Filter for aquariums

Patent number:

DE3136383

Publication date:

1983-03-31

Inventor:

EHEIM GUNTHER (DE); WIEDENMANN WALTER (DE)

Applicant:

GUNTHER EHEIM FABRIK ELEKTROME (DE)

Classification:

- international:

F04D13/06; B01D27/00

- european:

A01K63/04; A01K63/04B; A01K63/04C; F04D13/06

Application number: DE19813136383 19810914 Priority number(s): DE19813136383 19810914

Report a data error here

Abstract of DE3136383

A filter for aquariums containing a filter cartridge and an adjoining head is proposed, which contains in its casing a self-starting synchronous motor with a permanent-magnet rotor and a pump impeller which sits directly on the rotor shaft in a pump chamber whose radial outlet, located on a perimeter side, is situated at the bottom end of the head and opens into a discharge duct leading to the top end of the head. The rotor shaft is provided with a continuous bearing bore and is supported, on a divided shaft formed by two shaft pins, in a precisely fitting manner, but with free running clearance. Each shaft pin is seated, at its end, in an elastic rubber socket. The rotor shaft consists of a carbon material, the shaft pins of a ceramic material. Both parts are expediently run in together and ensure good centring and a substantially true-running bearing arrangement. The pump impeller having rigid radial vanes is clipped onto the rotor shaft axially in a detachable manner. Relative to the rotor shaft, it is freely rotatable by a substantial circumferential angle and has radial damping end stops, against which a fixed radial end stop of the rotor shaft strikes for the purpose of rotational locking (slaving) in the drive direction. The bush, which accommodates the entire rotor and adjoins the pump chamber axially, is open at both ends to form a lubricating and cooling duct which runs between the bush and the rotor and is connected, near the head, to a pressure relief port via a small radial duct. Between the bottom plate and the pump chamber there is a control disc, which can be rotationally adjusted manually, for controlling the throughput. Said control disc has an axially continuous control window with a radial duct adjoining it which is covered axially by the bottom plate and towards the centre communicates with the axial suction side of the pump, depending on the rotational position of the control disc, via coincident wall openings in the pipe section of the control disc and bottom-plate pipe stubs engaging these.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK DEUTSCHLAND

OffenlegungsschriftDE 3136383 A1

F 04 D 13/06 B 01 D 27/00

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

② Anmeldetag:

(3) Offenlegungstag:

P 31 36 383.0-15

14. 9.81

31. 3.83

(1) Anmelder:

Gunther Eheim Fabrik elektromechanischer Erzeugnisse, 7301 Deizisau, DE

(7) Erfinder:

Eheim, Gunther; Wiedenmann, Walter, 7301 Deizisau, DE

<u>เพียงสาราเลเลียง</u>

Prüfungsantrag gem. § 44 PatG ist gestellt

S »Filter für Aquarien«

Es wird ein Filter für Aquarien mit Filterpatrone und daran anschließendem Kopf vorgeschlagen, der im Gehäuse einen selbstanlaufenden Synchronmotor mit permanent-magnetischem Rotor und ein direkt auf der Rotorwelle sitzendes Pumpenrad in einer Pumpenkammer enthält, deren auf einer Umfangsseite liegender Radialauslaß am unteren Kopfende sitzt und in einen zum oberen Kopfende führenden Druckkanal mündet. Die Rotorwelle ist mit einer durchgehenden Lagerbohrung versehen und auf einer geteilten, aus zwei Achsstiften gebildeten Achse paßgenau, jedoch mit freiem Laufspiel, gelagert. Jeder Achsstift sitzt endseitig in einer elastischen Gummitülle. Die Rotorwelle besteht aus einem Kohlematerial, die Achsstifte aus einem Keramikmaterial. Beide Teile sind zweckmäßigerweise zusammen eingelaufen und sichern eine gute Zentrierung und möglichst schlagfreie Lagerung. Das Pumpenrad mit starren Radialflügeln ist axial auf die Rotorwelle lösbar aufgeklipst. Es ist relativ zur Rotorwelle um einen wesentlichen Umfangswinkel frei drehbar und weist radiale Dämpfungsanschläge auf, an die ein fester Radialanschlag der Rotorwelle zur Drehmitnahme in Antriebsrichtung anschlägt. Die den gesamten Rotor aufnehmende, axial an die Pumpenkammer anschließende Büchse ist beidendig offen unter Bildung eines zwischen Büchse und Rotor hindurchverlaufenden Schmier- und Kühlkenales, der in Kopfnähe uber einen kleinen Radialkanal mit einem Druckauslaßstutzen verbunden ist. Zwischen der Bodenplatte und der Pumpenkammer befindet sich eine von Hand drehverstellbare Regelscheibe zur Durchflußregelung. Diese weist ein axial durchgängiges Regelfenster mit einem daran anschließenden Radialkanal auf, der axial von der Bodenplatte abgedeckt ist und zum Zentrum hin je nach Drehsteilung der Regelscheibe über sich deckende Wanddurchbrüche im Rohrteil der Regelscheibe und darin eingreifenden Rohrstutzen der Bodenplatte mit der axialen Saugseite der Pumpe in Verbindung steht. (31 36 383)

Patentanwalt	Mülbergerstr. 65	Zugelassener Vertreter beim
DiplIng. Volkhard Kratzsch	D-7300 Esslingen	Europäischen Patentamt
-	Telefon Stuttgart (0711) 317000	Deutsche Bank Esslingen 210 906
	cable «krapatent» esslingenneckar	Postscheckamt Stuttgart 10004-701

Gunther Eheim Fabrik elektromechanischer Erzeugnisse

4. September 1981

7301 Ocizisau

Anwaltsakte 3284

Patentansprüche

1. Filter für Aquarien, mit einer Filterpatrone (11) mit Ansaug-5 öffnung (12) und einem daran anschließenden Kopf (13), der ein Gehäuse (14) mit enthaltenem Elektromotor (15) und davon angetriebener Pumpe (16), einen axialen Saugstutzen (17) am Gehäuseboden (18), einen Druckauslaßstutzen (19) sowie einen Druckkanal (20) aufweist, der einerseits mit dem Pumpenauslaß 10 (21) und andererseits mit dem Druckauslaßstutzen (19) in Verbindung steht, wobei der Elektromotor (15) insbesondere als selbst anlaufender Synchronmotor mit permanent-magnetischem Rotor (24) ausgebildet ist, der innerhalb einer koaxialen. im Luftspalt liegenden, etwa topfartigen Büchse (25) aufge-15 nommen und mit einem Ende drehbar gelagert ist und der auf der Rotorwelle (28) in axialem Abstand vom offenen Büchsenende (27) das Pumpenrad (29) trägt, wobei der Stator (26) in einem die Büchse (25) außen topfartig umgebenden, allseitig abgedichteten Gehäuseteil enthalten und vorzugsweise 20 in Klauenpolweise gestaltet ist, dadurch gekennz e i c h n e t, daß das Pumpenrad (29) aus einer starre Radialflügel (30) tragenden, auf einen Absatz (32,42) der Rotorwelle (28) axial aufgeklipsten und verschiebesicher gehaltenen Nabe (31) besteht, die relativ zur Rotorwelle (28) 25 um einen wosentlichen Umfangswinkel frei drehbar ist und

- radiale Dämpfungsanschläge (33,34) aufweist, an die nach Durchlaufen des Umfangswinkels ein Radialanschlag (35) der Rotorwelle (28) zur Drehmitnahme in Antriebsrichtung anschlägt.
- Filter nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Nabe (31) am einen Ende in ihrer Wandung Axialschlitze (36) aufweist und daß zumindest zwei einander diametral gegenüberstehende Wandungssegmente (37) auf ihrer Innenseite jeweils eine Radialnase (38 bzw. 39) aufweisen, die beim axialen Aufklipsen der Nabe(31)einen Ringabsatz (32) der Rotorwelle (28) hintergreifen.
- 3. Filter nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die Nabe (31) auf der Wandungsinnenseite einen radialen Festanschlag (40) und beidseitig dieses als radialen Dämpfungsanschlag (33,34) je eine fingerartige, lediglich fußseitig mit der Nabe (31) verbundene Axialzunge aufweist.
- Filter nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß der Festanschlag (40) im Querschnitt etwa keilförmig ist und die beidseitigen Axialzungen (33,34) im Querschnitt radial gerichteten Kurzflügeln entsprechen, die zumindest in etwa parallel zu jeweils einer Keilfläche ausgerichtet sind.
- 30 5. Filter nach einem der Ansprüche 1 4, d a d u r c h g e k e n n z e i c h n e t, daß die Nabe (31) einen zylindrischen Lagerabsatz (41) aufweist, der sich stufig an den übrigen Nabenteil anschließt, außen die Radialflügel (30) trägt und auf einem zugeordneten Zylinderabschnitt (42) der Rotorwelle (28) gelagert ist.

- 6. Filter nach einem der Ansprüche 1 5, d a d u r c h g s k e n n z e i c h n e t, daß die Nabe (31) mit allen Teilen einstückig und als Kunststoffspritzteil ausgebildet ist.
- 7. Filter für Aqarien, insbesondere nach Anspruch 1, dad ur ch gekennzeichnet, daß die Rotorwelle (28) eine axial durchlaufende, hinsichtlich ihres Durchmessers auf denjenigen einer endseitig jeweils elastisch, vorzugsweise in Gummitüllen (46,47) aufgenommenen Achse (44,45) abgestimmte Lagerbohrung (43) aufweist, die von der Achse (44,45) paßgenau, jedoch mit freiem Laufspiel, durchsetzt ist.

10.

15

20

- 8. Filter nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, daß die Rotorwelle (28) aus einem Kohlematerial und die Achse(44,45) aus einem Keramik-material besteht und vorzugsweise beide zusammen eingelaufen sind.
- 9. Filter nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t, daß die Achse zweigeteilt ist und zwei einzelne Achsstifte (44,45) aufweist, die jeweils mit einem Ende mittels einer Gummitülle (46 bzw. 57) gelagert sind.
- 10. Filter nach einem der Ansprüche 1 9, d a d u r c h
 g e k e n n z e i c h n e t, daß das dem Pumpenrad
 (29) abgekehrte Axialende der Büchse (25) einen mit
 Axialdurchbrüchen (50) versehenen Lagerstern (48)
 für ein Achsende und das Gehäuse (14) im Bodenbereich
 eine lösbar gehaltene Bodenplatte (18) oder einen
 Bodenplattenteil aufweist, die bzw. der einen mit
 Axialdurchbrüchen (51) versehenen Lagerstern (49)
 für das andere Achsende trägt.

- 1 11. Filter nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß auf einer Seite der Bodenplatte (18) bzw. des Bodenplattenteiles der axiale Saugstutzen (17) koaxial zum Lagerstern (49).
 5 angeordnet ist.
- 12. Filter nach Anspruch 10 oder 11, d a d u r c h g e k e n n z e i c h n e t, daß die Bodenplatte (18) oder der Bodenplattenteil zumindest zwei diametral gegenüberliegende Bajonettstege (52,53) aufweist, die zur Drehbefestigung am Gehäuse (14) unter gehäuseseitige Riegelstege (54 bzw. 55) greifen.
- 13. Filter nach einem der Ansprüche 10 12, d a d u r c h
 g e k e n n z e i c h n e t, daß die Bodenplatte (18)
 auf der zum Gehäuseinneren weisenden Seite einen
 koaxialen Rohrstutzen (56) trägt, der axial zum
 Pumpenrad (29) hin ausmündet und den Zufuhrkanal
 zur Pumpe bildet.

20

25

30

14. Filter nach einem der Ansprüche 10 - 13, d a d u r c h g e k e n n z e i c h n e t, daß die Bodenplatte (18) mit allen Teilen ein einstückiges Kunststoffspritzteil bildet.

- 15. Filter für Aquarien, insbesondere nach Anspruch 1, gekennzeichnet durch eine insbesondere manuell verstellbare Durchflußregelein-richtung (60).
- 16. Filter nach Anspruch 15, g e k e n n z e i c h n e t d u r c h eine im Gehäuse (14,22) drehbar und ko-axial zum Pumpenrad (29) zentrierte Regelscheibe (61), die die Pumpenkammer (22) axial verschließt und auf dem Radialbereich des Pumpenauslasses (21) und/oder des Druckkanales (20) ein Regelfenster (63) enthält, das sich in Abhängigkeit von der Drehstellung der

- Regelscheibe (61) mehr oder weniger mit dem Pumpenauslaß (21) und/oder Druckkanal (20) deckt oder diesen axial völlig verdeckt.
- 5 17. Filter nach Anspruch 15 oder 16, d a d u r c h
 g e k e n n z e i c h n e t, daß die Regelscheibe
 (61) auf der dem Gehäuseinneren abgekehrten Seite
 einen abstehenden Rohrteil (65) aufweist, der radial
 über einen Wanddurchbruch (66) und einen mittels
 Wänden (67) begrenzten Radialkanal (68) mit dem
 Regelfenster (63) kommuniziert.
- 18. Filter nach einem der Ansprüche 10 17, d a d u r c h
 g e k e n n z e i c h n e t, daß die Bodenplatte (18)
 auf der zum Gehäuseinneren weisenden Seite einen
 abstehenden äußeren Zylinderrand (72) trägt, mit
 dessen Stirnseite (73) die Bodenplatte (18) auf der
 Regelscheibe (61) aufsitzt, wobei der Radialkanal
 (68) der Regelscheibe (61) axial von der Innenfläche
 (74) der Bodenplatte (18) begrenzt und abgeschlossen
 ist.
- 19. Filter nach einem der Ansprüche 13 18, d a d u r c h g e k e n n z e i c h n e t, daß der
 koaxiale Rohrstutzen (56) der Bodenplatte (18)
 im Rohrteil (65) der Regelscheibe (61) aufgenommen
 und zentriert ist.
- 20. Filter nach Anspruch 19, d a d u r c h g e k s n n z e i c h n e t, daß der koaxiale Rohrstutzen (56) der Bodenplatte (18) einen Wanddurchbruch (69) etwa gleicher Größe wie der Rohrteil (65) der Regelscheibe (61) aufweist, wobei je nach relativer Drehstellung der Regelscheibe (61) deren Wanddurchbruch (66) mit demjenigen (69) im Rohrstutzen (56) der Bodenplatte (18) radial mehr oder weniger fluchtet oder vom Rohrstutzen (56) der Bodenplatte (18) überdeckt und verschlossen ist.

