Due Date: 19 September 2022

1 Statistical distance of \mathcal{D}_0' and \mathcal{D}_1'

Here are some facts about statistical distance:

Fact 1.1. For any three distributions $\mathcal{D}_0, \mathcal{D}_1, \mathcal{D}_2$,

$$SD(\mathcal{D}_0, \mathcal{D}_2) \leq SD(\mathcal{D}_0, \mathcal{D}_1) + SD(\mathcal{D}_1, \mathcal{D}_2).$$

Fact 1.2. For any two distributions $\mathcal{D}_0, \mathcal{D}_1$, $\mathsf{SD}(\mathcal{D}_0, \mathcal{D}_1) = \epsilon$ if and only if there exists an adversary \mathcal{A} (not necessarily polynomial time) that can win the following game with probability $1/2 + \epsilon/2$:

- Challenger picks a bit $b \leftarrow \{0,1\}$, samples $u \leftarrow \mathcal{D}_b$ and sends u to \mathcal{A} .
- \mathcal{A} sends its guess b' and wins if b = b'.

We will use the above facts to prove the following theorem.

Theorem 1.3. Suppose $SD(\mathcal{D}_0, \mathcal{D}_1) \leq \epsilon$. Then $SD(\mathcal{D}'_0, \mathcal{D}'_1) \leq t \cdot \epsilon$.

Proof. The proof follows via a sequence of hybrid distributions $\mathcal{H}_0, \ldots, \mathcal{H}_t$, where $\mathcal{H}_0 \equiv \mathcal{D}'_0$, $\mathcal{H}_t \equiv \mathcal{D}'_1$, and \mathcal{H}_i is defined as follows:

 $\mathcal{H}_i = \{ \text{output (t-i) samples chosen independently from } \mathcal{D}_0 \text{ and output i samples chosen independently from } \mathcal{D}_1 \}$

Claim 1.4. For any $i \leq t$, $SD(\mathcal{H}_{i-1}, \mathcal{H}_i) \leq \epsilon$.

Proof. Let Ω be the Distribution of all sized sampling from \mathcal{D}_0 and \mathcal{D}_1 .

 $\Omega = \{ \text{ output (t-i) samples from } \mathcal{D}_0 \text{ and i samples from } \mathcal{D}_1 \text{ chosen independently from } \mathcal{D}_0 \text{ , } \mathcal{D}_1 \text{ respectively where } t \in \mathbb{N} \text{ and } i \in [0,t] \}$

Let define events on distribution Ω :

 $E_i^0 = \{ \text{ output i samples chosen independently from } \mathcal{D}_0 \}.$

 $\mathrm{E}_{i}^{1} = \{ \text{ output i samples chosen independently from } \mathcal{D}_{1} \}.$

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) = \frac{1}{2} * (\sum_{j \in \Omega} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = j] - \Pr_{z \leftarrow \mathcal{H}_i}[z = j]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = \{E_{t-i+1}^0, \bigwedge_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}^1 \in \Omega}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}^1 \in \Omega}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i+1}^1 \in \Omega \\ E_{t-i+1}^1 \in \Omega}} |\Pr_{z \leftarrow \mathcal{H}_{i-1}^1 \in \Omega}[z = i]|) = \frac{1}{2} * (\sum_{\substack{E_{t-i+$$

$$\mathbf{E}_{i-1}^{1}\}] - \Pr_{z \leftarrow \mathcal{H}_{i}}[z = \{E_{t-i}^{0} \bigwedge \mathbf{E}_{i}^{1}\}]| \) = \frac{1}{2} \ *(\sum_{\substack{E_{t-i+1}^{0}, E_{i}^{1} \in \Omega \\ E^{0} \ \dots E^{1} \in \Omega}} |Pr[\{E_{t-i+1}^{0} \ \bigwedge \mathbf{E}_{i-1}^{1}\}] - Pr[\{E_{t-i}^{0} \bigwedge \mathbf{E}_{i}^{1}\}]| \) \ .$$

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) = \frac{1}{2} * \left(\sum_{\substack{E_{t-i+1}^0, E_{i-1}^1 \in \Omega \\ E_{t-i}^0, E_i^1 \in \Omega}} |Pr[\{E_{t-i+1}^0 \land E_{i-1}^1\}] - Pr[\{E_{t-i}^0 \land E_i^1\}]| \right)$$
 (1).

