УДК 622.235 ШЕВЦОВ Н.Р., ЛАБИНСКИЙ К.Н. (ДонНТУ), КАЛЯКИН С.А. (ООО «СНЭЙК»)

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ВЗАИМОДЕЙСТВИЯ ПРОДУКТОВ ДЕТОНАЦИИ С ГИДРОЗАБОЙКОЙ

Развитие угольной промышленности Украины происходит при постоянном увеличении глубины ведения горных работ. При этом ухудшаются горно-геологические условия проведения выработок: возрастает крепость пород и опасность взрывов метана и угольной пыли.

Перспективным способом повышения эффективности ведения взрывных работ является использование гидрозабойки как частный случай гидровзрывания. Теоретические основы гидровзрывания рассмотрены в работах [1,2,3].

Цель проведения экспериментов – установление влияния конструкции гидрозабойки на эффективность действия взрыва для определения ее оптимальных параметров.

Основными параметрами патронированной гидрозабойки, влияющими на ее эффективность, являются ее длина и диаметр. Для установления количественного влияния данных параметров на эффективность действия гидрозабойки в шпурах (рис. 1) нами использован метод моделирования взаимодействия продуктов детонации и гидрозабойки, т.к. в производственных условиях такой процесс наблюдать очень трудно. Кроме того, изучение процесса методом моделирования [4] связано с наименьшими затратами средств и времени, и появляется возможность проведения более гибкого эксперимента.

Рис. 1. Конструкция шпурового заряда с донно-устьевой гидрозабойкой: 1 — запирающая песчано-глинистая забойка; 2 — устьевая гидрозабойка; 3 — патрон-боевик; 4 — пассивный патрон; 5 — донная гидрозабойка.

Основой для характеристики модели послужил диаметр шпуров, наиболее часто применяемый при проведении выработок в Донбассе по буровзрывной технологии.

В качестве материала для модели нами принята металлическая труба с наружным диаметром 43 мм и толщиной стенок 1,5 мм. Таким образом,

внутренний диаметр трубы составляет 40 мм, что является максимально приближенным к реальным условиям.

Для имитации нахождения гидрозабойки в шпуре (см. рис. 1) закрывали мембраной из полиэтилена один торец трубы, затем заполняли трубу водой, и так же герметизировали трубу с другого торца мембраной из полиэтилена.

К одному торцу трубы соосно приставляли патрон BB (в качестве BB использовался аммонит T-19) со вставленным в него электродетонатором. Причем расстояние от донышка детонатора до противоположного торца патрона принималось не менее 2..3 диаметров заряда (для моделирования удлиненного заряда).

Для имитации дна шпура металлическую трубу свободным торцом опирали на баллистический маятник МакНИИ, применяемый для определения бризантности ВВ. При помощи маятника устанавливалась величина давления на границе «труба — маятник» (имитация границы «гидрозабойка - порода»). Схема лабораторных экспериментов изображена на рис. 2.

Рис. 2. Схема лабораторных испытаний по определению эффективности действия гидрозабойки: 1 — электродетонатор; 2 — патрон ВВ; 3 — полиэтиленовая диафрагма; 4 — вода; 5 — металлическая труба; 6 — носок баллистического маятника; 7 — тело баллистического маятника; 8 — графопостроитель; 9 — планшет.

Предварительно опытными взрываниями была установлена масса заряда ВВ, позволяющая, с одной стороны, не разрушить трубу полностью, а с другой стороны, обеспечивающая наглядную картину действия гидрозабойки на процесс разрушения породного массива в той части шпура, где расположена гидрозабойка. Масса заряда составила 40 г.

В первой серии опытов длина труб составляла 350 мм (стандартная длина ампулы гидрозабойки). Основным достоинством данной модели является способность трубы под воздействием нагрузок изменять свои размеры (увеличиваться в диаметре при воздействии нагрузок, направленных от оси трубы в радиальном направлении), что позволило определить качественную закономерность изменения давления в радиальном направлении по мере удаления от заряда ВВ. В качестве гидрозабойки использовалась вода, вода с 5%

ПАВ (поверхностное натяжение близкое нулю), и вода с 5% клея Na-КМЦ (вязкая система).

