

160-watt + 160-watt dual BTL class-D audio amplifier

PowerSSO-36 exposed pad up

Features

- 160-W + 160-W output power at THD = 10% with R_L = 4 Ω and V_{CC} = 36 V
- 1 x 220 W output power mono parallel BTL at THD = 10% with R_L = 3 Ω and V_{CC} = 36 V
- Wide-range single-supply operation (14 36 V)
- High efficiency ($\eta = 85\%$)
- Parallel BTL function using the MODE pin
- Four selectable, fixed gain settings of nominally 23.8 dB, 29.8 dB, 33.3 dB and 35.8 dB
- · Differential inputs minimize common-mode noise
- · Standby and mute features
- Smart protection
- · Thermal overload protection
- · Small offset less than 20 mV

Description

The TDA7498E is a dual BTL class-D audio amplifier with a single power supply designed for home systems and active speaker applications.

It comes in a 36-pin PowerSSO package with exposed pad up (EPU) to facilitate mounting a separate heatsink.

Maturity status link
TDA7498E

Device summary					
Order code	TDA7498ETR				
Operating temperature range	0 to 70 °C				
Package	PowerSSO36 (EPU)				
Packing	Tape and reel				

1 Device block diagram

The figure below shows the block diagram of one of the two identical channels of the TDA7498E.

Figure 1. Internal block diagram (showing one channel only)

DS8807 - Rev 4 page 2/17

2 Pin description

2.1 Pinout

Figure 2. Pin connections (top view, PCB view)

DS8807 - Rev 4 page 3/17

2.2 Pin list

Table 1. Pin description list

Number	Name	Туре	Description
1	SUB_GND	PWR	Connect to the frame
2,3	OUTPB	0	Positive PWM for right channel
4,5	PGNDB	PWR	Power stage ground for right channel
6,7	PVCCB	PWR	Power supply for right channel
8,9	OUTNB	0	Negative PWM output for right channel
10,11	OUTNA	0	Negative PWM output for left channel
12,13	PVCCA	PWR	Power supply for left channel
14,15	PGNDA	PWR	Power stage ground for left channel
16,17	OUTPA	0	Positive PWM output for left channel
18	PGND	PWR	Power stage ground
19	VDDPW	0	3.3-V (nominal) regulator output referred to ground for power stage
20	STBY	I	Standby mode control
21	MUTE	l	Mute mode control
22	INPA	l	Positive differential input of left channel
23	INNA	I	Negative differential input of left channel
24	ROSC	0	Master oscillator frequency-setting pin
25	SYNCLK	I/O	Clock in/out for external oscillator
26	VDDS	0	3.3-V (nominal) regulator output referred to ground for signal blocks
27	SGND	PWR	Signal ground
28	DIAG	0	Open-drain diagnostic output
29	SVR	0	Supply voltage rejection
30	GAIN	l	Gain setting input
31	MODE	I	Enables stereo or mono BTL mode of operation
32	INPB	I	Positive differential input of right channel
33	INNB	I	Negative differential input of right channel
34	VREF	0	Half VDDS (nominal) referred to ground
35	SVCC	PWR	Signal power supply
36	VSS	0	3.3-V (nominal) regulator output referred to power supply
-	EP	-	Exposed pad for heatsink, to be connected to ground

DS8807 - Rev 4 page 4/17

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage for pins PVCCA, PVCCB, SVCC	45	V
VI	Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN, MODE	-0.3 to 4.0	V
T _j	Operating junction temperature	0 to 150	°C
Тор	Operating ambient temperature	0 to 70	°C
T _{stg}	Storage temperature	-40 to 150	°C

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Min.	Тур.	Max.	Unit
R _{th j-case}	Thermal resistance, junction to case	-	3.0		°C/W

3.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply voltage for pins PVCCA, PVCCB, SVCC	14	-	39	V
Tamb	Ambient operating temperature	0	-	70	°C

3.4 Electrical specifications

Unless otherwise stated, the values in the table below are specified for the conditions: V_{CC} = 36 V, R_L = 4 Ω , R_{OSC} = R3 = 39 k Ω , C8 = 100 nF, f = 1 kHz, G_V = 23.6 dB Tamb = 25 °C.

Table 5. Electrical specifications

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Iq	Total quiescent current	No LC filter, no load	-	60		mA
I _{qSTBY}	Quiescent current in standby	-	-	1		μΑ
Vos	Output offset voltage	Vi = 0, Av = 23.6 dB, no load	-20	-	20	mV
I _{OCP}	Overcurrent protection threshold	R _L = 0 Ω	10	11	14	Α
Тј	Junction temperature at thermal shutdown	-	140	150	160	°C
R _i	Input resistance	Differential input		69	-	kΩ
V _{UVP}	Undervoltage protection threshold	-	-	-	8	V
R _{dsON}	Power transistor on-resistance	High side	-	0.15	-	Ω

DS8807 - Rev 4 page 5/17

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
(Continued) R _{dsON}	(Continued) Power transistor on-resistance	Low side	-	0.15	-	(Continued) Ω
P _o	Output power	THD = 10%	-	160	-	W
' 0	Output power	THD = 1%	-	125	-	- VV
Po	Parallel BTL (mono) output power,	THD = 10%	-	220	-	W
. 0	R _L = 3 ohm, Vcc = 36 V	THD = 1%	-	170	-	VV
η	Efficiency		-	85	-	%
THD	Total harmonic distortion	P ₀ = 1 W	-	0.05	-	%
		GAIN < 0.25*VDD		23.8		
0	Classed Issue main	0.25*VDD < GAIN < 0.5*VDD		29.8		40
G_V	Closed-loop gain	0.5*VDD < GAIN < 0.75*VDD		33.3		dB
		GAIN > 0.75*VDD		35.8		
ΔG_V	Gain matching	-	-1	-	1	dB
C _T	Crosstalk	f = 1 kHz, P _o = 1 W	50	60	-	dB
		Inputs shorted and to ground, A Curve		231		
Vn	Total output noise	Inputs shorted and to ground, f = 20 Hz to 20 kHz		400		μV
SVRR	Supply voltage rejection ratio	fr = 100 Hz, Vr = 0.5 Vpp, $C_{SVR} = 10 \mu F$	-	55	-	dB
T _r , T _f	Rise and fall times	-	-	35	-	ns
f _{SW}	Switching frequency	Internal oscillator	240	310	400	kHz
f _{SWR}	Output switching frequency range	With internal oscillator by changing Rosc (1)	240	-		kHz
V _{inH}	Digital input high (H)		2.0	-	-	
V _{inL}	Digital input low (L)	-	-	-	0.8	V
		STBY < 0.5 V; MUTE = X	Standby			
Function mode	Standby & mute & play	STBY > 2.5 V; MUTE < L	Mute			-
mode		STBY > 2.5 V; MUTE > H		Play		-
A _{MUTE}	Mute attenuation	V _{MUTE} < L, V _{STBY} = H	_	75	_	dB

^{1.} $f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4)$ kHz, $f_{SYNCLK} = 2 * f_{SW}$ with R3 = 39 k Ω (see Figure 3. Test circuit stereo application and mono BTL mode).

DS8807 - Rev 4 page 6/17

3.5 Test circuit

Figure 3. Test circuit stereo application and mono BTL mode

DS8807 - Rev 4 page 7/17

4 Characterization curves

Unless otherwise stated the measurements were made under the following conditions: V_{CC} = 36 V, f = 1 kHz, G_V = 23.6 dB, R_{OSC} = 39 k Ω , C_{OSC} = 100 nF, Tamb = 25 °C

4.1 For $R_L = 4 \Omega$, stereo configuration

DS8807 - Rev 4 page 8/17

4.2 For $R_L = 3 \Omega$, mono BTL configuration

DS8807 - Rev 4 page 9/17

5 Application information

5.1 Stereo and mono BTL operation selection using the MODE pin

The TDA7498E can be used in stereo applications or mono BTL applications. Connecting the MODE pin to the VDDS pin configures the device in mono BTL. The output of the two channels can be paralleled. When the MODE pin is connected to ground or floating (pulled down internally) the device works as a stereo amplifier.

5.2 Gain setting

The gain of the TDA7498E is set by GAIN (pin 30).

Table 6. Gain settings

GAIN	Total gain	Application recommendation
VGAIN < 0.25*VDDS	23.6 dB	GAIN pin connected to SGND
0.25*VDDS < VGAIN < 0.5*VDDS	29.6 dB	Rc10 = Rc11 = Rc12 = 100 K max
0.5*VDDS < VGAIN < 0.75*VDDS	33.1 dB	Rc10 = Rc11 = Rc12 = 100 K max
VGAIN > 0.75VDDS	35.6 dB	GAIN pin connected to VDDS

5.3 Smart protection

The TDA7498E embeds an overcurrent protection circuitry to protect the device from unwanted current peaks. If the overcurrent protection threshold (Table 5. Electrical specifications) is exceeded, the power stage will be shut down immediately. The device will recover automatically once the fault is removed.

