- A uniform cylinder of length L and mass M having cross sectional area A is suspended, with its length vertical, from a fixed point by a massless spring, such that it is half submerged in a liquid of density σ at equilibrium position. The extension x_0 of the spring when it is in equilibrium is:
 - (1) $\frac{Mg}{k}$

(2)
$$\frac{Mg}{k} \left(1 - \frac{LA\sigma}{M} \right)$$

(3)
$$\frac{Mg}{k} \left(1 - \frac{LA\sigma}{2M} \right)$$

$$(4) \qquad \frac{Mg}{k} \left(1 + \frac{LA\sigma}{M} \right)$$

(Here k is spring constant)

2. A metallic rod of length 'l' is tied to a string of length 2l and made to rotate with angular speed ω on a horizontal table with one end of the string fixed. If there is a vertical magnetic field 'B' in the region, the e.m.f. induced across the ends of the rod is:

- $(1) \quad \frac{2B\omega l^2}{2}$
- $(2) \qquad \frac{3B\omega l^2}{2}$
- $(3) \quad \frac{4B\omega l^2}{2}$
- $(4) \quad \frac{5B\omega l^2}{2}$

भाग A - भौतिक विज्ञान

- लम्बाई L, द्रव्यमान M और अनुप्रस्थ परिच्छेद क्षेत्रफल A वाले एक समान बेलन को इसकी लम्बाई ऊर्ध्वाधर रखते हुए एक द्रव्यमानविहीन कमानी द्वारा एक नियत बिंदु से इस प्रकार लटकाया गया है कि साम्यावस्था स्थिति में इसका आधा भाग घनत्व σ के द्रव में डूबा रहे। जब यह साम्यावस्था में है, तब कमानी में विस्तार x₀ है:
 - (1) $\frac{Mg}{k}$

(2)
$$\frac{Mg}{k}\left(1-\frac{LA\sigma}{M}\right)$$

(3)
$$\frac{Mg}{k} \left(1 - \frac{LA\sigma}{2M} \right)$$

(4)
$$\frac{Mg}{k} \left(1 + \frac{LA\sigma}{M} \right)$$
(यहाँ k कमानी स्थिरांक है।)

2. लम्बाई '1' की एक धातु की छड़ लम्बाई 21 की एक डोरी से बँधी है और डोरी के एक सिरे को स्थिर रख कर इसे कोणीय चाल ω से घूर्णित किया जाता है। यदि क्षेत्र में एक ऊर्ध्वाधर चुम्बकीय क्षेत्र 'B' है, तब छड़ के सिरों पर प्रेरित विद्युत वाहक बल है:

- $(1) \quad \frac{2B\omega l^2}{2}$
- $(2) \qquad \frac{3B\omega l^2}{2}$
- $(3) \quad \frac{4B\omega l^2}{2}$
- $(4) \qquad \frac{5B\omega l^2}{2}$

3. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I: A point particle of mass m moving with speed v collides with stationary point particle of mass M. If the maximum energy loss possible is given as

$$f\left(\frac{1}{2}mv^2\right)$$
 then $f = \left(\frac{m}{M+m}\right)$.

Statement - II: Maximum energy loss occurs when the particles get stuck together as a result of the collision.

- (1) Statement I is true, Statement II is true, Statement II is a **correct** explanation of Statement I.
- (2) Statement I is true, Statement II is true, Statement II is **not** a correct explanation of Statement I.
- (3) Statement I is true, Statement II is false.
- (4) Statement I is false, Statement II is true.
- 4. Let $[\epsilon_0]$ denote the dimensional formula of the permittivity of vacuum. If M = mass, L = length, T = time and A = electric current, then :
 - (1) $[\epsilon_0] = [M^{-1} L^{-3} T^2 A]$
 - (2) $[\epsilon_0] = [M^{-1} L^{-3} T^4 A^2]$
 - (3) $[\epsilon_0] = [M^{-1} L^2 T^{-1} A^{-2}]$
 - (4) $[\epsilon_0] = [M^{-1} L^2 T^{-1} A]$

3. इस प्रश्न में प्रकथन I एवं प्रकथन II दिये हुये हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिये जो कि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।

प्रकथन - I: चाल v से गतिशील द्रव्यमान m का एक बिंदु कण स्थिर द्रव्यमान M के एक बिन्दु कण से संघट्ट करता है। यदि सम्भव अधिकतम ऊर्जा क्षय

दिया जाता है
$$f\left(\frac{1}{2}m\,v^2\right)$$
 से, तब $f=\left(\frac{m}{M+m}\right)$.

प्रकथन - II: अधिकतम ऊर्जा क्षय तभी होता है जब संघट्ट के परिणामस्वरूप कण एक दूसरे से चिपक जाते हैं।

- (1) प्रकथन I सत्य है, प्रकथन II सत्य है, प्रकथन - II प्रकथन - I की सही व्याख्या करता है।
- (2) प्रकथन I सत्य है, प्रकथन II सत्य है, प्रकथन - II प्रकथन - I की सही व्याख्या **नहीं** करता है।
- (3) प्रकथन I सत्य है, प्रकथन II गलत है।
- (4) प्रकथन I गलत है, प्रकथन II सत्य है।
- 4. निर्वात में विद्युतशीलता का विमीय सूत्र $[\epsilon_0]$ से चिन्हित किया जाता है। यदि M= द्रव्यमान, L=लम्बाई, T=समय और A=विद्युत धारा; तब :
 - (1) $[\epsilon_0] = [M^{-1} L^{-3} T^2 A]$
 - (2) $[\epsilon_0] = [M^{-1} L^{-3} T^4 A^2]$
 - (3) $[\epsilon_0] = [M^{-1} L^2 T^{-1} A^{-2}]$
 - (4) $[\epsilon_0] = [M^{-1} L^2 T^{-1} A]$

F=AE

P/Page 3

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

€ ○

NRWR MR

9 = I

- 5. A projectile is given an initial velocity of $(\hat{i} + 2\hat{j})$ m/s, where \hat{i} is along the ground and \hat{j} is along the vertical. If g = 10 m/s², the equation of its trajectory is:
 - $(1) \quad y = x 5x^2$
 - (2) $y = 2x 5x^2$
 - (3) $4y = 2x 5x^2$
 - (4) $4y = 2x 25x^2$
- 6. The amplitude of a damped oscillator decreases to 0.9 times its original magnitude in 5s. In another 10s it will decrease to α times its original magnitude, where α equals :
 - (1) 0.7
 - (2) 0.81
 - (3) 0.729
 - (4) 0.6
- 7. Two capacitors C₁ and C₂ are charged to 120 V and 200 V respectively. It is found that by connecting them together the potential on each one can be made zero. Then:
 - (1) $5C_1 = 3C_2$
 - (2) $3C_1 = 5C_2$
 - (3) $3C_1 + 5C_2 = 0$
 - (4) $9C_1 = 4C_2$

- 5. एक प्रक्षेप्य को एक प्रारम्भिक वेग $(\hat{i} + 2\hat{j})$ m / s दिया जाता है, जहाँ \hat{i} पृथ्वी के साथ है और \hat{j} ऊर्ध्वाधर पर। यदि $g = 10 \text{ m/s}^2$, तब प्रक्षेप पथ का समीकरण है :
 - (1) $y = x 5x^2$
 - (2) $y = 2x 5x^2$
 - (3) $4y = 2x 5x^2$
 - $(4) \quad 4y = 2x 25x^2$
- 6. एक मन्दित दोलित्र का आयाम 5_S में अपने मूल परिमाण से घटकर मूल परिमाण का 0.9 गुना हो जाता है। एक और 10_S में यह घटकर मूल परिमाण का α गुना हो जाएगा, जहाँ α का मान है:
 - $(1) \quad 0.7$
 - (2) 0.81
 - (3) 0.729
 - (4) 0.6
- 7. दो संधारित्र C_1 एवं C_2 क्रमशः 120 V एवं 200 V पर आवेशित किये गये हैं। यह पाया जाता है कि उन्हें एक दूसरे से जोड़ देने पर प्रत्येक पर विभव शून्य किया जा सकता है। तब :
 - (1) $5C_1 = 3C_2$
 - (2) $3C_1 = 5C_2$
 - (3) $3C_1 + 5C_2 = 0$
 - (4) $9C_1 = 4C_2$

P/Page 4

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

({ + 2 j) m/s

9.

8.

