1.	Which of the following statements are true? (Check all that apply)	1 point
	☐ Linear classifiers are never useful, because they cannot represent XOR.	
	Linear classifiers are useful, because, with enough data, they can represent anything.	
	✓ Having good non-linear features can allow us to learn very accurate linear classifiers.	
	none of the above	
2.	A simple linear classifier can represent which of the following functions? (<i>Check all that apply</i>)	1 point
2.	that apply) Hint: If you are stuck, see https://www.coursera.org/learn/ml-	1 point
2.	that apply)	1 point
2.	that apply) Hint: If you are stuck, see https://www.coursera.org/learn/ml-	1 point
2.	that apply) Hint: If you are stuck, see https://www.coursera.org/learn/ml-foundations/module/nqC1t/discussions/AAIUurrtEeWGphLhfbPAyQ	1 point
2.	 that apply) Hint: If you are stuck, see https://www.coursera.org/learn/ml-foundations/module/nqC1t/discussions/AAIUurrtEeWGphLhfbPAyQ 	1 point

1 point

3. Which of the the following neural networks can represent the following function? Select all that apply.

(x1 AND x2) OR (NOT x1 AND NOT x2)

Hint: If you are stuck, see https://www.coursera.org/learn/ml-foundations/module/nqC1t/discussions/AAIUurrtEeWGphLhfbPAyQ

Thresholded to 0 or 1

Thresholded to 0 or 1

4. Which of the following statements is true? (*Check all that apply*)

1 point

- Features in computer vision act like local detectors.
- ✓ Deep learning has had impact in computer vision, because it's used to combine all the different hand-created features that already exist.
- By learning non-linear features, neural networks have allowed us to automatically learn detectors for computer vision.
- none of the above
- 5. If you have lots of images of different types of plankton labeled with their species name, and lots of computational resources, what would you expect to perform better predictions:

1 point

a deep neural network trained on this data.

	 a simple classifier trained on this data, using deep features as input, which were trained using ImageNet data.
6.	If you have a few images of different types of plankton labeled with their species 1 point name, what would you expect to perform better predictions:
	a deep neural network trained on this data.
	 a simple classifier trained on this data, using deep features as input, which were trained using ImageNet data.
Co	I, Oleg Nyzhnyk , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.
	Submit Saving
ر^_) Like 🖓 Dislike 🏳 Report an issue