

Jointly Efficient and Optimal Algorithms for Logistic Bandits

ML Big Weeks

Marc Abeille, Louis Faury

The Learning Problem

Repeated game with structured and binary feedback.

The Learning Problem

Repeated game with structured and binary feedback.

- Goal. Maximize $\sum_{t=1}^{T} \mu(a_t^{\top} \theta_*) = \text{performance over time.}$
 - θ_{\star} is unknown! \Rightarrow exploration-exploitation dilemma.

Reward Model: Closer Look

Different regimes

$$\forall a \in \mathcal{A}$$
, $\mathbb{P}(\frac{r_t}{} = 1 | a) \simeq 0.5$

✓ SOTA!

$$\exists a \in \mathcal{A}, \ \mathbb{P}(\underline{r_t} = 1|\underline{a}) \approx 0$$

✗ SOTA!

Reward Model: Closer Look

Different regimes

$$\forall a \in \mathcal{A}, \ \mathbb{P}(\textcolor{red}{r_t} = 1|\textcolor{red}{a}) \simeq 0.5$$

✓ SOTA!

Key Quantity

$$\kappa \simeq \max_{a \in \mathcal{A}} 1/\mathbb{P}(r_t = 1|a) \qquad \leftarrow \text{ typically } 10^3 !$$

$$\leftarrow$$
 typically 10^3

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top}\theta_{\star}) - \sum_{t=1}^{T} \mu({a_t}^{\top}\theta_{\star}) \;.$$

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top} \theta_{\star}) - \sum_{t=1}^{T} \mu(a_{t}^{\top} \theta_{\star}) \; .$$

Lower-bound [Abeille et al. AISTATS21]			
Algorithm	Regret Bound	Minimax	Efficient
GLM-UCB			
[Filippi et al. NIPS10.]			
OFULog-r			
[Faury et al. ICML20]			
OFU-ECOLog			
(submitted)			

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top} \theta_{\star}) - \sum_{t=1}^{T} \mu(a_{t}^{\top} \theta_{\star}) \; .$$

Lower-bound [Abeille et al. AISTATS21]			
Algorithm	Regret Bound	Minimax	Efficient
GLM-UCB [Filippi et al. NIPS10.]	$\mathcal{O}(\kappa d\sqrt{T})$	×	×
OFULog-r [Faury et al. ICML20]			
0FU-EC0Log (submitted)			

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top} \theta_{\star}) - \sum_{t=1}^{T} \mu(a_{t}^{\top} \theta_{\star}) \; .$$

Lower-bound [Abeille et al. AISTATS21]			
Algorithm	Regret Bound	Minimax	Efficient
GLM-UCB [Filippi et al. NIPS10.]	$\mathcal{O}(\kappa d\sqrt{T})$	×	×
0FULog-r [Faury et al. ICML20]	$\mathcal{O}(d\sqrt{T/\kappa})$	V	×
0FU-EC0Log (submitted)			

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top} \theta_{\star}) - \sum_{t=1}^{T} \mu(a_{t}^{\top} \theta_{\star}) \; .$$

Lower-bound [Abeille et al. AISTATS21]	$\Omega(d\sqrt{T/\kappa})$		
Algorithm	Regret Bound	Minimax	Efficient
GLM-UCB [Filippi et al. NIPS10.]	$\mathcal{O}(\kappa d\sqrt{T})$	×	×
0FULog-r [Faury et al. ICML20]	$\mathcal{O}(d\sqrt{T/\kappa})$	V	X
0FU-EC0Log (submitted)			

• The performance metric is the regret:

$$\mathsf{Regret}(T) = T \max_{a \in \mathcal{A}} \mu(a^{\top} \theta_{\star}) - \sum_{t=1}^{T} \mu(a_{t}^{\top} \theta_{\star}) \; .$$

Lower-bound [Abeille et al. AISTATS21]	$\Omega(d\sqrt{T/\kappa})$		
Algorithm	Regret Bound	Minimax	Efficient
GLM-UCB [Filippi et al. NIPS10.]	$\mathcal{O}(\kappa d\sqrt{T})$	×	×
0FULog-r [Faury et al. ICML20]	$\mathcal{O}(d\sqrt{T/\kappa})$	~	X
0FU-EC0Log (submitted)	$\mathcal{O}(d\sqrt{T/\kappa})$	~	V

High-level idea.

