

CE-QUAL-W2 MODEL OUTPUTS OVERVIEW

Zhonglong Zhang, PhD, PE, PH and Isaac Mudge, MS U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

August 16 - 18, 2022

Outline

- 1. Model outputs
 - Time series plot output
 - Spreadsheet profile output
 - Water quality kinetic flux output
 - Withdrawal outflow
 - Water level output
 - Flow balance output
 - N and P mass balance output
 - DSI W2Linkage File
 - RESTART

- 2. Model (w2_v45_64.exe) outputs
 - w2.wrn
 - W2.err
 - W2ErrorDump.csv
- 3. Preprocessor (preW2v45_64.exe) outputs
 - pre.opt
 - pre.wrn
 - pre.err

TSR Plot – Time Series Output Plot

A time series output file (csv) at a user specified segment for

- Flow
- Temperature
- Active constituent concentrations
- Derived constituent concentrations
- Instantaneous kinetic flux rates (kg/d)
- Instantaneous algae growth rate limitation fractions for P, N, and light [0 to 1] for each

		group.
a	luai	aroub.
	3	9.00.00

TSR PLOT- time series plot output	TSR
TSRC- time series ON or OFF	ON
NTSR- # of time series dates	1
NITSR- # of locations for the time series output	8
TSR FILE TSRFN time series output file name prefix and	LMNR_tsr.csv
TSR DATE- TSRD(NTSR)- start date of output in Julian d	277
TSR FREQ- TSRF(NTSR)- frequency of output in days	0.1
TSR SEG- ITSR(NITSR)- segment number of time series	2
TSR LAYER- ETSR(NITSR)- depth or layer# of time series	0

TSR Plot – Time Series Output Plot

Jul-2001

Dec-2002

1	JDAY	DLT(s)	ELWS(m)	T2(C)	U(ms-1)	Q(m3s-1)	SRON(Wm-E)	(T(m-1)	DEPTH(m)	WIDTH(m)	Tvolavg(C)	Reaeration	TDS	ISS1	PO4	NH4	NO3	DSI
2	277	75	209.374	16.266	0.044	18.506	0	3.079	5.282	156.96	16.234	0.549	620.068	18.794	0.013	0.039	0.371	21.425
3	277.101	75	209.384	16.174	0.048	19.897	0	3.039	5.292	156.96	16.146	0.548	620.879	18.656	0.014	0.047	0.388	21.402
4	277.2	75	209.382	16.085	0.057	23.962	0	3.001	5.289	156.96	16.06	0.547	622.43	18.512	0.015	0.053	0.409	21.392
5	277.3	75	209.377	16.021	0.05	20.845	22.561	2.967	5.284	156.96	15.999	0.546	626.003	18.36	0.017	0.057	0.447	21.394
6	277.401	75	209.374	16.022	0.032	13.211	158.51	2.951	5.281	156.96	16	0.546	629.827	18.199	0.017	0.055	0.489	21.373
7	277.5	75	209.388	16.03	0.03	12.439	131.435	2.943	5.295	156.96	16.008	0.546	631.623	18.066	0.018	0.051	0.51	21.341
8	277.601	75	209.395	16.041	0.053	22.282	137.884	2.934	5.302	156.96	16.018	0.546	633.057	17.932	0.018	0.047	0.529	21.298
9	277.7	75	209.362	16.136	0.075	31.3	33.471	2.888	5.269	156.96	16.11	0.547	638.376	17.712	0.02	0.048	0.602	21.221
10	277.8	75	209.399	16.09	0.009			2.848	5.306	156.96	16.066	0.547	640.783	17.58	0.022	0.053	0.625	21.212
11	277.901	75	209.37	16.048	0.089	16	Т						.8	17.432	0.023	0.06	0.648	21.2
12	278	75	209.373	16.014	0.049			_	− W2		Observ Observ	ed	3	17.286	0.024	0.067	0.687	21.188
13	278.101	75	209.352	15.959	0.059	14	+ +				T	•	.1	17.176	0.026	0.071	0.732	21.174
14	278.2	75	209.352	15.856	0.035						•	ıř.	• 4	17.079	0.027	0.075	0.77	21.163
15	278.3	75	209.364	15.714	0.038	12	. +			+	-		8	16.982	0.027	0.078	0.793	21.147
16	278.401	75	209.343	15.658	0.05				1	h	I.	l i	2	16.932	0.027	0.075	0.837	21.108
17	278.5	75	209.345	15.73	0.04	□ 10	+		_	₩	-	M .1	6	16.775	0.027	0.061	0.863	21.052
						103(mg/L) 8	1		Λ									
						<u>.</u> 8	+ - 1		#		- ∏ - 1	61 . All						
						<u>Ö</u>	_ л		11 1	IN .		ווע ויי	TV					
						2 6	·		 	/// /	 		171					

