BIOESTATÍSTICA

M.I. Eng. Biomédica

2015-2016

Aula Teórica 11

- A regressão logística é uma técnica de regressão indicada para a quando a variável dependente é dicotómica.
 - As variáveis independentes podem ser qualitativas e/ou quantitativas;
 - O modelo logístico permite avaliar a significância de cada uma das variáveis independentes;

Sexo	Idade	Controlo velocidade (km/h)	Taxa de alcoolémia (g/l)	Tempo de carta (anos)	Teve algum acidente sério
F	27	90	0,00	< 5	Não
M	69	125	0,10	> 20	Sim
M	27	80	0,20	< 5	Não
M	48	114	0,10	5-20	Sim
F	60	112	0,10	> 20	Não
F	32	100	0,00	< 5	Não
F	37	95	0,10	5-20	Não

adaptado de: Análise Estatistica com utilização do SPSS João Maroco

• Acidente *vs.* velocidade

- A variabilidade da variável dependente para os valores da variável independentes tornam difícil perceber a relação;
 - Dividir a velocidade em classes mutuamente exclusivas;
 - Determinar a probabilidade de ocorrência em cada uma das classes;
 - Representar graficamente a probabilidade em função das classes;

- A curva em 'S' pode ser modelada de diversas formas.
- A forma genérica usada é

$$\hat{\pi}_{j} = \frac{e^{\beta_{0} + \beta_{1} X_{j}}}{1 + e^{\beta_{0} + \beta_{1} X_{j}}}$$

Para mais do que uma variável independente

$$\hat{\pi}_{j} = \frac{e^{\beta_{0} + \beta_{1} X_{1j} + \dots + \beta_{k} X_{kj}}}{1 + e^{\beta_{0} + \beta_{1} X_{1j} + \dots + \beta_{k} X_{kj}}}$$

• Geralmente linerariza-se para o ajuste

$$Logit(\hat{\pi}_j) = \ln\left(\frac{\hat{\pi}_j}{1 - \hat{\pi}_j}\right)$$

Pressupostos

- Linearidade e aditividade: a escala de Logit é aditiva e linear
- Proporcionalidade: a contribuição de cada X_i é proporcional ao seu valor β;
- Constância de efeito: a contribuição de uma variável independente é constante e independente das outras variáveis;
- Os erros são independentes e apresentam distribuição binomial;
- Os predictores não são multicolineares;