Глубинное обучение в анализе графовых данных

9. Использование эмбеддингов в графах знаний

в предыдущих сериях...

Вычислительный граф в графе знаний

TransE алгоритм обучения

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
 1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                                                                                      Entities and relations are
                  |\ell \leftarrow \ell/ ||\ell|| for each \ell \in L
                                                                                      initialized uniformly, and
                  \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
                                                                                      normalized
     loop
        \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
        S_{batch} \leftarrow \text{sample}(S, b) // sample a minibatch of size b Negative sampling with triplet
        T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
                                                                                 that does not appear in the KG
        for (h, \ell, t) \in S_{batch} do
           (h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) \text{ // sample a corrupted triplet}
 9:
                                                                                                      d represents distance
                                                                                                       (negative of score)
            T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
11:
        end for
12:
         Update embeddings w.r.t.
                                              (h,\ell,t),(h',\ell,t') \in T_{batch}
13: end loop
                                            Contrastive loss: favors lower distance (or higher
                                            score) for valid triplets, high distance (or lower score)
                                            for corrupted ones
```

Шаблоны отношений

- (анти)Симметрия: $r(h,t)\Rightarrow r(t,h)$ $(r(h,t)\Rightarrow \neg r(t,h))$ $\forall h,t$
- Инверсия: $r_2(h,t) \Rightarrow r_1(t,h)$
- Транзитивность: $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$
- 1 to N: $r(h, t_1), r(h, t_2), \dots, r(h, t_n)$ are all True

"Запросы" в графах знаний

Мультизапросы

Можно ли с помощью графов знаний работать не только с тройками, но с длинными цепочками отношений?

Да можно.

Типы запросов

One-hop

• KG completion: Is link (h, r, t) in the KG?

• One-hop query: Is t an answer to query (h, r)?

Path

- An n-hop path query q can be represented by $q = (v_q, (r_1, ..., r_n))$
 - v_a is an "anchor" entity,
 - Let answers to q in graph G be denoted by $[q]_G$.

Query Plan of q:

Как отвечать

Интуитивно - обход

Проблема - много пропущенных данных

Пример проблемы пропущенных

Использование восстановления

Использовать подход восстановления графа знаний не очень помогает - граф становится плотным, сложность обхода становится экспоненциальной

Что делать

Вспомним об эмбеддингах

Будем использовать TransE

- Another way to interpret this is that:
 - Query embedding: q = h + r
 - Goal: query embedding ${f q}$ is close to the answer embedding ${f t}$ $f_q(t) = -\|{f q} {f t}\|$

Conjuctive

Query plan:

Пример запроса

Box embeddings

$$\mathbf{q} = (Center(q), Offset(q))$$

Short of Breath
Q
Infection
Headache

For example, we can embed the adverse events of Fulvestrant with a box that enclose all the answer entities.

Embedding Space

Оператор проекции

•
$$\mathcal{P}: \operatorname{Box} \times \operatorname{Relation} \to \operatorname{Box}$$

$$\operatorname{Cen}(q') = \operatorname{Cen}(q) + \operatorname{Cen}(r)$$

$$\operatorname{Off}(q') = \operatorname{Off}(q) + \operatorname{Off}(r)$$

"x" (cross) means the projection operator is a relation from any box and relation to a new box

Пример работы

Оператор пересечения

Оператор пересечения

$$\mathcal{J}: \mathsf{Box} \times \cdots \times \mathsf{Box} \to \mathsf{Box}$$
 Hadamard product (element-wise product)
$$\mathsf{Cen}(q_{inter}) = \sum_{i} w_{i} \odot \mathsf{Cen}(q_{i})$$

$$w_{i} = \frac{\exp(f_{cen}(\mathsf{Cen}(q_{i})))}{\sum_{j} \exp(f_{cen}(\mathsf{Cen}(q_{j})))}$$
 $\mathsf{Cen}(q_{i}) \in \mathbb{R}^{d}$
$$w_{i} \in \mathbb{R}^{d}$$

Оператор пересечения

■
$$\mathcal{I}: \mathsf{Box} \times \cdots \times \mathsf{Box} \to \mathsf{Box}$$

$$Off(q_{inter}) = \min(Off(q_1), ..., Off(q_n))$$

$$\odot \sigma(f_{off}(Off(q_1), ..., Off(q_n)))$$

$$d_{box}(\mathbf{q}, \mathbf{v}) = d_{out}(\mathbf{q}, \mathbf{v}) + \alpha \cdot d_{in}(\mathbf{q}, \mathbf{v})$$

Объединение

Объединение

Distance between entity embedding and a DNF $q = q_1 \lor q_2 \lor \cdots \lor q_m$ is defined as:

$$d_{box}(\mathbf{q}, \mathbf{v}) = min(d_{box}(\mathbf{q}_1, \mathbf{v}), \dots, d_{box}(\mathbf{q}_m, \mathbf{v}))$$

- The process of embedding any AND-OR query q
 - 1. Transform q to equivalent DNF $q_1 \vee \cdots \vee q_m$
 - 2. Embed q_1 to q_m
 - 3. Calculate the (box) distance $d_{box}(\mathbf{q}_i, \mathbf{v})$
 - 4. Take the minimum of all distance
 - 5. The final score $f_q(v) = -d_{box}(\mathbf{q}, \mathbf{v})$

Обучение

Training:

- 1. Randomly sample a query q from the training graph G_{train} , answer $v \in [\![q]\!]_{G_{train}}$, and a negative sample $v' \notin [\![q]\!]_{G_{train}}$.
 - Negative sample: Entity of same type as v but not answer.
- 2. Embed the query **q**.
- 3. Calculate the score $f_a(v)$ and $f_a(v')$.
- 4. Optimize the loss ℓ to maximize $f_q(v)$ while minimize $f_q(v')$:

$$\ell = -\log\sigma\left(f_q(v)\right) - \log(1 - \sigma(f_q(v')))$$