

Parameter Estimation of Black Hole Binary Waveforms using BayesFlow

Contents

1	Intr	oduction 2
	1.1	Overview
	1.2	Approach & initial visualization
	1.3	Simulator smoke tests
2	Dat	a 3
	2.1	Waveform generation and priors
	2.2	Noise, whitening, and downsampling
	2.3	Dataset split & saved artifacts
3	Sta	tistical Model 4
	3.1	Generative process and inference target
4	Apr	proximator 4
	4.1	Summary network (TimeSeriesNetwork)
	4.2	Invertible flow (CouplingFlow)
5	Tra	ining 5
	5.1	Objective, optimizer, and schedule
6	Dia	gnostics 5
	6.1	Calibration and recovery
	6.2	Scalar metrics
	6.3	Posterior z-score normality
7	Infe	erence 7
	7.1	Posterior summaries and an example
8	Disc	cussion & Conclusion 7
	8.1	Summary of findings
	8.2	Limitations
	8.3	Future work

1 Introduction

1.1 Overview

This project was developed as part of the Simulation-Based Inference (SBI) course at TU Dortmund University and conducted on Google Colab by a group of three students. We simulate gravitational-wave (GW) signals from binary black hole (BBH) systems and recover the astrophysical parameters that generated them: component masses (m_1, m_2) , aligned spin magnitudes (χ_1, χ_2) , luminosity distance (D), and inclination angle (ι) . **Project notebook (Colab):** Open the reproducible Colab here.

1.2 Approach & initial visualization

Recovering these parameters is a challenging inverse problem: the likelihood is unavailable in closed form, and traditional samplers (e.g., MCMC) are computationally prohibitive due to expensive waveform synthesis. We therefore adopt an SBI approach with BayesFlow, a neural architecture that learns an amortized approximate posterior from simulations. Waveforms are generated with PyCBC; NumPy/Matplotlib support data processing/visualization.

As a sanity check, we simulated a GW using the SEOBNRv4_opt waveform model in PyCBC and visualized the h_+ polarization. We used typical parameters ($m_1 = 30 \, M_{\odot}$, $m_2 = 35 \, M_{\odot}$, $\chi_1 = 0.5$, $\chi_2 = 0.4$, $D = 1000 \, \mathrm{Mpc}$, $\iota = 0$).

Figure 1: Simulated gravitational-wave signal (h_{+} polarization) generated with PyCBC.

To illustrate detectability, we also added white Gaussian noise (toy example) with standard deviation 10^{-22} ; the inspiral is initially noise-dominated and becomes visible near merger (Fig. 2). *Note:* this white-noise visualization is only for intuition—our training pipeline uses *colored* Gaussian noise with whitening (Sec. 2).

Figure 2: Gravitational-wave signal with added white Gaussian noise (illustrative). Training uses colored noise + whitening.

1.3 Simulator smoke tests

We validate that (i) at very large D the whitened strain reduces to approximately unitvariance noise, and (ii) standard draws yield whitened time series of the correct length and $(\mu, \sigma) \approx (0, 1)$. Example prior draws are shown in Table 1.

Table 1.	Example	$_{\circ}$ of 10) parameter	gota gam	plad from	tho	priora	(000 C00	Ω
rabie i.	Ехапри	5 01 10	parameter	sets sam	риец поп	т ине	priors	see sec.	∠).

m_1	m_2	χ_1	χ_2	D (Mpc)	ι (rad)
31.10	14.68	0.75	0.74	1517.97	2.21
11.94	11.43	0.35	0.96	1881.59	2.97
42.55	29.18	0.96	0.32	1776.06	0.96
24.14	20.75	0.88	0.37	1357.14	1.23
5.89	5.39	0.77	0.47	1881.28	1.15
70.89	19.97	0.19	0.19	1860.33	0.98
29.76	18.73	0.46	0.13	1458.17	1.65
32.45	6.75	0.04	0.47	1321.41	1.43
6.26	6.04	0.15	0.23	1760.92	2.38
12.28	9.60	0.68	0.66	1038.15	2.45

2 Data

2.1 Waveform generation and priors

We simulate time-domain BBH waveforms with pycbc.waveform.get_td_waveform. Each example contains 8s of strain sampled at 4096 Hz. We infer a six-parameter vector

$$\theta = (m_1, m_2, \chi_1, \chi_2, D, \iota),$$

where $m_{1,2}$ are component masses, $\chi_{1,2}$ are aligned spin magnitudes, D is luminosity distance, and ι is the inclination; we enforce $m_1 \geq m_2$. Priors: $m_1 \sim \mathcal{U}(5,80)$, draw $m_2 \sim \mathcal{U}(5,80)$ and sort; $\chi_{1,2} \sim \mathcal{U}(0,0.99)$; D uniform in volume on [100,2000] Mpc $(p(D) \propto D^2)$; isotropic orientation with $\cos \iota \sim \mathcal{U}[-1,1]$.

2.2 Noise, whitening, and downsampling

We add **colored** Gaussian noise consistent with an analytic aLIGO-like PSD. Each example is whitened by dividing the Fourier spectrum by $\sqrt{\text{PSD}(f)}$ and transforming back to time domain, yielding approximately unit-variance, frequency-flat noise. We then decimate from 4096 Hz to 1024 Hz in **two** anti-aliasing stages (×2 then ×2), using a Kaiser-windowed low-pass and a light edge taper; the result is 8s with exactly 8192 samples at 1024 Hz. Finally, during training only, we mean-pool by 2 along time (effective $\sim 512\,\text{Hz}$) to reduce sequence length while preserving the chirp envelope and SNR.

2.3 Dataset split & saved artifacts

We use 24,000 simulations split into 20,000 training and 4,000 validation examples with a fixed random seed. Waveform standardization (mean/std) is computed on the training split and applied to validation; parameter vectors are z-scored using the training statistics. We persist the trained model (.keras), waveform standardization stats (.npz), the parameter scaler (with param_names), and a small meta/manifest (sampling rate, duration, split sizes, seed).

3 Statistical Model

3.1 Generative process and inference target

We treat the simulator as an implicit likelihood model:

$$\theta = (m_1, m_2, \chi_1, \chi_2, D, \iota) \sim \pi(\theta),$$

$$x \mid \theta = \text{whiten} \left(\text{PyCBCWaveform}(\theta) + \epsilon \right), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I),$$

where x is the whitened, noisy time series. We can sample from $p(x \mid \theta)$ but do not have a tractable density—an ideal setting for SBI with amortized posteriors over $p(\theta \mid x)$.

4 Approximator

4.1 Summary network (TimeSeriesNetwork)

Each whitened waveform is a single-channel sequence of length 4096 (after mean-pooling). We use:

filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), GRU dim = 128, dropout = 0.35, summar filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), GRU dim = 128, dropout = 0.35, summar filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), GRU dim = 128, dropout = 0.35, summar filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), GRU dim = 128, dropout = 0.35, summar filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), GRU dim = 128, dropout = 0.35, summar filters = (48, 64, 96, 128), kernel sizes = (5, 5, 3, 3), dropout = (48, 64, 96, 128), kernel sizes =

Convolutions capture local oscillations; a GRU integrates long-range dependencies; dropout regularizes the encoder.

4.2 Invertible flow (CouplingFlow)

Conditioned on the summary s(x), a depth-4 affine CouplingFlow with use_actnorm=True and permutation="random" transforms a standard Gaussian into an approximation of $p(\theta \mid x)$ over $(m_1, m_2, \chi_1, \chi_2, D, \iota)$. Affine couplings yield exact log-densities for stable NLL training; permutations promote dimension mixing. A BayesFlow Adapter renames waveforms—summary_variables and ensures array formatting expected by the workflow.

5 Training

5.1 Objective, optimizer, and schedule

We train offline on the pre-generated dataset (whitened, downsampled, standardized). The loss is the **negative log-likelihood (NLL)** of the ground-truth parameters under the flow-defined posterior $q_{\phi}(\theta \mid x)$. We use AdamW (weight decay 10^{-4} , clip-norm 1.0) with a 5% warm-up followed by cosine decay, base learning rate 3×10^{-4} . We train for 80 epochs with batch size 64, monitor validation loss with early stopping (patience = 8), and save the best checkpoint.

Figure 3: Training and validation loss trajectories over 80 epochs.

6 Diagnostics

6.1 Calibration and recovery

We evaluate on a held-out subset of **300** simulated events, using the same preprocessing (channel order, mean-pooling, standardization). Figure 4 shows calibration histograms (rank statistics), Fig. 5 shows ECDF calibration, and Fig. 6 shows recovery (posterior means vs. ground truth).

Figure 4: Calibration histograms (rank statistics) per parameter; grey band indicates expected uniform variability under perfect calibration.

Figure 5: ECDF calibration curves; curves within grey bands indicate acceptable calibration.

Figure 6: Parameter recovery: ground truth vs. posterior means with 1σ credible intervals. Reported r values are Pearson correlations.

6.2 Scalar metrics

We report three scalar summaries per parameter: **NRMSE** (RMSE of posterior means vs. ground truth, normalized by the parameter's validation standard deviation), **PCON** (posterior contraction relative to the prior; larger is better, negative means the posterior is broader than the prior), and **CAL** (a scalar calibration deviation from rank-ECDFs; smaller is better). Unless stated otherwise, diagnostics use **1,000 posterior draws per event** over **300** held-out events.

Table 2: Summary diagnostics on the 300-event validation subset.

Parameter	NRMSE	PCON	CAL
m_1	0.701	0.266	0.0239
m_2	0.430	0.536	0.0173
χ_1	0.887	0.021	0.0245
χ_2	0.843	0.033	0.0415
D	0.838	-0.019	0.0183
ι	0.996	0.005	0.0239

6.3 Posterior z-score normality

Figure 7: z-score histograms for each parameter $(m_1, m_2, \chi_1, \chi_2, D, \iota)$ with the $\mathcal{N}(0, 1)$ density (dashed).

Figure 8: z-score QQ-plots against theoretical $\mathcal{N}(0,1)$ quantiles. Deviations from the diagonal indicate dispersion or tail mismatches; vertical offsets suggest bias.

Across events we compute posterior z-scores $z_{i,j} = (\theta_{i,j}^{\text{true}} - \bar{\theta}_{i,j})/s_{i,j}$; for a well-calibrated, unbiased posterior these should follow $\mathcal{N}(0,1)$. The histograms and QQ-plots indicate: v_0 is close to Gaussian with a slight right-tail excess; v_1 shows a mild negative bias and heavier tails; v_2 is near Gaussian with modest left-tail under-dispersion; v_3 is very close overall, if anything slightly under-dispersed; v_4 exhibits a clear positive bias with mild under-dispersion; and v_5 has mean ≈ 0 but pronounced tail deviations, suggesting weaker identifiability. These patterns agree with the rank/ECDF calibration and recovery plots: biases shift the z means (and recovery trends), while over/under-dispersion mirrors ECDF deviations from the uniform band. (Here v_0, \ldots, v_5 map to $(m_1, m_2, \chi_1, \chi_2, D, \iota)$, respectively.)

7 Inference

7.1 Posterior summaries and an example

For each held-out waveform, the BayesFlow approximator generates posterior samples for $(m_1, m_2, \chi_1, \chi_2, D, \iota)$. We report equal-tailed 95% credible intervals and posterior means. The table below shows one example.

Parameter	True Value	Posterior Mean	95% CI
$m_1 (M_{\odot})$	35.2	35.4	[33.1, 37.7]
$m_2~(M_{\odot})$	22.6	22.8	[20.0, 25.5]
χ_1	0.52	0.50	[0.36, 0.63]
χ_2	0.28	0.30	[0.15, 0.46]
D (Mpc)	500.0	503.5	[460.0, 550.3]
$\iota \text{ (rad)}$	1.13	1.18	[0.95, 1.38]

Table 3: Posterior inference for one example event (illustrative).

8 Discussion & Conclusion

8.1 Summary of findings

Neural SBI with BayesFlow can recover informative posteriors for BBH parameters from noisy, whitened strain. With a realistic simulator and a moderately sized dataset, we obtain reasonable calibration and recovery on held-out data.

8.2 Limitations

- Physics coverage: Training uses aligned-spin BBH without higher harmonics or precession; missing physics can bias or under-constrain certain parameters. Single-detector input preserves degeneracies (e.g., $D-\iota$).
- Noise & preprocessing: Analytic PSD + Gaussian noise differ from real, non-stationary detector noise with glitches. Two-stage downsampling and mean-pooling favor stability but may attenuate high-frequency merger cues.
- Priors & selection: An SNR floor (e.g., ≥ 8) focuses on detectable events and shifts the effective prior. Broad uniforms ease training but may misalign with astrophysical populations.
- Model & optimization: A depth-4 affine flow balances expressivity and stability in float32; deeper/spline flows or multi-scale/attention summaries could help at additional complexity/risk.
- Diagnostics: Rank/ECDF on ~ 300 events implies wide uncertainty bands; many posterior draws per event do not replace more independent events. Scalar metrics can hide per-parameter issues.
- Reproducibility & deployment: Inference depends on consistent scalers and parameter naming; real-data use requires domain adaptation, run-matched simulations, or post-hoc calibration.

8.3 Future work

Extend to precession and higher modes; move to multi-detector inputs; replace mean-pooling with learnable multi-scale downsampling; reparameterize (e.g., $(\mathcal{M}, q, \chi_{\text{eff}}, \log D)$); enlarge held-out sets; incorporate non-stationary noise and glitch handling; consider post-hoc recalibration.

References

- McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press.
- Usman, S. A., et al. (2016). The PyCBC search for gravitational waves from compact binary coalescence. Class. Quantum Grav., 33(21).
- Radev, S., et al. (2020). BayesFlow: Amortized Bayesian Inference with Normalizing Flows. (and BayesFlow documentation: https://bayesflow.org)
- Project Colab notebook: Open the reproducible Colab here.