2.2 EXERCISES

Find the inverses of the matrices in Exercises 1-4.

$$\mathbf{2.} \begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$$

In] eac

9.

3.
$$\begin{bmatrix} 8 & 5 \\ -7 & -5 \end{bmatrix}$$
 4. $\begin{bmatrix} 3 & -4 \\ 7 & -8 \end{bmatrix}$

4.
$$\begin{bmatrix} 3 & -4 \\ 7 & -8 \end{bmatrix}$$

5. Use the inverse found in Exercise 1 to solve the system

$$8x_1 + 6x_2 = 2$$
$$5x_1 + 4x_2 = -1$$

6. Use the inverse found in Exercise 3 to solve the system

$$8x_1 + 5x_2 = -9$$

$$-7x_1 - 5x_2 = 11$$

10

11.

7. Let
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 12 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, and $\mathbf{b}_4 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

- a. Find A^{-1} , and use it to solve the four equations $A\mathbf{x} = \mathbf{b}_1$, $A\mathbf{x} = \mathbf{b}_2, A\mathbf{x} = \mathbf{b}_3, A\mathbf{x} = \mathbf{b}_4$
- b. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix $[A \ \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{b}_4]$.

2.3 EXERCISES

1-7 odd) 11-23 odd

Unless otherwise specified, assume that all matrices in these exercises are $n \times n$. Determine which of the matrices in Exercises 1-10 are invertible. Use as few calculations as possible. Justify your answers.

1.
$$\begin{bmatrix} 5 & 7 \\ -3 & -6 \end{bmatrix}$$
2. $\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix}$
3. $\begin{bmatrix} 5 & 0 & 0 \\ -3 & -7 & 0 \\ 8 & 5 & -1 \end{bmatrix}$
4. $\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$
5. $\begin{bmatrix} 0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7 \end{bmatrix}$
6. $\begin{bmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{bmatrix}$

9. [M]
$$\begin{bmatrix} -6 & 1 & 11 & 9 \\ 7 & -5 & 10 & 19 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$
10. [M]
$$\begin{bmatrix} 5 & 3 & 1 & 7 & 9 \\ 6 & 4 & 2 & 8 & -8 \\ 7 & 5 & 3 & 10 & 9 \end{bmatrix}$$

In Exercises 11 and 12, the matrices are all $n \times n$. Each part of the exercises is an *implication* of the form "If "statement 1", then "statement 2"." Mark an implication as True if the truth of "statement 2" *always* follows whenever "statement 1" happens to be true. An implication is False if there is an instance in which "statement 2" is false but "statement 1" is true. Justify each answer.

- 11. a. If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
 - b. If the columns of A span \mathbb{R}^n , then the columns are linearly independent.

 - e. If A^T is not invertible, then A is not invertible.
- 12. a. If there is an $n \times n$ matrix D such that AD = I, then there is also an $n \times n$ matrix C such that CA = I.
 - b. If the columns of A are linearly independent, then the columns of A span \mathbb{R}^n .
 - c. If the equation Ax = b has at least one solution for each b in Rⁿ, then the solution is unique for each b.

- d. If the linear transformation $(x) \mapsto Ax$ maps \mathbb{R}^n into \mathbb{R}^n , then A has n pivot positions.
- e. If there is a **b** in \mathbb{R}^n such that the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is not one-to-one.
- 13. An $m \times n$ upper triangular matrix is one whose entries below the main diagonal are 0's (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your answer.
- 14. An $m \times n$ lower triangular matrix is one whose entries above the main diagonal are 0's (as in Exercise 3). When is a square lower triangular matrix invertible? Justify your answer.
- **15.** Can a square matrix with two identical columns be invertible? Why or why not?
- 16. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^5 ? Why or why not?
- 17. If A is invertible, then the columns of A^{-1} are linearly independent. Explain why.
- 18. If C is 6×6 and the equation $C\mathbf{x} = \mathbf{v}$ is consistent for every \mathbf{v} in \mathbb{R}^6 , is it possible that for some \mathbf{v} , the equation $C\mathbf{x} = \mathbf{v}$ has more than one solution? Why or why not?
- **19.** If the columns of a 7×7 matrix D are linearly independent, what can you say about solutions of $D\mathbf{x} = \mathbf{b}$? Why?
- **20.** If $n \times n$ matrices E and F have the property that EF = I, then E and F commute. Explain why.
- **21.** If the equation $G\mathbf{x} = \mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^n , can the columns of G span \mathbb{R}^n ? Why or why not?
- 22. If the equation $H\mathbf{x} = \mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^n , what can you say about the equation $H\mathbf{x} = \mathbf{0}$? Why?
- 23. If an $n \times n$ matrix K cannot be row reduced to I_n , what can you say about the columns of K? Why?
- **24.** If L is $n \times n$ and the equation $L\mathbf{x} = \mathbf{0}$ has the trivial solution, do the columns of L span \mathbb{R}^n ? Why?
- 25. Verify the boxed statement preceding Example 1.
- **26.** Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- **27.** Show that if AB is invertible, so is A. You cannot use Theorem 6(b), because you cannot assume that A and B are invertible. [Hint: There is a matrix W such that ABW = I. Why?]
- 28. Show that if AB is invertible, so is B.
- **29.** If A is an $n \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ has more than one solution for some \mathbf{b} , then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is not one-to-one. What else can you say about this transformation? Justify your answer.

