Package 'MICMIC'

March 18, 2017

Type Package

2 add_edge

	HNSC_exp_data_matrix	11
	HNSC_met_data_matrix	11
	HNSC_ref_CpGs_bed	12
	HNSC_ref_gene_bed	
	HNSC_sample_class	
	HNSC_tumor_id	
	merge_regulator_info	
	MI	
	MICMIC_plotting	
	Network	
	PC_para	
	read_adj_matrix	
	STAD_control_id	
	STAD_exp_data_matrix	
	STAD_met_data_matrix	
	STAD_ref_CpGs_bed	
	STAD_ref_gene_bed	
	STAD_sample_class	
	STAD_tumor_id	
	test_vertex_pairs	
	update_edge	
Index		25
muca		
add_e	edge add_edge	

Description

This function is to Create a method to add edges

Usage

```
add_edge(object, vertex_pairs)
```

Arguments

```
object, Object of class Network.

vertex_pairs, numeric matrix that store the pairs of vertexs
```

Value

a new object that store the network which added edges

Author(s)

CMI3

CMI

Conditional Mutual Information

Description

CMI takes three continuous variables as input and calculate the conditional mutual information between X and Y based on the condition of Z. Different from estimator method based on data discretization, this fucntion will use covarians transformation to estimate the continuous probabilities distribution of x and y values.

Usage

```
CMI(X,Y,Z,method=c("covariance"),unit=c("bits",
"nats", "hartley", "normalized"), pvalue=FALSE, permutation_times=100)
```

Arguments

Χ	a numeric vector to test
Υ	a numeric vector to test
Z	a numeric vector as the condition
method	the estimator method to test the CMI: "covariance"
unit	The unit of the result: "bits", "nats", "hartley" and "normalized" (the default is "bits"). The normalized result will be between 0 and 1 .
pvalue	a logical value to determine whether to calculate the pvalue or not

permutation_times

integral value to determin the permutation times in calculating p value.

Value

a numeric value of conditional mutual information between X and Y based on condition of Z

Author(s)

Tong Yin

References

Zhang, X. (2011). Inferring gene regulatory networkds from gene expression data by path consistency algorithm based on conditional mutual information

Pethel, S.D. and Hahs, D.W. (2014). Exact Test of Independence Using Mutual Information

Examples

```
x<-rnorm(100)
y<-0.7*x+rnorm(100, sd=0.1)
z<-0.8*x+rnorm(100, sd=0.1)
cor(x,y); cor(x,y); cor(y,z) #correlation test cannot identify the direct connection
CMI(x,y,z) # CMI identify the direct connection between x and y is not relying on
            \# the condiction of z
CMI(y,z,x) # CMI identify the direct connection between y and z is not relying on
```

```
# the condiction of x CMI(x,z,y) # CMI identify the connection between x and z is depending on the condition of y CMI(x,y,z,pvalue=TRUE)adj.pvalue CMI(x,z,y,pvalue=TRUE)adj.pvalue
```

CMI_met_cis_network

Conditional mutual information learning the methylation cis-acting regulation network

Description

This function is to infer the cis-acting regulatory network between DNA methylation and gene expression

Usage

```
CMI_met_cis_network(met_data_matrix,exp_data_matrix,gene_list,distance=300000,
ref_gene_bed,ref_CpGs_bed,outfiledir=NA,pvalue_cut=0.001,core_num=1,permutation_times=100)
```

Arguments

met_data_matrix

a numeric matrix containing CpGs methylation data where columns contain

samples and rows contain variables(probe site)

exp_data_matrix

a numeric matrix containing gene expression data where columns contain sam-

ples and rows contain variables(gene site)

gene_list a vector containing the names of target genes

distance integer specifying the upstream/downstream genome range to be analyzed

ref_gene_bed a data.frame containing reference gene coorinate with five columns named "name",

"chr", "start", "end" and "strand". The coordinates of genes in exp data matrix

are required to be included in this data.frame.

