Cluster and Cloud Computing – Lecture 5
Cloud Computing & Getting to Grips with the
University of Melbourne Research Cloud
Professor Richard O. Sinnott & Farzad Khodadadi
rsinnott@unimelb.edu.au

Overview

- Cloud benefits
 - Cloud marketing!?
- The various flavours of cloud computing
 - Introduction to #aaS?
- Break
 - Demonstration of University of Melbourne Research Cloud
- Workshops on Thursday/Friday
 - Workshop: Scripting the Cloud and Ansible
 - Pre-recorded, watch videos and Q&A in workshops

Life before cloud computing

Capacity vs Utilization curves 8

Life before cloud computing...ctd

Figure 2. (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and possible negative press result in a permanent loss of a portion of the revenue stream.

Cloud-busting? (~2009)

- To buy or not to buy that is the question...?
 - ScotGrid (www.scotgrid.ac.uk)

On-Demand Instances

	United States	Europe		
	Standard On-Demand Instances		Linux/UNIX Usage	Windows Usage
1.7Gb memorv/160GB disk		\$0.11 per hour	\$0.135 per hour	
7.5Gb	memory/850	GB disk	\$0.44 per hour	\$0.54 per hour
15Gb memory/1690GB disk		\$0.88 per hour	\$1.08 per hour	
1005	riigii ero on Demana matances		Linux/UNIX Usage	Windows Usage
	Medium		\$0.22 per hour	\$0.32 per hour
	Extra Large		\$0.88 per hour	\$1.28 per hour

Amazon Elastic Block Store

United States	Europe					
Amazon EBS Volumes						
\$0.11 per GB-month of provisioned storage						
\$0.11 per 1 million I/O requests						
Amazon EBS Snapshots to Amazon S3 (priced the same as Amazon S3)						
• \$0.18 per GB-month of data stored						
\$0.012 per 1,000 PUT requests (when saving a snapshot)						
\$0.012 per 10,000 GET requests (when loading a snapshot)						

Data Transfer

Internet Data Transfer

The pricing below is based on data transferred "in" and "out" of Amazon EC2.

Data Transfer In	
All Data Transfer	\$0.10 per GB
Data Transfer Out	
First 10 TB per Month	\$0.17 per GB
Next 40 TB per Month	\$0.13 per GB
Next 100TB per Month	\$0.11 per GB
Over 150 TB per Month	\$0.10 per GB

- \$1=£0.69 (back then!)
 - £0.30*6,700,676 CPU hours
 - = £2,010,202 for just compute on-demand + data + networking + ...?
- Now...???
 - https://aws.amazon.com/ec2/pricing/

AWS EC2 Pricing (just EC2!)

On demand

 pay for compute capacity used; no long-term commitments; increase/decrease as required

Spot pricing

 when have flexibility in using resources, e.g. get resources to run my jobs when price drops below...

Saving plans

Longer term arrangements, need to use regularly

Dedicated Hosts

Physical dedicated servers; can use own licensed software

Reserved instances

 for applications with known usage patterns, e.g. fixed reserve resources in given availability zone

Cloud Computing: A Definition

 NIST definition: "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

> » National Institute of Standards and Technology (http://dx.doi.org/10.6028/NIST.SP.800-145)

- Focus of today is to get you up and running on the Cloud and explore the technologies related to the underlined
 - Later lecture will do compare/contrast with AWS
 - ...and then how do Clouds actually work (hypervisors etc)

The Most Common Cloud Models

Deployment Models

Delivery Models Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

Essential Characteristics

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

Public Clouds

Pros

- Utility computing
- Can focus on core business
- Cost-effective
- "Right-sizing"
- Democratisation of computing

Cons

- Security
- Loss of control
- Possible lock-in
- Dependency of Cloud provider continued existence

Private Clouds

Pros

- Control
- Consolidation of resources
- Easier to secure
- More trust

Cons

- Relevance to core business?
 - e.g. Netflix to Amazon
- Staff/management overheads
- Hardware obsolescence
- Over/under utilisation challenges

Hybrid Clouds

- Examples
 - Eucalyptus, VMWare vCloud Hybrid Service
- Pros
 - Cloud-bursting
 - Use private cloud, but burst into public cloud when needed

Cons

- How do you move data/resources when needed?
- How to decide (in real time?) what data can go to public cloud?
- Is the public cloud compliant with PCI-DSS (Payment Card Industry Data Security Standard)?

Delivery Models

Separation of Responsibilities

Public SaaS examples

- Gmail
- Sharepoint
- Salesforce.com CRM
- On-live
- Gaikai
- Microsoft Office 365
- Some definitions include those that do not require payment, e.g. ad-supported sites

Public PaaS Examples

Cloud Name	Language and Developer Tools	Programming Models Supported by Provider	Target Applications and Storage Options
Google App Engine	Python, Java, Go, PHP + JVM languages (scala, groovy, jruby)	MapReduce, Web, DataStore, Storage and other APIs	Web applications and BigTable storage
Salesforce.com's Force.com	Apex, Eclipsed- based IDE, web- based wizard	Workflow, excel- like formula, web programming	Business applications such as CRM
Microsoft Azure	.NET, Visual Studio, Azure tools	Unrestricted model	Enterprise and web apps
Amazon Elastic MapReduce	Hive, Pig, Java, Ruby etc.	MapReduce	Data processing and e-commerce
Aneka	.NET, stand-alone SDK	Threads, task, MapReduce	.NET enterprise applications, HPC

Infrastructure As A Service (IaaS)

- Primary focus of this course...
- Many providers
 - Amazon Web Services (Market leader)
 - http://aws.amazon.com
 - Oracle Public Cloud
 - https://cloud.oracle.com/
 - Rackspace Cloud
 - www.rackspace.com
 - CenturyLink, CloudSigma, DigitalOcean, DimensionData, GoGrid, Helio, Internap, Joyent, ProfitBricks, Verizon, ...
 - NeCTAR/Openstack Research Cloud
 - www.nectar.org.au

Cost Comparison

See also https://www.infoworld.com/article/3237566/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html

NeCTAR/ARDC/UniMelb Research Cloud

- National eResearch Collaboration Tools and Resources (NeCTAR – www.nectar.org.au)
 - \$50m+\$10m+\$10m+\$72m (Australian Research Data Commons)... federal funding
 - Originally lead by University of Melbourne
 - Had four key strands
 - National Servers Program
 - Research Cloud Program
 - OpenStack IaaS
 - 4Gb-64Gb (mostly Linux flavours)
 - 30,000 physical servers available across different availability zones
 - » Being upgraded continually!
 - eResearch Tools Program
 - Virtual Laboratories Program
 - Astro,
 - Genomics,
 - Humanities,
 - Climate,
 - Nano-,
 - ...endocrine genomics

Data Infrastructures

- Research Data Services (RDS)
- \$50m+\$10m+\$10m+\$72m project to establish data storage resources across Australia
 - ~100 Petabytes national data storage
 - Victoria Node (VicNode)
 - UniMelb, UniMonash for Vic-wide "nationally significant data sets"
 - Used by many diverse communities

UniMelb Cloud Activities

- Petascale Campus Initiative
 - https://research.unimelb.edu.au/infrastructure /petascale-campus-initiative
- Research Computing Services
 - https://research.unimelb.edu.au/infrastructure /research-computing-services

UniMelb Research Cloud

- Based on OpenStack
 - Open source cloud technology (more later lecture)
- Many associated/underpinning services
 - Compute Service (code-named Nova)
 - Image Service (code-named Glance)
 - Block Storage Service (code named Cinder)
 - Object Storage Service (code-named Swift)
 - Security Management (code-named Keystone)
 - Orchestration Service (code-named Heat)
 - Network Service (code-named Neutron)
 - Metering Service (code-named Ceilometer)

– ...

