Listing of Claims:

<u>CLAIMS</u>

- 1. (Currently Amended) A system for estimating the position, <u>velocity</u> and orientation of a vehicle, comprising:
- means for determining the components of two noncollinear constant unit vectors \hat{g}_b, \hat{e}_b according to vehicle body axes, said means including:
 - an Inertial Measurement Unit (IMU) including a group of at least three gyroscopes for measuring the angular velocity $\widehat{\omega}_b(t)$ of the vehicle in body axes and at least three accelerometers located along the vehicle body axes to provide the specific force \widehat{a}_b in body axes:
 - a magnetometer able to measure the Earth's magnetic field according to the vehicle body axes;
 - static pressure and differential pressure sensors;
 - two vanes to measure the angles of attack and side slip;
 - an angular velocity acquisition and processing module configured to acquire the angular velocity $\hat{\omega}_b(t)$ and delay it to obtain $\hat{\omega}_b(t-\tau)$;
 - a data acquisition and processing module configured to acquire the specific force $\widehat{a}_b(t)$ measured by the accelerometers, the static pressure $\widehat{p}_s(t)$ measured in sensor, the differential pressure $\widehat{p}_d(t)$ measured in sensor, the angle of attack $\widehat{\alpha}(t)$ measured in sensor, the angle of sideslip $\widehat{\beta}(t)$ measured in sensor and the value of the Earth's magnetic field $\widehat{m}_b(t)$ measured in the magnetometer, delay them and process them to calculate the true airspeed $\widehat{v}(t-\tau)$, the air velocity in

body axes $\hat{v}_b(t-\tau)$ as follows:

$$\widehat{v}_b = \begin{bmatrix} \widehat{v}\cos\widehat{\alpha}\cos\widehat{\beta} \\ \widehat{v}\sin\widehat{\beta} \\ \widehat{v}\sin\widehat{\alpha}\cos\widehat{\beta} \end{bmatrix}.$$

the numerical derivative of the air velocity in body axes $\widehat{v}_b(t-\tau)$, the local gravity in body axes \widehat{g}_b as follows:

$$\underline{\hat{g}_b(t-\tau) = \hat{v}_b(t-\tau) + \hat{\omega}_b(t-\tau) \times \hat{v}_b(t-\tau) - \hat{a}_b(t-\tau)}$$

and the projection of the Earth's magnetic field on the horizontal plane perpendicular to local gravity $\bar{e}(t-\tau)$ as follows:

$$\widehat{e}_b(t-\tau) = \widehat{m}_b(t-\tau) - \widehat{m}_b(t-\tau) \cdot \frac{\widehat{g}_b(t-\tau)}{\left|\widehat{g}_b(t-\tau)\right|}$$

- a GPS receiver means for determining the components of said noncollinear constant unit vectors \vec{g}_i, \vec{e}_i according to the Earth's axes; wherein the data provided by the GPS are acquired, processed and used in the data acquisition and processing module to calculate said components \vec{g}_i, \vec{e}_i ; and
- means for determining the three components of the angular velocity ω_b of the vehicle in body axes;

wherein the system comprises

- <u>a module</u> means for correcting said angular velocity $\widehat{\omega}_b$ with a correction u_ω and obtaining a corrected angular velocity $\widehat{\omega}_b = \widehat{\omega}_b + u_\omega$;
- a module for integrating the kinematic equations of the vehicle receiving the corrected angular velocity $\hat{\omega}_b$ as input and providing the transformation matrix \hat{B} for transforming Earth's axes into vehicle body axes and the orientation of the vehicle in the form of Euler angles $\hat{\Phi}$;
- a synthesis module of the components in body axes of the two noncollinear constant unit vectors to provide an estimation of said noncollinear vectors in body axes \hat{g}_b, \hat{e}_b , where said estimation is calculated as follows:

$$\vec{g}_b = B\vec{g}_t$$
$$\vec{e}_b = B\vec{e}_t$$

- a control module implementing a control law to calculate said correction u_ω , where said control law is:

$$u_{\omega} = \sigma(\hat{g}_b \times \hat{g}_b + \hat{e}_b \times \hat{e}_b)$$
 [1]

where σ is a positive scalar,

such that by applying this correction u_{ω} to the measured angular velocity $\widehat{\omega}_b$ and using the resulting angular velocity $\widehat{\omega}_b = \widehat{\omega}_b + u_{\omega}$ as input to the module for integrating the kinematic equations, the latter are stable in the ISS sense and the error in the estimation of the direction cosine matrix \widehat{B} and of the Euler angles $\widehat{\Phi}$ is bounded.

2. (Previously Presented) The system according to claim 1, wherein said noncollinear unit vectors \vec{g}, \vec{e} are local gravity \vec{g} and projection of the magnetic field on the plane perpendicular to gravity \vec{e} .

Claims 3 and 4 (Canceled).

