DTM FILE COPY

AFOEHL REPORT 90-139EQ00114GHH

AD-A228 342

Wastewater Characterization Survey, Luke AFB AZ

SHELIA P. SCOTT, 1Lt, USAF, BSC DARRIN L. CURTIS, 1Lt, USAF, BSC STANLEY A. DABNEY, Sgt, USAF

AUGUST 1990

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC)
Human Systems Division
Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

SHELIA P. SCOTT 1Lt, USAF, BSC Chief, Water Quality Function

DARRIN L. CURTIS, 1Lt, USAF, BSC

Consultant, Environmental Engineering

Chinklanner -

EDWIN C. BANNER III, Colonel, USAF, BSC Chief, Environmental Quality Division

REPORT DOCUMENTATION PAGE

Form Approved

OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burgen estimate or any other aspect of this collection of information, including suggestions for educing this burgen to Washington readdounteres Services Directoriate for information superations and Reports. Lats Jefferson Davis Highway, Suite 1204, Arlington, v.A. 22202 4,02, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

Shelia P. Scott, 1Lt, USAF, BSC Darrin L. Curtis, 1Lt, USAF, BSC Stanley A. Dabney. Sct. USAF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Same as Blk 7 11. SUPPLEMENTARY NOTES 112. DISTRIBUTION/AVAILABILITY STATEMENT 113. ABSTRACT (Maximum 200 words)* At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfide, and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine the effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Jake two additional samples for mercury at Burger King and the Hush House. 1.5. NUMBER. OP-ARGES 97 10. SECURITY CLASSIFICATION 10. FABSTRACT 10. PRICE CODE 1. Unclassified 1. Unclassifi	1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	3. REPORT TYPE AND D	PATES COVERED
Wastewater Characterization Survey, Luke AFB AZ 6. AUTHOR(S) Shelia P. Scott, 1Lt, USAF, BSC Darrin L. Curtis, 1Lt, USAF, BSC Stanley A. Dabney. Sci. USAF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 90-139EQ00114GHH 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Same as Blk 7 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. PRICE CODE 18. NUMBER OF PAGES 97 16. PRICE CODE 18. NUMBER OF PAGES 97 16. PRICE CODE 18. NUMBER OF PAGES 97 16. PRI		August 1990	Final	4-19 Dec 89
Luke AFB AZ 6. AUTHOR(S) Shelia P. Scott, ILt, USAF, BSC Darrin L. Curtis, ILt, USAF, BSC Stanley A. Dabney. Sqt. USAF 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Same as Blk 7 11. SUPPLEMENTARY NOTES 122. DISTRIBUTION/AVARIABILITY STATEMENT 123. DISTRIBUTION/AVARIABILITY STATEMENT 124. DISTRIBUTION/AVARIABILITY STATEMENT 125. DISTRIBUTION/AVARIABILITY STATEMENT 126. DISTRIBUTION/AVARIABILITY STATEMENT 127. DISTRIBUTION/AVARIABILITY STATEMENT 128. DISTRIBUTION/AVARIABILITY STATEMENT 129. DISTRIBUTION/AVARIABILITY STATEMENT 120. DISTRIBUTION/AVARIABILITY STATEMENT 121. DISTRIBUTION/AVARIABILITY STATEMENT 122. DISTRIBUTION/AVARIABILITY STATEMENT 123. DISTRIBUTION/AVARIABILITY STATEMENT 124. DISTRIBUTION/AVARIABILITY STATEMENT 125. DISTRIBUTION CODE 126. DISTRIBUTION CODE 127. DISTRIBUTION CODE 128. DISTRIBUTION CODE 129. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 121. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOCHIL conducted a wastewater characterization survey at Luke AFB. The scope of the AFOCHIL CONTURN CODE 129. DISTRIBUTION/AVARIABILITY STATEMENT 120. DISTRIBUTION CODE 121. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from the Survey was to characterize the wastewater analyze industrial effluent, efficient from oil/water separators, and storm waster analyze industrial effluent, Sheliar Proceeding the fight barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 120. LIMITATION OF ABSTRACT OF ABSTRACT OF THIS FAGET ON THIS FAGET ON ABSTRACT OF THIS FAGET ON THIS FAGET ON THIS FAGET ON ABSTRACT OF THIS FAGET ON THIS FAGET ON THE STATEMENT OF ABSTRACT OF THIS FAGET ON THE STA	4. TITLE AND SUBTITLE		5.	FUNDING NUMBERS
Luke AFB AZ 6. AUTHOR(S) Shelia P. Scott, ILt, USAF, BSC Darrin L. Curtis, ILt, USAF, BSC Stanley A. Dabney. Sqt. USAF 7. FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Same as Blk 7 11. SUPPLEMENTARY NOTES 122. DISTRIBUTION/AVARIABILITY STATEMENT 123. DISTRIBUTION/AVARIABILITY STATEMENT 124. DISTRIBUTION/AVARIABILITY STATEMENT 125. DISTRIBUTION/AVARIABILITY STATEMENT 126. DISTRIBUTION/AVARIABILITY STATEMENT 127. DISTRIBUTION/AVARIABILITY STATEMENT 128. DISTRIBUTION/AVARIABILITY STATEMENT 129. DISTRIBUTION/AVARIABILITY STATEMENT 120. DISTRIBUTION/AVARIABILITY STATEMENT 121. DISTRIBUTION/AVARIABILITY STATEMENT 122. DISTRIBUTION/AVARIABILITY STATEMENT 123. DISTRIBUTION/AVARIABILITY STATEMENT 124. DISTRIBUTION/AVARIABILITY STATEMENT 125. DISTRIBUTION CODE 126. DISTRIBUTION CODE 127. DISTRIBUTION CODE 128. DISTRIBUTION CODE 129. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 120. DISTRIBUTION CODE 121. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOCHIL conducted a wastewater characterization survey at Luke AFB. The scope of the AFOCHIL CONTURN CODE 129. DISTRIBUTION/AVARIABILITY STATEMENT 120. DISTRIBUTION CODE 121. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from the Survey was to characterize the wastewater analyze industrial effluent, efficient from oil/water separators, and storm waster analyze industrial effluent, Sheliar Proceeding the fight barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 120. LIMITATION OF ABSTRACT OF ABSTRACT OF THIS FAGET ON THIS FAGET ON ABSTRACT OF THIS FAGET ON THIS FAGET ON THIS FAGET ON ABSTRACT OF THIS FAGET ON THIS FAGET ON THE STATEMENT OF ABSTRACT OF THIS FAGET ON THE STA	Wastowaton Chanactonia	ation Cumum		
Same as Blk 7 12a. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. Dustine the scaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfide, and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals in the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil. Water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 16. PRICE CODE 15.	luka AFR A7	ation survey,		
Darrin L. Curtis, 11t, USAF, BSC Stanley A. Dahney. Sot. USAF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, born, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Ja	6. AUTHOR(S)			
Darrin L. Curtis, 11t, USAF, BSC Stanley A. Dahney. Sot. USAF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, born, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Ja	Shelia P. Scott. 1Lt.	USAF. BSC		
AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)* At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfide, and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush Hush Huse. 15. SUBJECT TERMS 16. PRICE CODE 16.				
AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 AFOEHL Report 90-139EQ00114GHH 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and sur- factants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concen- tration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/ water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simu- lator and prevent it being disposed of down the sanitary sewer. (6) Take Woo additional samples for mercury at Burger King and the Hush House. 15. NUMBER. OF PRIESE TERMS 16. FRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT 19. OF ABSTRACT 19. OF ABSTRACT 10. CLASSIFICATION OF ABSTRACT 10. CASSIFICATION OF ABSTRACT 10. CASSIFICATION OF ABSTRACT 10. CASSIFICATION OF ABSTRACT 11. SUBJECT TERMS 12. LUKL ASSIFICATION OF ABSTRACT 12. LUKL ASSIFICATION OF ABSTRACT 13. CLURITY CLASSIFICATION OF ABSTRACT 14.	Stanley A. Dabney, Sqt	. USAF		
AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the scaps and cleaners being used to determine if phenol is present. Substitute non-phenolic scaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. SUBSECTIERMS 16. PRICE CODE 18. SUBSECTIERMS 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT 18. SUBSECTIERMS 19. OIL MARTINGORDES SUBSECTION OF ABSTRACT 19. OF ABSTRACT 19. OIL MARTINGORDES SUBSECTION OF ABSTRACT 19. OF ABSTRACT 19. OIL MARTINGORDES SUBSECTION OF ABSTRACT	7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8.	
Brooks AFB TX 78235-5501 90-139EQ00114GHH 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 112. DISTRIBUTION/AVAILABILITY STATEMENT 113. ABSTRACT (Maximuum 200 words)** At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the scaps and cleaners being used to determine if phenol is present. Substitute non-phenolic scaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Jake two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 16. PRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT OF REPORT 19. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT OF ABSTRACT Unclassified				
Same as Blk 7 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Jake two additional samples for mercury at Burger King and the Hush House. Industrial effluent, Shelia-Pr-Scott** Security Classification 18. SECURITY CLASSIFICATION 19. SECURI	AF Occupational and En	vironmental Health La	boratory	
Same as Blk 7 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words)* At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the drining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/ water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT OF ABS	Brooks AFB 1X /8235-5	501		90~139EQUU114GHH
Same as Blk 7 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words)* At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the drining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/ water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT OF ABS				
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simuladditional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 15. NUMBER.OF-PAGES 97 Nastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 15. NUMBER.OF-PAGES 97 Nastewater, Industrial effluent, Shelia-P-Scott 19. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTR	9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10	
12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 Nastewater Industrial effluent, Shelia-Pr-Scott 16. PRICE CODE 18. PRICE CODE 18. PRICE CODE 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified				AGENCY REPORT NUMBER
12a. DISTRIBUTION/AVAILABILITY STATEMENT Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER OF PAGES 97 Nastewater Industrial effluent, Shelia-Pr-Scott 16. PRICE CODE 18. PRICE CODE 18. PRICE CODE 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	Same as Blk 7		1	İ
Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF ABSTRACT 18. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT 19			İ	ĺ
Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF ABSTRACT 18. SECURITY CLASSIFICATION OF ABSTRACT 19.		j		
Statement A. Unlimited, approved for public release 13. ABSTRACT (Maximum 200 words) At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols, being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF ABSTRACT 18. SECURITY CLASSIFICATION OF ABSTRACT 19. 44 CURRICAGENTARY NOTEC				
ARSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified	11. SUPPLEMENTARY NOTES		•	
ARSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified				
ARSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified				
13. ABSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AF0EHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT Unclassified 18. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 19. LUKE AFB OIL/Water separators mercury 10. PRICE CODE 11. MINITATION OF ABSTRACT Unclassified 12. LIMITATION OF ABSTRACT Unclassified 13. CLIMITATION OF ABSTRACT Unclassified 14. Unclassified 15. PRICE CODE	12a. DISTRIBUTION/AVAILABILITY S	TATEMENT	12	b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)—At the request of USAF Hospital Luke/SGPB, personnel from AF0EHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT Unclassified 18. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 19. LUKE AFB OIL/Water separators mercury 10. PRICE CODE 11. MINITATION OF ABSTRACT Unclassified 12. LIMITATION OF ABSTRACT Unclassified 13. CLIMITATION OF ABSTRACT Unclassified 14. Unclassified 15. PRICE CODE				
AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 16. PRICE CODE Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified Unclassified none	Statement A. Unlimite	d, approved for publi	c release	
AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 16. PRICE CODE Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified Unclassified none		•		
AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 16. PRICE CODE Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified Unclassified none	<i>,</i> -			
AFOEHL conducted a wastewater characterization survey at Luke AFB. The scope of the survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 16. PRICE CODE Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified Unclassified none	12 ABSTRACT (Maximum 200 words			
survey was to characterize the wastewater, analyze industrial effluent, effluent from oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. Subject terms	AEREUL conducted a was	'At the request of U	SAF Hospital Luke/	SGPB, personnel from
oil/water separators, and storm water. The survey showed Luke AFB needed to take some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF.PAGES 16. PRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified OF THIS PAGE Unclassified Unclassified Unclassified Unclassified None	survey was to characte	tewater characterizat	ion survey at Luke	AFB. The scope of the
some follow-up action to reduce levels of ammonia, cyanide, boron, sulfide, and surfactants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Description of Abstract Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified None	oil/water senarators	rize the wastewater,	andlyze industrial	erriuent, erriuent from
factants. Recommendations include: (1) Examine the soaps and cleaners being used to determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 97 Wastewater: Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 16. PRICE CODE 15. NUMBER.OF-PAGES 97 Wastewater: Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE Unclassified Unclassified Unclassified none	some follow-up action	to reduce levels of a	survey Showed Luk mmonia cvanido h	e Arb needed to take
determine if phenol is present. Substitute non-phenolic soaps to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF.PAGES 97 Wastewater Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF ABSTRACT OF ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified None	factants. Recommendat:	ions include: (1) Fx	amine the soans an	nd cleaners being used to
tration of phenols being discharged into the sanitary and storm drainage systems. (2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES 97 Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE OF THIS PAGE Unclassified Unclassified Unclassified Unclassified Unclassified One	determine if phenol is	present. Substitute	non-phenolic soan	s to reduce the concen-
(2) The contamination found was mostly ammonia, cyanide, boron, sulfides and surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF.PAGES 97 Wastewater Industrial effluent, Shelia-P. Scott: Luke-AFB oil/water separators mercury 16. PRICE CODE 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF THIS PAGE Unclassified Unclassified Unclassified none	tration of phenols being	ng discharged into th	e sanitary and sto	orm drainage systems.
surfactants; usually found in detergents and cleaners. Since all contaminants exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. Wastewater Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury Wastewater Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury Wastewater Industrial effluent of this page Of ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified none	(2) The contamination	found was mostly ammo	nia, cyanide, boro	on, sulfides and
and replace them. (3) Clean and maintain the grease traps at the dining facilities. If there are none, then install some. (4) Perform routine maintenance on the oil/ water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF. PAGES 97 Wastewater, Industrial effluent, Shelia-P. Scott: Luke-AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified none	surfactants; usually for	ound in detergents an	d cleaners. Since	all contaminants
If there are none, then install some. (4) Perform routine maintenance on the oil/ water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simu- lator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified Unclassified Unclassified One	exceeded the limits, d	etermine what deterge	nts and cleaners o	contain these chemicals
water separators and do periodic inspections to determine their effectiveness. (5) Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS Wastewater Industrial effluent, Shelia-P. Scott Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified Unclassified Unclassified None	and replace them. (3)	Clean and maintain th	e grease traps at	the dining facilities.
Determine the electronic components causing the high barium level at the Flight Simulator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 14. SUBJECT TERMS Wastewater, Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified Unclassified None	if there are none, the	n install some. (4) P	erform routine mai	ntenance on the oil/
lator and prevent it being disposed of down the sanitary sewer. (6) Take two additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P-Scott: 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT OF REPORT Unclassified Unclassified Unclassified Unclassified None	Notemark the electronic	periodic inspection	s to determine the	eir effectiveness. (5)
additional samples for mercury at Burger King and the Hush House. 15. NUMBER.OF-PAGES 97 Wastewater, Industrial effluent, Shelia-P. Scott: 16. PRICE CODE Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified Unclassified None	lator and prevent it being disposed of down the confidence (C) Take the			
Wastewater, Industrial effluent, Shelia-P. Scott: Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified none	additional samples for	mercury at Rummen P4	uie Saiittary Sewe	er. (b) lake two
Wastewater Industrial effluent, Shelia-P-Scott: Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified none	14. SUBJECT TERMS	merent ar burger VI	na ana me man un	15, NUMBER OF PAGES
Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified none			•	-1-2
Luke AFB oil/water separators mercury 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF ABSTRACT Unclassified Unclassified Unclassified none	Wastewater Industrial effluent, Shelia-P. Scott		16. PRICE CODE	
OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified none	-Luke AFB oil/water separators mercury			
				ION 20. LIMITATION OF ABSTRACT
IDEA, UDAN ADE MICHAEL UDIT TOUR DIEDART WELL WELL WELL	Unclassified NSN 7540-01-280-5500	Unclassified	Unclassified	none Standard Form 298 (Rev. 2-89)

(This page left blank)

ACKNOWLEDGEMENTS

The author greatly appreciates the technical expertise and hard work provided by the other members of the survey team. Without their valuable assistance this survey could never have been accomplished under uncontrollable circumstances.