Now let use the fact that sampling from \mathcal{D}_0 and \mathcal{D}_1 are independent. $\Pr[E_i^0 \land E_j^1] = \Pr[E_i^0] * \Pr[E_j^1] \dots (2)$

As chosen element are independent during sampling than we can use probability of independent event.

$$\Pr[E_1^0 \mid E_i^0] = \Pr[E_1^0]$$
 – (3)

$$\Pr[E_{i+1}^0] = \Pr[E_1^0 \land E_i^0] = \Pr[E_1^0 \mid E_i^0] * \Pr[E_i^0] = \Pr[E_1^0] * \Pr[E_i^0]$$
 (using 3rd Equation) –(4).

Using 2nd and 4th Equation we can simplify the 1st Equation.

$$\begin{split} & \text{SD}(\mathcal{H}_{i-1},\mathcal{H}_i) = \frac{1}{2} * (\sum_{\substack{E_{t-i+1}^0, E_{t-i}^1 \in \Omega \\ E_{t-i}^0, E_{t}^1 \in \Omega}} |Pr[E_{t-i+1}^0] * Pr[E_{t-1}^1] - Pr[E_{t-i}^0] * [E_{t}^1]| \;) = \frac{1}{2} * (\sum_{\substack{E_{1}^0, E_{1}^1 \in \Omega \\ E_{t-i}^0, E_{t-i}^1 \in \Omega}} |Pr[E_{t-i}^0] * Pr[E_{t-i}^1] * Pr[E_{t-i}^1] * Pr[E_{t-i}^1] \;) = \frac{1}{2} * (\sum_{\substack{E_{1}^0, E_{1}^1 \in \Omega \\ E_{t-i}^0, E_{t-i}^1 \in \Omega}} |Pr[E_{t-i}^0] * Pr[E_{t-i}^1] (Pr[E_{1}^0] - Pr[E_{1}^1])| \;) \\ \leq \frac{1}{2} * (\sum_{\substack{E_{1}^0, E_{1}^1 \in \Omega \\ E_{1}^0, E_{1}^1 \in \Omega}} |1 * 1(Pr[E_{1}^0] - Pr[E_{1}^1])| \;) = \frac{1}{2} * (\sum_{\substack{E_{1}^0, E_{1}^1 \in \Omega \\ E_{1}^0, E_{1}^1 \in \Omega}} |Pr[E_{1}^0] - Pr[E_{1}^1]| \;) \;. \; - (5) \end{split}$$

Let re-visit the definition of E_i^0 and E_i^1 .

For i = 1:

 $E_1^0 = \{ \text{ output 1 sample chosen independently from } \mathcal{D}_0 \} \text{ and } E_1^1 = \{ \text{ output 1 sample chosen independently from } \mathcal{D}_1 \}$

 E_1^0 is same as distribution \mathcal{D}_0 and E_1^1 is same as distribution \mathcal{D}_1 .

Hence we can re-write 5th Equation in term of \mathcal{D}_0 and \mathcal{D}_1 distribution.

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) \leq \frac{1}{2} * \left(\sum_{E_1^0, E_1^1 \in \Omega} |Pr[E_1^0] - Pr[E_1^1]| \right) = \frac{1}{2} * \left(\sum_{E_1^0, E_1^1 \in \Omega} |Pr[z = E_1^0] - Pr[z = E_1^1]| \right)$$

$$\leq \frac{1}{2} * \left(\sum_{j \in \Omega} |Pr[z = j] - Pr[z = j]| \right) = SD(\mathcal{D}_0, \mathcal{D}_1) \leq \epsilon.$$

$$--(6)$$

Hence from 6th Equation we have got that

$$SD(\mathcal{H}_{i-1}, \mathcal{H}_i) \le \epsilon \text{ for } i \in [1,t].$$

[TODO: conclude proof of theorem using the above claim]

2 Weak PRPs

Theorem 2.1. Assuming F is a secure PRF, the construction described in the assignment is a weak PRP.

