Brief overview of linear algebra

Hamed Shahbazi, Fall 2018, CS-534

Notation

• Vector (Column Vector):

$$x = \left| egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight.$$

• Vector Transpose (Row vector):

$$\boldsymbol{x}^T = [x_1, x_2, \dots, x_n]$$

• Matrix $A_{m \times n}$:

$$A = \left[egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}
ight] lacksquare$$

Notation, Transpose

The **transpose** of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, its transpose, written $A^T \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given by

$$(A^T)_{ij} = A_{ji}.$$

$$\begin{pmatrix} 5 & 4 & 3 \\ 4 & 0 & 4 \\ 7 & 10 & 3 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 5 & 4 & 7 \\ 4 & 0 & 10 \\ 3 & 4 & 3 \end{pmatrix}$$

Notation

• We denote the jth column of A by a_j or $A_{:,j}$:

$$A=\left[egin{array}{ccccc} |&|&&&|\ a_1&a_2&\cdots&a_n\ |&&|&&| \end{array}
ight].$$

• We denote the *i*th row of A by a_i^T or $A_{i,:}$:

$$A = \left[egin{array}{cccc} -& a_1^T & - \ -& a_2^T & - \ dots & dots \ -& a_m^T & - \end{array}
ight].$$

Definition, Identity Matrix

The *identity matrix*, denoted $I \in \mathbb{R}^{n \times n}$, is a square matrix with ones on the diagonal and zeros everywhere else. That is,

$$I_{ij} = \left\{ egin{array}{ll} 1 & i=j \ 0 & i
eq j \end{array}
ight.$$

It has the property that for all $A \in \mathbb{R}^{m \times n}$,

$$AI = A = IA$$
.

Γ	1	0	0	0
	0	1	0	0
	0	0	1	0
L	0	0	0	1

Definition, Diagonal Matrix

A **diagonal matrix** is a matrix where all non-diagonal elements are 0. This is typically denoted $D = \text{diag}(d_1, d_2, \dots, d_n)$, with

$$D_{ij} = \left\{ egin{array}{ll} d_i & i=j \ 0 & i
eq j \end{array}
ight.$$

Clearly, I = diag(1, 1, ..., 1).

Definition, Symmetric Matrix

A square matrix $A \in \mathbb{R}^{n \times n}$ is **symmetric** if $A = A^T$. It is **anti-symmetric** if $A = -A^T$.

for any matrix $A \in \mathbb{R}^{n \times n}$, the matrix $A + A^T$ is symmetric

matrix $A - A^T$ is anti-symmetric.

Definition, Trace

A square matrix $A \in \mathbb{R}^{n \times n}$

$$\mathrm{tr} A = \sum_{i=1}^n A_{ii}.$$

Definition, Norm

- Eucledian Norm (L₂ norm)
- L₁ Norm
- Infinity Norm
- L_p Norm
- Frobenius norm (of a Matrix)

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}. \qquad \|x\|_2^2 = x^T x.$$
 $\|x\|_1 = \sum_{i=1}^n |x_i|$

$$||x||_{\infty} = \max_i |x_i|$$

$$\|x\|_p=\left(\sum_{i=1}^n|x_i|^p
ight)^{1/p}$$

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\mathrm{tr}(A^T A)}.$$

Norm, Continue

More formally, a norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties:

- 1. For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negativity).
- 2. f(x) = 0 if and only if x = 0 (definiteness).
- 3. For all $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (homogeneity).
- 4. For all $x, y \in \mathbb{R}^n$, $f(x+y) \leq f(x) + f(y)$ (triangle inequality).

Operation, Vector Summation

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$$

Operation, Vector Subtraction

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 - w_1 \\ v_2 - w_2 \end{bmatrix}$$

Operation, Vector Scaler Product

$$a \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} av_1 \\ av_2 \end{bmatrix}$$

Operation, Matrix Summation

Sum:
$$C_{n \times m} = A_{n \times m} + B_{n \times m}$$
 $c_{ij} = a_{ij} + b_{ij}$

A and B must have the same dimensions!

