Lecture 5. Arbitrage Pricing

Lawrence Schmidt

MIT Sloan School of Management

 $15.470/\text{Fall}\ 2019$

State Price Density Discount rates / risk premia SPD/SDF bounds Multiple periods

Outline

- Risk-Neutral Measure
- 2 State Price Density
- 3 Discount rates / risk premia
- 4 SPD/SDF bounds
- Multiple periods

Riskless Security

- Suppose that security 1 is riskless (a bond), with a sure payoff of 1 at t = 1.
- The riskless security can be traded or implied (by a model of ϕ).
- The riskless payoff is denoted by $D_1 = [1; ...; 1] = 1_M$, where 1_M is the vector of ones. Let P_1 denote its price at t = 0.
 - Note on notation: I'm dropping the time subscript, so this refers to a column (wlog, the first one) of the payoff matrix D.
- With state price vector ϕ , we have:

$$P_1 = \phi^\top 1_M = \sum_{\omega=1}^M \phi_\omega.$$

• The riskless interest rate, denoted by r_F , is defined as the net payoff from 1 unit of investment in, or the rate of return from, the riskless bond:

$$P_1(1+r_F) = 1$$
 or $r_F = \frac{1}{P_1} - 1$.

Risk-Neutral Measure

• Given ϕ , we have the pricing equation:

$$P_n = \phi^{\top} D_n = \sum_{\omega \in \Omega} \phi_{\omega} D_{\omega n}, \quad n = 1, \dots, N.$$

• Define:

$$q_{\omega} \equiv \frac{\phi_{\omega}}{\sum_{\omega'} \phi_{\omega'}}.$$

• Since $q_{\omega} > 0$ and $\sum q_{\omega} = 1$,

$$Q \equiv \{q_{\omega}, \ \omega \in \Omega\}$$

can be interpreted as a measure over Ω .

• Since Q and P agree on zero measure sets (i.e. have the same support), they are equivalent.

Risk-Neutral Measure

Risk-Neutral Measure and Risk-Neutral Pricing

• We can then rewrite the pricing equation as:

$$P_n = \frac{\mathbb{E}^{\mathbb{Q}}[D_n]}{1 + r_F}, \quad n = 1, \dots, N,$$
 (1)

where $\mathbb{E}^{\mathbb{Q}}[\cdot]$ denotes the expectation under \mathbb{Q} and D_n here represents the payoff of security n as a random variable.

- (1) is called the risk-neutral pricing formula.
- Q is called the risk-neutral measure.
- "Risk-neutral pricing" reflects the analogy that if agents in the market were risk-neutral, they would price all securities by only considering their expected payoffs and the riskless interest rate.
- Usually, the market is not risk-neutral and $Q \neq P$. Relative to objective measure, Q is tilted towards states with higher state prices

Risk-Neutral Measure

Example

Risk-Neutral Measure

Example. (Continued)

Security 1:
$$1 - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 Security 2: $1/2 - \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

• From the prices/payoffs of the two securities, we have

$$\phi_1 + \phi_2 = 1, \quad 2\phi_1 = 1/2.$$

- The state prices are $\phi_1 = 1/4$, $\phi_2 = 3/4$.
- The risk-neutral measure is $Q = \{1/4, 3/4\}$.
- Using the risk-neutral pricing formula, we have:

$$\frac{\mathbb{E}^{\mathbb{Q}}[D_1]}{1+0} = \frac{(1/4)(1) + (3/4)(1)}{1} = 1,$$

$$\frac{\mathbb{E}^{\mathbb{Q}}[D_2]}{1+0} = \frac{(1/4)(2) + (3/4)(2)}{1} = 1/2,$$

which give the right prices.

State Price Density - Discount rates / risk premia - SPD/SDF bounds - Multiple periods

State Price Density

- ullet Risk-neutral measure Q represents "normalized" state prices.
- \mathbb{P} is tied to data. Thus, we would like to relate \mathbb{Q} and \mathbb{P} .

Given ϕ , we have

$$P_n = \sum_{\omega} \phi_{\omega} D_{\omega n} = \sum_{\omega} p_{\omega} \frac{\phi_{\omega}}{p_{\omega}} D_{\omega n}, \ n = 1, \dots, N.$$

Definition (State Price Density)

The state-price density (SPD) for state ω , denoted by η_{ω} , is defined as:

$$\eta_{\omega} \equiv \phi_{\omega}/p_{\omega}, \quad \forall \ \omega \in \Omega.$$

SPD, strictly positive, gives the "state price per unit of probability." Then,

$$P_n = \sum_{\omega} p_{\omega} \eta_{\omega} D_{\omega n} = \mathbb{E}^{\mathbb{P}} \left[\eta D_n \right], \ n = 1, \dots, N.$$
 (2)

Other names: stochastic discount factor, pricing kernel

State Price Density Discount rates / risk premia SPD/SDF bounds Multiple periods

Representation Theorem

Theorem (Representation Theorem)

The following are equivalent:

- Existence of a positive pricing operator (V);
- **2** Existence of a risk-neutral measure (\mathbb{Q}) and a riskless interest rate (r_F);
- **1** The existence of a strictly positive state price density (η) .

With a discrete number of states, the proof is immediate

• The DCF/PV formula is usually expressed in the following form:

$$P_n = \frac{\mathbb{E}^{\mathbb{P}}[D_n]}{1 + \bar{r}_n} = \frac{\sum_{\omega} p_{\omega} D_{\omega n}}{1 + \bar{r}_n}, \quad i = 1, \dots, N,$$
(3)

where \bar{r}_n is called the discount rate for payoff D_n .

• Putting FTAP together with defin of \mathbb{Q} , we have:

$$\bar{r}_n = \frac{\sum_{\omega} p_{\omega} D_{\omega n}}{\sum_{\omega} \phi_{\omega} D_{\omega n}} - 1 = (1 + r_f) \frac{E^{\mathbb{P}}[D_n]}{E^{\mathbb{Q}}[D_n]} - 1, \quad n = 1, \dots, N.$$

• We can also rewrite the above as:

$$\bar{r}_n = \frac{\sum_{\omega} p_{\omega} D_{\omega n}}{P_n} - 1, \quad n = 1, \dots, N.$$

Thus, \bar{r}_n is also the expected rate of return on security n.

• Remember: all of this extends naturally to a continuum of states!

Time Value of Money

• The DCF for the riskless bond gives:

$$P_{1} = \sum_{\omega} \phi_{\omega} = \frac{\sum_{\omega} q_{\omega} \times 1}{1 + r_{F}} = \frac{\sum_{\omega} p_{\omega} \times 1}{1 + r_{F}} = \frac{1}{1 + r_{F}}$$
or $\bar{r}_{1} = \frac{\mathbb{E}^{\mathbb{P}}[D_{1}]}{R} - 1 = \frac{1}{R} - 1 = r_{F}.$

The return on the riskless security is also called the time value of money.

• The return on the riskless bond is certain:

$$r_{1\omega} = \frac{1}{P_1} - 1 = r_F, \ \forall \ \omega \in \Omega.$$

• Note the tight link between r_F and the SPD

$$\frac{1}{1+r_F} = E^{\mathbb{P}}[\eta] \qquad \Longleftrightarrow \qquad 1+r_F = \frac{1}{E^{\mathbb{P}}[\eta]}$$

Risk Premium

• The return on a risky security $n \ (n > 1)$ is in general uncertain:

$$r_{\omega n} = \frac{D_{\omega n}}{P_n} - 1, \ \omega \in \Omega.$$

• Its expected value in excess of the riskless interest rate:

$$\pi_n \equiv \bar{r}_n - r_F$$

is called the risk premium.

