The Good, the Bad and the Ugly of unsupervised learning

Maike Sonnewald^{1,2} July, 2019

¹MIT & ²Harvard

CO₂ release is the fastest in the past 55 million years...

Movie by NASA

Take home:

Application of modern statistics/ML and traditional modeling/theory work can drive progress

Currently models need to be complicated

slideshare.net

Including **all** components of e.g. an ESM at adequate resolution is unfeasible.

How complicated is complicated enough?

Increased computational power?

Increased computational power?

Moore's Law: Jet-Pack!

Increased computational power?

Moore Vs Rock: Nano materials/quantum computing to the resque..?

Less is more

eos.org

The dream:

ML can be used to lead the charge both in terms of supervised and unsupervised learning.

Outline: Make Models Great(er) Again

Can ML help?

- · Make complicated data complex
- Allows insight to parameterize and simplify
- Create synergy between models, theory and observations

ML towards the goal of science/geoscience:
Precise and accurate understanding of the natural world.

Motivation: Why machine learning?

"...automate those parts that can be perfectly automated"

Occam's razor in Machine Learning

Motivation: Why machine learning?

"...automate those parts that can be perfectly automated"

Occam's razor in Machine Learning

- Modern data science is greatly increasing the efficiency of conventional research
- Find patterns to accelerate exploration of physics
- Highlight emergence of complex interactions

Complexity: Find underlying "rules"

"Complexity: I know it when I see it..."

Complexity: Find underlying "rules"

"Complexity: I know it when I see it..."

BOIDS Craig Reynolds (1986)

- separation: steer to avoid crowding local flockmates
- alignment: steer towards the average heading of local flockmates
- cohesion: steer to move towards the average position (center of mass) of local flockmates

We are becoming data rich in oceanography

We are becoming data rich in oceanography

Unsupervised Learning: Find clusters

The persuasive power of numbers

"There are three kinds of lies: lies, damned lies, and statistics."

Benjamin Disraeli (British prime minister)

- Bad statistics can bolster weak arguments
- Weak results can seem legitimate.
- False positives are bad.

Lies damned lies and ..ML?

Do:

Clean data, visualize data, highlight interactions as appropriate, choose an appropriate model, check its parameters are appropriate, account for stochastic elements.

Don't:

Trust data blindly, make assume variance topography, choose model blindly, if so: Brute force the statistical robustness.

Machine Learning workflow: What model?

Keep It Simple Stupid

scikit-learn.org

Examples outline

- 1: The good ...Global dynamical regimes
 - Insight into global dynamical regimes!
 - · Keeping it simple
- 2: The bad ... Global eco-provinces
 - Finding patterns in complicated data?
 - · Avoiding false positives
- 3: The robustly ugly ... Global eco-provinces
 - Complex solution to complicated data
 - Interdisciplinarity to the rescue...

1: The Good ...Global dynamical

regimes

...Global dynamical regimes

- **Exploration** Uncover new physical phenomena?
 - Identify driving features of key currents
 - Analyze Big Data for climate fast
 - e.g. Climate Model Inter-comparison Project
- Model Development Establish largely laminar regions?
 - \rightarrow Save computational cost
 - Make inferences of key transitions
 - \rightarrow e.g. baroclinicity
 - Focus parameterization

Estimating the Circulation and Climate of the Ocean: 1992-2013

ECCO provides ocean state consistent with known physics and observations

Keeping it simple: Barotropic Vorticity equation

Momentum equations:

$$\partial_t \mathbf{u} + f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla p + \frac{1}{\rho_0} \partial_z \tau + \mathbf{a} + \mathbf{b}, \partial_z p = -g \rho, \nabla \cdot \mathbf{v} = 0.$$

-Depth integrate, take curl

Barotropic Vorticity:

$$0 = \overbrace{\nabla \cdot (f \mathbf{U})}^{\text{Advection}} - \underbrace{\nabla \times (\rho_b \nabla H)}_{\text{Bottom Pressure Troque}} + \underbrace{\nabla \times \mathbf{A}}_{\text{Non-linear Torque}} + \underbrace{\nabla \times \mathbf{B}}_{\text{Non-linear Torque}}$$

e.g. Sverdrup balance:

Wind stress curl and advection balance locally

$$\nabla \cdot (f\mathbf{U}) = \nabla \times \tau$$

Keeping it simple: Barotropic Vorticity equation

Momentum equations:

$$\partial_t \mathbf{u} + f \mathbf{k} \times \mathbf{u} = -\frac{1}{\rho_0} \nabla p + \frac{1}{\rho_0} \partial_z \tau + \mathbf{a} + \mathbf{b}, \partial_z p = -g \rho, \nabla \cdot \mathbf{v} = 0.$$

-Depth integrate, take curl

Barotropic Vorticity:

$$0 = \overbrace{\nabla \cdot (f \mathbf{U})}^{\text{Advection}} - \underbrace{\nabla \times (p_b \nabla H)}_{\text{Bottom Pressure Troque}} + \underbrace{\nabla \times \mathbf{A}}_{\text{Non-linear Torque}} + \underbrace{\nabla \times \mathbf{B}}_{\text{Non-linear Torque}}$$

e.g. Sverdrup balance:

Wind stress curl and advection balance locally

$$\nabla \cdot (f\mathbf{U}) = \nabla \times \tau$$

The Complicated data...

What do we do when we don't have the answers a priori?

- Assign: Cluster w mean minimizing least squared Euclidean dist.
- Itterate: Calculate the new means.
- NB! NP-hard. Not global. Need to treat data. Sensitive to:
 K and initialization.

What do we do when we don't have the answers a priori?

- Assign: Cluster w mean minimizing least squared Euclidean dist.
- Itterate: Calculate the new means.
- NB! NP-hard. Not global. Need to treat data. Sensitive to:
 K and initialization.

What do we do when we don't have the answers a priori?

- Assign: Cluster w mean minimizing least squared Euclidean dist.
- Itterate: Calculate the new means.
- NB! NP-hard. Not global. Need to treat data. Sensitive to:
 K and initialization.

What do we do when we don't have the answers a priori?

- Assign: Cluster w mean minimizing least squared Euclidean dist.
- Itterate: Calculate the new means.
- NB! NP-hard. Not global. Need to treat data. Sensitive to: K and initialization.

Choosing K: Information criteria

$$BIC = K \ln(n) - 2 \ln(\mathcal{L}),$$

where n is the number of datapoints and $\mathcal L$ is the likelihood:

$$\mathcal{L} = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\zeta_i - \hat{\zeta}_i)^2}{2\sigma^2}\right).$$

Dynamical regions

Percentage of area accounted for

Sverdrup balance: Subtropical Gyre

11.2%

Present globally!

Dominantly non-linear 6.3%

Only here does the linearity approximation break down.

1: The Good ...Global dynamical regimes

Ocean globally organizes into distinct 6 regimes \rightarrow Use this to analyze Big Data **fast**

- Objectively describe 3D ocean using k-means
- Regions comply with theory
- Use IC and check for degeneracy

Sonnewald, Wunsch and Heimbach (2019) and Sonnewald et al. (Nature Com. resubmission)

2: The Bad ...Global ecological provinces

Ocean ecology

It's complicated

...Global ecological provinces

SIMONS FOUNDATION

PHYSICAL/BIOGEOCHEMICAL/ECOSYSTEM MODEL

Physics:

2: The Bad

e.g. velocity, mixing, temperature

Biogeochemistry:

e.g. carbon, nutrients, DOM, detritus

Ecosystem:

e.g. phytoplankton (C, Chl), zooplankton

Dutkiewicz et al., 2015

Biogoechemical ecosystem model: Empirical modeling approach

Trait	Size-based	Functionality based
Maximum growth rate	Yes	Yes
Nutrient uptake half saturation	Yes	No
Sinking rate	Yes	No
Light Absorption	Yes	Yes
Palatability	Yes	Yes
Grazing rate	Yes	No
Other mortality	No	No
Carbon quota	Yes	No
Stoichiometry	No	Yes

