UMAP

- Stands for Uniform Manifold Approximation and Projection
- Uses the underlying concepts of algebraic topology and topological data analysis.

Steps for UMAP Algo:

- 1. Finalize the number of neighbors to consider for point $x_i \rightarrow$ hyperparameter
- 2. Create a weighted graph for x_i and its nearest neighbor
 - a. Where each neighbor edge is given weights inversely proportional to distance for \boldsymbol{x}_i

Goal: When we move from a higher dim to a lower dimension we want

- Graph(x_i) should be similar to Graph(x_i')
- Where x_i is a point in high dim
- And x_i' is the point in low dimensional space

Why similar graphs?

- Helps in preserving neighborhood information.

How do we optimize UMAP algo?

Using the following loss:

Terms:

- \sum represents summation for each edge e among the set of edges E in the $e \in E$ d-dimensional graph
- $w_h(e)$ is the weight of an edge in **high dimensional space** and w_le is the weight of an edge in **low dimensional space**

Goal: Reduce the loss

First half of the equation:
$$w_h(e) log(\frac{w_h(e)}{w_l(e)})$$

- If $w_h e$ is large, then make sure that $w_h e$ and $w_l e$ are very close to each other.
- The ratio of $w_h e$ and $w_l e$ has to be 1, which can happen if they are very close to each other.

$$(1 - w_h(e)) \log(\frac{1 - w_h(e)}{1 - w_l(e)})$$

- $\bullet \quad \text{If } w_{_h} e \text{ is small, then the term } 1 \ \ w_{_h} e \text{ will be large}$
 - o Makes 1st half insignificant but 2nd half significant
- even if $w_h e$ is small, we want $w_h e$ and $w_l e$ to be close to each other, which is represented by the ratio in the second half of the equation