Docket No.: Ref. 1405.1049

papanese Laid-open Application Publication No. 6-110539 (D2)

The invention of D2 relates to the remote diagnostic device for the computer control equipment which performs the various kinds of diagnosis from the diagnostic computer set in the remote place. ([0001])

In the remote diagnostic device in D2, the permitting means in the numeric control device judges whether or not the access permission is given based on the identification information of a maintenance person operating the diagnostic computer or the identification information concerning the diagnostic computer, and if the access is rightful, permits the access by the diagnostic computer. According to the permission of the permitting means, the own internal information is sent to the diagnostic computer. Based on the sent information, the diagnostic computer performs the various kinds of diagnosis of the numeric control machine. (Abstract)

The identification information and the access level are associated with each other in advance. The numeric control device judges the access right corresponding to the access level shown by the identification information, and sets whether or not the access by the remote diagnostic computer is permitted. ([0027]-[0039])

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-110539

(43)公開日 平成6年(1994)4月22日

(51)Int.Cl. ⁵	識別記号			庁内整理番号	FΙ		技術表示箇所		
G 0 5 B	19/417			Q	9064-3H			35,14344 = 37,	
	19/18			W	9064-3H				
				Х	9064-3H				
	23/02	3 0	1	Z	7208-3H				
H 0 4 M	11/00	3 0	1		8627-5K				
						審査請求	未請求	請求項の数7(全 13 頁)	最終頁に続く
(21)出願番号		特顯平4-259293			(71)出願人		390008235		
								ファナック株式会社	
(22)出顧日		平成 4年(1992) 9月29日					山梨県南都留郡忍野村忍草等	字古馬場3580番	
								地	
						(72)	発明者	片岡 稔	
								山梨県南都留郡忍野村忍草等	字古馬場3580番
								地 ファナック株式会社内	
						(72)	発明者	大塚 昭一	
								山梨県南都留郡忍野村忍草等	字古馬場3580番
								地 ファナック株式会社内	
						(72)	発明者	入江 厚神	
								山梨県南都留郡忍野村忍草等	字古馬場3580番
								地 ファナック株式会社内	
						(74)	代理人	弁理士 服部 毅巖	

(54)【発明の名称】 コンピュータ制御機器のリモート診断装置

(57)【要約】

【目的】 不当なアクセスにより内部情報が外部に漏洩したり、破壊されたりすることの防止を図ったコンピュータ制御機器のリモート診断装置を提供することを目的とする。

【構成】 数値制御装置12a~12n内の許可手段は、例えば、診断用コンピュータ22を運転している保守要員の識別情報に基づき、あるいは、診断用コンピュータ22に関する識別情報に基づき、アクセス許可を与えるべきか否かの判断をして、正当なアクセスであれば、診断用コンピュータ22が数値制御装置12a~12nの内部情報にアクセスするととを許可する。数値制御装置12a~12nは、許可手段の許可に従い、自己の内部情報を診断用コンピュータ22に送出する。診断用コンピュータ22は、送られた情報に基づき、数値制御工作機械の各種診断を行う。そして、診断の結果によっては、数値制御装置12a~12nの内部情報を修正する。

1

【特許請求の範囲】

【請求項1】 コンピュータ制御機器に対し、遠隔地に 設置された診断用コンピュータから各種診断を行うコン ピュータ制御機器のリモート診断装置において、

コンピュータ制御機器に通信回線を介して接続され、前 記コンピュータ制御機器の各種診断を行うための診断用 コンピュータと、

前記診断用コンピュータが前記コンピュータ制御機器の 内部情報にアクセスすることを許可する許可手段と、

前記許可手段の許可に従い、自己の内部情報を前記診断 10 用コンピュータに送出するコンピュータ制御機器と、

を有することを特徴とするコンピュータ制御機器のリモート診断装置。

【請求項2】 前記許可手段は、通信回線を介して送られる、前記診断用コンピュータを運転している保守要員自身の識別情報に基づき、アクセス許可を与えることを特徴とする請求項1記載のコンピュータ制御機器のリモート診断装置。

【請求項3】 前記許可手段は、通信回線を介して送られる、前記診断用コンピュータに関する識別情報に基づき、アクセス許可を与えることを特徴とする請求項1記載のコンピュータ制御機器のリモート診断装置。

