# 多元统计第四次作业

### 蒋文馨

#### 2020年6月13日

## 目录

| 1 | Perpendicular Distance {1}          | 1 |
|---|-------------------------------------|---|
| 2 | Concave Function {11}               | 3 |
| 3 | Nonlinear-SVM to WDBC Data Set {12} | 3 |
|   |                                     |   |

## 1 Perpendicular Distance {1}

(a) Show that the perpendicular distance of the point (h, k) to the line f(x, y) = ax + by + c = 0 is  $|ah + bk + c|/\sqrt{a^2 + b^2}$ .

证明: 记 d 为点 (h,k) 到直线 f 的距离. 显然 a,b 不能同时为 0, 且当  $a=0,b\neq 0$  和  $a\neq 0,b=0$  或者 (h,k) 在直线 f 上时, 都有  $d=|ah+bk+c|/\sqrt{a^2+b^2}$ .

当  $a \neq 0, b \neq 0$  且 (h,k) 不在直线 f 上时,记 (p,q) 为 f 过点 (h,k) 的垂线的垂足,故  $d = \|(h,k) - (p,q)\|$ . 记 f 的斜率为  $k = -\frac{a}{b}$ ,则有

$$k' = \frac{k-q}{h-p} = -\frac{1}{k} = \frac{b}{a} \tag{1}$$

$$ap + bq + c = 0 (2)$$

$$d^{2} = (h - p)^{2} + (k - q)^{2}$$
(3)

将 h-p 和 k-q 视为一个整体可以方便计算, 因此将2重写为

$$a(h-p) + b(k-q) = ah + bk + c \tag{4}$$

由1可得

$$k - q = \frac{b}{a}(h - p) \tag{5}$$

把5代入4和3,得

$$h - p = \frac{ah + bk + c}{a + b^2/a} \tag{6}$$

$$d^2 = (1 + \frac{b^2}{a^2})(h - p) \tag{7}$$

把6代入7

$$d = |ah + bk + c|/\sqrt{a^2 + b^2}$$

综上, 当 a,b 不同时为零时, 点 (h,k) 到直线 f 的距离 d 为

$$d = |ah + bk + c|/\sqrt{a^2 + b^2}$$

这里也可以使用拉格朗日乘子法,但下一题用了,所以还是选择初等方法.

(b) Let  $\mu(\mathbf{x}) = \beta_0 + \mathbf{x}^{\tau} \boldsymbol{\beta} = 0$  denote a hyperplane, where  $\beta_0 \in \Re$  and  $\boldsymbol{\beta} \in \Re^r$ , and let  $\mathbf{x}_k \in \Re^r$  be a point in the space. By minimizing  $\|\mathbf{x} - \mathbf{x}_k\|^2$  subject to  $\mu(\mathbf{x}) = 0$ , show that the perpendicular distance from the point to the hyperplane is  $|\mu(\mathbf{x}_k)| / |\boldsymbol{\beta}|$ .

证明:将题目重写为标准形式:

$$\min_{\mathbf{x} \in \mathbb{R}^r} f(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_k\|^2$$

$$s.t. \qquad \mu(\mathbf{x}) = 0$$
(8)

构造拉格朗日函数

$$L(\mathbf{x}, \lambda) = (\mathbf{x} - \mathbf{x_k})'(\mathbf{x} - \mathbf{x_k}) + \lambda(\beta_0 + \mathbf{x}'\boldsymbol{\beta})$$
(9)

令

$$\frac{\partial L}{\partial \mathbf{x}} = 2(\mathbf{x} - \mathbf{x}_k) + \lambda \boldsymbol{\beta} =: 0$$
 (10)

$$\frac{\partial L}{\partial \lambda} = \beta_0 + \mathbf{x}' \boldsymbol{\beta} =: 0 \tag{11}$$

由10可得

$$\mathbf{x} = \mathbf{x}_k - \frac{\lambda \boldsymbol{\beta}}{2} \tag{12}$$

把12代入11,得

$$\lambda = \frac{2(\beta_0 + \mathbf{x}_k' \boldsymbol{\beta})}{\boldsymbol{\beta}' \boldsymbol{\beta}} \tag{13}$$

把12和13代回8, 得

$$\min_{\mathbf{x} \in \mathbb{R}^r} f(\mathbf{x}) = \frac{\lambda^2 \beta' \beta}{4} = \frac{(\beta_0 + \mathbf{x}_k' \beta)^2}{\beta' \beta}$$
(14)

所以

$$d = \sqrt{f_{\min}} = \frac{|\mu\left(\mathbf{x}_k\right)|}{\|\boldsymbol{\beta}\|}$$

#### Concave Function {11} 2

Show that the functional  $F_D(\alpha)$  in (11.40) is concave; i.e., show that, for  $\theta \in (0,1)$  and  $oldsymbol{lpha},oldsymbol{eta}\in\Re^n$ 

$$F_D(\theta \alpha + (1 - \theta)\beta) \ge \theta F_D(\alpha) + (1 - \theta)F_D(\beta).$$

