qPoisson

Parametrisation

The Poisson distribution is

$$\operatorname{Prob}(y) = \frac{\lambda^y}{y!} \exp(-\lambda)$$

for responses $y = 0, 1, 2, \ldots$, where

 λ : the expected value.

Link-function

The mean and variance of y are given as

$$\mu = \lambda$$
 and $\sigma^2 = \lambda$

and the mean is linked to the linear predictor by

$$\lambda(\eta) = Eq_{\alpha}$$

where E > 0 is a known constant (or $\log(E)$ is an offset), and q_{α} is the α quantile of the continous Poisson distribution.

Hyperparameters

None.

Specification

- family = qpoisson
- Required arguments: y, E and α (given as control.family = list(quantile = α).

Hyperparameter spesification and default values

hyper

survival FALSE

discrete TRUE

link default log

pdf qpoisson

Example

In the following example we estimate the parameters in a simulated example with Poisson responses.

```
n=100
a = 1
b = 1
z = rnorm(n)
eta = a + b*z
E = sample(1:10, n, replace=TRUE)
lambda = E*exp(eta)
```

```
y = rpois(n, lambda = lambda)

data = list(y=y,z=z)
formula = y ~ 1+z
result = inla(formula, family = "poisson", data = data, E=E)
summary(result)
```

Notes