CURSO DE ENGENHARIA ELÉTRICA - UFES

Práticas de Laboratório – 2018/01

Questionário 6

	Nome:
	Marque um x nas respostas corretas
1) O LN	1555 é normalmente usado como:
a)	Um regulador de tensão.
b)	Um amplificador de corrente.
c)	Um temporizador.
d)	Um transistor.
2) O LN	1/555 pode operar em dois modos:
a)	Monoestável e astável.
b)	Linear e saturado.
c)	Aberto e fechado.
d)	Nenhuma das anteriores.
3) Mar	que a afirmativa que é coerente com a lógica de funcionamento do flip-flop RS:
a)	Se R = 1 e S = 0, a tensão em Q será alta.
b)	Se R = 0 e S = 0, a tensão em Q será indeterminada.
c)	Se R = 1 e S = 1, a tensão em Q será igual à tensão atual.
d)	Se R = 0 e S = 1, a tensão em Q será alta.
4) Se	c LM555 for usado para gerar um trem de pulso com um período de 1 segundo, qual a combinação de
resisto	res e capacitores que mais se aproximaria deste tempo (se baseie no circuito da Figura 3 do pdf de LM555)?
a)	R1 = 1,8M Ω , R2 =750k Ω e C = 330nF
b)	R1 = $270k\Omega$, R2 = $560 k\Omega$ e C = 4.7μ F
c)	R1 = $10M\Omega$, R2 = $4.7M\Omega$ e C = 100 nF
d)	R1 = $16M\Omega$, R2 = $4,7M\Omega$ e C = $56nF$
capacit	nodo de funcionamento do LM555 no modo astável pode ser resumido da seguinte forma. Inicialmente o cor está com uma tensão abaixo de 2/3Vcc. Nesta condição a saída do LM555 é e o capacitor carrega
-	esistores R1 e R2. Quando a tensão sobre o capacitor atinge 2/3Vcc, a tensão de saída do LM555 será
	pacitor começa a descarregar pelo resistor Quando o capacitor atinge uma tensão de 1/3Vcc, o LM555 fornecer na saída e o capacitor volta a carregar, repetindo todo o ciclo.
vuita d	Torriecei na saida e o capacitor voita a carregar, repetindo todo o cicio.
a)	0 V, Vcc, R1, 0 V
b)	Vcc, 0 V, R2, Vcc
c)	0 V, Vcc, R2, 0 V

d) Vcc, 0 V, R1, Vcc