 1. 20	$3d^2(a\ ^3{ m F})4p$	y 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{array}$	32637. 40 32659. 21 32696. 84	21. 81 37. 63 54. 70	
$3d^2(a\ ^3{ m F})4$ s	a 4F	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array}$	11520. 15 11557. 64 11610. 24 11677. 31	37. 49 52. 60 67. 07		$3d^2(a\ ^3\mathrm{F})4p$	z ² G°	$egin{array}{c c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array}$	32751. 54 33056. 19 33151. 40	95. 21	
3d ² (a ³ F)4s	a ² F	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	14926. 24 15041. 98	115. 74	i	$3d^2(a\ ^3{ m F})4p$	x 2F°	$egin{array}{c} 2^{1}\!\!/_{2} \ 3^{1}\!\!/_{2} \ \end{array}$	33154. 01 33278. 64	124. 63	
3d 4s(a 3D)4p	2 4F°	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	15672. 55 15756. 51 15881. 76	83. 96 125. 25		3d ² (a ³ F)4p	x ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	3 361 5 . 06 33707. 25	92. 19	
3d 4s(a 3D)4p	z ⁴ D°	4½	16026. 52 16009. 71	144. 76 12. 07		$3d^3$	e ⁴ F	$egin{array}{c} 1^{1/2}_{7/2} \ 2^{1/2}_{7/2} \ 3^{1/2}_{7/2} \ \end{array}$	33763. 57 33798. 68 33846. 62	35. 11 47. 94 59. 78	
		$\begin{array}{c c} 1/2 \\ 11/2 \\ 21/2 \\ 21/2 \\ 31/2 \\ \end{array}$	16021. 78 16141. 04 16210. 80	119. 26 69. 76		3d 4s(a ³ D)5s	e ⁴ D	$4\frac{1}{2}$ $\frac{1}{2}$ $1\frac{1}{2}$	33906. 40 34390. 25 34422. 85	32. 60	
3d 4s(a ¹ D)4p	z ² D°	$egin{array}{c} 2^{1/2}_{/2} \ 1^{1/2}_{/2} \ \end{array}$	16022. 72 16096. 86	—74 . 14				$egin{array}{c} 172 \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	34480. 05 34567. 10	57. 20 87. 05	
$3d^2(b\ ^1\mathrm{D})4s$	b ² D	$\begin{vmatrix} 2\frac{1}{2} \\ 1\frac{1}{2} \end{vmatrix}$	17012. 98 17025. 36	-12.38		3d 4s(a 3D)5s	e ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	35671. 00 35745. 57	74. 57	
3d2(a 3P)4s	a 4P	$egin{array}{c} rac{1/2}{11/2} \ 21/2 \ \end{array}$	17918. 85 17947. 98 18000. 25	29. 13 52. 27		3d³:	$f^{-2}D$	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	36276. 76 36330. 49	53. 73	
3d 4s(a 3D)4p	z ⁴ P°	1½ 1½ 1½ 2½	18504. 05 18515. 77	11. 72 55. 63		$3d^3$	e 4P	$egin{array}{c} rac{1/2}{1/2} \ 1/2 \ 2/2 \ \end{array}$	36492. 82 36515. 76 36572. 80	22. 94 57. 04	
3d 4s(a ¹ D)4p	z ² P°	$egin{array}{c c} 2\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \\ \end{array}$	18571. 40 18711. 03	144. 73		$3d^2(b \ ^1\mathrm{D})4p$	w ² D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	36934. 15 37039. 7 7	105. 62	
$3d^2(a\ ^1{ m G})4s$	a ² G	$ \begin{array}{c c} 1\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	18855. 76 20237. 10	-2. 82		3d 4s(a 3D)4d	e ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	37085. 72 37148. 25	62. 53	
3d 4s(a ¹ D)4p	z ² F°	$\begin{vmatrix} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	20239. 92 21032. 78	5 3. 06		$3d^2(b \ ^1\mathrm{D})4p$	w ² P°	$\begin{array}{c c} 1\frac{1}{2} \\ \frac{1}{2} \end{array}$	37086. 31 37125. 72	-39. 41	
$3d^2(a$ $^3\mathrm{P})4\mathrm{s}$	a 2P	1/2 11/2	21085. 84 $ \begin{bmatrix} 21400 &]+y \\ 21480. 40 + y \end{bmatrix} $	80. 40		3d ² (a ³ P)4p	x 4D°	$egin{array}{c} rac{1/2}{1/2} \ 2\frac{1}{2} \ 3\frac{1}{2} \ \end{array}$	37486. 48 37553. 34 37717. 11	66. 86 163. 77	
3d 4s(a 3D)4p	y 2P°	$\left \left\{ \begin{array}{c} \frac{1/2}{1/2} \\ 1\frac{1}{2} \end{array} \right \right.$	} 2465 6. 8 0			3d 4s(a 3D)4d	g 2D	$ \begin{array}{ c c c c } \hline 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	37780. 83 37855. 50	74. 67	
3d 4s(a 3D)4p	y ² D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	24866. 18 25014. 15	147. 97	0. 82 1. 17	$3d^2(a\ ^3\mathrm{P})4p$	z 4S°	1½	38179.92		
$3d \ 4s(a \ \widehat{\bullet}) 4p$	y ² F°	2½ 3½	25584. 64 25724. 72	140. 08	0. 90 1. 14	3d ² (a ³ P)4p	y 4P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	38570. 64 38601. 50 38657. 9 3	30. 86 56. 43	
$3d^2(a\ ^3{ m F})4p$	z 4G°	2½ 3½ 4½ 5½	29022. 87 29096. 20 29189. 83 29303. 52	73. 33 93. 63 113. 69		3d 4s(a 3D)4d	e ² G	3½ 4½ 4½	38571. 70 38658. 23	86. 53	
$3d^2(a\ ^1\mathrm{S})4p$	x 2P°	1/2 1/2 1/2	30573. 10 30706. 61	133. 51	0. 68	3d 4s(a 3D)4d	e ² F	$\begin{vmatrix} 2\frac{1}{2} \\ 3\frac{1}{2} \end{vmatrix}$	38871. 60 38959. 16	87. 56	
3d2(a 3F)4p	y 4F°	$\begin{array}{ c c c }\hline & 1/2 \\ & 1/2 \\ & 21/2 \\ & 21/2 \\ & 31/2 \\ & 41/2 \\ \hline \end{array}$	31172.62 31215.76	43. 14 59. 56		3d ² (a ¹ G)4p	z 2H°	4½ 5½	39153. 42 39249. 27	95. 85	
		$\begin{vmatrix} 3\frac{1}{2} \\ 4\frac{1}{2} \end{vmatrix}$	31275. 32 31350. 81	75. 49			y ² G°	$\begin{vmatrix} 3\frac{1}{2} \\ 4\frac{1}{2} \end{vmatrix}$	39392. 95 39423. 73	30. 78	

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d 4s(a 3D)4d	f 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	39701. 30 39721. 71	20. 41 33. 22		3d ² (a ³ P)4p:	v ² D°	1½ 2½	43166.52+y $43220.74+y$	54. 22	
		$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	39754. 93 39799. 85	44. 92		3d2(a 3P)4p:	z ² S°	1/2	43337.03+y		
3d 4s(a 3D)4d	e 4G	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$ $5\frac{1}{2}$	39861. 25 39902. 65 39957. 71	41. 40 55. 06 70. 52		-	g 4D	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{array}$			
		$5^{1}_{/2}$	40028. 23	10. 02				$ 3\frac{1}{2} $	44598. 80		
$3d^2(a ^1\mathrm{G})4p$	w ² F°	$rac{2\frac{1}{2}}{3\frac{1}{2}}$	39881. 25 39889. 11	7. 86		$4p^2(f^3\mathrm{P})3d$	h ⁴ F	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	44823. 06 44909. 50 45016. 37	86. 44 106. 87	
3d 4s(a 3D)4d	f 4F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	40521. 21 40554. 98 40604. 02	33. 77 49. 04			i 4F		45125. 57 47898. 95	109. 20	
			40670. 87	66. 85			7 -F	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	47946. 25 48071. 77	47. 30 125. 52 251. 81?	
	$h^{-2}D$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	40802. 72 40825. 65	22. 93			u ² D°		48323. 58? 51231. 50+y		
3d 4s(a 3D)4d	f 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	41447. 02 41474. 88 41505. 65	27. 86 30. 77				$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	51329. 54+y	98. 04	
$3d^2(a$ $^3\mathrm{F})5s$	g 4F	$\begin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	41921. 94 41960. 86 42015. 57 42085. 01	38. 92 54. 71 69. 44		Se II (a ³ D ₁)	Limit		52920		

June 1948.

Sc I OBSERVED TERMS*

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$						(Observed	Terms						
3d 4s ²		a ² D												
$3d^3$	{e ⁴P	f ² D:	e 4 F											
		ns ($n \ge 4$)				np ($n \ge 4$)				nd ($n \ge 3$)	
3d 4s(a 3D)nx	{	e ⁴ D e ² D				z ⁴ P° y ² P°	z ⁴ D° y ² D°	z ⁴ F° y ² F°			f 4P e 2P	f 4D g 2D	f 4F e 2F	e ⁴ G e ² G
3d 4s(a ¹ D)nx						z 2P°	z ² D°	z ${}^2\mathrm{F}^{\circ}$						
$3d^{2}(a^{3}F)nx$	{		a, g ⁴ F a ² F				$_{x}^{y}$ $_{^{2}\mathrm{D}^{\circ}}^{^{\circ}}$	y 4F° x 2F°	z 4G° z 2G°					
$3d^2(b^{-1}\mathrm{D})nx$		b $^2\mathrm{D}$				w ² P°	$w^{-2}\mathrm{D}^{\circ}$							
$3d^2(a$ ¹ S) nx						x ² P°								
$3d^2(a^3P)nx$	$\begin{cases} a & ^{4}P \\ a & ^{2}P \end{cases}$				z 4S° z 2S°:	y 4P°	$\begin{array}{cc} x & ^{4}\mathrm{D}^{\circ} \\ v & ^{2}\mathrm{D}^{\circ} \end{array}$:							
$3d^2(a {}^1\mathrm{G})nx$				a 2G				w ${}^2\mathrm{F}^{\circ}$	y ² G°	z ² H°				
$4p^2(f^3P)nx$													h 4F	

^{*}For predicted terms in the spectra of the Sc $\scriptstyle\rm I$ isoelectronic sequence, see Introduction.

(Car sequence; 20 electrons)

Z = 21

Ground state 1s2 2s2 2p6 3s2 3p6 3d 4s 3D1

a ³D₁ 104000 cm⁻¹

I. P. 12.89 volts

The analysis is from Russell and Meggers. All the terms are from the 1927 paper, except y ¹P°, which has been taken from the later reference. By analogy with Y II they assign a ¹S to the configuration $4s^2$ in place of the earlier assignment to $3d^2$.

The singlet and triplet terms are connected by observed intersystem combinations.

The g-values have been generously furnished by Catalán, who has calculated them from the observed Zeeman patterns given in the 1925 reference below.

REFERENCES

S. Goudsmit, J. van der Mark, and P. Zeeman, Proc. Roy. Acad. Amsterdam 28, No. 2, 130 (1925). (Z E) H. N. Russell and W. F. Meggers, Sci. Papers Bur. Std. 22, No. 558, 331 (1927). (I P) (T) (C L) (G D) W. F. Meggers and H. N. Russell, Bur. Std. J. Research 2, 761, RP 55 (1929). (T) (C L) M. A. Catalán, unpublished material (June 1948). (Z E)

Sc II Sc II

Config.	Desig.	J	Level	Interval	Obs. g.	Config.	Desig.	J	Level	Interval	Obs. g
$3d(^2\mathrm{D})4\mathrm{s}$	a ³ D	1 2 3	0. 00 67. 68 177. 63	67. 68 109. 95	0. 50 1. 17 1. 33	3d(2D)5s	e 3D	1 2 3	57551. 46 57613. 94 57743. 37	62. 48 129. 43	
$3d(^2\mathrm{D})4s$	a ¹D	2	2540. 97		1. 00	$3d(^2\mathrm{D})5s$	e ¹D	2	58251. 92		
$3d^2$	a ³ F	2 3	4802. 75 4883. 42	80. 67 104. 22	0. 67 1. 07	$3d(^2\mathrm{D})4d$	e ¹F	3	59528. 22		
$3d^2$	<i>b</i> ¹ D	4 2	4987. 64 10944. 51	104. 22	1. 24	$3d(^2\mathrm{D})4d$	f 3D	$\begin{array}{c c} 1 \\ 2 \\ 3 \end{array}$	59874. 79 59929. 18 60001. 60	54. 39 72. 42	
$4s^2$	a ¹S	0	11736. 35			$3d(^2\mathrm{D})4d$	e ³G	3 4	60266. 95 60348. 20	81. 25 108. 77	
$3d^2$	a 3P	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	12074. 00 12101. 45 12154. 34	27. 45 52. 89		$3d(^2\mathrm{D})4d$	e ¹ P	5 1	60456. 97 60400. 02	108.77	
$3d^2$	a ¹G	4	14261. 40			$3d(^2\mathrm{D})4d$	e 3S	1	61071. 10		
$3d(^2\mathrm{D})4p$	z ¹D°	2	26081.32		1. 00	$3d(^2\mathrm{D})4d$	e 3F	2 3	63373. 91 63444. 43	70. 52	
$3d(^{2}\mathrm{D})4p$	z ³F°	2 3 4	27443. 65 27602. 32 27841. 17	158. 67 238. 85	0. 65 1. 10 1. 25	$3d(^2\mathrm{D})4d$	f 1D	$\frac{3}{4}$	63527. 73 64366. 15	83. 30	
$3d(^2\mathrm{D})4p$	z ³D°	1 2 3	27917. 69 28021. 21 28161. 03	103. 52 139. 82	0. 51 1. 16 1. 33	$3d(^2\mathrm{D})4d$	e ³ P	0 1 2	64615. 28 64646. 08 64705. 16	30. 80 59. 08	
$3d(^2\mathrm{D})4p$	z ³P°	0	29736. 22	5. 90		$3d(^2\mathrm{D})4d$	e ¹S	0	64942. 79		
		$\begin{array}{ c c }\hline 1\\ 2 \end{array}$	29742. 12 29823. 92	81. 80	1. 50	$3d(^2\mathrm{D})4d$	e ¹G	4	65235. 83		
$3d(^2\mathrm{D})4p$	z ¹P°	1	30815. 65		1. 00	$4p^2$	f 3P	0	76242. 40	117. 41	
$3d(^2\mathrm{D})4p$	z ¹F°	3	32349. 98		1. 00			$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	76359. 81 76588. 48	228. 67	
4s(2S)4p	y 3P°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	39001. 59 39114. 44 39344. 90	112. 85 230. 46		Sc III (2D _{1½})	Limit		104000		
$4s(^2\mathrm{S})4p$	y ¹P°	1	55715 52								

June 1948.

Sc II OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +		Observed Terms	
$3d^2$	{		
482	a ¹S		
4p2	f 3P		
	ns (n≥ 4)	$np (n \ge 4)$	nd (n≥4)
$3d(^2\mathrm{D})nx$	a, e ³ D a, e ¹ D	z ³ P° z ³ D° z ³ F° z ¹ P°	e 3S e 3P f 3D e 3F e 3G e 1S e 1P f 1D e 1F e 1G
4s(2S)nx	{	y 3P° y 1P°	

^{*}A chart of predicted terms in the spectra of the Ca I isoelectronic sequence is given in the Introduction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Sc II no primes are used to indicate higher limits, and the prefixes $a, b, \ldots e, z, y$, replace those indicating the running electron.

Sc III

(K I sequence; 19 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d ^2D_{11/2}$

 $3d \ ^2D_{1\frac{1}{2}}$ 199693.0 cm⁻¹

I. P. 24.75 volts

The early analysis by Gibbs and White was revised and extended by Smith. By analogy with Ti IV, Russell and Lang confirmed Smith's interpretation, added the 5s 2S term, and predicted a number of series members. Their term array has been used for the present compilation, predicted values being entered in brackets. Fourteen lines in the range from 730 A to 4069 A have been classified.

REFERENCES

R. C. Gibbs and H. E. White, Proc. Nat. Acad. Sci. 12, 598 (1926). (T) (C L)

S. Smith, Proc. Nat. Acad. Sci. 13, 65 (1927). (I P) (T) (C L)

H. N. Russell and R. J. Lang, Astroph. J. 66, 19; Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

Sc III

Sc III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3p^6(^1\mathrm{S})3d$	$3d$ $^2\mathrm{D}$	1½ 2½	0. 0 19 7. 5	197. 5	$3p^6(^1\mathrm{S})5d$	5 <i>d</i> ² D	1½ 2½	[148263] [148283]	20
$3p^6(^1\mathrm{S})4s$	4s 2S	1/2	25536. 7		3p ⁶ (¹S)6s	6s 2S	1/2	[149253]	
$3p^6(^1\mathrm{S})4p$	4 <i>p</i> ² P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	62102. 2 62575. 9	473. 7	$3p^6(^1\mathrm{S})5f$	5f ² F°	$\left\{\begin{array}{cc} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array}\right.$	[159553]	
$3p^6(^1\mathrm{S})4d$	4d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	112254. 2 112299. 2	45. 0	$3p^6(^1\mathrm{S})5g$	5 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	[160133]	
$3p^6({}^1\!{ m S})5s$	5s 2S	1/2	114863. 8						
$3p^6(^1\mathrm{S})5p$	5 <i>p</i> ² P°	1½ 1½	[128183] [128363]	180	Sc IV (1S ₀)	Limit		199693. 0	
$3p^6(^1\mathrm{S})4f$	4f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right $	} 136871.0						

May 1948.

(Ar sequence; 18 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 {}^{1}S_0$

3p6 1S0 596300 cm-1

I. P. 73.9 volts

The analysis is seriously incomplete, but four lines between 215 A and 298 A have been independently classified, in the first two references quoted below, as combinations with the ground term. The two sets of wavelengths are not completely accordant, but the interpretation is the same in both papers.

The levels given in the table are from Mrs. Beckman's observations, and the limit is from the other paper. Mrs. Beckman's unit, 10³ cm⁻¹, has here been changed to cm⁻¹, and all values have been rounded off in the last places. The limit may be in error by several hundred cm⁻¹.

For convenience, the Paschen notation has been added by the writer in column one of the table, under the heading "AI". As for AI, the *jl*-coupling notation in the general form suggested by Racah is here introduced, although *LS*-designations as indicated in column two under the heading "Authors" are perhaps preferable for the terms thus far identified.

REFERENCES

- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 90 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)
- P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Sc IV

Αı	Authors	Config.	Desig.	J	Level
$1p_0$	3p6 1S	$3p^{\mathfrak{g}}$	$3p^6$ ¹ S	0	0
184	3p ⁵ 4s ³ P°	$3p^5(^2\mathrm{P}^{\circ}_{1\!s})4\mathrm{s}$	4s [1½]°	2	335090
1s2	3p ⁵ 4s ¹ P°	$3p^5(^2\mathrm{P}_{55}^{\circ})4s$	4s' [½]°	0 1	341010
284	3 <i>p⁵</i> 5s ³P°	3p ⁵ [2P ₁₃₄)5s	5s [1½]°	2	460430
282	3p ⁵ 5s ¹P°	3p⁵(2P½)5s	5s' [½]°	0 1	463990
		Sc v (² P ₁ ¹ / ₂)	Limit		596300
		Sc v (2P%)	Limit		600630

May 1948.

(Cli sequence; 17 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

$$3p^5 \ ^2\mathrm{P}^{\circ}_{1\frac{1}{2}}$$
 741000 cm⁻¹

I. P. 92 volts

Fifteen lines have been classified in the region from 228 A to 587 A, as combinations from the ground term. Two independent sets of term values have been published, that are in agreement except for the level 4s ${}^4P_{24}$, for which Kruger and Phillips give 387508 cm⁻¹; and the level 4s ${}^4P_{24}$, which was not found by Mrs. Beckman. All other entries in the table are from the latter list. The unit adopted by Mrs. Beckman, 10^3 cm⁻¹, has here been changed to cm⁻¹.

From isoelectronic sequence data Edlén has estimated the limit given above and entered in brackets in the table.

REFERENCES

- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 86 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)
- P. G. Kruger and L. W. Phillips, Phys. Rev. 51, 1087 (1937). (T) (C L)
- B. Edlén, Zeit. Phys. 104, 413 (1937). (I P)

Sc v

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^5$	3p⁵ ²P°	11/2 1/2	0 4328	-4328
3s 3p6	$3p^6$ 2S	1/2	174412	
3s ² 3p ⁴ (³ P)4s	4s 4P	$2\frac{1}{2}$ $1\frac{1}{2}$ $\frac{1}{2}$	386387 388868 391575?	$ \begin{array}{r} -2481 \\ -2707 \end{array} $
$3s^2 3p^4(^3P)4s$	4s ² P	1½ ½	395503 398447	-2944
$3s^2 3p^4(^1\mathrm{D})4s$	4s′ ² D	$egin{array}{c} 2\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\frac{410050}{410133}$	-83
$3s^2 \ 3p^4(^1\mathrm{S})4s$	4s'' 2S	1/2	437512	
Se vi (3P ₂)	Limit		[741000]	

January 1948.

(S I sequence; 16 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^3P_2$

 $3p^4$ 3P_2 896000 cm⁻¹

I. P. 111.1 volts

The analysis has been done independently by Mrs. Beckman and by Kruger and Pattin with results that are substantially in agreement. The triplet terms are quoted from the former and the singlets from the latter paper. Twenty-nine lines have been classified in the interval between 200 A and 581 A. The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

Intersystem combinations connecting the singlet and triplet terms have been observed. The limit is from Edlén, who has extrapolated it from isoelectronic sequence data.

