A számítástudomány alapjai 2022. I. félév

11. gyakorlat. Összeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: Azonos méretű mátrixok összeadása és mátrix skalárral szorzása a vektorokhoz hasonlóan koordinátánként történik.

Állítás: Ha $A, B, C \in \mathbb{R}^{n \times k}$ és $\lambda, \kappa \in \mathbb{R}$ akkor (1) A + B = B + A, (2) (A + B) + C = A + (B + C), (3) $\lambda(A + B) = \lambda A + \lambda B$, (4) $(\lambda + \kappa)A = \lambda A + \kappa A$, (5) $\lambda(\kappa A) = (\lambda \kappa)A$, (6) $(A + B)^{\top} = A^{\top} + B^{\top}$, és (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Def: Az $\underline{u} = (u_1, \dots, u_n)^{\top}$ és $\underline{v} = (v_1, \dots, v_n)^{\top}$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = u_1 v_1 + \dots + u_n v_n$. **Állítás:** $\forall \underline{u}, \underline{v}, \underline{w}, \ \forall \lambda$: (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

Def: Az $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times \ell}$ mátrixok szorzata az az $n \times \ell$ méretű mátrix, aminek (i, j) pozíciójában az A i-dik sorának és B j-dik oszlopának skaláris szorzata áll $\forall i, j$ esetén.

Mátrixszorzás tulajdonságai: (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$, (2) A(B+C) = AB + AC ill. (A+B)C = AC + BC, (3) A(BC) = (AB)C, (4) $AB \neq BA$ általában, ill. (5) $(AB)^{\top} = B^{\top}A^{\top}$.

Determinánsok szorzástétele: $A, B \in \mathbb{R}^{n \times n} \Rightarrow |AB| = |A||B|$.

Def: $I_n = (\underline{e}_1, \dots, \underline{e}_n)$ az $n \times n$ méretű egységmátrix, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n tér standard bázisa. **Állítás:** Tfh $A \in \mathbb{R}^{n \times k}$, $\underline{e}_i, \underline{v} \in \mathbb{R}^n$, $\underline{e}_j, \underline{u} \in \mathbb{R}^k$. Ekkor (1) $\underline{e}_i^{\top} A$ az A i-dik sora,

(2) $A\underline{e}_i$ az A j-dik oszlopa,

 $(3) I_n A = A = A I_k$

(4) $\underline{v}^{\top} A$ az A sorainak lin.komb-ja ill.

(5) $A\underline{u}$ az A oszlopainak lin.komb-ja.

Köv.: (1) Ha AB értelmes, akkor AB i-dik sora a B sorainak lin.komb-ja, A i-dik sora szerinti együtthatókkal. Az AB j-dik oszlopa pedig az A oszlopainak a B j-dik oszlopában szereplő együtthatókkal vett lin.komb-ja.

- (2) C pontosan akkor áll elő AB alakban rögzített B-re, ha C minden sora B sorainak lin.komb-ja.
- (3) C pontosan akkor áll elő AB alakban rögzített A-ra, ha C minden oszlopa A oszlopai lin.komb-ja.
- (4) Ha A' az A mátrixból ESÁ-okkal áll elő, akkor A' = BA alkalmas B-re.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, és $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. **Megfigyelés:** Ha $A \in \mathbb{R}^{n \times k}$ akkor $v \mapsto Av$ egy $\mathbb{R}^k \to \mathbb{R}^n$ lin.lekép.

Állítás: (1) Minden f lin.lekép-hez van olyan [f] mátrix, amire $f(\underline{v}) = [f]\underline{v}$ minden értelmes \underline{v} -re. (2) Ha $f: \mathbb{R}^k \to \mathbb{R}^n$ lin. lekép, akkor $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Lemma: Tfh $U \leq \mathbb{R}^k, V \leq \mathbb{R}^n$ és $f: U \to V$. Ekkor f lin.lekép $\iff f$ zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$.

Lemma: Tfh $U \leq \mathbb{R}^k, V \leq \mathbb{R}^n, \underline{b}_1, \dots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \dots \underline{v}_m \in V$. Ekkor egyértelműen létezik olyan $f: U \to V$ lin.lekép, amire $f(\underline{b}_i) = v_i \ \forall i$.

Magyarul: a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Gyakorlatok

- 1. Legyen $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ ill. $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$. Döntsük el, hogy elvégezhetők-e az alábbi műveletek, és ha igen a válasz, számítsuk is ki a végeredményt. 2A + 3B, AB, BA, AB + 2B, BB^{\top} .
- 2. Tfh az $A \in \mathbb{R}^{2\times 3}$ mátrix minden eleme nemnegatív. Tudjuk, hogy az AA^{\top} bal felső eleme 0, a jobb alsó pedig 14, valamint az $A^{\top}A$ mátrix bal felső eleme 9, a jobb alsó pedig 4. Határozzuk meg az A mátrixot.
- 3. Döntsük el, igazak-e az alábbi összefüggések minden $n \times n$ méretű A, B mátrix esetén. Az igaz állításokat bizonyítsuk be, a hamisakra adjunk ellenpéldát. $AB + B = (A + I_n)B$, $(A + B)(A B) = A^2 B^2$, $(A + I_n)^2 = A^2 + 2A + I_n$.
- 4. Legyen A az az 10×10 méretű mátrix, aminek a főátlójában és az alatt csupa 0-k állnak, a főátló felett pedig minden elem 1-es. Határozzuk meg az A^{100} mátrixot!
- 5. Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix *i*-dik és *j*-dik sorának felcserélése nyomán az A' mátrixot kapjuk. Igaz-e, hogy A' előállítható A-ból egyetlen mátrixszorzás segítségével? Ha igen, akkor ehhez

