

Unsupervised Training of Discriminative Neural Network Lexicon Models

Jiahui Geng

jgeng@cs.rwth-aachen.de

February 9, 2018

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

Introduction

Literature

Baseline Framework

- Model
- ▶ Training Criterion
- Decoding

Neural Network Lexicon Models

- Generative Model
- Discriminative Model
- ▶ Training Criterion
 - ▶ Maximum Likelihood
 - ▶ Distance-based Criterion
- ► Conclusion and Outlook

Introduction

Why unsupervised learning?

- Overcome the lack of reference translations
- ► Rich monolingual sentence resource

Why neural network?

- ► Easy integration of (possibly unlimited) source side contexts
- Implicit smoothing for rare words
- Effective representation via hidden layers
- Flexible model capacity: cover large vocabularies with low memory requirement

Literature

[Tran & Bisk⁺ 16] Unsupervised Neural Hidden Markov Models, Workshop on Structured Prediction for NLP 2016

Modeling HMM transmission and emission for generative direction in POS tagging

[Bourlard & Morgan 94] Connectionist Speech Recognition: A Hybrid Approach

- ► Integration of NN acoustic models into a HMM, in discriminative direction [Graves et al. 12] Supervised sequence labelling with recurrent neural networks
- ► Combine LSTM with HMM models to form a hybrid sequence labelling system, HMM to model the sequence, neural network for localised classification

Problem Definition

Assumption

- ▶ 1:1 alignment between source and target words
- ▶ No reordering problem

Evaluation: token-level error rate

Error rate
$$=rac{\sum_{n=1}^{N}[\hat{c}_{n}
eq r_{n}]}{N}$$

Notation

- $ightharpoonup \hat{c}_1^N$ = Translation output
- $ightharpoonup r_1^N$ = Reference output

Baseline Framework

Joint probability

$$p(c_1^N,x_1^N) = \prod_{n=1}^N p(c_n|c_{n-m+1}^{n-1})p(x_n|c_n)$$

- m-gram target LM and a word-to-word lexicon model
- ► Resemble the m-th order hidden Markov model (HMM)
- ► LM pre-trained

Lexicon model: count-based table

$$p(x|c) = heta_{x|c} \ orall c \ \sum_x heta_{x|c} = 1$$

Baseline Framework

Training: Maximum likelihood

$$egin{aligned} & rgmax \left\{ p(x_1^N; heta)
ight\} \ = & rgmax \left\{ \sum_{c_1^N} p(x_1^N, c_1^N; heta)
ight\} \end{aligned}$$

Use EM algorithm as the iterative method:

$$Q(\hat{ heta}, heta) = \sum_{c_1^N} p(c_1^N|x_1^N; heta) \cdot \log\,p(c_1^N,x_1^N;\hat{ heta})$$

Decoding: Maximizing position-wise sum of marginal posterior

$$\hat{c}_1^N = rgmax \left\{ \sum_{n=1}^N p_n(c|x_1^N)
ight\}$$

Corpus Statistics

Spelling correction

► Recover natural strings from their corrupted versions

Train & Test	Running Words	64k
(Lexicon)	Vocabulary	27
Train	Running Words	275M
(LM)	Vocabulary	27

Eutrans

▶ Spanish → English task consists of common conversation scripts in hotels

Train & Test	Running Words	85k
(Lexicon)	Vocabulary	679
Train	Running Words	4.2M
(LM)	Vocabulary	505

Neural Network Lexicon Models

Idea: replace the count-based table with ANN

Discriminative model

Discriminative Model

Motivation

- Better performance than generative models in general
- ► Faster decoding because of reusing results in hypothesis expansions
- Easy integration of context words

Model

$$p(c_1^N, x_1^N) pprox \prod_{n=1}^N p(c_n | c_{n-m+1}^{n-1})^{eta} rac{p(c_n | x_n)}{p(c_n)^{lpha}}$$

- ightharpoonup Scaling parameters lpha , eta
 - 1. Remedy for the incorrect normalization
 - 2. Determine the decoding performance: generate training data for M-step

Derivation of EM Algorithm

$$\begin{split} &\theta^{(t+1)} = \operatorname*{argmax}_{\theta} Q(\theta, \theta^{(t)}) \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{c_1^N} p(c_1^N | x_1^N; \theta^{(t)}) \cdot \log p(c_1^N, x_1^N; \theta) \right\} \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{c_1^N} p(c_1^N | x_1^N; \theta^{(t)}) \cdot \log p(c_1^N; \theta^{(t)})^{\beta} \prod_{n=1}^N \frac{p(c_n | x_n; \theta)}{p(c; \theta^{(t)})^{\alpha}} \right\} \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{c_1^N} p(c_1^N | x_1^N; \theta^{(t)}) \cdot \sum_n \log \frac{p(c_n | x_n; \theta)}{p(c_n; \theta^{(t)})^{\alpha}} \right\} \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_n \sum_c p_n(c | x_1^N; \theta^{(t)}) \cdot \log p(c | x_n; \theta) \right\} \end{split}$$

