Exercices - Applications linéaires : études pratiques : énoncé

Applications linéaires sur \mathbb{R}^n

Exercice 1 - AL-0 - L1 - \star

Soit u l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$u(x, y, z) = (-x + y, x - y, -x + z, -y + z).$$

- 1. Montrer que u est linéaire
- 2. Soient $\{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de \mathbb{R}^3 et $\{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4\}$ la base canonique de \mathbb{R}^4 . Calculer $u(\mathcal{E}_1)$, $u(\mathcal{E}_2)$ et $u(\mathcal{E}_3)$ en fonction de \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 et \mathcal{F}_4 .
- 3. Écrire la matrice de u dans les bases canoniques.
- 4. Montrer que $\{\mathcal{F}_1, \mathcal{F}_2, u(\mathcal{E}_1), u(\mathcal{E}_2)\}$ est une base de \mathbb{R}^4 .
- 5. Écrire la matrice de u dans les bases $\{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ et $\{\mathcal{F}_1, \mathcal{F}_2, u(\mathcal{E}_1), u(\mathcal{E}_2)\}$.

Exercice 2 - AL-1 - L1 - \star

Soient $\{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de \mathbb{R}^3 , $w_1 = (1, -2, 0)$, $w_2 = (-1, 2, 0)$, $w_3 = (0, 0, 2)$ et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(\mathcal{E}_1) = w_1, u(\mathcal{E}_2) = w_2, u(\mathcal{E}_3) = w_3.$$

- 1. (a) Exprimer w_1 , w_2 , w_3 en fonction de \mathcal{E}_1 , \mathcal{E}_2 et \mathcal{E}_3 . En déduire la matrice de u dans la base canonique.
 - (b) Soit $W = (x, y, z) \in \mathbb{R}^3$. Calculer u(W).
- 2. (a) Trouver une base de ker(u) et une base de Im(u).
 - (b) Montrer que $\mathbb{R}^3 = \ker(u) \oplus \operatorname{Im}(u)$.
- 3. Déterminer $\ker(u-Id)$ et $\operatorname{Im}(u-Id)$ où Id désigne l'identité de \mathbb{R}^3 . En déduire que u-Id est un automorphisme de \mathbb{R}^3 .

Exercice 3 - AL-2 - L1 - \star

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(\mathcal{E}_1) = -2\mathcal{E}_1 + 2\mathcal{E}_3$$
, $u(\mathcal{E}_2) = 3\mathcal{E}_2$, $u(\mathcal{E}_3) = -4\mathcal{E}_1 + 4\mathcal{E}_3$.

- 1. Écrire la matrice de u dans la base canonique.
- 2. Déterminer une base de ker u. u est-il injectif? peut-il être surjectif? Pourquoi?
- 3. Déterminer une base de Im u. Quel est le rang de u?
- 4. Montrer que $E = \ker u \oplus \operatorname{Im} u$.

Exercice 4 - $-L1/Math Sup - \star$

On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

1. Calculer les images par f des vecteurs de la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 . En déduire une base de Im(f).

Exercices - Applications linéaires : études pratiques :

énoncé

- 2. Déterminer une base de ker(f).
- 3. L'application f est-elle injective? surjective?

Exercice 5 - $-L1/Math Sup - \star$

Soit f l'application linéaire de \mathbb{R}^4 dans lui-même défini par f(x,y,z,t)=(x-y+z,y+z+t,0,x+y+3z+2t).

- 1. Déterminer les images par f des vecteurs de la base canonique (e_1, e_2, e_3, e_4) de \mathbb{R}^4 .
- 2. Écrire la matrice A représentant l'endomorphisme f dans cette base.
- 3. Montrer que $f(e_3)$ et $f(e_4)$ sont combinaisons linéaires de $f(e_1)$ et $f(e_2)$.
- 4. En déduire la dimension de Im(f) et une base de Im(f).
- 5. Quelle est la dimension du noyau de f? Montrer que la famille de vecteurs (u, v) avec u = (-2, -1, 1, 0) et v = (-1, -1, 0, 1) forme une base de $\ker(f)$.

Exercice 6 - Définie par une base - L1/Math Sup - *

On considère dans \mathbb{R}^2 les trois vecteurs u = (1, 1), v = (2, -1) et w = (1, 4).

