EE 310 Hardware Description Languages Spring 2022

Laboratory Assignment #1

Due Date: 4 April 2022

Design a combinational hardware which implements the following sub-pixel interpolation algorithm.

An 8x8 block containing integer pixels I11 to I88 is shown below. The sub-pixel interpolation algorithm interpolates half-pixels a, b, c and d, h, n from integer pixels in horizontal and vertical direction, respectively, using three different Finite Impulse Response (FIR) filters. Half-pixels a and d are interpolated using type A filter with weights (1/64, 2/64, 6/64, 46/64, 6/64, 2/64, 1/64). Half-pixels b and h are interpolated using type B filter with weights (1/64, 4/64, 6/64, 42/64, 6/64, 4/64, 1/64). Half-pixels c and n are interpolated using type C filter with weights (1/64, 10/64, 4/64, 34/64, 4/64, 10/64, 1/64). For example, half-pixels **a41**, **b41**, **c41** in the figure given below are interpolated as follows:

a41 = (11 + 2* 21 + 6* 31 + 46* 41 + 6* 51 + 2* 61 + 71) / 64 b41 = (11 + 4* 21 + 6* 31 + 42* 41 + 6* 51 + 4* 61 + 71) / 64 c41 = (21 + 10* 31 + 4* 41 + 34* 51 + 4* 61 + 10* 71 + 81) / 64						
I11	I21	I31	I41 a41 b41 c41 I51	I61	I71	I81
I12	122	I32	I42 a42 b42 c42 I52	162	172	182
I13	123	133	I43 a43 b43 c43 I53	163	173	183
I14	I24	I34	I44 a44 b44 c44 I54 d e f g h i j k	164	I74	184
I15	125	135	n p q r 145 a45 b45 c45 I55	165	175	185
I16	126	136	146 a46 b46 c46 I56	166	176	186
I17	127	137	147 a47 b47 c47 157	167	177	187
I18	128	I38	I48 a48 b48 c48 I58	I68	178	188

After all half-pixels a, b, c are interpolated, the quarter-pixels e, f, g are interpolated from half-pixels a, b, c respectively in vertical direction using type A filter, the quarter-pixels i, j, k are interpolated similarly using type B filter, and the quarter-pixels p, q, r are interpolated similarly using type C filter. For example, quarter-pixels e, j, r in the figure given above are interpolated as follows:

```
\mathbf{e} = (a41 + 2*a42 + 6*a43 + 46*a44 + 6*a45 + 2*a46 + a47) / 64

\mathbf{j} = (b41 + 4*b42 + 6*b43 + 42*b44 + 6*b45 + 4*b46 + b47) / 64

\mathbf{r} = (c42 + 10*c43 + 4*c44 + 34*c45 + 4*c46 + 10*c47 + c48) / 64
```

I11 to I88 values (integers in the range [0-255]) will be given as inputs to the interpolation hardware. The hardware will produce the output values a44, b44, c44, d, h, n, e, i, p, f, j, q, g, k, r (integers in the range [0-255]) by implementing the FIR filter equations. Assume that the I11 to I88 inputs will contain the I11 to I88 values until the outputs are produced.

In your hardware, you are not allowed to use sequential logic. Your hardware should work in 1 clock cycle. In your hardware, you are not allowed to use multiplier or divider hardware for implementing multiplication with a constant and division by constant operations. These operations should be implemented using shifter and adder hardware.

Implement your hardware design using Verilog HDL. Your top-level Verilog module should have the following interface:

```
module sp_interpolator (l11,l21,l31,l41,l51,l61,l71,l81,l21,l22,l23,l24,l25,l26,l27, l28,l31,l32,l33,l34,l35,l36,l37,l38,l41,l42,l43,l44,l45,l46,l47,l48,l51,l52,l53,l54,l55, l56,l57,l58,l61,l62,l63,l64,l65,l66,l67,l68,l71,l72,l73,l74,l75,l76,l77,l78,l81,l82,l83, l84,l85,l86,l87,l88,a44,b44,c44,d,h,n,e,i,p,f,j,q,g,k,r); input [7:0] l11,l21,l31,l41,l51,l61,l71,l81,l21,l22,l23,l24,l25,l26,l27,l28, l31,l32,l33,l34,l35,l36,l37,l38,l41,l42,l43,l44,l45,l46,l47,l48, l51,l52,l53,l54,l55,l56,l57,l58,l61,l62,l63,l64,l65,l66,l67,l68, l71,l72,l73,l74,l75,l76,l77,l78,l81,l82,l83,l84,l85,l86,l87,l88; output [7:0]a44,b44,c44,d,h,n,e,l,p,f,j,q,g,k,r; ...... endmodule
```

Write a Verilog testbench that verifies the correctness of your Verilog implementation. In this testbench, you should apply input values to your Verilog implementation and compare its outputs with the expected results.

Put all your Verilog files into a zip file named Lab1_Partner1Lastname_ Partner2Lastname.zip (e.g., Lab1_Mahdavi_Hamzaoglu.zip) and submit this zip file to EE310 SUCourse+.