Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

I. Text Manipulation in Python

Target	Function	Python shell	Outputs
Print a Text	print()	<pre>Text = "Hello World!" print(Text)</pre>	Hello World!
Return the first character of a Text		<pre>Text = "Hello World!" print(Text[0])</pre>	Н
Return a substring from a Text		<pre>Text = "Hello World!" print(Text[3:8])</pre>	lo wo
Return a substring from a Text starting at the beginning		<pre>Text = "Hello World!" print(Text[:5])</pre>	Hello
Return a substring from a given position to the end of a Text		<pre>Text = "Hello World!" print(Text[6:])</pre>	World!
Return the length of a Text	len()	<pre>Text = "Hello World!" print(len(Text))</pre>	12
Return the number of occurrences of a specific character in a Text	count()	<pre>Text = "Hello World!" print(Text.count("o"))</pre>	2
Split a Text	split()	<pre>Text = "Hello World!" print(Text.split())</pre>	['Hello', 'World!']
Return the starting index of a substring in a Text	find()	<pre>Text = "Hello World!" print(Text.find("W")) print(Text.find("o")) print(Text.find("SII"))</pre>	6 4 -1
Return the starting index of a substring in a Text	index()	<pre>Text = "Hello World!" print(Text.index("H")) print(Text.index("d!"))</pre>	1 10
Convert all characters in a Text to uppercase	upper()	<pre>Text = "Hello World!" print(Text.upper())</pre>	HELLO WORLD!
Convert all characters in a Text to lowercase	lower()	<pre>Text = "Hello World!" print(Text.lower())</pre>	hello world!
Capitalize the first letter of every word in a Text	title()	<pre>Text = "hello world!" print(Text.title())</pre>	Hello World!
Capitalize only the first letter of a Text	capitalize()	<pre>Text = "hello world!" print(Text.capitalize())</pre>	Hello world!
Change the case of each letter in a Text	swapcase()	<pre>Text = "Hello World!" print(Text.swapcase())</pre>	hELLO wORLD

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text Treprocessing

Target	Function	Python shell	Outputs
Add a substring to a Text		<pre>Text = "Hello World!" print(Text+ " :)")</pre>	Hello World! :)
Multiply a Text		<pre>Text = "Hello World! " print(Text*4)</pre>	Hello World! Hello World! Hello World! Hello World!
Reverse a Text	reversed()	<pre>Text = "Hello World!" print(''.join(reversed(Text)))</pre>	!dlroW olleH
Add a whitespace between every character in a Text	join()	<pre>Text = "Hello World!" print(" ".join(Text))</pre>	Hello World!
Check if all characters in a Text are alphanumeric	isalnum()	<pre>Text = "Hello World!" print(Text.isalnum())</pre>	False
Check if all characters in a Text are alphabetic	isalpha()	<pre>Text = "Hello World!" print(Text.isalpha())</pre>	False
Check if all characters in a Text are digits	isdigit()	<pre>Text = "Hello World!" print(Text.isdigit())</pre>	False
Check if the first letter of every word in a Text is capitalized	istitle()	<pre>Text = "Hello World!" print(Text.istitle())</pre>	True
Check if a Text is in uppercase	isupper()	<pre>Text = "Hello World!" print(Text.isupper())</pre>	False
Check if a Text is in lowercase	islower()	<pre>Text = "Hello World!" print(Text.lower())</pre>	False
Check if a Text starts with a specific character	startswith()	<pre>Text = "Hello World!" print(Text.startswith('H'))</pre>	True
Check if a Text ends with a specific character	endswith()	<pre>Text = "Hello World!" print(Text.endswith('!'))</pre>	True
Replace a substring in a Text	repalce()	<pre>Text = "Hello World!" print(Text.replace("Wo", "SII"))</pre>	Hello SIIrld
Remove leading and trailing whitespace or blank lines in a Text	strip()	<pre>Text = " Hello World! " print(Text.replace())</pre>	Hello World!

