第5章部分课后习题作业参考

3.

(1)
$$\left| -(A \rightarrow \exists vB) \rightarrow \exists v(A \rightarrow B) \right|$$

只需证 $A \rightarrow \neg \forall v \neg B | \neg \forall v \neg (A \rightarrow B)$

1)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg \forall v \neg (A \rightarrow B)$$
 前提

2)
$$\forall v \neg (A \rightarrow B) \rightarrow \neg (A \rightarrow B)$$
 定理

3)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg (A \rightarrow B) | 1) 2$$
 r_{mn}

$$4)$$
 $\neg A \rightarrow (A \rightarrow B)$ 定理

$$5) \neg (A \rightarrow B) \rightarrow A 4)$$
 逆否

6)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | -A \ 3)$$
 5) r_{mn}

7)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg A \rightarrow \neg \forall v \neg B$$
 前提

8)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg \forall v \neg B \ 6) 7$$
 r_{mn}

9)
$$B \rightarrow (A \rightarrow B)$$
 公理

$$10) \neg (A \rightarrow B) \rightarrow \neg B \ 9)$$
 逆否

11)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg \neg B \ 3) 10) \quad r_{mp}$$

12)
$$A \rightarrow \neg \forall v \neg B; \forall v \neg (A \rightarrow B) | \neg \forall v \neg B$$
 11) 全称推广 (v 在 A 中无自由出现)

13)
$$A \rightarrow \neg \forall v \neg B | \neg \forall v \neg (A \rightarrow B)$$
, 8) 12) 及反证法定理

$$(2) \mid -\exists v(A \to B) \to (A \to \exists vB)$$

证明:根据前件交换只需证 $[-A \rightarrow (\exists v(A \rightarrow B) \rightarrow \exists vB)]$

只需证
$$|-A \rightarrow (\neg \forall v \neg (A \rightarrow B) \rightarrow \neg \forall v \neg B)$$

1)
$$(A \rightarrow B) \rightarrow (A \rightarrow B)$$
 定理

2)
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$
 1) 前件交换

- 3) $((A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ 定理
- 4) $A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B) \ 2) \ 3)$ 传递
- 5) $\forall v(A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ 4) 全称推广//注意使用条件
- 6) $\forall vA \rightarrow \forall v(\neg B \rightarrow \neg (A \rightarrow B))$ 5) +公理+ r_{mn}
- 7) $A \rightarrow \forall vA$ 公理 (v 在 A 无自由出现)
- 8) $A \rightarrow \forall \nu (\neg B \rightarrow \neg (A \rightarrow B))$ 7) 6) 传递
- 9) $\forall v (\neg B \rightarrow \neg (A \rightarrow B)) \rightarrow (\forall v \neg B \rightarrow \forall v \neg (A \rightarrow B))$ 公理
- 10) $A \rightarrow (\forall v \neg B \rightarrow \forall v \neg (A \rightarrow B))$ 8) 9) 传递
- 11) $(\forall v \neg B \rightarrow \forall v \neg (A \rightarrow B)) \rightarrow (\neg \forall v \neg (A \rightarrow B) \rightarrow \neg \forall v \neg B)$ 定理
- 12) $A \rightarrow (\neg \forall v \neg (A \rightarrow B) \rightarrow \neg \forall v \neg B)$ 10) 11) 传递

 $\mathbb{P}(A \to (\exists v(A \to B) \to \exists vB))$

- $(3) \mid -(\forall vB \to A) \to \exists v(B \to A) \mid_{1}$
- 证明: 只需证 $|-(\neg A \to \exists \nu \neg B) \to \exists \nu (\neg A \to \neg B)$ //替换原理,等价变换而由上述题 3. (1) 知此结论成立。当然也可以直接用(1) 中的方法来证明。

 $(4) \mid -\exists v(B \to A) \to (\forall vB \to A)$

证明: 只需证 $\left| -\exists v(\neg A \rightarrow \neg B) \rightarrow (\neg A \rightarrow \exists v \neg B) \right| //同上$ 则根据上题 3. (2) 可知成立。

