

Smart Sustainability Simulation Game

Case 3: Quality Management- Unit 2 11.06.2024

FIM Research Center for Information Management
Fraunhofer Institute for Applied Information Technology FIT,
Branch Business & Information Systems Engineering

Prof. Dr. Christoph Buck
Prof. Dr. Hans Ulrich Buhl
Prof. Dr. Torsten Eymann
Prof. Dr. Gilbert Fridgen
Prof. Dr. Henner Gimpel
Prof. Dr. Björn Häckel
Prof. Dr. Nils Urbach
Prof. Dr. Robert Keller
Prof. Dr. Maximilian Röglinger
Prof. Dr. Nils Urbach
Prof. Dr. Maximilian Röglinger

www.fim-rc.de/en www.wirtschaftsinformatik.fraunhofer.de/bise

Pizza & Praxis Insights: Die Allianz Leben beantwortet eure Fragen

Dr. Katrin Heim Leitung des Fachbereichs Kundenportale und Vertriebsprozesse

Dr. Rebecca Westphal Referatsleiterin Prozessmanagement

Jetzt QR-Code scannen und anmelden

Wann?

Donnerstag, 18.06.2024, 18:00 Uhr

Wer?

20-25 interessierte Studierende

Wo?

Blauer Saal, Schloss Hohenheim 1, Universität Hohenheim

Wie?

In entspannter Atmosphäre - Für Getränke und Pizza ist gesorgt

Anmeldung

QR-Code scannen und bis zum 16.06. anmelden

- · einer der weltweit führenden Versicherer und Vermögensverwalter
- mehr als 100 Millionen Privat- und Firmenkunden in mehr als 70 Ländern
- · gehört zu den führenden Unternehmen der Versicherungsbranche weltweit

Case 3: Quality Management - Unit 1

Overview of the cases

Case 1: Material procurement

- What materials should I buy and when?
- Value chain level: Procurement
- → Time Series Analysis

Case 4: Recycling

- How much effort do I put into recycling?
- Value chain level: After-sales-services
- → Process Mining

Case 2: Predictive Maintena

- How often and when should I maintain my machine?
- Value chain level: Operations/production
- → Predictive Analytics

Case 3: Quality Management

- How to ensure good quality?
- Value chain level: Operations/production
- → Computer Vision

Case 3: Quality Management of Edison Cars AG - Task

Recap

Goal of the task of case 3 is to develop an algorithm for the **quality control** of an e-car production. This algorithm should **detect scratches** on the back side of a car and decide whether it is more efficient to **exchange the part** with the scratch or **correct it**.

The company management wants you to implement their quality control system

Time for Feedback

How was the first week?

Any Questions?

Evaluation of your results - Intersection over Union (IoU)

Case 3: Leaderboard - Unit 1

Case 3: Presentation of results

Case 3: Quality Management - Unit 2

Case 3: Why scratch localization matters

Case 3: Quality Management of Edison Cars AG - Costs

Scratch on the Top

Exchange Costs: Material: 150 CO₂: 2 CO₂ Points

Correction Costs: Material: 130 CO₂: 3 CO₂ Points

Scratch in the Middle

Exchange Costs: Material: 70 CO₂: 6 CO₂ Points

Correction Costs: Material: 80 CO₂: 5 CO₂ Points

Scratch on the Bottom

Exchange Costs: Material: 30 CO₂: 9 CO₂ Points

Correction Costs: Material: 90 CO₂: 3 CO₂ Points

Case 3: Your task in week two

Extract coordinates from the scratches from your object detection and transfer to car parts Decide on the handling of the affected car parts Bring everything together to one approach

Case 3: Final presentation

Scratch detection and localization algorithm

How does your algorithm work?

Explanation of the approach to detect scratches

Final presentation

Decision algorithm

Why do you decide to exchange or correct the specific car parts

Case 3: Time schedule

Find the strategy for the most efficient way to label the images and choose one of the given data sets Implementation of an object detection approach to detect scratches on the backside of a car

Submission of the implementation and presentation of the developed approaches

Implementation of a localization algorithm and a decision algorithm whether a car part should be exchanged

Submission of the final results

Case 3: Dimensions of decision-making

Case 3: Evaluation criteria

Case 3: Submission

Code

Including both the object

detection as well as decision.

making on exchange or correction

The following files must be sent to s3g@fim-rc.de as a ZIP folder by 02:00 PM on 17.06.2024:

Selection Data

Decision on exchange or correction based on economical and ecological costs for every image

Presentation

Explaining your approach to assignment to car parts as well as decision making

Case 3: Any Questions?

Any Questions?