# Principal Component Analysis

#### Jan Graffelman<sup>1</sup>

<sup>1</sup>Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain



jan.graffelman@upc.edu

February 22, 2020

#### Contents

- Introduction
- 2 Theory PCA
- Biplots
- 4 How many components?
- 6 Additional topics
- 6 Example

## A bit of history

Introduction

00





- Pearson, K. (1901) On lines and planes of closest fit to systems of points in space Philosophical Magazine 6(2): 559-572.
- Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24: 417-441,498-520.
- Gabriel, K. R. (1971) The biplot graphic display of matrices with application to principal component analysis, Biometrika, 58(3): 453-467.

# Archeological goblets from Thailand (Manly, 1989)

|    | X1 | X2 | Х3 | X4 | X5 | X6 |
|----|----|----|----|----|----|----|
| 1  | 13 | 21 | 23 | 14 | 7  | 8  |
| 2  | 14 | 14 | 24 | 19 | 5  | 9  |
| 3  | 19 | 23 | 24 | 20 | 6  | 12 |
| 4  | 17 | 18 | 16 | 16 | 11 | 8  |
| 5  | 19 | 20 | 16 | 16 | 10 | 7  |
| 6  | 12 | 20 | 24 | 17 | 6  | 9  |
| 7  | 12 | 19 | 22 | 16 | 6  | 10 |
| 8  | 12 | 22 | 25 | 15 | 7  | 7  |
| 9  | 11 | 15 | 17 | 11 | 6  | 5  |
| 10 | 11 | 13 | 14 | 11 | 7  | 4  |
| 11 | 12 | 20 | 25 | 18 | 5  | 12 |
| 12 | 13 | 21 | 23 | 15 | 9  | 8  |
| 13 | 12 | 15 | 19 | 12 | 5  | 6  |
| 14 | 13 | 22 | 26 | 17 | 7  | 10 |
| 15 | 14 | 22 | 26 | 15 | 7  | 9  |
| 16 | 14 | 19 | 20 | 17 | 5  | 10 |
| 17 | 15 | 16 | 15 | 15 | 9  | 7  |
| 18 | 19 | 21 | 20 | 16 | 9  | 10 |
| 19 | 12 | 20 | 26 | 16 | 7  | 10 |
| 20 | 17 | 20 | 27 | 18 | 6  | 14 |
| 21 | 13 | 20 | 27 | 17 | 6  | 9  |
| 22 | 9  | 9  | 10 | 7  | 4  | 3  |
| 23 | 8  | 8  | 7  | 5  | 2  | 2  |
| 24 | 9  | 9  | 8  | 4  | 2  | 2  |
| 25 | 12 | 19 | 27 | 18 | 5  | 12 |

Measurements on archeaological goblets (cm)



Download Goblets.dat

# PCA objectives

#### Main goals:

- Reduce the number of variables
- A picture of the data matrix (biplot)

# PCA objectives

|    | X1 | X2 | Х3 | X4 | X5 | X6 |
|----|----|----|----|----|----|----|
| 1  | 13 | 21 | 23 | 14 | 7  | 8  |
| 2  | 14 | 14 | 24 | 19 | 5  | 9  |
| 3  | 19 | 23 | 24 | 20 | 6  | 12 |
| 4  | 17 | 18 | 16 | 16 | 11 | 8  |
| 5  | 19 | 20 | 16 | 16 | 10 | 7  |
| 6  | 12 | 20 | 24 | 17 | 6  | 9  |
| 7  | 12 | 19 | 22 | 16 | 6  | 10 |
| 8  | 12 | 22 | 25 | 15 | 7  | 7  |
| 9  | 11 | 15 | 17 | 11 | 6  | 5  |
| 10 | 11 | 13 | 14 | 11 | 7  | 4  |
| 11 | 12 | 20 | 25 | 18 | 5  | 12 |
| 12 | 13 | 21 | 23 | 15 | 9  | 8  |
| 13 | 12 | 15 | 19 | 12 | 5  | 6  |
| 14 | 13 | 22 | 26 | 17 | 7  | 10 |
| 15 | 14 | 22 | 26 | 15 | 7  | 9  |
| 16 | 14 | 19 | 20 | 17 | 5  | 10 |
| 17 | 15 | 16 | 15 | 15 | 9  | 7  |
| 18 | 19 | 21 | 20 | 16 | 9  | 10 |
| 19 | 12 | 20 | 26 | 16 | 7  | 10 |
| 20 | 17 | 20 | 27 | 18 | 6  | 14 |
| 21 | 13 | 20 | 27 | 17 | 6  | 9  |
| 22 | 9  | 9  | 10 | 7  | 4  | 3  |
| 23 | 8  | 8  | 7  | 5  | 2  | 2  |
| 24 | 9  | 9  | 8  | 4  | 2  | 2  |
| 25 | 12 | 19 | 27 | 18 | 5  | 12 |



