

NFA与DFA在定义语言能力上是否等价?

• 图示是否定义了同样的语言?

定义语言L的 DFA只有一个 还是多个?

定义语言L的 NFA只有一个 还是多个?

结论是:不管 多少,定义语 言L的DFA和 NFA都是彼此 相互等价的。

DFA与NFA等价性

定理2.1: 语言L为某个DFA接受当且仅当它为某个NFA接受

- 二者的字母表相同,设为 Σ 。
- 无论w∈Σ是为哪一个FA所接受,当且仅当它们都有一条标记 为w的、始端为初始状态、末端为接受状态的路径存在。

- 证明:
 - (当)构造性证明任一个NFA都能被等价地转换为DFA。
 - (仅当)显然,任一DFA都是一个NFA特例。

已知NFA (Q, Σ, v, q_0, F) ,构造与其等价的一个DFA。

思路:将Q的子集作为DFA的状态,求v'(**子集构造法**)

对于 $S, T \subseteq Q$, 如果 $\forall p \in T \cdot \exists q \in S \cdot p \in v(q, a)$, 那么T = v'(S, a), 意味着S, T是DFA的状态, v'是DFA的转移函数。从而,

 $v' = \{((S, a), T) \mid S \subseteq Q, a \in \Sigma, T = \bigcup q \in S \cdot v(q, a)\}$

 $F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$

得到完全形DFA $(2^Q, \Sigma, v', \{q_0\}, F')$

最后,去除无用状态得到 Q_D 。令 $\mathfrak{q}_0=\{q_0\}$,即有,

 $Q_D = \{ q \in 2^Q \mid PATH[q_0, q, x] \land PATH[q, q_1, y], x, y \in \Sigma^*, q_1 \in F' \}$

 $v_D = \{((S, a), T) \in v' \mid S, T \in Q_D\}$

 $F_D = \{S \in Q_D \mid S \cap F \neq \emptyset\}$

最终构造出最简形DFA $(Q_D, \Sigma, v_D, \{q_0\}, F_D)$ 。

NFA到DFA子集构造法

状态 NFA: DFA: $\{q_0\}$ $\{q_0, q_1\}$ $(\{q_0,q_1,q_2\})$ $\{q_0, q_2\}$ $\{q_1\}$

对每一个NFA状态的子集DFA都有一个状态与之对应。

 $\{q_2\}$

 $\{q_1,q_2\}$

NFA到DFA的子集构造法

• 转移

NFA到DFA的子集构造法

含有NFA接受状态的集合作为DFA接受状态。

NFA到DFA的子集构造法

最后,删除不可达和不能到接受状态的那些状态。

基于活动状态集的惰性构造方法

已读前缀x,剩余串ay; 当前输入符号a; 当前状态集合 T_{i-1} = $\tilde{v}(q_0, x)$

输入串xay

已读前缀xa, 剩余串y; 当前状态集合 T_i ; $T_i = \tilde{v}(q_0, xa)$

例:基于活动状态集的NFA转DFA

NFA 到 DFA 的子集构造算法

```
输入: NFA(Q, \Sigma, v, q_0, F)
输出: DFA (\mathbb{Q}, \Sigma, move[], \{q_0\}, \{S \in \mathbb{Q} \mid S \cap F \neq \emptyset\})
\mathbb{Q} = \emptyset;
move[] = NIL;
将\{q_0\}加入Q且未标记;
while (\mathbb{Q} 中存在一个未标记元素S) {
         标记S:
         for (a \in \Sigma){
                   T = \bigcup q \in S \cdot v(q, a);
                   if (T \notin \mathbb{Q}) 将T 加入\mathbb{Q} 中且未标记;
                   move[S, a] = T
```


	0	1
{0}	{0}	{0,1}
{0,1}	{0,2}	{0,1}
{0,2}	{0}	{0,1,3}
{0,1,3	} {0,2}	{0,1}

括号中数字i代表状态 q_i

子集法示例

子集构造法的正确性

- <u>定理2.2:</u> 若 DFA D 是从NFA N 通过子集构造法构造而成,则 L(D) = L(N)。
- 依照w 长度归纳 $\tilde{v}_N(q_0, w) = \tilde{v}_D(\{q_0\}, w)$
 - 基础: 对于 $w = \varepsilon$, $\tilde{v}_N(q_0, \varepsilon) = \tilde{v}_D(\{q_0\}, \varepsilon) = \{q_0\}$ 。
 - 归纳步: 假定归纳假设 (IH) 是对短于w 的串成立。 令w = xa,则IH对于x 成立。
 - 那么,令 $\tilde{v}_N(q_0, x) = \tilde{v}_D(\{q_0\}, x) = S$
 - $\diamondsuit T = \bigcup p \in S \cdot v_N(p, a)$
 - 则根据子集构造法知 $\tilde{v}_D(\{q_0\}, w) = v_D(\tilde{v}_D(\{q_0\}, x), a) = v_D(S, a) = \bigcup p \in S \cdot v_N(p, a) = T$
 - 同时根据定义知 $\tilde{v}_N(q_0, w) = \bigcup p \in \tilde{v}_N(q_0, x) \cdot v_N(p, a) = T$
 - 得证。

