PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-058755

(43)Date of publication of application: 04.03.1994

1)Int.Cl.

G01C 3/06 G01B 11/24 G06F 15/62 G06F 15/64

1)Application number : 04-099045

(71)Applicant: NEC CORP

(2)Date of filing:

20.04.1992

(72)Inventor: IWAKAWA MASATO

14) DISTANCE IMAGE CATCHING DEVICE

i7)Abstract:

URPOSE: To catch the distance image unaffected by the geometrical stortion due to camera lens.

ONSTITUTION: A spectrum pattern casting device 1 casts a separated pectrum pattern on a measured object 2. A camera 3 outputs a first and a second image data of the, object 2 photographed by first and econd sensors 5, 6 with different spectrum sensitivity. A ratio image alculator 11 calculates the output ratio of the first and the second nage data for every image. A distance conversion table memory 21 tores the distance value between the camera and the object in advance coordingly to the output ratio.

EGAL STATUS

Date of request for examination]

15.12.1997

Date of sending the examiner's decision of rejection]

13.07.1999

Kind of final disposal of application other than the examiner's decision of rejection or application

examiner's decision of rejection converted registration

Date of final disposal for application]

Patent number]

Date of registration]

Number of appeal against examiner's decision of

eiection]

Date of requesting appeal against examiner's decision

of rejection]

Date of extinction of right]

(19)日本園特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-58755

(43)公開日 平成6年(1994)3月4日

(51)Int.Cl. ⁵ G 0 1 C 3/06 G 0 1 B 11/24 G 0 6 F 15/62 15/64	識別記号 A K 4 1 5 3 2 0 C	9287-5L	F I			技術家	長示箇所
			審1	查請求	未請求	請求項の数 2(全	7 頁)

(71)出題人 000004237 特願平4-99045 (21)出願番号 日本電気株式会社 東京都港区芝五丁目7番1号 平成 4年(1992) 4月20日 (22)出願日 (72)発明者 岩川 正人 東京都港区芝五丁目7番1号日本電気株式 会社内 (74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 距離画像取得装置

(57) 【要約】

【構成】スペクトルパタン投射装置1は、計測する物体 2に分光されたスペクトルパタンを照射する。カメラ3 は、異なる分光感度の第1と第2のセンサ5, 6が撮像 した物体2の第1と第2の画像データを出力する。比画 像演算部11は第1と第2の画像データの出力比を画素 毎に演算する。距離変換テーブルメモリ21は出力比に 対応して予めカメラ3と物体2迄の距離の値を格納す

【効果】カメラレンズの幾何歪に影響されない距離画像 の取得が行なえる。

【特許請求の範囲】

【請求項1】 計測する物体に分光されたスペクトルバ タンを照射する手段と、異なる分光感度の第1と第2の センサが撮像した前記物体の第1と第2の画像データを 出力する手段と、前記第1と第2の画像データの出力比 を画素毎に演算する手段と、前記出力比に対応して予め 前記物体迄の距離の値を格納する手段とを有することを 特徴とする距離画像取得装置。

【請求項2】 分光されたスペクトルパタンを物体に照 射し、この物体を異なる分光感度のセンサを有するカメ 10 して説明する。 ラにより撮像した画像の各画素により前記物体までの距 離を求める距離画像取得装置であって、前記センサの複 数の出力比の値を画素値とする比画像を算出する比画像 算出手段と、観測し得る全ての比の値及び画素位置と距 離の組合せを求める距離換算テーブルを生成する距離換 算テーブル生成手段と、較正時に自板をカメラ光軸方向 に移動し、その位置と前記比画像算出手段から得られる 画素位置と前記比の値の組を前記距離換算テーブル生成 手段に出力する較正制御手段と、距離計測の場合に、前 位置とから前記距離換算テーブルを索引して対応する距 離を読み出す距離換算手段とを有することを特徴とする 距離画像取得装置。

【発明の詳細な説明】

[0001]

 $Z = (X 0 - Z 0 \tan \alpha) / (\tan \beta - \tan \alpha) \cdots (2)$

X0, Z0は放射の中心座標を表す。ここで、物体2の 存在する空間に距離Ζαにある較正用平面19、距離Ζ bにある較正用平面20の2つの面を考える。まず、平 面19の位置に較正用白板を置き、較正画像を撮像して 30

 α は比Rの関数であり、カメラ3での撮像位置の座標Xa は、レンズ中心から撮像面までの距離Cを定数とし て、角度βαを用いて表すと、式(4)となる。

[0007] $Xa = C tan \beta a \cdots (4)$

 $Xa (R) = C [\{X0 - Z0 tan\alpha (R) \} / Za + tan\alpha (R)]$ (5)