• From our earlier result:

$$\bar{r}_n = \frac{\sum_{\omega} p_{\omega} D_{\omega n}}{\sum_{\omega} \phi_{\omega} D_{\omega n}} - 1 = (1 + r_f) \frac{E^{\mathbb{P}}[D_n]}{E^{\mathbb{Q}}[D_n]} - 1, \quad n = 1, \dots, N.$$

the risk premium will be positive when $E^{\mathbb{Q}}[D_n] < E^{\mathbb{P}}[D_n]$

▶ What does this mean in words? Give some intuition

Time Value of Money and Risk Premium Example

Example. The binomial model with equal probability for the two states.

• There are with two traded securities:

Security 1:
$$1 - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 Security 2: $1/2 - \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

- Security 1 is a riskless bond. Its price and payoff imply that $r_F = 0$.
- Security 2 has expected payoff of (1/2)(2) + (1/2)(0) = 1, same as security 1. Yet, it is price is 1/2, only half of the price of security. The lower price is to compensate for risk.
- The expected rate return on security 2 is:

$$\bar{r} = \frac{\mathbb{E}^{\mathbb{P}}[D]}{P} - 1 = 2 - 1 = 1 = 100\%.$$

• Since $r_F = 0$, security 2 carries a risk premium of 100%.

The Risk Premium and the SPD

- Next, we'll derive a nice expression for the risk premium of any asset.
- Note on notation: let r_n denote the return realization, i.e., the return for the specific ω which realizes in the data. Useful when computing expectations.
- Divide both sides of the valuation formula with the state-price density by price (or recall that the price of any gross return is 1) to get:

$$1 = \mathbb{E}^{\mathbb{P}}[\eta(1+r_n)]$$

• Rearranging slightly (see board), we get

$$\mathbb{E}^{\mathbb{P}}[r_n - r_f] = -(1 + r_f)Cov^{\mathbb{P}}[\eta, r_n - r_f]$$

• Recall our risk premium expression:

$$\mathbb{E}^{\mathbb{P}}[r_n - r_f] = -(1 + r_f)Cov^{\mathbb{P}}[\eta, r_n - r_f]$$

- Consider the price of an asset whose risky payoff D_n (and hence also its return r_n) is uncorrelated with the discount factor η .
 - ▶ Formula above ⇒ this asset earns same return as the risk-free asset
 - ► Cash flows are simply discounted at the risk-free rate: $P_n = \frac{E[D_n]}{1+r}$
- This suggests a simple decomposition:

$$D_n = \underbrace{\text{proj}(D_n|\eta)}_{\text{"priced"}} + \underbrace{\epsilon_n}_{\text{"unpriced"}}$$

$$\underset{\text{cash flow component component}}{\text{cash flow component}}$$

where $E[\epsilon_n] = 0$ and $\epsilon_n \perp \eta$. So, $\operatorname{proj}(D_i, \eta) = \operatorname{proj}(D_k, \eta) \iff P_i = P_k$

• There is no compensation for holding mean 0 risks orthogonal to the SPD

$$\mathbb{E}^{\mathbb{P}}[r_n - r_f] = -(1 + r_f)Cov^{\mathbb{P}}[\eta, r_n - r_f] = \frac{Cov^{\mathbb{P}}[-\eta, r_n - r_f]}{E^{\mathbb{P}}[\eta]}$$

- Prior classes / simple intuition (formalized later): people are risk averse, dislike risky gambles
- Might have expected an asset's variance to affect risk premium
 - Variance is necessary but not sufficient!
- Here: only **covariance** with the SDF matters
- Why the difference?
 - Investors can put an infinitesimal amount into a single asset
 - Can combine multiple assets into a single portfolio → asset-specific idiosyncratic risk can be diversified away

• Central element of any macro-finance models is its specification of the state price density / stochastic discount factor η

risk premium = -risk free rate \times comovement of return with SDF

- Useful heuristic: "stochastic discount factor" ≈ "pain index"
 ⇒The SDF is low in good macroeconomic states, high in bad states
- Intuition: assets that perform well in bad times earn lower returns
- Theory: preferences + fundamentals (e.g., cons/wealth) \rightarrow SDF
- We'll learn more about specific models in the second half of the course. Each emphasizes a different aspect of "bad times"

• Hansen and Jagannathan had the brilliant insight that observed moments

of asset prices place strong restrictions on moments of the SDF

- The Sharpe-ratio of any risky asset provides a lower bound on the coefficient of variation of the state price density.
- Specifically, they showed (see board):

$$\frac{\sqrt{Var^{\mathbb{P}}[\eta]}}{\mathbb{E}^{\mathbb{P}}[\eta]} \ge \frac{\mathbb{E}^{\mathbb{P}}[r_n - r_F]}{\sqrt{Var^{\mathbb{P}}[r_n - r_F]}} \equiv \begin{bmatrix} \text{Sharpe ratio} \\ \text{of asset n} \end{bmatrix}$$

tisk-Neutral Measure – State Price Density – Discount rates / risk premia – SPD/SDF bounds – Multiple period

Hansen-Jagannathan Bounds - Geometric interpretation

Figure 4.1. Geometry of the Hansen and Jagannathan (1991) SDF Volatility Bound

Take a strictly positive random variable X. We define the entropy of X as:

$$L^{\mathbb{P}}(X) = \log \mathbb{E}^{\mathbb{P}}[X] - \mathbb{E}^{\mathbb{P}}[\log X] \ge 0$$

We can this definition to derive an alternative bound on the entropy of the state price density (see board) – useful with non-Gaussian shocks

$$L^{\mathbb{P}}(\eta(1+r_n)) = \log \underbrace{\mathbb{E}^{\mathbb{P}}[\eta(1+r_n)]}_{=1} - \mathbb{E}^{\mathbb{P}}[\log \eta(1+r_n)] \ge 0$$

$$\iff -\mathbb{E}^{\mathbb{P}}[\log \eta] \ge \mathbb{E}^{\mathbb{P}}[\log(1+r_n)]$$

Next, note that

$$L^{\mathbb{P}}(\eta) = \log \mathbb{E}^{\mathbb{P}}[\eta] - \mathbb{E}^{\mathbb{P}}[\log \eta]$$
 and $\log \mathbb{E}^{\mathbb{P}}[\eta] = -\log(1 + r_F)$

Thus, it follows that

$$L^{\mathbb{P}}(\eta) > \mathbb{E}^{\mathbb{P}}[\log(1+r_n)] - \log(1+r_F)$$

- This may sound abstract, but it has powerful implications for our models!
- Why? We can find assets with annualized Sharpe ratios of 0.5, 0.8, or even higher \Rightarrow volatility of SDF has to be VERY high
- Remember: any theory model will generate an SDF η
- Many models generate $\sigma(\eta)$ and $L^{\mathbb{P}}(\eta)$ substantially lower than the bound
- All models are wrong, but this is a VERY substantial failure...
 - ▶ State prices & welfare are tightly linked: see Alvarez & Jermann (2004-5)
 - Incorrect/unrealistic state prices potentially imply a nontrivial disconnect between the actual optimization problem being solved by agents in the real world vs those in the model.
 - ► Financial markets suggest that there are substantial tradeoffs across states, whereas many models might predict these tradeoffs are fairly trivial.
 - ▶ Incorrect objective functions can ⇒ incorrect decision rules
- We can derive other model-free insights in dynamic settings

- Suppose that I want to calculate the expected value of a random variable X given two sets of conditioning information \mathcal{F}_1 and \mathcal{F}_2 , where $\mathcal{F}_1 \subset \mathcal{F}_2$:
 - \mathcal{F}_1 : Trump wins election
 - \blacktriangleright \mathcal{F}_2 : Trump wins election and announces tariffs
- The law of iterated expectations says that

$$\mathbb{E}[X|\mathcal{F}_1] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_2] | |\mathcal{F}_1]$$

• The best forecast one can make with limited information is the forecast of the forecast one would make with better information

