LE8: Axisymmetric shell under pressure

LE8: Axisymmetric shell under pressure

This problem provides evidence that Abaqus can reproduce the result from the benchmark defined by NAFEMS and cited as the reference solution.

This page discusses:

- Elements tested
- Problem description
- Reference solution
- Results and discussion
- Input files

Products Abaqus/Standard Abaqus/Explicit

Elements tested

SAX1

SAX2

Problem description

Model:

Axisymmetric shell under pressure.

Mesh:

A coarse and a fine mesh are tested.

Material:

Linear elastic, Young's modulus = 210 GPa, Poisson's ratio = 0.3, density = 7800 kg/m^3 .

Boundary conditions:

uz = 0 at point A. $ur = \phi = 0$ at point F.

Loading:

Uniform internal pressure of 1.0 MPa. In the explicit dynamic analysis the loading is applied such that a quasi-static solution is obtained.

Reference solution

This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test LE8 from NAFEMS Publication TNSB, Rev. 3, "The Standard NAFEMS Benchmarks," October 1990.

Target solution: Hoop stress, $\sigma\theta\theta$ = 94.5 MPa on the outer surface at point D.

Results and discussion

The results are shown in the following table. The values enclosed in parentheses are percentage differences from the target solution.

Element σθθ, Coarse Mesh σθθ, Fine Mesh SAX1 (Abaqus/Explicit) 99.1 MPa (+5%) 89.3 MPa (-6%) SAX2 (Abaqus/Standard) 90.12 MPa (-4.7%) 90.41 MPa (-4.4%)

Input files

Coarse mesh tests:

le8 c.inp

SAX1 elements.

nle8xa3c.inp

SAX2 elements.

Fine mesh tests:

<u>le8_f.inp</u>

SAX1 elements.

nle8xa3f.inp

SAX2 elements.