COMP 3721 Introduction to Data Communications

02. Week 2

Learning Outcomes

- By the end of this lecture, you will be able to:
 - Explain what are data and signal as well as their types.
 - Explain the characteristics of periodic analog signals.
 - Explain the characteristics of digital signals.

Introduction

- What are really exchanged between Alice and Bob?
- What goes through the network connecting Alice to Bob at the physical layer?

Introduction

- What are really exchanged between Alice and Bob?
 - Data (information)
- What goes through the network connecting Alice to Bob at the physical layer?
 - Signals (e.g., electrical signals)

Introduction

- Physical layer
 - Moving data in the form of electromagnetic signals across a transmission medium.
- Data must be changed to signals for transmission.
- Communication at application, transport, network, and data-link is logical.
- Communication at the physical layer is physical.

Analog and Digital Data

Analog data

- Information that is continuous (takes on continuous values)
- Real-life example: sound (when someone speaks, an analog wave is created in the air)

Digital data

- Information that has discrete states (takes on discrete values)
- Real-life example: data are stored in computer memory in the form of 1s and 0s

VS.

Analog and Digital Signals

- Analog signal
 - Has many levels of intensity over a period of time.
- Digital signal
 - Has a limited number of defined values (often 0 and 1).

Periodic and Nonperiodic Signals

- Both analog and digital signals can take one of two forms:
 - Periodic
 - Cycle: the completion of one full pattern
 - Period (*T*): the amount of time, in seconds, a signal needs to complete one full pattern (i.e., one cycle)
 - A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals.
 - Nonperiodic (Aperiodic)

Periodic and Nonperiodic Signals

- Both analog and digital signals can take one of two forms:
 - Periodic
 - Cycle: the completion of one full pattern
 - Period (T): the amount of time, in seconds, a signal needs to complete one full pattern (i.e., one cycle)
 - A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals.
 - Nonperiodic (Aperiodic)

In data communications, we commonly use periodic analog signals and nonperiodic digital signals.

Periodic Analog Signals

Simple

• Cannot be decomposed into simpler signals.

Composite

• Is composed of multiple sine waves.

Sine Wave – Real-life Applications

The sine wave is carrying energy.

Power Distribution

The sine wave is a signal of danger.

Burglar Alarm

Sine Wave

- The sine wave is the most fundamental form of a periodic analog signal.
- Three parameters that represent the sine wave:
 - 1. Peak amplitude (A): value of its highest intensity
 - **2.** Frequency (*f*): # of completed cycles (periods) in 1s.
 - **3.** Phase or phase shift (φ) : position of the waveform relative to time 0.
 - Phase is measured in degrees or radians (360° is 2π rad).

- The electrical voltage in our homes in the Canada is periodic with a peak value about $120\sqrt{2} \cong 170 \text{ V}$. Its frequency is 60 Hz.
- The voltage of a battery is constant (for example, 1.5 V).
 - Periodic with a frequency of 0.

Sine Wave – Peak Amplitude

1. Peak amplitude

• The absolute value of the signal's highest intensity, proportional to the

energy it carries.

• Measured in volts.

a. A signal with high peak amplitude

b. A signal with low peak amplitude

Sine Wave – Frequency

2. Frequency (f)

- The number of cycles in 1 second (the rate at which the signal repeats).
- Measured in Hertz (Hz) = cycles per second

Value

Sine Wave – Frequency (Cont.)

Sine Wave – Frequency (Cont.)

Two signals with the same amplitude and phase, but different frequencies

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Sine Wave - Frequency vs. Period

 Period and Frequency are just one characteristic described in two ways. Period is the inverse of frequency, and frequency is the inverse of period:

$$f = \frac{1}{T}$$

$$T = \frac{1}{f}$$

More about Frequency

- Frequency is the rate of change with respect to time.
 - Change in a short span of time means high frequency.
 - Change over a long span of time means low frequency.
 - If a signal does not change at all, its frequency is zero.
 - If a signal changes **instantaneously**, its frequency is **infinite** (T = 0 s).

Units of Period and Frequency

Period		Frequency	
Unit	Equivalent	Unit	Equivalent
Second (s)	1 s	Hertz (Hz)	1 Hz
Millisecond (ms)	10 ⁻³ s	Kilohertz (kHz)	10 ³ Hz
Microsecond (μs)	10 ⁻⁶ s	Megahertz (MHz)	10 ⁶ Hz
Nanosecond (ns)	10 ⁻⁹ s	Gigahertz (GHz)	10 ⁹ Hz
Picosecond (ps)	10 ⁻¹² s	Terahertz (THz)	10 ¹² Hz

• The power we use at home has a frequency of 60 Hz. Find the period of this sine wave in milliseconds (ms)?

