cost ratio adaptively chosen for classifiers. The experimental results have shown the proposed approach can achieve the superior performance. In the future, the per-

formance of the proposed approach will be further improved, with more effective yet efficient under-sampling and over-sampling methods.

Table 3: AUC of 14 methods.

	SVM	Bagg	Ada	Asym	Under	SMOTE	Chan	RF	BRF	Under-RF	Over-RF	Cascade	Easy	My approach
car	0.991	0.995	0.998	0.998	0.989	0.995	0.996	0.784	0.749	0.786	0.785	0.996	0.994	0.993
ionosphere	0.980	0.962	0.978	0.979	0.973	0.978	0.979	0.981	0.969	0.976	0.981	0.976	0.974	0.984
letter	0.999	0.997	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000
phoneme	0.910	0.955	0.965	0.965	0.953	0.964	0.960	0.965	0.960	0.952	0.964	0.962	0.958	0.911
satimage	0.936	0.946	0.953	0.953	0.941	0.946	0.955	0.961	0.952	0.953	0.962	0.949	0.947	0.947
wdbc	0.995	0.987	0.994	0.994	0.993	0.994	0.993	0.991	0.990	0.991	0.991	0.994	0.993	0.995
abalone	0.776	0.824	0.811	0.812	0.830	0.831	0.850	0.827	0.853	0.842	0.823	0.828	0.847	0.865
balance	0.618	0.439	0.616	0.619	0.617	0.617	0.652	0.435	0.558	0.593	0.458	0.637	0.633	0.890
cmc	0.692	0.705	0.675	0.675	0.671	0.680	0.696	0.669	0.683	0.676	0.660	0.686	0.704	0.726
haberman	0.706	0.669	0.641	0.639	0.646	0.647	0.638	0.645	0.677	0.643	0.641	0.653	0.668	0.706
housing	0.801	0.825	0.815	0.815	0.805	0.816	0.811	0.828	0.798	0.820	0.826	0.808	0.825	0.839
mf-morph	0.917	0.887	0.888	0.888	0.916	0.912	0.912	0.880	0.901	0.91	0.881	0.905	0.918	0.931
mf-zernike	0.900	0.855	0.795	0.801	0.881	0.862	0.903	0.840	0.866	0.889	0.854	0.891	0.904	0.928
pima	0.828	0.821	0.788	0.788	0.789	0.792	0.786	0.821	0.809	0.818	0.819	0.799	0.809	0.828
vehicle	0.852	0.859	0.854	0.853	0.846	0.858	0.856	0.869	0.850	0.855	0.866	0.856	0.859	0.879
wpbc	0.728	0.688	0.716	0.721	0.694	0.709	0.706	0.677	0.646	0.661	0.670	0.712	0.707	0.728
average	0.851	0.838	0.842	0.843	0.846	0.850	0.855	0.823	0.828	0.835	0.823	0.853	0.858	0.884

Table 4: F-measure of 14 methods.

	SVM	Bagg	Ada	Asym	Under	SMOTE	Chan	RF	BRF	Under-RF	Over-RF	Cascade	Easy	My approach
car	0.909	0.933	0.967	0.966	0.884	0.930	0.916	0.307	0.521	0.513	0.518	0.945	0.917	0.943
ionosphere	0.926	0.883	0.907	0.910	0.900	0.907	0.910	0.906	0.887	0.895	0.904	0.903	0.903	0.929
letter	0.961	0.962	0.988	0.987	0.903	0.954	0.905	0.979	0.889	0.895	0.986	0.979	0.909	0.990
phoneme	0.726	0.834	0.850	0.852	0.819	0.847	0.837	0.850	0.821	0.813	0.851	0.833	0.822	0.730
satimage	0.582	0.641	0.664	0.668	0.546	0.610	0.607	0.666	0.553	0.557	0.689	0.647	0.572	0.607
wdbc	0.965	0.938	0.956	0.956	0.952	0.957	0.954	0.954	0.945	0.948	0.955	0.951	0.951	0.965
abalone	0.025	0.170	0.210	0.222	0.367	0.379	0.400	0.189	0.382	0.375	0.253	0.378	0.375	0.432
balance	0.000	0.000	0.000	0.000	0.175	0.149	0.156	0.000	0.167	0.168	0.000	0.198	0.161	0.443
стс	0.137	0.362	0.388	0.400	0.429	0.421	0.437	0.347	0.441	0.435	0.408	0.437	0.453	0.473
haberman	0.204	0.334	0.348	0.360	0.442	0.405	0.380	0.321	0.468	0.445	0.348	0.431	0.463	0.470
housing	0.264	0.419	0.475	0.485	0.529	0.532	0.523	0.445	0.515	0.537	0.490	0.516	0.523	0.558
mf-morph	0.011	0.263	0.321	0.344	0.579	0.560	0.635	0.261	0.627	0.602	0.349	0.587	0.623	0.650
mf-zernike	0.087	0.183	0.188	0.191	0.538	0.538	0.577	0.144	0.500	0.530	0.292	0.538	0.567	0.603
pima	0.612	0.644	0.611	0.613	0.644	0.627	0.618	0.641	0.663	0.668	0.656	0.648	0.654	0.669
vehicle	0.477	0.526	0.545	0.561	0.623	0.615	0.608	0.544	0.633	0.633	0.564	0.618	0.637	0.669
wpbc	0.301	0.410	0.432	0.444	0.449	0.459	0.448	0.393	0.401	0.419	0.397	0.450	0.438	0.396
average	0.449	0.531	0.553	0.559	0.611	0.618	0.619	0.496	0.588	0.589	0.541	0.628	0.623	0.658

