MOBILE PHONE ACTIVITY MILAN, ITALY

Peyman Hesami DSE241 Final Project

MOTIVATIONS

- Mobile phone activities generate massive amount of data
- This can be used in mobility planning, tourist flows, urban structures and interactions, event detection, urban well-being and many others

MOTIVATIONS

- · It can also be used for cellular network diagnostics and maintenance
 - Finding congested cells/areas
 - Finding idle cells/areas
 - Finding user's usage pattern

DATASET

- One week of Call Details Records (CDRs) from the city of Milan and the Province of Trentino (Italy)- 1.5
 GB
- Both domestic (Milan to other provinces) and international (Milan to other countries) data
- Third source of data:
 - (lat, long) of countries and provinces of Italy
 - · Geojson file of Milan cellular network containing (lat, long) of cells in the city of Milan

datetime 🥖	CellID 🥖	countrycode /	smsin 🥖	smsout 🥜	callin 🥜	callout 🥖	internet /
2013-11-01 00:00:00	1	0	0.3521			0.0273	
2013-11-01 00:00:00	1	33					0.0261
2013-11-01 00:00:00	1	39	1.7322	1.1047	0.5919	0.402	57.7729
2013-11-01 00:00:00	2	0	0.3581			0.0273	

datetime /	CellID /	provinceName 📝	cell2Province 🥖	Province2cell 🥖
2013-11-01 00:00:00	1	MILANO	0.1894	0.0541
2013-11-01 00:00:00	1	PAVIA	0.0273	
2013-11-01 00:00:00	1	TRENTO	0.0261	
2013-11-01 00:00:00	2	MILANO	0.1922	0.0556
2013-11-01 00:00:00	2	PAVIA	0.0273	

DATA WRANGLING

- Converting the raw dataset to two sets of nodes/edges dataset
- Adding label to the nodes based on their type (Milan, domestic, international)
- Removing edges with no 0 values (for sms, call, ...)
- Extracting day and hour from date time
- Integrating third source of data:
 - Converting country codes to country names
 - Deriving the coordinates (lat and long) of the cells in Milan, provinces of Italy,
 and other countries

TASKS

- Goals:
 - Diagnostic tool: Visualization tool to help wireless network engineers in cellular networks diagnostics
 - 2. **Presentation tool:** User friendly representation of the mobile phone activities for nontechnical presentation

TASKS-DIAGNOSTIC TOOL

A node-link diagram with:

- Nodes as cells and edges as user activities (width~magnitude channel)
- Several filters to choose the type of the data; domestic vs international, sms vs call vs Internet
- Zoom in/out capability
- Interaction with the graph by selecting nodes and highlighting their connected edge, adding labels to nodes/edges
- · Adding time sliders to choose the time interval within a day, day of the week and animation across time
- Ability to choose the desired graph layout
- · Ability to show only the most significant edges based on a user input
- · Ability to hide nodes and edges on drag for easy interactions

AUDIENCE-DIAGNOSTIC

- Cellular network engineers:
 - Identifying the troubled (congested) cells
 - Identifying the idle (inactive) cells
 - Optimize them to serve more users

- Schedule maintenance time in low traffic time intervals.
- Identifying the data usage patterns across time and geography
 - Optimize the cells dynamically based on usage

TASKS-PRESENTATION TOOL

Great Circle on geo layout with:

- points as cells and lines as user activities
- Several filters to choose the type of the data; domestic vs international, sms vs call vs Internet
- · Adding time sliders to choose the time interval within a day, day of the week and animation across time
- · Ability to show only the most significant edges based on a user input

AUDIENCE-PRESENTATION TOOL

- Nontechnical users seeking:
 - To find mobile phone user's usage patterns across time and geography.
 - Study the usage pattern alongside other sources of the data (like census data) for socio-technical analysis (like targeted marketing)

SOLUTIONS

- Visualization type
- Data reduction (filtering)
- Data reduction (sampling)

SOLUTIONS

Data Reduction (edge filtering)

Choose the type of the domestic data (edge data):

- Incoming Calls
- Outgoing Calls

Choose the type of the international data (edge data):

- Incoming SMS
- Outgoing SMS
- Incoming Calls
- Outgoing Calls
- Internet Connections

View change over time (static and animation)

- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday
- Sunday

Time Interval (Hour):

SOLUTIONS

• Data reduction (aggregation)

Graph layout

Graph Layout

Force Directed

Circular

Spring Forced

Graph Annotaion

Node Label

Edge Label

Highlight Nearest Edge

Hide Nodes on Drag

Hide Edges on Drag

Data reduction (edge filtering)

Graph annotations/features

IMPLEMENTATION

- Shiny package in R
- Run ui.R or server.R in RStudio
- Deployed on <u>shiny.io</u> serve: <u>https://peymanshiny.shinyapps.io/</u>
 <u>milan_phone_activity_shiny_dse241_peyman_hesami/</u>

RESULTS

RESULTS

Comparing network at Iam and 3pm on a Monday

RESULTS

Comparing outgoing calls on weekdays versus weekend at 3pm

CHALLENGES AND IMPROVEMENTS

- Efficient reading data into memory is required for fast user interactions (multiple libraries tried)
- Hour/Day extraction can be costly (regex)
- Great circle vis is not completely interactive
- Other sources of data (census) can be integrated for more insights

