# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## BEST AVAILABLE-IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

## (54) PROCESSING METHOD FOR SILVER HALIDE PHOTOGRAPHIC SENSITIVE MATERIAL

(11) 4-80746 (A) (43) 13.3.1997

(21) Appl. No. 2-196006 (22) 23.7.1990

(71) KONICA CORP (72) HIROYUKI ATOYAMA(1)

(51) Int. Cls. G03C5/29,C09B57/00,G03C1/83

PURPOSE: To ensure high image quality, improved whiteness and satisfactory shelf stability and to reduce residual color even in the case of very rapid processing by incorporating a specified dye into a hydrophilic colloidal layer and further incorporating an oil-soluble optical whitening agent.

CONSTITUTION: Hydrophilic colloidal layers including at least one photosensitive silver halide emulsion layer sensitized in an IR region are formed on a base, at least one kind of dye represented by formula I (where each of V₁ and V₂ is sulfo or carboxy, n is 1, 2, 3 or 4 and m is 1, 2 or 3) is incorporated into at least one of the colloidal layers and an oil-soluble optical whitening agent is further incorporated into the dye-contg. colloidal layer or other colloidal layer. The resulting sensitive material is processed by development, fixation and washing and/or stabilization within 40sec with an automatic processing machine having ≥1,500mm/min line speed. High image quality, improved whiteness and superior shelf stability are ensured and residual color or unevenness in residual color is reduced even in the case of very rapid processing.

### (54) PROCESSING METHOD FOR SILVER HALIDE PHOTOGRAPHIC SENSITIVE MATERIAL

(11) 4-80747 (A) (43) 13.3.1992 (19) JP

(21) Appl. No. 2-196007 (22) 23.7.1990

(71) KONICA CORP (72) HIROYUKI ATOYAMA(1)

(51) Int. Cls. G03C5/29,G03C1/83

PURPOSE: To ensure high image quality, improved whiteness and satisfactory shelf stability and to reduce residual color even in the case of very rapid processing by incorporating a water-soluble dye having its absorption max. at ≥700nm wavelength into a hydrophilic colloidal layer and further incorporating an oil-soluble optical whitening agent.

CONSTITUTION: Hydrophilic colloidal layers including at least one photosensitive silver halide emulsion layer sensitized in an IR region are formed on a base, at least one kind of water-soluble dye having its absorption max. at ≥700nm wavelength is incorporated into at least one of the colloidal layers and an oil-soluble optical whitening agent is further incorporated into the dye-contg. colloidal layer or other colloidal layer. The resulting sensitive material is processed by development, fixation and washing and/or stabilization within 40sec with an automatic processing machine having ≥1,500mm/min line speed. High image quality, improved whiteness and superior shelf stability are ensured and residual color or unevenness in residual color is reduced even in the case of very rapid processing.

#### (54) IMAGE FORMING METHOD

(11) 4-80748 (A) (43) 13.3.1992 (19) JP

(21) Appl. No. 2-194644 (22) 23.7.1990

(71) FUJI PHOTO FILM CO LTD (72) NOBUAKI INOUE

(51) Int. Cls. G03C5/29,G03C1/035,G03C1/06,G03C5/305

PURPOSE: To form a line image having superior image quality and suitability to enlargement and scale-down by using specified silver halide, incorporating a specified redox compd. into an emulsion layer or another hydrophilic colloidal layer and specifying the compsn. of a developing soln.

CONSTITUTION: When a photographic sensitive material having a silver halide emulsion layer is imagewise exposed and processed with an aq. alkali developing soln., silver halide contg. at least 30mol% silver bromide is used in the emulsion layer and a redox compd. releasing a development inhibitor on being oxidized is incorporated into the emulsion layer or another hydrophilic colloidal layer. The developing soln. contains at least 0.15mol/l dihydroxybenzene developing agent but does not practically contain an auxiliary developing agent and further contains at least 0.25mol/l free sulfite ions, a compd. represented by formula I (where  $X_1$  is H or nitro and each of  $X_2$  and  $X_3$  is H or 1-4C alkyl) and an alkali agent enough to adjust the developing soln. to pH  $\geq 10.5$ . A line image having superior image quality and suitability to enlargement and scale-down can be formed.



Grand une in

PTO 2005-5133

S.T.I.C. Translations Branch

⑩日本国特許庁(JP)

. ⑩特許出願公開

### @ 公 開 特 許 公 報 (A) 平4-80747

®Int.Cl.⁵

識別記号

庁内整理番号

**4**公開 平成 4年(1992) 3月13日

G 03 C 5/29 1/83

8910-2H 6906-2H

審査請求 未請求 請求項の数 2 (全21頁)

60発明の名称

ハロゲン化銀写真感光材料の処理方法

②特 頭 平2-196007

**20**出 願 平2(1990)7月23日

**@**発明者後山

弘之和弘

東京都日野市さくら町1番地 コニカ株式会社内

**@**発明者 吉田

東京都日野市さくら町1番地 コニカ株式会社内

の出 願 人 コニカ株式会社

東京都新宿区西新宿1丁目26番2号

四代 理 人 弁理士 坂口 信昭

BE 578 588

#### 1 発明の名称

ハロゲン化銀写真感光材料の処理方法

#### 2 特許請求の範囲

(1)支持体上に、赤外増感された少なくとも1層の感光性ハロゲン化銀乳剤層を含む銀水性コロイド層を有するハロゲン化銀写真感光材料の処理上に野収を担当して、上配観水性コロイド層の少なくとも1種を含有すると共に鉄築料を含みが性の気が使って、一個では、かつ現象を対し、かつ現象を対し、かつ現象を対し、かつ現象を対し、かつ現象を対し、かつ現象を対し、かつ現象を対し、かつりが対し、変換して、などでは、1500mm/min以上の自動現象を用いく0秒以内の処理を開いてなって、とを特徴とするハロゲン化銀写真感光材料の処理方法。

(2)前記染料及び抽給性質光増白剤を含有する親 水性コロイド層がハレーション防止層であること を一数とする請求項1記載のハロゲン化銀写真感 光材料の処理方法。

#### 3 発明の詳細な説明

〔産業上の利用分野〕

本発明はハロゲン化銀写真感光材料の処理方法 に関し、詳しくは高面質で白度が改良され保存性 がよく超迅速処理を行なった時にも競色が少ない ハロゲン化銀写真感光材料の処理方法に関する。 〔従来の技術〕

需光用の光根としてお外域に発光する光板を用いると、明るいセーフライトが使用でき、取り扱い作業上有利である。このためお外域に分光増感されたハロゲン化級写真感光材料が提案されている。このような写真感光材料は、例えばいわゆるスキャナー方式を利用して、第光し画像を形成することができる。

スキャナー方式による函像形成方式は、原図を 走査し、その函像各号に基づいてハロゲン化値写 実感光材料上に貫光を行い、原図の画像に対応す るネガ画像もしくはポジ語 を形成するものでか る。スキャナー方式による画像形成方法を実用し た記録装置は着々あり、これらのスキャナー方式 記録装置の記録用光駅として、半導体レーザー、 Re-Neレーザー、アルゴンレーザー、発光ダイオ --ド(LED)が用いられている。

一方、赤外分光増感されたハロゲン化銀写真印 画紙には、ハレーションやイラジェーションを防 止して画質を向上するために赤外に吸収を有する 染料を用いるのが一般的である。またハロゲン化 銀写真印画紙の処理核の白さを高めるために蛍光 増白剤を適用することはよく知られている技術で ある。

袖容性 愛光増白剤を感光材料中に添加する技術 としては例えば英簡特許 1,072,815号、特開昭45 -37378号、特闘昭 60-134232号などに配載されて いるように、袖容性 愛光増白剤を有機容践に溶解 して感光材料中に添加する方法が知られている。

ところが抽容性對光増白剤を、赤外分光増感されかつある種の余外に吸収を有する染料を含有す

ン化銀写真感光材料の現像処理枚数が増加し、現像処理の迅速化、つまり同一時間内での処理量を増加させることが要求されている。この傾向は、即時性や回数の増加が急増しているため、印刷製版の作業も短納期にしかもより多くの量をこなが要が出てきている。この様な印刷製版業界の要が出てきている。この様な印刷製版業界の要が出てきている。この様な印刷製版業界の要を横たすには、印刷製版用感光材料を一層迅速に処理する必要がある。

しかし、袖部性量光増白剤と従来の染料を含有 する余外分光増配されたハロゲン化銀写真印脳紙 に超透速処理を適用すると、残色または残色ムラ が出品くなる問題があった。

#### (発明が解決しようとする課題)

そこで本発明の目的は、高価質で白度が改良され、かつ保存性にも優れ、さらに超迅速処理を行なった時にも要色または残色ムラが少ないハロゲン化銀写真感光材料の処理方法を提供することを震翻とする。

るハロゲン化銀写真印函紙に適用すると、高温下 に感らされた時に感度低下、即ち感度安定性ない し保存性が劣化するという問題があることがわ

従って、高国質で白度が改良されかつ感度保存 性 (単に保存性ということもある) も優れた写真 印画紙に使用し得る染料の開発が望まれている。

今日までに、前記の要請を簡足する染料をみいだすことを目的として、多くの努力がなされ、多数の染料が提案されてきた。例えば米国特許 3.2 47.127号、 幹公昭38-22088号、 特開昭50-81827号、 特開昭52-34716号等に記載されたオキソノール染料、米国特許 1.845.404号に代表されるスチリル染料、米国特許 2.483.747号に代表されるメロシアニン染料、米国特許 2.843.488号に代表されるシアニン染料等がある。

