Lesson 17-2 – Income Taxes

Corporate Income Taxes

- Corporate taxes also have provincial and federal components.
 - Federal Small Business: 10%
 - Federal Corporate: Nominal 38%, but realistically 15% (it's complicated see http://www.cra-arc.gc.ca/tx/bsnss/tpcs/crprtns/rts-eng.html)
 - BC Small Business: 2.0% (<\$500,000 revenue);
 BC General Corporate: 12%
- Small Business Deductions apply to small companies and give tax credits to provide higher after tax income for reinvestment and expansion.
- Tax rules change regularly
- We refer to income to describe the amounts before application of taxes
- We refer to profit as what is left after tax.

Corporate Income Taxes Continued...

- Corporate income taxes are prepared by professional accountants who follow Generally Accepted Accounting Principles (GAAP).
- The Income Tax Act defines specific accounting rules for declaring and maintaining the value of assets:
 - Cost base
 - Depreciation
 - Book value
 - Salvage value
- As well as determining revenues, what are legitimate expenses, and anything else you can think of

Corporate Income Taxes Cashflows

INCOME STATEMENT For ABC Corporation the year ending 7 January 2

For the year ending 7 January 2013

Operating revenue	OR
Operating costs	- oc
Before-tax cash flow	BTCF
CCA	- CCA
Debt interest	
Taxable income	OR - OC - CCA - I
Less income tax (at rate t)	-t(OR - OC - CCA - I)
Net profit	(OR - OC - CCA - I) (1 - t)

Taxable Income: Problem

Assume that the combined tax for a business is 34% and the business has a gross income of \$300,000, the operating expenses are \$120,000, and the assets of the business are currently worth \$800,000. Assuming the average CCA rate across all those assets is 12%, how much income tax is due in this year?

Solution:

The depreciation of the asset is 800,000*12% = \$96,000

Taxable Income = OR – OC – Depreciation - Interest

Taxable Income = 300,000 - 120,000 - 96,000 - \$0 = \$84,000

Taxes = \$84,000(0.34) = \$28,560

What are all these things?

- Operating Revenue (OR)
- Operating Costs or Expenses (OC or OpEx)
- Before Tax Cashflow (BTCF)
- Capital Cost Allowance (CCA) or Depreciation Expense
- Debt Interest (I)
- Taxable Income
- Income Tax
- Net Profit
- After Tax Cashflow (ATCF)
- Net Cashflow from Operations

Before-Tax Cash Flow

- Before-tax cash flow (BATCF):
 - BTCF = OR OC

Where:

OR = Operating Revenue

OC = Operating Costs

Taxable Income

- Taxable Income
 - Taxable Income = BTCF CCA I= OR OC CCA I

Where:

Net Profit

- Net Profit
 - = Taxable Income Income Tax
 = Taxable Income t(taxable income)
 = (OR OC CCA I)(1-t)

Where:

After-Tax Cash Flow

```
After-tax cash flow (ATCF):
```

```
• ATCF = Net profit + CCA + I

= OR(1 - t) - OC(1 - t) + (CCA)(t) + (I)(t)

= BTCF - Income\ Tax
```

Where:

```
I = debt interest; t = tax rateOR = Operating RevenueOC = Operating CostsCCA = Capital Cost Allowance
```

Net Cashflow from Operations

- After-tax cash flow (ATCF):
 - NCfO = ATCF I Dividends
 = BTCF Income Tax Interest Dividends

Where:

```
I = debt interest; t = tax rate
```

OR = Operating Revenue

OC = Operating Costs

CCA = Capital Cost Allowance

Net Cash Flow

A firm's net cash flow is:

Net cash flow = Net cash from operations

- + New equity
- + New debt
- + Proceeds from asset disposal
- Repurchase of equity
- Repayment of debt
- Purchase of assets
- Dividends

What are Dividends?

- Dividends are portions of the profit that are paid to the shareholders
- The dividend is most often quoted in terms of the dollar amount each share receives (dividends per share).
 - Most secure and stable companies offer dividends to their stockholders. Their share prices might not move much, but the dividend attempts to make up for this.
 - High-growth companies rarely offer dividends because all of their profits are reinvested to help sustain higher-thanaverage growth.
- http://www.investopedia.com/video/play/what-is-dividend/

What is Working Capital?

- An injected sum of money into an operation to cover the time lag between when money is returned from sales is called "working capital."
- Often working capital is only necessary at the start, but depending on fluctuations can be required at other times.
- Working capital does not gain value nor does it depreciate in value during the project.

How to Handle Loan Financing?

- Interest gets paid on the use of outside money.
- This is an expense of doing business.
- Interest is deducted from the before-tax income (See or Textbook Figure 12-2)
- As repayment of loan principle is just returning borrowed money, it comes from the after-tax cash flow. Example 12-12 demonstrates how this is handled on a spreadsheet.

