Homomorphism bounds for K₄-minor-free graphs

Florent Foucaud

(LIMOS, U. Blaise Pascal, Clermont-Ferrand)

joint work with

Laurent Beaudou (LIMOS) and

and

Reza Naserasr (LIAFA, U. Paris-Diderot)

Homomorphisms

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Target graph: $H = C_5$

Definition - Graph homomorphism of G to H

Mapping $h: V(G) \rightarrow V(H)$ which preserves adjacency:

$$xy \in E(G) \Longrightarrow h(x)h(y) \in E(H)$$

Notation: $G \rightarrow H$.

Complete graph K_6

Remark: Homomorphisms generalize proper colourings

$$G \to K_k$$
 if and only if $\chi(G) \le k$

Odd cycles

Proposition

$C_{2k+1} o C_{2\ell+1}$ if and only if $\ell \leq k$

Cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a **core** if core(G) = G

Cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a **core** if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples: • the core of any nontrivial bipartite graph is K_2

• complete graphs and odd cycles are cores

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a **core** if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples: • the core of any nontrivial bipartite graph is K_2

• complete graphs and odd cycles are cores

Proposition

$$G \rightarrow H$$
 if and only if $core(G) \rightarrow core(H)$

Definition - Core

- Core of G: minimal subgraph H with $G \rightarrow H$
- G is a **core** if core(G) = G

Proposition

The core of a graph is unique (up to isomorphism)

Examples: • the core of any nontrivial bipartite graph is K_2

• complete graphs and odd cycles are cores

Proposition

$$G \rightarrow H$$
 if and only if $core(G) \rightarrow core(H)$

The homomorphism order

Definition - Homomorphism quasi-order

Defined by $G \leq H$ iff $G \rightarrow H$ (if restricted to cores: partial order).

- reflexive
- transitive
- antisymmetric (cores)

Bounds

Definition - Bound in the order

Graph B is a **bound** for graph class $\mathscr C$ if for each $G\in\mathscr C$, $G\to B$.

Definition - Bound in the order

Graph B is a **bound** for graph class $\mathscr C$ if for each $G \in \mathscr C$, $G \to B$.

 K_4 : bound for planar graphs (4CT)

Definition - Bound in the order

Graph B is a **bound** for graph class $\mathscr C$ if for each $G \in \mathscr C$, $G \to B$.

K₃: bound for planar triangle-free graphs (Grötzsch's theorem)

Definition - Bound in the order

Graph B is a **bound** for graph class $\mathscr C$ if for each $G\in\mathscr C$, $G\to B$.

Question

Given graph class \mathscr{C} , is there a bound for \mathscr{C} having specific properties?

Definition

 $\mathscr{F}\colon \mathsf{finite}\ \mathsf{set}\ \mathsf{of}\ \mathsf{graphs}.\ \mathit{Forb}(\mathscr{F})\!\colon \mathsf{all}\ \mathsf{graphs}\ \mathit{G}\ \mathsf{s.t.}\ \mathsf{for}\ \mathsf{any}\ \mathit{F}\in\mathscr{F},\ \mathit{F}\not\to\mathit{G}\,.$

Examples:

- ullet Forb($\{K_\ell\}$): graphs with **clique number** at most $\ell-1$
- $Forb(\{C_{2k-1}\})$: graphs of **odd-girth** at least 2k+1

(odd-girth: length of a smallest odd cycle)

Definition

 $\mathscr{F}\colon \mathsf{finite}\ \mathsf{set}\ \mathsf{of}\ \mathsf{graphs}.\ \mathit{Forb}(\mathscr{F})\!\colon \mathsf{all}\ \mathsf{graphs}\ \mathit{G}\ \mathsf{s.t.}\ \mathsf{for}\ \mathsf{any}\ \mathit{F}\in\mathscr{F},\ \mathit{F}\not\to\mathit{G}\,.$

Minor of G: graph obtained by sequence of edge-contractions and deletions.

Classic minor-closed graph classes:

trees, planar graphs, bounded genus, classed defined by forbidden minor...

Definition

 \mathscr{F} : finite set of graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\to G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs:

 $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Definition

 \mathscr{F} : finite set of graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\to G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs:

 $\mathscr{C} \cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Proved using machinery of classes of bounded expansion

Definition

 \mathscr{F} : finite set of graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\to G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs: $\mathscr C \cap Forb(\mathscr F)$ is bounded by a finite graph $B(\mathscr C,\mathscr F)$ from $Forb(\mathscr F)$.

