1	2 3	4	4	5	6	7	8	9	10	11	12	13	14	15	Total

Do not write above this line!

\mathbf{NAME}	(print)):
-----------------	---------	----

Math 104 / Fall 2011

FINAL EXAM

Rules:

- One sheet of paper $(8\frac{1}{2} \text{ by } 11 \text{ inch})$ both sides handwritten notes is permitted.
- No other written or printed materials are allowed.
- No electronic devices (cellular, calculator, iPad, etc.) are allowed.

Grading:

- Each problem is worth 10 points (partial credit possible).
- Do all 15(fiveteen) problems, showing your work and circling your answers.
- No credit will be given for just guessing and not showing the work leading to the answer.

Instructions:

- Fill out the information requested below, and at the top of every page of this exam.
- Check that your exam booklet contains cover page + eight pages (15 problems).

				\mathbf{e}	

Class:

Recitation (#, day & time):

- 1. The value of the integral $\int_{-1}^{1} \left(\sqrt[3]{x} + \frac{1}{1+x^2} + \frac{1}{2-x} \right) dx$ is:
- (A) $1 + \frac{\pi}{2}$ (B) $\frac{47}{10}$ (C) $\frac{\pi}{2} + \ln 3$ (D) $\ln 3 + 3$ (E) $1 + 2\pi$ (F) 0 (G) $\frac{\pi}{2} \ln 3$ (H) 1

- 2. Find the length of the arc of the curve defined by $y = \frac{2}{3}\sqrt{x^3}$ for $0 \le x \le 3$.

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) 4 (D) $5 \ln 3$ (E) $\frac{14}{3}$ (F) $\frac{1}{4}$ (G) $\frac{e}{8}$ (H) $\frac{\ln 3}{2}$

- 3. Find the volume obtained by rotating the region between the graph of $y = \frac{1}{2}\sin^2(x^2)$ and the x-axis for $0 \le x \le \sqrt{\pi}$ about the y-axis.

- (B) $\frac{\pi^2}{4}$ (C) $\frac{5}{4}$ (D) $\frac{3\pi^2}{4}$ (E) $\frac{1}{2}$ (F) $\frac{1}{4}$ (G) $\frac{\pi}{8}$ (H) $\frac{\pi^2}{8}$

- 4. Evaluate $\int_{1}^{e^3} \frac{\ln x}{\sqrt[3]{x^2}} dx.$

- (A) 3e 9 (B) $3e^2 9$ (C) $9e^2 3$ (D) $3e^2$ (E) $9e^2$ (F) 9 (G) 9e 3 (H) 3e

- 5. Find the area bounded by the *x*-axis and the graph of $y = xe^{-2x}$ for $0 \le x < \infty$. (A) 1 (B) 2 (C) e 2 (D) $\frac{1}{4}$ (E) $\frac{1}{2}$ (F) $\frac{1}{e}$ (G) $\frac{1}{2e}$ (H) $\frac{1}{4e}$

- 6. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(5x-3)^n}{n^2}.$
- $(A) (-1,1) \ (B) [-1,1] \ (C) [1,\tfrac{4}{5}) \ (D) [-\tfrac{4}{5},\tfrac{4}{5}] \ (E) [-\tfrac{4}{5},\tfrac{4}{5}) \ (F) [\tfrac{2}{5},\tfrac{4}{5}] \ (G) [0,1] \ (H) \{0\}$

- 7. Let $f(x) = e^{-x^2}$. Then $f^{(10)}(0)$ is
- (A) $-\frac{1}{120}$ (B) $\frac{1}{10!}$ (C) $\frac{10}{5!}$ (D) $-\frac{10!}{5!}$ (E) $\frac{3}{10}$ (F) $\frac{1}{100}$ (G) 1 (H) 0

- 8. The region bounded by $y = \frac{x}{\sqrt[4]{(x^2+3)^5}}$, the x-axis, and $0 \le x \le 1$, is rotated about the x-axis. The volume of the resulting solid is equal to:
- (A) $\frac{\pi}{6}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{e}{2}$ (D) $\frac{\pi}{4}$ (E) $\frac{e}{2}$ (F) $\sec 2$ (G) $\frac{1}{2}$ (H) $\frac{\pi}{72}$

- 9. Which of the following is the best approximation of $\ln(\frac{11}{10})$?

- (A) 0 (B) $\frac{1}{10}$ (C) $\frac{5}{100}$ (D) $\frac{9}{100}$ (E) $\frac{95}{1000}$ (F) $\frac{99}{1000}$ (G) $\frac{109}{1000}$
- (H) $\frac{155}{1000}$

- 10. Consider the function $f(x) = \frac{1}{x} e^{-x^2} \sin 2x$ for $x \neq 0$ and f(0) = 2. The order three Taylor polynomial $a_0 + a_1 x + a_2 x^2 + a_3 x^3$ of f(x) about x = 0 is:

- (A) $2 \frac{10}{3}x^2$ (B) $2x \frac{4}{3}x^3$ (C) $2 \frac{4}{3}x^2$ (D) $2 x^2$ (E) $x \frac{1}{3}x^3$ (F) $1 + x x^3$ (G) $-2 + x + \frac{10}{3}x^2$ (H) $2 x + x^2$

11. Let y(x) be the solution to the initial-value problem $x\frac{dy}{dx} - 2y = x^3$ and y(1) = 0. What is y(3)?

(A) 1

- (B) 3
- (C) 6
- (D) 9
- (E) 12
- (F) 15
- (G) 18
- (H) 27

- 12. A random variable has as probability density function $p(x) = 2(x+1)^{-3}$ for $x \ge 0$ and p(x) = 0 else. What is the mean of the random variable?

- (A) $\sqrt{2}$ (B) $\frac{3}{2}$ (C) 1 (D) $2\sqrt{2}$ (E) 2 (F) 4 (G) 0 (H) $\frac{11}{2}$

- 13 Evaluate the integral $\int_{\frac{\pi}{t}}^{\frac{\pi}{3}} \frac{\tan t}{\ln(\cos t)} dt$.
- (A) $\frac{1}{4e}$ (B) $\frac{1}{2e} \frac{1}{e}$ (C) $\ln 2$ (D) $2e + \frac{2}{e}$ (E) $\frac{2}{e}$ (F) $-\ln 2$ (G) $\ln 3 1$ (H) $\frac{4}{e}$

[**Hint**: $\tan t = \frac{\sin t}{\cos t}$, etc.]

14 Which of the following series converge?

$$(I) \sum_{n=2}^{\infty} \frac{\ln n}{n^3}$$

(II)
$$\sum_{n=2}^{\infty} \frac{n^3}{\ln n}$$

(III)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

(I)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^3}$$
 (II) $\sum_{n=2}^{\infty} \frac{n^3}{\ln n}$ (III) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (IV) $\sum_{n=1}^{\infty} e^{1/n}$

- (A) I & II
- (B) I & III
- (C) I & IV
- (D) II & III

- (E) II & IV
- (F) III & IV
- (G) all four of them
- (H) none of them

- 15. The values of $p \ge 0$ for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges are precisely:
 - (A) p > 1 (B) p > 0 (C) $p \ge 1$ (D) $p \le 1$ (E) p < 1 (F) $p > \frac{1}{2}$ (G) p > 2 (H) none.