МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Вычислительной техники

ОТЧЁТ

по практической работе №2

по дисциплине «Элементная база цифровых систем»

Тема: ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННОГО УЗЛА НА ОСНОВЕ ДЕШИФРАТОРА ИЛИ МУЛЬТИПЛЕКСОРА

Вариант 12

Студент гр. 9308	 Соболев М.С.
Преподаватель	Ельчанинов М.Н

Санкт-Петербург,

Оглавление

1. Введение	3
1.1. Введение	3
1.2. Краткие теоретические сведения	3
1.3. Задание на работу	5
2. Ход работы	7
2.1. Построение таблицы истинности	7
2.2. Минимизация методом карт Карно	8
2.3. Покрытие выражения заданным базисом	8
2.4. Построение функциональной схемы в заданном базисе	10
2.5. Построение принципиальной схемы в заданном базисе	11
2.6. Построение перечня элементов	13
3. Вывод	14
4. Список использованных источников	15

1. Введение

1.1. Введение

Тема работы: Проектирование комбинационного узла на основе дешифратора или мультиплексора.

Цель работы: Освоение методики проектирования комбинационного узла на основе дешифратора или мультиплексора, получение практических навыков в оформлении функциональной и принципиальной электрических схем.

Вариант: 12.

1.2. Краткие теоретические сведения

Дешифратор с прямыми выходами формирует на своих выходах полную систему конъюнктивных термов от аргументов, подаваемых на информационные входы. Дополнив схему элементом ИЛИ, соединённым с выходами дешифратора, соответствующими конституентам «1», можно получить комбинационный узел, реализующий переключательную функцию в совершенной дизъюнктивной нормальной форме.

Если переключательная функция имеет меньше нулевых значений, чем единичных, то выгоднее использовать дополнительный элемент ИЛИ-НЕ, на входах которого собирают сигналы с выходов дешифратора, соответствующих конституентам «0».

Если использован дешифратор с инверсными выходами, то во втором каскаде комбинационного узла сигналы собирают на элементе И-НЕ или на элементе И. Если заданная функция имеет меньше единичных значений, то применяют элемент И-НЕ, на который подают инверсные сигналы конституент «1». Если переключательная функция имеет меньше нулевых значений, то используют элемент И и передают на него инверсные сигналы конституент «0».

Мультиплексор соединяет логически со своим выходом у тот информационный вход d_i , номер і которого задан кодом на входах настройки X.

Мультиплексор реализует переключательную функцию

$$y = \bigvee_{i=0}^{i=r} d_i \& k_i$$

Рисунок 1. Переключательная функция

где k_i – конституента «1» для і-го набора настроечных переменных d_1, d_2, \dots, d_n ; r=2n-1 – максимальное значение индекса і.

Если на входы d_i мультиплексора подавать константы «0» и «1» в соответствии со значениями заданной переключательной функции у, то выражение становится совершенной дизьюнктивной нормальной формой функции у от аргументов x_1, x_2, \dots, x_n . Получающаяся комбинационная схема имеет структуру «константа — мультиплексор».

Более экономичной по затратам оборудования является структура «функция — мультиплексор». В этой структуре на входы настройки мультиплексора подают только часть входных переменных x_1, x_2, \dots, x_n , а из остальных формируют промежуточные переменные.

Декомпозицию функции у выполняют либо аналитически, пользуясь разложением по Шеннону, либо графически на картах Карно, либо таблично путем перестановки и соединения строк исходной таблицы.

Аналитические преобразования основаны на разложении функции по Шеннону:

$$y(x_0,...,x_i,...x_n) = \overline{x_i} \wedge y(x_0,...,0,...x_n) \vee x_i \wedge y(x_0,...,1,...x_n).$$

Функция разлагается по тем аргументам хі, которые предполагается подать на настроечные входы мультиплексора. Подфункции — множители реализуются отдельно и подаются на информационные входы мультиплексора.

Выделение подфункций по карте Карно дает лучшие результаты, так как вследствие обозримости всей функции удается найти группировку аргументов, которая максимально упрощает схему каскада «функция».

1.3. Задание на работу

Выполнить проектирование комбинационной схемы, реализующую функцию от четырёх переменных, заданную набором входных данных (табл. Практики 1), на которых она принимает единичные значения: составить таблицу истинности функции, выполнить минимизацию функции использованием карт Карно или метода Квайна – Мак-Класки, основанного на склеивания поглощений. применении операций И Проектирование осуществляется в базисе, заданном перечнем используемых микросхем.

Подготовить схему электрическую функциональную для разработанного устройства.

№	Функция	ИС		Функция
		Отечеств.	Им-	
			портн.	
1	0, 1, 2, 4, 10, 11, 14	1533ЛА3	7400	4×2И-НЕ
		1533ИД14	74139	2 дешифратора / демультиплексора 2 в 4
2	1, 3, 4, 9, 10, 13, 14	1533КП5	74152	8х1 мультиплексор
3	2, 3, 5, 6, 10, 12, 14	1533ЛА8	7402	4×2ИЛИ-НЕ
		1533ИД7	74138	дешифратор / демультиплексор 3 в 8
4	0, 1, 6, 7, 11, 14, 15	1533ЛА9	7403	4×2И-НЕ
		155КП2	74153	сдвоенный 4x1 мультиплексор
5	1, 2, 3, 6, 8, 9, 10, 11	1533ЛА4	7410	3×3И-НЕ
		1533КП2	74153	сдвоенный 4х1 мультиплексор
6	2, 4, 5, 8, 9, 11, 14, 15	1533КП5	74152	8х1 мультиплексор
7	0, 2, 4, 5, 6, 7, 9, 10	1533ЛА3	7400	4×2И-НЕ
		1533КП7	74151	8х1 мультиплексор
8	1, 2, 4, 7, 9, 12, 13	1533ЛА3	7400	4×2И-НЕ
		1533ИД14	74139	2 дешифратора / демультиплексора 2 в 4
9	2, 5, 6, 7, 8, 12, 13, 14	1533КП5	74152	8х1 мультиплексор
10	0, 3, 4, 5, 6, 7, 10, 14	1533ЛА8	7402	4×2ИЛИ-НЕ
		1533ИД7	74138	дешифратор / демультиплексор 3 в 8
11	1, 3, 5, 7, 8, 12, 13, 15	1533ЛА9	7403	4×2И-НЕ
		155КП2	74153	сдвоенный 4х1 мультиплексор
12	2, 6, 9, 10, 11, 12, 13	1533ЛА4	7410	3×3И-НЕ
		1533КП2	74153	сдвоенный 4х1 мультиплексор
13	1, 4, 5, 8, 10, 13, 14, 15	1533КП5	74152	8х1 мультиплексор
14	2, 3, 4, 6, 12, 13, 14, 15	1533ЛА3	7400	4×2И-НЕ
		1533КП7	74151	8х1 мультиплексор
15	0, 4, 5, 8, 10, 11, 14, 15	1533КП5	74152	8х1 мультиплексор

Рисунок 2. Варианты заданий

2. Ход работы

2.1. Построение таблицы истинности

Составим таблицу истинности исходя из заданного вектора функции у = 0010001001111100, как и в практической работе №1.

Таблица 1. Таблица истинности заданного вектора функции

x_4	x_3	x_2	x_1	У
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Совершенная дизъюнктивная нормальная форма (СДНФ):

 $y = \neg x4 \neg x3x2 \neg x1 \lor \neg x4x3x2 \neg x1 \lor x4 \neg x3 \neg x2x1 \lor x4 \neg x3x2 \neg x1 \lor x4 \neg x3x2 x1$ $\lor x4x3 \neg x2 \neg x1 \lor x4x3 \neg x2x1$.

Совершенная конъюнктивная нормальная форма (СКНФ):

2.2. Минимизация методом карт Карно

Минимизируем выражение с помощью карт Карно, как и в практической работе №1.

x 4x 3/x 2x 1

Таблица 2. Минимизация логического выражения заданного вектора функции

Минимизированная ДНФ:

$$y = x4x3\neg x2vx4\neg x3x2vx4\neg x3x1v\neg x4x2\neg x1.$$

Минимизированная КНФ:

$$y = (x4vx2)\wedge(x4v\neg x1)\wedge(\neg x4v\neg x3v\neg x2)\wedge(x3vx2vx1).$$

2.3. Покрытие выражения заданным базисом

Осуществим переход к базису сдвоенного 4х1 мультиплексора. Схема будет использовать следующий принцип работы: на два мультиплексора 4х1 будут подаваться сигналы х2 и х1 (последние два младшие разряда входного сигнала), затем будет осуществляться подача, на выходе которых будет формироваться выходной сигнал в зависимости от части вектора функции (первый мультиплексор отвечает за формирование сигнала из первых 8-ми

чисел, а второй — из последних 8-ми). Третий мультиплексор формирует выходной сигнал из 2-х управляющих сигналов х4 и х3 и 4-х информационных — тех, что получились из первых двух мультиплексоров. На этом принципе и получится окончательный выходной сигнал.

По сути, используется двухступенчатое мультиплексирование для наращивания разрядности мультиплексоров (посколько выходить за рамки заданного базиса запрещено), но с поправкой на 2 входа выборки вместо 3-х.

Использование в схеме элементов 3×3 И-НЕ не осуществлялось в связи с тем, что базисные мультиплексоры полностью покрывали функцию и что использование вариантов элемента И-НЕ предполагалось в практической работе N_2 1, а в практической работе N_2 2 — мультиплексора или дешифратора.

2.4. Построение функциональной схемы в заданном базисе

Рисунок 3. Функциональная схема в заданном базисе

2.5. Построение принципиальной схемы в заданном базисе

Условное графическое обозначение:

- 1 вход разрешения V1;
- 2 вход выборки разряда S2;
- 3 вход информационный АЗ;
- 4 вход информационный А2;
- 5 вход информационный А1;
- 6 вход информационный А0;
- 7 выход A; 8 общий; 9 выход D;
- 10 вход информационный D0;
- 11 вход информационный D1;
- 12 вход информационный D2;
- 13 вход информационный D3;
- 14 вход выборки разряда S1;
- 15 вход разрешения V2; 16 напряжение питания.

Рисунок 4. Условное графическое обозначение

Рисунок 5. Принципиальная схема в заданном базисе

2.6. Построение перечня элементов

	Поз. обозна-		Наименование		Кол.	Примечание	
7*	4ehue		Κα	нденсаторы			
DUMB	[1			⁹ мкФ х 16В	1	Электролит. поверх. монт. 4 х 5,4	
Перв. примен.	[2, [3, [4	4		0.1мкФ x 35 B	3	Пииерх. минт. 4 х э,4 Танталовый	
_	D1, D2, D3	3	<u> </u>			Корпус 238.16–1	
			<u> </u>	Резисторы			
Справ. №	R1		SMD 0805 1k0m				
CNPC				<u>Разъёмы</u>			
	X1		IDC-	-10MS (BH-10)	1	Posemka mun B	
	X2			WF-2R	1	Вилка угл, шаг 2.54	
DU							
u dan.							
Подп. и дата							
ΩÚ							
Инв. № дубл.							
_							
B. No							
Вэам. инв. №							
	 			1			
Подп. и дата				XXXX.43	XXXX.431239.XXX		
Nodn.	Изм. Лист	№ докум.	Подп. Дата	Преобразовал	пель	Num. Macca Macum	
поди		Соболев М.С. Ельчанинов М.Н.	18.03.22	Перечень элеме	ЭНТОВ 📗	icm /lucmoß	
MHC. Nº NOGA.	Н.контр.						
Ž	т.кинтр. Утв.			1			

Рисунок 6. Перечень элементов

3. Вывод

В ходе выполнения практической работы №2 «Проектирование комбинационного узла на основе дешифратора или мультиплексора» были освоены методики проектирования комбинационного узла на основе Также мультиплексора. был закреплён навык двухступенчатого мультиплексирования ДЛЯ увеличения разрядности нескольких мультиплексоров. В работе были составлены принципиальная электрическая схема и перечень используемых элементов, вследствие чего были получены навыки. Таким образом был соответствующие И спроектирован комбинационный узел на основе мультиплексора.

4. Список использованных источников

- 1. Онлайн-курс «Элементная база цифровых систем» в LMS Moodle [сайт]. URL: https://vec.etu.ru/moodle/course/view.php?id=8252.
- 2. Бондаренко П. Н., Буренева О. И., Головина Л. К. / Узлы и устройства средств вычислительной техники: учеб.-метод. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2017. 64 с.
- 3. Онлайн-калькулятор «<u>Progr@m4you</u>» построения таблицы истинности, СДНФ, СКНФ и полинома Жегалкина [сайт]. URL: https://programforyou.ru/calculators/postroenie-tablitci-istinnosti-sknf-sdnf.
- 4. Языки программирования [сайт]. URL: https://life-prog.ru/1_56214_D-trigger-v-R-S-rezhime.html.
- 5. Сайт Александра Владимировича Микушина [сайт]. URL: https://digteh.ru/digital/MS.php.
- 6. Портал о науке и технике «Hubstub» [сайт]. URL: https://hubstub.ru/circuit-design/113-kak-rabotaet-multipleksor.html.