CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 29, 2022

Midterm 1 reminder

- Midterm exam 10-06 (Thursday), B204, 12h30pm-1h50pm
- Open books, open notes, open Internet. Individual work
- A physical copy of the exam will be provided. But bring your scanning device to upload answers to Blackboard

Finish around 1h50

Different styles for designing an exam

- ? to make everyone pass
- ? to make someone suffer
- ? to provide a fair evaluation

How?

- Breadth: Covering most points
- Depth: Variate difficulty, but no more difficult than homework

Points covered in Midterm 1

- 1. Propositional statements
- 2. Negation
- 3. Inference rules
- 4. Truth tables (tautology, validity, equivalence)
- 5. Direct proof
- 6. Proof by dividing into cases
- 7. Proof by contradiction/contraposition
- 8. Application (Disproof etc, or a real-world scenario)

Mock midterm 1

(problems are taken from final of 2022 Spring)

Problem 1. Propositional statements (points = 8)

Determine if the following statements are true or false. No explanation is needed.

- 1. $\forall x \in \mathbb{R}, x^2 > 0$.
- 2. If $x,y \in R$, then |x + y| = |x| + |y|.
- 3. For every natural number n, the integer $n^2 + 17n + 17$ is prime.
- 4. If $a,b \in N$, then a + b < ab.

Determine if the following statements are true or false. No explanation is needed.

- 1. $\forall x \in \mathbb{R}, x^2 > 0$.
- 2. If $x,y \in R$, then |x + y| = |x| + |y|.
- 3. For every natural number n, the integer $n^2 + 17n + 17$ is prime.
- 4. If $a,b \in N$, then a + b < ab.

- 1. False (Let x=0)
- 2. False
- 3. False (Let n = 17)
- 4. False

Problem 2. Negation (points = 8)

Negate the following statements.

- 1. The numbers x and y are both odd.
- 2. If x is prime, then x is not a rational number.
- 3. There exists a real number r for which r + x = x for every real number x.
- 4. For every positive number ε , there is a positive number δ such that $|x a| < \delta$ implies $|f(x) f(a)| < \varepsilon$.

- 1. The numbers x and y are both odd.
- 2. If x is prime, then x is not a rational number.
- 3. There exists a real number r for which r + x = x for every real number x.
- 4. For every positive number ε , there is a positive number δ such that $|x a| < \delta$ implies $|f(x) f(a)| < \varepsilon$.

- 1. The number x is even, or the number y is even
- 2. x is prime and x is a rational number
- 3. For any real number r, there exists x such that r+x!=x
- 4. There exists a positive number \epsilon, such that for all positive number \delta, $|x a| < \det a$ and $|f(x) f(a)| > = \cdot epsilon$

Problem 3. Inference rules (points = 12)

Fill in the missing "- - - -" parts following the inference rule mentioned in the text.

a.

1. \sim (\sim p \vee q) Premise

2. - - - De Morgen with 1

b.

1. $(p \rightarrow q) \lor r$ Premise

2. ~r Premise

3. - - - Elimination with 1, 2

c.

1. $(p \land r) \rightarrow \neg q$ Premise

2. \sim q -> s Premise

3. ~s Premise

4. - - - Transitivity with 1, 2

5. - - - Modus Tollens with 3, 4

d.

1. $(p \land q) \rightarrow r$ Premise

2. p Premise

3. q Premise

4. - - - Conjunction with 2, 3

5. - - - Modus Ponens with 1, 4

a.

1. \sim (\sim p \vee q) Premise

2. - - - De Morgen with 1

b.

1. $(p \rightarrow q) \lor r$ Premise

2. ~r Premise

3. - - - Elimination with 1, 2

• a. ~~p ∧ ~q

• b. p->q

• c.(p \land r) -> s; \sim (p \land r)

• d. p/\q; r

C.

1. $(p \land r) \rightarrow \neg q$ Premise

2. \sim q -> s Premise

3. ~s Premise

4. - - - Transitivity with 1, 2

5. - - - - Modus Tollens with 3, 4

d.

1. $(p \land q) \rightarrow r$ Premise

2. p Premise

3. q Premise

4. - - - Conjunction with 2, 3

5. - - - - Modus Ponens with 1, 4

Problem 4. Truth table (points = 10)

a. Determine if the following two statements are logically equivalent using a truth table.

- $(\sim P) \land (P \rightarrow Q)$
- $\sim (Q \rightarrow P)$

b. Determine if the following logic inference is valid using a truth table.

- premise $p \rightarrow q v r$
- premise ~q v ~r
- conclusion ~p v ~r

- a. Not equivalent, shown in the last row
- invalid shown in critical row p=T, q=F, r=T

Problem 5. Direct proof (points = 5)

Suppose a, b and c are integers. If a²lb and b³lc, then a⁶lc.

Proof. Since $a^2 \mid b$ we have $b = ka^2$ for some $k \in \mathbb{Z}$. Since $b^3 \mid c$ we have $c = hb^3$ for some $h \in \mathbb{Z}$. Thus $c = h(ka^2)^3 = hk^3a^6$. Hence $a^6 \mid c$.

Problem 6. Proof by dividing into cases (points = 10)

Consider the expression $1 + (-1)^n (2n - 1)$. below is a table showing its values for various integers n > 0. Notice that $1 + (-1)^n (2n - 1)$ is a multiple of 4 in every line.

n	$1 + (-1)^n(2n - 1)$
1	0
2	4
3	-4
4	8
5	-8
6	12

1. Prove that $1 + (-1)^n(2n - 1)$ is a multiple of 4 for every integer n.

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. Let's consider these two cases separately.

Case 1. Suppose *n* is even. Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$.

Thus $1 + (-1)^n (2n-1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4.

Case 2. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$.

Thus $1 + (-1)^n (2n-1) = 1 - (2(2k+1)-1) = -4k$, which is a multiple of 4.

These cases show that $1+(-1)^n(2n-1)$ is always a multiple of 4.

Problem 7. Proof by contraposition/contradiction (points = 15)

Prove the following statements:

- 1. The number $\sqrt{2}$ is irrational.
- 2. If r is a non-zero rational number, then $r/\sqrt{2}$ is an irrational number. [Hint: You could use the conclusion from 1.]
- 3. Every non-zero rational number can be expressed as a product of two irrational numbers. [Hint: You could use the conclusions from 1 and 2.]

Solution for 7.1

- Proof. We want to prove sqrt(2) is irrational.
 - Proof by contradiction. Assume sqrt(2) is rational.
 Namely, sqrt(2)=m/n for some integers m, n having no common factors.
 - Thus m^2=2n^2. We have m must be even. Thus, m = 2k for some integer k. Thus, n^2 = 2k^2. Thus n must be even. The fact that m and n are both even contradicts with the assumption above.
- QED.

Solution 7.2

- Proof. We want to prove: for any nonzero rational r, r/ sqrt(2) is irrational.
 - Proof by contradiction. Assume there exists a nonzero rational r, r/sqrt(2) is rational
 - Then r/sqrt(2) = m/n for some integers m, n where m!
 =0. Thus sqrt(2) = r n / m. Since r is rational, r = a/b for some integers a, b. Thus sqrt(2) = an/(mb) which contradicts with the fact sqrt(2) is irrational (7.1).
- QED.

Solution 7.3

- Proof. We need to show, for any rational number r, there exists irrational numbers ir1, ir2, such that r = ir1 * ir2
 - Suppose r is rational.
 - Let ir1=sqrt(2), ir2= r/sqrt(2)
 - We have r = ir1*ir2 and ir1 and ir2 are irrational following 7.1 and 7.2.
- QED

Problem 8 Application

- Determine if the following is valid argument or not. Explain with inference rules or truth table.
- Premise 1: If the instructor is sick, the class will be canceled.
- Premise 2: If the class is cancelled, the students are happy
- Conclusion: If the instructor is sick, the students are happy