```
In [1]: # Importing the libraries
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       from sklearn.metrics import mean squared error, mean absolute error
       import numpy as np
In [2]: # importing the dataset
       data = pd.read csv("D:\Intellipaat\Assignments\Capstone Project\Capstone-Dataset\Walmart
In [3]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 6435 entries, 0 to 6434
       Data columns (total 8 columns):
          Column Non-Null Count Dtype
       ---
                       -----
        0
          Store
                       6435 non-null int64
                       6435 non-null object
        1 Date
        2 Weekly Sales 6435 non-null float64
        3 Holiday Flag 6435 non-null int64
        4 Temperature 6435 non-null float64
          Fuel_Price 6435 non-null float64
        5
        6
          CPI
                       6435 non-null float64
        7
          Unemployment 6435 non-null float64
       dtypes: float64(5), int64(2), object(1)
       memory usage: 402.3+ KB
In [4]: # converting the data to datetime object type
       data['Date'] = pd.to datetime(data['Date'], dayfirst=True)
In [5]: | data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 6435 entries, 0 to 6434
       Data columns (total 8 columns):
        # Column Non-Null Count Dtype
                       -----
        0 Store
                       6435 non-null int64
        1 Date
                       6435 non-null datetime64[ns]
        2 Weekly Sales 6435 non-null float64
        3 Holiday Flag 6435 non-null int64
          Temperature 6435 non-null float64
        5 Fuel Price 6435 non-null float64
        6 CPI
                       6435 non-null float64
        7 Unemployment 6435 non-null float64
       dtypes: datetime64[ns](1), float64(5), int64(2)
       memory usage: 402.3 KB
In [6]: # Changing the column to index
       data.index = data['Date']
       del data['Date']
       data.head()
In [7]:
Out[7]:
                Store Weekly_Sales Holiday_Flag Temperature Fuel_Price
                                                                 CPI Unemployment
            Date
```

2010-02-05	1	1643690.90	0	42.31	2.572	211.096358	8.106
2010-02-12	1	1641957.44	1	38.51	2.548	211.242170	8.106
2010-02-19	1	1611968.17	0	39.93	2.514	211.289143	8.106
2010-02-26	1	1409727.59	0	46.63	2.561	211.319643	8.106
2010-03-05	1	1554806.68	0	46.50	2.625	211.350143	8.106

Out[8]: <AxesSubplot:xlabel='Store', ylabel='Weekly_Sales'>

In [9]: sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
 plt.show()


```
In [10]: # Inference from the above correlation graph

# Unemployment data has a negative correlation with Weekly sales, which shows the wh
# the weekly sales.

# CPI (Consumer Price Index) data also has negative effect with Weekly Sales, indica
# weekly sales tend to decrease

# Holiday_Flag data has a (+) positive effect in Weekly Sales

# Temperature data has a (-) negative effect in Weekly Sales, people tend to shop du
# The sales peaks during the Winter season (December) as it is a month of celebratio
```

```
In [11]: a= int(input("Enter the store id:"))
store = data[data.Store == a]
```

Enter the store id:7

In [12]: # Time Series Vizualization
 store

Out[12]:		Store	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	CPI	Unemployment
	Date							
	2010-02-05	7	496725.44	0	10.53	2.580	189.381697	9.014
	2010-02-12	7	524104.92	1	25.90	2.572	189.464272	9.014

2010-02-19	7	506760.54	0	27.28	2.550	189.534100	9.014
2010-02-26	7	496083.24	0	24.91	2.586	189.601802	9.014
2010-03-05	7	491419.55	0	35.86	2.620	189.669505	9.014
•••							
2012-09-28	7	525545.76	0	50.64	3.789	198.590328	7.872
2012-10-05	7	505830.56	0	48.43	3.779	198.822132	7.557
2012-10-12	7	503463.93	0	41.43	3.760	199.053937	7.557
2012-10-19	7	516424.83	0	43.01	3.750	199.148196	7.557
2012-10-26	7	495543.28	0	42.53	3.686	199.219532	7.557

