# Optimizing Data Storage: A Parquet Benchmarking Study

Evaluating Parquet Runtime and Output Size Across Diverse Compression and Encoding Formats



#### Parquet Structure

Columnar Storage Hierarchy



Parquet File

One or more

Size: table size + overhead

Row Group(s)

Size: min(table size, 1024<sup>2</sup> rows size) (Default)

One per column (n)

Column Chunks —

Size: column type \* row group rows

One or more

Data Page(s)

Size: 1 MiB (Default)

#### Column Based Implementation

Columnar Storage Benefits

parquet.write\_table(data, compression=compression\_dict, col\_encoding=encoding\_dict)

— Schema: x, y, z = various data types





- Assign compression and encoding formats per column

  o Applied at column
  - Applied at column chunk level - across all data page(s)

#### Supported Formats

Columnar Storage Benefits

Compressions

None

- Gzip
- Snappy
- ZSTD

Brotli

LZ4

Encodings

- Plain
- Byte Stream Split
- RLE/Bit-Packing
- Plain Dictionary
- RLE Dictionary
- Delta Byte Array
- Delta Binary Packed
- Delta Length Byte Array

#### Efficient Query and Retrieval

Columnar Storage Benefits



#### Projection



- Access subset of columns.
- Reads select column chunks across all row groups from disk.

#### Selection

- x<sub>1y</sub> ... x<sub>ny</sub> x<sub>nm</sub>
- Filter rows by comparing predicate to row group metadata statistics.
- Reads select row groups from disk.

#### **VPIC** Data

LANL C2-VPIC Sample Dataset

#### Particle Schema

| 8 bytes | uint64_t | ID           | unique ID of a particle                 |
|---------|----------|--------------|-----------------------------------------|
| 8 bytes | uint64_t | padding      |                                         |
| 4 bytes | float    | X            | location of particle in X direction     |
| 4 bytes | float    | $\mathbf{y}$ | location of particle in Y direction     |
| 4 bytes | float    | $\mathbf{Z}$ | location of particle in Z direction     |
| 4 bytes | float    | i            | index of the cell that had the particle |
| 4 bytes | float    | ux           | momentum of particle in X direction     |
| 4 bytes | float    | uy           | momentum of particle in Y direction     |
| 4 bytes | float    | uz           | momentum of particle in Z direction     |
| 4 bytes | float    | ke           | kinetic energy of particle              |
|         |          |              |                                         |

- 48 bytes per particle
- 128 \* 1024 particles per file
- 6 MiB per file
- 42 total files
- 252 total MiB

#### VPIC Input Data Format

Benchmark Set Up



#### VPIC Benchmark Framework

Writing Input Data Into Parquet



- Compressions: None, Snappy, Gzip, Brotli, LZ4, ZSTD
- Encodings: Plain, Plain Dictionary, RLE Dictionary, Byte Stream Split

#### <u>Vector Norm</u>

**Analyzing Benchmark Results** 

$$\sqrt{\left(\frac{\text{Output Size}_{i}}{\text{max(Output Size)}}\right)^{2} + \left(\frac{\text{Average Runtime}_{i}}{\text{max(Average Runtime)}}\right)^{2}}$$

#### Single File Duplicated Results



### Single File Sampled Results



### All Files Duplicated Results



#### All Files Sampled Results



### **VPIC Findings**

Parquet Benchmark Analysis

|              | Lowest Vector Norm |                   |  |
|--------------|--------------------|-------------------|--|
| Input Format | Compression        | Encoding          |  |
| SFD          | ZSTD               | Byte Stream Split |  |
| SFS          | ZSTD               | Plain Dictionary  |  |
| AFD          | ZSTD               | Byte Stream Split |  |
| AFS          | ZSTD               | Byte Stream Split |  |

### Laghos Data

LANL OCS Laghos Sample Dataset

#### Nodal Schema

| 4 bytes | int32  | element_id                | unique ID of an element         |
|---------|--------|---------------------------|---------------------------------|
| 4 bytes | int32  | vertex_id                 | unique ID of a vertex           |
| 8 bytes | double | <b>v_x</b>                | velocity of node in X direction |
| 8 bytes | double | <b>v_y</b>                | velocity of node in Y direction |
| 8 bytes | double | $\mathbf{v}_{\mathbf{z}}$ | velocity of node in Z direction |
| 8 bytes | double | rho                       | density of node                 |
| 8 bytes | double | e                         | energy of node                  |
| 8 bytes | double | X                         | location of node in X direction |
| 8 bytes | double | $\mathbf{y}$              | location of node in Y direction |
| 8 bytes | double | Z                         | location of node in Z direction |

- 72 bytes per element
- 2048<sup>2</sup> elements per file
- 302 MiB per file
- 256 total files
- 75.5 GiB total size

#### Laghos Input Data Format

Benchmark Set Up



#### Laghos Benchmark Framework

Writing Input Data Into Parquet

**RSFS** 



- Compressions: None, Snappy, Gzip, Brotli, LZ4, ZSTD
- Encodings: Plain, Plain Dictionary, RLE Dictionary, Byte Stream Split

### Single File Duplicated Results



### Single File Sampled Results



### Randomly Selected Files Results



### Randomly Selected Files Sampled Results



### Laghos Findings

Parquet Benchmark Analysis

|              | Lowest Vector Norm |                   |  |
|--------------|--------------------|-------------------|--|
| Input Format | Compression        | Encoding          |  |
| SFD          | ZSTD               | Plain             |  |
| SFS          | ZSTD               | Byte Stream Split |  |
| RSF          | ZSTD               | Plain             |  |
| RSFS         | ZSTD               | Byte Stream Split |  |

## Final Findings Parquet Benchmark Analysis

|              | Lowest Vector Norm (Laghos) |                   | Lowest Vector Norm (VPIC) |                   |
|--------------|-----------------------------|-------------------|---------------------------|-------------------|
| Input Format | Compression                 | Encoding          | Compression               | Encoding          |
| SFD          | ZSTD                        | Plain             | ZSTD                      | Byte Stream Split |
| SFS          | ZSTD                        | Byte Stream Split | ZSTD                      | Plain Dictionary  |
| RSF          | ZSTD                        | Plain             |                           |                   |
| RSFS         | ZSTD                        | Byte Stream Split |                           |                   |
| AFD          |                             |                   | ZSTD                      | Byte Stream Split |
| AFS          |                             |                   | ZSTD                      | Byte Stream Split |

#### **Future Works**

#### Parquet Benchmark Analysis

- Investigate Parquet's fallback mechanism from dictionary to plain encoding when the dictionary grows too large.
  - Analyze the performance and storage impact of switching encodings based on dictionary size or distinct value count.
  - Explore optimization opportunities by isolating conditions that trigger the fallback, aiming to enhance encoding strategies for diverse datasets.