MIT 16.90: Problem Set 7

Spring 2016

Due April 13th, 2016

Please attach a hardcopy of your code for this Problem

1. Analysis of the 1D Nodal Basis Functions for Interpolation

In this problem, we consider interpolating three different functions as a linear combination of linear nodal basis functions, and analyze how close these interpolated solutions are to the actual function values.

Consider the functions u_1 , u_2 , and u_3 below (plotted in Figure 1):

$$u_1 = \begin{cases} 5 & 0 < x < 0.5 \\ 1 & 0.5 < x < 1 \end{cases}$$

$$u_2 = \left\{ \begin{array}{ll} e^x & 0 < x < 0.5 \\ e^{2(x-0.25)} & 0.5 < x < 1 \end{array} \right.$$

$$u_3 = 5(1 - x^3) \quad 0 < x < 1$$

Figure 1: Plot of u_1, u_2, u_3 ; the exact functions to be interpolated

We wish to approximate these functions using a combination of linear nodal basis functions, given by

$$v(x) = \sum_{j=1}^{N} a_j \phi_j(x)$$

where N represents the number of nodes. In this problem, we consider equally spaced nodes, so that

$$\Delta x = \Delta x_{i-1} = \Delta x_i$$

For a nodal basis and linear elements, the j^{th} basis function is given by

$$\phi_j(x) = \begin{cases} 0 & x < x_{j-1} \\ \frac{x - x_{j-1}}{\Delta x_{j-1}} & x_{j-1} < x < x_j \\ \frac{x_{j+1} - x}{\Delta x_j} & x_j < x < x_{j+1} \\ 0 & x > x_{j+1} \end{cases}$$

and the coefficients are chosen to equal the exact values at the nodes so that

$$a_j = u(x_j)$$

We can measure the pointwise error between our interpolated solution and the actual function as

$$e(x) = |u(x) - v(x)|$$

In this problem, we have N nodal points. However, for obtaining the pointwise error, we will use 50 points within each element, so that there are 50 points between nodal points x_j and x_{j+1} (e.g. linspace($x_j, x_{j+1}, 50$) in MATLAB). We will measure the error at each of these points within a given element, and do this for all elements to obtain the error for $x \in [0, 1]$.

We may also measure the maximum error in our solution over $x \in [0, 1]$ as

$$e_{max} = \max_{x} |u(x) - v(x)|$$

One way to obtain this value is to store the maximum pointwise error for each element, and find the maximum of these values.

- (a) Let N=8 so that we have 8 nodal grid points. Plot the pointwise error between your interpolated numerical solution and the actual function versus x for each of the three functions. Additionally, give the maximum error in each case.
- (b) We may also analyze how quickly the error in our interpolation for each function decreases as the number of nodal points N is refined. Make a loglog plot of the maximum error versus Δx for N=2,4,8,16,32,64, for each of the three functions. How does the error behave as Δx gets smaller in each case? In other words, approximately what is the order of convergence p in each case if error scales with $\mathcal{O}(\Delta x^p)$?