تەنقشنگارى دىجىتال تصوير

مریم سعیدمهر شماره دانشجویی : ۹۶۲۹۳۷۳

۱ جاسازی اطلاعات در تصویر

فایل embed_proj.m در پاسخنامه ضمیمه شده است.

۲ حمله به تصویر واترمارک

فایل attack_proj.m در یاسخنامه ضمیمه شده است.

۳ استخراج اطلاعات از تصویر واترمارک

فايل extraction.m در پاسخنامه ضميمه شده است.

۴ آلفای تطبیقی

فایل main_Adaptive.m در پاسخنامه ضمیمه شده است. شکل ۱ روش کلی تهنقش نگاری را که بکار برده شده بیان میکند. این روش تا حدی برگرفته از مقاله (۱) است. در این دیاگرام ، یک بیت از تصویر لوگو ، $W(B_i)$ ، در یک بلوک از تصویر پوشانه ، B_i ، پنهان میشود. در ابتدا تصویر به بلوک های B_i تقسیم میشود سپس از هر بلوک تبدیل DCT گرفته میشود. همزمان میزان پیچیدگی B imes Bآنتروپی ظبق رابطه ۱ محاسبه میشود و برمبنای آن و طبق رابطه ۲ فاکتور قدرت واترمارکینگ مشخص میشود. سپس لوگو بعد از رمز شدن در پوشانه پنهان میشود در نهایت در این سودوکد منظور از D_i ضرایت تبدیل DCT از بلوک B_i در نهایت در الگوریتم ۱ میتوانید سودوکد این روش را ببینید. در این سودوکد منظور از D_i

است. همچنین β_i از رابطه π به دست میآید. در انتهای این بخش از گزارش ، شکل τ که عملکرد بهتر استفاده از فاکتور تقویت تطبیقی از لحاظ شفافیت τ نسبت به روش غير تطبيقي آورده شده است.

$$Complexity_{B_i} = \sqrt{|Edge_Density(B_i) + Entropy(B_i) + \alpha_{input}|}$$
 (1)

$$\alpha_{i} = \left(\left(Complexity_{B_{i}} \right) \times \left(\frac{D_{i} \left(a+1,a \right) + D_{i} \left(a,a+1 \right)}{2} \right) \right) \tag{7}$$

$$\beta_{i} = \begin{cases} D_{i} (a+1, a) - D_{i} (a, a+1) & \text{if } W (B_{i}) = 1 \\ D_{i} (a, a+1) - D_{i} (a+1, a) & \text{if } W (B_{i}) = 0 \end{cases}$$
 (7)

complexity'

Imperceptibility \(^\text{Y}\)

Algorithm \ Adaptive watermarking using edge pixel concentration

```
if watermark bit for the B_i block is one. W\left(B_i\right)=1 then if D_i\left(a+1,a\right)\geq D_i\left(a,a+1\right) and \alpha_i\leq\beta_i then do nothing else if D_i\left(a+1,a\right)\geq D_i\left(a,a+1\right) and \alpha_i>\beta_i then D_i\left(a+1,a\right)\leftarrow D_i\left(a+1,a\right)+\frac{\alpha_i}{2} D_i\left(a,a+1\right)\leftarrow D_i\left(a,a+1\right)-\frac{\alpha_i}{2} else if D_i\left(a+1,a\right)< D_i\left(a,a+1\right) and \alpha_i\leq\beta_i then Swap\left(D_i\left(a,a+1\right),D_i\left(a+1,a\right)\right) else if D_i\left(a+1,a\right)< D_i\left(a+1,a\right) and \alpha_i>\beta_i then D_i\left(a+1,a\right)\leftarrow D_i\left(a+1,a\right)+\frac{\alpha_i}{2} D_i\left(a,a+1\right)\leftarrow D_i\left(a,a+1\right)-\frac{\alpha_i}{2} Swap\left(D_i\left(a,a+1\right),D_i\left(a+1,a\right)\right) end if else if watermark bit for the B_i block is zero. W\left(B_i\right)=0 then if D_i\left(a+1,a\right)\leq D_i\left(a,a+1\right) and \alpha_i\leq\beta_i then do nothing else if D_i\left(a+1,a\right)\leq D_i\left(a,a+1\right) and \alpha_i>\beta_i then D_i\left(a+1,a\right)\leftarrow D_i\left(a+1,a\right)-\frac{\alpha_i}{2} D_i\left(a,a+1\right)\leftarrow D_i\left(a,a+1\right)+\frac{\alpha_i}{2} else if D_i\left(a+1,a\right)>D_i\left(a,a+1\right) and \alpha_i\leq\beta_i then Swap\left(D_i\left(a,a+1\right),D_i\left(a+1,a\right)\right) else if D_i\left(a+1,a\right)>D_i\left(a,a+1\right) and \alpha_i>\beta_i then D_i\left(a+1,a\right)\leftarrow D_i\left(a+1,a\right) and \alpha_i>\beta_i then D
```


شکل ۲: مقایسه واترمارکینگ با آلفای تطبیقی و غیرتطبیقی : تصویر سمت راست خروجی روش واترمارمارک با استفاده از آلفای تطبیقی است که PSNR=44.1797 دارد و تصویر سمت چپ ، خروجی روش معمولی(آلفای غیرتطبیقی) است و PSNR=35.6832 است. در هر دو ، سایز بلوک ها 8×8 و a=4 و برای روش غیرتطبیقی a=70 بوده است

این روش به لحاظ مقاومت عملکرد خیلی خوبی ندارد ولی میتوان برای رفع مشکل لوگو را به صورت redundantly در پوشانه پنهان کرد.

۵ اعلام نتایج

۱.۵ جدول مقادیر

$\alpha = 100$	$\alpha = 50$	$\alpha = 10$	$\alpha = 0$		
1	1	1	0.90816	JPEG	quality = 100
1	0.99235	0.58929	0.57781	JPEG	quality = 80
0.96811	0.53922	0.4898	0.48342	JPEG	quality = 60
35.6832	40.4513	46.5885	46.9751	PSNR	

جدول ۱: مقادیر حاصل از جاسازی اطلاعات در بلوکهای 8×8 در تصویر Lenaبا ابعاد 450×450 و کلید 19 و مقدار a=4

$\alpha = 100$	$\alpha = 50$	$\alpha = 10$	$\alpha = 0$		
1	1	1	0.88593	JPEG	quality = 100
1	0.98173	0.70173	0.66864	JPEG	quality = 80
0.93778	0.77235	0.59062	0.56988	JPEG	quality = 60
37.5644	42.1294	48.9782	49.3901	PSNR	

جدول ۲: مقادیر حاصل از جاسازی اطلاعات در بلوکهای 10×10 در تصویر Lenaبا ابعاد 450×450 و کلید 19 و مقدار a=5

$\alpha = 100$	$\alpha = 50$	$\alpha = 10$	$\alpha = 0$		
1	1	0.98539	0.8634	JPEG	quality = 100
1	0.97882	0.69759	0.65522	JPEG	quality = 80
0.90723	0.73338	0.57779	0.56903	JPEG	quality = 60
39.174	43.8599	49.9	50.2088	PSNR	

جدول ۳: مقادیر حاصل از جاسازی اطلاعات در بلوکهای 12 imes 12در تصویر Lenaبا ابعاد 450 imes 450 و کلید 19 و مقدار a=6

۲.۵ نحوه یافتن آلفای ماکزیمم

میدانیم که همیشه یک تهاتر بین شفافیت واترمارک و مقاومت آن وجود دارد. همچنین از مقیاس SSIM برای اندازه گیری میزان شباهت تصویر واترمارک شده با تصویر اصلی استفاده کردم و از NC برای مقایسه تصویر لوگو استخراج شده و لوگو اصلی استفاده کردم. پس به این ترتیب ، SSIM میزان شفافیت و NC مقاومت را نشان میدهد.

ور این قسمت برای یافتن آلفای ماکزیممی که بهترین نتیجه از لحاظ مقاومت و شفافیت را بدهد سعی کردم از NC در این قسمت برای یافتن آلفای ماکزیممی که بهترین نتیجه از لحاط کنم. سپس با تغییر آلفا در بازهی [0,200] و انجام عمل ته نقش نگاری به ارای هر آلفا و سپس انجام حمله JPEG با کیفیت های [0,200] و [0,200] و در نهایت میانگین گیری از [0,200] به دست آمده ، شکل [0,200] حاصل شد.

طبق شکل ${\bf r}$ ، ماکزیمم آلفایی که بهترین نتیجه را چه از لحاظ شفافیت و چه از لحاظ مقاومت میدهد ، برابر است با . $lpha_{max}=40$

 $\alpha=0$ و 100 و 80 و 60 با سه کیفیت 60 و 80 و 100 و شکل ۴: لوگو استخراج شده بعد از حمله

Non-adaptive watermarking

Original Image

PSNR = 46.9751 $\alpha=0$ شکل ۵: تصویر واترمارک شده با

 $lpha=10\%lpha_{max}=4$ و 80 و 80 و 100 و 100 با سه کیفیت 60 و 100 و 100 مثکل 9: لوگو استخراج شده بعد از حمله

Non-adaptive watermarking

Original Image

Watermarked Image

PSNR = 46.5885 $\alpha = 10\% \alpha_{max} = 4 \; \text{null} \; \text{...}$ شکل ۷: تصویر واترمارک شده با

 $lpha=50\%lpha_{max}=20$ و 80 و 80 و 100 و 100 و IPEG شکل ۸: لوگو استخراج شده بعد از حمله

Non-adaptive watermarking

Original Image

PSNR = 40.4513 $\alpha = 50\% \alpha_{max} = 20 \; \text{he} \; \text{only} \; 0$ شکل ۹: تصویر واترمارک شده با

 $lpha=lpha_{max}=40$ و 80 و 80 و 100 و 100 با سه کیفیت 60 و 100 و 100 مشکل ۱۰۰ لوگو استخراج شده بعد از حمله

Non-adaptive watermarking

Original Image

Watermarked Image

PSNR = 35.6832 $\alpha = \alpha_{max} = 40 \; \text{الله المار المار المار المار المار المار المارك المارك$

References

[1] N. K. S. S. H. R. Fazlali, S. Samavi, "Adaptive blind image watermarking using edge pixel concentration," Multimed Tools Appl. Jan. . 7 • 18