生信文章修改甲基化测序

2024-05-31

LiChuang Huang

@ 立效研究院

Contents

T	摘安		1
2	前言		1
3	材料 3.1 3.2	和方法 材料	1 1
	分析 4.1 4.2 4.3	Methyl-seq DMR 分析	1 1 2 4
5	结论		5
6	附: 6.1 6.2 6.3	6.1.4 DMR plot . 6.1.5 富集分析 . 6.1.6 Enrichment . 6.1.7 Ins2 和 Pik3cb . Diabetes mellitus . Methyl-seq 与 DM . 6.3.1 Intersection .	6 6 7 10 12 12 15 19 21 21
Re	fere	nce	24
Li	ist	of Figures	
	1 2 3 4 5	MAIN Fig 1 MAIN Fig 2 MAIN Fig 3 MAIN Fig 4 All DMR volcano plot	2 3 4 5 8
	6 7	DMR distribution	9 10
	8		11

9	CpG Island methylation	12
10	DMR GO enrichment	13
11	DMR KEGG enrichment	14
12	DMR rno04930 visualization	14
13	Chr8 Pik3cb DMR annotation	16
14	Chr8 DMR annotation	17
15	Chr1 Ins2 DMR annotation	18
16	Chr1 DMR annotation	19
17	Overall targets number of datasets	20
18	Intersection of Me seq with DM	21
19	Raw PPI network	22
20	Top30 MCC score	23
21	DME DM genes to other genes	24
${f List}$	of Tables	
1	RAW DMR data	7
2	Mapped from human to rat	20

1 摘要

原文中,对 DMR 的总体统计未修改,增补了一部分图片和 CpG Island 的统计。后续富集分析和 StringDB 的 PPI 网络等内容都重做了。详细见 4

重要说明:

目前,对于原数据表格中,'Model-vs-Model-Cure',是按照 Model 比 Treatment 来认定的,而重新分析时,判定的是 Treatment vs Model,也就是,这里将原先的 Delta 值乘以 (-1) 实现转换。详情见 6.1.1

2 前言

3 材料和方法

3.1 材料

3.2 方法

Mainly used method:

- R package biomaRt used for gene annotation¹.
- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package Gviz were used for methylation data visualization².
- R package ClusterProfiler used for gene enrichment analysis³.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets⁴⁻⁶.
- R package STEINGdb used for PPI network construction^{7,8}.
- R package rtracklayer used for UCSC data query⁹.
- The CpG islands data was downloaded from http://www.rafalab.org (generated by R package makeCGI)¹⁰.
- R package pathview used for KEGG pathways visualization¹¹.
- The MCC score was calculated referring to algorithm of CytoHubba⁸.
- R version 4.4.0 (2024-04-24); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

4.1 Methyl-seq DMR 分析

这部分的 DMR 数据和原先的内容是一样的,只是补充或替换了以下图:

- DMR 分布见 Fig. 1a, DMR 存在于基因的分布见 Fig. 1b。
- DMR 的筛选 with |delta| > 0.3, FDR < 0.05 (与原先相同) , 见 Fig. 1c。
- 补充了 DMR 存在于 CpG Island 的注释,在各个染色体的分布见 Fig. 1d, Fig. 1e。

Figure 1 (下方图) 为图 MAIN Fig 1 概览。

(对应文件为 ./Figure+Table/fig1.pdf)

Figure 1: MAIN Fig 1

4.2 富集分析

对所有的 DMR 基因做了 KEGG 富集分析和 GO 富集分析,见 Fig. 2a, c。KEGG 富集分析发现 DMR 富集于 'Type II diabetes mellitus' (T2DM) 通路。见 Fig. 2b, 其中, Ins2 基因甲基化程度升高,而 Pik3cb 甲基化程度下降。Pik3cb 在染色体 8 (chr8) 中,甲基化位置出于基因的中段 (Fig. 3a, b)。Ins2 基因处于染色体 1 (chr1) (见 Fig. 3c, d)。胰岛素信号通路 PI3K/Akt/mTOR 通路被认为与胰岛素抵抗 insulin resistance 相关密切¹²。DNA 甲基化改变影响 T2DM 发展中的胰岛素分泌和胰岛素抵抗¹³。Zuogui pill 给药后,改变了 Pik3cb (PI3K 的亚基) 的甲基化,可能进一步影响到了 PI3K 的活性,以及下游的信号通路,从而对胰岛素抵抗发挥调控作用。

Figure 2 (下方图) 为图 MAIN Fig 2 概览。

(对应文件为 ./Figure+Table/fig2.pdf)

Figure 2: MAIN Fig 2

Figure 3 (下方图) 为图 MAIN Fig 3 概览。

(对应文件为 ./Figure+Table/fig3.pdf)

Figure 3: MAIN Fig 3

4.3 StringDB PPI

获取了 DM 相关的基因集,来源于 Fig. 4a 所示数据库(这些数据库主要为人类的基因集,这里,使用 Biomart 将这些基因从 hgnc symbol 映射到 rgd symbol,大鼠的基因),取合集,与 DMR 取交集,发现有 201 个重叠基因, Fig. 4b。以重叠基因构建 PPI 网络, Fig. 4c。随后,筛选 TOP 30 的 Hub 基因,发现 Pik3cb、Ins2 在列。此外还有 Ikbkb。这些基因与 Fig. 4e 所示的其它基因存在互作关系,这可能涉及这些基因的上游或下游机制,与 T2DM 的发展机制以及甲基化在其中发挥的作用相关。

Figure 4 (下方图) 为图 MAIN Fig 4 概览。

(对应文件为 ./Figure+Table/fig4.pdf)

Figure 4: MAIN Fig 4

5 结论

Zuogui pill 给药涉及了分布于各染色体的 DMR, 部分 DMR 处于 CpG Island。富集分析表明, 总体 DMRs 与 T2DM 相关。对 Pik3cb 和 Ins2 基因的甲基化改变可能是 Zuogui pill 发挥药效的重要机制。

'Tiff figures' 数据已全部提供。

(对应文件为 ./Figure+Table/TIFF)

注:文件夹./Figure+Table/TIFF 共包含 4 个文件。

- 1. fig1.tiff
- 2. fig2.tiff
- 3. fig3.tiff
- 4. fig4.tiff

6 附:分析流程

- 许凯霞需求
- 浙江百越 4 例 WGBS 信息采集与分析

6.1 Methyl-seq

6.1.1 DMR data

- 数据来源: '浙江百越 4 例 WGBS 信息采集与分析/结果/01_ 甲基化差异表达 DMR.csv'
- 注释来源(基因): '浙江百越 4 例 WGBS 信息采集与分析/结果/01_ 甲基化差异表达基因.tsv'

重要说明:

目前,对于数据表格中,'Model-vs-Model-Cure',是按照 Model 比 Treatment 来认定的。而 Treatment vs Model,则需要对原来的数据乘以-1 转换。(如果测序公司或客户那边,实际上是相反的话,就要重新调整所有的分析了;不过,一般情况下应该是如此,只是在分析的过程中,发现结果与预期好像不是特别相符,因此这里有疑惑)为了说明这一点,这部分的数据处理提供了源代码:

```
# ftibble <- function(x) tibble::as_tibble(data.table::fread(x))
t.genes <- ftibble("/media/echo/My Passport/浙江百越 4 例 WGBS 信息采集与分析/结果/01_ 甲基化差异表达基因
t.diff <- ftibble("/media/echo/My Passport/浙江百越 4 例 WGBS 信息采集与分析/结果/01_ 甲基化差异表达 DMR.
t.diff <- dplyr::select(t.diff, dmr_id, dplyr::ends_with("Model-vs-Model-Cure"))</pre>
t.diff <- dplyr::mutate(t.diff,</pre>
  chr = strx(dmr_id, "chr[0-9]+"),
 start = strx(dmr_id, "(?<=_)[0-9]+(?=_)"),
 end = strx(dmr_id, "[0-9]+$"),
  ## 以下为转换得到 Treatment vs Model:
 DMR_Treatment_vs_Model = -`dmr_diff_cg_Model-vs-Model-Cure`,
 DMR_Qvalue = `dmr_qvalue_cg_Model-vs-Model-Cure`
dmrDat <- dplyr::select(t.diff, chr, start, end, tidyselect::starts_with("DMR", F), dmr_id)</pre>
dmrDat <- dplyr::arrange(dmrDat, DMR_Qvalue)</pre>
dmrDat.genes <- map(dmrDat, "dmr_id", t.genes, "dmr_id", "gene", col = "symbol")</pre>
dmrDat.genes
# dplyr::filter(dmrDat.genes, symbol == "Ins2")
```

Table 1 (下方表格) 为表格 RAW DMR data 概览。

(对应文件为 Figure+Table/RAW-DMR-data.csv)