Apr-2004

Day

Sep-2005

Jan-2007

SPR Plot – Spreadsheet Output

A spreadsheet profile output file (**spr.csv**) consists of variable name, Julian date, depth below water surface, elevation, and temperature and/or concentrations for the output segment.

1	Constituent	Julian_day	Depth	Elevation	Seg_2	Elevation	Seg_3
2	Temperature	40544	0.115	23.75	4.5	23.671	4.5
3	Temperature	40544	0.354	23.381	4.5	23.381	4.5
4	Temperature	40544	0.604	23.131	4.5	23.131	4.5
5	Temperature	40544	0.854	22.881	4.5	22.881	4.5
6	Temperature	40544	1.104	22.631	4.5	22.631	4.5
7	Temperature	40544	1.479	22.256	4.5	22.256	4.5
8	Temperature	40544	1.979	21.756	4.5	21.756	4.5
9	Temperature	40544	2.479	21.256	4.5	21.256	4.5
10	Temperature	40544	2.979	20.756	4.5	20.756	4.5
11	Temperature	40544	3.479	20.256	4.5	20.256	4.5
12	Temperature	40544	3.979	19.756	4.5	19.756	4.5
13	Temperature	40544	4.479	19.256	4.5	19.256	4.5

SPR PLOT - spreadsheet output	SPR
SPRC- Specifies if information is written to the spreads	ON
NSPR- # of dates	1
NISPR- # of segments	86
SPR DATE- SPRD(NSPR) - starting date of output in Juli	275
SPR FREQ- SPRF(NSPR) - output frequency- days	0.2
SPR SEG- ISPR(NISPR) - segment # of spreadsheet outp	2

Fluxes – Water Quality Kinetic Flux Output

	CST FLUX - Turn on fluxes in each waterbody,	KFNAME2	CFWBC1	CFWBC2	CFWBC3	CFWBC4	CFWBC5
1	TISS settling in - source, kg/day	TISSIN	OFF	OFF	OFF	OFF	OFF
2	TISS settling out - sink, kg/day	TISSOUT	OFF	OFF	OFF	OFF	OFF
3	PO4 algal respiration - source, kg/day	PO4AR	OFF	OFF	OFF	OFF	ON
4	PO4 algal growth - sink, kg/day	PO4AG	OFF	OFF	OFF	OFF	ON
5	PO4 algal net- source/sink, kg/day	PO4AP	OFF	OFF	OFF	OFF	ON
6	PO4 epiphyton respiration - source, kg/day	PO4ER	OFF	OFF	OFF	OFF	ON
7	PO4 epiphyton growth - sink, kg/day	PO4EG	OFF	OFF	OFF	OFF	ON
8	PO4 epiphyton net- source/sink, kg/day	PO4EP	OFF	OFF	OFF	OFF	ON
9	PO4 POM decay - source, kg/day	PO4POM	OFF	OFF	OFF	OFF	ON
10	PO4 DOM decay - source, kg/day	PO4DOM	OFF	OFF	OFF	OFF	ON
11	PO4 OM decay - source, kg/day	PO4OM	OFF	OFF	OFF	OFF	ON
12	PO4 sediment decay - source, kg/day	PO4SED	OFF	OFF	OFF	OFF	ON
13	PO4 SOD release - source, kg/day	PO4SOD	OFF	OFF	OFF	OFF	ON
14	PO4 net settling - source/sink, kg/day	PO4SET	OFF	OFF	OFF	OFF	ON
15	NH4 nitrification - sink, kg/day	NH4NITR	OFF	OFF	OFF	OFF	OFF
16	NH4 algal respiration - source, kg/day	NH4AR	OFF	OFF	OFF	OFF	OFF
17	NH4 algal growth - sink, kg/day	NH4AG	OFF	OFF	OFF	OFF	OFF
18	NH4 algal net - source/sink, kg/day	NH4AP	OFF	OFF	OFF	OFF	OFF
19	NH4 epiphyton respiration - source, kg/day	NH4ER	OFF	OFF	OFF	OFF	OFF
20	NH4 epiphyton growth - sink, kg/day	NH4EG	OFF	OFF	OFF	OFF	OFF
21	NH4 epiphyton net - source/sink, kg/day	NH4EP	OFF	OFF	OFF	OFF	OFF
22	NH4 POM decay - source, kg/day	NH4POM	OFF	OFF	OFF	OFF	OFF
23	NH4 DOM decay - source, kg/day	NH4DOM	OFF	OFF	OFF	OFF	OFF
24	NH4 OM decay - source, kg/day	NH4OM	OFF	OFF	OFF	OFF	OFF
25	NH4 sediment decay - source, kg/day	NH4SED	OFF	OFF	OFF	OFF	OFF
26	NH4 SOD release - source, kg/day	NH4SOD	OFF	OFF	OFF	OFF	OFF
27	NH3 gas loss - sink, kg/day	NH3GAS	OFF	OFF	OFF	OFF	OFF
	NO3 denitrification - sink, kg/day	NO3DEN	OFF	OFF	OFF	OFF	OFF
	NO3 algal growth - sink, kg/day	NO3AG	OFF	OFF	OFF	OFF	OFF
30	NO3 epiphyton growth - sink, kg/day	NO3EG	OFF	OFF	OFF	OFF	OFF
	NO3 sediment uptake - sink, kg/day	NO3SED	OFF	OFF	OFF	OFF	OFF
	DSi algal growth - sink, kg/day	DSIAG	OFF	OFF	OFF	OFF	OFF
	DSi epiphyton growth - sink, kg/day	DSIEG	OFF	OFF	OFF	OFF	OFF
	DSi PBSi decay - source, kg/day	DSIPIS	OFF	OFF	OFF	OFF	OFF
	DSi sediment decay - source, kg/day	DSISED	OFF	OFF	OFF	OFF	OFF
	DSi SOD release - source, kg/day	DSISOD	OFF	OFF	OFF	OFF	OFF

