Activité

Recherche de racine par balayage

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 2x - 1$.

On note x_0 la racine de f comprise dans l'intervalle [2; 3].

Partie A: balayage avec un pas de 0,1

Dans le tableau de variation, on place les valeurs 2; 2,1; 2,2 jusque 3 :

x	2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3
f(x)	-1									_ →	2

On propose la table de valeurs de f construite avec **un pas** égal à 0,1

x	f(x)				
2	-1				
2.1	-0.79				
2.2	-0.56				
2.3	-0.31				
2.4	-0.04				
2.5	0.25				
2.6	0.56				
2.7	0.89				
2.8	1.24				
2.9	1.61				
3	2				

- **1.** Donner un encadrement de $a \le x_0 \le b$, d'amplitude égale à 0,1.
- **2.** Placer x_0 et son image 0 dans le tableau de variation de f.

Partie B: Avec Python

Objectif: on souhaite trouver à l'aide d'un algorithme écrit en PYTHON, un encadrement de x_0 selon une amplitude donnée.

1. Dans un premier temps, nous devons implémenter (écrire) en PYTHON la fonction f ci-dessus.

Pour cela exécuter l'instruction suivante :

Rappel: on vient de définir une fonction python nommée f de paramètre x (un nombre réel).

Elle **renvoie** l'image f(x).

Pour déterminer a et b, on balaye la table de valeurs précédente à partir de la valeur de départ 2 :

- x ← 2
- on répète $x \leftarrow x + pas$ tant que f(x) < 0.

On donne les nombre a et b tels que $f(a) < 0 \le f(b)$ avec b - a = pas.

- 2. Compléter la fonction nommée balayage de paramètres :
 - depart (la valeur de départ de la table de valeurs)
 - pas (l'écart entre deux valeurs consécutives de x dans la table).

Elle renvoie les nombres a et b souhaités.

```
In [2]: def balayage(depart,pas):
x = depart
while f(x) .... 0 :
    x = x + pas
return ..... , ......
```

- **3.** Que renvoie l'instruction balayage(2,0.1)?
- **4.** Comment obtenir un encadrement de x_0 d'amplitude égale à 0,001?

Partie C : Application à une autre fonction

On considère la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 - 2x - 1$.

On note x_0 la racine de g comprise dans l'intervalle [1; 2].

- 1. Ouvrir un nouveau NOTEBOOK.
- **2.** Écrire la fonction nommée g de paramètre x (un nombre réel) et renvoie g(x).
- **3.** Écrire une fonction nommée balayage balayage de paramètres :
 - depart (la valeur de départ de la table de valeurs)
 - pas (un nombre réel positif)

qui renvoie les bornes de l'encadrement de x_0 d'amplitude pas.

4. Proposer un encadrement de x_0 d'amplitude un millième.

Partie D : Cas d'une fonction décroissante

On considère la fonction g définie sur \mathbb{R} par $h(x) = -2x^3 + 2x$.

On note x_0 la racine de g comprise dans l'intervalle [1; 2].

- 1. Ouvrir un nouveau NOTEBOOK.
- **2.** Écrire la fonction nommée **h** de paramètre x (un nombre réel) et renvoie h(x).
- 3. Écrire une fonction nommée balayage balayage de paramètres :
 - depart (la valeur de départ de la table de valeurs)
 - pas (un nombre réel positif)

qui renvoie les bornes de l'encadrement de x_0 d'amplitude pas.

4. Proposer un encadrement de x_0 d'amplitude un millième.