REFERENCES

- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 76 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala 1937). (T) (C L)
- P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 621 (1937). (T) (C L)
- B. Edlén, Zeit. Phys. 104, 192 (1937). (I P)

Sc VI

Sc VI

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0 3352 4453	-3352 -1101	$3s^2 \ 3p^3(^2{ m D}^{ m o})4s$ $3s^2 \ 3p^3(^2{ m P}^{ m o})4s$	4s' ¹D° 4s'' ³P°	2 0	478354 491826	261
3s ² 3p ⁴	3p4 1D	2	21397				$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	492087 492802	715
$3s^2 \ 3p^4$	3p4 1S	0	49238		$3s^2\ 3p^3(^2{ m P}^{\circ})4s$	4s" ¹P°	1	497984	
3s 3p ⁵	3p ⁵ ³ P°	2 1 0	175344 178197 179784	-2853 -1587	Sc vii (4S _{11/2})	Limit		896000	-
$3s^2 \ 3p^8 ({}^4{ m S}^{\circ}) 4s$	4s 3S°	1	452070						
$3s^2 3p^3 (^2 \mathrm{D}^\circ) 4s$	4s' ³ D°	1 2 3	472400 472563 473001	163 438					

January 1948.

(PI sequence; 15 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3 {}^4S_{1\frac{1}{2}}^{\circ}$

$$3p^3 \, {}^4S_{1\frac{1}{2}}^{\circ}$$
 cm⁻¹

l. P. volts

The analysis is incomplete. Six multiplets have been published by Kruger and Pattin, who derive term intervals but give no term values. Mrs. Beckman has extended their analysis slightly and estimated the relative positions of the doublet and quartet systems of terms from isoelectronic sequence data. Her terms are, in general, quoted, except for the term $3p^4$ P, which is based on the wavelengths by Kruger and Pattin.

Twenty lines have been classified in the interval between 182 A and 571 A. No intersystem combinations have been observed, as indicated by the uncertainty x in the table and brackets around $3p^3$ $^2D_{1\%}^{\circ}$.

The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 71 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L)

Sc V	/II				Sc	VII
 		1	- 11			
_			- 11			

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^3$ $3s^2 3p^3$	$3p^{3} {}^{4}{\rm S}^{\circ} \ 3p^{3} {}^{2}{ m D}^{\circ}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	0 [30000]+x	670	$3s^2 3p^2(^3P)3d$	3d ² P	1½2 ½2	329950 + x 333360 + x	-3410
$3s^2 3p^3$	3p³ 2P°	272 172 172	30670 + x $49840 + x$ $50740 + x$	900	$3s^2 3p^2(^3{ m P}) 4s$	4s 4P	$1\frac{1}{2}$ $2\frac{1}{2}$	5416 7 0 543600? 546490	1930 2890
3s 3p4	3p4 4P	2½ 1½ ½	175050 177760	-2710	$3s^2 3p^2 (^3\mathrm{P}) 4s$	4s ² P	1½ 1½	551940 + x 555200 + x	32 60
		72	179200	-1440	$3s^2 3p^2(^1{ m D})4s$	4s′ ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	568860 + x 568990 + x	-130

December 1947.

Sc VII OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observe	ed Terms	
$3s^2 \ 3p^3$ $3s \ 3p^4$	3p³ 4S°	3p³ 2P° 3p⁴ 4P	3 <i>p</i> ³ ²D°	
00 07		$ns (n \ge 4)$		nd (n≥ 3)
$3s^2 3p^2(^3P)nx$	{	4s 4P 4s 2P		3d ² P
$3s^2 \ 3p^2(^1D) nx'$			4s′ 2D	

^{*}For predicted terms in the spectra of the P_I isoelectronic sequence, see Introduction.

(Si I sequence; 14 electrons)

Z = 21

Ground state 1s² 2s² 2p⁶ 3s² 3p² ³P₀

 $3p^2$ 3P_0 1280000 cm⁻¹

I. P. 159 volts

The analysis is incomplete. The results by Kruger and Phillips are not entirely in agreement with those by Mrs. Beckman. The present list has been compiled from the three references below. One term, 4s ¹P₁, has been calculated from its combination with 3p² ¹D₂ as given by Mrs. Beckman. Twenty-five lines are classified in the region between 164 A and 494 A. Intersystem combinations connecting the singlet and triplet terms have been observed. The limit, entered in brackets in the table, has been estimated by Phillips.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 65 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (T) (C L) P. G. Kruger and L. W. Phillips, Phys. Rev. 52, 97 (1937). (T) (C L)

L. W. Phillips, Phys. Rev. 55, 708 (1939). (I P) (T) (C L)

Sc VIII

Sc VIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2 3p^2$	3p ² ³ P	0 1 2	0 2280 5510	2280 3230	3s ² 3p(² P°)3d	3d ³P°	2 1 0	319570 322540 32367 0	-2970 -1130
$3s^2 \ 3p^2$	$3p^{2} {}^{1}D$	2	25030		3s² 3p(²P°)4s	4s ³P°	0	60354 0 604610	1070
3s 3p³	3p³ ³P°	$\left\{\begin{array}{c}2\\1\\0\end{array}\right.$	207760		3s² 3p(²P°)4s	4s ¹P°	1	609180 614100	4570
3s 3p3	3p³ 3S°	1	271680						
3s 3p³	3p³ ¹P°	1	281520		Sc 1x (2P%)	Limit		[1280000]	

October 1947.

(Al 1 sequence; 13 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\frac{1}{2}}^{\circ}$

 $3p \, {}^{2}\mathrm{P}_{1/2}^{\circ} \, 1456000 \, \, \mathrm{cm}^{-1}$

I. P. 180 volts

The analysis is incomplete, but 17 lines have been classified in the region between 119 A and 537 A. The listed term values have been calculated by the writer from the combinations given in the references below.

No intersystem combinations have been observed. Using the method of extrapolation suggested by Edlén, the writer has estimated that $3p^2$ $^4P_{\frac{1}{2}}$ is about 141000 cm⁻¹ above the ground state. This value is entered in brackets in the table and has been added to all quartet terms. The uncertainty x may well exceed ± 1000 cm⁻¹. Similarly, she has extrapolated the value of the limit quoted above and entered in brackets in the table. The uncertainty in this estimate is large owing to the incompleteness of the isoelectronic sequence data.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 59 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala 1937). (T) (C L) P. G. Kruger and L. W. Phillips, Phys. Rev. 52, 97 (1937). (T) (C L)

Sc IX Sc IX

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2(^1\mathrm{S})3p$	3p 2P°	1½ 1½	0 5 760	5760	3s ² (¹S)4s	4s ² S	1/2	666260	
3s 3p²	3p ² ⁴ P	$1\frac{1}{2}$ $2\frac{1}{2}$	[141000] + x $143120 + x$ $146280 + x$	2120 3160	3s 3p(3P°)4s	4s 4P°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ \end{array}$	819550 + x 821490 + x 825120 + x	1940 3630
$3s\ 3p^2$	$3p^2$ ² D	1½ 2½ 2½	146280 + x 191760		3s ² (¹ S)4d	4d ² D	1½ 2½	837210 837450	2 40
$3s \ 3p^2$ $3s \ 3p^2$	$3p^2 {}^2{ m S} \ 3p^2 {}^2{ m P}$	1/2 1/2 1/2	240410 255830 259150	3320	Sc x (¹ S ₀)	Limit		[1456000]	
$3s^2(^1\mathrm{S})3d$	$3d$ $^2\mathrm{D}$	1½ 1½ 2½	313860 314210	350					

October 1947.

Sc IX OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ +		Observed	d Terms	
$3s^2(^1\mathrm{S})3p$		3p 2P°		
3s 3p²	$\left\{_{3p^2} ight{2S}^{2}$	$3p^2$ ⁴ P $3p^2$ ² P	$3p^2$ ² D	
		ns $(n \ge 4)$		$nd (n \ge 3)$
$3s^2({}^1\mathrm{S})nx$	4s 2S			3, 4d 2D
3s 3p(3P°)nx		48 ⁴ P°		

*For predicted terms in the spectra of the Ali isoelectronic sequence, see Introduction.

(Mg I sequence; 12 electrons)

Z = 21

Ground state 1s2 2s2 2p6 3s2 1S0

3s² ¹S₀ 1819530 cm⁻¹

I. P. 225.5 volts

The terms are from the paper by Mrs. Beckman, who has classified 26 lines in the region between 76 A and 628 A. She lists one intersystem combination, $3s^2$ $^1S_0-3p$ $^3P_1^\circ$, and derives absolute term values from the 3d ^3D-nf $^3F^\circ$ series (n=4, 5, 6).

Parker and Phillips have independently found four triplet terms 3p $^3P^{\circ}$, 3d 3D , 4s 3S , and 4f $^3F^{\circ}$. Their arrangement of the 3p $^3P^{\circ}-4s$ 3S and 3d ^3D-4f $^3F^{\circ}$ multiplets is identical with Mrs. Beckman's but they differ from her in the interpretation of the group of lines ascribed to 3p $^3P^{\circ}-3d$ 3D .

Their resulting terms that differ from those listed below (adjusted to the same zero point) are as follows:

Desig.	Level	Desig.	Level
3d 3D ₃	455510	4f 3F4	1117757
$^3\mathrm{D}_2$	455199	$^3\mathrm{F}^\circ_3$	1117710
$^3\mathrm{D_1}$	455007	$^3\mathrm{F}^\circ_2$	1117689

By extrapolation along the isoelectronic sequence, using the method suggested by Edlén, the writer calculates the limit to be approximately 1818600 cm⁻¹ (I. P. 225.4), or about 1000 cm⁻¹ lower than that derived by Mrs. Beckman from the ³F° series.

The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling p. 53 (Almqvist and Wiksells Boktryckeri -A.-B., Uppsala, 1937). (I P) (T) (C L) (G D) W. L. Parker and L. W. Phillips, Phys. Rev. 57, 140 (1940). (T) (C L)

Sc X	Sc x

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s²	3s ² ¹S	0	0		3s(2S)5p	5p ¹P°	1	1309880	
$3s(^2\mathrm{S})3p$	3p 3P°	0 1 2	157230 159210 163530	1980 4320	$3s(^2\mathrm{S})5d$	5d ³ D	1 2 3	1351120	
$3s(^2\mathrm{S})3p$	3p ¹ P°	1	236490		3s(2S)5f	5f 3F°	2 3	1374440 13745 5 0	110
$3s(^2\mathrm{S})3d$	3d ³ D	1 2 3	458710 459030 459470	320 440	3s(² S)6f	6f 3F°	2 3	1574500	
$3s(^2\mathrm{S})4s$	4s 3S	1	899250				4	1511130	
$3s(^2\mathrm{S})4p$	4p 1P°	1	980600						-
$3s(^2\mathrm{S})4d$	4d ³D	1 2 3	$1074060 \\ 1074250 \\ 1074530$	190 280	Sc x1 (2S _{1/2})	Limit		1819530	
$3s(^2\mathrm{S})4f$	4f 3F°	2 3 4	1121400 1121550 1121740	150 190					

March 1948.

(Na I sequence; 11 electrons)

Z = 21

Ground state $1s^2 2s^2 2p^6 3s$ $^2S_{1/2}$

3s $^2S_{\frac{1}{2}}$ 2015030 cm $^{-1}$

I. P. 249.76 volts

The analysis is by Mrs. Beckman who has extended the work of Edlén and of Kruger and Phillips. She has published 30 classified lines in the interval from 62 A to 168 A. The absolute value of the ground state is extrapolated from isoelectronic sequence data. The unit adopted by Mrs. Beckman, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- B. Edlén, Zeit. Phys. 100, 621 (1936). (T) (C L)
- A. Beckman, Bidrag till Kännedomen om Skandiums Spektrum i Yttersta Ultraviolett, Akademisk Avhandling, p. 45 (Almqvist and Wiksells Boktryckérí -A.-B., Uppsala, 1937). (I P) (T) (C L) (G D)

Sc XI

Sc XI

Config.	Desig.	J	Level	Interval	Config.	Desig.	\int	Level	Interval
38	3s ² S	1/2	0		5 <i>f</i>	5f ² F°	2½ 3½	1482160 1482210	50
3p	3 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	191030 197720	6690	6s	6s ² S	1/2	1588790	
3d	3d ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	459410 46003 0	620	6 <i>p</i>	6 <i>p</i> ² P°	$1\frac{1}{2}$ $1\frac{1}{2}$	1609480	
4\$	4s ² S	1/2	977470		6 <i>d</i>	6d ² D	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	1635020	
4p	4p 2P°	$\begin{array}{c c} & \frac{1}{2} \\ & 1\frac{1}{2} \end{array}$	1051340 1053870	2530	6 <i>f</i>	6f 2F°	2½ 3½	1645030	
4d	4d ² D	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	1148560 1148830	270	7d	7 <i>d</i> ² D	$ \begin{array}{c c} & 3/2 \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array} $		
4f	4f ² F°	$2\frac{1}{2}$ $3\frac{1}{2}$	1182570 1182680	110	7 <i>f</i>	7f 2F°	$ \begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	1736700	
58	5s ² S	1/2	1382110				3½	1743430	
5p	5p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1418280 1419550	1270	Sc XII (¹ S ₀)	Limit		2015030	
5d	5d ² D	$egin{array}{c} 1^{1/2}_{1/2} \ 2^{1/2}_{1/2} \end{array}$	1464770 1464870	100					

June 1947.

(Ne I sequence; 10 electrons)

Z = 21

Ground state 1s² 2s² 2p⁶ ¹S₀

2p6 1S0 5539700 cm-1

I. P. 686.6 volts

Edlén and Tyrén have classified five lines in the range 26 A to 30 A, as combinations with the ground term. Their absolute term values are based on extrapolation along the Ne I isoelectronic sequence. Their unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

As for Ne i, the jl-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Sc XII

Authors	Config.	Desig.	J	Level
2p 1S ₀	$2p^6$	2p ⁶ ¹ S	0	0
3s ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{1}^{\circ})_{3})_{3}$	3s [1½]°	2 1	3245100
3s ¹P1	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})3s$	38' [½]°	0 1	3280800
3d ³ P ₁	$2p^{5}(^{2}\mathrm{P}_{^{1}}^{\circ})3d$	3d [½]°	0 1	3668400
3d ¹ P ₁	"	3d [1½]°	1	3714700
$3d$ $^3\mathrm{D_1}$	$2p^{5}(^{2}\mathrm{P}_{52}^{\circ})3d$	3d' [1½]°	1	3767300
	Sc XIII (2P° _{1½})	Limit		5539700
	Se XIII (2P½)	Limit		5577400

April 1947.

TITANIUM

Ti I

22 electrons Z=22

Ground state $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^2 \ 4s^2 \ ^3F_2$

 $a^{3}F_{2}$ 55138 cm⁻¹ I. P. 6.83 volts

The arc spectrum of titanium was one of the first highly complex spectra to be analyzed fairly completely. The detailed analysis published by Russell in 1927 contains 142 terms based on 422 multiplets, and lists 1394 classified lines. Singlet, triplet, and quintet terms are connected by intersystem combinations. This paper, which represents the work of many early contributions as well, by King, Meggers, Kiess, Babcock, and many others, is concluded with the noteworthy statement "The present theories of atomic and spectral structure suffice to give a most satisfactory account, in full and complete detail, of all the features of the very complex spectrum of titanium."

From infrared observations Kiess and Meggers have added the terms d ³P and a ⁵D. In 1940 Russell added e ³H and in 1947 he revised the configuration assignments for inclusion here, as given in column one of the table.

The term values given to three places in the table are from the 1928 paper by Kiess, who calculated them from lines he observed with the interferometer.

Approximate g-values have been calculated by the writer from the Zeeman patterns observed by King and Babcock and quoted by Russell (1927). Most of the observed patterns are unresolved, and consequently the observed g-values differ from the theoretical ones, by a few percent in some cases. They verify the analysis, however, with remarkable consistency. Colons indicate that the observational data are insufficient to give an independent g-value. It is highly desirable to extend this work with the aid of Harrison's unpublished Zeeman observations of titanium.

Both Many and Rohrlich have made theoretical investigations of this spectrum. In the former paper the reality of the term a 1S_0 at 15166.59 is questioned and this term has been rejected by Russell. Rohrlich has suggested that the $^1P^\circ$ term at 39265.80 may be a $^1D^\circ$ term. This change has been adopted in the table and the labels of higher $^1P^\circ$ and $^1D^\circ$ terms changed accordingly, since it has been noted by Russell that this term may equally well be a $^1D^\circ$ term. In cases where Rohrlich's configuration assignments differ from those of Russell a colon is entered in column one after the configuration.

REFERENCES

- H. N. Russell, Astroph. J. 66, 347 (1927); Mt. Wilson Contr. No. 345 (1927). (I P) (T) (C L) (G D) (Z E)
- C. C. Kiess, Bur. Std. J. Research 1, 77, RP4 (1928). (T) (C L)
- W. F. Meggers and C. C. Kiess, Bur. Std. J. Research 9, 310, RP473 (1932). (T) (C L)
- C. C. Kiess, J. Research Nat. Bur. Std. 20, 35 (RP1062) (1938). (T) (C L)
- H. N. Russell, unpublished material (May 1940, April 1947). (T) (C L)
- A. Many, Phys. Rev. 70, 511 (1946).
- F. Rohrlich, Phys. Rev. 74, 1381 (1948).
- C. E. Moore, unpublished material (June 1948). (Z E)

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g	
$3d^2 4s^2$	a 3F	2 3 4	0. 000 170. 132 386. 873	170. 132 216. 741	0. 66 1. 08 1. 25	3d ² 4s(a ² F)4p	z ³F°	2 3 4	19323. 003 19421. 580 19573. 980	98. 577 152. 400	0. 67 1. 07 1. 26	
3d³(b 4F)4s	a 5F	1 2 3 4	6556. 86 6598. 83 6661. 00 6742. 79	41. 97 62. 17 81. 79	0. 00 0. 99 1. 25 1. 35	3d ² 4s(a ² F)4p	z³D°	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	19937. 878 20006. 049 20126. 072	68. 171 120. 023	1. 16 1. 34	
		$\tilde{5}$	6843. 00	100. 21	1. 41	3d3(a 2P)4s	a ¹P	1	20062. 98		1. 03	
$3d^2 \ 4s^2$	a 1D	2	7255. 29		1. 02	3d³(b 2D)4s	b ¹D	2	20209. 64		1. 01:	
$3d^24s^2$	a 3P	0	8436. 630 8492. 437	55. 807	1. 50	3d3(a 2H)4s	a ¹H	5	20795. 65		1. 01	
3d³(b 4F)4s	<i>b</i> ³ F	2	8602. 353 11531. 812	109. 916	1. 49 0. 67	$3d^2 4s(a^2F)4p$:	z ³G°	3 4 5	21469. 534 21588. 520 21739. 743	118. 986 151. 223	0. 75 1. 05 1. 21	
3a*(0 ·1/48	0.1	$egin{array}{c} 2 \\ 3 \\ 4 \end{array}$	11639. 820 11776. 820	108. 008 137. 000	1. 08 1. 26	$3d^2 4s(a^2{ m F})4p$	z ¹D°	2	22081. 15		1. 00	
$3d^2 \ 4s^2$	a¹ G	4	12118. 46		0. 98	$3d^2 4s(a^2\mathrm{F})4p$	z ¹F°	3	22404. 69		1. 00	
3d³(a 4P)4s	a 5P	$\frac{1}{2}$	13981. 75 14028. 47	46. 72	2. 50 1. 82	$3d^2 4s(a^2F)4p$	z ¹G°	4	24694.81		0. 97	
		3	14105. 68	77. 21	1. 66	$3d^2 4s(b ^4P)4p$	z ³S°	1	24921. 19		1. 99	
$3d^3(a^2\mathrm{G})4s$	a 3G	3	15108. 153	48. 650	0. 74	3d ² 4s(b ⁴ P)4p	z ⁵ S°	2	25102. 88		1. 93	
9.79.4.7.4TEV.4	500	5	15156. 803 15220. 400	63. 597	1. 06 1. 21	$3d^2 4s(a {}^4F)4p$:	y ³F°	2 3	25107. 453 25227. 236	119. 783 161. 109	1.06	
3d ² 4s(a ⁴ F)4p	z ⁵ G°	2 3 4 5 6	15877. 18 15975. 59 16106. 08 16267. 51 16458. 71	98. 41 130. 49 161. 43 191. 20	0. 39 0. 93 1. 15 1. 25 1. 33	3d ² 4s(a ⁴ F)4p:	y ³D°	1 2 3	25388. 345 25317. 842 25438. 930 25643. 724	121. 088 204. 794	1. 21? 0. 50 1. 17 1. 33	
3d ² 4s(a ⁴ F)4p	z 5F°	1 2 3 4	16817. 19 16875. 19 16961. 42 17075. 31	58. 00 86. 23 113. 89	0. 00 1. 26: 1. 34	$3d^2 4s(b ^4\mathrm{P})4p$	z ³P°	2 1 0	25493. 78 25537. 39	-43. 61	1. 47 1. 50	
$3d^3(b\ ^2\mathrm{D})4s$	a 3D	5 1 2 3	17215. 44 17369. 59 17424. 11 17540. 33	140. 13 54. 52 116. 22	1. 42 0. 49 1. 17 1. 34	3d ² 4s(b ⁴ P)4p:	y ⁵D°	$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ \end{array}$	25605. 03 25635. 74 25699. 95 25797. 60 25926. 82	30. 71 64. 21 97. 65 129. 22	1. 52	
3d³(a ²P)4s	<i>b</i> ³ P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	17995. 75 18061. 54 18145. 40	65. 7 9 8 3 . 86		3d³(b 4F)4p	y ⁵ G°	2 3 4 5	26494. 37 26564. 43 26657. 41 26772. 98	70. 06 92. 98 115. 57	0. 34 0. 91 1. 15 1. 25	
3d³(a ²H)4s	a ³ H	4 5 6	18037. 28 18141. 252 18192. 594	103. 97 51. 342	0. 80 1. 02 1. 17	3d³(b 4F)4p:	x ³F°	$\begin{array}{ c c } & 6 \\ & 2 \end{array}$	26910. 69 26803. 462	137. 71	1. 34	
3d3(a 2G)4s	<i>b</i> ¹G	4	18287. 62		1. 02			$\frac{1}{3}$	26892. 946 27025. 667	89. 484 132. 721	1. 06 1. 23	
$3d^2 4s(a ^4F)4p$	z ⁵ D°	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	18462. 83 18482. 86 18525. 07	20. 03 42. 21 68. 92	1. 65? 1. 50	3d³(b 4F)4p	x 3D°	1 2 3	27355. 065 27418. 037 27480. 077	62. 972 62. 040	0. 51 1. 17 1. 36	
3d³(a 4P)4s	c *P	3 4 0	18593. 99 18695. 23 18818. 23	7. 66	1. 49 1. 51	3d ³ (b ⁴ F)4p:	y ³G°	3 4 5	27499. 033 27614. 693 27750. 156	115. 660 135. 463	0. 75 1. 05 1. 21	
		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	18825. 89 18911. 55	85. 66	1. 54? 1. 54:	3d ² 4s(b ⁴ P)4p	z ⁵ P°	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	27665. 57 27740. 19 27887. 74	74. 62 147. 55		

