

Effects of

AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH, Cell

2000 NASA Aerospace Battery Workshop

Denney Keys
Gopalakrishna M. Rao
David Sullivan
Harry Wannemacher*

NASA GODDARD SPACE FLIGHT CENTER *QSS GROUP, INC

Objectives

- EOS- Aqua/Aura flight hardware configuration Verify the Performance of AEA Cell Bypass Protection Device (CBPD) under simulated
- closing of CBPD switch under simulated high cell inadvertent firing of CBPD switch, as well as the Assess the Safety of the hardware under an *Impedance*
- impedance path homogeneous low melting point Confirm that the mode of operation of CBPD switch is the formation of a continuous low eutectic (Indium alloy)

EOS-Aqua Flight Hardware

• Battery Cells:

- Eagle-Picher 160 Ah NiH₂ (RNH 160-3)

- Size: ~ 12cm Diameter

~ 32cm overall Height

Weight: ~ 4.3kg

Cell-Bypass-Switch:

Cell Bypass Protection Device (CBPD) P/N: 1Z019-001S-001 - AEA Technology

AEA Hardware Tested

- A total of five (5) CBPDs were tested using the charged EOS Cell
- Three FLIGHT devices (F01, F02 and F03)
- Two ENGINEERING MODEL devices (EM01 & EM02)
- same, with a change in separator and minor The two types of CBPDs are basically the outer dimension changes

AEA Bypass Switch Schematic

CBPD - LIMPA Schematic

(Low Melting Point Alloy)

FLIGHT CBPD

EN AEA

1997 AEA Technology plc

NOTE: Tested devices have 6 series diodes in charge path (not 4 as shown)......

AEA Cell-Bypass-Switch Spec

CBPD - Specification

- 75grams
- Icharge < 35A
- I discharge < 235A
- Triggering see operation summary
- R ~ 200 microOhms
- I operation < 400A dependent on leads and mounting

State soid to 13 D 1997 AEA Technology plc

Tests Performed

• Test#1:

CBPD F01

Activated with heatgun

Long-axis ~30° from Horizontal

Tests #2 & 3:

CBPD EM01 & EM02

Activated through charge diodes Long-axis Horizontal

Test#4:

CBPD F02

Activated through charge diodes Long-axis Vertical (launch orientation)

Test#5:

CBPD F03

same as Test#4, with added 50 mΩ resistance in current path

Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell (switch activated with heatgun) AEA CBPD Test #1 setup (4.3 inches of #2 awg wire + terminals) (11 inches of #2 awg wire $R \approx 0.17 m\Omega$ $R\approx 0.08 m\Omega$ + terminals) \ \ EPI NiH₂ Cell

2000 NASA Aerospace Battery Workshop

Test #1 (F01)

First application of heatgun

Heatgun repositioned for second application

Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #1 Scope Traces

大人の

2000 NASA Aerospace Battery Workshop

900

100

(switch activated through diodes)

2000 NASA Aerospace Battery Workshop

Test #2 (EM01)

CBPD opened after test.

Engineering Model CBPD

after test

Test #2 & 3 Scope Traces

Test #4 (F02)

Charge diode string connection

CBPD in launch orientation.

Test #4 Scope Trace

Test #4 Data

Test #5 (F03)

50 mΩ resistance added to positive current path

Test #5 (F03)

50 mΩ resistance added to positive current path

Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #5 Data (with added $50m\Omega$)

Scope traces for Tests #1 thru 4

Test Summary

Test #	CBPD #	Result
1	F01	 Seven distinct current bursts were recorded Switch failed to provide continuous short even after heating to near 300°C It is expected that both charge and discharge switches were activated by the high temperature
2	EM01	- One distinct current burst was recorded - Switch failed to provide continuous short
3	EM02	- One distinct current burst was recorded - Switch failed to provide continuous short
4	F02	 One distinct current burst was recorded Switch temperature was maintained over three minutes past the event, and switch still failed to provide continuous short
2	F03	- With 50mΩ added to the current path, switch closed as expected, and maintained low impedance after diode current was removed and switch cooled

Conclusions

- Aqua/Aura flight hardware configuration has been demonstrated. The nominal performance of AEA CBPD under simulated EOS-
- There is no evidence for cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode).
- therefore the device may or may not provide protection against impedance path) intermittently closes and opens up the switch, Inadvertent CBPD switch activation with a charged cell (low Further testing with switch F02 may provide clarification. future open-circuit cell failure.
- homogeneous low melting point eutectic (Indium alloy), has been The formation of a continuous low impedance path, i.e. a confirmed - which is the expected mode of operation.