Elettrotecnica -Prova scritta del 7/11/2017 -A

NOME	COGNOME	MATRICOLA	CORSO E ANNO DI STUDI

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 $k_N pari$ al numero di lettere del proprio nome; $k_C pari$ al numero di lettere del proprio cognome.

Esercizio n° 1 (9 punti)

R

R

g

Dato il circuito in figura, determinare: (1) la potenza assorbita dai resistori, (2) la potenza generata dal generatore ideale di tensione $V_{\rm g}$ e dal generatore reale di corrente $I_{\rm g}$.

Verificate poi il bilancio energetico.

DATI $V_g = k_N [V], I_g = k_C [A], R_1 = 4 [\Omega],$ $R_2 = 2 [\Omega], R_3 = 4 [\Omega], R_4 = 3 [\Omega]$

Esercizio nº 2 (9 punti)

Esercizio n° 3 (12 punti)

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{vc}(t)$ per t>0, sapendo che all'istante t=0 in cui viene connesso il condensatore C la tensione $\mathbf{vc}(t)$ vale $\mathbf{vc}(t=0)$ = 7 [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI
$$V_g = 5$$
 [V], $I_g = k_N$ [A], $R_1 = k_C$ [Ω], $R_2 = 2[\Omega]$, $R_3 = 5$ [Ω], $R_4 = 2$ [Ω], $R_5 = 3$ [Ω], $C=10$ [nF]

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo rappresentato dal rettangolo tratteggiato e costituito dalla resistenza R₂ e dal condensatore C e rappresentare l'andamento temporale della potenza istantanea; (2) la potenza complessa e il fattore di potenza del generatore di tensione V_g e (3) la corrente I_{Vg}(t) che scorre nel generatore di tensione.

DATI:

 $V_g = k_N \cos(\omega t) [V], I_g = k_C \sin(\omega t) [A], R_1 = 2 [\Omega], R_2 = 1 [\Omega], C = 0.0025 [F], L = 20 [mH], \omega = 100 [rad/s]$

Elettrotecnica -Prova scritta del 7/11/2017 -B

NOME	COGNOME	MATRICOLA	CORSO E ANNO DI STUDI

In riferimento ad entrambi gli esercizi, si considerino le seguenti due costanti:

 $k_N pari$ al numero di lettere del proprio nome; $k_C pari$ al numero di lettere del proprio cognome.

Esercizio n° 2 (9 punti)

Dato il circuito in figura, determinare: (1) la potenza assorbita dai resistori, (2) la potenza generata dal generatore ideale di tensione V_g e dal generatore reale di corrente I_g . Verificate poi il bilancio energetico.

Nel circuito in figura l'interruttore è stato aperto per molto tempo. All'istante t=0, l'interruttore viene chiuso. Determinare $\mathbf{v}_{\mathbf{C}}(t)$ per t>0, sapendo che all'istante t=0 in cui viene connesso il condensatore C la tensione $\mathbf{v}_{\mathbf{C}}(t)$ vale $\mathbf{v}_{\mathbf{C}}(t=0^-)$ = 9 [V], Rappresentarne poi su un grafico l'andamento temporale.

DATI

$$V_g = k_N [V], I_g = 5[A], R_1 = 3 [\Omega], R_2 = 2[\Omega],$$

 $R_3 = 5 [\Omega], R_4 = 2 [\Omega], R_5 = k_C [\Omega], C = 5 [nF]$

Il circuito in figura si trova in regime permanente sinusoidale.

Determinare: (1) la potenza complessa e la potenza istantanea del bipolo rappresentato dal rettangolo tratteggiato e costituito dalla resistenza R_2 e dall'induttore L e rappresentare l'andamento temporale della potenza istantanea; (2) la potenza complessa e il fattore di potenza del generatore di tensione V_g e (3) la corrente $I_{Vg}(t)$ che scorre nel generatore di tensione.

DATI:

 $V_g = k_C \operatorname{sen}(\omega t) [V], I_g = k_N \cos(\omega t) [A], R_1 = 1 [\Omega], R_2 = 2 [\Omega], C = 0.0025[F], L = 20[mH], \omega = 200 [rad/s]$