技术规范

3rd Generation Partnership Project;

无线接入网技术规范组:

NR;

物理层复用和信道编码 (Release 15)

关键字: 3GPP, 新空口, 物理层

版权声明

本文档英文原版出自 3GPP 官方,由 5G 哥 原创翻译。

只能在公众号 5G 通信 发布,除非 5G 哥 授权,否则不得在任何公开媒体传播,分享到朋友圈不需要授权。

©2018, 翻译: 5G 哥(微信私号: iam5gge 获取授权请联系),版权所有。

扫码关注"5G通信"随时跟进5G产业和技术,不落任!

放是5G哥

私人微信: iam5gge

内容目录

前言	5	
1	范围	6
2	参考	6
3	定义,符号和缩写	6
3.1	定义	
3.2	~	
3.3	缩略语	
4	映射到物理信道	
4.1	上行	
4.2	下行	8
5	一般流程	8
5.1	CRC 计算	8
5.2	代码块分段和代码块 CRC 附件	9
5.2.1	极化码 (Polar)	9
5.2.2	低密度奇偶校验编码	9
5.3	低密度奇偶校验编码	11
5.3.1	极化码 (Polar)	12
5.3.1.1	1 交织	12
5.3.1.2	2 极化码 (Polar)	13
5.3.2		
5.3.3	短码的信道编码	
5.3.3.1	1 编码 1 位信息	24
5.3.3.2	2/1000 PE10/0	
5.3.3.3	11/40 37 (10) 20 3	
5.4	速率匹配	
5.4.1	Polar 代码的速率匹配	
5.4.1.1		
5.4.1.2		
5.4.1.3	>C\$ (\$\int_{0} \cdot 0	
5.4.2	LDPC 码的速率匹配	
5.4.2.1	- III	
5.4.2.2		30
5.4.3	用于短码的信道编码的速率匹配	
5.5	代码块连接	31
6	上行链路传输信道和控制信息	31
6.1	随机接入信道	31
6.2	上行链路共享信道	31
6.2.1	传输块 CRC 附件	31
6.2.2	LDPC 因子图选择	
6.2.3	代码块分段和代码块 CRC 附件	32
6.2.4	UL-SCH 的信道编码	32
6.2.5	速率匹配	32
6.2.6	代码块连接	32
6.2.7	数据和控制多路复用	32
6.3	上行链路控制信息	42

6.3.1	PUCCH 上的上行链路控制信息	42
6.3.1.1	UCI 比特序列生成	
6.3.1.1.1	- · · · · · · · · · · · · · · · · · · ·	
6.3.1.1.2	仅限 HARQ-ACK / SR	
	仅限 CSI	
6.3.1.1.3	HARQ-ACK / SR 和 CSI	
6.3.1.2	代码块分割和 CRC 附件	
6.3.1.2.1	UCI 由 Polar 代码编码	
6.3.1.2.2	UCI 由短码的信道编码来完成编码	
6.3.1.3	UCI 的信道编码	
6.3.1.3.1	UCI 由 Polar 代码编码	
6.3.1.3.2	UCI 由短码的信道编码来完成编码	
6.3.1.4	速率匹配	
6.3.1.4.1	UCI 由 Polar 代码编码	
6.3.1.4.2	UCI 由短码的信道编码来完成编码	
6.3.1.5	代码块连接	
6.3.1.6	将编码的 UCI 比特多路复用到 PUCCH	
6.3.2	PUSCH 上的上行链路控制信息	
6.3.2.1	UCI 比特序列生成	
6.3.2.1.1	HARQ-ACK	
6.3.2.1.2	CSI	
6.3.2.2	代码块分割和 CRC 附件	
6.3.2.2.1	UCI 由 Polar 代码编码	
6.3.2.2.2	UCI 由短码的信道编码来完成编码	58
6.3.2.3		59
6.3.2.3.1	UCI 的信道编码	59
6.3.2.3.2	UCI 田短伯的信道编码来元队编码	59
6.3.2.4	迷李匹郎	59
6.3.2.4.1	UCI 田 Polar 代码编码	59
6.3.2.4.1.1	HARQ的ACKC. 1111.111	59
6.3.2.4.1.2		
6.3.2.4.1.3	(SI 第 2 部分	
6.3.2.4.2	ÚCI 由短码的信道编码来完成编码	
6.3.2.4.2.1	HARQ-ACK	
6.3.2.4.2.2	CSI 第 1 部分	
6.3.2.4.2.3	CSI 第 2 部分	
6.3.2.5	代码块连接将多路复用到 PUSCH	
6.3.2.6	传编的UUI C对多路复用到 PUSCH	00
7 下往	T链路传输信道和控制信息	66
	- /	
7.1.1	 PBCH 有效负载生成	
7.1.2	扰码	
7.1.3	传输块 CRC 附件	
7.1.4	信道编码	
7.1.5	速率匹配	
7.2.1	传输块 CRC 附件	
7.2.2	LDPC 因子图选择	
7.2.3	代码块分段和代码块 CRC 附件	
7.2.4	信道编码	
7.2.5	速率匹配	
7.2.6	尤码块连接	
	- 105%	
7.3.1	DCI 格式	
7.3.1.1	用于调度 PUSCH 的 DC I 格式	
·- · · · -	, 10 0 10 10 V	

放本: R15	中义翻译: 5G 进信	4	3GPP 15 38.212	V15.2.0(2018-6)
7.3.1.1.1	格式 0_0			70
7.3.1.1.2	格式 0_1			73
7.3.1.2	用于调度 PDSCH 的 DCI 格式			85
7.3.1.2.1	格式 1_0			85
7.3.1.2.2	格式 1_1			88
7.3.1.3	DCI 格式用于其他目的			95
7.3.1.3.1	格式 2_0			95
7.3.1.3.2	格式 2_1			95
7.3.1.3.3	格式 2_2			95
7.3.1.3.4	格式 2_3			95
7.3.2	CRC 附件			96
7.3.3	信道编码			96
7.3.4	速率匹配			97
附件 <a> ((资料性): 更新记录	•••••		98

中文翻译: 5G通信(公众号: tongxin5g)

该技术规范由 3rd Generation Partnership Project (3GPP) 制作.

本文的内容需要在 TSG 范围内开展工作,并且可能在 TSG 正式批准后发生变化。如果 TSG 修改了本文的内容,TSG 将重新发布新的版本,其中发布日期的标识和版本号的增加规则如下:

5

版本号 x.y.z

代表意义:

- x 第一个是数字:
 - 1 提交给 TSG 的讨论内容;
 - 2 提交给 TSG 批准的内容;
 - 3 或更大的数字,代表 TSG 已批准的内容,但保留修改权限.
- y 它如果改变,表示有实质性的技术改进、更正或更新,例如有重要更新时,本数字会增加.
- z 如果只是文档编辑性、描述性内容的更新,则只有这个数字会更新。

中文翻译: 5G通信(公众号: tongxin5g)

范围 1

本文件规定了5GNR的物理信道的编码,复用和映射。

2

以下文件载有通过本文中的参考构成本文件条款的规定。

- 参考文献是特定的(由出版日期,版本号,版本号等标识)或非参考文献-具体。
- 具体参考,后续修订不适用。
- 对于 非特定参考, 最新版本适用。 在参考 3GPP 文档 (包括 GSM 文档) 的情况下, 非特定参考隐含地 指代与本文档相同的版本中的该文档的最新版本。

[1] 3GPP TR 21.905: "3GPP 规范的词汇表"。

3GPP TS 38.201: "NR;物理层 - 一般描述" [2]

3GPP TS 38.202: "NR; 物理层提供的服务" [3]

[4] 3GPP TS 38.211: "NR;物理信道和调制"

3GPP TS 38.213: "NR; 物理层的控制流程" [5]

号: tongxin5g) 3GPP TS 38.214: "NR; 物理层的数据流程" [6]

[7] 3GPP TS 38.215: "NR;物理层测量"

3GPP TS 38.321: "NR;媒体接入控制 (MAC) 协议规范" [8]

[9] 3GPP TS 38.331: "NR; 无线资源控制 (RRC) 协议规范"

定义,符号和缩写 3

定义 3.1

出于解释本文的目的。3GPP TR 21.905 [1]中给出的术语和定义适用。 在 3GPP TR 21.905 [1]中。本文件中 定义的术语优先于相同术语的定义(如果有的话)。

3.2 符号

就本文件而言,以下符号适用:

3.3 缩略语

出于本文件的目的, 3GPP TR 21.905 [1]中给出的缩写适用以下内容。 在 3GPP TR 21.905 [1]中, 本文档中 定义的缩写优先于相同缩写的定义(如果有的话)。

BCH 广播信道 **CBG** 代码块组

CBGTI 代码块组传输信息

CORESET 控制资源集 信道质量指标 CQI

循环冗余校验 CRC **CRI** CSI-RS 资源指标 **CSI** 信道状态信息 CSI-RS CSI 参考信号 DAI 下行链路分配索引 下行链路控制信息 DCI

DL下行

DL-SCH 下行链路共享信道 **DMRS** 专用解调参考信号 HARO 混合自动重复请求 混合自动重复请求确认 HARQ-ACK

LDPC 低密度奇偶校验 LI 图层指示器 MCS 调制和编码方案 **OFDM** 正交频分复用 物理广播信道 **PBCH** PCH 寻呼信道

PDCCH 物理下行控制信道 **PDSCH** 物理下行共享信道 PMI 预编码矩阵指示器

PRB 物理资源块

PRACH 物理随机接入信道 PTRS 相位跟踪参考信号 *SG通信(公众号: tongxin5g) 物理上行控制信道 **PUCCH PUSCH** 物理上行共享信道 **RACH** 随机接入信道

排名指标 RI

RSRP 参考信号接收功率

系统帧号 SFN 调度请求十 SR 探测参考信号 **SRS** SS

同步信号 SUL 补充上行链路 **TPC** 发射功率控制 TrCH 传输信道

UCI 上行链路控制信息

用户设备 UE UL 上行

UL-SCH 上行链路共享信道 VRB 虚拟资源块 ZP CSI-RS 零功率 CSI-RS

映射到物理信道 4

4.1 上行

表 4.1-1 规定了上行链路传输信道到其相应物理信道的映射。 表 4.1-2 规定了上行链路控制信道信息到其相 应物理信道的映射。

表4.1-1

传输信道	物理信道
UL-SCH	PUSCH
RACH	PRACH

表4.1-2

控制信息	物理信道
UCI	PUCCH, PUSCH

42 下行

表 4.2-1 规定了下行链路传输信道到其相应物理信道的映射。 表 4.2-2 规定了下行链路控制信道信息到其相 应物理信道的映射。

表4.2-1

传输信道	物理信道
DL-SCH	PDSCH
BCH	PBCH
PCH	PDSCH

表4.2-2

控制信息		物理信道	+ongx111
DCI		PDCCH	
	- (通信 (公外	
心	Day II		

5

来自/到 MAC 层的数据和控制流被编码/解码,以通过无线传输链路提供传输和控制服务。 信道编码方案是错 误检测,纠错,速率匹配,交织和传输信道或控制信息映射到/从物理信道分离的组合。

5.1 CRC 计算

将输入位表示为 CRC 计算 $a_0, a_1, a_2, a_3, ..., a_{A-1}$ 和奇偶校验位 $p_0, p_1, p_2, p_3, ..., p_{L-1}$, where A 是输入序列的 大小和 L 是奇偶校验位的数量。 奇偶校验位由以下循环生成多项式之一生成:

- $g_{\text{CRC24A}}(D) = [D^{24} + D^{23} + D^{18} + D^{17} + D^{14} + D^{11} + D^{10} + D^7 + D^6 + D^5 + D^4 + D^3 + D + 1]$ for CRC 长度 L = 24;
- $g_{\text{CRC24B}}(D) = [D^{24} + D^{23} + D^6 + D^5 + D + 1]$ for CRC 长度 L = 24;
- $g_{\text{CRC24C}}(D) = [D^{24} + D^{23} + D^{21} + D^{20} + D^{17} + D^{15} + D^{13} + D^{12} + D^{8} + D^{4} + D^{2} + D + 1]$ for CRC 长度 L = 24;
- $g_{\text{CRC16}}(D) = [D^{16} + D^{12} + D^5 + 1] \text{ for CRC } \text{KE} \ L = 16;$
- $g_{\text{CRCII}}(D) = [D^{11} + D^{10} + D^9 + D^5 + 1]$ for CRC $\xi \in L = 11$;
- $g_{\text{CRC6}}(D) = [D^6 + D^5 + 1]$ for CRC 长度 L = 6.

编码以系统形式执行,这意味着在 GF (2) 中,多项式:

$$a_0 D^{A+L-1} + a_1 D^{A+L-2} + ... + a_{A-1} D^L + p_0 D^{L-1} + p_1 D^{L-2} + ... + p_{L-2} D^1 + p_{L-1}$$

当除以相应的 CRC 生成多项式时,产生等于 0 的余数。

CRC 附着后的位用表示 $b_0,b_1,b_2,b_3,...,b_{B-1}$, where B=A+L。 之间的关系 a_k and b_k is:

$$b_k = a_k$$
 for $k = 0,1,2,...,A-1$

$$b_k = p_{k-A}$$
 for $k = A, A+1, A+2,..., A+L-1$.

代码块分段和代码块 CRC 附件 5.2

5.2.1 极化码 (Polar)

代码块分割的输入比特序列由表示 $a_0, a_1, a_2, a_3, ..., a_{A-1}$, where A > 0.

if $I_{seg} = 1$

代码块数量: C=2;

else

代码块数量: C=1

End if

 $A' = \lceil A/C \rceil \cdot C;$

for i = 0 to A'-A-1

End for

for i = A' - A to A' - 1

..-A to A'-1
a'_i = a_{i-(A'-A)} 文 都译: 5G通信 (公众号: tongxin5g)
t for

End for

s = 0;

for r = 0 to C - 1

for k = 0 to A'/C-1

 $c_{rk} = a'_s$;

s = s + 1;

End for

序列 $c_{r_0}, c_{r_1}, c_{r_2}, c_{r_3}, \dots, c_{r(A'/C-1)}$ 用于计算 CRC 奇偶校验位 $p_{r_0}, p_{r_1}, p_{r_2}, \dots, p_{r(L-1)}$ 根据子条款 5. 1,生成多项 式的长度 L.

for k = A'/C to A'/C + L - 1

 $c_{rk} = p_{r(k-A'/C)};$

End for

End for

A 的值 不大于 1706。

5.2.2 低密度奇偶校验编码

代码块分割的输入比特序列由表示 $b_0,b_1,b_2,b_3,...,b_{B-1}$, where B>0. If B 大于最大代码块大小 K_{cb} , 执行 输入比特序列的分段和附加的 CRC 序列 L=24 位附加到每个代码块。

对于 LDPC 因子图 1, 最大代码块大小为:

- $K_{\rm cb} = 8448$.

对于 LDPC 因子图 2, 最大代码块大小为:

- $K_{\rm cb} = 3840$.

代码块 C 的总数由下式确定:

if $B \leq K_{ch}$

L = 0

代码块数量: C=1

B' = B

else

L = 24

代码块数量: $C = \lceil B/(K_{cb} - L) \rceil$.

 $B' = B + C \cdot L$

End if

5G通信(公众号: tongxin5g) 从代码块分段输出的比特表示为 $c_{r0},c_{r1},c_{r2},c_{r3},...,c_{r(K_r-1)}$,where $0 \le r < C$ 是代码块编号,和 $K_r = K$ 是代 码块编号的位数 r.

位数 K 在每个代码块中计算如下:

K'=B'/C;

对于 LDPC 因子图 1,

 $K_b = 22$.

对于 LDPC 因子图 2,

if B > 640

 $K_b = 10$;

elseif B > 560

 $K_b = 9$;

elseif B > 192

 $K_{h} = 8;$

else

 $K_b = 6$;

end if

找到最小值 Z 在表 5. 3. 2-1 中的所有起重量组中,表示为 Z_c 这样的 $K_b \cdot Z_c \geq K'$,并设置 $K = 22Z_c$ for LDPC 因子图 1 和 $K = 10Z_c$ for LDPC 因子图 2;

比特序列 c_{rk} 计算如下:

$$s=0$$
;
for $r=0$ to $C-1$
for $k=0$ to $K'-L-1$
 $c_{rk}=b_s$;
 $s=s+1$;
end for

if C > 1

序列 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K'-L-1)}$ 用于计算 CRC 奇偶校验位 $p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}$ 根据子条款 5.1 和生 end if 中文翻译: 5G通信 (公众号: tongxin5g)
for ** 成多项式 $g_{CRC24B}(D)$.

for k = K' to K - 1 - 插入填充位 $c_{rk} = < NULL >$

end for

end for

信道编码 5.3

表 5.3-1 给出了不同类型 TrCH 的编码方案的使用。 表 5.3-2 给出了不同控制信息类型的编码方案的用法。

表5.3-1: TrCH的信道编码方案的使用

传输信道	编码方案
UL-SCH	
DL-SCH	LDPC
PCH	
BCH	Polar 码

表5.3-2:控制信息的信道编码方案的使用

控制信息	编码方案
DCI	Polar 码
UCI	分组码
UCI	Polar 码

5.3.1 极化码 (Polar)

用于给定代码块到信道编码的比特序列输入表示为 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是要编码的位数。 在编码 之后, 比特用表示 $d_0,d_1,d_2,...,d_{N-1}$, where $N=2^n$ 和价值 n 由以下因素决定:

表示 E 5.4.1 中给出的速率匹配输出序列长度;

If
$$E \le (9/8) \cdot 2^{(\lceil \log_2 E \rceil - 1)}$$
 and $K/E < 9/16$

$$n_1 = \lceil \log_2 E \rceil - 1;$$

else

$$n_1 = \lceil \log_2 E \rceil$$
;

end if

$$R_{\min} = 1/8$$

$$n_2 = \lceil \log_2(K / R_{\min}) \rceil$$

where $n_{\min} = 5$. 计不会配置 UE $K + \infty$ 5G通信

预计不会配置 UE $K+n_{PC}>E$, where n_{PC} 是 5.3.1.2 中定义的奇偶校验位数。

5.3.1.1 交织

比特序列 $c_0, c_1, c_2, c_3, ..., c_{K-1}$ 被交织成比特序列 $c'_0, c'_1, c'_2, c'_3, ..., c'_{K-1}$ 如下:

$$c'_k = c_{\Pi(k)}, \ k = 0,1,...,K-1$$

其中交织模式 $\Pi(k)$ 由以下给出:

if
$$I_{II} = 0$$

$$\Pi(k) = k$$
, $k = 0,1,...,K-1$

else

k=0;

for
$$m=0$$
 to $K_{IL}^{\max}-1$

if
$$\prod_{IL}^{\max}(m) \ge K_{IL}^{\max} - K$$

$$\Pi(k) = \Pi_{II}^{\max}(m) - (K_{II}^{\max} - K);$$

$$k = k + 1$$
;

表5.3.1.1-1: 交织模式 $\Pi_{IL}^{max}(m)$

end if

end for

end if

where $\Pi_{IL}^{\text{max}}(m)$ 由表 5. 3. 1. 1-1 给出 $K_{IL}^{\text{max}} = 164$.

m	$\Pi_{IL}^{\max}(m)$	m	$\Pi_{IL}^{\max}(m)$	m	$\Pi_{IL}^{\max}(m)$	m	$\Pi_{IL}^{\max}(m)$	m	$\Pi_{IL}^{\max}(m)$	m	$\Pi_{IL}^{\max}(m)$
0	0	28	67	56	122	84	68	112	33	140	38
1	2	29	69	57	123	85	73	113	36	141	144
2	4	30	70	58	126	86	78	114	44	142	39
3	7	31	71	59	127	87	84	115	47	143	145
4	9	32	72	60	129	88	90	116	64	144	40
5	14	33	76	61	132	89	92	117	74	145	146
6	19	34	77	62	134	90	94	118	79	146	41
7	20	35	81	63	138	91	96	119	85	147	147
8	24	36	82	64	139	92	99	120	97	148	148
9	25	37	83	65	140	93	102	121	100	149	149
10	26	38	87	66	1	94	105	122	103	150	150
11	28	39	88	67	3	95	107	123	117	151	151
12	31	40	89	68	5	96	109	124	125	152	152
13	34	41	91	69	8	97	112	125	131	153	153
14	42	42	93	70	10	98	114	126	136	154	154
15	45	43	95	71	15	99	116	127	142	155	155
16	49	44	98	72	21	100	121	128	12	156	156
17	50	45	101	73	27	101	124	129	17	157	157
18	51	46	104	74	29	102	128	130	23	158	158
19	53	47	106	75	32	103	130	131	37	159	159
20	54	48	108	76	35	104	133	132	48	160	160
21	56	49	110	77	43	105	135	133	75	161	
22	58	50	111	78	46	106	141	134	80	162	162
23	59	51	113	79	52	107	6	135	86 0	163	163
24	61	52	115	80	55	108	11-1	136	137		
25	62	53	118	81	57	109	16	137	143		
26	65	54	119	82	60 /	110	22	138	13		
27	66	55	120	83	// 63 (/	/111	30	139	18		
			- (1)	HI/	IFI						

极化码 (Polar) 5.3.1.2

极地序列 $\mathbf{Q}_0^{N_{\max}-1} = \left\{Q_0^{N_{\max}}, Q_1^{N_{\max}}, ..., Q_{N_{\max}-1}^{N_{\max}}\right\}$ 由表 5.3.1.2-1 给出,其中 $0 \le Q_i^{N_{\max}} \le N_{\max} - 1$ 表示 Polar 编码之前 的位索引 $i=0,1,...,N_{\max}-1$ and $N_{\max}=1024$ 。 极地序列 $\mathbf{Q}_0^{N_{\max}-1}$ 是可靠性的升序 $W(Q_0^{N_{\max}}) < W(Q_1^{N_{\max}}) < \ldots < W(Q_{N_{\max}-1}^{N_{\max}})$,where $W(Q_i^{N_{\max}})$ 表示比特索引的可靠性 $Q_i^{N_{\max}}$.

Polar 序列的子集 $\mathbf{Q}_{0}^{N_{\max}-1}$ 所有单元 $Q_{0}^{N_{\max}}$ 值小于 N,按可靠性的升序排序 $W(Q_0^N) < W(Q_1^N) < W(Q_2^N) < ... < W(Q_{N-1}^N).$

表示 $\overline{\mathbf{Q}}_{I}^{N}$ 作为 Polar 序列中的一组位索引 \mathbf{Q}_{0}^{N-1} ,和 $\overline{\mathbf{Q}}_{E}^{N}$ 作为 Polar 序列中其他位索引的集合 \mathbf{Q}_{0}^{N-1} , where $\overline{\mathbf{Q}}_{I}^{N}$ and $\overline{\mathbf{Q}}_{F}^{N}$ 在 5. 4. 1. 1 的子条款中给出, $\left|\overline{\mathbf{Q}}_{I}^{N}\right|=K+n_{PC}$, $\left|\overline{\mathbf{Q}}_{F}^{N}\right|=N-\left|\overline{\mathbf{Q}}_{I}^{N}\right|$,和 n_{PC} 是奇偶校验位的数量。

表示 $\mathbf{G}_{N} = (\mathbf{G}_{2})^{\otimes n}$ 作为 n - 矩阵的克罗内克力量 \mathbf{G}_{2} , where $\mathbf{G}_{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

对于 一点索引 j 同 j=0,1,...,N-1,表示 \mathbf{g}_{j} 作为 j - 排 \mathbf{G}_{N} and $w(\mathbf{g}_{j})$ 作为行的重量 \mathbf{g}_{j} , where $w(\mathbf{g}_{j})$ 是的数量 \mathbf{g}_{j} 。 将奇偶校验位的位索引集表示为 \mathbf{Q}_{PC}^{N} ,where $\left|\mathbf{Q}_{PC}^{N}\right|=n_{PC}$ 。 一些 $\left(n_{PC}-n_{PC}^{wm}\right)$ 奇偶校验位置 于 $\left(n_{PC}-n_{PC}^{wm}\right)$ 最不可靠的比特指数 $\overline{\mathbf{Q}}_{l}^{N}$ 。 一些 n_{PC}^{wm} 其他奇偶校验位位于最小行权重的位索引中 $\widetilde{\mathbf{Q}}_{l}^{N}$, where $\widetilde{\mathbf{Q}}_I^N$ 表示 $\left(\!\!\left| \overline{\mathbf{Q}}_I^N \right| - n_{PC} \!\!\right)$ 最可靠的比特指数 $\left| \overline{\mathbf{Q}}_I^N \right|$ 如果有更多 n_{PC}^{wm} 最小行权重相同的比特索引 $\widetilde{\mathbf{Q}}_I^N$, n_{PC}^{wm} 其他奇偶校验位置于 n_{PC}^{wm} 最高可靠性和最小行权重的位索引 $\widetilde{\mathbf{Q}}_{r}^{N}$.

```
生成 \mathbf{u} = [u_0 \ u_1 \ u_2 \dots u_{N-1}] 根据以下内容:
    k = 0;
   if n_{PC} > 0
       y_0 = 0; y_1 = 0; y_2 = 0; y_3 = 0; y_4 = 0;
       for n=0 to N-1
           y_t = y_0; y_0 = y_1; y_1 = y_2; y_2 = y_3; y_3 = y_4; y_4 = y_t;
           if n \in \overline{\mathbf{Q}}_{I}^{N}
              if n \in \mathbf{Q}_{PC}^{N}
                  u_n = y_0;
                  else
                  u_n = c'_k;
                  k = k + 1;
               中文翻译: 5G通信(公众号: tongxin5g)
                  y_0 = y_0 \oplus u_n;
              end if
              else
              u_{n} = 0;
       end for
       else
       for n=0 to N-1
          if n \in \overline{\mathbf{Q}}_{I}^{N}
              u_n = c'_k;
              k = k + 1;
              else
              u_n = 0;
       end if
end for
end if
```

编码后的输出 $\mathbf{d} = \begin{bmatrix} d_0 & d_1 & d_2 & \dots & d_{N-1} \end{bmatrix}$ 是通过。获得的 $\mathbf{d} = \mathbf{u} \mathbf{G}_N$ 。 编码在 GF (2) 中执行。

表5.3.1.2-1: 极性序列 $\mathbf{Q}_{\scriptscriptstyle 0}^{^{N_{\max}-1}}$ 及其相应的可靠性 $\mathit{W}(\!\mathit{Q}_{i}^{^{N_{\max}}})$

$W(Q_i^{N_{\max}})$	$Q_i^{N_{ m max}}$	$W(Q_i^{N_{\max}})$	$Q_i^{N_{\max}}$	$W(Q_i^{N_{\max}})$	$Q_i^{N_{ m max}}$	$W(Q_i^{N_{ m max}})$	$Q_i^{N_{\max}}$	$W(Q_i^{N_{\max}})$	$Q_i^{N_{ m max}}$						
0	0	128	518	256	94	384	214	512	364	640	414	768	819	896	966
1	1	129	54	257	204	385	309	513	654	641	223	769	814	897	755
2	2	130	83	258	298	386	188	514	659	642	663	770	439	898	859
3 4	8	131 132	57 521	259 260	400 608	387 388	449 217	515 516	335 480	643 644	692 835	771 772	929 490	899 900	940 830
5	16	133	112	261	352	389	408	517	315	645	619	773	623	901	911
6	32	134	135	262	325	390	609	518	221	646	472	774	671	902	871
7	3	135	78	263	533	391	596	519	370	647	455	775	739	903	639
8	5	136	289	264	155	392	551	520	613	648	796	776	916	904	888
9	64	137	194	265	210	393	650	521	422	649	809	777	463	905	479
10 11	9	138 139	85 276	266 267	305 547	394 395	229 159	522 523	425 451	650 651	714 721	778 779	843 381	906 907	946 750
12	17	140	522	268	300	396	420	524	614	652	837	780	497	908	969
13	10	141	58	269	109	397	310	525	543	653	716	781	930	909	508
14	18	142	168	270	184	398	541	526	235	654	864	782	821	910	861
15	128	143	139	271	534	399	773	527	412	655	810	783	726	911	757
16	12	144	99	272	537	400	610	528	343	656	606	784	961	912	970
17 18	33 65	145 146	86 60	273 274	115 167	401 402	657 333	529 530	372 775	657 658	912 722	785 786	872 492	913 914	919 875
19	20	147	280	275	225	403	119	531	317	659	696	787	631	915	862
20	256	148	89	276	326	404	600	532	222	660	377	788	729	916	758
21	34	149	290	277	306	405	339	533	426	661	435	789	700	917	948
22	24	150	529	278	772	406	218	534	453	662	817	790	443	918	977
23 24	36	151	524	279	157	407	368	535	237	663	319	791	741	919	923
25	7 129	152 153	196 141	280 281	656 329	408 409	652 230	536 537	559 833	664 665	621 812	792 793	845 920	920 921	972 761
26	66	154	101	282	110	410	391	538	804	666	484	793	382	921	877
27	512	155	147	283	117	411	313	539	712	667	430	795	822	923	952
28	11	156	176	284	212	412	450	540	834	668	838	796	851	924	495
29	40	157	142	285	171	413	542	541	661	669	667	797	730	925	703
30 31	68	158	530	286	776	414 415	334 233	542	808	670 671	488	798	498 880	926 927	935
32	130 19	159 160	321 31	287 288	330 226	416	555	543 544	779 617	672	239 378	799 800	742	927	978 883
33	13	161	200	289	549	417	774	545	604	673	459	801	445	929	762
34	48	162	90	290	538	418	175	546	433	674	622	802	471	930	503
35	14	163	545	291	387	419	123	547	720	675	627	803	635	931	925
36	72	164	292	292	308	420	658	548	816	676	437	804	932	932	878
37	257	165	322 532	293	216 416	421	612	549	836	677	380	805	687 903	933	735
38	21 132	166 167	263	294 295	271	422	341 / 777	550 551	347 897	678 679	818 461	806 807	825	934 935	993 885
40	35	168	149	296	279	424	220	552	243	680	496	808	500	936	939
41	258	169	102	297	158	425	314	553	662	681	669	809	846	937	994
42	26	170	105	298	337	426	424	554	454	682	679	810	745	938	980
43	513	171	304	299	550	427	395	555	318	683	724	811	826	939	926
44	80 h	172 173	296 163	300 301	672 118	428 429	673 583	556 557	675 618	684 685	841 629	812 813	732 446	940 941	764 941
46	25	173	92	302	332	430	355	558	898	686	351	814	962	942	967
47	22	175	47	303	579	431	287	559	781	687	467	815	936	943	886
48	136	176	267	304	540	432	183	560	376	688	438	816	475	944	831
49	260	177	385	305	389	433	234	561	428	689	737	817	853	945	947
50	264	178	546	306	173	434	125	562	665	690	251	818	867	946	507
51 52	38 514	179 180	324 208	307 308	121 553	435 436	557 660	563 564	736 567	691 692	462 442	819 820	637 907	947 948	889 984
53	96	181	386	309	199	437	616	565	840	693	441	821	487	949	751
54	67	182	150	310	784	438	342	566	625	694	469	822	695	950	942
55	41	183	153	311	179	439	316	567	238	695	247	823	746	951	996
56	144	184	165	312	228	440	241	568	359	696	683	824	828	952	971
57 58	28 69	185 186	106 55	313 314	338 312	441 442	778 563	569 570	457 399	697 698	738	825 826	753 854	953 954	890 509
59	42	187	328	315	704	443	345	571	787	699	899	827	857	955	949
60	516	188	536	316	390	444	452	572	591	700	670	828	504	956	973
61	49	189	577	317	174	445	397	573	678	701	783	829	799	957	1000
62	74	190	548	318	554	446	403	574	434	702	849	830	255	958	892
63 64	272 160	191 192	113 154	319 320	581 393	447 448	207 674	575 576	677 349	703 704	820 728	831 832	964 909	959 960	950 863
65	520	192	79	321	283	449	558	577	245	704	928	833	719	961	759
66	288	194	269	322	122	450	785	578	458	706	791	834	477	962	1008
67	528	195	108	323	448	451	432	579	666	707	367	835	915	963	510
68	192	196	578	324	353	452	357	580	620	708	901	836	638	964	979
69 70	544 70	197 198	224 166	325 326	561 203	453 454	187 236	581 582	363 127	709 710	630 685	837 838	748 944	965 966	953 763
70	44	198	519	326	63	454 455	664	582	191	710	844	838	869	967	974
72	131	200	552	328	340	456	624	584	782	712	633	840	491	968	954
73	81	201	195	329	394	457	587	585	407	713	711	841	699	969	879
74	50	202	270	330	527	458	780	586	436	714	253	842	754	970	981
75	73	203	641	331	582	459	705	587	626	715	691	843	858	971	982
76 77	15 320	204 205	523 275	332 333	556 181	460 461	126 242	588 589	571 465	716 717	824 902	844 845	478 968	972 973	927 995
78	133	205	580	334	295	462	565	590	681	717	686	846	383	973	765
79	52	207	291	335	285	463	398	591	246	719	740	847	910	975	956
80	23	208	59	336	232	464	346	592	707	720	850	848	815	976	887
81	134	209	169	337	124	465	456	593	350	721	375	849	976	977	985
82	384	210	560	338	205	466	358	594	599	722	444	850	870	978	997

114 339 277 340 156 341 87 342 197 343 116 344 170 345 61 346 5531 347 525 348	182 643 562 286 585 299 354	467 468 469 470 471 472	405 303 569 244 595	595 596 597 598	668 790 460	723 724 725	470 483 415	851 852	917 727	979 980	986 943
156 341 87 342 197 343 116 344 170 345 61 346 531 347	562 286 585 299 354	469 470 471 472	569 244 595	597 598	460					900	
87 342 197 343 116 344 170 345 61 346 531 347	286 585 299 354	470 471 472	244 595	598		125	1 410		402	981	891
197 343 116 344 170 345 61 346 531 347	585 299 354	471 472	595			726		853	493 873		998
116 344 170 345 61 346 531 347	299 354	472		599	249 682	727	485 905	854 855	701	982 983	766
170 345 61 346 531 347	354		189	600	573	728	795	856	931	984	511
61 346 531 347		470	566	601	411	729	473	857	756	985	988
531 347		473 474	676	602	803	730	634	858	860	986	1001
	211 401	474	361	603	789	731	744	859	499	987	951
323 340	185	476	706	604	709	732	852	860	731	988	1002
642 349	396	477	589	605	365	733	960	861	823	989	893
281 350	344	477	215	606	440	734	865	862	922	990	975
278 351	586	479	786	607	628	735	693	863	874	990	894
526 352	645	480	647	608	689	736	797	864	918	992	1009
177 353	593	481	348	609	374	737	906	865	502	993	955
293 354	535	481	419	610	423	738	715	866	933	993	1004
388 355	240	482	406	611	466	738	807	867	743	994	1002
91 356	206	484	464	612	793	740	474	868	760	996	957
584 357	95	484	680	613	250	740	636	869	881	996	983
769 358	327	486	801	614	371	741	694	870	494	998	958
198 359	564	487	362	615	481	743	254	871	702	999	987
172 360	800	488	590	616	574	744	717	872	921	1000	1012
120 361	402	489	409	617	413	745	575	873	501	1000	999
201 362	356	490	570	618	603	746	913	874	876	1001	1016
336 363	307	491	788	619	366	747	798	875	847	1002	767
62 364	301	492	597	620	468	748	811	876	992	1003	989
282 365	417	493	572	621	655	749	379	877	447	1004	1003
143 366	213	494	219	622	900	750	697	878	733	1006	990
103 367	568	495	311	623	805	751	431	879	827	1007	1005
178 368	832	496	708	624	615	752	607	880	934	1007	959
294 369	588	497	598	625	684	753	489	881	882	1009	1011
93 370	186	498	601	626	710	754	866	882	937	1010	1013
644 371	646	499	651	627	429	755	723	883	963	1010	895
202 372	404	500	421	628	794	756	486	884	747	1012	1006
592 373	227	501	792	629	252	757	908	885	505	1012	1014
323 374	896	502	802	630	373	758	718	886	855	1014	1017
392 375	594	503	611	631	605	759	813	887	924	1015	1018
297 376	418	504	602	632	848	760	476	888	734	1016	991
770 377	302	505	410	633	690	761	856	889 (829	1017	1020
107 378	649	506	231	634	713	762	839	890	965	1017	1007
					_				0		1015
											1019
											1013
							_				102
											1023
J T U 303	5(1)	用石	130	039	30 4	101	000	090	3 4 0	1023	110
18 15 20 28	30 379 51 380 99 381 34 382 48 383	30 379 771 51 380 360 99 381 539 344 382 111 48 383 331	80 379 771 507 61 380 360 508 99 381 539 509 344 382 111 510 48 383 331 511	80 379 771 507 688 61 380 360 508 653 99 381 539 509 248 34 382 111 510 369 48 383 331 511 190	80 379 771 507 688 635 61 380 360 508 653 636 99 381 539 509 248 637 344 382 111 510 369 638 48 383 331 511 190 639	80 379 771 507 688 635 632 61 380 360 508 653 636 482 99 381 539 509 248 637 806 344 382 111 510 369 638 427 48 383 331 511 190 639 904	80 379 771 507 688 635 632 763 61 380 360 508 653 636 482 764 99 381 539 509 248 637 806 765 44 382 111 510 369 638 427 766 48 383 331 511 190 639 904 767	80 379 771 507 688 635 632 763 725 61 380 360 508 653 636 482 764 698 99 381 539 509 248 637 806 765 914 44 382 111 510 369 638 427 766 752 48 383 331 511 190 639 904 767 868	80 379 771 507 688 635 632 763 725 891 61 380 360 508 653 636 482 764 698 892 99 381 539 509 248 637 806 765 914 893 344 382 111 510 369 638 427 766 752 894 48 383 331 511 190 639 904 767 868 895	80 379 771 507 688 635 632 763 725 891 938 61 380 360 508 653 636 482 764 698 892 884 99 381 539 509 248 637 806 765 914 893 506 44 382 111 510 369 638 427 766 752 894 749 48 383 331 511 190 639 904 767 868 895 945	80 379 771 507 688 635 632 763 725 891 938 1019 61 380 360 508 653 636 482 764 698 892 884 1020 99 381 539 509 248 637 806 765 914 893 506 1021 34 382 111 510 369 638 427 766 752 894 749 1022

低密度奇偶校验编码 5.3.2

用于给定代码块到信道编码的比特序列输入表示为 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是 5.2.2 中定义的编码位 数。 在编码之后,比特用表示 $d_0,d_1,d_2,...,d_{N-1}$,where $N=66Z_c$ for LDPC 因子图 1 和 $N=50Z_c$ for LDPC 因子图 2,以及的值 Z_c 在 5.2.2 中给出。

对于由LDPC编码的代码块,以下编码过程适用:

1) 找到带索引的集合 i_{LS} 在表 5.3.2-1 中包含 Z_c .

2) for
$$k=2Z_c$$
 to $K-1$

if
$$c_k \neq < NULL >$$

$$d_{k-2Z_c}=c_k;$$

else

 $c_k = 0$;

$$d_{k-2Z_c} = < NULL >;$$

end if

end for

3) 生成 $N+2Z_c-K$ 奇偶校验位 $\mathbf{w}=\begin{bmatrix}w_0,w_1,w_2,...,w_{N+2Z_c-K-1}\end{bmatrix}^T$ 这样的 $\mathbf{H}\times\begin{bmatrix}\mathbf{c}\\\mathbf{w}\end{bmatrix}=\mathbf{0}$, where $\mathbf{c}=\begin{bmatrix}c_0,c_1,c_2,...,c_{K-1}\end{bmatrix}^T$; $\mathbf{0}$ 是所有单元的列向量等于 0. 编码在 GF (2) 中执行。

对于 LDPC 因子图 1,矩阵为 \mathbf{H}_{BG} 有 46 行行索引 i=0,1,2,...,45 和列索引的 68 列 j=0,1,2,...,67 。 for LDPC 因子图 2,矩阵为 \mathbf{H}_{BG} 有 42 行行索引 i=0,1,2,...,41 52 列,列索引 j=0,1,2,...,51 。 中的单元 \mathbf{H}_{BG} 表 5. 3. 2-2 (对于 LDPC 因子图 1) 和表 5. 3. 2-3 (对于 LDPC 因子图 2) 给出的行和列索引值为 1,所有其他单元在 \mathbf{H}_{BG} 值为 0。

17

矩阵 \mathbf{H} 是通过替换每个单元获得的 \mathbf{H}_{BG} 用一个 $\mathbf{Z}_{c} \times \mathbf{Z}_{c}$ 矩阵,根据以下内容:

- 值为 0 的每个单元 \mathbf{H}_{BG} 由全零矩阵代替 $\mathbf{0}$ 大小 $Z_{c} \times Z_{c}$;
- 值 1 的每个单元 \mathbf{H}_{BG} 由圆形置换矩阵代替 $\mathbf{I}(P_{i,j})$ 大小 $Z_c \times Z_c$, where i and j 是单元的行和列索 引,和 $\mathbf{I}(P_{i,j})$ 通过循环移位单位矩阵获得 \mathbf{I} 大小 $Z_c \times Z_c$ 在右边 $P_{i,j}$ 倍。 的价值 $P_{i,j}$ 是(谁)给的 $P_{i,j} = \mathrm{mod}(V_{i,j}, Z_c)$ 。 的价值 $V_{i,j}$ 表 5. 3. 2-2 和 5. 3. 2-3 根据设定的指数给出 i_{LS} 和 LDPC 因子图。
- 4) for k = K to $N + 2Z_c 1$

$$d_{k-2Z_{-}} = w_{k-K};$$

end for

表5.3.2-1: LDPC提升尺寸的集合 Z nngxin5g

		J. 7.0110
	设定指数 (i _{LS})	一套起重尺寸 (Z)
	0、名/言	{2, 4, 8, 16, 32, 64, 128, 256}
	5年1	{3, 6, 12, 24, 48, 96, 192, 384}
至	2	{5, 10, 20, 40, 80, 160, 320}
H文酚	3	{7, 14, 28, 56, 112, 224}
中人.	4	{9, 18, 36, 72, 144, 288}
	5	{11, 22, 44, 88, 176, 352}
	6	{13, 26, 52, 104, 208}
	7	{15, 30, 60, 120, 240}

表5.3.2-2: LDPC因子图1(\mathbf{H}_{BG})及其奇偶校验矩阵($V_{i,j}$)

H	\mathbf{I}_{BG}				V_{i}	i,j				Н	\mathbf{I}_{BG}				V_{i}	i,j			
行 指数	柱 指数				设置索	$\exists i_{LS}$				行 指数	柱 指数				设置索	i_{LS}			
i i	jest	0	1	2	3	4	5	6	7	$i^{f=50}$	jegx j	0	1	2	3	4	5	6	7
	0	250 69	307 19	73 15	223 16	211 198	294 118	0	135 227		1 10	96 65	2 210	290 60	120 131	0 183	348 15	6 81	138 220
	2	226	50	103	94	188	167	0	126	15	13	63	318	130	209	108	81	182	173
	3 5	159 100	369 181	49 240	91 74	186 219	330 207	0	134 84	15	18 25	75 179	55 269	184 51	209 81	68 64	176 113	53 46	142 49
	6	10	216	39	10	4	165	0	83		37	0	0	0	0	0	0	0	0
	9	59 229	317 288	15 162	0 205	29 144	243 250	0	53 225		3	64 49	13 338	69 140	154 164	270 13	190 293	88 198	78 152
	11	110	109	215	216	116	1	0	205	16	11	49	57	45	43	99	332	160	84
0	12 13	191	17 357	164 133	21 215	216 115	339 201	0	128 75		20 22	51 154	289 57	115 300	189 101	54 0	331 114	122 182	5 205
	15	195	215	298	14	233	53	0	135		38	0	0	0	0	0	0	0	0
	16 18	23 190	106 242	110 113	70 141	144 95	347 304	0	217 220		0 14	7 164	260 303	257 147	56 110	153 137	110 228	91 184	183 112
	19	35	180	16	198	216	167	0	90	17	16	59	81	128	200	0	247	30	106
	20	239	330 346	189 32	104 81	73 261	47 188	0	105 137		17 21	1 144	358 375	51 228	63 4	0 162	116 190	3 155	219 129
	22	1 0	1 0	1 0	1 0	1 0	1 0	0	1 0		39 1	0 42	0 130	0	0	0 161	0 47	0	0 183
	23 0	2	76	303	141	179	77	22	96		12	233	163	260 294	199 110	151	286	41	215
	3	239 117	76 73	294 27	45 151	162 223	225 96	11 124	236 136	18	13 18	8 155	280 132	291 141	200 143	0 241	246 181	167 68	180 143
	4	124	288	261	46	256	338	0	221		19	147	4	295	186	144	73	148	143
	5 7	71 222	144 331	161 133	119 157	160 76	268 112	10	128 92		40 0	0 60	0 145	0 64	0	0	0 87	0 12	0 179
	8	104	331	4	133	202	302	0	172		1	73	213	181	6	0	110	6	108
	9	173 220	178 295	80 129	87 206	117 109	50 167	2 16	56 11	19	7 8	72 127	344 242	101 270	103 198	118 144	147 258	166 184	159 138
1	12	102	342	300	93	15	253	60	189		10	224	197	41	8	0	204	191	196
	14 15	109 132	217 99	76 266	79 9	72 152	334 242	6	95 85		41 0	0 151	0 187	0 301	105	0 265	0 89	6	77
	16	142	354	72	118	158	257	30	153		3	186	206	162	210	81	65	12	187
	17 19	155 255	114 331	83 260	194 31	147 156	133 9	0 168	87 163	20	91	217	264 341	40 130	121 214	90 144	155 244	15 5	203 167
	21	28	112	301	187	119	302	31	216	入人	22	160	59	10	183	228	30	30	130
	22	0	0	0	0	0	0	105	0		42 1	0 249	0 205	0 79	0 192	0 64	0 162	0	0 197
	24	0	0	0	0	0	0	0	0		5	121	102	175	131	46	264	86	122
	0	106	205	68	207 203	258 167	226 35	132 37	189 4	21	16 20	109 131	328 213	132 283	220 50	266 9	346 143	96 42	215 65
	2	185	328	80	31	220	213	21	225		21	171	97	103	106	18	109	199	216
	5	117	332 256	280 38	176 180	133 243	302 111	180	151 236		43 0	0 64	30	0 177	0 53	72	0 280	0 44	0 25
	6	93	161	227	186	202	265	149	117		12	142	11	20	0	189	157	58	47
	7 8	229 177	267 160	202	95 153	218 63	128 237	48 38	179 92	22	13 17	188 158	233 22	55 316	3 148	72 257	236 113	130 131	126 178
	9	95	63	71	177	0	294	122	24		44	0	0	0	0	0	0	0	0
2	10 13	39 142	129 200	106 295	70 77	3 74	127 110	195 155	68 6		2	156 147	24 89	249 50	88 203	180 0	18 6	45 18	185 127
	14	225	88	283	214	229	286	28	101	23	10	170	61	133	168	0	181	132	117
	15 17	225 245	53 131	301 184	77 198	0 216	125 131	85 47	33 96		18 45	152 0	27 0	105 0	122 0	165 0	304 0	100	199
	18	205	240	246	117	269	163	179	125		0	112	298	289	49	236	38	9	32
	19 20	251 117	205 13	230 276	223 90	200 234	210 7	42 66	67 230		3 4	86 236	158 235	280 110	157 64	199 0	170 249	125 191	178 2
	24	0	0	0	0	0	0	0	0	24	11	116	339	187	193	266	288	28	156
	25 0	121	0 276	220	201	0 187	97	4	0 128		22 46	222 0	234 0	281 0	124 0	0	194 0	6	58 0
	1	89	87	208	18	145	94	6	23		1	23	72	172	1	205	279	4	27
	3 4	84 20	0 275	30 197	165 5	166 108	49 279	33 113	162 220	25	6 7	136 116	17 383	295 96	166 65	0	255 111	74 16	141 11
	6	150	199	61	45	82	139	49	43		14	182	312	46	81	183	54	28	181
	7 8	131 243	153 56	175 79	142 16	132 197	166 91	21 6	186 96		47 0	0 195	71	0 270	107	0	325	21	0 163
	10	136	132	281	34	41	106	151	1	00	2	243	81	110	176	0	326	142	131
3	11 12	86 246	305 231	303 253	155 213	162 57	246 345	83 154	216 22	26	4 15	215 61	76 136	318 67	212 127	0 277	226 99	192 197	169 98
	13	219	341	164	147	36	269	87	24	27	48	0	0	0	0	0	0	0	0
	14 16	211	212 304	53 44	69 96	115 242	185 249	92	167 200		6	25 104	194 194	210 29	208 141	45 36	91 326	98 140	165 232
	17	76	300	28	74	165	215	173	32	27	8	194	101	304	174	72	268	22	9
	18 20	244 144	271 39	77 319	99 30	113	143 121	120	235 172		49 0	0 128	222	0 11	0 146	0 275	102	4	32
	21	12	357	68	158	108	121	142	219	20	4	165	19	293	153	0	1	1	43
	22 25	0	0	0	0	0	0	0	0	28	19 21	181 63	244 274	50 234	217 114	155 62	40 167	93	200
	0	157	332	233	170	246	42	24	64		50	0	0	0	0	0	0	0	0
4	26	102	181	205	10	235	256 0	0	211 0	29	1 14	86 236	252 5	27 308	150 11	0 180	273 104	92 136	232 32
5	0	205	195	83	164	261	219	185	2		18	84	147	117	53	0	243	106	118

V15.2.0(2018-6)

表5.3.2-3: LDPC因子图2(\mathbf{H}_{BG})及其奇偶校验矩阵($V_{i,j}$)

ŀ	\mathbf{I}_{BG}				V_{i}	i, j				H	\mathbf{I}_{BG}				V_{i}	i,j			
行指数	柱 指数				设置索	$\exists i_{LS}$				行 指数	柱 指数				设置索	$\exists i_{LS}$			
i i	j jest	0	1	2	3	4	5	6	7	$i^{f=50}$	jest j	0	1	2	3	4	5	6	7
	0	9	174	0	72	3	156	143	145	16	26	0	0	0	0	0	0	0	0
	2	117 204	97 166	0	110 23	26 53	143 14	19 176	131 71		1 5	254 124	158 23	0 24	48 132	120 43	134 23	57 201	196 173
0	3 6	26 189	66 71	0	181 95	35 115	3 40	165 196	21 23	17	11 12	114 64	9	109 18	206 2	65 42	62 163	142 35	195 218
	9	205	172	0	8	127	123	13	112		27	0	0	0	0	0	0	0	0
	10	0	0	0	1 0	0	0	0	0		6	220 194	186 6	0 18	68 16	17 106	173 31	129 203	128 211
	0	167	27	137	53	19	17	18	142	18	7	50	46	86	156	142	22	140	210
	3 4	166 253	36 48	124	156 115	94 104	65 63	27 3	174 183		28 0	0 87	0 58	0	0 35	79	13	0 110	0 39
	5	125	92	0	156	66	1	102	27	19	1	20	42	158	138	28	135	124	84
1	6 7	226 156	31 187	88	115 200	98 98	55 37	185 17	96 23		10 29	185 0	156 0	154 0	86 0	41 0	145 0	52 0	88
	8	224 252	185 3	0 55	29 31	69 50	171 133	14 180	9 167		1 4	26 105	76 61	0 148	6 20	2 103	128 52	196 35	117 227
	11	0	0	0	0	0	0	0	0	20	11	29	153	104	141	78	173	114	6
	12 0	81	0 25	20	0 152	0 95	0 98	0 126	0 74		30 0	0 76	0 157	0	0 80	0 91	0 156	10	0 238
	1	114	114	94	131	106	168	163	31	21	8	42	175	17	43	75	166	122	13
	3 4	44 52	117 110	99	46 191	92 110	107 82	47 183	3 53		13 31	210 0	67 0	33 0	81 0	81 0	40	23 0	11
2	8 10	240	114 1	108	91 0	111	142	132	155 0	22	1 2	222	20 52	0 4	49 1	54 132	18 163	202 126	195 44
	12	0	0	0	0	0	0	1 0	0	22	32	63 0	0	0	0	0	0	0	0
	13	8	0 136	38	0 185	0 120	0 53	0 36	239		3	23 235	106 86	75	156 54	68 115	110 132	52 170	5 94
	2	58	175	15	6	121	174	48	171	23	5	238	95	158	134	56	150	13	111
	5	158 104	113 72	102 146	36 124	22 4	174 127	18 111	95 110		33 1	0 46	0 182	0	0 153	30	0 113	0 113	0 81
3	6	209	123	12	124	73	17	203	159	24	2	139	153	69	88	42	108	161	19
	8	54 18	118 28	57 53	110 156	49 128	89 17	3 191	199 43		9 34	8	64	087	63	101 0	61 0	88	130
	9	128	186 0	46 0	133 1	79 0	105 0	160 0	75 1	25	5	228 156	45 21	0 65	211 94	128 63	72 136	197 194	66 95
	13	0	0	0	0	0	0	10	0	72,7	35	0	0	0	0	0	0	0	0
	0	179 214	72 74	136	200	42	86	27	29 140		2 7	29 143	67 137	0 100	90	142 28	36 38	164 172	146 66
4	11	71	290	157	101	51	83	117	180	26	12	160	55	13	221	100	53	49	190
	14	231	10	0	0 185	0 40	79	0 136	0 121		13 36	122 0	85 0	7	6	133	145 0	161 0	86 0
	1 5	\41 194	44 121	131 142	138 170	140 84	84 35	49 36	41 169	27	0 6	8 151	103 50	0 32	27 118	13 10	42 104	168 193	64 181
5	7	159	80	141	219	137	103	132	88	21	37	0	0	0	0	0	0	0	0
	11 15	103	48 0	64	193 0	71 0	60 0	62 0	207 0		2	98 101	70 111	0 126	216 212	106 77	64 24	14 186	7 144
	0	155	129	0	123	109	47	7	137	28	5	135	168	110	193	43	149	46	16
6	5 7	228 45	92 100	124 99	55 31	87 107	154 10	34 198	72 172		38 0	0 18	110	0	0 108	0 133	0 139	0 50	0 25
6	9	28 158	49 184	45 148	222 209	133 139	155 29	168 12	124 56	29	4 39	28 0	17 0	154 0	61 0	25 0	161 0	27 0	57 0
	16	0	0	0	0	0	0	0	0		2	71	120	0	106	87	84	70	37
	5	129 147	80 186	0 45	103 13	97 135	48 125	163 78	86 186	30	5 7	240 9	154 52	35 51	44 185	56 104	173 93	17 50	139 221
7	7	140	16	148	105	35	24	143	87		9	84	56	134	176	70	29	6	17
	11 13	116	102 143	96 78	150 181	108 65	47 55	107 58	172 154		40 1	0 106	3	0	0 147	0 80	0 117	0 115	201
	17 0	0 142	0 118	0	0 147	0 70	0 53	0 101	0 176	31	13 41	1 0	170 0	20 0	182 0	139 0	148 0	189 0	46 0
8	1	94	70	65	43	69	31	177	169		0	242	84	0	108	32	116	110	179
	12 18	230	152 0	87	152 0	88 0	161 0	22 0	225 0	32	5 12	44 166	8 17	20 122	21 110	89 71	73 142	0 163	14 116
	1	203	28	0	2	97	104	186	167		42	0	0	0	0	0	0	0	0
9	10	205 61	132 185	97 51	30 184	40 24	142 99	27 205	238 48	22	7	132 164	165 179	0 88	71 12	135 6	105 137	163 173	46 2
	11 19	247	178 0	85	83	49 0	64	81 0	68 0	33	10 43	235	124	13	109 0	2	29	179 0	106 0
	0	11	59	0	174	46	111	125	38		0	147	173	0	29	37	11	197	184
10	1 6	185 0	104 22	17 156	150 8	41 101	25 174	60 177	217 208	34	12 13	85 36	177 12	19 78	201 69	25 114	41 162	191 193	135 141
	7	117	52	20	56	96	23	51	232		44	0	0	0	0	0	0	0	0
	20	11	0 32	0	99	0 28	91	0 39	0 178	0.5	1 5	57 40	77 184	0 157	91 165	60 137	126 152	157 167	85 225
4.4	7	236	92	7	138	30	175	29	214	35	11	63	18	6	55	93	172	181	175
11	9 13	210 56	174 154	2	110 99	116 64	24 141	35 8	168 51		45 0	0 140	0 25	0	1	0 121	73	0 197	0 178
	21	63	0 39	0	0 46	0 33	0 122	0 18	0 124	36	2 7	38 154	151 170	63 82	175 83	129 26	154 129	167 179	112 106
12	3	111	93	113	217	122	11	155	122		46	0	0	0	0	0	0	0	0
	11	14	11	48	109	131	4	49	72	37	10	219	37	0	40	97	167	181	154

	22	0	0	0	0	0	0	0	0		13	151	31	144	12	56	38	193	114
	0	83	49	0	37	76	29	32	48		47	0	0	0	0	0	0	0	0
	1	2	125	112	113	37	91	53	57		1	31	84	0	37	1	112	157	42
13	8	38	35	102	143	62	27	95	167	38	5	66	151	93	97	70	7	173	41
	13	222	166	26	140	47	127	186	219	30	11	38	190	19	46	1	19	191	105
	23	0	0	0	0	0	0	0	0		48	0	0	0	0	0	0	0	0
	1	115	19	0	36	143	11	91	82		0	239	93	0	106	119	109	181	167
	6	145	118	138	95	51	145	20	232	39	7	172	132	24	181	32	6	157	45
14	11	3	21	57	40	130	8	52	204	39	12	34	57	138	154	142	105	173	189
	13	232	163	27	116	97	166	109	162		49	0	0	0	0	0	0	0	0
	24	0	0	0	0	0	0	0	0		2	0	103	0	98	6	160	193	78
	0	51	68	0	116	139	137	174	38	40	10	75	107	36	35	73	156	163	67
15	10	175	63	73	200	96	103	108	217	40	13	120	163	143	36	102	82	179	180
15	11	213	81	99	110	128	40	102	157		50	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0		1	129	147	0	120	48	132	191	53
	1	203	87	0	75	48	78	125	170	41	5	229	7	2	101	47	6	197	215
16	9	142	177	79	158	9	158	31	23	41	11	118	60	55	81	19	8	167	230
10	11	8	135	111	134	28	17	54	175		51	0	0	0	0	0	0	0	0
	12	242	64	143	97	8	165	176	202										

5.3.3 短码的信道编码

用于给定代码块到信道编码的比特序列输入表示为 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是要编码的位数。 在编码 之后, 比特用表示 $d_0, d_1, d_2, ..., d_{N-1}$.

5.3.3.1 编码1位信息

对于 K=1,代码块按表 5.3.3.1-1 编码,其中 $N=Q_m$ and Q_m 是代码块的调制顺序。

表5.3.3.1-1:1位信息的编码

	Q_m	编码位 $d_0, d_1, d_2,, d_{N-1}$	gxin5g)
	1		
	2	$[c_0]$	
	3G)	$[c_0 \mathbf{y} \mathbf{x} \mathbf{x}]$	
七寸翻	作 6	$[c_0 y x x x x]$	
中人	8	$[c_0 y x x x x x x]$	

表 5. 3. 3. 1-1 中的 "x" 和 "y" 是[4, TS 38. 211]的 6. 3. 1. 1 的占位符,用于以最大化携带信息位的调制符号 的欧几里德距离的方式对信息位进行加扰。

5.3.3.2 编码2位信息

对于 K=2,代码块按表 5. 3. 3-2 编码,其中 $c_2=(c_0+c_1)\bmod 2$, $N=3Q_m$,和 Q_m 是代码块的调制顺序。

表5.3.3.2-1:2位信息的编码

Q_m	编码位 $d_0, d_1, d_2,, d_{N-1}$
1	$[c_0 \ c_1 \ c_2]$
2	$[c_0 \ c_1 \ c_2 \ c_0 \ c_1 \ c_2]$
4	$[c_0 c_1 \times x c_2 c_0 \times x c_1 c_2 \times x]$
6	$[c_0 c_1 \times \times \times \times c_2 c_0 \times \times \times \times c_1 c_2 \times \times \times]$
8	$[c_0 c_1 \times \times \times \times \times c_2 c_0 \times \times \times \times \times c_1 c_2 \times \times \times \times \times]$

表 5.3.3.2-1 中的 "x" 是[4, TS 38.211]的 6.3.1.1 的占位符,用于以最大化携带信息比特的调制符号的欧 几里德距离的方式对信息比特进行加扰。

5.3.3.3 编码其他短码

对于 $3 \le K \le 11$,代码块由。编码 $d_i = \left(\sum_{k=0}^{K-1} c_k \cdot M_{i,k}\right) \mod 2$,where $i = 0, 1, \cdots, N-1$,N = 32,和 $M_{i,k}$ 表示表 5.3.3.3-1 中定义的基本序列。

	i	M _{i, 0}	M _{i, 1}	M _{i, 2}	M _{i, 3}	M _{i, 4}	M _{i, 5}	M _{i, 6}	M _{i,7}	M _{i, 8}	M _{i, 9}	M _{i, 10}	
	0	1	1	0	0	0	0	0	0	0	0	1	
	1	1	1	1	0	0	0	0	0	0	1	1	
	2	1	0	0	1	0	0	1	0	1	1	1	
	3	1	0	1	1	0	0	0	0	1	0	1	
	4	1	1	1	1	0	0	0	1	0	0	1	
	5	1	1	0	0	1	0	1	1	1	0	1	
	6	1	0	1	0	1	0	1	0	1	1	1	
	7	1	0	0	1	1	0	0	1	1	0	1	
	8	1	1	0	1	1	0	0	1	0	1	1	
	9	1	0	1	1	1	0	1	0	0	1	1	
	10	1	0	1	0	0	1	1	1	0	1	1	
	11	1	1	1	0	0	1	1	0	1	0	1	
	12	1	0	0	1	0	1	0	1	1	1	1	
	13	1	1	0	1	0	1	0	1	0	1	1	
	14	1	0	0	0	1	1	0	1	0	0	1	
	15	1	1	0	0	1	1	1	1	0	1	1	
	16	1	1	1	0	1	1	1	0	0	1	0	g)
	17	1	0	0	1	1	1	0	0	1	OX	7100	0
	18	1	1	0	1	1	1	1	1	tor	180	0	
	19	1	0	0	0	0	111	K11-	0	0	0	0	
	20	1	0	1 .	Z 0/=	0	10	/ 1	0	0	0	1	
	21	1	1	-0.1	也们	1 0	0	0	0	0	1	1	
,	22	对技	0	90.	0	1	0	0	1	1	0	1	
出了	23	1771 V	1	1	0	1	0	0	0	1	1	1	
7	24	1	1	1	1	1	0	1	1	1	1	0	
	25	1	1	0	0	0	1	1	1	0	0	1	
	26	1	0	1	1	0	1	0	0	1	1	0	
	27	1	1	1	1	0	1	0	1	1	1	0	
	28	1	0	1	0	1	1	1	0	1	0	0	
	29	1	0	1	1	1	1	1	1	1	0	0	
	30	1	1	1	1	1	1	1	1	1	1	1	
	31	1	0	0	0	0	0	0	0	0	0	0	

表5.3.3.3-1: (32, K)代码

22

5.4 速率匹配

Polar 代码的速率匹配

极化码的速率匹配是按编码块定义的,由子块交织,比特收集和比特交织组成。 速率匹配的输入比特序列是 $d_0, d_1, d_2, ..., d_{N-1}$ 。 速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{E-1}$.

子块交织 5.4.1.1

输入到子块交织器的比特是编码比特 $d_0,d_1,d_2,...,d_{N-1}$ 。 编码位 $d_0,d_1,d_2,...,d_{N-1}$ 分为 32 个子块。 从子块交织 器输出的比特表示为 $y_0, y_1, y_2, ..., y_{N-1}$, 生成如下:

for
$$n = 0$$
 to $N-1$
 $i = |32n/N|$;

$$J(n) = P(i) \times (N/32) + mod(n, N/32);$$

$$y_n = d_{J(n)};$$

end for

其中子块交织器模式 P(i) 由表 5.4.1.1-1 给出。

表5.4.1.1-1: 子块交织器模式 P(i)

i	P(i)	i	P(i)	i	P(i)	i	P(i)	i	P(i)	i	P(i)	i	P(i)	i	P(i)
0	0	4	3	8	8	12	10	16	12	20	14	24	24	28	27
1	1	5	5	9	16	13	18	17	20	21	22	25	25	29	29
2	2	6	6	10	9	14	11	18	13	22	15	26	26	30	30
3	4	7	7	11	17	15	19	19	21	23	23	27	28	31	31

位索引的集合 $\overline{\mathbf{Q}}_{I}^{N}$ and $\overline{\mathbf{Q}}_{F}^{N}$ 确定如下,其中 K, n_{PC} ,和 \mathbf{Q}_{0}^{N-1} 在 5.3.1 中定义

$$\overline{\mathbf{Q}}_{F,tmp}^{N} = \emptyset$$

if E < N

if K/E≤7/16 - 删余

for
$$n=0$$
 to $N-E-1$

$$\overline{\mathbf{Q}}_{F \ tmn}^{N} = \overline{\mathbf{Q}}_{F \ tmn}^{N} \cup \{J(n)\}$$

end for

if $E \ge 3N/4$

$$\overline{\mathbf{Q}}_{F,tmp}^{N} = \overline{\mathbf{Q}}_{F,tmp}^{N} \cup \{J(n)\};$$
d for
$$E \ge 3N/4$$

$$\overline{\mathbf{Q}}_{F,tmp}^{N} = \overline{\mathbf{Q}}_{E,tmp}^{N} \cup \{9,1,\ldots,\lceil 3N/4 - E/2 \rceil - 1\};$$
else

$$\overline{\mathbf{Q}}_{F,tmp}^{N} = \overline{\mathbf{Q}}_{F,tmp}^{N} \cup \{0,1,\ldots,\lceil 9N/16 - E/4 \rceil - 1\};$$

end if

其他 - 缩短

for
$$n = E$$
 to $N-1$

$$\overline{\mathbf{Q}}_{F,tmp}^{N} = \overline{\mathbf{Q}}_{F,tmp}^{N} \cup \{J(n)\};$$

end for

end if

end if

$$\overline{\mathbf{Q}}_{I,tmp}^{N} = \mathbf{Q}_{0}^{N-1} \setminus \overline{\mathbf{Q}}_{F,tmp}^{N};$$

 $\overline{\mathbf{Q}}_{I}^{N}$ 包含 $(K+n_{PC})$ 最可靠的比特指数 $\overline{\mathbf{Q}}_{I,mn}^{N}$;

$$\overline{\mathbf{Q}}_{F}^{N} = \mathbf{Q}_{0}^{N-1} \setminus \overline{\mathbf{Q}}_{I}^{N};$$

5.4.1.2 位选择

子块交织器之后的比特序列 $y_0, y_1, y_2, ..., y_{N-1}$ 从子条款 5.4.1.1 写入长度为循环的缓冲区 N .

end for

end for

用来表示 E 速率匹配输出序列长度,位选择输出位序列 e_k , k=0,1,2,...,E-1 ,生成如下:

```
if E ≥ N - 重复
        for k=0 to E-1
            e_k = y_{\text{mod}(k,N)};
        end for
        else
        if K / E ≤ 7/16 - 删余
           for k=0 to E-1
               e_k = y_{k+N-E};
        end for
        其他 - 缩短
           for k=0 to E-1
               e_k = y_k;
                  交织编码比特。 5G通信 (公众号: tongxin5g) e<sub>2</sub>,...,e<sub>-</sub> tongxin5g
end for
end if
end if
5.4.1.3
比特序列 e_{\scriptscriptstyle 0},e_{\scriptscriptstyle 1},e_{\scriptscriptstyle 2},...,e_{\scriptscriptstyle E-1} 被交织成比特序列 f_{\scriptscriptstyle 0},f_{\scriptscriptstyle 1},f_{\scriptscriptstyle 2},...,f_{\scriptscriptstyle E-1}, 如下:
If I_{BIL} = 1
    表示 T 作为这样的最小整数 T(T+1)/2 \ge E;
    k=0;
    for i = 0 to T - 1
       for j = 0 to T - 1 - i
           if k < E
                v_{i,j} = e_k;
                else
               v_{i,j} = \langle NULL \rangle;
            end if
            k = k + 1;
```

k=0; for j=0 to T-1for i = 0 to T - 1 - jif $v_{i,j} \neq < NULL >$ $f_k = v_{i,i}$; k = k + 1end if end for end for else for i = 0 to E - 1 $f_i = e_i$; end for

通信(公众号:tongxin5g) LDPC 码的速率匹配 5.4.2

LDPC 码的速率匹配是按编码块定义的,由比特选择和比特交织组成。 速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$ 。 速率匹配后的输出比特序列表示为 $f_0,f_1,f_2,...,f_{E-1}$.

