

Bloque IV: El nivel de red

Tema 13: IPv6

Índice

- Bloque IV: El nivel de red
 - Tema 13: IPv6
 - Limitaciones de IPv4
 - Características de IPv6
 - Cabecera IPv6
 - Direccionamiento Ipv6
 - ICMPv6
 - Transición IPv4 a IPv6

Lecturas recomendadas:

- Capítulo 4, sección 4.4.4, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- "IPv6 Essentials", Silvia Hagen, O'Reilly.

Limitaciones de IPv4

- "Pocas" direcciones (32 bits 4000 millones):
 - Estructura de dos niveles (id. de red y de host):
 - Usar un id. de red → reservar todos sus id. de host.
 - Gran proliferación de redes (crecimiento exponencial de Internet).
 - Uso de TCP/IP en nuevas tecnologías (móviles, PDAs, TV, ...)
 - Permitir múltiples IP por ordenador.
- Saturación del espacio de direcciones:
 - Limita el crecimiento de Internet.
 - Enrutamiento ineficiente (tablas de enrutamiento muy grandes en la red troncal) → Tiempos de respuesta grandes.
 - Uso de NAT (Network Address Translation).
- Soporte inadecuado para aplicaciones con restricciones de calidad de servicio:
 - No garantiza anchos de banda, tiempos de respuesta, seguridad.
- Se requieren mecanismos de seguridad en la capa de red:
 - No fue diseñado para ser seguro.
 - Se han definido algunas herramientas de seguridad (SSL, SHTTP, IPsec).

Características de IPv6

- IPv6 representa una de las mayores actualizaciones de tecnologías de red de la historia.
 - Está diseñado como la evolución de IPv4.
 - Es un incremento natural de IPv4 y es interoperable con IPv4.
 - Está diseñado para operar sobre redes de alta velocidad (ATM, Gigabit Ethernet, ...) y redes de bajo ancho de banda (p.e. WIFI).
 - Proporciona nuevas funcionalidades para Internet (p.e. extensión del espacio de direcciones, seguridad, QoS).
- http://www.ipv6.es/

Características de IPv6

- Espacio de direcciones ampliado y mecanismos de autoconfiguración:
 - Directiones de 128 bits → Incremento en 2⁹⁶ y nos tocan 6 x 1023 dir. IP/m2.
 - Permite una arquitectura jerárquica de direcciones → Agregación de direcciones en el backbone.
 - Autoconfiguración (plug&play) de los equipos.
 - Mejoras de los mecanismos multicast, introduciendo el concepto de ámbito (scope).
 - Introducción de las direcciones Anycast y desaparecen las direcciones de broadcast.
- Simplificación del formato de la cabecera:
 - Tamaño fijo de 40 bytes: dos direcciones IP de 16 bytes + 8 bytes.
 - Se eliminan (o son opcionales) algunos campos de la cabecera IPv4.
 - Procesamiento más rápido y barato en los routers (p.e. se elimina la fragmentación IP de los routers).

Características de IPv6

- Soporte mejorado de extensiones y opciones:
 - Las opciones se gestionan como Cabeceras de Extensión.
 - Se insertan entre la cabecera IPv6 y la carga.
 - Se pueden integrar fácilmente nuevas extensiones en el futuro.
- Seguridad intrínseca en el núcleo del protocolo:
 - Soporta autenticación y dispone de extensiones para la integridad y confidencialidad de los datos.
- Capacidad para etiquetado de flujos:
 - Paquetes del mismo flujo de datos pueden ser etiquetados en origen → Calidad de Servicio (QoS).
 - Por ejemplo, soporte de tráfico multimedia en tiempo real.

¿Merece la pena?

- Ya tenemos NAT y mecanismos de seguridad (IPsec) en IPv4, ¿no es suficiente?
- Pronto conectaremos casi todo a Internet: PDAs, teléfonos móviles, TVs, frigoríficos, coches, ...
- IPv6, con el espacio de direcciones extendido, la autoconfiguración y sus características de movilidad podrá gestionar todos estos dispositivos.
- Cada vez requerimos más aplicaciones multimedia e interactivas a través de Internet, en donde IPv4 plantea muchos problemas.
- Además, IPv6 no es sólo más direcciones: mayor escalabilidad, mejor integridad de los datos, soporta QoS, autoconfiguración, agregación de direcciones para el enrutamiento, ...

