Probeklausur in Experimentalphysik 1

Prof. Dr. C. Pfleiderer Wintersemester 2014/15 16. Januar 2015

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (8 Punkte)

Ein punktförmiger Schlitten mit Anfangsgeschwindigkeit $v_0 = 0$ m/s und totaler Masse $m_1 = 1000$ kg gleitet reibungsfrei einen Hang der Steigung $\phi = 45^{\circ}$ hinunter. Auf halber Höhe $\frac{h}{2}$ fährt er über eine halbkreisförmige Bodenwelle mit Radius R = 10m.

- (a) Der Schlitten startet in der Höhe h. Es stellt sich heraus, dass er am höchsten Punkt der Bodenwelle den Bodenkontakt gerade nicht verliert. Berechnen Sie daraus die Starthöhe h.
- (b) Am Ende des Hügels befindet sich auf horizontaler Ebene eine ideale Feder mit Federkonstanten $k=6000\mathrm{N/m}$. Um welche Strecke x wird die Feder maximal zusammengedrückt, wenn der Schlitten in der Höhe h gestartet ist?
- (c) Welche maximale Höhe h_1 erreicht der Schlitten, wenn er von der Feder zurückkatapultiert wird?
- (d) Hinter der Bodenwelle steht am Punkt P_1 ein ruhender zweiter Schlitten mit Masse $m_2 = 250 \,\mathrm{kg}$. Beim Stoss verkeilen sich die beiden Schlitten ineinander und gleiten gemeinsam weiter. Welche Geschwindigkeit haben beide Schlitten unmittelbar nach dem Stoss?

Lösung

(a) Damit der Bodenkontakt nicht verloren geht, muss am höchsten Punkt des Hügels die Zentripetalkraft genau durch die Schwerkraft kompensiert werden, d.h.

$$\frac{m_1 v_{\rm H}^2}{R} = m_1 g \Rightarrow v = \sqrt{gR} = 10 \text{m/s}$$
[1]

Die Geschwindigkeit $v_{\rm H}$ kann aus dem Energieerhaltungssatz erhalten werden:

$$m_1 g h = m_1 g \left(\frac{h}{2} + R\right) + \frac{1}{2} m_1 v_{\mathrm{H}}^2$$
$$\Leftrightarrow m_1 g \left(\frac{h}{2} - R\right) = \frac{1}{2} m_1 v_{\mathrm{H}}^2 = \frac{1}{2} m_1 g R$$

womit man erhält

$$h = 3R = 30$$
m

[2]

(b) Wieder verwenden wir den Energieerhaltungssatz

$$m_1gh = \frac{1}{2}kx^2 \Rightarrow x = \sqrt{\frac{2m_1gh}{k}} = 10$$
m

[1]

(c) Da der Schlitten reibungsfrei gleitet, muss die gesamte Energie wieder zurückgegeben werden, d.h. er kommt zu seinem Ausgangspunkt zurück, also $h_1 = h$.

[1]

(d) Es handelt sich hier um einen inelastischen Stoß. Zuerst müssen wir die Geschwindigkeit im Punkt P_1 berechnen, und dann den Impulserhaltungssatz anwenden. Die Energieerhaltung liefert

$$mgh = \frac{1}{2}m_1v_1^2 + m_1g\frac{h}{2} \Rightarrow v_1 = \sqrt{gh}$$
 [1]

Die Impulserhaltung liefert

$$p_1 + p_2 = p_{Ges} \Rightarrow m_1 v_1 = (m_1 + m_2)v_2$$
 [1]

also

$$v_2 = \frac{m_1}{m_1 + m_2} v_1 = \frac{m_1}{m_1 + m_2} \sqrt{gh} = 13,85 \text{m/s}$$

[1]

Aufgabe 2 (2 Punkte)

Wie groß muss die Fläche einer schwimmenden Eisscholle ($\rho_{\text{Eisscholle}} = 920 \text{kg/m}^3$) von 30cm Dicke sein, damit sie einen Seeelefanten von 1t Gewicht tragen kann?

