

Feature Importance & Selection

Dina Chahyati*, Adila Alfa Krisnadhi, Siti Aminah, Aruni Yasmin Azizah, Fariz Darari

CSGE603130: Kecerdasan Artifisial dan Sains Data Dasar Gasal 2022/2023

Referensi

- Understanding Feature Importance and How to Implement it in Python | by Terence Shin | Towards Data Science
- A Complete Guide to Sequential Feature Selection -(analyticsindiamag.com)
- <u>Feature Selection Techniques</u> | 7 Feature Selection Techniques in ML (analyticsvidhya.com)
- Using the Chi-Squared test for feature selection with implementation | by
 Dr. Saptarsi Goswami | Towards Data Science

Motivasi

Motivasi: Mengapa Perlu Seleksi Fitur?

- Untuk mengurangi jumlah fitur yang digunakan
- Untuk mencari model terbaik (better performance), karena terkadang ada fitur tak relevan yang membuat hasil klasifikasi/regresi/clustering tidak optimal
- Untuk mengurangi beban komputasi
- Untuk memperkuat data understanding
- Untuk memperkuat model interpretability
- Seleksi fitur dilakukan dengan cara membandingkan nilai feature importance

Metode Seleksi Fitur

A. Metode Filter

- Cepat dan mudah
- Dilakukan pada saat pra-pemrosesan data, sebelum data masuk ke algoritma machine learning (klasifikasi/regresi/clustering)
- Contoh: Koefisien korelasi, variance threshold, Chi-square-test, dll

B. Metode Wrapper (Greedy Algorithm)

- Umumnya berusaha memilih subset-subset dari himpunan fitur secara iteratif, dengan cara membandingkan kinerjanya jika subset fitur tersebut dijadikan input ke algoritma machine learning
- Contoh: SFFS, SBFS, dll

C. Metode Embedded

- Kombinasi metode filter dan wrapper. Cepat seperti metode filter dan hasilnya akurat seperti metode wrapper. Seleksi fitur merupakan bagian dari algoritma machine learning itu sendiri.
- Contoh: Decision Tree, Linear regression Lasso

A. Metode Filter

A. Metode Filter

- Cepat dan mudah
- Dilakukan pada saat pra-pemrosesan data, sebelum data masuk ke algoritma machine learning (klasifikasi/regresi/clustering)
- Contoh: koefisien korelasi, variance threshold, Chi-square-test, dll

Klasifikasi / Regresi / Clustering hanya dilakukan satu kali

A. Metode Filter: Koefisien Korelasi

 Hitung korelasi antara setiap fitur dengan label target. Fitur dengan korelasi mendekati nol bisa diabaikan.

Hitung korelasi antar fitur. Jika ada 2 fitur dengan korelasi tinggi, ambil

salah satu saja.

Gambar diambil dari
Feature Selection
Techniques | 7
Feature Selection
Techniques in ML
(analyticsvidhya.com)

Apakah PCA masuk ke kategori ini?

- 0.8

- 0.6

- 0.4

- 0.2

0.0

A. Metode Filter: Variance Threshold

- Motivasi: data dengan variansi rendah cenderung tidak memberikan banyak informasi
- Cara seleksi:
 - Pastikan data berada pada skala yang sama (normalisasi)
 - Hitung variansi tiap data
 - Abaikan data dengan variansi rendah (berdasarkan threshold tertentu)

- Sebenarnya yang dilakukan oleh Chi-Square Test adalah Uji Hipotesa, untuk mengetahui apakah suatu fitur berpengaruh/tidak berpengaruh terhadap label kelas (klasifikasi).
- Digunakan untuk membandingkan dua data bertipe kategorikal.
- Ingat pada kuliah Statprob, Uji Hipotesa digunakan untuk membandingkan mean, sehingga menggunakan
 - Tabel distribusi normal (jika variansi populasi diketahui)
 - Tabel distribusi student-t (jika variansi populasi tidak diketahui)
- Pada seleksi fitur, yang ingin dibandingkan adalah hasil observasi (observed) dan hasil yang diharapkan (expected)
- Jika fitur yang dibandingkan bersifat numerik, uji hipotesa bisa dilakukan dengan F-test (ANOVA – ANalysis Of VAriance)

