(12) International application published under the patent cooperation treaty (PCT)

(19) World Intellectual Property Organization

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53107

> <u>8</u> B41M 5/00 (51) International Patent Classification7:

PCT/US01/02003 (31) International Application Number:

(22) International Filing Date: 19 January 2001 (19.01.2001)

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CY, CR, CX, CX, CY, CX, CW, DE, DK, DM, DZ, EB, ES, FI, GB, GD, GB, GB, GM, HR, HU, DL, LI, HI, IS, H, KB, KR, KR, KZ, LC, LK, LR, LS, LL, LI, LY, MA, MD, MG, MK, MN, MW, MX, MZ, MO, KZ, PT, FY, RO, RU, SD, SE, SG, SI, SK, SI, TI, TM, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW,

English (15) Filing Language:

(26) Publication Language:

English

Priority Data: 9

S S Applicant: KIMBERLY-CLARK WORLDWIDK, INC. [US/US]; 401 North Lake Street, Neenth, WI 54956 19 January 2000 (19.01.2000) 19 January 2001 (19.01.2001) 60/177,074 E

S S

Idvostorn: BRANHAM, Kelly, Denn; 3337 Rae Place, Lawrenceville, GA 30044 (US). SNOWDEN, Bue, Scott; 9401 Roberts Drive, Apartment 32G, Atlanta, GA 30350 Ê

Aigent: NELSON MULLINS RILEY & SCARBOR-OUGH; 1330 LAdy Street, Keenan Building, Third Floor, Columbia, SC 29201 (US).

without international search report and to be republished upon receipt of that report Published:

patent (AT, BB, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BP, B1, CF, CG, C1, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Designated States fregional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL., SZ, TZ, UG, ZW), Burasian patent (AM, AZ, BY, KO, KZ, MD, RU, TJ, TM), European

two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette ģ

5

(74) Aigent:

WO 01/53107

PCT/US01/02003

WATERFAST INK RECEPTIVE COATINGS FOR INK JET PRINTING, METHODS OF COATING SUBSTRATES UTILIZING SAID COATINGS, AND MATERIALS COATED WITH

SAID COATINGS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to and claims priority from United States Provisional Patent Application Serial No. 60/177,074, filed January 19, 2000

FIELD OF THE INVENTION

9

let inks and form images exhibiting superior quality when compared to the present invention relates to cationically modified coatings which relates to methods of coating various printable substrates utilizing said film and other substrates which are receptive to common, aqueous ink The present invention relates to coating formulations for paper, uncoated paper, film and other printable substrates. More specifically, The present invention also coatings as well as materials coated with said coatings. render the printed images waterfast.

BACKGROUND OF THE INVENTION

8

contact printing method in which an electronic signal controls and directs droplets or a stream of ink that can be deposited on a wide high quality, multi-colored prints. In fact, ink jet print methodology is of computer generated images consisting of graphics and fonts in both Ink jet printing is a non-impact and nonejection, or oscillation, and onto the surface of a material/media. Ink jet printing is extremely versatile in terms of the variety of substrate material that can be treated, as well as the print quality and the speed becoming the print method of choice for producing colored hard copy variety of substrates. Current ink let printing technology involves forcing the ink drops through small nozzles by piezoelectric pressure, thermal important printing process because of its ability to produce economical, The ink jet method of printing is a rapidly growing, narrow and wide format.

25

3

(54) Title: WATERPAST INK RECEPTIVE COATHOES FOR INK LET PRINTING, METHODS OF COATHOG SUBSTRATES OF UTILIZING SAID COATHOGS. AND MATERIALS COATED WITH SAID COATHOGS.

(57) Abstract: Media coatings for use on abstrates for ink jet printing include a cationically modified clay, a cationically modified allower. Alternatively, the media coatings also include additional additives. The ratio of cationically modified clay to cationically modified silica wartes in the coating commulation from about 18 to about 99 &. Desirably, the ratio of the cationically modified clay or cationically modified silica wates from about 13 % to about 39 %. The ratio of the total cationically modified silica water from about 23 % to about 35 %. The ratio of the total cationically modified clay and cationically modified.

7¥

clay and cationically modified silica to binder varies from about 65 % to about 75 %.

BEST AVAILABLE COPY

RUSTICITION - CWC 0153107A2 1 >

WO 01/53107

PCT/US01/02003

ν,

of operation that can be achieved. In addition, ink jet printing is digitally controllable.

For these reasons, ink jet printing methodology has been widely adopted for industrial marking and labeling. In addition, ink jet printing methodology has also found widespread use in architectural and engineering design applications, medical imaging, office printing (of both text and graphics), geographical imaging systems (e.g., for seismic data analysis and mapping), signage, in display graphics (e.g., photographic reproduction, business and courtroom graphics, graphic arts), and the like. Finally, ink jet printing has now also been used to create an image on a variety of textile substrates.

