Course-poursuite

Deux kangourous C_0 et C_1 jouent à la course-poursuite.

À chaque intervalle de temps Δt , le kangourou poursuivant C_0 fait un saut de longueur d_0 dans la direction du kangourou C_1 , alors qu'en même temps celui-ci saute (d'une distance d_1) dans un direction de son choix.

Les longueurs des sauts d_0 et d_1 peuvent être différentes.

On peut discrétiser le problème en observant les positions aux instants $0, \Delta t, 2\Delta t, \dots$

En fixant un repère, on considère alors le vecteur de positions respectives

$$\left(\begin{array}{c} x_0[n] \\ y_0[n] \end{array} \right) = \left(\begin{array}{c} x_0(n\Delta t) \\ y_0(n\Delta t) \end{array} \right) \quad \text{et} \quad \left(\begin{array}{c} x_1[n] \\ y_1[n] \end{array} \right) = \left(\begin{array}{c} x_1(n\Delta t) \\ y_1(n\Delta t) \end{array} \right)$$

avec $n = 0, 1, 2, \ldots$ et nous pouvons décrire les positions successives de C_0 par les équations suivantes.

$$x_0[n+1] = x_0[n] + \frac{s\Delta(t) (x_1[n] - x_0[n])}{\sqrt{(x_1[n] - x_0[n])^2 + (y_1[n] - y_0[n])^2}}$$

$$y_0[n+1] = y_0[n] + \frac{s\Delta(t) (y_1[n] - y_0[n])}{\sqrt{(x_1[n] - x_0[n])^2 + (y_1[n] - y_0[n])^2}}$$

(où s est une constante qui dépend des longueur des sauts).

CAS UNI-DIMENSIONNEL

Supposons d'abord que C_0 se trouve à l'origine, que C_1 se trouve à la position $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et que ce dernier bouge le long de l'axe horizontal, toujours en sautant vers la droite d'une unité.

QUESTION: Sous quelles conditions C_0 attrapera C_1 à coup-sûr?

Essayez d'étudier d'autres types de mouvement, toujours sur l'axe horizontal.

CAS BI-DIMENSIONNEL

Voici des exemples plus compliqué des trajectoires des kangourous lorsque C_1 bouge le long de la droite $\begin{pmatrix} t \\ 1+t \end{pmatrix}$, et C_0 part de la position initiale $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (courbes bleues et rouge).

Nous avons choisi $\Delta t = 0, 5$, $s = \sqrt{2}$ et une partie avec N = 10 sauts. Le graphe à droite indique la distance entre C_0 et C_1 à chaque instant.

Voici le même jeu avec cette fois s=1

et avec s=2

Dans ce même cas, si on considère une partie plus longue, avec N=100 sauts, on obtient

Voici les cas où C_1 bouge le long d'un cercle de rayon 1 (en partant de $\binom{1}{0}$) et C_0 part du centre du cercle.

$$N = 100, \ \Delta t = 0,05 \ {\rm et} \ s = 1,2$$

Gauche: $N=10, \Delta t=0, 5$ et s=1, 2 (Droite: N=100)

QUESTIONS:

- 1) Supposons que le kangourou C_0 connaît à priori la trajectoire suivie par le kangourou C_1 (une droite, une ligne polygonale, un cercle, une parabole, etc). Sa stratégie consiste simplement en décider la longueur de son saut au début de la partie. Quelle est sa meilleure stratégie dans chaque cas?
- 2) Supposons que le kangourou C_0 puisse changer la longueur de son saut pendant la course. Quelle est la meilleure stratégie?