【請求項4】 前記許可手段は、前記診断用コンピュータがアクセスできる情報に複数のレベルを設定し、前記コンピュータ制御機器は、前記設定されたレベルに応じた内部情報だけを送出するようにすることを特徴とする請求項1記載のコンピュータ制御機器のリモート診断装置。

【請求項5】 前記コンピュータ制御機器は、コンピュータ制御された数値制御工作機械またはFA機器であることを特徴とする請求項1記載のコンピュータ制御機器のリモート診断装置。

【請求項6】 コンピュータ制御機器に対し、遠隔地に 設置された診断用コンピュータから各種診断を行うコン ピュータ制御機器のリモート診断装置において、

コンピュータ制御機器と診断用コンピュータとを結ぶ伝送路の途中に設けられた無線伝送路手段と、

少なくとも、前記コンピュータ制御機器から前記無線伝送路手段を経て前記診断用コンピュータへ送出される、前記コンピュータ制御機器の内部情報を暗号化する暗号 40 化手段と、

を有することを特徴とするコンピュータ制御機器のリモート診断装置。

【請求項7】 コンピュータ制御機器に対し、遠隔地に 設置された診断用コンピュータから各種診断を行うコン ピュータ制御機器のリモート診断装置において

診断用コンピュータに、通信回線を介して接続されるコンピュータ制御機器と、

前記コンピュータ制御機器が前記診断用コンピュータに よる診断を受けることを許可する許可手段と、

を有することを特徴とするコンピュータ制御機器のリモート診断装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はコンピュータ制御機器に対し、遠隔地に設置された診断用コンピュータから各種診断を行うコンピュータ制御機器のリモート診断装置に関し、特に数値制御工作機械やFA(Factory Automation)機器の診断情報や制御情報を遠隔地にある診断コンピュータに転送して、この診断コンピュータによってこれらの機器の故障診断、予防保守診断等を行うコンピュータ制御機器のリモート診断装置に関する。

[0002]

【従来の技術】従来、コンピュータ制御された数値制御工作機械を遠隔地で故障診断するために、図6に示すように、工作機械101に接続された数値制御装置CNC(Computerized Numerical Controller)102を、電話回線用モデム103、105および公衆電話回線104を介して、故障診断を行うコンピュータ106に接続した診断システムがあった。

【0003】とうした診断システムでは、工作機械101に故障が発生すると、数値制御装置102から工作機械101に関する診断情報や制御情報がコンピュータ106に送られ、コンピュータ106によって故障診断が行われていた。

[0004]

30

【発明が解決しようとする課題】一般に、こうした診断 システムでは、故障診断のために工作機械側の内部情報 を細部に亘って収集し、分析することができるようにな っている。

【0005】しかし、従来の診断システムでは、通信回線さえ接続できれば、コンピュータ106が数値制御装置102の内部情報に無条件にアクセスすることができる。そのため、この診断システムを悪用して部外者がコンピュータ106を操作して、工作機械側の重要な内部情報を取り出して外部に漏洩したり、あるいは、最悪の場合は内部情報が破壊されてしまうことがあり得た。

【0006】また、この診断システムは公衆電話回線を利用しているため、第3者のコンピュータから公衆電話回線を介して数値制御装置102にアクセスすることが比較的容易であり、この場合にも、情報の外部漏洩や破壊の可能性があった。

【0007】本発明はこのような点に鑑みてなされたものであり、不当なアクセスにより内部情報が外部に漏洩したり、破壊されたりすることの防止を図ったコンピュータ制御機器のリモート診断装置を提供することを目的とする。

[8000]

【課題を解決するための手段】本発明では上記課題を解 50 決するために、コンピュータ制御機器に通信回線を介し

2

て接続され、コンピュータ制御機器の各種診断を行うた めの診断用コンピュータと、診断用コンピュータがコン ピュータ制御機器の内部情報にアクセスすることを許可 する許可手段と、許可手段の許可に従い、自己の内部情 報を診断用コンピュータに送出するコンピュータ制御機 器とを有することを特徴とするコンピュータ制御機器の リモート診断装置を、提供する。

【0009】また、コンピュータ制御機器と診断用コン ピュータとを結ぶ伝送路の途中に設けられた無線伝送路 手段と、少なくとも、コンピュータ制御機器から無線伝 10 送路手段を経て診断用コンピュータへ送出されるコンピ ュータ制御機器の内部情報を暗号化する暗号化手段とを 有することを特徴とするコンピュータ制御機器のリモー ト診断装置が、提供される。

