Prof. F. Bottacin, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2015

Esercizio 1. Nello spazio vettoriale delle funzioni lineari $f: \mathbb{R}^4 \to \mathbb{R}$ sia V il sottospazio generato dalle funzioni f_1, f_2, f_3 , ove:

 $f_1(x_1,\ldots,x_4)=2x_1-x_2+x_4, \quad f_2(x_1,\ldots,x_4)=x_1+2x_2-x_3+2x_4, \quad f_3(x_1,\ldots,x_4)=3x_1-4x_2+x_3.$

- (a) Si determini la dimensione e una base di V.
- (b) Si determini una funzione lineare $f \in V$ tale che f(1,0,0,0) = 5 e f(0,0,0,1) = 4.
- (c) Si determini l'intersezione dei nuclei di tutte le $f \in V$.
- (d) Sia $W = \{f : \mathbb{R}^4 \to \mathbb{R} \mid f \text{ è lineare e } f(1,1,-2,-2) = 0\}$. Si determini una base di $V \cap W$.

Esercizio 2. Si considerino i vettori $v_1 = (1, 2, -3), v_2 = (1, 3, -1), v_3 = (2, t^2 + 4, -4)$ in \mathbb{R}^3 .

- (a) Si determini per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Si dica per quali valori di t esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (3, 0, -2)$, $f(v_2) = (t 4, 1 t, 2)$ e Ker(f) sia generato da v_3 . In particolare, per i valori di t trovati al punto (a), si dica se una tale funzione lineare f esiste e se essa è unica.
- (c) Si ponga ora t = 0. Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da $g(e_1) = v_2 + v_3$, $g(e_2) = v_1 + v_3$, $g(e_3) = v_1 + v_2$ (ove e_1, e_2, e_3 sono i vettori della base canonica di \mathbb{R}^3). Si determini la matrice di $f \circ g$ rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1 = (1,0,2,-1), u_2 = (2,-1,3,0), u_3 = (0,1,1,-2).$

- (a) Si determini una base ortogonale di U.
- (b) Si determini una base di U^{\perp} .
- (c) Si scrivano le equazioni cartesiane di U.
- (d) Dato il vettore v = (0, -4, 2, -6), si determini un vettore w di norma minima tale che $v + w \in U$.

$$r: \begin{cases} 2y+z+1=0\\ x+3y+z-1=0 \end{cases} \qquad s: \begin{cases} x+y-z+1=0\\ y+2z+2=0 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente r e parallelo a s.
- (b) Si determini l'equazione parametrica della retta ℓ parallela al vettore v = (1, 2, -1) e incidente le rette r e s. Si determinino inoltre le coordinate dei punti di incidenza di ℓ con r e s.
- (c) Si determinino le equazioni parametriche delle due rette r_1 e r_2 contenute nel piano π (trovato al punto (a)), parallele a r e distanti $\sqrt{210}$ da r.

Prof. F. Bottacin, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2015

Esercizio 1. Nello spazio vettoriale delle funzioni lineari $f: \mathbb{R}^4 \to \mathbb{R}$ sia V il sottospazio generato dalle funzioni f_1, f_2, f_3 , ove:

 $f_1(x_1,\ldots,x_4)=2x_2+x_3+x_4, \quad f_2(x_1,\ldots,x_4)=x_1-2x_2+x_3-x_4, \quad f_3(x_1,\ldots,x_4)=2x_1-2x_2+3x_3-x_4.$

- (a) Si determini la dimensione e una base di V.
- (b) Si determini una funzione lineare $f \in V$ tale che f(0,0,1,0) = 4 e f(0,0,0,1) = 2.
- (c) Si determini l'intersezione dei nuclei di tutte le $f \in V$.
- (d) Sia $W = \{f : \mathbb{R}^4 \to \mathbb{R} \mid f \text{ è lineare e } f(2,1,2,1) = 0\}$. Si determini una base di $V \cap W$.

