MathDNN HW 10

2018-13260 차재현

1 Problem 1

First,

$$\begin{split} &\nabla_{\phi} \mathbb{E}_{Z \sim q_{\phi}(Z)} \left[\log \left(\frac{h(Z)}{q_{\phi}(Z)} \right) \right] \\ &= \nabla_{\phi} \int_{z} q_{\phi}(z) \log \left(\frac{h(z)}{q_{\phi}(z)} \right) dz \\ &= \int_{z} \nabla_{\phi} \left(q_{\phi}(z) \log \left(\frac{h(z)}{q_{\phi}(z)} \right) \right) dz \\ &= \int_{z} \nabla_{\phi} (q_{\phi}(z)) \log \left(\frac{h(z)}{q_{\phi}(z)} \right) dz + \int_{z} q_{\phi}(z) \nabla_{\phi} \log \left(\frac{h(z)}{q_{\phi}(z)} \right) dz. \end{split}$$

Take a closer look on the first term of the last expression. We have

$$\int_{z} \nabla_{\phi}(q_{\phi}(z)) \log \left(\frac{h(z)}{q_{\phi}(z)}\right) dz = \int_{z} \frac{\nabla_{\phi}(q_{\phi}(z))}{q_{\phi}(z)} \log \left(\frac{h(z)}{q_{\phi}(z)}\right) q_{\phi}(z) dz$$
$$= \mathbb{E}_{Z \sim q_{\phi}(Z)} \left[\nabla_{\phi} \log q_{\phi}(z) \log \left(\frac{h(z)}{q_{\phi}(z)}\right) \right]$$

Next we have

$$\int_{z} q_{\phi}(z) \nabla_{\phi} \log \left(\frac{h(z)}{q_{\phi}(z)} \right) dz = \int_{z} q_{\phi}(z) \frac{-q_{\phi}'(z)}{q_{\phi}(z)} dz = -\int_{z} q_{\phi}'(z) dz. \tag{1}$$

Since $q_{\phi}(z)$ is a nonnegative function defined on \mathbb{R} and integrable, for any $\epsilon > 0$ there is compact set U containing 0 satisfying $q_{\phi}(z) < \epsilon$ for all $z \in \mathbb{R} - U$. Therefore (1) is less than 2ϵ , this means (1) is equal to zero.

2 Problem 2

By the definition of C, we can write x=(a,t) for $0 \le t \le 1$. Then $\Pi_C(x,y)=(a-y_1)^2+(t-y_2)^2$.

i) $y_2 < 0$. The term $(t - y_2)^2$ obtains its minimum at t = 0 with minimum y_2^2 . In this case, min $\{\max\{y_2, 0\}, 1\} = 0$. 2 2018-13260 차재현

ii) $0 \le y_2 \le 1$. The term $(t-y_2)^2$ obtains its minimum at $t = y_2$ with minimum 0. In this case, $\min\{\max\{y_2, 0\}, 1\} = y_2$.

iii) $1 \le y_2$. The term $(t - y_2)^2$ obtains its minimum at t = 1 with minimum $(y_2 - 1)^2$. In this case, $\min\{\max\{y_2, 0\}, 1\} = 1$.

Therefore $t = \min\{\max\{y_2, 0\}, 1\}$ for any y_2 , equivalently, for any y.

3 Problem 4

(a) Since f_1 is linear, $\partial f_1(x)/\partial x = A$. So we get

$$\log \left| \frac{\partial f_1(x)}{\partial x} \right| = \log \left(|\det(P)| |\det(L)| |\det(U + \operatorname{diag}(s))| \right).$$

Now, since P is permutation, $|\det(P)| = 1$. Also, that L is lower triangular with diagonal entries 1 gives $\det(L) = 1$. Finally, $U + \operatorname{diag}(s)$ is upper triangular with diagonal entries are s_1, \dots, s_C . Therefore $|\det(U + \operatorname{diag}(s))| = \prod_i |s_i|$. Summing up, we conclude

$$\log\left(|\det(P)||\det(L)||\det(U+\operatorname{diag}(s))|\right) = \sum_{i \le C} \log|s_i|.$$

(b) Let X has two distinct reshape format X_1, X_2 . Similarly, h(X) has two distinct reshape format Y_1, Y_2 . Since both X_1, X_2 (resp. Y_1, Y_2) is just an array of entries in X (resp. h(X)), there is a permutation matrix P_X (resp. P_Y) satisfying $X_2 = P_X X_1$ (resp. $Y_2 = P_Y Y_1$). We have $Y_2 = P_Y h(P_X^{-1} X_2)$. Therefore

$$X_2 = P_X X_1$$
 (resp. $Y_2 = P_Y Y_1$). We have $Y_2 = P_Y h(P_X^{-1} X_2)$. Therefore
$$\frac{\partial Y_2}{\partial X_2} = \frac{\partial Y_2}{\partial Y_1} \frac{\partial Y_1}{\partial X_1} \frac{\partial X_1}{\partial X_2} = P_Y \frac{\partial Y_1}{\partial X_1} P_X^{-1}.$$

Now, use $|\det(P_X)| = |\det(P_Y)| = 1$, we get

$$\left| \frac{\partial Y_2}{\partial X_2} \right| = \left| P_Y \frac{\partial Y_1}{\partial X_1} P_X^{-1} \right| = \left| \frac{\partial Y_1}{\partial X_1} \right|,$$

which means that $|\partial h(X)/\partial X|$ is independent of the order of reshape.

(c) From (b), we can reshape X and $f_2(X)$ so that the linear map (since convolutional with no bias is linear) f_2 is equivalent to the block diagonal matrix

$$\begin{pmatrix} A & \cdots & \mathbf{0} \\ \vdots & & \vdots \\ \mathbf{0} & \cdots & A \end{pmatrix},$$

MathDNN HW 10 3

where A appears mn times. To be more specific, this can be done by reshaping $X'_{c+C*\mu+m*\eta} = X_{c,\mu,\eta}$ and same for $f_2(X)$. Then, (a), (b) and elementary linear algebra regarding to block diagonal matrix gives

$$\log \left| \frac{\partial f_2(X|P, L, U, s)}{\partial x} \right| = \log |A^{mn}| = mn \log |A| = mn \sum_i \log |s_i|.$$

(d) Using block matrix again, we have

$$\frac{\partial Z}{\partial X} = \begin{pmatrix} \frac{\partial X_{1:C}}{\partial X_{1:C}} & \mathbf{0} \\ \frac{\partial f_2(X_{C+1:2C}|P,L,U,s)}{\partial X_{1:C}} & \frac{\partial f_2(X_{C+1:2C}|P,L,U,s)}{\partial X_{C+1:2C}} \end{pmatrix},$$

and its determinant becomes

$$\det(\frac{\partial Z}{\partial X}) = \det\left(\frac{\partial X_{1:C}}{\partial X_{1:C}}\right) \det\left(\frac{\partial f_2(X_{C+1:2C}|P,L,U,s)}{\partial X_{C+1:2C}}\right).$$

First part becomes 1, and second part is already calculated at (c). Therefore, taking absolute value and log, we get

$$\log \left| \frac{\partial Z}{\partial X} \right| = mn \sum_{i} \log |s_i|.$$