Demostraciones en textos de matemáticas preuniversitarias

José A. Alonso

11 de agosto de 2022

Índice general

1.	1° d	e ESO (12 años)	7
	1.1.	Números naturales. Divisibilidad.	7
		1.1.1. Operaciones con números naturales	7
		1.1.2. Divisibilidad	7
		1.1.3. Números primos	8
	1.2.	Potencias y raíces	8
		1.2.1. Potencias	8
		1.2.2. Operaciones con potencias	8
		1.2.3. Raíces	9
	1.3.	Fracciones	9
		1.3.1. Suma y resta de fracciones	9
		1.3.2. Producto y cociente de fracciones	9
	1.4.	Figuras planas	9
		1.4.1. Circunferencia y círculo	9
		1.4.2. Triángulos	9
		1.4.3. Cuadriláteros	10
	1.5.		10
		1.5.1. Perímetros y áreas de polígonos	10
		· • •	11
	1.6.	·	11
		-	11
า	ე°	e ESO (13 años)	.3
∠.			13
	∠.1.		13
	2.2.	±	ь [3
	2.2.	u	гэ [3
	0.2		ь [3
	2.3.		
	0.4		14
	2.4.		14
			14
	2.5	1	L5 L5
	۵.0.	Dongredges y areas. Semejanza	. 0

4 ÍNDICE GENERAL

		O	.5
		3	.5
	2.6.	1 0	6
		ı	6
			6
		2.6.3. Cuerpos redondos	.6
	2.7.	Álgebra	6
		2.7.1. Ecuaciones de $2^{\underline{0}}$ grado	.6
3.	3° d	e ESO (14 años)	7
			7
		3.1.1. Recordatorio	7
	3.2.		8
	3.3.		8
	3.4.		9
	9.2.		9
		O	20
	3.5.		21
	3.3.		21
		v 1	22
		r	22
	3.6.	0	22
	0.0.	v	22
	3 7		23
	0.1.	1	23
		, 0	23
	3.8.		24
	5.6.	Revision de Geometria en el espacio	/±
4.			5
	4.1.		25
			25
		4.1.2. Densidad de los números reales	26
	4.2.	Potencias y raíces	26
		4.2.1. Logaritmos	26
	4.3.	Sumas y productos de polinomios	29
	4.4.	División de polinomios	29
	4.5.		29
		•	80
			n

Introducción

Este libro es una recopilación de los teoremas que aparecen en los libros de textos de matemáticas antes de la Universidad. Los textos utilizados son los de Apuntes Marea Verde. La mayoría de los teoremas están en los libros de textos sin demostraciones. En algunos teoremas he puesto un enlace a su demostración en ProofWiki.

Capítulo 1

1° de ESO (12 años)

Del libro Matemáticas de $1^{\rm 0}$ de ESO de Apuntes Marea Verde.

1.1. Números naturales. Divisibilidad.

1.1.1. Operaciones con números naturales

- 25 Propiedad distributiva de la multiplicación respecto a la suma en los naturales.
- 25 Propiedad conmutativa de la multiplicación
- 25 Propiedad distributiva de la multiplicación respecto a la resta
- 26 División de números naturales

1.1.2. Divisibilidad

- 31 Criterio de divisibilidad por 2: Un número entero es divisible por 2 cuando su última cifra es 0 o cifra par.
- 31 Criterio de divisibilidad por 3: Un número entero es divisible por 3 cuando la suma de sus cifras es múltiplo de 3
- 31 Criterio de divisibilidad por 4: Un número entero es divisible por 4 si el número formado por las dos últimas cifras del número considerado es múltiplo de 4.
- 31 Criterio de divisibilidad por 5: Un número entero es divisible por 5 cuando termina en 0 o en 5.
- 32 Criterio de divisibilidad por 6: Un número entero es divisible por 6 cuando lo es a la vez por 2 y por 3.
- 32 Criterio de divisibilidad por 9: Un número entero es divisible por 9 cuando la suma de sus cifras es 9 o múltiplo de 9.

- 32 Criterio de divisibilidad por 10: Un número entero es divisible por 10 cuando termina en 0.
- 32 Criterio de divisibilidad por 11: Un número entero es divisible por 11 cuando la diferencia entre la suma de las cifras que ocupan lugar impar y la suma de las cifras que ocupan lugar par da 0 o múltiplo de 11

1.1.3. Números primos

- 38 Descomposición de un número natural en factores primos
- 40 Cálculo del M.C.D. 1. Factorizamos los números. 2. Tomamos los factores comunes a todos los números elevados el menor exponente. 3. El producto de los factores considerados en el paso 2 es el M.C.D.
- 41 Cálculo del m.c.m. 1. Factorizamos los números 2. Tomamos los factores comunes y no comunes elevados al mayor exponente. 3. El producto de esos factores del paso anterior es el m.c.m.
- 43 Si n es un número natural tal que $2^n 1$ es primo, entonces $2^{n-1}(2^n 1)$ es un número perfecto.
- 43 Hay infinitos números primos.

1.2. Potencias y raíces

1.2.1. Potencias

■ 53 Cero, elevado a cualquier exponente distinto de cero, es igual a 0.

1.2.2. Operaciones con potencias

- 55 Producto de potencias de igual base: $a^n a^m = a^{n+m}$
- 55 Cociente de potencias de igual base: $\frac{a^n}{a^m} = a^{n-m}$
- 55 Elevar una potencia a otra potencia: $(a^n)^m = a^{nm}$
- 56 Potencia de un producto: $(ab)^n = a^n b^n$
- 56 Potencia de un cociente: $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

1.3. FRACCIONES 9

1.2.3. Raíces

• 58 Introducir factores en el radical: Para introducir un número dentro del radical se eleva el número al índice de la raíz y se multiplica por el radicando.

1.3. Fracciones

1.3.1. Suma y resta de fracciones

• 93 Propiedades de la suma de fracciones.

1.3.2. Producto y cociente de fracciones

• 97 Propiedades del producto de fracciones.

1.4. Figuras planas

1.4.1. Circunferencia y círculo

- 184 Las mediatrices de todas las cuerdas de una circunferencia pasan por el centro.
- 184 La recta tangente a una circunferencia es perpendicular al radio que pasa por el punto de tangencia.

1.4.2. Triángulos

- 185 La suma de los ángulos de un triángulo es 180°
- 185 En un triángulo cualquier lado es siempre menor que la suma de los otros dos y mayor que su diferencia.
- 186 Las mediatrices de los tres lados del triángulo concurren en un punto llamado circuncentro. Dicho punto equidista de los vértices y, es el centro de la circunferencia circunscrita al triángulo.
- 186 Las bisectrices de los ángulos de un triángulo concurren en un punto llamado incentro. Dicho punto equidista de los lados del triángulo y es el centro de la circunferencia inscrita en el triángulo.
- 187 Las tres alturas de un triángulo se cortan en el ortocentro.
- 187 El punto de corte de las medianas se llama baricentro.

■ 188 Para comprobar que dos triángulos son iguales es suficiente comprobar que se cumple uno de los tres criterios siguientes: 1º Tienen los tres lados iguales. 2º Tienen dos lados iguales e igual el ángulo comprendido entre ambos. 3º Tienen un lado igual adyacente a dos ángulos también iguales.

1.4.3. Cuadriláteros

- \blacksquare 190 La suma de los ángulos de un cuadrilátero es 360°
- 190 La diagonal de un paralelogramo lo divide en dos triángulos iguales.
- 190 Las diagonales de un paralelogramo se cortan en el punto medio.
- 190 Las diagonales tanto de un rombo como de un cuadrado, son perpendiculares.
- 190 Al unir los puntos medios de un cuadrilátero, se forma un paralelogramo.

1.5. Longitudes y áreas

1.5.1. Perímetros y áreas de polígonos

- 201 El área de un cuadrado es el cuadrado de uno de sus lados.
- 201 El área de un rectángulo es el producto de su base por su altura.
- 202 Los paralelogramos tienen las siguientes propiedades:
 - Los lados opuestos son iguales
 - Sus diagonales se cortan en sus puntos medios
 - Tienen un centro de simetría
 - Los romboides no tienen eje de simetría
- 202 El área de un paralelogramo es el producto de su base por su altura.
- 202 El área de un triángulo es la mitad del área de un paralelogramo.
- 204 El área de un trapecio es igual a la mitad de la suma de sus bases multiplicada por su altura.
- 204 El área de un rombo es el producto de sus diagonales divididas entre 2
- 205 El área de un romboide es el producto de su base y su altura.
- 206 El área de un polígono regular es igual al semiperímetro por la apotema.

1.6. $\acute{A}LGEBRA$

1.5.2. Perímetros y áreas de figuras circulares

- 210 La longitud de la circunferencia es $2\pi r$.
- 210 La longitud de un arco de circunferencia que abarca un ángulo de A grados es $\frac{2\pi rA}{360}$.
- 211 El área del círculo es igual al producto del número πr^2 .
- 212 El área de una corona circular es igual al área del círculo mayor menos el área del círculo menor.
- 212 El área de un sector circular que abarca un ángulo de n grados es igual a: $\frac{\pi r^2 n}{360}$.
- 213 El área de un sector de corona circular formada por las circunferencias concéntricas de radios r y R que abarca un ángulo de n grados es igual a: $\frac{\pi(R^2 r^2)n}{360}$.

1.6. Álgebra

1.6.1. Ecuaciones de primer grado

- 240 Si se suma o se resta a los dos miembros de una ecuación una misma cantidad, se obtiene una ecuación equivalente.
- 240 Si se multiplican o dividen los dos miembros de una ecuación por una misma cantidad (distinta de cero), se obtiene una ecuación equivalente.

Capítulo 2

2° de ESO (13 años)

Del libro Matemáticas de 2^{0} de ESO de Apuntes marea Verde.

2.1. Números

2.1.1. Operaciones

- 35: Propiedades de la suma de fracciones: conmutativa, asociativa, neutro y opuestos.
- 35: Propiedades del producto de fracciones: conmutativa, asociativa, neutro, opuestos de no nulos y distributiva respecto de sumas

2.2. Potencias y raíces

2.2.1. Potencias

- 53 Una potencia de cualquier base distinta de cero elevada a cero es igual a 1.
- 53 Uno, elevado a cualquier exponente, es igual a 1.
- 53 Cero, elevado a cualquier exponente distinto de cero, es igual a 0.
- 54 La unidad seguida de ceros es igual a una potencia de 10.

2.3. Operaciones con potencias y propiedades

- 54 Para calcular el producto de dos o más potencias de la misma base, se deja la misma base y se suman los exponentes.
- 54 El cociente de potencias de igual base es igual a otra potencia de la misma base y de exponente, la diferencia de los exponentes.

- 54 Para elevar una potencia a otra potencia, se deja la misma base y se multiplican los exponentes.
- 55 La potencia de un producto es igual al producto de cada uno de los factores elevados al mismo exponente.
- 55 La potencia de un cociente es igual al cociente de cada uno de los factores elevados al mismo exponente.
- 55 Las potencias de base negativa y exponente par son números positivos.
- 55 Las potencias de base negativa y exponente impar son números negativos.

2.3.1. Raíces

• 59 Para introducir un número dentro del radical se eleva el número al índice de la raíz y se multiplica por el radicando.

2.4. Divisibilidad

2.4.1. Divisibilidad

- 71 Todo número tiene siempre como divisor a 1 y a sí mismo.
- 72 Un número entero es divisible por 2 cuando su última cifra es 0 o cifra par.
- 72 Un número entero es divisible por 3 cuando la suma de sus cifras es múltiplo de 3.
- 72 Un número entero es divisible por 4 si el número formado por las dos últimas cifras del número considerado es múltiplo de 4.
- 73 Un número entero es divisible por 5 cuando termina en 0 o en 5.
- 73 Un número entero es divisible por 6 cuando lo es a la vez por 2 y por 3.
- 73 Un número entero es divisible por 9 cuando la suma de sus cifras es 9 o múltiplo de 9
- 73 Un número entero es divisible por 10 cuando termina en 0.
- 73 Un número entero es divisible por 11 cuando la diferencia entre la suma de las cifras que ocupan lugar impar y la suma de las cifras que ocupan lugar par da 0 o múltiplo de 11.

2.4.2. Números primos

- 79 Descomponer un número natural en factores primos es expresar dicho número como un producto, donde todos sus factores son números primos.
- 80 Cálculo del M.C.D.
 - Factorizamos los números.
 - Tomamos los factores comunes a todos los números elevados el menor exponente.
 - El producto de los factores considerados en el paso 2 es el M.C.D
- 81 Cálculo del m.c.m.
 - Factorizamos los números
 - Tomamos los factores comunes y no comunes elevados al mayor exponente.
 - El producto de esos factores del paso anterior es el m.c.m.

2.5. Longitudes y áreas. Semejanza

2.5.1. Teorema de Pitágoras

■ 116 Teorema de Pitágoras: En un triángulo rectángulo, la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos.

2.5.2. Semejanza

- 118 Dos triángulos son semejantes si tienen todos los ángulos iguales y los lados proporcionales.
- 118 Dos triángulos son semejantes sí:
 - Primero: Tienen dos ángulos iguales.
 - Segundo: Tienen los tres lados proporcionales.
 - Tercero: Tienen dos lados proporcionales y el ángulo que forman es igual.
- 120 Teorema de Tales: Dadas dos rectas, y varias rectas paralelas entre sí, que las cortan respectivamente en los puntos A, B, C y A', B', C'. Entonces los segmentos son proporcionales:

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}$$

- 121 Si la razón de semejanza entre las longitudes de una figura es k, entonces la razón entre sus áreas es k^2 .
- 121 Si la razón de semejanza entre las longitudes de una figura es k, entonces la razón entre sus volúmenes es k^3 .

2.6. Cuerpos geométrico. Volúmenes

2.6.1. El espacio

- 145 Dos planos en el espacio son paralelos si no tienen ningún punto en común, y son secantes si tienen una recta en común.
- 146 Dos rectas en el espacio o son paralelas o se cortan o se cruzan.
- 146 Una recta puede estar contenida en un plano o ser paralela al plano o ser secante.

2.6.2. Poliedros

- 155 El volumen de un prisma es igual al producto del área de su base por su altura.
- 156 El volumen de una pirámide es un tercio del volumen del prisma que tiene la misma base que la pirámide y la misma altura que ella.

2.6.3. Cuerpos redondos

- 160 La superficie del cilindro es $2\pi rh + 2\pi r^2$.
- 160 Superficie del cono = Área del sector circular + Área del círculo = $\pi rg + \pi r^2$.
- 161 Superficie del tronco de cono = $\pi(r+r')g + \pi r^2 + \pi r'^2$.
- 161 Superficie de la esfera de radio r es igual a $4\pi r^2$.
- 162 Volumen cilindro = $\pi r^2 h$
- 162 Volumen cono = $\frac{\pi r^2 h}{3}$
- 163 Volumen de la esfera = $\frac{4\pi r^3}{3}$.

2.7. Álgebra

2.7.1. Ecuaciones de $2^{\underline{0}}$ grado

 \bullet 209 Resolución de ecuaciones de 2º grado $ax^2+bx+c=0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Capítulo 3

3° de ESO (14 años)

Del libro Matemáticas de 3° de ESO de Apuntes marea Verde.

3.1. Números racionales

3.1.1. Recordatorio

- 8 Regla de los signos para la suma:
 - La suma de 2 números positivos es positiva.
 - La suma de 2 números negativos es negativa.
 - La suma de un número positivo con otro negativo tendrá el signo del mayor en valor absoluto.
- 9 Regla de los signos para la multiplicación (y la división):
 - Positivo x Positivo = Positivo
 - Positivo x Negativo = Negativo x Positivo = Negativo
 - Negativo x Negativo = Positivo.
- **9**

Teorema 3.1.1. $0 \times x = 0$ para todo x.

Demostración:

$$x \times 0 = x \times (a - a)$$
$$= x \times a - x \times a$$
$$= 0$$

10

Teorema 3.1.2. $(-1) \times (-1) = 1$

Demostración:

$$(-1) \times (-1) + (-1) = (-1) \times (-1) + (-1) \times 1$$
$$= (-1) \times (-1 + 1)$$
$$= (-1) \times 0$$
$$= 0$$

Por tanto, $(-1) \times (-1) = 1$.

3.2. Números racionales

- 13 Si a y b son positivos y a < b, entonces $\frac{1}{a} > \frac{1}{b}$.
- \blacksquare 27 El número de cifras del periodo de $\frac{1}{n}$ es menor o igual que n-1.
- 27 En general $\frac{1}{2^n \times 5^m}$ tiene expresión decimal exacta y el número de cifras decimales es el máximo entre n y m.
- 27 Si en el denominador de una fracción irreducible aparecen factores primos distintos de 2 y de 5 la expresión decimal será periódica.
- 28 Para obtener la fracción generatriz se pone en el numerador el número sin la coma y en el denominador la unidad seguida de tantos ceros como cifras decimales tiene. Se simplifica la fracción.
- 29 Para obtener la fracción generatriz de una expresión decimal multiplicamos el número por la potencia de 10 necesaria para llevarnos la coma al final del primer periodo, luego lo multiplicamos otra vez para que la coma quede al principio del primer periodo.
- $34 \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{32} + \dots = 1.$

3.3. Potencias y raíces

- 59 $(a \times b \times c \times d)^n = a^n \times b^n \times c^n \times d^n$.
- $\bullet 59 \frac{c^m}{c^n} = c^{m-n}$
- \bullet 59 $(d^m)^n = d^{mn}$

3.4. SUCESIONES

$$\bullet 59 \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

■ 59
$$a^{-n} = \frac{1}{a^n}$$

3.4. Sucesiones

3.4.1. Progresiones aritméticas

• 71 El término general de una progresión aritmética es

$$a_n = a_1 + (n-1)d$$

• 71 El término general de una progresión aritmética es

$$a_n = a_k + (n - k)d$$

73

Teorema 3.4.1. En una progresión aritmética, la suma de dos términos equidistantes es constante. Es decir, si los subíndices naturales p, q, r y s verifican que p+q=r+s, entonces: $a_p+a_q=a_r+a_s$.

Demostración:

$$a_p + a_q = a_1 + (p-1)d + a_1 + (q-1)d$$

$$= 2a_1 + (p+q-2)d$$

$$= 2a_1 + (r+s-2)d$$

$$= a_1 + (r-1)d + a_1 + (s-1)d$$

$$= a_r + a_s$$

- 73

Teorema 3.4.2. La suma de los n primeros términos de una progresión aritmética es $\frac{a_1 + a_n}{2}$

Demostración: Sea S la suma de los n primeros términos. Entonces,

$$S = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$S = a_n + a_{n-1} + \dots + a_2 + a_1$$

Sumando,

$$2S = (a_1 + a_n) + (a_2 + a_{n-1}) + \dots + (a_{n-1} + a_2) + (a_n + a_1)$$

= $(a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n) + (a_1 + a_n)$
= $(a_1 + a_n)n$

Por tanto,

$$S = \frac{a_1 + a_n}{2}$$

3.4.2. Progresiones geométricas

- ullet 76 El término general de una progresión geométrica es $a_n=a_1r^{n-1}$
- **-** 78

Teorema 3.4.3. En una progresión geométrica, el producto de dos términos equidistantes es constante. Es decir, si los subíndices naturales p, q, t y s verifican que p+q=t+s, entonces: $a_pa_q=a_ta_s$.

Demostración:

$$a_{p}a_{q} = a_{1}r^{p-1}a_{1}r^{q-1}$$

$$= a_{1}a_{1}r^{p+q-2}$$

$$= a_{1}a_{1}r^{t+s-2}$$

$$= a_{1}r^{t-1}a_{1}r^{s-1}$$

$$= a_{t}a_{s}$$

78

Teorema 3.4.4. El cuadrado del producto de los n primeros términos de una progresión geométrica viene dado por $(a_1a_n)^n$.

Demostración: Sea P el producto de los n primeros términos de una progresión geométrica. Entonces,

$$P^{2} = (a_{1}a_{2} \dots a_{n-1}a_{n})(a_{n}a_{n-1} \dots a_{2}a_{1}) =$$

$$= (a_{1}a_{n})(a_{2}a_{n-1}) \dots (a_{n-1}a_{2})(a_{n}a_{1})$$

$$= (a_{1}a_{n})(a_{1}a_{n}) \dots (a_{1}a_{n})(a_{1}a_{n})$$

$$= (a_{1}a_{n})^{n}$$

79

Teorema 3.4.5. La suma de los n primeros términos de una progresión geométrica no constante $\frac{a_1(r^n-1)}{r-1}$.