证明:将  $F_D$  重写为矩阵形式:

$$F_D(\alpha) = \mathbf{1}'\alpha - \frac{1}{2}\alpha'\mathbf{H}\alpha \tag{15}$$

其中  $\mathbf{H} = [y_i y_j \mathbf{x}_i' \mathbf{x}_j]_{i \times j} \simeq \mathbf{I}, y_i = \pm 1, i = 1, 2, \cdots, n, \mathbf{H}$  是对称半正定矩阵 (若假设  $\mathbf{x}_i$  线性无 关  $i=1,2,\cdots,n$ , 则为对称正定矩阵). 因此

$$F_{D}(\theta \boldsymbol{\alpha} + (1 - \theta)\boldsymbol{\beta}) - \theta F_{D}(\boldsymbol{\alpha}) - (1 - \theta)F_{D}(\boldsymbol{\beta})$$

$$= -\frac{1}{2}[(\theta \boldsymbol{\alpha} + (1 - \theta)\boldsymbol{\beta})'\mathbf{H}(\theta \boldsymbol{\alpha} + (1 - \theta)\boldsymbol{\beta}) - \theta \boldsymbol{\alpha}'\mathbf{H}\boldsymbol{\alpha} - (1 - \theta)\boldsymbol{\beta}'\mathbf{H}\boldsymbol{\beta}]$$

$$= \frac{(1 - \theta)\theta}{2}(\boldsymbol{\alpha}'\mathbf{H}\boldsymbol{\alpha} + \boldsymbol{\beta}'\mathbf{H}\boldsymbol{\beta} - \boldsymbol{\alpha}'\mathbf{H}\boldsymbol{\beta} - \boldsymbol{\beta}'\mathbf{H}\boldsymbol{\alpha})$$

$$= \frac{(1 - \theta)\theta}{2}(\boldsymbol{\alpha} - \boldsymbol{\beta})'\mathbf{H}(\boldsymbol{\alpha} - \boldsymbol{\beta})$$
(16)

因为  $\theta \in (0,1)$ , **H** 对称半正定, 所以  $F_D(\theta \alpha + (1-\theta)\beta) - \theta F_D(\alpha) - (1-\theta)F_D(\beta) \ge 0$ . 即,

$$F_D(\theta \alpha + (1 - \theta)\beta) \ge \theta F_D(\alpha) + (1 - \theta)F_D(\beta).$$

另一种方法:

由H对称知

$$\nabla F_D(\boldsymbol{\alpha}) = \mathbf{1} - \mathbf{H}\boldsymbol{\alpha}$$

$$\nabla^2 F_D(\boldsymbol{\alpha}) = -\mathbf{H}$$

由  $\mathbf{H}$  半正定,  $-\mathbf{H}$  半负定, 知  $F_D$  为凹函数.

Nonlinear-SVM to WDBC Data Set {12} 3

Apply nonlinear-SVM to a binary classification wdbc data set. Make up a two-way table of values of  $(C, \gamma)$  and for each cell in that table compute the CV/10 misclassification rate. Find the pair  $(C, \gamma)$  with the smallest CV/10 misclassification rate. Compare this rate with results obtained using LDA and that using a classification tree.

解: 这里使用 e1071 包的 tune 函数选择最优的 cost 和 gamma 参数. 为了使比较更公平, 所 有方法均计算 10 折 CV 下的错误率. wdbc 数据第 3 到 32 列进行标准化.

```
#数据读入及预处理
library(readr)
wdbc <- read_csv("wdbc.txt", col_names = FALSE)
#rename colomn of data
data.colname = "diag"
for (i in 1:30) {
   data.colname = c(data.colname, paste('X', i, sep = ""))
}
data = wdbc[, -1] #delete id of patients, diag=X2
names(data) = data.colname
data$diag = as.factor(data$diag)
data[, 2:31] = apply(data[, 2:31], 2, scale)
```

为了减小计算量, 先取大步长估计最优参数范围, 再减小步长搜索. 不过即使是这样, 每次运行也需要很长的时间.

```
library(e1071)
library(MASS)
library(rpart)
library(randomForest)
set.seed(0)
\# choose \ range \ of \ gamma \ and \ cost
gamma = seq(0, 1, .1)
cost = 10 ^ (-3:4)
tuned = tune(svm,
              diag ~ .,
              data = data,
              range = list(gamma = gamma, cost = cost))
tuned$best.parameters
##
      gamma cost
## 35 0.1
              1
plot(tuned)
```

```
#choose range of gamma and cost
gamma = seq(0, .2, .02)
cost = seq(.01, 2, .01)
```



图 1: 不同 gamma 和 cost 下 SVM 的错误率: 颜色越深表示错误率越低. 从图中可以看出错误率的变化趋势, 缩小区间再进行进一步搜索, 减小计算量.

