MedvedskyPV 01112024-161307

Даны значения s-параметров на некоторой частоте:

Free	q	s_{11}		s_{21}		s_{12}		s_{22}	
GH	\mathbf{Z}	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5		0.454	-148.5	19.134	92.6	0.027	56.3	0.340	-68.9

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет достаточно, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 1 дБ, подключённый к плечу 1.

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=3.2~\Gamma\Gamma$ ц и $f_{\scriptscriptstyle \rm B}=3.8~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 0.6 дБ
- 2) 1.3 дБ
- 3) 0.9 дБ
- 4) 0.3 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -13.1 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $11.3~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.7 mB_T
- 2) 0.6 mB_T
- 3) 12.8 MBT
- 4) 2.9 mB_T

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.2\text{-}0.02\mathrm{i}.$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -1 дБ
- 2) -2 дБ
- 3) -0.2 дБ
- 4) -0.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 2), который может обеспечить согласование со стороны плеча 2 на частоте 6.5 $\Gamma\Gamma$ ц.

Рисунок 2 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 4 — Различные реализаци и Γ -образной цепи согласования