MA1301 Introductory Mathematics

Tutorial 7

1. Using integration by parts, evaluate the following definite integrals.

(a)
$$\int_0^{\pi} x \cos \frac{x}{2} dx;$$

(b)
$$\int_0^1 \frac{2x-1}{e^{2x}} dx$$
;

(c)
$$\int_{1}^{e} x^{3} \ln x \, dx$$
;

(d)
$$\int_0^{\pi/4} x \sec^2 x \, dx;$$

(e)
$$\int_0^{\pi/2} e^{3x} \cos 2x \, dx$$
;

(f)
$$\int_{e}^{e^2} x \ln(x^4) dx$$
;

(g)
$$\int_0^{1/4} \sin^{-1} 2x \, dx;$$

(h)
$$\int_0^{\pi/8} x \tan^2 2x \, dx$$
;

(i)
$$\int_0^{\pi} x \sin x \cos x \, dx;$$

(j)
$$\int_0^{\pi/3} x \sin^2 3x \, dx$$
.

2. Calculate the area of the region bounded by the following curves/lines.

(a)
$$y = 4x(1-x)$$
 and $y = 0$.

(b)
$$y = 1 - x$$
 and $y^2 = 1 + x$.

(c)
$$y = 2\sin x + 1$$
 $(0 \le x \le \pi)$, the y-axis and the line $y = \frac{x}{\pi}$.

(d)
$$y = \sqrt{x}$$
, the x-axis and the line $y = 6 - x$.

3. A curve C has equation $y = 5 - e^x$.

- i) Find the coordinates of the points at which C meets the axes.
- ii) Find the equation of the asymptote of C.
- iii) Sketch the curve C.
- iv) Find the equation of the tangent line to C at the point where C meets the y-axis.
- v) The region R is bounded by the curve C, the tangent line in (iv) and the x-axis. Find the volume of the solid generated by rotating R completely about the x-axis.

4. i) On a single xy-coordinate system, sketch the graphs of $y = x^2$ and $y = 2 - x^2$.

ii) Find the volume of the solid formed by rotating the region bounded between the two curves in (i) completely about the x-axis.

5. i) Sketch the graph of
$$y = x + \frac{4}{x}$$
 for $x > 0$.

- ii) Find the area of the region S bounded by the curve in (i) and the line y = 5.
- iii) Find the volume of the solid when S is rotated completely about the line y = 5.
- **6.** The region R is bounded by $y = \tan^2 x$ $(0 \le x < \frac{\pi}{2})$, the y-axis and y = 3.
 - i) Find the area of the region R.
 - ii) Using the result in (i) or otherwise, evaluate $\int_0^3 \tan^{-1} \sqrt{y} \, dy$.
 - iii) Show that $\frac{d}{dx}(\tan^3 x 3\tan x + 3x) = 3\tan^4 x$.
 - iv) Find the volume of the solid formed by rotating R completely about the x-axis.

SOLUTIONS AND HINTS

1. (a)
$$2\pi - 4$$
. Hint: $\int x \cos \frac{x}{2} dx = 2x \sin \frac{x}{2} + 4 \cos \frac{x}{2} + C$.

(b)
$$-e^{-2}$$
. Hint: $\int \frac{2x-1}{e^{2x}} dx = -e^{-2x} - xe^{-2x} + C$.

(c)
$$\frac{3}{16}e^4 + \frac{1}{16}$$
. Hint: $\int x^3 \ln x \, dx = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + C$.

(d)
$$\frac{1}{4}\pi - \frac{1}{2}\ln 2$$
. Hint: $\int x \sec^2 x \, dx = x \tan x + \ln|\cos x| + C$.

(e)
$$-\frac{3}{13}e^{3\pi/2} - \frac{3}{13}$$
. Hint: $\int e^{3x}\cos 2x \, dx = \frac{3}{13}e^{3x}\cos 2x + \frac{2}{13}e^{3x}\sin 2x + C$.

(f)
$$3e^4 - e^2$$
. Hint: $\int x \ln(x^4) dx = 2x^2 \ln x - x^2 + C$.

(g)
$$\frac{\pi}{24} + \frac{\sqrt{3}}{4} - \frac{1}{2}$$
. Hint: $\int \sin^{-1} 2x \, dx = x \sin^{-1} 2x + \frac{1}{2} \sqrt{1 - 4x^2} + C$.

(h)
$$\frac{1}{16}\pi - \frac{1}{8}\ln 2 - \frac{1}{128}\pi^2$$
. Hint: $\int x \tan^2 2x \, dx = \frac{1}{2}x \tan 2x + \frac{1}{4}\ln|\cos 2x| - \frac{1}{2}x^2 + C$.

(i)
$$-\frac{1}{4}\pi$$
. Hint: $\int x \sin x \cos x \, dx = \frac{1}{4}x \cos 2x - \frac{1}{8}\sin 2x + C$.

(j)
$$\frac{1}{36}\pi^2$$
. Hint: $x\sin^2 3x \, dx = \frac{1}{4}x^2 - \frac{1}{12}x\sin 6x - \frac{1}{72}\cos 6x + C$.

2. (a)
$$\int_0^1 4x(1-x) dx = \frac{2}{3}$$
; (b) $\int_{-1}^2 [(1-y) - (y^2 - 1)] dy = \frac{9}{2}$;

(c)
$$\int_0^{\pi} \left[(2\sin x + 1) - \frac{x}{\pi} \right] dx = 4 + \frac{\pi}{2};$$
 (d) $\int_0^2 \left[(6 - y) - y^2 \right] dy = \frac{22}{3}.$

3. i)
$$(\ln 5, 0)$$
, $(0, 4)$; ii) $y = 5$; $y = -x + 4$;

iv)
$$\left(\frac{148}{3} - 25 \ln 5\right) \pi$$
. Hint: $\frac{1}{3} \pi \cdot 4^2 \cdot 4 - \int_0^{\ln 5} \pi (5 - e^x)^2 dx$.

4. ii)
$$\frac{16}{3}\pi$$
. Hint: $\int_{-1}^{1}\pi(2-x^2)^2 dx - \int_{-1}^{1}\pi(x^2)^2 dx$.

5. ii)
$$\frac{15}{2} - 8 \ln 2$$
. *Hint*: $3 \times 5 - \int_{1}^{4} \left(x + \frac{4}{x} \right) dx$.

iii)
$$57 - 80 \ln 2$$
. Hint: $\int_{1}^{4} \pi \left(5 - x - \frac{4}{x} \right)^{2} dx$.

6. i)
$$\frac{4}{3}\pi - \sqrt{3}$$
. Hint: $3 \times \frac{\pi}{3} - \int_0^{\pi/3} \tan^2 x \, dx$.

ii) Hint: Express the area of R as an integral in y.

iv)
$$\frac{8}{3}\pi^2$$
. Hint: $\pi \cdot 3^2 \cdot 3 - \int_0^{\pi/3} \pi (\tan^2 x)^2 dx$.