(5) \ddot{A} | $A \rightarrow B$, M | $\nabla vA \rightarrow \nabla vB$

证明:

- 1) $A \rightarrow B$ 已证定理
- 2) $\forall v(A \rightarrow B)$, 1) 全称推广
- 3) $\forall v(A \rightarrow B) \rightarrow (\forall vA \rightarrow \forall vB)$ 公理
- 4) $\forall vA \rightarrow \forall vB$ 2) 3) r_{mv}

(6) $A \rightarrow B = \forall uA \rightarrow \forall uB$ 未必成立,从而 $A \rightarrow B - \forall uA \rightarrow \forall uB$ 不真。

证明: 举例说明该逻辑蕴涵不一定成立:

令个体域D=N

A: u < u + 1,

B: u < 100

则对u=10的指派下,公式 $A \rightarrow B$ 为真,

但此时公式 $\forall uA \rightarrow \forall uB$ 为假,故 $A \rightarrow B = \forall uA \rightarrow \forall uB$ 不成立。

当然也就有 $A \rightarrow B | - \forall uA \rightarrow \forall uB$ 不成立, 否则根据 FC 合理性有:

 $A \rightarrow B = \forall uA \rightarrow \forall uB$ 成立,矛盾。

4.

 $(1) \forall x(A \rightarrow B) | -|A \rightarrow \forall xB$,且x在A中无自由出现。

证明: 先证 $\forall x(A \rightarrow B) | -A \rightarrow \forall xB$

只需证: $\forall x(A \rightarrow B), A - \forall xB$

- 1) $\forall x(A \rightarrow B), A \forall x(A \rightarrow B)$ 前提
- 2) $\forall x(A \rightarrow B) \rightarrow (A \rightarrow B)$ 定理
- 3) $\forall x(A \rightarrow B), A \mid -A \rightarrow B$ 1)2) r_{mn}
- 4) $\forall x(A \rightarrow B), A \mid -A$ 前提
- 5) $\forall x(A \rightarrow B), A | -B \quad 3) 4$ r_{mn}
- 6) $\forall x(A \rightarrow B), A \mid -\forall vB$, 5) 全称推广
- 7) $\forall x(A \rightarrow B) | -A \rightarrow \forall xB$

再证 $A \to \forall xB | -\forall x(A \to B)$

- 1) $\forall xB \rightarrow B$ 定理
- 2) $A \rightarrow (\forall xB \rightarrow B)$ 1)加前件
- 3) $(A \rightarrow \forall xB) \rightarrow (A \rightarrow B)$ 2) + 公理
- 4) $A \rightarrow \forall xB | -A \rightarrow B$ 3) 演绎定理

5) $A \rightarrow \forall xB | -\forall x(A \rightarrow B)$, 全称推广

(2) $\forall x(A \rightarrow B) | - |\exists xA \rightarrow B$,且 x 在 B 中无自由出现。

证明: 只需证 $\forall x(\neg B \rightarrow \neg A) | \neg | \neg B \rightarrow \forall x \neg A$,由于 x 在 $\neg B$ 中无自由出现,故直接由 4. (1) 题的结论即可。

(3) $\forall x(A \land B) | - | \forall xA \land \forall xB$

只需证: $\forall x \neg (A \rightarrow \neg B) | \neg (\forall x A \rightarrow \neg \forall x B)$

先证 $\forall x \neg (A \rightarrow \neg B) | \neg (\forall x A \rightarrow \neg \forall x B)$ //反证法

