k 值的确定方法

- Knuth 等人发现,对于不同的j(P中的失配位置),k 的取值不同,它仅依赖于模式 P本身前j个字符的构成, 与目标无关。
- 可以用一个 next[] 失配函数来确定: 当模式 P 中第 j 个字符与目标 S 中相应字符失配时,模式 P 中应当由哪个字符(设为第k+1个)与目标中刚失配的字符重新继续进行比较。
- 设模式 P = p₀p₁...p_{m-2}p_{m-1}, next [] 失配函数定义如下:

$$next[j] = \begin{cases} -1, & j = 0 \\ & 0 \le k < j-1 且使得 \\ k+1, & p_0p_1...p_k = p_{j-k-1}p_{j-k}...p_{j-1} \\ & 的最大整数 \\ 0, & 其他情况 \end{cases}$$

j	0	1 2	3	4	5	6	7
P	a	b a	a	b	c	a	c
next[j]	-1	0 0	1	1	2	0	1

利用 next 失配函数进行匹配处理

- 若设在进行某一趟匹配比较时在模式 P 的第 j 位失配:
 - □ 若j>0,那么在下一趟比较时模式 P 的起始比较位置是 p_{next[j]},目标 S 的检测指针不回溯,仍指向上一趟失配的字符;
 - □ 若j=0,则目标S检测指针进一,模式P检测指针回到 p_0 ,进行下一趟匹配比较。

运用 KMP 算法的匹配过程如下图

```
第1趟 目标 acabaabaabcacaabc
     模式 abaabcac
           × j=1 \Rightarrow next(1) = 0, 下次p_0
第2趟 目标 acabaabaabcacaabc
     模式 abaabcac
           × j=0 ⇒ 下次p<sub>0</sub>, 目标指针进 1
第3趟 目标 acabaabaabcacaabc
          abaab<mark>c</mark>ac
     模式
                   × j=5 \Rightarrow next(5) = 2, 下次p,
第4趟 目标 acabaab aabcacaabc
          (a b) a a b c a c 
     模式
```

next 失配函数的计算

- 设模式 $P = p_0 p_1 p_2 ... p_{m-1}$ 由 m 个字符组成,而next 失配函数为next = $n_0 n_1 n_2 ... n_{m-1}$,表示了模式的字符分布特征。
- next 失配函数从0, 1, 2, ..., m-1逐项递推计算:
 - > 当j = 0时, $n_0 = -1$ 。设j > 0 时 $n_{j-1} = k$:
 - > 当 k = -1或 j > 0且 $p_{j-1} = p_k$,则 $n_j = k+1$ 。
 - ightarrow 当 $p_{j-1} \neq p_k$ 且 $k \neq -1$,令 $k = n_k$,并让③循环直到条件不满足。
 - > $<math> = p_{j-1} ≠ p_k$ <math> = -1, <math> = 0.

■ 以前面的例子说明:

\boldsymbol{j}		0	1	2	3	4	5	6	7	
P		a	b	a	a	b	c	a	c	
next	[j]	-1	0	0	1	1	2	0	1	
							1	1		
j=0	j=1	j=2	j	j=3	j=4	j=	=5	j=6	j=7	r
$n_0 = -1$	k=- [1 k=0		k=0	k=1	U	=1	k=2	k=()
	$n_1 =$	$\mathbf{p_1} \neq \mathbf{p_2}$	p_0	n ₃ =	p₃≠p	1 p .	$_4$ = \mathbf{p}_1	$\mathbf{p_5}\neq\mathbf{p_2}$	$\mathbf{p_6}$ =	$\mathbf{p_0}$
	$=\mathbf{k}+1$	1 k=n	i _k =	=k $+1$	k=n _k	•	5=	$k=n_k=$		k+1
	=0	=	-1)	=1	p ₃ = p	•	-k+1	$\mathbf{p_5}\neq\mathbf{p_0}$	=1	
		$n_2 =$			$n_4 =$		=2	k=n _k =	-1	
	$=\mathbf{k}+1$				$=\mathbf{k}+1$			$n_5 = k + 1 = 0$		
		=0			=1					

由模式串t求next值的算法:

```
void GetNext(SqString P, int next[])
    int j, k;
    j = 0;
    k = -1;
    next[0] = -1;
    while(j < P.length - 1) {</pre>
        if(k == -1 || P.SString[j] == P.SString[k])
            j++;
            k++;
            next[j] = k;
        else
            k = next[k];
```

KMP算法

```
int Index_KMP(SqString S, SqString P, int pos)
{
   int next[MaxSize], i = pos-1, j = 0;
   GetNext(P, next);
   while(i < S.length && j < P.length) {</pre>
       if(j == -1 || S.SString[i] == P.SString[j]) {
           i++;
           j++; //i、j各增1
       else
           j = next[j]; //i不变, j后退
   if(j >= P.length)
       return(i - P.length); //返回匹配模式串的首字符下标
   else
       return -1; //返回不匹配标志
```

算法分析

■ 此算法的时间复杂度取决于 while 循环。由于是无回溯的算法,执行循环时,目标 S 字符比较有进无退,要么执行 i++ 和 j++ (对应位相等),要么查找 next[]数组进行模式 P 位置的右移,然后继续向后比较。字符的比较次数最多为 O(n), n 是目标 S 的长度。

— END