- Filter nach einem der Ansprüche 15 20, d a d u r c h g e k e n n z e i c h n e t, daß die Regelscheibe (61) ein Zahnradsegment (70), vorzugsweise einen verzahnten Außenrandabschnitt, aufweist und daß im Gehäuse (14) ein mit dem Zahnradsegment (70) in Eingriff stehendes Ritzel (71) drehbetätigbar angeordnet ist.
- 22. Filter nach Anspruch 21, d a d u r c h g e k e n n z e i c h n e t, daß das Ritzel (71) drehfest auf
 einer Welle (75) sitzt, vorzugsweise damit einstückig
 ist, die sich etwa achsparallel durch das Gehäuse
 (14) bis zur Oberseite des Kopfes (13) erstreckt
 und dort ein von Hand drehbares Stellrad (76) trägt.
- 23. Filter für Aquarien, insbesondere nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Büchse (25) im Bereich ihres offenen Endes (27), das dem Pumpenrad (29) benachbart ist, im Durchmesser derart bemessen ist, daß sich die Öffnung (27) im radialen Saugbereich des Pumpenrades (29) befindet.
- 24. Filter nach Anspruch 23, g e k e n n z e i c h n e t
 d u r c h einen axial durchgehenden Schmier-, Spülund/oder Kühlkanal (81) im Büchseninneren, der vom
 offenen Ende (27) der Büchse (25) ausgeht, zwischen
 Rotor (24) und Innenfläche der Büchse (25) verläuft,die
 Axialdurchbrüche (50) eines Lagersternes (48) am
 anderen Büchsenende passiert und in einen Zylinderraum (82), vorzugsweise eines Rohrabsatzes (83) auf
 der Innenseite eines Kopfdeckels (80), übergeht.
- 25. Filter nach Anspruch 24, d a d u r c h g e k e n n z e i c h n e t, daß der Schmier-, Spül- und/oder
 35 Kühlkanal (81) am der Saugseite abgekehrten anderen Ende mit dem Druckkanal (20) in Verbindung steht.

26. Filter nach Anspruch 24 oder 25, d a d u r c h gekennzeichnet, daß im Gehäuse (14), vorzugsweise im Kopfdeckel (80), ein Radialkanal (84) enthalten ist, der den kopfseitigen Zylinderraum (82) etwa auf der Höhe des Oruckauslaßstutzens (19) mit , **5** dem Druckkanal (20) verbindet.

27. Filter nach Anspruch 26, dadurch gekenn z e i c h n e t, daß der Radialkanal (84) einen wesentlich kleineren Querschnitt als der Druckkanal (20) aufweist.

15

10

::· :: :: ::

20

25

30

35

Patentanwalt	Mülbergerstr. 65	Zugelassener Vertreter beim
DiplIng. Volkhard Kratzsch	D-7300 Esslingen	Europäischen Patentamt
	Telefon Stuttgart (0711) 317000	Deutsche Bank Esslingen 210906
	cable «krapatent» esslingenneckar	

Gunther Eheim Fabrik elektromechanischer Erzeugnisse 4. September 1981

7301 Deizisau

Anwaltsakte 3284

Filter für Aquarien

Die Erfindung bezieht sich auf einen Filter für Aquarien der im Oberbegriff des Anspruchs 1 definierten Art, der gleicher-5 maßen als Innenfilter wie auch als Außenfilter gestaltet sein kann.

Die bei bekannten Filtern dieser Art (DE-OS 22 64 934) verwendeten selbstanlaufenden Synchronmotoren mit permanent-10 magnetischem Rotor werfen sowohl hinsichtlich des Anlaufs als auch hinsichtlich der Laufruhe Probleme auf. Zur Lagerung hat man in die größer durchbohrte Rotorwelle beidseitig Lagerbüchsen aus Kunststoff eingeschoben und die gesamte Rotorwelle auf einer durchgehenden Lagerachse gelagert, die endseitig aufgenommen ist. Die relativ lange 15 in Gummitüllen gehäusefest Rotorwelle, die den Rotor und in axialem Abstand davon das Pumpenrad trägt, ist lagerungstechnisch äußerst kritisch, bedenkt man, daß z.B. der Zwischenraum zwischen der Umfangsfläche des Rotors und der Innenwand der Büchse so klein wie 20 möglich sein soll, damit auch der Luftspalt zwischen Stator und Rotor möglichst klein gehalten ist. Bei weit auseinanderliegenden Lagerstellen und der beschriebenen Ausbildung der Lagerung kann schon ein geringfügiges Spiel oder ein geringfügiger Schlag dazu führen, daß der Rotor innenseitig gegen die Büchse anschlägt und dort aufläuft, so daß der Motor stehen bleibt. Auch die Gefahr einer Verkantung zwischen der durch-

gängigen Achse und der Rotorwelle ist in hohem Maße gegaben. Hier reicht schon eine kleine Klemmwirkung, um den Selbstanlauf des Motors zu verhindern. Auch hinsichtlich Laufruhe und Laufqualität werfen Filter dieser Art Probleme auf. Man hat versucht, den beim Lauf vorkommenden Stößen dadurch zu begegnen, daß man das Pumpenrad in Form einzelner elastischer Flügel z.B. aus Gummi gestaltet, die zudem noch mit Schwenkbeweglichkeit ihres Flügelfußes in der Rotorwelle gehalten sind. Durch diese Gestaltung sind für die Pumpenleistung Grenzen gesetzt. Außerdem ist diese Ausbildung kompliziert und teuer, und zwar sowohl hinsichtlich des Materials und der Fertigung der Einzelteile als auch hinsichtlich der Montage. Ein weiterer Mangel derartiger Filter liegt darin, daß die Büchse mit ihrem oberen, dem Pumpenrad abgewandten Ende über den Kopf übersteht und bereits zu Zwecken der dichten Abkapselung verschlossen ist. Dies führt im Inneren dazu, daß sich im Umfangsraum zwischen dem Rotor und der Büchse ein Luftstauraum bildet. Weder dieser Zwischenraum noch die weiter oberhalb sitzende Lagerung erfährt eine Schmierung. Es besteht die Gefahr, daß sich in dem Zwischenraum irgendwelche Partikel ansammeln, die nicht nur zur Verunreinigung, sondern vor allem dazu führen, daß der Rotor gegenüber der Büchse klemmt und der Motor nicht läuft. Auch sind bisherige Filter fest für eine bestimmte Literleistung ausgelegt, so daß z.B. ein Benutzer, der auf ein größeres Aquariumbecken übergeht, den dann hinsichtlich der Filterleistung zu kleinen Filter durch einen gänzlich neuen ersetzen muß.