しかし、前記の要請をすべて満足する良好な染料は非常に少ないのが実情である。

一方、近年ハロゲン化銀写真感光材料の荷養量 は、増加の一途をたどっている。 このためハロゲ

#### (課題を解決するための手段)

また木発明の好ましい意識としては、前記染料及び袖辞性量光増白剤を含有する親水性コロイド 層がハレーション防止層であることである。



以下、木苑明について群説する。

まず700gs 以上に吸収極大を持つ水脊性染料について説明する。

700mm以上に吸収極大を持つ水常性染料は、好ましくは以下の一般式(Ia)、 (Ib)、 (Ic)で要される染料である。

#### 一般式 (I a)

$$Y_1$$
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_6$ 

#### 一般式(1b)

$$Y_{1} = X_{0} + X_{0$$

#### 一般式 (1 c)

(式中、R1,R2,R1,R4,R5 及びR6 は各々 アルキル基を表し、Y1 及びY2 はピロロビリジ

> 基、ホスホン酸基等が挙げられ、これらの酸基は 各★、その塩を包含する。塩としては、ナトリウム、カリウム等のアルカリ金属塩、アンモニウム、トリエチルアミン、ピリジン等の有機アンモニウム塩を挙げることができる。

R1,R2,R3,R4,R5及びR4で変されるアルキル基は、舒ましくは炭素数1~8の低級アルキル基(例えばメチル、エチル、プロピル、i-プロピル、プチル基等)を表し、前記の酸漿換基又は-CH2CH2CR基以外の配換基を有してもよい。

Rで表されるアルキル基は炭素数も以下の低級 アルキル業が好ましい。

- CH<sub>2</sub>CH<sub>2</sub>OR基を含む最終基としては、例えばヒドロキシエチル基、ヒドロキシエトキシエチル 蒸、メトキシエトキシエチル基、ヒドロキシエチ ルカルバモイルメチル基、ヒドロキシエトキシエ チルカルバモイルメチル基、H,N-ジヒドロキシエ チルカルバモイルメチル基、H,N-ジヒドロキシエ チルカルバモイルメチル基、ヒドロキシエチルス ルファモイルエチル基、メトキシエトキシエトキ シカルボニルメチル基等を げることができる。



ン恵を形成するのに必要な非金属原子群を変し、 かつ、平1 の裏内に

No 結合を含み、Y:の類内に No 結合を含むものとする。

一般式(I a) におけるR1,R2,R2,R4,R5,R4,R5,R4,R1,R2,R4,R5,R4,R5,R4,R1,R2,R3,R4,R5,R4,R1,R2,R3,R4,R5,R6,Y1,Y2 はられ、処料分子が少なくとも2個の職業を有することを可能にする蓋又は一CB1CH2OR基を1個以上有する置換蓋を少なくとも2個有することを可能にする蓋を変す。Rは水素原子又はアルキル基を安す。

Lはメチン茎を安し、X®はアニオンを安す。 mは4又は5の整数を安し、nは1又は2の整数 を変す。発料が分子内塩を形成する時はnは1で ある。)

前記一般式(I a)、(I b)及び(I c)に おける酸基としては、スルホン酸基、カルボン酸

Y: 及びY: が有してもよい、その他の置換基としては、スルホ基(塩を含む)、カルボキシ基(塩を含む)、ヒドロキシ基、シアノ基、ハロゲン原子(例えば弗素、塩素、臭素原子等)等が挙げられる。

して姿されるメチン基も置換基を有してもよく、置換基としては炭素数1~5の置換または無置換の低級アルキル蒸(例えばメチル・エチル、3-ヒドロキシプロピル、2-スルホエチル萬等)、ハロゲン原子(例えば売素、塩素、臭素原子等)、フリール基(例えばフェニル基)、アルコキシ基(例えばメトキシ、エトキシ基等)などが挙げられる。またメチン基の置換基同士が結合して3つのメチン基を含む6頁類(例えば4,4-ジメチルシクロへキセン額)を形成してもよい。

Xº で扱されるアニオンは、特に勧約されないが、具体例としてハロゲンイオン、p-トルエンスルホン酸イオン、エチル破職イオン等が挙げられる。

本発明に好ましく用いられる一般式〔【4】。

#### 特開平4-80747(4)

(Ib) 及び (Ic) で抜される染料の具体例を 以下に示すが、これらに限定されない。

#### 具体的化合物

(1-2)

(1 - 3)

(1 - 4)

(1 - 5)

(1 - 6)

(1-7)

(1 - 8)

(1 - 9)

(1 - 10)

(1 - 12)

(1-13)

(1 - 14)

(1 - 15)

#### 特開平4-80747 (5)

(1 - 31)  

$$KO_3S = \begin{pmatrix} CH_3 & CH_4 & CH_5 & C$$

前記染料は、ジャーナル・オブ・ザ・ケミカル・ソサエティ (J.Chem.Soc.) 188頁 (1933年)、 米国特許 2,895.855号及び特開昭 62-123454号等 を参考にして合成することができる。

前記染料の母核としては例えば次の様な化合物 が挙げられる。

43

化合物 (A) は J.Chem.Soc..3202(1959) に記載の方法及び英国特許 870.753号に記載の方法で 合成することができる。

化合物 (B) は J.Chem.Soc.,584(1961)に記載の方法で合成することができる。

化合物 (C) は英国特許 841,588号に記載の方法で合成することができる。

これらの母核を用いて四級化、スルホン化等を

いることもできる。

具体的な染料の使用量はその目的に応じ異なり一律には定めにくいが、一般に $10^{-1}$ g/㎡~ 1.0g/㎡、特に $10^{-2}$ g/㎡~ 0.5g/㎡の範囲に好ましい量を見い出すことができる。

前配染料は、ハロゲン化銀写真感光乳剤中に合有させてイラジェーション防止染料として用いることもできるし、また非感光性の親水性コロイド 暦中に含有させてハレーション防止染料又はフィルター染料として用いることもできる。また非感光性の親水性コロイド 暦の中でも上部に位置する暦(保護暦等)に添加されてセーフライトに全発では外域として用いてもよい。本発明においてはハレーション防止層に含有せしたので、ルレーション防止染料として用いることが舒ましい。

次に本発明に用いられる袖袋性量光増白剤について説明する。

抽溶性量光増白剤としては、例えば英国 許郭 788,234号に記載された重換スチルペン、最終ク 必要に応じて行うことができる。又は、 J.Chem. Soc...3202(1959) 及び J.Chem. Soc...584(1861)に 記載の合成法に準じてN-アルキル-N- ピリジルヒドラジンを合成しヒドラゾンを経て現化反応を行い、必要に応じ酸処理することによりI-アルキル 散装-3H-ピロロピリジン誘導体を得、これを出発物質とすることもできる。

上記染料は適当な溶媒(例えば水、アルコール (例えばメタノール、エタノールなど)、メチルセロソルブなど、或いはこれらの配合溶媒)に溶解して親水性コロイド層用生布液中に添加される。

前記染料は2種以上組み合わせて用いることもできる。

本発明において、一般式(Ia)、(Ib)または(Ic)で扱される化合物はその少なくともいずれかの化合物が1種被処理感光材料に含有されていればよく、また、任意の組み合わせ(例えば同じ一般式で変される化合物同士とか、他の式で変される化合物同士であるとか)で2種以上用

マリンや米国特許第 3,135,762号に記載された置換チオフェン類等が有用であり、特公昭45-37378号、特開昭 50-128732号に開示されているような油給性蛍光増白剤が特に有利に使用できる。

抽箱性番光増白剤としては、下記一般式 (□a)、(□b)、(□c) および(□d) で 要されるものが有利に用いられる。

#### 一般式(Ja)

#### 一般式 [[b]

$$R_1 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow R_4$$

#### 一般式 (Ic)

$$R_{\bullet}$$
 $R_{\bullet}$ 
 $R_{\bullet}$ 
 $R_{\bullet}$ 
 $R_{\bullet}$ 
 $R_{\bullet}$ 

一般式 (Id)

但し上記一般式(『a)~(『d)中、Y:及びY;はアルキル茲、2:及びZ;は水素原子またはアルキル茲、nは1または2、R:R:R:Rン 及びR。はアリール茲、アルキル茲、アレールン茲、アリールオキシ茲、とドロキシ茲、アラーが、カルボキシ茲、アン が、カルボキシ茲、アンド茲、エステルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アルキルスルボニル茲、アンドル茲、エチル茲ののかでアルキルスルボニル茲マ、メチル茲、エチル茲等のかでアルキル茲またはシアノ茲である。R。はフェニル茲、ハロゲン原子またはアルキル環境フェニル茲である。R;はアミノ茲または有機のまたは二級アミンである。

次に、本発明に用いられる袖籍性量光増白剤の 例示化合物を挙げるが、これらに限定されるもの でない。

 $CH_3$   $CH_4$   $CH_5$   $CH_7$   $CH_7$   $CH_7$   $CH_7$   $CH_8$   $CH_8$ 

(1-4)

(I - 5)

(例示油溶性黄光增白剂)

 $(\Pi - 1)$ 

 $(\pi - 2)$ 

I - 8)

(I-8)

(II-11)

(II – 12)  $\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \text{NCH}_4 \text{CH}_4 \text{NHCNH} \\ 0 \\ \end{array}$ 

(n-16)

なお上記例示量光増白剤は、 独で用いてもよく、二種以上混合して用いてもよい。

★光増白剤の使用量は、仕上がり印画紙中に1~200mg/㎡存在するように転加するのが舒まし

$$(\Pi - 19)$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_4$ 
 $CH_4$ 
 $CH_4$ 
 $CH_5$ 
 $CH_5$ 

(1 - 20)

CH. O CH - CH - CH

 $(\Pi - 55)$ 

く、 5~ 50sg/㎡の範囲で用いるのが最も好まし い

本発明に用いられる蛍光増白剤乳化分散物の添加層は支持体上の写真構成層ならどの層でもかまわないが、いわゆるブルーミングを防止するという観点からはハロゲン化銀乳剤層もしくはより支持体に近い層(中間層などの親水性コロイド層)に参加するのがよい。

