* Ramesh Chandra Soren

Enrollment No: 2022CSB086

Department: Computer Science and Technology

Logistic Regression on Breast Cancer Wisconsin Dataset

Overview

This code implements logistic regression using the sigmoid activation function to classify breast cancer cases as malignant or benign.

Dataset

• Source: Breast Cancer Wisconsin Dataset

Split:

Training: 70%Testing: 30%

```
df['Node-Caps'] = df['Node-Caps'].map({'yes': 1, 'no': 0})
df['Irradiat'] = df['Irradiat'].map({'yes': 1, 'no': 0})

# For other categorical features, use one-hot encoding
df = pd.get_dummies(df, columns=['Age', 'Menopause', 'Tumor-Size', 'Inv-Node

# Split data into features (X) and labels (y)
X = df.drop('Class', axis=1) # Features
y = df['Class'] # Labels

# Split dataset into training (70%) and testing (30%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rar

# Print the shape of the training and testing sets
print(f"Training set shape: {X_train.shape}")
print(f"Testing set shape: {X_test.shape}")
```

Training set shape: (193, 31) Testing set shape: (84, 31)

Model Implementation

Implementation Steps

- 1. Load and preprocess the dataset
- 2. Split data into training and testing sets
- 3. Initialize model parameters
- 4. Define activation and error functions
- 5. Train the model
- 6. Evaluate performance

1. Initialization

Weights and biases are initialized randomly

```
bias_output = np.random.randn(n_output)
print(f"Initial weights and biases initialized")
```

Initial weights and biases initialized

2. Activation Function

The sigmoid activation function is used:

$$\sigma(z)=rac{1}{1+e^{-z}}$$

```
import numpy as np
import math

def sigmoid(z):
    # Clip the values of z to prevent overflow in exp
    z = np.clip(z, -500, 500)
    # Ensure z is a NumPy array
    z = np.array(z, dtype=np.float64) # Convert z to a NumPy array if it's
    return 1 / (1 + np.exp(-z))

#Rest of your functions remain the same
```

3. Error Calculation

Error is computed using the formula:

```
Error = \frac{1}{2} \times (actual\ output - computed\ output)^2
```

where the computed output is $\sigma(z)$.

```
In [33]: def calculate_error(y_pred, y_true):
    return 0.5 * np.square(y_pred - y_true).mean()
In [36]: def backpropagation(X, y_true, weights_input_hidden, bias_hidden, weights_hi
```

```
In [36]: def backpropagation(X, y_true, weights_input_hidden, bias_hidden, weights_hi
    X = X.astype(np.float64)
    # Forward pass
    z_hidden = np.dot(X, weights_input_hidden) + bias_hidden
    a_hidden = sigmoid(z_hidden)
```

```
z_output = np.dot(a_hidden, weights_hidden_output) + bias_output
a_output = sigmoid(z_output)

# Error derivative for output layer
error_output = a_output - y_true
delta_output = error_output * a_output * (1 - a_output)

# Error derivative for hidden layer
error_hidden = np.dot(delta_output, weights_hidden_output.T)
delta_hidden = error_hidden * a_hidden * (1 - a_hidden)

# Gradient descent weight update
weights_hidden_output -= learning_rate * np.dot(a_hidden.T, delta_output
bias_output -= learning_rate * delta_output.mean(axis=0)

weights_input_hidden -= learning_rate * np.dot(X.T, delta_hidden)
bias_hidden -= learning_rate * delta_hidden.mean(axis=0)

return weights_input_hidden, bias_hidden, weights_hidden_output, bias_ou
```