37	DSi net settling - source/sink, kg/day	DSISET	OFF	OFF	OFF	OFF	OFF
38	PBSi algal mortality - source, kg/day	PSIAM	OFF	OFF	OFF	OFF	OFF
39	PBSi net settling - source/sink, kg/day	PSINET	OFF	OFF	OFF	OFF	OFF
40	PBSi decay - sink, kg/day	PSIDK	OFF	OFF	OFF	OFF	OFF
41	LDOM decay - sink, kg/day	LDOMDK	OFF	OFF	OFF	OFF	OFF
42	LDOM decay to RDOM - sink, kg/day	LRDOM	OFF	OFF	OFF	OFF	OFF
43	RDOM decay - sink, kg/day	RDOMDK	OFF	OFF	OFF	OFF	OFF
44	LDOM algal mortality - source, kg/day	LDOMAP	OFF	OFF	OFF	OFF	OFF
45	LDOM epiphyton mortality - source, kg/day	LDOMEP	OFF	OFF	OFF	OFF	OFF
46	LPOM decay - sink, kg/day	LPOMDK	OFF	OFF	OFF	OFF	OFF
47	LPOM decay to RPOM - sink, kg/day	LRPOM	OFF	OFF	OFF	OFF	OFF
48	RPOM decay - sink, kg/day	RPOMDK	OFF	OFF	OFF	OFF	OFF
49	LPOM algal production - source, kg/day	LPOMAP	OFF	OFF	OFF	OFF	OFF
50	LPOM epiphyton production - source, kg/day	LPOMEP	OFF	OFF	OFF	OFF	OFF
51	LPOM net settling - source/sink, kg/day	LPOMSET	OFF	OFF	OFF	OFF	OFF
52	RPOM net settling - source/sink, kg/day	RPOMSET	OFF	OFF	OFF	OFF	OFF
53	CBOD decay - sink, kg/day	CBODDK	OFF	OFF	OFF	OFF	OFF
54	DO algal production - source, kg/day	DOAP	OFF	OFF	OFF	OFF	OFF
55	DO algal respiration - sink, kg/day	DOAR	OFF	OFF	OFF	OFF	OFF
56	DO epiphyton production - source, kg/day	DOEP	OFF	OFF	OFF	OFF	OFF
57	DO epiphyton respiration - sink, kg/day	DOER	OFF	OFF	OFF	OFF	OFF
58	DO POM decay - sink, kg/day	DOPOM	OFF	OFF	OFF	OFF	OFF
59	DO DOM decay - sink, kg/day	DODOM	OFF	OFF	OFF	OFF	OFF
60	DO OM decay - sink, kg/day	DOOM	OFF	OFF	OFF	OFF	OFF
61	DO nitrification - sink, kg/day	DONITR	OFF	OFF	OFF	OFF	OFF
62	DO CBOD uptake - sink, kg/day	DOCBOD	OFF	OFF	OFF	OFF	OFF
63	DO reaeration - source/sink, kg/day	DOREAR	OFF	OFF	OFF	OFF	OFF
64	DO sediment uptake - sink, kg/day	DOSED	OFF	OFF	OFF	OFF	OFF
65	DO SOD uptake - sink, kg/day	DOSOD	OFF	OFF	OFF	OFF	OFF
66	TIC algal uptake - sink, kg/day	TICAG	OFF	OFF	OFF	OFF	OFF
67	TIC epiphyton uptake - sink, kg/day	TICEG	OFF	OFF	OFF	OFF	OFF
68	Sediment decay - sink, kg/day	SEDDK	OFF	OFF	OFF	OFF	OFF
69	Sediment algal settling - sink, kg/day	SEDAS	OFF	OFF	OFF	OFF	OFF
CII							
L L	FLUXES- water quality kinetic flux output						
FL	FLXC Specifies if information is sent to the kinetic flux						ļ
NE	NFLX Number of kinetic flux dates						1
FL	FLX DATE- FLXD(NFLX)- starting date of output in Julia						275