- 1. Démontrer que (u, v) est une base de \mathbb{R}^2 .
- 2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(u) = (2, 1), f(v) = (1, -1) et f(w) = (5, a)?

Exercice 7 - A noyau fixé - L1/Math Sup - **

Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,0,0) et v=(1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Exercice 8 - Application linéaire à contraintes - L1/Math Sup - **

Montrer qu'il existe un unique endomorphisme f de \mathbb{R}^4 tel que, si (e_1, e_2, e_3, e_4) désigne la base canonique, alors on a

- 1. $f(e_1) = e_1 e_2 + e_3$ et $f(2e_1 + 3e_4) = e_2$.
- 2. $\ker(f) = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + z = 0 \text{ et } x + 3y t = 0\}.$

APPLICATIONS LINÉAIRES ET LEURS MATRICES

Exercice 9 - Donnée par une matrice - L1/Math Sup - *

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{array}\right).$$

Donner une base de ker(f) et de Im(f).

Exercice 10 - Réduction - L1/Math Sup - *

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

Exercices - Applications linéaires : études pratiques : énoncé

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. En déduire que $M^n=0$ pour tout $n\geq 2$.

Exercice 11 - Changement de base - $L1/Math Sup - \star$

Soit u l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leur base canonique respective est

$$A = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right).$$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) celle de \mathbb{R}^2 . On pose

$$e'_1 = e_2 + e_3, \ e'_2 = e_3 + e_1, \ e'_3 = e_1 + e_2 \text{ et } f'_1 = \frac{1}{2}(f_1 + f_2), \ f'_2 = \frac{1}{2}(f_1 - f_2).$$

- 1. Montrer que (e'_1, e'_2, e'_3) est une base de \mathbb{R}^3 puis que (f'_1, f'_2) est une base de \mathbb{R}^2 .
- 2. Qelle est la matrice de u dans ces nouvelles bases?

Exercice 12 - Changement de base... - $L1/Math Sup - \star$

Soient $u: \mathbb{R}^2 \to \mathbb{R}^3$ et $v: \mathbb{R}^3 \to \mathbb{R}^2$ définies par u(x,y) = (x+2y,2x-y,2x+3y) et v(x,y,z) = (x-2y+z,2x+y-3z).

- 1. Montrer que u et v sont linéaires et donner les matrices de $u, v, u \circ v$ et $v \circ u$ dans les bases canoniques de leurs espaces de définition respectifs. En déduire les expressions de $u \circ v(x, y, z)$ et $v \circ u(x, y)$.
- 2. Soit $\mathcal{B}_2 = \{\mathcal{E}_1, \mathcal{E}_2\}$ et $\mathcal{B}_3 = \{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3\}$ les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 . Montrer que $\mathcal{B}_2' := \{\mathcal{E}_1', \mathcal{E}_2'\}$ et $\mathcal{B}_3' := \{\mathcal{F}_1', \mathcal{F}_2', \mathcal{F}_3'\}$ sont des bases de \mathbb{R}^2 et \mathbb{R}^3 resp., où $\mathcal{E}_1' := \mathcal{E}_1$, $\mathcal{E}_2' := \mathcal{E}_1 \mathcal{E}_2$, $\mathcal{F}_1' := \mathcal{F}_1$, $\mathcal{F}_2' := \mathcal{F}_1 + \mathcal{F}_2$ et $\mathcal{F}_3' := \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3$.
- 3. Donner la matrice P de passage de la base \mathcal{B}_2 à la base \mathcal{B}_2' puis la matrice Q de passage de la base \mathcal{B}_3 à la base \mathcal{B}_3' .
- 4. Écrire la matrice de u dans les bases \mathcal{B}'_2 et \mathcal{B}_3 puis dans les bases \mathcal{B}'_2 et \mathcal{B}'_3 et enfin celle de v dans les bases \mathcal{B}'_3 et \mathcal{B}'_2 .

Exercice 13 - Surjective? - L1/Math Sup - *

Soient α, β deux réels et

$$M_{\alpha,\beta} = \left(\begin{array}{cccc} 1 & 3 & \alpha & \beta \\ 2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 0 \end{array} \right).$$

Déterminer les valeurs de α et β pour les quelles l'application linéaire associée à $M_{\alpha,\beta}$ est surjective.

