ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

量产测试工具说明

http://www.opulinks.com/

Copyright © 2017-2022, Opulinks. All Rights Reserved.

REVISION HISTORY

版本纪录

日期	版本	更新內容
2022-11-08	1.0	● 初版

TABLE OF CONTENTS

目录

1.	介绍			
	1.1.	文档应用	用范围	
	1.2.	缩略语。		
2.	工具	包		2
3.	基本	介绍		
	3.1.	MP Too	ol 界面介绍	
	3.2.		面介绍	
	3.3.	配置界面	面	6
4.	环境:	搭建		8
	4.1.	硬件搭	建	8
	4.2.	触发模式	式	
	4.3.	串口号的	的选择	11
5.	实际	操作范例		13
	5.1.	产测功能	能(Flow)简介	13
	5.2.	产测功能	能	17
		5.2.1.	fiemware_download	17
		5.2.2.	FM_ver_check	18
		5.2.3.	test_fw_download	20
		5.2.4.	RF_check	21
		5.2.5.	wifi_mac_write	23
		5.2.6.	ble_mac_write	26
		5.2.7.	test_fw_erase	27
		5.2.8.	write_cloudkey	28
		5.2.9.	scan_wifi	30
		5.2.10.	vol_calibrate	32
		5.2.11.	sysmode_user	33
		5.2.12.	reset	34
		5.2.13.	read_mac	35
		5.2.14.	read_cloudkey	36
		5.2.15.	run_script	37
		5.2.16.	erase_flash	
		5.2.17.	user_def_string	40
	5.3.	运行示例	例	41

TABLE OF CONTENTS

LIST OF FIGURES

图目录

FIGURE 1: 固件补丁下载工具包含的文件	2
FIGURE 2:上层状态图	4
FIGURE 3:MP_MULTI_DOWNLOAD.INI 配置 DUT 数量图	5
FIGURE 4:MP TOOL 状态界面图	5
FIGURE 5:配置界面图	6
FIGURE 6: 配置界面编辑状态图	7
FIGURE 7:治具示例一	8
FIGURE 8:治具示例二	9
FIGURE 9: TRIG MODE	10
FIGURE 10:MP TOOL 接线图	11
FIGURE 11:CONFIG PORT SET 配置图	11
FIGURE 12:产测功能(FLOW)配置图	13
FIGURE 13 :产测功能选取图	14
FIGURE 14: FIEMWARE_DOWNLOAD	17
FIGURE 15: FW FILE	17
FIGURE 16: FIRMWARE_DOWNLOAD PASS	17
FIGURE 17 : FW_VER_CHECK	18
FIGURE 18: FW_VER_CHECK INFORMATION	18
FIGURE 19: DOWNLOAD TOOL OTA HEADER SETTING	18
FIGURE 20 : FM_VER_CHECK PASS	19
FIGURE 21: TEST_FW_DOWNLOAD	20
FIGURE 22:MP_MULTI_DOWNLOAD.INI 测试固件配置图	20
FIGURE 23: TEST_FW_DOWNLOAD PASS	20
FIGURE 24: RF_CHECK	21

LIST OF FIGURES

FIGURE 25: RF_CHECK CONIGURATION	21
FIGURE 26 : DONGLE	21
FIGURE 27: RF_CHECK PASS	22
FIGURE 28: WIFI_MAC_WRITE	23
FIGURE 29: WIFI MAC FILE	23
FIGURE 30:WIFI MAC 地址文件格式	23
FIGURE 31: MAC TO CSV	24
FIGURE 32: WIFI_MAC_ADDR.CSV	24
FIGURE 33: WIFI_MAC_WRITE PASS	25
FIGURE 34: BLE_MAC_WRITE	26
FIGURE 35 : BT MAC FILE	26
FIGURE 36 : BLE_MAC_WRITE PASS	26
FIGURE 37: TEST_FW_ERASE	27
FIGURE 38: TEST_FW_ERASE PASS	27
FIGURE 39: WRITE_CLOUDKEY	28
FIGURE 40: KEY FILE	28
FIGURE 41 : COOLKIT FILE	29
FIGURE 42: WRITE_CLOUDKEY PASS	29
FIGURE 43: SCAN_WIFI	30
FIGURE 44: RSSI RANGE SETTING	30
FIGURE 45 : SCAN_WIFI PASS	31
FIGURE 46: VOL_CALIBRATE	32
FIGURE 47: AT_BAUDRATE	32
FIGURE 48: VOL_CALIBRATE PASS	32
FIGURE 49: SYSMODE_USER	33
FIGURE 50: SYSMODE LISER PASS	33

LIST OF FIGURES

FIGURE 51: RESET	34
FIGURE 53: READ_MAC	35
FIGURE 54: READ_MAC PASS	35
FIGURE 55: READ_CLOUDKEY	36
FIGURE 56: READ_CLOUDKEY PASS	36
FIGURE 57: RUN_SCRIPT	37
FIGURE 58: SCTIPTTEST.PY	37
FIGURE 59: RUN_SCRIPT PASS	38
FIGURE 60: ERASE_FLASH	39
FIGURE 61: ERASE_FLASH PASS	39
FIGURE 62: USER_DEF_STRING	40
FIGURE 63: USER_DEF_STRING PASS	40
FIGURE 64:模组连接串口板	41
FIGURE 65:编辑状态	42
FIGURE 66: RUN	43
Figure 67: Success	43
FIGURE 68 · FAII	44

LIST OF TABLES

表目录

Table 1: 固件补丁下载工具包文件说明	2
Table 2:产测功能表	15
Table 3:授权码表	28

1. 介绍

1.1. 文档应用范围

本文档介绍了 OPL2500 量产测试工具的使用方法。

1.2. 缩略语

缩写	说明
MP	Mass production, 量产测试
FW	FirmWare 固件,处理器上运行的嵌入式软件
DUT	Device under test, 待测装置

2. 工具包

MP Tool 固件补丁下载工具包含以下这些文件。如 Figure 1 所示。

Figure 1: 固件补丁下载工具包含的文件

- ble_mac
- blewifi_rf_dut_unit_1899a
- 🗐 mac_addr
- 🔊 mp_multi_download
- mp_test_tool
- Opl1000a2_at
- Opl1000a3_at
- Opl2500a0_at
- Release_note
- test@coolkit_key

这些文件的功能和说明如 Table 1 所述。

Table 1: 固件补丁下载工具包文件说明

编号	文件名	说明	
1	ble_mac.csv	BLE MAC 地址配置文件	
2	blewifi_rf_dut_unit_1899a.bin	测试固件,用于测试固件烧录	
3	mac_addr.csv	Wi-Fi MAC 地址配置文件	
4	mp_multi_download.ini	MP Tool 参数配置文件	
5	mp_test_tool.exe	量产测试工具,配置量产测试参数、指定每个 DUT 的串口号与执行量产测试功能,适用于 win10 环境下	
6	opl1000a2_at.bin	OPL1000A2 的 at command 测试固件	
7	opl1000a3_at.bin	OPL1000A3 的 at command 测试固件	
8	opl2500a0_at.bin	OPL2500A0 的 at command 测试固件	

CHAPTER TWO

编号	文件名	说明
9	Release_note.txt	发布版本通知
10	test@coolkit_key.csv	酷宅云授权码文件

3. 基本介绍

3.1. MP Tool 界面介绍

MP Tool 是一个基本的产测工具,可以满足旺凌 wifi 模组的固件烧录和基本功能测试用,上层会显示当 前状态,主要由 5 部份构成,如 Figure 2。

- 1. MP Tool 版本
- 2. LOGO
- 3. OVERVIEW(概述): CHIP TYPE、FW FILE(固件名称)与 FW VER(固件版本)
- 4. STATISTICS(统计数据): PASS(成功次数)、FAIL(失败次数)与 TOTAL(功能执行总数)
- 5. All Start(开始执行): 当使用者配置好欲执行的功能,即可点选 All Start

Figure 2:上层状态图

3.2. 状态界面介绍

点击 Status · 进入状态界面·如 Figure 4·显示每台 DUT 测试状态·DUT 配置数量可以设定成 4、8或 16·在 mp_multi_download.ini 执行数量设定·如 Figure 3。

注意:请勿轻易改动 mp_multi_download.ini 里面的参数,避免造成 MP Tool 不 预期错误。

Figure 3: mp_multi_download.ini 配置 DUT 数量图

本文范例在状态界面 DUT 数量为 8 个,Figure 4 显示多路并发的每个 DUT 的测试状态。

Figure 4: MP Tool 状态界面图

3.3. 配置界面

点击 Config . 进入 MP Tool 配置页面·如 Figure 5·主要包括三个部分(Figure 5 绿框处):

