



# UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE  
United States Patent and Trademark Office  
Address: COMMISSIONER FOR PATENTS  
P.O. Box 1450  
Alexandria, Virginia 22313-1450  
[www.uspto.gov](http://www.uspto.gov)

| APPLICATION NO.           | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|---------------------------|-------------|----------------------|---------------------|------------------|
| 10/801,542                | 03/17/2004  | Mitsuaki Osame       | 740756-2717         | 2322             |
| 22204                     | 7590        | 06/23/2008           | EXAMINER            |                  |
| NIXON PEABODY, LLP        |             |                      | SHAPIRO, LEONID     |                  |
| 401 9TH STREET, NW        |             |                      |                     |                  |
| SUITE 900                 |             |                      | ART UNIT            | PAPER NUMBER     |
| WASHINGTON, DC 20004-2128 |             |                      | 2629                |                  |
|                           |             |                      |                     |                  |
|                           |             |                      | MAIL DATE           | DELIVERY MODE    |
|                           |             |                      | 06/23/2008          | PAPER            |

**Please find below and/or attached an Office communication concerning this application or proceeding.**

The time period for reply, if any, is set in the attached communication.

|                              |                        |                     |  |
|------------------------------|------------------------|---------------------|--|
| <b>Office Action Summary</b> | <b>Application No.</b> | <b>Applicant(s)</b> |  |
|                              | 10/801,542             | OSAME ET AL.        |  |
|                              | <b>Examiner</b>        | <b>Art Unit</b>     |  |
|                              | Leonid Shapiro         | 2629                |  |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

#### Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

#### Status

- 1) Responsive to communication(s) filed on 31 October 2007 and 19 February 2008.
- 2a) This action is **FINAL**.                    2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

#### Disposition of Claims

- 4) Claim(s) 1-48 is/are pending in the application.
- 4a) Of the above claim(s) 17-48 is/are withdrawn from consideration.
- 5) Claim(s) \_\_\_\_\_ is/are allowed.
- 6) Claim(s) 1-16 is/are rejected.
- 7) Claim(s) \_\_\_\_\_ is/are objected to.
- 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

#### Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on \_\_\_\_\_ is/are: a) accepted or b) objected to by the Examiner.  
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).  
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

#### Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All    b) Some \* c) None of:
1. Certified copies of the priority documents have been received.
  2. Certified copies of the priority documents have been received in Application No. \_\_\_\_\_.
  3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

\* See the attached detailed Office action for a list of the certified copies not received.

#### Attachment(s)

- |                                                                                        |                                                                   |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)            | 4) <input type="checkbox"/> Interview Summary (PTO-413)           |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)   | Paper No(s)/Mail Date. _____ .                                    |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ .                                                          | 6) <input type="checkbox"/> Other: _____ .                        |

1. The previous Office Action, mailed on 01/18/08 is vacated and requirements for Restriction/Election are withdrawn. While the Restriction requirements has been withdrawn, newly presented claims 17-48 are non-elected by original presentation for reasons explained below.

1. Newly submitted claims 17-48 directed to an invention that is independent or distinct from the invention originally claimed for the following reasons:

Since applicant has received an action on the merits for the originally presented invention, this invention has been constructively elected by original presentation for prosecution on the merits. Accordingly, claim 17-48 withdrawn from consideration as being directed to a non-elected invention. See 37 CFR 1.142(b) and MPEP § 821.03. The newly introduced claims 17-48 related to fabrication (class 257, subclass 82), which is different inventive subject matter than originally filed subject matter – driving OLED display - claims 1-16 (class 345, subclass 76), because claims 1-16 are not directed to fabrication as in claims 17-48 such as with “...forming a crystalline semiconductor film by laser irradiation”.

### ***Claim Rejections - 35 USC § 103***

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim 1,4,7,10-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nakamura et al. (US 6,670,773 B2) in view of Segawa et al. (6,451,636 B1).

As to claims 1,15 Nakamura et al. teaches a display device or a semiconductor device (col. 1, lines 11-17) comprising:

plural groups including a light emitting element and a thin film transistor which is connected to the light emitting element (fig. 2, items 11-13, col. 5, lines 50-57);

wherein an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in a first group of said plural groups and a second thin film transistor included in a second group of said plural groups which is adjacent to the first group is not much experienced (col. 2, lines 37-43 and 51-61).

