```
In [3]: import pandas as pd
In [4]: from pycaret.classification import setup, compare_models, evaluate_model, sa
In [5]: churn_data = pd.read_csv('/content/updated_churn_data (1).csv')
In [6]: clf = setup(data=churn_data, target='Churn')
```

	Description	Value
0	Session id	1150
1	Target	Churn
2	Target type	Binary
3	Original data shape	(7043, 8)
4	Transformed data shape	(7043, 13)
5	Transformed train set shape	(4930, 13)
6	Transformed test set shape	(2113, 13)
7	Numeric features	4
8	Categorical features	3
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Maximum one-hot encoding	25
14	Encoding method	None
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	bfd1

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
knn	K Neighbors Classifier	0.7673	0.7055	0.4013	0.5904	0.4769	0.3346	0.3453	0.1170
lr	Logistic Regression	0.7347	0.8224	0.0000	0.0000	0.0000	0.0000	0.0000	0.6670
dt	Decision Tree Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0920
ridge	Ridge Classifier	0.7347	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0870
rf	Random Forest Classifier	0.7347	0.6271	0.0000	0.0000	0.0000	0.0000	0.0000	0.2920
qda	Quadratic Discriminant Analysis	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0870
ada	Ada Boost Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0900
gbc	Gradient Boosting Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3090
lda	Linear Discriminant Analysis	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0910
et	Extra Trees Classifier	0.7347	0.6268	0.0000	0.0000	0.0000	0.0000	0.0000	0.2320
xgboost	Extreme Gradient Boosting	0.7347	0.7225	0.0000	0.0000	0.0000	0.0000	0.0000	0.1200
lightgbm	Light Gradient Boosting Machine	0.7347	0.5176	0.0000	0.0000	0.0000	0.0000	0.0000	0.5690
dummy	Dummy Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0860
svm	SVM - Linear Kernel	0.7197	0.0000	0.3300	0.5075	0.3342	0.2007	0.2401	0.1080
nb	Naive Bayes	0.6811	0.8157	0.8617	0.4478	0.5891	0.3687	0.4221	0.1390
Processir	ng: 0%	0	/65 [0	0:00 ,</th <th>?it/s</th> <th>]</th> <th></th> <th></th> <th></th>	?it/s]			

Categorical distributions

In [8]: evaluate_model(best_model)

interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),
options=(('Pipeline Plot', 'pipelin...

```
save_model(best_model, 'best_churn_model')
In [ ]:
In [9]: def predict_churn_probability_whole_dataset():
          model = load_model('best_churn_model')
          predictions = predict_model(model, data=churn_data)
          return predictions
```

```
In [12]: predictions = predict_churn_probability_whole_dataset()
```

Transformation Pipeline and Model Successfully Loaded

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	K Neighbors Classifier	0.8217	0.8522	0.5361	0.7203	0.6147	0.5019	0.5112

	customerID	tenure	PhoneSe	rvice	Co	ntract	\		
0	7590-VHVEG	1		0	Month-to	-month			
1	5575-GNVDE	34		1	On	e year			
2	3668-QPYBK	2		1	Month-to				
3	7795-CFOCW	45		0	On	e year			
4	9237-HQITU	2		1	Month-to	-month			
		• • •							
7038	6840-RESVB	24		1	On	e year			
7039	2234-XADUH	72		1	On	e year			
7040	4801-JZAZL	11		0	Month-to	-month			
7041	8361-LTMKD	4		1	Month-to	-month			
7042	3186-AJIEK	66		1	Tw	o year			
		Payment			yCharges	TotalCh	_	Churn	\
0	Ele	ectronic			9.650002		50002	0	
1		Mailed			5.573528	1889.5		0	
2		Mailed		5	4.075001	108.1		1	
3	Bank transfe			4	0.905556	1840.7	50000	0	
4	Ele	ectronic	check	7	5.824997	151.6	49994	1	
• • •					• • •		• • •	• • •	
7038		Mailed			2.937500	1990.5		0	
7039	Credit car	•	•		6.878471	6975.2		0	
7040	El€	ectronic			1.495455	346.4		0	
7041		Mailed			6.650002	306.6		1	
7042	Bank transfe	er (auto	matic)	10	3.704544	6844.5	00000	0	
	prediction]	label p	redictic	n scor	e				
0	_	0		0.					
1		0		1.					
2		0		0.					
3		0		1.					
4		1		0.					
					•				
7038		0		1.	0				
7039		0		1.	0				
7040		0		1.	0				
7041		1		0.	6				
7042		0		0.	8				

[7043 rows x 10 columns]

Summary

In this week's task, we utilized the PyCaret library to develop a predictive model for customer churn based on a dataset containing various customer attributes such as tenure, phone service, contract details, and payment method. After preprocessing the data and setting up the PyCaret environment, we compared several machine learning algorithms to identify the best-performing model. Upon selecting the optimal model, we evaluated its performance metrics, saved it for future use, and created a function to predict churn probabilities for new data. This streamlined approach facilitated efficient model development and evaluation, enabling businesses to make data-driven decisions to mitigate customer churn and improve customer retention strategies.