

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : A61F 2/06, A61B 17/12, A61K 49/04	A1	(11) International Publication Number: WO 00/28920 (43) International Publication Date: 25 May 2000 (25.05.00)
(21) International Application Number: PCT/GB99/03796		
(22) International Filing Date: 12 November 1999 (12.11.99)		
(30) Priority Data: 98309334.5 13 November 1998 (13.11.98) EP		
(71) Applicant (<i>for all designated States except US</i>): BIOCOMPATIBLES LIMITED [GB/GB]; Fresham House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL (GB).		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors; and		
(75) Inventors/Applicants (<i>for US only</i>): STRATFORD, Peter, William [GB/GB]; Biocompatibles Limited, Frensham House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL (GB). COURT, Jane, Louise [GB/GB]; Biocompatibles Limited, Frensham House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL (GB). LEWIS, Andrew, Lennard [GB/GB]; Biocompatibles Limited, Frensham House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL (GB).		
(74) Agent: GILL JENNINGS & EVERY; Broadgate House, 7 Eldon Street, London EC2M 7LH (GB).		

(54) Title: **THERAPEUTIC USE OF POLYMERS**

(57) Abstract

An insoluble polymer is deposited in a body cavity for instance to embolise a vein or pack an aneurysm, the polymer having pendant zwitterionic groups to improve biocompatibility. The insoluble polymer is preferably formed by an *in situ* gelling step in which a charged, preferably soluble, polymer having pendant zwitterionic groups is introduced in the form of a composition in which it is soluble and is gelled by being mixed with a counterionically charged soluble polymer (polyelectrolyte), to form a polyion complex. Preferably the or each soluble polymer is formed by polymerising ethylenically unsaturated monomers including a zwitterionic monomer, for instance 2-methacryloyloxyethyl-2'-trimethylammoniumethyl phosphate inner salt, an ionic monomer such as trimethylammonium alkyl(alk)acrylate or a sulphoalkyl(alk)acrylate and optionally a diluent monomer such as an alkyl(alk)acrylate.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IR	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

THERAPEUTIC USE OF POLYMERS

The present invention relates to the use of a polymer in a method of treatment in which it is introduced into a body cavity under conditions whereby insoluble polymer is deposited in the body cavity. In the invention polymer having pendant zwitterionic groups is used, whereby biocompatibility is optimised.

The current chosen method for the treatment of aneurysms involves the packing of the aneurysm with platinum coils. Some work has been performed on the coating of these coils to provide a surface with increased thrombogenicity and render it biologically active by enabling the release of cellular growth factors and the like (German Patent DE-A-19647280). Others have concentrated on the use of polymer systems for embolising aneurysms, often simply by precipitating the polymer from a solution in a biocompatible solvent (WO-A-9745131). Specifically, a Japanese Group has had some success using a liquid composition containing a hardening polymer (cellulose acetate), with an X-ray contrast agent in a solvent such as DMSO. The polymer is caused to precipitate *in-situ* within the aneurysm when contacted with blood (JP-A-06-107549, *J. Neurosurg.*, 83(3), 531, 1995). Another approach has been to directly polymerise monomers *in-situ*, an example of which is an iron-acrylic compound which polymerises rapidly and is non-toxic (*J. Neurosurg.*, 47(2), 137, 1977). Yet another approach described in US-A-5,749,894 is to introduce a coil and a polymeric composition which is melted by incident radiation and re-solidified *in situ* in the aneurysm. Examples of polymers are polyalkenes, poly(meth)acrylates, polyesters, polyamides and polysaccharides.

The use of polyion complexes in medical applications has been suggested for many years. Indeed, Michaels made reference to the use of such complex solutions for potting or encapsulating aneurysms, commenting that the materials were reasonably well tolerated by the tissue. Ioplex 101 (a complex poly(triethyl-(3 & 4)-vinylphenylammonium bromide) and poly(sodium vinyl benzenesulphonate)) has been examined intensively for biomedical usage (Vogel *et al.* *J. Macromol. Sci., Chem.*, 4, 675, 1970; Marshall *et al.*, *J. Biomed. Mater. Res.*, 4, 357, 1970; Bruck *et al.*, *Ann. N.Y. Acad. Sci.*, 283, 332, 1977). Analogues of this system have been studied to determine the effect of charge and structure on the complex and their behaviour towards blood platelets (Kataoka *et al.*, *Makromol. Chem.*, 179, 1121, 1978 & 181, 1363, 1980) and

have been used as encapsulating agents in the development of artificial liver support systems (Kataoka *et al.*, *Jinko Zoki (Artificial Organs)*, 8, 296, 1979).

Nakabayashi *et al.* have previously described the use of polyion complexes of polymers having zwitterionic pendant groups for the selective adhesion of platelets (*J. Biomed. Mater. Res.*, 28(11), 1347, 1994 by Ishihara, K. *et al.* *Adv. Biomat. Biomed. Eng. Drug Delivery Syst.* (1995) 227-228 by Ishihara, K. *et al.*, and Japanese Patent JP-A-7-238124). Their invention claims specifically the use of a ternary polymer system consisting of 2-methacroyloxyethyl phosphorylcholine (MPC), butyl methacrylate (BMA) and sulfopropyl methacrylate (SPM) or trimethyl ammonium propyl methacrylate (TPM). Further to this, they define the compositions in which the MPC:BMA molar ratio is between 2:98 - 50:50, and the ratio of these two components to the ionic monomer (SPM or TPM) is between 98:2 - 80:20. These systems seem to have been designed to produce coatings with weak ionic interactions that have favourable properties in terms of platelet binding and activation. The polyion complexes described in these references are tested as coatings on glass beads and one of the products is said to be under test for use to encapsulate activated charcoal used for an artificial liver support system.

In the present invention there is provided a new use of a charged polymer in a method of manufacture of a composition for use in the method of treatment of a human or animal by therapy or diagnosis in which the charged polymer containing composition is introduced into a body cavity and is contacted with a separate composition comprising a polyvalently charged counterion whereby the polymer is rendered insoluble in the body cavity, and is characterised in that the charged polymer has zwitterionic pendant groups.

The present invention also includes the method of treatment itself.

In the present invention, the insoluble polymer is deposited as a gel in the body cavity. The polymer should be insoluble *in situ*, so that it remains *in situ* over a period of time, for instance at least several hours, days or weeks. A gel comprises a matrix of polymer and solvent distributed throughout the matrix. Preferably the solvent in the gel is aqueous and substantially free of organic solvent.

The gel depot may be used as a vehicle for delivery to the body cavity of therapeutically active agents, or diagnostic agents such as contrast agents. Contrast agents may, for instance, be introduced to allow medical practitioners to visualise the

position of the insoluble polymer, which itself may be providing a therapeutic benefit, or diagnostic utility in a patient. According to a preferred aspect of the invention therefore the insoluble polymer is, in the body cavity, combined with a therapeutically active or imaging agent.

5 The gelled polymer may be a coating, or encapsulating agent, on particulate or non particulate solid material which is opaque to electromagnetic radiation (possibly radio frequency). The opaque material may, for instance, be an imaging agent such as described in US-A-5,667,767 such as tantalum, tantalum oxide and barium sulphate, or as described in US-A-5,695,480 including gold, tungsten and platinum. The opaque agent may be particulate or may be a solid material having a discrete physical shape, for instance being 1mm or larger in size such as a metallic coil, filament, wire, mesh or tube. For instance coils as described in US-A-4,994,069, US-A-5,122,136, US-A-5,226,911 or US-A-5,702,361 may be included.

10 The present invention is particularly useful for embolising blood vessels, or for packing aneurysms. The polymer is thus used in methods analogous to those described in the prior art discussion above. The invention may also be used as a therapeutic or cosmetic filler, for instance for use following tumour excision, for enhancing lips or breasts, for improving muscle control, for instance sphincter muscles to control incontinence, for endoluminal gel paving, for the treatment of patent ductus arteriosus, 15 or for replacement or supplement of synovial fluid.

