9.7 The Lorslen LC Circuit (& Lwo)

- when the value of the resistance in a parallel RLC circuit becomes infinite, or zero in a series RLC circuit, it results in a simple LC boop in which an oscillatory response can be maintained for over.

- Consider

L=4H
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

- Nou
$$\alpha = \frac{1}{2RC}$$
 posellel - R infinite $\alpha = 0$ or $\alpha = \frac{R}{2L}$ Series - R zero $\alpha = 0$

- However,
$$w_0 = \int_{LC}^{1} \int_{C}^{1} \int_{C}^{$$

- Goth (357)

- In the absence of exponential damping;

$$u = (A \cos 3t + B \sin 3t) e^{-x^2}t^{-x^2}$$

Since $U(0) = 0$

$$0 = A \times 1 + B \times 0$$

$$A = 0$$

So $U = B \sin 3t$

Now $\frac{dv}{dt} = \frac{1}{C} e^{2}(0)$

In our case due persine sign commutation

$$\frac{du}{dt}|_{t=0} = -\frac{1}{2}(0)$$

In our case due persine sign commutation

$$\frac{du}{dt}|_{t=0} = -\frac{1}{2}(0) = \frac{1}{2}(0)$$

So $\frac{dv}{dt} = \frac{1}{2}(0) = \frac{$

If we are interested in current it is = - Cdu = - 1 Cos 3+ A

Alternately me can start with
$$\dot{z}(t) = A \cos 3t + B \sin 3t$$

$$\dot{z}(o) = -\frac{1}{6}$$

$$-\frac{1}{6} = A + B \times 0$$

$$So $A = -\frac{1}{6}$$$

And
$$\frac{di}{dt}\Big|_{t>0} = -3A\sin 3t + 3B\cos 3t$$
 $\frac{di}{dt}\Big|_{t>0} = 3B$

$$\frac{di}{dt}\Big|_{t=0} = 3B$$

Now
$$V_L = L \frac{di}{dt}$$

$$V_1(o^{\dagger})$$

$$\frac{V_L(o^t)}{L} = \frac{d^2l}{dt}\Big|_{t=0}^t$$

$$\frac{o}{L} = \frac{di}{dt}\Big|_{t > v^t}$$

Hence
$$\dot{z}(t) = -\frac{1}{6} \cos 3t$$
 A

became $V_L(0^{\dagger}) = V_C(0^{\dagger})$?