

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Cancel Claims 1-14.

15. (New) A triterpene saponin prepared by a process for the isolation of triterpene saponins belonging to the family *Myrsinaceae*, wherein said saponin is isolated from the plant species *Maesa balansae*, said process comprising

- (a) extracting dried plant parts with an alcohol and concentrating the extract,
- (b) removing the apolar fraction from the extract by liquid-liquid extraction with an apolar solvent, and
- (c) further purifying the saponin in the alcohol extract by liquid -liquid extraction, filtration and chromatography, wherein the chromatography comprises reversed-phase liquid chromatography with gradient eluent system using

A : 0.5 % ammonium acetate in water

B : methanol

C : acetonitrile

wherein at t = 0, (A:B:C) = (60:20:20) and at t = end, (A:B:C) = (0:50:50), and wherein said saponin has the following characteristics:

Compound 1 : MW = 1532, $\lambda_{\max} = 228.6$ nm, $\lambda_{\max 2} = 273.3$ nm ;

Compound 2 : MW = 1510, $\lambda_{\max} = 223.9$ nm, $\lambda_{\max 2} = 274.5$ nm ;

Compound 3 : MW = 1532, $\lambda_{\max} = 279.2$ nm, $\lambda_{\max 2} = 223.9$ nm ;

Compound 4 : MW = 1510, $\lambda_{\max} = 280.4$ nm, $\lambda_{\max 2} = 222.7$ nm ;

Compound 5 : MW = 1574, $\lambda_{\max} = 276.8$ nm, $\lambda_{\max 2} = 225.0$ nm ; or

Compound 6 : MW = 1552, $\lambda_{\max} = 279.2$ nm, $\lambda_{\max 2} = 223.9$ nm.

16. (New) The triterpene saponin according to claim 15 wherein the alcohol is methanol, ethanol, isopropanol, or butanol, each optionally admixed with water.

17. (New) A process according to claim 15 wherein the saponins of the alcohol extract are further purified by

- (c6) extracting the aqueous fraction with butanol saturated with water,
- (c7) evaporating the organic layer to dryness,
- (c8) washing the residue in a ketone, and
- (c9) filtering off the crude saponin mixture.

18. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and as an active ingredient a triterpene saponin according to claim 15.

19. (New) A method of alleviating clinical manifestations of, and treating disorders known as leishmaniasis attributable to infection by protozoan parasites of the genus *Leishmania* in both humans and animals, comprising administering to an infected host a therapeutically effective amount of a compound of formula:

a stereoisomeric form thereof or a pharmaceutically acceptable addition salt thereof, wherein

R₁ is hydrogen, -(C=O)C₁₋₅alkyl, -(C=O)C₂₋₅alkenyl, -(C=O)C₂₋₅alkenyl substituted with

phenyl, a monosaccharide group or an oligosaccharide group ;

R₂ is hydrogen, hydroxy, -O(C=O)C₁₋₅alkyl, -O(C=O)C₂₋₅alkenyl, -O(C=O)C₆H₅, or -

O(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₃ is hydrogen, hydroxy, -O(C=O)C₁₋₅alkyl, -O(C=O)C₂₋₅alkenyl, -O(C=O)C₆H₅, or -

O(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₄ is hydrogen, C₁₋₆alkyl, -(C=O)C₁₋₅alkyl, -(C=O)C₂₋₅alkenyl, -(C=O)C₆H₅, or

-(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₅ is CH₃, CH₂OH, CH₂OCH₃, CH₂O-C(=O)CH₃, CHO, or COOH ; or

R₅ and R₂ form a divalent radical of formula -C(=O)-O- ;

R₆ and R₇ are hydrogen; or taken together they form a bond; or

R₅ and R₆ form a divalent radical of formula

-CH₂-O- (a),

-CH(OR₁₃)-O- (b), or

-C(=O)-O- (c),

wherein R₁₃ is hydrogen, C₁₋₆alkyl or -(C=O)C₁₋₅alkyl ;

R_{8α} and R_{8β} each independently represent CH₃, CH₂OH, CH₂OCH₃,

Applicant No.: not yet assigned

Preliminary Amendment - First Action Not Yet Received

$\text{CH}_2\text{O}-\text{C}(=\text{O})\text{C}_{1-5}\text{alkyl}$, CHO , $\text{CH}(\text{OCH}_3)_2$, $\text{CH}=\text{NOH}$, or COOH ;

$\text{R}_{8\beta}$ and R_3 form a divalent radical of formula $-\text{C}(=\text{O})-\text{O}-$;

$\text{R}_{8\beta}$ and R_5 form a divalent radical of formula $-\text{CH}_2\text{O}-\text{CHOH}-$;

