Exercice 1

Exercice 1:

```
class Bim:
def __init__(self, nature, surface, prix_moy):
    self.nt=nature
    self.sf=float(surface)
    self.pm=float(prix_moy)
def estim_prix(self):
    return self.sf*self.pm
```

Exercice 2:

La fonction b1.estim_prix() renverras une valeur de type float qui est 140000.0

Exercice 3:

La fonction **estim_prix(self)** rafinée sera :

```
class Bim:
def __init__(self, nature, surface, prix_moy):
    self.nt=nature
    self.sf=float(surface)
    self.pm=float(prix_moy)
def estim_prix(self):
    if self.nt=="maison":
        return self.sf*self.pm*1.1
    elif self.nt=="bureau":
        return self.sf*self.pm*0.8
    else:
        return self.sf*self.pm
```

Exercice 4:

La fonction **nb_maison(lst)** est:

```
def nb_maison(lst):
nb_maison=0
for i in range(len(lst)):
    if lst[i]=="maison":
        nb_maison+=1
return nb_maison
```

Exercice 5 : a)

La liste triée est :

b2,b4,b1,b5,b3,b6

b1	С
b2	σ <i>θ</i>
b3	d
b4	d
b5	g
b6	d

Exercice 5:b)

La fonction récursive **contient** complétée est :

```
def contient(surface,abr):
if abr.est_vide():
    return False
elif abr.get_v().sf>=surface:
    return True
else:
    return contient(surface,abr+1)
```