Remarks on Inferences Under Selection

The examples on pages 66 and 71 discuss how inferences can be affected when data are non-randomly sampled. This note provides a little backround.

Consider two random vectors $x \in \Omega$ and $y \in \Phi$ where Ω and Φ are the respective sample spaces. The joint density of x and y is

$$p(x,y) = p(y|x) p(x), \quad x \in \Omega, y \in \Phi, \tag{1}$$

where the parameters of these distributions are omitted from the notation. The likelihood is proportional to (1).

Imagine that x is non-randomly sampled and that $S \subset \Omega$, a subset of Ω , is the set that includes the non-randomly sampled vector x. What are the consequences of selection operating on x, when inferences are based on the conditional likelihood p(y|x)? The conditional likelihood of y given that $x \in S$ is

$$p(y|x, x \in S) = \frac{p(y, x|x \in S)}{p(x|x \in S)}$$

$$= \frac{p(y, x)}{\Pr(x \in S)} \frac{\Pr(x \in S)}{p(x)},$$

$$= p(y|x), \quad x \in S, y \in \Phi,$$
(2)

that takes the same mathematical form as if selection on x had not taken place. Selection on x can be ignored.

Let $z \in \Psi$ represent a third random vector with sample space Ψ . Assume that z is selected and $S \subset \Psi$, a subset of Ψ , includes the non-randomly sampled vector z. What are the consequences of non-random sampling of z if inferences are to be based on the conditional likelihood p(y|x)? The joint likelihood is p(x, y, z) and the conditional likelihood is

$$p(y|x, z \in S) = \frac{\int_{S} p(x, y, z) dz}{\int_{S} \int_{\Phi} p(x, y, z) dy dz}$$
$$= \frac{\int_{S} p(x, y, z) dz}{\int_{S} p(x, z) dz}, \quad x \in \Omega, y \in \Phi,$$
 (3)

which is different from (2). For correct inferences, selection on z cannot be ignored and must be incorporated as part of the likelihood.

If z is independent of (x, y) so that p(x, y|z) = p(x, y) and p(x|z) = p(x), factorising numerator and denominator in (3):

$$p(y|x, z \in S) = \frac{\int_{S} p(x, y|z) p(z) dz}{\int_{S} p(x|z) p(z) dz}$$

$$= \frac{p(x, y)}{(x)} \frac{\int_{S} p(z) dz}{\int_{S} p(z) dz}$$

$$= p(y|x), \quad x \in \Omega, y \in \Phi$$

$$(4)$$

and the likelihood based on (4) is equal to the conditional likelihood of y given x as if selection on z had not occurred. These are special cases of a more general theory of inferences under missing data (Rubin, 1976; Little and Rubin, 1987).

References

Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data. Wiley.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.