ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Gramáticas Livres do Contexto: 2.1 Forma Normal de Chomsky 7.2 Algoritmo CYK (Cocke–Younger–Kasami)

Marcelo Lauretto
(Parte do material gentilmente cedido pela Profa. Ariane Machado Lima)

Uma GLC está na Forma Normal de Chomsky se:

a) Toda regra de substituição é da forma

$$A \rightarrow BC$$
 ou $A \rightarrow a$

onde B,C são variáveis, a é símbolo terminal;

- b) A variável inicial S não pode aparecer no lado direito de nenhuma regra;
- c) Somente a variável inicial pode ter a regra

$$S \rightarrow \varepsilon$$
.

- Conversão de uma GLC G = (V, Σ, R, S) para FNC:
 - a) Adicionar nova variável inicial S_0 e adicionar a regra $S_0 \rightarrow S$;
 - b) Eliminação de regras A → ε
 - b₁) Remover a regra;
 - b_2) Para toda regra $R \rightarrow u A v$, adicionar $R \rightarrow u v$;

Nota: Fazer isso para cada ocorrência de A.

Ex: se R → u A v A w, deve-se acrescentar 3 regras:

 $R \rightarrow u \vee A w$, $R \rightarrow u \wedge A \vee w$, $R \rightarrow u \vee w$

b₃) Se tivermos a regra R \rightarrow A e se R \rightarrow ϵ não tiver sido previamente eliminado, adicionar R \rightarrow ϵ

(posteriormente, essa regra também será removida se $R \neq S_0$)

b₄) Repetir até eliminar todas as ocorrências.

3

- Conversão de uma GLC G = (V, Σ, R, S) para FNC (cont.):
 - a) Remoção de regras unitárias A -> B:
 - c1) Remover a regra;
 - c2) Para toda regra B → u, acrescentamos A → u, a menos que essa seja uma regra unitária já removida.
 - c3) Repetir para todas as regras unitárias.

- Conversão de uma GLC G = (V, Σ, R, S) para FNC (cont.):
 - a) Converter todas as regras remanescentes para a forma apropriada A → BC ou A → a:
 - d1) Se A \rightarrow u₁u₂ ... u_k, onde k \geq 3 e u_i é variável ou símbolo terminal, então substituir esta regra por:
- $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, A_2 \rightarrow u_3 A_3, ..., A_{k-2} \rightarrow u_{k-1} u_k.$
 - d2) Se k=2, então substituir qualquer terminal u_i na(s) regra(s) precedente(s) por uma nova variável U_i , e adicionar a regra $U_i \rightarrow u_i$.

Algoritmos para Processamento de Gramáticas Livres do Contexto

Problema:

A_{GLC} = { (G, w) | G é uma GLC que gera a cadeia w }

- Restrição:
 - Se G for uma gramática qualquer:
 - Testar todas as possíveis derivações: loop infinito
 - Se G estiver na Forma Normal de Chomsky:
 - Teorema: qualquer derivação de uma cadeia não vazia w tem exatamente 2n-1 passos, onde n = |w|.
 - Método de força bruta (para n>0): custo exponencial
 - Teste todas as derivações possíveis com 2n-1 passos.
 - Se alguma das derivações gerar w, aceite; senão, rejeite

Algoritmos para Processamento de Gramáticas Livres do Contexto

- Algoritmo Polinomial (G na forma normal de Chomsky)
- Programação dinâmica: uso de soluções de subproblemas menores para resolver subproblemas maiores (até chegar à solução do problema original)
- Tabela n×n:
 - Para i ≤ j, a (i, j) entrada da tabela contém todas as varíaveis que geram a subcadeia w_i w_{i+1} ... w_j
 - Tratam-se subcadeias de tamanhos crescentes (começando de 1)

Algoritmo CYK – programação dinâmica

```
D = "Sobre a entrada w = w_1 \cdots w_n:
      1. Se w = \varepsilon e S \to \varepsilon for uma regra, aceite. [trata o caso w = \varepsilon]
      2. Para i = 1 até n: [examina cada subcadeia de comprimento 1]
            Para cada variável A:
               Teste se A \to b é uma regra, onde b = w_i.
               Se for, coloque A em tabela(i, i).
         Para l=2 até n:  [l é o comprimento da subcadeia]
             Para i = 1 até n - l + 1:  [ i é a posição inicial da subcadeia ]
      7.
               Faça j = i + l - 1,  [j é a posição final da subcadeia]
      8.
               Para k=i até j-1: [ k é a posição em que ocorre a divisão ]
      9.
                  Para cada regra A \to BC:
     10.
                    Se tabela(i, k) contém B e tabela(k + 1, j) contém C,
     11.
                    ponha A em tabela(i, j).
     12. Se S estiver em tabela(1, n), aceite. Caso contrário, rejeite."
```

Exemplo

Conversão de uma GLC para FNC:

Gramática original: S → aSb | bSa | SS | ε

1) Criação de nova variável inicial:

$$S_0 \rightarrow S$$

$$S \rightarrow aSb \mid bSa \mid SS \mid \varepsilon$$

2) Eliminação de substituições ϵ :

$$S_0 \rightarrow S \mid \varepsilon$$

$$S \rightarrow aSb \mid bSa \mid SS \mid ab \mid ba \mid S$$

3) Eliminação de regras unitárias:

$$S_0 \rightarrow \varepsilon \mid aSb \mid bSa \mid SS \mid ab \mid ba$$

4) Padronização:

$$S_0 \rightarrow \varepsilon \mid AT \mid BU \mid SS \mid AB \mid BA$$

$$S \rightarrow AT \mid BU \mid SS \mid AB \mid BA$$

$$T \rightarrow SB$$

$$U \rightarrow SA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Exemplo

Aplicação algoritmo CYK:

```
Grámática na FNC:
```

 $S_0 \rightarrow \epsilon | AT | BU | SS | AB | BA$

S -> AT | BU | SS | AB | BA

 $T \rightarrow SB$

 $U \rightarrow SA$

 $A \rightarrow a$

 $B \rightarrow b$

Cadeia:

abaabb

Tabela:

	а	b	а	а	b	Ь
а	Α	S ₀ , S	כ	Ø	Ø	S ₀ , S
b		В	S ₀ , S	J	S ₀ , S	Т
а			Α	\bigotimes	Ø	S ₀ , S
а				Α	S ₀ , S	Τ
b					В	Ø
b						В