线性代数 II 笔记 Linear Algebra II Notes

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.2 - 2024.7

序言

本文为笔者本科时的线性代数 II 笔记。用灰色字体或灰色方框等表示对主干内容的补充、对晦涩概念的理解、定理的具体证明过程等,采用红色字体对重点部分进行强调,同时适当配有插图。这样的颜色和结构安排既突出了知识的主要框架,也保持了笔记的深度和广度,并且不会因为颜色过多而导致难以锁定文本内容,乃是尝试了多种安排后挑选出的最佳方案。如果读者有更佳的颜色和排版方案,可以将建议发送到笔者邮箱,在此感谢。

由于个人精力及知识水平有限,书中难免有不妥、错误之处,望不吝指正,在此感谢。

目录

序	言	I
1	空间与形式 1.1 线性空间 1.2 基与维数 1.3 对偶空间 1.4 双线性型和二次型	1 1 3 6 8
2	线性算子 2.1 向量空间的线性映射 2.2 线性算子 2.3 特征值与特征向量 2.4 Jordan 标准型	15 15 15 17 21
3	带有数乘的线性空间: 3.1 欧几里得空间 (Euclidean Space) 3.2 辛空间 (Symplectic Space) 3.3 酉空间 (Unitary Space) 3.4 内积空间上的线性算子	26 28 30 32
5	仿射空间与欧几里得点空间 4.1 仿射空间 4.2 欧几里得点空间 4.3 群与几何 常见曲面(略)	35 36 38 39
6	张量 6.1 多重线性映射与张量 6.2 张量代数 考文献	40 40 41 43

第1章 空间与形式

1.1 线性空间

下面两小节是上学期未讲完的内容。

Theorem.1 (牛顿公式):

在 $\mathbb{F}[x_1,...,x_n]$ 中,设 $k \in \mathbb{N}_+$,规定下面的常见记号:

$$\operatorname{sym}(x_1^{k_1} \cdots x_r^{k_r}) = \sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1}^{k_1} \cdots x_{i_r}^{k_r} \;, \; \; s_k = \operatorname{sym}(x_1^k) = \sum_{i=1}^n x_i^k$$

$$\sigma_k = \begin{cases} 1 & ,k = 0 \\ \operatorname{sym}(x_1 \cdots x_k) = \sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_k} & ,k \in [1,n] \\ 0 & ,k > n \end{cases}$$

则 \forall *k* ∈ \mathbb{N}_+ ,有牛顿公式:

$$\sum_{i=0}^{k} (-1)^{i} \sigma_{i} s_{k-i} = 0 \iff s_{k} = (-1)^{k} \sum_{i=1}^{k} \sigma_{i} s_{k-i}$$

推论:

$$s_k = \begin{vmatrix} \sigma_1 & 2\sigma_2 & 3\sigma_3 & \cdots & (k-1)\sigma_{k-1} & k\sigma_k \\ 1 & \sigma_1 & \sigma_2 & \cdots & \sigma_{k-2} & \sigma_{k-1} \\ 0 & 1 & \sigma_1 & \cdots & \sigma_{k-3} & \sigma_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_1 & \sigma_2 \\ 0 & 0 & 0 & \cdots & 1 & \sigma_1 \end{vmatrix}, \ \forall \ k \in \mathbb{N}_+$$

用初等对称多项式表示对称多项式:

给定任意对称多项式 $f(x_1,...,x_n)$, 将其表示为 $\varphi(\sigma_1,...,\sigma_n) = f(x_1,...,x_n)$ 的步骤如下:

- ① 确定支配项 (无需确定系数): $f(x_1,...,x_n) = \sum \text{sym}(a_{\vec{\gamma}}x^{\gamma})$
- ② 确定其对应的初等对称多项式:

$$x_1^{k_1} \cdots x_r^{k_r} \longmapsto \sigma_1^{(k_1-k_2)} \sigma_2^{(k_2-k_3)} \cdots \sigma_{r-1}^{(k_{r-1}-k_r)} \sigma_r^{(k_r-0)}$$

③ 待定系数法求解系数:设f为上面初等式的线性组合(其中第一项系数为1,这是由首1决定的),取特殊元求解方程组。

例如 homework 1.2: $f(x_1, x_2, x_3) = (x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2$

- ① 支配项为: $x_1^4x_2^2$, $x_1^4x_2x_3$, $x_1^3x_2^3$, $x_1^3x_2^2x_3$, $x_1^2x_2^2x_3^2$ 共五项。
- ② 对应的初等多项式分别为: $\sigma_1^2 \sigma_2^2$, $\sigma_1^3 \sigma_2$, σ_2^3 , $\sigma_1 \sigma_2 \sigma_3$, σ_3^2 .
- ③ 设 $f = \sigma_1^2 \sigma_2^2 + a \sigma_1^3 \sigma_2 + b \sigma_2^3 + c \sigma_1 \sigma_2 \sigma_3 + d \sigma_3^2$,解四阶矩阵得到 $f(x) = \sigma_1^2 \sigma_2^2 4 \sigma_1^3 \sigma_2 4 \sigma_2^3 + 18 \sigma_1 \sigma_2 \sigma_3 27 \sigma_3^2$

线性空间定义:

设 \mathbb{F} 为一个域,若集合V具有加法和(\mathbb{F} 上的)数乘两种运算,且V关于加法构成交换群,关于数乘满足封闭性、结合律、分配律、有数乘幺 $1_{\mathbb{F}}$,则称集合V构成 \mathbb{F} 上的**线性空间**。将上述两种运算统称为**线性运算**,线性空间V中的元素称为**向量**。

"线性空间"与"向量空间"的区别:

"线性空间"与"向量空间"有时被看做是同义词,但是也有时对线性空间取广义的含义,对向量空间取狭义的含义(即向量空间 $V \in \mathbb{R}^n$ 的子空间)。在徐晓平讲义中采用的是前者 (认为两者等同),在本笔记中采用的是后者 (认为两者不同)。

例如:域 \mathbb{F} 上的全体矩阵 $M_{m\times n}(\mathbb{R})$ 关于矩阵加法、 \mathbb{F} 上的数乘(纯量乘积)构成一个线性空间;多项式环 $\mathbb{F}[x]$ 关于多项式加法、 \mathbb{F} 上的数乘(纯量乘积)构成一个线性空间。实数域 \mathbb{R} 是 \mathbb{Q} 上的向量空间,复数域 \mathbb{C} 是 \mathbb{R} 上的向量空间。

线性空间基本性质:

①
$$\exists 0_{\mathbb{F}} \in \mathbb{F}, \forall u \in V, a \in \mathbb{F}, \not\exists 0 \cdot u = 0 = 0 \cdot a$$

$$2a \cdot u = 0_{\mathbb{F}} \Longrightarrow a = 0_{\mathbb{F}} \text{ or } u = 0_{V}$$

$$\mathfrak{J} \forall n \in \mathbb{N}, \ n \cdot u = u + u + \cdots + u \cdot (\mathbf{n} \uparrow u)$$

$$(-1) \cdot u = -u$$

线性空间的子空间:

设 U 为 \mathbb{F} 上的线性空间 V 的非空子集,若 U 关于加法和数乘封闭,则称 U 为 V 的一个子空间。

一些常见的线性空间:

- 1. 矩阵线性空间: 域 \mathbb{F} 上的全体矩阵 $M_{m\times n}(\mathbb{R})$ 关于矩阵加法、 \mathbb{F} 上的数乘(纯量乘积)构成一个线性空间。
- 2. 多项式线性空间: 多项式环 $\mathbb{F}[x]$ 关于多项式加法、 \mathbb{F} 上的数乘(纯量乘积)构成一个线性空间。
- 3. 映射(函数)线性空间: 设 X 是一个非空集合,记 $\mathcal{F}_{\mathbb{F}}(X)$ 为从 X 到 \mathbb{F} 的全体映射(函数),定义 $(af+bg)(x)=af(x)+bg(x),\ a,b\in\mathbb{F},\ f,g\in\mathcal{F}_{\mathbb{F}}(X),\ 则\ \mathcal{F}_{\mathbb{F}}(X)$ 构成 \mathbb{F} 上的线性空间。
- 4. 自由线性空间: 定义支撑集 supp $f = \{x \in X | f \in \mathcal{F}_{\mathbb{F}}(X), f(x) \neq 0\}$,定义集合 $V_{\mathbb{F}}(X) = \{f \in \mathcal{F}_{\mathbb{F}}(X) | \text{supp } f | < \infty\}$ (只在 X 的有限个元素处取非零值的全体函数),则 $V_{\mathbb{F}}(X)$ 构成 $\mathcal{F}_{\mathbb{F}}(X)$ 的一个子空间,我们称 $V_{\mathbb{F}}(X)$ 为由 X 生成的 \mathbb{F} 上的自由线性空间。
- 5. 数域线性空间:设 \mathbb{F} 是特征为 0 的域,则从 \mathbb{Z} 到 \mathbb{F} 的映射 $m \mapsto m1_{\mathbb{F}}$ 构成环单同态,从而映射 $\frac{m}{n} \mapsto (m1_{\mathbb{F}})(n1_{\mathbb{F}})^{-1}$ 构成从 \mathbb{Q} 到 \mathbb{F} 的域单同态,再定义 $\frac{m}{n} \cdot a = [(m1_{\mathbb{F}})(n1_{\mathbb{F}})^{-1}] \cdot a, \frac{m}{n} \in \mathbb{Q}, a \in \mathbb{F}$,则 域 \mathbb{F} 关于域的加法和上述数乘构成 \mathbb{Q} 上的线性空间。例如 \mathbb{R} 是 \mathbb{Q} 上的向量空间, \mathbb{C} 是 \mathbb{R} 上的向量空间。特别 地,当 \mathbb{F} 的数乘建立在域 \mathbb{F}_p 上时(\mathbb{F}_p 也即 \mathbb{Z}_p ,它既构成环,也构成域),定义 $\bar{r} \cdot a = (r1_{\mathbb{F}}) \cdot a, \bar{r} \in \mathbb{F}_p$,则 \mathbb{F} 关于域的加法和上述数乘构成一个 \mathbb{F}_p 上的线性空间。

1.2 基与维数

线性相关/无关:

设V是 \mathbb{F} 上的一个线性空间,对于V的有限个元素 $\{v_1,v_2,...,v_k\}$,若存在不全为零的纯量 $\alpha_1,\alpha_2,...,\alpha_k \in \mathbb{F}$ 使得:

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0_V \in V$$

则称 $\{v_1, v_2, ..., v_k\}$ 线性相关,若这样的纯量 α_i 不存在,则称其线性无关。

特别地,对于含有无限个元素的 V 的子集 $S = \{v_1, v_2, ..., v_k, ...\}$,若 S 中任意有限个向量都是线性无关的,则称 S 线性无关,否则称其线性相关。

关于 n 维实坐标空间 \mathbb{R}^n 的、不涉及无限的结论,对线性空间也依然成立。例如:含零向量的向量组始终线性相关;向量组线性相关的充要条件为其中一个向量是其他向量的线性组合;一个线性无关向量组的任意部分组也线性无关。

基:

线性空间 V 的一个线性无关子集 S 称为它的基如果 $V = \operatorname{Span} S$

例如: $\{1, x, x^2, ..., x^n, ...\}$ 是 $\mathbb{F}[x]$ 的一组基; 记 E_{ij} 为 $M_{m \times n}(\mathbb{F})$ 中 (i, j) 位置元素为 1 而其他位置元素为 0 的矩阵,则 $\{E_{ij} \mid i=1,2,...,m;\ j=1,2,...,n\}$ 是 $M_{m \times n}$ 的一组基; 在自由线性空间 $V_{\mathbb{F}}(X)$ 中定义映射 $\delta_y:\delta_y(x)=\begin{cases} 1 & \text{if } x=y\\ 0 & \text{if } x\neq y \end{cases}$ 则 $\{\delta_y \mid y \in X\}$ 是 $V_{\mathbb{F}}(X)$ 的一组基。

等价向量组:

两个向量组 $\{v_1, v_2, ..., v_k\}$, $\{u_1, u_2, ..., u_k\}$ 称为等价的如果:

$$Span\{v_1, v_2, ..., v_k\} = Span\{u_1, u_2, ..., u_k\}$$

等价的定义还有: u_i 可由 $\{v_1, v_2, ..., v_k\}$ 线性表示,且 v_i 可由 $\{u_1, u_2, ..., u_k\}$ 线性表示。

Theorem.2 (Steinitz 替换定理):

设 $V \in \mathbb{F}$ 上的线性空间,若 $u_1, u_2, ..., u_m \in V$ 线性无关且可由 $v_1, v_2, ..., v_n$ 线性表示,则 $m \leq n$,且用 $u_1, u_2, ..., u_m$ 替换 $\{v_1, v_2, ..., v_n\}$ 中的任意 m 个向量得到的新向量组都等价于原向量组 $\{v_1, v_2, ..., v_n\}$ 。

由定理2可以知道,若两个分别线性无关的向量组 $u_1,u_2,...,u_m$ 和向量组 $v_1,v_2,...,v_n$ 等价,则 m=n。

维数:

若 \mathbb{F} 上的线性空间 V 存在一组有限基 S,则 S 元素的个数称为 V 的维数,记作 $\dim_{\mathbb{F}}V=|S|$,简记为 $\dim V=|S|$ 。特别地,我们称零空间 $\{0\}$ 是零维的,称不存在有限基的线性空间是无限维的,记作 $\dim V=\infty$ 。

例如: $\dim_{\mathbb{Q}}\mathbb{R}=\infty$; $\{1,\sqrt{-1}=i\}$ 是 \mathbb{R} 上的线性空间 \mathbb{C} 的一组基,故 $\dim_{\mathbb{R}}\mathbb{C}=2$

Theorem.3 (基扩充定理):

任意线性无关组 $\{v_1, v_2, ..., v_k\}$ (k < n) 可扩充为 n 维线性空间 V 的一组基 $\{v_1, v_2, ..., v_k, ..., v_n\}$ 。

转换矩阵:

由 V 的基 $\{u_1,u_2,...,u_n\}$ 向另一组基 $\{v_1,v_2,...,v_n\}$ 转换时,有:

$$\begin{cases} v_1 &= a_{11}u_1 + a_{12}u_2 + \cdots + a_{1n}u_n \\ v_2 &= a_{21}u_1 + a_{22}u_2 + \cdots + a_{2n}u_n \\ \vdots &\vdots \\ v_n &= a_{n1}u_1 + a_{n2}u_2 + \cdots + a_{nn}u_n \end{cases}$$

记右侧的矩阵为 A,并称 A 为转换矩阵 (transfer matrix)。记 $\vec{u} = [u_1, u_2, ..., u_n]^T$, $\vec{v} = [v_1, v_2, ..., v_n]^T$,则有基转换公式:

$$\vec{v} = A\vec{u}$$
, 也即 $\vec{u} \longmapsto A\vec{u}$

设 $\vec{\alpha} = [\alpha_1, \alpha_2, ..., \alpha_n]$ 是向量 $x \in V$ 在基 $\{u_1, u_2, ..., u_n\}$ 下的坐标, $\vec{\beta}$ 为新坐标,则有坐标转换公式:

$$\vec{\beta} = \vec{\alpha} A^{-1}$$
. 也即 $\vec{\alpha} \longmapsto \vec{\alpha} A^{-1}$

注意:基向量为列向量,坐标向量为行向量。坐标[1,3,7]与常规表示(1,3,7)同构。

容易证明,基的转换矩阵都是可逆矩阵。 $\vec{\beta} = \vec{\alpha} A^{-1}$ 也可以写作 $A^T \vec{\beta}^T = \vec{\alpha}^T$,求 $\vec{\beta}$ 等价于解方程 $A^T \vec{x} = \vec{\alpha}^T$ (推荐用高斯消元法),解得的 \vec{x} 即为 $\vec{\beta}^T$ 。

Theorem.4 (同维线性空间):

 \mathbb{F} 上维数相同的两个线性空间必同构(都同构于 \mathbb{F}^n ,n 为线性空间的维数)。

Theorem.5 (子空间维数关系):

子空间的交 $U \cap V$ 、和 U + V 都构成新子空间,但子空间的并 $U \cup V$ 不一定。且有:

$$\dim V + \dim U = \dim(U + V) + \dim(U \cap V)$$

(内外) 直和:

内直和: 设 U_1 , U_2 是 \mathbb{F} 上线性空间 V 的两个子空间,记 $U=U_1+U_2$,若 $\forall \, u\in U$, $\exists !\, u_1\in U_1$, $u_2\in U_2$ 使 $u=u_1+u_2$,则称 U 是 U_1 和 U_2 的内直和,记作 $U=U_1\oplus U_2$ 。

外直和: 设 U_1 , U_2 是 \mathbb{F} 上的任意两个线性空间,记 $U=U_1\times U_2=\{(u_1,u_2)\mid u_1\in U_1,\,u_2\in U_2\}$,并定义数乘 $a\cdot(u_1,u_2)=(a\cdot u_1,a\cdot u_2)$,则 U 构成一个线性空间,称为 U_1 , U_2 的外直和,同样记作 $U=U_1\oplus U_2$ 。从同构意义下,内外直和没有差别,统称为直和。

类似地,我们可以定义多个子空间的直和 $V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$, 其等价定义见定理7。

Theorem.6 (二维直和等价定义):

设 U_1 , U_2 是 \mathbb{F} 上线性空间 V 的两个子空间,则下面的几个命题等价:

- ① $U_1 + U_2$ 是直和
- ② 若 $\exists u_1 \in U_1, u_2 \in U_2$ 使 $u_1 + u_2 = 0_V$, 则 $u_1 = u_2 = 0_V$
- $3U_1 \cap U_2 = 0_V$
- $4 \dim(U_1 + U_2) = \dim U_1 + \dim U_2$

Theorem.7 (多维直和的等价定义):

设 $U_1, U_2, ..., U_k$ 是 \mathbb{F} 上线性空间 V 的 k 个子空间,则下面的几个命题等价:

① $U_1 + U_2 + \cdots + U_k$ 是直和

② 若
$$\exists u_1 \in U_1, u_2 \in U_2, ..., u_k \in U_k$$
 使 $u_1 + u_2 + \cdots + u_k = 0_V$, 则 $u_1 = u_2 = \cdots = u_k = 0_V$

$$3 U_s \cap (\sum U_i) = 0_V$$

$$4 \dim(U_1 + U_2 + \dots + U_k) = \dim U_1 + \dim U_2 + \dots + \dim U_k$$

一些常见的直和:

1. 矩阵空间的两种直和分解: 在矩阵线性空间 $M_{n\times n}(\mathbb{R})$ 中,记 $S_{n\times n}(\mathbb{R})$ 为全体对称矩阵(简记为 S),记 $O_{n\times n}(\mathbb{R})$ 为全体斜对称矩阵(简记为 O),记 $T_{n\times n}(\mathbb{R})$ 为全体上三角矩阵(简记为 T),则有:

$$M_{n\times n}(\mathbb{R}) = \mathcal{S} \oplus \mathcal{O}, \ M_{n\times n}(\mathbb{R}) = \mathcal{T} \oplus \mathcal{O}$$

