CS218: Design and analysis of algorithms

Analyzing algorithms

Yihan Sun

Course announcement

Entrance Exam due this weekend

- Try to start working on it soon if you haven't
- Come to the office hours if you need help

Course policy test: due next Tuesday

- 1 point to your final grade, and required
- Resubmit-able multiple choices problems

Regarding course-related logistics

- Contact Zijin for non-homework-related questions
- Contact Xiangyun for homework-related questions

Collaboration: the "whiteboard" policy

- You are welcome to chat with each other (also welcome to come to OHs),
 but you come with nothing and leave with nothing
- When you type your answers / code, it must be done on your own. It must be close-book. It must be typed by you, word by word.
- Any violation may result in severe outcome. Usually -100% current/all homework assignment score, fail the course, report to the university, the university may make further decisions
- Must cite if any idea is from other sources, including people, books, websites, Al, etc.

CS218: Design and analysis of algorithms

Analyzing algorithms

Yihan Sun

Analyzing algorithms

Predict how your algorithm performs in practice

• Criteria:

- Running time Time complexity
- Space usage
- Cache I/O
- Disk I/O
- Network bandwidth
- Power consumption
- Lines of codes

What are good algorithms?

Tale about Guass

One day Gauss's teacher asked his class to add together all the numbers from 1 to 100, assuming that this task would occupy them for quite a while. He was shocked when young Gauss, after a few seconds thought, wrote down the answer 5050. (source: https://nrich.maths.org/2478)

Other students:

```
sum = 0;
for (int i = 1; i <=n; i++)
sum += i;
```

O(n) time complexity

Guass: sum =
$$(1+n)*n/2$$
;

O(1) time complexity

$$(1+10) + (2+9) + (3+8) + (4+7) + (5+6) = ?$$

Computational Model

What is time complexity?

```
s = 0
for (i = 1 to n) {
   s = s + A[i]
}
```

```
sum(A, n) {
   if (n == 1) return A[0];
   L = sum(A, n/2);
   R = sum(A + n/2, n-n/2);
   return L+R;
}
```

O(n) time complexity

O(n) time complexity

• Why the time complexity is O(n)? What are we counting?

What is "time complexity"?

- Count the number of "instructions" in the algorithm
- Random Access Machine (RAM) model
 - We have an arbitrarily large memory
 - We can
 - do arithmetic calculation
 - Read/write to a memory location given the address
 - Every operation takes unit time

Random-Access Machine (RAM)

- Unit cost for:
 - Any instruction on w-bit words (how large do we need for w?)
 - Read/write a single memory location from an infinite memory
- The cost measure: time complexity

What is a computational model?

- What resource do we have?
- What operations are we allowed to do?
- What is the cost of each operation?

What is "time complexity"?

To estimate the time needed for an algorithm

• To define the "cost" of an algorithm, we first need to define what "costs" time

Computational model

What is a computational model?

- What resource do we have?
- What operations are we allowed to do?
- What is the cost of each operation?

What is time complexity?

```
s = 0
for (i = 1 to n) {
   s = s + A[i]
}
```

```
sum(A, n) {
   if (n == 1) return A[0];
   L = sum(A, n/2);
   R = sum(A + n/2, n-n/2);
   return L+R;
}
```

O(n) time complexity

O(n) time complexity

- Why the time complexity is O(n)? What are we counting?
 - The number of operations
- Why the time complexity is O(n)? Why we omit the constants and lower-order terms? Why we use "asymptotic analysis"?

Anything else we need?

- Count the number of "instructions" in the algorithm
- Random Access Machine (RAM) model
 - We have an arbitrarily large memory
 - We can
 - do arithmetic calculation
 - Read/write to a memory location given the address
 - Every operation takes unit time

```
sum = 0;
for (int i = 1; i <=n; i++) sum = (1+n)*n/2;
sum += i;
```

3n+2 operations?

3 operations?

What is "time complexity"?

- Random Access Machine (RAM) model
 - Every operation, including memory access, arithmetic operations, etc., takes unit time
- To make our life easier, we only analyze order of the cost, and omit
 - Lower-order terms
 - Constants
- We care about how faster a function grows for large n

Asymptotic Analysis

Asymptotic notation

```
sum = 0;

for (int i = 1; i <=n; i++) sum = (1+n)*n/2;

sum += i;

3n+2 operations? 3 operations?

O(n) operations O(1) operations
```

OK, then what does big-O mean?

