Gewindespindeln

beidseitig doppelt abgesetzt

Teilenummer Ausführung D		1mm	n-Schritte V · Q		E	Links-/Rechtsgewinde - Linksgängiges Präzisionsgewinde - Rechtsgewinde	D	Steigung		
		D	L	F · G · T · S	V·Q	1mm-Schritte	X 1mm-Schritte		P	
(Rechtsgewinde)		12	80~1000		7 8 9			12	2	
MTSBRX	FSBRX		80~1000		8 9 10		Wenn D=12, 14 50 <x<460<485>-F-G</x<460<485>	14	3	
RMTSRX MTSTRX	D≤32,L≤1000 (Edelstahl) 16 18 20	100~1200	9 10 12		16			3		
(Linksgewinde)		ielstahl) 18		~1200 2≤T≤Qx7 • Wenn Q,V,E≤9,	9 10 12	Q/2≤E≤Q−1	(Y)=L-80-30>-F-G-S-T-X (Y)≤500-S-T-40<15> Wenn D=16~50	18	4	
MTSLX MTSBLX		20]		10 12 14 15			20	*	
RMTSLX	D≤32.L≤1000	32,L≤1000	150~1200		10 12 14 15			22		
MTSTLX (Rechts-/Linksoewinde)	(Edelstahl)				12 14 15 16 17		50≤X≤560<585>-F-G (Y)=L-80<30>-F-G-S-T-X	25	5	
MTSWX					14 15 16 17 20		(Y)≤600-S-T-40<15>	28		
MTSBWX RMTSWX	D≤32,L≤1000		32		F,G,T,S= max. 5 x Q.V.E.	14 15 16 17 20 25		OM 20 to the state of	32	
(Rechts-/linksgängiges		36 40 36 200~12	200 1000	000 4000	17 20 25		Maße in < > beziehen sich auf rechts-/linksgängige Präzisionsgewinde.	36	6	
Präzisionsgewinde)			200~1200		20 25 30		· · · · ·	40		
MTSBYX		50	1		25 30 35 40			50	8	

PRechts-/linksgängige Präzisionsgewinde sind in den Maßen D=14, 16, 20, 25, 28 und 32 erhältlich. ™Mit Positionsanzeigen ist der Standard-Ø Q=8~20. □ S.725

DEdelstahlausführung nicht in den Maßen D=22, 36, 40 und 50 erhältlich. Maße D=25, 28 und 32 nur für Rechtsgewinde. € 10 erhältlich. Maße D=25, 28 und 32 nur für Rechtsgewinde.

Rechtsgewinde mit Passfedernut

Teilenummer		1mm-Schritte		V · Q	1mm-Schritte				MxSteigung	D	Steigung
Ausführung D		L	F · G · T · S	V.Q	E	С	J	В	WixStelgulig	ь	Р
	12	80~1000		7 8 9					M8x1.0	12	2
	14	80~1000	2≤F≤Vx7 2≤G≤Qx7 2≤T≤Qx7 2≤S≤Ex7	8 9 10 9 10 12 9 10 12				M10x1.0	14	3	
	16	100~1200					150		M12x1.0 M14x1.0 M15x1.0 M17x1.0 M20x1.0 M25x1.5	16	3
	18	150~1200				U≤60				18	4
MITORIA	20			10 12 14 15	E ≥6			B=0		20	4
MTSRZ MTSBRZ	22			10 12 14 15	Q/2≤E≤Q-2			Oder B≤Mx3		22	
RMTSRZ D≤32,L≤1000	25			12 14 15 16 17	Wenn die Steigung=1.5			B>Steigungy3	M30x1.5	25	5
71111 OTIE 9-02,2-1000	28			14 15 16 17 20	Q/2≤E≤Q-3			B≤T-Steigungx3	M35x1.5	28	
	32	200~1200		14 15 16 17 20 25					M40x1.5 Nicht	32	
	36			17 20 25					verfügbar bei	36	6
	40			20 25 30					7, 9, 16	40)
	50	1		25 30 35 40			l			50	8

Rechtsgängiges Feingewinde naben eine feinere Gewindesteigung als herkömmliche Ausführungen