油溶性蛍光増白剤の添加方法としては、1つには従来油溶性カプラーや油溶性紫外線吸収剤等に用いられるのと阿様の方法、十なわち、高沸点有機溶剤中に必要に応じて低沸点溶剤と共に溶解し、界面活性剤を含むゼラチン水溶液と混合して、コロイドミル、ホモジナイザー、超音波分散装置等の乳化装置により乳化分散物として添加する方法がある。

本明都書で言う高語点辞剤とは、沸点が 200℃ を越える辞剤のことである。本発明に用いることができる高沸点溶剤としては、カルボン酸エステル類、リン酸エステル類、カルボン酸アミド類、

また、低沸点彩剤としては、酢酸エチル、酢酸 ブチル、シクロヘキサン、プロピレンカーポネート、メタノール、sec-プチルアルコール、テトラ ヒドロフラン、ジメチルホルムアミド、ペンゼ ン、クロロホルム、アセトン、メチルエチルケト

せてラテックス分散物として豚加する方法がある。これらの方法は例えば特開昭 50-126732号、 特公昭51-47043号、米国特許第 3,418,127号、同 第 3,358,102号、同第 3,558,318号、同 3,788,8 54号等に開示されている。

本発明におけるハロゲン化銀写真感光材料を赤 外増感するため使用する赤外増感色素は任意の色 素でよく、例えば下配一般式 ( m a ) 、 ( m b ) で変される化合物が好ましく用いられる。

#### 一般式(IIa)

【式中、 Y 11, Y 12, Y 21および Y 21は、各々5 員または 8 員の合遼富復素費を完成するのに必要 な非金属原子群を衷し、例えばペンソチアプール ン、ジェチルスルホキサイド、メチルセロソルブ 等があり、これらを必要に応じて一種または二種 以上組合せ使用することもできる。

更に評価活性剤としてはアニオン活性剤、非イオン活性剤及びそれらを組み合わせて用いることができ、例えばアルキルベンゼンスルホン酸塩、スルホコハク酸エステル塩、サポニン等が用いられる。

ゼラチンとしてはアルカリ法ゼラチン、酸性法ゼラチン、変性ゼラチン(例えば特公昭 38-4854 号、同40-12237号公報、米国特許第 2,525.753号明細書等に記載の変性ゼラチンなど)を単独または二種以上組み合わせて用いることができ、必要に応じて天然又は合成パインダー(例えばポリピニルアルコール、ポリピニルピロリドンなど)も使用し得る。

油粉性量光増白剤の他の添加方法として、油粉性量光増白剤をあらかじめモノマー中に溶解してから重合してラテックス分散物としたり、硬水性ポリマーラテックス中の補助容額を用いて含長さ

裏、ナフトチアゾール膜、ベンゾセレナゾール 裏、ナフトセレナゾール膜、ベンブオキサゾール 裏、ナフトオキサゾール票、キノリン膜、3,3-ジ アルキルインドレニン膜、ベンツイミダゾール 磨、ビリジン画祭を無げることができる。

これらの検索環は、低級アルキル基、アルコキシ基、ヒドロキシ基、アリール基、アルコキシカルボニル基、ハロゲン原子で登扱されていてもよい。

R<sub>11</sub>, R<sub>17</sub>, R<sub>21</sub>およびR<sub>22</sub>は、各々屋換もしくは無量換のアルキル基、アリール基立たはアラルキル基を表す。

 $R_{11}$ ,  $R_{14}$ ,  $R_{15}$ ,  $R_{23}$ ,  $R_{24}$ ,  $R_{25}$  および  $R_{24}$ は各々水来原子、量換もしくは無電換のアルキル誌、アルコキシ基、フェニル誌、ペンジル誌、 $-N < W_1$  を表す。ここで $W_1$  と $W_2$  は各々 観換もしくは無置換のアルキル誌(アルキル部分の 皮素 F 子敬  $1 \sim 18$ 、 ff ま しくは  $1 \sim 4$ )、アリール基を表し、 $W_1$  と $W_2$  とは互いに適始して 5 員または 6 員の合窒素複素質を形成することも

てきる.

また、R13とR15およびR23とR23は互いに運結して5員関または6員関を形成することができる。Y11、Y17、Y21、Y22、R11、R12、R13、R23、R21、R24、R25、R25、R24のうちの1つは酸茎(たとえばカルボニル基、スルホニル基等)もしくは酸茎で量換されている茎であることが打ましい。X1はおよびX2はアニオンを表す。酸茎がある場合はm11、m21は0を、酸茎がない場合はm11、m21は1を表す。n11、n12、n21およびn22は0または1を表す。n11、n12、n21およびn22は0または1を表す。

次に、本発明に紆ましく用いられる増感色素の 具体例を示すが、本発明はこれらに限定されるも のではない。

(II-5)

(m-6)  $CH_{\bullet} CH_{\bullet} CH_{\bullet} CH_{\bullet} CH_{\bullet} CH_{\bullet} CH_{\bullet}$   $C_{\bullet}H_{\bullet} CH_{\bullet} CH_{\bullet}$ 

例示增感色素

(m-1)

$$C_{1}H_{\bullet}$$

$$C_{1}H_{\bullet}$$

$$C_{1}H_{\bullet}$$

$$C_{1}H_{\bullet}$$

$$C_{1}H_{\bullet}$$

$$C_{2}H_{\bullet}$$

$$C_{3}H_{\bullet}$$

$$C_{4}H_{\bullet}$$

$$C_{5}H_{\bullet}$$

$$C_{7}H_{\bullet}$$

$$C_{1}H_{\bullet}$$

$$C_{8}H_{\bullet}$$

(m-2)

CH-3)

CH-CH-CH-CH-CH

CH-3,50,6

CH-3,50,6

(II-4)

$$C^{1}H^{4}$$
 $CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}$ 
 $CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}CH^{2}$ 

(m-9)

(m-10)

$$C_{\bullet}H_{\bullet}$$

$$C_{\bullet}H_{\bullet}$$

$$C_{\bullet}H_{\bullet}$$

(m-11)

(III-12)

ĺĐ

#### (III-14)

#### (III-15)

#### (II-16)

#### (II-21)

#### (II-22)

#### (III-23)

#### (M-24)

#### (III-17)

#### (m-18)

#### (II-19)

10

10

#### (II-20)

本発明に好ましく用いられる増感色素は好ましくはハロゲン化銀1モル当り1mg~2g,更に好ましくは5mg~1g の範囲で感光性ハロゲン化銀写真乳剤層中に含有される。

かかる増盛色素は、直接乳剤中へ分散することができる。また、これらはまず適当な溶媒、例えばメチルアルコール、エチルアルコール、メチルセロソルブ、アセトン、水、ピリジンあるいはこれらの配合溶媒などの中に溶解され、溶液の形で乳剤へ添加することもできる。

増感色素は、単独で用いてもよく、2種類以上 併用してもよい。また、上配以外の増感色素を組 合せて用いることもできる。増感色素を併用する 場合、鉛量で上配合有量になることが紆ましい。

なお、上記増感色素は、米田特許 2,503,776 号、英国特許 742,112号、仏国特許 2,085,682 号、特公昭 40-2348号を参照して容易に合成する ことができる。



本発明が適用されるハロゲン化銀写真感光材料に用いられるハロゲン化銀としては、臭化銀、塩化銀、塩中化銀、塩臭化銀等の任意のハロゲン化銀が包含され、ハロゲン化銀粒子は 酸性法、中性法、アンモニア法のいずれで得られ たものでもよい。

ń.

ハロゲン化銀粒子は粒子内において均一なハロゲン化銀組成分布を有するものでも、粒子の内部と表面層で異なるコア/シェル粒子であってもよく、潜像が主として表面にあるいは主として粒子内部に形成されるような粒子であってもよい。

ハロゲン化銀粒子の形状は任意のものを用いることができる。好ましい1つの例は、{100} 面を結晶変面として有する立方体である。また、米国特許第 4,183.756号、同第 4.225.886号、特別昭55-26588号、特公昭55-42737号等の明細書や、ザ・ジャーナル・オブ・フォトグラフィック・サイエンス(J.Photgr.Sci),21.38 (1973) 等の文献に記載された方法により、8 面体、14面体、12面体等の形状を有する粒子をつくり、これを用いる

ハロゲン化銀粒子は、単一の形状からなる粒子 を用いてもよいし、種々の形状の粒子が混合され たものでもよい。

こともできる。更に、双晶面を有する粒子を用い

またいかなる粒子サイズ分布を持つものを用いてもよく、粒子サイズ分布の広い乳剤(多分散乳剤)であってもよいし、粒子サイズ分布の狭い乳剤(単分散乳剤)を単独又は数種類混合して用い

前(単分散乳剤)を単独又は数種類混合して用いてもよい。また多分散乳剤と単分散乳剤を混合して用いて用いてもよい。

本発明においては、単分飲乳剤を用いることが 好ましい。

単分散乳剤中のハロゲン化酸粒子としては、平均粒径 r を中心に±20%の粒径範囲内に含まれるハロゲン化銀重量が全ハロゲン化銀粒子重量の60%以上であるものが好ましく、特に好ましくは70%以上、更に好ましくは80%以上である

ここに平均粒径 5 とは、粒径 5 i を有する粒子

の頻度niとri³との積ni×ri³ が最大になるとまの粒径を意味する。

(有効数字3桁、最小桁数字は四倍五入する)

ここで言う粒径とは、球状のハロゲン化銀粒子の場合はその直径、また立方体や球状以外の形状の粒子の場合は、その投影像を同面積の円像に換算した時の直径を表す。

本発明において好ましくは高度の単分散乳剤で あり、下記式によって定義される変動係数(単分 散度)が20以下のものが好ましく、より好まし くは15以下のものである。

