CSE 331/503 Computer Organization Homework 3 – ALU with Multiplication Design REPORT

1. STATE MACHINE FOR CONTROL

- → AP = Add Multiplicand to the left half of the product & Place the result in the left half of Product Register
- → Write = Writes
- → SR = Sift the Product Register right 1 bit
- → Is32 = If the number of repetitions is 32 then 1, otherwise 0
- → Product0 = Least significant bit of Product
- → Start = To start FSM

There is 5 states so I can indicate the states by using 3 bit. Here is architecture of State Machine:

- 1. S0 -> 000, S1 -> 001, S2 -> 010, S3 -> 011, S4 -> 100 (s2s1s0)
- 2. 3 bit for next states (n2n1n0)
- 3. Inputs: Product0, is32, Start
- 4. Outputs: AP, SR, write

Present State			Inputs			Next State		
S2	S1	S0	Product0	ls32	Start	N2	N1	N0
0	0	0	-	1	0	0	0	0
0	0	0	-	1	1	0	0	1
0	0	1	0	1	1	0	1	1
0	0	1	1	1	1	0	1	0
0	1	0	-	-	-	0	1	1
0	1	1	-	-	-	1	0	0
1	0	0	-	0	-	0	0	1
1	0	0	-	1	-	0	0	0

Boolean Expressions:

- N2 = S2'S1S0
- N1 = S2'S1'S0(Product0)' + S2'S1'S0(Product0) + S2'S1S0'
- N0 = S2'S1'S0'Start + S2'S1'S0(Product0)' + S2'S1S0' + S2S1'S0'(Is32)'
- AP = S2
- SR = S3 + S4
- Write = S4

2. ALU32

adder_1_bit.v

adder_32_bit.v

and_32_bit.v

mux_2x1.v

mux_4x1.v

mux_8x1.v

nor_32_bit.v

not_32_bit.v

or_32_bit.v

set_less_than_32.v

xor_32_bit.v

xorgate.v

alu32.v (A = 8, B = 20, SLT Operation)

alu32.v (50 + 100)