Datagrama IPv6

Cabecera IPv6
Cabecera de extensión
...
Cabecera de extensión

Datos transporte

40 bytes

0 ó más

- Sólo se requiere una cabecera:
 - Cabecera de IPv6 (40 bytes).
- Y se definen varias cabeceras de extensión (opcionales):
 - Cabecera de opciones salto-a-salto
 - Cabecera de encaminamiento
 - Cabecera de fragmentación
 - Cabecera de las opciones para el destino
 - Cabecera de autentificación
 - Cabecera ESP

31

Cabecera IPv6

0	8	16	31	0	4	12	16	3
Versión Cabe		Longitud total		Versi	ión Clase tráfico		Etiqueta de	flujo
Identificación		Flags	Offset de frag.	Longitud carga Cabec. sig.		Lim. saltos		
TTL	Protocolo	Che	ecksum cabecera					
Dir. IP origen					Dir ID origon			
Dir. IP destino					Dir. IP origen			
Opciones (opcional y variable)								
Cabec	era IPv4							

- 20 bytes
- 12 campos
- Hasta 40 bytes de opciones

Modificado

Borrado

Cabecera IPv6 (RFC 2460)

- 40 bytes y 8 campos
- Cabeceras de extensión ilimitadas (opciones)

Dir. IP destino

Cabecera IPv6

- Versión (4 bits): versión del protocolo (6).
- Clase de tráfico (1 byte): identifica diferentes clases o prioridades de paquetes (sustituye al campo TOS de IPv4) → DS (6 bits) + ECN (2 bits).
- **Etiqueta de flujo** (20 bits): permite diferenciar aquellos paquetes que requieren un tratamiento similar.
 - Especialmente útil para tráfico multimedia y en tiempo real.
 - El host origen asocia la misma etiqueta a un flujo de paquetes con las mismas características (p.e. voz sobre IP, streaming de vídeo, ...)
 - El router gestiona los distintos flujos y procesa los paquetes de cada flujo más eficientemente → No necesita procesar la cabecera completa.
 - Un flujo se identifica por: etiqueta + dirección origen
 - Aquellos routers que no puedan interpretar las etiquetas deben ignorarlo y pasar el campo inalterado.
 - Etiqueta de flujo + clase de tráfico: mecanismo potente de control de flujo y de asignación de prioridades diferenciadas según los tipos de servicios.
- Longitud de carga (2 bytes): longitud del paquete después de la cabecera IP (cabeceras extensión + datos).
 - En IPv4, el campo Longitud incluía la longitud de la cabecera + datos
 - En IPv6, no se considera la cabecera IPv6 (tamaño fijo), y las cabeceras de extensión se consideran parte de la carga.
 - Máximo tamaño de carga: 2¹⁶= 64Kbytes
 - IPv6 permite la definición de Jumbogramas: paquetes de más de 64 KB, que sólo tienen sentido si el MTU del nivel de enlace es superior a 64 KB.

Cabecera IPv6

- Cabecera siguiente (1 byte): identifica el tipo de cabecera que sigue a la cabecera IPv6.
 - Las cabeceras deben ser procesadas en el orden riguroso en que aparecen.
 - Las sucesivas cabeceras no son examinadas en cada nodo de la ruta, sino sólo en el nodo o nodos destino finales (excepto cuando se trata de la cabecera de opciones salto a salto).

IPv6 Header Next = TCP	TCP Header	Application Data		
IPv6 Header	Fragment Hdr	Security Hdr	TCP Header	Data
Next = Frag	Next = Security	Next = TCP		Frag
			1	

- Límite de saltos (1 byte): número restante de saltos permitidos.
 - Análogo al campo TTL.
- **Dirección origen** (16 bytes).
- Dirección destino (16 bytes): normalmente, dirección IP del destino del paquete.
 - Puede no ser el último destinatario del paquete, si está presente la cabecera de enrutamiento.

