Unit 4 Review: Trigonometry Equations and Identities

- 1. Using compound angle formulas, state the exact value of:

 - a) $\sin\left(\frac{3\pi}{4} + \frac{\pi}{3}\right)$ b) $\cos\left(\frac{7\pi}{6} \frac{7\pi}{4}\right)$ c) $\tan\left(\frac{\pi}{6} \frac{5\pi}{4}\right)$ d) $\cot\left(\frac{19\pi}{12}\right)$

- e) $\csc\left(-\frac{17\pi}{12}\right)$ f) $\sec\left(\frac{7\pi}{12}\right)$ g) $\sin 80^{\circ}\cos 50^{\circ} \cos 80^{\circ}\sin 50^{\circ}$
- h) $\frac{\tan 40^{\circ} + \tan 110^{\circ}}{1 \tan 40^{\circ} \tan 110^{\circ}}$
- 2. Using double angle formulas, state the exact value of:

 - a) $2\sin\frac{\pi}{9}\cos\frac{\pi}{9}$ b) $\cos^2\frac{\pi}{12} \sin^2\frac{\pi}{12}$ c) $1 2\sin^2 22.5^\circ$

- d) $2\cos^2 \frac{7\pi}{24} 1$ e) $2\sin \frac{\pi}{4} \cos \frac{\pi}{4}$
- f) sin 67.5°
- 3. Given $\sin \alpha = \frac{5}{13}$, $\cos \beta = -\frac{3}{5}$, α is in QII, β is in QIII, evaluate:
 - a) $\cos(\alpha + \beta)$
- b) $tan(\alpha + \beta)$
- 4. Given $\cos \beta = \frac{40}{41}$, $\tan b = \frac{12}{5}$, β is in QI, b is in QIII, evaluate:
 - a) $\sin(\beta b)$ b) $\cos(\beta + b)$
- 5. Solve the following equations, for $0 \le x \le 2\pi$ providing exact values or rounding to 2 decimal places where applicable.
 - a) $4\cos x 2\sqrt{3} = 0$
- b) $5 3\cot x = 4$

c) $\frac{2\csc x}{3} + 5 = 9$

- d) $4\sin^3 x = 3\sin x$ e) $\cos^2 x \sin^2 x = 2 5\cos x$ f) $\sin(2x) + \frac{\sqrt{2}}{2} = 0$
- g) $\cos(3x) + \frac{1}{2} = 0$
- $h) \sin^2 x + 3\cos^2 x = 0$
- i) $\sin(4x) \sin(2x) = 0$
- 6. If $\sin y = \cos 3y$, determine an exact value for the angle y.

7. Solve the following equations on the specified interval, providing exact values or rounding to 2 decimal places where applicable.

a)
$$\cos x = 0.135, [0, 2\pi]$$

b)
$$\tan(2x) = 3.8, \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$

c)
$$\cos(2x) = \frac{-1}{2}, [-\pi, \pi]$$

d)
$$2\cos^2 x + \cos x = 0, [0, 2\pi]$$

e)
$$\cos(2x) - \sin x = 0, [-\pi, \pi]$$

f)
$$\sin^2 x - 3\cos^2 x = 0, \left[\frac{-\pi}{2}, \frac{3\pi}{2} \right]$$

g)
$$6\sin^2 x + \sin x - 1 = 0, [0, 2\pi]$$

h)
$$(\sec x - 2)(\sec x + 1) = 0, [-\pi, \pi]$$

i)
$$\sin(4x) + \sin(2x) = 0, [-2\pi, 0]$$

j)
$$2\cos x + 5\sin x = 0, [0, 2\pi]$$

k)
$$(3\csc x + 1)^2 = 16, [-\pi, \pi]$$

- 8. The tangent of the acute angle α is 0.75, and the tangent of the acute angle β is 2.4. Without using a calculator, determine the value of $\sin(\alpha - \beta)$ and $\cos(\alpha + \beta)$.
- 9. The angle x lies in the interval $\frac{\pi}{2} \le x \le \pi$, and $\sin^2 x = \frac{4}{9}$. Determine the value of each of the following. Round your answers to four decimal places
 - a) $\sin 2x$
- c) $\cos \frac{x}{2}$
- d) $\sin 3x$
- 10. Solve the equation $\frac{1}{1+\tan^2 x} = -\cos x$ for x in the interval $0 \le x \le 2\pi$.
- 11. Prove the following identities.

