MAT-CSC A67: Discrete Mathematics — Summer 2024

Quiz 3

Due Date: Friday, May 31, 11:59 PM, on Crowdmark

Q1. Consider the following predicate.

F(a,b): "a is a factor of b", a's domain: non-zero integers (i.e., $\mathbb{Z}^{\neq 0}$), b's domain: integers (i.e., \mathbb{Z}). Consider the following proof.

Assume e to be an arbitrary integer. By definition of disjunction, $(e=0) \vee \neg (e=0)$ is true. Thus, we proceed by cases.

- Case 1: assume e=0. Consider the witness x=1, a nonzero integer, and then we need to show that F(1,0). By the definition of the predicate F, we can rewrite this goal as $\exists c(0=c\cdot 1)$. We pick the witness c=0, which is an integer and therefore in the domain. Calculating, $c\cdot 1=0\cdot 1=0$, as required. Since the predicate F(1,0) evaluates to true, the witness x=1 proves the existential claim and the subgoal has been proved.
- Case 2: assume $\neg(e=0)$. Consider the witness x=e, a nonzero integer, and then we need to show that F(e,e). By the definition of the predicate F, we can rewrite this goal as $\exists c(e=c\cdot e)$. We pick the witness c=1, which is an integer and therefore in the domain. Calculating, $c\cdot e=1\cdot e=e$, as required. Since the predicate F(e,e) evaluates to true, the witness x=e proves the existential claim and the subgoal has been proved.

The proof by cases is now complete for the arbitrary element e as desired. \square

From the statements below, choose the one that is proved by the proof above.

- 1. $\forall x F(1,x)$
- 2. $\forall x F(x,1)$
- 3. $\forall y \forall x F(x,y)$
- 4. $\forall y \exists x F(x,y)$
- 5. $\forall x \exists y F(x,y)$
- **Q2.** Prove that for any integer n and prime number p, if $p \mid n$, then $p \nmid (n+1)$. Before you start, you may find the following definitions and lemma helpful.
 - **Definition 1:** Let $n, d \in \mathbb{Z}$. Then n is divisible by d if n = dk for some $k \in \mathbb{Z}$. We use the notation $d \mid n$, read as d divides n, to denote that n is divisible by d.
 - **Definition 2:** The integer p > 1 is a prime if it is only divisible by p, -p, 1, and -1.
 - Definition 3: We use the notation d ∤ n, read as d does not divide n, to denote that n is not divisible by
 d.

Now you are ready to prove the following proposition.

For any integer n and prime number p, if $p \mid n$, then $p \nmid (n+1)$.