EM Algorithm

E-Step

- ▶ Calculate $p(c; \theta^{(t)})$
- lacktriangle Calculate $p_n(c|x_1^N; heta^{(t)})$ with forward-backward algorithm

M-Step

lacktriangle Calculate $p(c|x; heta^{(t+1)})$ with cross-entropy as NN cost

Prior Computation

- 1. From LM
- ▶ Use unigram probability
- ▶ Not updated during training
- 2. From lexicon model

$$egin{aligned} p(c) &= \sum_x p(x,c) \ &= \sum_x p(x) p(c|x) \ &= rac{1}{N} \sum_n p(c_n|x_n) \end{aligned}$$

▶ Updated from training results of each iteration

Experiments Results Analysis

Comparison between different models

Model		Prior	α	Error Rate [%]
	p(x c)			17.3
ANN		softmax	1	17.3
7	p(c x)	lm	1	99.8
		lm	0.5	76.4
Table				17.4
Table(supervised)				16.9

- ▶ Prior from the lexicon softmax output ensure the convergence of EM process
- Discriminative model achieves similar performance as generative model

Why LM Prior Not Work?

Statistics of decoding results in spelling experiments with p(c) fixed

$\alpha:1$	e:0.8%	x:99.2%					
$\alpha:0.5$	t:34.1%	h:19.0%	:22.7%	a:12.8%	o:2.2%	e:8.3%	r:0.9%
$\alpha:0.5$	the:	4413	that	: 6207	to:	1286	_

- Limited characters appear
- Specific words appear frequently

Analysis

- ▶ If p(c) fixed, maximum likelihood tends to decoding output with many repeating words with high LM scores
- ▶ If p(c) not fixed, even if p(c|x) favours repetitive words to make LM score high, the prior reduces the effect by dividing with a large prior probability

Context Modeling for ANN Lexicons

Discriminative direction with a predecessor context

Context Modeling for ANN Lexicons

Supervised learning results

Model	Context width	Spelling	Eutrans	Europarl	
		Error rate[%]	Error rate[%]	Error rate[%]	
p(c x)	0	17.0	2.56	45.8	
	1	18.8	2.46	41.7	
	2	19.7	2.19	38.5	
	4	20.7	1.92	37.9	

- ► Context model helps in supervised training for Eutrans and Europarl
- Context model does not help in spelling experiments for supervised training

Context Modeling for ANN Lexicons

$$\begin{split} &\theta^{(t+1)} = \operatorname*{argmax}_{\theta} Q(\theta, \theta^{(t)}) \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{c_1^N} p(c_1^N | x_1^N; \theta^{(t)}) \cdot \log p(c_1^N, x_1^N; \theta) \right\} \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{c_1^N} p(c_1^N | x_1^N; \theta^{(t)}) \cdot \sum_{n} \log \frac{p(c_n | x_n, x_{n-1}; \theta)}{p(c_n; \theta^{(t)})^{\alpha}} \right\} \\ &= \operatorname*{argmax}_{\theta} \left\{ \sum_{n} \sum_{c} p_n(c | x_1^N; \theta^{(t)}) \cdot \log p(c | x_n, x_{n-1}; \theta) \right\} \end{split}$$

- ► Still uses maximum likelihood as training criterion
- Add source-side context in neural lexicon model

Context Model Results

Unsupervised training results for Eutrans

	Model	α	β	Error Rate [%]
	p(x c)			28.3
ANN	p(c x)	0.1	0.5	25.4
7	$p(c x,x_{-1})$	0.05	0.1	28.1
	$igg p(c x,x_{-1},,x_{+1})$	0.05	0.1	29.1
	$p(c x_1^N)$	0.05	0.5	29.0
Table				29.3
Table (supervised)				2.2

► More context = worse performance

Analysis

Statistics of decoding results in unsupervised training (Eutrans)

context width	'is there'	'by credit card'	'key to room'
0	0	194	1661
1	0	1570	1789
2	201	1570	4475

- ► More fixed collocations, which come from LM, appear when adding context
- Maximum likelihood criterion is not suitable for context model

Distance-based Criterion

$$rgmin_{\{p(c|x)\}} \left\{ \sum_{c_1^N} rac{p(c_1^N)}{\prod\limits_n p_n(c_n)} - \prod\limits_n p_n(c_n|x_n)
ight\}^2$$