Demostración: Se tiene

$$S = a_1 + a_2 + \dots + a_{n-1} + a_n$$

Multiplicando por r

$$rS = r(a_1 + a_2 + \dots + a_{n-1} + a_n)$$

= $ra_1 + ra_2 + \dots + ra_{n-1} + ra_n$
= $a_2 + a_3 + \dots + a_n + ra_n$

Restando

$$rS - S = r.a_n - a_1$$
$$= ra_1 r^{n-1} - a_1$$
$$= a_1 (r^n - 1)$$

Luego,

$$S = \frac{a_1(r^n - 1)}{r - 1}$$

.

■ 81 La suma de un número ilimitado de términos de una progresión geométrica sólo toma un valor finito si |r| < 1, y entonces viene dada por $\frac{a_1}{1-r}$. En el resto de los casos, o vale infinito, o no existe pues oscila.

3.5. Expresiones algebraicas. Polinomios

3.5.1. Polinomios. Suma y producto

- 100 Propiedades de la suma de polinomios: conmutativa, asociativa, neutro y opuestos.
- 104 Propiedades del producto de polinomios: conmutativa, asociativa, neutro y distributiva.

3.5.2. División de polinomios

■ 107 Dados dos polinomios p(x) y q(x), la división de p(x), polinomio dividendo, entre q(x), polinomio divisor, nos proporcionará otros dos polinomios, el polinomio cociente c(x) y el polinomio resto r(x). Además, su grado deberá ser menor que el grado del polinomio divisor. La relación entre los cuatro es p(x) = q(x)c(x) + r(x).

3.5.3. Igualdades notables

- 111 Potencias de un binomio:
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a-b)^2 = a^2 2ab + b^2$
 - $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 - $(a-b)^3 = a^3 3a^2b + 3ab^2 b^3$
- 112 Suma por diferencia: $(a+b)(a-b) = a^2 b^2$.

3.6. Ecuaciones y sistemas

3.6.1. Ecuaciones de segundo grado

132

Teorema 3.6.1. La suma de la raíces de la ecuación $x^2 + bx + c = 0$ es -b y su producto es c.

Demostración: Sean x_1 y x_2 la raíces de $x^2 + bx + c = 0$. Entonces,

$$x^{2} + bx + c = (x - x_{1})(x - x_{2})$$
$$= x^{2} - (x_{1} + x_{2})x + x_{1}x_{2}$$

Por tanto, $x_1 + x_2 = -b \ y \ x_1 x_2 = c$.

132

Teorema 3.6.2. La soluciones de $ax^2 + bx + c = 0$, con $a \neq 0$, son

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Demostración:

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$4a(ax^{2} + bx) = -4ac$$

$$4a(ax^{2} + bx) + b^{2} = -4ac + b^{2}$$

$$4a^{2}x^{2} + 4abx + b^{2} = -4ac + b^{2}$$

$$(2ax + b)^{2} = -4ac + b^{2}$$

$$2ax + b = \pm \sqrt{b^{2} - 4ac}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

3.7. Geometría en el plano

3.7.1. Lugares geométricos

- 174 La circunferencia es el lugar geométrico de los puntos del plano cuya distancia a un punto del mismo (el centro) es un valor determinado (el radio).
- 174 La mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan de los extremos del mismo.
- 174 La mediatriz es una recta perpendicular al segmento y pasa por el punto medio del mismo.
- 174 Dado un ángulo delimitado por dos rectas, la bisectriz del ángulo es el lugar geométrico de los puntos del plano que equidistan de las mismas.
- 174 La bisectriz pasa por el vértice del ángulo y divide a éste en dos ángulos iguales.

3.7.2. Ángulos, longitudes y áreas

- 183 Teorema de Pitágoras: En un triángulo rectángulo, la hipotenusa al cuadrado es igual a la suma de los cuadrados de los catetos.
- 185 La suma de los ángulos interiores de un triángulo es 180°
- 185 La suma de los ángulos interiores de un polígono de n lados es $(n-2)180^{\circ}$
- 187 Un ángulo inscrito mide la mitad que un ángulo central que abarca el mismo arco de circunferencia.
 Demostración gráfica.