Cabecera IPv6

- Se eliminan 5 campos de la cabecera IPv4:
 - Longitud cabecera: necesario en IPv4 al incluirse las opciones en la cabecera (longitud entre 20 y 60 bytes).
 - Inútil en IPv6 (cabecera fija de 40 bytes + cabeceras de extensión).
 - Identificación, flags y offset de fragmentación: necesarios para la fragmentación en IPv4.
 - Si es necesaria, se realiza extremo a extremo (MTU Path Discovery), utilizando la cabecera de extensión para fragmentación.
 - ¡Los routers no fragmentan!
 - Checksum cabecera: eliminado para mejorar el rendimiento → Así, los routers no tienen que calcular y actualizar el checksum.
 - Ya se realiza en el nivel de enlace (probablemente) y en el nivel de transporte.
 - IP no es fiable → Fiabilidad en los niveles superiores.

Cabeceras de extensión

- El modo de definir las opciones en IPv4 provoca un menor rendimiento en los routers.
 - El procesador debe analizar las opciones del paquete IP.
- IPv6 gestiona las opciones utilizando las cabeceras de extensión (RFC 2460):
 - Cabecera de opciones salto-a-salto
 - Cabecera de encaminamiento
 - Cabecera de fragmentación
 - Cabecera de opciones en destino
 - Cabecera de autentificación
 - Cabecera ESP (Encrypted Security Payload)
- Puede haber 0, 1 o más cabeceras de extensión, y serán procesadas en el orden en el que aparezcan.
- Cada cabecera de extensión se identifica mediante el campo Siguiente cabecera de la cabecera anterior.
- Las cabeceras de extensión sólo se procesan por el nodo identificado en el campo Dirección de destino.
- Excepción: si se trata de la cabecera de opciones salto-a-salto, esa cabecera será procesada por todos los nodos de la ruta.
 - La cabecera de opciones salto-a-salto se encuentra a continuación de la cabecera IPv6 (Siguiente cabecera = 0).
- Cada cabecera de extensión es múltiplo de 8 bytes.
- Si un nodo debe procesar la siguiente cabecera, pero no la reconoce →
 Descarta el paquete + Envía mensaje ICMPv6 Parameter Problem al origen

Direccionamiento IPv6

- Especificado en el RFC 2373 (que deja obsoleto el RFC 1884).
- Las direcciones IPv6 son identificadores de 128 bits para interfaces y conjuntos de interfaces. Hay 340 sixtillones (10³⁶) de direcciones IP diferentes (frente a sólo 4000 millones de IPv4).
- Las direcciones IPv6 tienen un ámbito de validez (local de enlace, sitio o global) y un tiempo de vida.
- Hay tres tipos de direcciones:
 - Unicast: identifica unívocamente una interfaz de un nodo IPv6. Un paquete dirigido a una dirección unicast se envía a la interfaz asociada a esa dirección.
 - Multicast: identifica un grupo de interfaces IPv6. Un paquete dirigido a una dirección multicast es procesado por todos los miembros del grupo.
 - Anycast: se asigna a múltiples interfaces (típicamente en múltiples nodos).
 Un paquete dirigido a una dirección anycast es enviado a sólo una de esas interfaces (normalmente, la más próxima).
- No hay direcciones de broadcast → Su función es sustituida por direcciones multicast.
- Las direcciones IP se asignan a interfaces (como en IPv4):
 - Cada interfaz necesita, al menos, una dirección unicast.
 - Una interfaz puede tener asignadas múltiples direcciones de cualquier tipo (unicast, multicast o anycast).
 - Un nodo se identifica por cualquier dirección de cualquiera de sus interfaces.

Direccionamiento IPv6

- Una dirección IPv6 se divide en tres partes:
 - Prefijo de enrutamiento global: identifica una dirección especial (p.e. multicast) o un rango de direcciones asignado a un sitio.
 - Identificador de subred: identifica un enlace (subred) dentro de un sitio.
 - Cada enlace tendrá su identificador, y un enlace puede disponer de múltiples identificadores.
 - Identificador de interfaz: identifica una interfaz dentro del enlace.
 Debe ser único.

