Differential gene expression analysis across several brain regions in subjects affected by mental disorders: bipolar disorder, depression and schizophrenia

Rayan Slatni, Mario Lauria

Department of Cellular, Computational and Integrative Biology, University of trento

Contacts: rayan.slatni@studenti.unitn.it

Datasets from GEO Omnibus BA 10: risk and decision making, odor evaluation, reward and conflict, pain, and working memory BA 9: motor planning, organization, and regulation, and sustaining attention and working memory GSE208338 **DLPFC:** sustaining attention and managing 46 genes working memory, and regulate self-control **HPC:** integrates memories formed in temporal proximity **STR:** integrates memories formed in the same GSE53987 ffy-HG-U133 Plus fy-HG-U133 Plus 2 space

Differentially expressed genes

Heatmap of DEGs in BA46 prefrontal cortex

HINT2-3 are already linked to SCZ, in fact down-regulation disturb the post-pre dopaminergic synapse at the level of striatum and nucleus accumbes. HINT1 is not linked to SCZ, but is over expressed in the thalamus and lower expressed in the DLPFC.

ANKFN1 is linked to mania symptoms in BD, cannabis addiction (DRD2), memory, hyperactivity. In hepatocarcinoma induce the transition G1/S by activating Mek1-2/Erk signalling, leading to proliferation/apoptosis.

List of DEGs for SCZ compared to BD and MDD

Brain area	Gene symbol	Gene name	BS	CS	SD
BA10	CDX2	Caudal-Type Homeobox Protein 2	↑	↑	
	PTPN9	Protein Tyrosine Phosphatase Non-Receptor Type 9	↓	↓	†
Striatum	ANKFN1	Ankyrin Repeat And Fibronectin Type III Domain Containing 1	↓	↓	†
	C6orf120	Chromosome 6 Open Reading Frame 120	\uparrow	↑	\
	FOXN3-AS1	FOXN3 Antisense RNA 1	\downarrow	\downarrow	\uparrow
	ZNF788	Zinc Finger Family Member 788, Pseudogene	↓	↓	†
Hippocampus	C21orf59	Cilia And Flagella Associated Protein 298	†	†	\
	SLC39A10	Solute Carrier Family 39 Member 10	\downarrow	\uparrow	\downarrow
	RALGAPA2	Ral GTPase Activating Protein Catalytic Subunit Alpha 2	†	↓	\
	HINT2	Histidine Triad Nucleotide Binding Protein 2	†	↑	\
	DDIT4	DNA Damage Inducible Transcript 4	\downarrow	\downarrow	\uparrow

Table 1: Log2 Foldchange represented with up or down arrows of the most significant genes with three

comparison: BS bipolar vs schizophrenia, CS control vs schizophrenia, SD schizophrenia vs depression

The gene C1orf59 is a methyl tranferase, might be linked to SCZ but no evidence. DNA metilation (e.g. BDNF) is already linked to depression. PTPN9 promotes cell proliferation in KO mice model, the family member PTPN3 is linked to SCZ, but PTPTN9 not yet. KO mice for C6orf120 present high level of Treg, but no evidence in mental disease.

FOXN3-AS1 if over-expressed inhibit the activation of Akt/ MDM2/p53, this gene is downregulated in glioma and there are evidence of less susceptibility to glioma for SCZ.

Enrichment pathway analysis using g:profiler (Bonferroni correction)

least 3 groups comparison

Pathways results

Pathway GO:BP	P Value	Genes Driving Pathway
Intracellular signal transduction	2.000×10^{-5}	RALGAPA2, DDIT4, MARVELD3, RAB21, ETAA1, PPP2R5C, NUCB2 TP53BP1, DDKA, MAST4, PARK2, FZR1
Response to stress	1.885×10^{-4}	IL4, SCL2A1, SNAP23, DDIT4, MARVELD3, ANKFN1, ETAA1, PPP2R5C, TP53BP1, FZR1 STAT5B
Positive regulation of B cell activation	6.167×10^{-4}	IL4, SLC39A10, SLC36A1, PPP2R5C
Cell death	1.024×10^{-3}	IL4, SLC39A10, HINT2, DDIT4, C6orf120, PPP2R5C, NUCB2, PARK2 STAT5B, TIMM50
DNA damage checkpoint signaling	3.490×10^{-3}	ETAA1, PPP2R5C, TP53BP1, FZR1
Intrinsic apoptotic signaling pathway by p53 class mediated	4.879×10^{-2}	DDIT4, PPP2R5C, PARK2

Table 1: GO:BP pathways considering all the most significant DEGs across all 5 datasets

The pathways related to stress, DNA damage and cell death result to be alterated in mental disorders. For example the gene ANKFN1 plays a role in Mek1-2/Erk signalling, and is linked to mania symptoms in BD. **DDIT4** influence many pathways and is responsible to negative regulation of mTOR signalling and result to be up regulated in SCZ.

Highlight the pathways involved in DEGs comparing BD and SCZ

Among the genes DE in the pathway between BD and SCZ are relevant the genes of solute carrier family. For example SLC39A10 is known to be up-regulated in DLPFC in SCZ, but in the HPC is down-regulated.

transition metal ion transport

central nervous system development

transition metal ion transmembrane transporter ac...

GO:BP

GO:MF

GO:BP

GO:0046915

GO:0007417