CPU 设计: 8008

luoyin

目录

1	微程	序设计	5
	1.1	子程序设计	Į.
	1.2	指令组成	Ę
	1.3	指令执行状态变化	7
	1.4	微指令设计	7
		1.4.1 微指令组成	7
		1.4.2 指令分类	7
		1.4.3 微程序分类与跳转	7
		1.4.4 微指令转移	7
		1.4.5 微指令转移方式	8
		1.4.6 微指令转移方式	8
		1.4.7 跳转设计	10
		1.4.8 微指令组合逻辑	12
		1.4.9 微指令表	12
	1.5	微指令设计	14
		1.5.1 指令译码	14
		1.5.2 IF 转出设计	15
		1.5.3 rR 转出设计	16
2	基本		L 7
	2.1	编码器	17
		2.1.1 8-3 编码器	17

4 目录

Chapter 1

微程序设计

1.1 子程序设计

- IF (Instruction Fetch): T1-T2-T3 (PCI)
- MW (Memory Write): T1-T2-T3 (PCW)
- RR (Register Read): T4
- RW (Register Write): T5
- PCU (PC Update): T4-T5
- IOR (I/O Read): T3-T4-T5

1.2 指令组成

表 1.1: 指令组成

指令 Lrr LrM LMr LnI INr/DCr	指令码 11DDDSSS 11DDD111 11111SSS 00DDD110 00DDD00V	組成 PCO(PCL-PCH)-IF-rR-rW PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW PCO(PCL-PCH)-IF-R-MA(rLO-rMO)-MW PCO(PCL-PCH)-IF-rR-MA(rLO-rMO)-MW PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW PCO(PCL-PCH)-IF-X1-rW
ALU OP M ALU OP I ROT		PCO(PCL-PCH)-IF-IR-IW PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW PCO(PCL-PCH)-IF-X1-rW
JMP JFc/JTc CAL CFc/CTc RET RFC/RTc	01XXX100 01VCC000 01XXX110 01VCC010 00XXX111	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa1-PCU(PCHU-PCLU) PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa2-PCU(PCHU-PCLU) PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa3-PCU(PCHU-PCLU) PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa4-PCU(PCHU-PCLU) PCO(PCL-PCH)-IF-POP-X2 PCO(PCL-PCH)-IF-POP-X2
INP OUT HLT HLT	0100MMM1 01RRMMM1 0000000X 11111111	PCO(PCL-PCH)-IF-IO(rAO-rBO)-IOb-CO-rW PCO(PCL-PCH)-IF-IO(rAO-rBO)-X0 PCO(PCL-PCH)-IF PCO(PCL-PCH)-IF

1.3. 指令执行状态变化 7

1.3 指令执行状态变化

1.4 微指令设计

1.4.1 微指令组成

- 状态码 (3 位)
- 寄存器组操作 (2位): 输出使能, 写使能

•

1.4.2 指令分类

- $D_7D_6 = 00$: 特殊指令
 - $-D_2D_1D_0 = 000$: HLT
 - $-D_2D_1D_0 = 001$: HLT
 - $-D_2D_1D_0 = 010$: ROT
 - $-D_2D_1D_0 = 011$: RFc/RTc
 - $D_2 D_1 D_0 = 100$: ALU OP I
 - $-D_2D_1D_0 = 101$: RST
 - $-D_2D_1D_0 = 110: LrM/LrI$
 - $-D_2D_1D_0 = 111$: RET
- $D_7D_6=01$: 跳转指令
 - $-D_2D_1D_0 = 000$: JFc/JTc
 - $-D_2D_1D_0 = 010$: CFc/CTc
 - $-D_2D_1D_0 = 100$: JMP
 - $-D_2D_1D_0 = 110$: CAL
 - $-D_2D_1D_0 = XX1$: INP/OUT
- $D_7D_6 = 10$: 算术指令
- $D_7D_6 = 11$: 寄存器指令

1.4.3 微程序分类与跳转

使用 D_7D_6 进行一次分组, 使用 $D_2D_1D_0$ 进行二次分组

1.4.4 微指令转移

微指令转移按照如下计算规则:

$$A_{i} = \mu A_{i} + \sum P_{i}^{I} I_{i} + \sum P_{i}^{S} S_{i} + \sum P_{i}^{C} C_{i}$$
(1.1)

其中, μA_i 为微指令中的下一指令段, P 为微指令中的控制段, 按作用类型不同分为指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C , I_i 为指令寄存器的位段, S_i 为状态寄存器的位段, C_i 为条件判定寄存器的位段.

