CS 1555 Homework 3

- CUSTOMERS = (SSN, fname, lname, cell_pn, home_pn, street, city, zip, state, free_min, DOB, free SMS)
- RECORDS (from_pn, to_pn, start timestamp, duration, type)
- STATEMENTS (cell_pn, start_date, end_date, total_minutes, total_SMS, amount_due)
- PAYMENTS (cell_pn, paid_on, amount_paid)
- DIRECTORY (pn, fname, lname, street, city, zip, state)
- 1. Assuming that the relations CUSTOMERS and PAYMENTS have 10 and 17 tuples, respectively, find the arity and cardinality of the following relations: (For those whose accurate values can not be determined, give the min and max values)
 - a. π_{cell_pn}(Customers):
 Arity = 1; Cardinality = 10
 - b. $\pi_{\text{cell pn}}(\text{Payments})$:
 - Arity = 1; Cardinality = 17
 - c. Customers * Payments:
 - Arity = 14; Cardinality_{min} = 0, Cardinality_{max} = 17
 - d. $\sigma_{paid\ on='2019-09-01'}(Payments)\bowtie_{Payments.cell_pn=Customers.cell_pn}$ Customers:

Arity = 15; Cardinality_{min} = 0, Cardinality_{max} = 17

- 2. Optimize the following relational algebra expression to be more efficient. Please explain your answers.
 - a. $\Pi_{total_minutes, total_SMS}(\sigma_{city='philadelphia'} \land Statements.cell_pn=Customers.cell_pn(Statements \times Customers))$

Π_{total_minutes, total_SMS} (σ_{city} = 'philadelphia'</sub> (Customers) * Statements)
Explanation: Selecting where city = 'philadelphia' from just Customers will reduce the size of the resulting relation making the join with statements to be more efficient. Similarly, performing a natural join on Statements and the reduced Customer relation will result in a relation with a max cardinality equal to the cardinality of Statements. The cartesian product would produce a relation with a cardinality equal to the product of the cardinalities of Customers and Statements which would be larger in comparison.

- 3. Write the relational algebra expression to answer each of the following queries in nesting notation. You can use any date format: '2020-01-30' or '01-30-2020'.
 - a. List the first and last names of customers who live in Pittsburgh.

 $\Pi_{fname, lname}$ ($\sigma_{city} = Pittsburgh$, Customers);

- b. Retrieve the phone numbers of customers who made calls to people in Pittsburgh.

 ΠCustomers.cell_pn (((σtype= 'call' Records) ⋈ Records.to_pn = Directory.pn (σcity = 'Pittsburgh' Directory)) ⋈ Records.from_pn = Customers.cell_pn Customers)
- c. List the SSNs of all customers that have ever paid more than 100 in a single payment, and have ever had an amount due more than 50.

 $\Pi_{SSN}((Customers * (\sigma_{amount_paid > 100} Payments)) * (\sigma_{amount_due > 50} Statements))$

- 4. Write the relational algebra expression to answer each of the following queries in sequence notation:
 - a. List only once every pair of cell phone numbers which use the same number of SMS in July 2019. (Assuming all statements start at the 1st of every month)

R1 \leftarrow $\sigma_{start\ date} = '07-01-2019'$ Statements

 $R2 \leftarrow \sigma_{\text{start date}} = '07-01-2019'$ Statements

 $R3 \leftarrow R1 \times R2$

 $R4 \leftarrow \sigma_{R1.cell_pn} := R2.cell_pn \land R1.total_sms = R2.total_sms (R3)$

RSLT $\leftarrow \Pi_{R1.cell_pn, R2.cell_pn}(R4)$

b. Find the SSNs of all customers who received calls from people in Pennsylvania, where they have at least one call duration more than 20.

PA_nums ← σ_{state} = 'Pennsylvania' Directory

Records_Dur $\leftarrow \sigma_{Duration > 20}$ Records

From_PA
PA_nums
PA_nums.pn = Records.from_pn Records_Dur

To_Customer ← From_PA ⋈ From_PA.to_pn = Customer.cell_pn Customer

RSLT ← **II**_{SSN} **To** Customer

c. List the SSNs for all customers that live in Pittsburgh city and received calls from New York state, but never made calls to New York state.

Pittsburghers $\leftarrow \sigma_{\text{city}} = \text{`Pittsburgh'}$ Customers

New_Yorkers $\leftarrow \sigma_{city} = 'New York'$ Directory

Calls $\leftarrow \sigma_{\text{type}} = 'call' \text{ Records}$

To_Pitt ← Pittsburghers ⋈ Pittsburghers.cell_pn = Calls.to_pn Calls

 $NY_to_Pitt \leftarrow To_Pitt \bowtie {}_{To_Pitt.from_pn \ = \ New_Yorkers.pn} New_Yorkers$

To NY ← New Yorkers ⋈ New Yorkers.cell pn = Calls.to pn Calls

Pitt to NY ← To_NY ⋈ To_NY.from_pn = Pittsburghers.cell_pn New_Yorkers

 $RSLT \leftarrow \Pi_{SSN}(NY_to_Pitt) - \Pi_{SSN}(Pitt_to_NY)$