Assigned: Page 54, Exercise 2, 4, 23, 25, 33

Exercise 2

Which of the following binary operations are associative?

- a. subtraction of integers No. $(1-1) (-1) \neq (1) (1-(-1))$.
- b. division of nonzero rationals No. $(2/4)/2 \neq 2/(4/2)$.
- c. function composition of polynomials with real coefficients \mathbf{Yes}
- d. multiplication of 2 x 2 matrices with integer entries Yes
- e. exponentiation of integers No. $2^{(3^4)} \neq (2^3)^4$

Exercise 4

Which of the following sets are closed under the given operation?

a. 0, 4, 8, 12 addition mod 16 - $\bf Yes$

	0	4	8	12
0	0	4	8	12
4	4	8	12	0
8	8	12	0	4
12	12	0	4	8

b. 0, 4, 8, 12 addition mod 15 - $\bf No$

	0	4	8	12
0	0	4	8	12
4	4	8	12	1
8	8	12	1	5
12	12	1	5	9

c. 1, 4, 7, 13 multiplication mod 15 - \mathbf{Yes}

	1	4	7	13
1	1	4	7	13
4	4	1	9	7
7	7	9	4	1
13	13	7	1	4

d. 1, 4, 5, 7 multiplication mod 9 - \mathbf{No}

	1	4	5	7
1	1	4	5	7
4	4	7	2	1
5	5	2	7	8
7	7	1	8	4

Exercise 23

(Law of Exponents for Abelian Groups)

Let a and b be elements of an Abelian group and let n be any integer.

Show that $(ab)^n = a^n b^n$.

Let a, b \in G, an Abelian group, and let $n \in \mathbb{Z}$

$$(ab)^n = ab \times ab \times ab \times ... \times ab$$
 (n times)
= $a \times a \times a \times ... \times a \times b \times b \times b \times ... \times b$ (by commutativity)
= $(a)^n (b)^n$

Is this also true for non-Abelian groups?

No. Since this requires commutativity to prove.

Exercise 25

Prove that a group G is Abelian iff $(ab)^{-1} = a^{-1}b^{-1}$, $\forall a, b \in G$.

Let G be an Abelian group, and let $a, b \in G$.

$$(ab)^{-1} = \frac{1}{ab} = \frac{1}{a} \frac{1}{b}$$
 (by commutativity) = $a^{-1}b^{-1}$

Let $a, b \in G$ and assume that $(ab)^{-1} = a^{-1}b^{-1}$, $\forall a, b \in G$. Notice that since $(ab)^{-1} = \frac{1}{ab}$ and $a^{-1}b^{-1} = \frac{1}{a}\frac{1}{b}$, this implies that $\frac{1}{(ab)} = (\frac{1}{a})(\frac{1}{b})$, $\forall a, b \in G$

Since the sequence of division and multiplication does not matter, G is commutative, and therefore Abelian.

Exercise 33

Suppose the table below is a group table. Fill in the blank entries.

	e	\mathbf{a}	b	\mathbf{c}	d			e	\mathbf{a}	b	$^{\mathrm{c}}$	d
е	е	-	-	-	-		е	е	a	b	c	d
\mathbf{a}	-	b	-	-	\mathbf{e}	,	a	a	b	\mathbf{c}	d	e
b	-	\mathbf{c}	d	e	-	\rightarrow	b	b	\mathbf{c}	d	d e	a
\mathbf{c}	-	d	-	a	b		\mathbf{c}	c	d	\mathbf{e}	a	b
d	-	-	-	-	-						b	