

Atmel SAM D20J / SAM D20G / SAM D20E

SMART ARM-Based Microcontroller

DATASHEET SUMMARY

Description

The Atmel[®] | SMART[™] SAM D20 is a series of low-power microcontrollers using the 32-bit ARM[®] Cortex[®]-M0+ processor, and ranging from 32- to 64-pins with up to 256KB Flash and 32KB of SRAM. The SAM D20 devices operate at a maximum frequency of 48MHz and reach 2.14 Coremark/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

The Atmel | SMART SAM D20 devices provide the following features: In-system programmable Flash, eight-channel Event System, programmable interrupt controller, up to 52 programmable I/O pins, 32-bit real-time clock and calendar, up to eight 16-bit Timer/Counters (TC). The timer/counters can be configured to perform frequency and waveform generation, program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, or be cascaded to form a 32-bit TC. The series provide up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI and I²C up to 400kHz; up to twenty-channel 350ksps 12-bit ADC with programmable gain and optional oversampling and decimation supporting up to 16-bit resolution, one 10-bit 350ksps DAC, two analog comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels, and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset, and two-pin Serial Wire Debug (SWD) program and debug interface.

All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies while enabling power saving by running each peripheral at its optimal clock frequency.

The Atmel | SMART SAM D20 devices have two software-selectable sleep modes, idle and standby. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped expect those selected to continue running. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode.

The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for non-intrusive on-chip debug of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory.

The Atmel | SMART SAM D20 devices are supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits.

Features

- Processor
 - ARM Cortex-M0+ CPU running at up to 48MHz
 - Single-cycle hardware multiplier
- Memories
 - 16/32/64/128/256KB in-system self-programmable flash
 - 2/4/8/16/32KB SRAM
- System
 - Power-on reset (POR) and brown-out detection (BOD)
 - Internal and external clock options with 48MHz Digital Frequency Locked Loop (DFLL48M)
 - External Interrupt Controller (EIC)
 - 16 external interrupts
 - One non-maskable interrupt
 - Two-pin Serial Wire Debug (SWD) programming, test and debugging interface
- Low Power
 - Idle and standby sleep modes
 - SleepWalking peripherals
- Peripherals
 - 8-channel Event System
 - Up to eight 16-bit Timer/Counters (TC), configurable as either:
 - One 16-bit TC with compare/capture channels
 - One 8-bit TC with compare/capture channels
 - One 32-bit TC with compare/capture channels, by using two TCs
 - 32-bit Real Time Counter (RTC) with clock/calendar function
 - Watchdog Timer (WDT)
 - CRC-32 generator
 - Up to six Serial Communication Interfaces (SERCOM), each configurable to operate as either:
 - USART with full-duplex and single-wire half-duplex configuration
 - I²C up to 400kHz
 - SPI
 - One 12-bit, 350ksps Analog-to-Digital Converter (ADC) with up to 20 channels
 - · Differential and single-ended channels
 - 1/2x to 16x gain stage
 - Automatic offset and gain error compensation
 - Oversampling and decimation in hardware to support 13-, 14-, 15- or 16-bit resolution
 - 10-bit, 350ksps Digital-to-Analog Converter (DAC)
 - Two Analog Comparators with window compare function
 - Peripheral Touch Controller (PTC)
 - · 256-Channel capacitive touch and proximity sensing
- I/O
 - Up to 52 programmable I/O pins
- Packages
 - 64-pin TQFP, QFN
 - 48-pin TQFP, QFN
 - 32-pin TQFP, QFN
- Operating Voltage
 - 1.62V 3.63V
- Power Consumption
 - Down to 70µA/MHz in active mode
 - Down to 8µA running the Peripheral Touch Controller

1. Configuration Summary

	SAM D20J	SAM D20G	SAM D20E	
Number of pins	64	48	32	
General Purpose I/O-pins (GPIOs)	52	38	26	
Flash	256/128/64/32/16KB	256/128/64/32/16KB	256/128/64/32/16KB	
SRAM	32/16/8/4/2KB	32/16/8/4/2KB	32/16/8/4/2KB	
Maximum CPU frequency		48MHz		
Event System channels	8	8	8	
Timer Counter (TC)	8	6	6	
Waveform output channels for TC	2	2	2	
Serial Communication Interface (SERCOM)	6	6	4	
Analog-to-Digital Converter (ADC) channels	20	14	10	
Analog comparators	2	2	2	
Digital-to-Analog Converter (DAC) channels	1	1	1	
Real-Time Counter (RTC)	Yes	Yes	Yes	
RTC alarms	1	1	1	
RTC compare values	1 32-bit value or 2 16-bit values	1 32-bit value or 2 16-bit values	1 32-bit value or 2 16-bit values	
External Interrupt lines	16	16	16	
Peripheral Touch Controller (PTC) X and Y lines	16x16	12x10	10x6	
Packages	QFN TQFP	QFN TQFP	QFN TQFP	
Oscillators	0. 32. 32kHz ultra 8MHz h	768kHz crystal oscillator (XOSC3 4-32MHz crystal oscillator (XOS0 768kHzinternal oscillator (OSC3 -low-power internal oscillator (Osigh-accuracy internal oscillator (Osigh-accuracy internal oscillator (Osigital Frequency Locked Loop (D	C) 2K) SCULP32K) DSC8M)	
SW Debug Interface	Yes	Yes	Yes	
Watchdog Timer (WDT)	Yes	Yes	Yes	

2. Ordering Information

2.1 SAM D20E

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20E14A-AU			TQFP32	Tray
ATSAMD20E14A-AUT	16K	2K	101132	Tape & Reel
ATSAMD20E14A-MU	TOK	ZN	QFN32	Tray
ATSAMD20E14A-MUT			QFN32	Tape & Reel
ATSAMD20E15A-AU			TQFP32	Tray
ATSAMD20E15A-AUT	0014	4K	TQFF32	Tape & Reel
ATSAMD20E15A-MU	32K		QFN32	Tray
ATSAMD20E15A-MUT			QFN32	Tape & Reel
ATSAMD20E16A-AU			TQFP32	Tray
ATSAMD20E16A-AUT	64K	8K	TQFP32	Tape & Reel
ATSAMD20E16A-MU	U4K	Or.	OFNO	Tray
ATSAMD20E16A-MUT			QFN32	Tape & Reel

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type	
ATSAMD20E17A-AU			TQFP32	Tray	
ATSAMD20E17A-AUT	128K	16K	TQFF32	Tape & Reel	
ATSAMD20E17A-MU	IZON	101	QFN32	Tray	
ATSAMD20E17A-MUT			QFN32	Tape & Reel	
ATSAMD20E18A-AU			TQFP32	Tray	
ATSAMD20E18A-AUT	256K	32K	TQFF32	Tape & Reel	
ATSAMD20E18A-MU	256K	JZK	QFN32	Tray	
ATSAMD20E18A-MUT			QFIN32	Tape & Reel	

2.2 SAM D20G

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20G14A-AU			TQFP48	Tray
ATSAMD20G14A-AUT	16K	2K	TQFP46	Tape & Reel
ATSAMD20G14A-MU	ION	ZN .	QFN48	Tray
ATSAMD20G14A-MUT			QFN46	Tape & Reel
ATSAMD20G15A-AU			TQFP48	Tray
ATSAMD20G15A-AUT	32K	4K	TQFF46	Tape & Reel
ATSAMD20G15A-MU		4K	QFN48	Tray
ATSAMD20G15A-MUT			QFN40	Tape & Reel
ATSAMD20G16A-AU		8K -	TQFP48	Tray
ATSAMD20G16A-AUT	64K		TQFF40	Tape & Reel
ATSAMD20G16A-MU	041		QFN48	Tray
ATSAMD20G16A-MUT			QFN46	Tape & Reel
ATSAMD20G17A-AU			TQFP48	Tray
ATSAMD20G17A-AUT	128K	16K	TQFF40	Tape & Reel
ATSAMD20G17A-MU	IZON	ION	QFN48	Tray
ATSAMD20G17A-MUT			QFN40	Tape & Reel
ATSAMD20G18A-AU			TQFP48	Tray
ATSAMD20G18A-AUT	256K	32K	IQFF40	Tape & Reel
ATSAMD20G18A-MU	2001	32N	QFN48	Tray
ATSAMD20G18A-MUT			QFIN40	Tape & Reel