20 The charged polymer is prior to insolubilisation, soluble, in the composition in which it is introduced into the body cavity. That composition is preferably aqueous. The polymer is thus preferably water-soluble. The counterion is also preferably soluble in the separate composition in which it is introduced into the body cavity. It is most convenient 25 for the separate composition to be aqueous, so that it is preferred for the counterion to be introduced in a water-soluble form, in solution in an aqueous composition.

30 The two compositions may be mixed in the body cavity or immediately before being introduced into the body cavity. Preferably they are introduced using a catheter designed for the purpose, which has separate lumens for each composition and means for allowing contact and mixing of the compositions immediately before delivery of the insoluble, usually gel form, polymer from the catheter into the desired location in a body cavity.

The counterion may be inorganic or organic. It may be a di- or tri- valently charged soluble ion, for instance a metal cation, or a multivalent oxyanion. Calcium ions are suitable multivalent cations.

Preferably in the invention, the counterion is a polyelectrolyte. The counterionic charges of the two polymers attract one another when the polymers are intimately mixed, thereby insolubilising (gelling) the blend. This blend is consequently a polyion (or polyelectrolyte) complex. At least one of the polymers forming the polyion complex should have zwitterionic pendant groups. Preferably both polymers have zwitterionic pendant groups. The charged polymer which has an essential feature pendant zwitterionic groups, may be anionic or cationic but is preferably anionic. The counterion is thus preferably cationic.

In some embodiments of the present invention, a polycationic polymer will have permanently cationic pendant groups. These may be quaternary ammonium or phosphonium or tertiary sulphonium groups. In other embodiments, the cationic group may not be a permanent cation. It may be a weak or a strong base. For instance it may be selected so as to provide pH sensitivity whereby the degree of attraction between the two first polymers may be controlled by the pH.

Likewise, the anion may be the anion of a weak or strong acid, selected so as to be pH sensitive or insensitive within a predetermined pH range, as desired.

A suitable cationic group is a group $N^+R_3^1$, $P^+R_3^1$, or $S^+R_2^1$, in which the groups R^1 are the same or different and are each hydrogen, C₁₋₄-alkyl or aryl (preferably phenyl) or two of the groups R^1 together with the heteroatom to which they are attached from a saturated or unsaturated heterocyclic ring containing from 5 to 7 atoms. Preferably the cationic group is permanently cationic, that is each R^1 is other than hydrogen. Preferably the cationic group is $N^+R_3^1$, in which each R^1 is C₁₋₄-alkyl, preferably methyl.

Suitable anionic groups are carboxylate, carbonate, sulphonate, sulphate, phosphonate or phosphate. Preferably the anionic group is monovalent. A sulphonate group is particularly convenient.

In a polyion complex used in the invention, the polycationic polymer and polyanionic polymer are preferably used in ratios so as to provide a ratio of equivalents of cationic groups and anionic groups in the range 2:1 to 1:2. Preferably the anions are

present in approximately equivalent amount to the cation so that the ratio is preferably in the range 1.5:1 to 1:1.5, or preferably 1.2:1 to 1:1.2, for instance about 1:1.

In the gelled condition the level of zwitterionic groups is preferably in the range 1 to 75 mole %, preferably 20 to 50%, based on the total moles of monomer from which 5 the polymer(s) forming the insoluble polymer are formed (in the preferred embodiment where the charged polymer(s) is formed from ethylenically unsaturated monomers including zwitterionic monomer).

The amount of ionic monomer in an ionic polymer comprised in the charged polymer is preferably at least 1 mole %, more preferably at least 5 mole %, for instance 10 at least 10 mole %. Where the amount is higher than about 30 or 40 mole % (and the counterionic charges in a PIC are approximately balanced) the or each polymer should preferably also include at least 20%, preferably at least 30% zwitterionic monomer.

For the preferred embodiment in which the charged polymer comprises at least one ionically charged polymer including zwitterionic pendant groups, the ratio of 15 zwitterionic ionic groups is preferably in the range 5:1 to 1:5, preferably 2:1 to 1:3.

The total content of ionic and zwitterionic monomer in the charged polymer and in preferred counterion is preferably at least 25 mole %, more preferably at least 30%, more preferably at least 40%, up to 100%, more preferably up to 80%, most preferably 20 in the range 50 to 70%. The remaining components of the polymer(s) are non-ionic monomer, which may act primarily as diluent or may confer desirable physical properties on the polymer(s). A non-ionic, monomer may comprise a hydrophobic pendant group.

The ratio of anionic to cationic polymer and the relative amounts of zwitterionic and hydrophobic diluent groups in a polyion complex may be judged by determining the gel properties of a gel, usually an aqueous gel formed by mixing the counterionic 25 polymers from solutions each containing one of the polymers. A suitable technique for investigating the gel properties is described in Example 3 below.

The zwitterionic pendant group of the polymer used in the invention may have an overall charge, for instance by having a divalent centre of anionic charge and monovalent centre of cationic charge or *vice versa* or by having two centres of cationic 30 charge and one centre of anionic charge or *vice versa*. Preferably, however, the zwitterion has no overall charge and most preferably has a centre of monovalent cationic charge and a centre of monovalent anionic charge.

Preferably the centre of cationic charge in the zwitterionic group is permanent, that is it is preferably a quaternary ammonium or phosphonium or a tertiary sulphonium group. Preferably the anion is permanent, that is it is substantially completely ionised at *in vivo* pH's, for instance at pH's in the range 5 to 8. It is preferably a phosphate, phosphonate, sulphate or sulphonate anion.

The zwitterionic group may be a betaine group (ie in which the cation is closer to the backbone than the anion), for instance a sulpho-, carboxy- or phospho-betaine. A betaine group should have no overall charge and is preferably a carboxy- or sulphobetaine. If it is a phosphobetaine the phosphate terminal group must be a diester, i.e., be esterified with an alcohol. Such groups may be represented by the general formula I

in which X^2 is a valence bond, -O-, -S- or -NH-, preferably -O-;

V is a carboxylate, sulphonate or phosphate diester(monovalently charged) anion;

R^2 is a valence bond (together with X^2) or alkanediyl, -C(O)alkanediyl- or -C(O)NHalkanediyl preferably alkanediyl and preferably containing from 1 to 6 carbon atoms in the alkanediyl chain;

the groups R^3 are the same or different and each is hydrogen or alkyl of 1 to 4 carbon atoms or the groups R^3 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 atoms; and

R^4 is alkanediyl of 1 to 20, preferably 1 to 10, more preferably 1 to 6 carbon atoms.

One preferred sulphobetaine monomer has the formula II

where the groups R^5 are the same or different and each is hydrogen or C_{1-4} alkyl and n is from 2 to 4.

Preferably the groups R^5 are the same. It is also preferable that at least one of the groups R^5 is methyl, and more preferable that the groups R^5 are both methyl.

Preferably n is 2 or 3, more preferably 3.

Alternatively the zwitterionic group may be an amino acid moiety in which the alpha carbon atom (to which an amine group and the carboxylic acid group are attached) is joined through a linker group to the backbone of polymer A. Such groups may be represented by the general formula III

5

in which X^3 is a valence bond, -O-, -S- or -NH-, preferably -O-,
10 R^6 is a valence bond (optionally together with X^3) or alkanediyl, -C(O)alkanediyl- or -C(O)NHalkanediyl, preferably alkanediyl and preferably containing from 1 to 6 carbon atoms; and

the groups R^7 are the same or different and each is hydrogen or alkyl of 1 to 4 carbon atoms, preferably methyl, or two of the groups R^7 , together with the nitrogen to which they are attached, form a heterocyclic ring of from 5 to 7 atoms, or the three group
15 R^7 together with the nitrogen atom to which they are attached form a fused ring structure containing from 5 to 7 atoms in each ring.

Preferably the zwitterion has the formula IV

in which the moieties X^4 and X^5 , which are the same or different, are -O-, -S-, -
25 NH- or a valence bond, preferably -O-, and

W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is preferably a C₁₋₁₂- alkanediyl group.

