Contents

Pı	Preface		
1	Foundations		
_	1.1	Introductory Examples	4
		1.1.1 Nonlinear Equations	4
		1.1.2 Linear Systems	6
		1.1.3 Numerical Integration	8
	1.2	Useful Background	10
		1.2.1 Results from Calculus	10
		1.2.2 Results from Linear Algebra	11
		1.2.3 A Little Information about Computers	13
	1.3	Some Basic Issues	16
		1.3.1 Error	16
		1.3.2 Convergence	22
		1.3.3 Getting Better Results	26
	1.4	Using MATLAB	31
	1	1.4.1 Command Window Computations	31
		1.4.2 M-Files	35
		1.4.3 Programming in MATLAB	37
		1.4.4 Matrix Multiplication	39
	1.5	Chapter Wrap-Up	41
2	Fizz	nctions of One Variable	47
4	2.1	Bisection Method	50
	2.2	Secant-Type Methods	54
		2.2.1 Regula Falsi	55
		2.2.2 Secant Method	58
		2.2.3 Analysis	61
	2.3		64
	2.4		
	2.5		
		2.5.1 Golden-Section Search	
		2.5.2 Brent's Method	
	2.6		
	0	2.6.1 Using MATLAB's Functions	. 80
		2.6.2 Laguerre's Method	. 82
		2.6.3 Zeros of a Nonlinear Function	
	0.5	Chapter Wron Un	29

3	Solv	ving Li	near Systems: Direct Methods	
	3.1	Gauss	ian Elimination	
		3.1.1	Basic Method	
		3.1.2	Row Pivoting	7
	3.2	Gauss	-Jordan	2
		3.2.1	Inverse of a Matrix	3
	3.3	Tridia	gonal Systems	4
	3.4	Furthe	er Topics	9
		3.4.1	MATLAB's Methods	9
		3.4.2	Condition of a Matrix	
		3.4.3	Iterative Refinement	
	3.5		ter Wrap-Up	
1	7 T T	and C	R Factorization 13	5
4	4.1	THE	actorization	8
	4.1	4.1.1	Using Gaussian Elimination	8
			Direct LU Factorization	6
		4.1.2	Applications	
	4.0	4.1.3	x Transformations	4
	4.2		Householder Transformation	5
		4.2.1	Givens Rotations	2
		4.2.2	Givens Rotations	14
	4.3		actorization	4
		4.3.1	Using Householder Transformations	16
		4.3.2	Using Givens Rotations	38
	4.4	-	nd the Basics	10 10
		4.4.1	LU Factorization with Implicit Row Pivoting	70 70
		4.4.2	Efficient Conversion to Hessenberg Form	71
		4.4.3	Using MATLAB's Functions	79.
	4.5	Chap	ter Wrap-Up	
5	Eig	genvalı	nes and Eigenvectors	
	5.1	Powe	r Method	52
		5.1.1	Basic Power Method	30 5e
		5.1.2	Rayleigh Quotient	30 20
		5.1.3	Shifted Power Method	58
		5.1.4	Accelerating Convergence	39
	5.2	Inver	se Power Method	3U 00
		5.2.1	General Inverse Power Method	92
		5.2.2	Convergence	93
	5.3	QR I	vietnou	94
		5.3.1	Dasic Qit Method	94
		5.3.2	Defret Oit Memod	96
		5.3.3	Linding Engenvectors	98
		5.3.4	Accelerating Convergence	99
	5.4	Furt!	ner robics	$\frac{02}{00}$
		5.4.1	Singular Value Decomposition	02
		5.4.2	MATLAB's Methods	O3
	5.5	Char	oter Wrap-Up	04