5.4.2.1 位选择

E 的值不大于 8192。

end if

编码后的比特序列 $d_0,d_1,d_2,...,d_{N-1}$ 从子条款 5.3.2 写入长度为循环的缓冲区 N_{cb} 为了 r - 编码块,其中 N在 5.3.2 中定义。

为了 r - 代码块,让 $N_{cb}=N$ if $I_{LBRM}=0$ and $N_{cb}=\min\left(N,N_{ref}\right)$ 否则,在 where $N_{ref}=\left|\frac{TBS_{LBRM}}{C\cdot R_{LBRM}}\right|$,

 $R_{\rm LBRM}=2/3$, $TBS_{\rm LBRM}$ 根据[6, TS 38.214]中的 UL-SCH 的子条款 6.1.4.2 和[6, TS 38.214]的 DL-SCH / PCH 的子条款 5.1.3.2 确定, 假设如下:

- UE 为服务小区支持的一个 TB 的最大层数,如果参数配置,则 UL-SCH 根据更高层参数 ULmaxRank;
- 如果由更高层配置,则为服务小区配置的最大调制顺序;否则是最大调制顺序 $Q_m=6$ 假设为 $\mathrm{DL} ext{-SCH}$;
- 最大编码率为 948/1024;
- $n_{PRB}=n_{PRB,LBRM}$ 由表 5.4.2.1-1 给出,其值为 $n_{PRB,LBRM}$ 如果没有为 UE 配置其他带宽部分,则根据 初始带宽部分确定 DL-SCH;
- $N_{RE} = 156 \cdot n_{PRB}$;
- C 是根据子条款 5.2.2 确定的传输块的代码块数。

表5.4.2.1-1: 的价值 n_{PRB.LBRM}

跨载波的所有已配置 BWP 的最大 PRB 数	$n_{PRB,LBRM}$
不到 33	32
33至66	66
67 到 107	107
108 到 135	135
136 至 162	162
163 到 217	217
大于 217	273

用来表示 E_r 速率匹配输出序列长度 r - 编码块, 其值为 E_r 确定如下:

set j = 0

for r=0 to C-1

如果 r 第一编码块未按照 CBGTI 的规定进行传输,根据 DL-SCH 的子条款 5.1.7.2 和[6, TS 38.214]的

 $E_r = 0$;

else

if $j \leq C' - \operatorname{mod}(G/(N_L \cdot Q_m), C') - 1$

 $E_{r} = N_{L} \cdot Q_{m} \cdot \left[\frac{G}{N_{L} \cdot Q_{m} \cdot C} \right];$ else $E_{r} = N_{L} \cdot Q_{m} \cdot \left[\frac{G}{N_{L} \cdot Q_{m} \cdot C} \right];$

end if

$$j = j + 1;$$

end if

end for

where

- N, 是传输块映射到的传输层数;
- Q_m 是调制顺序;
- G 是可用于传输块传输的编码比特的总数;
- C'=C 如果在调度传输块和 DCI 的 DCI 中不存在 CBGTI C' 如果在调度传输块的 DCI 中存在 CBGTI, 则是 传输块的调度代码块的数量。

表示 rv_{id} 此传输的冗余版本号 $(rv_{id}=0,1,2$ 或 3),速率匹配输出比特序列 e_k ,k=0,1,2,...,E-1,生成如下, 其中 k_0 表 5.4.2.1-2 给出了根据其值 rv_{id} 和 LDPC 因子图:

k = 0;

```
j=0; and k < E if d_{(k_0+j) \bmod N_{cb}} \neq < NULL > e_k = d_{(k_0+j) \bmod N_{cb}}; k = k+1; end if j = j+1; end
```

表5.4.2.1-2: 不同冗余版本的起始位置, k_0

m		k	70
, v id		LDPC 因子图 1	LDPC 因子图 2
0		0	0
1		$\left\lfloor \frac{17N_{cb}}{66Z_c} \right\rfloor Z_c$	$\left[\frac{13N_{cb}}{50Z_c}\right]Z_c$
2		$\left[\frac{33N_{cb}}{66Z_c}\right]Z_c$	$\left[\frac{25N_{cb}}{50Z_c}\right]Z_c$
3		$\left[\frac{56N_{cb}}{66Z_c}\right]Z_c$	$\left[\frac{43N_{cb}}{50Z_c}\right]Z_c$
持交织译:	5G通	值信(公)	
	2	0 1 2 3	PV_{id} LDPC 因子图 1 0 1 $\left[\frac{17N_{cb}}{66Z_c}\right]Z_c$ 2 $\left[\frac{33N_{cb}}{66Z_c}\right]Z_c$ 3 $\left[\frac{56N_{cb}}{66Z_c}\right]Z_c$

5.4.2.2 比特交织

比特序列 $e_0,e_1,e_2,...,e_{E-1}$ 被交织到比特序列 $f_0,f_1,f_2,...,f_{E-1}$,根据以下,其中的价值 Q_m 是调制顺序。

for
$$j=0$$
 to E/Q_m-1
for $i=0$ to Q_m-1
 $f_{i+j\cdot Q_m}=e_{i\cdot E/Q_m+j}$;

end for

 $\quad \text{end for} \quad$

5.4.3 用于短码的信道编码的速率匹配

速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$ 。 速率匹配后的输出比特序列表示为 $f_0,f_1,f_2,...,f_{E-1}$, where E 是速率匹配输出序列长度。 比特序列 $f_0,f_1,f_2,...,f_{E-1}$ 通过以下方式获得:

for
$$k=0$$
 to $E-1$

$$f_k = d_{k \bmod N};$$

end for

代码块连接 5.5

码块级联块的输入比特序列是序列 f_{rt} , 为 r=0,...,C-1 and $k=0,...,E_r-1$, where E_r 是速率匹配位的数量 r - 代码块。 来自代码块级联块的输出位序列是序列 g_k for k=0,...,G-1.

28

代码块级联包括顺序连接不同代码块的速率匹配输出。 因此,

```
set k=0 and r=0
while r < C
   set j=0
   while j < E_r
      g_k = f_{rj}
      k = k + 1
      j = j + 1
   end while
   r = r + 1
end while
```

众号: tongxin5g)

上行链路传输信道和控制信息 6

随机接入信道 6.1

从较高层接收随机接入信道的序列索引,并根据[4, TS 38.211]进行处理。

上行链路共享信道 6.2

6.2.1 传输块 CRC 附件

通过循环冗余校验 (CRC) 在每个 UL-SCH 传输块上提供错误检测。

整个传输块用于计算 CRC 奇偶校验位。 表示传送到第 1 层的传输块中的位 $a_0,a_1,a_2,a_3,...,a_{A-1}$ 和奇偶校验位 $p_0, p_1, p_2, p_3, ..., p_{L-1}$, where A 是有效载荷大小和 L 是奇偶校验位的数量。 最低位信息位 a_0 被映射到传 输块的最高有效位,如[TS38.321]的子条款 6.1.1 中所定义。

根据子条款 5.1,通过设置来计算奇偶校验比特并将其附加到 UL-SCH 传输块 L 到 24 位并使用生成多项式 $g_{CRC24A}(D)$ if A > 3824; 并通过设置 L 到 16 位并使用生成多项式 $g_{CRC16}(D)$ 除此以外。

CRC 附着后的位用表示 $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B = A + L.

6.2.2 LDPC 因子图选择

用于具有编码率的传输块的初始传输 R 根据[6, TS 38.214]中的子条款 6.1.4.1的 MCS索引表示以及随后的 相同传输块的重传,传输块的每个代码块根据以下内容用 LDPC 因子图 1 或 2 编码:

- if $A \le 292$, elseif $A \le 3824$ and $R \le 0.67$, elseif $R \le 0.25$, 使用 LDPC 因子图 2;

- 否则, 使用 LDPC 因子图 1,

where A 是 6.2.1 中描述的有效载荷大小。

6.2.3 代码块分段和代码块 CRC 附件

输入到代码块分段的比特表示为 $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B 是传输块中的位数 (包括 CRC)。

根据子条款 5.2.2 执行代码块分段和代码块 CRC 附加。

代码块分割后的位用表示 $c_{r0},c_{r1},c_{r2},c_{r3},...,c_{r(K_{r}-1)}$, where r 是代码块编号和 K_r 是代码块编号的位数 r 根 据 5.2.2 的规定。

29

UL-SCH 的信道编码 6.2.4

代码块被传送到信道编码块。 代码块中的位用表示 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$, where r 是代码块编号,和 K_r 是代码块编号中的位数 r 。 代码块的总数用表示 C 每个代码块根据 5.3.2 的规定单独进行 LDPC 编码。

在编码之后,比特用表示 $d_{r0}, d_{r1}, d_{r2}, d_{r3}, ..., d_{r(N-1)}$,其中的价值观 N_r 在 5.3.2 中给出。

6.2.5 谏率匹配

每个代码块的编码位,表示为 $d_{r0},d_{r1},d_{r2},d_{r3},...,d_{r(N-1)}$,被送到费率匹配区,在 where r 是代码块编号,和 $N_{\scriptscriptstyle L}$ 是代码块编号中的编码位数 r 。 代码块的总数用表示 C 每个代码块按照 5.4.2 的设置单独进行速率匹 配 $I_{LRRM}=1$ 如果更高层参数 rateMatching 设置为 limitedBufferRM 并通过设置 $I_{LRRM}=0$ 除此以外。

在速率匹配之后,比特用表示 $f_{r_0}, f_{r_1}, f_{r_2}, f_{r_3}, \dots, f_{r(E_r-1)}$,where E_r 是代码块编号的速率匹配位数 r.

代码块连接。5G通信 6.2.6

码块级联块的输入比特序列是序列 $f_{r_0}, f_{r_1}, f_{r_2}, f_{r_3}, ..., f_{r(E_r-1)}$,为 r=0,...,C-1 在 where E_r 是速率匹配位的数 量 r - 代码块。

根据子条款 5.5 执行代码块级联。

代码块级联后的位用表示 $g_0, g_1, g_2, g_3, \dots, g_{G-1}$, where G 是传输的编码比特总数。

数据和控制多路复用 6.2.7

将 UL-SCH 的编码比特表示为 $g_0^{\text{UL-SCH}}, g_1^{\text{UL-SCH}}, g_2^{\text{UL-SCH}}, g_3^{\text{UL-SCH}}, \dots, g_G^{\text{UL-SCH}}$

将 HARQ-ACK 的编码比特(如果有的话)表示为 $g_0^{\text{ACK}}, g_1^{\text{ACK}}, g_2^{\text{ACK}}, g_3^{\text{ACK}}, ..., g_{G^{\text{ACK}-1}}^{\text{ACK}}$

将 CS I 部分 1 的编码比特 (如果有的话) 表示为 $g_0^{\text{CSI-part1}}, g_1^{\text{CSI-part1}}, g_2^{\text{CSI-part1}}, g_3^{\text{CSI-part1}}, \dots, g_G^{\text{CSI-part1}}$

将 CS I 部分 2 的编码比特 (如果有的话) 表示为 $g_0^{\text{CSI-part2}}, g_1^{\text{CSI-part2}}, g_2^{\text{CSI-part2}}, g_3^{\text{CSI-part2}}, \dots, g_G^{\text{CSI-part2}}$

表示多路复用数据并将编码比特序列控制为 $g_0,g_1,g_2,g_3,...,g_{G-1}$

表示 l 作为调度 PUSCH 的 OFDM 符号索引,从 0 开始到 $N_{\text{symb,all}}^{\text{PUSCH}} - 1$,where $N_{\text{symb,all}}^{\text{PUSCH}}$ 是 PUSCH 的 0FDM 符号的总 数,包括用于DMRS的所有OFDM符号。

表示 k 作为调度 PUSCH 的子载波索引,从 0 开始到 $M_{ss}^{PUSCH} = 1$, where M_{ss}^{PUSCH} 表示为多个子载波。

表示 $\Phi_l^{\text{UL-SCH}}$ 作为资源单元集,按索引的升序排列 k ,可用于 0FDM 符号中的数据传输 l ,为 $l = 0, 1, 2, ..., N_{\rm symb, all}^{\rm PUSCH} - 1.$

表示 $M_{\text{sc}}^{\text{UL-SCH}}(l) = |\Phi_{l}^{\text{UL-SCH}}|$ 作为集合中的单元数量 $\Phi_{l}^{\text{UL-SCH}}$ 。 表示 $\Phi_{l}^{\text{UL-SCH}}(j)$ 作为 j-th 单元 $\Phi_{l}^{\text{UL-SCH}}$.

表示 Φ_{l}^{UCI} 作为资源单元集,按索引的升序排列 k ,可用于在 OFDM 符号中传输 UCI l ,为 $l=0,1,2,...,N_{\mathrm{symb,all}}^{\mathrm{PUSCH}}-1$ 。 表示 $M_{\mathrm{sc}}^{\mathrm{UCI}}(l)=\left|\Phi_{l}^{\mathrm{UCI}}\right|$ 作为集合中的单元数量 Φ_{l}^{UCI} 。 表示 $\Phi_{l}^{\mathrm{UCI}}(j)$ 作为 j -th 单元 Φ_{i}^{UCI} 。 对于 承载 PUSCH 的 DMRS 的任何 OFDM 符号, $\Phi_{i}^{\text{UCI}} = \emptyset$ 。 对于 任何不携带 PUSCH 的 DMRS 的 OFDM 符 \Box , $\Phi_I^{\text{UCI}} = \Phi_I^{\text{UL-SCH}}$.

30

如果为 PUSCH 配置了跳频,

- 表示 $l^{(1)}$ 作为在第一跳中携带 DMRS 的第一组连续 OFDM 符号之后的第一 OFDM 符号的 OFDM 符号索引;
- 表示 $l^{(2)}$ 作为在第二跳中携带 DMRS 的第一组连续 OFDM 符号之后的第一 OFDM 符号的 OFDM 符号索引。
- 表示 $l_{CSI}^{(1)}$ 作为在第一跳中不携带 DMRS 的第一 OFDM 符号的 OFDM 符号索引;
- 表示 $l_{\rm CSI}^{(2)}$ 作为在第二跳中不携带 DMRS 的第一 OFDM 符号的 OFDM 符号索引;
- 如果存在 HARQ-ACK 用于在具有 UL-SCH 的 PUSCH 上进行传输,则
- $G^{ACK}(1) = N_L \cdot Q_m \cdot \left[G^{ACK} / (2 \cdot N_L \cdot Q_m) \right]$ and $G^{ACK}(2) = N_L \cdot Q_m \cdot \left[G^{ACK} / (2 \cdot N_L \cdot Q_m) \right]$ 为 如果 CSI 存在用于在具有 UL—SCH 的 PUSCH 上传输,则让
- - $G^{\text{CSI-part1}}(1) = N_L \cdot Q_m \cdot \left[G^{\text{CSI-part1}} \cdot (2 \cdot N_L \cdot Q_m) \right];$
 - $G^{\text{CSI-partl}}(2) = N_L \cdot Q_m \cdot \left[G^{\text{CSI-partl}} / (2 \cdot N_L \cdot Q_m) \right];$
 - $G^{\text{CSI-part2}}(1) = N_L \cdot Q_m \cdot \left| G^{\text{CSI-part2}} / (2 \cdot N_L \cdot Q_m) \right|$; and
 - $G^{\text{CSI-part2}}(2) = N_L \cdot Q_m \cdot \left[G^{\text{CSI-part2}} / (2 \cdot N_L \cdot Q_m) \right];$
- 如果仅存在 HARQ-ACK 和 CSI 部分 1 用于在没有 UL-SCH 的情况下在 PUSCH 上进行传输,则
 - $G^{\text{ACK}}(1) = \min \left(N_L \cdot Q_m \cdot \middle| G^{\text{ACK}} / \left(2 \cdot N_L \cdot Q_m \right) \middle| , M_3 \cdot N_L \cdot Q_m \right);$
 - $G^{ACK}(2) = G^{ACK} G^{ACK}(1)$;
 - $G^{ ext{CSI-part1}}(1) = M_1 \cdot N_L \cdot Q_m G^{ ext{ACK}}(1)$; and
 - $G^{\text{CSI-part1}}(2) = G^{\text{CSI-part1}} G^{\text{CSI-part1}}(1)$;
- 如果 HARQ-ACK、CSI 部分 1 和 CSI 部分 2 存在用于在没有 UL-SCH 的情况下在 PUSCH 上传输,则
 - $G^{\text{ACK}}(1) = \min \left(N_L \cdot Q_m \cdot \left\lfloor G^{\text{ACK}} / \left(2 \cdot N_L \cdot Q_m \right) \right\rfloor, M_3 \cdot N_L \cdot Q_m \right);$
 - $G^{\text{ACK}}(2) = G^{\text{ACK}} G^{\text{ACK}}(1)$;
 - $G^{\text{CSI-part1}}(1) = \min(N_I \cdot Q_m \cdot | G^{\text{CSI-part1}} / (2 \cdot N_I \cdot Q_m) |, M_1 \cdot N_I \cdot Q_m G^{\text{ACK}}(1));$
 - $G^{\text{CSI-part1}}(2) = G^{\text{CSI-part1}} G^{\text{CSI-part1}}(1)$;

- $G^{\text{CSI-part2}}(1) = M_1 \cdot N_L \cdot Q_m G^{\text{CSI-part1}}(1)$ 如果 HARQ-ACK 信息比特的数量不大于 2,则 $G^{\text{CSI-part2}}(1) = M_1 \cdot N_L \cdot Q_m - G^{\text{ACK}}(1) - G^{\text{CSI-part1}}(1)$ 除此以外;和
- $G^{\text{CSI-part2}}(2)=M_2\cdot N_L\cdot Q_m-G^{\text{CSI-part1}}(2)$ 如果 HARQ-ACK 信息比特的数量不大于 2,则 $G^{\text{CSI-part2}}(2) = M_2 \cdot N_I \cdot Q_m - G^{\text{ACK}}(2) - G^{\text{CSI-part1}}(2)$ 除此以外;
- 让 $N_{\text{hop}}^{\text{PUSCH}}=2$,并表示 $N_{\text{symb,hop}}^{\text{PUSCH}}(1)$, $N_{\text{symb,hop}}^{\text{PUSCH}}(2)$ 作为第一跳和第二跳中的 PUSCH 的 0FDM 符号的数量;

- N, 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序;

$$M_{1} = \sum_{l=0}^{N_{\text{symb,hop}}^{\text{PUSCH}}(1)-1} M_{\text{SC}}^{\text{UCI}}(l),$$

$$\boldsymbol{M}_{2} = \frac{N_{\text{symh,hop}}^{\text{PUSCH}}(1) + N_{\text{symh,hop}}^{\text{PUSCH}}(2)^{-1}}{\sum_{l=N_{\text{symh,hop}}(1)}^{\text{PUSCH}} \boldsymbol{M}_{\text{SC}}^{\text{UCI}}(\boldsymbol{l})}$$

$$M_{3} = \sum_{l=l^{(1)}}^{N_{\text{symb,hop}}^{\text{PUSCH}}} (1)^{-1} M_{\text{SC}}^{\text{UCI}}(l)$$

如果没有为 PUSCH 配置跳频.

- 表示 $l^{(1)}$ 作为携带 DMRS 的第一组连续 OFDM 符号之后的第一个 OFDM 符号的 OFDM 符号索引;
- 表示 $l_{\rm csi}^{\rm (1)}$ 作为不携带 DMRS 的第一个 0FDM 符号的 0FDM 符号索引; $t_{\rm cong}$ $t_{\rm csi}$
- 如果在 PUSCH 上存在 HARQ-ACK 用于传输,则让 $G^{ACK}(1) = G^{ACK}$;
- 如果 CSI 存在于 PUSCH 上传输,则让 $G^{CSI-part1}(1) = G^{CSI-part2}$ and $G^{CSI-part2}(1) = G^{CSI-part2}$;
- ìt $N_{\text{hop}}^{\text{PUSCH}} = 1$ and $N_{\text{symb,hop}}^{\text{PUSCH}}(1) = N_{\text{symb,all}}^{\text{PUSCH}}$

多路复用数据和控制编码比特序列 $g_0,g_1,g_2,g_3,...,g_{G-1}$ 根据以下内容获得:

步骤 1:

set
$$\bar{\Phi}_l^{\text{UL-SCH}} = \Phi_l^{\text{UL-SCH}}$$
 for $l = 0, 1, 2, ..., N_{\text{symball}}^{\text{PUSCH}} - 1$;

$$\text{set } \overline{M}_{\text{sc}}^{\text{UL-SCH}}\left(l\right) = \left|\overline{\Phi}_l^{\text{UL-SCH}}\right| \text{ for } l = 0, 1, 2, ..., N_{\text{symb,all}}^{\text{PUSCH}} - 1;$$

$$\text{set } \overline{\Phi}_l^{\text{UCI}} = \Phi_l^{\text{UCI}} \text{ for } l = 0, 1, 2, ..., N_{\text{symb,all}}^{\text{PUSCH}} - 1;$$

set
$$\overline{M}_{\mathrm{sc}}^{\mathrm{UCI}}\left(l\right) = \left|\overline{\Phi}_{l}^{\mathrm{UCI}}\right|$$
 for $l = 0, 1, 2, ..., N_{\mathrm{symb,all}}^{\mathrm{PUSCH}} - 1$;

如果要在 PUSCH 上发送的 HARQ-ACK 信息比特的数量是 0,1 或 2 比特

根据 6.3.2.4.1.1 的子集,通过设置计算用于潜在 ${
m HARQ-ACK}$ 传输的预留资源单元的数量 $O_{{
m ACK}}=2$;

表示 G_{ref}^{ACK} 作为使用预留资源单元进行潜在 HARQ-ACK 传输的编码比特数;

如果为 PUSCH 配置了跳频,那么
$$G_{\text{rvd}}^{\text{ACK}}(1) = N_L \cdot Q_m \cdot \left[G_{\text{rvd}}^{\text{ACK}} / (2 \cdot N_L \cdot Q_m) \right]$$
 and $G_{\text{rvd}}^{\text{ACK}}(2) = N_L \cdot Q_m \cdot \left[G_{\text{rvd}}^{\text{ACK}} / (2 \cdot N_L \cdot Q_m) \right]$;

如果没有为 PUSCH 配置跳频,请让 $G_{\text{rvd}}^{\text{ACK}}(1) = G_{\text{rvd}}^{\text{ACK}}$;

```
表示 \Phi_l^{\text{red}} 作为用于潜在 \text{HARQ-ACK} 传输的预留资源单元集合,在 \text{OFDM} 符号中 l,为
        l = 0, 1, 2, ..., N_{\text{symb,all}}^{\text{PUSCH}} - 1;
set m_{\text{count}}^{\text{ACK}}(1) = 0;
set m_{\text{count}}^{\text{ACK}}(2) = 0;
\overline{\Phi}_{l}^{\text{rvd}} = \varnothing \text{ for } l = 0, 1, 2, ..., N_{\text{symb,all}}^{\text{PUSCH}} - 1;
for i=1 to N_{\text{hop}}^{\text{PUSCH}}
        l = l^{(i)}:
       while m_{\text{count}}^{\text{ACK}}(i) < G_{\text{rvd}}^{\text{ACK}}(i)
               if \overline{M}_{sc}^{UCI}(l) > 0
                        if G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \ge \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m
                                d = 1;
                      if G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) < \bar{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_{l} \cdot Q_{m}
d = |\bar{M}_{\text{sc}}^{\text{UCI}}(l)|^{N_{l}} \cdot Q_{m}
                           d = \overline{M}_{\text{so}}^{\text{UCI}}(t) \cdot \overline{N}_{L} \cdot Q_{m} / (G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i)) ];
                                m_{\text{count}}^{\text{RE}} = \left[ \left( G_{\text{rvd}}^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \right) / \left( N_L \cdot Q_m \right) \right];
                        end if
                        for j = 0 to m_{\text{count}}^{\text{RE}} - 1
                                \overline{\Phi}_{l}^{\text{rvd}} = \overline{\Phi}_{l}^{\text{rvd}} \cup \left\{ \overline{\Phi}_{l}^{\text{UL-SCH}} \left( j \cdot d \right) \right\}
                                m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + N_L \cdot Q_m;
        end for
        end if
        l = l + 1;
end while
end for
else
```

end if

 $\overline{\Phi}_{l}^{\mathrm{rvd}} = \varnothing \ \text{for} \quad l = 0, 1, 2, ..., N_{\mathrm{symb, all}}^{\mathrm{PUSCH}} - 1;$

表示 $\overline{M}_{\text{sc,rvd}}^{\overline{\Phi}}(l) = |\overline{\Phi}_l^{\text{rvd}}|$ 作为单元的数量 $\overline{\Phi}_l^{\text{rvd}}$.

第2步:

如果在 PUSCH 上存在 HARQ-ACK 用于传输并且 HARQ-ACK 信息比特的数量大于 2,

set
$$m_{\text{count}}^{\text{ACK}}(1) = 0$$
;
set $m_{\text{count}}^{\text{ACK}}(2) = 0$;
set $m_{\text{count}}^{\text{ACK}}(2) = 0$;
set $m_{\text{count}}^{\text{ACK}}(1) = 0$;
 $l = l^{(1)}$;
while $m_{\text{count}}^{\text{ACK}}(i) < G^{\text{ACK}}(i)$
if $\overline{M}_{\text{se}}^{\text{ACC}}(l) > 0$
if $G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i) \ge \overline{M}_{\text{se}}^{\text{ACC}}(l) \cdot N_L \cdot Q_m$
 $d = 1$;
 $m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{se}}^{\text{ACC}}(l)$;
end if
if $G^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) \le \overline{M}_{\text{se}}^{\text{ACC}}(l) \cdot N_L \cdot Q_m$
 $d = \left[\overline{M}_{\text{se}}^{\text{ACC}}(l) \cdot N_L \cdot Q_m / (G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i))\right]$;
 $m_{\text{count}}^{\text{RE}} = \left[\left[G^{\text{ACK}}(i) - m_{\text{count}}^{\text{ACK}}(i)\right]$;
end if
for $j = 0$ to $m_{\text{count}}^{\text{RE}} - 1$
 $m_{\text{count}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i)$
for $v = 0$ to $N_L \cdot Q_m - 1$
 $\overline{g}_{l,k,v} = g_{m_{\text{count}}}^{\text{ACK}}(i) = m_{\text{count}}^{\text{ACK}}(i) + 1$;
end for
end for

 $\bar{\Phi}_{l tmp}^{\text{UCI}} = \emptyset;$

for
$$j=0$$
 to $m_{\text{count}}^{\text{RE}}-1$

$$\overline{\Phi}_{l,tmp}^{\text{UCI}} = \overline{\Phi}_{l,tmp}^{\text{UCI}} \bigcup \overline{\Phi}_{l}^{\text{UCI}} (j \cdot d);$$

$$\overline{\Phi}_l^{\mathrm{UCI}} = \overline{\Phi}_l^{\mathrm{UCI}} \setminus \overline{\Phi}_{l,\mathit{tmp}}^{\mathrm{UCI}}$$
 .

$$\overline{\Phi}_l^{ ext{UL-SCH}} = \overline{\Phi}_l^{ ext{UL-SCH}} \setminus \overline{\Phi}_{l,tmp}^{ ext{UCI}}$$

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) = \left|\overline{\Phi}_{l}^{\mathrm{UCI}}\right|;$$

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UL-SCH}}(l) = \left|\overline{\Phi}_{l}^{\mathrm{UL-SCH}}\right|;$$

end if

$$l = l + 1$$
;

end while

end for

end if

<u>第3步:</u>

翻译: 5G通信 (公众号: tongxin5g) 如果 CSI 存在于 PUSCH 上传输,

set $m_{\text{count,all}}^{\text{CSI-part1}} = 0$;

for i=1 to $N_{\text{hop}}^{\text{PUSCH}}$

 $l = l_{\text{CSI}}^{(i)}$;

while
$$\bar{M}_{\mathrm{sc}}^{\mathrm{UCI}}\!\left(l\right)\!-\!\bar{M}_{\mathrm{sc,\,rvd}}^{\bar{\Phi}}\!\left(l\right)\!\leq\!0$$

l = l + 1;

end while

while $m_{\text{count}}^{\text{CSI-partl}}(i) < G^{\text{CSI-partl}}(i)$

if
$$\overline{M}_{\text{sc}}^{\text{UCI}}(l) - \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}(l) > 0$$

$$\text{if } G^{\text{CSI-partl}}(i) - m_{\text{count}}^{\text{CSI-partl}}(i) \geq \left(\overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) - \overline{M}_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) \right) \cdot N_L \cdot Q_m$$

$$m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{sc}}^{\text{UCI}}(l) - \overline{M}_{\text{sc, rvd}}^{\bar{\Phi}}(l);$$

end if

$$\text{if } G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) < \left(\overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) - \overline{M}_{\text{sc, rvd}}^{\bar{\Phi}}\left(l\right) \right) \cdot N_L \cdot Q_m$$

$$d = \left| \left(\overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) - M_{\text{sc, rvd}}^{\overline{\Phi}}\left(l\right) \right) \cdot N_L \cdot Q_m / \left(G^{\text{CSI-partl}}\left(i\right) - m_{\text{count}}^{\text{CSI-partl}}\left(i\right) \right) \right|;$$

$$m_{\text{count}}^{\text{RE}} = \left\lceil \left(G^{\text{CSI-part1}}(i) - m_{\text{count}}^{\text{CSI-part1}}(i) \right) / \left(N_L \cdot Q_m \right) \right\rceil;$$

end if

$$\overline{\Phi}_{I}^{\,\mathrm{temp}} = \overline{\Phi}_{I}^{\,\mathrm{UCI}} \setminus \overline{\Phi}_{I}^{\,\mathrm{rvd}}$$
;

for
$$j = 0$$
 to $m_{\text{count}}^{\text{RE}} - 1$

$$k = \overline{\Phi}_{i}^{\text{temp}}(j \cdot d);$$

for
$$v = 0$$
 to $N_L \cdot Q_m - 1$

$$\overline{g}_{l,k,v} = g_{m_{\mathrm{count,all}}^{\mathrm{CSI-part1}}}^{\mathrm{CSI-part1}};$$

$$m_{\text{count,all}}^{\text{CSI-part1}} = m_{\text{count,all}}^{\text{CSI-part1}} + 1;$$

$$m_{\text{count}}^{\text{CSI-part1}}(i) = m_{\text{count}}^{\text{CSI-part1}}(i) + 1;$$

$$\overline{\Phi}_{l,tmp}^{\text{UCI}} = \emptyset;$$

for j=0 to $m_{count}^{RE}-\bar{P}$ tongxin5g) $\bar{\Phi}_{l,mp}^{UCI} = \bar{\Phi}_{l,mp}^{UCI} \cup \bar{\Phi}_{l}^{temp}(j\cdot d);$ end for

$$ar{\Phi}_{l,mp}^{ ext{UCI}} = ar{\Phi}_{l,tmp}^{ ext{UCI}} \cup ar{\Phi}_{l}^{ ext{temp}} \left(j \cdot d \right)$$

$$\overline{\Phi}_l^{\mathrm{UCI}} = \overline{\Phi}_l^{\mathrm{UCI}} \setminus \overline{\Phi}_{l,\mathit{tmp}}^{\mathrm{UCI}}$$
 .

$$\overline{\Phi}_l^{ ext{UL-SCH}} = \overline{\Phi}_l^{ ext{UL-SCH}} \setminus \overline{\Phi}_{l,tmp}^{ ext{UCI}}$$
 .