• The power we use at home has a frequency of 60 Hz. Find the period of this sine wave in milliseconds (ms)?

Answer:

$$T = \frac{1}{f} = \frac{1}{60 \, Hz} = 0.0167 \, \text{s} = 16.7 \, \text{ms}$$

• What is the frequency (in kHz) of a sine wave if the period is 200 μs?

What is the frequency (in kHz) of a sine wave if the period is 200 μs?

Answer:

$$f = \frac{1}{T} = \frac{1}{200 \times 10 - 6 \text{s}} = 5000 \text{ Hz} = 5 \text{ kHz}$$

Sine Wave – Frequency

3. Phase or Phase shift (ϕ)

- The position of the waveform relative to time 0 (indicates the status of the first cycle).
- Measured in degrees or radians.

Value

Sine Wave – Mathematical Representation

We can mathematically describe a sine wave as follows.

$$s(t) = A\sin(2\pi f t) = A\sin\left(\frac{2\pi}{T}t\right)$$

Sine Wave - Mathematical Representation

We can mathematically describe a sine wave as follows.

Mathematical Representation – Example

• Find the peak amplitude, frequency, and period of the following sine waves.

a.
$$s(t) = 5\sin(20\pi t)$$

b.
$$s(t) = \sin(10t)$$

Mathematical Representation – Example

 Find the peak amplitude, frequency, and period of the following sine waves.

```
a. s(t) = 5\sin(20\pi t)
b. s(t) = \sin(10t)
```

• Answers:

- a. Peak amplitude: A = 5 VFrequency: $2\pi f = 20\pi \rightarrow f = 10 \text{ Hz}$ Period: T = 1/f = 1/10 = 0.1 s
- b. Peak amplitude: A = 1 VFrequency: $2\pi f = 10 \rightarrow f = 10/(2\pi) = 1.59 \text{ Hz}$ Period: T = 1/f = 1/1.59 = 0.628 s

Shifting

• By replacing $2\pi f$ with ω in the sine wave mathematical representation, we have $s(t) = A\sin(\omega t)$. In this equation, the phase (i.e., phase shift) is zero. If we add or subtract a non-zero number ϕ to/from ωt , then our phase will be non-zero.

Horizontal Shifting (Phase Shift)

More about Phase

- $360^{\circ} = 2\pi \text{ rad}$
- 1° = $(2\pi/360)$ rad
- 1 rad = $(360/(2\pi))^{\circ}$
- A shift of a complete cycle is a phase shift of 360°.

 Three sine waves with the same amplitude and frequency, but different phases.

a. 0 degrees

b. 90 degrees

c. 180 degrees

• A sine wave is offset 1/9 cycle with respect to time 0. What is its phase in degrees and radians?

• A sine wave is offset 1/9 cycle with respect to time 0. What is its phase in degrees and radians?

Answer:

$$\phi = \frac{1}{9} \times 360^{\circ} = 40^{\circ}$$
= $40^{\circ} \times \frac{2\pi}{360^{\circ}} \text{rad} = \frac{2\pi}{9} \text{rad} = 0.698 \text{ rad}$

Wavelength

- Wavelength (λ)
 - The distance a simple signal can travel in one period.
 - (Distance that is travelled by a signal in 1 cycle.)
 - Usually used to describe the transmission of light in an optical fiber.
 - Usually measured in micrometres (μm).

Propagation Speed of a Signal

- Wavelength binds the period or the frequency of a simple sine wave to the **propagation speed** of the medium.
 - The propagation speed of electromagnetic signals depends on the medium and on the frequency of the signal.
 - For example, in a vacuum, light is propagated with a speed of 3×10^8 m/s. That speed is lower in air and even lower in cable.

Wavelength (Cont.)

- Frequency vs wavelength
 - Frequency of a signal is independent of the transmission medium.
 - (so, what it really depends on?)
 - Wavelength relies on both frequency and transmission medium.

$$\lambda = \frac{c}{f} = c \times T$$

c is propagation speed. $c = 3 \times 10^8$ m/s (light)

Wavelength – Example

• What is the wavelength of red light if its frequency is 4×10^{14} Hz? Assume the propagation speed is 3×10^8 m/s.

Wavelength – Example

• What is the wavelength of red light if its frequency is 4×10^{14} Hz? Assume the propagation speed is 3×10^8 m/s.

Answer:

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{4 \times 10^{14}} = 0.75 \times 10^{-6} = 0.75 \text{ }\mu\text{m}$$

Time and Frequency Domains

- Time-domain plot
 - Changes in signal amplitude with respect to (w.r.t.) time.
 - Phase is not explicitly shown.

Time and Frequency Domains (Cont.)

- Frequency-domain plot
 - Relationship between amplitude (peak value) and frequency.
 - Advantage: one can immediately see the values of the frequency and peak amplitude (a sine wave is represented by one spike).
 - More compact and helpful when dealing with more than one sine wave.

b. The same sine wave in the frequency domain (peak value: 5 V, frequency: 6 Hz)

Time and Frequency Domains (Cont.)

- Frequency-domain plot
 - Relationship between amplitude (peak value) and frequency.
 - Advantage: one can immediately see the values of the frequency and peak amplitude (a sine wave is represented by one spike).
 - More compact and helpful when dealing with more than one sine wave.

b. The same sine wave in the frequency domain (peak value: 5 V, frequency: 6 Hz)

A complete sine wave in the time domain can be represented by one single spike in the frequency domain.

The time domain and frequency domain of three sine waves

a. Time-domain representation of three sine waves with frequencies 0, 8, and 16

b. Frequency-domain representation of the same three signals

Composite Signals

- Simple sine waves have many applications in daily life, such as sending energy from one place to another (power distribution).
- However, if we had only one single sine wave to convey a conversation over the phone, it would make no sense and carry no information. We would just hear a buzz. (Why?):
 - Imagine a **pure sine wave** at a single frequency for example, a 1 kHz tone. If you hear that on a speaker, it's just a **steady beep**!
 - It carries **no variation**, no pattern that represents actual speech or data.
- Thus:
 - We need to send a composite signal to communicate data.

Composite Signals

Composite signal

- A single-frequency sine wave is not useful in data communications!
- A signal made of many simple sine waves.

Jean-Baptiste Fourier

Fourier analysis

- Any composite signal is a combination of simple sine waves with different frequencies, peak amplitudes, and phases.
- Fourier analysis is a tool that changes a time domain signal to a frequency domain signal and vice versa.

Fourier Series

- Every composite periodic signal can be represented with a series of sine and cosine functions.
- The functions are **integral harmonics** of the fundamental frequency "f" of the composite signal.
- Using the series we can **decompose** any periodic signal into its **harmonics**.

 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for repro

Fourier series

$$s(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} B_n \cos(2\pi n f t)$$

$$A_0 = \frac{1}{T} \int_0^T s(t) dt \qquad A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f t) dt$$

$$B_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f t) dt$$

Coefficients

A Composite Periodic Signal

- Composite periodic signal
 - The decomposition gives a series of simple sine waves with discrete frequencies (frequencies with integer values). See next slide.

Decomposition of a Composite Periodic Signal

a. Time-domain decomposition of a composite signal

Decomposition of a Composite Periodic Signal

a. Time-domain decomposition of a composite signal

Examples of Signals and the Fourier Series Representation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$A_0 = 0$$
 $A_n = \begin{bmatrix} \frac{4A}{n\pi} & \text{for } n = 1, 5, 9, \dots \\ -\frac{4A}{n\pi} & \text{for } n = 3, 7, 11, \dots \end{bmatrix}$ $B_n = 0$

$$s(t) = \frac{4A}{\pi} \cos{(2\pi f t)} - \frac{4A}{3\pi} \cos{(2\pi 3 f t)} + \frac{4A}{5\pi} \cos{(2\pi 5 f t)} - \frac{4A}{7\pi} \cos{(2\pi 7 f t)} + \bullet \bullet \bullet$$

Frequency domain

Sawtooth Signal

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$A_0 = 0$$
 $A_n = 0$ $B_n = \begin{bmatrix} \frac{2A}{n\pi} & \text{for } n \text{ odd} \\ -\frac{2A}{n\pi} & \text{for } n \text{ even} \end{bmatrix}$

$$s(t) = \frac{2A}{\pi} \sin{(2\pi f t)} - \frac{2A}{2\pi} \sin{(2\pi 2 f t)} + \frac{2A}{3\pi} \sin{(2\pi 3 f t)} - \frac{2A}{4\pi} \sin{(2\pi 4 f t)} + \bullet \bullet \bullet$$

Frequency domain

Fourier Transform

• Fourier Transform gives the frequency domain of a nonperiodic time domain signal.

Inverse Fourier Transform

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft} dt$$

Fourier transform

$$s(t) = \int_{-\infty}^{\infty} (f)e^{j2\pi ft} dt$$

Inverse Fourier transform

A Composite Nonperiodic Signal

- Composite nonperiodic signal
 - The decomposition gives a combination of an **infinite number** of simple sine waves with continuous frequencies (frequencies with real values).
 - Real-life examples:
 - Human voice (continuous range of frequencies between 0 and 4 kHz).
 - The signal propagated by an AM or FM radio station.