Результаты проведения экспериментов показаны на рис. 3 и 4.

Рис. 3. Изменение периметра трубы длиной 350 мм на участке от 0 до 70 мм при жидких заполнителях

После проведения серии экспериментов с трубами длиной 350 мм были получены следующие результаты.

- В зоне проникновения продуктов детонации в гидрозабойку величина расширения периметра трубы обратно пропорциональна величине поверхностного натяжения заполнителя гидрозабойки. Максимальное расклинивание при заполнении водой с ПАВ. Минимальное расклинивание при заполнении водой с Na-КМЦ (вязкая система). Кроме того, на удалении от заряда ВВ, примерно равном радиусу точки сопряжения, обнаружены характерно выраженные всплески расширения труб. Это скорее всего объясняется высвобождением энергии при переходе продуктов детонации в газообразное состояние.
- Проявление гидроудара заметно в зоне длиной от половины диаметра до диаметра трубы (в зависимости от свойств заполнителя). Причем его величина тем выше, чем выше вязкость заполнителя.

Рис. 4. Изменение периметра трубы длиной 350 мм на участке от 330 до 350 мм при жидких заполнителях

Учитывая выше изложенное, была проведена вторая серия экспериментов на трубах длиной 70 мм. Результаты экспериментов отражены на рис. 5.

Целью третьей серии экспериментов было определение характера взаимодействия продуктов детонации с гидрозабойкой, плотность заполнителя которой близка к плотности продуктов детонации во фронте детонации. В качестве материала для забойки использовались: пластичная забойка ПЗМ-3; песчано-глинистая забойка в соотношении 3:1 (ПГЗ) + 12% воды; песчаноглинистая забойка в соотношении 3:1+20% воды; песчано-глинистая забойка в соотношении 3:1+30% воды. Плотность забойки ПЗМ-3 составляла 1,63г/см³, а песчано-глинистой забойки составляла в зависимости от содержания в ней воды соответственно 1,6,1,56 и 1,51 г/см³. После проведения серии экспериментов на трубах длиной 70 мм и измерения их периметров были получены результаты, отраженные на рис. 6.

Рис. 5. Изменение периметра трубы длиной 70 мм при жидких заполнителях

Рис. 6. Изменение периметра трубы длиной 70 мм при вязких заполнителях

Влияние воздушного зазора у дна шпура на перераспределение энергии взрыва исследовалось в четвертой серии лабораторных экспериментов. Для этого конструкцию забойки принимали следующей. Трубу длиной 70 мм за-

полняли со стороны заряда ВВ на половину (35 мм) ПЗМ-3, а затем ПГЗ + 12% воды. Результаты изменения периметра трубы представлены на рис. 7.

Рис. 7. Изменение периметра трубы длиной 70 мм при 50%-ном ее заполнении (со стороны заряда) вязкими заполнителями

Анализируя результаты проведенной серии экспериментов можно заметить, что расширение примыкающего к заряду участка трубы аналогично расширению трубы, полученному в серии экспериментов с полным заполнением трубы забоечным материалом. Однако характер разрушения дальнего от заряда участка трубы неидентичен: на границе «труба - маятник» расширение трубы больше, чем в случае с полным заполнением. В обоих случаях взрывания трубы разорвало. Это говорит о том, что в радиальном направлении азрушение больше, чем при полном заполнении трубы забоечным материалом.

В пятой серии экспериментов заряд ВВ располагали в центре гидрозабойки. Эксперименты проводились на трубе длиной 70 мм. В качестве материала гидрозабойки использовали воду и песок. Заряд — ЭДКЗ-3ПМ, размещенный в центре трубы. Результаты изменения периметра труб представлен на рис. 8.

Рис. 8. Изменение периметра трубы при размещении заряда внутри забойки

Анализ проведенной серии экспериментов показывает, что независимо от скорости детонации и массы заряда, расширение трубы при заполнении

водой больше, чем при заполнении сыпучими материалами. Это еще раз подтверждает наличие эффекта гидроудара, увеличивающего эффективность действия взрыва.

При проведении экспериментов на баллистическом маятнике замерялась величина отклонения маятника. Результаты занесены в табл. 1.

