Superconvergence and postprocessing for mixed finite element approximations of the wave equation

¹ Bogdan Radu

¹ Graduate School of Computational Engineering

¹ Technische Universität Darmstadt

June 23, 2016

Acoustic wave equation

$$\partial_t p + \operatorname{div} u = f$$
 in $\Omega \times (0, T)$,
 $\partial_t u + \nabla p = g$ in $\Omega \times (0, T)$,
 $p = 0$ on $\partial \Omega \times (0, T)$

Acoustic wave equation

$$\partial_t p + \operatorname{div} u = f$$
 in $\Omega \times (0, T)$,
 $\partial_t u + \nabla p = g$ in $\Omega \times (0, T)$,
 $p = 0$ on $\partial \Omega \times (0, T)$

Remark (Existence and uniqueness)

Existence and uniqueness of a solution

$$(\rho,u)\in \textit{C}([0,T],\textit{H}_0^1(\Omega)\times\textit{H}(\operatorname{div},\Omega))\cap \textit{C}^1([0,T],\textit{L}^2(\Omega)\times\textit{L}^2(\Omega)^2)$$

for suitable initial and right hand side data follows from the semigroup theory.

Variational formulation

$$\partial_t p + \operatorname{div} u = f$$
 in $\Omega \times (0, T)$,
 $\partial_t u + \nabla p = g$ in $\Omega \times (0, T)$,
 $p = 0$ on $\partial \Omega \times (0, T)$

Variational characterization

$$(\partial_t p(t), q) + (\operatorname{div} u(t), q) = (f(t), q) \quad \forall q \in L^2(\Omega)$$

$$(\partial_t u(t), v) - (p(t), \operatorname{div} v) = (g(t), v) \quad \forall v \in H(\operatorname{div}, \Omega)$$

Variational formulation

$$egin{aligned} \partial_t p + \operatorname{div} u &= f && \operatorname{in} \Omega imes (0, T), \ \partial_t u + \nabla p &= g && \operatorname{in} \Omega imes (0, T), \ p &= 0 && \operatorname{on} \partial \Omega imes (0, T) \end{aligned}$$

Variational characterization

$$(\partial_t p(t), q) + (\operatorname{div} u(t), q) = (f(t), q) \quad \forall q \in L^2(\Omega)$$

$$(\partial_t u(t), v) - (p(t), \operatorname{div} v) = (g(t), v) \quad \forall v \in H(\operatorname{div}, \Omega)$$

Remark

Each classical solution satisfies the variational characterization.

Remark

The spaces corresponding to the weak formulation are $L^2(\Omega)$ for p and $H(\operatorname{div},\Omega)$ for u.

Semi-discretization

Problem

For $(p_h(0), u_h(0)) = (\pi_{L^2}p_0, \rho_h u_0)$ and all t > 0 find $(p_h(t), u_h(t)) \in Q_h \times V_h$ such that

$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = (f(t), q_h) \qquad \forall q_h \in Q_h$$

$$(\partial_t u_h(t), v_h) - (p_h(t), \operatorname{div} v_h) = (g(t), v_h) \qquad \forall v_h \in V_h$$

Semi-discretization

Problem

For $(p_h(0), u_h(0)) = (\pi_{L^2}p_0, \rho_h u_0)$ and all t > 0 find $(p_h(t), u_h(t)) \in Q_h \times V_h$ such that

$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = (f(t), q_h) \qquad \forall q_h \in Q_h$$

$$(\partial_t u_h(t), v_h) - (p_h(t), \operatorname{div} v_h) = (g(t), v_h) \qquad \forall v_h \in V_h$$

Lemma (Discrete energy estimate)

Existence and uniqueness granted by Picard-Lindelöf. Moreover, we have

$$\begin{split} \|p_h(t)\|_{L^2} + \|u_h(t)\|_{L^2} &\leq \\ &\leq C \left(\|p_h(0)\|_{L^2} + \|u_h(0)\|_{L^2} + \int_0^t (\|f(s)\|_{L^2} + \|g(s)\|_{L^2}) \, ds \right). \end{split}$$

Discrete spaces

$$Q_h = \mathsf{P}_0 \coloneqq \mathsf{P}_0(\mathcal{T}_h) \qquad V_h = \mathsf{BDM}_1 \coloneqq \mathsf{P}_1^2(\mathcal{T}_h) \cap H(\operatorname{div},\Omega) \qquad \operatorname{div} V_h = Q_h$$

