

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

THE CALCULATION OF THE NORM IN IGNEOUS ROCKS

GEORGE I. FINLAY Colorado College

In presenting to successive classes of students in petrography the method of calculating the norm for igneous rocks under the quantitative classification of Cross, Iddings, Pirsson, and Washington, the writer has found such a selection of calculated analyses as is here given, accompanied by discussion, of great service. For practice in calculation the collection of analyses with their norms by Dr. H. S. Washington given in Professional Papers 14 and 28 of the U.S. Geological Survey is invaluable. Of the calculated analyses which follow, all but two are taken from *Professional Paper 14*. By using the tables given at the end of the Quantitative Classification of Igneous Rocks¹ the arithmetical work in calculating the norms is very greatly lessened. The first set of tables, prepared by Professor J. F. Kemp and originally published in the School of Mines Quarterly,2 gives the molecular proportions for the percentage figures of the several oxides recorded in rock analyses. The second set of tables in the Quantitative Classification of Igneous Rocks gives the percentage weights for various proportions of molecules of the standard rock-making minerals. The molecular proportions may be calculated by dividing the percentage figures for each oxide by the molecular weight of the oxide. Thus for 65.70 per cent. silica the molecular proportion is 1.005, the molecular weight of SiO, being 60. The molecular proportion for 15.40 per cent. soda is .248, the molecular weight of Na₂O being 62. As a preliminary step in the calculation of an analysis the molecular proportions for each oxide must be looked up in the tables. amounts of MnO (.001 to .005), and NiO are to be used as FeO;

r Cross, Iddings, Pirsson, and Washington, Quantitative Classification of Igneous Rocks (Chicago: The University of Chicago Press, 1903), pp. 237-59.

² J. F. Kemp, "The Recalculation of the Chemical Analyses of Rocks," School of Mines Quarterly, XXVII, 75-88.

and in the same manner small amounts of BaO and SrO are to be added in with the CaO. If Cr₂O₃ does not amount to .002 it is to be added in with Fe₂O₃. For the calculation of a rock analysis we then start with the molecular proportions of the ten oxides SiO₂, Al₂O₃, Fe₂O₃, FeO, MgO, CaO, Na₂O, K₂O, TiO₂, and P₂O₅, which are contained in nearly every rock, and we may also have present ZrO₂, SO₃, Cl, F, and CO₂, besides H₂O; and, in smaller amounts, MnO and NiO to be summed in with FeO; BaO and SrO, to be added to CaO; and Cr₂O₃ which is to be counted as Fe₂O₃. ZrO₂, Cr₂O₃ in amount more than.002, TiO2, P2O5, SO3, Cl, CO2, and F, when they are present, are first calculated as minor inflexible molecules. Their calculation as zircon, chromite, ilmenite, apatite, noselite, sodalite, calcite, and fluorite presents no difficulty, for the method of procedure is always the same. The eight oxides SiO₂, Al₂O₃, Fe₂O₃, FeO, MgO, CaO, Na2O, and K2O are of much greater importance in the calculation of the norm, for any one of these oxides in a given analysis is disposed of with regard to the relative quantities of all the others. The difficulty in presenting to the student the method of procedure in its entirety lies in the fact that a rather long series of considerations is to be put before him at the very outset. The aim of the writer in the present paper is to develop little by little with the aid of examples and discussions the condensed, precise statement of the authors of the Quantitative Classification of Igneous Rocks, pp. 188-96.

The simplest cases are those in which SiO₂ and Al₂O₃ are present in relatively large amounts so that they meet all claims upon them and are not exhausted. Al₂O₃ remaining over is corundum, and SiO₂ remaining over after all the allotments is quartz. With SiO₂ present in abundance Al₂O₃ may meet all the claims of K₂O, Na₂O, and CaO upon it; or it may satisfy K₂O, Na₂O, and part of the CaO. Again it may satisfy only K₂O and part of the Na₂O; or, rarely, only part of the K₂O. So the treatment varies.

The norm minerals of the two groups, which figure in the calculation, with the abbreviations for their names, and their formulas, are as follows. The table is intended to set forth the relative importance of their several rôles in the norm.

I. SALIC GROUP

Dominantly Siliceous and Aluminous

A. QuartzSiO ₂	O.
CorundumAl ₂ O ₃	Č.
Orthoclase $K_2O.Al_2O_3.6SiO_2$	or.
AlbiteNa ₂ O.Al ₂ O ₃ .6SiO ₂	ab.
AnorthiteCaO.Al ₂ O _{3.2} SiO ₂	an.
Leucite	lc.
NepheliteNa ₂ O.Al ₂ O _{3.2} SiO ₂	ne.
KaliophiliteK ₂ O.Al ₂ O ₃ .2SiO ₂	kp.
B. Minor inflexible molecules	-
Sodalite3(Na ₂ O.Al ₂ O ₃ ,2SiO ₂).2NaCl	so.
Noselite2(Na ₂ O.Al ₂ O ₃ .2SiO ₂). Na ₂ SO ₄	no.
ZirconZrO ₂ .SiO ₂	Z.

Of the salic minerals kaliophilite is very rare, while sodalite, noselite, and zircon are much less rare but still unusual. (See note at end of paper on the substitution of halite, NaCl [Hl], and thenardite [Th], Na₂SO₄, for sodalite and noselite, respectively, among the salic minerals.)

II. FEMIC GROUP

	D: :1	
A.	Diopside	di
	Hypersthene(MgFe)O.SiO ₂	hy.
	Olivine2(MgFe)O.SiO ₂	ol.
	AcmiteNa ₂ O.Fe ₂ O ₃ .4SiO ₂	ac.
	Sodium metasilicateNa ₂ O.SiO ₂	ns.
	Potassium metasilicate	ks.
	Wollastonite	wo.
	Ackermanite4CaO.3SiO ₂	am.
В.	Minor inflexible molecules	
	MagnetiteFe ₂ O ₃ .FeO	mt.
	IlmeniteFeO.TiO ₂	il.
	ChromiteFeO.Cr ₂ O ₃	cm.
	HematiteFe ₂ O ₃	hm.
	TitaniteCaO.TiO ₂ .SiO ₂	tn.
	PerofskiteCaO.TiO ₂	pf.
	RutileTiO ₂	ru.
	Apatite3CaO. P_2O_5 . $\frac{CaCl_2}{3}$ or	
	$_{3}\text{CaO.P}_{2}\text{O}_{5}. \frac{\text{CaF}_{2}}{3}$	ap.
	FluoriteCaF ₂	ft.
	CalciteCaO.CO ₂	cc.
	PyriteFeS ₂	
	1 J 1100 1 CO2	pr.

Of the minor inflexible molecules in the femic group magnetite, ilmenite, and apatite are very common. The others occur occasionally.

Among the femic minerals diopside, hypersthene, and olivine appear very often in the norm, acmite and wollastonite are not unusual, while ackermanite, potash metasilicate, and soda metasilicate are rare. Among the minor inflexible mineral molecules magnetite, ilmenite, and apatite commonly appear; hematite, titanite, perofskite, fluorite, and pyrite are not infrequently met with; and chromite, rutile, and calcite are rare.

The minor inflexible molecules, with the exception of magnetite and hematite, will not be considered at the outset. They are not present in the first eight of the series of calculated analyses, but were they present they would claim attention in the first place. Their calculation is simple, but the form of presentation gains in clearness by bringing them in only after the main features of the calculation have been dealt with. The key to the disposal to be made of the important oxides SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, and K₂O lies in the relative affinities of K₂O, Na₂O, CaO, MgO, FeO, and Fe₂O₃, for SiO₂ and Al₂O₃. The point of prime importance is the amount of the two oxides SiO₂ and Al₂O₃. In the simpler cases K₂O, Na₂O, and CaO are to be allotted to Al₂O₃ and SiO₂ in the right proportions for the formation of the feldspars. K₂O has the strongest affinity for Al₂O₃ and SiO₂. It therefore has the first claim, and, after it has taken its quota of these oxides, Na₂O, with the next strongest affinity for them, receives its quota. Lastly CaO with an affinity less than the others is to be satisfied. The oxides MgO and FeO do not unite with both Al₂O₃ and SiO₂ at the same time in the normative minerals. They combine with SiO2 alone to form hypersthene and olivine, or with CaO and SiO2 to form diopside.

