Computational Phonology Workshop Introduction & Tutorial

Thomas Graf

Stony Brook University mail@thomasgraf.net http://thomasgraf.net

Dec 12, 2016

Outline

- 1 The Subregular Enterprise
- 2 (Tier-Based) Strictly Local Phonotactics
- 3 Subregular Mappings for Phonology
- 4 (Tier-Based) Strictly Local Syntax

Computational View of Language

In formal language theory, string sets are classified according to their formal complexity.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

- ▶ typology
- ► learning
- cognitive architecture

Computational View of Language

In formal language theory, string sets are classified according to their formal complexity.

Morphology

Syntax

- ▶ typology
- ► learning
- cognitive architecture

Computational View of Language

In formal language theory, string sets are classified according to their formal complexity.

Syntax

- ▶ typology
- ► learning
- cognitive architecture

Computational View of Language

In formal language theory, string sets are classified according to their formal complexity.

- ▶ typology
- learning
- cognitive architecture

Computational View of Language

In formal language theory, string sets are classified according to their formal complexity.

- typology
- learning
- cognitive architecture

Too Many Patterns are Regular

Problem

- ▶ All phonological and morphological patterns are regular.
- ▶ But not all regular patterns occur in phonology.
- Regularity is too loose an upper bound.

Example

- ► First-last consonant harmony
- ► Every word with a plosive contains an open syllable
- ▶ Word with at least 3 suffixes must have exactly 5 prefixes

Too Many Patterns are Regular

Problem

- ▶ All phonological and morphological patterns are regular.
- ▶ But not all regular patterns occur in phonology.
- Regularity is too loose an upper bound.

Example

- First-last consonant harmony
- Every word with a plosive contains an open syllable
- ▶ Word with at least 3 suffixes must have exactly 5 prefixes

Subregular Languages

Often forgotten: hierarchy of subregular languages

(McNaughton and Papert 1971; Rogers et al. 2010; Ruiz et al. 1998; Rogers and Pullum 2011; Heinz et al. 2011; Graf 2016)

Subregular Languages

Often forgotten: hierarchy of subregular languages

(McNaughton and Papert 1971; Rogers et al. 2010; Ruiz et al. 1998; Rogers and Pullum 2011; Heinz et al. 2011; Graf 2016)

Subregular Languages

Often forgotten: hierarchy of subregular languages

(McNaughton and Papert 1971; Rogers et al. 2010; Ruiz et al. 1998; Rogers and Pullum 2011; Heinz et al. 2011; Graf 2016)

SL: Strictly Local

- ► SL formalizes **local dependencies**.
- SL grammars are collections of markedness constraints that are
 - hard/non-violable,
 - locally bounded.

Strictly Local Grammars & Languages

 SL_n grammar finite set of forbidden $n\text{-}\mathsf{grams}$ SL_n language all strings except those with forbidden $n\text{-}\mathsf{grams}$

Example: SL Constraints

Process Word-final devoicing	Constraint *[+voice]⋉	Forbidden n -grams $\mathbf{z} \ltimes$, $\mathbf{v} \ltimes$,
Intervocalic voicing	*V[-voice]V	asa, asi,, isa, isi,, afa, afi,, ifa, ifi,,
CV template	* ⋊ V * C C * V V * C ⋉	<pre></pre>

SL is Too Weak

- ► SL grammars only handle unbounded dependencies.
- ▶ But some processes in phonology are unbounded.

Samala Sibilant Harmony (Heinz 2015:16)

∫tojonowonowa∫

SL is Too Weak

- ► SL grammars only handle unbounded dependencies.
- ▶ But some processes in phonology are unbounded.

Samala Sibilant Harmony (Heinz 2015:16)

∫tojonowonowa∫

- * stojonowonowa ſ
- * Stojonowonowas

TSL: Tier-Based Strictly Local

We can make Samala SL-like if we create new locality domains.

Tier-Based Strictly Local Grammars & Languages

 TSL_n grammar finite set of forbidden $n\text{-}\mathsf{grams} + \mathsf{tier}$ alphabet TSL_n language all strings except those with forbidden $n\text{-}\mathsf{grams}$ over tier

Example: Sibilant Harmony

Constraint

Forbidden n-grams on sibilant tier

Tier:
$$\times$$
 \int s \times

Base: ⋈ e ſ i s i ⋈

Tier:

$$|$$
 $|$ $|$

Base:
$$\times$$
 e \int i \int i \times

Example: Stress Assignment

Culminativity every word has exactly one primary stress

Tier contains segments with primary stress n-grams $\acute{s}\acute{s}$ and $\rtimes \ltimes$

```
      X
      X
      Á
      Á
      X

      I
      I
      I
      I
      I

      X
      A
      I
      A
      X

      X
      Á
      I
      A
      X
      A
      A

      X
      Á
      I
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
      A
```

What TSL Cannot do

Attested Patterns Beyond TSL?

A few other patterns may go beyond TSL.