Ti I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² 4s(a ² D)4p:	<i>y</i> ¹D°	2	27906.91		0. 98	3d ² 4s(b ² P)4p:	<i>y</i> ¹P°	1	34947.02		
$3d^3(b^4\mathrm{F})4p$	y ⁵F°	1	28596. 45	42. 37	0. 00	3d ² 4s(b ² P)4p:	<i>x</i> ¹D°	2	35035.11		
	1	$\frac{2}{3}$	28638. 82 28702. 70	63. 88 85. 69	1. 01 1. 24	$3d^2 4s(b^2\mathrm{P})4p$	y ³S°	1	35439. 43		2. 18
9.24	a 5D	5	28788. 39 28896. 08 28772. 86	107. 69	1. 34 1. 40	$3d^3(a\ ^2{ m G})4p$	y ³H°	4 5	35454. 099 35559. 662	105. 563 125. 526	0. 79 1. 04
3d ² 4s(b ⁴ P)4p:	w 3D°	0 1 2 3 4	28772. 80 28791. 62 28828. 51 28882. 44 28952. 10 29661. 272	18. 76 36. 89 53. 93 69. 66	0. 51	$3d^3(a\ ^4{ m P})4p$	w ⁵D°	6 0 1 2 3 4	35685. 188 35503. 40 35527. 76 35577. 14 35652. 95 35757. 51	24. 36 49. 38 75. 81 104. 56	1. 17 1. 51 1. 53 1. 46 1. 46
5a- 4s(0 '1)4p:	w ·D	$\frac{1}{2}$	29768. 686 29912. 292	107. 414 143. 606	1. 16 1. 34	$3d^24s(a{}^4{ m F})5s$	e ⁵ F	1	35959. 07		
0.72 /7. 9TEV 4	. 170				1. 54	3a ² 48(a -1)38	e T	2	36013. 57	54. 50 82. 90	0.00
3d³(b ² F)4s 3d³(b ⁴ F)4p	a ¹F x ⁵D°	3	29818. 31 29829. 16	26. 10				3 4 5	36096. 47 36208. 92 36351. 43	112. 45 142. 51	1. 24 1. 34 1. 42
		$\begin{array}{ c c }\hline 1\\ 2\\ \end{array}$	29855. 26 29907. 29	52. 03 78. 95	1. 46 1. 50	$3d^2 4s(b {}^2G)4p$:	<i>y</i> ¹G°	4	36000. 25		1.00
0.70 ((477) (200	3 4	29986. 24	74. 10	1. 49 1. 49	$3d^4$	<i>b</i> ⁸ G	3 4	36065. 75 36132. 21	66. 46 68. 73	
$3d^2 4s(a {}^4F)4p$:	x 3G°	3 4	29914. 773 29971. 106	56. 333 68. 140	1.10	0.72 (470) (r TD 0	5	36200. 94		0.45
3d ² 4s(a ² D)4p:	v 3D°	5 1	30039. 246	6. 574	1. 19 0. 51	$3d^3(a ext{ ^4P})4p$	y ⁵P°	$\frac{1}{2}$	36298. 43 36340. 67 36414. 58	42. 24 73. 91	2. 47 1. 81 1. 66
		$\begin{array}{ c c c }\hline 2\\ 3\\ \end{array}$	31190. 663 31206. 014	15. 351	1. 17 1. 34	$3d^{3}(b^{2}\mathrm{D})4p$:	w ³P°	0	37090. 65	82. 38	1 70
3d ² 4s(b ² G)4p:	w ³G°	3	31373. 862	115. 624	0. 75			$\frac{1}{2}$	37173. 03 37325. 47	152. 44	1. 53 1. 48
		5	31489. 486 31628. 698	139. 212	1. 05 1. 19	3d³(a 4P)4p	y ⁵S°	2	37359. 13		1. 99
3d ² 4s(a ² D)4p:	y 3P°	$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	31685.90 31725.75 31805.94	39. 85 80. 19	1. 47	$3d^2 \ 4s(a^4{ m F})5s$	e 3F	$\begin{array}{c}2\\3\\4\end{array}$	37538. 71 37659. 97 37824. 69	121. 26 164. 72	0. 67 1. 11 1. 27
$3d^2 4s(b {}^2{ m G})4p$	z ³ H°	4 5 6	31830. 016 31914. 304 32013. 555	84. 288 99. 251	0. 80 1. 04 1. 17	$3d^3(a\ ^2\mathrm{G})4p$	v ³G°	3 4 5	37554. 99 37617. 93 37690. 37	62. 94 72. 44	0. 77 1. 05 1. 20
$3d^2 4s(a^2\mathrm{D})4p$	y ¹F°	3	32857.76		0. 99?	3d ² 4s(b ² G)4p:	<i>x</i> ¹ F°	3	37622. 63		0. 94
3d ² 4s(b ² P)4p:	x 3P°,	0 1 2	33085. 14 33090. 55 33114. 49	5. 41 23. 94	1. 46 1. 46	$3d^3(b\ ^2{ m D})4p$:	u ³F°	$\frac{2}{3}$	37654. 77 37743. 96 37852. 47	89. 19 108. 51	0. 65 1. 08 1. 24
3d ² 4s(a ² D)4p:	w ³F°	2 3 4	33655. 898 33680. 162 33700. 897	24. 264 20. 735	0. 66 1. 09 1. 26	3d ² 4s(b ² P)4p:	u ³D°	$\frac{1}{2}$	37851. 91 37976. 78 38159. 71	124. 87 182. 93	0. 53 1. 14: 1. 35
3d ² 4s(a ² D)4p:	z ¹P°	1	33660.73		0. 94?	$3d^3(a\ ^2\mathrm{P})4p$	z ¹S°	0	38200.94		
$3d^2 4s(b^2\mathrm{G})4p$	v 3F°	2 3 4	33980. 685 34078. 612 34205. 001	97. 927 126. 389	0. 63 1. 10 1. 23	$3d^3(a\ ^2{ m G})4p$	t ³F°	2 3 4	38451. 29 38544. 38 38670. 73	93. 09 126. 35	0. 66 1. 08 1. 25
$3d^4$	d ³P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	34170. 95 34327. 96 34535. 04	157. 01 207. 08		$3d^3(a\ ^2\mathrm{H})4p$	z ³I°	5 6 7	38572.75 38669.03 38779.97	96. 28 110. 94	0. 81 1. 02 1. 15
3d ² 4s(b ² G)4p:	z ¹H°	5	34700. 31		1. 02	$3d^3(b\ ^2\mathrm{D})4p$:	t ³D°	1 2 3	38654. 23 38699. 95 38764. 96	45. 72 65. 01	0. 54: 1. 32

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d³(a ² G)4p: 3d³(b ² D)4p	x 1G° x 1P°	4	38959. 53 39078. 00		1. 02		w ³ H°	4 5 6	41780. 95 41895. 15 41995. 39	114. 20 100. 24	
3d³(b 4F)5s	f 5F	1 2 3 4 5	39107. 25 39149. 26 39214. 38 39302. 36 39412. 78	42. 01 65. 12 87. 98 110. 42		$3d^24s(a{}^4\mathrm{F})5p$	v ⁵D°	0 1 2 3 4	41822. 99 41854. 01 41906. 61 41985. 93 42092. 52	31, 02 52, 60 79, 32 106, 59	
3d³(a ² H)4p	x 3H°	4 5 6	39115. 99 39152. 14 39198. 39	36. 15 46. 25	0. 88? 1. 02 1. 18	3d ² 4s(a ⁴ F)4d	e ⁵ H	3 4 5 6	41823. 19 41917. 05 42018. 01 42123. 77	93. 86 100. 96 105. 76 81. 82	1. 15 1. 22 1. 28
$3d^3(a^2P)4p$	w ¹D°	2	39265.80		1.06:			7	42205. 59	01. 02	1. 20
$3d^3(b\ ^4{ m F})5s$	f ³F	2 3 4	39526. 89 39640. 98 39785. 94	114. 09 144. 96		3d ² 4s(a ⁴ F)4d	e ⁵ D	$\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$	41871. 56 41901. 36 41958. 51 42052. 72	29. 80 57. 15 94. 21	*
$3d^3(a ext{ ^4P})4p$	s 3D°	$\frac{1}{2}$	39662. 15 39686. 10	23. 95	0. 52			4	42184. 66	131. 94	
		3	39715. 51	29. 41	1. 31:	3d ² 4s(a ⁴ F)4d	g ³ F	2 3	41871. 87 41988. 39	116. 52	
$3d^3(b^2\mathrm{D})4p$	w ¹F°	3	40303. 04		1. 05:			4	42107. 06	118. 67	
3d ³ (a ² H)4p 3d ³ (a ⁴ P)4p:	z ¹ I° v ³ P°	6	40319. 80	14. 82	1. 03	3d³(a ²P)4p:	u ³P°	2 1 0	41928. 59 41943. 95 41959. 46	-15. 36 -15. 51	
$3d^3(a\ ^2\mathrm{P})4p$	$r^{3}D^{\circ}$	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	40384. 58 40467. 04 40556. 07	82. 46	0. 49		q 3D°	1 2 3	42146.39 42206.88	60. 49 104. 43	1. 32
5a*(a -1)+p	7 30	$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	40670. 60 40844. 19	114. 53 173. 59	0.49		p 3D°	1 2	42311. 31 42193. 94 42269. 73	75. 79	1. 52
3d3(a 2P)4p	x 3S°	1	40844. 19					3	42376.71	106. 98	
	w ¹G°	4	40883. 30		0. 95:	$3d^2 4s(a {}^4\mathrm{F})4d$	e ⁵ P	$\frac{1}{2}$	42611. 58 42724. 11	112. 53	
$3d^{3}(a^{2}G)4p$:	y ¹H°	5	41039.93		1. 03			3	42858. 90	134. 79	1. 64
$3d^2 4s(a^2\mathrm{F})5s$	e ¹F	3	41087. 31		1. 01	$3d^2 4s(a {}^2S)4p$:	w ¹P°	1	42927. 55		1. 00:
3d3(a ² H)4p	u ³G°	3 4 5	41169. 82 41255. 44 41341. 62	85. 62 86. 18	0. 73 1. 03 1. 19	3d ² 4s(a ⁴ F)4d	g ⁵ F	1 2 3 4	43034. 08 43080. 92 43148. 15 43231. 99	46. 84 67. 23 83. 84 98. 08	
3d ² 4s(a ⁴ F)4d	e ³ G	3 4 5	41194. 42 41368. 86 41481. 13	174. 44 112. 27			r ³F°	5 2	43330. 07	115. 59	
	s 3F°	2 3	41337. 43 41457. 62	120. 19 166. 51	0. 66 1. 09			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43583. 14 43744. 55	161. 41	
		4	41624. 13	100. 01	1. 24	3d ³ (a ² H)4p:	v ¹G°	4	43674. 31		0. 95
$3d^2 4s(a ^4F)4d$	e ³ H	4 5	41515. 09 41556. 33	41. 24 58. 69			v ¹D°	2	43710. 28		
		6	41615. 02	90.09		$3d^3(b\ ^2\mathrm{D})4p$	u ¹ D°	2	43799. 57		0. 98:
$3d^3 (a^2{ m G})4p$: $3d^2 4s(a\ {}^4{ m F})4d$	v ¹ F ⁰ e ⁵ G	3 2 3	41585. 24 41714. 35 41757. 47	43. 12 61. 23	1 19	$3d^3(b$ 4F)4 d	f ⁵ H	3 4 5 6	43843. 82 43901. 74 43971. 55 44051. 37	57. 92 69. 81 79. 82 83. 28	0. 91 1. 11 1. 21 1. 29
		4 5 6	41818. 70 41903. 48 42019. 22	84. 78 115. 74	1. 12 1. 24 1. 34		o ³D°	1 2 3	44134. 65 43975. 62 44079. 39 44233. 15	103. 77 153. 76	1. 18?

Ti I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
	t 3G°	3 4 5	44162. 44 44375. 57	213. 13		3d ² 4s(a ² F)4d	<i>i</i> ³ F	2 3 4	47038. 16 47194. 68	156. 52	
$3d^3(a^2\mathrm{H})4p$	x 1H°	5	44163. 24		1. 03	$3d^{3}(b^{4}{ m F})6s$	i 5F	1		1	
3d ³ (b ⁴ F)4d	f 5D	$\begin{bmatrix} 0\\1\\2\\3\\4 \end{bmatrix}$	44254. 39	100 =0				2 3 4 5	47777. 32		
			44381. 17	126. 78		$3d^2 4s(a ^4F)5d$	g ⁵ H	$\frac{3}{4}$	47840. 62 47913. 61	72. 99	
$3d^2 4s(a^2D)5s$	e ¹D	2	44581. 16					4 5 6	47994. 32 48106. 83	80. 71 112. 51 156. 00	
	q 3F°	$egin{array}{c} 2 \\ 3 \\ 4 \end{array}$	44825. 26 44923. 00 45041. 02	97. 74 118. 02		$3d^2$ $4s(a$ 4 F $)$ $5d$	h 5G	$\frac{7}{2}$	48262. 83 47870. 61	66. 18	
3d3(a 4P)4p	w 3S°	1	44857.89					3 4 5	47936. 79 48018. 08 48119. 47	81. 29 101. 39	
	n ³D°	1 2	44966. 36 45063. 94	97. 58			,	6	48233. 47	114. 00	
		3	45206.34	142. 40		$3d^24p^2$	j ⁵ F	1 2	48058. 85 48107. 42	48. 57	
$3d^2 4s(a ^2S)4p$:	t ³ P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	45040. 70 45090. 7 3 45178. 06	50. 03 87. 33				2 3 4 5	48208. 87 48328. 81 48462. 11	101. 45 119. 94 133. 30	
$3d^2 4s(a {}^2\mathrm{F})4d$	e 1H	5	45485. 35			$3d^2 4s(a {}^4{\rm F})5d$	g 5D	0			
3d³(b 4F)4d?	f 5G	2 3 4 5	45689. 89 45711. 28 45756. 45?	21. 39 45. 17				$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	48059. 82 48186. 11	126. 29	
		6	45904. 73	148. 2 8		3d³(b ²F)4p:	u ¹F°	3	48365.09		
3d ² 4s(a ² F)4d	f ³ H	4 5 6	45721. 89 45832. 50 45960. 39	110. 61 127. 89	0. 80 1. 03 1. 17	3d ² 4s(a ⁴ F)5d	k ⁵ F	1 2 3 4	48519. 21 48588. 28 48672. 66	69. 07 84. 38	
3d ² 4s(a ⁴ F)6s	h 5F	1 2	45 7 64. 7 1 45813. 01	48. 30				5	48771. 73	99. 07	
		3 4 5	45893. 26 46007. 62 46157. 76	80. 25 114. 36 150. 14		$3d^24p^2$	e ³ D	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	48724. 83 48724. 34 48839. 74	-0.49 115.40	
3d ² 4s(a ² F)4d	e ¹G	4	46068. 04			$3d^24p^2$	h 5D	0	48802. 32	57. 19	
3d ² 4s(b ⁴ P)5s	e ³ P	0 1 2	46244. 60					$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	48859. 51 48915. 07 49024. 43 49036. 46	55. 56 109. 36 12. 03	
3d³(b ² F)4p:	u ¹G°	4	46257.67		0. 95		f ³D	1	10551 00		
3d ² 4s(a ⁴ F)6s	h^{-3} F	2 3						2 3	49571. 69 49619. 72	48. 03	
		4	46530. 45				f ¹D	2	50128. 08		
3d ² 4s(a ² F)4d	f 1F	3	46650. 26				f ¹G	4	52125. 98		
$3d^2 4p^2$	g 5G	2 3 4	46943. 91 47030. 28 47139. 86	86. 37 109. 58 140. 83			e ¹ P	1	53663. 32		
		5 6	47280. 69 47446. 84	166. 15		Ti 11 (a 4F115)	Limit		55138		

Ti I OBSERVED TERMS

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$					Obser	rved Term	ıs				
$3d^2 \ 4s^2$	{a 2P	<i>a</i> ¹D	a ³ F	a ¹G							
$3d^4$	$\left\{_{d}\right.^{3}\mathrm{P}$	a 5D		<i>b</i> ³ G							
$3d^2 \ 4p^2$	{	$egin{smallmatrix} h \ ^5\mathrm{D} \\ e \ ^3\mathrm{D} \end{smallmatrix}$	<i>i</i> ⁵F	g ⁵ G							
			$ns (n \ge 4)$				n	$p \ (n \ge 4)$			
$3d^2 4s(a ^4F)nx$	{		e, h ⁵ F e, h ³ F		-		$z, v {}^{5}\mathrm{D}^{\circ}$ $y {}^{3}\mathrm{D}^{\circ}$	z ⁵ F° y ³ F°	z ⁵ G° x ³ G°		
3d3(b 4F)nx	{		$\stackrel{a, f, i}{b, f} \stackrel{^5\mathrm{F}}{^3\mathrm{F}}$				$\begin{array}{cc} x & ^5\mathrm{D}^{\circ} \\ x & ^3\mathrm{D}^{\circ} \end{array}$	y ⁵F° x ³F°	y ⁵G° y ³G°		
$3d^2 4s(a^2\mathrm{F})nx$	{		e ¹F				$\begin{array}{cc} z & {}^3\mathrm{D}^{\circ} \\ z & {}^1\mathrm{D}^{\circ} \end{array}$	z ³ F° z ¹ F°	z ³ G° z ¹ G°		
$3d^2 4s(a^2D)nx$	{	e ¹D				y 3P° z 1P°	$\begin{array}{cc} v & ^3\mathrm{D}^{\circ} \\ y & ^1\mathrm{D}^{\circ} \end{array}$	w ³F° y ¹F°			
$3d^3(a^2\mathrm{G})nx$	{			$egin{array}{c} a \ ^3\mathrm{G} \ b \ ^1\mathrm{G} \end{array}$			v	t 3F° v 1F°	v ³ G° x ¹ G°	y ³H° y ¹H°	
$3d^3(a ext{ ^4P})nx$	$\begin{cases} a & ^{5}\mathrm{P} \\ c & ^{3}\mathrm{P} \end{cases}$				y 5S° w 3S°	y ⁵P° v ³P°	$egin{smallmatrix} w \ ^5\mathrm{D}^{ \circ} \ \mathrm{s} \ ^3\mathrm{D}^{ \circ} \end{split}$				
$3d^3(a^2P)nx$	$\begin{cases} b & ^{3}\mathbf{P} \\ a & ^{1}\mathbf{P} \end{cases}$				x 3S° z 1S°	u ³P°	$egin{array}{c} r \ ^3\mathrm{D}^\circ \ w \ ^1\mathrm{D}^\circ \end{array}$				
$3d^2 4s(b ^4P)nx$	$\left\{_{e^{-3}\mathrm{P}}\right\}$				z 5S° z 3S°	z ⁵ P° z ³ P°	$\stackrel{y}{w}{}^5\mathrm{D}^{\circ}$				
$3d^3(b^2D)nx$	{	$egin{smallmatrix} a \ ^3\mathrm{D} \\ b \ ^1\mathrm{D} \end{matrix}$				w ³P° x ¹P°	$\begin{array}{cc} t & ^3\mathrm{D}^{\circ} \\ u & ^1\mathrm{D}^{\circ} \end{array}$	<i>u</i> ³ F° <i>w</i> ¹ F°			
$3d^3(a^2\mathrm{H})nx$	{			a ³ H a ¹ H					<i>u</i> ³ G° <i>v</i> ¹ G°	x ³H° x ¹H°	z 3I° z 1I°
$3d^2 4s(b^2G)nx$	{							v ³ F° x ¹ F°	$y^{3}G^{\circ}$	z ³ H° z ¹ H°	
$3d^2 4s(b^2P)nx$	{				y ³S°	<i>х</i> ³Р° <i>у</i> ¹Р°	$\begin{array}{cc} u & ^3\mathrm{D}^{\circ} \\ x & ^1\mathrm{D}^{\circ} \end{array}$				
$3d^3(b^2\mathrm{F})nx$			<i>a</i> ¹ F					u ¹F°	u ¹G°		
$3d^2 4s(a^2S)nx$	{					t ³P° w ¹P°					
			$nd \ (n \ge 4)$								
$3d^2 4s(a \ ^4\mathrm{F})nx$	{e ⁵P	e, g ⁵ D	$g, k {}^{5}\mathrm{F} \ g {}^{3}\mathrm{F}$	e, h ⁵ G e, g ⁵ H e ³ G e ³ H							
3d³(b 4F)nx		f 5D		f 5G? f 5H							
$3d^2 4s(a^2 F)nx$	{		$_{f}^{i}_{^{1}\mathrm{F}}^{^{3}\mathrm{F}}$	$e^{-1}G$ $f^{-3}H$ $e^{-1}H$							

^{*}For predicted terms in the spectra of the Ti I isoelectronic sequence, see Introduction.

