Некоторые задачи асимптотической теории метода «Анализ Сингулярного Спектра»

Яковлев Денис Михайлович, гр.21.Б04-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — кандидат физико математических наук, доцент **В. В. Некруткин**

Рецензент — ведущий разработчик-исследователь, Onfido Ltd, Великобритания, Лондон **Е.В. Иванова**

Санкт-Петербург, 2025 г.

Введение

- ullet $H_N=(h_0,h_1,\ldots,h_{N-1})$ сигнал, $h_i\in\mathbb{R}$;
- $E_N = (e_0, e_1, \dots, e_{N-1})$ nomexa, $e_i \in \mathbb{R}$;
- Наблюдаем ряд $H_N(\delta) = (h_0 + \delta e_0, h_1 + \delta e_1, \dots, h_{N-1} + \delta e_{N-1})$ модель сигнала с помехой, где $\delta \in \mathbb{R}$ формальный параметр возмущения.
- Задача выделить H_N из $H_N(\delta)$.
- Используемый метод SSA (Singular Spectrum Analysis), или ACC (Анализ Сингулярного Спектра) [Golyandina N., Nekrutkin V., Zhigljavsky A., 2001, Analysis Of Time Series Structure. SSA and Related Techniques].

Введение. Модель сигнала

Линейная рекуррентная формула (ЛРФ)

Сигнал H_N управляется ЛРФ порядка $d \in \mathbb{N}$, если

$$h_n = \sum_{k=1}^{d} a_k h_{n-k}, \ n \geqslant d, \ a_d > 0.$$

и не существует ЛРФ меньшего порядка, управляющей сигналом H_N (минимальность).

- ullet Говорим: сигнал H_N порядка $d \Leftrightarrow$ сигнал H_N управляется ЛРФ порядка d.
- ullet Выделение H_N из $H_N(\delta)$ происходит при заданном порядке d.

Введение. Метод решения: SSA

ullet Входные данные: сигнал с помехой $H_N(\delta)$, порядок сигнала d, длина окна L: $1\leqslant L\leqslant N$.

Траекторная матрица

Пусть $F_N=(f_0,\dots,f_{N-1})$ — временной ряд, $0< L\leqslant N$ — длина окна, K=N-L+1 — число окон, $\mathcal{T}_{L,N}=\mathcal{T}$ — оператор вложения. Траекторная матрица (матрица вложений) временного ряда F_N :

$$\mathcal{T}(F_N) = \mathbf{F} = \begin{pmatrix} f_0 & f_1 & f_2 & \dots & f_{K-1} \\ f_1 & f_2 & f_3 & \dots & f_K \\ f_2 & f_3 & f_4 & \dots & f_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{L-1} & f_L & f_{L+1} & \dots & f_{N-1} \end{pmatrix} \in \mathbb{R}^{L \times K}.$$

- Шаг 1. Вложение: L длина окна, $H_N(\delta) \xrightarrow{\mathcal{T}_{L,N}} \mathbf{H}(\delta)$.
- Шаг 2. Сингулярное разложение:

$$\mathbf{H}(\delta) = \sum_{i=1}^{\min(L,K)} \sqrt{\lambda_i} U_i V_i, \ \min(L,K) \geqslant d.$$

Введение. Метод решения: SSA

- Шаг 3. Проектирование на собственное подпространство: $\mathbf{H}(\delta) \xrightarrow{\mathbf{P}_d} \widetilde{\mathbf{H}}(\delta), \ \mathbf{P}_d$ проектор на $\mathbb{U}_d = \mathrm{span}\{U_1, U_2, \dots, U_d\}.$
- Шаг 4. Ганкелизация: $\widetilde{\mathbf{H}}(\delta) \xrightarrow{\mathcal{H}} \widehat{\mathbf{H}}(\delta)$, i,j индексы строк и столбцов, \mathcal{H} оператор ганкелизации, который усредняет значения на диагоналях $\{(i,j): i+j=const\}$.
- Шаг 5. Восстановление: $\widehat{\mathbf{H}}(\delta) \xrightarrow{\mathcal{T}_{L,N}^{-1}} \widehat{H}_N(\delta)$.
 - ullet Результат: восстановленный сигнал $\widehat{H}_N(\delta)$ оценка $H_N.$

Определим ошибку восстановления $r_i(N)=r_i(\delta,N)=\widehat{h}_i(\delta)-h_i.$ Нас интересует поведение максимальной ошибки восстановления $\max_{0\leqslant i< N}|r_i(N)|$ при больших длинах ряда N.

