Tópico 8: *Árvores* - Conceitos Gerais, Árvores Binárias e Árvores de Busca Binária

Prof. Dr. Juliano Henrique Foleis

Estude com atenção os vídeos e as leituras sugeridas abaixo. Os exercícios servem para ajudar na fixação do conteúdo e foram escolhidos para complementar o material básico apresentado nos vídeos e nas leituras. Quando o exercício pede que crie ou modifique algum algoritmo, sugiro que implemente-o em linguagem C++ para ver funcionando na prática.

Vídeos

Árvores: Conceitos Gerais

Árvores Binárias: Estrutura e Percursos Árvores de Busca Binária: Busca e Inserção

Explicação da Remoção em uma ABB

A remoção de um nó de uma árvore de busca binária deve ser realizada de forma que a árvore permaneça respeitando as propriedades de uma árvore de busca binária após a remoção. Existem 3 casos a considerar:

- 1. O nó a ser removido é folha;
- 2. O nó a ser removido tem um único filho; e
- 3. O nó a ser removido tem dois filhos.

Remoção de um Nó Folha

No caso que o nó a ser removido é folha, basta desalocá-lo, e fazer quem estava apontando pra ele passe a apontar para nada (NULL), como mostrado na Figura 1.

Figure 1: Remoção de um Nó Folha

Remoção de um Nó com Apenas um Filho

Neste caso, basta fazer quem apontava para o nó a ser removido passe a apontar para o único filho do nó sendo removido. Finalmente, o nó sendo removido deve ser desalocado. Este processo está representado

Figure 2: Remoção de um Nó com Apenas um Filho

Remoção de um Nó com Dois Filhos

Este caso é um pouquinho mais complicado. Temos que considerar que os 2 filhos podem não ser folhas, ou seja, podem ter sub-árvores "penduradas"!

Vamos chamar o nó a ser removido de x. Como a árvore é uma árvore de busca binária, toda chave em x.esq é menor que x e toda chave x.dir é maior que x. Logo, a maior chave de x.esq também é menor que toda chave em x.dir. Portanto, se a maior chave de x.esq for colocada no lugar de x, a árvore continuará sendo uma ABB. O maior elemento de x.esq é chamado de antecessor de x. Da mesma forma, a menor chave de x.dir é maior que toda chave em x.esq. Da mesma forma, se a menor chave de x.dir for colocada no lugar de x, a árvore continuará sendo uma ABB. O menor elemento de x.dir é chamado de ax. A Figura a 3 mostra o antecessor e o sucessor de ax0 em uma árvore.

Figure 3: Antecessor e Sucessor de um Nó

Como visto na Figura, o antecessor é o maior valor da sub-árvore enraizada em x.esq. Como os itens em sub-árvores à direita são sempre maiores que sua raíz, o maior item de uma sub-árvore é sempre o ultimo elemento em um percurso que segue os ponteiros à direita. Dessa forma, o antecessor de x é encontrado seguindo o percurso dos ponteiros à direita de x.esq. Por exemplo, o antecessor de 20 na Figura 4 é encontrado seguindo o caminho $esq \rightarrow dir \rightarrow dir$ a partir do nó com chave 20.

Da mesma forma, o sucessor é o menor valor da sub-árvore enraizada em x.dir. Ele pode ser encontrado seguindo o percurso dos ponteiros à esquerda de x.dir. Por exemplo, o sucessor de 20 na Figura a seguir é encontrado seguindo o caminho $dir \rightarrow esq$ a partir de do nó com chave 20.

Portanto, para remover x, podemos colocar o antecessor ou o sucessor de x no lugar de x. Para deixar a simplificação mais enxuta, a explicação a seguir considera que x está sendo substituído por seu sucessor.

A Figura 4 mostra o processo de remoção. Primeiro, o sucessor s(x) é encontrado. Os dados de s(x) substituem os dados de x no nó x. Neste momento, os dados de s(x) estão replicados, como mostra a Figura 4. Agora basta remover o nó s(x) original. A remoção de s(x) pode ser feita usando a mesma rotina de remoção, e, por definição, s(x) tem no máximo um filho. Portanto, sua remoção é trivial, conforme abordado acima.