# Theory PCA (1)

Introduction

We search for linear combinations of the original variables

$$F_{1} = a_{11}X_{1} + a_{12}X_{2} + \dots + a_{1p}X_{p}$$

$$F_{2} = a_{21}X_{1} + a_{22}X_{2} + \dots + a_{2p}X_{p}$$

$$\vdots$$

$$F_{p} = a_{p1}X_{1} + a_{p2}X_{2} + \dots + a_{pp}X_{p}$$

#### Subject to:

- $F_1, F_2, \dots F_p$  uncorrelated
- Var(F<sub>1</sub>) maximal
- $Var(F_1) \ge Var(F_2) \ge \cdots \ge Var(F_n)$
- $a_{i1}^2 + a_{i2}^2 + \cdots + a_{ip}^2 = 1$   $(-1 \le a_{ij} \le 1)$

Introduction

 All coefficients and eigenvalues can be obtained by the spectral decomposition of the covariance matrix:

$$S = AD_{\lambda}A'$$
.

The principal components are obtained as:

$$\mathbf{F}_{p} = \mathbf{X}_{c} \quad \mathbf{A} \\
(n \times p) \quad (n \times p) \quad (p \times p)$$

Eigenvalues correspond to variances of the principal components because:

$$\frac{1}{n-1}\mathsf{F}_p'\mathsf{F}_p = \frac{1}{n-1}(\mathsf{X}_c\mathsf{A})'\mathsf{X}_c\mathsf{A} = \frac{1}{n-1}\mathsf{A}'\mathsf{X}_c'\mathsf{X}_c\mathsf{A} = \mathsf{A}'\mathsf{S}\mathsf{A} = \mathsf{A}'\mathsf{A}\mathsf{D}_\lambda\mathsf{A}\mathsf{A}' = \mathsf{D}_\lambda$$

# Geometric Interpretation (p = 2)



Additional topics

Introduction

 An alternative way to perform PCA is by the singular value decomposition (SVD) of the centred data matrix.

$$X_c = UDA'$$
.

The principal components are obtained as:

$$\mathbf{F}_p = \mathbf{X}_c \mathbf{A} = \mathbf{U} \mathbf{D}$$

 Squared singular values relate to the variance of the principal components because:

$$\frac{1}{n-1} \mathsf{F}_p{}' \mathsf{F}_p = \frac{1}{n-1} (\mathsf{UD})' \mathsf{UD} = \frac{1}{n-1} \mathsf{D}^2 = \mathsf{D}_{\lambda}$$

The SVD approach is very convenient for biplot construction.

# What is a biplot?

Introduction

A biplot is a powerful tool for the graphical exploration of multivariate data (e.g. pattern and outlier detection).

A biplot is a multivariate generalization of the scatter plot.

A biplot differs from a scatterplot in some ways:

- It has typically more than 2 axes
- The axes are not perpendicular, but tend to be oblique.
- The data matrix is not represented exactly, but approximately.

A biplot is a joint display of the rows and the columns a matrix that is optimal in the least squares sense.

