Tema 2: Instrumentos de Medida y Visualización

- De acuerdo con lo expuesto en el Tema 1, los dos tipos de señales analógicas más utilizadas son:
 - Señales continuas: dc (valor constante a lo largo del tiempo)
 - Señales alternas senoidales de f fija: ac (variables en el tiempo)

Ambas de tensión o corriente

- Electrónica Las magnitudes que no son eléctricas se transforman en eléctricas mediante transductores

Tema 2: Multimetros

- Multímetros: Miden principalmente tensiones, corrientes y resistencias
- Existen dos tipos de multímetros:
 - Instrumentos analógicos

Basado en el medidor de bobina móvil

- Una bobina situada en un campo magnético constante (imán permanente),
- Cuando la corriente pasa a través de la bobina, la hace girar un cierto ángulo que es proporcional a la corriente → Mecanismo D'Arsonval
- Están en desuso

lnstrumentación **Electrónica**

Maria Jasús Martin Martinez

W. Taylor. Physics the pioneer science. Volume 2. Light -

Electricity. New York: Dover Publications, Inc.; 1959.

Tema 2: Multimetros

- Instrumentos digitales (DMM) → GRANDES VENTAJAS
 - Presentación numérica de I, V, R
 - Visualizador numérico (LEDs)
 - Información en sistema de numeración decimal
 - Reducción del tamaño
 - Transmisión de datos → la información digital puede transportarse a gran distancia (para memorizarla, procesarla, capacidad de cálculo etc.)
 - Puede realizarse automatización de funciones (se reduce el error humano) → programación de control remotos
 E. Mandado, et al. 1995
 - Robustez no hay elementos mecánicos

(cortesia de PROMAX)

Tema 2: Multimetros

Comparación Multímetros Digitales /Analógicos

- Los errores
 - Analógico → los errores son como mínimo del orden del 0.5 % de la lectura más un 0.5 % del valor del fondo de escala.
 - Digital → los errores habituales son 0.1 % de la lectura más un 0.1 % del fondo de escala
 - La exactitud no viene marcada por la longitud de la escala sino porque consta de un conversor A/D de tensión. → El error se minimiza al aumentar la precisión del conversor A/D (el número de bits)
- lnstrumentación Electrómica La resolución y exactitud > mucho mayor en digitales a igual coste
 - En Analógicos: 1 en 120
 - Digitales: varía desde 1 en 10³ (3 dígitos) hasta 1 en 10° en (9 dígitos)
 - La velocidad:
 - Analógicos: menor de 1 medida por segundo
 - Digitales: varía desde 2 hasta > 50.000 medidas/segundo en (S.A.D.)

Tema 2: Multimetros Digitales (DMM)

Sistema electrónico que convierte una tensión continua presente en su entrada en la combinación binaria de n bits a su salida

- Los métodos de conversión de una variable analógica a una digital dependen:
 - De la complejidad del sistema físico
 - Del tiempo de conversión

Tema 2: Diagrama de bloques de un DMM

Diagrama de Bloques del DMM

■ En su forma más básica el Multímetro sólo consta de 2 bloques

Conversor A/D → obtiene el valor digital (valor numérico) del resultado de la medida

(Estudio en el TEMA 3)

Diagrama de Bloques simplificado de un Multímetro Digital

De este modo únicamente sirve para medir voltajes, por tanto sería solo un Digital –Volti-Meter (DVM) → Voltímetro

- Sin embargo, este sería un Voltímetro, si queremos que funcione como Multímetro debe también medir:
 - Corrientes (Amperímetro)
 - Resistencias (Ohmetro)
 - Magnitudes tanto ac como dc
 - Distintos rangos de estas magnitudes (Ejemplo: corrientes desde µA hasta A)

Maria Jasús Martín Martínaz

mjmm@usal.es

Tema 2: Diagrama de bloques de un DMM

a

ESCALA

FUNCION

Diagrama de Bloques completo de un Multímetro Digital

a Atenuador /Amplificador -

- Adecua el margen de entrada de la señal al conversor A/D
- Ofrece la impedancia de entrada adecuada
- Se puede controlar mediante un mando externo (escala)

nstrumentación Electrónica b Circuito de Control:

- Se informa de la escala de medida
 - Modificada de manera manual a través del panel frontal
 - Se informa directamente del A/D → en el caso de un sistema automático
- Determina la secuencia de operación, controla la presentación local y remota de los resultados, etc. Existen Cis que realizan todas estas funciones.

c → Conversión a tensión continua de:

- Resistencia → tensión do
- Corriente → tensión do
- ■Tension ac → tensión dc

mimm@usal.es

Control

programació

b

🗘 Lectura remota

R. Pallás, 1987

Tema 2: Bloque Atenuador/Amplificador

- Bloque a → El A/D tiene un margen de tensiones de entrada limitada:
 - Amplificar (señales pequeñas)
 Amplificador (Tema 3)
- lnstrumentación Electrónica

Atenuador

- Establece la Impedancia de Entrada (Z_{in}) del instrumento total (del DMM) (debe ser elevada)
- Sirve para:
 - Dar protección al DMM contra sobretensiones o sobrecorrientes
 - Fija el valor máximo de la señal aplicada al A/D (el que corresponde a la salida del A/D del tipo 11.....1
- Los atenuadores son atenuadores resistivos (no se utilizan capacidades)

Esquema típico de un atenuador de entrada → Voltímetro de continua digital con yarias escalas.

mimm@usal.es

Tema 2: Ejemplo de Atenuador de entrada

Ejemplo:

Calcular R_1 , R_2 , R_3 y R_4 , si queremos tener 4 escalas de 0.2 V, 2 V, 20 V y 200 V

Sabiendo que el rango del conversor A/D es de 0 - 0.2 V.

Recordar que la Impedancia de entrada del voltímetro digital debe ser

muy elevada

(idealmente infinita para que no entre corriente)

Nótese que la corriente que circula a través de las resistencias es siempre la misma independientemente de la posición del interruptor.

Conversión Corriente-Tensión

- Bloque c → Conversión a tensión continua:
- c.1 Conversión de corriente a tensión continua:
 - Se conectaría el conversor I-V antes del voltímetro

digital

Amperímetro de corriente continua

- histrimentación Electrónica Conversores Corriente / Tensión
 - Basados en resistencias paralelas con la corriente a medir
 - El valor de R se selecciona mediante el cortocircuito de los contactos adecuados de manera que la máxima tensión de salida sea:
 - La misma para *distintas escalas de I* (V_{in}=0.2 V).
 - Coincida con la que admite el A/D
 - Incluye la atenuación por las diferentes resistencias
 - Los diodos D1 y D2 y el fusible F protegen el convertidor contra sobretensiones.

mimm@usal.es

Tema 2: Ejemplo de Conversión I-V

Ejemplo:

- ■Supongamos que el rango del conversor A/D (la máxima tensión de salida) es de 0 0.2 V.
- Calcular las escalas de corrientes en cada rama teniendo en cuenta los valores de las resistencias

■ La manera de convertir / → V es dejar pasar corriente por la rama que circula la corriente de interés

- De ese modo se selecciona el valor de R (cortocircuito de los contactos adecuados)
- La diferencia con el atenuador es la Impedancia de entrada Z_{in}
 - Z_{in} es baja pues las resistencias son bajas
 - Z_{in} varía de unas escalas de corrientes a otras

Tema 2: Conversión Resistencia – Voltaje

■ Bloque c → Conversión a tensión continua:

c.2 Conversión de resistencia a tensión continua.

- - - Se mide la caída de potencial (V_m) , en la resistencia incógnita (R_x), en paralelo mediante un voltímetro

Ejemplo 1 de conversor R-V→ **Ohmetro**

Nota: La impedancia de entrada del voltímetro es infinita.

Tema 2: Conversión Resistencia – Voltaje

■ Bloque c → Conversión a tensión continua:

c.2 Conversión de resistencia a tensión continua:

Ohmetro

- b) Se aplica una tensión
 - Constante y conocida de continua: V
 - Se mide la corriente que circula Im mediante un amperímetro (en serie)

$$R_{x} = \frac{V}{I_{m}}$$

Nota: La impedancia de entrada del amperímetro es muy baja (prácticamente nula).

mimm@usal.es

Tema 2: Conversión Resistencia – Voltaje

Ohmetro

¿Cuál es la diferencia principal para elegir un el montaje

tipo *a* o el *b*?.
■ Depende de los valores de *R*,

El caso **a)** es adecuado para medir valores de R_x pequeñas \longrightarrow no influye la R_{in} del voltímetro (alta pero no nula) en el valor de R_x El caso **b)** es adecuado para medir valores de R_x muv elevadas \longrightarrow se

PROBLEMA: Para medir valores de R_x tan pequeñas (montaje **a**), que las resistencias de los cables (R_c) son del orden del valor de R_x

En este caso, el voltaje que mediríamos sería

$$V_m = I(R_x + 2 R_C)$$

 $Arr R_c$ aquí sería del orden de R_x , por lo que influye en el valor medido.

