Deep learning preliminaries STAT 4710

Rolling into a new unit!

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Deep learning preliminaries

Lecture 2: Neural networks

Lecture 3: Deep learning for images

Lecture 4: Deep learning for text

Lecture 5: Unit review and quiz in class

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

Medical image analysis

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

https://www.eejournal.com/article/self-driving-cars-what-the-engineersthink/

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

https://www.eejournal.com/article/self-driving-cars-what-the-engineers-think/

Natural language processing

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

https://www.eejournal.com/article/self-driving-cars-what-the-engineers-think/

Natural language processing

Machine translation

https://translate.google.com/intl/ en/about/

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

RADAR SENSORS VIDEO CAMERA VIDEO CAMERA ULTRASONIC SENSOR

https://www.eejournal.com/article/self-driving-cars-what-the-engineersthink/

Natural language processing

- Machine translation
- Speech recognition

https://translate.google.com/intl/ en/about/

https://brailleinstitute.org/event/online-introducing-amazon-alexa

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

Natural language processing

- Machine translation
- Speech recognition
- Question answering

https://translate.google.com/intl/ en/about/

https://brailleinstitute.org/event/online-introducing-amazon-alexa

https://www.eejournal.com/article/self-driving-cars-what-the-engineersthink/

Passage Sentence

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Question

What causes precipitation to fall?

Answer Candidate

gravity

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 4: Deep learning for text

- Document classification
- Recurrent neural networks

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 4: Deep learning for text

- Document classification
- Recurrent neural networks

Models as graphs: Linear regression

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

Models as graphs: Logistic model

$$Z = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3;$$
 $\hat{p} = \text{logistic}(Z) = \frac{e^Z}{1 + e^Z}$

Suppose the response has more than two levels.

Suppose the response has more than two levels.

Image is flattened to get vector of input features

Suppose the response has more than two levels.

Image is flattened to get vector of input features

Suppose the response has more than two levels.

Image is flattened to get vector of input features

Suppose the response has more than two levels.

vector of input features

Suppose the response has more than two levels.

Suppose the response has more than two levels.

vector of input features

Suppose the response has more than two levels.

Suppose the response has more than two levels.

Image is flattened to get vector of input features

softmax activation

$$\hat{p}_1 = \frac{e^{Z_1}}{e^{Z_1} + e^{Z_2} + e^{Z_3}}$$

$$\hat{p}_2 = \frac{e^{Z_2}}{e^{Z_1} + e^{Z_2} + e^{Z_3}}$$

$$\hat{p}_3 = \frac{e^{Z_3}}{e^{Z_1} + e^{Z_2} + e^{Z_3}}$$

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_1, \hat{p}_2, \hat{p}_3$. Define

$$\text{cross-entropy loss } L(Y, \widehat{p}) = \begin{cases} -\log(\widehat{p}_1) & \text{if } Y = 1; \\ -\log(\widehat{p}_2) & \text{if } Y = 2; \\ -\log(\widehat{p}_3) & \text{if } Y = 3. \end{cases}$$

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_1, \hat{p}_2, \hat{p}_3$. Define

$$\text{cross-entropy loss } L(Y, \widehat{p}) = \begin{cases} -\log(\widehat{p}_1) & \text{if } Y = 1; \\ -\log(\widehat{p}_2) & \text{if } Y = 2; \\ -\log(\widehat{p}_3) & \text{if } Y = 3. \end{cases}$$

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_1, \hat{p}_2, \hat{p}_3$. Define

$$\text{cross-entropy loss } L(Y, \widehat{p}) = \begin{cases} -\log(\widehat{p}_1) & \text{if } Y = 1; \\ -\log(\widehat{p}_2) & \text{if } Y = 2; \\ -\log(\widehat{p}_3) & \text{if } Y = 3. \end{cases}$$

Greater probability attached to true class → smaller cross-entropy loss.

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β .

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β .

Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f_{\beta}(X_i)) + \lambda \cdot \text{penalty}(\beta).$$

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β .

Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f_{\beta}(X_i)) + \lambda \cdot \text{penalty}(\beta).$$
objective function $F(\beta)$

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β .

Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f_{\beta}(X_i)) + \lambda \cdot \text{penalty}(\beta).$$
objective function $F(\beta)$

For example, ridge regression has

$$L(Y_i, \, \widehat{Y}_i) = (Y_i - \, \widehat{Y}_i)^2; \quad f_{\beta}(X) = \beta_0 X_0 + \dots + \beta_{p-1} X_{p-1}; \quad \text{ penalty}(\beta) = \sum_{j=1}^p \beta_j^2.$$

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β .

Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f_{\beta}(X_i)) + \lambda \cdot \text{penalty}(\beta).$$
objective function $F(\beta)$

For example, ridge regression has

$$L(Y_i, \, \widehat{Y}_i) = (Y_i - \, \widehat{Y}_i)^2; \quad f_{\beta}(X) = \beta_0 X_0 + \dots + \beta_{p-1} X_{p-1}; \quad \text{ penalty}(\beta) = \sum_{j=1}^p \beta_j^2.$$

Training predictive models = solving optimization problems.

Convexity: A crucial property of F

The hardness of the optimization problem $\arg\min\ F(\beta)$ depends crucially on whether the objective function F is convex, or "bowl-shaped."

Convexity: A crucial property of F

The hardness of the optimization problem $\arg\min\ F(\beta)$ depends crucially on whether the objective function F is convex, or "bowl-shaped."

For convex functions, any local minimum must also be a global minimum.

It is much easier to find local minima than global minima.

Which methods have convex objectives?

Which methods have convex objectives?

Convex

- Linear and logistic regression
- Linear and logistic regression with ridge or lasso penalties

Which methods have convex objectives?

Convex

- Linear and logistic regression
- Linear and logistic regression with ridge or lasso penalties

Not convex

- Tree-based methods
- Neural networks

https://arxiv.org/abs/1712.09913

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

- 1. Choose some initial value of β .
- 2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
- 3. Take small step in negative gradient direction: $\beta \leftarrow \beta \gamma \nabla F(\beta)$; γ called the learning rate.
- 4. Repeat steps 2 and 3 until gradient is near zero.

As long as the learning rate γ is not too large, gradient descent is guaranteed to converge to a global minimum regardless of initialization if F is convex.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Think about gradient descent as a ball rolling down a hill.

For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

While it is computationally infeasible to find global minima for non-convex optimization,

- Local minima may still give reasonable models
- Other tricks, like multiple restarts, give better solutions

• We can think of certain predictive models as graphs.

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.
- Hardness of optimization depends on whether objective function is convex;
 linear and logistic regression are convex but trees and neural networks are not.

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.
- Hardness of optimization depends on whether objective function is convex;
 linear and logistic regression are convex but trees and neural networks are not.
- Gradient descent is a common way to "go downhill" along an objective function, arriving at a local minimum (and for convex objectives, a global one).

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.
- Hardness of optimization depends on whether objective function is convex;
 linear and logistic regression are convex but trees and neural networks are not.
- Gradient descent is a common way to "go downhill" along an objective function, arriving at a local minimum (and for convex objectives, a global one).

Quiz Practice