

03678981 **Image available**

HEATING DEVICE

PUB. NO.: 04-044081 [*J*P 4044081 A]
PUBLISHED: February 13, 1992 (19920213)
INVENTOR(s): SETORIYAMA TAKESHI
KURODA AKIRA
APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 02-153608 [JP 90153608]
FILED: June 11, 1990 (19900611)
INTL CLASS: [5] G03G-015/20; G03G-015/20; B65H-005/02
JAPIO CLASS: 29.4 (PRECISION INSTRUMENTS -- Business Machines); 26.9
(TRANSPORTATION -- Other); 44.7 (COMMUNICATION -- Facsimile)
JAPIO KEYWORD: R002 (LASERS); R011 (LIQUID CRYSTALS); R119 (CHEMISTRY --
Heat Resistant Resins)
JOURNAL: Section: P, Section No. 1359, Vol. 16, No. 222, Pg. 18, May
25, 1992 (19920525)

ABSTRACT

PURPOSE: To stably and easily control the displacement of a film with simple means constitution by employing relation constitution wherein a displacing force operates on one side throughout film driving and providing a member which restricts the movement by receiving of the displacement-side film end part.

CONSTITUTION: The pressing force f_{27} of a right-side spring 27 on a driving side between springs 26 and 27 is set larger than the pressing force f_{26} of the right spring 26 as a driven side ($f_{27} > f_{26}$), and then when the film 21 is driven, a displacing force operates on the film 21 in the right direction R of the film width along the lengthwise direction of the stay 13 at all times. Then only the end part of the film 21 on the displacement side R is restrained by the right-side flange member 27 as the restriction member. Consequently, the displacement control over the film can stably and easily be performed to obtain an excellent fixed image stably at all times.

DIALOG(R) File 345:Inpado am.& Legal Stat
(c) 2002 EPO. All rts. reserv.

10235002

Basic Patent (No,Kind,Date): EP 461595 A2 911218 <No. of Patents: 012>

Patent Family:

Patent No	Kind	Date	Applic No	Kind	Date
DE 69117806	C0	960418	DE 69117806	A	910610
DE 69117806	T2	960822	DE 69117806	A	910610
EP 461595	A2	911218	EP 91109513	A	910610 (BASIC)
EP 461595	A3	930929	EP 91109513	A	910610
EP 461595	B1	960313	EP 91109513	A	910610
JP 4044075	A2	920213	JP 90153602	A	900611
JP 4044080	A2	920213	JP 90153607	A	900611
JP 4044081	A2	920213	JP 90153608	A	900611
JP 2884714	B2	990419	JP 90153602	A	900611
JP 2884717	B2	990419	JP 90153607	A	900611
JP 2926904	B2	990728	JP 90153608	A	900611
US 5525775	A	960611	US 347182	A	941122

Priority Data (No,Kind,Date):

JP 90153602 A 900611
JP 90153607 A 900611
JP 90153608 A 900611
US 347182 A 941122
US 52276 B1 930426
US 712532 B1 910610

PATENT FAMILY:

GERMANY (DE)

Patent (No,Kind,Date): DE 69117806 C0 960418

HEIZGERAET MIT ENDLOSFILM (German)

Patent Assignee: CANON KK (JP)

Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)

Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611

Applic (No,Kind,Date): DE 69117806 A 910610

IPC: * G03G-015/20

Derwent WPI Acc No: * G 91-370609

JAPIO Reference No: * 160222P000016; 160222P000018

Language of Document: German

Patent (No,Kind,Date): DE 69117806 T2 960822

HEIZGERAET MIT ENDLOSFILM (German)

Patent Assignee: CANON KK (JP)

Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)

Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611

Applic (No,Kind,Date): DE 69117806 A 910610

IPC: * G03G-015/20

Derwent WPI Acc No: * G 91-370609

JAPIO Reference No: * 160222P000016; 160222P000018

Language of Document: German

GERMANY (DE)

Legal Status (No,Type,Date,Code,Text):

DE 69117806 P 960418 DE REF CORRESPONDS TO (ENTSPRICHT)

EP 461595 P 960418

DE 69117806 P 960822 DE 8373 TRANSLATION OF PATENT DOCUMENT OF EUROPEAN PATENT WAS RECEIVED AND HAS BEEN PUBLISHED (UEBERSETZUNG DER PATENTSCHRIFT DES EUROPAEISCHEN PATENTES IST EINGEGANGEN UND VEROEFFENTLICHT WORDEN)

DE 69117806 P 970410 DE 8364 NO OPPOSITION DURING TERM OF OPPOSITION (EINSPRUCHSFRIST ABGELAUFEN OHNE DASS EINSPRUCH ERHOBEN WURDE)

EUROPEAN PATENT OFFICE (EP)

Patent (No,Kind,Date): EP 461595 A2 911218

HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Applic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: ; G 91-370609
 Language of Document: English
 Patent (No,Kind,Date): EP 461595 A3 930929

HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Applic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: * G 91-370609
 JAPIO Reference No: * 160222P000016; 160222P000018
 Language of Document: English
 Patent (No,Kind,Date): EP 461595 B1 960313

HEATING APPARATUS USING ENDLESS FILM (English; French; German)
 Patent Assignee: CANON KK (JP)
 Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP); SASAKI SHINICHI (JP)
 Priority (No,Kind,Date): JP 90153602 A 900611; JP 90153607 A 900611; JP 90153608 A 900611
 Applic (No,Kind,Date): EP 91109513 A 910610
 Designated States: (National) DE; FR; GB; IT
 IPC: * G03G-015/20
 Derwent WPI Acc No: * G 91-370609
 JAPIO Reference No: * 160222P000016; 160222P000018
 Language of Document: English

EUROPEAN PATENT OFFICE (EP)

Legal Status (No,Type,Date,Code,Text):			
EP 461595	P 900611	EP AA	PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG))
		JP 90153602	A 900611
EP 461595	P 900611	EP AA	PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG))
		JP 90153607	A 900611
EP 461595	P 900611	EP AA	PRIORITY (PATENT APPLICATION) (PRIORITAET (PATENTANMELDUNG))
		JP 90153608	A 900611
EP 461595	P 910610	EP AE	EP-APPLICATION (EUROPÆISCHE ANMELDUNG)
		EP 91109513	A 910610
EP 461595	P 911218	EP AK	DESIGNATED CONTRACTING STATES IN AN APPLICATION WITHOUT SEARCH REPORT (IN EINER ANMELDUNG OHNE RECHERCHENBERICHT BENANNTEN VERTRAGSSTAATEN)
		DE FR GB IT	
EP 461595	P 911218	EP A2	PUBLICATION OF APPLICATION WITHOUT SEARCH REPORT (VEROEFFENTLICHUNG DER ANMELDUNG OHNE RECHERCHENBERICHT)
EP 461595	P 911218	EP 17P	REQUEST FOR EXAMINATION FILED (PRUEFUNGSANTRAG GESTELLT)
		910710	
EP 461595	P 930929	EP AK	DESIGNATED CONTRACTING STATES IN A SEARCH REPORT (IN EINEM RECHERCHENBERICHT BENANNTEN VERTRAGSSTAATEN)
		DE FR GB IT	
EP 461595	P 930929	EP A3	SEPARATE PUBLICATION OF THE SEARCH REPORT (ART. 93) (GESONDERTE

VEROEFFENTLICHUNG DES RECHERCHENBERICHTS
(ART. 93))

EP 461595	P	940928	EP 17Q	FIRST EXAMINATION REPORT (ERSTER PRUEFUNGSBESCHEID)
			940810	
EP 461595	P	960313	EP AK	DESIGNATED CONTRACTING STATES MENTIONED IN A PATENT SPECIFICATION (IN EINER PATENTSCHRIFT ANGEFUEHRTE BENANNTEN VERTRAGSSSTAATEN)
			DE FR GB IT	
EP 461595	P	960313	EP B1	PATENT SPECIFICATION (PATENTSCHRIFT)
EP 461595	P	960418	EP REF	CORRESPONDS TO: (ENTSPRICHT)
			DE 69117806 P 960418	
EP 461595	P	960613	EP ITF	IT: TRANSLATION FOR A EP PATENT FILED (IT: DEPOSITO TRADUZIONE DI BREVETTO EUROPEO)
			SOCIETA' ITALIANA BREVETTI S.P.A.	
EP 461595	P	960614	EP ET	FR: TRANSLATION FILED (FR: TRADUCTION A ETE REMISE)
EP 461595	P	970305	EP 26N	NO OPPOSITION FILED (KEIN EINSPRUCH EINGELEGT)

JAPAN (JP)

Patent (No,Kind,Date): JP 4044075 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA; SASAKI SHINICHI
Priority (No,Kind,Date): JP 90153602 A 900611
Applic (No,Kind,Date): JP 90153602 A 900611
IPC: * G03G-015/20; H05B-003/00
JAPIO Reference No: ; 160222P000016
Language of Document: Japanese
Patent (No,Kind,Date): JP 4044080 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153607 A 900611
Applic (No,Kind,Date): JP 90153607 A 900611
IPC: * G03G-015/20; B65H-005/02
JAPIO Reference No: ; 160222P000018
Language of Document: Japanese
Patent (No,Kind,Date): JP 4044081 A2 920213
HEATING DEVICE (English)
Patent Assignee: CANON KK
Author (Inventor): SETORIYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153608 A 900611
Applic (No,Kind,Date): JP 90153608 A 900611
IPC: * G03G-015/20; B65H-005/02
JAPIO Reference No: ; 160222P000018
Language of Document: Japanese
Patent (No,Kind,Date): JP 2884714 B2 990419
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA; SASAKI SHINICHI
Priority (No,Kind,Date): JP 90153602 A 900611
Applic (No,Kind,Date): JP 90153602 A 900611
IPC: * G03G-015/20
Language of Document: Japanese
Patent (No,Kind,Date): JP 2884717 B2 990419
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153607 A 900611
Applic (No,Kind,Date): JP 90153607 A 900611
IPC: * G03G-015/20
Language of Document: Japanese
Patent (No,Kind,Date): JP 2926904 B2 990728
Patent Assignee: CANON KK
Author (Inventor): SETORYAMA TAKESHI; KURODA AKIRA
Priority (No,Kind,Date): JP 90153608 A 900611

Applic (No,Kind,Date): JP 90153608 A 900611

IPC: * G03G-015/20

Language of Document: Japanese

UNITED STATES OF AMERICA (US)

Patent (No,Kind,Date): US 5525775 A 960611

HEATING APPARATUS USING ENDLESS FILM Heating apparatus using endless
film (English)

Patent Assignee: CANON KK (JP)

Author (Inventor): SETORIYAMA TAKESHI (JP); KURODA AKIRA (JP);
SASAKI SHINICHI (JP)

Priority (No,Kind,Date): US 347182 A 941122; JP 90153602 A
900611; JP 90153607 A 900611; JP 90153608 A 900611; US 52276
B1 930426; US 712532 B1 910610

Applic (No,Kind,Date): US 347182 A 941122

National Class: * 219216000; 355290000

IPC: * G03G-015/20

Derwent WPI Acc No: * G 91-370609

JAPIO Reference No: * 160222P000016; 160222P000018

Language of Document: English

UNITED STATES OF AMERICA (US)

Legal Status (No,Type,Date,Code,Text):

US 5525775	P	900611	US AA	PRIORITY (PATENT)
			JP 90153602	A 900611
US 5525775	P	900611	US AA	PRIORITY (PATENT)
			JP 90153607	A 900611
US 5525775	P	900611	US AA	PRIORITY (PATENT)
			JP 90153608	A 900611
US 5525775	P	910610	US AA	PRIORITY
			US 712532	B1 910610
US 5525775	P	930426	US AA	PRIORITY
			US 52276	B1 930426
US 5525775	P	941122	US AE	APPLICATION DATA (PATENT)
			(APPL. DATA (PATENT))	
			US 347182 A	941122
US 5525775	P	960611	US A	PATENT
US 5525775	P	961119	US CC	CERTIFICATE OF CORRECTION

```
?s pn=jp 4044076
S2          0  PN=JP 4044076
?t s2/9

2/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044077
S3          0  PN=JP 4044077
?t s3/9

3/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044078
S4          0  PN=JP 4044078
?t s4/9

4/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044079
S5          0  PN=JP 4044079
?t s5/9

5/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044080
S6          0  PN=JP 4044080
?t s6/9

6/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044081
S7          0  PN=JP 4044081
?t s7/9

7/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044082
S8          0  PN=JP 4044082
?t s8/9

8/9/1
>>>Item 1 is not within valid item range
?s pn=jp 4044083
S9          0  PN=JP 4044083
```


⑪ 公開特許公報 (A) 平4-44081

⑫ Int.Cl.⁵

G 03 G 15/20

// B 65 H 5/02

識別記号

101

102

T

庁内整理番号

6830-2H

6830-2H

7111-3F

⑬ 公開 平成4年(1992)2月13日

審査請求 未請求 請求項の数 4 (全19頁)

⑭ 発明の名称 加熱装置

⑮ 特 願 平2-153608

⑯ 出 願 平2(1990)6月11日

⑰ 発明者 世取山武 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

⑰ 発明者 黒田明 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

⑰ 出願人 キヤノン株式会社 東京都大田区下丸子3丁目30番2号

⑰ 代理人 弁理士 高梨幸雄

明細書

1. 発明の名称 加熱装置

2. 特許請求の範囲

(1) 固定の加熱体と、

この加熱体に内面が対向圧接されて移動駆動されるエンドレスの耐熱性フィルムと、

前記加熱体との間に前記フィルムを挟み込んで、ニップ部を形成し、そのニップ部におけるフィルム外面との間に導入された、顕画像を支持する記録材をフィルムを介して加熱体に圧接させる部材と、

前記フィルムにはフィルム駆動時においてフィルム移動方向と直交するフィルム幅方向の一方側へ常に寄り力が作用する関係構成とし、そのフィルム寄り側のフィルム端部を受け止めてフィルムの寄り移動を規制する部材と

を有することを特徴とする加熱装置。

(2) 前記エンドレスの耐熱性フィルムの膜厚Tは $20\mu m \leq T \leq 100\mu m$ であることを特徴とする請求項1記載の加熱装置。

(3) 前記エンドレスの耐熱性フィルムは、非駆動時において前記加熱体と圧接部材とのニップ部に挟まれている部分を除く残余の周長部分がテンションフリーであることを特徴とする請求項1記載の加熱装置。

(4) 前記エンドレスの耐熱性フィルムは、駆動時においては前記ニップ部と、該ニップ部よりもフィルム移動方向上流側であって該ニップ部近傍のフィルム内面ガイド部分と該ニップ部の間の部分のろにおいてテンションが加わる関係構成となっていることを特徴とする請求項1記載の加熱装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、加熱体に圧接させて移動駆動させた耐熱性フィルムの加熱体側とは反対面側に、顕画像を支持する記録材を導入して密着させてフィルムと一緒に加熱体位置を通過させることで加熱体の熱をフィルムを介して導入記録材に与える方式（フィルム加熱方式）の加熱装置に関する。

この装置は、電子写真複写機・プリンタ・ファックス等の画像形成装置における画像加熱定着装置、即ち電子写真・静電記録・磁気記録等の適宜の画像形成プロセス手段により加熱溶融性の樹脂等より成るトナーを用いて記録材（転写材シート・エレクトロファックスシート・静電記録シート・印刷紙など）の面に間接（転写）方式もしくは直接方式で形成した、目的の画像情報に対応した未定着のトナー画像を、該画像を拘束している記録材面に永久固定画像として加熱定着処理する画像加熱定着装置として活用できる。

3

方式・構成の装置を提案し、既に実用にも供している。

より具体的には、薄肉の耐熱性フィルム（又はシート）と、該フィルムの移動駆動手段と、該フィルムを中にしてその一方面側に固定支持して配置されたヒータと、他方面側に該ヒータに對向して配置され該ヒータに対して該フィルムを介して画像定着るべき記録材の顕画像拘束面を密着させる加圧部材を有し、該フィルムは少なくとも画像定着実行時は該フィルムと加圧部材との間に搬送導入される画像定着すべき記録材と順方向に略同一速度で走行移動させて該走行移動フィルムを抉んでヒータと加圧部材との圧接で形成される定着部としてのニップ部を通過させることにより該記録材の顕画像拘束面を該フィルムを介して該ヒータで加熱して顕画像（未定着トナー像）に熱エネルギーを付与して軟化・溶融せしめ、次いで定着部通過後のフィルムと記録材を分離点で離開させることを基本とする加熱手段・装置である。

5

—1074—

6

また、例えば、面板を担持した記録材を加熱して表面性を改質（つや出しなど）する装置、仮定着処理する装置に使用できる。

(背景技術)

従来、例えば画像の加熱定着のための記録材の加熱装置は、所定の温度で維持された加熱ローラと、弹性層を有して該加熱ローラに圧接する加圧ローラとによって、記録材を挟持搬送しつつ加熱する熱ローラ方式が多用されている。

その他、フラッシュ加熱方式、オープン加熱方式、熱板加熱方式、ベルト加熱方式、高周波加熱方式など種々の方式のものが知られている。

一方、本出願人は例えば特開昭63-313182号公報等において、固定支持された加熱体（以下ヒータと記す）と、該ヒータに對向圧接しつつ搬送（移動駆動）される耐熱性フィルムと、該フィルムを介して記録材をヒータに密着させる加圧部材を有し、ヒータの熱をフィルムを介して記録材へ付与することで記録材面に形成保持されている未定着画像を記録材面に加熱定着させている

4

この様なフィルム加熱方式の装置においては、昇温の速い加熱体と薄膜のフィルムを用いるためウエイトタイム短縮化（クイックスタート）が可能となる、その他、従来装置の種々の欠点を解決できるなどの利点を有し、効果的なものである。

第12図に耐熱性フィルムとしてエンドレスフィルムを使用したこの種方式の画像加熱定着装置の一例の概略構成を示した。

51はエンドレスベルト状の耐熱性フィルム（以下定着フィルム又はフィルムと記す）であり、左側の駆動ローラ52と、右側の從動ローラ53と、これ等駆動ローラ52と從動ローラ53間に配置した低熱容量線状加熱体54の互いに並行な該3部材52・53・54間に懸垂張設してある。

定着フィルム51は駆動ローラ52の時計方向回転駆動に伴ない時計方向に所定の周速度、即ち不図示の画像形成部側から搬送されてくる未定着トナー画像Taを上面に担持した被加熱材として

の記録材シート P の搬送速度（プロセススピード）と略同じ周速度をもって回転駆動される。

55は加圧部材としての加圧ローラであり、前記のエンドレスベルト状の定着フィルム 51 の下行側フィルム部分を挟ませて前記加熱体 54 の下面に対して不図示の付着手段により圧接させてあり、記録材シート P の搬送方向に順方向の反時計方向に回転する。

加熱体 54 はフィルム 51 の面移動方向と交差する方向（フィルムの幅方向）を長手とする低熱容複線状加熱体であり、ヒータ基板（ベース材）56・通電発熱抵抗体（発熱体）57・表面保護層 58・検温素子 59 等よりなり、断熱材 60 を介して支持体 61 に取付けて固定支持させてある。

不図示の画像形成部から搬送された未定着のトナー画像 T a を上面に保持した記録材シート P はガイド 62 に案内されて加熱体 54 と加圧ローラ 55 との圧接部 N の定着フィルム 51 と加圧ローラ 55 との間に進入して、未定着トナー

画像面が記録材シート P の搬送速度と同一速度で順方向に回転駆動状態の定着フィルム 51 の下面に密着してフィルムと一緒に重なり状態で加熱体 54 と加圧ローラ 55 との相互圧接部 N 間を通過していく。

加熱体 54 は所定のタイミングで通常加熱され、該加熱体 54 側の熱エネルギーがフィルム 51 を介して該フィルムに密着状態の記録材シート P 側に伝達され、トナー画像 T a は圧接部 N を通過していく過程において加熱を受けて軟化・溶融像 T b となる。

回転駆動されている定着フィルム 51 は断熱材 60 の面率の大きいエッジ部 S において、急角度で走行方向が転向する。従って、定着フィルム 51 と重なった状態で圧接部 N を通過して搬送された記録材シート P はエッジ部 S において定着フィルム 51 から曲率分離し排紙されてゆく。排紙部へ至る時までにはトナーは十分冷却固化し記録材シート P に完全に定着 T c した状態となっている。

（発明が解決しようとする問題点）

このようなフィルム加熱方式の装置は問題点として次のようなことが挙げられている。

(1) 駆動ローラ 52 と從動ローラ 53 間や、それ等のローラと加熱体 54 間の平行度などアライメントが狂った場合には、これ等の部材 52・53・54 の長手に沿ってフィルム幅方向の…端側又は他端側への寄り力が働く。

フィルム 51 の寄り位置によってはフィルムの搬送力のバランスが崩れたり、定着時の加圧力のバランスが均一にならなかったり、加熱体 19 の温度分布のバランスが崩れる等の問題が生じることもある。

そこでフィルムの寄り移動を光電的に検知するセンサ手段、その検知情報に応じてフィルムを寄り移動方向とは逆方向に戻し移動させる手段例えばソレノイド等を用いてフィルムピンチローラ等の角度を変化させる手段機構等からなるフィルム寄り移動制御機構を附加してフィルム寄りを規制するの処置構成をとると、装置構成の

