

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Spa

macpenaene

Column Cons

Quadratic form

# Regression Analysis Linear Algebra

Buddhananda Banerjee

Department of Mathematics Centre for Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur

bbanerjee@maths.iitkgp.ac.in



1/16



## Simple linear regression with Vector notation

Linear Algebra

B Banerje

#### SLR

Vector Spa

Sub-Space

Snan

Independenc

Doolo

Orthogonalit

Projection

Column Space

Quadratic

- Consider a data set  $D = \{(x_i, y_i) | x_i \in \mathbb{R}, y_i \in \mathbb{R}, \forall i = 1, 2, \cdots, n\}$
- $\blacksquare$   $x_i$ s are non stochastic
- $y_i$ s are stochastic and realized values of random variable  $Y_i$ s
- **y** =  $(y_1, y_2, ..., y_n)^T$ , **x** =  $(x_1, x_2, ..., x_n)^T$ ,  $\beta = (\beta_0, \beta_1)^T$  and **1** =  $(1, 1, ..., 1)^T$

#### Problem statement (Redefined)

We are interested to have a prediction vector

$$\hat{\mathbf{y}} = g(\mathbf{x}, \boldsymbol{\beta}) = [\mathbf{1} \ \mathbf{x}] \boldsymbol{\beta}$$

which will approximate well the observed vector  $\mathbf{v}$  for known vector  $\mathbf{x}$ .

It is a problem in  $\mathbb{R}^n$  now !!





### Other uses of vector representation

Linear Algebra

laatan Ene

Vector Space

Sub-Spa

Span

Independenc

Orthogonalit

.

Column Space

Column Space

■ P — Polynomial up to de

- Weighted sum / Averaging
- Expectation of discrete random variable
- Combing audio signals for music composition
- Image representation in pic-cell.
- Principal component Analysis
- $\mathbb{P}_n$  = Polynomial up to degree n



# Vector Space $(V, +, \cdot)$

Linear Algebra

B Banerje

SLR

Vector Space

Sub-Spa

Independen

Outhogonalit

Column Spac

Our double from

### Definition

A vector space V over real numbers  $\mathbb R$  is a collection of vectors such that

- $1 + : V \times V \rightarrow V$  [closed under vector addition]
- (x + y) + z = x + (y + z), for all  $x, y, z \in V$  [associative]
- There exists  $0 \in V$  such that 0 + x = x + 0 = x for all  $x \in V$  [identity element exists]
- 1 There exists  $-\mathbf{x} \in \mathbf{V}$  for each  $\mathbf{x}$  such that  $(-\mathbf{x}) + \mathbf{x} = \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$  [inverse exists]
- $\mathbf{S} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$  [commutative]
- **6**  $a \cdot (b \cdot \mathbf{x}) = (ab) \cdot \mathbf{x}$  for all  $a, b \in \mathbb{R}$  and  $\mathbf{x} \in \mathbf{V}$
- 7  $1 \cdot \mathbf{x} = \mathbf{x}$  for all  $\mathbf{x} \in \mathbf{V}$
- **8**  $(a+b) \cdot \mathbf{x} = (a \cdot \mathbf{x}) + (b \cdot \mathbf{x})$  for all  $a, b \in \mathbb{R}$  and  $\mathbf{x} \in \mathbf{V}$
- $\mathbf{9} \ a \cdot (\mathbf{x} + \mathbf{y}) = a \cdot (\mathbf{x}) + a \cdot (\mathbf{y})$



# Sub-Space $(S, +, \cdot)$

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Space

0

Independen

macpenaem

Orthogonalit

Orthogonan

Column Spac

Quadratic

#### Definition

If a subset S of V is a vector space itself then S is celled subspace of V.

#### How to check S is a subspace of V?

- (1) Whether  $\mathbf{0} \in \mathbf{S}$ ?
- (2) Whether  $\mathbf{x} + a \cdot \mathbf{y} \in \mathbf{S}$ ? for all  $\mathbf{x}, \mathbf{y} \in \mathbf{S}$  and  $a \in \mathbb{R}$ .

#### **Example:**

- (1) All lines passing through (0,0) in  $\mathbb{R}^2$ .
- (2) All planes passing through origin in  $\mathbb{R}^n$ .
- (3)  $\mathbb{P}_5$  in  $\mathbb{P}_7$



# Span

Linear Algebra

B Banerje

SLI

Vector Spa Sub-Space

Span

Independenc

. .

Orthogonalit

Column Spac

. . . .

#### Definition

The span of a set of vectors  $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\} \in \mathbf{V}$  is the collection

$$Sp\{\mathbf{v}_1,\mathbf{v}_2,\cdots\mathbf{v}_k\} = \left\{\sum_{i=1}^k c_i\mathbf{v}_i|c_i\in\mathbb{R}\right\}$$

which is the collection of all possible linear combinations of  $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$ .

**Note:** A span is always a subspace.

### Example:

(a) 
$$Sp\{(0,1),(1,1)\} = Sp\{(0,1),(1,0)\} = \mathbb{R}^2$$

(b) 
$$Sp\{(0,1,0),(1,1,0)\} = \mathbb{R} \times \mathbb{R} \times \{0\} = xy$$
 - pane in  $\mathbb{R}^3$ 

In regression  $\hat{\mathbf{y}} \in Sp\{1,\mathbf{x}\}$  which is closest to  $\mathbf{y} \in \mathbb{R}^n$ 



Linear Algebra

B Banerie

ST 1

Vector Spa

Sub-Spa

Span

inaepenaen

Basis

Orthogonali

Column Succ

Ouadratic forms