30 Preferably W contains as cationic group an ammonium group, more preferably a quaternary ammonium group.

The group W^+ may for example be a group of formula
-W¹-N⁺R⁸₃, -W¹-P⁺R⁹₃, -W¹-S⁺R⁹₂ or -W¹-Het⁺ in which:

W¹ is alkanediyl of 1 or more, preferably 2-6 carbon atoms optionally containing one or more ethylenically unsaturated double or triple bonds, disubstituted-aryl, alkylene aryl, aryl alkylene, or alkylene aryl alkylene, disubstituted cycloalkyl, alkylene cycloalkyl, cycloalkyl alkylene or alkylene cycloalkyl alkylene, which group W¹ optionally contains 5 one or more fluorine substituents and/or one or more functional groups; and

either the groups R⁸ are the same or different and each is hydrogen or alkyl of 1 to 4 carbon atoms, preferably methyl, or aryl, such as phenyl or two of the groups R⁸ together with the nitrogen atom to which they are attached form a heterocyclic ring containing from 5 to 7 atoms or the three groups R⁸ together with the nitrogen atom to 10 which they are attached form a fused ring structure containing from 5 to 7 atoms in each ring, and optionally one or more of the groups R⁸ is substituted by a hydrophilic functional group, and

the groups R⁹ are the same or different and each is R⁸ or a group OR⁸, where R⁸ is as defined above; and

15 Het is an aromatic nitrogen-, phosphorus- or sulphur-, preferably nitrogen-, containing ring, for example pyridine.

Preferably W¹ is a straight-chain alkanediyl group, most preferably 1,2-ethanediyl.

Preferred groups of the formula IV are groups of formula V:

20

25 where the groups R¹⁰ are the same or different and each is hydrogen or C₁₋₄ alkyl, and m is from 1 to 4.

Preferably the groups R¹⁰ are the same. It is also preferable that at least one of the groups R¹⁰ is methyl, and more preferable that the groups R¹⁰ are all methyl.

Preferably m is 2 or 3, more preferably 2.

30 Alternatively the ammonium phosphate ester group V may be replaced by a glycerol derivative of the formula VB, VC or VD defined in our earlier publication no WO-A-93/01221.

Preferably the polymer or polymers having a pendant zwitterionic group are wholly synthetic, although under some circumstances it may be desirable to use derivatives of natural polymers. Preferably the polymer(s) is formed from radical polymerisable ethylenically unsaturated monomers including a monomer of the formula

5 VI

YBX

VI

wherein

10 B is a straight or branched alkanediyl, alkanedioyloxaalkanediyl or alkanediyloligo(oxaalkanediyl) chain optionally containing one or more fluorine atoms up to and including perfluorinated chains or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is the zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from

15

CH₂=C(R)-CH₂-O-, CH₂=C(R)-CH₂ OC(O)-, CH₂=C(R)OC(O)-, CH₂=C(R)-O-,
20 CH₂=C(R)CH₂OC(O)N(R¹¹)-, R¹²OOCCR=CRC(O)-O-, RCH=CHC(O)O-,
RCH=C(COOR¹²)CH₂-C(O)-O-,

25

and

wherein:

R is hydrogen or a C₁-C₄ alkyl group;R¹¹ is hydrogen or a C₁-C₄ alkyl group or R¹¹ is -B-X where B and X are as defined above; and30 R¹² is hydrogen or a C₁₋₄ alkyl group or BX where B and X are as defined above;A is -O- or -NR¹¹-;

5 K is a group $-(CH_2)_pOC(O)-$, $-(CH_2)_pC(O)O-$, $-(CH_2)_pOC(O)O-$, $-(CH_2)_pNR^{13}-$,
 $-(CH_2)_pNR^{13}C(O)-$, $-(CH_2)_pC(O)NR^{13}-$, $-(CH_2)_pNR^{13}C(O)O-$, $-(CH_2)_pOC(O)NR^{13}-$,
 $-(CH_2)_pNR^{13}C(O)NR^{13}-$ (in which the groups R¹³ are the same or different), $-(CH_2)_pO-$,
 $-(CH_2)_pSO_3-$, or, optionally in combination with B, a valence bond and p is from 1 to 12
and R¹³ is hydrogen or a C₁-C₄ alkyl group;

Preferably Y is a group CH₂=C(R)COA-, in which R is H or methyl, preferably methyl, and in which A is preferably O.

B is preferably an alkanediyl group of 1 to 12, preferably 2 to 6 carbon atoms, most preferably group (CH₂)_q in which q is 2 to 6.

10 Where the polymer having a zwitterionic group is part of a polyion complex, the polymer is formed by including in the ethylenically unsaturated monomers an ionic monomer of the formula VII

in which Y¹ is selected from the same groups as Y;

15 B¹ is selected from the same groups as B; and

Q is an ionic group or ionisable.

Q may be a cationic group Q¹ or an anionic group Q². A cationic group Q¹ is preferably as described above. An anionic group Q² is preferably selected from the groups listed above.

20 Another suitable type of cationic monomer copolymerisable with ethylenically unsaturated monomers is diallyl dialkyl ammonium halide, for instance diallyl dimethyl ammonium chloride.

The ethylenically unsaturated monomers preferably further comprise nonionic monomer. The nonionic monomer may be selected so as to confer desired solubility, hydrophilicity or hydrophobicity properties upon the polymer bearing zwitterionic pendant groups. The nonionic monomer may also confer on the polymer physical characteristics which affect the mechanical characteristics of the insoluble polymer *in situ*. For instance hydrophobic groups may provide inter or intramolecular interactions with other hydrophobic groups, or with substrates or biological compounds *in situ* which render the insoluble polymer particularly suitable for the desired application.

30 Preferably a nonionic monomer has the general formula VIII

in which Y^2 is selected from the same groups as Y ; and

R^{14} is a nonionic organic group which is an optionally substituted C_{1-24} -alkyl or -alkenyl group. Optional substituents in the alkyl or alkenyl group are hydroxyl groups; halogen atoms, alkoxy and oligo-alkoxy groups, in which the alkoxy groups have 1-6, 5 preferably 2 or 3 carbon atoms; aryl groups, preferably optionally substituted phenyl groups; optional substituents in a phenyl group being hydroxyl, halogen atoms or alkyl groups; acyl groups, especially C_{1-6} -alkanoyl groups; acyloxy groups, especially C_{1-6} -alkanoyloxy groups; acylamino groups, especially C_{1-6} -alkanoyl amino, in any of which alkanoyl groups there may be substituents selected from halogen atoms and hydroxyl groups, and alkoxy groups. Preferred groups R^{14} are C_{1-24} -unsubstituted alkyl, more preferably C_{4-18} -alkyl.

10 A nonionic monomer is preferably present in the ethylenically unsaturated monomers from which the charged polymer and/or the counterionic polyelectrolyte are formed in a molar amount in the range 1-75%, preferably 20 to 70%, more preferably 30- 15 50%.

20 A particularly preferred use of the invention is in the treatment of aneurysms. The charged polymer and counterion could be mixed via a catheter, in the form of aqueous solutions or dispersions, to form a gel *in situ* within the aneurysm void. Once filled the aneurysm would have no void space for the blood to occupy and the danger of rupture of the blood vessel would be removed.

The zwitterionic groups of the gelled (insoluble) polymer are believed to confer biocompatibility, minimising response from the inner lining of the aneurysm or other tissue or biological fluids in contact with the second polymer in the body cavity.

In the drawings

25 Figure 1 is a phase diagram for the formation of polyion complexes from systems based on $Mpc_xBma_yTem_z$ and $Mpc_xBma_ySpm_z$ (for abbreviations, see below);

Figure 2 is a generalised diagram for the formation of polyion complexes; and

Figure 3 is a phase diagram for the formation of polyion complexes from systems based on $Mpc_xGma_yTem_z$ and $Mpc_xBma_ySpm_z$.

30 The invention is illustrated further in the accompanying examples. In these examples, the following standard methods are used:

Inherent Viscosity

20% w/v solutions were made of each polymer using deionised water. The solution was subjected to a flow test (shear rate 1-1999 s⁻¹) using a TA Instruments CSL²-100 Rheometer fitted with a 6cm 2° cone at a temperature of 37°C. From the 5 resulting viscosity vs. shear rate trace, the viscosity (Pa.s) of the solution was determined by taking the value at 200 s⁻¹.

