Introduction to homotopy type theory: practice exam

DAT235/DIT577/PhD reading course

2023, December 23

• Grade scale:

Fraction of points	≥ 0	$\geq 2/5$	$\geq 3/5$	$\geq 4/5$
Grade	U	3	4	5

• Time: 4 hours

• No aids allowed.

- You may use familiar facts from the course book or our discussions without justification, provided they do not already include the statement to be proven or depend on it.
- The axioms of function extensionality and univalence may only be used where stated.

- 1. [4 points] Recall that the type \mathbb{N} of natural numbers is inductively generated by $0 : \mathbb{N}$ and $S(n) : \mathbb{N}$ for $n : \mathbb{N}$. Its eliminator (induction) takes a family P over \mathbb{N} with
 - z: P(0),
 - s(n,x): P(S(n)) for $n: \mathbb{N}$ and x: P(n),

and gives $\operatorname{ind}_{P,z,s}(n):P(n)$ for $n:\mathbb{N}$.

Justify the definition of $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by pattern matching

$$f(0,b) = S(b)$$

$$f(S(a), 0) = f(a, S(0))$$

$$f(S(a), S(b)) = f(a, f(S(a), b))$$

by translating it to a definition using the eliminator instead.

2. [4 points] Let A be a type with an element a. Consider the following type:

$$\sum_{x:A} \sum_{p:a=x} \sum_{q:x=a} p \cdot q = \mathsf{refl}_a$$

Is this type always contractible? If yes, prove so; if no, provide a counterexample.

- 3. [4 points] A type A is a retract of a type B if we have $s: A \to B$ and $r: B \to A$ with $rs \sim id_A$. Prove that any retract of a contractible type is again contractible.
- 4. [4 points] Consider maps

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D.$$

Assume that $g \circ f$ and $h \circ g$ are bi-invertible. Show that f, g, h are all bi-invertible.

5. [8 points in total] One of the most technical parts in the setup of homotopy type theory is the proof that bi-invertible maps are contractible. In this problem, we will work through an alternative approach from discussions with David Wärn.

We start with maps $g: A \to B$ and $f, h: B \to A$ with $p: g \circ f \sim \operatorname{id}_A$ and $q: h \circ g \sim \operatorname{id}_B$. Prove the following sequence of claims. You may use all previous problems and parts.

- (a) [2 points] The following maps are bi-invertible:
 - $\operatorname{ap}_{g \circ f}^{a_0, a_1} : (a_0 = a_1) \to (g(f(a_0)) = g(f(a_1))) \text{ for } a_0, a_1 : A,$
 - $\operatorname{ap}_{h \circ g}^{b_0, b_1} : (b_0 = b_1) \to (h(g(b_0)) = h(g(b_1))) \text{ for } b_0, b_1 : B.$

You may use function extensionality here.

- (b) [2 points] The map $\mathsf{ap}_f^{a_0,a_1}:(a_0=a_1)\to (f(a_0)=f(a_1))$ is bi-invertible for $a_0,a_1:A.$
- (c) [2 points] For $a_0: A$, the type $\sum_{a_1:A} f(a_0) = f(a_1)$ is contractible.
- (d) [2 points] The map f is contractible.
- 6. [4 points] Define what it means for a universe \mathcal{U} to be univalent.