2 ²		\sim	(O-	$E)^2$
χ	_	L^{-}	F	

dt P	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	df
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12,838	3
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860	4
5	0,412	0.831	1.610	4.351	9.236	11,070	12.832	15.086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3,490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1,735	2,700	4,168	8.343	14.684	16.919	19.023	21,666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188	10
11	2.603	3,816	5.578	10.341	17.275	19.675	21.920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28,300	12
13	3.565	5.009	7.042	12.340	19.812	22.362	24.736	27.688	29,819	13
14	4.075	5.629	7.790	13.339	21.064	23.685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14,339	22.307	24.996	27,488	30.578	32,801	15

Gambar diambil dari
PPT - The ChiSquare Test for
Association
PowerPoint
Presentation, free
download ID:2536011
(slideserve.com)

 Contoh Chi-Square Test (<u>Using the Chi-Squared test for feature selection</u> with implementation | by Dr. Saptarsi Goswami | Towards Data Science)

Pld	Pclass	Name	Sex	Age	Fare	Survived
1	3	Braund, Mr. Owen Harris	male	22	7.25	0
2	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	71.2833	1
3	3	Heikkinen, Miss. Laina	female	26	7.925	1
4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	53.1	1
5	3	Allen, Mr. William Henry	male	35	8.05	0
6	3	Moran, Mr. James	male		8.4583	0
7	1	McCarthy, Mr. Timothy J	male	54	51.8625	0
8	3	Palsson, Master. Gosta Leonard	male	2	21.075	0
9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	11.1333	1
10	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	30.0708	1

- Titanic Shipwreck Problem, ingin diketahui: Survived atau Not Survived
- Ingin diketahui pengaruh atribut "Sex" pada "Survived"

Tentukan pernyataan Hipotesa:

- H0: The attribute sex has no role to play in the survival of a passenger (The feature is not important)
- H1: The attribute sex has a role to play in survival (The feature is important)

Sex	NotSurvied	Survived	Total
female	156	307	463
male	708	142	850
Total	864	449	1313

$$\chi^{2} = \underbrace{\begin{bmatrix}O_{11} - E_{11} \\ E_{11}\end{bmatrix}^{2}}_{E_{11}} + \underbrace{\frac{(O_{12} - E_{12})^{2}}{E_{12}} + \dots + \frac{(O_{mn} - E_{mn})^{2}}{E_{mn}}}_{E_{mn}}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

 $O_{female-survived}$

The above table shows Sex vs survival status of the passengers. This is also called the contingency table.

 $E_{female-survived}$

- If they are independent then the male-female ratio across survived and not survived should be the same.
- A ratio of 449/1313 survived
- If there is no dependence or association 463 * 449/1313 of the females should survive i.e 158.13
- This is the expected count under independence
- The calculation for all four cases are given below

(Categories	Obse	rved	Expected	Chi-square
F	emale Survived		307	158.33	139.5994
F	emale Not Survived		156	304.67	72.54659
١	Male Survived		142	290.67	76.04076
N	Male not Survived		708	559.33	39.51651
					327.7032

Selanjutnya:

- Hitung chi-square untuk setiap fitur kategorikal
- Sebenarnya bisa ditentukan nilai level of confidence tertentu untuk menentukan apakah H0 ditolak atau diterima
- Namun bisa juga diurutkan saja nilai chi-square dari setiap fitur lalu diurutkan, ambil fitur-fitur berdasarkan nilai chi-square yang tertinggi.