Ejemplo 3 de conversor R-V→ Ohmetro con R_x muy pequeña

Tema 2: Conversión Alterna – Continua

Bloque c -> Conversión a tensión continua:

- Conversión de alterna a continua:
 - Hasta ahora hemos visto como obtener un Amperímetro o un Voltímetro de dc.
 - Pero para poder realizar la medida de voltajes o corrientes de alterna, necesitamos los conversores de alterna → continua
 - El diagrama de bloques es el que se muestra en la figura

Tema 2: Conversión Alterna – Continua

- Características de magnitudes de dc y ac
 - Caso de tensión, corriente de dc → Está caracterizada por dos parámetros:
 - Su magnitud

lnstrumentación Electrómica

Su polarizad → Ejemplo: ± 5 V

- Caso de tensión, corriente de ac → Debemos saber en primer lugar si son periódicas. De ser así, los parámetros que las caracterizan son:
 - Frecuencia, Forma (triangular, cuadrada, etc.)
 - Valor pico a pico: de voltaje, V_{pp}, valor de pico de corriente, I_{pp}
 - Valor medio: V_m (media temporal)

$$V_m = \frac{1}{T} \int_0^T |V(t)| dt$$

■ Valor eficaz, V_{eff}, o Valor *r m s, V_{rms}* (valor cuadrático medio: *root mean square*)

$$V_{ef} = V_{rms} = \sqrt{\frac{1}{T} \int_0^T V(t)^2 dt}$$

Valor de una tensión *dc* que produzca la misma cantidad de energía que la *ac* (en el mismo tiempo)

mimm@usal.es

Maria Jesús Martin Martinez

hstrumentación Electrómica

Tema 2: Conversión Alterna – Continua

- Clasificación de los voltímetros de alterna en dos tipos diferentes:
 - 1. Multímetros digitales de valor medio → Son los voltímetros de uso cotidiano. Funcionan de la siguiente manera
 - Para cada tipo de señal a medir (triangular, cuadrada o sinusoidal)
 proporcionan un voltaje dc (valor medio de la magnitud alterna) → miden V_m
 Este valor medio se consigue mediante la rectificación de la onda
 - Posteriormente, sabiendo que para cada señal que hay una relación entre el V_m y el V_{rms} , el valor medio se convierte en valor eficaz

Se realiza multiplicando el V_m por el FACTOR DE FORMA (relaciona el V_m y el V_{rms} , y depende del tipo de señal)

■ El diagrama de bloques de este Multímetro dígital de valor medio:

Tema 2: Conversión Alterna – Continua

2. Multímetros digitales de valor eficaz = TRUE RMS

Son más caros

hstrumentación Electrómica

- Sirven para cualquier señal ac
- Estos pueden ser de dos tipos:

- El primer tipo se basa en la definición → Valor eficaz es el valor de una tensión dc que produzca la misma cantidad de energía que la ac en el mismo tiempo.
 - Emplea dos termoelementos → una termopila y una resistencia de calefacción, aislados eléctricamente, pero con buen acoplamiento térmico
 - La tensión **ac** de entrada calienta uno de los dos, mientras que el otro es calentado hasta alcanzar la misma temperatura, a base de aplicarle una tensión **dc** generada internamente y que se mide con precisión.
 - Su respuesta es lenta (del orden de 1 s o más)
- Otro tipo se basa en circuitos analógicos
 que realizan los cálculos indicados por la definición
 matemática mediante un circuito integrado híbrido,

$$V_{ef} = V_{rms} = \sqrt{\frac{1}{T} \int_0^T V(t)^2 dt}$$

- Calculan el cuadrado de la señal, obtienen la integral y realizan la raíz cuadrada).
- Han sido posible gracias a los avances de la microelectrónica
- Son más baratos y con mayor margen dinámico que los térmicos, pero con mucho error si la entrada no es simétrica.

Tema 2: Conversión Alterna – Continua

- Características o especificaciones de los Multímetros
 - El margen de frecuencias → Admiten tanto tensiones ac como dc:
 - Tensiones ac: habitual es de 30 Hz hasta 100 kHz
 - Tiene un conmutador a la entrada (ac o dc)
 - La exactitud , sensibilidad, etc. (Ver ejemplo)
 - Normalmente llevan incorporados funciones automáticas
 - Indicación de polarizad → Signo si el voltaje es negativo
 - Posicionan automáticamente el punto decimal
 - Indicación de sobrecarga

hstromenta<mark>sión Electriómica</mark>

- Los Multímetros que presentan capacidad de cálculo:
 - Funciones de escalado
 - Promedios de las medidas, multiplicación de relaciones
 - Calculo estadísticos: desviaciones estándar y en % de las desviaciones típicas
 - Almacenamiento de valores máximo y mínimo

Tema 2: Medidores de Impedancia

- El Multímetro digital que hemos estudiado anteriormente, es un instrumento que permite realizar la medida de (V, I, R)
- Sin embargo, hay muchas aplicaciones en las que se necesita medir:
 - La capacidad de un condensador
- La capacidad de un condensa La inductancia de una bobina
 - Componentes resistivo y reactivo de montajes serie, paralelo

Medidores de

Impedancia

- La medida de impedancias no es muy usual
- No se ha beneficiado de los métodos digitales: no existen equipos de bajo coste y eficientes como los Multímetros
- Impedancia eléctrica:

ción Electa

- Propiedad inherente a todos los materiales que describe la oposición que ofrecen al flujo de corriente alterna a una frecuencia elevada
- Se define a partir de la ley de Ohm:

- Dado que las magnitudes V, I son alternas, tenemos diferentes tipos de impedancia:
 - Si hay elementos que almacenan energía (C, L), entonces V e I no están en fase
- → o lo que es lo mismo, al cesar un voltaje no cesa la corriente, sino que existe o lo que es lo mismo, al cesar u entre ambas un tiempo de retardo
 Por ello Z se describe mediante u
 Z = V/I
 Siendo
 R(ω): la resistencia en altern de la energía disipada
 X(ω): la reactancia en altern
 - Por ello Z se describe mediante un nº complejo:

$$Z = \frac{V}{I}$$

$$Z = |Z|(\cos\theta + j sen\theta) = |Z| e^{j\theta} = R + j X$$

- - $R(\omega)$: la **resistencia en alterna**, varía con la frecuencia \rightarrow Es responsable
 - X(ω): la reactancia en alterna (varía con la frecuencia) → es responsable de la energía almacenada
 - El módulo de Z
 - La Fase, θ, (desfase entre V e I)

Tema 2: Medidores de Impedancia

CASOS PARTICULARES:

■ Tenemos tres casos particulares que se comportan idealmente:

- ■Resistencia pura : Z = R■ Inductancia pura : $Z = j\omega L$ luego $X = \omega L$ y R = 0■ Capacidad pura : $Z = \frac{1}{j\omega C}$ luego $X = \frac{-1}{\omega C}$ y $X = \frac{-1}{\omega C}$ y $X = \frac{-1}{\omega C}$ Normalmente, las impedancias no son tan sencillas, sino que están formadas
 - por diferentes componentes que hacen su circuito equivalente más complicado.
 - Ver ejemplos de impedancias reales

lhstrumentación Electrómica

Tema 2: Medidores de Impedancia

Medidores de Impedancia

- Instrumentos que permiten la medida de uno o varios de los parámetros anteriores
 - A una frecuencia fija
 - En toda una banda de frecuencias.
- Existen dos tipos de medidores de impedancia:
 - Los que miden por deflexión: Miden V e I, e internamente se realiza el cálculo V/I → no vamos a estudiarlos
 - Los que miden por comparación → Puentes de Alterna
 - Se compara la impedancia a medir con otra conocida y ajustable mediante un circuito que tiene una relación conocida entre sus elementos cuando hay un cero en la salida
 - La exactitud depende de la calibración y estabilidad de un dispositivo pasivo similar al medido
 - La sensibilidad depende del detector de la diferencia entre ambos
 - Actualmente este tipo de sistemas realiza la medida de forma bastante rápida

Tema 2: Medidores de Impedancia

Puentes de Alterna

■ Son una <u>extensión del puente de Wheatstone</u>, pero con impedancias en sus ramas en vez de resistencias y con alimentación de un oscilador en vez de una tensión constante de dc.

- 4 impedancias conectadas en un montaje
- en vez de una tensión constante de de Constan de:
 4 impedancias conectadas en un monta serie-paralelo
 Una fuente de alimentación ac
 Un detector de cero que mide entre los puntos A y B los desequilibrios de las corrientes a través de las dos ramas.
 Condición de equilibrio del puente Un detector de cero que mide entre los

→no circula corriente entre A y B →

están a igual potencial

Si sustituimos los voltajes, obtenemos:

$$V_{AC} = V \frac{Z_4}{Z_1 + Z_4} = V_{BC} = V \frac{Z_3}{Z_2 + Z_3}$$

Por tanto, podemos obtener la condición de puente equilibrado en función de las impedancias es: I $Z_2 Z_4 = Z_3 Z_1$

PUENTE EQUILIBRADO: Producto de impedancias situadas en ramas opuestas es el mismo (tanto en módulo como en fase)

- Si sustituimos las impedancias por su forma compleja, obtenemos dos ajustes para llegar
- Condiciór impedancia ■ Condición 1: : Producto de módulos de impedancias opuestas

$$\left|Z_{2}\right|\left|Z_{4}\right| = \left|Z_{3}\right|\left|Z_{1}\right|$$

Condición 2: : Suma de fases de impedancias de ramas opuestas

$$\theta_2 + \theta_4 = \theta_3 + \theta_1$$

mimm@usal.es

1. Puente de Maxwell (A)

■ Se utiliza principalmente para medir inductancias, L_x , que tienen un factor de

calidad Q de valor bajo.

La incógnita es L_x (con resistende del cableado R_x)

Se mide conociendo el valor de factor R_1 , R_2 , R_4) y de una capacidad (C_1)

La impedancia incógnita

Con: lacksquare La incógnita es $oldsymbol{L_x}$ (con resistencia asociada

Se mide conociendo el valor de tres resistencias

- - **Z**₁ es una impedancia en paralelo (R_1 y C_1)
 - $Z_2 = R_2$
 - $Z_4 = R_4$
- De donde se obtiene

1. Puente de Maxwell (B)

■ Si sustituimos los valores de las impedancias (hacer como ejercicio), e igualando las partes reales e imaginarias obtenemos:

$$L_{x} = R_{2} R_{4} C_{1}$$

$$R_{x} = \frac{R_{2} R_{4}}{R_{1}}$$

- Que en este caso no dependen de la frecuencia

$$Q = \frac{X}{R} = \frac{\omega L_x}{R_x} = \omega C_1 R_1$$

Que en este caso no dependen de la frecuencia : $Q = \frac{X}{R} = \frac{\omega L_x}{R_x} = \omega C_1 R_1$ Este puente se usa cuando \mathbf{Q} toma un valor medio o medio- bajo 1 < Q < 10

- De la condición de las fases:
 - Teniendo en cuenta que $\theta_2 = \theta_4 = 0$
 - Para medir una L debe tener en la rama opuesta una C: mimm@usal.es

 $\theta_2 + \theta_4 = \theta_3 + \theta_1$

1. Puente de Hay (A)

 \blacksquare Se utiliza principalmente para medir **inductancias**, L_x , que tienen un factor de calidad Q muy elevado,

- La incógnita es L_x (con resistend del cableado R_x)
 Se mide conociendo el valor de talendo el valor de ta La incógnita es L_x (con resistencia asociada
 - Se mide conociendo el valor de tres resistencias

- - Z₁ es una impedancia en serie (R₁ y C₁)
 - $Z_2 = R_2$
 - $Z_4 = R_4$
- Se obtiene

$$Z_{x} = \frac{R_{2} R_{4}}{R_{1} + \frac{1}{j \omega C_{1}}} = \frac{(1 - j\omega R_{1}C_{1})j\omega R_{2}R_{4}C_{1}}{1 - \omega^{2}R_{1}^{2}C_{1}^{2}} = R_{x} + j\omega L_{x}$$

