Clustering under Perturbation Resilience

Maria Florina Balcan, Yingyu Liang Georgia Institute of Technology

Speaker: Avrim Blum Carnegie Mellon University

Clustering Comes Up Everywhere

■ Cluster news articles or web pages by topic

■ Cluster images by who is in them

■ View objects as nodes in weighted graph based on distances

View objects as nodes in weighted graph based on distances

- Pick some objective to optimize
 - k-median: find centers $\{c_1, \ldots, c_k\}$ to minimize $\sum_i \sum_{p \in C_i} d(p, c_i)$
 - Min-sum: find partition $\{C_1, \ldots, C_k\}$ to minimize $\sum_i \sum_{p,q \in C_i} d(p,q)$

- Pick some objective to optimize
 - *k*-median: find centers $\{c_1, \ldots, c_k\}$ to minimize $\sum_i \sum_{p \in C_i} d(p, c_i)$
 - Min-sum: find partition $\{C_1, \ldots, C_k\}$ to minimize $\sum_i \sum_{p,q \in C_i} d(p,q)$
- k-median: NP-hard to approximate within (1+1/e); can be approximated within a $(3+\epsilon)$ factor
- Min-sum: NP-hard to optimize; can be approximated within a log n factor

- Pick some objective to optimize
 - *k*-median: find centers $\{c_1, \ldots, c_k\}$ to minimize $\sum_i \sum_{p \in C_i} d(p, c_i)$
 - Min-sum: find partition $\{C_1, \ldots, C_k\}$ to minimize $\sum_i \sum_{p,q \in C_i} d(p,q)$
- k-median: NP-hard to approximate within (1+1/e); can be approximated within a $(3+\epsilon)$ factor
- Min-sum: NP-hard to optimize;
 can be approximated within a log n factor
- Cool new direction: exploit additional properties of the data to circumvent lower bounds

α -Perturbation Resilience

α -PR [Bilu and Linial, 2010, Awasthi et al., 2012]

A clustering instance (S,d) is α -perturbation resilient to a given objective function Φ if for any function $d': S \times S \to R_{\geq 0}$ s.t. $\forall p,q \in S, d(p,q) \leq d'(p,q) \leq \alpha d(p,q)$, there is a unique optimal clustering \mathcal{OPT}' for Φ under d' and this clustering is equal to the optimal clustering \mathcal{OPT} for Φ under d.

Main Results

- Polynomial time algorithm for finding \mathcal{OPT} for α -PR k-median instances when $\alpha > 1 + \sqrt{2}$
 - It works for any center-based objective function, e.g. k-means
- Polynomial time algorithm for a generalization (α, ϵ) -PR
- Polynomial time algorithm for finding \mathcal{OPT} for α -PR min-sum instances when $\alpha \geq 3\frac{\max_i |C_i|}{\min_i |C_i|-1}$

Structure Properties of α -PR k-Median Instance

Claim

 α -PR for *k*-median implies that $\forall p \in C_i, \alpha d(p, c_i) < d(p, c_i)$.

- lacksquare Blow up all pairwise distances within the optimal clusters by lpha
- The \mathcal{OPT} does not change, so $\forall p \in C_i, d'(p, c_i) < d'(p, c_j)$
- $d'(p,c_i) = \alpha d(p,c_i) < d'(p,c_j) = d(p,c_j)$

Structure Properties of α -PR k-Median Instance

Claim

 α -PR for k-median implies that $\forall p \in C_i, \alpha d(p, c_i) < d(p, c_j)$.

Implication:

Structure Properties of α -PR k-Median Instance

- Let $d_i^{max} = \max_{p \in C_i} d(p, c_i)$. Construct a ball $B(c_i, d_i^{max})$
 - the ball covers exactly C_i
 - points inside are closer to the center than to points outside, i.e. $\forall p \in B(c_i, d_i^{max}), q \notin B(c_i, d_i^{max}), d(p, c_i) < d(p, q)$

Closure Distance

Closure Distance

The closure distance $d_S(A, A')$ between two subsets A and A' is the minimum d, such that there exists a point $c \in A \cup A'$ satisfying:

- **coverage condition**: the ball B(c, d) covers $A \cup A'$;
- margin condition: points inside are closer to the center than to points outside, i.e.

$$\forall p \in B(c,d), q \notin B(c,d), d(c,p) < d(p,q).$$

Algorithm for α -PR k-median

Closure Linkage

- Begin with each point being a cluster
- Repeat until one cluster remains: merge the two clusters with minimum closure distance
- Output the tree with points as leaves and merges as internal nodes

Theorem

If $\alpha \geq 1 + \sqrt{2}$, the tree output contains \mathcal{OPT} as a pruning.

Proof

By induction, we show that the algorithm will not merge a strict subset $A \subset C_i$ with a subset A' outside C_i .

- Pick $B \subset C_i \setminus A$ such that $c_i \in A \cup B$
- $d_S(A,B) \leq d_i^{max} = \max_{p \in C_i} d(p,c_i)$
 - d_i^{max} and $c_i \in A \cup B$ satisfy the two conditions of closure distance

Proof

- $d_S(A,A') > d_i^{max}$
 - Suppose the center c for the ball defining $d_S(A, A')$ is from A'
 - Since $c \notin C_i$, $d(c_i, p) < d(p, c)$ for arbitrary $p \in A$. By margin condition,

$$c_i \in B(c, d_S(A, A')), i.e. d_S(A, A') \ge d(c_i, c)$$

■ Since $c \notin C_i$, $d(c_i, c) > d_i^{max}$

■ A similar argument holds for the case $c \in A$

(α, ϵ) -Perturbation Resilience

- α -PR imposes a strong restriction that the \mathcal{OPT} does not change after perturbation
- We propose a more realistic relaxation

(α, ϵ) -Perturbation Resilience

A clustering instance (S,d) is (α,ϵ) -perturbation resilient to a given objective function Φ if for any function $d': S \times S \to R_{\geq 0}$ s.t. $\forall p,q \in S, d(p,q) \leq d'(p,q) \leq \alpha d(p,q)$, the optimal clustering \mathcal{OPT}' for Φ under d' is ϵ -close to the optimal clustering \mathcal{OPT} for Φ under d.

Structure Property of (α, ϵ) -PR k-median

$\mathsf{Theorem}$

Assume $\min_i |C_i| = O(\epsilon n)$. Except for $\leq \epsilon n$ bad points, any other point is α times closer to its own center than to other centers.

Keypoint of the Proof

- Carefully construct a perturbation that forces all the bad points move
- By (α, ϵ) -PR, there could be at most ϵn bad points

Proof of Property of (α, ϵ) -PR

 B_i : bad points in C_i .

For technical reasons, select $\min\{|B_i|, \epsilon n + 1\}$ bad points from B_i .

Perturbation: blow up all pairwise distances by α , except

- between selected bad points and their second nearest centers
- between the other points and their own centers

p : good point; q : selected bad point.

Proof of Property of (α, ϵ) -PR

 B_i : bad points in C_i .

For technical reasons, select $\min\{|B_i|, \epsilon n + 1\}$ bad points from B_i .

Perturbation: blow up all pairwise distances by α , except

- between selected bad points and their second nearest centers
- between the other points and their own centers

Intuition: ideally, after the perturbation,

- selected bad points assigned to their second nearest centers
- all the other points stay

Algorithm for (α, ϵ) -PR k-median

A robust version of Closure Linkage algorithm can be used to show:

Theorem

Assume $\min_i |C_i| \geq c\epsilon n$. If $\alpha \geq 2 + \sqrt{7}$, then the tree output contains a pruning that is ϵ -close to the optimal clustering. Moreover, the cost of this pruning is $(1 + O(\epsilon/\rho))$ -approximation where $\rho = \min_i |C_i|/n$.

Structure Property of α -PR Min-Sum

Claim

 α -PR implies $\forall A \subseteq C_i, \alpha d(A, C_i \setminus A) < d(A, C_j)$.

Proof: blow up the distances between A and $C_i \setminus A$ by α

Structure Property of α -PR Min-Sum

Claim

$$\alpha$$
-PR implies $\forall A \subseteq C_i, \alpha d(A, C_i \setminus A) < d(A, C_j)$.

Implications when $\alpha \geq 3 \frac{\max_i |C_i|}{\min_i |C_i|-1}$:

- (1) For any point, its $\min_i |C_i|/2$ nearest neighbors are from the same optimal cluster
- (2) Any strict subset of an optimal cluster has smaller average distance to the other points in the same cluster than to those in other clusters

Algorithm for α -PR Min-Sum

- Connect each point with its $\min_i |C_i|/2$ nearest neighbors
- Perform average linkage on the components

Theorem

If $\alpha \geq 3 \frac{\max_i |C_i|}{\min_i |C_i|-1}$, then the tree output contains \mathcal{OPT} as a pruning.

Keypoints of the proof

- Implication (1) guarantees that the components are pure
- Implication (2) guarantees that no strict subset of an optimal cluster will be merged with a subset outside the cluster

Conclusion

- Polynomial time algorithm for finding (nearly) optimal solutions for perturbation resilient instances.
- Also consider a more realistic relaxation (α, ϵ) -PR

Open Questions

■ Design alg for (α, ϵ) -PR min-sum

Thanks!

Awasthi, P., Blum, A., and Sheffet, O. (2012). Center-based clustering under perturbation stability. *Inf. Process. Lett.*, 112(1-2):49–54.

Bilu, Y. and Linial, N. (2010).

Are stable instances easy?

In Innovations in Computer Science.