Lösung

Der Auftrieb muss der Summe der Massen von Eisscholle und Seeelefant entsprechen.

$$\rho_{\text{Eisscholle}} V_{\text{Eisscholle}} g + m_{\text{Elefant}} g = \rho_{\text{Wasser}} V_{\text{Wasser}} g$$

Weiterhin muss $V_{\text{Wasser}} = V_{\text{Eisscholle}}$ gelten. Daher vereinfacht sich die Gleichung zu

$$\begin{split} \rho_{\text{Eisscholle}} V_{\text{Eisscholle}} + m_{\text{Elefant}} &= \rho_{\text{Wasser}} V_{\text{Eisscholle}} \\ \Leftrightarrow & V_E = \frac{m_{\text{Elefant}}}{\rho_{\text{Wasser}} - \rho_{\text{Eisscholle}}} = 12,5 \text{m}^3 \end{split}$$

Daraus erhält man die Fläche

$$F_{\text{Eisscholle}} = \frac{12,5m^3}{0,3\text{m}} = 41,7\text{m}^2$$

[2]

Aufgabe 3 (4 Punkte)

Eine Kugel (Masse M, Massenträgheitsmoment $I = 2/5MR^2$ und Radius R) rolle aus der Ruhe heraus ohne zu rutschen auf einer Kugeloberfläche mit dem Radius r ab.

Bei welchem Winkel ϕ , gemessen mit der Vertikalen, löst sich die Kugel von der Unterlage ab?

Lösung

Der Schwerpunkt der Kugel befindet sich in ihrem Mittelpunkt. Mit Hilfe der Geometrie folgt für die Schwerpunktsabsenkung:

$$\Delta h = (r+R) - (r+R)\cos\varphi = (r+R)(1-\cos\varphi)$$

Beim Ablösen ist Normalkraft und Zentripetalkraft genau gleich groß

$$F_{\rm N}=F_{\rm Z}$$

also

$$F_{\rm N} = Mg\cos\varphi \qquad \qquad F_{\rm Z} = M\frac{v^2}{r+R}$$

Die Geschwindigkeit v beim Ablösepunkt ist also

$$v^2 = (r+R)g\cos\varphi$$

[1]

Mit dem Energieerhaltungssatz folgt

$$Mg\Delta h = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2$$

Da die Kugel abrollt gilt die Näherung $\omega=\frac{v}{R}$ für r>>R. Dies in den Energieerhaltungssatz eingesetzt liefert

$$Mg\Delta h = \frac{1}{2}Mv^2 + \frac{1}{2}\frac{I}{R^2}v^2$$

$$2g\Delta h = \left(1 + \frac{I}{MR^2}\right)v^2$$

[1]

Obige Beziehungen für Δh und v^2 eingesetzt ergeben

$$2g(r+R)(1-\cos\varphi) = \left(1 + \frac{I}{MR^2}\right)(r+R)g\cos\varphi$$

$$\Leftrightarrow 2 - 2\cos\varphi = \left(1 + \frac{I}{MR^2}\right)\cos\varphi$$

$$\Leftrightarrow \cos\varphi = \frac{2}{3 + \frac{I}{MR^2}} = \frac{2}{3 + \frac{2}{5}} \Rightarrow \phi = 54^{\circ}$$

[1]

Aufgabe 4 (3 Punkte)

Drei identische Planeten sind symmetrisch auf einer Umlaufbahn um den gemeinsamen Schwerpunkt angeordnet. Stellen Sie die wirkenden Kräfte auf die jeweiligen Planeten in Bezug zum Schwerpunkt ($\vec{R} = \frac{1}{M}(m_1\vec{r_1} + m_2\vec{r_2} + m_3\vec{r_3})$)auf. Bestimmen Sie daraus die Formel für Umlaufzeiten der Planeten.