【0010】さらに、診断用コンピュータに通信回線を 介して接続されるコンピュータ制御機器と、コンピュー タ制御機器が診断用コンピュータによる診断を受けるこ とを許可する許可手段とを有することを特徴とするコン ビュータ制御機器のリモート診断装置が、提供される。 [0011]

【作用】とうした構成により、まず、許可手段は、例え ば、診断用コンピュータを運転している保守要員の識別 情報に基づき、あるいは、診断用コンピュータに関する 識別情報に基づき、アクセス許可を与えるべきか否かの 判断をして、正当なアクセスであれば、診断用コンピュ ータがコンピュータ制御機器の内部情報にアクセスする ことを許可する。つぎに、コンピュータ制御機器は、許 可手段の許可に従い、自己の内部情報を診断用コンピュ ータに送出する。診断用コンピュータは、送られた情報 に基づき、コンピュータ制御機器の各種診断を行う。そ して、診断の結果によっては、コンピュータ制御機器の 内部情報を修正する。

【0012】とのように、許可手段の許可のもとにコン ピュータ制御機器が診断用コンピュータの内部情報にア クセスするので、不当なアクセスに対しては内部情報が 送出されず、また、修正もされず、したがって、不当な アクセスにより内部情報が外部に漏洩したり、破壊され たりすることがない。

【0013】また、コンピュータ制御機器と診断用コン ピュータとを結ぶ伝送路の途中に無線伝送路手段が設け られたリモート診断装置では、暗号化手段によって、少 なくとも、コンピュータ制御機器から無線伝送路手段を 経て診断用コンピュータへ送出されるコンピュータ制御 機器の内部情報が暗号化されることにより、無線の傍受 による秘密漏洩が防止できる。

【0014】さらに、許可手段が、コンピュータ制御機 器に対し、診断用コンピュータによる診断を受けること を許可するようにすることによって、コンピュータ制御 機器側から診断用コンピュータに不当にアクセスすると とを防止し、これにより、診断用コンピュータが勝手に 50 装置、34はバッテリでバックアップされて不揮発性メ

使用されたり、また、診断用コンピュータ内の内部情報 が外部に漏洩されたり、破壊されたりすることが防止さ れる。

[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明 する。図1は数値制御工作機械のリモート診断装置のブ ロック図である。すなわち、工場側1には、複数の工作 機械 $11a\sim11n$ が設置され、とれらの工作機械11a~11nには数値制御装置(CNC)12a~12n がそれぞれ接続されている。数値制御装置12a~12 nの内部構成に関しては図2を参照して後述する。

【0016】数値制御装置12a~12nには、無線ア ダプタ13a~13nがケーブルを介してそれぞれ接続 され、両者間でRS-232Cインタフェースによって データ転送が行われる。無線アダプタ13a~13nは 数値制御装置12a~12nの近傍に設置され、子機と して使用される。これらの子機と無線交信する親機とし て無線アダプタ14が1台、例えば工場内の少し離れた 事務室等に設置される。子機は親機1台に対し、例えば 20 20台設置が可能である。無線アダプタ13a~13n および無線アダプタ14の内部構成に関しては、図3を 参照して後述する。

【0017】無線アダプタ14には電話回線用モデム1 5がケーブルを介して接続され、両者の間でRS-23 2 C インタフェースによってデータ転送が行われる。電 話回線用モデム15は、アナログ公衆電話回線網16を 介して保守側2の電話回線用モデム21に接続される。 電話回線用モデム15,21は自動発着信機能を備えた ものを用いる。

【0018】保守側2には、故障診断、予防保守、保守 30 図面検索等を実行するコンピュータ22が設置され、と のコンピュータ22にRS-232Cインタフェースに よって電話回線用モデム21が接続される。 コンピュー タ22はパーソナルコンピュータからなり、通信用のポ ート部を備えている。

【0019】保守側2には複数の工場側が接続され得る が、図1では1つの工場のみの接続を図示する。また、 工場側1と保守側2とは、アナログ電話回線網16を介 して接続されているが、デジタル回線網を介して接続さ れてもよく、その場合には電話回線用モデムの代わりに ISDNアダプタが使用される。

【0020】図2は、上記数値制御装置12a~12n の内部構成を説明するブロック図である。それらは同一 の構成であり、その1つを代表して説明する。図におい て、30は数値制御装置(CNC)を示し、31は数値 制御装置30の制御を行うプロセッサである。32はシ ステムプログラムが格納されたROM、33はシステム プログラムがローディングされるとともに、他のデータ を格納するRAMである。38は操作キー、39は表示

モリを構成するCMOSメモリである。41~45は軸 制御回路であり、各軸の位置制御を行う。51~55は サーボアンプであり、工作機械に設けられたサーボモー タ61~65を駆動する。

【0021】35は通信用ポートであり、無線アダプタ に接続され、保守側2のコンピュータ22との信号の入 出力を行う。36は数値制御装置30に内蔵されたPM C (Programmable Machine Controller)であり、ラダー 形式で作成されたシーケンスプログラムで機械側を制御 する。37は1/0ユニットであり、機械側の強電盤あ るいは操作盤との間の入出力のインタフェースである。 【0022】図3は図1に示した無線アダプタ13a~ 13n, 14の内部構成を説明するブロック図である。 それらは同一の構成であり、その1つを代表して説明す る。すなわち、無線アダプタ70は、400MHz帯を 使用する出力10mW以下の構内小電力無線機であり、 IDコードにより交信相手局を選択できる機能を有して いる。

【0023】図中、71は送受信機であり、送受信用ア ンテナ75に接続される。72は、送受信機71に接続 20 19)カスタムマクロ変数の出力 されて、デジタル信号の周波数変調・復調を行うFSK (Frequency Shift Keying) モデムである。73は、送 受信機71およびFSKモデム72に接続され、通信制 御を行う通信制御部である。74は外部の数値制御装置 または電話回線用モデム15とのインタフェース部であ り、インテリジェントを有し、この無線アダプタ70が 無線アダプタ14であるときは、コンピュータ22から の選択コマンド (上記 I Dコードを含む) を解釈し、無 線交信相手局の選択を行い、また、電話回線用モデム1 5に対し、回線呼び出しシーケンスを実行する。

【0024】つぎに、以上のように構成される数値制御 工作機械のリモート診断装置の動作を説明する。本リモ ート診断装置には、CNC工作機械(以下、数値制御装 置が接続された工作機械を「CNC工作機械」という) に障害が発生したときに故障診断を行う場合と、定期的 にCNC工作機械の状態情報を収集・分析して予防保守 を行う場合と、さらに、保守図面の検索を行う場合とが ある。これらの実行手順に関しては後述するが、こうし た故障診断、予防保守、および保守図面検索を行うため に、あるいは行なった後の結果をCNC工作機械に反映 40 35)加減速遅れ量の出力 させるために、本リモート診断装置は下記の機能を備え る。これらの機能は、後述のようにCNC工作機械とコ ンピュータ22との間の通信が確立され、かつ、アクセ ス権が設定されたときに、アクセス権の設定範囲内にお いて実行される。なお、下記において、「出力」とは数 値制御装置12a~12nからコンピュータ22へ、

「入力」とはコンピュータ22から数値制御装置12a ~12nへ、データを送ることを意味する。

【0025】1)主に工作機械や周辺機器の故障診断に 有用なデータである PMC データの入力

- 2) PMCデータの出力
- 3) PMCラダーのタイトル情報(図番、版数)の出力
- 4) PMCプログラムの出力
- 5)各種加工パラメータの入力
- 6)各種加工パラメータの出力
- 7)数値制御装置に実装されているハードウエアである プリント板の機能や機能強化状況等の情報の出力
- 8) パートプログラムの入力
- 9) パートプログラムの出力
- 10 10)全パートプログラムの出力
 - 11) 異常内容を示すアラーム情報の出力
 - 12) 故障診断に直接有用なデータであるダイアグノー ズの出力
 - 13)全加工パラメータの出力
 - 14)ピッチ誤差データの入力
 - 15)ピッチ誤差データの出力
 - 16)モーダル情報の出力
 - 17)送り実速度の出力
 - 18)カスタムマクロ変数の入力