Discrete spaces

$$Q_h = \mathsf{P}_0 \coloneqq \mathsf{P}_0(\mathcal{T}_h) \qquad V_h = \mathsf{BDM}_1 \coloneqq \mathsf{P}_1^2(\mathcal{T}_h) \cap H(\operatorname{div},\Omega) \qquad \operatorname{div} V_h = Q_h$$

Discrete spaces

$$Q_h = \mathsf{P}_0 \coloneqq \mathsf{P}_0(\mathcal{T}_h) \qquad V_h = \mathsf{BDM}_1 \coloneqq \mathsf{P}_1^2(\mathcal{T}_h) \cap H(\operatorname{div},\Omega) \qquad \operatorname{div} V_h = Q_h$$

Projection operators
$$\pi_{L^2}: L^2(\Omega) \to Q_h, \, \rho_h: H^1(\mathcal{T}_h) \cap H(\operatorname{div}, \Omega) \to V_h$$

$$\operatorname{div} \rho_h v = \pi_{L^2} \operatorname{div} v, \quad \forall v$$

$$\|p - \pi_{L^2} p\|_{L^2(\Omega)} \le Ch|p|_{1,\Omega}$$

$$\|u - \rho_h u\|_{L^2(\Omega)} \le Ch^2 |u|_{2,\Omega}.$$

Remark

Jenkins/Wheeler, Chen:

$$\|p(t)-p_h(t)\|_{L^2}+\|u(t)-u_h(t)\|_{L^2}\leq Ch.$$

- T. Geveci On the application of mixed finite element methods to the wave equations. RAIRO Model. Math. Anal. Numer. 1988
- E. W. Jenkins and T. Rivière and M. F. Wheeler *A priori error estimates* for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal. 2002
- L. C. Cowsar and T. F. Dupont and M. F. Wheeler *A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions.* SIAM J. Numer. Anal. 1996

Theorem

Let
$$Q_h = P_0$$
, $V_h = BDM_1$. Then

$$\|\pi_{L^2}p(t)-p_h(t)\|_{L^2}+\|u(t)-u_h(t)\|_{L^2}\leq Ch^2\|\partial_t u\|_{H^2(\Omega)}.$$

Theorem

Let
$$Q_h = P_0$$
, $V_h = BDM_1$. Then

$$\|\pi_{L^2}p(t)-p_h(t)\|_{L^2}+\|u(t)-u_h(t)\|_{L^2}\leq Ch^2\|\partial_t u\|_{H^2(\Omega)}.$$

$$\begin{aligned} \|p - p_h\|_{L^2} + \|u - u_h\|_{L^2} &\leq \|p - \pi_{L^2}p\|_{L^2} + \|u - \rho_h u\|_{L^2} + \|\pi_{L^2}p - p_h\|_{L^2} + \|\rho_h u - u_h\|_{L^2} \end{aligned}$$

Theorem

Let $Q_h = P_0$, $V_h = BDM_1$. Then

$$\|\pi_{L^2}p(t)-p_h(t)\|_{L^2}+\|u(t)-u_h(t)\|_{L^2}\leq Ch^2\|\partial_t u\|_{H^2(\Omega)}.$$

$$||p - p_h||_{L^2} + ||u - u_h||_{L^2} \le ||p - \pi_{L^2}p||_{L^2} + ||u - \rho_h u||_{L^2} + ||\pi_{L^2}p - p_h||_{L^2} + ||\rho_h u - u_h||_{L^2}$$

For $r_h = \pi_{L^2} p - p_h$ and $w_h = \rho_h u - u_h$, we have

$$(\partial_t r_h, q_h) + (\operatorname{div} w_h, q_h) = (\widetilde{f}(t), q_h)$$

$$(\partial_t w_h, v_h) - (r_h, \operatorname{div} v_h) = (\widetilde{g}(t), v_h)$$

with initial values $r_h(0) = 0$, $w_h(0) = 0$ and right hand sides

$$\begin{split} &(\widetilde{f}(t), q_h) = (\partial_t(\pi_{L^2}p - p), q_h) + (\operatorname{div} \rho_h u - \operatorname{div} u), q_h) = 0 \\ &(\widetilde{g}(t), v_h) = (\partial_t(\rho_h u - u), v_h) - (\pi_{L^2}p - p, \operatorname{div} v_h) = (\partial_t(\rho_h u - u), v_h) \end{split}$$

