## Задание исходных данных:

| $\boldsymbol{x}$ | g   |
|------------------|-----|
|                  |     |
| 0                | 2   |
| 1                | 3.5 |
| 2                | 6   |
| 3                | 8   |
| 4                | 10  |
| 5                | 13  |
| 6                | 16  |
| 7                | 17  |

Вычисление коэффициента корреляции:

 $r_{xy}$ :=  $\mathrm{corr}(x,y)$  = 0.996 Запись аппроксимирующей функции: f(arg):=  $\mathrm{slope}(x,y) \cdot arg$  +  $\mathrm{intercept}(x,y)$ Графическое сравнение исходных данных и аппроксимирующей прямой:



Вычисление среднего и макссимального относительного отклонения:

$$y2 \coloneqq f(x)$$

$$\operatorname{mean}\left(\left| \frac{y2-y}{y} \right| \right) \cdot 100 = 6.472$$

$$\max\left(\overline{\left|\frac{y2-y}{y}\right|}\right) \cdot 100 = 25$$

Значения функции при исслеудемых значениях агрумента Функция mean вычисляет среднее значение массива, под знаком векторизации модуль (т.к. отлонение может быть как положительным, так и отрицательным)

## Задание исходных данных:

| x        | y   |
|----------|-----|
|          |     |
| 0        | 0.1 |
| 1        | 0.3 |
| <b>2</b> | 0.6 |
| 3        | 2   |
| 4        | 2.5 |
| 5        | 4   |
| 6        | 6   |

Формирование вектора, необходимого для функции interp:

 $vs = \operatorname{regress}(x, y, 3)$ 

Задание аппроксимирующей функции:

f(arg) := interp(vs, x, y, arg)

Диапазон построение данных (строим от первого до последнего элемента таблицы с шагом 0.1)

 $xt\!\coloneqq\!x_{_0},\!x_{_0}\!+\!0.1\ldots x_{_{\mathrm{rows}\,(x)^{-1}}}$  Графическое сравнение исходных данных и аппроксимирующей прямой:

