Potential Cardinality

for Countable First-Order Theories

Douglas Ulrich, Richard Rast, Chris Laskowski

University of Maryland

Penn State Logic Seminar March 22, 2016

The Main Idea

The Goal: Understand the countable models of a theory Φ

Chosen framework: if $\Phi \leq_{_{\! B}} \Psi$ then the countable models of Φ are "more tame" than the countable models of Ψ .

Relatively easy: show $\Phi \leq_{\mathcal{B}} \Psi$; Relatively hard: show $\Phi \nleq_{\mathcal{B}} \Psi$

Theorem (Ulrich, R., Laskowski)

If $\Phi \leq_{\!\scriptscriptstyle B} \Psi$ then $\|\Phi\| \leq \|\Psi\|$.

Roadmap

- Borel Reductions
- 2 Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality
- 3 Connections
- 4 Extended Examples

Motivation?

Why study Borel reductions?

Comparing the number of models is pretty coarse. Consider:

- lacktriangle Countable sets of \mathbb{Q} -vector spaces
- @ Graphs

These both have \beth_1 countable models, but Borel reductions can easily show the former is much smaller than the latter.

Counterexamples to Vaught's conjecture are pretty weird; Borel reductions give a nice way to make this formal (even given CH).

Borel Reductions

Fix $\Phi, \Psi \in L_{\omega_1\omega}$.

 $\operatorname{Mod}_{\omega}(\Phi)$ and $\operatorname{Mod}_{\omega}(\Psi)$ are Polish spaces under the formula topology.

 $f: \mathrm{Mod}_{\omega}(\Phi) \to \mathrm{Mod}_{\omega}(\Psi)$ is a Borel reduction if:

- For all $M, N \models \Phi$, $M \cong N$ iff $f(M) \cong f(N)$
- ② For any $\psi \in L_{\omega_1\omega}$ (with parameters from ω) there is a $\phi \in L_{\omega_1\omega}$ (with parameters from ω) where $f^{-1}(\operatorname{Mod}_{\omega}(\Psi \wedge \psi)) = \operatorname{Mod}_{\omega}(\Phi \wedge \phi)$

(preimages of Borel sets are Borel)

Say $\Phi \leq_{\mathbb{R}} \Psi$.

A Real Example

Let Φ be "linear orders" and Ψ be "real closed fields." Then $\Phi \leq_{_{\! B}} \Psi$.

Proof outline:

- Fix a linear order (I, <)
- Pick a sequence $(a_i : i \in I)$ from the monster RCF where $1 \ll a_i$ for all i, and if i < j, then $a_i \ll a_i$.
- Let M_I be prime over $\{a_i : i \in I\}$.
- f is "obviously Borel"
- $(I,<)\cong (J,<)$ iff $M_I\cong M_J$.

Establishing Some Benchmarks

Borel reducibility is inherently relative; it's hard to gauge complexity of (the countable models of) a sentence on its own.

One fix is to establish some benchmarks.

The two most important (for us) are:

- Being Borel a tameness condition which isn't too degenerate
- Being Borel complete being maximally complicated

Borel Isomorphism Relations

Fix $\Phi \in L_{\omega_1 \omega}$. The following are equivalent:

- **1** Isomorphism for Φ is Borel (as a subset of $\operatorname{Mod}_{\omega}(\Phi)^2$)
- There is a countable bound on the Scott ranks of all countable models
- **1** There is an $\alpha < \omega_1$ where \equiv_{α} implies \cong for countable models of Φ
- lacktriangle There is a countable bound on the Scott ranks of all models of Φ
- **1** There is an $\alpha < \omega_1$ where $≡_\alpha$ implies $≡_{∞ω}$ for all models of Φ.

Fact: if Φ is Borel and $\Psi \leq_{\mathbb{R}} \Phi$, then Ψ is Borel.

