Generalized Linear Models

February 9, 2022

Regression

$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

Regression

- assume that relationship is <u>linear</u> and observations are <u>independent</u>
- assume that residuals are distributed normally with mean 0 and constant variance
- variability of error does not depend on value of x (assumption of homoscedasticity)

Regression assumptions

 Model is built for a continuous outcome variable with normally distributed residuals

- What if outcome is **discrete**?
 - pain ("how much pain are you feeling?") on a 1-10 scale
 - (you may not want to assume that 5 is 5 times more pain than 1)
 - outcome of an individual trial is a success (1) or a failure (0)

Discrete outcomes

• Binary 0/1 outcome: nothing will stop you from running lm or lmer

- Expected values are really predicted probabilities
 - could fall outside [0, 1] range
 - normality of residuals violated
 - violation of homoscedasticity (variance gets compressed at ends of range)
 - -> biased parameter estimates and incorrect p-values!

What is the solution?

- expand our concept of regression model:
- <u>linear predictor</u>: optimal linear combination of predictor variables x_i
- response distribution: probability distribution for outcome variable
- <u>link function</u>: relate the linear predictor to the response distribution
- for standard linear regression, the link function is just an identity: the optimal linear combination predicts the outcome variable (y) as a normal distribution with mean \hat{y}_i and constant variance just add up predictors and multiply by appropriate coefficients

Logistic (binomial) regression

• If our outcome can only be between 0 and 1 inclusive, we cannot just use an identity link function because there is nothing to constrain the prediction (could predict values < 0 or > 1)

• Instead, use *logit* function that transforms outcome bounded by 0 and 1 to continuous range

$$logit(p) = \ln(\frac{p}{1 - p})$$

Now, your linear predictor predicts <u>logit(p)</u>

	Linear Regression	Binomial (Logistic) Regression
Linear predictor	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$	
Link function		
Response distribution	$y_i \mu_i \sim N(\mu_i, \sigma^2)$	

	Linear Regression	Binomial (Logistic) Regression
Linear predictor	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$	
Link function	$\mu_i = \eta_i$	
Response distribution	$y_i \mu_i \sim N(\mu_i, \sigma^2)$	

	Linear Regression	Binomial (Logistic) Regression
Linear predictor	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$
Link function	$\mu_i = \eta_i$	
Response distribution	$y_i \mu_i \sim N(\mu_i, \sigma^2)$	

	Linear Regression	Binomial (Logistic) Regression
Linear predictor	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$
Link function	$\mu_i=\eta_i$	$logit(\mu_i) = \eta_i$
Response distribution	$y_i \mu_i \sim N(\mu_i, \sigma^2)$	$y_i \mu_i \sim \text{Bernouilli}(\mu_i)$

	Linear Regression	Binomial (Logistic) Regression
Linear predictor	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$	$\eta_i = \beta_0 + \beta_1 x_{1i} + \cdots$
Link function	$\mu_i = \eta_i$	$logit(\mu_i) = \eta_i$
Response distribution	$y_i \mu_i \sim N(\mu_i, \sigma^2)$	$y_i \mu_i \sim \text{Bernouilli}(\mu_i)$

Use GLM to analyze trials rather than means

```
> glm(trial_outcome ~ condition, data = recoa_data, family = binomial()) %>% summary()
Call:
glm(formula = trial_outcome ~ condition, family = binomial(),
    data = recog_data)
Deviance Residuals:
             10 Median
-1.6651 -1.3723 0.7585 0.9943
                                  0.9943
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)
               0.4473
                          0.1450
                                  3.085 0.00203 **
               0.6513
                          0.2184 2.983 0.00286 **
conditiondrug
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Penguins!

Many link functions

- Binomial/logistic
 - Logistic (0,1) special case
 - Binomial will accept cbind(successes, failures) as a predictor
 - If you have successes and total_trials:
 - glmer(cbind(successes,total_trials-successes) ~ drug*delay + (1|monkey),
 family = binomial(), data = my data) will work

Many link functions

Poisson

- Modeling count data "rare events model"
- May fit data better when you have small number of discrete outcomes (kinds of synapses, number of gold particles)
- family = poisson() in glm/glmer
- Quasibinomial / quasi-Poisson
 - Includes additional parameter for unexplained variance
 - Binomial and Poisson variance is function of mean
 - Underdispersion / overdispersion
 - Zero-inflation

Generalized additive models (GAMs)

- uses mgcv package in R
- does not assume linearity of relationship between predictors and outcome: nature of function unknown/arbitrary
- https://noamross.github.io/gams-in-r-course/

