Mineração de Dados 2018.2

Testes Estatísticos

Thiago Ferreira Covões

(slides baseados no material do Prof. Ethem Alpaydin e da Profa. Debora Medeiros [UFABC])

Teste de Hipóteses

- Rejeitar a hipótese nula se não for suportada pelas amostradas com confiança suficiente
- $X = \{ x^t \}_t$

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ [H_0 = hipótese nula] Aceitar H_0 com nível de significância α se μ_0 está no 100(1- α) intervalo de confiança

	Decisão			
Verdade	Aceitar	Rejeitar		
Sim	Correto	Erro Tipo I		
Não	Erro Tipo II	Correto (poder)		

Testes de hipótese não-paramétricos

- Não tem premissas sobre as distribuições dos dados
 - Teste T assume normalidade
 - Difícil de ser verificado com poucas amostras
- Muito usados para avaliar classificadores em mais de uma base de dados
 - Erros podem n\u00e3o ser comensur\u00e1veis
- Vamos ver 2:
 - Wilcoxon Signed Rank: compara 2 métodos
 - Friedman: compara um grupo de métodos
 - Nemenyi como teste post-hoc

Wilcoxon signed-rank

- 1) Cálculo das diferenças d_i das medidas de desempenho nos conjuntos de dados i
- 2) Ranqueamento de $|d_i|$
 - Menores diferenças assumem primeiras posições
 - Caso de empate: valores médios das posições

$$R^+ = \sum_{d_i > 0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i = 0} \operatorname{rank}(d_i) \qquad \qquad R^- = \sum_{d_i < 0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i = 0} \operatorname{rank}(d_i)$$

Exemplo

	C4.5	C4.5+m	difference	rank
adult (sample)	0.763	0.768	+0.005	3.5
breast cancer	0.599	0.591	-0.008	7
breast cancer wisconsin	0.954	0.971	+0.017	9
cmc	0.628	0.661	+0.033	12
ionosphere	0.882	0.888	+0.006	5
iris	0.936	0.931	-0.005	3.5
liver disorders	0.661	0.668	+0.007	6
lung cancer	0.583	0.583	0.000	1.5
lymphography	0.775	0.838	+0.063	14
mushroom	1.000	1.000	0.000	1.5
primary tumor	0.940	0.962	+0.022	11
rheum	0.619	0.666	+0.047	13
voting	0.972	0.981	+0.009	8
wine	0.957	0.978	+0.021	10

Wilcoxon signed-rank

3) Seja $T = min\{R+, R-\}$

$$z = \frac{T - \frac{1}{4}N(N+1)}{\sqrt{\frac{1}{24}N(N+1)(2N+1)}}$$

• Hipótese de equivalência rejeitada, com 95% de confiança, se z < -1.96

Wilcoxon signed-rank

No exemplo:

- R = 12
- -R = 93
- -T = -2,542
- Portanto, podemos rejeitar a hipótese nula

Comparando diversos modelos

- Maior número de comparações
 - □ Maior probabilidade de 1 deles detectar diferença estatística quando não há
 - Para *J* testes: $1-(1-\alpha)^J$

Comparando diversos modelos: Friedman

- Seja k o número de algoritmos e N o número de conjuntos de dados (idealmente k > 5 e N > 10)
- 1) r_j^i : posição do desempenho algoritmo j no conjunto de dados i
- 2) R_j : ranqueamento médio do algoritmo j
 - H_o afirma que todos os algoritmos são equivalentes

Exemplo

	C4.5	C4.5+m	C4.5+cf	C4.5+m+cf
adult (sample)	0.763 (4)	0.768 (3)	0.771 (2)	0.798 (1)
breast cancer	0.599(1)	0.591(2)	0.590(3)	0.569 (4)
breast cancer wisconsin	0.954(4)	0.971(1)	0.968(2)	0.967(3)
cmc	0.628(4)	0.661(1)	0.654(3)	0.657(2)
ionosphere	0.882 (4)	0.888(2)	0.886(3)	0.898(1)
iris	0.936(1)	0.931 (2.5)	0.916 (4)	0.931 (2.5)
liver disorders	0.661(3)	0.668(2)	0.609(4)	0.685(1)
lung cancer	0.583 (2.5)	0.583 (2.5)	0.563 (4)	0.625(1)
lymphography	0.775 (4)	0.838(3)	0.866(2)	0.875(1)
mushroom	1.000 (2.5)	1.000 (2.5)	1.000 (2.5)	1.000 (2.5)
primary tumor	0.940(4)	0.962 (2.5)	0.965(1)	0.962 (2.5)
rheum	0.619(3)	0.666(2)	0.614(4)	0.669(1)
voting	0.972 (4)	0.981(1)	0.975(2)	0.975(3)
wine	0.957(3)	0.978(1)	0.946 (4)	0.970(2)
average rank	3.143	2.000	2.893	1.964

Comparando diversos modelos: Friedman

$$\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_{j} R_j^2 - \frac{k(k+1)^2}{4} \right] \qquad F_F = \frac{(N-1)\chi_F^2}{N(k-1) - \chi_F^2}$$

- H_o é rejeitada quando:
 - $F_F > F_{k-1,(k-1)(N-1)}$
 - Se H_o é rejeitada existe diferença de desempenhos, porém o teste não indica entre quais algoritmos
 - Pós-teste

Valores para distribuição F: http://users.sussex.ac.uk/~grahamh/RM1web/F-ratio %20table%202005.pdf

Teste de Friedman

No exemplo:

- $X^2 = 9.28$
- F = 3,69
- Valor crítico F(3,39) para $\alpha = 0.05 \text{ é } 2.85$
- Hipótese nula rejeitada

Comparando diversos modelos: Pósteste Nemenyi

■ Desempenho de 2 algoritmos i e j é estatisticamente diferente se $|R_i - R_j| >= CD$ (*Critical Difference*):

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

• onde q_{α} são baseados na Studentized range. Por exemplo, para $q_{0.05}$:

Nemenyi - Exemplo

- Nosso exemplo temos:
 - 4 algoritmos: $q_{\alpha} = 2,569$
 - CD = 1,25
 - Maior diferença entre rankings:
 - |3,143-1,964|=1,179
 - Se a maior diferença é menor que a diferença crítica, nosso pós-teste não é tem poder suficiente para detectar diferença entre os algoritmos

Referências

- E. Alpaydin, Introduction to Machine Learning.
- Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7 (December 2006), 1-30.