UniMelb Research Cloud

BREAK

UniMelb/NeCTAR Demo (Crib Sheets LMS)

- NeCTAR (https://dashboard.rc.nectar.org.au)
- UniMelb (https://dashboard.cloud.unimelb.edu.au)
- Note that there are some differences
 - e.g. limited number of IP addresses

UniMelb/NeCTAR Demo (Crib Sheets LMS)

Dashboard

- Overview (Resource allocation)
- Instances (Create, terminate and configure instances)
- Volumes (Create, terminate, attach and backup)
- Images (Create image, list image)
- Access & Security (Security groups, key pairs, API access)
- Object store (Store data as an object)
- Launching a new VM
 - Flavor (defines the compute, memory, and storage capacity)
 - Ephemeral disk (not persistence storage!!!)
 - Create key pair
 - ssh-keygen -t rsa -f cloud.key (Unix/Linux/MacOS, see Putty for Windows)
 - chmod 600 cloud.key (or get UNPROTECTED PRIVATE KEY FILE! error)

NeCTAR Demo (Crib Sheets LMS)

- Launching a new VM (continue)
 - Copy pub key (cloud.pub)
 - Select key pair
 - Select security group
 - Availability zone
- Connecting to VM via SSH
 - Private key (your secret key to keep secure)
 - ssh -i <private-key> <username>@<hostname>
 - E.g. ssh -i cloud.key <u>ubuntu@example.com</u>
- Create a Volume
 - Must be in the same availability zone as the instance

Note: you can't create volumes until you have some (=assignment 2)!

NeCTAR Demo (Crib Sheets LMS)

- Attach a volume
 - Check the device name: sudo fdisk -l
 - *sudo* = runs commands with security privileges of another user
 - (by default: superuser)
 - Create the mounting point: sudo mkdir /mnt/demo
 - Format the volume: sudo mkfs.ext4 /dev/vdb
 - Mount the volume: sudo /dev/vdb /mnt/demo
 - Check the result: df -h
- Installing an application
 - sudo apt-get install vim
- Create snapshots
 - Snapshot for an instance
 - Snapshot for a volume

Note: if you don't know Linux or what commands like df - h do, then google is your friend! See later too...

NeCTAR Demo (Crib Sheets LMS)

- Restore a snapshot
 - Create an instance from an instance snapshot
 - Create a volume from a volume snapshot
- Setting up security groups
 - Security groups act as a virtual firewall that controls the traffic for one or more instances
 - It contains a set of security rules
 - Default security group only allows SSH (from anywhere)
 - Create a security group
 - Create a rule

Note: be careful with security.

Only open ports that are needed!

- CIDR (https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing)
 - 128.250.0.0/16 (All IPs from UoM)
 - x.x.x.x/32 (x.x.x.x only, use CIDR calculate for IP range calculation)
- Security Groups

Basic recipes to follow...

SSH

- ssh-keygen -t rsa -f cloud.key (Unix/Linux/MacOS, see Putty for Windows)
- chmod 600 cloud.key (or get UNPROTECTED PRIVATE KEY FILE! error)
- ssh-i cloud.key ubuntu@<instance_ip> (Ubuntu)
- ssh-i cloud.key ec2_user@<instance_ip> (Amazon Linux, RHEL)

Volume

- sudo fdisk -l
 - sudo = runs commands with security privileges of another user (by default: superuser)
- sudo mkdir /mnt/demo
- sudo mkfs.ext4 /dev/vdb
 - *mkfs* = make file system
 - ext4 = type of file system (ext2, ext3, ext4)
 - See http://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/ for details on differences
- sudo mount /dev/vdb /mnt/demo
- df -h

Basic recipes to follow...

- Install software
 - sudo apt-get install vim
 - apt-get installs/removes packages on Ubuntu installations
- Common Shell Commands
 - http://www.dummies.com/computers/operating-systems/linux/commonlinux-commands/