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) = \left| \overline{\Phi}_{l}^{\mathrm{UCI}} \right|;$$

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UL-SCH}}(l) = \left|\overline{\Phi}_{l}^{\mathrm{UL-SCH}}\right|;$$

end if

$$l = l + 1$$
;

end while

end for

set
$$m_{\text{count}}^{\text{CSI-part2}}(1) = 0$$
;

set
$$m_{\text{count}}^{\text{CSI-part2}}(2) = 0$$
;

set
$$m_{\text{count,all}}^{\text{CSI-part2}} = 0$$
;

for
$$i=1$$
 to $N_{\rm hop}^{\rm PUSCH}$

$$l = l_{\text{CSI}}^{(i)}$$
;

while
$$\bar{M}_{\rm sc}^{\rm UCI}(l) \leq 0$$

$$l = l + 1$$
;

end while

while
$$m_{\mathrm{count}}^{\mathrm{CSI-part2}}(i) < G^{\mathrm{CSI-part2}}(i)$$

if
$$\overline{M}_{\rm sc}^{\rm UCI}(l) > 0$$

$$\text{if } G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \geq \overline{M}_{\text{sc}}^{\text{UCI}}\left(l\right) \cdot N_L \cdot Q_m$$

$$d = 1;$$

$$m_{\text{count}}^{\text{RE}} = \overline{M}_{\text{sc}}^{\text{UCI}}(l);$$

if
$$G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) < \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m$$

$$G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) < \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m$$

$$d = \left\lfloor \overline{M}_{\text{sc}}^{\text{UCI}}(l) \cdot N_L \cdot Q_m \middle/ \left(G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \right) \middle| \cdot \right$$

$$m_{\text{count}}^{\text{RE}} = \left\lceil \left(G^{\text{CSI-part2}}(i) - m_{\text{count}}^{\text{CSI-part2}}(i) \right) \middle| \cdot \left(N_L \cdot Q_m \right) \right\rceil;$$

$$d = \lfloor M_{\text{sc}}(l) \cdot N_L \cdot Q_m / (G^{\text{CSI-part2}}(l) - m_{\text{count}}^{\text{CSI-part2}}(l)) / (N_L \cdot Q_m) \rfloor;$$

$$\text{end if}$$

for
$$j = 0$$
 to $m_{\text{count}}^{\text{RE}} - 1$

$$k = \overline{\Phi}_l^{\text{UCI}}(j \cdot d);$$

for
$$v = 0$$
 to $N_L \cdot Q_m - 1$

$$\overline{g}_{l,k,v} = g_{m_{\text{count all}}}^{\text{CSI-part2}};$$

$$m_{\text{count,all}}^{\text{CSI-part2}} = m_{\text{count,all}}^{\text{CSI-part2}} + 1;$$

$$m_{\text{count}}^{\text{CSI-part2}}(i) = m_{\text{count}}^{\text{CSI-part2}}(i) + 1;$$

end for

end for

$$\overline{\Phi}_{l,tmp}^{\mathrm{UCI}} = \emptyset;$$

for
$$j=0$$
 to $m_{\text{count}}^{\text{RE}}-1$

$$\overline{\Phi}_{l,tmp}^{\text{UCI}} = \overline{\Phi}_{l,tmp}^{\text{UCI}} \cup \overline{\Phi}_{l}^{\text{UCI}} (j \cdot d);$$

end for

$$\overline{\Phi}_l^{\text{UL-SCH}} = \overline{\Phi}_l^{\text{UL-SCH}} \setminus \overline{\Phi}_{l,\textit{tmp}}^{\text{UCI}} \, .$$

$$\overline{M}_{\mathrm{sc}}^{\mathrm{UCI}}(l) = \left|\overline{\Phi}_{l}^{\mathrm{UCI}}\right|;$$

$$\overline{M}_{\mathrm{sc}}^{\,\mathrm{UL\text{-}SCH}}\left(l\right) = \left|\overline{\Phi}_{l}^{\,\mathrm{UL\text{-}SCH}}\right|;$$

end if

$$l = l + 1;$$

end while

end for

end if

<u> 步骤 4:</u>

如果在 PUSCH 上存在 UL-SCH 用于传输,

set
$$m_{\text{count}}^{\text{UL-SCH}} = 0$$
;

for
$$l=0$$
 to $N_{\text{symb,all}}^{\text{PUSCH}}-1$

if
$$\overline{M}_{sc}^{UL-SCH}(l) > 0$$

for j = 0 to $\overline{M}^{\text{ULSCH}}(l) - \overline{M}^{\text{ULSCH}}(l)$;

for v=0 to $N_L \cdot Q_m - 1$

 $\overline{g}_{l,k,v} = g_{m_{\mathrm{count}}^{\mathrm{UL-SCH}}}^{\mathrm{UL-SCH}}$;

 $m_{\text{count}}^{\text{UL-SCH}} = m_{\text{count}}^{\text{UL-SCH}} + 1;$

end for

end for

end if

end for

end if

第5步:

如果存在用于在 PUSCH 上传输的 HARQ-ACK 并且 HARQ-ACK 信息比特的数量不超过 2,

set
$$m_{\text{count}}^{\text{ACK}}(1) = 0$$
;

set
$$m_{\text{count}}^{ACK}(2) = 0$$
;
set $m_{\text{count}}^{ACK}(1) = 0$;
for $i = 1$ to N_{bop}^{PLNCH}
 $l = l^{(i)}$;
while $m_{\text{count}}^{ACK}(i) < G^{ACK}(i)$
if $\overline{M}_{u_{\text{cred}}}^{ACK}(i) - m_{\text{count}}^{ACK}(i) \ge \overline{M}_{u_{\text{cred}}}^{B}(i) \cdot N_L \cdot Q_m$
 $d = 1$;
 $m_{\text{count}}^{RE} = \overline{M}_{u_{\text{cred}}}^{B}(i)$;
end if
if $G^{ACK}(i) - m_{\text{count}}^{ACK}(i) < \overline{M}_{u_{\text{cred}}}^{B}(i) \cdot N_L \cdot Q_m$
 $d = \left[\overline{M}_{u_{\text{cred}}}^{B}(i) \cdot N_L \cdot Q_m / (G^{ACK}(i) - m_{\text{count}}^{ACK}(i))\right]$;
 $m_{\text{count}}^{RE} = \left[\left(G^{ACK}(i) - m_{\text{count}}^{ACK}(i) \cdot N_L \cdot Q_m\right)\right]$;
end if
for $j = 0$ to m_{count}^{RE}
 $j = \overline{\Phi}_{p}^{ACK}(j \cdot d)$;
for $v = 0$ to $N_L \cdot Q_m - 1$
 $\overline{\mathcal{E}}_{I,k,v} = \mathcal{E}_{p_{\text{count}}}^{ACK}(i) = m_{\text{count}}^{ACK}(i) + 1$;
end for
end for
end for
end if
 $l = l + 1$;
end while

第6步:

end for

end if

set t=0; for l=0 to $N_{\text{symball}}^{\text{PUSCH}}-1$ for j = 0 to $M_{sc}^{UL-SCH}(l) - 1$ $k = \Phi_l^{\text{UL-SCH}}(j);$ for v = 0 to $N_L \cdot Q_m - 1$ $g_t = \overline{g}_{lkv}$; t = t + 1;

end for

end for

end for

上行链路控制信息 6.3

PUCCH 上的上行链路控制信息 6.3.1

本子条款中的流程适用于 PUCCH 格式 2/3/4。

6.3.1.1 UCI 比特序列牛成

6.3.1.1.1

(公众号: tongxin5g) 仅限HARQ ACK がSR通信 如果仅在 PUCCH上发送 HARQ-ACK 比特,则 UCI 比特序列 $a_0,a_1,a_2,a_3,...,a_{A-1}$ 由设定决定 $a_i=\widetilde{o}_i^{ACK}$ for $i=0,1,...,O^{\text{ACK}}-1$ and $A=O^{\text{ACK}}$, 其中HARQ-ACK 比特序列 $\widetilde{o}_0^{ACK},\widetilde{o}_1^{ACK},...,\widetilde{o}_{O^{ACK}}^{ACK}$,由[5, TS38.213]的第 9.1 条 给出。

如果仅在 PUCCH 上发送 HARQ-ACK 和 SR 比特,则 UCI 比特序列 $a_0,a_1,a_2,a_3,...,a_{A-1}$ 由设定决定 $a_i=\widetilde{o}_i^{ACK}$ for $i=0,1,...,O^{\mathrm{ACK}}-1$, $a_i=\widetilde{o}_i^{\mathrm{SR}}$ for $i=O^{\mathrm{ACK}},O^{\mathrm{ACK}}+1,...,O^{\mathrm{ACK}}+O^{\mathrm{SR}}-1$, varphi $A=O^{\mathrm{ACK}}+O^{\mathrm{SR}}$, varphi HARQ-ACK 比特序列 $\tilde{o}_0^{ACK}, \tilde{o}_1^{ACK}, ..., \tilde{o}_{O^{ACK}-1}^{ACK}$ 由[5, TS 38.213]的子条款 9.1 和 SR 比特序列给出 $\tilde{o}_0^{SR}, \tilde{o}_1^{SR}, ..., \tilde{o}_{O^{SR}-1}^{SR}$ 由[5, TS 38.213]的第 9.2.5.1 节给出。

6.3.1.1.2 仅限 CSI

根据[6, TS 38.214]中的子条款 5.2.2.2.1,具有 2 个 CSI-RS 端口的 codebookType = typeI-SinglePanel的 PMI 的位宽为 2 = Rank = 1, 1为 Rank = 2。

表 6.3.1.1.2-1 中提供了具有 2 个以上 CSI-RS 端口的 codebookType = typeI-SinglePanel 的 PMI 的位宽,其 中值为 (N_1, N_2) 和 (O_1, O_2) 由[6, TS 38.214]的第 5.2.2.2.1 节给出。

表6.3.1.1.2-1: codebookType的PMI = typeI-SinglePanel

信息领域 $X_{ m l}$ 用于宽带 PMI		信息领域 X_2 用于宽带 PMI 或每个子带 PMI
$(i_{1,1},i_{1,2})$	<i>i</i> _{1,3}	i_2

	codebookMode=1	codebookMode=2		codebookMode=1	codebookMode=2
rank= 1, 具有> $2 \uparrow CSI-RS$ 端 \square , $N_2 > 1$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	$\left\lceil \log_2 \left(\frac{N_1 O_1}{2} \cdot \frac{N_2 O_2}{2} \right) \right\rceil$	N/A	2	4
rank= 1, 具有> $2 \uparrow CSI-RS$ 端 \square , $N_2=1$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	$\left\lceil \log_2 \left(\frac{N_1 O_1}{2} \right) \right\rceil$	N/A	2	4
rank= 2, 带有 4 ↑ CS I-RS 端 □, N ₂ = 1	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	$\left\lceil \log_2 \left(\frac{N_1 O_1}{2} \right) \right\rceil$	1	1	3
rank= 2, 具有> $4 \uparrow CSI-RS$ 端 \square , $N_2 > 1$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	$\left\lceil \log_2 \left(\frac{N_1 O_1}{2} \cdot \frac{N_2 O_2}{2} \right) \right\rceil$	2	1	3
rank= 2, 具有> $4 \uparrow CSI-RS$ 端 \square , $N_2 = 1$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	$\left\lceil \log_2\left(\frac{N_1O_1}{2}\right)\right\rceil$	2	1	3
rank= 3或4, 具有4个CSI- RS端□	$\lceil \log_2(N_1) \rceil$	$O_1 \cdot N_2 O_2)$	0	tongxin5	1 g)
rank= 3或4, 具有8或12个 CSIRS端□	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$ 与公通信		2.	tolis ¹	
rank= 3或4, > = 16个CSIRS 端口	$\log_2\left(\frac{N_1O_1}{2}\cdot N_2O_2\right)$		2	1	
rank= 5或6	$\lceil \log_2(N_1) \rceil$	$O_1 \cdot N_2 O_2$	N/A	1	
rank= 7 或 8, $N_1 = 4, N_2 = 1$	$\left\lceil \log_2 \left(\frac{N_1 O_1}{2} \cdot N_2 O_2 \right) \right\rceil$		N/A	1	
rank= 7 或 8, $N_1 > 2, N_2 = 2$	$\left\lceil \log_2 \left(N_1 O_1 \cdot \frac{N_2 O_2}{2} \right) \right\rceil$		N/A	1	
rank= 7 或 8 , 有 $N_1 > 4, N_2 = 1$ 或 $N_1 = 2, N_2 = 2$ 或 $N_1 > 2, N_2 > 2$	$\lceil \log_2(N_1O_1\cdot N_2O_2) ceil$		N/A		1

表 6. 3. 1. 1. 2-2 中提供了 codebookType = typeI-MultiPanel 的 PMI 的位宽,其中值为 $\left(N_g,N_1,N_2\right)$ 和 $\left(O_{1},O_{2}\right)$ 由[6, TS 38.214]中的子条款 5.2.2.2.2给出。

表6.3.1.1.2-2: codebookType的PMI = typeI-MultiPanel

	信息领域	信息领域 $X_{ m l}$ 用于宽带			信息领域 X_2 用于宽 带 或每个子带				
	$(i_{1,1},i_{1,2})$	$i_{1,3}$	$i_{1,4,1}$	<i>i</i> _{1,4,2}	$i_{1,4,3}$	i_2	$i_{2,0}$	$i_{2,1}$	$i_{2,2}$
$ \begin{array}{ccc} \operatorname{rank} = 1 & N_g = 2 \\ \operatorname{codebookMode} = I \end{array} $	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	N/A	2	N/A	N/A	2	N/A	N/A	N/A
$ \begin{array}{ccc} \operatorname{rank} = 1 & N_g = 4 \\ & codebookMode = l \end{array} $	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	N/A	2	2	2	2	N/A	N/A	N/A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	1	2	N/A	N/A	1	N/A	N/A	N/A
$\begin{aligned} & \text{rank= } 3 \not \boxtimes 4 N_g = 2 , \\ & N_1 N_2 = 2 \\ & codebookMode = l \end{aligned}$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	0	2	N/A	N/A	1	N/A	N/A	N/A
rank= 2 或 3 或 4 $N_g=2$, $N_1N_2>2$ $codebookMode=I$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	2	2	N/A	n/a		N/A	N/A	N/A
rank= 2 $N_g = 4$, $N_1 N_2 = 2$ $codebookMode=1$		公分	2	2	2	1	N/A	N/A	N/A
$rank=3$ 或 4 N_g $=$ 4 , $N_1N_2=2$ $codebookMode=1$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	0	2	2	2	1	N/A	N/A	N/A
rank= 2 或 3 或 4 $N_g=4$, $N_1N_2>2$ $codebookMode=I$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	2	2	2	2	1	N/A	N/A	N/A
	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	N/A	2	2	N/A	N/A	2	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	1	2	2	N/A	N/A	1	1	1
$\label{eq:rank} \begin{aligned} \operatorname{rank} &= 3 \not \boxtimes 4 N_g = 2 , \\ N_1 N_2 &= 2 \\ & codebookMode = 2 \end{aligned}$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	0	2	2	N/A	N/A	1	1	1
rank= 2 或 3 或 4 $N_g=2$, $N_1N_2>2$ $codebookMode=2$	$\lceil \log_2(N_1O_1 \cdot N_2O_2) \rceil$	2	2	2	N/A	N/A	1	1	1

具有1个CSI-RS端口的PMI的位宽为0。

表 6.3.1.1.2-3 中提供了 codebookType = typeI-SinglePanel的 RI / LI / CQI / CRI 的位宽。

表6.3.1.1.2-3: codebookType = typeI-SinglePanel的RI, LI, CQI和CRI

42

	位宽					
领域	领域 1 个天线端□ 2 个天线端□ 4 个天线端□ -		1 小王佐谠口	〉4 个天线端□		
			秩1∽4	RANK5∽8		
排名指标	0	$\min(1,\lceil \log_2 n_{RI} \rceil)$	$\min(2,\lceil \log_2 n_{\text{RI}} \rceil)$	$\lceil \log_2 n_{\text{RI}} \rceil$	$\lceil \log_2 n_{\text{RI}} \rceil$	
层指示器	0	$\min(2,\lceil \log_2 RI \rceil)$				
宽带 CQI	4	4	4	4	8	
子带差分 CQI	2	2	2	2	4	
CRI	$\left\lceil \log_2(K_s^{\text{CSI-RS}}) \right\rceil$					

如果更高层参数 nrofCQIsPerReport = 1, n_{RI} 在表 6.3.1.1.2-3 中,根据 5.2.2.2.1 [6, TS 38.214]的规定,高层参数类型 I-SinglePanel-ri-Restriction 的 4 个 LSB 中允许的秩指标值的数量;除此以外 n_{RI} 表 6.3.1.1.2-3 中的允许等级指标值的数量根据 5.2.2.2.1 [6, TS 38.214]。 的价值 K_s^{CSI-RS} 是相应资源集中的 CSI-RS 资源的数量。

表 6.3.1.1.2-4 中提供了 codebookType = typeI-MultiPanel 的 RI / LI / CQI / CRI 的位宽。

表6.3.1.1.2-4: codebookType = typeI-MultiPanel的RI, LI, CQI和CRI

	领域	小 ^{上位宽} ton
	排名指标	$\min(2,\lceil \log_2 n_{RI} \rceil)$
ONIT	りし层指示器	$\min(2,\lceil \log_2 RI \rceil)$
七寸翻件	宽带 CQI	4
中人門	子带差分 CQI	2
	CRI	$\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$

 $n_{\rm RI}$ 是根据第 5. 2. 2. 2. 2 节 [6, TS 38. 214] 和第 6 节所允许的等级指标值的数量 $K_s^{\rm CSI-RS}$ 是相应资源集中的 CSI-RS 资源的数量。

表 6.3.1.1.2-5 中提供了 codebookType = typeII或 codebookType = typeII-PortSelection的RI / LI / CQI的位宽。

表6.3.1.1.2-5: codebookType = typeII或typeII-PortSelection的RI, LI和CQI

领域	位宽
排名指标	$\min(1,\lceil \log_2 n_{\rm RI} \rceil)$
层指示器	$\min(2,\lceil \log_2 RI \rceil)$
宽带 CQI	4
子带差分 CQI	2
指标的数量非零 宽带幅度系数 M_{l} for 图层 l	$\lceil \log_2(2L-1) \rceil$

 \emph{n}_{RI} 是根据 $5.\,2.\,2.\,2.\,3$ 和 $5.\,2.\,2.\,2.\,4$ [6, TS $\,38.\,214]$ 的允许等级指标值的数量。

表 6.3.1.1.2-6 中提供了 CRI, SSBRI, RSRP 和差分 RSRP 的位宽。

表6.3.1.1.2-6: CRI, SSBRI和RSRP

43

领域	位宽
CRI	$\lceil \log_2(K_s^{\text{CSI-RS}}) \rceil$
SSBRI	$\lceil \log_2(K_s^{ ext{SSB}}) \rceil$
RSRP	7
差分 RSRP	4

where $K_s^{ ext{CSI-RS}}$ 是相应资源集中的 $ext{CSI-RS}$ 资源的数量,和 $ext{K}_s^{ ext{SSB}}$ 是用于报告'ssb-Index-RSRP'的相应资源集 中配置的 SS / PBCH 块数。

表6.3.1.1.2-7: 一个CSI报告的CSI字段的映射顺序, pmi-FormatIndicator = widebandPMI和cqi-FormatIndicator = widebandCQI

CSI 报告编号	CSI 领域
	CRI 如表 6.3.1.1.2-3 / 4 所示, 如果报告的话
	如果报告,排名指标如表 6.3.1.1.2-3 / 4 所示 💢 🕥
	层数指标如表 6.3.1.1.2-3 / 4 所示,如果报告的话 🥏
CSI 报告#n	零填充位 O_{P} ,如果需要的话
380	PMI 宽带信息字段 X_1 ,如表 $6.3\cdot 1\cdot 1\cdot 2$ -1 $/$ 2 所示,从左到右,如果报告的话
	PMI 宽带信息字段 X_2 ,如表 $6.3.1.1.2-1$ $/$ 2 所示,从左到右,如果报告的话
	如果报告,宽带 CQI 如表 6.3.1.1.2-3 / 4/5 所示

零填充位的数量 O_P 在表 6.3.1.1.2-7 中,1 个 CSI-RS 端口为 0 $O_P=N_{\max}-N_{\text{reported}}$ for 超过 1 个 CSI-RS 端 口. 其中

- $N_{\text{max}} = \max_{r \in S_{\text{brail}}} B(r)$ and S_{Rank} 是排名值的集合 r 允许报告;
- $N_{\text{reported}} = B(R)$, where R 是报告的排名;
- for $2 \uparrow CSI-RS \stackrel{..}{\bowtie} \Box$, $B(r) = N_{PMI}(r) + N_{CQI}(r) + N_{LI}(r)$;
- for 2 个以上的 CS I-RS 端口, $B(r) = N_{\text{PMLiI}}(r) + N_{\text{PMLi2}}(r) + N_{\text{COI}}(r) + N_{\text{LI}}(r)$;
- 如果报告 PMI, $N_{PMI}(1)=2$ and $N_{PMI}(2)=1$; 除此以外, $N_{PMI}(r)=0$;
- 如果是 PMI $_{i1}$ 据报道, $N_{PMii}(r)$ 根据表 6.3.1.1.2-1 / 2 获得;除此以外, $N_{PMii}(r)=0$;
- 如果是 PMI i2 据报道, $N_{\text{PMI},i2}(r)$ 根据表 6.3.1.1.2-1 / 2 获得;除此以外, $N_{\text{PMI},i2}(r)=0$;
- 如果报告了 CQI, $N_{COI}(r)$ 根据表 6. 3. 1. 1. 2-3 / 4 获得;除此以外, $N_{COI}(r)=0$;
- 如果 LI 被报道, $N_{II}(r)$ 根据表 6.3.1.1.2-3 / 4 获得;除此以外, $N_{II}(r)=0$.

CSI 报告编号	CSI 领域
	如果报告, CRI 或 SSBRI #1 如表 6.3.1.1.2-6 所示
	如果报告, CRI 或 SSBRI #2 如表 6.3.1.1.2-6 所示
	如果报告,CRI 或 SSBRI #3 如表 6.3.1.1.2-6 所示
	如果报告, CRI 或 SSBRI #4 如表 6.3.1.1.2-6 所示
CSI 报告#n	如果报告,RSRP#1 如表 6.3.1.1.2-6 所示
3/20	如果报告,差分 RSRP#2 如表 6.3.1.1.2-6 所示
	如果报告,差分 RSRP#3 如表 6.3.1.1.2-6 所示
	如果报告,差分 RSRP#4 如表 6.3.1.1.2-6 所示

表6.3.1.1.2-9: 一个CSI报告的CSI字段的映射顺序,CSI第1部分,pmi-FormatIndicator = subbandPMI或 cqi-FormatIndicator = subbandCQI

CSI 报告编号	CSI 领域
	CRI 如表 6.3.1.1.2-3 / 4 所示, 如果报告的话
001 tp://-	如果报告,排名指标如表 6.3.1.1.2-3 / 4/5 所示
CSI 报告#n	如果报告,表 6.3.1.1.2-3 / 4/5 中的第一个 TB 的宽带 CQI
CSI 第 1 部分	如果报告,表 6.3.1.1.2-3 / 4/5 中的第一个 TB 的子带差分 CQI
	非零宽带幅度系数的指示符 M_{l} for 图层 l 如表 $6.3.1.1.2-5$ 所示,如果报告的话

表6.3.1.1.2-10: 一个CSI报告的CSI字段的映射顺序, CSI第2部分宽带, pmi-FormatIndicator = subbandPMIscqi-FormatIndicator = subbandCQI

CSI 报告编号	CSI 领域
	表 6.3.1.1.2-3 / 4/5 中第二个 TB 的宽带 CQI, 如果存在和报告的话
	层数指标如表 6.3.1.1.2-3 / 4/5 所示,如果报告的话
CSI 报告#n CSI 第 2 部分宽带	PMI 宽带信息字段 $X_{ m l}$,如表 6.3.1.1.2-1 / 2 所示,从左到右,如果报告的话
	PMI 宽带信息字段 X_2 ,如表 6.3.1.1.2-1 $/$ 2 中的从左到右,如果 pmi-FormatIndicator =
	widebandPMI 并且如果报告

表6.3.1.1.2-11: 一个CSI报告的CSI字段的映射顺序, CSI第2部分子带, pmi-FormatIndicator = subbandPMI或cqi-FormatIndicator = subbandCQI

	子带差分 CQI,用于所有偶数子带的第二 TB,子带数量级递增,如表 6.3.1.1.2-3 / 4/5 所示,如果 cqi-FormatIndicator = subbandCQI,则报告
	PMI 子带信息字段 X_2 如表 6.3.1.1.2-1 / 2 所示,如果 pmi-FormatIndicator = subbandPMI,
CSI 报告#n	
第2部分子带	子带差分 CQI,用于所有奇数子带的第二 TB,子带数量级递增,如表 6.3.1.1.2-3 / 4/5 所示,如
	果 cqi-FormatIndicator = subbandCQI, 则报告
	PMI 子带信息字段 X_2 如表 6.3.1.1.2-1 / 2 所示,如果 pmi-FormatIndicator = subbandPMI,
	则报告子带数量增加的所有奇数子带从左到右

如果在 PUCCH 上传输的 CSI 报告都不是两部分,则所有 CSI 报告的 CSI 字段 (按表 6.3.1.1.2-12 中从上部到 下部的顺序) 被映射到 UCI 比特序列 $a_0,a_1,a_2,a_3,...,a_{A-1}$ 从...开始 a_0 .

表6.3.1.1.2-12: CSI报告到UCI比特序列的映射顺序 $a_0,a_1,a_2,a_3,...,a_{A-1}$,没有twopart CSI报告

UCI 位序列	CSI 报告编号
a_0	CSI 报告#1 见表 6. 3. 1. 1. 2-7 / 8
$egin{array}{c} a_1 \ a_2 \end{array}$	CSI 报告#2 见表 6.3.1.1.2-7 / 8
a_3 :	
a_{A-1}	CSI 报告#n 见表 6. 3. 1. 1. 2-7 / 8

如果用于在 PUCCH 上传输的 CSI 报告中的至少一个是两部分,则生成两个 UCI 比特序列, $a_0^{(1)},a_1^{(1)},a_2^{(1)},a_3^{(1)},...,a_{A^{(1)}-1}^{(1)}$ and $a_0^{(2)},a_1^{(2)},a_2^{(2)},a_3^{(2)},...,a_{A^{(2)}-1}^{(2)}$ 。 所有 CSI 报告的 CSI 字段,按表 6.3.1.1.2-13 中从上部到下部的顺序,映射到 UCI 比特序列 $a_0^{(1)},a_1^{(1)},a_2^{(1)},a_3^{(1)},...,a_{A^{(1)}-1}^{(1)}$ 从 . . . 开始 $a_0^{(1)}$ 。 所有 CSI 报告的 CSI 字段,按表 6.3.1.1.2-14 中从上部到下部的顺序,映射到 UCI 比特序列 $a_0^{(2)},a_1^{(2)},a_2^{(2)},a_3^{(2)},...,a_{A^{(2)}-1}^{(2)}$ 从 . . . 开始 $a_0^{(2)}$ 。 如果 UCI 位序列的长度 $a_0^{(2)},a_1^{(2)},a_2^{(2)},a_3^{(2)},...,a_{A^{(2)}-1}^{(2)}$ 如果小于 3 位,则应将 0 附加到 UCI 位序列,直到其长度等于 3。

表6.3.1.1.2-13: CSI报告到UCI比特序列的映射顺序 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, \dots, a_{A^{(1)}}^{(1)}$,两部分CSI报告

	+ (1118)
UCI 位序列	CSI 报告编号
土文都泽:	CSI 报告#1 如果 CSI 报告#1 不是两部分,或者 CSI 报告#1, CSI 第 1 部分,如果 CSI 报告#1 分为两部分, 见表 6.3.1.1.2-7 / 8/9
$a_1^{(1)}$ $a_2^{(1)}$	CSI 报告#2 如果 CSI 报告#2 不是两部分,或者 CSI 报告#2,CSI 第 1 部分,如果 CSI 报告#2 分为两部分, 见表 6.3.1.1.2-7 / 8/9
$a_3^{(1)}$ \vdots	
$a_{A^{(1)}-1}^{(1)}$	CSI 报告#n 如果 CSI 报告#n 不是两部分,或者 CSI 报告#n,CSI 第 1 部分,如果 CSI 报告#n 是两部分, 见表 6.3.1.1.2-7 / 8/9

其中 CSI 报告#1, CSI 报告#2, ..., 表 6.3.1.1.2-13 中的 CSI 报告#n 对应于根据[6, TS38]的子条款 5.2.5 按 CSI 报告优先级值递增顺序的 CSI 报告 0.214。

表6.3.1.1.2-14: CSI报告到UCI比特序列的映射顺序 $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{a_2^{(2)},1}^{(2)}$ 两部分CSI报告

UCI 位序列	CSI 报告编号
	CSI 报告#1,CSI 第 2 部分宽带,如表 6. 3. 1. 1. 2-10 所示 如果 CSI 报告#1 存在 CSI 第 2 部分
	CSI 报告#2, CSI 第 2 部分宽带,如表 6. 3. 1. 1. 2-10 所示 如果 CSI 报告#2 存在 CSI 第 2 部分
$a_0^{(2)}$	
$a_1^{(2)} \ a_2^{(2)}$	CSI 报告#n, CSI 第 2 部分宽带,如表 6.3.1.1.2-10 所示 如果 CSI 报告#n 存在 CSI 第 2 部分
$a_{3}^{(2)}$: $a_{A^{(2)}-1}^{(2)}$	CSI 报告#1,CSI 第 2 部分子带,如表 6. 3. 1. 1. 2-11 所示 如果 CSI 报告#1 存在 CSI 第 2 部分
	CSI 报告#2, CSI 第 2 部分子带,如表 6. 3. 1. 1. 2-11 所示 如果 CSI 报告#2 存在 CSI 第 2 部分
	CSI 报告#n, CSI 第 2 部分子带, 如表 6.3.1.1.2-11 所示 如果 CSI 报告#n 存在 CSI 第 2 部分

其中 CSI 报告#1, CSI 报告#2, ..., 表 6.3.1.1.2-14 中的 CSI 报告#n 对应于根据[6, TS38]的子条款 (公众号: tongx 5.2.5 按 CSI 报告优先级值递增顺序的 CSI 报告 0.214。

HARQ-ACK / SR ₹□ CSI

如果在 PUCCH 上传输的 CSI 报告都不是两部分,则 UCI 比特序列 $a_0,a_1,a_2,a_3,...,a_{A-1}$ 根据以下内容生成 $A = O^{ACK} + O^{SR} + O^{CSI}$

- 如果在 PUCCH 上存在用于传输的 HARQ-ACK,则 HARQ-ACK 比特被映射到 UCI 比特序列 $a_0,a_1,a_2,a_3,...,a_{O^{ ext{ACK}}-1}$,where $a_i=\widetilde{o}_i^{ACK}$ for $i=0,1,...,O^{ ext{ACK}}-1$,HARQ-ACK 比特序列 $\tilde{o}_0^{ACK}, \tilde{o}_1^{ACK}, ..., \tilde{o}_{o^{ACK}}^{ACK}$,由[5, TS38. 213]的第 9.1 条给出,和 o^{ACK} 是 HARQ-ACK 比特的数量;如果在 PUCCH 上没有用于传输的 HARQ-ACK, 则进行设置 $Q^{ACK} = 0$;
- 如果在 PUCCH 上有 SR 用于传输,则设置 $a_i = \tilde{o}_i^{SR}$ for $i = O^{ACK}, O^{ACK} + 1, ..., O^{ACK} + O^{SR} 1$,SR 位序列 $\widetilde{o}_0^{SR}, \widetilde{o}_1^{SR}, ..., \widetilde{o}_{O^{SR}-1}^{SR}$ 由[5, TS 38.213]的第 9.2.5.1 款给出: 如果在 PUCCH 上没有用于传输的 SR, 则设 置 OSR = 0;
- 所有 CSI 报告的 CSI 字段, 按表 6.3.1.1.2-12 中从上部到下部的顺序, 映射到 UCI 比特序列 $a_{o^{\mathrm{ACK}}+o^{\mathrm{SR}}}, a_{o^{\mathrm{ACK}}+o^{\mathrm{SR}}+1}, \dots, a_{o^{\mathrm{ACK}}+o^{\mathrm{SR}}+o^{\mathrm{CSI}}-1}$ 从...开始 $a_{o^{\mathrm{ACK}}+o^{\mathrm{SR}}}$, where O^{CSI} 是 CSI 位的数量。

如果用于在 PUCCH 上传输的 CSI 报告中的至少一个是两部分,则生成两个 UCI 比特序列。 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{4^{(1)}-1}^{(1)}$ and $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{4^{(2)}-1}^{(2)}$, 根据以下,在 where $A^{(1)} = O^{ACK} + O^{SR} + O^{CSI-part1}$ and $A^{(2)} = O^{\text{CSI-part2}}.$

- 如果在 PUCCH 上存在用于传输的 HARQ-ACK, 则 HARQ-ACK 比特被映射到 UCI 比特序列 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{O^{ACK}-1}^{(1)}$,where $a_i^{(1)} = \widetilde{o}_i^{ACK}$ for $i = 0, 1, ..., O^{ACK} - 1$,HARQ-ACK 比特序列 $\widetilde{o}_0^{ACK}, \widetilde{o}_1^{ACK}, ..., \widetilde{o}_{o^{ACK}-1}^{ACK}$ 由[5, TS38.213]的第9.1条给出,和 o^{ACK} 是 HARQ-ACK 比特的数量;如果在 PUCCH 上没有用于传输的 HARQ-ACK, 则进行设置 $Q^{ACK} = 0$;

- 如果在 PUCCH 上有 SR 用于传输,则设置 $a_i = \tilde{o}_i^{SR}$ for $i = O^{ACK}, O^{ACK} + 1, ..., O^{ACK} + O^{SR} 1$,SR 位序列 $\tilde{o}_0^{SR}, \tilde{o}_1^{SR}, ..., \tilde{o}_{O^{SR}-1}^{SR}$ 由[5,TS 38.213]的第 9.2.5.1 款给出:如果在 PUCCH 上没有用于传输的 SR,则设置 $O^{SR} = 0$;
- 所有 CSI 报告的 CSI 字段,按表 6.3.1.1.2-13 中从上部到下部的顺序,映射到 UCI 比特序列 $a_{O^{ACK}+O^{SR}}^{(1)}, a_{O^{ACK}+O^{SR}+1}^{(1)}, ..., a_{O^{ACK}+O^{SR}+O^{CSI-partl}-1}^{(1)}$ 从...开始 $a_{O^{ACK}+O^{SR}}^{(1)}$, where $O^{CSI-partl}$ 是所有 CSI 报告的 CSI 部分 1 中的 CSI 比特数:
- 所有 CSI 报告的 CSI 字段,按表 6.3.1.1.2-14 中从上部到下部的顺序,映射到 UCI 比特序列 $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)-1}}^{(2)}$ 从... 开始 $a_0^{(2)}$,where $O^{\text{CSI-part2}}$ 是所有 CSI 报告的 CSI 部分 2 中的 CSI 比特 的数量。 如果 UCI 位序列的长度 $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{A^{(2)-1}}^{(2)}$ 如果小于 3 位,则应将 0 附加到 UCI 位序列,直到其长度等于 3。

6.3.1.2 代码块分割和 CRC 附件

子条款 6.3.1.1 的 UCI 比特序列表示为 $a_0, a_1, a_2, a_3, ..., a_{A-1}$, where A 是有效载荷大小。 6.3.1.2.1 中的流程适用 $A \ge 12$ 以及 6.3.1.2.2 的流程适用于 $A \le 11$.

