Homework Notes: I did not work with anyone else on this homework or refer to resources other than the course notes, textbook, and course Piazza page.

Problem 1

 \mathbf{A}

$$\hat{\mu}_k = \sum_{i=1}^n p(z_i = k | \hat{\pi}, \hat{\Sigma}_k) * x_i$$

$$\hat{\pi}_k = \sum_{i=1}^n p(x_i | \hat{\mu}_k \hat{\Sigma}_k)$$

B These estimates differ slightly from those in the Murphy textbook. In that text, $\hat{\pi}_k = 1/K$ for all k, whereas here we use information in the data to estimate $\hat{\pi}$. Similarly, in the Murphy book $\mu_k = \frac{1}{N_k} \sum_{i:z_i=k} x_i$ relies on the indicator function, while in the version above $\hat{\mu}$ is a weighted average of the x_i 's based on the probability that observation i is in category k. Thus, the version above relies more fully on information in the data rather than the **argmin** of the deviance function.

Problem 2

A Let $n_X = \sum_{i=1}^n X_i$. The data likelihood can be written

$$P(\mathcal{D}|\theta) = \prod_{i=1}^{n} P(X_{i}|\theta)$$

$$= \prod_{i=1}^{n} \mu_{Z_{t}} \times X_{t} + (1 - \mu_{Z_{t}}) \times (1 - X_{t})$$

$$= \mu_{Z_{t}}^{n_{X}} \times (1 - \mu_{Z_{t}})^{n - n_{X}}.$$

B The complete log likelihood can be written

$$\ell_{c}(\theta) = \log P(X, Z|\theta)$$

$$= \log(\prod_{i=1}^{n} P(X_{i}, Z_{i}|\theta))$$

$$= \sum_{i=1}^{n} (\mu_{Z_{t}} \times X_{t} + (1 - \mu_{Z_{t}}) \times (1 - X_{t})) \times (\pi_{Z_{t-1}} \times Z_{t} + (1 - \pi_{Z_{t}}) \times (1 - Z_{t-1}))$$

$$= (\mu_{Z_{t}} \times \pi_{Z_{t-1}} \times n_{X}) + ((1 - \mu_{Z_{t}}) \times (1 - \pi_{Z_{t}}) \times (n - n_{X}))$$

C Omitted.

Homework 3

D Omitted.

E Omitted.

Problem 3

A I would expect to have a single cluster (K = 1) because in a single dimension the mean value should minimize the squared distance from X.

 \mathbf{B}

Problem 4

Omitted.

Problem 5

A The width of the tree is $\log_2 K$.

B Omitted.

Problem 6

Omitted.