Projektowanie instalacji elektrycznych – kolokwium

Kacper Borucki 245365

1 OMÓWIĆ WYMAGANIA PRAWNE DOTYCZĄCE INSTALACJI ELEKTROENERGETYCZNYCH

Podstawowymi przepisami określającymi wymagania prawne dotyczące instalacji elektroenergetycznych są: prawo budowlane, prawo energetyczne oraz ustawa o normalizacji. Uzupełnieniami tych przepisów są różne, wydane na przestrzeni lat, rozporządzenia – np. w sprawach warunków technicznych budynków, bezpieczeństwa i higieny pracy przy urządzeniach i instalacjach energetycznych czy ochrony przeciwpożarowej budynków. Istnieje także wiele norm stawiających wymagania różnym elementom instalacji oraz urządzeń elektrycznych.

Prawo budowlane jest ustawą określającą przede wszystkim wymagania podstawowe, które powinien spełniać budynek i jego instalacje. Odnosi się to do m.in. bezpieczeństwa pożarowego, bezpieczeństwa użytkowania, ochrony przed hałasem i drganiami oraz charakterystyki energetycznej budynku.

Ustawa ta określa również uprawnienia, które powinny mieć poszczególne osoby związane z poszczególnymi funkcjami technicznymi w budownictwie, określając m.in. rodzaje udzielanych uprawnień budowlanych w różnych specjalizacjach, włączając w to również uprawnienia dotyczące instalacji elektrycznych i elektroenergetycznych.

Prawo energetyczne jest ustawą określającą warunki, którym instalacje elektryczne w budynkach podlegają ze względu na politykę energetyczną państwa i bezpieczeństwo energetyczne kraju. Ustawa ta klasyfikuje instalacje elektryczne ze względu na pobieraną moc oraz napięcia znamionowe a także narzuca wymagania i warunki dotyczące przyłączania instalacji elektrycznej do sieci elektroenergetycznej.

Ustawa o normalizacji określa funkcję i zakres stosowania norm a także funkcje Polskiego Komitetu Normalizacyjnego oraz komitetów technicznych PKN. Poza tym, stanowi ona podstawę prawną do stosowania Polskich Norm oraz norm europejskich przyjętych w kraju.

Na mocy wymienionych praw różnego rodzaju instalacjom stawia się określone oczekiwania i wymagania wynikające m.in. z norm czy prawa budowlanego.

Wymagania stawiane instalacjom elektroenergetycznym:

- Dostarczenie energii elektrycznej do odbiorników o odpowiednich parametrach
- Przetwarzanie energii elektrycznej
- Rozdzielanie energii elektrycznej
- Ochrona przed porażeniem prądem elektrycznym
- Ochrona przed przepięciami łączeniowymi i atmosferycznymi
- Ochrona przed wybuchem i powstawaniem pożaru
- Ochrona przed oddziaływaniem pola elektromagnetycznego
- Ochrona przed emisją drgań i hałasu

2 ŚRODKI OCHRONY PRZECIWPORAŻENIOWEJ W INSTALACJACH ELEKTRYCZNYCH

Środki ochrony przeciwporażeniowej w instalacjach elektrycznych mają na celu zmniejszenie ryzyka porażenia prądem elektrycznym użytkownika korzystającego z urządzeń podłączonych do tej instalacji.

Ochronę przeciwporażeniową zapewnia się przez zastosowanie kombinacji środka ochrony podstawowej oraz niezależnego środka ochrony dodatkowej lub zastosowanie środka ochrony wzmocnionej. Ponadto, w sytuacjach zwiększonego zagrożenia porażeniem należy stosować środki uzupełniającej ochrony przeciwporażeniowej.

Ochrona podstawowa (przed dotykiem bezpośrednim) ma na celu zapewnienie, by części przewodzące będące pod napięciem w trakcie normalnej pracy urządzeń były niedostępne dla człowieka a części przewodzące dostępne nie znajdowały się pod wyczuwalnym napięciem względem ziemi. Środkami ochrony podstawowej są m.in.:

- stosowanie izolacji podstawowej zabezpieczającej przed dostępem do części czynnych,
- stosowanie obudów urządzeń osłaniających części czynne urządzeń,
- stosowanie ogrodzeń w określonej odległości od części czynnych urządzeń
- umieszczanie części czynnych urządzeń poza zasięgiem dłoni.

Ochrona dodatkowa (przy dotyku pośrednim) ma zapewnić ochronę przeciwporażeniową w przypadku uszkodzenia izolacji lub przy dotyku pośrednim, niezależnie od warunków zewnętrznych. Aby zapewnić ochronę dodatkową, stosuje się takie środki jak:

- Samoczynne wyłączenie zasilania np. przez zastosowanie wyłączników nadprądowych
- Stosowanie urządzeń o II klasie ochronności
- Separację elektryczną zasilania odbiorników
- Stosowanie nieuziemionych połączeń wyrównawczych
- Izolowanie stanowisk pracy

Ochrona uzupełniająca jest stosowana w sytuacjach zwiększonego zagrożenia porażeniem. Konieczność jej stosowania jest narzucana normą. Ten typ ochrony uzupełnia zarówno ochronę podstawową jak i dodatkową. Środkami ochrony uzupełniającej są:

- Wyłączniki różnicowoprądowe
- Miejscowe połączenia wyrównawcze ochronne

Ochrona wzmocniona jest ochroną zarówno przy dotyku pośrednim jak i bezpośrednim. Najczęściej realizuje się ją przez wykonanie instalacji elektrycznej o bardzo niskim napięciu, np. typu SELV, PELV lub FELV.

3 RODZAJE INSTALACJI ELEKTRYCZNYCH

Rodzaje instalacji elektrycznych wyróżnia się ze względu na różne konfiguracje odpowiednio zależności między punktem neutralnym układu sieci a ziemią oraz zależności między częściami przewodzącymi urządzeń a ziemią. Podstawowe rodzaje sieci opisuje się dwuliterowym kodem, przy czym instalacje TN dzieli się na pomniejsze kategorie zależne od układu przewodów neutralnego i ochronnego.

Podstawowymi rodzajami instalacji elektrycznych są:

- TN układ, w którym punkt neutralny sieci jest bezpośrednio połączony z ziemią, z kolei części przewodzące dostępne urządzeń połączone są z uziemionym punktem neutralnym.
 Układ TN jest układem najczęściej stosowanym w instalacjach elektrycznych w Polsce.
 Dodatkowy podział sieci TN wyróżnia się ze względu na konfigurację przewodów ochronnego i neutralnego:
 - o TN-C jest siecią z jednym przewodem neutralno-ochronnym PEN
 - TN-S jest siecią, w której przewody neutralny i ochronny są osobnymi przewodami N i PE
 - TN-C-S jest siecią, w której w różnych częściach układu istnieją różne konfiguracje przewodów neutralnego i ochronnego; np. w instalacji budynku mieszkalnego układem sieci jest TN-S, ale mimo tego jest ona podłączona do zewnętrznej sieci TN-C a punkt rozdziału przewodu PEN na przewody PE oraz N znajduje się w złączu lub rozdzielnicy głównej budynku
- TT układ, w którym punkt neutralny sieci jest bezpośrednio połączony z ziemią, a części
 przewodzące urządzeń podlegających ochronie są połączone z ziemią niezależnie od
 uziemienia punktu neutralnego sieci;
- IT układ, którego wszystkie części będące pod napięciem są izolowane od ziemi (punkt neutralny może być połączony z ziemią przez impedancję o dużej wartości), a dostępne części przewodzące urządzeń podlegających ochronie są połączone z ziemią niezależnie od punktu neutralnego sieci.

Przewody i kable elektroenergetyczne – zasady doboru

Algorytm doboru przewodów i kabli elektroenergetycznych ma na celu zapewnienie, by dobrane przewody miały jednocześnie możliwie minimalny przekrój – co jest uzasadnione względami ekonomicznymi – a także zapewniały prawidłową pracę wszystkich zabezpieczeń przeciwporażeniowych. Etapami doboru przekrojów przewodów są:

1. Obciążalność długotrwała

Dobiera się najmniejszy przekrój, którego obciążalność długotrwała I_Z jest większa od prądu obliczeniowego I_B

$$I_B \le I_Z = k_q k_t I_{dd}$$

Gdzie:

Dla układu 3-fazowego:

 $I_B = \frac{P}{U_{mf} cos \varphi}$ $I_B = \frac{P}{U_{mf} cos \varphi \sqrt{3}}$ Dla układu 1-fazowego:

Oraz: k_t – współczynnik temperaturowy; k_g – współczynnik ułożenia przewodów; I_{dd} – prąd dopuszczalnie długotrwały dla danego przewodu, podany przez producenta

2. Dopuszczalny spadek napięcia

Łączny spadek napięcia między złączami instalacji i urządzeniami odbiorczymi nie może przekroczyć 4% napięcia znamionowego:

$$\Delta U_{obl} \leq \Delta U_{don}$$

Gdzie:

 ΔU_{obl} – obliczony spadek napięcia;

 ΔU_{dop} – dopuszczalny spadek napięcia ($\pm 10\%$ dla urządzeń elektrycznych, $\pm 5\%$ dla oświetlenia)

3. Wytrzymałość mechaniczna

Przekrój przewodów dobrany wg. Innych kryteriów nie może być mniejszy niż określony w przepisach przekrój minimalny ze względu na wytrzymałość mechaniczną

$$S \geq S_{min.mech.}$$

4. Dobór zabezpieczeń

Charakterystyka dobranego wyłącznika nie może pokrywać się z charakterystyką urządzenia

$$I_n = (1,05 \div 1,1)I_B$$

$$I_n \ge I_{silnika}$$

$$I_n \ge \frac{kr \cdot I_{msilnika}}{(3)\alpha}$$

Gdzie: kr – krotność prądu rozruchowego silnika; α – współczynnik rozruchu; (3) – uwzględniane gdy stosowany jest rozruch Y/Δ .

5. Wytrzymałość przeciążeniowa

Obciążalność długotrwała przewodu I_z powinna być większa niż prąd znamionowy lub nastawczy I_{nt} stanowiący zabezpieczenie przeciążeniowe, który powinien być większy niż prąd obliczeniowy I_B

$$I_R \leq I_{nt} \leq I_Z$$

Prąd przeciążeniowy o wartości większej niż $1,45I_Z$ powinien wywołać zadziałanie nadprądowego zabezpieczenia obwodu

$$I_2 \le 1,45I_Z$$

Gdzie: I_2 – najmniejszy prąd niezawodnie powodujący zadziałanie zabezpieczenia

6. Wytrzymałość zwarciowa

Urządzenia zabezpieczające przed cieplnymi skutkami zwarcia powinny powodować przerwanie obwodu zwarciowego zanim wystąpi niebezpieczeństwo uszkodzeń cieplnych i mechanicznych.

$$t \le t_k = \left(\frac{kS}{I_k^{"}}\right)^2$$

Gdzie: S – przekrój przewodu; k – współczynnik z tablic; $I_k^{\prime\prime}$ - prąd zwarciowy początkowy

7. Ochrona przeciwporażeniowa

Przekroje przewodów powinny być dobrane tak, aby w warunkach zakłóceniowych nastąpiło zadziałanie urządzenia odłączającego zasilanie w czasie nie dłuższym niż podany w normie

$$I_k \ge I_a$$
$$I_a Z_s \le U_0$$

Gdzie I_k – spodziewany prąd zwarciowy; I_a – prąd zapewniający samoczynne zadziałanie zabezpieczenia.

Czas zadziałania jest zależny od napięcia pracy sieci i określany w normie. Na ogół przyjmuje się którąś z wartości: 0,2s / 0,4s / 0,5s

8. Selektywność działania zabezpieczeń

Charakterystyki rozpatrywanych zabezpieczeń nie mogą mieć punktów wspólnych.

9. Wyższe harmoniczne

Wyższe harmoniczne (do 40 włącznie) nie powinny przekraczać 8% podstawowej harmonicznej.