Both dyes and pigments have been used as colorants for such ink jet ink formulations. However, such materials do not always adhere well to the substrates to which the ink is applied. For example, dyes may dissolve upon a printed substrate's contact with water. Thus, images applied employing ink jet printing methodology may tend to run or smear upon repeated contact, or may be actually removed from the printed surface if exposed to substantial quantities of aqueous media (e.g., if an ink jet printed article is exposed to water or comes in contact with water through other means). There is therefore a need in the art for coatings which enhance the waterfastness capabilities of various substrates, in particular when aqueous based inks are to be employed on said substrates. It is to such need that the present invention is directed as the coatings of the present invention have proven particularly effective in improving waterfastness.

귱

5

SUMMARY OF THE INVENTION

25

In accordance with the present invention, media coatings for use on substrates for ink jet printing include a cationically modified clay, a cationically modified silica and a binder. Alternatively, the media coatings also include additional additives. In particular, in one embodiment of the invention, the media coatings also include a surfactant. The ratio of cationically modified clay to cationically

ဗ

30

WO 01/53107

PCT/US01/02003

raries in the coating formulation from a

modified silica varies in the coating formulation from about 1 % to about 99%. Desirably, the ratio of the cationically modified clay to cationically modified silica varies from about 10 % to about 50 %. More desirably, the ratio of cationically modified clay to cationically modified silica varies from about 25 % to about 35 %. The ratio of the total cationically modified clay and cationically modified silica to binder varies from about 20 % to about 80 %. Desirably, the ratio of the total cationically modified clay and cationically modified silica to binder varies from about 65% to about 75%.

These and other features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there are waterfast Ink receptive coatings for ink jet printing including a cationically modified clay and a cationically modified silica. These formulations use a blend of cationic clay and cationic silica in combination with binder(s), and optionally surfactants and other additives, to deliver superior image quality and waterfastness.

귫

The coating formulations may be used with paper, film, scrim and other printable substrates which are receptive to common, aqueous ink jet inks and form images exhibiting superior quality to uncoated paper, film or other substrates or to substrates which have merely been coated with either cationically modified clay, or cationically modified silica. Preferred substrates for use with the coating include films known as synthetic papers such as those available from the Oji Yuka Synthetic Paper Corporation and marketed by Kimberly-Clark under the designation Kimdura®. Such substrates are preferred for purposes of waterfastness, since they do not appear to swell or cockle. In particular, Kimdura® synthetic paper having a thickness of 150 microns may be easily used. Other Kimdura® materials such as those

25

Other films which may be coated with the coating of the present invention include polyester and vinyl films. Other substrates which may be coated with the coating of the present invention include latex saturated paper substrates. Further, such coatings may also be applied to nonwoven substrates, such as those made from polyolefins as well as woven substrates.

Printed images on the ink jet media coating are rendered waterfast, resisting deterioration of the image upon repeated exposure to water. This quality may be developed within hours or minutes from the completion of printing. Exposure to water may be accomplished by placing the printed sample under dripping or running water, or even submersion in water for a limited period of time.

9

ξ.

As previously stated, the coating formulation in the present invention utilizes a combination of both a cationically modified clay and a cationically modified silica. An example of such a cationically modified clay may be obtained from ECC International of Atlanta, Georgia under the designation Astra-JetTM. The cationically modified clay consists of an aqueous dispersion of Kaolin and a polyquartenary amine. While, ECCI markets a line of Astra-JetTM clays, the original clay composition is desirable for the purpose of the coating of the present invention.

ន

The cationically modified silica may consist of an aqueous silica dispersion including a cationic polymer similar to that described above. Alternatively, the cationic silica may consist of an aqueous amorphous silica stabilized with alumina and other additives, such as the cationic silica gel dispersion sold by Grace Davison of Columbia, Maryland under the designation Cationic Sylojet P612, with a cationic surface

22

ജ

modifier. An unmodified silica is available from Grace Davison under the designation Sylojet P612.

The ratio of cationically modified clay to cationically modified silica may vary in the coating formulation from about 1 % up to about 99 % by weight. Desirably, the ratio of the cationically modified clay to cationically modified silica may vary from about 10 % to about 50 % by weight. More desirably, the ratio of cationically modified clay to cationically modified silica may vary from about 25 % up to 35 % by weight.

to both bind the clay and silica together (pigment particles), and also to of any film forming, water insoluble polymer, providing the polymer is or the formulation include, but are not limited to nonionic latexes are suitable as binders include styrenics such as styrene rubbers cationically modified silica, to the coating binder may vary from about The formulation further includes a binder. Such a binder serves The binder may be comprised compatible with the cationic clay and silica. Binders which are suitable acrylates, and acrylate-vinyl acetate. Other polymer materials which anionic latexes would be unacceptable binders however, as they would sigment, that is the combination of cationically modified clay and 20 % up to about 80 %. Desirably, the ratio of the total pigment to the composed of polymers of vinyl acetate, ethylene vinyl acetate, styrene acrylonitrile The ratio of the total -urther, mildly anionic latexes may also be used as a binder. Strongly Cationic latexes may also be employed as a suitable binder. soating binder may vary from about 65 % to about 75 %. SBR), styrene maleic anhydride (SMA); and coagulate with the other cationic materials. oind the coating to a media substrate. (SAN)

