Глубокое обучение 2023-2024

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)

Таблица результатов (/course /6/standings)

Выйти (/logout)

Во всех вопросах может быть несколько правильных ответов

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

1. Выберите размерность выхода и выходную функцию активации f(x) последнего слоя для задачи регрессии

🔲 🔲 одномерный выход,	f(x)	= sigmoid(s)	x))
-----------------------	------	--------------	----	---

lacksquare lacksquare одномерный выход, f(x)=x

 \square \square многомерный выход, $f(x) = \operatorname{Softmax}(x)$

Балл: 0

Комментарий к правильному ответу:

2. Преимущество batchнормализации заключается в том, что она:

уменьшает число настраиваемых параметров сети

 обеспечивает выпуклость оптимизационной задачи настройки нейросети

 позволяет ускорить процесс настройки глубокой нейросети

Балл: 0.75

Комментарий к правильному ответу:

3. Пусть р-вероятность оставления нейрона в DropOut. Выберите все корректные способы использования DropOut во время обучения (training) и во время применения на тестовой

Стр. 1 из 4

Глубокое обучение 2023-2024

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)

Таблица результатов (/course /6/standings)

Выйти (/logout)

	выбор	оке (evaluation):
		обучение: отбрасываем нейроны с вероятностью (1-р), активации оставшихся делим на (1-р) применение: используем все нейроны, домноженные на (1-р)
		обучение: отбрасываем нейроны с вероятностью (1-р), активации оставшихся делим на р применение: используем все нейроны без изменения активаций
	V V	обучение: отбрасываем нейроны с вероятностью (1-р), применение: используем все нейроны, домноженные на р
		обучение: отбрасываем нейроны с вероятностью (1-р), применение: используем все нейроны, домноженные на (1-р)
		обучение: отбрасываем нейроны с вероятностью (1-р), активации оставшихся делим на (1-р) применение: используем все нейроны, без изменения активаций
	Балл:	: 0.75
	Комм	ентарий к правильному ответу:
4.	актива велич средн функц которы	входы для функции ации - случайные ины с нулевым им. Выберите ции активации, ые дадут выходы с нулевым им:
	V V	гиперболический тангенс
		ReLU
		Leaky ReLU
		сигмоида
		Exponential LU (ELU)
	Балл: Комм	: 0.75 ентарий к правильному ответу:

5. Когда в Pytorch надо

Стр. 2 из 4

Глубокое обучение 2023-2024

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)

Таблица результатов (/course /6/standings)

Выйти (/logout)

	делать шаг оптимизации optimizer.step()?
	🔲 🔲 в самом начале обучения
	□ после вычисления ошибки (loss)
	🔲 🔲 после прямого прохода
	✓ После обратного прохода loss.backward()
	Балл: 0.75 Комментарий к правильному ответу:
6.	Для чего нужен softmax?
	для решения задачи кластеризации с помощью нейросети
	для решения задачи классификации с помощью нейросети
	для решения задачи регрессии с помощью нейросети
	Балл: 0.75 Комментарий к правильному ответу:
7.	Выберите возможные наборы корректных действий, необходимых, чтобы трансформировать вашу нейросетевую архитектуру из задачи одномерной регрессии в задачу многоклассовой классификации.
	 увеличить число выходов на выходном слое, добавить слой batch-нормализации, перенастроить веса с функцией потерь log- loss
	 увеличить число выходов на выходном слое, применить SoftMax, перенастроить веса с функцией потерь cross-entropy
	увеличить число выходов на выходном слое, перенастроить веса с функцией потерь hinge

Стр. 3 из 4 16.10.2023, 22:01

Глубокое обучение 2023-2024

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)

Таблица результатов (/course /6/standings)

Выйти (/logout)

 ☐ добавить слой batch-нормализации, перенастроить веса с функцией потерь hinge
□ добавить в конце слой DropOut, перенастроить веса с функцией потерь MSE.
Балл: 0.75 Комментарий к правильному ответу:
Пусть $z=\mathrm{ReLU}(Wx)$. Тогда Якобиан dz/dx :
$lue{}$ зависит от знака в компонентах вектора Wx
lacksquare $lacksquare$ зависит от W
🔲 🔲 диагональная матрица
Балл: 0 Комментарий к правильному ответу:

Стр. 4 из 4 16.10.2023, 22:01