# Making a biplot

Introduction

In order to make a biplot, the matrix to be represented needs to be factored

$$\mathbf{X}_{n\times p} = \mathbf{F}_{n\times r} \mathbf{G}'_{r\times p} \tag{1}$$

into a matrix of row markers (F) and a matrix of column markers (G). Note that this factorization also exists in an ordinary scatter plot:

$$\mathbf{X}_{n\times 2} = \mathbf{X}_{n\times 2}\mathbf{I}_{2\times 2}$$

The factorization (1) is not unique:

$$\mathbf{X}_{n \times p} = \mathbf{F}_{n \times r} \mathbf{T} \mathbf{T}^{-1} \mathbf{G}'_{r \times p} = \tilde{\mathbf{F}}_{n \times r} \tilde{\mathbf{G}}'_{r \times p} \tag{2}$$

where T is any non-singular linear transformation.

Example

## Biplots and scalar product

In a biplot data values are approximated by the scalar product between two vectors.



$$\cos \theta = \frac{\|\mathbf{p}\|}{\|\mathbf{f}_i\|} = \frac{\mathbf{f}_i' \mathbf{g}_j}{\|\mathbf{f}_i\| \|\mathbf{g}_i\|} \qquad \|\mathbf{p}\| = \frac{\mathbf{f}_i' \mathbf{g}_j}{\|\mathbf{g}_i\|} \qquad x_{ij} \approx \mathbf{f}_i' \mathbf{g}_j = \|\mathbf{p}_i\| \cdot \|\mathbf{g}_j\|$$

# Example of a biplot

|    | Х     |          |       |          |  |  |  |  |
|----|-------|----------|-------|----------|--|--|--|--|
|    | Age H | Height H | Age W | Height W |  |  |  |  |
| 1  | 49    | 1809     | 43    | 1590     |  |  |  |  |
| 2  | 25    | 1841     | 28    | 1560     |  |  |  |  |
| 3  | 40    | 1659     | 30    | 1620     |  |  |  |  |
| 4  | 52    | 1779     | 57    | 1540     |  |  |  |  |
| 5  | 58    | 1616     | 52    | 1420     |  |  |  |  |
| 6  | 32    | 1695     | 27    | 1660     |  |  |  |  |
| 7  | 43    | 1730     | 52    | 1610     |  |  |  |  |
| 8  | 47    | 1740     | 43    | 1580     |  |  |  |  |
| 9  | 31    | 1685     | 23    | 1610     |  |  |  |  |
| 10 | 26    | 1735     | 25    | 1590     |  |  |  |  |

Age and height of husband and wife for 10 couples

## Example of a biplot

Biplot of the standardized Husband and Wife data.



# Biplot interpretation

Biplot of the standardized Husband and Wife data.



# Biplots in PCA

Introduction

$$\mathbf{F}_p = \mathbf{X}_c \mathbf{A}$$

$$\mathbf{X}_c = \mathbf{F}_p \mathbf{A}' = \mathbf{F}_p \mathbf{G}_s' \qquad \mathbf{G}_s = \mathbf{A}'$$

- PCA gives a biplot of the centred data matrix.
- The biplot is obtained by jointly plotting the first two principal components (first two columns of  $\mathbf{F}_p$ ) and the first two eigenvectors (first two columns of  $\mathbf{G}_s$ )
- The rows of  $\mathbf{F}_p$  are usually represented by dots, and the rows of  $\mathbf{G}_s$  by arrows.
- The coordinates  $\mathbf{F}_p$  are called principal coordinates, and the coordinates  $\mathbf{G}_s$  are called standard coordinates.
- Standard coordinates satisfy  $\mathbf{G}_s'\mathbf{G}_s = \mathbf{I}$

Example

# Biplots in PCA: alternative scaling

$$X_c = F_p D_s^{-1} D_s G_s' = F_s D_s G_s' = F_s G_p'$$
  $G_p = G_s D_s$ 

- This biplot plots the standardized principal components  $\mathbf{F}_s = \mathbf{F}_p \mathbf{D}_s^{-1}$
- D<sub>s</sub> contains the standard deviations of the principal components

We thus have two biplots:

- $\mathbf{X}_c = \mathbf{F}_p \mathbf{G}_s'$  (the form biplot)
- $\mathbf{X}_c = \mathbf{F}_s \mathbf{G}_p'$  (the covariance biplot)

In general, form biplots focus on the representation of distances, whereas covariance biplot focus on representing correlation structure.

