Section 2.4 – Nonhomogeneous Equations; Method of undetermined Coefficients

The second order *nonhomogeneous* equation is given by: y'' + p(x)y' + q(x)y = f(x) (N) The corresponding *homogeneous* equation: y'' + p(x)y' + q(x)y = 0 (H)

Theorem

Suppose that y_p is a particular solution to the nonhomogeneous (or inhomogeneous) equation y'' + py' + qy = f and that y_1 and y_2 form a fundamental set of solutions to the homogeneous equation y'' + py' + qy = 0. Then the general solution to the inhomogeneous equation is given by

$$y = y_p + C_1 y_1 + C_2 y_2$$

 C_1 and C_2 are arbitrary constants.

Theorem

Let $y = y_1(x)$ and $y = y_2(x)$ be **linearly independent** $(W(x) \neq 0)$ solutions of the reduced equation (H) and let $y_p(x)$ be a **particular solution** of (N). Then the general solution of (N) consists of the general solution of the reduced equation (H) **plus** a particular solution of (N):

$$y(x) = \underbrace{y_p(x)}_{a \text{ Particular}} + \underbrace{C_1 y_1(x) + C_2 y_2(x)}_{General \text{ Solution}}$$

Forcing Term

If the forcing term f has a form that is replicated under differentiation, then look for a solution with the same general form as the forcing term.

Example

Find a particular solution to the equation $y'' - y' - 2y = 2e^{-2t}$

Solution

The forcing term
$$f(t) = 2e^{-2t}$$
 \Rightarrow the particular solution $y = ae^{-2t}$
 $y' = -2ae^{-2t}$

$$y'' = 4ae^{-2t}$$

$$4ae^{-2t} + 2ae^{-2t} - 2ae^{-2t} = 2e^{-2t}$$

$$4ae^{-2t} = 2e^{-2t}$$

$$4a = 2$$

$$a = \frac{1}{2}$$

$$y(t) = \frac{1}{2}e^{-2t}$$

Trigonometric Forcing Term

$$f(t) = A\cos\omega t + B\sin\omega t$$

The general solution: $y(t) = a \cos \omega t + b \sin \omega t$

Example

Find a particular solution to the equation $y'' + 2y' - 3y = 5\sin 3t$

Solution

The particular solution: $y(t) = a \cos 3t + b \sin 3t$

$$y' = -3a\sin 3t + 3b\cos 3t$$
$$y'' = -9a\cos 3t - 9b\sin 3t$$

$$y'' + 2y' - 3y = -9a\cos 3t - 9b\sin 3t + 2(-3a\sin 3t + 3b\cos 3t) - 3(a\cos 3t + b\sin 3t)$$

$$= -9a\cos 3t - 9b\sin 3t - 6a\sin 3t + 6b\cos 3t - 3a\cos 3t - 3b\sin 3t$$

$$= (-12a + 6b)\cos 3t - (6a + 12b)\sin 3t$$

$$= 5\sin 3t$$

$$\begin{cases} -12a + 6b = 0 \\ -(6a + 12b) = 5 \end{cases} \Rightarrow a = -\frac{1}{6}, \ b = -\frac{1}{3}$$

$$y(t) = -\frac{1}{6}\cos 3t - \frac{1}{3}\sin 3t$$

The Complex Method

Example

Find a particular solution to the equation $y'' + 2y' - 3y = 5\sin 3t$

Solution

$$5e^{3it} = 5\cos 3t + 5i\sin 3t = 5cis3t$$

$$z'' + 2z' - 3z = 5e^{3it}$$
The particular solution: $z(t) = x(t) + i y(t)$

$$z'' + 2z' - 3z = (x + iy)'' + 2(x + iy)' - 3(x + iy)$$

$$= (x'' + 2x' - 3x) + i (y'' + 2y' - 3y)$$

$$= 5\cos 3t + i 5\sin 3t$$

$$x'' + 2x' - 3x = 5\cos 3t$$

$$z(t) = ae^{3it}$$

$$z' = 3iae^{3it}$$

$$z'' = 9i^{2}ae^{3it} = -9ae^{3it}$$

$$z'' + 2z' - 3z = -9ae^{3it} + 2(3i)ae^{3it} - 3ae^{3it}$$

$$= -12ae^{3it} + 6iae^{3it}$$

$$= -6(2 - i)ae^{3it}$$

$$= 5e^{3it}$$

$$-6(2 - i)a = 5$$

$$a = -\frac{5}{6(2 - i)}\frac{2 + i}{2 + i}$$

$$= -\frac{5(2 + i)}{6(4 + 1)}$$

$$= -\frac{2 + i}{6}$$

$$z(t) = -\frac{1}{6}(2 + i)e^{3it}$$

$$= -\frac{1}{6}(2 + i)(\cos 3t + i \sin 3t)$$

$$= -\frac{1}{6}[(2\cos 3t - \sin 3t) + i(\cos 3t + 2\sin 3t)]$$

$$y(t) = -\frac{1}{6}(\cos 3t + 2\sin 3t)$$

Polynomial Forcing Term

$$f(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n$$

Example

Find a particular solution to the equation y'' + 2y' - 3y = 3t + 4

Solution

The right-hand side is a polynomial of degree 1.

The particular solution: y(t) = at + b

$$y' = a$$

 $y'' = 0$
 $y'' + 2y' - 3y = 0 + 2a - 3(at + b)$
 $= 2a - 3b - 3at$

$$\rightarrow \begin{cases} -3a = 3 \\ 2a - 3b = 4 \end{cases} \Rightarrow a = -1; \ b = -2$$

= 3t + 4

$$y(t) = -t - 2$$

Exceptional Cases

Example

Find a particular solution to the equation $y'' - y' - 2y = 3e^{-t}$

Solution

The particular solution $y = ae^{-t}$

$$y'' - y' - 2y = ae^{-t} + ae^{-t} - 2ae^{-t}$$
$$= 0$$

The particular solution $y = ate^{-t}$ or $y = at^2e^{-t}$

$$y' = ae^{-t} - ate^{-t} = ae^{-t} (1-t)$$

 $y'' = -ae^{-t} - ae^{-t} + ate^{-t}$
 $= ate^{-t} - 2ae^{-t}$

$$y'' - y' - 2y = ate^{-t} - 2ae^{-t} - ae^{-t} + ate^{-t} - 2ate^{-t}$$
$$= -3ae^{-t}$$

$$-3ae^{-t} = 3e^{-t}$$
$$a = -1$$

The particular solution $y = -te^{-t}$

Summary

$$f(t) y_p$$

$$Any Constant A$$

$$at + b At + B$$

$$at^2 + c At^2 + Bt + C$$

$$at^3 + \dots + b At^3 + Bt^3 + Ct + E$$

$$\sin at or \cos at A\cos at + B\sin at$$

$$e^{at} Ae^{at}$$

$$(at + b)e^{at} (At + B)e^{at}$$

$$t^2e^{at} (At^2 + Bt + C)e^{at}$$

$$e^{at}(A\cos bt + B\sin bt)$$

$$t^2\sin bt (At^2 + Bt + C)\cos bt + (Et^2 + Ft + G)\sin bt$$

$$te^{at}\cos bt (At + B)\cos bt + (Ct + E)\sin bt$$

Exercises Section 2.4 – Nonhomogeneous Equations; Method of undetermined Coefficients

1. Show that the 3 solutions $y_1 = x$, $y_2 = x \ln x$, $y_3 = x^2$ of the 3rd order equation $x^3 y''' - x^2 y'' + 2xy' - 2y = 0$ are linearly independent on an open interval x > 0. Then find a particular solution that satisfies the initial conditions y(1) = 3, y'(1) = 2, y''(1) = 1

