TCP & UDP

Previous scenario

• link_r1sw2.intf1.config(bw=3)

Competing UDP Flows

Scenario	h1 (UDP)	h2 (UDP)
1	1 Mbps	1 Mbps
2	1 Mbps	2 Mbps
3	1 Mbps	4.5 Mbps

Open a new terminal for h3

```
mininet> xterm h3external terminal
```

Competing UDP Flows

Scenario	h1 (UDP)	h2 (UDP)
1	X = 1 Mbps	Y = 1 Mbps
2	X = 1 Mbps	Y = 2 Mbps
3	X = 1 Mbps	Y = 4.5 Mbps

$$goodput_{h1} = min\left(\left(\frac{X}{X+Y}\right) \times 3 \times \frac{1000}{1042}, X\right) Mbps$$

$$goodput_{h2} = min\left(\left(\frac{Y}{X+Y}\right) \times 3 \times \frac{1000}{1042}, Y\right) Mbps$$
data + overhead

TCP flows Competing with UDP Flows

Scenario	h1 (UDP)	h2 (UDP)	h2 (TCP)
1	X = 1 Mbps	Y = 1 Mbps	Z
2	X = 1 Mbps	Y = 2 Mbps	Z
3	X = 1 Mbps	Y = 4.5 Mbps	Z

$$goodput_{h1} = \min\left(\left(\frac{X}{X+Y}\right) \times 3 \times \frac{1000}{1042}, X\right) Mbps$$

$$goodput_{h2,UDP} = \min\left(\left(\frac{Y}{X+Y}\right) \times 3 \times \frac{1000}{1042}, Y\right) Mbps$$

$$goodput_{h2,TCP} = \begin{cases} 0 \ Mbps, & X + Y \ge 3 \times \frac{1000}{1042} \\ \left(3 - ((X + Y) \times \frac{1042}{1000})\right) \times \frac{1448}{1514} \ Mbps, & X + Y < 3 \times \frac{1000}{1042} \end{cases}$$

Explicit Congestion Notification (ECN)

An extension to the Internet Protocol (the network layer protocol)

- 1. link r1sw2.intf1.config(bw=5, max queue size=1000, enable ecn=False)
- 2. link r1sw2.intf1.config(bw=5, max queue size=1000, enable ecn=True)

Add delay to all packets going out of an interface

• (h3)# tc qdisc add dev h3-eth0 root netem delay 300ms

Fairness Between TCP Connections and Delay

Scenario	h1 (TCP)	h2 (TCP)	h2 (TCP)	h2 (TCP)
1	X	X	X	Χ

$$goodput_{h1} = \left(\frac{X}{4X}\right) \times 3 \times \frac{1448}{1514} Mbps = 717 \text{ kbps}$$

$$goodput_{h2} = \left(\frac{3X}{4X}\right) \times 3 \times \frac{1448}{1514} Mbps = 2152 \text{ kbps}$$