# Some biplot properties

- In the form biplot, Euclidean distances between points approximate Euclidean distances between rows of the data matrix.
- In the covariance biplot, Euclidean distances between points approximate Mahalanobis distances between rows of the data matrix.
- In the covariance biplot, the length of an arrow approximates the standard deviation of the corresponding variable.
- In the covariance biplot, the angle between two arrows approximates the correlation between the two corresponding variables.

# How many components?

#### Criteria:

- Percentage of explained variance (> 80%).
- Size of the eigenvalue  $(> \overline{\lambda})$ .
- The scree plot.
- Significance tests with the eigenvalues.

# How many components?

We have:

$$\mathsf{tr}(\mathbf{S}) = \mathsf{tr}(\mathbf{A}\mathbf{D}_{\lambda}\mathbf{A}') = \mathsf{tr}(\mathbf{D}_{\lambda}).$$

$$\sum_{i=1}^{p} V(X_{i}) = \sum_{i=1}^{p} V(F_{i}) = \sum_{i=1}^{p} \lambda_{i}.$$

| Component     | $F_1$                      | $F_2$                                    | <br>$\overline{F_p}$                  |
|---------------|----------------------------|------------------------------------------|---------------------------------------|
| Variance      | $\lambda_1$                | $\lambda_2$                              | <br>$\lambda_p$                       |
| Fraction      | $\lambda_1/\sum \lambda_i$ | $\lambda_2/\sum \lambda_i$               | <br>$\lambda_p/\sum \lambda_i$        |
| Cum. Fraction | $\lambda_1/\sum \lambda_i$ | $(\lambda_1 + \lambda_2)/\sum \lambda_i$ | <br>$\sum \lambda_i / \sum \lambda_i$ |

# The scree plot



# Types of PCA

Introduction

There are two types of PCA. Computations can be based on

- the covariance matrix (S)
  - Not invariant w.r.t. the scale of measurement
  - The variable with the largest variance dominates
  - Some authors focus on components with  $\lambda_i > \overline{\lambda}$
- the correlation matrix (R)
  - Invariant w.r.t. the scale of measurement
  - All variables have equal weight
  - Some authors focus on components with  $\lambda_i > 1$

# Interpretation

Introduction

Components can be interpreted with the aid of

- the coefficients
- the correlations between variables and components
- the biplot

If the aim is to get a picture of the data matrix, then interpretation of the components may not be needed.

# Some notes on goodness-of-fit

- From the eigenvalues of the analysis the overall goodness-of-fit of a k-dimensional solution can be calculated.
- One can also compute the goodness-of-fit of individual rows and columns of the data matrix.
- Goodness-of-fit of the variables can also be computed as R<sup>2</sup> in a regression onto the principal components.

## Goblets: some exploratory analysis





•00000000000

# Descriptive statistics

|    | N  | N* | Mean  | Stdev | Med | Min | Max |
|----|----|----|-------|-------|-----|-----|-----|
| X1 | 25 | 0  | 13.28 | 3.01  | 13  | 8   | 19  |
| X2 | 25 | 0  | 17.84 | 4.34  | 20  | 8   | 23  |
| X3 | 25 | 0  | 20.44 | 6.08  | 23  | 7   | 27  |
| X4 | 25 | 0  | 14.60 | 4.14  | 16  | 4   | 20  |
| X5 | 25 | 0  | 6.36  | 2.16  | 6   | 2   | 11  |
| X6 | 25 | 0  | 8.12  | 3.14  | 9   | 2   | 14  |

