M6505 系列 LoRa 终端 **AT** 指令使用说明书

V3. 1. 0

目录

1.	概述			
		1.1	LoRaWAN 介绍	5
2.	模组	工作机制	钊	. 8
	2.1	工作模	[式介绍	. 9
		2.1.1	串口配置	9
		2.1.2	模式配置	.10
		2.1.3	状态读取	.11
		2.1.4	休眠设置	.12
	2.2	模组初	始化操作	13
	2.3	模组默	试、配置	14
	2.4	模组固	定配置	15
	2.5	模组快	速入网配置	16
		2.5.1	配置协议类型	.16
		2.5.2	配置要使用的信道范围	.16
		2.5.3	配置入网参数	.17
		2.5.4	入网模式设置	.19
		2.5.5	发送配置	.20
		2.5.6	发送数据	.20
		2.5.7	保存配置	.21
3.	AT 指	令		22
	3.3	指令集	25	
		3.3.1	AT+VER	.25
		3.3.2	AT+RESET	.25
		3.3.3	AT+DEFAULT	.27
		3.3.4	AT+CLASS	.28
		3.3.5	AT+CHANRNG	.29
		3.3.6	AT+JNDL	.30
		3.3.7	AT+RXDL	.30
		3.3.8	AT+DEUI	.31
		3.3.9	AT+APPEUI	.31
		3 3 10	\AT_ADDKEV	32

	3.3.11 AT+DADDR	33
	3.3.12AT+APPSKEY	33
	3.3.13AT+NWKSKEY	34
	3.3.14 AT+JOIN	35
	3.3.15 AT+TXP	36
	3.3.16AT+DR	36
	3.3.17 AT+CFM	37
	3.3.18AT+SEND	37
	3.3.19AT+SENDB	37
	3.3.20 AT+RX2CFG	
	3.3.21 AT+ADR	39
	3.3.22AT+CIPMODE	40
	3.3.23 AT+SAVE	41
	3.3.24 AT+LOWPOWER	
	3.3.25 AT+TECFG	42
4.	透传模式	43
5.	低功耗处理	44
6.	常见问题汇总	45
	6.1 模组无法入网常见问题	45
7.	名词解释	45
8.	联系我们	46

修改日志:

版本号	修改日期	修改描述
V3.0.0	2020/03/23	初稿
V3.1.0	2020/05/26	更改格式

1. 概述

M6505是一款通用的 LoRa 无线通讯模组,该模组集成了 LoRa 射频收发电路、LoRa 调制解调器和 8 位 RISC MCU。该模块集成了LoRaWAN 标准协议栈,符合 LoRa Alliance 发布的LoRaWAN Specification 1.0.2 Class A/C 标准。

模组采用串行接口与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据传输等功能。

本文描述了M6505的工作机制、AT 指令集、数据透传等。

1.1 LoRaWAN 介绍

Note: 如已经了解 LoRaWAN,可略过本小节,进入下一章。

LoRaWAN 属于一种低功耗广域网网络(LPWAN)规范,适用于多种物联网低功耗(IoT)应用场合,如自动抄表、智慧城市、智能家居、工业自动化等。 LoRaWAN 由 LoRa 联盟推动。

LoRaWAN Specification 定义了 PHY 与 MAC 协议, PHY 层主要使用 LoRa 调制技术(部分频段也使用了 FSK 调制)。

LoRaWAN 网络架构是一个典型的星形拓扑结构,用于大容量远距离低功耗的网络应用,在这个网络架构中, LoRaWAN 网关可以看作是一个透明的"网桥",连接前端终端设备(End Device)和后端中央服务器(Backendcentral server)。网关与服务器通过标准 IP连接,而终端设备采用单跳广播,与一个或多个网关通信,所有的节

点与网关之间均是双向通信。 LoRaWAN 协议的星形拓扑结构消除了同步开销和跳数,因而降低了功耗。

图 1-1 LoRaWAN 结构层次

1.2 LoRaWAN 工作模式介绍

M6505 模组支持 LoRaWAN 标准协议中的 Class A/C 模式,用户可根据使用场景进行切换。以下是 Class A/C 模式功能特点介绍: Class A 模式:

Class A 设备执行的是一个非对称的双向通信机制,终端设备上行发送后会伴随打开两个下行接收窗口 RX1 和 RX2,终端设备的传输窗口是基于其自身通信需求,其微调是基于一个随机的时间基准(ALOHA协议)。

