UNIT 7: Infectious disease

1 Introduction

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - How do they find each other?

Disease agents

- Can you name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * Answer: influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Answer: Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Answer: Malaria, various worms

Microparasites

- For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - **Infectious** individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

2 Rate of spread

- For many diseases, especially new diseases, we can *observe* and *estimate* r.
 - Answer: the exponential rate of spread
- Want to know what factors contribute to that, and how it relates to \mathcal{R} .
 - <u>Answer</u>: number of new cases per case

Basic reproductive number

- People in the disease field love to talk specifically about \mathcal{R}_0
- But they don't always mean the same thing:
 - Actual value of $\mathcal R$ before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no control efforts whatsoever
- Often easier to talk simply about \mathcal{R} .

Example: the West African Ebola epidemic

Generation intervals

- Researchers try to estimate the *proportion* of transmission that happens for different **ages of infection**
- How long from the time you are *infected* to the time you *infect someone* else?
- Analogous to a life table
- The effective generation time \hat{G} has units of time

Generation intervals

Approximate generation intervals

Approximate generation intervals

Speed and risk

- Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Generation time and risk

- If we know \mathcal{R} , what does the generation time tell us about r?
 - <u>Answer</u>: The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- If we know r, what does the generation time tell us about \mathbb{R} ?
 - Answer: The faster the generations (small \hat{G}), the the smaller the strength of the epidemic (small reproductive number \mathcal{R})
- $\mathcal{R} = \exp(r\hat{G})$

Generation time and risk

Generation time and risk

- An intuitive view:
 - Epidemic speed = Generation speed \times Generation strength
- If we know generation speed, then a faster epidemic speed means:
 - Answer: More strength required (greater \mathcal{R})
- If we know epidemic speed, a faster generation speed means
 - Answer: Less strength required (smaller \mathcal{R})

3 Single-epidemic model

- Susceptible \rightarrow Infectious \rightarrow Recovered
- \bullet We also use N to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - People get better independently
 - People get infected by infectious people

Conceptual modeling

- What happens in the long term if we introduce an infectious individual?
 - **Answer:** The may be an **epidemic** an outbreak of disease

- **Answer:** Disease burns out

- Answer: Everyone winds up either recovered or susceptible

- <u>Answer</u>: Not everyone gets infected!

Interpreting

• Why might there not be an epidemic?

- $\underline{\mathbf{Answer:}}$ If the disease can't spread well enough in the population

- <u>Answer:</u> Demographic stochasticity: if we only start with one individual, we expect an element of chance

• Why doesn't everyone get infected?

- **Answer**: (open-ended)

Implementing the model

• The simplest way to implement this conceptual model is with differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Quantities

State variables

Parameters

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- Infectious people recover at per capita rate γ (units [1/time])
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

Simulating the model

Basic reproductive number

- What unitless parameter can you make from the model above?
 - <u>Answer</u>: $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - Answer: The potential number of infections caused by an average infectious individual
 - * <u>Answer</u>: That is: the number they would cause on average if everyone else were susceptible

Basic reproductive number implications

- What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - Answer: Number of infected individuals grows exponentially
- What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - Answer: Number of infected individuals cannot grow (disease cannot invade)

Effective reproductive number

- The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:
 - Answer: $\mathcal{R}_e = \mathcal{R}_0 S/N$
- Is the disease increasing or decreasing?
 - <u>Answer</u>: It will increase when $\mathcal{R}_e > 1$ (more than one case per case)
 - **Answer:** This happens when $S/N > 1/\mathcal{R}_0$
- Why doesn't everyone get infected?
 - Answer: When susceptibles are low enough $\mathcal{R}_e < 1$
 - <u>Answer</u>: When $\mathcal{R}_e < 1$, the disease dies out on its own (less than one case per case)

3.1 Epidemic size

- In this model, the epidemic always burns out
 - No source of new susceptibles
- Epidemic size is determined by:
 - <u>Answer</u>: \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - Answer: The number of susceptibles at the beginning of the epidemic
 - \ast $\underline{\textbf{Answer:}}$ More susceptibles leads to a bigger epidemic
 - * $\underline{\mathbf{Answer}}$: ... and fewer susceptibles at the end

Overshoot

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - <u>Answer</u>: Bigger epidemic
 - **Answer:** More infections at peak (same number of susceptibles)
 - <u>Answer</u>: More infections after peak . . .

Ebola example

- In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April
- What happened?

What limits epidemics?

- What limits epidemics in our simple models?
 - **Answer:** Depletion of susceptibles
- What else limits epidemics in real life?
 - **Answer:** Interventions
 - **Answer:** Behaviour change
 - **Answer:** Heterogeneity (differences between hosts, locations, etc.)

4 Recurrent epidemic models

- If epidemics tend to burn out, why do we often see repeated epidemics?
 - **Answer:** People might lose immunity
 - **Answer:** Births and deaths

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

• **Answer**: Loss of immunity

Closing the circle

- **Answer:** Births and deaths
 - Answer: Effect on dynamics is similar to loss of immunity

Births and deaths

•

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

•

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

•

$$\frac{dR}{dt} = \gamma I - dR$$

- We often assume b = d
 - population is constant

Equilibrium

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

*
$$S/N = 1/\mathcal{R}_0$$

- **Answer:** Reciprocal control!

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - Per capita replenishment goes down
 - Infections required goes down

Reciprocal control

- What happens if we protect susceptibles (move them to R class)?
 - Answer: Equation for dI/dt does not change
 - Answer: Number of susceptibles does not change
 - Answer: Fewer susceptibles need to be removed by infection (some are removed by us)
 - **Answer:** Number of infectious individuals goes down
- What else could happen?
 - Answer: If we remove susceptibles fast enough, infection could go extinct
 - Answer: If we keep increasing the rate ...
 - * Answer: Number of susceptibles goes down

Reciprocal control

- What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - Answer: We need more susceptibles to balance dI/dt
 - Answer: If we have more susceptibles, then per capita replenishment goes down
 - * Answer: So the number of infectious individuals goes down
 - Answer: If we remove infectious individuals fast enough, the infection could go extinct

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - Tend to oscillate
 - Oscillations tend to be damped
 - * System reaches an **endemic** equilibrium disease persists

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - **Answer:** There will be a big epidemic
 - **Answer:** ...then a very low number of susceptibles
 - Answer: ... then a very low level of disease
 - Answer: ...then an increase in the number of susceptibles

Persistent oscillations

• If oscillations tend to be damped in simple models, why do they persist in real life?

- <u>Answer</u>: Weather

- **Answer:** School terms

- **Answer:** Demographic stochasticity

- **Answer**: Changes in Behaviour

* Answer: People are more careful when disease levels are high

5 Reproductive numbers and risk

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Reproductive numbers and risk

Examples

- Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

Threshold for elimination

- What proportion of the population should be vaccinated to eliminate a disease?
 - Answer: Transmission should be reduced by a factor of \mathcal{R} , so a fraction $1 1/\mathcal{R}$ should be vaccinated

Examples:

- Polio has an \mathcal{R}_0 of about 5.
- What proportion of the population should be vaccinated to eliminate polio?
 - **Answer:** At least 1-1/5 = 80%
- Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - **Answer:** At least 1-1/20 = 95%

Persistence of infectious disease

- Why have infectious diseases persisted?
 - The pathogens evolve
 - Human populations are **heterogeneous**
 - * People differ in: nutrition, exposure, access to care
 - Information and misinformation
 - * Vaccine scares, trust in health care in general

Heterogeneity and persistence

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - * Cases per case is high
 - * Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access