The CCA System

- The CCA (depreciation) expense reduces the taxable income but it increases the cash flow.
- The CCA increases the cash flow by an amount equal to: t(CCA), called the CCA tax shield.
- The CCA is added to the net income to get the net after-tax cash flow

Capital Tax Factor

 When a capital asset is acquired, assuming the full CCA will be taken every year, the <u>present value</u> of the net capital investment is given by:

$$P = B \left[1 - \left(\frac{td}{i+d} \right) \left(\frac{1+i/2}{1+i} \right) \right]$$

B = Capital cost of asset or cost basis (could also be denoted as P)

d = CCA rate for the specified asset class

t = firm's marginal tax rate

i = discounted rate or interest rate

Present Worth of Tax Shield:

$$P = B \left[\left(\frac{td}{i+d} \right) \left(\frac{1+i/2}{1+i} \right) \right]$$

Disposing of Assets

Books-Open Assumption

 Any difference between the book value and the actual salvage value will continue to be allocated at the regular CCA rate (continuing depreciation even after its sold/disposed-of)

Books-Closed Assumption

 Calculate the recaptured CCA (taxes must be paid) or loss (tax credit received) and apply it to the fiscal year's income statement

Exception to both Assumptions: Capital Gain

- Salvage value Cost Basis = Capital Gain (resulting in profit)
- Taxes must be paid on a capital gain; at a different rate than regular income

Books-Closed Assumption

 Finding Net Salvage value (NSV) for Books-Closed Assumption:

• NSV =
$$S(1-t) + B_d t$$

= $S + DTE$

- •t = marginal tax rate
 - (Reminder: marginal tax rate is the amount of tax paid on an additional dollar of income.)
- B_d = book value at disposal (UCC)
- DTE = disposal tax effect = $t(B_d S)$

(Book-Open) Capital Salvage Factor

 When an asset is disposed of, the present value of the net salvage is:

$$S\left(1 - \frac{td}{i+d}\right) \left(\frac{1}{1+iN}\right)$$

Where:

S = Salvage Value

d = CCA rate for the specified asset class

t = firm's marginal tax rate

i = discounted rate (or interest rate)

N = lifetime (year of disposal)

Books-Open Assumption

- More commonly used than books-closed
- Purchase of an asset for an amount B (or P) generates an infinite series of depreciation resulting in positive cash flows of tax credits
- Therefore the books have current record of all the assets that have come and gone throughout the corporation's history
- According to Canadian tax rules, an asset class remains open as long as there are assets remaining in it.
- When there are no more assets remaining in a class, you must reconcile the remaining UCC in the class a positive value represents unclaimed depreciation that can be claimed as an expense. Negative UCC indicates CCA that must be recaptured.

Books Open – Simple Example

Example: with CCA				
original cost of an item	\$15,000			
sales proceeds of the item	\$5,000			
UCC of the CCA of	\$4,000			
disposal (lower of \$5,000 and \$15,000) (\$5,000				
balance	(\$1,000)			
reca	\$1,000			
	<u>\$ 0</u>			

Example: No recap			
original cost of an item	\$15,000		
Purchase Second Item	\$15,000		
sales proceeds of the 1st item	\$5,000		
UCC of the CCA of	\$4,000		
disposal (lower of	(\$5,000)		
Addition (purcha	\$15,000		
balance	\$14,000		
recapture added to income			
	\$14,000		

Estimating the After-Tax Rate of Return

- It is usually a complex matter to obtain the aftertax MARR and it cannot usually be obtained from the before-tax MARR.
- MARR_{after-tax} \approx MARR_{before-tax}(1-t) is only an approximation.
- We will assume, unless it is otherwise clearly stated, that we are using an after-tax MARR when we analyze the economics of a project with taxes.

Example – After Tax Cashflow Analysis

- You run a small bakery and want to add some conveyor cooling racks
- System cost: \$80,000, plus \$14,000 in electrical/structural improvements. Equipment, CCA class 10 (30%)
- Small business tax rate of 12%
- Expected sales increase: \$23,000 per year
- Expected cost increases
 - Electricity, \$500 per year
 - Maintenance: \$1500 in year one, increase \$250 per year
- Equipment will last 10 years with no salvage value
- Determine before and after tax NPV if MARR is 15%

Before Tax:

Cost Basis		\$94,000			
MARR	15%		Tax Rate		
Period	Revenue	Op Costs	BTCF		
0	\$0	\$0	\$0		
1	\$23,000	(\$2,000)	\$21,000		
2	\$23,000	(\$2,250)	\$20,750		
3	\$23,000	(\$2,500)	\$20,500		
4	\$23,000	(\$2,750)	\$20,250		
5	\$23,000	(\$3,000)	\$20,000		
6	\$23,000	(\$3,250)	\$19,750		
7	\$23,000	(\$3,500)	\$19,500		
8	\$23,000	(\$3,750)	\$19,250		
9	\$23,000	(\$4,000)	\$19,000		
10	\$23,000	(\$4,250)	\$18,750		
		NPV BTCF	\$7,149		

