2. THEORY OF EQUATIONS

SYNOPSIS

Definition: An equation of the form $f(x) = p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n = 0$ $(p_0 \neq 0)$ is called an n^{th} degree polynomial equation, where p_0, p_1, \dots, p_n are complex numbers

Relation between roots and coefficients:

- If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the equation $f(x) = p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n = 0$ then
 - i) Sum of the roots = $\sum \alpha_1 = s_1 = -\frac{p_1}{p_0}$
 - ii) Sum of the product of roots taken two at a time = $s_2 = \frac{p_2}{r_1}$
 - iii) Sum of the product of roots taken three at a time = $s_3 = -\frac{p_3}{r_3}$
 - iv) Product of the roots = $\alpha_1 \alpha_2 \alpha_3 ... \alpha_n = s_n = (-1)^n \frac{p_n}{p_n}$
- If α, β, γ are the roots of $ax^3 + bx^2 + cx + d = 0$ then

i)
$$s_1 = \alpha + \beta + \gamma = -\frac{b}{a}$$

i)
$$s_1 = \alpha + \beta + \gamma = -\frac{b}{a}$$
 ii) $s_2 = \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ iii) $s_3 = \alpha\beta\gamma = -\frac{d}{a}$

iii)
$$s_3 = \alpha \beta \gamma = -\frac{d}{a}$$

i.e. the equation having roots α, β, γ is

$$\Rightarrow x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma = 0$$

$$\Rightarrow x^3 - s_1 x^2 + s_2 x - s_3 = 0$$

 \Rightarrow If $\alpha, \beta, \gamma, \delta$ are the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ then

i)
$$s_1 = \alpha + \beta + \gamma + \delta = -\frac{b}{a}$$

ii)
$$s_2 = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \frac{c}{a}$$

iii)
$$s_3 = \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$$

iv)
$$s_4 = \alpha \beta \gamma \delta = \frac{e}{a}$$

i.e. the equation having roots $\alpha, \beta, \gamma, \delta$ is

$$\Rightarrow x^4 - (\alpha + \beta + \gamma + \delta)x^3 + (\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)x^2 - (\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta)x + \alpha\beta\gamma\delta = 0$$

$$\Rightarrow x^4 - s_1x^3 + s_2x^2 - s_3x + s_4 = 0$$

- \Rightarrow If α, β, γ are the roots of $ax^3 + bx^2 + cx + d = 0$
 - i) $\sum \alpha^2 = s_1^2 2s_2$

- ii) $\sum \alpha^3 = s_1^3 3s_1s_2 + 3s_3$
- iii) $\sum \alpha^4 = s_1^4 4s_1^2 s_2 + 4s_1 s_3 + 2s_2^2$ iv) $\sum \alpha^2 (\beta + \gamma) = s_1 s_2 3s_3 = \sum \alpha^2 \beta$
- To solve a cubic equation, when the roots are

 - i) in A.P., they are taken as $\alpha \beta$, α , $\alpha + \beta$ ii) in H.P., they are taken as $\frac{1}{\alpha \beta}$, $\frac{1}{\alpha}$, $\frac{1}{\alpha + \beta}$
 - iii) in G.P. they are taken as $\frac{\alpha}{\beta}$, α , $\alpha\beta$.