2. 半幻方矩阵空间分解: 设 ℚ 上的全体半幻方矩阵 (行、列和相同) 为:

$$\mathrm{Smag}_{n}(\mathbb{Q}) = \left\{ A = (a_{ij})_{n \times n} \in M_{n \times n}(\mathbb{Q}) \mid \sum_{i=1}^{n} a_{ir} = \sum_{i=1}^{n} a_{ri} = \sigma(A), \ r = 1, ..., n \right\}$$

相应的全体幻方矩阵 (行、列、主副对角线和相同) 为:

$$\operatorname{Mag}_n(\mathbb{Q}) = \left\{ A \in \operatorname{Smag}_n(\mathbb{Q}) \mid \sum_{i=1}^n a_{ii} = \sum_{i=1}^n a_{i(n+1-i)} = \sigma(A), \; r = 1, ..., n \right\}$$

并记矩阵:

则有结论:

$$\operatorname{Smag}_n(\mathbb{Q}) = \operatorname{Mag}_n(\mathbb{Q}) \oplus \mathbb{Q}I_n \oplus \mathbb{Q}D_n$$

矩阵空间的两种直和分解证明:

对于前者: 考虑 $M_{n\times n}(\mathbb{R})$ 的标准基 $\{E_{ij}\mid i=1,2,...,n;\ j=1,2,...,n\}$, 注意到

$$E_{ij} = \frac{1}{2}(E_{ij} + E_{ji}) + \frac{1}{2}(E_{ij} - E_{ji}) \in (S + \mathcal{O})$$

因此

$$\operatorname{Span}\left\{E_{ij}\right\} = M_{n \times n}(\mathbb{R}) \subseteq \mathcal{S} + \mathcal{O} \Longrightarrow M_{n \times n}(\mathbb{R}) = \mathcal{S} + \mathcal{O}$$

另一方面,设 $A \in \mathcal{S} \cap \mathcal{O}$,则 $A^T = A = -A \Longrightarrow A = 0_{n \times n}$,故 $\mathcal{S} + \mathcal{O}$ 构成直和,也即 $M_{n \times n}(\mathbb{R}) = \mathcal{S} \oplus \mathcal{O}$ 。(也可从 $\dim \mathcal{S} = \dim \mathcal{T} = \frac{n(n+1)}{2}$, $\dim \mathcal{O} = \frac{(n-1)n}{2}$ 的角度说明构成直和)。

对于后者,设 $1 \le i \le j \le n$,则 $E_{ij} \in \mathcal{T}$,且有:

$$E_{ii} = E_{ij} + (E_{ii} - E_{ij}) \in (\mathcal{T} + \mathcal{O})$$

同理得 $M_{n\times n}(\mathbb{R}) = \mathcal{T} + \mathcal{O}$,进而得 $M_{n\times n}(\mathbb{R}) = \mathcal{S} \oplus \mathcal{O}$ 。

证必。

余维数:

设线性空间 $V = U \oplus \overline{U}$,则称 \overline{U} 为 U 在 V 中的补空间,称 \overline{U} 的维数为 U 在 V 中的余维数,且有:

$$\operatorname{codim} U = \dim \overline{U} = \dim V - \dim U$$

特别地,我们规定, $\{0\}$ 是V在V中的补空间。

无限维线性空间可以存在有限维子空间,因此子空间的余维数可以是有限的。例如:考虑无限维线性空间 $V=\mathbb{F}[x]$,我们有 $V=\mathcal{P}_n[x]$ \oplus Span $\{x^i\mid n\leq i,\ i\in\mathbb{N}\}$,且 dim Span $\{x^i\mid n\leq i,\ i\in\mathbb{N}\}=\infty$,codim Span $\{x^i\mid n\leq i,\ i\in\mathbb{N}\}=n$ 。

超平面:

一个线性空间 V 中,余维数为 1 的子空间称为 V 中的超平面。

Theorem.8 (补空间存在定理):

设 U 是线性空间 V 中的一个子空间,则 U 在 V 中一定存在补空间 \overline{U} 。上述结论对有限维、无限维线性空间都成立,证明参考:

https://www.zhihu.com/question/68641016/answer/265785313

商空间:

设 $W \in \mathbb{F}$ 上线性空间 V 的子空间, 定义 V 模 W 的商空间为:

$$V/W = \{ \overline{v} \mid v \in V \} = \{ v + W \mid v \in V \}$$

定义商空间中的线性运算: $a\overline{v_1}+b\overline{v_2}=\overline{av_1+bv_2},\ a,b\in\mathbb{F},\ v_1,v_2\in V$,则 V/W 构成一个 \mathbb{F} 上的线性空间。

考虑到 V 可以看作一个加法群,则子空间 W 构成 V 的子群,又 V 交换,因此 $W \unlhd V$,从这个角度来看,商空间本质上还是群模正规子群得到的代数结构。

构造由补空间 \overline{W} 到商空间 V/W 的映射 $\varphi: \varphi(u)=\overline{u},\ u\in \overline{W}$,则 φ 构成一个同态 (保持线性运算),且 为双射,故 $\overline{W}\cong V/W$,于是 $\dim V/W=\dim \overline{W}=\operatorname{codim} W$ 。

要证明 φ 是满射,我们首先需要说明一个陪集 $\overline{v}=v+W$ 的代表元不唯一,例如 $\forall w\in W$,显然 $\overline{v}=\overline{v+w}$,这表明我们可以向陪集的代表元 "添加" W 中的任意元素。又 V 中的元素可以做直和分解,也即 $\forall v\in V$, $\exists w'\in \overline{W}$, $w\in W$ 使v=w'+w,,于是对于任意的陪集 \overline{v} ,设 v=w'+w,则 $\exists w'\in \overline{W}$ 使 $\varphi(w')=\overline{w'}=\overline{w'+w}=\overline{v}$,因此 φ 构成满射。又容易验证它是单射,所以 φ 构成双射。

于是,若 $\{v_1,...,v_m\}$ 是 \overline{W} 的一组基,则 $\{\overline{v_1},...,\overline{v_2}\}$ 构成 V/W 的一组基。

1.3 对偶空间

对偶空间:

记 V^* 为从 V 到 \mathbb{F} 的全体<mark>线性</mark>映射(函数),则 V^* 构成 $\mathcal{F}_{\mathbb{F}}(V)$ 的子空间,称为 V 的对偶空间,且有 $\dim V = \dim V^*$ 。

记 V 的一个基向量为 $\vec{v}_0 = [v_1, v_2, ..., v_n]^T$,系数向量 (坐标向量) 为 $\vec{a} = [a_1, a_2, ..., a_n]$,则: 对任意的 $f \in V^*$, $v = a_1v_1 + \cdots + a_nv_n = \vec{a} \cdot \vec{v}_0 \in V$,我们有 $f(v) = f(\vec{a} \cdot \vec{v}_0) = \vec{a}f(\vec{v}_0)$,类似地,假设 A 是由基 \vec{v}_0 向基 \vec{u}_0 的转换矩阵,也即 $\vec{u}_0 = A\vec{v}_0$ 我们有 $f(\vec{u}_0) = f(A\vec{v}_0) = Af(\vec{v}_0)$ 。这就是为什么称向量 $f(\vec{v}_0)$ 是同变的。

特别地,我们指出,在无限维线性空间中, $V^* \neq \operatorname{Span}\{v^1,v^2,...,v^n\}$ 。事实上,在无限维的情况下 $\operatorname{Span}\{v^1,v^2,...,v^n\} \subsetneq V^*$,这是因为 Span 只能是有限和,如果定义 V 到 $\operatorname{\mathbb{F}}$ 的映射 $f:f(v_i)=1, \ \forall i\in\mathbb{N}$,则 $f\in V^*$ 且 $f\notin\operatorname{Span}\{v^1,v^2,...,v^n\}$ 。

Theorem.9 (对偶空间重要结论):

在线性空间及其对偶空间中,我们有一个重要而有用的结论:

$$\{v \in V \mid \forall f \in V^*, f(v) = 0\} = \{0_V\}$$

对偶基及其转换:

设 $\{v_1, v_2, ..., v_n\}$ 是 V 的一组基,定义映射 $v^i: v = a_1v_1 + \cdots + a_nv_n \mapsto a_i, i \in \{1, 2, ..., n\}, a_i \in \mathbb{F}$, 也即 $v^i(v_j) = \delta_{ij}$,则 $\{v^1, v^2, ..., v^n\}$ 构成 V^* 的一组基,称为对偶基。特别地, $\forall f \in V^*$,我们有:

$$f = f(v_1)v^1 + f(v_2)v^2 + \cdots + f(v_n)v^n$$

也即映射 f 在基 $\{v^1, v^2, ..., v^n\}$ 下的坐标为 $\vec{x} = [f(v_1), ..., f(v_n)]$ 。

假设 $A \in M_{n \times n}(\mathbb{F})$ 是 V 的基 $\vec{v_0}$ 向基 $\vec{u_0}$ 的转换矩阵,也即 $\vec{u_0} = A\vec{v_0}$,则 $(A^T)^{-1}$ 是 V^* 的基 $\vec{v^0}$ 向基 $\vec{u^0}$ 的转换矩阵:

$$\vec{u}^0 = (A^T)^{-1} \vec{v}^0, \quad \text{ter} \ \vec{v}^0 \longmapsto (A^T)^{-1} \vec{v}^0$$

对偶基转换式的证明:

基 $\vec{v}_0 = [v_1, ..., v_n]$ 对应的对偶基为 $\vec{v}^0 = [v^1, ..., v^n]$,且 $\forall f = b_1 v^1 + \cdots + b_n v^n \in V^*$,有:

$$f(v_i) = (b_1v^1 + \dots + b_nv^n)(v_i) = b_i \Longrightarrow f = f(v_1)v^1 + \dots + f(v_n)v^n$$

类似地,设基 $\vec{u}_0 = [u_1, ..., u_n]$ 的对偶基为 $\vec{u}^0 = [u^1, ..., u^n]$,则有 $f = f(u_1)u^1 + \cdots + f(u_n)u^n$,于是:

$$v^{i}(u_{r}) = v^{i}(a_{r1}v_{1} + \dots + a_{rn}v_{n}) = a_{ri}$$

$$\Longrightarrow v^{i} = v^{i}(u_{1})u^{1} + \dots + v^{i}(u_{n})u^{n}$$

$$= a_{1i}u^{1} + \dots + a_{ni}u^{n}$$

$$\Longrightarrow \vec{v}^{0} = A^{T}\vec{u}^{0}$$

$$\Longrightarrow \vec{u}^{0} = (A^{T})^{-1}\vec{v}^{0}$$

证毕。

Theorem. 10 (线性空间向量组的秩):

设 $\{f_1, f_2, ..., f_n\}$ 是对偶空间 V^* 的一组基,则对 V 中的任意向量组 $\{u_1, u_2, ..., u_k\}$,有:

$$\operatorname{rank}\{u_1,u_2,...,u_k\} = \operatorname{rank} \begin{bmatrix} f_1(u_1) & f_1(u_2) & \cdots & f_1(u_k) \\ f_2(u_1) & f_2(u_2) & \cdots & f_2(u_k) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(u_1) & f_n(u_2) & \cdots & f_n(u_k) \end{bmatrix} = \operatorname{rank} (f_i(u_j))_{n \times k}$$

定理10的证明:

记列向量

$$\vec{a}^{i} = \begin{bmatrix} f_{1}(u_{i}) \\ f_{2}(u_{i}) \\ \vdots \\ f_{n}(u_{i}) \end{bmatrix}, i = 1, 2, ..., k$$

我们只需证明对任意的 $1 \le i_1 < i_2 < \cdots < i_r \le k$,向量组 $\{u_{i_1}, u_{i_2}, ..., u_{i_r}\}$ 线性相关 \iff 向量组 $\{\vec{a}^{i_1}, \vec{a}^{i_2}, ..., \vec{a}^{i_k}\}$ 线性相关。

1. ⇒:

假设 $\{u_{i_1}, u_{i_2}, ..., u_{i_r}\}$ 线性相关,即 $\exists a_1, a_2, ..., a_r \in \mathbb{F}$ 使得:

$$a_1u_{i_1} + a_2u_{i_2} + \dots + a_ru_{i_r} = 0_V$$

依次吧映射 $f_1, f_2, ..., f_n$ 作用在方程两边,得到由 n 个方程构成的方程组:

$$a_1 f_i(u_{i_1}) + a_2 f_i(u_{i_2}) + \dots + a_r f_i(u_{i_r}) = f_i(0_V) \xrightarrow{\text{\mathbb{Z} $\sharp 9$}} 0$$

这等价于:

$$a_1\vec{a}^{i_1} + a_2\vec{a}^{i_2} + \dots + a_r\vec{a}^{i_r} = \vec{0}$$

因此 $\{\vec{a}^{i_1}, \vec{a}^{i_2}, ..., \vec{a}^{i_k}\}$ 线性相关。

2. <=:

将上述过程逆过来即可,略。

有限维线性空间的自反性:

考虑有限维对偶空间的对偶空间 $(V^*)^* = V^{**}$,对任意 $u \in V$,定义从 V^* 到 \mathbb{F} 的映射 $\varepsilon_u \in V^{**}$ 为: $\varepsilon_u(f) = f(u)$, $f \in V^*$,则映射 $u \longmapsto \varepsilon_u$ 给出了 V 到 V^{**} 的同构,也即 $V \cong V^{**}$ 。要注意,上述结论在无限维不成立,无限维线性空间不具有自反性。在讲义中写作 " $V = V^{**}$ ",并且称 V 是自反的,其详细含义是什么?自反的定义不应该是 $V \sim V$ 吗?

Theorem.11 (线性空间的子空间):

设 $\{f_1, f_2, ..., f_k\}$ 是 n 维对偶空间 V^* 中的一个秩为 r 的向量组,则 $\{v \in V \mid f_1(v) = f_2(v) = \cdots = f_k(v) = 0\}$ 构成 V 的 (n-r) 维子空间。定理的几何意义是 V 中 k 个超平面的交。

1.4 双线性型和二次型

双线性型:

V上的一个双线性型(双线性函数)是一个映射 $f: V \times V \longrightarrow \mathbb{F}$ 满足:

$$\forall v_1, v_2, u_1, u_2 \in V, \ a_1, a_2, b_1, b_2 \in \mathbb{F}, \ 有:$$

$$f(a_1v_1 + a_2v_2, u) = f(a_1v_1, u) + f(a_2v_2, u) = a_1f(v_1, u) + a_2f(v_2, u)$$

$$f(v, b_1u_1 + b_2u_2) = f(v, b_1u_1) + f(v, b_2u_2) = b_1f(v, u_1) + b_2f(v, u_2)$$

也即双线性型 f 是一个二重线性映射。特别地,我们指出,双线性型原空间可以是两个不同集合的内积,也即双线性型 $f: X \times Y \mapsto \mathbb{F}$,后文的相关概念也可据此作出适当延伸。

双线性型线性空间:

记 $\mathcal{L}_2(V,\mathbb{F})$ 为 V 上的全体双线性型,容易验证其关于映射的加法、数乘构成一个线性空间($\mathcal{F}_{\mathbb{F}(V\times V)}$ 的子空间)。

定义双线性型 f 在 V 的基 $\vec{v}_0 = [v_1, v_2, ..., v_n]^T$ 下的度量矩阵 (表示矩阵):

$$F = (f(v_i, v_j))_{n \times n} = (f_{ij})_{n \times n} = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{bmatrix} = \begin{bmatrix} f(v_1, v_1) & f(v_1, v_2) & \cdots & f(v_1, v_n) \\ f(v_2, v_1) & f(v_2, v_2) & \cdots & f(v_2, v_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(v_n, v_1) & f(v_n, v_2) & \cdots & f(v_n, v_n) \end{bmatrix}$$

其中 f_{ij} 定义为 $f_{ij} = f(v_i, v_j)$ 。

并设 \vec{x} , \vec{y} 分别是 u, v 在基 \vec{v}_0 下的坐标,则有:

$$f(u,v) = \vec{x}F\vec{y}^T$$

且映射 $f \mapsto F$ 给出了 $\mathcal{L}_2(V, \mathbb{F})$ 到 $M_{n \times n}(\mathbb{F})$ 的同构。

度量矩阵转换:

设 $A = (a_{ij})_{n \times n}$ 为基 \vec{v}_0 向 \vec{u}_0 的转换矩阵, 也即:

$$u_i = a_{i1}v_1 + a_{i2}v_2 + \cdots + a_{in}v_n, i = 1, 2, \dots, n$$

设 F 为 f 在基 $\vec{v_0}$ 下的度量矩阵,则 f 在 $\vec{u_0}$ 下的新度量矩阵为:

$$F' = AFA^T$$
、也即 $F \longmapsto AFA^T$

考虑到 A 为可逆矩阵, 有 rank F' = rank F, 故度量矩阵 F 的秩不随基而变化, 称为 f 的秩。

合同矩阵:

两个 $n \times n$ 矩阵 G, F 称为合同的如果存在可逆矩阵 A 使得 AFA^T 。

由此可得,一个双线性型在不同基下的度量矩阵是合同的。

左(右)根空间:

给定 $f \in \mathcal{L}_2(V,\mathbb{F})$,定义 f 的左根为 $L_f = \{u \in V \mid \forall v \in V, f(u,v) = 0\}$,右根为 $R_f = \{v \in V \mid \forall u \in V, f(u,v) = 0\}$,且有:

$$\dim L_f = \dim R_f = \dim \mathcal{L}_2(V, \mathbb{F}) - \operatorname{rank} f$$

双线性型 f 称为非退化的 (nondegenerate) 如果 $L_f = \{0\} \iff R_f = \{0\} \iff f$ 满秩,这里的 0 指零映射。

一般 $L_f \neq R_f$, 且两者都构成 $\mathcal{L}_2(V, \mathbb{F})$ 的子空间。

(斜)对称双线性型:

双线性型 $f \in \mathcal{L}_2(V,\mathbb{F})$ 称为对称的如果 $\forall u,v \in V, f(u,v) = f(v,u)$,称为斜对称的如果 $\forall u,v \in V, f(u,v) = -f(v,u)$ 。

记 $\mathcal{L}_{2}^{+}(V,\mathbb{F})$ 为全体对称双线性型,记 $\mathcal{L}_{2}^{-}(V,\mathbb{F})$ 为全体斜对称双线性型,则有:

$$\mathcal{L}_2(V,\mathbb{F}) = \mathcal{L}_2^+(V,\mathbb{F}) \oplus \mathcal{L}_2^-(V,\mathbb{F})$$

特别地,我们有:双线性型 f 为对称的 \iff f 的度量矩阵 F 是对称矩阵 对称双线性型,或者说实对称矩阵的性质很特殊:

- 1. 特征值为实数:实对称矩阵的特征多项式在复数域中的每一个根都是实数,因此其特征值都是实数。
- 2. 特征向量为实向量: 实对称矩阵的特征值对应的特征向量都是实向量。
- 3. 可相似对角化: n 阶实对称矩阵必可对角化,而对角矩阵上的对角元素即为原矩阵的特征值。
- 4. 秩与非零特征值个数相等: 实对称矩阵的秩等于其非零特征值的个数。

二次型:

假设 $\mathbb F$ 的特征不是 2(推出 2 在 $\mathbb F$ 中可逆),V 是 $\mathbb F$ 上的线性空间,一个映射 $q\in\mathcal F_{\mathbb F}(V)$ 称为二次型如果 $\forall\,v\in V,\ q(v)=q(-v)$ 。

定义 q 对应的对称双线性型 f_q , 并将 f_q 的秩称为 q 的秩:

$$f_q(u,v) = 2^{-1}(q(u+v) - q(u) - q(v)), u,v \in V$$

容易验证 $f_q \in \mathcal{L}_2^+(V, \mathbb{F})$ 。考虑到我们的 \mathbb{F} 不一定是实数域或复数域, f_q 定义式中的 2 其实是一个抽象含义,例如:令 \mathbb{F} 为模 p 剩余类 \mathbb{F}_p ,并定义映射 q 从 $\mathbb{F}_p[x]$ 到 \mathbb{C} ,定义式中的 2 则对应 \mathbb{F}_p 中的 $\overline{2}$, 2^{-1} 则对应 \mathbb{F}_p 中的 $\overline{\frac{p+1}{2}}$,比如令 p=5,则 2 对应 $\overline{2}$, 2^{-1} 对应 $\overline{3}$ 。

类似地,给定对称双线性型 $f \in \mathcal{L}_2^+(V, \mathbb{F})$,定义其对应的二次型:

$$q_f(v) = f(v, v), u \in V$$

而 $f_q(0,0) = 0$ (因为 f 是线性的),由此我们得到 $q(0) = f_q(0,0) = 0$,且 $f = f_{q_f}$, $q = q_{f_q}$,两者一一对应。我们只在对称双线性型空间中同时讨论 f_q 和 q 及其对应关系。

称对称双线性型 f 在基 $\vec{v_0}$ 下的度量矩阵 F 为 q_f 在基 $\vec{v_0}$ 下的度量矩阵,可以简记为 $F_{f_q} = F_q$ 。特别地,对所有坐标空间 (即 \mathbb{F}^n) 中的二次型 q,设 q 在基 $\vec{v_0}$ 下的度量矩阵为 F,v 的坐标为 \vec{x} ,我们有:

$$a(v) = \vec{x}F\vec{x}^T$$

推论: 在坐标空间中, 二次型始终是二次齐次多元多项式。

迷向空间:

对任意的 q,由于 $f_q(u,v)$ 是对称的,因此 $L_{f_q}=R_{f_q}$,即左右根空间相等,统称为 q 的一个迷向空间 (isotropic space)。并且事实上:

$$L_{f_a} = R_{f_a} = \{ v \in V \mid q(u+v) = q(u) + q(v) \}$$

规范型:

V 的一组基 $\vec{v}_0 = [v_1, ... v_n]^T$ 称为二次型 q 的规范基如果对任意 $v = x_1 v_1 + \cdots + x_n v_n \in V$,有:

$$q(v) = \vec{x}F\vec{x}^T = f_{11}x_1^2 + f_{22}x_2^2 + \dots + f_{nn}x_n^2$$

我们称上式为 q 在基 \vec{v}_0 下的规范型,对应生成的 f_q 也称为规范型。且此时,q 的度量矩阵 (也是 f_q 的)为:

$$F_{q} = \begin{bmatrix} f(v_{1}, v_{1}) & 0 & \cdots & 0 \\ 0 & f(v_{2}, v_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(v_{n}, v_{n}) \end{bmatrix}$$

Theorem. 12 (对称二次型必有规范基):

有限维线性空间 V 上的每个二次型 q,都存在规范基。

推论: 任意对称矩阵都合同于一个对角阵,也即 $\forall A \in \{M_{n \times n} \mid A = A^T\}$, $\exists D = \text{diag}(a_{11}, a_{22}, ..., a_{nn}), B \in M_{n \times n}$ 使得:

$$A = BDB^T$$

标准型:

对于 q 在基 \vec{v}_0 下规范型 $q(v) = \vec{x}F\vec{x}^T = f(v_1, v_1)x_1^2 + \cdots + f(v_n, v_n)x_n^2$, 由于 $f(v_i, v_i)$ 的取值在 \mathbb{R} 中不定,我们调换 $\{v_1, ..., v_n\}$ 中元素的顺序,使得:

$$\begin{cases} f_{ii} > 0 & i \in [1, r] \\ f_{ii} < 0 & i \in [r + 1, r + s] \\ f_{ii} = 0 & i \in [r + s + 1, n] \end{cases}$$

我们进行基变换:

$$\begin{cases} u_{i} = \sqrt{f_{ii}}v_{i} & i \in [1, r] \\ u_{i} = \sqrt{-f_{ii}}v_{i} & i \in [r+1, r+s] \\ u_{i} = v_{i} & i \in [r+s+1, n] \end{cases}$$

得到基 \vec{u}_0 ,相应地,坐标也由 \vec{x} 变为 \vec{y} ,则 q 在基 \vec{u}_0 下的式子化为

$$q(v) = y_1^2 + \dots + y_r^2 - y_{r+1}^2 - \dots - y_{r+s}^2, \ \forall \ v = y_1 u_1 + \dots + y_n u_n \in V$$

我们称上式为q的标准型,也即:

$$\begin{cases} f(u_i, u_i) = 1 & i \in [1, r] \\ f(u_i, u_i) = -1 & i \in [r+1, r+s] \\ f(u_i, u_i) = 0 & i \in [r+s+1, n] \end{cases}$$

标准基常指的是 $\{\vec{e}_1,\ldots,\vec{e}_n\}$,我们也可以把上面标准型对应的基称为标准基,但要注意辨别,不要引起歧义。

对于任意的二次型 q。其标准型中的整数 r 与 s 仅由 q,与相应的规范基无关。

快速确定二次型/双线性型在默认基下的矩阵:

步骤: (二次型 $q \xrightarrow{0}$) 双线性型 $f \xrightarrow{2}$ 度量矩阵 F

① q 转 f: 设二次型为 q,对每一项分别作左 g 变换和右 g 变换并相加,最后<mark>勿忘乘 $\frac{1}{2}$ </mark>,即可得到 q 对应的双线性型 f_q 。

例如 $q(u) = 2x_1x_2 - 6x_1x_3 + 2x_1x_3 + x_3^2$ 经变换得到:

$$f(u,v) = \frac{1}{2} \left[(2x_1y_2 + 2y_1x_2) + (-6x_1y_3 - 6y_1x_3) + (2x_2y_3 + 2y_2x_3) + (x_3y_3 + y_3x_3) \right]$$

= $x_1y_2 + y_1x_2 - 3x_1y_3 - 3y_1x_3 + x_2y_3 + y_2x_3 + x_3y_3$

② f 转 F: 设双线性型 f(u,v),其中 $u=\vec{x}\cdot\vec{e}$, $v=\vec{y}\cdot\vec{e}$,则每一项中 x 的角标表示行,y 的角标表示列,系数代表 F 此处 entry 的值。

继续上面的例子,对应的度量矩阵为
$$F = \begin{bmatrix} 0 & 1 & -3 \\ 1 & 0 & 1 \\ -3 & 1 & 1 \end{bmatrix}$$
,即为在默认基下的矩阵 $(-$ 般认为是标准正交基 $)$ 。

将二次型化为标准型的三种方法:

初等变换法、配方法、偏导数配方法、正交变换法。

https://www.zhihu.com/question/465317828/answer/1943470027

https://www.zhihu.com/question/67528139/answer/1416472234 (偏导数)

https://zhaokaifeng.com/16920/ (偏导数)

偏导数法将二次型化为标准型:

设 q (或双线性型 f 化为 q_f) 为二次型, 步骤如下:

① 平方项的配方: 令 $f_1 = \frac{\partial f}{\partial x_1}$, 求解 $g = f - \frac{1}{4a_{11}}f_1^2$, 则 g 中不再含有 x_1 ; 再令 $g_2 = \frac{\partial g}{\partial x_2}$, 求解

 $h = g - \frac{1}{4a_{22}} \cdot g_2^2 = f - \frac{1}{4a_{11}} \cdot f_1^2 - \frac{1}{4a_{22}} \cdot g_2^2 \dots ($ 重复上面操作)
② 非平方项的配方: 令 $f_1 = \frac{\partial f}{\partial x_1}$, $f_2 = \frac{\partial f}{\partial x_2}$, 求解 $g = f - \frac{1}{4a_{12}} [(f_1 + f_2)^2 - (f_1 - f_2)^2]$, 则 g 中不再含有 x_1, x_2 ; 再令 g_3, g_4 ,求解 $h = f - \frac{1}{4a_{34}} [(g_3 + g_4)^2 - (g_3 - g_4)^2] \dots ($ 重复上面操作)

③ 最后将结果汇总,即可得到 f =平方项之和。

特别地,将对称双线性型化为标准型的方法和二次型是一致的(将双线性转为二次型,标准化后再转 回)。

惯性指数:

我们称 r+s 为 V 上的二次型 q 的指数,并称 r 为正惯性指数,s 为负惯性指数。另外,设 q 是 \mathbb{R} 上的 有限维向量空间V的一个二次型,则:

①
$$q$$
 是正定的: $r = \dim V \iff q(v) > 0, \forall 0_V \neq v \in V$

②
$$q$$
 是负定的: $s = \dim V \iff q(v) < 0, \forall 0_V \neq v \in V$

③
$$q$$
 是半正定的: $s=0 \iff q(v) \geq 0, \forall 0_V \neq v \in V$

④
$$q$$
 是半负定的: $r=0 \iff q(v) \leq 0, \forall 0_V \neq v \in V$

⑤
$$q$$
 是不定的: $r \neq 0$, $s \neq 0 \iff \exists v, u \in V, q(v) > 0, q(u) < 0$

Theorem.14 (矩阵正定的等价条件):

设对称矩阵 $A \in M_{n \times n}(\mathbb{R})$,则:

矩阵 A 正定 \iff 存在可逆矩阵 $S \in M_{n \times n}(\mathbb{R})$ s.t. $A = SS^T$

推论:

矩阵 A 正定 $\Longrightarrow A$ 的对角元都 > 0矩阵 A 半正定 \Longrightarrow A 的对角元都 > 0矩阵 A 是不定的 \Longrightarrow A 的对角元既有 > 0 也有 < 0

设对称矩阵 $A \in \{A \in M_{n \times n}(\mathbb{R}) \mid A^T = A\}$,定义 A 所对应的对称双线性型为 $f_A(u,v) = uAv^T$ (这表明 A 即为 f_A 的 度量矩阵),从而也有对应的二次型 q_{f_A} ,并将 q_{f_A} 的正定性称为对称矩阵 A 的正定性。

主子式:

设 $F \in V$ 上二次型 q 在基 $\vec{v}_0 = [v_1, ..., v_n]^T$ 下的度量矩阵,则 F 的主子式定义为:

$$\Delta_0 := 1, \ \Delta_1 = f_{11}, \ \Delta_2 = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix}, \ \dots, \ \Delta_n = \begin{vmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{vmatrix} = |F|$$

Theorem. 15 (Jacobi Theorem):

设二次型 q 的度量矩阵 F 的主子式全都不为 0,则存在一组基 $\{u_1,u_2,...,u_n\}$ 使得 q 在此基下化成:

$$q(u) = \frac{\Delta_0}{\Delta_1} y_1^2 + \frac{\Delta_1}{\Delta_2} y_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} y_n^2, \ \forall \ u = y_1 u_1 + \dots + y_n u_n \in V$$

且上面对应的转换矩阵 T 是下三角的,也即存在下三角可逆矩阵 T 使得:

$$TFT^{-1} = \operatorname{diag}(\frac{\Delta_0}{\Delta_1}, ..., \frac{\Delta_{n-1}}{\Delta_n})$$

推论:二次型的负惯性指数个数是序列 $\Delta_0, \Delta_1, \ldots, \Delta_n$ 的变号个数。特别地,我们有:

$$q$$
 是正定的 \iff $\Delta_i > 0$, $\forall i \in \{0, 1, ..., n-1\}$

$$q$$
 是负定的 $\Longrightarrow \Delta_i \Delta_{i+1} < 0, \forall i \in \{0, 1, ..., n-1\}$

斜对称双线性型:

给定一个双线性型 f, 对应的度量矩阵是 F, 类似地, 我们有:

$$f(u,v) = \vec{x}F\vec{y}^T$$
, f 是斜对称的 \iff F 是斜对称的

斜对称双线性型的秩一定是偶数。

Theorem. 16 (斜对称双线性型必有规范基):

设 f 是 V 上的斜对称双线性型,则存在基 $\{v_1,\ldots,v_n\}$ 使得 f 在此基下化成:

$$f(u,v) = (x_1y_2 - x_2y_1) + \dots + (x_{2r-1}y_{2r} - x_{2r}y_{2r-1}) = \sum_{k=1}^{r} (-1)^{k+1} (x_{2k-1}y_{2k} - x_{2k}y_{2k-1})$$

$$\forall u = x_1v_1 + \dots + x_nv_n, \quad v = y_1v_1 + \dots + y_nv_n$$

并称上式为 f 的标准型。

推论:对任意的斜对称矩阵 $A \in \{A \in M_{n \times n}(\mathbb{R}) \mid A^T = -A\}$,存在可逆矩阵 S 使得:

$$SAS^{T} = \begin{bmatrix} O_{r \times r} & I \\ -I & O_{r \times r} \\ & O_{(n-2r) \times (n-2r)} \end{bmatrix}$$

且: A 可逆 \iff $n = 2r \Longrightarrow \det A = (\det S)^{-2}$

这是因为由上面的度量矩阵转换,可以得到:对任意的斜对称矩阵 $A \in \left\{A \in M_{n \times n}(\mathbb{R}) \mid A^T = -A\right\}$,记 $H = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$,存在可逆矩阵 S 使得:

$$SAS^{T} = \begin{bmatrix} H & & & \\ & \ddots & & \\ & & H & \\ & & & O \end{bmatrix}_{n \times r}$$

对 SAS^T 进一步同时做的行变换和列变换,即可得到推论中的形式。特别地,当 A 可逆时,有 n=2r,且 $\det A=(\det S)^{-2}$ 。

将斜对称双线性型 f 化为规范型的方法:

方法一: 利用定理16。设 $\{\vec{e}_1,...,\vec{e}_n\}$ 是原基, $\{v_1,...,v_n\}$ 是标准基 (规范基),步骤如下:

- ① 找到 v_1, v_2 使得 $f(v_1, v_2) = 1$;
- ② 诱导出 $W' = \{v \in V \mid \forall u = \alpha_1 v_1 + \alpha_2 v_2 \in W, f(u, v) = 0\}$,下面找到 W' 的一组基;
- ③ 任取 $w \in V$, 并构造 $v_3 = w + f(v_2, w)v_1 f(v_1, w)v_2$, 则 $v_3 \in W'$;
- ④ 再取 $w \in V$,依次构造 $v_4, v_5, ...$,并分析是否线性无关,直至得到 W' 的一组基。
- ⑤ 依次验证 $f(v_3, v_4)$, ..., $f(v_{n-1}, v_n) == 1$, 若非 1,添加系数得到 v_i' (如 v_3') 使其变为 1。
- ⑥合并即得标准基 (规范基) $\{v_1, v_2, v_3', v_4, ..., v_n\}$

方法二: 配凑法 (不好用)。https://zhuanlan.zhihu.com/p/99513090

方法三: 矩阵合同初等变换 (在忘记方法一时使用),注意 A 要做合同变换但是 I_n 仅做行变换 (或仅做列变换)。

第2章 线性算子

2.1 向量空间的线性映射

线性映射的秩:

记 $\mathcal{L}_{\mathbb{F}}(U,V)$ 为从 U 到 V 的全体线性映射,对于 $f \in \mathcal{L}_{\mathbb{F}}(U,V)$,定义 f 的"像"和"核":

$${\rm Im}\ f = \{f(u) \in V \mid u \in U\}\ ,\ \ker f = \{u \in U \mid f(u) = 0\}$$

容易验证,Im f 是 V 的子空间,ker f 是 U 的子空间。我们称 f 的秩为:

$$\mathrm{rank}\; f = \dim \mathrm{Im}\; f$$

线性映射诱导的同构:

设 $\{u_1,...,u_m\}$ 是 U 的基,设 $f \in \mathscr{L}_{\mathbb{F}}(U,V)$,定义映射 $\varphi: f \longmapsto (f(u_1),f(u_2),...,f(u_m))$,则 φ 给出 $\mathscr{L}_{\mathbb{F}}(U,V)$ 到 V^m 的同构。依次验证单射、满射 (ker = $\{0\}$) 即可证明同构,由此可得 dim $\mathscr{L}_{\mathbb{F}}(U,V)$ = dim $U \cdot \dim V$ 。

Theorem.17 (线性空间维数分解):

设 U 是有限维向量空间,则对任意 $f \in \mathcal{L}_{\mathbb{F}}(U,V)$,我们有:

$$\operatorname{rank} f + \dim \ker f = \dim U$$

由此可推导出常用结论: rank $A + \dim \ker \varphi_A = n$

2.2 线性算子

线性变换 (线性算子):

设 V 是 \mathbb{F} 上的一个线性空间,从 V 到 V 的线性映射称为线性变换 (linear transformation),也称为线性 算子,相应的集合为 $\mathcal{L}_{\mathbb{F}}(V,V)$,简记为 $\mathcal{L}(V)$ 。线性算子不一定要求是满的,也即映射的像 (值域) 可以是 V 的子空 间。

常见的线性算子:

- 1. $\mathbb{F}[x]$ 上的求导算子 $\frac{d}{dx}$: $f \mapsto \frac{df}{dx}$
- 2. C[a,b] 上的积分算子: $f \longmapsto \int_a^x f(t) dt$
- 3. 投影算子: 设 $V = U \oplus W$,则对于任意 $\xi \in V$,有 $\xi = \varepsilon_U + \xi_W$ 。定义映射 $\mathscr{P} : \xi \longmapsto \xi_U$,则 \mathscr{P} 构成 一个线性映射,称为 V 到 U(与 W 平行) 的投影算子。并且可以证明:

$$f \in \mathcal{L}(V), f^2 = f \iff f$$
 是投影算子

其中映射的积定义为映射的复合, 也即 $f^2: x \mapsto f(f(x))$

代数:

带有双线性乘积的线性空间称为代数。对任意的 $f,g \in \mathcal{L}(V)$, 有:

$$(fg)(av + bu) = a(fg)(v) + b(fg)(u), \ \forall a, b \in \mathbb{F}, \ v, u \in V$$

 $(af_1 + bf_2)g = a(f_1g) + b(f_2g), \ \forall a, b \in \mathbb{F}, \ f_1, f_2 \in \mathcal{L}(V)$

故 $\mathcal{L}(V)$ 上映射的乘积 (也即复合) 满足双线性性,称为代数。特别的,由于上述运算也是结合的,称 $\mathcal{L}(V)$ 为结合代数。

线性算子的极小多项式:

定义线性算子的幂: $\varphi^0 = e_V$, $\varphi^k = \varphi \varphi \cdots \varphi (k \uparrow)$, 由 dim $\mathcal{L}(V) = n^2 < +\infty$ 可知存在正整数 $N \leq n^2$ 使得 $\{e_V, \varphi, ..., \varphi^k\}$ 线性相关,也即:

$$\exists 0 \neq f \in \mathbb{F}[x], \ f(\varphi) = a_0 \varphi^0 + a_1 \varphi^1 + \dots + a_N \varphi^N = 0$$

此时称多项式 f 零化线性算子 φ ,在零化 φ 的多项式中,首一且次数最低的称为 φ 的极小多项式,记为 $\mu_{\varphi}(x)$ 。

由多项式的理论: 所有零化 φ 的多项式构成由 $\mu_{\varphi}(x)$ 生成的主理想:

$$\{f \in \mathbb{F}[x] \mid f(\varphi) = 0\} = \mu_{\varphi}(x) \cdot \mathbb{F}[x]$$

例如: 零算子 0 满足 $\mu_0(x)=x$,幂零指数为 m 的算子 φ 满足 $\mu_{\varphi}(x)=x^m$,恒等算子 e_V 满足 $\mu_{e_V}(x)=x-1$,投影算子 φ 满足 $\mu_{\varphi}(x)=x^2-x$ 。

求矩阵的最小多项式可参考:

https://www.zhihu.com/question/402082188/answer/1289182806

https://www.zhihu.com/question/605777999/answer/3067899521

Theorem. 18 (线性算子可逆的等价条件):

设 $\varphi \in \mathcal{L}(V)$,则:

$$\varphi$$
可逆 $\Longleftrightarrow \mu_{\varphi}(0) \neq 0$

定理18的证明:

① φ 可逆 $\Longrightarrow \mu_{\varphi}(0) \neq 0$:

反证法,假设 $\mu_{\varphi}(0)=0$,则 $a_0=0$,于是存在 h(x) 使得 $\mu_{\varphi}(x)=xh(x)$,由 $\deg h<\deg \mu_{\varphi}$ 且 μ_{φ} 是极小的知道 $h(\varphi)\neq 0$ 。另外, $\mu_{\varphi}(0)=\varphi h(\varphi)=0\Longrightarrow \varphi^{-1}(\varphi h(\varphi))=h(\varphi)=0$,矛盾。

② φ 可逆 $\iff \mu_{\varphi}(0) \neq 0$:

设
$$\mu_{\varphi}(x)=a_0+a_1x+\cdots+a_mx^m$$
,其中 $a_0\neq 0$, $\deg \mu_{\varphi}=m$ 。 记 $g(x)=a_1+a_2x+\cdots a_mx^{m-1}$,则 $\mu_{\varphi}(x)=a_0+xg(x)\Longrightarrow (-a_0^{-1}g(\varphi))\varphi=\varphi(-a_0^{-1}g(\varphi))=e_V$,因此 $\varphi^1=-a_0^{-1}g(\varphi)$ 。

Theorem. 19 (由算子生成空间基):

设 $V \in \mathbb{F}$ 上的 n 维线性空间, $\varphi \in \mathcal{L}(V)$ 满足 $\{e_V, \varphi, ..., \varphi^{n-1}\}$ 线性无关,则:

$$\exists v \in V \text{ s.t. } \{v, \varphi(v), ..., \varphi^{n-}(v)\}$$
 构成 V 的基

Homework 8.1, 其中两种证明在:

https://zhuanlan.zhihu.com/p/368560846 https://zhuanlan.zhihu.com/p/499412875

线性算子的矩阵:

设 $\{u_1,...,u_n\}$ 是 V 的一组基且 $\varphi\in\mathcal{L}(V)$,定义线性算子 φ 在基 $\vec{u}_0=[u_1,...,u_n]^T$ 下的矩阵 M_{φ,\vec{u}_0} 满足:

$$\varphi(\vec{u}_0) = M_{\varphi, \vec{u}_0} \cdot \vec{u}_0 \Longleftrightarrow \varphi(\vec{u}_0) = \begin{bmatrix} \varphi(u_1) \\ \varphi(u_2) \\ \vdots \\ \varphi(u_n) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

容易验证推论:

$$\forall \, \varphi, \psi \in \mathcal{L}(V) \,, \ M_{\psi\varphi, \vec{u}_0} = M_{\psi, \vec{u}_0} \cdot M_{\varphi, \vec{u}_0}$$

相似矩阵:

两个矩阵 A, B 称为相似的如果存在可逆矩阵 S 使得:

$$B = SAS^{-1}$$

线性算子度量矩阵的转换:

设 A 是基 \vec{u} 向基 \vec{v} 的转换矩阵, 即 $\vec{v} = A\vec{u}$, 则:

$$M_{\varphi,\vec{v}} = AM_{\varphi,\vec{u}}A^{-1}$$
,也即 $M_{\varphi,\vec{u}} \longmapsto AM_{\varphi,\vec{u}}A^{-1}$

注意这里是相似而不是合同,与之前度量矩阵的转换是不同的!

线性算子的行列式和迹:

设 $\varphi \in \mathcal{L}(V)$,定义 φ 的在基 \vec{u}_0 下的行列式为 $\det M_{\varphi,\vec{u}_0} = |M_{\varphi,\vec{u}_0}|$,容易验证 φ 在任何基下的行列式都相等,称为 φ 的行列式。行列式不同的线性算子必不同,但行列式相同不代表线性算子相同。

类似地,定义 φ 在基 \vec{u}_0 下的迹为 Tr M_{φ,\vec{u}_0} ,容易验证 φ 在任何基下的迹都相等,称为 φ 的迹。迹不同的线性算子必不同。

2.3 特征值与特征向量

Theorem. 20 (线性空间的投影分解):

设 $\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_m \in \mathcal{L}(V)$ 满足:

① 恒等:
$$\mathscr{P}_1 + \cdots + \mathscr{P}_m = e_V$$

② 投影:
$$\mathscr{P}_{i}^{2} = \mathscr{P}_{i}$$

③ 正文:
$$\mathscr{P}_i \mathscr{P}_j = 0$$
, $i \neq j$

则有结论:

$$V = \mathscr{P}_1(V) \oplus \mathscr{P}_2(V) \oplus \cdots \oplus \mathscr{P}_m(V)$$

例如,已知 $V=W_1\oplus W_2\oplus \cdots \oplus W_m$,对任意的 $v=v_1+\cdots +v_n,\ v_i\in W_i$,定义算子 $\mathscr{P}_i\in \mathscr{L}(V)$,则此算子满足定理条件。

不变子空间:

设 $\varphi \in \mathcal{L}(V)$,U 是 V 的子空间。在 φ 下,U 称为不变的如果 $\varphi(U)$ 嵌入 U,也即 $\varphi(U) \subseteq U$,或者说 $\forall u \in U, \varphi(u) \in U$ 。

例如:在上面的定理中, $\mathcal{P}_i(V)$ 是关于所有 $\mathcal{P}_1,...,\mathcal{P}_m$ 的不变子空间;在 $\mathbb{F}[x]$ 中, $\mathcal{P}_n[x]$ 是关于求导算子 $\frac{d}{dx}$ 的不变子空间; $\{0_V\}$ 和 V 是关于任意算子的不变子空间。

商算子:

设 $U \neq V$ 关于 φ 的不变子空间,定义 φ 关于 U 的商算子 $\overline{\varphi}$:

$$\overline{\varphi}(\overline{v}) = \varphi(v) + U$$
, $\forall \overline{v} = v + U \in V/U$

容易验证 $\overline{\varphi} \in \mathcal{L}(V/U)$ 。

Theorem. 21 (不变空间补空间的不变性):

在线性算子 φ 下,设 U 是 V 的一个非零不变真子空间, \overline{U} 为 U 的补空间,则:

$$\overline{U}$$
 不变 $\iff \exists 0, e_V \neq \mathscr{P} \in \mathscr{L}(V, U), \mathscr{P}^2 = \mathscr{P}, \ \$ 使得 $\varphi \mathscr{P} = \mathscr{P} \varphi$

定理证明的关键在于右推左时,令 $W = (e_V - \mathcal{P})(V)$,则 $V = U \oplus W$ 且 W 是不变的。推论: V 是在 φ 下不变的两个子空间的直和的等价条件是 $\exists 0, e_V \neq \mathcal{P} \in \mathcal{L}(V,U), \mathcal{P}^2 = \mathcal{P}$,使得 $\varphi \mathcal{P} = \mathcal{P} \varphi$ 。

特征子空间:

当不变子空间 $U=\mathbb{F}u$ 为一维时,若 \exists $\lambda\in\mathbb{F},0\neq u\in U$,使得 $\varphi(u)=\lambda u$,则称 λ 为 φ 的特征值,称 u 为此特征值对应 φ 的特征向量。

考虑到 φ 的线性性, $\varphi^i(u) = \varphi(\varphi \cdots \varphi(u) \cdots) = \lambda^i u$,可推出 $0 = \mu_{\varphi}(\varphi)(u) = \mu_{\varphi}(\lambda)u \Longrightarrow \mu_{\varphi}(\lambda) = 0$, λ 是极小多项式的根 (反之也成立)。多维时也是类似的,下面我们会讨论。

定义关于 φ 的、特征值为 λ 的特征空间:

$$V_{\lambda} = \{ v \in V \mid \varphi(v) = \lambda v \}$$

则 V_{λ} 构成关于 φ 的不变子空间,并称 dim V_{λ} 为 λ 的几何重数 (geometric multiplicity)。

Theorem. 22 (不同特征空间的向量线性无关):

设 U 是 V 的关于 φ 的不变子空间 (可以是零空间),设 $\lambda_1,...,\lambda_m$ 是 φ 的 m 个不同特征值,且 $u_i \in V_{\lambda_i}$,有结论: 若 $u_1 + \cdots + u_m \in U$,则 $u_1,...,u_m \in U$ 。

推论: 设 $\lambda_1,...,\lambda_m$ 为 φ 的不同特征值, v_i 为 λ_i 对应的特征向量,则 $\{v_1,...,v_m\}$ 线性无关。

特征值、特征向量、特征多项式:

①特征值:

$$\lambda$$
 是 φ 的特征值 $\iff |\lambda I_n - M_{\varphi,\vec{u}_0}| = 0 \iff |\lambda I_n - M_{\varphi,\vec{u}_0}| = 0 \iff \chi_{\varphi}(\lambda) = 0$

其中 \vec{u}_0 是 V 的一组基, \vec{e}_0 是标准正交基。

② 特征向量: 设 λ 对应的特征向量为 $u = \vec{x} \cdot \vec{u}_0, \vec{x} \neq \vec{0},$ 则:

$$u$$
为特征向量 $\iff \varphi(u) = \vec{x}A\vec{u}_0 = \lambda u \iff \vec{x} \cdot (M_{\varphi,\vec{u}_0} - \lambda I_n) = \vec{0}_{1 \times n}$

 \vec{x} 要么只有零解,要么有无限个解,这里需要用到基础解系的知识。

③ 特征多项式: 定义关于 φ 的特征多项式为:

$$\chi_{\varphi}(x) = |xI_n - M_{\varphi,\vec{u}_0}| = \begin{bmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{bmatrix}$$

对任意的基 \vec{u}_0 , \vec{v}_0 ,可以推得 $|xI_n - M_{\varphi,\vec{u}_0}| = |xI_n - M_{\varphi,\vec{v}_0}|$,故特征多项式 $\chi_{\varphi}(x)$ 与基的选取无关。称 λ 作为 $\chi_{\varphi}(x)$ 的根的重数 (如 $(x-1)^3$ 重数为 3) 为 λ 的代数重数,可以证明几何重数 \leq 代数重数。

线性算子对角化:

线性算子 $\varphi \in \mathcal{L}(V)$ 称为可对角化的如果 φ 在 V 某组基下的矩阵是对角矩阵。

Theorem. 23 (算子对角化):

设线性算子 φ 的特征多项式 $\chi_{\varphi}(x)=(x-\lambda_1)^{m_1}(x-\lambda_2)^{m_2}\cdots(x-\lambda_r)^{m_r}$,则:

$$\varphi$$
 可对角化 \iff $\forall \lambda_i, \dim V_{\lambda_i} = \dim \ker_{\psi_{\lambda_i}} = m_i$

定理23的证明:

(1) φ 对角化 $\Longrightarrow \chi_{\varphi}(x)$ 且 dim $V_{\lambda_i} = m_i$: 设 φ 在基 $\vec{v}_0 = [v_1, ..., v_n]^T$ 下对角化,则

$$M_{\varphi,\vec{v_0}} = \operatorname{diag}(a_{11},...,a_{nn}) \Longleftrightarrow \varphi(v_i) = a_{ii}v_i$$

故 a_{ii} 是特征值, v_i 是对应的特征向量。设 $\{\lambda_1,...,\lambda_r\}$ 是 $\{a_{11},...,a_{nn}\}$ 中的所有不同元素 $(r \le n)$,记 $V^j = \text{Span}\{v_i \mid a_{ii} = \lambda_i\}, j = 1, 2, ..., r$,记 $m_i = \dim V^j$,则:

$$\chi_{\varphi}(x) = (x - a_{11})(x - a_{22}) \cdots (x - a_{nn}) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_r)^{m_r}$$

再说明 $V^j = V_{\lambda_i}$:

① $V_{\lambda_i} \subseteq V^j$:

 $V=\operatorname{Span}\{v_1,...,v_n\}=V^1\oplus\cdots\oplus V^r$,设 $v\in V_{\lambda_i}=\{v\in V\mid \varphi(v)=\lambda_iv\}\subseteq V$,设 $v=u_1+\cdots u_r$ 且 $u_j\in V^j$,由 $\varphi(v)=\lambda_iv$ 得:

$$\varphi(v) = \varphi(u_1 + \dots + u_r) = \varphi(u_1) + \dots + \varphi(u_1) \stackrel{V^j \subseteq V_{\lambda_j}}{=} \lambda_1 u_1 + \dots + \lambda_r u_r = \lambda_i v = \lambda_i (v_1 + \dots + v_r)$$

$$\iff (\lambda_1 - \lambda_j) u_1 + \dots + (\lambda_r - \lambda_j) u_r = 0$$

根据定理22,推出 $\forall k \in \{1,...,r\} \setminus \{j\}$, $u_k = 0$,于是 $v = u_j \in V^j \Longrightarrow V_{\lambda_j} \subseteq V^j$ ② $V_{\lambda_j} \subseteq V^j$ 验证定义即知成立,略。

(2) $\chi_{\varphi}(x)$ 且 dim $V_{\lambda_i} = m_i \Longrightarrow \varphi$ 对角化:

$$\chi_{0}(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_r)^{m_r}$$

根据定理22, $V_{\lambda_1} + \cdots + V_{\lambda_r}$ 构成直和,且 dim $(V_{\lambda_1} + \cdots + V_{\lambda_r}) = \lambda_1 + \cdots + \lambda_r = m_1 + \cdots + m_r = \deg \chi_{\varphi} = \dim V$,故 $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r}$,取每个 V_{λ_i} 的一组基 \mathcal{B}_i ,则 $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$ 构成 V 的矩阵,由于 V_{λ_i} 是

不变的 (有嵌入), 故 φ 在此基下的矩阵:

$$M_{\varphi} = \begin{bmatrix} \lambda_1 I & 0 & \cdots & 0 \\ 0 & \lambda_2 I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r I \end{bmatrix}$$

也即 φ 在此基下对角化,证毕。

线性算子对角化的方法:

把一个线性算子 $\varphi \in \mathcal{L}$ 对角化,就是要找由其特征向量构成的一组基,因此需要解 φ 的特征值,并根据矩阵方程 (作列初等变换),求取其对应的特征向量 (找到线性无关的特解即可),最后由定理得到对角化后的矩阵为:

$$M_{\varphi} = \begin{bmatrix} \lambda_1 I & 0 & \cdots & 0 \\ 0 & \lambda_2 I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r I \end{bmatrix}$$

借助线性算子对角化,我们可以得到原矩阵的另一种表达式,进一步还可以方便地计算原矩阵的幂 (比如用于数列通项的求解)。

Theorem. 24 (不变子空间与对角化):

设 $\varphi \in \mathcal{L}(V)$ 且可对角化, $W \in V$ 关于 φ 不变的子空间。记 φ 在 W 上的限制为 $\varphi|_{W}$,则:

$$\varphi|_W \in \mathcal{L}(W)$$
 且 $\varphi|_W$ 可对角化

定理24的证明:

W 关于 φ 不变, 取 W 的一组基扩充为 V 的一组基使得 φ 的矩阵形如:

$$A = \begin{bmatrix} A_1 & O \\ A_2 & A_3 \end{bmatrix}$$

其中 A_1 是 $\varphi|_W$ 的矩阵,于是

$$\mu_{\varphi}(A) = \begin{bmatrix} \mu_{\varphi}(A_1) & O \\ * & \mu_{\varphi}(A_3) \end{bmatrix} = 0$$

 $\implies \mu_{\varphi}(A_1) = 0 \implies \mu_{A_1} \mid \mu_{\varphi} \;, \; \; \text{m} \; \varphi \; \text{可对角化等价于} \; \mu_{\varphi} \; \text{无重因式}$

 $\Longrightarrow \mu_{A_1}$ 无重因式 $\Longleftrightarrow \varphi|_W$ 可对角化,证毕。

Theorem. 25 (Skolem-Noether):

设 $0 \neq \varphi \in \mathcal{L}(V)$ 満足 $\varphi(AB) = \varphi(A)\varphi(B)$, $\forall A, B \in M_{n \times n}(\mathbb{F})$, 也即 φ 是同态线性算子, 则:

$$\exists T \in M_{n \times n}(\mathbb{F}) \text{ s.t. } \varphi(A) = TAT^{-1}, \forall A \in M_{n \times n}(\mathbb{F})$$

Homework 7.6,证明详见"习题课 7.pdf"。

Theorem. 26 (算子积的特征多项式):

 $\forall \varphi, \psi \in \mathcal{L}(V)$, \overline{q} :

$$\chi_{\varphi\psi}(x) = \chi_{\psi\varphi}(x)$$

证明 $\forall A, B \in M_{n \times n}(\mathbb{F})$, $|AB - xI_n| = |BA - xI_n|$ 即可证明此定理。

对偶算子:

设 $\varphi \in \mathcal{L}(V)$, 定义 φ 对应的对偶算子 $\varphi^* : V^* \longmapsto V^*$ 为:

$$\varphi^*(f) = f\varphi \,, \ \forall f \in V^*$$

也即 $\forall v \in V$, $(\varphi^*(f))(v) = f\varphi(v) = f(\varphi(v))$, 且 $\varphi^* \in \mathcal{L}(V^*)$ 。