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	TextTreprocessing

II. Text Extraction

Extracting Text from a TXT file	Extracting text from a DOC file	Extracting Text from a PDF file
	#Install library python-docx==1.2.0	#Install library PyPDF2==3.0.1
for line in txt:		#PyPDF2: PDF manipulation library
print(line)	import docx	from PyPDF2 import PdfReader
txt.close()	from docx import Document	#Onen DDE file
	<pre>doc = open ("Name.docx", "rb")</pre>	<pre>#Open PDF file pdf = open("Name.pdf", "rb")</pre>
	document = Document(doc)	par - open(name.par , rb)
	document bocament (doc)	#PdfReader: read and interpret PDF files
	#Extracting text from a document word	#Creating PDF reader object
	doc text = ""	PDFreader = PdfReader(pdf)
	for para in document.paragraphs:	/ _F /
	doc text+= para.text	<pre># PDFreader.pages: list of the document's pages</pre>
	_ ·	# Fetching the number of pages in the PDF
	<pre>print(doc_text)</pre>	<pre>num_pages = len(PDFreader.pages)</pre>
	doc.close()	<pre>print(num_pages)</pre>
		if num pages > 0:
		#Selecting page 0
		<pre>page = PDFreader.pages[0]</pre>
		<pre>#extract text(): extract text from a page</pre>
		text = page.extract text()
		print(text)
		pdf.close()

Université des Sciences et de la Technologie Houari Boumediene
Faculté d'Informatique
Département d'Intelligence Artificielle et Sciences des Données

TP N°1
Text Preprocessing

Année Universitaire : 2024/2025
Master 2 : SII
Module : TALN

Extracting text from a SCANNED document	Extracting Text from a HTML page (web scraping)
<pre>#Install library pytesseract==0.3.10 #pytesseract: OCR manipulation library</pre>	#Install library BeautifulSoup4==4.13.5 #BeautifulSoup: parse HTML (analyze and extract data from web pages.
<pre>#Install library opency-python==4.10.0 #opency-python(cv2): image manipulation library</pre>	<pre>from bs4 import BeautifulSoup from urllib.request import urlopen</pre>
<pre>import cv2 from pytesseract import image to string</pre>	<pre>myurl = "https://link.springer.com/article/10.1007/s12065-022-00794-z"</pre>
filename = "Name.png"	<pre>html = urlopen(myurl).read()</pre>
<pre>#imeread(): read an image img = cv2.imread(filename)</pre>	<pre>#Parse and convert the entire HTML page into a tree structure soup = BeautifulSoup(html, "html.parser")</pre>
<pre>#image_to_text(): extract text from an image text = image_to_string(img,lang ='eng') print (text)</pre>	<pre>#Searches inside the parsed HTML: #for a <div> tag that has the class c-article-body text = soup.find("div", {"class":"c-article-body"})</div></pre>
F-1 (00)	<pre>#Extract all readable text inside the <div> (removes the HTML tags) print (text.get_text())</div></pre>
	<pre>abstract = soup.find("div",{"class":"c-article-sectioncontent"}) print(abstract.get_text())</pre>

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text Teprocessing

III. Text Preprocessing

NLTK, spaCy and TextBlob are commonly used Natural Language Processing (NLP) libraries in Python for text processing.

III. 1. Installation

1| NLTK library installation

NLTK	NLTK (Natural Language Toolkit) is a NLP library in Python It provides tools for text preprocessing, such as tokenization, stemming and
INLIK	lemmatization.

How to Use NLTK library for Text Processing

Steps	From	Commands
Step 1 — Install the NLTK Library	Terminal	<pre>#Recommended: NLTK==3.9.2 (requires Python <= 3.11) pip install nltk</pre>
Step 2 — Launch the NLTK Linguistic Data Downloader	Python Shell	<pre>import nltk nltk.download()</pre>
Step 3 — Download and Install punkt model Needed for word and sentence segmentation		
Step 4 — Download and Install punkt_tab model Needed for word and sentence segmentation		
Step 5 — Download and Install stopwords corpus Needed for stop word removal		

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

2 spaCy library installation

spaCy

spaCy is a **NLP library** in Python. It offers powerful functionalities, including:

Part-of-Speech (POS) tagging: identifies the grammatical category of each word in a text, and

Named Entity Recognition (NER): detects and classifies proper nouns such as names of people, organizations, etc.

spaCy Language Model (LM) allow performing NLP tasks such as Tokenization, POS tagging and NER.