複雑化・大型化・コストアップ化等の一因となる。

本発明はエンドレスの耐熱性フィルムを用いたフィルム加熱方式の加熱装置について上記のような問題点を解決したのもを提供することを目的とする。

（問題点を解決するための手段）

本発明は、下記のような構成を特徴とする加熱装置である。

(1) 固定の加熱体と、

この加熱体に内面が対向圧接されて移動駆動されるエンドレスの耐熱性フィルムと、

前記加熱体との間に前記フィルムを挟み込んでニップ部を形成し、そのニップ部におけるフィルム外側との間に導入された、顕画像を支持する記録材をフィルムを介して加熱体に圧接させる部材と、

前記フィルムにはフィルム運動時ににおいてフィルム運動方向と直交するフィルム幅方向の一方側へ常に寄り力が作用する間接構成とし、

そのフィルム寄り側のフィルム端部を受け止めて
フィルムの寄り移動を規制する部材と
を有することを特徴とする加熱装置。

(2) 前記エンドレスの耐熱性フィルムの膜厚Tは $20\text{ }\mu\text{m} \leq T \leq 100\text{ }\mu\text{m}$ であることを特徴とする前記(1)項記載の加熱装置。

(3) 前記エンドレスの耐熱性フィルムは、
非駆動時において前記加熱体と圧接部材との
ニップ部に挟まれている部分を除く残余の周長
部分がテンションフリーであることを特徴とする
前記(1)項記載の加熱装置。

(4) 前記エンドレスの耐熱性フィルムは、
駆動時においては前記ニップ部と、該ニップ部
よりもフィルム移動方向上流側であって該ニップ
部近傍のフィルム内面ガイド部分と該ニップ部
の間の部分のみにおいてテンションが加わる
構成となっていることを特徴とする前記
(1)項記載の加熱装置。

1 1

場合では常に安定に良好な定着画像得ることが
できる。

(3) フィルムは熱伝導率や剛性等を考慮して
その膜厚Tを一般に

$$20\text{ }\mu\text{m} \leq T \leq 100\text{ }\mu\text{m}$$

に設定することで、フィルムの寄り移動側端部を
フランジ部材等の規制部材で強制的に規制しても
、フィルム端部に座屈やシワ等の発生もなく
安定に寄り規制部材がなされる。

1 3

—1076—

(作用)

(1) フィルムを駆動させ、加熱体を発熱させた
状態において、フィルムを挟んで加熱体と圧接部
材との間に形成させたニップ部のフィルムと
圧接部材との間に記録材を頭画像持面側を
フィルム側にして導入すると、記録材はフィルム
外面に密着してフィルムと一緒にニップ部を移動
通過していく、その移動通過過程でニップ部に
おいてフィルム内面に接している加熱体の熱エネ
ルギーがフィルムを介して記録材に付与され、
頭画像を支持した記録材がフィルム加熱方式で
加熱処理される。

(2) フィルムは駆動時にはフィルム幅方向の
フィルムの寄り方向を常に一方向のものとなる
ようにし、その寄り側のフィルム端部をその側の
フィルム端部の規制部材としてのフランジ部材や
、フィルムリブと係合室内部材等の手段で規制
することにより、フィルムの寄り制御を簡単な
手段構成で安定且つ容易に行うことが可能と
なる。これにより装置が画像加熱定着装置である

1 2

(実施例)

図面は本発明の一実施例装置(画像加熱定着
装置100)を示したものである。

(1) 装置100の全体的概略構造

第1図は装置100の横断面図、第2図は
縦断面図、第3図・第4図は装置の右側面図と
左側面図、第5図は要部の分解斜視図である。

1は板金型の横断面と上向きチャンネル(消)形
の横長の装置フレーム(底板)、2・3はこの
装置フレーム1の左右両端部に該フレーム1に
一体に具備させた左側壁板と右側壁板、4は装置
の上カバーであり、左右の側壁板2・3の上端部
間にめ込んでその左右端部を夫々左右側壁板
2・3に対しねじ5で固定される。ねじ5を
ゆるめ外すことで取り外すことができる。

6・7は左右の各側壁板2・3の略中央部面に
対称に形成した縦方向の切欠き長穴、8・9は
その各長穴6・7の下端部に嵌合させた右
一対の軸受部材である。

10は後述する加熱体との間でフィルムを挟

1 4

加熱体 19 個を下向きにして前記ステー 13 の横長底面部 14 の下面に並行に一体に取付け支持させてある。

21 はエンドレスの耐熱性フィルムであり、加熱体 19・断熱部材 20 を含むステー 13 に外嵌させてある。このエンドレスの耐熱性フィルム 21 の内周長と、加熱体 19・断熱部材 20 を含むステー 13 の外周長はフィルム 21 の方が例えば 3 mm ほど大きくしてあり、従ってフィルム 21 は加熱体 19・断熱部材 20 を含むステー 13 に対して周長が余裕をもってルーズに外嵌している。

23 はステー 13 の右端部の水平張り出しラグ部 18 に対して嵌合して取付け支持させたフィルム端部規制フランジ部材である。

25 はそのフランジ部材 23 の外側から外方へ突出させた水平張り出しラグ部であり、前記ステー 13 個の外向き水平張り出しラグ部 18 はこのフランジ部材 23 の上記水平張り出しラグ部 25 の内厚内に具備させた差し込み用穴部に

十分に嵌入していてフランジ部材 23 をしっかりと支持している。

本実施例装置においてはフィルム 21 の左側にはその側のフィルム端部を規制するフランジ部材を貯蔵する部材を設けておらずステー 13 の左側の水平張り出しラグ部 17 にはばね受けとしてのラグ部 24 を外嵌してある。

装置の組み立ては、左右の側壁板 2・3 間から上カバー 4 を外した状態において、軸 11 の左右端部側に予め左右の軸受部材 8・9 を嵌着したフィルム加圧ローラ 10 のその左右の軸受部材 8・9 を左右側壁板 2・3 の縱方向切欠き長穴 6・7 に上端開放部から嵌合させて加圧ローラ 10 を左右側壁板 2・3 間に入れ込み、左右の軸受部材 8・9 が長穴 6・7 の下端部に受け止められる位置まで下ろす（落し込み式）。

次いで、ステー 13、加熱体 19、断熱部材 20、フィルム 21、右フランジ部材 23、左ラグ部 24 を図のような関係に予め組み立てた中間組立て体を、加熱体 19 個を下向きにして、

かつ断熱部材 20 の左右の外方突出端と左右の外方水平張り出しラグ部 24・25 を夫々左右側壁板 2・3 の縱方向切欠き長穴 6・7 に上端開放部から嵌合させて左右側壁板 2・3 間に入れ込み、下向きの加熱体 19 がフィルム 21 を挟んで先に組み込んである加圧ローラ 10 の上面に当って受け止められるまで下ろす（落し込み式）。

そして左右側壁板 2・3 の外側に長穴 6・7 を通して突出している、左右の各外方張り出しのラグ部 24・25 の上に夫々コイルばね 26・27 をラグ部上面に設けた支え凸起で位置決めさせて縦向きにセットし、上カバー 4 を、該上カバー 4 の左右端部側に夫々設けた外方張り出しラグ部 28・29 を上記セットしたコイルばね 26・27 の上端に夫々対応させて各コイルばね 26・27 をラグ部 24・28、25・29 間に押し締めながら、左右の側壁板 2・3 の上端部間の所定の位置まで嵌め入れてねじ 5 で左右の側壁板 2・3 間に固定する。

これによりコイルばね 26・27 の押し始め反力で、ステー 13、加熱体 19、断熱部材 20、フィルム 21、右フランジ部材 23、左ラグ部 24 の全体が下方へ押圧付勢されて加熱体 19 と加圧ローラ 10 とがフィルム 21 を挟んで長手各部略均等に例えば総圧 4~7 kg の当接圧をもって圧接した状態に保持される。

30・31 は左右の側壁板 2・3 の外側に長穴 6・7 を通して突出している断熱部材 20 の左右両端部に夫々嵌合した、加熱体 19 に対する電力供給用の給電コネクタである。

32 は装置フレーム 1 の前面壁に取付けて配設した被加熱材入口ガイドであり、装置へ導入される被加熱材としての顯微鏡（粉体トナー像）T a を支持する記録材シート P（第 7 図）をフィルム 21 を挟んで圧接している加熱体 19 と加圧ローラ 10 とのニップ部（加熱定着部）N のフィルム 21 とローラ 10 との間に向けて案内する。

19

第 1 ギア G 1 は不図示の駆動源機構の駆動ギア G 0 から駆動力を受けて加圧ローラ 10 が第 1 図上反時計方向に回転駆動され、それに連動して第 1 ギア G 1 の回転力が第 2 ギア G 2 を介して第 3 ギア G 3 へ伝達されて排出ローラ 34 も第 1 図上反時計方向に回転駆動される。

(2) 動 作

エンドレスの耐熱性フィルム 21 は非駆動時ににおいては第 6 図の要部部分拡大図のように加熱体 19 と加圧ローラ 10 とのニップ部 N に挟まれている部分を除く残余の大部分の略全周長部分がテンションフリー（テンションが加わらない状態）である。

第 1 ギア G 1 に駆動源機構の駆動ギア G 0 から駆動が伝達されて加圧ローラ 10 が所定の周速度で第 1 図上反時計方向へ回転駆動されると、ニップ部 N においてフィルム 21 に回転加圧ローラ 10 との摩擦力で送り移動力がかかり、エンドレスの耐熱性フィルム 21 が加圧ローラ 10 の回転周速と略同速度をもってフィルム内面

33 は装置フレーム 1 の後面壁に取付けて配設した被加熱材出口ガイド（分離ガイド）であり、上記ニップ部を通過して出た記録材シートを下側の排出ローラ 34 と上側のピンチコロ 38 とのニップ部に案内する。

排出ローラ 34 はその軸 35 の左右両端部を左右の側壁板 2・3 に設けた 受 36・37 間に回転自由に軸受支持させてある。ピンチコロ 38 はその軸 39 を上カバー 4 の後面壁の一部を内側に曲げて形成したフック部 40 に受け入れさせて自重と押しばね 41 とにより排出ローラ 34 の上面に当接させてある。このピンチコロ 38 は排出ローラ 34 の回転駆動に従動回転する。

G 1 は、右側壁板 3 から外方へ突出させたローラ軸 11 の右端に固定した第 1 ギア、G 3 はおなじく右側壁板 3 から外方へ突出させた排出ローラ軸 35 の右端に固定した第 3 ギア、G 2 は右側壁板 3 の外面に枢着して設けた中継ギアとしての第 2 ギアであり、上記の第 1 ギア G 1 と第 3 ギア G 3 とに噛み合っている。

20

が加熱体 19 面を摺動しつつ時計方向 A に回動移動駆動される。

このフィルム 21 の駆動状態においてはニップ部 N よりもフィルム回動方向上流側のフィルム部分に引き寄せ力が作用することで、フィルム 21 は第 7 図に実線で示したようにニップ部よりもフィルム回動方向上流側であって該ニップ部近傍のフィルム内面ガイド部分、即ちフィルム 21 を外嵌したステー 13 のフィルム内面ガイドとしての外向き円弧カーブ前面板 15 の略下半面部分に対して接触して摺動を生じながら回動する。

その結果、回動フィルム 21 には上記の前面板 15 との接触摺動部の始点 O からフィルム回動方向下流側のニップ部 N にかけてのフィルム部分 B にテンションが作用した状態で回動することで、少なくともそのフィルム部分面、即ちニップ部 N の記録材シート進入側近傍のフィルム部分面 B、及びニップ部 N のフィルム部分についてのシワの発生が上記のテンションの作用により防止される。

21

-1078-

22

そして上記のフィルム駆動と、加熱体 19への通電を行わせた状態において、入口ガイド 32に案内されて被加熱材としての未定着トナー粒子 a を担持した記録材シート P がニップ部 N の回転フィルム 21 と加压ローラ 10との間に像担持面上向きで導入されると記録材シート P はフィルム 21 の面に密着してフィルム 21 と一緒にニップ部 N を移動通過していく。その移動通過過程でニップ部 N においてフィルム内面に接している加熱体 19 の熱エネルギーがフィルムを介して記録材シート P に付与されトナー画像 T a は軟化溶融像 T b となる。

ニップ部 N を通過した記録材シート P はトナー温度がガラス転移点より大なる状態でフィルム 21 面から離れて出口ガイド 33 で排出ローラ 34 とピンチコロ 38 との間に案内されて装置外へ送り出される。記録材シート P がニップ部 N を出てフィルム 21 面から離れて排出ローラ 34 へ至るまでの間に軟化・溶融トナー像 T b は冷却して固化像化 T c して定着する。

23

またフィルム 21 の非駆動時（第 6 図）も駆動時（第 7 図）もフィルム 21 には上記のように全周長の一部 N 又は B・N にしかテンションが加わらないので、フィルム駆動時にフィルム 21 にフィルム幅方向への寄り移動を生じても、その寄り力は小さいものである。

また本実施例装置の場合は前記の左右のコイルばね 26・27 の駆動側である右側のばね 27 の加圧力 f 27 (第 2 図) が非駆動側である左側のばね 26 の加圧力 f 26 に比べて高くなるよう設定 ($f 27 > f 26$) にすることでフィルム 21 が駆動されているときに該フィルム 21 には常にステー 13 の長手に沿ってフィルム幅方向右方 R へ向かう寄り力が作用するようにしてある。

そしてそのフィルム 21 の寄り側 R の端部のみを規制部材としての右側フランジ部材 27 で規制することにより、フィルムの寄り制御を安定にかつ容易に行なうことを可能としている。これにより装置が画像加熱定着装置である場合では常に

上記においてニップ部 N へ導入された記録材シート P は前述したようにテンションが作用していてシワのないフィルム部分面に常に対応密着してニップ部 N をフィルム 21 と一緒に移動するのでシワのあるフィルムがニップ部 N を通過する事態を生じることによる加熱ムラ・定着ムラの発生、フィルム面の折れすじを生じない。

フィルム 21 は駆動時も駆動時もその全周長の一部 N 又は B・N にしかテンションが加わらないから、即ち非駆動時（第 6 図）においてはフィルム 21 はニップ部 N を除く残余の大部分の略全周長部分がテンションフリーであり、駆動時もニップ部 N と、そのニップ部 N の記録材シート進入側近傍部のフィルム部分 B についてのみテンションが作用し残余の大部分の略全周長部分がテンションフリーであるから、また全体に周長の短いフィルムを使用できるから、フィルム駆動のために必要な駆動トルクは小さいものとなり、フィルム装置構成、部品、駆動系構成は簡略化・小型化・低コスト化される。

24

安定し良好な定着画像を得ることができる。

このような作用効果はフィルムに全周的にテンションをかけて駆動するテンションタイプの装置構成の場合でも、本実施例装置のようにテンションフリータイプの装置構成の場合でも同様の効果を得ることができるが、該手段構成はテンションフリータイプのものに殊に最適なものである。

即ちテンションフリータイプの装置ではフィルム 21 が寄り移動 R してその右端縁が右側フランジ部材 23 の飼座内面 23a に押し当り状態になつてもフィルム寄り力が小さいからその寄り力に対してフィルムの剛性が十分に打ち勝ちフィルム端部が屈曲・破損するなどのダメージを生じない。

そしてフィルムの寄り規制手段は本実施例装置のように簡単なフランジ部材 23 で足りるので、この点でも装置構成の簡略化・小型化・低コスト化がなされ、安価で信頼性の高い装置を構成できる。

25

—1079—

26

フィルム寄り規制手段としては本実施例装置の場合のフランジ部材23の他にも、例えばフィルム21寄り側端部にエンドレスフィルム周方向に耐熱性樹脂から成るリブを設け、このリブを規制してもよい。

更に、使用フィルム21としては上記のように寄り力が低下する分、剛性を低下させることができるので、より薄肉で熱容量が小さいものを使用して装置のクイックスタート性を向上させることができる。

またフィルム21を駆動時において常にその幅方向の一方側へ寄り移動させる手段としては本実施例装置のように左右の加圧ばね26・27の加圧力を異ならせる他にも、加熱体19の形状やローラ10の形状を駆動端側と非駆動端側とで変化をつけてフィルムの搬送力をコントロールしてフィルムの寄り方向を常に一方向のものとなるようにするなどの手段をとることができる。

(4) 加熱体19・断熱部材20について。

加熱体19は前述第12図例装置の加熱体54と同様に、ヒータ基板19a(第6図参照)・通電発熱抵抗体(発熱体)19b・表面保護層19c・検温素子19d等よりなる。

ヒータ基板19aは耐熱性・絶縁性・低熱容量・高熱伝導性の部材であり、例えば、厚み1mm・巾10mm・長さ240mmのアルミナ基板である。

発熱体19bはヒータ基板19aの下面(フィルム21との対面側)の略中央部に長手に沿って、例えば、Ag/Pd(銀パラジウム)、Ta、Ni、RuO₂等の電気抵抗材料を厚み約10μm・巾1~3mmの線状もしくは細帯状にスクリーン印刷等により塗工し、その上に表面保護層19cとして耐熱ガラスを約10μmコートしたものである。

検温素子19dは一例としてヒータ基板19aの上面(発熱体19bを設けた面とは反対側の面)の略中央部にスクリーン印刷等により塗工

(3) フィルム21について。

フィルム21は熱容量を小さくしてクイックスタート性を向上させるために、フィルム21の膜厚Tは越厚100μm以下、好ましくは40μm以下、20μm以上の耐熱性・離形性・強度・耐久性等のある単層或は複合層フィルムを使用できる。

例えば、ポリイミド・ポリエーテルイミド(PET)・ポリエーテルサルホン(PES)・4フッ化エチレンバーフルオロアルキルビニルエーテル共重合体樹脂(PFA)・ポリエーテルエーテルケトン(PEEK)・ポリバラバン酸(PPA)、或いは複合層フィルム例えば20μm厚のポリイミドフィルムの少なくとも画像当接面側にPTFE(4フッ化エチレン樹脂)・PAF・FEP等のフッ素樹脂・シリコン樹脂等、更にはそれに導電材(カーボンブラック・グラファイト・導電性ウイスカなど)を添加した離型性コート層を10μm厚に施したものなどである。

して具備させたPt膜等の低熱容量の測温抵抗体である。低熱容量のサーミスターなども使用できる。

本例の加熱体19の場合は、線状又は細帯状をなす発熱体19bに対し両側形成スタート信号により所定のタイミングにて通電して発熱体19bを略全長にわたって発熱させる。

通電はAC100Vであり、検温素子19dの検知温度に応じてトライアックを含む不図示の通電制御回路により通電する位相角を制御することにより供給電力を制御している。

加熱体19はその発熱体19bへの通電により、ヒータ基板19a・発熱体19b・表面保護層19cの熱容量が小さいので加熱体表面が所要の定着温度(例えば140~200°C)まで急速に温度上昇する。

そしてこの加熱体19に接する耐熱性フィルム21も熱容量が小さく、加熱体19側の熱エネルギーが該フィルム21を介して該フィルムに圧接状態の記録材シートP間に効果的に伝達さ

れて西側の加熱定着が実行される。

上記のように加熱体 19 と対向するフィルムの表面温度は短時間にトナーの融点（又は記録材シート Pへの定着可能温度）に対して十分な高温に昇温するので、クイックスクート性に優れ、加熱体 19 をあらかじめ昇温させておくいわゆるスタンバイ温調の必要がなく、省エネルギーが実現でき、しかも機内昇温も防止できる。

断熱部材 20 は加熱体 19 を断然して発熱を有効に使うようとするもので、断熱性・高耐熱性を有する、例えば PPS（ポリフェニレンサルファイト）・PAI（ポリアミドイミド）・PI（ポリイミド）・PEEK（ポリエーテルエーテルケトン）・液晶ポリマー等の高耐熱性樹脂である。

(5) フィルム幅 C とニップ長 D について。

第 8 図の寸法関係図のように、フィルム 21 の幅寸法を C とし、フィルム 21 を挟んで加熱体 19 と回転体としての加圧ローラ 10 の圧接により形成されるニップ長寸法を D としたとき、

31

また回転体として本実施例で使用した加圧ローラ 10 はシリコンゴム等の弾性に優れたゴム材料製であるので、加熱されると表面の摩擦係数が変化する。そのため加熱体 19 の発熱体 19 b に関してその長さ範囲寸法を E としたとき、その発熱体 19 b の長さ範囲 E に対応する部分におけるローラ 10 とフィルム 21 間の摩擦係数と、発熱体 19 b の長さ範囲 E の外側に対応する部分におけるローラ 10 とフィルム 21 間の摩擦係数は異なる。

しかし、 $E < C < D$ の寸法関係構成に設定することにより、発熱体 19 b の長さ範囲 E とフィルム幅 C の差を小さくすることができるため発熱体 19 b の長さ範囲 E の内外でのローラ 10 とフィルム 21 との摩擦係数の違いがフィルムの搬送に与える影響を小さくすることができる。

これによって、ローラ 10 によりフィルム 21 を安定に駆動することが可能となり、フィルム端部の破損を防止することが可能となる。

フィルム端部規制手段としてのフランジ部材

$C < D$ の関係構成に設定するのがよい。

即ち上記とは逆に $C \geq D$ の関係構成でローラ 10 によりフィルム 21 の搬送を行なうと、ニップ長 D の領域内のフィルム部分が受けるフィルム搬送力（圧接力）と、ニップ長 D の領域外のフィルム部分が受けるフィルム搬送力とが、前者のフィルム部分の内面は加熱体 19 の面に接して搬送されるのに対して後者のフィルム部分の内面は加熱体 19 の表面とは材質の異なる断熱部材 20 の面に接して搬送されるので、大きく異なるためにフィルム 21 の幅方向両端部分にフィルム搬送過程でシワや折れ等の破損を生じるおそれがある。

これに対して $C < D$ の関係構成に設定することで、フィルム 21 の幅方向全長域 C の内面が加熱体 19 の長さ範囲 D 内の面に接して該加熱体表面を摺動して搬送されるのでフィルム幅方向全長域 C においてフィルム搬送力が均一化するので上記のようなフィルム端部破損トラブルが回避される。

32

22・23 のフィルム端部規制面 22 a・23 a は加圧ローラ 10 の長さ範囲内であり、フィルムが寄り移動してもフィルム端部のダメージ防止がなされる。

(6) 加圧ローラ 10 について。

加熱体 19 との間にフィルム 21 を挟んでニップ部 N を形成し、またフィルムを駆動する回転体としての加圧ローラ 10 は、例えば、シリコンゴム等の離型性のよいゴム弹性体からなるものであり、その形状は長手方向に関してストレート形状ものよりも、第 9 図 (A) 又は (B) の説明模様図のように逆クラウン形状、或いは逆クラウン形状でその逆クラウンの端部をカットした実質的逆クラウン形状のものがよい。

逆クラウンの程度 d はローラ 10 の有効長さ H が例えば 230 mm である場合において

$$d = 100 \sim 200 \mu m$$

に設定するのがよい。

即ち、ストレート形状の場合は部品精度の

33

—1081—

34

バラツキ等により加熱体 19 とのニップ部 N において該ローラによりフィルム 21 に加えられるフィルム幅方向に関する圧力分布はフィルムの幅方向端部よりも中央部の方が高くなることがあった。つまり該ローラによるフィルムの搬送力はフィルム幅方向端部よりも中央部の方が大きく、フィルム 21 には搬送に伴ない搬送力の小さいフィルム部分が搬送力の大きいフィルム部分へ寄り向う力が働くので、フィルム端部側のフィルム部分がフィルム中央部分へ寄っていきフィルムにシワを発生せることがあり、更にはニップ部 N に記録材シート P が導入されたときにはその記録材シート P にニップ部搬送通過過程でシワを発生せることがある。

これに対して加圧ローラ 10 を逆クラウンの形状にすることによって加熱体 19 とのニップ部 N において該ローラによりフィルム 21 に加えられるフィルム幅方向に関する圧力分布は上記の場合とは逆にフィルムの幅方向端部の方が中央部よりも大きくなり、これによりフィルム 21 には

駆動機能とを夫々別々の加圧機能回転体（必要な加圧力はこの回転体を加圧することにより得る）とフィルム駆動機能回転体で行なわせる構成のものとした場合には、加熱体 19 とフィルム駆動機能回転体間のアライメントが狂った場合に導膜のフィルム 21 には幅方向への大きな寄り力が働き、フィルム 21 の端部は折れやシワ等のダメージを生じるおそれがある。

またフィルムの駆動部材を兼ねる加圧回転体に加熱体 19 との圧接に必要な加圧力をバネ等の押し付けにより加える場合には該回転体の位置や、該回転体を駆動するためのギアの位置精度がだしすらい。

これに対して前記したように、加熱体 19 に定着時に必要な加圧力を加え回転体たる加圧ローラ 10 により記録材シート P をフィルム 21 を介して圧接させると共に、記録材シート P とフィルム 21 の駆動をも同時に行なわせることにより、前記の効果を得ることができると共に、装置の構成が簡略化され、安価で信頼性の高い

中央部から両端側へ向う力が働いて、即ちシワのぼし作用を受けながらフィルム 21 の搬送がなされ、フィルムのシワを防止できると共に、導入記録材シート P のシワ発生を防止することが可能である。

回転体としての加圧ローラ 10 は本実施例装置のように加熱体 19 との間にフィルム 21 を挟んで加熱体 19 にフィルム 21 を圧接させると共に、フィルム 21 を所定速度に移動駆動し、フィルム 21 との間に被加熱材としての記録材シート P が導入されたときはその記録材シート P をフィルム 21 面に密着させて加熱体 19 に圧接させてフィルム 21 と共に所定速度に移動駆動させる駆動部材とすることによりフィルムにかかる寄り力を低減することが可能となると共に、加圧ローラ 10 の位置や該ローラを駆動するためのギアの位置精度を向上させることができる。

即ち、加熱体 19 に対してフィルム 21 又はフィルム 21 と記録材シート P とを加圧圧接させる加圧機能と、フィルム 21 を移動駆動させる

装置を得ることができる。

なお、回転体としてはローラ 10 に代えて、第 10 図のように回転駆動されるエンドレスベルト 10A とすることもできる。

回転体 10・10A にフィルム 21 を加熱体 19 に圧接させる機能と、フィルム 21 を駆動させる機能を持たせる構成は、本実施例装置のようなフィルムテンションフリータイプの装置、前述第 13 図例装置のもののようなフィルムテンションタイプの装置にも、またフィルム寄り規制手段がセンサ・ソレノイド方式、リブ規制方式、フィルム端部（両側または片側）規制方式等の何れの場合でも、適用して同様の作用・効果を得ることができるが、殊にテンションフリータイプの装置構成のものに適用して最適である。

(7) 記録材シート排出速度について。

ニップ部 N に導入された被加熱材としての記録材シート P の加圧ローラ 10（回転体）による輸送速度、即ち該ローラ 10 の周速度を V 10 とし、排出ローラ 3・4 の記録材シート排出搬送

速度、即ち排出ローラ34の周速度をV34としたとき、 $V10 > V34$ の速度関係に設定するのがよい。その速度差は数%例えば1~3%程度の設定でよい。

装置に導入して使用できる記録材シートPの最大幅寸法をF(第8図参照)としたとき、フィルム21の幅寸法Cとの関係において、 $F < C$ の条件下では $V10 \leq V34$ となる場合にはニップ部Nと排出ローラ34との両者間にまたがって搬送されている状態にある記録材シートPはニップ部Nを通過中のシート部分は排出ローラ34によって引っ張られる。

このとき、表面に屈曲性の良いPTFE等のコーティングがなされているフィルム21は加圧ローラ10と同一速度で搬送されている。一方記録材シートPには加圧ローラ10による搬送力の他に排出ローラ34による引っ張り搬送力も加わるため、加圧ローラ10の周速よりも速い速度で搬送される。つまりニップ部Nにおいて記録材シートPとフィルム21はスリップする。

状態を生じ、そのために記録材シートPがニップ部Nを通過している過程で記録材シートP上の未定着トナー像Tn(第7図)もしくは軟化・溶融状態となったトナー像Tmに乱れを生じさせる可能性がある。