- 1) $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB \mid \neg \forall x \neg (A \rightarrow \neg B)$ 前提
- 2) $\forall x \neg (A \rightarrow \neg B) \rightarrow \neg (A \rightarrow \neg B)$ 定理
- 3) $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB | \neg (A \rightarrow \neg B)$
- 4) $\neg A \rightarrow (A \rightarrow \neg B)$ 定理 $\neg B \rightarrow (A \rightarrow \neg B)$ 公理
- 5) $\neg (A \rightarrow \neg B) \rightarrow A$ $\neg (A \rightarrow \neg B) \rightarrow B$ 4)+逆否
- 6) $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB | -A$ $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB | -\neg B$ 3)5) r_{mn}
- 7) $\forall x \neg (A \rightarrow \neg B)$, $\forall x A \rightarrow \neg \forall x B | \neg \forall x A$ $\forall x \neg (A \rightarrow \neg B)$, $\forall x A \rightarrow \neg \forall x B | \neg \forall x \neg B$ 6)全称推广
- 8) $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB \mid \neg \forall xA \rightarrow \neg \forall xB$ 前提
- 9) $\forall x \neg (A \rightarrow \neg B)$, $\forall xA \rightarrow \neg \forall xB | \neg \forall xB \quad 7)$ 8) r_{mp}
- 10) $\forall x \neg (A \rightarrow \neg B) | \neg (\forall x A \rightarrow \neg \forall x B)$ 7) 9) 反证法

再证 $\neg(\forall xA \rightarrow \neg \forall xB)$ | $\forall x\neg(A \rightarrow \neg B)$

1)
$$\neg(\forall xA \rightarrow \neg \forall xB) \mid \neg(\forall xA \rightarrow \neg \forall xB)$$
 前提

2)
$$\neg \forall xA \rightarrow (\forall xA \rightarrow \neg \forall xB)$$
 定理

$$\neg \forall xB \rightarrow (\forall xA \rightarrow \neg \forall xB)$$
 公理

3)
$$\neg(\forall xA \rightarrow \neg \forall xB) \rightarrow \forall xA$$

$$\neg(\forall xA \rightarrow \neg \forall xB) \rightarrow \forall xB$$
 2)+逆否

4)
$$\neg (\forall xA \rightarrow \neg \forall xB) | - \forall xA$$

$$\neg(\forall xA \rightarrow \neg \forall xB) | - \forall xB$$
 1)3) r_{mp}

5)
$$\forall xA \to A$$
 $\forall xB \to B$ 定理

$$6) \neg (\forall xA \rightarrow \neg \forall xB) | -A$$

$$\neg(\forall xA \rightarrow \neg \forall xB) | -B$$
 4)5) r_{mp}

7)
$$A \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$$
 定理

//此结论证明较简单参见教材 3.1.18。//

8)
$$\neg (\forall xA \rightarrow \neg \forall xB) | - \neg (A \rightarrow \neg B)$$
 6) 7) r_{mp}

//注: 这里也可以不调用 3.1.18:

一是证
$$\neg(\forall xA \rightarrow \neg \forall xB)$$
 一 $\neg(A \rightarrow \neg B)$ 的时候用反证法:

$$\neg(\forall xA \rightarrow \neg \forall xB)$$
, $(A \rightarrow \neg B)$ – 互反, 此结论由上述第 6)7) 步即可看出。

二是转化为证
$$|-\neg(\forall xA \rightarrow \neg \forall xB) \rightarrow \neg(A \rightarrow \neg B)$$
,逆否变形即可。//

由(3) 题结论有: $\forall x(\neg A \land \neg B) | \neg \forall x \neg A \land \forall x \neg B$

从而
$$\neg \forall x(\neg A \land \neg B) | \neg (\forall x \neg A \land \forall x \neg B)$$

即
$$\exists x \neg (\neg A \land \neg B) | \neg \forall x \neg A \lor \neg \forall x \neg B)$$
 //替换原理

$$\mathbb{P} \exists x (A \vee B) | - |\exists x A \vee \exists x B$$

证明: $P(Oscar) \vee G(Oscar)$

$$=(P(Oscar) \lor G(Oscar)) \land (\neg P(Oscar) \lor \neg G(Oscar))$$

 $\exists \tau = \{P(Sam), G(Clyde), L(Clyde, Oscar), \}$

$$P(Oscar) \lor G(Oscar), \neg P(Oscar) \lor \neg G(Oscar), L(Oscar, Sam)$$

//因为 $A \land B \rightarrow A$. $A \land B \rightarrow B$ (已证定理),这里为了方便就直接拆开用了//

需证 $\tau \mid -\exists x \exists y (G(x) \land P(y) \land L(x,y))$,考虑反证法:

$$\vec{1} = \tau \cup \{ \forall x \forall y (\neg G(x) \lor \neg P(y) \lor \neg L(x, y)) \}$$

$$= \tau \cup \{ \forall x \forall y (L(x, y) \to (G(x) \to \neg P(y))) \}$$

$$= \tau; \forall x \forall y (L(x, y) \to (G(x) \to \neg P(y)))$$

1)
$$\tau' | \neg \forall x \forall y (L(x, y) \rightarrow (G(x) \rightarrow \neg P(y)))$$

2)
$$\tau'$$
 $-L(Clyde, Oscar) \rightarrow (G(Clyde) \rightarrow \neg P(Oscar)))$ 1) +全称消去的公理+ r_{mp}

3)
$$\tau'$$
|- $L(Clyde, Oscar)$

4)
$$\tau' | -G(Clyde) \rightarrow \neg P(Oscar)$$

5)
$$\tau' | -G(Clyde)$$

6)
$$\tau'$$
 $\neg P(Oscar)$

7)
$$\tau'$$
 $-L(Oscar, Sam) \rightarrow (G(Oscar) \rightarrow \neg P(Sam)))$ 1) +全称消去的公理+ r_{mp}

8)
$$\tau'$$
|- $L(Oscar, Sam)$

9)
$$\tau' | -G(Oscar) \rightarrow \neg P(Sam)$$

10)
$$\tau' | -P(Sam) \rightarrow \neg G(Oscar)$$

11)
$$\tau' | -P(Sam)$$

12)
$$\tau'$$
 $\neg G(Oscar)$

13)
$$\tau' | -P(Oscar) \vee G(Oscar)$$

14)
$$\tau' | \neg G(Oscar) \rightarrow P(Oscar)$$

15)
$$\tau' | -P(Oscar)$$

16)
$$\tau \mid \neg \forall x \forall y (L(x, y) \rightarrow (G(x) \rightarrow \neg P(y)))$$
, 6) 15) 反证法

$$\exists \tau \mid -\exists x \exists y (G(x) \land P(y) \land L(x, y))$$

(6)

证明:
$$E(x) \lor O(x) = (E(x) \lor O(x)) \land (\neg E(x) \lor \neg O(x))$$

$$\exists \exists \tau = \{ \forall x (N(x) \to (E(x) \lor O(x)) \land (\neg E(x) \lor \neg O(x)) \},$$

$$\forall x(N(x) \to (E(x) \leftrightarrow G(x))), \neg \forall x(N(x) \to G(x))$$

需证 $\tau \mid -\exists x (N(x) \land O(x))$,采用反证法

1)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \forall x (\neg N(x) \lor \neg O(x))$

2)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \neg N(x) \lor \neg O(x)$ 1) +全称消去的公理+ r_{mp}

3)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg N(x) \rightarrow \neg O(x)$

4)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -N(x)$

5)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \neg O(x)$

6)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \forall x (N(x) \to E(x) \lor O(x))$

7)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg (N(x) \to E(x) \lor O(x))$

8)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -E(x) \lor O(x)$ 4) 7) r_{mn}

9)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \neg O(x) \to E(x)$

10)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -E(x)$

11)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \forall x (N(x) \to (G(x) \leftrightarrow E(x)))$

12)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg G(x) \leftrightarrow E(x)$

13)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -E(x) \rightarrow G(x)$

14)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -G(x)$

15)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x)) \mid -N(x) \to G(x)$

16)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x)) | \neg \forall x (N(x) \to G(x))$

17)
$$\tau$$
; $\forall x (\neg N(x) \lor \neg O(x)) \mid \neg \neg \forall x (N(x) \to G(x))$

18)
$$\tau \mid \neg \neg \forall x (\neg N(x) \lor \neg O(x))$$

(7)

证:根据全称推广,只需证:

$$\exists x [P(x) \land \forall y (D(y) \to L(x, y))], \ \forall x \forall y [P(x) \to (Q(y) \to \neg L(x, y))] | -D(y) \to \neg Q(y)$$

//根据 $(A \land B \to C)$ |- $|(A \to (B \to C))$ 及替换原理,这里对第 2 个前提条件做个等价变换,当然也可以在证明里做等价变换//下面记此处的前提为 τ .