THEORY OF EQUATIONS

- +‡+ +‡+ OBJECTIVE MATHEMATICS II A Part 1
- 3. To solve a biquadratic equation, take the roots as
 - i) $\alpha 3\beta$, $\alpha \beta$, $\alpha + \beta$, $\alpha + 3\beta$ when they are in A.P.
 - ii) $\frac{1}{\alpha 3\beta}$, $\frac{1}{\alpha \beta}$, $\frac{1}{\alpha + \beta}$, $\frac{1}{\alpha + 3\beta}$ when they are in H.P.
 - iii) $\frac{\alpha}{\beta^3}, \frac{\alpha}{\beta}$, $\alpha\beta$, $\alpha\beta^3$ when they are in G.P.
- 4. The condition that the roots of $ax^3+bx^2+cx+d=0$ are in A.P. is $2b^3+27a^2d=9abc$.
- 5. The condition that the roots of $ax^3+bx^2+cx+d=0$ are in G.P. is $ac^3=b^3d$.
- 6. The condition that the roots of $ax^3+bx^2+cx+d=0$ are in H.P. is $2c^3+27ad^2=9bcd$.
- 7. The condition that one root of $ax^3+bx^2+cx+d=0$ is sum of the other two roots, is $8a^2d+b^3=4abc$.
- 8. The condition that the products of two of the roots of $ax^3 + bx^2 + cx + d = 0$ is -1, is a(a+c) + d(b+d) = 0
- 9. If $\alpha + \sqrt{\beta}$ is a root of f(x) = 0, whose coefficients are rational then $\alpha \sqrt{\beta}$ is also a root, where $\sqrt{\beta}$ is irrational.
- 10. If a + ib is a root of f(x) = 0 whose coefficients are real then a ib is also a root, where $i = \sqrt{-1}$.
- 11. In an equation, if all the coefficients are of the same sign then the equation has no positive root.
- 12. In an equation, if all the coefficients of even powers of x are all positive (or all negative) and the coefficients of odd powers of x are of opposite sign, then the equation has no negative root.
- 13. The equation of lowest degree with rational coefficients, having a root $\sqrt{a} + \sqrt{b}$ is $x^4 2(a+b)x^2 + (a-b)^2 = 0$
- 14. The equation of lowest degree with rational coefficients, having a root $\sqrt{a} + i\sqrt{b}$ is $x^4 2(a b)x^2 + (a + b)^2 = 0$
- 15. If $f(x) = (x \alpha)^2 \phi(x)$ when $\phi(x)$ is not divisible by $x \alpha$ then α is called second order multiple root of f(x) = 0.
- **16.** A multiple root α of order n of f(x) = 0 is multiple root of order n 1 of f'(x) = 0.
- 17. If α, β, γ are the roots of $f(x) = x^3 + px^2 + qx + r = 0$ then the equation having roots
 - i) $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ is f(-p x) = 0
 - ii) $\alpha \beta, \beta \gamma, \gamma \alpha \text{ is } f\left(-\frac{r}{x}\right) = 0$

Transformed equations:

- 1. The second term of $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$ can be removed by diminishing the roots by h where $h = -\frac{a_1}{na_0}$ and a_0 is the coeffcient of the first term a_1 is the coeffcient of the second term n is the degree of f(x) = 0
- 2. If f(x) = 0 is an equation of degree n then to eliminate r^{th} term in f(x) = 0 can be transformed to f(y + h) = 0 where h is a constant such that $f^{(n-r+1)}(h) = 0$.

OBJECTIVE MATHEMATICS II A - Part 1

THEORY OF EQUATIONS

Reciprocal equation (R.E.):

- 1. If an equation is unaltered by changing x as $\frac{1}{x}$, then it is a reciprocal equation.
- 2. If $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_{n-1} x + p_n = 0$ is a polynomial equation such that $p_n = 1$, $p_1 = p_{n-1}, p_2 = p_{n-2}$ etc; then the equation is R.E. of the 1st type.
- 3. If $p_n = -1$, $p_1 = -p_{n-1}$, $p_2 = -p_{n-2}$ etc; then the equation is R.E. of the 2nd type.
- 4. A reciprocal equation of the 1st type and even degree is called a standard R.E.
- 5. x + 1 is a factor of R.E. of the 1st type and odd degree.
- 6. x^2-1 is a factor of R.E. of the 2^{nd} type and even degree.

Quotient, Remainders:

1. The Quotient obtained when $x^4 + 11x^3 - 44x^2 + 76x + 48$ is divided by $x^2 - 2x + 1$ is

1)
$$x^2 - 13x + 5$$

2)
$$x^2 + 13x - 19$$

3)
$$x^2 - 13x + 19$$

4)
$$x^2 + 13x + 25$$

- 2. The value of k so that $x^4-3x^3+5x^2-33x+k$ is divisible by x^2-5x+6 is
 - 1) 45
- 2) 48

- 3) 51
- 4) 54

Formation of equations:

3. The equation whose roots are $\sqrt{2}$, $-\sqrt{2}$, 3i, -3i is

1)
$$x^4 + 7x^2 - 18 = 0$$

1)
$$x^4 + 7x^2 - 18 = 0$$
 2) $x^4 - 7x^2 + 18 = 0$

3)
$$x^4 + 7x^2 + 18 = 0$$

3)
$$x^4 + 7x^2 + 18 = 0$$
 4) $x^4 - 7x^2 - 18 = 0$

4. The equation of lowest degree with rational coefficients having a root $\sqrt{3} + \sqrt{2}$ is

1)
$$x^4 + 10x^2 - 1 = 0$$

1)
$$x^4 + 10x^2 - 1 = 0$$
 2) $x^4 - 10x^2 + 1 = 0$

$$3) x^4 + 10x^2 + 1 = 0$$

4)
$$x^4 - 10x^2 - 1 = 0$$

Models on roots of the equation:

- 5. If α , β , 1 are roots of $x^3 2x^2 5x + 6 = 0$ ($\alpha > 1$) then $3\alpha + \beta =$
 - 1) 7
- 2) 5

- 3) 14
- 4) 10
- 6. The condition that the product of two of the roots $x^3 + px^2 + qx + r = 0$ is -1, is

1)
$$r^2 + pr + a + 1 = 0$$

1)
$$r^2 + pr + q + 1 = 0$$
 2) $q^2 + pq + q + 1 = 0$ 3) $p^2 + pq + p + 1 = 0$

3)
$$p^2 + pa + p + 1 = 0$$

4)
$$r^2 - pr - q + 1 = 0$$

- 7. If one root of $24x^3 14x^2 63x + 45 = 0$ is double the other then the roots are
 - 1) $-1, \frac{1}{2}, 2$
- 2) 2, 2, -1
- 3) $\frac{3}{4}, \frac{3}{2}, -\frac{5}{3}$
- 4) $-\frac{3}{2}, -\frac{3}{4}, -\frac{1}{3}$
- 8. If $x^4 + 4x^3 2x^2 12x + 9 = 0$ has a pair of equal roots then the roots are

 - 1) -1,-1,2, 2 2) 1, 1, -2, -2
- 3) -1, -1, 3, 3
- 4) 1, 1, -3, -3
- 9. If $\sqrt{5} + \sqrt{2}$ is a root of $3x^5 4x^4 42x^3 + 56x^2 + 27x 36 = 0$ then the rational root is
 - 1) $\frac{4}{2}$

- 3) $-\frac{3}{4}$

THEORY OF EQUATIONS *** ** OBJECTIVE MATHEMATICS II A - Part 1

10. If -1+i is a root of $x^4 + 4x^3 + 5x^2 + 2x + k = 0$ then the other roots are

2)
$$-\frac{1}{2}, -\frac{3}{2}$$

3)
$$-1 \pm \sqrt{2}$$

4)
$$1 \pm \sqrt{2}$$

11. If the roots of $x^3 - 9x^2 + kx + l = 0$ are in A.P with common difference 2 then (k, l) =

$$2)$$
 (23, -15)

12. If α , β , γ , δ are the roots of $x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$ which are in A.P. where $\alpha = 1$ then common difference of that A.P is $(\alpha < \beta < \gamma < \delta)$

13. If the roots of $x^3 - 13x^2 + kx - 27 = 0$ are in G.P then $k = 13x^2 + kx - 27 = 0$

$$1) -30$$

14. If the roots of the equation $x^4 - 10x^3 + 50x^2 - 130x + 169 = 0$ are of the form $a \pm ib$ and $b \pm ia$ then (a, b) =

$$4)$$
 $(-3, -2)$

Symmetric Functions of the roots:

15. If α, β, γ are the roots of $x^4 - px^2 + qx - r = 0$ then $\alpha^2 + \beta^2 + \gamma^2 =$

1)
$$p^2 - 2q$$

2)
$$p^3 - 3pq + 3r$$

3)
$$p^4-3p^2q+3pr+2q^2$$
 4) 2q

16. If α , β , γ are the roots of $x^3-px^2+qx-r=0$ then $\alpha^3+\beta^3+\gamma^3=$

1)
$$p^2 - 2q$$

2)
$$p^3 - 3pq + 3r$$

3)
$$p^4-3p^2q+3pr+2q^2$$
 4) 2q

17. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$ then $\Sigma \alpha^2 (\beta + \gamma) =$

1)
$$p^2 - 2q$$

2)
$$-p^3 + 3pq - 3t$$

2)
$$-p^3 + 3pq - 3r$$
 3) $p^4 - 4p^2q + 4pr + 2q^2$ 4) $3r - pq$

4)
$$3r - pa$$

18. If α , β , γ are the roots of $x^3 + 2x^2 - 3x - 1 = 0$ then $\alpha^{-2} + \beta^{-2} + \gamma^{-2} = 0$

19. If α , β , γ are the roots of the equation $px^3 + qx^2 + rx + s = 0$ then $\Sigma \alpha^2 \beta^2 =$

1)
$$\frac{r^2 + 2qs}{p^2}$$

1)
$$\frac{r^2 + 2qs}{p^2}$$
 2) $\frac{r^2 - 2qs}{p^2}$

3)
$$\frac{ps+r^2}{p^2}$$
 4) $\frac{ps-r^2}{p^2}$

$$4) \frac{ps - r^2}{p^2}$$

Transformed Equations:

20. If $f(x) = 5x^3 + 4x^2 - 13x - 25$ and $f(x-3) = 5x^3 - 41x^2 + 98x + k$ then k = 1

$$2) - 85$$

$$4) -105$$

21. The equation whose roots are multiplied by 3 of those of $2x^3 - 3x^2 + 4x - 5 = 0$ is

1)
$$2x^3 - 9x^2 + 36x - 135 = 0$$

$$2) 2x^3 - 9x^2 - 36x + 135 = 0$$

3)
$$x^3 - 9x^2 + 36x + 135 = 0$$

4)
$$2x^3 - 9x^2 + 36x + 135 = 0$$

22. If α , β , γ are the roots of $x^3 + 2x^2 - 4x - 3 = 0$ then the equation whose roots are $\frac{\alpha}{3}$, $\frac{\beta}{3}$, $\frac{\gamma}{3}$ is

1)
$$x^3 + 6x^2 - 36x - 81 = 0$$

2)
$$9x^3 + 6x^2 - 4x - 1 = 0$$

3)
$$9x^3 + 6x^2 + 4x + 1 = 0$$

4)
$$x^3 - 6x^2 + 36x + 81 = 0$$

OBJECTIVE MATHEMATICS II A - Part 1 *** ** THEORY OF EQUATIONS

- 23. The equation whose roots are squares of the roots of $x^4 + x^3 + 2x^2 + x + 1 = 0$ is
 - 1) $x^4 3x^3 + 4x^2 + 3x + 1 = 0$
- 2) $x^4 + 3x^3 + 4x^2 + 3x + 1 = 0$
- 3) $x^4 3x^3 4x^2 + 3x + 1 = 0$
- 4) $x^4 3x^3 4x^2 3x + 1 = 0$
- 24. The equation whose roots are cubes of the roots of $x^3 + 3x^2 + 2 = 0$ is
 - 1) $x^3 + 33x^2 + 12x + 8 = 0$

2) $x^3 + 33x^2 - 12x - 8 = 0$

3) $x^3 - 33x^2 + 12x - 8 = 0$

- 4) $x^3 + 33x^2 + 12x 8 = 0$
- 25. If α , β , γ are the roots of $x^3-3x+1=0$ then the equation whose roots are $\alpha \frac{1}{\beta \gamma}$, $\beta \frac{1}{\gamma \alpha}$, $\gamma \frac{1}{\alpha \beta}$ is
 - 1) $x^3 3x + 8 = 0$ 2) $x^3 6x + 8 = 0$ 3) $x^3 9x + 8 = 0$

EXERCISE-II

Multiple Roots:

- 1. The repeated root of the equation $4x^3 12x^2 15x 4 = 0$ is
- 2) $-\frac{1}{2}$
- 4) $-\frac{1}{2}$
- 2. If f(x)=0 has a repeated root α , then another equation having α as root is
 - 1) f(2x) = 0
- 2) f(3x) = 0
- 3) f'(x) = 0
- 4) f(4x) = 0
- 3. The equation $x^3 3qx + 2r = 0$ has a repeated root then
- 2) $q = r^2$
- 3) $q^3 = r$
- 4. The polynomial $x^3 3x^2 9x + C$ can be written in the form $(x-a)^2$ (x-b) then C =
- 2) 3

- 3) 25
- 4) 27

Conditional roots:

- 5. If the roots of $ax^3 + bx^2 + cx + d = 0$ are in G.P. then the roots of $ay^3 + bky^2 + ck^2y + dk^3 = 0$ are in
 - 1) A.P
- 2) G.P
- 3) H.P
- 4) A.G.P
- 6. If 2,5,7,-4 are the roots of $ax^4+bx^3+cx^2+dx+e=0$ then the roots of $ax^4-bx^3+cx^2-dx+e=0$ are

