CS21 Decidability and Tractability

Lecture 19 February 21, 2014

February 21, 2014

CS21 Lecture 19

Outline

- · the class NP
 - an NP-complete problem
 - alternate characterization of NP
 - 3-SAT is NP-complete

February 21, 2014

CS21 Lecture 19

An EXP-complete problem

- Can you find a poly-time alg for ATM_B?
- NO! we showed that P ⊆ EXP.
- ATM_B is not tractable (intractable).

Back to 3SAT

- Remember 3SAT ∈ EXP
 3SAT = {formulas in CNF with 3 literals per clause for which there exists a satisfying truth assignment}
- It seems hard. Can we show it is intractable?
 - formally, can we show 3SAT is EXPcomplete?

February 21, 2014

CS21 Lecture 19

Back to 3SAT

- can we show 3SAT is EXP-complete?
- · Don't know how to. Believed unlikely.
- One reason: there is an important positive feature of 3SAT that doesn't seem to hold for problems in EXP (e.g. ATM_B):

3SAT is decidable in polynomial time by a nondeterministic TM

February 21, 2014

CS21 Lecture 19

Nondeterministic TMs

- · Recall: nondeterministic TM
- informally, TM with several possible next configurations at each step
- formally, A NTM is a 7-tuple

 $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where:

 everything is the same as a TM except the transition function:

 $\delta: Q \times \Gamma \rightarrow \wp(Q \times \Gamma \times \{L, R\})$

February 21, 2014

CS21 Lecture 19

1

Nondeterministic TMs visualize computation of a NTM M as a tree • nodes are configurations • leaves are accept/reject configurations • M accepts if and only if there exists an accept leaf • M is a decider, so no paths go on forever • running time is max. path length

The class NP

<u>Definition</u>: TIME(t(n)) = {L : there exists a TM M that decides L in time O(t(n))}

$$P = \bigcup_{k \ge 1} TIME(n^k)$$

Definition: NTIME(t(n)) = {L : there exists a
 NTM M that decides L in time O(t(n))}

$$NP = \bigcup_{k \ge 1} NTIME(n^k)$$

CS21 Lecture 19

February 21, 2014

An NP-complete problem

 Version of A_{TM} with a unary time bound, and NTM instead of TM:

ANTM_U = {<M, x, 1^m> : M is a NTM that accepts x within at most m steps}

Theorem: ANTM_U is NP-complete.

Proof:

- what do we need to show?

February 21, 2014 CS21 Lecture 19 10

An NP-complete problem

- ANTM_U = {<M, x, 1^m> : M is a NTM that accepts x within at most m steps}
- Proof that ANTM_U is NP-complete:
 - Part 1. Need to show $ANTM_U \in NP$.
 - simulate NTM M on x for m steps; do what M does
 - running time m^{O(1)}.
 - n = length of input $\ge m$
 - running time $\leq m^k \leq n^k$

February 21, 2014 CS21 Lecture 19 11

An NP-complete problem

- ANTM_U = {<M, x, 1^m> : M is a NTM that accepts x within at most m steps}
- Proof that ANTM_U is NP-complete:
 - Part 2. For each language $A \in NP$, need to give poly-time reduction from A to $ANTM_U$.
 - for a given language $A \in NP$, we know there is a NTM M_A that decides A in time $g(n) \le n^k$ for some k.
 - what should reduction f(w) produce?

February 21, 2014 CS21 Lecture 19 12

An NP-complete problem

- ANTM_U = {<M, x, 1^m> : M is a NTM that accepts x within at most m steps}
- Proof that ANTM_{II} is NP-complete:
 - $-f(w) = \langle M_A, w, 1^m \rangle$ where $m = |w|^k$
 - is f(w) poly-time computable?
 - hardcode M_A and k...
 - YES maps to YES?
 - $W \in A \implies \langle M_A, W, 1^m \rangle \in ANTM_{II}$
 - NO maps to NO?
 - $w \notin A \Rightarrow \langle M_A, w, 1^m \rangle \notin ANTM_U$

February 21, 2014

CS21 Lecture 19

An NP-complete problem

- If you can find a poly-time algorithm for ANTM_U then there is automatically a polytime algorithm for every problem in NP (i.e., NP = P).
- No one knows if can find a poly-time alg for ANTM₁₁...

