

VINIFICACIÓN EN TINTO

Kit de JL Pérez

Vinificaciones ilimitadas, cualquier época del año

Muchas pruebas = muchos resultados

-Conocimientos previos

+ideas nuevas, mente - bloqueada

Composició del raim

Composició d'un carràs de raïm

Composició d'un gra de raïm

INGREDIENTES

RAPA:

TANINS: 3 %

MATERIES MINERALS: 2-3 %

H₂O: 80 %

MATERIES COLORANTS:
Antocians (vermell)
Flavonoids (groc)

AROMES VARIETALS

SUBSTANCIES PECTIQUES

TANINS
ENZIMS

| H2O: 700-780 g/l | Glucosa: 50 % | Fructosa: 50 % | Pentoses: < 2 g/l |
| POLPA: | ACIDS LLIURES: 2-5 g/l | ACIDS COMBINATS: 3-10 g/l | Acid L-Malic | Acid Cítric | Atres àcids | SUBSTANCIES NITROGENADES: 0,5-1 g/l | SALS MINERALS: 2-3 g/l | OLIS | TANINS: 5-8 % | OLIS |

POLIFENOLES Y PRECURSORES

POLIFENOLES

FERMENTACIÓN ALCOHÓLICA

$$C_6H_{12}O_6 \longrightarrow 2CH_3-CH_2OH + 2CO_2$$

Glucosa etanol + gas carbónico + calor

+ <u>Productos secundarios</u>: glicerina, ácido succínico, alcoholes superiores, ésteres, compuestos azufrados, fenoles, lactonas

LEVADURAS

- Saccharomyces
- Non-saccharomyces

Saccharomyces cerevisiae (nuestros aliados!!)

¿QUE NECESITAN?

CARBONO: glucosa + fructosa

■OXIGENO: indispensable para multiplicarse. Necesidad F.A=10-20 mg/L, una aireación de 6-8 mg/L

■NITRÓGENO: amoniacal + diversos aminoácidos

· <150 NFA (mg/L) → F.A óptima · 30g/HL nutrientes cede al mosto 45mg/L NFA

■VITAMINAS: tiamina (B1)

■TEMPERATURA: <35°C

■Otros: >15°C, cuidado pesticidas

CICLO DE CRECIMIENTO

- 1. Fase de latencia
- 2. Fase de aceleración.
- 3. Fase de crecimiento exponencial.

- 4. Fase de ralentización.
- Fase estacionaria.
- 6. Fase de declive.

Ciclo de Crecimiento de las Levaduras de Vinificación

SEGUIMIENTO Y PILOTAGE

<u>F.A</u>

4								
5			Rendimiento (gr/ltr x 1º alcohol)					
6	Densidad	Brix	16,5	16,7	16,8	17,1	17,5	
7	1,090	21,40	12,97	12,81	12,74	12,51	12,23	
8	1,091	21,62	13,10	12,95	12,87	12,64	12,35	
9	1,092	21,84	13,24	13,08	13,00	12,77	12,48	
10	1,093	22,06	13,37	13,21	13,13	12,90	12,61	
11	1,094	22,28	13,50	13,34	13,26	13,03	12,73	
12	1,095	22,50	13,64	13,47	13,39	13,16	12,86	
13	1,096	22,72	13,77	13,60	13,52	13,29	12,98	
14	1,097	22,94	13,90	13,74	13,65	13,42	13,11	
15	1,098	23,16	14,04	13,87	13,79	13,54	13,23	
16	1,099	23,38	14,17	14,00	13,92	13,67	13,36	
17	1,100	23,60	14,30	14,13	14,05	13,80	13,49	
18	1,101	23,82	14,44	14,26	14,18	13,93	13,61	
19	1,102	24,04	14,57	14,40	14,31	14,06	13,74	
20	1,103	24,26	14,70	14,53	14,44	14,19	13,86	
21	1,104	24,48	14,84	14,66	14,57	14,32	13,99	
22	1,105	24,70	14,97	14,79	14,70	14,44	14,11	
23	1,106	24,92	15,10	14,92	14,83	14,57	14,24	
24	1,107	25,14	15,24	15,05	14,96	14,70	14,37	
25	1,108	25,36	15,37	15,19	15,10	14,83	14,49	
26	1,109	25,58	15,50	15,32	15,23	14,96	14,62	
27	1,110	25,80	15,64	15,45	15,36	15,09	14,74	
28	1,111	26,02	15,77	15,58	15,49	15,22	14,87	
29	1,112	26,24	15,90	15,71	15,62	15,35	14,99	
30	1,113	26,46	16,04	15,84	15,75	15,47	15,12	
31	1,114	26,68	16,17	15,98	15,88	15,60	15,25	
32	1,115	26,90	16,30	16,11	16,01	15,73	15,37	
33	1,116	27,12	16,44	16,24	16,14	15,86	15,50	