変動係数(σ/r) m 粒径領準偏差 ・ 分散度) 平均粒径

ここに平均粒径及び粒径標準偏差は前配定株の riから求めるものとする。単分数乳剤は特開阳 5 4 - 4 8 5 2 1 号、同 5 8 - 4 9 9 3 8 号及び 同 6 0 - 1 2 2 9 3 5 号等を参考にして得ること ができる。

ハロゲン化銀乳剤は、常法により化学増感する ことができる。即ち、銀イオンと反応できる硫質 を含む化合物や、活性ゼラチンを用いる硫質増感 法、セレン化合物を用いるセレン増感法、激元性 物質を用いる最元増感法、金その他の黄金属化合 物を用いる黄金属増感法などを単独又は組み合わ せて用いることができる。

上配のような化学増盛の終了後に例えば4~ヒドロキシー6~メチルー1.3,3 a,7~テトラザインデン等の安定剤を使用できる。更に必要であればチオエーテル等のハロゲン化銀容剤を用いてもよい。またメルカプト基合有化合物、含窒素ヘテロ環化合物又は増延色素のような化合物をハロゲン化銀粒子の形成時、または粒子形成終了の後に添加して用いてもよい。

本義明において、乳剤に用いられるハロゲン化 銀粒子は、粒子を形成する過程及び/又は成長さ せる過程で、カドミウム塩、亜鉛塩、鉛塩、タリウム塩、イリジウム塩又はその鉛塩、ロジウム塩 又はその鉛塩、鉄塩又はその鉛塩を用いて金属イオンを添加し、粒子内部に及び/又は粒子表面に包含させることができ、又適当な遺元的雰囲気におくことにより、粒子内部及び/又は粒子表面に最元増速抜を付与できる。

ハロゲン化銀粒子を含有する乳剤は、ハロゲン 化銀粒子の成長の終了後に不要な可溶性塩類を除去してもよいし、或いは含有させたままでもよい。 鉄塩類を除去する場合には、リサーチ・ディスクロージャー 17843号記載の方法に基づいて行なうことができる。

ハロゲン化銀乳剤には、感光材料の製造工程、保存中、或いは写真処理中のカブリの防止、又は 写真性能を安定に保つ事を目的として化学熟成 中、化学熟成の終了時、及び/又は化学熟成の終 了後ハロゲン化銀乳剤を築布するまでに、アゾー ル銀例えばペンプチアブリウム塩、ニトロインダ ゾール類、トリアゾール類、ペンプトリアゾール

法については、例えば米田幹許 3,954,474号、同 3,982,847号、同 4,021,248号又は特公昭52-288 80号の記載を参考にできる。

又、写真構成層中に米国幹許 3.411,911号、同 3.411,912号、特公昭 45-5331号等に記載のアル キルアクリレート系ラテックスを含むことができる。

 使用できる化合物の一例は、ケー・ミース(K. Nees) 答、ザ・セオリー・オブ・ザ・ホトグラフィック・プロセス(The Theory of the Photographic Process、第3版、1886年)に原文献を挙げて記載されている。

これらの更に詳しい具体例及びその他の使用方

許 3,253,821号、英国特許 1,308,348号の各明細 書等に記載されている化合物、特に2-〔2゜-ヒド ロキシ-5- 3級プチルフェニル) ペンゾトリアゾ ール、2- (2'- ヒドロキシ-3',5'ージー3級ブチ ルフェニル) ベンゾトリアゾール、2-(2-ヒドロ キシ-3'-3 級プチル-5'-プチルフェニル)-5- ク ロルペンプトリアゾール、2-(2゚- ヒドロキシ -3′,5′- ジー3級プチルフェニル)-5- クロルベ ンゾトリアゾール等を挙げることができる。更に 盆市助剤、乳化剤、処理液等に対する浸透性の改 良剤、前泡剤或いは感光材料の種々の物理的性質 をコントロールするために用いられる界面活性剤 、としては英国特許 548.532号、同 1.218.388号、 米国特許 2,028,202号、同 3,514,283号、特公阳 44-26580号、問43-17922号、同43-17926号、同 4 3-3186号、同49-20785号、仏国特許 202,588号、 ベルギー国幹計 773.459号、特別昭 48-101118号 等に記載されているアニオン性、カチオン性、非 イオン性或いは阿性の化合物を使用することがで きるが、これらのうち にスルホン茲を有するア



ニオン界団活性剤、例えばコハク酸エステルスルホン化物、アルキルベンゼンスルホン化物等が好ましい。又、帯電防止剤としては特公昭46-24153号、特開昭48-89978号、米国特許 2.882,157号、同 2,372,535号、特開昭48-20785号、同 48-43130号、同 48-90391号、特公昭46-24158号、同 48-38312号、同 48-43809号、特開昭47-33827号の各公報に記載されている化合物がある。

感光材料の構成層にはマット剤、例えばスイス特許 330,158号に記載にシリカ、仏国特許 1,298,895号に記載のガラス粉、英国特許 1,173,181号に記載のアルカリ土類金属又はカドミウム、亜鉛などの炭酸塩などの無機物粒子:米国特許 2,322,037号に記載の変粉、ベルギー特許 625,451号或いは英国特許 981,198号に記載された澱粉誘導体、特公昭 44-3643号に記載のポリビニルアルコール、スイス特許 330,158号に記載されたポリスチレン或いはポリメチルメタアクリレート、米国特許 3,078,257号に記載のポリアクリロニトリル、米国特許 3,078,257号に記載のポリカーボネート

のような有機物粒子を含むことができる。マット 剤の平均粒径は、2~8μaが好ましい。

整光材料の構成層にはスペリ剤、例えば米国特許 2.588,756号、何 3,121,060号に記載の高級脂肪族の高級アルコールエステル、米国特許 3.295、876号に記載のカゼイン、英国特許 1,263,722号に記載の高級脂肪族カルシウム塩、英国特許 1,313,384号、米国特許 3.042,522号、何 3,489,587号に記載のシリコン化合物などを含んでもよい。 流動パラフィンの分散物などもこの目的に用いることができる。

感光材料には、更に目的に応じて種々の添加剤を用いることができる。これらの添加剤は、より詳しくは、前述のものも含めリサーチディスクロージャー第 176巻[tes [7643 (1878年12月) 及び同 187巻[tes [87]6 (1978年11月) に記載されており、その該当箇所を接掲の表にまとめて示した。

|     | <b>添加剤種類</b> | RD17843 | RD18716  |
|-----|--------------|---------|----------|
| 1.  | 化学增感剂        | 23頁     | 848頁右欄   |
| 2.  | 感度上昇剤        |         | 岡上       |
| 3.  | 分光增感剂        | 23~24頁  | 648頁右欄~  |
|     | 強色增感剂        |         | 849頁右欄   |
| 4.  | 增白剤          | 24頁     |          |
| 5.  | かぶり防止剤       | 26~25頁  | 649頁右欄   |
|     | 及び安定剤        |         |          |
| 6.  | 光吸 収削、       | 25~28頁  | 649頁右欄~  |
|     | フィルター染料、     |         | 649頁左欄   |
|     | 紫外線吸収剂       |         |          |
| 7.  | スティン防止剤      | 25右欄    | 650頁左~右欄 |
| 8.  | 色素酶像安定剂      | 25頁     | •        |
| 8.  | ·硬膜剂         | 28頁     | 851頁左機   |
| 10. | パインダー        | 28頁     | 同上       |
| 11. | 可塑剤・商務剤      | 27頁     | 850頁右欄   |
| 12. | 並布助剤・        | 28~27頁  | 阿上       |
|     | 表面活性剂        |         |          |
| 13. | スタナック 防止剤    | 27頁     | 阿上       |
|     |              |         |          |

ハロゲン化銀乳剤のパインダーとしては、ゼラチンを用いることが通常であるが、必要に応じて、ゼラチン誘導体、ゼラチンと他の高分子のグラフトポリマー、それ以外の蛋白質、螺旋導体、

セルロース誘導体、単一或いは共重合体の如き合成類水性高分子物質等の類水性コロイドも用いる ことができる。

ゼラチンとしては石灰処理ゼラチンのほか酸処 理ゼラチン、ビュレチン・オブ・ソサエティー・ オブ・ジャパン (Bull.Soc.Sci.Phot.Jepan) No. 18、30頁 (1886) に配載されたような酸素処理ゼ ラチンを用いてもよく、又ゼラチンの加水分解物 や酵素分解物も用いることができる。ゼラチン誘 運体としては、ゼラチンに例えば酸ハライド. 酸 無水物、イソシアナート類、プロモ酢酸、アルカ ンサルトン類、ピニルスルホンアミド類、マレイ ンイミド化合物類、ポリアルキレオンキシド類、 エポキシ化合物類等種々の化合物を反応させて得 られるものが用いられる。その具体例は米国特許 2.814.828号、同 3,132,845号、同 3,188,848 号、同 3,312,550号、英国特許 881,414号、同 1,033,189号、同 1,005,784号、特公昭42-26845 号などに記載されている。

蛋白質としては、アルブミン、カゼイン、セル



ロース誘導体としてはヒドロキシェチルセルロース、カルボキシメチルセルロース、セルロースの 破験エステル、又は錯誘導体としてはアルギン酸 ソーダ、でん粉誘導体が挙げられ、前記ゼラチン と併用してもよい。

前記ゼラチンと他の高分子のグラフトポリマーとしてはゼラチンにアクリル酸、メタアクリル酸、スタアクリル酸、スタアクリルでは、マッツロニトリル、スチレンなどの如きビニル系・マッツロニトリル、スチレンなどの如きビニル系・マッツは共産会のことができる。ことに、、ゼラチンとある程度相称性のあるポリマー例では、インとある程度相称性のあるポリマー例では、ドロキシアルキルメタアクリレート等の重合体は、ドロキシアルキルメタアクリレーにれらの例は、外国特許 2,783,825号、同 2,831,767号、同 2,858,886号などに記載されている。