10

15

20

25

30

35

Der Erfindung liegt die Aufgabe zugrunde, einen Filter der im Oberbegriff des Anspruchs 1 genannten Art zu schaffen, bei dem sowohl die Lagerung des Rotors als auch die Gestaltung dieses und des Pumpenrades eine große Laufruhe und Laufqualität gewährleisten

und einen selbsttätigen Anlauf des Motors sichern wie auch ein evtl. Klemmen und Stehenbleiben während des Betriebes vermeiden. Außerdem wird angestrebt, den Filter in Achsrichtung so kompakt wie möglich und dabei herstellungsgünstig, montage- und demontagefreundlich und möglichst kostengünstig zu gestalten.

Die Aufgabe ist bei einem Filter der im Oberbegriff des Anspruchs 1 genannten Art gemäß der Erfindung durch die Merkmale im Kennzeichnungsteil des Anspruchs 1 10 gelöst. Vorteilhafte Gestaltungen ergeben sich aus den Ansprüchen 2 - 6. Mit Vorzug ist der Druckkanal innerhalb des Gehäuses und etwa achsparallel gestaltet, wobei er vom Bodenbereich, wo sich die Pumpenkammer befindet, zum Kopf hin führt, so daß der Druckauslaß-15 stutzen im Kopfbereich sitzt und dort bequem erreichbar ist. Die erfindungsgemäße Gestaltung garantiert eine große Laufruhe mit hoher Laufqualität. Die Lagerung der Rotorwelle ist hochpräzis und genau. Sie sichert einen störungsfreien Lauf des Rotors und verhindert 20 Klemmen, auch aufgrund der unvermeidlichen Rucke. Die relative freie Drehbarkeit des Pumpenrades in bezug auf die Rotorwelle und die Lösung mit Anschlägen und Dämpfungsanschlägen steigert die Laufruhe und garantiert ebenfalls einen selbsttätigen Anlauf, zunächst bei 25 noch stillstehendem Pumpenrad ohne Leistungsentwicklung und Einwirken des Bremsmoment.

Die Güte der Lagerung und damit die Laufruhe und Laufsicherheit wird noch gesteigert, wenn die Gestaltung
gemäß Anspruch 7 - 9 erfolgt. Durch die Lagerung auf
einer zweigeteilten, aus zwei einzelnen Achsstiften
bestehenden Achse ist für jedes Lagerende ein noch
größerer Freiheitsgrad für elastische Anpassungen und
Aufnahme von Stößen gegeben, ohne daß dies zwischen der
Rotorwelle und den Achsstiften die Gefahr einer Klemmung
und einer Hemmung des Läufers hervorruft. Außerdem sind

die somit um die Hälfte kürzeren Achsstifte in Keramikmaterial wesentlich unkritischer gegen Bruch oder sonstiger Beschädigung, z.B. beim Herabfallen, bei der Lagerhaltung, Montage oder beim sonstigen Hantieren.

Die Gestaltung macht es möglich, die Vorteile des Keramikmaterials voll zu nutzen und dazu in entsprechender Paarung die Rotorwelle in Kohlematerial zu gestalten. Aufgrund dieser Lagerung sind daher hohe Drehzahlen des Rotors bei großer Lagergüte möglich.

Zugleich ist die Gestaltung einfach im Aufbau und billig sowie leicht zu montieren und zu demontieren. Der Rotor kann im übrigen zur weiteren Vereinfachung auf der Rotorwelle, unter Sicherung der koaxialen Montagestellung, aufgeklebt werden.

15

Weitere, vorteilhafte Merkmale ergeben sich aus den Ansprüchen 10 - 14. Diese führen zu einer weiteren Vereinfachung und Verbilligung des Filters und machen diesen montagefreundlich, wobei auch der Benutzer in die Lage versetzt ist, den Filter z.B. zu Wartungs- und Reinigungszwecken schnell und einfach demontieren und montieren zu können, auch um Einzelteile evtl. zu ersetzen.

25

30

35

į

Es ist wünschenswert, statt hinsichtlich der Literleistung fest konzipierter Filter in einem einzigen
Filter einen solchen zur Verfügung zu haben, der über
eine gewisse Leistungsbreite verfügt. Dies ist erfindungsgemäß durch eine insbesondere manuell verstellbare, integrierte Durchflußregeleinrichtung erreicht,
sowie durch die weiteren vorteilhaften Maßnahmen dazu
gemäß den Ansprüchen 16 - 22. Die Gestaltung ist einfach
und preiswert. Sie beeinträchtigt die leichte Montierbarkeit und Demontierbarkeit in keiner Weise, sondern
unterstützt diese eher noch. Auch die einzelnen Elemente
der Durchflußregeleinrichtung sind daher vom Benutzer
im Bedarfsfall schnell und einfach zu demontieren und

7 zu reinigen. Auf diese Weise ist es möglich, einen Filter mit einem Leistungsvermögen innerhalb einer gewissen Leistungsbreite anzubieten, der vom Benutzer individuell nach dessen Bedürfnissen und Gegebenheiten hinsichtlich der Leistung angepaßt und verstellt werden kann. Die Durchflußregeleinrichtung eröffnet also für ein und denselben Filter verschiedene einstellbare Leistungen.

Es ist wünschenswert, bei bekannten Filtern eine 10 Lagerschmierung und eine Kühlung durch das Medium selbst zu erreichen, und dies mit möglichst einfachen und billigen Mitteln. Die bisherigen Anordnungen mit sich bildendem Luftpolster am einen Lagerende in der Büchse berücksichtigen dies nicht. Hier wird Abhilfe 15 durch die Merkmale in Anspruch 23 und den Ansprüchen 24 -27 geschaffen. Auf diese Weise ist mit einfachen Mitteln, praktisch ohne Zusatzaufwand, ein Schmier-, Spül- und/oder Kühlkanal geschaffen, der entlang der gesamten Rotorwelle verläuft und die beidendigen Lager 20 ebenfalls überstreicht. Auf diese Weise werden also beide Lager geschmiert. Evtl. mitgeführte Partikel werden weggespült. Sie können sich nicht im Zwischenraum zwischen der Rotorumfangsseite und der Innenwand 25 der Büchse anlagern und evtl. zum Verklemmen führen. Auch wird in diesem Bereich eine wirksame Kühlung herbeigeführt, die sicherstellt, daß der Elektromotor immer im optimalen Leistungsbereich arbeiten kann. Durch die Kühlung ist die Temperatur im Luftspalt so niedrig, 30 daß aus dem passierenden Wasser weder Kalk noch eisenhaltige Partikel ausfällen, die den Durchgang verstopfen und am Rotor magnetisch anhaften können. Der durchgehende Flüssigkeitsfilm bildet zugleich für den Rotor eine Flüssigkeitszentrierung und -lagerung mit 35 Schmierung.

Weitere Einzelheiten und Vorteile ergeben sich aus der nachfolgenden Beschreibung.