We also acknowledge the support given us by the following personnel: 1Lt Alan Thomas, OIC, Bioenvironmental Engineering Services; MSgt Grandberry, NCOIC, Bioenvironmental Engineering Services; the technician staff, Bioenvironmental Engineering Section; and Phil Jackson, Plumber, Civil Engineering.

-Accesion For		
NTIS CRA&A () DTIC TAB () Unannowiced () Justification		
By Distribution (
Availability Coder		
Dist	Avial era On-ce	
A-1		

Contents

			Page
	SF Form Acknowles	dgment	i iii v
_			1
ι.	INTRODUC'	PION	1
II.	DISCUSSIO	ON	1
.13.3	RESULTS		ц
IV.	CONCLUSIO	ons	15
٧.	RECOMMEN	DATIONS	28
	Appendix		
	Α	Request Letter	29
	В	Site with Analytical Parameter	33
	С	Analyses and Preservation Methods	45
	D	Listing of Shops	49
	Ε	EPA Metnod 601 Results	55
	F	Analytical Results	65
	G	Metals Analysis Results	75
	Н	EPA Method 602 Results	83
	Ī	Bioassay Results	89
	J	Fecal Coliform Results	93
	Distribu	tion List	97

Illustrations

Table	Title	Page
1	Effluent Limitations	2
2	Trace Substances	3
3	Flow Data	3 5
4	Site Description	7
5	Results that have exceeded limits	17
6	Exceeded Metals Results	21
7	Exceeded EPA Method 601 Results	23
8	Exceeded EPA Method 602 Results	25
Figure		
1	Outfall from Sewage Treatment Plant	2
2	Sampling Site Locations	6
3	Catch Basin 8	13
4	Hush House Outfall	14
5	Oil/water Separator at Bldg 912	27

(This page left blank)

I. INTRODUCTION

At the request of USAF Hospital Luke/SGPB through HQ TAC/SGPB, AFOEHL/EQE conducted a wastewater characterization study of their wastewater and stormwater sewerage systems (Appendix A). This study was needed to identify the sources of various contaminates present in both stormwater and sanitary sewer discharge. Luke's wastewater treatment plant was exceeding several parameters of their National Pollution Discharge Elimination System (NPDES) permit at the time the study was conducted; including copper, phenol, ammonia, and chlorine. Luke AFB's new NPDES permit is more stringent than the previous permit. The Arizona Department of Environmental Quality (ADEQ) has investigated an unlined discharge channel coming from the outfall south of oil/water separator 912. During this inspection ADEQ identified some petroleum-based residues in the vicinity of ground fissures in the unlined channel. ADEQ assumes the material was discharged from Luke AFB and has expressed concern about the origin of such discharge.

The scope of the wastewater survey was to characterize the effluent from oil/water separators not under contract, industrial shops, and points along the storm and sanitary sewer system. This study also evaluated the influent and effluent of the wastewater treatment plant.

The survey was conducted from 4 to 19 Dec 1989. The wastewater characterization survey team included Maj John P. Garland III, 1Lt Shelia P. Scott, Lt Darrin L. Curtis, SSgt Mary Fields, Sgt Pete Davis, Sgt Harold Casey, Sgt Stanley Dabney, and Amn Christopher Feagin. Base points of contact were 1Lt Alan C. Thomas (Base Bioenvironmental Engineer), Col Robert J. Barnum (832D Combat Support Group Commander), Lt Col Larry Black (832D Combat Support Group Deputy Commander), Lt Col Ronald Descheneaux (Civil Engineering Commander), Capt David Dixion (Civil Engineering, Chief Environmental Planning), Mr David Lewis (Environmental Protection Specialist), Mr Meloche (Utilities Superintendent), TSgt Paul Brown (Sewage Treatment Plant Foreman) and Mr Charlie Brown (Sewage Treatment Plant Shift Leader).

II. DISCUSSION

A. Background

Luke AFB is situated in an arid area approximately 18 miles west of downtown Phoenix AZ. Luke covers an area approximately 2,036 acres (excluding family housing areas). The weather at Luke is ideal for flying year round.

B. Sewerage System

Luke AFB has separate sanitary and storm drainage systems. Domestic sewage with a possible combination of industrial wastewater is discharged through the sanitary sewer system to an Air Force operated wastewater treatment facility, located east of the base. Through primary and secondary processes, 0.85 MGD of sewage is treated and discharged to the Aqua Fria River daily.

The storm water drainage system for the base is a combination of underground drainage along with open channel canals (Figure 1).

C. Discharge Limitations

Luke is regulated by EPA Region 9 "Standard Federal NPDES Permit Conditions", dated January 29, 1988 and other effluent limitations and monitoring requirements set forth in their permit No. AZO110221 discharge serial No. 001.

Summarized below in Table 1 are the effluent limitations for Luke AFB. The basis is NPDES Permit No. AZO110221 outfall serial number 001.

Table 1. Effluent Limitations

Parameter	30-Day	7-Day	Daily Max
BOD	30 mg/l	45 mg/l	***
Suspended Solids	30 mg/l	45 mg/l	* * *
Fecal Coliform	1000/100 ml	N/A	4000/100 ml
Settleable Solids	1 ml/l	N/A	2 ml/l
Total Residual Chlorine			0.05 mg/l

The pH of the discharge must be greater than 6.0 and less than 9.0. The Biomonitoring will not be less than 50% survival as required and I.A.3.

Figure 1: Outfall from Sewage Treatment Plant

Table 2 lists the trace substances as specified in . ne permit.

Table 2. Trace Substances

Effluent	Discharge
<u>Unaracteristics</u>	Limitations daily max mg/I
Characteristics Arsenics (as As) Boron (as B) Cadmium (as Cd) Chromium* Copper (as Cu) Lead (as Pb) Manganese (as Mn) Mercury (as Hg) Selenium (as Se) Silver (as Ag) Zinc (as Zn) Cyanide (total)	0.05 1.00 0.01 0.05 0.05 0.05 0.05 10.00 0:0002 0.02 0.05 0.50
Phenolics (total)	0.005
· ·	• •
Ammonia (as un-ionized NH ₃)	0.02
Sulfides (total)	0.10

^{*} Chromium as Cr, hexavalent and trivalent.

The discharge shall not cause objectionable odors at the surface of the receiving waters.

There shall be no discharge of floating solids, oil, grease or visible foam in other than trace amounts.

There shall be no discharges of toxic substances that violates the water quality standards of the State of Arizona, including those in A.C.R.R. 9-21-205.

The discharge shall not raise the natural ambient water temperature more than 3 degrees Celsius.

The discharge shall not cause the turbidity of the receiving water to exceed 50 nephelometric turbidity units.

The discharge shall not lower the dissolved oxygen concentration of the receiving water to less than 6~mg/l.

The discharge cannot exceed the following limitations:

- a. Biochemical oxygen demand (BOD) maximum discharge limitations are 114 kg/day monthly, 170 kg/day weekly, and 341 kg/day daily based on the design capacity of 3,785 meters cubed a day.
 - b. The suspended solids limitations are the same as part (a) BOD.

III. PROCEDURES

A. Flow

The survey team attempted to take flow data at several sites in order to provide the base mass data (i.e., mg) in addition to concentration data (i.e., mg/l). However, site circumstances like stagnant lines, excessively deep manholes, multiple inflow sites, dangerous manhole rings and other problems made collection of flow data impossible. Table 3 shows flow data taken at specific sites or an explanation as to why flow measurements weren't taken.

- 1. Sampling Strategy. Main branch lines were sampled along with dining facilities and industrial shops that perform maintenance. The sewage treatment plant influent and effluent and 16 oil/water separators were sampled at the outfall portion of the aqueous phase.
- 2. Sampling Site Numbers and Locations. Table 4 gives complete description of sites and locations. Figure 2 shows sampling site locations.
- 3 Sampling Frequency. Equi-proportional composite samples were taken hourly for 24 hours at one to three day sample periods. There were approximately 48 sites sampled by using ISCO model 2700 and American Sigma automatic composite samplers. Grab samples were taken for oil/water separators.
- 4. Sampling Analyses. Appendix B shows the analyses for the sites. Appendix C shows the preservation for each analysis. Appendixes E, F, G, H, I, and J show all of the analytical tests and results taken on the survey.

Table 3. Flow Data

Site Flow Data 58 We were unable to take flows from the housing area because manholes were backed up. This problem is caused by sewer lines sloping. 59 Pump Station 901 had other lines entering, therefore, we were unable e flow measurements. A manhole was located in the street by Building 904b, but we were unable to take flow measurements due to depth of hole. 61 We were unable to take flow measurements at 2nd St, Building 585 manhole. This manhole had other lines entering it. 4th St and Building 546. Could not take measurements due to other sewer lines entering it. A flow reading was taken at the manhole at Building 514 (OSI Building). The total flow for 13-14 Dec 89 was 0001220 GPD. 64 2nd and K near Building 750: No flow measurements could be taken because of other sewer lines entering it. 65 Litchfield Road near Building 593: The manhole could not be found due to landscaping. 66 Near Building 799 East: No flow measurements could be taken at site 11. One manhole contained bad rungs and another had other sewer lines entering it. 67 O/W Separator Building 912: No flow in line at all.

Bldg 179: Total flow from 13-14 Dec 89 was 64250 GPD.

Table 4. Site Description

Site	Description
1	Bldg 177, AAFES Gas Station: Contracted
2	Bldg 192, Wash Rack: Contracted
3	Building 248, Auto Hobby Shop: On 9 Dec 89 at 1600 a grab sample was taken from this oil/water separator. At this time a thick oil sheen was noticed. pH 4.22, Temp 71.6,F.
4	Bldg 291, Vehicle Maint Shop: Contracted
5	Bldg 328, POL Operation: Contracted
6	Bldg 330, Vehicle laint Yard: Contracted
7	Bldg 338, Pave & Equip Shop: Contracted
8	Bldg 339, BCE shops: Contracted
9	Bldg 341, BCE Wash Rack: Contracted
10	Bldg 351, POL Bulk Storage: Contracted
11	Bldg 353, Refueler Maint: Contracted
12	Bldg 403, AGE Wash Rack: A grab sample was taken from Site 12 at 1115 on 12 Dec 89. A strong fuel smell was noticed at this time.
13	Bldg 404, Support Equip Shop: A grab sample was taken from Site 13 at 1330 9 DEC 89. A fuel smell was noticed at this time. pH 5.84, Temp 69.8°F.
14	Bldg 408, A/C Maint Dock: A grab sample was taken from Site 14 at 1515 on 9 Dec 89. pH 7.16, Temp $71.6^{\circ}F$.
15	Bldg 431, A/C Maint Dock: A grab sample was taken from Site 15 at 1500 on 9 Dec 89. pH 5.70, Temp $68^{\circ}F$.
16	Bldg 485, A/C Maint & Trng: A grab sample was taken from Site 16 at 1430 on 9 Dec. The sample contained an oily substance resembling hydraulic fluid. pH 5.81, Temp 80.6°F.
17	Bldg 492, 405th Arm Shop: A grab sample was taken from Site 17 at 1100 on 12 Dec 89. This oil/water separator had an oil and sewage smell.

Site	Description
18, 19, 20	Bldg 617, Flt Simulator: A grab sample was taken from Site 18, 19 and 20 at 1030 on 12 Dec 89. An oil sheen was noticed at this time.
21	Bldg 912, Industrial Waste Treatment: Contracted and composite sample taken.
22	Bldg 915, A/C Maint Dock: A grab sample was taken from Site 22 at 1030 on 9 Dec 89. pH 8.27, Temp 75.2°F.
23	Bldg 922, Corrosion Control: A grab sample was taken from Site 23 at 1330 on 9 Dec 89, and an oil sheen was noticed. pH 8.6, Temp 66.2°F.
24	Bldg 922, Corrosion Control: A grab sample was taken from Site 24 at 1340 on 9 Dec 89. This oil/water separator contained what looked to be a solvent. The oil/water separator was very rusty and pieces of it were falling off. pH 8.86, Temp 68°F.
25	Bldg 926, Armament Shop: A grab sample was taken from Site 25 at 1320 on 9 Dec 89. The oil/water separator at this site drained into the stormwater lines.
26	Building 927, Org. Maint Shop: A grab sample was taken from Site 26 at 1300 on 9 Dec 89. This oil/water separator drains into the stormwater lines. An oil sheen was noticed at time of sampling. pH 8.6, Temp 60.8°F.
27	Bldg 931, Engine Shop: Contracted
28	Bldg 940, Flight Simulator: Storage Tank
29	Bldg 947, Battery Storage: Storage Tank
30	Bldg 966, NDI Lab: A grab sample was taken from Site 30 at 1400 on 9 Dec 89. This is a very small oil/water separator. An oil sheen was noticed. pH 7.53, Temp 68°F
31	Bldg 968, Fuel Barn: A grab sample was taken from Site 31 at 1415 on 9 Dec 89.
32	Bldg 970, AGE Yard: Contracted
33	Bldg 982, Hydrazine Facility: Storage Tank
34	Bldg 983, A/C Maint Dock: Contracted
35	Bidg 983, A/C Maint Dock: Contracted
36	Bldg 984, Fuel Barn: Contracted

Site	Description
37	Bldg 985, A/C Maint Dock: Contracted
38	Bldg 985, A/C Maint Dock: Storage Tank
39	Bldg 993, Comp Maint Facil: A grab sample was taken from Site 39 at 1002 on 8 Dec 89. pH 6.85, Temp 77°F.
40	Bldg 999, A/C Maint Dock: Contracted
41	Bldg 1003, Power Check Pad: Contracted
42	Bldg 1006, Hush House: Storage Tank
43	Bldg 1008, Power Check Pad: Contracted
44	Bldg 1009, Power Check Pad: Contracted
45	Bldg 1012, Hush House: Contracted
46	Bldg 1016, Hush House: Contracted
47	Bldg 1018, AGE Shop: Contracted
48	Bldg 1019, Fuel Barn: Contracted
49	Bldg 1022, A/C Maint Dock: Contracted
50	Bldg 1233, Vehicle Wash Rack: Contracted
51	Manhole Near Bldg 935: No sample taken due to standing water.
52	Manhole Near Bldg 972: Sampled for fecal coliform on 14 Dec 89.
53	Catch Basin 8 near Bldg 919: A sediment sample was taken at 1530 on 13 Dec 89, the approximate water depth is 15 inches (Figure 3).
54	Catch Basin 13 near Bldg 935: A composite sample was taken with the start time of 1020 on 12 Dec 89 and ended at 1000 on 13 Dec 89. Water temperature was $50^{\circ}F$.
55	Catch Basin 17 near Bldg 959: A grab sample was taken at 1100 on 13 Dec 89. Temperature was 73.4°F. On 12 Dec 89 a grab sample was taken with a temperature of 73.4°F and a pH of 7.12.
56	Influent to sewage treatment plant: A composite sample was started at 1500 on 11 Dec 89 and ended at 0900 on 12 Dec 89. Temperature was 78.8°F. Composite samples were also taken at this site on the following two days.

Site	Description
57	Effluent from sewage treatment plant: A composite sample was taken on the 12, 13, and 14 Dec 89. Temperature was 56°F. Two grab samples were taken for oils and greases.
58	In Housing Area: A composite sample was taken, start time was 0900 on 12 Dec 89 and ended at 0945 on 13 Dec 89. Temperature was 71.6°F, pH 6.92. A composite sample was also taken on 12 Dec 89. The cover to the manhole needs replacing.
59	Pump Station Bldg 901: A composite sample was taken from 1500 on 11 Dec 89 to 1130 on 12 Dec 89. On 13 Dec 89 a grab sample was taken at 1100. Temperature 69.8°F, pH 6.31.
60	Pump Station, Bldg 793: A composite sample was started at 1500 on 11 Dec 89 and ended at 1130 on 12 Dec 89. Temperature 77°F, pH 7.2. There was a strong volatile smell in the manhole followed by a burning nasal sensation upon leaving.
61	2nd Street near Bldg 585: A composite sample was started at 0940 on 11 Dec 89 and ended at 0900 on 12 Dec 89. pH 7.2. Manhole had strong petroleum odor and petroleum sheen.
62	Planning site, no samples taken.
63	The corner of 5th and I streets: A composite sample was started at 1000 on 11 Dec 89 and ended at 1000 on 12 Dec 89. Temperature 65°F, pH was between 8.2 and 8.6, and there was no chlorine present. There was a petro sheen with a slight odor present at the site.
64	The corner of 2nd and K Streets: A composite sample was started at 1000 on 11 Dec 89 and ended at 0830 on 12 Dec 89. Temperature 62.7°F, pH 8.28, and there was no chlorine present. There was a medium flow with a raw sewage odor present at this site.
65	Bldg 593: Grab samples were taken due to malfunction of the ISCO on 12 Dec 89. Temperature 70.5°F, pH 7.9, and no chlorine was present. There was a heavy flow present with regular sewage odor.
66	Near Bldg 799, second manhole near lift station: Due to a low flow, the sample was essentially a grab sample. Temperature 80.7°F, pH 8.6, no chlorine present.
67	Oil/water separator at Bldg 912: A composite sample was started at 0915 on 11 Dec 89 and ended at 1025 on 12 Dec 89. Temperature 60°F, pH 7.2, and no chlorine present. There was a petroleum smell to the influent to the oil/water separator.

Site	Description
68	Bldg 985: Due to very low flow grab samples were taken. Temperature 65.6°F, pH 8.96, and no chlorine was present. Site had a regular sewage smell, but had toilet paper interrupting the flow of water.
69	No Sample Taken.
70	Planning site, no samples taken.
71	Planning site, no samples taken.
72	In Front of Hospital: A grab sample was taken because of low flow. Temperature of 71.6°F, pH 6.0, and no chlorine was present.
73	Planning site, no samples taken.
74	Bldg 993: Due to low flow of water, grab samples were taken. Temperature of $76.4^{\circ}F$, pH 8.54 , and no chlorine was present. There was a normal sewage odor present at the site.
75	Burger King: Due to malfunction of the ISCO, grab samples were taken. Temperature 74.4°F, pH 7.29, and no chlorine was present. There was a normal sewage odor present.
76	Between Bldgs 249 & 242: A grab sample was taken due to low flow of water. Temperature 69.8°F, pH 8.89, and no chlorine was present. There was a normal sewage odor present.
77	Dining facility: A composite sample was started at 1435 on 13 Dec 89 and ended at 0930 on 14 Dec 89. Temperature 77°F, pH 8.0, and no chlorine was present. Manhole was partially covered with asphalt. Water used to wash the utensils drained to the manhole where it settled approximately 50 yds away from building.
78	NCO Club along side of vehical maintenance: A composite sample was started at 1345 hrs 12 Dec 89 and ended at 1110 hrs 13 Dec 89. Temperature 77°F, pH 8.37, and no chlorine was present. There was a normal sewage odor present.
79	Planning site, no Sample Taken.
80	Commissary: A composite sample was started at 0945 on 13 Dec 89 and ended at 0940 on 14 Dec 89. Temperature 57°F.
81	The corner of 8th and I streets: A composite sample was started at 1345 on 13 Dec 89 and ended on 14 Dec 89. Temperature 60°F.

Site	Description
82	Fire Station, Bldg 450. This line also includes bldgs 404, 408, 416, 407, 422, 428, 424, 433, 432, 442, 435, 439, 443, 444: A composite sample was started at 1550 on 13 Dec 89 and ended at 1415 on 14 Dec 89.
83	Planning site, no samples taken.
84	Planning site, no samples taken.
85	Bldg 339, Zone 4-Tiger: A composite sample was started at 1130 on 11 Dec 89 and ended at 1130 on 12 Dec 89. Temperature 62°F, pH between 8.2 & 8.6. When the ISCO was set out initially, the sewage was normal, but at approximately 1430 a white chalky substance similar to thick soap was apparent.
86	Planning site, no samples taken.
87	Planning site, no samples taken.
88	Planning site, no samples taken.
89	Bldg 404 at the corner of B and 8th streets: A composite sample was started at 1315 on 13 Dec 89 and ended at 0910 on 14 Dec 89. Temperature 62.6°F, pH 8.0 and no chlorine was present. There was a very low flow due to large amounts of paper in the sewer line.
90	Planning site, no samples taken.
91	Planning site, no samples taken.
92	Planning site, no samples taken.
93	Bldg 956
94	Hush House: A grab sample was taken at 1040 on 13 Dec 89 (Figure 4).
95	Bldg 353
96	Bldg 339
97	Bldg 343
98	Bldg 346
99	Bldg 931: A grab sample was taken from a drum containing wash water on 14 Dec 89.

Site	Description
100	Bldg CB 6 Sludge
101	STP Sludge
102	Pizza Hut
103	Outfall of STP

Figure 3. Catch Basin 8

Figure 4. Hush House Outfall

IV. CONCLUSIONS

- Tables 5, 6, 7, and 8 show the parameter excursions at each site. The discussion below gives more specifies to tie together possible sources of contamination and any unusual observations noted while collecting the samples.
- A. High Chemical Oxygen Demand (COD) (>700 mg/l) may be attributed to the use of aircraft soap and Citrikleen that discharges into the oil/water separators then to the sanitary sever.
- B. High ammonia concentrations (>20 $\mu g/1)$ may be found as a constituent in some soaps and cleaners.
- C. High cyanide concentrations (>20 μ g/l) may be found in film bleaching chemicals and laundry detergent or soaps of certain strengths. From the AFOEHL Hazardous Waste Survey, no particular soap was identified from these shops. From other shops the most common chemicals used for cleaning are Calla 800, Citrikleen and aircraft soap.
- D. High phenol concentrations (>5 $\mu g/1$) were found at practically every sampling site throughout the base. Phenol is a constituent of soaps and cleaners.
- E. High boron concentrations (>100 $\mu g/1$) may be found as a constituent in fixers and developers and biodegradable aircraft soaps and cleaners.
- F. High MBAS concentrations (>2 mg/l) were found at sites where cleaning operations took place.
 - G. High sulfide concentrations (>100 μ g/l) can be found in detergents.
- H. High oil and grease levels (>15 mg/l) were found at dining facilities and maintenance organizations. Since oil and grease is a combination of fats from food stuffs and petroleums, these are the source of the highest occurring excursions.
- I. High petroleum hydrocarbons levels (>15 mg/l) were found at maintenance organizations and parts cleaning shops.
- J. High conductivity levels (>1000 $\mu mhos)$ were found at places where washing and electronic circuitry are located.
- K. High barium levels (>2 mg/l) were found at the Flight Simulator. Barium is used in electronics. Since the Flight Simulator is mostly electronic equipment this is the possible source of contamination.
- L. High iron levels (>1.0 mg/l) were found throughout the base. Low or high pHs can cause corrosion to occur.
- M. High manganese levels were found at the Auto Hobby Shop only. Manganese is a constituent in steel alloys possibly from engine parts and gears.

- N. High zinc levels were found at the sites where operations of maintenance and cleaning occur.
- O. High titanium levels were found at two shops, Zone 4 Tiger and 405 Equipment Maintenance Squadron, Bldg 404. The processes done in these shops are repairing, maintaining flight line support equipment and electrical, plumbing, refrigeration and heating operations. Titanium is a constituent in thermal insulators, heat resistent surface coatings in paints and plastics, and aircraft tubing and fittings.
- P. High mercury levels were found at unusual sites such as the Burger King, and the Hush House. Mercury can be found in manometers, thermometers and some chemical processes.
- Q. The most common volatile halocarbons found as shown in Table 7 are typical constituents in solvents for cleaning and degreasing, photography and photo copy processes and fuels.
- R. The most common volatile aromatics found as shown in Table 8 are typical constituents in insecticides, automotive and aviation gasolines, and degreasers. Most of the sites have some volatile aromatics in their wastewater.
- S. The bioassay results indicated that at 25% dilution of wastewater to deionized water showed only 60% survival rate. The 50% dilution of wastewater to deionized water showed no survival rate. This was at the 24-hour period. At the 48-hour period the 25% dilution showed only 30% survival rate. Appendix I shows the data. The requirement in the NPDES permit was for not less than 50% survival rate for biomonitoring. As stated previously the 50% dilution had no survival rate for either the 24- or 48-hour period.
- T. The fecal coliform results (Appendix J) indicate large numbers and in some instances too numerous too count (TNTC' was found. The NPDES permit requires an effluent of fecal coliform to be 4000/100 ml maximum. The sewage treatment plant effluent (site 57) results show 0/100 ml. The sewage treatment plant influent (site 56) show TNTC and values in the billions and greater.
- U. Two 24-hour composite samples were taken from the oil/water separator at bldg 912 (site 67). The petroleum hydrocarbon concentration was high on one of the two days. Other contaminants such as phenol, boron, MBA3, ethyl benzene and sulfides were extremely high also. At the time of sampling, a contractor was pumping out the oil/water separator. (Figure 5)

Table 5
Results That Have Exceeded Limits

Site Parameter	Units	3	12	13	14	15	16
BOD COD	mg/l	7075		1150		2000	****
Ammonia	n-	1013		4150 16		3800 33	2.8
Cyanide	tt			10 		20	2,0
Phenol	μg/l	225	165	166	37	320	675
Boron	11	10250	1150	12000	300	1400	400
Residue, Settleable	mg/l	,					
Residue, Total	11	3219	470	1919		1745	
MBAS	11	216	26	164		9.8	7.6
Sulfides	11	0.1			0.1	3.1	1.7
0&G	11	415	168	238	332	2160	416
Petro Hydro	II .	316	143	115		250	1248
Conductivity	µmhos	1450				1019	
Site		17	18	22	23	24	25
Parameter	Units	ŀ					
BOD							
COD	mg/l	2650	14500				
Ammonia	11	22	3	2		2	5.6
Cyanide	11	0.04					0.03
Phenol	μg/l	295	73	38	17500	16	17
Boron	tt.	3100	67000	3200		700	400
Residue, Settleable	mg/l						
Residue, Total	II	1723	3881	551	549	574	508
MBAS	11	4.3	5.8		-	5.2	
Sulfides O&G	11 11	4.5		~~~		0.1	6.1
Petro Hydro	11	416			*****		296
Conductivity		166	15000				30.7
Conductivity	µmhos		15000			W	en en en en
Site		26	30	39	54	55	55
Parameter	Units						
BOD						612	358
COD	mg/l				1650	2520	1100
Ammonia	tt	5.6	16.8	0.24	0.28	2.3	1.8
Cyanide	17	0.028		***			in
Phenol	$\mu g/1$	13	20	~~~~	33	66	80
Boron	11	1900	650	350	500	650	650
Residue, Settleable	mg/l						
Residue, Total MBAS	11- 11	486	472	957	1143	1171	1035
Sulfides	11	~ ~ · ·	6 7		320	1120	230
O&G	** t1-	0.1 31.8	6.7	0.1	1.0	8.1	1.1
Petro Hydro	11	21.0		48	16.7		251
Conductivity	µmhos			****	1081		
	μιπιου				1001		

Table 5, Continued

Site Parameter	Units	56	56	56	56	57	57
BOD COD	mg/l	156	118		***********	51	28
Ammonia Cyanide	"	26.8	25.6	26.6		22.4	20
Phenol	μg/l	33	45	45		10	
Boron	μο, 	700	850	1000		2400	
Residue, Settleable	mg/l		100 Tab No. 100				
Residue, Total	11		*****				
MBAS	11			18			
Sulfides	11	0.7	0.5	6.6			
O&G	"		48	72		~~~	
Petro Hydro	tt mb.n.n						
Conductivity	µmhos				~~~	*	
Site		57	57		58	58	59
Parameter	Units	J.	31		50	50	
BOD			~~~		210	380	88
COD	mg/l						
Ammonia	tt tt	19.6	17.1		21.6	19.6	56.8
Cyanide Phenol			10		54	70	10
Boron	μ g/l	1850	1350		1050	70 1-250	42 1700
Residue, Settleable	mg/l	1050	1220		1050	1-200	1700
Residue, Total	11						
MBAS	11					6.8	
Sulfides	11				2.1		0.7
O&G	11				268	86	
Petro Hydro	11		~~~		17.6	14.2	
Conductivity	µmhos	~~~					1063
Site		59	60	60	61	61	63
Parameter	Units						
BOD		133	276	212	603	241	159
COD	mg/l						
Ammonia Cyanide	11	56	22	31.2	12.8	15.6	81.3
Phenol		60		22	40		400
Boron	μg/l "	5750	31 850	33 1400	10 650		123 1050
Residue, Settleable	mg/l			1400			1050
Residue, Total	11	623	1339		10406	~~~	1849
MBAS	tt						
Sulfides	Ħ	0.1	10.8	0.7	1.1		1.7
0&G	ti .	51.6	356	65.6	131.2	179.2	25.2
Petro Hydro	"	***********	46.4			89.4	
Conductivity	µmhos	1245				~~~	1383

