Homework 1

Name: Yiqiao Jin

UID: 305107551

1.5

a. We know that:

CPU time (s) = Instruction Count (i) \times CPI (clock/i) / Clock rate (c/s)

P1:
$$rac{3GHz}{1.5}=2 imes10^9$$

P2:
$$rac{2.5GHz}{1.0}=2.5 imes10^9$$

P3:
$$rac{4GHz}{2.2} = 1.82 imes 10^9$$

So P2 has the highest performance expressed in instructions per second

b. Number of cycles:

P1:
$$3GHz imes 10sec = 3 imes 10^{10}$$

P2:
$$2.5GHz imes 10sec = 2.5 imes 10^{10}$$

P3:
$$4GHz imes 10sec = 4 imes 10^{10}$$

Number of instructions:

P1:
$$2 imes 10^9 imes 10 sec = 2 imes 10^{10}$$

P2:
$$2.5 imes 10^9 imes 10 sec = 2.5 imes 10^{10}$$

P3:
$$1.82 imes 10^9 imes 10 sec = 1.82 imes 10^{10}$$

c. The ratio of the new clock rates wrt the old one is $rac{1.2}{0.7}=1.714$

Multiply the clock rates by this ratio, the clock rates for P1-P3 becomes 5.14GHz, 4.29GHz, 6.86GHz

1.6

a.

P1: CPI =
$$1 imes 0.1 + 2 imes 0.2 + 3 imes 0.5 + 3 imes 0.2 = 2.6~clocks/i$$

P2: CPI = 2 clock/i

b.

According to the CPIs,

P1 needs 2.6×10^6 cycles;

P2 needs 2×10^6 cycles;

Time taken:

P1:
$$2.6 imes 10^6/(2.5 GHz) = 1.04 imes 10^{-3} s$$

P2:
$$2 imes 10^6/(3.0 GHz) = 0.66 imes 10^{-3} s$$

So P2 is faster than P1.

1.7

a.

CPU time (s) = Instruction Count (i) \times CPI (clock/i) / Clock rate (c/s)

OR

CPI (clock/i) = CPU time (s) \times Clock rate (c/s) / Instruction Count

Clock cycle time = 1ns means a clock rate of 10^9 clocks/s, or executing 10^9 cycles per second.

A:
$${\sf CPI} = 1.1s imes 10^9/10^9 = 1.1$$

B: CPI
$$= 1.5s imes 10^9/1.2 imes 10^9 = 1.25$$

b.

ratio:
$$rac{F_B}{F_A}$$
 = $(1.2 imes10^9 imes1.25)/(10^9 imes1.1)=1.37$

So 37% faster

c.

Speedups:

A:
$$(10^9 imes 1.1)/(6 imes 10^8 imes 1.1) = 1.67$$
, or 67% speedups

B:
$$(1.2 imes 10^9 imes 1.25)/(6 imes 10^8 imes 1.1) = 2.27$$
, or 127% speedups

1.13

a.

The reduction is 70-70 imes 0.8 = 14s

The reduction time takes 14/250 = 5.6%

b.

$$250 \times 0.8 = 200 = 70 + 85 + 40 + T$$

$$T = 5s$$

Thus the time for INT must be reduced by (55-5)/55 = 90.9%

c.

No, since
$$T_{branch} = 40s < 0.2 imes T_{total} = 50s$$