## [1] "最佳的参数取值约为 gamma: 0.04; cost: 1.92"

10 折 CV 下不同  $(C, \gamma)$  的错误率见表1. (为了使变化更明显, 这里用了第一次 tune 的数据)

|          |     | cost  |       |       |                 |       |       |       |       |
|----------|-----|-------|-------|-------|-----------------|-------|-------|-------|-------|
|          |     | e-3   | e-2   | 0.1   | 1               | 10    | e+2   | e+3   | e+4   |
|          | 0   | 0.373 | 0.373 | 0.373 | 0.373           | 0.373 | 0.373 | 0.373 | 0.373 |
|          | 0.1 | 0.373 | 0.373 | 0.068 | $\boxed{0.044}$ | 0.053 | 0.054 | 0.054 | 0.054 |
|          | 0.2 | 0.373 | 0.373 | 0.285 | 0.065           | 0.063 | 0.063 | 0.063 | 0.063 |
|          | 0.3 | 0.373 | 0.373 | 0.373 | 0.081           | 0.086 | 0.086 | 0.086 | 0.086 |
|          | 0.4 | 0.373 | 0.373 | 0.373 | 0.100           | 0.100 | 0.100 | 0.100 | 0.100 |
| $\gamma$ | 0.5 | 0.373 | 0.373 | 0.373 | 0.178           | 0.167 | 0.167 | 0.167 | 0.167 |
|          | 0.6 | 0.373 | 0.373 | 0.373 | 0.262           | 0.243 | 0.243 | 0.243 | 0.243 |
|          | 0.7 | 0.373 | 0.373 | 0.373 | 0.318           | 0.294 | 0.294 | 0.294 | 0.294 |
|          | 0.8 | 0.373 | 0.373 | 0.373 | 0.357           | 0.331 | 0.331 | 0.331 | 0.331 |
|          | 0.9 | 0.373 | 0.373 | 0.373 | 0.366           | 0.357 | 0.357 | 0.357 | 0.357 |
|          | 1.0 | 0.373 | 0.373 | 0.373 | 0.369           | 0.364 | 0.364 | 0.364 | 0.364 |

表 1:  $(\gamma, \cos t)$  表

使用 10-CV 计算 LDA, CART, Random Forest 及调参后 SVM 的错误率. (为了使比较更公平, 这里重新计算了 SVM 的错误率.) 需要注意的是: CART 进行了剪枝.

```
#randomly shuffle the data
shuffledata = data[sample(nrow(data)), ]
#create 10 equally size folds
folds = cut(seq(1, nrow(shuffledata)), breaks = 10, labels = FALSE)
#record performance of methods
cart.rcd = lda.rcd = qda.rcd = vector(length = 10)
forest.rcd = vector(length = 10)
svm.rcd = vector(length = 10)
#perform 10 fold cross validation
#parameter setting
```

```
c = 1.92; g = 0.04
for (i in 1:10) {
  testIndexes = which(folds == i, arr.ind = TRUE)
  testData = shuffledata[testIndexes,]
  trainData = shuffledata[-testIndexes,]
  #SVM
  svm.out = svm(diag ~ ., trainData, cost = c, gamma = g)
  svm.rcd[i] = sum(list(predict(svm.out,
                                newdata = testData[, -1])) !=
                     testData[, 1]) / dim(testData)[1]
  #LDA
  lda.out = lda(diag ~ ., trainData)
  lda.rcd[i] = sum(list(predict(lda.out, newdata = testData[, -1])$class) !=
                     testData[, 1]) / dim(testData)[1]
  #qDA
  qda.out = qda(diag ~ ., trainData)
  qda.rcd[i] = sum(list(predict(qda.out, newdata = testData[, -1])$class) !=
                     testData[, 1]) / dim(testData)[1]
  #CART
  dtree = rpart(diag ~ ., data = trainData)
  #prune
  which.min.xerror = which.min(dtree$cptable[, "xerror"])
  cutoff = dtree$cptable[which.min.xerror, "xerror"] +
    dtree$cptable[which.min.xerror, "xstd"]
  cart.out = prune(dtree,
              cp = dtree$cptable
              [min(which(dtree$cptable[, "xerror"] <cutoff)), "CP"]</pre>
              )
  cart.prdt = predict(cart.out, newdata = testData[, -1])
  cart.prdt.class = vector(length = dim(testData)[1])
  cart.prdt.class[cart.prdt[, 1] > 0.5] = "B"
  cart.prdt.class[cart.prdt[, 1] <= 0.5] = "M"</pre>
  cart.rcd[i] = sum(cart.prdt.class != testData[, 1]) / dim(testData)[1]
  #RandomForest
```

8

- ## [1] "SVM's misclassification rate is 0.0157894736842105"
- ## [1] "LDA's misclassification rate is 0.043984962406015"
- ## [1] "QDA's misclassification rate is 0.0457393483709273"
- ## [1] "CART's misclassification rate is 0.0756892230576441"
- ## [1] "Random Forest's misclassification rate is 0.0405075187969925"

可以看出四种方法错误率都不高. 效果最好的是 SVM(虽然是否能低于 0.02 取决于种子, 但 SVM 总是最好的). RF 和 CART 相比有了明显的提升; 然而 QDA 和 LDA 差不多. 我还试着对 wdbc 取 log 以改进 LDA 的错误率, 但是改进过于轻微.