30

FLX FREQ- FLXF(NFLX)- output frequency days

US Army Corps of Engineers • Engineer Research and Development Center

Kflux-wb: kflux_wb#.opt

Kflux-wb output option writes individual mass fluxes, sequentially, in **2- dimensional blocks** of data for each time interval for active segments and layers

```
New date
                 275.000
                           October 1, 2000
                                              Julian Date = 275 days .00 hours
                                                                                           LPOM decay - sink, kg/day
15
16
                                                                                                                                                                  16
17
     92 0.000E+00 0.000E+00
18
     93 0.000E+00 0.000E+00
     94 0.000E+00 0.000E+00
20
     95 0.000E+00 0.000E+00
21
          .000E+00 0.000E+00 0.000E+00
     97 0.000E+00 0.000E+00
23
                   0.000E+00 0.000E+00 0.000E+00
                                                             0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
24
     99
                             0.000E+00 0.000E+00
                                                             0.000E+00 0.000E+00 0.000E+00
                                                                                                                 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
25
                                        0.000E+00
                                                             0.000E+00 0.000E+00
                                                                                                                            0.000E+00 0.000E+00 0.000E+00 0.000E+00
                                                                                                                            0.000F+00
                                                                       0.000E+00
                                                                                                                                                 0.000E+00 0.000E+00
                                                                       0.000E+00
                                                                                                                                                 0.000E+00 0.000E+00
                                                                                                                                                 0.000E+00 0.000E+00
                                                                                                                                                 0.000E+00
                                                                                                                                                 0.000E+00
                                                                                                                                                 0.000E+00
                                                                                                                                                 0.000E+00
33
                                                                                                                                                 0.000E+00
34
35
                                              Julian Date = 275 days .00 hours
                                                                                           LPOM decay to RPOM - sink, kg/day
    New date
                 275.000
                           October 1, 2000
37
38
                                                                                                   10
                                                                                                                        12
                                                                                                                                   13
                                                                                                                                                        15
                                                                                                                                                                  16
                                                                                                                                             14
```

Waterbody Flux Output: flx_wb#.csv

flx_wb output files include the waterbody-specific detailed mass balances for water quality constituent fluxes at the same level of temporal detail as CPL output.