A. Metode Filter di Sklearn

sklearn.feature_selection: Feature Selection

<pre>feature_selection.chi2(X, y)</pre>	Compute chi-squared stats between each non-negative feature and class.
<pre>feature_selection.f_classif(X, y)</pre>	Compute the ANOVA F-value for the provided sample.
<pre>feature_selection.f_regression(X, y, *[,])</pre>	Univariate linear regression tests returning F-statistic and p-values.
<pre>feature_selection.r_regression(X, y, *[,])</pre>	Compute Pearson's r for each features and the target.
${\tt feature_selection.mutual_info_classif}(X,y,{}^*)$	Estimate mutual information for a discrete target variable.
${\tt feature_selection.mutual_info_regression}(X,y,{}^*)$	Estimate mutual information for a continuous target variable.
4	

16

B. Metode Wrapper

B. Metode Wrapper

- Umumnya berusaha memilih subset-subset dari himpunan fitur secara iteratif, dengan cara membandingkan kinerjanya jika subset fitur tersebut dijadikan input ke algoritma machine learning
- "Kinerja" bisa dihitung dengan akurasi, F1-Score, AUC, dlsb

Klasifikasi / Regresi / Clustering dilakukan berulang kali

B. Metode Wrapper: SFFS

- SFS: Sequential Feature Selection
- Varian: Backward, Forward
- SFFS (Sequential Forward Feature Selection)
 - Misal ada 10 fitur (A,B,C,...,J)
 - Kondisi awal: belum ada fitur yang terpilih
 - Lakukan 10 eksperimen (klasifikasi/regresi/clustering) menggunakan satu fitur saja setiap eksperimen. Ambil fitur dengan akurasi tertinggi (misal fitur B)
 - Lakukan 9 eksperimen menggunakan 1 tambahan fitur (BA, BC, ..., BJ), ambil kombinasi fitur yang memberikan akurasi tertinggi.
 - Demikian seterusnya sehingga diperoleh k buah fitur yang diinginkan.
 - Misal kita menginginkan 3 fitur saja, maka jumlah eksperimen yang dilakukan adalah 10 + 9 + 8 = 27 kali
 - Jika kita mencoba semua kemungkinan: C(10,3) = 120 eksperimen
 - Sekuensial: tidak bisa backtrack. Fitur yang sudah terpilih tidak bisa dibuang di langkah selanjutnya

B. Metode Wrapper: SBFS

SBFS (Sequential Backward Feature Selection)

hapus fitur yang punya <u>least</u> performance lost

- Misal ada 10 fitur (A,B,C,...,J)
- Kondisi awal: semua fitur terpilih
- Lakukan 10 eksperimen (klasifikasi/regresi/clustering) menggunakan 9 dari 10 fitur saja setiap eksperimen. Buang fitur yang memberikan akurasi terburuk.
- Lakukan 9 eksperimen lagi, dengan membuang salah satu fitur di setiap eksperimen. Buang fitur yang memberikan akurasi terburuk
- Demikian seterusnya sehingga diperoleh k buah fitur yang diinginkan.
- Sekuensial: tidak bisa backtrack. Fitur yang sudah terbuang tidak bisa dipilih di langkah selanjutnya

di jalanin sampai 10 kali kalau misalnya gak tau mau stop berapa kali, terus di cek kombinasi dengan akurasi paling baik.

B. Metode Wrapper di sklearn

sklearn.feature_selection.SequentialFeatureSelector

```
class sklearn.feature\_selection.SequentialFeatureSelector(estimator, *, n\_features\_to\_select='warn', tol=None, direction='forward', scoring=None, cv=5, n\_jobs=None) [source]
```


C. Metode Embedded

C. Metode Embedded

- Kombinasi metode filter dan wrapper. Cepat seperti metode filter dan hasilnya akurat seperti metode wrapper. Seleksi fitur merupakan bagian dari algoritma machine learning itu sendiri.
- "Akurat" dalam pengertian: pengaruh seleksi fitur sudah benar-benar dihitung berdasarkan hasil klasifikas/regresi/clustering (berbeda halnya dengan metode filter).
- Contoh: Decision Tree, Regresi Lasso

C. Metode Embedded: Decision Tree

- Contoh pada slide kuliah sebelumnya, fitur "Suka Popcorn" tidak digunakan di decision tree.
 Mengapa?
- Apakah nilai Gini Index secara tidak langsung "menyeleksi" fitur?