(Sc I sequence; 21 electrons)

Z = 22

Ground state $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^2$ 4s $^4F_{11/2}$

a 4F_{1½} 110000 cm⁻¹

I. P. 13.63 volts

This spectrum has been analyzed by Russell. His detailed analysis published in 1927 contains 50 terms derived from 164 multiplets, and includes 529 classified lines. The doublet and quartet terms are connected by observed intersystem combinations.

The configuration assignments are of considerable theoretical interest, as indicated, for example, in the references to the papers by Ufford, Racah, and Many listed below. Many has interchanged the configurations given by Russell to the two low ⁴F terms. From a detailed study of the series relations Russell has recently shown conclusively that his original assignments were correct, namely that the lower term (a ⁴F) has the configuration $3d^2$ (a ³F)4s and that the higher one (b ⁴F) should be ascribed to $3d^3$.

Approximate g-values have been determined by Catalán from the Zeeman patterns observed by King and Babcock and quoted by Russell (1927). Very few patterns have been resolved and consequently the observed g-values differ from the theoretical ones by a few percent in some cases. Colons indicate that LS-coupling has been assumed and a theoretical g-value introduced in order to utilize the observed data. It is highly desirable to extend this work with the aid of Harrison's unpublished Zeeman observations of titanium.

REFERENCES

- H. N. Russell, Astroph. J. 66, 283 (1927); Mt. Wilson Contr. No. 344 (1927). (I P) (T) (C L) (G D) (Z E)
- C. W. Ufford, Phys. Rev. 44, 732 (1933).G. Racah, Phys. Rev. 62, 438 (1942).
- A. Many, Phys. Rev. **70**, 511 (1946).
- H. N. Russell, Phys. Rev. 74, 689 (1948).
- M. A. Catalán, unpublished material (June 1948). (Z E)

Ті п

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² (a ³ F)4s	a 4F	1½ 2½ 3½ 4½	0. 00 93. 94 225. 47 393. 22	93. 94 131. 53 167. 75		$3d^3$	a 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{2}{2}$	9363. 71 9395. 76 9518. 05	32. 05 122. 29	2. 63 1. 74 1. 60:
$3d^3$	<i>b</i> 4F	1	907. 96	75. 84		3d³	a 2P	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	9850. 90 9975. 92	125. 02	0. 66 1. 33
		$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	983. 80 1087. 21 1215. 58	103. 41 128. 37		$3d^2(a\ ^3\mathrm{P})4s$	b⁴P	$egin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	9872. 87 9930. 74 10024. 74	57. 87 94. 00	2. 60 1. 72: 1. 60:
$3d^2(a^3\mathrm{F})4s$	a ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	4628. 61 4897. 60	2 68. 99	0. 86: 1. 14:	3d³	b 2D	$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	12628. 77 12758. 15	129. 38	0. 80: 1. 20:
$3d^2(a^{-1}\mathrm{D})4s$	a 2D	$egin{array}{c} 1_{72}^{1} \ 2_{72}^{1} \end{array}$	8710. 47 8744. 27	33. 80	0. 80 1. 20:	$3d^3$	$a{}^2{ m H}$	4½ 5½	12676. 99 12774. 81	97. 82	0. 91: 1. 09:
$3d^{\mathbf{s}}$	a 2G	3½ 4½ 4½	8997. 69 9118. 15	120. 46	0. 89: 1. 11:	$3d^2(a^{-1}\mathrm{G})4s$	b 2G	4½ 3½ 3½	15257. 53 15265. 60	-8. 07	1. 11: 0. 89:

Ti II—Continued

Ti II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ² (a ³ P)4s	b ² P	1½ 1½	16515. 79 16625. 25	109. 46	0. 66 1. 33	$3d^2(a\ ^1{ m G})4p$	x 2F°	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	47466. 80 47625. 17	—158. 37	1. 14 0. 86
$3d^3$	<i>b</i> ² F	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	20891. 88 20951. 77	-59.89	1. 14: 0. 86:	3d 4s(a 3D)4p	x ⁴ D°	1½ 1½ 2½ 3½	52329. 78 52458. 98 52471. 48	129. 20 12. 50	
3d2(a 1S)4s	a 2S	1/2	21338. 00:					31/2	52631.07	159. 59	
$3d \ 4s^2$	<i>c</i> ² D	$ \begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	24961. 34 25193. 04	231. 70	0. 80: 1. 20:	3d 4s(a 3D)4p	x ² P°	1½ 1½	53121. 48 53128. 17	6. 69	
$3d^2(a$ $^3\mathrm{F})4p$	z ⁴ G°	2½ 3½ 4½ 5½	29544. 37 29734. 45 29968. 08 30240. 68	190. 08 233. 63 272. 60	0. 57: 0. 98:	3d 4s(a 3D)4p 3d 4s(a 3D)4p	w ² D° y ⁴ P°	2½ 1½ ½	53554. 90 53596. 70 56223. 13	-41. 80	
$3d^2(a$ $^3\mathrm{F})4p$	z 4F°	1½ 2½ 3½ 4½	30836. 52 30958. 70 31113. 61	122. 18 154. 91	0. 40: 1. 03: 1. 24:			$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	56249. 11 56325. 94 59321. 79	25. 98 76. 83	
		41/2	31300. 92	187. 31	1. 24.	3d 4s(a 3D)4p	w ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	59467.81	146. 02	
3d ² (a ³ F)4p	z ² F°	2½ 3½	31207. 44 31490. 82	283. 38	0. 86: 1. 14:	3d ² (a ³ F)5s	e 4F	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	62180. 02 62271. 25 62409. 58	91. 23 138. 33 184. 69	
$3d^2(a ^3F)4p$	z ² D°	$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	31756. 50 32025. 50	269. 00	0. 92 1. 20				62594. 27	101.00	
$3d^2(a \ ^3F)4p$	z ⁴ D°	1/2	32532. 38	70. 13	0.00	$3d^2(a$ $^3\mathrm{F})5s$	e ² F	2½ 3½	63168. 23 63444. 76	276. 53	
		$\begin{array}{c c} & \frac{1}{12} \\ & \frac{1}{12} \\ & \frac{2}{12} \\ & \frac{3}{12} \end{array}$	32602. 51 32697. 94 32767. 02	95. 43 69. 08	1. 20 1. 37 1. 43:	$3d^2(a\ ^3{ m F})4d$	e 4G	$\begin{array}{ c c c }\hline 2\frac{1}{2}\\ 3\frac{1}{2}\\ 4\frac{1}{2}\\ 5\frac{1}{2}\\ \end{array}$	64884. 65 64977. 57 65094. 29	92. 92 116. 72	
$3d^2(a \ ^3F)4p$	z ² G°	$\begin{vmatrix} 3\frac{1}{2} \\ 4\frac{1}{2} \end{vmatrix}$	34543. 36 34748. 50	205. 14	0. 89: 1. 11:				65241. 60	147. 31	
3d2(a 3P)4p	z ² S°	1/2	37430. 55		2. 09	$3d^2(a\ ^3{ m F})4d$	e 4H	$\begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \end{array}$	65184. 72 65307. 45 65445. 85	122. 73 138. 40 143. 25	
$3d^2(a \ ^1\mathrm{D})4p$	y ² D°	$\begin{vmatrix} 1\frac{1}{2} \\ 2\frac{1}{2} \end{vmatrix}$	39233. 44 39476. 87	243. 43	0. 80: 1. 20:				65589. 10	140. 20	
$3d^3(a$ ¹ D) $4p$	z ² P°	1½ ½	39602. 90 39674. 64	-71. 74	1. 21 0. 67:	$3d^2(a\ ^3{ m F})4d$	f ² F	2½ 3½	65312. 71 65458. 65	145. 94	
3d²(a ¹D)4p	y ² F°	2½ 3½	39926. 83 40074. 71	147. 88	0. 86: 1. 14:	$3d^2(a\ ^3{ m F})4d$	e ⁴ D	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	66767. 43? 66816. 49 66937. 70 66996. 67	49. 06 121. 21 58. 97	
$3d^2(a^3P)4p$	z ⁴ S°	1½	40027. 28			$3d^2(a\ ^3{ m F})4d$	e ² G	3½		010.07	
3d ² (a ³ P)4p	y ⁴ D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	40330. 25 40425. 80 40581. 80	95. 55 156. 00 216. 57		3d ² (a ³ F)4d	e ² H	4½ 4½ 5½	67820. 87 68328. 95	216. 67 253. 39	
$3d^2(a$ $^3\mathrm{P})4p$	z 4P°	$\begin{array}{c c} 3\frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	40798. 37 41996. 74 42068. 85 42208. 84	72. 11 139. 99		$3d^2(a$ $^3\mathrm{F})4d$	f 4F	1½ 2½ 3½ 4½	68582. 34 68767. 66 68845. 14 68950. 39	77. 48 105. 25 130. 96	
$3d^2(a ^1\mathrm{G})4p$	y ² G°	$3\frac{1}{2}$ $4\frac{1}{2}$	43740. 77 43780. 99	40. 22	0. 89: 1. 11:	3d 4s(b ¹ D)4p	v 2D°	$\begin{array}{c c} & 4\frac{1}{2} \\ & 1\frac{1}{2} \\ & 2\frac{1}{2} \end{array}$	69081. 35 69327. 32 69622. 15	294. 83	
3d2(a 3P)4p	x ² D°	$2\frac{1}{2}$ $1\frac{1}{2}$	44902. 42 44914. 80	-12. 38	1. 20: 0. 80:	3d 4s(b ¹ D)4p	v 2F°	2½ 2½ 3½ 3½	70606. 35	286. 65	
$3d^2(a^3P)4p$	y ² P°	1½ 1½	45472. 89 45548. 90	76. 01	0. 66: 1. 33:			3½	70893. 00		
$3d^2(a ^1\mathrm{G})4p$	z ² H°	4½ 5½	45673. 75 45908. 56	234. 81		Ti III (a ³ F ₂)	Limit		110000		

Ti II OBSERVED TERMS*

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$							Observ	ed Terr	ns						
$3d^3$	{	a ⁴ P a ² P	b ² D	b 4F b 2F	a ² G a ² H										
3d 4s ²			c 2D												
1			ns (n	≥ 4)			1,	np ($(n \ge 4)$				nd (n≥4)	
$3d^2(a^2\mathrm{F})nx$	{			a, e ⁴ F a, e ² F				z ⁴ D° z ² D°	z ⁴ F° z ² F°	z 4G° z 2G°		e ⁴ D	f 4F f 2F	e ⁴ G e ² G	e ⁴ H e ² H
$3d^2(a \ ^1\mathrm{D})nx$			<i>a</i> ² D				z ² P°	y ² D°	y 2F°						
$3d^2(a$ $^3\mathrm{P})nx$	{	b 4P b 2P				z 4S° z 2S°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cc} y & ^{4}\mathrm{D}^{\circ} \\ x & ^{2}\mathrm{D}^{\circ} \end{array}$							
$3d^2(a^{-1}\mathrm{S})nx$	a 2S														
$3d^2(a ^1\text{G})nx$					b ² G				x ${}^2\mathrm{F}^{\circ}$	y ² G°	$z^{2}\mathrm{H}^{\circ}$				
3d 4s(a 3D)nx	{						y ⁴P° x ²P°	$\begin{array}{c} x \ ^4\mathrm{D}^{\circ} \\ w \ ^2\mathrm{D}^{\circ} \end{array}$	w ² F°						
3d 4s(b 1D)nx								v ² D°	v ² F°		•				

^{*}A chart of predicted terms in the spectra of the Sci isoelectronic sequence is given in the Introduction. Owing to the difference in binding energies of the 3d and 4s electrons along this sequence, the charts of observed and predicted terms are not similarly arranged for Ti 11.

Ti III

(Ca I sequence; 20 electrons)

Z = 22

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 {}^3F_2$

a ${}^{3}F_{2}$ 227000 cm $^{-1}$

I. P. 28.14 volts

The analysis is by Russell and Lang who have classified 84 lines in the interval between 1002 A and 2984 A.

The singlet and triplet terms are connected by observed intersystem combinations.

REFERENCE

H. N. Russell and R. J. Lang, Astroph. J. 66, 25; Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3d^2$	a 3F	2 3 4	0. 0 183. 7 421. 9	183. 7 238. 2	$3d(^2\mathrm{D})4p \ 3d(^2\mathrm{D})4p$	z ¹ F°	3	83116. 58 83795. 70	
$3d^2$	a ¹ D	2	8472. 6		$3d(^2\mathrm{D})4p$ $3d(^2\mathrm{D})4d$	e ³ G	3	129096. 3 129256. 0	159. 7
$3d^2$	a 3P	0 1 2	10536. 4 10603. 5 10721. 1	67. 1 117. 6	$3d(^2\mathrm{D})4d$	e ³ D	4 5 1	129472. 6	216. 6
$3d^2$	a ¹S	0	14052. 7?				1 2 3	129873. 9 130019. 5	145. 6
$3d^2$	a ¹G	4	14398. 5		$3d(^2\mathrm{D})4d$	e ³ S	2	132854. 6	
$3d(^2\mathrm{D})4\mathrm{s}$	a 3D	1 2 3	38063. 50 38197. 98 38425. 19	134. 48 227. 21	$3d(^2\mathrm{D})4d$	e ³ F	2 3 4	133067. 2 133209. 7 133373. 7	142. 5 164. 0
$3d(^2\mathrm{D})4s$ $3d(^2\mathrm{D})4p$	b 1D z 1D°	$egin{array}{c} 2 \ 2 \end{array}$	41 7 03. 65 75197. 43		$3d(^2\mathrm{D})4d$	e ³ P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	135543. 8 135602. 4 135724. 1	58. 6 121. 7
$3d(^2\mathrm{D})4p$	z ³D°	1 2 3	76999. 70 77166. 65 77424. 20	166. 95 257. 55	4s(2S)4p	y ³ P°	0 1 2	137262 137490 137971	228 481
$3d(^2\mathrm{D})4p$	z 3F°	$egin{array}{c} 2 \\ 3 \\ 4 \end{array}$	77421. 48 77746. 18 78158. 71	324. 70 412. 53	Ti IV (2D)11/2)	Limit		227000	
$3d(^2\mathrm{D})4p$	z 3P°	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	80943. 95 80938. 02 81023. 60	-5. 93 85. 58					

Ti III OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +		Observed Terms								
3d2	{a 1S a	a 1D a 2F a 1C	1							
		$ns \ (n \ge 4)$	$np \ (n \ge 4)$	$nd \ (n \ge 4)$						
$3d(^2\mathrm{D})nx$ $4s(^2\mathrm{S})nx$	{	a ³ D b ¹ D	z 3P° z 3D° z 3F° z 1P° z 1D° z 1F° y 3P°	e ³ S e ³ P e ³ D e ³ F e ³ C						

^{*}A chart of predicted terms in the spectra of the Ca I isoelectronic sequence is given in the Introduction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Ti III no primes are used to indicate higher limits, and the prefixes a, b . . . e, z, y replace those indicating the running electron.

Ti IV

(K i sequence; 19 electrons)

Z = 22

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d ^2D_{1\frac{1}{2}}$

 $3d\ ^2\mathrm{D}_{1\frac{1}{2}}\ 348817.8\ \mathrm{cm}^{-1}$

I. P. 43.24 volts

The analysis is from Russell and Lang, who have revised and extended the early work of Gibbs and White. Thirty-one lines have been classified in the range between 423 A and 5492 A.

REFERENCES

R. C. Gibbs and H. E. White, Proc. Nat. Acad. Sci. 12, 598 (1926). (T) (C L)

H. N. Russell and R. J. Lang, Astroph. J. 66, 15 (1927); Mt. Wilson Contr. No. 337 (1927). (I P) (T) (C L)

Ti IV

Ti IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3p^6(^1\mathrm{S})3d$	3d ² D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	0. 0 384. 3	384. 3	$3p^{\mathfrak{k}}({}^{1}\mathrm{S})5d$	$5d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	258827. 2 258866. 7	39. 5
$3p^6(^1\mathrm{S})4s$	4s 2S	1/2	80378. 6		3p ⁶ (1S)6s	6s ² S	1/2	265835. 8	
$3p^{6}(^{1}\mathrm{S})4p$	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	127912. 5 128730. 9	818. 4	$3p^{6}(^{1}\mathrm{S})5g$	5 <i>g</i> ² G	$\left\{\begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}\right.$	278501. 1	
$3p^6(^1\mathrm{S})4d$	4d ² D	$1\frac{1}{2}$ $2\frac{1}{2}$	196794. 8 196880. 5	85. 7	$3p^6(^1\mathrm{S})6h$	6h ² H°	$\left\{\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	300012.5	
$3p^{6}(^{1}{ m S})5s$	58 2S	1/2	212395. 8		$3p^6(^1\mathrm{S})7h$	7h ² H°	$ \left\{ \begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \end{array} \right. $	312973.5	
$3p^6(^1\mathrm{S})5p$	5p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	230597. 6 230913. 4	315. 8					
$3p^6(^1\mathrm{S})4f$	4f ² F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	236125. 3 236132. 5	7. 2	Ti v (¹S₀)	Limit		348817.8	

May 1948.

(AI sequence; 18 electrons)

Z = 22

Ground state 1s2 2s2 2p6 3s2 3p6 1S0

3p6 1S0 805500 cm-1

I. P. 99.8 volts

Four lines are classified in the region between 163 A and 228 A, as combinations with the ground term. The levels in the table are from the 1937 reference, and all values have been rounded off in the last places.

For convenience, the Paschen notation has been added by the writer in column one of the table, under the heading "A 1". As for A 1, the jl-coupling notation in the general form suggested by Racah is here introduced, although LS-designations, as indicated in column two under the heading "Authors", are perhaps preferable for the terms thus far identified.

REFERENCES

P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935). (C L)

P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T) (C L)

G. Racah, Phys. Rev. 61, 537 (L) (1942).

Ti v

Аі	Authors	Config.	Desig.	J	Level
$1p_0$	3p ⁶ ¹ S	$3p^6$	3p6 1S	0	0
184	3p ⁵ 4s *P°	3p ⁵ (² P ₁ ²)4s	48 [1½]°	2 1	436880
$1s_2$	3p 5 48 1P°	3p⁵(²P¾)4s	48'[½]°	0 1	443780
284	3p ⁵ 5s *P°	3p ⁵ (³ P ₁₃)5s	58 [½]°	2 1	608090
282	3p ⁵ 5s ¹ P°	3p ⁵ (² P ^o ₂)5s	58'[½]°	0	612970
		Ti vī (2P°1)	Limit		805500
		Ti vi (2P½)	Limit		811330

May 1948.

(Cl 1 sequence; 17 electrons)

Z = 22

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^2P_{1\frac{1}{2}}^{\circ}$

 $3p^5 \ ^2P_{1\frac{1}{2}}^{\circ} 966000 \ \mathrm{cm}^{-1}$

I. P. 120 volts

All of the terms except $3p^6$ ²S are from the paper by Edlén. Twelve lines in the region between 182 A and 524 A have been classified as combinations from the ground term. Edlén has estimated the value of the limit by extrapolation along the isoelectronic sequence, as indicated by brackets in the table. His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (A) (1936). (C L)
B. Edlén, Zeit. Phys. 104, 407 (1937). (I P) (T) (C L)

Ti VI

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^5$	3 <i>p</i> ⁵ ²P°	1½ ½	0 5840	5840
3s 3p6	3p ⁶ ² S	1/2	196620	
3s ² 3p ⁴ (³P)4s	4s 4P	2½ 1½ ½ ½	495390	
3s ² 3p ⁴ (³ P)4s	4s ² P	1½ ½	502580 506440	-3860
3s ² 3p ⁴ (1D)4s	4s' ² D	2½ 1½	518820 518930	-110
3s ² 3p ⁴ (1S)4s	48" 2S	1/2	549000	
Ti VII (8P2)	Limit		[966000]	

January 1948.

(S I sequence; 16 electrons)

Z = 22

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 ^3P_2$

 $3p^4$ 3P_2 1136000 cm⁻¹

I. P. 140.8 volts

All the terms are from Edlén's paper except $3p^5$ ³P°, which is from Kruger and Pattin, who have estimated the value entered in brackets in the table. Twenty-four lines have been classified in the region between 164 A and 200 A. The limit is from Edlén, who has extrapolated it from isoelectronic sequence data.

The singlet and triplet terms are connected by two observed intersystem combinations. The unit adopted by Edlén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

- B. Edlén, Zeit. Phys. 104, 188 (1937). (I P) (T) (C L)
- P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 622 (1937). (T) (C L)

Ti VII Ti VII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0 4540 5900	-4540 -1360	3s ² 3p ³ (² D°)4s 3s ² 3p ³ (² P°)4s	4s' ¹D° 4s'' ³P°	2	592930 607550 607990	440
382 3p4	3p4 1D	2	24120				$\frac{1}{2}$	607990	1130
3s2 3p4	3p4 1S	0	54770		$3s^2 \ 3p^3(^2{ m P}^{\circ})4s$	4s'' ¹P°	1	614790	
3s 3p ⁵	$3p^5$ $^3\mathrm{P}^\circ$	$\begin{smallmatrix}2\\1\\0\end{smallmatrix}$	196260 200060 [202200]	-3800 -[2140]	 Ті vін (4S ₁₃₄)	Limit		1136000	
$3s^2 \ 3p^3(^4{ m S}^\circ)4s$	4s 3S°	1	564240						
$3s^2\ 3p^3(^2{ m D^o})4s$	48′ ³D°	$\frac{1}{2}$	586100 586320 587000	220 680					

January 1948.