- 8. A sonometer wire of length 1.5 m is made of steel. The tension in it produces an elastic strain of 1%. What is the fundamental frequency of steel if density and elasticity of steel are 7.7×10³ kg/m³ and 2.2×10¹¹ N/m² respectively?
 - (1) 188.5 Hz
 - (2) 178.2 Hz
 - (3) 200.5 Hz
 - (4) 770 Hz
- 9. A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm. If a current of 2.0 A flows through the smaller loop, then the flux linked with bigger loop is:
 - (1) 9.1×10^{-11} weber
 - (2) 6×10^{-11} weber
 - (3) 3.3×10^{-11} weber
 - (4) 6.6×10^{-9} weber

- 8. लम्बाई 1.5 m का एक सोनोमापी तार स्टील का बना है। इसमें एक तनाव 1% की प्रत्यास्थ विकृति उत्पन्न करता है। यदि स्टील के घनत्व और प्रत्यास्थता गुणांक क्रमशः 7.7×10³ kg/m³ और 2.2×10¹¹ N/m² हैं तब स्टील के तार की मूल आवृत्ति क्या है?
 - (1) 188.5 Hz
 - , (2) 178.2 Hz
 - (3) 200.5 Hz
 - (4) 770 Hz
- 9. त्रिज्या 0.3 cm का एक वृत्तीय लूप एक काफी बड़े त्रिज्या 20 cm के वृत्तीय लूप के समान्तर रखा है। छोटे लूप का केन्द्र बड़े लूप की अक्ष पर है। उनके केन्द्रों के बीच दूरी 15 cm है। यदि छोटे लूप से 2.0 A की धारा प्रवाहित होती है, तब बड़े लूप से सम्बद्धित फ्लक्स है:
 - (1) 9.1×10^{-11} वेबर
 - (2) 6×10^{-11} वेबर
 - (3) 3.3×10^{-11} वेबर
 - (4) 6.6×10^{-9} वेबर

- 10. Diameter of a plano convex lens is 6 cm and thickness at the centre is 3 mm. If speed of light in material of lens is 2×108 m/s, the focal length of the lens is:
 - (1) 15 cm
 - (2) 20 cm
 - (3) 30 cm
 - (4) 10 cm
- 11. What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R?
 - $(1) \quad \frac{5GmM}{6R}$
 - $(2) \quad \frac{2GmM}{3R}$
 - (3) $\frac{GmM}{2R}$
 - $(4) \quad \frac{GmM}{3R}$

- 10. एक सम-उत्तल लेन्स का व्यास 6 cm है और केन्द्र पर मोटाई 3 mm है। यदि लेन्स के पदार्थ में प्रकाश की चाल 2×10^8 m/s है, तब लेन्स की फोकस लम्बाई है:
 - (1) 15 cm
 - (2) 20 cm
 - (3) 30 cm
 - (4) 10 cm
- 11. द्रव्यमान M एवं क्रिज्या R के एक ग्रह के पृष्ठ से द्रव्यमान m के एक उपग्रह को 2R ऊँचाई पर वृत्तीय कक्ष में लान्च करने के लिये न्यूनतम ऊर्जा आवश्यक है:
 - $(1) \quad \frac{5GmM}{6R}$
 - $(2) \quad \frac{2GmM}{3R}$
 - $(3) \quad \frac{GmM}{2R}$
 - $(4) \quad \frac{GmM}{3R}$

(1) 10.62 MHz

could be detected by it.

- (2) 10.62 kHz
- (3) 5.31 MHz
- (4) 5.31 kHz

से य क

13. A beam of unpolarised light of intensity I_0 is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of the emergent light is :

- (1) I_0
- (2) $I_0/2$
- $(3) I_0/4$
- $(4) I_0/8$

12. एक डायोड संसूचक को, 250 पिको फैराड वाले संधारित्र के 100 किलो ओहम के लोड प्रतिरोध के साथ समान्तर क्रम में लगाकर, 60% माडुलेशन वाली आयाम माडुलक तरंग का पता लगाने में प्रयुक्त किया गया है। इसके द्वारा अधिकतम माडुलित आवृत्ति जिसे ज्ञात किया जा सकता है:

- (1) 10.62 MHz
- (2) 10.62 kHz
- (3) 5.31 MHz
- (4) 5.31 kHz

13. एक तीव्रता I₀ की अधुवित प्रकाश का पुंज एक पोलरायड A से गुजारा जाता है और फिर उसे एक दूसरे पोलरायड B से गुजारा जाता है। B का मुख्य तल A के मुख्य तल से 45° का कोण बनाता है। निर्गत प्रकाश की तीव्रता है:

- (1) I_0
- $(2) I_0/2$
- $I_0/4$
 - $(4) I_0/8$

- 14. The supply voltage to a room is 120 V. The resistance of the lead wires is 6 Ω . A 60 W bulb is already switched on. What is the decrease of voltage across the bulb, when a 240 W heater is switched on in parallel to the bulb?
 - (1) zero Volt
 - (2) 2.9 Volt
 - (3) 13.3 Volt
 - (4) 10.04 Volt
- 15. $2p_0$ $p p_0$ v_0 v_0

The above *p*-v diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of heat, extracted from the source in a single cycle is:

- (1) $p_0 v_0$
- $(2) \quad \left(\frac{13}{2}\right) p_0 \, \mathbf{v}_0$
- $(3) \quad \left(\frac{11}{2}\right) p_0 \, \mathbf{v}_0$
- (4) $4p_0 v_0$

- 14. एक कमरे की सप्लाई वोल्टता 120 V है। लीड के तारों का प्रतिरोध 6 Ω है। एक 60 W बल्ब पहले से ही जल रहा है। इस बल्ब के समान्तर में 240 W का हीटर जलाने पर बल्ब की वोल्टता में कितनी कमी आयेगी?
 - (1) शून्य वोल्ट
 - (2) 2.9 वोल्ट
 - (3) 13.3 वोल्ट
 - (4) 10.04 वोल्ट
- 15. $2p_0$ $p p_0$ v_0 v_0

उपरोक्त p-v चित्र एक आदर्श एकपरमाणुक गैस से कार्य कर रहे एक इन्जिन के ऊष्मागितक चक्र को दर्शाता है। एक एकल चक्र में स्रोत से ली गई ऊष्मा की मात्रा है:

- (1) $p_0 v_0$
- $(2) \quad \left(\frac{13}{2}\right) p_0 \, \mathbf{v}_0$
- $\bullet (3) \quad \left(\frac{11}{2}\right) p_0 \, \mathbf{v}_0$
 - $(4) \quad 4p_0\mathbf{v}_0$

į,

ì

П

- 16. A hoop of radius r and mass m rotating with an angular velocity ω_0 is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases to slip?
 - (1) $\frac{r\omega_0}{4}$
 - (2) $\frac{r\omega_0}{3}$
 - $(3) \quad \frac{\mathbf{r}\omega_0}{2}$
 - (4) $r\omega_0$
- 17. An ideal gas enclosed in a vertical cylindrical container supports a freely moving piston of mass M. The piston and the cylinder have equal cross sectional area A. When the piston is in equilibrium, the volume of the gas is V_0 and its pressure is P_0 . The piston is slightly displaced from the equilibrium position and released. Assuming that the system is completely isolated from its surrounding, the piston executes a simple harmonic motion with frequency:
 - $(1) \quad \frac{1}{2\pi} \, \frac{A\gamma P_0}{V_0 M}$
 - (2) $\frac{1}{2\pi} \frac{V_0 M P_0}{A^2 \gamma}$
 - (3) $\frac{1}{2\pi} \sqrt{\frac{A^2 \gamma P_0}{M V_0}}$
 - $(4) \quad \frac{1}{2\pi} \sqrt{\frac{MV_0}{A\gamma P_0}}$

- 16. कोणीय वेग ω_0 से घूर्णन कर रहे द्रव्यमान m और त्रिज्या r के एक हूप को एक खुरदुरे क्षैतिज तल पर रखा है। हूप के केन्द्र का प्रारम्भिक वेग शून्य है। जब यह स्लिप करना बन्द कर दे, तब हूप के केन्द्र का वेग क्या होगा?
 - $(1) \quad \frac{r\omega_0}{4}$
 - $(2) \quad \frac{r\omega_0}{3}$
 - $(3) \quad \frac{r\omega_0}{2}$
 - (4) $r\omega_0$
- 17. एक ऊर्ध्वाधर बेलनाकार पात्र में रखी एक आदर्श गैस एक द्रव्यमान M के स्वतंत्र रूप से गतिशील पिस्टन को आधार देती है। पिस्टन और बेलन के अनुप्रस्थ पिरच्छेद क्षेत्रफल एकसमान A हैं। जब पिस्टन साम्यावस्था में हैं, तब गैस का आयतन V_0 है और इसका दाब P_0 है। पिस्टन को इसकी साम्यावस्था स्थिति से थोड़ा सा विस्थापित किया जाता है और फिर छोड़ दिया जाता है। यह मान लें कि निकाय अपने पिरवेश से पूर्णत: रोधी है, तब पिस्टन इस आवृत्ति की सरल आवर्त गित करेगा:
 - $(1) \quad \frac{1}{2\pi} \; \frac{A\gamma P_0}{V_0 M}$
 - (2) $\frac{1}{2\pi} \frac{V_0 M P_0}{A^2 \gamma}$
 - $\bullet (3) \quad \frac{1}{2\pi} \sqrt{\frac{A^2 \gamma P_0}{M V_0}}$
 - $(4) \quad \frac{1}{2\pi} \sqrt{\frac{MV_0}{A\gamma P_0}}$

2

F

19. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement - I: Higher the range, greater is the resistance of ammeter.

Statement - II: To increase the range of ammeter, additional shunt needs to be used across it.

- (1) Statement I is true, Statement II is true, Statement II is the **correct** explanation of Statement I.
- (2) Statement I is true, Statement II is true, Statement II is not the correct explanation of Statement I.
- (3) Statement I is true, Statement II is false.
- (4) Statement I is false, Statement II is true.

18. यदि धातु के एक टुकड़े को तापमान θ तक गर्म किया जाता है और फिर एक कमरे में, जिसका तापमान θ_0 है, ठंडा होने दिया जाता है, तब धातु के तापमान T और समय t के बीच ग्राफ इसके अत्यधिक समीप है :

19. इस प्रश्न में प्रकथन I एवं प्रकथन II दिये हुये हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिये जो कि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।

> प्रकथन - I : रेन्ज जितना उच्चतर हैं, धारामापी का प्रतिरोध उतना ही अधिकतर है।

> प्रकथन - II: धारामापी की रेन्ज में वृद्धि करने के लिये, इस पर अतिरिक्त शंट का प्रयोग किया जाना आवश्यक है।

- (1) प्रकथन I सत्य है, प्रकथन II सत्य है, प्रकथन - II प्रकथन - I की सही व्याख्या करता है।
- (2) प्रकथन I सत्य है, प्रकथन II सत्य है, प्रकथन - II प्रकथन - I की सही व्याख्या नहीं करता है।
- (3) प्रकथन I सत्य है, प्रकथन II गलत है।
- (4) प्रकथन I गलत है, प्रकथन II सत्य है।

हैं। उस तम

का

के

ाना

है,

रता

हीं

20. In an LCR circuit as shown below both switches are open initially. Now switch S_1 is closed, S_2 kept open. (q is charge on the capacitor and τ =RC is Capacitive time constant). Which of the following statement is correct?

- (1) Work done by the battery is half of the energy dissipated in the resistor
- (2) At $t = \tau$, q = CV/2
- (3) At $t = 2\tau$, $q = CV(1 e^{-2})$
- (4) At $t = \frac{\tau}{2}$, $q = CV(1 e^{-1})$
- **21.** Two coherent point sources S₁ and S₂ are separated by a small distance 'd' as shown. The fringes obtained on the screen will be:

- (1) points
- (2) straight lines
- (3) semi circles
- (4) concentric circles

20. नीचे दर्शाये गये एक LCR परिपथ में प्रारम्भ में दोनों स्विच खुले हैं। अब स्विच S_1 को बन्द किया जाता है, S_2 को खुला रखा जाता है (संधारित्र पर आवेश q हैं और $\tau = RC$ धारिता समय स्थिरांक है।) निम्नलिखित में से कौन सा कथन सही है?

- (1) बैटरी द्वारा किया गया कार्य प्रतिरोधक में हुई ऊर्जा क्षय का आधा है।
- (2) $t = \tau \, \Psi R, q = CV/2$
- (3) $t = 2\tau \text{ TV}, q = CV(1 e^{-2})$
- (4) $t = \frac{\tau}{2} \text{ W}, q = CV(1 e^{-1})$
- 21. दो कलासम्बद्ध बिन्दु स्रोत S_1 एवं S_2^{\dagger} एक लघु दूरी 'd' द्वारा एक दूसरे से दूर हैं जैसा कि चित्र में दर्शाया गया है। पर्दे पर देखी गई फ्रिन्जे हैं :

- (1) बिन्दु
- (2) सरल रेखाएँ
- (3) अर्द्धवृत्त
- 🕨 (4) समकेन्द्रीय वृत्त

- 22. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is:
 - (1) 3 V/m
 - (2) 6 V/m
 - (3) 9 V/m
 - (4) 12 V/m
- 23. The anode voltage of a photocell is kept fixed. The wavelength λ of the light falling on the cathode is gradually changed. The plate current I of the photocell varies as follows:
 - (1) O A

 - $(4) \qquad \begin{matrix} I \\ \uparrow \\ O \end{matrix} \qquad \lambda \rightarrow$

- 22. एक गतिशील विद्युत चुम्बकीय तरंग में चुम्बकीय क्षेत्र का शीर्ष मान 20 nT है। विद्युत क्षेत्र सामर्थ्य का शीर्ष मान है:
 - (1) 3 V/m
 - (2) 6 V/m
 - (3) 9 V/m
 - (4) 12 V/m
- 23. एक फोटोसैल की एनोड वोल्टता नियत है। कैथोड पर आपितत प्रकाश की तरंगदैर्ध्य λ धीरे-धीरे परिवर्तित की जाती है। फोटोसैल की प्लेट धारा I इस प्रकार परिवर्तित होती है:

- $(2) \quad \stackrel{\text{I}}{\downarrow} \quad \stackrel{}{\searrow} \quad \stackrel{}{\longrightarrow} \quad$
- (3) I A

शोड र्तित कार

27.

- 25. Assume that a drop of liquid evaporates by decrease in its surface energy, so that its temperature remains unchanged. What should be the minimum radius of the drop for this to be possible? The surface tension is T, density of liquid is ρ and L is its latent heat of vaporization.
 - (1) $\rho L/T$
 - (2) $\sqrt{T/\rho L}$
 - (3) $T/\rho L$
 - (4) $2T/\rho L$
- 26. In a hydrogen like atom electron makes transition from an energy level with quantum number n to another with quantum number (n-1). If n>>1, the frequency of radiation emitted is proportional to:
 - (1) $\frac{1}{n}$
 - (2) $\frac{1}{n^2}$
 - (3) $\frac{1}{n^{\frac{3}{2}}}$
 - $(4) \quad \frac{1}{n^3}$

- 25. यह मान लें कि एक द्रव की बूँद अपनी पृष्ठ ऊर्जा में कमी कर वाष्पित होती है जिससे कि इसका तापमान अपरिवर्तित रहता है। यह सम्भव होने के लिये बूँद की न्यूनतम त्रिज्या क्या होनी चाहिये? पृष्ठ तनाव Τ है, द्रव का घनत्व ρ है और वाष्पन की गुप्त ऊष्मा L है।
 - (1) $\rho L/T$
 - (2) $\sqrt{T/\rho L}$
 - (3) $T/\rho L$
 - (4) $2T/\rho L$
- 26. एक हाइड्रोजन समान परमाणु में इलेक्ट्रॉन क्वाण्टम संख्या n के ऊर्जा स्तर से एक दूसरे क्वाण्टम संख्या (n-1) के ऊर्जा स्तर पर संऋमण करता है। यदि n >> 1, तब उत्सर्जित विकिरण की आवृत्ति इसके समानुपाती है:
 - (1) $\frac{1}{n}$
 - (2) $\frac{1}{n^2}$
 - (3) $\frac{1}{n^{3/2}}$
 - $(4) \quad \frac{1}{n^3}$

28.

27. The graph between angle of deviation (δ) and angle of incidence (i) for a triangular prism is represented by :

- 28. Two charges, each equal to q, are kept at x = -a and x = a on the x axis. A particle of mass m and charge $q_0 = \frac{q}{2}$ is placed at the origin. If charge q_0 is given a small displacement (y << a) along the y axis, the net force acting on the particle is proportional to:
 - (1) y
 - (2) y
 - (3) $\frac{1}{y}$
 - $(4) \quad -\frac{1}{y}$

P/Page 15

27. एक त्रिभुजाकार प्रिस्म के लिये विचलन कोण (δ) और आपतन कोण (i) के बीच ग्राफ इससे दर्शाया जाता है:

- 28. प्रत्येक q मान के दो आवेश x = -a और x = a पर x 3क्ष पर रखे हैं। द्रव्यमान m और आवेश $q_0 = \frac{q}{2}$ का एक कण मूलबिन्दु पर रखा है। यदि आवेश q_0 को y अक्ष के साथ एक अल्प-विस्थापन (y << a) दिया जाए, तब कण पर कार्यरत् परिणामी बल इसके समानुपाती है:
 - (1) y
 - (2) y
 - (3) $\frac{1}{y}$
 - $(4) \quad -\frac{1}{y}$

29. Two short bar magnets of length 1 cm each have magnetic moments 1.20 Am² and 1.00 Am² respectively. They are placed on a horizontal table parallel to each other with their N poles pointing towards the South. They have a common magnetic equator and are separated by a distance of 20.0 cm. The value of the resultant horizontal magnetic induction at the mid - point O of the line joining their centres is close to

(Horizontal component of earth's magnetic induction is 3.6×10^{-5} Wb/m²)

- (1) $3.6 \times 10^{-5} \text{ Wb/m}^2$
- (2) $2.56 \times 10^{-4} \text{ Wb/m}^2$
- (3) $3.50 \times 10^{-4} \text{ Wb/m}^2$
- (4) $5.80 \times 10^{-4} \text{ Wb/m}^2$
- **30.** A charge Q is uniformly distributed over a long rod AB of length L as shown in the figure. The electric potential at the point O lying at a distance L from the end A is:

- $(1) \quad \frac{Q}{8\pi\epsilon_0 L}$
- $(2) \quad \frac{3Q}{4\pi\epsilon_0 L}$
- $(3) \quad \frac{Q}{4\pi\epsilon_0 L \ln 2}$
- $(4) \qquad \frac{Q \ln 2}{4\pi\epsilon_0 L}$

29. प्रत्येक लम्बाई 1 cm के दो छोटे छड़ चुम्बकों के चुम्बकीय आघूर्ण ऋमशः 1.20 Am² एवं 1.00 Am² है। इनके N धुवों को दक्षिण की ओर इंगित कर एक दूसरे के समान्तर इन्हें एक क्षैतिज मेज पर रखा गया है। इनकी एक उभयनिष्ठ चुम्बकीय मध्य रेखा है और इनके बीच की दूरी 20.0 cm है। इनके केन्द्रों को जोड़ने वाली रेखा के मध्य बिंदु O पर परिणामी क्षैतिज चुम्बकीय प्रेरण का मान लगभग है:

(पृथ्वी के चुम्बकीय प्रेरण का क्षैतिज घटक $3.6 \times 10^{-5} \text{ Wb/m}^2$ है।)

- (1) $3.6 \times 10^{-5} \text{ Wb/m}^2$
- (2) $2.56 \times 10^{-4} \text{ Wb/m}^2$
- (3) $3.50 \times 10^{-4} \text{ Wb/m}^2$
- (4) $5.80 \times 10^{-4} \text{ Wb/m}^2$
- 30. आवेश Q को लम्बाई L की एक लम्बी छड़ AB पर एकसमान रूप से वितरित किया गया है, जैसा कि चित्र में दर्शाया गया है। सिरे A से L दूरी पर बिन्दु O पर विद्युत विभव है:

- (1) $\frac{Q}{8\pi\epsilon_0 L}$
 - $(2) \quad \frac{3Q}{4\pi\epsilon_0 L}$
 - (3) $\frac{Q}{4\pi\epsilon_0 L \ln 2}$
 - $(4) \quad \frac{Q \ln 2}{4\pi\epsilon_0 L}$

P/Page 16

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

33.

32.

31.

P/F

ों के Am²

Am² र एक |या है। हे और

? आर द्रों को क्षैतिज

घटक

.B पर

ं चित्र () पर

PART B - CHEMISTRY

- 31. Which of the following complex species is not expected to exhibit optical isomerism?
 - (1) $\left[\text{Co(en)}_3 \right]^{3+}$
 - (2) $\left[\text{Co(en)}_2 \text{ Cl}_2 \right]^+$
 - (3) $\left[\text{Co(NH}_3)_3 \text{ Cl}_3 \right]$
 - (4) $\left[\text{Co(en)(NH}_3)_2 \text{ Cl}_2 \right]^+$
- 32. Which one of the following molecules is expected to exhibit diamagnetic behaviour?
 - (1) C₂
 - (2) N₂
 - (3) O₂
 - (4) S₂
- 33. A solution of (-)-1-chloro-1-phenylethane in toluene racemises slowly in the presence of a small amount of SbCl₅, due to the formation of :
 - (1) carbanion
 - (2) carbene
 - (3) carbocation
 - (4) free radical

भाग B — रसायन विज्ञान

- 31. निम्न कॉम्प्लेक्स स्पीशीज में से किस से प्रकाशकीय समावयवता प्रदर्शित करने की अपेक्षा नहीं की जाती है?
 - (1) $[Co(en)_3]^{3+}$
 - (2) $[Co(en)_2 Cl_2]^+$
 - (3) $\left[\operatorname{Co}(\operatorname{NH}_3)_3 \operatorname{Cl}_3\right]$
 - (4) $\left[\text{Co(en)(NH}_3)_2 \text{ Cl}_2 \right]^+$
- 32. निम्न अणुओं में से किससे प्रतिचुम्बकीय व्यवहार की अपेक्षा की जाती है?
 - (1) C_2
 - (2) N₂
 - (3) O₂
 - $(4) \quad S_2$
- 33. टाउलीन में (-)-1- क्लोरो -1- फेनिलएथेन का $SbCl_5$ की थोड़ी सी मात्रा की उपस्थित में रेसिमीकरण हो जाता है और इसका कारण निम्न में से किसी एक का बनना है, वह है :
 - (1) कार्बैनिआन
 - (2) कार्बीन
 - (3) कार्बोकैटायन
 - (4) फ्री रैडिकल

$$E_{Cr^{3+}/Cr}^{0} = -0.74 \text{ V; } E_{MnO_{4}^{-}/Mn^{2+}}^{0} = 1.51 \text{ V}$$

$$E_{Cr_2O_7^{2-}/Cr^{3+}}^0 = 1.33 \text{ V}; \ E_{Cl/Cl}^0 = 1.36 \text{ V}$$

Based on the data given above, strongest oxidising agent will be:

- (1) Cl
- (2) Cr^{3+}
- (3) Mn^{2+}
- (4) MnO₄
- 35. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0°C. As it does so, it absorbs 208J of heat. The values of q and w for the process will be:

(R=8.314 J/mol K) (ln 7.5=2.01)

- (1) q = +208 J, w = -208 J
- (2) q = -208 J, w = -208 J
- (3) q = -208 J, w = +208 J
- (4) q = +208 J, w = +208 J

P/Page 18

34. दिया गया :

$$E_{Cr^{3+}/Cr}^{0} = -0.74 \text{ V}; E_{MnO_{4}^{-}/Mn^{2+}}^{0} = 1.51 \text{ V}$$

$$E_{Cr_2O_7^{2-}/Cr^{3+}}^0 = 1.33 \text{ V}; \ E_{Cl/Cl}^0 = 1.36 \text{ V}$$

उपरोक्त आँकड़ों के आधार पर प्रबलतम ऑक्सीकारक होगा:

- (1) Cl⁻
- (2) Cr^{3+}
- (3) Mn^{2+}
- (4) MnO_4
- 35. स्थिर ताप 37.0°C पर एक आदर्श गैस के 0.04 मोल से भरा हुआ पिस्टन उत्क्रमणीय ढंग से 50.0 mL से 375 mL तक फैलता है। ऐसा होने में ऊष्मा का 208J शोषित होता है। q और w के मान प्रक्रम के लिये होंगे:

(R = 8.314 J/mol K) (ln 7.5 = 2.01)

- (1) q = +208 J, w = -208 J
- (2) q = -208 J, w = -208 J
- (3) q = -208 J, w = +208 J
- (4) q = +208 J, w = +208 J

- 36. The molarity of a solution obtained by mixing 750 mL of 0.5(M)HCl with 250 mL of 2(M)HCl will be:
 - (1) 0.875 M
 - (2) 1.00 M
 - (3) 1.75 M
 - (4) 0.975 M
- 37. Arrange the following compounds in order of decreasing acidity:

- (1) II > IV > I > III
- (2) I > II > III > IV
- $(3) \quad III > I > II > IV$
- $(4) \quad IV > III > I > II$
- 38. For gaseous state, if most probable speed is denoted by C*, average speed by \overline{C} and mean square speed by C, then for a large number of molecules the ratios of these speeds are :
 - (1) $C^* : \overline{C} : C = 1.225 : 1.128 : 1$
 - (2) $C^* : \overline{C} : C = 1.128 : 1.225 : 1$
 - (3) $C^* : \overline{C} : C = 1 : 1.128 : 1.225$
 - (4) $C^* : \overline{C} : C = 1 : 1.225 : 1.128$

- 36. 2(M)HCl के 250 mL के साथ 0.5(M)HCl के 750 mL मिलाने से प्राप्त विलयन की मोलरता होगी:
 - (1) 0.875 M
 - (2) 1.00 M
 - (3) 1.75 M
 - (4) 0.975 M
- 37. निम्न यौगिकों को उनके घटती अम्लीयता के क्रम में व्यवस्थित कीजिए।

- (1) II > IV > I > III
- (2) I > II > III > IV
- $(3) \quad III > I > II > IV$
- $(4) \quad IV > III > I > II$
- 38. गैसीय अवस्था के लिये यदि सर्वाधिक संभावित गति को C*, औसत गति को C और माध्य वर्ग गति को C द्वारा प्रस्तुत किया जाए तो अणुओं की बड़ी संख्या के लिये इन गतियों के अनुपात हैं:
 - (1) $C^* : \overline{C} : C = 1.225 : 1.128 : 1$
 - (2) $C^* : \overline{C} : C = 1.128 : 1.225 : 1$
 - (3) $C^* : \overline{C} : C = 1 : 1.128 : 1.225$
 - (4) $C^* : \overline{C} : C = 1 : 1.225 : 1.128$

P/Page 19

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

39. The rate of a reaction doubles when its temperature changes from 300 K to 310 K. Activation energy of such a reaction will be:

 $(R=8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and log } 2=0.301)$

- (1) 53.6 kJ mol^{-1}
- (2) 48.6 kJ mol^{-1}
- (3) 58.5 kJ mol^{-1}
- (4) 60.5 kJ mol^{-1}
- 40. A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is:
 - (1) 2
 - (2) 5
 - (3) 4
 - (4) 6
- **41.** Which of the following arrangements does not represent the correct order of the property stated against it?
 - (1) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour
 - (2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size
 - (3) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in aqueous solution
 - (4) Sc < Ti < Cr < Mn : number of oxidation states

39. एक अभिक्रिया की दर दो गुनी हो जाती है जब इसका ताप 300 K से 310 K हो जाता है। ऐसी अभिक्रिया की सिक्रियण ऊर्जा होगी:

 $(R=8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ और log } 2=0.301)$

- (1) 53.6 kJ mol^{-1}
- (2) 48.6 kJ mol^{-1}
- (3) 58.5 kJ mol^{-1}
- (4) 60.5 kJ mol^{-1}
- 40. आण्विक द्रव्यमान 180 वाले एक यौगिक का जब CH₃COCI के साथ ऐसीलीकरण किया जाता है तो द्रव्यमान 390 के साथ एक यौगिक प्राप्त होता है। पहले वाले यौगिक के एक अणु में एमीनो ग्रुप की संख्या है:
 - (1) 2
 - (2) 5
 - (3) 4
 - **(4)** 6
- 41. निम्न व्यवस्थाओं में से कौन उनके सामने दिए गए गुणधर्म के सही क्रम को प्रस्तुत नहीं करता है?
 - (1) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: अनुचुम्बकीय व्यवहार
 - (2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: आयिनक साइजें
 - (3) $\text{Co}^{3+} < \text{Fe}^{3+} < \text{Cr}^{3+} < \text{Sc}^{3+}$: जलीय विलयन में स्थिरता
 - (4) Sc < Ti < Cr < Mn : उपचयन अवस्था की संख्याएँ

P/Page 20

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

4.

