5-11-2014

Tercer Taller Algebra Abstracta. Mate–2101 II semestre 2014.

Solucionar los siguientes problemas. Cada uno vale 5 puntos excepto el n. 10 que vale 10 puntos. Justificar las respuestas. Las soluciones que no sean presentada de manera ordenada y clara no van a ser calificadas.

1.

Sea G un grupo y sea H un subgrupo normal de G.

- I.) Demostrar que, si H y G/H son p-grupos, entonces G es un p-grupo.
- II.) Demostrar que, si H y G/H son solubles, entonces G es soluble.

2.

Demostrar que S_3 y los grupos dihedrales D_{2n} son solubles.

3.

Sea G un grupo y sea H un subgrupo normal de G. Demostrar con un ejemplo que, si H y G/H son nilpotentes, entonces G no es necesariamente nilpotente.

4.

- I.) Sea n un entero positivo impar. Demostrar que el centro del grupo dihedral D_{2n} es trivial.
- II.) Concluir que D_{2n} no es nilpotente por n impar.

De hecho, D_{2n} es nilpotente solamente si n es una potencia de 2, pero esto no tienen que demostrarlo.

5.

Sea G un grupo de orden p^r

I.) Demostrar que por cada entero $k \leq r$, G tiene un subgrupo normal de orden p^k .

- II.) Demostrar que existe una serie $G_0 = \{1\} \subset G_1 \subset \ldots \subset G_r = G$ de subgrupos G_i normales de G de orden p^i , por $i = 1, \ldots, r$.
- III.) Demostrar que, dado un subgrupo H de G de orden p^s , con $0 \le s < r$, existe un subgrupo K de G de orden p^{s+1} que contiene a H.

Sugerencia: (i) trate en primer lugar el caso en el cual G es abeliano; (ii) siga por inducción sobre el orden de G, utilizando el hecho que el centro de G no es trivial.

6.

Sea G un grupo nilpotente de orden n. Demostrar que, si m|n, entonces G tiene un subgrupo de orden m.

7.

Demostrar que los únicos automorfismos $\phi \colon G \to G$ de un grupo G de orden p primo, tales que $\phi^2 = \mathrm{id}$, son la misma identidad y el automorfismo definido por $\phi(g) = g^{-1}$.

8.

Sea G un grupo finito de orden 2p, con $p \geq 3$ primo. Demostrar que G contiene a un único subgrupo normal H de orden p y que tal subgrupo es normal. Utilizar el problema 7 para demostrar que hay solo dos posibilidades:

- I.) G es cíclico;
- II.) G tiene dos generadores s y t qui satisfacen las relaciones $s^p = 1$, $t^2 = 1$ y $tst^{-1} = s^{-1}$. Sugerencia: descomponga G como producto semi-directo de dos grupos cíclicos.

9.

Demostrar que un grupo G de orden 200 no puede ser simple.

10. *

Sea G un grupo simple de orden 60.

I.) Demostrar que G tiene 6 5-Sylow y que el acción por conjugación sur los 5-Sylow define un homomorfismo injectivo $\alpha\colon G\to S_6$, una vez fijada una numeración de los 5-Sylow de G.

- II.) Demostrar que la imagen de α está contenida en el subgrupo alterno A_6 de S_6 .
- III.) Identifiquemos G con su imagen $\alpha(G)$ en A_6 y consideremos el acción de A_6 por translación a la izquierda sobre el conjunto de las clases laterales izquierdas A_6/G . Demostrar que tal acción define un isomorfismo $\phi \colon A_6 \to A_6$, una vez fijada una numeración de los elementos de A_6/G .
- IV.) Demostrar que G es el estabilizador de la clase lateral G en A_6/G por la acción definida en el punto anteriór y concluir que es cierto $G \cong A_5$.