Find the particular solution for the given differential equation

2.
$$y'' + 3y' + 2y = 4e^{-3t}$$

3.
$$y'' + 6y' + 8y = -3e^{-t}$$

4.
$$y'' + 2y' + 5y = 12e^{-t}$$

5.
$$y'' + 3y' - 18y = 18e^{2t}$$

6.
$$y'' + 4y = \cos 3t$$

7.
$$y'' + 7y' + 6y = 3\sin 2t$$

8.
$$y'' + 5y' + 4y = 2 + 3t$$

9.
$$y'' + 6y' + 8y = 2t - 3$$

10.
$$y'' + 3y' + 4y = t^3$$

11.
$$y'' + 2y' + 2y = 2 + \cos 2t$$

12.
$$y'' - y = t - e^{-t}$$

13.
$$y'' - 2y' + y = 10e^{-2t} \cos t$$

14.
$$y''' - 4y'' + 4y' = 5t^2 - 6t + 4t^2e^t + 3e^{5t}$$

Use the *complex method* to find the particular solution for

15.
$$y'' + 4y' + 3y = \cos 2t + 3\sin 2t$$

16.
$$y'' + 4y = \cos 3t$$

Find the general solution for the given differential equation

17.
$$y'' + y = 2\cos x$$

18.
$$y'' + y = \cos 3x$$

19.
$$y'' + y = 2x \sin x$$

20.
$$y'' - y = x^2 e^x + 5$$

21.
$$y'' - y' = -3$$

22.
$$y'' - y' = 2\sin x$$

23.
$$y'' - y' = \sin x$$

24.
$$y'' - y' = -8x + 3$$

25.
$$y'' + y = 2x + 3e^x$$

26.
$$y'' - y = x^2 + e^x$$

27.
$$y'' + y' = 10x^4 + 2$$

28.
$$y'' - y' = 5e^x - \sin 2x$$

29.
$$y'' + y = x \cos x - \cos x$$

$$30. \quad y'' + y = e^x \sin x$$

$$31. \quad y'' - y' - 2y = 20\cos x$$

32.
$$y'' - y' + \frac{1}{4}y = 3 + e^{x/2}$$

33.
$$y'' + y' + \frac{1}{4}y = e^x(\sin 3x - \cos 3x)$$

34.
$$y'' - y' - 2y = e^{3x}$$

35.
$$y'' - y' - 6y = 20e^{-2x}$$

36.
$$y'' + y' - 6y = 2x$$

37.
$$y'' - y' - 6y = e^{-x} - 7\cos x$$

38.
$$y'' + y' + 8y = x\cos 3x + \left(10x^2 + 21x + 9\right)\sin 3x$$

39.
$$y'' - y' - 12y = e^{4x}$$

40.
$$y'' + 2y' = 2x + 5 - e^{-2x}$$

41.
$$y'' - 2y' = 12x - 10$$

42.
$$y'' + 2y' + y = \sin x + 3\cos 2x$$

43.
$$y'' - 2y' + y = 6e^x$$

44.
$$y'' + 2y' + y = x^2$$

45.
$$y'' + 2y' + y = x^2 e^{-x}$$

46.
$$y'' - 2y' + y = x^3 + 4x$$

47.
$$y'' + 2y' + y = 6\sin 2x$$

48.
$$y'' - 2y' + y = (x^2 - 1)e^{2x} + (3x + 4)e^x$$

49.
$$y'' + 2y' + 2y = 5e^{6x}$$

50.
$$y'' + 2y' + 2y = x^3$$

51.
$$y'' + 2y' + 2y = \cos x + e^{-x}$$

52.
$$y'' - 2y' + 2y = e^x \sin x$$

53.
$$y'' - 2y' + 2y = e^{2x} (\cos x - 3\sin x)$$