Theorem

Let
$$Q_h = P_0$$
, $V_h = BDM_1$. Then
$$\|\pi_{I^2}p(t) - p_h(t)\|_{I^2} + \|u(t) - u_h(t)\|_{I^2} \le Ch^2\|\partial_t u\|_{H^2(\Omega)}.$$

$$||p - p_h||_{L^2} + ||u - u_h||_{L^2} \le ||p - \pi_{L^2}p||_{L^2} + ||u - \rho_h u||_{L^2} + ||\pi_{L^2}p - p_h||_{L^2} + ||\rho_h u - u_h||_{L^2}$$

Theorem

Let
$$Q_h = P_0$$
, $V_h = BDM_1$. Then

$$\|\partial_t(\pi_{L^2}p(t)-p_h(t))\|_{L^2}+\|\partial_t(u(t)-u_h(t))\|_{L^2}\leq Ch^2\|\partial_{tt}u\|_{H^2(\Omega)}.$$

Post-processing

Idea : Construct $\widetilde{p}_h \in P_1(\mathcal{T}_h)$ from p_h, u_h . Testing the momentum equation with $\nabla q \in L^2(\Omega)^2$ gives

$$(\nabla p, \nabla q)_{\mathcal{K}} = -(\partial_t u, \nabla q)_{\mathcal{K}} + (g, \nabla q)_{\mathcal{K}}.$$

Post-processing

Idea : Construct $\widetilde{p}_h \in P_1(\mathcal{T}_h)$ from p_h, u_h . Testing the momentum equation with $\nabla q \in L^2(\Omega)^2$ gives

$$(\nabla p, \nabla q)_{\mathcal{K}} = -(\partial_t u, \nabla q)_{\mathcal{K}} + (g, \nabla q)_{\mathcal{K}}.$$

Problem

For all $K \in \mathcal{T}_h$, t > 0 find $\widetilde{p}_h(t) \in P_1(K)$ such that

$$(\nabla \widetilde{p}_h(t), \nabla \widetilde{q}_h)_K = -(\partial_t u_h(t), \nabla \widetilde{q}_h)_K + (g(t), \nabla \widetilde{q}_h)_K \quad \forall \widetilde{q}_h \in P_1(K)$$

$$(\widetilde{p}_h(t), q_h)_K = (p_h(t), q_h)_K \quad \forall q_h \in P_0(K),$$

R. Stenberg *Postprocessing schemes for some mixed finite elements*. RAIRO Model, Math. Anal. Numer, 1991

Y. Chen Global superconvergence for a mixed finite element method for the wave equation. Systems Sci. Math. Sci. 1999

Post-Processing

Theorem

For (p, u) sufficiently smooth, we have

$$\|p(t)-\widetilde{p}_h(t)\|_{0,\Omega}\leq C(p,u)h^2$$

Post-Processing

Theorem

For (p, u) sufficiently smooth, we have

$$\|p(t)-\widetilde{p}_h(t)\|_{0,\Omega}\leq C(p,u)h^2$$

We split the error

$$\begin{split} \|p - \widetilde{p}_h\|_{0,K} &\leq \|(p - \pi_1 p)\|_{0,K} + \|\pi_0(\pi_1 p - \widetilde{p}_h)\|_{0,K} + \|(\mathsf{Id} - \pi_0)(\pi_1 p - \widetilde{p}_h)\|_{0,K} \\ &\leq \|(p - \pi_1 p)\|_{0,K} + \|\pi_0 p - p_h\|_{0,K} + h_K \|\nabla(\pi_1 p - \widetilde{p}_h)\|_{0,K}. \end{split}$$

Post-Processing

Theorem

For (p, u) sufficiently smooth, we have

$$\|p(t)-\widetilde{p}_h(t)\|_{0,\Omega}\leq C(p,u)h^2$$

We split the error

$$\begin{split} \|p - \widetilde{p}_h\|_{0,K} &\leq \|(p - \pi_1 p)\|_{0,K} + \|\pi_0(\pi_1 p - \widetilde{p}_h)\|_{0,K} + \|(\mathsf{Id} - \pi_0)(\pi_1 p - \widetilde{p}_h)\|_{0,K}. \\ &\leq \|(p - \pi_1 p)\|_{0,K} + \|\pi_0 p - p_h\|_{0,K} + h_K \|\nabla(\pi_1 p - \widetilde{p}_h)\|_{0,K}. \end{split}$$