感光材料において、例えばハロゲン化銀乳剤層 その他の層は写真感光材料に適常用いられている 可提性支持体の片面又は両面に塗布して構成する

感光材料において、写真乳剤層をの他の観水性 コロイド層は種々の塗布法により支持体上又は他 の層の上に塗布できる。塗布には、ディップ塗布 法、ローラー塗布法、カーテン塗布法、押出し塗 布法等を用いることができる。

次に本発明の感光材料の処理方法を説明する。

本発明はラインスピードが1500mm/min以上の自動現像像を用い、現像・定着・水洗及び/又は安定化処理時間が40秒以内という超過速処理を行なう点に幹敬を有する。

現像液、特に無白現像液に用いる現像主楽には 良好な性能を得やすい点で、ジヒドロキシベンゼ ン類と1-フェニル-3- ピラゾリドン類の組合せが 好ましい。勿論この他にp-フミノフェノール系現 像主事を含んでもよい。

上記ジェドロキシベンゼン現像主要としてはハイドロキノン、クロロハイドロキノン、プロモハイドロキノン、イソプロビルハイドロキノン、メチルハイドロキノン、2.3-ジクロロハイドロキノン、2.5-ジクロロハイドロキノン、2.5-ジクロロハイドロキノン、2.5-ジクロロハイドロキノン、2.5-ジプロモ

ことができる。本発明においては感光材料のハロゲン化銀乳剤層質のゼラチン量は1㎡あたり 10g 以下が好ましい。

前記可損性支持体として有用なものは、硝酸セルロース、酢酸をルロース、酢酸酪酸セルロース、酢酸酪酸セルロース、ボリスチレン、ボリ塩化ビニル、ボリエチレンテレフタレート、ボリカーボネート等の半合成又は白成高分子からなるフィルム、パライタ紙又はローオレフィンポリマー(例えばポリエチレン、ポリプロビレン、エチレン/プテン共重合体)等を盤布又はラミネートした紙などである。

支持体は、染料や額料を用いて着色されていてもよく、選光を目的として青色にしてもよい。これらの支持体の変面は一般に、ハロゲン化銀乳剤層等との接着をよくするために下塗処理される。 下塗処理は、特別四 52-10(913号、同58-189(8号、同58-199(0号、同58-11941号各公報に記載されている処理が好ましい。

支持体表面には、下盤処理の前又は後にコロナ 放電、紫外線照射、火焰処理等を施してもよい。

ハイドロキノン、2,5-ジメチルハイドロキノンな どがあるが、特にハイドロキノンが好ましい。

上記1-フェニル-3- ピラゾリドン又はその誘導 体の現象主要としては1-フェニル-4.4- ジメチル-3- ピラゾリドン、1-フェニル-4- メチル-4- ヒ ドロキシメチル-3- ピラゾリドン、1-フェニル -4.4- ジヒドロキシメチル-3- ピラゾリドンなど がある。

上記p-アミノフェノール系現像主楽としてはN-メチル-p- アミノフェノール、P-アミノフェノール、N-(β-ヒドロキンエチル) -p- アミノフェノール、N-(4-ヒドロキシフェニル) グリシン・2-メチル-p- アミノフェノール等があるが、なかでもN-メチル-p- アミノフェノールが行ましい。

現像主要は通常0.01モル/2~ 1.2モル/2の 量で用いられるのが好ましい。

現像 被に保恒剤として重破酸塩が用いられるが、このような重磁酸塩としては重磁酸ナトリウム、重磁酸カリウム、重磁酸リチウム、重磁酸



ンモニウム、 重亜硫酸ナトリウム、メタ重亜硫酸カリウム、ホルムアルデヒド重亜硫酸ナトリウムなどがある。 亜硫酸塩は 0.2モル/ 2 以上、 特に 0.4モル/ 2 以上が好ましい。 また、上限 は 2.5 モル/ 2 までとするのが好ましい。

現像液のpHは9~13までの範囲が好ましく、更に好ましくはpHi0~12までの範囲である。pH調整のために用いるアルカリ剤には水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、第三リン酸ナトリウム、第三リン酸カリウムの加きpH調整剤を含む。特開昭81~28708号(ホウ酸塩)、特開昭80~83639号(例えば、サッカロース、アセトオキシム、5~スルホサルチル酸)、リン酸塩、炭酸塩などの報衝剤を用いてもよい。

上記成分以外に用いられる統加剤としては、臭化ナトリウム、臭化カリウム、沃化カリウムの如き現像抑制剤:エチレングリコール、ジエチレングリコール、シメチルホルムアミド、メチルセロソルブ、ヘキシレングリコール、エタノール、メタノールの如き有機溶

被に摂張してから次の定着液に浸積するまでの時間、定着タンク液に浸積してから次の水洗タンク液(安定タンク液)に浸積するまでの時間をいう。また「水洗時間」とは、水洗タンク液に浸積している時間をいう。また「乾燥時間」とは通常35℃~100℃好ましく40℃~80℃の熱風が吹きつけられる乾燥ゾーンが、自現機には設置されているが、その乾燥ゾーンに入っている時間をいう。

現像程度及び時間は約25℃~50℃で15秒以下で あることが舒ましいが、より舒ましくは30℃~40℃で6秒~15秒である。

次に定着液はチオ硫酸塩を含む水溶液であり、 pH3.8 以上が好ましく、より好ましくはpH 4.2~ 5.5 である。

定着剤としてはチオ磁酸ナトリウム、チオ磁酸アンモニウムがあるが、チオ磁酸イオンとアンモニウムイオンとを必須成分とするものであり、定着速度の点からチオ磁酸アンモニウムが特に針ましい。定着剤の使用量は適宜変えることができ、一般には約 0.1~約8 モル/2 である。

剤: 1-フェニル-5- メルカプトテトラゾール、2-メルカプトベンツィミダゾール-5- スルホン酸ナトリウム塩等のメルカプト系化合物、5-ニトロインダゾール等のインダゾール系化合物、5-メチルベンツトリアゾール等のベンツトリアゾール系化合物などのカブリ防止剤を含んでもよく、更に必要に応じて色調剤、界面活性剤、積泡剤、硬水軟化剤、特開昭 58-108244号配載のアミノ化合物などを含んでもよい。

本発明においては現像液に、銀汚れ防止剤、例えば特開昭 56-24347号に記載の化合物、特開昭 56-106244号に記載のアルカノールアミンなどのアミノ化合物を用いることができる。

この他 L . F . A . メソン 芸「フォトグラフィック・プロセシン・ケミストリー」、フォーカル・プレス刊(1866年)の 228~229 頁. 米国特許館 2,183,015号、同 2,582,384号、特開昭 68-84833号などに記載のものを用いてもよい。

本発明において「現像時間」、「定着時間」と は各々、処理する感光材料が自現像の現像タンク

定着液には硬膜剤として作用する水剤性アルミニウム塩を含んでも良く、それらには、例えば塩化アルミニウム、硫酸アンモニウム、カリ明ばんなどがある。

定着液には、酒石酸、クエン酸あるいはそれらの塩を単独で、あるいは2種以上併用することができる。これらの化合物に定着液12につき0.005モル以上含むものが有効で、特に0.01モルノ2~0.03モルノ2が有効である。具体的には、酒石酸、酒石酸カリウム、酒石酸カリウムナトリウム、酒石酸カリウムナトリウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸ナウム、クエン酸アンモニウムなどがある。

定着硫には所望により保恒剤(例えば、亜硫酸塩、重重碳酸塩)、pH級質剤(例えば、酢酸、硝酸)、pH国整剤(例えば硫酸)、硬水軟化能のあるキレート剤や特額図 80-213582号配載の化合物を含むことができる。

定着温度及び時間は約20℃~約50℃で3秒~30秒が舒ましいが、30℃~40℃で6~30がより



好ましく、更に好ましくは30℃~40℃で 6 秒~15 数である。

13

定著液濃縮液が本発明の方法で自動現像機に、 感光材料が処理されるに従って、それを希釈する 水と共に補充される場合、定着液濃縮液はI列で 構成されることが最も好ましいことは現像液の場 合と同じである。

I 剤として定着液原液が安定に存在しうるのはで用 4.5以上であり、より行生しくはpH 4.85以上であり、より行生しくなpH 4.85以上でわる。明 4.5 未満では、特に定着液が実際に使むれた場合にチオを設めたはを化してしまうためである。を 2.5以上の範囲では変かって 1.5以上の範囲では変かって 2.5以上の範囲ではなる。 pHの上を 2.5以上の範囲ではなる。 pHの上を 2.5以上の範囲ではなる。 pHの上と、 2.5以上の表別ででは、 2.5、 2.5 を 3.5 を 3.5 を 4.5 を 4.5 を 5.5 を 3.5 を 4.5 を 5.5 を 3.5 を 4.5 を 5.5 を

現像被及び定着被用の国被希釈水及び水洗水又は 安定化液を共通の一櫓のストック槽から供給で き、自動現像機の更なるコンパクト化が可能とな る。

防衛手段を施した水を水洗水又は安定化液に併用すると、水指の発生等が有効に防止し得るため、感光材料1㎡当たり0~31、舒ましくは0~12の割水処理を行うことができる。

ここで、補充量が0の場合とは、水洗槽中の水 洗水が自然蒸発等により減少した分だけ適宜補充 する以外は全く補充を行なわない、即ち実質的に 無補充のいわゆる「ため水」処理方法を行なう場 合をいう。

補充量を少なくする方法として、古くより多段 向流方式(例えば2段、3段など)が知られている。この多段向流方式を本発明に適用すれば定着 板の感光材料はだんだんと微静な方向、つまり定 着破で行れていない処理症の方に順次接触して処理されて行くので、更に効の良い水洗がなされる。これによれば、不安定なチェ磁器体等が適度 本発明は現像確または定着液のいずれかが上記のような希釈水を必要としない(すなわち駅液の ままで補充する)いわゆる使用液であっても舞わ ない。