54.
$$y'' - 2y' - 3y = 1 - x^2$$

55.
$$y'' - 2y' - 3y = 4e^x - 9$$

56.
$$y'' - 2y' - 3y = 2e^{-x}\cos x + x^2 + xe^{3x}$$

57.
$$y'' - 2y' + 5y = 25x^2 + 12$$

58.
$$y'' - 2y' + 5y = e^x \cos 2x$$

59.
$$y'' - 2y' + 5y = e^x \sin x$$

60.
$$y'' + 2y' - 24y = 16 - (x+2)e^{4x}$$

61.
$$y'' + 3y = -48x^2e^{3x}$$

62.
$$y'' - 3y' = e^{3x} - 12x$$

63.
$$y'' + 3y' = 4x - 5$$

64.
$$y'' - 3y' = 8e^{3x} + 4\sin x$$

65.
$$y'' + 3y' + 2y = 6$$

66.
$$y'' + 3y' + 2y = 4x^2$$

67.
$$y'' - 3y' + 2y = 5e^x$$

68.
$$y'' - 3y' + 2y = 2x^2 + e^x + 2xe^x + 4e^{3x}$$

69.
$$y'' - 3y' + 2y = 14\sin 2x - 18\cos 2x$$

70.
$$y'' + 3y' + 2y = e^{-x} + e^{-2x} - x$$

71.
$$y''' - 3y'' + 3y' - y = 3e^x$$

72.
$$y'' - 3y' - 10y = -3$$

73.
$$y'' - 3y' - 10y = 2x - 3$$

74.
$$y'' + 3y' - 10y = 6e^{4x}$$

75.
$$y'' + 3y' - 10y = x(e^x + 1)$$

76.
$$y'' - 4y = 4x^2$$

77.
$$y'' + 4y = 3x^3$$

78.
$$y'' + 4y = 3\sin x$$

79.
$$y'' + 4y = 3\sin 2x$$

80.
$$y'' + 4y = 4\cos x + 3\sin x - 8$$

81.
$$y'' - 4y = (x^2 - 3)\sin 2x$$

82.
$$y'' + 4y' + 4y = 2x + 6$$

83.
$$y'' + 4y' + 5y = 5x + e^{-x}$$

84.
$$y'' + 4y' + 5y = 2e^{-2x} + \cos x$$

85.
$$y'' + 5y' = 15x^2$$

86.
$$y'' - 5y' = 2x^3 - 4x^2 - x + 6$$

87.
$$y'' + 6y' + 8y = 3e^{-2x} + 2x$$

88.
$$y'' - 6y' + 9y = e^{3x}$$

89.
$$y'' + 6y' + 9y = -xe^{4x}$$

90.
$$y'' + 6y' + 13y = e^{-3x} \cos 2x$$

91.
$$y'' - 7y' = -3$$

92.
$$y'' + 7y' = 42x^2 + 5x + 1$$

93.
$$y'' + 8y = 5x + 2e^{-x}$$

94.
$$y'' - 8y' + 20y = 100x^2 - 26xe^x$$

95.
$$y'' - 9y = 54$$

96.
$$y'' + 9y = x^2 \cos 3x + 4 \sin x$$

97.
$$y'' + 10y' + 25y = 14e^{-5x}$$

98.
$$y'' - 10y' + 25y = 30x + 3$$

99.
$$y'' - 16y = 2e^{4x}$$

100.
$$y'' + 25y = 6\sin x$$

101.
$$y'' + 25y = 20\sin 5x$$

102.
$$\frac{1}{4}y'' + y' + y = x^2 - 2x$$

103.
$$2y'' - 5y' + 2y = -6e^{x/2}$$

104.
$$2y'' - 7y' + 5y = -29$$

105.
$$4y'' + 9y = 15$$

106.
$$4y'' - 4y' - 3y = \cos 2x$$

107.
$$9y'' - 6y' + y = 9xe^{x/3}$$

108.
$$y^{(3)} + y'' = 8x^2$$

109.
$$y^{(3)} - y'' - 4y' + 4y = 5 - e^x + e^{2x}$$