6.3.1.2.1 UCI 由 Polar 代码编码

如果有效载荷大小 $A\ge 12$,代码块分割和 CRC 附加根据子条款 5.2.1 执行。 如果 ($A\ge 360$ and $E\ge 1088$) elseif $A\ge 1013$, $I_{seg}=1$;除此以外 $I_{seg}=0$,where E 是 6.3.1.4.1 中给出的速率匹配输出序列长度。

If $12 \le A \le 19$, 奇偶校验位 $p_{r0}, p_{r1}, p_{r2}, ..., p_{r(L-1)}$ 在子条款 5.2.1 中通过设置计算 D 到 6 位并使用生成多项式 $g_{\text{CRC6}}(D)$ 在第 5.1 节中,产生了序列 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_{r-1})}$ where r 是代码块编号和 K_r 是代码块编号 的位数 r.

If $A \ge 20$,奇偶校验位 $p_{r0}, p_{t1}, p_{r2}, \dots, p_{r(L-1)}$ 在子条款 5.2.1 中通过设置计算 L 到 11 位并使用生成多项式 $g_{\text{CRCII}}(D)$ 在第 5.1 节中,产生了序列 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, \dots, c_{r(K_r-1)}$ where r 是代码块编号和 K_r 是代码块编号 的位数 r.

6.3.1.2.2 UCI 由短码的信道编码来完成编码

如果有效载荷大小 $A \leq 11$, CRC 位未附加。

输出比特序列用表示 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where $c_i=a_i$ for i=0,1,...,A-1 and K=A.

6.3.1.3 UCI 的信道编码

6.3.1.3.1 UCI 由 Polar 代码编码

信息比特被传送到信道编码块。 他们用表示 $c_{r0},c_{r1},c_{r2},c_{r3},...,c_{r(K_r-1)}$, where r 是代码块编号,和 K_r 是代码块编号中的位数 r 。 代码块的总数用表示 C 每个代码块由以下单独编码:

If $18 \le K_r \le 25$,根据子条款 5.3.1,通过设置,通过 Polar 编码对信息比特进行编码 $n_{\max} = 10$, $I_{IL} = 0$, $n_{PC} = 3$, $n_{PC}^{wm} = 1$ if $E_r - K_r + 3 > 192$ and $n_{PC}^{wm} = 0$ if $E_r - K_r + 3 \le 192$,where E_r 是 6.3.1.4.1 中给出的速率匹配输出序列长度。

If $K_r > 30$,根据子条款 5.3.1,通过设置,通过 Polar 编码对信息比特进行编码 $n_{\max} = 10$, $I_L = 0$, $n_{PC} = 0$,和 $n_{PC}^{wm} = 0$.

在编码之后,比特用表示 $d_{r0},d_{r1},d_{r2},d_{r3},...,d_{r(N-1)}$, where N_r 是代码块编号中的编码位数 r.

6.3.1.3.2 UCI 由短码的信道编码来完成编码

信息比特被传送到信道编码块。 他们用表示 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是位数。

信息比特根据 5.3.3条款进行编码。

在编码之后,比特用表示 $d_0,d_1,d_2,d_3,...,d_{N-1}$, where N 是编码位的数量。

6.3.1.4 谏率匹配

for PUCCH 格式 2/3/4,总速率匹配输出序列长度 $E_{\rm tot}$ 由表 6.3.1.4-1 给出,其中 $N_{\rm symb,UCI}^{\rm PUCCH,2}$, $N_{\rm symb,UCI}^{\rm PUCCH,3}$,和 $N_{\mathrm{symb,UCI}}^{\mathrm{PUCCH,4}}$ 是分别为 PUCCH 格式 2/3/4 承载 UCI 的符号数; $N_{\mathrm{PRB}}^{\mathrm{PUCCH,2}}$ and $N_{\mathrm{PRB}}^{\mathrm{PUCCH,3}}$ 是根据[5, TS38.213]的子条 款 9.2 分别由 UE 确定用于 PUCCH 格式 2/3 传输的 PRB 的数量; and $N_{\rm SF}^{\rm PUCCH,4}$ 是 PUCCH 格式 4 的扩频因子。

48

调制顺序 PUCCH 格式 π/2-BPSK **QPSK** $16 \cdot N_{\mathrm{symb,UCI}}^{\mathrm{PUCCH,2}} \cdot N_{\mathrm{PRB}}^{\mathrm{PUCCH,2}}$ PUCCH 格式 2 N/A $24 \cdot N_{\text{symb, UCI}}^{\text{PUCCH, 3}} \cdot N_{\text{PRB}}^{\text{PUCCH, 3}}$ $12 \cdot N_{\text{symb, UCI}}^{\text{PUCCH, 3}} \cdot N_{\text{PRB}}^{\text{PUCCH, 3}}$ PUCCH 格式 3 $24 \cdot N_{\mathrm{symb,UCI}}^{\mathrm{PUCCH,4}} / N_{\mathrm{SF}}^{\mathrm{PUCCH,4}}$ $12 \cdot N_{\text{symb, UCI}}^{\text{PUCCH, 4}} / N_{\text{SF}}^{\text{PUCCH, 4}}$ PUCCH 格式 4

表6.3.1.4-1: 总速率匹配输出序列长度 E_{int}

6.3.1.4.1 UCI 由 Polar 代码编码 速率匹配的输入比特序列是 $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$ where r 是代码块编号,和 N_r 是代码块编号中的编码 位数 r.

表 6.3.1.4.1-1: 速率匹配输出序列长度 $E_{\rm UCI}$

	田11	
用于在 PUCCH 上传输的 UCI	UCI 用于编码	的价值 $E_{ m UCI}$
HARQ-ACK	HARQ-ACK	$E_{ m UCI} = E_{ m tot}$
HARQ-ACK, SR	HARQ-ACK, SR	$E_{ m UCI} = E_{ m tot}$
CSI (CSI 不是两部分)	CSI	$E_{ m UCI} = E_{ m tot}$
HARQ-ACK, CSI (CSI 不是两部分)	HARQ-ACK, CSI	$E_{\text{UCI}} = E_{\text{tot}}$
HARQ-ACK, SR, CSI (CSI 不是两部分)	HARQ-ACK, SR, CSI	$E_{ m UCI} = E_{ m tot}$
CSI	CSI 第 1 部分	$E_{\text{UCI}} = \min(E_{\text{tot}}, \lceil (O^{\text{CSI-part1}} + L) / R_{\text{UCI}}^{\text{max}} / Q_m \rceil \cdot Q_m)$
(CSI 两部分)	CSI 第 2 部分	$E_{\text{UCI}} = E_{\text{tot}} - \min(E_{\text{tot}}, \left \left(O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_{m} \right \cdot Q_{m})$
HARQ-ACK, CSI	HARQ-ACK, CSI 第 1部分	$E_{\text{UCI}} = \min \left(E_{\text{tot}}, \left\lceil \left(O^{\text{ACK}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right\rceil \cdot Q_m \right)$
(CSI 两部分)	CSI 第 2 部分	$E_{\text{UCI}} = E_{\text{tot}} - \min(E_{\text{tot}}, \lceil (O^{\text{ACK}} + O^{\text{CSI-part1}} + L) / R_{\text{UCI}}^{\text{max}} / Q_m \rceil \cdot Q_m)$
HARQ-ACK, SR, CSI (CSI 两部分)	HARQ-ACK, SR, CSI 第1部分	$E_{\text{UCI}} = \min \left(E_{\text{tot}}, \left\lceil \left(O^{\text{ACK}} + O^{\text{SR}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_{m} \right\rceil \cdot Q_{m} \right)$
	CSI 第2部分	$E_{\text{UCI}} = E_{\text{tot}} - \min \left(E_{\text{tot}}, \left[\left(O^{\text{ACK}} + O^{\text{SR}} + O^{\text{CSI-part1}} + L \right) / R_{\text{UCI}}^{\text{max}} / Q_m \right] \cdot Q_m \right)$

通过设置根据子条款 5.4.1 执行速率匹配 $I_{\scriptscriptstyle BIL}=1$ 和速率匹配输出序列长度 $E_{\scriptscriptstyle r}=\lfloor E_{\scriptscriptstyle \rm UCI}\,/\,C_{\scriptscriptstyle \rm UCI}\, \rfloor$, where $C_{\scriptscriptstyle \rm UCI}$ 是 根据第 6.3.1.2.1 节确定的 UCI 的代码块数和 E_{UCI} 由表 6.3.1.4.1-1 给出:

- O^{ACK} 是用于在当前 PUCCH 上传输的 HARQ-ACK 的比特数;
- OSR SR 是当前 PUCCH 上传输的 SR 的比特数;
- $O^{\text{CSI-part1}}$ 是用于在当前 PUCCH 上传输的 CSI 部分 1 的比特数;
- $O^{\text{CSI-part2}}$ 是用于在当前 PUCCH 上传输的 CSI 部分 2 的比特数;
- if $A \ge 360$, L = 11; 除此以外, L 是根据子条款 6.3.1.2.1 确定的 CRC 比特数,其中 A 等于 $O^{\text{CSI-part1}}$ for "CSI (两部分的 CSI)",等于 $O^{ACK} + O^{CSI-part1}$ for "HARQ-ACK, CSI (两部分的 CSI)",并且 等于 $O^{ACK} + O^{SR} + O^{CSI-part1}$ 表 6. 3. 1. 4. 1-1 中分别为 "HARQ-ACK, SR, CSI (两部分的 CSI)";
- R_{HCI} 是配置的最大 PUCCH 编码率;
- E_{tot} 由表 6.3.1.4-1 给出。

速率匹配后的输出比特序列表示为 $f_{r_0}, f_{r_1}, f_{r_2}, ..., f_{r(E_r-1)}$ where E_r 是代码块编号中速率匹配输出序列的长度 r.

6.3.1.4.2 UCI 由短码的信道编码来完成编码

速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$

的价值 E_{LICI} 根据表 6.3.1.4.1-1 通过设定确定 L=0.

码块级联块的输入比特序列是序列 $f_{r_0},f_{r_1},f_{r_2},...,f_{r(E_r-1)}$,为 r=0,...,C-1 在 where E_r 是速率匹配位的数量 r - 代码块。

根据子条款 5.5 执行代码块级联。

代码块级联后的位用表示 $g_0,g_1,g_2,g_3,...,g_{G-1}$, where $G'=\lfloor E_{\text{UCI}}/C_{\text{UCI}}\rfloor\cdot C_{\text{UCI}}$ 用的值 E_{UCI} and C_{UCI} 在 6.3.1.4.1 中给出。 让 G 是传输和编码的总编码比特数 $G = G' + \text{mod}(E_{\text{HCL}}, C_{\text{LCL}})$ 。 set $g_i = 0$ for i = G', G'+1, ..., G-1.

6.3.1.6 将编码的 UCI 比特多路复用到 PUCCH

如果在 PUCCH 上发送两部分的 CSI,则编码比特对应于 UCI 比特序列 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{*0}^{(1)}$,表示为 $g_0^{(1)},g_1^{(1)},g_2^{(1)},g_3^{(1)},...,g_{G^{(1)-1}}^{(1)}$ 以及与 UCI 比特序列对应的编码比特 $a_0^{(2)},a_1^{(2)},a_2^{(2)},a_3^{(2)},...,a_{d^{(2)-1}}^{(2)}$ 表示为 $g_0^{(2)},g_1^{(2)},g_2^{(2)},g_3^{(2)},...,g_{G^{(2)}-1}^{(2)}$ 。 编码的比特序列 $g_0,g_1,g_2,g_3,...,g_{G-1}$, where $G=G^{(1)}+G^{(2)}$, 根据以下内容生成。

PUCCH 持续 时间(符 号)	PUCCH DMRS 符号 索引	UCI 符号索引 集的数量 <i>N</i> ^{set} UCI	1 sT UCI 符号索引设 置 S (I)	2 [™] UCI 符号索引设 置 S ⁽²⁾	3™UCI 符号索引 设置 S ⁽³⁾
4	{1}	2	{0,2}	{3}	-
4	{0,2}	1	{1,3}	-	-
5	{0, 3}	1	{1, 2, 4}	-	-
6	{1, 4}	1	{0, 2, 3, 5}	-	-
7	{1, 4}	2	{0, 2, 3, 5}	{6}	-
8	{1, 5}	2	{0, 2, 4, 6}	{3, 7}	-
9	{1, 6}	2	{0, 2, 5, 7}	{3, 4, 8}	-
10	{2, 7}	2	{1, 3, 6, 8}	{0, 4, 5, 9}	-
10	{1, 3, 6, 8}	1	{0,2,4,5,7,9}	-	-
11	{2, 7}	3	{1,3,6,8}	{0,4,5,9}	{10}
11	{1,3,6,9}	1	{0,2,4,5,7,8,10}	=	-
12	{2, 8}	3	{1,3,7,9}	{0,4,6,10}	{5, 11}
12	{1,4,7,10}	1	{0,2,3,5,6,8,9,11}	=	-
13	{2, 9}	3	{1,3,8,10}	{0,4,7,11}	{5,6,12}
13	{1,4,7,11}	2	{0,2,3,5,6,8,10,12}	{9}	-
14	{3, 10}	3	{2,4,9,11}	{1,5,8,12}	{0,6,7,13}
14	{1,5,8,12}	2	{0,2,4,6,7,9,11,13}	{3, 10}	-

表6.3.1.6-1: PUCCH DMRS和UCI符号

表示 s_l 作为 UCI OFDM 符号索引。 表示 $N_{\rm UCI}^{\rm (i)}$ 作为 UCI 符号索引中的单元数量设置 $S_{\rm UCI}^{\rm (i)}$ for $i=1,...,N_{\rm UCI}^{\rm set}$ where $S_{\rm UCI}^{\rm (i)}$ and $N_{\rm UCI}^{\rm set}$ 根据 PUCCH 持续时间和 PUCCH DMRS 配置,由表 6.3.1.6-1 给出。 表示

 $N_{\text{symb,UCI}}^{\text{PUCCH,}} = \sum_{i=1}^{N_{\text{UCI}}^{(i)}} N_{\text{UCI}}^{(i)}$ 作为在 PUCCH 中携带 UCI 的 OFDM 符号的数量。 表示 Q_m 作为 PUCCH 的调制顺序。

for PUCCH 格式 3,设置 $N_{\text{UCI}}^{\text{symbol}}=12\cdot N_{\text{PRB}}^{\text{PUCCH,3}}$ where $N_{\text{PRB}}^{\text{PUCCH,3}}$ 是根据[5, TS 38.213]的子条款 9.2 由 UE 确定的用于 PUCCH 格式 3 传输的 PRB 的数量。

for PUCCH 格式 4. 设置 $N_{\rm UCI}^{\rm symbol}=12/N_{\rm SF}^{\rm PUCCH,4}$, where $N_{\rm SF}^{\rm PUCCH,4}$ 是 PUCCH 格式 4 的扩频因子。

找到最小的
$$j>0$$
 这样的 $\left(\sum_{i=1}^{j}N_{\mathrm{UCI}}^{(i)}\right)\cdot N_{\mathrm{UCI}}^{\mathrm{symbol}}\cdot Q_{\mathrm{m}}\geq G^{(1)}$.

set $n_1 = 0$;

set $n_2 = 0$;

$$\text{set } \overline{N}_{\text{UCI}}^{\text{symbol}} = \left[\left(G^{(1)} - \left(\sum_{i=1}^{j-1} N_{\text{UCI}}^{(i)} \right) \cdot N_{\text{UCI}}^{\text{symbol}} \cdot Q_m \right) \middle/ \left(N_{\text{UCI}}^{(j)} \cdot Q_m \right) \right];$$

$$\text{set } M = \text{mod} \left(\left(G^{(1)} - \left(\sum_{i=1}^{j-1} N_{\text{UCI}}^{(i)} \right) \cdot N_{\text{UCI}}^{\text{symbol}} \cdot Q_m \right) \middle/ Q_m, N_{\text{UCI}}^{(j)} \right);$$

for
$$l=0$$
 to $N_{\mathrm{symb,\,UCI}}^{\mathrm{PUCCH,}}-1$

if
$$s_l \in \bigcup_{i=1}^{j-1} S_{\text{UCI}}^{(i)}$$

for
$$k=0$$
 to $N_{\rm UCI}^{\rm symbol}-1$

for
$$v=0$$
 to Q_m-1

$$\overline{g}_{l,k,v}=g_{n_1}^{(1)};$$

$$n_1 = n_1 + 1$$
;

end for

end for

elseif $s_l \in S_{\text{UCI}}^{(j)}$

if M > 0

 $\gamma = 1$;

else

 $\gamma = 0$;

end if

M = M - 1;

for k=0 to $\overline{N}_{\mathrm{UCI}}^{\,\mathrm{symbol}} + \gamma - 1$

for v=0 to Q_m-1

$$\overline{g}_{l,k,v} = g_{n_1}^{(1)}$$

$$n_1 = n_1 + 1$$

end for to $k = \overline{N}$. symbol (公众号: tongxin5g)

for v=0 to Q_m-1

$$\overline{g}_{l,k,v} = g_{n_2}^{(2)};$$

$$n_2 = n_2 + 1$$
;

end for

end for

else

for k=0 to $N_{\mathrm{UCI}}^{\mathrm{symbol}}-1$

for v=0 to Q_m-1

$$\overline{g}_{l,k,v} = g_{n_2}^{(2)};$$

$$n_2 = n_2 + 1$$
;

 $\quad \text{end for} \quad$

end for

end if

end for

set n=0

for
$$l=0$$
 to $N_{\text{symb, UCI}}^{\text{PUCCH,}}-1$

for
$$k=0$$
 to $N_{\text{HCL}}^{\text{symbol}}-1$

for
$$v=0$$
 to Q_m-1

$$g_n = \overline{g}_{l,k,v};$$

$$n = n + 1$$
;

end for

end for

end for

6.3.2 PUSCH 上的上行链路控制信息

- marq-ACK
 如果在 PUSCH 上发送 HARQ-ACK 比特,则 UCI 比特序列 $a_0, a_1, a_2, a_3, ..., a_{A-1}$ 确定如下:
 如果在没有 UL-SCH 的情况下在 PUSCH 上发送 UCI 並用 いな た - 如果在没有UL-SCH的情况下在PUSCH上发送UCI并且UCI包括没有CSI部分2的CSI部分1,
 - 如果没有[5, TS 38.213]的子条款 9.1 给出的 HARQ-ACK 比特,则设置 $a_0=0$, $a_1=0$,和 A=2;
 - 如果只有一个 HARQ-ACK 位 \widetilde{o}_0^{ACK} 由[5, TS 38.213]的第 9.1 条给出 $a_0=\widetilde{o}_0^{ACK}$, $a_1=0$,和 A=2;
 - 否则, ser $a_i=\widetilde{o}_i^{ACK}$ for $i=0,1,...,O^{{
 m ACK}}-1$ and $A=O^{{
 m ACK}}$,其中HARQ-ACK 比特序列 $\widetilde{o}_0^{ACK},\widetilde{o}_1^{ACK},...,\widetilde{o}_{o^{ACK}-1}^{ACK}$ 由[5, TS 38.213]的第 9.1 条给出。

6.3.2.1.2 CSI

表 6.3.2.1.2-1 中提供了 codebookType = typeII的 PMI 的位宽,其中值为 (N_1, N_2) , (O_1, O_2) , L, N_{PSK} , M_1 , M_2 , 和 $K^{(2)}$ 由[6, TS 38.214]中的第 5.2.2.2.3 节给出。

表6.3.2.1.2-1: codebookType = typeII的PMI

	宽带 PMI 的信息字段						(多个子带 PMI 的信	息字段	
	$i_{1,1}$	<i>i</i> _{1,2}	$i_{1,3,1}$	$i_{1,4,1}$	$i_{1,3,2}$	$i_{1,4,2}$	$i_{2,1,1}$	$i_{2,1,2}$	$i_{2,2,1}$	$i_{2,2,2}$
rank= 1 SBAmp 关闭	$\lceil \log_2(O_1O_2) \rceil$	$\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	N/A	N/A	$(M_1-1)\cdot \log_2 N_{\text{PSK}}$	N/A	N/A	N/A

评级= 2 SBAmp 关闭	$\log_2(O_1O_2)$	$\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	$\lceil \log_2(2L) \rceil$	3(2L-1)	$(M_1-1)\cdot \log_2 N_{\text{PSK}}$	$(M_2-1)\cdot \log_2 N_{\text{PSK}}$	N/A	N/A
rank= 1 SBAmp	$\lceil \log_2(O_1O_2) \rceil$	$\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	N/A	N/A	$\begin{split} & \min \left(M_1, K^{(2)} \right) \cdot \log_2 N_{\text{PSK}} \\ & - \log_2 N_{\text{PSK}} \\ & + 2 \cdot \left(M_1 - \min \left(M_1, K^{(2)} \right) \right) \end{split}$		$\min(M_1, K^{(2)}) - 1$	N/A
评级= 2 SBAmp	$\left\lceil \log_2(O_1O_2) \right\rceil$	$\left\lceil \log_2 \binom{N_1 N_2}{L} \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	$\lceil \log_2(2L) \rceil$	3(2L-1)	$\begin{split} & \min\!\left(\!M_1, K^{(2)}\right) \cdot \log_2 N_{\text{PSK}} \\ & - \log_2 N_{\text{PSK}} \\ & + 2 \cdot \left(\!M_1 - \min\!\left(\!M_1, K^{(2)}\right)\!\right) \end{split}$	$\begin{aligned} & \min(M_2, K^{(2)}) \cdot \log_2 N_{\text{PSK}} \\ & - \log_2 N_{\text{PSK}} \\ & + 2 \cdot \left(M_2 - \min(M_2, K^{(2)})\right) \end{aligned}$		$\min(M_2,K^{(2)})-1$

表 6. 3. 2. 1. 2-2 中提供了 codebookType = typeII-PortSelection 的 PMI 的位宽,其中值为 P_{CSI-RS} ,d,L, N_{PSK} , M_1 , M_2 ,和 $K^{(2)}$ 由[6,TS 38. 214]中的子条款 5. 2. 2. 2. 4 给出。

表6.3.2.1.2-2: codebookType的PMI = typeII-PortSelection

		宽带 PMI	[的信息字	学 段		每个子带 PMI 的信息字段			
	$i_{1,1}$	$i_{1,3,1}$	$i_{1,4,1}$	$i_{1,3,2}$	$i_{1,4,2}$	$i_{2,1,1}$	$i_{2,1,2}$	$i_{2,2,1}$	$i_{2,2,2}$
rank= 1 SBAmp 关闭	$\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	N/A	N/A	$(M_1-1)\cdot \log_2 N_{\text{PSK}}$	N/A Longxin5	g N/A	N/A
评级= 2 SBAmp 关闭	$\log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	[log ₂ (24)]	3(2L-1)	$(M_1-1)\cdot \log_2 N_{\text{PSK}}$	$(M_2-1)\cdot \log_2 N_{\text{PSK}}$	N/A	N/A
rank= 1 SBAmp	$\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	N/A	N/A	$\begin{aligned} & \min(M_{1}, K^{(2)}) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left(M_{1} - \min(M_{1}, K^{(2)})\right) \end{aligned}$	N/A	$\min\left(M_1,K^{(2)}\right)-1$	N/A
评级= 2 SBAmp	$\left\lceil \log_2 \left\lceil \frac{P_{CSI-RS}}{2d} \right\rceil \right\rceil$	$\lceil \log_2(2L) \rceil$	3(2L-1)	$\lceil \log_2(2L) \rceil$	3(2L-1)	$\begin{aligned} & \min \left(M_{1}, K^{(2)} \right) \cdot \log_{2} N_{\text{PSK}} \\ & - \log_{2} N_{\text{PSK}} \\ & + 2 \cdot \left(M_{1} - \min \left(M_{1}, K^{(2)} \right) \right) \end{aligned}$	$\begin{aligned} & \min(M_2, K^{(2)}) \cdot \log_2 N_{\text{PSK}} \\ & - \log_2 N_{\text{PSK}} \\ & + 2 \cdot \left(M_2 - \min(M_2, K^{(2)})\right) \end{aligned}$	$\min(M_1, K^{(2)}) - 1$	$\min(M_2,K^{(2)})-1$

for PUSCH 上的 CSI,生成两个 UCI 比特序列, $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, \dots, a_{A^{(1)}-1}^{(1)}$ and $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, \dots, a_{A^{(2)}-1}^{(2)}$ 。 所有 CSI 报告的 CSI 字段,按表 6.3.2.1.2-6 中从上部到下部的顺序,映射到 UCI 比特序列 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, \dots, a_{A^{(1)}-1}^{(1)}$ 从 . . . 开始 $a_0^{(1)}$ 。 所有 CSI 报告的 CSI 字段,按表 6.3.2.1.2-7 中从上部到下部的顺序,映射到 UCI 比特序列 $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, \dots, a_{A^{(2)}-1}^{(2)}$ 从 . . . 开始 $a_0^{(2)}$.

表6.3.2.1.2-3: CSI报告的CSI字段的映射顺序, CSI第1部分

CSI 报告编号	CSI 领域
	如果报告,表 6.3.1.1.2-3 / 4/6 中的 CRI 或 SSBRI
	如果报告,排名指标如表 6.3.1.1.2-3 / 4/5 所示
001 10 # #	如果报告,表 6.3.1.1.2-3 / 4/5 中的第一个 TB 的宽带 CQI
CSI 报告#n	如果报告,表 6.3.1.1.2-3 / 4/5 中的第一个 TB 的子带差分 CQI
CSI 第 I 部分 - -	非零宽带幅度系数的指示符 M_l for 图层 l 如表 $6.3.1.1.2-5$ 所示,如果报告的话
	如果报告, RSRP 如表 6.3.1.1.2-6 所示
	如果报告,差分 RSRP 如表 6.3.1.1.2-6 所示

表6.3.2.1.2-4: 一个CSI报告的CSI字段的映射顺序, CSI第2部分宽带

CSI 报告编号	CSI 领域
	表 6.3.1.1.2-3 / 4/5 中第二个 TB 的宽带 CQI,如果存在和报告的话
	层数指标如表 6.3.1.1.2-3 / 4/5 所示,如果报告的话
CSI 报告#n	PMI 宽带信息字段 $X_{ m l}$,如表 6.3.1.1.2-1 $/$ 2 或 6.3.2.1.2-1 $/$ 2 所示,从左到右,如果报
CSI 第 2 部分宽带	告的话
	PMI 宽带信息字段 X_2 ,如表 6.3.1.1.2-1 / 2 或 6.3.2.1.2-1 / 2 中的从左到右,如果 pmi-
	FormatIndicator = widebandPMI 并且如果报告

表6.3.2.1.2-5: 一个CSI报告的CSI字段的映射顺序, CSI第2部分子带

	子带差分 CQI,用于所有偶数子带的第二/TB,子带数量级递增,如表 6.3.1.1.2-3 / 4/5 所示,如
	果 qi FormatIndicator = subbandCQI, 则报告
	PMI 子带信息字段 X_2 如表 $6.3.1.1.2$ – 1 $/$ 2 或 $6.3.2.1.2$ – 1 $/$ 2 所示,如果 pmi-
CSI 报告#n	FormatIndicator = subbandPMI,则报告子带数量增加的所有偶数子带从左到右
第2部分子带	字带差分 CQI,用于所有奇数子带的第二 TB,子带数量级递增,如表 6.3.1.1.2-3 / 4/5 所示,如
	果 cqi-FormatIndicator = subbandCQI, 则报告
	PMI 子带信息字段 $\ X_2$ 如表 $6.3.1.1.2$ – 1 $/$ 2 或 $6.3.2.1.2$ – 1 $/$ 2 所示,如果 pmi-
	FormatIndicator = subbandPMI,则报告子带数量增加的所有奇数子带从左到右

表6. 3. 2. 1. 2-6: CSI报告到UCI比特序列的映射顺序 $a_0^{(1)}, a_1^{(1)}, a_2^{(1)}, a_3^{(1)}, ..., a_{a^{(1)}-1}^{(1)}$, 两部分CSI报告

UCI 位序列	CSI 报告编号
$a_0^{(1)}$	CSI 报告#1 的 CSI 第 1 部分,如表 6.3.2.1.2-3 所示
$a_1^{(1)} \ a_2^{(1)}$	CSI 报告#2 的 CSI 第 1 部分,如表 6.3.2.1.2-3 所示
$a_3^{(1)}$ \vdots	
$a_{{}_{A^{(1)}-1}}^{(1)}$	CSI 报告的第 1 部分#n 如表 6.3.2.1.2-3 所示

其中 CSI 报告#1, CSI 报告#2, ..., 表 6.3.2.1.2-6 中的 CSI 报告#n 对应于根据[6, TS38]的子条款 5.2.5 按 CSI 报告优先级值递增顺序的 CSI 报告 0.214。

表6. 3. 2. 1. 2-7: CSI报告到UCI比特序列的映射顺序 $a_0^{(2)}, a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, ..., a_{a^{(2)},1}^{(2)}$, 两部分CSI报告

UCI 位序列	CSI 报告编号
	CSI 报告#1, CSI 第 2 部分宽带,如表 6.3.2.1.2-4 所示 如果 CSI 报告#1 存在 CSI 第 2 部分
	CSI 报告#2, CSI 第 2 部分宽带,如表 6.3.2.1.2-4 所示 如果 CSI 报告#2 存在 CSI 第 2 部分
$a_0^{(2)}$	
$a_{1}^{(2)}$ $a_{2}^{(2)}$ $a_{3}^{(2)}$ \vdots	CSI 报告#n, CSI 第 2 部分宽带,如表 6.3.2.1.2-4 所示 如果 CSI 报告#n 存在 CSI 第 2 部分
	CSI 报告#1, CSI 第 2 部分子带,如表 6.3.2.1.2-5 所示 如果 CSI 报告#1 存在 CSI 第 2 部分
$a_{{}_{A^{(2)}-1}}^{(2)}$	CSI 报告#2, CSI 第 2 部分子带, 如表 6.3.2.1.2-5 所示 如果 CSI 报告#2 存在 CSI 第 2 部分
	CSI 报告#n, CSI 第 2 部分子带, 如表 6.3.2.1.2-5 所示 如果 CSI 报告#n 存在 CSI 第 2 部分

其中 CSI 报告#1, CSI 报告#2, ..., 表 6.3.2.1.2-7 中的 CSI 报告#n 对应于根据[6, TS38]的子条款 5.2.5 (公众号: tongy 按 CS I 报告优先级值递增顺序的 CS I 报告 0.214。

代码块分割和 CRC 附件

用,表示有效载荷的位数 $a_0,a_1,a_2,a_3,\ldots,a_{A-1}$, where A 是有效载荷大小。 6.3.2.2.1 中的流程适用 $A \ge 12$ 以及 6.3.2.2.2 的流程适用于 $A \le 11$.