(Pr sequence; 15 electrons)

Z = 22

Ground state $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3 \ ^4S_{1\frac{1}{2}}^{\circ}$

 $3p^3 \, {}^4S_{1\frac{1}{2}}^{\circ}$ cm⁻¹

I. P. volts

The analysis is incomplete. Kruger and Pattin have observed 15 lines between 150 A and 162 A and arranged them in five multiplets that give intervals consistent with those found in related isoelectronic spectra.

By a rough extrapolation of $3p^3$ $^4S_{11/2}^{\circ} - 3p^3$ $^2D_{11/2}^{\circ}$ along the isoelectronic sequence the writer has estimated the value of $3p^3$ $^2D_{11/2}^{\circ}$ entered in brackets in the table. She has calculated the terms listed below from the observed multiplets. The uncertainty x in the estimated position of the doublet terms relative to the quartets may well exceed ± 500 cm⁻¹.

REFERENCE

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

Ti VIII

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	3p³ 4S°	1½	0	
$3s^2 \ 3p^3$	$3p^3$ ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	[33000] + x 34080 + x	1080
$3s^2 \ 3p^3$	3p³ ²P°	1½ 1½	55000 56460	1460
$3s^2 3p^2(^3P)4s$	4s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	660130 662850 666500	2720 3650
$3s^2 \ 3p^2(^3\mathrm{P})4s$	4s ² P	$1\frac{1}{2}$ $1\frac{1}{2}$	672220 + x 676450 + x	4230
$3s^2 \ 3p^2(^1\mathrm{D})4s$	4s' ² D	2½ 1½	691260 + x $691490 + x$	-230

December 1947.

(Sir sequence; 14 electrons)

Z = 22

Ground state 1s2 2s2 2p6 3s2 3p2 3P0

 $3p^2$ 3P_0 1560000 cm⁻¹

I. P. 193 volts

The analysis is very incomplete, but seven lines have been classified by Phillips in the interval 281 A to 341 A as combinations among three triplet terms. He states that the interval $3p^2 \, ^3P_0 - 3p^2 \, ^3P_1$ of the ground term has been extrapolated along the sequence, since no combinations from the ground state $3p^2 \, ^3P_0$ are known. The first interval is, therefore, entered in brackets in the table, as well as his estimated value of the limit.

REFERENCE

L. W. Phillips, Phys. Rev. 55, 709 (1939). (I P) (T) (C L)

Ti IX

Config.	Desig.	J	Level	Interval
3s ² 3p ²	$3p^2$ $^3\mathrm{P}$	0 1 2	0 3100 7310	[3100] 4210
$3s 3p^3$	$3p^3$ $^3\mathrm{S}^\circ$	1	299920	
3s ² 3p(2P°)3d	3d ³P°	2 1 0	352460 356800 358380	-4340 -1580
Ti x (² P ^o / _⅓)	Limit		[1560000]	

October 1947.

Ti x

(Al i sequence; 13 electrons)

Z = 22

Ground state 1s2 2s2 2p6 3s2 3p 2P2

 $3p^{2}P_{\frac{1}{2}}^{\circ}$ cm⁻¹

I. P. volts

This spectrum has not been analyzed, but Edlén has classified two lines as follows:

I. A.	Int.	Wave No.	Desig.
101. 355 102. 107	[2] 2	986630 979360	3p 2P°-4d 2D

His unit, 10⁸ cm⁻¹, is here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 540 (1936). (C L)

December 1947.

Ti XX

(Mg I sequence; 12 electrons)

Z = 22

Ground state 1s2 2s2 2p6 3s2 1S0

 $3s^2$ 1S_0 2142000 cm $^{-1}$

I. P. 266 volts

Edlén has classified 14 lines in the region between 71 A and 126 A. No intersystem combinations have been observed and the triplet terms are not all connected by observed combinations. He has determined the relative positions of the various groups of terms and also the ionization potential by extrapolation along the isoelectronic sequence. His estimated value of the limit is entered in brackets in the table.

His unit, 103 cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 536 (1936). (I P) (T) (C L)

Ti XI

Ti XI

		A 1 211			AT AL					
Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval	
3s ² 3s(² S)3p	3s ² ¹S 3p ³P°	0	0 172370+x	2550	3s(2S)4f	4f 3F°	2 3 4	1297420+x		
3s(2S)3d	3d ³ D	1 2 1	174920+x 180550+x	5630	3s(2S)5d	5d ² D	1 2 3	1577370+x		
3s(2S)4s	4s 3S	1 2 3	504150+x $1050030+x$		3s(2S)5f	5f ³F°	2 3 4	1603570+x		
$3s(^2\mathrm{S})4p$	4p 1P°	1	1139970							
3s(2S)4d	4d ³D	1 2 3	$ \begin{array}{c c} 1243080+x \\ 1243350+x \\ 1243770+x \end{array} $	270 420	Ti XII (2S34)	Limit		[2142000]		

August 1947.

Ti XII

(Nar sequence; 11 electrons)

Z = 22

Ground state $1s^2 2s^2 2p^6 3s$ $^2S_{\frac{1}{2}}$

 $3s \, ^2S_{14} \, 2351530 \, \, \mathrm{cm}^{-1}$

I. P. 291.47 volts

Edlén has classified 16 lines in the interval 60 A to 116 A, and extrapolated the absolute value of the ground term from isoelectronic sequence data.

The unit adopted by Edlén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 621 (1936). (I P) (T) (C L)

Ti XII

Ті хп

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s	3s 2S	1/2	0		E	F., 2D0	1/	1015000	
3p	3p 2P°	1½ 1½	208300 216960	8660	5p	5p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	1 645820 1 647310	1490
3 <i>d</i>	$3d$ $^2\mathrm{D}$		502370	000	5d	$5d$ $^2\mathrm{D}$	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1697530 1697740	210
-		1½ 2½	503260	890	5 <i>f</i>	5f 2F°		1717270	140
48	4s 2S	1/2	1133370				$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1717410	140
4 <i>p</i>	4p 2P°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	1214330 1217670	3340	6 <i>f</i>	6f 2F°	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	1911470	
4d	4d 2D	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	1321380 1321840	460					-
4 <i>f</i>	4f 2F°	2½ 3½	1360770 1360930	160	Ti XIII (¹ S ₀)	Limit		2351530	

June 1947.

Ti XIII

(Ne i sequence; 10 electrons)

Z = 22

Ground state 1s2 2s2 2p6 1S0

 $2p^6$ 1S_0 6360600 cm⁻¹

I. P. 788.4 volts

Edlén and Tyrén have classified five lines in the interval between 23 A and 26 A, as combinations with the ground term. Their absolute term values are based on extrapolation along the Ne I isoelectronic sequence. Their unit, 10³ cm⁻¹, has here been changed to cm⁻¹. As for Ne I, the *jl*-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

Ti XIII

Authors	Config.	Desig.	J	Level
2p 1S ₀	$2p^6$	2p ⁶ ¹S	0	0
3s ³ P ₁	2p ⁵ (² P ₁ ;)3s	38 [1½]°	2 1	3709200
3s ¹ P ₁	$2p^5(^2\mathrm{P}_{33}^\circ)3s$	3s'[½]°	0 1	3753600
3d ³P ₁	$2p^{5}(^{2}\mathrm{P}_{1}^{s}$ ្ង $)3d$	3d [½]°	0 1	4168200
3d ³ P ₁	"	3d [1½]°	1	4219800
3d ³ D ₁	$2p^{5}(^{2}\mathrm{P}_{5}^{\circ})3d$	3d'[1½]°	1	4281600
	Ti xīv (²P°½)	Limit		6360600
	Ti xiv (2P½)	Limit		6407500

April 1947.

VANADIUM

VI

23 electrons Z=23

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2 {}^4F_{114}$

 $a^{4}F_{1\frac{1}{2}}$ 54361 cm⁻¹ I. P. 6.74 volts

The arc spectrum of vanadium has been studied since 1923. The early contributions of Meggers, Laporte, Landé, Bechert, Sommer, and many others culminated in the extensive analysis of this highly complex spectrum published by Meggers and Russell in 1936. They list 60 doublet terms, 60 quartet terms, and 28 sextet terms from 634 multiplets, and give 2186 classified lines extending from 2082 A to 11911 A. The terms of all three multiplicities are connected by observed intersystem combinations.

The configuration assignments of many of the odd doublet and quartet terms are extremely uncertain and a number of terms are unassigned. No limit assignment has been attempted for the sextet triad x ${}^{6}P^{\circ}$, w ${}^{6}D^{\circ}$, and x ${}^{6}F^{\circ}$, which comes from $3d^{4}$ 5p, and for two quartet triads which may arise from $3d^{3}$ 4s 5p. Rohrlich has suggested that some of the configurations of odd terms from d^{3} sp and d^{4} p should be interchanged.

Zeeman observations by Babcock of more than 900 lines provided the large array of g-values which greatly facilitated the analysis. Much of this material was generously furnished in manuscript form for inclusion in the 1936 paper. A discussion of the g-sums by Russell and Babcock appears in the 1935 reference below.

Six terms, and miscellaneous odd levels were added by the writer in 1939 from additional observations of the spectrum between 1848 A and 2173 A.

REFERENCES

- H. N. Russell and H. D. Babcock, Zeeman Verhandelingen p. 286 (Martinus Nijhoff, The Hague 1935). (Z E) W. F. Meggers and H. N. Russell, J. Research Nat. Bur. Std. 17, 125, RP906 (1936). (I P) (T) (C L) (Z E)
- C. E. Moore, Phys. Rev. 55, 710 (1939). (T) (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs.)
- F. Rohrlich, Phys. Rev. 74, 1393 (1948).

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3d^{3} \ 4s^{2}$	a 4F	1½ 2½ 3½	0. 00 137. 38	137. 38 186. 04	0. 40 1. 01	3d4(a 3H)4s	<i>b</i> ² H	4½ 5½	19023. 47 19145. 13	121. 66	0. 91 1. 08
		$4\frac{1}{2}$	323. 42 553. 02	229. 60	1. 20 1. 28	3d4(b 3F)4s	a 2F	$rac{2\frac{1}{2}}{3\frac{1}{2}}$	19026. 34 19078. 15	51. 81	0. 86 1. 14
3d4(a 5D)4s	a ⁶ D	1½ 1½ 2½ 3½ 4½	2112. 32 2153. 20 2220. 13	40. 88 66. 93	3. 29 1. 82 1. 61	$3d^5$	a 6S	21/2	20202. 49		
			2311. 37 2424. 89	91. 24 113. 52	1. 53 1. 52	3d ³ 4s(a ³ F)4p	z ⁴ D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	20606. 43 20687. 75 20828. 48	81. 32 140. 73 204. 04	-0. 04 1. 21 1. 35
3d4(a ⁵ D)4s	a 4D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	8412. 94 8476. 20 8578. 52 8715. 72	63. 26 102. 32 137. 20	0. 00 1. 19 1. 35 1. 39	3d4(a 3D)4s	<i>b</i> 4D	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	21032. 52 20767. 57 20789. 13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 45 1. 45 1. 25
$3d^3 \ 4s^2$	a 4P	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{2}{2}$	9544. 54 9636. 96 9824. 58	92. 42 187. 62	2. 59 1. 70 1. 55	3d4(a 3G)4s	<i>b</i> ² G	$1\frac{1}{1}\frac{1}{2}$ $\frac{1}{1}\frac{1}{2}$ $4\frac{1}{2}$	20812. 99 20830. 20 21603. 17	-17. 21	1. 20 0. 10 1. 11
$3d^3 \ 4s^2$	a ² G	$\frac{3\frac{1}{2}}{4\frac{1}{2}}$	10892. 50 11100. 65	208. 15	0. 88 1. 13	$3d^{3} 4s(a^{3}F)4p$	z 4G°	$3\frac{1}{2}$	21646. 39	-43. 22	0. 86
$3d^3 4\mathrm{s}^2$	a 2P	1½ ½	13801. 53 13810. 90	-9. 37	1. 20 0. 64	34° 48(4° 1°)4p	2 -0	2½ 3½ 4½ 5½	21841. 45 21963. 50 22121. 17 22313. 99	122. 05 157. 67 192. 82	0. 96 1. 16 1. 24
$3d^3 4s^2$	a 2D	1½ 2½	14514. 75 14548. 83	34. 08	0. 97 1. 17	$3d^3 4s(a ^3\mathrm{F})4p$	z ⁴ F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	23088. 06 23210. 56 23353. 09	122. 50 142. 53	0. 39? 0. 98? 1. 23
3d4(a 3H)4s	a 4H	3½ 4½ 5½	14910. 04 14949. 30 15000. 84	39. 26 51. 54 62. 10	0. 65 0. 94 1. 10	3d³ 4s(a ³F)4p	z ² D°	11/2	23519. 84 23608. 80	166. 75 326. 35	1. 31
3d4(a 3P)4s	b 4P	6/2	15062. 94 15078. 25		1. 18 2. 60	$3d^{4}(a^{-5}\mathrm{D})4p$	z ⁶ P°	2½ 1½	23935. 15 24648. 10		1. 32? 2. 34
50 (0 1)10		$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	15270. 42 15571. 90	192. 17 301. 48	1. 68 1. 54	Su (w 2)1p		$ \begin{array}{c c} \hline 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	24727. 85 24838. 56	79. 75 110. 71	1. 85 1. 67
$3d^3 \ 4s^2$	a ² H	4½ 5½	15103. 77 15264. 83	161. 06	0. 90 1. 07	3d4(a 5D)4p	z ⁴ P°	1½ 1½ 2½	24770.62 24915.16 25130.96	144. 54 215. 80	2. 54 1. 71 1. 59
3d4(b 3F)4s	<i>b</i> 4F	1½ 2½ 3½ 4½	15664. 75 15688. 80 15724. 22 15770. 72	24. 05 35. 42 46. 50	0. 39 1. 05 1. 22 1. 31	3d4(a 5D)4p	<i>y</i> ⁶ F°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	24789. 36 24830. 18 24898. 73	40. 82 68. 55 94. 15	-0. 58 1. 02 1. 23 1. 37
3d ³ 4s(a ⁵ F)4p	z ⁶ G°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	16449.85	88. 40 122. 69	0. 00 0. 78			$ \begin{array}{c c} & 372 \\ & 4\frac{1}{2} \\ & 5\frac{1}{2} \end{array} $	24992. 88 25111. 50 25253. 53	118. 62 142. 03	1. 41
		$\begin{array}{ c c c }\hline & 3\frac{1}{2} \\ & 4\frac{1}{2} \\ & 5\frac{1}{2} \\ & 6\frac{1}{2} \\ \end{array}$	16572. 54 16728. 75 16917. 15 17136. 44	156. 21 188. 40 219. 29	1. 10 1. 22 1. 26 1. 43	3d4(a 5D)4p	<i>y</i> ⁴ F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	25930 51 26004. 22 26122. 04 26171. 96	73. 71 117. 82 49. 92	0. 42 0. 98 1. 15 1. 23
3d4(a 3G)4s	a 4G	$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	17054. 87 17116. 92 17181. 98	62. 05 65. 06 60. 07	0. 59 0. 96 1. 14	3d ³ 4s(a ³ F)4p	z ² G°	3½ 4½ 4½	26021.89 26344.94	323. 05	0. 92 1. 13
3d ³ 4s(a ⁵ F)4p	z ⁶ D°		17242. 05 18085. 82		1. 27 3. 20 1. 76		y ⁴ D°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	26182. 60 26249. 48	66. 88 103. 11	-0.06 1.17
		1½ 1½ 2½ 3½ 4½ 4½	18126. 27 18198. 08 18302. 27	40. 45 71. 81 104. 19 135. 80	1. 76 1. 58 1. 56 1. 55	0.1/(.TD) /		1½ 1½ 2½ 3½ 3½	26352. 59 26480. 28	127. 69	1. 34
3d ³ 4s(a ⁵ F)4p	z ºFº		18438. 07 18120. 12 18174. 06 18258. 89	53. 94 84. 83	-0. 44 1. 14	3d4(a 5D)4p	y ⁶ D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	26397. 36 26437. 68 26505. 88 26604. 77 26738. 31	40. 32 68. 20 98. 89 133. 54	3. 25 1. 86 1. 59 1. 58 1. 50
		$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{4}{2} \\ & \frac{5}{2} \end{array}$	18372. 46 18513. 46 18680. 12	113. 57 141. 00 166. 66	1. 28 1. 28 1. 38 1. 42		z ² F°	2½ 3½ 3½	27187. 77 27470. 88	283. 11	1. 01? 1. 01
3d4(a ³ P)4s	b 2P	1 1/2	`18805. 05 19189. 28	384. 23	0. 67 1. 37	3d³ 4s(a ⁵ P)4p	x 6D°	1½ 1½ 2½ 2½ 3½ 4½	28313. 68 28368. 76 28462. 15 28595. 64	55. 08 93. 39 133. 49 172. 49	3. 23 1. 82 1. 58 1. 52 1. 47

V I—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d³ 4s(a ⁵ P)4p	z 4S° y 6P°	1½ 1½ 2½ 3½	28621. 27 29202. 80 29296. 43	93. 63 121. 74	2. 32 1. 76	3d³ 4s(a ⁵ F)4p	v ⁴ D°	1½ 1½ 2½ 3½	34477. 40 34537. 21 34619. 52 34747. 06	59. 81 82. 31 127. 54	0. 00 1. 05 1. 28 1. 35
3d ³ 4s(c ³ P)4p	y 4P°	3½ ½ 1½ 2½	29418. 17 30021. 57 30094. 52 30120. 78	72. 95 26. 26	1. 62 2. 67 1. 74 1. 67		u ⁴ D°	1½ 1½ 2½ 3½	35012.91 35092.36 35225.04 35379.11	79. 45 132. 68 154. 07	1. 12 1. 32 1. 33
3d³ 4s(b ³G)4p?	y 4G°	2½ 3½ 4½ 5½	30635. 60 30694. 34 30771. 72 30864. 34	58. 74 77. 38 92. 62	0. 53 0. 93 1. 13 1. 21	$3d^{4}(a^{3}P)4p?$	y 4S° x 2D°	1½ 1½ 2½ 2½	36408. 23 36416. 49 36700. 78	284. 29	1. 85 0. 89 1. 13
3d³ 4s(a 5P)4p	z ⁶ S°	21/2	30832. 58			3d4(b 3F)4p	x ² G°	3½ 4½	36461. 26 36538. 58	77. 32	0. 85 1. 05
3d3 4s(b 3G)4p	x 'F°	$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	31200. 12 31228. 98 31268. 15 31317. 50	28. 86 39. 17 49. 35	0. 38 1. 01 1. 21 1. 32	3d³ 4s(b ¹D)4p	y ² P°	1/2 1/2	36477.75 36580.46	102. 71	0. 74 1. 17
3d ³ 4s(a ⁵ F)4p	x 4G°	2½ 3½ 4½ 5½	31398. 09 31541. 18 31721. 73	143. 09 180. 55	0. 53 0. 95 1. 12	3d4(a 3P)4p?	x ⁴ P°	2½ 1½ ½	36611. 81 36814. 80 36695. 49	-202. 99 119. 31	1. 54 1. 77 2. 51
	z ² S°	5½	31937. 18	215. 45	1. 20		w 2G°	3½ 4½ 4½	36628. 82 36828. 33	199. 51	0. 65?
	y 2S°	1/2	31962.30		2. 21	3d³ 4s(b ³H)4p?	w 4G°	$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	36763. 41 36822. 86 36897. 88	59. 45 75. 02 40. 54	1. 06 1. 17
	x 4D°	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	32348. 89 32456. 45 32660. 26 32891. 06	107. 56 203. 81 230. 80	0. 08 1. 17 1. 29 1. 35		x 2F°	5½ 2½ 3½ 3½	36938. 42 36766. 00 36925. 88	159. 88	1. 26 0. 89 1. 05
$3d^3$ $4s(b$ $^3\mathrm{G})4p$	z 4H°	3½ 4½ 5½ 5½ 6½	32692. 09 32788. 22 32897. 81 32963. 90	96. 13 109. 59 66. 09	0. 68 0. 98 1. 11 1. 21	$3d^5$	e ⁴ F	1½ 2½ 3½ 4½	36983. 63 36989. 20 37025. 60 37075. 64	5. 57 36. 40 50. 04	
	z ² P°	1½ 1½	32724. 86 32767. 88	43. 02	0. 73? 1. 22	3d4(a 5D)5s	e ⁶ D	1½ 1½ 2½ 3½	37116. 68 37158. 36 37227. 44	41. 68 69. 08 94. 65	3. 08 1. 87 1. 61
3d ³ 4s(a ⁵ F)4p	w 'F'	1½ 2½ 3½ 4½ 4½	32738. 14 32846. 74 32988. 82 33155. 30	108. 60 142. 08 166. 48	0. 52 1. 01 1. 18 1. 30	3d4(a 3H)4p	v ² G°	$ \begin{array}{c c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	37322. 09 37440. 74 37174. 68	118. 65	1. 64 1. 48 0. 99
	y ² G°	4½ 3½	33306. 96 33360. 31	-53. 35	1. 03 0. 91		y 2H°	4½ 4½	37180.90	187. 27 29. 95	1. 05
	y ² F°	3½ 2½ 2½		-46. 19	1. 11 0. 85	3d4(a ² H)4p	z 4I°	5½ 4½ 5½	37210. 85 37285. 03	30. 80	1. 08
	z ² H°	4½ 5½	33640. 18 33695. 32	55. 14	0. 92 1. 09			5½ 6½ 7½ 7½	37315. 83 37404. 25 37518. 36	88. 42 114. 11	0. 96 1. 08 1. 15
3d ³ 4s(c ³ P)4p	w ⁴ D°	$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ \end{array}$	33966. 72 33976. 02	9. 30 89. 59	0. 09 0. 80 1. 30	$3d^{4}(b^{-3}F)4p?$	w ² F°	2½ 3½	37342. 66 37475. 08	132. 42	0. 84 1. 08
	1°		34019. 12	62. 43	1. 35	3d³ 4s(a ⁵ F)5s	e ⁶ F	1½ 1½ 2½ 3½ 4½ 5½	37374. 98 37423. 17 37503. 14 37614. 97	48. 19 79. 97 111. 83 143. 10	-0. 72 1. 05 1. 30 1. 33
	v 4F°	1½ 2½ 3½ 4½ 4½	34030. 04 34167. 84 34374. 81 34529. 81	137. 80 206. 97 155. 00	0. 86 1. 32? 1. 21 1. 41	3d4(b 3F)4p	w ² D°	1½ 2½	37758. 07 37931. 41 37457. 50	173. 34 295. 04	1. 43 1. 52 0. 80
	y ² D°	1½ 2½		58. 04	0. 73 1. 18	3d³ 4s(b ³H)4p?	y 4H°	3½ 4½ 5½ 6½	37752. 54 37481. 36 37516. 95 37565. 88 37626. 44	35. 59 48. 93 60. 56	1. 18 0. 76 1. 05 1. 09 1. 24