Class A 设备功耗最低,终端发送一个上行传输信号后才能与服务器进行下行通信,与服务器任何时候的下行通信都只能是在上行通信之后。

Class C 模式:

Class C 设备同样基于 Class A, 在不需要发送数据的情况下,

一直打开接收。Class C 设备一般需要常供电。

图 1-3 Class C 模式,终端窗口时间

2. 模组工作机制

M6505 模组集成了 LoRaWAN 协议栈,模块采用串行接口结合逻辑 GPIO 与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据传输等功能。

模组固件层次框图,如图 2-1 所示。

图 2-1 模组固件层次框图

M6505 模组包含 1 路串行接口, 1 路MODE 接口, 1 路STAT 接口, 1 路WAKE 接口。接口示意图如图 2-2 所示:

图 2-2 模组接口示意图

串其中 MODE是M6505的GPI04, STAT是GPI03, WAKE是GPI02;

2.1工作模式介绍

2.1.1串口配置

默认配置:

串口波特率:

115200数据位: 8

校验位: None

停止位:1

流控: None

串口配置可以用个AT 指令进行修改。

2.1.2 模式配置

A6x 模块定义了两种工作模式: 指令模式和透传模式。

- 1) MODE 为低电平时,模组进入指令模式,指令模式下用户可以通过串口输入 AT 指令对模组进行配置和读取。在指令模式下,用户发送完一条参数配置时,都需等待模块返回"OK"后,再进行下一条指令操作,否则可能会导致本条指令无效。用户发送完一条状态读取的指令时,都需等待模块返回读取内容。
- 2) MODE 为高电平时,模组进入透传模式,用户使用透传模式下,需确认模组是否入网,如模组未入网,透传数据不能进行正常传输。透传模式下用户通过串口发送的数据会被模组直接外发,模组收到的数据也会通过串口直接发送给用户。

用户通过控制 MODE 脚状态,切换模组工作方式。

硬件控制状态	描述
MODE = 0	指令模式
MODE = 1	透传模式

表 2-1 模组工作方式

注:模块处于低功耗状态时,MODE 拉高拉低无效。

2.1.3 状态读取

STAT 状态脚用于用户判定模组数据是否已经发送或接收完成。

- 1) STAT 为低电平时,模组处于空闲状态,用户可以向模组发送数据。
- 2) STAT 为高电平时,模组处于发送或接收状态,用户不能操作模组。

用户通过读取 STAT 脚状态,用来判断模块的工作状态。

硬件控制状态	描述
STAT = 0	空闲状态
STAT = 1	忙碌状态

表 2-2 模组工作状态

注: 当STAT 为高电平时,不能强行控制 MODE 和 WAKE 引脚, 也不能强行输入 AT 指令或透传数据。违规操作会出现断包和乱包, 严重情况下会导致模组 FIFO 堵死。

2.1.4 休眠设置

A6x 模块定义了两种状态: 休眠状态和工作状态。

- 1) WAKE 为低电平时,模组进入休眠状态, 此状态下用户无 法执行任何指令、数据通信等操作,但模块会保存系统当前 的运行状态、配置参数等。
- 2) WAKE 为高电平时,模组进入工作状态,此状态下用户可进行 LoRaWAN 数据收发、参数配置等操作。

用户通过控制 WAKE 脚状态,切换模组状态。详细请看第5章

硬件控制状态	描述
WAKE = 0	休眠状态
WAKE = 1	工作状态

表 2-2 模组状态

2.2 模组初始化操作

模组上电自动复位,如需要强行复位,需要链接模组复位硬件,复位电平为低有效,低电平持续时间不低于 100ms。

有经验的用户可根据自己逻辑进行模组配置和使用,模组默认使用流程如下:

图 2-3 模组默认使用流程

2.3 模组默认配置

默认值
CLASS_A
LoRaWAN 标准协议同步字
470.3M
SF12
20dBm
1000ms
2000ms
5000ms
6000ms
否
SF12, 505.3M
True
ABP
0~95(CN470 标准)
有应答
否
出厂自带且唯一(可以更改)
00 00 00 00 00 00 01
2b 7e 15 16 28 ae d2 a6 ab f7 15 88
09 cf 4f 3c
00 00 00 01
出厂自带且唯一 (可以更改)
2b 7e 15 16 28 ae d2 a6 ab f7 15 88
09 cf 4f 3c
00 00 00 00 00 00 00 00 00 00 00
00 00 01 02

