Quantum walks and application to search problems

Krishna Acharya January 2020

Overview

Random walks on a Line

Quantum walk for database search

Quantum walk for Spatial search

Random walks on a Line

Introduction

- lacktriangle Consider a line, with grid-length 1 and a particle starting off at x=0
- ► The probability of moving left or right is $\frac{1}{2}$

Figure 1: Classical distribution

Quantum walk on a line

- ▶ The basis states for \mathcal{H}_P are $\{|i\rangle : i \in \mathbb{Z}\}$
- ▶ A coin space \mathcal{H}_C augments \mathcal{H}_P , basis states for which are $\{|\textit{left}\rangle, |\textit{right}\rangle\}$. State for the total system $\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_P$
- ▶ The conditional shift operator S, transforms $|left\rangle \otimes |i\rangle$ to $|left\rangle \otimes |i-1\rangle$ and $|right\rangle \otimes |i\rangle$ to $|right\rangle \otimes |i+1\rangle$
- ▶ Equivalently $S = \sum_{i} |\textit{right}\rangle \otimes |\textit{i} + 1\rangle \, \langle \textit{right}| \otimes \langle \textit{i}| + \sum_{i} |\textit{left}\rangle \otimes |\textit{i} 1\rangle \, \langle \textit{left}| \otimes \langle \textit{i}|$

The Unitary

- ▶ Quantum walk for t steps is given by U^t , where $U = S \cdot (C \otimes I)$
- ▶ Coin flip acts just on \mathcal{H}_C , The choice for the coin is:

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

 $\blacktriangleright \text{ For the starting state } |\textit{left}\rangle \ket{0} \xrightarrow{S \cdot (C \otimes \textit{I})} \frac{1}{\sqrt{2}} \ket{\textit{right}} \ket{1} + \frac{\textit{i}}{\sqrt{2}} \ket{\textit{left}} \ket{-1}$

Distribution Comparison

- ► Classical walk after T steps has a $\sigma = \Theta(\sqrt{T})$ whereas quantum walk has $\sigma = \Theta(T)$
- ► Quadratically faster propogation.

search

Quantum walk for database

Quantum walk search algorithm

- ► Search space : *n*-bit binary strings, $x \in \{0,1\}^n$
- ▶ $f(\vec{x}) \in \{0,1\}$ is such that f(x) = 1 for exactly one input \vec{x}_{target}
- ▶ Goal: Find \vec{x}_{target}
- ▶ Using the mapping of n-bit binary string to nodes on the hypercube, the search problem is then equivalent to searching for a single marked node amongst the $N = 2^n$ nodes.

Shift and Coin operators

 $\blacktriangleright |d, \vec{x}\rangle \xrightarrow{S} |d, \vec{x} \oplus \vec{e_d}\rangle$

$$S = \sum_{d=0}^{n-1} \sum_{\vec{x}} |d, \vec{x} \oplus \vec{e_d}\rangle \langle d, \vec{x}| \tag{1}$$

► The coin operator to be applied is perturbed,

$$C_{pert} = C_0 \otimes I - (I + C_0) \otimes |\vec{0}\rangle \langle \vec{0}|.$$
 (2)

Algorithm 1 Search with coin oracle

- 1: **procedure** FIND MARKED
- 2: $\psi_0 \leftarrow |s^C\rangle \otimes |s^S\rangle$ i.e equal superposition over all states
- 3: Compute $U_{pert}^t |\psi_0\rangle$ where $t = \frac{\pi}{2} \sqrt{2^n}$
- 4: Measure in $|d, \vec{x}\rangle$ basis

Outcome on measurement

- ▶ Wp $\frac{1}{2}$ O(1/n), the measured outcome is the marked state.
- ► The proof for the earlier algorithm: is that the walk can be approximately mapped onto a 2D subspace.
- ► The approximations for the initial state and final state are $\pi/2$ apart and each application of U corresponds to a rotation angle of $1/\sqrt{2^{n-1}}$. So the search is completed after $\frac{\pi}{2}\sqrt{2^{n-1}}$ steps.
- ▶ Running time is $\mathcal{O}\left(\sqrt{N}\right)$

Quantum walk for Spatial search

Spatial search, Quadratic speedup for finding marked vertices

- ► Finding a marked vertex in a general graph, when multiple marked vertices exist was an open problem.
- \blacktriangleright Ambainis et al find an $\widetilde{\mathcal{O}}\left(\sqrt{HT}\right)$ algorithm.
- Key components for this result are Interpolated walk and Quantum fast forwarding this walk.

