

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексная автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ УЧЕБНОЙ ПРАКТИКИ №3

по дисциплине: «Учебно-технологическая практика на C++»

Студент:	Новокшанов Е.А		
	подпись, дата	фамилия, и.о.	
Группа:		<u>РК6-36Б</u>	
Преподаватель:		_ Берчун Ю.В.	
1	подпись, дата		

Оглавление

Оглавление	2
Постановка задачи	3
Входные и выходные данные	4
Алгоритмы	5
Приложение 1. Содержание файлов исходного кода	6

Постановка задачи

Требуется разработать программу, реализующую дискретно-событийное моделирование системы, рассмотренной в задании 2 домашнего задания №4:

- Смоделируем поведение покупателя в магазине, в котором работают 2 кассы, причём к каждой из них выстраивается отдельная очередь, а квалификация сотрудников немного отличается, поэтому время обслуживания распределено с разными параметрами. Каждая касса будет представлена одноканальным устройством, обращение к которым будем осуществлять по номерам. Очереди также будут идентифицироваться номерами, без введения символьных имён. Моделирование будем проводить в течение 1 часа, в качестве единицы времени будем выбирать секунду.
- Время между приходом покупателей распределено на отрезке [0; R1+G1+B1] ([0; 24]). Время обслуживания на первой кассе распределено на отрезке [R1; R1+G1+B1] ([10;24]). Время обслуживания на второй кассе распределено на отрезке [G1; R1+G1+B1] ([9;24]).
- При принятии решения покупатель сперва проверяет, есть ли свободная касса, и, если есть, направляется к ней.
- Если же обе кассы заняты, то выбирает кассу, очередь к которой в данный момент короче.
- Если же свободны обе кассы, или очередь к ним одинакова, то выбирается первая касса.

Обратите внимание, что все интервалы времени подчиняются законам распределений, носящим непрерывный характер. Поэтому категорически неверными является выбор целочисленных типов данных для моментов и интервалов времени, и тем более инкремент модельного времени с единичным шагом. Нужно реализовать именно переход от события к событию, как это сделано в GPSS и других проблемно-ориентированных системах. Для упрощения можно ограничиться использованием единственного потока случайных чисел для генерации всех необходимых случайных величин. Результатом работы программы должен быть лог-файл, содержащий записи типа:

- «В момент времени 12.345 транзакт с идентификатором 1 вошёл в модель»,
- «В момент времени 123.456 транзакт с идентификатором 123 встал в очередь 1»,
- «В момент времени 234.567 транзакт с идентификатором 234 занял устройство 2»,
- «В момент времени 345.678 транзакт с идентификатором 345 освободил устройство 1»,
- «В момент времени 456.789 транзакт с идентификатором 456 вышел из модели».

Входные и выходные данные

По итогам выполнение программы формируется файл, название которого может быть задано первым аргументом командной строки или изменено в коде программы, содержащий в себе информацию о поведение транзактов в моделе.

Выходные данные:

Время запуска модели:2022-01-14 13:45:31.317987					
орени запуска мод	Время	ID	Лействие		
В момент времени	10.000	транзакт с ID1	вошел в очередь номер1		
В момент времени	0.000	транзакт с ID1	зашел в устройство номер1выйдет в 22.249		
В момент времени	21.402	транзакт с ID2	вошел в очередь номер2		
В момент времени	21.402	транзакт с ID2	зашел в устройство номер2выйдет в 42.316		
В момент времени	22.249	транзакт с ID1	вышел из устройства номер1		
В момент времени	35.934	транзакт с ID3	вошел в очередь номер1		
В момент времени	35.934	транзакт с ID3	зашел в устройство номер1выйдет в 63.321		
В момент времени	42.316	транзакт с ID2	вышел из устройства номер2		
В момент времени	44.370	транзакт с ID4	вошел в очередь номер2		
В момент времени	44.370	транзакт с ID4	зашел в устройство номер2выйдет в 69.565		
В момент времени	63.321	транзакт с ID3	вышел из устройства номер1		
В момент времени	67.536	транзакт с ID5	вошел в очередь номер1		
В момент времени	67.536	транзакт с ID5	зашел в устройство номер1выйдет в 79.497		
В момент времени	69.565	транзакт с ID4	вышел из устройства номер2		
В момент времени	79.497	транзакт с ID5	вышел из устройства номер1		
В момент времени	81.048	транзакт с ID6	вошел в очередь номер1		
В момент времени	81.048	транзакт с ID6	зашел в устройство номер1выйдет в 92.468		
В момент времени	92.468	транзакт с ID6	вышел из устройства номер1		
В момент времени	99.309	транзакт с ID7	вошел в очередь номер1		
В момент времени	99.309	транзакт с ID7	зашел в устройство номер1выйдет в 126.614		
В момент времени	116.143	транзакт с ID8	вошел в очередь номер2		
В момент времени	116.143	транзакт с ID8	зашел в устройство номер2выйдет в 131.863		
В момент времени	126.614	транзакт с ID7	вышел из устройства номер1		
В момент времени	131.863	транзакт с ID8	вышел из устройства номер2		
В момент времени	136.908	транзакт с ID9	вошел в очередь номер1		
В момент времени	136.908	транзакт с ID9	зашел в устройство номер1выйдет в 163.502		
В момент времени	144.672	транзакт с ID10	вошел в очередь номер2		
В момент времени	144.672	транзакт с ID10	зашел в устройство номер2выйдет в 154.273		
В момент времени	154.273	транзакт с ID10	вышел из устройства номер2		
В момент времени	160.098	транзакт с ID11	вошел в очередь номер2		
В момент времени	160.098	транзакт с ID11	зашел в устройство номер2выйдет в 169.893		
В момент времени	163.502	транзакт с ID9	вышел из устройства номер1		
В момент времени	169.893	транзакт с ID11	вышел из устройства номер2		
В момент времени	170.141	транзакт с ID12	вошел в очередь номер1		
В момент времени	170.141	транзакт с ID12	зашел в устройство номер1выйдет в 184.675		
В момент времени	184.675	транзакт с ID12	вышел из устройства номер1		
В момент времени	187.387	транзакт с ID13	вошел в очередь номер1		
В момент времени	187.387	транзакт с ID13	зашел в устройство номер1выйдет в 209.985		
В момент времени	209.985	транзакт с ID13	вышел из устройства номер1		
В момент времени	211.986	транзакт с ID14	вошел в очередь номер1		
В момент времени	211.986	транзакт с ID14	зашел в устройство номер1выйдет в 222.124		
В момент времени	212.211	транзакт с ID15	вошел в очередь номер2		
В момент времени	212.211	транзакт с ID15	зашел в устройство номер2выйдет в 226.792		
В момент времени	221.773	транзакт с ID16	вошел в очередь номер1		
В момент времени	222.124	транзакт с ID16	зашел в устройство номер1выйдет в 238.826		
В момент времени	222.124	транзакт с ID14	вышел из устройства номер1		

Рисунок 1. Лог-файл

Алгоритмы

В программе предусмотрены 2 цепи: цепь текущих событий (СЕС) и цепь будущих событий (FEС), которые будут заполняться и изменяться в будущем. Изначально в цепи будущих событий будут находиться транзакты, имеющие только время генерации. Программа последовательно выполняет 3 этапа (или фазы):

- 1ый этап фаза ввода: здесь транзакты добавляются в FEC и ожидают своей очереди
- 2ой этап фаза распределения: здесь транзакты с минимальным временем перемещаются из FEC в CEC и указывается соответствующая очередь.
- Зый этап фаза просмотра: здесь транзакты либо меняют свою позицию в модели (перемещается по очереди, переходит на обслуживающее устройство), либо выходит из модели.

Приложение 1. Содержание файлов исходного кода

Pract3.py

```
from Transact import *
   for j in range(0,len(FEC)):
   while(j < len(FEC)):</pre>
```

```
Tr_in_D = copy(D1.go_out of D())
    FEC.append(Tr in D)
f.write(out)
Q2.add transact to Q(FEC[j])
    FEC.append(Tr in D)
f.write("End model")
    FEC.append(Tr in D)
    Tr in D = copy(D2.go_out_of_D())
    FEC.append(Tr_in_D)
```

Queue h.

```
from Device import *
from copy import *
class Queue_to_device:
    def __init__(self, i, D):
        self.Q = []
        self.Id = i
        self.D = D
    def add_transact_to_Q(self, new_Tr):
        self.Q.append(new_Tr)
    def go_to_device(self):
        self.D.add_transact_to_D(self.Q[0])
        self.Q.pop(0)
    def get_lenght(self):
        return len(self.Q)
    def get_ID(self):
        return self.Id
```

Device.py

```
from Transact import *
from copy import *
class Device:
    def __init__(self, id, t1, t2):
        self.Tr = Transact(0, 0, 0, 0)
        self.Id = id
        self.t1 = t1
        self.t2 = t2
        self.T_g = 0.0
        self.stat = 0
    def add_transact_to_D(self, transact):
        self.Tr = copy(transact)
        self.stat = 1
        self.Tr.set_stat(2)
        out = "B момент времени |" + str("%.3lf"%self.T_g) + "\t| транзакт
c ID" + str(self.Tr.get_id()) + "\t| зашел в устройство номер" +
str(self.Id)
        f.write(out)
    def set T g(self, t):
```

```
self.T_g = t

def go_out_of_D(self):
    #self.stat = 0
    self.Tr.set_T_e(self.T_g + Rand(self.t1, self.t2))
    out = "выйдет в " + str("%.3lf"%self.Tr.get_T_e()) + "\n"
    f.write(out)

    #self.Tr.set_stat()
    return self.Tr

def get_stat(self):
    return self.stat

def set_stat(self, s):
    self.stat = s
```

Transact.py

```
from copy import *
   def set_T_e(self, t):
   def get id(self):
   def get_T_g(self):
   def get_T_e(self):
   def get stat(self):
```

Полный листинг программы можно увидеть по ссылке: https://github.com/NovokshanovE/NewRepo/tree/master