

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 2

Teoría de Autómatas y Lenguajes Formales — IIC2223 Fecha de Entrega: 2020-09-03

Problema 1:

Sea Σ un alfabeto finito y sean R_1 y R_2 expresiones regulares sobre Σ . Se define el operador:

$$R_1 \downarrow \downarrow R_2$$

tal que $w \in \mathcal{L}(R_1 \downarrow \downarrow R_2)$ si, y solo si, w se puede descomponer como $w = u_1 v_1 u_2 v_2 \cdots u_k v_k$ para algún $k \geq 1$ y con $u_i, v_i \in \Sigma^*$ para todo $i \leq k$ tal que $u_1, u_2, \cdots, u_k \in \mathcal{L}(R_1)$ y $v_1, v_2, \cdots, v_k \in \mathcal{L}(R_2)$. Por ejemplo, la expresión $(a^*) \downarrow \downarrow (b^*)$ define todas las palabras en $\{a, b\}^*$.

Demuestre que para todas expresiones regulares R_1 y R_2 , el resultado de $R_1 \downarrow \downarrow R_2$ define un lenguaje regular.

Solución problema 1: Se nota que si $R_1 \downarrow \downarrow R_2$ es equivalente a $(R_1R_2)^+$, se tiene que $\mathcal{L}(R_1 \downarrow \downarrow R_2)$ es un lenguaje regular. Ahora, sea $w \in \mathcal{L}((R_1R_2)^+)$ se tiene que $w \in \bigcup_{k=1}^{\infty} \mathcal{L}(R_1R_2)^k$, por lo que $w \in \mathcal{L}(R_1R_2)^k$ para algún $k \geq 1$, con lo que se tiene $w = u_1v_1u_2v_2\cdots u_kv_k$ donde $u_i \in \mathcal{L}(R_1)$ y $v_i \in \mathcal{L}(R_2)$, lo que es la definición de $w \in \mathcal{L}(R_1 \downarrow \downarrow R_2)$. Se nota que el argumento es prácticamente reversible por lo que $\mathcal{L}(R_1 \downarrow \downarrow R_2) = \mathcal{L}((R_1R_2)^+)$. Y como el segundo es un lenguaje regular se tiene que el primero es un lenguaje regular.

¹Hay que tener cuidado en la parte de $w \in \mathcal{L}(R_1R_2)^k$ para algún $k \geq 1$, pero es un detalle menor.

²Por el teorema de Kleene.