APM 2663 Test 1 Fall 2024

Instructor: Eddie Cheng Date: October 31, 2024 I have to

Instructions and Important Information:

• Recall that the word if in a definition means if and only if.

• To receive full credit for a question, you should provide all logical steps.

All answers must be justified unless the questions stating otherwise.

• Recall that N is the set of positive integers. The definition in the book includes 0.

ullet Recall that $\mathbb Z$ is the set of integers.

- Recall that Q is the set of rational numbers.
- ullet Recall that $\mathbb R$ is the set of real numbers.

• This is a closed book examination. No external aids are allowed, except a calculator.

• Cheating is a serious academic misconduct. Oakland University policy requires that all suspected instances of cheating be reported to the Office of the Dean of Students/Academic Conduct Committee for adjudication. I have forwarded cases to the Office of the Dean of Students/Academic Conduct Committee before and I will not hesitate to do this again if I suspect academic misconduct has occurred. Anyone found responsible of cheating in this assessment will receive a course grade of F, in addition to any penalty assigned by the Academic Conduct Committee.

• I may ask for a meeting for you to explain your solutions.

• Until the solution to this test is posted/discussed by me, you may not discuss this test with others.

• This test is worth 110 marks. If you receive x marks, your grade will be min $\{x, 100\}\%$

• Solutions must be uploaded to Moodle unless otherwise arranged.

(1) Read the instructions and sign your name indicating that you have read the instructions. [1 mark]

I have Sarrock

(2) Write down your name. [1 mark]

Shane Jaroch

your proofs

- (3) Let $A = \{ \spadesuit, \heartsuit, \diamondsuit, \clubsuit \}$ and $B = \{ \longrightarrow, \emptyset, \Omega \}$.
 - (a) What is the cardinality of the power set of $(B (A \cup \{\heartsuit\}))$? [4 marks]
 - (b) What is the cardinality of $A \times A B \times B$? [4 marks]

$$B - (A \cup \{\emptyset\}) = B \Rightarrow |B - (A \cup \{\emptyset\})| = |B| = 3$$

$$Sma |P(B)| = 2^{|B|}, |P(B)| = 2^3 = 8.$$

$$A \times A - B \times B = A \times A$$
 (since $A \wedge B = \phi$)
 $\Rightarrow [A \times A - B \times B] = [A \times A] = 4.4 = [16]$

(4) Define a surjective function. (You may assume the definition of a function.) [5 marks]

A surjective function is one which, for every element in the co-domain (B) there exists at least one value in the domain (A) "pointing to" it (s.t. f(a) = b).

Uefre: f: A > B.

Then, surjective means

then, surpera.

The B: JaeA: f(a)=b.

(5) Answer each of the following: (a) Disprove: If n^2 is a multiple of 49, then n is a multiple of 49 [5 marks] False. Let n=7, then $n^2=49$. Smce 49/49, 49/n2, i.e., n2 = 1.(49), But 49/7, 49/n, i.e. n=7 cannot be written as a multiple (b) Prove: If n^2 is a multiple of 7, then n is a multiple of 7, without using the Fundamental Theorem of Arithmetics. [5 marks] (If you want to use the general result: "let p be a prime number; if p divides n^2 , then p divides n," then you need to prove it.) We want to show 7/n2 > 7/n, for all nEZ. This is the form P > Q, where P: 7/n2 and Q: 7/n. Let's show the (logically equivalent) contrapositive holds true. We want to show Q > P, or 7/n = 7/n2. IF Q, then n=7k+i where kEZ and i & 21,23,4,5,63. Let's look at the first case. (The remaining 5 cases are similar). Case 1: n=7k+

This clear that, in case 1, $7/n^2$. (It will have remainder of 1)

The other cases are similar, since the k² and k terms will have a coefficient which is a multiple of 7, but the constant term will not be divisible by 7.

Thus, we have shown $\overline{Q} \neq \overline{P}$, or $7/n \neq 7/n^2$, is true. Hence, by contrapositive, $P \neq Q$, or $7/n^2 \neq 7/n$. (6) Prove that $\sqrt{7}$ is irrational without using the Fundamental Theorem of Arithmetics. [15 marks]

Suppose not. Then $\sqrt{7} = \frac{m}{n}$, $m, n \in \mathbb{N}$.

W1206, we may assume in is in lovest terms, i.e., in and in have no common factors.

 $7 = \frac{m^2}{n^2}$. Thus

 $(1) 7n^2 = m^2 \rightarrow 7/m^2.$

We know from question 5(b), that since 7/m², 7/m. Thus,

(2) m=7i (for some i + 7/L).

Plug et (2) into eq (1).

 $7n^2 = (7i)^2$.

 $n^2 = 49i^2 \Rightarrow n^2 = 7i^2 \Rightarrow 7/n^2 \Rightarrow 7/n$

Recap: m & n have no common factors, but 7/m 1 7/n. X
Hence, 57 is irrational by proof by contradiction.

(7) Let A, B be sets. Let A and B be sets in some universal set. Prove that $(A \cup B) \cap (A \cup \overline{B}) = A$ without using distributive laws and without using Venn diagrams. [15 marks]

But
$$x \in A \cup B$$
. (def of u)

But $x \in A \cup \overline{B}$. (def of u)

Hence $x \in (A \cup B) \cap (A \cup \overline{B})$. (def of n)

In either case, XEA > XE (AUB) n(AUB).