Table 5, Continued Site 63 64 64 65 65 66 Parameter Units BOD 274 65 101 239 176 277 COD mg/l------Ammonia 11 66 46 22.8 27 21.4 10 Ħ Cyanide ____ ----____ ---Phenol µg/l 52 37 37 23 52 ____ Boron 11 1050 1400 1625 850 650 500 Residue, Settleable mg/l <u>----</u> <u>---</u> <u>---</u> --------Residue, Total 11 523 579 510 635 476 11 MBAS --------____ Sulfides 11 4 0.5 ----3.1 1 0&G Ħ 65.6 96 57.6 240 65.6 Petro Hydro 11 ----35.6 87.5 Conductivity umhos 1300 1169 ----Site 66 67 67 72 74 Parameter Units BOD 175 489 201 110 COD mg/l----710 ----Ammonia Ħ 13 0.36 7.8 185 Cyanide 11 --------------Phenol $\mu g/l$ ----240 187 ----31 Boron 11 550 650 900 1400 Residue, Settleable mg/l -----------Residue, Total ---521 821 580 11 MBAS 1250 -------Sulfides Ħ ---0.1 1.5 1.3 0&G 11 89.6 208 ______ 11 Petro Hydro --------179.2 ----Conductivity umhos ____ 1013 ---1175 Site 74 75 76 77 78 79 Parameter Uni ts BOD 179 128 62 183 ----COD mg/l-------------------Ammonia 11 9.4 12.8 64 14 10.4 49 Ħ Cyanide -----------0.27 ----Phenol μg/l 60 80 24 27 ----170 Boron 1350 750 1850 750 750 2000 Residue, Settleable mg/1--------____ Residue, Total ** _-------428 436 475 **MBAS** ŧŧ --------~------Sulfides 11 ____ 0.3 1.6 0.4 0.2 O&G 11 _---70.4 ----70.4 27.2 Petro Hydro 11 ___ ----Conductivity

1700

1150

umhos

1081

Table 5, Continued

Site		80	81	82	85	85
Parameter	Units					
BOD		124	157	***	707	
COD	mg/l				~	
Ammonia	11	18.8	84	73	22	37.5
Cyanide	*1					
Phenol	μg/l	109	102	63	48	109
Boron	H	500	1200	900	4300	2300
Residue, Settleable	mg/l		<u> </u>			
Residue, Total	11	461	823	600		
MBAS	11				2.9	
Sulfides	11	0.4	1.8		0.7	
O&G	11		17.7	~~~~		70.4
Petro Hydro	*1					
Conductivity	µmhos	1175	1875	1550	1363	1500

Table 6.	. Exceeded	Metals	Results

Site		3	13	15	16	17	18
Parameter	Unit						
Arsenic	μ g/l						
Barium	μ g /l						2690
Beryllium	11						
Cadmium	11						
Calcium	mg/l						15920
Chromium	μg/l						
Copper	11	167200	11010	6500	11227	2007	161200
Iron	11	167200	11840	6589	4337	2997	161200
Manganese Nickel	tt	1134 3500					3000
Zinc	11	3000	2817				J000
Aluminum	11	1640	3008	1045		4131	
Cobalt	11		3000				
Titanium	11		9498				
Vanadium	11						
Molybdenum	11						
Mercury	11		22.9				1.8
Magnesium	mg/l						4964
Site		22	24	25	26	30	56
Parameter	Unit			45		J	,
Arsenic	μg/l						
Barium	μg/l			1339	1803		
Beryllium	11						
Cadmium	11						
Calcium	mg/l						
Chromium	μ g/l "						
Copper Iron	11	1523	6719	1035	1780	1869	1205
Manganese	11	1525	0119	1035	1700	1009	1205
Nickel	11						
Zinc	11						
Aluminum	Ħ						
Cobalt	tt						
Titanium	11						
Vanadium	31						
Molybdenum	11						
Mercury	11						
Magnesium	mg/l						

Table	6.	Con	tin	ued
IUDIC	\sim	CO11	CT11	$u \leftarrow u$

Site		57A	57	60	63	67	72
Parameter	Unit						
Arsenic	μg/l						
Barium	μg/l						
Beryllium	11						
Cadmium	11						
Calcium	mg/l						
Chromium	μg/l						
Copper	11						
Iron	tı			26150	8201	5107	8102
Manganese	11						
Nickel	11						
Zinc	11			1395			
Aluminum	11			2814			
Cobalt	11						
Titanium	11						
Vanadium	11						
Molybdenum	11						
Mercury	11	2.4	2.3				
Magnesium	mg/l						
Site		75	76	77	83	85	94
Parameter	Unit				_		
Arsenic	μ g/l						
Barium	μg/l						
Beryllium	11						
Cadmium	tt						
Calcium	mg/l						
Chromium	μg/l						
Copper	ii						
Iron	11			3592			
Manganese	11						
Nickel	11						
Zinc	11						
Aluminum	tt						
Cobalt	11						
Titanium	11					3165	
Vanadium	11						
Molybdenum	11						
Mercury	11	1.3	2.1		2.1		1.8
Magnesium	mg/l						

Table 7. EPA Method 601

Site		3	16	23	24	30
Parameter	Unit	_		-		
Bromodichloromethane	μ g/l					
Bromoform	11					
Carbon Tetrachloride	11					
Chlorobenzene	11					0.9
Chloroethane	II					
Chloromethane	ti					
Chloroform	Ħ					
Chlorodibromomethane	11	141				
1,2-Dichlorobenzene	tt					
1,3-Dichlorobenzene	1f					
1,4-Dichlorobenzene	tt					
Dichlorodifluoromethane	11					
1,1-Dichloroethane	11	132				15
1,2-Dichloroethane	11					
1,1-Dichloroethene	11					1
trans-1,2-Dichloroethene	11			1.6		0.7
1,2-Dichloropropane	11					
cis-1,3-dichloropropene	tt					
trans-1,3-dichloropropene	11					
Methylene Chloride	11	14	1	1044	2.4	1.4
1,1,2,2-Tetrachloroethane	11					
Tetrachloroethylene	11	1644				
1,1,1-Trichloroethane	Ħ	699	2.1			998
1,1,2-Trichloroethane	13					
Trichloroethylene	11	169				
Trichlorofluoromethane	11					
Vinyl Chloride	11					
Bromomethane	31					
2-Chloroethylvinyl ether	11					
cis-1,2-Dichloroethene	11	883				
•		_				
Site		55	56	57	58	59
Parameter	Unit					
Bromodichloromethane	μg/l					
Bromoform	11					
Carbon Tetrachloride	ţţ					
Chlorobenzene	tf					
Chloroethane	11					
Chloroform	11					
Chloromethane	ŧŧ					
Chlorodibromomethane	11					
1,2-Dichlorobenzene	Ħ					
1,3-Dichlorobenzene	11					
1,4-Dichlorobenzene	Ħ					

Table 7, Continued

Site Parameter	Unit	55	56	57	58	59
Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Methylene Chloride 1,1,2,2-Tetrachloroethane Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl Chloride Bromomethane 2-Chloroethylvinyl ether cis-1,2-Dichloroethene	11 11 11 11 11 11 11 11 11 11 11 11 11	17				
Site Parameter	Unit	59	60	64	67	
Bromodichloromethane Bromoform	μg/l					
Carbon Tetrachloride	tt					
Chlorobenzene	11					
Chloroethane	11					
Chloroform	11					
Chloromethane	tf					
Chlorodibromomethane	I I					
1,2-Dichlorobenzene	11					
1,3-Dichlorobenzene	Ħ					
1,4-Dichlorobenzene	tt					
Dichlorodifluoromethane	II					
1,1-Dichloroethane	11					
1,2-Dichloroethane	11					
1,1-Dichloroethene trans-1,2-Dichloroethene	11 11					
Methylene Chloride	11		0 =		5	
1,1,2,2-Tetrachloroethane	11		8.5			
Tetrachloroethylene	11					
1,1,1-Trichloroethane	11	34		22		
1,1,2-Trichloroethane	11	37		23		
Trichloroethylene	11					
Trichlorofluoromethane	11					
Vinyl Chloride	11					
Bromomethane	11					
2-Chloroethylvinyl ether	11					
cis-1,2-Dichloroethene	II					

	Table 8. E	PA Method	1 602			
Site Parameters	Units	3	12	14	17	23
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl Benzene Chlorobenzene Toluene Benzene 1,2-Dichlorobenzene	μg/l " " " " "	5.2 2.7 6 34	4 29 8	3 14 1.9	960 80	0.7 2.5 1.3
Site Parameters	Units	56	56	56	57	58
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl Benzene Chlorobenzene Toluene Benzene 1,2-Dichlorobenzene	μg/l " " " " "	69	6 8 21	8.7 9.2 17	3	3 . 5
Site Parameters	Units	59	60	60	61	64
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl Benzene Chlorobenzene Toluene Benzene 1,2-Dichlorobenzene	μg/l " " " "	3• ⁴ 42	15 54	11 22	3•2 4	67 45
Site Parameters	Units	64	65	67	67	68
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl Benzene Chlorobenzene Toluene Benzene	μg/]. !! !! !!	67	1.9 5.8 5.8	9.2	120 270 60	4

Ħ

Benzene 1,2-Dichlorobenzene

Table 8, Continued

Site		72	85	85
Parameters	Units			
1,3-Dichlorobenzene	μ g/ l			
1,4-Dichlorobenzene	31			
Ethyl Benzene	11		75	14
Chlorobenzene	11			
Toluene	11	28		12
Benzene	11			6
1.2-Dichlorobenzene	11			

Figure 5. Oil/Water Separator at Bldg 912

V. RECOMMENDATIONS

- A. From the analytical results, phenols were detected throughout the base. Examination of the soaps and cleaners being used should be done to determine if phenol is present. Non-phenolic soaps should be substituted to reduce the concentration of phenols being discharged into the sanitary and storm drainage systems.
- B. Most of the contamination found were ammonia, cyanide, boron, sulfides and surfactants. These constituents are usually found in detergents and cleaners. Since the contaminants all exceeded the limits, determine what detergents and cleaners contain these chemicals and replace them.
- C. Clean and maintain the grease traps at the dining facilities. If there are no grease traps, then install some to eliminate or reduce the oil and grease levels going into the sanitary sewer.
- D. Perform routine maintenance on the oil/water separators and do periodic inspections on the effectiveness of these separators.
- E. Determine what electronic components could be causing the high barium level at the Flight Simulator. Prevent barium from being disposed of down the the sanitary sewer.
- F. Take two additional samples at Burger King and the Hush House for mercury to confirm mercury discharge. If mercury is again found, determine the source and dispose of it properly.
- G. Dilute the cleaning detergents to decrease the high concentrations of surfactants.

APPENDIX A

Request Latter

DEPARTMENT OF THE AIR FORCE

actin EQ

832D MEDICAL GROUP (TAC) LUKE AIR FORCE BASE, AZ 85309-5300

REPLY TO ATTN OF:

SGPB

28 July 1989

SUBJECT: Request for Assistance of AFOEHL Wastewater Team

TO: HO_TAC/SGPB CAFOEHL/EC IN TURN

- 1. Luke AFB requests the support of the AFOEHL in the form of a wastewater Characterization Study, to be scheduled at the earliest possible date. This study is needed to identify the sources of various contaminants present in both stormwater and sanitary sewage, and to locate sites of cross connection between these two streams.
- 2. Luke is currently in application for renewal of its sewage treatment plant NPDES permit. One of the conditions for renewal is thorough characterization of potential industrial discharges to the sanitary sewage system. EPA representatives have made it clear that effluent limit exceedances, which have been fairly common, will have to be tracked down under the new permit.
- 3. A concurrent issue is the potential discharge, by various means, of industrial wastes into the stormwater drainage system. This may be occurring through the normal routes of leaks, spills and unauthorized dumping, but we strongly suspect that it is also caused by cross-connections. Because of an incident several months ago, our stormwater discharge is being closely watched by the local regulators, and the coming stormwater discharge permitting system will only intensify this scrutiny.
- 4. Recent publicity caused by the EPA and Arizona Department of Environmental Quality's apparent "get tough on Luke" policy is additional impetus to resolve these problems. Although we know that OEHL's wastewater team has a very full agenda, we would appreciate your earliest possible assistance. If you need more documentation or have any questions, please call me at AV 853-7521.

ALAN C. THOMAS, 1 Lt, USAF, BSC

Chief, Bioenvironmental Engineering Svs

1st IND., HQ TAC/SGPB

1 5 AUG 1989

TO: USAF OEHL/CC JER

Forwarded for your action. OEHL support of this request will be greatly appreciated.

Readiness is our Profession

JERRY P. DOUGHERTY, COLONEL USAR BSC CHIEF, BIOENVIRONMENTAL ENCR. SYC.

890920

APPENDIX B
Sites With Analytical Parameters

SITE WITH ANALYTICAL PARAMETER

	S	ites	1 -	10						
	1	2	3	4	5	6	7	8	9	10
рН	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Temperature	Х	Χ	X	Х	X	Χ	Χ	Χ	Χ	Х
Total Suspended Solids	Χ	X	X	X	X	X	Х	Χ	Χ	Х
Settleable Solids	X	Х	Χ	Х	X	Х	X	Χ	Χ	Χ
Conductivity	X	Х	X	Х	Х	Х	X	Х	Х	X
COD	X	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Χ
BOD										
Oil & Grease	X	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ
ICP Metals	Χ	X	Χ	X	Х	Х	Х	X	Χ	Х
Volatile Halocarbon	Χ	Х	Х	Х	Х	Х	Х	X	Х	X
Volatile Aromatics	X	Х	X	X	Х	X	X	X	X	Х
MBAS	Χ	X	Χ	X	Х	X	Х	X	X	Χ
Pesticides										
Cyanide	Χ	X	Х	X	X	X	X	X	Χ	Х
Boron	Х	Χ	X	X	X	Х	Χ	X	Χ	Χ
Petroleum Hydrocarbons	Χ	Χ	Х	X	Х	X	Х	Χ	Х	Х
Fecal Coliforms										
EP Toxicity										
Sulfides	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Ammonia	Х	X	Х	Х	Х	Х	Х	X	Х	Χ
Phenol	X	X	X	X	X	Х	X	Х	X	X
Sample Taken	С		Y	c	c		c	c	<u></u>	С

C = Contract
Y = Yes
N = No

Sites 11 - 20

	• •									
	11	12	13	14	15 ·	16	17	18	19	20
рН	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Temperature	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Total Suspended Solids	Χ	Х	Х	Х	Х	Χ	Х	Х	Х	Χ
Settleable Solids	Χ	Х	Х	Χ	Х	Χ	Х	Х	Х	Х
Conductivity	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Χ
COD	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
BOD		1								
Oil & Grease	X	χ	Χ	Х	Х	Х	Х	Х	Х	Χ
ICP Metals	Χ	Х	Х	Х	Х	Х	Х	Х	Х	χ
Volatile Halocarbon	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Volatile Aromatics	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Χ
MBAS	X	Х	Х	Х	Х	Χ	Х	Х	Х	Х
Pesticides										
Cyanide	Χ	Х	Х	Х	Х	Х	Х	Х	Х	X
Boron	Х	Х	Х	Х	Х	Х	Х	Х	X	X
Petroleum Hydrocarbons	X	Х	Х	Х	Х	Х	Х	Х	Х	X
Fecal Coliforms										
EP Toxicity										
Sulfides	X	Х	Х	Х	Х	Х	Х	X	Х	Х
Ammonia	X	X	Х	Х	Х	Х	Х	Х	X	X
Phenol	Χ	X	X	X	Χ	X	Χ	X	Х	Х
SAMPLE TAKEN	C	<u></u>	Y	Y	Y	Y	<u></u>	Y		c