Введение. Главный член разности $\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp$

Пусть [Nekrutkin V. V., 2010]

- ${\bf P}_0^\perp(\delta), {\bf P}_0^\perp$ проекторы на пространства столбцов ${\bf H}(\delta)={\bf H}+\delta{\bf E}, {\bf H};$
- $\bullet \ \Delta_{\delta}(\mathbf{H}) := \mathbf{P}_0^{\perp}(\delta)\mathbf{H}(\delta) \mathbf{P}_0^{\perp}\mathbf{H} = (\mathbf{P}_0^{\perp}(\delta) \mathbf{P}_0^{\perp})\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E}.$
- ullet $\|\cdot\|$ спектральная норма, $\|\cdot\|_{\max}$ равномерная норма.

Взяв $\mathbf{N}(\delta)$ — некоторую матрицу размера $L \times L$, запишем

$$\max_{0 \leqslant i < N} |r_i(N)| = \max_i |\mathcal{H}\Delta_{\delta}(\mathbf{H})_{0 \leqslant i < N}| \le ||\Delta_{\delta}(\mathbf{H})||_{\max}$$

$$= ||(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp})\mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E}||_{\max} \le ||(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta))\mathbf{H}(\delta)|| + ||\mathbf{N}(\delta)\mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E}||_{\max}. \tag{1}$$

Общая задача: для рассматриваемого сигнала H_N и помехи E_N подобрать такие $\mathbf{N}(\delta)$, чтобы правая часть (1) стремилась к нулю при $N \to \infty$.

Тогда смысл операторов $\mathbf{N}(\delta)$ — главная часть разности проекторов.

Известные результаты

Из [Kato T., 1966] следует следующее утверждение [Nekrutkin V. V., 2010].

Теорема о представлении проектора (Nekrutkin V. V., 2010)

Введём $\mathbf{B}(\delta) = \delta(\mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}) + \delta^{2}\mathbf{E}\mathbf{E}^{\mathrm{T}}, \ \mathbf{P}_{0}^{\perp}, \mathbf{P}_{0}^{\perp}(\delta)$ — проекторы на столбцы матриц $\mathbf{H}, \mathbf{H}(\delta), \mu_{\min}$ — наименьшее положительное собственное число $\mathbf{H}\mathbf{H}^{\mathrm{T}}$. Пусть $\delta_{0} > 0$ и

$$\|\mathbf{B}(\delta)\| < \mu_{min}/2$$

для всех $\delta \in (-\delta_0, \delta_0)$. Тогда верно представление:

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{p=1}^{\infty} \mathbf{W}_p(\delta), \tag{2}$$

где $\mathbf{W}_p(\delta)$ — специальные матрицы из теории возмущения (см. [Nekrutkin V. V., 2010]), а ряд в правой части (2) сходится по спектральной норме.

Полученные результаты

• Напомним:

$$\max_{0\leqslant i < N} |r_i(N)| \leqslant \left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta) \right) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}(\delta) \, \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max}.$$

• Основной теоретический результат:

Teopeмa об оценке сумм по $\mathbf{W}_p(\delta)$

Пусть
$$\mathbf{N}(\delta) = \mathbf{N}_k(\delta) = \sum_{p=1}^k \mathbf{W}_p(\delta), \ k \in \mathbb{N}, \ \mathbf{S}_0 = (\mathbf{H}\mathbf{H}^{\mathrm{T}})^-, \ \delta_0 > 0$$
 и
$$\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}} < \frac{1}{4} \ \text{для всех} \ \delta \in (-\delta_0, \delta_0). \ \text{Тогда для некоторой абсолютной постоянной } C \ \text{выполняется}$$

$$\left\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}_k(\delta)\right\| = \left\|\sum_{p=k+1}^{\infty} \mathbf{W}_p(\delta)\right\|$$

$$\leqslant 4^{k+1} C \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^k \frac{\|\mathbf{S}_0\mathbf{B}(\delta)\mathbf{P}_0\|}{1 - 4\|\mathbf{B}(\delta)\|/\mu_{\min}}.$$

Пример lin + harm. Известные результаты

• Линейный сигнал:

$$h_n = \theta_1 n + \theta_0,$$

где $\theta_1 \neq 0$, H_N имеет порядок d=2.

