ENGR 421/DASC 521: Introduction to Machine Learning Fall 2021 Final – Solution Key

Question 1:

We have two classes that are assumed to have one-dimensional Gaussian distributions with different means and variances: $p(x|y=1) \sim N(\mu_1, \sigma^2)$ and $p(x|y=2) \sim N(\mu_2, 4\sigma^2)$. Derive the position(s) of the intersection of the two posterior probabilities.

We would like to find x that satisfy P(y = 1|x) = P(y = 2|x).

$$p(x|y=1)P(y=1) = p(x|y=2)P(y=2)$$

$$\log p(x|y=1) + \log P(y=1) = \log p(x|y=2) + \log P(y=2)$$

$$-\frac{\log(2\pi\sigma^2)}{2} - \frac{(x-\mu_1)^2}{2\sigma^2} + \log P(y=1) = -\frac{\log(8\pi\sigma^2)}{2} - \frac{(x-\mu_2)^2}{8\sigma^2} + \log P(y=2)$$

$$-\frac{3}{8\sigma^2}x^2 + \frac{4\mu_1 - \mu_2}{4\sigma^2}x - \frac{(2\mu_1 - \mu_2)(2\mu_1 + \mu_2)}{8\sigma^2} + \log\frac{P(y=1)}{P(y=2)} + \log 2 = 0$$

Question 2:

Consider a data set of N data points, in which each data point has one real-valued positive input x_i and the corresponding real-valued output y_i , i.e., $\{(x_i, y_i)\}_{i=1}^N$. We use the following model to fit the data, which has an unknown parameter w (the variance is known in advance and is set to 1).

$$p(y_i|x_i) \sim N(\log(wx_i), 1) \quad \forall i$$

- (a) Describe a maximum likelihood approach to infer w and write down the log-likelihood objective for this problem.
- (b) Find the maximum likelihood solution for w.

(a) By assuming the data points are independent from each other, we can write down the likelihood function as follows:

likelihood =
$$\prod_{i=1}^{N} p(y_i|x_i) = \prod_{i=1}^{N} N(\log(wx_i), 1)$$
$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi(1)^2}} \exp\left(-\frac{(y_i - \log(wx_i))^2}{2(1)^2}\right)$$

log-likelihood =
$$\sum_{i=1}^{N} (-(1/2) \log(2\pi) - (1/2)(y_i - \log(wx_i))^2)$$

(b) To maximize log-likelihood, we need to minimize $\sum_{i=1}^{N} (1/2)(y_i - \log(wx_i))^2$ with respect to w.

$$\frac{\partial \sum_{i=1}^{N} (1/2)(y_i - \log(wx_i))^2}{\partial w} = \sum_{i=1}^{N} \frac{\partial (1/2)(y_i - \log(wx_i))^2}{\partial w}$$

$$= \sum_{i=1}^{N} (2(1/2)(y_i - \log(wx_i)))(-(x_i/(wx_i))) = 0$$

$$\sum_{i=1}^{N} (y_i - (\log(w^*) + \log(x_i))) = 0 \Rightarrow N \log(w^*) = \sum_{i=1}^{N} (y_i - \log(x_i))$$

$$w^* = \exp\left(\left[\sum_{i=1}^{N} (y_i - \log(x_i))\right]/N\right)$$

Question 3:

Given a multilayer perceptron with one input, one tanh hidden unit, and one sigmoid output unit, derive the weight update equations to minimize the cross-entropy using gradient-descent.

$$z_0$$
 z z

$$\frac{\partial \tanh(a)}{\partial a} = (1 - \tanh(a))^2$$

$$\frac{\partial \text{sigmoid}(a)}{\partial a} = \text{sigmoid}(a)(1 - \text{sigmoid}(a))$$

$$z_i = \tanh(wx_i + w_0)$$

$$\hat{y}_i = \text{sigmoid}(vz_i + v_0)$$

$$\text{Error}_i = -y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)$$

$$\Delta v = -\eta \frac{\partial \operatorname{Error}_{i}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial v}$$

$$= \eta(y_{i} - \hat{y}_{i})z_{i}$$

$$\Delta v_{0} = -\eta \frac{\partial \operatorname{Error}_{i}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial v_{0}}$$

$$= \eta(y_{i} - \hat{y}_{i})$$

$$\Delta w = -\eta \frac{\partial \operatorname{Error}_{i}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w}$$

$$= \eta(y_{i} - \hat{y}_{i})v(1 - z_{i})^{2}x_{i}$$

$$\Delta w_{0} = -\eta \frac{\partial \operatorname{Error}_{i}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{0}}$$

$$= \eta(y_{i} - \hat{y}_{i})v(1 - z_{i})^{2}$$

Question 4:

We know that an $N \times N$ symmetric real matrix **K** is said to be positive semidefinite if $\mathbf{a}^{\top}\mathbf{K}\mathbf{a} \geq 0$ for all \mathbf{a} in \mathbb{R}^{N} .

- (a) Show that $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\top} \boldsymbol{x}_j$ produces a positive semidefinite kernel matrix on a given set of N data points, i.e., $\mathcal{X} = \{\boldsymbol{x}_i \in \mathbb{R}^D\}_{i=1}^N$.
- (b) Show that $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \frac{\boldsymbol{x}_i^{\top} \boldsymbol{x}_j}{\|\boldsymbol{x}_i\|_2 \|\boldsymbol{x}_j\|_2}$ produces a positive semidefinite kernel matrix on a given set of N data points, i.e., $\mathcal{X} = \{\boldsymbol{x}_i \in \mathbb{R}^D\}_{i=1}^N$.

(a) $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\top} \boldsymbol{x}_j$ produces the following kernel matrix:

$$\mathbf{K} = egin{bmatrix} oldsymbol{x}_{1}^{ op} oldsymbol{x}_{2}^{ op} oldsymbol{x}_{1}^{ op} oldsymbol{x}_{2}^{ op} oldsymbol{x}_{1}^{ op} oldsy$$

(b) $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \frac{\boldsymbol{x}_i^{\top} \boldsymbol{x}_j}{\|\boldsymbol{x}_i\|_2 \|\boldsymbol{x}_j\|_2}$ produces the following kernel matrix:

$$\mathbf{K} = \begin{bmatrix} \boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{1} & \boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{2} & \dots & \boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{N} \\ \|\boldsymbol{x}_{1}\|_{2} \|\boldsymbol{x}_{1}\|_{2} & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{2} & \dots & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{N} \\ \|\boldsymbol{x}_{2}\|_{2} \|\boldsymbol{x}_{1}\|_{2} & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{2} & \dots & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{N} \\ \|\boldsymbol{x}_{2}\|_{2} \|\boldsymbol{x}_{1}\|_{2} & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{2} & \dots & \boldsymbol{x}_{2}^{\top} \boldsymbol{x}_{N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \boldsymbol{x}_{N}^{\top} \boldsymbol{x}_{1} & \boldsymbol{x}_{N}^{\top} \boldsymbol{x}_{2} & \dots & \boldsymbol{x}_{N}^{\top} \boldsymbol{x}_{N} \\ \|\boldsymbol{x}_{N}\|_{2} \|\boldsymbol{x}_{1}\|_{2} & \boldsymbol{x}_{N} \|\boldsymbol{x}_{2} \|\boldsymbol{x}_{2} \|_{2} & \dots & \boldsymbol{x}_{N}^{\top} \boldsymbol{x}_{N} \\ \end{bmatrix} = \underbrace{\begin{bmatrix} \boldsymbol{x}_{1}^{\top} \\ \|\boldsymbol{x}_{1}\|_{2} \\ \boldsymbol{x}_{2}^{\top} \\ \|\boldsymbol{x}_{2}\|_{2} \\ \vdots \\ \boldsymbol{x}_{N}^{\top} \\ \|\boldsymbol{x}_{N}\|_{2} \end{bmatrix}}_{\mathbf{I}\mathbf{J}^{\top}}$$

$$\mathbf{a}^{\top}\mathbf{K}\mathbf{a} \geq 0$$
$$\mathbf{a}^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{a} \geq 0$$
$$(\mathbf{U}^{\top}\mathbf{a})^{\top}\mathbf{U}^{\top}\mathbf{a} \geq 0$$
$$\|\mathbf{U}^{\top}\mathbf{a}\|_{2}^{2} \geq 0$$

Question 5:

The XOR problem is given by:

If we use the following mapping function $\Phi(\cdot)$ for the support vector machine formulation, can we solve this binary classification problem successfully? Justify your answer.

$$\Phi(\boldsymbol{x}_i) = \begin{bmatrix} x_{i1}^2 - x_{i2}^2 \\ x_{i1}x_{i2} \\ x_{i1}^2 + x_{i2}^2 \end{bmatrix}$$

The mapping function produces the following representations: $\Phi(\boldsymbol{x}_1) = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^{\mathsf{T}}$, $\Phi(\boldsymbol{x}_2) = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}^{\mathsf{T}}$, $\Phi(\boldsymbol{x}_3) = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}^{\mathsf{T}}$, and $\Phi(\boldsymbol{x}_4) = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^{\mathsf{T}}$.

The kernel matrix can be constructed as follows:

$$\mathbf{K} = \begin{bmatrix} 5 & 3 & 3 & 5 \\ 3 & 5 & 5 & 3 \\ 3 & 5 & 5 & 3 \\ 5 & 3 & 3 & 5 \end{bmatrix}$$

$$\text{maximize} \quad J = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix}^\top \begin{bmatrix} 5 & -3 & -3 & 5 \\ -3 & 5 & 5 & -3 \\ -3 & 5 & 5 & -3 \\ 5 & -3 & -3 & 5 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix}$$

with respect to
$$\alpha_1$$
, α_2 , α_3 , α_4
subject to $-\alpha_1 + \alpha_2 + \alpha_3 - \alpha_4 = 0$
 $\alpha_i \ge 0$ $i \in \{1, 2, 3, 4\}$

$$\frac{\partial J}{\partial \alpha_1} = \frac{\partial J}{\partial \alpha_4} = 1 - 5\alpha_1 + 3\alpha_2 + 3\alpha_3 - 5\alpha_4 = 0$$

$$\frac{\partial J}{\partial \alpha_2} = \frac{\partial J}{\partial \alpha_3} = 1 + 3\alpha_1 - 5\alpha_2 - 5\alpha_3 + 3\alpha_4 = 0$$

For example, $\alpha_1^{\star} = 1/2$, $\alpha_2^{\star} = 1/2$, $\alpha_3^{\star} = 0$, and $\alpha_4^{\star} = 0$ is one of the optimum solutions.

Question 6:

Recall the error function for k-means clustering with K clusters, data points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N$, and centers $\hat{\boldsymbol{\mu}}_1, \ldots, \hat{\boldsymbol{\mu}}_K$:

$$E = \sum_{i=1}^{N} \sum_{k=1}^{K} b_{ik} \|\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}_{k}\|_{2}^{2}$$

where b_{ik} is equal to 1 if data point x_i is closer to center $\hat{\mu}_k$ than to any other center and to 0 otherwise.

- (a) Instead of updating $\{\hat{\boldsymbol{\mu}}_k\}_{k=1}^K$ by computing the means, let us minimize E with batch gradient descent while holding $\{b_{ik}\}_{i=1,k=1}^{N,K}$ fixed. Derive the update formula for $\hat{\boldsymbol{\mu}}_1$ with learning rate η .
- (b) Derive the update formula for $\hat{\boldsymbol{\mu}}_1$ with gradient descent on a single data point \boldsymbol{x}_i . Use learning rate η .
- (c) Recall that in the update step of the standard algorithm, we assign each cluster center to the mean of the data points closest to that center. It turns out that a particular choice of the learning rate η , which may be different for each cluster, makes the two algorithms (batch gradient descent and the standard k-means algorithm) have identical update steps. Let us focus on the update for the first cluster, with center $\hat{\mu}_1$. Calculate the value of η so that both algorithms perform the same update for $\hat{\mu}_1$.

(a)

$$\frac{\partial E}{\partial \hat{\boldsymbol{\mu}}_1} = \frac{\partial \left(\sum_{i=1}^N b_{i1} \|\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1\|_2^2 + \text{constant}\right)}{\partial \hat{\boldsymbol{\mu}}_1} = -2\sum_{i=1}^N b_{i1}(\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1)$$

Therefore the update formula is $\hat{\boldsymbol{\mu}}_1^{(t+1)} = \hat{\boldsymbol{\mu}}_1^{(t)} + 2\eta \sum_{i=1}^N b_{i1}(\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1^{(t)})$

(b)
$$\frac{\partial E_i}{\partial \hat{\boldsymbol{\mu}}_1} = \frac{\partial (b_{i1} \| \boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1 \|_2^2 + \text{constant})}{\partial \hat{\boldsymbol{\mu}}_1} = -2b_{i1} (\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1)$$

$$\mathbf{E}_{i} = \hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2 + \mathbf{e}_1 + \hat{\boldsymbol{\mu}}_2 + \mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4 + \mathbf{e}$$