6.3.2.2.1 UCI 由 Polar 代码编码

根据 6.3.1.2.1 的规定执行代码块分割和 CRC 附着。

6.3.2.2.2 UCI 由短码的信道编码来完成编码

适用 6.3.1.2.2 的流程。

6.3.2.3 UCI 的信道编码

6.3.2.3.1 UCI 由 Polar 代码编码

除了速率匹配输出序列长度之外,根据子条款 6.3.1.3.1 执行信道编码 E_r 在 6.3.2.4.1 中给出。

6.3.2.3.2 UCI 由短码的信道编码来完成编码

信息比特被传送到信道编码块。 他们用表示 $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K 是位数。

信息比特根据 5.3.3条款进行编码。

在编码之后, 比特用表示 $d_0,d_1,d_2,d_3,...,d_{N-1}$, where N 是编码位的数量。

6.3.2.4 速率匹配

6.3.2.4.1 UCI 由 Polar 代码编码

6.3.2.4.1.1 HARQ-ACK

for 具有 UL-SCH 的 PUSCH 上的 HARQ-ACK 传输,用于 HARQ-ACK 传输的每层的编码调制符号的数量,表示为 Q'_{ACK} ,确定如下:

56

$$Q_{\text{ACK}}' = \min \left\{ \begin{bmatrix} (O_{\text{ACK}} + L_{\text{ACK}}) \cdot \beta_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ C_{\text{UL-SCH}}^{-1} - 1 \\ \sum_{r=0}^{C_{\text{UL-SCH}}^{-1}} K_r \end{bmatrix}, \begin{bmatrix} \alpha \cdot \sum_{l=l_0}^{N_{\text{pUSCH}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \end{bmatrix} \right\}$$

where

- O_{ACK} 是 HARQ-ACK 比特的数量;
- if $O_{\rm ACK} \ge 360$, $L_{\rm ACK} = 11$; 除此以外 $L_{\rm ACK}$ 是根据 6. 3. 1. 2. 1 规定的 HARQ-ACK 的 CRC 比特数;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{HARQ-ACK}}$;
- $C_{\text{III.-SCH}}$ 是 PUSCH 传输的 UL-SCH 的码块数;
- K_r 是个 r - PUSCH 传输的 UL-SCH 的码块大小;
- $M_{\rm sc}^{\rm PUSCH}$ 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{\rm sc}^{\rm PT-RS}(l)$ 是 OFDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;
- $M_{\rm sc}^{\rm UCI}(l)$ 是可用于在 0FDM 符号中传输 UCI 的资源单元的数量 l,为 $l=0,1,2,...,N_{
 m symball}^{
 m PUSCH}$ -1,在 PUSCH 传输和 $N_{\text{symball}}^{\text{PUSCH}}$ 是 PUSCH 的 0FDM 符号的总数,包括用于 DMRS 的所有 0FDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = 0$;
 - for 任何不携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$;
- α 由更高层参数缩放配置;
- l_0 是在 PUSCH 传输中在第一 DMRS 符号之后不携带 PUSCH 的 DMRS 的第一 OFDM 符号的符号索引。

for 没有 UL-SCH 的 PUSCH上的 HARQ-ACK 传输,用于 HARQ-ACK 传输的每层的编码调制符号的数量,表示为 Q'_{ACK} ,确定如下:

$$Q_{\text{ACK}}' = \min \left\{ \left\lceil \frac{\left(O_{\text{ACK}} + L_{\text{ACK}}\right) \cdot \beta_{\text{offset}}^{\text{PUSCH}}}{R \cdot Q_{m}} \right\rceil, \left\lceil \alpha \cdot \sum_{l=l_{0}}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \right\rceil \right\}$$

where

- $O_{
 m ACK}$ 是 HARQ-ACK 比特的数量;
- if $O_{\text{ACK}} \ge 360$, $L_{\text{ACK}} = 11$; 除此以外 L_{ACK} 是根据 6. 3. 1. 2. 1 规定的 HARQ-ACK 的 CRC 比特数; ;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{HARQ-ACK}}$
- $M_{\rm sc}^{\rm PUSCH}$ 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{\rm sc}^{\rm PT-RS}(l)$ 是 0FDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;
- $M_{\rm sc}^{\rm UCI}(l)$ 是可用于在 0FDM 符号中传输 UCI 的资源单元的数量 l ,为 $l=0,1,2,...,N_{
 m symb,all}^{
 m PUSCH}$ -1 ,在 PUSCH 传输和 $N_{\text{symball}}^{\text{PUSCH}}$ 是 PUSCH 的 0FDM 符号的总数,包括用于 DMRS 的所有 0FDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{aa}^{UCI}(l) = 0$;
 - for 任何不携带 PUSCH 的 DMRS 的 0FDM 符号, $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$;
- lo 在 PUSCH 传输中,在第一 DMRS 符号之后,不携带 PUSCH 的 DMRS 的第一 OFDM 符号的符号索引;
- R 是 PUSCH 的编码率,根据[6, TS38.214]的 6.1.4.1 的规定确定;
- Q_m 是 PUSCH 的调制顺序;

通过设置根据子条款 5.4.1 执行速率匹配 $I_{\scriptscriptstyle BLL}=1$ 和速率匹配输出序列长度 $E_r=\lfloor E_{\scriptscriptstyle
m UCI}/C_{\scriptscriptstyle
m UCI}
floor$,where

- Cuci 是根据 5.2.1 确定的 UCI 代码块的数量;
- N_L 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序;
- $E_{\text{UCI}} = N_L \cdot Q'_{\text{ACK}} \cdot Q_m$.

速率匹配后的输出比特序列表示为 $f_{r_0}, f_{r_1}, f_{r_2}, ..., f_{r(E_r-1)}$ where E_r 是代码块编号中速率匹配输出序列的长度 r .

6.3.2.4.1.2 CSI 第 1 部分

for 具有 UL-SCH的 PUSCH上的 CSI第1部分传输,CSI部分1传输的每层的编码调制符号的数量,表示为 $Q'_{\text{CSI-part1}}$,确定如下:

$$Q_{\text{CSI-1}}' = \min \left\{ \begin{bmatrix} \left(O_{\text{CSI-1}} + L_{\text{CSI-1}} \right) \cdot \beta_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ \sum_{r=0}^{C_{\text{UL-SCH}} - l} K_r \end{bmatrix}, \left[\alpha \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} M_{\text{sc}}^{\text{UCI}}(l) \right] - Q_{\text{ACK}}' \right\}$$

where

- O_{CSI-1} 是 CSI 第 1 部分的位数;
- if $O_{\text{CSL-1}} \ge 360$, $L_{\text{CSL-1}} = 11$; 除此以外 $L_{\text{CSL-1}}$ 是根据 6. 3. 1. 2. 1 确定的 CSI 部分 1 的 CRC 比特数;

58

- $oldsymbol{eta}_{ ext{offset}}^{ ext{PUSCH}} = oldsymbol{eta}_{ ext{offset}}^{ ext{CSI-part1}};$
- $C_{\text{LIL-SCH}}$ 是 PUSCH 传输的 UL-SCH 的码块数;
- 如果调度 PUSCH 传输的 DCI 格式包括指示 UE 不发送的 CBGTI 字段 r 第代码块。 K_r = 0; 除此以外。 K_r 是个 r - PUSCH 传输的 UL-SCH 的码块大小;
- $M_{\rm sc}^{\rm PUSCH}$ 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{sc}^{\text{PT-RS}}(l)$ 是 0FDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;
- $Q'_{
 m ACK}$ 是如果 m HARQ-ACK 信息比特的数量大于 2,则在 m PUSCH 上发送的 m HARQ-ACK 的每层的编码调制符号 的数量,并且 $Q'_{
 m ACK} = \sum_{
 m sc, rvd}^{
 m N_{symb,all}-1} ar{M}_{
 m sc, rvd}^{
 m ACK}(l)$ 如果 ${
 m HARQ-ACK}$ 信息比特的数量不超过 2 比特,则其中 $ar{M}_{
 m sc,\,rvd}^{
 m ACK}(l)$ 是用于 0FDM 符号中的潜在 HARQ-ACK 传输的预留资源单元的数量 l,为 $l=0,1,2,...,N_{\text{symb,all}}^{\text{PUSCH}}-1$,在 PUSCH 传输中,在 6.2.7 中定义;
- $M_{
 m sc}^{
 m UCI}(l)$ 是可用于在 OFDM 符号中传输 UCI 的资源单元的数量 l ,为 $l=0,1,2,...,N_{
 m symb,all}^{
 m PUSCH}$ -1 ,在 PUSCH 传输和 $N_{\text{symball}}^{\text{PUSCH}}$ 是 PUSCH 的 0FDM 符号的总数,包括用于 DMRS 的所有 0FDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{\rm sc}^{\rm UCI}(l)=0$;
 - for 任何不携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{\rm sc}^{\rm PUSCH}(l) = M_{\rm sc}^{\rm PUSCH} M_{\rm sc}^{\rm PT-RS}(l)$;
- α 由更高层参数缩放配置。

for 没有 UL-SCH 的 PUSCH 上的 CSI 第 1 部分传输,CSI 部分 1 传输的每层的编码调制符号的数量,表示为 $Q'_{ ext{CSI-part1}}$,确定如下:

如果在 PUSCH 上发送 CSI 第 2 部分,

$$Q'_{\text{CSI-1}} = \min \left\{ \left\lceil \frac{\left(O_{\text{CSI-1}} + L_{\text{CSI-1}}\right) \cdot \boldsymbol{\beta}_{\text{offset}}^{\text{PUSCH}}}{R \cdot Q_m} \right\rceil, \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - l} \boldsymbol{M}_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}} \right\}$$

else

$$Q'_{\text{CSI-1}} = \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}}$$

end if

where

- O_{CSL1} 是 CSI 第 1 部分的位数;

- if $O_{\text{CSI-1}} \ge 360$, $L_{\text{CSI-1}} = 11$; 除此以外 $L_{\text{CSI-1}}$ 是根据 6. 3. 1. 2. 1 确定的 CSI 部分 1 的 CRC 比特数;
- $\beta_{\text{offset}}^{\text{PUSCH}} = \beta_{\text{offset}}^{\text{CSI-part1}};$
- $M_{\text{sc}}^{\text{PUSCH}}$ 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{\rm sc}^{\rm PT-RS}(l)$ 是 0FDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;
- $Q'_{
 m ACK}$ 是如果 ${
 m HARQ-ACK}$ 信息比特的数量大于 2,则在 ${
 m PUSCH}$ 上发送的 ${
 m HARQ-ACK}$ 的每层的编码调制符号 的数量,并且 $Q'_{
 m ACK} = \sum_{l=0}^{N_{
 m Symbol}} ar{M}_{
 m sc,\,rvd}^{
 m ACK}(l)$ 如果 ${
 m HARQ-ACK}$ 信息比特的数量不超过 2 比特,则其中 $ar{M}_{
 m sc,\,rvd}^{
 m ACK}(l)$ 是用于 0FDM 符号中的潜在 HARQ-ACK 传输的预留资源单元的数量 l,为 $l = 0, 1, 2, ..., N_{\text{symb,all}}^{\text{PUSCH}} - 1$,在 PUSCH 传输中,在 6.2.7 中定义;
- $M_{\text{sc}}^{\text{UCI}}(l)$ 是可用于在 0FDM 符号中传输 UCI 的资源单元的数量 l,为 $l=0,1,2,...,N_{\text{symb,all}}^{\text{PUSCH}}-1$,在 PUSCH 传输和 $N_{\text{symball}}^{\text{PUSCH}}$ 是 PUSCH 的 OFDM 符号的总数,包括用于 DMRS 的所有 OFDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = 0$;
 - for 任何不携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$;
- Q_m 是 PUSCH 的调制顺序。

速率匹配的输入比特序列是 $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, ..., d_{r(N_r-1)}$ where r 是代码块编号,和 N_r 是代码块编号中的编码 位数 r.

通过设置根据子条款 5.4.1 执行速率匹配 $I_{\scriptscriptstyle BLL}=1$ 和速率匹配输出序列长度 $E_{\scriptscriptstyle r}=\lfloor E_{\scriptscriptstyle
m UCI} \ / \ C_{\scriptscriptstyle
m UCI} \
floor$,where

- Cuci 是根据 5.2.1 确定的 UCI 代码块的数量;
- N_L 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序;
- $E_{\text{UCI}} = N_L \cdot Q'_{\text{CSL1}} \cdot Q_m$.

速率匹配后的输出比特序列表示为 $f_{r0},f_{r1},f_{r2},...,f_{r(E_r-1)}$ where E_r 是代码块编号中速率匹配输出序列的长度 r.

CSI 第2部分 6.3.2.4.1.3

for 具有 UL-SCH 的 PUSCH上的 CSI 第2部分传输,CSI 部分2传输的每层的编码调制符号的数量,表示为 $Q'_{ ext{CSI-part2}}$,确定如下:

$$Q_{\text{CSI-2}}' = \min \left\{ \begin{bmatrix} \left(O_{\text{CSI-2}} + L_{\text{CSI-2}}\right) \cdot \beta_{\text{offset}}^{\text{PUSCH}} \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \\ \vdots \\ C_{\text{UL-SCH}}^{-1} - 1 \\ \sum_{r=0}^{C_{\text{UL-SCH}} - 1} K_r \end{bmatrix}, \begin{bmatrix} \alpha \cdot \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) \end{bmatrix} - Q_{\text{ACK}}' - Q_{\text{CSI-1}}' \end{bmatrix} \right\}$$

where

- O_{CSI-2} 是 CSI 第 2 部分的位数;
- if $O_{\text{CSI-2}} \geq 360$, $L_{\text{CSI-2}} = 11$; 除此以外 $L_{\text{CSI-2}}$ 是根据 6.3.1.2.1 确定的 CS I 部分 2 的 CRC 比特数 ;
- $oldsymbol{eta}_{
 m offset}^{
 m PUSCH} = oldsymbol{eta}_{
 m offset}^{
 m CSI-part2}$;
- $C_{\text{UL-SCH}}$ 是 PUSCH 传输的 UL-SCH 的码块数;
- 如果调度 PUSCH 传输的 DCI 格式包括指示 UE 不发送的 CBGTI 字段 r 第代码块, K_r = 0; 除此以外, K_r 是个 r - PUSCH 传输的 UL-SCH 的码块大小;
- $M_{\mathrm{sc}}^{\mathrm{PUSCH}}$ 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{\text{co}}^{\text{PT-RS}}(l)$ 是 OFDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;
- $Q'_{
 m ACK}$ 是如果 m HARQ-ACK 信息比特的数量大于 2,则在 m PUSCH 上发送的 m HARQ-ACK 的每层的编码调制符号 的数量,并且 $Q'_{\mathrm{ACK}}=0$ 若 $\mathrm{HARQ-ACK}$ 信息比特数为 1 或 2 比特;
- $Q'_{\text{CSI-1}}$ 是在 PUSCH 上发送的 CSI 部分 1 的每层编码调制符号的数量;
- $M_{\rm sc}^{\rm UCI}(l)$ 是可用于在 0FDM 符号中传输 UCI 的资源单元的数量 l ,为 $l=0,1,2,...,N_{
 m symb,all}^{
 m PUSCH}$ -1 ,在 PUSCH 传输和 $N_{\text{symball}}^{\text{PUSCH}}$ 是 PUSCH 的 0FDM 符号的总数,包括用于 DMRS 的所有 0FDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = 0$;
 - for 任何不携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$.
- α 由更高层参数缩放配置。

for 没有 UL-SCH 的 PUSCH 上的 CSI 第2部分传输, CSI部分2传输的每层的编码调制符号的数量,表示为 $Q'_{ ext{CSI-part2}}$,确定如下:

$$Q'_{\text{CSI-2}} = \sum_{l=0}^{N_{\text{symb,all}}^{\text{PUSCH}} - 1} M_{\text{sc}}^{\text{UCI}}(l) - Q'_{\text{ACK}} - Q'_{\text{CSI-1}}$$

where

- M_{sc}^{PUSCH} 是 PUSCH 传输的预定带宽,表示为多个子载波;
- $M_{\text{sc}}^{\text{PT-RS}}(l)$ 是 0FDM 符号中的子载波的数量 l 在 PUSCH 传输中携带 PTRS;

- $Q'_{
 m ACK}$ 是如果 ${
 m HARQ-ACK}$ 信息比特的数量大于 2,则在 ${
 m PUSCH}$ 上发送的 ${
 m HARQ-ACK}$ 的每层的编码调制符号 的数量,并且 $Q'_{ACK} = 0$ 若 HARQ-ACK 信息比特数为 1 或 2 比特;
- Q'_{CSL1} 是在 PUSCH 上发送的 CSI 部分 1 的每层编码调制符号的数量;
- $M_{sc}^{UCI}(l)$ 是可用于在 0FDM 符号中传输 UCI 的资源单元的数量 l,为 $l=0,1,2,...,N_{symbol}^{PUSCH}-1$,在 PUSCH 传输和 $N_{\text{symbol}}^{\text{PUSCH}}$ 是 PUSCH 的 OFDM 符号的总数,包括用于 DMRS 的所有 OFDM 符号;
 - for 任何携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{co}^{UCI}(l) = 0$;
 - for 任何不携带 PUSCH 的 DMRS 的 OFDM 符号, $M_{sc}^{UCI}(l) = M_{sc}^{PUSCH} M_{sc}^{PT-RS}(l)$.

速率匹配的输入比特序列是 $d_{r_0},d_{r_1},d_{r_2},d_{r_3},...,d_{r(N-1)}$ where r 是代码块编号,和 N_r 是代码块编号中的编码 位数 r.

通过设置根据子条款 5.4.1 执行速率匹配 $I_{BLL}=1$ 和速率匹配输出序列长度 $E_r=\lfloor E_{\mathrm{UCI}}/C_{\mathrm{UCI}} \rfloor$, where

- C_{UCI} 是根据 5.2.1 确定的 UCI 代码块的数量;
- N, 是 PUSCH 的传输层数;

- Q_m 是 PUSCH 的调制顺序; $= E_{\text{UCI}} = N_L \cdot Q'_{\text{CSI,2}} \cdot Q_m \cdot$ 速率匹配后的输出比特序列表示为 $f_{\text{CO}} \cdot f_{\text{CE},-1}$ where E_r 是代码块编号中速率匹配输出序列的长度 r . 中文翻译:

6.3.2.4.2

UCI 由短码的信道编码来完成编码

6.3.2.4.2.1 HARQ-ACK

for 具有 UL-SCH 的 PUSCH上的 HARQ-ACK 传输,用于 HARQ-ACK 传输的每层的编码调制符号的数量,表示为 $Q'_{
m ACK}$,根据 6.3.2.4.1.1 的规定,通过设置 CRC 位的数量来确定 L=0 .

速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$

通过设置速率匹配输出序列长度,根据子条款 5.4.3 执行速率匹配 $E = N_L \cdot Q'_{ACK} \cdot Q_m$, where

- N_L 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序。

速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{E-1}$

6.3.2.4.2.2 CSI 第1部分

for 具有 UL-SCH 的 PUSCH 上的 CSI 第 1 部分传输,CSI 部分 1 传输的每层的编码调制符号的数量,表示为 $Q'_{
m CSLI}$,根据 6.3.2.4.1.2 的规定,通过设置 CRC 位的数量来确定 L=0 .

通过设置速率匹配输出序列长度,根据子条款 5.4.3 执行速率匹配 $E = N_L \cdot Q'_{CSU} \cdot Q_m$, where

- N, 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序。

速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{E-1}$

6.3.2.4.2.3 CSI 第 2 部分

具有 UL-SCH 的 PUSCH 上的 CSI 第 2 部分传输,CSI 部分 2 传输的每层的编码调制符号的数量,表示为 $Q'_{\rm CSI,2}$,根据 6.3.2.4.1.3 的规定,通过设置 CRC 位的数量来确定 L=0.

62

通过设置速率匹配输出序列长度,根据子条款 5.4.3 执行速率匹配 $E=N_L\cdot Q'_{\text{CSL2}}\cdot Q_m$, where

- N_L 是 PUSCH 的传输层数;
- Q_m 是 PUSCH 的调制顺序。

速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{E-1}$

6.3.2.5 代码块连接

代码块级联根据子条款 6.3.1.5 执行,但值的除外 E_{UCI} and C_{UCI} 在 6.3.2.4.1 中给出。

6.3.2.6 将编码的 UCI 比特多路复用到 PUSCH

根据子条款 6.2.7 中的过程将编码的 UCI 比特多路复用到 PUSCH 上。

tongxin5g)

7 下行链路传输信道和控制信息

7.1 广播信道

数据以每80ms 最多一个传输块的形式到达编码单元。 可以识别以下编码步骤:

- 有效负载生成
- 扰码
- 传输块 CRC 附件
- 信道编码
- 速率匹配

7.1.1 PBCH 有效负载牛成

表示传送到第 1 层的传输块中的位 $\overline{a}_0,\overline{a}_1,\overline{a}_2,\overline{a}_3,...,\overline{a}_{\overline{A}-1}$, where \overline{A} 是更高层生成的有效负载大小。 最低位信息位 \overline{a}_0 被映射到传输块的最高有效位,如[8, TS 38.321]的子条款[6.1.4]中所定义。

生成以下附加定时相关的 PBCH 有效载荷比特 $\overline{a}_{ar{A}},\overline{a}_{ar{A}+1},\overline{a}_{ar{A}+2},\overline{a}_{ar{A}+3},...,\overline{a}_{ar{A}+7}$,其中:

- $\overline{a}_{\overline{A}}$, $\overline{a}_{\overline{A}+1}$, $\overline{a}_{\overline{A}+2}$, $\overline{a}_{\overline{A}+3}$ 分别是 SFN 的 $4^{\, \Box}$, $3^{\, \Box}$, $2^{\, \Box}$ 和 $1^{\, \Box}$ LSB;
- $\overline{a}_{\overline{A}+4}$ 是半帧位 \overline{a}_{HRF} ;
- $if L_{SSB} = 64$

 $\overline{a}_{\overline{A}+5},\overline{a}_{\overline{A}+6},\overline{a}_{\overline{A}+7}$ 分别是 SS / PBCH 块索引的 6 $^{\rm H}$, 5 $^{\rm H}$ 和 4 $^{\rm H}$ 比特。

else

 \bar{a}_{4+5} 是 MSB $k_{\rm SSB}$ 如[4, TS 38.211]第 7.4.3.1 节所定义。

 $\overline{a}_{\overline{4}+6}$, $\overline{a}_{\overline{4}+7}$ 保留。

end if

 $\label{eq:jssb} \dot{\bot} \quad A = \overline{A} + 8 \, ; \ j_{\rm SFN} = 0 \, ; \ j_{\rm HRF} = 10 \, ; \ j_{\rm SSB} = 11 \, ; \ j_{\rm other} = 14 \, ;$

for i = 0 to A - 1

if \bar{a}_i 是一个 SFN 位

 $a_{G(j_{SFN})} = \overline{a}_i$;

elseif $\overline{A} + 5 \le i \le \overline{A}$ + 都 $i = \infty$

 $a_{G(j_{\text{SSB}})} = \overline{a}_i;$

 $j_{\rm SSB} = j_{\rm SSB} + 1;$

else

 $a_{G(j_{\text{Other}})} = \overline{a}_i$;

 $j_{\text{Other}} = j_{\text{Other}} + 1$;

end if

end for

where L_{SSB} 是根据[5, TS38. 213]的子条款 4. 1 的半帧中候选 SS / PBCH 块的数量,以及 G(j) 由表 7. 1. 1-1 给出。

表7.1.1-1: PBCH有效载荷交织器模式的值 G(j)

j	G(j)	j	G(j)	j	G(j)	j	G(j)	j	G(j)	j	G(j)	j	G(j)	j	G(j)
0	16	4	8	8	24	12	3	16	9	20	14	24	21	28	27
1	23	5	30	9	7	13	2	17	11	21	15	25	22	29	28
2	18	6	10	10	0	14	1	18	12	22	19	26	25	30	29
3	17	7	6	11	5	15	4	19	13	23	20	27	26	31	31

7.1.2 扰码

帧中的 PBCH 传输,比特序列 $a_0, a_1, a_2, a_3, ..., a_{A-1}$ 被扰乱成一个序列 $a'_0, a'_1, a'_2, a'_3, ..., a'_{A-1}$, where $a'_i = (a_i + s_i) \mod 2$ for i = 0,1,...,A-1 and $s_0, s_1, s_2, s_3,...,s_{A-1}$ 根据以下内容生成:

i = 0;

j = 0;

while i < A

if a_i 对应于属于 SS / PBCH 块索引, 半帧索引以及系统帧号的 2^{10} 和 3^{10} 最低有效位的任何一个比特

 $S_i = 0$.

else

 $s_i = c(j + vM).$

j = j + 1;

end if

i = i + 1;

mod(SFN,8)=0; M=A-3 for L=4 或 L=8, 和 M=A-6 for L=64, where L 是根据[5, TS38.213]的子条款 4.1 的半帧中候选 SS / PBCH 块的数量; and v 根据表 7.1.2-1 确定使用其中发送 PBCH 的 SFN 的 3RD和 2NDLSB。 新了

表7.1.2-1: 的价值 v 用于PBCH加扰

(3) ND SFN 台 LSB, SFN 台 2 ND LSB)	的价值 V
(0, 0)	0
(0, 1)	1
(1, 0)	2
(1, 1)	3

传输块 CRC 附件 7.1.3

通过循环冗余校验 (CRC) 在 BCH 传输块上提供错误检测。

整个传输块用于计算 CRC 奇偶校验位。 输入比特序列用表示 $a'_0, a'_1, a'_2, a'_3, ..., a'_{A-1}$ 和奇偶校验位 $p_0, p_1, p_2, p_3, ..., p_{L-1}$, where A 是有效载荷大小和 L 是奇偶校验位的数量。

根据子条款 5.1 通过设置计算奇偶校验位并将其附加到 BCH 传输块 L 到 24 位并使用生成多项式 $g_{cross}(D)$, 导致序列 $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B = A + L.

比特序列 $b_0, b_1, b_2, b_3, ..., b_{B-1}$ 是输入比特序列 $c_0, c_1, c_2, c_3, ..., c_{K-1}$ 到信道编码器,在 where $c_i = b_i$ for i = 0, 1, ..., B-1 and K = B.

7.1.4 信道编码

信息比特被传送到信道编码块。 他们用表示 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是比特数,它们通过设置根据子条款 5.3.1 通过极化编码进行编码 $n_{\max}=9$, $I_{LL}=1$, $n_{PC}=0$,和 $n_{PC}^{wm}=0$.

在编码之后,比特用表示 $d_0,d_1,d_2,d_3,...,d_{N-1}$,where N 是编码位的数量。

7.1.5 速率匹配

速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$.

速率匹配输出序列长度 E = 864.

通过设置根据子条款 5.4.1 执行速率匹配 $I_{RH}=0$.

速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{F_a}$

7.2 下行链路共享信道和寻呼信道

7.2.1 传输块 CRC 附件

通过循环冗余校验 (CRC) 在每个传输块上提供错误检测。

整个传输块用于计算 CRC 奇偶校验位。 表示传送到第 1 层的传输块中的位 $a_0,a_1,a_2,a_3,...,a_{d-1}$ 和奇偶校验位 $p_0,p_1,p_2,p_3,...,p_{L-1}$,where A 是有效载荷大小和 L 是奇偶校验位的数量。 最低位信息位 a_0 被映射到传输块的最高有效位,如[TS38.321]的子条款 6.1.1 中所定义。

根据子条款 5.1,通过设置来计算奇偶校验比特并将其附加到 DL-SCH 传输块 L 到 24 位并使用生成多项式 $g_{\text{CRCP4A}}(D)$ if A>3824;并通过设置 L 到 16 位并使用生成多项式 $g_{\text{CRCP4A}}(D)$ 除此以外。

CRC 附着后的位用表示 $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B = A + L.

7.2.2 LDPC 因子图选择

用于具有编码率的传输块的初始传输 R 由 MCS 索引根据[6, TS 38.214]中的子条款 5.1.3.1 指示并随后重新传输相同的传输块,传输块的每个代码块根据以下内容用 LDPC 因子图 1 或 2 编码:

- if $A \le 292$, elseif $A \le 3824$ and $R \le 0.67$, elseif $R \le 0.25$, 使用 LDPC 因子图 2;
- 否则, 使用 LDPC 因子图 1,

where A 是 7.2.1 中的有效载荷大小。

7.2.3 代码块分段和代码块 CRC 附件

输入到代码块分段的比特表示为 $b_0,b_1,b_2,b_3,...,b_{B-1}$ where B 是传输块中的位数 (包括 CRC)。

根据子条款 5.2.2 执行代码块分段和代码块 CRC 附加。

代码块分割后的位用表示 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$, where r 是代码块编号和 K_r 是代码块编号的位数 r 根据 5.2.2 的规定。

7.2.4 信道编码

代码块被传送到信道编码块。 代码块中的位用表示 $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$, where r 是代码块编号,和 K_r 是代码块编号中的位数 r 。 代码块的总数用表示 C 每个代码块根据 5.3.2 的规定单独进行 LDPC 编码。

在编码之后,比特用表示 $d_{r_0}, d_{r_1}, d_{r_2}, d_{r_3}, \dots, d_{r(N-1)}$,其中的价值观 N_r 在 5.3.2 中给出。

7.2.5 谏率匹配

每个代码块的编码位,表示为 $d_{r0},d_{r1},d_{r2},d_{r3},...,d_{r(N_r-1)}$,被送到费率匹配区,在 where r 是代码块编号,和 N_{\perp} 是代码块编号中的编码位数 r 。 代码块的总数用表示 C 每个代码块按照 5.4.2 的设置单独进行速率匹 $I_{IBRM} = 1$.

66

在速率匹配之后,比特用表示 $f_{r_0},f_{r_1},f_{r_2},f_{r_3},...,f_{r(E,-1)}$,where E_r 是代码块编号的速率匹配位数 r.

7.2.6 代码块连接

码块级联块的输入比特序列是序列 $f_{r0}, f_{r1}, f_{r2}, f_{r3}, ..., f_{r(E-1)}$, 为 r=0,...,C-1 在 where E_r 是速率匹配位的数 量 r - 代码块。

根据子条款 5.5 执行代码块级联。

代码块级联后的位用表示 $g_0,g_1,g_2,g_3,...,g_{G-1}$, where G 是传输的编码比特总数。

下行链路控制信息 7.3

DCI 利用一个 RNTI 传输一个或多个小区的下行链路控制信息。

可以识别以下编码步骤:

回編码 - 速率匹配 文 都 译: 5 G 通信 3 1

DCI 格式 7.3.1

支持表 7.3.1-1 中定义的 DCI 格式。

表 7.3.1-1: DCI 格式

DCI 格式	用法
0_0	在一个小区中调度 PUSCH
0_1	在一个小区中调度 PUSCH
1_0	在一个小区中调度 PDSCH
1_1	在一个小区中调度 PDSCH
2_0	通知一组 UE 的时隙格式
2_1	向 UE 群组通知 UE 可以假设没有传输的 PRB 和 OFDM 符号旨在用于 UE
2_2	用于 PUCCH 和 PUSCH 的 TPC 命令的传输
2_3	由一个或多个 UE 传输用于 SRS 传输的一组 TPC 命令

以下 DCI 格式中定义的字段映射到信息位 a_0 to a_{A-1} 如下。

每个字段按照它在描述中出现的顺序进行映射,包括零填充位(如果有),第一个字段映射到最低位信息位 a_0 每个连续的字段映射到更高阶的信息比特。 每个字段的最高有效位映射到该字段的最低位信息位,例如, 第一个字段的最高有效位映射到 a_0 .

