For every point (x,y) in the z-plane, the relation w=f(z) defines a corresponding point (u,v) in the w-plane. This is called as "transformation or mapping of z-plane into w-plane". If a point z_0 maps into the point w_0, w_0 is also known as the image of z_0 .

Example:

$$F(z) = z + 1$$
, bounded by $x = 0$, $y = 0$, $x = 1$ and $y = 1$

A transformation is said to be **isogonal** if two curves in the z-plane intersecting at the point z_0 at an angle θ are transformed into two corresponding curves in the w-plane intersecting at the point w_0 which corresponds to the point z_0 at the same angle θ .

We say equal in magnitude if both the angles are same

If the **sense** (direction of the rotation) of the rotation as well as the magnitude of the angle is preserved, then the transformation is called **conformal**.

In the above examples the mapping is not conformal since the angles are not equal in sense

Theorem: If f is an analytic function in a domain D containing z_0 , and if $f'(z_0) \neq 0$, then w = f(z) is a conformal mapping at z_0

Examples:

- 1. $f(z) = e^z$ is conformal mapping for all z in C
- 2. $f(z) = z^2$ is conformal for all z in C mapping except at z = 0. Since f'(0) = 0
- 3. f(z) = az + b for $a \neq 0$
- 4. For what values of z, the function $f(z) = \sin(z)$ is conformal.

Under conformal mapping the tangent line of a curve is rotated by $\omega = \arg(f'(z))$ at z_0 , in W plane.

 ω is called as **angle of rotation** and |f'(z)| is called as coefficient of magnification or scale factor at z_0

Find the angle of rotation of $f(z)=z^2$ at the point $z_0=1+i$

Sol: angle of rotation is $\frac{\pi}{4}$ scale factor is $2\sqrt{2}$

Examples:

■ Determine the angle of rotation at the point $z = \frac{1+i}{2}$ under the mapping $w = z^2$. find its scale factor also.

Solutions:

$$\frac{\pi}{4}$$
 and $\sqrt{2}$

Example

For the conformal transformation $w=z^2$, show that

- _N a. The coefficient of magnification at z=2+i is $2\sqrt{5}$.
 - b. The angle of rotation at z = 2 + i is $tan^{-1}(0.5)$.
 - c. The coefficient of magnification at z=1+i is $2\sqrt{2}$.
 - d. The angle of rotation at z=1+i is $\frac{\pi}{4}$.

Standard Transformations:

- Translation
- Rotation
- Mafnification
- Inversion

Translation:

The transformation w=z+c where c=a+ib is called as translation.

$$w=z+c$$
 $u+iv=x+iy+a+ib$
 $u=x+a$ and $v=y+b$
 $x=u-a$ and $y=v-b$

Examples:

 \blacksquare Find the image of the region bounded by x=0, x=1, y=0, y=1 under the mapping w=z+1-i