

BLOQUE 1:

Introducción al Análisis de Datos con Python

¿Qué es Python y qué nos proporciona para el análisis de datos?

- Python es un lenguaje de programación orientado a objetos de **alto nivel** y de propósito general.
- Python se basa en la **simpleza** y en la facilidad de lectura de código disminuyendo costes de mantenimiento y **facilitando su aprendizaje**.
- Soporta módulos y librerías que favorecen la reutilización de código.
- Dispone de potentes estructuras de datos y librerías enfocadas al análisis de datos.
- Es un lenguaje **interpretado**, se ejecuta el código línea a línea. No hay un paso de compilación como en otros lenguajes → Rapidez de ejecución.
- Python es open source y multiplataforma (Windows, Linux, Mac,...).

Instalación Python + Jupyter

ANACONDA: Distribución de Python con múltiples librerías pre-instaladas para D() ANACONDA.
 Science.

https://www.anaconda.com/distribution/#download-section

- Definir el PATH: Definir la ruta de la instalación (Python.exe / conda.exe) para mayor facilidad de uso a la hora de instalar cualquier nueva librería:
 - Ruta habitual de Python:
 - C:\Users\tu_nombre_de_usuario\Anaconda3\Scripts
 - Ruta habitual de "conda" (actualización de paquetes):
 - C:\Users\tu_nombre_de_usuario\Anaconda3\Scripts
 - Panel de Control> system > advanced > | Variables de Entorno | > system variables
 Añadir a la variable PATH la ruta concreta con ":"

Instalación Python + Jupyter

IDE (Programación enfocada a scripts y desarrollos extensos)

JUPYTER NOTEBOOK (Programación interactiva)

Importar librerías y fuentes de datos

Librerías en Python:

Librería = Directorio de Scripts en Python (cada script un modulo con funciones, métodos,..)

```
pkg/
mod1.py
mod2.py
```

- Inmensa variedad de librerías ya definidas para el análisis de datos (Numpy, Pandas, Matplotlib, Scikit-learn,...)
- Para instalar librería: conda install < librería >
- Para importar un paquete:

```
In [1]: import numpy as np
In [2]: array_ejemplo = np.array([1,2,3])
In [3]: array_ejemplo
Out[3]: array([1, 2, 3])
```

- Ruta habitual librerías:
- C:\Users\tu_nombre_de_usuario\Anaconda3\Lib\site-packages

Importar librerías y fuentes de datos

Librería Pandas

Elemento clave: Dataframe

	Pais	Poblacion	Area
0	Mexico	129	1973.0
1	Espana	46	505.0
2	Venezuela	32	916.0

Tipo: Objeto int64 float64

· Convención: import pandas as pd

Importar de un CSV

df = pd.read_csv(r'file.csv', index_col = 0, nrows=5,
encoding = "ISO-8859-1",delimiter=';')

Ejercicio:

 Importar fichero csv con la información de población, esperanza de vida y renta per cápita de cada país:

	País	Poblacion	Renta per capita	Esperanza de vida
0	United States	325084756	59939	78,9
1	China	1421021791	8612	76,7
2	Japan	127502725	38214	84,5
3	Germany	82658409	44680	81,2
4	India	1338676785	1980	69,4

Visualización básica con Matplotlib

- Librería de visualización
- Todo tipo de gráficos con amplia configuración

Line Plot In [1]: import matplotlib.pyplot as plt año = [1990, 2000, 2010, 2020] pob = [5.5, 6, 7, 7.8]plt.plot(año, pob) Out[3]: [<matplotlib.lines.Line2D at 0x912b208>] In [4]: 7.5 7.0 6.5 6.0 5.5 1995 2000 2005 2010 2015 2020

Scatter Plot

Visualización básica con Matplotlib

¿Cómo visualizamos variables de un dataframe de Pandas?

Df["nombre_columna"].plot()

https://matplotlib.org/gallery/index.html

Visualización básica con Matplotlib

• **EJERCICIO**: Visualizar la evolución de la cotización en bolsa del índice SP500 (delimitador csv = ",", si quiere poner como índice la columna de fecha: df.index = df["Date"])

Visualización básica con Matplotlib – Caso práctico

- Ejercicio: Visualizar un gráfico de Esperanza de Vida frente a Renta per capita:
 - ¿Existe una correlación entre estas variables?

Flujograma de un proyecto Data Science

3.Limpieza estadística y transformación

Resumen estadístico, búsqueda outliers (boxplots)

información con correlaciones,

interpolación de datos.

4. Visualización de datos

Mostrar la distribución de nuestra diferentes visualizaciones como histogramas, series temporales,...

5.Análisis y conclusiones

Análisis de datos y generación de conclusiones para la toma de decisiones.

1.Importación de datos

Obtener datos desde fuentes heterogéneas.

2.Limpieza de

inconsistencias

Eliminar información errónea, redundante, transformación de tipos de datos.