如果 DCI 格式中的信息比特数小于 12 比特,则应将零附加到 DCI 格式,直到有效载荷大小等于 12。

67

用干调度 PUSCH 的 DCI 格式 7.3.1.1

7.3.1.1.1 格式00

DCI 格式 0_0 用于在一个小区中调度 PUSCH。

通过 DCI 格式 0_0 发送以下信息, 其中 CRC 由 C-RNTI 或 CS-RNTI 或 new-RNTI 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 0,表示 UL DCI 格式
- 频域资源分配 $\left[\log_2(N_{RR}^{UL,BWP}(N_{RR}^{UL,BWP}+1)/2)\right]$ 位在 where
 - NUL,BWP 在 UE 特定搜索空间中监视 DCI 格式 0_0 并且满足的情况下,是活动 UL 带宽部分的大小
 - for 小区,每个时隙监视的不同 DCI 大小的总数不超过 4 个
 - for 小区,每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3
 - 除此以外, NyllyBWP 是初始 UL 带宽部分的大小。
 - for 资源分配类型为 1 的 PUSCH 跳跃:
 - $N_{\text{UL hop}}$ MSB 比特用于根据[6, TS 38.214]的子条款 6.3 来指示频率偏移,其中 $N_{\text{UL hop}}$ =1 如果较 高层参数 frequencyHoppingOffsetLists 包含两个偏移值和 Nurshin 12 如果较高层参数 frequencyHoppingOffsetLists包含四个偏移值
 - $\lceil \log_2(N_{\rm RB}^{\rm UL,BWP}(N_{\rm RB}^{\rm UL,BWP}+1)/2) \rceil + N_{\rm UL,hop}$ 比特根据[6, TS 38.214]的6.1.2.2.2的子条款提供频域 资源分配采加辛
 - for 资源分配类型为 1 的非 PUSCH 跳跃:
 - $\left[\log_{2}(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$ 比特根据[6, TS 38.214]的 6.1.2.2.2 的子条款提供频域资源分配
- 时域资源分配 [6, TS 38.214] 第 6.1.2.1 节中定义的 4 比特
- 跳频标志 1位。
- 调制和编码方案 [6, TS 38.214]的 6.1.3 中定义的 5 比特
- 新数据指标 1 位
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位
- HARQ 进程号 4 位
- 用于调度的 PUSCH 的 2 个 TPC 命令 在[5, TS 38.213]的子条款 7.1.1 中定义的 2 比特
- 填充位,如果需要。
- UL / SUL 指示符 for 在表 7.3.1.1.1-1 中定义的小区中配置有 SUL 的 UE, 1 比特, 填充前 DCI 格式 1_0 的比特数大于填充前 DCI 格式 0_0 的比特数;否则为 0 位。 UL / SUL 指示符 (如果存在) 位于填 充比特之后的 DCI 格式 0_0 的最后比特位置。
 - 如果UL / SUL 指示符以 DCI 格式 0 0 存在并且在UL 和 SUL 上未配置更高层参数 pusch-Config. 则 UE 忽略 DCI 格式 0_0 中的 UL / SUL 指示符字段,以及由 DCI 调度的相应 PUSCH。格式 0_0 用于配置 高层参数 pucch-Config 的 UL 或 SUL;

- 如果 UL / SUL 指示符不存在于 DCI 格式 0_0 中,则由 DCI 格式 0_0 调度的对应 PUSCH 用于配置了高 层参数 pucch-Config 的 UL 或 SUL。

68

以下信息通过 DCI 格式 0 0 传输, CRC 由 TC-RNT I 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 0,表示 UL DCI 格式
- 频域资源分配 $-\left[\log_{2}(N_{\text{PR}}^{\text{UL,BWP}}(N_{\text{PR}}^{\text{UL,BWP}}+1)/2)\right]$ 位在 where
 - NULBWP 是初始 UL 带宽部分的大小。
 - for 资源分配类型为 1 的 PUSCH 跳跃:
 - $N_{\text{UL hop}}$ MSB 比特用于根据[6, TS 38.214]的子条款 6.3 来指示频率偏移,其中 $N_{\text{UL hop}}$ =1 if $N_{\rm pp}^{\rm UL,BWP} < 50$ and $N_{\rm UL\ hop} = 2$ 除此以外
 - [log₂(N_{RB}^{UL,BWP}(N_{RB}^{UL,BWP}+1)/2)] N_{UL hop} 比特根据[6, TS 38.214]的 6.1.2.2.2 的子条款提供频域 资源分配
 - for 资源分配类型为 1 的非 PUSCH 跳跃:
 - $[\log_2(N_{\text{BB}}^{\text{UL,BWP}}(N_{\text{BB}}^{\text{UL,BWP}}+1)/2)]$ 比特根据[6, TS 38.214]的 6.1.2.2.2 的子条款提供频域资源分配 tongxin5g
- 时域资源分配 [6, TS 38.214] 第 6.1.2.1 节中定义的 4 比特
- 跳频标志 1位。
- 调制和编码方案 [6, TS 38.214]的 6.1.3 中定义的 5 比特,使用表 5.1.3.1-1
- 新数据指示器 1位,保留
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位
- HARQ 进程号 4位, 保留
- 用于调度的 PUSCH的 2 个 TPC 命令 在[5, TS 38.213]的子条款 7.1.1 中定义的 2 比特
- 填充位,如果需要。
- UL / SUL 指示符 如果小区具有两个 UL,则 1 比特,并且填充之前 DCI 格式 1 0 的比特数大于填充之 前 DCI 格式 0_0 的比特数: 否则为 0 位。 UL / SUL 指示符 (如果存在) 位于填充比特之后的 DCI 格式 0 0 的最后比特位置。
 - 如果 1 比特,保留,并且相应的 PUSCH 总是在与先前相同 TB 的传输相同的 UL 载波上

如果在公共搜索空间中监视 DCI 格式 0 0 并且如果在填充之前 DCI 格式 0 0 中的信息比特数小于在公共搜索空 间中监视用于调度相同服务小区的 DCI 格式 1_0 的有效载荷大小,则零被附加到 DCI 格式 0_0,直到有效载荷 大小等于 DCI 格式 1_0 的大小。

如果在公共搜索空间中监视 DCI 格式 0 0 并且如果在填充之前 DCI 格式 0 0 中的信息比特的数量大于在公共搜 索空间中监视的用于调度相同服务小区的 DCI 格式 1 0 的有效载荷大小,则比特宽度通过截断前几个最高有效 位使 DCI 格式 0_0 的大小等于 DCI 格式 1_0 的大小来减少 DCI 格式 0_0 中的频域资源分配字段。

如果在 UE 特定搜索空间中监视 DCI 格式 0 0 但是不满足以下中的至少一个

- 对于 小区,每个时隙监视的不同 DCI 大小的总数不超过 4 个

- 对于 小区,每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3

如果在填充之前 DCI 格式 0_0 中的信息比特数小于在公共搜索空间中监视用于调度相同服务小区的 DCI 格式 1 0 的有效载荷大小,则应将零附加到 DCI 格式 0 0 直到有效载荷大小等于 DCI 格式 1 0 的大小。

69

如果在 UE 特定搜索空间中监视 DCI 格式 0 0 但是不满足以下中的至少一个

- 对于 小区,每个时隙监视的不同 DCI 大小的总数不超过 4 个
- 对于 小区,每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3

如果在填充之前 DCI 格式 0_0 中的信息比特数大于在公共搜索空间中监视用于调度相同服务小区的 DCI 格式 1_0 的有效载荷大小,则 DCI 中频域资源分配字段的比特宽度通过截断前几个最高有效位来减少格式 0_0,使 得 DCI 格式 0_0 的大小等于 DCI 格式 1_0 的大小。

如果在 UE 特定搜索空间中监视 DCI 格式 0 0 并且满足以下两者

- 对于 小区. 每个时隙监视的不同 DCI 大小的总数不超过 4 个
- 对于 小区、每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3

如果在填充之前 DCI 格式 0_0 中的信息比特数小于在 UE 特定搜索空间中监视用于调度相同服务小区的 DCI 格 式 1 0 的有效载荷大小,则应将零附加到 DCI 格式 0 0,直到有效载荷大小等于 DCI 格式 1 0 的大小。

表7.3.1.1.1-1: UL / SUL指标

	• 176/
UL / SUL 指标的价值	上行tongX11100
0	非补充上行链路
1	本
5G	迪尔
中文翻译·	表7.3.1.1.1-2: 冗余版本

表7.3.1.1.1-2: 冗余版本

冗余版本字段的值	的价值 rv_{id} 要施加
00	0
01	1
10	2
11	3

7.3.1.1.2 格式 0 1

DCI 格式 0 1 用于在一个小区中调度 PUSCH。

通过 DCI 格式 0 1 发送以下信息,其中 CRC 由 C-RNTI 或 CS-RNTI 或 SP-CSI-RNTI 或 new-RNTI 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 0,表示 UL DCI 格式
- 载波指示符 0 或 3 比特,如[5,TS38.213]的子条款 10.1 中所定义。
- UL / SUL 指示符 对于 未在小区中配置有 SUL 的 UE 或者在小区中配置有 SUL 但在小区中仅配置 PUCCH 载波的 UE 配置用于 PUSCH 传输的 0 比特; 对于 在小区中配置了 SUL 的 UE, 1 比特, 如表 7.3.1.1.1-1 中所定义。
- 带宽部分指示符 由 UL BWP 的数量确定的 0,1 或 2 比特 n_{BWPRRC} 由更高层配置,不包括初始 UL 带宽 部分。 该字段的位宽确定为 $\lceil \log_2(n_{\text{BWP}}) \rceil$ 位,在 where

- $n_{\text{BWP}} = n_{\text{BWP,RRC}} + 1$ if $n_{\text{BWP,RRC}} \le 3$ 在这种情况下,带宽部分指示符等于更高层参数 BWP-Id;

70

除此以外 $n_{\text{BWP}} = n_{\text{BWP,RRC}}$ 在这种情况下,带宽部分指示符在表 7.3.1.1.2-1 中定义;

如果 UE 不支持经由 DCI 的活动 BWP 改变,则 UE 忽略该比特字段。

- 频域资源分配 由以下各项确定的比特数,其中 Null BWP 是有效 UL 带宽部分的大小:
 - $N_{\rm RBG}$ 如果仅配置资源分配类型 0,则为位 $N_{\rm RBG}$ 在[6, TS 38.214]的 6.1.2.2.1 中定义,
 - $\left[\log_{2}(N_{\text{RB}}^{\text{UL,BWP}}(N_{\text{RB}}^{\text{UL,BWP}}+1)/2)\right]$ 如果仅配置资源分配类型 1,则为位,或 $\max\left(\left\lceil\log_{2}(N_{\mathrm{RB}}^{\mathrm{UL,BWP}}(N_{\mathrm{RB}}^{\mathrm{UL,BWP}}+1)/2)\right\rceil,N_{\mathrm{RBG}}\right)+1$ 如果配置了资源分配类型 0 和 1,则为位。
 - 如果配置了资源分配类型0和1,则MSB比特用于指示资源分配类型0或资源分配类型1,其中比特 值0表示资源分配类型0,比特值1表示资源分配类型1。
 - 对于 资源分配类型 0, N_{BBG} LSB 提供[6, TS 38.214]的 6.1.2.2.1 中定义的资源分配。
 - 对于 资源分配类型 1, $\left[\log_2(N_{\text{RB}}^{\text{UL},\text{BWP}}(N_{\text{RB}}^{\text{UL},\text{BWP}}+1)/2)\right]$ LSB 提供如下资源分配:
 - 对于 资源分配类型为 1 的 PUSCH 跳跃:
 - $N_{\text{UL_hop}}$ MSB 比特用于根据[6, TS 38.214]的子条款 6.3 来指示频率偏移,其中 $N_{\text{UL_hop}}=1$ 如 果较高层参数 frequencyHoppingOffsetLists 包含两个偏移值和 $N_{\rm UL_hop}=2$ 如果较高层参数 frequencyHoppingOffsetLists包含四个偏移值
 - [log₂(N_{RB}^{UL,BWP}(N_{RB}^{UL,BWP}+1)/2)] N_{UL hop} 比特根据[6, TS 38.214]的6.1.2.2.2的子条款提供频
 - 对于 资源分配类型为 1 的非 PUSCH 跳跃:
 - log₂(N_{RB}^{UL,BWP}(N_{RB}^{UL,BWP}+1)/2) 比特根据[6, TS 38.214]的6.1.2.2.2的子条款提供频域资源
 - 如果"带宽部分指示符"字段指示除活动带宽部分之外的带宽部分并且如果资源分配类型 0 和 1 都被配 置用于所指示的带宽部分,则 UE 假定用于所指示的带宽部分的资源分配类型 0(如果位宽)有效带 宽部分的"频域资源分配"字段小于所指示带宽部分的"频域资源分配"字段的位宽。
- 时域资源分配 [6, TS38.214]的子条款 6.1.2.1 中定义的 0,1,2,3 或 4 位。 该字段的位宽确定为 [log,(I)] bits, 其中我是更高层参数 pusch-AllocationList 中的条目数。
- 跳频标志 0或1位:
 - 如果仅配置资源分配类型 0 或未配置更高层参数 frequencyHopping,则为 0 位;
 - 根据表 7.3.1.1.2-34 的 1 比特, 否则, 仅适用于资源分配类型 1, 如[6, TS 38.214]的 6.3 中所定 义。
- 调制和编码方案 [6, TS 38.214] 第 6.1.4.1 节中定义的 5 位
- 新数据指标 1位
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位
- HARQ 进程号 4 位
- 1st下行链路指配索引 1或2位:

- 1 位用于半静态 HARQ-ACK 码本;
- 2比特用于动态 HARQ-ACK 码本。
- 2[™]下行链路指配索引 0 或 2 位:
 - 2个比特用于具有两个 HARQ-ACK 子码本的动态 HARQ-ACK 码本;
 - 否则为 0 位。
- 用于调度 PUSCH 的 TPC 命令 在[5, TS38.213]的子条款 7.1.1 中定义的 2 比特
- SRS 资源指标 $-\left|\log_2\left(\sum_{k=1}^{\min\{L_{\max},N_{\text{SRS}}\}}\binom{N_{\text{SRS}}}{k}\right)\right|$ 或 $\left[\log_2(N_{\text{SRS}})\right]$ 位,在 where N_{SRS} 是与值'codeBook'或 'nonCodeBook'的更高层参数使用关联的 SRS 资源集中已配置的 SRS 资源的数量,以及 $\it L_{max}^{PUSCH}$ 是 PUSCH 支持的最大层数。

- $\left[\log_2\left(\sum_{k=1}^{\min\{L_{\max}^{PUSCH},N_{SRS}\}}\binom{N_{SRS}}{k}\right)\right]$ 根据表 7. 3. 1. 1. 2-28 / 29/30/31 的比特,如果更高层参数 txConfig= nonCodebook, 其中 $N_{
 m SRS}$ SRS 资源集中配置的 SRS 资源数与值"nonCodeBook"的更高层参数使用 率相关联:
- $\lceil \log_2(N_{\text{SRS}}) \rceil$ 根据表 7.3.1.1.2-32 的比特,如果更高层参数 $\operatorname{txConfig} = \operatorname{codebook}$,其中 N_{SRS} 是 与值'codeBook'的更高层参数使用关联的 SRS 资源集中已配置的 SRS 资源的数量是
- 预编码信息和层数 由以下因素确定的位数:
 - 如果更高层参数 txConfig = nonCodeBook, 则为 0位;
 - 1个天线端□为0比特,高层参数为txConfig = codebook;
 - 4,5或6位根据表 7.3.1.1.2-2为 4 个天线端□,如果 txConfig = codebook,则根据更高层参数的 值 transformPrecoder, maxRank 和 codebookSubset;
 - 根据表 7.3.1.1.2-3 中的 2,4 或 5位用于 4 个天线端□,如果 txConfig = codebook,则根据更高层 参数的值 transformPrecoder, maxRank 和 codebookSubset;
 - 2 或 4 比特根据表 7.3.1.1.2-4 为 2 个天线端口, 如果 txConfig = codebook, 则根据高层参数 maxRank 和 codebookSubset 的值;
 - 根据表 7.3.1.1.2-5 为 2 个天线端口的 1 或 3 比特,如果 txConfig = codebook,则根据更高层参数 maxRank和 codebookSubset的值。
- 天线端口 由以下各项确定的位数
 - 表 7.3.1.1.2-6 定义的 2 比特,如果 transformPrecoder = enabled,则 dmrs-Type = 1, maxLength = 1;
 - 表 7.3.1.1.2-7 定义的 4 比特,如果 transformPrecoder = enabled,则 dmrs-Type = 1,
 - 表 7.3.1.1.2-8 / 9/10/11 定义的 3 比特,如果 transformPrecoder = disabled, dmrs-Type = 1, maxLength = 1,则 rank的值根据SRS资源指示符字段确定如果较高层参数txConfig = nonCodebook并且根据预编码信息和层数字段,如果较高层参数 txConfig = codebook;
 - 表 7.3.1.1.2-12 / 13/14/15 定义的 4 比特,如果 transformPrecoder =禁用.dmrs-Type = 1. maxLength = 2,则根据SRS资源指示符字段确定秩的值如果较高层参数txConfig = nonCodebook 并且根据预编码信息和层数字段,如果较高层参数 txConfig = codebook;

- 表 7.3.1.1.2-16 / 17/18/19 定义的 4 比特,如果 transformPrecoder =禁用,dmrs-Type = 2,并 且 maxLength = 1, 则根据 SRS 资源指示符字段确定秩的值如果较高层参数 txConfig = nonCodebook并且根据预编码信息和层数字段,如果较高层参数 txConfig = codebook;
- 表 7.3.1.1.2-20 / 21/22/23 定义的 5 比特,如果 transformPrecoder =禁用,dmrs-Type = 2,并 且 maxLength = 2, 则根据 SRS 资源指示符字段确定秩的值如果较高层参数 txConfig = nonCodebook并且根据预编码信息和层数字段,如果较高层参数 txConfig = codebook。

表 7.3.1.1.2-6 至 7.3.1.1.2-23 中没有值 1,2 和 3 的 CDM 组的数量是指 CDM 组{0}, {0,1}和 {0 , 1,2} 分别。

如果 UE 配置有 dmrs-UplinkForPUSCH-MappingTypeA 和 dmrs-UplinkForPUSCH-MappingTypeB,则该字段 的位宽等于 $\max\{x_{\scriptscriptstyle A},x_{\scriptscriptstyle B}\}$,where $x_{\scriptscriptstyle A}$ 是根据 dmrs-UplinkForPUSCH-MappingTypeA 和派生的"天线端口" 位宽 x_B 是根据 dmrs-UplinkForPUSCH-MappingTypeB 派生的"天线端口"位宽。 一些 $|x_A-x_B|$ 如果 PUSCH 的映射类型对应于较小的值,则在该字段的 MSB 中填充零 x_{A} and x_{B} .

- SRS 请求 表 7.3.1.1.2-24 定义的 2 比特,用于未在小区中配置 SUL 的 UE;用于 UE 的 3 比特在单元 中配置 SUL, 其中第一比特是表 7.3.1.1.1-1 中定义的非 SUL / SUL 指示符, 第二和第三比特由表 7.3.1.1.2-24 定义。 该位字段还可以根据[6, TS 38.214]的子条款 6.1.1.2 指示相关联的 CSIRS。
- CSI 请求 由更高层参数 reportTriggerSize 确定的 0, 1, 2, 3, 4, 5 或 6 位。
- CBG 传输信息 (CBGTI) 由 PUSCH 的更高层参数 maxCodeBlockGroupsPerTransportBlock 确定的 0, 2, 4, 6 或 8 位。 tongxin5g)
- PTRS-DMRS 关联 比特数确定如下
 - 如果未配置 PTRS-UplinkConfig 并且 transformPrecoder =禁用, elseiftransformPrecoder =启用, 或者 maxRank = 1, 则为 0位;
 - 否则为 2 比特, 其中表 7.3.1.1.2-25 和 7.3.1.1.2-26 用于指示 PTRS 端口与 DMRS 端口之间的关联, 用于传输一个PT-RS 端口和两个PT-RS 端口和 DMRS 端口由天线端口字段指示。
- 如果"带宽部分指示符"字段指示除活动带宽部分之外的带宽部分并且针对所指示的带宽部分存在"PTRS-DMRS 关联"字段但是 for 活动带宽部分不存在,则 UE 采用"PTRS-DMRS"对于指示的带宽部分,不存 在关联"字段。
- beta_offset 指标 如果较高层参数 betaOffsets = semiStatic, 则为 0; 否则如[9.3, TS 38.213]中 表 9.3-3 所定义的 2 位。
- DMRS 序列初始化 如果更高层参数 transformPrecoder = enabled, 则为 0; 如果更高层参数 transformPrecoder = disabled 并且在 DMRS-UplinkConfig 中配置了 scramblingIDO 和 scramblingID1, 则为 1 位 n_{SCID} [4, TS 38.211]第 6.4.1.1.1 节中定义的选择。
- UL-SCH 指示符 1 位。 值 "1"表示 UL-SCH 必须在 PUSCH 上发送,值 "0"表示 UL-SCH 不在 PUSCH 上 发送。

对于 在小区中配置有 SUL 的 UE, 如果 PUSCH 被配置为在小区的 SUL 和非 SUL 上发送,并且如果 SUL 的格式 0 1 中的信息比特的数量不等于信息的数量对于 非 SUL, 格式为 0 1 的位, 零应附加到较小格式 0 1, 直到有 效载荷大小等于较大格式 0 1 的大小。

表7.3.1.1.2-1: 带宽部分指示器

BWP 指标字段的值	带宽部分		
2 位	7 T		
00	第一带宽部分由更高层配置		
01	第二带宽部分由更高层配置		
10	第三带宽部分由更高层配置		
11	第四带宽部分由更高层配置		

表7.3.1.1.2-2:4个天线端口的预编码信息和层数,如果transformPrecoder = disabled<u>H</u>maxRank = 2或3 或4

位字段映 射到索引	codebookSubset = fullyAndPartialAndNonCoherent	位字段映 射到索引	codebookSubset = partialAndNonCoherent	位字段映 射到索引	codebookSubset = 非相干
0	1层: TPMI = 0	0	1层: TPMI = 0	0	1层: TPMI = 0
1	1层: TPMI = 1	1	1层: TPMI = 1	1	1层: TPMI = 1
3	1层: TPMI = 3	3	1层: TPMI = 3	3	1层: TPMI = 3
4	2 层: TPMI = 0	4	2 层: TPMI = 0	4	2层: TPMI = 0
9	2 层: TPMI = 5	9	2 层: TPMI = 5	9	2 层: TPMI = 5
10	3 层: TPMI = 0	10	3 层: TPMI = 0	10	3 层: TPMI = 0
11	4 层: TPMI = 0	11	4层: TPMI = 0	11	4 层: TPMI = 0
12	1层: TPMI = 4	12	1层: TPMI = 4	12-15	保留的
19	1层: TPMI = 11	19	1层: TPMI = 11	winb	g)
20	2 层: TPMI = 6	20	2 层: TPMI = 6	gXIII	
			人早。(01		
27	2 层: TPMI = 13	27	// 2层: TPMI = 13		
28	3 层: TPMI = 1	28	3 层: TPMI = 1		
29	3 层: TPMI = 2 プレン	29	3 层: TPMI = 2		
30	4层: TPMI = 1	30	4层: TPMI = 1		
31	4 层: TPMI = 2	31	4层: TPMI = 2		
32	1层: TPMI = 12				
47	1层: TPMI = 27				
48	2层: TPMI = 14				
55	2层: TPMI = 21				
56	3 层: TPMI = 3				
59	3 层: TPMI = 6				
60	4 层: TPMI = 3				
61	4 层: TPMI = 4				
62-63	保留的				

表7.3.1.1.2-3:4个天线端口的预编码信息和层数,如果transformPrecoder = enabled,或者 transformPrecoder = disabled且maxRank = 1

位字段 映射到 索引	codebookSubset = fullyAndPartialAndNonCoherent	位字段 映射到 索引	codebookSubset= partialAndNonCoherent	位字段 映射到 索引	codebookSubset = 非相干
0	1层: TPMI = 0	0	1层: TPMI = 0	0	1层: TPMI = 0
1	1层: TPMI = 1	1	1层: TPMI = 1	1	1层: TPMI = 1
3	1 层: TPMI = 3	3	1层: TPMI = 3	3	1层: TPMI = 3
4	1层: TPMI = 4	4	1层: TPMI = 4		
			•••		
11	1层: TPMI = 11	11	1层: TPMI = 11		
12	1层: TPMI = 12	12-15	保留的		
27	1层: TPMI = 27				
28-31	保留的				

表7.3.1.1.2-4: 2个天线端口的预编码信息和层数,如果transformPrecoder = disabled \underline{H} maxRank = 2

位字段 映射到 索引	codebookSubset = fullyAndPartialAndNonCoherent	位字段 映射到 索引	codebookSubset =非相干
0	1层: TPMI = 0	0	1层: TPMI = 0
1	1层: TPMI = 1	1	1层: TPMI = 1
2	2 层: TPMI = 0	2	2 层: TPML = 0 g)
3	1 层: TPMI = 2	3	保留的
4	1 层: TPMI = 3	K	F. 10110
5	1层: TPMI = 4	ノイン	
6	1层: TPMI = 15		
7	2 层: TPML = 1		
.8	2 层: TPMI = 2		
9-15	保留的		

表7.3.1.1.2-5:2个天线端口的预编码信息和层数,如果transformPrecoder = enabled,或者 transformPrecoder = disabled且maxRank = 1

位字段 映射到 索引	codebookSubset = fullyAndPartialAndNonCoherent	位字段 映射到 索引	codebookSubset = 非相干
0	1 层: TPMI = 0	0	1层: TPMI = 0
1	1 层: TPMI = 1	1	1层: TPMI = 1
2	1 层: TPMI = 2		
3	1 层: TPMI = 3		
4	1 层: TPMI = 4		
5	1 层: TPMI = 5		
6-7	保留的		

表7.3.1.1.2-6: 天线端口, transformPrecoder = enabled, dmrs-Type = 1, maxLength = 1

值	没有数据的 DMRS CDM 组的数量	DMRS 端□
0	2	0
1	2	1
2	2	2
3	2	3

表7.3.1.1.2-7: 天线端口, transformPrecoder = enabled, dmrs-Type = 1, maxLength = 2

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	2	0	1
1	2	1	1
2	2	2	1
3	2	3	1
4	2	0	2
5	2	1	2
6	2	2	2
7	2	3	2
8	2	4	2
9	2	5	2
10	2	6	2
11	2	7	2
12-15	保留的	保留的	保留的

表7.3.1.1.2-8: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 1, rank = 1

值	没有数据的 DMRS CDM 组的数量	DMRS 端口
0	1	0
1	1	1
2	2	0
3	2	1
4	2	2
5	2	3
6-7	保留的	保留的

表7.3.1.1.2-9: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 1, rank = 2

	值	没有数据的 DMRS CDM 组的数量	DMRS 端□
	0	- 公) () () () () () () () () () () () () ()	0,1
	1,7	2	0,1
1 - 3	以21年	2	2,3
HV'	即3	2	0,2
十一	4-7	保留的	保留的

表7.3.1.1.2-10: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 1, rank = 3

值	没有数据的DMRS CDM 组的数量	DMRS 端□
0	2	0-2
2-7	保留的	保留的

表7.3.1.1.2-11: 天线端口, transformPrecoder = disabled, dmrs-Type = 1, maxLength = 1, rank = 4

值	没有数据的DMRS CDM 组的数量	DMRS 端□
0	2	0-3
2-7	保留的	保留的

表7.3.1.1.2-12: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 2, rank = 1

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	1	0	1
1	1	1	1
2	2	0	1
3	2	1	1
4	2	2	1
5	2	3	1
6	2	0	2
7	2	1	2
8	2	2	2
9	2	3	2
10	2	4	2
11	2	5	2
12	2	6	2
13	2	7	2
14-15	保留的	保留的	保留的

表7.3.1.1.2-13: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 2, rank = 2

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	1	0,1	1
1	2	0,1	1
2	2	2,3	1
3	2	0,2	1
4	2	0,1	250)
5	2	2,3	- 0 X 1 12 0 5
6	2	4,5	LONS 2
7	2	6,7	2
8	2	0,4	2
9	20111日	2,6	2
10-15	保留的	保留的	保留的

表7.3.1.1.2-14: 天线端口, transformPrecoder =禁用, dmrs-Type = 1, maxLength = 2, rank = 3

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	2	0-2	1
1	2	0,1,4	2
2	2	2,3,6	2
3-15	保留的	保留的	保留的

表7.3.1.1.2-15: 天线端口, transformPrecoder = disabled, dmrs-Type = 1, maxLength = 2, rank = 4

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	2	0-3	1
1	2	0,1,4,5	2
2	2	2,3,6,7	2
3	2	0,2,4,6	2
4-15	保留的	保留的	保留的

表7.3.1.1.2-16: 天线端口, transformPrecoder =禁用, dmrs-Type = 2, maxLength = 1, rank = 1

值	没有数据的DMRS CDM 组的数量	DMRS 端□
0	1	0
1	1	1
2	2	0
3	2	1
4	2	2
5	2	3
6	3	0
7	3	1
8	3	2
9	3	3
10	3	4
11	3	5
12-15	保留的	保留的

表7.3.1.1.2-17: 天线端口, transformPrecoder = disabled, dmrs-Type = 2, maxLength = 1, rank = 2

	值	没有数据的 DMRS CDM 组的数量	DMRS 端□
	0	1	0,1
	1	2	0,1
	2	2	2,3
	3	3	0,1
	4	3	2,3
	5	3	4,5
	6	2	0,2
	7-15	保留的	保留的 11
		八八号:	toligh
4	ص سبد ع	. a b 1 / 1 1 1 1 1 1	m 0 1

表7.3.1.1.2-18: 天线端口, transformPrecoder = disabled, dmrs-Type = 2, maxLength = 1, rank = 3

	值~	没有数据的 DMRS CDM 组的数量	DMRS 端□
中文	的间	2	0-2
	田刊	3	0-2
	2	3	3-5
	3-15	保留的	保留的

表7.3.1.1.2-19: 天线端口, transformPrecoder =禁用, dmrs-Type = 2, maxLength = 1, rank = 4

值	没有数据的DMRS CDM 组的数量	DMRS 端□
0	2	0-3
1	3	0-3
2-15	保留的	保留的

表7.3.1.1.2-20: 天线端口, transformPrecoder = disabled, dmrs-Type = 2, maxLength = 2, rank = 1

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	1	0	1
1	1	1	1
2	2	0	1
3	2	1	1
4	2	2	1
5	2	3	1
6	3	0	1
7	3	1	1
8	3	2	1
9	3	3	1
10	3	4	1
11	3	5	1
12	3	0	2
13	3	1	2
14	3	2	2
15	3	3	2
16	3	4	2
17	3	5	2
18	3	6	2
19	3	7	2
20	3	8	2
21	3	9	2
22	3	10	2
23	3	11	2
24	1	0	. 250)
25	1	1	120X 11200
26	1	6	2
27	1	179	2
28-31	保留的 ノ に (/	保留的	保留的
28-31 保留的 保留的 保留的 R R R R R R R R R			
H	没有数据的 DMRS CDM 组的数量	DMBS 端口	最大的是公民的

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	1	0,1	1
1	2	0,1	1
2	2	2,3	1
3	3	0,1	1
4	3	2,3	1
5	3	4,5	1
6	2	0,2	1
7	3	0,1	2
8	3	2,3	2
9	3	4,5	2
10	3	6,7	2
11	3	8,9	2
12	3	10,11	2
13	1	0,1	2
14	1	6,7	2
15	2	0,1	2
16	2	2,3	2
17	2	6,7	2
18	2	8,9	2
19-31	保留的	保留的	保留的

表7.3.1.1.2-22: 天线端口, transformPrecoder = disabled, dmrs-Type = 2, maxLength = 2, rank = 3

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	2	0-2	1
1	3	0-2	1
2	3	3-5	1
3	3	0,1,6	2
4	3	2,3,8	2
5	3	4,5,10	2
6-31	保留的	保留的	保留的

表7.3.1.1.2-23: 天线端口, transformPrecoder = disabled, dmrs-Type = 2, maxLength = 2, rank = 4

值	没有数据的 DMRS CDM 组的数量	DMRS 端□	前载符号的数量
0	2	0-3	1
1	3	0-3	1
2	3	0,1,6,7	2
3	3	2,3,8,9	2
4	3	4,5,10,11	2
5-31	保留的	保留的	保留的

表7.3.1.1.2-24: SRS请求

SRS 请求字段的值	触发的非周期性 SRS 资源集
00	没有触发非周期性 SRS 资源集 かつと
01	配置了更高层参数 aperiodic SRS-ResourceTrigger 的 SRS 资源集设置为 I
10	配置了更高层参数 aperiodic SRS-ResourceTrigger 的 SRS 资源集设置为 2
1翻译: 5	配置了更高层参数 aperiodic SRS-ResourceTrigger 的 SRS 资源集设置为 3

表7.3.1.1.2-25: UL PTRS端口0的PTRS-DMRS关联

值	DMRS 端□			
0	0			
1	1			
2	2			
3	3			

表7.3.1.1.2-26: UL PTRS端口0和1的PTRS-DMRS关联

MSB 的价值	价值 DMRS 端□		LSB 的价值	DMRS 端□
0	1⁵ 共享 PTRS 端□ 0 的 DMRS 端□		0	1 [∞] 共享 PRTS 端□ 1 的 DMRS 端□
1	2 [™] 共享 PTRS 端□ 0 的 DMRS 端□		1	2™共享 PTRS 端□ 1 的 DMRS 端□

表7.3.1.1.2-27: 无效

表7. 3. 1. 1. 2-28:基于非码本的PUSCH传输的SRI指示, $L_{\rm max}=1$

位字段映射	SRI (S),	位字段映射到	SRI (S),	位字段映射到	SRI (S),
到索引	$N_{\rm SRS} = 2$	索引	$N_{\rm SRS} = 3$	索引	$N_{\rm SRS} = 4$
0	0	0	0	0	0
1	1	1	1	1	1
		2	2	2	2
		3	保留的	3	3

表7. 3. 1. 1. 2-29:基于非码本的PUSCH传输的SRI指示, $L_{\rm max}=2$

位字段映射 到索引	SRI (S), $N_{\rm SRS}=2$	位字段映射到 索引	SRI (S), $N_{\rm SRS}=3$	位字段映射到 索引	SRI (S), $N_{\rm SRS} = 4$
0	0	0	0	0	0
1	1	1	1	1	1
2	0,1	2	2	2	2
3	保留的	3	0,1	3	3
		4	0,2	4	0,1
		5	1,2	5	0,2
		6-7	保留的	6	0,3
				7	1,2
				8	1,3
				9	2,3
				10-15	保留的

				10-15	1木笛町			
表7.3.1.1.2-30: 基于非码本的PUSCH传输的SRI指示,12 x 1 n 5 g								
位字段映射	SRI (S),	位字段映射到	SRI (S),	位字段映射到	SRI (S),			
到索引	$N_{\rm SRS} = 2$	5个索引口	$N_{\rm SRS} = 3$	索引	$N_{\rm SRS} = 4$			
0	如打造	0	0	0	0			
1	H丁酚M	1	1	1	1			
2	0,1	2	2	2	2			
3	保留的	3	0,1	3	3			
		4	0,2	4	0,1			
		5	1,2	5	0,2			
		6	0,1,2	6	0,3			
		7	保留的	7	1,2			
				8	1,3			
				9	2,3			
				10	0,1,2			
				11	0,1,3			
				12	0,2,3			
				13	1,2,3			
				14-15	保留的			

