#### ECE408/CS483/CSE408 Fall 2021

#### **Applied Parallel Programming**

# Lecture 4: Memory Model

#### Course Reminders

- Lab 1 submission deadline is coming up
  - Make sure to submit it by the deadline, no late submissions will be accepted
  - Make sure to submit the code AND answer the questions
- Lab 2 will be out soon, it is due next Friday
- The course staff only replies to questions posted on Campuswire
- Check out office hours schedule, there are many options

## Objective

- To learn the basic features of the memories accessible by CUDA threads
- To prepare for MP-2 basic matrix multiplication
- To learn to evaluate the performance implications of global memory accesses

#### The Von-Neumann Model



## Instructions are Stored in Memory

 Every instruction needs to be fetched from memory, decoded, then executed.

Instruction processing breaks into steps:

Fetch | Decode | Execute | Memory

Instructions come in three flavors:
 Operate, Data Transfer, and Control Flow.

## Example: Processing an Add Instruction

- Example of an (LC-3) operate instruction:
   ADD R1, R2, R3
- meaning:
  - read R2 and R3
  - add them as unsigned/2's complement
  - write sum to R1

Instruction processing for an operate instruction:
 Fetch | Decode | Execute | Memory

## Example: Processing a Load Instruction

• Example of an (LC-3) data transfer instruction:

```
LDR R4, R6, #3 ; a load
```

- meaning:
  - read R6
  - add the number 3 to it
  - load the contents of memory at the resulting address
  - write the bits to R4
- Instruction processing for a load instruction:

Fetch | Decode | Execute | Memory

## Registers vs Memory

#### Registers

- Fast: 1 cycle; no memory access required
- Few: hundreds for CPU, O(10k) for GPU SM

#### Memory

- Slow: hundreds of cycles
- Huge: GB or more



## Programmer View of CUDA Memories

#### Each thread can:

- read/write per-thread registers (~1 cycle)
- read/write per-block shared memory (~5 cycles)
- read/write per-grid global memory (~500 cycles)
- read/only per-grid constant memory (~5 cycles with caching)



## CUDA Variable Type Qualifiers

| Variable declaration |           |                             | Memory   | Scope  | Lifetime    |
|----------------------|-----------|-----------------------------|----------|--------|-------------|
|                      |           | <pre>int LocalVar;</pre>    | register | thread | thread      |
| device               | shared    | int SharedVar;              | shared   | block  | block       |
| device               |           | int GlobalVar;              | global   | арр.   | application |
| device               | constant_ | <pre>int ConstantVar;</pre> | constant | арр.   | application |

- device
  - optional with shared or constant
  - not allowed by itself within functions
- Automatic variables with no qualifiers
  - in registers for primitive types and structures
  - in global memory for per-thread arrays

## Next Application: Matrix Multiplication

- Given two Width × Width matrices, M and N,
  - we can multiply M by N
  - to compute a third Width × Width matrix, P:
  - P = MN

In terms of the elements of P, matrix multiplication implies computing...

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

## Matrix Multiplication

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

- Graphically, imagine
  - taking each element in a row of M,
  - multiplying it by the corresponding element in a column of N, and
  - summing up the products.
- Do that for every row and every column to produce P.



