CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes > NP-Completeness Via Reductions

- Reduction Techniques:
 - Local Replacement
 - Examples: CLIQUE, SUBSET-SUM

PROBLEM: CLIQUE

- Openition: Clique of a graph:
 - A clique in a graph G=(V,E) is a subset C of V, such that for each u and v in C, (u,v) is in E.
- CLIQUE: Given a graph G and a positive integer k, find whether there is a clique of size at least k in G.
- CLIQUE is in NP
 - Proof:
 - o What would be the certificate?
 - o Can it be verified in polynomial time?

CLIQUE IS NP-HARD

o Proof: VERTEX-COVER ≾ CLIQUE

- o Reduction:
 - Given the instance (G, k) of VERTEX-COVER construct the instance (G^c, k') of CLIQUE as follows:
 - o Let G=(V,E), |V|=n
 - o G^c is the complement graph of G
 - oi.e $G^c = (V, E')$ where (u,v) is in E' iff (u,v) is not in E.
 - ok' = n k
 - Claim:
 - oThere is a vertex cover of size at most k for G iff there is a clique of size at least k for G^c
 - o The reduction (shown above) takes polynomial time.

REDUCTION TECHNIQUE: LOCAL REPLACEMENT

- The reduction used in proving hardness of CLIQUE is known as *Local Replacement:*
 - Divide the known hard problem and the target problem instances into basic units and
 - convert basic units (of one problem) locally into basic units (of the other)

• Exercise:

 Explain how local replacement is used in reducing CNF-SAT to 3-SAT

SET-COVER

- Definition: Set Cover of a collection of sets
 - Give a collection of sets S1, S2, ... Sm a subcollection Si1, Si2, ... Sk for k<=m, is a set cover of the collection if

$$\circ U_{j=1 \text{ to m}} S_j = U_{j=1 \text{ to k}} S_{i_j}$$

- SET-COVER:
 - Given a collection of m sets S1, S2, ... Sm and a positive integer k, find whether there is a set cover of size at most k.
- Proof: Omitted.

NP-COMPLETENESS VIA REDUCTIONS: SUBSET-SUM

o SUBSET-SUM:

- Given a set S of positive integers { s1, s2, ..., sn} and a positive integer k,
- find whether there is a subset T of S, such that the sum of the elements in T is k
- SUBSET-SUM is NP-hard

 - Proof: (Omitted) By Local Replacement