Department of Computer Science & Engineering B.Tech. (CSE), III SEM, Assignment-1, (2023-24) Odd Semester Discrete Structures and Theory of Logic (KCS303)

Q. No.	Questions	Marks	BL
	Let $R = \{(1,2), (2,3), (3,1)\}$ defined on $A = \{1,2,3\}$. Calculate the transitive	5	BL-3
	closure of R using Warshall's algorithm.		
2	Prove that let $= \mathbb{R} \times \mathbb{R}$ (R is set of real no.) and define the following relation on A:	5	BL-3
	(a, b) R (c,d) if $a^2+b^2=c^2+d^2$ is an equivalence relation.		
3	Let $A=\{1,2,3,4\}$, $B=\{a,b,c,d\}$, $C=\{x,y,z\}$ and relation R from A to B and	5	BL-3
	relation S from B to C. Let $R = \{ (1,a), (2,d), (3,a), (3,b), (3,d) \}$ and $S = \{ (b,x), (b,z), (c,y), (d,z) \}$.		
	i) Calculate the relation composition of R and S.		
	ii) Prove that $(RoS)^{-1} = (S^{-1}oR^{-1})$		
4	Show that $G = \{1,-1, i, -i\}$ where $i^2 = -1$ is an abelian group with respect to	5	BL-3
	multiplication as a binary operation		
5	Show that $(N,+)$ and $(N, .)$ are semigroup. Also show that $(N, .)$ is monoid	5	BL-3
	whereas $(N, +)$ is not.		
6	Among first 500 position integers, determine the following:	5	BL-3
	(a) The integers which are not divisible by 2, nor by 3, nor by 5. (b) The integers which are exactly divisible by one of them.		
7	let $A = \{1,2,3\}$ and let $R = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1)\}$ be a	5	BL-3
,	relation on A. Draw the directed graph of R.		DL-3
8	Let f be a function from A to B, g be a function from B to C and h be	5	BL-3
	function from C to D. Prove that		
	ho(gof) = (hog)of		
9	Let G be a reduced residue system modulo 15, say, $G = \{1, 2, 4, 7, 8, 11, 13, 14\}$	5	BL-3
	(the set of integers between 1 and 15 which are coprime to 15). Then G is a group		
	under multiplication modulo 15. (a) Find the multiplication table of G .		
	(a) Find the multiplication table of G. (b) Find 2-1, 7-1, 11-1.		
	(c) Find the orders and subgroups generated by 2, 7, and 11.		
	(d) Is G cyclic?		
10	Consider the set Q of rational numbers and let * be the operation on Q defined by	5	BL-3
	a * b = a + b - ab.		
	(a) Calculate: (i) 3 * 4; (ii) 2 * (-5); (iii) 7 * (1/2).		
	(b) Is (Q, *) a semigroup? Is it commutative?		

Date of Submission: 6 Oct. 2023