注:表格共有 4143 行 7 列,以下预览的表格可能省略部分数据;含有 21 个唯一 'chr;含 有 1189 个唯一 'symbol'。

- 1. symbol: 基因或蛋白符号。
- 2. chr: chromosome (for the variant, same as gene_chr for cis-eQTLs)

Table 1: RAW DMR data

chr	start	end	${\rm DMR_Treatm}$	DMR_Qvalue	$\operatorname{dmr}_{\operatorname{id}}$	symbol
chr10	27750001	27750200	-0.469714	0	chr10_2775	NA
chr10	29567001	29567200	0.415147	0	$\mathrm{chr}10_2956$	NA
chr10	49174801	49175000	-0.335429	0	$\mathrm{chr} 10_4917$	NA
chr10	62273401	62273600	0.33725	0	$\mathrm{chr} 10_6227$	Wdr81
chr10	87251601	87251800	0.34196	0	$\mathrm{chr}10_8725$	NA
chr11	19652401	19652600	-0.632739	0	$chr11_1965$	NA
chr11	25930601	25930800	-0.426453	0	$\rm chr 11_2593$	NA
chr11	33534001	33534200	0.341885	0	$chr11_3353$	NA
chr11	33678401	33678600	0.320595	0	$chr11_3367$	NA
chr11	44229601	44229800	0.350355	0	$\rm chr 11_4422$	St3gal6
chr11	59809001	59809200	-0.596561	0	$\rm chr11_5980$	NA
chr12	18027401	18027600	-0.347761	0	$\mathrm{chr}12_1802$	NA
chr12	25517401	25517600	0.651515	0	$\rm chr 12_2551$	$\operatorname{Gtf2ird2}$
chr12	25934201	25934400	0.340203	0	$\mathrm{chr} 12_2593$	NA
chr12	39451801	39452000	-0.434265	0	$\rm chr 12_3945$	Ift81

6.1.2 DMR distribution

Figure 5 (下方图) 为图 All DMR volcano plot 概览。

(对应文件为 Figure+Table/All-DMR-volcano-plot.pdf)

Figure 5: All DMR volcano plot

Figure 6 (下方图) 为图 DMR distribution 概览。

(对应文件为 Figure+Table/DMR-distribution.pdf)

DMR distribution

Figure 6: DMR distribution

───

Figure 7 (下方图) 为图 DMR in Genes 概览。

(对应文件为 Figure+Table/DMR-in-Genes.pdf)

DMR in Genes

Figure 7: DMR in Genes

6.1.3 CpG Island

Figure 8 (下方图) 为图 Specific methylation 概览。

(对应文件为 Figure+Table/Specific-methylation.pdf)

Figure 8: Specific methylation

Figure 9 (下方图) 为图 CpG Island methylation 概览。

(对应文件为 Figure+Table/CpG-Island-methylation.pdf)

Figure 9: CpG Island methylation

- **6.1.4** DMR plot
- 6.1.5 富集分析
- 6.1.6 Enrichment

───

Figure 10 (下方图) 为图 DMR GO enrichment 概览。

(对应文件为 Figure+Table/DMR-GO-enrichment.pdf)

Figure 10: DMR GO enrichment

Figure 11 (下方图) 为图 DMR KEGG enrichment 概览。

(对应文件为 Figure+Table/DMR-KEGG-enrichment.pdf)

Figure 11: DMR KEGG enrichment

Figure 12 (下方图) 为图 DMR rno04930 visualization 概览。

(对应文件为 Figure+Table/DMR-rno04930-visualization.png)

Figure 12: DMR rno04930 visualization

Interactive figure:

https://www.genome.jp/pathway/rno04930

Enriched genes:

Pik3cb, Ins2, Adipoq, Ikbkb, Mapk10, Cacna1c, Slc2a2

6.1.7 Ins2 和 Pik3cb

Figure 13 (下方图) 为图 Chr8 Pik3cb DMR annotation 概览。

(对应文件为 Figure+Table/Chr8-Pik3cb-DMR-annotation.pdf)

Figure 13: Chr8 Pik3cb DMR annotation

Figure 14 (下方图) 为图 Chr8 DMR annotation 概览。

(对应文件为 Figure+Table/Chr8-DMR-annotation.pdf)

Figure 14: Chr8 DMR annotation

Figure 15 (下方图) 为图 Chr1 Ins2 DMR annotation 概览。

(对应文件为 Figure+Table/Chr1-Ins2-DMR-annotation.pdf)

