

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра суперкомпьютеров и квантовой информатики

Ухин Сергей Алексеевич

Генерация магнитного поля

Постановка задачи

Рассмотрим уравнения, описывающие изменение магнитного поля.

$$\frac{\partial \mathbf{b}}{\partial t} = \eta \Delta \mathbf{b} + rot (\mathbf{v} \times \mathbf{b})$$
$$d i \mathbf{v} \mathbf{b} = 0$$

Здесь вектор функция b = (b1, b2, b3) - поле магнитной индукции, вектор функция v = (v1, v2, v3) поле скоростей, которое является заданным. η - коэффициент магнитной вязкости. При этом bm = bm(t,x1,x2,x3) и vm = vm(t,x1,x2,x3), m=1,2,3.

Задача решается в области $[0,T] \times \Omega$, где $\Omega = [0, 2\pi] \times [0, 2\pi] \times [0, 2\pi]$.

В начальный момент времени b(0, x1, x2, x3) = b0(x1, x2, x3).

На границе области заданы периодические граничные условия, то есть мы предполагаем, что

$$b(t, x1, x2, x3) = b(t, x1+2\pi, x2+2\pi, x3+2\pi).$$

Для решения этой системы уравнений будет использоваться трехмерное преобразование Фурье и интегрирование по времени полученных коэффициентов Фурье. Такие методы называются спектральными или точнее поскольку в уравнение присутствуют нелинейные члены, которые будут вычисляться в физическом пространстве, псевдоспектральными.

Основные преимущества данного метода:

- Высокий порядок аппроксимации O(1/N^N), где N количество точек на отрезке.
- Удобное вычисление производных любого порядка
- На современных архитектурах данный метод хорошо параллелизуется

Для преобразования фурье использовалась библиотека FFTW

Компиляция программы:

(можно просто через мейкфайл)

Поле скорости:

v = 2/sqrt(3) * (siny * cosz; sinz * cosx; sinx * cosy) Для этого поля известно, что при коэффициенте магнитной индукции $\eta < 0.57$ генерация возможна, при больших значениях будет затухание.

Начальное магнитное поле:

$$b = (\sin(x - 2 * y + 3 * z); \cos(z + 5 * y); \sin(-3 * x - y + z))$$

после чего происходит коррекция поля для удовлетворения условия div(b) = 0;

запуск программы:

mpirun ./task2 количество_итераций N t η

Генерация поля:

Запуск программы на polus:

mpisubmit.pl -w 00:30 -p 60 ./task2 -- 300000 128 0.001 0.1

Затухание поля:

Запуск программы на polus:

mpisubmit.pl -w 00:30 -p 60 ./task2 -- 300000 128 0.0001 1

Зависимость времени выполнения от количества процессов

N = 128:

количество процессов	время(ms)	ускорение
1	156872	1
2	129674	1.20
4	61516	2.55
8	44028	3.56
16	20317	7.72
32	15152	10.35
60	14764	10.62

Зависимость ускорения от кол-ва процессов

N = 96:

количество процессов	время(ms)	ускорение
1	72329	1
2	52145	1.38
4	24714	2.92
8	15700	4.60
16	10867	6.65
32	6666	10.85
60	6177	11.7

Зависимость ускорения от кол-ва процессов