Proof. We will prove that the construction is a weak PRP via a sequence of hybrid worlds. We first present the hybrid worlds below, then show that they are indistinguishable.

World 0: In this world, the challenger uses two PRF keys k_1, k_2 . For every query, the challenger picks (x_i, y_i) uniformly at random, and sends the output of the PRP construction.

- The challenger chooses two uniformly random PRF keys k_1, k_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus F(x_i, k_1)$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus F(v_i, k_2))$.
- Adversary sends b'.

Hybrid 1:

- The challenger chooses a uniformly random function $f \leftarrow \mathsf{Func}[\mathcal{X}, \mathcal{X}]$ and PRF key k_2 .
- For the i^{th} query, the challenger chooses uniformly random x_i, y_i and then computes $\underline{v_i = y_i \oplus f(x_i)}$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus F(v_i, k_2))$.
- Adversary sends b'.

Hybrid 2:

- The challenger chooses two uniformly random functions f_1, f_2 .
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then computes $v_i = y_i \oplus f_1(x_i)$. It then sends (x_i, y_i) together with $(v_i, x_i \oplus f_2(v_i))$.
- Adversary sends b'.

World 1:

- The challenger chooses uniformly random permutation $P \leftarrow \mathsf{Perm}[\mathcal{X}^2]$.
- For the i^{th} query, the challenger chooses uniformly randomly x_i, y_i and then sends (x_i, y_i) together with $P(x_i, y_i)$.
- Adversary sends b'.

We will now prove that the hybrids are indistinguishable.

Claim 2.2. Suppose there exists a p.p.t adversary \mathcal{A} such that $p_0 - p_{\text{hyb},1} = \epsilon$. Then there exists a p.p.t reduction algorithm \mathcal{B} that breaks the PRF security of F with probability $1/2 + \epsilon/2$.

Proof. [TODO: Describe p.p.t reduction algorithm. You can skip the success probability analysis.]

Claim 2.3. Suppose there exists a p.p.t adversary \mathcal{A} such that $p_{\text{hyb},1} - p_{\text{hyb},2} = \epsilon$. Then there exists a p.p.t reduction algorithm \mathcal{B} that breaks the PRF security of F with probability $1/2 + \epsilon/2$.

<i>Proof.</i> This proof is very similar to the proof of previous claim.	
Claim 2.4. Hybrid 2 is indistinguishable from world 1.	
<i>Proof.</i> [TODO: Fill in the proof of this claim.]	

3 Composing PRGs and PRFs

3.1

Theorem 3.1. Assuming F is a secure PRF and G is a secure PRG, F' is a secure PRF.

Proof. We will prove this theorem via a sequence of hybrid experiments, where world-0 (= hybrid-0) corresponds to the challenger choosing a PRF key, and world-1 (= final hybrid) corresponds to the challenger choosing a uniformly random function. Let t denote the total number of PRF queries made by the adversary A.

Description of hybrids: [TODO: Define the hybrid worlds you will use for the proof in the next question.]

Next, we show that the consecutive hybrids are computationally indistinguishable.

Analysis: Let $p_{\text{hvb},i}$ denote the probability of \mathcal{A} outputting 0 in Hybrid-i.

[**TODO**: Show that if $p_{\text{hyb},i}$ and $p_{\text{hyb},i+1}$ are far-apart, there exists a p.p.t. reduction algorithm that breaks the security of]

3.2

3.2.1 Construction of G'

[TODO: describe construction of \mathcal{G}' . Hint: what happens if \mathcal{G}' is not injective?]