• Помеха в виде линейной комбинации гармоник:

$$e_n = \sum_{\ell=1}^r A_\ell \cos(2\pi n\omega_\ell + \varphi_\ell),$$

где $A_\ell \neq 0, \omega_\ell \neq \omega_p$ при $\ell \neq p$ и $0 < \omega_\ell < 1/2$.

Теорема об асимптотике (Зенкова Н. В., Некруткин В.В., 2022)

Пусть N — нечетное и L=K=(N+1)/2. При $N\to\infty$ для любого $\delta\in\mathbb{R}$ при $N\to\infty$

$$\max_{0 \le n < N} |r_n(N)| = O(N^{-1}).$$

• Задача: исследовать случай $L/N \xrightarrow{N \to \infty} \alpha \in (0,1)$, используя $\mathbf{N}_k(\delta) = \sum_{p=1}^k \mathbf{W}_p(\delta).$

Пример lin + harm. Полученные результаты

• Напомним:

$$\max_{0\leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp - \mathbf{N}(\delta)) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}(\delta) \, \mathbf{H}(\delta) + \delta \mathbf{P}_0^\perp \mathbf{E} \right\|_{\max}.$$

Обобщение теоремы об асимптотике проводилось двумя способами для демонстрации отличий при доказательстве:

 ${f 0} \ \ {f N}(\delta) = {f N}_1(\delta) = {f W}_1(\delta).$ Полученные результаты:

Предложение 1 (Об оценке первого слагаемого)

$$E$$
сли $N o\infty$ и $L/N olpha\in(0,1)$, то для любого $\delta\in\mathbb{R}$: $\|(\mathbf{P}_0^\perp(\delta)-\mathbf{P}_0^\perp-\mathbf{N}_1(\delta))\mathbf{H}(\delta)\|=O(N^{-2}).$

Предложение 2 (Об оценке второго слагаемого)

Если
$$N \to \infty$$
 и $L/N \to \alpha \in (0,1)$, то $\left\| \mathbf{N}_1(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max} = O(N^{-1}).$

Пример lin + harm. Полученные результаты

• Напомним:

$$\max_{0\leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp - \mathbf{N}(\delta)) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}(\delta) \, \mathbf{H}(\delta) + \delta \mathbf{P}_0^\perp \mathbf{E} \right\|_{\max}.$$

- **3** $\mathbf{N}(\delta) = \mathbf{N}_3(\delta) = \mathbf{W}_1(\delta) + \mathbf{W}_2(\delta) + \mathbf{W}_3(\delta)$. Полученные результаты:
 - Для первого слагаемого оценка без дополнительных теоретических выводов:

$$\left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta)) \mathbf{H}(\delta) \right\| \leqslant \left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta) \right\| \|\mathbf{H}\| = O(N^{-2}).$$

• Для второго слагаемого доказано утверждение:

Предложение 3 (Об оценке второго слагаемого)

Если
$$N \to \infty$$
 и $L/N \to \alpha \in (0,1)$, то $\left\| \mathbf{N}_3(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^\perp \mathbf{E} \right\|_{\max} = O(N^{-1}).$

Пример lin + harm. Полученные результаты

ullet Для $\mathbf{N}_k(\delta) = \sum_{p=1}^k \mathbf{W}_p(\delta)$ и для любого $\delta \in \mathbb{R}$ наблюдаем:

$$\begin{split} & \max_{0 \leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}_k(\delta)) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}_k(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max} \\ & = O(N^{-2}) + O(N^{-1}) = o(N^{-1}) + O(N^{-1}). \end{split}$$

• Для $\forall k \in \mathbb{N}$ линейный по δ член приближения [Зенкова Н., Некруткин В., 2022] из второго слагаемого $\|\mathbf{N}_k(\delta)\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max}$ имеет вид:

$$\mathbf{E}\mathbf{Q}_0^{\perp} - \mathbf{P}_0^{\perp}\mathbf{E}\mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp}\mathbf{E}$$

где \mathbf{P}_0^\perp и \mathbf{Q}_0^\perp — проекторы на пространство столбцов и строк \mathbf{H} .

ullet Для примера lin + harm верно следующее утверждение:

Предложение 4 (Оценка линейным по δ членом приближения)

При $L/N o lpha \in (0,1)$ порядок $\max_{0 \leqslant i < N} |r_i(N)|$ определяется линейным по δ членом приближения $\mathbf{E} \mathbf{Q}_0^\perp - \mathbf{P}_0^\perp \mathbf{E} \mathbf{Q}_0^\perp + \mathbf{P}_0^\perp \mathbf{E}$, то есть

$$\max_{0 \leqslant i < N} |r_i(N)| \leqslant |\delta| \|\mathbf{E} \mathbf{Q}_0^{\perp} - \mathbf{P}_0^{\perp} \mathbf{E} \mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp} \mathbf{E} \|_{\max} + o(N^{-1}) = O(N^{-1}).$$

Пример polyn (k) + harm. Постановка задачи

• Сигнал и помеха в виде линейной комбинации гармоник:

$$h_n(\delta) = h_n + \delta e_n = \sum_{\ell=1}^k \theta_\ell n^\ell + \delta \sum_{\ell=1}^r A_\ell \cos(2\pi n\omega_\ell + \varphi_\ell),$$

где $\theta_k \neq 0,\, \omega_\ell \neq \omega_p$ при $\ell \neq p, 0 < \omega_\ell < 1/2$ и H_N порядка d=k+1.

Теорема об асимптотике

Пусть $L/N \to \alpha \in (0,1)$ при $N \to \infty$. Тогда для любого $\delta \in \mathbb{R}$ выполняется

$$\max_{0 \leqslant n < N} |r_n(N)| = O(N^{-1}).$$

ullet Задача: получить результаты теоремы при выборе оператора $\mathbf{N}(\delta) = \mathbf{N}_1(\delta) = \mathbf{W}_1(\delta).$

Пример polyn (k) + harm. Полученные результаты

• Напомним:

$$\max_{0\leqslant i< N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta)) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max}.$$

- $\mathbf{N}(\delta) = \mathbf{W}_1(\delta)$, $h_n = \sum_{\ell=1}^k \theta_\ell n^\ell$.
- ullet Результаты для слагаемого $\left\| \left(\mathbf{P}_0^\perp(\delta) \mathbf{P}_0^\perp \mathbf{N}(\delta) \right) \mathbf{H}(\delta) \right\|$:

Лемма 1

При
$$N o \infty$$
 имеет место отношение $\left\|\mathbf{H}\mathbf{E}^{\mathrm{T}}\right\|_{\mathrm{max}} = O(N^k).$

Предложение 5 (Оценка первого слагаемого)

Если
$$L/N \to \alpha \in (0,1)$$
 при $N \to \infty$, то для любого $\delta \in \mathbb{R}$ выполняется $\|(\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp - \mathbf{W}_1(\delta))\mathbf{H}(\delta)\| = O(N^{-k-1})$.

Пример polyn (k) + harm. Полученные результаты

Напомним:

$$\max_{0\leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}(\delta)) \mathbf{H}(\delta) \right\| + \left\| \mathbf{N}(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max}.$$

- $\mathbf{N}(\delta) = \mathbf{W}_1(\delta)$, \mathbf{P}_0^{\perp} проектор на пространство столбцов \mathbf{H} , $\mathbf{S}_0 = \left(\mathbf{H}\mathbf{H}^{\mathrm{T}}\right)^-$, $h_n = \sum_{\ell=1}^k \theta_\ell n^\ell$.
- ullet Результаты для слагаемого $\left\| \mathbf{N}(\delta)\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E} \right\|_{\max}$:

Лемма 2

При $N o \infty$ имеет место отношение $\left\| \mathbf{P}_0^\perp \mathbf{E} \right\|_{\max} = O(N^{-1}).$

Лемма 3

При $N \to \infty$ имеет место отношение $\|\mathbf{S}_0\mathbf{E}\| = O(N^{-2k-2})$.

Предложение 6 (Оценка второго слагаемого)

Если $L/N \to \alpha \in (0,1)$ при $N \to \infty$, то для любого $\delta \in \mathbb{R}$ выполняется $\left\| \mathbf{W}_1(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^\perp \mathbf{E} \right\|_{\max} = O(N^{-1})$.