1. Puente de Hay (B)

Igualando las partes reales e imaginarias obtenemos:

$$L_x = \frac{R_2 R_4 C_1}{1 + \omega^2 C_1^2 R_1^2}$$

$$L_{x} = \frac{R_{2} R_{4} C_{1}}{1 + \omega^{2} C_{1}^{2} R_{1}^{2}}$$

$$R_{x} = \frac{\omega^{2} C_{1} R_{1} R_{2} R_{4}}{1 + \omega^{2} C_{1}^{2} R_{1}^{2}}$$

- $\mathbf{R}_{\mathbf{x}}$, y $\mathbf{L}_{\mathbf{x}}$, dependen de \mathbf{R}_{i} , \mathbf{C}_{i} , como en el Puente de Maxwell,
- También de la frecuencia (a) alterna de la señal aplicada al puente (extracción más complicada

■
$$R_x$$
, y L_x , dependen de R_i , C_i , como en el Puenta También de la frecuencia (ω) alterna de la seña aplicada al puente \longrightarrow extracción más complication El factor de calidad, Q , de la **inductancia**:

Sustituyendo en L_x y R_x , en función de Q , ol $L_x = \frac{R_2 R_4 C_1}{1 + \alpha^2 C_1^2 R_2^2} = \frac{R_2 R_4 C_1}{1}$
 $R_x = \frac{\omega^2 C_1^2 R_2^2 C_2^2 R_2^2}{1}$

Sustituyendo en L_x y R_x , en función de Q, obtenemos:

$$Q = \frac{X}{R} = \frac{\omega L_x}{R_x} = \frac{1}{\omega R_1 C_1}$$

$$L_{x} = \frac{R_{2} R_{4} C_{1}}{1 + \omega^{2} C_{1}^{2} R_{1}^{2}} = \frac{R_{2} R_{4} C_{1}}{1 + \frac{1}{Q^{2}}} \begin{bmatrix} R_{x} = \frac{\omega^{2} C_{1} R_{1} R_{2} R_{4}}{1 + \omega^{2} C_{1}^{2} R_{1}^{2}} = \frac{R_{2} R_{4}}{R_{1} (1 + Q^{2})} \end{bmatrix}$$

$$R_{x} = \frac{\omega^{2} C_{1} R_{1} R_{2} R_{4}}{1 + \omega^{2} C_{1}^{2} R_{1}^{2}} = \frac{R_{2} R_{4}}{R_{1} (1 + Q^{2})}$$

 Este puente se usa cuando Q toma un valor muy elevado, así se elimina la dependencia con la frecuencia

$$R_x \approx \frac{R_2 R_4}{R_1}$$

$$L_x \approx R_2 R_4 C_1$$

$$R_1$$

$$R_2 \approx R_2 R_4 C_1$$

1. Puente de Shering (A)

- Es uno de los puentes más importantes
- Se utiliza principalmente para medir capacidades,
- C_x , que tienen un factor de calidad Q muy elevado.

 La incógnita es C_x (con resistencia asociada del cableado R_x)

 Se mide conociendo el valor de dos resistencias

- **Z**₁ es una impedancia en paralelo $(R_1 \ y \ C_1)$, $Z_2 = R_2$ y $Z_4 = 1/j\omega C_4$

Se obtiene

$$Z_x = R_x + \frac{1}{j\omega C_x} = R_2 \left(\frac{1}{j\omega C_4} \right) \left(\frac{1}{R_1} + j\omega C_1 \right)$$

■ De donde:

$$C_x = \frac{R_2 C_1}{C_4}$$
 $C_x = \frac{R_1 C_4}{R_2}$

Independientes de la frecuencia

Bibliografía y figuras cortesía de

- R. Pallás, Instrumentación Electrónica. Marcombo, 1987.
- E. Mandado, P. Mariño y A. Lago, Instrumentación Electrónica. Marcombo. 1995.
- W. Bolton, Mediciones y pruebas eléctricas y electrónicas. Marcombo, 1995,
- PROMAX. www.promax.es.

mimm@usal.es

Manual del osciloscopio digital Tecktronix TDS 220. www.tektronix.com.