对偶算子的一个应用是证明具有不变超平面的充分条件: 设 $\varphi^* \in \mathcal{L}(V^*)$ 且 φ^* 有非零特征值 λ (易证 φ^* 在基下的矩阵是 φ 矩阵的转置),对应的特征向量为 f。令 $U = \{v \in V \mid f(v) = 0\}$,则 $\forall u \in U$, $f(\varphi(u)) = (\varphi^*(f))(u) = \lambda f(u) = 0 \Longrightarrow \varphi(u) \in U$,因此 $U \in V$ 余维数为 1 的、不变的子空间 (即不变的超平面)

另外,我们有:

$$(\varphi\psi)^* = \psi^*\varphi^*$$

于是映射 $\varphi \mapsto \varphi^*$ 构成一个代数反同态。

对偶算子的矩阵:

设 $\vec{v}_0 = [v_1, ..., v_n]^T$ 是 V 的一组基,对应的 $\vec{v}^0 = [v^1, ..., v^n]^T$ 是 V^* 的一组基,则有:

$$M_{\varphi^*,\vec{v}^0} = M_{\varphi,\vec{v}_0}^{\mathbf{T}}$$

由此可说明映射 $\varphi \mapsto \varphi^*$ 是一个代数同构。

2.4 Jordan 标准型

本节我们总假设 $\mathbb{F} = \mathbb{C}$ 。

Theorem. 27 (Hamilton-Cayley Theorem):

设V 是 \mathbb{C} 上的向量空间且 $\varphi \in \mathcal{L}(V)$,则:

$$\chi_{\varphi}(\varphi) = |xI_n - M_{\varphi, \vec{u}_0}|_{x = \omega} = 0$$

广义特征子空间(根子空间):

设 φ 的特征多项式 $\chi_{\varphi}(x)=(x-\lambda_1)^{m_1}(x-\lambda_2)^{m_2}\cdots(x-\lambda_r)^{m_r}$, λ_i 为 φ 的特征值, φ 的特征值为 λ_i 的广义特征子空间:

$$V(\lambda_i) = \{ v \in V \mid \exists k \in \mathbb{N} \notin (\varphi - \lambda_i)^k(v) = 0 \}$$

容易验证 $V(\lambda_i)$ 是关于 φ 不变的。

Theorem. 28 (线性空间的广义特征子空间分解):

设 $\varphi \in \mathcal{L}(V)$, $\lambda_1, ..., \lambda_r$ 为 φ 所有不同特征值,则:

$$V = V(\lambda_1) \oplus V(\lambda_2) \oplus \cdots \oplus V(\lambda_r)$$
, $\coprod \dim V(\lambda_i) = m_i$

Jordan 块:

设 φ 满足 r=1 且 $(\varphi-\lambda)$ 的幂零指数是 n,则 $\chi_{\varphi}(x)=(x-\lambda)^{m}$ 。由定理27、定理28, $m=n=\dim V$,存在 v_{1} 使得 $(\varphi-\lambda)^{n-1}(v_{1})\neq 0$,且 φ 在基 $\{v_{1},(\varphi-\lambda)(v_{1}),...,(\varphi-\lambda)^{n-1}(v_{1})\}$ 下的矩阵为:

$$J_n(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}_{n \times n}$$

称 $J_n(\lambda)$ 是特征值为 λ 的 n 阶 Jordan 块。

循环子空间:

设 $V \in \mathbb{F}$ 上的线性空间且 $\varphi \in \mathcal{L}(V)$, 定义由 v 生成的、关于 φ 的循环子空间:

$$\mathbb{F}[\varphi]v = \operatorname{Span}\left\{\varphi^i(v) \mid i \in \mathbb{N}\right\} = \operatorname{Span}\left\{\varphi^0(v), \varphi(v), \varphi^2(v), \ldots\right\}$$

容易验证 $\mathbb{F}[\varphi]v$ 关于 φ 不变。

Theorem. 29 (幂零算子可诱导循环分解):

设 ψ 是 V 上的幂零算子,令 $t=\dim\ker_{\psi}$,则存在线性无关的 $v_1,...,v_t\in V$ 使得:

$$V = \mathbb{C}[\psi]v_1 \oplus \cdots \oplus \mathbb{C}[\psi]v_t$$
,且记 $k_j = \min\{k \mid \psi^k(v_j) = 0\}$,则有 $\dim V = \sum_{j=1}^t k_j$

其中 $\mathbb{C}[\psi]v_j = \operatorname{Span}\left\{\psi^0(v_j), \psi(v_j), ..., \psi^{k_j-1}(v_j)\right\}$ 是由 v_j 生成的关于 ψ 的循环子空间。

定理29的证明:

对 $\dim V=n$ 归纳,当 n=0,1 时显然成立,假设结论对 < n 成立:记 $W=ker_{\psi}=V_{\lambda}=\{v\in V\mid \psi(v)=0\}$,考虑 V/W 到 V/W 的映射:

$$\tilde{\psi}: v + W \longmapsto \psi(v) + W$$

由于 $\dim V/W = \dim V - \dim W = \dim \operatorname{Im}(\psi)$, ψ 幂零因此 $\tilde{\psi}$ 也幂零 $\Longrightarrow \dim \operatorname{Im}(\psi) < \dim V = n$ 。根据假设,存在 $\overline{v}_1,...,\overline{v}_{\tilde{t}}$, $\tilde{k}_1,...,\tilde{k}_{\tilde{t}}$ 使得:

$$V/W = \mathbb{C}[\tilde{\psi}](\overline{v}_1) \oplus \cdots \oplus \mathbb{C}[\tilde{\psi}](\overline{v}_{\tilde{t}}) = \bigoplus_{j=1}^{\tilde{t}} \operatorname{Span} \left\{ \overline{\psi^0(v_j)}, ..., \overline{\psi^{\tilde{k}_j-1}(v_j)} \right\} \;, \quad \text{\underline{H}} \quad \sum_{j=1}^{\tilde{t}} \tilde{k}_j = \dim V/W$$

又
$$\tilde{k}_j = \min\{k \mid (\tilde{\psi})^k(\overline{v}_j) = \overline{\psi^k(v)} = \overline{0} \sim \psi^k(v) \in W\} \Longrightarrow k_j = \tilde{k}_j + 1$$
,于是:

$$V=W\oplus\bigoplus_{j=1}^{\tilde{t}}\operatorname{Span}\left\{\psi^0(v_j),...,\psi^{k_j-2}(v_j)\right\}\;,\;\; \textstyle \coprod \; \sum_{j=1}^{\tilde{t}}k_j+(\dim W-\tilde{t})=n$$

考虑 $\{\psi^{\tilde{k}_1}(v_1),...,\psi^{\tilde{k}_{\tilde{t}}}(v_{\tilde{t}})\}\subset W$ 是否线性相关,假设 $\exists a_1,...,a_{\tilde{t}}$ 使:

$$\begin{split} 0 &= a_1 \psi^{\tilde{k}_1}(v_1) + \cdots a_{\tilde{t}} \psi^{\tilde{k}_{\tilde{t}}}(v_{\tilde{t}}) = \psi \left(a_1 \psi^{k_1 - 2}(v_1) + \cdots a_{\tilde{t}} \psi^{k_{\tilde{t} - 2}}(v_{\tilde{t}}) \right) \\ &\Longrightarrow a_1 \psi^{k_1 - 2}(v_1) + \cdots a_{\tilde{t}} \psi^{k_{\tilde{t} - 2}}(v_{\tilde{t}}) \in \ker_{\psi} = W \\ &\iff \exists \ w \in W, \ s.t. \ \ w = a_1 \psi^{k_1 - 2}(v_1) + \cdots a_{\tilde{t}} \psi^{k_{\tilde{t} - 2}}(v_{\tilde{t}}) \\ &\Longrightarrow w \in \bigoplus_{j = 1}^{\tilde{t}} \operatorname{Span} \left\{ \psi^0(v_j), ..., \psi^{k_j - 2}(v_j) \right\} \Longrightarrow a_1 = \cdots a_{\tilde{t}} = 0 \end{split}$$

故为线性无关组,将其扩充为 W 的一组基 $\{\psi^{\tilde{k}_1}(v_1),...,\psi^{\tilde{k}_{\tilde{t}}}(v_{\tilde{t}}),w_{\tilde{t}+1},...,w_{\dim W}\}$,此时 $\forall j \in \{\tilde{t}+1,...,\dim W\},\ k_j=1$,且:

$$V=\bigoplus_{j=1}^{\tilde{t}}\operatorname{Span}\left\{\psi^0(v_j),...,\psi^{k_j-1}(v_j)\right\}\oplus\bigoplus_{j=\tilde{t}+1}^{t=\dim W}\operatorname{Span}\left\{w_j\right\}\;,\;\; \textstyle \coprod\; \sum_{j=1}^{t}k_j=n$$

也即:

$$V = \bigoplus_{j=1}^{\tilde{t}} \mathbb{C}[\psi] v_j \oplus \bigoplus_{j=\tilde{t}+1}^{t=\dim W} \mathbb{C}[\psi] v_j = \bigoplus_{j=1}^{t} \mathbb{C}[\psi] v_j \;, \;\; \text{\mathbb{H}} \; \sum_{j=1}^{t} k_j = n$$

证毕。

Theorem. 30 (算子必有 Jordan 标准型):

设 $\varphi \in \mathcal{L}(V)$,则存在V的一组基使得 φ 在其下的矩阵为:

$$J_{\varphi} = \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{t_{i}} J_{k_{ij}}(\lambda_{i}) = \begin{bmatrix} J_{1} & O & \cdots & O \\ O & J_{2} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_{r} \end{bmatrix}_{n \times n}, J_{i} = \begin{bmatrix} J_{k_{i1}}(\lambda_{i}) & O & \cdots & O \\ O & J_{k_{i2}}(\lambda_{i}) & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_{k_{it_{i}}}(\lambda_{i}) \end{bmatrix}_{m_{i} \times m_{i}}$$

称为 φ 的 Jordan 标准型,相应的基称为 Jordan 基。

并且,设以 λ_i 为特征值的 Jordan 块中的最大阶是 k_i ,则 φ 的极小多项式为:

$$\mu_{\varphi}(x) = (x - \lambda_1)^{k_1} \cdots (x - \lambda_r)^{k_r}$$

其中 $\chi_{\varphi}(x) = (x - \lambda_1)^{m_1}(x - \lambda_2)^{m_2} \cdots (x - \lambda_r)^{m_r}$, $t_i = \dim \ker_{\psi_i} = \dim V_{\lambda_i}$, $k_{ij} = \min\{k \mid \psi_i^k(v_j) = 0\}$, $\sum_{j=1}^{t_i} k_{ij} = m_i = \dim V(\lambda_i)$, $\sum_{i=1}^r m_i = n = \dim V$ 。

对于 J_i ,可以简记其分为"维数个部分"(由 dim V_{λ_i} 个 Jordan 块构成),每个 Jordan 块的大小是"ij 幂零指数"(即 k_{ij} ,是 $\psi_i = \varphi - \lambda_i e$ 对 v_i 的幂零指数)。

另外,需要特别注意:

$$V$$
 的基 $\vec{v}_0 = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in {}^nV$, V 的元素 $v = \vec{x} \cdot \vec{v}_0 \in V$, 元素的坐标 $\vec{x} = [x_1, ..., x_n] \in \mathbb{F}^n$

矩阵 A 对应的算子 φ_A 定义为: $\varphi_A(v) = \vec{x}A\vec{v}_0$

定理30的证明:

(1) 根子空间分解:

设 $\chi_{\varphi}(x) = (x - \lambda_1)^{m_1}(x - \lambda_2)^{m_2} \cdots (x - \lambda_r)^{m_r}$,其中 $\lambda_1, ..., \lambda_r$ 为 φ 的所有不同特征值。由定理28,我们有:

$$V = V(\lambda_1) \oplus \cdots \oplus V(\lambda_r)$$

设 \mathcal{B}_i 为 $V(\lambda_i)$ 的一组基,则 $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$ 构成 V 的一组基, φ 在该基下的矩阵 $A = A_1 \dotplus \cdots \dotplus A_r$ (因 为广义特征子空间是不变的)。因此只需要证明,限制在 $V(\lambda_i)$ 上的映射 $\varphi|_{V(\lambda_i)}$ 有 Jordan 标准型。

(2) 每个根子空间上有标准型:

对根子空间 $V(\lambda_i)$,令 $\psi_i = \varphi|_{V(\lambda_i)} - \lambda_i e$,由定理27, $\chi_{\varphi|_{V(\lambda_i)}}(\varphi|_{V(\lambda_i)}) = \psi_i^{\dim V(\lambda_i)} = \psi_i^{m_i} = 0$,故 ψ 是 $V(\lambda_i)$ 上的幂零算子。由定理29,记 $t_i = \dim \ker_{\psi_i}$,则存在 $\{v_{i1},...,v_{it_i}\} \subset V(\lambda_i)$ 使得:

$$V(\lambda_i) = \bigoplus_{j=1}^{t_i} \mathbb{C}[\psi_i] v_{ij} , \quad \mathbb{H}. \sum_{j=1}^{t_i} k_{ij} = \dim V(\lambda_i) = m_i$$

又 $\mathbb{C}[\varphi|_{V(\lambda_i)}]v = \mathbb{C}[\psi_i]v$,因此 $V(\lambda_i) = \bigoplus_{j=1}^{t_i} \mathbb{C}[\psi_i]v_{ij}$,且 $\varphi|_{V(\lambda_i)}$ 在基 $\{\psi^0(v_1),...,\psi^{k_{i_1}-1}(v_1)\}\cup \cdots \cup \{\psi^0(v_{t_i}),...,\psi^{k_{it_i}-1}(v_{t_i})\}$ 下的矩阵是:

$$J_i = J_{k_{i1}}(\lambda_i) \dotplus \cdots \dotplus J_{k_{it_i}}(\lambda_i)$$

(3) 综合:

综合 (1)(2) 得到:

$$J = \bigoplus_{i=1}^{r} J_i = \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{t_i} J_{k_{ij}}(\lambda_i)$$

其中 $t_i = \dim \ker_{\psi_i} = \dim V_{\lambda_i}$, $k_{ij} = \min\{k \mid \psi_i^k(v_j) = 0\}$, $\sum_{j=1}^{t_i} k_{ij} = m_i = \dim V(\lambda_i)$, $\sum_{i=1}^r m_i = n = \dim V$ 。 证毕。

https://www.zybuluo.com/ybtang21c/note/1827223 (求 Jordan 标准型的方法及例子)

https://zhuanlan.zhihu.com/p/553660985 (Jordan 标准型理论概要)

https://zhuanlan.zhihu.com/p/75745789 (Jordan 标准型的循环子空间证明)

Theorem. 31 (算子的 Jordan 标准型唯一):

设 $\varphi \in \mathscr{L}_{\mathbb{C}}(V)$,则:

除小 Jordan 块 $J_{k_{ij}}(\lambda_i)$ 的次序外, φ 的 Jordan 标准型是唯一的。

算子 Jordan 化并求 Jordan 基:

依据定理29,定理30,我们给出将线性算子 Jordan 化的系统方法: 设算子 $\varphi \in \mathcal{L}(V)$, $A \in \varphi$ 在某组基下的矩阵 (一般认为是标准正交基),则 Jordan 化步骤如下:

- ① 求特征值: $\chi_{\varphi}(x) = |xI_n M_{\varphi,\vec{u}_0}| = (x \lambda_1)^{m_1} \cdots (x \lambda_r)^{m_r} \Longrightarrow V = V(\lambda_1) \oplus \cdots \oplus V(\lambda_r)$ 对于每个 λ_i ,令 $\psi = \varphi \lambda e_V$ 。
- ② 确定 $V(\lambda_i)$ 分为几部分: 求出 $\operatorname{rank} \psi = \operatorname{rank} (A \lambda I)$,则"份数" $= \dim \ker_{\psi} = n \operatorname{rank} \psi$ 。"份数" = 几何重数 = 特征子空间维度
- ③ 确定 $V(\lambda_i)$ 每部分的维数: 先根据 m_i 和 $\dim \ker_{\psi}$ 判断是否能确定维数, 若不能, 进一步计算 ψ^2, ψ^3, \dots , 直至确定各部分维数。

④ 确定 $V(\lambda_i)$ 的所有小 Jordan 块: 设某份维数是 k,找到 $v \in V$ 使得:

$$\begin{cases} v \notin \ker_{\psi^{k-1}} \iff \vec{x}(A - \lambda I)^{k-1} \neq 0 \\ v \in \ker_{\psi^k} \iff \vec{x}(A - \lambda I)^k = 0 \end{cases}$$

即得到基 $\{v, \psi(v), ..., \psi^{k-1}(v)\}$ 下的一个小 Jordan 块。改变 k 为下一份的值并重复此步骤,得到 $V(\lambda_i)$ 的所有小 Jordan 块。

⑤ 将所有根子空间的基合并,得到最终结果。

Theorem.32 (极小多项式):

设矩阵 $A = A_1 \dotplus A_2 \dotplus \cdots \dotplus A_m$, 则:

$$\mu_A = l.c.m(\mu_{A_1}, ..., \mu_{A_m})$$

对于线性算子 φ ,考虑到算子在不同基下的特征多项式不变,可借助 Jordan 标准型求此算子的最小多项式。特别地,如果算子在基下的矩阵就是矩阵直和,则省去了 Jordan 分解的步骤。

Theorem.33 (特征多项式的性质):

设 $\varphi \in \mathcal{L}(V)$ 的特征多项式为

$$\chi_{\varphi}(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_r)^{m_r} = x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

由韦达定理, 我们有:

$$a_{n-1} = (-1)^1 \left(m_1 \lambda_1 + \dots + m_r \lambda_r \right)$$

$$\vdots$$

$$a_0 = (-1)^n \lambda_1^{m_1} \cdots \lambda_r^{m_r} \Longrightarrow \det(M_\varphi) = \lambda_1^{m_1} \cdots \lambda_r^{m_r}$$

Theorem. 34 (幂零矩阵等价于仅有零特征值):

设 $A \in M_{n \times n}(\mathbb{C})$,则:

A 为幂零矩阵 \iff A 有且仅有零特征值

Homework 10.1

定理34的证明:

(1) 幂零 ⇒ 零特征值:

 $\exists m \in \mathbb{N}_+$ 使得 $A^m = 0 \Longrightarrow |A^m| = |A|^m = 0 \Longrightarrow |A| = 0 \Longrightarrow \chi_{\varphi_A}(0) = |0I - A| = |A| = 0 \Longrightarrow 0$ 为 A 的特征值。设 λ 为 A 的任一特征值, $0 \neq v_\lambda \in V(\lambda)$ 为一特征向量,则 $varphi^m(v) = \lambda^m v = 0 \Longrightarrow \lambda = 0$,因此 A 有且仅有零特征值。

