The Emotional Spark - Concepts, Challenges, and Best Practices in Sentiment Analysis

Dr. Stefan Gindl, Freelancer
Data Scientist | Software Developer | Assistant Professor
stefan.gindl@gmail.com

- Concepts
- Applications
- Tools
- Features
- Evaluation & Limitations
- Corpus Annotation

Concepts

Concepts

- Sentiment analysis
 - o = opinion mining
 - = sentiment detection
 - = polarity classification (?)
- Objective (factual) vs subjective (opinionated) statements
- Aspect-based opinion mining
- Emotion Detection
 - SentiSense
 - SenticNet

Robert Plutchik's wheel of emotions

Concepts

"The **iPhone** is very good, but they still need to work on **battery life** and **security** issues", John said yesterday.

entity	aspect	sentiment	holder	time
iPhone	GENERAL	pos	John	2019-06-18
iPhone	security	neg	John	2019-06-18
iPhone	battery life	neg	John	2019-06-18

- Media monitoring:
 - Get customer feedback from online media
 - Measure the political sentiment of the public
 - O Health*:
 - Pharmaceutical companies mine online health information to monitor patients' opinions on their products and services, and to obtain feedback on their performance and the consumers' satisfaction.
 - Secondary effects of drugs, alternative therapies, undocumented symptoms
- As an additional feature for other applications, e.g. stock price prediction
- Built-in feature in CRM tools

Health Sector

- Algorithmic Detection and Analysis of Vaccine-Denialist Sentiment Clusters in Social Networks (2019): arxiv.org/abs/1905.12908
- Understanding Perceptions and Attitudes in Breast Cancer Discussions on Twitter (2019): arxiv.org/abs/1905.12469
- Distinguishing Clinical Sentiment: The Importance of Domain Adaptation in Psychiatric Patient Health Records (2019): arxiv.org/abs/1904.03225
- "Hang in There": Lexical and Visual Analysis to Identify Posts Warranting Empathetic Responses (2019): arxiv.org/abs/1903.05210
- Natural Language Processing, Sentiment Analysis and Clinical Analytics (2019): arxiv.org/abs/1902.00679

Finance

- Market Trend Prediction using Sentiment Analysis: Lessons Learned and Paths Forward (2019): arxiv.org/abs/1903.05440
- Predicting the Effects of News Sentiments on the Stock Market (2018): arxiv.org/abs/1812.04199
- Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network (2018): arxiv.org/abs/1811.06173
- Using Stock Prices as Ground Truth in Sentiment Analysis to Generate Profitable Trading Signals (2018): arxiv.org/abs/1811.02886

Politics

- Topic-Specific Sentiment Analysis Can Help Identify Political Ideology (2018): arxiv.org/abs/1810.12897
- Sentiment Aggregate Functions for Political Opinion Polling using Microblog Streams (2016): arxiv.org/abs/1606.05242
- Learning from the News: Predicting Entity Popularity on Twitter (2016): arxiv.org/abs/1607.03057
- Dynamic Allocation of Crowd Contributions for Sentiment Analysis during the 2016 U.S. Presidential Election (2016): arxiv.org/abs/1608.08953

Approaches

- Simplest: count number of positive and negative terms
- Feature engineering: filter irrelevant language particles, enrich useful particles with further information
- All sorts of machine learners
 - Naive Bayes, SVM, Linear Regression
- Deep Learning
 - Sentiment analysis solved?

Tools

Out-of-the-box

Python

- VADER: Valence Aware Dictionary and sEntiment Reasoner), a lexicon and rule-based sentiment analysis tool
- NLTK: has a VADER wrapper
- TextBlob:
- spacy: AFAIK no

Outside of Python

- R: sentimentr (dictionary-based, uses valence shifters)
- Java: Stanford CoreNLP

Out-of-the-box

```
[ ] 1 statement = ("This movie doesn't care about cleverness, wit or any other kind " of intelligent humor.")
```

- NLTK

TextBlob

```
[ ] 1 from textblob import TextBlob
2 TextBlob(statement).polarity

C 0.425
```

Let's try it out...

→nlp.stanford.edu/sentiment/

Fun with Sentiment Analysis

→ colab.research.google.com/drive/1umsBCj97gn07Sb76YO1N3H9ADnTFj8w

Features

Features

- Bag-of-Words, e.g. counts or TF-IDF
- Stopword filtering
- Sentiment lexicons
 - o General Inquirer, Opinion Lexicon, SentiSense and SentiStrength, SentiWordNet, SenticNet

Stopwords

```
1 from nltk.corpus import stopwords
  2 import nltk
  3 import pandas as pd
  4 import requests
  6 nltk.download('stopwords')
    github stopwords en = ('https://raw.githubusercontent.com/stopwords-iso/'
                           'stopwords-en/master/stopwords-en.txt')
 10 stopwords iso = requests.get(github stopwords en).text.split('\n')
 11 stopwords nltk = set(stopwords.words("english"))
  1 print(f'Examples of stopwords iso: {stopwords iso[:5]}')
  2 print(f'Examples of stopwords nltk: {list(stopwords nltk)[:5]}')
Examples of stopwords iso: ["'ll", "'tis", "'twas", "'ve", '10']
Examples of stopwords nltk: ['wouldn', 'the', 'and', 'by', 'she']
  1 stopwords = pd.Series({'stopwords iso': len(stopwords iso),
                           'stopwords nltk': len(stopwords nltk)})
  3 stopwords.plot.bar()
```


Sentiment Lexicons

Features

- Filter by adjectives, nouns, verbs and adverbs
- Contextual valence shifters: negation, intensification
 - NOT good/NOT bad
 - "VERY good", "EXTREMELY good"
 - "I REALLY love the weather." vs. "I HARDLY love the weather."
- Phrases/N-Grams
- Semantic Expansion: WordNet
- Emoticons
- Word Embeddings

PoS-tag Filtering

```
1 from nltk import pos tag
  2 from nltk import word tokenize
  3 import nltk
  4 nltk.download('punkt')
  5 nltk.download('averaged perceptron tagger')
  8 pos_tags_noun = {'NN', 'NNS', 'NNP', 'NNPS'}
  9 pos tags adj = {'JJ', 'JJR', 'JJS'}
 1 sentence = 'The quick brown fox jumps over the lazy dog.'
  2 tokens = word tokenize(sentence)
  3 tagged = pos tag(tokens)
  4 tagged[:4]
[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), ('fox', 'NN')]
  1 [token[0] for token in tagged if token[1] in pos tags noun]
['brown', 'fox', 'dog']
  1 [token[0] for token in tagged if token[1] in pos tags adj]
['quick', 'lazy']
```

N-Grams

Fentaw, H. W. & Kim, T.-H. Design and Investigation of Capsule Networks for Sentence Classification. Applied Sciences, 2019, 9.

WordNet

```
Synsets: [Synset('sentiment.n.01'), Synset('opinion.n.01')]

Definition: a personal belief or judgment that is not founded on proof or certainty
Hypernyms: [Synset('belief.n.01')]
Hyponyms: [Synset('eyes.n.01'), Synset('idea.n.03')]
```

```
print(f"Similary opinion<->sentiment:", wn.synset('opinion.n.01').path_similarity(wn.synset('sentiment.n.01'))
print(f"Similarity car<->truck:", wn.synset('car.n.01').path_similarity(wn.synset('truck.n.01')))
print(f"Similarity car<->bed:", wn.synset('car.n.01').path_similarity(wn.synset('cat.n.01')))
```

Features - An Evaluation

- Content-based features
 - Bag of words (BOW)
 - Word embeddings (W2V)
 - Concept embeddings (C2V): map text onto concepts from the UMLS Metathesaurus
- Domain-specific features
 - Extraction UMLS Semantic Types (ST)
- Positional features (Pst)
 - position of the sentence within the post, position of the post within the thread
- Network features (Net)
 - number of replies of the post, Is a primary question (1 if the sentence belongs to the first post in a conversation, and 0 otherwise)

Features - An Evaluation

- Sentiment-based features (SA)
 - Number of positive/negative words (General Inquirer], SentiSense, and SentiStrength)
 - Emotions expressed in the text (from SentiSense lexicon: Ambiguous, Anger, Calmness,
 Despair, Disgust, Anticipation, Fear, Hate, Hope, Joy, Like, Love, Sadness, and Surprise)
- Grammatical features (Gramm)
 - Verb tense
 - Part-of-speech
 - Negation
- Factuality (Fact)
 - Includes the factual/non-factual label manual classification as a feature

	S	МО	R	:F	N	В	V	ote
Feature	Acc	F-1	Acc	F-1	Acc	F-1	Acc	F-1
BOW	57,1	47,7	57,6	46,1	58,1	49,4	58,4	48,9
BOW + ST	60,9	60,1***	64,4	59,4	63,9	62,9	63,4	61,5
BOW + ST + Pst	61,8	59,7***	64,8	59,9	63,6	62,6	63,9	62,4
BOW + ST + Pst + Net	59,8	59,3***	64,7	59,9	63,5	62,7	62,9	61,3
BOW + ST + Pst + Net + SA	62,1	61,6***	64,2	59	65,3	64,5	65,5	64,1
BOW + ST + Pst + Net + SA + Gramm	56,6	47,1	57,2	55,5	57,6	49,2	59,3	52,4
BOW + ST + Pst + Net + SA + Gramm + Fact	57,1	49,2	56,7	55,3	57,5	49,7	59,7	53,6
W2V	65,9	65,1	62,8	56,5	57,5	46,4	66,5	63,5
W2V + ST	66,2	65,2	63,1	56,4	60,3	62,9	67	63,4
W2V + ST + Pst	66,5	65,9	61,3	53,8	60,6	62,6	67,3	63
W2V + ST + Pst + Net	66,1	65,4	62,3	55,2	59,9	62,7	67,4	63,4
W2V + ST + Pst + Net + SA	68,4	66,5	62,6	55,7	61,9	64,5	68,7	65,3
W2V + ST + Pst + Net + SA + Gramm	66	65,8	62,9	56,5	62,6	49,2	68,2	65,9
W2V + ST + Pst + Net + SA + Gramm + Fact	64,7	64,5	63,3	56,9	62,6	49,7	68,5	66,4
C2V	62,6	60,8	61,2	55	57,4	45,6	63,8	59,6
C2V + ST	65	65,2**	63,1	56,4	63,9	53,8	65	61,4
C2V + ST + Pst	66,5	65,9**	61,3	53,8	63,7	54,4	65,3	62
C2V + ST + Pst + Net	66,1	65,4**	62,3	55,2	63,5	54,1	66,4	63,4
C2V + ST + Pst + Net + SA	67,8	67,2**	62,6	55,7	65,3	57,6	67,7	65,3
C2V + ST + Pst + Net + SA + Gramm	62,4	61,6*	63,1	56,5	57,6	58,8	64,8	62
C2V + ST + Pst + Net + SA + Gramm + Fact	63,2	62,4*	63,3	57	57,5	59,5	65,3	62,5

Features with Deep Learning

```
1 import re
2 from nltk.stem import WordNetLemmatizer
 3 from nltk.corpus import stopwords
 5 stop words = set(stopwords.words("english"))
 6 lemmatizer = WordNetLemmatizer()
   def clean text(text):
      try:
           text = re.sub(r'[^\w\s]','',text, re.UNICODE)
12
       except:
           print(text)
14
      text = text.lower()
15
      text = [lemmatizer.lemmatize(token) for token in text.split(" ")]
      text = [lemmatizer.lemmatize(token, "v") for token in text]
16
      text = [word for word in text if not word in stop words]
17
      text = " ".join(text)
18
       return text
19
```

Evaluation and Limitations

Evaluation

- Recall
 - measure of completeness: TP/(TP+FN)
- Precision
 - measure of correctness: TP/(TP+FP)
- F-measure
 - harmonic mean of recall & precision: (2*recall*precision)/(recall+precision)
- Accuracy
 - o proportion of true results among in all cases: (TP+TN)/(TP+TN+FP+FN)
- Cross-validation

Evaluation

```
1 from sklearn.metrics import classification_report
      2 y_true = [1, 1, -1, 1, -1, -1, 1]
3 y_pred = [1, -1, -1, 1, 1, -1, 1]
      5 print(classification report(y true, y pred))
                                    recall f1-score
                     precision
                                                           support
D
                -1
                           0.67
                                       0.67
                                                  0.67
                                                                  3
                           0.75
                                       0.75
                                                  0.75
                                                  0.71
         accuracy
                           0.71
                                       0.71
                                                  0.71
       macro avg
    weighted avg
                           0.71
                                       0.71
                                                  0.71
```

Limits

- Context, word ambiguity
 - This movie's plot is unpredictable.
 - o The brakes of this car are unpredictable.
- Stilistic means: sarcasm, irony, cynicism, metaphors
- Domain-dependency
- Colloquial language (e.g. in social media)
 - o "I luv u"
 - NLTK TweetTokenizer()

- Choose level of granularity
- Split corpus:
 - Set for annotation guidelines
 - Set for main annotation task
- Derive guidelines on small set
- Select annotators: level of expertise required?
- Annotators annotate on large set using the guidelines

0.8

- Calculate inter-rater agreement
 - Cohen's kappa: for 2 raters
 - Fleiss' kappa: more than 2 raters

```
[ ] 1 from sklearn.metrics import cohen_kappa_score
[ ] 1 rater_1 = [1, 1, 1, 0, 0, 1, 1, 0, 0, 1]
2 rater_2 = [0, 1, 1, 0, 0, 1, 1, 0, 0, 1]
3 cohen_kappa_score(rater_1, rater_2)
```

< 0: Agreement below chance 0.01-0.2: Small agreement 0.21-0.4: Fair agreement 0.41-0.6: Moderate agreement 0.61-0.8: Substantial agreement 0.81-0.99: Almost perfect agreement

- 1. If at least two annotators assigned the same label to the sentence, then such label was finally assigned.
- 2. If each of the three annotators assigned a different label to a sentence, then a fourth annotator was asked to select the final label.
- If a sentence was not labeled by at least two annotators, we preserve the sentence for readiness and labeled it as NOT_LABELED.

	Experience	Opinion	Fact
Allergies	86%	69%	65%
Crohn	88%	65%	72%
Breast cancer	77%	70%	79%
Average	84%	68%	72%

https://doi.org/10.1371/journal.pone.0207996.t005

	Positive	Negative	Neutral
Allergies	79%	76%	71%
Crohn	68%	68%	79%
Breast cancer	77%	70%	79%
Average	75%	71%	76%

https://doi.org/10.1371/journal.pone.0207996.t004

Resources

Resources

- Tools:
 - NLTK (Natural Language ToolKit)
 - www.nltk.org
 - spacy.io
 - TextBlob: <u>textblob.readthedocs.io/en/dev/</u>
 - VADER (Valence Aware Dictionary and sEntiment Reasoner);
 - github.com/cjhutto/vaderSentiment
- Hubs:
 - o English:
 - github.com/xiamx/awesome-sentiment-analysis
 - German Sentiment Analysis:
 - sites.google.com/site/iggsahome
 - Offensive language: projects.fzai.h-da.de/iggsa/resources-tools-and-literature/

Resources

- Sentiment Lexicons:
 - SentiWordNet:
 - <u>qithub.com/aesuli/SentiWordNet</u>
 - Opinion Lexicon:
 - www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
 - github.com/shekhargulati/sentiment-analysis-python/tree/master/opinion-lexicon-English
 - SenticNet: sentic.net
 - General Inquirer: <u>www.wjh.harvard.edu/~inquirer/</u>
 - SentiStrength: <u>sentistrength.wlv.ac.uk/</u>
 - SentiSense: <u>nlp.uned.es/~jcalbornoz/SentiSense.html</u>
- Stopwords:
 - <u>github.com/stopwords-iso/</u>
 - from nltk.corpus import stopwords

Thank you.

Emotion is a sum totaled by an adding machine of the mind.

Ayn Rand, *Atlas Shrugged*.