```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

	(
#	Column	Non-	-Null Count	Dtype	
0	Age	200	non-null	int64	
1	Sex	200	non-null	object	
2	BP	200	non-null	object	
3	Cholesterol	200	non-null	object	
4	Na_to_K	200	non-null	float64	
5	Drug	200	non-null	object	
<pre>dtypes: float64(1), int64(1), object(4)</pre>					

memory usage: 9.5+ KB

In [4]: df.describe()

Out[4]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [5]: df.columns

Out[5]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x24ade2aa730>

In [7]: sns.distplot(df['Na_to_K'])

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x24ae3221a90>

In [8]: df1=df[['Age','Na_to_K']]
df1

Out[8]:

	Age	Na_to_K
0	23	25.355
1	47	13.093
2	47	10.114
3	28	7.798
4	61	18.043
195	56	11.567
196	16	12.006
197	52	9.894
198	23	14.020
199	40	11.349

200 rows × 2 columns

```
In [9]: sns.heatmap(df1.corr())
 Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x24ae339a3d0>
                                                       - 1.0
                                                       - 0.8
           Age
                                                       - 0.6
                                                       - 0.4
                                                       - 0.2
           Na to K
                                                        0.0
                     Age
                                       Na_to_K
In [10]: x=df1[['Age']]
          y=df[['Na_to_K']]
In [11]: from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [12]: from sklearn.linear model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[12]: LinearRegression()
In [13]: |print(lr.intercept_)
          [18.47094008]
In [14]: | coeff = pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
          coeff
Out[14]:
               Co-efficient
                 -0.049001
           Age
```

```
In [15]: prediction= lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x24ae3e60e20>

In [16]: print(lr.score(x_test,y_test))

-0.03551215824962095

In []: