Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_mate-info* Barem de evaluare și de notare

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2x+2=\frac{1+7}{2}$	3 p
	x=1	2 p
2.	$f(x) = 0 \Rightarrow x = 1 \text{ sau } x = 3$	3 p
	Distanța este egală cu 2	2p
3.	$x^2 + 4 = x^2 + 4x + 4$	3 p
	Rezultă $x = 0$, care verifică ecuația	2p
4.	$b \text{ impar} \Rightarrow b \in \{3,5\} \Rightarrow \text{sunt două variante de alegere a lui } b$	2p
	Pentru fiecare b impar sunt trei variante de alegere a lui a	2 p
	Se pot forma $2 \cdot 3 = 6$ numere	1p
5.	$\vec{v} = \overrightarrow{AC} + \overrightarrow{AO} = 3\overrightarrow{AO}$	3 p
	$\left \overrightarrow{v} \right = 15$	2p
6.	AB = BC	2p
	$\sin C \sin A$	_
	$\sin A = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{vmatrix} A(0) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	=0+1+1-0-0-0=2	3 p
b)	$(A(a))^{2} = \begin{pmatrix} a^{2} + 2 & 2a + 1 & 2a + 1 \\ 2a + 1 & a^{2} + 2 & 2a + 1 \\ 2a + 1 & 2a + 1 & a^{2} + 2 \end{pmatrix}$ $(5a - a^{2} - 2 4 - 2a 4 - 2a)$	2 p
	$5A(a) - (A(a))^{2} = \begin{pmatrix} 5a - a^{2} - 2 & 4 - 2a & 4 - 2a \\ 4 - 2a & 5a - a^{2} - 2 & 4 - 2a \\ 4 - 2a & 4 - 2a & 5a - a^{2} - 2 \end{pmatrix}$ $5A(a) - (A(a))^{2} = 4I_{3} \Rightarrow 5a - a^{2} - 2 = 4 \text{ si } 4 - 2a = 0 \Rightarrow a = 2$	1p
	$(3A(a)-(A(a))) = 4I_3 \Rightarrow 3a-a - 2 = 4 + 4 + 2a = 0 \Rightarrow a = 2$	2p
c)	$A(2) \cdot (5I_3 - A(2)) = 4I_3 \text{ si } (5I_3 - A(2)) \cdot A(2) = 4I_3$	2p
	Matricea $A(2)$ este inversabilă și inversa ei este $B = \frac{1}{4}(5I_3 - A(2)) = \frac{1}{4}\begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$	3p

2.a)	f(2) = 8 - 4m + 6 - 1 = -4m + 13	2p
	$f(-2) = -8 - 4m - 6 - 1 = -4m - 15 \Rightarrow f(2) - f(-2) = 28$	3p
b)	Restul împărțirii lui f la $X-2$ este $f(2) \Rightarrow f(2) = 9$	2p
	Restul împărțirii lui f la $X + 2$ este $f(-2) \Rightarrow f(-2) = -19$	3 p
c)	$x_1 + x_2 + x_3 = m$, $x_1 x_2 + x_2 x_3 + x_1 x_3 = 3 \Rightarrow x_1^2 + x_2^2 + x_3^2 = m^2 - 6$	2p
	$x_1^3 + x_2^3 + x_3^3 = m(x_1^2 + x_2^2 + x_3^2) - 3(x_1 + x_2 + x_3) + 3 = m^3 - 9m + 3$	2p
	$x_1^3 + x_2^3 + x_3^3 = 3 \Leftrightarrow m^3 - 9m = 0 \Leftrightarrow m = -3 \text{ sau } m = 0 \text{ sau } m = 3$	1p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1+x}{1-x} \cdot \left(\frac{1-x}{1+x}\right)' =$	3р
	$=-\frac{2}{1-x^2} = \frac{2}{x^2-1}$, pentru orice $x \in (-1,1)$	2p
b)	$x^2 - 1 < 0$, pentru orice $x \in (-1,1)$	2p
	$f'(x) < 0$, pentru orice $x \in (-1,1) \Rightarrow f$ este descrescătoare pe $(-1,1)$	3 p
c)	$f''(x) = -\frac{4x}{(x^2 - 1)^2}$, pentru orice $x \in (-1, 1)$	2p
	$f''(x) = 0 \Leftrightarrow x = 0$	1p
	$f''(x) \ge 0$, pentru orice $x \in (-1,0]$, $f''(x) \le 0$, pentru orice $x \in [0,1)$, deci punctul de	2p
	inflexiune este $x = 0$	2p
	$I_0 = \int_1^2 e^x dx = $ $= e^x \Big _1^2 = e^2 - e$	2p 3p
b)	$I_{1} = \int_{1}^{2} x e^{x} dx = x e^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx =$ $= e^{2}$	3p 2p
c)	$I_{n+1} = \int_{1}^{2} x^{n+1} e^{x} dx = \int_{1}^{2} x^{n+1} \left(e^{x} \right)' dx =$	2p
	$= x^{n+1}e^{x} \begin{vmatrix} 2 \\ 1 - (n+1)I_n \Rightarrow I_{n+1} + (n+1)I_n = 2^{n+1}e^2 - e$	3 p