3. BJT CHARACTERISTICS & PARAMETERS

3. BJT CHARACTERISTICS & PARAMETERS

Collector Characteristic Curve:

➤ Using a circuit as shown in below, we can generate a set of collector characteristic curve that show how the collector current, *Ic* varies with the *VcE* voltage for specified values of base current, *I_R*

3. BJT CHARACTERISTICS & PARAMETERS

Collector Characteristic Curve:

- \triangleright Assume that V_{BB} is set to produce a certain value of I_B and V_{CC} is zero.
- \succ At this condition, *BE* junction and *BC* junction are forward biased because the base is approximately 0.7V while the emitter and the collector are zero.
- $\succ I_B$ is through the \emph{BE} junction because of the low impedance path to ground, therefore I_C is zero.
- >When both junctions are forward biased transistor operate in *saturation region*.
- \succ As V_{CC} increase, V_{CE} is increase gradually, I_{C} increase indicated by point A to B.
- \succ I_C increase as V_{CC} is increased because V_{CE} remains less than 0.7V due to the forward biased BC junction.
- \succ When V_{CE} exceeds 0.7V, the *BC* becomes reverse biased and the transistor goes into the *active* or *linear region* of its operation.

3. BJT CHARACTERISTICS & PARAMETERS

Collector Characteristic Curve:

➤Once BC junction is R_B, IC levels off and remains constant for given value of IB and VCE continues to increase.

>Actually Ic increases slightly as VCE increase due to widening of the BC depletion region

>This result in fewer holes for recombination in the base region which effectively caused a slight increase in $I_{C}=eta_{DC}I_{B}$ indicated in point

➤ When VcE reached a sufficiently high voltage, the reverse biased BC junction goes into breakdown.

➤The collector current increase rapidly – as indicated at the right point C

>The transistor cannot operate in the breakdown region.

➤When I_B=0, the transistor is in the cutoff region although there is a very small collector leakage current as indicated - exaggerated on the graph for purpose of illustration.

3. BJT CHARACTERISTICS & PARAMETERS

DC Load Line:

>Cutoff and saturation can be illustrated in relation to the collector characteristic curves by the use of a load line.

>DC load line drawn on the connecting cutoff and saturation point.

➤The bottom of load line is ideal cutoff where Ic=0 & VcE=Vcc.

>The top of load line is saturation where Ic=Ic(sat) & VcE =VcE(sat)

>In between cutoff and saturation is the active region of transistor's operation.

Example 2

· Determine whether or not the transistor in figure below is in saturation. Assume $V_{CE(sat)} = 0.2V$

Solution Example 2

• First, determine
$$I_{C(sat)}$$
,
$$I_{C(sat)} = \frac{V_{CC} - V_{CE(sat)}}{R_C} = \frac{10 - 0.2}{1.0k\Omega} = 9.8mA$$

Now, see if I_B is large enough to produce I_{C(sat)},

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{3 - 0.7}{10k\Omega} = 0.23mA$$

$$I_{C} = \beta_{DC} I_{B} = 50 (0.23) = 11.5 mA$$

With specific β_{DC} , this base current is capable of producing I_{C} greater than $I_{\text{C(sat)}}.$ Thus, transistor is saturated and I_{C} = 11.5mA is never reached. If further increase I_B , I_C remains at its saturation value.

Main Applications of Transistors

3.TRANSISTOR CIRCUIT CONFIGURATION

Basically three types of circuit connections for operating a transistor,

- 1. Common base (CB)configuration.
- 2. Common emitter (CE)configuration.
- 3. Common collector (CC)configuration.

'common' denotes an electrode that is common to input and the ou tput circuit, because the common electrode is generally grounded.

3.1 COMMON BASE CONFIGURATION

• In this configuration the base terminal is common to input to output.

• The current gain: The ratio of collector current to emitter current is called as current gain or dc alpha $\alpha_{dc} = -I_C/I_E$ or $I_C = -\alpha_{dc}I_E$

For simplicity
$$I_C = \alpha I_E$$

we know $I_B = I_E - I_C$

$$= I_E - \alpha I_E = (1 - \alpha)I_E$$

 $\alpha_{ac} = -\frac{\Delta l_C}{\Delta l_E} \;\; \textit{It refers to change in collector current to change in emitter current}$

Characteristic of configuration

Two types of characteristics are available in each configuration circuit.

1.Input characteristics.

The input characteristics is output voltage constant and relation between input voltage and current.

2. Output characteristics.

The output characteristics is input current constant and relation between output voltage and current.

Characteristics of CB configuration

a) Input Characteristics

This characteristic may be used to find the input resistance of the transistor. Its value is given by the reciprocal of its slope.

$$R_{_{in}} = \; \frac{\Delta V_{_{EB}}}{\Delta I_{_{E}}} \; \; when \; V_{_{CB}} \; constant \; \;$$

Figure 5.47(c): Output characteristic

1.Input characteristics:

- ❖ Collector –base voltage constant.(V_{CB})
- $\ \ \, \ \,$ Ratio between V_{EB} and I_E is called as input resistance.

$$R_{in} = \frac{\Delta V_{EB}}{\Delta I_{E}} \text{ when } V_{CB} \text{ constant}$$

2. Output characteristics

- $\ \ \, \ \ \,$ The emitter current should be in constant.
- $\ \ \, \ \,$ Ratio between V_{CB} and $\ \, I_{C}$ is called as output resistance.

$$R_{\rm out} = \frac{1}{\Delta I_{\rm C}} = \frac{\Delta V_{\rm CB}}{\Delta I_{\rm C}}$$