

Divergence-free discretisations of the Stokes eigenvalue problem

FLEURIANNE BERTRAND*, DANIELE BOFFI†, U. ZERBINATI‡

- * University of Twente
- † King Abdullah University of Science and Technology
- ‡ University of Oxford

PRISM Hackaton, 18th of April 2023

Stokes eigenvalue problem

Find
$$(\mathbf{u},p) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$$
 such that $\forall (\mathbf{v},q) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$,

$$\begin{cases}
\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^{2}(\Omega)} - (\nabla \cdot \mathbf{v}, p)_{\mathcal{L}^{2}(\Omega)} = \lambda_{n} (\mathbf{u}, \mathbf{v})_{\mathcal{L}^{2}(\Omega)}, \\
(\nabla \cdot \mathbf{u}, q)_{\mathcal{L}^{2}(\Omega)} = 0,
\end{cases} (1)$$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

- ▶ Are the eigenvalue of this problem real?
- Do the eigenvalue of this problem diverge?

Stokes eigenvalue problem – Laplace form

We introduce the space $H^1_{0,0}(\Omega)=\left\{\mathbf{v}\in H^1_0(\Omega)\ :\
abla\cdot\mathbf{u}=0\right\}$.

Find $\mathbf{u} \in H^1_{0,0}(\Omega)$ such that $\forall \mathbf{v} \in H^1_{0,0}(\Omega)$,

$$\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}, \mathbf{v})_{\mathcal{L}^2(\Omega)}, \tag{2}$$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

- ▶ The eigenvalue problem is self-adjoint therefore $\lambda_n \in \mathbb{R}$.
- $ightharpoonup H_{0,0}^1(\Omega)$ is compactly embedded in $\mathcal{L}^2(\Omega)$ and therefore operator corresponding to the eigenvalue problem is compact, implying $\lambda_n \to \infty$ ad $n \to \infty$.

Discrete Stokes eigenvalue problem

Find $(\mathbf{u}^h, p^h) \in V_h \times Q_h$ such that $\forall (\mathbf{v}^h, q^h) \in V_h \times Q_h$,

$$\begin{cases} \nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} - (\nabla \cdot \mathbf{v}^h, p^h)_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)}, \\ (\nabla \cdot \mathbf{u}^h, q^h)_{\mathcal{L}^2(\Omega)} = 0, \end{cases}$$
(3)

with $\lambda_n^h \in \mathbb{C}$, $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity, and

$$V_h \times Q_h \subset H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega). \tag{4}$$

Under what hypothesis on V_h and Q_h is this eigenvalue problem well-posed?

The divergence-free constraint

$$b(\mathbf{v}^h, q^h) = (\nabla \cdot \mathbf{v}^h, q^h)_{\mathcal{L}^2(\Omega)} = 0$$
 (5)

Find $\mathbf{u}_h \in \mathbb{K}_h$ such that $\forall \mathbf{v}_h \in \mathbb{K}_h$,

$$\nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} = \lambda_n^h (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)}, \tag{6}$$

with $\lambda_n \in \mathbb{C}$, $\nu \in \mathbb{R}_{\geq 0}$ is the fluid viscosity and

$$\mathbb{K}_h = \left\{ \mathbf{v}^h \in V_h : b(\mathbf{v}^h, q^h) = 0 \ \forall q^h \in Q_h \right\}. \tag{7}$$

Divergence-free discretisations

$$\overline{\nabla \cdot V_h \subset Q_h} \tag{8}$$

Under this hypothesis, we have the following result, i.e.

$$b(\mathbf{v}^h, q^h) = (\nabla \cdot \mathbf{v}^h, q^h)_{\mathcal{L}^2(\Omega)} = 0 \Leftrightarrow \nabla \cdot \mathbf{v}^h = 0, \tag{9}$$

which implies the functions are really **divergence-free**.

$$\left| \mathbb{K}_h \subset H^1_{0,0}(\Omega) \right| \tag{10}$$

Divergence discretisations eigenvalue problem

Find $\mathbf{u}_h \in \mathbb{K}_h$ such that $\forall \mathbf{v}_h \in \mathbb{K}_h$,

$$\nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} = \lambda_n^h (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)}, \tag{11}$$

with $\nabla \cdot V_h \subset Q_h$, $\lambda_n \in \mathbb{C}$, $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

This problem is well-posed and we can analyse it using Babuska-Osborn theory.

Babuska-Osborn theory

Theorem

For each $n \in \mathbb{N}$, we have

$$\lambda_n \le \lambda_n^h \le \lambda_n + C \sup_{\mathbf{u} \in E, \|\mathbf{u}\| = 1} \inf_{\mathbf{v}^h \in \mathbb{K}_h} \|\mathbf{u} - \mathbf{v}_h\|_{H^1(\Omega)}^2$$
 (12)

and it exists $\mathbf{w}_n^h \in \langle \mathbf{u}_n^h, \dots, \mathbf{u}_{n-m-1}^h \rangle$.

$$\|\mathbf{u}_n - \mathbf{w}_n^h\| \le C \sup_{\mathbf{u} \in E, \|\mathbf{u}\| = 1} \inf_{\mathbf{v}^h \in \mathbb{K}_h} \|\mathbf{u} - \mathbf{v}_h\|_{H^1(\Omega)}$$
 (13)

where m, E and \mathbf{u}_n are respectively the multiplicity, eigenspace and eigenvector corresponding to the eigenvalue λ_n .

An example – special mesh

Lemma

Let $\mathbf{u} \in H^s(\Omega) \cap H^1_{0,0}(\Omega)$, with $s \geq 2$. On a special mesh obtained from a uniform square mesh dividing each cell along one of its diagonals there exists a $\mathbf{u}^h \in [\mathbb{P}^k(\mathcal{T}_h)]^2$ such that

$$\nabla \cdot \mathbf{u}_{h} = 0, \tag{14}$$

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{H^{1}(\Omega)} \leq C |\mathbf{u}|_{H^{s}(\Omega)} \cdot \begin{cases} h^{\min(k-1,s-1)}, & k \in \{1,2,3\} \\ h^{\min(k,s-1)}k^{(1-s)}, & k \geq 4 \end{cases} \tag{15}$$

An example - special mesh

$$[\mathbb{P}^2(\mathcal{T}_h)]^2 - \mathbb{P}^1_{disc}(\mathcal{T}_h)$$
 (16)

A systematic approach to the best approximation

Lemma

Let (V_h, \hat{Q}_h) be an **inf-sup stable** finite element pair, we assume that the bottom sequence is exact and bounded. Under this hypothesis given any $\mathbf{u} \in H^1_{0,0}(\Omega)$, the following best approximation estimate holds

$$\inf_{\mathbf{u}^h \in \mathbb{K}_h} \left\| \mathbf{u} - \mathbf{u}^h \right\|_{H^1(\Omega)} \le C(\beta) \inf_{\mathbf{v}^h \in V_h} \left\| \mathbf{u} - \mathbf{u}^h \right\|_{H^1(\Omega)}, \tag{17}$$

where β is the inf-sup constant corresponding to the finite element pair (V_h, \hat{Q}_h) .

Boffi-Brezzi-Gastaldi Theory

▶ We say that Q_h verifies the **weak approximability condition** if there exists $\gamma_1(h)$, such that for every $q \in \mathcal{L}_0^2(\Omega)$

$$\sup_{\mathbf{v}^h \in \mathbb{K}_h} \frac{b(\mathbf{v}^h, q)}{\|\mathbf{v}_h\|_{H^1(\Omega)}} \leq \omega_1(h) \|q\|_{\mathcal{L}^2(\Omega)} \text{ and } \lim_{h \to 0} \gamma_1(h) = 0. \quad (18)$$

▶ We say V_h verifies the **strong approximability condition** if there exists $\gamma_2(h)$, such that for every $\mathbf{v} \in H^1_{0,0}(\Omega) \cap H^2(\Omega)$

$$\inf_{\mathbf{v}^h \in \mathbb{K}_h} \left\| \mathbf{v} - \mathbf{v}^h \right\|_{H^1(\Omega)} \le \gamma_2(h) \left\| \mathbf{v} \right\|_{H^2(\Omega)} \text{ and } \lim_{h \to 0} \gamma_2(h) = 0.$$
(19)

Finite Element Exterior Calculus

Couple more example

 $ightharpoonup [\mathbb{P}^4(\mathcal{T}_h)]^2 - \mathbb{P}^3_{disc}(\mathcal{T}_h)$, will be a converging scheme on a criss-cross mesh even if this choice of the element is not inf-sup stable. Best approximation estimates can be derived from the Morgan-Scott-Vogelious complex.

Couple more example

 $ightharpoonup [\mathbb{P}^2(\mathcal{T}_h)]^2 - \mathbb{P}^2(\mathcal{T}_h)$, will be a converging scheme on a barycentrically refined mesh even if this choice of the element is not inf-sup stable. Best approximation estimates can be derived from Hsieh-Clough-Tocher complex.

Conclusions

- ▶ There is no need to characterise the range of the divergence operator!
- ► A wide variety of finite element space pairs can be used even if they are not inf-sup stable.

Thank you for your attention!