			vii
6	Solv	ing Linear Systems: Iterative Methods	213
U	6.1	Jacobi Method	217
	6.2	Gauss-Seidel Method	224
	6.3	Successive Over-Relaxation	228
	6.4	Beyond the Basics	232
	0.4	6.4.1 MATLAB's Built-In Functions	232
		6.4.2 Conjugate Gradient Methods	
		6.4.3 GMRES	238
		6.4.4 Simplex Method	240
	6.5	Chapter Wrap-Up	243
7	Nor	nlinear Functions of Several Variables	251
•	7.1	Nonlinear Systems	254
	,	7.1.1 Newton's Method	254
		7.1.2 Secant Methods	
		7.1.3 Fixed-Point Iteration	. 262
	7.2	Minimization	. 264
		7.2.1 Descent Methods	
		7.2.2 Quasi-Newton Methods	
	7.3	Further Topics	. 268
	7.0	7.3.1 Levenberg-Marquardt Method	. 268
		7.3.2 Nelder-Mead Simplex Search	. 269
	7.4	Chapter Wrap-Up	. 270
8	Int	erpolation	275
Ī	8.1	Polynomial Interpolation	. 278
	٠.٠	8.1.1 Lagrange Form	. 278
		8.1.2 Newton Form	. 284
		8.1.3 Difficulties	. 290
	8.2	Hermite Interpolation	. 294
	8.3	Piecewise Polynomial Interpolation	. 299
		8.3.1 Piecewise Linear Interpolation	. 300
		8.3.2 Piecewise Quadratic Interpolation	. 301
		8.3.3 Piecewise Cubic Hermite Interpolation	. 304
		8.3.4 Cubic Spline Interpolation	. 305
	8.4	Beyond the Basics	
		8.4.1 Rational-Function Interpolation	
		8.4.2 Using MATLAB's Functions	
	8.5	Chapter Wrap-Up	. 323
g	A _I	pproximation	333
	9.1°	Least-Squares Approximation	. 336

9.1.1

9.1.2

9.1.3

9.1.4

	9.2	Continuous Least-Squares Approximation	350
		9.2.1 Approximation Using Powers of x	350
		9.2.2 Orthogonal Polynomials	
		9.2.3 Legendre Polynomials	
		9.2.4 Chebyshev Polynomials	
	9.3	Function Approximation at a Point	
		9.3.1 Padé Approximation	
		9.3.2 Taylor Approximation	
	9.4	Further Topics	
		9.4.1 Bezier Curves	
		9.4.2 Using MATLAB's Functions	
	9.5	Chapter Wrap-Up	
			000
10	Four	rier Methods	373
	10.1	Fourier Approximation and Interpolation	376
		10.1.1 Derivation	381
		10.1.2 Data on Other Intervals	384
	10.2	Radix-2 Fourier Transforms	386
		10.2.1 Discrete Fourier Transform	386
		10.2.2 Fast Fourier Transform	
		10.2.3 Matrix Form of FFT	388
		10.2.4 Algebraic Form of FFT	
	10.3	Mixed-Radix FFT	
		Using MATLAB's Functions	
		Chapter Wrap-Up	
11		9	4 0 5
	11.1	Differentiation	
		11.1.1 First Derivatives	
		11.1.2 Higher Derivatives	412
		11.1.3 Partial Derivatives	
		11.1.4 Richardson Extrapolation	414
	11.2	Numerical Integration	416
		11.2.1 Trapezoid Rule	417
		11.2.2 Simpson's Rule	420
		11.2.3 Newton-Cotes Open Formulas	426
		11.2.4 Extrapolation Methods	428
	11.3	Quadrature	431
		11.3.1 Gaussian Quadrature	431
		· · · · · · · · · · · · · · · · · · ·	435
	11.4	MATLAB's Methods	
		11.4.1 Differentiation	
		11.4.2 Integration	
	11.5	Chapter Wrap-Up	

12	Ord	linary Differential Equations: Fundamentals	445
	12.1	Euler's Method	447
		12.1.1 Geometric Introduction	447
		12.1.2 Approximating the Derivative	448
		12.1.3 Approximating the Integral	449
		12.1.4 Using Taylor Series	451
	12.2	Runge-Kutta Methods	452
		12.2.1 Second-Order Runge-Kutta Methods	452
		12.2.2 Third-Order Runge-Kutta Methods	457
		12.2.3 Classic Runge-Kutta Method	459
		12.2.4 Fourth-Order Runge-Kutta Methods	462
		12.2.5 Fifth-Order Runge-Kutta Methods	464
		12.2.6 Runge-Kutta-Fehlberg Methods	465
	12.3	Multistep Methods	474
		12.3.1 Adams-Bashforth Methods	476
		12.3.2 Adams-Moulton Methods	479
		12.3.3 Adams Predictor-Corrector Methods	480
		12.3.4 Other Predictor-Corrector Methods	485
	12.4	Further Topics	487
		12.4.1 MATLAB's Methods	487
		12.4.2 Consistency and Convergence	488
	12.5	Chapter Wrap-Up	490
			100
13			499
	13.1	Systems	502
		13.1.1 Systems of Two ODE	504
		13.1.2 Euler's Method for Systems	510
		13.1.3 Runge-Kutta Methods for Systems	512
		13.1.4 Multistep Methods for Systems	516
		13.1.5 Second-Order ODE	522
	13.2	Stiff ODE	526
		13.2.1 BDF Methods	527
	100	13.2.2 Implicit Runge-Kutta Methods	529
	13.3	Stability	530
		13.3.1 A-Stable and Stiffly Stable Methods	532
	10.4	13.3.2 Stability in the Limit	533
	13.4	Further Topics	536
		13.4.1 MATLAB's Methods for Stiff ODE	536
		13.4.2 Extrapolation Methods	537
		13.4.3 Rosenbrock Methods	539
	10 -	13.4.4 Multivalue Methods	539
	13.5	Chapter Wrap-Up	550

