Shortcut Fusion in Haskell

Thomas Harper tom.harper@cs.ox.ac.uk

Department of Computer Science University of Oxford

Applied Functional Programming Summer School 2011

What is fusion?

What is fusion?

Example: sumSq

```
sumSq :: Int \rightarrow Int

sumSq \ y = sum \ (map \ square \ [1 .. y])

where

square :: Int \rightarrow Int

square \ x = x * x
```

Example: sumSq

```
sumSq :: Int \rightarrow Int
sumSq y = sum (map square [1..y])
  where
     square :: Int \rightarrow Int
     square x = x * x
sumSq 5
sum (map square [1, 2, 3, 4, 5])
sum [1, 4, 9, 16, 25]
55
```

Intermediate data structures

 Allocating these lists consumes memory, even though they do not appear in the result.

Intermediate data structures

- Allocating these lists consumes memory, even though they do not appear in the result.
- Such lists are called intermediate data structures.

```
\begin{aligned} & \textit{sumSq'} :: \textit{Int} \rightarrow \textit{Int} \\ & \textit{sumSq'} \ y = \textit{go} \ 1 \\ & \textbf{where} \\ & \textit{go} \ i = \textbf{if} \ i > y \\ & \textbf{then} \ 0 \\ & \textbf{else} \ (\textit{square} \ i) + \textit{go} \ (\textit{i} + 1) \end{aligned}
```

So, fusion is not so much this

So, fusion is not so much this

but more

Intermediate data structures

```
\begin{aligned} & \textit{sumSq'} :: \textit{Int} \rightarrow \textit{Int} \\ & \textit{sumSq'} \ y = \textit{go} \ 1 \\ & \textbf{where} \\ & \textit{go} \ i = \textbf{if} \ i > y \\ & \textbf{then} \ 0 \\ & \textbf{else} \ (\textit{square} \ i) + \textit{go} \ (\textit{i} + 1) \end{aligned}
```

- No modularity
- Less clear
- Less maintainable

The Goal

We would like to write sumSq, and have the compiler would produce sumSq' automatically.

The Problem

Fusion involves inlining recursive functions.

The Problem

Fusion involves inlining recursive functions.

• This is really hard.

The Problem

Fusion involves inlining recursive functions.

- This is really hard.
- But GHC is already really good at inlining non-recursive functions...

Main Idea

Focus on fusing a small set of functions that encapsulate the recursion.

$$map \ f \ (map \ g \ xs) = map \ (f \circ g) \ xs$$

 $filter \ p \ (filter \ q \ xs) = filter \ (p \land q) \ xs$

map
$$f$$
 (map g xs) = map ($f \circ g$) xs
filter p (filter q xs) = filter ($p \land q$) xs

We can teach GHC to do this for us:

• What about map f (filter p) xs?

• What about map f (filter p) xs?

```
mapFilter :: (a \rightarrow b) \rightarrow (a \rightarrow Bool) \rightarrow [a] \rightarrow [b]

mapFilter f p [] = []

mapFilter f p (x : xs) = \mathbf{if} p x

then f x : mapFilter f p xs

else mapFilter f p xs
```

• What about map f (filter p) xs?

mapFilter ::
$$(a \rightarrow b) \rightarrow (a \rightarrow Bool) \rightarrow [a] \rightarrow [b]$$

mapFilter f p [] = []
mapFilter f p (x : xs) = **if** p x
then f x : mapFilter f p xs
else mapFilter f p xs

 $map\ f\ (filter\ p\ xs) = mapFilter\ f\ p\ xs$

• What about map f (filter p) xs?

mapFilter ::
$$(a \rightarrow b) \rightarrow (a \rightarrow Bool) \rightarrow [a] \rightarrow [b]$$

mapFilter $f \ p \ [] = []$
mapFilter $f \ p \ (x : xs) = \mathbf{if} \ p \ x$
then $f \ x : mapFilter \ f \ p \ xs$
else mapFilter $f \ p \ xs$

$$map\ f\ (filter\ p\ xs) = mapFilter\ f\ p\ xs$$

Okay, what about filter p (map f xs)?

• What about map f (filter p) xs?

mapFilter ::
$$(a \rightarrow b) \rightarrow (a \rightarrow Bool) \rightarrow [a] \rightarrow [b]$$

mapFilter $f p [] = []$
mapFilter $f p (x : xs) = \mathbf{if} p x$
then $f x : mapFilter f p xs$
else mapFilter $f p xs$

$$map\ f\ (filter\ p\ xs) = mapFilter\ f\ p\ xs$$

- Okay, what about filter p (map f xs)?
- What happens if we add another function to the API? What happens when we try and fuse a longer pipeline? Combinatorial explosion!

