Exemplo: Simplex

Minimizar
$$f(x_1, x_2) = -x_1 - x_2$$

sujeito a: $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

3a. iteração Base ótima
$$(B_1, B_2, B_3) = (2, 1, 5)$$
 $(N_1, N_2) = (4, 3)$

• solução básica: $\mathbf{x_B} = (x_2, x_1, x_5)$

Resolva o sistema
$$\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b}$$
, cuja matriz aumentada é dada por:
$$\begin{bmatrix} 1 & 1 & 0 & | & 6 \\ -1 & 1 & 0 & | & 4 \\ 1 & -1 & 1 & | & 4 \end{bmatrix}$$

que pode ser resolvido pelo método de eliminação de Gauss, cuja solução é

$$\hat{\mathbf{x}}_{\mathbf{B}} = \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}$$
 e a função objetivo vale $f(\hat{\mathbf{x}}) = -6$.

Exemplo: Simplex

• otimalidade:

i) vetor dual:
$$((c_{B_1}, c_{B_2}, c_{B_3}) = (c_2, c_1, c_5) = (-1, -1, 0)$$

Resolva o sistema
$$\mathbf{B}^{\mathsf{T}} \boldsymbol{\lambda} = \mathbf{c}_{\mathbf{B}}$$
, cuja matriz aumentada é dada por
$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
,

e cuja solução é $\lambda^{T} = [-1 \ 0 \ 0].$

Exemplo: Simplex

ii) custos relativos: $(N_1 = 4, N_2 = 3)$

$$\hat{c}_4 = c_4 - \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{a}_4 = 0$$

$$\hat{c}_3 = c_3 - \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{a}_3 = 1$$

Como $\hat{c}_j \ge 0$ para todas variáveis não básicas, segue que a solução

atual

$$\hat{\mathbf{x}}_{\mathbf{B}} = \begin{bmatrix} x_2 \\ x_1 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix} \qquad \qquad \mathbf{e} \qquad \qquad \hat{\mathbf{x}}_{\mathbf{N}} = \begin{bmatrix} x_4 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Ou
$$\hat{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 0 \\ 8 \end{bmatrix}$$
 é ótima.

A otimalidade na última iteração decorreu do fato da função objetivo em termos das variáveis não básicas ser $f(\mathbf{x}) = -6 + 0x_4 + x_3 \ge -6$, para todo $x_4 \ge 0$ e $x_3 \ge 0$. Entretanto, $f(\mathbf{x}) = -6$, para todo $x_4 \ge 0$ e $x_3 = 0$, ou seja, a solução básica pode ser alterada com valores não nulos para x_4 , sem que a função objetivo se altere. Portanto, o problema tem múltiplas soluções ótimas, as quais podem ser determinadas por se atribuir valores diferentes a x_4 .

Se a solução básica ótima fosse degenerada????

Exemplo: Simplex (solução ilimitada

Minimizar
$$f(x_1, x_2) = -x_1 - x_2$$

sujeito a: $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

Na forma padrão

	x_1	X_2	x_3	x_4	В
A	1	-1	1	0	4
	-1	1	0	1	4
Min f	-1	-1	0	0	

Exemplo: Simplex (solução ilimitada

Minimizar
$$f(x_1, x_2) = -x_1 - x_2$$

sujeito a: $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

Na forma padrão

	x_1	X_2	x_3	x_4	В
A	1	-1	1	0	4
	-1	1	0	1	4
Min f	-1	-1	0	0	

A partir da partição básica inicial:

$$(B_1, B_2) = (3, 4)$$
 $(N_1, N_2) = (1, 2).$

Na segunda iteração do método simplex obtemos:

Exemplo: Simplex (solução ilimitada

$$(B_1, B_2) = (1, 4)$$

$$(B_1, B_2) = (1, 4)$$
 $(N_1, N_2) = (3, 2)$

solução básica: $\mathbf{x_B} = (x_1, x_4)^{\mathrm{T}}$

Resolva o sistema $\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b}$, cuja matriz aumentada é $\begin{bmatrix} 1 & 0 & | & 4 \\ -1 & 1 & | & 4 \end{bmatrix}$ e sua solução é

$$\hat{\mathbf{x}}_{\mathbf{B}} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$
 e a função objetivo é $f(\hat{\mathbf{x}}) = c_{B_1} \hat{x}_{B_1} + c_{B_2} \hat{x}_{B_2} = -1 \times 4 + 0 \times 8 = -4$

