Profa. Dra. Raquel C. de Melo-Minardi Departamento de Ciência da Computação Instituto de Ciências Exatas Universidade Federal de Minas Gerais

MÓDULO 3 COMPLEXIDADE DE ALGORITMOS Classes de complexidade

CLASSES DE COMPLEXIDADE

- Se f(n) é uma função de complexidade para um determinado algoritmo, então dizemos que O(f(n)) é a sua complexidade assintótica
- Diversos algoritmos pertencem a uma mesma classe de complexidade O(f(n)) e podemos dizer que eles são **equivalentes** em termos de custo computacional
 - Podemos usar essas classes de equivalência para comparar dois ou mais algoritmos
 - Por exemplo, suponha que um algoritmo é $f(n) = 2n^2$ e o outro é g(n) = 100n Qual deles é melhor?

CLASSES DE COMPLEXIDADE

- A resposta é: depende.
 - Para n < 50, o programa quadrático $(f(n) = 2n^2)$ se comporta melhor que o linear (g(n) = 100n)
 - Para problemas com entradas pequenas, esse programa $O(n^2)$ se comporta melhor
 - Entretanto, quando os dados de entrada crescem, o programa *O(n)* leva menos tempo

- $O(n^2)$ domina assintoticamente O(n), o que nos levaria a escolher o programa da classe O(n) que se comportaria melhor para entradas de tamanhos cada vez maiores
- Contudo, para entradas pequenas o programa da classe $O(n^2)$ pode apresentar um comportamento melhor

0(1)

- São algoritmos de complexidade **constante**, ou seja, o **custo independe** do tamanho da entrada pois as instruções são executadas um número fixo de vezes
- Esse tipo de algoritmo **não tem grande utilidade** pois não realiza nenhum tipo de processamento sobre a entrada
 - Exemplo: um algoritmo que imprime uma mensagem fixa na tela

O(LOG(N))

- São algoritmos de complexidade logarítmica
- Dividem um problema em subproblemas menores
- Um logaritmo gera um tempo de exceção que pode ser menor que uma constante grande
- Quando n = 1000, $log_2n \approx 10$, quando $n \in 1$ milhão, $log_2n \approx 20$. Para que log_2n seja dobrado, é preciso tomar n ao quadrado!
 - Exemplo: não conheço nenhum problema particular da bioinformática que seja resolvido em complexidade logarítmica, infelizmente, mas um exemplo clássico de algoritmo logarítmico que acabamos de vez é o de pesquisa binária que é usado em diversas áreas, inclusive em bioinformática

O(N)

- São algoritmos de complexidade linear
- Realiza um pequeno trabalho sobre cada entrada
 - Exemplo: um algoritmo que processa uma sequência para calcular o conteúdo GC ou mesmo a freqüência de cada um dos 4 nucleotídeos terá complexidade linear

O(N LOG(N))

- Tipicamente um algoritmo pertence a essa classe quando divide um problema em subproblemas menores e posteriormente ajunta as soluções para gerar a solução final
- É bastante eficiente pois está entre O(n) e $O(n^2)$. Quando n é 1 milhão, n log_2n é cerca de 20 milhões. Quando n é 2 milhões, n log_2n é cerca de 42 milhões, pouco mais do que o dobro
 - Exemplo: também não conheço um problema típico de bioinformática que pertença a essa classe mas um exemplo clássico de algoritmos dessa classe são os algoritmos de ordenação que recebem um arranjo, o dividem em subarranjos menores, ordenam-os e ajuntam sucessivamente para construir o arranjo final ordenado
 - Em caso de interesse por esses algoritmos, procurar no capítulo sobre Ordenação em [Ziviani, 2004].

$O(N^2)$

- São algoritmos de complexidade quadrática
- Algoritmos que processam elementos aos pares, muitas vezes um laços aninhados dentro de outros
- Dbserve que quando *n* é 1.000, *f*(*n*) será da ordem de 1 milhão. Quando *n* dobra, o tempo é multiplicado por 4
- São úteis apenas para resolver pequenos problemas
 - Exemplo: o famoso algoritmo de Smith-Waterman [Waterman et al., 1981] que é base para os algoritmos de alinhamento de sequência par-a-par. Ele é quadrático sobre n onde n é o tamanho de uma das sequências. Caso as duas sequências alinhadas tenham tamanhos ordens de grandeza diferentes podemos dizer que ele é O(mn), sendo m e n os comprimentos das sequências em termos de nucleotídeos ou aminoácidos

$O(N^3)$

- Tem complexidade chamada cúbica sendo útil apenas em problemas muito pequenos
- Quando n é 100, o número de operações é da ordem de 1 milhão e que quando n dobra, o tempo de execução fica multiplicado por 8
 - Exemplo: um exemplo clássico de problema cúbico é a multiplicação de matrizes. Mais uma vez, caso as três dimensões envolvidas nas duas matrizes (matrizes de dimensão m x n e n x l resulta em uma matriz de dimensão m x l) sejam ordens de grandeza diferentes podemos dizer que o algoritmo é O(mnl)

$O(2^N)$

- São chamados **exponenciais** e não são úteis na prática
- Tipicamente ocorrem quando se usa a força bruta para resolver um problema
 - Esse jargão força bruta é muito utilizado em Ciência da Computação e significa que o algoritmo tenta todas as possibilidades de solução
- Quando *n* é 20, faz-se cerca de 1 milhão de operações e quando *n* dobra, o tempo é elevando ao quadrado
 - Exemplo: um problema de bioinformática que pertence a essa classe é o famoso Problema do Enovelamento de Proteínas (*PFP*, do inglês *Protein Folding Problem*). A base é o número de aminoácidos da proteína e o expoente é o número de conformações que um aminoácido pode assumir
 - Você pode calcular quão complexo esse problema é?