Table 5: G-mean of 14 methods.

	SVW	Bilan	Ada	Asviii	Under	SMOTE	Char	Ri	BRF	Under-Ri	Ove -RF	Cascade	Easy	viy approach
car	0.744	0.764	0.980	0.781	0.956	0.969	0.970	0.452	0.093	0.687	0.696	0.780	0.973	0.982
. 1	0.41	0.00	0.000	0.000	0.016	0.000	0.000	0.010	0.011	0.414	0.010	0.020	0.021	0.44
iono phere	U. 741	0.700	0.020	0.722	J. 10	0 24	0. 4.	0. 10	U. 11	0.710	0.516	0.720	0.721	0.741
letter	0.272	0.772	0.989	0.088	0.994	0.995	0.992	9.980	0.989	0.993	0.987	0.226	0.494	0.988
phoneme	0.790	0.886	0.8901	0.892	0.889	0.899	0.897	0.892	0.893	0.887	0.897	0.894	0.892	0.826
phoneme	0.4703	0.720	0.050	0.761	0.071	0.00	0.001	0.022	0.001	0.007	0.00	0.075	0.00	processor and the same of
satimuge	0. 02	0. 25	0. 34	0. 01	0.071	0.604	0.001	0.144	0.001	0.000	J. 102	0.672	0.007	0.890
wabe	0.272	0.050	0.963	0.063	0.963	0.964	0.962	0.962	0.957	0.960	0.663	0.262	0.963	0.9 72
7 7	0.74	0.05	0.00	0.10	0.00	0.040	0.000	0.00	0.500	0.000	0 66	0.000	0.00	0.403
abatone	O.VAG	0.337	090	0.412	002	0.742	0. 70	UM OF	090	0. /0	0.2.37	0. 32	U. OU	0. 92
balance	0.000	0.000	0.001	0.002	0.360	0.465	0.465	0.000	0.248	048	0.0 00	0.010	0.586	0.807
chia	0.000	0 00	0.61	0.77	0.423	0.4	0.423	0.414	0.424	0.27	0.407	0 21	0.45	0.666
7 7	000	0.702	001	0.077	0.022	0.00	0.022	010	0.05	0.027	2.404	0.051	0.07	0.000
haberman	0.007	0.470	0.002	0.012	0.3 74	U.3 U2	0.300	0.4-70	0.010	075	004	0.362	0.011	0.087
housing -	082	0.553	0.015	0.627	0.725	9.710	0.698	0.580	0.718	0.735	9.638	0.710	0.730	0. 38
C 1	0 10	0.00	0 60	0.04	0.073	0041	0.000	0 70	0.010	0.000	0.5	0.462	0.41	0.026
mt-morph	0.010	0.465	000	0194	V.(1/-	U.G.41	0.520	0.4.75	J. 10	0.000	0 9/	0.005	0.714	05/20
mf-zernike	0. 85	0.378	0.386	0.392	0.848	0.813	0.854	0.326	0.831	0.844	0.119	0.817	0.870	0.874
pime	0.690	0.720	0.694	0.696	0.719	0.708	0.700	0.217	0.234	0.740	0.731	0.728	0.732	0.730
	0.00	0 40	0.02	0.70	0.000	0.00	000	0.17	0.700	0.470	2.00	0.455	0.00	0.05
velucie	U200	0.042	0.004	U. 07/2	U., Oc	U. 4.	U. 30	0.055	U. OU	0. 79	VAUOS	0. 27	U. OU	0.005
white	0.378	0.710	037	0.549	0.017	0.610	085	077	0.567	088	0.4 <mark>9</mark> 4	0.630	0.628	0.598
ave	0 12	0.25	0.44	0.50	0.202	0.774	0.791	0.404	0.270	0.222	5.4	0.404	0.00	0.020
average	0.515	0.022	0.077	0.000	0.174	0.112	0.702	U.370	J.770	0.777	9.000	0.734	0.000	0.820