そこで前記したように加圧ローラ10の周速度 $V10$ と排出ローラ34の周速度 $V34$ を

$$V10 > V34$$

の関係に設定することで、記録材シートPとフィルム21にはシートPに排出ローラ34による引っ張り力が作用せず加圧ローラ10の搬送力のみが与えられるので、シートPとフィルム21間のスリップにもとづく上記の画像乱れの発生を防止することができる。

排出ローラ34は本実施例では加熱装置100側に配設具備させてあるが、加熱装置100を組み込む画像形成装置等本機側に具備させてもよい。

面して、 μ_1 と μ_2 との関係は

$$\mu_1 > \mu_2$$

の関係構成にする。

即ち、この種のフィルム加熱方式の装置では前記 μ_1 と μ_5 との関係は $\mu_1 < \mu_5$ と設定されており、また画像形成装置では前記 μ_1 と μ_2 との関係は $\mu_1 > \mu_2$ となっている。

このとき、 $\mu_1 \leq \mu_2$ では加熱定着手段の断面方向でフィルム21と記録材シートPがスリップ(ローラ10の周速に対してフィルム21の搬送速度が遅れる)して、加熱定着時に記録材シート上のトナー画像が乱されてしまう。

また、記録材シートPとフィルム21が一体でスリップ(ローラ10の周速に対してフィルム21と記録材シートPの搬送速度が遅れる)した場合には、転写式画像形成装置の場合では画像転写手段部において記録材シート(転写材)上にトナー画像が転写される際に、やはり記録材上のトナー画像が乱されてしまう。

上記のように $\mu_1 > \mu_2$ とすることにより、

- (8) 各部材間の摩擦係数関係について。
 - a. フィルム21の外周面に対するローラ(回転体)10表面の摩擦係数を μ_1 。
 - b. フィルム21の内周面に対する加熱体19表面の摩擦係数を μ_2 。
 - c. 加熱体19表面に対するローラ10表面の摩擦係数を μ_3 。
 - d. 被加熱材としての記録材シートP表面に対するフィルム21の外周面の摩擦係数を μ_4 。
 - e. 記録材シートP表面に対するローラ10表面の摩擦係数を μ_5 。
 - f. 装置に導入される記録材シートPの搬送方向の最大長さ寸法を μ_6 。
 - g. 装置が画像加熱定着装置として転写式画像形成装置に組み込まれている場合において画像転写手段部から画像加熱定着装置としての該装置のニップ部Nまでの記録材シート(転写材)Pの搬送路長を μ_7 。

とする。

断面方向でのローラ10に対するフィルム21と記録材シートPのスリップを防止することができる。

また、フィルム21の幅寸法Cと、回転体としてのローラ10の長さ寸法Hと、加熱体19の長さ寸法Dに関して、 $C < H$ 、 $C < D$ という条件において、

$$\mu_1 > \mu_3$$

の関係構成にする。

即ち、 $\mu_1 \leq \mu_3$ の関係では加熱定着手段の幅方向で、フィルム21とローラ10がスリップし、その結果フィルム21と記録材シートPがスリップし、加熱定着時に記録材シート上のトナー画像が乱されてしまう。

上記のように $\mu_1 > \mu_3$ の関係構成にすることで、幅方向、特に記録材シートPの外側でローラ10に対するフィルム21のスリップを防止することができる。

このように $\mu_1 > \mu_2$ 、 $\mu_1 > \mu_3$ とすることにより、フィルム21と記録材シートPの搬送

速度は常にローラ10の周速度と同一にすることが可能となり、定着時または転写時の画像乱れを防止することができ、 $\mu_1 > \mu_2$ 、 $\mu_1 > \mu_3$ を同時に実施することにより、ローラ10の周速(=プロセススピード)と、フィルム21及び記録材シートPの搬送速度を常に同一にすることが可能となり、転写式画像形成装置においては安定した定着画像を得ることができる。

(9) 画像形成装置例

第11図は第1～10回例の画像加熱定着装置100を組み込んだ画像形成装置の一例の概略構成を示している。

本例の画像形成装置は転写式電子写真プロセス利用のレーザービームプリンタである。

60はプロセスカートリッジであり、回転ドラム型の電子写真感光体（以下、ドラムと記す）61・帯電器62・現像器63・クリーニング装置64の4つのプロセス機器を包含させてある。このプロセスカートリッジは装置の開閉部65を開けて装置内を開放することで装置内の

所定の位置に対して着脱交換自在である。

画像形成スタート信号によりドラム61が矢示の時計方向に回転駆動され、その回転ドラム61面が帯電器62により所定の極性・電位に一様帶電され、そのドラムの帶電処理面に対してレーザースキャナ66から出力される、目的の画像情報の時系列電気デジタル画像信号に対応して変調されたレーザビーム67による主走査露光がなされることで、ドラム61面に目的の画像情報に対応した静電潜像が順次に形成されていく。その潜像は次いで現像器63でトナー画像として顕現化される。

一方、給紙カセット68内の記録材シートPが給紙ローラ69と分離パッド70との共働で1枚充分離送され、レジストローラ71によりドラム61の回転と同期取りられてドラム61とそれに対向圧接している転写ローラ72との定着部たる圧接ニップ部73へ給送され、該給送記録材シートP面にドラム1面側のトナー画像が順次に転写されていく。

転写部73を通った記録材シートPはドラム61面から分離されて、ガイド74で定着装置100へ導入され、前述した該装置100の動作・作用で未定着トナー画像の加熱定着が実行されて出口75から画像形成物（プリント）として出力される。

転写部73を通って記録材シートPが分離されたドラム61面はクリーニング装置64で転写残りトナー等の付着汚染物の除去を受けて繰り返して作像に使用される。

本発明の加熱装置は上述例の画像形成装置の画像加熱定着装置としてだけでなく、その他、画像面加熱つや出し装置、仮定着装置としても効果的に活用することができる。

(発明の効果)

以上のように本発明のフィルム加熱方式の加熱装置は、フィルムの寄り方向を常に一方向になるようにしてそのフィルム寄り側端部のみを輻射部材で照射するようにしたことでフィルムの寄り制御を安定にかつ容易に行なうことが可能となり、常にきれいで良好な加熱定着画像を安定に得ることができ、また簡単なフィルム寄り制御手段があるので装置構成を簡略化・小型化・低コスト化でき、しかも安定性・信頼性のある装置となる。

47

4. 図面の簡単な説明

第1図は実施例装置の横断面図。

第2図は縦断面図。

第3図は右側面図。

第4図は左側面図。

第5図は要部の分解斜視図。

第6図は非駆動時のフィルム状態を示した要部の拡大横断面図。

第7図は駆動時の同上図。

第8図は輻射部材の寸法関係図。

第9図(A)・(B)は夫々回転体としてのローラ10の形状例を示した特長形状図。

第10図は回転体として回動ベルトを用いた例を示す図。

第11図は画像形成装置例の概略構成図。

第12図はフィルム加熱方式の画像加熱定着装置の公知例の概略構成図。

19は加熱体、21はエンドレスフィルム、

13はステー、10は回転体としてのローラ。

48

第 5 図

第6図

第7図

第 8 図

第9図

第10図

第 11 図

第 12 図

THIS PAGE BLANK (USPTO)