また、同様に、他の平面20の位置に較正用白板を置 き、較正用画像を撮像すると、RとXb(R)との関係

Xb (R) = C [$\{X0-Z0\tan\alpha$ (R) $\}$ / $Zb+\tan\alpha$ (R)]

ところで、全ての単色光はスペクトルパタン投射装置1 の一点から空間に放射していると考えることが出来るの で、波長に対応するある比Rの光線が平面19と交差す る位置 (Xb, Zb) から定まる直線は、すべて放射の 中心(X0, Z0)を通るはずである。そこで、平面1 9に白板を置いて、第1の較正画像を取得し、関数演算 部14は、スイッチ13を介して比画像メモリ12に格 納されている比画像から平面19における比Rの関数X

【産業上の利用分野】本発明は距離画像取得装置に関 し、特に立体計測装置に利用される距離画像取得装置に 関する。

[0002]

【従来の技術】従来の距離画像取得装置は、物体などの 三次元位置をテレビカメラから入力された画像により求 める装置として、特開昭64-039513号公報に記 載された技術がある。この距離画像取得装置によりカメ ラから物体までの距離を求める方法の一例を図4を参照

【0003】投射装置1からは赤から青のスペクトル光 に分光されたスペクトルパタンが物体2へ投射される。 画像データはカメラ3内の異なる分光感度を有するセン サ5,6により取得される。なお4は光分岐素子であ る。この画像データは、A/D変換器7,8を介して各 画素毎に比Rを式(1)に従って演算し、演算された比 画像をメモリ12に格納する。

[0004]R = [11/11+12....(1)

ただし式(1)において、I1は物体2上の任意の点P 記比画像算出手段により得られる前記比の値と前記画素 20 が撮像されたセンサ5の画素出力であり、I2は同じく センサ6の画素出力である。いま、点Pの座標を(X, Z) とすると、カメラ3から物体2までの距離Zは式 (2) により求まる。

[0005]

各画素について式(1)の比を求める。平面19のZ座 標はZaであるので、式(2)は式(3)となる。

[0006]

 $Za = (X0 - Z0 tan\alpha) / (tan\beta - tan\alpha) \cdots (3)$ 平面19に関してのXaはRの関数として式(5)で表 すことができる。

[0008]

として式(6)を得る。

[0009]

..... (6)

れたRa1≦R≦Ra2の範囲で値を有する。

【0010】同様に、平面20に白板を置いて、第2の 較正画像を取得し、関数演算部15は、メモリ12内の 比画像から関数Xb(R)を求め、保持する。この関数 は、Rb1≦R≦Rb2の範囲で値を有する。

【0011】回折位置較正部16は、関数Xa(R)お よびXb(R)について、双方のRの定義域の重複部分 の各Rに関し、(Xa, Za)、(Xb, Zb)の各組 a (R) を求めて保持する。関数Xa(R)は、観測さ 50 を求める。そして、これら各組の結ぶ直線(前述したご

とくすべて放射の中心(X0, Z0)を通る)を式 (7) とすると、

 $Z = a r X + b r (R = R1, R2, \cdots) \cdots (7)$

X0、Z0は最小自乗法により式(8), (9)によっ て求まる。

$$X_{0} = \frac{\left(\sum_{R} \frac{1}{aR^{2}+1}\right) \left(\sum_{R} \frac{aRbR}{aR^{2}+1}\right) - \left(\sum_{R} \frac{aR}{aR^{2}+1}\right) \left(\sum_{R} \frac{bR}{aR^{2}+1}\right)}{\left(\sum_{R} \frac{aR}{aR^{2}+1}\right)^{2} - \left(\sum_{R} \frac{1}{aR^{2}+1}\right) \left(\sum_{R} \frac{aR^{2}}{aR^{2}+1}\right)}$$

$$Z_{0} = \frac{\left(\sum_{R} \frac{aRbR}{aR^{2}+1}\right) \left(\sum_{R} \frac{aR}{aR^{2}+1}\right) - \left(\sum_{R} \frac{bR}{aR^{2}+1}\right) \left(\sum_{R} \frac{aR^{2}}{aR^{2}+1}\right)}{\left(\sum_{R} \frac{aR}{aR^{2}+1}\right)^{2} - \left(\sum_{R} \frac{1}{aR^{2}+1}\right) \left(\sum_{R} \frac{aR^{2}}{aR^{2}+1}\right)}.$$

$$z = (za-z_0) (x-x_0) / (xa-x_0) + z_0 \cdot \cdot \cdot \cdot (10)$$

$$z = \frac{(z_0 x_d - z x_0) c}{(x_d - x_0) c - (z_d - z_0) x} \cdot \cdot \cdot \cdot (12)$$

$$Z = \frac{(Z_0 X_b - Z_b X_0) C}{(X_b - X_0) C - (Z_b - Z_0) x} \cdot \cdot \cdot \cdot (1.9)$$

【0013】以上から、任意の位置の物体上で比Rの点 が撮像面でXの位置に検知されたとき、そのZは下式 (10)、(11)を解いて式(12)で求められる。 【0014】 ここで、 (Xa, Za) のかわりに (X b, Zb) を用いても全く同様であるので式 (13) に よってもZを求めることが出来る。

 $x = C t a n \beta = C X / Z$

【0015】以上により、2回の較正画像入力によりX 取得と距離算出が可能であり、距離演算部17により上 述の演算が行われ、その結果であるカメラ3から物体2 までの距離2が距離画像メモリ18に格納される。

[0016]

【発明が解決しようとする課題】上述した従来の距離画 像取得装置は、カメラレンズの幾何歪のため、カメラ3 での撮像位置Xが正しく求まらない。その結果、キャリ ブレーション時には、放射点(X0, Z0)が正しく求 まらず、実際の測定時は式(12)、(13)の中のX 0, ZO, 及びXの誤差によりZの誤差を生じ、正しい 50 と、較正時に白板をカメラ光軸方向に移動し、その位置

計測が出来ないという欠点がある。

[0017]

【課題を解決するための手段】本発明の距離画像取得装 置は、計測する物体に分光されたスペクトルパタンを照 射する手段と、異なる分光感度の第1と第2のセンサが 撮像した前記物体の第1と第2の画像データを出力する 手段と、前記第1と第2の画像データの出力比を画素毎 0、20が求まり、これにより実際の物体に対する画像 40 に演算する手段と、前記出力比に対応して予め前記物体 迄の距離の値を格納する手段とを有する。

> 【0018】また、本発明の距離画像取得装置は、分光 されたスペクトルパタンを物体に照射し、この物体を異 なる分光感度のセンサを有するカメラにより撮像した画 像の各画素により前記物体までの距離を求める距離画像 取得装置であって、前記センサの複数の出力比の値を画 素値とする比画像を算出する比画像算出手段と、観測し 得る全ての比の値及び画素位置と距離の組合せを求める 距離換算テーブルを生成する距離換算テーブル生成手段

と前記比画像算出手段から得られる画素位置と前記比の 値の組を前記距離換算テーブル生成手段に出力する較正 制御手段と、距離計測の場合に、前記比画像算出手段に より得られる前記比の値と前記画素位置とから前記距離 換算テーブルを索引して対応する距離を読み出す距離換 算手段とを有する。

[0019]

【実施例】次に本発明について図面を参照して説明す る。図1は本発明の一実施例のブロック図である。

【0020】図1において、スペクトルパタン投射装置 10 は関与しない。 1はX-2平面内における扇状の広がり角度に対して一 価関数となる波長のパタンを物体2に照射する。スペク トルパタンを照射された物体2は、異なる分光感度のセ ンサ5、6を有するカメラ3により撮像される。カメラ 3の2つのセンサで得られた画像データはA/D変換器 7, 8 でそれぞれデジタル値に変換され、これらA/D 変換器7,8の出力はそれぞれ画像メモリ9,10に格 納される。画像メモリ9、10のデータは比画像演算部 11において各画素毎に比Rが計算され、その出力は比 画像メモリ12に格納される。比画像メモリ12からの 読みだしデータはスイッチ13によって、距離測定前は 較正制御部23个、また実際の距離測定時は距離変換テ ーブル21側へそれぞれ切り替えられる。実際の測定前 のキャリブレーション時に、平面19に白板をおいて較 正制御部23にて制御される搬送機構部22によりZ軸 方向に任意の変位量ΔZずつステップ移動させ、観測し 得る全ての比Rと画素位置Xの場合につき距離Zが求め られる。較正制御部23で求めた結果は距離変換テーブ ルメモリ21にルックアップテーブルとして作成、保持 される。距離画像メモリ18は、測定結果を保持するも 30 のである。

【0021】次に図1の距離画像取得装置の動作につい て、図2と図3とを参照して説明する。スペクトルパタ ン投射装置1から扇状に照射されるスペクトルパタンの 波長域は11~12であって、この間波長は連続、かつ 扇の広がり角度に対して一価関数となっている。このス ペクトルパタン投射装置1を用いて物体2を照明し、こ の実景をカメラ3で撮影する。

