

A \times = 6 A = $\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ B = $\begin{pmatrix} 1 & A \\ A & A \end{pmatrix}$ C = $\begin{pmatrix} 1 & A \\ A & A \end{pmatrix}$ Regar Octilia B \hat{x} + c = $\frac{1}{4}$ (1) The first of the second of the se	Name C. Wassermann		Klasse	Datum	Seite 2
$A : x = b$ $A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $k = \begin{pmatrix} 0 & 9 \\ 7 & 1 \end{pmatrix}$ $k = \begin{pmatrix} 0 & 9 \\ 7 & 1 \end{pmatrix}$ $k = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	· Wallermann				Blatt
$A = \begin{pmatrix} 2 & -1 \\ 1 & A \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $B = \begin{pmatrix} 1 & A \\ A \end{pmatrix}$ $C = \begin{pmatrix} 1 & b \\ 4 \end{pmatrix}$ $C =$,
$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 1 $					
$B = A = \frac{1}{10} (1 + 1) = \frac$			5 =	(2)	
Progr. 0=661. B $ \hat{x} + c = \frac{1}{40} \left(\frac{1}{4} \frac{1}{4} \right) \left(\frac{0.3}{4.4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{2}{2} \right) + \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{3} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{3} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{3}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$ = $\frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right) + \frac{1}{40} \left(\frac{1}{4} \right)$	B =	IAAIE to (c= 12 6/4 10	(1)
		$\hat{x} = \begin{pmatrix} 0, 9 \\ 1, 1 \end{pmatrix}$			
$= \frac{1}{70} \left(\left(\frac{2}{2} \right) + \left(\frac{1}{7} \right) \right)$ $= \frac{1}{70} \left(\frac{3}{3} \right)$ $= \frac{1}{70} \left(\frac{3}{3} \right)$ $= \frac{1}{70} \left(\frac{3}{3} \right)$ $= \left(\frac{1}{7} \right) - \left(\frac{2}{7} \right) \left(\frac{5}{1} \right) $ $= \left(\frac{1}{7} \right) - \left(\frac{67}{2} \right) $ $= \left(\frac{6}{7} \right)$	Prage	z Oettli			
$ \vec{x} = $		B/2/+	= 10 1	1 (0,3) +	(1)
z = z - z = z -			= 10 ((2)+(1)	
$= \left(\begin{array}{c} 1 \\ 2 \end{array} \right) - \left(\begin{array}{c} 0 \\ 2 \end{array} \right) $ $= \left(\begin{array}{c} 0 \\ 3 \end{array} \right)$ $ \vec{x} \leq \vec{B} \vec{x} + c$			- 1 (3 - 10 (3)		
$= \begin{pmatrix} 0, 3 \\ 0 \end{pmatrix}$ $ \vec{x} \leq B \vec{x} + c$		171= 16-2	$ \tilde{x} = (\frac{1}{2}) $	$\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0.5 \\ 1,1 \end{pmatrix}$)
171 = 0181 +c			= 1 (1)	- (2)	
			= (0,	3)	
		121 4 h 15	1 1		
02		(0,3) 4			
X have als Loung abreptient werden.				alanca t and I	
manu all resung unreposert Western.		name a	a rescuig	reception werden.	

4 Seite Klasse C. Wassermann Blatt Nr4 Für Pinensionen 10 and 15 ist die Jenenigheit der CU - Zerlegung mi & and state Pirst talegie sleich. The gro Boren Dimensione - 20 beigt die CU Leslegung dere Pirot-Stretzie erheblich abweichung von bis zu 100%. wo hingeyen die Un- Zerlegeng mit Pirot Sombegie seine Jenemijkeit beilehalt. 145 Das augereluete Epsilon für Prager-Oettli liegt numer hugup welen dem Probable our Word God and Marchine - Epsilon. Trote eine hohen Kondition de Matrix A, s'int die Ergebnisse da Loser his zer 3. Naldoumas telle branchbar.