各濃縮液の処理タンク液への供給量及び希釈水との複合割合はそれぞれ濃縮液の組成に依存して種々変化させることができるが、一般に濃縮液対免釈水は1対0~8の割合で、これらの現像液、足着液各々の全量は感光材料1㎡に対して 50m st から 1500m st であることが行ましい。

本発明においては感光材料は現像、定着した後 水洗又は安定化処理が施される。

水洗又は安定化処理は本分野で公知のあらゆる
力法を適用することができ、本分野で公知の電々
の転加剤を含有する水を水洗水又は安定化液として用いることもできる。防黴手段を施した水を水
洗水又は安定化液に使用することにより、感光材料1㎡当たり32以下の補充量という節水処理も
可能となるのみならず、自現機設置の配管が不要
となり更にストック槽の削減が可能となる。即ち

に除去され、変退色の可能性が一層小さくなって、更に事しい安定化効果が得られる。水洗水も 従来に比べて、非常に少ない量ですむ。

少量の水洗水で水洗するときには特願昭 80-17 2988号に記載のスクイズローラー洗浄槽を設ける ことがより好ましい。

更に水洗又は安定化铅に防御手段を施した水を 処理に応じて補充することによって生ずる水洗又 は安定化铅からのオーバーフロー液の一部又は全 部は特開昭 80-235133号に記載されているように その前の処理工程である定着能を有する処理液に 利用することもできる。こうすることによって上 記ストック水の節水ができ、しかも廃液がより少 なくなるためより好ましい。

対数手段としては、特開昭 60-263838号に記された供外級無射法、同 60-263940号に記された磁場を用いる方法、同 61-131632号に記されたイオン交換倒距を用いて純水にする方法、 駅昭 60-263807号、同 60-295884号、同 61-63030号、同 61-51396号に記載の防密剤を用いる方法を用いるこ



とができる.

, t

更には、L.E.West "Water Quality Criteria"
Photo Sci & Eng. Vol.9 No.8(1885)、N.W.Beach
"Kicrobiological Growths in Notion-Picture
Processing" SXP7E Journal Vol.85,(1976).
R.O.Deegan, "Photo Processing Wash Water
Biocides" J.Isaging Tech.Vol.10,No.8(1984)及
び特勝昭 57-8542号、同57-58143号、同58-1051
45号、同 57-132148号、同58-18631号、同57-975
30号、同 57-157244号などに記載されている防酷
刺、訪バイ剤、界節括性剤などを併用することも
下きる。

更に水税裕には、R.T.Kreiman 夢J.lmage,Tech 10,(6) 242(1984)に記載されたイソチアゾリン系化合物、RESEARCH DISCLOSURE 第 205巻、Item20 526(1981年5月号)に記載されたイソチアゾリン系化合物、同第 228巻、Item22845(1983年4月号)に記載されたイソチアゾリン系化合物、特顧昭 61-51386号に記載された化合物、なども防密剤 (Nicrobiocide)として併用することもできる。

てはたとえば工学図書調発行の「界面活性剤ハン ドブック」に記載されている化合物などがある。

 更に防黴剤の具体例としては、フェノール、 4-クロロフェノール、ペンタクロロフェノール、 ク レゾール、 0-フェニルフェノール、 クロロフェ ン、 ジクロロフェン、ホルムアルデヒド、 グル タールアルデヒド、 クロルアセトアミド、 P-ヒド ロキシ安足香酸エステル、 2- (4-チアゾリン・3-オン、 ドデシルーペンジルージメチルアンモニウ ムークロライド、 N- (フルオロジクロロメチルチ オ) - フタルィミド、 2. 4. 4'- トリクロロ-2'-ハ イドロオキンジフェニルエーテルなどである。

防衛手段を集して水ストック槽に保存された水は前記現像液、定着液などの原液の希釈水として用いることが出来、防黴剤の抵加量は好ましくは 0.01~10g/2、より好ましくは 0.1~5g/2 である。

更に水洗水中には銀酸像安定化剤の他に水積ム ラを防止する目的で、各種の界面括性剤を鬆加す ることができる。界面括性剤としては、腸イオン 型、触イオン型、非イオン型および肉イオン型の いずれを用いてもよい。界面活性剤の具体例とし

るのが顕像保存性を食化するために好ましい。

上記の方法による水洗または安定裕盤度及び時間は0℃~50℃で3秒~30秒が好ましいが、15℃~40℃で6秒から30秒がより好ましく、更には15℃~40℃で8秒から15秒が好ましい。

本発明の方法によれば、現像、定着及び水洗された写真材料は水洗水をしぼり切る、すなわちスクイズローラ法を経て乾燥される。乾燥は約40℃~約 100℃で行なわれ、乾燥時間は周囲の状態によって適宜変えられるが、通常は約5秒~1分でよいが、より許ましくは40℃~80℃で約5秒~30秒である。

本発明においては、感光材料における影響百分 事を低級する程その乾燥時間を短縮できるという 更に優れた効果を発揮する。

本発明の方法によれば、現像、定着、水洗及び 乾燥されるまでのいわゆるDary to Dry の処理時 間は 100秒以内、好ましくは80秒以内、更に好ま しくは50秒以内で処理されることである。

ここで "dry to dry" とは処理される感材の免

編が自現機のフィルム挿入部分に入った瞬間から、処理されて、同先編が自現機から出てくる瞬間までの時間をいう。

#### (突悠例)

以下、本発明の実施例を挙げて本発明を更に詳 説するが、本発明はこれらの実施例によって限定 されるものではない。

#### (乳剤層用盤布液の調製)

ゼラチンと塩化ナトリウムと水が入った60℃に加温された容器に、硝酸銀水溶液とハロゲン化銀1モル当たり2×10-1モルのヘキサクロロイリジウム酸カリウム塩と4×10-1のヘキサブロモロジウム塩を駈加した臭化カリウムと塩化ナトリウムの配合水溶液とをダブルジェット洗より季加して、臭化銀を35モル労合む塩臭化銀粒子(分布の広さ9%、立方晶、粒径0.25μm)をPH 3.0、PA&7.7に保ちながら調整し、PHを 5.9にもどした後に常法により脱塩した。

この乳剤を食、破食増感し、増感色素(a)を ハロゲン化銀1モル当たり80m8添加し、更にハロ ゲン化銀1モル当たり、I-フェニル-5-メルカプ トテトラゾールを70mg、4-ヒドロキシ-6-メチル -1,3,3a,7-テトラザインデンを1.2g、ゼラチンを

加えて熱成を停止した後、更にハイドロキノンを 4g、 具化カリウムを3g、 サポニンを5g、 スチレン ーマレイン競共重合体を2g、 アクリル酸エチルの 高分子ポリマーラテックスを3g添加し、硬膜剤と して1-ヒドロキシ-3,5- ジクロロトリアジンナト リウム塩を添加し餌製した。

#### 增感色素(a)

#### (保護層用の塗布板の調製)

ゼラチン500gの水溶液に臭化カリウム 10g. 1-デシル-2-(3-イソペンチル) サクシネート-2- ス ルホン酸ソーダを4g報加し、平均粒径5 μm であ る不定型シリカを100g報加分散し調製した。

#### (ハレーション防止層用盤布積の国製)

次に、ゼラチン 40gの水 液に下記に示す機に 分数した骨光増白剤及び染料を変えの機に添加 し、さらに増粘剤としてスチレンーマレイン酸共 重合体の4%水溶液を 15m2 加えてハレーション 防止層用論布液を調製した。

#### 抽溶性蛍光増白削乳化分散物の開製

油熔性 飲光増白網5.0gをクレジルジフェニルホスフェート200m 2 と酢酸エチル100m 2 の配合溶液に溶解し、この溶液全量をトリプロピルナフタレンスルホン酸ナトリウムを3g合む12% ゼラチン水溶液 1500m 2 中に添加し、超音被分散機を用いて乳化分散した後、アクリル酸プチルポリマーラテ、ックスを固形分として200m 加えて袖溶性 受光増白剤乳化分数物を調製した。

#### (試料の調製)

このようにして調製されたハレーション防止局用盤布板、乳剤層用盤布板および保護層用塗布板を、観水性コロイドバッキング層(支持体のハロゲン化銀乳剤層を少なくとも一層有する面と反対側に設けられる)と下盤層を有し、TiO2を15%合有する厚さ 110με のポリエチレンコート低上に同時3層協布した。

得られた試料の飲布銀畳は 1.4g/㎡、ゼラチン

第布量はハレーション防止層が 0.8g/㎡、乳剤層が 1.2g/㎡、保護層が 0.8g/㎡であった。

この様にして得られた試料を一部に線画撮影用フィルムで撮影した7級明朝のネガ文字像を重ね光学クサビ及びコダックラッテンフィルターNo. 88A を通してキセノンフラッシュで10・5秒の閃光電光した後、下記の現像被と定着液を用いて、通常のローラー型自動現像機にて下記条件にて処理し、白度、狭色、保存性、画質の評価を行なった。

#### (白度)

白度は上記処理にて得られた試料にて目視評価を行い、5段階評価し、5が最良、1が悪く、3以上を実用可とした。

#### (残色)

**換色は10段階に分けて評価し、10が最良であり、1~4が使用不可、5以上が使用可能なレベルである。** 

#### (感度)

感度は反射型濃度計を用い、カブリ濃度(朱髯

| 炭酸カリウム                | 50g   |
|-----------------------|-------|
| ハイドロキノン               | 15g   |
| 5-メチルベンゾトリアゾール        | 200sg |
| 1-フェニル-5- メルカプトテトラゾー! | 10 mg |
| 水酸化カリウム 使用後のpHを10.4%  | にする最  |
| 臭化カリウム                | 4.5g  |
|                       |       |