Example:
$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 4 & 6 \end{bmatrix}$$

Operation, Transpose

The **transpose** of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, its transpose, written $A^T \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given by

$$(A^T)_{ij} = A_{ji}.$$

$$\begin{pmatrix} 5 & 4 & 3 \\ 4 & 0 & 4 \\ 7 & 10 & 3 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 5 & 4 & 7 \\ 4 & 0 & 10 \\ 3 & 4 & 3 \end{pmatrix}$$

- $\bullet \ (A^T)^T = A$
- $\bullet \ (AB)^T = B^T A^T$
- $\bullet (A+B)^T = A^T + B^T$

Operation, Inner Product (Dot Product)

$$\cos(\alpha) = \frac{x^{t}y}{\parallel x \parallel \parallel y \parallel}$$

The inner product is a SCALAR!

Orthogonal vectors x and y $\longrightarrow x^Ty = 0$

Operation, Outer Product

$$xy^T \in \mathbb{R}^{m imes n} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_m \end{array}
ight] \left[egin{array}{ccccc} y_1 & y_2 & \cdots & y_n \end{array}
ight] = \left[egin{array}{ccccc} x_1y_1 & x_1y_2 & \cdots & x_1y_n \ x_2y_1 & x_2y_2 & \cdots & x_2y_n \ dots & dots & dots & dots & dots \ x_my_1 & x_my_2 & \cdots & x_my_n \end{array}
ight].$$

Example:

Operation, Matrix-Vector Product

$$y = Ax = egin{bmatrix} - & a_1^T & - \ - & a_2^T & - \ dots & dots \ - & a_m^T & - \ \end{bmatrix} x = egin{bmatrix} a_1^T x \ a_2^T x \ dots \ a_m^T x \ \end{bmatrix} \ y_i = a_i^T x.$$

Operation, Matrix-Vector Product (linear combination)

$$y=Ax=\left[egin{array}{cccc} ert & ert & ert \ a_1 & a_2 & \cdots & a_n \ ert & ert & ert \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ drave{arepsilon} \ x_n \end{array}
ight] = \left[egin{array}{c} a_1 \ \end{array}
ight] x_1 + \left[egin{array}{c} a_2 \ \end{array}
ight] x_2 + \ldots + \left[egin{array}{c} a_n \ \end{array}
ight] x_n$$

Operation, Matrix-Vector Product (other ways)

$$y^T = x^T A = x^T \left[egin{array}{cccc} ert & ert & ert \ a_1 & a_2 & \cdots & a_n \ ert & ert & ert \end{array}
ight] = \left[egin{array}{cccc} x^T a_1 & x^T a_2 & \cdots & x^T a_n \end{array}
ight]$$

Operation, Matrix-Matrix Product

The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix

$$C = AB \in \mathbb{R}^{m \times p}$$
,

where

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Operation, Matrix-Matrix Product Ways

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & & | \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{bmatrix}$$

$$C = AB = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ & \vdots & \\ - & b_n^T & - \end{bmatrix} = \sum_{i=1}^n a_i b_i^T$$

3)
$$C = AB = A \begin{bmatrix} | & | & & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & & | \end{bmatrix} = \begin{bmatrix} | & | & & | \\ Ab_1 & Ab_2 & \cdots & Ab_p \\ | & | & & | \end{bmatrix}$$

$$C = AB = \begin{vmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & - & a_m^T & - \end{vmatrix} B = \begin{vmatrix} - & a_1^T B & - \\ - & a_2^T B & - \\ \vdots & - & a_m^T B & - \end{vmatrix}$$

Operation, Matrix-Matrix Product, Example

$$A = \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

1)

$$C = AB = egin{bmatrix} - & a_1^T & - \ - & a_2^T & - \ dots & dots \ - & a_m^T & - \ \end{bmatrix} egin{bmatrix} dots & dots & dots \ b_1 & b_2 & \cdots & b_p \ dots & dots & dots \ \end{pmatrix} = egin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \ dots & dots & dots & dots & dots \ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \ \end{bmatrix}$$

$$C = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

$$C_{2,2} = a_2^T b_2 = [0, 1, 2, 3] \begin{bmatrix} -1\\9\\6\\1 \end{bmatrix} = 24$$