Esercizio 2. Si considerino i vettori $v_1 = (2, -2, 1), v_2 = (2, 1, 2), v_3 = (4, t^2 + 2t - 7, 1)$ in \mathbb{R}^3 .

- (a) Si determini per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Si dica per quali valori di t esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (2, -1, 0)$, $f(v_2) = (-3t, -3, t+2)$ e Ker(f) sia generato da v_3 . In particolare, per i valori di t trovati al punto (a), si dica se una tale funzione lineare f esiste e se essa è unica.
- (c) Si ponga ora t = 1. Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da $g(e_1) = v_2 + v_3$, $g(e_2) = v_1 + v_3$, $g(e_3) = v_1 + v_2$ (ove e_1, e_2, e_3 sono i vettori della base canonica di \mathbb{R}^3). Si determini la matrice di $f \circ g$ rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1 = (2, 1, 0, 1), u_2 = (1, 0, -2, -1), u_3 = (0, 1, 4, 3).$

- (a) Si determini una base ortogonale di U.
- (b) Si determini una base di U^{\perp} .
- (c) Si scrivano le equazioni cartesiane di U.
- (d) Dato il vettore v = (2, 7, 3, 5), si determini un vettore w di norma minima tale che $v + w \in U$.

$$r: \begin{cases} 2y - z - 2 = 0 \\ x + y - z - 4 = 0 \end{cases} \qquad s: \begin{cases} x - y + z + 2 = 0 \\ x - 2z - 3 = 0 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente r e parallelo a s.
- (b) Si determini l'equazione parametrica della retta ℓ parallela al vettore v=(2,-1,1) e incidente le rette r e s. Si determinino inoltre le coordinate dei punti di incidenza di ℓ con r e s.
- (c) Si determinino le equazioni parametriche delle due rette r_1 e r_2 contenute nel piano π (trovato al punto (a)), parallele a r e distanti $\sqrt{210}$ da r.

Prof. F. Bottacin, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2015

Esercizio 1. Nello spazio vettoriale delle funzioni lineari $f: \mathbb{R}^4 \to \mathbb{R}$ sia V il sottospazio generato dalle funzioni f_1, f_2, f_3 , ove:

$$f_1(x_1,\ldots,x_4)=2x_1-x_3-2x_4, \quad f_2(x_1,\ldots,x_4)=x_1-x_2-x_3-x_4, \quad f_3(x_1,\ldots,x_4)=x_1+3x_2+x_3-x_4.$$

- (a) Si determini la dimensione e una base di V.
- (b) Si determini una funzione lineare $f \in V$ tale che f(1,0,0,0) = 4 e f(0,0,1,0) = -3.
- (c) Si determini l'intersezione dei nuclei di tutte le $f \in V$.
- (d) Sia $W = \{f : \mathbb{R}^4 \to \mathbb{R} \mid f \text{ è lineare e } f(1,1,1,-2) = 0\}$. Si determini una base di $V \cap W$.

Esercizio 2. Si considerino i vettori $v_1 = (1, 2, -2), v_2 = (2, 1, -2), v_3 = (2, t^2 + 3, -6)$ in \mathbb{R}^3 .

- (a) Si determini per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Si dica per quali valori di t esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (0, 2, -1)$, $f(v_2) = (t 2, 3t + 2, -4)$ e Ker(f) sia generato da v_3 . In particolare, per i valori di t trovati al punto (a), si dica se una tale funzione lineare f esiste e se essa è unica.
- (c) Si ponga ora t = 0. Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da $g(e_1) = v_2 + v_3$, $g(e_2) = v_1 + v_3$, $g(e_3) = v_1 + v_2$ (ove e_1, e_2, e_3 sono i vettori della base canonica di \mathbb{R}^3). Si determini la matrice di $f \circ g$ rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1 = (0, 1, -2, -1), u_2 = (3, -1, 0, 2), u_3 = (3, 1, -4, 0).$

