

ASSISTED TRIGGER MECHANISM

Inventor: Forest A. Hatcher

Attorney Docket: 4239-6

ANDRUS, SCEALES, STARKE & SAWALL
100 East Wisconsin Avenue, Suite 1100
Milwaukee, WI 53202
Phone: (414) 271-7590
Fax: (414) 271-5770

ASSISTED TRIGGER MECHANISM

CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on and claims priority to U.S.

Provisional Patent Application Serial No. 60/252,230, filed on November 21, 2000.

5

BACKGROUND OF THE INVENTION

The present invention generally relates to a mechanism for assisting the user in the operation of a trigger in a gun mechanism. More specifically, the present invention relates to a mechanical, pneumatic, magnetic or electronic method for assisting the user in the operation of a trigger and/or actively and 10 rapidly returning the trigger mechanism to its firing position at the completion of a firing sequence for use with a paintball gun.

As the game and sport of paintball has grown, an increasing reliance on volume fire has evolved. This reliance on an increase in volume fire is evidenced by the introduction of electronically enhanced guns, improved paintball magazines and paintball feeding mechanisms, improved high speed valves and regulators and a host of other technologies all having a common goal of increasing the rate of fire from the paintball gun.

The goal of increasing the rate at which paintballs can be fired is complicated by an industry prohibition on "fully automatic" firing mechanisms, 20 multiple shot weapons or other enhancements which allow the user to fire more than one paintball per trigger cycle of the weapon. Therefore, an objective throughout the paintball industry is to enhance the rate of fire through various means which maintain the operation of the paintball gun in a true "semi-automatic" firing mode in which one projectile is expelled per complete cycle of the trigger/gun mechanism. Further, a desire exists to eliminate, assist or equalize the force exerted by the use throughout the trigger cycle and to provide a powered or assisted method of returning the trigger to the ready position at the end of the firing sequence.

Despite previously mentioned solutions and enhancements, there are

30 currently no methods available for an "assisted" trigger mechanism in a paintball

gun. In principle, an assisted trigger mechanism utilizes the user's own mechanical action of pulling or releasing a trigger mechanism as the initiating force, after which mechanical, pneumatic, electronic, magnetic or a combination of these means is introduced and automatically perform some or all of the trigger cycle.

5 In currently available paintball guns, a simple trigger mechanism relies on mechanical force from the user to release a captured sear. A hammer, retained by the sear and under spring tension, is released, allowing the hammer to impact a valve stem, thereby opening the valve and firing a projectile and then, utilizing gas blowback to reset the sear.

10 In order to understand the scope of the present invention, it is necessary to understand that there are currently four "classes" of paintball gun design, each of which has a different configuration but all of which operate on the same principles of design.

15 The first of the four mechanisms of paintball gun operation is classified as a blowback configuration. This type of gun utilizes a mechanically operated sear connected to the trigger, a spring operated hammer connected mechanically to a bolt, and a spring operated valve mechanism. The bolt is located above the hammer in a separate body channel which is in communication with the gun barrel. In operation, the user first "cocks" the system by pulling a cocking knob connected to the bolt. This causes the hammer to be moved behind the sear and compresses the hammer spring.

20 When the trigger is pulled, the trigger actuates a sear, releasing the hammer. Under spring tension, the hammer moves forward. Since the bolt is connected to the hammer, when the hammer moves forward, the bolt moves forward as well to push a paintball into the barrel. When the bolt is at its furthest point of forward travel, a gas passage in the bolt is in communication with a vent hole from the valve. Simultaneously, the hammer impacts a valve stem in the face of the valve, opening the valve and releasing a preset amount of pressurized gas. This gas vents through the bolt, thus firing a paintball, and against the hammer,

pushing the hammer and the bolt back into the cocked position. At its rearmost point of travel, the sear once again captures the hammer completing the cycle.