Der vollständige Wortlaut der Ansprüche ist vorstehend allein zur Vermeidung unnötiger Wiederholungen nicht wiedergegeben, sondern statt dessen lediglich durch Nennung der Anspruchsnummer darauf Bezug genommen, wodurch jedoch alle diese Anspruchsmerkmale als an dieser Stelle ausdrücklich und erfindungswesentlich offenbart zu gelten haben.

15

20

25

30

35

Die Erfindung ist nachfolgend anhand von in den Zeichnungen gezeigten Ausführungsbeispielen eines Filters für Aqarien näher erläutert. Es zeigen:

- 5 Fig. 1 eine schematische Draufsicht des Filters,
 - Fig. 2 einen schematischen Schnitt entlang der Linie II-II in Fig. 1,
 - Fig. 3 eine Unteransicht lediglich des Kopfes des Filters gemäß Fig. 1 und 2/
- Fig. 4 einen schematischen Schnitt entlang der Linie IV-IV in Fig. 2,

15

20

25

- Fig. 5 eine perspektivische, auseinandergezogene
 Darstellung einer Regelscheibe mit Antrieb
 und Bodenplatte des Filterkopfes,
 - Fig. 6 eine Unteransicht der Regelplatte in Pfeilrichtung VI in Fig. 4,
 - Fig. 7 eine Unteransicht der Bodenplatte in Pfeilrichtung VI in Fig. 4,
 - Fig. 8 einen Schnitt entlang der Linie VIII-VIII in Fig. 7,
 - Fig. 9 eine Ansicht auf die Innenseite der Bodenplatte,
 - Fig. 10 eine Seitenansicht der Rotorwelle des Rotors,
 - Fig. 11 einen Schnitt entlang der Linie XI-XI in Fig. 10,
- Fig. 12 eine Stirnansicht der Rotorwelle in Pfeilrichtung XII in Fig. 10,
 - Fig. 13 eine Stirnansicht in Pfeilrichtung XIII in Fig. 2 des Pumpenrades,
- Fig.14 jeweils einen Schnitt entlang der Linie XIVund 15 XIV bzw. XV-XV in Fig. 13.

In den Zeichnungen ist ein Filter 10 für Aqarien gezeigt, der als Innenfilter ausgebildet ist und eine Vieleck-Außenkontur, hier eine Achteck-Kontur, aufweist.

- 5 Es versteht sich jedoch, daß bei einem anderen Ausführungsbeispiel der Filter 10 ebenso gut als Außenfilter gestaltet sein kann und außerdem kreisförmig ausgebildet sein kann.
- 10 Der Filter 10 ist aus einer hier nicht weiter zu erläuternden Filterpatrone 11, die mit dem Beckenwasser kommunizierende Ansaugöffnungen 12 aufweist, und einem sich an die Filterpatrone 11 anschließenden Kopf 13 zusammengesetzt. Der Kopf 13 weist ein aus Kunststoff
- bestehendes Gehäuse 14 mit enthaltenem Elektromotor 15 und davon angetriebener Pumpe 16, einen axialen Saugstutzen 17 an einer Bodenplatte 18, einen vom Gehäuse 14 geformten Druckauslaßstutzen 19 und einen im Inneren des Gehäuses 14 gebildeten, etwa achsparallelen Druckkanal
- 20 auf. Letzterer steht einerseits mit dem Pumpenauslaß 21 und andererseits mit dem Druckauslaßstutzen
 19 in Verbindung, der sich am oberen Ende des Kopfes 13
 befindet. Bestandteil der Pumpe 16 ist eine am Gehäuse 14
 angeformte Pumpenkammer 22 mit überwiegend Kreisform,
- die druckseitig in einen sich verengenden, von einer Trennzunge 23 begrenzten Kanal führt, der zur Ermöglichung beider Laufrichtungen klappsymmetrisch doppelt vorhanden ist.
- Der Elektromotor 15 ist als selbstanlaufender Synchronmotor mit einem permanent-magnetischen Rotor 24 ausgebildet, der Z.B. zwei- oder mehrpolig ausgebildet ist und radial polarisiert ist, so daß die Magnetpole mit wechselnder
 Polarität gleichmäßig rings um den Rotorumfang verteilt
 sind. Der Rotor 24 ist innerhalb einer topfartigen Büchse
 25 aufgenommen und mit einem Ende drehbar gelagert.

Die Büchse 25 befindet sich im Luftspalt zwischen dem Stator 26 und Rotor 24. Sie bildet einen festen Bestandteil des Gehäuses 14. Die Büchse 25 ist zur Pumpenkammer 22 hin offen. Die Öffnung ist mit 27 bezeichnet. Der Rotor 24 trägt auf der Rotorwelle 28 in axialem Abstand von der Öffnung 27 ein Pumpenrad 29 noch beschriebener Art.

Der Stator 26 ist außerhalb der Büchse 25 in einem letztere etwa topfartig umgebenden, allseitig abgedichteten Gehäuseteil enthalten und vorzugsweise in Klauenpolweise gestaltet, wie an sich bekannt (DE-OS 22 64 934).

15 Das Pumpenrad 29 besteht aus einer sechs starre Radialflügel 30 tragenden Nabe 31, die auf einem Absatz 32. der Rotorwelle 28 axial aufgeklipst und axial verschiebesicher, jedoch ablösbar und mithin austauschbar, gehalten ist. Besonders bedeutsam ist, daß das Pumpen-20 rad 29 relativ zur Rotorwelle 28 um einen wesentlichen Umfangswinkel, der z.B. etwa 300° beträgt, frei drehbar ist und radiale Dämpfungsanschläge 33, 34 aufweist, an die nach Durchlaufen dieses Umfangswinkels ein Radialanschlag 35 der Rotorwelle 28 zur Drehmitnahme 25 in der jeweiligen Antriebsrichtung, mithin nach links · oder rechts, anschlägt. Die Nabe 31 weist am einen Ende in ihrer Wandung Axialschlitze 36 auf, die beim Aufstecken und Überrasten des Absatzes 32 ein Ausfedern der dadurch unterteilten Wandungssegmente 37 ermöglichen. 30 Zur Axialsicherung tragen zumindest zwei einander diametral gegenüberstehende Wandungssegmente 37 auf ihrer Innenseite jeweils eine nach innen vorspringende Radialnase 38, 39, die beim axialen Aufklipsen der Nabe 31 den Ringabsatz 32 der Rotorwelle 28 hintergreifen (Fig.2). Die beiden Dämpfungsanschläge 33,34 sind alsfingerartige, lediglich fußseitig mit der Nabe 31 verbundene Axialzungen ausgebildet, wie man insbesondere aus Fig. 15 erkennt. Sie können also frei ausfedern. Zwischen den beiden Dämpfungsanschlägen 33, 34 sitzt auf der Wandinnenseite der Nabe 31 ein radialer Festanschlag 40, der im Querschnitt etwa keilförmig ist. Die beiden Dämpfungsanschläge 33, 34 haben, im Querschnitt (Fig.13) gesehen, etwa die Form von radial gerichteten Kurzflügeln, die zumindest in etwa parallel zu jeweils einer Keilfläche des Festanschlages 40 ausgerichtet sind.

