Pluto_MSK_Modem address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x43C00058

Offset	Identifier	Name
0x43C00000	pluto_msk_regs	Pluto MSK Registers

pluto_msk_regs address map

Absolute Address: 0x43C00000Base Offset: 0x43C00000

• Size: 0x58

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash_ID_Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	$Hash_ID_High$	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK_Init	MSK Modem Control 0
0x0C	$MSK_Control$	MSK Modem Control 1
0x10	MSK_Status	MSK Modem Status 1
0x14	Tx_Bit_Count	MSK Modem Status 2
0x18	Tx_Enable_Cour	ntMSK Modem Status 3
0x1C	$Fb_FreqWord$	Bitrate NCO Frequency Control Word
0x20	F1_FreqWord	FSK f1 NCO Frequency Control Word
0x24	$F2$ _FreqWord	FSK f2 NCO Frequency Control Word
0x28	LPF_Config_0	PI Controller Configuration and Low-pass Filter
		Configuration
0x2C	LPF_Config_1	PI Controller Configuration and Low-pass Filter
		Configuration
0x30	Tx_Data_Width	Modem Tx Input Data Width
0x34	Rx_Data_Width	Modem Rx Output Data Width
0x38	PRBS_Control	PRBS Control 0
0x3C	PRBS_Initial_St	aPRBS Control 1
0x40	PRBS_Polynomia	aPRBS Control 2
0x44	PRBS_Error_Ma	sRRBS Control 3
0x48	PRBS_Bit_Cour	tPRBS Status 0
0x4C	PRBS_Error_Co	uMRBS Status 1
0x50	LPF_Accum_F1	F1 PI Controller Accumulator
0x54	LPF_Accum_F2	F2 PI Controller Accumulator

$Hash_ID_Low\ register$

• Absolute Address: 0x43C00000

• Base Offset: 0x0

• Size: 0x4

Bits	Identifier	Access	Reset	Name
31:0	hash_id_lo	r	0xAAAA5555	Hash ID Lower 32-bits

hash_id_lo field Lower 32-bits of Pluto MSK FPGA Hash ID

$Hash_ID_High\ register$

• Absolute Address: 0x43C00004

• Base Offset: 0x4

• Size: 0x4

Bits	Identifier	Access	Reset	Name
31:0	hash_id_hi	r	0x5555AAAA	Hash ID Upper 32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x43C00008

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Identifier	Access	Reset	Name
0	init	rw	0x1	Init Enable

init field $0 \rightarrow Normal modem operation <math>1 \rightarrow Initialize modem$

$MSK_Control$ register

• Absolute Address: 0x43C0000C

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Access	Reset	Name
0	ptt	rw	0x0	Push-to-Talk Enable
1	loopback_ena	rw	0x0	Modem Loopback Enable
2	rx_invert	rw	0x0	Rx Data Invert Enable
3	$clear_counts$	rw	0x0	Clear Status Counters

ptt field 0-> PTT Disabled 1-> PTT Enabled

 $\begin{array}{ll} \textbf{loopback_ena field} & 0 -> \text{Modem loopback disabled 1 -> Modem loopback enabled} \end{array}$

 \mathbf{rx} _invert field 0 -> \mathbf{Rx} data normal 1 -> \mathbf{Rx} data inverted

clear_counts field Clear Tx Bit Counter and Tx Enable Counter

MSK_Status register

• Absolute Address: 0x43C00010

• Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Reset	Name
0	$\operatorname{demod_sync_}$	_loak	0x0	Demodulator Sync Status
1	tx_enable	r	0x0	AD9363 DAC Interface Tx Enable Input
				Active
2	rx_enable	r	0x0	AD9363 ADC Interface Rx Enable Input
				Active

 $\mathbf{demod_sync_lock} \ \mathbf{field} \quad \mathbf{Demodulator} \ \mathbf{Sync} \ \mathbf{Status} \ \textbf{-} \ \mathbf{not} \ \mathbf{currently} \ \mathbf{implemented}$

 \mathbf{tx} _enable field 1 -> Data to DAC Enabled 0 -> Data to DAC Disabled

 \mathbf{rx} _enable field 1-> Data from ADC Enabled 0-> Data from ADC Disabled

$Tx_Bit_Count register$

• Absolute Address: 0x43C00014

• Base Offset: 0x14

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	$data_req_count$	rw	0x0	Tx Bit Count

 ${\bf data_req_count}$ field Count of data requests made by modem

$Tx_Enable_Count\ register$

• Absolute Address: 0x43C00018

• Base Offset: 0x18

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	$data_req_count$	rw	0x0	Tx Enable Count

data_req_count field Number of clocks on which Tx Enable is active

Fb_FreqWord register

• Absolute Address: 0x43C0001C

• Base Offset: 0x1C

• Size: 0x4

Set Modem Data Rate

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

<code>config_data field</code> Sets the center frequency of the NCO as FW = Fn * $2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

F1_FreqWord register

• Absolute Address: 0x43C00020

• Base Offset: 0x20

• Size: 0x4

Set Modem Data Rate

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

F2_FreqWord register

• Absolute Address: 0x43C00024

• Base Offset: 0x24

• Size: 0x4

Set Modem Data Rate

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	Frequency Control Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

• Absolute Address: 0x43C00028

• Base Offset: 0x28

• Size: 0x4

Configure PI controller and low-pass filter

Bits	Identifier	Access	Reset	Name
0	lpf_freeze	rw	0x0	Freeze the accumulator's current value
1	lpf_zero	rw	0x0	Hold the PI Accumulator at zero
31:16	lpf_alpha	rw	0x0	Lowpass IIR filter alpha

 $lpf_freeze field 0 -> Normal operation 1 -> Freeze current value$

lpf_zero field 0-> Normal operation 1-> Zero and hold accumulator

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

• Absolute Address: 0x43C0002C

• Base Offset: 0x2C

• Size: 0x4

Configure PI controller and low-pass filter

Bits	Identifier	Access	Reset	Name
15:0	i_gain	rw	0x0	Sets the integral gain of the PI controller integrator
31:16	p_gain	rw	0x0	Sets the proportional gain of the PI controller integrator

 $i_gain\ field$ Integral gain value

p_gain field Proportional gain value

$Tx_Data_Width register$

• Absolute Address: 0x43C00030

• Base Offset: 0x30

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

Bits	Identifier	Access	Reset	Name
7:0	data_width	rw	0x8	Modem input/output data width

data_width field Set the data width of the modem input/output

Rx_Data_Width register

• Absolute Address: 0x43C00034

• Base Offset: 0x34

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

Bits	Identifier	Access	Reset	Name
7:0	$data_width$	rw	0x8	Modem input/output data width

data_width field Set the data width of the modem input/output

PRBS_Control register

• Absolute Address: 0x43C00038

• Base Offset: 0x38

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

Bits	Identifier	Access	Reset	Name
0	prbs_sel	rw	0x0	PRBS Data Select
1	$prbs_error_insert$	W	0x0	PRBS Error Insert
2	$prbs_clear$	\mathbf{w}	0x0	Reserved
3	prbs_sync	W	0x0	PRBS Sync

prbs_sel field 0-> Select Normal Tx Data 1-> Select PRBS Tx Data

prbs_error_insert field $0 \rightarrow$ No error insertion $1 \rightarrow$ Insert bit error in Tx data (both Normal and PRBS)

prbs_clear field Reserved

 ${\bf prbs_sync\ field}\quad 0 -> {\rm Normal\ Operation}\ 1 -> {\rm Synchronize\ PRBS\ monitor}$

${\bf PRBS_Initial_State\ register}$

• Absolute Address: 0x43C0003C

• Base Offset: 0x3C

• Size: 0x4

PRBS Initial State

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	PRBS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

• Absolute Address: 0x43C00040

• Base Offset: 0x40

• Size: 0x4

PRBS Polynomial

Bits	Identifier	Access	Reset	Name
31:0	config_data	rw	0x0	PRBS Polynomial

config_data field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x43C00044

• Base Offset: 0x44

• Size: 0x4

PRBS Error Mask

Bits	Identifier	Access	Reset	Name
31:0	$config_data$	rw	0x0	PRBS Error Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

PRBS_Bit_Count register

• Absolute Address: 0x43C00048

• Base Offset: 0x48

• Size: 0x4

PRBS Bits Received

Bits	Identifier	Access	Reset	Name
31:0	status_data	r	_	PRBS Bits Received

status_data field Number of bits received by the PRBS monitor since last BER can be calculated as the ratio of received bits to errored-bits

PRBS_Error_Count register

• Absolute Address: 0x43C0004C

• Base Offset: 0x4C

• Size: 0x4

PRBS Bit Errors

Bits	Identifier	Access	Reset	Name
31:0	$status_data$	r	_	PRBS Bit Errors

status_data field Number of errored-bits received by the PRBS monitor since last sync BER can be calculated as the ratio of received bits to errored-bits

LPF_Accum_F1 register

• Absolute Address: 0x43C00050

• Base Offset: 0x50

• Size: 0x4

Value of the F1 PI Controller Accumulator

Bits	Identifier	Access	Reset	Name
31:0	status_data	r	_	PI Controller Accumulator Value

status_data field PI Controller Accumulator Value

LPF_Accum_F2 register

• Absolute Address: 0x43C00054

• Base Offset: 0x54

• Size: 0x4

Value of the F2 PI Controller Accumulator

Bits	Identifier	Access	Reset	Name
31:0	$status_data$	r	_	PI Controller Accumulator Value

status_data field PI Controller Accumulator Value