Закон Кюри-Вейсса.

Дмитрий Павлов, 790 1 ноября 2018 г.

Содержание

1	Вст	Вступление.								
	1.1	Цель работы								
	1.2	Оборудование								
	1.3	Экспериментальная установка								
2	Сло	оварь.								
3	Измерения.									
	3.1	Зависимость периода колебаний LC-генератора от температуры образца								
4		работка результатов.								
	4.1	Температура образца								
	4.2	График								
	4.3	Точка Кюри								
	4.4	10 ma moph								

1 Вступление.

1.1 Цель работы.

Определить парамагнитную точку Кюри гадолиния по зависимости периода колебаний автогенератора от температуры сердечника катушки.

1.2 Оборудование.

- Катушка самоиндукции с образцом из гадолиния;
- Термостат;
- Частотомер;
- Цифровой вольтметр;
- LC-автогенератор;
- Термопара медь-константан.

1.3 Экспериментальная установка.

Схема экспериментальной установки.

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции. При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Закон Кюри-Вейса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim \left(T - \Theta_p\right) \sim \frac{1}{\tau^2 - \tau_o^2},\tag{1}$$

где au_o - период колебаний в отсутствие образца.

Разность температур воды и образца контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Чувствительность термопары k=24 град/мВ.

2 Словарь.

- Закон Кюри Вейса закон, описывающий магнитную восприимчивость ферромагнетика в области температур выше точки Кюри (то есть в парамагнитной области).
- Ферромагнетик вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля и имеющее положительную магнитную восприимчивость, значительно большую единицы.
- Парамагнетик вещество, которое намагничивается во внешнем магнитном поле в направлении внешнего магнитного поля и имеющее положительную магнитную восприимчивость, значительно меньшую единицы.
- Магнитная восприимчивость физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.

$$\chi = \frac{J}{H},$$

где J — намагниченность вещества под действием магнитного поля, H — напряженность магнитного поля.

3 Измерения.

3.1 Зависимость периода колебаний LC-генератора от температуры образца.

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T — по показаниям дисплея термостата и цифровому вольтметру (ΔU с учетом знака).

Проведем измерения в диапазоне от $14^{\circ}C$ до $40^{\circ}C$ через $2^{\circ}C$.

Таблица 1 — Зависимость периода колебаний LC-генератора от температуры образца. T — температура термостата.

$T, ^{\circ}\mathrm{C}$	14.4	16.12	18.09	20	22.02	24.02	26
B, м T л	10.77	10.66	10.49	10.31	9.96	9.59	9.43
U, MB	-0.0035	-0.0033	-0.0056	-0.0141	-0.013	-0.014	-0.016
T, °C	28.6	30.01	32	34	36	38	40
В, мТл	9.33	9.28	9.25	9.22	9.20	9.19	9.17
U, MB	-0.014	-0.015	-0.016	-0.018	-0.018	-0.018	-0.017

Период колебаний τ_0 без образца: $\tau_0 = 9.045$ мкс.

4 Обработка результатов.

4.1 Температура образца.

Рассчитаем температуру T образца с учетом показаний термопары.

Таблица 2 — Зависимость периода колебаний LC-генератора от температуры образца. T' — температура образца.

T', °C	14.32	16.04	17.96	19.66	21.71	23.68	25.62
В, мТл	10.77	10.66	10.49	10.31	9.96	9.59	9.43
U, мВ	-0.0035	-0.0033	-0.0056	-0.0141	-0.013	-0.014	-0.016
T', °C	28.26	29.65	31.62	33.57	35.57	37.57	39.59
В, мТл	9.33	9.28	9.25	9.22	9.20	9.19	9.17
U, MB	-0.014	-0.015	-0.016	-0.018	-0.018	-0.018	-0.017

4.2 График.

Определение температуры Кюри.

Определение температуры Кюри.

Таблица 3 – Уравнения полученных прямых: y = bx + a.

	b	a	σ_a	σ_b
Слева, 10^{-3}	2.158	-2.431	0.205	0.412
Справа, 10^{-3}	21.04	-39.86	0.319	1.81

4.3 Точка Кюри.

Построим графики $(\tau^2-\tau_0^2)=f(T)$ и $1/(\tau^2-\tau_0^2)=f(T)$. На втором графике, экстраполируя полученную прямую к оси абсцисс, определим парамагнитную точку Кюри Θ_p для гадолиния.

Температура Кюри для гадолиния полученная из графика (см. Таблицу 3):

$$0 = b \cdot T + a$$
, (уравнение $y = bx + a$), $0 = 0.0210 \cdot T - 0.3987$, $T = 18.9^{\circ}C$.

4.4 Погрешности.

Погрешность вычисления температуры Кюри связана с погрешностью МНК. Погрешность прямой, построенной при помощи МНК, записана в таблице 3.

Тогда:

$$\sigma_T = \sqrt{\sigma_b^2 + \sigma_a^2} = \sqrt{0.319^2 + 1.81^2} = 1.83,$$

$$\varepsilon = \frac{\sigma_T}{T} = 0.096 = 9.6\%.$$