Midterm 2 for Algebra-Based Physics-2: Electricity, Magnetism, and Modern Physics (PHYS135B-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

April 16, 2018

1.	Applications of circuits, Chapter 21:	(Recall that $P =$	iV, V	=iR, and th	at two	resistors in	parallel (combine
	like $R_{tot}^{-1} = R_1^{-1} + R_2^{-1}$.							

(a)	A 250 W space heater, a 1000 W microwave, and a 50 W coffee pot are connected to the 120 V outlet.	Will
	this blow the 12 amp fuse?	

(b)	A 200 W toaster, a 1000 W microwav	e, and a 250 V	V mini-fridge are	connected to th	e 120 V	outlet.	Will
	this blow the 12 amp fuse?						

Suppose the mini-fridge in the previous problem were disconnected.

- i. What would the current be?
- ii. What would be the total effective resistance?
- iii. What are the resistances of the separate devices?
- 2. Magnetism, Chapter 22: Recall the form of the Lorentz force is $\vec{F}=q\vec{v}\times\vec{B}$, and that centripetal force is $F=mv^2/r$.
 - (a) Draw the magnetic field of the Earth, and indicate the trajectory of a positively charged particle from space that enters this field. Draw a trajectory for a negatively charged particle.

- (b) Suppose a positively charged particle has a velocity of $\vec{v}=v_0\hat{i}$, and that it moves through a uniform magnetic field $\vec{B}=B_0\hat{j}$. In which direction does the particle accelerate?
- (c) Suppose a positively charged particle has a velocity of $\vec{v}=v_0\hat{i}$, and that it moves through a uniform magnetic field $\vec{B}=B_0\hat{k}$. In which direction does the particle accelerate?

(d) Suppose a charged particle with charge q, mass m and velocity $\vec{v}=2\times 10^8\hat{x}$ m/s moves in a circle with radius 1.0 m through a magnetic field $\vec{B}=10^{-3}\hat{y}$ T. What is the charge-to-mass ratio q/m?

(e) Suppose we use an electric field to determine that the charge of these particles is positive and twice that of a proton ($q=2\times 1.6\times 10^{-19}$ C). What is the mass of these particles?

- 3. **Magnetism 2, Chapter 23**: Recall that the definition of magnetic flux through an area A by a B-field B is $\phi = \vec{B} \cdot \vec{A} = BA \cos \theta$. Recall also Faraday's law $emf = -N\Delta\phi/\Delta t$, and that $\mu_0 = 4\pi \times 10^{-7}$ T A⁻¹ m.
 - (a) Suppose a loop of wire has an area A and is in the x-y plane ($\vec{A} = A\hat{k}$). A magnetic field \vec{B} creates a flux ϕ through the loop of wire. Create a graph of ϕ versus θ , where θ is the angle between the field and the loop. Indicate on the graph the angles at which the flux is maximal and where it is zero.

(b) If $|B|=10^{-2}$ T, and A is 4 cm², what is the maximum ϕ ?

(c) If the magnetic field reduces to 0.0 T in 4 ms, what emf is induced in the wire? (Assume $\theta = 0$).

(d) Suppose a solenoid shaped wire has N=1000 coils, and is L=4 cm long. Suppose we feed a current I=1.0 amp through the solenoid. Ampère's Law tells us that the magnetic field in the solenoid is $B=\mu_0(N/L)I$. What is the magnetic field in this situation?