

线性代数 特征值问题

张晓平

武汉大学数学与统计学院

2023年12月20日

目录

- 1 矩阵的特征值问题
 - 特征值与特征向量的定义
 - 特征值与特征向量的性质

2 相似矩阵与矩阵的对角化

3 实对称矩阵的对角化

目录

- 1 矩阵的特征值问题
- 2 相似矩阵与矩阵的对角化
- 3 实对称矩阵的对角化

目录

- 1 矩阵的特征值问题
 - 特征值与特征向量的定义
 - 特征值与特征向量的性质
- 2 相似矩阵与矩阵的对角化
- 3 实对称矩阵的对角化

定义 (特征值与特征向量)

设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$Ax = \lambda x$$

则称 λ 为矩阵 A 的 <u>特征值</u>, x 为 A 的属于特征值 λ 的 <u>特征向量</u>。

定义 (特征值与特征向量)

设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$Ax = \lambda x$$

则称 λ 为矩阵 A 的 特征值, x 为 A 的属于特征值 λ 的 特征向量。

注

(1) 特征值问题是对方阵而言的;

定义 (特征值与特征向量)

设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$Ax = \lambda x$$

则称 λ 为矩阵 A 的 <u>特征值</u>, x 为 A 的属于特征值 λ 的 <u>特征向量</u>。

注

- (1) 特征值问题是对方阵而言的;
- (2) 特征向量 $x \neq 0$;

定义 (特征值与特征向量)

设 A 为复数域 $\mathbb C$ 上的 n 阶矩阵,如果存在数 $\lambda \in \mathbb C$ 和非零的 n 维向量 x 使得

$$Ax = \lambda x$$

则称 λ 为矩阵 A 的 <u>特征值</u>, x 为 A 的属于特征值 λ 的 <u>特征向量</u>。

注

- (1) 特征值问题是对方阵而言的;
- (2) 特征向量 $x \neq 0$;
- (3) 由定义,A 的特征值,就是使 $(A \lambda I)x = 0$ 有非零解的 λ 值,即方程 $|A \lambda I| = 0$ 的根都是矩阵 A 的特征值。

定义 (特征多项式、特征矩阵、特征方程)

设 n 阶矩阵 $\mathbf{A} = (a_{ij})$,则

$$f(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的 特征多项式, $|A-\lambda I|=0$ 称为 A 的 特征方程, $A-\lambda I$ 称为 A 的 特征矩阵。

定义 (特征多项式、特征矩阵、特征方程)

设 n 阶矩阵 $\mathbf{A} = (a_{ij})$,则

$$f(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的 特征多项式, $|A-\lambda I|=0$ 称为 A 的 特征方程, $A-\lambda I$ 称为 A 的 特征矩阵。

注

• A 的特征多项式是 λ 的 n 次多项式。

定义 (特征多项式、特征矩阵、特征方程)

设 n 阶矩阵 $\mathbf{A} = (a_{ij})$,则

$$f(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的 特征多项式, $|A-\lambda I|=0$ 称为 A 的 特征方程, $A-\lambda I$ 称为 A 的 特征矩阵。

注

- A 的特征多项式是 λ 的 n 次多项式。
- 特征方程 $|A \lambda I| = 0$ 的 k 重称为 A 的 k 重特征值。

矩阵特征值问题的计算步骤

特征值 求解特征方程 $|{m A}-\lambda{m I}|=0$,算得特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$;

矩阵特征值问题的计算步骤

- 特征值 求解特征方程 $|{m A}-\lambda{m I}|=0$,算得特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$;
- ② 特征向量 对 A 的每个互异特征值 λ_i ,求 $(A \lambda_i I)x = 0$ 的 全部非零解,即 A 的属于特征值 λ_i 的全部特征向量。

矩阵特征值问题的计算步骤

- 特征值 求解特征方程 $|{m A}-\lambda{m I}|=0$,算得特征值 $\lambda_1,\lambda_2,\cdots,\lambda_n$;
- ❷ 特征向量 对 A 的每个互异特征值 λ_i ,求 $(A \lambda_i I)x = 0$ 的 全部非零解,即 A 的属于特征值 λ_i 的全部特征向量。

定义 (特征子空间)

对 A 的特征值 λ , $(Ax-\lambda I)x=0$ 的解空间称为特征值 λ 的 <mark>特征子空间</mark>,记为 V_λ ,即 $V_\lambda=\left\{\lambda$ 对应的全部特征向量 $\right\}\cup\{\mathbf{0}\}.$

定义 (几何重数与代数重数)

设 λ 为A的特征值,

- 称 V_{λ} 的维数为 λ 的 几何重数, 即 dim V_{λ} 。

定义 (几何重数与代数重数)

设 λ 为A的特征值,

- $\exists \lambda$ 为 k 重特征值,则称 k 为 λ 的 <u>代数重数</u>;
- 称 V_{λ} 的维数为 λ 的 几何重数,即 dim V_{λ} 。

深入理解几何重数

设 λ 为A的特征值,则

定义 (几何重数与代数重数)

设 λ 为A的特征值,

- 若 λ 为k 重特征值,则称k为 λ 的代数重数;
- 称 V_{λ} 的维数为 λ 的 几何重数, 即 dim V_{λ} 。

深入理解几何重数

设 λ 为A的特征值,则

• 其几何重数即为 $(A - \lambda I)x = 0$ 的基础解系的向量个数,即

$$l = n - r(\boldsymbol{A} - \lambda \boldsymbol{I}),$$

定义 (几何重数与代数重数)

设 λ 为A的特征值,

- 若 λ 为 k 重特征值,则称 k 为 λ 的 代数重数;
- 称 V_{λ} 的维数为 λ 的 几何重数,即 dim V_{λ} 。

深入理解几何重数

设 λ 为A的特征值,则

• 其几何重数即为 $(A - \lambda I)x = 0$ 的基础解系的向量个数,即

$$l = n - r(\boldsymbol{A} - \lambda \boldsymbol{I}),$$

• 设 $\xi_1, \xi_2, \cdots, \xi_l$ 为 $(A - \lambda I)x = 0$ 的基础解系,则它构成 V_λ 的一组基,且

$$V_{\lambda} = \operatorname{span}\{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \cdots, \boldsymbol{\xi}_l\}$$

定理

矩阵特征值的几何重数不超过代数重数。

证明.

略。

定理

矩阵特征值的几何重数不超过代数重数。

证明.

略。

注

该定理说明: $\partial \lambda = A$ 的特征值, 求解

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$$

时,基础解系中向量的个数不会超过 λ 的代数重数。

例

对角阵、上(下)三角矩阵

$$\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

的特征多项式皆为

$$(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$$

故 对角阵、上(下)三角矩阵的 n 个特征值为 n 个主对角元。

例

对于数量矩阵 kI,

例

对于数量矩阵 kI,

• 全部特征值为 k (n 重)。

例

对于数量矩阵 kI,

- 全部特征值为 k (n 重)。
- $\forall x \neq 0$,有

$$(k\boldsymbol{I})\boldsymbol{x} = k\boldsymbol{x},$$

故特征值 k 对应的特征向量是任意非零向量。

例

对于数量矩阵 kI,

- 全部特征值为 k (n 重)。
- $\forall x \neq 0$,有

$$(k\boldsymbol{I})\boldsymbol{x} = k\boldsymbol{x},$$

故特征值 k 对应的特征向量是任意非零向量。

• 特征值 k 的代数重数为 n, 几何重数为 n。

例

求矩阵

$$\mathbf{A} = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right)$$

的特征值与特征向量。

例

求矩阵

$$\mathbf{A} = \left(\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right)$$

的特征值与特征向量。

解

矩阵 A 的特征方程为

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ 3 & 1 - \lambda & -1 \\ 4 & -2 & 1 - \lambda \end{vmatrix} = -(\lambda - 3)(\lambda - 2)^2 = 0$$

故 A 的特征值为 $\lambda_{1,2}=2$ (二重特征值), $\lambda_3=3$ 。

解(续)

• 当 $\lambda_{1,2} = 2$ 时,解 (A - 2I)x = 0,即

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

解(续)

• 当 $\lambda_{1,2} = 2$ 时, 解 (A - 2I)x = 0, 即

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

解 (续)

• 当 $\lambda_{1,2} = 2$ 时, 解 (A - 2I)x = 0, 即

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1 = (1, 1, 2)^T$,

解(续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 ${m \xi}_1=(1,1,2)^T,$ 故 ${m A}$ 的属于 $\lambda_{1,2}=2$ 的全部特征向量为 $k_1{m \xi}_1\ (k_1\ne 0).$

解 (续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 ${\pmb \xi}_1=(1,1,2)^T$,故 ${\pmb A}$ 的属于 ${\pmb \lambda}_{1,2}=2$ 的全部特征向量为 ${\pmb k}_1{\pmb \xi}_1$ $({\pmb k}_1\neq 0).$

特征值 $\lambda_{2,3}=2$ 的代数重数为 2, 而几何重数为 1。

解 (续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1 = (1,1,2)^T$,故 A 的属于 $\lambda_{1,2} = 2$ 的全部特征向量为 $k_1 \xi_1 \ (k_1 \neq 0)$.

特征值 $\lambda_{2,3}=2$ 的代数重数为 2,而几何重数为 1。

• 当 $\lambda_3 = 3$ 时,解 (A - 3I)x = 0。由

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

解(续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1 = (1,1,2)^T$,故 A 的属于 $\lambda_{1,2} = 2$ 的全部特征向量为 $k_1 \xi_1 \ (k_1 \neq 0)$.

特征值 $\lambda_{2,3}=2$ 的代数重数为 2,而几何重数为 1。

• 当 $\lambda_3 = 3$ 时,解 (A - 3I)x = 0。由

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & x_3 \\ x_3 & = & x_3 \end{cases}$$

解 (续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1=(1,1,2)^T$,故 A 的属于 $\lambda_{1,2}=2$ 的全部特征向量为 $k_1\xi_1~(k_1\neq 0).$

特征值 $\lambda_{2,3}=2$ 的代数重数为 2,而几何重数为 1。

• 当 $\lambda_3 = 3$ 时,解 (A - 3I)x = 0。由

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_2 = (1, 1, 1)^T$,

解 (续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1=(1,1,2)^T$,故 A 的属于 $\lambda_{1,2}=2$ 的全部特征向量为 $k_1\xi_1~(k_1\neq 0).$

特征值 $\lambda_{2,3}=2$ 的代数重数为 2,而几何重数为 1。

• 当 $\lambda_3 = 3$ 时,解 (A - 3I)x = 0。由

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\pmb{\xi}_2=(1,1,1)^T$,故 \pmb{A} 的属于 $\lambda_3=3$ 的全部特征向量为 $k_2\pmb{\xi}_2\ (k_2\neq 0).$

特征值与特征向量的定义

解 (续)

$$\begin{pmatrix} 3 & -1 & -1 \\ 3 & -1 & -1 \\ 4 & -2 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & \frac{1}{2}x_3 \\ x_2 & = & \frac{1}{2}x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\xi_1 = (1,1,2)^T$,故 A 的属于 $\lambda_{1,2} = 2$ 的全部特征向量为 $k_1 \xi_1 \ (k_1 \neq 0)$.

特征值 $\lambda_{2,3}=2$ 的代数重数为 2,而几何重数为 1。

• 当 $\lambda_3 = 3$ 时,解 (A - 3I)x = 0。由

$$\begin{pmatrix} 2 & -1 & -1 \\ 3 & -2 & -1 \\ 4 & -2 & -2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系为 $\pmb{\xi}_2=(1,1,1)^T$,故 \pmb{A} 的属于 $\lambda_3=3$ 的全部特征向量为 $k_2\pmb{\xi}_2\;(k_2\neq 0).$

特征值 $\lambda_3 = 3$ 的代数重数为 1, 几何重数也为 1。

目录

- 1 矩阵的特征值问题
 - 特征值与特征向量的定义
 - 特征值与特征向量的性质
- 2 相似矩阵与矩阵的对角化
- 3 实对称矩阵的对角化

性质1

若 x_1 和 x_2 都是 A 的属于特征值 λ 的特征向量,则 $k_1x_1+k_2x_2$ 也是 A 的属于特征值 λ 的特征向量(其中 k_1,k_2 为任意常数,但 $k_1x_1+k_2x_2\neq 0$)。

性质1

若 x_1 和 x_2 都是 A 的属于特征值 λ 的特征向量,则 $k_1x_1+k_2x_2$ 也是 A 的属于特征值 λ 的特征向量(其中 k_1,k_2 为任意常数,但 $k_1x_1+k_2x_2\neq 0$)。

证明.

由已知条件 $Ax_1 = \lambda x_1, \ Ax_2 = \lambda x_2$ 知

$$A(k_1x_1 + k_2x_2) = k_1Ax_1 + k_2Ax_2 = k_1\lambda x_1 + k_2\lambda x_2 = \lambda(k_1x_1 + k_2x_2)$$

从而 $k_1x_1 + k_2x_2 (\neq \mathbf{0})$ 是 \mathbf{A} 的属于特征值 λ 的特征向量。

性质 2

A 的任一特征向量所属的特征值是唯一的。

性质 2

A 的任一特征向量所属的特征值是唯一的。

证明.

若 x 是 A 的属于特征值 $\lambda_1, \lambda_2(\lambda_1 \neq \lambda_2)$ 的特征向量,即有

$$Ax = \lambda_1 x$$
, $Ax = \lambda_2 x \Rightarrow (\lambda_1 - \lambda_2)x = 0 \Rightarrow x = 0$

这与x非零矛盾。

定义 (矩阵的迹)

对于 n 阶矩阵 $A=(a_{ij})$,其主对角元之和 $\sum_{i=1}^n a_{ii}$ 称为 A 的 $\underline{\mathring{w}}$ (trace)。

定义 (矩阵的迹)

对于 n 阶矩阵 $\mathbf{A}=(a_{ij})$,其主对角元之和 $\sum_{i=1}^n a_{ii}$ 称为 \mathbf{A} 的 $\underline{\mathbf{w}}$ (trace)

性质 3

设 n 阶矩阵 $\mathbf{A}=(a_{ij})$ 的 n 个特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$,则

(1)
$$\sum_{i=1}^n \lambda_i = \operatorname{tr}(\boldsymbol{A});$$

(2)
$$\prod_{i=1} \lambda_i = \det(\boldsymbol{A})_{\circ}$$

定义 (矩阵的迹)

对于 n 阶矩阵 $\mathbf{A} = (a_{ij})$,其主对角元之和 $\sum_{i=1}^{n} a_{ii}$ 称为 \mathbf{A} 的 $\underline{\mathbf{w}}$ (trace)

性质 3

设 n 阶矩阵 $\mathbf{A}=(a_{ij})$ 的 n 个特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$,则

- (1) $\sum_{i=1}^n \lambda_i = \operatorname{tr}(\boldsymbol{A});$
- (2) $\prod_{i=1} \lambda_i = \det(\boldsymbol{A})_{\circ}$

注

- 可逆矩阵的所有特征值皆非零;
- 奇异矩阵至少有一个零特征值。

证明.

由于 A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 故

$$\begin{vmatrix}
\lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\
-a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\
\vdots & \vdots & & \vdots \\
-a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn}
\end{vmatrix} = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

证明.

由于 A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,故

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix} = (\lambda - \lambda_1)(\lambda - \lambda_2)\cdots(\lambda - \lambda_n)$$

左边的展开式为

$$\lambda^{n} - (a_{11} + a_{22} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^{n}|A|$$
 (1)

右边的展开式为

$$\lambda^{n} - (\lambda_{1} + \lambda_{2} + \dots + \lambda_{n})\lambda^{n-1} + \dots + (-1)^{n}\lambda_{1}\lambda_{2} \dots \lambda_{n}$$
 (2)

证明.

由于 A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,故

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix} = (\lambda - \lambda_1)(\lambda - \lambda_2)\cdots(\lambda - \lambda_n)$$

左边的展开式为

$$\lambda^{n} - (a_{11} + a_{22} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^{n}|A|$$
 (1)

右边的展开式为

$$\lambda^{n} - (\lambda_{1} + \lambda_{2} + \dots + \lambda_{n})\lambda^{n-1} + \dots + (-1)^{n}\lambda_{1}\lambda_{2} \dots \lambda_{n}$$
 (2)

比较(1)和(2)知

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}, \quad \lambda_1 \lambda_2 \cdots \lambda_n = |A|.$$

性质 4

设 $\lambda \in A$ 的特征值, 其对应的特征向量为 x, 则

- $k\lambda \in kA$ 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- λ^m 是 \mathbf{A}^m 的特征值 (m 为正整数),其对应的特征向量仍为 x;
- 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值,其对应的特征向量仍为 x;
- ullet 当 A 可逆时, $\lambda^{-1}|A|$ 是 A^* 的特征值,其对应的特征向量仍为 x。

性质 4

设 λ 是 A 的特征值,其对应的特征向量为 x,则

- $k\lambda \in kA$ 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- λ^m 是 A^m 的特征值 (m 为正整数), 其对应的特征向量仍为 x;
- 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值,其对应的特征向量仍为 x;
- ullet 当 $m{A}$ 可逆时, $\lambda^{-1}|m{A}|$ 是 $m{A}^*$ 的特征值,其对应的特征向量仍为 $m{x}$ 。

证明.

性质 4

设 λ 是 A 的特征值,其对应的特征向量为 x,则

- $k\lambda$ 是 kA 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- ullet λ^m 是 A^m 的特征值 (m 为正整数),其对应的特征向量仍为 x;
- ullet 当 $m{A}$ 可逆时, $m{\lambda}^{-1}$ 是 $m{A}^{-1}$ 的特征值,其对应的特征向量仍为 $m{x}$;
- ullet 当 $m{A}$ 可逆时, $\lambda^{-1}|m{A}|$ 是 $m{A}^*$ 的特征值,其对应的特征向量仍为 $m{x}$ 。

证明.

由已知有 $Ax = \lambda x$ 。

• 由 $(kA)x = kAx = k\lambda x$ 知 $k\lambda$ 是 kA 的特征值, 其对应的特征向量为 x。

性质 4

设 $\lambda \in A$ 的特征值, 其对应的特征向量为 x, 则

- $k\lambda$ 是 kA 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- λ^m 是 A^m 的特征值 (m 为正整数), 其对应的特征向量仍为 x;
- 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值,其对应的特征向量仍为 x;
- ullet 当 $m{A}$ 可逆时, $\lambda^{-1}|m{A}|$ 是 $m{A}^*$ 的特征值,其对应的特征向量仍为 $m{x}$ 。

证明

- 由 $(kA)x = kAx = k\lambda x$ 知 $k\lambda$ 是 kA 的特征值, 其对应的特征向量为 x。
- 由 $A^kx=A^{k-1}(\lambda x)=\lambda A^{k-1}x$ 可得 $A^kx=\lambda^kx$,从而 λ^k 是 A^k 的特征值,对应的特征 向量仍为 x。

性质 4

设 λ 是 A 的特征值, 其对应的特征向量为 x, 则

- $k\lambda \in kA$ 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- λ^m 是 A^m 的特征值 (m 为正整数), 其对应的特征向量仍为 x;
- 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值,其对应的特征向量仍为 x;
- ullet 当 A 可逆时, $\lambda^{-1}|A|$ 是 A^* 的特征值,其对应的特征向量仍为 x。

证明.

- 由 $(kA)x = kAx = k\lambda x$ 知 $k\lambda$ 是 kA 的特征值, 其对应的特征向量为 x。
- 由 $A^kx=A^{k-1}(\lambda x)=\lambda A^{k-1}x$ 可得 $A^kx=\lambda^kx$,从而 λ^k 是 A^k 的特征值,对应的特征 向量仍为 x。
- ullet 设 A 可逆,则其特征值皆非零,从而 $A^{-1}x=\lambda^{-1}x$,从而 λ^{-1} 是 A^{-1} 的特征值,对应的特征向量仍为 x。

性质 4

设 λ 是 A 的特征值, 其对应的特征向量为 x, 则

- $k\lambda \neq kA$ 的特征值 (k 为任意常数), 其对应的特征向量仍为 x;
- λ^m 是 A^m 的特征值 (m 为正整数), 其对应的特征向量仍为 x;
- 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值,其对应的特征向量仍为 x;
- ullet 当 A 可逆时, $\lambda^{-1}|A|$ 是 A^* 的特征值,其对应的特征向量仍为 x。

证明.

- 由 $(kA)x = kAx = k\lambda x$ 知 $k\lambda$ 是 kA 的特征值, 其对应的特征向量为 x。
- 由 $A^kx=A^{k-1}(\lambda x)=\lambda A^{k-1}x$ 可得 $A^kx=\lambda^kx$,从而 λ^k 是 A^k 的特征值,对应的特征 向量仍为 x。
- ullet 设 A 可逆,则其特征值皆非零,从而 $A^{-1}x=\lambda^{-1}x$,从而 λ^{-1} 是 A^{-1} 的特征值,对应的特征向量仍为 x。
- 由 $A^*=|A|A^{-1}$ 知, $A^*x=|A|A^{-1}x=|A|\lambda^{-1}x$,从而 $\lambda^{-1}|A|$ 是 A^* 的特征值,对应的特征向量仍为 x。

性质 5

设 λ 是矩阵 A 的特征值,其对应的特征向量是 x,则

$$g(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m$$

是

$$g(\mathbf{A}) = a_0 \mathbf{I} + a_1 \mathbf{A} + \dots + a_m \mathbf{A}^m$$

的特征值,且

$$g(\mathbf{A})\mathbf{x} = g(\lambda)\mathbf{x}.$$

推论

设 g(x) 是一个多项式,若 $g(\mathbf{A}) = \mathbf{O}$,则 \mathbf{A} 的任一特征值 λ 必满足 $g(\lambda) = 0$ 。

推论

设 g(x) 是一个多项式,若 g(A) = O,则 A 的任一特征值 λ 必满足 $g(\lambda) = 0$ 。

证明.

设 λ 是 A 的任一特征值,其对于的特征向量为 x。由已知条件和前述定理可知

$$g(\lambda)x = g(A)x = Ox = 0.$$

由于 x 非零,故 $g(\lambda) = 0$ 。

例

设 n 阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = 5\boldsymbol{A} - 4\boldsymbol{I}$,试证 \boldsymbol{A} 的特征值只能是 1 或 4。

例

设 n 阶方阵 A 满足 $A^2 = 5A - 4I$,试证 A 的特征值只能是 1 或 4。

证明.

记 $g(x) = x^2 - 5x + 4$,则 A 满足

$$g(A) = A^2 - 5A + 4I = 0.$$

因此,矩阵 A 的特征值必满足

$$g(\lambda) = \lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1) = 0,$$

故 A 的特征值只能是 1 或 4。

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,2,3, 求 $|\boldsymbol{A}^3 - 5\boldsymbol{A}^2 + 7\boldsymbol{A}|$ 。

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,2,3, 求 $|\boldsymbol{A}^3 - 5\boldsymbol{A}^2 + 7\boldsymbol{A}|$ 。

解

设 λ 是 \boldsymbol{A} 的特征值, 则 $g(\lambda) = \lambda^3 - 5\lambda^2 + 7\lambda$ 是

$$g(\mathbf{A}) = \mathbf{A}^3 - 5\mathbf{A}^2 + 7\mathbf{A}$$

的特征值。

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,2,3, 求 $|\boldsymbol{A}^3 - 5\boldsymbol{A}^2 + 7\boldsymbol{A}|$ 。

解

设 $\lambda \in A$ 的特征值, 则 $g(\lambda) = \lambda^3 - 5\lambda^2 + 7\lambda$ 是

$$q(\mathbf{A}) = \mathbf{A}^3 - 5\mathbf{A}^2 + 7\mathbf{A}$$

的特征值。故 g(A) 的全部特征值为 g(1) = 3, g(2) = 2, g(3) = 3,从而

$$|\mathbf{A}^3 - 5\mathbf{A}^2 + 7\mathbf{A}| = 3 \times 2 \times 3 = 18.$$

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,-1,2, 求 $\boldsymbol{A}^*+3\boldsymbol{A}-2\boldsymbol{I}$ 的特征值。

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,-1,2, 求 $\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{I}$ 的特征值。

解

由题设知 $|A|=\lambda_1\lambda_2\lambda_3=-2$, 故 A 可逆, 且 $\lambda^{-1}|A|=-2\lambda^{-1}$ 是 A^* 的特征值。

例

设 3 阶方阵 A 的特征值为 1, -1, 2,求 $A^* + 3A - 2I$ 的特征值。

解

由题设知 $|A| = \lambda_1 \lambda_2 \lambda_3 = -2$,故 A 可逆,且 $\lambda^{-1} |A| = -2\lambda^{-1}$ 是 A^* 的特征值。因此,若 λ 是 A 的特征值,则

$$g(\lambda) = -2\lambda^{-1} + 3\lambda - 2$$

是 $A^* + 3A - 2I$ 的特征值。

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,-1,2,求 $\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{I}$ 的特征值。

解

由题设知 $|A| = \lambda_1 \lambda_2 \lambda_3 = -2$,故 A 可逆,且 $\lambda^{-1} |A| = -2\lambda^{-1}$ 是 A^* 的特征值。因此,若 λ 是 A 的特征值,则

$$g(\lambda) = -2\lambda^{-1} + 3\lambda - 2$$

是 $A^* + 3A - 2I$ 的特征值。于是, $A^* + 3A - 2I$ 的全部特征值为

$$g(1) = -1, \ g(-1) = -3, \ g(2) = 3.$$

性质 6

A 与 A^T 的特征值相同。

性质 6

A 与 A^T 的特征值相同。

证明.

由

$$(\boldsymbol{A} - \lambda \boldsymbol{I})^T = \boldsymbol{A}^T - \lambda \boldsymbol{I}$$

知

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = |(\boldsymbol{A} - \lambda \boldsymbol{I})^T| = |\boldsymbol{A}^T - \lambda \boldsymbol{I}|$$

即 $A 与 A^T$ 有相同的特征多项式,从而有相同的特征值。

例

设

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

- 求 A 的特征值与特征向量
- 求可逆矩阵 P,使得 $P^{-1}AP$ 为对角阵。

例

设

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

- 求 A 的特征值与特征向量
- 求可逆矩阵 P,使得 $P^{-1}AP$ 为对角阵。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & -1 & 1 \\ 2 & -2 - \lambda & 2 \\ -1 & 1 & -1 - \lambda \end{vmatrix} = -\lambda^2(\lambda + 2)$$

知 *A* 的特征值为 $\lambda_{1,2} = 0$ 和 $\lambda_3 = -2$ 。

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 & -x_3 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$$

解(续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 & -x_3 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$$

得其基础解系 $\xi_1 = (1, 1, 0)^T$ 和 $\xi_2 = (-1, 0, 1)^T$,

解 (续)

• 当 $\lambda_{1,2}=0$ 时,解 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 。由

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{cases}$$

得其基础解系 $\xi_1=(1,1,0)^T$ 和 $\xi_2=(-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1+k_2\xi_2$ $(k_1,k_2$ 不全为零).