Fibrinogen Adsorption

This test is carried out substantially as described in WO-A-93/01221.

Bicinchoninic Acid Protein Assay

Assessment of protein adsorption was carried out using the Micro-Bicinchoninic Acid (m-BCA) Protein Assay (Pierce & Warriner kit), which relies on the colourimetric detection of a Cu(I) complex with BCA produced upon protein reduction of Cu(II) to Cu(I). Coated and uncoated PET strips were prepared as described for the immunoassay, except that in this case they were cut in half and assayed as two 9 x 15mm strips. Samples were incubated in 4ml of 0.5mgml⁻¹ of fibrinogen solution for 10 minutes at room temperature. Sample blanks of uncoated PET strips were incubated in 4ml of PBS in the same manner. Both samples and blanks were washed in a DiaCent 2000 cell washer and then transferred to clean tubes and incubated with 100 µl PBS and 1ml m-BCA working reagent at 60°C. A Bovine Serum Albumin (BSA) standard curve 15 was constructed so as to give the required amount of protein in 100µl solution. Standards were incubated with 1ml of working reagent as above. The absorbance of a 20 Standards were incubated with 1ml of working reagent as above. The absorbance of a 300µl aliquot of the sample was measured in a microplate reader at 562nm.

Abbreviations Used:

Monomer Code	Chemical Name
Mpc	Methacryloxyethyl phosphorylcholine (2-methacryloyloxyethyl-2'-trimethylammoniummethyl phosphate inner salt)
Bma	Butyl methacrylate (hydrophobic diluent)
Tem	2-trimethylammonium ethyl methacrylate chloride salt
Spm	3-methacryloyloxypropylsulphonate potassium salt
EtOH	ethanol

	TFE	2,2,2-trifluoroethanol
	THF	tetrahydrofuran
	MeOH	methanol
	DI Water	deionised water
5	DCM	dichloromethane
	PBS	phosphate buffered saline
	PET	polyethyleneterephthalate

Example 1: Generic Method for the Preparation of PC-Containing Polyions.

The polymers were developed using free radical solution polymerisation techniques following the standard method outlined below. 2-(methacryloyloxyethyl)-2'-(trimethyl-ammoniumethyl) phosphate, inner salt (Mpc) was prepared according to the method described previously WO-A-95/14702. Bma, Spm and Bma are all commercially available.

A triple-necked round bottom flask (500ml) was equipped with a Davis condenser, a nitrogen inlet and a thermometer. The condenser was topped with a calcium chloride guard tube, and a magnetic follower was added to the flask. The reaction system then purged using nitrogen gas.

The required amount of Mpc was weighed and then stirred in a suitable reaction solvent until dissolved. To this was added the appropriate amounts of the other comonomers (ionic monomer and hydrophobic diluent if required). The initiator type and level was chosen depending upon the reaction solvent employed.

The solutions were then filtered under vacuum using a Buchner funnel, into the reaction vessel. The solution was degassed using a constant flow of nitrogen for a period of twenty minutes, after which time the nitrogen flow rate was reduced and the temperature increased to suitable level dictated by the reaction solvent in use. The polymerisation was carried out under an atmosphere of nitrogen, and maintained at temperature for a period between 16-40 hours.

When the polymerisation had finished the heat source was removed and the solution was allowed to cool to room temperature. In the case where a volatile reaction solvent or solvent mixture had been used, the solvent was removed using rotary evaporation techniques until the point at which the polymer began to foam. This foam was then further redissolved in a suitable solvent/non-solvent combination (typically 9:1

DCM:MeOH) and precipitated by dropwise addition into a non solvent, typically acetone (1000ml) with constant stirring. The precipitate was then collected using vacuum filtration under a blanket of nitrogen and dried at 50°C *in vacuo* for 16 hours.

5 In the case where water was used as the reaction solvent, the solution was allowed to cool and the polymer purified by ultrafiltration to remove low molecular weight species. The polymer could be isolated by freeze drying for subsequent analysis.

Once isolated, the individual polymers were subjected to NMR and elemental analysis to confirm the structure.

Table 1 summarises the preparative details for a selected range of polyion compounds and Table 2 the isolation details for those polymers. Table 3 provides some characterisation for the polymers in terms of ¹H NMR. Elemental analysis was acceptable compared to theoretical values for most cases (within 10% error as expected for polymers); table 4 however, summarises the key elemental data, concentrating on phosphorus:nitrogen and phosphorus:sulphur ratios in order to determine extent of Tem 10 and Spm incorporation in the respective polycations and anions. This can subsequently be used to better define the final polymer composition *versus* the feed monomer ratios (as shown in table 1 to 3). The inherent viscosity of 20% w/v aqueous solutions of the polyions was obtained by rheometry, as an approximate indicator of molecular weight, 15 and is reported in Table 5.

20 **Example 2: Formation of Polyion Complexes (PIC's) by Mixture of Aqueous Solutions of PC-Containing Polyelectrolytes.**

Table 6 summarises some of the observations made upon mixing 20% w/v aqueous solutions of various polyions produced in Example 1 (the ratios are for the monomer in the polymerisation mixture rather than in the polymer by analysis).

25 0.5g of each polymer was completely dissolved in 2.5ml of deionised water to yield a clear solution. One solution of each of the pairs described was poured into the other and then mixed thoroughly with a spatula. In some instances, such as for the poly(Tem)/(Spm) pair, the gelation was almost instantaneous, forming a thick, swollen mass that incorporated all of the water from the system. If this was allowed to stand for 30 a while, the gel could be seen to contract slightly, expelling some of the water from the matrix. It should be noted at this stage, that gels were mixed on an equivalent weight

basis rather than using molar proportions (of monomer feed or groups in polymer as analysed).

By taking the observations made in table 6 and plotting them in terms of a ternary phase diagram, it can be seen that there are trends visible (figure 1). In polymer systems in which the hydrophobic component is high, the resulting polymers are water-insoluble and so cannot form a PIC from aqueous solution (although this may still be possible from other solvent systems). In systems where the PC component is high, both the individual polymers and the resulting PIC remain water-soluble. When the correct balance of ionic/hydrophilic/hydrophobic is obtained, a gel is formed as the polyions complex. This gel tends to be 'stiffer' when the hydrophilicity is reduced and when the 10 ionic content is higher.

Thus, a generalisation can be made for the formation of PICs in this type of system (figure 2). For the formation of a gel for filling an aneurysm, the properties required from that gel will be such that it remains in place once formed.

15 **Example 3: Determination of the Gelation Properties of Polyion Complexes.**

When considering the ability of a mixture of two polyion solutions to form a gel as described in figure 2, it is useful to be able to quantify the observations made. In this instance, 20% (w/v) solutions of the individual polymers were made, mixed together and allowed to settle overnight. The resulting PICs were subjected to a variable torque 20 oscillation test (10-100mN.m) using a TA Instruments CSL -100 rheometer fitted with 6cm 2° cone at 37°C. From this, two parameters could be measured, namely G' the elasticity modulus and G" the viscous modulus. Table 7 summarises the measurements of these parameters for a variety of PIC mixtures, taken at 80mN.m. The polyions are defined by reference to the monomer ratios used rather than from analysis of ionic groups 25 in the polymer.

Clearly, there a large spread in viscoelastic properties between the different PICs formed. The values are in agreement with the observations expressed in table 6 and reinforce figures 1 & 2. Where values of G' and G" are low, little gelation has occurred when solutions have been mixed. Where these values are higher (ca. >10 Pa), a firm gel 30 of has formed. When the value of G" exceeds that of G', the material has more viscous properties than elastic and it will tend to flow under applied force rather than act elastically. Where G' is greater than G" the opposite is true indicating a more elastic

material with a propensity to withstand applied force. This is a useful measure of a material's potential behaviour in a particular application. For an aneurysm-filling material is considered, it would be desirable to obtain a gel that will not wash out of the void under the influence of blood flow.

