CSC 480/580 Principles of Machine Learning

12 Reinforcement learning (RL)

Chicheng Zhang

Department of Computer Science

HW3: a few comments

- What factorization of P(E, B, A) does this graph correspond to?
 - P(E,B,A) = P(E) P(B) P(A|E,B)
 - What does this equation mean, exactly?
 - For every $e, b, a \in \{0,1\}$, $P(E=e, B=b, A=a) = P(E=e) \ P(B=b) \ P(A=a|E=e, B=b)$ (in total, 8 equalities)
 - Is $E \perp B \mid A$?
 - In fact, E and B are negatively correlated given A = 1

HW3: a few comments

• P3 (1) $x = (x_1, x_2)$ and $z = (z_1, z_2)$ are real vectors; let $K(x, z) = x_1 \cdot z_2$.

- A possible answer:
 - It is not a kernel, because we can find x, z such that K(x,z) < 0
- What is the problem with this answer?
 - Kernel functions do allow K(x,z) < 0!
 - Kernel functions don't allow K(x, x) < 0 though

HW3: a few comments

• P3 (2) x and z are integers between 0 and 100; let $K(x, z) = \min(x, z)$.

- A possible answer:
 - It is a kernel, because it satisfies positivity $(K(x,x) \ge 0 \text{ for all } x)$ and symmetry (K(x,z) = K(z,x) for all x,z)
- What is the problem with this answer?
 - Positivity and symmetry are only necessary condition for a function to be a kernel, but not sufficient!
 - See a counterexample $K(x,z) = \max(x,z)$ in our lecture

Reinforcement learning references

- "Reinforcement learning" book by Sutton & Barto (available online)
- RL course by David Silver: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
- RL MOOC by Martha White and Adam White @UAlberta: https://www.coursera.org/specializations/reinforcement-learning

Outline

Background / Markov Decision Processes (MDPs)

Planning in MDPs

Reinforcement Learning in MDPs

Background / Markov Decision Processes

Reinforcement Learning (RL)

• Applications:

Akshay Krishnamurthy & Wen Sun, https://rltheorybook.github.io/colt21_part1.pdf 9

Characteristics of RL

How does RL differ from other ML frameworks?

- There is no supervisor, only a reward signal (evaluative vs. instructive feedback)
- Feedback is not instantaneous (delayed consequences)
- Data is not i.i.d. (it is sequential, time matters)
- The agent's actions affect subsequent data it receives

Source: David Silver

Examples of RL

- Fly stunt maneuvers in a helicopter (reward: not crashing)
- Manage an investment portfolio (reward: \$)
- Play many different video games (reward: score)
- Make a humanoid robot walk (reward: distance traveled)
- Defeat world champion in Backgammon (reward: win/lose)
- Defeat world champion in Go! (reward: win/lose)

- Environment model \mathcal{M}
- Set of states *S*
- Set of actions *A*

Example: Learning to Navigate in the grid world

- State s: the location of the agent
- Each arrow represents an <u>action</u> a and the associated number represents deterministic <u>reward</u> r(s, a)
- How does the next state and current state relate to each other?

Markov assumption:

$$P(r_t|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(r_t|s_t, a_t)$$

$$P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(s_{t+1}|s_t, a_t)$$

These are unknown to the learner!

i.e. the future is independent of the past, given the present

- A **policy** is the agent's behavior
- It is a mapping from state to action, e.g.
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a \mid s) = P(A_t = a \mid S_t = s)$

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} r_1 r_2$$

• A policy, when interacting with MDP, generates a random trajectory s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

Goal:

Learn a <u>policy</u> $\pi: S \to A$ for choosing actions that maximizes its <u>expected cumulative</u> (discounted) reward

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \mid s_0] \text{ where } 0 \leq \gamma < 1$$

for every possible starting state s_0

Summary: Specification of the environment

- Environment model MDP $\mathcal{M} = (S, A, R, P, \gamma)$
- *R*: a conditional probability table of current reward given current state & current action