ref_CpGs_bed a data.frame containing reference CpGS coorinate with four columns names

"name", "chr", "start" and "end". The coordinates of CpGs/probes in met_data_matrix

are required to be included in this data.frame.

outfiledir a string of file directory to store the result files. If the parameter is not specified,

the log file directory will be get by getwd().

pvalue_cut the cutoff of pvalue. The default is 0.01.

core_num the cpu number using for parallel computation in PC_para

permutation_times

the number of times of permutation to calculate the pvalue

Value

the adjacency matrix of the network with value of 0 and 1. 1 means that there is an edge between the rowname and colname of the element. And 0 means there is no edge.

Author(s)

delete_edge 5

Examples

```
data("TCGA_STAD_data")
gene_name<-"MLH1"
## Not run:
network<-CMI_met_cis_network(met_data_matrix=STAD_met_data_matrix,
exp_data_matrix=STAD_exp_data_matrix,gene_list=gene_name,distance=300000,
ref_gene_bed=STAD_ref_gene_bed,ref_CpGs_bed=STAD_ref_CpGs_bed,pvalue_cut=0.00001,
permutation_times=20)
## End(Not run)</pre>
```

delete_edge

delete_edge

Description

This function is to Create a method to delete edges

Usage

```
delete_edge(object, vertex_pairs)
```

Arguments

```
object, Object of class Network.

vertex_pairs, numeric matrix that store the pairs of vertexs
```

Value

a new object that store the network which deleted edges

Author(s)

Tong Yin

entropy

entropy

Description

entropy takes discrete or continuous as input and calculate the entropy of X or joint entropy of X and Y.

Usage

```
entropy(X,Y=NULL,method=c("covariance","density"),
unit=c("bits","nats","hartley"),variable=c("continuous","discrete"))
```

Arguments

X a numeric vector to test

Y a numeric vector to test, default is NULL. If Y is given, then the joint entropy

of X and Y will be calculated.

method the method to estimate the probability distribution: "covariance" or "density"

method. The covariance method uses equation covariance matrix which was describled by Zhang, X in 2012. And the density method use the density()

and kde2d() function to estimate the variables' density.

unit The unit of the result: "bits", "nats", "hartley" (the default is "bits").

variable variable type: "continuous" or "discrete"

Value

a numeric value of entropy

Author(s)

Tong Yin

References

Zhang, X., Zhao, X. M., He, K., Lu, L., Cao, Y., Liu, J., ... & Chen, L. (2012). Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics, 28(1), 98-104.

Moon, Y. I., Rajagopalan, B., & Lall, U. (1995). Estimation of mutual information using kernel density estimators. Physical Review E, 52(3), 2318.

Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.

Examples

```
x1<-rnorm(100, mean=50, sd=16); x2<-c(1:100); x3<-c(1:100)+rnorm(100)
entropy(x1)
entropy(x2)
entropy(x3)
entropy(X=x1,Y=x3)</pre>
```

```
generate_regulator_info
```

generate_regulator_info

Description

This function is to integrate the regulator information in the gene_regulator_info.txt file

Usage

```
generate_regulator_info(met_data_matrix,exp_data_matrix,gene_list,
outfiledir=NA,ref_gene_bed,ref_CpGs_bed)
```

get_edge_number 7

Arguments

met_data_matrix

a numeric matrix containing CpGs methylation data where columns contain

samples and rows contain variables(probe site)

exp_data_matrix

a numeric matrix containing gene expression data where columns contain sam-

ples and rows contain variables(gene site)

gene_list a vector containing the names of target genes

outfiledir a string of file directory to store the result files. If the parameter is not specified,

the log file directory will be get by getwd().

ref_gene_bed a data.frame containing reference gene coorinate with five columns named "name",

"chr", "start", "end" and "strand". The coordinates of genes in exp_data_matrix

are required to be included in this data.frame.

ref_CpGs_bed a data.frame containing reference CpGS coorinate with four columns names

"name", "chr", "start" and "end". The coordinates of CpGs/probes in met_data_matrix

are required to be included in this data.frame.

Value

data.frame containing information of direct and indirect regulators

Author(s)

Tong Yin

Examples

```
data("TCGA_STAD_data")
gene_name<-"MLH1"
## Not run:
generate_regulator_info(met_data_matrix=STAD_met_data_matrix,
exp_data_matrix=STAD_exp_data_matrix,gene_list=gene_name,
ref_gene_bed=STAD_ref_gene_bed,ref_CpGs_bed=STAD_ref_CpGs_bed)
## End(Not run)</pre>
```

get_edge_number

get_edge_number

Description

This function is to get number of edges

Usage

```
get_edge_number(object)
```

Arguments

object,

Object of class Network.

8 get_nearest_elements

Value

number

Author(s)

Tong Yin

Description

get_nearest_elements This function is to get the neighbour elements on genome for target gene

Usage

```
get_nearest_elements(gene_list, distance = 3e+05, gene_number = 100,
    ref_gene_bed, ref_CpGs_bed, data_node_list)
```

Arguments

gene_list		a character vector containing the list of target genes which to be tested	
	distance	a numeric value determining the genome range of potential cis-acting network	
	gene_number	a numeric value determining the max number of neighbour genes in this range	
	ref_gene_bed	a data.frame containing reference gene coorinate with five columns named "name", "chr", "start", "end" and "strand". The coordinates of genes in exp_data_matrix are required to be included in this data.frame.	
	ref_CpGs_bed	a data.frame containing reference CpGS coorinate with four columns names "name", "chr", "start" and "end". The coordinates of CpGs/probes in met_data_matrix are required to be included in this data.frame.	
	data_node_list	a list of node names in data matrix. The return elements which are not in the node list will be excluded.	

Value

a data frame containing the neighbour genes and neighbour CpGs

Author(s)

get_partners 9

get_partners

get_partners

Description

This function is to Create a method to get partners for any vertex

Usage

```
get_partners(object, vertex)
```

Arguments

object,

Object of class Network.

vertex,

a vector that store the names of nodes

Value

a vector of partners

Author(s)

Tong Yin

```
get_sharing_partners
get_sharing_partners
```

Description

This function is to Create a method to get sharing partners for vertex

Usage

```
get_sharing_partners(object, vertex1, vertex2)
```

Arguments

object, Object of class Network.

vertex1, vector that store the name of the first node vertex2, vector that store the name of the secode node

Value

a vector of partners

Author(s)

10 HNSC_control_id

get_vertex_number

get_vertex_number

Description

This function is to get number of vertexs

Usage

```
get_vertex_number(object)
```

Arguments

object,

Object of class Network.

Value

number

Author(s)

Tong Yin

HNSC_control_id

the sample ids of normal samples in TCGA HNSC dataset

Description

A vector containing sample ids

Usage

```
data(TCGA_HNSC_data)
```

Format

A vector of character

Value

A vector of sample ids

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Network. "Comprehensive genomic characterization of head and neck squamous cell carcinomas." Nature 517.7536 (2015): 576-582.

HNSC_exp_data_matrix expression values of genes in HNSC samples

Description

A data matrix containing the log2 transformed expression levels of genes in head and neck cancer samples from TCGA

Usage

```
data(TCGA_HNSC_data)
```

Format

A matrix of numeric values

Value

The log2 expression matrix for head and neck cancer samples

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Network. "Comprehensive genomic characterization of head and neck squamous cell carcinomas." Nature 517.7536 (2015): 576-582.

HNSC_met_data_matrix methylation values of CpGs in HNSC samples

Description

A data matrix containing the methylation beta values of CpGs in head and neck cancer samples from TCGA

Usage

```
data(TCGA_HNSC_data)
```

Format

A matrix of numeric values

Value

The methylation beta matrix for head and neck cancer samples

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Network. "Comprehensive genomic characterization of head and neck squamous cell carcinomas." Nature 517.7536 (2015): 576-582.

HNSC_ref_CpGs_bed

the CpGs coordinates in bed format

Description

A data.frame containing the chromosome coordinate information of all the CpGs nearby the target genes

Usage

```
data(TCGA_HNSC_data)
```

Format

A data.frame

Value

A data frame containing genome coordinates of CpGs

```
name name of CpGschr the chromosome id like chr1, chr2, chr3 ...start the starting coordinate of CpGsend the ending coordinate of CpGs
```

Source

```
https://genome.ucsc.edu
```

HNSC_ref_gene_bed 13

HNSC_ref_gene_bed

the gene coordinates in bed format

Description

A data frame containing the chromosome coordinate information of all the genes nearby the target genes

Usage

```
data(TCGA_HNSC_data)
```

Format

A data.frame

Value

A data.frame containing genome coordinates of genes

```
name name of genes
chr the chromosome id like chr1, chr2, chr3 ...
start the starting coordinate of genes
end the ending coordinate of genes
strand the strand of genes
```

Source

```
https://genome.ucsc.edu
```

HNSC_sample_class

the classes of samples

Description

A data.frame containing the classes(control,tumor,stages or subtypes) information of samples

Usage

```
data(TCGA_HNSC_data)
```

Format

A data.frame

Value

sample classification information in two column data.frame

sample_id name of samples, should be exactly the same as the colnames of data matrix
class control, tumor, stages, or tumor subtypes

14 merge_regulator_info

Source

https://genome.ucsc.edu

HNSC_tumor_id

the sample ids of tumor samples in TCGA HNSC dataset

Description

A vector containing sample ids

Usage

```
data(TCGA_HNSC_data)
```

Format

A vector of character

Value

A vector of sample ids

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Network. "Comprehensive genomic characterization of head and neck squamous cell carcinomas." Nature 517.7536 (2015): 576-582.

```
merge_regulator_info
    merge_regulator_info
```

Description

This function is to merge regulation information for multiple genes

Usage

```
merge_regulator_info(gene_list,outfiledir=NA,statisticfiledir=NA,ref_gene_bed)
```

Arguments

gene_list a vector containing the names of target genes

outfiledir a string of file directory to store the result files. If the parameter is not specified,

the log file directory will be get by getwd().

statisticfiledir

summary directory to store merged result. If the parameter is not specified, the

file directory will be get by getwd().

ref_gene_bed a data.frame containing reference gene coorinate with five columns named "name",

"chr", "start", "end" and "strand". The coordinates of genes in exp_data_matrix

are required to be included in this data.frame.

MI 15

Value

numbers of direct and indirect regulators

Author(s)

Tong Yin

Examples

```
## Not run:
data("TCGA_LUAD_data")
gene_list<-rownames(LUAD_exp_data_matrix)[41:50]

network<-CMI_met_cis_network(met_data_matrix=LUAD_met_data_matrix,
exp_data_matrix=LUAD_exp_data_matrix,gene_list=gene_list,distance=300000,
ref_gene_bed=LUAD_ref_gene_bed,ref_CpGs_bed=LUAD_ref_CpGs_bed,
core_num=1,permutation_times=20)

generate_regulator_info(met_data_matrix=LUAD_met_data_matrix,
exp_data_matrix=LUAD_exp_data_matrix,gene_list=gene_list,
ref_gene_bed=LUAD_ref_gene_bed,ref_CpGs_bed=LUAD_ref_CpGs_bed)

merge_regulator_info(gene_list=gene_list,ref_gene_bed=LUAD_ref_gene_bed)

## End(Not run)</pre>
```

ΜI

Mutual Information

Description

MI takes two continuous variables as input and calculate the mutual information between them in various units. Different from estimator method based on data discretization, this function will use covarians transformation or density estimation to estimate the continuous probabilities distribution of x and y values.

Usage

```
MI(X,Y,method=c("covariance","KDE"),unit=c("bits",
    "nats","hartley","normalized"),pvalue=FALSE,permutation_times=100)
```

Arguments

X a numeric vector to test
Y a numeric vector to test

method choose an estimator method to test the mutual information: "covariance" or

"KDE" (the default is "covariance").

unit The unit of the result: "bits", "nats", "hartley" and "normalized" (the default is

"bits"). The normalized result will be between 0 and 1.

pvalue a logical value to determine whether to calculate the pvalue or not

permutation_times

integral value to determin the permutation times in calculating p value.

16 MICMIC_plotting

Value

a numeric value of mutual information between X and Y

Author(s)

Tong Yin

Examples

```
 \begin{aligned} & x = rnorm(100); y1 = rnorm(100); y2 = x + rnorm(100) \\ & MI(x, y1) \\ & MI(x, y2) \\ & MI(x, y2, pvalue = TRUE) \end{aligned}
```

 ${\tt MICMIC_plotting}$

MICMIC_plotting

Description

This function is to map genome coordinates to plotting coordinates, and enlarge target gene promoter and gene body

Usage

```
MICMIC_plotting(gene_name,met_data_matrix,exp_data_matrix,control_id, distance=NA,ref_gene_bed,ref_CpGs_bed,sample_class,outfiledir=NA)
```

Arguments

	gene_name	The name of target gene to be plotted
	met_data_matrix	a numeric matrix containing CpGs methylation data where columns contain samples and rows contain variables(probe site)
	exp_data_matrix	
		a numeric matrix containing gene expression data where columns contain samples and rows contain variables(gene site)
	control_id	a vector containing the ids of control/normal samples
	distance	Integer specifying the upstream/downstream genome range to be plotted. By default distance will cover all CpGs in analysis result
	ref_gene_bed	a data.frame containing reference gene coorinate with five columns named "name", "chr", "start", "end" and "strand". The coordinates of genes in exp_data_matrix are required to be included in this data.frame.
	ref_CpGs_bed	a data.frame containing reference CpGS coorinate with four columns names "name", "chr", "start" and "end". The coordinates of CpGs/probes in met_data_matrix are required to be included in this data.frame.
	sample_class	a data.frame containing the class information for samples
	outfiledir	a string of file directory to store the result files. If the parameter is not specified, the log file directory will be get by getwd().

Network 17

Value

```
a ggplot object
```

Author(s)

Tong Yin

Examples

```
data("TCGA_STAD_data")
gene_name<-"MLH1"
## Not run:
MICMIC_plotting(gene_name=gene_name,met_data_matrix=STAD_met_data_matrix,
exp_data_matrix=STAD_exp_data_matrix,control_id=STAD_control_id,
distance=350000,ref_gene_bed=STAD_ref_gene_bed,
ref_CpGs_bed=STAD_ref_CpGs_bed,sample_class=sample_class)
## End(Not run)</pre>
```

Network

Network An S4 class to store the network in adjacent matrix

Description

Network An S4 class to store the network in adjacent matrix

Slots

```
vertex, a string vector to store the node names
edges, a numeric matrix with two columns to store the edges
adj_matrix, a adjacent matrix to store the unidirectional network
bi_adj_matrix, a adjacent matrix to sotre the bidirectional network
```

Author(s)

Tong Yin

PC_para

parallel PC network construction based on MI/CMI testing

Description

PC_para is a parallel computation method to infer direct correlation network from data matrix. This method is based on PC-algorithm by conditional mutual information It will generate an adjacent matrix of the infered network.