- (a) Si determini una base ortogonale di U.
- (b) Si determini una base di U^{\perp} .
- (c) Si scrivano le equazioni cartesiane di U.
- (d) Dato il vettore v = (2, -3, -8, -2), si determini un vettore w di norma minima tale che $v + w \in U$.

$$r: \begin{cases} y-z+1=0\\ x+3y-z+3=0 \end{cases} \qquad s: \begin{cases} 4x+y-z+3=0\\ x+y-2=0 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente r e parallelo a s.
- (b) Si determini l'equazione parametrica della retta ℓ parallela al vettore v=(1,3,1) e incidente le rette r e s. Si determinino inoltre le coordinate dei punti di incidenza di ℓ con r e s.
- (c) Si determinino le equazioni parametriche delle due rette r_1 e r_2 contenute nel piano π (trovato al punto (a)), parallele a r e distanti $\sqrt{11}$ da r.

Prof. F. Bottacin, N. Rodinò, R. Sánchez

4º Appello — 5 febbraio 2015

Esercizio 1. Nello spazio vettoriale delle funzioni lineari $f: \mathbb{R}^4 \to \mathbb{R}$ sia V il sottospazio generato dalle funzioni f_1, f_2, f_3 , ove:

 $f_1(x_1,\ldots,x_4)=2x_1-2x_2+x_3,\quad f_2(x_1,\ldots,x_4)=2x_1-x_2+2x_3+x_4,\quad f_3(x_1,\ldots,x_4)=2x_1-4x_2-x_3-2x_4.$

- (a) Si determini la dimensione e una base di V.
- (b) Si determini una funzione lineare $f \in V$ tale che f(0,1,0,0) = -5 e f(0,0,1,0) = 7.
- (c) Si determini l'intersezione dei nuclei di tutte le $f \in V$.
- (d) Sia $W = \{f : \mathbb{R}^4 \to \mathbb{R} \mid f \text{ è lineare e } f(2,1,-1,2) = 0\}$. Si determini una base di $V \cap W$.

Esercizio 2. Si considerino i vettori $v_1 = (2, 1, -1), v_2 = (4, -1, -1), v_3 = (2, t^2 - t - 2, 0)$ in \mathbb{R}^3 .

- (a) Si determini per quali valori di t i vettori v_1, v_2, v_3 sono linearmente dipendenti.
- (b) Si dica per quali valori di t esiste una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(v_1) = (1, -2, 3)$, $f(v_2) = (2t 1, -2, t + 2)$ e Ker(f) sia generato da v_3 . In particolare, per i valori di t trovati al punto (a), si dica se una tale funzione lineare f esiste e se essa è unica.
- (c) Si ponga ora t = 2. Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da $g(e_1) = v_2 + v_3$, $g(e_2) = v_1 + v_3$, $g(e_3) = v_1 + v_2$ (ove e_1, e_2, e_3 sono i vettori della base canonica di \mathbb{R}^3). Si determini la matrice di $f \circ g$ rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1 = (1, -2, 1, 0), u_2 = (0, 3, -1, 1), u_3 = (3, 0, 1, 2).$

- (a) Si determini una base ortogonale di U.
- (b) Si determini una base di U^{\perp} .
- (c) Si scrivano le equazioni cartesiane di U.
- (d) Dato il vettore v = (2, -1, -5, 2), si determini un vettore w di norma minima tale che $v + w \in U$.

$$r: \begin{cases} x+y-3=0\\ 3x+y-z-5=0 \end{cases} \qquad s: \begin{cases} x+y+z-1=0\\ y-z-1=0 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente r e parallelo a s.
- (b) Si determini l'equazione parametrica della retta ℓ parallela al vettore v=(2,1,-3) e incidente le rette r e s. Si determinino inoltre le coordinate dei punti di incidenza di ℓ con r e s.
- (c) Si determinino le equazioni parametriche delle due rette r_1 e r_2 contenute nel piano π (trovato al punto (a)), parallele a r e distanti $\sqrt{210}$ da r.