DS8807 - Rev 4 page 10/17

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 PowerSSO-36 EPU package information

Figure 12. PowerSSO-36 EPU package outline

DS8807 - Rev 4 page 11/17

Table 7. PowerSSO-36 EPU package mechanical data

Comple of		mm			inches	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.15	-	2.45	0.085	-	0.096
A2	2.15	-	2.35	0.085	-	0.093
a1	0	-	0.10	0	-	0.004
b	0.18	-	0.36	0.007	-	0.014
С	0.23	-	0.32	0.009	-	0.013
D	10.10	-	10.50	0.398	-	0.413
E	7.40	-	7.60	0.291	-	0.299
е	-	0.5	-	-	0.020	-
e3	-	8.5	-	-	0.335	-
F	-	2.3	-	-	0.091	-
G	-	-	0.10	-	-	0.004
Н	10.10	-	10.50	0.398	-	0.413
h	-	-	0.40	-	-	0.016
k	0	-	8 degrees	0	-	8 degrees
L	0.55	-	0.85	0.022	-	0.033
М	-	4.30	-	-	0.169	-
N	-	-	10 degrees	-	-	10 degrees
0	-	1.20	-	-	0.047	-
Q	-	0.80	-	-	0.031	-
S	-	2.90	-	-	0.114	-
Т	-	3.65	-	-	0.144	-
U	-	1.00	-	-	0.039	-
Х	4.10	-	4.70	0.161	-	0.185
Y	6.50	-	7.10	0.193	-	0.280

DS8807 - Rev 4 page 12/17

Revision history

Table 8. Document revision history

Date	Revision	Changes
12-Dec-2011	1	Initial release.
16-Jun-2015	2	Updated V_{CC} in Table 3: "Absolute maximum ratings", updated Section 6.3: "Smart protection", and updated dimension L in Table 8: "PowerSSO-36 EPU package mechanical data".
10-Dec-2018	3	Updated device summary on the cover page.
25-Jun-2020	4	UpdatedFigure 12 and Y min. value in Table 7

DS8807 - Rev 4 page 13/17

Contents

1	Dev	ice block diagram	2
2	Pin	description	3
	2.1	Pinout	3
	2.2	Pin list	4
3	Elec	ctrical specifications	5
	3.1	Absolute maximum ratings	5
	3.2	Thermal data	5
	3.3	Recommended operating conditions	5
	3.4	Electrical specifications	5
	3.5	Test circuit	7
4	Cha	racterization curves	8
	4.1	For $R_L = 4 \Omega$, stereo configuration	8
	4.2	For R_L = 3 Ω , mono BTL configuration	9
5	Арр	lication information	10
	5.1	Stereo and mono BTL operation selection using the MODE pin	10
	5.2	Gain setting	10
	5.3	Smart protection	10
6	Pac	kage information	11
	6.1	PowerSSO-36 EPU package information	11
Rev	ision	history	13
Cor	itents	·	14
List	of ta	bles	15
List	of fig	gures	16

List of tables

Table 1.	Pin description list	4
Table 2.	Absolute maximum ratings	5
Table 3.	Thermal data	5
	Recommended operating conditions	
Table 5.	Electrical specifications	5
Table 6.	Gain settings	C
Table 7.	PowerSSO-36 EPU package mechanical data	12
Table 8.	Document revision history	13

List of figures

Figure 1.	Internal block diagram (showing one channel only)	2
Figure 2.	Pin connections (top view, PCB view)	3
Figure 3.	Test circuit stereo application and mono BTL mode	7
Figure 4.	Output power vs. supply voltage	8
Figure 5.	THD vs. output power	8
Figure 6.	THD vs. frequency	8
Figure 7.	FFT performance	8
Figure 8.	Crosstalk vs. frequency	8
Figure 9.	Output power vs. supply voltage	9
Figure 10.	THD vs. output power	9
Figure 11.	THD vs. frequency	9
Figure 12.	PowerSSO-36 EPU package outline	11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS8807 - Rev 4 page 17/17