Partiel 2009

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Sum-of-the-odds

Soit $N \geqslant 1$ et $X_1, ..., X_N$ des v.a. indépendantes telles que $X_j \sim \text{Bernoulli}(p_j)$ avec $p_j \in [0,1], j = 1, ..., N$. On observe les $\{X_j\}_{j=1,...,N}$ une à la fois et on peut s'arrêter à tout moment. Si on s'arrêt à j on gagne si $X_j = 1$ et si $X_k = 0$ pour $j \leqslant k \leqslant N$ (c-à-d si X_j est la dernière v.a. à valoir 1). Soit $L = \sup\{k \in [1,N]: X_k = 1\}$ (on utilise la convention que $\sup \emptyset = +\infty$). La probabilité de gagner en s'arrêtant au temps d'arrêt T est donc

$$V(T) = \mathbb{P}(T = L) = \mathbb{P}(X_T = 1, X_{T+1} = 0, ..., X_N = 0).$$

On veut maximiser la probabilité de victoire parmi tous les t.a. T bornés par N et associés à la filtration $\{\mathcal{F}_k\}_{k=1,\ldots,N}$ engendrée par les $\{X_k\}_{k=1,\ldots,N}$. On note $V_N=\sup_{T\leqslant N}V(T)$ le gain optimal pour le problème d'arrêt d'horizon N.

- a) Donner la définition de temps d'arrêt. La v.a. L est-elle un temps d'arrêt?
- b) Montrer que $Y_k = \mathbb{P}(L = k | \mathcal{F}_k) = \prod_{j=k+1}^{N} (1 p_j) \mathbb{I}_{X_k = 1}$ pour k = 1, ..., N.
- c) Montrer que l'on peut écrire la probabilité de victoire $V(T) = \mathbb{P}(L = T)$ en s'arrêtant au t.a. T comme $\mathbb{E}[Y_T]$.
- d) Montrer par un calcul explicit que $\mathbb{E}[Z_N|\mathcal{F}_{N-1}]$ est une constante.
- e) Montrer par induction que $\mathbb{E}[Z_{k+1}|\mathcal{F}_k] = \mathbb{E}[Z_{k+1}]$ pour tout k = 1, ..., N 1.
- f) Montrer que $\mathbb{E}[Z_k], k=1,...,N$ est une fonction décroissante de k.
- g) Rappeler la définition de T^* et montrer qu'il est un temps d'arrêt pour \mathcal{F} .
- h) Quelle est la proprieté principale du processus arrête $(Z_{k \wedge T^*})_{k=1,\dots,N}$? (Eventuellement donner une preuve).
- i) Montrer qu'il existe un entier $r \in [1, N]$ tel que $T^* = T_r$ où

$$T_r = \inf_{N} \{k \in [r, N]: X_k = 1\}$$

(Rappel: $\inf_N A = \inf_N A$ si $A \neq \emptyset$ et $\inf_N A = N$ si $A = \emptyset$).

j) Montrer que

$$G(r) = V(T_r) = \left[\prod_{k=r}^{N} (1 - p_k) \right] \sum_{k=r}^{N} \frac{p_k}{1 - p_k}.$$

et donc que la règle d'arrêt optimale est T_{r_*} où r_* est la valeur qui maximise G(r).

- k) Donner une expression pour $\mathbb{E}[Z_1]$.
- l) Calculer G(r) G(r-1) pour r = 2, ..., N et donner une condition explicite pour r_* .
- m) Calculer r_{\star} et $G(r_{\star})$ pour N=10 et $p_k=0.2$ pour $k=1,\ldots,10$.