Decomposition of Graphs: Topological Sort

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

Learning Objectives

- Implement the topological sort algorithm.
- Prove that a DAG can be linearly ordered.

Outline

1 Idea

2 Algorithms

3 Correctness

Last Time

- Directed graphs.
- Linearly order vertices.
- Requires DAG.

Last Vertex

Consider the last vertex in the ordering. It cannot have any edges pointing out of it.

Sources and Sinks

Definition

A source is a vertex with no incoming edges.

A sink is a vertex with no outgoing edges.

Problem

How many sinks does the graph below have?

Solution

3.

Idea

- Find sink.
- Put at end of order.
- Remove from graph.
- Repeat.

 (A)

B E C D

Finding Sink

Question: How do we know that there is a sink?

Follow Path

Follow path as far as possible $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n$. Eventually either:

- Cannot extend (found sink).
- Repeat a vertex (have a cycle).

Outline

1 Idea

2 Algorithms

3 Correctness

First Try

LinearOrder(G)

```
while G non-empty:
Follow a path until cannot extend
Find sink v
Put v at end of order
Remove v from G
```


 (A)

B E C D

B E C D

B E C D

Runtime

- O(|V|) paths.
- Each takes O(|V|) time.
- Runtime $O(|V|^2)$.

Speed Up

- Retrace same path every time.
- Instead only back up as far as necessary.

Observation

This is just DFS!

Observation

This is just DFS!
We are sorting vertices based in postorder!

Better Algorithm

TopologicalSort(G)

 $\mathrm{DFS}(G)$ sort vertices by reverse post-order

Outline

1 Idea

2 Algorithms

3 Correctness

Theorem

Theorem

If G is a DAG, with an edge u to v, post(u) > post(v).

Proof

Consider cases

- Explore v before exploring u.
- **Explore** v while exploring u.
- Explore v after exploring u (cannot happen since there is an edge).

Case I

Explore v before exploring u.

- Cannot reach *u* from *v* (DAG)
- Must finish exploring v before find u
- lacksquare post(u) > post(v).

Case II

Explore v while exploring u. Must finish exploring v before can finish exploring u. Therefore post(u) > post(v).

Next Time

Connectivity in directed graphs.