1	JDAY	ELTM	LPOMDK (kg/d)	LRPOM (kg/d)	RPOMDK (kg/d)	CBODDK (kg/d)	DOSOD (kg/d)
2	275	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
3	305	30	7.09E+02	8.86E+01	4.10E+01	0.00E+00	9.81E+03
4	335	30	1.68E+02	2.10E+01	8.34E+00	0.00E+00	2.06E+03
5	365	30	1.05E+01	1.31E+00	6.96E-01	0.00E+00	3.55E-02
6	395	30	9.67E+00	1.21E+00	6.61E-01	0.00E+00	7.33E-02
7	425	30	9.75E+00	1.22E+00	6.97E-01	0.00E+00	1.99E-01
8	455	30	2.94E+01	3.67E+00	2.07E+00	0.00E+00	8.95E-01
9	485	30	4.56E+04	5.69E+03	3.35E+03	0.00E+00	9.66E+04

Withdrawal Output – WITH OUTPUT

QWO/TWO/CWO/DWO withdrawal output files include discharge/ temperature/ concentration/ derived concentration of selected segments or at hydraulic structure segments

qwo_	#.csv
------	-------

	•						
1	\$Flow file f	\$Flow file for segment 76					
2	To the righ	t of the sum	of flows are				
3	JDAY	QWD(m3s-	1)				
4	40544	4593.171	4583.29				
5	40544.04	4631.957	4621.74				
6	40544.08	4672.085	4661.52				
7	40544.13	4711.418	4700.511				
8	40544.17	4750.647	4739.4				
9	40544.21	4790.916	4779.319				
10	40544.25	4829.71	4817.777				
11	40544.29	4869.571	4857.292				
12	40544.33	4909.746	4897.119				
13	40544.38	4948.528	4935.563				
14	40544.42	4989.119	4975.802				
15	40544.46	5028.577	5014.918				

two	#.csv
-----	-------

CWO	#.csv
-----	-------

0	#.csv	dwo #.csv	/
•		4110_11001	,

1 \$Temperature file for segment 76 1 \$Concentration file						ile for	segment 76	1	Derived cor	stituent file	e for segme		
1	2	To the right	of the sum	of tempera	2					2			
	3	JDAY	T(C)		3	JDAY	N.	2	DO	3	JDAY	%DO	TDG
	4	40817	4.5	4.5	4	40817	19.	8442	12.0836	4	40544	92.6543	93.8272
	5	40818	5.51	5.51	5	40818	19.	.8267	12.0856	5	40544.04	92.6162	93.7961
	6	40219	6 24	6 24	6	40819	19	7283	12 0289	6	40544.08	92.5794	93.7695
	WI	TH OUTPU	T- withdra	wal outpu	t			WDC)	7	40544.13	92.5415	93.7362
	WD	OC- withd	rawal outp	out ON or 0	OFF			ON		8	40544.17	92.3995	93.5974
	NW	/DO- # of w	rithdrawal	output da	tes				1	9	40544.21	92.3549	93.5508
	NIV	VDO- # of \	withdrawa	l output se	gme	ents			1	10	40544.25	92.2091	93.4108
				<u> </u>		file name p	refix	wdo.	.CSV	11	40544.29	92.1608	93.3631
				'		<u> </u>			1	12	40544.33	92.1148	93.3268
WITH DAT- WDOD(NWDO)- start date of output in Julia								0.0416666	13	40544.38	91.9782	93.1958	
WITH FREQ- WDOF(NWDO)- frequency of output days WITH SEG- IWDO(NIWDO)- segment number of withdr									14	40544.42	91.9581	93.178	
	WI	IH SEG- IW	DO(NIMD	O)- segmer	nt nu	umber of w	/ithdr	0.200	76	15	40544.46	91.9608	93.194

Water Level Output

wl.csv

Water level output	WLEVEL
WLC- time series of water levels ON or OFF at all segme	ON
WL FREQ- WLF- frequency of output in days	14

Flow Balance Output: flowbal.csv

flowbal output file list all flow balance parameters, such as volume in, out, etc.

