

ЭТИКЕТКА

УП3.487.316 ЭТ

Микросхема интегральная 564 ИД4В Функциональное назначение — Дешифратор для возбуждения одноразрядного 7-ми сегментного индикатора

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход У8	9	Выход У1
2	Вход информационный X2 (2 ²)	10	Выход У2
3	Вход информационный X1 (21)	11	Выход УЗ
4	Вход информационный X3 (2 ³)	12	Выход У4
5	Вход информационный X0 (2 ⁰)	13	Выход У5
6	Вход Х4	14	Выход У6
7	Питание, U _{u.n2}	15	Выход У7
8	Общий	16	Питание, U _{u.n1}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Наимонородию поромотро одинина помородия рожим измородия	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC1} = 5 \ B, \ U_{CC2} = -5 \ B$	U _{OL}	/-4,99/	-
2. Выходное напряжение высокого уровня, B, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B$	U _{ОН}	4,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = -5 B	U _{OL max}	/-4,0/	-
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC1} = 5 \ B, \ U_{CC2} = -5 \ B$	U _{OH min}	4,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_{CC1} = -15 \; B, \; U_{CC2} = 0 \; B$	I _{IL}		/-0,05/ /-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_{CC1} = 0 \; B, \; U_{CC2} = -15 \; B$	I_{IH}	-	0,05 0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_O = -4,5 \; B$	I_{OL}	0,9	-
8. Выходной ток высокого уровня, мА, при: $U_{CC1} = 5~B,~U_{CC2} = -5~B$ $U_{O} = 4,5~B$	І _{ОН}	/-0,45/	-
9. Ток потребления (в статическом режиме), мкА, при: $U_{CC1} = 5$ В, $U_{CC2} = -5$ В $U_{CC1} = 0$ В, $U_{CC2} = -15$ В	Icc		10 20

Продолжение таблицы 1				
1	2	3	4	
10. Время задержки распространения при включении, нС, при: U_{CC1} = 5 B, U_{CC2} = -5 B	$t_{ m PHL}$	-	1200	
11. Время задержки распространения при выключении, нС, при: U_{CC1} = 5 B, U_{CC2} = -5 B	$t_{ m PLH}$	-	1200	
12. Время перехода при включении, н C , при: U_{CC1} = 5 B, U_{CC2} = -5 B	t _{THL}	-	180	
13. Время перехода при выключении, нС, при: $U_{CC1} = 5$ B, $U_{CC2} = -5$ В	t _{TLH}	-	180	
14. Минимальная длительность строб. импульсов, нС, при: U_{CC1} = 5 B, U_{CC2} = -5 B	t _{строб.}	-	170	
15. Входная емкость, пФ, при: U _{CC1} = 5 B, U _{CC2} = -5 B	Cı	-	7,5	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 $_{\rm 30ЛОТO}$ $_{\rm \Gamma},$ $_{\rm cepeбpo}$ $_{\rm \Gamma},$ $_{\rm B}$ том числе: $_{\rm 30ЛОТO}$ $_{\rm \Gamma/MM}$

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

на 16 выводах, длиной

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ - не менее $120000\,$ ч.

Гамма – процентный ресурс (T_{DY}) микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

MM.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1\ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11\ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИД4В соответствуют техническим условиям бК0.347.064 ТУ27 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	от _	(дата)	_
Место для ш	тампа ОТК			Место для штампа ВП
Место для ш	тампа «Перепроверка	произве	дена	
Приняты по	(извещение, акт и др.)	OT _	(дата)	_
Место для ш	гампа ОТК			Место для штампа ВП
Цена договор	ная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.