- Recall the one period stock payoffs:
 - ▶ Small **dividend** (cash flow) D_{t+1} paid
 - Also receive share price P_{t+1}
 - $X_{t+1} = D_{t+1} + P_{t+1}$ and $R_{t+1} = \frac{D_{t+1} + P_{t+1}}{P_{t+1}}$
- We will suppose that no arbitrage holds period-by-period \Rightarrow SDF η_{t+k} exists for all periods
- Can derive the present value of future stock payoffs:

$$P_{t} = \mathbb{E}_{t} [\eta_{t+1}(P_{t+1} + D_{t+1})]$$
Also, $P_{t+1} = \mathbb{E}_{t+1} [\eta_{t+2}(P_{t+2} + D_{t+2})]$

$$\Rightarrow P_{t} = \mathbb{E}_{t} \left[\sum_{k=1}^{T} (\eta_{t+1} \cdots \eta_{t+k}) D_{t+k} \right] + \underbrace{\mathbb{E}_{t} [\eta_{t+1} \cdots \eta_{t+T} P_{t+T}]}_{\text{Usually assume} \to 0 \text{ as } T \to \infty}$$

$$= \mathbb{E}_{t} \sum_{j=1}^{\infty} \left[\prod_{k=1}^{j} \eta_{t+k} \right] D_{t+j} \equiv \mathbb{E}_{t} \sum_{j=1}^{\infty} \eta_{t:t+j} D_{t+j}$$

General DCF representation

- Next, we derive a general DCF representation
- What is the value of a single dividend k periods in the future?
 - Dividend strip price: $P_t^{(k)} = \mathbb{E}_t[\eta_{t:t+k}D_{t+k}]$
 - Expected payoff if I wait k periods: $\mathbb{E}_t[D_{t+k}]$
 - $\mathbb{E}[\text{k period return}] = \frac{\text{expected payoff}}{\text{price}} = \frac{\mathbb{E}_t[D_{t+k}]}{\mathbb{E}_t[n_{t+t}, D_{t+k}]} \equiv \mathbb{E}_t[R_{t:t+k}^{(k)}]$
 - $\blacktriangleright \Rightarrow \mathbb{E}_t[\eta_{t:t+k}D_{t+k}] = \frac{\mathbb{E}_t[D_{t+k}]}{\mathbb{E}_t[R_{t:t+k}^{(k)}]} = \frac{\text{expected cash flow}}{\text{horizon/div-specific expected return}}$
- Same logic applies to multiple dividends \Rightarrow

$$P_t = \mathbb{E}_t \sum_{j=1}^{\infty} \eta_{t:t+j} D_{t+j} = \sum_{j=1}^{\infty} \frac{\mathbb{E}_t[D_{t+j}]}{\mathbb{E}_t[R_{t:t+j}^{(j)}]} = \frac{\text{sum of discounted}}{\text{cash flows!}}$$

• Can define firm objective function / NPV accordingly

- Often, models are highly tractable if we assume that variables such as $\log \eta$ and $\log(1+r_n)$ are jointly multivariate normally-distributed
- In this case, we can derive a similar expression for the risk premium.
- Using the formula for the expectation of log-normal random variable:

$$0 = \mathbb{E}^{\mathbb{P}}[\log \eta] + \mathbb{E}^{\mathbb{P}}[\log(1+r_n)]$$

$$+ \frac{1}{2} Var^{\mathbb{P}}[\log \eta] + \frac{1}{2} Var^{\mathbb{P}}[\log(1+r_n)] + Cov^{\mathbb{P}}[\log \eta, \log(1+r_n)]$$

• Applying this formula to the risk-free asset $(1 + r_F = 1/E[\eta])$ and differencing yields the following expression for the risk premium in logs,

$$\mathbb{E}^{\mathbb{P}}[\log(1+r_n)] - \log(1+r_F) + \frac{1}{2} Var^{\mathbb{P}}[\log(1+r_n)] = -Cov^{\mathbb{P}}[\log \eta, \log(1+r_n)]$$

which is very similar to the expression in levels except that we have to apply a correction arising from Jensen's inequality.