ขอสอบบ 64

 สร้างวงจรรวมเลข 3 บิต 2 ตัวโดยให้แสดงผลด้วย 7-Seg Disp เป็น 1 เมื่อ อินพุตของทั้งสองอันรวมกันแล้วมากกว่า ตัวเลขตัวที่ 8 ของรหัสนิสิตของคุณ (เช่น 6XXXXXX521, คือเป็น 1 เมื่อผลบวกมากกว่า 5) และเป็น 0 ในกรณีอื่นๆ ระบุให้รับเลข Input 3 บิต 2 ตัวด้วย Binary Switch 6 ตัว และให้แสดงผลลัพธ์ด้วย 7-Seg Disp มีลักษณะดังนี้

ตรวจไปแล้ว □□□ครั้ง

Useful Function

Comparator

เพื่อเปรียบเทียบจำนวนสองจำนวน (กี่บิตก็โด)

Bit Counter

นับเลข 1 ของแตละบิต

Negation

โสงออกคำตอบเป็น 2^{bits} – input

Barrel Shifter

เลื่อนบิตไปทาโซาย และบิตที่เพิ่มมาทางขวาโปน 0 Ex 011 -> 110 , 101 -> 010, 110 -> 100

ขอสอบบ 64

2. จงสร้างวงจรที่รับ Input จาก Binary Switch 3 อัน (50, 51, 52) และ แสดงผลลัพธ์ O1 O2 ด้วย Binary Probe สองอัน ดังตารางต่อไปนี้ โดยใช้ 3:8 Decoder (Decoder-8 Non Inv)

S0 S1 S2	01 02
000	0 1
0 0 1	0.0
0 1 0	11
0 1 1	0.0
100	1 1
101	10
1 1 0	11
111	0 1

*** อนุญาตให้ใช้ Binary Switch, Binary Probe, Decoder-8 Non Inv และ Or gates เท่านั้นจะใช้กี่ตัวก็ ได้****

ตรวจไปแล้ว □□□ครั้ง

แลป 5.1 (จริง ๆ งาย แตเผื่อเคาใหลราง testcase)

ท่อนอื่นให้ไปตั้งค่าที่ Edit > Circuit specific settings > Advanced > Show measurement graph in single gate step mode at simulation start

ตอนเปิด glitch ก็เปิดพรอม double click ที่ input

จากนั้นสร้าง Testcases โดยการกด Components > Misc. > Test case แล้วก็วางที่ไหนก็ได้ของวงจรชองเรา เมื่อวางเสร็จแล้วให้ทำการกดคลิกขวาที่ Test case แล้วกด Edit จากนั้นก็กรอก testcases ที่เราต้องการจะตรวจสอบลงไป ดังนี้

A B C D Before 0 0 1 1 1 1 0 1 1 1

ขอสอบบ 65

1. จงสร้างวงจรที่รับข้อมูลจาก Input (in) 4 Bit และ แสดงผลลัพธ์ด้วย Output (out) 1 Bit ดังตารางค่อไปนี้

out
0
1
0
1
1
1
0
0
0
1
1
0
0
1
1
0

กรุณาเริ่มจาก template_01.dig: ใน Template จะมี input ชื่อ in เป็นเลข 4 bit, และ output ชื่อ out เป็นเลข 1 bit. ใน ตัวอย่างหาก in มีค่าเป็น 1110 => out = 1

คะแนน

คะแนนเต็ม 100 คะแนน โดยมีจาก Grader 90 คะแนน และ ถ้าถูกต้องทุก Case ภายใน 1 ซ.ม. จะได้อีก 10 คะแนน

 $Before(A, B, C, D, E) = \sum m(0, 1, 3, 4, 7, 11, 12, 15, 16, 17, 20, 28)$

แลป 5.2 (จริง ๆ งาย แต่เผื่อเคาใหลราง testcase)