Табл. 1. Результаты отклонения баллистического маятника при различных материалах забойки

материалах заобики									
	Тип и масса за- ряда ВВ	Длина трубы, мм							
Материал забойки		50		60		70		350	
		Отклонение маятника, мм	Импульс, кг*сек						
Вода	Т-19 40 г	25	0,693	26	0,720	27	0,748	36	0,997
Вода + 5% ПАВ	-//-	-	-	-	-	30	0,831	17	0,471
Вода + 5% Na-КМЦ	-//-	-	-	-	-	33	0,914	36	0,997
ПЗМ-3	-//-	-	-	-	-	38	1,053	-	-
ПГЗ + 12% воды	-//-	-	-	-	-	37	1,025	-	-
$\Pi\Gamma 3 + 20\%$ воды	-//-	-	-	-	-	38	1,053	-	-
ПГЗ + 30% воды	-//-	-	-	ı	-	40	1,108	-	-
Вода, 35 мм воздуха со стороны маятника	-//-	-	-	ı	-	36	0,997	47	1,302
ПЗМ-3, 35 мм воздуха со стороны маятника	-//-	ı	ı	ı	ı	42	1,163	ı	-
ПГЗ + 12% воды, 35 мм воздуха со стороны маятника	-//-	-	-	-	-	41	1,136	-	-
Песок	-//-	-	-	-	-	35	0,970	-	-

Анализируя представленные в таблице данные, можно сказать, что использование вязких материалов забойки с плотностью, близкой плотности продуктов детонации во взрывном фронте детонации, позволяет повысить эффективность взрыва по сравнению с применением в качестве забойки водонаполненной ампулы.

На основе проведенных лабораторных исследований можно сделать следующие выводы.

- 1. Применение гидрозабойки позволяет перераспределить эненргию взрыва с осевого направления в радиальное. При этом можно выделить два процесса, протекающих в гидрозабойке: ее расклинивание в результате столкновения с продуктами детонации и удваивание давления на границе «гидрозабойка дно шпура» за счет гидроудара.
- 2. Максимальная эффективность достигается при использовании в качестве заполнителя материала, плотность которого близка к плотности конденсированных продуктов детонации в детонационном фронте.

- 3. Использование воздушного зазора между гидрозабойкой и дном шпура не влияет на разрушение массива в области заполнения шпура гидрозабойкой.
- 4. Наличие воздушного зазора между дном шпура и забойкой позволяет увеличить эффект гидроудара.
- 5. Наиболее оптимальным материалом заполнителя гидрозабойки при ведении взрывных работ с использованием аммонита Т-19 является ПЗМ-3.

Работа будет продолжена в следующих направлениях:

- изучение влияния донной гидрозабойки на характер гидроудара при наличии в донной части шпура (за гидрозабойкой) воздушного промежутка;
- определение оптимальных параметров донно-устьевой гидрозабойки;
- опытно-промышленная проверка оптимизированной гидрозабойки как средства повышения коэффициента использования шпуров (КИШ).

Библиографический список

- 1. **Шевцов Н.Р., Лабинский К.Н., Калякин С.А.** Основы теории гидровзрывания при разрушении пород // Проблеми гірського тиску. Випуск 7 / Під заг. ред. О.А. Мінаєва. Донецьк, ДонНТУ, 2002. С. 59-84.
- 2. **Шевцов Н.Р., Лабинский К.Н., Калякин С.А.** Обоснование эффективной длины донно-устьевой гидрозабойки // Наукові праці ДонНТУ: Серія гірничо-геологічна. Випуск 54. Донецьк, ДонНТУ, 2002. С. 115-122.
- 3. **Калякин С.А., Шевцов Н.Р.** Влияние условий гидровзрывания на энергетические показатели и работоспособность взрывчатых веществ // Проблеми гірського тиску. Випуск 8 / Під заг. ред. О.А. Мінаєва. Донецьк, ДонНТУ, 2002. С. 116-144.
- 4. **Ивахненко А.Г., Юрачковский Ю.П.** Моделирование сложных систем по экспериментальным данным. М.: Радио и связь, 1987. 120 с.