

BRAC University

Dept. of Computer Science and Engineering

Assessment: Assignment 3

Due: 11:59 PM 27 October 2023

Full Marks: 65

Name:

Semester:	Fall 2023
Course Code:	CSE251
Section:	15
Course Name:	Electronic Devices and Circuits

Student ID:

✓ Write down your student ID on the top right corner of each of the pages.

- Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).
- ✓ Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.
- ✓ After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.
- ✓ Please note, collaboration ≠ copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.
- ✓ [Very Important] Rename the PDF in the following format: "A1_StudentID_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A1_12345678_ShadmanShahid.pdf".
- ✓ Submission Link: https://forms.gle/7NsJsGZ3bwP4CLfX7

Question 1: 10 Marks

- a) For the following sub-circuits, do the following: Write down the equation representing this [CO1] 5 curve; **Determine** the unknown parameters, Label the I-V curve.
 - i. A 3 V voltage source
 - ii. A 5 mA current source in parallel with a 5 $k\Omega$
 - iii. A -10 V voltage source with $3 \text{ k}\Omega$
 - iv. A short circuit
 - v. A current Source, $I_o=5$ mA in parallel with a resistor. The slope of the curve is, $m=5~k\Omega^{-1}$
- b) Draw the sub-circuit that will result in the following IV characteristics.

[CO3] 5

Question 2: 35 Marks

a) You are provided with the following circuit elements:

[CO3] 5

- Two 8 kΩ resistors
- A 3 V voltage source
- A 2 V voltage source

Can you **implement** a circuit element **X** that has an IV-characteristics, as seen in the **right** figure below, but by **ONLY USING THE ELEMENTS MENTIONED ABOVE**? The voltage polarity and current direction should be as shown in the left figure.

b) For the circuit **below (left)**, assume the following circuit parameters: $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, [CO2] 3 $V_{DO} = 0.7 \text{ V}$, $V^+ = 5 \text{ V}$, $V^- = -5 \text{ V}$. Determine v_o , i_{D1} and i_{D2} for $v_I = 0$ and $v_I = 4 \text{ V}$.

c) For the circuit **above (right).**, assume the following circuit parameters: $V_{D0} = 0.6$ V. Plot v_o [CO2] 7 versus v_I , for $0 \le v_I \le 10$ V.

- d) For the circuit below, the cut-in voltage for all the diodes are $V_{D0}=0.7~{\rm V.}$
- [CO2] 10
- i. Let $v_I=5$ V. Assume both diodes are conducting. Is this a correct assumption? Why or why not? Determine I_{R1} , I_{D1} , I_{D2} and v_0 $R_1=1.7~{\rm k}\Omega$
- ii. Repeat part (i) for $v_I = 10 \text{ V}$

e) Determine the current in each diode (I_{D1},I_{D2}) and I_{D3} and the voltages V_A and V_B in the multi-diode circuit shown in the figure **below (left)**. Let, $V_{D0}=0.7$ V for each diode.

[CO2] 5

f) Determine I_{D1} , I_{D2} and I_{D3} and the voltages V_A and V_B for the circuit **above (right).** $V_{D0} = [CO2]$ 5 0.7 V for each diode.

Question 3: 20 Marks

The saturation voltages of the Op-Amp on the **left below**, are given as $+V_{\rm sat} = +10$ V and $-V_{\rm sat} = [CO2]$ 10 -10 V. The forward voltage drop of the diode, V_{DO} is 0.7 V.

- a) **Determine** the operating mode diode, D1. Verify your assumption with necessary calculations.
- b) Calculate the voltage at
 - i. Node ' V_a '
 - ii. Non-inverting terminal of the Op-Amp,
 - iii. Inverting terminal of the Op-Amp.
- c) Find out the output voltage, V_0 of the Op-Amp.

- d) The parameters of D1 and D2 in the circuit shown in **above right** are $V_{Do}=1.7~{\rm V}$ and $r_f=[{\rm CO3}]$ 5 $20~\Omega$. The current in each diode is to be limited to $I_D=15~{\rm mA}$ for $V_I=\pm 5~{\rm V}$. **Determine** the required value of R.
- e) Find V_o , i_{D1} and i_{D2} for $R=1\,\mathrm{k}\Omega$. Assume diode constant voltage drop model with $V_{D0}=0.7\,\mathrm{V}$. In each case, write down the states of the diodes (ON/OFF). You must verify your assumptions.