$O(2^N)$

Dutro exemplo interessante que pertence a essa classe é o docking de pequenas moléculas se considerar que a base é o número de ligações rotacionáveis da molécula e o expoente, o número de possível graus de liberdade.

O(N!)

- São algoritmos que tem complexidade fatorial
- Também ocorre quando se usa **força bruta** e são ainda piores que os da clases 2^n . Quando n = 20, 20! = 2.432.902.008.176.640.000, um número com 19 dígitos. Quando n = 40, 40! é um número com 48 dígitos!
 - Exemplo: um problema em bioinformática tipicamente fatorial é o problema da montagem de um genoma a partir dos fragmentos onde *n* é o número de fragmentos. A montagem de um genoma nada mais é do que a tentativa de se ordenar os fragmentos da forma como eles deveriam estar encadeados no genoma e um algoritmo que tentasse todas as possibilidades afim de encontrar a melhor ou mais correta tentaria n! possibilidades ou todas as permutações possíveis.
- Todo problema que envolver **permutações**, **combinações** ou **arranjos** (problemas de otimização combinatória) pertencerão a essa classe

COMPARANDO OS TEMPOS DE EXECUÇÃO

Veja nessa tabela extraída de [Ziviani, 2004], quanto tempo programas das diversas classes de complexidade levariam para executar com entradas de tamanhos que variam entre n = 10 e 60:

Função de custo	10	20	30	40	50	60
n	0,00001 s	0,00002 s	0,00003 s	0,00004 s	0,00005 s	0,00006 s
n²	0,0001 s	0,0004 s	0,0009 s	0,0016 s	0,0035 s	0,0036 s
n³	0,001 s	0,008 s	0,027 s	0,64 s	0,125 s	0,316 s
n ⁵	0,1 s	3,2 s	24,3 s	1,7 min	5,2 min	13 min
2 n	0,001 s	1 s	17,9 min	12,7 dias	35,7 anos	366 séc
3 n	0,059 s	58 min	6,5 anos	3.855 séc.	10 ⁸ séc.	10 ¹³ séc.

COMPARANDO OS TEMPOS DE EXECUÇÃO

- \triangleright É assustador notar que problemas exponenciais são intratáveis mesmo para entradas tão pequena quanto n=50
- Na prática, isso nos mostra que o problema do enovelamento de proteínas, por exemplo, não é possível de ser resolvido de forma ótima usando força bruta (ou seja, tentando todas as possibilidades), mesmo para proteínas com poucas dezenas de aminoácidos
- Há inúmeros problemas em Bioinformática que são exponenciais ou fatoriais
 - A maioria dos problemas interessantes em boinformática são intratáveis

COMPUTADORES MAIS POTENTES?

- Você pode estar se perguntando se temos boas perspectivas com o desenvolvimento de hardware mais avançado que processe os programas mais rapidamente ou em paralelo?
- Veja mais nessa tabela extraída de [Ziviani, 2004] que faz a estimativa do tamanho dos problemas que poderiam ser resolvidos se tivéssemos computadores mais rápidos

Função de custo de tempo	Computador atual	Computador 100x mais rápido	Computador 1.000x mais rápido
n	t ₁	100 t ₁	1.000 t ₁
n²	t ₂	10 t ₂	31,6 t ₂
n ³	t ₃	4,6 t ₃	10 t ₃
2 n	t ₄	t ₄ + 6,6	t ₄ + 10

COMPUTADORES MAIS POTENTES?

- Note que o problema não é o poder computacional mas, de fato, a complexidade dos problemas
- Um problema exponencial não será possível de ser resolvido mesmo com um computador que seja 1.000 vezes mais rápido que o atual ou que tenha 1.000 núcleos e se possa resolver o problema em paralelo (supondo que isso possa ser feito)
- Note que, no caso de um problema exponencial, mesmo que o computador fosse 1.000 vezes mais rápido, poderíamos resolver um problema quase do mesmo tamanho que t_4 ou um problema de tamanho 10 unidades maior (t_4 + 10)
- Pensando no problema do enovelamento de proteínas, se atualmente fossemos capazes de enovelar computacionalmente uma proteína de t_4 aminoácidos, um computador 1.000 vezes mais rápido conseguia fazê-lo para uma proteína de t_4 + 10 aminoácidos.

Sumário

Há problemas cujos algoritmos pertencem a classes de funções **polinomiais** e outros que pertencem a classes **exponenciais**.

Comumente, dizemos que os **fatoriais** pertencem à classe **exponencial** também. A distinção entre essas duas grandes classes é bastante significativa quando o tamanho do problema cresce.

Os algoritmos polinomiais são úteis na prática, enquanto os exponenciais não.

Assim, um problema é considerado intratável quando não existe um algoritmo polinomial para resolvê-lo e bem resolvido quando o mesmo existe.