Bayesian Nonparametrics Notes

Xi Tan (xtan3.1415926@gmail.com)

March 24, 2018

Contents

1	Introduction	
2	Notation	
3	Terminology 3.1 Parametric and nonparametric models	
4	Clustering and the Dirichlet process 4.1 Finite mixture models	
5	Latent features and the Indian buffet process	

1 Introduction

This note is based on Peter Orbanz's BNP notes:

http://stat.columbia.edu/~porbanz/npb-tutorial.html

2 Notation

Bold upper case letters represent matrices, e.g., $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \boldsymbol{\Theta}$. Bold lower case letters represent vector-valued random variables and their realizations (we do not distinguish between the two), e.g., $\mathbf{x}, \mathbf{y}, \mathbf{z}, \boldsymbol{\theta}$. Curly upper case letters represent spaces (i.e., possible values) of random variables, e.g., $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \boldsymbol{\Theta}$.

3 Terminology

3.1 Parametric and nonparametric models

In a set of probability spaces $\{(\mathcal{Y}, \mathcal{F}, \mathcal{P}_{\Theta})\}$, a statistical model \mathcal{M} on a sample space \mathcal{Y} is a set of probability measures \mathcal{P}_{Θ} on \mathcal{Y} . If we write $PM(\mathcal{Y})$ for the space of all probability measure on \mathcal{Y} , a model is a subset $\mathcal{M} \subset PM(\mathcal{Y})$. Every element of \mathcal{M} has a one-to-one mapping (hence the model is identifiable) with its parameter $\boldsymbol{\theta}$ with values in a parameter space Θ , that is,

$$\mathcal{M}(\mathbf{y}) = \{ P_{\boldsymbol{\theta}}(\mathbf{y}) | \boldsymbol{\theta} \in \Theta \}, \quad \mathbf{y} \in \mathcal{Y}.$$
 (1)

For example, a first order polynomial is a model, and a second order polynomial is another model. We can of course fit a model to the observed data, but model itself is an abstract concept, where the parameter values of a model need not be specified. We call a model parametric if Θ has finite dimension, and nonparametric if Θ has infinite dimension.

To formulate statistical problems, we assume that n observations $\mathbf{y}_1, \dots, \mathbf{y}_n$ with values in \mathcal{Y} are observed, which are drawn i.i.d. from a measure P_{θ} in the model, i.e.,

$$\mathbf{y}_1, \dots, \mathbf{y}_n \sim_{iid} P_{\boldsymbol{\theta}}$$
 for some $\boldsymbol{\theta} \in \Theta$ (2)

The objective of statistical *inference* is then to draw conclusions about the value of θ (and hence about the distribution P_{θ} of the data) from the observations.

3.2 Bayesian and Bayesian nonparametric models

In Bayesian statistics, all parameters are considered as random variables. Hence under a Bayesian model, data are generated in two stages, i.e.,

$$\boldsymbol{\theta} \sim P(\boldsymbol{\theta})$$
 (3)

$$\mathbf{y}_1, \dots, \mathbf{y}_n \mid \boldsymbol{\theta} \sim_{iid} P_{\boldsymbol{\theta}}(\mathbf{y})$$
 (4)

The objective is then to determine the *posterior distribution* – the conditional distribution of θ given the observed data,

$$\pi(\boldsymbol{\theta}|\mathbf{y}_1,\ldots,\mathbf{y}_n) \tag{5}$$

A Bayesian nonparametric model is a Bayesian model whose parameter space Θ has infinite dimension. To define a Bayesian nonparametric model, we have to define a prior π on an infinite-dimensional space, which is a stochastic process with paths (i.e. realizations) in Θ .

4 Clustering and the Dirichlet process

4.1 Finite mixture models

The basic assumption of a clustering problem is that each observation \mathbf{y}_i belongs to a single cluster $k \in \{1, \dots, K\}$, which has a cluster distribution

$$P_k(\mathbf{y}_i|z_i=k) \tag{6}$$

where we have defined a latent variable z_i , indicating the cluster assignment of observation \mathbf{y}_i . Note that under the Bayesian framework, the latent variable z_i itself has a distribution

$$p_k^i \equiv P(z_i = k) \tag{7}$$

The marginal distribution of the observation \mathbf{y}_i is then

$$P(\mathbf{y}_i) = \sum_{k=1}^K P(z_i = k) P_k(\mathbf{y}_i | z_i = k)$$
(8)

A model of this form is called a finite mixture model.

4.2 Bayesian mixture models

Suppose we know there are K clusters, we first sample the cluster parameters from some base measure:

$$\theta_1, \dots, \theta_K \sim_{iid} G(\beta)$$
 (9)

We then independently sample the latent cluster assignment vectors and the actual observations:

$$(p_1^i, \dots, p_K^i) \sim \text{Dirichlet}_K(\alpha)$$
 (10)

$$z_i \sim \text{Categorical}(p_1^i, \dots, p_K^i)$$
 (11)

$$\mathbf{y}_i \sim P_k(\mathbf{y}_i | \boldsymbol{\theta}_k, z_i = k) \tag{12}$$

4.3 Dirichlet Process

Definition 4.1 If $\alpha > 0$ and if G is a probability measure on Ω_{ϕ} , the random discrete probability measure Θ generated by

$$V_1, V_2, \dots \sim_{iid} \text{Beta}(1, \alpha)$$
 (13)

$$C_k = V_k \prod_{j=1}^{k-1} (1 - V_k) \tag{14}$$

$$\Phi_1, \Phi_2, \dots \sim_{iid} G \tag{15}$$

is called a *Dirichlet process* (DP) with base measure G and concentration α , and denote its law by $\mathrm{DP}(\alpha,G)$.

5 Latent features and the Indian buffet process