K-means clustering

K-Means Clustering Explained

K-means clustering is a popular **unsupervised learning algorithm** used to group similar data points into k clusters. It works by minimizing the distance between data points and their assigned cluster centers.

Approach for K-Means Clustering (Step-by-Step Explanation)

K-Means clustering is an **iterative algorithm** used to group data points into kk clusters by minimizing the distance between points and cluster centroids.

Step 1: Select Initial Cluster Centroids

- Choose k random data points from the dataset.
- These points serve as the initial cluster centroids $\mu_1^{(1)}, \mu_2^{(1)}, ..., \mu_k^{(1)}.$
- The choice of centroids affects the final clustering. Using K-Means++
 improves centroid selection.

Step 2: Assign Each Data Point to the Nearest Centroid

• Compute the **Euclidean distance** between each data point xpx_p and all centroids $\mu_i^{(t)}$:

$$C_i^{(t)} = \left\{ x_p : \|x_p - \mu_i^{(t)}\|^2 \leq \|x_p - \mu_j^{(t)}\|^2, \quad orall j, 1 \leq j \leq k
ight\}$$

- Assign each data point to the closest centroid based on distance.
- This step creates k clusters, each containing a group of points.

Step 3: Update Cluster Centroids

 Compute the **mean** of all points assigned to each cluster to find the new centroid:

$$\mu_i^{(t+1)} = rac{1}{|C_i^{(t)}|} \sum_{x_j \in C_i^{(t)}} x_j$$

- This shifts the centroid towards the actual center of the cluster.
- If a centroid remains unchanged, the algorithm starts converging.

Step 4: Repeat Until Convergence

- Repeat Steps 2 and 3 until the centroids no longer change significantly.
- This ensures clusters **stabilize** and data points are correctly grouped.

Key Notes

- ✓ K-Means minimizes intra-cluster distance (variance).
- **Sensitive to centroid initialization** → Different starting points can lead to different results.
- ✓ Works well for spherical clusters but struggles with complex shapes.

Example of K-Means in Action

Iteration	Action
1	Randomly place k centroids
2	Assign points to the nearest centroid
3	Compute new centroid positions
4	Repeat until centroids stop moving

End Result: k clusters with optimized centroids.

How to Choose the Best k?

Since **k** is user-defined, we use methods like:

- $extbf{ extbf{ iny Elbow Method}}$ → Plot inertia (SSE) vs. k, pick the "elbow" point.
- \checkmark Silhouette Score \rightarrow Measures cluster separation and cohesion.
- \bigcirc Gap Statistic \rightarrow Compares clustering performance with random data.

Advantages of K-Means

- Scalable → Efficient for high-dimensional data.
- **Works Well for Well-Separated Clusters** \rightarrow If clusters are spherical and distinct.

Limitations of K-Means

K-means clustering

- \times Requires Predefined kk \rightarrow Wrong k leads to poor clustering.
- **X** Sensitive to Outliers → Outliers can shift centroids.
- **X** Assumes Spherical Clusters → Doesn't work well for irregular shapes.

When to Use K-Means?

- ✓ Customer segmentation
- √ Image compression
- √ Document classification
- ✓ Market analysis

K-means clustering 3