STA 314: Statistical Methods for Machine Learning I

Lecture 8 - Gradient Descent, Multi-class Logistic Regression

Xin Bing

Department of Statistical Sciences University of Toronto

A general problem of solving a minimization problem

Suppose we want to solve the following problem

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}; \mathcal{D}^{train}) := \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w})$$

where $\mathcal{J}(\mathbf{w}; \mathcal{D}^{train})$ is a differentiable function in \mathbf{w} , and depends on \mathcal{D}^{train} as well, and Θ is a subspace of \mathbb{R}^p .

The optimal solution (if exists) must be a critical point,
 i.e. point to which the derivative is zero
 (partial derivatives to zero for multi-dimensional parameter).

Finding the optimal solution requires to solve the equations

 Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$\frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}$$

• The minimum must occur at a point where the partial derivatives are zero.

$$\begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \vdots \\ \frac{\partial g}{\partial w_p} \end{bmatrix} = 0$$

- This turns out to give a system of linear equations, which we can solve analytically in some scenarios.
- We may also use optimization techniques that iteratively get us closer to the solution.

Direct solution

OLS:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \ \mathcal{J}(\mathbf{w}) = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \ \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2.$$

The partial derivatives w.r.t. w are

$$\frac{\partial \mathbf{g}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}).$$

(If not familiar with multi-dimensional derivatives, calculate $\frac{\partial g}{\partial w_j}$ and stack them together).

Setting the above equal to zero results

$$\mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\top}\mathbf{y}, \qquad \Rightarrow \qquad \hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Direct solution

Ridge:

$$\hat{\mathbf{w}}_{\lambda}^{R} = \underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}) = \underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{argmin}} \, ||\mathbf{y} - \mathbf{X}\mathbf{w}||_{2}^{2} + \lambda ||\mathbf{w}||_{2}^{2}.$$

The partial derivatives w.r.t. w are

$$\frac{\partial \mathbf{g}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}) + 2\lambda\mathbf{w}.$$

Setting the above equal to zero results

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p)\hat{\mathbf{w}}_{\lambda}^R = \mathbf{X}^{\top}\mathbf{y}, \qquad \Rightarrow \qquad \hat{\mathbf{w}}_{\lambda}^R = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_p\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Gradient Descent

Now let's see a second way to solve

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w})$$

which is more broadly applicable: gradient descent.

• Many times, we do not have a direct solution to

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = 0.$$

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

Gradient Descent

We **initialize** w to something reasonable (e.g. all zeros) and repeatedly adjust them in the **direction of steepest descent**.

What is the direction of the steepest descent of $\mathcal{J}(\mathbf{w})$ at \mathbf{w} ?

Gradient Descent

- By definition, the direction of the greatest increase in $\mathcal{J}(\mathbf{w})$ at \mathbf{w} is its gradient $\partial \mathcal{J}/\partial \mathbf{w}$. So, we should update \mathbf{w} in the **opposite** direction of the gradient descent.
- The following update always decreases the cost function for small enough α (unless $\partial \mathcal{J}/\partial w_j = 0$): at the (k+1)th iteration,

$$w_j^{(k+1)} \leftarrow w_j^{(k)} - \alpha \cdot \frac{\partial \mathcal{J}}{\partial w_j} \Big|_{\mathbf{w} = \mathbf{w}^{(k)}}$$

- $\alpha > 0$ is a **learning rate** (or step size). The larger it is, the faster $\mathbf{w}^{(k+1)}$ changes relative to $\mathbf{w}^{(k)}$
 - ▶ We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001.

Gradient descent for OLS

Example

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^p}{\operatorname{argmin}} \mathcal{J}(\mathbf{w}), \qquad \mathcal{J}(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2.$$

Update rule in vector form at the k + 1th iteration:

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \mathbf{w}^{(k)}}$$
$$= \mathbf{w}^{(k)} + 2\alpha \mathbf{X}^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}^{(k)}).$$

Initialization: $\mathbf{w}^{(0)} = 0$.

Stopping criteria

When do we stop?

• The objective value stops changing:

$$|\mathcal{J}(\mathbf{w}^{(k+1)}) - \mathcal{J}(\mathbf{w}^{(k)})|$$
 is small, i.e. $\leq 10^{-6}$.

- The parameter stops changing: $\|\mathbf{w}^{(k+1)} \mathbf{w}^{(k)}\|_2$ is small or $\|\mathbf{w}^{(k+1)} \mathbf{w}^{(k)}\|_2 / \|\mathbf{w}^{(k)}\|_2$ is small.
- When we reach the maximum number (M) of iterations, e.g. M = 1000.

Gradient descent for solving the MLE under logistic regression

Recall we would like to solve

$$\min_{\mathbf{w} \in \mathbb{R}^p} \mathcal{J}(\mathbf{w})$$

where

$$\mathcal{J}(\mathbf{w}) = -\ell(\mathbf{w}) = \sum_{i=1}^{n} \left[-y_i \mathbf{x}_i^{\top} \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^{\top} \mathbf{w}} \right) \right].$$

The gradient at any **w** is that, for any $j \in \{1, ..., p\}$,

$$-\frac{\partial \ell(\mathbf{w})}{\partial w_j} = \sum_{i=1}^n \left[-y_i + \frac{e^{\mathbf{x}_i^\top \mathbf{w}}}{1 + e^{\mathbf{x}_i^\top \mathbf{w}}} \right] x_{ij} \qquad \text{(verify this!)}$$

Updates and stopping criteria

Therefore, at the (k + 1)th iteration, with the learning rate α ,

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} - \alpha \sum_{i=1}^{n} \left[-y_i + \frac{e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

Initialization $\mathbf{w}^{(0)} = 0$.

- The objective value stops changing: $|\ell(\hat{\mathbf{w}}^{(k+1)}) \ell(\hat{\mathbf{w}}^{(k)})|$ is small, say, $\leq 10^{-6}$.
- The parameter stops changing: $\|\hat{\mathbf{w}}^{(k+1)} \hat{\mathbf{w}}^{(k)}\|_2$ is small or $\|\hat{\mathbf{w}}^{(k+1)} \hat{\mathbf{w}}^{(k)}\|_2 / \|\hat{\mathbf{w}}^{(k)}\|_2$ is small.
- Stop after M iterations for some specified M, e.g. M = 1000.

When should we expect Gradient Descent to work?

Recall we try to solve

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \Theta}{\operatorname{argmin}} \, \mathcal{J}(\mathbf{w}).$$

- ullet Obviously, ${\cal J}$ needs to be differentiable.
- If $\mathcal J$ is also a convex function and Θ is a convex set, then Gradient Descent finds the optimal solution.
- In many cases, $\Theta = \mathbb{R}^p$ which is convex.

Convex Sets

A set S is convex if for any $\mathbf{x}_0, \mathbf{x}_1 \in S$,

$$(1-\lambda)\mathbf{x}_0+\lambda\mathbf{x}_1\in\mathcal{S}\quad\text{for all }0\leq\lambda\leq1.$$

The Euclidean space \mathbb{R}^p is a convex set.

Convex Sets and Functions

• A function f is **convex** if for any x_0, x_1 in the domain of f,

$$f((1-\lambda)\mathbf{x}_0 + \lambda \mathbf{x}_1) \le (1-\lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x}_1), \quad \forall \lambda \in [0,1].$$

- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.

How to tell a loss is convex?

- 1. Verify the definition.
- 2. If f is twice differentiable and $f''(x) \ge 0$ for all x, then f is convex.
 - the least-squares loss function $(y t)^2$ is convex as a function of t
 - ▶ the function

$$-yt + \log\left(1 + e^t\right)$$

is convex in t.

3. There are other sufficient conditions for convex, but non-differentiable, functions!

- 4 A composition rule: linear functions preserve convexity.
 - ▶ If f is a convex function and g is a linear function, then both $f \circ g$ and $g \circ f$ are convex.
 - the least-square loss $(y \mathbf{x}^{\mathsf{T}} \mathbf{w})^2$ is convex in \mathbf{w}
 - the negative log-likelihood under logistic regression

$$-y\mathbf{x}^{\mathsf{T}}\mathbf{w} + \log\left(1 + e^{\mathbf{x}^{\mathsf{T}}\mathbf{w}}\right)$$

is convex in w.

▶ Both $\sum_{i} (y_i - \mathbf{x}_i^\top \mathbf{w})^2$ and $\sum_{i} \left[-y_i \mathbf{x}_i^\top \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^\top \mathbf{w}} \right) \right]$ are convex in \mathbf{w} .

There are more composition rules!

A great book:

Convex Optimization, Stephen Boyd and Lieven Vandenberghe.

Gradient Descent for Linear Regression

• The squared error loss

$$\sum_{i=1} (y_i - \mathbf{x}_i^\top \mathbf{w})^2$$

of linear regression is a convex function. So there is a unique solution.

- Even in this case, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
 - ▶ When *p* is large, GD is more efficient than direct solution
 - ▶ Linear regression solution: $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
 - ▶ Matrix inversion is an $\mathcal{O}(p^3)$ algorithm
 - ▶ Each GD update costs $\mathcal{O}(np)$
 - Or less with stochastic GD (Stochastic GD, later)
 - ▶ Huge difference if $p \gg \sqrt{n}$

Gradient descent for solving the MLE under logistic regression

• The negative log-likelihood

$$-\ell(\mathbf{w}) = \sum_{i=1}^{n} \left[-y_i \mathbf{x}_i^{\top} \mathbf{w} + \log \left(1 + e^{\mathbf{x}_i^{\top} \mathbf{w}} \right) \right]$$

is convex in w.

- So we can use gradient descent to find the minima of the logistic loss!
- GD can be applied to more general settings!

Effect of the Learning Rate (Step Size)

• In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

 α too small: slow progress

 α too large: oscillations

 α much too large: instability

• Good values are typically between 0.001 and 0.1. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).

Training Curves

 To diagnose optimization problems, it's useful to look at the training cost: plot the training cost as a function of iteration.

iteration #

- Warning: the training cost could be used to check whether the optimization problem reaches certain convergence. But
 - ▶ It does not tell whether we reach the global minimum or not
 - ▶ It does not tell anything on the performance of the fitted model

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Batch Gradient Descent

- Recall that
 - OLS:

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \sum_{i=1}^{n} \left[y_i - \mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i.$$

Logistic regression:

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \sum_{i=1}^{n} \left[y_i - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

 Computing the gradient requires summing over all of the training examples, which can be done via matrix / vector operations.
 The fact that it uses all training samples is known as batch training.

- Batch training is impractical if you have a large dataset (e.g. millions of training examples, $n \approx 10$ millions)!
- Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example.

For each iteration $k \in \{1, 2, \ldots\}$,

- 1. Choose $i \in \{1, ..., n\}$ uniformly at random
- 2. Update the parameters by ONLY using this ith sample,

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i$$

$$\hat{\mathbf{w}}^{(k+1)} = \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i.$$

$$\begin{split} \hat{\mathbf{w}}^{(k+1)} &= \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)} \right] \mathbf{x}_i \\ \hat{\mathbf{w}}^{(k+1)} &= \hat{\mathbf{w}}^{(k)} + \alpha \left[y_i - \frac{e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}}{1 + e^{\mathbf{x}_i^{\top} \hat{\mathbf{w}}^{(k)}}} \right] \mathbf{x}_i. \end{split}$$

Pros:

- Computational cost of each SGD update is independent of n!
- SGD can make significant progress before even seeing all the data!
- Mathematical justification: the gradients between SGD and GD have the same expectation for i.i.d. data.

Cons: using single training example to estimate gradient:

• Variance in the estimate may be high

Compromise approach:

- compute the gradients on a randomly chosen medium-sized set of training examples $\mathcal{M} \subset \{1, \dots, n\}$, called a **mini-batch**.
- Stochastic gradients computed on larger mini-batches have smaller variance.
- ullet The mini-batch size $|\mathcal{M}|$ is a hyperparameter that needs to be set.

• Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent

stochastic gradient descent

Learning Rate

• In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

• Good values are typically small. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

SGD Learning Rate

 In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.