#### (組成B)

| 純水(イオン交換水)         | 3 m Q  |
|--------------------|--------|
| ジェチレングリコール         | 50g    |
| エチレンジアミン四酢酸ニナトリウム塩 | 25=g   |
| 節臂(90%水溶液)         | 0.3●₽  |
| 5-ニトロインダゾール        | 110mg  |
| 1-フェニル-3- ピラブリドン   | 500 mg |
|                    |        |

現像液の使用時に水500mを中に上記組成A、組成Bの順に溶かし、1.2に仕上げて用いた。

#### 定着镀処方

#### (組成A)

チオ硫酸アンモニウム(72.5% W/V水溶液)

 240m

 至磁酸ナトリウム

 17g

**酢酸ナトリウム・3 水塩** 

値を試料No.1の競布直接感度を100 とする相対値で示した。また婚布後、50℃50%で3日加熱処理を行なったものについても下記処理を行なった後額定した。

光部) +1.8 の確度を与える時の露光量の逆数の

#### (函質)

画質は上配処理にて得られた試料の文字を 100 倍のルーペにて目視評価を行い、5段階評価で5 が最度、1が悪く、3以上が実用可とした。

#### (現像処理条件)

| (I | 程) | ( 72 | 度) | (時   | RB) |
|----|----|------|----|------|-----|
| 現  | 像  | 35   | 8  | . 12 | ₽   |
| 定  | 着  | 34   | rc | 12   | 8   |
| 水  | 疣  | 常    |    | 12   | 8   |
| 枢  |    | 50   | *  | 10   | 8   |

#### 现像被処方

#### (組成A)

| 純水       | ( | 1 | *  | ン | 交 | 换 | 水   | )   |   |     |   |   |   |   |   |   | 150 ± ℓ |
|----------|---|---|----|---|---|---|-----|-----|---|-----|---|---|---|---|---|---|---------|
| <b>z</b> | V | ン | ij | 7 | Ξ | ン | 23  | 計   | 餓 | =   | t | ۲ | ŋ | ゥ | ٨ | 塩 | 2 g     |
| ジェ       | 4 | V | v  | 1 | ŋ | = | -   | ماز |   |     |   |   |   |   |   |   | 50g     |
| 重要       | 酰 | カ | ij | ø | 4 | ( | 5 5 | %   |   | 7/1 | 水 | 郲 | 液 | ) |   |   | 100m Q  |

## 組設クエン酸ナトリウム・3水塩8g酢酸(80% W/V水溶液)13.6m2

#### (48 st R)

| (組成B)           |        |
|-----------------|--------|
| 純水(イオン交換水)      | 17 ■ 2 |
| 硫酸 (50% ₩/Ⅴ水溶液) | 4.7g   |
| 竜酸アルミニウム        |        |

(A2 20: 換算含量が 8.1% W/V水溶液) 28.5g 定著液の使用時に水500ml 中に上記組成A、組 成Bの順に脅かし、1 1 に仕上げて用いた。この 定着液のpHは約 4.3であった。

#### ラインスピード及び処理時間

ラインスピード: 安1に記載

処理時間:36秒

め、同じ処理時間でラインスピードをかえると きには槽の深さとローラーの数をかえて調整し も

られた評価結果を表しに示す。

8.5g

| 女料 | 珠     | Ħ     | <b>业光</b> 堆白剂 |            | 9/224-4 | 釜   | 布袋目 | 即日性 | 教布技50℃50%<br>3日發処理性能 | <b>19</b> 78 |     |
|----|-------|-------|---------------|------------|---------|-----|-----|-----|----------------------|--------------|-----|
|    | No    | 4. 奶盘 | No            | <b>松加鲁</b> | 09/9iz  | 感度  | 白度  | 姓色  | 西餐                   | 感度           |     |
| 1  | 比較1   | 100   | (0-11         | )} 20      | 1000    | 100 | 4   | 2   | 4                    | 65           | 比較  |
| 2  | "     | "     | "             | "          | 1505    | 105 | 4   | 3   | 4.5                  | 4.5          | ~   |
| 3  | "     | ″     | "             | n          | 1800    | 110 | 4   | 4   | 4                    | 70           | "   |
| 4  | "     | "     | "             | "          | 2400    | 110 | 4   | 8   | 6                    | 70           | ~   |
| 5  | (1-1) | ) "   | "             | "          | 1000    | 100 | 4   | 4   | 4.0                  | 60           | "   |
| 8  | "     | "     | "             | "          | 1500    | 105 | ā   | 8   | 4.5                  | 80           | 本発明 |
| 7  | "     | "     | "             | "          | 1800    | 110 | 5   |     | 4.5                  | 80           | "   |
| 8  | "     | "     | "             | "          | 2400    | 110 | 5.  | 8   | 4.5                  | 85           | "   |
|    | (1-3  | ) "   | "             | "          | 1800    | 110 | S   | ı   | €.5                  | 85           | "   |
| 10 | (1-4) | ) "   | "             | *          | 1800    | 105 | 5   | 10  | 4.5                  | 85           | "   |
| 11 | (1-5) | ) "   | "             | н          | 1800    | 110 | 5   | 7   | 4.5                  | 80           | "   |
| 12 | (1-6) | ) "   | "             | "          | 1800    | 110 | 5   | 10  | 4.5                  | 90           | "   |
| 13 | (1-8) | ) "   | "             | "          | 1800    | 105 | . 5 | 9   | 4.5                  | 85           | "   |

比数年社

要1より明らかな様に、本発明の飲料 6~13は 晒質が良く、白度が改良され、感度保存性が良 く、超迅速処理を行なった時にも残色が少ない事 がわかる。

飲料No. 6 において、抽容性愛光増白刻( $\Pi$  - 13)を( $\Pi$  - 2 )、( $\Pi$  - 9 )、( $\Pi$  - 18 )、( $\Pi$  - 25 )、( $\Pi$  - 26 )に代えたことのみ異ならせ、同じ実験を行った結果、いずれの場合も本発明の効果が確認された。

#### (発明の効果)

本発明によれば、高面質で、白度が改良され、 感度保存性が良く、さらに超過速処理を行なった 時にも残色が少ない処理方法を提供できる。

PTO 2003-5133

Japan Kokai

Japanese Patent Publication

Publication No.: 4-80747

## PROCESSING METHOD FOR HALOGENIZED SILVER PHOTOGRAPHIC PHOTOSENSITIVE MATERIAL

(Harogen ka gin shashin kanko zairyo no shori hoho)

Hiroyuki Goyama et al

UNITED STATES PATENT AND TRADEMARK OFFICE
Washington D.C. September 2003
Translated by Schreiber Translations, Inc.

Country : Japan

Document No. : 4-80747

<u>Document Type</u> : Patent Publication

Language : Japanese

<u>Inventor</u> : Hiroyuki Goyama et al

<u>Applicant</u> : Konica Corporation

IPC : G 03 C 5/29; 1/83

Application Date : July 23, 1990

Publication Date : March 13, 1992

Foreign Language Title : Harogen ka gin shashin

kanko zairyo no shori hoho

English Title : Processing method for

halogenized silver photographic photosensitive materials

#### Specification

1. Title of Invention

Processing method for halogenized silver photographic photosensitive materials

- 2. Scope of Patent Claims
- (1) The processing method of the halogenized silver photographic photosensitive materials is characterized as a processing method of a halogenized silver photographic photosensitive material having a hydrophilic colloid layer containing at least 1 layer of photosensitive halogenized silver emulsion layer, this has been ultraviolet sensitized and this layer is contained on a support body. At least 1 layer of the above mentioned hydrophilic colloid layer has a large absorption capability of above 700 nm. The hydrophilic colloid layer or another hydrophilic colloid layer consists of a dye material where at least 1 type is the water soluble dye material and consists of an oil soluble fluorescent bleaching agent. The whole process of development, fixing, washing with water and/or stabilizing can be carried out in a processing time of within 40

<sup>&</sup>lt;sup>1</sup> The numbers in the margin indicate pagination in foreign text

seconds using an automatic development machine where the line speed is above 1500 mm/min.

- (2) The hydrophilic colloid layer containing the aforementioned dye and oil soluble fluorescent bleaching agent used in the processing method of the halogenized silver photographic photosensitive materials of Claim 1 is characterized as a highlight preventing layer.
- Detailed explanation of the invention
   (Industrial field of use)

The invention pertains to the processing method of the halogenized silver photographic photosensitive materials. In further detail, it pertains to the processing method of the halogenized silver photographic photosensitive materials so the residue color is reduced during the ultrahigh speed processing, the preservation property is improved and the whitening effect of the high quality image is improved.

(Prior Art)

When a light source is used in the ultraviolet region as the light source for the light exposure, a bright safe light can be used that is easy to handle. Therefore, a halogenized silver photographic photosensitive material that has been photosensitized in the ultraviolet region was offered. This type of photographic photosensitive material

is used in the so-called scanner system and a exposed image is formed.

The image formation system in the scanner system scans the original image. The light exposure is performed on the halogenized silver photographic photosensitive material based on that image signal. A positive or a negative image is formed corresponding to the original image. The image formation method in the scanner system is used and various types of image recording device can be used. An example of the light source for recording in this scanner type recording system is a semiconductor laser, He-Ne laser, argon laser, light emitting diode (LED) can be used.

/2

On the other hand, a dye is generally used in the ultraviolet photosensitized halogenized silver photographic image printing paper. This absorbs ultraviolet rays since it prevents the highlighting and irradiation so improves the image quality. Also, since a fluorescent bleaching agent is used, the whitening effect is improved after the processing of the halogenized silver photographic printing paper.

When the oil soluble fluorescent bleaching agent is used as the fluorescent bleaching agent, it is difficult for the fluorescent bleaching agent to elute during the

development process. It is known to be better than the water soluble fluorescent bleaching agent.

The technology for adding the oil soluble fluorescent bleaching agent to the photosensitive material was cited in English Patent No. 1,072,815, Patent Publication No. 45-37376 and Patent Publication No. 60 - 134232. The oil soluble fluorescent bleaching agent is dissolved in an organic solvent and added to the photosensitive material.

This oil soluble fluorescent bleaching agent contains the dye that can absorb ultraviolet rays and ultraviolet photodecomposition. This is applied on the halogenized silver photographic printing paper. However, there is the problem in the sensitivity stability and preservation, the sensitivity is reduced under high temperature.

Therefore, the desire is to develop a dye that can be used in the photographic image paper that has excellent sensitivity preservation (in simple terms, preservation property) and improved whitening effect of high image quality.

Up until now, there have been various dyes offered to satisfy the aforementioned requirement. For example, the ozonal dye materials as disclosed in US Patent No. 3,247,127, Patent Publication No. 39-22068, Patent Publication No. 50-81627, Patent Publication No. 52-34716.

The styryl dye disclosed in US Patent No. 1,845,404. The melocyanine dye disclosed in US Patent No. 2,493,747 and the cyanine dye disclosed in US Patent No. 2, 843, 488.

However, a good dye still cannot be discovered that will satisfy the above requirements.

On the other hand, the consumption of the halogenized silver photographic photosensitive material has increased rapidly. Therefore, the development processing number of this halogenized silver photographic photosensitive material has increased. The demand for the high speed development process has increased and the processing amount of time within an hour has also increased. The field of printing tends to be in the fast track. That is, the printing of information has increased and there is an increase in the number of printing. A large volume of printing has to be performed in a short amount of time. To accommodate this demand, a simplified printing process is desired. The photosensitive material for the printing plate must be processed quickly.

However, when the ultrahigh speed process is used in the halogenized silver photographic printing paper that is ultraviolet ray decomposed and sensitized that consists of the oil soluble fluorescent bleaching agent and the conventional dye, there is the problem of color residue and the color fogging up easily.

(The problems resolved by the invention)

Therefore, the purpose of the invention is to offer a processing method for the halogenized silver photographic photosensitive material so as to improve the whitening effect of the high quality image and to obtain a good preservation property. In addition, there is no color residue or color fogging during the high speed printing process.

(Means for resolving the problems)

The purpose of the invention is to offer a processing method of the halogenized silver photographic photosensitive materials that is characterized as a processing method of a halogenized silver photographic photosensitive material having a hydrophilic colloid layer contain at least 1 layer of photosensitive halogenized silver emulsion layer, this has been ultraviolet sensitized and this layer is contained on a support body. At least 1 layer of the above mentioned hydrophilic colloid layer has a large absorption capability of above 700 nm. The hydrophilic colloid layer or another hydrophilic colloid layer consists of a dye material where at least 1 type is the water soluble dye material and consists of an oil

soluble photo bleaching agent. The whole process of development, fixing, washing with water and/or stabilizing can be carried out in a processing time of within 40 seconds using an automatic development machine where the line speed is above 1500 mm/min.

Also, the hydrophilic colloid layer containing the aforementioned dye and oil soluble photo bleaching agent used in the processing method of the halogenized silver photographic photosensitive materials is characterized as a highlighting prevention layer.

/3

The invention is explained in detail below.

First, the water soluble dye that has large absorption of above 700 nm is explained.

The water soluble dye that has large absorption of above 700 nm is the dye that is represented with the preferred general formula [Ia],[Ib],[Ic].

$$Y_1 \longrightarrow L \leftarrow L - L \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

Y1....(Xe) n-1

$$Y_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 

Y1.....(Xe) n-1

Y1....(Xe) n-1

[In the formula, R1,R2,R3,R4,R5 and R6 are the alkyl groups. Y1 and Y2 are the non-metallic atom groups that is required to form the pyloropyridine group. The bond N0 - R1 is contained inside Y1. The bond N0-R4 is contained inside Y2.

R1,R2,R3,R4,R5,R6,Y1,Y2 in the general formula [Ia], R1,R2,R3,R4,R5,R6,Y1,Y2 in the general formula [Ib] and R1,R2,R3,R4,R5,R6,Y1,Y2 in the general formula [Ic] are the groups that can have at least 2 replacement groups of above 1 type of -CH2CH2OR group or the group containing 2 acid group of dye molecules. R is the hydrogen atom or the alkyl group.

L is the methine group. Xe is the anion group. M shows the integer 4 or 5. N shows the integer 1 or 2. N is 1 during the formation of the dye inside the salt molecule.

An example of the acid group in the aforementioned general formula [Ia], [Ib] and [Ic] is the sulfonic acid group, the carboxylic acid group and phosphonic acid. These acid groups contain various salts. An example of the salts are the alkaline salt such as sodium, potassium, etc. The

organic ammonia salt such as ammonium, triethyl amine and pyridine.

The alkyl group represented by R1,R2,R3,R4,R5 and R4 is the preferred alkyl group of low grade containing 1 - 8 carbon atoms (for example, methyl, ethyl, propyl, i-propyl and butyl salt). It is preferred that it contained a substitution group in addition to the aforementioned acid substitution group or the -CH2CH2OR group.

The alkyl group represented with R is preferred to be the low grade alkyl group contaning below 4 carbon atoms.

An example of the substitution group containing the - CH2CH2OR group is the hydroxy ethyl group, the hydroxy ethoxy ethyl group, the methoxy ethoxy ethyl group, the hydroxy ethyl carbamoyl methyl group, the hydroxy ethoxy ethyl carbamoyl methyl group, the N, N - dihydroxy ethyl carbamoyl methyl group, the hydroxy ethyl sulfamoyl ethyl group, the methoxy ethoxy ethoxy carbonyl methyl group.

It is preferred that it contains Y1 and Y2. An example of the other substitution group is the sulfur group (containing salt), the carboxy group (containing salt), the hydroxy group, the cyano group, the halogen atom (for example, fluorine, chlorine, bromine).

It is preferred that it consists of the methine group and the substitution group represented by L. An example of

the substitution group is the low grade alkyl group (for example, methyl, ethyl, 3 - hydroxy propyl, 2 - sulfoethyl group) of non-substitution or substitution of 1 - 5 number of carbon atoms, the halogen atoms (for example, fluorine, chlorine and bromine), the allyl group (for example, the phenyl group) and the alkoxy group (for example, methoxy, ethoxy, etc). Also, it is preferred that 6 member ring (for example, 4,4 - dimethyl cyclohexane group) is formed containing 3 methine group that are bonded to the substitution group of the methine group.

The anion represented with Xe is not particularly limited but the specific examples are such as the halogen ions, the p - toluene sulfonic acid ion, ethyl sulfuric acid ions.

The specific examples of the dye represented with the general formulae [Ia],[Ib] and [Ic] used in the invention are shown below but the use is not limited to these.

/4

以下に示すが、これらに反定されない。

/5

(CH.),50.X

/6

(1 - 31)

The aforementioned dye can be synthesized according to the method in Journal of Chemical Society (J. Chem. Soc.)

p. 188 (1993 year), US Patent 2, 895, 855 and Patent

Publication No. 62 - 123454.

The next chemical compounds given below are used as the mother core of the aforementioned dye.

Compound (A) can be synthesized according to the method stated in J. Chem. Soc. 3202 (1958) and according to the method stated in English Patent No. 870,753.

Compound (B) can be synthesized according to the method stated in J. Chem. Soc. 584 (1961).

Compound (C) can be synthesized according to the method stated in English Patent No. 841,588.

The reaction can be carried out for the fourth grade conversion and the sulfonic process using these mother cores. Also, the aliphatic reaction can be carried out via the hydrazon by synthesizing the N-alkyl-N-pyridil hydradine according to the synthesis method cited in J. Chem. Soc. 3202 (1959) and J. Chem. Soc. 584 (1961). L - alkyl substitution - 3H - pyloropyridine derivative can be

obtained by oxidizing as necessary. This produces good results.

The above dye is dissolved in a suitable solvent (for example, water, alcohol (for example, methanol, ethanol, etc), methyl cellosolve or the mixture of these), it is added during the paint distribution for the hydrophilic colloid layer.

The aforementioned dye can be used by combining more than 2 of the above examples.

In the invention, it is preferred that any of the compounds that are represented by the above general formula (Ia), (Ib) or (Ic) are contained in 1 type of photo processing material. Also, it can be used by combining 2 or more types of the above examples (for example, the compound represented with the same general formula or the same compound represented by another formula).

The usage amount of the specific dye is not particularly restricted but can be changed as needed. However, in general, it is  $10^{-1}\,\mathrm{g/m2}$  - 1.0 g/m2. In particular, the amount is preferred in this range,  $10^{-2}\,\mathrm{g/m2}$  - 0.5 g/m2.

The aforementioned dye is used as the irradiation prevention dye that is contained in the halogenized silver photographic photosensitive emulsifier. Also, it can be

used as the filter - dye or the highlighting prevention contained in the non-photosensitive hydrophilic colloid layer. Also, it is used as the dye to provide safe light added to the layer (protective layer) that is positioned on the upper part in the hydrophilic colloidal layer that is non-photosensitive. It is preferred that it is used as the highlighting prevention dye contained in the highlighting prevention layer of the invention.

The oil soluble fluorescent bleaching agent is used in the invention.

An example of the oil soluble fluorescent bleaching agent is the substitution thiophine group cited in US Patent No. 3, 135,762 and the substitution cumaline and the substitution stilven as cited in English Patent No. 786,234. The oil soluble bleaching agent as disclosed in Patent Publication No. 45-37376 and Patent Publication No. 50-126732 are very useful.

The examples of the oil soluble fluorescent bleaching agent are the ones represented by the general formulae

[IIa], [IIb], [IIc] and [IId] shown below.

一般式(Ⅱb)

$$R_1 \longrightarrow R_1 \longrightarrow R_1$$

一般式 (I c)

$$R_1$$
 $R_2$ 
 $CR_1$ 
 $CR_2$ 
 $R_3$ 
 $R_4$