解(续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{cases}$$

得其基础解系 $\xi_1 = (1,1,0)^T$ 和 $\xi_2 = (-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1 + k_2\xi_2$ $(k_1,k_2$ 不全为零).

特征值 0 的代数重数为 2, 几何重数也为 2。

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$\boldsymbol{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{cases}$$

得其基础解系 $\xi_1 = (1,1,0)^T$ 和 $\xi_2 = (-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1 + k_2\xi_2$ $(k_1,k_2$ 不全为零).

特征值 0 的代数重数为 2, 几何重数也为 2。

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{cases}$$

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} \begin{array}{cccc} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{array} \end{cases}$$

得其基础解系 $\xi_1 = (1,1,0)^T$ 和 $\xi_2 = (-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1 + k_2\xi_2$ $(k_1,k_2$ 不全为零).

特征值 0 的代数重数为 2, 几何重数也为 2。

• $\exists \lambda_3 = -2 \text{ bt}$, $\mathbf{H}(\mathbf{A} + 2\mathbf{I})\mathbf{x} = \mathbf{0}$, \mathbf{H}

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系 $\xi_3 = (-1, -2, 1)^T$,

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$\boldsymbol{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \stackrel{r}{\longrightarrow} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} \begin{array}{cccc} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{array} \end{cases}$$

得其基础解系 $\xi_1 = (1,1,0)^T$ 和 $\xi_2 = (-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1 + k_2\xi_2$ (k_1,k_2 不全为零).

特征值 0 的代数重数为 2, 几何重数也为 2。

• 当 $\lambda_3 = -2$ 时, 解 (A + 2I)x = 0。由

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系 ${m \xi}_3=(-1,-2,1)^T$,故 ${m A}$ 的属于特征值 -2 的全体特征向量为 $k_3{m \xi}_3~(k_3\neq 0).$

解 (续)

• 当 $\lambda_{1,2} = 0$ 时,解 Ax = 0。由

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_2 & -x_3 \\ x_2 & = & x_2 \\ x_3 & = & & x_3 \end{cases}$$

得其基础解系 $\xi_1 = (1,1,0)^T$ 和 $\xi_2 = (-1,0,1)^T$,故 A 的属于特征值 0 的全体特征向量为 $k_1\xi_1 + k_2\xi_2$ $(k_1,k_2$ 不全为零).

特征值 0 的代数重数为 2, 几何重数也为 2。

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系 $\xi_3 = (-1, -2, 1)^T$,故 ${\bf A}$ 的属于特征值 -2 的全体特征向量为 $k_3 {\bf \xi}_3 \ (k_3 \neq 0).$

特征值 -2 的代数重数为 1,几何重数也为 1。

解(续)

将

$$A\boldsymbol{\xi}_1 = \lambda_1 \boldsymbol{\xi}_1, \ A\boldsymbol{\xi}_2 = \lambda_2 \boldsymbol{\xi}_2, \ A\boldsymbol{\xi}_3 = \lambda_3 \boldsymbol{\xi}_3$$

写成

$$\boldsymbol{A}(\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\boldsymbol{\xi}_3) = (\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\boldsymbol{\xi}_3) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

解 (续)

将

$$A\boldsymbol{\xi}_1 = \lambda_1 \boldsymbol{\xi}_1, \ A\boldsymbol{\xi}_2 = \lambda_2 \boldsymbol{\xi}_2, \ A\boldsymbol{\xi}_3 = \lambda_3 \boldsymbol{\xi}_3$$

写成

$$\boldsymbol{A}(\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\boldsymbol{\xi}_3) = (\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\boldsymbol{\xi}_3) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

取

$$P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

则有

$$AP = P\Lambda$$
.

由 $|P|=2\neq 0$ 知 P 可逆。

目录

- 1 矩阵的特征值问题
- 2 相似矩阵与矩阵的对角化
- 3 实对称矩阵的对角化

定义 (相似矩阵)

设 $A, B \in \mathbb{C}^{n \times n}$, 若存在可逆矩阵 $P \in \mathbb{C}^{n \times n}$ 使得

$$P^{-1}AP = B,$$

则称 $B \in A$ 的 相似矩阵, 或者说 $A \ni B$ 相似, 记为 $A \sim B$ 。

定义 (相似矩阵)

设 $A, B \in \mathbb{C}^{n \times n}$, 若存在可逆矩阵 $P \in \mathbb{C}^{n \times n}$ 使得

$$P^{-1}AP = B,$$

则称 $B \in A$ 的 <u>相似矩阵</u>, 或者说 $A \ni B$ <u>相似</u>, 记为 $A \sim B$ 。

相似矩阵的性质

• 运算规则

$$P^{-1}(k_1A_1 + k_2A_2)P = k_1P^{-1}A_1P + k_2P^{-1}A_2P$$

 $P^{-1}(A_1A_2)P = (P^{-1}A_1P)(P^{-1}A_2P)$

- 若 A ~ B, 则
 - $lackbox{A}^k \sim m{B}^k$ (k 为任意非负整数)
 - $lackbr{A}$ 与 $lackbr{B}$ 都可逆或者都不可逆。当它们都可逆时, $lackbr{A}^{-1}\sim lackbr{B}^{-1}$ 。

定理

相似矩阵的特征值相同。

定理

相似矩阵的特征值相同。

证明.

设 $A \sim B$, 即存在可逆矩阵 $P \in \mathbb{C}^{n \times n}$ 使得

$$P^{-1}AP = B,$$

故

$$|B - \lambda I| = |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P| = |A - \lambda I|.$$

推论

若 $A \sim B$, 则

- A 与 B 有相同的秩;
- A 与 B 有相同的迹;
- ▲ 与 B 有相同的行列式。

推论

若

$$m{A} \sim m{\Lambda} = egin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_n \end{pmatrix}$$

则 $\lambda_1, \dots, \lambda_n$ 是 \mathbf{A} 的特征值。

推论

若

$$m{A} \sim m{\Lambda} = egin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_n \end{pmatrix}$$

则 $\lambda_1, \dots, \lambda_n$ 是 A 的特征值。

定义 (矩阵的对角化)

对 $A \in \mathbb{C}^{n \times n}$ 进行对角化,就是寻找可逆矩阵 P,使得

$$P^{-1}AP = \Lambda.$$

换句话说,矩阵能否对角化,等价于矩阵是否相似于某个对角阵。

定理

 $A \in \mathbb{C}^{n \times n}$ 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量。

定理

 $A \in \mathbb{C}^{n \times n}$ 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量。

证明.

$$P^{-1}AP = \Lambda \iff AP = P\Lambda$$

定理

 $A \in \mathbb{C}^{n \times n}$ 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量。

证明.

$$P^{-1}AP = \Lambda \iff AP = P\Lambda$$

将 P 按列分块,即

$$\boldsymbol{P}=(\boldsymbol{x}_1,\ \boldsymbol{x}_2,\ \cdots,\ \boldsymbol{x}_n),$$

则

定理

 $A \in \mathbb{C}^{n \times n}$ 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量。

证明.

$$P^{-1}AP = \Lambda \iff AP = P\Lambda$$

将 P 按列分块,即

$$\boldsymbol{P}=(\boldsymbol{x}_1,\ \boldsymbol{x}_2,\ \cdots,\ \boldsymbol{x}_n),$$

则

$$oldsymbol{A}(oldsymbol{x}_1, \; oldsymbol{x}_2, \; \cdots, \; oldsymbol{x}_n) = (oldsymbol{x}_1, \; oldsymbol{x}_2, \; \cdots, \; oldsymbol{x}_n) \left(egin{array}{cccc} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & \ddots & & \ & & & \lambda_n \end{array}
ight)$$

于是

$$Ax_i = \lambda_i x_i \quad (i = 1, 2, \cdots, n).$$

故 x_1, x_2, \cdots, x_n 是 A 分别对应于 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 的特征向量。由于 P 可逆,所 以它们是线性无关的。

定理

A 对应于不同特征值的特征向量是线性无关的。

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1, \lambda_2, \cdots, \lambda_k$ 对应的特征向量 x_1, x_2, \cdots, x_k 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 $x_1,\,x_2,\,\cdots,\,x_k$ 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_1 x_1 + a_2 x_2 + \dots + a_k x_k + a_{k+1} x_{k+1} = \mathbf{0}$$
 (1)

