ABSTRACT

2,5-DISUBSTITUTED 3-MERCAPTOPENTANOIC ACID

The present invention concerns compounds of formula (I), and pharmaceutically acceptable salts or solvates thereof, or solvates of such salts, which compounds inhibit carboxypeptidase U and thus can be used in the prevention and treatment of diseases where inhibition of carboxypeptidase U is beneficial. In further aspects, the invention relates to compounds of the invention for use in therapy; to processes for preparation of such new compounds; to pharmaceutical compositions containing at least one compound of the invention, or a pharmaceutically acceptable salt or solvate thereof, as active ingredient; and to the use of the active compounds in the manufacture of medicaments for the medical use indicated above.

WO 03/106420

5

10

15

30

PCT/SE03/00970

2,5-disubstituted 3-mercaptopentanoic acid

The present invention relates to novel compounds, and pharmaceutically acceptable salts thereof, which inhibit basic carboxypeptidases, more specifically carboxypeptidase U, and thus can be used in the prevention and treatment of diseases wherein inhibition of carboxypeptidase U is beneficial, such as thrombosis and hypercoagulability in blood and tissue, atherosclerosis, adhesions, dermal scarring, cancer, fibrotic conditions, inflammatory diseases and those conditions which benefit from maintaining or enhancing bradykinin levels in the body. In further aspects, the invention relates to compounds of the invention for use in therapy; to processes for preparation of such new compounds; to pharmaceutical compositions containing at least one compound of the invention, or a pharmaceutically acceptable salt thereof, as active ingredient; and to the use of the active compounds in the manufacture of medicaments for the medical use indicated above.

Fibrinolysis is the result of a series of enzymatic reactions resulting in the degradation of fibrin by plasmin. The activation of plasminogen is the central process in fibrinolysis. The cleavage of plasminogen to produce plasmin is accomplished by the plasminogen activators, tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA). Initial plasmin degradation of fibrin generates carboxy-terminal lysine residues that serve as high affinity binding sites for plasminogen. Since plasminogen bound to fibrin is much more readily activated to plasmin than free plasminogen this mechanism provides a positive feedback regulation of fibrinolysis.

One of the endogenous inhibitors to fibrinolysis is carboxypeptidase U (CPU). CPU is also known as plasma carboxypeptidase B, active thrombin activatable fibrinolysis inhibitor (TAFIa), carboxypeptidase R and inducible carboxypeptidase activity. CPU is formed during coagulation and fibrinolysis from its precursor proCPU by the action of proteolytic enzymes, such as thrombin, thrombin-thrombomodulin complex or plasmin. CPU cleaves basic amino acids at the carboxy-terminal of fibrin fragments. The loss of carboxy-terminal lysines and thereby of lysine binding sites for plasminogen then serves to inhibit fibrinolysis. By inhibiting the loss of lysine binding sites for plasminogen and thus increase the rate of plasmin formation, effective inhibitors of carboxypeptidase U are expected to facilitate fibrinolysis.