 - a) $\sin^2 x + \cos^4 x = \cos^2 x + \sin^4 x$ b) $\tan x \cot x = (\tan x 1)(\cot x + 1)$
 - c) $\cos x = \sin x \tan^2 x \cot^3 x$
- d) $(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x$
- e) $\sin^4 x + \cos^4 x = \sin^2 x (\csc^2 x 2\cos^2 x)$ f) $\sin^3 x + \cos^3 x = (1 \sin x \cos x)(\sin x + \cos x)$

g)
$$\cos\left(\frac{\pi}{12} - x\right) \sec\frac{\pi}{12} - \sin\left(\frac{\pi}{12} - x\right) \csc\frac{\pi}{12} = 4\sin x$$

h)
$$\tan(x-y)+\tan(y-z) = \frac{\sec^2 y(\tan x - \tan z)}{(1+\tan x \tan y)(1+\tan y \tan z)}$$

- i) $\sin(8x) = 8\sin x \cos x \cos(2x)\cos(4x)$ j) $\sin x = 1 2\sin^2\left(\frac{\pi}{4} \frac{x}{2}\right)$

- k) $\sin(x+y) + \sin(x-y) = 2\sin x \cos y$ 1) $\tan x + \tan(\pi x) + \cot(\frac{\pi}{2} + x) = \tan(2\pi x)$

MHF4U1 Unit 4 Review

ANSWERS:

1.a)
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$
 b) $\frac{-\sqrt{6}+\sqrt{2}}{4}$ c) $\sqrt{3}-2$ d) $\sqrt{3}-2$ e) $\sqrt{6}-\sqrt{2}$ f) $-\sqrt{2}-\sqrt{6}$ g) ½ h) $\frac{-\sqrt{3}}{3}$

2.a)
$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
 b) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ c) $\cos 45^\circ = \frac{\sqrt{2}}{2}$ d) $\frac{\sqrt{2} - \sqrt{6}}{4}$ e) $\sin \frac{\pi}{2} = 1$ f) $\frac{\sqrt{2 + \sqrt{2}}}{2}$

3.a)
$$\frac{56}{65}$$
 b) $\frac{33}{56}$

4.a)
$$\frac{435}{533}$$
 b) $\frac{-92}{533}$

5.a)
$$\frac{\pi}{6}$$
, $\frac{11\pi}{6}$ b) 1.25, 4.39 c) 0.17, 2.97 d) 0, π , 2π , $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ e) $\frac{\pi}{3}$, $\frac{5\pi}{3}$

f)
$$\frac{5\pi}{8}$$
, $\frac{13\pi}{8}$, $\frac{7\pi}{8}$, $\frac{15\pi}{8}$ g) $\frac{2\pi}{9}$, $\frac{8\pi}{9}$, $\frac{14\pi}{9}$, $\frac{4\pi}{9}$, $\frac{10\pi}{9}$, $\frac{16\pi}{9}$ h) no sol'ns

i)
$$0, \frac{\pi}{2}, \frac{3\pi}{2}, \pi, 2\pi, \frac{\pi}{6}, \frac{7\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$$

6.
$$\frac{\pi}{8}$$

7.a) 1.44, 4.85 b) - 0.91, 0.66 c)
$$\frac{-2\pi}{3}$$
, $\frac{\pi}{3}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$ d) $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$

e)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, $\frac{-\pi}{2}$ f) $\frac{-\pi}{3}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ g) $\frac{7\pi}{6}$, $\frac{11\pi}{6}$, 0.34, 2.80 h) $-\pi$, $\frac{-\pi}{3}$, $\frac{\pi}{3}$, π

i)
$$-2\pi$$
, $\frac{-3\pi}{2}$, $-\pi$, $\frac{-\pi}{2}$, 0 , $\frac{-\pi}{3}$, $\frac{-2\pi}{3}$, $\frac{-4\pi}{3}$, $\frac{-5\pi}{3}$ j) 2.76, 5.90 k) $-$ 2.50, $-$ 0.64

$$8. -\frac{33}{65}, -\frac{16}{65}$$

9. a)
$$-\frac{4\sqrt{5}}{9}$$
 b) $\frac{1}{9}$ c) $\sqrt{\frac{3-\sqrt{5}}{6}}$ d) $\frac{22}{27}$

10.
$$x = \frac{\pi}{2}$$
, π , or $\frac{3\pi}{2}$