143 rows × 7 columns

In [13]: # Holiday Analysis: To identify any increase or decrease in sales during holiday periods
holiday_total_sales = store.groupby('Holiday_Flag')['Weekly_Sales'].mean().reset_index()
sns.barplot(data=holiday_total_sales, x='Holiday_Flag', y='Weekly_Sales')

Out[13]: <AxesSubplot:xlabel='Holiday_Flag', ylabel='Weekly_Sales'>

In [15]: store['Weekly_Sales'].plot()

Out[15]: <AxesSubplot:xlabel='Date'>


```
In [16]: # Checking the stationarity of the data

from statsmodels.tsa.stattools import adfuller

result = adfuller(store['Weekly_Sales'])
p_value = result[1]
print(p_value)
if p_value < 0.05:
    print("The time series is stationary")
else:
    print("The time series is non-stationary")</pre>
```

0.00021700718907117402
The time series is stationary

```
In [17]: # Autocorrelation

from pandas.plotting import autocorrelation_plot
    from statsmodels.graphics.tsaplots import plot_acf

plot_acf(store['Weekly_Sales']);
```


In [18]: # Partial Autocorrelation
 from statsmodels.graphics.tsaplots import plot_pacf
 plot_pacf(store['Weekly_Sales']);

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\graphics\tsaplots.py:34 8: FutureWarning: The default method 'yw' can produce PACF values outside of the [-1,1] interval. After 0.13, the default will change tounadjusted Yule-Walker ('ywm'). You can use this method now by setting method='ywm'.

warnings.warn(


```
In [19]: from pmdarima import auto_arima
order = auto_arima(store['Weekly_Sales'], trace=True)
order.summary()
```

```
Performing stepwise search to minimize aic
ARIMA(2,1,2)(0,0,0)[0] intercept
                                  : AIC=3636.920, Time=0.25 sec
ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=3649.620, Time=0.03 sec
ARIMA(1,1,0)(0,0,0)[0] intercept
                                   : AIC=3640.902, Time=0.05 sec
                                  : AIC=3639.145, Time=0.07 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
                                   : AIC=3647.623, Time=0.03 sec
ARIMA(0,1,0)(0,0,0)[0]
                                   : AIC=3641.331, Time=0.13 sec
ARIMA(1,1,2)(0,0,0)[0] intercept
                                   : AIC=3636.408, Time=0.16 sec
ARIMA(2,1,1)(0,0,0)[0] intercept
                                  : AIC=3640.685, Time=0.06 sec
ARIMA(1,1,1)(0,0,0)[0] intercept
ARIMA(2,1,0)(0,0,0)[0] intercept
                                  : AIC=3642.191, Time=0.05 sec
                                   : AIC=3635.110, Time=0.11 sec
ARIMA(3,1,1)(0,0,0)[0] intercept
                                  : AIC=3636.887, Time=0.05 sec
ARIMA(3,1,0)(0,0,0)[0] intercept
ARIMA(4,1,1)(0,0,0)[0] intercept
                                  : AIC=3635.576, Time=0.12 sec
ARIMA(3,1,2)(0,0,0)[0] intercept
                                   : AIC=3634.959, Time=0.16 sec
                                   : AIC=3636.384, Time=0.30 sec
ARIMA(4,1,2)(0,0,0)[0] intercept
                                  : AIC=3636.583, Time=0.26 sec
ARIMA(3,1,3)(0,0,0)[0] intercept
                                 : AIC=3635.761, Time=0.16 sec
ARIMA(2,1,3)(0,0,0)[0] intercept
                                    : AIC=3633.319, Time=0.37 sec
ARIMA(4,1,3)(0,0,0)[0] intercept
ARIMA(5,1,3)(0,0,0)[0] intercept
                                   : AIC=3634.799, Time=0.52 sec
                                  : AIC=3638.697, Time=0.35 sec
ARIMA(4,1,4)(0,0,0)[0] intercept
ARIMA(3,1,4)(0,0,0)[0] intercept
                                   : AIC=3634.757, Time=0.34 sec
                                   : AIC=3639.555, Time=0.21 sec
ARIMA(5,1,2)(0,0,0)[0] intercept
                                   : AIC=inf, Time=0.71 sec
ARIMA(5,1,4)(0,0,0)[0] intercept
ARIMA(4,1,3)(0,0,0)[0]
                                    : AIC=3631.146, Time=0.36 sec
                                    : AIC=3634.577, Time=0.25 sec
ARIMA(3,1,3)(0,0,0)[0]
                                    : AIC=3634.374, Time=0.29 sec
ARIMA(4,1,2)(0,0,0)[0]
                                    : AIC=3633.152, Time=0.42 sec
ARIMA(5,1,3)(0,0,0)[0]
                                    : AIC=3636.706, Time=0.29 sec
ARIMA(4,1,4)(0,0,0)[0]
                                    : AIC=3632.947, Time=0.17 sec
ARIMA(3,1,2)(0,0,0)[0]
                                    : AIC=3632.473, Time=0.27 sec
ARIMA(3,1,4)(0,0,0)[0]
                                    : AIC=3637.527, Time=0.14 sec
ARIMA(5,1,2)(0,0,0)[0]
ARIMA(5,1,4)(0,0,0)[0]
                                    : AIC=inf, Time=0.56 sec
```