$$= \begin{bmatrix} 4\times4 + -1\times0 + -2\times-3 + 5\times10 & 4\times-1 + -1\times9 + -2\times6 + 5\times1 \\ 0\times4 + 1\times0 + 2\times-3 + 3\times10 & 0\times-1 + 1\times9 + 2\times6 + 3\times1 \\ -3\times4 + 6\times0 + 7\times-3 + 8\times10 & -3\times-1 + 6\times9 + 7\times6 + 8\times1 \end{bmatrix}$$

$$C = \begin{bmatrix} 72 & -20 \\ 24 & 24 \\ 47 & 107 \end{bmatrix}$$

Operation, Matrix-Matrix Product, Example

$$A = \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

2)

$$C = AB = \left[egin{array}{cccc} | & | & | & | \ a_1 & a_2 & \cdots & a_n \ | & | & | \end{array}
ight] \left[egin{array}{cccc} - & b_1^T & - \ - & b_2^T & - \ dots & dots \ - & b_n^T & - \end{array}
ight] = \sum_{i=1}^n a_i b_i^T$$

$$C = a_1 b_1^T + a_2 b_2^T + a_3 b_3^T + a_4 b_4^T =$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} \begin{bmatrix} 4 & -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix} \begin{bmatrix} 0 & 9 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \\ 7 \end{bmatrix} \begin{bmatrix} -3 & 6 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix} \begin{bmatrix} 10 & 1 \end{bmatrix}$$

Matrix-Matrix Product, Example

$$A = \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

$$C = AB = A \begin{bmatrix} \begin{vmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} | & | & | & | \\ Ab_1 & Ab_2 & \cdots & Ab_p \\ | & | & | & | \end{bmatrix}$$

$$C=AB=A\left[egin{array}{cccc} |&|&&&|\\b_1&b_2&\cdots&b_p\\|&|&&\end{array}
ight]=\left[egin{array}{cccc} |&|&&|&&|\\Ab_1&Ab_2&\cdots&Ab_p\\|&&&&\end{array}
ight]$$

$$\begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -3 \\ 10 \end{bmatrix}, \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -3 \\ 10 \end{bmatrix}$$

Matrix-Matrix Product, Example

$$A = \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 & -2 & 5 \\ 0 & 1 & 2 & 3 \\ -3 & 6 & 7 & 8 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

$$\boldsymbol{C} = AB = \begin{bmatrix} -a_1^T & - \\ -a_2^T & - \\ \vdots \\ -a_m^T & - \end{bmatrix} B = \begin{bmatrix} -a_1^TB & - \\ -a_2^TB & - \\ \vdots \\ -a_m^TB & - \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 & -2 & 5 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 9 \\ -3 & 6 \\ 10 & 1 \end{bmatrix}$$

Matrix-Matrix Product, Properties

- Matrix multiplication is associative: (AB)C = A(BC).
- Matrix multiplication is distributive: A(B+C) = AB + AC.
- Matrix multiplication is, in general, not commutative; that is, it can be the case that $AB \neq BA$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product BA does not even exist if m and q are not equal!)

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk}\right) C_{kj}$$

$$= \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} C_{kj}\right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{p} A_{il} B_{lk} C_{kj}\right)$$

$$= \sum_{l=1}^{n} A_{il} \left(\sum_{k=1}^{p} B_{lk} C_{kj}\right) = \sum_{l=1}^{n} A_{il} (BC)_{lj} = (A(BC))_{ij}.$$

Matrix-Matrix Product, Application Example

- For $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr} A = \operatorname{tr} A^T$.
- For $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(A + B) = \operatorname{tr}A + \operatorname{tr}B$.
- For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, $\operatorname{tr}(tA) = t \operatorname{tr} A$.
- For A, B such that AB is square, trAB = trBA.
- For A, B, C such that ABC is square, trABC = trBCA = trCAB, and so on for the product of more matrices.

$$\operatorname{tr} AB = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} B_{ji} \right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} B_{ji} A_{ij} \right) = \sum_{j=1}^{n} (BA)_{jj} = \operatorname{tr} BA.$$