【0022】まず、実際の測定に先立ち、スイッチ13 を較正制御部23側へ切り替えた後に距離変換テーブル 40 を作成する。図1において、カメラ3の相異なる分光感 度のセンサ5、6で取得された画像データは、A/D変 換器7,8を介して2つの画像メモリ9及び10の各画 素毎に比Rを式(1)に従って演算し、その結果を比画 像メモリ12に格納する。ここで図2の距離Zaの平面 19に白板をおいて較正画像を取得した場合、比画像メ モリ12の画素位置X=0,1,2…Xiで求まる比R の値は順にR=0, 1, 2…Rjとなるので、比R, 座 標値X, 及び距離Zの組(X, R, Z)は(0, 0, Z a)、(1, 1, Za)、(2, 2, Za)、…、(X 50 像取得を行える効果がある。

i, Rj, Za) となる。

【0023】次に白板を搬送機構部22により微小距離 ΔZだけZ軸方向に移動させ、再度較正画像を取得する と、画素位置X=1, 2…Xiで求まる比Rの値は順に R = 0, 1, … $R_j - 1$ となるので(X, R, Z)は $(1, 0, Za + \Delta Z)$, $(2, 1, Za + \Delta Z)$, …、 (Xi, Rj-1, Za+∆Z) となる。なお、比 画像メモリ12の画素位置X=0には分光スペクトルパ タンが照射されていないので距離変換テーブルの作成に

【0024】このような操作を分光スペクトルパタンが 照射され、かつカメラの視野内の範囲にわたって繰り返 し、その都度定まる(X,R,Z)の値を距離変換テー ブルメモリ21へ出力する。較正画像取得、搬送機構部 制御、比R不定判定、(X,R,Z)の出力は較正制御 部23が司っている。距離変換テーブルメモリ21で は、較正制御部23から得る比R,座標値X,及び距離 Zの組を図3のように配置し、格納する。

【0025】実際の物体2までの距離を測定する場合、 カメラ3の相異なる分光感度のセンサ5,6で取得され た実景の画像データは、A/D変換器7,8から画像メ モリ9及び10に得られ、比画像が比画像メモリ12に 得られる。距離変換テーブルメモリ21は、比画像メモ リ12から、画素毎に比RをX座標と共にスイッチ13 を介して読み出し、比Rと座標値Xに対応する距離Zを テーブルルックアップによって求め、距離画像メモリ1 8に書き込む。以上の一連の動作を全ての画素について 行なうことにより、距離画像メモリ18の各画素には、 カメラ3から物体2までの距離2が得られる。

【0026】このようにすると、カメラレンズ歪による 誤差を含んだ照射点位置(X0、Z0)、視線角度βの 各パラメータを用いずに距離変換テーブルを作成し、実 際の測定時には、このテーブルを参照して各画素毎の距 離を求めることによりカメラレンズ歪の影響を受けない 距離画像計測が可能である。

【0027】なお、上述の実施例では、スペクトルパタ ン投射装置を構成する分光素子が回折格子の場合につき 述べたが、これが他の分光素子、例えばプリズム等を用 いた場合であっても同じ要領で容易に実施でき、同じ効 果が得られる。また、距離変換テーブルの大きさは説明 の都合上X=512、R=256としたが、この値は任 意である。

[0028]

【発明の効果】以上説明したように本発明は、計測前 に、出現し得る全ての比R,座標値X,距離Zの関係を あらかじめ実測によって求め、その結果を距離換算テー ブルに記憶しておき、実際の計測時には、1回のテーブ ル検索のみで距離Zが求められるようにすることによっ て、カメラレンズ歪による誤差の影響を受けない距離画

【図面の簡単な説明】

【図1】本発明の一実施例を示すブロック図である。

【図2】本実施例の距離変換テーブル作成方法の説明図である。

【図3】本実施例の距離変換テーブルメモリ内のデータ 配置を示す図である。

【図4】従来の距離画像取得装置の一例のブロック図である。

【符号の説明】

- 1 スペクトルパタン投射装置
- 2 物体
- 3 カメラ
- 4 光分岐素子
- 5,6 センサ

7, 8 A/D変換器

- 9,10 画像メモリ
- 11 比画像演算部
- 12 比画像メモリ
- 13 スイッチ
- 14, 15 関数演算部
- 16 回折位置較正部
- 17 距離演算部
- 18 距離画像メモリ
- 10 19,20 平面
 - 21 距離変換テーブルメモリ

【図2】

- 22 搬送機構部
- 23 較正制御部

[図3]

RX	0	1	2	~	Χį		510	511
0	Z(0,0)	Z (1,0)	Z (2,0)		Z(xi,0)		Z(510.0)	Z(511,0)
1	Z(0,1)	Z(1,1)	Z (2,1)		Z(×i,1)		Z(510,1)	Z(511,1)
2	Z(0,2)	Z(1,2)	Z(2,2)		Z(x1,2)		Z(510,2)	Z(511,2)
٠,					5		•	•
Rj	Z(0.Rj)	Z(t,Rj)	Z(2,Rj)	(Z(xi,Rj)	٠	Z(510,83)	Z(511,Fij)
5					,			
254	Z(0,254)	Z(1,254)	Z(2,254)	-	Z(X1,254)		Z(510,254)	Z(511,254)
255	Z(0,255)	Z(1,255)	Z(2,255)		Z(xi,255)		Z(510,255)	Z(511,255)

