HW 5

Samuel Lindskog

March 19, 2025

Problem 1

Show that if a sequence of rational numbers converges to a rational number then the sequence is Cauchy.

Proof: Let $(a_n)_{n=1}^{\infty}$ be a sequence of rational numbers. If $(a_n)_{n=1}^{\infty}$ converges to $L \in \mathbb{Q}$, then for all $\epsilon > 0$ there exists N > 0 such that $n > N \Rightarrow |a_n - L| < \epsilon$. Choose $M \in \mathbb{N}$ such that n > M implies $|a_n - L| < \epsilon/2$. It follows that for i, j > M,

$$\epsilon = \frac{\epsilon}{2} + \frac{\epsilon}{2} > |a_i - L| + |a_j - L|$$

$$= |a_i - L| + |-(a_j - L)|$$

$$\ge |a_i - L + (-(a_j - L))|$$

$$= |a_i - a_j|$$

Thus for all $\epsilon > 0$ there exists M such that i, j > M implies $|a_i - a_j| < \epsilon$ and $(a_n)_{n=1}^{\infty}$ is Cauchy. \square

Problem 2

Section 5.1: Exercise 5.1.1

Proof: Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence, so

$$\forall \epsilon \in \mathbb{Q}^+, \exists N \in \mathbb{N}, (i, j > N \Rightarrow |a_i - a_j| < \epsilon).$$

Therefore choose $M \in \mathbb{N}$ such that i, j > M implies $|a_i - a_j| < 1$. Then the sequence $(a_n)_{n=1}^{M+1}$ is finite and thus by lemma 5.1.14 there exists $L \in \mathbb{Q}$ such that for all $1 \le n \le M+1$, $|a_n| < L$. Therefore there exists $b \in \mathbb{Q}^+$ such that $a_{M+1} + b = L$, i.e. $a_{M+1} = L - b$. As a consequence of the fact that $|a_{M+1}|$ is nonnegative, $0 < b \le L$ and L > 0.

Suppose to the contrary that for some $k \in \mathbb{N}^+$ with k > M, $|a_k| \ge L + 1$, i.e. $|a_k| = L + 1 + l$ for some $l \in \mathbb{Q}^+ \cup \{0\}$. Utilizing the properties of absolute value, the fact that two nonnegative numbers added are nonnegative, and the facts

$$L, b, 1 > 0,$$

$$L > L - b \ge 0,$$

$$l > 0,$$

we prove by cases that $|a_k - a_{M+1}| > 1$, a contradiction:

(a)

$$|a_k - a_{M+1}| = |(L+1+l) + (L-b)| = L + L - b + 1 + l \ge 1 + L > 1$$
$$= |-(L+1+l) - (L-b)| = |(L+1+l) + (L-b)| > 1$$

$$|a_k - a_{M+1}| = |(L+1+l) - (L-b)| = |1+l+b| \ge 1+b > 1$$

= |-(L+1+l) + (L-b)| = |(L+1+l) - (L-b)| > 1

Therefore $|a_k| < L + 1$.

Problem 3

Section 5.3: Exercise 5.2.1

Proof: Suppose $(a_n)_{n=1}^{\infty}$ is Cauchy, and $(b_n)_{n=1}^{\infty}$ is an equivalent sequence. It follows that

$$\forall \epsilon \in \mathbb{Q}^+, \exists N \in \mathbb{N}, (n \ge N \Rightarrow |a_n - b_n| < \epsilon)$$

and

$$\forall \epsilon \in \mathbb{Q}^+, \exists M \in \mathbb{N}, (i, j \ge M \Rightarrow |a_i - a_j| < \epsilon).$$

Therefore, given $\epsilon > 0$, if $i, j \ge \max\{N, M\}$ then

$$|b_i - b_j| = |b_i - a_i + a_i - a_j + a_j - b_j|$$

$$\leq |b_i - a_i| + |a_i - a_j| + |a_j - b_j|$$

$$= 3\epsilon.$$

Problem 4

Section 5.3: Exercise 5.3.2

Proof: First we prove the product of two reals is real. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be Cauchy sequences. Then (also utilizing the reverse triangle inequality) we can choose $N, M \in \mathbb{Q}$ such that

$$i, j > N \Rightarrow |a_i - a_j| < 1, \Rightarrow |a_j| < 1 + |a_i| \tag{1}$$

$$i, j > M \Rightarrow |b_i - b_j| < 1, \Rightarrow |a_j| < 1 + |b_i| \tag{2}$$

Then for $\delta \in \mathbb{Q}$ choose $L, O \in \mathbb{N}$ such that

$$i, j > L \Rightarrow |a_i - a_j| < \delta$$

 $i, j > O \Rightarrow |b_i - b_j| < \delta$

Let $C = \max\{N, M, L, O\}$, and fix $k \in \mathbb{N}$ such that k > C. If i, j > C, it follows from proposition 4.3.7 and equations 1 and 2 that

$$|a_{i}b_{i} - a_{j}b_{j}| < \delta|b_{i}| + \delta|a_{i}| + \delta^{2}$$

$$= \delta(|b_{i}| + |a_{i}|) + \delta^{2}$$

$$< \delta(|a_{k}| + 1 + |b_{k}| + 1) + \delta^{2}$$

$$= \delta(|a_{k}| + |b_{k}| + 2) + \delta^{2}$$

Given $\epsilon \in \mathbb{Q}^+$, we may find δ (thus determining C) such that $|a_ib_i - a_jb_j| < \epsilon$ as follows:

$$\begin{split} \epsilon &= \delta(|a_k| + |b_k| + 2) + \delta^2 \\ 0 &= \delta^2 + \delta(|a_k| + |b_k| + 2) - \epsilon \\ \delta &= \frac{-(|a_k| + |b_k| + 2) + \sqrt{(|a_k| + |b_k| + 2)^2 + 4\epsilon}}{2} \end{split}$$

