Expected Utility

PS 171B - Week 2

Derek Holliday

4/11/2019

Utility Functions

Take an **outcome** as an input, assigns it a **numerical value**.

Can only do this when preference orderings of outcomes are **transitive**.

Knowledge Check

I strictly prefer Guinness to Heineken, strictly prefer Heineken to Bud Light, and strictly prefer Guinness to Bud Light. Can a utility function be assigned to my preferences? If so, give an example.

Values and Beliefs

Values involve how much we (dis)like particular outcomes. However, we are often not able to pick outcomes with certainty. **Beliefs** help measure this uncertainty... given our choice of a certain action or policy, with what probability does an outcome occur?

Expected Utility

Basically, how good do we expect the outcome of our action/policy to be?

Involves multiplying the conditional probability of all possible outcomes given the action taken by the utility of the outcome.

Knowledge Check

Its Friday night, sections are done, time to go out. I've got two choices: Flaming Saddles or Cabo Cantina. My values and beliefs are as follows:

Values:
$$U(G) = 10$$
, $U(H) = 8$, $U(B) = 1$

Beliefs:
$$Pr(G|FS) = 0.5$$
, $Pr(H|FS) = 1$, $Pr(B|FS) = 1$, $Pr(G|CC) = 0.25$, $Pr(H|CC) = 0.75$, $Pr(B|CC) = 1$

What are the expected utilities of choices? What set of beliefs would change this preference ordering?

Practice Problem: Shepsle 2.6

You are presented with two pairs of lotteries, each with three outcomes: x = \$2.5 million, y = \$0.5 million, and z = \$0.

 P_1 and P_2 are the first pair, with probabilities $P_1=ig(p_1(x),p_1(y),p_1(z)ig)=ig(0,1,0)$ and $P_2=ig(0.1,0.89,0.01ig)$.

 P_3 and P_4 are the second pair, with probabilities $P_3=(0,0.11,0.89)$ and $P_4=(0.1,0,0.9)$.

Empirically, most people express strict preferences for P_1 to P_2 and P_4 to P_3 . Is this behavior consistent with the theory of expected utility?

HINT: You don't actually need to know anything about the utility function to solve this problem. Set up the empirical preferences as inequalities of expected utilities, and try to coax out a contradiction. Yes, this will involve algebra.

Practice Problem: Group Preferences

Two more people have joined me on my Friday adventure: Alex and Bo. We've also added one more option: stay in. Our expected utilities are as follows:

EU	Derek	Alex	Во
FS	14.0	8.5	10.0
CC	9.5	12.0	9.0
SI	8.0	10.0	12.5

Does the above profile of preferences give a transitive social ordering over policy alternatives?

Practice Problem: More Groups

Let's say the previous expected utilities amongst group members were all due to differences in beliefs, but we value each outcome in the same fashion such that:

$$U(G) = 10, U(H) = 8, U(B) = 1$$

For now, let's remove Bud Light from our consideration... its basically water anyway. Suppose the **absence** of any beverage has a utility of 0 and that utilities are independent. Is there a transitive social ordering over outcomes?