Proyecto de grado Escalabilidad de Redes Definidas por Software en la Red Académica

Santiago Vidal

Tutores:

Dr. Eduardo Grampín MSc. Martín Giachino

Instituto de Computación Facultad de Ingeniería Universidad de la República

5 de octubre de 2016

- ► Introducción
- Conceptos previos & RAUFlow
- Entorno virtual
- Pruebas de escala
- Conclusiones

Diapo1

Diapo3

Conceptos previos

RAUFlow

Entorno virtual

Objetivo

Poder utilizar la arquitectura RAUFlow y RAUSwitch en un entorno virtual para:

- Experimentos y pruebas.
- Desarrollo de nuevas funcionalidades sobre RAUFlow.
- Investigación sobre esquemas híbridos en general.

Requerimientos

Requerimientos funcionales:

- 1. RAUSwitch virtuales:
 - **1.1** OpenFlow 1.3
 - **1.2** OSPF
 - 1.3 SNMP (no esencial)
- Hosts virtuales
- 3. Controlador RAUFlow

Requerimientos

Requerimientos funcionales:

- RAUSwitch virtuales:
 - **1.1** OpenFlow 1.3
 - **1.2** OSPF
 - 1.3 SNMP (no esencial)
- Hosts virtuales
- 3. Controlador RAUFlow

Requerimientos no funcionales:

- Configurabilidad / Usabilidad
- 2. Escalabilidad

Siguiente paso

Se descarta una construcción desde cero

Hay que encontrar una herramienta que cumpla los requerimientos

Elección de una herramienta

Herramientas orientadas a SDN

- ▶ Algunas no soportan OpenFlow 1.3
- Algunas no permiten un controlador externo.
- Ninguna contempla switches híbridos!

Elección de una herramienta

Herramientas orientadas a SDN

- ▶ Algunas no soportan OpenFlow 1.3
- Algunas no permiten un controlador externo.
- Ninguna contempla switches híbridos!

Herramientas de propósito general

- Algunas no tienen buena configurabilidad.
- La escalabilidad es un gran problema.

Mininet

- Emulador de redes.
- Comúnmente utilizado para experimentar con SDN y OpenFlow.
- Ofrece Hosts y Switches.
- Virtualización ligera (containers).
- Cumple todos los requerimientos excepto el soporte para switches híbridos.
- Pero permite al usuario definir sus propias clases de nodos para extender las funcionalidades de las clases que vienen por defecto.

Arquitectura de Mininet

- Los switches están en el root namespace, así que no es posible que cada uno ejecute su instancia de Quagga.
- No es posible poner a cada Switch en su propio namespace ya que Open vSwitch no tendría acceso a ellos.
- Si los switches están en su propio namespace, el controlador OpenFlow (RAUFlow) no puede comunicarse con ellos a través de la interfaz de loopback.

Problema con Mininet tradicional

- Los switches están en el root namespace, así que no es posible que cada uno ejecute su instancia de Quagga.
- No es posible poner a cada Switch en su propio namespace ya que Open vSwitch no tendría acceso a ellos.
- Si los switches están en su propio namespace, el controlador OpenFlow (RAUFlow) no puede comunicarse con ellos a través de la interfaz de loopback.

Solución: utilizar Mininet pero como emulador de propósito general.

Diseño de la solución

Arquitectura del entorno construido

Eliminación de SNMP

Eliminación de SNMP

Eliminación de SNMP

El envío de datos de las interfaces pasa a implementarse con Open vSwitch (por fuera de OpenFlow).

Ventajas

- ► Reduce complejidad de la arquitectura.
- Reduce carga de cómputo en los switches.

Verificación funcional

Con el entorno construido, el siguiente paso es probar distintos escenarios y topologias para detectar:

- Problemas con el entorno virtual.
- Problemas con la arquitectura/código de RAUFlow.

Problemas encontrados

- Error en el código de RAUFlow: error en el algoritmo del camino óptimo. Provocaba una excepción de Python.
- 2. Error en el código de RAUFlow: error en el código que instala los flujos OpenFlow en los nodos. Provocaba que los flujos en cada nodo de un camino tuvieran incorrecto puerto de entrada.

Problemas encontrados

- 3. **Posible problema** en el módulo LSDB Sync para leer base de datos topológica de OSPF cuando la topología es muy grande (librería Telnetlib de Python).
- Posible problema de comunicación en la red de gestión cuando hay muchos switches.

Problemas encontrados

Pruebas de escala

Diapo1

Conclusiones