CS 484: Introduction to Machine Learning

Fall Semester 2023 Assignment 3

Name: Sai Ram Oduri

ID: A20522183

We provide you with the **claim_history.xlsx** which contains 10,302 observations on various vehicles. You will use the observations in this Excel file to train models that predict the usage of a vehicle. Your models will use the following variables.

Label Field

CAR_USE. Vehicle Usage. It has two categories, namely, Commercial and Private.

Nominal Predictor

- **CAR_TYPE**. Vehicle Type. It has six categories, namely, *Minivan*, *Panel Truck*, *Pickup*, *SUV*, *Sports Car*, and *Van*.
- **OCCUPATION**. Occupation of Vehicle Owner. It has nine categories, namely, *Clerical*, *Home Maker*, *Medical*, *Lawyer*, *Management*, *Skilled Worker*, *STEM*, *Student*, and *Not Reported*.

Ordinal Predictor

• **EDUCATION**. Highest Education Level of Vehicle Owner. It has five ordered categories which are Below High School < High School < Bachelors < Masters < Doctors.

Although a decision tree can accommodate missing values in the predictors, we will use only observations where there are no missing values in all the above four variables. After dropping the missing values, we will use all the 100% complete observations for training both models.

For each observation, you will calculate the predicted probabilities for CAR_USE = *Commercial* and CAR_USE = *Private*. You will classify the observation in the CAR_USE category that has the highest predicted probability. In case of ties, choose the *Private* category.

Question 1 (50 points)

You will train a classification tree model with the following specifications:

- The maximum depth is two.
- The split criterion is the Entropy metric.
- An observation in the parent node will be assigned to the left child node if the splitting criterion is evaluated to be True. Otherwise, it will be assigned to the right child node.

Since the sklearn tree module does not handle string features, you must write Python codes to find the optimal split for a string feature. You must use values of a nominal string AS IS. Do not encode the nominal features into dummy columns. To find all the possible splits of a nominal predictor, we suggest the itertools.combinations() function to you.

a) (20 points) Please describe the leaf nodes of the classification tree. Your description should include these five pieces of information: (1) Splitting Criterion, (2) Number of Observations, (3) Predicted Probabilities of CAR_USE, (4) Predicted CAR_USE category, and (5) Split Entropy Value.

Ans.

```
Total Count: 10302
Root Node Entropy: 0.9489621493401781

Prediction probabilities of left observations are :

['EDUCATION', 0.6670194998377932, [[0], [1, 2, 3, 4]], [[823, CAR_USE
Commercial 216
Private 607
Name: LEFT, dtype: int64, 0.8304276080710689], [3029, CAR_USE
Commercial 2559
Private 470
Name: RIGHT, dtype: int64, 0.6226204001098349]], 'Entropy', 3029]

Prediction probabilities of right observations are :

['CAR_TYPE', 0.3274450052616845, [['Minivan', 'SUV', 'Sports Car'], ['Pickup', 'Panel Truck', 'Van']], [[4594, CAR_USE
Commercial 30
Private 4564
Name: LEFT, dtype: int64, 0.056791153992247115], [1856, CAR_USE
Commercial 984
Private 872
Name: RIGHT, dtype: int64, 0.9973716177249364]], 'Entropy', 1856]
```

The root note entropy is given by 0.94896 or 94.89 %

Then LB contains Education, 0.667019 with entropy 3029

The RB contains the CAR TYPE with entropy 1856

```
Total Number of Observations and Probabilities:
CAR USE Commercial Private
Leaf
0
                216
                        607
               2559
                        470
                        4564
                 30
                984
                        872
CAR USE
          Commercial
                         Private
Leaf
0
        0.2624544350 0.7375455650
        0.8448332783 0.1551667217
        0.0065302569 0.9934697431
        0.5301724138 0.4698275862
```

b) (10 points) Let us study a fictitious person. The person works in a *STEM* occupation, has an education level of *Masters*, and owns a *Minivan*. What are the Car Usage probabilities?

```
CAR Uses Probability

Commercial, Private
0.006530256856769699 0.9934697431432303

Predicted CAR_USE: Private
```

The probabilities of commercial car use is 0.65%

Probabilities of private car use is 99.34%

c) (10 points) Let us study another fictitious person. The person is a *Student*, has a *High School* level of education, and owns a *Pickup*. What are the Car Usage probabilities?

```
CAR Uses Probability

Commercial, Private
0.8448332783096731 0.15516672169032683

Predicted CAR_USE: Commercial
```

d) (5 points) Generate a histogram of the predicted probabilities of CAR_USE = *Private*. The bin width is 0.05. The vertical axis is the proportion of observations.

e) (5 points) Finally, what is the misclassification rate of the Classification Tree model?

The Misclassification rate of the Classification Tree model: 15.414482624733061

Question 2 (50 points)

You will train a Naïve Bayes model with a Laplace/Lidstone value of 0.01.

a) (10 points) What are the Class Probabilities?

```
Commercial Private
[0.36779266 0.63220734]
```

b) (10 points) Cross-tabulate the label variable by each predictor and show the resulting table. The table must contain the frequency counts and the row probabilities in each label class.

For Car type

CAR_TYPE	Minivan	Panel Truck	Pickup	SUV	Sports	Car	Van	
Commercial	553	853	1068	555		200	560	
Private	2141	0	704	2328		979	361	
CAR_TYPE CAR_USE	Minivan	Panel Truck	Pic	kup	SUV	Spo	rts Car	Van
Commercial	0.145949	0.225125	0.28186	69 0.	146477	0.	052784	0.147796
Private	0.328727	0.000000	0.10809	92 0.	357439	0.	150315	0.055428

For Occupation row type

		-					
OCCUPATION CAR USE	Clerical H	lome Maker	Lawyer	Management	Medical	Not Reported	
Commercial	285	57	ø	308	ø	593	
Private	1305	786	1031	949	321	72	
OCCUPATION CAR USE	STEM Skill	ed Worker	Student				
Commercial	364	1735	447				
Private	1044	553	452				
OCCUPATION CAR USE	Clerical	Home Maker	Lawy	er Manageme	ent Medi	cal \	
Commercial	0.075218	0.015044	0.000000	0.08128	88 0.0000	99	
Private	0.200368	0.120682	0.158299	0.14570	9 0.0492	86	
OCCUPATION CAR USE	Not Reporte	d STE	4 Skille	ed Worker	Student		
Commercial	0.15650	6 0.096068	3	0.457904	3.117973		
Private	0.01105				0.069400		

For education type

EDUCATION CAR USE	Bachelors	Below High S	School	Doctors	High School 1	Masters
Commercial	1191		326	302	1438	532
Private	1632		1189	632	1514	1546
EDUCATION CAR USE	Bachelors	Below High	School	Doctors	High School	Masters
Commercial Private	0.314331 0.250576		086039 182558	0.079704 0.097037	0.379520 0.232458	0.140406 0.237371

c) (10 points) Let us study a fictitious person. The person works in a *Skilled Worker* occupation, has an education level of *Doctors*, and owns an *SUV*. What are the Car Usage probabilities?

```
The Car Usage probabilities are :

Commercial Private
[[0.5136312 0.4863688]]
```

d) (10 points) Let us study another fictitious person. The person works in a *Management* occupation, has a *Below High School* level of education, and owns a *Sports Car*. What are the Car Usage probabilities?

```
The Car Usage probabilities are :

Commercial Private
[[0.0509781 0.9490219]]
```

e) (5 points) Generate a histogram of the predicted probabilities of CAR_USE = *Private*. The bin width is 0.05. The vertical axis is the proportion of observations.

f) (5 points) Finally, what is the misclassification rate of the Naïve Bayes model? Ans.

The misclassification rate is : 0.1280333915744516

The misclassification ratio is 12.8034%