



### Universidade

#### Estadual de Londrina

#### Centro de Tecnologia e Urbanismo Departamento de Engenharia Elétrica

Laboratório de 2ele044 T-1011 e T-1012

Londrina, \_\_ de \_\_\_\_\_de 2015.

Nome:

Primeiro exercício

Determinar a solução da equação de estado,

$$\frac{d}{dt}x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x$$

para excitação degrau unitário e estado inicial x(0) = [ 1 0,5 -0,5 ]'

Neste exemplo, a função **step** não poderá ser utilizada uma vez que pressupõe condições iniciais nulas A solução será dada utilizando-se a função **Isim**.

Segundo Exercício

Para um sistema linear, invariante no tempo, de segunda-ordem descrito pela função de transferência,

$$G(s) = \frac{1}{s^2 + 2\zeta s + 1}$$

Determinar e plotar a resposta a degrau, para  $\zeta = 0$ , 0,2, 0,4, 1,2, em um mesmo gráfico

Plotar 2D e 3D.





# Universidade

## Estadual de Londrina

### Centro de Tecnologia e Urbanismo Departamento de Engenharia Elétrica

| Laboratório de 2ele044 T-1011 e T-1012                                                             | Londrina, _                      | _ de                     | de 2015. |
|----------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----------|
| Nome:                                                                                              |                                  |                          |          |
| Distemas de Primeiro Ordem:                                                                        | 1(6) = K<br>R(s) Ts+1            |                          | 1/41     |
| distinas de segunda orden $\frac{1}{R(s)} = \frac{\omega}{s^2}$                                    | 2 27 Wn S+ Wn                    |                          |          |
| Dado a F.T. de primeira ordem, est<br>um impulso, um degrau e uma nampa<br>a) 15+1; b) 15-1        | tude o compos<br>(p/rampa rej    | itamente, as<br>a lsim). | plicande |
| Aplique o T.V. F. no item 1.                                                                       |                                  |                          |          |
| 3) Dado um sistema de segunda ordem,                                                               | aplique um d                     | legrau unit              | ákie.    |
| a) law sub amortecido, raízes complexa $\frac{Y(3)}{R(5)} = \frac{13}{5^2 + 45 + 13}$ , encontre o | s eonjugadas,<br>o rawjes, wn e? | 0<5<1.                   |          |
| b) Caso criticamente amortecido 3=1<br>YG = 9, encentre naízes, a<br>RGI S765+9                    |                                  |                          |          |
| c) lave super amorticide, 5>1                                                                      |                                  |                          |          |
| $\frac{y(s)}{R(s)} = \frac{18}{s^2 + 27 \omega_0 S + 18}$ , varie                                  | 3=2 27=                          | 3                        |          |





# Universidade

## Estadual de Londrina

### Centro de Tecnologia e Urbanismo Departamento de Engenharia Elétrica

| Laboratório de 2ele044 T-1011 e T-1012 | Londrina, de | de 2015. |
|----------------------------------------|--------------|----------|
| Nome:                                  |              |          |