Beim Anlauf des Rotors 24 durchläuft die Rotorwelle 28 zunächst einen gewissen Umfangswinkel ohne Last bei 15 relativ dazu nicht i mitlaufendem Pumpenrad 29, bis der Radialanschlag 35 in Umfangsrichtung je nach Drehrichtung gegen den einen Dämpfungsanschlag 33 oder den anderen Dämpfungsanschlag 34 anschlägt und dann das Pumpenrad 29 formschlüssig in Mitnahmerichtung gekuppelt ist. Der Anschlag wird durch Einfedern des Dämpfungsanschlages 33, 34 gedämpft, so daß keine zu starken Kippmomente, die ein Klemmen der Rotorwelle 28 bewirken könnten, auftreten. Überhaupt wird dadurch der Anlauf und auch der Lauf des Elektromotors 15 verbessert und beruhigt. Es ergibt sich 25 eine außerordentlich große Laufruhe, und zwar dies über sehr große Laufzeit. Da die Dämpfungsanschläge 33, 34 bei diesem Anschlag nach Durchlaufen ihres Federweges am Festanschlag 40 anschlagen, wird ein Abbrechen verhindert und eine formschlüssige Drehmitnahme des Pumpenrades 29 auf jeden Fall gewährleistet.

Die Nabe 31 ist in Axialrichtung stufig. An den mit den Axialschlitzen 36 und Wandungssegmenten 37 versehenen Nabenteil schließt sich ein zylindrischer Lagerabsatz 41 kleineren Durchmessers an. der außen die Radialflügel 30 trägt und auf einem zugeordneten Zylinderabschnitt 42 der Rotorwelle 28 zentriert und gelagert ist.

Die Nabe 31 ist mit ihren sämtlichen, zuvor erläuterten Teilen einstückig. Sie besteht aus einem Kunststoffspritzteil.

Eine weitere Besonderheit stellt die Rotorlagerung dar. Die Rotorwelle 28 enthält eine axial durchlaufende Lagerbohrung 43, die von einer zweigeteilten, aus zwei einzelnen Achsstiften 44, 45 gebildeten Achse paßgenau, jedoch mit freiem Laufspiel, zur Lagerung durchsetzt ist. Die Lagerbohrung 43 ist hinsichtlich des Durchmessers genau auf denjenigen der Achsstifte 44, 45 abgestimmt. Die Rotorwelle 28 besteht aus einem Kohlematerial, die beiden Achsstifte 44, 45 bestehen aus einem besonderen Keramikmaterial. Diese Paarung macht es möglich, daß 15 die Rotorwelle 28 auf den Achsstiften 44,45 völlig frei laufen kann und keine Gefahr einer Klemmung besteht mit: je nachdem Stillstand oder Nichtanlauf des Elektromotors 15. Die Rotorwelle 28 ist präzise zentriert und gelagert, dank der großen Länge der Achsstifte 44, 45. Jeder Achs-20 stift 44, 45 ist aber aufgrund der Unterteilung der gesamten Achse in diese zwei Elemente nur so lang, daß für diesen Bruchgefahr, z.B. bei Herabfallen des Achsstiftes oder sonstigen Manipulationen, nahezu völlig ausgeschlossen ist. Die Rotorwelle 28 ist zusammen mit den 25 Achsstiften 44, 45 eingelaufen, so daß die an sich größere Oberflächenrauhigkeit der Keramikteile zu einem Einschleifen der Lagerbohrung 43 mit Brechung der Spitzen führt. Auf diese Weise ergibt sich eine hochpräzise Lagerung, die eine völlig freie Drehbarkeit 30 der Rotorwelle 28 garantiert und doch zugleich ein Lagerspiel oder gar eine Durchhängung oder Durchbiegung ausschaltet.

Jeder Achsstift 44, 45 ist endseitig elastisch gehalten, 35 und zwar mittels einer Gummitülle 46 bzw. 47, die gehäusefest gehalten ist. Diese Lagerung durch die Gummitüllen 46, 47 führt mit zu einem sehr ruhigen Lauf des Rotors 24 und des Pumpenrades 29, da die Gummitüllen eine Resonanzabsorption bewirken. Die Laufgeräusche werden dadurch wesentlich reduziert, was ja gerade für den Agariumbetrieb wichtig ist.

Für die Lagerung jeder Gummitülle 46, 47 sind gehäuseseitig Lagersterne 48 bzw. 49 vorhanden. Der Lagerstern
48 sitzt am dem Pumpenrad 29 abgekehrten Axialende der
Büchse 25 und ist mit dieser einstückig. Der Lagerstern
48 enthält Speichen und dazwischen Axialdurchbrüche 50.
Der andere Lagerstern 49 ist einstückig mit der Bodenplatte 18.

Bei einem anderen, nicht gezeigten Ausführungsbeispiel ist statt der großflächigen Bodenplatte lediglich ein Querriegel vorgesehen, der ebenfalls den axialen Saugstutzen 17 und den Lagerstern 49 trägt. Auch dieser hat radiale Speichen und dazwischen gebildete Axialdurchbrüche 51. Der axiale Saugstutzen 17 ist dort koaxial zum Lagerstern 49 auf der betreffenden Seite der Bodenplatte 18 angeordnet.

Zur Befestigung weist die Bodenplatte 18 oder ein statt dessen vorgesehener, querriegelähnlicher Bodenplattenteil zumindest zwei diametral gegenüberliegende Bajonettstege 52, 53 auf, die bei der Drehbefestigung bodenseitig am Gehäuse 14 unter dortige Riegelstege 54, 55 greifen, wobei noch dortige Aussparungen mit Vorsprüngen an den Bajonettstegen in der Riegelstellung einen Formschluß und damit eine Sicherung bilden können.

Die Bodenplatte 18 trägt auf der zum Inneren des Gehäuses 14 weisenden Seite einen koaxialen Rohrstutzen 56, der axial zum Pumpenrad 29 hin ausmündet und den Zufuhrkanal, der in die Pumpenkammer 22 axial hineinführt, bildet. Der Rohrstutzen 56 fluchtet mit dem Saugstutzen 17, so daß bei umlaufendem Pumpenrad 29 in der einen oder anderen Orehrichtung, je nach Anlauf des Elektromotors 15, aus dem Aqariumbecken Wasser in Richtung der mit durchgezogenen Linien gezeigten Pfeile 57 angesaugt wird. Das durch die Ansaugöffnungen 12 in der Filterpatrone 11 angesaugte Wasser passiert die Filterschicht und wird sodann durch den axialen Saugstutzen 17 und die Axialdurchbrüche 51 hindurch zum Rohrstutzen 56 und von dort in die Pumpenkammer 22 axial angesaugt. Unter Umlenkung des Stromes in Radialrichtung wird dieser über den Pumpenauslaß 21 in den Druckkanal 20 und von dort nach oben in den Druckauslaßstutzen 19 geführt, wo die Ableitung erfolgt.

Die Bodenplatte 18 besteht aus einem einstückigen Kunststofformteil, in dessen Lagerstern 49 die Gummitülle 47
formschlüssig eingesetzt ist. Jeder Achsstift 44, 45
ist in der zugeordneten Gummitülle 46 bzw. 47 im wesentlichen durch Klemmung gehalten, jedoch so, daß er leicht
herausziehber und austauschber ist.

20

Der Filter 10 ist mit einer besonderen , manuell verstellbaren Durchflußregeleinrichtung 50 ausgerüstet, mittels der die Pumpenleistung in Liter pro Minute je nach den Bedürfnissen beim Benutzer eingestellt werden kann. 25 Faktoren für die Wahl der jeweiligen Durchflußmenge sind z.B.mehr oder weniger gewünschte Turbulenzen im Becken, die Beckengröße od.dgl.

Bestandteil der Durchflußregeleinrichtung ist eine
Regelscheibe 61, die als Kunststoffspritzgußteil gestaltet ist. Die Regelscheibe 61 trägt einen in Fig. 2 nach oben geringfügig überstehenden Ringbund 62, der axial in die Begrenzung der Pumpenkammer 22 eingreift. Dadurch ist die Regelscheibe 61 koaxial zum Pumpenrad 29 zentriert und verschiebesicher und drehbar im Gehäuse gehalten.
Mit ihrer übrigen Innenfläche, die sich an den Ringbund 62 anschließt, deckt die Regelscheibe 61 den Saugraum

der Pumpenkammer 22 und auch den Pumpenauslaß 21 und das untere Ende des Druckkanals 20 unter axialem Verschluß ab.

Auf dem Radialbereich, auf dem etwa der Pumpenauslaß 21 und/oder das untere Ende des Druckkanales 20 liegt, enthält die Regelscheibe 61 ein relativ kleines Regelfenster 63, das sich in Abhängigkeit von der jeweiligen Drehstellung der Regelscheibe 61 mehr oder weniger mit dem in Fig. 2 darüber befindlichen Pumpenauslaß 21 und/oder Druckkanal 20 deckt und dadurch einen Teilstrom in Richtung der gestrichelten Pfeile 64 ableitet oder aber den Pumpenauslaß 21 und das untere Ende des Druckkanales 20 unten dann abschließt, wenn durch Drehung der Regelscheibe 61 deren Regelfenster 63 aus dem Umfangsbereich herausgedreht ist, in dem sich der Pumpenauslaß 21 und Druckkanal 20 befinden.

Die Regelscheibe 61 weist auf der Seite, die zur Boden20 platte 18 hinweist und dem Inneren des Gehäuses 14 abgewandt ist, einen abstehenden Rohrteil 65 auf, der im
Inneren zur Aufnahme und Zentrierung des Rohrstutzens 56
der Bodenplatte 18 dient. Der Rohrteil 65 enthält einen
Wanddurchbruch 66, der den Rohrteil 65 radial öffnet.

An den so geöffneten Rohrteil 65 schließt sich ein mittels Wänden 67 begrenzter Radialkanal 68 an, der mit dem Regelfenster 63 kommuniziert. Die Wände 67 formen zusammen mit dem Rohrteil 65, in Ansicht von unten gesehen, etwa ein Schlüsselloch (Fig.5, 6).

30

Der im Rohrteil 65 aufgenommene Rohrstutzen 56 der Bodenplatte 18 weist ebenfalls einen Wanddurchbruch 69 auf, der etwa genauso groß wie der Wanddurchbruch 66 im Rohrteil 65 ist. Je nach relativer Drehstellung der Regelscheibe 61 in bezug auf die Bodenplatte 18 kann also der Wanddurchbruch 66 der Regelscheibe 61 mit dem Wanddurchbruch 69 im Rohrstutzen 56 der Bodenplatte 18 in Radialrichtung mehr oder weniger fluchten und damit den Radial-

kanal 68 zum Inneren des Rohrstutzens 56 und damit zur Saugseite der Pumpe mehr oder weniger öffnen. Ist die Regelscheibe 61 in Umfangsrichtung soweit relativ zur Bodenplatte 18 gedreht, daß der Wanddurchbruch 66 außerhalb des Umfangsbereiches des Wanddurchbruches 69 liegt, so verschließt die Wandung des Rohrteiles 65 der Regelscheibe 61 den Wanddurchbruch 69 im Rohrstutzen 56 der Bodenplatte 18.

10 Die Bodenplatte 18 trägt auf der zur Regelscheibe 61 weisenden Seite einen dorthin abstehenden äußeren Zylinderrand 72, mit dessen nach oben gerichteter Stirnseite 73 die Bodenplatte 18 auf der zugekehrten Fläche der Regelscheibe 61 aufsitzt. Dabei ist der Radialkanal 68 der Regelscheibe 61 in Axialrichtung (Fig. 2 unten) von der Innenfläche 74 der Bodenplatte 18 begrenzt und abge- schlossen.

Der Radialkanal 68 ist mithin einerseits durch die Wände 20 67 der Regelscheibe 61 einschließlich des Rohrteiles 65 geformt und begrenzt und andererseits axial, in Fig. 2 nach unten hin, durch die Innenfläche 74 der Bodenplatte 18 begrenzt. In diesen Radialkanal 68 mündet das Regelfenster 63 der Regelscheibe 61 ein. Je nach Drehstellung der Regelscheibe 61 in bezug auf die feststehende Bodenplatte 18 befindet sich der Wanddurchbruch 66 der Regelscheibe 61 entweder auf einem Umfangsbereich des Rohrstutzens 56 der Bodenplatte 18, unter Verschluß des Wanddurchbruches 66, oder in Überdeckung mit dem Wanddurchbruch 69 des Rohrstutzens 56 der Bodenplatte 18, wobei dann der Radialkanal 68 zum Inneren des Rohrstutzens 56 hin geöffnet ist. Diese Stellung zeigt Fig. 2. Die gestrichelten Pfeile 64 deuten an, daß in dieser Regelstellung der Regelscheibe 61 ein Teilstrom des Wassers vom Pumpenauslaß 21 und unteren Ende des Druckkanals 20 durch das Regelfenster 63 hindurch in den Radialkanal 68 abgeleitet wird und von diesem durch die miteinander

fluchtenden Wanddurchbrüche 66 und 69 und über den Rohrstutzen 56 wieder auf die Saugseite und zur Pumpenkammer 22 zurückgeführt wird. Es gelangt also nur ein Teilstrom durch den Druckkanal 20 nach oben zum Druckauslaßstutzen 19, wodurch die Literleistung der Pumpe entsprechend reduziert ist.