After Tax

Cost Basis		\$94,000									
MARR	15%		Tax Rate	12%	CCA Rate	30%		Cost Basis		\$94,000	
Period	Revenue	Op Costs	BTCF	Opening UCC	CCA	Ending UCC	Taxable Income	Income Tax	Net Profit	ATCF	NCfO
0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
1	\$23,000	(\$2,000)	\$21,000	\$47,000	\$14,100	\$32,900	\$6,900	\$828	\$6,072	\$20,172	\$20,172
2	\$23,000	(\$2,250)	\$20,750	\$79,900	\$23,970	\$55,930	(\$3,220)	(\$386)	(\$2,834)	\$21,136	\$21,136
3	\$23,000	(\$2,500)	\$20,500	\$55,930	\$16,779	\$39,151	\$3,721	\$447	\$3,274	\$20,053	\$20,053
4	\$23,000	(\$2,750)	\$20,250	\$39,151	\$11,745	\$27,406	\$8,505	\$1,021	\$7,484	\$19,229	\$19,229
5	\$23,000	(\$3,000)	\$20,000	\$27,406	\$8,222	\$19,184	\$11,778	\$1,413	\$10,365	\$18,587	\$18,587
6	\$23,000	(\$3,250)	\$19,750	\$19,184	\$5,755	\$13,429	\$13,995	\$1,679	\$12,315	\$18,071	\$18,071
7	\$23,000	(\$3,500)	\$19,500	\$13,429	\$4,029	\$9,400	\$15,471	\$1,857	\$13,615	\$17,643	\$17,643
8	\$23,000	(\$3,750)	\$19,250	\$9,400	\$2,820	\$6,580	\$16,430	\$1,972	\$14,458	\$17,278	\$17,278
9	\$23,000	(\$4,000)	\$19,000	\$6,580	\$1,974	\$4,606	\$17,026	\$2,043	\$14,983	\$16,957	\$16,957
10	\$23,000	(\$4,250)	\$18,750	\$4,606	\$1,382	\$3,224	\$17,368	\$2,084	\$15,284	\$16,666	\$16,666
		NPV BTCF	\$7,149						NPV ATCF	\$1,977.17	

Cashflow Diagrams

Example 2 – Using Factors

- You purchase a storage shed and rent out the space inside it.
- The shed cost \$4,000, and is Class 1, 4%
- You expect to save enough to retire in Hawaii in 6 years, and will sell the shed for \$2,000 then
- Your net annual profits are \$1500, and you have a tax rate of 22%
- Your MARR is 9%. use closed books for disposition
- What's the NPV of your investment?

Shed Cost and Annual Profits

- PV of \$4000 Shed with CCA
 - = \$4000 * Capital Tax Factor
 - CTF = 1 [(1+0.09/2)/(1+0.09)*(0.22*0.04)/(0.09+0.04)] = 0.935
 - PV of Shed Cost = \$3740
- PV of annual benefits
 - \$1500(1-0.22)*(P/A, 9%, 6) = \$5249
- PV of Salvage Value
 - NSV = S + DTE = \$2000 + t(Bd S)
 - Bd = B(1-d) n = \$4000(1-0.04) 6 = \$3131
 - NSV = \$2000 +0.22(3131-2000) = \$2249
 - PV(S) = \$2249(P/F, 9%, 6) = \$1341
- NPV = \$5249 +\$1341 \$3740 = \$2850

Practice Problem

Johnston Forwarding Inc. is considering the purchase of twenty new trucks for a special purpose fleet in their freight division. Each truck costs \$67,500. They are expected to be in service for eight years, then be salvaged for \$5000 each. The trucks will be added to an existing CCA Class 10 asset pool. Each truck is expected to generate \$20,750 in annual revenue, net of direct operating costs. Johnston's maintenance cost-center charges \$1550 per truck annually. There is also a fixed annual cost of \$35,000 to cover management and administration of the twenty trucks in the proposed fleet. Each truck will require an immediate investment of \$7500 in net working capital. Johnston uses an after-tax minimum acceptable rate of return of 12¾ percent to analyze investments of this type. Johnston's marginal tax rate is 26½ percent. Determine whether Johnston Forwarding Inc. should invest in the new trucks. Use both a value and a rate of return criterion.

Johnston Forwarding Inc. should invest in th	e trucks.
IRR=	14.004%
NPV=	\$67,022.76
PV(net after-tax operating cash flow)	\$1,241,564.12
PV(recovered working capital)	\$57,432.65
PV(CCA tax shield lost on salvage)	-\$7,120.31
PV(Salvage)	\$38,288.43
Investment in working capital	-\$150,000.00
PV(CCA tax shield gained)	\$236,857.86
Truck purchase	-\$1,350,000.00
Planned lifetime (years):	8
MARR:	12.75%
Tax rate:	26.5%
Working capital per truck: CCA rate:	\$7,500 30%
Fixed costs:	\$35,000
Annual maintenance charge per truck:	\$1,550
Annual net revenue per truck:	\$20,750

Example and spreadsheet by Ron McKinnon