5 **Example 4: Biological Performance of PC-PICs.**

In order to assess biological performance of the PICs it was necessary to develop a solvent system that would dissolve the complex once formed. PICs are known to be soluble in ternary solvent systems which comprise water, a water-miscible organic solvent and a strongly ionised simple electrolyte. A solubility study was performed on PICs of 10 the described invention and they were found to be soluble in ternary solvent mixtures of water, ethanol and NaCl. A solution of the PIC could then be used to produce reproducible coatings on PET that could be used for biological evaluation. Strips were subjected to a double antibody fibrinogen assay (Fg) and micro bicinchoninic acid protein assay (μ -BCA) in order to gain an appreciation of the extent of protein interaction with 15 the materials. Table 8 summarises the results. Again the polyions are defined by reference to the ratios of monomers used.

From the data it can be seen that coatings of polyion complexes exhibit a lower degree of protein adsorption than the PET control strip. The comparison PIC made from mixing the homopolymers of Tem and Spm (4.3) is less effective at lowering the protein 20 adsorption than those PIC's that contain Mpc. This is consistent with the view that Mpc improves the 'biocompatibility' of surfaces.

Polymer	Solvent	Reaction Time (mins)	Reaction Temp (°C)	Initiator Type	[Initiator] (%)	Scale (g)	Solids (%)
MpcTem	D.I. Water	24	80	APS	1	30	15
	D.I. Water	24	80	APS	1	30	15
MpcSpm	EtOH	24	70	AIBN	1	30	15
	EtOH	24	70	AIBN	1	30	15
MpcBmaTem	THF/EtOH	18	70	AIBN	1	25	12.5
Mpc ₄₀ Bma ₄₀ Spm ₂₀	TFE	24	70	AIBN	1	25	12.5
Mpc ₁₅ Bma ₃₅ Tem ₅₀	EtOH	18	70	AIBN	1	25	12.5
Mpc ₁₅ Bma ₃₅ Spm ₅₀	EtOH	18	70	AIBN	1	25	12.5
MpcTem ₂	EtOH	24	60	AIBN	0.2	15	15
BmaSpm	TFE	40	60	AIBN	0.4	30	12.5
Mpc ₁₅ Tem ₈₅	D.I. Water	24	80	APS	1	25	12.5
Mpc ₁₅ Spm ₈₅	D.I. Water	24	80	APS	1	25	12.5
Poly(Tem)	D.I. Water	24	86	APS	1	25	12.5
Poly(Spm)	D.I. Water	24	86	APS	1	25	12.5

Table 1: Preparative Details for a Series of Polymers

Polymer	Redissolution Solvents	Precipitation Solvent	Yield (g)	Yield (%)	Appearance	Comments
MpcTem	-	-	15.8	53	Fine, white powder	Isolated by freeze-drying
MpcSpm	-	-	27	90	Fine, white powder	Isolated by freeze-drying
MpcBmaTem	120mlDCM/5mlMeOH	780ml Acetone	22.6	75	Fine, white powder	
MpcBmaSpm	120mlDCM/5mlMeOH	780ml Acetone	16.9	56	Grey-white powder	
Mpc ₄₀ Bma ₁₀ Tem ₂₀	-	200ml Acetone	13.8	55	Fine, white powder	
Mpc ₄₀ Bma ₄₀ Spm ₂₀	140mlDCM/80mlTFE	1.2l Acetone	17.3	69	Fine, white powder	
Mpc ₁ ,Bma ₃ ,Tem ₃₀	120mlDCM/5mlMeOH	780ml Acetone	16.3	65	Lumpy white solid	
Mpc ₁ ,Bma ₃ ,Spm ₃₀	120mlDCM/5mlMeOH	780ml Acetone	6.6	27	Lumpy white solid	Difficult to isolate (low Mw?)
MpcTem ₂	48mlDCM/4mlMeOH	500ml Acetone	13.5	95	White solid	
BmaSpm	50mlDCM/20mlTFE	1.5l Acetone	26.8	89	Stringy solid	
Mpc ₁ ,Tem ₁₅	-	-	~22.5	90	White solid	Estimated yield by drying down a sample of solution
Mpc ₁ ,Spm ₁₅	-	-	~22.5	90	White solid	Estimated yield by drying down a sample of solution
Poly(Tem)	-	-	~22.5	90	White solid	
Poly(Spm)	-	-	~22.5	90	White solid	

Table 2: Isolation Details for a Series of Polymers

Polymer	Solvent	δ (ppm)	Integration	Comments
Poly(Spm)	D ₂ O	0.9-1.1 (3 peaks, b); 1.95 (b); 2.15(s); 3.0 (triplet, -CH ₂ -S-); 4.15(b)		As expected for structure
Poly(Tem)	D ₂ O	0.9-1.2 (3 peaks, b); 2.05 (b); 3.3 (s, N'(CH ₂)); 4.85 (m); 4.5 (b)		As expected for structure
Mpc ₁₀ Spm ₁₀	D ₂ O	0.8-1.2 (2 peaks, b); 1.9 (b); 2.15 (s); 3.0 (triplet, -CH ₂ -S-); 3.3 (s, N'(CH ₂)); 3.7; 4.1-4.3 (2 peaks, b)		Integration of (N'(Me) ₃) vs. -CH ₂ -S gives expected formula
Mpc ₁₀ Tem ₁₀	CD ₃ OD	0.9-1.3 (3 peaks, b); 2.0 (b); 3.26+3.31 (overlapping, N'(Me) ₃ from Mpc and Tem); 3.7-4.7 (6 peaks, overlapping, b)		Cannot integrate Mpc vs. Tem, peaks to close.
MpcBmaSpm	CD ₃ OD	0.8-1.3 (3 peaks, b); 1.45 (-CH ₂ -CH ₃); 1.65 (-O-CH ₂ -CH ₂ -); 1.95 (b); 1.95; 2.15; 2.9 (triplet, -CH ₂ -S-); 3.3 (s, N'(CH ₂)); 3.7; 3.9-4.4 (3 peaks, b)		Integration of Mpc vs. Spm and elemental analysis suggests more like -Mpc ₂ Bma ₁₀ Spm ₄₀ . Monomer contamination observed.
MpcBmaTem	CD ₃ OD	0.9-1.2 (2 peaks, b); 1.45 (-CH ₂ -CH ₃); 1.65 (-O-CH ₂ -CH ₂ -); 1.95 (b); 3.3+3.32 (overlapping, N'(Me), from Mpc and Tem); 3.7-4.7 (8 peaks overlapping, b)		Cannot integrate Mpc vs. Spm to close.
MpcSpm	D ₂ O	0.9-1.1 (2 peaks, b); 1.9-2.2 (2 peaks, b); 2.95 (vague triplet, -CH ₂ -S-); 3.3 (s, N'(CH ₂)); 3.7; 4.1-4.4 (3 peaks, b)		Integration shows 50:50 Mpc:Spm as expected.
MpcTem	D ₂ O	0.9-1.3 (2 peaks, b); 2.2 (b); 3.3+3.33 (overlapping, N'(Me) ₃ from Mpc and Tem); 3.7; 3.9; 4.1-4.6 (3 peaks, b)		Cannot integrate Mpc vs. Tem, peaks to close.
BmaSpm	DMSO	0.7-1.0 (2 peaks, b); 1.35 (-CH ₂ -CH ₃); 1.55 (-O-CH ₂ -CH ₂ -); 1.85; 2.5 (-CH ₂ -S- is masked by DMSO); 3.9 (b)		Integration not possible as residual undeuterated DMSO masks Spm.
MpcTem ₂	CD ₃ OD	1.0-1.3 (2 peaks, b); 2.15 (b); 3.36+3.44 33 (overlapping, N'(Me) ₃ from Mpc and Tem); 3.8-4.7 (7 peaks overlapping, b)		Cannot integrate Mpc vs. Tem, peaks to close.
Mpc ₄₀ Bma ₄₀ Spm ₁₀	CD ₃ OD	0.8-1.1 (3 peaks, b); 1.35 (-CH ₂ -CH ₃); 1.55 (-O-CH ₂ -CH ₂ -); 1.8 (b); 2.05 (b); 2.8 95 (triplet, -CH ₂ -S-); 3.24 (s, N'(CH ₂)); 3.7; 3.9-4.3 (4 peaks, b), 4.6		Integration yields formula as expected.
Mpc ₄₀ Bma ₄₀ Tem ₁₀	CD ₃ OD	0.8-1.2 (2 peaks, b); 1.35 (-CH ₂ -CH ₃); 1.55 (-O-CH ₂ -CH ₂ -); 2.1 (b); 3.24+3.28 (overlapping, N'(Me), from Mpc and Tem); 3.6-4.7 (7 peaks overlapping, b)		Cannot integrate Mpc vs. Tem, peaks to close.

