Décembre 2018, Sans document, 1h30

Préambule : Le sujet est composé de quatre exercices indépendants. La qualité de la rédaction sera prise en compte. Toutes les réponses seront données sur la copie (ne pas rendre le sujet).

Exercice 1

- 1. Enoncer la loi forte des grands nombres (hypothèses et résultats).
- 2. Enoncer le théorème central limite (hypothèses et résultats).
- 3. Soit $(X_n)_n$ une suite de variables aléatoires indépendantes. On pose pour tout $x \in \mathbb{R}$

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{X_i \le x}$$
 et $F(x) = \mathbf{P}(X \le x)$.

Soit $x \in \mathbb{R}$ fixé tel que $F(x) \neq 0$ et $F(x) \neq 1$.

- (a) Montrer que $F_n(x) \stackrel{p.s.}{\to} F(x)$.
- (b) Montrer qu'il existe une suite $\varphi_n(x)$ à préciser telle que $\varphi_n(x)(F_n(x) F(x)) \stackrel{p.s.}{\to} \mathcal{N}(0,1)$.
- (c) Déduire de la question précédente un intervalle de confiance asymptotique de niveau 1α avec $\alpha \in]0,1[$ pour F(x). On prendra soin de justifier toutes les étapes de construction de l'intervalle de confiance.

Exercice 2

Soit X_1, \ldots, X_n n variables aléatoires indépendantes et identiquement distribuées de loi uniforme sur $[0, \theta]$ où $\theta \in \mathbb{R}^+$ est un paramètre inconnu à estimer.

- 1. Rappeler la densité de X_1 ainsi que son espérance et sa variance.
- 2. Calculer l'estimateur des moments de θ . On le notera $\hat{\theta}$.
- 3. Rappeler la définition du risque quadratique d'un estimateur et montrer sa décomposition biais/variance.
- 4. Calculer le biais et la variance de $\hat{\theta}$.
- 5. $\hat{\theta}$ est-il consistant? Justifier.
- 6. En écrivant un théorème central limite pour $\hat{\theta}$, construire un intervalle de confiance asymptotique de niveau 1α pour θ (avec $\alpha \in]0,1[$).

Exercice 3

1. Soit $(X_n)_n$ une suite de variables aléatoires réelles indépendantes et de loi de Poisson de paramètre $\lambda_n \in \mathbb{N}^*$. On suppose que $\lambda_n \to +\infty$. Montrer que en utilisant le théorème central limite que

$$\frac{X_n - \lambda_n}{\sqrt{\lambda_n}} \stackrel{p.s.}{\to} \mathcal{N}(0,1).$$

- 2. Rappeler la définition de la fonction caractéristique d'une variable aléatoire réelle X.
- 3. Soit $(X_n)_n$ une suite de variables aléatoires réelles indépendantes et de loi gamma $\gamma(\lambda_n, 1)$ avec $\lambda_n > 0$. On suppose que $\lambda_n \to +\infty$. On admettra que la fonction caractéristique de X_n est donnée par $\varphi_{X_n}(t) = \left(\frac{1}{1-it}\right)^{\lambda_n}$ et on rappelle que pour une variable aléatoire X et deux réels a et b on a $\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at)$.
 - (a) Calculer la fonction de répartition de la variable aléatoire Y_n définie par

$$Y_n = \frac{X_n - \lambda_n}{\sqrt{\lambda_n}}.$$

1

(b) En déduire que la suite $(Y_n)_n$ converge en loi vers une limite à préciser.

Exercice 4

Rappels:

— La densité de la loi exponentielle de paramètre $\mu > 0$ est donnée par :

$$f(x) = \mu \exp(-\mu x) \mathbf{1}_{[0,+\infty[}(x).$$

— Pour t > 0 on note

$$\Gamma(t) = \int_0^{+\infty} x^{t-1} \exp(-x) \, \mathrm{d}x.$$

Cette fonction vérifie $\Gamma(t+1) = t\Gamma(t)$ pour t > 0 et $\Gamma(t+1) = t!$ si $t \in \mathbb{N}^*$.

Soit X_1, \ldots, X_n un échantillon de n variables aléatoires indépendantes et identiquement distribuées selon une loi admettant pour densité

$$f_{\lambda}(x) = \frac{1}{2\lambda} \exp\left(-\frac{|x|}{\lambda}\right), \quad x \in \mathbb{R},$$

où λ est un paramètre réel strictement positif.

- 1. Montrer que la variable aléatoire $|X_1|/\lambda$ suit une loi exponentielle de paramètre 1 (on pourra le montrer en calculant la fonction de répartition de $|X_1|/\lambda$).
- 2. En déduire, pour $q \in \mathbb{N}^*$, l'espérance et la variance de $|X_i|^q$.
- 3. On pose

$$S_n = \frac{1}{nq!} \sum_{i=1}^n |X_i|^q.$$

En utilisant le théorème central limite, donner la loi limite de $a_n(S_n - b)$ où la suite $(a_n)_{n \in \mathbb{N}}$ et le réel b sont convenablement choisis. On pourra utiliser la notation

$$\sigma_q^2 = \frac{(2q)!}{(q!)^2} - 1.$$

- 4. Pour $q \in \mathbb{N}^*$, on pose $\hat{\lambda}_{n,q} = S_n^{1/q}$. Les estimateurs $\hat{\lambda}_{n,q}$ sont-ils consistants? Justifier votre réponse.
- 5. Donner, pour n suffisamment grand, un intervalle de confiance de niveau $1-\alpha$ pour λ centré en $\hat{\lambda}_{n,1}$.
- 6. On note $X_{(n)} = \max(X_1, \dots, X_n)$.
 - (a) Calculer la fonction de répartition de $X_{(n)}$.
 - (b) Calculer $\mathbf{P}(X_{(n)} \lambda \ln(n) \le u)$ pour $u \in \mathbb{R}$.
 - (c) Montrer que lorsque n tend vers l'infini, $X_{(n)} \lambda \ln(n)$ a une loi limite dont on donnera la fonction de répartition.
 - (d) En déduire un nouvel estimateur $\bar{\lambda}_n$ de λ consistant.