5. Let
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation whose standard matrix is $\begin{bmatrix} t-1 & 2t-2 \\ 1 & t \end{bmatrix}$ where t is a real number. Find ALL values of t such that L is one-to-one.

$$\mathbf{A.} \quad t \neq 1$$

B.
$$t \neq 0, 1$$

$$\underbrace{\mathbf{C.} \quad t \neq 1, 2}$$

$$\mathbf{D.} \ \ t=1$$

E.
$$t = 2$$

Recall
$$f: A \rightarrow B$$
 is one-to-one if $f: A \rightarrow B$ is one-to-o

Thus
$$x \neq y$$
 then $f(x) \neq f(y)$.

For linear waps $T: \mathbb{R}^m \to \mathbb{R}^m$ given by $A(x-y) = 0$
 $T(x) = Ax$
 $T(x) = 0$ happens only

T is one to -one $(x) = 0$ happens only

Back to question:

$$0 = +(A) = +(A)$$

When is f: A -B onto? fouto it for any bin B there is a in A such that La)=b. Ex: f: 12 -1 (R) f(x)=x2 not onto! There is no x such Mat f(x) = -1 9: 12 - 70,00) 9(x/= x2 is onto For livear maps T: IR" - IR" TX= AX A (3 MXM Tonto if for any bin 12m preveris a in 12^{n} s.t. A = b(=) Ax=b is consistent for any bin IR.m € Cd(A) = IRM € > dim (Col(A)) = m

A 273 3x1 Note if $A = 2 \times 3$ $T: \mathbb{R}^3 \to \mathbb{R}^2$ $T(x) = A \times$

2 × 3

Rank (4) = m

s.t kx=0 kx=ho x +o.

 $\begin{bmatrix} 1 & 4 \\ -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ y_2 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \end{bmatrix} + x_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

rank(H) < 2 < 3 => T is never

nullity (A) 31 => trem ir x 70

(Ý2	Suppose $A = PDP^{-1}$, where P is a 3×3 invertible matrix and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.
	A. B is not diagonalizable. $B = 2I + 3PDP^{-1} + PD^{-1} = P(2I + 3D+D)P$
correct	Let $B = 2I + 3A + A^2$, which of the following is true? A. B is not diagonalizable. $B = 2I + 3PDP^{-1} + PD^2P^{-1} = P(2I + 3D + D^2)P^{-1}$ B. B is diagonalizable, and $B = PCP^{-1}$, where $C = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
	C. B is diagonalizable, and $B = PCP^{-1}$, where $C = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$. $B = PCP^{-1}$
	D. B is diagonalizable, and $B = PCP^{-1}$ for some C, but there is not enough information to determine C.
	What are a second
Review	H is diagonalizable (d-able) if and only [A mxm]
٥	Sit A = PDP (eigen rector wall)
•	charact. egn det $(A-\lambda I)=0$ that n roots counting multiplicity and moreover for each eigenvalue λi dim $\left(Nul\left(A-\lambda_{i}I\right)\right)=algebraic multiplicity$
	. If all eigenvalues are oustinet then A is d-able. Symmetric matrices are d-able
	· JY WYYN C

- 13. Which of the following statements are **true**?
- \checkmark (i) If λ is an eigenvalue for A, then $-\lambda$ is an eigenvalue for -A.
- \checkmark (ii) If zero is an eigenvalue of A, then A is not invertible.

$$(iii) \ \text{If an } n \times n \ \text{matrix } A \ \text{is diagonalizable, then } A \ \text{has } n \ \text{distinct eigenvalues.}$$

(iv) Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
, then A is both invertible and diagonalizable.

OUL NOT

A. (i) and (ii) only

B. (i) and (iii) only

C. (i), (ii) and (iii) only

D. (i), (ii) and (iv)

A is both invertible and diagonalizable.

 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_3 = \lambda_3 = 2$
 $\lambda_4 = \lambda_3 = 2$
 $\lambda_1 = \lambda_2 = 2$
 $\lambda_2 = \lambda_3 = 2$
 $\lambda_3 = \lambda_3 = 2$
 $\lambda_4 = \lambda_4 =$

$$\mathbf{D}$$
. (i), (ii) and(iv) only

e generalises
$$\lambda_1 = \lambda_2 = 2$$

 $A = \begin{bmatrix} 0 & 0 \end{bmatrix}$

$$Ax = \lambda x$$

$$v = +\lambda I^{V}$$

Review:
$$\lambda$$
 is eigenvalue if here is $x \neq 0$
s.t. $Ax = \lambda x \iff \lambda u (A - \lambda I) \neq \{0\}$
 $\{i \mid Say \quad Ay = \lambda y \quad y \neq 0 \iff \Delta u \vdash (A - \lambda I) = 0\}$
true $\{A\}y = \{1\}Ay = \{1\}Ay$

21. Find the least squares solution to

A. (0,1)
$$\begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 1 & 5 \end{bmatrix} x = \begin{bmatrix} 0 \\ 5 \\ 8 \end{bmatrix}.$$

A. (0,1)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2$$

col(A)