Table 3 Summary of ¹H NMR Data for a Series of Polyions.

Polycation (molar seed ratio)	Mpc	Tem	% Phosphorus	% Nitrogen	Theoretical P:N	Actual P:N	% Mpc	% Tem
MpcTem	50	50	4.8	4.9	0.904	1.021	39	56.5
MpcBmaTem	33.3	33.3	4.28	3.9	0.904	0.911	29.7	33.6
Mpc₄₀Bma₁₀Tem₂₀	40	20	4.28	1.84	0.678	0.43	30	12.7
Mpc₁₅Bma₃₃Tem₅₀	15	50	2.17	3.91	1.957	1.802	13.9	46
MpcTem₂	33.3	66.7	3.2	5.05	1.356	1.578	24.4	77.5
Mpc₁₅Tem₈₅	15	85	1.7	5.31	3.019	3.124	12.1	87.9
Polyanion (molar feed ratio)	Mpc	Spm	% Phosphorus	% Sulphur	Theoretical P:S	Actual P:S	% Mpc	% Spm
MpcSpm	50	50	4.6	5.7	1.035	1.239	40.2	59.9
MpcBmaSpm	33.3	33.3	3.19	4.46	1.033	1.398	23.5	45.1
Mpc₄₀Bma₁₀Spm₂₀	40	20	4.45	2.59	0.516	0.582	32.3	22.6
Mpc₁₅Bma₃₃Spm₅₀	15	50	1.98	6.61	3.444	3.338	13.9	48.5
Mpc₁₅Spm₈₅	15	85	1.75	10.5	5.869	6	14.3	86.9

Table 4: Selected P:N & P:S Ratios for the Confirmation of Polymer Formula (where applicable)
Italics highlight cases where actual results significantly differ from those of the feed ratio.

Monomer Feed Formula	Suggested Final Polymer Formula	Inherent Viscosity (mPa.s)
Poly(Tem)	Poly(Tem)	40
MpcTem	MpcTem	8.5
MpcBmaTem	MpcBmaTem	10
Mpc ₄₀ Bma ₄₀ Tem ₂₀	Mpc ₃₀ Bma ₃₃ Tem ₁₅	18
Mpc ₁₅ Bma ₃₃ Tem ₅₀	Mpc ₁ ,Bma ₃₃ Tem ₅₀	14
MpcTem ₂	MpcTem ₁	42
Mpc ₁ ,Tem ₈₅	Mpc ₁ ,Tem ₈₅	71
Poly(Spm)	Poly(Spm)	300
MpcSpm	MpcSpm	130
MpcBmaSpm	Mpc ₂ ,Bma ₃₃ Spm ₄₀	11
Mpc ₄₀ Bma ₄₀ Spm ₂₀	Mpc ₄₀ Bma ₄₀ Spm ₂₀	6
Mpc ₁₅ Bma ₃₃ Spm ₅₀	Mpc ₁ ,Bma ₃₃ Spm ₅₀	10
BmaSpm	BmaSpm	14
Mpc ₁₅ Spm ₈₅	Mpc ₁ ,Spm ₈₅	250

Table 5: Polymer Feed and Final Formulas Based on NMR and Elemental Data Presented in Tables 4 & 5.

Where feed ratios differs significantly from final ratio, the formula is shown in italics

Inherent Viscosities obtained by Rheometry on 20% w/v Aqueous Solutions of the Polymers.

Polycation	Polyanion	Gel Formed?	Appearance	Comments
MpcTem	MpcSpm	No	Viscous liquid	
Mpc ₁₅ Tem ₈₅	Mpc ₁₅ Spm ₈₅	Yes	Thick gel	Opaque
MpcTem	SpmBma	Yes	Flowing gel	Opaque
MpcTem ₂	SpmBma	Yes	Thick gel	Opaque, expels water
MpcBmaTem	MpcBmaSpm	Yes	Flowing gel	Clear
Mpc ₁₅ Bma ₃₅ Tem ₅₀	Mpc ₁₅ Bma ₃₅ Spm ₅₀	Yes	Gel	Clear
Mpc ₄₀ Bma ₄₀ Tem ₂₀	Mpc ₄₀ Bma ₄₀ Spm ₂₀	Yes	Flowing gel	Opaque
MpcBmaTem	MpcSpm	No	Viscous liquid	
MpcTem	MpcBmaSpm	No	Viscous liquid	
Mpc ₂₀ Bma ₆₀ Tem ₂₀	Mpc ₂₀ Bma ₆₀ Spm ₂₀	-	-	Polymers water-insoluble
Poly(Tem)	Poly(Spm)	Yes	Very thick gel	Opaque, expels water

Table 6: Some Observations Made upon Mixing Aqueous Solutions of Polyions.

Polycation	Polyanion	G' (Pa)	G'' (Pa)
MpcTem	BmaSpm	3.25	30
MpcTem	BmaSpm	600	800
MpcTem	MpcSpm	0.15	3.5
5	MpcTem	0.025	0.48
	MpcBmaTem	0.3	4
	MpcBmaTem	50	45
	Mpc ₁₅ Bma ₃₅ Tem ₅₀	400	150
	Mpc ₁₅ Tem ₈₅	1500	1000
	Mpc ₄₀ Bma ₄₀ Tem ₂₀	85	125
	Poly(Tem)	9000	4500

Table 7: Viscoelastic Properties of Selected PIC gels

No	Polyion Complex Pair	Bioevaluation Test Method	% Reduction of Adsorbed Protein
15	MpcBmaTem + MpcBmaSpm	Fg (n=7)	77.8
	Mpc ₁₅ Bma ₃₅ Tem ₅₀ +Mpc ₁₅ Bma ₃₅ Spm ₅₀	Fg (n=7)	77.7
	Poly(Tem) + Poly(Spm)	Fg (n=7)	47.1
20	MpcBmaTem + MpcBmaSpm	μ -BCA (n=5)	82.4
	Mpc ₁₅ Bma ₃₅ Tem ₅₀ +Mpc ₁₅ Bma ₃₅ Spm ₅₀	μ -BCA (n=4)	61.8
	Poly(Tem) + Poly(Spm)	μ -BCA (n=3)	33.7

25 Table 8: Estimation of Adsorbed Protein for PIC Coatings
Using Fibrinogen (Fg) and bicinchoninic acid (μ -BCA) Assays
(Uncoated PET strip control)

CLAIMS

1. Use of a charged polymer in a method of manufacture of a composition for use in the method of treatment of a human or animal by therapy or diagnosis in which the charged polymer containing composition is introduced into a body cavity and is contacted with a separate composition comprising a polyvalently charged counterion whereby the polymer is rendered insoluble in the body cavity, and is characterised in that the charged polymer has zwitterionic pendant groups.

5 2. Use according to claim 1 in which in the method the insoluble polymer is in combination with as agent which is a therapeutically active agent or a diagnostic agent.

10 3. Use according to claim 2 in which the agent is a diagnostic imaging agent.

4. Use according to any preceding claim in which the body cavity is a blood vessel.

5. Use according to claim 4 in which the method is for embolising a vein or for packing an aneurysm.

15 6. Use according to any preceding claim in which the charged polymer is water soluble.

7. Use according to claim 6 in which the charged polymer is in solution in the composition.

20 8. Use according to any preceding claim in which the counterion is a polyelectrolyte.

9. Use according to claim 8 in which the counterion polyelectrolyte has pendant zwitterionic groups.

10. Use according to any preceding claim in which the or each zwitterionic pendant group has the general formula IV

25

IV

30 in which the moieties X^4 and X^5 , which are the same or different, are -O-, -S-, -NH- or a valence bond, preferably -O-, and

W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is preferably a C_{1-12} -alkanediyl group.

