# Divide and Conquer Algorithms

CPSC 320 2023W2

#### **Definitions**

A divide and conquer algorithm proceeds by...

- Dividing the input into two or more smaller instances of the same problems
  - We call these subproblems
- Solving the subproblems recursively
- Combining the subproblem solutions to obtain a solution to the original problem

### Examples

Some divide and conquer algorithms you are already familiar with:

- QuickSort
- MergeSort

#### Recurrence relations

- The running time T(n) of a recursive function can be described using a recurrence relation:
  - T(n) is defined in terms of one or more terms of the form T(something smaller than n)
  - Example:

One recursive call on n/2 items.



#### **Recursion Trees**

- One way to solve a recurrence relation is to draw a recursion tree
  - Represent the recursion with a tree where each node represents a recursive subproblem
  - Inside each node, write the size of the subproblem this call to the function solves
  - Next to each node, write the amount of work done by the call to the function,
    not including any time spent in recursive calls
  - Compute the total amount of non-recursive work done on each row
  - Then add up the work done over all rows

$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4\\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: drawing the tree



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

## Example: work done at each node



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

## Example: work done at each node (continued)



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4\\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

## Example: work done at each node (continued)



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done on each row



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done on each row



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

Example: work done on each row



$$T(n) = \begin{cases} T(n/2) + 2T(n/4) + n^2 & \text{if } n \ge 4 \\ \Theta(1) & \text{if } n \le 3 \end{cases}$$

- Example: summing up the work on all the rows
  - The total work is  $n^2 + (3/8)n^2 + (3/8)^2n^2 + ...$
  - This is a geometric series, and 3/8 < 1.</li>
  - So the sum converges to  $\frac{1}{1-3/8}n^2$
  - Hence  $T(n) \in \Theta(n^2)$

#### The Master Theorem

- Most divide and conquer algorithms split the input into equal-size subproblems
- Most recursion trees fall into one of three categories:
  - The work per level increases geometrically
  - The work per level is constant (e.g., MergeSort)
  - The work per level decreases geometrically (e.g., the previous example)

## The Master Theorem [Bentley, Haken, Saxe]

Theorem: Let a ≥ 1, b > 1 be real constants, let f: N → R<sup>+</sup>, and let T(n) be defined by:

$$T(n) = \begin{cases} aT(n/b) + f(n) & if \ n \ge n_0 \\ \Theta(1) & if \ n < n_0 \end{cases}$$

where n/b might be either  $\lfloor n/b \rfloor$  or  $\lceil n/b \rceil$ . Then

- 1. If  $f(n) \in O(n^{\log_b a \epsilon})$  for some  $\epsilon > 0$  then  $T(n) \in \Theta(n^{\log_b a})$ .
- 2. If  $f(n) \in \Theta(n^{\log_b a} \log^k n)$  for some  $k \ge 0$  then  $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$ .
- 3. If  $f(n) \in \Omega(n^{\log_b a + \epsilon})$  for some  $\epsilon > 0$  and  $af(n/b) < \delta f(n)$  for some  $0 < \delta < 1$  and all n large enough, then  $T(n) \in \Theta(f(n))$ .

### The Master Theorem [Bentley, Haken, and Saxe]

#### How to apply the theorem:

- Compute log<sub>b</sub>a
- Compare it to the exponent of n in f(n)
  - If log<sub>b</sub>a is larger: case 1.
  - If they are equal: maybe case 2.
  - If log<sub>b</sub>a is smaller: check regularity condition, and if it holds then case
    3.