Interpolation and Approximation with Splines and Fractals

Peter Massopust

Helmholtz Zentrum München Institute of Biomathematics and Biometry

and

Centre of Mathematics Technische Universität München, Germany

Contents

	Prefa	ice		xi
l	The	General 1	Interpolation and Approximation Problem	3
	1.1		ion and Terminology	4
	1.2	Semi-	Normed and Normed Spaces	5
	1.3 The Abstract Interpolation Problem			
		1.3.1	Interpolation with Polynomials and Real Parameters	13
		1.3.2	Divided Differences	16
		1.3.3	Error Estimates for Polynomial Interpolation	19
		1.3.4	Runge's Example	20
	1.4	The A	bstract Approximation Problem	21
		1.4.1	Metric Spaces	21
		1.4.2	Approximation Methods	23
		1.4.3	Existence and Uniqueness of a Best Approximation	25
		1.4.4	Pre-Hilbert Spaces	27
		1.4.5	Approximation in Pre-Hilbert Spaces	29
		1.4.6	Order of Approximation	31
		1.4.7	The Weierstrass Approximation Theorem	33
		1.4.8	Approximation by Step Functions	36
		1.4.9	Moduli of Continuity and Smoothness	37
		Everci	ises	30

2	Splines			44	
	2.1	Definiti	ons	45	
	2.2	A Basis	for $S^k(X_n)$	46	
	2.3	B-Splin	es	47	
		2.3.1	Properties of B-Splines	49	
		2.3.2	The Basis Property of B-Splines	53	
		2.3.3	Derivatives and Integrals of B-Splines	56	
	2.4				
	2.5	The Fourier Transform of Cardinal B-Splines			
	2.6	Cardinal Spline Interpolation			
	2.7	Repeate	ed Knots	67	
		2.7.1	Properties of the Spaces $\Pi_{arepsilon}^k$	68	
		2.7.2	Basis for Π_{ε}^{k}	68	
	2.8	Hermit	e Splines	74	
	2.9		lation with Splines	75	
		2.9.1	Preliminaries	75	
		2.9.2	Error Estimates for Spline Interpolation	78	
	2.10	Approx	imation with Splines	90	
	2.11	L^2 -Approximation with Splines			
	2.12	Exponential Splines			
		2.12.1	Polynomial Splines and Distributional		
			Derivatives	95	
		2.12.2	Linear Differential Operators and Exponential		
			Splines	99	
		2.12.3	Exponential B-Splines	105	
	2.13	\mathcal{L} -Splin	es	112	
	2.14		ts and Splines	113	
		Exercise	-	119	
3	Interpo	lation in	\mathbb{R}^s , $s > 1$	124	
	3.1	Multiva	riate Polynomial Interpolation	124	
	3.2		interpolation in \mathbb{R}^s	127	
	3.3	Tensor	Products of B-Splines	130	
		3.3.1	The Construction of Tensor-Product B-Splines	131	
		3.3.2	Shortcomings of the Tensor Product Approach	133	
	3.4	Kergin 1	Interpolation	134	
		Exercise		139	
4	Fractals	;		141	
	4.1	Definiti	ons	142	
		4.1.1	Topological Dimension in \mathbb{R}^n	143	
		4.1.2	The Hausdorff and Box Dimension in \mathbb{R}^n	144	
	4.2	Iterated	Function Systems	149	
	43		imation and the Collage Theorem	154	

	4.4	Dimensions of Fractal Sets	15	56
		4.4.1 The Theoretical Computation of Dimension	15	57
		4.4.2 The Numerical Computation of Dimension	15	58
	4.5	The Code Space of an IFS	16	50
	4.6 Fractal Transformations4.7 Fractal Measures			54
				57
		4.7.1 Measures	16	57
		4.7.2 IFSs with Probabilities and Fractal Measures	17	71
		Exercises	17	77
5	Fract	al Functions	18	32
	5.1 Some Examples of Nowhere Differentiable			
		Functions	18	33
	5.2	Fractal Interpolation Functions	18	34
	5.3	Polynomial Fractal Functions	19	€0
	5.4	Bases of Fractal Functions	19	94
	5.5	The Box Dimension of Affine Fractal Functions	20)0
	5.6	Code Space and Fractal Functions	20)7
	5.7	Continuous Functions as Special Cases of Fractal		
		Functions	20	98
	5.8	Fractal Functions of Class C^k	21	12
	5.9 Construction of Fractal Functions of Class C^k from			
		Splines		14
	5.10	Fractal B-Splines	22	
	5.11	Approximation with Fractal Functions	22	
	5.12	Indefinite Integrals of Fractal Functions	22	
	5.13	Fourier Transform of Fractal Functions		26
	5.14	Wavelets and Fractal Functions		28
	5.15	Fractal Functions and Function Spaces		32
		Exercises	> 23	36
6		al Surfaces	23	39
	6.1	Tensor Product Fractal Surfaces		40
	6.2	Affine Fractal Surfaces in \mathbb{R}^2		42
	6.3	The Box Dimension of Affine Fractal Surfaces		50
	6.4	Hölder Continuity of Affine Fractal Functions		54
	6.5	Bilinear Fractal Surfaces in \mathbb{R}^2		55
	6.6	Fractal Surfaces Arising from Quadratic Forms		50
	6.7	Smooth Fractal Surfaces via Indefinite Integrals		52
		Exercises	26	55
7	Superfractals			56
	7.1	1-Variable Fractal Sets	26	57
	7.2	1-Variable Fractal Measures	27	72

Contents ix

x Contents

	7.3	V-Variable Fractal Sets and Fractal Measures		273
		7.3.1	V-Variable Fractal Sets	274
		7.3.2	V-Variable Fractal Measures	276
	7.4	Graph Theory and Random Fractals		278
		7.4.1	Code Trees	278
		7.4.2	Random Fractal Sets and Random Fractal Measures	281
		Exerci	ses	287
8	Superfractal Functions			289
	8.1	Prelim	ninaries	290
	8.2	V-Vai	riable Fractal Interpolation	292
		Exercises		300
Bib	liograp	hy		302
No	mencla	ture		310
Ind	ex			315