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 $x_1,\,x_2,\,\cdots,\,x_k$ 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_1 x_1 + a_2 x_2 + \dots + a_k x_k + a_{k+1} x_{k+1} = \mathbf{0}$$

$$A(a_1 x_1 + a_2 x_2 + \dots + a_k x_k + a_{k+1} x_{k+1}) = \mathbf{0}$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 $x_1,\,x_2,\,\cdots,\,x_k$ 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$\begin{array}{ccc} a_1x_1 + a_2x_2 + \cdots + a_kx_k + a_{k+1}x_{k+1} = \mathbf{0} & (1) \\ \Longrightarrow & A(a_1x_1 + a_2x_2 + \cdots + a_kx_k + a_{k+1}x_{k+1}) = \mathbf{0} \\ \Longrightarrow & a_1\lambda_1x_1 + a_2\lambda_2x_2 + \cdots + a_k\lambda_kx_k + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} & (2) \end{array}$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 $x_1,\,x_2,\,\cdots,\,x_k$ 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \qquad \mathbf{A}(a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1}) = \mathbf{0}$$

$$\Rightarrow \qquad a_{1}\lambda_{1}x_{1} + a_{2}\lambda_{2}x_{2} + \dots + a_{k}\lambda_{k}x_{k} + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} \qquad (2)$$

$$\xrightarrow{\lambda_{k+1}(1)-(2)} \qquad a_{1}(\lambda_{k+1} - \lambda_{1})x_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})x_{2} + \dots + a_{k}(\lambda_{k+1} - \lambda_{k})x_{k} = \mathbf{0}$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 x_1,x_2,\cdots,x_k 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \qquad \mathbf{A}(a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1}) = \mathbf{0}$$

$$\Rightarrow \qquad a_{1}\lambda_{1}x_{1} + a_{2}\lambda_{2}x_{2} + \dots + a_{k}\lambda_{k}x_{k} + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} \qquad (2)$$

$$\xrightarrow{\lambda_{k+1}(1)-(2)} \qquad a_{1}(\lambda_{k+1} - \lambda_{1})x_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})x_{2} + \dots + a_{k}(\lambda_{k+1} - \lambda_{k})x_{k} = \mathbf{0}$$

$$\Rightarrow \qquad a_{i}(\lambda_{k+1} - \lambda_{i}) = 0, \quad i = 1, 2, \dots, k$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 x_1,x_2,\cdots,x_k 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \qquad \mathbf{A}(a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1}) = \mathbf{0}$$

$$\Rightarrow \qquad a_{1}\lambda_{1}x_{1} + a_{2}\lambda_{2}x_{2} + \dots + a_{k}\lambda_{k}x_{k} + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} \qquad (2)$$

$$\xrightarrow{\lambda_{k+1}(1)-(2)} \qquad a_{1}(\lambda_{k+1} - \lambda_{1})x_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})x_{2} + \dots + a_{k}(\lambda_{k+1} - \lambda_{k})x_{k} = \mathbf{0}$$

$$\Rightarrow \qquad a_{i}(\lambda_{k+1} - \lambda_{i}) = 0, \quad i = 1, 2, \dots, k$$

$$\Rightarrow \qquad a_{i} = 0, \quad i = 1, 2, \dots, k$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 $x_1,\,x_2,\,\cdots,\,x_k$ 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \qquad \mathbf{A}(a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1}) = \mathbf{0}$$

$$\Rightarrow \qquad a_{1}\lambda_{1}x_{1} + a_{2}\lambda_{2}x_{2} + \dots + a_{k}\lambda_{k}x_{k} + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} \qquad (2)$$

$$\xrightarrow{\lambda_{k+1}(1)-(2)} \qquad a_{1}(\lambda_{k+1} - \lambda_{1})x_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})x_{2} + \dots + a_{k}(\lambda_{k+1} - \lambda_{k})x_{k} = \mathbf{0}$$

$$\Rightarrow \qquad a_{i}(\lambda_{k+1} - \lambda_{i}) = 0, \quad i = 1, 2, \dots, k$$

$$\Rightarrow \qquad a_{i} = 0, \quad i = 1, 2, \dots, k$$

$$\Rightarrow \qquad a_{k+1}x_{k+1} = 0$$

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 x_1,x_2,\cdots,x_k 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

定理

A 对应于不同特征值的特征向量是线性无关的。

证明.

- 1° 当 m=1 时,结论显然成立。
- 2^o 设 k 个互异特征值 $\lambda_1,\lambda_2,\cdots,\lambda_k$ 对应的特征向量 x_1,x_2,\cdots,x_k 线性无关。下面考虑 k+1 个互异特征值的特征向量的情况。设

$$a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1} = \mathbf{0} \qquad (1)$$

$$\Rightarrow \qquad A(a_{1}x_{1} + a_{2}x_{2} + \dots + a_{k}x_{k} + a_{k+1}x_{k+1}) = \mathbf{0}$$

$$\Rightarrow \qquad a_{1}\lambda_{1}x_{1} + a_{2}\lambda_{2}x_{2} + \dots + a_{k}\lambda_{k}x_{k} + a_{k+1}\lambda_{k+1}x_{k+1} = \mathbf{0} \qquad (2)$$

$$\xrightarrow{\lambda_{k+1}(1)-(2)} \qquad a_{1}(\lambda_{k+1} - \lambda_{1})x_{1} + a_{2}(\lambda_{k+1} - \lambda_{2})x_{2} + \dots + a_{k}(\lambda_{k+1} - \lambda_{k})x_{k} = \mathbf{0}$$

$$\Rightarrow \qquad a_{i}(\lambda_{k+1} - \lambda_{i}) = 0, \quad i = 1, 2, \dots, k$$

$$\Rightarrow \qquad a_{i} = 0, \quad i = 1, 2, \dots, k$$

$$\Rightarrow \qquad a_{k+1}x_{k+1} = 0$$

$$\xrightarrow{x_{k+1}\neq \mathbf{0}} \qquad \Rightarrow \qquad x_{1}, x_{2}, \dots, x_{k}, x_{k+1} \not \leq t$$

$$\Rightarrow \qquad x_{1}, x_{2}, \dots, x_{k}, x_{k+1} \not \leq t$$

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的向量组线性无关。

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的 向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3,$ 且 $\lambda_1=\lambda_2\neq\lambda_3,$ 且 λ_1 对应的线性无关的特征向量为 x_1 和 $x_2,$ 而 λ_3 对应的特征向量为 $x_3,$ 下证: x_1,x_2,x_3 线性无关。

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的 向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1x_1 + k_2x_2 + k_3x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1 x_1 + k_2 x_2 + k_3 x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

由" $\lambda_1 \times$ (3) - (4)"并结合 $\lambda_1 = \lambda_2$ 知

$$k_3(\lambda_3 - \lambda_1)\boldsymbol{x}_3 = \boldsymbol{0}$$

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1 x_1 + k_2 x_2 + k_3 x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

由" $\lambda_1 \times$ (3) - (4)"并结合 $\lambda_1 = \lambda_2$ 知

$$k_3(\lambda_3 - \lambda_1)\boldsymbol{x}_3 = \boldsymbol{0}$$

由 $\lambda_3 - \lambda_1 \neq 0, x_3 \neq 0$ 知 $k_3 = 0$ 。

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的 向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1x_1 + k_2x_2 + k_3x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

由" $\lambda_1 \times$ (3) - (4)"并结合 $\lambda_1 = \lambda_2$ 知

$$k_3(\lambda_3 - \lambda_1)x_3 = \mathbf{0}$$

由 $\lambda_3 - \lambda_1 \neq 0, x_3 \neq 0$ 知 $k_3 = 0$ 。代入(3)知 $k_1x_1 + k_2x_2 = 0$ 。

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的 向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1x_1 + k_2x_2 + k_3x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

由" $\lambda_1 \times$ (3) - (4)"并结合 $\lambda_1 = \lambda_2$ 知

$$k_3(\lambda_3 - \lambda_1)x_3 = \mathbf{0}$$

由 $\lambda_3 - \lambda_1 \neq 0, x_3 \neq 0$ 知 $k_3 = 0$ 。代入 (3) 知 $k_1x_1 + k_2x_2 = 0$ 。由 x_1 和 x_2 线性无关 得 $k_1 = k_2 = 0$,

推论

若 n 阶方阵 A 有 n 个互异特征值,则 A 可对角化。

定理

设 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个互异的特征值,对应于 λ_i 的线性无关的特征向量为 $x_{i_1},x_{i_2},\cdots,x_{i_{r_i}}$ $(i=1,2,\cdots,m)$,则由所有这些特征向量(共 $r_1+r_2+\cdots+r_m$ 个)构成的 向量组线性无关。

例证

设 3 阶方阵 A 有三个特征值 $\lambda_1,\lambda_2,\lambda_3$,且 $\lambda_1=\lambda_2\neq\lambda_3$,且 λ_1 对应的线性无关的特征向量为 x_1 和 x_2 ,而 λ_3 对应的特征向量为 x_3 ,下证: x_1,x_2,x_3 线性无关。设有 k_1,k_2,k_3 使得

$$k_1x_1 + k_2x_2 + k_3x_3 = \mathbf{0}, (3)$$

则

$$k_1 A x_1 + k_2 A x_2 + k_3 A x_3 = 0 \iff k_1 \lambda_1 x_1 + k_2 \lambda_2 x_2 + k_3 \lambda_3 x_3 = 0,$$
 (4)

由" $\lambda_1 \times$ (3) - (4)"并结合 $\lambda_1 = \lambda_2$ 知

$$k_3(\lambda_3 - \lambda_1)\boldsymbol{x}_3 = \boldsymbol{0}$$

由 $\lambda_3 - \lambda_1 \neq 0, x_3 \neq 0$ 知 $\frac{k_3}{k_3} = 0$ 。代入(3)知 $k_1x_1 + k_2x_2 = 0$ 。由 x_1 和 x_2 线性无关 得 $\frac{k_1}{k_1} = \frac{k_2}{k_2} = 0$,从而 x_1, x_2, x_3 线性无关。