Пример polyn (k) + harm. Полученные результаты

ullet Для $\mathbf{N}_m(\delta) = \sum_{p=1}^m \mathbf{W}_p(\delta)$ и для любого $\delta \in \mathbb{R}$ наблюдаем:

$$\max_{0 \leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}_m(\delta)) \mathbf{H}(\delta) \right\| + \\ \left\| \mathbf{N}_m(\delta) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max} = O(N^{-2}) + O(N^{-1}) = o(N^{-1}) + O(N^{-1}).$$

• Для $\forall m \in \mathbb{N}$ линейный по δ член приближения из второго слагаемого $\left\|\mathbf{N}_m(\delta)\mathbf{H}(\delta) + \delta\mathbf{P}_0^{\perp}\mathbf{E}\right\|_{\max}$ имеет вид:

$$\mathbf{E}\mathbf{Q}_0^{\perp} - \mathbf{P}_0^{\perp}\mathbf{E}\mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp}\mathbf{E}$$

где \mathbf{P}_0^\perp и \mathbf{Q}_0^\perp — проекторы на пространство столбцов и строк \mathbf{H} .

• Результаты для линейного по δ члена приближения:

Предложение 7 (Оценка линейным по δ членом приближения)

При $L/N o lpha \in (0,1)$ порядок $\max_{0 \leqslant i < N} |r_i(N)| = O(N^{-1})$ определяется линейным по δ членом приближения $\mathbf{EQ}_0^\perp - \mathbf{P}_0^\perp \mathbf{EQ}_0^\perp + \mathbf{P}_0^\perp \mathbf{E}$, то есть

$$\max_{0 \leqslant i < N} |r_i(N)| \leqslant |\delta| \|\mathbf{E} \mathbf{Q}_0^{\perp} - \mathbf{P}_0^{\perp} \mathbf{E} \mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp} \mathbf{E} \|_{\max} + o(N^{-1}) = O(N^{-1}).$$

Для вычислительного эксперимента рассмотрим оценки максимальных ошибки восстановления:

- $\max_{0 \leqslant i < N} |r_i(N)|$ ошибку восстановления SSA;
- ullet $\|\mathcal{H}(\mathbf{E}\mathbf{Q}_0^{\perp} \mathbf{P}_0^{\perp}\mathbf{E}\mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp}\mathbf{E})\|_{\max}$ линейное приближение.

Численный пример (lin + harm)

Проиллюстрировать результат теоремы об асимптотике для ряда

$$h_n(\delta) = n + \delta \sum_{i=1}^{8} A_i \cos(2\pi n\omega_i + \varphi_i), \quad \delta = 1,$$

где $N=9\dots 1000$, длина окна $L=\lfloor N/3 \rfloor$ и

- $(A_1, \ldots, A_8) = (16, 12, -17, 18, 14, -15, 7, 3);$
- $(\omega_1, \ldots, \omega_8) = \left(\frac{1}{10}, \frac{3}{10}, \frac{1}{4}, \frac{2}{5}, \frac{1}{5}, \frac{17}{100}, \frac{11}{25}, \frac{49}{100}\right);$
- $(\varphi_1, \dots, \varphi_8) = \left(\frac{4\pi}{5}, \frac{13\pi}{10}, \frac{3\pi}{10}, \frac{3\pi}{2}, \frac{7\pi}{10}, \frac{11\pi}{10}, 0, \frac{3\pi}{5}\right).$

Рис. 1: График модели $h_n(\delta)=n+\delta\sum_{i=1}^8 A_i\cos(2\pi n\omega_i+\varphi_i), \delta=1$, первые 200 значений.

Максимальная ошибка восстановления сигнала L ~ N/3

Рис. 2: Максимальные ошибки восстановления сигнала в зависимости от длины ряда при $h_n(\delta)=n+\delta\sum_{i=1}^8 A_i\cos(2\pi n\omega_i+\varphi_i),\,\delta=1.$

Максимальная ошибка восстановления сигнала L ~ N/3, умноженная на N

Рис. 3: Максимальные ошибки восстановления сигнала, умноженные на N, в зависимости от N для $h_n(\delta)=n+\delta\sum_{i=1}^8 A_i\cos(2\pi n\omega_i+\varphi_i),\,\delta=1.$

Численный пример (polyn (3) + harm)

