Smart Software Project

Lab: Week 11 Line Tracing with Infrared Sensors

Prof. HyungJune Lee hyungjune.lee@ewha.ac.kr

Today

Lab announcement

Line tracing

Lab assignment #8

Course announcement

Class Schedule

Week	Lecture Contents	Lab Contents		
Week 1	Course introduction	Arduino introduction: platform & programming environment		
Week 2	Embedded system overview & source management in collaborative repository (using GitHub)	Lab 1: Arduino Mega 2560 board & SmartCAR platform		
Week 3	ATmega2560 Micro-controller (MCU): architecture & I/O ports, Analog vs. Digital, Pulse Width Modulation	Lab 2: SmartCAR LED control		
Week 4	Analog vs. Digital & Pulse Width Modulation	Lab 3: SmartCAR motor control (Due: HW on creating project repository using GitHub)		
Week 5	ATmega2560 MCU: memory, I/O ports, UART	Lab 4: SmartCAR control via Android Bluetooth		
Week 6	ATmega2560 UART control & Bluetooth communication between Arduino platform and Android device	Lab 5: SmartCAR control through your own customized Android app (Due: Project proposal)		
Week 7	Midterm exam			
Week 8	ATmega2560 Timer, Interrupts & Ultrasonic sensors	Lab 6: SmartCAR ultrasonic sensing		
Week 9	Infrared sensors & Buzzer	Lab 7: SmartCAR infrared sensing		
Week 10	Acquiring location information from Android device & line tracing	Lab 8: Implementation of line tracer		
Week 11	Gyroscope, accelerometer, and compass sensors	Lab 9: Using gyroscope, accelerometer, and compass sensors		
Week 12	Project	Team meeting (for progress check)		
Week 13	Project	Team meeting (for progress check)		
Week 14	Course wrap-up & next steps			
Week 15	Project presentation & demo I (Due: source code, presentation slides, & poster slide)	Project presentation & demo II		
Week 16	Final week (no final exam)			

Lab Session

- Practice in-lab programming exercises based on the lecture materials
- Upload source codes for lab assignments in Ewha Cyber Campus after the lab session
 - Due: 11:59pm on the lab day
- Once you are done, you can leave the session after checking with me or TA
- Or, continue to work on programming for other homework assignments

Lab Policy

- 1) Please check out your SmartCAR (& Nexus 7 tablet) as soon as you arrive at the classroom
- 2) Please complete lab assignments
- 3) Upload required files to Ewha Cyber Campus
- 4) Check with me or TA
- 5) Please upload a null firmware to SmartCAR before you return it!!!
 - This will be a part of your lab score
- 6) Please remove files that you created or downloaded in your computer after you are done
 - Remove your project completely
- 7) Please shut down your computer before you leave
- 8) Return the checked-out SmartCAR (& Nexus 7 tablet) to TA

NOTE: How to run SmartCAR in Lab

- Power OFF
 - Compile your code
 - Lift up your SmartCAR with your hand
 - Upload your code
- Disconnect the USB cable
- Go to find a spacious area
- Put it down there
- Power ON
- It will run your firmware
- After test, turn power OFF

Lab Announcement

- Bluetooth pairing "headache"
 - Because there are so many Bluetooth devices in the classroom with the same name
 - "155v2.1.7_hb" <- SmartCAR
 - So please go outside with your SmartCAR and your Android device, and then pair them
 - Please do not pair with other students' devices

Today

Lab announcement

Line tracing

Lab assignment #8

Course announcement

Line Tracer

- Line tracing in SmartCAR
 - Infrared sensor data depending on SmartCAR's position

(b) Smooth Right-turn

(c) Smooth Left-turn

(d) Pivot Right-turn

(e) Pivot Left-turn

Sensor Data


```
...
unsigned char sensor_data = 0;
int z;

for(z=0;z<8;z++)
{
    unsigned int val = digitalRead(SensorD[z]);
    sensor_data |= (val << z);
}</pre>
```

SensorD[7]

SensorD[6]

SensorD[5]

SensorD[4]

SensorD[3]

SensorD[2]

SensorD[1]

SensorD[0]

To track black line in white background,

- we should complement the sensor_data ('1' to '0', '0' to '1')

sensor_data = ~sensor_data;