2.3 SAM D20J

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD20J14A-AU			TQFP64	Tray
ATSAMD20J14A-AUT	16K	2K	TQFP64	Tape & Reel
ATSAMD20J14A-MU	Tok	ZN.	QFN64	Tray
ATSAMD20J14A-MUT			QFN04	Tape & Reel
ATSAMD20J15A-AU			TQFP64	Tray
ATSAMD20J15A-AUT	32K	4K	TQFF04	Tape & Reel
ATSAMD20J15A-MU		411	QFN64	Tray
ATSAMD20J15A-MUT			QFN04	Tape & Reel
ATSAMD20J16A-AU		8K -	TQFP64	Tray
ATSAMD20J16A-AUT	64K		TQFF04	Tape & Reel
ATSAMD20J16A-MU	0410		QFN64	Tray
ATSAMD20J16A-MUT			QFN04	Tape & Reel
ATSAMD20J17A-AU			TQFP64	Tray
ATSAMD20J17A-AUT	128K	16K	TQFF04	Tape & Reel
ATSAMD20J17A-MU	12010	TOR	QFN64	Tray
ATSAMD20J17A-MUT			QFN04	Tape & Reel
ATSAMD20J18A-AU			TQFP64	Tray
ATSAMD20J18A-AUT	256K	32K	TQFF04	Tape & Reel
ATSAMD20J18A-MU	ZOON	SZK	QFN64	Tray
ATSAMD20J18A-MUT			QFN04	Tape & Reel

3. Block Diagram

Notes: 1. Some products have different number of SERCOM instances, Timer/Counter instances, PTC signals and ADC signals. Refer to "Configuration Summary" on page 3 for details.

4. Pinout

4.1 SAM D20J

4.2 SAM D20G

4.3 SAM D20E

5. I/O Multiplexing and Considerations

5.1 Multiplexed Signals

Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the peripheral functions A, B, C, D, E, F, G or H. To enable a peripheral function on a pin, the Peripheral Multiplexer Enable bit in the Pin Configuration register corresponding to that pin (PINCFGn.PMUXEN, n = 0-31) in the PORT must be written to one. The selection of peripheral function A to H is done by writing to the Peripheral Multiplexing Odd and Even bits in the Peripheral Multiplexing register (PMUXn.PMUXE/O) in the PORT.

Table 5-1 describes the peripheral signals multiplexed to the PORT I/O pins.

Table 5-1. PORT Function Multiplexing

	Pin					Α		E	3 ⁽¹⁾			С	D	E	F	G	Н
	SAM D20G		I/O Pin	Supply	Pin Type	EIC	REF	ADC	AC	РТС	DAC	SERC	OM ⁽²⁾	тс	(3)		AC/GCLK
1	1	1	PA00	VDDANA		EXTINT[0]							SERCOM1/ PAD[0]		TC2/ WO[0]		
2	2	2	PA01	VDDANA		EXTINT[1]							SERCOM1/ PAD[1]		TC2/ WO[1]		
3	3	3	PA02	VDDANA		EXTINT[2]		AIN[0]		Y[0]	VOUT						
4	4	4	PA03	VDDANA		EXTINT[3]	ADC/VREFA DAC/VREFA	AIN[1]		Y[1]							
		5	PB04	VDDANA		EXTINT[4]		AIN[12]		Y[10]							
		6	PB05	VDDANA		EXTINT[5]		AIN[13]		Y[11]							
		9	PB06	VDDANA		EXTINT[6]		AIN[14]		Y[12]							
		10	PB07	VDDANA		EXTINT[7]		AIN[15]		Y[13]							
	7	11	PB08	VDDANA		EXTINT[8]		AIN[2]		Y[14]			SERCOM4/ PAD[0]		TC4/ WO[0]		
	8	12	PB09	VDDANA		EXTINT[9]		AIN[3]		Y[15]			SERCOM4/ PAD[1]		TC4/ WO[1]		
5	9	13	PA04	VDDANA		EXTINT[4]	ADC/ VREFB	AIN[4]	AIN[0]	Y[2]			SERCOM0/ PAD[0]		TC0/ WO[0]		
6	10	14	PA05	VDDANA		EXTINT[5]		AIN[5]	AIN[1]	Y[3]			SERCOM0/ PAD[1]		TC0/ WO[1]		
7	11	15	PA06	VDDANA		EXTINT[6]		AIN[6]	AIN[2]	Y[4]			SERCOM0/ PAD[2]		TC1/ WO[0]		
8	12	16	PA07	VDDANA		EXTINT[7]		AIN[7]	AIN[3]	Y[5]			SERCOM0/ PAD[3]		TC1/ WO[1]		
11	13	17	PA08	VDDIO	I ² C	NMI		AIN[16]		X[0]		SERCOM0/ PAD[0]	SERCOM2/ PAD[0]	TC0/ WO[0]			
12	14	18	PA09	VDDIO	I ² C	EXTINT[9]		AIN[17]		X[1]		SERCOM0/ PAD[1]	SERCOM2/ PAD[1]	TC0/ WO[1]			
13	15	19	PA10	VDDIO		EXTINT[10]		AIN[18]		X[2]		SERCOM0/ PAD[2]	SERCOM2/ PAD[2]	TC1/ WO[0]			GCLK_O[4]
14	16	20	PA11	VDDIO		EXTINT[11]		AIN[19]		X[3]		SERCOM0/ PAD[3]	SERCOM2/ PAD[3]	TC1/ WO[1]			GCLK_IO[5]
	19	23	PB10	VDDIO		EXTINT[10]							SERCOM4/ PAD[2]		TC5/ WO[0]		GCLK_IO[4]
	20	24	PB11	VDDIO		EXTINT[11]							SERCOM4/ PAD[3]		TC5/ WO[1]		GCLK_IO[5]
		25	PB12	VDDIO	I ² C	EXTINT[12]				X[12]		SERCOM4/ PAD[0]		TC4/ WO[0]			GCLK_IO[6]
		26	PB13	VDDIO	I ² C	EXTINT[13]				X[13]		SERCOM4/ PAD[1]		TC4/ WO[1]			GCLK_IO[7]
		27	PB14	VDDIO		EXTINT[14]				X[14]		SERCOM4/ PAD[2]		TC5/ WO[0]			GCLK_IO[0]
		28	PB15	VDDIO		EXTINT[15]				X[15]		SERCOM4/ PAD[3]		TC5/ WO[1]			GCLK_IO[1]

Table 5-1. PORT Function Multiplexing (Continued)