R_9 is CH_3 , CH_2OH , CH_2OCH_3 , $\text{CH}_2\text{O}-\text{C}(=\text{O})\text{C}_{1-5}\text{alkyl}$, CHO , or COOH ;

R_{10} is CH_3 , CH_2OH , CH_2OCH_3 , $\text{CH}_2\text{O}-\text{C}(=\text{O})\text{C}_{1-5}\text{alkyl}$, CHO , or COOH ;

R_{11} is hydrogen, hydroxy or $\text{O}-\text{C}(=\text{O})\text{C}_{1-5}\text{alkyl}$; or R_{10} and R_{11} form a divalent radical of formula $-\text{CH}_2\text{O}-$; and

R_{12} is CH_3 , CH_2OH , CH_2OCH_3 , $\text{CH}_2\text{O}-\text{C}(=\text{O})\text{CH}_3$, CHO , $\text{CH}=\text{NOH}$, or COOH .

20. (New) The method according to claim 19 wherein

R_1 is hydrogen, $-(\text{C}=\text{O})\text{C}_{1-5}\text{alkyl}$, or an oligosaccharide group;

R_3 is hydrogen, hydroxy, $-\text{O}(\text{C}=\text{O})\text{C}_{1-5}\text{alkyl}$, $-\text{O}(\text{C}=\text{O})\text{C}_{2-5}\text{alkenyl}$, or $-\text{O}(\text{C}=\text{O})\text{C}_{2-5}\text{alkenyl}$ substituted with phenyl;

R_4 is hydrogen, $\text{C}_{1-6}\text{alkyl}$, $-(\text{C}=\text{O})\text{C}_{1-5}\text{alkyl}$, or $-(\text{C}=\text{O})\text{C}_{2-5}\text{alkenyl}$;

R_5 is CH_2OH , $\text{CH}_2\text{O}-\text{C}(=\text{O})\text{CH}_3$, or CHO ; and

R_6 and R_7 taken together form a bond; or

R_5 and R_6 form a divalent radical of formula

$-\text{CH}_2-\text{O}-$ (a),

$-\text{CH}(\text{OR}_{13})-\text{O}-$ (b), or

$-\text{C}(=\text{O})-\text{O}-$ (c),

wherein R_{13} is hydrogen, $\text{C}_{1-6}\text{alkyl}$ or $-(\text{C}=\text{O})\text{C}_{1-5}\text{alkyl}$; and

R_7 is hydrogen;

$\text{R}_{8\beta}$ represents CH_3 , CH_2OH , CHO , $\text{CH}(\text{OCH}_3)_2$, $\text{CH}=\text{NOH}$, or COOH ;

$\text{R}_{8\alpha}$ represents CH_3 ;

Application No.: not yet assigned

Preliminary Amendment - First Action Not Yet Received

R_{8β} and R₃ form a divalent radical of formula -C(=O)-O- ; or

R_{8β} and R₅ form a divalent radical of formula -CH₂O-CHOH- ;

R₁₀ is CH₃, CH₂OH ;

R₁₁ is hydrogen, hydroxy or O-C(=O)C₁₋₅alkyl ; or

R₁₀ and R₁₁ form a divalent radical of formula -CH₂O- ; and

R₁₂ is CH₃, CH₂OH, CH₂O-C(=O)CH₃, CHO, or CH=NOH.

21. (New) The method according to claim 20 wherein

R₁ is hydrogen or an oligosaccharide group ;

R₂ is hydrogen, hydroxy, -O(C=O)C₁₋₅alkyl, -O(C=O)C₂₋₅alkenyl, -O(C=O)C₆H₅, or -O(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₃ is hydrogen, hydroxy, -O(C=O)C₁₋₅alkyl, -O(C=O)C₂₋₅alkenyl, or -O(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₄ is hydrogen, C₁₋₆alkyl, -(C=O)C₁₋₅alkyl, -(C=O)C₂₋₅alkenyl, or -(C=O)C₂₋₅alkenyl substituted with phenyl ;

R₅ is CH₂OH, CH₂OCH₃, CH₂O-C(=O)CH₃, CHO, or COOH ; and

R₆ and R₇ taken together form a bond; or

R₅ and R₆ form a divalent radical of formula

-CH₂-O- (a),

-CH(OR₁₃)-O- (b), or

-C(=O)-O- (c),

wherein R₁₃ is hydrogen ; and

R₇ is hydrogen ;

R_{8α} and R_{8β} both represent CH₃ ;

DOCKET NO.: JANS-0038/JAB-1460-DIV

PATENT

Application No.: not yet assigned

Preliminary Amendment - First Action Not Yet Received

R₉ is CH₃ ;

R₁₀ is CH₃ ;

R₁₁ is hydrogen ; and

R₁₂ is CH₃.