

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №13 по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент								
гр. Б9119-01.03.02систпро								
Нагорн	юв С.С.							
(ФИО)		$\overline{(\Pi o \partial nuc b)}$						
« <u>20</u> »	RНЭИ	_ 20 <u>21</u> г.						

Содержание

Введение	2
Постановка задачи	2
Алгоритм работы	2
Приложения	3
Вывол	4

Введение

В данной лабораторной работе необходимо найти собственные значения матрицы с помощью метода вращений.

Постановка задачи

Дана матрица A. Необходимо найти все собственные значения λ данной матрицы методом вращений.

Алгоритм работы

- 1. Найдем коэффициенты максимального абсолютно элемента матрицы, учитывая i < j. Коэффициенты обозначим за l и m.
- 2. Построим единичную матрицу такого же размера, как и матрица A, но при этом определим на l и m элементы. Матрица примет такой вид:

- 3. Найдем угол $\varphi = \frac{\arctan\left(\frac{2a_{lm}}{a_{ll}-amm}\right)}{2}.$
- 4. Вычислим $A^{(k+1)} = T^T A^{(k)} T$.
- 5. По итогу, через некоторое количество итераций k=1,2,3.... (В нашем случае k=15) на главной диагонали матрицы $A^{(k)}$ бу-

дут располагаться приближенные к точному собственные значения матрицы A.

Приложения

```
1
    import numpy as np
 2
 3
 4
    def get_max(A):
 5
      index = (1, 0)
      for i in range(A.shape[0]):
 6
 7
        for j in range(i):
           if abs(A[index]) < abs(A[i, j]):</pre>
 8
9
             index = (i, j)
10
      return index
11
12
13
    def rotation_method(A):
14
15
      for k in range(15):
16
        1, m = get_max(A)
17
        phi = np.arctan(2 * A[1, m] / (A[1, 1] - A[m, m])) / 2
        T = np.eye(A.shape[0])
18
19
        T[1, 1] = np.cos(phi)
20
        T[1, m] = -np.sin(phi)
21
        T[m, 1] = np.sin(phi)
22
        T[m, m] = np.cos(phi)
23
24
        A = T.T * A * T
25
26
      return A
27
28
29
    def main():
30
      vec = np.matrix([
31
         [-0.168700, 0.353699, 0.008540, 0.733624],
32
         [0.353699, 0.056519, 0.723182, -0.076440],
33
         [0.008540, 0.723182, 0.015938, 0.342333],
34
         [0.733624, -0.076440, 0.342333, -0.045744]
35
36
      np.set_printoptions(precision=4, suppress=True)
37
38
      print(rotation_method(vec).diagonal())
39
40
41
    if __name__ == '__main__':
```

42	main()			
43				

Листинг 1: Компьютерная реализация алгоритма

Вывод

В данной лабораторной работе был реализован поиск собственных значений с помощью метода вращений.