Example 1.
$$\mathscr{C}$$
: planar graphs $\mathscr{F} = \{C_{2k-1}\}$

 \longrightarrow all planar graphs of odd-girth at least 2k+1 map to some graph $B_{n,k}$ of odd-girth 2k+1.

Definition

 \mathscr{F} : finite set of graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\to G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs:

 $\mathscr{C}\cap Forb(\mathscr{F})$ is bounded by a finite graph $B(\mathscr{C},\mathscr{F})$ from $Forb(\mathscr{F})$.

Example 2. \mathscr{C} : K_n -minor-free graphs $\mathscr{F} = \{K_n\}$

 \longrightarrow all K_n -minor-free graphs map to some graph B_n of clique number n-1.

Definition

 \mathscr{F} : finite set of graphs. $Forb(\mathscr{F})$: all graphs G s.t. for any $F \in \mathscr{F}$, $F \not\to G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs: $\mathscr C\cap Forb(\mathscr F)$ is bounded by a finite graph $B(\mathscr C,\mathscr F)$ from $Forb(\mathscr F)$.

Note: there could be no bound in $\mathscr{C} \cap Forb(\mathscr{F})$ itself! (e.g. planar triangle-free graphs)

Definition

 \mathscr{F} : finite set of graphs. Forb (\mathscr{F}) : all graphs G s.t. for any $F \in \mathscr{F}$, $F \nrightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class $\mathscr C$ of graphs: $\mathscr C \cap Forb(\mathscr F)$ is bounded by a finite graph $B(\mathscr C,\mathscr F)$ from $Forb(\mathscr F)$.

Question

What is a bound of smallest order?

Example: \mathscr{C} : K_n -minor-free graphs, $\mathscr{F} = \{K_n\}$

 \longrightarrow Hadwiger's conjecture states that smallest B_n is K_{n-1} .

Projective cubes and planar graphs

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Definition - Projective cube of dimension d, PC(d)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Definition - Projective cube of dimension d, PC(d)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Definition - Projective cube of dimension d, PC(d)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Definition - Projective cube of dimension d, PC(d)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Definition - Projective cube of dimension d, PC(d)

PC(4): Clebsch graph a.k.a Greenwood-Gleason

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

PC(4): Clebsch graph

Remark

PC(d) is distance-transitive: for any two pairs $\{x,y\}$, $\{u,v\}$ with d(x,y)=d(u,v), there is an automorphism with $x\to u$ and $y\to v$

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

PC(4): Clebsch graph

Remark

d = 2k + 1 odd: PC(2k + 1) bipartite d = 2k even: PC(2k) has odd-girth 2k + 1

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Naserasr, Sen, Sun, 2014)

If true, the conjecture is optimal: there is a planar graph of odd-girth 2k+1 whose smallest image of odd-girth 2k+1 has order 2^{2k} .

Proof idea: construct planar (2k-1)-walk-power clique of odd-girth 2k+1

Naserasr vs. Seymour

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Seymour, 1981)

Every planar r-graph is r-edge-colourable.

(r-graph: r-regular multigraph without odd (< r)-cut) \longrightarrow Proved up to r = 8.

Theorem (Naserasr, 2007)

Planar graphs of odd-girth at least 2k+1 are bounded by PC(2k) if and only if every planar (2k+1)-graph is (2k+1)-edge-colourable.

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of planar graphs (also, K_5 -minor-free graphs) of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of planar graphs (also, K_5 -minor-free graphs) of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Outerplanar graphs

Outerplanar graphs

Outerplanar graph: Planar graphs with all vertices on the outer face

 \longrightarrow Exactly the class of $\{K_4, K_{2,3}\}$ -minor-free graphs.

Theorem (Gerards, 1988)

The class of outerplanar graphs of odd-girth at least 2k+1 is bounded by the cycle \mathcal{C}_{2k+1} .

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

A graph is K_4 -minor free if and only if it is a partial 2-tree.

Remark

 K_4 -minor-free graphs are 2-degenerate \implies 3-colourable.

Question

What is an optimal bound of odd-girth 2k+1 for K_4 -minor-free graphs of odd-girth at least 2k+1?

Proposition

A graph is K_4 -minor free if and only if it is a partial 2-tree.