Asymptotic notations

Big-O: asymptotically smaller than or equal to ≤

```
larger than or equal to ≥ smaller than < larger than > equal to =
```

- n is O(n)
- 3n + 2 is O(n)
- $\log n + \sqrt{n} + 4$ is also O(n)
- What happens if we want to say other cases?

Analogy to real numbers

Functions	Real numbers
f(n) = O(g(n))	$a \leq b$
$f(n) = \Omega(g(n))$	$a \geq b$
$f(n) = \Theta(g(n))$	a = b
f(n) = o(g(n))	a < b
$f(n) = \omega(g(n))$	a > b

Popular Classes of Functions

• Constant:

- Sublinear:
- Linear:
- Super-linear:
- Quadratic:
- Polynomial:
- Exponential:

$$f(n) = \Theta(1)$$

$$f(n) = \Theta(\log(n))$$

$$f(n) = O(\log^k n)$$

$$f(n) = o(n)$$

$$f(n) = \Theta(n)$$

$$f(n) = \omega(n)$$

$$f(n) = \Theta(n^2)$$

$$f(n) = O(n^k)$$

$$f(n) = \Theta(k^n)$$

Example

$$\log n$$
, $\log n + 3 \log \log n$

$$\log^2 n, \log^9 n + 8$$

$$\log n$$
, \sqrt{n} , $n^{1/5}$

$$n$$
, $5n + \log n$

$$n^3$$
, $n \log n$

$$n^2$$
, $3n^2 + n$

$$n^3 + 2n^2 + 4$$
, $4n^5$

$$2^n$$

Compare two functions

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

$$f(n) = o(g(n))$$

$$f(n) = \Theta(g(n))$$

• 0:
$$f(n) = o(g(n))$$
• Constant $c > 0$:
$$f(n) = \Theta(g(n))$$
• ∞ :
$$f(n) = \omega(g(n))$$

$$\Omega(g(n))$$

$$\Omega(g(n))$$

Commonly-used functions

For large enough n, we have (asymptotically):

$$c > 0$$
 $c_1 > 1$ $0 < c_2 < 1$ $c_3 > 1$ $c_4 > 1$

• $c < \log \log n < \log n < \log^{c_1} n < n^{c_2} < n < n \log n < n^{c_3} < c_4^n < n^n$

Analyze running time

- Random Access Machine (RAM) model
 - Every operation, including memory access, arithmetic operations, etc., takes unit time
- We only care about the order of the cost for simplicity, and omit
 - Constants
 - Lower-order terms
- We usually consider worst-case running time for general input
 - In some cases, we also analyze bounds with probabilistic guarantees (e.g., average running time for randomized algorithms)

If you are not familiar with these notations

- Read CLRS Chapter 3: "Growth of Functions"
 - Definitions of the asymptotic notation
 - How to compare the growth of two functions
 - What are the classic "classes" of functions

How does the asymptotic notation relate to the computational model (algorithm analysis)?

Questions (true or false):

 The goal of defining computational models is to allow for asymptotic analysis

- We have to use asymptotic notations when analyzing algorithms
 - It is almost true for time complexity, since it is too sloppy to give a distinct weight to each operation

Is RAM model perfect?

$$n = 10^9$$

for (int
$$i = 0$$
; $i < n$; $i++$) $A[i] = A[i] + 1$;

0.141072s

for (int i = 0; i < n; i++)
$$A[i] = (long long)(i)*4323 \% n + 1;$$
 0.580809s

for (int i = 0; i < n; i++)
$$A[i] = A[(long long)(i)*4323 \% n] + 1;$$
 3.25008s

How long would the other for-loop take?

A.0.14s D.1.0s

B.0.2s E.3.0s

C.0.6s F.5.0s

Not all CPU operations are created equal

ithare.com	Operation Cost in CPU Cycles	10°	10¹	10 ²	10³	10⁴	10 ⁵	10 ⁶
"Simple"	register-register op (ADD,OR,etc.)	<1						
	Memory write	~1						
	Bypass delay: switch between		.					
	integer and floating-point units	0-3						
	"Right" branch of "if"	1-2						
	Floating-point/vector addition	1-3						
	Multiplication (integer/float/vector)	1-7						
	Return error and check	1-7						
	L1 read		3-4					
	TLB miss		7-21					
	L2 read		10-12					
"Wrong" br	ranch of "if" (branch misprediction)		10-20					
	Floating-point division		10-40					
	128-bit vector division		10-70					
	Atomics/CAS		15-30	0				
	C function direct call		15-30	0				
	Integer division		15-40	0				
	C function indirect call		20-	-50				
	C++ virtual function call			30-60				
	L3 read			30-70				
	Main RAM read			100-150				
NU	JMA: different-socket atomics/CAS			100-300				
	(guesstimate)			100-300				
	NUMA: different-socket L3 read			100-300				
	n+deallocation pair (small objects)			200-5	00			
NUM	A: different-socket main RAM read			300	0-500			
	Kernel call				1000-150	o		
T	hread context switch (direct costs)				2000			
	C++ Exception thrown+caught				500	00-10000		
•	Thread context switch (total costs,					10000 - 1	million	
	including cache invalidation)					10000 -		

Distance which light travels while the operation is performed

Image from ithare.com:

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

I/O model

- Access memory is expensive
- But we have cache in our machine!
- We count the cost only if it is a "cache miss"
 - Accessing data in the cache is free
 - # of transfers between cache and memory

Asymmetric RAM model

Write to the memory is more expensive than read

Parallel computational models

- Multiple "threads/processes" can do computation together, and share a memory
- Computation starts with one thread
- Each thread is like a regular RAM
- Each thread can also "create" another thread to run in parallel

What should we count to evaluate the running time in this case?

So.. Why are we still using RAM model?

- In the sequential setting, it actually provide a way to analyze algorithms nicely (e.g., the comparison of quicksort and selection sort)
- Many other important models are based on that (e.g., a parallel model would assume multiple threads/processors, each behaving like a RAM)

Analysis

- Time complexity and RAM model
- Other models exist!
- Analyzing algorithms => time complexity, other cost (space, I/O, etc.), how efficient an algorithm is
- Analyzing PROBLEMS => lower bound of a problem, how hard an algorithm is?
 - Will be covered next week

Lower bound analysis

Analyzing "problems" - lower bound analysis

- Given a problem, what is the smallest cost we need to pay?
- Given an array, what is the "best complexity" you can get to sort it?
 - We know algorithms of running time $O(n \log n)$
 - But is it the "best"? Does there exist better algorithms? If not, why?
- Given a sorted array and an element x, what is the "best complexity" can you get to find the rank of x?
 - We know binary search needs $O(\log n)$ time
 - But is it the "best"? Does there exist better algorithms? If not, why?

Example about lower bound proof: Finding the max of an array

- Input: an array of distinct elements
- Model: we only care about comparisons: each comparison is a unit cost
- How many comparisons at least do you need to find the max of the array?
- Let's first consider some algorithms for this.
- Idea 1: always compare to the champion

```
ans = a[1]; for (i = 2 to n) { if (a[i] > max) max = a[i]; }  n-1 comparisons
```

Example about lower bound proof: Finding the max of an array

Idea 1: always compare to the champion

```
ans = a[1];
for (i = 2 to n) {
  if (a[i] > max) max = a[i];
} n-1 comparisons
```

Idea 2: single-elimination tournament?

Finding the max of an array

• Can we use fewer than n-1 comparisons to find the max of an array?

• Principle:

- If an element is not compared to others, we cannot guarantee we find the max
- If an element loses any comparison, it cannot be the max
- If an element never lose a comparison, it's possible to be the max

Proof:

- Call an element "free" if it hasn't been compared to anyone (need to verify!)
- Call an element "bad" if it loses at least one comparison (<u>rule it out!</u>)
- Call an element "top" if it never loses any comparison (<u>a candidate!</u>)
- Initial status: 0 top, n free, 0 bad
- Final status: 1 top, 0 free, n-1 bad
- Only when we reached this final status, we find the max

Finding the max of an array - lower bound proof

Preliminary

- "top": never loses any comparison
- "bad": lost at least one comparison
- "free": never compared to others
- Initial status: 0 top, n free, 0 bad
- Final status: 1 top, no free, n-1 bad
- What happens when we compare two elements?

	#top	#bad	#free	
top vs. top	-1	+1	=	
top vs. bad	=	=	=	(top wins)
	-1	+1	=	(bad wins)
top vs. free	=	+1	-1	(top wins)
	-1+1	+1	-1	(free wins)
bad vs. bad	=	=	=	
bad vs. free	=	+1	-1	(bad wins)
	+1	=	-1	(free wins)
free vs. free	+1	+1	-2	

Each comparison increases at most 1 bad!

=> We need at least n-1 comparisons to get the final status (n-1)

Finding the max of an array - lower bound proof

- To get an optimal algorithm, we have to guarantee to increase #bad by 1 in every comparison
- Only compare
 - top to top, or
 - free to free, or
 - top to free
 - (guarantee to increase #bad by 1)
- Algorithm:
 - If there are more than two free or top elements, compare them
 - Until there is only one top

	#top	#bad	#free	
top vs. top	-1	+1	=	
top vs. bad	=	=	=	(top wins)
	-1	+1	=	(bad wins)
top vs. free	=	+1	-1	(top wins)
	-1+1	+1	-1	(free wins)
bad vs. bad	=	=	=	
bad vs. free	=	+1	-1	(bad wins)
	+1	=	-1	(free wins)
free vs. free	+1	+1	-2	

Each comparison increases at most 1 bad!

=> We need at least n-1 comparisons to get the final status (n-1)

Example about lower bound proof: Finding the max of an array

• Idea 1: always compare to the champion Every comparison is top to free!

Idea 2: single-elimination tournament?

First level: free to free

Others: top to top

n-1 comparisons

Upper bound vs. lower bound

- An upper bound f(n) of the cost of a problem means there exists an algorithm takes at most f(n) steps on any input of size n
 - So, given this problem, we can just run this algorithm to get an answer
 - f(n) is guaranteed to be sufficient: we don't need more than f(n) costs
- A lower bound of g(n) means for any algorithm, there exists an input for which all algorithm takes at least g(n) steps on that input
 - Whatever algorithm you use, you cannot get better than g(n)!!
- When upper bound meets lower bound...
 - An algorithm has cost f(n), and the best you can do is g(n) = f(n)
 - That's an optimal algorithm!

Upper bound vs. lower bound

- Finding max of an array
 - Lower bound: n-1 comparisons (we just proved that)
 - If you use fewer than n-1 comparisons, you cannot find the answer
 - ${f \cdot}$ Upper bound: the compare-to-champion algorithm does exactly n-1 comparisions
 - If you want to find the answer, you don't need more than n-1 comparison
 - Upper bound meets lower bound!
 - Comparison-to-champion is an optimal algorithm (w.r.t. #comparisons) to find the max

Decision trees and lower bound proof

Decision trees: partition the decision space and conquer

• You want to rent a house in Riverside, you finally find a candidate, and you need to decide...

Similar to divide-and-conquer: based on the answer to the first question, we judge using different criteria Close to UCR? Yes! No! **Public transportation?** Close to restaurants? Yes! Yes! No! No! Nice kitchen? OK! OK! Cheap rent? Yes! No! Yes! No! OK! No way! OK! No way!

What question will you ask?

elephant TV bee clock chair Joshua tree rose computer

• Is it a plant?

• Yes: Joshua tree, rose. No: TV, clock, chair, elephant, bee, computer

Does is use electricity?

• Yes: TV, clock, computer. No: elephant, bee, chair, Joshua tree, rose

Can you find it in this classroom?

• Yes: chair, computer. No: elephant, TV, bee, clock, Joshua tree, rose

Does it have legs?

• Yes: elephant, chair, bee. No: TV, clock, Joshua tree, rose, computer

• Is it alive?

• Yes: element, bee, Joshua tree, rose. No: TV, clock, chair, computer

Lower bound proof using a "decision tree"

Sorting lower bound

- What is the minimum number of operations we need to sort n elements?
- This question is too vague to be answered
 - We know $O(n \log n)$ sorting algorithms: they are "almost" the best sorting algorithms we know of...
 - But can we use O(n) to do this? Well, if your elements are integers in [1,n]...

```
for (i = 1 to n) count[A[i]]++;
for (x = 1 to n) {

for (j = 1 to count[x])
Print x;
```

How should we formalize the question??

We need a formal approach

- Look at computational models which specify exactly which operations may be performed on the input, and what they cost
 - E.g., performing a comparison, or swapping a pair of elements
- An upper bound of f(n) means the algorithm takes at most f(n) steps on any input of size n
- A lower bound of g(n) means for any algorithm there exists an input for which the algorithm takes at least g(n) steps on that input

We need a formal approach

- Look at computational models which specify exactly which operations may be performed on the input, and what they cost
 - E.g., performing a comparison, or swapping a pair of elements
- For sorting algorithms, we usually use the "comparison model"
 - We only count the number of comparisons used in the algorithm
 - (similar to the finding-max problem, we also used comparison model)
- Why we study comparison-based sort?
 - General: no constraint on input type (integer, real, string, positive or negative, pair, complicated struct, key range, hashable or not)... as long as comparable!

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order
- An algorithm may compare two items (asking: is $a_i>a_j$?) at a cost of 1
 - Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.
- Sorting: given an array $a=[a_1,\dots,a_n]$, output a permutation π so that $[a_{\pi(1)},\dots,a_{\pi(n)}]$ in which the elements are in increasing order
- A sorting algorithm based on comparisons is called comparison sort

Lower bound for sorting

- Of course 1 is a lower bound...
 - You cannot guarantee to sort the entire array using 1 comparison!
- Of course n-1 is a lower bound...
 - We just proved that just finding the maximum value needs n-1 comparisons
- But... Can we show "better" lower bounds?
- We are usually interested in tight lower bounds (the tighter, the better)
- For sorting, we can actually show that $\Omega(n \log n)$ is a lower bound

Sorting lower bound in the Comparison Model

- Theorem: Any deterministic comparison sort algorithm must perform at least $\Omega(n \log n)$ comparisons to sort n elements in the worst case
 - More precisely, for any sorting algorithm A with size $n \geq 2$, the #comparisons needed is $\log_2(n!)$
 - i.e., for any sorting algorithm, there exists an input I of size n so that A makes $\geq \log_2 n! = \Omega(n \log n)$ comparisons to sort I
- Proof is information-theoretic

Lower bound proof outline

- In total, there are n! possible inputs (permutations) for an array of size n
- We need to identify the case for the input
- What can we do via a comparison?

All permutations of ranks

a_1	a_2	a_3	a_4	
1	2	3	4	
1	2	4	3	
1	3	2	4	
1	3	4	2	
1	4	2	3	
1	4	3	2	
2	1	3	4	
4	3	2	1	

Lower bound proof outline

- In total, there are n! possible inputs (permutations) for an array of size n
- We need to identify the case for the input
- What can we do via a comparison?
 - We can rule out some of the input cases
 - We have to repeat this computation until one case is left

All permutations of ranks

a_1	a_2	a_3	a_4	
1	2	3	4	
1	2	4	3	
1	3	2	4	
1	3	4	2	
1	4	2	3	
1	4	3	2	
2	1	3	4	
4	3	2	1	

$$a_2 < a_3$$

To find the correct solution for any input, we need to distinguish all possible n! Input cases!

Lower bound for sorting algorithms

1 case!

- We need to identify the input case
- Every comparison split all cases into two parts
- We need to have n! leaves for this decision tree
- What's the number of levels we need for the deepest branch?

$$\log_2 n! = \Theta(n \log n)$$

Lower bound for sorting algorithms

1 case!

- We need to identify the input case
- Every comparison split all cases into two parts
- Information-theoretic: need $\log_2 n!$ bits of information about the input before we can correctly decide on the output

$$\log_2 n! = \Theta(n \log n)$$

Why $\log_2 n! = \Theta(n \log n)$?

•
$$\log_2 n! = \log_2 n + \log_2 (n-1) + \dots + \log_2 1 < n \log_2 n = O(n \log n)$$

•
$$\log_2 n! > \log_2 n + \log_2 (n-1) + \dots + \log_2 \frac{n}{2} > \frac{n}{2} \log_2 \frac{n}{2} = \Omega(n \log n)$$

We can also use the Stirling's formula:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n + O(n)$$

• So $\log_2 n! = n \log_2 n - n \log_2 e + O(\log_2 n) = \Theta(n \log n)$

Summary for sorting lower bound

- A lower bound of g(n) means for any algorithm there exists an input for which the algorithm takes at least g(n) steps on that input
 - If that matches with the upper bound (time complexity), it means this algorithm is optimal, and the upper bound is tight
- For sorting algorithm, we use the comparison model that assumes an algorithm compares two items with cost 1, and all other operations are free
- We can show that to distinguish n! possible inputs, we need at least $\log_2 n! = \Omega(n \log n)$ comparisons, indicating that quicksort and mergesort are optimal comparison-sort algorithms

Sorting algorithms

Comparison-based sorts:

- Bubble sort: compare adjacent elements
- Selection sort: compare to find the smallest, 2nd smallest, ...
- Quicksort: compare to pivots to partition
- Merge sort: compare in merge
- Bogosort (permutation sort, stupid sort or slowsort, based on <u>infinite monkey theorem</u>)

Non-comparison-based sorts:

- Counting sort: only positive integers in small range
- Bucket sort: have to know key-range (create buckets)
- Radix sort: only integers (sorting based on the bits)
- Sleep sort: hmmm...

```
Bogosort:
while not is_sorted(data) {
    shuffle(data);
}
return data;
```

```
3 9 21 25 29 37 43 49

3 9 21 25 29 37 43 49
```

```
Sleep sort:
printNumber(n) {
    sleep n seconds;
    print n; }

// start n threads
parallel_for (i=1 to n)
    printNumber(A[i]);
wait for all threads to finish
```

What sorting algorithm should I use?

- Merge sort and quicksort both are $O(n \log n)$
 - In expectation for quicksort
- Which one is faster?
 - In practice, quicksort usually shows better performance
 - (that's why it's called quicksort. std::sort in STL also uses quicksort)
 - Why? Because quicksort is in-place (no extra space used), while merge requires extra space to hold the merging result temporarily (and then write back)
 - Also is more cache-friendly
- Time complexity help you roughly predict the performance
- Many other practical considerations may affect performance
- We can develop more theoretical models, get more experience in coding,
 ... to better understand the performance

Pointer machine model

- You cannot random access the memory based on address (i.e., not assume contiguous memory)
- You can access the memory only use pointers

You can access a memory location by a pointer

You **cannot** find the i-th element in an array by using a[i]

Other models: cell-probe model, counter-machine model, etc.

I/O model

Measures the number of reads and writes of an algorithm

• Examples of lower-bound proofs on the I/O model: Improved Parallel Cache-Oblivious Algorithms for Dynamic Programming and Linear Algebra

Upper bound vs. lower bound

- An upper bound f(n) of the cost of a problem means there exists an algorithm takes at most f(n) steps on any input of size n
 - So, given this problem, we can just run this algorithm to get an answer
 - f(n) is guaranteed to be sufficient: we don't need more than f(n) costs
- A lower bound of g(n) means for any algorithm, there exists an input for which all algorithm takes at least g(n) steps on that input
 - Whatever algorithm you use, you cannot get better than g(n)!!
- When upper bound meets lower bound...
 - An algorithm has cost f(n), and the best you can do is g(n) = f(n)
 - That's an optimal algorithm!

Summary for lower bounds

- The minimum "cost" to solve a PROBLEM using ANY algorithms
- Lower bounds are for problems, not algorithms
- Commonly used models for analyzing lower bounds: comparison model, pointer machine model, I/O model, cellprobe model, counter-machine model
- Analyzing or at least knowing the lower bound is helpful
 - Showing the NP-hard / NP-completeness can be considered as a "special" lower bound

Lower bound proof

- Further reading
 - https://courses.cs.vt.edu/~cs4104/shaffer/Spring2007/bounds.pdf