Energy Harvesing and Low Power Techniques for IoT

CmpE490: Internet of Things Course

Edin Golubovic, PhD

VP of R&D at Inovatink

edin@inovatink.com

March, 2017

Content

- Introduction
- IoT architecture
- IoT node architecture
- Design space challenges of IoT Node
- Design space trade-offs
- Powering the IoT Node
- Energy sources and harvesters
 - Solar
 - Vibrational
 - Thermal
 - RF
- Energy Storage
- Conclusion & Future directions

IoT Architecture

IoT Node Architecture

LR44

Cymbet CBC005 0.2\$

150 mAh (non-

rechargeable)

5 µAh

 500 mm^3

 $0.7 \, \mathrm{mm}^{3}$

 $0.28 \, \text{mAh/mm}^3$

 $6.5 \, \mu Ah/mm^3$

IoT nodes need to have sensing, computation, and wireless communication capabilities

Low IoT node cost expectation, 1\$/node

Large sales volumes in highly fragmented IoT space

Ecosystem that favors design reuse Platform-based design approaches

Security is important as the IoT offers a very large number of backdoors to attackers

Traditional solutions (e.g., firewall, cryptography)
are not applicable, due to limited power budget and
cost

Design Space Trade-off: Computation vs. Communication

Best-in-class commercial radios consume an energy in the order of tens of nJ/bit, further advances in ultra-low power radios will only moderately reduce the energy per bit.

Smart ("cognitive", "attentive") nodes are needed to significantly reduce the wireless power consumption by performing on board computation.

Simple nodes communicate raw data and computation is done in cloud

 $P_{wireless,raw} = E_{bit} \cdot N_{bit,measure} \cdot f_{measurement}$

Computation vs. Communication: Epileptic Seizure Onset Detection

[Verma, Naveen, et al. "A micro-power EEG acquisition SoC with integrated seizure detection processor for continuous patient monitoring." VLSI Circuits, 2009 Symposium on. IEEE, 2009.]

	No local processing	Local feature extraction	
Capture	75 μW	75 μW	
Digital Processing		2 μW	
Radio (cc2550) - Active: bit-rate*40nJ/bit - Start-up 2.4 μW - Idile mode: 0.46 μW	1733 μW - 43.2kb/s * 40nJ/bit - 4.8μW - 0.46 μW	43 μW - 2kb/2s * 40nJ/bit - 2.4μW - 0.46 μW	
Total	1808 μW	120 μW	

Computation vs. Communication: Semantic Understanding

Design Space Trade-off: **Duty Cycling**

Repetitive tasks + Limited power => Duty cycled operation

 $P_{alwys_on} + \frac{E_{duty-cycle}}{T_{wake-un}}$ $P_{average}$ $P_{leakage} + P_{deep_sleep} + \frac{E_{wake} + E_{I/O} + E_{state} + E_{processing}}{\pi}$

Digital trigger (hardware interrupt, logical trigger)

Powering the IoT Node

Power Block

Energy Harvesting

Energy harvesting (a.k.a. power harvesting or energy scavenging) is the process by which ambient energy is captured, stored and used by small wireless autonomous devices (wearable, sensor networks).

Energy Harvesting – Solar

Characteristics

- Most researched energy harvesting technique
- Possible to harvest ambient light
- Low efficiency solar panel
 Single junction p-n theoretical limit ~35%
 46% efficiency achieved by multijunction p-n
- Suitable for remotely operated devices agriculture, smart city, structural health monitoring
- Wide power range mW to hundreds of W

Energy Harvesting – Vibration

Types of vibration harvesters

- Electromagnetic electrical conductor movement through magnetic field
- Electrostatic relative motion of variable capacitor plates
- Piezoelectric piezo materials produce voltage when mechanically stressed

Comparison

Туре	Advantage	Disadvantage		
Electromagnetic	No need for smart materialNo external voltage source	 Bulky size Difficult integration, incompatible MEMS Max voltage 0.1V 		
Electrostatic	 No need for smart material Compatible with MEMS Voltages 2~10V 	 External voltage (charge) source Mechanical constraints needed capacitive 		
Piezoelectric	 No external voltage source Voltages 2~10V Compact Compatible with MEMS 	DepolarizationBrittle materialCharge leakageHigh output impedance		

ESIEE Paris - A. Mahmood Parracha

nPower® PEG

Holst-IMEC (Germany) Micro PZ generator 500Hz 60uW @ 1g

Microlab at UC Berkeley (Mitcheson)

Energy Harvesting – Vibration / Piezoelectric

Characteristics

- Piezoelectric crystals can be embedded together with MEMS
- Possible to harvest motion energy
- Resonance drivers
- Suitable for industry applications, condition of equipment monitoring, wearables

V-I Characteristics

Energy Harvesting – Thermal

Characteristics

- Thermal gradients (Thermoelectric)
- No moving parts -> no maintenance
- Scalable to the nanoscale
- Most losses result in heat
- The power generated by a TEG is proportional to the square of (ΔT)
- Variation in the temperature of the heat source can also lead to unstable voltage output.
- Waste heat from many systems could be harvested home, industry, background, human body

V-I Characteristics

Physics

Circuit model

Energy Harvesting – RF

Characteristics

- Freely available ambient RF energy TV, GSM, WiFi
- Always available
- Suitable for low power budget devices
- 3W transmitter -> mW within 1m and μ W at around 10m.
- Industrial Monitoring, Smart Grid, Defense, Smart buildings, Remote monitoring
- Efficiency inversely proportional to distance
- Being informed about the amount of power that the system is required to handle helps the designer in choosing the right technology and method.

