MATH 540 Notes

Jiantong Liu

January 17, 2024

1 Abstract Measure Theory

Definition 1.1. Let X be an (non-empty) underlying space we are working over. We denote $\mathcal{P}(X)$ to be the power set of X, i.e., the set of all subsets of X.

Example 1.2. Let $X = \{1, 2\}$, then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Remark 1.3. If X is a finite set of size n, then $\mathcal{P}(X)$ is a finite set of size 2^n .

We will consider a subcollection A of subsets of X, i.e., a subset of the power set. We will try to define this as an algebra. Note that an algebra is just a ring with a module structure with respect to some other ring.

Definition 1.4. $A \subseteq \mathcal{P}(X)$ is an algebra on X if it is

- a. closed under finite union, i.e., given $E_1, E_2 \in \mathcal{A}$, then $E_1 \cup E_2 \in \mathcal{A}$, and
- b. closed under complements, i.e., if $E \in \mathcal{A}$, then the complement $E^c \in \mathcal{A}$ as well.

Remark 1.5. An algebra \mathcal{A} would be closed under finite intersection. Indeed, for any $E_1, E_2 \in \mathcal{A}$, we have $E_1 \cap E_2 \in \mathcal{A}$ if and only if $(E_1 \cap E_2)^c \in \mathcal{A}$, if and only if $(E_1 \cap E_2)^c \in \mathcal{A}$, if and only if $(E_1 \cap E_2)^c \in \mathcal{A}$, which is true by definition.

Lemma 1.6. If \mathcal{A} is an non-empty algebra on X, then $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$.

Proof. Since \mathcal{A} is non-empty, take $E \in \mathcal{A}$, then $\emptyset = E \cap E^c \in \mathcal{A}$ as well. Also, $X = E \cup E^c \in \mathcal{A}$.

Example 1.7. Let X be a set, and let $\mathcal{A} = \{\emptyset, X\} \subseteq \mathcal{P}(X)$. It is easy to verify that \mathcal{A} is an algebra.

Definition 1.8. Let $\emptyset \neq A \subseteq \mathcal{P}(X)$ be an algebra, then we say A is a σ -algebra on X if

- a. closed under countable union, i.e., if $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$;
- b. if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.

Lemma 1.9. If $A \neq \emptyset$ is a σ -algebra on X, then $\{\emptyset, X\} \subseteq A$ is a σ -algebra.

Example 1.10. Let X be an uncountable set, let $\mathcal{A} = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable}\}$, then \mathcal{A} is a σ -algebra on X.

Theorem 1.11. Suppose a non-empty algebra $A \subseteq \mathcal{P}(X)$ such that,

• if $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, and E_j 's are pairwise disjoint, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$,

then A is a σ -algebra on X.

MATH 540 Notes Jiantong Liu

Proof. Take $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, we will show that $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$. To do this, we will rearrange the sets. Let $F_1 = E_1$, let $F_2 = E_2 \setminus E_1$, let $F_3 = E_3 \setminus (E_1 \cup E_2)$, and so on, such that let $F_k = E_k \setminus \bigcup_{i=1}^{k-1} E_i$. We note

$$F_k = E_k \cap \left(\bigcup_{j=1}^{k-1} E_j\right)^c$$
$$= E_k \cap \left(\bigcap_{j=1}^{k-1} E_j^c\right) \in \mathcal{A}.$$

One can also verify that $\bigcup_{j=1}^{\infty} E_j = \bigcup_{k=1}^{\infty} F_k$, and that F_k 's are disjoint from the definition.