Usage

```
PC_para(data_matrix,max_L=1,method=c("CMII","CMI"),pre_adj=NULL ,log_file_dir=NA,edgemode=c("pvalue"),pvalue_cut=0.01,core_num=1,permutation_times=100)
```

18 PC_para

- ------i- data matria anataining data from alternation adtain a language

Arguments

...............................

data_matrix	a numeric data matrix containing data from observation where columns contain samples(observing) and rows contain variables
max_L	The max L of PC. The default value is 1, and that means the network will be infered by CMI testing. If the value is 0, the network will be infered by MI testing.
method	choose a to test interaction between nodes based on conditional mutual information (CMI), or conditional mutual inclusive information.
pre_adj	the pre-defined adjacent matrix, representing the hypothetical network. The default value is NULL, and that means all nodes are considered to have association between each other in original hypothesis.
log_file_dir	a string of file directory to store the log files. If the parameter is not specified, the log file directory will be get by getwd().
edgemode	a string value to select the mode in edge decision
<pre>pvalue_cut</pre>	the cutoff of pvalue. The default is 0.01.
core_num	the number of CPUs using in the computation.
permutation_times	

the number of times of permutation to calculate the pvalue

Value

the adjacency matrix of the network with value of 0 and 1. 1 means that there is an edge between the rowname and colname of the element. And 0 means there is no edge.

Author(s)

Tong Yin

References

Zhang, X. (2011). Inferring gene regulatory networkds from gene expression data by path consistency algorithm based on conditional mutual information

Zhang, X. (2015). Conditional mutual inclusive information enables accurate quatification of associations in gene regulatory networks.

Kalisch, M. and Buhlmann, P.(2007) Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm.

Pethel, S.D. and Hahs, D.W. (2014). Exact Test of Independence Using Mutual Information

Examples

```
x=rnorm(300,mean=20,sd=6)
y=x+rnorm(300,mean=0,sd=2)
w=y*0.1+rnorm(300,mean=18,sd=1)
v=y*0.15+rnorm(300,mean=17,sd=1)
z=2*w+v+rnorm(300,mean=0,sd=0.1)
a=rnorm(300,mean=20,sd=2)
b=0.9*a+rnorm(300,mean=2,sd=1)
c=b-rnorm(300,mean=0,sd=2)
mydata<-rbind(x,y,w,v,z,a,b,c)
MI_PC_net<-PC_para(mydata,max_L=0)
CMI_PC_net<-PC_para(mydata,max_L=1)</pre>
```

read_adj_matrix 19

read_adj_matrix

read_adj_matrix

Description

This function is to Create a method to read genes annotation data

Usage

```
read_adj_matrix(object, adj_matrix)
```

Arguments

object, Object of class Network. adj_matrix, an adjacent matrix to load

Value

the new object loaded with adjacent matrix

Author(s)

Tong Yin

STAD_control_id

the sample ids of normal samples in TCGA STAD dataset

Description

A vector containing sample ids

Usage

```
data(TCGA_STAD_data)
```

Format

A vector of character

Value

A vector of sample ids

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Research Network. "Comprehensive molecular characterization of gastric adenocarcinoma." Nature 513.7517 (2014): 202-209.

STAD_exp_data_matrix expression values of genes in STAD samples

Description

A data matrix containing the $\log 2$ transformed expression levels of genes in gastric cancer samples from TCGA

Usage

```
data(TCGA_STAD_data)
```

Format

A matrix of numeric values

Value

The log2 expression matrix for gastric cancer samples

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Research Network. "Comprehensive molecular characterization of gastric adenocarcinoma." Nature 513.7517 (2014): 202-209.

STAD_met_data_matrix methylation values of CpGs in STAD samples

Description

A data matrix containing the methylation beta values of CpGs in gastric cancer samples from TCGA

Usage

```
data(TCGA_STAD_data)
```

Format

A matrix of numeric values

Value

The methylation beta matrix for gastric cancer samples

Source

```
http://cancergenome.nih.gov/
```

STAD_ref_CpGs_bed 21

References

Cancer Genome Atlas Research Network. "Comprehensive molecular characterization of gastric adenocarcinoma." Nature 513.7517 (2014): 202-209.

STAD_ref_CpGs_bed

the CpGs coordinates in bed format

Description

A data.frame containing the chromosome coordinate information of all the CpGs nearby the target genes

Usage

```
data(TCGA_STAD_data)
```

Format

A data.frame

Value

A data.frame containing genome coordinates of CpGs

```
name name of CpGs

chr the chromosome id like chr1, chr2, chr3 ...

start the starting coordinate of CpGs

end the ending coordinate of CpGs
```

Source

https://genome.ucsc.edu

STAD_ref_gene_bed

the gene coordinates in bed format

Description

A data frame containing the chromosome coordinate information of all the genes nearby the target genes

Usage

```
data(TCGA_STAD_data)
```

Format

A data.frame

22 STAD_sample_class

Value

A data frame containing genome coordinates of genes

```
name name of genes
chr the chromosome id like chr1, chr2, chr3 ...
start the starting coordinate of genes
end the ending coordinate of genes
strand the strand of genes
```

Source

```
https://genome.ucsc.edu
```

STAD_sample_class

the classes of samples

Description

A data.frame containing the classes(control,tumor,stages or subtypes) information of samples

Usage

```
data(TCGA_STAD_data)
```

Format

A data.frame

Value

sample classification information in two column data.frame

sample_id name of samples, should be exactly the same as the colnames of data matrixclass control, tumor, stages, or tumor subtypes

Source

```
https://genome.ucsc.edu
```

STAD_tumor_id 23

STAD_tumor_id

the sample ids of tumor samples in TCGA STAD dataset

Description

A vector containing sample ids

Usage

```
data(TCGA_STAD_data)
```

Format

A vector of character

Value

A vector of sample ids

Source

```
http://cancergenome.nih.gov/
```

References

Cancer Genome Atlas Research Network. "Comprehensive molecular characterization of gastric adenocarcinoma." Nature 513.7517 (2014): 202-209.

test_vertex_pairs

test_vertex_pairs

Description

This function is to test whether the nodes in the input edges are in the network or not

Usage

```
test_vertex_pairs(object, vertex_pairs)
```

Arguments

object, Object of class Network.
vertex_pairs, numeric matrix that store the pairs of vertexs

Value

testing information

Author(s)

24 update_edge

update_edge

update_edge

Description

This function is to Create a method to update edge data from object

Usage

```
update_edge(object)
```

Arguments

object,

Object of class Network.

Value

a new object that store the network which added edges

Author(s)

Index

Network, 17

*Topic datasets	PC_para, 17		
HNSC_control_id, 10 HNSC_exp_data_matrix, 11 HNSC_met_data_matrix, 11 HNSC_ref_CpGs_bed, 12 HNSC_ref_gene_bed, 13 HNSC_sample_class, 13 HNSC_tumor_id, 14 STAD_control_id, 19 STAD_exp_data_matrix, 20 STAD_met_data_matrix, 20 STAD_ref_CpGs_bed, 21 STAD_ref_gene_bed, 21 STAD_sample_class, 22 STAD_tumor_id, 23	read_adj_matrix, 19 STAD_control_id, 19 STAD_exp_data_matrix, 20 STAD_met_data_matrix, 20 STAD_ref_CpGs_bed, 21 STAD_ref_gene_bed, 21 STAD_sample_class, 22 STAD_tumor_id, 23 test_vertex_pairs, 23 update_edge, 24		
add_edge, 2			
CMI, 3 CMI_met_cis_network, 4 delete_edge, 5			
entropy, 5			
generate_regulator_info, 6 get_edge_number, 7 get_nearest_elements, 8 get_partners, 9 get_sharing_partners, 9 get_vertex_number, 10			
HNSC_control_id, 10 HNSC_exp_data_matrix, 11 HNSC_met_data_matrix, 11 HNSC_ref_CpGs_bed, 12 HNSC_ref_gene_bed, 13 HNSC_sample_class, 13 HNSC_tumor_id, 14			
merge_regulator_info, 14 MI, 15 MICMIC_plotting, 16			