 - 1) 2, 5, 7, -4 2) -2, -5, -7, 4
- 3) 2, 5, 7, 4
- 7. If 1, 2, 3 are the roots of $ax^3+bx^2+cx+d=0$ then the roots of $ax\sqrt{x}+bx+c\sqrt{x}+d=0$ are
 - 1) 2, 3, 4
- 2) 1, 4, 9
- 3) 2, 4, 6
- 4) 1, $\sqrt{2}$ $\sqrt{3}$

Removal of 2nd, 3rd and fractional Coefficients:

- 8. The transformed equation of $x^3-6x^2+5x+8=0$ by eliminating second term is
 - 1) $x^3 + 7x + 2 = 0$
- 2) $x^3 7x + 2 = 0$
- 3) $x^3 + 5x + 2 = 0$
- 4) $x^3 5x + 2 = 0$
- 9. Number of transformed equations of $x^3+2x^2+x+1=0$ by eliminating third term is
 - 1) 4
- 2) 3

- 10. The transformed equation $x^3 \frac{5}{2}x^2 \frac{7}{18}x + \frac{1}{108} = 0$ by removing fractional coefficients, is
 - 1) $x^3 3x^2 x + 12 = 0$

2) $x^3 - 3x^2 - x + 6 = 0$

3) $x^3 - 3x^2 - 24x - 216 = 0$

4) $x^3 - 15x^2 - 14x + 2 = 0$

11. The transformed equation of $2x^3 - \frac{3x^2}{2} - \frac{x}{8} + \frac{3}{16} = 0$ by eliminating fractional coefficients and having unity for the coefficient of the first term is

1)
$$x^3 - 3x^2 - x + 6 = 0$$

2)
$$x^3 - 3x^2 - x + 3 = 0$$

3)
$$x^3 - 3x^2 - x + 12 = 0$$

4)
$$x^3 - 24x^2 - 3x + 3 = 0$$

Reciprocal Equation:

12. The reciprocal equation among the following is

1)
$$2x^3 + 4x^2 + 2x + 2 = 0$$

2)
$$2x^3 + 4x^2 + 4x + 2 = 0$$

3)
$$2x^3 + 4x^2 + 2x + 4 = 0$$

4)
$$2x^3 + 2x^2 + 4x - 4 = 0$$

- 13. The equation $6x^6-25x^5+31x^4-31x^2+25x-6=0$ is reciprocal equation of
 - 1) class one and x = 1 is a root
- 2) class one and x = -1 is a root
- 3) class two and $x = \pm 1$ are roots
- 4) class two and x = 1 is a root but not x = -1
- 14. If the equation whose roots are p times the roots of $x^4+2x^3+46x^2+8x+16=0$ is a reciprocal equation then p =
 - 1) 2
- 2) 3

- 3) $\pm \frac{1}{2}$
- 4) $\pm \frac{1}{2}$
- 15. If $3x^5 7x^4 + 4x^3 + ax^2 + bx + c = 0$ is a reciprocal equation of second type then (a, b, c) =
 - 1) (3, -7, 4)
- 2) (-3, 7, -4)
- 3) (-4, 7, -3)
- 4) (4, -7, 3)
- 16. The equations $ax^2+bx+a=0$, $x^3-2x^2+2x-1=0$ have two roots in common then a+b must be equal to
- 2) -1

- 3) 0
- 17. Roots of the equation $ax^3 + bx^2 + cx + d = 0$ remain unchanged by increasing each coefficient by one, then

 - 1) $a = b = c = d \neq 0$ 2) $a = b \neq c = d \neq 0$
- 3) $a \neq b = c = d \neq 0$
- 4) $a = b = c \neq d \neq 0$
- 18. If α, β, γ are the roots of $x^3 + qx + r = 0$ then the equation whose roots are $\alpha^2 + \alpha\beta + \beta^2$, $\beta^2 + \gamma \beta + \gamma^2$, $\gamma^2 + \gamma \alpha + \alpha^2$ is
 - 1) $(x+q)^3 = 0$ 2) $(x-q)^3 = 0$
- 3) $(x + 2q)^3 = 0$
- 4) $(x + 3q)^3 = 0$