	0	1
$\{q_0\}$		

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0\}$ $\{q_0,q_1\}$		

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0\}$ $\{q_0,q_1\}$	$\{q_0,q_1\}$ $\{q_0,q_1,q_2\}$	$\{q_0\}$

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0, q_1, q_2\}$		

• 识别包含001子串的0-1串,NFA转换为DFA

	0	1
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_3\}$

2025/3/1

	0	1
>{q ₀ }	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_3\}$
$*\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$*\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_3\}$
$*\{q_0,q_1,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_3\}$

• 识别包含001子串的0-1串,NFA转换为DFA

	0	1
$>{q_0}/{p_0}$	$\{q_0,q_1\}/p_1$	${q_0}/{p_0}$
${q_0,q_1}/{p_1}$	$\{q_0,q_1,q_2\}/p_2$	$\{q_0\}/p_0$
${q_0,q_1,q_2}/{p_2}$	$\{q_0,q_1,q_2\}/p_2$	${q_0,q_3}/{p_3}$
$*{q_0,q_3}/p_3$	$\{q_0,q_1,q_3\}/p_4$	$\{q_0,q_3\}/p_3$
$*{q_0,q_1,q_3}/{p_4}$	$\{q_0,q_1,q_2,q_3\}/p_5$	${q_0,q_3}/{p_3}$
$*{q_0,q_1,q_2,q_3}/p_5$	$\{q_0,q_1,q_2,q_3\}/p_5$	$\{q_0,q_3\}/p_3$

2025/3/1

子集法NFA转DFA结果

• 识别包含001子串的0-1串,NFA转换为DFA

Command:

List of States:
State[0] State[1] State[2] State[3] - Final state State[4] - Final state State[5] - Final state
List of Transitions:
State[0]> 0> State[1] State[0]> 1> State[0]
State[1]> 0> State[2] State[1]> 1> State[0]
State[2]> 0> State[2] State[2]> 1> State[3]
State[3]> 0> State[4] State[3]> 1> State[3]
State[4]> 0> State[5] State[4]> 1> State[3]

	0	1
$\rightarrow p_0$	p_1	p_0
p_1	p_2	p_0
p_2	p_2	p_3
*p3	p_4	p_3
*p4	p_5	p_3
*p5	p_5	p_3

Automata Design

ε 转移与 ε -NFA

- ε 转移: 不消耗输入符号发生状态转移
- 用符号 ϵ 标记 ϵ 转移。含有 ϵ 转移的NFA就是 ϵ -NFA

接受.

a, b, aab, bab, aabab, ...

拒绝:

 ε , aa, ba, bb, ...

观察活动状态集变化情况:初始为 $\{q_0, q_1\}$;遇到a或b都转移到 $\{q_2\}$; $\{q_2\}$ 遇到a转移到 $\{q_1\}$ 。

例:有符号十进制定点数

由四部分依次组成:

- (1)+号,-号或空;
- (2)数字串或空:
- (3) 小数点:
- (4)数字串或空。

限定(2)和(4)不能同时为空。

精化:

- 1) 无前()、后()
- 2) 可无小数点

例:识别金额和账号的NFA

识别的这个符号串可能是金额,也可能是账号。 类似地:识别这样的0-1符号串,它或者包含偶 数个0或者包含奇数个1

	0	1
$\rightarrow 0$	0	o_1
* <i>o</i> ₁	o_1	0

识别串含有偶数个0或者奇数个1

	0	1	8
$\rightarrow q_0$	Ø	Ø	$\{e_0, o\}$
$ *e_0 $	$\{e\}$	$\{e_0\}$	Ø
e	$\{e_0\}$	$\{e\}$	Ø
0	$\{o\}$	$\{o_1\}$	Ø
*01	$\{o_1\}$	$\{o\}$	Ø

28

状态的ε闭包

> 状态q 的ε闭包,记为ω(q),指自身以及经过连续ε转移所能到达的状态的集合(不消耗输入)

