Discussion 14: Parity, ECC, RAID

Hamming ECC

Recall the basic structure of a Hamming code. Given bits 1, . . . , m, the bit at position 2n is parity for all the bits with a 1 in position n. For example, the first bit is chosen such that the sum of all odd-numbered bits is even.

- i. How many bits do we need to add to 0011_2 to allow single error correction? Parity Bits: 3
- ii. Which locations in 0011₂ would parity bits be included?

Using P for parity bits: PP0P011₂

iii. Which bits does each parity bit cover in 0011₂?

Parity bit #1: 1, 3, 5, 7 Parity bit #2: 2, 3, 6, 7 Parity bit #3: 4, 5, 6, 7

- iv. Write the completed coded representation for 0011_2 to enable single error correction. 1000011_2
- v. How can we enable an additional double error detection on top of this?

Add an additional parity bit over the entire sequence.

vi. Find the original bits given the following SEC Hamming Code: 01101112

```
Parity group 1: error
Parity group 2: okay
Parity group 4: error
Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 0110011_2
0110011_2 \rightarrow 1011_2
Sind the principal latter in the following SEC Hamming Codes 100:
```

vii. Find the original bits given the following SEC Hamming Code: 1001000₂

Parity group 1: error Parity group 2: okay Parity group 4: error Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 1001100_2 $1001100_2 \rightarrow 0100_2$

RAID

Fill out the following table:

	Configuration	Pro / Good for	Con / Bad for
RAID 0	Data disks without check information	No overhead Fast read / write	Reliability
RAID 1	Mirrored Disks: Extra copy of disks	Fast read / write Fast recovery	High overhead → Expensive
RAID 4	Transfer units = a sector within a single disk. Errors are detected within a single transfer unit Can handle independent reads/writes per disks	Higher throughput of small reads	Still slow small writes (A single check disk is a bottleneck)
RAID 5	Check information is distributed across all disks in a group.	Higher throughput of small writes	