High-level idea.

• Exploit. Predict rewards

High-level idea.

- Exploit. Predict rewards
- Explore. Quantify uncertainty

High-level idea.

- Exploit. Predict rewards
- Explore. Quantify uncertainty

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

High-level idea.

- Exploit. Predict rewards
- Explore. Quantify uncertainty

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

High-level idea.

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

- **Exploit.** Predict rewards $\longrightarrow \hat{\mu}_a = \mu(a^{\top}\hat{\theta})$.
- Explore. Quantify uncertainty

High-level idea.

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

- Exploit. Predict rewards $\longrightarrow \hat{\mu}_a = \mu(a^{\top}\hat{\theta}).$

- Explore. Quantify uncertainty \longrightarrow quantify deviation between $\hat{\theta}$ and θ_{\star} .

High-level idea.

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

- **Exploit**. Predict rewards $\longrightarrow \hat{\mu}_a = \mu(a^{\top}\hat{\theta})$.
- Explore. Quantify uncertainty \longrightarrow quantify deviation between $\hat{\theta}$ and θ_{\star} .

High-level idea.

Leveraging the structure.

$$\mu_a^{\star} = \mu(\mathbf{a}^{\top}\theta_{\star})$$

- Exploit. Predict rewards $\longrightarrow \hat{\mu}_a = \mu(a^{\top}\hat{\theta}).$
- Explore. Quantify uncertainty \longrightarrow quantify deviation between $\hat{\theta}$ and θ_{\star} .

Challenge: design *sharp* and *tractable* confidence set \mathcal{C}

ullet Based on the maximum-likelihood estimator and linear design matrix $oldsymbol{V}_t$:

$$egin{cases} \hat{ heta}_t = \sum_{s=1}^t \ell_s(heta) & ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, r_s) \;, \ V_t = \sum_{s=1}^t a_s a_s^{\; op} \;. \end{cases}$$

ullet Based on the maximum-likelihood estimator and linear design matrix $oldsymbol{V}_t$:

$$\begin{cases} \hat{\theta_t} = \sum_{s=1}^t \ell_s(\theta) & \text{where } \ell_s(\theta) \leftarrow \text{cross-entropy on } (a_s, \textcolor{red}{r_s}) \;, \\ V_t = \sum_{s=1}^t a_s a_s^\top \;. \end{cases}$$

$$\mathcal{C}_t = \left\{ heta \in \mathbb{R}^d, \; \lVert heta - \hat{ heta}_t
Vert_t \leq \kappa
ight\}$$

ullet Based on the maximum-likelihood estimator and linear design matrix $oldsymbol{V}_t$:

$$egin{cases} \hat{ heta}_t = \sum_{s=1}^t \ell_s(heta) & ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, extbf{\emph{r}}_s) \;, \ egin{cases} oldsymbol{V}_t = \sum_{s=1}^t a_s a_s^{ op} \;. \end{cases}$$

$$\mathcal{C}_t = \left\{ heta \in \mathbb{R}^d, \; \lVert heta - \hat{ heta}_t
Vert_{oldsymbol{V}_t} \leq oldsymbol{\kappa}
ight\}$$

ullet Based on the maximum-likelihood estimator and linear design matrix $oldsymbol{V}_t$:

$$\left\{egin{aligned} \hat{ heta}_t &= \sum_{s=1}^t \ell_s(heta) \quad ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, r_s) \ , \ V_t &= \sum_{s=1}^t a_s a_s^{\; op} \ . \end{aligned}
ight.$$

$$\mathcal{C}_t = \left\{ heta \in \mathbb{R}^d, \ \| heta - \hat{ heta}_t\|_{oldsymbol{V}_t} \leq oldsymbol{\kappa}
ight\}$$

ullet Based on the maximum-likelihood estimator and linear design matrix V_t :

$$egin{cases} \hat{ heta}_t = \sum_{s=1}^t \ell_s(heta) & ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, extbf{\emph{r}}_s) \;, \ egin{cases} oldsymbol{V}_t = \sum_{s=1}^t a_s a_s^{ op} \;. \end{cases}$$

$$\mathcal{C}_t = \left\{ \theta \in \mathbb{R}^d, \ \|\theta - \hat{\underline{\theta}}_t\|_{\boldsymbol{V}_t} \leq \boldsymbol{\kappa} \right\}$$