No.	Suka popcorn	Suka Minuman Soda	Umur	Suka "Ice Age"
1	lya	lya	7	Tidak
2	lya	Tidak	12	Tidak
3	Tidak	lya	18	lya
4	Tidak	lya	35	lya
5	lya	lya	38	lya
6	lya	Tidak	50	Tidak
7	Tidak	Tidak	83	Tidak

C. Metode Embedded: Linear Regression

- Output dari linear regression adalah sebuah fungsi dengan bentuk umum $y^* = w_1 x_1 + w_2 x_2 + w_3 x_3 + \cdots w_n x_n + d$, dengan
- x_1 , x_2 , x_3 , ..., x_n adalah fitur
- w_1 , w_2 , w_3 , ..., w_n adalah koefisien atau bobot yang terkait dengan fitur
- Feature importance bisa langsung diketahui dari koefisien/bobot dari setiap fitur. Semakin besar bobot, semakin penting fitur tersebut.
- Penjelasan lebih lanjut akan dipelajari pada materi tentang Regresi.

More Discussion

Feature Selection vs Ablation Study

- Apa perbedaan antara Feature Selection & Ablation Study pada machine learning?
 - Feature Selection: memilih fitur (dari data input) yang dapat memberikan kinerja terbaik.
 - Ablation Study: mempelajari pengaruh modul-modul pada suatu machine learning system terhadap kinerja akhir.

Machine Learning:
What Is Ablation
Study? | Baeldung
on Computer
Science

Bagaimana membandingkan model ML?

- Misalkan kita memiliki 2 atau lebih model ML untuk melakukan klasifikasi terhadap suatu permasalahan. Misalkan: KNN dan CART. Bagaimana menyatakan bahwa satu model lebih baik dari yang lain?
- Apakah cukup hanya dengan melakukan satu kali eksperimen?
- Apakah cukup dengan melakukan k-fold cross validation lalu mengambil reratanya?
- Nilai apa yang perlu dibandingkan? Akurasi, F1-score, sensitivity, specificity, AUC?

Benchmark Dataset

- Seringkali suatu dataset memiliki sistem benchmarking, sehingga dapat membandingkan kinerja suatu model dan model lainnya secara langsung.
- Biasanya model akan diujikan dengan data testing yang sama (yang hanya diketahui oleh pengelola), lalu kinerjanya dievaluasi menggunakan metrik yang sudah ditentukan.
- Jika sudah ada benchmark, maka cukup dibandingkan kinerja model berdasarkan metrik yang sudah ditentukan.
- Model hanya dievaluasi berdasarkan hasil satu kali eksperimen saja.