Borel Complete Isomorphism Relations

Fix $\Phi \in L_{\omega_1 \omega}$. Φ is Borel complete if, for all Ψ , $\Psi \leq_{_{\!B}} \Phi$.

Theorem (Friedman, Stanley)

Lots of classes are Borel complete:

- Graphs
- Trees
- Linear orders
- Groups
- Fields
- . . .

Fact: If Φ is Borel complete, then Φ is not Borel.

A Serious Question

It's somewhat clear how to show that $\Phi \leq_{\!\scriptscriptstyle B} \Psi.$

How is it possible to show that $\Phi \not\leq_{\scriptscriptstyle B} \Psi$?

Partial answer: there are some techniques, but they only apply when Φ or Ψ is Borel (and low in the hierarchy).

Very little is known when you can't assume Borel.

Roadmap, II

- Borel Reductions
- Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality
- Connections
- 4 Extended Examples

Back-and-Forth Equivalence

Let M and N be L-structures. $\mathcal{F}: M \to N$ is a back-and-forth system if:

- **①** \mathcal{F} is a nonempty set of partial functions $M \to N$
- ② All $f \in \mathcal{F}$ preserve L-atoms and their negations
- **③** For all $f \in \mathcal{F}$, all $m \in M$, and all $n \in N$, there is a $g \in \mathcal{F}$ where $m \in \text{dom}(g)$, $n \in \text{im}(g)$, and $f \subset g$

Say $M \equiv_{\infty\omega} N$ if there is such an \mathcal{F} .

If $M \cong N$ then $M \equiv_{\infty\omega} N$. If M and N are countable and $M \equiv_{\infty\omega} N$, then $M \cong N$.

Back-and-Forth Equivalence, II

 $M \equiv_{\infty\omega} N$ means they are the same from an "intrinsic perspective."

More precisely, the following are equivalent:

- M ≡_{∞ω} N
- For every $\phi \in L_{\infty\omega}$, $M \models \phi$ iff $N \models \phi$
- In some $\mathbb{V}[G]$, $M \cong N$
- ullet In every $\mathbb{V}[G]$ making M and N countable, $M\cong N$

The relation " $M \equiv_{\infty \omega} N$ " is absolute.

Canonical Scott Sentences

Canonical Scott sentences form a canonical invariant of each $\equiv_{\infty\omega}$ -class. Given an L-structure M, a tuple \overline{a} , and an ordinal α , define $\phi_{\alpha}^{\overline{a}}(\overline{x})$ as follows:

$$\begin{split} \phi_0^{\overline{a}}(\overline{x}) &\text{ is qftp}(\overline{a}) \\ \phi_{\lambda}^{\overline{a}}(\overline{x}) &\text{ is } \bigwedge_{\beta < \lambda} \phi_{\beta}^{\overline{a}}(\overline{x}) \text{ for limit } \lambda \\ \phi_{\beta+1}^{\overline{a}}(\overline{x}) &\text{ is } \phi_{\beta}^{\overline{a}}(\overline{x}) \wedge \left(\forall y \bigvee_{b \in M} \phi_{\beta}^{\overline{a}b}(\overline{x}y) \right) \wedge \bigwedge_{b \in M} \exists y \phi_{\beta}^{\overline{a}b}(\overline{x}y) \end{split}$$

For some minimal α^* , for all $\overline{a} \in M$, $\phi_{\alpha^*}^{\overline{a}}(\overline{x})$ implies $\phi_{\alpha^*+1}^{\overline{a}}(\overline{x})$.

Define
$$\operatorname{css}(M)$$
 as $\phi_{\alpha^*}^{\emptyset} \wedge \bigwedge_{\overline{a} \in M} \forall \overline{x} \phi_{\alpha^*}^{\overline{a}}(\overline{x}) \to \phi_{\alpha^*+1}^{\overline{a}}(\overline{x})$

Canonical Scott Sentences, II

For all M, N, the following are equivalent:

- $\mathbf{0} M \equiv_{\infty \omega} N$

Also, if $|M| = \lambda$, then $css(M) \in L_{\lambda^+\omega}$.

