$DTM \\ Deterministische \ Turing\text{-}Maschine$	NTM $Nicht determinist is che Turing-Maschine$	Ent scheidung sproblem 3
$(Un\mbox{-})Entscheidbarkeit$	$Aufz\"{a}hlbarkeit$	$Abz\ddot{a}hlbarke it$
Überabzählbarkeit	Halte problem 8	$Cantor ext{-}Funktion$
$Cantor ext{-}Diagonal is ierung$	Cantors erstes Diagonalargument	Cantors zweites Diagonalargument
Cantorsche Paarungsfunktion	A ckermann funktion	Topologie
Gödelsche unvollständigkeitssätze	$LOOP ext{-}Programm: Definition$	$LOOP ext{-}Programm: ADD ext{-}Funktion$
LOOP-Programm: SUB-Funktion	$LOOP ext{-}Programm: MUL ext{-}Funktion$	$LOOP ext{-}Programm: POT ext{-}Funktion$
LOOP-Programm: DIV-Funktion	LOOP-Programm: MAX-Funktion	LOOP-Programm: MIN-Funktion

tbd 3	tbd 2	tbd
tbd	tbd	tbd
tbd	tbd 8	tbd
tbd	tbd	tbd
tbd 15	tbd	tbd 13
$ADDx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 + 1END$	tbd	tbd
$POTx_{1}x_{2}:$ $x_{0} := x_{1} + 0;$ $LOOPx_{2}DOMULx_{0}x_{1}END$ 21	$MULx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOADDx_0x_1END$ 20	$SUBx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 - 1END$
$MINx_1x_2:$ $x_0 = x_1 + 0;$ $MAXx_1x_2;$ $ADDx_0x_2;$ $SUBx_0x_1$	$MAXx_1x_2:$ $x_0 := x_1 + 0;$ $SUBx_0x_2;$ $ADDx_0x_2$ 23	tbd 22

$LOOP ext{-}Programm: MOD ext{-}Funktion$	$LOOP ext{-}Programm:\ GGT ext{-}Funktion$	$LOOP ext{-}Programm: Fallunterscheidung$
25	26	27
WHILE-Programm: Definition	WHILE-Programm: Syntax	$Kolmogorov ext{-}Komplexit\"{a}t$
90	20	20
28	29	30
$Many ext{-}One ext{-}Reduktion$	$Turing ext{-}Reduktion$	Schubfach prinzip
31	32	33
Satz von Rice	$Postsches \ Korrespondenz problem$ 35	$\ddot{A} quivalenz problem$ 36
P, NP, coNP, PSPACE	P,NP,PSPACE-hart	$P, NP, PSPACE\text{-}vollst\"{a}ndig$
37	38	39
Wortproblem Deterministischer Endlicher Automaten	$Er f\"{u}llbarke its problem$	$Kleene ext{-}Stern$
Liste von P-vollständigen Problemen	Liste von NP-vollständigen Problemen	$Formalisieren \ (Ablauf)$ 45
SAT	3SAT	QBF
40	71	40

	$GGTx_1x_2$:	$MODx_1x_2$:
IFx! = 0THENPEND:		$LOOPx_2DO:$
LOOPxDOy := 1END;	$x_4 = x_1 + 0;$	
LOOPyDOPEND	$LOOPx_4DO$:	$LOOPx_1DOx_0 = x_1 + 0END;$
	$LOOPx_2DO$:	$SUBx_1x_2$
27	$x_5 = x_2 + 0;$	END
	$MODx_5x_1;$	25
	$x_1 = x_2 + 0$	
	END;	
tbd	$x_2 = \frac{t\underline{b}}{d}x_5 + 0$	tbd
	END;	
30	$x_0 = x_1$ 29	28
	26	
tbd	tbd	tbd
33	32	31
tbd	tbd	tbd
36	35	34
tbd	tbd	tbd
39	38	37
tbd	tbd	tbd
42	41	40
tbd	tbd	tbd
45	44	43
tbd	tbd	tbd
48	47	46

$LBA \ Linear \ Bounded \ Automaton$	Pränexform	Skolem form
49	50	51
Klausel form 52	$Herbrand\mathchar`-Universum$	$Herbrand ext{-}Modell$
$Herbrand ext{-}Expansion$	Re solutions ver fahren	$Pr\ddot{a}dikatenlogik$
Prädikatenlogik erster Stufe		

tbd	tbd	tbd
51	50	49
tbd	tbd	tbd
54	53	52
tbd	tbd	tbd
57	56	55
31	30	50
		tbd
		58