https://motchallenge.net/results/MOT20/

Multiple Object Tracking Benchmark

Benchmark Statistics

↑ MOTA	IDF1	HOTA	MT	ML	FP	FN	RcII	Prcn	AssA	DetA	AssRe	AssPr	DetRe	DetPr	LocA	FAF	ID Sw.	Frag	Hz
77.1	74.2	61.5	895 (72.1)	117 (9.4)	43,118	73,849	85.7	91.1	59.3	63.9	66.5	72.2	71.7	76.2	83.7	9.6	1,687	1,884	0.9
74.5	73.7	60.8	792 (63.8)	163 (13.1)	18,070	112,717	78.2	95.7	60.6	61.3	65.9	78.3	65.7	80.4	84.2	4.0	1,401	1,891	14.9
73.0	67.6	56.1	833 (67.1)	147 (11.8)	30,880	106,876	79.3	93.0	52.9	59.8	59.5	72.7	65.6	76.9	83.2	6.9	2,172	3,313	1.4
67.7	67.8	53.9	689 (55.5)	162 (13.0)	32,536	131,330	74.6	92.2	52.9	55.1	58.8	71.7	60.5	74.7	81.7	7.3	3,176	8,874	16.9
67.0	70.2	56.4	592 (47.7)	263	9,685	160,303	69.0	97.4	58.3	54.8	65.0	73.6	57.7	81.4	84.1	2.2	680	1,738	17.7
Y. Zhang,	P. Sun, Y	. Jiang, D. Y	/u, F. Wen	g, Z. Yuan	, P. Luo, W. L	iu, X. Wang. B	yteTrack	: Multi-Obj	ject Trackir	g by Asso	ciating Every	Detection E	Box. In Proce	edings of th	ne Europea	n Confer	ence on Com	puter Vision	(ECCV), 2022.
65.4	65.1	52.1	615 (49.5)	165 (13.3)	38,243	137,770	73.4	90.8	50.7	53.8	53.9	77.8	59.4	73.6	81.4	8.5	2,885	7,205	5.1
	77.1 74.5 73.0 67.7 67.0 Y. Zhang,	77.1 74.2 74.5 73.7 73.0 67.6 67.7 67.8 67.0 70.2 Y. Zhang, P. Sun, Y	77.1 74.2 61.5 74.5 73.7 60.8 73.0 67.6 56.1 67.7 67.8 53.9 67.0 70.2 56.4 Y. Zhang, P. Sun, Y. Jiang, D. Y.	77.1 74.2 61.5 895 (72.1) 74.5 73.7 60.8 792 (63.8) 73.0 67.6 56.1 833 (67.1) 67.7 67.8 53.9 689 (55.5) 67.0 70.2 56.4 592 (47.7) Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Wen 65.4 65.1 52.1 615	77.1 74.2 61.5 895 117 (72.1) (9.4) 74.5 73.7 60.8 792 163 (63.8) (13.1) 73.0 67.6 56.1 833 147 (67.1) (11.8) 67.7 67.8 53.9 689 162 (55.5) (13.0) 67.0 70.2 56.4 592 263 (47.7) (21.2) Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan 65.4 65.1 52.1 615 165	77.1 74.2 61.5 895 (72.1) 117 (9.4) 43,118 (9.4) 74.5 73.7 60.8 792 (63.8) 163 (13.1) 18,070 (63.8) 73.0 67.6 56.1 833 (67.1) 147 (11.8) 30,880 (67.1) 67.7 67.8 53.9 689 (55.5) (13.0) 32,536 (13.0) 67.0 70.2 56.4 592 (263 (21.2)) 9,685 (47.7) (21.2) Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Line (15.4) 65.4 65.1 52.1 615 165 38,243	77.1 74.2 61.5 895 (72.1) (9.4) 43,118 73,849 74.5 73.7 60.8 792 (63.8) (13.1) 18,070 112,717 73.0 67.6 56.1 833 (67.1) (11.8) 147 (11.8) 30,880 106,876 67.7 67.8 53.9 689 (55.5) (13.0) 32,536 131,330 67.0 70.2 56.4 592 (263 (47.7) (21.2) 9,685 160,303 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang. B 65.4 65.1 52.1 615 165 38,243 137,770	77.1 74.2 61.5 895 117 43,118 73,849 85.7 (72.1) (9.4) 74.5 73.7 60.8 792 163 18,070 112,717 78.2 (63.8) (13.1) 73.0 67.6 56.1 833 147 30,880 106,876 79.3 (67.1) (11.8) 67.7 67.8 53.9 689 162 32,536 131,330 74.6 (55.5) (13.0) 67.0 70.2 56.4 592 263 9,685 160,303 69.0 (47.7) (21.2) Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang. ByteTrack 65.4 65.1 52.1 615 165 38,243 137,770 73.4	77.1 74.2 61.5 895 (72.1) 117 (9.4) 43,118 73,849 85.7 91.1 74.5 73.7 60.8 792 (63.8) (13.1) 18,070 112,717 78.2 95.7 73.0 67.6 56.1 833 (147) (11.8) 30,880 106,876 79.3 93.0 67.7 67.8 53.9 689 (67.1) (11.8) 32,536 131,330 74.6 92.2 67.0 70.2 56.4 592 (263) (13.0) 9,685 160,303 69.0 97.4 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang. ByteTrack: Multi-Ob 65.4 65.1 52.1 615 165 38,243 137,770 73.4 90.8	77.1 74.2 61.5 895 (72.1) 117 (9.4) 43,118 73,849 85.7 91.1 59.3 74.5 73.7 60.8 792 (63.8) (13.1) 18,070 112,717 78.2 95.7 60.6 73.0 67.6 56.1 833 (13.1) 147 (30,880) 106,876 79.3 93.0 52.9 67.7 67.8 53.9 689 (55.5) (13.0) 32,536 131,330 74.6 92.2 52.9 67.0 70.2 56.4 592 (263) (13.0) 9,685 