A Listing of the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application.

Amendments to the Claims:

Claims 1-21 (cancelled).

- 22. (new): A transparent, non-elastomeric, polythiourethane/urea material comprising the reaction product of:
 - (a) at least one (α, ω) -diiso(thio)cyanate prepolymer having a number average molecular weight ranging from 100 to 3000 gmol⁻¹, said prepolymer being free from disulfide (-S-S-) linkage, and
 - (b) at least one aromatic primary diamine, in an equivalent molar ratio amine function/iso(thio)cyanate function (NH₂/NCX, X=0,S) ranging from 0.5 to 2, said aromatic primary diamine being free from disulfide (-S-S-) linkage, and

wherein, at least one of the prepolymer or the diamine contains one or more S atoms in its chain.

- 23. (new): The transparent, non elastomeric polythiourethane/urea material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.90 to 1.10.
- 24. (new): The material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.93 to 0.95.
- 25. (new): The material of claim 22, wherein the (α, ω) -diiso(thio)cyanate cycloaliphatic or aromatic prepolymer is the reaction product of at least one (α, ω) diol or dithiol prepolymer and at least one cycloaliphatic or aromatic diiso(thio)cyanate.
- 26. (new): The material of claim 25, wherein the (α, ω) diol or dithiol prepolymer contains at least one S atom in its chain.

25367125.1

- 27. (new): The material of claim 25, wherein the (α, ω) diol or dithiol prepolymer is a polysulfide or a mixture of polysulfides.
- 28. (new): The material of claim 27, wherein the polysulfide or mixture of polysulfides is selected from the group consisting of:

- Prepolymers of formula:

$$HS - \left\{ -CH(CH_3)CH_2 - S \right\}_X - \left\{ CH_2CH_2S - \right\}_Y + \left\{ -CH_2CH_2S - \right\}_Y - \left\{ -CH_2CH_$$

in which x and y are such that the number average molecular weight of the prepolymer ranges from 100 to 3000 gmol⁻¹;

-prepolymers resulting from the polymerization of diepisulfides of formula:

$$CH_2 \xrightarrow{R^3} S \xrightarrow{C} (CH_2)_m \xrightarrow{S} R^4 \xrightarrow{R^2} CH_2 \qquad (Ib)$$

in which R¹ and R² are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio; R³ and R⁴ are, independently from each other,

R_a designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio and, n is an integer from 0 to 4 and m is an integer from 1 to 6, and

-prepolymers of formula:

$$HS - (CH_2) - S - (CH_2) - (CH_2$$

where n is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 500 to 1500, preferably from 650 to 1350 g mol⁻¹.

- 29. (new): The material of claim 22, wherein the aromatic diamine contains at least one S atom in its molecule.
- 30. (new): The material of claim 29 wherein the diamine is selected from

$$R'-S$$
 NH_2
 $S-R'$
 S
 NH_2
 NH_2
 NH_2
 NH_2

in which R is H or an alkyl group and R' is an alkyl group, and mixtures of the above diamines.

- 31. (new): The material of claim 22, wherein the material is also the reaction product of the (α, ω) -diiso(thio)cyanate prepolymer with a di-, tri- or tetra alcohol, a di-, tri or tetrathiol or a mixture thereof.
- 32. (new): The material of claim 31, wherein the alcohols and thiols are selected from the groups consisting of:

HS CH₂CH₂ S CH₂CH₂ SH

$$C(CH_2O-C-CH_2CH_2SH)_4$$

$$CH_2$$
— SH
 CH — S — CH_2CH_2 — SH
 CH_2 — S — CH_2CH_2 — SH

$$HS$$
— CH_2 — CH — CH — CH_2 — SH
 OH OH

and mixtures thereof.

33. (new): The material of claim 22 having a refractive index, n_D^{25} , higher than 1.53.

34. (new): The material of claim 22 having a refractive index, n_D^{25} , of at least 1.55.

35. (new): The material of claim 22 having a refractive index, n_D^{25} , of at east 1.57.

36. (new): The material of claim 27, wherein the polysulfide is an hyperbranched polysulfide resulting from the polymerization of a diepisulfide of formula:

$$R^1$$
 R^2
 CH_2
 $C-R^3-S$
 R^4
 CH_2
 CH_2

in which R¹ and R² are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio, R³ and R⁴ are independently from each other,

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array}$$

Ra designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio, with 2-mercaptoethyl sulfide (DMES).

37. (new): The material of claim 36, wherein the diepisulfide has formula:

$$CH_2$$
— CH — CH_2 — CH_2 — CH_2 — CH_2 — CH_2

38. (new): An optical article made from a material according to claim 22.