Dutkiewicz et al., 2015

51 species (biomass) and 4 nutrients (concentration)

cbiomes K-Means

IC: cbiomes K-Means

AIC penalizes more complex models, i.e., models with additional

37

cbiomes K-Means: Summer/Winter

2: The Bad ...Global ecological provinces

The data is clearly not like the BV

→ We do **not** have round ND distributions

- The yearly "provinces" looked reasonable
- · Winter/Summer split was odd
- AIC+BIC confirmed suspicion

3: The (robustly) Ugly ...Global ecological provinces

Clustering Eco-Provinces: Workflow

Learning: t-SNE to understand the topology of the data

Given a set of N high-dimensional objects $x_1, ..., x_N$, the t-Statistic Neighbourhood Embedding minimize Kullbach-Leibner distance between the likelyhood of association between a low dimentional rendition and the high dimentional data.

- If x_i it the i-th object in the N dim space and y_i is the i-th object in the low-dim space:

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)},$$

and the same for a reduced dimensional set:
$$q_{ij} = \frac{(1+\|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1+\|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}.$$

This is done as:
$$\mathit{KL}(P||Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Learning: t-SNE vs PCA

Learning: What model?

Learning: Look at the data!

Learning: Look at the data!

Unsupervised learning: DBSCAN

- Set: Eps and MinPts.
- Note: Not stochastic.
- Global. Need to preprocess data.

Unsupervised learning: DBSCAN

2D "elbow" check in connectedness

Unsupervised learning: DBSCAN

Biogeography: Clustering Eco-Provinces

Do we need all provinces? Are we doing better than Longhurst?

Longhurst: Expert assessment

NPZ complexity: Bray-Curtis dissimilarity

How similar are the identified clusters?

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_i + S_j}$$

 C_{ij} is the minimum value present where similarities exist:

$$C_{ij} = \sum_{c=1}^{c} \min(\text{biomass}_i, \text{biomass}_j)$$

 S_i is the total across plankton: $S_i = \sum_{c=1}^{c01} (\text{biomass}_i)$

Inter-province: Bray-Curtis dissimilarity

NPZ complexity: Connectivity

- Each eco-province connected to every other
- Facebook allegory
- Graph theory allows sorting

Intra-province: Bray-Curtis dissimilarity

A minimum complexity of 12 is recommended

Aggregated Ecological Provinces

- Similar biomass/chl but different community structure
- Biomass is poor predictor of zooplankton: Trophic cascades?

Visualizing the data in 3D allowed model selection

→ Knowledge of topology avoids brute-force

- Robust eco-provinces
- Improvements over Longhurst
- Aggregation allowed wider application

The value of provinces/seascapes

How complicated is complicated "enough"?

The value of provinces/seascapes

How complicated is complicated "enough"? What does conservation work require?

Seascapes

Kavenaugh et al. 2016

Seascapes+ecology?

Seascapes+ecology

Similarities when looking at ecology!

Summary

Summary

The singularity may not be coming; Make complicated models more complex?

- To allow unsupervised ML to help:
 - Preprocess data as appropriate
 - Start with simple model
 - Carefully estimate parameters
 - Assess with system insight
- System insight to simplify the complicated components:
 - Ecosystem models?
 - Bathymetric interactions
 - 3D ocean insight

Modeling+Theory+Observations = Understanding of natural world

Summary II

Neural Nets

Percentage of area accounted for

The great garbage patch

Garbage

follows currents. Ecology is not this simple...

Good to know if you want to clean it up with food webs in mind!

Interpretation: Cartoon

Implications: Gyre ⇔ overturning?

 ${\tt kMeans_50_NAtlFit.png}$

Non-linear terms

$$\nabla \times \mathbf{A} = \nabla \times \left[\int_{-H}^{\eta} \nabla \cdot (\mathbf{u}\mathbf{u}) dz \right] + [w\zeta]_{z=H}^{z=\eta} + [\nabla w \times \mathbf{u}]_{z=H}^{z=\eta}, \quad (1)$$

where **uu** is a second order tensor. The RHS of equation (1) represents the curl of the vertically integrated momentum flux divergence, the non-linear contribution to vortex tube stretching and the conversion of vertical shear to barotropic vorticity.