- otimalidade:
 - i) multiplicador simplex: $(\mathbf{c}_{B} = (c_{B_{1}}, c_{B_{2}})^{T} = (c_{1}, c_{4}) = (-1, 0))$

Resolva o sistema $\mathbf{B}^{\mathrm{T}} \boldsymbol{\lambda} = \mathbf{c}_{\mathbf{B}}$, cuja matriz aumentada é $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$ e obtenha

$$\lambda = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
.

ii) custos relativos: $(N_1 = 3, N_2 = 2)$

$$\hat{c}_3 = c_3 - \boldsymbol{\lambda}^T \mathbf{a}_3 = 1$$

$$\hat{c}_2 = c_2 - \lambda^T \mathbf{a}_2 = -1 \leftarrow k=2 \ (x_2 \text{ entra na base})$$

A função objetivo em termos das variáveis não básicas é $f(\mathbf{x}) = 0 + 1x_3 - 1x_2$

Exemplo: Simplex (solução ilimitada

• direção simplex

Resolva o sistema
$$\mathbf{B}\mathbf{y} = \mathbf{a}_2$$
, cuja matriz aumentada é $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix}$ e obtenha

$$\mathbf{y} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

Temos então que, se aumentamos o valor da variável x_2 , a função objetivo decresce (custo relativo negativo).

Note que x_2 pode crescer indefinidamente, já que a direção simplex não tem componentes positivas (direções deste tipo são chamados raios da região factível).

Base inicial – FASE I

- Como determinar uma partição básica factível inicial (A=(B, N)).
- Algumas classes de problemas de otimização linear oferecem naturalmente a solução básica factível

Minimizar
$$f(x) = c^{T}x$$

sujeito a: $Ax \le b$
 $x \ge 0$

em que $b \ge 0$.

Base inicial – FASE I

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$

sujeito a: $\mathbf{A}\mathbf{x} \le \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

em que $b \ge 0$.

Após a introdução das variáveis de folga, digamos, \mathbf{x}_f , temos:

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$$

sujeito a: $\mathbf{A}\mathbf{x} + \mathbf{x}_{f} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}, \mathbf{x}_{f} \ge \mathbf{0},$

A matriz dos coeficientes das restrições agora é dada por [A I] e uma partição básica factível é dada por:

- $\mathbf{B} = \mathbf{I}$: as variáveis básicas são as variáveis de folga $\mathbf{x}_{\mathbf{B}} = \mathbf{x}_{f}$
- N = A: as variáveis não-básicas são as variáveis originais $x_N = x$, e a solução básica factível é dada por:

$$\begin{cases} \mathbf{X}_{\mathbf{B}} = \mathbf{X}_{f} = \mathbf{b} \ge \mathbf{0}, \\ \mathbf{X}_{\mathbf{N}} = \mathbf{X} = \mathbf{0}. \end{cases}$$

Base inicial – FASE I

 Suponha agora que as restrições são, originalmente, de igualdade:

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$,

 Precisamos encontrar uma partição básica factível de A, isto é, uma partição da forma:

$$\mathbf{A} = [\mathbf{B} \ \mathbf{N}]$$

tal que existe
$$\mathbf{B}^{-1}$$
 e $\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}$

Quantas partições existem?

- Tome A_{10 x 20}
 Precisamos identificar dez colunas L.I. de A para formar B, e o sistema Bx_b = b, tem que ter x_B ≥ 0.
- Procedimento possível:
 - 1. Escolher dez (m) colunas
 - 2. Verificar se $x_B \ge 0$.
 - 3. Se não, escolher outras dez colunas e retornar ao passo 2.

Quantas possíveis partições existem?

 Se formos testar partição a partição, quantos testes temos que fazer?

$$C_{10}^{20} = \frac{20!}{10!(20-10)!} = 184.756$$

impraticável para problemas grandes!

Introduzindo novas variáveis de folga

 Quando tínhamos variáveis de folga, funcionava, pois:

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$
 equivalente a $\mathbf{A}\mathbf{x} + \mathbf{x}_f = \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$, $\mathbf{x}_f \geq \mathbf{0}$.

uma partição [I N] onde as variáveis de folga começam como as variáveis básicas.