|    | X1   | X2    | X3    | X4    | X5   | X6    |
|----|------|-------|-------|-------|------|-------|
| X1 | 9.04 | 8.13  | 6.33  | 8.41  | 4.48 | 5.55  |
| X2 | 8.13 | 18.81 | 22.11 | 14.89 | 5.43 | 10.85 |
| X3 | 6.33 | 22.11 | 36.92 | 21.23 | 3.29 | 16.36 |
| X4 | 8.41 | 14.89 | 21.23 | 17.17 | 4.36 | 11.84 |
| X5 | 4.48 | 5.43  | 3.29  | 4.36  | 4.66 | 1.96  |
| X6 | 5.55 | 10.85 | 16.36 | 11.84 | 1.96 | 9.86  |

|    | X1   | X2   | X3   | X4   | X5   | X6   |
|----|------|------|------|------|------|------|
| X1 | 1.00 | 0.62 | 0.35 | 0.67 | 0.69 | 0.59 |
| X2 | 0.62 | 1.00 | 0.84 | 0.83 | 0.58 | 0.80 |
| X3 | 0.35 | 0.84 | 1.00 | 0.84 | 0.25 | 0.86 |
| X4 | 0.67 | 0.83 | 0.84 | 1.00 | 0.49 | 0.91 |
| X5 | 0.69 | 0.58 | 0.25 | 0.49 | 1.00 | 0.29 |
| X6 | 0.59 | 0.80 | 0.86 | 0.91 | 0.29 | 1.00 |

#### PCA of the covariance matrix

|    | PC1  | PC2   | PC3   | PC4   | PC5   | PC6   |
|----|------|-------|-------|-------|-------|-------|
| X1 | 0.20 | 0.67  | -0.23 | -0.27 | 0.61  | -0.11 |
| X2 | 0.46 | 0.19  | 0.62  | -0.44 | -0.37 | -0.22 |
| X3 | 0.66 | -0.54 | 0.11  | 0.16  | 0.49  | 0.06  |
| X4 | 0.44 | 0.18  | -0.45 | 0.46  | -0.39 | -0.45 |
| X5 | 0.11 | 0.44  | 0.39  | 0.60  | -0.01 | 0.52  |
| X6 | 0.33 | 0.00  | -0.45 | -0.36 | -0.31 | 0.68  |

|            | PC1   | PC2   | PC3  | PC4  | PC5  | PC6  |
|------------|-------|-------|------|------|------|------|
| eigenvalue | 77.56 | 11.48 | 4.17 | 1.71 | 0.93 | 0.61 |
| fraction   | 0.80  | 0.12  | 0.04 | 0.02 | 0.01 | 0.01 |
| cumulative | 0.80  | 0.92  | 0.97 | 0.98 | 0.99 | 1.00 |

# Biplot (principal components)



#### PCA of the correlation matrix

|    | PC1  | PC2   | PC3   | PC4   | PC5   | PC6   |
|----|------|-------|-------|-------|-------|-------|
| X1 | 0.37 | 0.49  | -0.62 | -0.32 | 0.28  | 0.26  |
| X2 | 0.45 | -0.03 | 0.38  | -0.67 | -0.08 | -0.44 |
| X3 | 0.41 | -0.44 | 0.32  | 0.02  | 0.38  | 0.62  |
| X4 | 0.46 | -0.11 | -0.16 | 0.54  | 0.38  | -0.56 |
| X5 | 0.30 | 0.68  | 0.49  | 0.36  | -0.22 | 0.16  |
| X6 | 0.44 | -0.30 | -0.33 | 0.13  | -0.76 | 0.13  |

|            | PC1  | PC2  | PC3  | PC4  | PC5  | PC6  |
|------------|------|------|------|------|------|------|
| eigenvalue | 4.27 | 1.09 | 0.38 | 0.14 | 0.07 | 0.04 |
| fraction   | 0.71 | 0.18 | 0.06 | 0.02 | 0.01 | 0.01 |
| cumulative | 0.71 | 0.89 | 0.96 | 0.98 | 0.99 | 1.00 |

# Biplot (standardized principal components)



```
Try:
```

```
> X <- read.table("http://www-eio.upc.es/~jan/Data/goblets.dat",header=TRUE)
> ?princomp
> out <- princomp(X)
> summary(out)
> biplot(out)
> install.packages("FactoMineR")
> library("FactoMineR")
> res.pca = PCA(X, scale.unit=TRUE, ncp=5, graph=T)
> install.packages("ade4")
> library("ade4")
> pca1 <- dudi.pca(X,scannf=FALSE,nf=3)</pre>
```