定理

A 可对角化的充分必要条件是对于 A 的所有互异特征值,代数重数皆等于几何重数。

定理

A 可对角化的充分必要条件是对于 A 的所有互异特征值,代数重数皆等于几何重数。

注

判断 A 是否可对角化,只需检查多重特征值的代数重数是否等于几何重数,而单重特征值无需检查。

例

设矩阵

$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$

问 A 能否对角化? 若能,则求可逆阵 P 和对角阵 Λ 使 $P^{-1}AP = \Lambda$ 。

例

设矩阵

$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$

问 A 能否对角化? 若能,则求可逆阵 P 和对角阵 Λ 使 $P^{-1}AP = \Lambda$ 。

解

A 的特征方程为

$$|A - \lambda I| = \begin{vmatrix} -2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 0 \\ -4 & 1 & 3 - \lambda \end{vmatrix} = -(\lambda + 1)(\lambda - 2)^2,$$

故 **A** 的特征值为 $\lambda_1 = -1, \lambda_{2,3} = 2$ 。

解 (续)

• $\exists \lambda_1 = -1$, $\bowtie (A + I)x = 0$, \boxminus

$$A + I = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & 0 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系:

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

解 (续)

• 当 $\lambda_1 = -1$, 解 (A + I)x = 0。由

$$A + I = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & 0 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系:

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

特征值 -1 的代数重数为 1,几何重数也为 1。

解 (续)

• 当 $\lambda_1 = -1$, 解 (A + I)x = 0。由

$$A + I = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & 0 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系:

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

特征值 -1 的代数重数为 1,几何重数也为 1。

• $\exists \lambda_{2,3} = 2$, $\bowtie (A - 2I)x = 0$ 。 \boxminus

$$\mathbf{A} - 2\mathbf{I} = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_1 \\ x_2 & = & x_2 \\ x_3 & = & 4x_1 & -x_2 \end{cases}$$

得对应的特征向量

$$\boldsymbol{\xi}_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

解 (续)

• $\exists \lambda_1 = -1$, $\mathbf{H}(A + I)x = 0$. \mathbf{H}

$$A + I = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_3 \\ x_2 & = & 0 \\ x_3 & = & x_3 \end{cases}$$

得其基础解系:

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

特征值 -1 的代数重数为 1, 几何重数也为 1。

• $\exists \lambda_{2,3} = 2$, $\bowtie (A - 2I)x = 0$. \boxminus

$$\mathbf{A} - 2\mathbf{I} = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & x_1 \\ x_2 & = & & x_2 \\ x_3 & = & 4x_1 & -x_2 \end{cases}$$

得对应的特征向量

$$\boldsymbol{\xi}_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

特征值 2 的代数重数为 2, 几何重数也为 2。

解(续)

由于对 A 的每个互异特征值,代数重数等于几何重数,故 A 可对角化。记

$$P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 4 \end{pmatrix}$$

则

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & & \\ & 2 & \\ & & 2 \end{pmatrix}$$

目录

- 1 矩阵的特征值问题
- 2 相似矩阵与矩阵的对角化
- 3 实对称矩阵的对角化

定义 (共轭矩阵)

设 $\pmb{A}=(a_{ij})\in\mathbb{C}^{m imes n}$,则称 $\bar{\pmb{A}}=(\bar{a}_{ij})$ 为 \pmb{A} 的共轭矩阵。

定义 (共轭矩阵)

设
$$\mathbf{A}=(a_{ij})\in\mathbb{C}^{m imes n}$$
,则称 $\bar{\mathbf{A}}=(\bar{a}_{ij})$ 为 \mathbf{A} 的共轭矩阵。

注

- $\bullet \overline{\overline{A}} = A$
- $\overline{A}^T = \overline{A^T}$ (共轭转置)
- ullet 当 $oldsymbol{A}$ 为实对称矩阵时, $\overline{oldsymbol{A}}^T=\overline{oldsymbol{A}}^T=oldsymbol{A}^T=oldsymbol{A}$

定义 (共轭矩阵)

设 $A=(a_{ij})\in\mathbb{C}^{m\times n}$,则称 $\bar{A}=(\bar{a}_{ij})$ 为 A 的共轭矩阵。

注

- $\bullet \overline{\overline{A}} = A$
- $\overline{A}^T = \overline{A^T}$ (共轭转置)
- ullet 当 A 为实对称矩阵时, $\overline{A}^T = \overline{A^T} = A^T = A$

共轭矩阵的性质

- $\overline{k}\overline{A} = \overline{k} \overline{A}$
- $\bullet \ \overline{A+B} = \overline{A} + \overline{B}$
- $\bullet \ \overline{AB} = \overline{AB}$
- $\overline{A^{-1}} = (\overline{A})^{-1}$
- \bullet det $\bar{A} = \overline{\det A}$

定理

实对称矩阵 A 的任一特征值都是实数。

定理

实对称矩阵 A 的任一特征值都是实数。

证明.

$$egin{aligned} oldsymbol{A}oldsymbol{x} &= \lambda oldsymbol{x} &\implies \overline{oldsymbol{A}}oldsymbol{x}^T &= \overline{\lambda} oldsymbol{\overline{x}}^T & oldsymbol{x} &= \overline{\lambda} oldsymbol{\overline{x}}^T oldsymbol{\overline{x}} &= \overline{\lambda} oldsymbol{\overline{x}}$$

定理

实对称矩阵 A 的属于不同特征值的特征向量是正交的。

定理

实对称矩阵 A 的属于不同特征值的特征向量是正交的。

证明.

设
$$Ax_1 = \lambda_1 x_1$$
, $Ax_2 = \lambda_2 x_2$ $(\lambda_1 \neq \lambda_2)$, $A^T = A$, 则
$$\lambda_1 x_2^T x_1 = x_2^T A x_1 = x_2^T A^T x_1 = (Ax_2)^T x_1 = (\lambda_2 x_2)^T x_1 = \lambda_2 x_2^T x_1$$

定理

实对称矩阵 A 的属于不同特征值的特征向量是正交的。

证明.

设
$$Ax_1 = \lambda_1 x_1$$
, $Ax_2 = \lambda_2 x_2$ $(\lambda_1 \neq \lambda_2)$, $A^T = A$, 则

$$\lambda_1 x_2^T x_1 = x_2^T A x_1 = x_2^T A^T x_1 = (A x_2)^T x_1 = (\lambda_2 x_2)^T x_1 = \lambda_2 x_2^T x_1$$

由于 $\lambda_1 \neq \lambda_2$, 所以

$$\boldsymbol{x}_2^T \boldsymbol{x}_1 = 0.$$

定理

实对称矩阵 A 的属于不同特征值的特征向量是正交的。

证明.

设
$$Ax_1 = \lambda_1 x_1$$
, $Ax_2 = \lambda_2 x_2$ $(\lambda_1 \neq \lambda_2)$, $A^T = A$, 则

$$\lambda_1 x_2^T x_1 = x_2^T A x_1 = x_2^T A^T x_1 = (A x_2)^T x_1 = (\lambda_2 x_2)^T x_1 = \lambda_2 x_2^T x_1$$

由于 $\lambda_1 \neq \lambda_2$, 所以

$$\boldsymbol{x}_2^T \boldsymbol{x}_1 = 0.$$

注

对于一般方阵 A,其对应于不同特征值的特征向量是线性无关的。

定理

设 $A \in \mathbb{R}^{n \times n}$, 则存在正交矩阵 $Q \in \mathbb{R}^{n \times n}$, 使得

$$\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{Q}^T\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{\Lambda}.$$

证明.

略

定理

设 $A \in \mathbb{R}^{n \times n}$, 则存在正交矩阵 $Q \in \mathbb{R}^{n \times n}$, 使得

$$Q^{-1}AQ = Q^TAQ = \Lambda.$$

证明.