160,303 69.0 97.4 58.3 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang, ByteTrack: Multi-Object Tracking 65.4 65.1 52.1 615 165 38,243 137,770 73.4 90.8 50.7	77.1 74.2 61.5 895 (72.1) 117 (9.4) 43,118 73,849 85.7 91.1 59.3 63.9 74.5 73.7 60.8 792 (63.8) (13.1) 18,070 112,717 78.2 95.7 60.6 61.3 73.0 67.6 56.1 833 (67.1) (11.8) 147 (11.8) 30,880 106,876 79.3 93.0 52.9 59.8 67.7 67.8 53.9 689 (67.1) (11.8) 32,536 131,330 74.6 92.2 52.9 55.1 67.0 70.2 56.4 592 (263 (47.7) (21.2) 9,685 160,303 69.0 97.4 58.3 54.8 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang, ByteTrack: Multi-Object Tracking by Associated States and States an	77.1 74.2 61.5 895 (72.1) 117 (9.4) 43,118 73,849 85.7 91.1 59.3 63.9 66.5 74.5 73.7 60.8 792 163 (63.8) (13.1) 18,070 112,717 78.2 95.7 60.6 61.3 65.9 73.0 67.6 56.1 833 (147) (11.8) 30,880 106,876 79.3 93.0 52.9 59.8 59.5 67.7 67.8 53.9 689 (55.5) (13.0) 162 (32.536) (13.1) 32,536 131,330 74.6 92.2 52.9 55.1 58.8 67.0 70.2 56.4 592 (263) (55.5) (13.0) 9,685 160,303 69.0 97.4 58.3 54.8 65.0 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang, ByteTrack: Multi-Object Tracking by Associating Every 65.4 65.1 52.1 615 165 38,243 137,770 73.4 90.8 50.7 53.8 53.9	77.1 74.2 61.5 895 (72.1) 43,118 (9.4) 73,849 (95.7) 91.1 59.3 (63.9) 66.5 72.2 (72.1) 74.5 (72.1) 74.5 (72.1) 74.5 (72.1) 74.5 (9.4) 74.5 (72.1) 74.5 (9.4) 74.5 (72.1) 74.5 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) 74.6 (9.4) <	77.1 74.2 61.5 895 (72.1) 43,118 (9.4) 73,849 (95.7) 91.1 59.3 (63.9) 66.5 (72.2) 71.7 (72.1) 74.5 (72.1) 74.5 (72.1) 74.5 (9.4) 74.5 (72.1) 74.5 (9.4) 74.5 (63.8) 74.7 (13.1) 74.7 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1) 74.6 (72.1)	77.1 74.2 61.5 895 (72.1) 43,118 73,849 85.7 91.1 59.3 63.9 66.5 72.2 71.7 76.2 74.5 73.7 60.8 792 (63.8) (13.1) 18,070 112,717 78.2 95.7 60.6 61.3 65.9 78.3 65.7 80.4 73.0 67.6 56.1 833 (147) (11.8) 30,880 106,876 79.3 93.0 52.9 59.8 59.5 72.7 65.6 76.9 67.7 67.8 53.9 689 (65.5) (13.0) 162 32,536 131,330 74.6 92.2 52.9 55.1 58.8 71.7 60.5 74.7 67.0 70.2 56.4 592 (263) (9.8) 9,685 160,303 69.0 97.4 58.3 54.8 65.0 73.6 57.7 81.4 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang, ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the company of the	77.1 74.2 61.5 895 (72.1) 43,118 73,849 85.7 91.1 59.3 63.9 66.5 72.2 71.7 76.2 83.7 74.5 73.7 60.8 792 (13.1) 18,070 112,717 78.2 95.7 60.6 61.3 65.9 78.3 65.7 80.4 84.2 73.0 67.6 56.1 833 (13.1) 147 (11.8) 30,880 106,876 79.3 93.0 52.9 59.8 59.5 72.7 65.6 76.9 83.2 67.7 67.8 53.9 689 (162) (55.5) (13.0) 32,536 131,330 74.6 92.2 52.9 55.1 58.8 71.7 60.5 74.7 81.7 67.0 70.2 56.4 592 (263) (9.85) (160,303) (9.0) (97.4) 58.3 54.8 65.0 73.6 57.7 81.4 84.1 Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, X. Wang, ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the Europea 65.4 65.1	77.1 74.2 61.5 895 117 43,118 73,849 85.7 91.1 59.3 63.9 66.5 72.2 71.7 76.2 83.7 9.6 74.5 73.7 60.8 792 163 18,070 112,717 78.2 95.7 60.6 61.3 65.9 78.3 65.7 80.4 84.2 4.0 (63.8) (13.1) 30,880 106,876 79.3 93.0 52.9 59.8 59.5 72.7 65.6 76.9 83.2 6.9 (67.1) (11.8) 30,880 106,876 79.3 93.0 52.9 55.1 58.8 71.7 60.5 74.7 81.7 7.3 (67.0) 70.2 56.4 592 263 9,685 160,303 69.0 97.4 58.3 54.8 65.0 73.6 57.7 81.4 84.1 2.2 (47.7) (21.2) 7.2 Tracking by Associating Every Detection Box. In Proceedings of the European Conference of S.4 65.1 52.1 615 165 38,243 137,770 73.4 90.8 50.7 53.8 53.9 77.8 59.4 73.6 81.4 85.5	77.1 74.2 61.5 895 117	77.1 74.2 61.5 895 117 43,118 73,849 85.7 91.1 59.3 63.9 66.5 72.2 71.7 76.2 83.7 9.6 1,687 1,884 (0.0) (0.0