1)
$$\tau \mid \exists x [P(x) \land \forall y (D(y) \rightarrow L(x, y))]$$
, 前提

2)
$$\tau$$
, $P(x) \land \forall y (D(y) \to L(x, y)) \mid -\forall x \forall y [P(x) \to (Q(y) \to \neg L(x, y))]$

3)
$$\tau$$
, $P(x) \land \forall y (D(y) \to L(x, y)) | -P(x) \to (Q(y) \to \neg L(x, y))$, 由 2)+定理+rmp

4)
$$\tau$$
, $P(x) \land \forall y (D(y) \to L(x, y)) | -P(x)$ (利用已证定理 $A \land B | -A$)

5)
$$\tau$$
, $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | -Q(y) \rightarrow -L(x, y)$, 3), 4) rmp

6)
$$\tau$$
, $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | -L(x, y) \rightarrow \neg Q(y)$

7)
$$\tau$$
, $P(x) \land \forall y(D(y) \to L(x, y)) | -\forall y(D(y) \to L(x, y))$, 同理 4)

8)
$$\tau$$
, $P(x) \land \forall y(D(y) \to L(x, y)) | -D(y) \to L(x, y)$, 同理 3)

9)
$$\tau$$
, $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | -D(y) \rightarrow \neg Q(y)$, 6)、8) 传递

10)
$$\tau \mid -D(y) \rightarrow \neg Q(y)$$
, 由 1)、9)及存在消除定理

11) $\tau \mid \neg \forall y (D(y) \rightarrow \neg Q(y))$, 全称推广

5.

(1)
$$P_1^{(1)}(v_1) |_{\neq_T} \forall v_1 P_1^{(1)}(v_1)$$

证明: 即给出解释和指派使得该逻辑蕴涵不成立。

$$\Rightarrow D = R$$
, $P_1^{(1)}(v_1)$: $v_1 < 5$

在指派 $s(v_1) = 3$ 下公式 $P_1^{(1)}(v_1)$ 为真,但是公式 $\forall v_1 P_1^{(1)}(v_1)$ 为假。

(2)
$$\not\models_T P_1^{(1)}(v_1) \to \forall v_1 P_1^{(1)}(v_1)$$

证明:证明该公式非永真,只需给出一个结构和指派使得其为假即可,直接由1)可得。

(3)
$$\models_{\mathsf{T}} \exists v_1(P_1^{(1)}(v_1) \to \forall v_1 P_1^{(1)}(v_1))$$

证明:
$$\models_{\mathsf{T}} \exists v_1(P_1^{(1)}(v_1) \rightarrow \forall v_1P_1^{(1)}(v_1))$$

iff 对任意的结构U和指派s,有 $\models_U \exists v_1(P_1^{(1)}(v_1) \rightarrow \forall v_1P_1^{(1)}(v_1))[s]$ 成立

iff $\exists d' \in D$, 使得 $|\neq_U P_1^{(1)}(v_1)[s(v_1|d')]$ 或 $|=_U \forall v_1 P_1^{(1)}(v_1)[s]$ (后面的这个约束变元 v_1 跟前面的 v_1 没关系,完全可以改名为其他变元符号。)

- 1) 若 $\exists d' \in D$, 使得 $|\neq_{U} P_{1}^{(1)}(v_{1})[s(v_{1}|d')]$ 成立,那么原命题得证。
- 2) 若 不 存 在 $d' \in D$, 使 得 $|\neq_U P_1^{(1)}(v_1)[s(v_1|d')]$ 成 立 , 即 对 $\forall d \in D$, 均 有 $|=_U P_1^{(1)}(v_1)[s(v_1|d)]$ 成立,

即有: $=_U \forall v_1 P_1^{(1)}(v_1)[s]$ 成立

综合 1)、2) 知 $\models_{\mathbf{U}} \exists v_1(P_1^{(1)}(v_1) \to \forall v_1P_1^{(1)}(v_1))[s]$ 成立。

(4) 直接给出一个为真的解释和指派即可。

6.

同 5. (4),分别给出为真的解释和指派即可。 7.

(1) $\tau; A \models_{\mathbf{T}} \mathbf{B}$ 当且仅当 $\tau \models_{\mathbf{T}} \mathbf{A} \to \mathbf{B}$

证明: \leftarrow : 若 $\tau \models_{\mathsf{T}} \mathsf{A} \to \mathsf{B}$, 则需证 τ ; $\mathsf{A} \models_{\mathsf{T}} \mathsf{B}$ 。

只需证对任意的使得 τ 中的公式及公式A为真的U,S必有 $\models_U B[S]$ 。

而由 $\tau \models_{\mathbf{T}} \mathbf{A} \to \mathbf{B}$,则必有 $\models_{U} (A \to B)[S]$,即 $\not\models_{U} A[S]$ 或 $\models_{U} B[S]$,而 U,S 使得 A 为真,故必有 $\models_{U} B[S]$ 。

⇒: 若
$$\tau$$
; $A =_T B$, 则需证 $\tau =_T A \to B$ 。

只需证对任意的使得 τ 中的公式为真的U,S必有 $\models_U (A \rightarrow B)[S]$ 。

①若 $|\neq_U A[S]$, 则显然有 $|=_U (A \rightarrow B)[S]$ 成立。

②若 $|=_U A[S]$,则由 τ ; $A|=_T B$ 及在U,S 的作用下 τ 中的公式为真,从而根据逻辑蕴涵定义必有 $|=_U B[S]$,所以 $|=_U (A \to B)[S]$ 。

(2) \models_{T} A 当且仅当 \models_{T} ∀vA (v为任一变元)

证明:不妨设变元v在A中自由出现。

 \leftarrow : \ddot{A} |=_T $\forall vA$, \ddot{A} \ddot{A} ∈ \ddot{A} .

即需证对任意的U, S有 $\models_{U} A[S(v|d)], \forall d \in D$

由 $|=_{\mathsf{T}} \forall \mathsf{vA}$ 知对任意的U, S有 $|=_{\mathsf{U}} \forall \mathsf{vA}[S]$, 即对 $\forall d \in D$ 有:

 $=_{\mathrm{U}} \mathrm{A}[S(v \mid d)]$

⇒: 若|=_T A, 需证|=_T ∀vA。

由 $\models_{\mathsf{T}} \mathbf{A}$ 知对任意的U,S及对 $\forall d \in D$ 有 $\models_{\mathsf{U}} \mathbf{A}[S(v \mid d)]$ (假设变元v在A中自由出现),即 $\models_{\mathsf{U}} \forall v \mathbf{A}[S]$,所以 $\models_{\mathsf{T}} \forall v \mathbf{A}$ 。

(3) $\forall v(A \rightarrow B), \forall vA =_T \forall vB$

证明: 只需证对任意的U,S 若 $\models_U \forall v(A \rightarrow B)[S]$ 且 $\models_U \forall vA[S]$,则必有 $\models_U \forall vB[S]$ 。由 $\models_U \forall v(A \rightarrow B)[S]$ 知: 对任意 $d \in D$,有 $\models_U (A \rightarrow B)[S(v \mid d)]$,即有 $\models_U A[S(v \mid d)]$ 或 $\models_U B[S(v \mid d)]$,又由 $\models_U \forall vA[S]$ 知:对任意 $d \in D$,有 $\models_U A[S(v \mid d)]$,综上 $\models_U B[S(v \mid d)]$,即 $\models_U \forall vB[S]$ 。