 $A \subseteq (A \circ B) \cap (A \circ \overline{B}).$

(III) Let
$$x \in (A \cup B) \cap (A \cup \overline{B}).$$

" $\times \in A \cup B$ and $\times \in A \cup \overline{B}$. $\Rightarrow (\times \in A \vee \times \in B) \land (\times \in A \vee \times \notin B)$.

Since if x were not an element of A, both conditions would fall we can conclude $X \in A$ (x cannot be both in B and \overline{B} , so it must at least be in A).

· (AUB) n (AUB) EA.

(embining I and II with the def of set equality gives,
$$A = (A \cup B) \cap (A \cup B)$$
, as desired.

(8) Define $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ by $f(x) = 2024x^3 - 2663x$. Determine whether or not f is one-to-one and/or onto. [20 marks]

 $f(x) = \chi \left(2024x^2 - 2663 \right)$

onto: Is there any XEZZ s.t. f(x)=1?

That means $1 = \chi (2024\chi^2 - 2663)$. We have two possible solutions:

X = -1 and $(2024x^2 - 2663) = -1$, [a) $\chi = \pm 1$ denote to

X=1 and $(2024x^2-2663)=1$. (only integer factors matter, since $X \in \mathbb{Z}$),

If he show Zoz4x2 + 2663 + / \text{XEZ, wire done (and f is not onto).

Since nether 2664 nor 2662 are divisible by 2024, we clearly see

no x-value exists satisfying this equation.

Hence, I is not in the image of f, and f is not onto. I

1-to-1: Does 2024a3-2663a=202463-2663b for any a, b t ? (a+b)?

Let's look for solutions. Set $2624/a^3-b^3 = 2663(a-b)$

Since a = b is not desired or allowed, we can divide by (a-b).

First, let's factor the difference of cubes, $a^3-b^3=(a-b)(a^2+ab+b^2)_o$

Thus if we find no solutions to this (below) It's 1-to-1, else f 13 not 1-1.

 $2024(a^2+ab+b^2)=2663.$

Again, since 2024/2663, we clearly see, since a2 tab + b2 is an integer, there are no integer solutions for a and be

Hence, f is one-to-one,

(9) Give an example of a binary relation that is reflexive, symmetric, not transitive and not anti-symmetric, or show that it does not exist. [10 marks]

Represent that it does not exist. [25]
$$A = \{a, b, c\}.$$

Not transitive, since aRb 1 bRc, but a Rc.

also something
also something
the other
also spections
of the contents
of the

- (10) Let R be a relation on A. Then R is *irreflexive* if $(a, a) \notin R$ for all $a \in A$. Let $A \neq \emptyset$ and R be a relation on A.
 - (a) Is it possible for R to be both reflexive and irreflexive? [5 marks]
 - (b) Is it possible for R to be both not reflexive and not irreflexive? [5 marks]
- (a) R can only be reflexive and irreflexive if $A = \phi$. Let's prove this.
- (1) Suppose R is reflexive, then $\exists a \in A : (a,a) \in \mathbb{R}$. But, by definition of irreflexive, R is not irreflexive.
- (2) (onversely, suppose R is irreflexive, then $\forall a \in A$: $(a,a) \notin R$. This is log irally equivalent to $\neg \exists a \in A$: $(a,a) \notin R$. (by the law of regard Authoritheld).

 But since A is nonempty, this means the deflection of reflexive fails to hold on R over A. Hence, in this case, R over A cannot be reflexive. In both cases, which was a bit redundant, we have shown R (over A) cannot be both reflexive and Meklexive.
- (b) Yes, its possible for R to be both not reflexive & not irreflexive, Example:

$$A = \{1, 2\}$$
, $R = \{(1,1)\}$

R not reflexive because (2,2) & R.

R not irreflexive because (1,1) ∈ R. D

(11) Let $f:A\longrightarrow B, h:A\longrightarrow B$ and $g:B\longrightarrow C$.

(a) Show that the statement, $g \circ f = g \circ h$ implies f = h, is not true. [5 marks]

(b) Prove that if $g \circ f = g \circ h$ and g is injective, then f = h. (Hint: To show that f = h, let $a \in A$ and show that f(a) = h(a).) [10 marks]

(a) Let
$$g(b) = b^2$$
, $f(a) = \lfloor a \rfloor$, and $h(a) = -\lfloor a \rfloor$ $A = \{ -1, 1 \}$
Then $\forall a \in A : g(f(a)) = g(h(a))$, $B = \{ -1, 1 \}$
But $f \neq h$. (So $f = h$ is false counterexample). $C = \{ 1 \}$

(b) Let $a \in A$.

Then g(f(a)) = g(h(a)) = c only if f(a) = h(a). [since g is one-to-one]

Since g is one-ho-one, only one value exists (GII it b) such that g(b) = c. $\neg \exists d \in B : g(b) = g(d) \land b \neq d$.

Since we know gof = goh, as we have above, g(fla) = g(hla), but since g is 1-to-1, it's required that fla) = hla).

... f=h is true YacA. D.

(12) Estimate your grade in this test. Let x be your guess. If your grade is in the interval [x-5,x+5], you will receive 2 bonus marks.