The next type of paintball gun uses a "blow forward" type of mechanism in which the bolt is retained by the sear, which is mechanically linked to the trigger. The bolt rides on a tube that communicates with the valve and is retained by the sear under pressure, effectively acting as a seal on the valve system. When the trigger is actuated, the bolt is released. Gas pressure from the valve pushes the bolt forward, which in turn pushes a paintball into the barrel. Once the bolt has reached its furthest point of travel, the gas passage is opened, allowing the gas to flow through the face of the bolt, thus firing the paintball. A spring located forward of the bolt returns the bolt where it is again captured by the sear, thus completing the cycle.

An "autococking" style of semi-automatic paintball guns operate in the same basic manner as the blowback semi-automatic. However, the design is based on what was originally a pump operated paintball gun where the pumping action has been pneumatically automated. This style of design therefore has several additional mechanisms.

In the autococking style mechanism, when the trigger is pulled, the hammer is released, striking the valve and sending gas through the bolt and down the barrel, thus firing a paintball. Gas is also vented to a low pressure regulator, which in turn supplies a three-way valve. The three-way valve is connected to a pneumatic ram, which in turn is mechanically linked to a cocking mechanism and to the bolt.

Gas from the regulator is introduced into the three-way valve which first operates the ram to push the cocking mechanism rearward, pulling the bolt back, allowing a new projectile to enter the barrel and resetting the hammer on the sear. Gas is then vented from the three-way valve, which operates to reverse the flow of gas to the ram, which in turn pulls the bolt and cocking mechanism forward, completing the cycle.

The final type of paintball gun is classified as an electric paintball gun. In some cases, electric paintball guns replaced some or all of the mechanical systems mentioned above with electronic or electromechanical systems. For example, one widely distributed model substitutes an electronic switch connected to a solenoid for the mechanical sear.

In each of the types of paintball guns discussed above, the firing rate of paintballs is limited by the rate at which a human finger can depress and release the trigger of the paintball gun. Since the rate at which a human finger can pull a trigger is somewhat limited by the mechanical action of the trigger mechanism, it is an object of the present invention to provide assistance to the user when pulling the trigger and actively assist in returning the trigger to its initial position.

SUMMARY OF THE INVENTION

The present invention relates to an assisted trigger mechanism used to aid a paintball gun user in the depression and release of a trigger during the firing sequence of a paintball. The assisted trigger mechanism allows the user to complete the firing sequence in less time and using less effort, thus allowing the user to increase the number of paintballs fired during a given time period.

In the first embodiment of the invention, a secondary magnet or electromagnet is positioned behind the trigger in the trigger housing. The secondary magnet in the trigger housing is used to attract the trigger during initial movement of the trigger rearward, while the polarity of the secondary magnet can be reversed to repel the trigger once the paintball has been fired.

In another embodiment of the invention, the trigger itself is configured as part of an electromagnet. User actuation of the trigger causes the circuit between the trigger/electromagnet and a power supply to be closed. The magnetic field thus created causes the trigger to be attracted to a secondary magnet behind the trigger while being simultaneously repelled by a secondary magnet positioned in front of the trigger. Once the trigger has traveled past the point where it actuates the sear mechanism of the paintball gun, the circuit to the trigger electromagnetic is opened, causing a cessation of the magnetic field. Once the

trigger has traveled a minute but discernable distance beyond that required to cause a firing event, the circuit is again closed such that the polarity of the trigger electromagnet is reversed. At this point in the trigger cycle, the magnetic field repels the trigger from the secondary magnet positioned behind the trigger, while 5 the secondary magnet in front of the trigger acts to attract the trigger.

In another alternate embodiment, an adjustment mechanism consisting of a non-ferrous "field strength reducer" is positioned between the secondary magnet in the trigger housing and the trigger. The field strength reducer, when placed between the secondary magnet and the trigger, reduces the 10 strength of the magnetic field emanating from the secondary magnet. The type and size of the field strength reducer can be selected to vary the amount of assistance provided by the secondary magnet.

In a further embodiment of the invention, the magnets can be replaced by a single or a pair of solenoids that are mechanically linked to the trigger.

