Equations & Inequalities — Think & Model

"Translate words \rightarrow math, keep both sides balanced, and watch those negatives!"

Mini-Review (Equations)

To solve a linear equation: (1) Distribute, (2) combine like terms on each side, (3) move variables to one side and constants to the other, (4) undo multiplication/division last.

Mini-Review (Inequalities)

Doing the same steps works for inequalities, *except*: when you **multiply or divide both sides by a negative number**, **flip the inequality sign**. Adding/subtracting or multiplying by a positive does *not* flip it.

1. Solve for x:

$$\frac{3}{4}(x-2) - \frac{1}{2}(x+6) = 5.$$

2. (**Percent discount**) After a 20% discount, a jacket costs \$48. Let p be the original price. Write and solve an equation to find p.

3. (Travel time) A student bikes to school at 12 mph and rides a bus home at 24 mph. If the total travel time for the round trip is 1 hour and the school is d miles from home, write and solve an equation to find d.

4.	(Average jump) After 5 quizzes the average is 86. After a 6^{th} quiz, the average rises to 88. Let x be the score on quiz 6. Write and solve an equation to find x .
5.	(Perimeter modeling) A rectangle has perimeter 48 cm. The length is 3 more than twice the width. Let w be the width. Write and solve an equation to find w (and the length too).
6.	(Consecutive integers) The sum of three consecutive integers is 51. Let the smallest be n . Write and solve an equation to find all three integers.
7.	(Balance the machine) "Triple a number and subtract 8; you get the same as doubling the number plus 7." Let the number be x . Write and solve the equation.
8.	(Height requirement) A ride requires you to be at least 72 inches tall. Your shoes add 1.5 inches. If your barefoot height is h , write an inequality that guarantees you can ride, then solve for h .

9.	(Arcade budget) You have \$30. Each game costs \$1.25 and a locker rental is a one-time $\$0.25$. If you play g games, write and solve an inequality to find the maximum whole number of games you can play.
10.	Solve the inequality and <i>state where/why</i> the sign flips (if it does):
	-3(2x-5) < 9.
11.	Solve the inequality (careful with fractions):
	$\frac{1}{4}(5-2x) \ge 3.$
12.	(Bank balance) Your account starts at \$10 and you spend \$2 per day. After d days your balance is $B = 10 - 2d$. Write and solve an inequality so your balance is at most \$-14. How many days until you are below or equal to \$-14?
13.	Solve (decimals + flipping): $-0.5(4x+6) \ge 7.$

Algebra	1 I	n-Class	Practice	#2	Equations	&	Inequalities
Aigebra	TT	.II-Ciass	1 lactice	#-4	Equations	α	mequanties

Page	4	of	4

1 /	Cl~	lve.
14	-J()	IVA.

$$\frac{x}{3} + \frac{5}{6} = \frac{2x}{3} - \frac{1}{2}.$$

15. Solve:

$$7 - 2(3x - 4) = 5x + 1.$$