CS 498VR: Virtual Reality

In-class Worksheet: Texture Coordinates and Filtering

1. Magnification

Suppose we have the following 8x8 texture of greyscale values

- Texel (0,0) is located in the lower left hand corner.
- White texels have RGB values of (1,1,1)
- Grey texels have RGB values of (0.5, 0.5, 0.5)

Suppose a fragment has (u,v) texture coordinates of (3/4, 19/32).

a. What fragment color is generated using nearest neighbor? In nearest neighbor filtering you sample the texel (s,t):

 $s = \text{round}(u \times width - 1/2)$ $t = \text{round}(v \times height - 1/2)$

with both u and v constrained to be in [0,1)

b. What fragment color is generated for T(5 ½, 4 ¼) using bilinear filtering? Recall that bilinear filtering takes the following form:

2. Minification

Create a mipmap for the greyscale texture shown here.

0.5	0.5	0.0	1.0
0.0	0.0	1.0	1.0
1.0	0.5	0.25	0.25
1.0	0.5	0.25	0.25

3. Size

If the original texture requires A bytes of storage, find an upper bound on how much space the mipmaps will require in terms of A. You may want to recall that for a number r where 0 < r < 1 we have

$$1+r+r^2+r^3+\cdots=rac{1}{1-r},$$