15 Movement of the trigger during the firing sequence causes activation of the solenoids which extend their solenoid rods to aid in movement of the trigger during the firing sequence.

In another embodiment of the invention, Hall effect sensors are attached to the electromagnets positioned in the trigger housing. As the trigger is depressed, the change in the field strength monitored by the sensors will alternately cause either power to be transmitted to the electromagnet, the polarity of the magnet change, or power will be cut off to the electromagnet. In this way, the user's actuation of the trigger, and the positioning of the trigger, can be monitored and adjusted.

25 In addition to aiding in the actuation of the trigger itself, an alternate embodiment of the invention contemplates replacing the mechanical linkage between the trigger and the cocking/firing mechanism with a pneumatic operating system. In this embodiment of the invention, rearward movement of the trigger opens a pneumatic air valve. As the pneumatic air valve is opened, air pressure is 30 supplied to an actuating ram coupled to the cocking ram of the paintball gun.

When the actuating ram is pressurized, the air pressure of the actuating ram operates the cocking/firing mechanism to cause a paintball to be fired. In this manner, the air pressure of the actuating ram causes the mechanical movement of the cocking/firing mechanism, rather than a mechanical linkage between the trigger and the cocking/firing mechanism. The use of air pressure rather than the mechanical linkage allows for a faster and less physically demanding movement by the user on the trigger. After the firing sequence has been initiated, the residual pressure within the pneumatic valve aids in returning the trigger to its pre-firing position.

In addition to being used as an originally installed component, the assisted trigger mechanism of the present invention can be retrofit onto existing paintball guns while operating within the scope of the present invention.

Various other features, objects and advantages of the invention will be made apparent from the following description taken together with the drawings.

15 BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate the best mode presently contemplated of carrying out the invention.

In the drawings:

Fig. 1 is a side view illustrating the first embodiment of the assisted trigger mechanism of the present invention;

Fig. 2 is a second embodiment of the assisted trigger mechanism of the present invention, illustrating a force limiting element between the actuator and trigger;

Fig. 3 is side view of the third embodiment of the assisted trigger mechanism of the present invention;

Fig. 4 is a fourth embodiment of the assisted trigger mechanism of the present invention;

Fig. 5 is a side view of the fifth embodiment of the assisted trigger mechanism of the present invention;

Fig. 6 is a side view of the sixth embodiment of the assisted trigger mechanism of the present invention;

Fig. 7 is a side view illustrating an autococking mechanism constructed in accordance with the present invention; and

5 Fig. 8 is a second embodiment of the autococking mechanism incorporating the features of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring first to Fig. 1, there is shown a generally schematic illustration of a paintball gun incorporating the features of the present invention.

10 The paintball gun includes a handle portion 10 that is grasped by a user during use of the paintball gun. The handle 10 is connected to a trigger mechanism 12 that includes a trigger guard 14 and the actual trigger 16. The trigger 16 is coupled to the cocking and firing components of the paintball gun such that depression of the trigger 16 will cause a paintball to be discharged from the paintball gun. The

15 trigger mechanism 12 of the present invention is a conventional mechanism used in currently available paintball guns. The present invention, as will be described in detail below, provides assistance to the user to increase the rate at which the trigger can be pulled and returned to its resting position. In general, the present invention is directed to an active and passive system that aids the user in increasing the rate 20 at which the trigger 16 can be depressed.

In the first embodiment of the invention, as shown in Fig. 1, a secondary magnet 18 is positioned within the trigger housing behind the actual trigger 16. In the preferred embodiment of the invention, the secondary magnet 18 could be either a natural magnet or an electromagnet that can be energized by an 25 external circuit (not shown). In the embodiment of the invention illustrated in Fig. 1, the trigger 16 also includes a trigger-mounted primary magnet having a known polarity.