miféle mátrixszal kell A-t megszorozni? Válaszoljuk meg ugyanezeket a kérdéseket akkor is, ha A' az A egy sorának konstanssal történő végigszorzásával, vagy elhagyásával ill. A egy sorának A egy másik sorához történő hozzáadásával kapható. Mi a válasz ugyanezekre a kérdésekre, ha a sorok helyett az oszlopokra végezzük el a fenti változtatásokat?

- 6. Legyen $f: U \to V$ lin.lekép az U és V alterek között. Mutassuk meg, hogy a $\underline{0} \in V$ vektor biztosan előáll $f(\underline{u}) = \underline{0}$ alakban alkalmas $\underline{u} \in U$ vektor képeként. Bizonyítsuk be azt is, hogy a $\underline{0}$ -ba képződő vektorok az U altér egy alterét alkotják: $\{\underline{u} \in U : f(\underline{u}) = \underline{0}\} \leq U$. Ennek az altérnek a neve az f leképezés magtere, jelölése Ker(f). Igazoljuk, hogy az f leképezés képeként slőálló vektorok V egy alterét alkotják: $\{f(\underline{u}) : \underline{u} \in U\} \leq V$. Ez az altér az f képtere, jele Im(f).
- 7. Legyen G = (V, E) irányított gráf, $V = \{v_1, \dots, v_n\}$. A G gráf segítségével az alábbi $f_G : \mathbb{R}^n \to \mathbb{R}^n$ leképezést definiáljuk. Tetszőleges $\underline{x} = (x_1, \dots, x_n)^{\top}$ oszlopvektor esetén az $f_G(\underline{x})$ kép i-dik koordinátája legyen $\sum \{x_j : v_j v_i \in E\}$, vagyis az \underline{x} vektornak a v_i beszomszédaihoz tartozó koordinátái összege. Igazoljuk, hogy f_G lin.lekép, és fogalmazzuk meg, hogyan lehet megkapni f_G mátrixát a G ismeretében. Tudunk-e élsúlyozott gráfokból is lineáris leképezést konstruálni?

Milyen gráf tartozik (1) az identikus leképezéshez (amikoris minden vektorhoz önmagát rendeljük), (2) 2 dimenzióban az x tengelyre tükrözéshez ill. az origó körüli 90 fokos elforgatáshoz, (3) 3 dimenzióban az xy-síkra tükrözéshez, ill az x=y síkra tükrözéshez? Milyen leképezések tartoznak n dimenzióban az üresgráfhoz, az irányított körhöz, ill. az oda-vissza irányított élekkel rendelkező teljes gráfhoz?

- 8. Bizonyítsuk be, hogy ha az $f: U \to V$ lineáris leképezés csak a $\underline{0} \in U$ vektort képezi a $\underline{0} \in V$ vektorba, akkor f injektív, azaz $\underline{x} \neq y$ esetén $f(\underline{x}) \neq f(y)$.
- 9. Határozzuk meg annak az $f: \mathbb{R}^3 \to \mathbb{R}^3$ lineáris leképezésnek a mátrixát, amire $f(\underline{v})$ -t tetszőleges $\underline{v} \in \mathbb{R}^3$ esetén úgy kapjuk, hogy \underline{v} -t az y tengely körüli 90 fokkal elforgatjuk, majd tükrözzük az x = y síkra, végül merőlegesn vetítjük az xz síkra.
- 10. Tegyük fel, hogy az $f: \mathbb{R}^2 \to \mathbb{R}^3$ lineáris leképezésre $f(2,1)^\top = (1,1,2)^\top$ ill. $f(3,2)^\top = (0,2,1)^\top$. Határozzuk meg a leképezés [f] mátrixát!
- 11. Tegyük fel, hogy az $f: \mathbb{R}^2 \to \mathbb{R}^2$ lineáris leképezésre $f(1,2)^\top = (0,1)^\top$ ill. $f(3,4)^\top = (4,2)^\top$. Határozzuk meg az $f(4,2)^\top$ vektort!
- 12. Bizonyítsuk be, hogy van olyan $A \in \mathbb{R}^{2\times 2}$ mátrix, amire $A^{42} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Írjunk fel egy ilyen mátrixot.
- 13. Feleltessük meg az $(a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$ vektornak a $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ legfeljebb n-edfokú polinomot. Lineáris leképezést definiál-e az \mathbb{R}^{n+1} -beli vektorokon a legfeljebb n-edfokú polinomok deriválása? Ha igen, akkor határozzuk meg a leképezéshez tartozó mátrixot.