Die Regelscheibe 61 weist ein Zahnradsegment 70, hier in Gestalt eines gleich eingeformten verzahnten Außenrandabschnittes, auf, das sich über z.B. etwa 45° Umfangs-10 winkel erstreckt. Das Zahnradsegment 70 steht in Eingriff mit einem Ritzel 71, das drehbetätigbar im Gehäuse 14 angeordnet ist. Das Ritzel 71 sitzt drehfest auf einer Welle 75, die in etwa achsparallel durch das Gehäuse 14 bis hin zur Oberseite des Kopfes 13 geführt ist und dort ein von Hand zu drehendes Stellrad 76 trägt. Die Welle 75 bildet zusammen mit dem Stellrad 76 und dem Ritzel 71 ein einstückiges Kunststoffspritzteil, bei dem zur Bildung des Ritzels 71 dieses gleich in das Material der Welle 75 20 endseitig eingearbeitet ist. Am oberen Ende des Kopfes 13 ist am Gehäuse 14 ein Kopfdeckel 80 aus Kunststoff mittels Schnappverbindung gehalten, der das Stellrad 76 abdeckt, wobei nur ein für die Verstellbetätigung ausreichender Umfängsteil nach außen übersteht.

Die Büchse 25, innerhalb der der Rotor 24 sitzt, ist hinsichtlich des Durchmessers der in Fig. 1 und 4 unteren Öffnung 27, die zum Pumpenrad 29 weist, so bemessen, daß sich die Öffnung 27 im radialen Saugbereich des Pumpenrades 29 befindet. Die Öffnung 27 ist Bestandteil eines besonderen, axial durchgehenden Kanales 81, der als Schmier-, Spül- und zugleich auch Kühlkanal axial das Innere der Büchse 25 durchzieht. Dieser besondere Kanal 81 geht von der Öffnung 27 aus, verläuft zwischen Rotor 24 und Innenfläche der Büchse 25 und dabei im Luftspalt des Elektromotors 15, passiert nach oben hin die Axialdurchbrüche 50 des Lagersternes 48 am oberen Ende der

25

1 Büchse 25 und geht sodann in einen Zylinderraum 82 über, der hier durch den nach innen überstehenden Rohrabsatz 83 auf der Innenseite des Kopfdeckels 80 begrenzt ist. Der Rohrabsatz 83 übergreift am in Fig. 2 oberen Ende 5 die Büchse 25. Der beschriebene Schmier-, Kühl- und Spülkanal 81 steht an einem Ende mit dem Druckkanal 20 in Verbindung. Hierzu ist im Kopfdeckel 80 ein Radialkanal 84 enthalten, der den Zylinderraum 82 etwa auf der Höhe des Druckauslaßstutzens 19 mit dem Druckkanal 20 verbindet. Der Radialkanal 84 weist im Verhältnis zum Querschnitt des Druckkanals 20 einen wesentlich kleineren Querschnit auf, so daß kein Druckabbau vom Druckkanal 20 in den Radialkanal 84 möglich ist.

15 Aufgrund dieser Gestaltung wird beim Umlauf des Pumpenrades 29 in der einen oder anderen Richtung ein Teilstrom in die Büchse 25 eingesaugt. Dieser Teilstrom ist in Fig. 2 mit strichpunktierten Pfeilen 85 angedeutet. Das Pumpenrad 29 fördert in Achsrichtung gemäß Fig. 2 20 nach oben hin durch die Öffnung 27 der Büchse 25 den Teilstrom gemäß Pfeilen 85, der den Zwischenraum zwischen dem Rotor 24 und der Büchse 25 und den Luftspalt passiert und über den Zylinderraum 82 und den Radialkanal 84 abströmt. Die Entstehung eines bei sonstigen, am oberen 25 Ende verschlossenen Büchsen vorkommenden Luftpolsters mit dortiger Ansammlung von Verunreinigungen, Ablagerungen aus dem Wasser etc. ist also wirkungsvoll verhindert. Es ist ein fortwährender Strom in Pfeilrichtung 85 erzielt, der zur Schmierung der Lagerung dient, die 30 Verlustleistung des Elektromotors 15 in Form von Wärme im Luftspalt abführt und kühlt, so daß der Motor 15 auf Dauer mit maximaler Leistung arbeitenkann, und der außerdem eine durchgängige Spülströmung entwickelt, durch die evtl. Schmutzpartikel, sonst sich aus dem Wasser ab-35 lagernde Partikel, insbesondere Kalk etc., fortwährend weggespült werden, so daß also die Gefahr eines evtl. Motorstillstandes durch Klemmen wegen Verschmutzung und Verkrustung vermieden ist und überhaupt eine Verschmutzung und Verkrustung in diesem Bereich weitestgehend verhindert ist. Bei großen Motorleistungen mit entsprechend großer Verlustwärme wird ein spürbarer Wärmeanteil aufgrund des Stromes nicht als Verlustwärme nach außen abgeführt, sondern dem Beckenwasser zur Heizung zugeführt.

Der Filter 10 ist insgesamt relativ einfach, kostengünstig und einer schnellen Montage und Demontage sowie einem entsprechend schnellem Austausch einzelner Elemente zugänglich. Er ist demgemäß auch leicht und problemlos zu reinigen und zu warten. Die Spülströmung entlang der Pfeile 85 ist sogar in der Lage, eine besondere Zentrierung und Schmierung mit dünnem Schmierfilm für den Rotor 24 zu bewirken, der dadurch selbst bei kleinem Zwischenraum zwischen der Innenfläche der Büchse 25 und der Rotoraußenseite zuverlässig geführt und geschmiert ist. Die Flüssigkeitslagerung, -schmierung und/oder -zentrierung verhindert ein evtl. Anschlagen an der Büchse 25 und auch ein mögliches Klemmen aufgrund in den Zwischenraum gelangter Partikel. Die Durchflußregeleinrichtung 60 macht den Filter anpaßbar an die Wünsche des Benutzers und dortigen Gegebenheiten, so daß ein einziger Filter für eine gewissen Leistungsbreite zur Verfügung steht und nicht jeweils einzelne, leistungsmäßig abgestufte Filter bereitgehalten und kundenseitig beschafft werden müssen. Auch bei der Umrüstung beim Benutzer z.B. auf kleinere oder größere Becken kann der Filter weiter verwendet werden. Die besondere Lagerung und überhaupt im Zusammenhang mit dieser stehenden Merkmale sichern eine außerordentlich große Laufruhe und Laufqualität, d.h. gewährleisten über große Laufzeiten sehr geringe Laufgeräusche. Die Legerung ist von hoher Präzision und gewährleistet dauerhaft einen störungsfreien Motorlauf und auch einen selbsttätigen Anlauf. Die Gefahr evtl. Haftung oder Klemmung des Rotors ist zuverlässig gebannt. Ein zuverlässiger Selbstanlauf ist gewährleistet.

Leerseite

.: Nummer: Int. Cl.³: Anmeldetag: Offenlegungstag: **31 36 383 F 04 D 13/06**14. September 1981
31. März 1983

¥5 31-

Gunther Eheim Fabrik elektromechanischer Erzeugnisse 3284

- 27 -215 -

Canther Fheim Fabrik elektromechanischer Erzeugnisse 3284

-22 · 345

<u>Fig.3</u>

Gunther Eheim Fabrik elektromechanischer Erzeugnis 3284

- 29 · 445

Gunther Eheim Fahrik elektromuchanischer Erzeug-

· 30· 5/5

Gunther Eheim Fabrik elektromechanischer Erzeugnisse 3284