In the embodiment of the invention in which the magnet 18 is a natural magnet, the magnet is oriented such that its polarity is aligned in the 30 direction of trigger travel. The polarity of the secondary magnet 18 is arranged

such that the polarity of the secondary magnet 18 and the polarity of the trigger mounted magnet are opposite such that as the trigger 16 moves toward the magnet 18, the magnet 18 repels the trigger to provide an assisted return for the trigger 16. The strength and position of the secondary magnet 18 are selected such that the 5 secondary magnet 18 repels the trigger 16 only after the trigger 16 has been depressed far enough to actuate the sear. After the sear has been actuated, the secondary magnet aids in returning the trigger to the resting position.

In an alternate embodiment in which the secondary magnet 18 is an electromagnet, the polarity of the secondary magnet 18 and the polarity of the 10 trigger mounted magnet are opposite such that the trigger is initially attracted toward the secondary magnet 18. Once the trigger 16 activates the sear for the paintball gun, a sensor detects such movement and the polarity of the secondary magnet 18 is reversed, such that the secondary magnet 18 repels the trigger 16 to aid in returning the trigger 16 to its resting position prior to actuation of the next 15 firing sequence.

Referring now to Fig. 2, thereshown is an alternate configuration of the embodiment shown in Fig. 1. As illustrated in Fig. 2, the trigger 16 includes a trigger magnet 20 and a secondary magnet 22 is positioned within the trigger housing. In the embodiment of the illustrated in Fig. 2, a shim 24 is positioned between the secondary magnet 22 and the trigger magnet 20. The shim 24 is formed from a material that, when placed in front of the secondary magnet 22, reduces the strength of the magnetic field emanating from the secondary magnet 22. Thus, each individual shim 24 reduces the magnetic field by a predetermined amount. In this manner, the attraction force between the secondary magnet 22 and 20 the trigger magnet 20 can be adjusted such that the secondary magnet 22 repels the trigger only after the sear of the paintball gun has been activated. Thus, the shim 24 helps control the amount of assistance provided by the trigger mechanism of the present invention.

Referring now to Fig. 3, thereshown is another alternate embodiment 30 of the assisted trigger mechanism of the present invention. In the embodiment of

the invention illustrated in Fig. 3, the trigger 16 is configured as part of either an electromagnet or a natural magnet. The mechanism includes a secondary magnet 26 positioned in front of the trigger 16 and a secondary magnet 28 positioned behind the trigger 16. As the trigger 16 is activated, the trigger 16 causes a circuit 5 between the trigger 16 and a power supply to be closed. The power supply causes the magnetic field created by the secondary magnet 26 to repel the trigger 16, while the magnetic field created by the secondary magnet 28 positioned behind the trigger 16 attracts the trigger. Once the trigger 16 has traveled past the point where it actuates the sear mechanism, the circuit to the electromagnets is open, causing a 10 cessation of the magnetic field. Once the trigger 16 has traveled a minute but discernable distance beyond that required to cause the firing event, the circuit is again closed, such that the polarity of the magnetic fields of the secondary magnet 26 and the secondary magnet 28 are reversed. At this point in the trigger cycle, the magnetic fields repel the trigger from the secondary magnet 28 behind the trigger, 15 while the secondary magnet 26 in front of the trigger attracts the trigger 16.

In the preferred embodiment of the invention shown in Figs. 1-3, an adjustment mechanism can be utilized for each of the secondary magnets that allows the magnet to be moved closer or farther away from the trigger and the trigger-mounted primary magnet. In one embodiment, the secondary magnet can be mounted on a screw that can be threaded into the body of the mechanism housing the trigger, such that the depth or height of the screw can be adjusted externally. In another embodiment, the adjustment mechanism consists of a holder, into which secondary magnets of differing strengths can be placed.

In yet another embodiment, the adjustment mechanism consists of a 25 secondary magnet that has been machined to include external threads on the outer circumference of the magnet and a tool socket is formed on the outward face of the magnet, such as a slot or hex-head. In this embodiment, the magnet is placed into a threaded channel machined into the trigger mechanism which houses the return mechanism. In another alternate embodiment, the threaded channel can be cut into 30 the center of the magnet, allowing it to be placed on the adjustment screw. By

providing such adjustment mechanisms, the strength of each secondary magnet can be adjusted to vary the amount of attraction and repulsion forces created during the trigger cycle.