表 2-3 模组默认配置

注:用户如果使用 OTAA 方式入网只需要配置 DEUI, APPEUI, APPKEY。用户如果使用 ABP 方式入网只需要配置 DADDR, APPSKEY, NWKSKEY。

其中通过窗口 1 和窗口 2 的开启时间可以计算出窗口 1 的接收时间,窗口 1 的接收时间(time)为: time = rxdelay2(窗口 2 的开启时间)-rxdelay1(窗口 1 的开启时间)。

2.4 模组固定配置

所谓固定配置,即不能通过 AT 指令更改的一些参数值,除频 段的起始频率外还包含以下几种常用的参数配置。如表 2 所示:

属性	固定值
窗口 2 最大开启时间	3000ms
接收模式	连续接收,收发异频
接收起始频率	505.3M
速率(扩频因子)范围	SF7 - SF12
发射功率范围	3dBm- 20dBm
最大负载长度	SF10 -SF12 负载长度为 51 字 节, SF9 负载长度为 115 字节,

表 2-4 固定配置

注: 收发同频即 LoRa 终端模块的接收频率和发送频率相同。默认为 异频模式。标准协议同为异频模式。

2.5 模组快速入网配置

Note: 有AT 指令使用经验的情况下,可以使用快速配置

2.5.1配置协议类型

功能	配置模块的协议类型
AT 指令	AT+CLASS
AT 指令格式	AT+CLASS=A 或 AT+CLASS=C
说明	目前支持CLASS A 和CLASS C。

表 2-5 配置协议类型

2.5.2配置要使用的信道范围

Note: 必须配置此项,模组默认是信道全开,需要用户配置成自己所需的频段。

信道范围的起始信道不能小于 0,结束信道不能大于设置的最大信道数。当信道范围设置成功后,终端将在设置的信道范围内发送数据。

功能	设置终端工作信道范围
AT 指令	AT+CHANRNG
AT 指令格式	AT+CHANRNG=0,7
说明	以上格式示例表明终端工作在 0-7 信道。

表 2-6 配置信道范围

以CN470 为例:

信道	频率	信道	频率
0~7	470.3~471.	48~55	479.9~481.
8~15	471.9~473.	56~63	481.5~482.
16~23	473.5~474.	64~71	483.3~484.
24~31	475.1~476.	72~79	484.7~486.
32~39	476.7~478.	80~87	486.3~487.
40~47	478.3~479.	88~95	487.9~489.

表 2-7 CN470 频率组

2.5.3配置入网参数

Note: 模组入网后,以下参数不能进行修改。

ABP 入网需要配置的入网参数: DevEUI, DevAddr, AppSkey,

NwkSkey。这些参数需要和服务器软件中的参数一致。

OTAA 入网需要配置的入网参数: DevEui, AppEui, AppKey。

这些参数需要和服务器软件中的参数一致。

设置/获取 DevEUI:

功能	设置/获取DevEUI
不支持的命令格式	AT+ <cmd></cmd>
AT+DEUI= DevEUI	DevEUI: 模组长地址, 地址长度 必须为 8 个字 节。格式如: AT+DEUI=01 02 03 04 05 06
AT+DEUI=?	获取 DEVEUI

表 2-8 设置/获取模组DevEUI

设置/获取 DevAddr:

功能	设置/获取DevAddr
不支持的命令格式	AT+ <cmd></cmd>
AT+DADDR= DevAddr	DevAddr: 模组短地址,短地址长
	度为 4 个字节。ABP 入网时需要
	在入网前提前设置 DevAddr,也
	可以使用默认值。OTAA 入网
	时,不需要设置。
	格式:
AT+DADDR=?	获取 DevAddr

表 2-9 设置/获取模组DevAddr

设置/获取AppSKey:

功能	设置/获取AppsKey
不支持的命令格式	AT+ <cmd></cmd>
AT+APPSKEY=AppsKey	AppsKey:模组 AppsKey 秘钥, 长度 16 个字节。ABP 入网时, 需要在入网前提前设置,格式: AT+NWKSKEY=2b 7e 15 16
AT+APPSKEY=?	获取 AppsKey