14 ODE: Boundary-Value Problems	561
14.1 Shooting Method	565
14.1.1 Linear ODE	565
14.1.2 Nonlinear ODE	570
14.2 Finite-Difference Method	576
14.2.1 Linear ODE	576
14.2.2 Nonlinear ODE	590
14.3 Function Space Methods	500
14.3.1 Collocation	500
14.3.2 Rayleigh-Ritz	. 502
14.4 Chapter Wrap-Up	. 588
15 Partial Differential Equations	
15.1 Heat Equation: Parabolic PDE	593
15.1.1 Explicit Method	. 598
15.1.2 Implicit Method	. 599
15.1.3 Crank-Nicolson Method	. 004
15.1.4 Insulated Boundary	. 608
15.2 Wave Equation: Hyperbolic PDE	. 611
15.2.1 Explicit Method	. 612
15.2.2 Implicit Method	. 014
15.3 Poisson Equation: Elliptic PDE	. 010
15.4 Finite-Element Method for Elliptic PDE	. 018
15.4.1 Defining the Subregions	. 622
15.4.2 Defining the Basis Functions	. 623
15.4.3 Computing the Coefficients	. 624
15.4.4 Using MATLAB	620
15.5 Chapter Wrap-Up	. 634
Bibliography	643
Answers	653
Index	667

Preface

Of the many facets of mathematics, numerical computation is one of the most ancient. It is also one of the areas with the broadest relevance in the modern world. Ancient astronomers computed the seasons and the solstices; modern mathematical models allow highly accurate weather predictions. The Babylonians used a simple iterative method to compute the approximate value of square roots; today there are many powerful methods for solving nonlinear equations of great complexity. The practicality of various numerical methods depends on the available computational tools; simple methods are useful for quick solutions to small problems while more sophisticated methods are appropriate for large-scale scientific computing.

Applied Numerical Analysis Using MATLAB provides a clear explanation of the classic methods of numerical analysis; these form the basis for the more recent and more advanced methods, which are introduced in the latter part of each chapter. The title of the text conveys several key points about the perspective of the presentation.

First, the title clearly indicates the emphasis on the applied nature of the material. Each chapter (after the first) follows the same basic plan. The chapter is introduced with descriptions of applications in which the methods presented in the chapter are useful. The presentation of each method starts with some motivation for how the method works, i.e., how it can be applied. The presentation then proceeds to consider a numerical procedure (simple computer program) for carrying out the computations, before considering the theory behind the method. Examples throughout the chapter focus on applying the methods both to simple hypothetical situations (clarifying how the method works) and to simple applications (showing the method in a somewhat broader context). Finally, the exercises at the end of the chapter include problems for practicing the techniques, using the methods to solve applications from a variety of areas of science and engineering, investigating the computational aspects of the methods further, and extending one's understanding (perhaps in a more theoretical direction).

Next, the term "numerical analysis" implies that the goal is to obtain an accurate, but in most cases approximate, numerical solution to the problem under consideration. The terms "numerical analysis", "numerical methods", "numerical techniques", and "scientific computing" each suggest a slightly different emphasis on the scale of the problem, the type of computing resources available, and the extent to which one is interested in "how it works" as compared to "why it works" and "when it works". In this text, the analysis of each method follows the more applied introduction of the method, and the suggestions for further reading give references for more in-depth treatment of the theoretical aspects of the subject matter. "Theory guides practice; practice inspires theory". There are many instances in which scientists and engineers developed computational methods for solving problems that were later refined and put on a firm theoretical foundation