Universal Gravity

THE SELECTION OF THE SECOND

$$F = \frac{G * m_1 * m_2}{d^2}$$
 to find mass of an object
$$G = 6.67 \times 10^{-11}$$
 $wt = m * g$

1) What is the gravitational force between two 6 kg. spherical masses that are 5 meters apart? $\frac{6.6^2}{52} = 9.6048 \times 10^{-11} \text{ N}$

2) What is the gravitational force between them when they are 5×10^5 meters apart? 9.6048×10-21 N

3) Two large spheres are suspended close to each other. Their centers are 4 m apart. One mass weighs 9.8×10^4 N. The other mass has a weight of 1.98×10^2 N. What is the gravitational force that exists between them?

4) Two satellites of equal mass are put into orbit 30 m apart. The gravitational force between them is 2×10^{-7} N. a) What is the mass of each satellite?

b) What is the initial acceleration given to each satellite by the force?

- a) 1.64 × 10³ kg b) $F/m = a = 1.22 \times 10^{-10} \text{ m/s}^2$ 5) The mass of the Earth is 6 x 10² kg. If the centers of the Earth and Moon are 3.9×10^8 m apart, the gravitational force between them is about 1.9×10^{20} N. What is the approximate mass of the Moon? GmM =1.9×1020 :: Moon mass = 7.22×1022kg
- 6) Use Newton's second law of motion to find the acceleration given to the Moon $a = \frac{F}{m} = \frac{1.9 \times 10^{20}}{7.72 \times 10^{20}}$ 0.00263 m/s² by the force in problem 5.
- 7) The mass of an electron is 9.1×10^{-31} kg. The mass of a proton is 1.7×10^{-27} kg. The mass of a proton is 1.7×10^{-27} kg. They are about 1×10^{-10} m apart in a hydrogen atom. What force of gravitation exists between the proton and the electron of a hydrogen atom?

$$F = \frac{6 \cdot (1.7 \times 70^{-27})(9.1 \times 10^{-31})}{10^{-20}}$$

$$= 1.03 \times 10^{-47} \text{N}$$