1. Configuration:配置产测功能中需要指定的参数

Flow:产测功能(共有 17 个产测功能)
 Port set:指定每个 DUT 的串口号

Figure 5:配置界面图

若使用者欲开始进行配置,点击 Edit Configuration (Figure 5 紫框处),配置界面会呈现编辑状态,使用者即可开始执行配置,如 Figure 6。

Figure 6:配置界面编辑状态图

若使用者配置好 Configuration、Flow 与 Port set 中的各项产测参数,即可点选 Save Configuration (Figure 6 紫框处),准备开始执行产测。各项产测功能参数的配置细节会在以下章节详细介绍。

4. 环境搭建

4.1. 硬件搭建

为提高生效效率,需要提前定制治具,可以放单个模组或者多个模组联排。将这些被测模组放入治具,合上治具手柄,模组与下面设计好的顶针接触,并通过数据线连接到 USB 转串口,并通过 USB 连接到电脑,与 MP Tool 实现通信,治具示例参照 Figure 7 与 Figure 8。

Figure 7:治具示例一

Figure 8: 治具示例二

4.2. 触发模式

MP Tool 的触发模式支持两种模式:Auto detect 模式和 CTS button 模式,前者通过治具把手的开合 启动和结束测试,后者通过一个开关来触发启动和结束测试。使用者可以在 MP Tool 中,点击 Config . 在 Configuration 中,在 Trig mode 勾选连线模式,如 Figure 9,默认采用 Auto detect 模式。

Figure 9: Trig mode

Figure 10: MP Tool 接线图

4.3. 串口号的选择

以 1 拖 4 的 USB 转 UART 串口工具为例,(可通过淘宝购买),点击 Config ,进入配置界面,点击 Edit Configuration 进入编辑状态,在 Port Set 中,为每个有效的 DUT 选择 com 口。由于是 1 拖 4 串口,因此可以让治具上的模组按顺序与串口板的 J1~J4 连接,这样 DUT1~DUT4 的串口号从小到大一一对应。如 Figure 11,DUT1~DUT4 分别对应 COM18~COM21。

注意:如果 DUT 数量不是恰好 4,8,16,则可以把不足部分设置为 NC。

Figure 11: Config Port set 配置图

CHAPTER THREE

5. 实际操作范例

5.1. 产测功能(Flow)简介

点击 Config · 进入 MP Too 配置界面,点击 Edit Configuration,配置界面呈现编辑状态,在 Flow 中可以配置产测功能参数,其配置的参数有 4 个,包含:

Type:产测功能种类
 Command:指令输入

String Position:字串位置
 Rang/Key Words: 关键字

如 Figure 12。

Figure 12:产测功能(Flow)配置图

产测功能共有 17 个测项,使用者可以在 Type 选取,并且勾选欲选的产测项目,如 Figure 13。

Figure 13:产测功能选取图

产测功能个功能简介,参照 Table 2。

CHAPTER THREE

Table 2:产测功能表

编号	产测功能名称	产测功能简介	
1	fiemware_download	固件烧录	
2	FM_ver_check	固件版本检查	
3		测试固件烧录	
	test_fw_download	测以四下沉水	
4	RF_check	RF 检查	
5	wifi_mac_write	Wi-Fi mac 烧录	
6	ble_mac_write	BLE mac 烧录	
7	test_fw_erase	固件擦除	
8	write_cloudkey	授权码烧录	
9	scan_wifi	扫描产测 AP	
10	vol_calibrate	电量校准	
11	sysmode_user	MP 模式与一般模式转换	
12	reset	模组复位	
13	read_mac	Wi-Fi mac 读取	
14	read_cloudkey	授权码读取	
15	run_script	定制脚本执行	
16	erase_flash	Flash 擦除	
17		使用者自定字串	

CHAPTER THREE

编号	产测功能名称	产测功能简介
	user_def_string	

5.2. 产测功能

5.2.1. fiemware_download

▶ 功能描述:固件烧录。

实际操作:选取 firmware_download,如 Figure 14。

Figure 14: fiemware_download

在 Configuration 的 FW file 指定固件文件所在位置,如 Figure 15。

Figure 15: FW file

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

测试结果,如 Figure 16。

Figure 16: firmware_download PASS

5.2.2. FM_ver_check

▶ 功能描述:固件版本检查。

➤ 实际操作:选取 FW_ver_check · 如 Figure 17。

Figure 17: FW_ver_check

并且设置正确的固件版本信息(需要固件支持相关的读取版本信息的 AT 指令),如 Figure 18。

Figure 18: FW_ver_check information

这些固件版本信息是生成固件的时候指定的,用旺凌 Opulinks Download Tool 生成 OTA 固件的时候可设置 Production ID,Chip ID, Firmware ID · 如 Figure 19。

Figure 19: DownLoad Tool OTA Header Setting

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 20。

Figure 20 : FM_ver_check PASS

DUT1

PASS

[10:24:28]-SYNC-[10:24:29]connected [10:24:31]FW_ver_check [10:24:33]pass

5.2.3. test_fw_download

▶ 功能描述:测试固件烧录。

▶ 实际操作:选取 test_fw_download,如 Figure 21。

Figure 21: test_fw_download

首先检查 mp_multi_download.ini 设置测试固件文档设置 rf_bin_file = blewifi_rf_dut_unit_1899.bin · 如 Figure 22。若设置文档不存在, 将根据 chip_type 载入默认 at.bin, 目前支持"opl2500a0_at.bin", "opl1000a2_at.bin", 及"opl1000a3_at.bin"。

注意:请勿轻易改动 mp_multi_download.ini 里面的参数,避免造成 MP Tool 不*预期错误。*

Figure 22: mp_multi_download.ini 测试固件配置图

```
rf bin file = blewifi rf dut unit 1899.bin
```

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 23。

Figure 23: test_fw_download PASS

CHAPTER THREE

5.2.4. RF_check

▶ 功能描述:判断检测到的 wifi 信号强度及 2.4GHz 的频偏是否符合期望。

▶ 实际操作:选取 RF_check,如 Figure 24。

Figure 24: RF_check

-Flow			
Туре	Command	String Position	Range /Key words
✓ 000 RF_check ∨			

配置期望的频偏 ppm·RSSI 最大值 MAX 和最小值 MIN·以及 dongle MAC 地址·如 Figure 25。

Figure 25: RF_check coniguration

Dongle Offset 的设置,可以根据 RF 测试仪(例如 IQ2010 或者 WT500)对模组测定之后与 dongle 工具测试差值进行补偿。Dongle 是一个可以固定发送 2.4GHz wifi 信号的 wifi 发射器,如 Figure 26。

Figure 26: Dongle

通过 usb 接口供电,Usb dongle 上电之后直接自动发送 RF 信号,参数为:

Preamble type: LONG

Data length: 6 bytes

CHAPTER THREE

Interval: 30 us

Data rate: 1 Mbps

Tx Counts: 0

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 27。

Figure 27: RF_check PASS

DUT1

PASS

[11:57:56]-SYNC-

[11:58:08]connected

[11:58:10]RF_check

[11:58:21]Freq error:-10.46 RSSI:-37

[11:58:21]pass

CHAPTER THREE

5.2.5. wifi_mac_write

▶ 功能描述:Wi-Fi MAC 地址烧录。

▶ 功能操作:选取 wifi_mac_write,如 Figure 28。

Figure 28: wifi_mac_write

同时,指定 WIFI MAC 地址文件所在位置,如 Figure 29。

Figure 29: WIFI MAC file

WIFI MAC 地址文件格式,如 Figure 30。

Figure 30: WIFI MAC 地址文件格式

No.,MAC address
1,00:01:02:03:04:05
2,00:01:02:03:04:06
3,00:01:02:03:04:07
4,00:01:02:03:04:08
5,00:01:02:03:04:0a
7,00:01:02:03:04:0b
8,00:01:02:03:04:0c
9,00:01:02:03:04:0d

CHAPTER THREE

注意: MP Tool 有自动生成 MAC 地址文件的功能 (Wi-Fi 与 BLE 皆适用)

点击 MACtoCSV . 进入自动生成 MAC 地址文件界面,输入要生成 MAC 地址的开始地址和结束地址,以及生成的 MAC 文件名,如 Figure 31。

Figure 31: MAC to CSV

点击 GO 按键之后,生成本地 MAC 文件 wifi_mac_addr.csv,其内容如 Figure 32。

Figure 32: wifi_mac_addr.csv

```
No.,MAC address
1,00:01:02:03:04:11
2,00:01:02:03:04:12
3,00:01:02:03:04:13
4,00:01:02:03:04:14
5,00:01:02:03:04:15
6,00:01:02:03:04:16
7,00:01:02:03:04:17
8,00:01:02:03:04:18
9,00:01:02:03:04:19
10,00:01:02:03:04:1a
```

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 33。

注意:每次成功写入一笔 MAC 地址至设备端,该笔地址将从 MAC 地址文件删除

Figure 33: wifi_mac_write PASS

PASS [13:40:58]-SYNC-[13:40:59]connected [13:41:01]wifi_mac_write [13:41:03]pass

5.2.6. ble_mac_write

▶ 功能描述:BLE MAC 地址烧录。

▶ 功能操作:选取 ble_mac_write,如 Figure 34。

Figure 34 : ble_mac_write

同时,指定蓝牙 MAC 地址文件所在位置,如 Figure 35。

Figure 35: BT MAC file

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 36。

注意:每次成功写入一笔 MAC 地址至设备端,该笔地址将从 MAC 地址文件删除

Figure 36: ble_mac_write PASS

CHAPTER THREE

5.2.7. test_fw_erase

▶ 功能描述:固件擦除。

▶ 实际操作:选取 test_fe_erase,如 Figure 37。

Figure 37: test_fw_erase

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 38。

Figure 38: test_fw_erase PASS

CHAPTER THREE

5.2.8. write_cloudkey

▶ 功能描述:云端授权码烧录。

▶ 实际操作:选取 write_cloudkey,如 Figure 39。

Figure 39: write_cloudkey

Command 栏位选取要烧录哪一个云的授权码,参照 Table 3。(目前仅支持酷宅云)

Table 3: 授权码表

云	Coomand
酷宅	0

指定授权码文件所在位置,如 Figure 40。

Figure 40: Key file

不同的授权码有不同的授权文件格式,其中:

A. 酷宅授权码文件,如 Figure 41。

Figure 41: Coolkit file

Y 10015fb830 8e97aae9-d678-45a9-9bee-b4b443dc0a15 d0:27:02:bf:6d:b0 d0:27:02:bf:6d:b1 OPL-MLED-YP 137

Y 10015fb82d 48e9480c-7420-4ae1-a8a7-c9c888660284 d0:27:02:bf:6d:aa d0:27:02:bf:6d:ab OPL-MLED-YP 137

Y 10015fb82e d48a927b-ede5-40f8-9f36-ea58b3333ae0 d0:27:02:bf:6d:ac d0:27:02:bf:6d:ad OPL-MLED-YP 137

酷宅授权码文件可以通过另外的工具下载,需要与酷宅授权码管理工具配合使用。

采用授权码文件的好处是 mptool 可以并行烧录授权码,否则只能额外通过酷宅的授权码管理工具一个一个对设备进行串行烧录(因为该工具暂时只支持对单个串口设备进行烧录)。

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

测试结果,如 Figure 42。

注意:每次成功写入一笔授权码至设备端,该笔授权码将从授权码文件删除

Figure 42: write_cloudkey PASS

DUT1

PASS

[16:12:01]-SYNC-[16:12:01]connected [16:12:03]write_cloudkey [16:12:06]has key:10015fb830 [16:12:06]pass

5.2.9. scan_wifi

▶ 功能描述:扫描产测 AP

▶ 实际操作:选取 scan_wifi,如 Figure 43。

Figure 43: scan_wifi

设定期望的 rssi 范围,如 Figure 44。

Figure 44: Rssi range setting

RSSI MAX -10	MIN	-70
--------------	-----	-----

注意事项:

- (1) 产测 AP 的 SSID 必须设置为 opulinks-mptest
- (2) 其它 AP 不能设置为同名
- (3) 产测 AP 必须是 2.4GHz Wi-Fi, 否则无法被设备扫描到
- (4) 产测 AP的 5G WIFI 必须关闭或者 5G WIFI的 SSID 改为非 opulinks-mptest
- (5) 产测 AP 与被测模组的距离不要过近(挨在一起),也不要过远(扫描不到)

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 45。

Figure 45: scan_wifi PASS

DUT1

PASS

[16:34:06]-SYNC-[16:34:06]connected [16:34:08]scan_wifi [16:34:17]RSSI:-37 [16:34:17]pass

5.2.10. vol_calibrate

▶ 功能描述:在需要精准测量电池电压的情况下,使用 vol_calibrate 功能。

▶ 实际操作:选取 vol_calibrate,如 Figure 46。

Figure 46: vol_calibrate

注意事项:

- (1) 要求被产测的模组供电电源采用 2.8VDC, 而不是默认的串口板 3.3VDC。
- (2) 需要模组烧录的固件支持电压校准的 AT 指令。
- (3) 在 mp_multi_download.ini 里·at_baudrate 设定为 9600·如 Figure 47。

Figure 47: at_baudrate

at baudrate = 9600

注意:请勿轻易改动 mp_multi_download.ini 里面的参数,避免造成 MP Tool 不预期错误。

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 48。

Figure 48: vol_calibrate PASS

5.2.11. sysmode_user

▶ 功能描述:切换至 MP mode。

▶ 实际操作:选取 sysmode_user,如 Figure 49。

Figure 49: sysmode_user

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 50。

Figure 50: sysmode_user PASS

5.2.12. reset

▶ 功能描述:模组复位。

▶ 实际操作:选取 reset·如 Figure 51。

Figure 51: reset

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 52。

Figure 52: reset PASS

5.2.13. read_mac

▶ 功能描述:读取 Wi-Fi 与 BLE MAC 位址。▶ 实际操作:选取 read_mac · 如 Figure 53。

Figure 53: read_mac

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 54。

Figure 54: read_mac PASS

5.2.14. read_cloudkey

▶ 功能描述:读取云端授权码。

▶ 实际操作:选取 read_cloudkey,如 Figure 55。

Figure 55: read_cloudkey

Command 栏位选取要读取哪一个云的授权码,参照 Table 3。

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 56。

Figure 56: read_cloudkey PASS

5.2.15. run_script

▶ 功能描述:执行使用者定制的脚本。

▶ 实际操作:选取 run_script,如 Figure 57。

Figure 57: run_script

Command 栏位中,填写脚本名称,并且脚本与 MP Tool 要在同一个目录下,本文脚本范例为设定 AP 参数与检查固件版本,如 Figure 58。

Figure 58: sctipttest.py

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

▶ 测试结果,如 Figure 59。

Figure 59: run_script PASS

DUT1

PASS

[17:27:45]-SYNC-[17:27:46]connected [17:27:48]run_script [17:27:52]OK [17:27:52]pass

5.2.16. erase_flash

▶ 功能描述:擦除 flash。

▶ 实际操作:选取 erase_flash,如 Figure 60。

Figure 60: erase_flash

Command 栏位中,使用者输入参数:<起始 block>|<block 数量>,例如 0|2048 表示从 0 开始擦除,

一共擦除 2048 block, 即整个 flash 都擦除。

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

测试结果,如 Figure 61。

Figure 61: erase_flash PASS

5.2.17. user_def_string

▶ 功能描述:执行使用者自定义字串。

▶ 实际操作:选取 user_def_string,如 Figure 62。

Figure 62: user_def_string

Command 栏位中,使用者输入欲执行的指令(ex:at+rfhp? 检查模组 RF Power),Range/Key words

输入关键字串(ex:+RFHP:160)

此次范例固件使用的是"opl1000a2_at.bin"。

配置完成后,点击 Save Configuration,再点击 All Start,开始进行测试。

测试结果,如 Figure 63。

Figure 63: user_def_string PASS

5.3. 运行示例

前置条件:硬件连接好,并且确认连通性是正确的(本示例直接用模组连接串口板),如 Figure 64。

Figure 64:模组连接串口板

操作步驟:

- (1) 运行 mptool 工具包的可执行文件: mp_test_tool.exe
- (3) 设定 Flow·并且根据 Flow 配置相关参数
- (4) 为每个 DUT 选择正确的串口号
- (5) 点击 Save Configuration 按钮保存上述配置
- (6) 点击 All Start 按钮,运行产测 Flow

如 Figure 65。

Figure 65:编辑状态

- (7) 切换到"Status"页面观察每个被测 DUT 的测试进展情况
- (8) 测试过程中的 DUT 状态为"RUN"(初始状态为"IDLE"·串口与 DUT 通信上状态为"SYNC")·成功提示"SUCCESS"·中间失败会停止测试并提示"FAIL"

如 Figure 66、Figure 67与 Figure 68。

Figure 66: Run

Figure 67: Success

Figure 68: Fail

OPL1000

CONTACT

sales@Opulinks.com

