

## 介绍



### 教程简介:

• 面向对象:量子计算初学者

• 依赖课程:线性代数,解析几何,量子力学(非必需)

### 知乎专栏:

https://www.zhihu.com/column/c\_1501138176371011584

### Github & Gitee 地址:

https://github.com/mymagicpower/qubits https://gitee.com/mymagicpower/qubits

### \* 版权声明:

- 仅限用于个人学习,或者大学授课使用 (大学授课如需ppt 原件,请用学校邮箱联系我获取)
- 禁止用于任何商业用途

# 常用几何变换 - 逆时针旋转 $\theta$



$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

\* 每次作用于向量,相当于逆时针旋转 $\theta$ 



$$|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

#### 证明:

### 两角和与差的三角函数公式:

$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
  
 $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 

$$\begin{aligned} |\psi'\rangle &= Q |\psi\rangle \\ &= \begin{bmatrix} \cos{(\theta)} & -\sin{(\theta)} \\ \sin{(\theta)} & \cos{(\theta)} \end{bmatrix} \begin{bmatrix} \cos{(\theta/2)} \\ \sin{(\theta/2)} \end{bmatrix} \\ &= \begin{bmatrix} \cos{(\theta)}\cos{(\theta/2)} - \sin{(\theta)}\sin{(\theta/2)} \\ \sin{(\theta)}\cos{(\theta/2)} + \cos{(\theta)}\sin{(\theta/2)} \end{bmatrix} \\ &= \begin{bmatrix} \cos{(\theta/2 + \theta)} \\ \sin{(\theta/2 + \theta)} \end{bmatrix} \end{aligned}$$

## 常用几何变换 - 顺时针旋转 $\theta$



$$Q = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

\* 每次作用于向量,相当于顺时针旋转 $\theta$ 



$$|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

#### 证明:

### 两角和与差的三角函数公式:

$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
  
 $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 

$$\begin{aligned} |\psi'\rangle &= Q |\psi\rangle \\ &= \begin{bmatrix} \cos{(\theta)} & \sin{(\theta)} \\ -\sin{(\theta)} & \cos{(\theta)} \end{bmatrix} \begin{bmatrix} \cos{(\theta/2)} \\ \sin{(\theta/2)} \end{bmatrix} \\ &= \begin{bmatrix} \cos{(\theta)}\cos{(\theta/2)} + \sin{(\theta)}\sin{(\theta/2)} \\ -\sin{(\theta)}\cos{(\theta/2)} + \cos{(\theta)}\sin{(\theta/2)} \end{bmatrix} \\ &= \begin{bmatrix} \cos{(\theta/2 - \theta)} \\ \sin{(\theta/2 - \theta)} \end{bmatrix} \end{aligned}$$

# 常用几何变换 - 镜像





$$|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

$$Q = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$$

### \* 关于通过原点、方向和水平轴夹角为 $\theta/2$ 直线镜像;

#### 证明:

$$\begin{aligned} |\psi^{2}\rangle &= Q |\psi^{1}\rangle \\ &= \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta_{1}) \\ \sin(\theta_{1}) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta)\cos(\theta_{1}) + \sin(\theta)\sin(\theta_{1}) \\ \sin(\theta)\cos(\theta_{1}) - \cos(\theta)\sin(\theta_{1}) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta - \theta_{1}) \\ \sin(\theta - \theta_{1}) \end{bmatrix} \end{aligned}$$

关于通过原点、方向和水平轴夹角为  $\theta/2$  直线镜像 ,可以理解为逆时针旋转  $2\left(\frac{\theta}{2}-\theta_1\right)$ ,则:

$$|\psi^{2}\rangle = \begin{bmatrix} \cos(\theta_{1} + 2(\frac{\theta}{2} - \theta_{1})) \\ \sin(\theta_{1} + 2(\frac{\theta}{2} - \theta_{1})) \end{bmatrix} = \begin{bmatrix} \cos(\theta - \theta_{1}) \\ \sin(\theta - \theta_{1}) \end{bmatrix}$$

### 常用几何变换 -关于横轴镜像对称





$$|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

$$Q = \begin{bmatrix} \cos(0) & \sin(0) \\ \sin(0) & -\cos(0) \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

### \* 作用于向量,相当于关于横轴镜像

### 证明:

$$\begin{aligned} |\psi'\rangle &= Q |\psi\rangle \\ &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta/2) \\ -\sin(\theta/2) \end{bmatrix} \end{aligned}$$

## 常用几何变换 -关于纵轴镜像对称



$$Q = \begin{bmatrix} \cos\left(2\frac{\pi}{2}\right) & \sin\left(2\frac{\pi}{2}\right) \\ \sin\left(2\frac{\pi}{2}\right) & -\cos\left(2\frac{\pi}{2}\right) \end{bmatrix}$$

$$Q = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

### \* 作用于向量,相当于关于纵轴镜像

### 证明:

$$|\psi'\rangle = Q |\psi\rangle$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

$$= \begin{bmatrix} -\cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$$

$$|\psi'\rangle$$
  $\theta/2$   $|\psi\rangle$ 

 $|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{bmatrix}$ 

# 常用几何变换 - 镜像



$$\mathbb{M} |\psi\rangle\langle\psi| = \begin{bmatrix} \cos{(\theta/2)} \\ \sin{(\theta/2)} \end{bmatrix} \begin{bmatrix} \cos{(\theta/2)} & \sin{(\theta/2)} \end{bmatrix} = \begin{bmatrix} \cos^2{(\theta/2)} & \cos{(\theta/2)} \sin{(\theta/2)} \\ \cos{(\theta/2)} \sin{(\theta/2)} & \sin^2{(\theta/2)} \end{bmatrix}$$

$$\text{II} \quad 2|\psi\rangle\langle\psi| - I = \begin{bmatrix} 2\cos^2(\theta/2) - 1 & 2\cos(\theta/2)\sin(\theta/2) \\ 2\cos(\theta/2)\sin(\theta/2) & 2\sin^2(\theta/2) - 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$$

- $2|\psi\rangle\langle\psi|-I$  ,相当于关于 $|\psi\rangle$  镜像
- $|\psi\rangle$  为镜像轴



