Ch—03 Current Electricity Daily Practice Problem 03

- **Q1.** It is desired to make 20 Ω coil of wire, which has a thermal coefficient of resistance. To do this, a carbon resistor of resistance R₁ is placed in series with an iron resistor of resistance R₂. The proportions of iron and carbon are to chosen that R₁ + R₂ = 20 Ω for all temperatures near 20°C. Find the values of R₁ and R₂? $\alpha_{carbon} = -0.5 \times 10^{-3}$ °C⁻¹, $\alpha_{iron} = 5 \times 10^{-3}$ °C⁻¹
- **Q5.** A potential difference is applied across the filament of a bulb at t= 0, and it is maintained at a constant value while the filament gets heated to its equilibrium temperature. We find that the final current in the filament is one-sixth of the current drawn at t = 0. If the temperature of the filament at t = 0 is 20°C and the temperature coefficient of resistivity at 20°C is 0.0043 °C-1, find the final temperature of the filament.
- **Q2.** A resistance thermometer measures temperature with the increase in resistance of a wire of high temperature. If the wire is platinum and has a resistance of 10 Ω at 20°C and a resistance of 35 Ω in a hot furnace, what is the temperature of the furnace? ($\alpha_{platinum} = 0.0036^{\circ}C^{-1}$)
- **Q6.** A copper coil has a resistance of 20.0 Ω at 0°C and a resistance of 26.4 Ω at 80°C. Find the temperature coefficient of resistance of copper.

- **Q3.** A conductive wire has resistance of 10 ohm at 0°C and α is 1/273°C, then determine its resistance at 273°C. 12.
- **Q7.** A metallic wire has a resistance of 120 Ω at 20°C. Find the temperature at which the resistance of same metallic wire rises to 240 Ω where the temperature coefficient of the wire is $2 \times 10^{-40} C^{-1}$.
- **Q4.** (a) At what temperature would the resistance of a copper conductor be double of its value of 0°C? (b) Does this same temperature hold for all copper conductors, regardless of shape and size? ($\alpha_C = 4.0 \times 10^{-3}$ ° C^{-1})
- **Q8.** The resistance of the platinum wire of a platinum resistance thermometer at the ice point is 5 Ω and at steam point is 5.23 Ω . When the thermometer is inserted in a hot bath, the resistance of the platinum wire is 5.795 Ω . Calculate the temperature of the bath.

Q9. The temperature coefficient of resistivity of copper is $0.004^{\circ}\text{C}^{-1}$. Find the resistance of a 5 m long copper wire of diameter 0.2 mm at 100°C , if the resistivity of copper at 0°C is $1.7 \times 10^{-8} \, \Omega\text{m}$.

Q10. In an experiment, the resistance of a material is plotted as a function of temperature (in some range). As shown in the figure, it is a straight line.

ANSWERS

1. $R_1 = 18.18 \,\Omega$, $R_2 = 1.82 \,\Omega$

7. $T = 5020^{\circ}C$

8. 345.65°*C*

2. 714°*C*

3. 10e

4. (a) 250°€ **(b)**Yes

9. 3.8 Ω

5. 1182.8°*C*

10. c