Sati	ietat vinifem			Finca.		Data aggraga				
	ditica entrada: idicació:	GARWIT Destist: pH: ATT(p/L): Lought fir SO2 obsit odiciá de i Namions (c	ma: "(p/hI): Depoty, donis (p a/hI):	Coe	JCA					
Dia	Domina	V		peratura		Occasion.				
					<u> </u>					
	litica final (cg)			Date:	al (p/L): til (p/L):	Acid-L- adlia pH:]			
rela	tion (m	eraeco.a	Alolatica:	Date: Supp. residu dodosa valdi SOu Iljuge: SOu total: Observacion	il.(sr/L):	deides, total (g/L); pH: deid-L-milio				

Rendiment real (L):

SEGUIMENT VINIFICACIO:

x65%-->Rendiment

La teneur en sucre approximative est donnée par la relation : Sucres $g/l = (Densité - 1000) \times 2 + 16$

SEPTIEMBRE 2018

POSIBLES PROBLEMAS

DESVIACIONES

POSIBLES PROBLEMAS

PARADA DE FERMENTACIÓN

CAUSAS	PREVENCIÓN
ANTAGONISMO ENTRE MICROORGANISMOS	-control fitosanitario en la viña -higiene->paracético -correcta aplicación de las dosis de SO2 -correcta inoculación de levaduras
CARENCIA DE NUTRIENTES: nitrógeno, aminoácidos, vitaminas. Necesarios para la multiplicación. >+ de 130-150 mg/L .NFA.I de formaldehido.>120 mg/L parada	Adición de activadores de F.A: tiamina, sales de amonio, cortezas de levadura
CONDICIONES ANAERÓBICAS ESTRICTAS	AIREACIÓN 2-3 DIA DE F.A
TEMPERATURAS EXTREMAS	.Inició F.A 15ºC. Por debajo de <30ºC .evitar cambios bruscos.
EXECIVA CONCENTRACIÓN DE AZÚCAR EN EL MOSTO Y DE ETANOL EN EL VINO	+ necesidades de nitrógeno. LSA resistentes al alcohol, por ejemplo bayanus
RESIDUS DE LOS TRATAMIENTOS	Limpiar uva, LSA.

PARA MINIMIZAR RIESGOS:

OCTUBRE 2018

EL SULFUROSO

SO2 in other foods

SEPT-EMBR

EL SULFUROSO E-220

- Efectos antioxidante protegiendo los compuestos más frágiles (antocianos, taninos, compuestos aromáticos)
- Efecto antioxidásico frente a enzimas Tirosinasa y Lacasa
- Efecto antimicrobiano frente a bacterias y levaduras
- Favorece la conservación del vino en todos los aspectos gustativos y olfativos.
- Se combina con el acetaldehido, produciendo una mejora sensorial importante al limitar el carácter de oxidación
- Su dosificación debe ser la correcta para no producir elevada formación de sulfuro de hidrógeno y mercaptanos.
- Umbral de percepción entre 20 y 60 mg /l. Olor picante y desagradable.
- Regulación sanitaria que controla los valores totales

OCTUBRE

Las diferentes formas del SO2 en el vino

¿Cuál es la concentración de SO2 molecular necesaria para garantizar la estabilidad microbiológica de un vino?

Regla general

Se suele considerar que para conseguir una buena estabilidad microbiológica se necesitan 0,5 mg/l de SO₂ molecular para un vino tinto seco, 0,8 mg/l para un vino blanco seco y 2 mg/l para un vino dulce

		SO ₂ molecular				
рН	0,5 mg/l	0,8 mg/l	2,0 mg/l			
2,8	5	8	20			
2,9	6	10	25			
3,0	8	12	31			
3,1	10	16	39			
3,2	13	20	49			
3,3	16	25	62			
3,4	19	31	78			
3,5	24	39	98			
3,6	31	49	123			
3,7	39	62	155			
3,8	49	78	195			
3,9	62	98	246			
4,0	78	124	310			
4,1	97	156	390			

Concentración de SO₂ libre necesario para obtener la concentración indicada de SO₂ molecular

Es necesario preveer la tasa de combinación que se produce en el vino al

Una regla simple es la de considerar que 2/3 partes del SO2 quedará en forma libre.

SO2 a añadir=SO2 libre deseado-SO2 presente *3/2

$$\frac{\left(SO_2libre\ deseado\ \frac{mg}{L}-SO_2presente\ mg/L\right)\times V(L)}{150mg/L}\times 1,5=ml\ SO_2$$

CÁLCULO

http://www.az3oeno.com/formulaciones/index.asp

CTUBRE 2018

IDEAS EXPERIMENTALES ____

- ¿Aditivos? → SO₂, L.S.A, bacterias, co-inoculación, enzimas, taninos
- Pre-cupages
- Maceración pre-fermentativa
- F.A anaeróbica estricta
- Rapa → %?
- Delestage / separación de semillas.
- Bazuqueo
- Maceración
- Maceración carbónica / parcial

OCTUBRE 2018

IDEAS EXPERIMENTALES ____

ESTILO DE VINO Y TEMPERATURA DE FA

TEMPERATURAS DE F.A

Fruta Varietal
Fruta fermental
Aumentar la madurez
Respetar Vegetal
Aumentar Estructura
Respetar acidez
Aumento grasa

- ✓ FIN F.A, MACERACIÓN?
- **✓** DESCUBADO
- ✓ TRASVASE EN EL MATRAZ
- ✓ F.M.L "caprichosa"

ANALÍTICAS BÁSICAS DE FIN DE F.A: →24/11/2018

- -acidez volátil
- -pH, AT
- -azucares: glucosa + fructosa
- -Inició/fin
- F.M.L→CROMATOGRAFIA
- Otros: IPT, antocianos, taninos

FERMENTACIÓN MALOLÁCTICA, F.M.L.

Fermentación Maloláctica

- Fermentación maloláctica
 - Desacidificación biológica de vinos demasadio ácidos
 - Desaparición del gusto pronunciado del ácido málico
- Mejora organoléptica: aparición de nuevos aromas que aumentan la complejidad del vino, diacetil, ??, ...

- Evolución del color del vino: cambio del pH
- Suavización de la astringencia: liberación de polisacáridos, péptidos

Estabilización biológica

CONDICIONANTES:

- Concentración inicial de málico: según variedad, clima, añada...
- SO₂: inhibe fuertemente por acción antiséptica en función del pH, por eso no se sulfitan los tintos, +18 de libre nunca.
- pH óptimo: 3,3-3,6. oenococcus oeni mejor a pH bajos, homofermentativas.
- Temperatura óptima: 20-25°C. → 22°C
- Tener amigos

ASPECTOS PRÁCTICOS:

- Visualmente "Chispea", se enturbia el vino
- En cata aparecen aromas lácteas (yogur, mantequilla) perdiendo parte del afrutado, en boca se suaviza.
- Control por cromatografía o método enzimático (+preciso).
- Cuando F.M.L acabada: trasiego(en matraz lleno) y sulfitar de inmediato! (40 mg/L), o no?
- Analizar pH, acidez volátil y acidez total, grado alcohólico, sulfuroso libre y total.

OCTUBRE 2018

CROMATOGRAFIA ___

ESTABILIZACIÓN

•FINAL F.M.L/ O NO→TRASIEGO (en matraz bien tapado) + sulfitado (30-35 mg/L de SO₂ libre) o no: se trasiega el vino en otro matraz en reposo y completamente lleno para evitar que las bacterias acéticas tengan acceso al oxígeno o que se propicie la enfermedad de las flores. Cualquier de las 2 alteraciones produce una subida de la acidez volátil y aromas desagradables.

EXPERIENCIA PRÁCTICA:

PRIMER PASO → HIGIENE !!! EL PORQUE DE LA HIGIENE ENOLOGIA

- Disolución de sulfuroso
- Ac. Peracético

OCTUBRE 2018

EXPERIENCIA PRÁCTICA:

Principals contaminacions microbianes: conseqüències sobre el vi

Agent responsable	Conseqüències	Probabilitats d'aparició fenomen			ió del
		- 1	2	3	4
Fongs	Florit	+		+++	
Llevats oxidatius	Etanal, vel, pòsits	+++		+++	+++
Llevats tipus:Kloeckera, Hansenula, Metschnikowia	Olor de picat, Pegament	+++	+++		
Llevats fermentatius: Saccharomyces, Zygosaccharomyces	Reducció, olors atípics, mercaptans	+++	+++	+	+
Bacteris acètics	Olor de picat i pegament	+++	+++	+++	+++
Bacteris làctics	Mantega, ranci	+	+++	+++	++

EXPERIENCIA PRÁCTICA:

ESTRUJADO

DESPALIADO MANUAL

TOMAR MUESTRA DE MOSTO Y ANALIZAR:

- G.A.P
- -Densidad y temperatura
- -Ph
- -AT(acidez total)
- Cromatografía
- Otras: NFA

¡¿ADDITIVOS?!

- ¿SO₂? → 1 g metabisulfito=50mg/L SO₂
- ¿L.S.A? → 0,5 g= 25g/HL
- ¿Nutrientes? \rightarrow 0′4 g= 15g/Hl

- Rendimiento aproximado sin prensar 45%:
- 4kg uva → 1,7L vino → 2botellas aprox.

$$\frac{50mg\ SO_{2}}{1l\ mosto} \times \frac{1g\ SO_{2}}{1000mg\ SO_{2}} \times \frac{1l\ SO_{2}}{150gSO_{2}} \times \frac{1000ml\ SO_{2}}{1l\ SO_{2}} = 0,3ml\ SO_{2}/Lmosto$$

DosisConcentración de SO₂

GRADO ALCOHÓLICO PROBABLE

Areometría: determinación de la densidad del mosto con un densímetro a 20°C. Principio de Arquímedes.(1,000 g/mL)

Refractometría: determinación del índice de refracción a 20°C con un refractómetro.

