WORKSHOP 5

By Group 5Anand Mohan Thakur
Josh Shaji
Poonam Bhaliyan
Poornima Singh
Prateek Ramjanam Singh

PART II: LOGISTIC REGRESSION

Answer 3: Step 2 - The Fall_GPA Plot

Answer 3: Step 5 – Transformation of Fall_GPA

The formula used for transformation of Fall_GPA is: exp(max(Fall_GPA-0, 0.0)/4)
The skewness for Fall_GPA is -0.99401 whereas for the transformed Fall_GPA is -0.49838

Answer 3: Step 5 – Transformation of Distance

The formula used for transformation of Distance is: sqrt(max(Distance-0.7858319691, 0.0)/3881.4065468)
The skewness for Distance is 3.748368 whereas for the transformed Distance is 1.755574. The skewness has reduced

Answer 3: Step 7 – Histogram of EXP Fall_GPA

In the previous graph of Fall_GPA the values range from 0 to 4, whereas in the below graph with exponential values of Fall_GPA, the values range from 1 to 2.72, making the tail less flatter

Answer 3: Step 9 – Tree Surrogate

Tree Surrogate — The Tree Surrogate setting is used to replace missing interval variable values by using the same algorithm as Tree Imputation (in Tree Imputation Use the Tree setting to replace missing interval variable values with replacement values that are estimated by analysing each input as a target. The remaining input and rejected variables are used as predictors), except with the addition of surrogate splitting rules. A surrogate rule is a backup to the main splitting rule. When the main splitting rule relies on an input whose value is missing, the next surrogate is invoked. If missing values prevent the main rule and all the surrogates from applying to an observation, the main rule assigns the observation to the branch that is assigned to receive missing values.

Answer 3: Step 11 – Stepwise Regression

Stepwise Regression is a variable selection method.

Stepwise: In Stepwise Regression selection begins, by default, with no candidate effects in the model and then systematically adds effects that are significantly associated with the target. However, after an effect is added to the model, Stepwise can remove any effect already in the model that is not significantly associated with the target. This stepwise process continues until one of the following occurs:

- ➤ No other effect in the model meets the Stay Significance Level.
- > The Max Steps criterion is met. If you choose the Stepwise selection method, then you can specify a Max Steps to put a limit on the number of steps before the effect selection process stops. The default value is set to the number of effects in the model. If you add interactions via the Interaction Builder, the Max Steps is automatically updated to include these terms.
- An effect added in one step is the only effect deleted in the next step.

Answer 4: Step 19 – Classification Table for Validation Set

Please find the Classification Table for the Validation Set as follows:

Misclassification Tre	Misclassification Tree				
	Detected as 0 (outcome= 0)	Detected as 1 (outcome = 1)	Total		
Truly 0 (target = 0)	TN= 903	FP= 87	FP+TN = 990		
Truly 1 (target = 1)	FN= 15	TP= 47	TP+FN = 62		
Total	TN+FN= 918	TP+FP= 134			

Please find the Calculations:

Recall (R) = TP/(TP+FN) = 47/62 = 0.758

Precision (P) = TP/(TP+FP) = 47/134 = 0.351

F1 = 2P.R/(P+R) = (2*(0.758*0.351))/(0.758+0.351) = 0.4978

The Precision value is 0.351, which signifies that only 35.1% of the validation dataset is correctly identified as True Positives which is a really low number. The F1 value of 49.78% is low too

Answer 5: To include Quadratic Polynomial Term in the model

Answer 6: F1 value after including Quadratic Polynomial Term

Please find the Classification Table for the Validation Set as follows:

Misclassification Tre	Misclassification Tree				
	Detected as 0 (outcome= 0)	Detected as 1 (outcome = 1)	Total		
Truly 0 (target = 0)	TN= 892	FP= 26	FP+TN = 918		
Truly 1 (target = 1)	FN= 75	TP= 59	TP+FN = 134		
Total	TN+FN= 967	TP+FP= 85			

Please find the Calculations:

Recall (R) = TP/(TP+FN) = 59/134 = 0.440

Precision (P) = TP/(TP+FP) = 59/85 = 0.694

F1 = 2P.R/(P+R) = (2*(0.694*0.440))/(0.694+0.440) = 0.538

The Precision value is 0.694, which signifies that only 69.4% of the validation dataset is correctly identified as True Positives which is a better model than the previous model. The F1 score is 53.8% which is higher than 49.78% in the previous model

PART III: NEURAL NETWORKS

Answer 7: The number of variables selected in Variable Selection node

Variables with low R square values are rejected. 12 variables are selected

Answer 8: Neural Network Configuration

Answer 9: F1 Measure for the Neural Network model

477	Event Clas	Event Classification Table				
478						
479	Data Role=	TRAIN Target	=Target Targ	et Label=Target		
480						
481	False	True	False	True		
482	Negative	Negative	Positive	Positive		
483						
484	137	1806	27	130		
485						
486						
487	Data Role=VALIDATE Target=Target Label=Target					
488						
489	False	True	False	True		
490	Negative	Negative	Positive	Positive		
491						
492	32	456	3	35		

