CSC373 Worksheet 0 Solution

July 19, 2020

1. Recurrence: T(n) = T(n-1) + n

Guess: $T(n) = \mathcal{O}(n^2)$.

I need to show $T(n) \leq c \cdot n^2$.

$$T(n) \le c(n-1)^2 + n \tag{1}$$

$$= c(n^2 - 2n + 1) + n (2)$$

$$=cn^2 - c2n + c + n \tag{3}$$

$$\leq cn^2 - c2n + cn + n \tag{4}$$

$$=cn^2 - cn + n \tag{5}$$

$$\leq cn^2 - cn + cn \tag{6}$$

$$=cn^2\tag{7}$$

$\underline{\text{Notes:}}$

- Substitution method
 - Solves recurrences
 - * Recurrence characters the running time of divide-and-conquer algorithm
 - How it works:
 - 1. Make a guess for the solution
 - 2. Use mathematical induction to prove the guess is correct or incorrect.

Example:

Recurrence: $T(n) = 2T(\lfloor n/2 \rfloor) + n$

Guess: $T(n) = \mathcal{O}(n \log n)$,

We need to show $T(n) \le cn \lg n$.

- 1. Assume the bound holds for all positive m < n, in particular $m = \lfloor n/2 \rfloor$
- 2. Find the upper bound of T(m)

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$

3. Show $T(n) = 2T(\lfloor n/2 \rfloor) + n$ leads to $T(n) \le cn \lg n$

$$T(n) \le 2(c|n/2|\lg(|n/2|)) + n$$
 (8)

$$\leq cn\lg(n/2) + n \tag{9}$$

$$= cn\lg(n) - cn\lg 2 + n \tag{10}$$

$$= cn \lg(n) - cn + n \tag{11}$$

$$\leq cn\lg(n) - cn + cn \tag{12}$$

$$\leq cn \lg(n)$$
(13)

4. Show that the boundary holds using mathematical induction

Doesn't have information in detail. Skipping this for now.

- Making good guess
 - * Three suggestions
 - 1. Using recursion tree
 - 2. Through practice
 - 3. prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty
- 2. Recurrence: $T(n) = T(\lceil n/2 \rceil) + 1$

Guess:
$$T(n) = \mathcal{O}(\lg n)$$
.

I need to show $T(n) \leq c \cdot \lg n$.

$$T(n) \le c \lg(\lceil n/2 \rceil) + 1 \tag{1}$$

$$\leq c\lg(n/2) + 1

\tag{2}$$

$$=c(\lg n - \lg 2) + 1 \tag{3}$$

$$=c(\lg n-1)+1\tag{4}$$

$$=c\lg n - c + 1\tag{5}$$

$$\leq c \lg n - c + c \tag{6}$$

Correct Solution:

Recurrence: $T(n) = T(\lceil n/2 \rceil) + 1$

Guess: $T(n) = \mathcal{O}(\lg n)$.

I need to show $T(n) \le c \cdot \lg n$.

$$T(n) \le c \lg(\lceil n/2 \rceil) + 1 \tag{1}$$

$$\leq c\lg(n/2) + 1

\tag{2}$$

$$=c(\lg n - \lg 2) + 1 \tag{3}$$

$$=c(\lg n-1)+1\tag{4}$$

$$=c\lg n - c + 1\tag{5}$$

$$\leq c \lg n - c + c \tag{6}$$

The solution holds for $c \geq 1$.