

INF-0618 Tópicos em Aprendizado de Máquina II

Aula 1 - Redes Neurais

Profa. Fernanda Andaló 2018

Instituto de Computação - Unicamp

Roteiro

Motivação

Aproximando funções lineares

Adicionando não-linearidade

Treinando uma rede neural

Prática

Rede Neural Artificial (ANN)

Conjunto de algoritmos capazes de aproximar funcões contínuas arbitrárias.

ANNs são formadas por camadas (layers) de entrada (input), saída (output) e intermediárias (hidden), construídas por nós (ou neurônios) interconectados.

Uma ANN pode aproximar uma função f(x) que leva um sample x a um valor utilizado para classificação. Exemplos:

Uma ANN pode aproximar uma função f(x) que leva um sample x a um valor utilizado para classificação. Exemplos:

Neurônio

$$z = f(x_1, x_2, x_3, \dots, x_n) = \sum_{j=1}^n w_j i_j + b = w \cdot x + b$$

Adicionando uma camada e mais neurônios...

Adicionando uma camada e mais neurônios... Esta ANN pode aproximar uma função não linear?

Adicionando uma camada e mais neurônios... Esta ANN pode aproximar uma função não linear? Não!

Adicionando uma camada e mais neurônios...

Adicionando uma camada e mais neurônios... E esta ANN?

Adicionando uma camada e mais neurônios...

E esta ANN? Também não!

Neurônio

$$y = \sigma(f(w \cdot x + b)) = \sigma(z)$$

 σ : função de ativação

Funções de ativação comuns

· Sigmóide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Funções de ativação comuns

· Tangente hiperbólica

$$\sigma(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Funções de ativação comuns

· Rectified Linear Unit (ReLU)

Por que funções de ativação são importantes?

· Transformam os dados para facilitar a classificação.

Por que funções de ativação são importantes?

· Transformam os dados para facilitar a classificação.

Por que funções de ativação são importantes?

· Transformam os dados para facilitar a classificação.

Redes Neurais

Por que funções de ativação são importantes?

 Permitem gerar funções mais complexas pela combinação de funções mais simples.

Redes Neurais

Por que funções de ativação são importantes?

 Permitem gerar funções mais complexas pela combinação de funções mais simples.

· Definir uma função de custo.

 Procurar o mínimo da função de custo, dados samples x_i e labels y_i: backpropagation.

· Backpropagation: forward pass e backward pass.

Função de custo: medida para saber o erro da rede.

· MSE

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{2}(y_i - output_i)^2$$
,

onde n é a quantidade de samples de treinamento, y_i é o valor esperado (label) e output_i é o valor predito pela rede para o sample x_i .

Função de custo: medida para saber o erro da rede.

· Cross-entropy

onde c_i é o hot-encoded label do sample x_i e p_i é o vetor de probabilidades softmax retornado para o sample x_i .

Exemplo de Backpropagation

- Função de ativação σ : $\frac{1}{1+e^{-z}}$
- Função de custo: $C = C_{o1} + C_{o2} = \frac{1}{2}(y_{o1} - \sigma_{o1})^2 + \frac{1}{2}(y_{o2} - \sigma_{o2})^2$

Exemplo de Backpropagation

Forward pass:

$$\cdot z_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

•
$$\sigma_{h1} = \frac{1}{1 + e^{-z_{h1}}}$$

· Mesmo cálculo para h2

Exemplo de Backpropagation

Forward pass:

•
$$z_{01} = w_5 * \sigma_{h1} + w_6 * \sigma_{h2} + b_2 * 1$$

$$\sigma_{01} = \frac{1}{1 + e^{-z_{01}}}$$

· Mesmo cálculo para o2

Exemplo de Backpropagation

Backward pass:

•
$$C = C_{01} + C_{02} = \frac{1}{2}(y_{01} - \sigma_{01})^2 + \frac{1}{2}(y_{02} - \sigma_{02})^2$$

· Quanto cada peso afeta o custo C?

Exemplo de Backpropagation

Backward pass:

- Quanto w₅ afeta o custo C?
- Aplicar regra da cadeia: $\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial \sigma_{01}} * \frac{\partial \sigma_{01}}{\partial z_{01}} * \frac{\partial z_{01}}{\partial w_5}$

Exemplo de Backpropagation

Gradient descent:

- · Atualizar pesos para minimizar C.
- $w_5 = w_5 \eta * \frac{\partial C}{\partial w_5}$, onde η é o learning rate.
- · Mesmo cálculo para os demais pesos.

Keras

- · API alto-nível para redes neurais, escrita em *Python*.
- · Pode rodar em cima do TensorFlow ou do Theano.
- Possibilidade rápida prototipação, de modo amigável ao usuário.
- Modelos são especificados em alto-nível, comparando-se com o backend.
- · Também possui uma interface para R.

Exemplos – datasets sintéticos

Jupyter notebook:

INF0618_Aula01_Exemplos_ANN_synth.ipynb

Exemplos - dataset MNIST

Jupyter notebook:

INF0618_Aula01_Exemplos_ANN_MNIST.ipynb

- 70.000 dígitos escritos a mão
- · Labels de 0 a 9
- Cada imagem tem 28 x 28 pixels (matriz de 28 por 28 com valores de 0 a 255).
- Problema: treinar uma ANN para classificar uma imagem em um dígito de 0 a 9.