Testbench

- 考试要求:
 - 1. 能画出测试结果的波形
 - 2. 写Testbench程序
- Testbench is a kind of VHDL Program
- · Procedures using testbench
 - o Design Under Test instantiation
 - Stimulus generation
 - Apply the stimulus on DUT and observe its response
 - · Compare the response with the expected result
- Non-synthesisable codes: cannot be translated to circuit, but are useful for testbench
 - ∘ Wait
 - While Loop
 - Infinite Loop
 - File input/output

Structure of Tenstbench

- 1. Lib calling
- 2. Package calling
- 3. Entity
 - o the entity of testbench is empty
- 4. Architecture
 - 1. Component(DUT) Instantiation: Use component statements
 - 2. Signal Declaration
 - 3. DUT Port Mapping
 - 4. Stimulus Generations: Use process statements

Process Without Sensitivity Lists

- A process without a sensitivity list will keep executing in a loop, but its execution can be controlled using wait statements
- The wait statement suspends a process for a given perios of time(limited or forever) after which the process wakes up with status where it left off

Stimulus Generation

Clock Signal

- Types:
 - symmetric(duty ratio = 50%)

o asymmetric

```
SIGNAL clk1,clk2: std_logic;
clk1_gen:PROCESS
    CONSTANT clk_period: TIME:= 40 ns;
BEGIN
    clk1 <= '1';
    WAIT FOR clk_period/2;
    clk1 <= '0';
    WAIT FOR clk_period/2;
END PROCESS;</pre>
```

Reset Signal

```
SIGNAL reset1, reset2: std_logic;
--reset1使用绝对时间·里面的时间表示绝对时刻
reset1 <= '0','1' AFTER 60 ns,'0' AFTER 100 ns;
reset2_gen:PROCESS
--reset2使用相对时间·里面的时间表示每一段时间的长度
BEGIN
reset2 <= '0';
WAIT FOR 20 ns;
reset2 <= '1';
WAIT FOR 40 ns;
reset2 <= '0';
WAIT FOR 40 ns;
reset2 <= '0';
WAIT:
END PROCESS;
```

Complex Periodic Signal

• Same as the reset signal

Correlated Signals

• Use attributes delay

```
--period2相比period1有10ns的延时
SIGNAL period1,period2: std_logic;
...
period1 <= '0','1' AFTER 60 ns,'0' AFTER 100 ns;
period2 <= period1'delayed(10ns);
```

General Stimulus

- Use wait and process
- Aims to cover all possibilites of inputs
- Make use of for loop

Typical Errors

 Assignments to the same signal in different processes are not recommended. It may introduce assignment conflicts, and cause uncertain states. 			