** KEY SHEET (LECTURE SHEET)

EXERCISE-I

- 1)2 2) 4
- 4) 2
- 5) 1
- 6) 1
- 7)3
- 8) 4
- 9) 1 10)3

- 11)2 12) 1
- 3) 1 13) 3
- 14) 1
- 15) 1 25) 4
- 16) 2 17) 4
- 18) 2
- 19) 2

23) 2 22) 2 24) 1 21) 1

EXERCISE-II

- 1) 2 2) 3
- 3) 4
- 4) 4
- 5) 2
- 6) 2
- 7) 2
- 8) 2

18) 1

9)3

- 11)1 12) 2

- 10) 4

20) 2

- 13)3
- 14) 3
- 15) 3
- 16) 3
- 17) 1

50 ****

ELITE SERIES for Sri Chaitanya Sr. ICON Students

PRACTICE SHEET EXERCISE-I

Quotient, Remainders:

- 1. The remainder when $2x^5 3x^4 + 5x^3 3x^2 + 7x 9$ is divisible by $x^2 x 3$ is:
 - 1) 33x + 4
- 2) 41x + 3
- 3) 41x + 44
- 4) 33x 4

Formation of equations:

2. The polynomial equation of the lowest degree having roots 1, $\sqrt{3}i$ is

1)
$$x^3 + x^2 + 3x + 3 = 0$$
 2) $x^3 - x^2 + 3x - 3 = 0$ 3) $x^3 + x^2 - 3x - 3 = 0$ 4) $x^3 - x^2 - 3x + 3 = 0$

Models on roots of the equation :

- 3. If the sum of two of the roots of $x^3 + ax + b = 0$ is zero then b =
- 2) 1

- 3) -1
- 4) 0
- 4. The condition that one root of $x^3+px^2+qx+r=0$ is sum of the other two roots, is

1)
$$q^3 = 4(pq - 2r)$$

2)
$$p^3 = 4(pq - 2r)$$

3)
$$r^3 = 4(pr - 2q)$$

4)
$$p^3 = 4(pq - r)$$

- 5. If one root of $x^3 12x^2 + kx 18 = 0$ is thrice the sum of remaining two roots then k = 1
 - 1) 29

- 3) 19
- 6. If two of the roots of $2x^3 3x^2 3x + 2 = 0$ are differ by 3 then roots are
 - 1) $-1, \frac{1}{2}, 2$
- 2) $-\frac{3}{2}$, $-\frac{4}{3}$, $-\frac{5}{3}$ 3) -1, $\frac{1}{2}$, 2
- 7. If two roots of $x^3 9x^2 + 14x + 24 = 0$ are in the ratio 3: 2 then the roots are
 - 1) 6, 4, -1
- 2) 3, 2, 4
- 3) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{49}{6}$ 4) 6, 4, 2
- 8. If the sum of two of the roots of $x^4 2x^3 3x^2 + 10x 10 = 0$ is zero then the roots are
 - 1) $\pm \sqrt{5}$, $1 \pm i$
- 2) $\pm \sqrt{5}$, 1, -1
- 3) $\frac{1}{2}$, $-\frac{1}{5}$, ± 1 4) $\sqrt{2}$, $\sqrt{5}$, ± 2
- 9. If the product of two of the roots of $x^4 5x^3 + 5x^2 + 5x 6 = 0$ is 3 then the roots are
 - 1) 1, -2, 4, -8 2) ±1,2,3
- 3) $\pm 2i, 2, 3$
- 4) $-\frac{3}{2}$, $-\frac{1}{3}$, $2 \pm \sqrt{3}$
- 10. If the roots of $x^4 + 5x^3 30x^2 40x + 64 = 0$ are in G.P. then the roots are
 - 1) 1, -2, 4, -8 2) \pm 1, 2, 3
- 3) $\pm 2i$, 2, 3
- 4) $\frac{3}{2}$, $-\frac{1}{3}$, $2 \pm \sqrt{3}$

Symmetric Functions of the roots:

- 11. If α , β , γ are the roots of $x^3 x^2 + 8x 6 = 0$ then $(1 + \alpha)(1 + \beta)(1 + \gamma) =$
 - 1) 8
- 2) 12

- 4) 24

THEORY OF EQUATIONS *** ** OBJECTIVE MATHEMATICS II A - Part 1

12. If α , β , γ are the roots of the equation $x^3 - px^2 + qx + r = 0$ then $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =$

1)
$$2(p^2 - 3q)$$
 2) $r - pq$

$$2) r - pq$$

3)
$$qp + r$$

4)
$$\frac{p^2 - 2q}{r^2}$$

13. If α , β , γ are the roots of $x^3 + ax^2 + bx + c = 0$ then $(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) =$

