Linear optimization

$$\min \quad \sum_{j=1}^n c_j x_j$$
 s.t.
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\dots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\dots,p$$

- ▶ n optimization variables: x_1, \ldots, x_n (real scalars)
- lacktriangle problem data (parameters): the coefficients c_j , a_{ij} , b_i , d_{ij} , f_i
- $ightharpoonup \sum_{j=1}^n c_j x_j$ is the cost function or objective function
- ▶ $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$ and $\sum_{j=1}^{n} d_{ij}x_j = f_i$ are inequality and equality constraints

Importance

low complexity

- problems with several thousand variables, constraints routinely solved
- much larger problems (millions of variables) if problem data are sparse
- ► widely available software
- theoretical worst-case complexity is polynomial

wide applicability

- originally developed for applications in economics and management
- ▶ today, used in all areas of engineering, data analysis, finance, . . .
- ► a key tool in combinatorial optimization

extensive theory

▶ no simple formula for solution but extensive, useful (duality) theory

Brief history

- ▶ 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, . . .) foundations, motivated by economics and logistics problems
- ▶ 1947 (Dantzig): simplex algorithm
- ▶ 1972, (Klee and Minty): exponential example
- ▶ 1979 (Khachiyan): ellipsoid algorithm: more efficient (polynomial-time) than simplex in worst case, much slower in practice
- ▶ 1984 (Karmarkar): projective (interior-point) algorithm: polynomial-time worst-case complexity, and efficient in practice
- since 1984: variations of interior-point methods (improved complexity or efficiency in practice), software for large-scale problems

von Neumann, 1903 – 1957

Dantzig, 1914 - 2005; Khachiyan, 1952 - 2005

Karmarkar, 1957 -

LO in inner-product notation

$$\min \quad \sum_{j=1}^n c_j x_j$$
s.t.
$$\sum_{j=1}^n a_{ij} x_j \le b_i, \quad i=1,\ldots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$

inner-product notation

min
$$c^T x$$

s.t. $a_i^T x \le b_i$, $i = 1, ..., m$
 $d_i^T x = f_i$, $i = 1, ..., p$

c, a_i , d_i are n-vectors:

$$c = (c_1, \ldots, c_n),$$
 $a_i = (a_{i1}, \ldots, a_{in}),$ $d_i = (d_{i1}, \ldots, d_{in})$

LO in matrix notation

$$\min \quad \sum_{j=1}^n c_j x_j$$
s.t.
$$\sum_{j=1}^n a_{ij} x_j \le b_i, \quad i=1,\ldots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$

matrix notation

$$min c^T x$$
s.t. $Ax \le b$

$$Dx = f$$

- $lackbox{ }A \text{ is } m imes n\text{-matrix with elements } a_{ij} \text{, rows } a_i^T$
- ▶ D is $p \times n$ -matrix with elements d_{ij} , rows d_i^T
- ▶ inequality is component-wise vector inequality

Terminology

$$\begin{aligned} & \min \quad c^T x \\ & \text{s.t.} \quad Ax \leq b \\ & Dx = f \end{aligned}$$

- x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f
- ▶ feasible set is the set of all feasible points
- $ightharpoonup x^*$ is **optimal** if it is feasible and $c^Tx^* \leq c^Tx$ for all feasible x
- ▶ the **optimal value** of the LO is $p^* = c^T x^*$
- ▶ unbounded problem: $c^T x$ unbounded below on feasible set $(p^* = -\infty)$
- ▶ infeasible probem: feasible set is empty $(p^* = +\infty)$

Vector norms

Euclidean norm

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

 ℓ_1 -norm and ℓ_∞ -norm

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

 $||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$

properties (satisfied by any norm f(x))

- $f(\alpha x) = |\alpha| f(x)$ (homogeneity)
- $f(x+y) \le f(x) + f(y)$ (triangle inequality)
- ▶ $f(x) \ge 0$ (nonnegativity); $f(x) = 0 \Leftrightarrow x = 0$ (definiteness)

Cauchy-Schwarz inequality

$$-\|x\|\|y\| \le x^T y \le \|x\|\|y\|$$

- \blacktriangleright holds for all vectors x, y of the same size
- $\blacktriangleright \ x^Ty = \|x\| \|y\|$ iff x and y are aligned (nonnegative multiples)
- $x^Ty = -\|x\|\|y\|$ iff x and y are opposed (nonpositive multiples)
- ▶ implies many useful inequalities as special cases, for example,

$$-\sqrt{n}||x|| \le \sum_{i=1}^{n} x_i \le \sqrt{n}||x||$$

Angle between vectors

the angle $\theta = \angle(x,y)$ between nonzero vectors x and y is defined as

$$\theta = \arccos \frac{x^T y}{\|x\| \|y\|} \qquad \text{(i.e., } x^T y = \|x\| \|y\| \cos \theta)$$

- \blacktriangleright we normalize θ so that $0 \leq \theta \leq \pi$
- ▶ relation between sign of inner product and angle

$$\begin{array}{c|c} x^Ty>0 & \theta<\pi/2 & \text{(vectors make an acute angle)} \\ x^Ty=0 & \theta=\pi/2 & \text{(orthogonal vectors)} \\ x^Ty<0 & \theta>\pi/2 & \text{(vectors make an obtuse angle)} \\ \end{array}$$

Projection

projection of x on the line defined by nonzero y: the vector $\hat{t}y$ with

$$\hat{t} = \operatorname*{argmin}_{t} \|x - ty\|$$

expression for \hat{t} :

$$\hat{t} = \frac{x^T y}{\|y\|^2} = \frac{\|x\| \cos \theta}{\|y\|}$$

Hyperplanes and halfspaces

hyperplane

solution set of one linear equation with nonzero coefficient vector \boldsymbol{a}

$$a^T x = b$$

halfspace

solution set of one linear inequality with nonzero coefficient vector \boldsymbol{a}

$$a^Tx \leq b$$

a is the **normal vector**

Geometrical interpretation

- ▶ the vector $u = (b/\|a\|^2)a$ satisfies $a^T u = b$
- x is in hyperplane G if $a^T(x-u)=0$ (x-u) is orthogonal to a)
- x is in halfspace H if $a^T(x-u) \leq 0$ (angle $\angle(x-u,a) \geq \pi/2$)

Polyhedron

solution set of a finite number of linear inequalities

- ▶ intersection of a finite number of halfspaces
- \blacktriangleright in matrix notation: $Ax \leq b$ if A is a matrix with rows a_i^T
- ightharpoonup can include equalities: Dx = f is equivalent to $Dx \le f$, $Dx \ge f$

Geometrical interpretation of LO

dashed lines (hyperplanes) are level sets $c^Tx = \alpha$ for different α

optimal solution is (1,1)