CHAPITRE 3

Étude de fonctions

Table des matières

Étudier une fonction c'est déterminer tous les éléments (tangentes, asymptotes) qui permettent d'obtenir l'allure de la courbe représentative de la fonction.

EXEMPLE:

$$f: x \mapsto \frac{x^2 - 2x + 3}{x^2 + 2x - 3}$$

1. On détemine le domaine de définition de la fonction f. Soit $x \in \mathbb{R}$.

$$x^{2} + 2x - 3 = 0 \iff x \in \{-3, 1\}$$
 car
$$\begin{cases} -3 + 1 = -2 = -\frac{b}{a} \\ -3 \times 1 = -3 = \frac{c}{a} \end{cases}$$

Donc f est définie sur \mathscr{D} avec $\mathscr{D}=]-\infty, -3[\cup]-3, -1[\cup]-1, +\infty[$

2. Asymptotes et limites Soit $x \in \mathcal{D}$

$$f(x) = \frac{\cancel{x}\left(1 - \frac{2}{x} + \frac{3}{x^2}\right)}{\cancel{x}\left(1 + \frac{2}{x} - \frac{3}{x^2}\right)} \xrightarrow{x \to \pm \infty} 1$$

$$x^2 - 2x + 3 \xrightarrow{x \to -3} 9 + 6 + 3 = 18$$

$$x^2 + 2x - 3 \xrightarrow{x \to -3} 0$$

$$\begin{cases} f(x) \xrightarrow{x \to -3} + \infty \\ f(x) \xrightarrow{x \to -3} - \infty \end{cases}$$

$$\begin{cases} x^2 - 2x + 3 \xrightarrow{x \to 1} 2 \\ x^2 + 2x - 3 \xrightarrow{x \to 1} 0 \end{cases} \text{ donc } \begin{cases} f(x) \xrightarrow{x \to \pm} -\infty \\ f(x) \xrightarrow{x \to 1} + \infty \end{cases}$$

3. f est dérivable sur \mathcal{D} et

$$\forall x \in \mathcal{D}, f'(x) = \frac{2(x-1)(x^2 + 2x - 3) - 2(x^2 - 2x + 3)(x+1)}{(x^2 + 2x - 3)^2}$$
$$= \frac{2(2x^2 - 6x)}{(x^2 - 2x + 3)^2}$$
$$= \frac{4x(x-4)}{(x^2 - 2x + 3)^2}$$

x	+∞ -	3 0	1	3	$+\infty$
f'(x)	+	+ 0	-	- 0	+
f	$+\infty$ 1	-1 -∞	$-\infty$	$+\infty$ $\frac{1}{2}$	1

