A F&B manager wants to determine whether there is any significant difference in the diameter of the cutlet between two units. A randomly selected sample of cutlets was collected from both units and measured? Analyze the data and draw inferences at 5% significance level. Please state the assumptions and tests that you carried out to check validity of the assumptions.

Minitab File: Cutlets.mtw

```
import pandas as pd
import numpy as np
from scipy import stats
from scipy.stats import norm
```

```
# Load the dataset
data = pd.read_csv("Cutlets.csv")
data.head()
```

	Unit A	Unit B
0	6.8090	6.7703
1	6.4376	7.5093
2	6.9157	6.7300
3	7.3012	6.7878
4	7.4488	7.1522

```
UnitA = pd.Series(data.iloc[:,0])
UnitA
0
      6.8090
1
      6.4376
      6.9157
3
      7.3012
4
      7.4488
5
      7.3871
6
      6.8755
      7.0621
8
      6.6840
9
      6.8236
10
      7.3930
11
      7.5169
12
      6.9246
13
      6.9256
      6.5797
14
15
      6.8394
16
      6.5970
17
      7.2705
```

10

```
UnitB = pd.Series(data.iloc[:,1])
UnitB
```

- 6.77037.50936.7300
- 3 6.7878
- 4 7.1522
- 5 6.8110
- 6 7.2212
- 7 6.6606
- 8 7.2402
- 9 7.0503
- 10 6.8810
- 11 7.4059
- 12 6.7652
- 13 6.0380
- 14 7.1581
- 15 7.0240
- 16 6.6672
- 17 7.4314
- 18 7.3070

```
# 2 Sample - 2 Tail ttest : stats.ttest_ind(array1,array2) >- ind = independent samples
p_value = stats.ttest_ind(UnitA,UnitB)
p_value
```

Ttest_indResult(statistic=0.7228688704678063, pvalue=0.4722394724599501)

```
p_value[1] # 2 tail probability
```

0.4722394724599501

```
# compare p_value with \alpha = 0.05 (At 5% significance level)
```

A hospital wants to determine whether there is any difference in the average Turn Around Time (TAT) of reports of the laboratories on their preferred list. They collected a random sample and recorded TAT for reports of 4 laboratories. TAT is defined as sample collected to report dispatch.

Analyze the data and determine whether there is any difference in average TAT among the different laboratories at 5% significance level.

Minitab File: LabTAT.mtw

```
import pandas as pd
import numpy as np
from scipy import stats
from scipy.stats import norm

data = pd.read_csv("LabTAT.csv")
data.head()
```

	Laboratory 1	Laboratory 2	Laboratory 3	Laboratory 4
0	185.35	165.53	176.70	166.13
1	170.49	185.91	198.45	160.79
2	192.77	194.92	201.23	185.18
3	177.33	183.00	199.61	176.42
4	193.41	169.57	204.63	152.60

```
# Annova ftest statistics : stats.f_oneway(Column-1,Column-2,Column-3,Column-4)
p_value=stats.f_oneway(data.iloc[:,0],data.iloc[:,1],data.iloc[:,2],data.iloc[:,3])
p_value
```

F_onewayResult(statistic=118.70421654401437, pvalue=2.1156708949992414e-57)

```
p_value[1] # compare it with a = 0.05
```

2.1156708949992414e-57

Buyer Ratio.mtw

Sales of products in four different regions is tabulated for males and females. Find if male-female buyer rations are similar across regions.

	East	West	North	South
Males	50	142	131	70
Females	550	351	480	350

import pandas as pd
import numpy as np
from scipy import stats as stats

	Observed Values	East	West	North	South
0	Males	50	142	131	70
1	Females	435	1523	1356	750

	East	West	North	South
0	50	142	131	70
1	435	1523	1356	750

df table values

```
val = stats.chi2_contingency(df_table)
val
(1.595945538661058,
 0.6603094907091882,
 3,
 array([ 42.76531299, 146.81287862, 131.11756787, 72.30424052],
        [ 442.23468701, 1518.18712138, 1355.88243213, 747.69575948]]))
type(val)
tuple
no of rows = len(df table.iloc[0:2,0])
no of columns = len(df table.iloc[0,0:4])
degree_of_f = (no_of_rows-1)*(no_of_columns-1)
print('Degree of Freedom',degree of f)
Degree of Freedom 3
Expected value = val[3]
Expected_value
array([[ 42.76531299, 146.81287862, 131.11756787, 72.30424052],
```

```
from scipy.stats import chi2
chi_square= sum([(o-e)**2/e for o,e in zip(df_table.values,Expected_value)])
chi_square_statestic= chi_square[0]+ chi_square[1]
chi square statestic
1.5152956451130446
critical_value= chi2.ppf(0.95,3)
critical value
7.814727903251179
if chi_square_statestic >= critical_value:
   print('Dependent (reject H0)')
else:
    print('Independent (fail to reject H0)')
Independent (fail to reject H0)
pvalue = 1-chi2.cdf(chi square statestic,3)
pvalue
0.6787446296467897
```

```
if pvalue <= 0.05:
    print('Dependent (reject H0)')
else:
    print('Independent (fail to reject H0)')</pre>
```

Independent (fail to reject H0)

TeleCall uses 4 centers around the globe to process customer order forms. They audit a certain % of the customer order forms. Any error in order form renders it defective and has to be reworked before processing. The manager wants to check whether the defective % varies by centre. Please analyze the data at 5% significance level and help the manager draw appropriate inferences

Minitab File: CustomerOrderForm.mtw

import pandas as pd
import numpy as np
from scipy import stats
from scipy.stats import norm
from scipy.stats import chi2_contingency

Load the dataset
data=pd.read_csv("Costomer+OrderForm.csv")
data.head()

	Phillippines	Indonesia	Malta	India
0	Error Free	Error Free	Defective	Error Free
1	Error Free	Error Free	Error Free	Defective
2	Error Free	Defective	Defective	Error Free
3	Error Free	Error Free	Error Free	Error Free
4	Error Free	Error Free	Defective	Error Free

```
data.Phillippines.value_counts()
Error Free 271
Defective 29
Name: Phillippines, dtype: int64
data.Indonesia.value_counts()
Error Free 267
Defective 33
Name: Indonesia, dtype: int64
data.Malta.value_counts()
Error Free 269
Defective 31
Name: Malta, dtype: int64
data.India.value_counts()
Error Free 280
Defective 20
```

Name: India, dtype: int64

```
# make contingency table
obs = np.array([[271, 267, 269, 280], [29, 33, 31, 20]])
obs
array([[271, 267, 269, 280],
       [ 29, 33, 31, 20]])
# Chi2 contengency independence test
chi2_contingency(obs) # o/p is (Chi2 stats value, p_value, df, expected obsvations)
(3.858960685820355,
 0.2771020991233135,
 3,
 array([[271.75, 271.75, 271.75, 271.75],
        [ 28.25, 28.25, 28.25, 28.25]]))
# Compare p value with \alpha = 0.05
```