Answer 9: F1 Measure for the Neural Network model

Please find the Classification Table for the Validation Set as follows:

Misclassification Tre	Misclassification Tree				
	Detected as 0 (outcome= 0)	Detected as 1 (outcome = 1)	Total		
Truly 0 (target = 0)	TN= 456	FP= 3	FP+TN = 459		
Truly 1 (target = 1)	FN= 32	TP= 35	TP+FN = 67		
Total	TN+FN= 488	TP+FP= 38			

Please find the Calculations:

Recall (R) = TP/(TP+FN) = 35/67 = 0.522

Precision (P) = TP/(TP+FP) = 35/38 = 0.921

F1 = 2P.R/(P+R) = (2*(0.522*0.921))/(0.522+0.921) = 0.667

The Precision value is 0.921, which signifies that 92.1% of the validation dataset is correctly identified as True Positives which is a better model than the Regression model. The F1 score is 66.7% which is higher and better than 53.8% obtained in the regression model

Answer 10: F1 Measure for the Neural Network model

PART IV: KNN

Answer 11, 12 and 13: New Project, KNN Diagram and File Import

Answer 14 Part 1: How many rows are imported and how many have Target =1

200 rows were imported out of which 100 have Target = 1

Answer 14 Part 2: Are the distributions of X1 and X2 normal

X1 and X2 are normally distributed

Answer 15: How many data samples are in the training set. What percentage has Target = 1?

There are 158 data samples in the training data set, out which 50 percent have Target = 1

45	Summary St	atistics fo	r Class Targe	ts			
46							
47	Data=DATA						
48							
49		Numeric	Formatted	Frequency			
50	Variable	Value	Value	Count	Percent	Label	
51							
52	Target	0	0	100	50	Target	
53	Target	1	1	100	50	Target	
54							
55							
56	Data=TRAIN						
57							
58		Numeric	Formatted	Frequency			
59	Variable	Value	Value	Count	Percent	Label	
60							
61	Target	0	0	79	50	Target	
62	Target	1	1	79	50	Target	
63							
64							
65	Data=VALID	ATE					
66							
67		Numeric	Formatted	Frequency			
68	Variable	Value	Value	Count	Percent	Label	
69							
70	Target	0	0	21	50	Target	
71	Target	1	1	21	50	Target	
72							

22 23	Partition	Summary	
24			
25			Number of
26	Type	Data Set	Observations
27			
28	DATA	EMWS1.FIMPORT_train	200
29	TRAIN	EMWS1.Part_TRAIN	158
30	VALIDATE	EMWS1.Part_VALIDATE	42
31			

Answer 18 Part 1: What is the default method under Train?

The default method under Train is RD-TREE

Answer 18 Part 2: What is the default value for k (number of neighbors)?

The default value of k is 16

Answer 19 Part 1: What is the MSE for training versus validation data set?

The MSE is as follows:

Train dataset = 0.062277 and Validation dataset = 0.060175

Answer 19 Part 2: Find the number of FN, FP, etc. for the validation set and paste here

.17					
.18	Event Class	sification T	able		
.19					
.20	Data Role=	TRAIN Target	=Target Targ	et Label=Targe	t
.21					
.22	False	True	False	True	
.23	Negative	Negative	Positive	Positive	
.24					
.25	8	76	3	71	
.26					
.27					
.28	Data Role=	VALIDATE Tar	get=Target T	arget Label=Ta	rget
.29					
.30	False	True	False	True	
.31	Negative	Negative	Positive	Positive	
.32					
.33	3	19	2	18	
34					

Please find the Calculations:

Recall (R) =
$$TP/(TP+FN) = 18/(18+19) = 0.486$$

Precision (P) = $TP/(TP+FP) = 18/(18+2) = 0.90$
 $F1 = 2P.R/(P+R) = (2*(0.486*0.90))/(0.486+0.90) = 0.631$

The Precision value is 0.90, which signifies that 90.0% of the validation dataset is correctly identified as True Positives which is a better model than the Regression model. The F1 score is 63.1%.

Answer 19 Part 3: Run Duration of the model

The run duration of the model is: 0 Hr. 0 Min. 4.91 Sec.

. Property	Value
General	
Node ID	MBR
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Method	Scan
Number of Neighbors	16
Epsilon	0.0
Number of Buckets	8
Weighted	No
Create Nodes	No
Create Neighbor Variables	Yes
Status	
Create Time	5/4/22 4:18 PM
Run ID	19a14696-6af2-fe45-9fc2-4ad60a3ce9e
Last Error	
Last Status	Complete
Last Run Time	5/4/22 4:27 PM
Run Duration	0 Hr. 0 Min. 4.91 Sec.
Grid Host	
User-Added Node	No

Answer 20 Part 1: What is the warning and what is the MSE value this time?

The MSE is as follows:

Target

Target

Target

Target

Target

Target

Target

Target

Target Target

Train dataset = 0 and Validation dataset = 0.119048

RMSE

AVERR

ERR

MAX

FPE

AIC

SBC

MISC

WRONG

RFPE

Target

The warning is as shown on the left

0.345033 0.822352

69.07755

0.119048

Root Mean Squared Error

Average Error Function

Maximum Absolute Error

Root Final Prediction Error

Akaike's Information Criterion Schwarz's Bayesian Criterion

Number of Wrong Classifications

Final Prediction Error

Misclassification Rate

Error Function

Answer 20 Part 2: What is the number of FN, FP, etc. for validation set here. How did the results change?

116	Event Class	Event Classification Table				
117						
118	Data Role=7	TRAIN Target	=Target Targ	et Label=Target		
119						
120	False	True	False	True		
121	Negative	Negative	Positive	Positive		
122						
123		79		79		
124						
125						
126	Data Role=VALIDATE Target=Target Target Label=Target					
127						
128	False	True	False	True		
129	Negative	Negative	Positive	Positive		
130						
131	1	17	4	20		
132						

Please find the Calculations:

Recall (R) =
$$TP/(TP+FN) = 17/(17+1) = 0.944$$

Precision (P) = $TP/(TP+FP) = 17/(17+4) = 0.8095$
 $F1 = 2P.R/(P+R) = (2*(0.955*0.8095))/(0.8095+0.955) = 0.8664$

The Precision value is 0.80, which signifies that 80.95% of the validation dataset is correctly identified as True Positives which is a better model than the Regression model. The F1 score is 86.64% which is the highest as compared to all the models.

Answer 20 Part 3: Run Duration of the model

The run duration of the model is: 0 Hr. 0 Min. 3.56 Sec.

Property	Value
General	
Node ID	MBR
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Method	Scan
Number of Neighbors	1
Epsilon	0.0
Number of Buckets	8
Weighted	No
Create Nodes	No
Create Neighbor Variables	Yes
Status	
Create Time	5/4/22 4: 18 PM
Run ID	dcf96570-112b-1143-b718-ed6a23e372
Last Error	
Last Status	Complete
Last Run Time	5/4/22 4:37 PM
Run Duration	0 Hr. 0 Min. 3.56 Sec.
Grid Host	
User-Added Node	No

Answer 21: What are Eigen Values and What percentage of the energy is explained by the first principal component?

```
The DMNEURL Procedure

Eigenvalues of Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 1.64015952 1.28031904 0.8201 0.8201
2 0.35984048 0.1799 1.0000
```

```
53
54
55
      Summary of Exported Principal Components
56
57
     Remark: The number of inputs is used as the maximum number of principal components
58
59
     Total number of input variables: 2
60
61
     Maximum number cutoff of principal components: 2
      Cumulative proportional eigenvalue cutoff: 0.99
62
      Proportional eigenvalue increment cutoff: 0.001
63
      Number of the selected principal components: 2
64
65
      Total variation explained by the selected principal components: 1
66
```

Answer 22: Event Classification Table after Principal Component and k=16

117					
118	Event Clas	sification T	able		
119					
120	Data Role=	TRAIN Target	=Target Targ	et Label=Target	
121					
122	False	True	False	True	
123	Negative	Negative	Positive	Positive	
124					
125	8	75	4	71	
126					
127					
128	Data Role=	VALIDATE Tar	get=Target T	arget Label=Targe	t
129					
130	False	True	False	True	
131	Negative	Negative	Positive	Positive	
132					
133	1	20	1	20	
134					

Please find the Calculations:

Recall (R) =
$$TP/(TP+FN) = 20/(20+1) = 0.952$$

Precision (P) = $TP/(TP+FP) = 20/(20+1) = 0.952$
F1 = $2P.R/(P+R) = (2*(0.952*0.952))/(0.952+0.952) = 0.952$

The Precision value is 0.80, which signifies that 95.20% of the validation dataset is correctly identified as True Positives which is a better model than the Regression model. The F1 score is 95.20% which is better than the previous model.

Answer 23: KNN Diagram and the improvements in results

GROUP WORK DECLARATION

We, Group 5 (Anand Mohan Thankur, Josh Shaji, Poonam Bhaliyan, Prateek Ramjanam Singh, and Poornima Singh) declare that the attached assignment is our own work in accordance with the Seneca Academic Policy. We have not copied any part of this assignment, manually or electronically, from any other source including web sites, unless specified as references. We have not distributed our work to other students.

	Name	Task(s)
1	Anand Mohan Thakur (149200206)	Consolidated the Workshop together on MS Teams
2	Josh Shaji (133557215)	Consolidated the Workshop together on MS Teams
3	Poonam Bhaliyan (121114219)	Consolidated the Workshop together on MS Teams
4	Prateek Ramjanam Singh (124483215)	Consolidated the Workshop together on MS Teams
5	Poornima Singh (125638213)	Consolidated the Workshop together on MS Teams

THANK YOU