Feuille de travaux dirigés 3 : risque quadratique

Exercice 1 (Loi de Poisson):

Soient X_1, \ldots, X_n n variables aléatoires indépendantes identiquement distribuées de loi de Poisson de paramètre $\lambda > 0$.

- 1. Proposer un estimateur sans biais de λ et calculer son risque quadratique. On souhaite à présent trouver un estimateur du paramètre $\theta = \mathbb{P}_{\lambda}(X_1 = 0)$.
- 2. Proposer un estimateur biaisé et un estimateur sans biais de θ .
- 3. Les estimateurs précédents sont ils efficaces?

Exercice 2 (Loi exponentielle translatée):

Soient X_1, \ldots, X_n n variables aléatoires indépendantes identiquement distribuées de densité :

$$p_{\theta}(x) = \exp(\theta - x) \mathbb{1}_{\{x > \theta\}}, \theta > 0.$$

On cherche dans cet exercice à estimer le paramètre de translation θ .

- 1. Proposer un estimateur sans biais de θ par la méthode des moments : on le notera $\widehat{\theta}_n$.
- 2. Calculer le risque quadratique de l'estimateur $\hat{\theta}_n$.
- 3. On considère à présent l'estimateur $\tilde{\theta}_n$ défini par $\tilde{\theta}_n(X) = \inf_{1 \leq i \leq n} X_i$. Calculer sa loi.
- 4. L'estimateur $\tilde{\theta}_n$ est-il sans biais?
- 5. Calculer le risque quadratique de l'estimateur $\tilde{\theta}_n$.
- 6. Au vu des résultats précédents, quel estimateur de θ proposeriez vous?

Exercice 3 (Modèle de Bernoulli : moyenne et variance):

Soient X_1, \ldots, X_n , n variables aléatoires i.i.d. de loi $B(\theta)$ (Bernoulli de paramètre θ).

1. Montrez que

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

est un estimateur de θ efficace.

2. Trouver un estimateur sans biais de la variance des X_i de la forme $\hat{v} = \eta \overline{X}(1 - \overline{X})$.