略

注

实对称矩阵一定可以对角化。

实对称矩阵对角化的步骤

③ 求出 A 的全部互异特征值 $\lambda_1,\cdots,\lambda_s$,重数分别为 k_1,\cdots,k_s 。

实对称矩阵对角化的步骤

- **①** 求出 A 的全部互异特征值 $\lambda_1, \dots, \lambda_s$, 重数分别为 k_1, \dots, k_s 。
- ② 对每个 k_i 重特征值 λ_i ,
 - \mathbf{x} 求 $(\mathbf{A} \lambda_i \mathbf{I})\mathbf{x} = \mathbf{0}$ 的基础解系,得 k_i 个线性无关的特征向量。

实对称矩阵对角化的步骤

- **③** 求出 A 的全部互异特征值 $\lambda_1, \dots, \lambda_s$, 重数分别为 k_1, \dots, k_s 。
- ② 对每个 k_i 重特征值 λ_i ,
 - \mathbf{x} 求 $(\mathbf{A} \lambda_i \mathbf{I})\mathbf{x} = \mathbf{0}$ 的基础解系,得 k_i 个线性无关的特征向量。
 - 利用施密特正交化过程,将它们正交化和单位化,得 k_i 个两两正交的单位特征向量。(因 $k_1+\cdots+k_s=n$,故共有n个两两正交的单位特征向量。)

实对称矩阵对角化的步骤

- **③** 求出 A 的全部互异特征值 $\lambda_1, \dots, \lambda_s$, 重数分别为 k_1, \dots, k_s 。
- ② 对每个 k_i 重特征值 λ_i ,
 - ▶ 求 $(A \lambda_i I)x = 0$ 的基础解系,得 k_i 个线性无关的特征向量。
 - 利用施密特正交化过程,将它们正交化和单位化,得 k_i 个两两正交的单位特征向量。(因 $k_1 + \cdots + k_s = n$, 故共有 n 个两两正交的单位特征向量。)
- \odot 把这 n 个两两正交的单位特征向量构成正交矩阵 Q,便有

$$Q^{-1}AQ = Q^TAQ = \Lambda.$$

例

设

$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

求正交矩阵 Q, 使 $Q^{-1}AQ = \Lambda$ 为对角阵。

例设

$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

求正交矩阵 Q,使 $Q^{-1}AQ = \Lambda$ 为对角阵。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda - 1)^2 (\lambda + 2)$$

可求得 \mathbf{A} 的特征值为 $\lambda_1 = -2, \lambda_{2,3} = 1$ 。

解(续)

对
$$\lambda_1 = -2$$
, 解 $(\mathbf{A} + 2\mathbf{I})\mathbf{x} = \mathbf{0}$ 。由

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

解(续)

对 $\lambda_1 = -2$, 解 $(\boldsymbol{A} + 2\boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$ 。由

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -x_3 \\ x_3 & = & x_3 \end{cases}$$

解(续)

对 $\lambda_1 = -2$, 解 $(\mathbf{A} + 2\mathbf{I})\mathbf{x} = \mathbf{0}$ 。由

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -x_3 \\ x_3 & = & x_3 \end{cases}$$

得基础解系

$$\boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

解(续)

对 $\lambda_1 = -2$, 解 $(\mathbf{A} + 2\mathbf{I})\mathbf{x} = \mathbf{0}$ 。由

$$\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_3 \\ x_2 & = & -x_3 \\ x_3 & = & x_3 \end{cases}$$

得基础解系

$$\boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

将其单位化得

$$q_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

解 (续)

对 $\lambda_{2,3}=1$, 解 $(\boldsymbol{A}-\boldsymbol{I})\boldsymbol{x}=\boldsymbol{0}$ 。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

解 (续)

对 $\lambda_{2,3} = 1$, 解 (A - I)x = 0。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = -x_2 & +x_3 \\ x_2 & = & x_2 \\ x_3 & = & x_3 \end{cases}$$

解 (续)

对 $\lambda_{2,3} = 1$, 解 (A - I)x = 0。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_2 & +x_3 \\ x_2 & = & x_2 \\ x_3 & = & x_3 \end{cases}$$

得基础解系

$$\boldsymbol{\xi}_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

解 (续)

对 $\lambda_{2,3} = 1$, 解 (A - I)x = 0。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_2 & +x_3 \\ x_2 & = & x_2 \\ x_3 & = & x_3 \end{cases}$$

得基础解系

$$\boldsymbol{\xi}_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

正交化

$$m{\eta}_2 = m{\xi}_2, \quad m{\eta}_3 = m{\xi}_3 - rac{(m{\eta}_2, m{\xi}_3)}{(m{\eta}_2, m{\eta}_2)} m{\eta}_2 = rac{1}{2} egin{pmatrix} 1 \ 1 \ 2 \end{pmatrix}$$

解 (续)

对 $\lambda_{2,3} = 1$, 解 (A - I)x = 0。由

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 & = & -x_2 & +x_3 \\ x_2 & = & x_2 \\ x_3 & = & x_3 \end{cases}$$

得基础解系

$$\boldsymbol{\xi}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

正交化

$$oldsymbol{\eta}_2 = oldsymbol{\xi}_2, \quad oldsymbol{\eta}_3 = oldsymbol{\xi}_3 - rac{(oldsymbol{\eta}_2, oldsymbol{\xi}_3)}{(oldsymbol{\eta}_2, oldsymbol{\eta}_2)} oldsymbol{\eta}_2 = rac{1}{2} egin{pmatrix} 1 \ 1 \ 2 \end{pmatrix}$$

单位化

$$\boldsymbol{q}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{q}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

解(续)

构成正交矩阵

$$Q = (q_1, q_2, q_3) = \begin{pmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$$

有

$$\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} -2 & & \\ & 1 & \\ & & 1 \end{pmatrix}$$

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 \mathbf{A} 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 \\ x_2 = x_2 \end{cases}$$

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\mathbf{A} - \lambda_1 \mathbf{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 \\ x_2 = x_2 \end{cases}$$

得基础解系为 $\xi_1 = (1,1)^T$ 。

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\mathbf{A} - \lambda_1 \mathbf{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 \\ x_2 = x_2 \end{cases}$$

得基础解系为 $\xi_1 = (1,1)^T$ 。

• 当 $\lambda_2 = 3$ 时,解 $(A - \lambda_2 I)x = 0$ 。由

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 \\ x_2 = x_2 \end{cases}$$

得基础解系为 $\xi_1 = (1,1)^T$ 。

• 当 $\lambda_2 = 3$ 时,解 $(A - \lambda_2 I)x = 0$ 。由

$$(\boldsymbol{A}-\lambda_1\boldsymbol{I}) = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \implies \left\{ \begin{array}{ccc} x_1 & = & -x_2 \\ x_2 & = & x_2 \end{array} \right.$$

例

设
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,求 A^n 。

解

由

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

知 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$ 时,解 $(A - \lambda_1 I)x = 0$ 。由

$$(\mathbf{A} - \lambda_1 \mathbf{I}) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = x_2 \\ x_2 = x_2 \end{cases}$$

得基础解系为 $\xi_1 = (1,1)^T$ 。

• 当 $\lambda_2 = 3$ 时,解 $(A - \lambda_2 I)x = 0$ 。由

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \implies \begin{cases} x_1 = -x_2 \\ x_2 = x_2 \end{cases}$$

得基础解系为 $\xi_2 = (-1,1)^T$ 。

解(续)

$$\mathbf{P} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \implies \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

解 (续)

$$\mathbf{P} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \implies \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

于是

$$\mathbf{A}^{n} = \mathbf{P} \mathbf{\Lambda}^{n} \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + 3^{n} & 1 - 3^{n} \\ 1 - 3^{n} & 1 + 3^{n} \end{pmatrix}.$$

例

例

注

求矩阵幂时,不要一味地使用对角化方法,有时可以灵活地根据题目的特点求解。

例

注

求矩阵幂时,不要一味地使用对角化方法,有时可以灵活地根据题目的特点求解。

解

注意到

例

注

求矩阵幂时,不要一味地使用对角化方法,有时可以灵活地根据题目的特点求解。

解

注意到

则

$$\boldsymbol{A^{2022}} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \underbrace{(1, -1, -1)}_{1} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} (1, -1, -1) \cdots \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} (1, -1, -1)$$

例

注

求矩阵幂时,不要一味地使用对角化方法,有时可以灵活地根据题目的特点求解。

解

注意到

则

$$A^{2022} = \begin{pmatrix} -1\\1\\1 \end{pmatrix} (1, -1, -1) \begin{pmatrix} -1\\1\\1 \end{pmatrix} (1, -1, -1) \cdots \begin{pmatrix} -1\\1\\1 \end{pmatrix} (1, -1, -1)$$
$$= (-3)^{2021} \begin{pmatrix} -1\\1\\1 \end{pmatrix} (1, -1, -1) = (-3)^{2021} A$$

例

设 3 阶矩阵 $m{A}$ 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 $m{p}_1=(0,1,1)^T$, $m{p}_2=(1,1,1)^T$, $m{p}_3=(1,1,0)^T$,求 $m{A}$.

例

设 3 阶矩阵 \pmb{A} 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 $\pmb{p}_1=(0,1,1)^T$, $\pmb{p}_2=(1,1,1)^T$, $\pmb{p}_3=(1,1,0)^T$,求 \pmb{A} .

解

记 $P = (p_1, p_2, p_3)$, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, 则 $AP = P\Lambda$,

例

设 3 阶矩阵 ${m A}$ 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 ${m p}_1=(0,1,1)^T$, ${m p}_2=(1,1,1)^T,\ {m p}_3=(1,1,0)^T,\ \vec{{m x}}\ {m A}.$

解

记
$$P = (p_1, p_2, p_3)$$
, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, 则 $AP = P\Lambda$, 从而

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

例

设 3 阶矩阵 \pmb{A} 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 $\pmb{p}_1=(0,1,1)^T$, $\pmb{p}_2=(1,1,1)^T$, $\pmb{p}_3=(1,1,0)^T$,求 \pmb{A} .

