CHITTAGONG UNIVERSITY OF ENGINEERING & TECHNOLOGY

B. Sc. Engineering Level-1 Term-I, Final Examination 2020

Subject: Civil Engineering

Paper : Engineering Mathematics – I (Math-101)

Time : 3 Hours Full Marks : 200

Answer any TWO questions from EACH section. Use separate script for EACH section. The figures in the right margin indicate full marks. Use standard value if needed.

SECTION-A

Q.1. (a) Define Continuity and Differentiability of a function. Let, (20)

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

- i) Where is f discontinuous?
- ii) Where is f not differentiable?
- (b) Find the nth derivative of $y = \cos(ax + b)$ (12)
- (c) State Leibnitz's theorem. If $y = \tan^{-1} x$, prove that $(1 + x^2)y_{n+2} + (18)$ $2(n+1)xy_{n+1} + n(n+1)y_n = 0$
- Q.2. (a) State the Mean Value Theorem. Suppose that f(0) = -3 and $f'(x) \le 5$ for (15) all values of x. Use the Mean Value Theorem to find the largest possible value of f(2).
 - (b) Find the Taylor series for $f(x) = \ln x$ centered at a = -2. Also find the (20) radius of convergence.
 - (c) Evaluate $\lim_{x\to 1^+} x^{1/(1-x)}$ (15)
- Q.3. (a) If $p = x \cos \alpha + y \sin \alpha$ touches the curve $\left(\frac{x}{a}\right)^{n/n-1} + \left(\frac{y}{b}\right)^{n/n-1} = 1$, prove that $p^n = (a \cos \alpha)^n + (b \sin \alpha)^n$
 - (b) Prove that the curves $\frac{x^2}{a} + \frac{y^2}{b} = 1$ and $\frac{x^2}{a'} + \frac{y^2}{b'} = 1$, will cut orthogonally if (15) a b = a' b'
 - (c) If $g(s,t) = f(s^2 t^2, t^2 s^2)$ and f is differentiable, show that g satisfies (15) the equation $t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = 0$

SECTION-B

Q.4. (a) Integrate any three of the following

i)
$$\int \cos 2 \cot^{-1} \sqrt{\frac{1-x}{1+x}} dx$$

ii)
$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$

iii)
$$\int \frac{dx}{(1+x^2)\sqrt{(1-x^2)}}$$

iv)
$$\frac{dx}{(2x-3)\sqrt{(2x^2-3x+4)}}$$

$$iii) \int \frac{dx}{(1+x^2)\sqrt{(1-x^2)}}$$

iv)
$$\frac{dx}{(2x-3)\sqrt{(2x^2-3x+4)}}$$

- (b) Establish a reduction formula for $\int sin^m x cos^n x dx$, and hence evaluate (20) $\int \sin^5 x \cos^3 x dx$
- Q.5. (a)

i)
$$\int_{2}^{3} \frac{dx}{\sqrt{(x-1)(5-x)}}$$

ii)
$$\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

iii)
$$\int_0^{\pi/4} \ln(1 + \tan \theta) d\theta$$

Evaluate any three of the following:
i)
$$\int_{2}^{3} \frac{dx}{\sqrt{(x-1)(5-x)}}$$
ii)
$$\int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$
iii)
$$\int_{0}^{\pi/4} \ln(1 + \tan \theta) d\theta$$
iv)
$$\int_{0}^{1} x^{2} (1 - x^{2})^{3/2} dx$$

- (b) If $I_n = \int_0^{\pi/4} tan^n \theta d\theta$, show that $I_n = \frac{1}{n-1} I_{n-2}$ and hence evaluate (20) $\int_0^{\pi/4} \tan^6\theta d\theta$
- Define Gamma function and Beta function. Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ Q.6. (a) (20)
 - (b) Find the area of the segment cut off from the parabola $y^2 = 2x$ by the straight (18) line y = 4x - 1
 - (c) Find the length of one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ (12)

-:- The End -:-

(30)

(30)