February 21, 2014

13

CS21 Lecture 19

Poly-time verifiers

- NP = {L : L decide "witness" or e NTM}
- Very useful alternate definition efficiently
 Theorem: language L is in NP if verifiable it is expressible as:

 $L = \{ \ x \ | \ \exists \ y, \ |y| \le |x|^k, \ (x, \ y) \in \ R \ \}$

where R is a language in P.

poly-time TM M_R deciding R is a "verifier"

February 21, 2014

CS21 Lecture 19

Poly-time verifiers

- Example: 3SAT expressible as
- 3SAT = $\{\phi : \phi \text{ is a 3-CNF formula for which } \exists \text{ assignment A for which } (\phi, A) \in R\}$

 $R = \{(\phi, A) : A \text{ is a sat. assign. for } \phi\}$

- satisfying assignment A is a "witness" of the satisfiability of ϕ (it "certifies" satisfiability of $\phi)$
- R is decidable in poly-time

February 21, 2014

CS21 Lecture 19

16

Poly-time verifiers $L = \{ x \mid \exists \ y, \ |y| \le |x|^k, \ (x, y) \in R \}$ Proof: (\Leftarrow) give poly-time NTM deciding L phase 1: "guess" y with |x|^k nondeterministic steps phase 2: decide if (x, y) \in R February 21, 2014 CS21 Lecture 19 17

Poly-time verifiers

Proof: (\Rightarrow) given L \in NP, describe L as: L = { x | \exists y, |y| \leq |x|^k, (x, y) \in R }

- L is decided by NTM M running in time nk
- define the language

R = { (x, y) : y is an accepting computation history of M on input x}

- check: accepting history has length ≤ |x|k
- check: M accepts x iff $\exists y, |y| \le |x|^k$, $(x, y) \in R$

February 21, 2014

CS21 Lecture 19

Cook-Levin Theorem

 Gateway to proving lots of natural, important problems NP-complete is:

<u>Theorem</u> (Cook, Levin): 3SAT is NP-complete.

 Recall: 3SAT = {φ : φ is a CNF formula with 3 literals per clause for which there exists a satisfying truth assignment}

February 21, 2014

CS21 Lecture 19

10

21

Cook-Levin Theorem

- · Proof outline
 - show CIRCUIT-SAT is NP-complete
 CIRCUIT-SAT = {C : C is a Boolean circuit for which there exists a satisfying truth assignment}
 - show 3SAT is NP-complete (reduce from CIRCUIT SAT)

February 21, 2014

CS21 Lecture 19

Boolean Circuits

- · Boolean circuit C
 - directed acyclic graph
 - nodes: AND (∧); OR (∨);NOT (¬); variables x_i

- C computes function f:{0,1}ⁿ → {0,1} in natural way
 - identify C with function f it computes
- size = # nodes

February 21, 2014

CS21 Lecture 19

Boolean Circuits

- every function f:{0,1}ⁿ → {0,1} computable by a circuit of size at most O(n2ⁿ)
 - AND of n literals for each x such that f(x) = 1
 - OR of up to 2ⁿ such terms

February 21, 2014

CS21 Lecture 19

CIRCUIT-SAT is NP-complete

Theorem: CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for which there exists a satisfying truth assignment}

Proof:

– Part 1: need to show CIRCUIT-SAT ∈ NP.• can express CIRCUIT-SAT as:

CIRCUIT-SAT = $\{C : C \text{ is a Boolean circuit for } which \exists x \text{ such that } (C, x) \in R\}$

 $R = \{(C, x) : C \text{ is a Boolean circuit and } C(x) = 1\}$

February 21, 2014

CS21 Lecture 19

CIRCUIT-SAT is NP-complete

CIRCUIT-SAT = {C : C is a Boolean circuit for which there exists a satisfying truth assignment}

Proof:

- Part 2: for each language $A \in NP$, need to give poly-time reduction from A to CIRCUIT-SAT
- for a given language $A \in NP$, we know $A = \{x \mid \exists y, |y| \le |x|^k, (x, y) \in R \}$

decides R in time $g(n) \le n^c$ for some c.

and there is a (deterministic) TM M_R that

February 21, 2014

CS21 Lecture 19

20

22

CIRCUIT-SAT is NP-complete

- is f(x) poly-time computable?
 - \bullet hardcode $M_{R},\,k$ and c
 - circuit has size $O(|w|^{2c})$; $|w| = |(x,y)| \le n + n^k$
 - each component easy to describe efficiently from description of $\ensuremath{\mathsf{M}_{\mathsf{R}}}$
- YES maps to YES?
 - $x \in A \Rightarrow \exists y, M_R \text{ accepts } (x,y) \Rightarrow f(x) \in CIRCUIT\text{-SAT}$
- NO maps to NO?
 - x $\not\in$ A \Rightarrow \forall y, M_R rejects (x, y) \Rightarrow f(x) $\not\in$ CIRCUIT-SAT

February 21, 2014

CS21 Lecture 19

31