1)
$$(c-a)^2 + (b-1)^2$$

2)
$$(c + a)^2 + (b + 1)^2$$

3)
$$(c-a)^2 - (b-1)^2$$

4)
$$(c + a)^2 - (b + 1)^2$$

14. If α, β, γ are the roots of $x^3 + qx + r = 0$ then $\sum (\beta + \gamma)^{-1} =$

1)
$$\frac{q}{r}$$

2)
$$\frac{r}{q}$$

3)
$$-\frac{q}{r}$$

4)
$$-\frac{r}{q}$$

15. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\Sigma \frac{1}{\alpha^2 \alpha^2} =$

1)
$$\frac{q^2 - 2pt}{r^2}$$

1)
$$\frac{q^2 - 2pr}{r^2}$$
 2) $q^3 - 3pqr + 3r^2$ 3) $\frac{p^2 - 2q}{r^2}$

3)
$$\frac{p^2 - 2q}{r^2}$$

4)
$$\frac{pq}{r-3}$$

Transformed Equations:

16. If $f(x) = x^4 + 3x^2 - 6x - 2$ then the coefficient of x^3 in f(x + 1) is

$$2) -24$$

$$4) -4$$

17. The equation whose roots are those of equation $x^4 - 3x^3 + 5x^2 - 2 = 0$ with contrary sign is

1)
$$x^4 + 3x^3 + 5x^2 - 2 = 0$$

2)
$$x^4 + 3x^3 + x^2 + 7x - 2 = 0$$

3)
$$x^4 - 3x^3 + 8x^2 + 4 = 0$$

4)
$$10x^4 - 13x^2 + 40 = 0$$

18. The equation whose roots exceed by 2 than the roots of $4x^4 + 32x^3 + 83x^2 + 76x + 21 = 0$ is

$$1) 4x^4 + 13x^2 + 9 = 0$$

2)
$$4x^4 - 13x^2 + 9 = 0$$

3)
$$4x^4 + 12x^2 - 9 = 0$$

4)
$$4x^4 - 13x^2 - 9 = 0$$

19. If α , β , γ are the roots of $x^3 + x^2 + 2x + 3 = 0$ then the equation whose roots $\beta + \gamma$, $\gamma + \alpha$, $\alpha + \beta$ is

1)
$$x^3 + 2x^2 + 3x - 1 = 0$$

2)
$$x^3 + 2x^2 + 3x + 1 = 0$$

3)
$$x^3 + 2x^2 - 3x - 1 = 0$$

4)
$$x^3 - 2x^2 + 3x - 1 = 0$$

20. If α , β , γ are the roots of $x^3 + 3x^2 - 4x + 2 = 0$ then the equation whose roots are $\frac{1}{\alpha\beta}, \frac{1}{\beta\gamma}, \frac{1}{\gamma\alpha}$ is

1)
$$4x^3 - 6x^2 + 4x + 1 = 0$$

2)
$$4x^3 + 6x^2 - 4x - 1 = 0$$

3)
$$4x^3 + 6x^2 - 4x + 1 = 0$$

4)
$$4x^3 - 6x^2 - 4x - 1 = 0$$

21. If α , β , γ are the roots of $x^3 - 6x - 4 = 0$ then the equation whose roots are $\beta \gamma + \frac{1}{\alpha}$, $\gamma \alpha + \frac{1}{\beta}$, $\alpha \beta + \frac{1}{\gamma}$ is

1)
$$4x^3+30x^2+125=0$$

2)
$$x^3+15x^2-120=0$$

3)
$$4x^3+30x^2-125=0$$

4)
$$4x^3-30x^2-125=0$$

Multiple Roots:

1. The non-repeated root of $x^3 + 4x^2 + 5x + 2 = 0$ is

1)
$$-\frac{5}{3}$$

$$3) -1$$

4) 1

2. If $x^4 - 5x^3 + 9x^2 - 7x + 2 = 0$ has a multiple root of order 3 then the roots are

$$3)$$
 -1 , -1 , -1 , 2

4) 1, -2, -2, -2

3. The multiple roots of $x^4 - 2x^3 - 11x^2 + 12x + 36 = 0$ are

$$2) -1, 2$$

$$4) -2, 3$$

Conditional roots:

4. If 1, 2, 3 are the roots of $ax^3 + bx^2 + cx + d = 0$ then the roots of $ax^3 + 2bx^2 + 4cx + 8d = 0$ are

3)
$$\frac{1}{2}$$
,1, $\frac{3}{2}$

Removal of 2nd, 3rd and fractional Coefficients:

5. Number of transformed equations of $x^4+2x^3-12x^2+2x-1=0$ by eliminating third term is

6. To remove the 2nd term of the equation $x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$, diminish the roots by

1)
$$\frac{2}{5}$$

2)
$$-\frac{2}{5}$$

3)
$$\frac{5}{2}$$

4)
$$-\frac{5}{2}$$

7. The transformed equation with integer coefficients whose roots are multiplied by some constant of

those of
$$x^4 - \frac{1}{2}x^3 + \frac{3}{4}x^2 - \frac{5}{4}x + \frac{1}{16} = 0$$
 is

1)
$$y^4 - y^3 + 3y^2 - 10y + 1 = 0$$

2)
$$y^4 - 24y^2 + 9y - 24 = 0$$

3)
$$y^4 - 2y^3 + 6y - 6 = 0$$

4)
$$y^4 - 5y^3 + 3y^2 - 9y + 27 = 0$$

Reciprocal Equation:

8. The equation $x^4 + 3x^3 - 3x - 1 = 0$ is a reciprocal equation of

1) class one and odd order

2) class two and even order

3) class one and even order

4) class two and odd order

9. If 2, 3 are two roots of the reciprocal equation $6x^5-41x^4+97x^3-97x^2+41x-6=0$ then the other roots are

3)
$$-1, \frac{1}{2}, \frac{1}{3}$$

4)
$$1, \frac{1}{2}, \frac{1}{3}$$

10. If $\alpha, \beta, \gamma, \delta$ are the roots of $x^4 - 2x^3 - 8x^2 + 18x - 9 = 0$ such that $\alpha + \beta = 0$ then $3\gamma + 4\delta = 0$

- 1) 7
- 2)10

- 3) 25
- 4) 15

11. The roots of the equation $x^4+px^3+qx^2+rx+s=0$ are such that sum of the two roots is equal to sum of the other two then $p^3 - 4pq =$

- 1) r
- 2) 8r

- 3) 8,
- 4) -r

THEORY OF EQUATIONS *** ** OBJECTIVE MATHEMATICS II A - Part 1

- 12. If the roots of $x^4 8x^3 + 23x^2 + kx + 12 = 0$ are such that the difference of the two roots is equal to the difference of other two then k =
 - 1) 28
- 2) -28
- 3) 30
- 4) -30
- 13. If α , β , γ are the roots of $x^3-7x+6=0$ then the equation whose roots are $(\alpha+\beta)^2$, $(\beta+\gamma)^2$, $(\gamma+\alpha)^2$ is

 - 1) $x(x^2 + 7) = 36$ 2) $x(x + 7)^2 = 36$
- 3) $x(x^2 7) = 36$
- 4) $x(x-7)^2 = 36$
- 14. If α, β, γ are the roots of $x^3 + x + 1 = 0$ then the equation whose roots are $(\alpha \beta)^2, (\beta \gamma)^2, (\gamma \alpha)^2$
 - 1) $(x-2)^3 + 3(x-2) + 27 = 0$
- 2) $(x + 1)^3 + 3(x + 1)^2 + 27 = 0$
- 3) $(x + 2)^3 + 3(x + 2) + 27 = 0$
- 4) $(x-1)^2 + 3(x-1) + 27 = 0$
- 15. If α , β , γ are the roots of $x^3 + x 2 = 0$ then the equation whose roots are $\frac{\beta}{\gamma} + \frac{\gamma}{\beta}, \frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}, \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is
 - 1) $4x^3 + 12x^2 + 13x + 6 = 0$

2) $4x^3 - 12x^2 - 13x + 6 = 0$

3) $4x^3 + 12x^2 - 13x - 6 = 0$

4) $4x^3 - 12x^2 + 13x - 6 = 0$

KEY SHEET (PRACTICE SHEET)

EXERCISE-I

- 1)2 2) 2
- 3)4
- 4) 2
- 5) 1
- 6)3
- 7) 1
- 8) 1
- 9)2 10) 1

- 11)3 12) 3
- 13) 1
- 14) 1
- 15) 3
- 16) 3
- 17) 1
- 18) 2
- 19) 1 20)4

21)3

EXERCISE-II

1) 2

11)3

2) 1

12) 2

- 3) 4 13) 4
- 4) 1

14) 2

- 5)3 15) 1
- 6)3 7) 1
- 8) 2
- 9)3 10) 1