11. Use according to claim 10 in which W is a group of formula

5 $-W^1-N^+R^8_3$, $-W^1-P^+R^9_3$, $-W^1-S^+R^9_2$ or $-W^1-Het^+$ in which:

W^1 is alkanediyl of 1 or more, preferably 2-6 carbon atoms optionally containing one or more ethylenically unsaturated double or triple bonds, disubstituted-aryl, alkylene aryl, aryl alkylene, or alkylene aryl alkylene, disubstituted cycloalkyl, alkylene cycloalkyl, cycloalkyl alkylene or alkylene cycloalkyl alkylene, which group W^1 optionally contains 10 one or more fluorine substituents and/or one or more functional groups; and

either the groups R^8 are the same or different and each is hydrogen or alkyl of 1 to 4 carbon atoms, preferably methyl, or aryl, such as phenyl or two of the groups R^8 together with the nitrogen atom to which they are attached form a heterocyclic ring containing from 5 to 7 atoms or the three groups R^8 together with the nitrogen atom to which they are attached form a fused ring structure containing from 5 to 7 atoms in each ring, and optionally one or more of the groups R^8 is substituted by a hydrophilic functional group, and

the groups R^9 are the same or different and each is R^8 or a group OR^8 , where R^8 is as defined above; or

20 Het is an aromatic nitrogen-, phosphorus- or sulphur-, preferably nitrogen-, containing ring, for example pyridine.

12. Use according to claim 11 in which W^1 is a straight-chain alkanediyl group, most preferably 1,2-ethanediyl.

13. Use according to any of claims 10 to 12 in which the or each zwitterion 25 is a group of formula V:

V

where the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, and m is from 1 to 4, preferably all groups R^{10} being the same, more preferably all groups R^{10} being methyl.

14. Use according to any preceding claim in which the zwitterionic pendant
5 groups are derived from a monomer of the formula VI

wherein

B is a straight or branched alkanediyl, alkanediyoalkanediyl or
10 alkanediyloligo(oxaalkanediyl) chain optionally containing one or more fluorine atoms
up to and including perfluorinated chains or, if X or Y contains a terminal carbon atom
bonded to B, a valence bond;

X is the zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from

15

$CH_2=C(R)-CH_2-O-$, $CH_2=C(R)-CH_2-OC(O)-$, $CH_2=C(R)OC(O)-$, $CH_2=C(R)-O-$,
20 $CH_2=C(R)CH_2OC(O)N(R^{11})-$, $R^{12}OOCCR=CRC(O)-O-$, $RCH=CHC(O)O-$,
 $RCH=C(COOR^{12})CH_2-C(O)-O-$,

25

and

wherein:

R is hydrogen or a C_{1-C_4} alkyl group;

R^{11} is hydrogen or a C_{1-C_4} alkyl group or R^{11} is -B-X where B and X are as defined above;

30

R^{12} is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above;

A is -O- or -NR¹¹-; and

K is a group $-(CH_2)_pOC(O)-$, $-(CH_2)_pC(O)O-$, $- (CH_2)_pOC(O)O-$, $-(CH_2)_pNR^{13}-$,
 $-(CH_2)_pNR^{13}C(O)-$, $-(CH_2)_pC(O)NR^{13}-$, $-(CH_2)_pNR^{13}C(O)O-$, $-(CH_2)_pOC(O)NR^{13}-$,
 $-(CH_2)_pNR^{13}C(O)NR^{13}-$ (in which the groups R¹³ are the same or different), $-(CH_2)_pO-$,
 $-(CH_2)_pSO_3-$, or, optionally in combination with B, a valence bond and p is from 1 to 12
5 and R¹³ is hydrogen or a C₁-C₄ alkyl group.

15. Use according to claim 14 in which Y is CH₂=C(R)COA in which R is hydrogen or methyl and A is O.

16. Use according to claim 14 or 15 in which B is C₁₋₁₂-alkylene, preferably (CH₂)_q in which q is 2 to 6.

10 17. Use according to any preceding claim in which the charged polymer is formed from ethylenically unsaturated monomers including a monomer of the general formula VII

in which Y¹ is an ethylenically unsaturated polymerisable group selected from

15

20 CH₂=C(R¹⁵)-CH₂-O-, CH₂=C(R¹⁵)-CH₂OC(O)-, CH₂=C(R¹⁵)OC(O)-, CH₂=C(R¹⁵)-O-,
CH₂=C(R¹⁵)CH₂OC(O)N(R¹⁶)-, R¹⁷OOC¹⁵=CR¹⁵C(O)-O-, R¹⁵CH=CHC(O)O-,
R¹⁵CH=C(COOR¹⁷)CH₂-C(O)-O-,

25

and

wherein:

R¹⁵ is hydrogen or a C₁-C₄ alkyl group;

30 R¹⁶ is hydrogen or a C₁-C₄ alkyl group or R¹⁶ is -B¹-Q where B¹ and Q are as defined below;

R¹⁷ is hydrogen or a C₁₋₄ alkyl group;

A is -O- or -NR¹⁶-;

K is a group -(CH₂)_rOC(O)-, -(CH₂)_rC(O)O-, - (CH₂)_rOC(O)O-, -(CH₂)_rNR¹⁸-,
 -(CH₂)_rNR¹⁸C(O)-, -(CH₂)_rC(O)NR¹⁸-, -(CH₂)_rNR¹⁸C(O)O-, -(CH₂)_rOC(O)NR¹⁸-,
 -(CH₂)_rNR¹⁸C(O)NR¹⁸- (in which the groups R¹⁸ are the same or different), -(CH₂)_rO-,
 -(CH₂)_rSO₃-, or, optionally in combination with B¹, a valence bond and r is from 1 to 12
 5 and R¹⁸ is hydrogen or a C₁-C₄ alkyl group;

B¹ is a straight or branched alkanediyl, alkanediylloxaalkanediyl or
 alkanediyloligo(oxaalkanediyl) chain optionally containing one or more fluorine atoms
 up to and including perfluorinated chains or, if Q or Y¹ contains a terminal carbon atom
 bonded to B¹, a valence bond; and

10 Q is a cationic or an anionic group.

18. Use according to claim 17 in which Q is a cationic group Q¹ which is
 N⁺R¹₃, P⁺R¹₃ or S⁺R¹₂,

15 in which the groups R¹ are the same or different and are each hydrogen, allyl C₁₋₄-
 alkyl or aryl (preferably phenyl) or two of the groups R¹ together with the heteroatom
 to which they are attached from a saturated or unsaturated heterocyclic ring containing
 from 5 to 7 atoms, preferably each R¹ is other than hydrogen, more preferably N⁺R¹₃ in
 which each R¹ is C₁₋₄-alkyl, preferably methyl.

19. Use according to claim 8 in which the polyelectrolyte is formed from
 ethylenically unsaturated monomers including a monomer of the general formula VII as
 20 defined in claim 17.

20. Use according to claim 19 in which the ethylenically unsaturated monomer
 also includes a monomer of the general formula VI as defined in claim 16.

21. Use according to claim 19 in which Q is an anionic group Q² selected
 from carboxylate, carbonate, sulphate, sulphonate, phosphate (or an ester) and
 25 phosphonate (or an ester).

