Network Layer

- Network Layer: the most complex layer
 - Requires the coordinated actions of multiple, geographicallyndistributed tretwork elements (switches & routers)
 - Must be able to deal with very large scales
 - Billions of users (people & promodeic ating devices)
 - Biggest Challenges
 - Addressing: where should information be directed to?
 - Routing: what path should be used to get information there?

Packet Switching

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- Transfer of information as payload in data packets
- Packets undergo random delays & possible loss
- Different applications impose differing requirements on the transfer of information

Perspectives of Packet Networks

External View of the network

- Services that the network provides to the transport layer
- Services are independent of the underlying network
- Whether the network service requires setting up to connections
- Whether data transfer requires any quality-of-service guarantees https://powcoder.com

Internal Operationvecthepoetwark

- Considers physical topology of the network and its interconnection
- Approaches used to direct information datagram, virtual circuit
- Addressing and routing procedures
- Deal with congestion inside the network
- Traffic management inside the network

Network Service

- Network layer can offer a variety of services to transport layer
- Connection-oriented service or connectionless service
- Best-effort or delay/loss guarantees

Connectionless vs. Connection-oriented

Connectionless:

- Only two basic interactions between transport and network layer
 - Request to network layer to send a packet
 - Indication from network layer that a packet has arrived Houser can request packet transmission at any time

Connection-orienteddd WeChat powcoder

- Connection-setup required
 - Network layer must be informed about the new flow to be sent to the network
 - Network layer maintains state information about the flows it is handling
- Allows usage and quality-of-service negotiations
 - Network resources may be allocated
- Connection-termination required
- Complex than connectionless service

Network Service vs. Operation

Network Service

- Connectionless (UDP)
- Datagram Transfer
 Assignment Project Exath Help
 Connection
- Connection-Oriented Reliable and postpry://powcoder.com irrual Circuit operation constant bit rate transfer

Add WeChat powcoder Telephone connection

Various combinations are possible

- Connection-oriented service over Connectionless operation
- Connectionless service over Connection-Oriented operation
- Context & requirements determine what makes sense

Internal Network Operation

- Connectionless
 - Datagram operation

Need for the network to grow to very large scale –

- keep the core of the network simple (connectionless packet network)
- provide necessary complexity at the edge

Network Layer Functions

Essential

- Routing: mechanisms for determining the set of best paths for routing packets requires the collaboration of network elements
- Forwarding: transfer of packets from NE inputs to outputsWeChat powcoder
- Priority & Scheduling: determining order of packet transmission in each NE
- Optional: congestion control, segmentation & reassembly, security

Packet-Switching Networks

Assignment Project Exam Help

Add WeChat powcoder

The Switching Function

- Dynamic interconnection of inputs to outputs
- Enables dynamic sharing of transmission resource
- Two fundamental approaches:

 - Connectionless

 Assignment Project Exam Help
 Connection-Oriented: Call setup control, Connection

control https://powcoder.com

Packet Switching Network

Packet switching network

Transfers packets

Project Petwenelysers

Transmission lines +

(routers)

hat powcoder

Origin in message switching

Two modes of operation:

- Connectionless
- Virtual Circuit

Message Switching

Message Switching Delay

Additional queueing delays possible at each link

Long Messages vs. Packets

1 Mbit message

How many bits need to be transmitted to deliver message? Assignment Project Exam Help

- Approach 1: send 1 Mbit
 Approach 2: send 10 message
 https://powcoderookbit packets
- Probability message arrives correctly dd WeChat powcoder correctly

$$P_c = (1 - 10^{-6})^{10^6} \approx e^{-10^6 10^{-6}} = e^{-1} \approx 1/3$$

- On average it takes about 3 transmissions/hop
- Total # bits transmitted ≈
 6 Mbits

$$P_c' = (1 - 10^{-6})^{10^5} \approx e^{-10^5 10^{-6}} = e^{-0.1} \approx 0.9$$

- On average it takes about
 1.1 transmissions/hop
- Total # bits transmitted ≈
 2.2 Mbits

Packet Switching - Datagram

- Messages broken into smaller units (packets)
- Source & destination addresses in packet header ject Exam Help
- Connectionless, packets routed independently://power
 (datagram)
- Packet may arrive out two Chat powcoder
- Pipelining of packets across network can reduce delay, increase throughput
- Lower delay that message switching, suitable for interactive traffic

Packet Switching Delay

Assume three packets corresponding to one message traverse same path

Minimum Delay = $3\tau + 5(T/3)$ (single path assumed)

Additional queueing delays possible at each link Packet pipelining enables message to arrive sooner

Delay for k-Packet Message over L Hops

Routing Tables in Datagram Networks

Destination address	Output port	 Route determined by table lookup
0785 A		ject Exouting election involves finding next hop in route to codergiven destination
1345	Add WeCh	Routing table has an entry Powceden destination
1566	6	specifying output port that leads to next hop
		Size of table becomes impractical for very large
2458	12	number of destinations

Example: Internet Routing

- Internet protocol uses datagram packet switching across networks
 - Networks are treated as data links lelp
- Hosts have two-port IP address:
 Network address + Host address
- Routers do table Wookuppow metwork address
 - This reduces size of routing table
- In addition, network addresses are assigned so that they can also be aggregated
 - Discussed as CIDR in Chapter 8

Packet Switching – Virtual Circuit

- Call set-up phase sets up politicers and path along network
- All packets for a connection follow the same path
- Abbreviated header identifies connection on each link
- Packets queue for transmission
- Variable bit rates possible, negotiated during call set-up
- Delays variable, cannot be less than circuit switching

Connection Setup

- Signaling messages propagate as solected
- Signaling messages identify connection and setup tables in switches Add WeChat powcoder
- Typically a connection is identified by a local tag, Virtual Circuit Identifier (VCI)
- Each switch only needs to know how to relate an incoming tag in one input to an outgoing tag in the corresponding output
- Once tables are setup, packets can flow along path

Connection Setup Delay

- Connection setup delay is incurred before any packet can be transferred
- Delay is acceptable for sustained transfer of large number of packets
- This delay may be unacceptably high if only a few packets are being transferred

Virtual Circuit Forwarding Tables

Input VCI	Output port	Output VCI
	Assio	nment Pro je
12	1310018	
	h	ttps://powc
15	15	23
	A	dd WeCha
27	13	16
58	7	34

 Each input port of packet switch has a forwarding table

ect Example help for VCI of incoming packet

oder Complete output port (next hop) and insert VCI for next toward of the control of the contro

- Very high speeds are possible
- Table can also include priority or other information about how packet should be treated

Cut-Through switching

- Some networks perform error checking on header only, so packet can be forwarded as soon as header is received & processed
- Delays reduced further with cut-through switching

Message vs. Packet Minimum Delay

Message:

$$L \tau + L T = L \tau + (L-1) T + T$$

Assignment Project Exam Help

Packet

L
$$\tau$$
 + L P + (κ -1)P wcoder.com
= L τ + (L -1)P + T
Add WeChat powcoder

Cut-Through Packet (Immediate forwarding after header)

$$= L \tau + T$$

Above neglect header processing delays

Example: ATM Networks

- All information mapped into short fixed-length packets called *cells*
- Connections see up Page 55 met Work
 - Virtual circuita established eacross networks
- Tables setup at ATM switches
 Add WeChat powcoder
 Several types of network services offered
- - Constant bit rate connections
 - Variable bit rate connections

Asynchronous Tranfer Mode (ATM)

- Packet multiplexing and switching
 - Fixed-length packets: "cells"
 - Connection or Friends Project Exam Help
 - Rich Quality of Service support
- Conceived as end-to-end
 - Supporting width Wardhapton
 - Real time voice and video
 - Circuit emulation for digital transport
 - Data traffic with bandwidth guarantees
- Detailed discussion in Chapter 9

ATM Networking

- End-to-end information transport using cells
- 53-byte cell provide low delay and fine multiplexing granularity
- Support for many services through ATM Adaptation Layer

TDM vs. Packet Multiplexing

Variable bit rate Assignment ProjectinEtxeamidHenpocessing

TDM Multirate only Low, fixed Inefficient https://powcoder.com high speed

Packet Easily Adariable Chat Efficient der handled handled handled handled required

In mid-1980s, packet processing mainly in software and hence slow; By late 1990s, very high speed packet processing possible

ATM: Attributes of TDM & Packet Switching

ATM Switching

Switch carries out table translation and routing

ATM switches can be implemented using shared memory, shared backplanes, or self-routing multi-stage fabrics

ATM Virtual Connections

- Virtual connections setup across network
- Connections identified by locally-defined tags
- ATM Header contains virtual connection information:
 - 8-bit Virtual Path Identifier (VPI).
 - 16-bit Virtua Shighmenti Per Qiest Fixame Help
- Powerful traffic grooming çapabilities
 - Multiple VCs can be trained with FOR (FOW) that have a common path through the network are grouped together)
 - Similar to tributaries with the telephone similar to tributaries possible

VPI/VCI switching & multiplexing

- Connections a,b,c bundled into VP at switch 1
 - Crossconnect switches VP without looking at VCIs
 - VP unbundled at switch 2; VC switching thereafter
- VPI/VCI structure allows creation virtual networks
 - Can support large number of connections provides scalability

MPLS & ATM

- ATM initially touted as more scalable than packet switching
- ATM envisioned speeds of 150-600 Mbps

 Assignment Project Exam Help

 Advances in optical transmission proved ATM to be the less scalable by the com
 - Segmentation & reassembly of messages & streams into 48-byte cell paythads difficult sometimient
 - Header must be processed every 53 bytes vs. 500 bytes on average for packets
 - Delay due to 1250 byte packet at 10 Gbps = 1 μsec; delay due to 53 byte cell @ 150 Mbps ≈ 3 μsec
- MPLS (Chapter 10) uses tags to transfer packets across virtual circuits in Internet