1	2	3	Т	4	5	6	7	P	Total

Calif.

APELLIDO Y NOMBRE:

CARRERA:

Condición:

Libre

Regular (tachar lo que NO corresponda) Año:

Algebra - Algebra Lineal - Algebra II - Final

27 de Febrero de 2022

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos.

Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 35 pts. en la parte práctica para los regulares. Los alumnos libres deberán obtener al menos 40 puntos en la parte práctica.

Parte Teórica (30 pts.)

- 1. (12 pts) Sea K un cuerpo y sean V, W dos K-espacios vectoriales de la misma dimensión. Sea $f: V \to W$ una transformación lineal. Probar que las siguientes tres condiciones son equivalentes:
 - f es biyectiva.
 - f es inyectiva.
 - El núcleo de f es $\{\vec{0}\}$.
- 2. (12 pts) (a) Definir suma directa de más de dos subespacios.
 - (b) Porbar que si $A \in K^{n \times n}$ y $\lambda_1, \dots, \lambda_r$ son autovalores distintos de A, entonces los subespacios $E_{\lambda_i} = \{v \in K^n : Av = \lambda_i v\}$ con $i = 1, \dots, r$ están en suma directa.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Suma de dos isomorfismos de espacios vectoriales es isomorfismo.
 - (b) (3 pts) Si $S, T: V \to V$ son dos transformaciones lineales tales que $\operatorname{rg}(S) \subset \operatorname{Nu}(T)$, entonces $T \circ S = 0$.

Parte Práctica (70 pts.)

4. (15 pts) Supongamos que v_1, \dots, v_m es un conjunto de vectores de un K-espacio vectorial y $T: K^m \to V$ definida por:

$$T(x_1, \cdots, x_m) = x_1v_1 + \cdots + x_mv_m.$$

- (a) ¿ A qué propiedad de T corresponde el hecho de que $\{v_1, \dots, v_m\}$ genere V?
- (b) ξ A qué propiedad de T corresponde el hecho de que $\{v_1, \dots, v_m\}$ sea linealmente independiente?
- 5. (20 pts) (a) Sea U y V dos subespacios de \mathbb{C}^6 de dimensión 4. Probar que $\dim(U \cap V) \geq 2$.
 - (b) Dar ejemplos de U y V tales que $\dim(U \cap V) = 2$.
- 6. (20 ptos) Sea

$$M = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & a & b \\ 0 & 0 & 3 \end{array}\right).$$

Encontrar los valores de a y $b \in \mathbb{R}$ de modo que $\lambda = 3$ sea un autovalor doble y M sea diagonalizale.

7. (15 ptos) Sea V espacio vectorial con producto interno de dimensión finita y $T:V\to V$ una transformación lineal tal que existe una base β de V para la cual $[T]_{\beta}$ es triangular superior. Mostrar que existe una base ortonormal para la cual la matriz de T en esa base también es triangular superior.

Justificar debidamente todas las respuestas