表 2-10 设置/获取模组 AppSkey

设置/获取 NwkSkey:

功能	设置/获取NwkSKey
不支持的命令格式	AT+ <cmd></cmd>
AT+NWKSKEY= NwkSKey	NwkSKey:模组NwkSKey 秘钥, 长度 16 个字节。ABP 入网时, 需要在入网前提前设置,格式: AT+NWKSKEY=00 00 00 00
AT+NWKSKEY=?	获取 NwkSKey

表 2-11 设置/获取模组 NwkSKey

设置/获取AppEUI:

功能	设置/获取AppEUI
不支持的命令格式	AT+ <cmd></cmd>
AT+APPEUI=AppEUI	AppEUI:模组 AppEUI,长度 8 个字节。
	格式如:
	AT+APPEUI=01 02 03 04 05 06
	07 08。
AT+APPEUI=?	获取 APPEUI

表 2-12 设置/获取模组 AppEUI

设置/获取AppKey:

功能	设置/获取AppKey
不支持的命令格式	AT+ <cmd></cmd>
AT+APPKEY=AppKey	AppKey:模组 AppKey,长度 16 个字节。 格式如: AT+APPKEY=01 02 03 04 05
AT+APPKEY=?	获取 AppKey

表 2-13 设置/获取模组 AppKey

2.5.4入网模式设置

功能	LoRa 终端入网
AT 指令	AT+JOIN
AT 指令格式	AT+JOIN=0,1
说明	第一个参数代表入网方式,0: ABP, 1:OTAA. 第二个参数代表是否使能 adr,

表 2-14 设置模组入网模式

注:使用 OTAA 入网时,必须先确认使用的信道范围和发射功率,OTAA 入网时会在该信道范围内随机选择一个信道进行入网,否则OTAA 入网时会按保存在eeprom 里的信道数据随机选择一个信道。

AT指令模式, 上电或者/reset,必须执行一次AT+JOIN入网后,才能收发数据; 2.5.5 发送配置

LoRaWAN 网络通信模式消息类型分为: CONFIRMED 和 UNCONFIRMED 两种。CONFIRMED/UNCONFIRMED 只是代表 服务器

是否应该对该包数据进行回应/不响应。(不是说 UNCONFIRMED 包服务器一定不会下发数据,这种情况下服务器下发的数据不是对该包进行回应,而是服务器自己有命令/数据需要通知终端(比如 mac 命令),该命令/数据不是响应 UNCONFIRMED 包,注意区分)

功能	配置消息类型
AT 指令	AT+CFM
AT 指令格式	AT+CFM=0
说明	0 : UNCONFIRM,1 : CONFIRM

表 2-15 设置模组发包类型

2.5.6发送数据

功能	发送消息
AT 指令	AT+SEND/AT+SEND
AT 指令格式	AT+SEND=ASDFGH
	AT+SENDB=12 34 56 BC 6A
说明	AT+SEND:以字符串形式发送数据。
	AT+SENDB:以 16 进制格式 (以
	空格隔开每个字节)发送数据。

表 2-16 发送数据

2.5.7保存配置

功能	保存配置
AT 指令	AT+SAVE
AT 指令格式	AT+SAVE
说明	执行此命令,可以保存修改后的配 置。

表 2-17 保存配置

3.AT 指令

用户执行指令时,需等待模块返回响应结果后,才能进行下一条 指令操作注;除此之外,用户可设置指令超时时间,以此判断模块是 否出现异常。

所有命令行必须以"AT"作为开头,以回车(<CR><CF>)作为结尾。响应通常紧随命令之后,它的样式是"<回车><新行><响应内容><回车><新行>"(<CR><LF><响应内容><CR><LF>)。整本文档里,只有<响应内容>被自始自终介绍,而<回车><新行>被有意省略了。

模块串口支持多种波特率,默认使用 115200bps,8 位数据位, 无校验位,1 位停止位,串口发送均采用字符串格式发送和接收。

在 AT 配置模式下,每一条 AT 指令都有回响,用户在使用时须等待指令的回响结果再做 下一步操作,如果命令执行失败,响应对应错误代码。常见命令错误代码如下:

错误代码	代码含义
CME	没有该命令
CME	不允许执行该命令
CME	命令参数(数据)错误
CME	命令参数个数错误
CME	执行该命令出现错误

表 3-1 错误码

3.1AT 指令格式

命令格式:

"AT+<CMD>?\r\n" : 获取帮助文档。

"AT+<CMD>\r\n" : 运行此指令,无参数。

"AT+<CMD>=<value>\r\n" : 配置参数。

"AT+<CMD>=?\r\n": 获取对应参数值。

返回格式:

1、设置成功:

 $OK\r\n$

2、获取成功:

<value1>,< value2>...<valuen>\r\nOK\r\n

如:

96 OK OK

3、未入网:

AT_NO_NETWORK_JOINED\r\

n",

3.2 AT 指令概览

AT 指令	功能说明
AT+VER	获取at 指令版本号
AT+RESET	软件复位
AT+DEFAULT	恢复出厂配置
AT+CLASS	设置/获取协议类型

AT+CHANRNG	设置/获取工作信道范围
AT+JNDL	设置/获取入网窗口 1,窗口 2 开启时间
AT+RXDL	设置/获取通信窗口 1,窗口 2 开启时间

AT+DEUI	设置/获取DEVEUI
AT+APPEUI	设置/获取APPEUI
AT+APPKEY	设置/获取APPKEY
AT+DADDR	设置/获取DEVADDR
AT+APPSKEY	设置/获取APPSKEY
AT+NWKSKEY	设置/获取NWKSKEY
AT+JOIN	设置入网
AT+TXP	设置/获取发射功率
AT+DR	设置/获取发射扩频因子
AT+CFM	设置/获取消息类型
AT+SEND	字符串形式发送
AT+SENDB	16 进制格式发送
AT+NJS	获取入网状态
AT+ADR	获取adr 是否使能
AT+CIPMODE	透传模式开关
AT+SAVE	保存设置
AT+LOWPOWE	低功耗模式开关
AT+TECFG	终端配置状态查询

表 3-2 AT 指令概览

注:有些指令在某些特定模组中并未启用,详细情况请联系芯域矩阵。

表 3-3 AT+AT 指令

3.3 指令集

3.3.1AT+VER

读取软件版本信息功能,只能读不能写。

功能	获取 AT 指令版本号
不支持的命令格式	AT+ <cmd></cmd>
	AT+ <cmd>=<value></value></cmd>
AT+VER=?	获取 AT 指令版本号。

表 3-4 AT+VER 指令

3.3.2AT+RESET

软件复位功能,在系统出错或模组无反应的情况下,可以使用此功能,长时间通信过后,建议用户复位一次模组。

功能	软件复位
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
	AT+ <cmd>=?</cmd>
AT+RESET	软件复位。

表 3-5 AT+RESET 指令

3.3.3AT+DEFAULT

恢复出厂设置功能,在不清楚模块配置或其他情况下,可以把模块恢复至出厂设置。

功能	恢复出厂设置
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
	AT+ <cmd>=?</cmd>
AT+DEFAULT	恢复出厂设置。

3.3.4AT+CLASS

设置/获取模组 Class 模式。

功能	设置/获取 LoRaWan 协议工作 类
不支持的命令格式	AT+ <cmd></cmd>
AT+CLASS=CLASS_TYPE	设置 LoRaWan 协议工作类
	型 ,CLASS_TYPE : A: 工作
	在 CLASS_A, C:工作在
AT+CLASS=?	获取 LoRaWan 协议工作类型
注意:只允许在入网后进行切换	,否则出错

表 3-9 AT+CLASS 指令

3.3.5AT+CHANRNG

设置/获取模组工作频率段,模组频率段一定要和网关接收频率、 服务起软件配置的终端频率段相同,否则影响收发数据。

功能	设置/获取工作信道范围
不支持的命令格式	AT+ <cmd></cmd>
AT+CHANRNG=start_channel,	start_channel: 起始信道 ,
е	end_channel :结束信道。(多个
nd_channel(多个参数时用英	 参数时用英文逗号隔开)
AT+CHANRNG=?	获取工作信道范围,
	返回值:

表 3-11 AT+CHANRNG 指

3.3.6 AT+JNDL

设置/获取 OTAA 入网接收窗口时间,默认为标准模式,在无系统级修改的情况下,请勿修改此参数。

功能	设置/获取OTAA 入网接收窗口 1,窗口 2 开启时间
不支持的命令格式	AT+ <cmd></cmd>
AT+JNDL =time1,time2(多个参	time:入网接收窗口 1,窗口 2 开
数时用英文逗号隔开)	启时间,单位为 ms。(多个参
	数时用英文逗号隔开)
AT+JNDL=?	获取 OTAA 入网接收窗口 1,窗
	口 2 开启时间

