

MONICALIAN SILVERSILY

• • •

The Heart of the Computer

- For the next two lectures we are going to be considering the CPU
 - o Central Processing Unit
- Pictured at right is the 8086
 CPU

- Major components of the chip
 - Adder (for memory, we will ignore)
 - Registers
 - Control Unit
 - Decoding logic
 - Microcode
 - Arithmetic Logic Unit (ALU)

- Registers
 - We have already discussed what registers are
 - Very fast memory located close to the CPU
 - Can interact with the ALU and one another quickly

Control Unit

- Directs the operation of the processor
- "Tells" the memory, ALU and other devices how to respond to instructions being executed by the CPU

- Decoding Logic
 - Instruction are "decoded" into a series of control unit operations
 - Feeds the control unit with what to do for a given instruction
 - This is all done via logical gates based on the concepts we have discussed earlier

- Microcode
 - Encoded logic for each instruction
 - Recall the x86 is a CISC architecture
 - With microcode, complex instructions can be reduced to a series of simpler instructions embedded in logic on the chip

- The ALU
 - Arithmetic Logic Unit does
 most of the CPU work
 - Contains circuitry like the adder we looked at previously
 - More sophisticated than a simple ripple carry model
 - Also contains operations like shift, compare, etc
 - Also contains temporary registers, etc.

The Von Neumann Arch

- This chip is an example of the Von Neumann Architecture
 - CPU with a control unit and ALU
 - Control unit contains a program counter and instruction register
 - Memory via a BUS
 - Stores data and instructions
 - I/O mechanisms

The Von Neumann Arch

- Note that instruction fetch and data fetch cannot be in parallel
 - They share a common bus with the memory unit
 - This is known as the Von Nuemann Bottleneck

- Born December 28, 1903 in Budapest, Kingdom of Hungary
 - Born to a non-observant jewish family
- Child prodigy in mathematics
 - Photographic memory
 - Produced a significant
 mathematical paper per month
 for first three years of academic
 career

- Eventually found his way to the Institute of Advanced Study at Princeton
 - Einstein and others complained about von Neumann's preference for loud german marching music

- Significant contributions in
 - Pure Mathematics
 - Set Theory
 - Geometry
 - Quantum Mechanics
 - Quantum Information Theory
 - Game Theory
 - Economics
 - Fluid Dynamics
 - The Manhattan Project

- Oh, right, he also was the primary author of the First Draft of a Report on the EDVAC
 - Laid out the basic architecture that we are talking about and using today
 - Back before semiconductors existed

- John von Neumann is my intellectual hero
- If you are looking for an intellectual hero, you could do a lot worse that this guy

The Fetch-Execute Cycle

- The basic cycle of the CPU in the Von Neumann architecture is called the fetch-execute or fetch-decode-execute cycle
 - This cycle can be executed serially or, in more modern CPUs, in parallel
- The following is a rough description of each step

The Fetch Stage

- Fetch Stage Steps
 - Address in Program Counter register is copied to the MAR
 - Memory Address Register
 - Program Counter is incremented to next instruction position
 - Instruction found at the address is copied into the MDR
 - Memory Data Register
 - The MDR is copied to the CIR
 - Current Instruction Register

The Decode Stage

- Decode Stage Steps
 - The Control Unit (or a sub-component, the Decode Unit) takes the instruction in the CU and determines what to do
 - Sends signals to the appropriate circuitry in the ALU to activate the correct logic
 - NB: a memory read may stall execution in this step to load a new value into the MDR

The Execute Stage

- Execute Stage Steps
 - Based on signals received from the control unit after it has decoded an instruction, the ALU performs mathematical or logical functions on data stored in registers
 - ALU writes values to locations (registers or memory)
 - May update the PC to point to a new location

The Execute Stage

- Repeat Cycle
- Now repeat that really, really fast
 - Like a few billion times per second fast

The Execute Stage

- Repeat Cycle
- Now repeat that really, really fast
 - Like a few billion times per second fast

The Interrupt Stage

- I/O devices need a way to signal to the CPU that input is ready
- This is done with an interrupt
- Interrupt handling forms
 another stage in the modern
 CPU cycle

The Interrupt Stage

- Also used by the operating system to time share the CPU across multiple processes
 - A "Timer Interrupt" runs the OS schedule, which must pick the next process to be run on the CPU

- The Von Neumann
 architecture is not the only possibility
- Early on The Harvard
 Architecture was a competing
 - Separate pathways for instructions and data

- Modern CPUs have moved towards this architecture by introducing separate caches for instructions and data
 - Sometimes called a Modified
 Harvard Architecture

- When instructions are retrieved from an instruction cache, a CPU acts like a Harvard Architecture
- When instructions must load from memory, the CPU acts like a Von Neumann Architecture

- This is typically hidden from the user/programmer
- To us, the programmer, modern machines look like a Von Neumann Architecture, even if internally it usually acts like a Harvard Architecture device

- This is typically hidden from the user/programmer
- To us, the programmer, modern machines look like a Von Neumann Architecture, even if internally it usually acts like a Harvard Architecture device

- In our next session we are going to be discussing the Scott CPU and each step in the Fetch/Execute cycle using a simple 8-bit model
- Very similar to the LMC and RISC simulators we looked at earlier!

- But with a LOT more detail
- We will drill in to
 - The ALU
 - The Control Unit
 - Memory & Registers
- The emulator is available here:

http://buthowdoitknow.com/bu t_how_do_it_know_cpu_mod el.html

- Scott CPU Assembly Language
- As you might expect, the Scott CPU has a simple assembly language
- Note: The Scott CPU is 8 bit
 - Has only 4 registers
 - Has only 256 memory slots

- Some Scott CPU Assembly instructions
 - ADD, etc. <R1>, <R2>
 - o AND, etc. <R1>, <R2>
 - o CMP <R1>, <R2>
 - LD, ST <R1>, <R2>
 - Load memory pointed to by R1 to R2
 - DATA <R1>, <Value>
 - Load Value into R1
 - o JA, JZ, JE
 - Jump if greater, zero or equal

Great preview video

https://www.youtube.com/wat
ch?v=cNN tTXABUA

 Please watch as prep for our next lecture!

- The CPU is the core component of a modern computer
- It consists of various components
 - Control Unit
 - ALU
 - Registers
- Most CPUs use the Von Neumann Architecture
 - With the common fetch, decode, execute, (interrupt), repeat loop
- The Harvard Architecture lost initially, but has come back in modified form, via internal, hidden to the programmer, caches
- Next time we will drill in on implementation details of the CPU

MONICALIAN SILVERSILY