C = Contract
Y = Yes

N = No

Sites 21 - 30

	21	22	23	24	25	26	27	28	29	30
рН	Х	х	Х	х	Х	х	Х	х	Х	Х
Temperature	X	Х	Х	Χ	X	Х	Х	Х	Х	Χ
Total Suspended Solids	X	Х	Х	Х	Х	Х	Х	Х	Х	X
Settleable Solids	Х	Х	Х	Х	Х	Х	Х	Х	X	Χ
Conductivity	X	Х	Х	Х	Х	Х	Х	X	Х	Х
COD BOD	Х	X	X	X	X	X	Χ	X	X	X
Oil & Grease	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
ICP Metals	Х	Χ	Х	Χ	Х	Х	X	X	X	Х
Volatile Halocarbon	X	Χ	Х	Х	Χ	Х	Х	Х	Χ	Χ
Volatile Aromatics	X	Χ	X	Х	Х	Х	X	X	Х	Χ
MBAS	X	X	X	X	X	X	X	X	X	X
Pesticides										
Cyanide	Χ	Χ	Х	Χ	X	Х	Χ	Χ	X	X
Boron	X	Χ	Х	Х	X	Χ	Х	Х	X	Χ
Petroleum Hydrocarbons Fecal Coliforms EP Toxicity	Х	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х
Sulfides	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Ammonia	Χ	Х	Х	X	X	Х	X	Х	Х	Χ
Pheno1	X	X	X	X	X	X	X	X	X	X
SAMPLE TAKEN	С	Y	Y	Y	Y	Y	С	С	С	Y

C = Contract
Y = Yes
N = No

Sites	31	-	40
-------	----	---	----

	31	32	33	34	35	36	37	38	39	
рН	х	х	х	Х	х	х	х	Х	Х	Х
Temperature	X	X	X	X	χ	X	X	X	X	Χ
Total Suspended Solids	λ	X	X	Х	Χ	X	Χ	X	X	Х
Settleable Solids	X	X	X	X	X	X	X	X	X	Χ
Conductivity	X	Χ	X	Х	X	X	Χ	X	X	Χ
COD	X	Х	X	X	χ	X	X	X	X	X
BOD					•		••		••	.,
Oil & Grease	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х
ICP Metals	X	Χ	X	χ	X	X	Х	Х	X	X
Volatile Halocarbon	X	X	X	X	X	X	Х	X	X	X
Volatile Aromatics	X	X	X	X	X	X	X	X	X	X
MBAS	X	X	Χ	X	χ	χ	X	Х	X	X
Pesticides	••	••				•				
Cyanide	Χ	Χ	χ	Χ	χ	Х	Χ	Х	Х	Х
Boron	X	X	Х	X	Х	X	X	X	X	X
Petroleum Hydrocarbons	X	X	X	X	X	X	X	X	X	X
Fecal Coliforms	••	••	••			•			••	
EP Toxicity										
Sulfides	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	X
Ammonia	X	X	Х	Х	Х	Х	Х	X	X	X
Phenol	X	χ	X	X	Х	X	X	Х	X	X
										
SAMPLE TAKEN	Y	С	С	С	С	С	С	С	Y	С

C = Contract

Y = Yes

N = No

Sites 41 - 50

	41	42	43	44	45	46	47	48	49	50
рН	х	Х	Х	х	Х	х	Х	Х	Х	Х
Temperature	Х	Х	Х	Х	Х	Х	Х	Х	X	X
Total Suspended Solids	Χ	χ	Х	Х	Х	Х	Х	Х	Х	Х
Settleable Solids	Χ	Х	Х	Х	Х	Χ	Х	Х	Χ	X
Conductivity	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
COD	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
BOD										1-1
Oil & Grease	Χ	Х	Х	Х	X	Х	Χ	Х	Х	· X
ICP Metals	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
Volati locarbon	Χ	Х	Х	Х	Х	Х	Х	Х	Х	X
Volati. romatics	X	Х	Х	Х	Х	Х	Χ	Х	Х	X
MBAS	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Pesticides										
Cyanide	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Boron	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Petroleum Hydrocarbons	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Fecal Coliforms										
EP Toxicity										
Sulfides	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Ammonia	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Pheno1	X	X	X	Х	Х	Х	Х	X	X	Х
SAMPLE TAKEN	c	С	C		C		С	c	С	C

C = Contract
Y = Yes
N = No

Sites	51	-	60

	51 ·	52	53	54	55	56	57	58	59	60
рН	Х	Х	х	X	Х	Х	Х	Х	Х	Х
Temperature	X	Х	Х	Х	Х	Х	Х	Х	Х	X
Total Suspended Solids	Χ	Χ	Χ	X	Х	Х	X	X	Χ	X
Settleable Solids	X	X	X	X	X	X	X	X	X	Χ
Conductivity	Х	Х	X	X	Х	X	Х	Х	X	X
COD	X	Х	X	X	X	X	X	X	Х	X
BOD	2	2	2	2	2	3	3	2	2	2
Oil & Grease	X	Х	X	Х	X	Х	Х	Χ	Χ	Χ
ICP Metals	X	X	X	X	X	Х	Х	Χ	Χ	Х
Volatile Halocarbon	Х	Х	Х	Х	X	Х	Х	Х	Х	X
Volatile Aromatics	X	Х	X	Х	Χ	Х	Х	Х	Х	Х
MBAS	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Pesticides						X	Х	Χ		
Cyanide	Х	Х	Х		Х	Х	Х	Х	Х	X
Boron	X	Х	X		Х	X	Х	X	X	Х
Petroleum Hydrocarbons Fecal Coliforms EP Toxicity	X	Х	Х	X	X	Х	Х	X	Х	Х
Sulfides	Х	Х	Х		Х	Х	Х	Х	Х	Х
Ammonia	X	X	X	Х	X	X	X	X	X	X
Phenol	x	X	X	^	X	X	X	X	X	X
SAMPLE TAKEN	С	С	C	Y	Y	Y	Y	Y	Y	Y

C = Contract

Y = Yes

N = No

Sites 61 - 70

	61	62	63	64	65	66	67	68	69	70
рН	х	X	X	X	X	X	х	х	X	х
Temperature	X	Χ	X	χ	X	X	X	X	X	Х
Total Suspended Solids	X	X	X	X	X	X	Х		X	X
Settleable Solids	X	X	X	X	X	X	Х		X	X
Conductivity	X	X	X	X	X	X	X		X	X
COD	X	X	X	X	X	X	X		X	X
BOD	2	2	2	2	2	2	2			
Oil & Grease	x	X	X	X	X	_	X	X	Χ	Х
ICP Metals	X	X	X	X	X		X		X	X
Volatile Halocarbon	X	X	X	X			X	X	X	
Volatile Aromatics	X	X	X	X			X	Х	X	
MBAS	X	X	X	X	X	Х	X	••	X	
Pesticides			••			••	X			Χ
Cyanide	Х	X	Х	Х			X		X	
Boron	X	X	χ	X	Х	Χ	X		X	
Petroleum Hydrocarbons Fecal Coliforms	X	X	X	X	X	X	X	X	X	
EP Toxicity										
Sulfides	X	X	χ	X	Χ		X		X	X
Ammonia	Х	X	Χ	X	X		X		Х	Χ
Phenol	χ	Χ	X	X	Х		X		X	X
SAMPLE TAKEN	<u></u>	 N	<u></u>	Y		Y	<u></u>	Υ	N	

C = Contract

Y = Yes

N = No

Sites 71 - 80

	71	72	73	74	75	76	77	78	79	80
рН	х	Х	Х	Х	Х	х	×	Х	Х	Х
Temperature	Х	X	Х	Х	Х	Х	Χ	Х	Х	Χ
Total Suspended Solids	χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ
Settleable Solids	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х
Conductivity	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
COD	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ
BOD		1		1	1	1	1	1	1	1
Oil & Grease		X	Х	X	χ	Х	Х	Х	Х	Χ
ICP Metals	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х
Volatile Halocarbon	Χ	Х	Χ	Х		Χ				Χ
Volatile Aromatics	Χ	Χ	Х	Χ		Х				Χ
MBAS	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ
Pesticides										
Cyanide	χ	χ	Х	Х	Х	Χ	Х	Х	Х	Х
Boron	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ
Petroleum Hydrocarbons	χ	X	Χ	Х	Х	X	Х	Х	Х	Χ
Fecal Coliforms										
EP Toxicity										
Sulfides	Χ	Χ	Χ	Х	Х	X	Х	Х	Χ	Χ
Ammonia	χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Phenol	X	X	Χ	X	Х	Х	Х	Х	Х	X
SAMPLE TAKEN	N	N	Y	N	Y	<u></u>	<u></u>	Y	<u></u>	 Y

C = Contract

Y = YesN = No

	S	ites	91 -	100						
	91	92	93	94	95	96	97	98	99	100
рН	x	Х	Х	Х						
Temperature	X	X	X	X						
Total Suspended Solids	X	X	X	X						
Settleable Solids	X	X	X	X						
Conductivity	X	X	X	X						
COD	X	X	X	X	Х				Х	
BOD	Λ	Λ.	1	Λ.	Λ				Λ	
Oil & Grease	X	Х	X	Х	Х	Х	Х	Х	Х	Х
ICP Metals	X	X	X	X	X	Λ.		Λ	Α.	
Volatile Halocarbon	X	X	X	X						
Volatile Aromatics	X	X	X	X						
MBS	X	X	X	X						
Pesticides			,,							
Cyanide	χ	Х	Х	Х						
Boron	X	X	X	X						
Petroleum Hydrocarbons	X	X	X	X	Х	Х	Х	Х	Х	Х
Fecal Coliforms	•	^	,,	~	,,	^	,,	Λ	2.	A.
EP Toxicity						Х				
Sulfides	Х	Х	X	Х						
Ammonia	X	X	X	X	Х			Χ		
Pheno1	X	X	X	X	^-	X	Х	,,		
						 -			······································	
SAMPLE TAKEN N	N N	N	Y	Y	Y	Y	Y	Y		

C = Contract
Y = Yes

N = No

Sites 101-102

101 10	2
--------	---

pH Rammanahana				
Temperature				
Total Suspended Solids		χ		
Settleable Solids		Χ		
Conductivity		X		
COD		Χ		
30D		X		
Oil & Grease		Х		
ICP Metals		X		
Volatile Halocarbon		Χ		
Volatile Aromatics		Х		
MBA		X		
Pesticides				
Cyanide		Χ		
Boron		X		
Petroleum Hydrocarbons		X		
Fecal Coliforms		**		
EP Toxicity	Χ			
Sulfides	Λ	Х		
Ammonia		X		
Phenol		X		

SAMPLE TAKEN	Υ :	ľ
--------------	-----	---

C = Contract
Y = Yes
N = No

APPENDIX C

Analyses and Preservation Methods

Analyses and Preservation Methods for Sites

Analysis	Preserva	ition	Method	Where	Who
рН	None		A423	On Site	AFOEHL
Temperature	None		E170.1	On Site	AFOEHL
Total Suspend	ied	4°C	A209F	Brooks AFB	AFOEHL
Soliks Settleable So	olids	4°C		Brooks AFB	AFOEHL
Specific Conductance		4 ° C	E120.1	Brooks AFB	AFOEHL
COD		H ₂ SO ₄	A410.4	On Site & Brooks AFB	AFOEHL
BOD5		4 °C	A405.1	On Site	AFOEHL
Oils & Grease Total Recover		4°С Н2SO4	E413.1	Brooks AFB	AFOEHL
ICP Metals *		HNO ₃	E200.7	Brooks AFB	AFOEHL
MBAS **		4°C None	E425.1	Brooks AFB	AFOEHL
PHC *** Total Recover	rable	4°C H ₂ SO ₄	E418.1	Brooks AFB	AFOEHL
Volatile Halo	ocarbons	4 o C	E601	Brooks AFB	AFOEHL
Volatile Aron	natics	1 °C	E602	Brooks AFB	AFOEHL
Phenols		4°С Н2SO4	E420	Brooks AFB	AFOEHL
Cyanide		4°C NaOH to pH>12	A412D	Brooks AFB	AFOEHL

Analysis	Preservation	Method	Where	Who
Boron	None	A404A	Brooks AFB	AFOEHL
Organochlorine	4°C	E608	Contract Lab	Data Chem
Pesticides & PCB Sulfides	G C Zinc Acetate	E376	Brooks AFB	AFOEHL
Ammonia	ч°С	E376	Brooks AFB	AFOEHL
Kjeldal Total	4°C H ₂ SO ₄	E351	Brooks AFB	AFOEHL
Nitrate	4°C	E353	Brooks AFB	AFOEHL
Nitrite	и∘С	E353	Brooks AFB	AFOEHL
EP Toxicity	None		Brooks AFB	AFOEHL
Fecal Coliform	None		On Site	AFOEHL
Chlorine	None		On Site	AFOEHL

Notes: A-indicates Standard Methods for the Evaluation of Water and Wastewater. E-indicates EPA Methods for Chemical Analysis of Water and Wastes

APPENDIX D

Listing of Shops

LIST OF ACTIVE OIL/WATER SEPARATORS & INTERCEPTOR

No.	Site Location	Bldg
1	AAFES Gas Station	177
	Wash Rack	192
2 3	Auto Hobby Shop	248
4	Vehicle Maint Shop	291
5 6	POL Operation	328
	Vehicle Maint Yard	330
7	Pave. & Equip Shop	338
8	BCE Shops	339
9	BCE Wash Rack	341
10	POL Bulk Storage	351
11	Refueler Maint	353
12	AGE Wash Rack	403
13	Support Equip Shop	404
14	A/C Maint Dock	408
15	A/C Maint Dock	431 485
16	A/C Maint & Trng	405 492
17 18	405th Arm Shop Flight Sim Bldg	617
19	Flight Sim Bldg Flight Sim Bldg	617
20	Flight Sim Bldg	617
21	Industr Waste Treat	912
22	A/C Maint Dock	915
23	Corrosion Control	922
24	Corrosion Control	922
25	Armament Shop	926
26	Org Maint Shop	927
27	Engine Shop	931
28	Flight Simulator	940
29	Battery Storage	947
30	NDI Lab	966
31	Fuel Barn	968
32	AGE Yard	970
33	Hydrazine Facility	982
34	A/C Maint Dock	983
35	A/C Maint Dock	983
36	Fuel Barn	984
37	A/C Maint Dock	985
38	A/C Maint Dock	985
39	Comp Maint Facil	993
40	A/C Maint Dock	999
41	Power Check Pad	1003
42	Hush House	1006
43	Power Check Pad	1008
44 45	Power Check Pad Hush House	1009
45 46	Hush House	1012 1016
40 47	AGE Shop	1018
48	Fuel Barn	1019
49	A/C Maint Dock	1022
50	Vehicle Wash Rack	1233
J.	VOILLOUG HOUSE HOOK	1233