State s	Action a	Reward r	$R(r \mid s, a)$
S_1	a_0	+5	0.7
S_1	a_0	0	0.3

• *P*: a conditional probability table of next state given current state & current action

State s	Action a	Next state s'	$P(s' \mid s, a)$
S_1	a_0	S_0	0.7
S_1	a_0	S_2	0.2

Discounted cumulative reward

•
$$R_0 = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$$
, $0 \le \gamma < 1$

- Discount: treating current reward as more worthy than future rewards
 - Larger $\gamma \Rightarrow$ focus more on longer term future

Boundedness property:

$$0 \le R_0 \le 1 + \gamma + \gamma^2 + \dots \le \frac{1}{1 - \gamma}$$

- $\gamma = 1$: R_0 may diverge to $+\infty$
 - Maximize long-term average reward $\frac{1}{T}\sum_{t=1}^{T}r_{t}$

The intention behind the RL formulation

- Note that the formulation is reward-driven.
- Example: Robot learning: move a dish from one place to another
 - We can assign reward +10 when it accomplishes the task
 - We can also assign reward +1 when it picks up the dish successfully

The Reward Hypothesis:

All goals can be described by the maximization of expected cumulative reward.

(from David Silver's lecture)

Goal	Reward
Walk	Forward displacement
Escape maze	-1 if not out yet; 0 if out
Robots for recycling soda cans	+1 if a new can collected; -10 if run into things; 0 otherwise.
Win chess	0 if not finished; +1 if win; -1 if lose

The grid world: Learning to Navigate

• The grid world

What do you think is the optimal behavior that maximizes reward?

The structure of returns

• Define return at time step *t*:

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

• The goal of RL: find a policy π that maximizes its return at the start:

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots] = \mathbb{E}_{\pi}[G_0]$$

• G_t satisfies the following recurrence:

$$G_t = r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \cdots) = r_t + \gamma G_{t+1}$$

Current return

Immediate reward

Future return

Value Function

- Prediction of future reward
- Used to evaluate goodness / badness of states given that the agent executes a policy π

$$V^{\pi}(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots \mid s_t = s, \pi]$$

We explicitly notate that the value depends on the policy

Value function for a policy

• Important property (Bellman consistency equation):

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V^{\pi}(s'), \forall s \in S$$
Immediate reward Expected Future reward

where
$$R(s, a) = \mathbb{E}[r_t \mid s_t = s, a_t = a]$$

Justification:

$$V^{\pi}(s) = \mathbb{E}[G_0 \mid s_0 = s, \pi]$$
 (definition)
$$= \mathbb{E}[r_0 \mid s_0 = s, \pi] + \gamma \mathbb{E}[G_1 \mid s_0 = s, \pi]$$
 (return decomposition)
$$= \mathbb{E}[r_0 \mid s_0 = s, \ a_0 = \pi(s)] + \gamma \mathbb{E}[V^{\pi}(s_1) \mid s_0 = s, \ a_0 = \pi(s)]$$
 (iterated expectation)
$$= R(s, \pi(s)) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V^{\pi}(s')$$
 (algebra)

Optimal policy

- Fact: there is a policy π^* such that $\pi^* = \arg \max_{\pi} V^{\pi}(s)$ for all s
 - π^* is called the *optimal policy*
- $V^*(s)$:= the value function achieved by the optimal policy optimal value function

Value function for a policy π

• Suppose π is shown by red arrows, $\gamma = 0.9$ $V^{\pi}(s)$ values are shown in red

optimal policy π^*

• The Bellman consistency equation:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