表 3-12 AT+JNDL 指令

3.3.7 AT+RXDL

设置/获取通信接收窗口开启时间,默认为标准模式,在无系统级修改的情况下,请勿修改此参数。

功能	设置/获取通信接收窗口 1,窗 口 2 开启时间
不支持的命令格式	AT+ <cmd></cmd>
AT+RXDL=time	Time:通信接收窗口 1,窗口 2 开启时间,单位为 ms。
AT+RXDL=?	获取通信接收窗口 1,窗口 2 开 启时间

表 3-13 AT+RXDL 指令

3.3.8 AT+DEUI

设置/获取模组 DevEUI, DevEUI 为模组全球唯一编码,模组自带有 DevEUI, 如用户想统一管理,可以根据自己需要进行设置。

功能	设置/获取DevEUI
不支持的命令格式	AT+ <cmd></cmd>
AT+DEUI=DevEUI	DevEUI:模组 DevEUI, DevEUI
	长
	度为8个字节。
	格式如:
	AT+DEUI=01 02 03 04 05 06
AT+DEUI=?	获取 DevEUI

表 3-14 AT+DEUI 指令

3.3.9 AT+APPEUI

设置/获取模组 AppEUI, AppEUI 为应用 ID, 用于区分同一网络下的不同应用。

功能	设置/获取AppEUI
不支持的命令格式	AT+ <cmd></cmd>
AT+APPEUI=AppEUI	AppEUI:模组 AppEUI, AppEUI 长度为 8 个字 节。格式如: AT+APPEUI=01 02 03 04 05
AT+APPEUI=?	获取 APPEUI

表 3-15 AT+AppEUI 指令

3.3.10AT+APPKEY

设置/获取模组 AppKey, AppKey 用于 OTAA 入网时服务器软件和模组计算秘钥。服务器软件端和模组端的 AppKey 要一致。

功能	设置/获取AppKey
不支持的命令格式	AT+ <cmd></cmd>
AT+APPKEY=AppKey	AppKey:模组 AppKey, AppKey 长度为 16 个字 节。格式如: AT+APPKEY=01 02 03 04 05
AT+APPKEY=?	获取 APPKEY

表 3-16 AT+AppKey 指令

3.3.11AT+DADDR

设置/获取模组 DevAddr ,DevAddr 为模组短地址,OTAA 入网时由服务器软件分配,ABP 入网时,用模组自带的 Addr,模组自带的Addr 由模组自动生成,十万分之一的重复率。

功能	设置/获取DevAddr
不支持的命令格式	AT+ <cmd></cmd>
AT+DADDR=DevAddr	DevAddr:模组 DevAddr。ABP 入 网时需要在入网前提前设置 DevAddr,也可以使用默认值。 OTAA 入网时, 不需要设置。 DevAddr 长度为 4 字 节。格式: AT+DADDR=01 02 03 04
AT+DADDR=?	获取 devaddr

表 3-18 AT+DADDR 指令

3.3.12AT+APPSKEY

设置/获取模组 AppSKey, AppSKey 用于应用数据加解密。

功能	设置/获取AppSKey
不支持的命令格式	AT+ <cmd></cmd>
AT+APPSKEY=AppSKey	AppSKey :模组 AppSKey ,ABP 入 网时,需要在入网前提前设置。 AppSKey 长度为 16 字 节。格式: AT+NWKSKEY=2b 7e 15 16
AT+APPSKEY=?	获取 APPSKEY

表 3-19 AT+APPSKEY 指令

3.3.13AT+NWKSKEY

设置/获取模组 NwkSKey, NwkSKey 用于 MAC 指令数据加解密。

功能	设置/获取NwkSKey
不支持的命令格式	AT+ <cmd></cmd>
AT+NWKSKEY=NwkSKey	NwkSKey:模组 NwkSKey, ABP
	入网时 ,需要在入网前提前设置 ,
	入网成功后才能读取 NwkSKey。
	NwkSKey 长度为 16 字
	节。格式:
	AT+NWKSKEY=00 00 00 00
AT+NWKSKEY=?	获取 NWKSKEY

表 3-20 AT+NWKSKEY 指令

3.3.14AT+JOIN

设置模组入网模式和 ADR,终端分为 OTAA 入网和 ABP 入网, OTAA 入网是模组发送入网请求包,服务器软件检验通过后,下发 入网许可包。收到许可包后才可以正常发数据。ABP 入网是提前把 模组参数录入到服务器软件中,模组上电后直接发送数据。

ADR 全称为速率自适应,是 LoRa 的一个特有功能,服务器软件会根据模组当前射频信号的 RSSI 和 SNR 进行计算,通过 MAC 指令修改模组的扩频因子和发射功率,使模组工作在合适的扩频因子和发射功率,达到网络最优化和功耗最低。ADR 开启后有以上功能,

注: 在不熟悉环境的情况下请勿开启ADR。

关闭后无以上功能。

功能	入网
不支持的命令格式	AT+ <cmd></cmd>
	AT+ <cmd>=?</cmd>
AT+JOIN=join_mode,adr_enabl	join_mode:入网方式,0:ABP,
е	1 : OTAA
(多个参数时用英文逗号隔开)	adr_enable:adr 使能,0:不
	使能,1:使能。
AT+JOIN?	获取帮助文档。

表 3-21 AT+JOIN 指令

3.3.15AT+TXP

设置/获取模组发送功率,可设置值为:

5dBm,7dBm,9dBm,11dBm,13dBm,15dBm,17dBm,20dBm,22dBm。

功能	设置/获取发射功率
不支持的命令格式	AT+ <cmd></cmd>
AT+TXP=power	Power:要设置的发射功率。格式: AT+TXP=20 ,设置发射功率
AT+TXP=?	获取发射功率

表 3-22 AT+TXP 指令

3.3.16AT+DR

设置/获取模组扩频因子,扩频因子越大,传输距离越远,传输时间越长,反之既然。扩频因子大小也决定了带载量的大小,SF10-SF12用户数据长度为 51 字节,SF9 用户数据长度为 115 字节,SF8-SF7 用户数据长度为 222 字节。超过规定字节数会造成数据截断或粘包。

功能	设置/获取扩频因子
不支持的命令格式	AT+ <cmd></cmd>
AT+DR=sf	Sf:要设置的值,范围为 7-
AT+DR=?	获取扩频因子

表 3-23 AT+DR 指令

注: 只有关闭ADR 才可以设置终端速率,否则设置失败

3.3.17AT+CFM

设置/获取模组上发数据包类型,无回复包是上发后无需确认,有回复包是上发后需确认,上发后等待网关下发 ACK 确认包,代表确认数据已经收到。

功能	设置/获取发送的消息类型
不支持的命令格式	AT+ <cmd></cmd>
AT+CFM=TYPE	TYPE: 0: 无回复的数据包,1: 有
AT+CFM=?	获取发送的消息类型

表 3-24 AT+CFM 指令

3.3.18AT+SEND

非透传模式下,通过AT 指令发送字符串数据。

功能	以字符串的形式发送
不支持的命令格式	AT+ <cmd></cmd>
	AT+ <cmd>=?</cmd>
AT+SEND=data	Data: 要发送的数据。 比如
	adefghil5286

表 3-25 AT+SEND 指令

3.3.19AT+SENDB

非透传模式下,通过 AT 指令发送 16 进制数据。

功能	以 16 进制字符串进行发送
不支持的命令格式	AT+ <cmd></cmd>
	AT+ <cmd>=?</cmd>
AT+SENDB=data	Data:要发送的数据。比如 32 85
	96 45

表 3-26 AT+SENDB 指令

3.3.20AT+RX2CFG

设置/ 获取模组窗口 2 的接收频率和 SF,默认配置是参考《LoRaWAN™ Regional Parameters》标准。无特殊使用的情况下,请勿更改窗口 2 参数。

功能	设置/获取窗口 2 参数配置
不支持的命令格式	AT+ <cmd></cmd>
• • • • • • • • • • • • • • • • • • • •	Freq:窗口 2 接收频率
数	Sf:窗口2接收扩频因子。
时用英文逗号隔开)	(多个参数时用英文逗号隔开)
AT+RX2CFG=?	获取窗口 2 参数配置。
	返回值:freq,sf