Sanitary Sites

No.	Site Location	Bldg
51	MH3 From Fig 4 Near 935	935
52	MH6 Near 972	972
53	CB 8 near N. 919 on W.	919
54	CB 13 Near MH3.	935
55	CB 17 Near Bldg 959	959
56	Influent to STP	STP
57	Effluent From STP	STP
58	MH near housing	housing
59	Pump Station #901	901
60	LS near 793	793
61	2nd Str. near 585	585
62	4th near 546	546
63	5th and I	
64	2nd and K	
65	Litchfield Rd	~
66	Near Bldg 799	799
67	O/W Sep South Drain	912
68	58 EMS Phase Docks	985
69	58 EMS Corrosion Control	922
70	Entomology	337
71	Photo Lab	
72	Hospital/Dental Clinic	1130
73	944 CAMS NDI	1022
74	Propulsion	. 993
75	Burger King	
76	Auto Hobby	248
77	Dining Facility	
78	NCO Club	
79	O' Club	,00 em us
80	Commissary	
81	8th and I	
82	Fire Station	
83	40 SEMS NDI	
84	Zone I - Falcon	921
85	Zone 4 - Tiger	339
86	405 EMS Phase Docks	914
87	944 CAMS Phase Docks	999
88	58 EMS AGE	930A
89	405 EMS AGE	404
90	944 CAMS AGE	1018
91	607 TCTS AGE	1 382
92	Power Plant	
93	Bldg 950	
94	Hush House	
95	Bldg 353	

No.	Site Location	Bldg
96	Bldg 339	
97	Bldg 347	
98	Bldg 346	
99	Bldg 931	
100	CB 6 Sludge sample	_
101	STP Sludge	
102	Pizza Hut Other housing area	
103	Outfall of the STP	

APPENDIX E

EPA Method 601 Results

TEST	Units	3 1	2 13	14	15
Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Chlorodibromomethane 1,2-Dichlorobenzene 1,3-dichlorobenzene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<0.4 <0.4 <0.4 <0.5 <0.5 <0.6 <0.6 <0.9 <0.6 <0.8 <0.8 <0.8 <0.8 <0.8 <0.141 <0.8 <0.5 <0.5 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.9 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8	4 <0.4 7 <0.7 5 <0.5 6 <0.6 9 <0.9 3 <0.3 8 <0.8 5 <0.5 0 <1.0 6 <0.5	<0.4 <0.7 <0.5 <0.6 <0.9 <0.3 <0.8 <0.5 <1.0 <0.5	<0.4 <0.7 <0.5 <0.6 <0.9 <0.3 <0.8 <0.5 <1.0 <0.5
1,3-dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropen trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethan	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<pre><0.5 <0.3 <0.9 <0.9 132 <0.3 <0.3 <0.3 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.9 <0.5 <0.9 <0.5 <0.9 <0.5 <0.9 <0.9 <0.5 <0.9 <0.9 <0.5 <0.9 <0.5 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	7 <0.7 9 <0.9 4 <0.4 3 <0.3 5 <0.5 6 <0.5 6 <0.5 6 <0.5	<0.5 <0.7 <0.9 <0.4 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.7 <0.9 <0.4 <0.3 <0.5 <0.5 <0.5 <0.5
Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl chloride Bromomethane 2-Chloroethylvinyl ehter cis-1,2-Dichloroethene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1644 <0.6 699 <0.5 <0.5 <0.5 <0.4 <0.6 <0.9 <0.6 <0.9 <0.6 <0.9 <0.6 <0.9 <0.6 <0.9 <0.6 <0.9 <0.6 <0.9 <0.6	5 <0.5 5 <0.5 5 <0.5 4 <0.4 9 <0.9 9 <0.9	<0.6 <0.5 <0.5 <0.5 <0.4 <0.9 <0.9	<0.6 <0.5 <0.5 <0.4 <0.9 <0.9

				31	113		
TEST	Units	16	17	18	22	23	24
Bromodichloromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Bromoform	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Carbon Tetrachloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Chloroform	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chloromethane	ug/L	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Dichlorodifluoromethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
1,1-Dichloroethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,2-Dichloroethane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,1-Dichloroethene	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-1,2-Dichloroethene	ug/L	<0.5	<0.5	<0.5	<0.5	1:6	<0.5
1,2-Dichloropropane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropen	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/L	1'	<0.4	<0.4	<0.4	:1044	284
1,1,2,2-Tetrachloroethan	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
1,1,1-Trichloroethane	ug/L	2.17	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinyl chloride	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Bromomethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyl ehter	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
cis-1,2-Dichloroethene	ug/L						

Bromodichloromethane	TEST	Units	25	26	30	39	54	55
Bromomethane ug/L <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9	Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Chlorodibromomethane 1,2-Dichlorobenzene 1,3-dichlorobenzene 1,4-Dichlorobenzene Dichlorodiflucromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropen trans-1,3-Dichloropropen Methylene chloride 1,1,2,2-Tetrachloroethan Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <1.0 <0.7 <0.9 1.1 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <0.7 <0.6 <0.7 <0.6 <0.7 <0.7 <0.6 <0.7 <0.6 <0.7 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7</pre>	<pre><0.4 <0.7 <0.5 0.9 <0.3 <0.5 <0.5 <0.7 <0.5 <0.5 <0.7 <0.5 <0.6 998 <0.5 <0.6 998 <0.6 998 <0.6 998 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7</pre>	<pre><0.4 <0.7 <0.5 <0.6 <0.9 <0.8 <0.5 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7</pre>	<pre><0.4 <0.7 <0.5 <0.0.9 <0.3 <0.5 <0.7 <0.4 <0.3 <0.5 <0.4 <0.5 <0.5 <0.6 <0.5 <0.6 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7</pre>	<0.4 <0.7 <0.5 <0.6 <0.9 4.5 <0.5 <0.7 <0.3 <0.3 <0.3 <0.5 <0.4 <0.5 <0.5 <0.6 <0.9 <0.4 <0.3 <0.5 <0.6 <0.6 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7
	Bromomethane 2-Chloroethylvinyl ehter	ug/L ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9

TEST	Units	55	56	56	56	57	57
Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Chlorodibromomethane 1,2-Dichlorobenzene 1,3-dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropen trans-1,3-Dichloropropen Methylene chloride 1,1,2,2-Tetrachloroethan Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Vinyl chloride Bromomethane 2-Chloroethylvinyl ehter cis-1,2-Dichloroethene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<pre><0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <0.9 <0.3 <0.5 <0.4 <0.3 <0.5 <0.5 <0.6 <0.5 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	<pre><0.4 <0.7 <0.6 <0.9 <0.8 <0.0.5 <0.9 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0.0.9 <0</pre>	<pre><0.4 <0.7 <0.6 <0.9 <0.6 <0.9 <0.7 <0.6 <0.7 <0.7 <0.4 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	<pre><0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <0.7 <0.4 <0.5 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	<pre><0.4 <0.7 <0.6 <0.9 <0.8 <0.0.5 <0.7 <0.4 <0.3 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	<pre><0.4 <0.7 <0.6 <0.6 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7</pre>
<u> </u>							

				9.1	. 11		
TEST	Units	57	58	58	59	59	60
Bromodichloromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Bromoform	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Carbon Tetrachloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Chloroform	ug/L	<0.3	5.9	<0.3	5.9°	<0.3	8
Chloromethane	ug/L	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Dichlorodifluoromethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
1,1-Dichloroethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,2-Dichloroethane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,1-Dichloroethene	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-1,2-Dichloroethene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropen	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	8.5
1,1,2,2-Tetrachloroethan	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
1,1,1-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	34	<0.5
1,1,2-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinyl chloride	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Bromomethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyl ehter cis-1,2-Dichloroethene	ug/L ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
	49/11						

TEST	Units	60	61	61	63	63	64
Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Chlorodibromomethane 1,2-Dichlorobenzene 1,3-dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropen trans-1,3-Dichloropropen trans-1,3-Dichloropropen Methylene chloride 1,1,2,2-Tetrachloroethan Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane Vinyl chloride	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	<pre>60 <0.4 <0.7 <0.5 <0.9 <0.8 <0.5 <0.7 <0.6 <0.7 <0.6 <0.7 <0.7 <0.4 <0.3 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>	61 <0.4 <0.7 <0.6 <0.9 <0.9 <0.5 <0.9 <0.5 <0.7 <0.6 <0.7 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	61 <0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <0.7 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	63 <0.4 <0.7 <0.6 <0.9 <0.8 <0.5 <0.9 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5 <0.0.5	63 <0.4 <0.7 <0.6 <0.9 <0.8 <0.9 <0.8 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9	<pre>64 <0.4 <0.7 <0.5 <0.6 <0.8 <0.5 <0.7 <0.6 <0.7 <0.3 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.5 <0.6 <0.7 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9</pre>
Bromomethane 2-Chloroethylvinyl ehter cis-1,2-Dichloroethene	ug/L ug/L ug/L	<0.9	<0.9	<0.9	<0.9	<0.9 <0.9	<0.9 <0.9

		SITE					
TEST	Units	64	65	67	67	68	72
Bromodichloromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Bromoform	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Carbon Tetrachloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Chloroform	ug/L	<0.3	<0.3	<0.3	3.4	<0.3	<0.3
Chloromethane	ug/L	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Dichlorodifluoromethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
1,1-Dichloroethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,2-Dichloroethane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,1-Dichloroethene	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-1,2-Dichloroethene	ug/L	<0.5	<0.5	<0.5	5.	<0.5	<0.5
1,2-Dic.loropropane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropen	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,1,2,2-Tetrachloroethan	- g/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	LJ/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
1,1,1-Trichloroethane	ug/L	-23	<0.5	·<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinyl chloride	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Bromomethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyl ehter	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
cis-1,2-Dichloroethene	ug/L						

TEST	Units	74	76	81	85	85	103
Bromodichloromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Bromoform	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Carbon Tetrachloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Chloroethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Chloroform	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chloromethane	ug/L	<0.8	<0.8	<0.8	<0.8	<0.3	<0.8
Chlorodibromomethane		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Dichlorodifluoromethane	ug/L						
	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
1,1-Dichloroethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,2-Dichloroethane	ug/i	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,1-Dichloroethene	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-1,2-Dichloroethene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropen	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,1,2,2-Tetrachloroethan	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
1,1,1-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	ug/L	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinyl chloride	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Bromomethane	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyl ehter	ug/L	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
cis-1,2-Dichloroethene	ug/L						

APPENDIX F
Analytical Results

				SITE	
Test	Units	3	12	13	14
COD	mg/l	7075	330	4150	135
Ammonia TKN Nitrates (as nitrogen)	mg/l mg/l mg/l	6	0.28	16	0.2
Nitrites (as nitrogen) Cyanide	mg/l mg/l	0.017	<0.005	0.005	0.005
Phenol Boron	ug/l ug/l	225 10250	165 1150	166 12000	37 300
Residue, Settleable Residue, Total	ml/L mg/l	<0.2 3219	0.2 470	0.7 1919	0.3 484
Surfactants-MBAS Sulfides	mg/l mg/l	216 0.1	26 <0.1	164 <0.1	2.7 0.1
Oil & Grease (IR) Oil & Grease (EPA-418.1)	mg/l mg/l	415.2 316	168 143.2	238.4 115.2	612
Specific conductance	umhos	1450	600	1056	613

			•	SITE	
Test	Units	15	16	17	18
COD Ammonia TKN Nitrates (as nitrogen) Nitrites (as nitrogen)	mg/l mg/l mg/l	3800 33	250 2.8	2650 21.6	14500 2.84
Cyanide Phenol Boron Residue, Settleable	mg/l mg/l ug/l ug/l ml/L	<0.005 320 1400 <0.2	<0.005 675 400 <0.2	0.04 295 3100 <0.2	<0.005 73 67000 6.5
Residue, Total Surfactants-MBAS Sulfides	mg/l mg/l mg/l	1745 9.8 3.1	7.6 1.7	1723 4.3 4.5	3881 5.8
Oil & Grease (IR) Oil & Grease (EPA-418.1) Specific conductance	mg/l mg/l umhos	332.8 249.6 1019	2160 1248 538	416 166 898	5.4 4.5 15000

_	-	m	-
			-
	_	_	-

Test	Units	22	23	24	25
COD	mg/l	135	100	125	520
Ammonia	mg/l	2.04	<0.2	1.76	5.6
TKN	mg/l				
Nitrates (as nitrogen)	mg/l		,		
Nitrites (as nitrogen)	mg/l				
Cyanide	mg/l	0.012	0.012	0.007	0.031
Phenol	ug/l	38	17500	16	17
Boron	ug/l	3200	<200	700	400
Residue, Settleable	ml/L	0.3	0.5	. 0.4	0.2
Residue, Total	mg/1	551	549	574	508
Surfactants-MBAS	mg/l	1.1	0.2	5.2	0.1
Sulfides	mg/l	<0.1	<0.1	0.1	6.1
Oil & Grease (IR)	mg/l	3.5		4.2	296
Oil & Grease (EPA-418.1)	mg/l	2.1		3.3	30.7
Specific conductance	umhos	608	708	794	831

				SITE	
Test	Units	26	30	39	54
COD	mg/l	400	50	105	1650
Ammonia	mg/l	5.6	16.8	0.24	0.28
TKN	mg/l				
Nitrates (as nitrogen)	mg/l				
Nitrites (as nitrogen)	mg/l				
Cyanide	mg/l	0.028	<0.005	<0.005	0.006
Phenol	ug/l	13	20	<10.0	33
Boron	ug/l	1900	650	350	500
Residue, Settleable	ml/L	0.2	0.5	5.2	0.6
Residue, Total	mg/l	486	472	957	1143
Surfactants-MBAS	mg/l	2.4	0.3	2.8	320
Sulfides	mg/l	0.1	6.7	0.1	1
Oil & Grease (IR)	mg/l	31.8	3.8	48	16.7
Oil & Grease (EPA-418.1)	mg/l	5.8	3.5	12	9.6
Specific conductance	umhos	423	633	623	1081

S	т	T	F.

