UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Aprimoramento da etapa de casamento de uma técnica de rastreamento baseado em arestas

Proposta de Trabalho de Graduação

Aluno: Mailson Daniel Lira Menezes <mdlm@cin.ufpr.br>

Orientadora: Veronica Teichrieb <vt@cin.ufpe.br>

Co-orientador: Francisco Paulo Magalhães Simões <fpms@cin.ufpe.br>

Recife, 25 de Janeiro de 2013

Contexto

Nas áreas de interação humano-computador e visão computacional a realidade aumentada (RA) tem sido bastante estudada nos últimos anos. Através dela pode-se inserir elementos virtuais em um ambiente real, promovendo uma maior imersão do usuário [1].

Das três áreas - visualização, interação e rastreamento - em que consiste a realidade aumentada, a que será discutida nesse trabalho é a última. Rastrear significa entender a cena (extraindo dados dela utilizando várias técnicas de visão computacional) a fim de que seja possível posicionar corretamente a informação virtual em tempo real.

A partir de uma captura de vídeo pode-se inserir um modelo 3D associado à cena sendo observada que acompanha o movimento da câmera. A técnica consiste em buscar uma aproximação do posicionamento da câmera real a fim de que o modelo 3D seja projetado corretamente. Geralmente são usados marcadores na cena para realizar este rastreamento [2], mas existem outras técnicas em que são utilizados objetos existentes na própria cena.

Por outro lado, é possível obter bons resultados utilizando realidade aumentada sem marcadores (em inglês *Markerless Augmented Reality*, ou MAR) utilizando elementos já presentes na cena [3]. Um dos elementos que podem ser utilizados são as arestas do próprio objeto a ser rastreado. Com elas, pode-se identificar que houve um movimento na câmera e de que forma ele foi feito. A vantagem de MAR é que não é preciso utilizar elementos intrusivos na cena, pois o próprio objeto rastreado pode servir como guia.

Um dos passos do rastreamento baseado em aresta é extrair as bordas da imagem e, a partir delas, processar as arestas. Após a extração dar bordas é preciso casá-las com as arestas do modelo real. Algo que se pode admitir é que a aresta do modelo correspondente à borda extraída provavelmente é aquela que está mais perto dela e com uma inclinação semelhante, já que a diferença entre o *frame* atual e o anterior é, geralmente, pequena. O que se faz então é achar uma aresta correspondente no modelo e reposicionar a câmera a fim de que todas as arestas do modelo façam (no caso ideal) um *match* perfeito com as arestas da imagem no *frame* [4].

No entanto, nem sempre uma única borda extraída casa com uma determinada aresta do modelo. Podem existir várias hipóteses de arestas da imagem capturada e isso é agravado caso existam ruídos na imagem como elementos adicionais na cena, ruídos da câmera ou até a sombra do próprio objeto.

Para melhorar este resultado será utilizada neste trabalho uma técnica que busca melhorar o casamento entre as arestas extraídas da imagem com as arestas do modelo [5]. Essa técnica, infelizmente, é relativamente lenta não sendo possível obter resultados em tempo real. Desta forma foi escolhido implementar a técnica em GPU, utilizando a linguagem CUDA, a fim de

aproveitar a maior capacidade em realizar operações em paralelo desta tecnologia [6] e, com isso, obter resultados mais adequados para aplicação em realidade aumentada.

Objetivos

O objetivo deste trabalho consiste em implementar em GPU a técnica proposta em [5] a fim de melhorar a robustez do rastreamento das arestas. O projeto será desenvolvido utilizando a linguagem CUDA a fim de aproveitar o poder do paralelismo das placas gráficas atuais e alcançar um desempenho de tempo real na execução da técnica.

Após a implementação, será realizada uma análise dos resultados verificando sua adequação para aplicação em realidade aumentada.

Cronograma

A tabela abaixo apresenta as atividades a serem realizadas durante o trabalho de graduação, bem como os prazos para finalização das mesmas.

Atividade	Dezembro	Janeiro	Fevereiro	Março	Abril
Levantamento e estudo do material bibliográfico					
Levantamento e estudo dos desafios a serem abordados					
Implementação da técnica de rastreamento					
Análise dos resultados					
Escrita da monografia					
Elaboração da apresentação oral					
Defesa do TG					

Referências

- [1] Azuma, R. T. 1997. A Survey of Augmented Reality. *Presence: Teleoperators and Virtual Environments*, vol. 6, no. 4, p. 355–385, MIT Press, Cambridge.
- [2] Roberto, R. A. 2012. Desenvolvimento de sistema de realidade aumentada projetiva com aplicação em educação. Universidade Federal de Pernambuco. Dissertação de mestrado. p. 11-15.
- [3] Teichrieb, V. et al. 2007. A Survey of Online Monocular Markerless Augmented Reality. *International Journal of Modeling and Simulation for the Petroleum Industry*, vol. 1, no. 1, p. 1–7.
- [4] Simões, F. P. M. 2008. Realidade aumentada sem marcadores baseada em arestas, um estudo de caso. Universidade Federal de Pernambuco. Trabalho de Graduação
- [5] Teulière, C.; Marchand, E.; Eck, L.; "Using multiple hypothesis in model-based tracking," Robotics and Automation (ICRA), 2010 IEEE International Conference on , vol., no., pp.4559-4565, 3-7 May 2010
- [6] NVIDIA CUDA site. Disponível em: http://www.nvidia.com/object/cuda_home_new.html. Acessado em: 25 de Janeiro de 2013.

 Mailson Daniel Lira Menezes (aluno)
 Veronica Teichrieb (orientadora)