

Clustering & Classification using ANNs

Julien Arino University of Manitoba julien.arino@umanitoba.ca

Fall 2024

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis.

We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Artificial neural network (ANN) - from Wikipedia

Artificial neural networks (ANNs) are computing systems inspired by the biological neural networks that constitute animal brains

An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron receives signals then processes them and can signal neurons connected to it. The "signal" at a connection is a real number. and the output of each neuron is computed by some non-linear function of the sum of its inputs. The connections are called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses that threshold

The perceptron

One of the first neural networks (invented 1943, implemented 1957), made for simple classification tasks, for example recognising letters or numbers

Two layers: the *input* layer (the *retina*) and the *output* layer

Inputs are 0 or 1, so are outputs

The connections into the output layer are called *synapses*, they are modifiable

p. 3 - Neural networks (the perceptron)

The activation function

Here,

$$f(a_j) = \begin{cases} 0 & \text{if } a_j \leq 0 \\ 1 & \text{if } a_j > 0 \end{cases}$$

o. 4 - Neural networks (the perceptron)

The activation function

We have I input neurons taking values 0 or 1, O output neurons taking values 0 or 1, weights $W = [w_{ij}] \in \mathcal{M}_{IO}$ and a threshold function f

More generally, use a threshold θ_j for each output neuron

$$o_j = egin{cases} 0 & ext{if } a_j \leq heta_j \ 1 & ext{if } a_j > heta_j \end{cases}$$

The thresholds (or *response bias*) and the weights are modifiable by learning. To do that easily for the threshold, consider an input neuron that is always on, say neuron 0, and set weights $w_{0i} = -\theta_i$, making the weights matrix an $(I+1) \times O$ -matrix

p. 5 – Neural networks (the perceptron)

Another way to write the activation is

$$o_j = egin{cases} 0 & ext{if } a_j + w_{0j} \leq 0 \ 1 & ext{if } a_j + w_{0j} > 0 \end{cases}$$

where $w_{0i} = -\theta_i$

Learning something simple

The aim is to adjust the synaptic weights so that the proper response is provided to a given stimulus

Let us first do a simple example: the OR truth table

$$\begin{array}{ccccc} 0 & 0 & \mapsto & 0 \\ 1 & 0 & \mapsto & 1 \\ 0 & 1 & \mapsto & 1 \\ 1 & 1 & \mapsto & 1 \end{array}$$

So we have two neurons in the retina and a single output neuron

Supervised learning

(From R. Rojas)

Supervised learning: method in which some input vectors are collected and presented to the network. The output computed by the network is observed and the deviation from the expected answer is measured

The weights are corrected according to the magnitude of the error in the way defined by the learning algorithm

Also called learning with a teacher, since a control process knows the correct answer for the set of selected input vectors

Further distinctions in supervised learning methods

Methods with reinforcement or error correction

▶ Reinforcement learning: used when after each presentation of an input-output example, we only know whether the network produces the desired result or not. Weights are updated based on this information (i.e., the Boolean values true or false), so only the input vector can be used for weight correction

▶ In learning with **error correction**, the magnitude of the error, together with the input vector, determines the magnitude of the corrections to the weights. In many cases, we try to eliminate the error in a single correction step

A first learning algorithm

Suppose the training set consists of two sets of points P and N

- **start:** Generate random weight vector w_0 ; set t := 0
- **test:** A vector $x \in P \cup N$ is selected randomly
 - ▶ if $x \in P$ and $\langle w_t, x \rangle > 0$ go to **test**
 - ▶ if $x \in P$ and $\langle w_t, x \rangle < 0$ go to **add**
 - ightharpoonup if $x \in N$ and $\langle w_t, x \rangle < 0$ go to **test**
 - \blacktriangleright if $x \in N$ and $\langle w_t, x \rangle > 0$ go to subtract
- **add:** set $w_{t+1} = w_t + x$ and t := t+1, goto **test**
- **> subtract:** set $w_{t+1} = w_t x$ and t := t + 1, goto **test**

Widrow-Hoff learning rule

Need to provide the correct answer, i.e., this is a supervised learning rule

An output cell only learns if it is mistaken

Present random inputs and apply the rule if the output does not match the known output

Widrow-Hoff learning rule

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} + \eta(t_j - o_j)x_j = w_{ij}^{(t)} + \Delta w_{ij}$$
 (1)

with

- \triangleright Δw_{ii} correction to add to the weight w_{ii}
- \triangleright x_i : value (0 or 1) of the *i*th retinal cell
- \triangleright o_i : response of the *i*th output cell
- t_i target response (correct desired response)
- $\sim w_{ii}^{(t)}$: weight of the synapse between the *i*th retinal cell and *j*th output cell at time t. Typically initiated at small random values
- $\triangleright \eta$: small positive constant, the *learning constant*

Learning OR

Three cells in the retina (two inputs and the "dummy" cell used for the threshold) and one output cell. So inputs and outputs must be

Initialise the 3×1 weight matrix W to zero:

$$W = \begin{pmatrix} w_0 = -\theta \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

p. 13 - Neural networks (the perceptron)

Procedure

We choose one random association in

say, the fourth one. So we present [1,1,1] and expect an output of 1. We have

$$a = \sum_{i} w_{i}x_{i} = (1 \times 0) + (1 \times 0) + (1 \times 0) = 0$$

This being ≤ 0 means that o = 0, giving an error of 1

Applying the rule

Suppose the learning constant $\eta=0.1$. Then applying (1),

$$\Delta w_0 = \eta(t-o)x_0 = 0.1 \times (1-0) \times 1 = 0.1$$

 $\Delta w_1 = \eta(t-o)x_0 = 0.1 \times (1-0) \times 1 = 0.1$
 $\Delta w_2 = \eta(t-o)x_0 = 0.1 \times (1-0) \times 1 = 0.1$

Applying the correction, W becomes

$$W = \begin{pmatrix} 0.1 \\ 0.1 \\ 0.1 \end{pmatrix}$$

Trying another input

Suppose we now present the first input [1,0,0]. This should produce a result of 0. Then

$$a = \sum_{i} w_i x_i = (1 \times 0.1) + (0 \times 0.1) + (0 \times 0.1) = 0.1$$

which is > 0, so o = 1. We compute the correction

$$\Delta w_0 = \eta(t-o)x_0 = 0.1 \times (0-1) \times 1 = -0.1$$

 $\Delta w_1 = \eta(t-o)x_1 = 0.1 \times (0-1) \times 0 = 0$
 $\Delta w_1 = \eta(t-o)x_2 = 0.1 \times (0-1) \times 0 = 0$

and adjust the weights, giving

$$W = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

- Neural networks (the perceptron)

And we are done!

With the weights

$$W = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

we are done. Indeed

Input 0	Input 1	Input 2	а	0	Should be
1	0	0	0	0	0
1	1	0	0 + 0.1 + 0	1	1
1	0	1	0 + 0 + 0.1	1	1
1	1	1	0 + 0.1 + 0.1	1	1

Learning XOR

Let us now look at the XOR truth table

This problem is not solvable with a simple perceptron of the type we just used, as truth table is not *linearly separable*

Indeed, we would get weights $w_1 > 0$, $w_2 > 0$ to activate when presenting [1,0] and [0,1], but would require that the sum of the weights when applied to the input [1,1], give a negative value.

p. 18 - Neural networks (the perceptron)

Linear separability and OR and XOR

A single-layer perceptron can only learn linearly separable problems

Adding a hidden layer

It is possible to do XOR, but we need to add a hidden layer

