THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

MID SESSION TEST - 2018 -Friday, 7th September (Week 7)

MATH5905

Time allowed: 75 minutes

- 1. In a sequence of consecutive years 1, 2, ..., n, an annual number of high-risk events is recorded by a bank. The random counts $X_i, i = 1, 2, ..., n$ of high-risk events in a given year is modelled via $Poisson(\theta)$ distribution and can be assumed independent from year to year. Within the last eight years counts were 0, 3, 1, 1, 2, 2, 4, 1.
 - a) Given that $T = \sum_{i=1}^{n} X_i$ is sufficient and complete for θ , derive the UMVUE of $\tau(\theta) = \theta e^{-\theta}$, i.e., the probability that exactly one extremal event in a given year will emerge. Justify your answer and evaluate the probability using the given data.
 - b) Calculate the Cramer-Rao bound for the minimal variance of an unbiased estimator of $\tau(\theta) = \theta e^{-\theta}$. Does the variance of the UMVUE of $\tau(\theta)$ attain this bound? Give reasons.
 - c) Find the MLE $\hat{\tau}$ of $\tau(\theta)$. Compare the numerical values in a) and c) and comment.
 - d) The prior on θ is Gamma(2,0.5). Determine the Bayesian estimator of θ w.r.t. quadratic loss. **Note:** You may use that for known $\alpha > 0, \beta > 0$, the $Gamma(\alpha, \beta)$ density is given by:

$$f(x; \alpha, \beta) = \frac{e^{-\frac{x}{\beta}} x^{\alpha - 1}}{\Gamma(\alpha) \beta^{\alpha}}, x > 0.$$

Here $\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$ is the gamma function. If X is distributed $Gamma(\alpha, \beta)$ then $EX = \alpha\beta, V(X) = \alpha\beta^2$ holds. \diamond

- e) The bank claims that the intensity θ is less than 1.5. Test the bank's claim via Bayesian testing with a zero-one loss. You can use: $10^{16}/\Gamma(16) = 7647.164$, $\int_0^{1.5} exp(-10x) * x^{15} dx = 0.000056$.
- 2. Let X_1, X_2, \ldots, X_n be independent random variables, with a density

$$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2}, 0 < x < \theta, \\ 0 \text{ else} \end{cases}$$

where $\theta > 0$ is an unknown parameter. If $Z_n = X_{(n)}$, then

a) Show that the density of Z_n is

$$f_{Z_n}(z;\theta) = \begin{cases} \frac{2nz^{2n-1}}{\theta^{2n}}, 0 < z < \theta, \\ 0 \text{ else} \end{cases}$$

(**Hint:** find the cdf $F_{Z_n}(z;\theta)$ of Z_n first).

- b) Argue that Z_n is a sufficient and complete statistic for θ .
- c) Find the UMVUE of the parameter θ as a function of Z_n .