(2) 幂零 \iff 零特征值: A 有且仅有零特征值, 因此特征多项式 $\chi_{\varphi}(x) = (x-0)^n = x^n$, 由 Hamilton-Cayley Theorem, $\chi_{\varphi}(\varphi) = 0 \Longrightarrow A^n = 0 \Longrightarrow A$ 为幂零矩阵。

第3章 带有数乘的线性空间:

3.1 欧几里得空间 (Euclidean Space)

欧几里得空间:

一个**ℝ**上的线性空间 V 称为欧式空间如果它带有正定的双线性型 $f: V \times V \longrightarrow \mathbb{R}$

$$f:(u,v)\longmapsto (u\mid v)\;,\;\;u,v\in V$$

称为上面的映射为欧内积,并且有相关概念:

- ① 模/长度: $||u|| = \sqrt{(u \mid u)}$
- ② 距离: $d_{uv} = ||u v|| = \sqrt{(u v \mid u v)}$
- ③ 正文: $(u \mid v) = 0 \Longleftrightarrow u \perp v$
- ④ 夹角: $\theta = \frac{(u|v)}{\|u\| \cdot \|v\|}$
- ⑤ 单位: $||u|| = \sqrt{(u \mid u)} = 1$
- ⑥ 标准正交: 一组正交向量 $\{v_1, ... v_r\}$ 称为标准的如果 v_i 是单位的, i=1,...,r。

欧内积是一个正定的对称双线性型,有其对应的二次型。

例如:通常的 n 维坐标空间 \mathbb{R}^n 中,我们定义的内积是 $f(u,v)=\vec{x}I_n\vec{y}^T=\vec{x}\cdot\vec{y}^T=\sum_{i=1}^nx_iy_i$,也就是 $(\vec{x}\mid\vec{y})=$

$$[x_1...x_n] \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i, \ \vec{x} = [x_1...x_n], \ \vec{y} = [y_1...,y_n] \in \mathbb{R}^n; \ [a,b] \ \bot$$
的实连续函数空间 $C([a,b])$ 内积定义为 $(u \mid v) = [y_1...y_n]$

 $\int_a^b u(x)v(x)\mathrm{d}x,\ u(x),v(x)\in C([a,b])$

Theorem. 35 (Cauchy-Schwarz Inequality):

设 V 是欧式空间, $u,v \in V$, 则有:

 $|(u \mid v)| \le ||u|| \cdot ||v||$, 当且仅当 u, v 线性相关时取等

推论:

$$||u \pm v|| \le ||u|| + ||v||$$

Theorem. 36 (欧式空间必有标准正交基):

设 V 为有限维欧式空间, $\dim V = n$,则:

$$V$$
 存在正交标准基 $\vec{u}_0 = [u_1, ..., u_n]^T$

定理36的证明:

(1) 引理 (施密特正交化):

设
$$0 \neq v_0, v_1, v_2, ..., v_r \in V$$
, 令 $u = v_0 - \frac{(u|v_1)}{(v_1|v_1)} \cdot v_1 - \cdots - \frac{(u|v_r)}{(v_r|v_r)} \cdot v_r$,则:

$$u \perp v_i, i = 1, ..., r$$

(2) 构造标准正交基:

设 $\vec{v}_0 = [v_1, ..., v_n]^T$ 是 V 的一组基,考虑施密特正交化。令:

$$u_1 = v_1$$
, $u_2 = v_2 - \frac{(v_2 \mid u_1)}{\|u_1\|^2} \cdot u_1$, $u_n = v_r - \sum_{i=1}^{n-1} \frac{(v_n \mid u_i)}{\|u_i\|^2} \cdot u_i$

则 $\vec{u}_0 = [u_1, ..., u_n]^T$ 构成一组正交基,再做标准化:

$$w_i = \frac{u_i}{\|u_i\|}, \ i = 1, ..., n$$

即可得到一组标准正交基 $\vec{w}_0 = [w_1, ..., w_n]^T$ 。证毕。

Theorem. 37 (欧式子空间与其补正交):

设 V 为有限维欧式空间, $\dim V = n$,U 为 V 的子空间, \overline{U} 是 U 的补空间,则:

推论①(任意标准正交组可扩充):

任意一组标准正交向量 $\{v_1, ..., v_r\}$ 可扩充为 V 的标准正交基 $\{v_1, ..., v_r, v_{r+1}, ..., v_n\}$

推论②(向量的基表示):

设
$$\vec{w}_0$$
 为 V 的标准正交基,则: $v = \sum_{i=1}^n \langle v \mid w_i \rangle w_i$

推论③(帕塞瓦尔恒等式): 设 $\{w_1, ... w_n\}$ 是 V 的标准正交基,则

$$\sum_{i=1}^{n} (v \mid w_i)(w_i \mid u) = (v \mid u)$$

对偶欧式空间:

设 V 为欧式空间, $u \in V$, 定义 $\Phi_u(v) \in V^*$ 为:

$$\Phi_u(v) = (u \mid v), \ \forall \ v \in V$$

定义 V* 上的内积为:

$$(\Phi_u \mid \Phi_v)^* = (u \mid v)$$

容易验证它构成一个正定的对称双线性型。

另外,映射 $\varphi: u \longmapsto \Phi_u$ 给出了 V 到 V^* 的线性同构,进一步地, φ 构成欧几里得同构。线性 + 同构 + 保持内积运算

伴随算子:

设 $\varphi \in \mathcal{L}(V)$, 定义 φ 的伴随算子 (adjoint operator) $\varphi^* \in \mathcal{L}(V)$ 为:

$$(\varphi^*(u) \mid v) = (u \mid \varphi(v)), \ \forall u, v \in V$$

设 \vec{w}_0 是任意一组标准正交基,则有:

$$M_{\varphi^*,\vec{w}_0} = M_{\varphi,\vec{w}_0}^T$$

一般情形: $M_{\varphi^*,\vec{v}_0} = AA^T M_{\varphi,\vec{v}_0}^T (A^{-1})^T A^{-1}$

Theorem. 38 (自伴随算子):

 φ 为 V 的自伴随线性算子如果

 $\varphi^* = \varphi \Longleftrightarrow V = \operatorname{Im} \varphi \oplus \ker \varphi \Longleftrightarrow \varphi$ 在某组标准正交基下的矩阵是对称矩阵

欧算子(欧自同构):

在本笔记中,我们将"欧几里得自同构"称为"欧算子",这是为了突出其与酉空间中"酉算子"的对应关系,将酉空间中的"Hermitian 算子"也称为"自伴随算子",这是为了突出其和欧空间中"自伴随算子"的对应关系。

设 V 是欧式空间,线性算子 φ 称为欧的如果:

$$(\varphi(u)|\varphi(v)) = (u \mid v), \ \forall u, v \in V$$

更常见的名字为欧几里得自同构。设欧算子的矩阵为A,有推论:

$$A$$
 为欧矩阵 \iff $AA^T = I_n \iff A^{-1} = A^T \iff A$ 为正交矩阵 φ 为欧算子 $\iff \varphi \varphi^* = e_V \iff \varphi^{-1} = \varphi^* \iff \varphi$ 为正交变换

例如,设 $\{v_1,...,v_n\}$, $\{u_1,...,u_n\}$ 分别是 V 和 U 的一组标准正交基,定义线性映射 $\varphi:v_i=u_i,\ i=1,...,n$,则 φ 构成一个欧几里得同构。

欧式空间 V 上的全体自同构 $\mathrm{Aut}_e(V)$ 关于映射的乘积 (复合) 构成群,且映射 $\varphi \longmapsto M_{\varphi,\vec{w}_0}$ 构成 $\mathrm{Aut}_e(V)$ 到正交群 $O_n(\mathbb{R})$ 的群同构。

这是因为在有限维欧式空间 V, $\forall \varphi \in \mathcal{L}(V)$, 有:

$$(\operatorname{Im}\varphi)^{\perp} = \ker \varphi^* \Longrightarrow V = \operatorname{Im}\varphi \oplus (\operatorname{Im}\varphi)^{\perp} = \operatorname{Im}\varphi \oplus \ker \varphi^*$$

3.2 辛空间 (Symplectic Space)

辛空间、辛算子、辛矩阵:

一个线性空间空间 V 称为辛空间如果它带有非退化的斜对称双线性型 (称为辛内积):

$$(u, v) \longmapsto [u \mid v]$$

最常见也是默认的辛内积为:

$$[u \mid v] = \vec{x} J_0 \vec{y}^T, \ \forall \ u, v \in V$$

线性算子 $\varphi \in \mathcal{L}(V)$ 称为辛算子如果:

$$[\varphi(u) \mid \varphi(v)] = [u \mid v] \iff AJ_0A^T = J_0$$
 称为辛矩阵。

由第一章内容, $\dim V = 2m$ 为偶数,且辛内积 $[\cdot \mid \cdot]$ 在某组基 \vec{u}_0 下的度量矩阵为:

$$J_{0} = \begin{bmatrix} [u_{1} \mid u_{1}] & \cdots & [u_{1} \mid u_{2m}] \\ \vdots & \ddots & \vdots \\ [u_{2m} \mid u_{1}] & \cdots & [u_{2m} \mid u_{2m}] \end{bmatrix} = \begin{bmatrix} O & I_{m} \\ -I_{m} & O \end{bmatrix}$$

设辛算子在辛标准基 \vec{u}_0 下的矩阵为 A,则有: $AJ_0A^T = J_0$,并称 A 为辛矩阵。

辛群:

记全体 $2m \times 2m$ 辛矩阵为 $Sp_{2m}(\mathbb{R})$,则 $Sp_{2m}(\mathbb{R})$ 构成 $GL_{2m \times 2m}(\mathbb{R})$ 的一个子群,称为辛群。并且,设 $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$,则有:

$$AJ_0A^T = J_0 \Longleftrightarrow \begin{cases} A_{11}A_{22}^T - A_{12}A_{21}^T = I_{2m} \\ (A_{11}A_{12}^T)^T = A_{11}A_{12}^T \\ (A_{21}A_{22}^T)^T = A_{21}A_{22}^T \end{cases}$$

全体辛算子关于映射的乘积构成一个群,记为 Sp(V),且映射 $\varphi \mapsto M_{\varphi,\vec{u}_0}$ 是 Sp(V) 到 $Sp_{2m}(\mathbb{R})$ 的同构。

构成辛群是因为对于矩阵 A, B, 我们有结论:

$$AJ_0A^T = J_0 \iff (A^T)J_0(A^T)^T = J_0 \iff (A^{-1})J_0(A^{-1})^T = J_0$$

 $A, B \in Sp_{2m}(\mathbb{R}) \implies AB \in Sp_{2m}(\mathbb{R})$

由等价定义,我们可以构造一些辛矩阵,如下:

$$\begin{bmatrix} A & O \\ O & (A^T)^{-1} \end{bmatrix} \in Sp_{2m}(\mathbb{R}) , \ \forall A \in GL_n(\mathbb{R})$$

$$\begin{bmatrix} I_m & A \\ O & I_m \end{bmatrix} , \begin{bmatrix} I_m & A \\ O & I_m \end{bmatrix} \in Sp_{2m}(\mathbb{R}) , \ \forall A \in GL_n(\mathbb{R})$$

可以证明辛群是由上述矩阵生成的。特别地,辛矩阵行列式为 1 (注意不是 -1),也即 $Sp_{2m}(\mathbb{F}) \leq SL_{2m}(\mathbb{F})$ 。

Theorem.39 (辛算子的特征多项式):

设 V 是有限维辛空间, $\varphi \in Sp_{2m}(\mathbb{R})$, 则:

$$\chi_{\varphi}(x) = x^{2m} \chi_{\varphi}(x^{-1})$$

此定理可以导出一些与辛算子特征值有关的结论。在欧空间中,我们类似地有: $\chi_{\varphi}(x) = x^n \chi_{\varphi}(x^{-1})$,详见 Homework 11.6

辛空间与欧空间的联系:

设 $V = \mathbb{R}^{2m}$, \vec{u}_0 是 V 的一组基, 定义辛内积和欧内积, 定义算子 \mathcal{J} :

$$[u \mid v] = \sum_{i=1}^{m} (x_i y_{m+i} - x_{m+i} y_i) , \quad (u \mid v) = \sum_{i=1}^{2m} x_i y_i , \quad \forall u = \vec{x} \cdot \vec{u}_0, \quad v = \vec{y} \cdot \vec{u}_0$$
$$\mathcal{J}(u) = \mathcal{J}(\vec{x}) \cdot \vec{u}_0 = [x_{m+1}, ..., x_{2m}, -x_1, ..., -x_m] \cdot \vec{u}_0 , \quad \forall u = \vec{x} \cdot \vec{u}_0$$

则 $(V, [\cdot | \cdot])$ 构成辛空间, $(V, (\cdot | \cdot))$ 构成欧空间, $\mathcal{J} \in Sp_{2m}(\mathbb{R})$ 。且 $[\cdot | \cdot]$ 在基 \vec{u}_0 下的度量矩阵为 J_0 , \mathcal{J} 在基 \vec{u}_0 下的矩阵为 $-J_0$, \mathcal{J} 构成一个辛算子。

另外,容易验证 $\mathcal{J}^2 = -e_V$, $[u \mid v] = (u \mid \mathcal{J}(v))$ 。

https://zhuanlan.zhihu.com/p/606731586

辛子空间的正交空间:

设V是有限维辛空间,W是V的子空间,则:

$$\dim W + \dim W^{\perp} = \dim V \;, \;\; (W^{\perp})^{\perp} = W$$

$$V = W \oplus W^{\perp} \Longleftrightarrow W \cap W^{\perp} = 0 \Longleftrightarrow W \; 构成辛空间 \Longleftrightarrow W^{\perp} \; 构成辛空间$$

与欧空间类似,其中 $W^\perp=\{v\in V\mid [v\mid w]=0,\ \forall\, w\in W\}$ 。注意: 欧空间中一定有 $V=W\oplus W^\perp$ 但辛空间不一定。 W 称为辛子空间如果 $W\oplus W^\perp$,称为迷向子空间如果 $W\subseteq W^\perp$,称为 Larange 子空间如果 $W=W^\perp$ 。

且辛迷向的维数 $\leq \frac{\dim V}{2}$ 。 这是因为 $W \perp J(W) \Longrightarrow J(W) \subseteq W^{\perp} \Longrightarrow 2\dim W = \dim W + \dim \mathcal{J}(W) \leq \dim W + \dim W^{\perp} = \dim V$ 。

这个例子表明,子空间(满足封闭性)并不一定能继承原空间的内积成为新的内积空间。

3.3 酉空间 (Unitary Space)

欧空间 V 是 \mathbb{R} 上的,带有正定双线性型 $f:V\times V\longrightarrow\mathbb{R}$ 的线性空间。而我们希望将其拓展到 \mathbb{C} 上,由此产生了 \mathbb{C} 上的,带有正定 Hermitian 型 $f:V\times V\longrightarrow\mathbb{C}$ 的线性空间,称为酉空间。

Hermitian 型:

映射 $f: V \times V \longrightarrow \mathbb{C}$ 称为 Hermitian 型如果:

- ① 共轭对称 (Hermitian 对称): $f(u,v) = \overline{f(v,u)}$, $\forall u,v \in V$
- ② 左线性: $f(au_1 + bu_2, v) = af(u_1, v) + bf(u_2, v)$, $\forall a, b \in \mathbb{C}$, $u_1, u_2, v \in V$
- ③ 右共轭线性: $f(u, av_1 + bv_2) = \overline{a}f(u, v_1) + \overline{b}f(u, v_2)$, $\forall a, b \in \mathbb{C}$, $u, v_1, v_2 \in V$

对任意 Hermitian 型 f,其在基 \vec{v}_0 下的矩阵 F 满足 $F = F^H \iff G = G^T \perp LH = -H^T$,称为 Her 矩阵。

与欧空间中的实双线性型类似,在酉空间下的坐标空间 \mathbb{C}^n 中,Hermitian 型可表示为:

$$f(u,v) = \vec{x}F\vec{y}^{H} = \vec{x}F\vec{y}^{*}, \ \forall u = \vec{x} \cdot \vec{v}_{0}, \ v = \vec{y} \cdot \vec{v}_{0} \in \mathbb{C}$$

 $F=M_{f,\vec{v}_0}$ 是 f 在基 \vec{v}_0 下的矩阵。双线性型 (包括对称和斜对称) 的伴随是转置 T,Hermitian 型的伴随是共轭转置 H,常统一用 * 表示伴随。

相应地,可以建立 Hermitian 二次型的概念: $q(u) = f(u, u) = \vec{x}F\vec{x}^H$, $\forall u = \vec{x} \cdot \vec{v}_0 \in V$ https://www.zhihu.com/question/533224060/answer/3345977116

Hermitian 矩阵空间与实对称矩阵空间同构,并且很多实对称矩阵(双线性型)的性质、结论都可以直接推广到 Hermitian 矩阵 (Hermitian 型)。下面是一些基本的性质、结论:

自伴随矩阵的性质:

对称双线性型的矩阵,Hermitian 型的矩阵,Hermitian 算子的矩阵都是自伴随矩阵,而自伴随矩阵满足以下性质:

- ① 对角元素为实数: 自伴随矩阵对角元素都是实数,因为它们与自身的共轭相等。
- ② 实特征值: 自伴随矩阵的特征值都是实数。
- ④ 可正交对角化: $\exists G, GG^* = I_n$ 使得矩阵 F 正交对角化: $GFG^{-1} = GFG^* = D$

另有一些结论,例如,正定等价于特征值都大于零、不同基下的矩阵变换等,这里不再提。事实上,可对角化的结论能推广到 ℂ上的正规矩阵,并且是正规矩阵的充分必要条件。

Theorem. 40 (Hermitian 型分解):

设 $f: V \times V \longrightarrow \mathbb{C}$ 为 Hermitain 型,则存在唯一的实对称双线性 g 和唯一的实斜对称双线性型 h,也即唯一的实对称矩阵 G 和唯一的实斜对称矩阵 H,使得:

①
$$f(u,v) = g(u,v) + ih(u,v) \iff \mathbf{F} = \mathbf{G} + i\mathbf{H}$$

② $f(u,v) = g(u,v) + ig(u,iv)$

G为 g 对应的实对称矩阵,H为 h 对应的实斜对称矩阵。①②中的 g 是同一个,且反之也成立,即两者一一对应(<mark>有待考察</mark>)。由 Hermitian 型关于实对称/实斜对称的分解易证,详略。

推论:记全体 Hermitian 矩阵为 $M=\{F\in M_{n\times n}(\mathbb{C})\mid F=F^H\}$,全体实对称矩阵为 $R=\{G\in M_{n\times n}(\mathbb{R})\mid G=G^T\}$,则:

$$M \cong R \iff$$
 Hermitian 型 f 与实对称双线性型 g ——对应

Theorem. 41 (Hermitian 型正定等价条件):

设 Hermitian 型 f = g + ih 在基 \vec{u}_0 下的矩阵为 F = G + iH,则:

$$F$$
 正定 \iff G 正定 \iff $\hat{G} = \begin{bmatrix} G & H \\ H^T & G \end{bmatrix}$ 正定

Hermitian 型 f 称为正定的如果 f(u,u) > 0, $\forall 0 \neq u \in V$, 其中 f(u,u) 必属于 \mathbb{R} .