Best model: ARIMA(4,1,3)(0,0,0)[0]Total fit time: 7.253 seconds

Out[19]:

143 Dep. Variable: y No. Observations: Model: SARIMAX(4, 1, 3) Log Likelihood -1807.573 Date: Fri, 21 Apr 2023 AIC 3631.146 Time: 21:21:22 BIC 3654.793 Sample: 02-05-2010 HQIC 3640.755 - 10-26-2012

SARIMAX Results

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.3604	0.314	-1.149	0.251	-0.975	0.255
ar.L2	0.1928	0.171	1.130	0.259	-0.142	0.527
ar.L3	0.3643	0.216	1.690	0.091	-0.058	0.787
ar.L4	0.2191	0.094	2.333	0.020	0.035	0.403
ma.L1	0.0817	0.310	0.263	0.792	-0.527	0.690
ma.L2	-0.4255	0.138	-3.091	0.002	-0.695	-0.156
ma.L3	-0.5682	0.255	-2.231	0.026	-1.067	-0.069
sigma2	6.65e+09	1.13e-10	5.89e+19	0.000	6.65e+09	6.65e+09

Ljung-Box (L1) (Q): 0.71 **Jarque-Bera (JB):** 348.56

 Prob(Q):
 0.40
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 0.50
 Skew:
 1.58

 Prob(H) (two-sided):
 0.02
 Kurtosis:
 10.00

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.2e+35. Standard errors may be unstable.

```
In [20]: # ARIMA Model for Time Series Forecasting
    from statsmodels.tsa.arima_model import ARIMA
    import statsmodels.api as sm

    train = store.iloc[:100]['Weekly_Sales']
    test = store.iloc[101:]['Weekly_Sales']
In [21]: model = sm.tsa.arima.ARIMA(train, order=(4,1,3))
```

```
model_fit = model.fit()
model_fit.summary()

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa model.py:47
```

1: ValueWarning: No frequency information was provided, so inferred frequency W-FRI will

be used.
self. init dates(dates, freq)

be used.

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47
1: ValueWarning: No frequency information was provided, so inferred frequency W-FRI will

self. init dates (dates, freq)

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:47

1: ValueWarning: No frequency information was provided, so inferred frequency W-FRI will be used.

self. init dates (dates, freq)

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\statespace\sarimax.p y:966: UserWarning: Non-stationary starting autoregressive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\statespace\sarimax.p y:978: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

Out[21]:

SARIMAX Results

Dep. Variable:	Weekly_Sales	No. Observations:	100
Model:	ARIMA(4, 1, 3)	Log Likelihood	-1271.879
Date:	Fri, 21 Apr 2023	AIC	2559.758
Time:	21:21:23	ВІС	2580.519
Sample:	02-05-2010	HQIC	2568.158
	- 12-30-2011		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.1232	0.346	0.356	0.722	-0.555	0.802
ar.L2	0.0114	0.351	0.033	0.974	-0.676	0.699
ar.L3	-0.3832	0.332	-1.156	0.248	-1.033	0.267
ar.L4	0.1783	0.141	1.264	0.206	-0.098	0.455
ma.L1	-0.4863	0.358	-1.359	0.174	-1.188	0.215
ma.L2	0.0160	0.426	0.038	0.970	-0.819	0.851
ma.L3	0.3587	0.382	0.938	0.348	-0.390	1.108
sigma2	8.362e+09	2.81e-10	2.98e+19	0.000	8.36e+09	8.36e+09

Ljung-Box (L1) (Q): 0.30 Jarque-Bera (JB): 128.57

Prob(Q):	0.58	Prob(JB):	0.00
Heteroskedasticity (H):	3.18	Skew:	1.30
Prob(H) (two-sided):	0.00	Kurtosis:	7.94

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 4.54e+34. Standard errors may be unstable.

```
In [22]: | store['predict'] = model_fit.predict(start= len(train),
                                              end=len(train)+len(test)-1,
                                              dynamic=True)
         store[['Weekly Sales', 'predict']].plot()
        C:\Users\Vignesh Murali\AppData\Local\Temp\ipykernel 14400\1936169350.py:1: SettingWithC
        opyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
        guide/indexing.html#returning-a-view-versus-a-copy
          store['predict'] = model fit.predict(start= len(train),
```

Out[22]:

<AxesSubplot:xlabel='Date'>


```
# We can see the predictions are way away from the actual test values.
In [23]:
         # Thus we are moving to Seasonal ARIMA model for our forecasting (SARIMAX)
         from statsmodels.tsa.statespace.sarimax import SARIMAX
        model = SARIMAX(train, order=(4,1,3), seasonal order=(4,1,3,52))
        model = model.fit()
```

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa model.py:47 1: ValueWarning: No frequency information was provided, so inferred frequency W-FRI will be used.

self. init dates (dates, freq)

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa model.py:47 1: ValueWarning: No frequency information was provided, so inferred frequency W-FRI will be used.

self. init dates (dates, freq)

C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\tsa\statespace\sarimax.p y:866: UserWarning: Too few observations to estimate starting parameters for seasonal AR MA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'
C:\Users\Vignesh Murali\anaconda3\lib\site-packages\statsmodels\base\model.py:604: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals warnings.warn("Maximum Likelihood optimization failed to "

Out[24]:


```
In [25]: # We can observe the the test data and predicted data are almost following a same patter
# predicting the projection for the next 12 weeks

forecast = model.forecast(steps=60)
store['Weekly_Sales'].plot()
forecast.plot()
```

Out[25]: <AxesSubplot:xlabel='Date'>


```
forecast.tail(17)
In [26]:
         2012-11-02
                       6.511736e+05
Out[26]:
         2012-11-09
                       6.713182e+05
         2012-11-16
                       6.302026e+05
         2012-11-23
                       1.074182e+06
         2012-11-30
                       7.040335e+05
         2012-12-07
                       7.482543e+05
         2012-12-14
                       8.489533e+05
         2012-12-21
                       1.188140e+06
         2012-12-28
                       9.333088e+05
         2013-01-04
                       8.379857e+05
         2013-01-11
                       7.177353e+05
         2013-01-18
                       7.086692e+05
         2013-01-25
                       6.678757e+05
         2013-02-01
                       7.325739e+05
         2013-02-08
                       7.134663e+05
         2013-02-15
                       7.281028e+05
         2013-02-22
                       7.209120e+05
         Freq: W-FRI, Name: predicted mean, dtype: float64
In [27]:
         # Model Evaluation using Residuals
         residuals = model.resid
In [28]:
         sns.histplot(residuals, kde=True)
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.title('Histogram of Residuals')
         plt.show()
```



```
In [29]: pred = model.predict(start= len(train), end=len(train)+len(test)-1, dynamic=True)

mse = mean_squared_error(test, pred)
mae = mean_absolute_error(test, pred)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((test - pred) / test)) * 100

print('MSE:', mse)
print('MAE:', mae)
print('RMSE:', rmse)
print('MAPE:', mape,'%')
```

MSE: 8328880543.283994 MAE: 77000.867412333 RMSE: 91262.7007231541 MAPE: 12.19831297082327 %

```
In [ ]:
```

In []: