Math 136 Homework 7

Alexandre Lipson

May 13, 2024

1.

Problem. Let $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the function defined by

$$g(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Show that

$$g_y(x,0) = \lim_{h \to 0} \frac{g(x,h) - g(x,0)}{h} = x$$

and similarly that $g_x(0,y) = -y$. Hence, show that $g_{yx}(0,0) = 1$ and $g_{xy}(0,0) = -1$.

First, we compute g_y with differentiation and evaluate at y=0,

$$g_y(x,y) = \frac{\partial}{\partial y} \left[\frac{xy(x^2 - y^2)}{x^2 + y^2} \right]$$

$$= \frac{\left[x(x^2 - y^2) \right] (x^2 + y^2) - \left[xy(x^2 - y^2) \right] (2y)}{(x^2 + y^2)^2}$$

$$g_y(x,0) = \frac{x^5}{x^4}$$

$$= x.$$

We then compute g_y using the limit definition at y = 0,

$$\lim_{h \to 0} \frac{g(x,h) - g(x,0)}{h} = \lim_{h \to 0} \frac{\frac{xh(x^2 - h^2)}{x^2 + h^2} - \frac{x(0)(x^2 - 0^2)}{x^2 + 0^2}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{xh(x^2 - h^2)}{x^2 + h^2}}{h}$$

$$= \lim_{h \to 0} \frac{x(x^2 - h^2)}{x^2 + h^2}$$

$$= \frac{x^3}{x^2}$$

$$= x.$$

So, $g_y(x,0) = x$ by both the limit definition and the derivative computation. For simplicity, we will use the latter method of finding the partials of g.

For $g_x(0,y)$,

$$g_x(x,y) = \frac{[y(x^2 - y^2) + 2x^2y](x^2 + y^2) - (xy(x^2 - y^2))[2x]}{(x^2 + y^2)^2}$$
$$g_x(0,y) = \frac{y(-y^2)y^2}{y^4}$$
$$= -y.$$

Then, for $g_{yx}(0,0)$, we take the derivative of $g_y(x,0)$ in x, $\frac{d}{dx}x = 1$.

For $g_{xy}(0,0)$, similarly, we take the derivative of $g_x(0,y)$ in y, $\frac{d}{dx} - y = -1$.

- 2. (a) Recall and write down the definition of continuity for $f: \mathbb{R} \longrightarrow \mathbb{R}$ at x = a.
 - (b) Modify it using the norm on \mathbb{R}^n (instead of absolute value) to write down the definition of continuity for $f: \mathbb{R}^n \longmapsto \mathbb{R}$ being continuous at x = a in \mathbb{R}^n .
 - (c) We say $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuous if it is continuous at every $x \in \mathbb{R}^n$. Now assume $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a continuous function and let I be an open interval of the form I = (a, b) where a < b. Show that the preimage of I

$$f^{-1}(I) = {\vec{x} \in \mathbb{R}^n : f(\vec{x}) \in I}$$

is an open set. (This becomes an alternative definition of continuity in analysis or topology: We say $f: \mathbb{R}^n \longmapsto \mathbb{R}$ is continuous if the preimage of every open set in \mathbb{R}^m is open in \mathbb{R}^n .)

(a)
$$\forall \epsilon > 0, \exists \delta > 0 : |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.$$

(b)
$$\forall \epsilon > 0, \exists \delta > 0 : \|\vec{x} - \vec{a}\| < \delta \implies |f(\vec{x}) - f(\vec{a})| < \epsilon.$$

(c) Given $x \in f^{-1}(I)$, we wish to find a $\delta > 0$ such that we can form a δ -sized ball around \vec{x} which is a subset of $f^{-1}(I)$. Then, for any vector \vec{y} δ -close to \vec{x} , $f(\vec{y})$ will be in the open interval I

$$\|\vec{y} - \vec{x}\| < \delta \implies f(\vec{y}) \in I.$$

Since f is continuous, we choose $\epsilon = \min\{f(\vec{x}) - a, b - f(\vec{x})\}$ where $a < f(\vec{x}) < b$ and are given the desired δ .