Prefijo de enrutamiento global	Identificador subred	Identificador interfaz
n bits	m bits	128 – n - m bits

- Tipos de direcciones unicast IPv6:
 - Direcciones unicast globales agregables: gestionadas por un plan jerárquico (RFC 2374).
 - Direcciones unicast locales de enlace: sólo uso local (dentro de una red).
 - Direcciones unicast locales de sitio: sólo uso en las subredes de un sitio.

Direccionamiento IPv6: Notación

- Dirección IPv6: 128 bits = 16 bytes
- Se representa mediante 8 bloques de 16 bits en hexadecimal, separados por ":"
 - FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 - FE80:0000:0000:0000:0202:B3FF:FE1E:8329
- Se pueden eliminar los ceros por la izquierda en cada bloque
 - FE80:0:0:0:202:B3FF:FE1E:8329
- Se eliminan bloques consecutivos de ceros utilizando el carácter "::"
 - FE80::202:B3FF:FE1E:8329
 - Sólo puede aparecer una vez en la dirección
 - CAFF:CA01:0000:0056:0000:ABCD:EF12:1234
 - CAFF:CA01::56:0:ABCD:EF12:1234
 - CAFF:CA01:0:56::ABCD:EF12:1234
- En entornos mixtos de IPv4 e IPv6, se puede utilizar una forma alternativa y muy conveniente: x:x:x:x:x:x:d:d:d:d
 - "x" representa valores hexadecimales de 16 bits
 - "d" representa valores decimales de las (representación estándar IPv4)
 - Por ejemplo:
 - 0:0:0:0:0:0:13.1.68.3 ó ::13.1.68.3
 - 0:0:0:0:0:0:FFFF:129.144.52.38
 ó::FFFF:129.144.52.38
- Direcciones especiales: dirección sin especificar :: y dirección de loopback ::1
 - ping6 ::1

Direccionamiento IPv6: DNS

- También son necesarios cambios (pocos) en el DNS para resolver las peticiones de direcciones IPv6 ⇒ RFC 1886.
- Petición DNS IPv6: AAAA
 - A partir de un nombre, obtendrá la dirección IPv6 asociada.
- Registro de respuesta IPv6: AAAA
 - Equivalente al registro para IPv4, pero con una dirección IPv6.
- Jerarquía de resolución inversa: ip6.int
 - Equivalente a in-addr.arpa.
 - Se compone de 16 ramas (0-F), con sucesivos subniveles.
- dig @8.8.8.8 www.udc.es AAAA

ICMPv6

- Como parte de los cambios de IPv6 se incluye una nueva versión del protocolo ICMP definida en el RFC 4443.
 - Reorganiza los tipos y códigos existentes.
 - Define nuevos tipos.
 - Incorpora funciones de IGMP (Internet Group Management Protocol).
 - Introduce el protocolo NDP (Neighbor Discovery Protocol)
 - Incorpora funciones ARP.
- Misma estructura de mensajes que ICMPv4.
- Mensaje de error Packet Too Big: se genera un router cuando no puede enviar un paquete ya que es mayor que el MTU de la interfaz de salida.
- Mensaje Parameter Problem: si un nodo no es capaz de identificar un campo de la cabecera IPv6 o de alguna cabecera de extensión ⇒ Descarta el paquete y envía un mensaje de error ICMP Parameter Problem al origen.
- Mensajes Echo Request y Echo Reply: para implementar el ping6 (tipo 128 y 129).

