The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9,2011, are all included in the transnational data set known as online retail. The company primarily offer one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

In [2]: df=pd.read_csv(r"C:\Users\Downloads\Online Retail.csv")
df

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Ur King
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	17850.0	Ur King
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Ur King
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Ur King
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Ur King
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fre
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fra

DATA CLEANING AND PREPROCESSING

In [3]: df.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [4]: df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fra
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fra
4								•

```
In [5]: df['InvoiceNo'].value_counts()
Out[5]: 573585
                    1114
                     749
        581219
        581492
                     731
        580729
                     721
        558475
                     705
        554023
                       1
        554022
                       1
        554021
                       1
        554020
                       1
        C558901
                       1
        Name: InvoiceNo, Length: 25900, dtype: int64
In [6]: df['CustomerID'].value_counts()
Out[6]: 17841.0
                    7983
        14911.0
                    5903
        14096.0
                    5128
        12748.0
                    4642
        14606.0
                    2782
        15070.0
                       1
        15753.0
                       1
        17065.0
                       1
        16881.0
                       1
        16995.0
        Name: CustomerID, Length: 4372, dtype: int64
In [7]: df['Quantity'].value_counts()
Out[7]:
          1
                   148227
          2
                    81829
          12
                    61063
          6
                    40868
          4
                    38484
         -472
                        1
        -161
                        1
        -1206
                        1
        -272
                        1
        -80995
        Name: Quantity, Length: 722, dtype: int64
```

```
In [8]: plt.scatter(df["CustomerID"],df["Quantity"])
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[8]: Text(0, 0.5, 'Quantity')

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	object
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtype	es: float64(2)	, int64(1), objec	ct(5)
memor	v usage: 33.1	+ MR	

```
In [10]: df.isnull().sum()
Out[10]: InvoiceNo
                              0
         StockCode
                              0
         Description
                           1454
         Quantity
                              a
         InvoiceDate
                              0
         UnitPrice
         CustomerID
                         135080
         Country
                              0
         dtype: int64
In [11]: df.fillna(method='ffill',inplace=True)
In [12]: df.isnull().sum()
Out[12]: InvoiceNo
                         0
         StockCode
         Description
                        0
         Quantity
         InvoiceDate
                        0
         UnitPrice
                         0
         CustomerID
         Country
         dtype: int64
In [13]:
         from sklearn.cluster import KMeans
         km=KMeans()
         km
Out[13]: KMeans()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [14]: y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted

C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
0: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Out[14]: array([2, 2, 2, ..., 1, 1, 1])

In [15]: df["cluster"]=y_predicted
 df.head()

Out[15]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
	1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

Out[16]: Text(0, 0.5, 'Quantity')

Out[17]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	С
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom	
	1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom	
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
	4									

```
In [18]: scaler.fit(df[["CustomerID"]])
    df["CustomerID"]=scaler.transform(df[["CustomerID"]])
    df.head()
```

										_
Out[18]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	С
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	_
	1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
	4									•

kmeans clustering

```
In [19]: km=KMeans()
    y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
    y_predicted

    C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:87
    0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
    in 1.4. Set the value of `n_init` explicitly to suppress the warning
        warnings.warn(

Out[19]: array([0, 0, 0, ..., 3, 3, 3])
```

In [20]: df["New Cluster"]=y_predicted
 df.head()

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country c
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								•

```
In [21]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[21]: Text(0, 0.5, 'Quantity')


```
In [23]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",m
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[23]: Text(0, 0.5, 'Quantity')


```
In [24]: k_rng=range(1,10)
sse=[]
```

```
In [25]: for k in k rng:
          km=KMeans(n clusters=k)
          km.fit(df[["CustomerID","Quantity"]])
          sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:87
         0: FutureWarning: The default value of `n init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Y.Saranya\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:87
         0: FutureWarning: The default value of `n_init` will change from 10 to 'auto'
         in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
         [46374.84553398474, 11336.065820169119, 4915.872675775512, 2723.519105189528
         5, 1695.0487791393934, 1178.414425862023, 903.7739950782725, 683.514097492861
         9, 530.5168701475541]
Out[25]: Text(0, 0.5, 'Sum of Squared Error')
```

localhost:8888/notebooks/Desktop/online retail.ipynb

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data. In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []: