On Colour

If visible light spectrum is VIBGYOR, why RGB colour representation?

Credit: Derek Hoiem, UIUC

- Long (red), Medium (green), and Short (blue) cones, plus intensity rods
- Fun facts
 - "M" and "L" on the X-chromosome

 more likely to be colour blind!
 - Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish, birds), 5 (pigeons, some reptiles/amphibians), or even 12 (mantis shrimp) types of cones

Image as a Matrix

- Common to use one byte per value: 0 = black, 255 = white
- One such matrix for every channel in colour images

Image as a Function

- We can think of a (grayscale) image as a function $f:\mathbb{R}^2 \to \mathbb{R}$ giving the intensity at position (x,y)
- A digital image is a discrete (sampled, quantized) version of this function

Credit: Noah Snavely, Cornell Univ

Image Transformations

$$\hat{I}(x,y) = I(x,y) + 20$$

$$\hat{I}(x,y) = I(-x,y)$$

Image Processing Operations

Point Operations

- Output value at (m_0, n_0) is dependent only on the input value at the same coordinate
- Complexity/pixel: Constant

Local Operations

- Output value at (m_0, n_0) is dependent on input values in a $p \times p$ neighborhood of that same coordinate
- Complexity/pixel: p^2

Global Operations

- Output value at (m_0, n_0) is dependent on on all the values in the input $N \times N$ image
- Complexity/pixel: N^2

Point Operations: Example

• Image Enhancement: Reversing the contrast

• How?

$$\hat{I}(m_0, n_0) = I_{MAX} - I(m_0, n_0) + I_{MIN}$$

Point Operations: Another Example

- Image Enhancement:
 Stretching the contrast
- How?

Linear Contrast Stretching

$$\hat{I}(m_0, n_0) = (I(m_0, n_0) + \min_{x,y} I(x, y)) * (I(m_0, n_0) / (\max_{x,y} I(x, y) - \min_{x,y} I(x, y))) + I_{MIN}$$

How Useful are Point Operations?

- A single point (or pixel)'s intensity is influenced by multiple factors, and may not tell us everything
 - Light source strength and direction
 - Surface geometry, material and nearby surfaces
 - Sensor capture properties
 - Image representation and colour
- Given a camera and a still scene, how do you reduce noise using point operations?
- Take many images, and average them!
- You need local operations otherwise. What is the local operation?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	۵	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	6
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Global Operations: Examples

NPTFI

K

- Image coordinate transformations, e.g.
 Fourier transform
- We will see more of this later

§1.4 Image Representation

