Intraspecific brood theft in an Indian queenless ant

Bishwarup Paul¹, Manabi Paul¹, Sumana Annagiri^{1,*}

^{1,*}Behaviour and Ecology Lab Dept. of Biological Sciences IISER-Kolkata

Introduction

©2016 iStockphoto LP

Theft: The act or practice of the wrongful taking and carrying away of the personal goods or property of another (http://universalium.academic.ru/210199/theft).

Animal phylum	Group	Animal phylum	Group
Cnidaria Platyhelminthes Annelida	Hydroids	Mollusca	Slugs Snails
Arthropoda	Flies	Echinodermata	Sea stars, brittle stars
	Beetles Bees, wasps and ants	Chordata	Fish
	Mites and spiders		Turtles Lizards
	Other insects		Birds
	Caprellids, copepods, and amphipods		Mammals
	Crabs		lvengar 2007

Items stolen

Stealing of food:

- Hyenas
- Gulls
- Spiders
- Honeybees
- Ants

Stealing of other important objects:

- Nesting site (bees)
- Brood (birds, ants)

Brood theft in ants

For consumption

For founding new colony

Foos & Punae

For slave workers

Image Courtesy: www.alexanderwild.com

Study species: Diacamma indicum

- Queenless ant belonging to subfamily Ponerinae.
- ❖ Found in India, Sri Lanka, Japan.
- Primitively eusocial.
- Colony size: 12-261 adults.
- Colony relocation occurs via tandem running.

Viginier et al. 2004, Kaur et al. 2012

Objective

- Brood theft in laboratory conditions
- Brood theft in natural habitat
- Fate of procured pupae
- Strategy of thieves

Brood theft in lab

Preference towards stealing pupae	14/15
Percentage of thieves	1.35 ± 0.73%
Success of stealing	75.3 ± 33.7%
Advantage of one colony	Resident

Brood of victim colony

Brood of thief colony

Defense against stealing

Video: Successful stealing attempt

Video: Unsucessful stealing attempt

Aggressive interactions			
Antennal boxing (AB)	Ants face each other and repeatedly beat each other with antennae in quick succession		
Chase (CH)	One ant chases the other till the one being chased runs away		
Bite (BI)	One or more ants bite another one with mandible		
Drag (DR)	One or more ants drag another one to stop from running away		
Hold down (HD)	One or more ants hold down another one in place to stop from running away		

Video:AB Video:CH Video: BI-DR-HD

Brood theft in natural habitat

Direct observation:

2 pupae stolen

Indirect observation:

Recollected colonies had less number of pupae than expected.

(Wilcoxon paired-sample test, Exp: T = 3, n = 8, p = 0.039; Control: T = 5, n = 8, p = 0.078)

Calculation of expected pupae:

$$R_x = P_x/P_{x-1}$$

$$E_{x+1}=P_x\times R_x$$

Fate of procured pupae

n = 8

 No preference towards self or foreign pupae during procurement.

(Mann-Whitney II test: II = 6249, df1 = 111, df1

(Mann-Whitney U test: U = 6249, df1 = 111, df2 = 111, p = 0.854)

7-day observation:

n = 8, total pupae = 371

Pupae eclosed = 262 (70.6%)

No difference in treatment towards self or foreign pupae.

No pupae were consumed or newly eclosed were harmed.

All newly eclosed integrated with the colony.

Eclosion of pupae of different categories:

Foreign pupae eclosed at a faster rate than self-pupae.

(Log-rank test:
$$x^2 = 9.6$$
, df = 2, p < 0.01

Hazard ratios from Cox proportional hazards model:

Self-unmarked: 1 Self-marked: 1.03

Foreign: 1.50, p = 0.01)

Strategy of thieves

- Spending less time in victim colony. (Mann-Whitney test: U=1881.5, df1=43, df2=53, p<0.001)
- Interacting with less number of nonnestmates.

(Mann-Whitney test: U=1797, df1=43, df2=53, p<0.001)

Increasing speed while stealing.

Welch's ANOVA: F(2,78.7) = 40.13, p < 0.001 Post-hoc using Games-Howell test: Significantly different at p < 0.05

Tracking done using MtrackJ plugin of ImageJ.

Discussion

- Brood stealing occurs in D. indicum.
- Thieves stole pupae in majority.
- Vulnerability of a colony during relocation may make them prone to steal by conspecifics.
- Aggressive interactions towards thieves are key to the defense mechanism.
- Thieves increase efficiency by increasing speed.
- Ants emerged from stolen pupae integrate into the colony.
- First study to report brood theft in the Ponerinae and in the tropics.

Acknowledgements

- Supervisor Dr. Sumana Annagiri
- · Field assistant Mr. Basudev Ghosh
- Lab members
- DST
- IISER-K

References

- Breed, M.D., Cook, C. & Krasnec, M.O., 2012. Cleptobiosis in Social Insects. *Psyche: A Journal of Entomology*, 2012, pp.1–7.
- Iyengar, E. V., 2008. Kleptoparasitic interactions throughout the animal kingdom and a reevaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. *Biological Journal of the Linnean Society*, 93(4), pp.745–762.
- Kaur, R., Anoop, K. & Sumana, A., 2012. Leaders follow leaders to reunite the colony: relocation dynamics of an Indian queenless ant in its natural habitat. *Animal Behaviour*, 83(6), pp.1345–1353.
- Pollock, G. & Rissing, S., 1989. Intraspecific brood raiding, territoriality, and slavery in ants.
 American naturalist, 133(1), pp.61–70.
- Viginier, B. et al., 2004. Very low genetic variability in the Indian queenless ant *Diacamma indicum*. *Molecular ecology*, 13(7), pp.2095–100.

Thank you