MATH2017 Problem Set 1:

Limits of functions, differentiability

Submit on Gradescope by 17:00, Friday 17 February 2023

- 1. Let $D \subseteq \mathbb{R}$. Write down precise mathematical formulations of the following statements, using quantifiers (\forall, \exists) :
 - (a) D is bounded above.
 - (b) D has a maximum element.
 - (c) D does not have a maximum element.
- 2. Prove from first principles (i.e. give a direct ε -N proof) that the following sequence converges:

$$a_n = \frac{3n+1}{2n-1}.$$

3. Show directly from the definition of the Cauchy property that the sequence

$$a_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

is Cauchy.

4. Give a direct ε - δ proof that

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \frac{1}{2\sqrt{2}}.$$

Interpret this result in terms of differentiability.

5. Give a direct ε - δ proof that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ is differentiable at 1.