AUTRES APPLICATIONS LINÉAIRES

Exercice 14 - Application linéaire définie sur les matrices - L1/Math Sup - **

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercices - Applications linéaires : études pratiques :

énoncé

Exercice 15 - Avec des polynômes - L1/Math Sup - **

Montrer que $f: \mathbb{R}[X] \to \mathbb{R}[X], \ P \mapsto P - XP'$ est une application linéaire. Déterminer son noyau et son image

Exercice 16 - Applications linéaires dans un espace de polynômes - $L1/Math\ Sup$ -

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'.$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u).
- 3. Déterminer une base de ker(u).
- 4. Montrer que $\ker(u)$ et $\operatorname{Im}(u)$ sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 17 - Variante polynômiale - L1/Math Sup - **

Soit $E = \mathbb{C}[X]$, p un entiel naturel et f l'application de E dans E définie par $f(P) = (1 - pX)P + X^2P'$. f est-elle injective? surjective?

Exercice 18 - Encore des polynômes - L1/Math Sup - **

Soit $E = \mathbb{R}_n[X]$ et soit f l'application définie sur E par f(P) = P(X+1) + P(X-1) - 2P(X).

- 1. Vérifier que f est un endomorphisme de E.
- 2. Quel est le degré de $f(X^p)$? En déduire $\ker(f)$ et $\operatorname{Im}(f)$.
- 3. Soit Q un polynôme de Im f. Démontrer qu'il existe un unique polynôme P tel que f(P) = Q et P(0) = P'(0) = 0.

Exercice 19 - Sur un espace de fonctions sinus/cosinus - $L1/Math\ Sup$ - \star

On note E l'ensemble des applications de $\mathbb R$ dans $\mathbb R$ qui s'écrivent sous la forme $\lambda \cos + \mu \sin$ avec λ et μ réels.

- 1. Montrer que E est un espace vectoriel. En donner une base et calculer sa dimension.
- 2. Montrer que la dérivation des fonctions de la variable réelle définit une application de E dans E. On note D cette application.
- 3. Rappeler les résultats vus au lycée permettant d'affirmer que D est un endomorphisme.
- 4. Donner la matrice de D dans la base trouvée en 1.
- 5. Montrer que D est un isomorphisme, c'est-à-dire que pour tout vecteur v de E, il existe un unique vecteur u de E tel que Du = v.
- 6. Montrer qu'on peut alors construire un isomorphisme D^{-1} de E tel que, pour tout vecteur u de E on a $D\left(D^{-1}(u)\right)=u$ et $D^{-1}\left(D(u)\right)=u$.
- 7. Donner la matrice de D^{-1} dans la base trouvée en 1.

Exercice 20 - Application aux polynômes - 2ème année - ***

Le but de cet exercice est l'étude de l'application Δ définie sur $\mathbb{R}[X]$ par $(\Delta P)(X) = P(X+1) - P(X)$.

1. Question préliminaire : Soit (P_n) une famille de $\mathbb{R}[X]$ telle que pour chaque n, $\deg(P_n) = n$. Prouver que (P_n) est une base de $\mathbb{R}[X]$.

Exercices - Applications linéaires : études pratiques :

énoncé

- 2. Montrer que Δ est une application linéaire. Calculer son noyau et son image.
- 3. Montrer qu'il existe une unique famille $(H_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ telle que $H_0=1$, $\Delta(H_n)=H_{n-1}$, et $H_n(0)=0$. Montrer que (H_n) est une base de $\mathbb{R}[X]$.
- 4. Soit $P \in \mathbb{R}_p[X]$. Montrer que P peut s'écrire

$$P = \sum_{n=0}^{p} (\Delta^n P)(0) H_n.$$

- 5. Montrer que l'on a $(\Delta^n P)(0) = \sum_{k=0}^n (-1)^{n-k} C_n^k P(k)$.
- 6. Montrer que pour tout n, $H_n = \frac{X(X-1)...(X-n+1)}{n!}$.
- 7. En déduire que, pour tout polynôme P de degré p, les assertions suivantes sont équivalentes :
 - i. P prend des valeurs entières sur \mathbb{Z} .
 - ii. P prend des valeurs entières sur $\{0, \ldots, p\}$.
 - iii. Les coordonnées de P dans la base (H_n) sont des entiers.
 - iv. P prend des valeurs entières sur p+1 entiers consécutifs.