2025/3/1

ε -NFA的 ε 闭包与 ε 闭集

- 状态q的 ϵ 闭包: $\omega(q)$
- 状态集合S的 ϵ 闭包: $\omega(S)=\bigcup q\in S\cdot\omega(q)$
 - 状态集合S为 ε 闭集当且仅当 $S=\omega(S)$
 - 对任意状态集合S, $\omega(S)$ 是 ε 闭集
- ϵ 闭集概念扩展了活动状态集概念 用于实现 ϵ -NFA判定性质

例:

	0	1	3
$\rightarrow q_0$	Ø	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0$, q	y_1 } Ø	$\{q_2\}$
$*q_2$	Ø	Ø	Ø

S'	$\omega(S)$
Ø	Ø
$\{q_0\}$	$\{q_0, q_1, q_2\}$
$\{q_1\}$	$\{q_1,q_2\}$
$\{q_2\}$	$\{q_2\}$
$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$
$\{q_0,q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0,q_1,q_2\}$

ε 闭集与 ε -NFA判定性质

输入串: ε ; 00; 001; 101; 11

	0	1	arepsilon
$\rightarrow q_0$	Ø	$\{q_1\}$	$\{q_1\}$
$ q_1 $	$\{q_0,q$	₁ } Ø	$\{q_2\}$
$*q_2$	Ø	Ø	Ø

	$\omega()$
Ø	Ø
$ \{q_0\} $	$\{q_0,q_1,q_2\}$
$\{q_1\}$	$\{q_1,q_2\}$
$\{q_2\}$	$\{q_2\}$
$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$
$\{q_0,q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_1,q_2\}$	$\{q_1, q_2\}$
$ \{q_0,q_1,q_2\} $	$\{q_0,q_1,q_2\}$

已读前缀x; 剩余串ay;

当前输入符号a;

当前状态集合 $S=\tilde{v}(q_0,x)$

输入串xay

已读前缀xa; 剩余串y; 转移状态集合: $T = \omega(\bigcup p \in S \cdot v(p, a))$

扩展的转移函数

- 基础: $\tilde{v}(q,\varepsilon) = \omega(q)$
- 归纳: $\tilde{v}(q,xa)=?$
 - \diamondsuit : $\tilde{v}(q,x) = S$
 - \diamondsuit : $T = \bigcup p \in S \cdot v(p, a)$
 - 则: $\tilde{v}(q,xa) = \bigcup p \in T \cdot \omega(p)$, 或者, $\tilde{v}(q,xa) = \omega(T)$
- $\tilde{v}(q,w)$ 是始端为q,标记为w 的路径的末端之集合。
 - 注意,路径标记w和弧的标记a、 ε 的关系
- ε-NFA语言:
 - $\forall \exists \varepsilon$ -NFA $B = (Q, \Sigma, v, q_0, F)$,
 - 语言为 $L(B) = \{ w \in \Sigma^* \mid \tilde{v}(q_0, w) \cap F \neq \emptyset \}$

扩展转移函数的例子

$$\tilde{v}(q,\varepsilon) = \omega(q);$$

 $\tilde{v}(q,xa) = \omega(\bigcup r \in \tilde{v}(q,x) \cdot v(r,a))$

	0	1	3
$\rightarrow *q_0'$	Ø	Ø	$\{q_0\}$
$ q_0 $	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_3\}$
$ q_1 $	Ø	$\{q_2\}$	Ø
q_2	Ø	Ø	Ø
q_3	Ø	$\{q_2\}$	Ø

• 模拟w =101?

```
\begin{split} \tilde{v}(q_0', 101) &= \bigcup x \in \tilde{v}(q_0', 10) \cdot \omega v(x, 1) \\ &= \bigcup x \in (\bigcup y \in \tilde{v}(q_0', 1) \cdot \omega v(y, 0)) \cdot \omega v(x, 1) \\ &= \bigcup x \in (\bigcup y \in (\bigcup z \in \tilde{v}(q_0', \varepsilon) \cdot \omega v(z, 1))) \cdot \omega v(y, 0)) \cdot \omega v(x, 1) \\ &= \bigcup x \in (\bigcup y \in (\bigcup z \in \{q_0', q_0, q_3\} \cdot \omega v(z, 1)) \cdot \omega v(y, 0)) \cdot \omega v(x, 1) \\ &= \bigcup x \in (\bigcup y \in \{q_0, q_2, q_3\} \cdot \omega v(y, 0)) \cdot \omega v(x, 1) \\ &= \bigcup x \in \{q_0, q_1, q_3\} \cdot \omega v(x, 1) = \{q_0, q_2, q_3\} \end{split}
```


消除 ε 转移(转为NFA)

- ε-NFA (Q, Σ, v, q_0, F) 转为NFA $(Q, \Sigma, move[], q_0, F)$
- move $[q, a] = \omega(\bigcup p \in \omega(q) \cdot v(p, a)), q \in Q, a \in \Sigma$
- · 然后消除NFA中不可达情形①和②即得结果。