Test	Units	55	55	56	56
		2522	1100	000	222
COD	mg/1	2520	1100	232	230
Ammonia	mg/1	2.3	1.78	26.8	25.6
TKN	mg/l			25	23
Nitrates (as nitrogen)	mg/l			<0.1	<0.1
Nitrites (as nitrogen)	mg/l			0.03	0.05
Cyanide	mg/l	0.01	0.017	0.005	0.005
Pĥenol	ug/l	66	80	33	45
Boron	ug/l	650	650	700	850
Residue, Settleable	mĨ/L	1.2	<0.2		1
Residue, Total	mg/l	1171	1035		530
Surfactants-MBAS	mg/l	1120	230	9.4	0.2
Sulfides	mg/l	8.1	1.1	0.7	0.5
Oil & Grease (IR)	mg/l		250.8		48
Oil & Grease (EPA-418.1)	mg/l		53.6		9.3
Specific conductance	umhos	969	988	831	919

				SITE	
Test	Units	56	56	57	57
COD	mg/l	222		70	92
Ammonia	mg/l	26.6		22.4	20
TKN Nitrates (as nitrogen)	mg/l mg/l	22 <0.1		17 0.42	17 0.34
Nitrites (as nitrogen)	mg/1	0.05		0.05	<0.02
Cyanide	mg/1	0.007		0.015	0.017
Phenol	ug/l	45		10	<10.0
Boron	ug/l	1000	2 7	2400	
Residue, Settleable Residue, Total	ml/L mg/l	1.4 451	2.7 455	<0.2 560	
Surfactants-MBAS	mg/1	18	433	0.8	1.5
Sulfides	mg/1	6.6		<0.1	<0.1
Oil & Grease (IR)	mg/l	72	17.6	8.4	
Oil & Grease (EPA-418.1)		19.7	2.8	3.9	0.60
Specific conductance	umhos	951		861	863

Test	Units	57	57	57	58
COD	mg/l	85	70		400
Ammonia TKN	mg/l mg/l	19.6 17	17.1 16		21.6
Nitrates (as nitrogen) Nitrites (as nitrogen)	mg/l	0.44 <0.02	0.4 <0.02		
Cyanide	mg/l mg/l	0.007	0.014		0.006
Phenol Boron	ug/l ug/l	<10.0 1850	10 1350		54 1050
Residue, Settleable Residue, Total	ml/L mg/l		<0.2 444	<0.2 447	33.3 166
Surfactants-MBAS Sulfides	mg/l mg/l	0.4 <0.1	2.6 <0.1		5.2 2.1
Oil & Grease (IR) Oil & Grease (EPA-418.1)	mg/l mg/l	-	5.9 2.7	2.1 1.7	268 17.6
Specific conductance	umhos	763	794	1.,	956

SITE Test Units 58 59 60 59 COD 510 303 560 285 mg/lAmmonia mg/l 19.6 56.8 56 22 TKN mg/lNitrates (as nitrogen) mg/lNitrites (as nitrogen) mg/1mg/l ug/l ug/l Cyanide 0.005 0.005 0.007 0.015 Pĥenol 70 42 60 31 Boron 1250 1700 5750 850 Residue, Settleable Residue, Total ml/L 2.8 1.1 1.3 9.2 mg/l406 471 623 1339 Surfactants-MBAS mg/l6.8 0.2 0.2 0.2 Sulfides mg/10.7 0.1 10.8 Oil & Grease (IR) 9.6 356 mg/186 51.6 Oil & Grease (EPA-418.1) mg/114.2 4.2 17.2 46.4 Specific conductance 1063 1245 960 umhos 844

	m	

Test	Units	60	61	61	63
COD	mg/1	380	240	180	475
Ammonia	mg/l	31.2	12.8	15.6	81.6
TKN	mg/l				
Nitrates (as nitrogen)	mg/l		•		
Nitrites (as nitrogen)	mg/l				
Cyanide	mg/l	0.013	0.005		0.01
Phenol	ug/l	33	10		123
Boron	ug/l	1400	650		1050
Residue, Settleable	ml/L	0.8	<0.2		32.9
Residue, Total	mg/l	480	10406		1849
Surfactants-MBAS	mg/l	0.2	4.4		0.9
Sulfides	mg/l	0.7	1.1		1.7
Oil & Grease (IR)	mg/l	65.6	131.2	179.2	25.2
Oil & Grease (EPA-418.1)	mg/l	14.2	17.8	89.4	5.3
Specific conductance	umhos	981	691		1383

				SITE	
Test	Units	63	64	64	65
-		222	000	7.40	42.5
COD	mg/l	220	280	140	415
Ammonia	mg/l	66	46	22.8	27
TKN	mg/1				
Nitrates (as nitrogen)	mg/l				
Nitrites (as nitrogen)	mg/1				
Cyanide	mg/l	0.006	0.006	0.007	
Phenol	ug/l	52	37	37	23
Boron	ug/1	1050	1400	1625	850
Residue, Settleable	mĺ/L	8.9	<0.2	0.03	2.5
Residue, Total	mg/l	523	579	510	635
Surfactants-MBAS	mg/l	0.2	0.2	0.1	2
Sulfides	mg/l	4	0.5	<0.1	3.1
Oil & Grease (IR)	mg/l	65.6	96	57.6	240
Oil & Grease (EPA-418.1)	mg/l	15.1	35.6	14.4	87.6
Specific conductance	umhos	1300	988	1169	856

Test	Units	65	66	66

COD	mg/l	335	260	193	710
Ammonia	mg/l	21.4	10	13	0.36
TKN	mg/l				
Nitrates (as nitrogen)	mg/l				
Nitrites (as nitrogen)	mg/l				0 005
Cyanide	mg/l	50			0.005
Phenol	ug/l	52	500	550	240
Boron	ug/l	650	500	550	650
Residue, Settleable	ml/L	0.7		0.5	
Residue, Total	mg/l	476		521	1250
Surfactants-MBAS	mg/l	0.2		<0.1	0.1
Sulfides	mg/l	CE C		00 6	0.1
Oil & Grease (IR)	mg/l	65.6		89.6 10.1	
Oil & Grease (EPA-418.1)	mg/l umhos	8.6 900	831	931	1013
Specific conductance	umios	900	02T	32T	1013

				SITE	
Test	Units	67	71	72	74
СОР	mg/l	284			185
Ammonia	mg/l	7.8			50.4
TKN	mg/l				
Nitrates (as nitrogen)	mg/l				
Nitrites (as nitrogen)	mg/l				
Cyanide	mg/l	0.012			0.006
Phenol	ug/l	187			31
Boron	ug/l	900	- 4		1400
Residue, Settleable	ml/L	0.9	2.4	0.3	
Residue, Total	mg/l	821	428	580	
Surfactants-MBAS	mg/l	2.6			<0.1
Sulfides	mg/l	1.6			1.3
Oil & Grease (IR)	mg/l	208	8.9	2.1	
Oil & Grease (EPA-418.1)	mg/l	179.2	1.8	<1.0	
Specific conductance	umhos	838			1175

				SITE	
Test	Units	74	75	76	77
COD	mg/l	150	270	240	93
Ammonia	mg/l	9.4	12.8	64	14
TKN	mg/l				
Nitrates (as nitrogen)	mg/l				
Nitrites (as nitrogen)	mg/l				
Cyanide	mg/l	<0.005	0.006	0.008	0.27
Phenol	ug/l	60	80	24	27
Boron	ug/l	1350	750	1850	750
Residue, Settleable	ml/L				2.4
Residue, Total	mg/l				428
Surfactants-MBAS	mg/1	0.1	0.5	0.4	0.1
Sulfides	mg/1	<0.1	0.3	<0.1	1.6
Oil & Grease (IR)	mg/l			70.4	8.9
Oil & Grease (EPA-418.1)	mg/l			10.6	1.8
Specific conductance	umhos	1081	1700	1150	511

				SITE	
Test	Units	78	79	80	81
COD	mg/l	230	350	220	240
Ammonia TKN	mg/l	10.4	49	18.8	84
Nitrates (as nitrogen)	mg/l mg/l				
Nitrites (as nitrogen) Cyanide	mg/l mg/l	0.005	0.005	0.007	0.015
Phenol Boron	ug/l ug/l	<10.0 750	170 2000	109 500	102 1200
Residue, Settleable Residue, Total	ml/L mg/l	0.3 436	0.3 475	1.3 461	2.7 823
Surfactants-MBAS	mg/l		0.6	0.2	0.2
Sulfides Oil & Grease (IR)	mg/l mg/l	0.4 70.4	0.2 27.2	0.4 6.9	1.8 17.6
Oil & Grease (EPA-418.1) Specific conductance	mg/l umhos	5.8	8.9 626	1.7 1175	4.3 1875

			SITE	
Test	Units	82	85	85
COD	mg/l	1.18	490	265
Ammonia	mg/l	73	22	37.5
TKN	mg/l			
Nitrates (as nitrogen)	mg/l			
Nitrites (as nitrogen)	mg/l			
Cyanide	mg/l	0.013	0.006	
Phenol	ug/l	63	48	109
Boron	ug/l	900	4300	2300
Residue, Settleable	ml/L	0.4		
Residue, Total	mg/l	600		
Surfactants-MBAS	mg/1	0.1	2.9	1.5
Sulfides	mg/l	<0.1	0.7	
Oil & Grease (IR)	mg/l	2.4		70.4
Oil & Grease (EPA-418.1)	mg/l	<1.0		12.5
Specific conductance	umhos	1550	1363	1500

APPENDIX G
Metals Analysis Results

				SI	TE		
Test	Units	3	12	13	14	15	16
Arsenic	ug/L	*	*	*	*		.4.
Barium	ug/L		*			*	*
Beryllium				337	*	127	*
	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	165	*	*	*
Calcium	mg/L	61.8	24.7	62.1	49.2	42.4	45.7
Chromium	ug/L	*	*	261	*	*	*
Copper	ug/L	235	*	285	*	*	*
Iron	ug/L	167200	360	11840	433	6589	4337
Manganese	ug/L	.1134	*	204	*	139	199
Nickel	ug/L	3500	*	*	*	*	*
Zinc	ug/L	862	231	2817	*	218	540
Aluminum	ug/L	1640	235	3008	*	1045	238
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	·9498	*	504	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	*	22.9	*	*	*
Magnesium	mg/L	16.3	11.3	16.6	20.9	15.3	8.8

				SIT	E		
Test	Units	17	18	22	23	24	25
Arsenic	ug/L	*	*	*	*	*	
Barium	ug/L	926	2690	*	369	*	1220
Beryllium	ug/L	*	*	*	*	*	1339
Cadmium	ug/L	*	*	*	*	*	126
Calcium	mg/L	49	15920	45	60	34.4	136
Chromium	ug/L	*	*	*	542	J4.4 *	45 *
Copper	ug/L	*	150	*	J42 *	*	
Iron	ug/L	2997 1	161200	1523	980	6719	128
Manganese	ug/L	142	517	133	127	•	1035
Nickel	ug/L	*	3000 4	*	12 <i>1</i>	127 *	*
Zinc	ug/L	4131	297	*	*	*	~
Aluminum	ug/L	617	*	*	*	*	290
Cobalt	ug/L	*	*	*	*		161
Titanium	ug/L	175	*	*	*	** .s.	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	4/1/8	*	*	*	*
Magnesium	mg/L	11.1	4964	7:9	24	* 20.3	* 18.5

~	T	m	L,

Test	Units	26	30	39	53 Sludge	54	55
Arsenic	ug/L	*	*	*	*	*	*
Barium	ug/L	1803	*	*	237.2	*	*
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	26.5	25.8	48.3	3.2	51.1	61.1
Chromium	ug/L	*	*	*	16.9	*	*
Copper	ug/L	*	*	*	17.6	*	*
Iron	ug/L	1780	1869	490	3526	353	614
Manganese	ug/L	205	*	*	47	*	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	102	*	*	50.1	101	110
Aluminum	ug/L	*	409	187	1877	353	324
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	*	150	175	264
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	*	*	*	*	*
Magnesium	mg/L	7	10.8	20.4	1.2	22.2	24.1

				SI	PE		
Test	Units	55	56	56	56 🔞	57	57A
Arsenic	ug/L	*	*	*	*	*	*
Barium	ug/L	*	*	*	148	*	*
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	53.9	29.2	26.5	29.4	26.8	27.4
Chromium	ug/L	*	*	*	*	*	*
Copper	ug/L	*	*	*	*	*	*
Iron	ug/L	497	886	354	1205	330	211
Manganese	ug/L	*	*	*	*	*	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	*	109	*	125	*	*
Aluminum	ug/L	336	260	130	398	2787	2098
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	232	*	*	*	*	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	*	*	*	*	*2,4
Magnesium	mq/L	21.4	12	12.2	11.7	13	12.2

Test	Units	57	57	58	58	59	59
Arsenic	ug/L	*	*	*	*	*	*
Barium	ug/L	*	*	*	*	*	*
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	24.9	24.5	41.3	32.1	50.1	52.4
Chromium	ug/L	*	*	*	*	*	*
Copper	ug/L	*	*	*	*	*	*
Iron	ug/L	134	255	1398	1491	935	290
Manganese	ug/L	*	*	*	*	*	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	*	*	123	213	133	*
Aluminum	ug/L	2464	2212.	271	487	244	128
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	*	*	*	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	239	*
Mercury	ug/L	*	2:3	*	*	*	*
Magnesium	mg/L	11.9	11.4	14.1	11.5	21.2	23.5
				SIT	E		
Test	Units	60	60	SIT 61	E 61	63	63
Test Arsenic		60 *	60 *			63	63 *
	ug/L			61	61		
Arsenic Barium	ug/L ug/L	*	*	61 *	61 *	. *	*
Arsenic	ug/L ug/L ug/L	*	* 289	61 * *	61 * *	* *	* 137 * *
Arsenic Barium Beryllium	ug/L ug/L ug/L ug/L	* * *	* 289 *	61 * *	61 * *	* * *	* 137 *
Arsenic Barium Beryllium Cadmium Calcium	ug/L ug/L ug/L ug/L mg/L	* * *	* 289 * *	61 * * *	61 * * *	* * * *	* 137 * *
Arsenic Barium Beryllium Cadmium Calcium Chromium	ug/L ug/L ug/L ug/L mg/L ug/L	* * * * 29.5	* 289 * * 52.3	61 * * * * 25.3	61 * * * 23.3	* * * *	* 137 * * 53.8 *
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper	ug/L ug/L ug/L ug/L mg/L ug/L	* * * * 29.5 *	* 289 * * 52.3 *	61 * * * 25.3 *	61 * * * 23.3 *	* * * * 36.2 *	* 137 * * 53.8
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * * 29.5	* 289 * * 52.3	61 * * * 25.3 *	61 * * * * 23.3 *	* * * * 36.2 *	* 137 * * 53.8 *
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese	ug/L ug/L ug/L mg/L ug/L ug/L ug/L	* * * 29.5 * *	* 289 * * 52.3 * 26150	61 * * * 25.3 * *	61 * * * 23.3 * *	* * * 36.2 * *	137 * * 53.8 * * 8201
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel	ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620 *	* 289 * * 52.3 * 26150	61 * * * 25.3 * 354	61 * * * 23.3 * * 380 *	* * * 36.2 * * 1246	* 137 * * 53.8 * 8201 145
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620	289 * 52.3 * 26150	61 * * * 25.3 * * 354 *	61 * * * 23.3 * * 380 *	* * * 36.2 * * 1246 *	* 137 * * 53.8 * * 8201 145 *
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel Zinc Aluminum	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * 29.5 * 1620 * 170	* 289 * 52.3 * 26150 117 * 1395	61 * * * 25.3 * 354 *	61 * * * 23.3 * 380 *	* * * 36.2 * * 1246 * * 306	* 137 * * 53.8 * 8201 145 * 670
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel Zinc Aluminum Cobalt	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620 * * 170 244	* 289 * 52.3 * 26150 117 * 1395 2814	61 * * * 25.3 * 354 * *	61 * * * 23.3 * 380 * * 122	* * * 36.2 * * 1246 * 306 396	* 137 * * 53.8 * 8201 145 * 670 1764
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel Zinc Aluminum Cobalt Titanium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620 * * 170 244 *	* 289 * 52.3 * 26150 117 * 1395 2814 *	61 * * * 25.3 * 354 * *	61 * * * 23.3 * 380 * * 122	* * * 36.2 * * 1246 * * 306 396 *	* 137 * * 53.8 * 8201 145 * 670 1764 *
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel Zinc Aluminum Cobalt Titanium Vanadium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620 * * 170 244 * *	* 289 * 52.3 * 26150 117 * 1395 2814 *	61 * * * 25.3 * 354 * * *	61 * * * 23.3 * 380 * * 122 *	* * 36.2 * * 1246 * 306 396 *	* 137 * * 53.8 * 8201 145 * 670 1764 *
Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Manganese Nickel Zinc Aluminum Cobalt Titanium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	* * * 29.5 * * 1620 * * 170 244 * *	* 289 * 52.3 * 26150 117 * 1395 2814 * *	61 * * 25.3 * 354 * * *	61 * * * 23.3 * 380 * * 122 *	** ** 36.2 * 1246 * 306 396 *	* 137 * * 53.8 * 8201 145 * 670 1764 * *