 Se não for o caso, podemos forçar variáveis de folga:

$$\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}.$$

Fase I

$$\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}.$$

- Obviamente, essas variáveis não podem aparecer na solução final (pois elas não existem - são variáveis artificiais).
- Método duas-fases: resolvemos primeiro um problema: Minimizar $f_a(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} y_i$

$$Ax + y = b$$
$$x \ge 0, y \ge 0.$$

Fase I

Minimizar
$$f_a(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^m y_i$$

 $\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}.$

 Se conseguimos uma solução de custo zero para o problema acima (fase I), a base final não contém nenhuma variável artificial (por quê ?)

 Neste caso, a base final do problema da fase I é uma base inicial para o problema real (fase II).

Fase I

 E se não conseguimos uma solução de custo zero ? (Isto é, na solução ótima da fase I, existe uma variável artificial na base).

(Não existe solução factível para o nosso problema)

Exemplo

Minimizar
$$f(\mathbf{x}) = x_1 - x_2 + 2x_3$$

 $x_1 + x_2 + x_3 = 3$
 $2x_1 - x_2 + 3x_3 \le 4$
 $x_i \ge 0, i = 1, 2, 3$
Forma padrão

Minimizar
$$f(\mathbf{x}) = x_1 - x_2 + 2x_3 + 0x_4$$

 $x_1 + x_2 + x_3 = 3$
 $2x_1 - x_2 + 3x_3 + x_4 = 4$
 $x_i \ge 0, i = 1,..., 4$

Qual o problema da fase I a resolver?

 Caso A: introduzimos uma variável artificial pra cada restrição:

Minimizar
$$f_a(x_1,...,x_6) = x_5 + x_6$$

 $x_1 + x_2 + x_3 + x_5 = 3$
 $2x_1 - x_2 + 3x_3 + x_4 + x_6 = 4$
 $x_i \ge 0, i = 1,...,6$

e minimizamos o custo destas variáveis.

Qual o problema da fase I a resolver?

• Caso B: note que x_4 já fornece uma coluna da matriz identidade. Assim, a rigor, precisamos apenas de uma variável artificia $\int_{\text{Minimizar } f_a(x_1,...,x_5)=x_5}$

$$f_a(x_1,...,x_5) = x_5$$

$$x_1 + x_2 + x_3 + x_5 = 3$$

$$2x_1 - x_2 + 3x_3 + x_4 = 4$$

$$x_i \ge 0, i = 1,...,5,$$

e minimizamos o custo desta variável.

Exemplo

Minimizar
$$f(\mathbf{x}) = x_1 - x_2 + 2x_3 + 0x_4$$

 $x_1 + x_2 + x_3 = 3$
 $2x_1 - x_2 + 3x_3 + x_4 = 4$
 $x_i \ge 0, i = 1,..., 4$

<u>Exemplo 2.31</u> Considere o problema de otimização linear definido no Exemplo 2.30 e o problema artificial definido no caso B, em que apenas uma variável artificial é introduzida. Problema artificial:

Minimizar
$$f_a(x_1,...,x_5) = x_5$$

 $x_1 + x_2 + x_3 + x_5 = 3$
 $2x_1 - x_2 + 3x_3 + x_4 = 4$
 $x_i \ge 0, i = 1,...,5$

Obtenha a solução do problema original.

Exemplo 2 –Simplex tableau

Minimize
$$-3x_1 + 4x_2$$

sujeito a:
 $x_1 + x_2 \le 4$
 $2x_1 + 3x_2 \ge 18$
 $x_1 \ge 0, x_2 \ge 0$

Obtenha a uma base factível inicial do problema.

Outra possibilidade

• Em vez de resolver um problema auxiliar (fase I) para encontrar a base, simplesmente penalizamos as variáveis artificiais no problema original (fase II), de modo a garantir que elas seiam nulas na

SOII Minimizar
$$f_a(x_1, ..., x_5) = x_1 - x_2 + 2x_3 + 1000x_5$$

 $x_1 + x_2 + x_3 + x_5 = 3$
 $2x_1 - x_2 + 3x_3 + x_4 = 4$
 $x_i \ge 0, i = 1, ..., 5.$

valor suficientemente grande para garantir que x_5 não aparece na solução ótima.

 O que acontece quando temos soluções degeneradas ?

