Linear System Theory Homework 2

Due date: 10/19/2023

1. Suppose $E \in \mathbb{R}^{m \times m}$ and $F \in \mathbb{R}^{n \times n}$ are invertible matrices. Show that for $A \in \mathbb{R}^{m \times n}$,

$$\mathcal{N}(EA) = \mathcal{N}(A), \quad \mathcal{R}(AF) = \mathcal{R}(A)$$

- 2. A linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ defined by f(x) = Ax is one-to-one if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$; it is onto if for every $y \in \mathbb{R}^m$, there exists $x \in \mathbb{R}^n$ such that f(x) = y. Show that
 - (a) f is one-to-one if and only if $\mathcal{N}(A) = \{0\}$.
 - (b) f is onto if and only if $\mathcal{R}(A) = \mathbb{R}^m$.
- 3. Let $x, y \in \mathbb{R}^n$ and $x \neq 0$, $y \neq 0$. We say $p \in \mathbb{R}^n$ is the projection of y onto x if p is the point on the subspace spanned by x that is closet to y.
 - (a) Show that $p = \frac{x^T y}{x^T x} x$.
 - (b) Use the fact $||y p|| \ge 0$ to prove Cauchy-Schwarz inequality $||x^Ty|| \le ||x|| ||y||$.
- 4. Suppose that the columns of $U \in \mathbb{R}^{n \times k}$ are orthonormal. Show that $||U^T x|| \leq ||x||$ for all $x \in \mathbb{R}^n$. When do we have $||U^T x|| = ||x||$?
- 5. A matrix $P \in \mathbb{R}^{n \times n}$ is called a projection matrix if $P = P^T$ and $P^2 = P$.
 - (a) Show that if P is a projection matrix, so is I P.
 - (b) Suppose that the columns of $U \in \mathbb{R}^{n \times k}$ are orthogonal and each has unit length. Show that UU^T is a projection matrix.
 - (c) Suppose $A \in \mathbb{R}^{n \times k}$ is full rank, with $k \leq n$. Show that $A(A^TA)^{-1}A^T$ is a projection matrix.
 - (d) If S is a subspace of \mathbb{R}^n and $x \in \mathbb{R}^n$, then the point in S closest to x is called the projection of x on S. Show that if $P \in \mathbb{R}^{n \times n}$ is a projection matrix, then y = Px is the projection of x on $\mathcal{R}(P)$.

Hint: Show that $||x - Px|| \le ||x - z||$ for all $z \in \mathcal{R}(P)$.