Bagging				
Estrategia	10	20	Media	
AD	0,671	0,683	0,677	
k-NN	0,558	0,571	0,564	
NB	0,754	0,754	0,754	
MLP	0,754	0,742	0,748	

Boosting				
Estrategia	10	20	Media	
AD	0,567	0,604	0,585	
NB	0,583	0,6	0,591	

Random Forest					
Estrategia	10	100	Media		
gini	0,633	0,733	0,683		
entropy	0,658	0,779	0,718		
log_loss	0,675	0,775	0,725		

Staking			
Estrategia	Media		
10 classificadores	0,754		
20 classificadores	0,775		

É perceptível a melhoria nos resultados de acurácia ao empregar o MLP. Além disso, o Bagging também demonstrou desempenho significativo com o Naive Bayes. O Random Forest, quando configurado com um maior número de árvores, apresentou resultados igualmente promissores. Surpreendentemente, o Stacking se destacou como o melhor entre todos os métodos, indicando um potencial ainda maior caso incluísse o MLP entre os classificadores utilizados.