1.4.5 微指令转移方式

- 直接转移: 微指令中的控制段均为 0, 微指令运行下一指令直接由微指令中的 μA_i 段决定.
- 按指令转移: 微指令中的指令控制段 P_i^I 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^I I_i$ 决定偏移量.
- 按状态转移: 微指令中的状态控制段 P_i^S 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^S S_i$ 决定偏移量.
- 按条件转移: 微指令中的条件控制段 P_i^C 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^C C_i$ 决定 偏移量.
- 复合转移: 微指令中的 μA_i 段决定跳转时的基址, 结合指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C 综合决定偏移量.

1.4.6 微指令转移方式

表 1.2: 微程序表

第			1年3月		\ \ \ \ \ \	
四年 阪拝学 仏珍 切彫			<u>'</u> _	-	1 4 6	转移关望
PCL T1 PCL输出 PCH	PCL 输出		PC	Н	T2	直接转移
PCH T2 PCH 输出 IF,	PCH 输出		Ħ,	IF, IMMa, IMMb	T3, WAIT	状态转移
IF T3 DATA to IR and regB rR		DATA to IR and regB rR	rR	DATA to IR and regB rR, rLO, PCL, POP, POPc, rAO, X1	T4, T1, HLT	指令转移, 状态转移, 条件转移
rR T4 reg Read rW	reg Read		$^{ m rW}$	rW, rLO	T5, T1, HLT	指令转移, 状态转移
rW T5 reg Write PCL	reg Write		PC	۔	T1, INT	指令转移, 状态转移
rLO T1 reg L Out rHO	reg L Out		$_{\rm rH}$	0	T2	直接转移
rHO T2 reg H Out MI	reg H Out		M	MR, MW	T3, WAIT	指令转移, 状态转移
MR T3 Memory Read X1	Memory Read	ad	X		T4	直接转移
MW T3 Memory Write P0	Memory Write	rite	Ъ(PCL	T1, INT	状态转移

1.4.7 跳转设计

1.4.7.1 IF 跳出

跳出指向

- rR: Lrr+LMr (11VVVSSS), ALU op r (10PPPSSS), 合并 (1XXXXSSS, SSS<>111)
- rLO: LrM (11DDD111, DDD<>111), ALU op M (10PPP111)
- rAO: INP+OUT (01XXXXX1)
- POP: RETURN (00XXXX11)
- PCL: JUMP, CALL (01XXXXX0)
- PCL(next): HLT, INT, NORMAL
- X1: INr/DCr

1.4.7.2 指令前缀 00

指令通过 $D_2D_1D_0$ 进行分类

- 000: HLT/INr (通过 D₅D₄D₃ 进行分类). IF-STOP/IF-X1
- 001: HLT/DCr (通过 D₅D₄D₃ 进行分类). IF-STOP/IF-X1
- 010: ROT (RLC, RRC, RAL, RAR, 通过 D₅D₄D₃ 进行分类). IF-X1
- 011: RFc/RTc. IF-POP
- 100: ALU op I. IF-PCL
- 101: RST. IF-PCLU2-PCHU2
- 110: LrI/LMI (通过 D₅D₄D₃ 进行分类). IF-PCL
- 111: RET. IF-POP

将微程序地址 10000-10111 与上面 8 个指令对应. 指令跳转表达式为

$$J_C = \bar{D}_7 \bar{D}_6 (\bar{D}_2 D_1 D_0 + \bar{D}_2 D_1 D_0 J) \tag{1.2}$$

$$A_4 = J_C 1 \tag{1.3}$$

$$A_3 = J_C P_0(D_7 + D_6) (1.4)$$

$$A_2 = J_C(\mu A_2 + P_0 \bar{D}_7 \bar{D}_6 I_2) \tag{1.5}$$

$$A_1 = J_C(\mu A_1 + P_0 \bar{D}_7 \bar{D}_6 I_1) \tag{1.6}$$

$$A_0 = J_C(\mu A_0 + P_0 \bar{D}_7 \bar{D}_6 I_0) \tag{1.7}$$

1.4. 微指令设计 11

1.4.7.3 指令前缀 01

指令通过 $D_2D_1D_0$ 进行分类

• 000: JFc/JTc

• 010: CFc/CTc

• 100: JMP

• 110: CAL

• XX1: INP/OUT

将微程序地址 11000-11111 与上面 8 个指令对应. 指令跳转表达式为

$$J_C = \bar{D}_7 D_6 (\bar{D}_2 \bar{D}_0 + \bar{D}_2 \bar{D}_0 J) \tag{1.8}$$

$$A_4 = \bar{J}_C 1 \tag{1.9}$$

$$A_3 = \bar{J}_C(P_0\bar{D}_7D_6) \tag{1.10}$$

$$A_2 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_0) \tag{1.11}$$

$$A_1 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_2) \tag{1.12}$$

$$A_0 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_1 \bar{I}_0 + P_1 \bar{D}_7 D_6 \bar{I}_5 \bar{I}_4 I_0)$$
(1.13)

1.4.7.4 指令前缀 10

指令通过 $D_2D_1D_0$ 进行分类

• SSS: ALU op r

• 111: ALU op M

将微程序地址 100000-100001 与上面 2 个指令对应. 指令跳转表达式为

$$A_5 = D_7 \bar{D}_6 (1.14)$$

$$A_4 = \overline{D_7 \bar{D}_6} \tag{1.15}$$

$$A_3 = \overline{D_7 \overline{D}_6} \tag{1.16}$$

$$A_2 = \overline{D_7 \overline{D}_6} \tag{1.17}$$

$$A_1 = \overline{D_7 \bar{D}_6} \tag{1.18}$$

$$A_0 = D_7 \bar{D}_6 I_2 I_1 I_0 \tag{1.19}$$

1.4.7.5 指令前缀 11

指令通过 $D_5D_4D_3D_2D_1D_0$ 进行分类

• DDDSSS: Lrr

• DDD111: LrM

• 111SSS: LMr

• 111111: HLT

将微程序地址 100100-100111 与上面 4 个指令对应. 指令跳转表达式为

$$A_5 = D_7 D_6 (1.20)$$

$$A_4 = \overline{D_7 D_6} \tag{1.21}$$

$$A_3 = \overline{D_7 D_6} \tag{1.22}$$

$$A_2 = D_7 D_6 (1.23)$$

$$A_1 = D_7 D_6 I_5 I_4 I_3 (1.24)$$

$$A_0 = D_7 D_6 I_2 I_1 I_0 (1.25)$$

1.4.7.6 条件跳转

适用指令: JFc/JTc, CFc/CTc, RFc/RTc, 引入条件判定变量 J, 当条件成立时 J=1, 否则 J=0, 指令跳转表达式为

$$A_i = J() \tag{1.26}$$

1.4.8 微指令组合逻辑

• srcM: $D_2D_1D_0$

• dstM: $D_5D_4D_3$

• JUMP:

1.4.9 微指令表

表 1.3: 微指令表

141 +1L	指令	沙比		S			Р				μA		
地址	1日で	微指令	2	1	0	2	1	0	4	3	2	1	0
000000		PCL	0	1	0	0	0	0	0	0	0	0	1
000001		PCH	1	0	0	0	0	0	x	x	x	x	х
000010		IF	0	0	1	x	x	x	0	1	x	x	х
001000		rR	1	1	1	x	x	x	x	x	x	x	х
001001		POP	1	1	1	0	0	0	x	x	x	x	х
001010		X1	1	1	1	0	0	0	x	x	x	x	х
001100		rLO	0	1	0	0	0	0	x	x	x	x	x
001101		rAO	0	1	0	0	0	0	x	x	x	x	х
001110		PCL2	0	1	0	0	0	0	x	x	x	x	x
010000	INr		1	1	1				x	x	x	x	x
010001	DCr		1	1	1				x	x	x	x	x
010010	ROT		1	1	1				x	x	x	x	x
010011	RETc		1	1	1				x	x	x	x	X
010100	ALU op I		1	1	1				x	x	x	x	X
010101	RST		1	1	1				x	x	x	x	x
010110	LrI/LMI		1	1	1				x	x	x	x	x
010111	RET		1	1	1				x	x	x	x	X

1.4. 微指令设计 13

表 1.3: 微指令表 (续)