Therefore the update formula is $\hat{\boldsymbol{\mu}}_1^{(t+1)} = \hat{\boldsymbol{\mu}}_1^{(t)} + 2\eta b_{i1}(\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_1^{(t)})$

(c) In the standard
$$k$$
-means algorithm, we assign $\hat{\boldsymbol{\mu}}_1^{(t+1)} = \frac{\sum\limits_{i=1}^N b_{i1} \boldsymbol{x}_i}{\sum\limits_{i=1}^N b_{i1}}$.

$$\frac{\sum_{i=1}^{N} b_{i1} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} b_{i1}} = \hat{\boldsymbol{\mu}}_{1}^{(t)} + 2\eta \sum_{i=1}^{N} b_{i1} (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}_{1}^{(t)}) \Rightarrow \eta = \frac{1}{2 \sum_{i=1}^{N} b_{i1}}$$

Question 7:

One may be concerned that the randomness introduced in random forests may cause trouble, for instance, some features or samples may not be considered at all.

- (a) Consider N training samples in a feature space of D dimensions. Consider building a random forest with T binary trees, each having exactly H internal nodes. Let F be the number of features randomly selected at each node. In order to simplify our calculations, we will let F=1. For this setting, compute the probability that a certain feature (say, the first feature) is never considered for splitting.
- (b) Now let us investigate the concern regarding the random selection of the samples. Suppose each tree employs N bootstrapped training samples. Compute the probability that a particular sample (say, the first sample) is never considered in any of the trees.
- (c) Compute the values of the probabilities you obtained in the previous two parts for the case when there are N=2 training samples, D=2 dimensions, T=10 trees of depth H=4. What conclusions can you draw from your answer with regard to the concern mentioned at the beginning of the question?

- (a) The probability that it is not considered for splitting in a particular node of a particular tree is (1 1/D). The subsampling of F = 1 features at each node is independent of all others. There are a total of TH nodes and hence the final answer is $(1 1/D)^{TH}$.
- (b) The probability that it is not considered in one of the trees is $(1 1/N)^N$. Since the choice for every tree is independent, the probability that it is not considered in any of the trees is $(1 1/N)^{NT}$.
- (c) $(1/2)^{40}$ and $(1/2)^{20}$. It is quite unlikely that a feature or a sample will be missed.

Question 8:

It is suggested to run the k-means clustering algorithm multiple times with different initializations. Explain the reasoning behind this suggestion.

The k-means clustering algorithm is heavily affected by the initial configuration. That is why it is always a good idea to run the algorithm multiple times and pick the best solution.

Question 9:

Let a configuration of the k-means clustering algorithm correspond to the k way partition (on the set of instances to be clustered) generated by the clustering at the end of each iteration. Is it possible for the k-means algorithm to revisit a configuration? Justify your answer.

It is guaranteed that the objective function value of the k-means clustering algorithm is monotonically decreasing during successive iterations. That is why it is not possible to revisit a configuration once you move to another but a better configuration.

Question 10:

What are the distance and linkage functions used in hierarchical clustering algorithms? How do they differ in their roles?

Distance function: Distance measure between two instances x_i and x_j .

Linkage function: Distance measure between two groups \mathcal{G}_A and \mathcal{G}_B .

Question 11:

What is an unstable learner? Why does bagging (i.e., bootstrap aggregating) rely on having an unstable learner as the base classifier?

A learning algorithm is unstable if small changes in the training set causes a large difference in the generated learner.

Bagging trains base-learners on similar data sets and, in order to generate diverse learners on these data sets, we need to have unstable learners.

Question 12:

What are the advantages of K-fold cross-validation and 5×2 cross-validation on each other?

K-fold cross-validation:

- + Training set size is large
- Overlap between training sets is large

5×2 cross-validation:

- + Overlap between training sets is small
- Training set size is small

Question 13:

For classification algorithms, there are different performance metrics such as classification accuracy, area under the ROC curve, precision, recall, etc. Explain when it is not a good idea to use the classification accuracy.

For heavily imbalanced data sets, it is not a good idea to use the classification accuracy as the performance metric since returning the majority class for all test samples will give a very high classification accuracy.