Decision Problems for Regular Languages

(1) Emptiness of L(M): Check whiten any final stade is Reachable. Algorithm: BFS on DFS Complexity $O(m+n) \in O(n^n)$ 1 1 Author (states)

edges

(manifest)

(2) Finiteness of L(M)

(1) Run BRS/DFS and delete all inventibable states and de states from which one cannot roach a final state (How?)

(2) DFA M accepts on infinite language iff
the resulting transition diagram has he initial
state, at least one final state and a cycle.

(3) Equivalence of DFA If
$$L_1 = L(M_1)$$
 and $L_2 = L(M_2)$ than $L_1 = L_2 \Leftrightarrow (L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1}) = 0$

Myhall - Nevode Theorem

R = SAS reflexive, symmetric, franktive

RR = xBy = yRx = xRy \ yRx = xRy \ xR2 Recap Equivalence relations:

for all x, y, z & S Equivalence class of $x \in S$: $[x] = \{y \mid x Ry\}$ Set of equivalence closes of 3 under R: 5/R = {[x] | x e s}

Notation = , =

Ex (1) Congruence modulo 3 greence modulo $x = y \pmod{3}$ if 3 divides x - y. x = 2 (mod 3) [0] [2] N (Th Equivalence classes?

Def: Given on equivalence relation = 1 the index of = is the condinality of its equivelence classes (ine |S|=1)

Def: Given two equivalence relations R_1 and R_2 on S, R_1 is a infinerest of R_2 if $\forall x,y \in S$. $xR_1y \Rightarrow xR_2y$.

Fact: Every equivalence class of R2 is a union of equivalence classes of R1.

We define two equivalence on Σ^* as follows.

(1) fixen an arbitrary $L \in \Sigma^*$ (L need not be regular) define R = E*x E* by xR_y iff ∀z∈ 5*. (xz ∈ L ⇔ yz ∈ L) We will show that I is regular if the index of RL is finite.

(2) given a DFA M = (Q, 5, 8, 80, F) where $R_M \subseteq \Sigma^* \times \Sigma^*$ by $x R_M y$ iff $\delta(q_0, x) = \delta(q_0, y)$

(1) There is a one-to-one correspondence (bijection) Setween the reachable states of M and the equivalence classes

(2) If x Rmy then xz Rmyz for all ZE I* Since $\delta(q_{0,1} z_{2}) = \delta(\underline{\delta(q_{0,2})}, z) = \delta(\underline{\delta(q_{0,2})}, z)$ = 8(80,4z)

Def: An equivalence relation R on I satisfying xRy => xzRyz for all ZEE* is said to be right invariant .

Item (2) above says Rm is right-invariant.