Batch and Online Anomaly Detection for Scientific Applications in a Kubernetes Environment

Matias Carrasco Kind Senior Research Scientist, NCSA

Sahand Hariri PhD Student, MechSE UIUC

Overview

Goal: Build a resilient scalable anomaly detection service.

Motivation: Astronomical data (both literal and figurative)

Algorithm: Extended Isolation Forest

Infrastructure: Kubernetes cluster

Mapreduce package: Spark

Part of the Motivation

Astronomy is just one example where data exploration needs to be automated.

Large catalogs, Large number of images, many unexpected objects/problems → Anomaly detection

- In operations 2020
- Every night for 10 years
- 18 billions objects (first year),
 40 billions by the end of survey
- ~1500 images per night
- Stream and static data
- Target to capture new physics (moving and variable objects)

- More than 500 nights of observation over 5 years
- 500 millions cataloged galaxies and 100 millions stars
 - Many open problems: Systematics, new objects, new physics, etc.
- Almost completed

Few and different to be isolated quicker

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - o Repeat until tree is complete
- Generate multiple trees \rightarrow forest

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - o Repeat until tree is complete
- Generate multiple trees \rightarrow forest
- Anomalies will be isolated in only a few steps

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
- Generate multiple trees \rightarrow forest
- Anomalies will be isolated in only a few steps
- Nominal points in more

- Few and different to be isolated quicker
- For each tree:
 - Get a sample of the data
 - o Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
- Generate multiple trees \rightarrow forest
- Anomalies will be isolated in only a few steps
- Nominal points in more
- To score points:
 - Run point down tree, record path
 - Repeat for each tree, aggregate scores $s(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$
 - Score distribution

Single Tree scores for anomaly and nominal points

Forest plotted radially. Scores for anomaly and nominal shown as lines

Anomaly Detection with Extended Isolation Forest

Isolation Forest:

- ✓ Model free
- Computationally efficient
- Readily applicable to parallelization
- Readily application to high dimensional data
- × Inconsistent scoring seen in score maps

Extended Isolation Forest:

- Model free
- Computationally efficient
- Readily applicable to parallelization
- Readily application to high dimensional data
- Consistent scoring

Anomaly Detection with Extended Isolation Forest

Algorithm 2 iTree(X, e, l)

Require: X - input data, e - current tree height, l - height limit

Ensure: an iTree

1: **if** $e \ge l$ or $|X| \le 1$ **then**

2: **return** $exNode{Size \leftarrow |X|}$

3: else

4: randomly select a normal vector $n \in \mathbb{R}^{|X|}$ by drawing each coordinate of \vec{n} from a uniform distribution.

5: randomly select an intercept point $p \in \mathbb{R}^{|X|}$ in the range of X

6: set coordinates of n to zero according to extension level

7: $X_l \leftarrow filter(X, (X - p) \cdot n \le 0)$

 $X_r \leftarrow filter(X, (X - p) \cdot n > 0)$

9: **return** inNode{ $Left \leftarrow iTree(X_l, e+1, l)$,

 $Right \leftarrow iTree(X_r, e+1, l),$

 $Normal \leftarrow n$,

 $Intercept \leftarrow p$

10: end if

Technology Stack For Anomaly Service

- Use Extended Isolation Forest as core algorithm
- Use Spark to parallelize trees and scoring
- Use Redis as a broker communicator
- To easily deploy in any environment, use Docker
- For orchestration of Docker containers, use Kubernetes
- Kubernetes cluster built on top of OpenStack, but it can be deployed also in AWS, GKE, etc.

Framework Architecture

There are three main components:

- 1. Storage
- 2. Computation Stage
- 3. User Interface / Streaming

Framework Architecture

Storage:

- NFS (Kubernetes PV/PVC)
- Redis
- RDD for Trees and Spark

User Interface:

- Jupyter notebooks
- Interactive web app for submitting jobs
- Streaming service

Computation Stage:

- Spark Master and Workers
- Communicator with Spark Master
- Suscripcion

Deployment

- Kubernetes allows very easy deployment, orchestration, scalability, resilience, replication, workloads and more
- From 0 to anomaly service \rightarrow in minutes and config files
- Scale up/down (spark cluster and front-end) \rightarrow Auto-scaling as an option
- Prototype support multiple users/projects, batch and streaming process
- Fault tolerant, disaster recovery

Spark Configuration Example

- Case 1: 800 trees, single core, serial mode
- Case 2: 100 trees on each core, aggregation and MapReduce. Each core access same data
- Case 3: Sample data on each core for 100 trees each, aggregation and MapReduce
- Case 4: Sample data on each core, 800 trees each
- Case 5: Sample data on each core, 100 trees on each, no aggregation

(b) Total average time taken to run each case.

Examples

Jupyter Notebooks

Jupyter Notebooks

Conclusions

- Open source anomaly detection software package for scientific application using fast and efficient isolation forest
- Fault tolerant, robust, scalable deployment
- Train and scoring using Spark
- Ready-to-deploy infrastructure on Kubernetes
- Production services for large datasets

Thank you!

Questions?

Matias Carrasco Kind -- NCSA mcarras2@illinois.edu github.com/mgkind matias-ck.com

Extra Slides

Streaming

- 2 cases: Time evolving data, Time accumulative data
- Streaming isolation forest exists, not extended
- We can adapt and retrain trees as new data is presented
- Replace trees one by one until whole forest is replaced
- Work with window size to retrain trees