酉空间 (Unitary Space):

一个 \mathbb{C} 上的线性空间 V 称为酉空间如果它带有正定的 Hermitian 型 $f: V \times V \longrightarrow \mathbb{C}$

$$f:(u,v)\longmapsto\langle\cdot\mid\cdot\rangle$$

称上面的内积为酉内积,并且有相关概念:

- ① 模/长度: $||u|| = \sqrt{\langle u \mid u \rangle}$
- ② 复绝对值: 等同于模
- ③ 正文: $\langle u \mid u \rangle = 0 \Longleftrightarrow u \perp v$
- ④ 夹角: $\theta = \frac{\langle u|u\rangle}{\|u\|\cdot\|v\|}$
- ⑤ 单位: ||u|| = 1
- ⑥ 标准正交: 一组正交向量 $\{v_1,...v_r\}$ 称为标准的如果 v_i 是单位的 ($\|v_i\|=1$), i=1,...,r。

Theorem. 42 (酉空间中的定理):

回想欧空间中出现的定理,很多在有限维酉空间中仍成立,如下:

① Cauchy-Schwarz Inequality:

$$|(u \mid v)| \le ||u|| \cdot ||v||$$
 , 仅线性相关时取等 $\Longrightarrow ||u \pm v|| \le ||u|| + ||v||$

② 施密特正交化:

设
$$0 \neq v_0, v \in V, \ u = v_0 - \frac{\langle v_0 \mid v \rangle}{\|v\|} v, \ \text{则} \ u \perp v \Longrightarrow$$
 任意酉空间存在标准正交基

③ 任意子空间与其正交补构成直和:

$$V = U \oplus U^{\perp} \Longrightarrow 456$$

- ④ 标准基扩充: 任意标准正交组可扩充为 V 的一组标准正交基。
- ⑤ 向量的基表示:

设
$$\vec{w}_0$$
 为 V 的一组标准正交基,则: $v = \sum_{i=1}^n \langle v \mid w_i \rangle w_i$

⑥ 帕塞瓦尔恒等式 (Parseval's Identity):

$$\sum_{i=1}^{n} \langle u \mid w_i \rangle \langle w_i \mid v \rangle = \langle u \mid v \rangle$$

② 自伴随算子 (Hermitian 算子): φ 为 V 的自伴随线性算子 (Hermitian 算子) 如果

$$\varphi^* = \varphi \iff V = \operatorname{Im} \varphi \oplus \ker \varphi \iff \varphi$$
 在某组标准正交基下的矩阵是 Hermitian 矩阵

与欧类似,酉空间中的伴随算子 φ^* 定义为: $\langle \varphi^*(u) \mid v \rangle = \langle u \mid \varphi(v) \rangle$,<mark>这里的*表示 ^H</mark>,容易验证无论欧 or 酉,任意标准正交基 \vec{w}_0 下的矩阵: $M_{\varphi^*,\vec{w}_0} = M^*_{\varphi,\vec{w}_0}$ 。

酉算子、酉矩阵:

线性算子 φ 称为酉的如果:

$$\langle \varphi(u) \mid \varphi(v) \rangle = \langle u \mid v \rangle, \ \forall u, v \in V$$

酉算子 φ 在标准正交基下的矩阵 M_{φ,\vec{w}_0} 称为酉矩阵,构成酉群:

$$U_n(\mathbb{C}) = \{A \mid AA^H = I_n\}$$

 A 为酉矩阵 $\iff AA^* = I_n \iff A^{-1} = A^*$
 φ 为酉算子 $\iff \varphi \varphi^* = e_V \iff \varphi^{-1} = \varphi^*$

← A 是标准正交基之间的转换矩阵。

全体酉算子记为 $U_o(V) \cong U_n(\mathbb{C})$ 。

(可逆)矩阵群 $GL_n(\mathbb{C})$,特殊线性群 $SL_n(\mathbb{R}) = \{A \mid \det A = 1\}$,正交群 $O_n(\mathbb{R}) = \{A \mid AA^T = I_n\}$,正常正交群 $SO_n(\mathbb{R}) = \{A \mid AA^T = I_n, \det A = 1\}$ 。且容易验证 $SO_n(\mathbb{R}) \subseteq O_n(\mathbb{R}) \subseteq U_n(\mathbb{R}) \subseteq U_n(\mathbb{C})$ 。

Theorem. 43 (欧酉矩阵、转换矩阵、标准正交基的等价性):

无论是欧空间还是酉空间,设算子 φ 在某组标准正交基下的矩阵为A,则有:

A 是欧 (酉) 矩阵 \iff A 是某两组标准正交基间的转换矩阵 \iff A 是一组标准正交基

欧酉空间统一:

- ① 内积:本质是正定自伴随矩阵。欧内积是正定对称双线性型,酉内积是正定 Hermitian 型。自伴随算子的矩阵也是自伴随矩阵,其与内积的关系详见下一节:自伴随算子与内积的关系
- ② 自伴随算子:本质是自伴随矩阵。欧中称自伴随算子,酉中称 Hermitain 算子。
- ③ 正交算子: 本质是正交矩阵。欧中称欧几里得同构(或欧算子), 酉中称酉算子。

特别地,算子为正交算子的等价条件是保持内积不变:

$$(\varphi(u) \mid \varphi(v)) = (u \mid v)$$

 $\langle \varphi(u) \mid \varphi(v) \rangle = \langle u \mid v \rangle$

④ 正规算子:

以下的内容,我们不再区分是欧空间还是酉空间,因为下面的内容对它们都成立。事实上,大多数结论 对内积空间都成立。如无特别说明,我们的数域 \mathbb{F} 总默认为 \mathbb{C} 。

3.4 内积空间上的线性算子

正规算子:

 \mathbb{C} 上的算子 $\varphi \in \mathcal{L}(V)$ 称为正规算子如果:

$$\varphi \varphi^* = \varphi^* \varphi \Longleftrightarrow AA^* = A^*A$$

正规矩阵的性质:

- ① 可对角化 (等价): A 是正规矩阵 \iff 3 自伴随矩阵 G s.t. $GAG^* = GAG^{-1} = D$
- ② 特征向量 (等价): A有 n 个相互正交的特征向量
- ③ 模的平方和 (等价): $\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\lambda_i|^2$

④ A^* 的特征值:若 λ 是 A 的特征值,u 是对应的特征向量,则 $\overline{\lambda}$ 是 A^* 的特征值,u 也是对应的特征向量。

设 F 为正规矩阵,则有推论:

- ① 特征值全为实数 😂 F 为自伴随矩阵
- ② 特征值模都为 $1 \iff F$ 正交矩阵

酉对角化也就是在某组标准正交基下为对角阵,这是因为标准正交基、标准正交基之间的转换矩阵都是酉矩阵(内积空间中的标准正交矩阵)。

当时,是 Hermitian 矩阵 (对应自伴随算子、Hermitian 型)

当正规矩阵的特征值全部模为1时,是酉矩阵(即复正交矩阵,对应酉算子)

自伴随算子与内积的关系:

设 $f: V \times V \mapsto \mathbb{F}$ 是一个内积 (正定的对称双线性型或正定的 Hermitian 型),记它在基下的度量矩阵 为 F,则 $F = F^*$ 。定义 $\varphi \in \mathcal{L}(V)$ 使得 φ 在基下的矩阵为 F,则 φ 是正定的自伴随算子。反之也成立。

因此,对同一个 Hermitian 矩阵 F,既可以把它看作一个正定的自伴随算子 (Hermitian 算子),也可以看作某个正定 Hermitian 型的度量矩阵 (但并不构成同构关系)。由此可以知道,Hermitian 矩阵所具有的性质也就是自伴随算子所具有的性质 (如特征值、可对角化等)。

Theorem. 44 (谱定理):

设 φ 是酉空间 V 上的正规算子,及 φ 的所有不同特征值为 $\lambda_1,...,\lambda_m$,则:

存在唯一正交投影算子组
$$\{\mathcal{P}_1,...,\mathcal{P}_m\}$$
 s.t. $\varphi = \sum_{i=1}^m \lambda_i \mathcal{P}_i$

进一步,存在
$$f_1(x),...,f_m(x) \in \mathbb{C}[x]$$
 s.t. $\mathscr{P}_i = f_i(\varphi)$ 且 $f_i(\lambda_j) = \delta_{ij}$

后一个推论表明: 任意可由 \mathcal{P}_i 线性表出的算子 ψ 都可表示为 $\psi = g(\varphi)$ 。

事实上, 谱定理和"正规算子可对角化"是等价的, 不过上面的形式更容易得到其它推论。

Theorem. 45 (正规算子等价条件):

设 $A \in M_{n \times n}(\mathbb{F})$, \mathbb{F} 可以是 \mathbb{R} 或 \mathbb{C} ,则有:

$$A$$
 为正规矩阵 $\iff \exists f \in \mathbb{F} s.t. A^* = f(A)$

定理45的证明:

复数域上的情况由谱定理和拉格朗日插值容易得到,这里仅提一下 ℝ上的情况。

同理得到 $A^T = f(A), f \in \mathbb{C}[x]$,将 f 分解为 f = g + ih,其中 $g, h \in \mathbb{R}[x]$,则 $A^T = g(A) + ih(A)$ 而 $A^T \in M_{n \times n}(\mathbb{R}) \Longrightarrow ih(A) = 0$,因此存在 $g \in \mathbb{R}[x]$ 使得 $A^T = g(A)$ 。

Theorem. 46 (同时对角化):

设 F_1, F_2 是两个自伴随矩阵,则:

其中有一个是正定的
$$\iff$$
 F_1, F_2 可同时对角化

同时对角化的步骤:

① 将正定的 F_1 作为内积 $f(\cdot,\cdot) = (\cdot \mid \cdot)_0$,基于 $\{e_1,...,e_n\}$,由施密特正交化 + 标准化,得到内积 f 下的标准正交基 $\vec{u}_0 = S\vec{e}_0 = S$,此时 $SF_1S^* = I_n$ 。

② 求 F_2 在此基下的矩阵 SF_2S^* ,并作正交对角化,得到: $GSF_2S^{-1}G^{-1}=(GS)F_2(GS)^{-1}=D$ 。(如果不是让双线性型同时对角化,即无需合同对角化,只需相似对角化,那么这里仅对角化 SF_2S^* 即可,无需正交)

③取P = GS,则P即为所求矩阵,也是所求基。 F_1 在此基下的矩阵为 $GI_nG^{-1} = I_n$, F_2 在此基下的矩阵为 $PF_2P^{-1} = D$ 。

Theorem. 47 (半正定自伴随算子可开根):

设 φ 是内积空间上一个半正定的自伴随算子,则:

存在唯一的半正定自伴随算子 φ_1 使得 $\varphi_1^2 = \varphi$,记作 $\varphi_1 = \sqrt{\varphi}$

用矩阵的语言:

存在唯一的半正定自伴随矩阵 A_1 使得 $A_1^2 = A$,记作 $A_1 = \sqrt{A}$

注:在以下的内容中,我们将酉空间、欧式空间统称为"内积空间",Hermitian型、对称双线性型统称为"准内积",正定的Hermitian型、正定的对称双线性型统称为"内积",Hermitian算子、欧空间自伴随算子统称为自伴随算子,酉算子、欧空间自同构(欧空间正交算子)统称为正交算子,欧空间对称矩阵、酉空间 Hermitian 矩阵统称为自伴随矩阵。

Theorem. 48 (极化定理):

设 $\varphi \in \mathcal{L}(V)$ 是内积空间上的线性算子, φ 在某组 (标准正交) 基下的矩阵为 A,则: 矩阵语言:

- ① 存在唯一的 (半) 正定矩阵 G 和正交矩阵 T 使得 A = GT
- ② A 是正规矩阵 \iff GT = TG
- ③ A 非退化 \iff T 唯一

算子语言:

- ① 存在唯一的 (半) 正定算子 ζ 和正交算子 ψ 使得 $\varphi = \zeta \psi$
- ② φ 是正规算子 $\Longleftrightarrow \zeta \psi = \psi \zeta$
- 3φ 非退化 $\Longleftrightarrow \psi$ 唯一

极化分解 A = GT 的步骤: 例如 Homework 14.2, 14.3

计算 $AA^* = GTT^*G^* = GG^* = G^2$,将结果对角化 $SG^2S^{-1} = D$ 后开根,求得 $G = S^{-1}\sqrt{D}S$,最后用 $T = G^{-1}A = (S\sqrt{D^{-1}}S^{-1})A$ 求得 T(最后一步的拆分是为了不再多求一次矩阵逆)。

Theorem. 49 (实正规算子半对角化):

设 V 是欧几里得内积空间且 $\varphi \in \mathcal{L}(V)$, 记矩阵 $J[a_1,b_1] = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$,则:

$$\varphi$$
 是正规算子 \iff 在某组基下 φ 的矩阵 $J_{\varphi} = \operatorname{diag}(c_1,...,c_r) \dotplus J[a_1,b_1] \dotplus \cdots \dotplus J[a_s,b_s]$ φ 是正交算子 \iff $|c_i|=1,\ a_j^2+b_j^2=1,\ i=1,...,r,\ j=1,...,s$

第4章 仿射空间与欧几里得点空间

4.1 仿射空间

仿射空间基本概念:

- 一个 \mathbb{F} 上的非空集合 \mathbb{A} 称为仿射空间如果它与一个 \mathbb{F} 上的向量空间 V 相伴,且存在从 $\mathbb{A} \times V$ 到 \mathbb{A} 的映射 $f:(a,v) \longmapsto a+v, \ \forall \ a \in \mathbb{A}, \ v \in V$ 满足:
 - ① 右幺性: $a + 0_V = a, \forall a \in \mathbb{A}$
 - ② 加法结合律: $(a + v_1) + v_2 = a + (v_1 + v_2), \forall a \in \mathbb{A}, v_1, v_2 \in V$
 - ③ 唯一性: $\forall a, b \in \mathbb{A}, \exists ! w \in V \ s.t. \ a+w=b$, 记作 $w=\overrightarrow{ab}$

 t_u 称为沿 u 对 \mathbb{A} 的平移,且 $\mathbb{A}^\sharp = \{t_u \mid u \in V\}$ 构成群,同构于加法群 V,即 $\mathbb{A}^\sharp \cong V$ 。

此外, $\overrightarrow{ab} = -\overrightarrow{ba}$, $\overrightarrow{aa} = 0$, $\overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{ac}$

重心组合:

重心组合: 设 $\dot{p}_0,...,\dot{p}_m \in \mathbb{A}$ 是任意 m+1 个点 (可以相同),称 $\sum_{i=0}^m a_i\dot{p}_i$ s.t. $\sum_{i=0}^m a_i = 1$ 为 $\{\dot{p}_0,...,\dot{p}_m\}$ 的重心组合。(上面写法省略了原点 o'o,因为重心组合的结果与原点选取无关)

Theorem. 50 (仿射空间同构):

设 \mathbb{A} 和 \mathbb{A}' 是 \mathbb{F} 上的相伴向量空间分别为 V 和 V' 的仿射空间,则 $\mathbb{A} \cong \mathbb{A}' \iff V \cong V'$ 。

仿射空间的坐标系:

- ① 定义: 给定点 $\dot{o} \in \mathbb{A}$ 和 V 的一组基 $\{v_1,...,v_n\}$,称 $\{\dot{o};v_1,...,v_n\}$ 为仿射空间 (\mathbb{A},V) 的一个坐标系。
- ② 坐标系变换: 对于两个仿射空间坐标系 $O = \{\dot{o}; \vec{u}_0\}$ 和 $O' = \{\dot{o}'; \vec{v}_0\}$,设点 \dot{p} , \dot{o}' 在 O 下的坐标分别 为 \vec{x} , \vec{o} , 且 $\vec{v} = A\vec{u}$,则 \dot{p} 在新坐标系 O' 下的坐标:

$$\vec{y} = (\vec{x} - \vec{o})A^{-1}$$

仿射子空间:

设 (\mathbb{A},V) 是仿射空间而 U 是 V 的子空间,定义 \mathbb{A} 的仿射子空间 $\Pi(\dot{p},U)=\dot{p}+U$,则它是以 U 为伴随空间的仿射空间。若 $\dim U=m<+\infty$,称 $\Pi(\dot{p},U)$ 为 \mathbb{A} 的 m 维平面。

特别地,若 $\dim U = 1$,则 $\forall 0 \neq \overrightarrow{pq} \in \mathbb{A}$,有 $U = \mathbb{F}\overrightarrow{pq}$,也即 $\Pi(\overrightarrow{p}, U) = \{\overrightarrow{p} + t\overrightarrow{pq} \mid t \in \mathbb{F}\}$ 等价条件: 设 \mathbb{F} 的特征不为 2。 Π 为仿射空间 \mathbb{A} 的一个子集,则:

 Π 构成仿射子空间 \iff Π 上任意两点的直线都在 Π 内

推论: 仿射子空间的交仍是子空间,且 $\Pi(U_1) \cap \Pi(U_2) = \Pi(U_1 \cap U_2)$ 。

仿射包络:

设 X 为 \mathbb{A} 的一个子集 (不一定是仿射子空间), 定义 \mathbb{A} 关于 X 的仿射包络:

$$A(X) = \left\{ \dot{p} + \operatorname{Span}\{\overrightarrow{\dot{pq}} \mid \forall \ \dot{q} \in X\} \mid \forall \dot{p} \in X \right\}$$

容易验证它和 \dot{p} 或 \dot{q} 的选取无关,且构成 \triangle 的仿射子空间。

如果 X 只有一个点,则 A(X) = X 是 0 维的仿射子空间。X 有两个点时,A(X) 是过他们的直线。X 有三个点时,A(X) 是由该直线和点确定的平面。

① 仿射无关: 若 $X=\{\dot{p}_0,\dot{p}_1,...,\dot{p}_m\}$ 且 dim A(X)=m,则称 X 仿射无关。这等价于 $\{\overrightarrow{\dot{p}_0\dot{p}_1},...,\overrightarrow{\dot{p}_0\dot{p}_m}\}$ 线性无关

仿射映射:

线性映射 $\psi: \mathbb{A} \longmapsto \mathbb{A}'$ 称为仿射映射如果满足下面任意一条命题 (第一条为定义,其它为等价条件) ① 定义:

$$\exists D_{\psi}: V \xrightarrow{linear} V' \ s.t. \ \psi(\dot{p}+v) = \psi(\dot{p}) + (D_{\psi})(v) \ , \ \forall \ \dot{p} \in \mathbb{A}, \ v \in V$$

② 保持向量:

$$(D\psi)(\overrightarrow{\dot{p}\dot{q}}) = \overrightarrow{\psi(\dot{p})\psi(\dot{q})}$$