4. Hyperparameters

• Learning rate: $\eta = 0.001$

```
In [37]: learning rate = 0.001
         epochs = 1000
         errors = []
         for epoch in range(epochs):
             # Forward propagation
             y pred = forward propagation(X train, weights input hidden, bias hidden,
             # Error calculation
             error = calculate error(y pred, y train.values.reshape(-1, 1))
             errors.append(error)
             # Backpropagation
             weights input hidden, bias hidden, weights hidden output, bias output =
                 X train, y train.values.reshape(-1, 1),
                 weights input hidden, bias hidden,
                 weights hidden output, bias output,
                 learning rate
             )
             if epoch % 100 == 0:
                 print(f'Epoch {epoch}, Error: {error}')
```

```
Epoch 0, Error: 0.1766129825611707
Epoch 100, Error: 0.11948235044258178
Epoch 200, Error: 0.1096830331871558
Epoch 300, Error: 0.10502176447771176
Epoch 400, Error: 0.10152105312771062
Epoch 500, Error: 0.09865723513282937
Epoch 600, Error: 0.09628315859530252
Epoch 700, Error: 0.09428814423171422
Epoch 800, Error: 0.09257962279451155
Epoch 900, Error: 0.09108679655040298
```

```
In [38]: import matplotlib.pyplot as plt

plt.plot(errors)
   plt.xlabel('Epochs')
   plt.ylabel('Error')
   plt.title('Error vs Epochs')
   plt.show()
```



```
In [39]: from sklearn.metrics import confusion_matrix, accuracy_score

# Make predictions on the test set
y_test_pred = forward_propagation(X_test, weights_input_hidden, bias_hidden,
y_test_pred = (y_test_pred > 0.5).astype(int)

# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_test_pred)
accuracy = accuracy_score(y_test, y_test_pred)
```

```
print('Confusion Matrix:\n', conf matrix)
         print('Accuracy:', accuracy)
        Confusion Matrix:
         [[55 1]
         [28 0]]
        Accuracy: 0.6547619047619048
In [40]: from sklearn.model selection import KFold
         # Define KFold with 5 splits
         kf = KFold(n splits=5, shuffle=True, random state=42)
         # Store cross-validation results
         cv errors = []
         cv accuracies = []
         # Perform cross-validation
         for train index, test index in kf.split(X):
             X train cv, X test cv = X.iloc[train index], X.iloc[test index]
             y train cv, y test cv = y.iloc[train index], y.iloc[test index]
             # Initialize weights and biases for each fold
             weights input hidden = np.random.randn(n input, n hidden)
             bias hidden = np.random.randn(n hidden)
             weights hidden output = np.random.randn(n hidden, n output)
             bias output = np.random.randn(n output)
             # Train the model for a set number of epochs
             for epoch in range(epochs):
                 # Forward propagation
                 y pred cv = forward propagation(X train cv, weights input hidden, bi
                 # Backpropagation and weight updates
                 weights input hidden, bias hidden, weights hidden output, bias outpu
                     X train cv, y train cv.values.reshape(-1, 1),
                     weights input hidden, bias hidden,
                     weights hidden output, bias output,
                     learning rate
             # Predict on the validation fold
             y test pred cv = forward propagation(X test cv, weights input hidden, bi
             y test pred cv = (y test pred cv > 0.5).astype(int)
             # Calculate error and accuracy for this fold
             error cv = calculate error(y test pred cv, y test cv.values.reshape(-1,
             accuracy cv = accuracy score(y test cv, y test pred cv)
             # Store results
             cv_errors.append(error cv)
             cv accuracies.append(accuracy cv)
         # Print cross-validation results
```

```
print(f'Cross-Validation Errors: {cv errors}')
         print(f'Cross-Validation Accuracies: {cv accuracies}')
         print(f'Mean Error: {np.mean(cv errors)}')
         print(f'Mean Accuracy: {np.mean(cv accuracies)}')
        Cross-Validation Errors: [0.19642857142857142, 0.125, 0.1545454545454545454,
        0.13636363636363635, 0.14545454545454545]
        Cross-Validation Accuracies: [0.6071428571428571, 0.75, 0.6909090909090909,
        0.72727272727273. 0.70909090909090911
        Mean Error: 0.15155844155844153
        Mean Accuracy: 0.6968831168831169
In [41]: from sklearn.metrics import confusion matrix, accuracy score
         # After training with cross-validation, make predictions on the test set
         y test pred = forward propagation(X test, weights input hidden, bias hidden,
         y test pred = (y test pred > 0.5).astype(int)
         # Calculate confusion matrix and accuracy
         conf matrix = confusion matrix(y test, y test pred)
         accuracy = accuracy score(y test, y test pred)
         # Print confusion matrix and accuracy
         print('Confusion Matrix:')
         print(conf matrix)
         print(f'Accuracy: {accuracy * 100:.2f}%')
        Confusion Matrix:
        [[56 0]
         [27 1]]
        Accuracy: 67.86%
```

This notebook was converted with convert.ploomber.io