* stochastic policy: $V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$

Policy evaluation

- How to compute V^{π} given MDP \mathcal{M} and policy π ?
- Recall Bellman consistency equation:

$$\forall s: \ V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \cdot \sum_{s'} P(s'|s,a) \ V^{\pi}(s') \right)$$

$$= \sum_{a} \pi(a|s) R(s,a) + \gamma \cdot \sum_{s'} \left(\sum_{a} \pi(a|s) P(s'|s,a) \right) V^{\pi}(s')$$

$$R^{\pi}(s) \qquad M^{\pi}(s,s')$$

- How many equations and how many unknowns?
- In matrix form (denote by $V^\pi = \left(V^\pi(s)\right)_{s \in S} \in \mathbb{R}^{|S|}$, etc): $V^\pi = R^\pi + \gamma M^\pi V^\pi \qquad \text{(recall the vector/matrix notation here)}$
- A linear system! How to solve it?
 - E.g. Gaussian elimination
 - Alternatively, use fixed-point iteration: $V^{k+1} \leftarrow R^{\pi} + \gamma M^{\pi} V^k$

Planning in MDPs

Planning in MDPs

- Given: full specification of \mathcal{M} , (specifically R(s,a) and P(s'|s,a) are known)
- Goal: find optimal policy π^* of $\mathcal M$
- Recall: $V^*(s)$ is the value function of the optimal policy.
- Claim: To act optimally, it suffices to find $V^*(s)$ for every state s
- Why?

$$\pi^*(s) = \arg\max_{a \in A} R(s, a) + \gamma \sum_{s \in S} P(s'|s, a) V^*(s)$$

Expected reward if acting optimally subsequently

Bellman optimality equation

• Fact: $V^*(s) = \max_{\pi} V^{\pi}(s)$ satisfies the following equation:

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \cdot \sum_{s'} P(s'|s, a) V^*(s') \right)$$

- This is known as the **Bellman optimality equation**
- Intuition:
 - Optimal behavior = optimal action α + optimal behavior afterwards
- Issue: Bellman optimality equation is not a linear system
- However, V^* can be seen as a *fixed point*

First Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \cdot \sum_{s'} P(s'|s, a) V^*(s') \right)$$

Initialize V(s) arbitrarily

While $\{V(s)\}_{s\in S}$ is not much different from the previous iteration's $\{V(s)\}_{s\in S}$:

- For each $s \in S$:
 - $V(s) \leftarrow \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \cdot V(s')$
- Fact: With about $O\left(\frac{1}{1-\gamma}\ln\frac{1}{\epsilon}\right)$ iterations, V becomes ϵ -close to V^*

Second Algorithm: Policy iteration

• The idea:

estimate optimal value V^* and optimal policy π^* simultaneously & iteratively

- Observe:
 - π^* is greedy wrt V^* , i.e.,

$$\pi^*(s) = \arg\max_{a \in A} R(s, a) + \gamma \sum_{s \in S} P(s'|s, a) V^*(s)$$

• V^* is the value function of π^*

Second Algorithm: Policy iteration

Algorithm:

- Start from an arbitrary policy π (e.g., assign actions randomly)
- Repeat the following (until V converges)
 - [Policy evaluation] $V \leftarrow V^{\pi}$ (either solve the linear system or iterative method)
 - [Policy improvement] Update the policy: $\pi \leftarrow \operatorname{greedy}(V)$ For every $s \in S$, $\pi(s) \leftarrow \arg \max_{a} r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s')$

Summary

- Recall: so far, we are in the **planning** setting, where we are already given a **model** of the world: i.e. know P(s'|s,a) and $P(r\mid s,a)$
- What if we don't? This is called the "learning in MDPs" problem

Learning in MDPs

Learning in MDPs: basic setup

- Given:
 - MDP ${\mathcal M}$ (unknown)
 - The ability to interact with $\mathcal M$ for T steps
 - Obtaining trajectory $s_0, a_0, r_0, \dots, s_T, a_T, r_T$

- (Online learning) maximize cumulative reward $\mathbb{E}[\sum_{t=0}^T \gamma^t r_t]$
 - Useful in applications where every action taken has real-world consequences (e.g. medical treatment)
- (Batch learning) output a policy $\hat{\pi}$ such that $V^{\hat{\pi}}$ is competitive with V^*
 - Useful in applications where experimentations are affordable (e.g. laboratory rats, simulators)