How to Use spaCy library for Text Processing

Steps	From	Commands
Step 1 — Install the spaCy Library	Terminal	<pre>#Recommended: spaCy==3.7.2 (requires Python <= 3.11) pip install spacy</pre>
Step 2 — Download the English Language Model	Terminal	spacy download en_core_web_sm
Step 3 — Load the English Language Model	Python Shell	<pre>import spacy nlp = spacy.load('en_core_web_sm')</pre>
Step 4 — Process Text Using the spaCy NLP Pipeline ¹	Python Shell	<pre>doc = nlp('U.S.T.H.B. is a University in Algeria.')</pre>

3| TextBlob library installation

TextBlob

TextBlob is a Python library for processing textual data that provides simple APIs for common NLP tasks such as tokenization, part-of-speech tagging, sentiment analysis, and text classification.

How to Use spaCy library for Text Processing

Steps	From	Commands
Step 1 — Install the TextBlob Library	Terminal	<pre>#Recommended: TextBlob==0.19.0 (Python <= 3.11) pip install textblob</pre>

¹

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rext reprocessing

III.2. Text Preprocessing with NLTK

1| Word Segmentation (Tokenization)

Description	Python Shell	Outputs
		u.s.t.h.b
Calit the tout into meaningful takens using	<pre>import nltk Text = "U.S.T.H.B. is a University in Algeria."</pre>	is
Split the text into meaningful tokens using word_tokenize	<pre>Text = Text.lower() # Lowercasing before tokenizing Text = nltk.word_tokenize(Text) for token in Text: print(token)</pre>	a university in algeria
		•

2| Sentence segmentation

Description	Python Shell	Outputs
Split the text into multiple sentences using sent_tokenize	<pre>import nltk Text = "Do you know? U.S.T.H.B. is a University." Text = Text.lower() Text = nltk.sent_tokenize(Text) for sent in Text: print(sent)</pre>	do you know? u.s.t.h.b. is a university.

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	TextTreprocessing

3| Word and Sentence segmentation using Regexp

Description	Python Shell	Outputs
Split text into tokens or sentences, depending on the desired criteria, using regexp	<pre>import nltk Text = "U.S.T.H.B. is a University in Algeria." ExpReg = nltk.RegexpTokenizer('\w+') #w > [a-zA-Z0-9_] Text = nltk.ExpReg.tokenize(Text) for sent in Text: print(sent) Text = " U.S.T.H.B. is a University in Algeria." ExpReg = nltk.RegexpTokenizer('(?:[A-Z]\.)+ \w+') Text = nltk.ExpReg.tokenize(Text) for sent in Text: print(sent)</pre>	U S T H B is a University in Algeria U.S.T.H.B. is a University in Algeria

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text Treprocessing

4 Word Normalization

Two popular techniques for achieving word **normalization** are **stemming** and **lemmatization**. Stemming refers to the process of removing suffixes and reducing a word to its base or root form so that all its variants can be represented by the same form. Lemmatization, on the other hand, maps all the different forms of a word to its dictionary base form, or lemma. While this may seem similar to stemming, lemmatization requires deeper linguistic knowledge and modeling.

Description	Python Shell	Outputs
Word Stemming (Porter stemmer)	<pre>import nltk stemmer = nltk.PorterStemmer() Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = nltk.word_tokenize(Text) for token in Text: print(token, stemmer.stem(token))</pre>	u.s.t.h.b u.s.t.h.b is is a a university univers in in algeria algeria

Description	Python Shell	Outputs
Word Stemming (Lancaster stemmer)	<pre>import nltk stemmer = nltk.LancasterStemmer() Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = nltk.word_tokenize(Text) for token in Text: print(token, stemmer.stem(token))</pre>	u.s.t.h.b u.s.t.h.b is is a a university univers in in algeria alger

Description	Python Shell	Outputs
Word Stemming (Snowball stemmer)	<pre>import nltk stemmer = nltk.SnowballStemmer("english") Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = nltk.word_tokenize(Text) for token in Text:</pre>	u.s.t.h.b u.s.t.h.b is is a a university univers in in algeria algeria

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	TextTreprocessing

Description	Python Shell	Outputs
Word Lemmatization	<pre>import nltk lemma = nltk.WordNetLemmatizer() Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = nltk.word_tokenize(Text) for token in Text: # Assume the POS tag for all tokens is "v" (verb). # Use nltk.pos_tag() to get real POS tags. # POS tagging assigns each token a grammatical # category such as noun, verb, or adjective). print(token, lemma.lemmatize(token, pos="v"))</pre>	u.s.t.h.b u.s.t.h.b is be a a university university in in algeria algeria

5| Stop Word Removal

In NLP, the words do not always provide useful insights are called stop words. There is no universal stop words list for each language. Usually, it is a list of the most common words in the language, such as of, the, want, to, and have.

Description	Python Shell	Outputs
Check if the token is a stop word or not.	<pre>import nltk stop = nltk.corpus.stopwords.words('english') Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = nltk.word_tokenize(Text) for token in Text: if token in stop: print(token, True) else: print(token, False)</pre>	u.s.t.h.b False . False is True a True university False in True algeria False . False

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

III.2. Text Preprocessing and with spaCy

1| Word Segmentation (Tokenization)

Description	Python Shell	Outputs
The first step in the spaCy NLP pipeline is Tokenization. spaCy uses rule-based tokenization, relying on language-specific rules to extract tokens.	<pre>import spacy nlp = spacy.load('en_core_web_sm') Text = nlp('U.S.T.H.B. is a University in Algeria.') for token in Text: print(token.text)</pre>	U.S.T.H.B. is a University in Algeria

2| Part-of-Speech (POS) tagging

Description	Python Shell	Outputs
Another step in the spaCy NLP pipeline is POS tagging . This process is model-based , meaning it relies on statistical, machine learning (ML), or deep learning (DL) models to predict the correct tags.	<pre>import spacy nlp = spacy.load('en_core_web_sm') Text = nlp('U.S.T.H.B. is a University in Algeria.') for token in Text: print(token.text, token.pos_)</pre>	U.S.T.H.B. PROPN is AUX a DET University PROPN in ADP Algeria PROPN . PUNCT

3| Named Entity Recognition (NER)

Description	Python Shell	Outputs
Another key step in the spaCy NLP pipeline is NER tagging , which identifies and classifies named entities in text (such as people, organizations, locations). This process is model-based , meaning it relies on statistical, ML, or DL models to predict the correct tags.	<pre>import spacy nlp = spacy.load('en_core_web_sm') Text = nlp('U.S.T.H.B. is a University in Algeria.') for ent in Text.ents: print(ent.text, ent.label_)</pre>	U.S.T.H.B. GPE Algeria GPE

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

4| Sentence segmentation

Description	Python Shell	Outputs
Split the text into multiple sentences.	<pre>import spacy nlp = spacy.load('en_core_web_sm') Text = nlp('Do you know? U.S.T.H.B. is a University.') for sent in Text.sents: print(sent)</pre>	Do you know? U.S.T.H.B. is a University.

5| Word Normalization

Description	Python Shell	Outputs
Word lemmatization	<pre>import spacy nlp = spacy.load('en_core_web_sm') doc = nlp('U.S.T.H.B. is a University in Algeria.') for token in doc: print(token.text, token.lemma_)</pre>	U.S.T.H.B. U.S.T.H.B. is be a a University University in in Algeria Algeria

2| Stop Word Removal

Description	Python Shell	Outputs
	<pre>import spacy nlp = spacy.load('en_core_web_sm') my_stop_words = ['say', 'be', 'said', 'says']</pre>	say True be True said True
Add custom stop words to the standard list.	<pre>for stopword in my_stop_words: token = nlp.vocab[stopword] token.is_stop = True</pre>	says True
	<pre>doc = nlp("say be said says") for token in doc: print(token.text, token.is_stop)</pre>	

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

Description	Python Shell	Outputs
Add a stop words to the list of stop word.	<pre>import spacy nlp = spacy.load('en_core_web_sm')</pre>	
Add a step words to the list of step word.	<pre>stop_words_list = spacy.lang.en.stop_words.STOP_WORDS stop_words_list.add('saying')</pre>	

Description	Python Shell	Outputs
Check if the token is a stop word or not using attribute is_stop	<pre>import spacy nlp = spacy.load('en_core_web_sm') doc = nlp('U.S.T.H.B. is a University in Algeria.') for token in doc: print(token.text, token.is_stop)</pre>	U.S.T.H.B. False is True a True University False in True Algeria False . False