> scatter(pca1)

# Four PCA biplots



### Another example: poverty data set

For 97 countries in the world the following variables are registered

- Birth: Live birth rate per 1,000 of population
- Death: Death rate per 1.000 of population
- Infant: Infant deaths per 1.000 of population under 1 year old
- LifeEM: Life expectancy at birth for males
- LifeEF: Life expectancy at birth for females
- GNP: Gross National Product per capita in U.S. dollars
- Country: Name of the country

|                 | Birth | Death | Infant | LifeEM | LifeEF | GNP  |
|-----------------|-------|-------|--------|--------|--------|------|
| Albania         | 24.70 | 5.70  | 30.80  | 69.60  | 75.50  | 600  |
| Bulgaria        | 12.50 | 11.90 | 14.40  | 68.30  | 74.70  | 2250 |
| Czechoslovakia  | 13.40 | 11.70 | 11.30  | 71.80  | 77.70  | 2980 |
| Former_EGermany | 12.00 | 12.40 | 7.60   | 69.80  | 75.90  | NA   |
| Hungary         | 11.60 | 13.40 | 14.80  | 65.40  | 73.80  | 2780 |
| Poland          | 14.30 | 10.20 | 16.00  | 67.20  | 75.70  | 1690 |
| Romania         | 13.60 | 10.70 | 26.90  | 66.50  | 72.40  | 1640 |
| Yugoslavia      | 14.00 | 9.00  | 20.20  | 68.60  | 74.50  | NA   |
| USSR            | 17.70 | 10.00 | 23.00  | 64.60  | 74.00  | 2242 |
|                 |       |       |        |        |        |      |
| :               |       | :     | :      | :      |        | - :  |
|                 |       |       |        |        |        |      |

# Scatterplot matrix



# Correlation matrix and variance decomposition

|        | Birth | Death | Infant | LifeEM | LifeEF | InGNP |  |
|--------|-------|-------|--------|--------|--------|-------|--|
| Birth  | 1.00  | 0.49  | 0.86   | -0.87  | -0.89  | -0.74 |  |
| Death  | 0.49  | 1.00  | 0.65   | -0.73  | -0.69  | -0.51 |  |
| Infant | 0.86  | 0.65  | 1.00   | -0.94  | -0.96  | -0.79 |  |
| LifeEM | -0.87 | -0.73 | -0.94  | 1.00   | 0.98   | 0.81  |  |
| LifeEF | -0.89 | -0.69 | -0.96  | 0.98   | 1.00   | 0.83  |  |
| InGNP  | -0.74 | -0.51 | -0.79  | 0.81   | 0.83   | 1.00  |  |

|  |            | PC1  | PC2  | PC3  | PC4  | PC5  | PC6  |
|--|------------|------|------|------|------|------|------|
|  | λ          | 4.96 | 0.58 | 0.28 | 0.11 | 0.06 | 0.01 |
|  | fraction   | 0.83 | 0.10 | 0.05 | 0.02 | 0.01 | 0.00 |
|  | cumulative | 0.83 | 0.92 | 0.97 | 0.99 | 1.00 | 1.00 |

# **Biplot**



#### References

- Aluja-Banet, T. & Morineau, A. (1999) Aprender de los datos: el análisis de componentes principales. Una aproximación desde el data mining, Ediciones Universitarias de Barcelona.
- Cuadras, C. (2008) Nuevos métodos de Análisis Multivariante.
   Chapter 5. <u>Download book here</u>
- Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition, Prentice Hall, Chapter 8.
- Jolliffe, I.T. (1986) Principal Component Analysis, Springer-Verlag, New York.
- Manly, B.F.J. (1989) Multivariate statistical methods: a primer. 3rd edition. Chapman and Hall, London. Chapter 6.
- Peña, D. (2002) Análisis de datos multivariantes. McGraw-Hill, Madrid.