Lösung

Der Schwerpunkt des Dreikörpersystems liegt bei

$$\vec{R} = \frac{1}{M}(m_1\vec{r_1} + m_2\vec{r_2} + m_3\vec{r_3})$$

wobei $M = m_1 + m_2 + m_3$ als abkürzende Schreibweise benutzt wird. Schreibt man die Gravitationskraft von Körper j auf Körper i in der Form

$$\vec{F_{ij}} = \frac{Gm_im_j}{r_{ij}^3}(\vec{r_j} - \vec{r_i})$$

und berücksichtigt man $r_{ij} = s$ für alle drei Paare von Körpern, so erhält man die Gesamtkräfte

$$\vec{F}_1 = \frac{Gm_1}{s^3} \left(m_2(\vec{r}_2 - \vec{r}_1) + m_3(\vec{r}_3 - \vec{r}_1) \right) = \frac{Gm_1M}{s^3} (\vec{R} - \vec{r}_1)$$

$$\vec{F}_2 = \frac{Gm_1}{s^3} \left(m_3(\vec{r}_3 - \vec{r}_2) + m_1(\vec{r}_1 - \vec{r}_2) \right) = \frac{Gm_2M}{s^3} (\vec{R} - \vec{r}_2)$$

$$\vec{F}_3 = \frac{Gm_1}{s^3} \left(m_1(\vec{r}_1 - \vec{r}_3) + m_2(\vec{r}_2 - \vec{r}_3) \right) = \frac{Gm_3M}{s^3} (\vec{R} - \vec{r}_3)$$

Wie die Differenzvektoren $\vec{R} - \vec{r_i}$ zeigen, ist die gesamte Gravitationskraft bei allen drei Massen auf den Systemschwerpunkt gerichtet. Wie sich außerdem zeigt, ist die Stärke der Kraft auf Körper i proportional zu m_i und zum Abstand $|\vec{r_u} - \vec{R}|$ vom Schwerpunkt. Dies sind auch die Merkmale von Zentripetalkräften: Die Zentripetalkraft entspricht $-m\omega^2\vec{r}$.

Es ist daher möglich, das System mit einer einheitlichen Winkelgeschwindigkeit ω um den Schwerpunkt rotieren zu lassen, so dass die dafür erforderlichen Zentripetalkräfte auf m_1, m_2, m_3 gerade gleich den Gravitationskräften sind. Die Winkelgeschwindigkeit und die Rotationsperiode sind in diesem Fall

$$\omega = \sqrt{\frac{GM}{s^3}} \qquad T = 2\pi \sqrt{\frac{s^3}{GM}}$$
 [1,5]

[1,5]

Geometrische Lösung

Da es sich um ein symmetrisches Problem $s:=|\vec{r_1}-\vec{r_2}|=|\vec{r_1}-\vec{r_3}|=|\vec{r_2}-\vec{r_3}|$ dreier identischer Planeten $m:=m_1=m_2=m_3=M/3$ um den Schwerpunkt \vec{R} mit $r:=|\vec{r_i}-\vec{R}|$ handelt, wirken nur betragsmäßig konstante Gravitationskräfte

$$F_G = |\vec{F_{ij}}| = G \cdot \frac{m^2}{s^2}$$

Abbildung 1: Statisches Drei-Planeten-System

zwischen ihnen, sodass eine gleichförmige Kreisbewegung um den gemeinsamen Schwerpunkt möglich ist. Damit haben alle Planeten stets die gleiche relative Position zueinander. Betrachte nun einen beliebigen Planeten.