	Pin					A		E	3 ⁽¹⁾			С	D	E	F	G	Н
	SAM D20G		I/O Pin	Supply	Pin Type	EIC	REF	ADC	AC	РТС	DAC	SERC	OM ⁽²⁾	TC	(3)		AC/GCLK
	21	29	PA12	VDDIO		EXTINT[12]						SERCOM2/ PAD[0]	SERCOM4/ PAD[0]	TC2/ WO[0]			AC/CMP[0]
	22	30	PA13	VDDIO	I ² C	EXTINT[13]						SERCOM2/ PAD[1]		TC2/ WO[1]			AC/CMP[1]
15	23	31	PA14	VDDIO		EXTINT[14]						SERCOM2/ PAD[2]		TC3/ WO[0]			GCLK_IO[0]
16	24	32	PA15	VDDIO		EXTINT[15]						SERCOM2/ PAD[3]	SERCOM4/ PAD[3]	TC3/ WO[1]			GCLK_IO[1]
17	25	35	PA16	VDDIO	I ² C	EXTINT[0]				X[4]		SERCOM1/ PAD[0]	SERCOM3/ PAD[0]		TC2/ WO[0]		GCLK_IO[2]
18	26	36	PA17	VDDIO	I ² C	EXTINT[1]				X[5]		SERCOM1/ PAD[1]	SERCOM3/ PAD[1]		TC2/ WO[1]		GCLK_IO[3]
19	27	37	PA18	VDDIO		EXTINT[2]				X[6]		SERCOM1/ PAD[2]	SERCOM3/ PAD[2]		TC3/ WO[0]		AC/CMP[0]
20	28	38	PA19	VDDIO		EXTINT[3]				X[7]		SERCOM1/ PAD[3]	SERCOM3/ PAD[3]		TC3/ WO[1]		AC/CMP[1]
		39	PB16	VDDIO	I ² C	EXTINT[0]						SERCOM5/ PAD[0]		TC6/ WO[0]			GCLK_IO[2]
		40	PB17	VDDIO	I ² C	EXTINT[1]						SERCOM5/ PAD[1]		TC6/ WO[1]			GCLK_IO[3]
	29	41	PA20	VDDIO		EXTINT[4]				X[8]		SERCOM5/ PAD[2]	SERCOM3/ PAD[2]	TC7/ WO[0]			GCLK_IO[4]
	30	42	PA21	VDDIO		EXTINT[5]				X[9]		SERCOM5/ PAD[3]	SERCOM3/ PAD[3]	TC7/ WO[1]			GCLK_IO[5]
21	31	43	PA22	VDDIO	I ² C	EXTINT[6]				X[10]		SERCOM3/ PAD[0]	SERCOM5/ PAD[0]		TC4/ WO[0]		GCLK_IO[6]
22	32	44	PA23	VDDIO	I ² C	EXTINT[7]				X[11]		SERCOM3/ PAD[1]	SERCOM5/ PAD[1]		TC4/ WO[1]		GCLK_IO[7]
23	33	45	PA24	VDDIO		EXTINT[12]						SERCOM3/ PAD[2]	SERCOM5/ PAD[2]		TC5/ WO[0]		
24	34	46	PA25	VDDIO		EXTINT[13]						SERCOM3/ PAD[3]	SERCOM5/ PAD[3]		TC5/ WO[1]		
	37	49	PB22	VDDIO		EXTINT[6]							SERCOM5/ PAD[2]		TC7/ WO[0]		GCLK_IO[0]
	38	50	PB23	VDDIO		EXTINT[7]							SERCOM5/ PAD[3]		TC7/ WO[1]		GCLK_IO[1]
25	39	51	PA27	VDDIO		EXTINT[15]											GCLK_IO[0]
27	41	53	PA28	VDDIO		EXTINT[8]											GCLK_IO[0]
31	45	57	PA30	VDDIO		EXTINT[10]							SERCOM1/ PAD[2]		TC1/ WO[0]	SWCLK	GCLK_IO[0]
32	46	58	PA31	VDDIO		EXTINT[11]							SERCOM1/ PAD[3]		TC1/ WO[1]	SWDIO ⁽⁴⁾	
		59	PB30	VDDIO	I ² C	EXTINT[14]							SERCOM5/ PAD[0]		TC0/ WO[0]		
		60	PB31	VDDIO	I ² C	EXTINT[15]							SERCOM5/ PAD[1]		TC0/ WO[1]		
		61	PB00	VDDANA		EXTINT[0]		AIN[8]		Y[6]			SERCOM5/ PAD[2]		TC7/ WO[0]		
		62	PB01	VDDANA		EXTINT[1]		AIN[9]		Y[7]			SERCOM5/ PAD[3]		TC7/ WO[1]		
	47	63	PB02	VDDANA		EXTINT[2]		AIN[10]		Y[8]			SERCOM5/ PAD[0]		TC6/ WO[0]		
Note:	48	64		VDDANA		EXTINT[3]		AIN[11]	16. "	Y[9]		alasta I.C. "	SERCOM5/ PAD[1]	-1	TC6/ WO[1]		

Note:

- 1. All analog pin functions are on peripheral function B. Peripheral function B must be selected to disable the digital control of the pin.
- $2. \quad \text{Only some pins can be used in SERCOM I^2C mode. See the Type column for using a SERCOM pin in I^2C mode.} \\$
- 3. Note that TC6 and TC7 are not supported on the SAM D20G. Refer to "Configuration Summary" on page 3 for details.
- 4. This function is only activated in the presence of a debugger

5.2 Other Functions

5.2.1 Oscillator Pinout

The oscillators are not mapped to the normal PORT functions and their multiplexing are controlled by registers in the System Controller (SYSCTRL).