^

Definition, Linear Independence

A set of vectors $\{x_1, x_2, \dots x_n\} \subset \mathbb{R}^m$ is said to be *(linearly) independent* if no vector can be represented as a linear combination of the remaining vectors. Conversely, if one vector belonging to the set *can* be represented as a linear combination of the remaining vectors, then the vectors are said to be *(linearly) dependent*. That is, if

$$x_n = \sum_{i=1}^{n-1} lpha_i x_i$$

$$x_1 = \left[egin{array}{c}1\2\3\end{array}
ight] \hspace{0.5cm} x_2 = \left[egin{array}{c}4\1\5\end{array}
ight] \hspace{0.5cm} x_3 = \left[egin{array}{c}2\-3\-1\end{array}
ight]$$

$$x_3 = -2x_1 + x_2.$$

Definition, Matrix Rank

The number of linearly independent columns (Rows) of A

- For $A \in \mathbb{R}^{m \times n}$, rank $(A) \leq \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be **full rank**.
- For $A \in \mathbb{R}^{m \times n}$, $rank(A) = rank(A^T)$.
- For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, $rank(A + B) \le rank(A) + rank(B)$.

Definition, Orthogonal Matrix

Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** if $x^Ty = 0$. A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$. A square matrix $U \in \mathbb{R}^{n \times n}$ is **orthogonal** (note the different meanings when talking about vectors versus matrices) if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being **orthonormal**).

It follows immediately from the definition of orthogonality and normality that

$$U^TU = I = UU^T$$
.

The <u>inverse</u> of an orthogonal matrix is its <u>transpose</u>.

The Determinant

The **determinant** of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or det A (like the trace operator, we usually omit parentheses).

$$A = \left[egin{array}{cc} 1 & 3 \ 3 & 2 \end{array}
ight] \qquad a_1 = \left[egin{array}{cc} 1 \ 3 \end{array}
ight] \quad a_2 = \left[egin{array}{cc} 3 \ 2 \end{array}
ight]$$

|A| = Area given by $\alpha_1 a_1 + \alpha_2 a_2$ $0 \le \alpha_1 \le 1$, $0 \le \alpha_2 \le 1$

The Determinant, continue

- 1. The determinant of the identity is 1, |I| = 1. (Geometrically, the volume of a unit hypercube is 1).
- 2. Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is t|A|,

$$egin{bmatrix} - & t \ a_1^T & - \ - & a_2^T & - \ dots & dots \ - & a_m^T & - \ \end{bmatrix} = t|A|.$$

(Geometrically, multiplying one of the sides of the set S by a factor t causes the volume to increase by a factor t.)

3. If we exchange any two rows a_i^T and a_j^T of A, then the determinant of the new matrix is -|A|, for example

$$egin{bmatrix} -&a_2^T&-\-&a_1^T&-\ dots\-&a_m^T&- \end{bmatrix}matrix = -|A|.$$

The Determinant, continue

- For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$.
- For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A||B|.
- For $A \in \mathbb{R}^{n \times n}$, |A| = 0 if and only if A is singular (i.e., non-invertible). (If A is singular then it does not have full rank, and hence its columns are linearly dependent. In this case, the set S corresponds to a "flat sheet" within the n-dimensional space and hence has zero volume.)
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$.

$$|A| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i,\setminus j}|$$
 (for any $j \in 1,\ldots,n$)
 $= \sum_{i=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i,\setminus j}|$ (for any $i \in 1,\ldots,n$)

The Determinant, Example

Definition, Matrix Inverse

The *inverse* of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that

$$A^{-1}A = I = AA^{-1}$$
.

- Non-square matrices, do not have inverses by definition.
- For some square matrices A, inverse may not exist.
- A is <u>invertible or non-singular</u> if A ⁻¹ exists and non-invertible or singular otherwise

The following are properties of the inverse; all assume that $A, B \in \mathbb{R}^{n \times n}$ are non-singular:

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1}$. For this reason this matrix is often denoted A^{-T} .

Definition, Matrix Inverse

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$$

$$\operatorname{adj}(A) \in \mathbb{R}^{n \times n}, \quad (\operatorname{adj}(A))_{ij} = (-1)^{i+j} |A_{\setminus j, \setminus i}|$$

Example:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

Eigenvectors

Eigenvector and Eigenvalue

A eigenvalue λ and eigenvector \mathbf{u} satisfies

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

where **A** is a square matrix.

▶ Multiplying **u** by **A** scales **u** by λ

Eigenvector and Eigenvalue, Continue

Rearranging the previous equation gives the system

$$\mathbf{A}\mathbf{u} - \lambda\mathbf{u} = (\mathbf{A} - \lambda\mathbf{I})\mathbf{u} = 0$$

which has a solution if and only if $det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

- The eigenvalues are the roots of this determinant which is polynomial in λ.
- ▶ Substitute the resulting eigenvalues back into $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and solve to obtain the corresponding eigenvector.

Eigenvector and Eigenvalue, Example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

$$\begin{vmatrix} \mathbf{A} - \lambda \cdot \mathbf{I} \end{vmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$

$$\begin{bmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{bmatrix} = \lambda^2 + 3\lambda + 2 = 0$$
characteristic polynomial

$$\lambda_1 = -1, \lambda_2 = -2$$

$$\mathbf{A} \cdot \mathbf{v}_{1} = \lambda_{1} \cdot \mathbf{v}_{1}$$

$$(\mathbf{A} - \lambda_{1}) \cdot \mathbf{v}_{1} = 0$$

$$\begin{bmatrix} -\lambda_{1} & 1 \\ -2 & -3 - \lambda_{1} \end{bmatrix} \cdot \mathbf{v}_{1} = 0$$

$$\begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix} \cdot \mathbf{v}_{1} = \begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{1,1} \\ \mathbf{v}_{1,2} \end{bmatrix} = 0$$

$$V_{1,1} + V_{1,2} = 0$$
, so $V_{1,1} = -V_{1,2}$

$$-2 \cdot V_{1,1} + -2 \cdot V_{1,2} = 0, \text{ so again}$$

$$V_{1,1} = -V_{1,2}$$

$$\mathbf{v}_{1} = k_{1} \begin{bmatrix} +1 \\ -1 \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{v}_2 = \lambda_2 \cdot \mathbf{v}_2$$

$$(\mathbf{A} - \lambda_2) \cdot \mathbf{v}_2 = \begin{bmatrix} -\lambda_2 & 1 \\ -2 & -3 - \lambda_2 \end{bmatrix} \cdot \mathbf{v}_2 = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{2,1} \\ \mathbf{v}_{2,2} \end{bmatrix} = 0 \quad \text{so}$$

$$2 \cdot V_{2,1} + 1 \cdot V_{2,2} = 0$$
 (or from bottom line: $-2 \cdot V_{2,1} - 1 \cdot V_{2,2} = 0$)

$$2 \cdot v_{2,1} = -v_{2,2}$$

$$\mathbf{v}_2 = \mathbf{k}_2 \begin{bmatrix} +1 \\ -2 \end{bmatrix}$$

Eigenvector and Eigenvalue

• The trace of a A is equal to the sum of its eigenvalues,

$${
m tr} A = \sum_{i=1}^n \lambda_i.$$

• The determinant of A is equal to the product of its eigenvalues,

$$|A| = \prod_{i=1}^n \lambda_i.$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- If A is non-singular then $1/\lambda_i$ is an eigenvalue of A^{-1} with associated eigenvector x_i , i.e., $A^{-1}x_i = (1/\lambda_i)x_i$. (To prove this, take the eigenvector equation, $Ax_i = \lambda_i x_i$ and left-multiply each side by A^{-1} .)
- The eigenvalues of a diagonal matrix $D = \operatorname{diag}(d_1, \ldots d_n)$ are just the diagonal entries $d_1, \ldots d_n$.

Eigenvector and Eigenvalue, continue

We can write all the eigenvector equations simultaneously as

$$AX = X\Lambda$$

where the columns of $X \in \mathbb{R}^{n \times n}$ are the eigenvectors of A and Λ is a diagonal matrix whose entries are the eigenvalues of A, i.e.,

$$X \in \mathbb{R}^{n imes n} = \left[egin{array}{cccc} ert & ert & ert \ x_1 & x_2 & \cdots & x_n \ ert & ert & ert \end{array}
ight], \;\; \Lambda = \mathrm{diag}(\lambda_1, \ldots, \lambda_n).$$

Matrix Calculus

Derivatives

$$\frac{\partial f}{\partial x}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

This essentially says that the derivative of f with respect to x, evaluated at a point x_0 , is the rate of change of f at x_0 . It is fairly common to see $\partial f/\partial x$ denoted by f'.

- Constant Rule: f(x) = c then f'(x) = 0
- Constant Multiple Rule: $g(x) = c \cdot f(x)$ then $g'(x) = c \cdot f'(x)$
- Power Rule: $f(x) = x^n$ then $f'(x) = nx^{n-1}$
- Sum and Difference Rule: $h(x) = f(x) \pm g(x)$ then $h'(x) = f'(x) \pm g'(x)$
- Product Rule: h(x) = f(x)g(x) then h'(x) = f'(x)g(x) + f(x)g'(x)
- Quotient Rule: $h(x) = \frac{f(x)}{g(x)}$ then $h'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- Chain Rule: h(x) = f(g(x)) then h'(x) = f'(g(x))g'(x)

Derivatives

Exponential Derivatives

$$- f(x) = a^{x} \text{ then } f'(x) = \ln(a)a^{x}$$

$$- f(x) = e^{x} \text{ then } f'(x) = e^{x}$$

$$- f(x) = a^{g(x)} \text{ then } f'(x) = \ln(a)a^{g(x)}g'(x)$$

$$- f(x) = e^{g(x)} \text{ then } f'(x) = e^{g(x)}g'(x)$$

Logarithm Derivatives

$$-f(x) = \log_a(x) \text{ then } f'(x) = \frac{1}{\ln(a)x}$$

$$-f(x) = \ln(x) \text{ then } f'(x) = \frac{1}{x}$$

$$-f(x) = \log_a(g(x)) \text{ then } f'(x) = \frac{g'(x)}{\ln(a)g(x)}$$

$$-f(x) = \ln(g(x)) \text{ then } f'(x) = \frac{g'(x)}{g(x)}$$

Derivatives, Example

$$egin{align} \partial_m J(m,b) &= \partial_m \left(\sum_{n=1}^N \left[(mx_n + b) - y_n \right]^2
ight) \ &= \sum_{n=1}^N \partial_m \left[(mx_n + b) - y_n \right]^2 \ &= \sum_{n=1}^N \left[2 \left[(mx_n + b) - y_n \right] \right] \partial_m \left[(mx_n + b) - y_n \right] \ &= \sum_{n=1}^N \left[2 \left[(mx_n + b) - y_n \right] \right] x_n \end{aligned}$$

Matrix Calculus, The Gradient

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of

partial derivatives, defined as:

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

i.e., an $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}.$$

a vector
$$x \in \mathbb{R}^n$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix}$$

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$. Then

$$f(x) = \sum_{i=1}^n b_i x_i$$

so

$$rac{\partial f(x)}{\partial x_k} = rac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

$$\nabla_x b^T x = b.$$

$$f(x) = x^T A x$$
 for $A \in \mathbb{S}^n$.

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$= \sum_{i=1}^n A_{ik} x_i + \sum_{j=1}^n A_{kj} x_j = 2 \sum_{i=1}^n A_{ki} x_i,$$

$$\nabla_x x^T A x = 2Ax.$$

$$f(z) = z^T z$$
, such that $\nabla_z f(z) = 2z$.

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

= $x^T A^T Ax - 2b^T Ax + b^T b$

Taking the gradient with respect to x we have, and using the properties we derived in the previous section

$$\nabla_x (x^T A^T A x - 2b^T A x + b^T b) = \nabla_x x^T A^T A x - \nabla_x 2b^T A x + \nabla_x b^T b$$
$$= 2A^T A x - 2A^T b$$

Setting this last expression equal to zero and solving for x gives the normal equations

$$x = (A^T A)^{-1} A^T b$$