Feature Return	n Seasch Results.	
	Rahul (105)	Raj (103)
Exercition time	15 sec Windows XP	10 sec macbook pro m2 Chip
	8 24 C	10sec
	C++ 8 sec	python 5 sec
	Lvolcano	antastica.
# Execution Lime	is hot the ?	ve h4
	compare algorithms	

	Ahhl	Mayon A.
	100 lug n	
#	O	
	n > 2500	Mo (Maynak) is better. 100 lug,on (Akhil) is better.
	Ind vs Pala:	1.8 million 7 18 lakh. Generally > 108.
	Nongape Aigen	: Usually > 1 million,
Ð	Algo 1, Algo 2	Algo 3, Algo 4.
	ley mototic Analysis	V
Bigo 7	Ma Onlega- lorg	lysing algorithms for e input.

Iteration = P(n) -

 $\int_{0}^{2} + B_{ig} = g(n) = ()$ (g(n) > g(n))

a 3 3 5 7 (k)

for (Inti=0; izn; i++) 2.

If (abs[i] = = 12)

Setvantove;

Setuan fales

Calrulate Big O

D Find the number of iteration 2) Ignore lower order teams,

To no of iterations = 100n +n2

U	value	Contaibution of
10	1000 + 100	90%
100	10000 + 10000	50%
ζ		,
10	107 + 1010	40.1%

Ignor (onstants		
Mamoj	Pooja 100 Jugn	Fox large input Pooja
(0 n	n ²	Manoĵ
NlogN	looolog N	Pogja,
[oto logN	10	Manoj

Issues in Big O N=10 Sziniva Bhappu n² 103n According to Big O & Bhapp is better. Bhappu algorithm is better for all input sizes of WRONG CLAIM. 103 n ν_{5} 7 104 001 10 104 105 100 106 /000 For 1 > 1000, Bhappu algorithm is befred of CORRECT CLAIM.

(om pare	10 Jug N	105 lug N.
Big O	7 Both are	Same
	Both are Check the iteration	number of
	iteration	ors_

Space Complexity void fur () L. inty = 5; => 4 bytes dong z = 2L; 7 8 bytes. 16 byles. + O(i) Sc: 0 (1) Void func (inAn) L. intaro [n]; \$ 4 n butes. Inty = 5; => 4 bytes. dong z = 2L; 7 An + 12 SC: O(n)

void (me (int n) 1 int are [n] = Ln butes. int aso-2 Collow = 4n2 bytes Int x, y; = Shytes 7 4n2 + 4n +8 $SC: O(n^2)$ void fine (int aso [i]) inf x; inty: by algom. Total Space 7 Input Space + Space condition by algo

- (· · · · ·

int max_num (Int asx [], intn) d. int max ax & -1; for (inti=0; i<n; r++) 2 ([i] (max-ans > ans(i)) geton mar-ansi

TLE & Time Limit Exceeded,
Execution time limit 7 1 sec.
Processor Specs 7 1 Ghz
To 9 instanction
per scrend
Q Print all odd numbers till n.
Yord paint Odd (int n) L.
Jos (inti=o;ikn;i++) &
1 (1%2/20)
if (i % 2 (= 0) paint (i);
9
jferations >n
instruction per
idexadios 75.
(8 dal instanction of Son.

10 insolvetion
2 10n instroctions,
of iteration = 708
10n < 109 > \(\text{108} \)
100
of ideration \$\overline{7}\)
r code should r [107, 108]
Heratroll

$$\int_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \right) = 1 ; j \leq n ; i + 1) d$$

$$\int_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \right) = 0$$

$$\int_{0}^{\infty} \frac{1}{1} dx = 0$$

	^	1
	i	Tutel
1	\sim	^
2	^	n
2	~	n
_	V	n
	n	$\begin{array}{c c} n \\ n \end{array}$
, in		
	V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i=1,2,3,4.-.

109 ass [u]			Q(N)	^
		5	o (logn)	
Sc.	00			
JC.	0(10)Gn)		