Oscillator	Supply	Signal	I/O Pin
XOSC	VDDIO	XIN	PA14
A030	VIDIO	XOUT	PA15
VOCCSSK	VDDANA	XIN32	PA00
XOSC32K	VDDANA	XOUT32	PA01

5.2.2 Serial Wire Debug Interface Pinout

After reset, SWCLK functionality is selected for pin PA30 to allow for debugger probe detection. The application software can switch the SWCLK functionality of PA30 to GPIO (or other peripherals) during runtime. PA31, by default, is configured like other normal I/O pins and will automatically switch to SWDIO function when a debugger cold-plugging or hotplugging is detected. When the device is put in debug mode, application software accesses to PA30 and PA31 PORT registers are ignored.

Signal	Supply	I/O Pin
SWCLK	VDDIO	PA30
SWDIO	VDDIO	PA31

6. Product Mapping

Figure 6-1. SAM D20 Product Mapping

This figure represents the full configuration of the Atmel[®] SAM D20 with maximum flash and SRAM capabilities and a full set of peripherals. Refer to the "Configuration Summary" on page 3 for details.

7. Processor and Architecture

7.1 Cortex-M0+ Processor

The Atmel® SAM D20 implements the ARM® Cortex®-M0+ processor, which is based on the ARMv6 architecture and Thumb®-2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the Cortex-M0 processor, and upward compatible with the Cortex-M3 and Cortex-M4 processors. The ARM Cortex-M0+ implemented is revision r0p1. For more information, refer to www.arm.com.

7.1.1 Cortex-M0+ Configuration

Feature	Configurable Option	SAM D20 Configuration
Interrupts	External interrupts 0-32	32
Data endianness	Little-endian or big-endian	Little-endian
SysTick timer	Present or absent	Present
Number of watchpoint comparators	0, 1, 2	2
Number of breakpoint comparators	0, 1, 2, 3, 4	4
Halting debug support	Present or absent	Present
Multiplier	Fast or small	Fast (single cycle)
Single-cycle I/O port	Present or absent	Present
Wake-up interrupt controller	Supported or not supported	Not supported
Vector Table Offset Register	Present or absent	Present
Unprivileged/Privileged support	Present or absent	Absent
Memory Protection Unit	Not present or 8-region	Not present
Reset all registers	Present or absent	Absent ⁽¹⁾
Instruction fetch width	16-bit only or mostly 32-bit	32-bit

Note: 1. All software run in privileged mode only

The ARM Cortex-M0+ processor has two bus interfaces:

- Single 32-bit AMBA[®] 3 AHB-Lite[™] system interface that provides connections to peripherals and all system memory, including flash and RAM
- Single 32-bit I/O port bus interfacing to the PORT with one-cycle loads and stores

8. Packaging Information

8.1 Thermal Considerations

8.1.1 Thermal Resistance Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Table 8-1. Thermal Resistance Data

Package Type	θ_{JA}	$ heta_{ extsf{JC}}$
32-pin TQFP	68°C/W	25.8°C/W
48-pin TQFP	78.8°C/W	12.3°C/W
64-pin TQFP	66.7°C/W	11.9°C/W
32-pin QFN	37.2°C/W	3.1°C/W
48-pin QFN	33°C/W	11.4°C/W
64-pin QFN	33.5°C/W	11.2°C/W

8.1.2 Junction Temperature

The average chip-junction temperature, T_J , in $^{\circ}C$ can be obtained from the following equations:

Equation 1

$$T_J = T_A + (P_D \times \theta_{JA})$$

Equation 2

$$T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1
- θ_{HEATSINK} = cooling device thermal resistance (°C/W), provided in the manufacturer datasheet
- P_D = device power consumption (W)
- T_A = ambient temperature (°C)

From "Equation 1", the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, "Equation 2" should be used to compute the resulting average chip-junction temperature T_J in °C.