Unfolding the formula we get:

$$\sum_{c_1^N} \frac{(p^2(c_1^N))}{\prod\limits_n p_n^2(c_n)} - 2 \cdot \sum_{c_1^N} p(c_1^N) \cdot \prod\limits_n \frac{p_n(c_n|x_n)}{p_n(c_n)} + \sum_{c_1^N} \prod\limits_n p_n^2(c_n|x_n)$$

- ▶ Assuming p(c) and $p(c_1^N)$ fixed:
 - ⇒ minimization of distance = maximum likelihood + quadratic absolute normalization:

$$\sum_{c} p_n^2(c|x_1^N) = 1.0$$

Quadratic Softmax

Motivation

- ▶ Different convergence process, may faster
- Easy to implement

Method

$$y = [y_1,...y_c,...y_C]$$
Softmax $\Rightarrow \frac{e^{y_c}}{\sum\limits_c e^{y_c}}$
Quadratic softmax $\Rightarrow \sqrt{\frac{e^{y_c}}{\sum\limits_c e^{y_c}}} = \frac{e^{\frac{y_c}{2}}}{\sqrt{\sum\limits_c e^{y_c}}}$

Quadratic Softmax: Results

Use quadratic softmax for spelling correction

- ▶ No difference when varying prior scaling parameter
- ▶ Quadratic softmax does not properly converge

Another Distance Interpretation

$$rgmin_{\{p(c|x)\}} \left\{ \sum_{c_1^N} (p(c_1^N) - \prod_n rac{p(c_n|x_n)}{p_n(c_n)})^2
ight\}$$

Unfolding the formula, we get:

$$\sum_{c_1^N} p^2(c_1^N) - 2 \cdot \sum_{c_1^N} p(c_1^N) \cdot \prod_n \frac{p_n(c_n|x_n)}{p_n(c_n)} + \sum_{c_1^N} \prod_n \frac{p_n^2(c_n|x_n)}{p_n^2(c_n)}$$

⇒ minimization of distance = maximum likelihood + prior softmax normalization:

$$\sum_{c} rac{p_n^2(c|x_n)}{p_n^2(c)} = 1.0$$

Prior Softmax

Motivation

- ► Softmax output layer takes given prior into account
- ► Lexicon may learn to adapt to the prior

Constraint

$$\sum_{c} rac{p_n^2(c|x_n)}{p_n^2(c)} = 1.0$$

Implementation

$$\text{Prior softmax} \Rightarrow \sqrt{\frac{e^{y_c} \cdot p^2(c)}{\sum\limits_{c} e^{y_c}}} = \frac{e^{\frac{y_c}{2}}}{\sqrt{\sum\limits_{c} e^{y_c}}} \cdot p(c)$$

Prior Softmax Experiments

Use prior softmax for spelling correction

Seems to converge for this training process but the performance not satisfying

Outlook

Conclusion

- Similar performance for both generative and discriminative models w/o context
- ► Worse performance when in introducing contextual information
- Modified output layer not satisfying

Outlook

► Modify the training criterion

Thank you for your attention

Jiahui Geng

jgeng@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

References

- [Bourlard & Morgan 94] H. Bourlard, N. Morgan: *Connectionist Speech Recognition: A Hybrid Approach*. Kluwer Academic Publishers, Norwell, MA, USA, 1994.
- [Doetsch & Kozielski⁺ 14] P. Doetsch, M. Kozielski, H. Ney: Fast and robust training of recurrent neural networks for offline handwriting recognition. In *Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on*, pp. 279–284. IEEE, 2014.
- [Graves & Mohamed⁺ 13] A. Graves, A.r. Mohamed, G. Hinton: Speech recognition with deep recurrent neural networks. In *Acoustics, speech and signal processing (icassp), 2013 ieee international conference on*, pp. 6645–6649. IEEE, 2013.
- [Graves et al. 12] A. Graves et al.: Supervised sequence labelling with recurrent neural networks, Vol. 385. Springer, 2012.
- [Mohamed & Dahl⁺ 12] A.r. Mohamed, G.E. Dahl, G. Hinton: Acoustic modeling using deep belief networks. *IEEE Transactions on Audio, Speech, and Language Processing*, Vol. 20, No. 1, pp. 14–22, 2012.

[Tran & Bisk⁺ 16] K. Tran, Y. Bisk, A. Vaswani, D. Marcu, K. Knight: **Unsuper-** vised Neural Hidden Markov Models. *arXiv preprint arXiv:1609.09007*, Vol., 2016.

[Zeyer & Doetsch⁺ 17] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schlüter, H. Ney: A comprehensive study of deep bidirectional LSTM RNNs for acoustic modeling in speech recognition. In *Acoustics, Speech and Signal Processing* (ICASSP), 2017 IEEE International Conference on, pp. 2462–2466. IEEE, 2017.