Also, the relation " $\phi = css(M)$ " is absolute.

Also also, the property " ϕ is in the form of a canonical Scott sentence" is definable and absolute.

Consistency

Proofs in $L_{\infty\omega}$:

- Predictable axiom set
- $\bullet \ \phi, \phi \to \psi \vdash \psi$
- $\{\phi_i : i \in I\} \vdash \bigwedge_{i \in I} \phi_i$

Proofs are now trees which are well-founded but possibly infinite.

 $\phi \in L_{\infty\omega}$ is consistent if it does not prove $\neg \phi$.

Warning: folklore

Consistency, II

If $\phi \in L_{\omega_1 \omega}$ is formally consistent, then it has a model.

This is not true for larger sentences:

- Let $\psi = \cos(\omega_1, <)$, so ψ has no countable models.
- Let $L = \{<\} \cup \{c_n : n \in \omega\}.$
- Let $\phi = \psi \wedge (\forall x \bigvee_n x = c_n)$

Then ϕ is formally consistent, but ϕ has no models.

Fact: the property " ϕ is consistent" is absolute.

Potential Cardinality

Let $\Phi \in L_{\omega_1\omega}$. $\sigma \in L_{\infty\omega}$ is a potential canonical Scott sentence of Φ if:

- $oldsymbol{0}$ σ has the syntactic form of a CSS
- \odot σ proves Φ

Let $CSS(\Phi)$ be the set of all these sentences. Let $\|\Phi\| = |CSS(\Phi)|$.

Easy fact:
$$I(\Phi, \aleph_0) \leq I_{\infty\omega}(\Phi) \leq \|\Phi\|$$
.

Note: $I_{\infty\omega}(\Phi)$ is the number of models of Φ up to $\equiv_{\infty\omega}$

A Few Examples

- If T is \aleph_0 -categorical, ||T|| = 1.
- If T is the theory of algebraically closed fields, $||T|| = \aleph_0$: Coded by the transcendence degree: 0, 1, 2, ... or "infinite."
- If $T=(\mathbb{Q},<,c_q)_{q\in\mathbb{Q}}$, then $\|T\|=\beth_2$. Models are coded by which 1-types they realize, and how.

All these examples are grounded – every potential Scott sentence has a model. Weirder examples won't have this property.

Roadmap

- Borel Reductions
- 2 Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality
- 3 Connections
- 4 Extended Examples

The Connection

If $f: \Phi \leq_{\mathcal{B}} \Psi$, then f induces an injection from the countable Scott sentences of Φ to the countable Scott sentences of Ψ .

Theorem (Ulrich, R., Laskowski)

If $f: \Phi \leq_{\!\scriptscriptstyle B} \Psi$, then get an injection $\overline{f}: \mathrm{CSS}(\Phi) \to \mathrm{CSS}(\Psi)$.

Proof Idea:

- Fix $\tau \in CSS(\Phi)$.
- $\overline{f}(\tau)$ is what f would take τ to, in some $\mathbb{V}[G]$ making τ countable.
- Schoenfield: " $\exists M \in \mathrm{Mod}_{\omega}(\Phi) \ (M \models \tau \land f(M) \models \sigma)$ " is absolute
- If G_1 and G_2 are independent, then $\mathbb{V}[G_1] \cap \mathbb{V}[G_2] = \mathbb{V}...$
- ... so $\overline{f}(\tau) \in \mathbb{V}$ and $\overline{f}(\tau) \in \mathrm{CSS}(\Psi)$.

Some Easy Facts

Fact: If Φ is Borel, then $\|\Phi\| < \beth_{\omega_1}$ Proof Idea:

- (Hjorth): If Φ is Π^0_{α} , then Φ is reducible to \cong_{α} .
- $\|\cong_{\alpha}\|=\beth_{-1+\alpha+1}$, so $\|\Phi\|\leq \beth_{-1+\alpha+1}$.