Teilenummer			1mm-Schritte	V · Q	E	D	Steigung P
Ausführung	D	L	F·G·T·S	V ·Q	1mm-Schritte		
MTXRX	16	100~1000	2≤F≤Vx7 2≤G≤Qx7 2≤T≤Qx7	9 10 12	Q/2 <e<q-1< td=""><td>16</td><td>2</td></e<q-1<>	16	2
MTXBRX	20	150~1000	1 2 S E x 7 2 S E x 7 9 Wenn Q, V, E ≤ 9, F, G, T, S = max. 5 x Q, V, E.	10 12 14 15	- Q/2SESQ-1	20	2

[®] Doppelt abgesetzte Ausführungen mit F=0 V=0 sind nicht bearbeitet. ®Muttern für rechtsgängige Feingewinde S.718 ® Mit Positionsanzeigen sind die Standardmaße Q und V=9~14. □ S.725

Teilenummer		€ Stuckpreis							
Ausführung	D	Min. L~200	L201~400	L401~600	L601~800	L801~1000			
RMTSRX	12								
(Preis für MTSRX + Preis in Tabelle)	14								
1	16								
RMTSRZ (Preis für MTSRZ + Preis in Tabelle)	18								
1	20								
RMTSLX (Preis für MTSLX + Preis in Tabelle)	22								
RMTSWX	25								
(Preis für MTSWX + Preis in Tabelle)	28								
(I Tota III III TOWN T I Tota III Tabolio)	32								
© Für LTDC obigon Proje bingufügen									

(Beisp.) RMTSRX16-456 (Preis für MTSRX16-456: 51,70)+31,70=83,40 EUR

MTSBYX Preis in Tabelle (Gerundet auf die nächsten 10 Cen

Ausführung **MTXRX**

Rechtsgängiges Feingewinde

●Für Rechtsgewinde mit Passfedernut nur AC · SV · MV · ME und Z verfügbar.

	Optionen						
	Spannflächen	Nut für Sicherungsring	Schlüsselweite	Gewindebohrung	Außengewinde	Umlaufend gefast	Passfedernut
Optionen	P. P	AE M	SE)	MV MVx2 MEx2	Für Lagermutter M E BQ (BC)	A F(S)	"lur lei Q an recther Welle. C KQ" 1½ b 1 2½ L
OptNr.	FV (Teil V) FE (Teil E)	AC (Teil V) AE (Teil E)	SV (Teil V) SE (Teil E)		BC (Seite V) BQ (Seite E)	ZV (Teil V) ZE (Teil E)	KQ (Teil Q) KV (Teil V) KE (Teil E)
Spez.	FV,FE,FW,FY= 0.5mm-Schritte FY-Bearbeitet an Bereich V FE-Bearbeitet an E	AC/(A)=C4 Times Schriftle AC/(A)=SF(S)+SF(T)-m-n Bearbeitungs- grenzen AC-Bearbeitet an E Bestellitz AC/(3.3 V, E Toleranz e m+0.14 8 5 +0.075 0.7 nc.1.2 9 6 0 0.9 10 9.6 0.09 11 9.6 0.09 12 11.5 14 13.4 0 15 14.3 0.1 15 14.3 0.1 16 15.2 1.1 17 16.2 2 20 19 2 20 19 1 0.2 25 23.9 0 1.35 30 28.6 0.22 1 40 38 0.25 1.9 nc.2	SVSESWSY= Imm-Schritte SV-Bearbeitet an Teil V SE-Bearbeitet an Teil E @Verfügbar bei V oder E. Bedelin: SV3-SW10-SY7 @Wenn VE[<-15 SW2V[E]-2 @Wenn 15:SV[E]>25 SW2V[E]-3 @Wenn 30:SV[E]-5 @3:SY1=20	MV-Bearbeitet an Teil V ME-Bearbeitet an Teil E		WA—Inno Schrifte IV—Beachelet and VI Z—Bro Tell VI Z—Bro	KQ,KV,KE,C=1mm-Schritte KD=Bearbeitet an V KE=Bearbeitet an V Entral an Q, V, oder R Eestelm. NGR-C10
Aufpreis	2,00	4,00	4,00	2,00	2,00	8,00	4,00