表7. 3. 1. 1. 2-31:基于非码本的PUSCH传输的SRI指示, $L_{\rm max}=4$

81

位字段映射	SRI (S), $N_{ m SRS}=2$	位字段映射到	SRI (S),	位字段映射到	SRI (S),
到索引	$N_{\rm SRS} = 2$	索引	$N_{\rm SRS} = 3$	索引	$N_{\rm SRS} = 4$
0	0	0	0	0	0
1	1	1	1	1	1
2	0,1	2	2	2	2
3	保留的	3	0,1	3	3
		4	0,2	4	0,1
		5	1,2	5	0,2
		6	0,1,2	6	0,3
		7	保留的	7	1,2
				8	1,3
				9	2,3
				10	0,1,2
				11	0,1,3
				12	0,2,3
				13	1,2,3
				14	0,1,2,3
				15	保留的

表7.3.1.1.2-32: 基于码本的PUSCH传输的SRI指示

位字段映射到索引	SRI (S) , $N_{ m SRS}=2$	
0	0)
1	1 <u>- </u>	58/
	2 V 1 1	

表7.3.1.1.2-33; VRB到PRB映射

\34.1=	
位字段映射到索引	VRB 到 PRB 映射
十 文	非交织
1	交织

表 7.3.1.1.2-34: 跳频指示

位字段映射到索引	PUSCH 跳频
0	残
1	启用

7.3.1.2 用于调度 PDSCH 的 DCI 格式

7.3.1.2.1 格式 1_0

DCI 格式 1_0 用于在一个 DL 小区中调度 PDSCH。

通过 DCI 格式 1 0 发送以下信息, 其中 CRC 由 C-RNTI 或 CS-RNTI 或 new-RNTI 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 1,表示 DL DCI 格式
- 频域资源分配 $\left[\log_2(N_{\mathrm{RB}}^{\mathrm{DL,BWP}}(N_{\mathrm{RB}}^{\mathrm{DL,BWP}}+1)/2)\right]$ 位
 - $N_{\mathrm{RB}}^{\mathrm{DL,BWP}}$ 在 UE 特定搜索空间中监视 DCI 格式 1_0 并且满足的情况下,是活动 DL 带宽部分的大小

- 对于 小区,每个时隙监视的不同 DCI 大小的总数不超过 4 个
- 对于 小区,每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3

除此以外, $N_{RB}^{DL,BWP}$ 是初始 DL 带宽部分的大小。

如果 DCI 格式 1_0 的 CRC 被 C-RNTI 加扰并且 "频域资源分配"字段都是 1,则 DCI 格式 1_0 用于由 PDCCH 命令发起的随机接入过程,其中所有剩余字段设置如下:

82

- 随机接入前导索引 根据[8. TS38.321]的子条款 5.1.2 中的 ra-Preamble Index 的 6 比特
- UL / SUL 指示灯 1 位。 如果"随机接入前导索引"的值不是全零并且如果 UE 在小区中配置有 SUL. 则该字段指示小区中的哪个 UL 载波根据表 7.3.1.1.1-1 发送 PRACH。 ; 否则,此字段为保留
- SS / PBCH 索引 6 位。 如果"随机接入前导索引"的值不是全零,则该字段指示将用于确定 PRACH 传输的 RACH 时机的 SS / PBCH; 否则,此字段为保留。
- PRACH 掩码索引 4 位。如果"随机接入前导索引"的值不是全零,则该字段指示与用于 PRACH 传输 的 "SS / PBCH 索引"指示的 SS / PBCH 相关联的 RACH 时机,根据[8]的子条款 5.1.1。 ,TS38.321]; 否则, 此字段为保留
- 保留位 10 位

否则, 所有剩余字段设置如下:

- 时域资源分配 [6, TS 38.214]的子条款 5.1.2.1 中定义的 4 比特
- VRB 到 PRB 映射 根据表 7.3.1.1.2-33 的 1 位
- 调制和编码方案 [6, TS 38.214]的子条款 5.1.3 中定义的 5 比特 新数据指标 1 位
- 冗余版本 表 7.3.1.11-2 中定义的 2 位
- HARQ 进程号 4 位
- 下行链路指配索引 [5, TS 38.213]的子条款 9.1.3 中定义的 2 比特,作为计数器 DAI
- 用于调度的 PUCCH 的 TPC 命令 在[5, TS 38.213]的子条款 7.2.1 中定义的 2 比特
- PUCCH 资源指示符 [5, TS 38.213]的子条款 9.2.3 中定义的 3 比特
- PDSCH 到 HARQ feedback 定时指示符 [5, TS38.213]的子条款 9.2.3 中定义的 3 比特

通过 DCI 格式 1_0 发送以下信息,其中 CRC 由 P-RNT I 加扰:

- 短消息指示符 根据表 7.3.1.2.1-1 的 2 位。
- 短消息 [8]位,根据[9, TS38.331]的子条款 xx。 如果仅携带用于寻呼的调度信息,则保留该位字段。
- 频域资源分配 $-\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$ 位。 如果仅携带短消息,则保留该位字段。
 - $N_{RR}^{DL,BWP}$ 是初始 DL 带宽部分的大小
- 时域资源分配 [6, TS38.214]的子条款 5.1.2.1 中定义的 4 比特。 如果仅携带短消息,则保留该位 字段。
- VRB 到 PRB 映射 根据表 7.3.1.1.2-33 的 1 位。 如果仅携带短消息,则保留该位字段。

调制和编码方案 - 使用表 5. 1. 3. 1-1 在[6, TS38. 214]的子条款 5. 1. 3 中定义的 5 比特。 如果仅携带 短消息,则保留该位字段。

83

- TB 缩放 [6, TS38.214]的子条款 5.1.3.2 中定义的 2 比特。 如果仅携带短消息,则保留该位字段。
- 保留位 6位

以下信息通过 DCI 格式 1 0 传输, CRC 由 SI-RNTI 加扰:

- 频域资源分配 [log₂(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP} +1)/2)] 位
 - $N_{RB}^{DL,BWP}$ 是初始 DL 带宽部分的大小
- 时域资源分配 [6, TS38.214]的子条款 5.1.2.1 中定义的 4 比特
- [- VRB 到 PRB 映射 根据表 7.3.1.1.2-33 的 1 位]
- 调制和编码方案 使用表 5. 1. 3. 1-1,在[6, TS38. 214]的子条款 5. 1. 3 中定义的 5 比特
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位
- 保留位 [16]位

(公众号: tongxin5g) 通过 DCI 格式 1 0 发送以下信息, 其中 CRC 由 RA-RNTI 加扰:

- 频域资源分配 $\left[\log_2(N_{RB}^{DL,BWP}(N_{RB}^{DL,BWP}+1)/2)\right]$ 位
 - NRB 是初始 DL 带宽部分的大小
- 时域资源分配 [6] TS38: 214]的子条款 5.1.2.1 中定义的 4 比特
- VRB 到 PRB 映射 根据表 7.3.1.1.2-33 的 1 位
- 调制和编码方案 使用表 5. 1. 3. 1-1, 在[6, TS38. 214]的子条款 5. 1. 3 中定义的 5 比特
- TB 缩放 [6, TS38.214]的子条款 5.1.3.2 中定义的 2 位
- 保留位 16 位

以下信息通过 DCI 格式 1 0 传输。CRC 由 TC-RNT I 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 1,表示 DL DCI 格式
- 频域资源分配 [log₂(N_{BB}^{DL,BWP}(N_{BB}^{DL,BWP} + 1)/2)] 位
 - NRB 是初始 DL 带宽部分的大小
- 时域资源分配 [6, TS38. 214]的子条款 5.1.2.1 中定义的 4 比特
- VRB 到 PRB 映射 根据表 7.3.1.1.2-33 的 1 位
- 调制和编码方案 使用表 5.1.3.1-1, 在[6, TS38.214]的子条款 5.1.3 中定义的 5 比特
- 新数据指标 1位

- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位
- HARQ 讲程号 4 位
- 下行链路指配索引 2位,保留
- 用于调度的 PUCCH 的 TPC 命令 在[5, TS38, 213]的子条款 7.2.1 中定义的 2 比特
- PUCCH 资源指示符 [5, TS38.213]的子条款 9.2.3 中定义的 3 比特
- PDSCH 到 HARQ feedback 定时指示符 [5, TS38. 213]的子条款 9.2.3 中定义的 3 比特

如果在 UE 特定搜索空间中监视 DCI 格式 1 0 并且满足以下两者

- 对于 小区,每个时隙监视的不同 DCI 大小的总数不超过 4 个
- 对于 小区、每个时隙监视的 C-RNTI 的不同 DCI 大小的总数不超过 3

如果在填充之前 DCI 格式 1 0 中的信息比特数小于在 UE 特定搜索空间中监视用于调度相同服务小区的 DCI 格 式 0_0 的有效载荷大小,则应将零附加到 DCI 格式 1_0,直到有效载荷大小等于 DCI 格式 0_0 的大小。

84

位字段 PUSCH 跳频 00 保留的 DCI 中仅存在用于寻呼的调度信息 10 DCI 中仅存在短消息 11 用于寻呼和短消息的调度信息都存在于 DCI 中 通信(公众号:

表 7.3.1.2.1-1: 短消息指示符

7.3.1.2.2 格式11

DCI 格式 1_1 用于在一个小区中调度 PDSCH。

通过 DCI 格式 1 1 发送以下信息,其中 CRC 由 C-RNT I 或 CS-RNT I 或 new-RNT I 加扰:

- DCI 格式的标识符 1 位
 - 该位字段的值始终设置为 1,表示 DL DCI 格式
- 载波指示符 [5, TS 38.213]的子条款 10.1 中定义的 0 或 3 比特。
- 带宽部分指示符 由 DL BWP 的数量确定的 0,1 或 2 位 $n_{\text{RWP,RPC}}$ 由更高层配置,不包括初始 DL 带宽部 分。 该字段的位宽确定为 $\lceil \log_2(n_{\text{BWB}}) \rceil$ 位,在 where
 - $n_{\text{BWP}} = n_{\text{BWP,RRC}} + 1 \text{ if } n_{\text{BWP,RRC}} \le 3$ 在这种情况下,带宽部分指示符等于更高层参数 BWP-Id;
 - 除此以外 $n_{\text{BWP}} = n_{\text{BWPRRC}}$ 在这种情况下,带宽部分指示符在表 7.3.1.1.2-1 中定义;

如果 UE 不支持经由 DCI 的活动 BWP 改变,则 UE 忽略该比特字段。

- 频域资源分配 由以下各项确定的比特数,其中 NPL,BWP 是有效 DL 带宽部分的大小:
 - N_{RBG} 如果仅配置资源分配类型 0,则为位 N_{RBG} 在[6, TS38.214]的第 5.1.2.2.1 节中定义,
 - $\left[\log_{2}(N_{\text{pB}}^{\text{DL,BWP}}(N_{\text{pB}}^{\text{DL,BWP}}+1)/2)\right]$ 如果仅配置资源分配类型 1,则为位,或
 - $\max\left(\left\lceil\log_{2}(N_{\text{RB}}^{\text{DL},\text{BWP}}(N_{\text{RB}}^{\text{DL},\text{BWP}}+1)/2)\right\rceil,N_{\text{RBG}}\right)+1$ 如果配置了资源分配类型 0 和 1,则为位。

- 如果配置了资源分配类型 0 和 1,则 MSB 比特用于指示资源分配类型 0 或资源分配类型 1,其中比特值 0表示资源分配类型 0,比特值 1表示资源分配类型 1。
- 对于 资源分配类型 0, $N_{\rm RBG}$ LSB 提供[6, TS 38.214]的子条款 5.1.2.2.1 中定义的资源分配。
- 对于 资源分配类型 1, $\left[\log_2(N_{\rm RB}^{\rm DL,BWP}(N_{\rm RB}^{\rm DL,BWP}+1)/2)\right]$ LSB 提供[6,TS 38.214]的子条款 5.1.2.2.2 中定义的资源分配

如果"带宽部分指示符"字段指示除活动带宽部分之外的带宽部分并且如果资源分配类型 0 和 1 都被配置用于所指示的带宽部分,则 UE 假定用于所指示的带宽部分的资源分配类型 0 (如果位宽)有效带宽部分的"频域资源分配"字段的位宽。

- 时域资源分配 [1, TS 38.214]的子条款 5.1.2.1 中定义的 0,1,2,3 或 4 位。 该字段的位宽确定为 [log,(I)] bits,其中 I 是更高层参数 pdsch-AllocationList 中的条目数。
- VRB 到 PRB 映射 0 或 1 位:
 - 如果仅配置资源分配类型 0,则为 0位;
 - 根据表 7.3.1.1.2-33 的 1 位,仅适用于资源分配类型 1,如[4,TS 38.211]的 7.3.1.6 中所定义。
- PRB 捆绑大小指示符 如果未配置更高层参数 prb-BundlingType 或设置为 "静态",则为 0 位;如果根据子条款 5.1.2.3 将更高层参数 prb-BundlingType 设置为 "动态",则为 1 位[6,TS 38.214]。
- 速率匹配指示符 根据更高层参数 rateMatchPattern 的 0,1 或 2 位。
- ZP CSI-RS 触发器 [1, TS 38.214]的子条款 5.1.4.2 中定义的 0,1 或 2 位。 该字段的位宽确定为 $\left[\log_2(n_{ZP}+1)\right]$ 位,在 where n_{ZP} 是更高层参数 zp-CSI-RS-Resource 中的 ZP CSI-RS 资源集的数量。

对于 运输区块 1:

- 调制和编码方案 16, TS 38.214]的子条款 5.1.3.1 中定义的 5 比特
- 新数据指标 1位
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位

对于 传输块 2 (仅当 maxNrofCodeWordsScheduledByDCI等于 2 时才存在):

- 调制和编码方案 [6, TS 38.214]的子条款 5.1.3.1 中定义的 5 比特
- 新数据指标 1 位
- 冗余版本 表 7.3.1.1.1-2 中定义的 2 位

如果"带宽部分指示符"字段指示除活动带宽部分之外的带宽部分并且指示带宽部分的 maxNrofCodeWordsScheduledByDCI 的值等于 2 并且活动带宽部分的 maxNrofCodeWordsScheduledByDCI 的值等于 1,则 UE 在解释时假设填充零。根据[5, TS38.213]的子条款 12 的传输块 2 的"调制和编码方案","新数据指示符"和"冗余版本"字段,并且 UE 忽略"调制和编码方案","用于指示带宽部分的传输块 2 的新数据指示符"和"冗余版本"字段。

- HARQ 进程号 4 位
- 下行链路分配索引 以下定义的比特数
 - 如果在 DL 和高层参数 pdsch-HARQACK-Codebook = dynamic 中配置多于一个服务小区,则为 4 比特, 其中 2 个 MSB 比特是计数器 DAI, 2 个 LSB 比特是总 DAI;
 - 如果在 DL 中配置仅一个服务小区,则为 2 比特,并且更高层参数 pdsch-HARQ-ACK-Codebook = dynamic, 其中 2 比特是计数器 DAI;

- 否则为 0 位。
- 用于调度的 PUCCH 的 TPC 命令 在[5, TS 38.213]的子条款 7.2.1 中定义的 2 比特
- PUCCH 资源指示符 [5, TS 38.213]的子条款 9.2.3 中定义的 3 比特
- PDSCH 到 HARQ_feedback 定时指示符 [5, TS 38.213]的子条款 9.2.3 中定义的 0,1,2 或 3 位。 该字段的位宽确定为 [log,(I)] 位,其中 I 是较高层参数 d1-DataToUL-ACK 中的条目数。
- 天线端口 表 7.3.1.2.2-1 / 2/3/4 定义的 4,5 或 6 位,其中没有值为 1,2 和 3 的数据的 CDM 组的数量是指 CDM 分别为 $\{0\}$, $\{0,1\}$ 和 $\{0,1,2\}$ 组。 天线端口 $\{p_{0,\dots,}p_{\nu-1}\}$ 应根据表 7.3.1.2.2-1 / 2/3/4 给出的 DMRS 端口的顺序确定。

如果 UE 配置有 dmrs-DownlinkForPDSCH-MappingTypeA 和 dmrs-DownlinkForPDSCH-MappingTypeB,则该字段的位宽等于 $\max\{x_A,x_B\}$,where x_A 是根据 dmrs-DownlinkForPDSCH-MappingTypeA 和派生的"天线端口"位宽 x_B 是根据 dmrs-DownlinkForPDSCH-MappingTypeB 导出的"天线端口"位宽。 一些 $|x_A-x_B|$ 如果 PDSCH 的映射类型对应于较小的值,则在该字段的 MSB 中填充零 x_A and x_B .

- 传输配置指示 - 如果未启用更高层参数 tci-PresentInDCI,则为 0 位;否则为 3 比特,如[6,TS38.214]的第 5.1.5 节所定义。

如果"带宽部分指示符"字段指示除活动带宽部分之外的带宽部分并且在 DCI 格式 1_1 中不存在"传输配置指示"字段,则 UE 假定 tci-PresentInDCI 未针对所指示的带宽部分启用。

- SRS 请求 表 7.3.1.1.2-24 定义的 2 比特,用于未在小区中配置 SUL 的 UE; 用于 UE 的 3 比特在单元中配置 SUL,其中第一比特是表 7.3.1.1.1-1 中定义的非 SUL / SUL 指示符,第二和第三比特由表 7.3.1.1.2-24 定义。 该位字段还可以根据[6, TS 38,214]的子条款 6.1.1.2 指示相关联的 CS IRS。
- CBG 传输信息 (CBGTI) [6, TS38.214]的子条款 5.1.7 中定义的 0,2,4,6 或 8 比特,由更高层参数 maxCodeBlockGroupsPerTransportBlock 和 Number-MCS-HARQ-DL-确定 PDSCH 的 DCI。
- CBG 清除信息 (CBGFI) 由[6, TS38.214]的子条款 5.1.7 中定义的 0 或 1 位,由更高层参数 codeBlockGroupFlushIndicator 确定。
- DMRS 序列初始化 如果在 DMRS-DownlinkConfig 中配置了 scramblingID0 和 scramblingID1,则为 1 比特 n_{SCID} [4, TS 38.211]第 7.4.1.1.1 节中定义的选择:否则为 0 位。

如果在 BWP 中与多个 CORESET 相关联的多个搜索空间中监视 DCI 格式 1_1,则应附加零,直到在多个搜索空间中监视的 DCI 格式 1_1 的有效载荷大小等于在其中监视的 DCI 格式 1_1 的最大有效载荷大小。多个搜索空间。

表7.3.1.2.2-1: 天线端口 (1000 + DMRS端口), dmrs-Type = 1, maxLength = 1

一个代码字: 代码字0已启用,							
代码字1 已禁用							
值	DMRS 端□						
0	1	0					
1	1	1					
2	1	0,1					
3	2	0					
4	2	1					
5	2	2					
6	2	3					
7	2	0,1					
8	2	2,3 0-2					
9	2	0-2					
10	2	0-3					
11	2	0,2					
12-15	保留的	保留的					

表7.3.1.2.2-2: 天线端 \square (1000 + DMRS端 \square) , dmrs-Type = 1, maxLength = 2

	一个代码字: 代码字0已启用, 代码字1已禁用				代	两个代码字: :码字0已启用, 码字1已启用	
值	没有数据的 DMRS CDM 组的 数量	DMRS 端□	前载符号的 数量	值	没有数据的 DMRS CDM组 的数量	DMRS 端□	前载符号的数量
0	1	0	1	0	2	0-4	2
1	1	1	1	1	2	0,1,2,3,4,6	2
2	1	0,1	1	2	2	0,1,2,3,4,5,6	2
3	2	0	1	3	2	0,1,2,3,4,5,6,7	2
4	2	1	1	4-31	保留的	保留的	保留的
5	2	2	1				
6	2	3	1				
7	2	0,1	1				
8	2	2,3	1				
9	2	0-2	1				
10	2	0-3	1				
11	2	0,2	1				
12	2	0	2				
13	2	1	2				
14	2	2	2				
15	2	3	2				
16	2	4	2				
17	2	5	2				
18	2	6	2				
19	2	7	2				<i>a</i>
20	2	0,1	2			1110	18/
21	2	2,3	2		- 4	- nng^	
22	2	4,5	2	- 1	人旨:		
23	2	6,7	2	()	PV 3		
24	2	0,4	公第1				
25	2	2,6	17/2				
26	2	0,1,4	2				
27	山2人用引	2,3,6	2				
28	2	0,1,4,5	2				
29	2	2,3,6,7	2				
30	2	0,2,4,6	2				
31	保留的	保留的	保留的				

表7.3.1.2.2-3: 天线端口 (1000 + DMRS端口), dmrs-Type = 2, maxLength = 1

一个代码字: 代码字0已启用, 代码字1已禁用			两个代码字: 代码字0已启用, 码字 1 已启用		
值	没有数据的 DMRS CDM 组的 数量	DMRS 端□	值	没有数据的 DMRS CDM 组的 数量	DMRS 端□
0	1	0	0	3	0-4
1	1	1	1	3	0-5
2	1	0,1	2-31	保留的	保留的
3	2	0			
4	2	1			
5	2	2			
6	2	3			
7	2	0,1			
8	2	2,3			
9	2	0-2			
10	2	0-3			
11	3	0			
12	3	1			
13	3	2			
14	3	3			
15	3	4			
16	3	5			
17	3	0,1			
18	3	2,3			
19	3	4,5			- m
20	3	0-2		-2 37	ings
21	3	3-5		+ongx	1-
22	3	0-3	、人号:		
23	2	0,2	ストノ		
24-31	保留的	14 保留的			
中文翻译·与G迪·斯·					

表7.3.1.2.2-4: 天线端 \square (1000 + DMRS端 \square) , dmrs-Type = 2, maxLength = 2

一个代码字: 代码字0已启用, 代码字1已禁用				两个代码字: 代码字0已启用, 码字 1 已启用				
值	没有数据的 DMRS CDM 组的 数量	DMRS 端□	前载符号的 数量	值	没有数据的 DMRS CDM 组 的数量	DMRS 端□	前载符号的数量	
0	1	0	1	0	3	0-4	1	
1	1	1	1	1	3	0-5	1	
2	1	0,1	1	2	2	0,1,2,3,6	2	
3	2	0	1	3	2	0,1,2,3,6,8	2	
4	2	1	1	4	2	0,1,2,3,6,7,8	2	
5	2	2	1	5	2	0,1,2,3,6,7,8,9	2	
6	2	3	1	6-63	保留的	保留的	保留的	
7	2	0,1	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
8	2	2,3	1					
9	2	0-2	1					
10	2	0-3	1					
11	3	0	1					
12	3	1	1					
13	3	2	1					
14	3	3	1					
		4	1					
15	3							
16	3	5	1					
17	3	0,1	1					
18	3	2,3	1					
19	3	4,5	1				o)	
20	3	0-2	1			TXIND	5	
21	3	3-5	1		t	ongA		
22	3	0-3	1		八岩:			
23	2	0,2	1, ,					
24	3	0	公面21言					
25	3	1 h	J 1211					
26	3 来	作2	2					
27	山3人間	3	2					
28	3	4	2					
29	3	5	2					
30	3	6	2					
31	3	7	2					
32	3	8	2					
33	3	9	2					
34	3	10	2					
35	3	11	2					
36	3	0,1	2					
37	3	2,3	2					
38	3	4,5	2					
39	3	6,7	2					
40	3	8,9	2					
41	3	10,11	2					
42	3	0,1,6	2					
43	3	2,3,8	2					
44	3	4,5,10	2					
45	3	0,1,6,7	2					
46	3	2,3,8,9	2					
47	3	4,5,10,11	2					
48	1	0	2					
49	1	1	2					
50	1	6	2					
51	1	7	2					
52	1	0,1	2					
53	1	6,7	2					
53	2	0,1	2					
		2,3	2					
55	2	2,3		<u> </u>				

56	2	6,7	2		
57	2	8,9	2		
58-63	保留的	保留的	保留的		

7.3.1.3 DCI 格式用于其他目的

7.3.1.3.1 格式20

DCI 格式 2 0 用于通知时隙格式。

TI对CRC进行加扰的DCI格式20发送以下信息: 通过 SFI-RN

- 插槽格式指示符 1, 插槽格式指示符 2, ..., 插槽格式指示符 N.

根据[5, TS 38.213]的第 11.1.1 节, DCI 格式 2 0 的大小可由高达 128 位的更高层配置。

7.3.1.3.2 格式 2 1

DCI 格式 2 1 用于通知 PRB 和 OFDM 符号,其中 UE 可以假设没有用于 UE 的传输。

以下信息通过 DCI 格式 2 1 传输,其中 CRC 由 INT-RNTI 加扰:

- 抢占指示 1, 抢占指示 2,, 抢占指示 N.

根据[5, TS 38.213]的第 11.2 节, DCI 格式 2 1 的大小可由高达 126 位的更高层配置。 每个抢先指示是 14 位。

DCI 格式 2_2 用于 PUCCH 和 PUSCH 的 TPC 命令的传输。公众号: 通过 DCI 格式 2_2 发送以下信息 甘中心五/后

- 块号1,块号2, 41,块号N.

由较高层提供的参数 tpc-PUSCH 或 tpc-PUSCH 确定针对小区的 UL 的块编号的索引,并且为每个块定义以下字 段:

- 闭环指示器 0 或 1 位。
 - 对于 具有 TPC-PUSCH-RNTI 的 DCI 格式 2_2, 如果 UE 未配置有高层参数 twoPUSCH-PC-AdjustmentStates,则为0比特,在这种情况下,UE假设DCI格式2_2中的每个块具有2比特;否 则, 1 比特, 在这种情况下 UE 假设 DCI 格式 2 2 中的每个块是 3 比特;
 - 对于 具有 TPC-PUCCH-RNTI 的 DCI 格式 2 2. 如果 UE 未配置有高层参数 twoPUCCH-PC-AdjustmentStates,则为0比特,在这种情况下,UE假设DCI格式2_2中的每个块具有2比特;否 则, 1 比特, 在这种情况下 UE 假设 DCI 格式 2 2 中的每个块是 3 比特;
- TPC 命令-2 位

如果格式 2 2 中的信息比特数小于同一服务小区中的初始 DL 带宽部分中定义的格式 0 0 的有效载荷大小,则 应将零附加到格式 2_2, 直到有效载荷大小等于格式 0_0 的有效载荷大小。在同一服务小区的初始 DL 带宽部 分中。

7.3.1.3.4 格式 2 3

DCI 格式 2 3 用于由一个或多个 UE 传输用于 SRS 传输的一组 TPC 命令。 与 TPC 命令一起,还可以发送 SRS 请 求。

通过 TCI-SRS-RNTI 对 CRC 进行加扰的 DCI 格式 2 3 发送以下信息:

- 块号1, 块号2, ..., 块号 B

其中块的起始位置由参数 startingBitOfFormat2-3 确定,该参数由更高层为配置有该块的 UE 提供。

如果 UE 配置有用于没有 PUCCH 和 PUSCH 的 UL 的更高层参数 srs-TPC-PDCCH-Group = typeA 或者 SRS 功率控制 不与 PUSCH 功率控制相关联的 UL,则通过 UE 配置一个块用于 UE 更高层,为块定义了以下字段:

- SRS 请求 0 或 2 位。 该字段的存在是根据[5, TS38.213]的第 11.4 节中的定义。 如果存在,则该字 段按表 7.3.1.1.2-24 的定义进行解释。
- TPC 命令编号 1. TPC 命令编号 2, ..., TPC 命令编号 N, 其中每个 TPC 命令应用于由更高层参数 cc-IndexInOneCC-Set 提供的相应 UL 载波

如果 UE 配置有用于没有 PUCCH 和 PUSCH 的 UL 的更高层参数 srs-TPC-PDCCH-Group = typeB 或者 SRS 功率控制 不与 PUSCH 功率控制相关联的 UL,则配置一个或多个块用于 UE 通过更高层,其中每个块应用于 UL 载波,并 为每个块定义以下字段:

- SRS 请求 0 或 2 位。 该字段的存在是根据[5, TS38.213]的第 11.4 节中的定义。 如果存在,则该字 段按表 7.3.1.1.2-24 的定义进行解释。
- TPC 命令-2 位

如果格式 2 3 中的信息比特数小于同一服务小区中的初始 DL 带宽部分中定义的格式 0 0 的有效载荷大小,则 应将零附加到格式 2_3, 直到有效载荷大小等于格式 0_0 的格式为 0_0。在同一服务小区的初始 DL 带宽部分 中。

整个有效载荷用于计算 CRC 奇偶校验位。用,表示有效载荷的位数 $a_0, a_1, a_2, a_3, ..., a_{A-1}$ 和奇偶校验位 $p_0, p_1, p_2, p_3, ..., p_{L-1}$, where A 是有效载荷大小和 L 是奇偶校验位的数量。 让 $a'_0, a'_1, a'_2, a'_3, ..., a'_{4+L-1}$ 有 点像这样的序列 $a'_i=1$ 对于 i=0,1,...,L-1 and $a'_i=a_{i-L}$ 对于 i=L,L+1,...,A+L-1 。 使用输入比特序列 计算奇偶校验比特 $a'_0, a'_1, a'_2, a'_3, ..., a'_{4+l-1}$ 并根据第 5.1 条通过设置附加 L 到 24 位并使用生成多项式 $g_{CRC24C}(D)$ 。 输出位 $b_0, b_1, b_2, b_3, ..., b_{\kappa-1}$ is

$$b_k = a_k$$
 for $k = 0,1,2,...,A-1$

$$b_k = p_{k-A}$$
 for $k = A, A+1, A+2,..., A+L-1$,

where K = A + L.

在附着之后,CRC 奇偶校验位用相应的 RNTI 加扰 $x_{rnti,0}, x_{rnti,1}, ..., x_{rnti,15}$, where $x_{rnti,0}$ 对应于 RNTI 的 MSB, 以 形成比特序列 $c_0, c_1, c_2, c_3, ..., c_{K-1}$ 。 c_k 和 b_k 之间的关系是:

$$c_k = b_k$$
 for k = 0, 1, 2, ..., $A+7$

$$c_k = (b_k + x_{rnti,k-A-8}) \mod 2$$
 for $k = A+8$, $A+9$, $A+10$,..., $A+23$.

7.3.3 信道编码

信息比特被传送到信道编码块。 他们用表示 $c_0,c_1,c_2,c_3,...,c_{K-1}$, where K 是比特数,它们通过设置根据子 条款 5.3.1 通过极化编码进行编码 $n_{\text{max}} = 9$, $I_{LL} = 1$, $n_{PC} = 0$, 和 $n_{PC}^{wm} = 0$.

在编码之后,比特用表示 $d_0,d_1,d_2,d_3,...,d_{N-1}$,而 N 是编码位的数量。

7.3.4 速率匹配

速率匹配的输入比特序列是 $d_0,d_1,d_2,...,d_{N-1}$

通过设置根据子条款 5.4.1 执行速率匹配 $I_{BLL}=0$.

速率匹配后的输出比特序列表示为 $f_0, f_1, f_2, ..., f_{E-1}$

附件<A>(资料性):

更新记录

更新记录							
日期	会议	TDoc	CR	Rev	Cat	主题/备注	新版本
2017-05	RAN1#89	R1-1707082				草案骨架	0.0.0
2017-07	AH_NR2	R1-1712014				纳入 LDPC 相关协议	0.0.1
2017-08	RAN1#90	R1-1714564				包含 Polar 编码相关协议	0.0.2
2017-08	RAN1#90	R1-1714659				RAN1#90 认可的版本作为进一步更新的基础	0.1.0
2017-09	RAN1#90	R1-1715322				从 RAN1#90 获取有关 LDPC 和 Polar 代码的其他协议	0.1.1
2017-09	RAN#77	RP-171991				有关全体会议的信息	1.0.0
2017-09	RAN1#90B	R1-1716928				从 RAN1 NR AH#3 获取有关 LDPC 和 Polar 代码的其他协议	1.0.1
2017-10	RAN1#90B	R1-1719106				赞同为 v 1. 1. 0	1.1.0
2017-11	RAN1#91	R1-1719225				捕获有关信道编码等的其他协议	1.1.1
2017-11	RAN1#91	R1-1719245				获取有关 DCI 格式,信道编码等的其他协议。 ハンラ	1.1.2
2017-11	RAN1#91	R1-1721049				赞同为 v1. 2. 0 + 018 A T T T T T T T T T T T T T T T T T T	1.2.0
2017-12	RAN1#91	R1-1721342				获取有关 UCI, DCI, 信道编码等的其他协议	1.2.1
2017-12	RAN#78	RP-172668				认可的版本供全体会议批准。	2.0.0
2017-12	RAN#78			15 D	角信	全体会议批准 - 在变更控制下的 Rel-15 规范	15.0.0
2018-03	RAN#79	RP-180200	0001 🧏	1 El	UF1	CR 捕获 Jan18 ad-hoc 和 RAN1#92 会议协议	15.1.0
2018-04	RAN#79	少到作				MCC: 校正 DCI 格式 0_1 中的拼写错误(时域资源分配) - 更高层	15.1.1
	田	文翻 IT				参数应该是 pusch-AllocationList	
2018-06	RAN#80	RP-181172	0002	1	F	CR 至 38. 212 捕获 RAN1#92bis 和 RAN1#93 会议协议	15.2.0
2018-06	RAN#80	RP-181257	0003	-	В	CR 到 38. 212 捕获与 URLLC 相关的 RAN1#92bis 和 RAN1#93 会议协议	15.2.0