phasefield-accelerator-benchmarks pre-alpha

Generated by Doxygen 1.8.8

Thu Aug 24 2017 00:43:33

ii CONTENTS

Contents

1	Clas	s Index	1
	1.1	Class List	1
2	File I	Index	1
	2.1	File List	1
3	s Documentation	2	
	3.1	ResidualSumOfSquares2D Class Reference	2
		3.1.1 Detailed Description	3
4	File I	Documentation	3
	4.1	$/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/diffusion.h \ File \ Reference \ . \ .$	3
		4.1.1 Detailed Description	4
	4.2	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/diffusion.h File Reference	4
		4.2.1 Detailed Description	5
	4.3	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/main.c File Reference	5
		4.3.1 Detailed Description	5
	4.4	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/main.c File Reference	5
		4.4.1 Detailed Description	6
	4.5	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/mesh.c File Reference	6
		4.5.1 Detailed Description	7
	4.6	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/mesh.c File Reference	7
		4.6.1 Detailed Description	7
	4.7	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/boundaries.c File Reference	8
		4.7.1 Detailed Description	8
	4.8	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/boundaries.c File Reference	8
		4.8.1 Detailed Description	9
	4.9	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/boundaries.c File Reference	9
		4.9.1 Detailed Description	10
	4.10	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/boundaries.c File Reference	10
		4.10.1 Detailed Description	11
	4.11	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/discretization.c File Reference	11
		4.11.1 Detailed Description	12
	4.12	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/discretization.c File Reference	12
		4.12.1 Detailed Description	13

1 Class Index 1

	4.13	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/discretization.c File Reference	13
		4.13.1 Detailed Description	14
	4.14	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/output.c File Reference	14
		4.14.1 Detailed Description	15
	4.15	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/output.c File Reference	15
		4.15.1 Detailed Description	16
	4.16	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/boundaries.cpp File Reference	16
		4.16.1 Detailed Description	16
	4.17	/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/discretization.cpp File Reference	16
		4.17.1 Detailed Description	17
	4.18	$/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/timer.c\ File\ Reference\ .\ .\ .\ .$	17
		4.18.1 Detailed Description	18
	4.19	$/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/timer.c\ File\ Reference \qquad . \qquad . \qquad .$	18
		4.19.1 Detailed Description	19
	4.20	/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/discretization.cu File Reference	19
		4.20.1 Detailed Description	20
1 1.1 He	Cla re are	ass List the classes, structs, unions and interfaces with brief descriptions: dualSumOfSquares2D	2
2		e Index	
2.1	File	e List	
Hei	re is a	list of all documented files with brief descriptions:	
		e/thor/research/projects/phase-field/accelerator-benchmarks/cpu/diffusion.h eclaration of diffusion equation function prototypes for CPU benchmarks	3
		e/thor/research/projects/phase-field/accelerator-benchmarks/cpu/main.c	5
		ne/thor/research/projects/phase-field/accelerator-benchmarks/cpu/mesh.c nplemenatation of mesh handling functions	6
		e/thor/research/projects/phase-field/accelerator-benchmarks/cpu/output.c	14

/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/timer.c High-resolution cross-platform machine time reader	17
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/boundaries.c Implementation of boundary condition functions with OpenMP threading	8
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/discretization.c Implementation of boundary condition functions with OpenMP threading	11
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/boundaries.c Implementation of boundary condition functions without threading	8
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/discretization.c Implementation of boundary condition functions without threading	12
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/boundaries.cpp Implementation of boundary condition functions with TBB threading	16
/home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/discretization.cpp Implementation of boundary condition functions with TBB threading	16
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/diffusion.h Declaration of diffusion equation function prototypes for CPU benchmarks	4
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/main.c Implementation of semi-infinite diffusion equation	5
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/mesh.c Implementation of mesh handling functions	7
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/output.c Implementation of file output functions	15
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/timer.c High-resolution cross-platform machine time reader	18
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/boundaries.c Implementation of boundary condition functions with OpenMP threading	9
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/discretization.cu Implementation of boundary condition functions with CUDA acceleration	19
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/boundaries.c Implementation of boundary condition functions with OpenMP threading	10
/home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/discretization.c Implementation of boundary condition functions with OpenACC threading	13

3 Class Documentation

3.1 ResidualSumOfSquares2D Class Reference

Public Member Functions

- ResidualSumOfSquares2D (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, fp_t elapsed, fp_t D, fp_t c)
- ResidualSumOfSquares2D (ResidualSumOfSquares2D &a, tbb::split)
- void operator() (const tbb::blocked_range2d< int > &r)
- void join (const ResidualSumOfSquares2D &a)

4 File Documentation 3

Public Attributes

fp_t my_rss

3.1.1 Detailed Description

Definition at line 131 of file discretization.cpp.

The documentation for this class was generated from the following file:

• /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/discretization.cpp

4 File Documentation

4.1 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/diffusion.h File Reference

Declaration of diffusion equation function prototypes for CPU benchmarks.

This graph shows which files directly or indirectly include this file:

Typedefs

• typedef double fp_t

Functions

- void make_arrays (fp_t ***conc_old, fp_t ***conc_new, fp_t ***conc_lap, fp_t ***mask_lap, int nx, int ny, int nm)
- void free_arrays (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, fp_t **mask_lap)
- void swap_pointers (fp_t ***conc_old, fp_t ***conc_new)
- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc_old, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc_old, int nx, int ny, int nm, fp_t bc[2][2])
- void set_threads (int n)
- void set_mask (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- void compute_convolution (fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, int nx, int ny, int nm)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t bc[2][2], fp_t *c)

void check_solution (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

- void print_progress (const int step, const int steps)
- void write_csv (fp t **conc, int nx, int ny, fp t dx, fp t dy, int step)
- void write_png (fp_t **conc, int nx, int ny, int step)
- void StartTimer ()
- double GetTimer ()

4.1.1 Detailed Description

Declaration of diffusion equation function prototypes for CPU benchmarks.

Definition in file diffusion.h.

4.2 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/diffusion.h File Reference

Declaration of diffusion equation function prototypes for CPU benchmarks.

This graph shows which files directly or indirectly include this file:

Typedefs

typedef double fp_t

Functions

- void **make_arrays** (fp_t ***conc_old, fp_t ***conc_new, fp_t ***conc_lap, fp_t ***mask_lap, int nx, int ny, int nm)
- void free_arrays (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, fp_t **mask_lap)
- void swap_pointers (fp_t ***conc_old, fp_t ***conc_new)
- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc_old, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc_old, int nx, int ny, int nm, fp_t bc[2][2])
- void set_threads (int n)
- void **set_mask** (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- void compute_convolution (fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, int nx, int ny, int nm, int bs)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, int bs, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t bc[2][2], fp_t *c)
- void **check_solution** (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, int bs, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)
- void **print_progress** (const int step, const int steps)
- void write_csv (fp_t **conc, int nx, int ny, fp_t dx, fp_t dy, int step)
- void write_png (fp_t **conc, int nx, int ny, int step)
- · void StartTimer ()
- double GetTimer ()

4.2.1 Detailed Description

Declaration of diffusion equation function prototypes for CPU benchmarks.

Definition in file diffusion.h.

4.3 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/main.c File Reference

Implementation of semi-infinite diffusion equation.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "diffusion.h"
Include dependency graph for main.c:
```


Functions

• int main (int argc, char *argv[])

4.3.1 Detailed Description

Implementation of semi-infinite diffusion equation.

Definition in file main.c.

4.4 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/main.c File Reference

Implementation of semi-infinite diffusion equation.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "diffusion.h"
```

Include dependency graph for main.c:

Functions

• int main (int argc, char *argv[])

4.4.1 Detailed Description

Implementation of semi-infinite diffusion equation.

Definition in file main.c.

4.5 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/mesh.c File Reference

Implemenatation of mesh handling functions.

#include <stdio.h>
#include <stdlib.h>
#include "diffusion.h"
Include dependency graph for mesh.c:

Functions

- void **make_arrays** (fp_t ***conc_old, fp_t ***conc_new, fp_t ***conc_lap, fp_t ***mask_lap, int nx, int ny, int nm)
- void **free_arrays** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, fp_t **mask_lap)
- void swap_pointers (fp_t ***conc_old, fp_t ***conc_new)

4.5.1 Detailed Description

Implementation of mesh handling functions.

Definition in file mesh.c.

4.6 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/mesh.c File Reference

Implemenatation of mesh handling functions.

```
#include <stdio.h>
#include <stdlib.h>
#include "diffusion.h"
Include dependency graph for mesh.c:
```


Functions

- void **make_arrays** (fp_t ***conc_old, fp_t ***conc_new, fp_t ***conc_lap, fp_t ***mask_lap, int nx, int ny, int nm)
- void free_arrays (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, fp_t **mask_lap)
- void swap pointers (fp t ***conc old, fp t ***conc new)

4.6.1 Detailed Description

Implemenatation of mesh handling functions.

Definition in file mesh.c.

4.7 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/boundaries.c File Reference

Implementation of boundary condition functions with OpenMP threading.

```
#include <math.h>
#include <omp.h>
#include "diffusion.h"
```

Include dependency graph for boundaries.c:

Functions

- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])

4.7.1 Detailed Description

Implementation of boundary condition functions with OpenMP threading.

Definition in file boundaries.c.

4.8 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/boundaries.c File Reference

Implementation of boundary condition functions without threading.

```
#include <math.h>
#include "diffusion.h"
```

Include dependency graph for boundaries.c:

Functions

- void set_boundaries (fp_t bc[2][2])
- void $apply_initial_conditions$ (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])
- void $apply_boundary_conditions$ (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])

4.8.1 Detailed Description

Implementation of boundary condition functions without threading.

Definition in file boundaries.c.

4.9 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/boundaries.c File Reference

Implementation of boundary condition functions with OpenMP threading.

```
#include <math.h>
#include <omp.h>
#include "diffusion.h"
```

Include dependency graph for boundaries.c:

Functions

- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])

4.9.1 Detailed Description

Implementation of boundary condition functions with OpenMP threading.

Definition in file boundaries.c.

4.10 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/boundaries.c File Reference

Implementation of boundary condition functions with OpenMP threading.

```
#include <math.h>
#include <omp.h>
#include "diffusion.h"
```

Include dependency graph for boundaries.c:

Functions

- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])

4.10.1 Detailed Description

Implementation of boundary condition functions with OpenMP threading.

Definition in file boundaries.c.

4.11 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/openmp/discretization.c File Reference

Implementation of boundary condition functions with OpenMP threading.

```
#include <math.h>
#include <omp.h>
#include "diffusion.h"
```

Include dependency graph for discretization.c:

Functions

- void set_threads (int n)
- void five_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void slow nine point Laplacian stencil (fp t dx, fp t dy, fp t **mask lap)
- void **set_mask** (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- $\bullet \ \ \text{void} \ \ \textbf{compute_convolution} \ \ (\text{fp_t} \ ** \text{conc_old}, \ \text{fp_t} \ ** \text{conc_lap}, \ \text{fp_t} \ ** \text{mask_lap}, \ \text{int nx}, \ \text{int ny}, \ \text{int nm}) \\$
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t bc[2][2], fp_t *c)
- void check_solution (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

4.11.1 Detailed Description

Implementation of boundary condition functions with OpenMP threading.

Definition in file discretization.c.

4.12 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/serial/discretization.c File Reference

Implementation of boundary condition functions without threading.

```
#include <math.h>
#include "diffusion.h"
```

Include dependency graph for discretization.c:

Functions

- · void set threads (int n)
- void **five_point_Laplacian_stencil** (fp_t dx, fp_t dy, fp_t **mask_lap)
- void nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void slow_nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void **set_mask** (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- void compute_convolution (fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, int nx, int ny, int nm)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t bc[2][2], fp_t *c)
- void check_solution (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

4.12.1 Detailed Description

Implementation of boundary condition functions without threading.

Definition in file discretization.c.

4.13 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/openacc/discretization.c File Reference

Implementation of boundary condition functions with OpenACC threading.

```
#include <math.h>
#include <omp.h>
#include <openacc.h>
#include "diffusion.h"
```

Include dependency graph for discretization.c:

Functions

- void set_threads (int n)
- void five_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void slow_nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void set_mask (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- void **compute_convolution** (fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, int nx, int ny, int nm, int bs)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, int bs, fp_t D, fp_t dt, fp_t *elapsed)
- void **check_solution** (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, int bs, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

4.13.1 Detailed Description

Implementation of boundary condition functions with OpenACC threading.

Definition in file discretization.c.

4.14 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/output.c File Reference

Implementation of file output functions.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iso646.h>
#include <png.h>
#include "diffusion.h"
```

Include dependency graph for output.c:

Functions

- void **print_progress** (const int step, const int steps)
- void write_csv (fp_t **conc, int nx, int ny, fp_t dx, fp_t dy, int step)
- void write_png (fp_t **conc, int nx, int ny, int step)

4.14.1 Detailed Description

Implementation of file output functions.

Definition in file output.c.

4.15 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/output.c File Reference

Implementation of file output functions.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iso646.h>
#include <png.h>
#include "diffusion.h"
```

Include dependency graph for output.c:

Functions

void print_progress (const int steps, const int steps)

- void write_csv (fp_t **conc, int nx, int ny, fp_t dx, fp_t dy, int step)
- void write_png (fp_t **conc, int nx, int ny, int step)

4.15.1 Detailed Description

Implementation of file output functions.

Definition in file output.c.

4.16 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/boundaries.cpp File Reference

Implementation of boundary condition functions with TBB threading.

```
#include <math.h>
#include <tbb/tbb.h>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/blocked_range2d.h>
#include "diffusion.h"
```

Include dependency graph for boundaries.cpp:

Functions

- void set_boundaries (fp_t bc[2][2])
- void apply_initial_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])
- void apply_boundary_conditions (fp_t **conc, int nx, int ny, int nm, fp_t bc[2][2])

4.16.1 Detailed Description

Implementation of boundary condition functions with TBB threading.

Definition in file boundaries.cpp.

4.17 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/tbb/discretization.cpp File Reference

Implementation of boundary condition functions with TBB threading.

```
#include <math.h>
#include <tbb/tbb.h>
#include <tbb/task_scheduler_init.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range2d.h>
#include "diffusion.h"
```

Include dependency graph for discretization.cpp:

Classes

· class ResidualSumOfSquares2D

Functions

- void set_threads (int n)
- void five_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void slow_nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void set_mask (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- void **compute_convolution** (fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, int nx, int ny, int nm)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **B, fp_t **conc_lap, int nx, int ny, int nm, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t chi, fp_t *c)
- void check_solution (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

4.17.1 Detailed Description

Implementation of boundary condition functions with TBB threading.

Definition in file discretization.cpp.

4.18 /home/thor/research/projects/phase-field/accelerator-benchmarks/cpu/timer.c File Reference

High-resolution cross-platform machine time reader.

```
#include <stdlib.h>
#include <sys/time.h>
```

Include dependency graph for timer.c:

Functions

- void StartTimer ()
- double GetTimer ()

Variables

• struct timeval timerStart

4.18.1 Detailed Description

High-resolution cross-platform machine time reader.

Author

NVIDIA

Definition in file timer.c.

4.19 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/timer.c File Reference

High-resolution cross-platform machine time reader.

```
#include <stdlib.h>
#include <sys/time.h>
```

Include dependency graph for timer.c:

Functions

- void StartTimer ()
- · double GetTimer ()

Variables

• struct timeval timerStart

4.19.1 Detailed Description

High-resolution cross-platform machine time reader.

Author

NVIDIA

Definition in file timer.c.

4.20 /home/thor/research/projects/phase-field/accelerator-benchmarks/gpu/cuda/discretization.cu File Reference

Implementation of boundary condition functions with CUDA acceleration.

```
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include "diffusion.h"
```

Include dependency graph for discretization.cu:

Macros

- #define MAX_TILE_W 32
- #define MAX_TILE_H 32
- #define MAX MASK W 3
- #define MAX_MASK_SIZE (MAX_MASK_W * MAX_MASK_W)

Functions

- void set_threads (int n)
- void **five_point_Laplacian_stencil** (fp_t dx, fp_t dy, fp_t **mask_lap)
- void nine point Laplacian stencil (fp t dx, fp t dy, fp t **mask lap)
- void slow_nine_point_Laplacian_stencil (fp_t dx, fp_t dy, fp_t **mask_lap)
- void set_mask (fp_t dx, fp_t dy, int nm, fp_t **mask_lap)
- __global__ void **convolution_kernel** (fp_t *conc_old, fp_t *conc_lap, int nx, int ny, int nm)
- void compute convolution (fp t **conc old, fp t **conc lap, fp t **mask lap, int nx, int ny, int nm, int bs)
- __global__ void diffusion_kernel (fp_t *conc_old, fp_t *conc_new, fp_t *conc_lap, int nx, int ny, int nm, fp_t D, fp_t dt)
- void **solve_diffusion_equation** (fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, int nx, int ny, int nm, int bs, fp_t D, fp_t dt, fp_t *elapsed)
- void analytical_value (fp_t x, fp_t t, fp_t D, fp_t bc[2][2], fp_t *c)
- void **check_solution** (fp_t **conc_new, int nx, int ny, fp_t dx, fp_t dy, int nm, int bs, fp_t elapsed, fp_t D, fp_t bc[2][2], fp_t *rss)

Variables

• __constant__ fp_t Mc [MAX_MASK_SIZE]

4.20.1 Detailed Description

Implementation of boundary condition functions with CUDA acceleration.

Definition in file discretization.cu.