Statistical Methods of Machine Learning Assignment 1

Martin Grunbaum Martin Jorgensen Thomas Barnholdt

February 6, 2014

I.1.1.1

Given

$$a = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Then $a^Tb = 9$

I.1.1.2

The *l2-norm* or *Euclidean norm* $||a|| = \sqrt{1^2 + 2^2 + 2^2} = 3$

I.1.1.3

The outer product

$$ab^T = \begin{bmatrix} 3 & 2 & 1 \\ 6 & 4 & 2 \\ 6 & 4 & 2 \end{bmatrix}$$

I.1.1.4

The inverse matrix of M is

$$M^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$

I.1.1.5

The matrix-vector product $Ma = \begin{pmatrix} 1 \\ 8 \\ 4 \end{pmatrix}$

I.1.1.6

$$A = ab^T = \begin{bmatrix} 3 & 6 & 6 \\ 2 & 4 & 4 \\ 1 & 2 & 2 \end{bmatrix}$$

I.1.1.7

The rank of A = 1, because the rows are linearly dependent. We can verify this by observing that the third row can produce the first and second rows with a multiple, e.g. the first row (3 6 6) is the same as the third row (1 2 2) x 3.

I.1.1.8

As A is not full rank, it is not invertible.

I.1.2.1

The derivative of $f(w) = (wx + b)^2$ with respect to w is

$$(wx+b)^2 = w^2x^2 + 2wxb + b^2 = 2x^2w + 2xb = 2x(xw+b)$$

I.1.2.2

In general

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Therefore, differentiating for w we get:

$$f(x) = 1$$

$$f'(x) = 0$$

$$g(x) = (wx + b)^{2}$$

$$g'(x) = 2x(wx + b)$$

$$\left(\frac{f}{g}\right)'(w) = \frac{0 \cdot (wx + b)^{2} - 1 \cdot 2x(wx + b)}{((wx + b)^{2})^{2}}$$

$$= \frac{-1 \cdot 2x(wx + b)}{(wx + b)^{4}}$$

$$= \frac{-2x}{(wx + b)^{3}}$$

I.1.2.3

In general

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Therefore, differentiating for x we get:

$$f(x) = x$$
$$g(x) = e^{x}$$
$$(f \cdot g)'(x) = 1e^{x} + xe^{x}$$