Remark

 K_4 -minor-free graphs are 2-degenerate \implies 3-colourable.

K₄-minor-free graphs: almost equivalent to series-parallel graphs.

Circular chromatic number

Circular chromatic number of K_4 -minor-free graphs

Definition - $\frac{p}{q}$ -colouring of G

Mapping
$$c: V(G) \rightarrow \{1, \dots, p\}$$
 s.t. $xy \in E(G) \Rightarrow q \leq |c(x) - c(y)| \leq p - q$.

Circular chromatic number: $\chi_c(G) = \inf\{\frac{p}{q} \mid G \text{ is } \frac{p}{q}\text{-colourable}\}$

Remark

- ullet Equivalently, homomorphism to circular clique K(
 ho/q)
- ullet $rac{2k+1}{k}$ -colouring \Longleftrightarrow homomorphism to \mathcal{C}_{2k+1}
- Refinement of chromatic number: $\chi(G) 1 < \chi_c(G) \le \chi(G)$

Theorem (Hell & Zhu, 2000 + Pan & Zhu, 2002)

If G K_4 -minor-free and triangle-free, $\chi_c(G) \leq \frac{8}{3}$.

If moreover G has odd-girth at least 7, $\chi_c(G) \leq \frac{5}{2}$.

General bounds for K_4 -minor-free graphs

K_4 -minor-free graphs and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

The projective cube PC(2k) is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

The projective cube PC(2k) is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Corollary

Every K_4 -minor-free (2k+1)-graph is (2k+1)-edge-colourable.

 \longrightarrow A more general result already proved by Seymour (1990)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

The Kneser graph ("odd graph") $Kn(2k+1,k) \subset PC(2k)$ is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Kneser graph Kn(a,b):

vertices are b-subsets of $\{1, ..., a\}$ adjacent if and only if disjoint.

Example: Kn(5,2) = Petersen graph.

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

The Kneser graph ("odd graph") $Kn(2k+1,k) \subset PC(2k)$ is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Kneser graph Kn(a,b):

vertices are b-subsets of $\{1, \ldots, a\}$ adjacent if and only if disjoint.

Example: Kn(5,2) = Petersen graph.

Corollary

 K_4 -minor-free graphs of odd-girth at least 2k+1 have fractional chromatic number at most $2+\frac{1}{L}$.

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

 $k = 2: PTG_{4,4}$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

k = 2: $PTG_{4,4} = PC(4)$ (Clebsch graph)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

k=2: $PTG_{4,4}=PC(4)$ (Clebsch graph)

 $k = 3: PTG_{6,6}$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Theorem (Beaudou, F., Naserasr)

k = 2: $PTG_{4,4} = PC(4)$ (Clebsch graph)

 $k = 3: PTG_{6,6}$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

 $k = 2: M_1(C_5)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Grötzsch graph

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

The Generalized Mycielskian of level k-1 of C_{2k+1} $M_{k-1}(C_{2k+1}) \subset PC(2k)$ is a bound for K_4 -minor-free graphs of odd-girth at least 2k+1.

Grötzsch graph

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k = 2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

 $k = 4: M_3(C_9)$

Conjecture (Naserasr, 2007)

The class of planar graphs of odd-girth at least 2k+1 is bounded by the projective cube PC(2k).

Conjecture (Beaudou, F., Naserasr)

k=2: $M_1(C_5)$ Grötzsch graph

 $k = 3: M_2(C_7)$

 $k = 4: M_3(C_9)$

Our main tool

Let
$$1 \le p, q, r \le k$$
.

Graph
$$T_{2k+1}(p,q,r)$$
:

Our main tool

Let
$$1 \leq p, q, r \leq k$$
.

Graph
$$T_{2k+1}(p,q,r)$$
:

Definition

- Let $G \subseteq \widetilde{G}$. Partial distance (weighted) graph (\widetilde{G}, d_G) of G: weighted extension of G (weights are distances in G).
- (\widetilde{G}, d_G) is k-good if:
- For every $1 \leq p \leq k$, \widetilde{G} has an edge of weight p
- For each edge uv of weight p and every q,r s.t. $T_{2k+1}(p,q,r)$ has odd-girth at least 2k+1, there is $w \in V(G)$ with uw, vw in $E(\widetilde{G})$ and $d_G(uw) = q$, $d_G(vw) = r$.