Main Idea 2.0

Use one rule to fuse everything!

Encapsulating recursion

Many functions can be defined using foldr:

foldr::
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

Defining functions with foldr

```
map f xs = foldr (\lambda a b \rightarrow f a : b) [] xs

sum xs = foldr (+) 0 xs

filter p xs = foldr (\lambda a b \rightarrow if p a then a : b else b) [] xs

xs + ys = foldr (:) ys xs

product xs = foldr (*) 1 xs
```

Fusing *foldr*

map
$$f xs = foldr (\lambda a b \rightarrow f a: b) [] xs$$

 $sum xs = foldr (+) 0 xs$

Fusing foldr

map
$$f xs = foldr (\lambda a b \rightarrow f a: b) [] xs$$

 $sum xs = foldr (+) 0 xs$

```
sum (map square xs) foldr (+) 0 (foldr (\lambda a \ b \rightarrow square \ a : b) [])
```

Fusing foldr

map
$$f xs = foldr (\lambda a b \rightarrow f a: b) [] xs$$

 $sum xs = foldr (+) 0 xs$

```
sum (map square xs) foldr (+) 0 (foldr (\lambda a \ b \rightarrow square \ a : b) [])
```

- Still not clear how to automatically rewrite this.
- Can see how the lists are consumed, but not how they are built.

Abstracting construction

We can abstract away (:) and []:

map
$$f xs = (\lambda c \ n \rightarrow foldr \ (\lambda a \ b \rightarrow c \ (f \ a) \ b) \ n \ xs) \ (:) \ []$$

Abstracting construction

We can abstract away (:) and []:

map
$$f xs = (\lambda c \ n \rightarrow foldr \ (\lambda a \ b \rightarrow c \ (f \ a) \ b) \ n \ xs) \ (:) \ []$$

And then abstract the list construction into a function:

build
$$g = g(:)[]$$

map $f \times s = build(\lambda c \ n \rightarrow foldr(\lambda a \ b \rightarrow c \ (f \ a) \ b) \ n \times s)$

A list is consumed with foldr, and produced with build

Building lists with build

We can define [m .. n] directly

$$[x .. y] = go x$$

where
 $go x = if x > y then [] else x : go (x + 1)$

Building lists with build

```
We can define [m..n] directly
     [x..y] = go x
        where
          go x = if x > y then [] else x : go(x + 1)
but also using build:
     enumFromTo x y = build (\lambda c \ n \rightarrow \text{eftInt } x \ y \ c \ n)
        where
           eftInt \times y \ c \ n = go \ x
             where
                go x = if x > y then n else c \times (go(x+1))
```

Fusing foldr and build

Returning to our example:

$$sumSq y = sum (map square [1..y])$$

Fusing foldr and build

Returning to our example:

Fusing foldr and build

```
Inline [1..y]
      sumSq y = sum (map square (build (<math>\lambda c \ n \rightarrow eftInt \ 1 \ y \ c \ n)))
         where
             eftInt x y c n = go x
                where
                   go x = if x > y then n else c \times (go(x+1))
Inlining map
      sumSq y =
          sum (build<sub>1</sub> (\lambda c_1 n_1 \rightarrow (foldr<sub>1</sub> (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1
             (build<sub>2</sub> (\lambda c_2 n_2 \rightarrow \text{eftInt } 1 \text{ y } c_2 n_2)))))
         where
             eftInt x y c n = go x
                where
                   go x = if x > y then n else c \times (go(x+1))
```

We can see syntactically when an intermediate data structure is created:

foldr c n (build g)

We can see syntactically when an intermediate data structure is created:

 g builds a list by placing (:) [] appropriate, but foldr will just replace them with c and n

We can see syntactically when an intermediate data structure is created:

- g builds a list by placing (:) [] appropriate, but foldr will just replace them with c and n
- Instead, we can just apply g directly to c and n:

$$foldr\ c\ n\ (build\ g)=g\ c\ n$$

 As long as c and n have non-recursive definitions, GHC does the rest!

```
sumSq y =
sum (build<sub>1</sub> (\lambda c_1 n_1 \rightarrow (foldr<sub>1</sub> (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1
(build<sub>2</sub> (\lambda c_2 n_2 \rightarrow eftInt 1 y c_2 n_2)))))
where
eftInt x y c n = go x
where
go x = if x > y then n else c x (go (x + 1))
```