Ergodic chain, Discriminant Matrix

- $ightharpoonup \mathcal{P}$ is *ergodic* if for a large enough $t \in \mathbb{N}$ all elements of \mathcal{P}^t are non-zero.
- ► The corresponding *time-reversed* Markov chain is defined as $\mathcal{P}^* := \operatorname{diag}(\pi)^{-1} \cdot \mathcal{P}^T \cdot \operatorname{diag}(\pi)$. \mathcal{P} is *reversible* if it is ergodic and $\mathcal{P}^* = \mathcal{P}$.
- ▶ Discriminant matrix D's xy-entry is $\sqrt{\mathcal{P}_{xy}\mathcal{P}_{yx}^*}$.

$$D = \operatorname{diag}(\pi)^{\frac{1}{2}} \cdot \mathcal{P} \cdot \operatorname{diag}(\pi)^{-\frac{1}{2}}.$$
 (3)

Interpolated walk

▶ For \mathcal{P} the marked set $M \subset X$. \mathcal{P}' is the absorbing markov chain.

$$\mathcal{P} := \left(\begin{array}{cc} \mathcal{P}_{UU} & \mathcal{P}_{UM} \\ \mathcal{P}_{MU} & \mathcal{P}_{MM} \end{array} \right), \qquad \mathcal{P}' := \left(\begin{array}{cc} \mathcal{P}_{UU} & \mathcal{P}_{UM} \\ 0 & I \end{array} \right).$$

▶ The *interpolated walk* operator, for $s \in [0, 1)$:

$$\mathcal{P}(s) := (1-s)\mathcal{P} + s\mathcal{P}'$$

Quantum Fast forwarding

The following result is by Apers and Sarlette:

Theorem

Let $\varepsilon \in (0,1)$, $s \in [0,1]$ and $t \in \mathbb{N}$. Let \mathcal{P} be any reversible Markov chain on state space X, and let Q be the cost of implementing the (controlled) quantum walk operator W(s). There is a quantum algorithm with complexity $\mathcal{O}\left(\sqrt{t\log(1/\varepsilon)}Q\right)$ that takes input $|\bar{0}\rangle|\psi\rangle \in \operatorname{span}\{|\bar{0}\rangle|x\rangle: x \in X\}$, and outputs a state that is ε -close to a state of the form

$$\left|0\right\rangle^{\otimes a}\left|\bar{0}\right\rangle D^{t}\left|\psi\right\rangle +\left|\Gamma\right\rangle$$

where $a=\mathcal{O}\left(\log(t\log(1/\varepsilon))\right)$ and $|\Gamma\rangle$ is some garbage state that has no support on states containing $|0\rangle^{\otimes a}|\bar{0}\rangle$ in the first two registers.

Main result by Ambainis et al

Theorem

Let $\mathcal P$ be a reversible ergodic Markov chain, and let π be its stationary distribution. If $p_M \leq 1/9$ and $T \geq 3HT$, then choosing $s \in S = \{1 - \frac{1}{r} : r \in R\}$ and $t \in [24T]$ uniformly at random we get, that

$$\mathbb{E}\left[\left\|\Pi_{M}D^{t}(s)\left|\sqrt{\pi_{U}}\right\rangle\right\|^{2}\right] = \Omega\left(\frac{1}{\log(T)}\right).$$

FF-based search

Algorithm 2 Fast-forwarding-based search algorithm

Search(\mathcal{P}, M, T)

Use $\mathcal{O}\left(\sqrt{\log(T)}\right)$ rounds amplitude amplification to amplify the success probability of steps 1-3:

1. Use $Setup(\mathcal{P})$ to prepare the state

$$\sum_{t=1}^{T} \frac{1}{\sqrt{T}} \left| t \right\rangle \sum_{s \in S} \frac{1}{\sqrt{\left| S \right|}} \left| s \right\rangle \left| \sqrt{\pi} \right\rangle.$$

2. Measure $\{\Pi_M, I - \Pi_M\}$ on the last register. If the outcome is "marked", measure in the computational basis, and output the entry in the last register. Otherwise continue with the (subnormalized) post-measurement state

$$\sum_{t=1}^{T} \frac{1}{\sqrt{T}} \left| t \right\rangle \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{\left| \mathcal{S} \right|}} \left| s \right\rangle \left| \sqrt{\pi_{U}} \right\rangle.$$

3. Use quantum fast-forwarding, controlled on the first two registers, to map $|t\rangle\,|s\rangle\,|\sqrt{\pi_U}\rangle$ to $|1\rangle\,|t\rangle\,|s\rangle\,D^t(s)\,|\pi_U\rangle\,+\,|0\rangle\,|\Gamma\rangle$ for some arbitrary $|\Gamma\rangle$, with precision $\mathcal{O}\left(\frac{1}{\log(T)}\right)$. Finally, measure the last register and output its content if marked, otherwise output No marked vertex.

Runtime

The complexity of steps 1-3 is $\mathcal{O}\left(S + \sqrt{T\log\log(T)}(U+C)\right)$ Amplitude amplification gives a $\sqrt{\log(T)}$ multiplicative overhead, giving the final complexity

$$\mathcal{O}\left(S\sqrt{\log(T)} + \sqrt{T}(U+C)\sqrt{\log(T)\log\log(T)}\right)$$

Which is
$$\widetilde{\mathcal{O}}\left(S + \sqrt{HT}(U+C)\right)$$

References

- Andris Ambainis, András Gilyén, Stacey Jeffery, and Martins Kokainis. Quadratic speedup for finding marked vertices by quantum walks. ArXiv, abs/1903.07493, 2019.
- [2] Neil Shenvi, J. Kempe, and K. Birgitta Whaley. Quantum random-walk search algorithm. 2003.