0.1. 指数関数 1

0.1 指数関数

0.1.1 同じ数のかけ算の指数による表記

0.1.2 指数法則

指数を「かける回数」と捉えれば、いくつかの法則が当たり前に成り立つことがわかる。

「かける回数」の和

例えば、a e m 回かけてから、続けて a e n 回かける式を書いてみると、a は m+n 個並ぶことになる。

$$\overbrace{a \times a \times a}^{a^3} \times \overbrace{a \times a}^{a^2} = \overbrace{a \times a \times a \times a \times a}^{a^5}$$

「かける回数」の差

例えば、 $a \in m$ 回かけたものを、 $a \in n$ 回かけたもので割ると、m - n個のaの約分が発生する。

$$\underbrace{\overbrace{a \times a \times a \times a \times a \times a \times a}^{a^{5}}}_{a \times a} = \underbrace{a^{3}}_{a^{3}}$$

「かける回数」の積

例えば、[aem回かけたもの]emundedであると、<math>aumemandedemundedであると、<math>aumemandedemundedになる。

$$(a^2)^3 = \underbrace{a \times a \times a \times a \times a \times a \times a}_{a^6} \times \underbrace{a^2 \times a \times a \times a}_{a^6}$$

0.1.3 指数の拡張と指数関数

底を固定して、指数を変化させる関数を考えたい。

指数部分に入れられる数を拡張したいが、このとき、どんな数を入れても指数法則が成り立つよ うにしたい。

0の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、m = 0 の場合を考える。

$$a^0 \times a^n = a^{0+n}$$

$$a^0 \times a^n = a^n$$

この式が成り立つためには、a⁰ は1である必要がある。

0.1. 指数関数

3

そもそも、指数法則 $a^m \times a^n = a^{m+n}$ は、「指数の足し算が底のかけ算に対応する」ということを表している。

- 「何もしない」足し算は+0
- 「何もしない」かけ算は ×1

なので、 $a^0 = 1$ は「何もしない」という観点で足し算とかけ算を対応づけたものといえる。

負の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、正の数 n を負の数 -n に置き換えたものを考える。

$$a^m \times a^{-n} = a^{m-n}$$

さらに、指数法則 $\frac{a^m}{a^n} = a^{m-n}$ も成り立っていてほしいので、

$$a^m \times a^{-n} = \frac{a^m}{a^n}$$

この式は、 $a^{-n} = \frac{1}{a^n}$ とすれば、当たり前に成り立つものとなる。

有理数の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、指数 m,n を $\frac{1}{2}$ に置き換えたものを考える。

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2}} = a$$

 $a^{\frac{1}{2}} \times a^{\frac{1}{2}}$ は、 $(a^{\frac{1}{2}})^2$ とも書けるので、

$$(a^{\frac{1}{2}})^2 = a$$

つまり、 $a^{\frac{1}{2}}$ は、2乗するとaになる数 (aの平方根) でなければならない。

$$a^{\frac{1}{2}} = \sqrt{a}$$

同様に、 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ を考えてみると、

$$a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}} = a^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = a$$

 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ は、 $(a^{\frac{1}{3}})^3$ とも書けるので、

$$(a^{\frac{1}{3}})^3 = a$$

つまり、 $a^{\frac{1}{3}}$ は、3乗するとaになる数 (aの3乗根) でなければならない。

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$

このようにして、 $a^{\frac{1}{n}}$ は、n乗するとaになる数(aのn乗根)として定義すればよい。

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

さて、分子が1ではない場合はどうだろうか?

 $(a^m)^n = a^{mn}$ において、m を $\frac{m}{n}$ に置き換えたものを考えると、

$$(a^{\frac{m}{n}})^n = a^{\frac{m}{n} \times n} = a^m$$

となるので、 $a^{\frac{m}{n}}$ は、n乗したら a^{m} になる数として定義すればよい。

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

0.1. 指数関数

5

実数への拡張

有理数は無数にあるので、指数 x を有理数まで許容した関数 $y = a^x$ のグラフを書くと、十分に繋がった線になる。

指数が無理数の場合は、まるでグラフ上の点と点の間を埋めるように、有理数の列で近似してい くことで定義できる。

これで、xを実数とし、関数 $y = a^x$ を定義できる。

0.1.4 指数関数の底の変換

用途に応じて、使いやすい指数関数の底は異なる。

- e: 微分積分学、複素数、確率論など
- 2:情報理論、コンピュータサイエンスなど
- 10:対数表、音声、振動、音響など

よって、これらの底を互いに変換したい場面もある。

指数の底を変えることは、指数の定数倍で実現できる。

例えば、底が4の指数関数 4^x を、底が2の指数関数に変換したいとすると、

$$4^x = (2^2)^x = 2^{2x}$$

のように、指数部分を 2 倍することで、底を 4 から 2 へと変換できる。 当たり前だが、この変換は、 $4=2^2$ という関係のおかげで成り立っている。 「4 は 2 の何乗か?」がすぐにわかるから、4 から 2 への底の変換が簡単にできたのだ。

より一般に、 a^x と b^X において、 $a = b^c$ という関係があるとする。 つまり、a は b の c 乗だとわかっているなら、

$$a^x = (b^c)^x = b^{cx}$$

のように、底をaからbへと変換できる。

指数関数	の底の	変換												
指数を定	数倍す	ることに	は、底	を変え	るこ	ヒと	司じ	操作	こな・	る。				
$a = b^c \ge$	いう関	条がある	るなら	、次の	変換力	が成り) 立	つ。						
					a^x	= l	cx							

ここで重要なのは、指数関数の底を変換するには、「a は b の何乗か?」がわかっている必要があるということだ。

次章では、 $a = b^c$ となるような c を表す道具として、対数を導入する。