42. The order of stability of the following carbocations:

$$CH_{2} = CH - CH_{2}; CH_{3} - CH_{2} - CH_{2};$$

$$I$$

$$I$$

$$II$$

$$II$$

is:

- (1) III > II > I
- (2) II > III > I
- (3) I > II > III
- $(4) \quad III > I > II$
- 43. Consider the following reaction:

$$x \text{MnO}_{4}^{-} + y \text{C}_{2} \text{O}_{4}^{2-} + z \text{H}^{+} \rightarrow$$

$$x \text{Mn}^{2+} + 2y \text{CO}_2 + \frac{z}{2} \text{H}_2 \text{O}$$

The values of x, y and z in the reaction are, respectively :

- (1) 5, 2 and 16
- (2) 2, 5 and 8
- (3) 2, 5 and 16
- (4) 5, 2 and 8

42. निम्न कार्बोकेटायनों

$$CH_{2} = CH - CH_{2}; CH_{3} - CH_{2} - CH_{2};$$

$$I$$

$$I$$

$$II$$

$$III$$

की स्थिरता का क्रम है:

- (1) III > II > I
- $(2) \quad II > III > I$
- (3) I > II > III
- $(4) \quad III > I > II$
- 43. निम्नलिखित अभिक्रिया पर विचार कीजिए:

$$x \text{MnO}_{4}^{-} + y \text{C}_{2} \text{O}_{4}^{2-} + z \text{H}^{+} \xrightarrow{\dot{y}}$$

$$xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

इस अभिक्रिया में x, y तथा z के मान क्रमशः हैं :

- (1) 5, 2 तथा 16
- (2) 2, 5 तथा 8
- (3) 2, 5 तथा 16
- (4) 5, 2 तथा 8

P/Page 21

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

$$Tn = R(log) = (\frac{1}{100} - \frac{1}{100})$$

 $Tn = 2 \times 0.301(\frac{1}{200} - \frac{1}{310})$

48.

49.

- Which of the following is the wrong 44. statement?
 - ONO not ONCl and are (1)isoelectronic.
 - O₃ molecule is bent. (2)
 - Ozone is violet-black in solid state. (3)
 - Ozone is diamagnetic gas. (4)
- A gaseous hydrocarbon gives upon 45. combustion 0.72 g. of water and 3.08 g. of CO₂. The empirical formula of the hydrocarbon is:
 - (1) C_2H_4
 - (2) C_3H_4
 - C_6H_5 (3)
 - **(4)** C_7H_8
- In which of the following pairs of 46. molecules/ions, both the species are not likely to exist?
 - H_{2}^{+} , He_{2}^{2-} **(1)**
 - H_{2}^{-} , He_{2}^{2-} (2)
 - H_{2}^{2+} , He_{2} (3)
 - H_{2}^{-} , He_{2}^{2+} **(4)**

- 44. निम्न में से कौन सा कथन गलत है?
 - ONCI तथा ONO समइलेक्ट्रॉनिक नहीं हैं। (1)
 - O3 अणु टेढ़ा है। (2)
 - ओज़ोन ठोस अवस्था में बैंगनी-काला होता है। (3)
 - ओज़ोन प्रतिचुम्बकीय गैस है। **(4)**
- एक गैसीय हाइड्रोकार्बन दहन पर 0.72 g. जल और **45.** $3.08~{
 m g.}~{
 m CO}_2$ देता है। हाइड्रोकार्बन का आनुभविक सूत्र है:
 - C_2H_4 (1)
 - C_3H_4 (2)
 - C_6H_5
 - **(4)** C_7H_8
- अणु/आयनों के निम्न युग्मों में से किसमें दोनों स्पीशीज़ 46. के होने की संभावना नहीं है?
 - (1) H_2^+ , He_2^{2-}
 - (2) H_2^-, He_2^{2-}
 - (3) H_2^{2+} , He_2
 - (4) H_2^- , He_2^{2+}

- **47.** Which of the following exists as covalent crystals in the solid state?
 - (1) Iodine
 - (2) Silicon
 - (3) Sulphur
 - (4) Phosphorus
- **48.** Synthesis of each molecule of glucose in photosynthesis involves :
 - (1) 18 molecules of ATP
 - (2) 10 molecules of ATP
 - (3) 8 molecules of ATP
 - (4) 6 molecules of ATP
- 49. The coagulating power of electrolytes having ions Na⁺, Al³⁺ and Ba²⁺ for arsenic sulphide sol increases in the order:
 - (1) $Al^{3+} < Ba^{2+} < Na^+$
 - (2) $Na^+ < Ba^{2+} < Al^{3+}$
 - (3) $Ba^{2+} < Na^+ < Al^{3+}$
 - (4) $A1^{3+} < Na^+ < Ba^{2+}$

- 47. निम्न में से कौन ठोस अवस्था में सहसंयोजक क्रिस्टल के रूप में होता है?
 - (1) आयोडीन
 - (2) सिलिकॉन
 - (3) सल्फर
 - (4) फॉस्फोरस
- 48. प्रकाश संश्लेषण में ग्लूकोस के प्रत्येक अणु के संश्लेषण में सित्रहित हैं:
 - (1) ATP के 18 अणु
 - (2) ATP के 10 अणु
 - (3) ATP के 8 अण्
 - (4) ATP के 6 अणु
- **49.** आर्सेनिक सल्फाइड सॉल के लिये Na^+ , Al^{3+} और Ba^{2+} आयनों वाले विद्युत अपघट्यों का स्कंदन बल निम्न क्रम में बढता है:
 - (1) $Al^{3+} < Ba^{2+} < Na^+$
 - (2) $Na^+ < Ba^{2+} < Al^{3+}$
 - (3) $Ba^{2+} < Na^+ < Al^{3+}$
 - (4) $Al^{3+} < Na^+ < Ba^{2+}$

50. Which of the following represents the correct order of increasing first ionization enthalpy for Ca, Ba, S, Se and Ar?

(2)
$$S < Se < Ca < Ba < Ar$$

(3)
$$Ba < Ca < Se < S < Ar$$

(4)
$$Ca < Ba < S < Se < Ar$$

51. Energy of an electron is given by $E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right).$ Wavelength of light required to excite an electron in an hydrogen atom from level n = 1 to n = 2 will be:

$$(h=6.62\times10^{-34} \text{ Js and}$$

 $c=3.0\times10^8 \text{ ms}^{-1})$

(1)
$$1.214 \times 10^{-7}$$
 m

(2)
$$2.816 \times 10^{-7}$$
 m

(3)
$$6.500 \times 10^{-7}$$
 m

(4)
$$8.500 \times 10^{-7}$$
 m

50. Ca, Ba, S, Se और Ar के लिये निम्न में से कौन प्रथम आयनन एन्थैल्पी के बढ़ते क्रम को सही क्रम में प्रस्तुत करता है?

(1)
$$Ca < S < Ba < Se < Ar$$

(3) Ba
$$<$$
 Ca $<$ Se $<$ S $<$ Ar

(4)
$$Ca < Ba < S < Se < Ar$$

51. एक इलेक्ट्रॉन की ऊर्जा को इस प्रकार प्रस्तुत किया जाता है - $E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$ । प्रकाश की तरंगदैर्घ्य हाइड्रोजन परमाणु में एक इलेक्ट्रॉन को n=1 से n=2 स्तर पर उत्तेजित, करने के लिये आवश्यक होगी :

$$(h=6.62\times10^{-34} \text{ Js } \text{ और}$$

 $c=3.0\times10^8 \text{ ms}^{-1})$

(1)
$$1.214 \times 10^{-7}$$
 m

(2)
$$2.816 \times 10^{-7}$$
 m

(3)
$$6.500 \times 10^{-7}$$
 m

(4)
$$8.500 \times 10^{-7}$$
 m

52. Compound (A), C₈H₉Br, gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the compound (A).

 $(2) \qquad C_2H_5$ Br

- (4) CH₂Br
 CH₃
- 53. Four successive members of the first row transition elements are listed below with atomic numbers. Which one of them is expected to have the highest $E_{M^{3+}/M^{2+}}^{0}$

value?

