In the Claims:

1. (original): An azo dye of formula

$$\begin{bmatrix} R_1 & N & \\ R_2 & N & \\ R_4 & N & O \end{bmatrix} (SO_3)_n^- M_n^+$$

$$(1)$$

wherein

 R_1 is -CN, -COOR₅, -CONR₆R₇ or a heterocyclic ring, R_2 is unsubstituted or substituted alkyl, unsubstituted or substituted aryl, -CF₃, -COOR₅, -CONR₆R₇ or -COR₅, R_3 is hydrogen, -SO₃M, alkyl, alkoxy, alkylcarbonyl, -NO₂ or halogen, R_4 is substituted aryl, substituted heteroaryl or an aryl-N=N-aryl radical, wherein one or both of the aryl radicals in aryl-N=N-aryl is/are unsubstituted or substituted, or a radical heteroaryl-N=N-heteroaryl, wherein one or both of the heteroaryl radicals in heteroaryl-N=N-heteroaryl is/are unsubstituted or substituted, R_5 is hydrogen, alkyl or unsubstituted or substituted aryl, R_6 is hydrogen, alkyl or unsubstituted or substituted aryl, R_7 is hydrogen, alkyl or unsubstituted or substituted or substituted aryl, R_7 is hydrogen, alkyl or unsubstituted or substituted or substituted aryl, R_7 is hydrogen, alkyl or unsubstituted or substituted or substituted aryl, R_7 is hydrogen, alkyl or unsubstituted or substituted or substituted aryl, R_7 is number 1, 2 or 3.

- 2. (original): An azo dye according to claim 1, wherein R₁ is -CN or -CONH₂.
- **3.** (currently amended): An azo dye according to either claim 1, or claim 2, wherein R_2 is methyl, isopropyl, $-CF_3$, phenyl or p-methoxyphenyl.
- **4.** (currently amended): An azo dye according to any one of-claim [[s]] 1_{1} to 3_{1} , wherein R_{3} is hydrogen, chlorine or -SO₃M.
- **5.** (currently amended): An azo dye according to any one-of-claim [[s]] 1, to 4, wherein R₄ is phenyl substituted by methyl and/or by methoxy and/or by -NO₂ and/or by -CF₃ and/or one or more times by -SO₃M, or is phenyl-N=N-phenyl, wherein one of the phenyl radicals or both phenyl radicals independently of one another is/are unsubstituted or substituted as indicated above.

- **6.** (currently amended): An azo dye according to any one of claims $1, \pm 0.3$, wherein R_4 is naphthyl substituted one or more times by $-SO_3M$.
- 7. (currently amended): An azo dye according to any one of claims 1_x -to 6, wherein the cation M^+ is Primene 81, $N^+[(CH_2)_3CH_3]_4$, $N^+(C_{16}H_{33})(CH_3)_3$ or $N^+(C_{10}H_{21})_2(CH_3)_2$.
- 8. (original): An azo dye according to claim 1 of formula

$$(H_{3}CH_{2}CH_{2}CH_{2}CH_{2}C)_{4}N^{+}$$

$$O_{3}S$$

$$N = N$$

$$O_{3}N$$

$$(10).$$

9. (original): An azo dye according to claim 1 of formula

$$(H_{3}CH_{2}CH_{2}CH_{2}C)_{4}N^{+}$$
 $O_{3}S$
 $N = N$
 $N = N$

10. (original): An azo dye according to claim 1 of formula

$$(H_{3}CH_{2}CH_{2}CH_{2}CH_{2}C)_{4}N^{+}$$

$$O_{3}S$$

$$OCH_{3}$$

$$OCH_{3}$$

$$OCH_{3}$$

$$OCH_{2}CH_{2}CH_{2}CH_{2}CH_{3})_{4}$$

$$OCH_{3}$$

$$OCH_{3}$$

$$OCH_{3}$$

$$OCH_{3}$$

$$OCH_{4}$$

$$OCH_{5}$$

$$OCH_{5}$$

$$OCH_{6}$$

$$OCH_{7}$$

11. (original): A process for the preparation of an azo dye of formula (1) according to claim 1, in which a compound of formula

$$R_4$$
- NH_2 (50)

is diazotised and coupled to a coupling component of formula

$$R_2$$
 N
 $(S1)$

wherein R_1 , R_2 , R_3 , R_4 and m are as defined for formula (1), the diazo component and/or the coupling component containing at least one sulfo group, which is subsequently neutralised with a suitable base containing the cation M^{\dagger} .

12. (original): A process for the production of coloured plastics or polymeric colour particles, in which one or more azo dyes of formula (1) according to claim 1 is/are incorporated into those materials.

13 (cancelled)

- 14. (original): The coloured plastics or polymeric colour particles according to claim 12.
- 15. (original): An aqueous wood stain comprising an azo dye of formula (1) according to claim 1.
- **16.** (original): A process for colouring wood, in which an aqueous wood stain according to claim 15 is used.

17. (cancelled):

- **18.** (original): Wood coloured according to claim 16.
- **19.** (original): A purely solvent-containing wood stain comprising an azo dye of formula (1) according to claim 1.

20. (original): A process for colouring wood, in which a purely solvent-containing wood stain according to claim 19 is used.

21. (cancelled)

- 22. (original): Wood coloured according to claim 20.
- **23.** (currently amended): A process for dyeing or printing semi-synthetic or synthetic hydrophobic fibre material, especially textile material, in which one or more azo dyes according to claim 1 is/are applied to the mentioned material or incorporated therein.
- **24.** (currently amended): A process according to claim 23, in which the hydrophobic material, especially is textile material, consists of polyester fibres.
- 25. (original): Material dyed or printed according to claim 23.
- **26.** (new): A process according to claim 23, in which the hydrophobic material consists of polyester fibres.