Referring now to Fig. 4, there shown is yet another alternate embodiment of the assisted trigger mechanism of the present invention. In the embodiment illustrated in Fig. 4, a pair of solenoids 30 and 32 are connected to the trigger 16. The solenoid 30 includes a solenoid rod 34 while the solenoid 32 includes its own solenoid rod 36. As the trigger 16 is depressed, the trigger 16 trips a sensor which supplies power to the solenoid 30. When actuated, the 10 solenoid 30 extends the solenoid rod 34 to aid in movement of the trigger 16 to the firing position.

As the trigger 16 continues its rearward movement, the trigger further trips a sensor indicating that the trigger 16 has activated the sear mechanism. After actuating the sear mechanism, power is supplied to the solenoid 32, which extends the solenoid rod 36. Extension of the solenoid rod 36 aids in returning the trigger 16 to its resting position prior to initiation of the firing sequence.

Referring now to Fig. 6, there shown is another embodiment of the invention in which a pair of sensors 38 and 40 are positioned on opposite sides of the trigger 16. The sensors 38 and 40 detect the movement of the trigger between its operating positions. The sensors 38 and 40 are coupled to a circuit board 42 mounted in the handle of the paintball gun. The circuit board 42 includes various logic elements, electronic connections between the circuit and sensors and switches, electronic connections to pneumatic, electronic, magnetic or other types of actuating devices, and interconnected power supplies. The electronic circuit 20 contained on the circuit board 42, through communications with the sensors 38 and 40, can track, analyze and respond to the operation of the trigger by the user and will assist both the actuation and return of the trigger as desired.

Referring now to Fig. 5, Hall effect sensors 44 and 46 are positioned relative to the trigger 16 such that as the trigger 16 moves toward one of the 30 sensors 44 and 46, the change in field strength monitored by the sensors will

alternately cause power to be transmitted to the electromagnets, such as shown in Fig. 3. Movement of the trigger 16 will thus cause the polarity of the electromagnets to change or will cut off the flow of power to the electromagnets 26 and 28. In this way, the user's actuation of the trigger 16, and the positioning of the trigger can be monitored and adjusted.

5 Although not shown in the drawings, in another alternate embodiment of the invention, a pneumatic on/off valve is positioned behind the trigger such that when the trigger is depressed far enough to actuate the sear of the paintball gun, the pneumatic on/off valve is opened. When the pneumatic on/off valve is opened, a ram is pressurized. As the ram is pressurized, an actuation rod 10 extends to aid in moving the trigger back to its resting position.

15 In the embodiment of the invention described in Figs. 1-6, the active trigger mechanism is used to aid in the depression and return of the trigger between its two operating positions. The mechanisms allow for the trigger to be depressed and released at a higher rate of speed to aid in increasing the number of paintballs that can be fired by the operator. However, in each embodiment, the active trigger mechanism is used to move the trigger itself, while the trigger is part of a cocking/firing mechanism used to operate the sear of the paintball gun.

20 Referring now to Figs. 7 and 8, there is shown an alternate configuration that is utilized as an autococking mechanism, rather than simply a trigger return. In the embodiments illustrated in Figs. 1-6, the trigger is mechanically coupled to the sear of the paintball gun such that the mechanical linkage between the trigger and the sear is used to both cock and fire the paintball gun. In the embodiment of the invention illustrated in Figs. 7 and 8, the 25 mechanical linkage between the trigger 16 and the sear is removed and a cocking ram 48 having an actuating rod 50 is coupled to the sear to effectuate the cocking and firing of the paintball gun. Thus, since the trigger 16 is no longer mechanically coupled to the sear, the trigger 16 can be depressed and released with less effort by the user.

