3 Meta 2 – Analisador sintático

O analisador sintático deve ser programado em C utilizando as ferramentas lex e yacc. A gramática que se segue especifica a sintaxe da linguagem UC.

3.1 Gramática inicial em notação EBNF

```
FunctionsAndDeclarations — (FunctionDefinition | FunctionDeclaration | Declaration) {Func-
tionDefinition | FunctionDeclaration | Declaration}
FunctionDefinition — TypeSpec FunctionDeclarator FunctionBody
FunctionBody --> LBRACE [DeclarationsAndStatements] RBRACE
DeclarationsAndStatements — Statement DeclarationsAndStatements | Declaration Declaration
onsAndStatements | Statement | Declaration
FunctionDeclaration → TypeSpec FunctionDeclarator SEMI
FunctionDeclarator → ID LPAR ParameterList RPAR
ParameterList → ParameterDeclaration {COMMA ParameterDeclaration}
ParameterDeclaration → TypeSpec [ID]
Declaration → TypeSpec Declarator {COMMA Declarator} SEMI
TypeSpec → CHAR | INT | VOID | SHORT | DOUBLE
Declarator \longrightarrow ID [ASSIGN Expr]
Statement \longrightarrow [Expr] SEMI
Statement → LBRACE {Statement} RBRACE
Statement → IF LPAR Expr RPAR Statement [ELSE Statement]
Statement → WHILE LPAR Expr RPAR Statement
Statement → RETURN [Expr] SEMI
Expr → Expr (ASSIGN | COMMA) Expr
Expr ---> Expr (PLUS | MINUS | MUL | DIV | MOD) Expr
Expr ---- Expr (OR | AND | BITWISEAND | BITWISEOR | BITWISEXOR) Expr
\operatorname{Expr} \longrightarrow \operatorname{Expr} (\operatorname{EQ} \mid \operatorname{NE} \mid \operatorname{LE} \mid \operatorname{GE} \mid \operatorname{LT} \mid \operatorname{GT}) \operatorname{Expr}
Expr \longrightarrow (PLUS \mid MINUS \mid NOT) Expr
Expr \longrightarrow ID LPAR [Expr {COMMA Expr}] RPAR
\operatorname{\mathsf{Expr}} \longrightarrow \operatorname{\mathsf{ID}} \mid \operatorname{\mathsf{INTLIT}} \mid \operatorname{\mathsf{CHRLIT}} \mid \operatorname{\mathsf{REALLIT}} \mid \operatorname{\mathsf{LPAR}} \operatorname{\mathsf{Expr}} \operatorname{\mathsf{RPAR}}
```

Uma vez que a gramática dada é ambígua e é apresentada em notação EBNF, onde [...] representa "opcional" e {...} representa "zero ou mais repetições", esta deverá ser modificada para permitir a análise sintática ascendente com o yacc. Será necessário ter em conta a precedência e as regras de associação dos operadores, entre outros aspetos, de modo a garantir a compatibilidade entre as linguagens UC e C. Note que o operador COMMA é associativo à esquerda.

3.2 Programação do analisador

O analisador deverá chamar-se uccompiler, ler o ficheiro a processar através do *stdin* e emitir todos os resultados para o *stdout*. Quando invocado com a opção -t deve imprimir a árvore de sintaxe tal como se especifica nas secções que se seguem. Se invocado com a opção -e2 deve escrever no *stdout* apenas as mensagens de erro relativas aos erros sintáticos e lexicais.

Para manter a compatibilidade com a fase anterior, se o analisador for invocado com uma das opções -1 ou -e1 deverá apenas realizar a análise lexical, emitir o resultado para o *stdout* (erros lexicais e no caso da opção -1 também os tokens encontrados) e terminar. Se não for passada qualquer opção, o analisador deve apenas escrever no *stdout* as mensagens de erro correspondentes aos erros lexicais e de sintaxe.

3.3 Tratamento e recuperação de erros

Caso o ficheiro de entrada contenha erros lexicais, o programa deverá imprimir no stdout as mensagens especificadas na Meta 1, e continuar. Caso sejam encontrados erros de sintaxe, o analisador deve imprimir mensagens de erro com o seguinte formato:

```
"Line <num linha>, col <num coluna>: syntax error: <token>\n"
```

onde <num linha>, <num coluna> e <token> devem ser substituídos pelos números de linha e de coluna, e pelo valor semântico do token que dá origem ao erro. Isto pode ser conseguido definindo a função:

```
void yyerror (char *s) {
    printf ("Line_\%d,_\col_\%d:_\%s:_\%s\n", <num linha>, <num coluna>,
        s, yytext);
}
```

A analisador deve ainda incluir recuperação local de erros de sintaxe através da adição das seguintes regras de erro à gramática (ou de outras com o mesmo efeito dependendo das alterações que a gramática dada vier a sofrer):

```
\begin{array}{l} \text{Declaration} \longrightarrow \text{error SEMI} \\ \text{Statement} \longrightarrow \text{error SEMI} \\ \text{Statement} \longrightarrow \text{LBRACE error RBRACE} \\ \text{Expression} \longrightarrow \text{ID LPAR error RPAR} \\ \text{Expression} \longrightarrow \text{LPAR error RPAR} \\ \end{array}
```

3.4 Árvore de sintaxe abstrata (AST)

Caso seja feita a seguinte invocação:

```
./uccompiler -t < first.uc
```

deverá gerar a árvore de sintaxe abstrata correspondente, e imprimi-la no stdout de acordo com a especificação que se segue. A árvore de sintaxe abstrata só deverá ser impressa se não houver erros de sintaxe. Caso haja erros lexicais que não causem também erros de sintaxe, a árvore deverá ser impressa imediatamente a seguir às correspondentes mensagens de erro.

As árvores de sintaxe abstrata geradas durante a análise sintática devem incluir apenas nós dos tipos indicados abaixo. Entre parêntesis à frente de cada nó indica-se o número de filhos desse nó e, onde necessário, também o tipo de filhos.

Nó raiz

Program (>=1) (<variable and/or function declarations>)

Declaração de variáveis

Declaration (>=2) (<typespec> Id)

Declaração/definição de Funções

```
FuncDeclaration (3) (<typespec> Id ParamList)
FuncDefinition (4) (<typespec> Id ParamList FuncBody)
ParamList (>=1) (ParamDeclaration)
FuncBody (>=0) (<declarations> | <statements>)
ParamDeclaration(>=1) (<typespec> [Id])
```

Statements

StatList(>=2) If(3) While(2) Return(1)

Operadores

```
Or(2) And(2) Eq(2) Ne(2) Lt(2) Gt(2) Le(2) Ge(2) Add(2) Sub(2) Mul(2) Div(2) Mod(2)
Not(1) Minus(1) Plus(1) Store(2) Comma(2) Call(>=1) BitWiseAnd(2) BitWiseXor(2)
BitWiseOr(2)
```

Terminais

Char, ChrLit, Id, Int, Short, IntLit, Double, RealLit, Void

Especial

Null (na ausência de um nó filho obrigatório)

Nota: Não deverão ser gerados nós supérfluos, nomeadamente StatList com menos de *statements* no seu interior. Os nós Program, ParamList e FuncBody não deverão ser considerados redundantes mesmo que tenham menos de dois nós filhos.

A Figura 2 exemplifica a impressão da árvore de sintaxe abstrata do programa apresentado na primeira página.

Figura 2: Exemplo de output do analisador sintático. O output completo está disponível em https://git.dei.uc.pt/rbarbosa/Comp2020/blob/master/meta2/first.out

3.5 Desenvolvimento do analisador

Sugere-se que desenvolva o analisador de forma faseada. Deverá começar por re-escrever a gramática acima apresentada para o yacc de modo a permitir a deteção de eventuais erros de sintaxe. Após terminada esta fase, e já com garantia que a gramática está correta, deverá focarse no desenvolvimento do código necessário para a construção da árvore de sintaxe abstrata e a sua impressão para o stdout. O relatório final deverá descrever as opções tomadas na escrita da gramática, pelo que se recomenda agora a documentação dessa parte.

Para promover uma boa divisão de tarefas entre elementos do grupo, sugere-se que comecem por analisar produções diferentes. Observando o não-terminal FunctionsAndDeclarations, um elemento começaria por FunctionsAndDeclarations — FunctionDefinition {FunctionDefinition} enquanto o outro começaria por FunctionsAndDeclarations — Declaration {Declaration}. Teriam de coordenar o trabalho a partir do momento em que chegassem a não-terminais comuns na gramática.

Deverá ter em atenção que toda a memória alocada durante a execução do analisador deve ser libertada antes deste terminar, devendo ter em conta as situações em que a construção da AST é interrompida por erros de sintaxe.

3.6 Submissão da Meta 2

O ficheiro *lex* entregue deverá obrigatoriamente listar os autores num comentário colocado no topo desse ficheiro, contendo o nome e o número de estudante de cada membro do grupo. Os ficheiros lex e yacc a entregar deverão chamar-se uccompiler.l e uccompiler.y e ser colocados num único arquivo com o nome uccompiler.zip juntamente com quaisquer outros ficheiros necessários para compilar o analisador.

O trabalho deverá ser avaliado no MOOSHAK, usando o concurso criado especificamente para o efeito e cuja página está acima indicada na Secção 1. Para efeitos de avaliação, será tida em conta apenas a última submissão ao problema A desse concurso. Os restantes problemas destinam-se a ajudar na validação do analisador, nomeadamente no que respeita à deteção de erros de sintaxe e à construção da árvore de sintaxe abstrata. No entanto, o MOOSHAK não deve ser utilizado como ferramenta de depuração. Os estudantes deverão usar e contribuir para o repositório disponível em https://git.dei.uc.pt/rbarbosa/Comp2020/tree/master contendo casos de teste.