

CHEMISTRY

CHEMISTRY

WB-JI

MASTER QUESTION BANK

ORGANIC CHEMISTRY

IUPAC NOMENCLATURE, GOC & ISOMERISM

- 1. (I) O_2N ·CO₂CH₃
 - (II) MeO CO₂CH₃
 - (III) Me-CO₂CH₃

For the above three esters, the order of rates of alkaline hydrolysis is

- (A) | I > | I > | II |
- (B) II > III > I
- (C) | > | | > | |
- (D) ||| > | > ||
- 2. The correct order of acidity for the following compounds is:

(I)

(II)

(III)

COOF

(IV)

(A) II < IV < III < I

(B) II < III < I < IV

(C) II < III < IV < I

- (D) III < II < I < IV
- For the following carbocations, the correct order of stability is 3.
 - (I) [⊕]CH₂–COCH₃
- (II) [⊕]CH₂–OCH₃
- (III) [⊕]CH₂–CH₃

- (A) | | | < | < |
- (B) II < I < III
- (C) I < II < III
- (D) I < III < II
- The total number of alkyl bromides (including stereoisomers) formed in the reaction 4. $Me_3C-CH=CH_2 + HBr \rightarrow will be$
 - (A) 1
- (B) 2
- (C) 3
- (D) No bromide forms

m: www.atpstar.com

(*): 08107258987

5. Which of the following compound is asymmetric?

- **6.** The compound, which evolves carbon dioxide on treatment with aqueous solution of sodium bicarbonate at 25°C is
 - (A) C_6H_5OH
- (B) CH₃COCI
- (C) CH₃CONH₂
- (D) CH₃COOC₂H₅

- 7. The indicated atom is not a nucleophilic site in
 - (A) BH₄
- (B) ÇH₃MgI
- (C) CH₃OH
- (D) CH₃NH₂
- 8. The molecule/molecules that has/have delocalised lone pair(s) of electrons is/are

- (A) I, II and III
- (B) I, II and IV
- (C) I and III
- (D) Only III
- **9.** The conformations of n-butane, commonly known as eclipsed, gauche and anti-conformations can be interconverted by
 - (A) rotation around C—H bond of a methyl group
 - (B) rotation around C—H bond of a methylene group
 - (C) rotation around C1-C2 linkage
 - (D) rotation around C2-C3 linkage
- **10.** The compound(s), capable of producing achiral compound on heating at 100°C is are

- 11. The ease of hydrolysis in the compounds CH₃COCI(I), CH₃-CO-O-COCH₃(II), CH₃COOC₂H₅(III) and CH₃CONH₂ (IV) is of the order
- (B) IV > III > II > I
- (C) I > II > IV > III
- (D) |I| > I > |V| > |I|
- 12. The correct order of reactivity for the addition reaction of the following carbonyl compounds with ethylmagnesium iodide is

- (A) I > III > II > IV
- (B) IV > III > II > I
- (C) I > II > IV > III
- 13. Among Me₃N, C_5H_5N and MeCN (Me = methyl group) the electronegativity of N is in the order
 - (A) MeCN > C_5H_5N > Me_3N
- (B) $C_5H_5N > Me_3N > MeCN$
- (C) $Me_3N > MeCN > C_5H_5N$
- (D) Electronegativity same in all
- 14. In the IUPAC system, PhCH₂CH₂CO₂H is named as
 - (A) 3-phenylpropanoic acid
- (B) benzylacetic acid

(C) carboxyethylbenzene

- (D) 2-phenylpropanoic acid
- 15. The correct order of acid strengths of benzoic acid (X), peroxybenzoic acid (Y) and p-nitrobenzoic acid (Z) is
 - (A) Y > Z > X
- (B) Z > Y > X
- (C) Z > X > Y (D) Y > X > Z
- 16. The IUPAC name of the following molecule is

- (A) 5, 6-dimethylhept-2-ene
- (B) 2, 3-dimethylhept-5-ene
- (C) 5, 6-dimethylhept-2-ene
- (D) 5-iso-propylhex-2-ene
- **17**. The correct order of decreasing H—C—H angle in the following molecule is

- (A) | I > II > III
- (B) II > I > III
- (C) III > II > I
- (D) I > III > II
- Among the following structures the one which is not a resonating structure of others is 18.

(II)

: 90,Gopal square 2 & 3rd Floor, Sector - A, Shrinath Puram, Kota, Rajasthan 324010

m: www.atpstar.com

(a): 08107258987

(B) II

(C) III

(D) IV

19. The compound that will have a permanent dipole moment among the following is

(II)

(III)

(C) III

Br—Br

(IV)

(D) IV

- (B) II
- 20. The correct order of decreasing length of the bond as indicated by the arrow in the following structures is

- (A) I > II > III
- (C) III > II > I
- (D) I > III > II
- 21. The correct statement regarding the following compounds is

- (A) all three compounds are chiral
- (B) only I and II are chiral
- (C) I and III are diastereomers
- (D) only I and III are chiral
- 22. The most likely protonation site in the following molecule is

- (A) C-1
- (B) C-2
- (C) C-3
- (D) C-6
- 23. The order of decreasing ease of abstraction of hydrogen atoms in the following molecule

- (A) $H_a > H_b > H_c$ (B) $H_a > H_c > H_b$
- (C) $H_b > H_a > H_c$ (D) $H_c > H_b > H_a$

24. The correct order of basicity of the following compounds is

- (A) 1 < 2 < 3 < 4
- (B) 1 < 2 < 4 < 3
- (C) 2 < 1 < 3 < 4
- (D) 4 < 3 < 2 < 1
- **25.** From the following compounds, choose the one which is not aromatic.

26. Chosse the correct statement(s) among the following.

(A)
$$H_3C$$
 H H H $C = CH_3$ are enantiomers H_3C H H_3C H

(B) CH₃CHO on reaction with HCN gives racemic mixture

- (D) $CH_3 CH = NOH$ shows geometrical isomerism
- 27. In the following compound, the number of sp-hybridised carbons are

$$CH_2 = C = CH - CH - C \equiv CH$$
 CN
(A) 2 (B) 3 (C) 4 (D) 5

- 28. In a mixture, two enantiomers are found to be present in 85% and 15% respectively. The enantimoeric excess (ee) is
 - (A) 85% (B) 15% (C) 70% (D) 60%

29. The total number of aromatic species generated in the following reactions is

(i)
$$CI + SbCI_5 \longrightarrow$$

- (A) Zero
- (B) 2
- (C) 3
- (D) 4

MIXED REACTIONS

- 30. Ph—CDO $\xrightarrow{50\% \text{aq.NaOH}}$ Ph—COOH+ an alcohol. This alcohol is
 - (A) Ph-CHD-OH
- (B) Ph-CHD-OD
- (C) Ph-CD₂-OH
- (D) Ph-CD₂-OD
- 31. The reduction product of ethyl 3-oxobutanoate by NaBH₄ in methanol is

- (D) OH
- **32.** What is the major product of the following reaction?

$$O_2N$$

CHO

+ Et

CO

C

Et

1. NaOEt

2. H₃O⁺

$$(D)$$
 O_2N $COOH$

33. CI—Br
$$\xrightarrow{1. \text{Mg/diethyl ether}} \text{Product}$$

3. H_2O^+

The product in the above reaction is

(D)
$$HOH_2C$$
— CH_2OH

34. Which of the following reactions give(s) a meso-compound as the main product?

$$(A) \xrightarrow{Br_2} CH_2Cl_2$$

(B)
$$\rightarrow$$
 H_2 Pd-C

(D)
$$Br_2$$
 CCl_4

$$\textbf{35.} \qquad \text{Me} - C \equiv C - \text{Me} \xrightarrow{\begin{array}{c} \text{Na/NH}_3(\text{liq.}) \\ \text{EtOH,} - 33^{\circ}C \end{array}} X \xrightarrow{\text{dil.alkaline KMnO}_4} \text{Product(s)}$$

The product(s) from the above reaction will be

36. One of the products of the following reaction is P.

$$CCI_3 \xrightarrow{(i) \text{ aq. KOH}} P$$

Structure of P is:

37. For the reaction below, the product is Q.

$$\frac{\text{CO}_2 \text{H}}{\text{Conc. H}_2 \text{SO}_4 \text{ (cat.) heat}} \text{Q}[\text{C}_9 \text{H}_8 \text{O}_4]$$

The compound Q is

Cyclopentanol on reaction with NaH followed by CS₂ and CH₃I produces a/an 38.

- (A) ketone
- (B) alkene
- (C) ether
- (D) xanthate

- 39. The correct order of the addition reaction rates of halogen acids with ethylene is
 - (A) hydrogen chloride > hydrogen bromide > hydrogen iodide
 - (B) hydrogen iodide > hydrogen bromide > hydrogen chloride
 - (C) hydrogen bromide > hydrogen chloride > hydrogen iodide
 - (D) hydrogen iodide > hydrogen chloride > hydrogen bromide
- 40. Oxidation of allyl alcohol with a peracid gives a compound of molecular formula C₃H₆O₂, which contains an asymmetric carbon atom. The structure of the compound is

- 41. $CH_3-C \equiv C MgBr can be prepared by the reaction of$
 - (A) $CH_3-C \equiv C-Br$ with $MgBr_2$
- (B) $CH_3-C \equiv CH$ with $MgBr_2$
- (C) $CH_3-C \equiv CH$ with KBr and Mg metal
- (D) $CH_3-C \equiv CH$ with CH_3MgBr
- 42. The number of alkene(s) which can produce 2-butanol by the successive treatment of
 - (i) B₂H₆ in tetrahydrofuran solvent and (ii) alkaline H₂O₂ solution is
 - (A) 1
- (B)2
- (C) 3
- (D) 4

43. Identify 'M' in the following sequence of reactions

$$C_8H_6Cl_2O \xrightarrow{NH_3} C_8H_8CINO \xrightarrow{Br_2} H_2N$$

(B)
$$CI$$
 CH_3

- 44. Methoxybenzene on treatment with HI proudces
 - (A) iodobenzene and methanol
- (B) phenol and methyl iodide
- (C) iodobenzene and methyl iodide
- (D) phenol and methanol

- 45. If aniline is treated with conc. H₂SO₄ and heated at 200°C, the product is
 - (A) anilinium sulphate

- (B) benzenesulphonic acid
- (C) m-aminobenzenesulphonic acid
- (D) sulphanilic acid
- $[P] \xrightarrow{Br_2} C_2H_4Br \xrightarrow{NaNH_2} [Q]$ 46.

$$\text{[Q]} \xrightarrow{20\%\,\text{H}_2\text{SO}_4} \text{[R]} \xrightarrow{\text{Zn-Hg/HCI}} \text{[S]}$$

The species P, Q, R and S respectively are

- (A) ethene, ethyne, ethanol, ethane
- (B) ethane, ethyne, ethanal, ethene
- (C) ethene, ethyne, ethanal, ethanol
- (D) ethyne, ethane, ethanal
- 47. The number of possible organobromine compounds which can be obtained in the allylic bromination of 1-butene with N-bromosuccinimide is
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- The possible product(s) to be obtained from the reaction of cyclobutyl amine with HNO2 is/are 48.

49. The major products obtained in the following reaction is/are

$$(A) \begin{array}{c} H_3C \\ H \end{array} \begin{array}{c} C \\ C_2H_5 \end{array} + Br_2 \\ (A) \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} CH_3 \\ Br \end{array} \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} CH_3 \\ Br \end{array} \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} CH_3 \\ Br \end{array} \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} CH_3 \\ Br \end{array} \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} CH_3 \\ C_2H_5 \end{array} \begin{array}{c} CH_3 \\ C_2H_5$$

$$(C) \begin{array}{c} Br \longrightarrow H \\ H \longrightarrow B \end{array}$$

- **50.** The isomerisation of 1-butyne to 2-butyne can be achieved by treatment with
 - (A) hydrochloric acid

- (B) ammoniacal silver nitrate
- (C) ammoniacal cuprous chloride
- (D) ethanolic potassium hydroxide
- 51. The structure of the product P of the following reaction is

$$(A) \begin{picture}(60,0){\line(1,0){150}} \put(0,0){\line(1,0){150}} \pu$$

52. For the reaction below

$$(A) \xrightarrow{\text{(i) PhMgBr, THF}} (B) \xrightarrow{\text{(ii) PhMgBr, THF}} (C) \xrightarrow{\text{Ph}} (D) \xrightarrow{\text{Ph}} (D) \xrightarrow{\text{NH}_2} (D)$$

53. The reaction sequence given below given product R.

$$HO_2C$$
 CO_2Me (i) Ag_2O (ii) Br_2 , CCl_4 R

The structure of the product R is

(A)
$$Br$$
 CO_2H
(B) HO_2C
 CO_2Me
 CO_2Me

54. Reaction of the lactol S OH with NaOH followed by

- **55.** The reduction of benzenediazonium chloride to phenyl hydrazine can be accomplished by (A) $SnCl_2$, HCl(B) Na_2SO_3 (C) CH_3CH_2OH (D) H_3PO_2
- **56.** The major product(s) obtained form the following reaction of 1 mole of hexadeuteriobenzene is/are

$$\begin{array}{c} D \\ D \\ D \\ \end{array} \begin{array}{c} D \\ \end{array} \begin{array}{c} \text{(i) } Br_2 \text{ (1 mole), Fe} \\ \text{(ii) } H_2O \\ \end{array}$$

$$(B) D D D$$

$$D) D D D$$

- **57.** Amongst the following compounds, the one that will not respond to Cannizzaro reaction upon treatment with alkali is
 - (A) Cl₃CCHO
- (B) Me₃CCHO
- (C) C₆H₅CHO
- (D) HCHO
- **58.** Which of the following will be dehydrated most readily in alkaline medium?

- **59.** Which of the following reactions will not result in the formation of carbon-carbon bonds?
 - (A) Cannizzaro reaction

- (B) Wurtz reaction
- (C) Reimer-Tiemann reaction
- (D) Friedel-Crafts acylation
- **60.** The correct structure of the drug paracetamol is

(B) NHCOCH₃

(C) CONH

(D) COCH₃

61. Ozonolysis of an alkene produces only one dicarbonyl compound. The structure of the alkene is

(A)
$$CH_3 - CH = CH - CH_3$$

(D)
$$CH_3 - CH = CH - CH = CH_2$$

62. Identify X in the following sequence of reactions.

$$CH_3 - CH - CH - CH_2 - CH_2 - CH_3 \xrightarrow{\text{(i) NaNH}_2} X$$
Br Br

$$(A) \begin{array}{c} CH_3 - CH - CH - CH_2CH_2CH_3 \\ | & | \\ Br & NH_2 \end{array}$$

(B)
$$H_3C$$
 $C = C$ $CH_2CH_2CH_3$

(C)
$$H_3C$$
 $C = C$ $CH_2CH_2CH_3$

$$(D) \begin{array}{c} CH_3 - CH - CH - CH_2CH_2CH_3 \\ | & | \\ NH_2 & NH_2 \end{array}$$

- **63.** The major products obtained during ozonolysis of 2, 3-dimethyl-1-butene and subsequent reductions with Zn and H_2O are
 - (A) methanoic acid and 2-methyl-2-butanone
 - (B) methanal and 3-methyl-2-butanone
 - (C) methanol and 2, 2-dimethyl-3-butanone
 - (D) methanoic acid and 2-methyl-3-butanone
- **64.** Amongst the following compounds, the one(s) which readily react with ethanolic KCN.
 - (A) Ethyl chloride

(B) Chlorobenzene

(C) Benzaldehyde

(D) Salicylic acid

65.
$$CH_3$$
 CH_2 $HBr (1 eqyiv.)$ The major product of the above reaction is

$$(A) \int\limits_{Br}^{CH_3} CH_3$$

(C)
$$H_2C$$
 CH_3 CH_2

66.
$$NH_3$$
 The product of the above reaction is

$$(A) \bigvee_{NH_2}^{NH_2} \qquad (B) \bigvee_{NH_2}^{NH_2}$$

- 67. 1, 4-dimethylbenzene on heating with anhydrous AlCl₃ and HCl produces
 - (A) 1, 2-dimethylbenzene

- (B) 1, 3-dimethylbenzene
- (C) 1, 2, 3-trimethylbenzene
- (D) ethylbenzene

68.
$$CHO \xrightarrow{OH^-}$$
? The product of the above reaction is

COOH

- **69.** The reaction of methyltrichloracetate (Cl₃CCO₂Me) with sodium methoxide (NaOMe) generates
 - (A) carbocation
- (B) carbene
- (C) carbanion
- (D) carbon radical
- **70.** Best reagent the nuclear iodination of aromatic compounds is
 - (A) KI/CH₃COCH₃

(B) I₂/CH₃CN

(C) KI/CH₃COOH

- (D) I_2/HNO_3
- 71. In the reaction R MgBr + HC(OEt)₃ $\xrightarrow{\text{Ether, H}_3O^+}$ P the product P is
 - (A) RCHO
- (B) R₂CHOEt
- (C) R₃CH
- (D) RCH(OEt)₂
- **72.** Identify the correct method for the synthesis of the compound shown below from the following alternatives

9: 90,Gopal square 2 & 3rd Floor, Sector - A, Shrinath Puram, Kota, Rajasthan 324010

⊕ : www.atpstar.com

(*): 08107258987

POC, BIOMOLECULE, POLYMER AND CHEMISTRY IN EVERYDAY LIFE

Haloform reaction with I2 and KOH will be responded by 73.

$$(A^*) \stackrel{\bullet}{\longmapsto} Ph \qquad (B^*) \stackrel{\mathsf{Ph}}{\longmapsto} OH \qquad (C) \stackrel{\mathsf{Me}}{\longmapsto} Ph \qquad (D) \stackrel{\mathsf{Ph}}{\longmapsto} N \stackrel{\mathsf{Me}}{\longmapsto} Me$$

 $C_4 \underset{\text{N}_1}{\text{H}_10} O \xrightarrow{\quad K_2 C_{\text{T}_2} O_7 \quad} C_4 \\ \text{H}_8 O \xrightarrow{\quad I_2 / \text{NaOH} \quad} CHI_3$ 74.

Here, N is

- **75.** Which one of the following is a condensation polymer?
 - (A) PVC
- (B) Teflon
- (C) Dacron
- (D) Polystyrene

- **76**. ADP and ATP differ in the number of
 - (A) phosphate units (B) ribose units
- (C) adenine base
- (D) nitrogen atom
- 77. The compound that would produce a nauseating smell/odour with a hot mixture of chloroform and ethanolic potassium hydroxide is
 - (A) PhCONH₂
- (B) PhNHCH₃
- (C) PhNH₂
- (D) PhOH
- Which of the following compound would not react with Lucas reagent at room temperature? **78.**
 - (A) $H_2C = CHCH_2OH$

(B) C₆H₅CH₂OH

(C) CH₃CH₂CH₂OH

- (D) (CH₃)₃COH
- 79. Amongst the following compounds, the one which would not respond to iodoform test is
 - (A) CH₃CH(OH)CH₂CH₃

(B) ICH₂COCH₂CH₃

(C) CH₃COOH

(D) CH₃CHO

- **80.** In the Lassaigne's test for the detection of nitrogen in an organic compound, the appearance of blue coloured compound is due to
 - (A) ferric ferricyanide

(B) ferrous ferricyanide

(C) ferric ferrocyanide

- (D) ferrous
- 81. An amine C_3H_9N reacts with benzene sulphonyl chloride to form a white precipitate which is insoluble in aq. NaOH. The amine is

- 82. In DNA, the consecutive deoxynucleotides are connected via
 - (A) phosphodiester linkage
- (B) phosphomonoester linkage
- (C) phosphotriester linkage
- (D) amide linkage
- **83.** Within the list shown below, the correct pair of structures of alanine in pH ranges 2-4 and 9-11 is
 - I. H_3N^+ $CH(CH_3)CO_2H$

II. $H_2N - CH(CH_3)CO_2^-$

III. $H_3N^+ - CH(CH_3)CO_2^-$

IV. $H_2N - CH(CH_3)CO_2H$

- (A) I and II
- (B) I and III
- (C) II and III
- (D) III and IV

ANSWER KEY

1.	(C)	2.	(B)	3.	(D)	4.	(C)	5.	(D)
6.	(B)	7.	(A)	8.	(D)	9.	(D)	10.	(D)
11.	(A)	12.	(A)	13.	(A)	14.	(A)	15.	(C)
16.	(A)	17.	(B)	18.	(D)	19.	(A)	20.	(C)
21.	(D)	22.	(A)	23.	(B)	24.	(C)	25.	(B)
26.	(BD)	27.	(C)	28.	(C)	29.	(C)	30.	(C)
31.	(C)	32.	(A)	33.	(D)	34.	(B)	35.	(AC)
36.	(C)	37.	(A)	38.	(D)	39.	(B)	40.	(A)
41.	(D)	42.	(B)	43.	(B)	44.	(B)	45.	(D)
46.	(A)	47.	(A)	48.	(AC)	49.	(AD)	50 .	(D)
51.	(C)	52.	(B)	53.	(D)	54.	(C)	55 .	(A)
56 .	(A)	57 .	(A)	58 .	(B)	59 .	(A)	60 .	(B)
61.	(B)	62.	(B)	63.	(B)	64.	(AC)	65 .	(B)
66.	(C)	67.	(B)	68.	(C)	69.	(B)	70.	(D)
71.	(A)	72.	(B)	73 .	(AB)	74.	(B)	75 .	(C)
76 .	(A)	77.	(C)	78 .	(C)	79.	(C)	80.	(C)
81.	(B)	82.	(A)	83.	(A)				

: www.atpstar.com