

TensorFlow实践

声控智能

智能系统实验室

清华大学基础工业训练中心

目录

• 声控智能设计

• 网络模型训练

•安卓应用开发

声控智能设计

- 实验步骤:
 - 1. 语音指令设计

输出: 24句语音指令;

2. 语音指令录音

输出: 统一格式的录音文件集*.wav文件;

- 3. 基于TensorFlow的深度网络训练输出: 网络模型文件*.pb;
- 4. 基于AndriodStudio的安卓应用开发输出:安卓应用的apk文件。

语音指令设计

• 24条语音指令

- a蓝牙开机
- b蓝牙拨打电话 / bb蓝牙打电话
- c蓝牙接听电话 / cc蓝牙接电话
- d蓝牙拒接
- e蓝牙播放音乐 / ee蓝牙开始音乐
- f蓝牙暂停音乐 / ff蓝牙停止音乐
- g蓝牙上一首/gg蓝牙上一曲
- h蓝牙下一首 / hh蓝牙下一曲
- i蓝牙音量增大 / ii蓝牙声音增大 / iii蓝牙音量增加 / iiii蓝牙声音增加
- j蓝牙音量减小 / jj蓝牙声音减小
- k蓝牙关机
- I蓝牙电量提醒 / Ⅱ蓝牙还剩多少电 / Ⅲ蓝牙还剩多少电量

语音指令录音

- 24个语音文件
- *.wav等格式

名称	修改日期	类型	大小
⊚ a	2016/5/10 0:41	AMR 文件	2 KB
⊚ b	2016/5/10 0:41	AMR 文件	3 KB
	2016/5/10 0:41	AMR 文件	3 KB
⊚ c	2016/5/10 0:41	AMR 文件	3 KB
⊚ cc	2016/5/10 0:41	AMR 文件	3 KB
o d	2016/5/10 0:41	AMR 文件	3 KB
⊚ e	2016/5/10 0:41	AMR 文件	3 KB
⊚ ee	2016/5/10 0:41	AMR 文件	3 KB
⊚ f	2016/5/10 0:41	AMR 文件	3 KB
	2016/5/10 0:41	AMR 文件	4 KB
⊚ g	2016/5/10 0:41	AMR 文件	3 KB
	2016/5/10 0:41	AMR 文件	4 KB
⊚ h	2016/5/10 0:41	AMR 文件	3 KB
hh	2016/5/10 0:41	AMR 文件	3 KB
⊚ i	2016/5/10 0:41	AMR 文件	3 KB
⊚ ii	2016/5/10 0:41	AMR 文件	3 KB
o iii	2016/5/10 0:41	AMR 文件	4 KB
⊚ iiii	2016/5/10 0:41	AMR 文件	3 KB
⊚ j	2016/5/10 0:41	AMR 文件	3 KB
⊚் jj	2016/5/10 0:41	AMR 文件	3 KB
⊚ k	2016/5/10 0:41	AMR 文件	3 KB
◎ I	2016/5/10 0:41	AMR 文件	3 KB
◎ Ⅱ	2016/5/10 0:41	AMR 文件	3 KB
⊚ III	2016/5/10 0:41	AMR 文件	3 KB

声控智能-实验过程

- (1) 用笔记本或者手机录下以上语音指令文件,生成对应指令的.wav文件,文件名即为指令名字编号。
- (2) 对应文件生成频谱图(spectrogram) *.spec文件 [1]
- (3) 使用TensorFlow搭建3层全连接的神经网络(24个softmax输出)。
- (4) 使用采集的数据集, 训练神经网络。
- (5)对神经网络进行验证准确率。
- (6) 将训练好的神经网络部署在树莓派智能硬件平台上。
 - [1] Spectrogram, https://en.wikipedia.org/wiki/Spectrogram

网络模型训练

神经网络训练与验证

计算平台使用

• (1) 录音采集 (用手机设备)

• (2) 录音数据预处理 (用工作站)

• (3) 神经网络训练 (用GPU超级计算平台)

• (4) 神经网络部署 (智能硬件)

audioPlot

• 录音文件预处理

• 统一化格式为*.wav文件

• 展示为波形文件和频谱图文件

• 删除不正确的数据, 防止污染训练结果

深度网络的实际训练过程(1)

- 网络的训练将样本数据"分批训练"。
 - 先将整个训练集分成多个大小相同的子集,每个子集称为一个迷你批次(batch)。
 - 子集的大小由参数迷你批次大小(minibatch_size)控制。
 - 每个批次的数据被依次送入网络进行训练。
 - 训练完一个迷你批次, 被称为一次迭代(iteration)。
 - 一个时代(epoch)是指训练集中所有训练样本都被送入网络,完成一次训练的过程。

深度网络的实际训练过程 (2)

- 时代 (epoch) 数目记录了整个训练集被反复训练的次数
- 迭代(iteration)数目记录网络参数的调整次数。
- 时代(epoch) 和迭代(iteration)之间的数量关系由批次大小(batch_size) 和训练集大小决定。
- 比如, 训练集有100张照片, 分为50个子集, 每个子集2张, 那么 Batch_size = 2。 如果epoch = 10, iteration = 500。

GPU工作站

- CPU:
 - Intel Xeon E5-2630 v3(8核16线程)
- GPU:
 - 8块NVIDIA GeForce TitanX 12G GDDR5
- 128GB内存
- 12TB存储

3层前馈网络模型

audioNet

• TensorFlow/Keras实现

- 谷歌CLDNN模型
- Python 语音
- 输入带标签的*.wav文件

• 输出*.h5文件, 转*.pb文件

实验结果: 数据增强

安卓应用开发

androidAudioRecg

• 谷歌android开发环境Android Studio

实现原理

- 在安卓应用中调用手机的录音(Record)功能
 - 需要获得系统的录音权限, 否则会出现各种错误提示。
- 使用AudioRecord类来进行录音。好处是录音结果就是内存中的数组,以浮点数、整数的数组形式给出,方便算法处理。
- 载入推断模型文件,调用TensorFlow库的推断接口: TensorflowInferenceInterface.

声控智能硬件

产业未来

硅麦克风模组

- 基于4麦克风阵列的语音前端解决方案:
- 模块利用麦克风阵列的空域滤波特性, 通过对唤醒人的角度定位,形成定向拾 音波束,并对波束以外的噪声进行抑制, 提升远场拾音质量、保证识别效果。
- 实现180度声源定位、5米拾音、降噪、回声消除、语音唤醒等功能。

声控智能硬件应用

- AloT物联网
- 语音唤醒万物
- 语音交互

展望

- 全中文语音识别系统开发
 - 中文语料准备
 - 模型选择,如DeepSpeech2/3等
 - 模型训练与部署

谢谢指正!