- base associada ao ponto extremo: 5 variáveis, 3 restrições, grau de liberdade: 2
- Precisamos fixar duas variáveis de folga em zero:

$$I_N = (4,3)$$
 ou $I_N = (4,5)$ ou $I_N = (3,5)$

$$I_N = (1,3)$$
 ou

$$I_{N}=(1,5)$$
 ou

$$I_{N}=(3,5)$$

Exemplo

$$x_1 + x_2 \le 10$$

 $2x_1 + x_2 \le 15$
 $x_1 + 2x_2 \le 15$

(ignoremos os custos relativos) suponha que x₁ entra na base

X_3	1	1	1	0	0	10
X_4	2	1	0	1	0	15
X_3 X_4 X_5	1	⁾ 2	0	0	1	15

 X_3

 X_2

X₃

Problema

- Há casos em que podemos passar muito tempo pivoteando entre soluções básicas degeneradas!
- Estagnação (stalling): Função objetivo mesmo, bases diferentes.
- CICLAGEM: Após algumas iterações trocando bases degeneradas, volta-se a uma base já visitada. (Método pode não convergir)

Exemplo

(Cycling)

Consider the following example given by Beale:

Minimize
$$-3/4x_4 + 20x_5 - 1/2x_6 + 6x_7$$
 subject to $x_1 + 1/4x_4 - 8x_5 - x_6 + 9x_7 = 0$
$$x_2 + 1/2x_4 - 12x_5 - 1/2x_6 \quad 3x_7 = 0$$

$$x_3 + x_6 = 1$$

$$x_1, x_2, x_3, \quad x_4, \quad x_5, \quad x_6, \quad x_7 \ge 0.$$

Exemplo de ciclagem (Bazaraa)

	z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
z	1	0	0	0	3 4	- 20	1 2	- 6	0
x,	0	1	0	0	(1)	- 8	- 1	9	0
	0	0	1	0	1/2	- 12	$-\frac{1}{2}$	3	0
x_2 x_3	0	0	0	1	ô	0	1	0	1

	z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
z	1	- 3	0	0	0	4	7 2	- 33	0
z x ₄	0	4	0	0	1	- 32 4 0	- 4	36	0
		- 2	1	0	0	4	3 2	- 15	0
x_2 x_3	0	0	0	1	0	0	1	0	1

	z	x_1	x_2	x_3	x_4	x5	x_6	x_7	RHS
z [1	-1	- 1	0	0	0	2	- 18	0
x. 1	0	- 12	8	0	1	0	(8)	- 84	0
x.	0	- 1	1	0	0	1	3 8	$-\frac{15}{4}$	0
x3	0	ő	ō	1	0	0 1 0	ì	0	1

	z	x_1	x_2	x_3	x_4	x_5	x_6	x7	RHS	
z	1	2	- 3	0	$-\frac{1}{4}$	0	0	3	0	
x6	0	- 3	1	0	18	0	1	$-\frac{21}{2}$	0] '
x ₆ x ₅ x ₃	0	1/16	$-\frac{1}{8}$	0	$-\frac{3}{64}$	0 1 ,0	0	(3)	0	
x3	0	3/2	- 1	1	$-\frac{1}{8}$,0	0	21 2	1	
-	_									_

	z	x_1	x_2	x_3	x_4	x_5	x ₆	x_7	RHS
z	1	1	- 1	0	1/2	- 16	0	0	
x_6	0	(2)	- 6	0	$-\frac{5}{2}$	56	1	0	0 0 1
x,	0	1 1	$-\frac{2}{3}$	0	$-\frac{1}{4}$	16 3	0	1	0
x_7 x_3	0	- 2	6	1_	5 2	- 56	0	0	1

	z	x_1	x_2	x_3	x_4	· x5	x_6	x ₇	RHS
z	1	0	2	0	74	- 44	- 1/2 ·	0	0
x_1	0	- 1	- 3	0	$-\frac{5}{4}$	28	1/2	0	0
x_7	0	0	$\binom{1}{3}$	0	16	- 4	$-\frac{1}{6}$	1	0
x_3	0	0	ő	1	0	0	1	0	1

	-	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
z	1	0	0	0	3 4	- 20	1/2	- 6	0
x_1	0	1	0	0	14	- 8	- 1	9	0
x2	0	0	1	0	1/2	- 12	$-\frac{1}{2}$	3	0
x3	0	0	0	1	Ō	0	1	0	1

Exemplo de ciclagem

- Regras (Evitar a ciclagem):
- Regra de Bland
- Regra Lexicográfica (Dantzig e Thapa, 1997)
- (Convergência teórica, computacionalmente ineficiêntes)
- Na prática: Perturbação no vetor dos requerimentos (que podem ajudar a estagnação)