Modern Recommendation Techniques in the Real World

Olivier Koch, Flavian Vasile

Criteo Research

June 28, 2018

About the speakers

Olivier Koch, Machine Learning Lead, o.koch@criteo.com Flavian Vasile, Lead Research Scientist, f.vasile@criteo.com

ī		ī

http://cail.criteo.com

Course overview

- Introduction to the Problem of Recommendation
- Part 1. Classical approaches
- Part 2. Deep Learning approaches
- Part 3. Causality in Recommendation

Workshop agenda

- Intro 30'
- Classical ML Approaches 30'
- Hands-on application 1h
- Neural networks for Recommendation 1h
- Lunch break
- Hands-on application 1h
- Causal Recommendation 45'
- Hands-on application 45'

Introduction to the Problem of

Recommendation

Given user-item interactions, find the top-k best items for each user

This is different from minimizing the RMSE of a predictive model

trained on a user \times item matrix.

The task

Examples

- Movies: Spotify
- Clothes: Zalando
- Retail: Amazon
- Restaurants: Google Maps
- Courses: Coursera

Implicit vs explicit feedback

- Explicit feedback provides positive and negative examples (e.g. user ratings)
- Implicit feedback provides positive examples only (e.g. clicks, views, ···)
- Implicit feedback is much more abundant but incomplete
- You may have the choice (e.g. Netflix)

The Exploration / exploitation trade-off

- Exploitation = maximize expected reward
- Exploration = reduce uncertainty in the model
- Exploration is hard, but necessary
- Exploration is expensive (most explored items do not work)
- In practice: trade off exploration and exploitation (e.g. random)

Explore-exploit in top-N recommender systems via Gaussian processes, H. Vanchinathan et al, RecSys 2014

The Long Tail

- Long tail on users (most users rate very few items)
- Long tail on products (most items are rarely seen)
- Pay attention to data distribution!

The long tail of recommender systems and how to leverage it, YJ Park, A. Thuzhilin, RecSys 2008

Reco as an ML problem

Early recommenders used heuristics (best-ofs)

function

- New recommenders use machine learning and optimize a

Lessons from the Nextflix Prize Challenge

- Launched in 2006 by Netflix
- Open competition to beat the baseline (CineMatch)
- Training set: 100,480,507 ratings (480,189 users, 17,770 movies)
- Qualifying set: 2,817,131 ratings (50% test set, 50% quiz set)
- Improve by 10% to win \$1,000,000

Lessons from the Netflix Prize Challenge, R. Bell and Y. Koren, SigKDD 2007

Lessons from the Nextflix Prize Challenge

- A trivial solution is almost as good as the baseline (average all ratings for a movie)
- The best method could not make it to production (ensemble)
- Optimizing RMSE ≠ optimizing user experience
- The contest shaked the industrial/academic community and paved the way for new recommendation algorithms

Lessons from the Netflix Prize Challenge, R. Bell and Y. Koren, SigKDD 2007

Evaluation of recommender systems

- - Offline: evaluate new model on offline metrics
 - Online: test new model with real users

Offline evaluation

- Typical metrics: RMSE, LLH, ranking metrics (NDCG)
- Convenient
- Hard to align with online behavior
- Useful to fine-tune a model or gather intuitions about the model behavior

Offline evaluation

RMSE for implicit feedback is wrong: people who viewed an item only few times may dislike it more than items they have never seen

Offline AB testing

- Leverage counterfactual or off-policy estimators
- Propose two variants of counterfactual estimates with different modelling of the bias
- Benchmark the estimators against uplift in revenue
- Requires to log a lot of additional data (candidates that were not displayed)
- Variance is a major challenge (sweet spot between minor and major changes)

Offline A/B testing for recommender system, A. Gilotte et al, WSDM 2018

Online evaluation

- Test your model on real traffic and measure the difference with the baseline
- Expensive (most ideas do not work)
- Bias removal is a big challenge
- You need to define a clear set of metrics for roll out decisions
- Online AB testing is a science

Offline evaluation is hard

- REVEAL 2018 Workshop
- Held with RecSys 2018 (Vancouver, CA)
- Submission deadline: July 28, 2018
- https://sites.google.com/view/reveal2018