第九章 刚体的平面运动

西北工业大学

主讲: 张娟

9.1 刚体平面运动的简化与分解

1. 刚体平面运动概念

刚体的平面运动— 刚体上处于同一平面内各点到某一固定平面的距离 保持不变。

● 刚体平面运动实例

● 刚体平面运动实例

刚体的平面运动— 刚体上处于同一平面内各点到某一固定平面的距离保持不变。

● 刚体平面运动实例

別体的平面运动— 刚体上处于同一平面内各点到某一固定平面的距离保持不变。

● 刚体平面运动实例

別体的平面运动— 刚体上处于同一平面内各点到某一固定平面的距离 保持不变。

2. 刚体平面运动简化

(1) 刚体平面运动特点

刚体上所有各点均在平行于某固定平面的平面内运动。

(2) 刚体平面运动简化

● 平面图形

平面图形——刚体平行于 某固定平面作平面运动,以平 行于该固定平面的另一平面截 割这刚体,得一截面S,称为平 面图形。

● 平面运动简化

刚体的平面运动,可以简化为平面图形在其自身平面内的运动 来研究。

刚体平面运动简化实例

三维(体)二维(面)

4. 刚体平面运动的分解

在左面的图中,如果平面图形 S 上的 A 点固定不动,则刚体将作定轴转动。

又若在左面的图中,如果平面图形 S上的 φ 角保持不变,则刚体作平移。

故由此可知

刚体的平面运动可以看成是平移和转动的合成运动。

刚体平面运动的分解演示

刚体平面运动的分解演示

刚体平面运动的分解演示

平移 (牵连运动)

平面运动

转动 (相对运动)

刚体的平面运动可分解为随同基 点的平移和相对基 点的转动。

4.平面运动分解

刚体平面运动的分解演示

9.1

刚体的平面运动可分解为随同基点的平移和相对基点的转动。

特别强调

- 1. 刚体的平面运动分解成随基点的平移和相对于基点的转动时,基点的选择是任意的。
- 2. 刚体的平面运动分解成平动和转动时,其平动部分与基点的选择有关;而转动部分与基点的选择无关。

注意上面二条的含义是指

- →平移的轨迹、各点的速度和加速度都与基点的位置有关。
- →转动的角速度和角加速度都与基点的位置无关。

刚体的平面运动分解成平移和转动时,其平移部分与基点的选择有关; 而转动部分与基点的选择无关。即平移的轨迹、各点的速度和加速度都与基 点的位置有关。而转动的角速度和角加速度都与基点的位置无关。

证明

1. 证明平移部分与基点的选择有关。

1. 以为 A 基点分解 2. 以 B 为基点分解

刚体的平面运动分解成平移和转动时,其平移部分与基点的选择有关; 而转动部分与基点的选择无关。即平移的轨迹、各点的速度和加速度都与基 点的位置有关。而转动的角速度和角加速度都与基点的位置无关。

2. 证明转动部分与基点的选择无关

设在平面图形上任选二点 O_1 、 O_2 为基点,图形相对于 O_1 和 O_2 二点的转角分别为 φ $_1$ 和 φ $_2$,则有

$$\varphi_2 = \varphi_1 + \theta$$

 $\theta =$ 常量

故求导可得

$$\frac{\mathrm{d}\varphi_2}{\mathrm{d}t} = \frac{\mathrm{d}\varphi_1}{\mathrm{d}t} = \omega, \qquad \frac{\mathrm{d}^2\varphi_2}{\mathrm{d}t^2} = \frac{\mathrm{d}^2\varphi_1}{\mathrm{d}t^2} = \epsilon$$

由上式

$$\frac{\mathrm{d}\varphi_2}{\mathrm{d}t} = \frac{\mathrm{d}\varphi_1}{\mathrm{d}t} = \omega$$

$$\frac{\mathrm{d}^2\varphi_2}{\mathrm{d}t^2} = \frac{\mathrm{d}^2\varphi_1}{\mathrm{d}t^2} = \alpha$$

由此可见,平面图形(也即平面运动刚体)在相对转动中的角速度和角加速度对不同基点是相同的,从而证得转动部分与基点的选择无关。

$$\frac{\mathrm{d}\,\varphi_2}{\mathrm{d}\,t} = \frac{\mathrm{d}\,\varphi_1}{\mathrm{d}\,t} = \omega\,,$$

$$\frac{\mathrm{d}^2 \varphi_2}{\mathrm{d}t^2} = \frac{\mathrm{d}^2 \varphi_1}{\mathrm{d}t^2} = \alpha$$

注 意

因为平移系(动系)相对定参考系 没有方位的变化,平面图形的角速度 和角加速度既是平面图形相对于平移 系的相对角速度和角加速度,也是平 面图形相对于定参考系的绝对角速度 和角加速度。

朗朗!