## Matrix Multiplication Example A Simple Host Version in C

```
// Matrix multiplication on the (CPU) host
void MatrixMul(float *M, float *N, float *P, int Width)
                                                                           k
   for (int i = 0; i < Width; ++i)
      for (int j = 0; j < Width; ++j) {
          float sum = 0;
          for (int k = 0; k < Width; ++k) {
              float a = M[i * Width + k];
              float b = N[k * Width + j];
                                             M
              sum += a * b;
          P[i * Width + j] = sum;
                                                                             13
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

#### Parallelize Elements of P

- What can we parallelize?
  - start with the two outer loops
  - parallelize computation of elements of P

- What about the inner loop?
  - Technically, floating-point is NOT associative.
  - The parallel sum is called a reduction—we'll come back to it in a few weeks.
  - For now, use a single thread for each P<sub>ij</sub>.

## Compute Using 2D Blocks in a 2D Grid

- P is 2D, so organize threads in 2D as well:
  - Split the output P into square tiles
    - of size TILE\_WIDTH × TILE\_WIDTH
    - (a preprocessor constant).
  - Each thread block produces one tile of TILE\_WIDTH<sup>2</sup> elements.
  - -Create [ceil (Width / TILE\_WIDTH)]<sup>2</sup> thread blocks to cover the output matrix.

## Kernel Function - A Small Example

- Have each 2D thread block to compute a (BLOCK\_WIDTH)<sup>2</sup> sub-matrix of the result matrix
  - Each block has (BLOCK\_WIDTH)<sup>2</sup> threads
- Generate a 2D Grid of (WIDTH/BLOCK\_WIDTH)<sup>2</sup> blocks
- This concept is called tiling.
   Each block represents a tile.



## Example: Width 8, TILE\_WIDTH 2

| P <sub>0,0</sub> | P <sub>0,1</sub> | P <sub>0,2</sub> | P <sub>0,3</sub> | P <sub>0,4</sub> | P <sub>0,5</sub> | P <sub>0,6</sub> | P <sub>0,7</sub> |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| P <sub>1,0</sub> | P <sub>1,1</sub> | P <sub>1,2</sub> | P <sub>1,3</sub> | P <sub>1,4</sub> | P <sub>1,5</sub> | P <sub>1,6</sub> | P <sub>1,7</sub> |
| P <sub>2,0</sub> | P <sub>2,1</sub> | P <sub>2,2</sub> | P <sub>2,3</sub> | P <sub>2,4</sub> | P <sub>2,5</sub> | P <sub>2,6</sub> | P <sub>2,7</sub> |
| P <sub>3,0</sub> | P <sub>3,1</sub> | P <sub>3,2</sub> | P <sub>3,3</sub> | P <sub>3,4</sub> | P <sub>3,5</sub> | P <sub>3,6</sub> | P <sub>3,7</sub> |
| P <sub>4,0</sub> | P <sub>4,1</sub> | P <sub>4,2</sub> | P <sub>4,3</sub> | P <sub>4,4</sub> | P <sub>4,5</sub> | P <sub>4,6</sub> | P <sub>4,7</sub> |
| P <sub>5,0</sub> | P <sub>5,1</sub> | P <sub>5,2</sub> | P <sub>5,3</sub> | P <sub>5,4</sub> | P <sub>5,5</sub> | P <sub>5,6</sub> | P <sub>5,7</sub> |
| P <sub>6,0</sub> | P <sub>6,1</sub> | P <sub>6,2</sub> | P <sub>6,3</sub> | P <sub>6,4</sub> | P <sub>6,5</sub> | P <sub>6,6</sub> | P <sub>6,7</sub> |
| P <sub>7,0</sub> | P <sub>7,1</sub> | P <sub>7,2</sub> | P <sub>7,3</sub> | P <sub>7,4</sub> | P <sub>7,5</sub> | P <sub>7,6</sub> | P <sub>7,7</sub> |

Each block has 2\*2 = 4 threads.

WIDTH/TILE\_WIDTH = 4 Use 4×4 = 16 blocks.

## Example: Same Matrix, Larger Tiles (Width 8, TILE\_WIDTH 4)

| $P_{0,0}$        | P <sub>0,1</sub> | P <sub>0,2</sub> | P <sub>0,3</sub> | P <sub>0,4</sub> | P <sub>0,5</sub> | P <sub>0,6</sub> | P <sub>0,7</sub> |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| P <sub>1,0</sub> | P <sub>1,1</sub> | P <sub>1,2</sub> | P <sub>1,3</sub> | P <sub>1,4</sub> | P <sub>1,5</sub> | P <sub>1,6</sub> | P <sub>1,7</sub> |
| P <sub>2,0</sub> | P <sub>2,1</sub> | P <sub>2,2</sub> | P <sub>2,3</sub> | P <sub>2,4</sub> | P <sub>2,5</sub> | P <sub>2,6</sub> | P <sub>2,7</sub> |
| P <sub>3,0</sub> | P <sub>3,1</sub> | P <sub>3,2</sub> | P <sub>3,3</sub> | P <sub>3,4</sub> | P <sub>3,5</sub> | P <sub>3,6</sub> | P <sub>3,7</sub> |
|                  |                  |                  |                  |                  |                  |                  |                  |
|                  |                  |                  |                  |                  | P <sub>4,5</sub> |                  |                  |
| P <sub>4,0</sub> | P <sub>4,1</sub> | P <sub>4,2</sub> | P <sub>4,3</sub> | P <sub>4,4</sub> |                  | P <sub>4,6</sub> | P <sub>4,7</sub> |
| P <sub>4,0</sub> | P <sub>4,1</sub> | P <sub>4,2</sub> | P <sub>4,3</sub> | P <sub>4,4</sub> | P <sub>4,5</sub> | P <sub>4,6</sub> | P <sub>4,7</sub> |

Each block has 4\*4 = 16 threads.

WIDTH/TILE\_WIDTH = 2 Use 2\* 2 = 4 blocks.

## Kernel Invocation (Host-side Code)

```
// TILE WIDTH is a #define constant
dim3 dimGrid(ceil((1.0*Width)/TILE WIDTH),
       ceil((1.0*Width)/TILE WIDTH), 1);
dim3 dimBlock (TILE WIDTH, TILE WIDTH, 1);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
```

#### **Kernel Function**

```
// Matrix multiplication kernel - per thread code
 global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
    d P[ ] = Pvalue;
```

## Work for Block (0,0) with TILE\_WIDTH 2



Row = 0

Row = 1



## Work for Block (0,1)



Row = 0

Row = 1



## A Simple Matrix Multiplication Kernel

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
     d P[Row*Width+Col] = Pvalue;
```

## Memory Bandwidth is Overloaded!

- That's a simple implementation:
  - –GPU kernel is the CPU code with the outer loops replaced with per-thread index calculations!
- Unfortunately, performance is quite bad.
- Why?
- With the given approach,
  - -global memory bandwidth can't supply enough data to keep the SMs busy!

## Where Do We Access Global Memory?

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
                                                               accesses
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
                                                               to global
     d P[Row*Width+Col] = Pvalue;
                                                               memory
```

### Each Thread Requires 4B of Data per FLOP

- Each threads access global memory
  - -for elements of M and N:
  - -4B each, or 8B per pair.
  - –(And once TOTAL to P per thread—ignore it.)
- With each pair of elements,
  - a thread does a single multiply-add,
  - −2 FLOP—floating-point operations.
- So for every FLOP,
  - -a thread needs 4B from memory:
  - **-4B / FLOP.**

## 150 GB/s Bandwidth Implies 37.5 GFLOPs

One generation of GPUs:

-1,000 GFLOP/s of compute power, and

−150 GB/s of memory bandwidth.

 Dividing bandwidth by memory requirements:

$$\frac{150 GB/s}{4 B/FLOP} = 37.5 GFLOP/s$$

which limits computation!



## What to Do? Reuse Memory Accesses!

But 37.5 GFLOPs is a limit.

In an actual execution,

- memory is not busy all the time, and
- the code runs at about 25 GFLOPs.

To get closer to 1,000 GFLOPs

- we need to drastically cut down
- accesses to global memory.

## ANY MORE QUESTIONS? READ CHAPTER 4!