Now we can apply the rewrite rule

```
sumSq v =
          sum (build<sub>1</sub> (\lambda c_1 n_1 \rightarrow (foldr_1 (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1
              (build<sub>2</sub> (\lambda c_2 n_2 \rightarrow \text{eftInt } 1 \text{ v } c_2 n_2)))))
          where
              eftInt x y c n = go x
                 where
                     go x = if x > y then n else c \times (go(x+1))
Now we can apply the rewrite rule
      sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow
          (\lambda c_2 \ n_2 \rightarrow \text{eftInt } 1 \ \text{y} \ c_2 \ n_2) \ (\lambda a_1 \ b_1 \rightarrow c_1 \ (\text{square } a_1) \ b_1) \ n_1))
          where
              eftInt x y c n = go x
                 where
                     go x = if x > y then n else c \times (go(x+1))
```

```
sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow (\lambda c_2 n_2 \rightarrow eftInt 1 y c_2 n_2) (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1))
where

eftInt x y c n = go x
where

go x = if x > y then n else c x (go (x + 1))
```

```
sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow
   (\lambda c_2 \ n_2 \rightarrow \text{eftInt } 1 \ \text{y} \ c_2 \ n_2) \ (\lambda a_1 \ b_1 \rightarrow c_1 \ (\text{square } a_1) \ b_1) \ n_1))
   where
       eftInt x y c n = go x
          where
             go x = if x > y then n else c \times (go(x+1))
sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow
   eftInt 1 y (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1)
   where
       eftInt x y c n = go x
          where
             go x = if x > y then n else c \times (go(x+1))
```

```
sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow eftInt 1 y (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1)

where

eftInt x y c n = go x

where

go x = if x > y then n else c x (go (x + 1))
```

```
sumSq y = sum (build_1 (\lambda c_1 n_1 \rightarrow
   eftInt 1 v (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1)
  where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
sumSq y = foldr (+) 0 (build<sub>1</sub> (\lambda c_1 n_1 \rightarrow
   eftInt 1 y (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1)
  where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
```

```
sumSq y = foldr (+) 0 (build_1 (\lambda c_1 n_1 \rightarrow eftInt 1 y (\lambda a_1 b_1 \rightarrow c_1 (square a_1) b_1) n_1)

where

eftInt x y c n = go x

where

go x = if x > y then n else c x (go (x + 1))
```

```
sumSq y = foldr(+) 0 (build<sub>1</sub> (\lambda c_1 n_1 \rightarrow
   eftInt 1 v (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1)
   where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
sumSq v = (\lambda c_1 \ n_1 \rightarrow
   eftInt 1 y (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1) (+) 0
   where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
```

```
sumSq y = (\lambda c_1 \ n_1 \rightarrow eftInt \ 1 \ y \ (\lambda a_1 \ b_1 \rightarrow c_1 \ (square \ a_1) \ b_1) \ n_1) \ (+) \ 0
where
eftInt \ x \ y \ c \ n = go \ x
where
go \ x = \mathbf{if} \ x > y \ \mathbf{then} \ n \ \mathbf{else} \ c \ x \ (go \ (x+1))
```

```
sumSq y = (\lambda c_1 \ n_1 \rightarrow
   eftInt 1 y (\lambda a_1 \ b_1 \rightarrow c_1 (square a_1) b_1) n_1) (+) 0
   where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
sumSq y = \text{eftInt } 1 \text{ y } (\lambda a_1 \ b_1 \rightarrow (\text{square } a_1) + b_1) \ 0)
   where
      eftInt x y c n = go x
         where
            go x = if x > y then n else c \times (go(x+1))
```

```
sumSq y = eftInt \ 1 \ y \ (\lambda a_1 \ b_1 \rightarrow (square \ a_1) + b_1) \ 0)

where

eftInt \ x \ y \ c \ n = go \ x

where

go \ x = if \ x > y \ then \ n \ else \ c \ x \ (go \ (x+1))
```

```
sumSq y = eftInt 1 y (\lambda a_1 b_1 \rightarrow (square a_1) + b_1) 0)
  where
     eftInt x y c n = go x
        where
           go x = if x > y then n else c \times (go(x+1))
sumSq y = go 1
  where
     go x = if x > y
               then 0
              else (\lambda a_1 \ b_1 \rightarrow (square \ a_1) + b_1) \times (go \ (x+1))
```

```
sumSq y = go 1

where

go x = if x > y

then 0

else (\lambda a_1 \ b_1 \rightarrow (square \ a_1) + b_1) \times (go \ (x+1))
```

```
\begin{aligned} \textit{sumSq } y &= \textit{go } 1 \\ & \textbf{where} \\ &\textit{go } x = \textbf{if } x > y \\ & \textbf{then } 0 \\ & \textbf{else } \left( \lambda \textit{a}_1 \ \textit{b}_1 \rightarrow \left( \textit{square } \textit{a}_1 \right) + \textit{b}_1 \right) \times \left( \textit{go } \left( x + 1 \right) \right) \end{aligned}
```

```
sumSq \ y = go \ 1
where
go \ x = if \ x > y
then 0
else square \ x + go \ (x + 1)
```

Success!

