EEE 202 CIRCUIT THEORY First Midterm, Spring 2013-14

No credits will be given for unjustified answers. Good luck.

Prob. 1: (24 pt.s)

i: Find the current i_x in the following circuit.

following circuit.

$$i_{3}=i_{x} \implies 3+i_{x}=4i_{x} \implies 3i_{x}=3$$

$$\implies i_{x}=1 \implies 3i_{x}=3$$

ii: Find the voltage v_0 in the following circuit.

mode at
$$\frac{V_C - V_A}{1} + \frac{V_C - V_B}{1} + \frac{V_C}{1} = 0$$

$$\Rightarrow -9 - 6 + 3 V_C = 0 \Rightarrow 3 V_C = 15$$

$$\Rightarrow V_C = V_0 = 5 V_1$$

iii: Consider the following circuit. Assume that the op-amp is ideal and operates in the linear region. Find i_L .

$$V_{R} = V_{O} = R_{F} \stackrel{?}{=} F_{F} \stackrel{?}{=} S \Rightarrow V_{O} = -R_{F} \stackrel{?}{=} S$$

iv: Consider the following circuit. Let the voltage waveform of $v_s(t)$ is as given below. Assume that $v_c(0) = 0$ V. Find and plot $i_c(t)$.

$$V_{c}=V_{s}$$
 \Rightarrow $\left| \begin{array}{c} ic=c \frac{dv_{c}}{dt} \\ \end{array} \right|$

Prob. 2: (26 pt.s)

i: Consider the following circuit. Find the mesh currents i_A , i_B , i_C , i_D .

ii : Consider the following circuit. Find the node voltages v_A , v_B , v_C , v_D .

Prob. 3: (25 pt.s)

 ${f i}$: Consider the following circuit. Find the Thévenin equivalent circuit seen by the load.

ii : Consider the following circuit. By using superposition, find the current i_x .

Prob. 4: (25 pt.s) Consider the following circuit. Assume that the op-amp is ideal and operates in the linear region. Find the equivalent resistance R_{eq} seen by the voltage source, i.e. $R_{eq} = v_s/i$. Can we use this circuit as a negative resistance? If yes, find the condition for which the circuit acts as a negative resistance.