Figure 4: Remoção de um Nós com Dois Filhos

Leitura Sugerida

FEOFILOFF, Paulo. Estruturas de Dados. Árvores binárias de busca (BSTs) (Link)

Exercícios Teóricos

Exercícios 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3, 5.1, 5.3 da página do Prof. Feofiloff (Árvores binárias de busca (BSTs)): (Link)

Exercícios Práticos

- 1. Baixe a implementação criada em sala de aula no link. Implemente as funções a seguir na classe ABB:
- a. Implemente os destrutures das classes NoABB e ABB. ATENÇÃO: você deve alterar o método ABB::removerNo para que ele anule no->dir ou no->esq (no caso 2, de acordo com a situação) antes de desalocar o nó. Caso contrário, você terá problemas ao destruir a árvore (por quê?).
- b. Implemente a função imprimir() de forma que produza a saída mostrada no vídeo.
- c. Implemente a função recursiva tamanho() que devolve o número de nós de uma árvore binária. Você pode criar um método privado auxiliar, conforme fizemos para implementar a inserção e a remoção.
- d. Implemente a função recursiva altura() que calcula a altura da árvore. Sua implementação deve ser preguiçosa (lazy), ou seja, você deve percorrer a árvore toda para calcular a altura.
- e. Acrescente um campo profundidade na classe NoABB para armazenar a profundidade do nó. Adicione o método privado calcularProfundidades() na classe ABB. Implemente este método, que deve atribuir as profundidades de todos os nós.
- f. O comprimento interno de uma árvore binária é a soma das profundidades dos seus nós. Adicione o método público comprimentoInterno() na classe ABB que retorne o comprimento interno da árvore. **DICA**: use o método calcularProfundidades() para calcular as profundidades dos nós.
- g. Adicione o método público bool valida() na classe ABB que verifica se a árvore é válida. Lembre-se que a definição da ABB diz que, para todo nó i da árvore, todos as chaves nós da subárvore esquerda de i devem ser menores que i.chave e todas as chaves dos nós da subárvore direita de i devem ser maiores que i.chave. DICA: não basta verificar se a propriedade da ABB é satisfeita para todos os nós da árvore.

DICA 2: Você pode criar um método privado auxiliar, conforme fizemos para implementar a inserção e a remoção.

- h. Método Tamanho ansioso. No exercício c você provavelmente implementou a função tamanho() de forma preguiçosa, que percorre toda a árvore e assim consome tempo proporcional ao número de nós na árvore. Escreva uma implementação mais eficiente usando a seguinte idéia (conhecida como implementação ansiosa, eager): acrescente na classe NoABB um campo N, que guarda o número de nós na subárvore enraizada naquele nó. Dessa forma, para saber o tamanho da árvore, basta retornar N da raíz, sem a necessidade de percorrer a árvore. N é atualizado durante as operações que alteram a estrutura da árvore, como a inserção e a remoção. Altere também os métodos inserirNo e removerNo para atualizar o campo N conforme necessário, apenas dos nós cuja altura seja afetada. Você pode alterar a assinatura das funções, inserirNo e removerNo, caso necessário.
- i. Seguindo o raciocínio do exercício h, acrescente um campo inteiro h na classe NoABB, e escreva uma versão ansiosa da função que retorne a altura da árvore binária (altura()). Altere as funções necessárias.
- j. Implemente versões iterativas dos métodos inserir e buscar.
- k. Implemente uma versão iterativa do método tamanho. DICA: Use alguma estrutura de dados auxiliar para armazenar os nós a serem processados. Use a implementação disponível na STL.
- 2. Um percurso em-ordem de uma árvore de busca binária visita os nós da árvore em ordem crescente. Isto pode ser explorado para implementar um algoritmo de ordenação, conforme segue:

ENTRADA: vetor V com N inteiros

- 1. Crie uma ABB A
- 2. Insira todos os elementos de V em A
- 3. Faça um percurso em-ordem de A, inserindo os elementos de volta em V
- 4. Destrua a arvore A
- a. Implemente a função void ABBSort(int* v, int n) conforme o pseudocódigo acima. Note que esta função é "solta", ou seja, não pertence a nenhuma classe.
- **b.** Qual é o custo do algoritmo acima no *pior caso*? Não é necessário fazer uma prova formal, apenas discutir qual seria esse custo.
- ${f c.}$ No vídeo eu discuto que se as chaves forem uniformemente distribuídas, o custo de uma busca ou inserção é aproximadamente $1.4 \lg n$ se n for grande. Como você pode aproveitar essa idéia para fugir do custo no pior caso discutido na resposta do exercício anterior? Implemente a modificação e compare o resultado das duas implementações no pior caso.

BONS ESTUDOS!