

A 2-categorical representation of deduction

j.w.w. Ivan Di Liberti

LI 2022

Greta Coraglia

$$(Sbst) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

$$(Sbst) \frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]} \qquad (Cut) \frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

$$(Sbst) \frac{\Gamma \vdash a : A \text{ Term} \qquad \Gamma.A \vdash B \text{ Type}}{\Gamma \vdash B[a] \text{ Type}} \qquad (Cut) \frac{x; \Gamma \vdash \phi \text{ Form} \qquad x; \Gamma, \phi \vdash \psi \text{ Form}}{x; \Gamma \vdash \psi \text{ Form}}$$

Why does this happen?
How do rules *really* work, syntactically?
What about constructors/connectives?

Propositions as types

(Sbst)
$$\frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$
 (Cut) $\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$

Propositions as types: it explains the similarities, it doesn't explain why these "shapes" in the syntax nor the difference between judgements involving different objects.

[...] so we have constructions acting on constructions.

- William Howard to Philip Wadler

Propositions as types

(Sbst)
$$\frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$
 (Cut) $\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$

Propositions as types: it explains the similarities, it doesn't explain why these "shapes" in the syntax nor the difference between judgements involving different objects.

[...] so we have functors acting on functors.

- William Howard to Philip Wadler

An account of context, judgement, deduction

A pre-judgemental theory is specified through the following data:

(ctx) a category (with terminal object \$): context

 (\mathcal{J}) judgement classifiers, a class of functors $f: \mathbb{F} \to \operatorname{ctx}$ over the iudgement category of contexts; possibly (op)fibrations;

 (\mathcal{R}) rules, a class of functors $\lambda : \mathbb{F} \to \mathbb{G}$: deduction (\mathcal{P}) policies, a class of 2-dimensional cells filling (some) triangles induced by rules (functors in \mathcal{R}) and judgements (functors in \mathcal{J}).

Categories as syntax

Whenever $F \in f^{-1}(\Gamma)$ we read $\Gamma \vdash F \mathbb{F}$. Whenever $F, F' \in f^{-1}(\Gamma)$ and F = F' we read $\Gamma \vdash F =_{\mathbb{F}} F'$.

$$(\lambda) \frac{\Gamma \vdash F \mathbb{F}}{g\lambda F \vdash \lambda F \mathbb{G}}$$

and, possibly, Γ and $g\lambda F$ and related by a map

$$\lambda_{F}^{\sharp}: g\lambda F \to \Gamma$$

toy MLTT:
$$\begin{cases} \operatorname{ctx} = \operatorname{contexts} \ \operatorname{and} \ \operatorname{substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \ \operatorname{with} \ \Sigma : (a, A) \mapsto A \\ \mathcal{P} = \{\operatorname{id} : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$$

$$\dot{u} : \dot{\mathbb{U}} \to \operatorname{ctx} \qquad \Gamma \vdash (a, A) \dot{\mathbb{U}} \qquad a \text{ is a term of type } A \text{ in context } \Gamma$$

$$u : \mathbb{U} \to \operatorname{ctx} \qquad \Gamma \vdash A \mathbb{U} \qquad A \text{ is a type in context } \Gamma$$

$$\dot{\mathbb{U}} \xrightarrow{\Sigma} \mathbb{U}$$

$$ctx$$

 $\begin{array}{c|c}
\hline
 & \Sigma \\
\downarrow u \\
\downarrow u
\end{array}$ $\begin{array}{c|c}
\hline
 & \Gamma \vdash (a,A) \dot{\mathbb{U}} \\
\hline
 & \Gamma \vdash A \mathbb{U}
\end{array}$ the type of a in context Γ is a type in context Γ

toy MLTT:
$$\begin{cases} \operatorname{ctx} = \operatorname{contexts} \text{ and substitutions} \\ \mathcal{J} = \{\dot{u}, u\} \\ \mathcal{R} = \{\Sigma\}, \text{ with } \Sigma : (a, A) \mapsto A \\ \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\} \end{cases}$$
$$\dot{u} : \dot{\mathbb{U}} \to \operatorname{ctx} \qquad \Gamma \vdash (a, A) \dot{\mathbb{U}} \qquad a \text{ is a term of type } A \text{ in context } \Gamma$$
$$u : \mathbb{U} \to \operatorname{ctx} \qquad \Gamma \vdash A \mathbb{U} \qquad A \text{ is a type in context } \Gamma$$

 $u: \mathbb{U} \to \operatorname{ctx}$

$$(\Sigma) \frac{\Gamma \vdash (a,A) \stackrel{\dot{\cup}}{\cup}}{\Gamma \vdash A \stackrel{\Box}{\cup}}$$

 $\stackrel{\dot{\mathbb{U}}}{=} \stackrel{\Sigma}{=} \stackrel{id}{=} \stackrel{U}{=} \mathbb{U}$ $(\Sigma) \frac{\Gamma \vdash (a, A) \dot{\mathbb{U}}}{\Gamma \vdash A \, \mathbb{U}} \quad \text{the type of } a \text{ in context } \Gamma \text{ is a type in context } \Gamma$

A is a type in context Γ

Judgemental theories

This is nice and all, but we can't do anything with it.

We impress the computational power of a deductive system using 2-dimensional constructions in **Cat**.

A judgemental theory (ctx, \mathcal{J} , \mathcal{R} , \mathcal{P}) is a pre-judgemental theory such that

- 1. \mathcal{R} and \mathcal{P} are closed under composition;
- 2. the judgements are precisely those rules whose codomain is ctx;
- 3. $\mathcal R$ and $\mathcal P$ are closed under finite limits, #-liftings, whiskering and pasting.

Nested judgements

Pullbacks compute nested judgements such as

$$\Gamma \vdash a : A$$
 $\Gamma . A \vdash B$
 $x; \Gamma \vdash \phi$ $x; \Gamma, \phi \vdash \psi$

because

 $\Gamma \vdash F\lambda.H \Vdash \lambda.H$ really is $\Gamma \vdash H \Vdash H = g\lambda H \vdash F \Vdash$

Nested judgements

Pullbacks compute nested judgements such as

$$\Gamma \vdash a : A$$
 $\Gamma . A \vdash B$
 $x; \Gamma \vdash \phi$ $x; \Gamma, \phi \vdash \psi$

because

toy MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}$$
, $\mathcal{R} = \{\Sigma\}$, $\mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$

Eq
$$(pr_1, pr_2)$$
 $\stackrel{\dot{\cup}}{\longrightarrow}$ \times $\stackrel{\dot{\cup}}{\longrightarrow}$ $\stackrel{\dot{p}r_1}{\longrightarrow}$ $\stackrel{\dot{\cup}}{\longrightarrow}$ reads as (ρ) $\frac{\Gamma \vdash (a, A) \stackrel{\dot{\cup}}{\cup}}{\Gamma \vdash \rho(a, A) \operatorname{Eq}(pr_1, pr_2)}$

toy MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}$$
, $\mathcal{R} = \{\Sigma\}$, $\mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$

tov MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}, \mathcal{R} = \{\Sigma\}, \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$$

toy MLTT: ctx,
$$\mathcal{J} = \{\dot{u}, u\}, \mathcal{R} = \{\Sigma\}, \mathcal{P} = \{id : u \circ \Sigma \Rightarrow \dot{u}\}$$

jDTT, I: definition

jDTT, I: definition

jDTT:
$$\begin{cases} & \mathsf{ctx} = \mathsf{contexts} \; \mathsf{and} \; \mathsf{substitutions} \\ & \mathcal{J} = \{\dot{u}, u\}, \; \mathsf{with} \; u, \dot{u} \; \mathsf{fibrations} \\ & \mathcal{R} = \{\Sigma, \Delta\}, \; \mathsf{with} \; \Sigma \dashv \Delta \\ & \mathcal{P} = \{\mathit{id} : u \circ \Sigma \Rightarrow \dot{u}, \epsilon, \eta\}, \; \mathsf{with} \; \epsilon, \eta \; \mathsf{cartesian} \end{cases}$$

Theorem (1)

If \dot{u} , u are discrete, the jDTT is (equivalent to) a natural model* à la Awodey.

Theorem (2)

The judgmental theory generated by jDTT contains codes for all structural rules of dependent type theory.

*hence categories with families, attributes, etc

jDTT, II: coding dependent families

jDTT, II: coding dependent families

jDTT, III: policies for type dependency

jDTT, III: policies for type dependency

Plus, we can define what diagrams one needs to add to jDTT in order to get type constructors.

Theorem (3)

It has Π -types if it has two additional rules Π , λ such that the diagram below is commutative and the upper square is a pullback.

(ΠE): the unique map induced by the pullback from the classifier of (A, B, f, a) (ΠCn) and (ΠCB): induced by the canonical isomorphism

This generalizes quite nicely.

Pick

$$\Gamma \vdash A \quad \Gamma.A \vdash b : B$$

$$\Gamma \vdash A \quad \Gamma.A \vdash B$$

 $\begin{array}{c|c} \mathbb{U}.\Delta\dot{\mathbb{U}} & \longrightarrow \dot{\mathbb{U}} \\ \Sigma.(\dot{u}\Delta.u) \downarrow & & \downarrow; \\ \mathbb{U}.\Delta\mathbb{U} & \longrightarrow \mathbb{U} \end{array}$

... get Π-types.

This generalizes quite nicely.

Pick

$$\Gamma \vdash a : A \quad \Gamma \vdash a' : A$$

... get Id-types.

This generalizes quite nicely.

Pick

$$\Gamma \vdash A \quad \Gamma . A \vdash B \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B[a]$$

$$\Gamma \vdash A \quad \Gamma . A \vdash B$$

 $(\dot{\mathbb{U}}.\Sigma\Delta\mathbb{U})\Sigma.\gamma\dot{\mathbb{U}} \longrightarrow \dot{\mathbb{U}}$ $...\downarrow \qquad \qquad \downarrow_{\Sigma}$ $\mathbb{U}.\Delta\mathbb{U} \longrightarrow \mathbb{U}$

... get Σ -types.

This generalizes quite nicely.

$$(\vdash \Gamma ctx)$$

$$(\vdash \Gamma ctx)$$

... get unit-types.

General type constructor

A judgemental dependent type theory with Φ -types is a jDTT having two additional rules Φ , Ψ such that the diagram below is commutative and the upper square is a pullback.

And we can do calculations once for all of the above.

(Sbst)
$$\frac{\Gamma \vdash a : A \qquad \Gamma.A \vdash B}{\Gamma \vdash B[a]}$$

(Cut)
$$\frac{x; \Gamma \vdash \phi \qquad x; \Gamma, \phi \vdash \psi}{x; \Gamma \vdash \psi}$$

$$\dot{\mathbb{U}}.\Delta\Sigma\mathbb{U} \xrightarrow{\qquad \qquad \dot{\mathbb{U}}\times\mathbb{U}}$$

... plus they both arise by #-lifting from a given "base" policy!

In summation

We describe a **general theory of judgement** via 2-categorical means and prove its coherence with respect to:

- ▶ DTT, and get a (first) general definition of type constructor in the process;
- natural deduction calculus;
- ► internal logic of a topos.

Still, there are plenty of things that should be looked into, for example:

- prove some completeness result;
- extend the theory and the definition to type constructors not included (inductive, coinductive);
- study rules and policies induced by (co)monads;
- express new logics (e.g. linear?) in this framework.

Thank you for listening!

