Importing all the Necessary Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.svm import SVC
import xgboost as xgb
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report, confusion_matrix
import warnings
import pickle
```

Reading the CSV

```
df = pd.read_csv('/content/onlinefraud.csv')
df.head()
```

	step type		amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDes
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M197978715
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M204428222
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C55326406
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C3899701
A	1	DAVMENIT	11662 1/	C20/18537720	/155/ 0	20885 86	M193070170

df.columns

df.drop(['isFlaggedFraud'],axis = 1, inplace = True)

df

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	
0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M19
1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2(
2	1	TRANSFER	181.00	C1305486145	181.00	0.00	Cŧ
3	1	CASH_OUT	181.00	C840083671	181.00	0.00	C
4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M12
1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C4
1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	M€
1048572	95	PAYMENT	14140.05	C2037964975	20545.00	6404.95	M13
1048573	95	PAYMENT	10020.05	C1633237354	90605.00	80584.95	M19
1048574	95	PAYMENT	11450.03	C1264356443	80584.95	69134.92	Μŧ
10/0575 70	11	O columno					•

df.head()

	step type		amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDes
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M197978715
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M204428222
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C55326406
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C3899701
A	1	DAVMENIT	11669 1/	C20/18E27720	41554.0	2088£ 88	M102070170

df.tail()

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	
1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C4
1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	Μŧ
1048572	95	PAYMENT	14140.05	C2037964975	20545.00	6404.95	M13
1048573	95	PAYMENT	10020.05	C1633237354	90605.00	80584.95	M19
40/957/	05	DAVMENIT	11/15/1 /13	C126/3E6//3	80284 02	6013/1 03	N AG

plt.style.use('ggplot')
warnings.filterwarnings('ignore')

df

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	
0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M19
1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2(
2	1	TRANSFER	181.00	C1305486145	181.00	0.00	Cŧ
3	1	CASH_OUT	181.00	C840083671	181.00	0.00	C
4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M12
1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C
1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	Μŧ
1048572	95	PAYMENT	14140.05	C2037964975	20545.00	6404.95	M13
1048573	95	PAYMENT	10020.05	C1633237354	90605.00	80584.95	M19
1048574	95	PAYMENT	11450.03	C1264356443	80584.95	69134.92	Μŧ
10/10/25 2	0.170 V 1	0 columno					•

len(df)

1048575

numeric_df = df.select_dtypes(include='number')

Compute correlation

correlation = numeric_df.corr()

Print correlation matrix print(correlation)

	step	amo	unt	oldbalance(org ne	wbalan	ceOrig	\
step	1.000000	-0.025	996	-0.0067	780	-0.	007180	
amount	-0.025996	1.000	000	0.0048	364	-0.	001133	
oldbalanceOrg	-0.006780	0.004	864	1.0000	900	0.	999047	
newbalanceOrig	-0.007180	-0.001	133	0.9996	947	1.	000000	
oldbalanceDest	-0.002251	0.215	558	0.0933	305	0.	095182	
newbalanceDest	-0.019503	0.311	936	0.0640	949	0.	063725	
isFraud	0.045030	0.128	862	0.0038	329	-0.	009438	
	oldbaland	ceDest	new	balanceDest	isFr	aud		
step	-0.6	002251		-0.019503	0.045	030		
amount	0.2	215558		0.311936	0.128	8862		
oldbalanceOrg	0.6	993305		0.064049	0.003	829		
newbalanceOrig	0.6	995182		0.063725	-0.009	438		
$\verb oldbalanceDest $	1.6	00000		0.978403	-0.007	552		
newbalanceDest	0.9	978403		1.000000	-0.000	495		
isFraud	-0.6	007552		-0.000495	1.000	0000		

Heatmap

```
sns.heatmap(correlation, annot=True, cmap='magma')
# Add a title
plt.title('Correlation Heatmap')
# Display the heatmap
plt.show()
```


Univariate Analysis

sns.boxplot(data=df,x='step')

<Axes: xlabel='step'>

sns.countplot(data=df, x='type')

<Axes: xlabel='type', ylabel='count'>

sns.histplot(data=df, x='amount')

sns.boxplot(data=df, x='amount')

<Axes: xlabel='amount'>

sns.histplot(data=df, x='oldbalanceOrg')

<Axes: xlabel='oldbalanceOrg', ylabel='Count'>


```
df['nameDest'].value_counts()
```

```
nameDest
C985934102 98
C1286084959 96
C1590550415 89
C248609774 88
C665576141 87
...
M382871047 1
M322765556 1
M1118794441 1
M1127250627 1
M677577406 1
Name: count, Length: 449635, dtype: int64
```

sns.boxplot(data=df, x='oldbalanceDest')

<Axes: xlabel='oldbalanceDest'>

sns.boxplot(data=df, x='newbalanceDest')

<Axes: xlabel='newbalanceDest'>

sns.countplot(data=df, x='isFraud')

<Axes: xlabel='isFraud', ylabel='count'>


```
df['isFraud'].value_counts()
    isFraud
    0    1047433
    1    1142
    Name: count, dtype: int64

df.loc[df['isFraud']==0, 'isFraud'] = 'is not Fraud'
df.loc[df['isFraud']==1, 'isFraud'] = 'is Fraud'
```

df

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	
0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M19
1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2(
2	1	TRANSFER	181.00	C1305486145	181.00	0.00	Cť
3	1	CASH_OUT	181.00	C840083671	181.00	0.00	(
4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M12
1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C²
1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	Μŧ
4	^-	500000		00000001000	^^	2121 25	•

Bi Variate Analysis

sns.jointplot(data=df,x='newbalanceDest',y='isFraud')

<seaborn.axisgrid.JointGrid at 0x7ec48f50b310>

sns.countplot(data=df,x='type',hue='isFraud')

<Axes: xlabel='type', ylabel='count'>

sns.boxplot(data=df, x='isFraud', y='step')

<Axes: xlabel='isFraud', ylabel='step'>

sns.boxplot(data=df, x='isFraud', y='amount')

<Axes: xlabel='isFraud', ylabel='amount'>

sns.boxplot(data=df, x='isFraud', y='oldbalanceOrg')

<Axes: xlabel='isFraud', ylabel='oldbalanceOrg'>

sns.boxplot(data=df, x='isFraud', y='newbalanceOrig')

<Axes: xlabel='isFraud', ylabel='newbalanceOrig'>

sns.violinplot(data=df,x='isFraud',y='oldbalanceDest')

<Axes: xlabel='isFraud', ylabel='oldbalanceDest'>

sns.violinplot(data=df,x='isFraud',y='newbalanceDest')

<Axes: xlabel='isFraud', ylabel='newbalanceDest'>

Descriptive Analysis

df.describe(include='all')

	step	type	amount	nameOrig	oldbalanceOrg	newbalanc
count	1.048575e+06	1048575	1.048575e+06	1048575	1.048575e+06	1.04857
unique	NaN	5	NaN	1048317	NaN	
top	NaN	CASH_OUT	NaN	C1214450722	NaN	
freq	NaN	373641	NaN	2	NaN	
mean	2.696617e+01	NaN	1.586670e+05	NaN	8.740095e+05	8.938089
std	1.562325e+01	NaN	2.649409e+05	NaN	2.971751e+06	3.00827
min	1.000000e+00	NaN	1.000000e-01	NaN	0.000000e+00	0.000000
25%	1.500000e+01	NaN	1.214907e+04	NaN	0.000000e+00	0.000000
50%	2.000000e+01	NaN	7.634333e+04	NaN	1.600200e+04	0.000000
75%	3.900000e+01	NaN	2.137619e+05	NaN	1.366420e+05	1.746000
mav ∢	0.5000000±01	NaN	1 0000000-±07	NaN	3 8000000-107	3 80000

DATA PRE-PROCESSING

Checking for Null values

```
df.isnull().sum()
      step
                           0
      type
      amount
      nameOrig
      oldbalanceOrg
     newbalanceOrig
     nameDest
                           0
     oldhalanceDest
                           0
     newbalanceDest
                           0
      isFraud
                           0
     dtype: int64
df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1048575 entries, 0 to 1048574
     Data columns (total 10 columns):
      # Column
                         Non-Null Count
                                                    Dtype
                       1048575 non-null int64
      0 step
           type 1048575 non-null object amount 1048575 non-null float64 nameOrig 1048575 non-null object oldbalanceOrg 1048575 non-null float64
      1
           type
      2
       5 newbalanceOrig 1048575 non-null float64
                              1048575 non-null object
       7 oldbalanceDest 1048575 non-null float64
      8 newbalanceDest 1048575 non-null float64
9 isFraud 1048575 non-null object
                              1048575 non-null object
     dtypes: float64(5), int64(1), object(4) memory usage: 80.0+ MB
```

Handling Outliers

```
sns.boxplot(df['amount'])

<Axes: ylabel='amount'>

le7

1.0 -

0.8 -

0.6 -

0.2 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0 -

0.0
```

Remove the Outliers

```
from scipy import stats
print(stats.mode(df['amount']))
print(np.mean(df['amount']))
```

```
ModeResult(mode=10000000.0, count=14)
     158666.9755271392
q1 = np.quantile(df['amount'],0.25)
q3 = np.quantile(df['amount'],0.75)
IQR = q3-q1
upper_bound = q3+(1.5*IQR)
lower_bound = q1-(1.5*IQR)
print('q1 :',q1)
print('q3 :',q3)
print('IQR :',IQR)
print('Upper Bound :', upper_bound)
print('Lower Bound :', lower_bound)
print('Skewed data :',len(df[df['amount']>upper_bound]))
print('Skewed data :',len(df[df['amount']<lower_bound]))</pre>

  q1 : 12149.065

     q3 : 213761.89
     IQR : 201612.825
     Upper Bound : 516181.12750000006
     Lower Bound : -290270.17250000004
     Skewed data: 53088
     Skewed data: 0
def transformationPlot(feature):
  plt.figure(figsize=(12,5))
  plt.subplot(1,2,1)
  sns.distplot(feature)
  plt.subplot(1,2,2)
  stats.probplot(feature,plot=plt)
```

transformationPlot(np.log(df['amount']))


```
df['amount']=np.log(df['amount'])
```

Object Data LabelEncoding

```
4 86753
    7178
```

Name: count, dtype: int64

x = df.drop('isFraud',axis = 1)
y = df['isFraud']

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDe
0	1	3	9.194174	C1231006815	170136.00	160296.36	M1979787
1	1	3	7.530630	C1666544295	21249.00	19384.72	M20442822
2	1	4	5.198497	C1305486145	181.00	0.00	C553264(
3	1	1	5.198497	C840083671	181.00	0.00	C38997(
4	1	3	9.364617	C2048537720	41554.00	29885.86	M12307017
1048570	95	1	11.794771	C1179511630	479803.00	347245.65	C435674
1048571	95	3	9.202042	C1956161225	90545.00	80627.64	M6683649
1048572	95	3	9.556766	C2037964975	20545.00	6404.95	M13551829
1048573	95	3	9.212343	C1633237354	90605.00	80584.95	M19649924
1048574	95	3	9.345748	C1264356443	80584.95	69134.92	M6775774
1040E7E rows v 0 columns							•