2. Let
$$A = \begin{bmatrix} -4 & 1 & 0 \\ -5 & 2 & -4 \end{bmatrix}$$
, the equations $A\mathbf{x} = \mathbf{v}$ and $A\mathbf{x} = \mathbf{w}$ are both consistent equation $A\mathbf{x} = \mathbf{v} + \mathbf{w}$?

3. Let A be an $n \times n$ matrix. If Col A = Nul A, show the

4.2 EXERCISES

1. Determine if
$$\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
 is in Nul A, where

$$A = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}.$$

2. Determine if
$$\mathbf{w} = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix}$$

range of a factor a homogeration

In Exercises 3–6, find an explicit description of Nul A by listing vectors that span the null space.

$$\mathbf{3.} \ \ A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{6.} \ \ A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r-1=s+2t \right\}$$

8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r - 1 = s + 2t \right\}$$

9.
$$\left\{ \begin{array}{c} a \\ b \\ c \\ d \end{array} \right. : \begin{array}{c} a - 2b = 4c \\ 2a = c + 3d \end{array} \right.$$

$$\mathbf{9.} \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a - 2b = 4c \\ 2a = c + 3d \right\} \quad \mathbf{10.} \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + 3b = c \\ b + c + a = d \right\}$$

11.
$$\left\{ \begin{bmatrix} b-2d \\ 5+d \\ b+3d \\ d \end{bmatrix} : b,d \text{ real} \right\}$$
12.
$$\left\{ \begin{bmatrix} b-5d \\ 2b \\ 2d+1 \\ d \end{bmatrix} : b,d \text{ real} \right\}$$

12.
$$\left\{ \begin{bmatrix} b - 5d \\ 2b \\ 2d + 1 \\ d \end{bmatrix} : b, d \text{ real} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$
 14. $\left\{ \begin{bmatrix} -a + 2b \\ a - 2b \\ 3a - 6b \end{bmatrix} : a, b \text{ real} \right\}$

14.
$$\left\{ \begin{bmatrix} -a+2b \\ a-2b \\ 3a-6b \end{bmatrix} : a,b \text{ real} \right\}$$

In Exercises 15 and 16, find A such that the given set is Col A.

15.
$$\left\{ \begin{bmatrix} 2s+3t\\r+s-2t\\4r+s\\3r-s-t \end{bmatrix} : r, s, t \text{ real} \right\}$$

16.
$$\left\{ \begin{bmatrix} b-c \\ 2b+c+d \\ 5c-4d \\ d \end{bmatrix} : b, c, d \text{ real} \right\}$$

For the matrices in Exercises 17–20, (a) find k such that Nul A is a subspace of \mathbb{R}^k , and (b) find k such that Col A is a subspace of \mathbb{R}^k .

17.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$

17.
$$A = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$
 18. $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$

19.
$$A = \begin{bmatrix} 4 & 5 & -2 & 6 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} 1 & -3 & 9 & 0 & -5 \end{bmatrix}$$

- 21. With A as in Exercise 17, find a nonzero vector in Nul $_{A \text{ and}}$ a nonzero vector in Col A.
- 22. With A as in Exercise 3, find a nonzero vector in Nul A_{and} a nonzero vector in Col A.

23. Let
$$A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Determine if \mathbf{w} is \mathbf{i}_{\parallel} Col A . Is \mathbf{w} in Nul A ?

24. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if

In Exercises 25 and 26, A denotes an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- 25. a. The null space of A is the solution set of the equation
 - b. The null space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. The column space of A is the range of the mapping
 - d. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then Col A is \mathbb{R}^m
 - e. The kernel of a linear transformation is a vector space.
 - Col A is the set of all vectors that can be written as Ax for some x.
- 26. a. A null space is a vector space.
 - b. The column space of an $m \times n$ matrix is in \mathbb{R}^m .
 - c. Col A is the set of all solutions of Ax = b.
 - d. Nul A is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
 - e. The range of a linear transformation is a vector space.
 - f. The set of all solutions of a homogeneous linear differential equation is the kernel of a linear transformation.
- 27. It can be shown that a solution of the system below is $x_1 = 3$, $x_2 = 2$, and $x_3 = -1$. Use this fact and the theory from this section to explain why another solution is $x_1 = 30, x_2 = 20$, and $x_3 = -10$. (Observe how the solutions are related, but make no other calculations.)

$$x_1 - 3x_2 - 3x_3 = 0$$

$$-2x_1 + 4x_2 + 2x_3 = 0$$

$$-x_1 + 5x_2 + 7x_3 = 0$$

28. Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 0$$

$$-9x_1 + 2x_2 + 5x_3 = 1$$

$$5x_1 + x_2 - 3x_3 = 0$$

$$-9x_1 + 2x_2 + 5x_3 = 5$$

$$4x_1 + x_2 - 6x_3 = 9$$
 $4x_1 + x_2 - 6x_3 = 45$

It can be shown that the first system has a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)