

1) Dado el siguiente programa lógico proposicional:

Indica cuáles son sus modelos clásicos mediante una tabla de verdad. De entre los modelos clásicos, indica luego cuáles son modelos soportados (*supported models*) y, a su vez, cuáles de estos son modelos estables (*stable models*), justificando las respuestas.

La primera regla corresponde a $r \land \neg q \to p$ que equivale a $\neg r \lor q \lor p$. La segunda sería $\neg p \to q$ que equivale a $p \lor q$ y que subsume a la primera regla (es más fuerte). Por tanto, para los modelos clásicos, podemos ignorar la primera regla. Por último, la tercera regla correspondería a $\neg p \to r$ que equivale a $p \lor r$ en lógica clásica.

p	q	r	$p \lor q$	$p \lor r$	modelo
0	0	0	0	0	
0	0	1	0	1	
0	1	0	1	0	
0	1	1	1	1	×
1	0	0	1	1	×
1	0	1	1	1	×
1	1	0	1	1	×
1	1	1	1	1	×

Es decir, obtenemos cinco modelos clásicos $\{q,r\}$, $\{p\}$, $\{p,r\}$, $\{p,q\}$, y $\{p,q,r\}$. Para decidir si son supported, comprobamos si son puntos fijos del operador:

$$T_P(I) = \{H \mid (H \leftarrow B) \in P, I \models B\}$$

es decir, recopilar las cabezas de las reglas cuyo cuerpo es cierto en cada modelo I.

I	$T_P(I)$	supported
$\overline{\{q,r\}}$	$\{q,r\}$	×
$\{p\}$	Ø	
$\{p,r\}$	$\{p\}$	
$\{p,q\}$	Ø	
$\{p,q,r\}$	Ø	

Por último, para ver si el modelo soportado que hemos obtenido es también estable, calculamos el reducto. El reducto $P^{\{q,r\}}$ es el programa con las reglas $(q \leftarrow)$ y $(r \leftarrow)$ que, tras aplicarlas exhaustivamente, dan como modelo mínimo $\{q,r\}$, por lo que $\{q,r\}$ es modelo estable.

Otro modo de calcular los modelos soportados es usando la completion:

$$p \leftrightarrow r \land \neg q \qquad q \leftrightarrow \neg p \qquad r \leftrightarrow \neg p$$

Las dos últimas fórmulas hacen que tanto r como q tengan el valor opuesto a p. Si tomamos p cierto, entonces r y q serían falsos y la primera fórmula no se podría satisfacer. Por tanto, la única posibilidad es tomar p falso y q y r ciertos, lo que satisface las tres fórmulas. Esto da como único modelo soportado $\{q,r\}$, que obtuvimos antes usando el operador T_P .

2) El Sudoku es una elaboración de un juego propuesto por Euler que consistía en rellenar un tablero cuadrado de $n \times n$ de modo que coloquemos en cada celda números de 1 a n sin repetirlos en ninguna fila ni en ninguna columna (el Sudoku fija n=9 y añade además esa prohibición para bloques de 3×3). Para resolver el problema de Euler con n=3 nos proponen, como punto de partida, el siguiente programa:

```
#const n=3.
digito(1..n). fila(1..n). columna(1..n).
#show celda/3.
1 {celda(X,Y,D): digito(D)} 1 :- fila(X),columna(Y).
```

¿Qué tipo de soluciones generaría este programa? ¿Cuántas generaría? Este programa asigna un número entre 1 y 3 a cada celda. Esto permite repetir números en la misma fila o columna. Como hay $3 \times 3 = 9$ celdas y, para cada una, podemos elegir entre 3 posibilidades, el número de soluciones sería 3^9 .

Añade al programa de arriba las reglas que necesites para resolver el problema de Euler.

```
:- celda(X,Y,D), celda(X,Y1,D), Y<Y1.
:- celda(X,Y,D), celda(X1,Y,D), X<X1.</pre>
```

 \ccite{c} Cuántas reglas ground (incluyendo hechos) generará como máximo tu programa? Razona la respuesta.

El programa tiene 3 hechos para fila, 3 hechos para columna, y 3 hechos para digito. La regla choice generará 9 casos ground (uno por cada celda X,Y). La primera restricción, por cada fila X y por cada dígito D toma pares de números Y<Y1 entre 1 y 3. Esto sólo genera tres casos: Y=1, Y1=2; Y=1, Y1=3; y Y=2, Y1=3. En total, 3 filas \times 3 dígitos \times 3 pares = 27 reglas ground. La segunda restricción es totalmente simétrica y genera otros 27 casos. En total, tendremos 3+3+3+9+27+27=72 reglas ground.

Si, en lugar de haber usado Y<Y1 hubiésemos escrito Y!=Y1 entonces el número de pares Y,Y1 pasaría a ser $3\times3-3=6$ (ya que los casos en son iguales son descartados). Eso haría que cada

restricción generase $3\times3\times6=54$ y el total de reglas se disparase a 3+3+3+9+54+54=126.