

Hausaufgaben und Übungen zur Vorlesung

Analysis 2

Stefan Waldmann

Wintersemester 2023/2024

$Hausaufgabenblatt\ Nr.\ 4$ $_{\text{revision: (None)}}$

Last changes by (None) on (None) Git revision of ana2-ws2324: (None) (None)

08. 11. 2023 (22 Punkte. Abzugeben am 15. 11. 2023)

Hausaufgabe 4-1: Verknüpfung Riemann-integrierbarer Funktionen

In dieser Aufgabe beweisen wir, dass die Verknüpfung zweier Riemann-integrierbarer Funktionen i.A. nicht Riemann-integrierbar ist. Dazu gehen wir wie folgt vor:

i.) Es sei $q:\mathbb{N}\to\mathbb{Q}\cap[0,1]$ eine Abzählung von $\mathbb{Q}\cap[0,1]$, d.h. eine bijektive Abbildung von \mathbb{N} nach $\mathbb{Q}\cap[0,1]$. Weiterhin sei

$$f(x) = \begin{cases} 0, & x \in [0, 1] \setminus \mathbb{Q}, \\ \frac{1}{n}, & x = q_n. \end{cases}$$

Zeigen Sie, dass f Riemann-integrierbar ist.

(2 Punkte)

ii.) Weiterhin sei

$$g(x) = \begin{cases} 0, & x \in [0,1] \setminus \{\frac{1}{n} | n \in \mathbb{N}\}, \\ 1, & x = \frac{1}{n} \text{ für ein } n \in \mathbb{N}. \end{cases}$$

Zeigen Sie, dass g Riemann-integrierbar ist, die Verknüpfung $g \circ f$ mit der Funktion f jedoch nicht. (4 Punkte)

Hausaufgabe 4-2: Positive Integrale

Es sei $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar auf dem echten Intervall [a,b] mit

$$\int_{a}^{b} f(x) \mathrm{d}x > 0.$$

Zeigen Sie, dass es ein echtes Intervall $J \subset [a, b]$ gibt, auf dem f strikt positiv ist, d.h. mit f(x) > 0 für alle $x \in J$. (5 Punkte)

Hinweis: Eine Möglichkeit ist, die Charakterisierung der Darboux-Integrierbarkeit zu benutzen und Untersummen zu betrachten.

Hausaufgabe 4-3: Wahr oder falsch

Beweisen oder widerlegen Sie die folgenden Aussagen:

- i.) Ist $f:[a,b]\to\mathbb{R}$ eine Funktion und |f| integrierbar auf [a,b], so ist es auch f. (2 Punkte)
- ii.) Ist $f:[a,b]\to\mathbb{R}$ integrierbar und $f(x)\geq \delta$ für alle $x\in[a,b]$ und ein $\delta>0$, so ist auch $\frac{1}{f}$ über [a,b] integrierbar. (2 Punkte)
- iii.) Sind $f, g : [a, b] \to \mathbb{R}$ integrierbar, so gilt (2 Punkte)

$$\int_{a}^{b} (f \cdot g)(x) dx = \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx.$$

Hausaufgabe 4-4: Wanderdüne

Man gebe eine Folge von nicht-negativen Funktionen $f_n:[0,1]\to\mathbb{R}$ an, sodass

•
$$\lim_{n \to \infty} \int_0^1 f_n(x) \mathrm{d}x = 0,$$

• $f_n(x) \to 0$ für jedes $x \in [0,1]$. (5 Punkte)