110.
$$y^{(3)} + y'' = 3e^x + 4x^2$$

111.
$$y^{(3)} + 2y'' + y' = 10$$

112.
$$y^{(3)} - 2y'' - 4y' + 8y = 6xe^{2x}$$

113.
$$y^{(3)} - 3y'' + 3y' - y = x - 4e^x$$

114.
$$y^{(3)} - 4y'' + y' + 6y = 4\sin 2x$$

115.
$$y^{(3)} - 3y'' + 3y' - y = e^x - x + 16$$

116.
$$y^{(3)} - 6y'' = 3 - \cos x$$

117.
$$y^{(3)} - 6y'' + 11y' - 6y = 2xe^{-x}$$

118.
$$y^{(3)} + 8y'' = -6x^2 + 9x + 2$$

119.
$$y^{(4)} + y'' = 3x^2 + 4\sin x - 2\cos x$$

120.
$$y^{(4)} + 2y'' + y = (x-2)^2$$

121.
$$y^{(4)} - y'' = 4x + 2xe^{-x}$$

122.
$$(D^2 + D - 2)y = 2x - 40\cos 2x$$

123.
$$(D^2 - 3D + 2)y = 2\sin x$$

124.
$$(D-2)^3 (D^2+9)y = x^2 e^{2x} + x \sin 3x$$

Find the general solution that satisfy the given initial conditions

125.
$$y'' + y = \cos x$$
; $y(0) = 1$, $y'(0) = -1$

126.
$$y'' + y' = x$$
; $y(1) = 0$, $y'(1) = 1$

127.
$$y'' + y' = -x$$
; $y(0) = 1$, $y'(0) = 0$

128.
$$y'' + y = 8\cos 2t - 4\sin t$$
 $y\left(\frac{\pi}{2}\right) = -1$, $y'\left(\frac{\pi}{2}\right) = 0$

129.
$$y'' - y' - 2y = 4x^2$$
; $y(0) = 1$, $y'(0) = 4$

130.
$$y'' - y' - 2y = e^{3x}$$
; $y(1) = 2$, $y'(1) = 1$

131.
$$y'' - y' - 2y = e^{3x}$$
; $y(0) = 1$, $y'(0) = 2$

132.
$$y'' - y' - 2y = e^{3x}$$
; $y(0) = 2$, $y'(0) = 1$

133.
$$y'' + 2y' + y = 2\cos t$$
; $y(0) = 3$, $y'(0) = 0$

134.
$$y'' - 2y' + y = t^3$$
; $y(0) = 1$, $y'(0) = 0$

135.
$$y'' - 2y' + y = -3 - x + x^2$$
; $y(0) = -2$, $y'(0) = 1$

136.
$$y'' - 2y' + 2y = x + 1$$
; $y(0) = 3$, $y'(0) = 0$

137.
$$y'' + 2y' + 2y = \sin 3x$$
; $y(0) = 2$, $y'(0) = 0$

138.
$$y'' + 2y' + 2y = 2\cos 2t$$
; $y(0) = -2$, $y'(0) = 0$

139.
$$y'' - 2y' - 3y = 2e^x - 10\sin x$$
; $y(0) = 2$, $y'(0) = 4$

140.
$$y'' + 2y' + 10y = 4 + 26x + 6x^2 + 10x^3$$
: $y(0) = 2$. $y'(0) = 9$

141.
$$y'' - 2y' + 10y = 6\cos 3t - \sin 3t$$
; $y(0) = 2$, $y'(0) = -8$

142.
$$y'' + 3y' + 2y = e^x$$
; $y(0) = 0$, $y'(0) = 3$

143.
$$y'' - 3y' + 2y = 3e^{-x} - 10\cos 3x$$
 $y(0) = 1$ $y'(0) = 2$

144.
$$y'' + 4y = -2$$
; $y\left(\frac{\pi}{8}\right) = \frac{1}{2}$, $y'\left(\frac{\pi}{8}\right) = 2$