5- variables K-map Example

After =
$$CD'E'$$
+ $B'C'D'$ + $A'DE$ + $B'D'E'$ + $A'B'C'E$

Α	В	С	D	Ε	Ве	efore	After
1	1	1	0	0	1	1	
1	0	1	0	0	1	1	
1	0	0	0	0	1	1	
1	0	0	0	1	1	1	
0	1	1	0	0	1	1	
0	0	1	0	0	1	1	
0	0	0	0	0	1	1	
0	0	0	0	1	1	1	
0	0	0	1	1	1	1	
0	0	1	1	1	1	1	
0	1	1	1	1	1	1	
0	1	0	1	1	1	1	

ขอสองโบ 65 (ขอสอง) นับ bit count แต่จริง ๆ ใช่ features Bitcounter จะงายกวามาก

ปล. บนกับสาง วงจรโดคำตอบเหมือนกัน แต่ทำกันคนละแบบ

แลป 2.8 (สราง multiplexer แบบ POS)

	II	NPUT	OUTPUT
X0	X1	Selection	Z
0	0		0
0	1	0	0
1	0	U	1
1	1		1
0	0		0
0	1	1	1
1	0	1	0
1	1		1

จริง ๆ ใช่ multiplexer ในโปรแกรมบาจะง่าย กวาและซับซอนปอยกวา

นราง K-map ออกมาจาก truth-table อานบน จะโด Z = (S + X0)(S' + X1)

LAB3.4 Hamming Code

	На	mm	ing (Code	е		
Bits	1	2	3	4	5	6	7
Variable	P1	P2	M1	P3	M2	МЗ	M4

	Circuit A
OUTPUT	EQUATION
C1	XOR(P3, M2, M3, M4)
C2	XOR(P2, M1, M3, M4)
C3	XOR(P1, M1, M2, M4)

				Ci	rcuit	: В				Circuit B							
	INF	TU		OUTPUT													
С	C1	C2	C3	В1	B2	В3	В4	B5	B6	В7							
0	0	0	0	0	0	0	0	0	0	0							
1	0	0	1	1	0	0	0	0	0	0							
2	0	1	0	0	1	0	0	0	0	0							
3	0	1	1	0	0	1	0	0	0	0							
4	1	0	0	0	0	0	1	0	0	0							
5	1	0	1	0	0	0	0	1	0	0							
6	1	1	0	0	0	0	0	0	1	0							
7	1	1	1	0	0	0	0	0	0	1							

C1C2C3 โชบอกตำแหน่งบิต ที่ผิด และฮองทำการกลับบิตนั้น สามารถกลับโดยเอาบิตที่ผิด ไป XOR ชีวย 1

LAB 4.2 เรื่อ full adder (เรื่อจากหนา 9)

5

LAB 3.1 Seven Segment Display

display

รูปที่ 1 : Segment ต่างๆบนอุปกรณ์ Seven Segment

รูปที่ 2 : การแสดงผลของอุปกรณ์ Seven Segment

	11	NPU	Т				Ol	JTPI	JT		
In	Х3	X2	X1	X0	Α	В	С	D	Е	F	G
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	1	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0							
11	1	0	1	1							
12	1	1	0	0	Г	00	יוא	т	CL	ΔRI	F
13	1	1	0	1			TN	'		VI VI	_
				0							
	Ϋ́	Ϋ́Ϋ́		1							
	ir ir	†									

ตัวอยาง 5 Variables K-map เผื่อโดโช

Five-variable K-map and example.

LAB 3.2 ASCII

	INF	TU					0	UTP	UT				
In	X2	X1	X0	Char	Hex	Α	В	С	D	Ε	F	G	Н
0	0	0	0	D	44	0	1	0	0	0	1	0	0
1	0	0	1	i	69	0	1	1	0	1	0	0	1
2	0	1	0	g	67	0	1	1	0	0	1	1	1
3	0	1	1	L	4C	0	1	0	0	1	1	0	0
4	1	0	0	0	6F	0	1	1	0	1	1	1	1
5	1	0	1	L	4C	0	1	0	0	1	1	0	0
6	1	1	0	а	61	0	1	1	0	0	0	0	1
7	1	1	1	b	62	0	1	1	0	0	0	1	0

