Properties of Schemes

§ 5.1 Topological properties:

. It field \Rightarrow \mathbb{P}_{R}^{n} irreducible (b/c \mathbb{A}_{R}^{n} is)
. I spoints in scheme X $\xrightarrow{1-1}$ $\left\{ \text{ irreducible closed } \right\}$

 $X = \bigcup_{i=1}^{n} Spec A_{i}$, each A_{i} Noetherian $\Rightarrow X$ noetherian

· scheme × quasi compact (finite unions of open affines

. \times guasi compact scheme , $\alpha \in A$ $\Rightarrow \exists \text{ is closed ift} \quad \forall \in \overline{\{\alpha\}} \quad \text{(Check)}$ Can fail at non-quasi compact scheme.

Cor: X quasi-compact and some open property P holds at all closed points \Rightarrow P holds at all chaints on X.

Def": A defelogical X is quasi-separated if intersection of very 2 g-compact open is g-compact.

Prop.) Scheme X is a saparated

 \Leftrightarrow \cap of any 2 open affines is a finite union of open affines

(cg. Plane with a cloubled origin.)

- 2) X = Spec A, then X is quast-separated (lise D(f)).
- 3) × quasi-compact and quasi-separated

 \$\iff \times \time
- 4) All frajective A-schemes are quasi-compact & quasi-separated.

§ 5.2 Reducedness and Integrality

Def: Ring A is reduced if M(A)=0 Scheme X is reduced if $\Gamma(U, Q_x)$ is a reduced ring for all $U \subseteq X$ open.

- Book: i) \times reduced \Leftrightarrow Stalk $\mathcal{O}_{X,x}$ reduced $\forall x \in X$.
 i) ring A valued \Leftrightarrow Spec A reduced scheme
 3) \times quasi compact scheme, \times reduced \Leftrightarrow $\mathcal{O}_{x,x}$ reduced \forall closed $x \in X$.

Remark: 1) Reclucedness is not an open condition in general. 2) On a non-affine scheme X, can have $\Gamma(X, \mathcal{O}_X)$ reduced but X-non-reduced

 Opt^* deheme X is integral if $eq \phi$ s. $\Gamma(U,Q_*)$ integral domain $\forall \ \phi \neq U \subseteq X$ often

Rop. X integral ⇔ X reduced & irreducible.

· Spec A integral ⇔ A integral domain.

 $\cdot \times$ integral ischeme, $\gamma \in \times$ in generic foint $\mathcal{O}_{X,\eta}$ = Frac A for any often affine $SpecA \subseteq X$ K(X) ifunction on X if X is connected.

§ 5.3 Affine local properties

Loop X uchame, Spec B, Spec B Spec X Then Spec A \ Spec B is union of open affines which are simultaneously distinguished in Spec A & Spec B.

Recof: Sp∈ Spec A N Spec B

Say & € Spec Af ⊆ Spec A ∩ Spec B

Further suppose $\{ \wp \in \mathsf{Spec} \ \mathsf{B}_{\mathsf{g}} \subseteq \mathsf{Spec} \ \mathsf{A}_{\mathsf{f}}$

We get a map $\mathcal{O}_X(\operatorname{Spec} \mathfrak{G}) \longrightarrow \mathcal{O}_X(\operatorname{Spec} A_f)$

Spec By = Spec Afgi

Affine Connection Jamma

Let Pile a peroperty such that

- i) open affine $Spec A \longrightarrow X$ has P \rightarrow So does Spec $A_f \hookrightarrow \times \forall f \in A$.
- ii) $(f_1, ..., f_n)$ = A & Spec $A_{f_1} \hookrightarrow X$ has P for all i

 \Rightarrow Spec $A \hookrightarrow X$ has P

suppose X = U SpecA; whose SpecA; has P. Then every open affine in X has P.

Of: A feroperty satisfying (i), (ii) is valled affine local.

Open subschemes inherit affine-local feroperties.

- · Stalk-local properties are automatically affine local

(106: H ring, (f,...,fn) = A

- a) A reduced \Rightarrow A_{fi} reduced & A_{fi} reduced $\forall i \Rightarrow A$ reduced
- b) A Northerian \iff A_{f_i} Northerian $\forall i$
- c) Buing, A is a B-algebra, then A finitely generated / B \Leftrightarrow $A_{f:}$ dinitely generated / B \forall (

Def: Say is cheme imes locally Noetherian if we can cover imes by open affines $\,$ Spec $\,$ A with $\,$ A noetherian. If durthermore imes quasi compact then imes northerian.