Claim 3.2. Suppose there exists a p.p.t adversary \mathcal{A} that breaks the security of the PRG \mathcal{G}' then there exists a p.p.t adversary \mathcal{B} that breaks the PRG security of \mathcal{G} .

Proof. [TODO: Show a reduction, followed by an analysis of the reduction algorithm's success probability.]

Claim 3.3. F' is not a secure PRF.

Proof. [TODO: Show a p.p.t. adversary \mathcal{A} that breaks PRF security.]

4 CBC mode

Theorem 4.1. Assuming F is a secure PRP, and $|\mathcal{X}|$ is super-polynomial in the security parameter, the CBC mode of encryption satisfies No-Query-Semantic-Security.

Proof. As discussed in class (Lecture 11, Section 2), this proof goes through a sequence of hybrids.

World 0:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \ldots | | m_{b,\ell})$.
- Challenger chooses PRP key $k \leftarrow \mathcal{K}$. It computes $\mathsf{ct}_1 = F(m_{0,1}, k)$. For all i > 1, it computes $\mathsf{ct}_i = F(m_{0,i} \oplus \mathsf{ct}_{i-1}, k)$. Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 1:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \ldots | | m_{b,\ell})$.
- Challenger chooses $\underline{f} \leftarrow \mathsf{Perm}[\mathcal{X}]$. It computes $\underline{\mathsf{ct}_1 = f(m_{0,1})}$. For all i > 1, it computes $\underline{\mathsf{ct}_i = f(m_{0,i} \oplus \mathsf{ct}_{i-1})}$. Finally, it sends $(\mathsf{ct}_1, \dots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

Hybrid 2:

- Adversary \mathcal{A} sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$. Let $m_b = (m_{b,1} \mid | \dots | | m_{b,\ell})$.
- Challenger chooses $f \leftarrow \mathsf{Perm}[\mathcal{X}]$. It computes $\underline{\mathsf{ct}_1 = f(m_{1,1})}$. For all i > 1, it computes $\underline{\mathsf{ct}_i = f(m_{1,i} \oplus \mathsf{ct}_{i-1})}$. Finally, it sends $(\mathsf{ct}_1, \dots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- Adversary sends b'

World 1:

- 1. A sends two messages m_0, m_1 s.t $|m_0| = |m_1| = n \cdot \ell$.
- 2. Challenger chooses $PRF \text{ key } k \leftarrow \mathcal{K}$ and computes $\underline{\mathsf{ct}_1} = F(m_{1,1}, k)$. For all i > 1, it computes $\underline{\mathsf{ct}_i} = F(m_{1,i} \oplus \mathsf{ct}_{i-1}, k)$.
 - Finally, it sends $(\mathsf{ct}_1, \ldots, \mathsf{ct}_\ell)$ to \mathcal{A} .
- 3. Adversary sends b'.

Let $p_0, p_1, p_{\text{hyb},1}$ and $p_{\text{hyb},2}$ denote the probability of adversary \mathcal{A} outputting 0 in world-0, world-1, hybrid-1 and hybrid-2 respectively.

Claim 4.2. Assuming F is a secure PRP, $p_0 \approx p_{\text{hyb},1}$.

Proof. This follows from the PRP security — for a uniformly random PRP key, $F(\cdot, k)$ is indistinguishable from a uniformly random permutation.

Claim 4.3. For any adversary A, $p_{\text{hyb},1} - p_{\text{hyb},2} \leq \dots$

Proof. [TODO: Complete proof]	
Claim 4.4. Assuming F is a secure PRP, $p_{\text{hyb},2} \approx p_1$.	
<i>Proof.</i> This proof is similar to the proof of Claim 4.2.	
$Putting \ together \ the \ above \ claims, it follows \ that \ the \ CBC \ mode \ of \ encryption \ satisfies \ \textit{\textbf{No-Query-Semantic-Putting together} } \\$	Security. \Box