Jika tidak ada benchmark?

- Bagaimana jika kita ingin membandingkan kinerja model yang kita usulkan dengan model peneliti lain yang sudah di publish di jurnal/publikasi lainnya?
 - Pastikan kita menggunakan data training/testing yang sama dengan peneliti lain
 - Jika informasi tersebut tidak ada, lakukan eksperimen ulang menggunakan data yang sama, dengan k-fold cross validation.

J. Zheng et al.

ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021) 95-121

Table 4

The F1-score of other state-of-the-art tree crown detection methods in Site 1.

Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images

Method	Healthy palm	Dead palm	Mismanaged palm	Smallish palm	Yellowish palm	Average F1-score
RF	79.05%	0.46%	0.00%	37.50%	12.91%	25.98%
SVM	77.47%	0.00%	0.00%	33.45%	5.03%	23.19%
CNN (ResNet-101)	74.76%	7.33%	2.86%	35.93%	19.26%	28.03%
Faster R-CNN	90.46%	6.47%	42.48%	65.76%	73.54%	55.74%
Grid R-CNN	90.62%	13.37%	41.82%	66.14%	69.22%	56.23%
GA Faster R-CNN	88.60%	15.67%	54.70%	61.52%	71.18%	58.33%
Cascade R-CNN	91.22%	36.36%	40.00%	64.48%	71.46%	60.71%
Libra Faster R-CNN	91.00%	30.54%	55.74%	65.17%	69.87%	62.46%
MOPAD (ours)	91.10%	55.28%	51.76%	77.06%	88.92%	72.83%

Uji Statistik

- Misalkan model kita berhasil mencapai rerata akurasi 76%, sedangkan model lain memperoleh akurasi 74%, apakah kita dapat mengatakan model kita lebih baik secara signifikan?
 - Perlu lakukan uji statistik
 - Yang ingin diuji adalah rerata akurasi (atau F1-score, sensitivity, dlll),
 - Variansi populasi tidak diketahui, hanya variansi sampel (hasil eksperimen) yang diketahui
 - Gunakan t-test

t - test

Tahapan t-test adalah sebagai berikut:

- 1. Buat hipotesa H0 dan H1
- 2. Tentukan level of significance yang ingin digunakan, dapatkan daerah tolak H0 dan terima H0
- 3. Hitung test-score dari data kita
- Bandingkan apakah test score tersebut berada di daerah tolak atau terima H0
- 5. Buat kesimpulan

Badu sedang mengembangkan algoritma *sorting* baru. Untuk menguji kinerja algoritma yang dikembangkannya, Badu membandingkannya dengan algoritma *merge-sort*. Badu merasa yakin bahwa algoritma yang dikembangkannya tersebut lebih baik daripada algoritma *merge-sort*.

