

Additional Literature for this Chapter

© Jiawei Han, Micheline Kamber, Jian Pei: Data Mining – Concepts and Techniques, 4th ed., Morgan Kaufmann Publishers, 2023.

Slides credit: http://hanj.cs.illinois.edu/bk4/

Content Overview

- Neural Networks
 - □ Basic concepts
 - □ Improve Training of Deep Learning Models
- Applications of Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Graph Neural Networks
- Interpretable Machine Learning

Chapter 10. Deep Learning

- Basic Concepts
- Improve Training of Deep Learning Models
- Convolutional Neural Networks
- Recurrent Neural Networks
- Graph Neural Networks
- Summary

Inspired by a biological neuron

Image credit:

http://cs231n.github.io/neural-networks-1/

How to model a single neuron?

Perceptron: Predecessor of a Neural Network

- Computes a weighted sum of inputs
- Invented in 1957 by Frank Rosenblatt. The original perceptron model does not have a non-linear activation function

Perceptron: Predecessor of a Neural Network

Examples of activation functions

Multilayer Perceptron (MLP)

- Stacking multiple layers of perceptrons (adding hidden layers) makes a multilayer perceptron (MLP)
- MLP can engage in sophisticated decision making, where perceptrons fail
 - E.g. XOR problem
- ☐ Try it: http://playground.tensorflow.org

Feed-forward Neural Networks

Learn complicate (nonlinear) mapping function

10

Feed-forward Neural Networks

(b) MLP

(c) Outputs of two hidden units

X ₁	X ₂	$O_1 = sign(X_2 - X_1 - 0.5)$	$O_2 = sign(X_2 - X_1 + 0.5)$
0	0	0	+1
1	1	0	+1
1	0	0	0
0	1	1	1

Learning NN Parameters

- Gradient Descent Algorithm
- lacksquare Input: Training sample $oldsymbol{x}_i$ and its label $oldsymbol{y}_i$
- 1. Feed Forward: Get prediction $\hat{y}_i = \text{MLP}(x_i)$, and loss $E = J(\hat{y}_i, y_i)$
- 2. Compute Gradient: For each parameter θ_j (weights, bias), compute its gradient $\frac{\partial}{\partial \theta_j} J_{\theta_j}$
- 3. Update Parameter: $\theta_j = \theta_j \eta \cdot \frac{\partial}{\partial \theta_j} J_{\theta_j}$

Empirical Explanation of Gradient Descent

$$\theta_j = \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J_{\theta}$$

 η is the *learning rate*, which controls the 'step size' of the optimization

- Our objective is to minimize the loss function J, which is a function of the model parameters
- A gradient measures how much the output of a function changes if you change the inputs a little bit
- We update the parameters, based on their gradients, so that the loss function is going 'downhill'

Gradient Computation: Backpropagation

- □ The gradient of w_{ij} in the lth layer (corresponding to unit j in layer l, connected to unit i in layer l-1) is a function of
 - lacktriangle All 'error' terms from layer l+1 $\delta_k^{(l+1)}$ -- An auxiliary term for computation, not to be confused with gradients
 - Output from unit i in layer l-1 (input to unit j in layer l) -- Can be stored at the feed forward phase of computation

Gradient Computation: Backpropagation

- lacksquare The 'error' terms $\delta_j^{(l)}$ is a function of
 - lacksquare All $\delta_k^{(l+1)}$ in the layer l+1, if layer l is a hidden layer
 - ☐ The overall loss function value, if layer I is the output layer
- We can compute the error at the output, and distribute backwards throughout the network's layers (backpropagation)
 - Each forward pass and backpropagation over all training samples is called one epoch.

Gradient descent

(a) Gradient descent

(b) Stochastic gradient descent

From Neural Networks to Deep Learning

- Deep Learning refers to training (deep) neural networks with many layers
 - More neurons, more layers
 - More complex ways to connect layers
- Deep Learning has some major advantages, making it popular
 - Tremendous improvement of performance in many tasks
 - Image recognition, natural language processing, Al game playing...
 - Requires no (or less) feature engineering, making end-to-end models possible
- Several factors lead to deep learning's success
 - Very large data sets
 - Massive amounts of computation power (GPU acceleration)
 - Advanced neural network structures and tricks
 - □ Convolutional neural networks, recurrent neural networks, graph convolutional networks
 - Dropout, ReLU, residual connection, ...

Overview of Typical Deep Learning Architectures

Chapter 10. Deep Learning

- Basic Concepts
- Improve Training of Deep Learning Models

- Convolutional Neural Networks
- Recurrent Neural Networks
- Graph Neural Networks
- Summary

Techniques to Improve Deep Learning Training

- Key Challenges for Training Deep Learning Models
- Responsive Activation Functions
- Adaptive Learning Rate
- Dropout
- Pretraining
- Cross Entropy

Key Challenges

Optimization Problem in Deep Learning

- \square Minimize the (approximated) training error E
- (Stochastic) gradient descent to find the model parameter

$$E(\boldsymbol{\theta}) = \frac{1}{m} \sum_{l=1}^{m} \text{Loss}(\hat{T}(X^{l}, \boldsymbol{\theta}), T^{l})$$

 $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{g}_t$

- □ Challenge 1: Optimization
 - E is non-convex in general
 - How to find a high-quality local optima

- Challenge 2: Generalization
 - What we do: minimize (approximated) training error
- ☐ What we really want: minimize the generalization error
- How to mitigate over-fitting

Responsive Activation Function

Saturation of Sigmoid Activation Function

- The output $O = \sigma(I) = \frac{1}{1+e^{-I}} \in (0,1)$
- The derivative $\frac{\partial O}{\partial I}=O(1-O)$ decaying The error of an output unit $\delta_j=O_j(1-O_j)(O_j-T_j)$
- Saturation of Sigmoid Activation runction
 - If $O_i pprox 1 ext{ or } O_i pprox 0$, both derivative and error will be close to 0
 - Further exacerbated due to backpropagation -> gradient vanishing -> B.P. is stuck or takes long time to terminate
- A More Responsive Activation Function: Rectified Linear Unit (RELU)
 - The output O=f(I)=I if I>0, O=0 otherwise
 - The gradient: $\frac{\partial O}{\partial I} = 1$ if I > 0 and $\frac{\partial O}{\partial I} = 0$
 - The error: 0 if the unit is inactive (I < 0), otherwise, aggregate all error terms from the units in the next higher layer the unit is connected to, w/o decaying -> avoid gradient vanishing

Activation Functions

Name		Plot	$ \begin{array}{c} \textbf{Derivative} \\ \textbf{of} \ f(I) \end{array} $	Plot
Sigmoid	$\frac{1}{1+e^{-I}}$) I I I I I I I I I I I I I I I I I I I	f(I)(1-f(I))	0.54
Tanh	$\frac{e^I - e^{-I}}{e^I + e^{-I}}$	RO 1 2 4	$1 - f(I)^2$	0.5-
ReLU	$\begin{cases} 0, I \le 0 \\ I, I > 0 \end{cases}$	2 0 2 4	$\begin{cases} 0, I \le 0 \\ 1, I \ge 0 \end{cases}$	05-
Leaky ReLU	$\begin{cases} 0.01 \times I, I < 0 \\ I, I \ge 0 \end{cases}$	0.5- 0.5- 0.5-	$\begin{cases} 0.01, I < 0 \\ 1, I \ge 0 \end{cases}$	05-
ELU	$\begin{cases} \alpha(e^{I} - 1), I \le 0\\ I, I > 0 \end{cases}$	f(1) 2 1	$\begin{cases} \alpha e^I, I \leq 0 \\ 1, I > 0 \end{cases}$	05

Adaptive Learning Rate

learning rate over epochs

- Stochastic gradient descent to find a local optima
 - $lue{}$ Default choice for $m{\eta}$: a fixed, small positive constant $m{}$ $m{ heta}_{t+1} = m{ heta}_t \eta m{g}_t$
 - □ Problems: slow progress, or jump over 'gradient cliff', or oscillation
- $lue{}$ Adaptive learning rate: let η change over epoch
 - lacksquare Strategy #1: $\eta_t = \frac{1}{t}\eta_0$
 - □ Strategy #2: $\eta_t = (1 \frac{t}{T})\eta_0 + \frac{t}{T}\eta_\infty \text{ if } t \leq T \text{ and } \eta_t = \eta_\infty \text{ otherwise}$

$$\square$$
 e.g., $\eta_0 = 0.9$; $\eta_{\infty} = 10^{-9}$

- lacksquare Strategy #3 (AdaGrad): $\eta_t = rac{1}{
 ho + r_i} \eta_0$ $r_i = \sqrt{\sum_{k=1}^{t-1} oldsymbol{g}_{i,k}^2}$
 - \square Intuition: The magnitude of gradient g_t : indicator of the overall progress
 - $\Box e.g., \rho = 10^{-8}$
- □ Strategy #4 (RMSProp): exponential decaying weighted sum of squared historical gradients

Dropout

- The Purpose of Dropout: to Prevent Overfitting
- How does it works?
 - $lue{}$ At each epoch (ho dropout rate, e.g., ho=0.5)
 - randomly dropout some non-output units
 - ☐ Perform B.P. on the dropout network
 - Scale the final model parameters

$$\boldsymbol{\theta}^* \leftarrow \rho \cdot \boldsymbol{\theta}^*$$

(b) Dropout U_3

(c) Dropout network

- Why does Dropout Work?
- Dropout can be viewed as a regularization technique
 - □ Force the model to be more robust to noise, and to learn more generalizable features
- Dropout vs. Bagging
- Bagging: Each base model is trained *independently* on a bootstrap sample
- □ Dropout: the model parameters of the current dropout network are updated based on that of the previous dropout network(s)

Pretraining

- Pretraining: the process of initializing the model in a suitable region
- Greedy supervised pretraining
 - pre-set the model parameters layer-by-layer in a greedy way
 - Start with simple model, add one additional layer at a time,
 - pretrain the parameters of the newly added layer, while fixing for other layers
 - Each time, equivalent to training a two-layered network
 - Followed up a fine—tuning process
- Other Pretraining Strategies
 - Unsupervised pretraining: based on auto-encoder
 - Hybrid strategy
- Pretraining for transfer learning

(c) second iteration (2 hidden layers)

(b) first iteration (1 hidden layer)

(d) third iteration (3 hidden layers)

Cross Entropy

- Measure the disagreement between the actual (T) and predicted (O) target values
 - For regression: mean-squared error
 - For (binary) classification: cross-entropy
- Mean-squared error vs. Cross-entropy

	Mean-squared error	Cross entropy
Loss	$\frac{1}{2}(T-O)^2$	$-T\log O - (1-T)\log(1-O)$
Error δ	O(1-O)(O-T)	O-T

- lacksquare Predicted output $O=(O_1,O_2,...,O_C)$

$$Loss(T, O) = -\sum_{i=1}^{C} T_i \log O_i$$

Assume positive example (T=1)

Example: House Price Prediction

Task: predicting house prices with an MLP (optimize Mean-squared error)

- Input layer (3 neurons): each represents a feature in the input data
- Hidden layer (5 neurons): learned weights capture relationships within the data
- Output layer (1 neuron): produces continuous output prediction based on learned patterns

X ₁ = Area	X ₂ = # Bedrooms	X ₃ = Air-conditioning	y = House Price
80	1	No (0)	250.000
200	3	Yes (1)	600.000

180	2	Yes (1)	?
-----	---	---------	---

Example: House Price Classification

Transformation into binary classification problem:

- Discretize house prices into C1 = Affordable, C2 = Too Expensive (e.g., use fixed threshold)
- Adjust MLP architecture:
 - One output neuron for each class, providing raw class scores (logits)
 - Softmax function turns logits into class probabilities
 - Optimize Cross-entropy w.r.t. class probabilities