- $(1) \quad \operatorname{Cr}(Z=24)$
- (2) Mn(Z = 25)
- (3) Fe(Z = 26)
- (4) Co(Z = 27)

52. यौगिक (A), C_8H_9Br एल्कोहॉली $AgNO_3$ के साथ गर्म करने पर एक सफेद अवक्षेप देता है। (A) के उपचयन से एक अम्ल (B), $C_8H_6O_4$ प्राप्त होता है। (B) गर्म करने पर सरलता से एनहाइड्राइड बना देता है। यौगिक (A) की पहचान कीजिए।

(3) CH₂Br

- 53. संक्रमण तत्वों के प्रथम श्रेणी के एक के बाद एक आने वाले चार सदस्य परमाणु क्रमांक के साथ नीचे दिये जाते हैं। इनमें किसका E⁰_{M³⁺/M²⁺} मान उच्चतम होगा?
 - $(1) \quad \operatorname{Cr}(Z=24)$
 - (2) Mn(Z = 25)
 - (3) Fe(Z = 26)
 - (4) Co(Z = 27)

P/Page 25

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

- 54. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?
 - (1) 0.1 L
 - (2) 0.9 L
 - (3) 2.0 L
 - (4) 9.0 L
- 55. The first ionisation potential of Na is 5.1 eV. The value of electron gain enthalpy of Na⁺ will be:
 - (1) -2.55 eV
 - (2) -5.1 eV
 - (3) -10.2 eV
 - (4) + 2.55 eV
- 56. An organic compound A upon reacting with NH₃ gives B. On heating, B gives C. C in presence of KOH reacts with Br₂ to give CH₃CH₂NH₂. A is:
 - (1) CH₃COOH
 - (2) CH₃CH₂CH₂COOH
 - (3) CH₃-CH-COOH CH₃
 - (4) CH₃CH₂COOH
- 57. Stability of the species Li₂, Li₂ and Li₂ increases in the order of :
 - (1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$
 - (2) $\text{Li}_{2}^{-} < \text{Li}_{2}^{+} < \text{Li}_{2}$
 - (3) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$
 - (4) $\text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$

- 54. HCl के एक जलीय विलयन के 1 लिटर में जिसका pH मान 1 हो, जल के कितने लिटर मिलाएं कि प्राप्त जलीय विलयन का pH मान 2 हो जाए?
 - (1) 0.1 L
 - (2) 0.9 L
 - •(3) 2.0 L
 - (4) 9.0 L
- 55. Na का प्रथम आयनन विभव 5.1 eV है। Na + की इलेक्ट्रॉन प्राप्ति एन्थैल्पी निम्न होगी :
 - (1) -2.55 eV
 - (2) -5.1 eV
 - (3) -10.2 eV
 - (4) + 2.55 eV
- 56. एक कार्बनिक यौगिक A, NH_3 के साथ क्रिया कराने पर B देता है, जो गर्म करने पर C देता है। KOH की उपस्थिति में C, Br_2 के साथ क्रिया करके $CH_3CH_2NH_2$ देता है। A है:
 - (1) CH₃COOH
 - (2) CH₃CH₂CH₂COOH
 - (3) CH₃-CH-COOH CH₃
 - (4) CH₃CH₂COOH
- **57.** स्पीशीज़ Li₂, Li₂ और Li₂ की स्थिरता का बढ़ता क्रम है:
 - \bullet (1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$
 - (2) $\text{Li}_{2}^{-} < \text{Li}_{2}^{+} < \text{Li}_{2}$
 - (3) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$
 - (4) $\text{Li}_{2}^{-} < \text{Li}_{2} < \text{Li}_{2}^{+}$

- 58. An unknown alcohol is treated with the "Lucas reagent" to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism:
 - (1)secondary alcohol by S_N1
 - (2)tertiary alcohol by S_N1
 - (3)secondary alcohol by S_N2
 - **(4)** tertiary alcohol by S_N2
- **59**. The gas leaked from a storage tank of the Union Carbide plant in Bhopal gas tragedy was:
 - (1)Methylisocyanate
 - (2)Methylamine
 - (3)Ammonia
 - **(4)** Phosgene
- 60. Experimentally it was found that a metal oxide has formula $M_{0.98}$ O. Metal M, is present as M²⁺ and M³⁺ in its oxide. Fraction of the metal which exists as M³⁺ would be:
 - (1)7.01%
 - (2) 4.08%
 - (3)6.05%
 - 5.08% **(4)**

- एक अनजान एल्कोहॉल को ल्यूकैस अभिकारक के 58. साथ यह जानने के लिये उपचारित किया जाता है कि एल्कोहॉल प्राइमरी, सेकेण्डरी अथवा टर्शियरी है। निम्न में से कौनसा एल्कोहॉल सर्वाधिक तीव्रता से अभिक्रिया करता है और किस क्रियाविधि द्वारा :
 - सेकेण्डरी ऐल्कोहॉल, $S_N 1$ द्वारा (1)
 - टर्शियरी ऐल्काहॉल, $S_{
 m N}1$ द्वारा
 - सेकेण्डरी ऐल्कोहॉल, S_N2 द्वारा (3)
 - टर्शियरी ऐल्कोहॉल, S_N2 द्वारा **(4)**
- भोपाल गैस दुर्घटना में यूनियन कार्बाइड प्लांट के 59. स्टोरेज़ टैंक से जो गैस निकली थी. वह थी:
 - (1)
 - (3)
- प्रयोग के आधार पर एक धातु ऑक्साइड का 60. सूत्र M_{0.98}O पाया गया। यदि धातु इस ऑक्साइड में M^{2+} और M^{3+} के रूप में वर्तमान हो तो धातु का जो प्रभांश M^{3+} के रूप में होगा वह है :
 - 7.01% (1)
 - (2) 4.08%
 - (3) 6.05%
 - 5.08% **(4)**

P/Page 27 SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह 3+5(0S)(-3,0SRX 4-(0SRX(0SX) BX.Y.Y

PART C - MATHEMATICS

- 61. Distance between two parallel planes 2x+y+2z=8 and 4x+2y+4z+5=0 is :
 - (1) $\frac{3}{2}$
 - (2) $\frac{5}{2}$
 - (3) $\frac{7}{2}$
 - (4) $\frac{9}{2}$
- 62. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{dP}{dx} = 100 12\sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is:
 - (1) 2500
 - (2) 3000
 - (3) 3500
 - (4) 4500
- 63. Let A and B be two sets containing2 elements and 4 elements respectively.The number of subsets of A×B having3 or more elements is:
 - (1) 256
 - (2) 220
 - (3) 219
 - (4) 211

भाग C - गणित

- 61. दो समांतर समतलों 2x + y + 2z = 8 तथा 4x + 2y + 4z + 5 = 0 के बीच की दूरी है :
 - $(1) \quad \frac{3}{2}$
 - (2) $\frac{5}{2}$
 - (3) $\frac{7}{2}$
 - $(4) \frac{9}{2}$
- 62. वर्तमान में एक फर्म 2000 नग बना रही है। यह अनुमान लगाया गया है कि अतिरिक्त कामगारों की संख्या x के सापेक्ष उत्पादन P के परिवर्तन की दर $\frac{dP}{dx} = 100 12\sqrt{x}$ द्वारा प्रदत्त है। यदि फर्म 25 कामगार अधिक लगाती है, तो नगों के उत्पादन का नया स्तर है:
 - (1) 2500
 - (2) 3000
 - (3) 3500
 - (4) 4500
- 63. माना A तथा B दो ऐसे सम्मुच्य है जिनमें क्रमशः 2 अवयव तथा 4 अवयव हैं। A×B के उन उपसमुच्चयों की संख्या, जिनमें 3 अथवा अधिक अवयव हैं, है:
 - (1) 256
 - (2) 220
 - (3) 219
 - (4) 211

64. If the lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar, then k can have:

- **a** (1) any value.
 - exactly one value. $_{-}(2)$
 - (3) exactly two values.
 - **(4)** exactly three values.

65. If the vectors
$$\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$$
 and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is:

- $\sqrt{18}$ (1)
- (2) $\sqrt{72}$
- (3) $\sqrt{33}$
- (4) $\sqrt{45}$

66. The real number
$$k$$
 for which the equation, $2x^3+3x+k=0$ has two distinct real roots in $[0, 1]$

- (1)lies between 1 and 2.
- (2) lies between 2 and 3.
- (3)lies between -1 and 0.
- **(4)** does not exist.

64. यदि रेखाएँ
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 तथा
$$\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$$
 समतलीय हैं, तो k का :

- (1) कोई भी मान संभव है।
- (2) केवल एक मान संभव है।
- (3) केवल दो मान संभव हैं।
- (4) केवल तीन मान संभव हैं।

65. यदि सदिश
$$\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$$
 तथा $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ एक त्रिभुज ABC की भुजाएँ हैं, तो A से होकर जाती हुई माध्यिका की लंबाई है:

- (1) $\sqrt{18}$
- (2)
- (3) $\sqrt{33}$
- (4) $\sqrt{45}$

66. वास्तविक संख्या
$$k$$
, जिसके लिए $[0, 1]$ में समीकरण $2x^3 + 3x + k = 0$ के दो भिन्न वास्तविक मूल हैं,

- 1 तथा 2 के बीच में स्थित है।
- (2) 2 तथा 3 के बीच स्थित है।
- -1 तथा 0 के बीच स्थित है।
- का अस्तित्व नहीं है। **(4)**

P/Page 29

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

The sum of first 20 terms of the sequence 67. 0.7, 0.77, 0.777,, is:

$$(1) \quad \frac{7}{81} \left(179 - 10^{-20} \right)$$

(2)
$$\frac{7}{9} \left(99 - 10^{-20}\right)$$

$$(3) \quad \frac{7}{81} \left(179 + 10^{-20} \right)$$

(4)
$$\frac{7}{9} \left(99 + 10^{-20}\right)$$

A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets 68. reflected upon reaching x-axis, the equation of the reflected ray is:

$$(1) \quad y = x + \sqrt{3}$$

$$(2) \qquad \sqrt{3}y = x - \sqrt{3}$$

$$(3) \quad y = \sqrt{3}x - \sqrt{3}$$

$$(4) \qquad \sqrt{3}\,y = x - 1$$

The number of values of k, for which the 69. system of equations:

$$(k+1)x + 8y = 4k$$

$$kx + (k+3)y = 3k - 1$$

has no solution, is:

- infinite (1)
- 1 (2)
- (3) 2
- 3 (4)

श्रेणी 0.7, 0.77, 0.777,, के प्रथम 20 पदों का 67. योग है :

$$(1) \quad \frac{7}{81} \left(179 - 10^{-20} \right)$$

(2)
$$\frac{7}{9} \left(99 - 10^{-20}\right)$$

(3)
$$\frac{7}{81} \left(179 + 10^{-20}\right)$$

(4)
$$\frac{7}{9} \left(99 + 10^{-20}\right)$$

 $x + \sqrt{3}y = \sqrt{3}$ की दिशा में जाती हुई एक प्रकाश 68. की किरण x-अक्ष पर पहुँच कर परावर्तित हो जाती है। इस परावर्तित किरण का समीकरण है:

$$(1) \quad y = x + \sqrt{3}$$

$$(2) \qquad \sqrt{3}y = x - \sqrt{3}$$

$$(3) \quad y = \sqrt{3}x - \sqrt{3}$$

$$(4) \qquad \sqrt{3}\,y = x - 1$$

k के उन मानों की संख्या, जिनके लिए निम्न समीकरण 69. निकाय:

$$(k+1)x + 8y = 4k$$

$$kx + (k+3)y = 3k - 1$$

का कोई हल नहीं है, है:

- अनन्त (1)
- 1 (2)
- 2 (3)
- **(4)** 3

P/Page 30

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह 0.77

Page 30 SPACE FOR ROUGH WORLD, The
$$a + (n-1)d = 0.77 - 0.7$$

$$= 0.7 + (20-1).0.07$$

$$= 0.7 + (20-1).0.07$$

- 70. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, a, b, $c \in \mathbb{R}$, have a common root, then a : b : c is:
 - (1) 1:2:3
 - (2) 3:2:1
 - (3) 1:3:2
 - (4) 3:1:2
- 71. The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point :
 - (1) (-5, 2)
 - **●** (2) (2, -5)
 - (3) (5, -2)
 - (4) (-2, 5)
- 72. If x, y, z are in A.P. and $\tan^{-1}x$, $\tan^{-1}y$ and $\tan^{-1}z$ are also in A.P. , then :
- o (1) x = y = z
 - (2) 2x = 3y = 6z
 - (3) 6x = 3y = 2z
 - (4) 6x = 4y = 3z

- 70. यदि समीकरणों $x^2 + 2x + 3 = 0$ तथा $ax^2 + bx + c = 0$, a, b, $c \in \mathbb{R}$, का एक मूल उभयनिष्ठ है, तो a:b:c है:
 - (1) 1:2:3
 - (2) 3:2:1
 - (3) 1:3:2
 - **(4)** 3:1:2
- 71. एक वृत्त जो (1, -2) से होकर जाता है, तथा x अक्ष को (3, 0) पर स्पर्श करता है, जिस अन्य बिंदु से होकर जाता है, वह है :
 - (1) (-5, 2)
 - (2) (2, -5)
 - (3) (5, -2)
 - (4) (-2, 5)
- 72. यदि x, y, z एक समांतर श्रेढ़ी में हैं तथा $\tan^{-1}x$, $\tan^{-1}y$ तथा $\tan^{-1}z$ भी समांतर श्रेढ़ी में हैं, तो :
 - (1) x = y = z
 - (2) 2x = 3y = 6z
 - $(3) \quad 6x = 3y = 2z$
 - $(4) \qquad 6x = 4y = 3z$
- 128+bx+8=c
- (X-1)+(X+8)=9

P/Page 31

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

Sn = n/(n-1) d = 20(20-1) 0.07

20 X 19 X 0.0 7

100

73. Consider:

Statement - I : $(p \land \sim q) \land (\sim p \land q)$ is a fallacy.

Statement - II: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a tautology.

- (1) Statement I is true; Statement II is true; Statement II is a **correct** explanation for Statement I.
- (2) Statement I is true; Statement II is true; Statement II is **not** a correct explanation for Statement I.
- (3) Statement I is true; Statement II is false.
- (4) Statement I is false; Statement II is true.
- 74. If $\int f(x) dx = \Psi(x)$, then $\int x^5 f(x^3) dx$ is equal to:

$$(1) \quad \frac{1}{3} \left[x^3 \Psi(x^3) - \int x^2 \Psi(x^3) dx \right] + C$$

(2)
$$\frac{1}{3} x^3 \Psi(x^3) - 3 \int x^3 \Psi(x^3) dx + C$$

(3)
$$\frac{1}{3} x^3 \Psi(x^3) - \int x^2 \Psi(x^3) dx + C$$

$$(4) \quad \frac{1}{3} \left[x^3 \Psi \left(x^3 \right) - \int x^3 \Psi \left(x^3 \right) \mathrm{d}x \right] + C$$

73. विचार कीजिए:

कथन - I: (p ^ ~ q) ^ (~ p ^ q) सदैव असत्य है।

कथन - II : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ सदैव सत्य है।

- (1) कथन I सत्य है; कथन II सत्य है;
 कथन II कथन I की सही व्याख्या है।
- (2) कथन I सत्य है; कथन II सत्य है; कथन - II कथन - I की सही व्याख्या नहीं है।
- (3) कथन I सत्य है, कथन II असत्य है।
- (4) कथन I असत्य है, कथन II सत्य है।
- 74. यदि $\int f(x) dx = \Psi(x)$ है, तो $\int x^5 f(x^3) dx$ बराबर है:

(1)
$$\frac{1}{3} \left[x^3 \Psi(x^3) - \int x^2 \Psi(x^3) dx \right] + C$$

(2)
$$\frac{1}{3} x^3 \Psi(x^3) - 3 \int x^3 \Psi(x^3) dx + C$$

(3)
$$\frac{1}{3} x^3 \Psi(x^3) - \int x^2 \Psi(x^3) dx + C$$

(4)
$$\frac{1}{3}\left[x^3\Psi\left(x^3\right) - \int x^3\Psi\left(x^3\right)dx\right] + C$$

75.
$$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$
 is equal to : 75.

- (1) $-\frac{1}{4}$
- (2) $\frac{1}{2}$
- (3) 1
- (4) 2

76. Statement - I:

The value of the integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}$ is equal to $\frac{\pi}{6}$.

Statement - II:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx.$$

- (1) Statement I is true; Statement II is true; Statement II is a **correct** explanation for Statement I.
- (2) Statement I is true; Statement II is true; Statement II is **not** a correct explanation for Statement I.
- (3) Statement I is true; Statement II is false.
- (4) Statement I is false; Statement II is true.

75.
$$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$
 बराबर है :

- (1) $-\frac{1}{4}$
- (2) $\frac{1}{2}$
- (3) 1
- (4) 2

76. कथन - I:

समाकलन $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}$ का मान $\frac{\pi}{6}$ है।

कथन - II:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx.$$

- (1) कथन I सत्य है; कथन II सत्य है;
 कथन II कथन I की सही व्याख्या है।
- (2) कथन I सत्य है; कथन II सत्य है; कथन - II कथन - I की सही व्याख्या **नहीं** है।
- (3) कथन I सत्य है, कथन II असत्य है।
- (4) कथन I असत्य है, कथन II सत्य है।

77. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at (0, 3) is :

$$(1) \quad x^2 + y^2 - 6y - 7 = 0$$

(2)
$$x^2 + y^2 - 6y + 7 = 0$$

(3)
$$x^2 + y^2 - 6y - 5 = 0$$

$$(4) \quad x^2 + y^2 - 6y + 5 = 0$$

78. A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability that a student will get 4 or more correct answers just by guessing is:

(1)
$$\frac{17}{3^5}$$

(2)
$$\frac{13}{3^5}$$

(3)
$$\frac{11}{3^5}$$

(4)
$$\frac{10}{3^5}$$

79. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1) (1, 1) and (1, 0) is:

(1)
$$2 + \sqrt{2}$$

(2)
$$2 - \sqrt{2}$$

(3)
$$1 + \sqrt{2}$$

(4)
$$1 - \sqrt{2}$$

7. दीर्घवृत्त $\frac{x^2}{16} + \frac{y^2}{9} = 1$ की नाभियों से होकर जाने वाले उस वृत्त, जिसका केंद्र (0,3) है, का समीकरण है :

$$(1) \quad x^2 + y^2 - 6y - 7 = 0$$

(2)
$$x^2 + y^2 - 6y + 7 = 0$$

(3)
$$x^2 + y^2 - 6y - 5 = 0$$

(4)
$$x^2 + y^2 - 6y + 5 = 0$$

78. एक बहुविकल्पी परीक्षा में 5 प्रश्न हैं। प्रत्येक प्रश्न के 3 वैकल्पिक उत्तर हैं, जिनमें से केवल एक सही है। एक विद्यार्थी द्वारा केवल अनुमान से 4 या उससे अधिक प्रश्नों के सही उत्तर देने की प्रायिकता है:

(1)
$$\frac{17}{3^5}$$

(2)
$$\frac{13}{3^5}$$

(3)
$$\frac{11}{3^5}$$

(4)
$$\frac{10}{3^5}$$

79. एक त्रिभुज, जिसकी भुजाओं के मध्य बिंदुओं के निर्देशांक (0, 1), (1, 1) तथा (1, 0) हैं, के अंत:केंद्र का x- निर्देशांक है :

(1)
$$2 + \sqrt{2}$$

(2)
$$2 - \sqrt{2}$$

(3)
$$1 + \sqrt{2}$$

(4)
$$1-\sqrt{2}$$

P/Page 34 SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

9x9x9x9x3 35x 27

$$P = \gamma = N(\sqrt{2}) \left(\frac{1}{3} \right)^{\frac{1}{3}}$$

$$\frac{1}{3} - \frac{1}{3} = \frac{5}{3} \left(\frac{1}{3} \right) \left(\frac{1}{3} \right)^{\frac{1}{3}}$$

The term independent of x in expansion

of
$$\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10}$$
 is:

- (1)
- (2) 120
- (3) 210
- (4)310
- 81. The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y-x+3=0, x-axis, and lying in the first quadrant is:
 - 9 (1)
 - (2) 36
 - (3)18
 - (4)
- Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If $T_{n+1} - T_n = 10$, then the value of n is:
 - (1)7
 - (2)
 - 10 (3)
 - (4)

- $\left(\frac{x+1}{\frac{2}{x^{3}}-\frac{1}{x^{3}}+1}-\frac{x-1}{x-\frac{1}{x^{2}}}\right)^{10}$ के प्रसार में x से स्वतंत्र पद है :
 - (1)4
 - 120
 - (3)210
 - **(4)** 310
- वक्रों $y = \sqrt{x}$, 2y x + 3 = 0 तथा x- अक्ष से घिरे 81. उस क्षेत्र, जो प्रथम चतुर्थांश में स्थित है,का (वर्ग इकाई में) क्षेत्रफल है:
 - (1)9
 - (2) 36
- माना एक n-भुजाओं वाली समबहुभुज के शीर्षों को 82. मिलाकर बनने वाले सभी संभव त्रिभुजों की संख्या T_n है। यदि $T_{n+1} - T_n = 10$ है, तो n का मान है:
 - (1)
 - (2)
 - - **(4)**

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

- If z is a complex number of unit modulus 83. and argument θ , then arg $\left(\frac{1+z}{1+z}\right)$ equals:
 - (1)

 - (3)
 - (4)
- ABCD is a trapezium such that AB and 84. CD are parallel and BC \perp CD. If \angle ADB = θ , BC = p and CD = q, then AB is equal to :
 - (1) $\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta}$
 - (2) $\frac{p^2 + q^2 \cos\theta}{p \cos\theta + q \sin\theta}$
 - (3) $\frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$
 - (4) $\frac{(p^2 + q^2)\sin\theta}{(p\cos\theta + q\sin\theta)^2}$

matrix A and |A| = 4, then α is equal to :

- (1) 4
- (2) 11
- 5 (3)
- (4)

यदि z एक ऐसी सम्मिश्र संख्या है जिसका मापांक एक इकाई है तथा कोणांक θ है,तो कोणांक $\left(\frac{1+z}{1+z}\right)$ बराबर

- (1) $-\theta$
- $(2) \quad \frac{\pi}{2} \theta$
- (3)
- ABCD एक ऐसा समलंब है जिसमें AB तथा CD 84. समांतर हैं तथा BC⊥CD है। यदि ∠ADB=θ, BC = p तथा CD = q है, तो AB बराबर है:

$$(1) \quad \frac{\left(p^2 + q^2\right)\sin\theta}{p\cos\theta + q\sin\theta}$$

$$(2) \qquad \frac{p^2 + q^2 \cos\theta}{p\cos\theta + q\sin\theta}$$

$$(3) \quad \frac{p^2 + q^2}{p^2 \cos\theta + q^2 \sin\theta}$$

(4)
$$\frac{\left(p^2 + q^2\right)\sin\theta}{\left(p\cos\theta + q\sin\theta\right)^2}$$

85. If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3×3 | 85. \overline{a} \overline{a} \overline{b} \overline{b}

सहखंडज है तथा |A|=4 है, तो α बराबर है :

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

$$1(12-12) - d(4-6) + 3(4-6) = 4$$

0 + 20 - 6 = 4

- 86. The intercepts on x- axis made by tangents to the curve, $y = \int_{0}^{x} |t| dt$, $x \in \mathbb{R}$, which are parallel to the line y = 2x, are equal to:
 - (1) ± 1
 - $(2) \pm 2$
 - $(3) \pm 3$
 - (4) ± 4
- 87. Given: A circle, $2x^2 + 2y^2 = 5$ and a parabola, $y^2 = 4\sqrt{5} x$.

Statement - I: An equation of a common tangent to these curves is $y = x + \sqrt{5}$.

Statement - II: If the line, $y = mx + \frac{\sqrt{5}}{m} (m \neq 0)$ is their common tangent, then m satisfies $m^4 - 3m^2 + 2 = 0$.

- (1) Statement I is true; Statement II is true; Statement II is a correct explanation for Statement I.
- (2) Statement I is true; Statement II is true; Statement II is **not** a correct explanation for Statement I.
- (3) Statement I is true; Statement II is false.
- (4) Statement I is false; Statement II is true.

- 86. वक्र $y = \int_{0}^{x} |t| dt$, $x \in \mathbb{R}$, पर रेखा y = 2x के समांतर खींची गई स्पर्श रेखाओं द्वारा x- अक्ष पर बने अंत:खण्ड, बराबर हैं:
 - (1) ± 1
 - $(2) \pm 2$
 - $(3) \pm 3$
 - (4) ± 4
- 87. दिया है : एक वृत्त, $2x^2 + 2y^2 = 5$ तथा एक परवलय $y^2 = 4\sqrt{5} x$.

कथन - I: इन वक्रों की एक उभयनिष्ठ स्पर्श रेखा का समीकरण $y=x+\sqrt{5}$ है।

कथन - II : यदि रेखा $y = mx + \frac{\sqrt{5}}{m} \ (m \neq 0)$ उनकी उभयनिष्ठ स्पर्श रेखा है, तो m, $m^4 - 3m^2 + 2 = 0$ को संतुष्ट करता है।

- .(1) कथन I सत्य है; कथन II सत्य है; कथन - II कथन - I की **सही** व्याख्या है।
- (2) कथन I सत्य है; कथन II सत्य है; कथन - II कथन - I की सही व्याख्या नहीं है।
- (3) कथन I सत्य है; कथन II असत्य है।
- (4) कथन I असत्य है; कथन II सत्य है।

P/Page 37

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

3 6

51-S1 4.6

40 x

- 88. If $y = \sec(\tan^{-1}x)$, then $\frac{dy}{dx}$ at x = 1 is equal to: to:
 - (1)
 - (2)
 - (3)
 - $\sqrt{2}$ **(4)**
- The expression $\frac{\tan A}{1 \cot A} + \frac{\cot A}{1 \tan A}$ 89. can be written as:
 - sinA cosA + 1(1)
 - secA cosecA+1 (2)
 - tanA + cotA (3)
 - secA + cosecA (4)
- All the students of a class performed 90. poorly in Mathematics. The teacher decided to give grace marks of 10 to each of the students. Which of the following statistical measures will not change even after the grace marks were given?
 - mean . (1)
 - median (2)
 - mode (3)
 - variance **(4)**

- - (1)

 - (3)
 - (4)
 - व्यंजक $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ को लिखा जा सकता है :
 - sinA cosA + 1(1)
 - secA cosecA+1
 - tanA + cotA (3)
 - secA + cosecA
 - एक कक्षा के सभी विद्यार्थियों ने गणित में कम अंक 90. प्राप्त किए। अध्यापक ने प्रत्येक विद्यार्थी को 10 रियायती अंक देने का निर्णय लिया। रियायती अंक देने के बाद भी निम्न में से कौन सा सांख्यिकी माप नहीं बदलेगा?
 - माध्य (1)
 - माध्यक
 - (3)बहुलक
 - प्रसरण (4)

-000-

- o 0 o -

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह SPACE FOR ROUGH WORK / THE BITTE OF THE GIVE OS A SINA (COS A SINA)

SPACE FOR ROUGH WORK / THE BITTE OF THE GIVE OS A SINA (OS A SINA)

SPACE FOR ROUGH WORK / THE BITTE OF THE GIVE OS A SINA (COS A SINA)

TOS A SINA (COS A SINA)

SPACE FOR ROUGH WORK / THE BITTE OF THE GIVE OF THE