

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
150V	$5.9 m\Omega$	150A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO247 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	150	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	150	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	86	Α
I _{DM}	Pulsed Drain Current ²	560	Α
EAS	Single Pulse Avalanche Energy ³	1105	mJ
las	Avalanche Current	66	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	298	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		45	°C/W
Rejc	Thermal Resistance Junction-Case ¹		0.42	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	150			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =60A		5.9	7.1	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	3	4	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-230UA				mV/°C
I _{DSS}	Drain-Source Leakage Current	V _{DS} =150V , V _{GS} =0V , T _J =25°C			1	uA
USS	Drain-Source Leakage Gurrent	V _{DS} =150V, V _{GS} =0V , T _J =100°C			100	uA
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =60A		100.8		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		4		Ω
Q_g	Total Gate Charge			74.5		
Q _{gs}	Gate-Source Charge	V _{DS} =75V , V _{GS} =10V , I _D =60A		31.7		nC
Q_gd	Gate-Drain Charge			15.2		
T _{d(on)}	Turn-On Delay Time			19.1		
T _r	Rise Time	V_{GS} =10V, V_{DD} =75V, R_{G} =2.7 Ω , I_{D} =60A		90.8		
T _{d(off)}	Turn-Off Delay Time			52.4		ns
T _f	Fall Time			82.5		
C _{iss}	Input Capacitance			4936		
Coss	Output Capacitance	V _{DS} =75V , V _{GS} =0V , f=1MHz		609		pF
C _{rss}	Reverse Transfer Capacitance			21		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			150	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =60A , T _J =250			1.4	V
t _{rr}	Reverse Recovery Time	IF=17A , di/dt=100A/μs ,		132.7		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		584.7		nC

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =75V, V_{GS} =10V,L=0.5mH, I_{AS} =66A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Performance Characteristics

Fig 2: Transfer Characteristics 140 $V_{DS}=5V$ 120 100 80 60 40 150°C 20 25°C 0 2 3 4 5 6

 $V_{GS}(V)$

Fig 14: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Mechanical Dimensions for TO-247

COMMON DIMENSIONS

	MM		
SYMBOL	MIN	MAX	
Α	4.80	5.20	
A1	2.21	2.61	
A2	1.85	2.15	
b	1.11	1.36	
b2	1.91	2.21	
b4	2.91	3.21	
С	0.51	0.75	
D	20.70	21.30	
D1	16.25	16.85	
E	15.50	16.10	
E1	13.00	13.60	
E2	4.80	5.20	
E3	2.30	2.70	
е	5.44BSC		
L	19.62	20.22	
L1	_ 4.30		
ØP	3.40 3.80		
ØP1	_	7.30	
S	6.15BSC		