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d4(b 3F)4p	v 4G°	2½ 3½ 4½ 4½	37498.76 37556.00 37644.41	57. 24 88. 41 120. 48	0. 60 1. 02 1. 15		x ² P°	1½ 1½	40328. 62 40437. 42	108. 80	1. 52
$3d^4(a\ ^3{ m H})4p?$	z ² I°	5½ 5½	37764. 89 37530. 29		1. 22 0. 94		w ² P°	$1\frac{1}{2}$	40693.76		
5a-(a -11)+p:		6½	37606. 32	76. 03	1. 06		w ² H°	$\frac{5\frac{1}{2}}{4\frac{1}{2}}$	40919. 68 40980. 54	-60. 86	0. 96? 0. 99
3d4(b 3F)4p	t 4D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	37757. 24 37834. 98 37959. 66 38115. 65	77. 74 124. 68 155. 99	0. 01 1. 18 1. 33 1. 35	$3d^4(a\ ^3\mathrm{G})4p$	t 4F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	41389. 49 41428. 93 41492. 29 41599. 36	39. 44 63. 36 107. 07	0. 42 0. 89? 1. 15 1. 23
3d4(a 5D) 5 8	e ⁴ D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	37940. 08 38003. 93 38106. 32 38242. 46	63. 85 102. 39 136. 14		$3d^3 4s(b ^1\text{G})4p?$	t ² G°	3½ 4½ 4½	41436. 58 41539. 14	102. 56	0. 90 1. 04
$3d^4(a^{-3}{ m H})4p$	x 2H°	4½	38123.76	96. 87	0. 88	$3d^3 4s(a ^1H)4p?$	v ² H°	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$	41501. 41 41659. 71	158. 30	0. 87 1. 05
$3d^4(a$ $^3\mathrm{H})4p$	x 4H°	5½ 3½ 4½ 5½ 6½	38220. 63 38245. 75 38323. 87 38404. 96	78. 12 81. 09 78. 00	1. 10 0. 67 0. 93 1. 11	$3d^4(a\ ^3{ m G})4p$	t 4G°	2½ 3½ 4½ 5½	41654.70 41758.41 41860.54 41918.24	103. 71 102. 13 57. 70	0. 58 1. 03 1. 20 1. 20
	u 2G°	6½ 4½	38482.96 38529.78		1. 22 0. 99		v 4P°	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{2}{2}$	41751. 78 41848. 47	96. 69	2. 56 1. 62
		$3\frac{1}{2}$	38610.94	-81. 16	0. 88?				42009.93	161. 46	1. 48
3d ³ 4s(a ¹ H)4p? 3d ³ 4s(a ⁵ F)5s	y 2I° f 4F	5½ 6½ 1½	39008. 60 39081. 10 39127. 23	72. 50	0. 92 1. 06 0. 46?	3d ³ 4s(a ⁵ P)4p	r ⁴ D°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	41928. 47 41999. 10 42138. 00 42245. 61	70. 63 138. 90 107. 61	0. 04 1. 20 1. 33 1. 36
20(0 2)01		1½ 2½ 3½ 4½	39241. 34 39398. 82 39597. 01	114. 11 157. 48 198. 19	1. 03 1. 22? 1. 33?	$3d^3 \ 4s(b^{-1}{ m D})4p?$	u ² F°	2½ 3½	41950. 35 42020. 93	70. 58	0. 84 1. 11
3d ³ 4s(a ⁵ P)4p	w ⁴ P°	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	39237. 10 39248. 90 39422. 66	11. 80 173. 76	2. 57 1. 60 1. 52	$3d^4(a\ ^5\mathrm{D})4d$	e ⁶ G	1½ 2½ 3½ 4½	42033. 84 42070. 05 42114. 17 42177. 31	36. 21 44. 12 63. 14	1. 08 1. 23
3d4(b 3F)4p	u 4F°	1½ 2½ 3½ 4½	39266. 60 39300. 48 39341. 76 39391. 02	33. 88 41. 28 49. 26	0. 54 1. 00 1. 21 1. 30	3d³ 4s(b ¹G)4p	u ²H°	5½ 6½ 4½	42257. 32 42353. 42 42079. 14	80. 01 96. 10	1. 32 1. 35 0. 85
3d ³ 4s(c ³ P)4p	x 4S°	$\frac{472}{1\frac{1}{2}}$	39847.24		2. 00			$5\frac{1}{2}$	42220. 69	141. 55	1. 06
3d4(a 3P)4p	s 4D°		39877. 62 39935. 07	57. 45	0. 01 1. 10	$3d^4(a~^5\mathrm{D})4d$	e 6P	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	42164. 74		1. 44?
		$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	39999. 89 40125. 79	64. 82 125. 90	1. 33 1. 38		2°	3½	42236.66		1. 11.
$3d^4(a^3P)4p$	v ² D°	1½ 2½	39884. 43 40119. 26	234. 83	0. 92 1. 14	3d3 4s(a 1P)4p?	v ² P°	1½ ½	42318. 42 42480. 62	-162. 20	1. 34 1. 14
3d4(a 3H)4p	u 4G°		39962. 17	39. 01	0. 53		w 2S°	1/2	42362.04		1. 50?
		2½ 3½ 4½	40001. 18	37. 77 24. 83	0. 99 1. 19	3d4(a 5D)4d	f ⁶ F	1/2			
	v ² F°	5½ 2½ 3½	40063. 78 40153. 51 40587. 35	433. 84	1. 23			1½ 1½ 2½ 3½ 4½ 5½	42363. 62 42506. 32	142. 70 71. 66	1. 39
3d3 4s(a 1P)4p?	u 2D°	$1\frac{1}{2}$ $2\frac{1}{2}$	40225.38 40325.77	100. 39	0. 70 1. 12	3d4(a 5D)4d	٥D		42577. 98		1. 39
3d³ 4s(a ¹P)4p?	x 2S°	1/2	40299.81					1½ 1½ 2½ 3½ 4½	40404-00		
$3d^4(a\ ^3\mathrm{G})4p$	w 4H°	3½	40314.83	63. 87	0. 65 0. 92			$\frac{3\frac{1}{2}}{4\frac{1}{2}}$	42404. 89 42553. 62	148. 73	1. 61
		3½ 4½ 5½ 6½	40378. 70 40452. 38 40535. 62	73. 68 83. 24	0. 92 1. 08 1. 22		w D°	1½ 1½ 2½ 3½ 4½	42480. 31 42587. 41 42725. 33	107. 10 137. 92	

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
3d ³ 4s(a ⁵ P)4p	w 4S°	1½	42969. 49		1. 94		r 4F°	1½	44973.60	75. 57	0. 58?
	s 4F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	42981. 34 43051. 31	69. 97 95. 78				$2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	45049. 17 45058. 62 45145. 16	9. 45 86. 54	0. 97 1. 26
	q 4D°		43147. 09 43266. 15 43249. 44	119. 06			q ⁴F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	45066. 56 45107. 21 45157. 72	40. 65 50. 51	0. 59 0. 93 1. 05
	<i>q</i> -D	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	43308. 83 43410. 82 43555. 12	59. 39 101. 99 144. 30	1. 46		u ² P°		45237. 16	79. 44	1. 22
	u 4P°	1½ 1½ 2½	43443. 33 43503. 99	60. 66	1. 10	$3d^{3} 4s(a ^{1}H)4p?$	r ² G°	$\frac{\frac{1}{2}}{1\frac{1}{2}}$	45159. 15 45175. 92		1. 66? 0. 98
0.20 A (5TI) A I	411		43585. 59	81. 60	0.20	00 15(W 11)1p.	2a°	3½ 4½		185. 50	1. 14
3d3 4s(a 5F)4d	e ⁶ H	$\begin{array}{c c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \\ 7\frac{1}{2} \end{array}$	43649. 40 43706. 82 43787. 60 43894. 15 44028. 33 44189. 95	57. 42 20. 78 106. 55 134. 18 161. 62	0. 38 0. 88 1. 11 1. 18 1. 30 1. 38	3d3 4s(a 5F)4d	g ⁶ F	5½ ½ 1½ 2½ 3½ 4½ 5½	45638. 54 45700. 25 45743. 62	61. 71 43. 37 69. 63	1. 26
	x 6F°	1½ 1½	43707. 97? 43845. 80?	137. 83 113. 44					45813. 25 46034. 58	221. 33	
		$\begin{array}{ c c c }\hline & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \\ & \frac{4}{2} \\ & \frac{5}{2} \\ & \frac{5}{2} \\ \end{array}$	43959. 24? 44026. 29? }44202. 51?	67. 05		3d4(a ² D)4p	p 4F°	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array}$	45648.86 45688.41 45760.03 45891.55	39. 55 71. 62 131. 52	0. 60 1. 02 1. 32
3d ³ 4s(a ⁵ F)4d	f G	1½ 2½	43818. 02 43847. 16	29. 14 64. 77	0. 38? 0. 78		t ² P°	1½ ½	45654. 50 45946. 66	-292. 16	1. 24?
		$\begin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \end{array}$	43911. 93 44005. 14 44139. 69 44327. 04	93. 21 134. 55 187. 35	1. 12 1. 26 1. 34 1. 35	3d4(a 2D)4p	o 4D°	$\begin{array}{ c c c }\hline & 1/2 \\ & 1/2 \\ & 2/2 \\ & 2/2 \\ & 3/2 \\ \hline \end{array}$	45702. 14 45762. 24 45838. 06 45937. 07	60. 10 75. 82 99. 01	0. 96?
$3d^2 4s(b^{-1}G)4p$	t ² F°	$3\frac{1}{2}$ $2\frac{1}{2}$	43873. 79 43875 25	-1. 46	1. 04? 0. 86		r 4G°		1	86. 27	0. 56 0. 96
3d ² 4s(a ³ F)5s	e ² F	2½ 3½	43918. 58 44066. 05	147. 47	0. 89 1. 18			2½ 3½ 4½ 5½	46243. 64 46363. 42	104. 58 119. 78	1. 15 1. 19
	x ⁶ P°	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	43988. 00?				4°	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	46322. 39:		
	s 4G°	$\begin{array}{ c c c c }\hline & 3/2 \\ & 2\frac{1}{2} \\ & 3\frac{1}{2} \\ & & \end{array}$		43. 68			5°	2½			
		$\begin{array}{ c c c }\hline & 3\frac{1}{2} \\ & 4\frac{1}{2} \\ & 5\frac{1}{2} \\ \end{array}$	44043. 36 44104. 55 44178. 45	61. 19 73. 90	0. 98 1. 26 1. 34		6° t 4P°		46707. 18 46851. 10	11 69	
$3d^4(a\ ^3{ m G})4p$	t ² H°	4½ 5½		38. 25	0. 90 1. 06?			$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \end{array}$	46862. 73 46868. 10	11. 63 5. 37	
3d ³ 4s(a ⁵ F)4d	f 6P			88. 93	1. 00.	3d ³ 4s(b ³ G)4p	s 2F°	2½ 3½	46996. 84 47143. 24	146. 40	1. 02
		$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	44690. 47	157. 87			7°	3½	47348. 14		
3d4(a 3G)4p	s ² G°	$\frac{4\frac{1}{2}}{3\frac{1}{2}}$	44463. 28 44495. 43	-32. 15	1. 09 0. 91	0.70 4 /7 000 4	3°	1½			1 019
	p 4D°			39. 91	1. 22	3d ³ 4s(b ³ G)4p	s ² H°	4½ 5½	47611.77 47701.55	89. 78	1. 01? 0. 94
		$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{3}{2} \end{array}$	44554. 25 44616. 68 44700. 88	62. 43 84. 20	1. 37? 1. 32?		8°	3½			
3d ³ 4s(a ⁵ F)4d	g 6D		i .				9°	$\left\{egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array} ight.$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		1½ 1½ 2½ 3½ 4½	44921. 08 45056. 61 45157. 74	76. 25 135. 53 101. 13	1. 55?		q 4G°	$\begin{array}{ c c c }\hline 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	47690. 5 47823. 24 48014. 18 48191. 04	132. 7 190. 94 176. 86	

	T	ī	l .	T					nunued		l l
Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
	o 4F°	1½ 2½	47801. 6 47915. 9	114. 3 223. 5			24°	2½	50130.6		
		3½ 4½	48139. 4 48328. 8	223. 5 189. 4			25°	3½?	50154.35		
	10°	2½	47809. 20				26°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	50333. 59		
	11°	2½	47925. 49:				27°	1½	50355. 89		
$3d^3 4s(b ^3G)4p$	q 2G°	3½ 4½	47959.82 48157.57	197. 75	0. 89 1. 08		r ² F°	2½ 3½	50404. 14 50539. 27	135. 13	
	12°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	}48 0 01. 8:				28°		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
)					\begin{cases} 2\\ 3\\\ 2\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
	13°	3½ 3½ 3½	48023. 68 48047. 63				p 4G°	2½ 3½ 4½ 5½	50452. 6: 50579. 6 50742. 4	127. 0 162. 8	
	15°	2½	48070.91					51/2	50933. 58:	191. 2	
	16°	$ \left\{ \begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \end{array} \right. $	}48 2 01. 79				29°	3½	50529. 67		
			,				h G	$1\frac{1}{2}$ $2\frac{1}{2}$	50584. 27 50654. 72	70. 45 97. 11	
$3d^4(a^3P)4p$?	17° v 2S°	3½?	48289. 8 48844. 67		2. 03			$egin{array}{c c} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 5\frac{1}{2} \\ \end{array}$	50751. 83 50876. 00 51026. 30	124. 17 150. 30	
u-(u -1)+p:	18°	$2\frac{1}{2}$	48881. 48		2. 00			$6\frac{72}{6}$	51201. 12	174. 82	
	19°	2½	48964.99				30°	3½	50595. 73		
	20°	1½	49000. 82				n 4F°	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	50909. 7 51021. 2	111. 5 153. 3	
	n 4D°	1/2	49189.74 49283.77	94. 03				3½ 4½ 4½	51174.50 51366.6	192. 1	
		1½ 1½ 2½ 3½	49440. 31 49584. 09	156. 54 143. 78			m ⁴D°	1½ 1½	50976. 5: 51067. 7	91. 2	
	21°	2½	49302. 61					$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$	51212. 2: 51398. 1:	144. 5 185. 9	
	22°	{ 3½ 4½ 4½	}49341. 90:				31°	$\left\{ egin{array}{l} {f 1}^{1\!$	}51194. 2		
3d ³ 4s(b ³ D)4s	t ² D°		49689. 01		1. 25		32°	1½)		
		2½ 1½	49722.88	-33. 87			33°		}52008. 09		
$3d^3 4s(a \ ^5\mathrm{F})5d$	f 6H	2½ 3½	49797. 18	79. 61 77. 94		0.72 4-71 211\49					
		3½ 4½ 5½ 6½ 7½	49875. 12 49983. 16 50164. 26	108. 04 181. 10		3d ² 4s(b ² H)4p?	p ² G°	$\frac{3\frac{1}{2}}{4\frac{1}{2}}$	52774. 08 52947. 98	173. 90	
		71/2	50301. 63	137. 37		3d ³ 4s(b ³ H)4p?	r ²H°	4½ 5½	54081.51 54251.26	169. 75	
3d ³ 4s(a ⁵ F)5d	g °G	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$									
		1½ 2½ 3½ 4½ 5½ 6½	49789. 17 49932. 37	143. 20 182. 22		V II (a ⁵ D ₀)	Limit		54361		
		6½	50114. 59 50209. 05	94. 46			34°	2½	55202. 44		
3d3 4s(b 3H)4p	x 2I°	5½ 6½	49977. 90 50120. 69	142. 79	0. 91 1. 06		35°	$\left\{ egin{array}{l} 1\frac{1}{2} \ 2\frac{1}{2} \end{array} ight.$	}55877. 8 2 :		
	23°	3½?	50090. 28			1	8 2P°	- 2	57561. 36?	—182. 7 6	
						Y		1½ ½	57744. 12?	102. 10	

Config. 182 282 2p6 382 3p6	+					Ob	served Ter	rms					
3d ³ 4s ²	{	a 4P a 2P	<i>a</i> ² D	a 4F	a 2G	a ² H		••			_		
$3d^5$	{a ⁵S			e 4F									
3d3 4p2					h ⁶ G								
				1	ns $(n \ge 4)$								
3d4(a 5D)nx	{	0	ı, e ⁶ D ı, e ⁴ D										
3d ⁸ 4s(a ⁵ F)nx	{	ų.	, e ·D	e ⁶ F									
3d ³ 4s(a ² F)nx	I I			f ⁴ F e ² F									
3d4(a 3P)nx	{	b 4P b 2P		ŭ -									
3d4(a 3H)nx	5	0 *P				a ⁴ H b ² H							
	1			b 4F		b ² H							
$3d^4(b^8\mathrm{F})nx$	{			a ² F									
$3d^4(a \ ^8G)nx$	{				a 4G b 2G								
$3d^4(a \ ^8\mathrm{D})nx$			<i>b</i> 4D										
				1	$np (n \ge 4)$						nd (n	≥4)	
3d4(a 5D)nx	{	z ⁶ P° z ⁴ P°	y ⁶ D° y ⁴ D°	y 6F° y 4F°					e ⁶ P	f °D	f °F	e 6G	
$3d^3 4s(a {}^5F)nx$	{		z ⁶ D° v ⁴ D°	z ⁶ F° w ⁴ F°	z 6G° x 4G°				f °P	g 6D	g 6F	f, g ⁶ G	e, f ⁶ E
3d3 4s(a 3F)nx	{		z ⁴ D° z ² D°	z ⁴ F° z ² F°	z ⁴ G° z ² G°		/						
	$\begin{cases} y & ^{4}S^{\circ}? \\ v & ^{2}S^{\circ}? \end{cases}$	x 4P°?	s ⁴ D°	z *r *	z *G*								
$3d^4(a \ ^3P)nx$	v 2S°?		v ²D°		21 4G°	<i>x</i> 4H°	2 4TO						
$3d^4(a^3\mathrm{H})nx$	1				v 2G°								
$3d^4(b^3\mathrm{F})nx$	{		$\begin{array}{c} t \ ^{4}\mathrm{D}^{\circ} \\ w \ ^{2}\mathrm{D}^{\circ} \end{array}$	u ⁴ F° w ² F°?	v 4G° x 2G°								
3d3 4s(a 5P)nx	$\begin{cases} z & {}^{6}S^{\circ} \\ w & {}^{4}S^{\circ} \end{cases}$	y ⁶ P° w ⁴ P°	$r ^6D^{\circ}$ $r ^4D^{\circ}$										
3d4(a *G)nx	{			t 4F°	t 4G° s 2G°	w 4H° t 2H°							
3d3 4s(b 3G)nx	{			x 4F° s 2F°	y 4G°?	z 4H°							
3d4(a *D) nx			o 4D°	p 4F°	y -u	3 -11			1				
$3d^3 4s(b {}^1\mathrm{G})nx$				t ² F°	t 2G°?	u ²H°							
$3d^3 4s(c ^3P)nx$	x 4S°	y ⁴ P°	w ⁴ D°		4n 4C 09	a. 4H 09							
$3d^3 4s(b^3H)nx$	1				p 2G°?	y 4H°? r 2H°?	x 2I°						
3d ³ 4s(b ³ D)nx 3d ³ 4s(a ¹ P)nx	x 2S°?	v 2P°?	t 2D°										
$3d^3 \ 4s(a^{-1}F)nx$	2 -13 1	V -1 1	и - Д-1		r 2G°?	v 2H°?	y ²I°?						
3d3 4s(b 1D)nx		y ²P°		u ² F°?									

^{*}For predicted terms in the spectra of the VI isoelectronic sequence, see Introduction.

(Til sequence; 22 electrons)

Z = 23

Ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ ⁵D₀

 $a \, {}^{5}\mathrm{D_{0}} \, 114600 \, \, \mathrm{cm^{-1}}$

I. P. 14.2 volts

The analysis is from the paper by Meggers and the writer, who published 89 terms and 1456 classified lines in the region from 1313 A to 7015 A. The terms of the three multiplicities are connected by observed intersystem combinations.

The g-values were calculated from unpublished data kindly furnished by Babcock and given in the 1940 reference below.

This is the first spectrum in which all theoretical terms (except the highest singlet, ${}^{1}S$), arising from the electron configuration d^{4} have been established.

Many has discussed the configuration assignments and suggests from theoretical calculations that the term c ¹D at 44658 cm⁻¹ be assigned to $3d^3$ 4s. The two other terms which he criticizes, b ³P and c ³P, were published in 1940 with precisely the limits he suggests.

Although intensively sought, series have not been found, probably because this spectrum has been observed only with condensed sparks at atmospheric pressure. The limit, entered in brackets in the table, was estimated by Russell from isoelectronic sequence data.

When the analysis of VIII has been extended, the prefixes b, c, assigned by the writer to the limits may be changed. The limits here called a 2 F, b 2 G, and c 2 D have not yet been observed in VIII.

