MULHERES PROGRAMACAO

Estatísticas Brasileiras

Condessa de Lovelace

Augusta Ada Byron King (1815 – 1852)

- Nascimento: 10 de dezembro 1815;
- Matemática e escritora inglesa;
- Primeiro(a) programador(a).

Charles Babbage

(1951 – 1871)

 Inventor que projetou o primeiro computador de uso geral.

- **Museu** de Ciências de Londres
- Unidade lógica aritmética
- Sistema de memória integrada

• Escreveu o primeiro algoritmo processado por uma máquina

• Influenciou no projeto do primeiro computador programável

• Participação no desenvolvimento (Protótipo) da máquina analítica de Charles Babagge

	Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.		Data.		Working Variables.										Result Variables.			
Number of Operation						1V1 00 00 1	1V ₂ 0 0 0 2	1V ₃ 0 0 4 1	°V4 00 00 00	°Y5	°V ₆ ○ 0 0 0	°V ₇ ○ 0 0 0	°V.	°V ₉	°V ₁₀ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	ov ₁₁ ○ 0 0 0 0	6V ₁₂ O 0 0 0	°Y₁₃ ○ 0 0 0 0	B ₁ in a decimal O in Air fraction.	B h a German O E Graction.	0	°V₂1. ○ 0 0 0 0 B ₇
2 - 3 + 4 - 5 - 6 -	+ + + +	$V_4 - {}^{i}V_3$ $V_5 + {}^{i}V_1$ $V_5 + {}^{2}V_4$ $V_{11} + {}^{i}V_2$ $V_{13} - {}^{2}V_{11}$ $V_3 - {}^{i}V_1$	1V ₁₀	C .1 1.3	$= 2n$ $= 2n + 1$ $= 2n + 1$ $= \frac{2n + 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= -\frac{1}{2} \cdot \frac{2n - 1}{2n + 1} = A_0$ $= n - 1 (= 3)$	1	2	n	2 n 2 n - 1 0	2 n 2 n + 1 0	2 n				 n - 1	$ \begin{array}{r} \frac{2n-1}{2n+1} \\ \frac{1}{2}, \frac{2n-1}{2n+1} \\ 0 \end{array} $		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$				
9 +	× 1	V ₂₁ × ³ V ₁₁ V ₁₂ + ¹ V ₁₃	ıv ₁₂	$\left\{ \begin{smallmatrix} 1V_{12} = 0V_{12} \\ 1V_{13} = {}^{2}V_{13} \end{smallmatrix} \right\}$			2				2n	2 2			 n - 2	$\frac{2n}{2} = A_1$ $\frac{2n}{2} = A_1$	$B_1, \frac{2n}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	В1			
14 15 16 17 18 19	+ + · · · · · · · · · · · · · · · · · ·	1V ₁ + 1V ₇ 2V ₆ + 2V ₇ 1V ₈ × 2V ₁₁ 2V ₆ - 1V ₁ 2V ₆ - 1V ₁ 2V ₇ + 2V ₇ 2V ₇ + 2V ₇ 1V ₉ × 4V ₁₁ 1V ₂₂ × 5V ₁₃ 22V ₁₀ + 2V ₁₁ 22V ₁₀ + 2V ₁₁ 22V ₁₀ + 2V ₁₁ 22V ₁₀ + 2V ₁₁ 22V ₁₀ + 2V ₁₁	*V ₁₁	$\begin{cases} 2V_6 = 5V_6 \\ 1V_1 = 1V_1 \\ 2V_7 = 3V_7 \\ 1V_1 = 1V_1 \\ 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \\ 1V_3 = 6V_9 \\ 4V_{11} = 6V_{31} \\ 1V_{22} = 1V_{22} \\ 6V_{12} = 2V_{12} \\ 2V_{12} = 0V_{12} \end{cases}$	$= B_3 \cdot \frac{2 \pi}{2} \cdot \frac{2 \pi - 1}{3} \cdot \frac{2 \pi - 2}{3} = B_3 \Lambda$	1 1					2 n - 1 2 n - 1 2 n - 2 2 n - 5	4 4		2n-1	 		B ₃ A ₃	$\left\{ A_3 + B_1 A_1 + B_2 A_3 \right\}$		B _a		
250			La.	1 (4V.,=0V.,-1	11 =			1	lere foll	lows a r	epetition	of Oper	rations t	hirteen	to twent	y-three.	. 1			A second		1
25	+ +	1V ₁₁ + 1V ₁	IV ₂₄	$. \begin{cases} {}^{4}V_{13} = {}^{0}V_{13} \\ {}^{0}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{5}V_{6} = {}^{6}V_{6} \\ {}^{8}V_{7} = {}^{6}V_{7} \end{cases}$	= B ₇			n + 1			0	0	-			*******						B

Diário de Ada

Influências de Ada

• Mary Somerville (Sociedade Real de Astronomia)

• Caroline Herschel (Astrônoma/ Mentora)

Anne Isabella Milbanke (Matemática/Mãe)

"As garotas do ENIAC"

- Kathleen McNulty
- Mauchly Antonelli
- Jean Jennings Bartik
- Frances Synder Holber
- Marlyn Wescoff Meltzer
- Frances Bilas Spence
- Ruth Lichterman Teitelbaum

Esquecidas até a década de 90

• Mais de 80 mulheres eram responsáveis pelos cálculos de trajetórias de mísseis;

• Elas desenvolveram a "programação" do ENIAC;

"As mulheres nas fotos são modelos colocadas para "embelezar" o cenário, tal como mulheres embelezam anúncios de geladeiras"

- Comunicado oficial

Fim da segunda guerra mundial

• ENIAC não ficou pronto para ser utilizado na guerra;

• Mulheres responsáveis pela criação da linguagem são mandadas de volta as casas para que homens retornem aos postos;

• O desconhecimento da linguagem acarretou na escassez de profissionais;

• Elas retornaram com patrocínio do exército.

Grace Hopper

(1906 – 1992)

"Mãe do COBOL"

• Primeira mulher a se formar na prestigiosa Universidade de Yale, nos Estados Unidos, com um PhD em matemática;

• Primeira almirante da marinha dos EUA;

• Criadora da FLOW-MATIC que deu origem ao COBOL.

Termo bug

(Anedota Não confirmada)

- Resolveu um problema de processamento de Dados;

- Debugging;

remoção de um "inseto" é o melhor caminho para resolver falhas de funcionamento.

Irmã Mary Kenneth Keller

(1913 - 1985)

Nascimento em Ohio;

• 1940 ingressou na ordem das Irmãs de Caridade da Abençoada Virgem Maria;

• 1943, conquistou seu diploma de bacharelado em Ciência com ênfase em Matemática, Universidade Washington, St. Louis (EUA).

Primeira mulher a receber doutorado Ciências da Computação

- Enxergou desde cedo o potencial dos computadores como uma ferramenta educacional voltada para o desenvolvimento humano;
- Contribuição fundamental na criação da linguagem de programação BASIC;
- Uma das primeiras vozes pela inclusão das mulheres no ramo da informática.