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rext reprocessing

Overview of spaCy's Built-in Token Attributes and Linguistic Features

Attribute	Description	Attribute	Description
lower_	Lowercase form of the Token	is_title	If the first letter of the Token is capitalized
upper_	Uppercase form of the Token	is_punct	Token is punctuation
is_alpha	Token consists of alphanumeric chars	is_space	Token is whitespaces
is_digit	Token consists of digits	like_num	Token resembles a number
is_lower	Token text is in lowercase	like_url	Token resembles an URL
is_upper	Token text is in uppercase	like_email	Token resembles an email

POS Tags		NER Tags	NER Tags	
Tag	Full name	Example	Label	Description
ADJ	Adjective	happy, new	ORG	Organizations (companies, agencies, institutions, etc.)
ADP	Adposition	in, to, during	GPE	Geopolitical entities (countries, cities, states)
ADV	Adverb	quickly, never	LOC	Non-GPE locations (mountain ranges, bodies of water, etc.)
AUX	Auxiliary verb	is, have, do	PRODUCT	Objects, vehicles, foods, etc. (not services)
CCONJ	Coordinating conjunction	and, but, or	EVENT	Named events (wars, sports events, natural disasters)
DET	Determiner	the, a, this	WORK_OF_ART	Titles of books, songs, artworks, etc.
INTJ	Interjection	oh, wow, hey	LAW	Named laws or legal documents
NOUN	Noun	dog, house, computer	LANGUAGE	Named languages
NUM	Numeral	one, 100, third	DATE	Dates or periods (e.g., January, 2020, last year)
PART	Particle	to, not	TIME	Times smaller than a day (e.g., 2 p.m., morning)
PRON	Pronoun	he, she, they, it	PERCENT	Percentage values (e.g., 50%)
PROPN	Proper noun	John, London, Microsoft	MONEY	Monetary values (e.g., \$5, €100)
PUNCT	Punctuation	., ?, !	QUANTITY	Measurements (e.g., 10 km, 5 liters)
SCONJ	Subordinating conjunction	because, although	ORDINAL	Ordinal numbers (e.g., first, second)
SYM	Symbol	\$, %, ©	CARDINAL	Cardinal numbers (e.g., one, 1000)
VERB	Verb	run, eat, think		_
X	Other	foreign words, errors		

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextricprocessing

III.3. Text Preprocessing with TextBlob

1| Word Segmentation (Tokenization)

Description	Python Shell	Outputs
	<pre>import textblob Text = "U.S.T.H.B. is a University in Algeria."</pre>	u.s.t.h.b
Split the text into meaningful tokens using	<pre>Text = Text.lower() # Lowercasing before tokenizing</pre>	a
TextBlob().words	<pre>Text = textblob.TextBlob(Text).words for token in Text: print(token)</pre>	university in algeria

2 Sentence segmentation

Description	Python Shell	Outputs
Split the text into multiple sentences using TextBlob().sentences	<pre>import textblob Text = "Do you know? U.S.T.H.B. is a University." Text = Text.lower() Text = textblob.TextBlob(Text).sentences for sent in Text: print(sent)</pre>	do you know? u.s.t.h.b. is a university.

3 | Word Normalization

Description	Python Shell	Outputs
Word Lemmatization	<pre>import textblob Text = "U.S.T.H.B. is a University in Algeria." Text = Text.lower() Text = textblob.TextBlob(Text).words for token in Text: # Assume the POS tag for all tokens is "v" (verb). # Use attribute.pos_tags to get real POS tags. Lemma = textblob.Word(token).lemmatize(pos="v") print(token, Lemma)</pre>	u.s.t.h.b u.s.t.h.b is be a a university university in in algeria algerias

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	rextreprocessing

4| Spelling corrections

Description	Python Shell	Outputs
	<pre>import textblob Text = "Doo youu kwnow? U.S.T.H.B. ies a University."</pre>	Doo youu kwnow? U.S.T.H.B. ies a Univercity."
Correct spelling errors using correct()	<pre>Text = Text.lower() print(Text)</pre>	do you know? u.s.t.h.b. is a university.
	<pre>Text = textblob.TextBlob(Text).correct() print(Text)</pre>	_

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text reprocessing

IV. Distance Metrics

Many NLP applications involve tasks such as computing the similarity between two pieces of text. This can be done at different levels: word, phrase, sentence, or document. The goal may be to identify either syntactic or semantic similarity. Similarity measures can also be applied in various contexts; one such context is character-level similarity, which examines how different two strings are based on their characters. Popular approaches for measuring this difference include the Levenshtein edit distance and Jaro similarity methods. **Textdistance** is a popular Python library for computing such measures.

