

CPE/EE 695: Applied Machine Learning

Lecture 5-1: Cross Validation and Bias-Variance Trade-offs

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

K-Fold Cross-Validation

To determine the best hyperparameters when training data, we can further divide training data into K folds, with K-1 folds as new training set and one as hold-out set (validation set):

At the end, train the model using all training data with the optimal hyperparameters, and test it using the testing data.

Assuming the center (red circle) is the perfect model

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Statistically, define:

Y: target value (variable we want to predict)

X: input data (covariates)

$$Y = f(X) + \varepsilon$$

where $\varepsilon \sim N(0, \sigma_{\varepsilon})$ is the error term.

 $\hat{f}(X)$: trained model of f(X)

The expected squared error at point *x*:

$$Err(x) = E\left[\left(Y - \hat{f}(x)\right)^{2}\right] = \left(E\left[\hat{f}(x)\right] - f(X)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right] + \sigma_{\varepsilon}^{2}$$

Statistically, define:

Y: target value (variable we want to predict)

X: input data (covariates)

$$Y = f(X) + \varepsilon$$

where $\varepsilon \sim N(0, \sigma_{\varepsilon})$ is the error term.

 $\hat{f}(X)$: trained model of f(X)

The expected squared error at point *x*:

$$Err(x) = E\left[\left(Y - \hat{f}(x)\right)^{2}\right] = \left(E\left[\hat{f}(x)\right] - f(X)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right] + \sigma_{\varepsilon}^{2}$$

Bias

Statistically, define:

Y: target value (variable we want to predict)

X: input data (covariates)

$$Y = f(X) + \varepsilon$$

where $\varepsilon \sim N(0, \sigma_{\varepsilon})$ is the error term.

 $\hat{f}(X)$: trained model of f(X)

The expected squared error at point *x*:

$$Err(x) = E\left[\left(Y - \hat{f}(x)\right)^{2}\right] = \left(E\left[\hat{f}(x)\right] - f(X)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right] + \sigma_{\varepsilon}^{2}$$

Bias

Variance

Bias Problem

The hypothesis space made available by a particular classification method does **not** include **sufficient** hypotheses

Variance Problem

The hypothesis space made available is **too large** for the training data, and the selected hypothesis may not be accurate on unseen data

- Practical techniques to reduce bias:
 Increase hypothesis space (i.e., model complexity)
- Practical techniques to reduce variance:
 - resampling (e.g., random forest)
 - * bias of each tree is the same as full model but higher variance
 - * averaging many trees decreases variance without increasing bias
 - * theoretically the more trees, the less variance (if no computation limit)
- No analytical methods to find optimal bias-variance trade-off
 - * try different model complexity (needing accurate error measurement)