# \*\* Difference Between Simple And Multiple Linear Regression

- Simple linear regression has only one x and one y variable.
- Multiple linear regression has one y and two or more x variables.
- For instance, when we predict rent based on square feet alone that is simple linear regression.
- When we predict rent based on square feet and age of the building that is an example of multiple linear regression.

# An extension of simple linear regression

In simple linear regression there is a one-to-one relationship between the input variable and the output variable. But in multiple linear regression, as the name implies there is a many-to-one relationship, instead of just using one input variable, you use several.

# **Multiple Linear Regression**

Till now, we have created the model based on only one feature. Now, we'll include multiple features and create a model to see the relationship between those features and the label column. This is called **Multiple Linear Regression**.

```
y = b0 + b1x1 + b2x2... + bnxn
```

What do terms represent?

- · y is the response or the target variable
- x1,x2,x3...xn are the feature as it is multiple
- b1,b2...bn are the coefficient of x1,x2,..xn respectively
- b0 is the intercept

Each x represents a different feature, and each feature has its own coefficient

# **Implementation**

## Step1: Import data

```
In [1]:
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

```
In [2]:
```

```
dataset = pd.read_csv('data/50_Startups.csv')
```

### In [3]:

dataset.head()

### Out[3]:

|   | R&D Spend | Administration | Marketing Spend | State      | Profit    |
|---|-----------|----------------|-----------------|------------|-----------|
| 0 | 165349.20 | 136897.80      | 471784.10       | New York   | 192261.83 |
| 1 | 162597.70 | 151377.59      | 443898.53       | California | 191792.06 |
| 2 | 153441.51 | 101145.55      | 407934.54       | Florida    | 191050.39 |
| 3 | 144372.41 | 118671.85      | 383199.62       | New York   | 182901.99 |
| 4 | 142107.34 | 91391.77       | 366168.42       | Florida    | 166187.94 |

- See here more than one feature so it is multiplt linear regression
- · Here Profit is our Target Feature

### In [4]:

dataset.shape

# Out[4]:

(50, 5)

# Step2: Visuallize The Data

### In [5]:

#sns.pairplot(dataset)

## In [6]:

```
dataset = dataset.drop('State',axis=True)
```

- Here i simply drop the State feature.
- in next some days i will show how to deal with categorical feature.

## In [7]:

dataset.head()

# Out[7]:

|   | R&D Spend | Administration | Marketing Spend | Profit    |
|---|-----------|----------------|-----------------|-----------|
| 0 | 165349.20 | 136897.80      | 471784.10       | 192261.83 |
| 1 | 162597.70 | 151377.59      | 443898.53       | 191792.06 |
| 2 | 153441.51 | 101145.55      | 407934.54       | 191050.39 |
| 3 | 144372.41 | 118671.85      | 383199.62       | 182901.99 |
| 4 | 142107.34 | 91391.77       | 366168.42       | 166187.94 |

### In [8]:

```
corr = dataset.corr()
sns.heatmap(corr,annot=True)
```

#### Out[8]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2e6d767ad08>



# **Evaluate The Model**

# **Scalling The Data**

### In [9]:

```
X = dataset.drop('Profit',axis=True)
y = dataset['Profit']
```

### In [10]:

```
X.head() #before standardized data
```

## Out[10]:

|   | R&D Spend | Administration | Marketing Spend |
|---|-----------|----------------|-----------------|
| 0 | 165349.20 | 136897.80      | 471784.10       |
| 1 | 162597.70 | 151377.59      | 443898.53       |
| 2 | 153441.51 | 101145.55      | 407934.54       |
| 3 | 144372.41 | 118671.85      | 383199.62       |
| 4 | 142107.34 | 91391.77       | 366168.42       |

### In [11]:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X = sc.fit_transform(X)
```

- As here all data are in very big range so we need to take all the data in same range.
- So here i use StandardScaler which take all data in same range
- · here it use z score to standardized data
- Z- score formula

$$Z = x - \mu / \sigma$$

- Z = standard score
- x = observed value
- μ = mean of the sample
- $\sigma$  = standard deviation of the sample
- Some Of the Algorithm Like Tree Base Algorithm not require scalling

X #after standardized/scalling data

#### Out[12]:

```
array([[ 2.01641149e+00,
                          5.60752915e-01,
                                           2.15394309e+00],
                                           1.92360040e+00],
       [ 1.95586034e+00,
                         1.08280658e+00,
       [ 1.75436374e+00, -7.28257028e-01,
                                           1.62652767e+00],
       [ 1.55478369e+00, -9.63646307e-02,
                                           1.42221024e+00],
       [ 1.50493720e+00, -1.07991935e+00,
                                           1.28152771e+00],
       [ 1.27980001e+00, -7.76239071e-01,
                                           1.25421046e+00],
       [ 1.34006641e+00,
                         9.32147208e-01, -6.88149930e-01],
       [ 1.24505666e+00, 8.71980011e-01,
                                           9.32185978e-01],
       [ 1.03036886e+00,
                         9.86952101e-01,
                                           8.30886909e-01],
       [ 1.09181921e+00, -4.56640246e-01,
                                           7.76107440e-01],
       [ 6.20398248e-01, -3.87599089e-01,
                                           1.49807267e-01],
       [ 5.93085418e-01, -1.06553960e+00,
                                           3.19833623e-01],
                         2.15449064e-01,
        4.43259872e-01,
                                           3.20617441e-01],
       [ 4.02077603e-01,
                         5.10178953e-01,
                                           3.43956788e-01],
       [ 1.01718075e+00, 1.26919939e+00,
                                           3.75742273e-01],
       [ 8.97913123e-01, 4.58678535e-02,
                                           4.19218702e-01],
       [ 9.44411957e-02,
                         9.11841968e-03,
                                          4.40446224e-01],
       [ 4.60720127e-01, 8.55666318e-01, 5.91016724e-01],
       [ 3.96724938e-01, -2.58465367e-01, 6.92992062e-01],
        2.79441650e-01,
                         1.15983657e+00, -1.74312698e+00],
       [ 5.57260867e-02, -2.69587651e-01,
                                          7.23925995e-01],
       [ 1.02723599e-01, 1.16918609e+00,
                                          7.32787791e-01],
       [ 6.00657792e-03,
                          5.18495648e-02,
                                           7.62375876e-01],
       [-1.36200724e-01, -5.62211268e-01,
                                          7.74348908e-01],
       [ 7.31146008e-02, -7.95469167e-01, -5.81939297e-01],
       [-1.99311688e-01, 6.56489139e-01, -6.03516725e-01],
       [ 3.53702028e-02,
                          8.21717916e-01, -6.35835495e-01],
                                          1.17427116e+001.
       [-3.55189938e-02, 2.35068543e-01,
       [-1.68792717e-01, 2.21014050e+00, -7.67189437e-01],
       [-1.78608540e-01, 1.14245677e+00, -8.58133663e-01],
       [-2.58074369e-01, -2.05628659e-01, -9.90357166e-01],
       [-2.76958231e-01, 1.13055391e+00, -1.01441945e+00],
       [-2.26948675e-01, 2.83923813e-01, -1.36244978e+00],
       [-4.01128925e-01, -6.59324033e-01, 2.98172434e-02],
       [-6.00682122e-01, 1.31053525e+00, -1.87861793e-03],
       [-6.09749941e-01, -1.30865753e+00, -4.54931587e-02],
       [-9.91570153e-01, 2.05924691e-01, -8.17625734e-02],
       [-6.52532310e-01, -2.52599402e+00, -1.15608256e-01],
       [-1.17717755e+00, -1.99727037e+00, -2.12784866e-01],
       [-7.73820359e-01, -1.38312156e+00, -2.97583276e-01],
       [-9.89577015e-01, -1.00900218e-01, -3.15785883e-01],
       [-1.00853372e+00, -1.32079581e+00, -3.84552407e-01],
       [-1.10210556e+00, -9.06937535e-01, -5.20595959e-01],
       [-1.28113364e+00, 2.17681524e-01, -1.44960468e+00],
                          1.20641936e+00, -1.50907418e+00],
       [-1.13430539e+00,
                         1.01253936e-01, -1.72739998e+00],
       [-1.60035036e+00,
       [-1.59341322e+00, -1.99321741e-01, 7.11122474e-01],
       [-1.62236202e+00, 5.07721876e-01, -1.74312698e+00],
       [-1.61043334e+00, -2.50940884e+00, -1.74312698e+00],
       [-1.62236202e+00, -1.57225506e-01, -1.36998473e+00]])
```

```
In [13]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
```

#### In [14]:

```
X_train.shape,X_test.shape,y_train.shape,y_test.shape
```

#### Out[14]:

```
((40, 3), (10, 3), (40,), (10,))
```

# **Build Model**

#### In [15]:

```
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

#### Out[15]:

LinearRegression()

#### In [16]:

```
y_pred = regressor.predict(X_test).round(1)
```

#### In [17]:

```
calculation = pd.DataFrame(np.c_[y_test,y_pred], columns = ["Original Salary","Predict
Salary"])
calculation.head(5)
```

#### Out[17]:

#### Original Salary Predict Salary

| 0 | 103282.38 | 103901.9 |
|---|-----------|----------|
| 1 | 144259.40 | 132763.1 |
| 2 | 146121.95 | 133567.9 |
| 3 | 77798.83  | 72911.8  |
| 4 | 191050.39 | 179627.9 |

#### In [18]:

```
print("Training Accuracy :", regressor.score(X_train, y_train))
print("Testing Accuracy :", regressor.score(X_test, y_test))
```

Training Accuracy: 0.9499572530324031 Testing Accuracy: 0.9393955917820571

```
In [19]:
regressor.intercept_
Out[19]:
111297.71256204927
In [20]:
regressor.coef_
Out[20]:
array([35391.2501208 ,
                         815.21987542, 4202.06618916])
Test The Model
In [21]:
feature = [165349.20,136897.80,471784.10]
scale_feature = sc.transform([feature])
scale_feature
Out[21]:
array([[2.01641149, 0.56075291, 2.15394309]])
In [22]:
y_pred_test = regressor.predict(scale_feature)
y_pred_test #By Using Sklearn Library
Out[22]:
array([192169.18440985])
In [23]:
# Here I use b1x1+b2x2+b3x3+b0 BY MANUAL
35391.2501208*2.01641149+815.21987542*0.56075291+4202.06618916*2.15394309+ 111297.71256
204927
Out[23]:
```

192169.1843003897

 Now above you see manual and automatic prediction on the same data in this way linear regression predict the data