Проиллюстрировать результат теоремы об асимптотике для ряда

$$h_n(\delta) = \sum_{i=0}^3 \theta_i n^i + \delta \sum_{i=1}^4 \tau_i \cos(2\pi n\omega_i + \varphi_i), \quad \delta = 1,$$

где $N=16\dots 1500$, длина окна $L=\lfloor N/4 \rfloor$ и

•
$$(\theta_0, \dots, \theta_3) = \left(\frac{2020}{10^3}, -\frac{2141}{10^4}, \frac{122}{10^4}, -\frac{1}{10^3}\right);$$

•
$$(\tau_1,\ldots,\tau_4)=(12,-6,-10,4);$$

•
$$(\omega_1,\ldots,\omega_4) = \left(\frac{1}{\sqrt{10}},\frac{\sqrt{3}}{10},\frac{1}{31},\frac{\sqrt{2}}{5}\right);$$

•
$$(\varphi_1, \dots, \varphi_4) = \left(\frac{7\pi}{5}, \frac{13\pi}{17}, \frac{\pi}{2}, \frac{4\pi}{7}\right).$$

Рис. 4: График модели $h_n(\delta) = \sum_{i=0}^3 \theta_i n^i + \delta \sum_{i=1}^4 \tau_i \cos(2\pi n \omega_i + \varphi_i)$, $\delta=1$, первые 100 значений.

Максимальная ошибка восстановления сигнала L ~ N/4

Рис. 5: Максимальные ошибки восстановления сигнала в зависимости от длины ряда при $h_n(\delta)=\sum_{i=0}^3 \theta_i n^i + \delta \sum_{i=1}^4 \tau_i \cos(2\pi n \omega_i + \varphi_i), \ \delta=1.$

Максимальная ошибка восстановления сигнала L ~ N/4, умноженная на N

Рис. 6: Максимальные ошибки восстановления сигнала, умноженные на N, для $h_n(\delta) = \sum_{i=0}^3 \theta_i n^i + \delta \sum_{i=1}^4 \tau_i \cos(2\pi n \omega_i + \varphi_i)$, $\delta = 1$.

Заключение

- Рассмотрен подход оценки максимальной ошибки восстановления с помощью выбора оператора $\mathbf{N}(\delta)$.
- ullet Получена оценка для $\left\|\mathbf{P}_0^\perp(\delta) \mathbf{P}_0^\perp \sum_{p=0}^k \mathbf{W}_p(\delta)
 ight\|.$
- Для моделей lin + harm и polyn (k) + harm получены результаты об асимптотике максимальной ошибки восстановления и влиянии линейного по δ члена приближения.
- В экспериментах при больших N линейный по δ член приближения хорошо аппроксимирует ошибку восстановления.
- Вычислительные эксперименты выполнены на языке R с пакетом Rssa, исходные файлы для воспроизведения результатов доступны по ссылке https://doi.org/10.5281/zenodo.15497107.

Список литературы І

Суетин П.К. Классические ортогональные многочлены. — 3-е изд., перераб. и доп. — М.: ФИЗМАТЛИТ, 2005. — 480 с. — ISBN 5-9221-0406-3.

Nekrutkin V. Perturbation expansions of signal subspaces for long signals. // Statistics and Its Interface. — 2010. — Vol. 3, no. 3. — P. 297–319.

Golyandina N., Korobeynikov A., Zhigljavsky A. Singular spectrum analysis with R. — Springer, 2018.

Зенкова Н., Некруткин В. Об асимптотической разделимости линейных сигналов с гармониками методом анализа сингулярного спектра // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. — 2022. — Т. 9, № 2. — С. 245–254.

Список литературы II

- Ivanova E., Nekrutkin V. Two asymptotic approaches for the exponential signal and harmonic noise in Singular Spectrum Analysis // Statistics and Its Interface. 2019. Vol.12, no. 1. P.49–59.
- Некруткин В.В. Асимптотическая разделимость гармоник методом анализа сингулярного спектра // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2023. Т.10, № 4. С. 720–735.
- Rssa: a collection of methods for singular spectrum analysis / Korobeynikov A., Shlemov A., Usevich K., and Golyandina N. // R package version 1.1. 2024. Access mode: http://CRAN.R-project.org/package=Rssa.
- Yakovlev D. Experiments for Graduation Project: Several problems related to asymptotic theory of Singular Spectrum Analysis. 2025. —

Access mode: https://doi.org/10.5281/zenodo.15497107.