

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
- КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Модель двух конкурирующих видов

Студент	ФН2-42Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			М. П. Галанин
		(Подпись, дата)	(И.О. Фамилия)

Содержание

Введение	
1. Постановка задачи	
2. Стационарные состояния	
3. Линеаризация системы в окрестности стационарных точкек	
4. Фазовые портреты	
4.1. Первый вариант параметров системы	
4.2. Второй вариант параметров системы	
Заключение	
Список литературы	

Введение 3

Введение

В теории, если нет никаких факторов воздействия внешней среды на некоторую популяцию, то она способна размножаться вплоть до бесконечности. Однако в реальной жизни так не происходит, и особи разных видов так или иначе воздействуют друг на друга. И одним из таких типов взаимодействий является конкуренция. Ее разделяют на внутривидовую конкуренцию (соперничество между особями одного вида за жизненные ресурсы) и на межвидовую конкуренцию (взаимоотношение между популяциями двух (или более) видов, которое неблагоприятно сказывается на их росте и выживании).

Проблема динамики популяции заинтересовала ученых еще в XVIII веке. Именно тогда они начали заниматься разработкой методов, способных описать динамику роста и сокращения популяций живых организмов.

Основателем современной математической теории популяций справедливо считается Вито Вольтерра¹, разработавший математическую теорию биологических сообществ, аппаратом которой служат дифференциальные и интегродифференциальные уравнения. Эта модель основывается на следующих гипотезах:

- 1. Пища имеется в неограниченном количестве или ее поступление регулируется;
- 2. В единицу времени погибает одинаковое количество особей одного вида;
- 3. Прирост численности вида пропорционален его текущей численности.

1. Постановка задачи

Рассмотрим задачу из области динамики популяций. Пусть есть два сходных вида, конкурирующих между собой за пищу. Очевидно, что возможны следующие варианты:

 $^{^{1}}$ В. Вольтерра (um. Vito Volterra, 1860–1940) — итальянский математик и физик.

- Выживает только первый вид;
- Выживает только второй вид;
- Выживают оба вида;
- Оба вида вымирают.

Каждый из этих вариантов соответствует наличию своего положения равновесия. Тем самым для описания данной системы нужна модель с четырьмя стационарными точками — стационарными состояниями системы.

В соответствии с гипотезами В. Вольтерра модель двух конкурирующих видов выглядит следующим образом:

$$\begin{cases} \frac{dx_1}{dt} = a_1 x_1 - b_{12} x_1 x_2 - c_1 x_1^2, \\ \frac{dx_2}{dt} = a_2 x_2 - b_{21} x_2 x_1 - c_2 x_2^2, \end{cases}$$
(1)

где a_1, a_2 — коэфициенты скорости роста популяции; b_{12}, b_{21} — коэфициенты межвидовой борьбы; c_1, c_2 — внутривидовой борьбы первого и второго вида соответсвенно.

В данной курсовой работе необходимо рассмотреть все варианты параметров системы и исследовать качественное поведение ее решений. Также важно уделить внимание особым точкам системы.

2. Стационарные состояния

Найдем стационарные точки. Для этого необходимо решить систему уравнений вида:

$$\begin{cases}
 a_1 x_1 - b_{12} x_1 x_2 - c_1 x_1^2 = x_1 (a_1 - b_{12} x_2 - c_1 x_1) = 0, \\
 a_2 x_2 - b_{21} x_2 x_1 - c_2 x_2^2 = x_2 (a_2 - b_{21} x_1 - c_2 x_2) = 0,
\end{cases}$$
(2)

откуда получаем 4 стационарных состояния:

- 1. $x_1 = 0$, $x_2 = 0$ вымирание обоих видов;
- 2. $x_1=0,\ x_2=\frac{a_2}{c_2}$ вымирание первого вида, достижение вторым видом конечной численности $\frac{a_2}{c_2};$

3. $x_1=\frac{a_1}{c_1},\ x_2=0$ — противоположная ситуация, то есть достижение первым видом численности $\frac{a_1}{c_1}$ и вымирание второго вида;

4.
$$x_1=\frac{a_1c_2-a_2b_{12}}{c_1c_2-b_{12}b_{21}}, \ x_2=\frac{a_2c_1-a_1b_{21}}{c_1c_2-b_{12}b_{21}}$$
— выживание обоих видов.

Особое внимание стоит уделить последнему стационарному состоянию. Решения x_1 , x_2 в этой ситуации должны быть положительными. Условие положительности выполняется в одной из двух ситуаций:

$$\begin{cases}
 a_1 c_2 > a_2 b_{12}, \\
 a_2 c_1 > a_1 b_{21}, \\
 c_1 c_2 > b_{12} b_{21},
\end{cases}$$
(3)

или

$$\begin{cases} a_1 c_2 < a_2 b_{12}, \\ a_2 c_1 < a_1 b_{21}, \\ c_1 c_2 < b_{12} b_{21} \end{cases}$$

$$(4)$$

в противном случае, система теряет биологический смысл, потому что число особей в популяции не может быть отрицательным.

Возникновение тех или иных стационарных состояний, упомянутых выше, зависит от исходных параметров системы (1). Для того, чтобы получить более наглядное представление о всех возможных ситуацях, которые могут возникнуть в зависимости от этих параметров, можно построить график прямых-сепаратрис. Их можно вывести из системы (2):

$$x_1 = 0,$$
 $x_2 = 0,$ $x_2 = \frac{a_2 + b_{21}x_1}{c_2},$ $x_2 = \frac{a_1 + c_1x_1}{b_{12}}.$ (5)

Попарные пересечения сепаратрис дают стационарные состояния. Возможные взаимные расположения прямых-сепаратрис продемонстрированы на рис. 1-2:

Рис. 1. Расположение прямых-сепаратрис, когда числитель и знаменатель положительные

Рис. 2. Расположение прямых-сепаратрис, когда числитель и знаменатель отрицательные

3. Линеаризация системы в окрестности стационарных точкек

В общем виде линеаризованную систему можно представить в виде матрицы Якоби следющего вида:

$$\mathbb{J} = \begin{pmatrix} \frac{\partial \dot{x}_1}{\partial x_1} & \frac{\partial \dot{x}_1}{\partial x_2} \\ \frac{\partial \dot{x}_2}{\partial x_1} & \frac{\partial \dot{x}_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} a_1 - b_{12}x_2 - 2c_1x_1 & -b_{12}x_1 \\ -b_{21}x_2 & a_2 - b_{21}x_1 - 2c_2x_2 \end{pmatrix}.$$
(6)

Линеаризуем систему в окрестности всех четырех стационарных точек:

$$\mathbb{J}_{I} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \quad \mathbb{J}_{II} = \begin{pmatrix} -a_1 & -\frac{a_1b_{12}}{c_1} \\ 0 & \frac{a_2c_1 - a_1b_{21}}{c_1} \end{pmatrix}, \quad \mathbb{J}_{III} = \begin{pmatrix} \frac{a_1c_2 - b_{12}a_2}{c_2} & 0 \\ -\frac{a_2b_{21}}{c_2} & -a_2 \end{pmatrix},$$

$$\mathbb{J}_{IV} = \begin{pmatrix} \frac{c_1(a_1c_2 - a_2b_{12})}{b_{12}b_{21} - c_1c_2} & \frac{b_{12}(a_1c_2 - a_2b_{12})}{b_{12}b_{21} - c_1c_2} \\ \frac{b_{21}(a_2c_1 - a_1b_{21})}{b_{12}b_{21} - c_1c_2} & \frac{c_2(a_2c_1 - a_1b_{21})}{b_{12}b_{21} - c_1c_2} \end{pmatrix},$$

и вспомним, что в зависимости от исходных параметров системы выполняется одно из двух условий(3, 4), определящих типы этих точек.

4. Фазовые портреты

Все стационарные точки являются простыми, поэтому их тип определяется собственными числами матриц \mathbb{J}_{I-IV} .

4.1. Первый вариант параметров системы.

1.
$$\lambda_1=a_1>0,\ \lambda_2=a_2>0\Rightarrow$$
 точка $(0,0)$ — неустойчивый узел;

2.
$$\lambda_1=-a_1<0,\;\lambda_2=rac{a_2c_1-a_1b_{21}}{c_1}>0\Rightarrow$$
 точка $\left(rac{a_1}{c_1},0
ight)-$ седло;

3.
$$\lambda_1=\frac{a_1c_2-b_{12}a_2}{c_2}>0,\; \lambda_2=-a_2<0\Rightarrow$$
 точка $\left(0,\frac{a_2}{c_2}\right)-$ седло;

4. Мне нужно расписывать все очень подробно или можно как-то сразу скзазать, что с.ч. отрицательные? точка $\left(\frac{a_1c_2-a_2b_{12}}{c_1c_2-b_{12}b_{21}}, \frac{a_2c_1-a_1b_{21}}{c_1c_2-b_{12}b_{21}}\right)$ — устойчивый узел.

Фазовый портрет с учетом условий (3):

Рис. 3. Характерный вид траекторий

Из полученной картины можно сделать вывод, что сосуществование двух видов гарантировано, потому что все траектории стремятся к $4^{\text{ой}}$ точке.

4.2. Второй вариант параметров системы

1. $\lambda_1 = a_1 > 0, \ \lambda_2 = a_2 > 0 \Rightarrow$ точка (0,0) — неустойчивый узел;

2.
$$\lambda_1 = -a_1 < 0$$
, $\lambda_2 = \frac{a_2c_1 - a_1b_{21}}{c_1} < 0 \Rightarrow$ точка $\left(\frac{a_1}{c_1}, 0\right)$ — устойчивый узел;

3.
$$\lambda_1=\frac{a_1c_2-b_{12}a_2}{c_2}<0,\ \lambda_2=-a_2<0\Rightarrow$$
 точка $\left(0,\frac{a_2}{c_2}\right)$ — устойчивый узел;

Заключение 9

4. $\det \mathbb{J}_{IV} < 0 \Rightarrow$ собственные значения имеют разные знаки, а значит точка-пересечение сепаратрис $\left(\frac{a_1c_2-a_2b_{12}}{c_1c_2-b_{12}b_{21}}, \frac{a_2c_1-a_1b_{21}}{c_1c_2-b_{12}b_{21}}\right)$ — седло.

Фазовые траектории с учетом условий (4):

Рис. 4. Характерный вид траекторий

Таким образом, сосуществование двух конкурирующих видов крайне маловероятно. Большинство траекторий стремятся либо ко $2^{oй}$, либо к $3^{eй}$ точке. А они соответстуют вымиранию одного из видов.

Заключение

Имея экспериментально выведенные коэфициенты размножения, а также коэфициенты межвидовой и внутривидовой конкуренции, мы можем построить модель взаимодействия между особями двух видов и понять, способны ли они сосуществовать или же один из них вымрет. Анализ особых точек (иными словами — стационарных состояний) дает нам возможность построить график траекторий, чтобы определить, к какому из четырех стационарных состояний стремится система.

Список литературы

- 1. Ризниченко Г. Ю. Лекции по математическим моделям в биологии. 2-е изд. испр. и доп. М. Ижевск: Институт компьютерных исследований, НИЦ «Регулярная и хаотическая динамика». 2010. 560 с.
- 2. Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения. М.: Изд-во МГТУ им. Н.Э. Баумана, 1997. 336 с.
- 3. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Наука. 1970. 280 с.
- 4. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука. 1970. 332 с.
- 5. Самарский А.А., Гулин А.В. Численные методы. М.: Наука: Физматлит, 1989. 416 с.