CS 341 Automata Theory Elaine Rich Homework 6

Due: Tuesday, February 21

This assignment covers Chapter 9 and a review of regular languages.

Chapter 9

- 1) Define a decision procedure for each of the following questions. Argue that each of your decision procedures gives the correct answer and terminates.
 - a) Given two DFSMs M_1 and M_2 , is $L(M_1) = L(M_2)^R$?
 - b) Given an FSM M and a regular expression α , is it true that L(M) and $L(\alpha)$ are both finite and M accepts exactly two more strings than α generates.

Review

- 2) For each of the following languages L, state whether or not L is regular. Prove your answer.
 - a) $\{w \in \{0,1,\#\}^* : w = x \# y, \text{ where } x,y \in \{0,1\}^* \text{ and } |x| \cdot |y| \equiv_5 0\}.$ (Let \cdot mean integer multiplication).
 - b) $\{w \in \{1\}^* : w \text{ is, for some } n \geq 1, \text{ the unary encoding of } 10^n\}$. (So $L = \{11111111111, 1^{100}, 1^{1000}, \ldots\}$.)
- 3) Define a **color word** to be an English word that is the name of a color. So some example color words are red, fuschia, and ochre. Define an **animal word** to be an English word that is the common name of an animal. So some example animal words are cow, cats, and hippopotamus. Let $L = \{w : w \text{ is a sentence with legal English syntax and the number of color words in } w \text{ equals the number of animal words in } w\}$. As examples, observe that red cats like catnip $\in L$, but red cats like blue green balls $\notin L$. Note that, to be in L, w must satisfy the syntactic rules of English. It is not necessary for w to make sense. So, for example, red red blue red cats like dogs and dogs and dogs $\in L$. Prove that L is not regular. (Be particularly careful if you use the Pumping Theorem. You must choose a w that is actually in L.)
- 4) In this problem, we consider a very restricted subset of Boolean expressions. Define an **operator** to be one of the four symbols: \neg , \wedge , \vee , and \rightarrow . Define a variable to be one of the five symbols: P, Q, R, S and T. Let $L = \{w : w \text{ is a syntactically legal Boolean expression without parentheses}$ and the number of operators in w is exactly equal to the number of variables in w. Examples:

$$\begin{array}{lll} \neg P \to Q & \text{is in L.} \\ P \wedge R \wedge \neg S \to R & \text{is in L.} \\ P \to Q & \text{is not in L.} \\ \neg \neg P & \text{is not in L.} \end{array}$$

Is L regular? Prove your answer.

- 5) For each of the following claims, state whether it is True or False. Prove your answer.
 - a) If $L = L_1L_2$ and L is regular then L_1 and L_2 must be regular.
 - b) $(\neg(\neg L)$ is regular) $\rightarrow (L \text{ is regular}).$
 - c) $(L_1 L_2 \text{ is regular}) \rightarrow (L_1 \text{ is regular}).$
 - d) $(L^R \text{ is regular}) \to (L \text{ is regular}).$
 - e) For any language $L, L \cup \{a^n b^n : n \ge 0\}$ must not regular.
 - f) Given any language L, it cannot be true that $L \{a^n b^n : n \ge 0\}$ is regular.
 - g) The finite languages are closed under Kleene star.