ASCII Code - Character to Binary

0	0011 0000	1	0100	1001	b	0110 0010	v	0111	0110	
1	0011 0001	J	0100	1010	c	0110 0011	w	0111	0111	
2	0011 0010	K	0100	1011	d	0110 0100	×	0111	1000	
3	0011 0011	L	0100	1100	e	0110 0101	у	0111	1001	
4	0011 0100	М	0100	1101	f	0110 0110	Z	0111	1010	
5	0011 0101	N	0100	1110	g	0110 0110				
6	0011 0110	0	0100	1111	h	0110 1000		0011	1010	
7	0011 0110	Р	0101	0000	i	0110 1001	1	0011	1011	
8	0011 1000	Q	0101	0001	j	0110 1010	?	0011	1111	
		R	0101	0010	k	0110 1011		0010	1110	
9	0011 1001	S	0101	0011	1	0110 1100		0010	1111	
	10	Т	0101	0100	m	0110 1101	1	0010	0001	
A	0100 0001	U	0101	0101	n	0110 1110	6	0010	1100	
В	0100 0010	V	0101	0110	0	0110 1111	0.	0010	0010	
C	0100 0011	W	0101	0111	р	0111 0000	(0010	1000	

r 0111 0010 space 0010 0000

u 0111 0101

a 0110 0001

LAB 3.3 Encoder

										/ En	cod	er								
	II	NPU	Т			Exce	ess-3	3		Сус	clic		2 4	121	l Co	de	6 4	2 -:	3 Co	de
In	Х3	X2	X1	X0	А3	A2	A1	A0	В3	B2	В1	ВО	C3	C2	C1	C0	D3	D2	D1	D0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	1	0	1
2	0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	0	0	0	1	0
3	0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	1	1	0	1	1	0	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	0	0	0	1	1	1	1	0	1	1	1	0	1	1
6	0	1	1	0	1	0	0	1	0	1	0	1	1	1	0	0	0	1	1	0
7	0	1	1	1	1	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1
8	1	0	0	0	1	0	1	1	1	1	0	0	1	1	1	0	1	0	1	0
9	1	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1
10	1	0	1	0																
11	1	0	1	1																
12	1	1	0	0	DC	T'NC	- ~ ^	DE	DC	\\ I [†] T	· CA	DE	DC	T'NC	- C A	DE	DC	T'NC	^	DE
13	1	1	0	1		ר עול	CA	ME	DC	JIV T	CA	ME		ר אוכ	CA	ME		ר עול	CA	KE.
14	1	1	1	0																
15	1	1	1	1																

	MU	X-4-to-1 (A0	- D0)		MU	X-4-to-1 (A1	- D1)
INF	UT	OUTPUT	EQUATION	INF	PUT	OUTPUT	EQUATION
S1	S0	Z0	EQUATION	S1	S0	Z1	EQUATION
0	0	A0	S1'S0'A0	0	0	A1	S1'S0'A1
0	1	B0	S1'S0B0	0	1	B1	S1'S0B1
1	0	C0	S1S0'C0	1	0	C1	S1S0'C1
1	1	D0	S1S0D0	1	1	D1	S1S0D1
	MU	X-4-to-1 (A2	- D2)		MU	X-4-to-1 (A3	- D3)
INF		X-4-to-1 (A2		INF	MU	X-4-to-1 (A3 OUTPUT	
INP			- D2) EQUATION	INF			- D3) EQUATION
	PUT	OUTPUT			PUT	OUTPUT	
S1	S0	OUTPUT Z2	EQUATION	S1	S0	OUTPUT Z3	EQUATION
S1 0	SO 0	OUTPUT Z2 A2	EQUATION S1'S0'A2	S1 0	SO 0	OUTPUT Z3 A3	EQUATION S1'S0'A3

LAB 3.3 Encoder (ต่อ)

LAB 4.2 ต่อ full adder

Full Adder มี Input สามค่า A, B, Cin และมี Output 2 ค่าคือ Sum (ผลรวม) และ Cout (ตัวทด)

Input			Output	
Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