As illustrated in Fig. 7, a rod 52 is coupled to the back side of the trigger 16 and extends through the trigger housing 54. The far end of the rod 56 is in contact with a movable plunger 58 of a pneumatic on/off valve 60. The pneumatic on/off valve 60 is contained in the handle 10 of the paintball gun. The 5 on/off valve 60 includes an air inlet 62 that receives a supply of regulated air pressure from an external source 64, such as the air supply used to operate and fire paintballs from the paintball gun.

An outlet 66 from the on/off valve 60 supplies air pressure to an actuating ram 68 as illustrated. The actuating ram 68 receives the opposite end of the actuating rod 50.

During operation of the paintball gun, the user depresses the trigger 16 to move the trigger 16 rearward to fire a paintball. As the trigger 16 moves rearward, the rod 52 depresses plunger 58 which opens the on/off valve 60. When the on/off valve 60 is opened, the actuating ram 68 is pressurized through the air inlet 67. After being pressurized, the actuating ram 68 moves the actuating rod 50, which initiates the firing/cocking sequence for the paintball gun. As can be understood by the above description, the movement of the trigger pressurizes the actuating ram such that the actuating ram cocks and fires the paintball gun instead of a mechanical linkage between the trigger and the cocking/firing mechanism of the paintball gun.

Once the paintball has been fired, the trigger 16 is released, which closes the on/off valve 60. As the trigger is released, the residual pressure within the on/off valve 60 aids in pushing the plunger 58 and thus the rod 52 forward, acting as an active return for the trigger 16. Once the firing sequence is complete, the on/off valve 60 is vented and the system awaits the next firing sequence.

Turning now to Fig. 8, there is shown an alternate embodiment of the invention illustrated in Fig. 7, with like parts having corresponding reference numerals. As illustrated in Fig. 8, the actuating ram 68 and the cocking ram 48 are connected in parallel with each other, unlike the opposed configuration illustrated in Fig. 7. The actuating ram 50 is received in both the cocking ram 48 and the

actuating ram 68 and is coupled to the sear (not shown) of the paintball gun. As illustrated, the air outlet 66 from the on/off valve 60 is again received at an air inlet 67 for the actuating ram 68.

During operation of the invention illustrated in Fig. 8, the user initially pulls back the trigger 16, which again opens the on/off valve 60 by depressing the plunger 58. When opened, the on/off valve 60 supplies a source of pressurized air to the actuating ram 68 through the air inlet 67. Once pressurized, the actuating ram 68 moves the actuating rod 50 of the cocking ram 48 to begin the cocking sequence. Once the paintball has been fired, the trigger 16 is released and the residual pressure within the on/off valve 60 causes the plunger 58 to aid in the return of the trigger 16 to its previous position. Once again, the actuating ram 68 is vented to atmosphere such that the system is ready for the next firing sequence.

In the present invention, the first set of embodiments of Figs. 1-7 illustrate a method and configuration to aid in moving the trigger between its two positions during the firing cycle. In these embodiments, the trigger is mechanically linked to the cocking and firing mechanism of the paintball gun such that the mechanism aids in reducing the amount of force required by the user to complete the firing sequence. By reducing the amount of force required, the speed of the firing sequence can be increased such that the number of paintballs fired by the user during a given time period can be increased.

In the second type of system, as illustrated in Figs. 7 and 8, a mechanical linkage between the trigger and the cocking/firing mechanism for the paintball gun is eliminated and a pressurized actuating ram is used. In this system, the trigger closes an air valve, which begins the firing sequence. Once again, since the user does not need to actuate the mechanical linkage between the trigger and the cocking/firing mechanism, the rate at which the trigger can be pulled and released is increased, thus increasing the number of paintballs that can be fired during a given time period. In each of the two embodiments illustrated, assistance is given to the user during the trigger cycle such that the speed of the trigger cycle

can be increased, effectively increasing the number of paintballs fired by a semi-automatic paintball gun.

Various alternatives and embodiments are contemplated as being within the scope of the following claims particularly pointing out and distinctly 5 claiming the subject matter regarded as the invention.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000