	0	1	3
$\rightarrow q_0$	Ø	$\{q_1\}$	$\{q_1\}$
$ q_1 $	$\{q_0,q$	y_1 } Ø	$\{q_2\}$
$ *q_2 $	Ø	Ø	Ø

	0	1
$\rightarrow q_0$	$\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$
	$\{q_0,q_1,q_2\}$	(41,42) Ø
$\begin{vmatrix} q_1 \\ *_{\alpha} \end{vmatrix}$	$\{9_0, 9_1, 9_2\}$	Ø
$*q_2$	Ø	Ø

减少ε转移

· 带有ε弧的路径用单一的转移替代

· 经*c*弧到达原终结状态的所有状态都是结束状态

ε -NFA 到 DFA 的子集构造法

```
输入: \varepsilon\text{-NFA}(Q, \Sigma, v, q_0, F)。
输出: DFA (\mathbb{Q}, \Sigma, move[], \omega(q_0), {S \in \mathbb{Q} \mid S \cap F \neq \emptyset})。
\mathbb{Q} = \emptyset; move[] = NIL;
\omega(\{q_0\})加入Q且未标记;
                                                                                                \varepsilon
while \mathbb{Q} 中存在一个未标记元素S {
                                                                                     \{q_1\}
                                                                                                \{q_1\}
           标记S:
                                                                         \{q_0,q_1\} Ø
                                                                                                \{q_2\}
           for (a \in \Sigma) {
                      T = \omega(\bigcup q \in S \cdot v(q, a));
                      if (T \notin \mathbb{Q}) T加入\mathbb{Q} 中且未标记;
                      move[S, a] = T
                                                   \rightarrow * | \{q_0, q_1, q_2\} \{q_0, q_1, q_2\} \{q_1, q_2\} 
                                                         \{q_1,q_2\} \{q_0,q_1,q_2\}
2025/3/1
```


	0-9	+,-	
$\rightarrow \{q_0,q_1\}$	$\{q_1,q_3\}$	$\{q_1\}$	$\{q_2\}$
$\{q_1,q_3\}$	$\{q_1,q_3\}$	Ø	$\{q_2, q_4, q_5\}$
$ \{q_1\} $	$\{q_1,q_3\}$	Ø	$\{q_2\}$
$ \{q_2\} $	$\{q_4$, $q_5\}$	Ø	Ø
$*{q_2,q_4,q_5}$	$\{q_{4},q_{5}\}$	Ø	Ø
$*{q_4,q_5}$	$\{q_4, q_5\}$	Ø	Ø

2025/3/1

子集构造法的正确性

- <u>定理2.3:</u> 语言L 被某个 ε -NFA接受当且<u>仅当</u>L 为某个DFA接受。
- 依照w 长度归纳 $\tilde{v}_N(q_0, w) = \tilde{v}_D(\omega(\{q_0\}), w)$ 。
 - 基础:对于 $w=\varepsilon$,有 $\tilde{v}_N(q_0,\varepsilon)=\tilde{v}_D(\omega(\{q_0\}),\varepsilon)=\omega(\{q_0\})$ 。
 - 归纳: 归纳假设IH对所有短于w的串成立。 令w=xa,由IH知对于x成立,令其为 $\tilde{v}_N(q_0,x)=\tilde{v}_D(\omega(\{q_0\}),x)=S$ 。
 - 那么有如下推导:
 - ① 根据定义 $\tilde{v}_N(q_0,xa) = \bigcup p \in S \cdot \omega(v_N(p,a)) = \omega(\bigcup p \in S \cdot v_N(p,a)), 令为T;$
 - ② 则根据子集构造法有 $v_D(S,a)= \bigcup p \in S \cdot \omega(v_N(p,a)) = T$;
 - ③ 那么 $\tilde{v}_D(\omega(\{q_0\}), xa) = v_D(\tilde{v}_D(\omega(\{q_0\}), x), a) = v_D(S, a) = T$ = $\tilde{v}_N(q_0, w)$ 。 得证。
 - $_{2025/3/4}$ 结论: DFA \equiv NFA $\equiv \varepsilon$ -NFA, 都接受正则语言

小结

- 知识点: NFA(包括ε-NFA)转DFA的子集构造法、 状态的ε闭包、状态集合的ε闭包、ε闭集、 扩展转移函数、NFA语言、 NFA三种表示。
- 形式化记号: 转移函数v()、扩展转移函数 $\tilde{v}()$ 、 ε 闭包 $\omega()$ 、集合运算 $Uq \in S \cdot v(q,a)$ 。

• 作业: 2.5节习题2.6~2.7