Figure 15: Chr1 Ins2 DMR annotation

Figure 16 (下方图) 为图 Chr1 DMR annotation 概览。

(对应文件为 Figure+Table/Chr1-DMR-annotation.pdf)

Figure 16: Chr1 DMR annotation

6.2 Diabetes mellitus

Figure 17 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 17: Overall targets number of datasets

Table 2 (下方表格) 为表格 mapped from human to rat 概览。

(对应文件为 Figure+Table/mapped-from-human-to-rat.csv)

注: 表格共有 3245 行 2 列,以下预览的表格可能省略部分数据;含有 2789 个唯一'hgnc_symbol'。

1. hgnc_symbol: 基因名 (Human)

Table 2: Mapped from human to rat

hgnc_symbol	rgd_symbol
RBM45	Rbm45
MFAP1	Mfap1a
THBS2	Thbs2
ACSS2	Acss2
NDUFV1	Ndufv1
NDUFAF5	Ndufaf5
CST3	Andpro
ARNTL	Arntl
POLD1	Pold1
KCNQ1	Kcnq1
PDE4D	Pde4d
NOX4	Nox4

hgnc_symbol	rgd_symbol
FOXO1	Foxo1
UMOD	Umod
AQP1	Aqp1

6.3 Methyl-seq 与 DM

6.3.1 Intersection

Figure 18 (下方图) 为图 Intersection of Me seq with DM 概览。

(对应文件为 Figure+Table/Intersection-of-Me-seq-with-DM.pdf)

Figure 18: Intersection of Me seq with ${\rm DM}$

$All_intersection:$

Gtf2ird2, Phlpp1, Ush2a, Fbxo25, Trpm7, Lpin1, Kitlg, Ahi1, Opa1, Cidea, P2rx7, Hmgcs2, P2rx4, Satb1, Agxt2, Sema3e, Nr0b2, Igf1r, Ppard, Atp2b2, Bcl2l11, Slpi, Ebf2, Itgax, Thrb, Gcg, Tg, Tcf4, Dcn, Alcam, Ece1, Tp63, Pex6, Fgfr1, Tshr, Atp2a2, Ephb1, Fat1, Ngf, Ube2q2, Spg7, Hemgn, Txn2, Nphp1,...

(上述信息框内容已保存至 Figure+Table/Intersection-of-Me-seq-with-DM-content)

6.3.2 StringDB

Figure 19 (下方图) 为图 Raw PPI network 概览。

(对应文件为 Figure+Table/Raw-PPI-network.pdf)

Figure 19: Raw PPI network

(对应文件为 Figure+Table/Top30-MCC-score.pdf)

Figure 20: Top30 MCC score

Figure 21 (下方图) 为图 DME DM genes to other genes 概览。

(对应文件为 Figure+Table/DME-DM-genes-to-other-genes.pdf)

Figure 21: DME DM genes to other genes

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Hahne, F. & Ivanek, R. Visualizing genomic data using gviz and bioconductor. in *Methods in Molecular Biology* 335–351 (Springer New York, 2016). doi:10.1007/978-1-4939-3578-9_16.
- 3. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 4. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 5. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).

- 6. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 7. Szklarczyk, D. *et al.* The string database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research* **49**, D605–D612 (2021).
- 8. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).
- 9. Lawrence, M., Gentleman, R. & Carey, V. Rtracklayer: An r package for interfacing with genome browsers. *Bioinformatics* **25**, 1841–1842 (2009).
- 10. Wu, H., Caffo, B., Jaffee, H. A., Irizarry, R. A. & Feinberg, A. P. Redefining cpg islands using hidden markov models. *Biostatistics (Oxford, England)* **11**, 499–514 (2010).
- 11. Luo, W. & Brouwer, C. Pathview: An r/bioconductor package for pathway-based data integration and visualization. *Bioinformatics (Oxford, England)* **29**, 1830–1831 (2013).
- 12. Ramasubbu, K. & Devi Rajeswari, V. Impairment of insulin signaling pathway pi3k/akt/mTOR and insulin resistance induced ages on diabetes mellitus and neurodegenerative diseases: A perspective review. *Molecular and cellular biochemistry* 478, 1307–1324 (2023).
- 13. Zhou, Z., Sun, B., Li, X. & Zhu, C. DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. *Nutrition* \& methylation and methylation landscapes in the pathogenesis of type 2 diabetes mellitus. *Nutrition* \& methylation and methylation landscapes in the pathogenesis of type 2 diabetes mellitus.