- ► Non-Final RHOL [Baek's talk]
- ► Multiple Harmony [Aksënova's talk]

Complexity of Phonology

- ▶ All local phonological constraints are SL.
- All segmental long-distance constraints are TSL.
- ► Suprsegmental constraints (tone, stress) may go beyond TSL. (Graf 2010a,b; Jardine 2015)

Cognitive Implications

- ► SL and TSL languages are learnable from positive data. (Heinz et al. 2012; Jardine and Heinz 2016)
 - ightharpoonup UG: specifies upper bound on size of n-grams
 - memorize which sequences have not been seen so far
 - induce tier (more complex)
 - learning input can be relatively small
- What cognitive resources are required?
 - Only memorization of the last n segments of a specific type
 - ▶ For most processes $n \le 3$, and for all $n \le 7$
 - Fits within bounds of human working memory

Interim Summary: Phonotactics

- Natural languages have TSL phonotactics.
- gives tighter bound on typology
- solves poverty of stimulus by greatly simplifying learning
- reduces cognitive resource requirements

Next

- phonological mappings
- ► SL & TSL syntax

Interim Summary: Phonotactics

- ► Natural languages have **TSL** phonotactics.
- gives tighter bound on typology
- solves poverty of stimulus by greatly simplifying learning
- reduces cognitive resource requirements

Next

- phonological mappings
- ► SL & TSL syntax

Phonological Mappings

- ▶ So far we have only considered phonotactics.
- ▶ But mappings from underlying representations to surface forms can be studied, too.
- Regular mappings are enough. (Kaplan and Kay 1994)
- ► What about subregular mappings?

Input Strictly Local Mappings

Input Strictly Local (ISL)

- Move through string from left to right.
- Rewrite x as y based on previous n symbols in input string.
- Output is not considered!

A Note on TSL

Every TSL_n grammar can be decomposed into

- 1 an ISL₁ function (the tier projection), and
- 2 an SL_n grammar.

An Interesting Puzzle

- \triangleright What happens if we use an ISL_k function for tier projection?
- ► Addressed in **Aniello De Santo**'s talk

A Note on TSL

Every TSL_n grammar can be decomposed into

- 1 an ISL₁ function (the tier projection), and
- $\mathbf{2}$ an SL_n grammar.

An Interesting Puzzle

- \triangleright What happens if we use an ISL_k function for tier projection?
- Addressed in Aniello De Santo's talk

(Tier-Based) Strictly Local Syntax

- ► SL tree grammars are common in computational linguistics: context-free grammars
- ▶ By adding tier projection, we get TSL tree grammars.

Example: An Illicit Tree

SL₂ Tree Grammar

Example Tree

Tree Bigrams of Example Tree

Tier Projection for Trees

Just as for strings, we can project tiers for trees. (Graf and Heinz 2016)

Towards TSL-Syntax

While TSL-Syntax is still young, it holds promise:

- movement dependencies are TSL (Graf and Heinz 2016)
- ► Mandarin negation in Hongchen Wu's talk
- scope ambiguities in Lei Liu's blitz talk

Conclusion

References I

- Graf, Thomas. 2010a. Comparing incomparable frameworks: A model theoretic approach to phonology. *University of Pennsylvania Working Papers in Linguistics* 16:Article 10. URL http://repository.upenn.edu/pwpl/vol16/iss1/10.
- Graf, Thomas. 2010b. Logics of phonological reasoning. Master's thesis, University of California, Los Angeles. URL http://thomasgraf.net/doc/papers/LogicsOfPhonologicalReasoning.pdf.
- Graf, Thomas. 2016. The power of locality domains in phonology. Ms., Stony Brook University.
- Graf, Thomas, and Jeffrey Heinz. 2016. Tier-based strict locality in phonology and syntax. Ms., Stony Brook University and University of Delaware.
- Heinz, Jeffrey. 2015. The computational nature of phonological generalizations. URL http://www.socsci.uci.edu/~lpearl/colareadinggroup/readings/ Heinz2015BC_Typology.pdf, ms., University of Delaware.
- Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structure hypothesis spaces. *Theoretical Computer Science* 457:111–127.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics*, 58–64. URL http://www.aclweb.org/anthology/P11-2011.

References II

- Jardine, Adam. 2015. Computationally, tone is different. Phonology URL http:// udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf, to appear.
- Jardine, Adam, and Jeffrey Heinz. 2016. Learning tier-based strictly 2-local languages. Transactions of the ACL 4:87–98. URL https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf.
- Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. Computational Linguistics 20:331–378. URL http://www.aclweb.org/anthology/J94-3001.pdf.
- Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology with composition. In COLING'92, 141–148. URL http://www.aclweb.org/anthology/C92-1025.
- McNaughton, Robert, and Seymour Papert. 1971. Counter-free automata. Cambridge, MA: MIT Press.
- Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Vischer, David Wellcome, and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In *The mathematics of language*, ed. Christan Ebert, Gerhard Jäger, and Jens Michaelis, volume 6149 of *Lecture Notes in Artificial Intelligence*, 255–265. Heidelberg: Springer. URL

 $\tt http://dx.doi.org/10.1007/978-3-642-14322-9_19.$

References III

- Rogers, James, and Geoffrey K. Pullum. 2011. Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language and Information* 20:329–342.
- Ruiz, José, Salvador España, and Pedro García. 1998. Locally threshold testable languages in strict sense: Application to the inference problem. In *Grammatical inference: 4th international colloquium, ICGI-98 Ames, Iowa, USA, July 12–14, 1998 proceedings*, ed. Vasant Honavar and Giora Slutzki, 150–161. Berlin: Springer.
- Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. *Linguistics and Philosophy* 8:333–345.