

- ▶前言
- ▶什么时候做性能优化
- ▶QPS相关公式推导
- ➤Web开发性能优化案例
- ▶优化效果
- ▶总结

80后,屌丝程序员 来自阿里巴巴杭州 爱好:自行车,摩托车

分享者

什么时候做性能优化

魏文王问扁鹊

性能跟哪些指标相关呢?

Web开发常见指标推演

公式一: RT = CPU Time + Wait Time

公式二: 单线程的QPS = 1000ms/RT

公式三: 最佳线程数 = ((wait time + cpu time)/cpu time) * cpu cores * CPU利用率 = RT/cpu time * cpu cores * CPU利用率

QPS相关推导二

那么如何降低 <u>CPU Time</u>呢

www.top100summit.com

CPU利用率低的几种情况

- ▶ IO能力
 - 网络IO
 - 磁盘IO
 - FD
- ▶ 内存不足
- > 数据库连接池
- ➤ BIO的RPC要考虑RPC的连接池

○P1 冷冷 CPU Time的降低取决于数据结 构和算法,还有架构

- >数据结构降低CPU Time的例子
 - List->Hash
 - Contains和Get
 - 均摊

- > 架构改进降低CPU Time的例子
 - 请看案例

影响性能的架构案例

一般网站技术架构

今天我们的案例在灰色部分

反向代理及Web缓存

软 用件 应 业务应用集

OpenAPI平台

统计系统

平 务台 服 分布式消息队列

分布式缓存

等等

分布式任务处理

权限系统

RPC框架

设基 施础 分布式计算框架

分布式数据存储

分布式文件存储

虚拟云架构

施础

监

控

系

统

TOP 100 CASE STUDIES OF THE YEAR

www.top100summit.com

日志数据的采集

一个web页面打开涉及到的各

工工士

全球软件案例研究峰会

Web Cache(varnish) 缓存(with ESI)

埋点的实现方 法和sitemesh 的实现类似 Proxy(nginx) 压缩 埋点 代理

Tomcat User-Agent逻辑 Locale逻辑

这套模型的适用场景

Web Cache + HTTP Vary:useragent带来的问题

方案一

为每次请求都 做压缩操作

软 件 案 例 研 究

但是这个压缩在我们场景里就

具CDII Timo 最大的上中老

压缩级别从6到3

6->3	QPS	RT	Band Width
92KB	1 51%	J 32%	13%
138KB	1 53%	J 37%	12%
182KB	1 60%	4 5%	13%
248KB	1 65%	 39%	16%
295KB	1 61%	4 38%	16%

压缩级别从6到1

6->1	QPS	RT	Band Width
92KB	1 60%	1 37%	19%
138KB	1 63%	1 40%	17%
182KB	1 70%	4 5%	1 20%
248KB	1 68%	140%	1 25%
295KB	1 70%	1 42%	1 25%

降低压缩级别ROI分析

成本分析

原始方案

降低压缩级别方案

■机器成本 ■ 帯宽成本

用户体验分析

可能会多出RTT,在国际环境下,可能会导致客户端RT增加

那我们能把压缩去掉吗?

TOP1冷冷 方案二:动静分离,分段预压缩

全球软件案例研究峰会

TOP1 * HTTP RFC规定,HTTP server返

球 软 件 案

例研究	二 古
GZIP H	ead
GZIP D	Pata
GZIP ⁻	Tail
GZIP H	ead
GZIP D	Pata
GZIP ⁻	Tail
GZIP H	ead
GZIP D	Pata
GZIP ⁻	Tail

该是一个压缩包 缩后的数据, 可被缓存

> HTML片段B压 缩后的数据, 这个片段是动 态数据

HTML片段C压 缩后的数据, 可被缓存

TOP1 一 所以返回的压缩包应该是一个

全球软件案例_研究峰会

GZIP Head

GZIP Data

GZIP Data

GZIP Data

GZIP Tail

整体 HTML片段A压 缩后的数据, 可被缓存

HTML片段B压 缩后的数据, 这个片段是动 态数据

> HTML片段C压 缩后的数据, 可被缓存

优化后效果

全 球 软 件 案 例 研 究 峰 会

原始页面大小	压缩后大小	优化前QPS	优化后QPS	优化前RT	优化后RT
92KB	17KB	164	2024	60.7ms	4.9ms
138KB	8.7KB	143	1859	69.8ms	3.3ms
182KB	11.4KB	121	2083	82.3ms	4.8ms
248KB	32KB	77	1977	129.6ms	5.0ms
295KB	34KB	70	1722	141.4ms	5.8ms

案例 RIO分析

- 是十几个manday的人力 投入
- 200台机器的需求下降到 20台机器
- 回报率是相当高的

TOP100Summit案例研究峰会 官网: www.top100summit.com

TOP1

附录: 根据公式和测试数据推

优化前QPS	优化后QPS	优化前RT	优化后RT	优化前CPU Time	优化后CPU Time
164	2024	60.7ms	4.9ms	12.2ms	0.988ms
143	1859	69.8ms	3.3ms	14ms	1.1ms
121	2083	82.3ms	4.8ms	16.5ms	0.96ms
77	1977	129.6ms	5.0ms	26ms	1.0ms
70	1722	141.4ms	5.8ms	28.6ms	1.2ms