We compute

$$\begin{split} (\nabla(\pi_{k}p - \widetilde{p}_{h}), \nabla\widetilde{q}_{h})_{\mathcal{K}} &= (\nabla(\pi_{k}p - p), \nabla\widetilde{q}_{h})_{\mathcal{K}} + (\nabla(p - \widetilde{p}_{h}), \nabla\widetilde{q}_{h})_{\mathcal{K}} \\ &= (\nabla(\pi_{k}p - p), \nabla\widetilde{q}_{h})_{\mathcal{K}} - (\partial_{t}(u - u_{h}), \nabla\widetilde{q}_{h})_{\mathcal{K}} \\ &\leq (\|\nabla(\pi_{k}p - p)\|_{0,\mathcal{K}} + \|\partial_{t}(u - u_{h})\|_{0,\mathcal{K}}) \|\nabla\widetilde{q}_{h}\|_{0,\mathcal{K}}. \end{split}$$

Remarks

- Extension to the a fully discrete scheme
- Generalisation to $Q_h = P_k$ and $V_h = BDM_{k+1}$
- Non-constant coefficients

$$a\partial_t p + \operatorname{div} u = f$$

 $b\partial_t u + \nabla p = g$

Let
$$\Omega = (-1,1)^2 \setminus [(0,1) \times (-1,0)]$$
 as visualised below

and take

$$p(x, y, t) = \sin(\pi x)\sin(\pi y)\left(\sin\left(\pi t\sqrt{2}\right) + \cos\left(\pi t\sqrt{2}\right)\right)$$

$$u(x, y, t) = -\frac{\sqrt{2}}{2}\left(\sin\left(\pi t\sqrt{2}\right) - \cos\left(\pi t\sqrt{2}\right)\right)\left(\frac{\cos(\pi x)\sin(\pi y)}{\sin(\pi x)\cos(\pi y)}\right)$$

Choosing a set of basis functions $\{\varphi_i\}_i \subseteq P_0(\mathcal{T}_h)$ and $\{\Phi_i\}_i \subseteq BDM_1(\mathcal{T}_h)$ we can rewrite VFD in the form

$$\begin{split} M\overline{\partial}_{\tau}\mathbf{u}_{h}^{n+\frac{1}{2}}+B\mathbf{p}_{h}^{n+\frac{1}{2}}&=0\\ D\overline{\partial}_{\tau}\mathbf{p}_{h}^{n+\frac{1}{2}}-B^{\mathsf{T}}\mathbf{u}_{h}^{n+\frac{1}{2}}&=0 \end{split}$$

where $M_{ij} = (\Phi_i, \Phi_j)$, $D_{ij} = (\varphi_i, \varphi_j)$, $B_{ij} = (\operatorname{div}(\Phi_i), \varphi_j)$ and $(\mathbf{p}_h^n, \mathbf{u}_h^n)$ are vectors corresponding to the coefficients of the basis functions.

Choosing a set of basis functions $\{\varphi_i\}_i \subseteq P_0(\mathcal{T}_h)$ and $\{\Phi_i\}_i \subseteq BDM_1(\mathcal{T}_h)$ we can rewrite VFD in the form

$$\begin{split} & M \overline{\partial}_{\tau} \mathbf{u}_h^{n+\frac{1}{2}} + B \mathbf{p}_h^{n+\frac{1}{2}} &= 0 \\ & D \overline{\partial}_{\tau} \mathbf{p}_h^{n+\frac{1}{2}} - B^{\top} \mathbf{u}_h^{n+\frac{1}{2}} &= 0 \end{split}$$

where $M_{ij} = (\Phi_i, \Phi_j)$, $D_{ij} = (\varphi_i, \varphi_j)$, $B_{ij} = (\text{div}(\Phi_i), \varphi_j)$ and $(\mathbf{p}_h^n, \mathbf{u}_h^n)$ are vectors corresponding to the coefficients of the basis functions.

