Zadania 2 i 15 z W08

Krystian Baran 145000 20 kwietnia 2021

Spis treści

1	Zad	anie 2
		20 - elementów
	1.2	100 - elementów
2	Zad	anie 15 - Studium przypadku
	2.1	a)
		b)
	2.3	c)
	2.4	d)
	2.5	e)
	2.6	f)

1 Zadanie 2

Korzystając z dostępnego oprogramowania wybrać rozkład i wygenerować małą oraz dużą próbę i na ich podstawie dokonać estymacji punktowej przedziałowej parametrów.

Niech prędkość wiatru w danej miejscowości ma rozkład Weibulla z danymi parametrami k=2 i $\lambda=8$ i niech mała próba losowa będzie się składać z 20 elementów, natomiast duża próba będzie zawierała 100 elementów. n-elementowa próba rozkładu Weibulla została wykonana z pomocą funkcji R-owskiej rweibull().

1.1 20 - elementów

Poniżej przedstawiono tabele przedziałową próby.

Lp	Przedz	Licz
1	(0;2]	1
2	(2;4]	4
3	(4;6]	3
4	(6;8]	0
5	(8;10]	5
6	(10;12]	6
7	(12;14]	1
8	(14;16]	0
9	(16;18]	0
10	(18;20]	0

Aby obliczyć średnią korzystaliśmy ze wzoru poniżej, gdzie x_i jest środkiem przedziału. n_i natomiast jest liczebnością przedziału.

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i \cdot n_i}{n} = \frac{152}{20} \approx 7.6$$

Natomiast dla wariancji skorzystaliśmy ze wzoru poniżej.

$$S_n^2 = \frac{\sum_{i=1}^n (x_i - \overline{X})^2 \cdot n_i}{n-1} = \frac{256.8}{19} \approx 13.51578947$$

1.2 100 - elementów

Poniżej przedstawiono tabele przedziałową próby.

$\mathbf{L}\mathbf{p}$	Przedz	Licz
1	(0;2]	9
2	(2;4]	10
3	(4;6]	16
4	(6;8]	23
5	(8;10]	14
6	(10;12]	13
7	(12;14]	7
8	(14;16]	6
9	(16;18]	0
10	(18;20]	2

Jak w podpunkcie ${\bf a}$ obliczono, odpowiednio, średnią i wariancję.

$$\overline{X} = \frac{768}{100} \approx 7.68$$

$$S_n^2 = \frac{1689.76}{99} \approx 17.06828283$$

Widzimy zatem że przy zwiększeniu próby uzyskaliśmy tylko lekką poprawę wartości średniej, natomiast wariancje znacznie różnią się od siebie.

2 Zadanie 15 - Studium przypadku

Z partii kondensatorów wybrano losowo 12 kondensatorów i zmierzono ich pojemności, otrzymując wyniki (w pF): 4,45,4,40,4,42,4,38,4,44,4,36,4,40,4,39,4,45,4,35,4,40,4,35.

- a) Znaleźć ocenę wartości oczekiwanej \overline{x}_{12} i wariancji s_{12}^2 pojemności kondensatora pochodzącego z danej partii.
- b) Wygenerować 100 elementową próbę według rozkładu $N(\overline{x}_{12}, s_{12})$.
- c) Znaleźć ocenę wskaźnika kondensatorów, które nie spełniają wymagań technicznych, przyjmując, że kondensator nie spełnia tych wymagań, gdy jego pojemność jest mniejsza od 4,39 pF.
- d) Znaleźć ocenę wariancji pojemności kondensatorów.
- e) Wyznaczyć 90-procentową ocenę przedziału ufności dla wartości oczekiwanej pojemności kondensatora pochodzącego z danej partii.
- f) Wyznaczyć 90-procentową realizację przedziału ufności dla wskaźnika kondensatorów, które nie spełniają wymagań technicznych w badanej partii.

2.1 a)

Obliczymy \overline{x}_{12} i s_{12}^2 ze wzorów odpowiednio:

$$\overline{x}_{12} = \frac{1}{12} \sum_{i=1}^{12} x_i = \frac{52.79}{12} \approx 4.399166667$$

$$s_{12}^2 = \frac{1}{11} \sum_{i=1}^{12} (x_i - \overline{x}_{12})^2 = \frac{0.014091667}{11} \approx 0.001281061$$

Zatem $\overline{x}_{12}=4.4$ a $s_{12}^2=0.0013$

2.2 b)

Poniżej przedstawiono wygenerowaną próbę za pomocą funkcji R-owskiej rnorm().

lp	przedz	licz
1	(4.35;4.37]	11
2	(4.37;4.39]	25
3	(4.39;4.41]	21
4	(4.41;4.43]	16
5	(4.43;4.45]	11

2.3 c)

Liczba kondensatorów która nie spełnia wymagania ma rozkład dwumianowy z nieznanym parametrem p. Z 12-elementowej próby możemy obliczyć ile kondensatorów nie spełnia warunki i wyznaczyć wskaźnik struktury:

$$\overline{P}_{12} = \frac{1}{12} K_1 2 = \frac{4}{12} \approx 0.333333$$

Zatem szukany p z próby wynosi około 0.33

2.4 d)

Nie rozwiązane.

2.5 e)

Wyznaczymy parametr α jako:

$$1 - \alpha = 0.9 \Rightarrow \alpha = 0.1$$

Dla rozkładu normalnego przedział ufności wyznacza się w następujący sposób odpowiednio dla σ^2 i m:

$$\left(\frac{(n-1)S_n^2}{\chi_{1-\frac{\alpha}{2};n-1}^2}; \frac{(n-1)S_n^2}{\chi_{\frac{\alpha}{2};n-1}^2}\right)$$

$$\overline{X}_n \mp t_{1-\frac{\alpha}{2};n-1} \frac{S_n}{\sqrt{n}}$$

Gdzie $t_{1-\frac{\alpha}{2};n-1}$ to kwantyl rozkładu Studenta z n-1 stopniami swobody a $\chi^2_{1-\frac{\alpha}{2};n-1}$ to podobnie kwantyl rozkładu chi kwadrat.

Zatem dla σ^2 .

$$\chi^2_{1-\frac{\alpha}{2}:n-1} \stackrel{R}{=} qchisq(0.95, 11) \approx 19.67514$$

$$\chi^2_{\frac{\alpha}{2};n-1} \stackrel{R}{=} qchisq(0.05,11) \approx 4.574813$$

$$\left(\frac{11 \cdot 0.0013}{\chi_{0.95:11}^2}; \frac{11 \cdot 0.0013}{\chi_{0.95:11}^2}\right) = (0.0007268; 0.003126)$$

Natomiast dla m.

$$t_{1-\frac{\alpha}{2};n-1} \stackrel{R}{=} qt(0.95,11) \approx 1.795885$$

$$\left(4.4 - 1.795885\sqrt{\frac{0.0013}{12}}; 4.4 - 1.795885\sqrt{\frac{0.0013}{12}}\right) = (4.3813; 4.4187)$$

2.6 f)

Skorzystamy z α obliczone w poprzednim podpunkcie i z następującego wzory na przedział ufności:

$$\overline{P}_n \mp z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{P}_n(1-\overline{P}_n)}{n}}$$

Sprawdzimy najpierw warunek:

$$1<\overline{p}_n\mp 3\sqrt{\frac{\overline{p}_n(1-\overline{p}_n)}{n}}<1$$

$$\overline{p}_n\mp 3\sqrt{\frac{\overline{p}_n(1-\overline{p}_n)}{n}}=\frac{4}{12}\mp 3\sqrt{\frac{4/12\cdot 8/12}{12}}\approx 0.333333\mp 0.408248$$

Warunek jest spełniony tylko dla wartości dodatniej, zatem przedział ufności jest prawostronny i wynosi:

$$z_{1-\frac{\alpha}{2}} \stackrel{R}{=} qnorm(0.95, 0, 1) \approx 1.644854$$

$$\overline{P}_n + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{P}_n(1-\overline{P}_n)}{n}} = \frac{4}{12} + 1.644854 \sqrt{\frac{4/12 \cdot 8/12}{12}}$$

$$(0; 0.55717)$$

Podany powyżej jest szukany przedział ufności.