

AIRLINE PASSENGER SATISFACTION

Data Mining Course Project Group 10

- Safoora Naureen (1002050531)
- Dumpa Akash Reddy (1002025351)
- Spandana Sanapureddy (1002102072)
- Rakesh Maram (1002024578)

Business Context & Problem Statement

Business Context

• As the COVID cases seem to decrease in the past few months, many people are turning towards travel more than in pre-COVID times. The airline company wants to take advantage of the situation and attain the maximum number of passengers.

Business Problem Statement

• •The airline company, wants the data analysis team to analyze and predict which facilities of airlines can the company make changes to, so that there is an increase in business (4-5 times) class passengers, without effecting the economy class.

Feedback is always the best way to measure customer satisfaction and analyze the various factors where we can improve the business. Predicting customer satisfaction through feedback and other demographical factors helps us get accurate measures to improve the business.

The airline company previously made changes to improve Wi-Fi services to the passengers using conventional managerial insights, but there was not much increase in customer satisfaction.

We are now using feedback data to find the facilities which can provide a considerable increase in passenger to improve the airline business.

We have ratings provided by around 100k customers for all the facilities offered by the airline, along with a final satisfied or neutral/dissatisfied feedback.

The dataset contains information about the passengers who travel on airlines - the column to predict is called satisfaction (TARGET VARIABLE).

1. Services that each passenger has signed up for -

- Type of Travel
- Class
- Flight Distance
- Inflight Wi-Fi service
- Departure
- Arrivals
- Baggage Claim
- Online-boarding
- Type of food
- Seat comfort
- Inflight entertainment
- Leg room service
- Check-in service

2. Demographic information about passengers –

- Id
- Gender
- Age Range
- Customer Type

How we are using data to answer the business problem?

- We need to run regression models for business class and economy class separately.
- •Get which variables are statistically significant for business class but have very less to none significance to economy class.
- •Run the model for all observations with shortlisted statistically significantly variables of business class.

DATA MINING MODELS

- Outcome variable is binary satisfied or neutral/dissatisfied.
- For finding the statistically significant variables we used logistic regression.
- For predicting satisfaction through statistically significant variables of business class, we used Decision tree, Gradient Boosting, Stepwise Logistic Regression and Neural Network.

Logistic Regression For Business and Economy Class Separately

- We have imported the file and explored the data.
- we have found that there are some missing values in the Arrival Delay in minutes. We have imputed the missing values with median values and transformed the skewed variables.
- After using logistic regression, we got variables that have a significant impact on the output (TARGET VARIABLE Satisfaction).

Analysis of Maximum Likelihood Estimates								
Parameter	satisfaction	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate	Exp(Est
Intercept	satisfied	1	-11.4853	0.1262	8280.85	<.0001		0.000
Age	satisfied	1	-0.0118	0.00122	93.72	<.0001	-0.0828	0.988
Baggage_handling	satisfied	1	0.2986	0.0208	206.21	<.0001	0.1844	1.34
Checkin_service	satisfied	1	0.4816	0.0134	1299.06	<.0001	0.3146	1.61
Cleanliness	satisfied	1	0.3460	0.0144	574.83	<.0001	0.2361	1.41
Customer_Type Loyal Customer	satisfied	1	1.1892	0.0215	3065.05	<.0001		3.28
Departure_Arrival_time_convenien	satisfied	1	-0.0829	0.0140	35.06	<.0001	-0.0688	0.92
Ease_of_Online_booking	satisfied	1	-0.0735	0.0148	24.74	<.0001	-0.0597	0.92
Gate_location	satisfied	1	0.0961	0.0148	42.30	<.0001	0.0723	1.10
Inflight_service	satisfied	1	0.2479	0.0218	129.70	<.0001	0.1528	1.28
LG10_IMP_Arrival_Delay_in_Minute	satisfied	1	-0.3227	0.0211	232.95	<.0001	-0.1246	0.72
Leg_room_service	satisfied	1	0.3739	0.0150	622.71	<.0001	0.2518	1.45

Comparing the statistically Significant Variables

• We have split the data into 80 percent training data and 20percent validation data to get the statistical distribution of variables.

MODEL	ACCURACY %
Stepwise logistic regression	86.3831
Decision trees with entropy criterion	91.1325
Gradient boosting	91.623
Deep learning model with neural network	78.0253

Exogenous business decision

Model Comparison, Interpretation and Scoring

Fit Statistics

Model Selection based on Valid: Mean Square Error (VMSE)

Selected Model	Model Node	Model Description	Valid: Mean Square Error	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error	Valid: Misclassification Rate
У	Boost Tree Reg Neural	Gradient Boosting Decision Tree Stepwise Regression Neural Network	0.10153 0.15237	0.05688 0.06771 0.09909 0.15052	0.07897 0.08898 0.13141 0.21721	0.06059 0.06827 0.10153 0.15237	0.08377 0.08877 0.13617 0.21975

- After comparing all the models with test data, we have got the lowest MSE for Gradient Boosting and it also has the lowest MIS rate.
- Misclassification rate = **FP+FN/All values.**

Variable Importance

0bs	NAME	LABEL	MRULES	NSURROGATES	IMPORTANCE	VIMPORTANCE	RATIO
1	Online_boarding	Online boarding	977	456	1.00000	1.00000	1.00000
2	Type_of_Travel	Type of Travel	209	121	0.93380	0.92057	0.98584
3	Cleanliness		1315	1080	0.85020	0.83967	0.98761
4	Leg_room_service	Leg room service	1203	1401	0.70296	0.68062	0.96822
5	Baggage_handling	Baggage handling	1287	1516	0.47663	0.45629	0.95731
6	IMP_Arrival_Delay_in_Minutes	Imputed: Arrival Delay in Minutes	1685	2030	0.45713	0.43170	0.94437
7	On_board_service	On-board service	1176	1502	0.45378	0.42993	0.94744
8	Customer_Type	Customer Type	323	370	0.42764	0.42894	1.00303
9	Checkin service	Checkin service	1353	1071	0.37908	0.35570	0.93832

Data Role=VALIDATE Output Type=CLASSIFICATION

	Numeric		Frequency	
Variable	Value	Formatted Value	Count	Percent
I satisfaction		NEUTRAL OR DISSATISFIED	12257	58.9761
_ I_satisfaction		SATISFIED	8526	41.0239

- We have scored the new data which is not yet exposed to model.
- The final scoring with new data has given us the distribution of satisfaction and dissatisfaction as

Conclusion

More significant variables, put more revenue.

From our results, we see the below variable gives significant change in their business class revenue. Online_Boarding, Type of travel, Cleanliness, Leg_room_service, Baggage Handling, IMP_Arrival_Delay_In_Minutes, Onboard_Service, Customer_Type, Checkin_Service.

We see the variables Online_Boarding, Type of travel, Cleanliness, Leg_room_service gives major impact on improving the business class passengers. We suggest managerial team to make changes to these variables to see the significant change in passengers.

We suggest management to make changes such as ease of access to Online_boarding, taking extra care in cleaning the business class area, targeting the people who are travelling for business purposes and making changes in the Leg_room_service.