ECE408 / CS483 / CSE408 Summer 2024

Applied Parallel Programming

Lecture 21: Accelerating Matrix Operations

What Will You Learn Today?

recent optimizations to support dense matrix multiplication

- tensor units (new hardware)
- programming abstractions
- overall benefit to speed

Tiled Matrix Multiplication Kernel

```
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)

    __shared__ float subTileM[TILE_WIDTH] [TILE_WIDTH];

2. __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
    // Identify the row and column of the P element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE WIDTH + tx;
7. float Pvalue = 0;
    // Loop over the M and N tiles required to compute the P element
    // The code assumes that the Width is a multiple of TILE WIDTH!
8. for (int q = 0; q < Width/TILE_WIDTH; ++q) {</pre>
       // Collaborative loading of M and N tiles into shared memory
9.
        subTileM[ty][tx] = M[Row*Width + (q*TILE WIDTH+tx)];
10.
        subTileN[ty][tx] = N[(q*TILE WIDTH+ty)*Width+Col];
11.
       syncthreads();
       for (int k = 0; k < TILE WIDTH; ++k)
12.
            Pvalue += subTileM[ty][k] * subTileN[k][tx];
13.
        __syncthreads();
14.
15. }
16. P[Row*Width+Col] = Pvalue;
```

At the Operation Level, per Thread

```
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += subTileM[ty][k] * subTileN[k][tx];</pre>
```

Each thread is able to complete the dot product in O(TILE_WIDTH) cycles.

At the Operation Level, per Warp

With enough thread blocks, we have a throughput of 2*width of SM FP Ops per cycle

Let's look at a 4x4 tile example

$N_{0,0}$	N _{0,1}	N _{0,2}	N _{0,3}
$N_{1,0}$	N _{1,1}	N _{1,2}	N _{1,3}
N _{2,0}	N _{2,1}	N _{2,2}	N _{2,3}
N _{3,0}	N _{3,1}	N _{3,2}	N _{3,3}

X

for (int k = 0; k < TILE_WIDTH; ++k)
Pvalue += subTileM[ty][k] * subTileN[k][tx];</pre>

Shared Memory Loads into Register File by Loop Iteration

	t0	t1	t2	t3	t4	t5
k = 0	$M_{0,0}, N_{0,0}$	$M_{0,0}, N_{0,1}$	$M_{0,0}, N_{0,2}$	$M_{0,0}, N_{0,3}$	$M_{1,0}, N_{0,0}$	$M_{1,0}, N_{0,1}$
k = 1	$M_{0,1}, N_{1,0}$	$M_{0,1}, N_{1,1}$	$M_{0,1}, N_{1,2}$	$M_{0,1}, N_{1,3}$	$M_{1,1}, N_{1,0}$	$M_{1,1}, N_{1,1}$
k = 2	$M_{0,2}, N_{2,0}$	$M_{0,2}, N_{2,1}$	$M_{0,2}, N_{2,2}$	$M_{0,2}, N_{2,3}$	$M_{1,2}, N_{2,0}$	$M_{1,2}, N_{2,1}$

More Efficient Pattern

Entire M tile $M_{0,0}$ $M_{0,1}$ $M_{0,2}$... $M_{3,3}$ Entire N tile $N_{0,0}$ $N_{0,1}$ $N_{0,2}$... $N_{3,3}$

With two loads from shared memory across a warp (only 16 threads needed), we can load the entire 4x4 subtiles of M and N

Notes on Optimized HW

- If we optimize for 16-bit types (and smaller)
 - We need 16b * 32 threads = 512 bits per register
 - 4 16-bit multipliers per lane, but 32-bit adders
- Max Throughput is now increased by 4x

Nvidia Tensor Cores

Basic Tensor Operator: Matrix Multiply + Accumulate

CUDA TENSOR CORE PROGRAMMING

WMMA Matrix Multiply and Accumulate Operation

Warp-level operation to perform matrix multiply and accumulate

wmma::mma_sync(Dmat, Amat, Bmat, Cmat);

TENSOR SYNCHRONIZATION

Full Warp 16x16 Matrix Math

CUDA TENSOR CORE PROGRAMMING

WMMA datatypes

Per-Thread <u>fragment</u>s to hold components of matrices for use with Tensor Cores

wmma::fragment<matrix_a, ...> Amat;

TENSOR CORE EXAMPLE

__device__ void tensor_op_16_16_16(float *d, half *a, half *b, float *c) **Create Fragments** wmma::fragment<matrix_a, ...> Amat; wmma::fragment<matrix_b, ...> Bmat; wmma::fragment<matrix_c, ...> Cmat; **Initialize Fragments** wmma::load_matrix_sync(Amat, a, 16); wmma::load_matrix_sync(Bmat, b, 16); wmma::fill_fragment(Cmat, 0.0f); Perform MatMul wmma::mma_sync(Cmat, Amat, Bmat, Cmat); wmma::store_matrix_sync(d, Cmat, 16, wmma::row_major); Store Results CUDA C++

Warp-Level Matrix Operations

19 ONIDIA

Intel Advance Matrix Extensions (AMX)

- Introduced in 2020
- Introduced into x86 processors
- Usable directly from CPU code

```
// Load tile configuration
init_tile_config (&tile_data);
// Init src matrix buffers with data
init_buffer (src1, 2);
print_buffer(src1, rows, colsb);
init_buffer (src2, 2);
print_buffer(src2, rows, colsb);
// Init dst matrix buffers with data
init_buffer32 (res, 0);
// Load tile rows from memory
_tile_loadd (2, src1, STRIDE);
_tile_loadd (3, src2, STRIDE);
_tile_loadd (1, res, STRIDE);
// Compute dot-product of bytes in tiles with a
// source/destination accumulator
_tile_dpbssd (1, 2, 3);
// Store the tile data to memory
_tile_stored (1, res, STRIDE);
```

QUESTIONS?

READ NVIDIA TECHNICAL BLOG & CUDA PG: WARP MATRIX FUNCTIONS