- 188 En cualquier triángulo rectángulo el circuncentro está en el punto medio de la hipotenusa.
- 188 Un ángulo inscrito en la circunferencia que abarca un diámetro es un ángulo recto.

3.8. Revisión de Geometría en el espacio

- 252 Teorema de Euler: en todo poliedro convexo el número de caras más el número de vértices coincide con el número de aristas más 2.
- 256 Teorema de Pitágoras en el espacio: La diagonal de un ortoedro al cuadrado coincide con la suma de los cuadrados de sus aristas.
- 260 El área lateral de una pirámide regular es la mitad del producto del perímetro de la base por la apotema.

Capítulo 4

4° de ESO (15 años)

Del libro Matemáticas de 4° de ESO $^{\circ}$ de Apuntes marea Verde.

4.1. Números reales

4.1.1. Números racionales e irracionales

9

Teorema 4.1.1. $\sqrt{2}$ no es un número racional.

Demostración: Demostración (por reducción al absurdo)

Supongamos que $\sqrt{2}$ es racional. Entonces, se puede escribir como una fracción irreducible

 $\sqrt{2} = \frac{a}{b}$

Por tanto,

$$2 = \frac{a^2}{b^2}$$
$$a^2 - 2b^2$$

Luego a^2 es par y por lo tanto a también lo es (el cuadrado de un número impar es siempre impar). Ponemos a=2k y sustituimos:

$$(2k)^2 = 2b^2$$
$$4k^2 = 2b^2$$

 $2k^2 = b^2$

Luego b^2 es par y por tanto b también lo será. En definitiva: a y b son los 2 números pares que es una contradicción con el que $\frac{a}{b}$ es irreducible.

- $11\sqrt{7}$ es irracional.
- 14 En cada suma o resta el error absoluto es la suma de los errores absolutos.
- 14 Los errores relativos se suman al multiplicar dos números.
- $\blacksquare \ 32 \ e$ es límite de la sucesión $\left(1+\frac{1}{n}\right)^n$
- 33 $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$

4.1.2. Densidad de los números reales

16

Teorema 4.1.2. Los números reales son densos, es decir, entre cada dos números reales hay infinitos números en medio.

Demostración: Sea a y b dos números reales tales que a < b. Entonces, se consideran

$$c = \frac{a+b}{2}$$
$$d = \frac{a+c}{2}$$

y se tiene

Repitiendo el proceso se obtienen infinitos números entre a y b.

• 16 Los racionales son también densos.

4.2. Potencias y raíces

4.2.1. Logaritmos

48

Teorema 4.2.1. El logaritmo de 1 es cero (en cualquier base)

Demostración: Como $a^0=1$, por definición de logaritmo, tenemos que $\log_a 1=0$.

48

Teorema 4.2.2. Si a > 0, entonces $\log_a a = 1$.

4.2. POTENCIAS Y RAÍCES

27

Demostración: Como $a^1=a$, por definición de logaritmo, tenemos que $\log_a a=1$.

- 48 Solo tienen logaritmos los números positivos.
- **4**8

Teorema 4.2.3. $\log_a(xy) = \log_a x + \log_a y$.

Demostración: Sean $A = \log_a x$ y $B = \log_a y$. Por definición de logaritmos sabemos que:

$$a^A = x$$
$$a^B = y$$

Multiplicando:

$$xy = a^A a^B$$
$$= a^{A+B}$$

Luego,

$$\log_a(xy) = A + B$$
$$= \log_a x + \log_a y.$$

48

Teorema 4.2.4. El logaritmo de un cociente es igual al logaritmo del dividendo menos el logaritmo del divisor.

Demostración: Sean $A = \log_a x$ y $B = \log_a y$. Por definición de logaritmos sabemos que:

$$a^A = x$$
$$a^B = y$$

Dividiendo

$$\frac{x}{y} = \frac{a^A}{a^B}$$
$$= a^{A-B}$$

Luego,

$$\log_a(\frac{x}{y}) = A - B$$
$$= \log_a x - \log_a y$$

48

Teorema 4.2.5. El logaritmo de una potencia es igual al exponente multiplicado por el logaritmo de la base de la potencia.

Demostración: Sea $A = \log_a x$. Por definición de logaritmos sabemos que:

$$a^A = x$$

Por tanto,

$$x^y = (a^A)^y$$
$$= a^{Ay}$$

Luego,

$$\log_a(x^y) = yA$$
$$= y \log_a x$$

48

Teorema 4.2.6. $\log_a \sqrt[n]{b} = \frac{\log_a}{n}$.

Demostración:

$$\log_a \sqrt[n]{b} = \log_a b^{\frac{1}{n}}$$
$$= \frac{\log_a}{n}$$

■ 49 Cambio de base:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

4.3. Sumas y productos de polinomios.

- 65 Propiedades de la suma de polinomios.
- 68 Propiedades del producto de polinomios.

4.4. División de polinomios

• Existencia de la división.

4.5. Raíces de un polinomio

- 78

Teorema 4.5.1. Si un número real α es una raíz del polinomio p(x), entonces el polinomio $x - \alpha$ divide a p(x).

Demostración: Dividiendo p(x) entre $x - \alpha$ se tiene

$$p(x) = (x - \alpha)c(x) + r(x)$$

Como el polinomio divisor, $x - \alpha$, es de grado 1, y el polinomio resto ha de ser de inferior grado, se deduce que el resto anterior es un número real. Luego,

$$p(x) = (x - \alpha)c(x) + \beta$$

El polinomio de la izquierda, p(x), es idéntico al de la derecha. Por esa razón, al evaluarlos en cierto número real obtendremos el mismo valor. Procedamos a particularizarlos para $x = \alpha$ Al ser α raíz de p(x), $p(\alpha) = 0$. Esto nos lleva a

$$0 = p(\alpha)$$

$$= (\alpha - \alpha)c(\alpha) + \beta$$

$$= 0c(\alpha) + \beta$$

$$= 0 + \beta$$

$$= \beta$$

y, así, el resto es 0, y $p(x) = (x - \alpha)c(x)$.

79

Teorema 4.5.2. Si un polinomio p(x) admite una descomposición factorial de la forma $p(x) = (x - \alpha) \times c(x)$ para cierto polinomio c(x) y cierto número real α , entonces el número α es una raíz del polinomio p(x).

Demostración: Basta evaluar p en $x = \alpha$:

$$p(\alpha) = (\alpha - \alpha) \times c(\alpha)$$
$$= 0 \times c(\alpha)$$
$$= 0$$

■ 79 (Condition for linear divisor of polynomial en ProofWiki)

Teorema 4.5.3. Teorema del factor. Un número real α es raíz de un polinomio p(x) si y solo si el polinomio $x - \alpha$ divide a p(x); es decir, si y solo si el polinomio p(x) admite una descomposición factorial de la forma $p(x) = (x - \alpha) \times c(x)$.

Demostración: Es consecuencia de las dos propiedades anteriores.

- lacksquare 80 Todo polinomio de grado n tiene a lo sumo n raíces reales, alguna de las cuales puede aparecer repetida entre esos no más de n números reales.
- 81 Todo polinomio de grado impar posee, al menos, una raíz real.

4.5.1. Regla de Ruffini

■ 84 [Teorema del resto]. El valor numérico que adopta un polinomio p(x) en $x = \alpha$ coincide con el resto que aparece al dividir p(x) entre $x - \alpha$. (Little Bézout theorem en ProofWiki).

4.5.2. Cálculo de las raíces de un polinomio

86

Teorema 4.5.4. Dado un polinomio cualquiera cuyos coeficientes son todos números enteros, sus raíces enteras, si las tuviera, se encuentran necesariamente entre los divisores enteros de su término independiente.

Demostración: Supongamos que el número entero α es una raíz del polinomio

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Tal número debe anularlo:

$$a_{n}\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{2}\alpha^{2} + a_{1}\alpha + a_{0}$$

$$a_{n}\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{2}\alpha^{2} + a_{1}\alpha = -a_{0}$$

$$\alpha(a_{n}\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_{2}\alpha + a_{1}) = -a_{0}$$

$$a_{n}\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_{2}\alpha + a_{1} = -\frac{a_{0}}{\alpha}$$

En la última igualdad, el número del lado izquierdo es entero, porque está expresado como una suma de productos de números enteros. Por ello, el número del lado derecho, $-\frac{a_0}{\alpha}$, también es entero y, por tanto, α es un divisor de a_0 .