Correlation between PFM and Active Fluxes

Correlation between log(PFM) and log(Active Fluxes) for Pichia Pastoris simulated data

been optimized using LOO	\	nout noi	ico	۱۸/ith	ı 2% Eı	ror	\	າ 5% Er	ror	\\/ith	10% E	rror
cross-validation	VVILI						VVILI					.1101
	pc1	pc2	рс3	pc1	pc2	рс3	pc1	pc2	рс3	pc1	pc2	рс3
Active Ems												
1	0.94	-0.07	-0.13	0.95	0.05	-0.10	0.95	0.05	-0.10	0.95	0.05	-0.10
3	-0.26	0.33	0.49	-0.25	0.08	0.34	-0.25	0.08	0.34	-0.25	0.08	0.34
7	0.94	-0.03	0.01	0.95	0.06	-0.04	0.95	0.06	-0.04	0.95	0.06	-0.04
12	0.09	-0.06	0.06	0.08	0.29	-0.10	0.08	0.29	-0.10	0.08	0.29	-0.10
13	-0.21	0.19	0.35	-0.21	0.10	0.20	-0.21	0.10	0.20	-0.21	0.10	0.20
14	0.06	0.07	0.14	0.05	0.57	0.03	0.05	0.57	0.03	0.05	0.57	0.03
16	0.93	-0.10	-0.15	0.94	0.06	-0.12	0.94	0.06	-0.12	0.94	0.06	-0.12
19	0.97	0.01	-0.22	0.97	0.06	-0.02	0.97	0.06	-0.02	0.97	0.06	-0.02
20	0.21	0.46	-0.08	0.20	0.52	0.40	0.20	0.52	0.40	0.20	0.52	0.40
22	0.71	-0.15	-0.11	0.73	0.09	-0.18	0.73	0.09	-0.18	0.73	0.09	-0.18
23	-0.03	0.75	0.10	-0.04	0.14	0.72	-0.04	0.14	0.72	-0.04	0.14	0.72
24	0.20	0.43	-0.05	0.19	0.57	0.37	0.19	0.57	0.37	0.19	0.57	0.37
28	0.95	-0.09	-0.21	0.92	0.03	-0.11	0.92	0.03	-0.11	0.92	0.03	-0.11
32	-0.06	0.75	0.15	-0.06	0.15	0.72	-0.06	0.15	0.72	-0.06	0.15	0.72
33	0.19	0.40	-0.02	0.17	0.61	0.34	0.17	0.61	0.34	0.17	0.61	0.34
37	0.98	-0.03	-0.21	0.97	0.05	-0.06	0.97	0.05	-0.06	0.97	0.05	-0.06

Correlation between 3-factor log(PEMA) and log(Active Fluxes) from on Pichia Pastoris simulated (

Active Ems	Without noise		With 2% Error			With 5% Error			With 10% Error			
	0.96	0.00	0.25	0.97	0.37	0.00	0.08	0.97	0.00	0.08	0.54	0.95
1	-0.15	0.75	0.22	0.00	0.07	0.75	0.14	0.00	0.75	0.14	0.56	-0.08
3	0.95	-0.09	0.20	0.94	0.35	-0.09	0.05	0.94	-0.09	0.05	0.46	0.99
7	0.20	0.53	0.65	0.26	0.27	0.53	0.36	0.26	0.53	0.36	0.51	0.14
12	-0.09	1.00	0.30	0.11	0.03	1.00	0.12	0.11	1.00	0.12	0.79	-0.07
13	0.17	0.72	0.72	0.30	0.13	0.72	0.24	0.30	0.72	0.24	0.68	0.14
14	0.96	0.07	0.27	0.99	0.36	0.07	0.07	0.99	0.07	0.07	0.60	0.94
16	0.98	-0.15	0.35	0.90	0.52	-0.15	0.26	0.90	-0.15	0.26	0.35	0.89
19	0.39	0.14	0.98	0.23	0.77	0.14	0.86	0.23	0.14	0.86	0.19	0.18
20	0.83	0.20	0.40	0.88	0.43	0.20	0.20	0.88	0.20	0.20	0.67	0.80
22	0.19	0.26	0.71	0.01	0.89	0.26	0.98	0.01	0.26	0.98	0.17	-0.03
23	0.38	0.23	1.00	0.25	0.72	0.23	0.82	0.25	0.23	0.82	0.27	0.18
24	0.83	-0.17	0.25	0.74	0.30	-0.17	0.13	0.74	-0.17	0.13	0.20	0.74
28	0.17	0.39	0.72	0.03	0.86	0.39	0.95	0.03	0.39	0.95	0.28	-0.04
32	0.36	0.30	1.00	0.27	0.67	0.30	0.77	0.27	0.30	0.77	0.33	0.18
33	0.95	-0.13	0.32	0.88	0.43	-0.13	0.20	0.88	-0.13	0.20	0.34	0.87
37												

Table 2: Here we calculate correlation of individual principal fluxes derived from PFMA and PEMA with active Ems. For both model we have considered first 3 principal fluxes. For noise-free fluxomic data correlations between active EM or pc's are similar. But with increase of noise in input fluxomic data PEMA result deviates a lot and hence resultant principal fluxes remain no more correlated with Active Ems. While the proposed PFMA able to find highly correlated principal fluxes from noisy fluxomic data. (All correlations are calculated in log scale)

Correlation between PFM and Active Fluxes

With 20% Error							
pc1	pc1 pc2						
0.92	0.05	-0.08					
-0.26	0.08	0.22					
0.92	0.06	-0.04					
0.10	0.29	-0.06					
-0.21	0.10	0.08					
0.06	0.57	0.00					
0.92	0.06	-0.11					
0.96	0.06	0.05					
0.22	0.52	0.52					
0.69	0.09	-0.14					
-0.02	0.14	0.80					
0.21	0.57	0.48					
0.96	0.03	-0.07					
-0.05	0.15	0.78					
0.20	0.61	0.43					
0.98	0.05	-0.01					

data

With	20% E	Error
0.54	0.03	0.21
0.56	0.14	0.38
0.46	0.04	0.14
0.51	0.32	1.00
0.79	0.15	0.52
0.68	0.60	0.73
0.60	0.03	0.24
0.35	0.01	0.17
0.19	0.47	0.57
0.67	0.09	0.63
0.17	0.10	0.34
0.27	0.53	0.61
0.20	-0.01	0.12
0.28	0.12	0.40
0.33	0.58	0.64
0.34	0.01	0.17