Solución

Colocamos la cola de ${\bf v}$ en la punta de ${\bf u}$ para obtener el vector mostrado en la Figura 1.1.12.

El vector $-2\mathbf{u}$, que también hemos dibujado, tiene una longitud que es el doble de la de \mathbf{u} y apunta en el sentido opuesto. A partir de la figura, vemos que las componentes del vector $\mathbf{u} + \mathbf{v}$ son (5, 2) y las del vector $-2\mathbf{u}$ son (-6, -4).

Figura 1.1.12 C álculo de $\mathbf{u} + \mathbf{v} \ \mathbf{y} - 2\mathbf{u}$.

Ejemplo 5

- (a) Dibujar $-2\mathbf{v}$, donde \mathbf{v} tiene las componentes (-1, 1, 2).
- (b) Si \mathbf{v} y \mathbf{w} son dos vectores cualesquiera, demostrar que $\mathbf{v} \frac{1}{3}\mathbf{w}$ y $3\mathbf{v} \mathbf{w}$ son paralelos.

Solución

- (a) El vector $-2\mathbf{v}$ tiene una longitud que es dos veces la longitud de \mathbf{v} y apunta en el sentido opuesto (véase la Figura 1.1.13).
- (b) $\mathbf{v} \frac{1}{3}\mathbf{w} = \frac{1}{3}(3\mathbf{v} \mathbf{w})$; los vectores que son múltiplos unos de otros son paralelos.

Figura 1.1.13 Multiplicaci ón de (-1, 1, 2) por -2.