

IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

- OUTLINE -

¿Qué vamos a ver?

PCA, t-SNE

k-means, HAC, DBSCAN, Louvain

Perceptron, SVM, ensembles

AE. VAE

Data Mining

- UC - M. Mendoza -

Data Mining

- Preprocesamiento de datos -

Fuentes de Datos

Tid	Refund	Marital Status	Taxable Income	Defaulted Borrower		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

(a) Record data.

Projection of x Load	Projection of y Load	Distance	Load	Thickness		
10.23	5.27	15.22	27	1.2		
12.65	6.25	16.22	22	1.1		
13.54	7.23	17.34	23	1.2		
14.27	8.43	18.45	25	0.9		

(c) Data matrix.

TID	ITEMS
1	Bread, Soda, Milk
2	Beer, Bread
3	Beer, Soda, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Soda, Diaper, Milk

(b) Transaction data.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

(d) Document-term matrix.

Tipos de características

Características cuantitativas

Normalización:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$
 [0, 1]

$$X_{m-norm} = \frac{X - \mu}{X_{max} - X_{min}} \longrightarrow \text{2Intervalo?}$$

Características cualitativas

Codificación:

Características cualitativas

Codificación:

Vectores y características

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_d \end{bmatrix}$$

Feature vector

Vectores y características

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_d \end{bmatrix}$$

Feature vector

Feature space (3D)

- Distancia y proximidad -

Distancia Euclideana

2D:

n-dimensional:
$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Distancia Euclideana

Maldición de la dimensionalidad

Distancia Euclideana

Maldición de la dimensionalidad (normalizado)

Distancias

Distancia Manhattan

Distancias

Distancia Manhattan

Generalización (Minkowski):

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

$$\blacksquare$$
 Manhattan $(p = 1)$

Distancias

Distancia Manhattan

Generalización (Minkowski):

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

$$\blacksquare$$
 Manhattan $(p=1)$

$$Euclidean (p = 2)$$

Proximidad de vectores de alta dimensionalidad:

Coseno:

Proximidad de vectores de alta dimensionalidad:

Coseno:

$$\cos(\overline{X}, \overline{Y}) = \frac{\sum_{i=1} x_i \cdot y_i}{\sqrt{\sum_{i=1}^d x_i^2} \cdot \sqrt{\sum_{i=1}^d y_i^2}}$$

Proximidad de vectores de alta

Proximidad de vectores de alta dimensionalidad:

Coseno:

Si las características están en [0,1], los ángulos están en [0°, 90°]

У

dolphin: 0.875 mink: 0.875 porpoise: 0.875 seal: 0.875 boar: 0.8125 cheetah: 0.8125 leopard: 0.8125 lion: 0.8125

- PCA -

Proyección

Ej.: PCA

- UC - M. Mendoza -

X1 retiene la mayor parte de la varianza por lo que remover x2 es neutro en términos de compresión.

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$m{z}_n = m{B}^ op m{x}_n \in \mathbb{R}^M \longrightarrow ext{Baja dimensionalidad}$$

$$egin{align*} m{B} & = [m{b}_1, \dots, m{b}_M] \in \mathbb{R}^{D imes M} \,. \end{aligned}$$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$oldsymbol{z}_n = oldsymbol{B}^ op oldsymbol{x}_n \in \mathbb{R}^M \longrightarrow$$
 Baja dimensionalidad

Base de la descomposición $oldsymbol{B} := [oldsymbol{b}_1, \dots, oldsymbol{b}_M] \in \mathbb{R}^{D imes M}$.

$$\boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_j = 0 \quad \mathsf{y} \quad \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_i = 1$$

La proyección se calcula usando la SVD.

Proceso iterativo:

$$\hat{m{X}}:=m{X}-\sum_{i=1}^{m-1}m{b}_im{b}_i^{ op}m{X}=m{X}-m{B}_{m-1}m{X}\,,\qquad ext{con}\quad m{X}=egin{bmatrix}m{x}_1,\dots,m{x}_N\end{bmatrix}\in\mathbb{R}^{D imes N}$$
 y $m{B}_{m-1}:=\sum_{i=1}^{m-1}m{b}_im{b}_i^{ op}$

Proceso iterativo:

$$\hat{m{X}} := m{X} - \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op m{X} = m{X} - m{B}_{m-1} m{X} \,, \qquad ext{con} \quad m{X} \ = \ m{igl[x_1, \dots, x_Nigr]} \ \in \ \mathbb{R}^{D imes N}$$
 y $m{B}_{m-1} := \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op$

- Aspectos prácticos:
 - Usa la full SVD (LAPACK) para datos densos.
 - Usa la SVD truncada (ARPACK) para datos dispersos.
- Implementaciones:

- Python: sklearn

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html