Portails Math-Info/Math-Physique L1 S1

Analyse 1

CC2

Documents, calculatrices et portables interdits. Les réponses doivent être accompagnées d'une justification.

Durée: 1h

Exercice 1. a) Calculer les dérivées des fonctions suivantes. Préciser l'ensemble de définition de chaque fonction dérivée.

$$i) f: x \mapsto e^{\sin x}$$

i)
$$f: x \mapsto e^{\sin x}$$
 ii) $g: x \mapsto \frac{x^2}{x+1}$

b) En déduire
$$\lim_{x \to \pi/2} \frac{e^{\sin x} - e}{x - \frac{\pi}{2}}$$

Exercice 2. On définit sur $]0,+\infty[$ la fonction $u:x\mapsto\sqrt{x}\ln(x)$ On rappelle que x_0 est un point critique de u si $u'(x_0) = 0$.

- a) Calculer u'(x) (pour x > 0) et déterminer le(s) point(s) critique(s) de u.
- b) Déterminer la limite de u en $+\infty$.
- c) On admet que u admet pour limite 0 en 0 (à droite). Dresser le tableau de variation de u.
- d) Trouver une condition nécessaire et suffisante sur le nombre réel m pour que l'équation (d'inconnue x) $\sqrt{x} \ln(x) = m$ ait au moins une solution dans $]0, +\infty[$.

Exercice 3. a) Résoudre l'équation $4^x = 3^{x+2}$.

b) Résoudre l'inéquation $2e^{3x} < 3e^{2x}$

Exercice 4. a) Calculer la dérivée et la dérivée seconde de la fonction

$$v: x \mapsto \cos(2x) - \cos(x)$$
.

- b) Ecrire la formule de Taylor-Young en 0 à l'ordre 2 pour la fonction v.
- $\lim_{x \to 0} \frac{v(x)}{x^2}.$ c) En déduire

Barème indicatif : $\mathbf{Ex}\ \mathbf{1}:4,5$; $\mathbf{Ex}\ \mathbf{2}:6,5$; $\mathbf{Ex}\ \mathbf{3}:4$; $\mathbf{Ex}\ \mathbf{4}:5$