表 3-28 AT+RX2CFG 指令

3.3.21AT+ADR

设置/获取模组 ADR。ADR 全称为速率自适应,是 LoRa 的一个特有功能,服务器软件会根据模组当前射频信号的 RSSI 和 SNR进行计算,通过 MAC 指令修改模组的扩频因子和发射功率,使模组工作在合适的扩频因子和发射功率,达到网络最优化和功耗最低。ADR 开启后有以上功能,关闭后无以上功能。

功能	设置/获取adr 是否使能
AT+ADR=TYPE	TYPE: 0: 不使能,1: 使能
AT+ADR=?	获取 adr 是否使能。

表 3-30 AT+ADR 指令

3.3.22AT+CIPMODE

设置模组进入/退出透传模式,详细操作请查看第4章。

功能	配置模块通信模式
AT 指令	AT+CIPMODE
AT 指令格式	AT+ CIPMODE = 1,开启透传模式
说明	0:不开启1:开启

表 3-35 AT+CIPMODE 指令

3.3.23AT+SAVE

保存模组配置,修改模组配置过后,都需要保存一次。

功能	保存配置
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
	AT+ <cmd>=?</cmd>
AT+SAVE	保存配置

表 3-36 AT+RESET 指令

3.3.24AT+LOWPOWER

设置模组进入低功耗模式,详细操作请查看第5章

功能	进入低功耗模式
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
AT+LOWPOWER	返回值:OK
	enter Low power。

表 3-37 AT+LOWPOWER 指令

3.3.25AT+TECFG

获取模组所有配置项。

功能	查询终端配置状态
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
	AT+ <cmd></cmd>
AT+TECFG=?	返回值:当前终端状态

表 3-44 AT+TECFG 指令

4. 透传模式

透传模式有两种配置方式:

- 1) 通过MODE 电平拉高进入透传模式,拉低退出透传模式。
- 2) 通过AT + CIPMODE = 1 /r/n 进入透传模式,在透传模式 中输入AT + CIPMODE = 0 退出透传模式。

两种方式效果相同,可根据用户的偏好进行使用。两种方式相互独立,请勿交叉操作。

透传模式下模组上电就会直接入网(成功与否也将无法判断,因为没有提示的输出,建议配置 APB 模式下使用此功能)。

AT指令模式不会直接入网, 上电或者/reset后必须执行一次 AT+JOIN指令后,才能收发数据;

在配置开启透传模式生效后,模组将不会接受除 AT+ CIPMODE =0 (即关闭透传模式)以外的任何指令;且将所有指令都将以字符串的形式发出去,返回数据也将直接输出。

功能	配置模块通信模式
AT 指令	AT+CIPMODE
AT 指令格式	AT+ CIPMODE =0
说明	0:不开启1:开启

表 4-1 透传AT 指令

5. 低功耗处理

透传模式有两种配置方式:

- 1) 通过WAKE 电平拉低进入休眠状态,拉高退出休眠。
- 2) 通过AT + LOWPOWER /r/n 进入休眠状态。退出休眠通过 拉高WAKE。

两种方式效果相同,可根据用户的偏好进行使用。

功能	进入低功耗模式
不支持的命令格式	AT+ <cmd>=<value></value></cmd>
AT+LOWPOWER	返回值:OK
	enter Low power。

表 5-1 低功耗AT 指令

6. 常见问题汇总

6.1 模组无法入网常见问题

- 1. 模组发送频率、网关接收频率和服务器软件配置的终端频率 需一致。
- 2. OTAA 入网时,模组 AppKey,DevEUI,AppEUI 需预先添加到服务器软件中,服务器软件要设置终端为 OTAA 入网模式。
- 3. ABP 入网时,模组 AppSKey, NwkSKey, DevAddr 需预先添加到服务器软件中,服务器软件要设置终端为 ABP 入网模式。
- 4. 模组发射功率不够或未接天线。
- 5. 网关天线未接或网关与服务器网络未通。
- 6. 服务器软件计数值和模组计数值不相同,需调成一致,如不知道如何设置,就重启模组,让模组计数值清零,服务器软件收到计数器为0的上行包会自动清零。

7. 名词解释

ADR:速率自适应。

RSSI:信号强度。

SNR:信噪比。

8. 联系我们

公司名称:成都芯域矩阵科技有限公司

联系电话: 18980649095

地址:成都市成华区建设南路160号

公司官网: https://www.chipmatrix.cn/