Our main tool

Let
$$1 \leq p, q, r \leq k$$
.

Graph
$$T_{2k+1}(p,q,r)$$
:

Definition

- Let $G \subseteq \widetilde{G}$. Partial distance (weighted) graph (\widetilde{G}, d_G) of G: weighted extension of G (weights are distances in G).
- (\widetilde{G}, d_G) is k-good if:
- For every $1 \le p \le k$, \widetilde{G} has an edge of weight p
- For each edge uv of weight p and every q,r s.t. $T_{2k+1}(p,q,r)$ has odd-girth at least 2k+1, there is $w \in V(G)$ with uw, vw in $E(\widetilde{G})$ and $d_G(uw) = q$, $d_G(vw) = r$.

Theorem (Beaudou, F., Naserasr)

B: graph with odd-girth 2k + 1.

- If B has a k-good (\widetilde{B}, d_B) , then B bounds the K_4 -minor-free graphs of odd-girth at least 2k+1.
- If B is a minimal such bound, then B has a k-good (\widetilde{B}, d_B) .

An algorithmic corollary

Corollary

Given a graph B of odd-girth 2k+1, one can test in time polynomial in B whether B bounds all K_4 -minor-free graphs of odd-girth at least 2k+1.

An algorithmic corollary

Corollary

Given a graph B of odd-girth 2k+1, one can test in time polynomial in B whether B bounds all K_4 -minor-free graphs of odd-girth at least 2k+1.

Question

Given a graph B of odd-girth 2k+1, is there a finite time algorithm to decide whether B bounds all planar graphs of odd-girth at least 2k+1?

Bounds for K_4 -minor-free graphs

Theorem (Beaudou, F., Naserasr)

The complete distance graphs of PC(2k), Kn(2k+1,k) and $PTG_{2k,2k}$ have the k-good property.

$$PC(2k)$$
 has order 2^{2k}

$$\mathit{Kn}(2k+1,k)$$
 has order $\binom{2k+1}{k} < 2^{2k}/2$

$$PTG(2k,2k)$$
 has order $4k^2$

$$(M_{k-1}(C_{2k+1}) \text{ has order } 2k^2 + k + 1)$$

Bounds for K_4 -minor-free graphs

Theorem (Beaudou, F., Naserasr)

The complete distance graphs of PC(2k), Kn(2k+1,k) and $PTG_{2k,2k}$ have the k-good property.

PC(2k) has order 2^{2k}

$$\mathit{Kn}(2k+1,k)$$
 has order $\binom{2k+1}{k} < 2^{2k}/2$

$$PTG(2k,2k)$$
 has order $4k^2$

$$(M_{k-1}(C_{2k+1})$$
 has order $2k^2+k+1)$

Question

Are these bounds optimal?

Bounds for small odd-girth

Proposition

 K_4 -minor-free graphs are 3-colourable: optimal bound is K_3

Odd-girth 5 (i.e. triangle-free): PC(4), K(8/3), Kn(5,2), $M_1(C_5)$ are bounds.

Wagner graph K(8/3)

Petersen graph Kn(5,2)

Grötzsch graph $M_1(C_5)$

Odd-girth 5 (i.e. triangle-free): PC(4), K(8/3), Kn(5,2), $M_1(C_5)$ are bounds.

 C_8^{++} is the smallest triangle-free bound for K_4 -minor-free triangle-free graphs. It is unique.

Theorem (Beaudou, F., Naserasr)

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr)

The graph below (order 16) is a bound for K_4 -minor-free graphs of odd-girth at least 7.

Odd-girth 7: PC(6), Kn(7,3), $K(5/2) = C_5$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr)

The graph below (order 15) is a smallest bound for K_4 -minor-free graphs of odd-girth at least 7.

Odd-girth 7: PC(6), Kn(7,3), $\frac{K(5/2) = C_5}{C_5}$, PTG(3,3), $M_2(C_7)$ are bounds.

Theorem (Beaudou, F., Naserasr)

The graph below (order 15) is a smallest bound for K_4 -minor-free graphs of odd-girth at least 7.

Question

Is the optimal bound of odd-girth 9 a common subgraph of K(9,4), $M_3(C_9)$ and TPG(8,8)?

Question

Is the optimal bound of odd-girth 9 a common subgraph of K(9,4), $M_3(C_9)$ and TPG(8,8)?

THE END