Abbildung 2: Kräfte auf einzelnen Planeten m

Wie man in Abb. 2 sieht, zeigt die aus den Gravitationskräften F_G resultierende Kraft $F_{\rm res}$ in negative radiale Richtung $-\vec{e}_r$ und hat den Betrag

$$F_{\rm res} = 2F_G \cdot \cos(30^\circ) = \frac{\sqrt{3}Gm^2}{s^2}$$

Aus Abb. 1 erhält man $s = 2r \cdot \cos(30^\circ) = r\sqrt{3}$, wodurch sich für die resultierende Kraft

$$F_{\rm res} = \frac{Gm^2}{\sqrt{3}r^2}$$

ergibt. Bei dieser Kraft handelt es sich um die Zentripetalkraft, die den Planeten auf der Kreisbahn hält. Somit gilt

$$F_{\rm res} = F_Z \Leftrightarrow \frac{Gm^2}{\sqrt{3}r^2} = m\omega^2 r$$

Umformen liefert

$$\omega = \sqrt{\frac{Gm}{\sqrt{3}r^3}}$$

Mit der Identität $\omega=2\pi/T$ erhält man für die Umlaufzeit

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{\sqrt{3}r^3}{mG}} \left(= 2\pi \sqrt{\frac{s^3}{3mG}} = 2\pi \sqrt{\frac{s^3}{MG}} \right)$$

Aufgabe 5 (4 Punkte)

Ein Güterwagen der Masse $m_1 = 25000 \text{kg}$ fährt gegen einen stehenden Personenwagen und kuppelt an diesen an. Bei diesem Manöver werden 30% der kinetischen Energie des Güterwagens in nicht-mechanische Energieformen umgewandelt. Berechnen Sie die Masse m_2 des Personenwagens.

Lösung

Mit dem Impulserhaltungssatz folgt

$$m_1 v_1 = (m_1 + m_2) u$$
$$u = \frac{m_1}{m_1 + m_2} v_1$$

[1]

Die Energien vor bzw. nach dem Stoß sind

$$E_{\text{kin}}^{\text{vor}} = \frac{1}{2}m_1v_1^2$$

 $E_{\text{kin}}^{\text{nach}} = \frac{1}{2}(m_1 + m_2)u^2$

Wenn 30% der Energie verloren gehen, muss gelten 0,7 $E_{\rm kin}^{\rm vor}=E_{\rm kin}^{\rm nach}$, also

$$0,7\frac{1}{2}m_1v_1^2 = \frac{1}{2}(m_1 + m_2)u^2$$

[2]

Einsetzen der Impulsbedingung liefert

$$0.7\frac{1}{2}m_1v_1^2 = \frac{1}{2}(m_1 + m_2)\left(\frac{m_1}{m_1 + m_2}v_1\right)^2$$

was gleichbedeutend ist zu

$$\frac{m_1}{m_1 + m_2} = 0,7 \Leftrightarrow m_2 = \frac{0,3}{0,7} m_1 = 10714 \text{kg}$$

[1]

Aufgabe 6 (7 Punkte)

Eine massive Vollkugel (Radius: $R=0,07\mathrm{m}$, Dichte: $2,7\cdot10^3\mathrm{kg}/meter^3$, $I=2/5MR^2$) hängt an einem dünnen masselosen Stahldraht ($L=0,25\mathrm{m}$). Die Kugel schwingt um den Aufhängepunkt D.

(a) Stellen Sie die Differentialgleichungen auf und leiten Sie daraus die Schwingungsdauer T_0 für die Pendelbewegung bei kleinen Amplituden

- i) für eine Punktmasse bei L+R (T_0^{math})
- ii) als physikalisches Pendel mit ausgedehnter Kugel (T_0^{phys}) ab.

Jetzt führt die Kugel eine Drehschwingung um die Drahtachse D-S aus

(b) Bestimmen Sie die Drehfederkonstante k^* für die Verdrillung (Torsion) des Drahts. Gehen Sie dafür davon aus, dass die Schwingungsdauer die gleiche ist wie beim physikalischen Pendel der ersten Teilaufgabe.

Lösung

- (a) Definition eines mathematischen Pendels:
 - \bullet ein Körper der Massem behandelt als materieller Punkt
 - \bullet an einem starren, nicht dehnbaren masselosen Faden der Länge L

In der Näherung mathematisches Pendel gilt für die Schwingungsdauer – beschränkt auf kleine Auslenkungen aus der Ruhelage (Linearisierung) –

$$mL_S\ddot{\phi} = -mg\sin\phi \approx mg\phi$$

$$T_0^{\text{math}} = 2\pi\sqrt{\frac{L_S}{g}}$$

$$= 2\pi\sqrt{\frac{0,32\text{m}}{9,81\text{m/s}^2}}$$

$$= 1,135\text{s}$$

[1,5]

wobei $L_S = (L + R) = 0,32$ m. In der Näherung physikalisches Pendel gilt für die Schwingungsdauer –wieder beschränkt auf kleine Auslenkungen aus der Ruhelage –

$$I_D \ddot{\phi} = -mgL_S \sin \phi$$
$$T_0^{\text{phys}} = 2\pi \sqrt{\frac{I_D}{mgL_S}}$$

wobei m die Gesamtmasse, g die Schwerebeschleunigung, d der Abstand zwischen Drehpunkt D und Massenmittelpunkt S sowie $I_{\rm D}$ das Massenträgheitsmoment bezüglich des Drehpunkts D ist.

Das Massenträgheitsmoment $I_{\rm D}$ bezüglich des Drehpunkts D
 ergibt sich nach dem Satz von Steiner zu

$$I_{\rm D} = \frac{2}{5}mR^2 + mL_{\rm S}^2 = m\left(\frac{2}{5}R^2 + L_{\rm S}^2\right)$$
 [1,5]

Zahlenwerte (die erst in den nachfolgenden Aufgabenteilen benötigt werden):

Die Masse der Aluminiumkugel ergibt sich aus Dichte ρ und Kugelvolumen V zu

$$m = \frac{4}{3}\rho\pi R^3 = 2,7 \cdot 10^3 \text{kg/m}^3 \cdot \frac{4}{3}\pi (7 \cdot 10^{-2} \text{m})^3$$

= 3,88kg

damit werden die beiden Massenträgheitsmomente $I_{\rm S}$ und $I_{\rm D}$ zu

$$I_{\rm S} = \frac{2}{5} mR^2 = 0, 4 \cdot 3,88 \text{kg} \cdot (7 \cdot 10^{-2} \text{m})^2$$

= 7,6 \cdot 10^{-3} \text{kgm}^2

und

$$I_{\rm D} = 7,6 \cdot 10^{-3} {\rm kgm}^2 + 3,88 {\rm kg} \cdot 0,32^2 {\rm m}^2$$

= 0,405kgm²

erhalten.

Die Schwingungsdauer des physikalischen Pendels ergibt sich zu

$$\begin{split} T_0^{\text{phys}} &= 2\pi \sqrt{\frac{m\left(\frac{2}{5}R^2 + L_{\text{S}}^2\right)}{mgL_{\text{S}}}} = 2\pi \sqrt{\frac{L_{\text{S}}}{g}\left(1 + \frac{2}{5}\frac{R^2}{L_{\text{S}}^2}\right)} = 2\pi \sqrt{\frac{L_{\text{S}}}{g}}\sqrt{1 + \frac{2}{5}\frac{R^2}{L_{\text{S}}^2}} \\ &= T_0^{\text{math}}\sqrt{1 + \frac{2}{5}\frac{R^2}{L_{\text{S}}^2}} = 1,135\text{s} \cdot \sqrt{1 + \frac{2}{5}\frac{(7 \cdot 10^{-2}\text{m})^2}{(3,2 \cdot 10^{-1}\text{m})^2}} = 1,135\text{s} \cdot \sqrt{1,019} \end{split}$$

[1]

Die Masse der Aluminium-Kugel kürzt sich heraus, die Zahlenwerte der Massenträgheitsmomente braucht man nicht explizit, die vorgegeben Geometrie-Daten sind ausreichend für die Bestimmung der Schwingungsdauer $T_0^{\rm phys}$.