In Analysis A the simplest possible case is given. SiO₂ and Al₂O₃ are abundant, occurring in sufficient amounts to answer every claim of K₂O, Na₂O, and CaO upon them. Al₂O₃ remaining over is corundum, and SiO₂ remaining over is quartz. TiO₂ and P₂O₅ are not present, and no other elements occur which should be calculated as the minor inflexible mineral molecules. Fe₂O₃, FeO, and MgO not being present, there is nothing to be allotted for femic minerals.

In accordance with its formula $K_2O.Al_2O_3.6SiO_2$, in the proportions 1:1:6, for orthoclase, K_2O , 53, takes 53 Al_2O_3 and six times as much SiO_2 . In the same way albite, $Na_2O.Al_2O_3.6SiO_2$, in the proportions 1:1:6, with Na_2O , 60, takes 60 molecular-proportion units of Al_2O_3 and 6×60 of SiO_2 . Anorthite, $CaO.Al_2O_3.2SiO_2$, in the proportions 1:1:2, is made with 20 CaO, 20 Al_2O_3 , and 40 SiO_2 . Of Al_2O_3 , 3 molecular-proportion units are left for corundum. Of SiO_2 , 557 molecular-proportion units are left to form quartz. The percentage weights for the calculated minerals have been obtained from the second set of tables, pages 247–59, by looking up for orthoclase (or), the amount of K_2O , 53; for albite (ab), the amount of

ANALYSIS A
Toscanose (Aplite). Professional Paper 14, p. 172, No. 122
Dargo, Victoria, Australia

Percent- {	SiO ₂ 76.48	Al ₂ O ₃ 13.94	Fe ₂ O ₃ Trace	FeO None	MgO o.oi	CaO 1.08	Na ₂ O 3.70	K ₂ O 4.90	H ₂ O 1.01	Sum 101.12	
Molecular Propor- tions	1.275	. 136				.020	.060	.053	Salic N	Ainerals .	Femic Minerals
	318 360 40 557	53 60 20 3				20	60	53	or ab an C Q	29.5 31.4 5.6 .3 33.4	
	N	a a (r .053 b .060 n .020 c .003 2 .557	Sal. H ₂ O Sum	100.2 1.01 101.21						

 Na_2O , 60; for anorthite (an), the amount of CaO, 20; for corundum (C), the amount of Al_2O_3 , 3. To get quartz we multiply the amount of SiO_2 left over for it (557), by 60, the molecular weight of quartz. With abundant silica then and with Al_2O_3 greater than K_2O+Na_2O+CaO we make orthoclase, albite, anorthite, corundum with extra Al_2O_3 , and quartz with extra SiO_2 .

The sum of the percentage figures of the analysis, H₂O being 1.01, is 101.12. The sum of the calculated minerals in the norm with H₂O added in is 101.21, and for every calculated analysis these two should correspond as closely as 1 per cent. or 2 per cent. The correspondence cannot be numerically absolute, but it gives us a valuable check on the correctness of the calculation.

In Analysis B we have the same condition, except that FeO and Fe_2O_3 are both present. After the allotment for the feldspars has been made, and Al_2O_3 remaining over has been given to corundum (C), Fe_2O_3 and FeO, in the proportion 1:1, are allotted to magnetite (mt), and silica remaining over is quartz (Q).

ANALYSIS B
TEHAMOSE (QUARTZ PORPHYRY). Professional Paper 14, p. 132, No. 10
Tamaya, Chile

Percent- {	SiO ₂ 75·93	Al ₂ O ₃ 13.26	Fe ₂ O ₃	FeO o.68	MgO None	CaO	Na ₂ O 3.13	K ₂ O 3.19	H ₂ O 0.44	Sum 99.72	
Molecular Propor- tions	1.266	. 130	.009	.010		.020	.050	.034	Salic 1	Minerals	Femic Minerals
	204 300 40	34 50 20 26	9	9		20	50	34	or ab an C	18.9 26.2 5.6 2.7 43.3	mt 2.1
	N	оте.—1	FeO ne	Sal. Fem. H ₂ O	96.7 2.1 .44	Fem. 2.1					

The calculation of Analysis C is like the preceding one in its allotments for orthoclase (or), albite (ab), anorthite (an), corundum (C), and magnetite (mt). Then there remain over, besides SiO₂, 2 molecular-proportion units of MgO, and 15 of FeO. These are allotted to hypersthene (hy), (MgFe)O.SiO2, in the proportion (MgFe)O:SiO2 as 1:1. MgO and FeO are used in hypersthene in the ratio in which they happen to stand when this mineral comes to be made. Here the ratio is 2:15. In later analyses MgO and FeO will be introduced into the calculations in the minerals diopside (di), and olivine (ol), as well as in hypersthene. When all three or any two of them are to be made MgO and FeO are to stand in all of them in the same proportion in which they were used in the first of these minerals calculated at the time. In Analysis C it will be noted that hypersthene is the sum of two parts, MgO.SiO₂ and FeO.SiO₂, each of which is to be found separately. FeO.SiO2 may be looked up in the table on p. 254. MgO.SiO₂ is equal to 100 times the amount of MgO. These findings are added together for hypersthene.

ANALYSIS C ALASKASE (RHYOLITE). Professional Paper 14, p. 130, No. 1 Madison Plateau, Yellowstone National Park

		Femic Minerals			mt .9 6	hy 2.2 MgO.SiO ₂ .200		Fem. 3.1		
	Sum 99.83	Salic Minerals	19.5	% € % €			38.2	95.8	Fem. 3.1 H ₂ O .65	Sum 99.55
Laik	O.H 0.65	Salic	or ab	an			0	Sal.	Fem. H ₂ O	Sum
riadison i fatcau, i chowstone ivational i alk	K2O 3.33	.035	35							
watoric .	Na ₂ O 3.83	190.	19							
, remo	CaO 0.68	.012		12						
riarcar	MgO 0.09	200.				61				
Tacuson	FeO 1.37	010.			4	1.5	,			
1	Fe ₂ O ₃	.004			4					
	Al ₂ O ₃ 13.77	.135	35 61	12						
	SiO ₂ 75.19	1.253	210 366	24		17	636			
	Percentage	Molecular Proportions								

In Analysis D after the allotment for magnetite (mt), 3 molecular-proportion units of Fe₂O₃ are left over. These go in as hematite (hm). Then MgO, 4, and FeO, 0, are left over. They are used to make a hypersthene free from FeO. In like manner in other analyses hypersthene might be made of FeO.SiO₂, the other component MgO.SiO₂ not being available.

In analysis E the allotments are made for orthoclase (or), albite (ab), anorthite (an), and magnetite (mt). CaO remaining is allotted, with MgO, FeO, and SiO₂, to diopside (di), CaO.(MgFe)O.2SiO₂, the proportions of the constituents by the formula being 1:1:2. MgO and FeO together are equal to CaO, and are used in the proportion in which they are found when the mineral comes to be made. Here the ratio is 36:5, or nearly 7:1. The silica is twice the lime. MgO and FeO remaining are used for hypersthene (hy), still in the same ratio 7:1 (see p. 63, line 11). SiO₂ is allotted by hypersthene in amount equal to MgO+FeO.

It is to be noted that we cannot have diopside and corundum together in the norm.

Analysis F presents the case where K₂O is allotted with Al₂O₃ and SiO₂ to orthoclase (or), and Na₂O is allotted to Al₂O₃ and SiO₂ for albite (ab). Al₂O₃ remaining, 9 units, can satisfy only 9 units of CaO for anorthite (an). Then CaO remaining is allotted to diopside (di), as far as MgO and FeO are available. Of CaO 27 molecular-proportion units are still left. These take an equal amount of SiO₂ for wollastonite (wo), CaO.SiO₂, 1:1. It is clear that since MgO and FeO were not present in sufficient amounts to make diopside with all the lime, there remain none of these constituents for hypersthene or olivine. So then with wollastonite there will be no hypersthene or olivine.

We now come to Analysis G, in which with abundant SiO₂, the Al₂O₃ covers K₂O and partly covers Na₂O. Orthoclase (or), is made, and albite (ab), as far as the Al₂O₃ admits of it. Soda, Na₂O, 5 units, left over, there being no Al₂O₃ available for it, takes Fe₂O₃ and SiO₂ for acmite (ac), Na₂O.Fe₂O₃.4SiO₂, in the proportions, I:I:4. It is clear that with acmite there will be no anorthite. After the allotment is made for magnetite (mt), the CaO takes MgO, FeO, and SiO₂ for diopside (di). The remaining MgO and FeO are used

ANALYSIS D
MAGDEBURGOSE (GRANITE). Professional Paper 14, p. 124, No. 3
Felch Mountain, Mich.

	Femic Minerals	mt .2 hm .5 hy .4 { FeO.SiO ₂ .400 Fem. 1.1
Sum 99.65	Salic Minerals	or 38.4 ab 19.9 an .6 C 1.8 C 37.1 Q 37.1 H ₂ O .65
H2O 0.65	Salic	ab an
K2O 6.50	690.	69
Na ₂ O 2.36	.038	& &
CaO 0.12	.002	О
MgO o.14	.004	4
FeO 0.09	100.	н 0
Fe ₂ O ₃ 0.65	.004	ню
Al ₂ O ₃ 12.95	.127	69 38 18 18
SiO. 76. 10	1.268	414 228 4 4 4 4 618
Percentage {	Molecular Proportions	

ANALYSIS E Toscanose (Granite). Professional Paper 14, p. 168, No. 92 Riesengebirge, Silesia

		Femic Minerals		mt 1.6	di 1.8 MgO.SiO ₂ .93 FEO.SiO ₂ .700	hy 3.4 MgO.SiO ₂ 2.900		Fem. 6.8	
	Sum 100.13	Salic Minerals	23.4 22.0 13.6				32.5	Sal. 91.5 Fem. 6.8 H ₂ O 1.75	Sum 100.05
	H ₂ O 1.75	Salic]	or ab an				O	Sal. Fem. H ₂ O	Sum
	K ₂ O 3.95	.042	42						
	Na ₂ O 2.61	.042	42						
66,	CaO 3.21	.057	40		8				
recombantes, among	MgO 1.45	.036			7	29			
	FeO 0.88	.012		7	н	4			
	Fe,O3 1.20	.007		7					
	Al ₂ O ₃ 13.55	.133	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	`					
	SiO,	1.192	252 252 98		91	33	541		
	Percentage {	Molecular Proportions							

ALASKOSE (GRANITE). Professional Paper 14, p. 126, No. 4
Waushara, Wis.

	Femic Minerals			$ \left(\begin{array}{cc} \text{CaO.SiO}_2 & .93 \\ \text{di} & \text{I.7} \right) \text{MgO.SiO}_2 & .800 \\ \text{E.O.SiO}_2 & .800 $		Fem. 10.4	
Sum 99.91	Salic Minerals	20.0	2.5		39.0	89.3 10.4	Sum 99.94
H2O 0.24	Salic	or ab	an		0	Sal. Fem. H ₂ O	Sum
K,O 3.38	.036	36					
Na ₂ O 3.33	.053	53	}				
CaO 2.43	.044		6	∞	27		
MgO 0.33	800.			∞			
FeO 1.72	,024		24	0			
Fe ₃ O ₃	.024		24				
Al ₂ O ₃	800.	36	6				
SiO ₂ 74.62	1.244	216	81	91	27 649		
Percentage	Molecular Proportions						

ANALYSIS G
OMEOSE (LIPARITE). *Professional Paper 14*, at bottom of p. 142, No. 3
Cabo de Gata, Spain

		Femic Minerals		ac 2.3	.9 CaO SiO.		hy 2.5 FeO.SiO, 1.45		Fem. 6.9		
	Sum roo.88	Salic Minerals	57.8 14.2					20.9	92.9	1.13	Sum 100.93
	HO, 1.13	Salic N	or ab					O	Sal. Fem.	H_2O	Sum
11	K ₂ O 9.82	. 104	104								
Cabo de Gata, Spain	Na ₂ O 2.02	.032	27	S							
	CaO 0.32	.005				S					
	MgO 0.47	.012				0	OI				
	FeO 1.28	810.			4	8	11				
	Fe ₂ O ₃ 1.37	600		ις,	4						
	Al ₂ O ₃ 13.35	.131	104								
	SiO ₂ 71.12	1.185	624 162	20		Io	21	348			
	Percer age	Molecular Proportions									

for hypersthene (hy), in the same porportion in which they stood for diopside.

Analysis H presents the case where after making orthoclase (or), albite (ab), and acmite (ac), Na₂O still remains over. This is allotted with SiO₂ to form sodium metasilicate (ns), Na₂O . SiO₂, 1:1. It is rarely found necessary to introduce sodium metasilicate in this way.

Case I presents the inflexible mineral molecules ilmenite, titanite, apatite, and fluorite. Sodium metasilicate is introduced, and potassium metasilicate (ks), K₂O.SiO₂, as well—an extremely rare occurrence. The minor inflexible molecules in the femic group are magnetite, chromite, hematite, ilmenite, titanite, perofskite, rutile, apatite, fluorite, calcite, and pyrite. Magnetite and hematite have been introduced in preceding analyses; chromite is made in Analysis S, perofskite in Analysis S, rutile is considered in the present analysis, calcite appears in Analysis O, and pyrite in Analysis K. In the salic group we have the minor inflexible molecules zircon, sodalite, and noselite. Zircon appears in Analysis M, and sodalite and noselite in Analysis O.

Following the order stated on p. 188, sec. 3, in the Quantitative Classification of Igneous Rocks, Cr2O3 not being present, we first allot FeO to TiO2 for ilmenite (il), in the proportion 1:1. remaining over takes CaO and SiO₂ for titanite (tn), CaO.TiO₂. SiO₂, in the proportion 1:1:1. We are working with an analysis in which the amount of SiO₂ is sufficient to meet all claims upon it. If silica were not abundant TiO2 remaining over after the allotment for ilmenite would take CaO for perofskite (pf), CaO.TiO2, in the proportion 1:1. Such a case is given in Analysis S. Here if TiO₂ after the allotments for ilmenite and titanite still remained over, it would be considered as rutile (ru), TiO2. In the next place P2O5 takes $3\frac{1}{3}$ times as many units of CaO as there are units of P_2O_5 , and $\frac{1}{3}$ as much F or Cl, for apatite (ap), $3\text{CaO.P}_2\text{O}_5 + \frac{\text{CaCl}_2}{3}$ or 3CaO. $P_2O_5 + \frac{CaF_2}{3}$ in the ratio $CaO:P_2O_5$ as $3\frac{1}{3}:l$, and F or Cl, to satisfy CaO, equal to $\frac{1}{3}P_2O_5$. In the next place fluorine (F=26), takes $\frac{1}{2}$ as much CaO for fluorite (ft), CaF₂. After these minor inflexible molecules have been adjusted K2O is allotted for orthoclase with the

ANALYSIS H
Varingose (Pantellerite). Professional Paper 14, p. 218, No. 4
Pantelleria

	Femic Minerals			$ di 3.5 \begin{cases} CaO.SiO_2 1.74 \\ MgO.SiO_2 .800 \end{cases} $	3.0 { MgO.SiO ₂		Fem. 37 .0	
Sum 100.001	Salic Minerals	14.5 18.9				28.9	62.3 37.0	Sum 100.12
H,O 0.82	Salic 1	or ab				0	Sal. Fem. H ₂ O	Sum
K ₂ O 2.50	.026	26	. •					·
Na ₂ O 7.70	.124	36	30					
CaO 0.84	.015			15				
MgO o.89	.022			∞	14			
FeO 1.40	610.	i		7	12			
Fe ₂ O ₃ 9.23	.058	Q	20					
Al ₂ O ₃ 6.32	.062	26 36						
SiO,	1.172	156	300	30	56	482		
Percentage	Molecular Proportions							

ANALYSIS I
ORENDOSE (ORENDITE). Professional Paper 44, p. 312, No. 2
Leucite Hills, Wyom.

		Femic Minerals	il 2.1 tn 2.4 ap 3.0 ft 1.0 ks 4.9 ac 9.2 ns .2 CaO.SiO ₂ .93 di 1.7 MgO.SiO ₂ 16.000 hy 16.1 FeO.SiO ₂ 16.000 Fem. 40.6
	Sum 99.76	Salic Minerals	or 51.7 Q 2.4 Sal. 54.1 Fem. 40.6 H ₂ O 3.50 Sum 98.20
	H,O 3.50	Salic	or Q Q Sal. Fem. H ₂ O
	F 0.49	.026	26
olii.	0.04	.001	I
Leucite IIIIIs, wyonii.	P2Os 1.35	600.	6
ite uii	TiO ₂ 2.08	.026	12
renc	K,O 11.76	. 145	3 3 3
	Ka2O 1.39	.022	0 0
	CaO 3.55	.063	112 30 8
	MgO 6.74	691.	8 8 161
	FeO 1.03	.014	0 0
	Fe ₂ O ₃ 3.19	. 020	50
	SiO, Al ₂ O ₃ Fe ₃ O ₃ Fe ₅ O ₃ FeO MgO CaO Ka ₃ O K ₅ O TiO, P ₂ O ₅ 54.08 9.49 3.19 1.03 6.74 3.55 1.39 11.76 2.08 1.35	.003	• 93
		106.	112 358 322 80 2 2 16 16 40
	Percentage {	Molecular Proportions	

available Al₂O₃, 93, and SiO₂. The K₂O remaining over is allotted to potassium metasilicate (ks), K₂O.SiO₂, with SiO₂, in the ratio 1:1. After all the K₂O has been used Na₂O takes Fe₂O₃, as far as Fe₂O₃ is available (there being no Al₂O₃ left to unite with it), and SiO₂, for acmite. Na₂O still remaining over is sodium metasilicate. CaO remaining after the foregoing assignments takes MgO and FeO in the requisite amounts, and in the ratio in which they stand, 8:0, for diopside (di). MgO remaining, there being no FeO, is allotted to hypersthene, and the SiO₂ which has not been used is quartz.

All the analyses thus far presented, from A to I inclusive, have been those in which SiO₂ is abundant. The calculation of analyses in which SiO₂ is relatively low is usually more difficult. Orthoclase (or), K₂O.Al₂O₃.6SiO₂, requires more silica than leucite (lc), K₂O.Al₂O₃.4SiO₂, and leucite requires more silica than kaliophilite (kp), K₂O.Al₂O₃.2SiO₂. In the same way albite (ab), Na₂O.Al₂O₃.6SiO₂ requires more silica than nephelite (ne), Na₂O.Al₂O₃.2SiO₂. It should be noted that the ratio between K₂O and Al₂O₃ is always as 1:1 in orthoclase, leucite, and kaliophilite, and that the ratio between Na₂O and Al₂O₃ is always 1:1 in albite and nephelite. Hypersthene (hy), (MgFe)O.SiO₂ requires more silica than olivine (ol), 2(MgFe)O.SiO₂, for the same amount of (MgFe)O. With low silica, therefore, a substitution is made of one or more minerals which require less silica than the minerals employed in the straightforward calculations thus far considered.

Where silica is low the simplest adjustment is that illustrated by Analysis J. Here the minor inflexible molecules, ilmenite (il), and apatite (ap), are first calculated. In this analysis apatite cannot get its quota of Cl or F, for these elements have not been determined. The molecular weight is however taken as 336, and the percentage weight of the mineral obtained by multiplying the amount of P_2O_5 by 336. The table on p. 258 for the percentage weights of apatite is based on a molecular weight of 336, F or Cl having been available. Al₂O₃ is present in sufficient amount to allow with silica for the formation of orthoclase (or), albite (ab), and anorthite (an). After the allotments for magnetite (mt), and diopside (di), there remain of MgO 67, and of FeO 20 units. The silica available at this point is 62. This is not enough to make hypersthene with the MgO and

FeO, for which 87 molecular proportion units of SiO₂ would be needed. If we should take the MgO and FeO with silica for olivine (ol), 2(MgFe)O.SiO₂, in the proportion 2:1, then silica would be left over in amount equal to 18 units. The formulated method for calculating the norm does not admit of our making olivine at this point with (MgFe)O and silica, and then calling the remaining silica quartz. This accords with the fact that quartz and olivine are very rarely found together in igneous rocks. What we do is to divide the MgO, FeO, and available silica between hypersthene and olivine, making use of two simple algebraic equations.

Let x= the number of hypersthene molecules and y= the number of olivine molecules; then x+y= the number of units of (MgFe)O and $x+\frac{y}{2}=$ the number of units of SiO₂, or x+y=87 and $x+\frac{y}{2}=62$ $\frac{y}{2}=25$ y=50= molecules of olivine and x=37= molecules of hypersthene.

MgO and FeO are to be introduced in hypersthene and in olivine in the same ratio in which they were used in diopside. The ratio in this case is 20:67 or, nearly, 1:3\frac{1}{3}.

It is to be noted in connection with the use of the tables that olivine is the sum of two parts, 2MgO.SiO_2 and 2FeO.SiO_2 . We look up the first of these on p. 255, and use in looking it up one-half the amount of MgO units, i. e., $\frac{39}{2}$, not 39.; and in the same way we look up one-half the amount of FeO units, or $5\frac{1}{2}$, not 11, on p. 256, and add our findings together for olivine.

Analysis K illustrates the same points as J, but in it pyrite is introduced, FeS₂ having been present in the rock.

$$x=$$
 the number of hypersthene molecules $y=$ the number of olivine molecules $x+y=139=({\rm MgFe}){\rm O}$ $x+\frac{y}{2}=88={\rm SiO}_2$ $\frac{y}{2}=51, y=102, {\rm and } x=37.$

ANDOSE (DIORITE). Professional Paper 14, p. 272, No. 11
Crazy Mountains. Mont.

		Femic Minerals	il 3.0 ap 2.0.006×336	mt 4.6	di 5.8 MgO.SiO ₂ 3.02 (FeO.SiO ₂ 2.000	hy 4.0 \ \ \frac{MgO.SiO_2}{2.800}	3.9	Fem. 23.3		
	Sum 100.13	Salic Minerals	II.I	34.1 30.9				Sal. 76.1 Fem. 23.3 H ₂ O .77	Sum 100.17	
	H,O	Salic	or.	ab				Sal. Fem H ₂ O	Sum	
lont.	P2O5	900.	9							
ains, M	TiO, 1.59	.020	50							o CaO.
Crazy Mountains, Mont.	K2O 1.89	.020	70						:	added 1
razy L	CaO Na ₂ O 8.55 4.03	.065		05						ve been
		.155	18	111	26				-	.002 ha
	MgO 3.48	.087			70	28	39			BaO,
	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO 50.73 19.99 3.20 4.66	990.	50	70	9	6	II			ded in.
	Fe ₂ O.	.020		20						been ad
	Al ₂ O ₅	961.	0 4	111					1	or has
	SiO ₂ 50.73	.846	120	222	52	37	25			o. Our
	Percentage {	Molecular Proportions			Remainder	SiO ₂ 62 MgO 67	FeO 20		Norr -With Ead	NOTE.—With FeU, Min . oo1 has been added in. BaU, . oo2 have been added to CaO.

ANALYSIS K Hessose (Amphibole Gabbro). Classification of Igneous Rocks, p. 199 Big Trees Quadrangle, Cal.

		Femic Minerals	ap 1.6 il 1.7		mt 2.6	di $_{13.1}$ $\left\{ \begin{array}{ll} \text{MgO.SiO}_2 & 4.800 \\ \text{FeO.SiO}_2 & 1.45 \end{array} \right.$	hy 3.9 $\left\{ \begin{array}{ll} \text{MgO.SiO}_2 & 3.000 \\ \text{FeO.SiO}_2 & .92 \end{array} \right.$	ol 7.7 2MgO.SiO ₂ 5.80 ol 7.7 2FeO.SiO ₂ 1.94	FeS2 .2	Fem. 30.8	
	Sum 99.84	Salic Minerals	1.1	23.I 43.9	<u>`</u>				68.1	. 30.0 I.35	Sum 100.25
	H,O 1.35	Salic	or	ab an					Sal.	rem. H ₂ O	Sum
	FeS,										
,	P ₂ O ₅ FeS ₂ 0.74 0.20	.005	ιν								
0	TiO, 0.92	110.	11								
ر	K2O 0.22	.002	N								
2	Na ₂ O 2.75	.044		44							
D	CaO 13.02	.232	15	× 1	C .	59					
	SiO, Al ₂ O ₃ Fe,O ₃ FeO MgO CaO Na ₃ O K ₂ O 47.27 20.82 1.85 4.26 6.44 13.02 2.75 0.22	. 161				48	30	83			
	FeO 4.26	.059	11		11	11	7	19			
	Fe,O, 1.85	110.			11						
	Al ₂ O ₃	. 204		44	150						
	SiO ₂ 47.27	. 788		246	300	118	37	51			
	Percentage {	Molecular Proportions									

It is to be noted that with quartz we will not have olivine in the norm and vice versa.

By making some hypersthene and some olivine, therefore, we can allow for a small shortage of SiO₂. If we attempt to calculate Analysis L in the same manner it is found that after making orthoclase (or), albite (ab), anorthite (an), magnetite (mt), diopside (di), and olivine (ol), 219 more units of silica have been called for than are available. The silica deficit is too great to be treated as in the preceding example.

ANALYSIS L. TENTATIVE
LAURDALOSE (SYENITE PEGMATITE). Professional Paper 14, p. 296, No. 14
Stoksund, Norway

Percentage {	SiO ₂ 53.81	Al ₂ O ₃	Fe ₂ O ₃ .620	FeO .363	MgO .085	CaO .173	Na ₂ O 7·77	K ₂ O 4.58	H ₂ O Sum 1.52 99.78			
Molecular Proportions	.897	.193	.039	.050	.021	.031	.125	.010	Salic Minerals	Femic Mineral		
	294 750	49 125					125	49	or ab			
	38	19				19			an			
	_		39	39		-				mt		
	24			4	8	I 2				di		
	10			7	13					ol		
									1			
			ave be		otted a	t this j	point.					
	897	897 available SiO2										
	219	219 SiO2 deficit for this distribution										

In the tentative distribution albite (ab) calls for 6×125 , or 750, SiO_2 . Nephelite would use up only 250, or 2×125 , SiO_2 . If we allot in the first place (holding out the soda, Na_2O , 125, and equal Al_2O_3 , 125) the proper amounts of the various oxides for orthoclase (or), anorthite (an), magnetite (mt), diopside (di), and olivine (ol), we shall have 531 units of SiO_2 left, to go with the 125 Na_2O and 125 Al_2O_3 . What we do then is to make a certain amount of albite and a certain amount of nephelite. It is to be remembered that in any allotment of Na_2O and Al_2O_3 to albite (ab), $Na_2O.Al_2O_3.6SiO_2$, and nephelite (ne), $Na_2O.Al_2O_3.2SiO_2$, the ratio of Na_2O to Al_2O_3 will be as 1:1. Being silica poor we made olivine (ol), with (MgFe)O and not hypersthene. The formulas for the distribution of Na_2O , Al_2O_3 , and SiO_2 between albite and nephelite are as follows:

```
Let x= the number of albite molecules

Let y= the number of nephelite molecules

then x+y= Na<sub>2</sub>O=Al<sub>2</sub>O<sub>3</sub>

and 6x+2y= SiO<sub>2</sub>

x+y= 125

6x+2y= 531

2x+2y= 250

subtracting 4x= 281

x= 70 molecules of albite

y= 55 molecules of nephelite.
```

It is clear that with nephelite in the norm we shall not have quartz.

Analysis M proceeds on the same lines as L except that the minor inflexible molecule zircon (Z), is first introduced, taking $ZrO_2 = SiO_2$ in accordance with its formula $ZrO_2 \cdot SiO_2$.

In N we have a case with SiO₂ still lower than in M. If we attempt to calculate it in the same way as L and M we find that we have run over on SiO₂ by 21 units, holding out Na₂O.Al₂O₃, 45, for albite and nephelite, and making the allotments for apatite, orthoclase, anorthite, magnetite, diopside, and olivine. We have therefore no SiO₂ with which to make even nephelite with the 45 Na₂O.Al₂O₃ held out in the beginning.

There is not enough SiO₂ therefore to begin the calculation by making orthoclase. This case is analogous to the situation in L and M where Na₂O is distributed between albite and nephelite. We proceed by holding out all the K₂O and equal Al₂O₃ for a certain amount of orthoclase, and a certain amount of leucite (K₂O.Al₂O₃. 4SiO₂), which calls for less SiO₂ than orthoclase does. These minerals will each use up K₂O and Al₂O₃ in the ratio 1:1. The Na₂O is allotted with Al₂O₃ and SiO₂ to nephelite. This is much lower in SiO₂ than albite is. Anorthite, magnetite, diopside, and olivine are then made. The SiO₂ remaining over is 369. This is given to the K₂O.Al₂O₃, previously set aside, for orthoclase and leucite, by means of the equations where

```
x= the number of molecules of orthoclase and y= the number of molecules of leucite x+y=K_2O and 6x+4y=SiO_2 Here x+y=80 6x+4y=369 x=24 and y=56.
```

ANALYSIS L LAURDALOSE (SYENITE PEGMAIITE). Professional Paper 14, p. 296, No. 14 Stoksund, Norway

		Femic Minerals			mt 9.1	di 2.7 $\left\{ \begin{array}{ll} \text{CaO.SiO}_2 & \text{I.39} \\ \text{MgO.SiO}_2 & .800 \end{array} \right.$	ol 1.6 2MgO.SiO ₂ .53	(2FeU.SiU ₂ .7I	Fem. 13.4		
	Sum 99.78	Salic Minerals	27.2 36.7	15.0 5.3					Sal. 84.8 Fem. 12.4	I.52	Sum 99.72
	H,O I.52	Salic	or ab	an an					Sal. Fem.	H ₂ O	Sum
	K2O 4.58	.049	49								
Compaind, 1101 Way	Na O 7.77	.125	125 { 70	2 (55							
Ourselle	CaO 1.73	.031		19		12					
5	MgO o.85	.021				∞	13				
	FeO 3.63	.050			39	4	7				
	Fe ₂ O ₃ 6.20	.039			39						
	Al ₂ O ₃ 19.69	.193	49 125 { 70	19 19							
	SiO, 53.81	.897	294	38		24	IO		896		
	Percentage {	Molecular Proportions									

ANALYSIS M Lujavrose (Lujaurite). *Professional Paper 14*, p. 303, last section, No. 1 Kangerdluarsuk, Greenland

		Femic Minerals	ac 17.6 ns 2.1 CaO.SiO ₂ 7.19 di 15.4 $\left\{ \begin{array}{ll} CaO.SiO_2 & 7.19 \\ MgO.SiO_2 & .000 \\ FeO.SiO_3 & .18 \\ Ol & .7 \right\} 2 MgO.SiO_2 & .00 \\ 2 FeO.SiO_2 & .00 \\ 2 FeO.SiO_3 & .71 \\ \end{array} \right.$ Fem. 35.8
	Sum 100.61	Minerals	z 3.1 or 25.0 ab 7.9 ne 26.4 Sal. 62.4 Fem. 35.8 H ₂ O 2.12
	H ₂ O	Salic	or ab ab ne selection sele
	ZrO ₂ 2.14	710.	7.1
	K2O 4.19	.045	24
	Na2O 10.09	.163	108 { 15 38 38 17
·	CaO 3.45	.062	62
	MgO Tr		0 0
	FeO 4.98	690.	62 7
	Fe,O3 6.06	.038	38
	Al ₂ O ₃ 15.63	.153	45 158 { 15
	SiO, 51.62	.860	17 270 90 186 152 17 17 124 4
	Percentage {	Molecular Proportions	

ANALYSIS N. TENTATIVE	
VESUVOSE (LEUCITE BASANITE). Professional Paper	14, p. 306, No. 2
Lava of 1872, Mount Vesuvius	

Percent- {	SiO ₂ 47.65	Al ₂ O ₃ 19.28	Fe ₂ O ₃ 2.63	FeO 6.48	MgO 4.19	CaO 9.01	Na ₂ O 2.78	K₂O 7·47	P ₂ O ₅ 0.50	H ₂ O Sum 0.24 100.23	
Molecular Propor- tions	• 794	.189	.016	.090	.085	.161	.045	.080	.004	Salic Minerals	Femic Minerals
	480	80 45 }				12	45 }	80	4	or ab	ap
	128 170 37	64	16	16 40 34	45 40	64 85	"" (ne an	mt di ol
	815 794	SiO ₂									

With leucite and nephelite there will be no quartz nor will there be hypersthene. With leucite in the norm there will be no albite.

ANALYSIS N Vesuvose (Leucite Basanite). Professional Paper 14, p. 306, No. 2 Lava of 1872, Mount Vesuvius

Percent- {	SiO ₂ 47.65	Al ₂ O ₃	Fe ₂ O ₃ 2.63	FeO 6.48	MgO 4.19		Na ₂ O 2.78	K ₂ O 7·47	P ₂ O ₅ 0.50	H ₂ O 0.24	Sum 100.23		
Molecular Proportions	. 794	. 189	.016	.090	.085	. 161	.045	.080	.004	Salic M	linerals		mic erals
	144 224 90 128 170 37	80 \ 24 56 45 64	16	16 40 34	45 40	64 85	45	80 { ²⁴ / ₅₆		Sal. Fem. H ₂ O		mt di ol	3·7 19.6 6·3

Analysis O is like N, where K₂O goes partly to orthoclase and partly to leucite, but here we make the minor inflexible molecules

Janeirose (Pseudo-Leucite-Sodalite-Tinguaite). Classification of Igneous Rocks, p. 203 Bearpaw Mountains, Mont. ANALYSIS O

		Femic Minerals	if .3 cc .6 ac 10.2 CaO.SiO ₂ 1.97 di 4.3 MgO.SiO ₂ .500 FeO.SiO ₃ 1.85 ol .3 2MgO.SiO ₂ .707 FeO.SiO ₃ 1.85	
	Sum 100.31	.009 .006 .020 .014 Salic Minerals	so 9.7 no 6.3 or 36.1 lc 17.0 ne 13.6 Fem. 16.3 H ₂ O 1.09	
	H ₂ O 1.09	Salic	so no or lc lc lc ne Fem H-20 Sum	
	TiO ₂ SO ₃ CO ₂ Cl F o o c o o c o c o c o c o c o c o c o	.014		
	CI 0.70	.020	. 0	
	CO2 0.25	900.	•	_
	SO3 0.67		6	_
	TiO,	.002	а	_
The second secon	K,O 9.81	. 104	104 { 65	_
1	Na ₂ O 8.49	.137	0 6 9 8	
	CaO 1.65	BaO .000 SrO .001	7 6 19 19, or 9.	
	MgO 0.22	990.	2 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	FeO 1.20	0.18	2 2 2 2 Si oot out	
	Fe ₂ O ₃	.022	22)) equa	
	Al ₂ O ₃	.200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	SiO2 51.93	.866	390 156 192 88 38 38 . 2	
	Percent- }	Molecular Propor- tions	Note	_

Note.—The allotments of SiO₂ and Al₂O₃ to the nephelite (Na₂O. Al₂O₃, 2Si₂O) element in sodalite and noselite have been summed with nephelite 96 (Na₂O. Al₂O₃, 2SiO₂).

ilmenite (il), fluorite (ft), sodalite (so), noselite (no), and calcite (cc), at the outset. (See note at end of paper.) The formula for sodalite is 3(Na₂O.Al₂O₃.2SiO₂).2NaCl and that for noselite is 2(Na₂O.Al₂O₃.2SiO₂)Na₂SO₄. Sodalite is therefore like the nephelite molecule taken three times with 2NaCl added. Where Cl occurs in notable amount with P₂O₅ present it is first allotted to apatite (see Analysis I), and the remainder then takes half as many units of Na₂O for 2NaCl in sodalite. One-half the number of units of Cl is the key. By multiplying this number, .010, by 969 (the molecular weight of sodalite), the percentage weight of sodalite (so) is obtained. Where SO₃ is present it takes an equal amount of Na₂O for Na₂SO₄ in noselite (no). The number of units of SO₃ is the key. By multiplying this number, .009, by 699 (the molecular weight of noselite), we get the percentage weight of noselite. In this calculation the nephelite molecules in sodalite (15), and in noselite (9), have been lumped in with nephelite. CO2 when present in a rock usually points to a weathered condition in the rock, the mineral then being present as an alteration product. Where CO2 occurs in a rock and is not a product of alteration, calcite is an original mineral constituent. In Analysis O we allot to 6 units of CO2 as many units of CaO for calcite (cc), CaO.CO2, the ratio between CaO and CO2 being 1:1.

In the foregoing examples of calculation a shortage of SiO2 was met by distributing Na2O.Al2O3 between albite and nephelite, after making orthoclase with K₂O.Al₂O₃; or the shortage was provided against, after making nephelite, by distributing K2O.Al2O3 between orthoclase and leucite. With SiO2 too low for either of these alternatives we may allot K2O.Al2O3 to leucite and Na2O.Al2O3 to nephelite, using up in this way a relatively small amount of SiO₂. This is the procedure in Analysis P, where we make leucite, nephelite, anorthite, magnetite, diopside, and olivine, only to find that we have run over by 74 units of SiO₂. In making diopside we used 302 SiO₂. If now we take CaO from diopside, turn the MgO and FeO thus set free into more olivine, and use the lime (with the requisite amount of SiO₂) in ackermanite (am), 4CaO.3SiO₂, which by its formula uses up less SiO₂ for the same amount of CaO than diopside does, we can do away with the SiO₂ deficit. When the ratios of CaO: SiO₂ in diopside, 1:2 (or 4:8), and in ackermanite, 4:3, are considered, it

	ANAL	YSIS P. TENTATIVE
Albanose		Professional Paper 14, p. 350, sec. 4, No. 1
		Alban Hills, Italy

Percentage {	SiO ₂ 45.99	Al ₂ O ₃	Fe ₂ O ₃	FeO 5.38	MgO 5.30	CaO 10.47	Na ₂ O 2.18	K ₂ O 8.97	TiO ₂	H ₂ O Sum 0.45 100.65	
Molecular Proportions	. 767	. 168	.026	.075	. 133	.187 .002 BaO .189	.035	.095	.005	Salic Minerals	Femic Minerals
	380 70 76 302 13 841 767	95 35 38	26	5 26 38 6	113 20	38	35	95	5	lc ne an	il mt di ol
	74	Deficit	in SiC)2							

at once appears that ackermanite (am), is the mineral lower in SiO₂ for the same amount of CaO. By taking 96 CaO from the diopside and using with it 72 SiO₂ we make 24 molecules of ackermanite, i. e., 24 (4CaO.3SiO₂). By recalculating for new diopside and putting in the 24 molecules of ackermanite (am) (calling for 72 SiO₂ with 96 CaO), we find that as the result there is no deficit of SiO₂. To ascertain just the right amount of ackermanite to be introduced we make use of the simple formula where

y = the deficit of SiO₂ $\frac{y}{3} =$ the number of ackermanite molecules to be made.

It appears on trial of all such cases that the deficiency in SiO₂ is exactly allowed for when the number of ackermanite molecules made with CaO taken from diopside equals one-third of the SiO₂ deficit, and in consequence we take lime away from diopside equal to four times the number of ackermanite molecules. Numerically it is found that for every unit of CaO taken from diopside and used in ackermanite we gain three-fourths of a unit in silica, though the process involves the making of new olivine which itself uses up silica. So then to make up a deficit of 74 SiO₂ we need to take 96 CaO from diopside, 96 CaO +72 SiO₂ making 24 molecules of ackermanite.

In P, therefore, we first allot for ilmenite, leucite, nephelite, anorthite, and magnetite. Then, for ackermanite, 96 CaO units are taken from diopside previously made, and used with 72 SiO₂ for ackermanite in accordance with the formula 4CaO.3SiO₂. In looking up the percentage weight of ackermanite (am), in the table on p. 256 the unit of calculation is 24, not 96; i. e., it is one-fourth the molecular proportion of CaO in the ackermanite. The 55 units of CaO left over from the original diopside assignment are allotted for new diopside, and the MgO and FeO thus set free go to olivine.

It should be noted that in this analysis after making diopside there is no excess of CaO to be set aside for the making of wollastonite (cf. Analysis F). In the following example (Q), 95 molecular-proportion units of CaO are left over after the making of diopside for wollastonite.

The calculation of Analysis Q differs from that of the preceding example, as was noted just above, in that CaO in the tentative allotment is found to cover the MgO and FeO for diopside and to remain over after this in amount equal to 95 units. These are given to wollastonite (wo), CaO.SiO₂. The silica deficit is 78. By turning 92 of the 95 CaO of the wollastonite into ackermanite (making in such a case 23 molecules of ackermanite calling for 92 CaO and 69 SiO₂), we can do away with a deficit of silica equal to 23. If then our silica deficit were not 78 as it is in this analysis but only 23 or less, enough CaO set aside for wollastonite could be converted into ackermanite in this manner to do away with the silica deficit. The formula used is, where y= the silica deficit, y= as well the number of ackermanite molecules to be made. This alternative is not open to us in this analysis but it is clear how such calculations are to be treated when they arise. In this case, with insufficient molecules of wollastonite to satisfy the deficit of SiO, by their conversion into ackermanite, the molecules of both diopside and wollastonite are to be recalculated to make new diopside, new olivine, and ackermanite by the following equations.

Let x= the molecules of new diopside y= the molecules of ackermanite z= the molecules of new olivine.

Then $2x+3y+\frac{z}{2}=$ the available SiO₂ x+4y= the available CaO x+z= the available (MgFe)O.

Analysis P Albanose (Leucitite). Professional Paper 14, p. 359, sec. 4, No. 1 Alban Hills, Italy

		Femic Minerals	il .8 mt 6.0 am 9.7 CaO.SiO ₂ 6.38 di 12.3 { MgO.SiO ₂ 4.100 FeO.SiO ₂ 1.85 ol 9.5 { 2MgO.SiO ₂ 644 Fem. 36.3
	Sum 100.65	Salic Minerals	lc 41.4 ne 9.9 an 10.6 Sal. 61.9 cem. 36.3 H ₂ O .45 Sum 98.65
	H,O 0.45	Salic	lc ne an an Sal. Fem. H ₂ O. Sum o
	TiO,	.005	vs
3, 11413	K,O 8.97	360.	95
ייים ייים דייים אימיו	Na ₂ O 2.18	. 035	κ. γ
	CaO 10.47	.002 .002 .189	38 90 88
	MgO 5.30	.133	41 92
	FeO 5.38	. 075	2 5 26 14 14 30 30 S
	Al ₂ O ₃ Fe ₂ O ₃ 17.12 4.17	.026	56
	Al ₂ O ₃ 17.12	. 168	0 6 8 8 10 10 8
	SiO ₂ 45.99	. 767	380 70 72 72 110
	Percentage {	Molecular Proportions	

ANALYSIS Q
Covose (Nepholite Syenite). Professional Paper 14, p. 352, No. 2
Magnet Cove, Ark.

		Tentative			di wo						
		Femic Minerals	ap .7 il 3.0	ţ t		di 15.9 $\left\{ \begin{array}{ll} \text{CaO.SiO}_2 & 8.47 \\ \text{MgO.SiO}_2 & 6.900 \\ \text{FeO.SiO}_2 & 6.300 \end{array} \right\}$	ol $5.2 \begin{cases} 2MgO.SiO_2 + .90 \\ 2FeO.SiO_2 & .30 \end{cases}$	am 17.0	Fem. 49.2		
	Sum 100.57	Salic Minerals	8.3 24.1	13.1					Sal. 45.5 Fem. 40.2	5.20	8.66 mnS
	H,O 5.02		lc ne	an					Sal. Fem	H ₂ C	Sur
	P ₂ O ₅ 0.35	.002	а								į
,	TiO ₂ P ₂ O ₅ 1.62 0.35	.020	80								
reading colo, min	K2O 1.78	610.	61								
	Na ₂ O 5.27	.085	8)							
	CaO Na ₂ O K ₂ O 16.49 5.27 1.78	. 294	9	47	(139) (146) (95)	73		891			
		. 139			(139)	69	70				
	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MgO 38.93 15.41 5.10 4.24 5.57	.059	50	((5)	4	8				
	Fe ₂ O ₃ 5. 10	.032		Ċ	2,						
	Al ₂ O ₃ 15.41	.151	19	47							
	SiO, 38.93	.649	76 170	94	(292) £(95)	146	36	168			
	Percentage	Molecular Proportions .649			Tentative → Tentative						

NOTE.—A deficit of 78 SiO, results from this tentative assignment.

In this calculation the available SiO₂ is 309, the CaO 241, and the (MgFe)O, 146.

```
Therefore (1) 2x + 3y + \frac{z}{2} = 309
                 (2) x+4y = 241
            and (3) x+z = 146.
From (2), multiplying by 2,
                        2x + 8y = 482;
                (1) 2x+3y+\frac{z}{2}=309;
             subtracting 5y - \frac{z}{2} = 173
                     or 10y-z=346.
               Again (2) x+4y=241
                     (3) x+z=146;
              subtracting 4y-z=95
                         10y - z = 346
                          4y - z = 95
                              y=42, ackermanite
                              x=73, new diopside
                              z=73, new olivine.
```

With silica still lower than in Analysis Q we make such a calculation as is given in Analysis R. Here, after the assignment for ilmenite the K_2O , 79 units, is held out with equal $Al_2O_3.Na_2O$, takes Al_2O_3 as far as it is available (17), and SiO_2 for nephelite. Extra Na_2O_3 , 0, takes Fe_2O_3 and SiO_2 for acmite. Fe_2O_3 remaining takes equal FeO for magnetite. All the CaO, 296 units, is calculated as ackermanite, and MgO and FeO remaining over take SiO_2 for olivine. Silica is left equal to 204 units. This is distributed with the 79 $K_2O.Al_2O_3$ held out (ante), between leucite and kaliophilite (kp), $K_2O.Al_2O_3.2SiO_2$. The equations are

$$x+y=K_2O$$
 $4x+2y=SiO_2$
where $x=$ the number of molecules of leucite
and $y=$ the number of molecules of kaliophilite.

(1) $x+y=79$, K_2O
(2) $4x+2y=204$, SiO_2 .

From (1) $2x+2y=158$
 $2x=46$
 $x=23$, leucite molecules
 $y=56$, kaliophilite molecules.

Kaliophilite takes only half as much silica to go with a like amount of K₂O.Al₂O₃ as leucite would take, and only a third as much as orthoclase.

ANALYSIS R VENANZOSE (EUKTOLITE). *Professional Paper 14*, p. 357, last analysis San Venanzo, Umbria, Italy

Percent- }	SiO ₂	Al ₂ O ₃ 9.80	Fe ₂ O ₃ 3.28		M'gO 13.40		Na ₂ O 1.64	K₂O 7.40	TiO ₂	H ₂ O	Sum 100.12		
Molecular Proportions	.691	.096	.021	.072	-335	.296	.026	.079	.004	Salic M	Ainerals	Femic Minerals	
	92 112 34	79 { 23 56		4			17	$79 \begin{cases} \frac{23}{56} \end{cases}$	4	lc kp ne	10.0 17.7 4.8	il	.6
	34 36 222 195		9	12 56	335	296	9					ac mt am ol	4.2 2.8 29.1 29.2
										Sal. Fem. H ₂ O	32.5 65.9 1.11	Fem	. 65.9
										Sum	99.51		

It will be noted that the series of analyses from J to R inclusive illustrates a series of alternative methods for dealing with low SiO₂. A slight deficit may be adjusted between hypersthene and olivine. By this device we can do away with a silica deficit equal to one-half (MgFe)O. A larger deficit may be provided against by making albite with nephelite after having made orthoclase, under the conditions given above. This saving of silica amounts to a little less than four times the Na2O. A still larger deficiency in SiO2 may be provided for by allotting for orthoclase and leucite after making nephelite. Our making nephelite first in this case saves us an amount of SiO₂ equal to four times the units of Na₂O₃, and the subsequent distribution saves a little less than two times the amount of K₂O. With silica still lower it is necessary after making leucite and nephelite, thus saving two times the units of K₂O plus four times the Na₂O, to bring in ackermanite, a device which then saves three fourths of a unit of SiO2 for every unit of CaO taken from diopside for ackermanite, or one silica on every four converted from wollastonite

ANALYSIS S SVERIGARE (MELILITE BASALI). Professional Paper 14, p. 364, sec. 4, No. 1 Hohenstoffeln, Hegan, Baden

		Tentative								
			4.0 .018×224 11.4 3.4 6.6		3. C.S. C.S.	17.1 MgO.SiO, 7.900 FeO.SiO, 00	20.2 2MgO.SiO ₂ 20.16	4.4	ı.7	
		Femic Minerals	L L			ij	- To	am	Fem. 67.1	
	Sum 100.001	linerals		8.3 17.6 8.1					34.0 67.1	Sum IOI.I
Hohenstoffeln, Hegan, Baden	H,O n.d.	Salic Minerals		lc ne an					Sal. Fem. H ₂ O	Sum
	TiO, Cr,O, 8.03 2.66	810.	18							
In, He	TiO, 8.03	. 100	75							
nstotte	K,O 1.75	610.		19						
Hohe	Na ₂ O 3.86	.062		62						
	CaO 8.99	721.	25	20	(123)	62		4		
	MgO 14.68	.367			(123) (244)	79	288			
	FeO 6.67	.093	18		<u>©</u>	0	0			
	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO 35.56 11.25 6.62 6.67	.041	1	1						
	Al ₂ O ₃ 11.25	011.		19 62 20	`					
	SiO ₂ 35.56	. 593		76 124 58	(246) (122)	158	144	33		
	Percentage {	Molecular Proportions								

into ackermanite. With silica lower still it is necessary to expend as little of it as possible, making nephelite and ackermanite and distributing the silica then remaining between leucite and kaliophilite.

In Analysis S which is calculated like Analysis P, the first of the minor inflexible molecules to be made is chromite (cm), FeO.Cr₂O₃, the ratio between FeO and Cr₂O₃ being as 1:1. After ilmenite, which follows, we make perofskite (pf), CaO.TiO₂, with CaO:TiO₂ as 1:1. If silica has been present in abundance we should have made titanite instead of perofskite. (Cf. Analysis I.)

With the lowest-known ranges of SiO_2 , in rocks in which aluminous spinel may form, Al_2O_3 and (MgFe)O being in excess, Al_2O_3 left over after making the feldspars, nephelite, or leucite, is corundum. MgO and FeO uncombined after their allotment to such minerals as magnetite and ilmenite may have to be entered with the femic minerals simply as MgO and FeO. Their percentage weights are determined by multiplying them by the molecular weights of MgO and FeO. Such a case is illustrated in Analysis T.

ANALYSIS T
(Magnetite Spinellite). Professional Paper 14, p. 368, last analysis
Routivaara, Finland

Percent- {	SiO ₂ 4.08	Al ₂ O ₃ 6.40	Fe ₂ O ₃ 33 · 43	FeO 34.58	MgO 3.89	CaO 0.65	Na ₂ O 0.29	K ₂ O 0.15	TiO ₂	Cr ₂ O ₃	H ₂ O 1.32	Sum 99.71	
Molecular Propor- tions	. 068	.063	.210 note	. 480	.097	.011	.005	.002	. 176	.001	Salic 1	Minerals	Femic Minerals
	12 30 22	2 5 11 45	210	176 210 94		II	5	2	176		or ab an C	1.1 2.6 3.1 4.6	il 26.8 mt 48.7 MgO 3.9 FeO 6.9
											Sal. Fem. H ₂ O		Fem. 86.3

Note.—Cr2O3, .001, has been added to Fe2O3.

The student in calculating the analyses given in Professional Paper 14 should not expect to agree exactly in all cases with the

calculated norms. Where additions as those of small amounts of BaO and SrO to CaO have not been made, slight discrepancies may result all along the line. Numerically the allotment to such minerals as diopside, hypersthene, and olivine may vary by a single unit one way or the other in MgO and FeO. The application of the methods of calculation given in the Quantitative Classification of Igneous Rocks should however be precise, the end in view being the correct placing of a given rock where it belongs in the scheme of classification. The method of calculating the norm is necessarily arbitrary in order that concordant results may be obtained by all who make use of it. It should be borne in mind, however, that it agrees with the great body of our observations on the occurrence of minerals in the igneous rocks. The work of calculation has therefore a peculiar value for the student, aside from his needs in classifying rocks, for it directs his thought toward the relations obtaining among the phenomena in cooling rock magmas. It brings home to him why it is that we do not have such an occurrence as that of quartz and nephelite together. It points out to him, for instance, the significance of the presence in a rock of such minerals as corundum, acmite, or perofskite rather than titanite, and it does much to make clear to his mind the significance of each of the mineral molecules occurring in the igneous rocks.

Note.—In "The Roman Comagmatic Region," Publication 57 of the Carnegie Institution of Washington, Dr. H. S. Washington has stated on p. 15 a modification of the method of calculation proposed by the authors of the quantitative system. This has to do with the normative minerals, sodalite and noselite. These mineral molecules are split up, and in their stead a statement is made in the norm of the amounts of halite (Hl), NaCl, and thenardite (Th), Na2SO₄. SO₃ takes an equivalent number of molecular units of Na₂O to form thenardite, and Cl takes one-half its number of molecular units of Na₂O to form halite. "The soda which was previously combined with the sodium chloride and sulphate remains with the rest in calculating the norm, and, if necessary, is distributed between albite and nephelite in the usual way. An advantage of this method of procedure is that it minimizes the influence of the small amounts of Cl and SO₃ usually found, which is very great if they bind up in the norm a much greater amount of soda and silica."