-								
5			Rendimiento (gr/ltr x 1º alcohol)					
6	Densidad	Brix	16,5	16,7	16,8	17,1	17,5	
7	1,090	21,40	12,97	12,81	12,74	12,51	12,23	
8	1,091	21,62	13,10	12,95	12,87	12,64	12,35	
9	1,092	21,84	13,24	13,08	13,00	12,77	12,48	
10	1,093	22,06	13,37	13,21	13,13	12,90	12,61	
11	1,094	22,28	13,50	13,34	13,26	13,03	12,73	
12	1,095	22,50	13,64	13,47	13,39	13,16	12,86	
13	1,096	22,72	13,77	13,60	13,52	13,29	12,98	
14	1,097	22,94	13,90	13,74	13,65	13,42	13,11	
15	1,098	23,16	14,04	13,87	13,79	13,54	13,23	
16	1,099	23,38	14,17	14,00	13,92	13,67	13,36	
17	1,100	23,60	14,30	14,13	14,05	13,80	13,49	
18	1,101	23,82	14,44	14,26	14,18	13,93	13,61	
19	1,102	24,04	14,57	14,40	14,31	14,06	13,74	
20	1,103	24,26	14,70	14,53	14,44	14,19	13,86	
21	1,104	24,48	14,84	14,66	14,57	14,32	13,99	
22	1,105	24,70	14,97	14,79	14,70	14,44	14,11	
23	1,106	24,92	15,10	14,92	14,83	14,57	14,24	
24	1,107	25,14	15,24	15,05	14,96	14,70	14,37	
25	1,108	25,36	15,37	15,19	15,10	14,83	14,49	
26	1,109	25,58	15,50	15,32	15,23	14,96	14,62	
27	1,110	25,80	15,64	15,45	15,36	15,09	14,74	
28	1,111	26,02	15,77	15,58	15,49	15,22	14,87	
29	1,112	26,24	15,90	15,71	15,62	15,35	14,99	
30	1,113	26,46	16,04	15,84	15,75	15,47	15,12	
31	1,114	26,68	16,17	15,98	15,88	15,60	15,25	
32	1,115	26,90	16,30	16,11	16,01	15,73	15,37	
33	1,116	27,12	16,44	16,24	16,14	15,86	15,50	

IMPORTANCIA DE LA ACIDEZ Y EL PH:

- Ácidos mas frecuentes: tartárico, málico, cítrico y el láctico.
- Determinante para fecha de vendimia.
- Estabilidad microbiológica.
- Influencia en la actividad del SO2...
- Conservación y estabilidad.
- En el color.
- Importancia en el equilibrio gustativo.

Sucres (g/l)

esa total (g/l d'àcid tartàric

Volumetría o titulación ácido base: este método se fundamenta en el cambio de color que sufre un indicador que está en medio ácido cuando es neutralizado con una base. Conociendo el volumen de base empleado, se podrá calcular el volumen de ácido de la muestra.

- -10 ml de most
- Valorar amb NaOH 0,1 N
- Punt de valoració: pH = 7,00

Es pot expressar com:

- Ácid Tartàric
- Ácid sulfúric

$$\frac{X\ ml\ NaOH}{X\ ml\ muestra} x \frac{0.1\ mol\ NaOH}{1000\ ml\ NaOH} x \frac{1\ mol\ H_2T}{2\ mol\ NaOH} x \frac{150,09\ g\ H_2T}{1\ mol\ H_2T} x \frac{1000\ ml\ muestra}{1\ l\ muestra} = X\ gH_2T/l\ muestra$$

IMPORTANTE

ml NaOH (sosa) gastados x $0.75 = g/l H_2T$ (ác. Tartárico) ml NaOH (sosa) gastados x $0.49 = g/l H_2SO4$ (ác. sulfúrico)

Cantidad de iones hidrógeno(protones) libres en disolución.

Mostos y vinos= pH 2,8-4,2.

Medida complementaria de la acidez total. Nos permite medir la fuerza de los ácidos que contiene el vino o mosto.

La estabilidad de un vino, la F.M.L, sabor ácido, el color y el equilibrio de SO₂.

BIBLIOGRAFIA:

- F. Zamora. Elaboración y crianza del vino tinto: aspectos científicos y prácticos.
- J. Blouin, É. Peynaud. Enología práctica. Conocimiento y elaboración del vino.
- P. Ribérau-Gayon, D. Dubourdieu, B. Donèche, A. Lonvaud. *Traité d'ænologie*.
- J. Hidalgo. *Tratado de enología.*
- Apuntes de enología. Fernando Zamora, Maribel, Nicolas Roces.

Taac FAB LAB BARCELONA