(b) Bei einer linearen Abhängigkeit des rücktreibenden Drehmoments $M_{\rm Rück}$ vom Verdrillungswinkel φ gilt mit der Drehfederkonstante k^* als Proportionalitätskonstante

$$M_{\text{R\"{u}ck}} = -k^* \varphi$$

 $M_{
m R\"uck}$ ist das einzige auftretende Rückstellmoment; zusammen mit dem Massenträgheitsmoment $I_{
m S}$ des Körpers bezüglich der Drehachse ergibt das Newtonsche Grundgesetz für Rotationen

$$M_{\rm ges} = M_{\rm R\ddot{u}ck} = I_{\rm S}\ddot{\varphi}$$

Daraus erhält man allgemein die Differentialgleichung einer ungedämpften Drehschwingung

$$-k^*\varphi = I_S \ddot{\varphi}$$
$$\ddot{\varphi} + \frac{k^*}{I_S} \varphi = 0$$

Durch Koeffizientenvergleich mit der Standard-Differentialgleichung

$$\ddot{\varphi} + \omega_0^2 \varphi = 0$$

erhält man für das Quadrat der Eigenkreisfrequenz

$$\omega_0^2 = \frac{k^*}{I_{\rm S}}$$

[1]

Mit dem Ergebnis aus dem ersten Aufgabenteil bestimmt sich die Eigenkreisfrequenz zu

$$\omega_0 = 2\pi \frac{1}{T_0^{\rm phys}}$$

Damit erhält man für die Drehfederkonstante

$$k^* = \left(\frac{2}{5}mR^2\right) \left(\frac{4\pi^2}{(T_0^{\text{phys}})^2}\right) = 7, 6 \cdot 10^{-3} \text{kgm}^2 \frac{4\pi^2}{(1, 146\text{s})^2}$$

= 0, 229Nm

[1]

Aufgabe 7 (5 Punkte)

Gegeben sei eine Welle mit der Frequenz $f=5{\rm Hz}$, der Amplitude $A=12~{\rm cm}$ und der Ausbreitungsgeschwindigkeit $c=20~{\rm m/s}.$

(a) Bestimmen Sie Kreisfrequenz, Wellenzahl und geben Sie die Funktion (y(x,t)) der Welle an.

Bestimmen Sie für jeden Ort der Welle

- (b) die maximale Geschwindigkeit v_{max} ,
- (c) die maximale Beschleunigung a_{max} .

Lösung

(a) Für die Kreisfrequenz gilt

$$\omega = 2\pi f = 31, 6(rad)$$
Hz

Für die Wellenzahl gilt

$$k = \frac{2\pi}{\lambda}$$

Wellenzahl k und Kreisfrequenz ω sind verkoppelt über die Phasengeschwindigkeit c

$$\frac{\omega}{k} = \frac{\frac{2\pi}{T}}{\frac{2\pi}{\lambda}} = \frac{\lambda}{T} = c \Rightarrow k = \frac{\omega}{c} = \frac{31,6\text{Hz}}{20\text{m/s}} = 1,57\text{m}^{-1}$$

Die harmonische Welle wird dargestellt durch

$$y(x,t) = A\sin(kx - \omega t) = 0,12 \text{m} \sin(1,57 \text{m}^{-1} x - 31,6 \text{Hz}t)$$

[1,5]

(b) Geschwindigkeit und Beschleunigung ergeben sich durch Ableiten von y(x,t). Dabei darf ein beliebiger fester Ort gewählt werden. Die Maximalwerte entsprechen den Vorfaktoren der jeweiligen harmonischen Funktionen.

$$y(x,t) = -0,12 \text{m} \sin(31,6 \text{Hz}t) \tag{1}$$

$$\dot{y}(x,t) = -0.12\text{m}31.6\text{Hz}\cos(31.6\text{Hz}t)$$
 (2)

$$\ddot{y}(x,t) = 0,12\text{m}(31,6\text{Hz})^2\sin(31,6\text{Hz}t)$$
(3)

$$|v_{max}| = 0,12\text{m}31,6\text{Hz} = 3,77\text{m/s}$$
 (4)

$$|a_{max}| = 0,12\text{m}(31,6\text{Hz})^2 = 118\text{m/s}^2$$
 (5)

[2,5]