REFERENCES

H. N. Russell, Astroph. J. 66, 233 (1927); Mt. Wilson Contr. No. 342 (1927). (I P)
W. F. Meggers and C. E. Moore, J. Research Nat. Bur. Std. 25, 83 RP1317 (1940). (I P) (T) (C L) (E D) (Z E)

A. Many, Phys. Rev. 70, 511 (1946).

V II V II

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3d^4$	a 5D	0 1 2 3	0. 00 36. 05 106. 63 208. 89	36. 05 70. 58 102. 26		$3d^4$	a ³ H	4 5 6	12545. 15 12621. 57 12706. 15	76. 42 84. 58	0. 83: 1. 02 1. 27:
3d³(a 4F)4s	a 5F	1 2	2604. 82 2687. 01	130. 32 82. 19	0. 97	$3d^4$	b 3F	$\begin{array}{c} 2 \\ 3 \\ 4 \end{array}$	13490. 84 13542. 68 13609. 00	51. 84 66. 32	0. 59 1. 06 1. 19
		3 4 5	2808. 76 2968. 22 3162. 80	121. 75 159. 46 194. 58	1. 20 1. 30: 1. 28:	3d³(a 4P)4s	a ⁵ P	$\frac{1}{2}$	13511. 71 13594. 73 13741. 61	83. 02 146. 88	2. 39 1. 78 1. 62
3d³(a 4F)4s	a 3F	2 3 4	8640. 21 8841. 97 9097. 81	201. 76 255. 84	0. 65 1. 04 1. 22	$3d^4$	a ³ G	3 4 5	14461. 73 14556. 09 14655. 63	94. 36 99. 54	0. 74 1. 00 1. 17
$3d^4$	a 3P	$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	11295. 51 11514. 76 11908. 27	219. 25 393. 51	1. 48 1. 49	3d³(a ²G)4s	b 3G	3 4 5	16340. 97 16421. 51 16533. 00	80. 54 111. 49	0. 76 1. 03 1. 16

V II—Continued

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3d^{4}$	a 1G	4	17910. 98		0. 95	3d³(a 4F)4p	z 3D°	1	36954. 58	86. 53	0. 24
$3d^4$	a 3D	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	18269. 49 18293. 87 18353. 89	24. 38 60. 02	0. 49 1. 13 1. 30	$3d^3(a\ ^4{ m F})4p$	z ⁵ D°	2 3 0	37041.11 37205.01 37201.41	163. 90 58. 01	1. 08 1. 32
$3d^3(a^2\mathrm{G})4\mathrm{s}$	b 1G	4	19112. 93		0. 98			$egin{array}{c} 1 \ 2 \ 3 \end{array}$	37259. 42 37369. 01 37520. 61	109. 59 151. 60	1. 39
3d³(a ²P)4s	b 3P	2 1 0	19132. 69 19166. 19 19161. 27	$\begin{bmatrix} -33.50 \\ 4.92 \end{bmatrix}$	1. 38 1. 40	$3d^3(a\ ^4{ m F})4p$	z ³G°	3	37531. 09 39234. 05	10. 48	1. 47 1. 44 0. 84
$3d^4$	a ¹ I	6	19191. 50		0. 96:			4 5	39403. 77 39612. 97	169. 72 209. 20	1. 03 1. 19
$3d^4$	a 1S	0	19902. 60			$3d^3(a \ ^4\mathrm{F})4p$	z ³F°	2 3	40001.66	193. 86	0. 65
3d³(a 4P)4s	c 3P	0 1	20156. 64 20089. 56	-67.08 253.44	1. 35	9.797 975) 4	270	4	40195. 52 40430. 10	234. 58	1. 02 1. 22
3d³(a ²H)4s	<i>b</i> ³ H	4	20343. 00	37. 87	1. 36 0. 82	$3d^3(c\ ^2\mathrm{D})4$ s	c 3D	3 2 1	44098. 46 44159. 43 44200. 97: ?	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1. 27: 1. 14: 0. 50:
		$\begin{array}{ c c c }\hline 5 \\ 6 \\ \end{array}$	20280. 19 20363. 22	83. 03	1. 01 1. 14	$3d^4$	c 1D	2	44657. 99		
$3d^3(a\ ^2\mathrm{D})4\mathrm{s}$	<i>b</i> ³ D	1 2 3	20522. 14 20617. 05 20622. 99	94. 91 5. 94	0. 58 1. 25 1. 26	$3d^3(a\ ^4{ m P})4p$	z ³P°	0 1 2	46586. 43 46690. 43 46739. 98	104. 00 49. 55	1. 44 1. 48
$3d^4$	a 1D	2	20980. 92		1. 02	3d³(a 4P)4p	z ⁵ P°	1	46754. 59	125. 35	2. 28
$3d^3(a^2\mathrm{P})4s$	a 1P	1	22273. 54		0. 97			2 3	46879. 94 47051. 89	171. 95	1. 65 1. 58
$3d^3(a^2\mathrm{H})4\mathrm{s}$	a ¹ H	5	23391. 09		1. 04	3d3(a 4P)4p	y ⁵ D°	0	47027. 88 47107. 98	80. 10	1. 43
$3d^3(a^2\mathrm{D})4s$	b 1D	2	25191. 08		0. 99			$\frac{1}{2}$	47101.88 47181.17	-6. 10 79. 29	1. 47 1. 48:
$3d^4$	a ¹ F	3	26839. 82		0. 97			$\frac{3}{4}$	47420. 10	238. 93	2. 28
$3d^4$	c 3F	2 3 4	30267. 46 30306. 40 30318. 63	38. 94 12. 23	0. 67 1. 06 1. 25	$3d^3(a\ ^2{ m G})4p$	z ³H°	4 5 6	47056. 32 47297. 08 47607. 79	240. 76 310. 71	0. 78 1. 01 1. 13
$3d^3(a^2\mathrm{F})4s$	d ³F	4	30613. 97	-27. 74	1. 23	$3d^3(a^2\mathrm{P})4p$	z ¹S°	0	48258. 28		
		3 2	30641. 71 30673. 14	-31.43	1. 05 0. 67	$3d^3(a^2G)4p$	y ³G°	3	48579.96	150. 80	0. 67
$3d^4$	d 3P	2 1	32040. 76 32299. 24	-258.48	1. 38 1. 48			4 5	48730. 76 48853. 04	122. 28	1. 02 1. 22
3d3(a 2F)4s	b 1F	0 3	32420. 04 34228. 79	-120. 80	1. 00	$3d^3(a\ ^2{ m G})4p$	y 3F°	$\frac{2}{3}$	49201. 66 49210. 78 49268. 61	9. 12 57. 83	0. 63 0. 99 1. 18
3d ³ (a ⁴ F)4p	z ⁵ G°	2	34592. 72		0. 31	$3d^3(a^2\mathrm{G})4p$	z ¹F°	3	49568. 45		0. 97
0 (w 1) 1p		$\frac{1}{3}$	34745. 72 34946. 55	153. 00 200. 83	0. 93 1. 14	$3d^{3}(a^{2}G)4p$	z ¹H°	5	49593. 41		0. 95
		5	35193. 13 35483. 39	246. 58 290. 26	1. 16	$3d^3(a^2G)4p$	z ¹G°	4	49723. 68		0. 96
3d4	c ¹ G	4	36425. 07		0. 96	$3d^3(a ext{ ^4P})4p$	z ⁵ S°	2	49731. 32		
$3d^3(a \ ^4\mathrm{F})4p$	z ⁵ F°	1	36489. 34	184. 17	0. 35	$3d^3(a^2\mathrm{P})4p$	z 1D°	2	49898. 22		0. 93
		2 3 4 5	36673. 51 36919. 23 37150. 57 37352. 39	245. 72 231. 34 201. 82	1. 08 1. 24 1. 40:	$3d^3(a^4\mathrm{P})4p$	y 3D°	$\frac{1}{2}$	50473. 76 50775. 47 51085. 77	301. 71 310. 30	0. 49 1. 11 1. 27
		J	31000.00		1. 10.	3d³(a ²P)4p	y 3P°	0 1 2	50662. 36 50738. 82 51123. 31	76. 46 384. 49	1. 39 1. 51

Config.	Desig.	J	Level	Interval	Obs. g	Config.	Desig.	J	Level	Interval	Obs. g
$3d^3(a^2\mathrm{H})4p$	y ³H°	4 5	52082. 88 52153. 55	70. 67	0. 70 0. 98	$3d^3(a^2\mathrm{F})4p$	x ¹G°	4	65790. 28		0. 94
		6	52252.70	99. 15	1. 04:	$3d^2$ $4s(b^2\mathrm{F})4p$	y ⁵ G°	2 3	66228. 4:	438. 9	
$3d^3(a^2\mathrm{P})4p$	z ³ S°	1	52181. 18		1. 85			4	66667.3:	295. 4 393. 3	
$3d^3(a^2\mathrm{D})4p$	x 3F°	2 3	52245. 68	146. 26	0. 68 1. 07			5 6	67356.0: 67795.7:?	439. 7	
		4	52391. 94 52657. 51	265. 57	1. 18:	$3d^3(a\ ^2{ m F})4p$	x ¹F°	3	66303. 88		0. 95
$3d^3(a^2\mathrm{P})4p$	x 3D°	1	52604. 11 52700. 03	95. 92	0. 63	$3d^2 4s(b^4{ m F})4p$	v ³F°	2	67737.8	167. 3	
		$\frac{2}{3}$	52767. 36	67. 33	1. 10 1. 26			3 4	67905. 1 68147. 2	242. 1	
3d³(a ²P)4p	z ¹P°	1	52803. 75		0. 92	$3d^2$ $4s(b$ $^4F)4p$	u ³D°	1	68759. 4	38. 3	
$3d^3(a^2\mathrm{H})4p$	z ³I°	5	52877. 99	198. 83	0. 84:			2 3	68797. 7 68945. 0	147. 3	
		6 7	53076. 82 53319. 52	242. 70	0. 98 1. 11:	$3d^2$ $4s(b^4\mathrm{F})4p$	v ³G°	3	69644. 2	267. 9	
$3d^3(a^2\mathrm{D})4p$	w ³D°	1	53751. 46	117. 17	0. 49:			4 5	69912. 1 70227. 8	315. 7	
		$\frac{2}{3}$	53868. 63 53927. 19	58. 56	1. 10 1. 37	$3d^2 4s(b^2\mathrm{G}) 4p$	x ¹H°	5	70936. 4		
$3d^3(a^2\mathrm{H})4p$	y ¹G°	4	54144. 20		1. 00	$3d^2 4s(b^2{ m G})4p$	w ¹G°	4	72292. 2:		
$3d^3(a^2\mathrm{D})4p$	x 3P°	2	54715.63	-2.22		$3d^3(a \ ^4\mathrm{F})4d$	e 5H	3	72447. 96:	102. 75	
		$\begin{array}{c} 1 \\ 0 \end{array}$	54717. 85 54813. 45	-95.60				4 5	72550. 71 72680. 20:	129. 49 156. 80	
$3d^3(a^2\mathrm{D})4p$	y 1F°	3	55142.01		0. 94			6 7	72837. 00: 73020. 35:	183. 35	
$3d^{3}(a^{2}{ m H})4p$	x 3G°	5	55206. 87	-97. 47	1. 15	$3d^3(a^4\mathrm{F})4d$	e 5P	1	72517. 84:	156. 44	
		$\frac{4}{3}$	55304.34 55349.63	-45.29	1. 02 0. 82			$\frac{2}{3}$	72674. 28 72908. 17	233. 89	
3d3(a 2H)4p	z ¹I°	6	55403. 38		1. 01:	3d3(a 4F)4d	e 5D	0			
3d3(a 2H)4p	y 1H°	5	55499. 38		1. 03:			$\frac{1}{2}$	72682. 06:?	107. 17	
3d ³ (a ⁴ P)4p	y 3S°	1	55663. 27		1. 92			$\frac{3}{4}$	72789. 23:? 72951. 00:	161. 77	
$3d^3(a^2\mathrm{D})4p$	y 1P°	1	56171. 49		1. 05:	$3d^3(a\ ^4{ m F})4d$	e ⁵ G	2	73026. 76	118. 92	
$3d^3(a^2\mathrm{D})4p$	y ¹D°	2	57342. 59		0. 98			$\frac{3}{4}$	73145. 68 73278. 92	133. 24 137. 71	
$3d^3(a^2\mathrm{F})4p$	w ³F°	2	62085. 02	48. 37	0. 58:			5 6	73416. 63 73498. 93:	82. 30	
		$\frac{3}{4}$	62133. 39 62176. 24	42. 85	1. 00 1. 36:	3d ³ (a ⁴ F)4d	e ⁵ F	1			
	1°	4	62761.9					$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$			
$3d^2 4s(b ^4F)4p$	y ⁵ F°	1	63548.5:	108. 7				4 5	73222. 72: 73293. 82:?	71. 10	
		2 3	63657. 2 63816. 9	159. 7		$3d^2 4s(b^2\mathrm{G})4p$	w 'F°	3	74664.5		
		4 5	64026.6	209. 7 260. 5	1	$3d^3(c^2\mathrm{D})4p?$	t 3D°	1	75715. 45:?	40.04	0. 50
$3d^{3}(a^{2}\mathrm{F})4p$	w 3G°	3	64057.39	70.45	0. 72:			$\frac{2}{3}$	75758. 29 75848. 13	42. 84 89. 84	1. 14: 1. 27:
ow (w 1)1p		4 5	64130.84	73. 45 98. 26	1. 02		u ³F°	2	76220. 4	105.1	
$3d^2(a^2{ m F})4p$	x 1D°	2	64586. 23		1. 03:		" -	$\frac{1}{3}$	76385. 8 76643. 5	165. 4 257. 7	
$3d^{3}(a^{2}F)4p$	v ³D°	3	64603.53	200 40	1. 22:		2°	3	76405. 4		
- / - P		$\frac{3}{1}$	64804. 13 64930. 76	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1. 02: 0. 46:		w ¹D°	$oxed{2}$	78791. 3:		
3d ² 4s(b ⁴ F)4p	x 5D°	0	65783. 4	00.0			3°	3	79040. 4		
- 10(0 1)1p		$\frac{1}{2}$	65816. 2 65885. 3	32. 8 69. 1					, , , , , ,		
		3 4	65996. 7 66158. 6	111. 4 161. 9		V III (a 4F1½)	Limit		[114600]		

Config. $1s^2 2s^2 2p^6 3s^2 3p^6 +$	Ol	oserved Terms
$3d^4$	$\begin{bmatrix} & a \ ^{3}P & a \ ^{3}D & b \ ^{3}F & a \ ^{3}G & a \ ^{3}H \\ a \ ^{1}S & & a \ ^{1}D & a \ ^{1}F & a \ ^{1}G & a \ ^{1}I \end{bmatrix}$	
	ns (n≥4)	$np (n \ge 4)$
$3d^3(a^4\mathrm{F})nx$	$\left\{\begin{array}{c} a \ ^5\mathrm{F} \\ a \ ^3\mathrm{F} \end{array}\right.$	z ⁵ D° z ⁵ F° z ⁵ G° z ³ D° z ³ F° z ³ G°
$3d^3(a^2P)nx$	$\left\{\begin{array}{cc} b \ ^{3}P \\ a \ ^{1}P \end{array}\right.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a^4P)nx$	$\left\{\begin{array}{cc} a & ^5\mathrm{P} \\ c & ^3\mathrm{P} \end{array}\right.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a^2\mathrm{G})nx$	{ b ³G b ¹G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a^2\mathrm{D})nx$	$\left\{\begin{array}{cc} & b \ ^3\mathrm{D} \\ & b \ ^1\mathrm{D} \end{array}\right.$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
3d3(a ² H)nx	{ b ³H a ¹H	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^3(a^2\mathrm{F})nx$	$\left\{ egin{array}{ccc} d \ ^3{ m F} \ b \ ^1{ m F} \end{array} ight.$	$egin{array}{cccc} v & ^3\mathrm{D}^\circ & w & ^3\mathrm{F}^\circ & w & ^3\mathrm{G}^\circ \ x & ^1\mathrm{D}^\circ & x & ^1\mathrm{F}^\circ & x & ^1\mathrm{G}^\circ \end{array}$
$3d^2 4s(b ^4F)nx$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
$3d^2 4s(b^2G)nx$	27	$w^{_1}\mathrm{F}^{\circ} w^{_1}\mathrm{G}^{\circ} x^{_1}\mathrm{H}^{\circ}$
$3d^3(c^2\mathrm{D})nx$	c 3D	t ³D°
	nd (n≥4)	
$3d^3(a ext{ }^4 ext{F})nx$	e 5P e 5D e 5F e 5G e 5H	

*A chart of predicted terms in the spectra of the Tii isoelectronic sequence is given in the Introduction. Owing to the differences in binding energy of the 3d and 4s electrons the arrangement of the charts of predicted and observed terms is different for Vii.

V III

(Sc r sequence; 21 electrons)

Z = 23

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 {}^4F_{1}$

 $a\ ^4F_{1\frac{1}{2}}\ 240000\ \mathrm{cm^{-1}}$

I.P. 29.7 volts

The analysis is by White, who has classified 120 lines in the interval between 1117 A and 2595 A. The limit (entered in brackets in the table) is derived from his extrapolation of isoelectronic sequence data.

The doublet and quartet terms are connected by observed intersystem combinations.

The reality of the term a ²P is questioned in the paper by Many.

REFERENCES

H. E. White, Phys. Rev. 33, 672 (1929). (IP) (T) (CL) A. Many, Phys. Rev. 70, 513 (1946).

V III

V III

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3d^2$	a 4F	1½ 2½ 3½ 4½	0 145 339 583	145 194 244	$3d^2(a\ ^3\mathrm{F})4p$	z 4F°	1½ 2½ 3½ 4½ 4½	86716 86937 87218 87544	221 281 326
$3d^3$	a 2P	1½ 1½	11207 11387	180	$3d^2(a^3\mathrm{F})4p$	z 2F°	$2\frac{1}{2}$ $3\frac{1}{2}$	87881 88329	448
$3d^3$	a 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	11513 11590 11771	77 181	$3d^2(a\ ^3{ m F})4p$	z ² D°	1½ 2½	88560 88946	386
$3d^3$	a 2G	$\frac{3\frac{1}{2}}{4\frac{1}{2}}$	11966 12187	221	$3d^2(a\ ^3{ m F})4p$	z ⁴ D°	$egin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	89004 89191 89458 89418	187 267 —40
$3d^2$	<i>a</i> ² D	$egin{array}{c} 1\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	16229 16376	147	$3d^2(a\ ^3{ m F})4p$	z ² G°	$\begin{bmatrix} 3\frac{1}{2} \\ 4\frac{1}{2} \end{bmatrix}$	91712 92055	343
3 <i>d</i> ³	a ² H	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$	16822 16977	155	3d ² (a ² F)4d	e ⁴ H	i i	141269 141486	217
3d ² (a ² F)4s	<i>b</i> ⁴F	$1\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{1}{2}$	43941 44108 44344 44645	167 236 301	******		3½ 4½ 5½ 6½	141733 141991	247 258
3d2(a 2F)4s	<i>b</i> ² F	$\frac{2\frac{1}{2}}{3\frac{1}{2}}$	49329 49807	478	V IV (a 3F2)	Limit		[240000]	
3d ² (a ³ F)4p	z 4G°	2½ 3½ 4½ 5½	85523 85874 86305 86808	351 431 503					

V III OBSERVED TERMS*

Config. $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 +$		Observed Terms							
$3d^3$	$\begin{cases} a & ^{4}\mathrm{P} \\ a & ^{2}\mathrm{P} \end{cases}$	{a ⁴P							
		7	ns (n≥	4)		n	$p (n \ge 4$	<u>l</u>)	nd (n≥4)
$3d^2(a\ ^3{ m F})nx$	{		b 4F b 2F			z ⁴ D° z ² D°	z ⁴ F° z° ² F°	z 4G° z 2G°	e ⁴ H

^{*}For predicted terms in the spectra of the Sc I isoelectronic sequence, see Introduction.

(Ca I sequence; 20 electrons)

Z = 23

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 {}^3F_2$

a ${}^{3}F_{2}$ 391000 cm $^{-1}$

I. P. 48 volts

White has classified 64 lines in the region between 675 A and 2269 A, and extrapolated the limit from isoelectronic sequence data. The limit derived from his ionization potential is entered in brackets in the table.

From a study of related spectra, Edlén has rejected White's 3d $^{1}S_{0}$ term, and his four intersystem combinations. Edlén suggests that the line observed at 734.36 A (136173 cm⁻¹) may be designated a a $^{1}D_{2}-z$ $^{3}F_{2}^{\circ}$, which decreases White's singlet terms by 698 cm⁻¹. This change has been adopted here.

REFERENCE

H. E. White, Phys. Rev. 33, 538 (1929). (I P) (T) (C L)B. Edlén- unpublished material (Feb. 1949). (T) (C L)

V IV

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3d^2$	a ³F	2 3 4	0 318 730	318 412	$3d(^2\mathrm{D})4p$	z ³F°	2 3 4	147133 147653 148365	520 712
$3d^2$ $3d^2$	a ¹D a ³P	2 0 1 2	10960 13121 13238	117 215	$3d(^2\mathrm{D})4p$	z 3P°	0 1 2	151446 151424 151564	-22 140
$3d^2$	a ¹G	4	13453 18389 96195		$3d(^2\mathrm{D})4p$ $3d(^2\mathrm{D})4p$	z ¹F°	3 1	153920 155567	
3d(2D)48	a *D b 1D	1 2 3	96410 96795	215 385	$3d(^2\mathrm{D})4d$	e ³G	3 4 5	217835 218097 218461	262 364
3d(2D)48 3d(2D)4p	z ¹D°	0	100204 144276		3d(2D)4d	e *F	2 3 4	223510 223833 224263	323 430
$3d(^2\mathrm{D})4p$	z ³D°	1 2 3	146116 146426 146851	310 425	V v (2D114)	Limit		[391000]	

Feb. 1949.