Therefore given $\epsilon > 0$, i, j > C implies $|a_i b_i - a_j b_j| < \epsilon$, so $\text{LIM}_{n \to \infty} a_n b_n$ is Cauchy, and thus multiplication of two reals is real.

Next, we prove that multiplication is well-defined. Suppose $x, x', y \in \mathbb{R}$ with

$$x = LIM_{n \to \infty} a_n$$

$$x' = LIM_{n \to \infty} a'_n$$

$$y = LIM_{n \to \infty} b_n,$$

and x = x'. Because $(b_n)_{n=1}^{\infty}$ is Cauchy, choose $N \in \mathbb{N}$ (and use the reverse triangle inequality) such that

$$i, j > N \Rightarrow |b_i - b_j| < 1 \Rightarrow |b_i| < 1 + |b_j|.$$

Fix $k \in \mathbb{N}$ such that k > N. Because x = x', choose $M \in \mathbb{N}$ such that for some $\epsilon > 0$,

$$i > M \Rightarrow |a_i - a_i'| < \frac{\epsilon}{1 + |b_k|}.$$

It follows from the properties of absolute value that the above equation implies

$$i > M \Rightarrow |b_i||a_i - a_i'| < |b_i| \frac{\epsilon}{1 + |b_k|}$$

$$\Rightarrow |a_i b_i - a_i' b_i| < \frac{|b_i|\epsilon}{1 + |b_k|}$$

Therefore if $C = \max\{N, M\}$ then i > C implies $|b_i| < 1 + |b_k|$. It then follows from the above implication that

$$i > C \Rightarrow |a_i b_i - a_i' b_i| < \frac{(1 + |b_k|)\epsilon}{1 + |b_k|}$$

= ϵ

Thus xy and x'y are equivalent.

Problem 5

Negate mathematical statments involving quantifiers.

Proof:

(a) A sequence a_n is not Cauchy.

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists i, j \in \mathbb{N}, (i, j > N \land |a_i - a_j| \ge \epsilon).$$

(b) Two sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are not equivalent.

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists i \in \mathbb{N}, (i > N \land |a_i - b_i| \ge \epsilon).$$

(c) A sequence $(a_n)_{n=1}^{\infty}$ is not convergent to L.

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists i \in \mathbb{N}, (i > N \land |a_i - L| \ge \epsilon).$$

(d) A sequence $(a_n)_{n=1}^{\infty}$ is not bounded.

$$\forall L > 0, \exists n \in \mathbb{N}, |a_n| > L.$$

Problem 6

Show that for all $x, y, z \in \mathbb{R}$:

(a) $1 \cdot x = x$.

Proof: Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence. It follows from algebraic rules for rational numbers that for any rational number r we have $1 \cdot r = r$. Thus $\text{LIM}_{n \to \infty} a_n \cdot \text{LIM}_{n \to \infty} 1 = \text{LIM}_{n \to \infty} (a_n \cdot 1) = \text{LIM}_{n \to \infty} a_n$.

3

(b) y - y = 0.

Proof: Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence. It follows from algebraic rules for rational numbers that for any rational number r we have r-r=0. Thus $\mathrm{LIM}_{n\to\infty}a_n-\mathrm{LIM}_{n\to\infty}a_n=\mathrm{LIM}_{n\to\infty}(a_n-a_n)=\mathrm{LIM}_{n\to\infty}0$.

(c) If $z \neq 0$ then $z \cdot \frac{1}{z} = 1$.

Proof: Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence. It follows from algebraic rules for rational numbers that for any rational number $r \neq 0$ we have $r \cdot r^{-1} = 1$. Thus $\text{LIM}_{n \to \infty} a_n \cdot \text{LIM}_{n \to \infty} a_n^{-1} = \text{LIM}_{n \to \infty} (a_n \cdot a_n^{-1}) = \text{LIM}_{n \to \infty} 1$.

(d) (x+y)z = xz + yz.

Proof: Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ be a Cauchy sequences. It follows from the distributive property of rational multiplication that for any rational numbers x, y, z we have (x + y)z = xz + yz. Thus $(\text{LIM}_{n\to\infty}a_n + \text{LIM}_{n\to\infty}b_n) \cdot \text{LIM}_{n\to\infty}c_n = \text{LIM}_{n\to\infty}(a_n + b_n) \cdot \text{LIM}_{n\to\infty}c_n = \text{LIM}_{n\to\infty}(a_n + b_n)c_n = \text{LIM}_{n\to\infty}(a_n + b_n)c_n = \text{LIM}_{n\to\infty}(a_n + b_n)c_n$.