

All Roads Lead to UD: Converting Stanford and Penn Parses to English Universal Dependencies with Multilayer Annotations

SIYAO PENG & AMIR ZELDES

{sp1184, amir.zeldes}@georgetown.edu

LAW-MWE-CxG-2018 @ COLING, Santa Fe, NM

Overview

- Universal Dependencies (UD) provides treebanks in 50+ languages with a unified scheme (Nivre et al. 2017)
- UD still being revised (now v2.2), older Stanford Dependencies (SD) frozen
- SD2UD conversion more reliable than gold constituent2UD by around 10%
- Head/label error rates: 1.73%/1.38% for pure SD & 0.45%/0.42% for multilayer
- Annotating in SD and converting into latest UD allows stable corpus annotation; access to additional annotations almost eliminates conversion errors

Corpora Georgetown University Multilayer Corpus English Web Treebank (EWT) (GUM) (Zeldes 2017) (Bies et al. 2012, Silveira et al. 2014) 1,174 **Documents Tokens** 250k (5) blogs, e-mail, newsgroups, (8) news, interviews, how-to, travel, academic, bios, fiction & forums online answers & reviews Genres Scheme SD, coref, entities, discourse parsing & more Constituent trees

Configurable rule-based conversion from SD to UD

- Three steps:
- 1. Pull information from other annotation layers (if available, e.g. in GUM)
- 2. Main rule-based conversion consisting of ~100 rules applied in order
- 3. Attaching punctuation using Udapi API (Popel et al. 2017)

•	 Examples of conversion rule 	es:)
	attributes	relations	actions	saw #1	me _	and #2	Kim #3
	func=/dobj/	none	#1:func=obj	_ 、	bj 🖊	C 0	c) j
	func=/.*/;func=/^cc\$/;func=/^conj\$/	#1>#2;#1>#3	#3>#2			conj	/
	func=/prep/;pos=/^W.*/;func=/pcomp/	#1>#3;#3>#2	#2:func=pobj;	#1>#2;#	2>#3;#3	3:func=r	cmod

Using Multilayer Annotations

- Knowing entity type is crucial:
 - All proper names are annotated as nn (noun compound modifier) in SD
 - Organization vs. person distinguishes compound vs. flat in UD:
 - compound: headed NP with internal structure, e.g. World Bank
 - flat: headless multi-word expressions, e.g. person names, Frank Bank

- Exception: organization names can be headless, e.g. Wells Fargo.
- Coreference is informative for determining dislocation:
- Dislocated node is coreferent with a dependent of the same verb:

- TEI annotations provide disfluency information:
 - reparandum: the head of an 'aborted' part that is attached to its repair
 - TEI XML tag <sic> denotes errors in GUM; convert dep inside an error and governed from outside into reparandum

- An unsolved problem: *orphan*
- Promoted orphan dominates the child of missing coordinate parents
- No current annotation helps in distinguishing orphan from dep

Results: Top 3 errors by conversion scenario

scenario	head errs		lab errs	
C2UD	84	nsubj	130	obl
(gold)	82	nmod	74	nmod
	71	conj	62	conj
SD	37	flat	37	flat
(pure)	10	nmod	8	obl
	8	appos	7	nsubj
SD	8	compound	9	compound
(multi)	6	nmod	7	obl
	6	flat	6	nmod

 Other labels are rare but systematically wrong: dislocated, reparandum, goeswith are absent in C2UD

Cross-corpora comparison: non-projectivity

	C2UD	UD V2.2 (corrected)	
EWT	0.34%	0.46%	
	CALID	LID V/2 2 (from CD moulti)	aminimal CD
	C2UD	UD V2.2 (from SD multi)	original SD

- Non-projectivity is more frequent in GUM, 'native dependencies', than in EWT, 'native constituents'
- Low non-projectivity for gold EWT UD may be due to genre differences or reflex of C2UD

Future work

- GUM continues to grow look for version 5 in winter!
- Plans to use more annotation layers, e.g. using the RST purpose annotation to differentiate adverbial clause (advcl) from controlled to-infinitives (xcomp)
- Figure out what to do with *orphan…* ⊗

available | State | S

QR scan:

e-poster

References

- Bies, A. et al. 2012. *English Web Treebank*. Linguistic Data Consortium, Technical Report LDC2012T13, Philadelphia, PA.
- Nivre, J. et al. 2017. *Universal Dependencies 2.0*. Charles University.
- Popel, M. et al. 2017. Udapi: Universal API for universal dependencies. *UDW2017*, 96–101.
- Silveira, N. et al. 2014. A gold standard dependency corpus for English. In *Proc. LREC-2014*. Reykjavik, 2897–2904.
- Zeldes, A. 2017. The GUM corpus: Creating multilayer resources in the classroom. *Language Resources and Evaluation* 51(3), 581–612.
- Convertor code: https://corpling.uis.georgetown.edu/depedit/
- GUM corpus: http://corpling.uis.georgetown.edu/gum/
- conversions: https://github.com/gucorpling/GUM_UD_LAW2018