

Visualisation

Week 2 Tuesday Session

Coordinate Systems

Cartesian Coordinates

Polar Coordinates

Linear Scales

$$y_{\rm px} = a_{\rm y} y_{\rm mm} + b_{\rm y}$$

Linear Scales

$$y_{\rm px} = a_{\rm y} y_{\rm mm} + b_{\rm y}$$

- "Invariant" to:
 - scaling and shifting
 - unit change

$$y'_{px} = a'_{y} y_{cm} + b_{y} \qquad | a'_{y} = 10 a_{y}$$

- All functions of the form: $y = \lambda \alpha^x$
 - Result in straight line.
 - Slope is proportional to: $\log(\alpha)$

- "Invariant" to:
 - scaling and shifting
 - unit change
 - changing base

Invariance to Scaling but NOT Shifting

Scaling:

$$y_{px} = a_y \log(yc) + b_y$$
$$= a_y \log(y) + \log(c) + b_y$$

• We can adjust b_{v}

Shifting:

$$y_{\text{px}} = a_{\text{y}} \log(y + c) + b_{\text{y}}$$

Nothing we can do!

Logarithmic Scales – Log-Log Plot

Logarithmic Scales – Log-Log Plot

Logarithmic Scales – Log-Log Plot

- All functions of the form: $y = \alpha x^k$
 - Result in straight line.
 - Slope proportional to: k

- "Invariant" to:
 - scaling and shifting
 - unit change
 - changing base

Chart of Everything

Why are most objects on sloped line? Why is the slope approximately a=3?

$$y = x^{k}$$

$$y_{px} = \frac{a_{y}k}{a_{x}} x_{px} - \frac{a_{y}kb_{x}}{a_{x}} + b_{y}$$

$$y_{px} = a \quad x_{px} + b$$