Control Motors w.r.t. Infrared Sensor

How to control motors w.r.t. sensor_data

Sensor_data	Direction	Speed_data_L	Speed_data_R	Etc
0x18		140	140	Forward
0x10	_			
0x08	FORWARD			
0x38	TORWAND			
0x1C				
0x3C				
0x0C		200	0	Smooth Right Tum
0x04	RIGHT			
0x06				
0x0E				
0x1E				
0x0F				
0x30		0	200	Smooth Left Turn
0x20				
0x60	LEFT			
0x70				
0x78				
0xF0				
0x07	PIVOT_RIGHT	200	80	Pivot Right Tum
0x03				
0x02				
0x01				
0xC0		80	200	Pivot Left Tum
0x40	PIVOT_LEFT			
0x80				
0xE0				
0x00	STOP	0	0	Stop

Append your code to Lab 7

 When you receive a command byte to enable the line tracing mode,

```
- line_tracing = true;
```

- When you receive a command byte to disable the line tracing mode,
 - line_tracing = false;
- In loop(), check the line_tracing flag
 - if (line_tracing == true)
 - Keep controlling the movement of SmartCAR

Part I: Start the line tracer

```
boolean line tracing = false;
void line_tracing_enable()
   line_tracing = true
   Serial.write("Line tracing is enabled..");
void line tracing disable()
   line_tracing = false;
   move_stop();
   Serial.write("Line tracing is disabled..");
```

```
void serialEvent()
   int command = Serial.read();
   switch (command)
      case 12:
         line_tracing_enable();
         break:
      case 13:
         line_tracing_disable();
         break:
      default:
```

- If the SmartCAR receives a byte of 12, enable line tracer
- If the SmartCAR receives a byte of 13, disable line tracer

Part I: Start the line tracer

```
void loop()
   if (line_tracing == true)
      unsigned char sensor data = 0;
      int z:
     for(z=0;z<8;z++)
         unsigned int val = digitalRead(SensorD[z]);
         sensor data = (val << z);
      sensor_data = ~sensor_data;
      Serial.print(sensor data, HEX);
      Serial.write(" ");
      switch (sensor_data)
         case 0x18:
         case 0x10:
         case 0x08:
         case 0x38:
         case 0x1c:
         case 0x3c:
           move_forward_speed(140, 140);
           break;
```

```
case 0x0c:
case 0x04:
case 0x06:
case 0x0e:
case 0x1e:
case 0x0f:
  turn right speed(200, 0);
  break:
case 0x30:
case 0x20:
case 0x60:
case 0x70:
case 0x78:
case 0xf0:
  turn_left_speed(0, 200);
  break;
case 0x07:
case 0x03:
case 0x02:
case 0x01:
  turn_pivot_right_speed(200, 80);
  break;
```

Part I: Start the line tracer

```
case 0xc0:
  case 0x40:
  case 0x80:
  case 0xe0:
    turn pivot left speed(80, 200);
    break;
  case 0x00:
  case 0xff:
    move stop();
    break;
  default:
    move_stop();
    break;
delay(5);
```

- Between each control,
 - Give a delay of 5ms
 - delay(5);
- Fill out the following functions

```
void move_forward_speed(int left, int right)
{
}
void turn_left_speed(int left, int right)
{
}
void turn_right_speed(int left, int right)
{
}
void turn_pivot_left_speed(int left, int right)
{
}
void turn_pivot_right_speed(int left, int right)
{
}
```

Part II: SmartCAR LT App

- http://ai2.appinventor.mit.edu
- Click on "New Project"
- Enter "SmartCAR_LT" in Project Name (One word, no space)
- Under "User Interface"
 - Drag-and-drop "Button" component
 - To send command
 - Drag-and-drop "CheckBox" component
 - Enable the line tracing, or
 - Disable the line tracing

SmartCAR Line Tracing Control

- Enable the line tracer (command byte: 12)
 - Send "12" in number using "BluetoothClient.Send1ByteNumber"
- Disable the line tracer (command byte: 13)
 - Send "13" in number using "BluetoothClient.Send1ByteNumber"

```
when LTButton .Click

do if LTCheckBox . Checked ...
then call BluetoothClient1 .Send1ByteNumber number .12

else call BluetoothClient1 .Send1ByteNumber number .13
```

Lab Assignment #8

- Submit three following files to Cyber Campus
 - 1) lab8.cpp (Arduino firmware code)
 - 2) lab8.h (Arduino firmware code)
 - 3) SmartCAR_LT.apk (Android app package)
 - You should set the app icon image to "SmartCAR.png"
 - In App Inventor,
 "Build" → "App (save .apk to my computer)"

Show your result to TA or instructor

Course Announcement

- Next Week,
 - Using gyroscope sensor in SmartCAR
 - Using accelerometer sensor in SmartCAR
 - Using compass sensor in SmartCAR

- Next Lab session,
 - Applying gyroscope, accelerometer, and compass sensors