Bandwidth of a Composite Signal

• Bandwidth (*B*): the difference between the highest and the lowest frequencies contained in a composite signal.

$$B = f_h - f_l$$

Bandwidth of a Composite Signal

• Bandwidth (*B*): the difference between the highest and the lowest frequencies contained in a composite signal.

$$B = f_h - f_l$$

The bandwidth of periodic and nonperiodic composite signals

a. Bandwidth of a periodic signal

b. Bandwidth of a nonperiodic signal

Digital Signals

- Most digital signals are nonperiodic.
 - Frequency and period are not suitable characteristics.
- Bit rate is used to describe digital signals.
 - Defined as the number of bits sent per second, expressed in bits per second (bps).
- Bit length (a similar concept to wavelength)
 - Defined as the distance one bit occupies on the transmission medium.
- Bit duration: 1/(bit rate)
 - E.g., 1/1 Mbps = $1 \mu s$

Bit length = propagation speed × bit duration

Example

• What is the bit length of a signal that has a bit rate of 1 Mbps and is travelling at 2×10^8 m/s on a transmission medium.

Bit length = propagation speed × bit duration

Example

• What is the bit length of a signal that has a bit rate of 1 Mbps and is travelling at 2×10^8 m/s on a transmission medium.

Answer:

- Bit duration = $1/(1 \text{ Mbps}) = 1 \mu \text{s}$
- Bit length = $(2 \times 10^8 \text{ m/s}) \times 1 \,\mu\text{s} = 200 \,\text{m}$
- This means a bit occupies 200 meters on this transmission medium.

Bit length = propagation speed × bit duration

Digital Signals – Level

- "Level" refers to a specific **state** or **value** that a digital signal can have at a given point in time.
- Digital signals are characterized by having discrete levels or states, each of which represents a distinct value or symbol. These levels are typically associated with voltage or current levels in electronic circuits.
 - In binary digital systems, there are usually two signal levels: a "low" level (often represented as 0) and a "high" level (often represented as 1).
 - In more advanced digital systems, you can have even more signal levels, such as octal (eight levels) or hexadecimal (sixteen levels).

A Digital Signal with Two Levels

A Digital Signal with Four Levels

b. A digital signal with four levels

A Digital Signal with Four Levels

b. A digital signal with four levels

To encode 4 levels, $log_2 4 = 2$ bits are required.

Digital Signals – Example (Signal Levels)

• A digital signal has 11 levels. How many bits are needed?

Digital Signals – Example (Signal Levels)

• A digital signal has 11 levels. How many bits are needed?

Answer:

- $\log_2 11 = 3.46$ bits
- However, this answer is not realistic.
- The number of bits needed has to be an integer and usually as a power of 2. For this example, 4 bits should be used in this case.

Digital Signals

- For a signal with L levels, number of bits needed = $\lceil log_2 L \rceil$
- Ceiling function ([x]): rounds the number up to the nearest integer greater than or equal to the original value.
 - E.g., ceiling of π : $[\pi] = [3.1416] = 4$
- Floor function ($\lfloor x \rfloor$): rounds the number down to the nearest integer less than or equal to the original value.
 - E.g., floor of π : $[\pi] = [3.1416] = 3$

Digital Signals – Example (Bit Rate)

Assume we need to download text documents at the rate of 100 pages per second. What is the required bit rate of the channel? A page is an average of 24 lines with 80 characters in each line. If we assume that one character requires 8 bits, the bit rate is:

Answer:

$$100 \times 24 \times 80 \times 8 = 1536000 \text{ bps} = 1.536 \text{ Mbps}$$

Digital Signal as a Composite Analog Signal

- A periodic or nonperiodic digital signal is a composite analog signal with frequencies between zero and infinity (infinite bandwidth).
- Fourier analysis can be used to decompose a digital signal.

Example

Periodic Digital Signal as a Composite Analog Signal

- Periodic digital signal (rare in data communications)
 - In frequency domain representation of this signal:
 - Infinite bandwidth and discrete frequencies

a. Time and frequency domains of periodic digital signal

Nonperiodic Digital Signal as a Composite Analog Signal

- Nonperiodic digital signal
 - In frequency domain representation of this signal:
 - Infinite bandwidth and continuous frequencies

b. Time and frequency domains of nonperiodic digital signal

Summary

- Transformation of data to electric signals for transmission.
- Types of data and signals as well as their characteristics.
- Analog signals and their characteristics.
- Digital signals and their characteristics.

References

[1] Behrouz A.Forouzan, Data Communications & Networking with TCP/IP Protocol Suite, 6th Ed, 2022, McGraw-Hill companies.

Reading

- Chapter 2 of the textbook, section 2.1
- Chapter 2 of the textbook, section 2.8 (Practice Test)