Tecт Kwiatkowski, Phillips, Schmidt, Shin (KPSS)

Альтернативным тестом для проверки стационарности является KPSS-тест

 H_0 : Ряд является тренд-стационарным

 H_1 : Ряд является нестационарным

Обратите внимание, что в этом тесте нулевая гипотеза (в отличие от нулевой гипотезы ADF-теста) соответствует стационарности

Tecт Kwiatkowski, Phillips, Schmidt, Shin (KPSS)

- **1.** Оцениваем регрессию: $y_t = \delta + \varphi t + \varepsilon_t$
- **2.** Вычисляем остатки $e_1, e_2, ... e_T$
- **3.** Вычисляем вспомогательные суммы (T штук):

$$S_t = \sum_{m=1}^T e_m$$

4. Вычисляем расчетное значение статистики:

$$KPSS = \sum_{t=1}^{T} \frac{S_t^2}{\widehat{\sigma^2}},$$

где $\widehat{\sigma^2}$ — оценка дисперсии случайной ошибки

Tecт Kwiatkowski, Phillips, Schmidt, Shin (KPSS)

5. Если расчетное значение статистки меньше критического значения, равного **0,146**, то нулевая гипотеза принимается. Можно сделать вывод о стационарности ряда.

Замечание: если нулевой гипотезой является стационарность (а не тренд-стационарность), то процедура теста аналогична, только на первом шаге оценивается уравнение $y_t = \delta + \varepsilon_t$, а критическое значение равно **0,463**

•

Схема согласования результатов тестирования временного ряда с помощью тестов на принадлежность к TS и DS рядам (на примере тестов ADF и KPSS)

KPSS	Нулевая гипотеза	Альтернативная гипотеза		
ADF	H0: TS не отвергается	H1: TS отвергается		
H0: DS не отвергается	Исход 1	Исход 2		
H1: DS отвергается	Исход 3	Исход 4		

- (1) если наблюдается исход 1, то это можно объяснить низкой мощностью обоих критериев;
- (2) если наблюдается исход 2, то это говорит в пользу DS-гипотезы;
- (3) если наблюдается исход 3, то это говорит в пользу TS-гипотезы;
- (4) если наблюдается исход 4, то это может говорить о том, что процесс порождения данных (DGP) не описывается DS или TS моделями, а может быть, например, дробно-интегрированным процессом или процессом с нелинейным Wi трендом.

Методология Бокса — Дженкинса

Рассмотрим решение следующей задачи:

Имеется T наблюдений временного ряда:

$$y_1, y_2, \dots, y_T$$

Необходимо подобрать *ARIMA(p,d,q)* модель, которая хорошо описывает динамику этого временного ряда.

Методология Бокса — Дженкинса

- Шаг 1. Определение порядка интегрированности ряда и переход к стационарным разностям
- Шаг 2. Анализ автокорреляционной функции и частной автокорреляционной функции
- Шаг 3. Оценивание и проверка адекватности модели
- Шаг 4. Прогнозирование

Шаг 1. Определение порядка интегрированности ряда и переход к стационарным разностям

- 1. Тестируем ряд на стационарность, используя тесты, которые мы обсудили ранее
- 2. Если ряд оказался стационарным, то переходим к шагу 2. Если нет то переходим к разностям ряда и снова тестируем стационарность
- 3. И так до тех пор, пока не получим стационарный ряд
- 4. Таким образом, на этом шаге определяется параметр **d** модели **ARIMA(p,d,q)**, то есть порядок интегрированности ряда
- 5. Далее в рамках шагов 2 и 3 следует работать со стационарными разностями ряда

Эмпирическая автокорреляционная функция временного ряда (**ACF**) — выборочный аналог теоретической автокорреляционной функции, рассчитывается на основе выборочных коэффициентов корреляции:

$$ACF(k) = \widehat{\rho_k} = \widehat{Corr}(y_t, y_{t-k})$$

Эмпирическая частная автокорреляционная функция временного ряда (PACF) рассчитывается на основе выборочных частных коэффициентов корреляции.

Определим выборочный частный коэффициент корреляции k-го порядка как МНК-оценку для θ_k в модели $\mathsf{AR}(k)$

$$PACF(k) = \widehat{\theta_k}$$

На шаге 2 следует построить и проанализировать графики ACF и PACF для рассматриваемого временного ряда.

Далее описано поведение типичных графиков ACF и PACF для разных видов временных рядов.

Случай А. Процесс AR(*p*)

- 1. АСF бесконечна по протяженности и только в пределе при $k \to \infty$ сходится к нулю
- 2. PACF равна (или близка) к нулю для лагов, больших, чем **р**.

Случай Б. Процесс MA(q)

- 1. АСF равна (или близка) к нулю для лагов, больших, чем **q**.
- 2. PACF бесконечна по протяженности и только в пределе при $k \to \infty$ сходится к нулю
- **Случай В.** Если не А и не Б, то у вас ARMA(p,q)

Шаг 2. Анализ автокорреляционной функции и частной автокорреляционной функции

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	:	1	0.539	0.539	116.40	0.000
	1)1	2	0.319	0.041	157.37	0.000
· ins	1 1	3	0.190	0.004	171.91	0.000
, b	10/1	4	0.092	-0.029	175.35	0.000
.11	181	5	0.014	-0.044	175.43	0.000
r þr	10	6	0.012	0.033	175.50	0.000
1/1	100	7	-0.013	-0.026	175.56	0.000
· • • • • • • • • • • • • • • • • • • •	1 1	8	0.025	0.059	175.81	0.000
1 11	1)1	9	0.042	0.018	176.52	0.000
ı b	l de l	10	0.069	0.042	178.47	0.000
of C	48:	11	0.027	-0.051	. 178.78	0.000
r) c		12	0.036	0.028	179.32	0.000

Рис. 11.9. AR(1). $Y_t = 0.5Y_{t-1} + \varepsilon_t$. Корень $\mu = 2$

Шаг 2. Анализ автокорреляционной функции и частной автокорреляционной функции

Autocorrelation Partial Correlation AC PAC Q-Stat F	Prob
1 -0.500 -0.500 100.19 (0.000
2 0.281 0.041 131.88 (0.000
(a) 3 -0.125 0.041 138.15 (0.000
- I	0.000
1 5 -0.106 -0.049 147.01 (0.000
	0.000
1 1 7 -0.096 -0.043 154.11 (0.000
8 0.080 0.011 156.70 (0.000
9 -0.068 -0.010 158.57 (0.000
10 0.103 0.074 162.91 (0.000
d 11 -0.081 0.009 165.60 (0.000
12 0.063 -0.002 167.23 (0.000

Рис. 11.10. AR(1). $Y_t = -0.5Y_{t-1} + \varepsilon_t$. Корень $\mu = -2$

- Анализ коррелограмм на втором шаге позволяет сделать предварительные предположения о возможных порядках авторегрессии р и скользящего среднего q.
- Эмпирические ACF и PACF не обязаны в точности совпадать с теоретическими, но должны быть похожи на них.
- По возможности рекомендуется использовать экономичные модели: $p+q \le 3$ (если нет сезонной компоненты).

Шаг 3. Оценивание и проверка адекватности модели Критерии адекватности АRMA модели

- 1. Значимость коэффициентов модели
- 2. Анализ остатков модели

Остатки должны быть белым шумом => должны иметь нулевую автокорреляцию => все элементы АСF для ряда остатков должны незначимо отличатся от нуля

3. Информационные критерии

Тестирование отсутствия автокорреляции: тестирование гипотезы о равенстве нулю отдельного коэффициента автокорреляции

$$H_0$$
: $\rho_k = 0$

Тестовая статистика: $\widehat{\rho_k} \sim N(0, \frac{1}{T})$

Если $|\widehat{\rho_k}| < \frac{1,96}{\sqrt{T}}$, то при уровне значимости 5% гипотеза H_0 принимается (не отклоняется)

Тестирование отсутствия автокорреляции:

Тест Льюинга — Бокса

$$H_0: \rho_1 = \rho_2 = \dots = \rho_K = 0$$

$$\tilde{Q} = T(T+2) * \sum_{i=1}^K \frac{\hat{\rho_i}^2}{T-i} \sim \chi^2(K-p-q)$$

p и q — параметры ARIMA модели

Информационный критерий Шварца

Schwarz information criterion (SIC)

Так же называется Байесовским информационным критерием

Bayes information criterion (BIC)

$$SIC = lnT \frac{p+q}{T} + ln \left(\frac{\sum e_t^2}{T}\right)$$

p и q — параметры ARIMA модели, если в модель включена константа, то вместо p+q следует использовать p+q+1

Информационный критерий Шварца

- Можно использовать для сравнения разных моделей с одинаковой зависимой переменной
- Следует выбирать модель с наименьшим значением критерия.
- Можно использовать не только для ARIMA, но и для любых других моделей временных рядов, в этом случае вместо p+q следует поставить k —число оцениваемых коэффициентов в модели (считая константу):

$$SIC = lnT * \frac{k}{T} + ln\left(\frac{\sum e_t^2}{T}\right)$$

Информационный критерий Акаике

$$AIC = 2\frac{p+q}{T} + \ln\left(\frac{\sum e_t^2}{T}\right)$$

Работает аналогично критерию Шварца, однако используется реже, так как асимптотически критерий Акаике приводит к выбору перепараметризированных моделей

Шаг 4. Прогнозирование

После выбора наилучшей модели можно использовать ее для прогнозирования в соответствии с тем, как мы обсуждали это выше.