Badu melakukan beberapa kali percobaan terhadap algoritma yang dikembangkannya dan juga algoritma *merge-sort*. Berikut ini adalah data *response time* yang dicatat Badu untuk kedua algoritma tersebut.

Eksperimen Ke-	Response Time Algoritma Badu (ms)	Response Time Algoritma Merge-Sort (ms)
1	100	150
2	200	250
3	100	100
4	250	200
5	450	500
6	350	275
7	450	450
Rerata	271,43	275,00

Dengan memperhitungkan data tersebut dan asumsi bahwa variansi kedua populasi sama, tentukan apakah secara statistik algoritma baru yang dibuat Badu memiliki kinerja yang sama dengan algoritma merge-sort, atau malah lebih baik dari algoritma merge-sort tersebut? Gunakan level of significance 0.1.

Tahap 1: Buat hipotesa H0 dan H1

H0: mean response time algoritma Badu sama dengan algoritma merge sort. ($\mu_{Badu} = \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} = 0$)

H1: mean response time algoritma Badu lebih cepat dari algoritma merge sort. ($\mu_{Badu} < \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} < 0$)

Alternatif H0 karena yang dipakai adalah one-tailed:

H0: mean response time algoritma Badu tidak lebih cepat dari algoritma merge sort. ($\mu_{Badu} \geq \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} \geq 0$)

<u>Tahap 2:</u> Tentukan *level of significance* yang ingin digunakan, dapatkan daerah tolak/terima H0 Dari soal, diminta *level of significance* adalah 0.1.

Jumlah data adalah 7, sehingga degree of freedom (df) adalah n+m-2=7+7-2=12.

m adalah jumlah data pada dataet 1 dan n adalah jumlah data pada dataset 2.

Dalam hal ini kebetulan sama yaitu 7.

				t-te	est t	able)
cum. prob one-tail	t.50 0.50	t.75 0.25	t.80 0.20	t.85 0.15	t.90 0.10	t _{.95}	t _{.975}
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05
df 1	0.000	1.000	1.376	1.963	3.078	6.314	12.71
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303
2	0.000	0.765	0.978	1.250	1.638	2.353	3.182
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571
5 6	0.000	0.718	0.906	1.134	1.440	1.943	2.447
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306
8 9	0.000	0.703	0.883	1.100	1.383	1.833	2.262
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160

Tahap 3: Hitung test-score (TS) dari data kita

Set Data Ke-	Response Time Algoritma Badu (ms)	Response Time Algoritma Merge-Sort (ms)
1	100	150
2	200	250
3	100	100
4	250	200
5	450	500
6	350	275
7	450	450
Rerata	271,43	275,00
Std Deviasi	149,60	149,30
Variansi	22380,95	22291,67

$$TS = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \qquad S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

$$S_p^2 = \frac{6(22380,95) + 6(22291,67)}{7 + 7 - 2} = 22336,31$$

Pada eksperimen kita, variansi populasi tidak diketahui, tapi diasumsikan sama (anggap saja sama-sama σ^2) S_p^2 disebut dengan **pooled estimator** untuk σ^2 .

$$TS = \frac{271,43 - 275}{\sqrt{22336,31\left(\frac{1}{7} + \frac{1}{7}\right)}} = \frac{-3,57}{79,89} = -0,00471$$

Tahap 4: Bandingkan apakah test score tersebut berada di daerah tolak atau

Tahap 5: Buat kesimpulan

Karena TS > -1.356, maka tidak terdapat cukup bukti untuk mendukung klaim bahwa algoritma Badu lebih cepat daripada algoritma MS pada *level of significance* 0.1

TERIMA KASIH