Description	Python Shell	Outputs
Levenshtein Edit Distance It measures the minimum number of operations required to transform one string into another. The allowed operations include insertion, deletion, or substitution of a character.	<pre>import textdistance print(textdistance.levenshtein('Algeria', 'Algiers'))</pre>	3
Jaro similarity It measures string similarity based on matching characters and their order, yielding a score from 0 (no match) to 1 (exact match).	<pre>import textdistance print(textdistance.jaro('Algeria', 'Algiers'))</pre>	0.8492063492063492

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text Treprocessing

V. Text Visualization

Description	Python Shell	Outputs
WordCloud is the most popular Python library for representing text. The WordCloud library allows the generation of visualizations from a body of text, where the frequency of words or phrases is reflected by their size and opacity in the plot.	<pre># Import the matplotlib library for creating plots import matplotlib</pre>	SBUNIVERSITY SBUNIVERSITY
	<pre># Use the Qt5 graphical interface matplotlib.use('Qt5Agg')</pre>	
	<pre># pyplot provides functions for plotting import matplotlib.pyplot as plt</pre>	
	<pre># To generate a word cloud visualization from text from wordcloud import WordCloud</pre>	
	Text = "U.S.T.H.B. is a University in Algeria."	
	<pre>wordcloud = WordCloud(width=800, height=400, background_color='white').generate(Text)</pre>	
	<pre># Display the word cloud image plt.imshow(wordcloud.to_array(), interpolation='bilinear')</pre>	
	<pre># Remove the axis labels for a cleaner visualization plt.axis('off')</pre>	
	<pre># Display the plot plt.show()</pre>	

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text reprocessing

Exercise:

Text Extraction

From the following link, extract the text (title and abstract) of each scientific article, then save it in a text file named $\mathbf{D} < i > t\mathbf{xt}$, where $1 \le i \le \mathbf{N}$, with \mathbf{N} being the number of scientific articles.

https://link.springer.com/journal/12065/volumes-and-issues/18-5

Text Preprocessing

- Create a file **T.txt** containing all the **tokens** of the extracted scientific articles, using the **Regex** function from **NLTK**.
- Create a file **T_N.txt** containing all the **normalized tokens** of the extracted scientific articles, using the **Snowball stemming** function from **NLTK**. Tokens must be converted to **lowercase** first.
- Create a file **V.txt** containing the **vocabulary** (set of unique words) of all the extracted scientific articles, using the **Regex** function from **NLTK**.
- Create a file V_N.txt containing the vocabulary (set of unique normalized words) of all the extracted scientific articles, using the Regex function from NLTK.
- Create a file **S.txt** containing all the **sentences** of the extracted scientific articles, using the **Regex** function from **NLTK**.

Data Visualization

Using the WordCloud library, visualize the content of the files T.txt and T_N.txt.

Edit Distance

Implement the algorithm that computes the minimum edit distance (or Levenshtein distance) between two strings, as covered in class.

Année Universitaire : 2024/2025	Université des Sciences et de la Technologie Houari Boumediene	TP N°1
Master 2 : SII	Faculté d'Informatique	Text Preprocessing
Module : TALN	Département d'Intelligence Artificielle et Sciences des Données	Text Treprocessing

References

- [1] Bhargav Srinivasa-Desikan. Natural Language Processing and Computational Linguistics (2018)
- [2] Delip Rao and Brian McMahan. Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning (2019)
- [3] Jyotika Singh. Natural Language Processing in the Real World. Text Processing, Analytics, and Classification (2023)
- [4] Rosario Moscato, et al. Natural Language Processing Cookbook Step-by-step practical solution for unlocking the power of natural language processing potential (2025)
- [5] Sowmya Vajjala, et al. Practical Natural Language Processing A Comprehensive Guide to Building Real-World NLP Systems (2020)