Question Number	Answer		Mark
13(a)	Mass difference calculated	(1)	
	Conversion from u to kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 5.53 \text{ (MeV)}$	(1)	4
	For full marks to be awarded some working should be shown – a bald answer scores zero. "Some working" must include at least two of the steps to the answer.		
	Example of calculation		
	Mass difference = $(228.02873 - 224.02021 - 4.00260) u = 5.92 \times 10^{-3} u$		
	Mass difference = $5.92 \times 10^{-3} \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 9.83 \times 10^{-30} \text{ kg}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 9.83 \times 10^{-30} \text{ kg} = 8.85 \times 10^{-13} \text{ J}$		
	$\Delta E = \frac{8.85 \times 10^{-13} \text{J}}{1.60 \times 10^{-13} \text{J MeV}^{-1}} = 5.53 \text{ MeV}$		
13(b)	(Mathematical) statement of momentum conservation	(1)	
	Use of $E_k = \frac{p^2}{2m}$ Or use of $E_k = \frac{1}{2}mv^2$ and $p = mv$	(1)	
	(Mathematical) statement of energy conservation	(1)	
	$E_{\rm k}$ =5.4 MeV and statement is correct	(1)	4
	$\frac{\text{Example of calculation}}{p_{\alpha} = -p_{\text{Ra}}}$		
	$2m_{\alpha} E_{\alpha} = 2m_{Ra} E_{Ra}$		
	$E_{Ra} = \frac{m_{\alpha}}{m_{Ra}} \times E_{\alpha}$		
	$E_{\alpha} + E_{Ra} = 5.5 \text{ MeV}$		
	$E_{\alpha} + \frac{m_{\alpha}}{m_{Ra}} \times E_{\alpha} = 5.5 \text{ MeV}$		
	$E_{\alpha} = \frac{m_{Ra}}{m_{Ra} + m_{\alpha}} \times 5.5 \text{ MeV}$		
	So $E_{\rm k} = \frac{224}{228} \times 5.53 \text{ MeV} = 5.43 \text{ MeV}$		
	Total for question 13		8