Learning in MDPs: A Taxonomy of Approaches

Model-based RL:

Repeat:

- $\hat{\mathcal{M}} \leftarrow \text{Estimate } \mathcal{M} \text{ based on data (e.g. by MLE)}$
- Plan according to $\widehat{\mathcal{M}}$
- Model-free RL: do not estimate $\widehat{\mathcal{M}}$ explicitly
 - Direct policy search
 - E.g. policy gradient (REINFORCE)
 - Value-based methods
 - E.g. Q-learning (this lecture)
 - Actor-critic: combination of the two ideas

Unique challenges in RLI: Temporal Credit Assignment

- Performance measure:
 - focuses on the quality of a sequence of interdependent states / actions
- Aim for maximization of *long-term rewards*
- E.g.
 - Daily exercise: short term long term ++
 - Stay up all night playing video games: short term + long term --
 - Chess tactics: sacrifice pieces
- Need to answer questions like: "what is the key step that caused me to lose this game?" temporal
 credit assignment

Unique challenges in RL II: Exploration

- Learning agent's data is induced by its own actions
- How to collect useful data?
 - The exploration challenge

- Rough intuition: collect data that "covers" all states and actions
 - ϵ -greedy exploration: w.p. ϵ , take actions uniformly at random
 - $\epsilon = 1$: uniform exploration
- Caveat: uniform exploration may fail because of some hard-to-reach states
 - E.g. RiverSwim [Strehl & Littman, 2008]

Learning Q-functions

- Issue of V^{π} : only encodes the quality of states
 - But we need to learn what actions are good
- Is there a function that encodes the quality of actions as well?

Action-value functions (Q-functions):

$$Q^{\pi}(s,a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi] = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

The optimal Q function

$$Q^*(s,a) = \mathbb{E}[G_0 \mid s_0 = s, a_0 = a, \pi^*] = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^*(s')$$

The optimal policy can be extracted from Q^* :

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Q-values

r(s, a) (immediate reward) values

 $Q^*(s,a)$ values

 $V^*(s)$ values

Q-learning: motivation

We do not know the state transition nor the reward function.

- Instead of learning these model parameters, we directly attempt to estimate Q^st
- Similar to V^* , Q^* also satisfies a <u>Bellman-optimality equation</u>:

$$Q^*(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

Recall:
$$Q^*(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s')$$

We will use this to design our learning rule

Algorithm: Q-learning (deterministic transitions/rewards)

- Assume that we are in the tabular setting: S and A are both finite
- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s
- Repeat:
 - Select an action a and execute it (e.g., ϵ -greedy)
 - Receive a reward r
 - Observe a new state s'
 - Update: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$ (similar to value iteration)
 - $s \leftarrow s'$

$$Q^*(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

Q-learning: update example

r(s, a) (immediate reward) values

$$Q(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} Q(s_2, a')$$

 $\leftarrow 0 + 0.9 \max\{63, 81, 100\}$
 $\leftarrow 90$

Q-learning for stochastic transitions/rewards

- Our update equation is problematic: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$
- For stochastic worlds:

- $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} r_1 r_2$
- Fix s, a, (next state, reward) s', r seen is stochastic
- Even if $Q = Q^*$ in the previous iteration, Q(s, a) will deviate from $Q^*(s, a)$ after the update
- This results in Q(s,a) not converging
- How to fix this? Recall:

$$Q^{*}(s,a) = R(s,a) + \gamma \cdot \sum_{s'} P(s' \mid s,a) \max_{a'} Q^{*}(s',a')$$

We can use the idea of stochastic approximation (also called temporal difference learning in the RL context)

Stochastic approximation

- Given a *stream* of data points $X_1, ..., X_n \sim N(\mu, 1)$
- How to estimate μ in an *anytime* manner?
- Idea 1: at time step n, output estimate $\hat{\mu}_n = X_n$
- Can we do better?
- Idea 2: at time step n, output estimate $\hat{\mu}_{n-1} = \frac{1}{n-1}(X_1 + \cdots + X_{n-1})$
- This is equivalent to $\hat{\mu}_n=(1-\alpha_n)\hat{\mu}_{n-1}+\alpha_n X_n$, where $\alpha_n=\frac{1}{n}$ Old estimate New data (conservativenss)