				SIT	rE		
Test	Units	64	64	65	67	67	72
Arsenic	ug/L	*	*	*	*	. *	*
Barium	ug/L	*	*	*	*	141	132
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	40.9	36	21.6	66.1	67.8	21.8
Chromium	ug/L	*	*	*	*	*	*
Copper	ug/L	*	*	*	*	*	*
Iron	ug/L	1392	364	556	798	5107	8102
Manganese	ug/L	*	*	*	122	193	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	194	*	103	*	364	*
Aluminum	ug/L	320	106	120	161	2430	541
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	*	112	*	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	*	*	*	*	*
Magnesium	mg/L	16.5	16.1	10.1	26.3	23.3	10.3

				SIT	E		
Test	Units	73	74	75	76	77	78
Arsenic	ug/L	*	*	*	*	. *	*
Barium	ug/L	*	*	*	*	*	*
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	*	50.7	27.7	24.4	29.9	23.2
Chromium	ug/L	*	*	*	*	*	*
Copper	ug/L	*	*	*	*	*	*
Iron	ug/L	*	298	930	308	3592	303
Manganese	ug/L	*	*	*	*	*	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	*	127	124	166	340	*
Aluminum	ug/L	*	117	127	161	518	122
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	*	*	*	*
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	211	*	*	*	*
Mercury	ug/L	*	*	1.3	2.1	*	*
Magnesium	mg/L	*	21.9	12.2	11.2	1.0.3	9.2

Test	Units	79	80	81	82	83	85
Arsenic	ug/L	*	*	*	*	*	*
Barium	ug/L	*	*	*	*	*	*
Beryllium	ug/L	*	*	*	*	*	*
Cadmium	ug/L	*	*	*	*	*	*
Calcium	mg/L	22.8	26.2	30.1	22.2	39.3	55.2
Chromium	ug/L	*	*	*	*	*	*
Copper	ug/L	*	*	*	*	*	*
Iron	ug/L	697	594	960	322	628	712
Manganese	ug/L	*	*	*	*	*	*
Nickel	ug/L	*	*	*	*	*	*
Zinc	ug/L	280	204	188	*	249	748
Aluminum	ug/L	324	258	337	106	194	689
Cobalt	ug/L	*	*	*	*	*	*
Titanium	ug/L	*	*	*	*	123	3165
Vanadium	ug/L	*	*	*	*	*	*
Molybdenum	ug/L	*	*	*	*	*	*
Mercury	ug/L	*	*	*	*	2,.1	*
Magnesium	mg/L	9.7	10.9	12.7	11.2	12	12.4
			SITE	3			
Test	Units	94	99	102	103		
Arsenic	ug/L	*	*	*	*		
Barium	ug/L	*	221	*	*		
Beryllium	ug/L	*	*	*	*		
Cadmium	ug/L	*	161	*	*		
Calcium	mg/L	66.6	44.8	26.2	27.4		
Chromium	ug/L	*	191	*	*		
Copper	ug/L	*	201	*	*		
Iron	ug/L	545	7292	162	195		
Manganese	ug/L	*	301	*	*		
Nickel	ug/L	*	266	*	*		
Zinc	ug/L	177	8457	*	*		
Aluminum	ug/L	*	2838	168	3811		
Cobalt	ug/L	*	*	*	7011		
Titanium	ug/L	*	673	*	*		
Vanadium	ug/L	*	*	*	*		
Molybdenum	ug/L	*	148	*	*		
Mercury	ug/L	1.8	20.1	*			
Magnesium	mg/L	27.7	19.8	13.2	12.8		

APPENDIX H
EPA Method 602 Results

TESTS	Units	3	3	12	13	14	15
1,3-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	3 ·	<0.5
1,4-Dichlorobenzene	ug/L	5.2	<0.7	<0.7	<0.7	10	<0.7
Ethyl benzene	ug/L	2.7	<0.3	4	<0.3	1:9 <0.6	<0.3 <0.6
Chlorobenzene Toluene	ug/L ug/L	⊸6 34	<0.6 <0.3	<0.6 .29	<0.6 <0.3	<0.8	<0.3
Benzene	ug/L	<0.5	<0.5	∕8	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<0.5 look	<1.0	<1.0	<1.0	<1.0	<1.0

				SITE			
TESTS	Units	17	22	23	24	25	26
1 2 Diekleuskenseus	/T	٠, ٣	۰۵ ۳	40 5		40 E	40 E
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L ug/L	<0.5 <0.7	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.7	<0.5 <0.7
Ethyl benzene	ug/L	960	<0.5	0.7		<0.3	<0.3
Chlorobenzene	ug/L	<0.6	<0.5	2.5		<0.6	<0.6
Toluene	ug/L	√80 ∵	<0.5	1.3		<0.3	<0.3
Benzene	ug/L	<0.5	2.7	<0.5	-	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<0.5	<0.5	_	<1.0	<1.0

				SITE			
TESTS	Units	39	54	55	56	56	56
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene	ug/L ug/L ug/L	<0.5 <0.5 <0.5	<0.5 <0.7 <0.3	<0.5 <0.7 <0.3 <0.6	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 6.	<0.5 <0.7 8#9 9.2
Chlorobenzene Toluene Benzene 1,2-Dichlorobenzene	ug/L ug/L ug/L ug/L	<0.5 1.2 <0.5 <0.5	<0.6 <0.3 <0.5 <1.0	<0.8 <0.3 <0.5 <1.0	69 <0.5 <1.0	21, <0.5 <1.0	17 <0.5 <1.0

				SITE			
TESTS	Units	57	57	57	58	58	59
1,3-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Ethyl benzene	ug/L	<0.3	<0.3	<0.3	<0.3	<0.3	12.4
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Toluene	ug/L	<0.3	.3 ∗	<0.3	25.	<0.3	42
Benzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<10	<1.0	<1.0	<1.0	<1.0	<1.0

				SITE			
TESTS	Units	59	60	60	61	61	63
1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Chlorobenzene Toluene Benzene 1,2-Dichlorobenzene	ug/L ug/L ug/L ug/L ug/L ug/L	<0.5 <0.7 <0.3 <0.6 <0.3 <0.5 <1.0	<0.5 <0.7 15, <0.6 .54 <0.5 <1.0	<0.5 <0.7 111 <0.6 22 <0.5 <1.0	<0.5 <0.7 <0.3 <0.6 <0.3 <0.5 <1.0	<0.5 <0.7 <0.3 <0.6 4: <0.5 <1.0	<0.5 <0.7 <0.3 <0.6 <0.3 <0.5 <1.0

				SITE			
TESTS	Units	64	64	65	67	67	68
1,3-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Ethyl benzene	ug/L	3.2	67	1.9	<0.3	120	4 .
Chlorobenzene	ug/L	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Toluene	ug/L	45	<0.3	5.8	9.2	270	<0.3
Benzene	ug/L	<0.5	<0.5	5.8	<0.5	60	<0.5
1,2-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

SITE	S	1	ΤE	
------	---	---	----	--

TESTS	Units	72	74	76	76	81	85
1,3-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	**	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	<0.5	<0.7	<0.7	**	<0.7	<0.7
Ethyl benzene	ug/L	<0.5	<0.3	<0.3	**	<0.3	<i>₀</i> 7. 5‴
Chlorobenzene	ug/L	<0.5	<0.6	<0.6	**	<0.6	<0.6
Toluene	ug/L	28`	<0.3	<0.3	**	<0.3	<0.3
Benzene	ug/L	<0.5	<0.5	<0.5	**	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	<0.5	<1.0	<1.0	**	<1.0	<1.0

SJTE TESTS Units 85 103 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L <0.5 <0.5 ug/L ug/L <0.7 <0.7 Ethyl benzene Au <0.3 Chlorobenzene ug/L <0.6 <0.6 Toluene ug/L 12; <0.3 ug/L Benzene 6 <0.5 1,2-Dichlorobenzene ug/L <1.0 <1.0

APPENDIX I Bioassay Results

		AFOE	AFOEHL/EQE BIOASSAY RECORD	CORD SHEET	TEST NUMBER:	D0114348891
BASE SAMPLE NUMBER:	GN890794	SAMPLE SITE: SE	SEWAGE TREATMENT PLA	PLANT EFFLUENT		
832 MEDICAL GROUP	UNIT	REQUE OFC SYM SGPB	REQUESTING AGENCY INFORMATION C SYM INSTALLATION PB LUKE AFB	NATION I	ST	r 21P 2 85309
REQUESTOR: LT FRYER		AUTOVON NUMBER:	R: 853	1ST EXT: 7521	2ND EXT:	
DATE OF RECEIPT: 14. REMARKS: SPECIAL RE DATE/TIME SAMPLE CO	14-DEC-89 PROJECT MANAGE. REQUEST WHILE AFOEHL/EQE WERE COLLECTED/ENDED: 13-DEC-89 @	R: 2LT CU TDY TO L 0900 (GRA	TRACKING INFORMATION T CURTIS (AFOEHL/EQE) TO LUKE AFB (GRAB SAMPLE)	N PROJECT TECHNICIAN:	ICIAN: SSGT ROLON, AMN	4N DILLON
ORGANISM: DAPHNIA PULEX	ULEX		1,050:		DURATION:	ION: 48 HOURS
CONTROL WATER/TYPE:	RECON MOD HARD	ALKALINITY: 52	ANALYTICAL INFORMATION HARDNESS: 90 CL:	TON CL: 0 SAMPLE: ALK 184, HARD 120,	84, HARD 120, CL 0	
		SAM START DATE: 14-DEC-89	PLE START DAT	A START TIME: 1630		
. addmin Onthorns	- (vo	7
	0.00	20 20 2		20	20	•
00:	, 0 -				100	
	8.2	8.2	8.1		. n	
TEMP (C):	20.2		0.0 20.1	20.1	20.0	
A CONTRACTOR ON PROPERTY.			INTERVAL: 24 HOURS	≎. ≎.	,	
SURVING NUMBER:	20				0	
DO.	007				0	
: HQ	0.0	4.0	0.6	8.5	8.6	
TEMP (C):	20.5	•			8.0	
					20.4	
SHRUTUTURE .	Ç.		INTERVAL: 48 H	RS		
SURVIVAL DERCENT	200			0	0	
) tr				0	
: 116	2.7	2 C	w. t	.		
TENP (C):	19.3	Q.	20.3	9•		
SURVIVING NUMBER: SURVIVAL PERCENT: DO:			INTERVAL: 72 HOURS	S		
PH: TEMP (C)						

TEST NOTES CONCENTRATIONS WERE RENEWED AT 24 HOURS. BIOASSAY FAILED

INTERVAL: 96 HOURS

SURVIVING NUMBER: SURVIVAL PERCENT: DO: PH: TEMP (C):

APPENDIX J

Fecal Coliform Results

10000005 (13x10) + cooper 2.6 X16" 200000 | 38x 100) - , cans 7600000 194100 4,000 6400000 100. ÷ (001× 58) (240×100) K.CON 3×100 \$ -,000x Calculation (6×100) - .001 TXXC 0 Q 0 0 \bigcirc TECH CROCKED WS 20000005 000005 innons 5000 2000 Silution 0 1000 1000 200 7027 1000 くびじゅ FECAL COLIFORM SAMPLE RESULTS 100: Date of Analysis Site Identification 7 CB 68, 15/89 > Mid Control Date of sample 8 ₹ × ۲ BASE

24000000

000009

600000

Ö

0

0

7111

0

 \mathcal{O}

0 Q

Remarks

Fecal /100ml

3200000

GENERAL PURPOSE 11: x 815"1

F SORM 3133 PREVIOUS REITION WILL BE USED.

Control

tood

" AUS. Cavererine Desirity Affices and and states

ïï

FECAL COLIFORM SAMPLE RESULTS

· Jangs 1 44,5 14 Dec 1500

fate of cample	Nate of Analveis	Site Identification	Dilution	Calculation	Fecal /100mîl	Remarks
13/14/89	13/14/83			18 X 100 - 001	00000	
j,	2.1	013	10001	0.	0	
l	, ,	. 013		(3 KIEO) -2008	000000	
"	10:	C13	1.0	0	0	
, J	,	ر /ع	2000000	0	0	
PRE Contrad	神	•		W)
68/61/61	12/12/83	CB8	,00;	105- (011711)	117 00000	
, ,	1.1/1	NBE	,0000,	168 1100 -, odd 68 00 000	6800000	
<i>\</i> / 95	"	C. A.S.	,0005	0000000 = 2005 J30000000	330000000	
9	//	C.88	·\$1	(3×100) - inxes 4000 0000	0000 oooh .	
11	ار	CBS	147	0	0	*
•		•				
12/14/89	12/15/89	# 57	1001	0	0	
, /, /	1"	#57	10001	0	0	
. "	"	# 59.	+0005	0	0	
11	<i>h</i> :	7.57	, DONE WE.	, 0	0	
· J/	"	オラシ	2000000	Q	Q	
		•				
	×					
AF FIG 63 3133 PREVIOUS ED	Previous edicion will be used.	GENERAL PURPOSE (11 x 6 W")	POSE (11 x 64") .		A U.S. Government Princing Office: 1593—256-577-777	12(cr. 1503

Distribution List

	Copies
HQAFSC/SGP Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ TAC/SGPB Langley AFB VA 23665-5001	2
HQ TAC/DE Langley AFB VA 23665-5001	1
AAMRL/TH Wright-Patterson AFB OH 45433-6573	1
7100 CSW Med Cen/SGB APO New York 09220-5300	1
Det 1, AFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/ED/EDH/EQ Brooks AFB TX 78235-5301	1
Defense Technical Information Center Cameron Station Alexandria VA 22304-6145	2
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
832 Medical Group/SGPB Luke AFB AZ 85309-5300	4
832 CES/DEV Luke AFB AZ 85309-5010	4
HQ HSD/XA Brooks AFB TX 78235-5000	1