$$\hat{\mu}_a - \mu_a^\star \approx \kappa \|a\|_{V_t^{-1}}$$
 $pprox \frac{\kappa}{\sqrt{\text{number of times a was played}}}$
 $pprox 10^2/\sqrt{10^4}$
 $pprox 1 \leftarrow \text{trivial bound!}$

ullet Based on the maximum-likelihood estimator and linear design matrix V_t :

$$egin{cases} \hat{ heta}_t = \sum_{s=1}^t \ell_s(heta) & ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, r_s) \ , \ V_t = \sum_{s=1}^t a_s a_s^{ op} \ . \end{cases}$$

$$\mathcal{C}_t = \left\{ \theta \in \mathbb{R}^d, \ \|\theta - \hat{\theta}_t\|_{\boldsymbol{V}_t} \leq \kappa \right\}$$

We play $a \approx 10^4$ times.

$$\begin{split} \hat{\mu}_{a} - \mu_{a}^{\star} &\approx \kappa \|a\|_{V_{t}^{-1}} \\ &\approx \frac{\kappa}{\sqrt{\text{number of times a was played}}} \\ &\approx 10^{2}/\sqrt{10^{4}} \\ &\approx 1 \qquad \leftarrow \text{trivial bound!} \end{split}$$

X Aggressive exploration

ullet Based on the maximum-likelihood estimator and linear design matrix $oldsymbol{V}_t$:

$$egin{cases} \hat{ heta}_t = \sum_{s=1}^t \ell_s(heta) & ext{where } \ell_s(heta) \leftarrow ext{cross-entropy on } (a_s, r_s) \ , \ V_t = \sum_{s=1}^t a_s a_s^{ op} \ . \end{cases}$$

$$\mathcal{C}_t = \left\{ \theta \in \mathbb{R}^d, \ \|\theta - \hat{\theta}_t\|_{\boldsymbol{V}_t} \leq \kappa \right\}$$

$$\begin{split} \hat{\mu}_a - \mu_a^\star &\approx \pmb{\kappa} \|a\|_{\pmb{V}_t^{-1}} \\ &\approx \frac{\pmb{\kappa}}{\sqrt{\text{number of times a was played}}} \\ &\approx 10^2/\sqrt{10^4} \\ &\approx 1 \qquad \leftarrow \text{trivial bound!} \end{split}$$

- **✗** Aggressive exploration
- **X** Computationally Expensive

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{ op}\hat{ heta}_t)a_sa_s^{ op} \ .$$

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$m{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{\ op}\hat{m{ heta}}_t)a_s a_s^{\ op} \ .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$H_t = \sum_{s=1}^t \dot{\mu}(a_s^{}\hat{ heta}_t)a_sa_s^{} \ .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{}^{}^{}\hat{oldsymbol{ heta}}_t)a_s^{}a_s^{}^{}^{}^{}^{}^{}$$
 .

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{\mathbf{H}_t} \le 1 \right\}$$

New concentration tools.

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{\; op} \hat{ heta}_t) a_s a_s^{\; op} \; .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

New concentration tools.

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{\; op} \hat{ heta}_t) a_s a_s^{\; op} \; .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

New concentration tools.

$$\hat{\mu}_a - \mu_a^{\star} \approx \dot{\mu}(a^{\top}\hat{\theta}_t)\|a\|_{H_t^{-1}}$$

$$\approx \frac{1}{\sqrt{\text{number of times a was played}}}$$

$$\approx 10^{-2}$$

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{\ op}\hat{ heta}_t)a_sa_s^{\ op} \ .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

New concentration tools.

$$\begin{split} \hat{\mu}_{a} - \mu_{a}^{\star} &\approx \dot{\mu}(\boldsymbol{a}^{\top}\hat{\boldsymbol{\theta}_{t}})\|\boldsymbol{a}\|_{\boldsymbol{H}_{t}^{-1}} \\ &\approx \frac{1}{\sqrt{\mathsf{number of times a was played}}} \\ &\approx 10^{-2} \end{split}$$

- ✓ Efficient exploration
- ✔ Optimal (Cramer-Rao)

• Same estimator $\hat{\theta}_t$ but new metric of deviation:

$$oldsymbol{H}_t = \sum_{s=1}^t \dot{\mu}(a_s^{\ op}\hat{oldsymbol{ heta}}_t)a_sa_s^{\ op} \ .$$

$$\mathcal{E}_t = \left\{ \theta \in \mathbb{R}^d, \|\theta - \hat{\theta}_t\|_{H_t} \le 1 \right\}$$

New concentration tools.

$$\begin{split} \hat{\mu}_{a} - \mu_{a}^{\star} &\approx \dot{\mu}(a^{\top}\hat{\theta}_{t})\|a\|_{H_{t}^{-1}} \\ &\approx \frac{1}{\sqrt{\text{number of times a was played}}} \\ &\approx 10^{-2} \end{split}$$

- ✔ Efficient exploration
- ✔ Optimal (Cramer-Rao)
- **X** Computationally expensive!

Fast and Optimal Approach (submitted)

- Main bottleneck: computation of $\hat{ heta}_t$ and $m{H}_t$.
 - $\Omega(t)$ operations at each round!
 - ► In practice, very slow.

Fast and Optimal Approach (submitted)

- Main bottleneck: computation of $\hat{\theta}_t$ and H_t .
 - $ightharpoonup \Omega(t)$ operations at each round!
 - ► In practice, very slow.
- Efficient alternative through recursive-least-squares-like operations:

$$\begin{aligned} & \textbf{ECOLog procedure:} \; \left\{ \begin{aligned} & \frac{\theta_t = \operatorname{argmin}_{\theta} \left\| \theta - \theta_{t-1} \right\|_{\boldsymbol{W}_{t-1}}^2 + \ell_t(\theta) \;,} \\ & \boldsymbol{W}_t = \boldsymbol{W}_{t-1} + \dot{\mu} (\boldsymbol{a_t}^{\top} \boldsymbol{\theta_t}) \boldsymbol{a_t} \boldsymbol{a_t}^{\top} \;. \end{aligned} \right. \end{aligned}$$

Fast and Optimal Approach (submitted)

- Main bottleneck: computation of $\hat{ heta}_t$ and $m{H}_t$.
 - $\Omega(t)$ operations at each round!
 - ► In practice, very slow.
- Efficient alternative through recursive-least-squares-like operations:

$$\begin{aligned} \textbf{ECOLog procedure:} \; & \left\{ \begin{array}{l} \boldsymbol{\theta}_t = \operatorname{argmin}_{\boldsymbol{\theta}} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{t-1} \right\|_{\boldsymbol{W}_{t-1}}^2 + \ell_t(\boldsymbol{\theta}) \;, \\ \boldsymbol{W}_t = \boldsymbol{W}_{t-1} + \dot{\mu} (\boldsymbol{a_t}^\top \boldsymbol{\theta}_t) \boldsymbol{a_t} \boldsymbol{a_t}^\top \;. \end{array} \right. \end{aligned}$$

- · Best of both world:
 - ightharpoonup Online computations: $\widetilde{\mathcal{O}}(1)$ operations!
- $lap{V}$ Statistical tightness: $\mathcal{E}_t' = \left\{\theta, \ \left\|\theta \frac{\theta_t}{\theta_t}\right\|_{W_t} \leq 1\right\} \approx \mathcal{E}_t$.

Can we see some curves?

Regret: the smaller the better.

Complexity: the smaller the better

Can we see some curves?

• Blue curve: Best of both world behavior.

Can we see some curves?

Regret: the smaller the better.

Complexity: the smaller the better

- Blue curve: Best of both world behavior.
- In short: mature for deployment in real-life situations.

What's in it for you?

- Learning. Principled and efficient estimation procedure:
 - ▶ Same convergence guarantee as MLE.
 - Fully online.
 - ► Compatible with non-stationary environments.

What's in it for you?

- Learning. Principled and efficient estimation procedure:
 - ▶ Same convergence guarantee as MLE.
 - Fully online.
 - ► Compatible with non-stationary environments.

- Planning. Principled exploration:
 - Readily usable confidence sets / predictions errors.
 - ▶ Long-term optimal without burning cash.
 - ► Compatible with randomized exploration.

What's in it for you?

- Learning. Principled and efficient estimation procedure:
 - Same convergence guarantee as MLE.
 - Fully online.
 - ▶ Compatible with non-stationary environments.

- Planning. Principled exploration:
 - Readily usable confidence sets / predictions errors.
 - ▶ Long-term optimal without burning cash.
 - ► Compatible with randomized exploration.

Thank you! Questions?