解

记
$$P = (p_1, p_2, p_3)$$
, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, 则 $AP = P\Lambda$, 从而

$$\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

由

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ \hline 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{c_1 \leftrightarrow c_2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ \hline -2 & 0 & 1 \\ -2 & 2 & 1 \\ -2 & 2 & 0 \end{pmatrix}$$

例

设 3 阶矩阵 \pmb{A} 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 $\pmb{p}_1=(0,1,1)^T$, $\pmb{p}_2=(1,1,1)^T$, $\pmb{p}_3=(1,1,0)^T$,求 \pmb{A} .

解

记
$$P=(p_1,p_2,p_3)$$
, $\Lambda=\mathrm{diag}(\lambda_1,\lambda_2,\lambda_3)$, 则 $AP=P\Lambda$, 从而

$$\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

由

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ \hline 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{c_1 \leftrightarrow c_2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ \hline -2 & 0 & 1 \\ -2 & 2 & 1 \\ -2 & 2 & 0 \end{pmatrix} \xrightarrow{c_3 - c_1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline -2 & 0 & -3 \\ \hline -2 & 2 & -3 \\ \hline -2 & 2 & -2 \end{pmatrix}$$

例

设 3 阶矩阵 ${m A}$ 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 ${m p}_1=(0,1,1)^T$, ${m p}_2=(1,1,1)^T,\ {m p}_3=(1,1,0)^T,\ \vec{{m x}}\ {m A}.$

解

记
$$P = (p_1, p_2, p_3)$$
, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, 则 $AP = P\Lambda$, 从而

$$\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

由

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{c_1 \leftrightarrow c_2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \\ -2 & 2 & 1 \\ -2 & 2 & 0 \end{pmatrix} \xrightarrow{c_3 - c_1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ -2 & 0 & -3 \\ -2 & 2 & -3 \\ -2 & 2 & -2 \end{pmatrix} \xrightarrow{c_1 - c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & 4 & -2 \end{pmatrix}$$

例

设 3 阶矩阵 $m{A}$ 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,对应的特征向量为 $m{p}_1=(0,1,1)^T$, $m{p}_2=(1,1,1)^T$, $m{p}_3=(1,1,0)^T$,求 $m{A}$.

解

记
$$P=(p_1,p_2,p_3)$$
, $\Lambda=\mathrm{diag}(\lambda_1,\lambda_2,\lambda_3)$, 则 $AP=P\Lambda$, 从而

$$\boldsymbol{A} = \boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

由

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{c_1 \leftrightarrow c_2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \\ -2 & 2 & 1 \\ -2 & 2 & 0 \end{pmatrix} \xrightarrow{c_3 - c_1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ -2 & 0 & -3 \\ -2 & 2 & -3 \\ -2 & 2 & -2 \end{pmatrix} \xrightarrow{c_1 - c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & 4 & -2 \end{pmatrix}$$

知

$$A = P\Lambda P^{-1} = \begin{pmatrix} -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & 4 & -2 \end{pmatrix}$$

例

设 3 阶矩阵 A 的特征值为 $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 0$,对应 λ_1, λ_2 的特征向量分别为 $p_1 = (1, 2, 2)^T, p_2 = (2, 1, -2)^T, 求 A$.

例

设 3 阶矩阵 A 的特征值为 $\lambda_1=1, \lambda_2=-1, \lambda_3=0$,对应 λ_1, λ_2 的特征向量分别为 $p_1=(1,2,2)^T$, $p_2=(2,1,-2)^T$,求 A.

解

设 λ_3 对应的特征向量为 $\boldsymbol{p}_3 = (x,y,z)^T$ 。

例

设 3 阶矩阵 \boldsymbol{A} 的特征值为 $\lambda_1=1, \lambda_2=-1, \lambda_3=0$,对应 λ_1, λ_2 的特征向量分别为 $\boldsymbol{p}_1=(1,2,2)^T$, $\boldsymbol{p}_2=(2,1,-2)^T$,求 \boldsymbol{A} .

解

设 λ_3 对应的特征向量为 ${m p}_3=(x,y,z)^T$ 。由 ${m A}$ 对称及 $\lambda_1\neq\lambda_2\neq\lambda_3$ 知 ${m p}_1,{m p}_2,{m p}_3$ 两两 正交,即

$$\begin{cases} x + 2y + 2z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

例

设 3 阶矩阵 A 的特征值为 $\lambda_1=1, \lambda_2=-1, \lambda_3=0$,对应 λ_1, λ_2 的特征向量分别为 $p_1=(1,2,2)^T$, $p_2=(2,1,-2)^T$,求 A.

解

设 λ_3 对应的特征向量为 ${m p}_3=(x,y,z)^T$ 。由 ${m A}$ 对称及 $\lambda_1\neq\lambda_2\neq\lambda_3$ 知 ${m p}_1,{m p}_2,{m p}_3$ 两两正交,即

$$\begin{cases} x + 2y + 2z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

由

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \end{pmatrix} \xrightarrow[r_2 \div (-3)]{} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_1 - 2r_2]{} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

知

$$\left\{ \begin{array}{lcl} x_1 & = & 2x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{array} \right. \implies p_3$$
 可取为 $\left(\begin{array}{c} 2 \\ -2 \\ 1 \end{array} \right)$

例

设 3 阶矩阵 A 的特征值为 $\lambda_1=1, \lambda_2=-1, \lambda_3=0$,对应 λ_1, λ_2 的特征向量分别为 $p_1=(1,2,2)^T$, $p_2=(2,1,-2)^T$,求 A.

解

设 λ_3 对应的特征向量为 ${m p}_3=(x,y,z)^T$ 。由 ${m A}$ 对称及 $\lambda_1\neq\lambda_2\neq\lambda_3$ 知 ${m p}_1,{m p}_2,{m p}_3$ 两两正交,即

$$\begin{cases} x + 2y + 2z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

由

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \end{pmatrix} \xrightarrow[r_2 \div (-3)]{} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_1 - 2r_2]{} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

知

$$\left\{ \begin{array}{lcl} x_1 & = & 2x_3 \\ x_2 & = & -2x_3 \\ x_3 & = & x_3 \end{array} \right. \implies p_3$$
 可取为 $\left(\begin{array}{c} 2 \\ -2 \\ 1 \end{array} \right)$

解(续)

由于 p_1, p_2, p_3 两两正交,对它们单位化即得正交矩阵

$$Q = \begin{pmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ 2/3 & -2/3 & -1/3 \end{pmatrix}$$

使得

$$\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q} = \operatorname{diag}(1, -1, 0) := \boldsymbol{\Lambda}.$$

解(续)

由于 p_1, p_2, p_3 两两正交,对它们单位化即得正交矩阵

$$Q = \begin{pmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ 2/3 & -2/3 & -1/3 \end{pmatrix}$$

使得

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} = \operatorname{diag}(1, -1, 0) := \mathbf{\Lambda}.$$

于是

$$\boldsymbol{A} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T = \frac{1}{9} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

例

设 3 阶矩阵 ${\bf A}$ 的特征值为 $\lambda_1=6,\lambda_2=\lambda_3=3$,对应 λ_1 的特征向量为 ${\bf p}_1=(1,1,1)^T$,求 ${\bf A}$ 。

例

设 3 阶矩阵 ${\bf A}$ 的特征值为 $\lambda_1=6,\lambda_2=\lambda_3=3$,对应 λ_1 的特征向量为 ${\bf p}_1=(1,1,1)^T$,求 ${\bf A}$ 。

解

设 \boldsymbol{A} 的属于 λ_2, λ_3 的特征向量为 $\boldsymbol{p}_2, \boldsymbol{p}_3$ 。

例

设 3 阶矩阵 ${\bf A}$ 的特征值为 $\lambda_1=6,\lambda_2=\lambda_3=3$,对应 λ_1 的特征向量为 ${\bf p}_1=(1,1,1)^T$,求 ${\bf A}$ 。

解

设 A 的属于 λ_2, λ_3 的特征向量为 p_2, p_3 。因为 A 对称,故 p_2, p_3 与 p_1 正交。设 $(x,y,z)^T$ 与 p_1 正交,即

$$x + y + z = 0,$$

例

设 3 阶矩阵 ${\bf A}$ 的特征值为 $\lambda_1=6,\lambda_2=\lambda_3=3$,对应 λ_1 的特征向量为 ${\bf p}_1=(1,1,1)^T$,求 ${\bf A}$ 。

解

设 A 的属于 λ_2, λ_3 的特征向量为 p_2, p_3 。因为 A 对称,故 p_2, p_3 与 p_1 正交。设 $(x, y, z)^T$ 与 p_1 正交,即

$$x + y + z = 0,$$

它的一组正交的基础解系为

$$(1,-1,0)^T$$
, $(1,1,-2)^T$.

故可取

$$\boldsymbol{p}_2 = (1, -1, 0)^T, \ \boldsymbol{p}_3 = (1, 1, -2)^T.$$

解(续)

由于 p_1, p_2, p_3 两两正交,对它们单位化即得正交矩阵

$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}$$

使得

$$\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q} = \operatorname{diag}(6, 3, 3) := \boldsymbol{\Lambda}.$$

解 (续)

由于 p_1, p_2, p_3 两两正交,对它们单位化即得正交矩阵

$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}$$

使得

$$\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q} = \mathrm{diag}(6, 3, 3) := \boldsymbol{\Lambda}.$$

于是

$$\boldsymbol{A} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$