扬州大学试题纸

(2021 -2022 学年第 二 学期)

数学科学 学院 数学 21 级、信科 21 级 班(年)级课程

初等数论 自测题三

考试形式: 开卷() 闭卷(✓)

题目	 1 1	11	四	五.	六	总分
得分						

一、名词解释(3+3+4=10分)

1. Write out the definition of complete residue system modulo m, where m is a positive integer.

- 2. Write out the definition of $o_m(a)$, i.e. the order of a modulo m, where m is a positive integer, a is an integer coprime to m.
- 3. Write out the content of Euler's Theorem(proof is not required).

二、应用题(15 分),注意写清楚计算步骤。 4. Alice is using her computer to calculate
$1234567890987654321^{2017201820192020} (mod 31415926535897932626)$
If the computer use 1 second to calculate the product of two 20-digits number, and 1 second to calculate the remainder of a 40-digits number divided by a 20-digits number, then is it possible to get the result in 5 minutes? Give your reason and estimate a bound of time.

$$\{x \in \mathbb{Z} : 0 \le x \le 1000000, g.c.d.(x, 1000000) = 1\}.$$

b) Calculate the number of integers between 0 and 2022 that are coprime to 1000000, i.e. the cardinality of the set

$$\{x \in \mathbb{Z} : 0 \le x \le 2022, g.c.d.(x, 1000000) = 1\}.$$

6. Find the last four digits of the octal representation of 2021^{12306} .

7. a) Is there a primitive root modulo 250? Give your reason.

b) Is 3 a primitive root modulo 250? If your answer is yes, give your reason. If your answer is no, then calculate the order of 3 modulo 250.

8. a) Calculate the order of 2021 modulo 108108.
b) Calculate 2021 ¹⁸⁰⁰ (mod 108108).
三、证明题(8+20+7=35 分),注意写清楚证明细节。
9. Prove that the sum of squares of three consecutive integers(i.e.
$n^2 + (n+1)^2 + (n+2)^2$) can't be a square.

b) Prove that: for any integer a coprime to 127, we have

$$a^{126} \equiv 1 \pmod{127}$$

- c) Is 1729 a prime or a composite? Give your reason. If 1729 is a composite, factorize it into the product of prime powers.
 - d) Prove that: for any integer a coprime to 1729, we have

$$a^{1728} \equiv 1 \pmod{1729}$$

11. Is 2 ²⁵¹ –1 a pri	ime or a composite? Give your reason.