Principal Component Analysis

Dimension Reduction

Patrol

Y |
$$x_2$$
 | x_3 | x_4 | x_5

Five various of the dimension is 5
 $d=5$

Various Gelection

Oato 2

 $u_1 = u_2 = \frac{2x_1 + x_3}{4} = \frac{x_4 + 6x_5}{4} = \frac{2x_1 + x_3}{4} + \log(x_4 + 6x_5)^2$

PCA in a view or coordinate rotation

Variance of the Projection

- V(x) = 1.67
- V(y) = 7.58
- Total variance: V(x) + V(y) = 9.25

[1] 9.25

Rotation Matrix or PC Loading

```
\Phi =
```

```
PC1 PC2
x 0.42 -0.91
y 0.91 0.42
```

PC Scores

$$Z = X \cdot \Phi =$$

PC1 PC2 [1,] 1.33 -0.49 [2,] 2.66 -0.97 [3,] 5.80 -0.62 [4,] 8.03 -0.68

- ▶ What direction maximizes the variance?
- ► The first principal component

Formula

Write down matrix form of the example

$$X \to X \cdot \phi = Z$$

- $ightharpoonup \phi$ is PC loading
- \triangleright z is PC scores

In general

Original data matrix (fat matrix!)

$$X_1$$
 X_2 \cdots X_p

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & \cdots & x_{np} \end{pmatrix}$$

New data matrix (thin matrix!)

$$\begin{pmatrix} z_{11} & \cdots & z_{1M} \\ z_{21} & \cdots & z_{2M} \\ \vdots & \ddots & \vdots \\ z_{n1} & \cdots & z_{nM} \end{pmatrix}$$

$$\mathbf{X}\boldsymbol{\phi}_1 \cdots \mathbf{X}\boldsymbol{\phi}_M$$

Example

	Independent variables		
Observation	X_1	X_2	
1	-2	2	
2	2	-2	

- The data set consists of only these two observations.
- The first principal component loading for X_1 , ϕ_{11} , is 0.7071.
- The first principal component loading for X_2 , ϕ_{21} , is negative.

Calculate the first principal component score for Observation 1.

PC Loadings

	First PC	Second PC
Murder	0.5359	-0.4182
Assault	0.5832	-0.1880
UrbanPop	0.2782	0.8728
Rape	0.5434	0.1673

How many PC should we use?

▶ Performance during two sporting events

1	7)	7	\	2	-1
X100m	Long.jump	Shot.put	High.jump	X400m	X110m.hurdle	Discus
11.04	7.58	14.83	2.07	49.81	14.69	43.75
10.76	7.40	14.26	1.86	49.37	14.05	50.72
11.02	7.23	14.25	1.92	48.93	14.99	40.87
11.34	7.09	15.19	2.10	50.42	15.31	46.26
11.13	7.30	13.48	2.01	48.62	14.17	45.67
10.83	7.31	13.76	2.13	49.91	14.38	44.41