 - 20) 工具オフセットデータの入力
 - 21)工具オフセットデータの出力
 - 22) 工具寿命管理データの出力
 - 23) CRT画面情報の出力
 - 24) PMC、CNC画面表示切り換え
 - 25)ダイレクトアドレスで指定するメモリ内容の入力
 - 26)メモリ内容の出力
 - 27)診断コンピュータからCNC工作機械のオペレー タへ送られたメッセージの表示
- 30 28)複数パートプログラムの中から指定プログラムの サーチ
 - 29) 現在実行中のパートプログラムのプログラム番号
 - 30) 現在実行中のパートプログラムのシーケンス番号 の出力
 - 31) 工作機械の各軸の現在位置の出力
 - 32) 工作機械の各軸の絶対位置の出力
 - 33)スキップ位置の出力
 - 34)サーボ遅れ量の出力
- - 36) A/D変換データの出力
 - 37)各種ステータスの出力
 - 38)ファイル関連機能
 - 39)全パートプログラムの削除
 - 40)全加工パラメータの入力
 - 41) プログラムのディレクトリ表示
 - 42)指定プログラムの削除
 - 43)オプション加工パラメータの入力
 - 44)オプション加工パラメータの出力
- 50 上記の出力に要する通信時間は、例えば、プリント板情

報で18秒、9インチCRT画面情報で2分58秒、1 0mのパートプログラムで38秒、全加工パラメータで 4分5秒である。

【0026】なお、上記機能の中には、故障診断、予防 保守、および保守図面検索に関連しないものも含まれる が、それは、本リモート診断装置を利用することによ り、離れた所にある保守側と工場側との間で容易に情報 がやり取りできるために、便乗したものである。

【0027】図4は、CNC工作機械に障害が発生した ときに実行される故障診断の手順を示すフローチャート 10 である。このフローチャートに従って、本リモート診断 装置で実行される故障診断の方法を説明する。図の左に 保守側2で行われる手順を示し、右に工場側1で行われ る手順を示す。図中、Sに続く数字はステップ番号を示 す。

【0028】 [S1] 工場側1で稼働中の工作機械、例 えば図1の工作機械11aに障害が発生し、オペレータ によって発見されたとする。

〔S2〕オペレータは保守側2へ、障害の発生した工作 機械11aまたは数値制御装置12aの識別番号と、そ の数値制御装置12aが接続可能な電話番号とを連絡す る。そして、その電話番号の回線が事務所等の通常の電 話として使われている場合には、回線を本リモート診断 装置側に切り換える。

【0029】 [S3] 保守側2では、連絡された識別番 号と電話番号と、さらに、保守要員自身の識別符号であ るパスワードとをコンピュータ22へ入力する。このパ スワードは、保守要員自身の識別コードであると同時 に、後述のように、その保守要員が数値制御装置12a の内部情報のうちのいずれまでアクセスできるかを示す 30 により直接送る。この入力も、ステップS6で設定され アクセスレベルも表示している。

【0030】[S4]コンピュータ22は自動呼出ソフ トを起動し、電話回線用モデム21を介して、上記電話 番号に基づくオフフックやダイヤリングのシーケンスを 実行して、電話回線16を工場側1の電話回線用モデム 15に接続し、さらに、無線アダプタ14に選択コマン ドを送り、上記識別番号に基づき、無線アダプタ13a との無線接続を行う。電話回線用モデム15は自動着信 機能を備えているので、コンピュータ22は数値制御装 置12aに、途中で全く人手を経ずに接続される。

【0031】 [S5] コンピュータ22と数値制御装置 12aとの通信が開始される。

[S6]数値制御装置12aは、送られてきたパスワー ドが、正当な保守要員のバスワードであるか否かを判別 する。その結果、不当なものであれば、数値制御装置 1 2aはコンピュータ22との接続関係を切り、内部情報 を一切送ることをしない。一方、正当なものであるとき は、送られたパスワードが表示するアクセスレベルに応 じて、例えば、下記の3つのうちのいずれかのアクセス

る情報レベルを決定する。

【0032】(1) リモート診断機能へのアクセス権を 設定する。

(2) バートプログラムメモリへのアクセス権を設定す

(3)加工バラメータへのアクセス権を設定する。

【0033】なお、上記(1)~(3)のうちで数字の 大きい項の設定には、数字の小さい項の設定が含まれ る。

〔S7〕コンピュータ22の診断用ソフトが起動し、ス テップS6で設定されたアクセス権の範囲内で、数値制 御装置12aからコンピュータ22に、主に、パートプ ログラム、サーボ情報、アラーム情報、加工パラメータ 等の数値制御装置関連のデータや、PMC入出力情報 (DI/DO)、レジスタ情報、ラダープログラム等の 工作機械関連のデータが送信される。