Harvester Architecture

Energy Sources — Wrap-up

Energy Source	Challenge	Typical Impedance	Typical Voltage	Typical Power Output	Cost of Harvester
Light	Conform to small surface area; Wide input voltage range	Varies with light input; Ωs to 10s of kΩs	DC: 0.5V to 5V [Depends on # of cells in array]	10μW – 15mW (Outdoors: 0.15 mW – 15 mW)	0.5 \$ - 10 \$
Vibration	Variability of vibration frequency	Constant impedance 10s of kΩs to 100kΩs	AC: 10s of volts	1μW – 20mW	2.5 \$ - 50 \$
Thermal	Small thermal gradients; Efficient heat sinking	Constant Impedance 1Ω to $100s$ of Ωs	DC: 10s of mV to 10V	0.5mW – 10mW (20°C gradient)	1 \$ - 30 \$
RF NAME	Coupling & Rectification	Constant impedance Low kΩs	AC: Varies with distance and power 0.5V to 5V	Wide range	0.5 \$ to 25 \$

Energy Sources – Commercial Examples

Energy Source	Voc (max)	Isc (max)	Vмpp	Рмрр	Dimensions (L x W x H mm ³)	Power Density (μW/mm ³)
Light (EnOcean)						
	4 V	7 μA (@200 lux)	3 V (@200 lux)	14 μW (@200 lux)	35 x 13 x 1	0.03
Vibration (Microgen)						
	8 V	14 μA (@0.1 g)	4 V (@0.1 g)	56 μW (@0.1 g)	15 x 15 x 6	0.04
Thermal (Micropelt)	0.3 V	750 μA (@ ΔT = 2°C)	0.15 V (@ ΔT = 2°C)	56 μW (@ ΔT = 2°C)	4 x 3 x 1	4.67
RF (PowerCast) «P POHERCAST P2110	0.275 V	240 mA (@ 0dBm)	0.175 V (@ 0dBm)	35 μW (@ 0dBm)	14 x 14 x 2.3	0.08

Energy Storage

Energy Storage

- Energy harvesting requires energy storage element or a buffer.
- In IoT storage elements or buffers are implemented in the form of a capacitor, standard rechargeable lithium battery, non- rechargeable primary batteries or new technology like thin-film batteries.
- Some applications require power for only a very short period of time, as short as the discharge time of a capacitor.
- Other applications require relatively large amounts of power for an extended duration, use of a traditional AA or a rechargeable lithium battery is necessary.

	Li-lon Battery	Thin Film Battery	Super Cap
Recharge cycles	Hundreds	Thousands	Millions
Self-discharge	Moderate	Negligible	High
Charge Time	Hours	Minutes	Sec-minutes
Physical Size	Large	Small	Medium
Capacity	0.3-2500 mAh	12-1000 μAh	10-100 μAh
Environmental Impact	High	Minimal	Minimal

Conclusion & Future Directions

IoT is expected to grow through the convergence with other social trends and technology undertakes;

Accelerated urbanization and increased human population

Geo socialization

Pervasive assistive or proactive robot technology

Constant and data-driven product upgrade

Three-dimensional remote physical interaction

participatory sensing

Conclusion & Future Directions

Short term trend for embedded system in IoT

Current state – Configurable custom logic from Atmel

Thank you. Q&A

Resources

- Priya, Shashank, and Daniel J. Inman, eds. Energy harvesting technologies. Vol. 21. New York: Springer, 2009.
- Beeby, Stephen, and Neil White. Energy harvesting for autonomous systems. Artech House, 2010.
- Panda, Preeti Ranjan, et al. Power-efficient system design. Springer Science & Business Media, 2010.
- Lee, Hyung Gyu, and Naehyuck Chang. "Powering the IoT: Storage-less and converter-less energy harvesting." Design Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific. IEEE, 2015.
- http://www.ewp.rpi.edu/hartford/~ernesto/F2012/ET/MaterialsforStudents/Ott/Shen2009-Thesis-PiezoelectricEnergyHarvestingLowFreq.pdf
- https://cora.ucc.ie/bitstream/handle/10468/1410/thesis.pdf?sequence=2&isAllowed=y
- http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1043&context=ceendiss
- http://www.eit.lth.se/sprapport.php?uid=823
- http://www.eembc.org/ulpbench/elektroniknet article 2015 07 21/
- http://www.atmel.com/images/Redefining the Power Benchmark.pdf
- http://www.silabs.com/whitepapers/manage-the-iot-on-an-energy-budget
- http://www.mouser.com.tr/applications/energy_harvesting/
- http://www.linear.com/doclist/?ci=1799&dt=70
- http://www.iop.org/resources/energy/
- http://assets.madebydelta.com/docs/share/Produktudvikling/Power converter-for-energy-harvesting.pdf
- http://www.psma.com/sites/default/files/uploads/tech-forums-energy-harvesting/presentations/2012-apec-113-low-power-converter-technology-energy-harvesting_0.pdf