$$\begin{pmatrix} \frac{1}{\Delta t}D & -\frac{1}{2}B^{\top} \\ \frac{1}{2}B & \frac{1}{\Delta t}M \end{pmatrix} \begin{pmatrix} \mathbf{p}_{h}^{n+1} \\ \mathbf{u}_{h}^{n+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{\Delta t}D & \frac{1}{2}B^{\top} \\ -\frac{1}{2}B & \frac{1}{\Delta t}M \end{pmatrix} \begin{pmatrix} \mathbf{p}_{h}^{n} \\ \mathbf{u}_{h}^{n} \end{pmatrix}$$

Convergence with respect to h for a fixed time step $\Delta t = 0.001$ and $n\Delta t = T = 1$.

	h	$\ \pi_{L^2} u^n - u_h^n\ _{L^2}$	rate	$\ \pi_{L^2} p^n - p_h^n\ _{L^2}$	rate
Γ	0.5	4.481e-01	-	3.003e-01	-
	0.25	1.654e-01	1.4379	6.533e-02	2.2009
	0.125	4.968e-02	1.7353	1.884e-02	1.7941
	0.0625	1.293e-02	1.9418	4.883e-03	1.9478
	0.0313	3.276e-03	1.9808	1.191e-03	2.0355

Convergence with respect to h for a fixed time step $\Delta t = 0.001$ and $n\Delta t = T = 1$.

h		$\ \pi_{L^2} u^n - u_h^n\ _{L^2}$	rate	$\ \pi_{L^2} p^n - p_h^n\ _{L^2}$	rate
0.	5	4.481e-01	-	3.003e-01	-
0.	25	1.654e-01	1.4379	6.533e-02	2.2009
0.	125	4.968e-02	1.7353	1.884e-02	1.7941
0.	0625	1.293e-02	1.9418	4.883e-03	1.9478
0.	0313	3.276e-03	1.9808	1.191e-03	2.0355

Convergence with respect to Δt for a fixed $h = 2^{-9}$ and $n\Delta t = T = 1$.

Δ	t	$\ \pi_{L^2} u^n - u_h^n\ _{L^2}$	rate	$\ \pi_{L^2} p^n - p_h^n\ _{L^2}$	rate
0.	1	3.998e-02	-	2.101e-02	-
0.	05	1.064e-02	1.9092	5.916e-03	1.8287
0.	025	2.732e-03	1.9618	1.542e-03	1.9399
0.	0125	6.880e-04	1.9896	3.901e-04	1.9828
0.	00625	1.690e-04	2.0258	9.626e-05	2.0189

Convergence of PP w.r.t. h for a fixed time step $\Delta t = 0.001$ and $n\Delta t = T = 1$.

	h	$\ p^n-\tilde{p}_h^n\ _{L^2}$	rate	$\ p^n - p_h^n\ _{L^2}$	rate
	0.5	4.630e-01	-	6.770e-01	-
ĺ	0.25	1.092e-01	2.0844	2.919e-01	1.2135
ĺ	0.125	2.945e-02	1.8904	1.511e-01	0.9506
	0.0625	7.467e-03	1.9795	7.595e-02	0.9920
	0.0313	1.840e-03	2.0213	3.802e-02	0.9983
	0.0156	4.626e-04	1.9915	1.902e-02	0.9995

Convergence of PP w.r.t. h for a fixed time step $\Delta t = 0.001$ and $n\Delta t = T = 1$.

h	$\ p^n-\tilde{p}_h^n\ _{L^2}$	rate	$\ p^n - p_h^n\ _{L^2}$	rate
0.5	4.630e-01	-	6.770e-01	-
0.25	1.092e-01	2.0844	2.919e-01	1.2135
0.125	2.945e-02	1.8904	1.511e-01	0.9506
0.0625	7.467e-03	1.9795	7.595e-02	0.9920
0.0313	1.840e-03	2.0213	3.802e-02	0.9983
0.0156	4.626e-04	1.9915	1.902e-02	0.9995

Convergence of PP w.r.t. h for a fixed time step $\Delta t = 0.001$ and $n\Delta t = T = 1$.

	Δt	$\ p^n-\tilde{p}_h^n\ _{L^2}$	rate
Ì	0.1	2.101e-02	-
	0.05	5.910e-03	1.8297
ĺ	0.025	1.536e-03	1.9438
ĺ	0.0125	3.847e-04	1.9975
	0.00625	9.175e-05	2.0680

The End/ Acknowledgement

Thank you for your attention

Acknowledgement: The work of Bogdan Radu is supported by the 'Excellence Initiative' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt