1.1 Specific Gaussian naive Bayes classifiers and logistic regression

Consider a specific class of Gaussian naive Bayes classifiers where:

- y is a boolean variable following a Bernoulli distribution, with parameter $\pi = P(y=1)$ and thus $P(Y=0) = 1 \pi$.
- $\mathbf{x} = [x_1, \dots, x_D]^T$, with each feature x_i a continuous random variable. For each x_i , $P(x_i|y=k)$ is a Gaussian distribution $\mathcal{N}(\mu_{ik}, \sigma_i)$. Note that σ_i is the standard deviation of the Gaussian distribution, which does not depend on k.
- For all $i \neq j$, x_i and x_j are conditionally independent given y (so called "naive" classifier).

Question: please show that the relationship between a discriminative classifier (say logistic regression) and the above specific class of Gaussian naive Bayes classifiers is precisely the form used by logistic regression.

=
$$\frac{1}{1 + \exp \left\{ w_0 + \sum_{i=1}^{2} w_i x_i \right\}}$$

 $\sharp \phi: w_0 = \ln \frac{1-77}{11} + \sum_{i=1}^{2} \frac{u_{i_1}^2 - u_{i_1}^2}{26i}$
 $w_i = \frac{u_{i_0} - u_{i_1}}{6i^2}$

$$P(y=1|x) = \frac{1}{1+\exp[w_0 + \stackrel{?}{\leqslant}w_i x_i]} = \frac{1}{1+\exp[w^i x_i]}$$
 他们的好式完全一致。

1.2 General Gaussian naive Bayes classifiers and logistic regression

Removing the assumption that the standard deviation σ_i of $P(x_i|y=k)$ does not depend on k. That is , for each x_i , $P(x_i|y=k)$ is a Gaussian distribution $\mathcal{N}(\mu_{ik},\sigma_{ik})$, where $i=1,\ldots,D$ and k=0,1.

Question: is the new form of $P(y|\mathbf{x})$ implied by this more general Gaussian naive Bayes classifier still the form used by logistic regression? Derive the new form of $P(y|\mathbf{x})$ to prove your answer.

$$P(y=||x|) = \frac{1}{1 + \exp \left\{ \left| \eta \frac{1-i}{i} + \sum_{j=1}^{D} \left\{ \left| \eta \right| \frac{6ij}{6io} \right| + \frac{6io-6i}{46i^26io^2} x_i^2 + \frac{6i^2 Mio - 6io Mii}{2 \cdot 6i^2 6io^3} x_i^2 + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} x_i^2 + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} x_i^2 + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} x_i^2 + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} x_i^2 + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} \right\}$$

$$\Rightarrow \psi_0 = \left| \eta \frac{1-i}{i} + \sum_{j=1}^{D} \left| \eta \left| \frac{6ij}{6io} \right| + \frac{6i^2 Mio - 6io Mii}{4 \cdot 6i^2 6io^3} \right) \right|$$

$$v_0 = \sum_{j=1}^{D} \frac{6i^2 Mio - 6io Mii}{2 \cdot 6i^2 6i^2}$$

$$w_1' = \frac{6io^2 - 6i^2}{46i^2 6io^2}$$

于是可以看出,此时的GDA与Logistic回归的表示形式并不相同。

1.3 Gaussian Bayes classifiers and logistic regression

Now, consider the following assumptions for our Gaussian Bayes classifiers (without "naive"):

- y is a boolean variable following a Bernoulli distribution, with parameter $\pi = P(y=1)$ and thus $P(Y=0) = 1 \pi$.
- $\mathbf{x} = [x_1, x_2]^T$, i.e., we only consider two features for each sample, with each feature a continuous random variable. x_1 and x_2 are **not** conditional independent given y. We assume $P(x_1, x_2|y=k)$ is a bivariate Gaussian distribution $\mathcal{N}(\mu_{1k}, \mu_{2k}, \sigma_1, \sigma_2, \rho)$, where μ_{1k} and μ_{2k} are means of x_1 and x_2 , x_2 are standard deviations of x_1 and x_2 , and x_2 is the correlation between x_1 and x_2 . The density of the bivariate Gaussian distribution is:

$$P(x_1, x_2|y=k) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\sigma_2^2(x_1-\mu_{1k})^2 + \sigma_1^2(x_2-\mu_{2k})^2 - 2\rho\sigma_1\sigma_2(x_1-\mu_{1k})(x_2-\mu_{2k})}{2(1-\rho^2)\sigma_1^2\sigma_2^2}\right].$$

Question: is the form of $P(y|\mathbf{x})$ implied by such not-so-naive Gaussian Bayes classifiers still the form used by logistic regression? Derive the form of $P(y|\mathbf{x})$ to prove your answer.

3. 关键
$$\frac{1}{5} \ln \left(\frac{P(x|y=0)}{P(x|y=1)} \right) = \ln \left(\frac{P(x,x_1|y=0)}{P(x_1,x_2|y=1)} \right)$$

$$= \ln \left(\frac{exp \left\{ -\frac{6\cdot(x_1-x_1,x_1+b_1)(x_1-x_1,x_2)-2p66(x_1x_1,x_2)(x_1x_2,x_2)}{2(1-e^2)6\cdot6x^2} \right\}}{exp \left\{ -\frac{6\cdot(x_1-x_1,x_1)^2-(x_1-x_1,x_2)-2p66(x_1x_1,x_2)(x_1x_2,x_2)}{2(1-e^2)6\cdot6x^2} \right\}}$$

$$= \frac{1}{2(1-e^2)6\cdot6x^2} \cdot \left[6\cdot \left[(x_1,x_1,x_1)^2-(x_1-x_1,x_2)+6\cdot \left((x_1-x_1,x_1)^2-(x_2-x_2,x_2) \right) \right] -2 \cdot \left[6\cdot6x \left[(x_1,x_1,x_1)(x_1,x_1,x_2)-(x_1-x_1,x_2)(x_1-x_1,x_2) \right] \right]$$

$$= \frac{1}{2(1-e^2)6\cdot6x^2} \cdot \left[(26\cdot (x_1,x_1,x_1)(x_1-x_1,x_2)-(x_1-x_1,x_2)) \right]$$

$$= \frac{1}{2(1-e^2)6\cdot6x^2} \cdot \left[(26\cdot (x_1,x_1,x_1)(x_1-x_1,x_2)-(x_1-x_1,x_2)) \right]$$

$$+ 6\cdot \left[(x_1,x_1,x_1)(x_1)+2e(6\cdot (x_1,x_1,x_1,x_2)-(x_1,x_1,x_2)) \right]$$

$$+ 6\cdot \left[(x_1,x_1,x_1)(x_1)+2e(6\cdot (x_1,x_1,x_1,x_2)-(x_1,x_1,x_2)) \right]$$

$$+ exp \left[(x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1,x_1)(x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1,x_1)(x_1,x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,x_1,x_1,x_1,x_1,x_1,x_1,x_1,x_2) \right]$$

$$+ exp \left[(x_1,$$