Лекция 11. Признаки сходимости рядов с неотрицательными членами

Пусть дан ряд $\sum_{n=1}^{\infty} u_n$. Если $\forall n \in \mathbb{N}$ $u_n \geq 0$ $(u_n > 0)$, то ряд называется рядом c неотрицательными членами (c положительными членами).

Теорема (признак сравнения). *Пусть даны два ряда с неотрицательными* членами

$$\sum_{n=1}^{\infty} u_n \qquad \qquad \sum_{n=1}^{\infty} v_n$$

и пусть выполняются неравенства $u_n \le v_n$ для всех $n \in \mathbb{N}$, тогда из сходимости ряда

$$\sum_{n=1}^{\infty} v_n$$
 следует сходимость ряда $\sum_{n=1}^{\infty} u_n$, а из расходимости ряда $\sum_{n=1}^{\infty} u_n$ следует

pасходимость ряда $\sum_{n=1}^{\infty} v_n$.

Доказательство. а) Обозначим через S_n и σ_n соответственно частичные суммы рядов $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$. Из неравенства $u_n \leq v_n$ следует, что $S_n \leq \sigma_n$. Так как ряд $\sum_{n=1}^{\infty} v_n$ сходится, то $\exists \lim_{n \to \infty} \sigma_n = \sigma$. Из того, что члены рядов неотрицательны, следует, что $\sigma_n \leq \sigma$, и тогда в силу неравенства $S_n \leq \sigma_n$ получается $S_n \leq \sigma$. Мы доказали, что последовательность частичных сумм $\{S_n\}$ ограничена. Заметим также, что $\{S_n\}$ — неубывающая последовательность, так как $S_n - S_{n-1} = u_n \geq 0$. Таким образом, из того, что последовательность частичных сумм не убывает и ограничена, следует, что она имеет предел $\lim_{n \to \infty} S_n = S$, причем $S \leq \sigma$.

б) Из условия $u_n \le v_n$ следует, что $S_n \le \sigma_n$. Так как члены ряда $\sum_{n=1}^{\infty} u_n$ неотрицательны, то его частичная сумма S_n не убывает при возрастании n, а так как он расходится, то $\lim_{n\to\infty} S_n = \infty$. Но тогда в силу неравенства $S_n \le \sigma_n \lim_{n\to\infty} \sigma_n = \infty$, т.е. ряд $\sum_{n=1}^{\infty} v_n$ расходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$.

◀ Заметим, что для любого $n \in \mathbb{N}$ выполняется неравенство $u_n = \frac{1}{n \cdot 3^n} \le \frac{1}{3^n} = v_n$.

Ряд $\sum_{n=1}^{\infty} \frac{1}{3^n}$ сходится, так как его члены образуют геометрическую прогрессию со

знаменателем $q = \frac{1}{3}$. Следовательно, ряд $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$ сходится по признаку сравнения.

Теорема (предельный признак сравнения). Пусть даны два ряда с

положительными членами $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$, и существует $n\to\infty$ v_n , 0< k< 1

 $+\infty$. Тогда ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ сходятся или расходятся одновременно.

Теорема (признак Даламбера). *Пусть дан ряд* $\sum_{n=1}^{\infty} u_n$ с положительными

членами и существует предел $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$. Тогда:

 $npu\ l < 1\ pяд\ cxoдится,$

 $npu\ l > 1$ ряд расходится,

 $npu\ l=1$ требуется дополнительное исследование.

Доказательство. а) Пусть l < 1. Докажем, что ряд сходится. По определению предела числовой последовательности для любого $\varepsilon > 0$ существует номер N такой, что для всех $n \ge N$ выполняется неравенство $\left| \frac{u_{n+1}}{u_n} - l \right| < \varepsilon$. Это неравенство может быть записано в виде

$$l - \varepsilon < \frac{u_{n+1}}{u_n} < l + \varepsilon \tag{7}$$

Так как l < 1, то ϵ можно взять настолько малым, что будет выполнено неравенство $l + \epsilon < 1$. Обозначая $l + \epsilon = q$ из правой части неравенства (7) имеем $\frac{u_{n+1}}{u_n} < q$, или $u_{n+1} < q$

 qu_n для всех n = N, N+1, N+2, ... Придавая n эти значения, из последнего неравенства получаем

$$u_{N+1} < qu_N,$$

 $u_{N+2} < qu_{N+1} < q^2 u_N,$
 $u_{N+3} < qu_{N+2} < q^3 u_N,$
.....

т.е. члены ряда

$$u_{N+1} + u_{N+2} + u_{N+3} + \dots$$
(8)

меньше соответствующих членов ряда, составленного из элементов геометрической прогрессии:

$$qu_N + q^2 u_N + q^3 u_N + \dots (9)$$

Так как q < 1, то ряд (9) сходится . Тогда согласно признаку сравнения ряд (8) тоже сходится. Но ряд (8) получен из данного ряда $\sum_{n=1}^{\infty} u_n$ в результате отбрасывания конечного числа первых членов, т.е. ряд (8) — остаток данного ряда, следовательно, ряд $\sum_{n=1}^{\infty} u_n$ сходится по свойству 1 сходящихся рядов.

б) Пусть теперь l>1. Докажем, что ряд $\sum_{n=1}^{\infty}u_n$ расходится. Возьмем є настолько малым, чтобы $l-\varepsilon>1$. Тогда при $n\geq N$ в силу левого неравенства (7) выполняется

неравенство $\frac{u_{n+1}}{u_n} > 1$ или $u_{n+1} > u_n > 0$. Таким образом, члены ряда, начиная с некоторого номера N, возрастают с увеличением их номеров, т.е. общий член ряда u_n не стремится к нулю при $n \to \infty$. Следовательно, по необходимому признаку сходимости ряд $\sum_{n=0}^{\infty} u_n$ расходится.

Заметим, что при l=1 ряд может оказаться как сходящимся, так и расходящимся.

Например, для рядов $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n^2}$ l=1, т.к. и для первого ряда $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{n+1}{n} = 1$, и для

второго ряда $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{(n+1)^2}{n^2}=1$. Тем не менее, ряд $\sum_{n=1}^{\infty}\frac{1}{n}$ расходится, а ряд $\sum_{n=1}^{\infty}\frac{1}{n^2}$ сходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^{-}}{2^n}$.

✓ Имеем $u_n = \frac{n^4}{2^n}$, u_{n+1} получим, заменив n на n+1: $u_{n+1} = \frac{(n+1)^4}{2^{n+1}}$. Тогда $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)^4 2^n}{2^{n+1} n^4} = \lim_{n\to\infty} \frac{1}{2} \left(1 + \frac{1}{n}\right)^4 = \frac{1}{2} < 1$. Таким образом, ряд $\sum_{n=1}^{\infty} \frac{n^4}{2^n}$ сходится по признаку Даламбера. ▶

Теорема (признак Коши). *Пусть дан ряд* $\sum_{n=1}^{\infty} u_n$ *с неотрицательными членами и существует предел* $\lim_{n\to\infty} \sqrt[n]{u_n} = l$. *Тогда*

 $npu\ l < 1\ pяд\ cxoдится,$

 $npu\ l > 1\ pяд\ pасходится,$

 $npu\ l=1$ требуется дополнительное исследование.

Доказательство. По определению предела числовой последовательности для любого $\varepsilon > 0$ существует номер N такой, что для всех $n \ge N$ выполняется неравенство $\left|\sqrt[n]{u_n} - l\right| < \varepsilon$. Это неравенство может быть записано в виде

$$l - \varepsilon < \sqrt[n]{u_n} < l + \varepsilon \tag{10}$$

а) Пусть l < 1. Возьмем $0 < \varepsilon < 1 - l$ и обозначим $l + \varepsilon = q, q < 1$. Согласно (10) $\sqrt[n]{u_n} < q$ и $u_n < q^n$ для всех $n \ge N$. Рассмотрим теперь два ряда

$$u_1 + u_2 + u_3 + \ldots + u_N + u_{N+1} + u_{N+2} + \ldots$$
 (11)

$$q^{N} + q^{N+1} + q^{N+2} + \dots {12}$$

Ряд (12) сходится, так как его члены образуют убывающую геометрическую прогрессию. Члены ряда (11), начиная с u_N , меньше членов ряда (12). Следовательно, ряд (11) сходится по признаку сравнения.

б) Пусть теперь l > 1. Возьмем ε такое, что $0 < \varepsilon < l - 1$, следовательно, $l - \varepsilon > 1$. Тогда согласно (10) для любого $n \ge N$ в силу левого из неравенств $\sqrt[n]{u_n} > 1$ и $u_n > 1$. Таким образом, члены ряда $\sum_{n=1}^{\infty} u_n$ не стремятся к нулю при $n \to \infty$, поэтому ряд расходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{3n-2}{2n+1} \right)^n$.

Ч Имеем $u_n = \left(\frac{3n-2}{2n+1}\right)^n$, поэтому

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{3n-2}{2n+1}\right)^n} = \lim_{n \to \infty} \frac{3n-2}{2n+1} = \frac{3}{2} > 1.$$

Следовательно, по признаку Коши ряд расходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}$.

✓ Имеем $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{3^n}} \left(1 + \frac{1}{n}\right)^{n^2} = \lim_{n\to\infty} \frac{1}{3} \left(1 + \frac{1}{n}\right)^n = \frac{1}{3}e < 1$, т.е. по признаку Коши ряд сходится. ▶

Теорема (интегральный признак Коши). *Если функция* f(x), *определенная при* $bcex x \ge 1$ неотрицательна, непрерывна и убывает на промежутке $[1, +\infty)$, то ряд

$$\sum_{n=1}^{\infty} f(n)$$
 и несобственный интеграл $\int_{1}^{+\infty} f(x)dx$ сходятся или расходятся одновременно.

Доказательство. Рассмотрим криволинейную трапецию, ограниченную сверху графиком функции y = f(x), с боковых сторон прямыми x = 1 и x = n, снизу осью OX, как изображено на рисунке.

Впишем в эту трапецию и опишем около нее две ступенчатые фигуры,

состоящие из прямоугольников с

основаниями [1,2], [2,3],...,[n-1, n] и высотами f(1), f(2), f(3),..., f(n-1), f(n). Тогда, учитывая геометрический смысл определенного интеграла, имеем:

$$f(2) + f(3) + ... + f(n) < \int_{1}^{n} f(x)dx < f(1) + f(2) + ... + f(n-1),$$

$$S_n - f(1) < \int_{1}^{n} f(x) dx < S_n - f(n)$$
.

Отсюда получаем:

$$S_n < f(1) + \int_1^n f(x) dx \tag{13}$$

$$S_n > f(n) + \int_{1}^{n} f(x)dx \tag{14}$$

где S_n — частичные суммы рассматриваемого ряда.

Пусть интеграл $\int_{1}^{n} f(x)dx$ сходится. Это значит, что существует $\lim_{n\to\infty} \int_{1}^{n} f(x)dx = I$. Так как f(x) > 0, то последовательность $\int_{1}^{n} f(x)dx$ возрастает с увеличением n и ограничена сверху своим пределом: $\int_{1}^{n} f(x)dx < I$. Из неравенства (13) следует, что $S_n < f(1) + I$, т.е. последовательность частичных сумм $\{S_n\}$ ряда $\sum_{n=1}^{\infty} f(n)$ ограничена. Так как ряд $\sum_{n=1}^{\infty} f(n)$ с положительными членами, то его частичные суммы образуют

возрастающую последовательность. Всякая монотонная ограниченная последовательность сходится, следовательно, последовательность $\{S_n\}$ сходится, а значит, сходится ряд $\sum_{n=1}^{\infty} f(n)$.

Пусть теперь $\int_{1}^{n} f(x)dx$ расходится. В этом случае $\int_{1}^{n} f(x)dx \to +\infty$ при $n \to \infty$ (как монотонно возрастающая неограниченная последовательность). Из неравенства (14) следует, что $S_n \to +\infty$ при $n \to \infty$, т.е. последовательность частичных сумм $\{S_n\}$ ряда $\sum_{n=0}^{\infty} f(n)$ расходится и, следовательно, ряд расходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$.

 $f(x) = \frac{1}{(x+1)\ln(x+1)}$ удовлетворяет условиям интегрального признака Коши: она положительна, непрерывна и убывает на промежутке $[1; +\infty)$. Находим

$$\int_{1}^{+\infty} \frac{dx}{(x+1)\ln(x+1)} = \lim_{b \to +\infty} \int_{1}^{b} \frac{d\ln(x+1)}{\ln(x+1)} = \lim_{b \to +\infty} \ln\ln(x+1) \Big|_{1}^{b} = \lim_{b \to +\infty} (\ln\ln(b+1) - \ln\ln 2) = +\infty$$

Так как исследуемый несобственный интеграл расходится, то и исследуемый ряд расходится.

Сходимость рядя Дирихле

Pяд Дирихле (обобщенный гармонический ряд) $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$ сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Доказательство. Если $\alpha \le 0$, то $\lim_{n\to\infty} \frac{1}{n^{\alpha}} = \lim_{n\to\infty} n^{-\alpha} \ne 0$, т.е. не выполнен необходимый признак сходимости ряда, и ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ расходится. Так как при $\alpha > 0$ функция $f(x) = \frac{1}{x^{\alpha}}$ в промежутке $[1;+\infty)$ удовлетворяет условиям интегрального признака Коши, то исследование ряда Дирихле сводится к исследованию сходимости интеграла $\int_{1}^{\infty} \frac{dx}{x^{\alpha}}$ при различных значениях α .

1) При $0 < \alpha < 1$ $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{b} = \frac{1}{1-\alpha} \lim_{b \to +\infty} (b^{1-\alpha}-1) = \infty$. Следовательно, согласно интегральному признаку Коши ряд расходится.

2) При $\alpha = 1$ $\int_{1}^{+\infty} \frac{dx}{x} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x} = \lim_{b \to +\infty} \ln|x||_{1}^{b} = \lim_{b \to +\infty} (\ln|b| - \ln 1) = \infty$. Значит, как и в предыдущем случае, ряд расходится.

3) При $\alpha > 1$ $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{b} = \frac{1}{1-\alpha} \lim_{b \to +\infty} \left(b^{1-\alpha} - 1\right) = \frac{1}{\alpha - 1}.$ Следовательно, согласно интегральному признаку Коши ряд сходится.