【0034】 (S8) 収集されたデータに基づき、障害 の原因を究明する。この究明は、コンピュータ22の表 示装置に表示されたデータに基づき、保守要員によって 行われる場合と、コンピュータ22の診断用ソフトによ って自動的に行われる場合とがある。なお、後者の自動 診断の場合には、推論エンジンとデータベースとからな るエキスパートシステム等の支援が必要となる。

【0035】 [S9] 障害の原因が特定されたとき、保 守要員がCNC工作機械の近くにいるオペレータに、そ の原因を除去するための指示を連絡する。あるいは、原 因次第では(パートプログラム、加工パラメータ等の単 純な設定ミス等)、コンピュータ22から数値制御装置 12aへ正しいデータを、上記44項目の内の入力機能 たアクセス権の範囲内で行われる。

【0036】 [S10] ステップS9で連絡された指示 または正しいデータの入力により、工作機械11aの障 害が修復される。

[S11] コンピュータ22は、電話回線の接続を切断 するコマンドを電話回線用モデム21へ発行する。

【0037】 (S12) 電話回線用モデム21は回線接 続を切断する。

以上のように、正当な保守要員が運転しているコンピュ 40 ータ22からの数値制御装置へのアクセスであることを 確認しているので、数値制御装置の内部情報が不当に漏 洩されたり、破壊されてしまうことを回避できる。さら に、アクセス権を複数設定することにより、破壊された ときに被害の大きい情報(例えば、パートプログラム、 更により被害の大きい加工パラメータ)をより厚く保護 することができる。

【0038】なお、上記ステップS6では、故障診断の 開始時にまとめて、アクセスレベルに応じて3つの中か ら対応のアクセス権を設定しているが、これに代わっ

権を設定する。すなわち、アクセスすることが許可され 50 て、アクセスの都度、アクセスレベルを参照して許可を

出せるか否かを判別するようにしてもよい。また、上記 ステップS3, S6では、保守要員の識別のためにパス ワードを使用したが、パスワードに代わって、アクセス レベルの表示のあるIDカードを使用してもよい。

【0039】さらに、上記ステップS3, S6では、正 当な保守要員であるか否かの識別を行なっているが、保 守要員の識別ではなく、正当なコンピュータからのアク セスであるか否かの識別を行うようにしてもよい。すな わち、コンピュータに予め登録IDを設定しておき、と の I Dを数値制御装置に送って正当なコンピュータから 10 のアクセスであるか否かを判別するようにしてもよい。 さらに、こうした判別を、アクセスされた時点で、数値 制御装置とコンピュータとの間で特定のプロトコルによ って行うようにしてもよい。また、上記ID登録が難し い場合には、コンピュータ側に専用のハードウエアを付 加することによって、特定のコンピュータであることを 判定するようにしてもよい。

【0040】以上のようにすることにより、公衆通信回 線を介して不当なコンピュータが数値制御装置にアクセ の2つの識別方法を組み合わせて、正当な保守要員によ る操作であり、かつ、正当なコンピュータによるアクセ スであることを確認した上で、アクセス権を設定するよ うにしてもよい。

【0041】上記の故障診断の手順では、はじめに、故 障の発生をオペレータが発見し、保守側2に連絡する が、この他の方法として、工作機械の故障の発生を数値 制御装置が自動的に発見し、子機の無線アダプタを経由 して親機の無線アダプタ14に連絡し、無線アダプタ1 4は、電話回線用モデム15に対し、回線呼び出しシー ケンスを実行して電話回線の接続を行い、コンピュータ 22と数値制御装置とを接続するようにしてもよい。と の場合には、オペレータがCNC工作機械の傍に居なく とも、CNC工作機械に故障が発生したときに対応でき

【0042】この数値制御装置側からのコンピュータ2 2への自動的接続に関しては、コンピュータ22が勝手 に数値制御装置側から利用されたり、コンピュータ22 内の内部情報が外部に漏洩することを防ぐために、コン ピュータ22が、通信回線を介して送られた数値制御装 40 置自身の識別情報(パスワード、IDカード等)を確認 の後、故障診断を行うようにしてもよい。

