Using Evolutionary Algorithms to Enrich Q-Learning Reward Functions

Brandon Miller

Dept. of Computer Science

Brandon Miller

Washington, D.C., U.S.
bm25086@georgiasouthern.edu

Abstract—This is a test abstract for Assignment 1 of CSCI 7090.

https://github.com/bmillerdev/
DS_ML_Project_colab-integration
Index Terms—component, formatting, style, styling, insert

I. Introduction

One of the main areas of tribal knowledge that drive successful data science practice is the selection of proper parameters and hyperparameters such as learning rate or epoch size.

II. PROBLEM AREAS OF CHOICE

To test the efficacy of this approach, we must choose a wide variety of problem areas such that there would be no reason the hyper-parameters ought to be the same.

III. EXPERIMENTATION

To enable experimentation, we created a runtime environment within code that had access to a number of different simulation environments provided by OAI Gymnasium.

A. Training Phase

During this phase, each trait was hydrated with a randomly chosen weight associated with the goals of a particular problem. These weights were used to inform the reward function within the Q-learner.

B. Testing Phase

Following training, the weight preferences produced by the evolutionary algorithm were employed, and its performance within the Q-learner was assessed after 1000 successful epochs within the Learner.