V IV OBSERVED TERMS*

Config. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ +	Observed Terms							
$3d^2$	{							
	ns (n≥4)	$np (n \ge 4)$ $nd (n \ge 4)$						
$3d(^2\mathrm{D})nx$	$\left\{ \begin{array}{cc} a^{2}\mathrm{D} \\ b^{1}\mathrm{D} \end{array} \right.$	$\begin{bmatrix} z \stackrel{\mathtt{s}}{P} \circ & z \stackrel{\mathtt{s}}{D} \circ & z \stackrel{\mathtt{s}}{F} \circ \\ z \stackrel{\mathtt{1}}{P} \circ & z \stackrel{\mathtt{1}}{D} \circ & z \stackrel{\mathtt{1}}{F} \circ \end{bmatrix} e^{\stackrel{\mathtt{s}}{F}} e^{\stackrel{\mathtt{s}}{G}}$						

^{*}A chart of predicted terms in the spectra of the Carisoelectronic sequence is given in the Introduction. Owing to the change in binding energies of the 3d and 4s electrons along this sequence, the arrangement of the charts of observed and predicted terms is not identical. In Viv the prefixes $a, b, \ldots e$, z replace those indicating the running electron.

(KI sequence; 19 electrons)

Z = 23

Ground state $1s^2 2\varepsilon^2 2p^6 3s^2 3p^6 3d ^2D_{146}$

 $3d \, ^2\mathrm{D}_{1\frac{1}{2}}$ 526000 cm⁻¹

I. P. 65.2 volts

The terms have been calculated from the data published by Gibbs and White, who classified 11 lines in the region between 286 A and 1716 A. From these data Kruger and Weissberg have calculated the limit by fitting a Ritz-Rydberg formula to the ²S terms. Their limit in round numbers is quoted here.

REFERENCES

- R. C. Gibbs and H. E. White, Phys. Rev. 33, 162 (1929). (C L)
- P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 317 (1937). (I P)

\mathbf{v}

Config.	Desig.	J	Level	Interval
3p6(1S)3d	$3d$ $^2\mathrm{D}$	$1\frac{1}{2}$ $2\frac{1}{2}$	0 620	620
3p ⁶ (¹ S)4s	4s 2S	1/2	148100	
3p6(1S)4p	4p 2P°	$1\frac{1}{2}$ $1\frac{1}{2}$	206347 207617	1270
3p6(1S)5s	58 ² S	1/2	328167	
$3p^6(^1{ m S})4f$	4f ² F°	$\left\{\begin{array}{c}2\frac{1}{2}\\3\frac{1}{2}\end{array}\right.$	349204	
3p ^è (¹S)6s	68 ² S	1/2	403933	
V vi (¹S₀)	Limit		526000	

May 1948.

V VI

(A r sequence; 18 electrons)

Z = 23

Ground state 1s2 2s2 2p6 3s2 3p6 1S0

3p6 1S0 1040100 cm-1

I. P. 128.9 volts

Four lines are classified in the region between 128 A and 182 A, as combinations with the ground term. The values listed in the table have been rounded off in the last places.

For convenience, the Paschen notation has been added by the writer in column one under the heading "A1". As for A1, the jl-coupling notation in the general form suggested by Racah is here introduced, although LS-designations, as indicated in column two under the heading "Authors", are perhaps preferable for the terms thus far identified.

REFERENCES

- P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935). (I P) (T) (C L)
- P. G. Kruger, S. G. Weissberg and L. W. Phillips, Phys. Rev. 51, 1090 (1937). (I P) (T)
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

 $V v_I$

Аі	Authors	Config.	Desig.	J	Level
$1p_0$	$3p^6$ $^1\mathrm{S}$	$3p^6$	$3p^6$ 1S	0	0
184	3p ⁵ 4s ³ P°	$3p^5(^2\mathrm{P}_{^1\!\!\:\cancel{5}\!\!\:\cancel{5}})4s$	4s [1½]°	2	549300
182	3p ⁵ 4s ¹ P°	$3p^5(^2\mathrm{P}_{5})4s$	4s'[½]°	0	557650
284	3p ⁵ 5s ³ P°	$3p^{5}(^{2}\mathrm{P}_{_{1}}\overset{\circ}{\bowtie})5s$	5s [1½]°	2 1	771760
$2s_2$	3p ⁵ 5s ¹ P°	$3p^5(^2\mathrm{P}_{\mathcal{H}}^{\circ})5s$	5s'[½]°	0	778920
		V vII (2P11/2)	Limit		1040100
		V vII (2P½)	Limit		1047760

May 1948.

V vii

(Cl i sequence; 17 electrons)

Z = 23

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5 {}^2P_{14}^{\circ}$

$$3p^5 {}^{2}P_{1\frac{1}{2}}^{\circ}$$
 1216000 cm⁻¹

I. P. 151 volts

All of the terms except $3p^6$ ²S are from the paper by Edlén. Thirteen lines in the region between 148 A and 472 A have been classified as combinations from the ground state. Edlén has estimated the value of the limit by extrapolation along the isoelectronic sequence, as indicated by brackets in the table. His unit, 10^3 cm⁻¹, has here been changed to cm⁻¹.

REFERENCES

S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (A) (1936). (C L)
B. Edlén, Zeit. Phys. 104, 407 (1937). (I P) (T) (C L)

V VII

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^5$	3p ⁵ ² P°	1½ ½ ½	0 7660	-7660
3s 3p6	3p ⁶ ² S	1/2	219160	
3s² 3p⁴(³P)4s	4s 4P	2½ 1½ ½	608640 612810 615480	$ \begin{array}{c c} -4170 \\ -2670 \end{array} $
$3s^2 \ 3p^4(^3{ m P})4s$	48 ² P	1½ ½ ½	620650 6255 7 0	-4920
3s² 3p⁴(¹D)4s	4s' 2D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	638540 638710	-170
3s ² 3p ⁴ (1S)4s	4s'' 2S	1/2	671580	
V vIII (3P2)	Limit		[1216000]	

January 1948.

V viii

(S I sequence; 16 electrons)

Z = 23

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4 {}^3P_2$

 $3p^4$ 3P_2 1401000 cm⁻¹

I. P. 173.7 volts

The analysis is by Edlén, who has classified 19 lines in the range between 135 A and 147 A. He has extrapolated the limit from isoelectronic sequence data. The singlet and triplet terms are connected by two observed intersystem combinations.

Edlén's unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 104, 188 (1937). (I P) (T) (C L)

V viii

V viii

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
3s ² 3p ⁴	3p4 3P	2 1 0	0 6000 7 580	-6000 -1580	3s ² 3p ³ (² D°)4s 3s ² 3p ³ (² P°)4s	4s' ¹D° 4s'' ³P°	2	718450 734240	
3s ² 3p ⁴	3p4 1D	2	27120		38° 3p°(-1)48	48 1	$\frac{1}{2}$	734870 736640	630 1770
$3s^2 \ 3p^4$ $3s^2 \ 3p^3(^4S^\circ)4s$	3p ⁴ ¹ S 4s ³ S°	0	60 72 0 687250		$3s^2 \ 3p^3 (^2P^\circ) 4s$	48" ¹ P°	1	742790	
$3s^2 \ 3p^3(^2{\rm D^o})4s$	4s' 3D°	1 2 3	710600 710910 711990	310 1080	V IX (4S _{13/2})	Limit		1401000	

January 1948.

V IX

(P I sequence; 15 electrons)

Z = 23

volts

Ground state 1s2 2s2 2p6 3s2 3p3 4S146

 $3p^3 \, {}^4S_{1\frac{1}{2}}^{\circ}$ cm⁻¹

I. P.

Kruger and Pattin have observed 6 lines near 126 A, and arranged them in two multiplets that give intervals consistent with those found in related isoelectronic spectra.

By a rough extrapolation of $3p^3 \, ^4S_{11/2}^{\circ} - 3p^3 \, ^2D_{11/2}^{\circ}$ along the isoelectronic sequence, the writer has estimated the value of $3p^3 \, ^2D_{11/2}^{\circ}$ (entered in brackets in the table), and calculated the terms listed below from the multiplets given by Kruger and Pattin. The uncertainty x in the estimated position of the doublet terms relative to the quartets may exceed $\pm 500 \, \text{cm}^{-1}$.

REFERENCE

P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 624 (1937). (C L)

V ix

Config.	Desig.	J	Level	Interval
$3s^2 \ 3p^3$	3p³ 4S°	1½	0	
$3s^2 \ 3p^3$	$3p^3$ ² D°	$\frac{1\frac{1}{2}}{2\frac{1}{2}}$	[36000] + x 37520 + x	1520
$3s^2 3p^2(^3P)4s$	4s 4P	$1\frac{1}{2}$ $1\frac{1}{2}$ $2\frac{1}{2}$	789070 792700 797320	3630 4620
$3s^2 \ 3p^2(^1{ m D})4s$	4s' ² D	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	$824500 + x \\ 824860 + x$	-360

December 1947.

V XI

(Al I sequence; 13 electrons)

Z = 23

Ground state $1s^2 2s^2 2p^6 3s^2 3p {}^2P_{\frac{1}{2}}$

 $3p^{2}P_{2}^{\circ}$ cm⁻¹

I. P. volts

This spectrum has not been analyzed, but Edlén has classified two lines as follows:

I. A.	Int.	Wave No.	Desig.
87. 166	3	1147240	}3p 2P°-4d 2D
87. 868	4	1138070	

His unit, 10³ cm⁻¹, is here changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 540 (1936). (C L)

December 1947.

V XII

(Mg I sequence; 12 electrons)

Z = 23

Ground state 1s2 2s2 2p6 3s2 1S0

3s2 1S0 2490000 cm-1

I. P. 309 volts

Edlén has classified 15 lines in the region between 61 A and 106 A. No intersystem combinations have been observed, and the triplet terms are not all connected by observed combinations. He has determined the relative positions of the various groups of terms and also the ionization potential by extrapolation along the isoelectronic sequence. His estimated value of the limit is entered in brackets in the table.

His unit, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 103, 536 (1936). (I P) (T) (C L)

V XII

V XII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$3s^2$ $3s(^2\mathrm{S})3p$	3s ² ¹ S 3p ³ P°	0 0 1 2	188350+x 191450+x	3100 7160	3s(2S)4f 3s(2S)5d	4f ³F°	2 3 4	1485160+x	
$3s(^2\mathrm{S})3d$	3d ³D	1 2 3	198610 + x $549580 + x$		3s(2S)5f	5 <i>f</i> ³ F°	1 2 3 2 3	$1818660 + x \\ 1818910 + x$	250
3s(2S)4s	4s 3S	1	1212500+x				4	1848960+x	
3s(2S)4p	4p ¹P°	1	1310500						
$3s(^2\mathrm{S})4d$	4d ³ D	1 2 3	$ \begin{array}{r} 1424530 + x \\ 1424850 + x \\ 1425410 + x \end{array} $	320 560	V XIII (2S ₁₄)	Limit		[2490000]	

August 1947.

V XIII

(Na 1 sequence; 11 electrons)

Z = 23

Ground state 1s2 2s2 2p6 3s 2S2

 $3s~^2S_{\frac{1}{2}}~\mathbf{2713130}~\mathrm{cm}^{-1}$

I. P. 336.29 volts

Edlén has classified 15 lines in the interval 52 A to 99 A, and extrapolated the absolute value of the ground term from isoelectronic sequence data.

The unit adopted by Edlén, 10³ cm⁻¹, has here been changed to cm⁻¹.

REFERENCE

B. Edlén, Zeit. Phys. 100, 621 (1936). (I P) (T) (C L)

V XIII

V XIII

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
38	3s 2S	1/2	0		4f	4f 2F°	2½ 3½	1550290 1550510	220
3p	3p 2P°	11/2	2 25350 236430	11080	5p	5 <i>p</i> ² P°	$\frac{1}{2}$ $1\frac{1}{2}$	1889360 1891430	2070
3d	3d ² D	1½ 2½	545500 546730	1230	5d	$5d$ $^2\mathrm{D}$	1½ 2½ 2½	1946050 1946360	310
48	4s 2S	1/2	1300330		5 <i>f</i>	5f ² F°		1940000	
4p	4p 2P°	1½ 1½	1388410 1392780	4370	oj	oj 1	2½ 3½	1968740	
4d	4d ² D	1½ 2½	1505 7 40 1506340	600	V xIV (1S0)	Limit		2713130	

June 1947.

V xiv

(Ne i sequence; 10 electrons)

Z = 23

Ground state 1s² 2s² 2p⁶ ¹S₀

 $2p^6$ 1S_0 **7237600** cm⁻¹

I. P. 897.1 volts

Edlén and Tyrén have classified four lines in the region between 20 A and 23 A, as combinations with the ground term. They have derived absolute term values by extrapolation along the Ne I isoelectronic sequence. Their unit, 10³ cm⁻¹, has here been changed to cm⁻¹. As for Ne I, the *jl*-coupling notation in the general form suggested by Racah is introduced.

REFERENCES

- B. Edlén and F. Tyrén, Zeit. Phys. 101, 210 (1936). (I P) (T) (C L).
- G. Racah, Phys. Rev. 61, 537 (L) (1942).

V XIV

Authors	Config.	Desig.	J	Level
$2p$ $^1\mathrm{S}_0$	$2p^{6}$	$2p^6$ $^1\mathrm{S}$	0	0
3s ³P1	$2p^{5}(^{2}\mathrm{P_{i_{1}_{2}}^{\circ}})3s$	3s [1½]°	2 1	4202700
3s ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{\!$	3s'[½]°	0	4257100
3d ¹ P ₁	$2p^{5}(^{2}\mathrm{P}_{^{1}\!$	3d [1½]°	1	4757800
3d ³ D ₁	$2p^5(^2\mathrm{P}^{\circ}_{1deg})3d$	3d'[1½]°	1	4827200
	V xv (2P _{1½})			7237600
	V xv (² P _½)	Limit		7295300

April 1947.

FORM NBS-114A (1-71)				
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NES-NSRDS 35, Vol. I	2. Gov't Accession No.	3. Recipient's	s Accession No.
4. TITLE AND SUBTITLE Atomic Energy Leve	vees of Ontical	5. Publication December 1		
Spectra. Vol. I,	6. Performing	Organization Code		
7. AUTHOR(S) Charlotte E. Moore	8. Performing	Organization		
9. PERFORMING ORGANIZAT	ION NAME AND ADDRESS		10. Project/T	ask/Work Unit No.
NATIONAL B DEPARTMEN' WASHINGTON	11. Contract/Grant No.			
12. Sponsoring Organization Na	me and Address		13. Type of R Covered	Report & Period
Same			Final	
Jame			14, Sponsorin	g Agency Code
15. SUPPLEMENTARY NOTES				
16. ABSTRACT (A 200-word or bibliography or literature su	less factual summary of most significant	information. If docume	nt includes a s	ignificant
prepared at the Native Volume I contains lithium, beryllium magnesium, aluminus calcium, scandium spectra of chromius germanium, arsenic zirconium, and nic molybdenum, technotin, antimony, tetantalum, tungster lead, bismuth, pos	ree volumes is a critical contational Bureau of Standards data on the spectra of hydram, boron, carbon, nitrogen, um, silicon, phosphorus, sul, titanium, and vanadium (1 um, manganese, iron, cobalt, c, selenium, bromine, kryptobium (24 Cr to 41 Nb). Volumetium, ruthenium, rhodium, plurium, iodine, xenon, cesin, rhenium, osmium, iridium, lonium, radon, radium, and a lorder, separated by semicolons)	from the analyse rogen, deuterium oxygen, fluorine, fur, chlorine, a 23 to V). Volum nickel, copper on, rubidium, street alladium, silver um, barium, lange platinum, gold	es of option, tritium, e, neon, so argon, pota me II cover, zinc, garrontium, you the spectrar, cadmium thanum; har, mercury,	cal spectra. helium, odium, assium, rs the llium, ttrium, a of , indium, fnium, thàllium,
Energy levels; H-				
18. AVAILABILITY STATEME		19. SECURIT (THIS RE		21. NO. OF PAGES
X UNLIMITED.		UNCLAS	SIFIED	35 9
FOR OFFICIAL D	TY CLASS AGE)	22. Price \$5.00		

UNCLASSIFIED

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be made either

NSRDS-NBS 1, National Standard Reference Data System—
Plan of Operation, by E. L. Brady and M. B. Wallenstein,
1964 (15 cents), SD Catalog No. C13.48:1.
☐ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent
Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No.
C13.48:2.
□ NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra,
Atomic Energy Levels and Multiplet Tables, Si II, Si III,
Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No.
C13.48:3/Sec.1.
☐ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra,
Atomic Energy Levels and Multiplet Tables, Si I, by C. E.
Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.
NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C 1, C 11, C 111,
Atomic Energy Levels and Multiplet Tables, Cı, Cıı, Cııı,
C IV, C V, C VI, by C. E. Moore, 1970 (\$1), SD Catalog No.
CIV, CV, CVI, by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3.
□ NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra,
Atomic Energy Levels and Multiplet Tables, N IV, N VI, N VII,
by C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec. 4.
□ NSRDS-NBS 4, Atomic Transition Probabilities, Vol. 1, Hydrogen
Through Nove by W. J. William M. W. O. H. and D. M. Ol.
Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon,
1966 (\$2.50), SD Catalog No. C13.48:4/Vol.I.
☐ NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by
P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5.
☐ NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies,
Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No.
012 40 C/D+ 1
C13.48:6/Pt.1.
☐ NSRDS-NBS 7, High Temperature Properties and Decom-
position of Inorganic Salts, Part 1. Sulfates, by K. H. Stern
and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1.
☐ NSRDS-NBS 8, Thermal Conductivity of Selected Materials,
by R. W. Powell, C. Y. Ho, and P. E. Liley, 1966 (\$3). PB189698*
□ NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F.
Testman Distances and O. C. Miller 1007 (60) OD Ostalan Na
Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No.
C13.48:9.
☐ NSRDS-NBS 10, Selected Values of Electric Dipole Moments
for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R.
Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No.
C13.48:10.
NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No.
C13.48:11/Pt.2.
☐ NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Trans-
formation Coefficients from Symmetric to Asymmetric Bases
and Expectation Values of P_z^2 , P_z^4 , and P_z^6 , by R. H.
Schwendeman, 1968 (60 cents), SD Catalog No. C13.48:12.
☐ NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts,
by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No.
C13.48:13.
☐ NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy
Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No.
C13.48:14.
** "!! () !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Available from National Technical Information Service, Springfield, Virginia 22151.

by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

ter	Send your order together with remittance to Superindent of Documents, Government Printing Office, Washgton, D.C. 20402.
	NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1.
	NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2.
	NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3.
	NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold From 0 to 300°K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18.
	NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19.
	NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S. Johnston, 1968 (45 cents), SD Catalog No. C13.48:20.
	NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal, 1970 (\$7), SD Catalog No. C13.48:21.
	NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II.
	NSRDS-NBS 23, Partial Grotrian Diagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23.
	NSRDS-NBS 24, Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 100° C, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24.
	NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25.
	NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD Catalog No. C13.48:26.
	NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27.
	NSRDS-NBS 28, Molten Salts: Vol. 2, Section 1, Electrochemistry of Molten Salts: Gibbs Free Energies and Excess Free Energies

SD Catalog No. C13.48:28/Vol.2.
NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV, by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29.

From Equilibrium-Type Cells, by G. J. Janz and C. G. M. Dijkhuis. Section 2, Surface Tension Data, by G. J. Janz, G. R. Lakshminarayanan, R. P. T. Tomkins, and J. Wong, 1969 (\$2.75),

□ NSRDS-NBS 30, High Temperature Properties and Decomposition of Inorganic Salts, Part 2. Carbonates, by K. H. Stern and E. L. Weise, 1969 (45 cents), SD Catalog No. C13.48:30/Pt. 2.	□ NSRDS-NBS 35, Atomic Energy Levels as Derived From th Analyses of Optical Spectra. Vol. 1, ¹H to ²³V; Vol. 11, ²⁴Cr t ⁴¹Nb; Vol. 111, ⁴²Mo to ⁵¬La, ¬²Hf to ³¬Ac, by C. E. Moore
NSRDS-NBS 31, Bond Dissociation Energies in Simple Molecules, by B. deB. Darwent, 1970 (55 cents), SD Catalog No. C13.48:31.	1971 (In preparation), SD Catalog No. C13.48:35/Vols. I, I and III.
■ NSRDS-NBS 32, Phase Behavior in Binary and Multicomponent Systems at Elevated Pressures: n-Pentane and Methane-n-Pentane, by V. M. Berry and B. H. Sage, 1970 (70 cents), SD Catalog No. C13.48:32. ■ NSRDS-NBS 33, Electrolytic Conductance and the Conductances	 □ NSRDS-NBS 36, Critical Micelle Concentrations of Aqueous Surfactant Systems, by P. Mukerjee and K. J. Mysels, 1971 (\$3.75) SD Catalog No. C13.48:36. □ NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, b. D. R. Stull, H. Prophet, et al., 1971 (\$9.75), SD Catalog No.
of the Halogen Acids in Water, by W. J. Hamer and H. J. DeWane, 1970 (50 cents), SD Catalog No. C13.48:33.	C13.48:37. ☐ NSRDS-NBS 38, Critical Review of Ultraviolet Photoabsorptio
NSRDS-NBS 34, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, by C. E. Moore, 1970 (75 cents), SD Catalog No. C13.48:34.	Cross Sections for Molecules of Astrophysical and Aeronomi Interest, by R. D. Hudson, 1970 (\$1), SD Catalog No. C13.48:38

☆ GPO: 1972 O - 452- ☆ GPO: 1972 O - 452-685

Announce

Announcement of New Publications on Standard Reference Data

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to	the announcement	list of new	publications	to be	issued in	i the	series
National Standard Reference	Data Series - Natio	nal Bureau	of Standards.				

Name			
Company			
Address			
City	State	Zip Code	
·		r .	

(Notification Key N337)

