Discrete Structures and Theory of Logic Lecture-21

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj September 18, 2023

Note: Given a Boolean expression $\alpha(x_1, x_2,, x_n)$ and a Boolean algebra $< B, \land, \lor, ', 0, 1 >$, we can obtain the values of the Boolean expression for every n-tuple of B^n . Let us now consider a function $f_{\alpha,B}: B^n \to B$ such that for any n-tuple $< a_1, a_2,, a_n > \in B^n$, the value of $f_{\alpha,B}$ is equal to the value of the Boolean expression $\alpha(x_1, x_2,, x_n)$, that is, $f_{\alpha,B}(a_1, a_2,, a_n) = \alpha(x_1, x_2,, x_n)$

for all $(a_1, a_2, ..., a_n) \in B^n$. We shall call $f_{\alpha,B}$ the function associated with the Boolean expression $\alpha(x_1, x_2, ..., x_n)$.

Example: Find the value of the function $f_{\alpha,B}: B^3 \to B$ for $x_1 =$ a, $x_2 = 1$, and $x_3 =$ b, where a,b,1 are the elements of the Boolean algebra is shown in the following figure:-

and $\alpha(x_1, x_2, ..., x_n)$ is the expression whose binary valuation is given in the following table:-

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	$\alpha(x_1,x_2,x_3)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Solution: From the table. $f_{\alpha,B}(x_1,x_2,x_3) = (x_1' \wedge x_2' \wedge x_3') \vee (x_1' \wedge x_2 \wedge x_3') \vee (x_1' \wedge x_2 \wedge x_3)$ $\vee (x_1 \wedge x_2' \wedge x_3)$ $\alpha(a,1,b) = (a' \wedge 1' \wedge b') \vee (a' \wedge 1 \wedge b') \vee (a' \wedge 1 \wedge b) \vee (a \wedge 1' \wedge b)$ $= (b \land 0 \land a) \lor (b \land 1 \land a) \lor (b \land 1 \land b) \lor (a \land 0 \land b)$ $= 0 \lor (b \land a) \lor b \lor 0$ $= (b \wedge a) \vee b$ $= 0 \lor b$ = b

Boolean function

Let $< B, \land, \lor, ', 0, 1>$ ba Boolean algebra. A function f: $B^n \to B$ which is associated with a Boolean expression in n-variables is called a Boolean function.

Note: For a two elements Boolean algebra, the number of functions from B^n to B is 2^{2^n} . Here, every function from B^n to B is Boolean function.

Symmetric Boolean expression

A Boolean expression in n variables is called symmetric if interchanging any two variables results in an equivalent expression.

Example: Following expressions are symmetric.

(a)
$$(x_1 \wedge x_2') \vee (x_1' \wedge x_2)$$

(b)
$$(x_1 \wedge x_2 \wedge x_3') \vee (x_1 \wedge x_2' \wedge x_3) \vee (x_1' \wedge x_2 \wedge x_3)$$

Exercise

- 1. Find the canonical sum of product form of the following Boolean expressions:-
 - 1.1 $x_1 \lor x_2$
 - 1.2 $x_1 \lor (x_2 \land x_3')$
 - 1.3 $(x_1 \lor x_2)' \lor (x_1' \land x_3)$
- 2. Show that
 - 2.1 $(a \wedge (b' \vee c))' \wedge (b' \vee (a \wedge c')')' = (a \wedge b \wedge c')$
 - 2.2 $a' \wedge ((b' \vee c)' \vee (b \wedge c)) \vee ((a \vee b')' \wedge c) = a' \wedge b$

Exercise

3. Given an expression $\alpha(x_1,x_2,x_3)$ defined to be Σ 0,3,5,7, determine the value of $\alpha(a,b,1)$, where a,b,1 \in B and < B, \land , \lor ,',0,1 > is the following Boolean algebra.

Exercise

- 4. Obtain simplified Boolean expressions which are equivalent to these expressions:-
- (a) $m_0 + m_7$
- (b) $m_0 + m_1 + m_2 + m_3$
- (c) $m_5 + m_7 + m_9 + m_1 1 + m_1 3$

Where m_j are the minterms in the variables x_1, x_2, x_3 , and x_4 .

Minimization of Boolean function or expression

We shall minimize the Boolean function or expression using Karnaugh map.

Example: Minimize the following function using K-map.

$$f(a,b,c) = \Sigma(0,1,4,6)$$

Solution:

The minimized function will be, $f(a,b,c) = (a' \wedge b') \vee (a \wedge c')$.

Example: Minimize the following function using K-map.

$$f(a,b,c,d) = \Sigma(0,5,7,8,12,14)$$

Solution:

The minimized function will be, $f(a,b,c,d) = (a' \land b \land d') \lor (b' \land c' \land d') \lor (a \land b \land d')$.

Example: Minimize the following function using K-map.

$$f(a,b,c,d) = \Sigma(0,1,2,3,13,15)$$

Solution:

The minimized function will be, $f(a,b,c,d) = (a' \wedge b') \vee (a \wedge b \wedge d)$.