Confounding vs Collinearity

They are both related to the relationship between the **predictors** in the statistical models

Confounding

its a variable *predictor* X that influences both the **Independent variables**(Other predictor) X_i and the **Dependent variable**(Response)Y.

Effect:

• It effect our estimates of the relationship between a predictor and a response making it biased

Example

Studying effect of balance X_1 on default Y

- Confounder Variable here is the income cause
 - Low income people might higher balances X_1 and thus higher default risk Y
 - If **income** is unmeasured $X_1 o Y$ estimate is **biased**
 - The **income** is effects both the predictor X_1 balance and the response Y default

How to handle Confounding

- Include the Confounder as a control variable in the regression model
- Stratified analysis analyzing subgroups separately (high income low income groups)
- Randomizing generally decreases confounder variable effects

Collinearity (Multicollinearity)

Previously explained in Other Considerations in the Regression Model

Collinearity occurs when two or more predictors variables are highly **correlated** making it hard to isolate the **indivudual** effect of each

Effect:

- increases variance of coefficient estimates
- Causes unstable model estimates, the smallest changes in the data will result in large swings in the coefficients estimates
- Makes interpreting coefficients harder

Conclusion

- Confounding makes the estimates biased
- Collinearity inflates the variance of the coefficients