【0043】つぎに、本リモート診断装置が行う、定期 的なCNC工作機械の予防保守について、図5を参照し て説明する。図5は、CNC工作機械の定期的な予防保 守の手順を示すフローチャートである。図の左に保守側 2で行われる手順を示し、右に工場側1で行われる手順 を示す。図中、Sに続く数字はステップ番号を示す。

【0044】 [S21] コンピュータ22が、今回、予

は予防保守すべき全CNC工作機械に対し順番に行われ る。また、このステップの実行は定期的に(例えば1回 /日~1回/週) に行われる。なお、このステップの実 行は、コンピュータ22によって自動的に行われるが、 とのステップに代わって、オペレータが定期的に選択を して、コンピュータ22にCNC工作機械の識別番号等 を指令するようにしてもよい。

【0045】さらに、コンピュータ22には、保守要員 自身の識別符号であり、アクセスレベル情報も含んだパ スワードが入力される。

〔S22〕選択されたCNC工作機械の識別番号と、そ のCNC工作機械が接続可能な電話番号とを基に、上記 ステップS4と同様に、コンピュータ22は自動呼出ソ フトを起動し、電話回線16を工場側1の電話回線用モ デム15に接続し、さらに、無線アダプタ14に対し、 対応する子機の無線アダプタを無線接続する。

【0046】 [S23] コンピュータ22と、選択され たCNC工作機械との通信が開始される。

〔S24〕選択されたCNC工作機械は、送られてきた スしてきても、撃退することが可能となる。なお、以上 20 パスワードが、正当な保守要員のパスワードであるか否 かを判別する。その結果、不当なものであれば、CNC 工作機械はコンピュータ22との接続関係を切り、内部 情報を一切送ることをしない。一方、正当なものである ときは、送られたパスワードが表示するアクセスレベル に応じて、図4のステップS6と同様に、アクセス権を 設定する。

> 【0047】 [S25] コンピュータ22の予防保守診 断ソフトが起動し、ステップS24で設定されたアクセ ス権の範囲内で、選択された稼働中のCNC工作機械か 30 らコンピュータ22に、予防保守データとして、主に、 サーボモータの電流値、スピンドルモータの電流値、バ ッテリアラーム信号、PMC経由で読み取られる工作機 械側の状態信号等が送信される。

【0048】 [S26] 収集されたデータに基づき、コ ンピュータ22は、予防保守診断ソフトによって自動的 に予防診断を行う。すなわち、工具寿命の管理、送り機 構の劣化診断、切削工具の寿命予知、油圧タンク液面量 の監視、空気圧装置の潤滑油滴下量の管理等の予防診断 を行う。

【0049】 [S27] ステップS26の予防診断の結 果、選択されたCNC工作機械に異常が発見されたとき はステップS28へ進み、一方、正常であったときはス テップS30へ進む。

【0050】 [S28] 保守要員がCNC工作機械の近 くにいるオペレータに、その原因を除去するための指示 を連絡する。

〔S29〕ステップS28で連絡された指示により、オ ペレータは、選択されたCNC工作機械の障害を修復す

防保守を行うべきCNC工作機械を選択する。この選択 50 【0051】〔S30〕コンピュータ22は、電話回線

の接続を切断するコマンドを電話回線用モデム21へ発

[S31] 電話回線用モデム21は回線接続を切断す る。

【0052】以上のように、図4の故障診断と同様に、 正当な保守要員が運転しているコンピュータ22からの 数値制御装置へのアクセスであることを確認しているの で、数値制御装置の内部情報が不当に漏洩されたり、破 壊されてしまうことを回避できる。また、アクセス権を い情報をより厚く保護することができる。

【0053】なお、図4の故障診断と同様に、パスワー ドに代わって、アクセスレベルの情報を含むIDカード を使用してもよい。さらに、保守要員の識別ではなく、 正当なコンピュータからのアクセスであるか否かの識別 を行うようにしてもよい。

【0054】最後に、本リモート診断装置が行う保守図 面の検索について説明する。まず予め、保守側2には工 作機械11a~11nに用いられるPMCラダープログ ラムが全て保管され、図番および版数によって管理され 20 る。また、それらのプログラム作成・変更の履歴情報 が、やはり全て保管され、図番および版数によって管理 される。図番はラダープログラム毎に付された識別符号 であり、版数は同一図番内で、ラダープログラム変更毎 に付された識別符号である。こうしたPMCラダープロ グラムおよび履歴情報は、故障診断や予防保守に必要な 情報であるが、非常に多量な情報であるため、検索に時 間がかかる。そとで、とれらを光ディスクに格納し、図 番および版数によって読み出せるようにする。

【0055】故障診断や予防保守の際、コンピュータ2 30 るブロック図である。 2は、数値制御装置からPMCラダープログラムの図番 および版数を読み取る。そして、光ディスクに格納され たPMCラダープログラムおよび履歴情報を、図番およ び版数に基づき検索し、それらを表示装置に表示させ、 保守要員の閲覧に供すようにする。

【0056】以上の実施例では、数値制御工作機械に対 するリモート診断を説明したが、本発明は、FA機器等 に対して適用してもよい。また、上記実施例において、 親機および子機の無線アダプタの設置は必ずしも必要な いが、無線アダプタが設置された場合には、数値制御装 40 12a~12n 数値制御装置 置12a~12nとコンピュータ22との間でやり取り されるデータに対し暗号化を施してもよい。この暗号化 により、数値制御装置12a~12nとコンピュータ2 2との間にある無線伝送路において可能となる無線傍受 に起因する情報漏洩が防止できる。なお、暗号化される と、保守要員や診断コンピュータの識別情報の送信が必 ずしも必要でなくなるが、識別情報の送信とともに暗号 化も行えば、不当な保守要員や不当なコンピュータによ

るアクセスによる情報漏洩や情報破壊がより確実に防止 できる。

[0057]

【発明の効果】以上説明したように本発明では、許可手 段が、正当な保守要員や正当な診断用コンピュータによ るアクセスであるか否かを判断してアクセス許可を出 し、許可手段の許可のもとにコンピュータ制御機器が診 断用コンピュータへ内部情報を送出するようにするの で、不当なアクセスに対しては内部情報が送出されず、 複数設定することにより、破壊されたときに被害の大き 10 したがって、不当なアクセスにより内部情報が外部に漏 洩したり、破壊されたりすることを防止できる。

> 【0058】また、暗号化手段によって、少なくとも、 コンピュータ制御機器から無線伝送路手段を経て診断用 コンピュータへ送出されるコンピュータ制御機器の内部 情報が暗号化されることにより、無線の傍受による秘密 漏洩を防止できる。

【0059】さらに、許可手段が、コンピュータ制御機 器に対し、診断用コンピュータによる診断を受けること を許可することによって、コンピュータ制御機器側から 診断用コンピュータに不当にアクセスすることを防止 し、これにより、診断用コンピュータが勝手に使用され たり、また、診断用コンピュータ内の内部情報が外部に 漏洩されたり、破壊されたりすることを防止できる。

【図面の簡単な説明】

【図1】数値制御工作機械のリモート診断装置のブロッ ク図である。

【図2】数値制御装置の内部構成を説明するブロック図 である。

【図3】図1に示した無線アダプタの内部構成を説明す

【図4】CNC工作機械に障害が発生したときに実行さ れる故障診断の手順を示すフローチャートである。

【図5】CNC工作機械の定期的な予防保守の手順を示 すフローチャートである。

【図6】従来の数値制御工作機械のリモート診断装置の ブロック図である。

【符号の説明】

1 工場側

lla~lln 工作機械

13a~13n 無線アダプタ

14 無線アダプタ

15 電話回線用モデム

16 電話回線

2 保守側

21 電話回線用モデム

22 コンピュータ

【図1】

【図2】

[図3]

【図4】 保守側 工場側 障害発生 <u>S</u>3 S2-機械 I Dと コンピュタへ入力 電話番号とを通知 **Ş4** Ş5 S6_\ 自動呼出 通信開始 ソフト起動 アクセス権設定 データ送信 <u>\$8</u> 障害原因 S7-特 定 <u>\$</u>9 SIO 修復処理 修復 SII ·S12 回線切断 切断 コマンド発行

【図5】

フロントページの続き

(51)Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

H O 4 Q 9/00 3 1 1 W 7170 – 5K