ICMPv6: NDP

- NDP combina ARP, Redirect y descubrimiento de routers (de ICMPv4) para:
 - Determinar las direcciones de enlace de los nodos en el mismo enlace.
 - Encontrar routers vecinos que puedan enviar paquetes.
 - Identificar los vecinos alcanzables y no alcanzables, y detectar cambios en sus direcciones de enlace.
- Autoconfiguración: no se requiere configuración manual (plug&play), incluso sin un servidor DHCP. Métodos para la obtención de direcciones:
 - Link Local Address (no necesita ni router ni servidor):
 - Crear una dirección IP (local de enlace) única: prefijo local de enlace (FE80) + Identificador IEEE 64 bits o adaptación del identificador IEEE 48 bits
 - Comprobar que es válida.
 - Mecanismo "Stateless" (el router informa de los prefijos de las direcciones): buscar routers en la red → Proporcionan prefijos (para crear direcciones) y routers por defecto.
 - Mecanismo "Stateful": equivalente a DHCP.

Transición IPv4 a IPv6

- IPv6 e IPv4 van a coexistir durante muchos años.
- Se han definido múltiples técnicas, que se agrupan en tres categorías:
 - Pila dual: permiten a IPv4 e IPv6 coexistir en los mismos dispositivos y redes.
 - Tunneling: permiten transportar tráfico IPv6 sobre infraestructuras IPv4 existentes.
 - Traducción: permiten a los nodos IPv6 puros comunicarse con los nodos IPv4 puros.
- Estas técnicas pueden (y deben) utilizarse de manera combinada.
- Definidas en el RFC 2893 "Transition Mechanisms for IPv6 Hosts and Routers".

Pila dual

- Nodo IPv6/IPv4: nodo con soporte completo de las dos versiones de los protocolos.
 - Cuando se comunica con un nodo IPv6, utiliza IPv6.
 - Cuando se comunica con un nodo IPv4, utiliza IPv4.
 - Dispone de, al menos, una dirección IP para cada versión.
 - Configuración manual o DHCP para IPv4.
 - Configuración manual o autoconfiguración para IPv6.
 - Requiere un resolver DNS con capacidad para resolver los dos tipos de registros DNS:
 - Registro A para direcciónes IPv4.
 - Registro AAAA o A6 para direcciones IPv6.
- Desventaja: es necesario mantener dos pilas de protocolos independientes.
 - Mantener todas las tablas (p.e. de enrutamiento) simultáneamente, configurar los protocolos de enrutamiento para ambos protocolos, ...
 - Requiere más memoria y CPU.
 - Dos nodos IPv6, pueden acabar comunicándose en IPv4 si en la ruta hay un enlace exclusivamente IPv4.

- Permite desarrollar una infraestructura de envío IPv6, sobre la base de IPv4.
- Se transporta tráfico IPv6 encapsulándolo en paquetes IPv4 y enviándolos a través de la estructura de enrutamiento IPv4 (túnel).
 - Los extremos del túnel utilizan pila dual.
- Tunneling automático: se determinan de forma automática los extremos del túnel.
 - 6to4: encapsula en IPv4 (RFC 3056).
 - Teredo: encapsula en datagramas UDP. Soporta NAT. Cliente linux: miredo.

Traducción

- NAT (Network Address Translation):
 - Se utiliza ampliamente para traducir direcciones
 IPv4 privadas a direcciones públicas.
 - En este caso, proporciona capacidad de enrutamiento entre una red IPv6 y una red IPv4.
 - NAPT (Network Address Port Translation): permite a un grupo de hosts IPv6 compartir una única dirección IPv4.
- Debe ser utilizado sólo si no es posible otro mecanismo de transición.
 - Desaprovecha algunas mejoras de IPv6.

IPv6: Resumen

- IPv6 es un nuevo protocolo que:
 - Opera sobre un espacio de direcciones ampliado y con mecanismos de autoconfiguración
 - Direcciones IPv6 con ámbito y tiempo de vida.
 - Simplifica el formato de la cabecera (de tamaño fijo)
 - Agiliza el enrutamiento:
 - No hay checksum
 - No hay fragmentación en los routers
 - Soporta mejor las extensiones y las opciones IP.
 - La seguridad forma parte intrínseca del núcleo del protocolo: cabeceras AH y ESP.
 - Tiene capacidad para el etiquetado de flujos de datos (QoS)
 - No es compatible con IPv4 → Se requieren mecanismos de convivencia hasta su implantación definitiva