 We now have a way to fuse a specific set of functions that transform some datatype

Success!

- We now have a way to fuse a specific set of functions that transform some datatype
- ... as long as they are folds.

The Good News

Lots of functions can be written using foldr and build.

The Good News

Lots of functions can be written using foldr and build.

The Bad News

Some really important ones do not play nice.

The issue of *foldl* and *zip* as folds

- Two important functions, *foldI* and *zip*, are not folds.
- We can smash them into a form that uses foldr, but the resulting performance is poor.

Dualising foldr/build fusion

There is a dual to foldr, called unfoldr

```
unfoldr :: (s \rightarrow Maybe\ (a, s)) \rightarrow s \rightarrow [a]
unfoldr step s = \mathbf{case}\ step\ s of
Just (a, s') \rightarrow a: unfoldr step s'
Nothing \rightarrow []
```

Defining functions with unfoldr

```
mapS f xs = unfoldr step xs
 where
   step[] = Nothing
   step(x:xs) = Just(fx,xs)
enumFromToS m n = unfoldr step m
 where
    step x = if x > n
            then Nothing
            else Just (x, x + 1)
```

Fusing unfolds

• We can fuse unfolds, too.

Fusing unfolds

- We can fuse unfolds, too.
- First, we are going to tweak the presentation bit.

data Step a
$$s = Done$$
 | Yield a s

Fusing unfolds

- We can fuse unfolds, too.
- First, we are going to tweak the presentation bit.

data CoList
$$a = \exists s$$
. CoList $(s \rightarrow Step \ a \ s) \ s$

Unfolds with CoList

• A CoList is just a set of arguments for an unfold.

Unfolds with CoList

• A CoList is just a set of arguments for an unfold.

```
unfold :: CoList a \rightarrow [a]

unfold (CoList step s) = go s

where

go s = case step s of

Done \rightarrow []

Yield \ a \ s' \rightarrow a : go \ s'
```

Transforming CoLists

• We can define transformations from one CoList to another.

Transforming CoLists

• We can define transformations from one *CoList* to another.

$$mapCL :: (a \rightarrow b) \rightarrow CoList \ a \rightarrow CoList \ b$$
 $mapCL \ f \ (CoList \ step \ s) = CoList \ step' \ s$
where
 $step' \ s = \mathbf{case} \ step \ s \ \mathbf{of}$
 $Done \rightarrow Done$
 $Yield \ a \ s' \rightarrow Yield \ (f \ a) \ s'$

Transforming CoLists

• We can define transformations from one *CoList* to another.

$$mapCL :: (a \rightarrow b) \rightarrow CoList \ a \rightarrow CoList \ b$$
 $mapCL \ f \ (CoList \ step \ s) = CoList \ step' \ s$
 $where$
 $step' \ s = case \ step \ s \ of$
 $Done \rightarrow Done$
 $Yield \ a \ s' \rightarrow Yield \ (f \ a) \ s'$
 $enumFromToCL :: Int \rightarrow Int \rightarrow CoList \ Int$
 $enumFromToCL \ x \ y = CoList \ step \ x$
 $where$
 $step \ x = if \ x > y$
 $then \ Done$
 $else \ Yield \ x \ (x + 1)$

Converting between Lists and CoLists

- We can write all our transformations over *CoList* and if they are non-recursive, they will fuse.
- If we want to get back to lists we just use unfold.
- We can also a list into a CoList:

```
destroy :: [a] \rightarrow CoList \ a

destroy \ xs = CoList \ step \ xs

where

step [] = Done

step \ (x : xs) = Yield \ x \ xs
```

Converting between Lists and CoLists

• Using *unfold* and *destroy*, we can turn a *CoList* function into a list function.

Converting between Lists and CoLists

• Using *unfold* and *destroy*, we can turn a *CoList* function into a list function.

 $map\ f = unfold \circ mapCL\ f \circ destroy$

Converting between Lists and CoLists

 Using unfold and destroy, we can turn a CoList function into a list function.

$$map\ f = unfold \circ mapCL\ f \circ destroy$$

- Suppose we have a similar definition for *filterCL* and *filter*.
- If we inline (map f (filter p xs)), we get

 $unfold \circ mapCL \ f \circ destroy \circ unfold \circ filterCL \ p \circ destroy$

• As with *foldr* and *build*, we can "see" where the intermediate data structures are, and use a similar rewrite rule:

$$destroy (unfold xs) = xs$$

 As with foldr and build, we can "see" where the intermediate data structures are, and use a similar rewrite rule:

$$destroy (unfold xs) = xs$$

 And if we apply it, we can remove an intermediate data structure:

 $unfold \circ mapCL \ f \circ filterCL \ p \circ destroy$

Speaking of filter

We can define filter for CoLists:

```
filterCL :: (a \rightarrow Bool) \rightarrow CoList \ a \rightarrow CoList \ a

filterCL p (CoList step s) = CoList step' s

where

step' \ s = \mathbf{case} \ step \ s of

Done \rightarrow Done

Yield a \ s' \rightarrow \mathbf{if} \ p \ a

then Yield a \ s'

else step' \ s'
```

• Unfortunately, it breaks everything.

Stream Fusion

data
$$Step \ a \ s = Done$$

| $Skip \ s$
| $Yield \ a \ s$

data Stream
$$a = \exists s$$
. Stream $(s \rightarrow Step \ a \ s) \ s$

filter with Stream

```
filterS :: (a \rightarrow Bool) \rightarrow Stream \ a \rightarrow Stream \ a
filterS p (Stream step s) = Stream step' s
where

step' \ s = \mathbf{case} \ step \ s of

Done \rightarrow Done
Skip \ s' \rightarrow Skip \ s'
Yield \ a \ s' \rightarrow \mathbf{if} \ p \ a
\mathbf{then} \ Yield \ a \ s'
\mathbf{else} \ Skip \ s'
```

Converting to and from Stream

• stream is the same as destroy

```
stream :: [a] \rightarrow Stream a

stream xs = Stream step xs

where

step [] = Done

step (x : xs) = Yield x xs
```

Converting to and from Stream

• stream is the same as destroy

```
stream :: [a] \rightarrow Stream a

stream xs = Stream step xs

where

step [] = Done

step (x : xs) = Yield x xs
```

unstream is almost the same

```
unstream :: Stream a \rightarrow [a]
unstream (Stream step s) = go s
where
go s = case step s of
Done \rightarrow []
Skip s' \rightarrow go s'
Yield a s' \rightarrow a : go s'
```

• Not only we can fuse *filter*, we can also efficiently *foldl* and *zip*.

- Not only we can fuse filter, we can also efficiently foldl and zip.
- Reminder:

foldl ::
$$(b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs

- Not only we can fuse filter, we can also efficiently foldl and zip.
- Reminder:

foldl::
$$(b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

 foldl is an extremely efficient way to reduce a list, and we get the behaviour with streams:

foldIS ::
$$(b \rightarrow a \rightarrow b) \rightarrow b \rightarrow Stream \ a \rightarrow b$$

foldIS f z (Stream step s) = go z s
where
go z s = case step s of
Done \rightarrow z
Skip s' \rightarrow go z s'

zip takes advantage of another feature of unfolds, state

```
zipS :: Stream \ a \rightarrow Stream \ b \rightarrow Stream \ (a, b)
zipS (Stream step1 s1) (Stream step2 s2) =
     Stream step' (s1, s2, Nothing)
  where
     step'(s1, s2, Nothing) = case step1 s1 of
        Done \rightarrow Done
        Skip s1' \rightarrow Skip (s1', s2, Nothing)
        Yield a s1' \rightarrow Skip (s1', s2, Just a)
     step'(s1', s2, Just a) = case step2 s2 of
        Done \rightarrow Done
        Skip s2' \rightarrow Skip (s1', s2', Just a)
        Yield b s2' \rightarrow Yield (a, b) (s1', s2', Nothing)
```

Applications

- Stream fusion combines unfold fusion with a very elegrant presentation.
- It allows us to write fusible functions for any data structure that we can define a *stream* and *unstream* for.
- This is a huge win for arrays.
- Examples are Data. Bytestring and Data. Text

Generalising

- The notion of folds and unfolds are not unique to lists.
- Although a less researched area, it is possible to fuse functions over other datatypes.

Conclusions

- Shortcut fusion is a useful tool when trying to get good performance from a library.
- You take care of standardising the recursion, keeping the transformers non-recursive, and GHC will do the rest automagically.
- There is no ideal recursion scheme, what you choose depends on your API and data structure.