22. Use according to any of claims 14 to 21 in which the ethylenically
 unsaturated monomers from which the charged polymer or the counterionic
 polyelectrolyte are formed comprise nonionic monomer of the general formula VIII

30 in which

Y² is an ethylenically unsaturated polymerisable group selected from

5

$\text{CH}_2=\text{C}(\text{R}^{19})-\text{CH}_2-\text{O}-$, $\text{CH}_2=\text{C}(\text{R}^{19})-\text{CH}_2\text{OC(O)}-$, $\text{CH}_2=\text{C}(\text{R}^{19})\text{OC(O)}-$, $\text{CH}_2=\text{C}(\text{R}^{19})-\text{O}-$,
 $\text{CH}_2=\text{C}(\text{R}^{19})\text{CH}_2\text{OC(O)N(R}^{20}\text{)}$, $\text{R}^{21}\text{OOCRR}^{19}=\text{CR}^{19}\text{C(O)-O-}$, $\text{R}^{19}\text{CH=CHC(O)O-}$,
 $\text{R}^{19}\text{CH=C(COOR}^{21}\text{)CH}_2\text{-C(O)-O-}$,

10

wherein:

R^{19} is hydrogen or a $\text{C}_1\text{-C}_4$ alkyl group;

15 R^{20} is hydrogen or a $\text{C}_1\text{-C}_4$ alkyl group or R^{20} is R^{14} ;

R^{21} is hydrogen or a $\text{C}_1\text{-C}_4$ alkyl group or R^{14} ;

A is $-\text{O}-$ or $-\text{NR}^{20}-$;

K is a group $-(\text{CH}_2)_s\text{OC(O)}-$, $-(\text{CH}_2)_s\text{C(O)O}-$, $-(\text{CH}_2)_s\text{OC(O)O}-$, $-(\text{CH}_2)_s\text{NR}^{22}-$,
 $-(\text{CH}_2)_s\text{NR}^{22}\text{C(O)}-$, $-(\text{CH}_2)_s\text{C(O)NR}^{22}-$, $-(\text{CH}_2)_s\text{NR}^{22}\text{C(O)O}-$, $-(\text{CH}_2)_s\text{OC(O)NR}^{22}-$,

20 $-(\text{CH}_2)_s\text{NR}^{22}\text{C(O)NR}^{22}-$ (in which the groups R^{22} are the same or different), $-(\text{CH}_2)_s\text{O}-$,
 $-(\text{CH}_2)_s\text{SO}_3-$, or a valence bond and s is from 1 to 12 and R^{22} is hydrogen or a $\text{C}_1\text{-C}_4$ alkyl group; and

R^{14} is a C_{1-24} -alkyl or -alkenyl group optionally substituted by a substituent selected from the group consisting of hydroxyl groups; halogen atoms; alkoxy and oligo-alkoxy groups, in which the alkoxy groups have 1-6, preferably 2 or 3 carbon atoms; aryl groups, preferably optionally substituted phenyl groups (optional substituents in a phenyl group being selected from hydroxyl groups, halogen atoms and alkyl groups); acyl groups, especially C_{1-6} -alkanoyl groups; acyloxy groups, especially C_{1-6} -alkanoyloxy groups; and acylamino groups, especially C_{1-6} -alkanoyl amino; in any of which alkanoyl or acyl groups there may be substituents selected from halogen atoms, and hydroxyl and alkoxy groups.

23. Use according to claim 22 in which Y^2 is $CH_2=C(CH_3)CO$ and R^{14} is an unsubstituted C_{1-18} -alkyl or -alkenyl group, preferably n-butyl.

24. Use according to claim 22 or claim 23 in which diluent monomer is included in the ethylenically unsaturated monomer in molar amount in the range 1 to 5 75%, preferably 20 to 70%, more preferably 30 to 50%.

25. Use according to claim 17 or claim 20 in which the mole ratio of zwitterionic monomer to ionic monomer of the formula VII is in the range 5:1 to 1:5, preferably 2:1 to 1:3, and in which the total molar amount of zwitterionic monomer and 10 ionic monomer in the ethylenically unsaturated monomers is in the range 25 to 100%, preferably 30 to 80%, more preferably 50 to 70%.

26. Use according to any preceding claim in which the ratio of equivalents of charged groups in the charged polymer to counterionic groups in the counterion is in the range 2:1 to 1:2, preferably 1.2:1 to 1:1.2, more preferably about 1:1.

27. A method of treatment of a human or animal body by therapy or diagnosis 15 in which a composition contains a charged polymer is introduced into a body cavity and is contacted in the body cavity with a separate composition containing a counterion whereby the polymer is rendered insoluble in the body cavity, characterised in that the charged polymer has zwitterionic pendant groups.

28. A method of treatment according to claim 27 in which the body cavity is 20 a blood vessel, preferably in which there is an aneurysm.

29. A method of treatment according to claim 28 or 29 in which the charged polymer is soluble and is introduced into the body in a composition in which it is dissolved.

30. A method of treatment according to any of claims 27 to 29 having the 25 further features defined in any of claims 8 to 26.

Figure 1: Phase Diagram for the Formation of Polyion Complexes from Systems Based on $Mpc_x Bma_y Tem_z & Mpc_x Bma_y Spm_z$

This Page Blank (uspto)

Figure 2: Generalised Phase Diagram for the Formation of Polyion Complexes

This Page Blank (uspto)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/03796

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61F2/06 A61B17/12 A61K49/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 A61F A61B A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 93 01221 A (BIOCOMPATIBLES LTD) 21 January 1993 (1993-01-21) page 1, line 6 - line 11 page 2, line 5 - line 19 page 4, line 3 - line 11 page 5, line 7 - line 12 page 7, line 8 - page 11, line 8	1-30
Y	WO 97 45131 A (EVANS SCOTT ;GREFF RICHARD J (US); WRIGHT JAMES I (US); MICRO THER) 4 December 1997 (1997-12-04) page 16, line 8; claims 1,13,14 page 1, line 11 - line 12 page 5, line 21 - line 30	1-30
A	US 5 702 361 A (EVANS SCOTT ET AL) 30 December 1997 (1997-12-30) claims 1,4	-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

13 March 2000

20/03/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Berte, M

INTERNATIONAL SEARCH REPORT

Inteinal Application No

PCT/GB 99/03796

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DATABASE WPI Section Ch, Week 9420 Derwent Publications Ltd., London, GB; Class A11, AN 94-163847 XP002102445 & JP 06 107549 A (NIPPON KANKOH SHIKISO KENKYUSHO KK), 19 April 1994 (1994-04-19) cited in the application abstract</p> <hr/>	
A	<p>US 3 467 604 A (MICHAELS ALAN S) 16 September 1969 (1969-09-16) column 11, line 68 -column 12, line 19; claims</p> <hr/>	
A	<p>DATABASE WPI Section Ch, Week 9551 Derwent Publications Ltd., London, GB; Class A14, AN 95-394861 XP002102446 & JP 07 238124 A (NIPPON OILS & FATS CO LTD), 12 September 1995 (1995-09-12) cited in the application abstract</p> <hr/>	
Y	<p>DATABASE CHEMABS 'Online!' CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US AN=72:122507, MARSHALL, DAVID W.: "Development of polyelectrolyte complexes as thromboresistant materials for use in components of artificial hearts" XP002102444 abstract</p> <p>& U.S. CLEARINGHOUSE FED. SCI. TECH. INFORM., PB REP. (1969), PB-187793, 54 PP. AVAIL.: CFSTI FROM: U. S. GOVT. RES. DEVELOP. REP. 1970, 70(2), 46-7 CODEN: XCCRAO,</p> <hr/>	1-30

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 99/03796

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9301221	A 21-01-1993	AU 666485	B	15-02-1996
		AU 2231092	A	11-02-1993
		AU 697066	B	24-09-1998
		AU 4030995	A	22-02-1996
		AU 7993198	A	08-10-1998
		AU 7993298	A	08-10-1998
		CA 2112411	A	21-01-1993
		EP 0593561	A	27-04-1994
		EP 0810239	A	03-12-1997
		JP 11166015	A	22-06-1999
		JP 11166018	A	22-06-1999
		JP 11166150	A	22-06-1999
		JP 7502053	T	02-03-1995
		US 5648442	A	15-07-1997
		US 5739236	A	14-04-1998
		US 5705583	A	06-01-1998
		US 5783650	A	21-07-1998
		EP 0818479	A	14-01-1998
		EP 0861858	A	02-09-1998
WO 9745131	A 04-12-1997	AU 2745497	A	05-01-1998
		CA 2252718	A	04-12-1997
		EP 0928195	A	14-07-1999
US 5702361	A 30-12-1997	AU 1753397	A	22-08-1997
		CA 2244418	A	07-08-1997
		EP 0885024	A	23-12-1998
		WO 9727888	A	07-08-1997
		US 6017977	A	25-01-2000
JP 6107549	A 19-04-1994	JP 2736339	B	02-04-1998
US 3467604	A 16-09-1969	NONE		
JP 7238124	A 12-09-1995	NONE		

This Page Blank (uspto)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)