Q-learning for Stochastic Transitions / Rewards

- Initialize: $Q(s, a) = 0, \forall s, a$
- Observe the initial state s

 $Q^*(s, a) = R(s, a) + \gamma \cdot \sum_{s'} P(s' \mid s, a) \max_{a'} Q^*(s', a')$

- Repeat
 - Take an action a
 - e.g., ϵ -greedy (taking $\operatorname{argmax}_a Q(s, a)$ w.p. 1ϵ)
 - Receive the reward r
 - Observe the new state s'
 - Update: $Q(s, a) \leftarrow (1 \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)$
 - $s \leftarrow s'$

 α is a hyperparameter! (next slide)

The choice of α

- $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$
- For example, $\alpha = \frac{1}{1 + \# times(s,a)}$.
- Q: Why is this a reasonable choice?

Discussion

- Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP, exploration policy, and step size scheme)
- In practice, it takes a lot of iterations!

- Comparison: Model-based learning vs. Q-learning when choosing actions
 - Model-based
 - need to look ahead using some estimates of rewards and transition probabilities (Model Predictive Control)
 - Q-learning (model-free)
 - just choose the action with the largest Q value

Challenge of Q-learning: large state spaces

• Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces

- How to design a Q-learning-style algorithm that can handle large state spaces?
- Idea: use a neural network to represent Q
 and learn the weights of the network (fitted-Q learning)

Fitted Q-learning example: Atari games

• The learned Q functions are sensible

Fitted Q-learning example: Atari games

- Q-network's last hidden layer extracts useful representations
- Consequently Q-network provides Q-value estimates that generalize across states

Summary

- MDPs: Reward driven philosophy
- Policy evaluation: Bellman consistency equations; fixed point iteration
- Planning in MDPs: value iteration; policy iteration
- Learning in MDPs: Monte Carlo learning, Q-learning; function approximation

Backup

Markov Decision Process (MDP)

 $\rightarrow s_1$

 r_0

 a_0

 S_0

- Environment model $\mathcal M$
- Set of states *S*
- Set of actions A
- at each time t, agent observes state $s_t \in S$, then chooses action $a_t \in A$
- then receives a reward r_t and moves to state s_{t+1} ; repeat.

Policy iteration: an interesting observation

Suppose we perform fixed-point iteration for evaluating V^{π} , with $\pi(a \mid s) = 1/4$, $\forall s, a$

what you get if you apply the policy improvement step

Unique challenges in RL II: Exploration

- Learning agent's data is induced by its own actions
- How to collect useful data?
 - The exploration challenge

- Rough intuition: collect data that "covers" all states and actions
 - Uniform exploration: take actions uniformly at random
- Caveat: uniform exploration may fail because of some hard-to-reach states
 - E.g. RiverSwim [Strehl & Littman, 2008]

Unique challenges in RL II: Exploration (cont'd)

- Extra challenge in the *online learning* setting
 - Need to take good actions that yield high rewards
 - Balance *exploration* vs. *exploitation*
 - Not an issue in the batch learning setting

- Popular idea:
 - ϵ -greedy: w.p. 1ϵ , choose action that is believed to be optimal based on the information collected so far; otherwise, choose actions uniformly at random.
 - Again, ϵ -greedy may fail in some hard MDP environments

Monte Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from complete episodes (no bootstrapping)
- MC uses the simplest idea: value = mean return
- Caveat: Can only apply MC to episodic MDPs (must terminate)

Credit: David Silver

Monte Carlo Reinforcement Learning

Goal: learn V^{π} from episodes of experience under policy π :

$$S_1, A_1, R_2, \dots, S_k \sim \pi$$

Recall that return is total discounted reward:

$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

And recall that the *value function* is expected return:

$$V^{\pi}(s) = E_{\pi}[G_t \mid S_t = s]$$

MC policy evaluation uses empirical mean return instead of expected return

First-Visit MC Policy Evaluation

- To evaluate s
- The **first** time-step *t* that *s* is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate value by mean return $V(s) \leftarrow S(s)/N(s)$
- By the law of large numbers $V(s) \to V^{\pi}$ as $N(s) \to \infty$

Credit: David Silver

Every-Visit MC Policy Evaluation

- To evaluate s
- Every time-step t that s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate value by mean return $V(s) \leftarrow S(s)/N(s)$
- Again, $V(s) \to V^{\pi}$ as $N(s) \to \infty$

Credit: David Silver

Example: Blackjack

Objective: Have your card sum be greater than the dealer's without

going over 21

States (200 of them)

- Current sum (12-21)
- Dealer's showing card (Ace-10)
- Do I have a useable ace?

Reward +1 for winning, 0 for draw, -1 for losing

Actions Hold (stop receiving cards), Hit (receive another card)

Example: Blackjack

Policy Hold if sum at least 20, otherwise hit

Credit: David Silver

Q function approximation

- We can use some other function representation (e.g. a neural net) to compactly encode a substitute for the big table.
- We've been thinking states as discrete (the set S), but in fact, they can be a feature vector!

each input unit can be a sensor value (or more generally, a feature)

Q: why is this a good idea?

Why Q function approximation?

- 1. memory issue
- 2. is able to *generalize across states*! may speed up the convergence.
- Example: 100 binary features for states. 10 possible actions.
- Q table size = 10×2^{100} entries
- NN with 100 hidden units:
 - $100 \times 100 + 100 \times 10 = 11k$ weights (not counting bias for simplicity)

Algorithm: fitted Q-learning

Repeat

- observe the state s
- compute Q(s, a) for each action a (forward pass on the NN)
- select action a (e.g. use ϵ -greedy) and execute it
- observe the new state s' and the reward r
- compute Q(s', a') for each action a' (forward pass on the NN)
- update the NN with the instance
 - $\chi \leftarrow s$
 - $y \leftarrow (1 \alpha)Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a')\right)$ (label for Q(s,a))

Calculate Q value you would have put into the Q-table and use it as the training label. Use the squared loss and perform backpropagation!

Fitted Q-learning example: Atari games

- Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)
- Tested Fitted Q-learning on 49 Atari games

- Achieves >=75% of human professional players' scores on 29 games
- Can significantly outperform human players in many games

Fitted Q-learning example: Atari games (cont'd)

- The neural network for fitting Q values
 - Convolutional architecture to handle states as images

• Learning curve: (Space Invaders, ϵ -greedy with $\epsilon = 0.05$)

Fitted Q-learning example: Atari games (cont'd)

- Q-network's last hidden layer extracts useful representations
- Consequently Q-network provides Q-value estimates that generalize across states

Fitted Q-learning example: Atari games (cont'd)

• The learned Q functions are sensible

Policy iteration: an interesting observation

Suppose we perform fixed-point iteration for estimating V^{π} , with $\pi(a \mid s) = 1/4$, $\forall s, a$

Even though V^k may be far from V^{π} , the greedy policy of V^k is close to that of V^{π}

Algorithm: Modified policy iteration

- From previous slide: inexact value functions are still useful!
- Start from an arbitrary policy π (e.g., assign actions randomly)
- Repeat the following (until *V* converges):

This is <u>not a valid value function</u> anymore (no corresponding π that achieves this value in general)

- [(Inexact) Policy evaluation] $V \leftarrow \text{take } k$ fixed-point iterations for computing V^{π} (so $V \approx V^{\pi}$)
- [Policy improvement] Update the policy:

For every
$$s \in S$$
, $\pi(s) = \arg \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s')$

- Policy evaluation: just evaluates the value function for a given π
 - closed form / fixed-point iteration
- Planning:
 - Value iteration
 - Policy iteration: policy evaluation + policy improvement