Chi-Square & ANOVA Study Notes

Statistical Hypothesis Testing Guide

Key Definitions

Hypothesis Testing: A statistical method to make decisions about population parameters based on sample data.

Null Hypothesis (H₀): A statement of no effect or no difference that we test against.

Alternative Hypothesis (H₁): A statement that contradicts the null hypothesis.

Significance Level (\alpha): The probability of rejecting a true null hypothesis (commonly 0.05).

Degrees of Freedom (df): The number of independent values that can vary in a calculation.

Categorical Data: Data that can be divided into groups or categories (like gender, color, yes/no).

Continuous Data: Data that can take any numerical value within a range (like height, weight, test scores).

Chi-Square Test

What is it?

A statistical test used to determine if there's a significant relationship between two categorical variables.

When to use: When you have categorical data and want to test independence or goodness of fit.

Formula

$$\chi^2 = \Sigma$$
 [(Observed - Expected)² / Expected]

Steps

- 1. Set hypotheses: Ho: Variables are independent, H1: Variables are related
- 2. Create contingency table: Organize observed frequencies
- 3. Calculate expected frequencies: (Row Total × Column Total) / Grand Total
- 4. Calculate χ²: Use the formula above
- **5. Find df:** (rows 1) × (columns 1)
- **6. Compare with critical value:** If χ^2 > critical value, reject H₀

Example: Gender vs Product Preference

	Product A	Product B	Total
Male	20	30	50
Female	25	25	50
Total	45	55	100

Result: $\chi^2 = 1.01$, df = 1, Critical value = 3.84

Conclusion: Since 1.01 < 3.84, gender and product preference are independent.

Important: All expected frequencies should be ≥ 5 for reliable results.

ANOVA (Analysis of Variance)

What is it?

A statistical technique used to compare the means of three or more groups to determine if they are significantly different.

When to use: When you have continuous data and want to compare means of 3+ groups.

Formula

F = MSB / MSW

(Mean Square Between / Mean Square Within)

Types

- One-Way ANOVA: One independent variable
- Two-Way ANOVA: Two independent variables

Steps (One-Way ANOVA)

- 1. Set hypotheses: H₀: All group means are equal, H₁: At least one mean differs
- 2. Check assumptions: Independence, normality, equal variances
- 3. Calculate group means and overall mean
- 4. Calculate Sum of Squares: Between groups (SSB) and Within groups (SSW)

5. Calculate Mean Squares: MSB = SSB/df_between, MSW = SSW/df_within

6. Calculate F-statistic: F = MSB/MSW

7. Compare with critical value: If F > critical value, reject H₀

ANOVA Table Structure

Source	SS	df	MS	F
Between Groups	SS _B	k - 1	SS _B / (k-1)	MS_B / MS_W
Within Groups (Error)	SS _W	N - k	SS _W / (N-k)	-
Total	SS _T	N - 1	-	-

Where:

- k = number of groups
- N = total sample size
- $SS_T = SS_B + SS_W$

Two-Way ANOVA Table

Source	SS	df	MS	F
Factor A	SS _A	a - 1	MS _A	MS _A / MS _{Error}
Factor B	SS _B	b - 1	MS _B	MS _B / MS _{Error}
Interaction AB	SS _{AB}	(a-1)(b-1)	MS _{AB}	MS _{AB} / MS _{Error}
Error	SS _{Error}	ab(n-1)	MS _{Error}	-
Total	SS _{Total}	abn - 1	-	-

Where:

a = levels of Factor A

• b = levels of Factor B

• n = observations per cell

Example: Test Scores for Three Teaching Methods

Method A	Method B	Method C
85, 88, 90, 87	78, 82, 80, 85	92, 89, 94, 91
Mean = 87.5	Mean = 81.25	Mean = 91.5

ANOVA Table for Example:

Source	SS	df	MS	F
Between Groups	210.17	2	105.08	8.89
Within Groups	106.25	9	11.81	-
Total	316.42	11	-	-

Result: F = 8.89, df = (2,9), Critical value = 4.26

Conclusion: Since 8.89 > 4.26, teaching methods have significantly different

effects.

Post-hoc tests: If ANOVA is significant, use additional tests (like Tukey's HSD) to determine which specific groups differ.

Quick Comparison

Feature	Chi-Square	ANOVA

Data Type	Categorical	Continuous
Purpose	Test independence	Compare means
Test Statistic	χ² (Chi-square)	F (F-ratio)
Minimum Groups	2 categories	3 groups

Remember:

- Chi-square = Categories and independence
- ANOVA = Numbers and mean comparison
- Both follow hypothesis testing steps
- Check assumptions before using either test