Fact: If Φ is Borel complete, then $\|\Phi\| = \infty$ Proof Idea:

- ullet (Folklore): all ordinals are back-and-forth inequivalent, so $\|LO\|=\infty.$
- LO $\leq_{\mathcal{B}} \Phi$, so $\|\Phi\| = \infty$.

Some Excellent Questions

Hanf Number: Is it possible to get $\beth_{\omega_1} \leq \|\Phi\| < \infty$? Unknown!

Is it possible for $\|\Phi\| = \infty$ when Φ is not Borel complete? Yes!

Unknown if there are first-order examples

Is it possible for $\|\Phi\| < \beth_{\omega_1}$ when Φ is not Borel? Yes! And there are first-order examples!

The last "yes!" answers a stubborn conjecture: Can a first-order theory be neither Borel nor Borel complete?

One Answer

Theorem (Friedman, Stanley)

Let Φ be the sentence describing abelian p-groups, for some prime p. Then Φ is not Borel and not Borel complete. Also, $\|\Phi\| = \infty$.

Proof Sketch

- Can construct *p*-groups of arbitrary (ordinal) Ulm height, so $\|\Phi\| = \infty$, so Φ is not Borel.
- Can't embed countable sets of reals into Φ : Suitably generic sets of reals go to the same group, so injectivity fails.

So it is possible for Φ to be neither Borel nor Borel complete. What about for a first-order theory?

Three First Order Examples

We worked with three complete first-order theories: REF , K , and TK .

REF is superstable, classifiable (depth 1), and not \aleph_0 -stable. $\|REF\| = \beth_2$, so REF is not Borel complete, but REF is not Borel.

K is \aleph_0 -stable and classifiable (depth 2). $\|K\| = \beth_2$, so K is not Borel complete, but K is not Borel.

TK is \aleph_0 -stable and classifiable (depth 2). TK is Borel complete, so $\|TK\| = \infty$, but $I_{\infty\omega}(TK) = \beth_2$.

REF is grounded; TK is not; groundedness of K is open.

Refining Equivalence Relations

REF is in the following language: $L = \{E_n : n \in \omega\}$. REF states:

- **1** Each E_n is an equivalence relation, all classes infinite
- ② E_n has exactly 2^n classes
- 3 Each E_n class refines into exactly E_{n+1} classes

REF is superstable but not \aleph_0 -stable (type counting).

In fact REF is super nice from a stability-theory perspective.

REF has Many Countable Models

We can embed "countable sets of reals" into $\mathrm{Mod}_{\omega}(\mathrm{REF})$.

Proof sketch:

- Pretend we have names from 2^n for each E_n class
- Then we have names from 2^{ω} for each E_{∞} class
- Any dense $X\subset 2^\omega$ can be the set of E_∞ class we actually realize (say, realize them infinitely many times)
- \bullet Coding trick: we can realize certain E_{∞} classes finitely many times, so that we still get this naming

So $\cong_2 \leq_{\!\scriptscriptstyle B} {\operatorname{REF}}$ and $I_{\infty\omega}({\operatorname{REF}}) \geq \beth_2$

REF is Grounded

Recall: Φ is grounded if everything in $\mathrm{CSS}(\Phi)$ has a model.

Theorem: Let $\phi \in CSS(REF)$. Then ϕ has a model. Proof sketch:

- Let V[G] think ϕ is countable, so it has a model
- ullet The countable model M of ϕ is *unique* up to isomorphism
- Compute a bunch of invariants of M in $\mathbb{V}[G]$
- Even if $M \notin \mathbb{V}$, all the invariants are in \mathbb{V}
- In \mathbb{V} , build a model $N \models \text{REF}$
- In $\mathbb{V}[G]$, show $M \equiv_{\infty \omega} N$, so that $N \models \phi$ in \mathbb{V}

Note: the invariants are essentially a tree of Scott sentences extending ϕ , in a larger language, plus some related trees