- 5. (Currently Amended) The system according to claim $\underline{1}$ 3, wherein the system includes a Savitzky-Golay filter $(\underline{179})$ where \hat{v}_b , numerical derivative of \hat{v}_b , is calculated.
- 6. (Currently Amended) The system according to claim 1 including:
- means of acquiring data from a group of sensors located in the vehicle, providing position and speed according to Earth's axes P_t , V_t ;
- a navigation module where the navigation equations of the vehicle are

integrated from the specific force \hat{a}_b and the direction cosine matrix \hat{B} to obtain calculated position and <u>velocity</u> speed in local axes and corrected in a Kalman filter to obtain estimated position and <u>velocity</u>-speed in local axes.

- 7. (Currently Amended) A method for estimating the position, <u>velocity</u> and orientation of a vehicle comprising:
- calculating the components of two noncollinear constant unit vectors \hat{g}_b, \hat{e}_b according to vehicle body axes from measurements of sensors located in the vehicle according to the body axes of the latter, said calculation comprising:
 - measuring specific force $\widehat{a}_b(t)$ in body axes, static pressure $\widehat{p}_s(t)$, differential pressure $\widehat{p}_d(t)$, angle of attack $\widehat{\alpha}(t)$, angle of sideslip $\widehat{\beta}(t)$ and the value of the Earth's magnetic field $\widehat{m}_b(t)$;
 - calculating the true airspeed $\widehat{v}(t)$ from the differential pressure $\widehat{p}_{d}(t)$ and static pressure $\widehat{p}_{s}(t)$ measurements and from knowing the outside temperature at the initial moment T_{0} :
 - calculating the air velocity in body axes as follows:

$$\widehat{v}_b = \begin{bmatrix} \widehat{v}\cos\widehat{\alpha}\cos\widehat{\beta} \\ \widehat{v}\sin\widehat{\beta} \\ \widehat{v}\sin\widehat{\alpha}\cos\widehat{\beta} \end{bmatrix}$$

- calculating the numerical derivative of the air velocity in body axes $\hat{v}_b(t- au)$:
 - calculating the local gravity in body axes \widehat{g}_b as follows:

$$\widehat{g}_b(t-\tau) = \widehat{v}_b(t-\tau) + \widehat{\omega}_b(t-\tau) \times \widehat{v}_b(t-\tau) - \widehat{a}_b(t-\tau) \cdot \underline{y}.$$

- calculating the projection of the Earth's magnetic field on the horizontal plane perpendicular to local gravity as follows:

$$\widehat{e}_b(t-\tau) = \widehat{m}_b(t-\tau) - \widehat{m}_b(t-\tau) \cdot \frac{\widehat{g}_b(t-\tau)}{\left|\widehat{g}_b(t-\tau)\right|}$$

calculating the components of said noncollinear constant unit vectors \vec{g}_i, \vec{e}_i , according to the Earth's axes from measurements of sensors located in the

vehicle which provide position in local Earth-fixed axes;

- measuring the three components of angular velocity $\widehat{\omega}_b$ of the vehicle in body axes;
- correcting the angular velocity $\widehat{\omega}_b$ with a correction u_ω and obtaining a corrected angular velocity $\widehat{\omega}_b = \widehat{\omega}_b + u_\omega$;
- integrating the kinematic equations of the vehicle, according to the corrected angular velocity $\hat{\omega}_b$ and providing the transformation matrix \hat{B} for transforming the Earth's axes into vehicle body axes and the orientation of the vehicle in the form of Euler angles $\hat{\Phi}$;
- calculating an estimation of the components in body axes of the two noncollinear constant unit vectors \hat{g}_b, \hat{e}_b , where said estimation is calculated as follows:

$$\hat{g}_b = \hat{B}\vec{g}_t$$

$$\hat{e}_b = \hat{B}\vec{e}_t$$

obtaining the correction $u_{_{\omega}}$ by means of the control law:

$$u_{\omega} = \sigma(\hat{g}_b \times \hat{g}_b + \hat{e}_b \times \hat{e}_b)$$
 [1]

where σ is a positive scalar,

such that upon applying this correction u_{ω} to the measured angular velocity $\widehat{\omega}_b$ and using the resulting angular velocity $\widehat{\omega}_b = \widehat{\omega}_b + u_{\omega}$ as input to the module for integrating the kinematic equations, the latter are stable in the ISS sense and the error in the estimation of the direction cosine matrix \widehat{B} and of the Euler angles $\widehat{\Phi}$ is bounded.

8. (Previously Presented) The method according to claim 7, wherein said noncollinear unit vectors \vec{g}, \vec{e} are local gravity \vec{g} and projection of the magnetic field on the plane perpendicular to gravity \vec{e} .

Claims 9 and 10 (Canceled).

- 11. (Currently Amended) The method according to claim $\underline{7}$ 9, wherein $\dot{\hat{v}}_b$, the numerical derivative of \hat{v}_b , is calculated in a Savitzky-Golay filter (179).
- 12. A method according to claim 7 including:
- measuring position and speed in Earth-fixed axes P_t, V_t;
- integrating the navigation equations of the vehicle according to the specific force \hat{a}_b and the direction cosine matrix \hat{B} to obtain the calculated position and velocity speed in local axes and they are corrected in a Kalman filter to obtain estimated position and velocity speed in local axes.