Udine, 7 febbraio 2019

- 1. Sia $\mathcal{F} = \mathcal{F}(2,t,p_{max},p_{min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, p_{max}, p_{min} in modo che $p_{max} = t, realmin = 1/16$ e gli elementi siano 129. Calcola realmax.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Siano $x = \frac{1}{5}$, $y = \frac{1}{3}$. Scrivi $x \in y$ in base 2.
 - Determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Calcola $\tilde{z} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$.
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = 2^{\frac{1+2x}{1-x^4}}$ al variare di x.
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Supponendo che l'esponenziale sia calcolato un errore relativo maggiorato dalla precisione di macchina, studia la stabilità dell'algoritmo che valuta la funzione f.
- 3. Sia $f(x) = e^{-2x^3 + 9x^2 1} 1$.
 - Determina una funzione F la cui valutazione non utilizza la funzione esponenziale in modo che F(x)=0 sia equivalente al problema f(x)=0. Disegna il grafico di F e localizza le tre radici α, β, γ con $\alpha < \beta < \gamma$.
 - ullet Determina il massimo intervallo di convergenza ad lpha del metodo di Newton per F. Qual è l'ordine di convergenza? Giustifica le risposte.
 - Determina il massimo intervallo di convergenza a γ del metodo di Newton per F. Qual è l'ordine di convergenza? Giustifica le risposte.

Applica il metodo a pendenza costante m per la funzione F.

- Studia la convergenza del metodo ad α. Proponi un valore di m e un valore x₀ per cui il metodo sia convergente in maniera monotona. Qual è l'ordine di convergenza? Giustifica le risposte.
- Studia la convergenza del metodo a β. Proponi un valore di m e un valore x₀ per cui il metodo sia convergente in maniera monotona. Qual è l'ordine di convergenza? Giustifica le risposte.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 1 & \beta & 0 \\ \alpha & 1 & \alpha \\ 0 & \beta & 1 \end{array}\right).$$

- Per quali valori di α , β il sistema Ax = b ha soluzione unica?
- Per quali valori di α, β non esiste la fattorizzazione LU di A? Giustifica la risposta.
- Sia $\beta = -\frac{1}{3}$. Determina un valore di $\alpha > 0$ tale che $||A||_1 = \frac{5}{3}$ e calcola la fattorizzazione LU di A.
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perché si applica?
- Per quali valori di α si applica la strategia del pivot parziale al primo passo?
- Sia $\alpha = \frac{1}{2}$. Determina $\beta > 0$ tale che $||A||_{\infty} = 5$ e calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Scrivi la pseudocodifica di un algoritmo che calcola la soluzione x di Ux = b con U triangolare superiore di dimensione n e analizza il costo computazionale.
- 5. Sia $f(x) = \log_4(x)$. Dati i punti $P_0 = (\frac{1}{4}, f(\frac{1}{4})), P_1 = (\frac{1}{2}, f(\frac{1}{2})), P_2 = (1, f(1)).$
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x)-p(x) e determina una limitazione di $\max_{x\in [\frac{1}{4},4]}|f(x)-p(x)|$.
 - Dato l'ulteriore punto $P_3=(2,f(2))$, determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P_0, P_1, P_2 nel senso dei minimi quadrati.
 - Determina il polinomio r di primo grado di miglior approssimazione dei tre punti P₁, P₂, P₃ nel senso dei minimi quadrati.
- 6. Sia data una successione convergente. Definisci il concetto di ordine di convergenza.
 - Dato un metodo di iterazione funzionale per il problema f(x) = 0. Proponi un criterio d'arresto e deriva la stima dell'errore.
 - Scrivi la pseudocodifica di un algoritmo efficiente per calcolare il valore del polinomio $p_n(x) = \sum_{i=0}^n a_i x^i$ in un punto x assegnato e analizza la complessità computazionale.
 - Modifica la pseudocodifica in modo da calcolare anche $p'_n(x)$.
 - Proponi una variante dell'algoritmo per valutare in maniera efficiente in un punto x il polinomio interpolante di Newton.
 - Scrivi la pseudocodifica per il metodo di bisezione e proponi un criterio di arresto.