地址	指令	微指令		S			Р				μA		
<u> 보다</u> 돼.	1日、4	/以1日.4	2	1	0	2	1	0	4	3	2	1	0
011000	JMPc		1	1	1				x	x	X	x	X
011001	CALc		1	1	1				x	x	X	x	X
011010	JMP		1	1	1				x	x	X	x	X
011011	CAL		1	1	1				x	x	x	x	x
011100	INP		1	1	1				x	x	X	x	X
011101	OUT		1	1	1				x	x	X	x	X
100000	ALU op r		1	1	1				x	x	X	x	X
100001	ALU op M		1	1	1				x	x	X	x	X
100100	Lrr		1	1	1				x	x	X	x	X
100101	LrM		1	1	1				x	x	X	x	X
100110	LMr		1	1	1				x	x	x	x	x
100111	HLT		1	1	1				x	x	X	x	X

1.5 微指令设计

1.5.1 指令译码

Lrr	=	$D_7D_6\overline{D_5D_4D_3}\ \overline{D_2D_1D_0}$	(1.27)
LrM	=	$D_7D_6\overline{D_5D_4D_3}D_2D_1D_0$	(1.28)
LMr	=	$D_7D_6D_5D_4D_3\overline{D_2D_1D_0}$	(1.29)
LrI	=	$ar{D_7}ar{D_6}\overline{D_5D_4D_3}D_2D_1ar{D_0}$	(1.30)
LMI	=	$ar{D_7}ar{D_6}D_5D_4D_3D_2D_1ar{D_0}$	(1.31)
INr	=	$ar{D_7}ar{D_6}\overline{D_5}\overline{D_4}\overline{D_3}ar{D_2}ar{D_1}ar{D_0}$	(1.32)
DCr	=	$ar{D_7}ar{D_6}\overline{D_5D_4D_3}ar{D_2}ar{D_1}D_0$	(1.33)
ALUopR	=	$D_7ar{D}_6\overline{D_2D_1D_0}$	(1.34)
ALUopM	=	$D_7\bar{D_6}D_2D_1D_0$	(1.35)
ALUopI	=	$ar{D_7}ar{D_6}D_2ar{D_1}ar{D_0}$	(1.36)
ROT	=	$ar{D_7}ar{D_6}ar{D_2}D_1ar{D_0}$	(1.37)
JMP	=	$ar{D_7}D_6D_2ar{D_1}ar{D_0}$	(1.38)
JMPc	=	$ar{D_7}D_6ar{D_2}ar{D_1}ar{D_0}$	(1.39)
CAL	=	$ar{D_7}D_6D_2D_1ar{D_0}$	(1.40)
CALc	=	$ar{D_7}D_6ar{D_2}D_1ar{D_0}$	(1.41)
RET	=	$ar{D_7}ar{D_6}D_2D_1D_0$	(1.42)
RETc	=	$ar{D_7}ar{D_6}ar{D_2}D_1D_0$	(1.43)
RST	=	$ar{D_7}ar{D_6}D_2ar{D_1}D_0$	(1.44)
INP	=	$ar{D_7}D_6ar{D_5}ar{D_4}D_0$	(1.45)
OUT	=	$ar{D_7}D_6(ar{D_5}+ar{D_4})D_0$	(1.46)
HLT	=	$ar{D_7}ar{D_6}ar{D_5}ar{D_4}ar{D_3}ar{D_2}ar{D_1} + D_7D_6D_5D_4D_3D_2D_1D_0$	(1.47)