Nakamura does not disclose value of a fluctuation rate is at most 12%.

It would have been obvious to one of ordinary skill in the art at the time of invention that fluctuation rate which is not much experienced could be at most 12%, because actual rate will depend how much higher is gate potential than the threshold voltage of the transistor (col. 2, lines 37-41 in Nakamura et al. reference).

Nakamura et al. does not disclose a channel of the TFT orients in a plurality of directions.

Segawa et al. teaches a channel of the TFT orients in a plurality of directions (col. 2, lines 33-48).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Segawa et al. into Nakamura et al. system in order

to prevent TFTs from being deteriorated (col. 7, lines 18-29 in the Segawa et al. reference).

As to claim 4, Nakamura et al. teaches a display device (col. 1, lines 11-17) comprising:

plural groups including a thin film transistor and a light emitting element in which brightness is fluctuated depending on an ON current value in a saturation region of a drain voltage-drain current characteristic of the thin film transistor (fig. 2, items 11-13, col. 2, lines 37-43 and col. 5, lines 50-57);

wherein an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in a first group of said plural groups and a second thin film transistor included in a second group of said plural groups which is adjacent to the first group is not much experienced (col. 2, lines 37-43 and 51-61).

Nakamura does not disclose value of a fluctuation rate is at most 12%.

It would have been obvious to one of ordinary skill in the art at the time of invention that fluctuation rate which is not much experienced could be at most 12%, because actual rate will depend how much higher is gate potential than the threshold voltage of the transistor (col. 2, lines 37-41 in Nakamura et al. reference).

Nakamura et al. does not disclose a channel of the TFT orients in a plurality of directions.

Segawa et al. teaches a channel of the TFT orients in a plurality of directions (col. 2, lines 33-48).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Segawa et al. into Nakamura et al. system in order to prevent TFTs from being deteriorated (col. 7, lines 18-29 in the Segawa et al. reference).

As to claim 7, Nakamura et al. teaches a display device (col. 1, lines 11-17) comprising plural pixels including a driving thin film transistor (fig. 3,item 26), a switching thin film transistor (fig. 3,item 26), an erasing thin film transistor (fig. 3,items 12,24), a light emitting element which is connected to the driving thin film transistor (fig. 3,items 11,26, col. 7, lines 35-67);

wherein brightness is fluctuated depending on an ON current value in a saturation region of a drain voltage-drain current characteristic of the thin film transistor (fig. 2, items 11-13, col. 2, lines 37-43 and col. 5,lines 50-57);

an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in each a first pixel and a second pixel which is adjacent to the first pixel is not much experienced (col. 2, lines 37-43 and 51-61).

Nakamura does not disclose value of a fluctuation rate is at most 12%.

It would have been obvious to one of ordinary skill in the art at the time of invention that fluctuation rate which is not much experienced could be at most 12%, because actual rate will depend how much higher is gate potential than the threshold voltage of the transistor (col. 2, lines 37-41 in Nakamura et al. reference).

Nakamura et al. does not disclose a channel of the TFT orients in a plurality of directions.

Segawa et al. teaches a channel of the TFT orients in a plurality of directions (col. 2, lines 33-48).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Segawa et al. into Nakamura et al. system in order to prevent TFTs from being deteriorated (col. 7, lines 18-29 in the Segawa et al. reference).

As to claim 13, Nakamura et al. teaches a display device (col. 1, lines 11-17) comprising:

plural groups including a light emitting element and a thin film transistor which is connected to the light emitting element (fig. 2, items 11-13, col. 5, lines 50-57);

wherein an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in a first group of said plural groups and a second thin film transistor included in a second group of said plural groups which is adjacent to the first group is not much experienced (col. 2, lines 37-43 and 51-61).

Nakamura does not disclose value of a fluctuation rate is at most 12% and a cellular phone comprising a main body, a display portion, a voice output portion, an operation switch, and an antenna.

It would have been obvious to one of ordinary skill in the art at the time of invention that fluctuation rate which is not much experienced could be at most 12%, because actual rate will depend how much higher is gate potential than the threshold voltage of the transistor (col. 2, lines 37-41 in Nakamura et al. reference) and for use in a cellular phone comprising a main body, a display portion, a voice output portion, an

operation switch, and an antenna (in reference : "for use in an image display apparatus\_ (col. 1, lines 1-2).

Nakamura et al. does not disclose a channel of the TFT orients in a plurality of directions.

Segawa et al. teaches a channel of the TFT orients in a plurality of directions (col. 2, lines 33-48).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Segawa et al. into Nakamura et al. system in order to prevent TFTs from being deteriorated (col. 7, lines 18-29 in the Segawa et al. reference).

As to claims 14-15, Nakamura et al. teaches a display device (col. 1, lines 11-17) comprising:

plural groups including a light emitting element and a thin film transistor which is connected to the light emitting element (fig. 2, items 11-13, col. 5, lines 50-57);

wherein an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in a first group of said plural groups and a second thin film transistor included in a second group of said plural groups which is adjacent to the first group is not much experienced (col. 2, lines 37-43 and 51-61).

Nakamura does not disclose value of a fluctuation rate is at most 12% and a notebook computer comprising a main body, a case, a display portion, and a keyboard.

It would have been obvious to one of ordinary skill in the art at the time of invention that fluctuation rate which is not much experienced could be at most 12%,

because actual rate will depend how much higher is gate potential than the threshold voltage of the transistor (col. 2, lines 37-41 in Nakamura et al. reference) and for use in notebook computer comprising a main body, a case, a display portion, and a keyboard (in reference : “for use in an image display apparatus” (col. 1, lines 1-2).

Nakamura et al. does not disclose a channel of the TFT orients in a plurality of directions.

Segawa et al. teaches a channel of the TFT orients in a plurality of directions (col. 2, lines 33-48).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Segawa et al. into Nakamura et al. system in order to prevent TFTs from being deteriorated (col. 7, lines 18-29 in the Segawa et al. reference).

Notice, for all independent claims, it generally considered to be within the ordinary skill in the art to adjust, vary, select or optimize the numerical parameters or values of any system absent of showing criticality of in a particular recited value. Thus, it would have been obvious to one of ordinary skill in the art at the time of invention to interchange value of an absolute value of a fluctuation rate of an ON current in a saturation region of a first thin film transistor included in a first group of said plural groups and a second thin film transistor included in a second group of said plural groups which is adjacent to the first group is at most 12%.

Such a limitation would have been considered as obvious variation on the matter of an absolute value of a fluctuation rate of an ON current in a saturation region at most

12%, which fails patentably distinguish over the prior art of Nakamura et al. In re Rose, 105 USPQ 237 (CCPA 1955).

As to claims 10-12,16 Nakamura et al. teaches a display device (col. 1, lines 11-18).

2. Claims 2,5,8 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nakamura et al. and Segawa et al. as applied to claims 2,4,7 above, and further in view of Sivan (US 5,229,310).

Nakamura et al. and Segawa et al. do not disclose the channel length of the first thin film transistor and the second thin film transistor is at least 5 times as long as a gate width, respectively.

Sivan teaches that channel length is determined by gate width which can vary considerably (col. 6, lines 45-47).

It would have been obvious to one of ordinary skill in the art at the time of invention to incorporate teachings of Sivan into Nakamura et al. and Segawa et al. system in order to provide channel length control (col. 2, lines 24-26 in Sivan reference).

3. Claims 3,6,9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nakamura et al. and Segawa et al. as applied to claims 2,4,7 above, and further in view of Gosain et al. (US 5,953,595).

Nakamura et al. and Segawa et al. do not disclose first thin film transistor and the second thin film transistor comprises a semiconductor layer which is formed by irradiating with a pulsed laser beam.

Gosain et al. teaches that channel length is determined by gate width which can vary considerably (fig. 8D, col. 11, lines 20-36).

It would have been obvious to one of ordinary skill in the art at the time of invention to incorporate teachings of Gosain et al. into Nakamura et al. system in order to manufacture TFT (col. 1, lines 5-8 in Gosain et al. reference).

***Response to Arguments***

4. Applicant's arguments with respect to claims 1-16 have been considered but are moot in view of the new ground(s) of rejection.

***Telephone inquire***

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Leonid Shapiro whose telephone number is 571-272-7683. The examiner can normally be reached on 8 a.m. to 5 p.m..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Richard Hjerpe can be reached on 571-272-7691. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

06.18.08  
/L. S./  
Examiner, Art Unit 2629

/Richard Hjerpe/  
Supervisory Patent Examiner, Art Unit 2629