- Typical strategy:
 - Use a large learning rate early in training so you can get close to the optimum
 - Gradually decay the learning rate to reduce the fluctuations

Review

In the last lecture, we have learned the logistic regression for binary classification with $Y \in \{0,1\}$.

- Estimating the Bayes rule at any observation $\mathbf{x} \in \mathcal{X}$ is equivalent to estimate the conditional probability $\mathbb{P}(Y = 1 \mid X = \mathbf{x})$.
- Logistic regression parametrizes the conditional probability by

$$\mathbb{P}(Y=1\mid X=\mathbf{x})=\frac{e^{\beta_0+\mathbf{x}^{\top}\boldsymbol{\beta}}}{1+e^{\beta_0+\mathbf{x}^{\top}\boldsymbol{\beta}}}.$$

 We estimate the coefficients by using MLE which can be solved by (stochastic) gradient descent.

Extension to multi-class classification

When $Y \in \{0, 1, ..., K\}$ for $K \ge 2$, we need to estimate

$$p_k(\mathbf{x}) := \mathbb{P}(Y = k \mid X = \mathbf{x}), \quad \forall 1 \le k \le K.$$

We assume

$$\begin{split} p_0(\mathbf{x}) &= \frac{1}{1 + \sum_{k=1}^K e^{\beta_0^{(k)} + \mathbf{x}^\top \boldsymbol{\beta}^{(k)}}}, \\ p_1(\mathbf{x}) &= \frac{e^{\beta_0^{(1)} + \mathbf{x}^\top \boldsymbol{\beta}^{(1)}}}{1 + \sum_{k=1}^K e^{\beta_0^{(k)} + \mathbf{x}^\top \boldsymbol{\beta}^{(k)}}}. \\ &\vdots \\ p_K(\mathbf{x}) &= \frac{e^{\beta_0^{(K)} + \mathbf{x}^\top \boldsymbol{\beta}^{(K)}}}{1 + \sum_{k=1}^K e^{\beta_0^{(k)} + \mathbf{x}^\top \boldsymbol{\beta}^{(k)}}}. \end{split}$$

Choice of the baseline (which is Y = 0) is arbitrary.

Classification

Equivalently,

$$\log\left(\frac{p_{1}(\mathbf{x})}{p_{0}(\mathbf{x})}\right) = \beta_{0}^{(1)} + \beta_{1}^{(1)}x_{1} + \dots + \beta_{p}^{(1)}x_{p}$$

$$\log\left(\frac{p_{2}(\mathbf{x})}{p_{0}(\mathbf{x})}\right) = \beta_{0}^{(2)} + \beta_{1}^{(2)}x_{1} + \dots + \beta_{p}^{(2)}x_{p}$$

$$\vdots$$

$$\log\left(\frac{p_{K}(\mathbf{x})}{p_{0}(\mathbf{x})}\right) = \beta_{0}^{(K)} + \beta_{1}^{(K)}x_{1} + \dots + \beta_{p}^{(K)}x_{p}$$

So classification can be done immediately once $\beta^{(k)}$'s are estimated,

How to estimate coefficients?

A naive approach: separate binary logistic regressions

$$\log\left(\frac{p_k(\mathbf{x})}{p_0(\mathbf{x})}\right) = \beta_0^{(k)} + \beta_1^{(k)} x_1 + \dots + \beta_p^{(k)} x_p$$

Split the data into $\{\mathcal{D}^{train}_{(1)}, \dots, \mathcal{D}^{train}_{(K)}\}$ with $\mathcal{D}^{train}_{(k)}$ containing all data with $y \in \{0, k\}$.

1. For each $1 \le k \le K$, use $\mathcal{D}^{train}_{(k)}$ to perform binary logistic regression to estimate $\beta^{(k)}$ and estimate

$$\frac{p_k(\mathbf{x})}{p_0(\mathbf{x})}$$

2. Assign class label by comparing

$$1, \frac{p_1(\mathbf{x})}{p_0(\mathbf{x})}, \frac{p_2(\mathbf{x})}{p_0(\mathbf{x})} \dots, \frac{p_K(\mathbf{x})}{p_0(\mathbf{x})}$$

Why naive?

- Estimation of $\beta^{(k)}$
 - only uses $\mathcal{D}^{train}_{(k)}$, data points in class $\{0, k\}$
 - ▶ ignore all data points in other classes
- The event $\{y_i = k\}$ is **dependent** on all other $\{y_i = k'\}$ for $k' \neq k$. Intuitively, this dependence helps to estimate $\beta^{(k)}$ by pooling data from all classes.
- What should we use instead?

MLE for multi-class logistic regression

For $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n)$, the log-likelihood of $(\boldsymbol{\beta}^{(1)}, \dots, \boldsymbol{\beta}^{(K)})$ with no intercepts is **proportional to**

$$\begin{split} &\sum_{i=1}^{n} \log \left(\prod_{k=0}^{K} p_{k}(\mathbf{x}_{i})^{1\{y_{i}=k\}} \right) \\ &= \sum_{i=1}^{n} \sum_{k=0}^{K} 1\{y_{i} = k\} \log \left(p_{k}(\mathbf{x}_{i}) \right) \\ &= \sum_{i=1}^{n} \left[1\{y_{i} = 0\} \log \left(p_{0}(\mathbf{x}_{i}) \right) + \sum_{k=1}^{K} 1\{y_{i} = k\} \log \left(p_{k}(\mathbf{x}_{i}) \right) \right] \\ &= \sum_{i=1}^{n} \left[\sum_{k=1}^{K} 1\{y_{i} = k\} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)} - \sum_{k=0}^{K} 1\{y_{i} = k\} \log \left(1 + \sum_{k=1}^{K} e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)}} \right) \right] \\ &= \sum_{i=1}^{n} \left[\sum_{k=1}^{K} 1\{y_{i} = k\} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)} - \log \left(1 + \sum_{k=1}^{K} e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}^{(k)}} \right) \right] \end{split}$$

Gradient of $\ell(\beta^{(k)})$

For any $1 \le k \le K$,

$$\frac{\partial \ell(\boldsymbol{\beta}^{(1)}, \dots, \boldsymbol{\beta}^{(K)})}{\partial \boldsymbol{\beta}^{(k)}} = \sum_{i=1}^{n} \left[1\{y_i = k\} \ \mathbf{x}_i - \frac{\mathbf{x}_i e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}} \right]$$
$$= \sum_{i=1}^{n} \left[1\{y_i = k\} - \frac{e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(k)}}} \right] \mathbf{x}_i$$

c.f. the binary case

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} \left[1\{y_i = 1\} - \frac{e^{\mathbf{x}_i^{\top} \beta}}{1 + e^{\mathbf{x}_i^{\top} \beta}} \right] \mathbf{x}_i$$
$$= \sum_{i=1}^{n} \left[y_i - \frac{e^{\mathbf{x}_i^{\top} \beta}}{1 + e^{\mathbf{x}_i^{\top} \beta}} \right] \mathbf{x}_i.$$

Gradient descent

Therefore, for $1 \le k \le K$, we update

$$\hat{\beta}_{(t+1)}^{(k)} = \hat{\beta}_{(t)}^{(k)} + \alpha \sum_{i=1}^{n} \left[1\{y_i = k\} - \frac{e^{\mathbf{x}_i^{\top} \hat{\beta}_{(t)}^{(k)}}}{1 + \sum_{k=1}^{K} e^{\mathbf{x}_i^{\top} \hat{\beta}_{(t)}^{(k)}}} \right] \mathbf{x}_i.$$

Remark:

- the gradient update uses data points from all classes!
- better estimation than the naive approach

An alternative to Logistic Regression

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable¹.
 - ▶ Discriminant analysis does not suffer from this problem.
- When n is small and we know more about the data, such as the distribution of $X \mid Y = k$
 - Discriminant analysis has better performance than the logistic regression model.
- Logistic Regression sometimes does not handle multi-class classification well
 - ▶ Discriminant analysis is more suitable for **multi-class** classification problems.

¹A paper on this.