将指令分段

$$M_s = D_2 D_1 D_0 (1.48)$$

$$M_d = D_5 D_4 D_3 (1.49)$$

1.5. 微指令设计 15

指令编码公式如下

$$I_{LrM} = D_7 D_6 \overline{M_d} \overline{M_s}$$
 (1.50)
$$I_{LrM} = D_7 D_6 \overline{M_d} M_s$$
 (1.51)
$$I_{LMr} = D_7 D_6 M_d \overline{M_s}$$
 (1.52)
$$I_{LrI} = \overline{D_7} \overline{D_6} \overline{M_d} D_2 D_1 \overline{D_0}$$
 (1.53)
$$I_{LMI} = \overline{D_7} \overline{D_6} \overline{M_d} D_2 D_1 \overline{D_0}$$
 (1.54)
$$I_{INr} = \overline{D_7} \overline{D_6} \overline{M_d} \overline{D_2} \overline{D_1} \overline{D_0}$$
 (1.55)
$$I_{DCr} = \overline{D_7} \overline{D_6} \overline{M_d} \overline{D_2} \overline{D_1} D_0$$
 (1.56)
$$I_{ALUopR} = D_7 \overline{D_6} \overline{M_s}$$
 (1.57)
$$I_{ALUopM} = D_7 \overline{D_6} \overline{M_s}$$
 (1.58)
$$I_{ALUopI} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} \overline{D_0}$$
 (1.60)
$$I_{JMP} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} \overline{D_0}$$
 (1.61)
$$I_{JMPc} = \overline{D_7} D_6 \overline{D_2} \overline{D_1} \overline{D_0}$$
 (1.62)
$$I_{CAL} = \overline{D_7} D_6 \overline{D_2} D_1 \overline{D_0}$$
 (1.63)
$$I_{CALc} = \overline{D_7} D_6 \overline{D_2} D_1 \overline{D_0}$$
 (1.64)
$$I_{RET} = \overline{D_7} \overline{D_6} D_2 D_1 D_0$$
 (1.65)
$$I_{RETc} = \overline{D_7} \overline{D_6} D_2 D_1 D_0$$
 (1.66)
$$I_{RST} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} D_0$$
 (1.67)
$$I_{INP} = \overline{D_7} D_6 \overline{D_5} \overline{D_4} D_0$$
 (1.68)
$$I_{OUT} = \overline{D_7} D_6 \overline{D_5} \overline{D_4} D_0$$
 (1.69)
$$I_{HLT} = \overline{D_7} \overline{D_6} \overline{D_5} \overline{D_4} \overline{D_3} \overline{D_2} \overline{D_1} + D_7 D_6 M_d M_s$$
 (1.70)

1.5.2 IF 转出设计

IF 转出到微地址 01000-01111, 转出编码

$$\begin{array}{lll} F_{0} & = & I_{HLT} \\ F_{1} & = & I_{Lrr} + I_{ALUopR} + I_{LMr} = D_{7}\bar{M}_{s} \\ F_{2} & = & I_{JMP} + I_{JMPc} + I_{CAL} + I_{CALc} + I_{LrI} + I_{LMI} + I_{ALUopI} = \bar{D}_{7}\bar{D}_{0}(D_{6} + \bar{D}_{6}D_{2}) \\ F_{3} & = & I_{LrM} + I_{ALUopM} = D_{7}M_{s}(D_{6}\bar{M}_{d} + \bar{D}_{6}) \\ F_{4} & = & I_{INP} + I_{OUT} = D_{7}\bar{D}_{6}D_{0} \\ F_{5} & = & I_{INr} + I_{DCr} + I_{ROT} = \bar{D}_{7}\bar{D}_{6}\bar{D}_{2}(\bar{M}_{d}\bar{D}_{1} + D_{1}\bar{D}_{0}) \\ F_{6} & = & I_{RET} + I_{RETc} = \bar{D}_{7}\bar{D}_{6}D_{1}D_{0} \\ F_{7} & = & I_{RST} = \bar{D}_{7}\bar{D}_{6}D_{2}\bar{D}_{1}D_{0} \end{array}$$

使用 8-3 编码器

$$Y_0^0 = F_1 + F_3 + F_5 + F_7$$

$$Y_1^0 = F_2 + F_3 + F_6 + F_7$$

$$Y_2^0 = F_4 + F_5 + F_6 + F_7$$

微地址转换公式如下

$$A_4 = \mu A_4$$

$$A_3 = \mu A_3$$

$$A_2 = P_0(Y_2^0) + \mu A_2$$

$$A_1 = P_0(Y_1^0) + \mu A_1$$

$$A_0 = P_0(Y_0^0) + \mu A_0$$

1.5.3 rR 转出设计

rR 转出到微地址 10000-10010, 转出编码

$$F_0^1 = I_{Lrr}$$

$$F_1^1 = I_{ALUopR}$$

$$F_2^1 = I_{LMr}$$

使用 4-2 编码器

$$Y_0^1 = F_1^1$$

 $Y_1^1 = F_2^1$

微地址转换公式如下

$$\begin{array}{rcl} A_4 & = & \mu A_4 \\ A_3 & = & \mu A_3 \\ A_2 & = & \mu A_2 \\ A_1 & = & P_1(Y_1^1) + \mu A_1 \\ A_0 & = & P_1(Y_0^1) + \mu A_0 \end{array}$$

Chapter 2

基本逻辑

2.1 编码器

2.1.1 8-3 编码器

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7 (2.1)$$

$$A_1 = D_2 + D_3 + D_6 + D_7 (2.2)$$

$$A_2 = D_4 + D_5 + D_6 + D_7 (2.3)$$