1	JDAY	WB	VOLIN(m3)	VOLPR(m3)	VOLOUT(m3)	VOLWD(m3)	VOLEV(m3)	VOLDT(m3)	VOLTRB(m3)	VOLICE(m3)	%VOLerror
2	40544	1	2.38E+05	0.00E+00	-2.11E+05	0.00E+00	0.00E+00	-2.77E+04	0.00E+00	0.00E+00	-2.57E-08
3	40558	1	5.58E+09	0.00E+00	-5.64E+09	0.00E+00	0.00E+00	5.08E+07	0.00E+00	0.00E+00	2.41E-09
4	40572	1	1.33E+10	0.00E+00	-1.34E+10	0.00E+00	0.00E+00	1.18E+07	0.00E+00	0.00E+00	1.55E-11
5	40586	1	2.07E+10	0.00E+00	-2.07E+10	0.00E+00	0.00E+00	-6.72E+07	0.00E+00	0.00E+00	1.15E-09
6	40600	1	2.82E+10	0.00E+00	-2.82E+10	0.00E+00	0.00E+00	-1.39E+08	0.00E+00	0.00E+00	1.43E-09
7	40614	1	3.56E+10	0.00E+00	-3.53E+10	0.00E+00	0.00E+00	-3.60E+08	0.00E+00	0.00E+00	4.80E-09
8	40628	1	4.33E+10	0.00E+00	-4.30E+10	0.00E+00	0.00E+00	-3.40E+08	0.00E+00	0.00E+00	4.80E-09
9	40642	1	5.32E+10	0.00E+00	-5.26E+10	0.00E+00	0.00E+00	-5.88E+08	0.00E+00	0.00E+00	-1.34E-08
10	40656	1	6.31E+10	0.00E+00	-6.25E+10	0.00E+00	0.00E+00	-5.58E+08	0.00E+00	0.00E+00	-1.69E-08

Flow balance output	FLOWBAL
FLOWBALC- summary of flows from all sources/sinks+v	ON
FLOWBAL FREQ- FLOWBALF- frequency of output in da	14

N and P Mass Balance Output: massbal.csv

This output option writes a summary of the N and P mass balance for each waterbody - cumulative N and P mass balance for all N/P sources/sinks.

1	JDAY	WB	TP-Waterbody(kg)	P-Sediment(kg)	TP-Plants(kg) C	utflowTP(kg)	TributaryTP(kg)	Distributed ⁻	Withdrawal ⁻	Precipitatic	nflowTP(kg)	SED+SOD_PRelease(kg)	PFluxtoSediments(kg)	TN-Waterbody(kg)
2	275	1	5.59E+03	0.00E+00	0.00E+00	0.00E+00	2.88E+00	0.00E+00	7.71E-02	0.00E+00	1.95E-01	5.09E-04	0.00E+00	6.48E+04
3	289	1	1.70E+03	0.00E+00	0.00E+00	0.00E+00	3.09E+04	0.00E+00	9.10E+02	0.00E+00	2.39E+03	1.87E+00	0.00E+00	2.55E+04
4	303	1	2.58E+03	0.00E+00	0.00E+00	0.00E+00	5.84E+04	0.00E+00	2.01E+03	0.00E+00	5.08E+03	6.85E+00	0.00E+00	2.68E+04
5	317	1	2.40E+03	0.00E+00	0.00E+00	0.00E+00	8.45E+04	0.00E+00	3.65E+03	0.00E+00	8.95E+03	8.81E+00	0.00E+00	3.02E+04
6	331	1	3.51E+03	0.00E+00	0.00E+00	0.00E+00	1.17E+05	0.00E+00	6.14E+03	0.00E+00	1.90E+04	8.81E+00	0.00E+00	4.76E+04
7	345	1	4.25E+03	0.00E+00	0.00E+00	0.00E+00	1.56E+05	0.00E+00	8.07E+03	0.00E+00	2.68E+04	8.81E+00	0.00E+00	6.20E+04
8	359	1	2.83E+03	0.00E+00	0.00E+00	0.00E+00	2.03E+05	0.00E+00	9.59E+03	0.00E+00	3.21E+04	8.81E+00	0.00E+00	5.71E+04
9	373	1	3.63E+03	0.00E+00	0.00E+00	0.00E+00	2.39E+05	0.00E+00	1.04E+04	0.00E+00	3.72E+04	8.81E+00	0.00E+00	5.58E+04
10	387	1	3.27E+03	0.00E+00	0.00E+00	0.00E+00	2.68E+05	0.00E+00	1.14E+04	0.00E+00	4.29E+04	8.81E+00	0.00E+00	5.04E+04
11	401	1	3.39E+03	0.00E+00	0.00E+00	0.00E+00	3.04E+05	0.00E+00	1.23E+04	0.00E+00	4.81E+04	8.81E+00	0.00E+00	4.99E+04
12	415	1	3.38E+03	0.00E+00	0.00E+00	0.00E+00	3.42E+05	0.00E+00	1.32E+04	0.00E+00	5.32E+04	8.81E+00	0.00E+00	4.59E+04
13	429	1	4.04E+03	0.00E+00	0.00E+00	0.00E+00	3.91E+05	0.00E+00	1.41E+04	0.00E+00	5.81E+04	8.81E+00	0.00E+00	4.65E+04
14	443	1	3.67E+03	0.00E+00	0.00E+00	0.00E+00	4.46E+05	0.00E+00	1.52E+04	0.00E+00	6.42E+04	8.81E+00	0.00E+00	4.36E+04
15	457	1	7.99E+03	0.00E+00	0.00E+00	0.00E+00	5.66E+0 <u>5</u>	0.00E+00	1.62E+04	0.00E+00	8.53E+04	8.81E+00	0.00E+00	1.19E+05
		•		•				CALCULATIO	N				WB1	WB2

- Derived variables (TN, TP) are turned ON
- CPL output is turned ON
- MBC mass balance is turned ON
- NPBALC is turned ON

CALCULATION	WB1		WB2
VBC - volume balance computation	ON		
EBC - energy balance computation	C - energy balance computation OFF		
MBC - mass balance computation	ON		
PQC - Turn ON or OFF placement of inflows by density	ON		
EVC - Turn ON or OFF evaporation water loss	OFF		
PRC - Turn ON or OFF precipitation on water surface	OFF		
N and P mass balance output		NPB	AL
NPBALC- summary of all N and P sources/sinks		ON	

N and P mass balance output

NPBAL

NPBALC- summary of all N and P sources/sinks

ON

NP Balance FREQ- NPBALF- frequency of output in day:

14

US Army Corps of Engineers • Engineer Research and Development Center

N and P Mass Balance Output: massbal.csv

US Army Corps of Engineers • Engineer Research and Development Center

Contour Plot Output: CPL PLOT

- The CPL output file stores detailed output for all model segments (and layers)
 within each simulated waterbody and provide the information needed for
 developing both temporal and spatial model-data comparisons.
- The CPL output file writes data in **2-dimensional blocks** for each output time interval by combining the sequence of segment and layer results in the vertical dimension (down) and the selected output variables in the horizontal dimension (across).

CPL PLOT - contour plot output	CPL
CPLC Specifies if information is output to the contour f	ON
NCPL Number of contour plot dates	1
TECPLOT Turns ON or OFF TECPLOT output format	OFF
CPL DATE- CPLD(NCPL)- starting date of output, output	1
CPL FREQ- CPLF(NCPL)- output frequency- days	30

W2Post - XXX.w2l

DSI W2Linkage File for W2Post (used to be called V	W2L
VPLC- ON or OFF Specifies if information is written	ON
NVPL- # of dates	1
VPL DATE- VPLD(NVPL)- starting date of output in Ju	275
VPL FREQ- VPLF(NVPL)- output frequency- days	30

US Army Corps of Engineers • Engineer Research and Development Center

W2Post: Color Contour Plots

W2Post: Time Series Plot

W2Post: Animation

W2Post: Bathymetry Data Viewer

Restart and Snapshot Print

RESTART

RESTART	RESTART
RSOC- Restart control ON or OFF- for writing restart file	ON
NRSO- # of restart dates and frequencies of output	1
RSIC- Restart read in control- ON or OFF- read in a rest	OFF
RSI FILE RSIFN- restart in file name	rso635.opt
RSO DATE- RSOD(NRSO) - output dates in Julian days	635
RSO FREQ- RSOF(NRSO) - frequency of output in days	50

SNP PRINT - Snapshot print

SNP PRINT - Snapshot print	SNP
SNPC, ON or OFF	OFF
NSNP, # of dates	2
SNP DATE SNPD(NSNP) output days in Julian days	275
SNP FREQ SNPF(NSNP) Frequency of output in days	500

Runtime Errors: w2.err

```
Unstable water surface elevation on day 40544.002
negative surface layer thickness using minimum timestep at iteration 1
                                        1 Surface layer KT:
                 1 in Waterbody:
Branch #:
                                                                  39
Segment, Surface layer thickness, m, Flow m3/s, U(KT,I) m/s, ELWS, m
               ******
                              ******
                                                 *****
                                             NaN
               *******
                              ******
                                                  *****
                                             NaN
               ******
                              ******
                                                 ******
                                             NaN
               ******
                                                 ******
                              ******
                                             NaN
               ******
                              ******
                                                 *****
                                            0.00
               ******
                              ******
                                                  ******
                                            0.00
```

Runtime Warnings: w2.wrn

```
NIT = 0 IZMIN =8********
 ******
               Add layer 39 at Julian day = 40544.000
Raising bottom layer at segment 1 at iteration
                                                   0 at Julian day 40544.000
Raising bottom layer at segment 2 at iteration
                                                   0 at Julian day 40544.000
Raising bottom layer at segment 3 at iteration
                                                   0 at Julian day 40544.000
Raising bottom layer at segment 4 at iteration
                                                   0 at Julian day 40544.000
Raising bottom layer at segment 5 at iteration
                                                   0 at Julian day 40544.000
Computational warning at Julian day = 40544.002 at segment 4
timestep = 200.000 water surface deviation [Z] = 18254461607682669129453036496806324305600
Negative surface layer thickness in segment 4
 time step reduced to .010 s on day 40544.002 at iteration 1
Computational warning at Julian day = 40544.002
timestep = .009 sec: DLT<DLTMIN set DLT=DLTMIN</pre>
Computational warning at Julian day = 40544.002 at segment 4
```

pre.opt: Meteorological Data Summary

Meteorological	Data Input	Summary		
Parameter	Waterbody	Average Value	Maximum	Minimum
TAIR(C)	1	10.317	39.160	-18.100
TDEW(C)	1	4.040	23.450	-22.700
WIND(m/s)	1	1.507	10.500	0.000
PHI(rad)	1	1.843	6.280	0.000
CLOUD(0-10)) 1	3.659	10.000	0.000
SRO(W/m2)	1	0.000	0.000	0.000

pre.opt: Summary Statistics

Summary statistics regarding inflows, temperatures, and inflow constituent concentrations

Inflow Constituent Statistics									
Branch 1									
Constituent name	Average	Maximum	Minimum /	ApproxLoading(kg/d)					
TDS	603.073	796.000	248.000	0.10146E+08					
ISS	90.040	812.000	2.000	0.77500E+07					
Phosphate	0.114	0.205	0.000	0.39976E+04					
Ammonium	0.159	0.530	0.020	0.47901E+04					
Nitrate-Nitrite	3.088	10.020	0.000	0.13999E+06					
Dissolved silica	18.948	22.000	14.000	0.41202E+06					
Labile DOM	2.000	2.000	2.000	0.50055E+05					
Refractory DOM	11.330	11.330	11.330	0.28356E+06					
Labile POM	1.447	10.360	0.080	0.10393E+06					
Refractory POM	8.195	58.690	0.450	0.58883E+06					

pre.opt: Summary Statistics

Summary statistics regarding inflows, temperatures, and inflow constituent concentrations for each branch and summed for each waterbody

```
Water Balance Summary
  Waterbody 1
    total inflows total outflows
   average maximum
                     average maximum
   310.04 2441.18
                       5.39
                               10.40
   Branch 1
     Inflows
            total
       average maximum
         302.21 2441.18
           upstream
                           tributaries distributed tributaries
                                                                     precipitation
                         average maximum
       average maximum
                                              average maximum
                                                                   average
                                                                            maximum
        295.09 2441.18
                            7.12
                                    51.19
                                                 0.00
                                                          0.00
                                                                      0.00
                                                                               0.00
     Outflows
            outlets
                        withdrawals
       average maximum
                         average maximum
          0.00
                   0.00
                            0.00
                                     0.00
```

pre.opt: Summary Statistics

Summary statistics regarding inflows, temperatures, and inflow constituent concentrations

```
Branch Inflow Temperature Min/Max
Branch(JB) Maximum Temp(C) Minimum Temp(C)

1 29.350 -0.740

Tributary Inflow Temperature Min/Max
Tributary(JT) Maximum Temp(C) Minimum Temp(C)

1 29.600 0.000

Tributary(JT) Maximum Temp(C) Minimum Temp(C)

2 29.100 0.000
```

pre.opt: Area-Volume-Elevation Table

Computed area-volume-elevation table, theoretical hydraulic residence at each elevation is included if the waterbody is a reservoir

Waterbody 1 Volu	ume-Area-Elevation Table
Note: Elevation	is at top of layer

Layer	Elevation (m)	Area (1.0E6 m^2)		ctive Cells	Average depth (m)	Average width (m)	Residence time (days)
2	494.53	79.137	4745.273	5641	60.0	686.18	331.35
3	493.53	78.873	4666.136	5583	59.2	683.89	325.83
4	492.53	78.555	4587.264	5525	58.4	681.14	320.32
5	491.53	78.306	4508.708	5467	57.6	678.98	314.83

Questions?

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED 28