8.2 Package Drawings

8.2.1 64-pin TQFP

COMMON DIMENSIONS IN MM

SYMBOL	Min	Max	NOTES
А		1, 20	
A1	0, 95	1, 05	
С	0, 09	0, 20	
D	12. 0	O BSC	
D1	10. 0	O BSC	
E	12. 0	O BSC	
E1	10. 0	O BSC	
J	0, 05	0, 15	
L	0, 45	0, 75	
е	0, 5	O BSC	
f	0. 17	0, 27	

Table 8-2. Device and Package Maximum Weight

300	mg
-----	----

Table 8-3. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 8-4. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

8.2.2 64-pin QFN

DRAWINGS NOT SCALED

ՍԽՓՓՓՓԽՍ See Options A, B EXPOSED DIE ATTACH PAD

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80		1.00	
D/E	9.00 BSC			
D2/E2	4.60 4.70 4.80			
J	0.00		0.05	
b	0.15	0.20	0.25	
е	0.50 BSC			
L	0.30 0.40 0.55			
N	64			

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VMMD-4, for proper dimensions, tolerances, datums, etc.

2. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.

If the terminal has the optical radius on the other end of the terminal, the dimension should not be measured in that radius area.

Note: The exposed die attached pad is not connected inside the device.

Table 8-5. Device and Package Maximum Weight

BOTTOM VIEW

200 mg	200	mg
--------	-----	----

Table 8-6. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 8-7. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

48-pin TQFP 8.2.3

DRAWINGS NOT SCALED

COMMON DIMENSIONS

(Unit of Measure = mm)

DETAIL VIEW

- Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABC.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.
 DImensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10mm maximum.

Table 8-8. Device and Package Maximum Weight

140	mg

Table 8-9. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 8-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

8.2.4 48-pin QFN

DRAWINGS NOT SCALED

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
А	0.80	0.85	0.90	
D/E	7.00 BSC			
D2/E2	5.05 5.15 5.25			
b	0.18 0.25 0.30			
e	0.50 BSC			
L	0.30 0.40 0.50			
N	48			

- Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VKKD-4, for proper dimensions, tolerances, datums, etc.
 - Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.If the terminal has the optical radius on the other end of the terminal, the dimension should not be measured in that radius area.

Note: The exposed die attached pad is not connected inside the device.

Table 8-11. Device and Package Maximum Weight

140	mg
-----	----

Table 8-12. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 8-13. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

32-pin TQFP 8.2.5

DRAWINGS NOT SCALED

COMMON DIMENSIONS

(Unit of Measure = mm)

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABA.
2. DImensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.

- Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10mm maximum.

Table 8-14. Device and Package Maximum Weight

	100	mg
--	-----	----

Table 8-15. Package Characteristics

Table 8-16. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

8.2.6 32-pin QFN

DRAWINGS NOT SCALED

Note: The exposed die attached pad is connected inside the device to GND and GNDANA connected together.

Table 8-17. Device and Package Maximum Weight

90	mg
----	----

Table 8-18. Package Characteristics

Moisture Sensitivity Level	MSL3

Table 8-19. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

8.3 Soldering Profile

Table Table 8-20 gives the recommended soldering profile from J-STD-20.

Table 8-20. Soldering Profile

Profile Feature	Green Package
Average Ramp-up Rate (217°C to peak)	3°C/s max.
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150s
Time within 5°C of Actual Peak Temperature	30s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max
Time 25°C to Peak Temperature	8 minutes max.

A maximum of three reflow passes is allowed per component.

Table of Contents

De	scription	İ
Fe	atures	2
1.	Configuration Summary	3
2.	Ordering Information 2 2.1 SAM D20E 2 2.2 SAM D20G 3 2.3 SAM D20J 6	4 5
3.	Block Diagram	7
4.	Pinout 8 4.1 SAM D20J 8 4.2 SAM D20G 9 4.3 SAM D20E 10	3 9
5.	I/O Multiplexing and Considerations115.1 Multiplexed Signals135.2 Other Functions13	1
6.	Product Mapping	1
7.	Processor and Architecture	
8. Ta	Packaging Information168.1 Thermal Considerations168.2 Package Drawings178.3 Soldering Profile23Ple of Contents24	6 7 3

T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 **Atmel Corporation** 1600 Technology Drive, San Jose, CA 95110 USA www.atmel.com

© 2014 Atmel Corporation. / Rev.: Atmel-42129KS-SAM-D20_Summary_06/2014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, QTouch®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, Cortex® and others are registered trademarks or trademarks of ARM Ltd. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.