③ 保持重心:

$$\psi\left(\sum_{i=0}^{m} a_i \dot{p}_i\right) = \sum_{i=0}^{m} a_i \psi(\dot{p}_i) , \ \sum_{i=0}^{m} a_i = 1$$

仿射线性映射:

从 \mathbb{A} 到 \mathbb{F} 的仿射映射 $\varphi: A \stackrel{linear}{\longrightarrow} F$ 称为仿射线性映射。

性质: 取 A 仿射无关的 n+1 个点 $\{\dot{p}_1,\dot{p}_2,\}$,它可生成 V 的一组基,且集合

$$\left\{ \dot{p} = \dot{p}_0 + a_1 \overrightarrow{\dot{p}_0 \dot{p}_1} + \dots + a_n \overrightarrow{\dot{p}_0 \dot{p}_n} \in \mathbb{A} \mid \varphi(\sum_{i=0}^m a_i \dot{p}_i) = 0 \right\}$$

构成 \mathbb{A} 的超平面 $(n-1 \mathfrak{A})$,也即 $\varphi^{-1}(0) = ker_{\varphi}$ 构成 \mathbb{A} 的超平面 $(n-1 \mathfrak{A})$ 。

此处有一个 $\Pi = \bigcap_{i=1}^{n-r} \varphi_i^{-1}(0)$ 的结论, 详见讲义 P104。

平行、相交、交错:

① 平行: 设 (Π_1, U_1) , (Π_2, U_2) 是 \mathbb{A} 的两个仿射子空间,我们称 $\Pi_1 与 \Pi_2$ 平行如果 $U_1 \subseteq U_2$ 。此时,若 $\Pi_1 \cap \Pi_2 \neq \emptyset$,则 $\Pi_1 \subseteq \Pi_2$ ② 相交: $\Pi_1 \cap \Pi_2 \neq \emptyset$ 且不平行。

③ 交错: 既不平行也不相交

对于任意情况,我们考虑 Π_1,Π_2 并集的仿射包络,有:

$$\begin{split} V(\Pi_1 \cup \Pi_2) &= U_1 + U_2 + \mathbb{F}\overrightarrow{p_0}\overrightarrow{q_0} \\ \Longrightarrow \dim V(\Pi_1 \cup \Pi_2) &= \dim V_1 + \dim V_2 + 1 - \dim(V_1 \cap V_2) - \dim((V_1 + V_2) \cap \mathbb{F}\overrightarrow{p_0}\overrightarrow{q_0}) \\ &< \dim V_1 + \dim V_2 + 1 \end{split}$$

4.2 欧几里得点空间

欧几里得点空间:

仿射空间 (A, V) 称为欧几里得点空间如果 $(V, (\cdot | \cdot))$ 构成欧内积空间。点空间中有相关定义:

① 距离: $\rho(\dot{p},\dot{q}) = \|\overrightarrow{\dot{p}\dot{q}}\|$

② 线段: $\dot{p}\dot{q} = \{\dot{p} + t\overrightarrow{\dot{p}\dot{q}} \mid t \in [0,1]\}$

③ 线段长度:
$$|\dot{p}\dot{q}| = |\overrightarrow{p}\dot{q}| = \rho(\dot{p},\dot{q})$$

④ 夹角: $\cos\theta = \frac{(\overrightarrow{p}\dot{q}|\overrightarrow{r}\dot{s})}{||\overrightarrow{p}\dot{q}||||\overrightarrow{r}\dot{s}||}$
其中 $\Pi_1 = \dot{p} + \mathbb{R}\overrightarrow{p}\dot{q}$, $\Pi_1 = \dot{r} + \mathbb{R}\overrightarrow{r}\dot{s}$ 是 \mathbb{A} 中的两条直线

④ 夹角:
$$\cos \theta = \frac{(\dot{p}\dot{q}|\dot{r}\dot{s})}{\|\dot{p}\dot{q}\|\|\dot{r}\dot{s}\|}$$

Theorem. 51 (仿射空间的距离):

① 常规方法:

设 $\Pi_1 = \Pi_1(\dot{o}_1, U_1), \Pi_2 = \Pi_2(\dot{o}_2, U_2)$ 是 (\mathbb{A}, V) 中的两个不相交的仿射子空间, $\{u_1, ..., u_m\}$ 是 $U_1 + U_2$ 的一组正交基,则有:

$$\rho(\Pi_1, \Pi_2) = \left\| \overrightarrow{\dot{o}_1 \dot{o}_2} - \sum_{i=1}^m \frac{(\overrightarrow{\dot{o}_1 \dot{o}_2} \mid u_i)}{\|u_i\|^2} u_i \right\| = \left\| \overrightarrow{\dot{o}_1 \dot{o}_2} - \frac{(\overrightarrow{\dot{o}_1 \dot{o}_2} \mid u_1)}{(u_1 \mid u_1)} u_1 - \dots - \frac{(\overrightarrow{\dot{o}_1 \dot{o}_2} \mid u_1)}{(u_m \mid u_m)} u_m \right\|$$

② 投影方法 $(U_1 + U_2)$ 为超平面时适用):

求出 U_1+U_2 的正交补空间 $(U_1+U_2)^\perp=\mathrm{Span}\{w\}$,计算 $\overrightarrow{\dot{o}_1\dot{o}_2}$ 在 $(U_1+U_2)^\perp$ 上的投影,即为所求距离:

$$\rho(\Pi_1, \Pi_2) = \frac{(w \mid \overrightarrow{o_1} \overrightarrow{o_2})}{\|w\| \|\overrightarrow{o_1} \overrightarrow{o_2}\|} \cdot \|\overrightarrow{o_1} \overrightarrow{o_2}\| = \frac{(w \mid \overrightarrow{o_1} \overrightarrow{o_2})}{\|w\|}$$

例如 $U_1 + U_2 = \mathrm{Span}\{u_1, u_2, u_3\} = \mathrm{Span}\{(-2, 0, 1, 1), (2, 1, 0, 0), (0, 1, 2, 1)\}$,则 $(U_1 + U_2)^{\perp}$ 为下面齐次方程组的解空 间:

$$\vec{x}_1 \cdot \vec{y} = -2x_1 + 0 + 1x_3 + 1x_4 = 0$$
$$\vec{x}_2 \cdot \vec{y} = 2x_1 + 1x_2 + 0 + 0 = 0$$
$$\vec{x}_3 \cdot \vec{y} = 0 + 1x_2 + 2x_3 + 1x_4 = 0$$

详见 Homework 17.2

Theorem.52 (点到超平面的距离):

设 $\dot{p} = [\alpha_1, ..., \alpha_n]$ 是 $\dot{\mathbb{R}}^n$ 中一点, $\Pi = \{[x_1, ..., x_n] \in \mathbb{A} \mid a_1 x_1 + \cdots + a_n x_n + b = 0\}$ 是 \mathbb{A} 的超平面,则:

$$\rho(\dot{p},\Pi) = \frac{|a_1\alpha_1 + \dots + a_n\alpha_n + b|}{\sqrt{a_1^2 + \dots + a_n^2}}$$

Theorem. 53 (夹角):

设超平面 Π_1 和超平面 Π_2 的法向量分别为 w_1 和 w_2 ,则两平面夹角 θ :

$$cos\theta = \frac{(w_1 \mid w_2)}{\|w_1\| \|w_2\|} = \frac{w_1 \cdot w_2}{\|w_1\| \|w_2\|}$$

设 u 是直线 Π 的方向向量而 w 是超平面 Π' 的法向量,则夹角 θ :

$$sin\theta = \frac{(u \mid w)}{\|u\| \|w\|} = \frac{u \cdot w}{\|u\| \|w\|}$$

Theorem. 54 (公垂线):

设直线 Π_1 和直线 Π_2 的方向向量分别为 v_1 和 v_2 ,令 $w=v_1\times v_2$,分别在 Π_1 和 Π_2 上任取一点 $\dot{p},\dot{q},\dot{r}=(x,y,z)$ 为所求公垂线上任意一点,则公垂线由下面方程确定:

$$\begin{cases} \Delta(\overrightarrow{\dot{pr}}, v_1, w) = 0\\ \Delta(\overrightarrow{\dot{qr}}, v_2, w) = 0 \end{cases}$$

其中
$$\Delta(\vec{a}, \vec{b}, \vec{c}) = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
,几何意义上是三条向量围成六面体的体积。

Theorem. 55 (过点和直线):

Theorem. 55 (过点和直线):
设
$$\mathbb{R}$$
 上的直线 \mathcal{L} :
$$\begin{cases} \vec{a} \cdot \vec{x} + a_0 = 0 \iff a_1 x + a_2 y + a_3 z + a_0 = 0 \\ \vec{b} \cdot \vec{x} + b_0 = 0 \iff b_1 x + b_2 y + b_3 z + b_0 = 0 \end{cases}$$
 , $s = \vec{x}_0 \cdot \vec{w}_0 = (x_0, y_0, z_0)$ 是不在 \mathcal{L} 上的一点,则过直线 \mathcal{L} 和点 s 的平面:

$$(\vec{b} \cdot \vec{x}_0 + b_0)(\vec{a} \cdot \vec{x} + a_0) = (\vec{b} \cdot \vec{x} + b_0)(\vec{a} \cdot \vec{x}_0 + a_0)$$

群与几何 4.3

受课时所限,课程跳过了下一节"群与几何"和第五章"常见曲面",直接进入第六章"张量"

第5章 常见曲面(略)

第6章 张量

拓展阅读: https://zhuanlan.zhihu.com/p/508715535

6.1 多重线性映射与张量

开始之前:

- ① 张量是什么: 多重线性映射, 也可以看作多重线性函数
- ② 张量在做什么:输入矢量、对偶矢量,输出标量,也可理解为输入矢量或对偶矢量,输出退化后的低阶张量。
 - ② 张量积是什么: 把两个张量"相乘",得到一个更高阶的张量
- ③ 常见例子: 向量 $\vec{x} \in \mathbb{F}^n$ 是一阶张量,可视为 (1,0) 型或 (0,1) 型, $V = \mathbb{F}^n$ 是一阶张量空间((0,1) 型 张量构成的空间);矩阵 $A \in M_{n \times n}(\mathbb{F})$ 是 \mathbb{F}^n 上的 2 阶张量,可视为 (2,0) 型、(1,1) 型或 (0,2) 型,矩阵空间 $V = M_{n \times n}(\mathbb{F})$ 可视为二阶张量空间((0,2) 型张量构成的空间)。双线性型 $f: V \times V : \longrightarrow \mathbb{F}$ 是一个 (0,2) 型 张量。

建议先阅读:

https://zhuanlan.zhihu.com/p/311558501 https://zhuanlan.zhihu.com/p/356975719 https://zhuanlan.zhihu.com/p/340956105

张量 (tensor):

V 上的 (1,0) 型张量 T_1^0 、(0,1) 型张量 T_0^1 和 (p,q) 型张量 T_n^q :

$$T_1^0: V \to \mathbb{F}, \ v_i \longmapsto a$$

 $T_0^1: V^* \to \mathbb{F}, \ v^* \longmapsto a$
 $T_p^q: (V)^p \times (V^*)^q \longrightarrow \mathbb{F}$

其中
$$(V)^p \times (V^*)^q = \underbrace{V \times \cdots \times V}_{} \times \underbrace{V^* \times \cdots \times V^*}_{}$$

当然,也有由低阶张量构成的高阶张量,如p+q阶张量T:

$$T: \underbrace{V_1 \times V_2 \times \cdots \times V_p}_{p} \times \underbrace{V_{p+1}^* \times V_{p+2}^* \times \cdots \times V_{p+q}^*}_{q} \longrightarrow \mathbb{F}$$

对于任意一个线性空间 V,由自然同构有 $V=(V^*)^*$,因此 V 中的任意元素 v 都可视作一个 (0,1) 型张 量 $v:V^*\to \mathbb{F}, v(v^*)=v^*(v)\in \mathbb{F}, \ \forall \ v^*\in V^*$ 。在实际的处理中,无论 V 是什么,我们都可以这样认为(这也侧面体现了张量阶数的相对性)。

张量积 (tensor product):

设张量 T_1 和 T_2 分别为:

$$T_1: \underbrace{V_1 \times \cdots \times V_{p_1}}_{p_1} \times \underbrace{V_{p_1+1}^* \times \cdots \times V_{p_1+q_1}^*}_{q_1} \longrightarrow \mathbb{F}$$

$$T_2: \underbrace{U_1 \times \cdots \times U_{p_2}}_{p_2} \times \underbrace{U_{p_2+1}^* \times \cdots \times U_{p_2+q_2}^*}_{q_2} \longrightarrow \mathbb{F}$$

定义它们的张量积 $T_1 \otimes T_2$:

$$T_{1} \otimes T_{2} : \underbrace{V_{1} \times \cdots \times V_{p_{1}}}_{p_{1}} \times \underbrace{U_{1} \times \cdots \times U_{p_{2}}}_{p_{2}} \times \underbrace{V_{p_{1}+1}^{*} \times \cdots \times V_{p_{1}+q_{1}}^{*}}_{q_{1}} \times \underbrace{U_{p_{2}+1}^{*} \times \cdots \times U_{p_{2}+q_{2}}^{*}}_{q_{2}} \longrightarrow \mathbb{F}$$

$$T_{1} \otimes T_{2}(input_{1}, input_{2}) = T_{1}(input_{1}) \cdot T_{2}(input_{2})$$

张量积的性质:

- ① 多重线性:
- ② 结合律
- ③ 分配律

我们还可以定义线性空间的张量积。设 dim $V_i = n_i$, $\vec{u}_i = [u_{i,1}, u_{i,2}, ..., u_{i,n_i}]^T$ 是 V_i 的一组基,i = 1, 2, ..., k,定义它们的张量积:

$$V_1 \otimes \cdots \otimes V_k = \text{Span} \{u_{1,j_1} \otimes u_{2,j_2} \otimes \cdots \otimes u_{k,j_k} \mid j_1 \in [1,n_1], \cdots, j_k \in [1,n_k]\}$$

因此线性空间的张量积还是线性空间,并且容易验证,基的张量积构成张量积的基。听起来很绕 hhh,就是说线性空间基的张量积(等式右侧)构成了线性空间张量积(等式左侧)的一组基。

若将 v_i 视为 (0,1) 型张量,则 V_i 是由一堆 (0,1) 型张量构成的线性空间,而 $V_1 \otimes \cdots \otimes V_k$ 是由一大堆 (0,k) 型张量构成的线性空间。

V 上的全部 (1,1) 型张量构成的线性空间就是 $V\otimes V^*$,全部 (0,2) 型张量构成的线性空间就是 $V\otimes V$,全部 (2,0) 型张量构成的线性空间就是 $V^*\otimes V^*$ 。上面的结论容易推广到任意维,也即:V 上的全部 (p,q) 型 张量构成线性空间 $\underbrace{V\otimes\cdots\otimes V}_{n}\otimes\underbrace{V^*\otimes\cdots\otimes V^*}_{n}$ 。

无论将矩阵 $A \in M_{m_1 \times n_1}(\mathbb{F}), B \in M_{m_2 \times n_2}(\mathbb{F})$ 视为几型张量,我们都可定义矩阵的张量积:

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}_{m_1m_2 \times n_1n_2}$$

6.2 张量代数

张量空间 (tensor space):

由前面张量的定义,V 上所有 (0,2) 阶张量构成线性空间 $V\otimes V$,我们给它起个别名,记作 $\mathbb{T}^1(V)$,称为 V 的 2 阶张量空间(实际上是 V 的 (0,2) 型张量空间)。类似地,我们定义 V 的 m 阶张量空间:

$$\mathbb{T}^0(V) = \mathbb{F}, \ \mathbb{T}^m(V) = \underbrace{V \otimes \cdots \otimes V}_m$$

并定义 V 的全张量空间 $\mathbb{T}(V)$:

$$\mathbb{T}(V) = \bigoplus_{m=0}^{\infty} \mathbb{T}^m(V)$$

对称/反对称张量:

与曾经讨论双线性型、多项式时类似,张量也可以有对称和反对称的性质,下面我们讨论 \mathbf{m} 阶张量空间 $\mathbb{T}^m(V)$ 中元素的对称性。

一个 (0,m) 型张量 $T_0^m \in \mathbb{T}^m(V)$ 称为对称(取 + 号)或反对称(取 – 号)的如果:

$$T(v^1,...,v^i,v^{i+1},...,v^m) = \pm T(v^1,...,v^{i+1},v^i,...,v^m), \forall v^1,...,v^m \in V^*, i = 1,2,...,m-1$$

与多项式类似,我们定义 $\mathbb{T}^m(V)$ 上的线性算子 $\mathrm{Sym}:\mathbb{T}^m(V)\mathbb{T}^m(V)$ 为:

$$\operatorname{Sym}(\mathbb{T}^m) = \operatorname{Sym}(v_1 \otimes \cdots \otimes v_m) = \frac{1}{m!} \sum_{\sigma \in S_m} v_{j_{\sigma(1)}} \otimes v_{j_{\sigma(2)}} \otimes \cdots \otimes v_{j_{\sigma(m)}}$$

这样,则 $\operatorname{Sym}(\mathbb{T}^m(V))$ 中的元素都是对称张量,构成一个线性空间,称为 V 的 m 阶对称张量空间,并称 $\operatorname{Sym}(\mathbb{T}(V)) = \sum_{i=0}^{\infty} \operatorname{Sym}(\mathbb{T}^m(V))$ 为 V 的全对称张量空间。

这里需要注意 $\dim V > 1$ 时,是否直接有 $\mathbb{S}(V) = \operatorname{Sym}(\mathbb{T}(V))$ 。另外,讲义上给出了一个结论: $\mathbb{S}(V)$ 的一组基是 $\{1_V, \operatorname{Sym}(v_{j_1} \otimes \cdots \otimes v_{j_k}) \mid k = 1, ..., m, 1 \leq j_1 < \cdots < j_k \leq m\}$ 。讲义上写的是 $1_{\mathbb{F}}$,我认为不对,应为 1_V 。另外,Alt 都不写作 \mathbb{A} ,因此我们也不将 $\mathbb{S}(\mathbb{F})$ (讲义中写作了 \mathbb{S})。

同理有 V 的 m 阶反对称张量空间 $\mathrm{Alt}(\mathbb{T}^m(V))$,全斜对称张量空间 $\mathrm{Alt}(V) = \sum_{i=0}^\infty \mathrm{Alt}(\mathbb{T}^m(V))$ 。

带幺结合代数:

设 ⋈ 为带幺结合代数, ⋈ 的子空间 У 称为 ⋈ 的理想如果:

$$u \cdot \mathcal{I}, \ \mathcal{I} \cdot u \subseteq \mathcal{I}, \ \forall \ u \in \mathcal{I}$$

并且有结论: \forall 理想 \mathscr{I} , $1_{\mathscr{A}} \in I \Longrightarrow \mathscr{I} = \mathscr{A}$.

参考文献

[1] 徐晓平. 线性代数 2 讲义. 中国科学院大学, 北京, 1 2024.