145.
$$y'' + 4y = 2x$$
; $y(0) = 1$, $y'(0) = 2$

146.
$$y'' + 4y = \sin^2 2t$$
; $x\left(\frac{\pi}{8}\right) = 0$ $x'\left(\frac{\pi}{8}\right) = 0$

147.
$$y'' - 4y' + 8y = x^3$$
; $y(0) = 2$, $y'(0) = 4$

148.
$$y'' + 4y' + 4y = (3+x)e^{-2x}$$
; $y(0) = 2$, $y'(0) = 5$

149.
$$y'' + 4y' + 4y = 4 - t$$
; $y(0) = -1$, $y'(0) = 0$

150.
$$y'' - 4y' + 4y = e^x$$
; $y(0) = 2$, $y'(0) = 0$

151.
$$y'' - 4y' - 5y = 4e^{-2t}$$
; $y(0) = 0$, $y'(0) = -1$

152.
$$y'' + 4y' + 5y = 35e^{-4x}$$
; $y(0) = -3$, $y'(0) = 1$

153.
$$y'' + 4y' + 8y = \sin t$$
; $y(0) = 1$, $y'(0) = 0$

154.
$$y'' - 4y' - 12y = 3e^{5t}$$
; $y(0) = \frac{18}{7}$, $y'(0) = -\frac{1}{7}$

155.
$$y'' - 4y' - 12y = \sin 2t$$
; $y(0) = 0$, $y'(0) = 0$

156.
$$y'' - 5y' = t - 2$$
; $y(0) = 0$, $y'(0) = 2$

157.
$$y'' + 5y' - 6y = 10e^{2x}$$
; $y(0) = 1$, $y'(0) = 1$

158.
$$y'' + 6y' + 10y = 22 + 20x$$
; $y(0) = 2$, $y'(0) = -2$

159.
$$y'' + 7y' + 12y = -2\cos 2x + 36\sin 2x$$
; $y(0) = -3$, $y'(0) = 3$

160.
$$y'' + 8y' + 7y = 10e^{-2x}$$
; $y(0) = -2$, $y'(0) = 10$

161.
$$y'' + 9y = \sin 2x$$
; $y(0) = 1$, $y'(0) = 0$

162.
$$y'' - 64y = 16$$
; $y(0) = 1$, $y'(0) = 0$

163.
$$2y'' + 3y' - 2y = 14x^2 - 4x + 11$$
; $y(0) = 0$, $y'(0) = 0$

164.
$$5y'' + y' = -6x$$
; $y(0) = 0$, $y'(0) = -10$

165.
$$x'' + 9x = 10\cos 2t$$
; $x(0) = x'(0) = 0$

166.
$$x'' + 4x = 5\sin 3t$$
; $x(0) = x'(0) = 0$

167.
$$x'' + 100x = 225\cos 5t + 300\sin 5t$$
; $x(0) = 375$, $x'(0) = 0$

168.
$$x'' + 25x = 90\cos 4t$$
; $x(0) = 0$, $x'(0) = 90$

169.
$$y^{(3)} - y' = 4e^{-x} + 3e^{2x}$$
; $y(0) = 0$, $y'(0) = -1$, $y''(0) = 2$

170.
$$y^{(3)} + y'' = x + e^{-x}$$
; $y(0) = 1$, $y'(0) = 0$, $y''(0) = 1$

171.
$$y^{(3)} - 2y'' + y' = 1 + xe^x$$
; $y(0) = y'(0) = 0$, $y''(0) = 1$

172.
$$y^{(4)} - 4y'' = x^2$$
; $y(0) = y'(0) = 1$, $y''(0) = y^{(3)}(0) = -1$

173.
$$y^{(4)} - y = 5;$$
 $y(0) = y'(0) = y''(0) = y^{(3)}(0) = 0$

174.
$$y^{(4)} - y''' = x + e^x;$$
 $y(0) = y'(0) = y''(0) = y^{(3)}(0) = 0$

175. If k and b are positive constants, then find the general solution of $y'' + k^2 y = \sin bx$