REF is not Borel Complete

Theorem: $I_{\infty\omega}(REF) = \beth_2$ Proof sketch:

- We already know $I_{\infty\omega}({\rm REF}) \geq \beth_2$
- Let $M \models REF$ be arbitrary.
- Let $N \subset M$ drop all but a countable subset of each E_{∞} class
- $|N| \leq \beth_1$ and $M \equiv_{\infty\omega} N$.
- There are at most \beth_2 models of size \beth_1 , up to $\equiv_{\infty\omega}$
- So $I_{\infty\omega}(\text{REF}) \leq \beth_2$

Corollary: $||REF|| = \beth_2$

Corollary: REF is not Borel complete

So Far, So Normal

What we know so far:

- REF is tame, from a stability-theory perspective
- REF is grounded
- $\|\mathrm{REF}\| = I_{\infty\omega}(\mathrm{REF})$, and both are a reasonable, small number
- REF is not Borel complete

Everything right now makes REF look very well-behaved.

REF is Not Borel

REF has countable models of arbitrarily high Scott ranks.

The Construction: Fix $A, B \models \text{REF}$ countable where $A \equiv_{\alpha} B$ and $A \ncong B$. Fix $X \subset 2^{\omega}$ countable and dense. Construct M_X as a branching balanced bubble model as follows:

Realize the E_{∞} -class of $\eta \in 2^{\omega}$ iff $\eta \in X$.

If $X \neq Y$, then $M_X \equiv_{\alpha+1} M_Y$ but $M_X \ncong M_Y$.

Wrapup on REF

Thus REF is an example of the following:

- A complete first order theory in a countable language, where
- The isomorphism relation is not Borel, and
- The isomorphism relation is not Borel complete

More importantly: potential cardinality gives a way to show the nonexistence of a Borel reduction, even when the underlying isomorphism relation is not Borel.

Side benefit: the proof was model-theoretic, rather than forcing-theoretic.

Note: after naming $acl(\emptyset)$, the theory is Borel (in fact Π_3^0).

Koerwien's Example

The theory K is in the language $L = \{U, C_n, V_n, S_n, \pi_n : n \in \omega\}$. K states:

- U and each of the V_n are infinite sorts; C_n is a sort of size two
- $\pi_n: V_n: U \times C_0 \times \cdots C_n$ is a surjection
- $S_n: V_n \to V_n$ is a successor function
- $\pi_n \circ S_n = \pi_n$

 K is \aleph_0 -stable, classifiable, and has depth two

K is not Borel, but $||K|| = I_{\infty\omega}(K) = \beth_2$; K may not be grounded; It is unknown if K and REF are $\leq_{_{B}}$ -comparable

Note: $\operatorname{Aut}(\operatorname{acl}(\emptyset))$ is $(2^{\omega}, +)$, which is abelian; after naming $\operatorname{acl}(\emptyset)$, isomorphism is Π_3^0

The Koerwien Tweak

The theory TK is in the language $L = \{U, C_n, V_n, S_n, \pi_n, p_n : n \in \omega\}$. TK states:

- U and each of the V_n are infinite sorts; C_n is a sort of size 2^n
- $\pi_n: V_n \to U \times C_n$ is a surjection
- $p_n: C_{n+1} \to C_n$ is a two-to-one surjection
- $S_n: V_n \to V_n$ is a successor function
- $\pi_n \circ S_n = \pi_n$

 TK is \aleph_0 -stable, classifiable, and has depth two

TK is Borel complete, but $I_{\infty\omega}(TK) = \beth_2$, so not Borel and not grounded

Note: the only difference between TK and K is $Aut(acl(\emptyset))$; Here $Aut(acl(\emptyset))$ is $Aut(2^{<\omega},<)$, which is highly nonabelian After naming $acl(\emptyset)$, K and TK become equivalent (so Π_3^0)

The End

Thank you!

The paper in question: arXiv:1510.05679