20

22

5

9

In addition to the clay, silica and binder, optional additives may be added to improve the performance of the coatings. For instance, UV absorbers/light stabilizers may be added to improve light fastness. Additionally, surfactants or wetting agents may be added as well. Desirably, if such surfactants are utilized they are nonlonic, cationic or

be used as well. Other optional additives include flow modifiers, and Union Carbide. Further, a leveling agent such as an aliphatic diol may \mathcal{A}^{ijl} optical whiteners and/or brighteners. Examples include Triton X100 and Tergitol both from

in aqueous dispersions. materials is approximately 12 microns. The clay and silica are present coating formulation, without a cationically modified silica, is described media substrates is expressed in Table 1. An example of a control coating formulation of the present invention, for use on a variety of stated otherwise, all percents are percents by weight. An example of a any way either the spirit or the scope of the present invention. Unless follow. Such examples, however, are not to be construed as limiting in The present invention is further described by the examples which The particle size of the following Sylojet P612 silica

5

5

Example of Cationically Modified Clay and Cationically Modified Silica Coating of the Present Invention

(Sample identified as Coating "A" for testing)

-	435.6			290.4	101.1		Total
							540 、
	68.4	8.6	24:7	45.6	25.0	54.8	Airflex
	0.9	0.21	0.6	9.0	0.6	100.0	Q2 5211
			٠.				Clay
-	95.9	7.7	22.3	63.9	22.5	35.2	Astrajet
							Silica ^a
	270.4	18.2	52.4	180.3	53.0	29.4	Cationic
	0.0	0.0	0.0	0.0	0.0		Water
	x1.5		-				
	Batch			Wet	Dry		
	Wet	Wt%wet	Wt%dry	Parts	Parts	%solids	Ingred.
•							

Notes:

WO 01/53107

PCT/US01/02003

a. Cationic Sylojet P612 Silica is cationically modified silica

for the sample was 0.75:1, and the percent total solids (%TS) was binder available from Air Products. The pigment to binder ratio (P/B) Corning. The Airflex 540 is an ethylene vinyl acetate (EVA) latex an ethoxylated polysiloxane surfactant and was obtained from Dow 34.8%, by weight. For the purposes of the coating described above, the Q2 5211 is

6

Example of Cationically Modified Clay and Unmodified Silica Coating of the Present Invention

(Sample identified as Coating "C" for testing)

Total	Airflex 540	Q2 5211	Clay	Astrajet	Silica	P612	Sylojet	Water		-:	Ingred.	
	54.8	100.0		35.2			26.7	_			%solids	
101.1	25.0	0.6		22.5			53.0	0.0		Dry	Parts	
308.6	45.6	0.6	,	63.9			198.5	0.0		Wet	Parts	
	24.7	0.6		22.3			52.4	0.0			Wt%dry	
	8.1	0.19		7.3			17.2	0.0			Wt%wet	
463.0	68.4	0.9		95.9			297.8	0.0	<u>x1.5</u>	Batch	Wet	
	101.1 308.6	40 54.8 25.0 45.6 24.7 8.1 101.1 308.6	100.0 0.6 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6	100.0 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6	35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6	35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 24.7 8.1	35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6	26.7 53.0 198.5 52.4 17.2 35.2 22.5 63.9 22.3 7.3 100.0 0.8 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 24.7 8.1	0.0 0.0 0.0 0.0 26.7 53.0 198.5 52.4 17.2 35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 24.7 8.1	26.7 53.0 198.5 52.4 17.2 35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 2.6 0.6 0.6	Dry Wet 0.0 0.0 0.0 0.0 26.7 53.0 198.5 52.4 17.2 35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 24.7 8.1	Msolids Parts Parts Wt%dry Wt%wet Dry Wet Wet Wt%wet Dry Wet 0.0 0.0 0.0 26.7 53.0 198.5 52.4 17.2 26.7 53.0 198.5 52.4 17.2 35.2 22.5 63.9 22.3 7.3 35.2 22.5 63.9 22.3 7.3 100.0 0.6 0.6 0.6 0.19 54.8 25.0 45.6 24.7 8.1 101.1 308.6 24.7 8.1

a. Sylojet P612 Silica is non-cationically modified silica.

the percent total solids (%TS) was 32.8%, by weight. The pigment to binder ratio (P/B) for the sample was 0.75:1, and

Drawdown

components were combined in the order shown using a plastic beaker Generally, for each of the coatings of the examples, the

VO 01/53107

The specific drawdown procedure employed is described as follows. A 10 x 12 inch sheet of paper or film (e.g. Kimdura® FPG 150) was placed on a flat surface. A wire-wound (Meyer) rod was placed on top of the sheet and 2kg weights were placed on the ends of the rod to prevent slipping. The coating was poured on the substrate such that it contacted the rod and formed a narrow pool the width of the substrate. The substrate was drawn under the rod and the coating was spread evenly along the length of the sheet. It should be recognized that different coat weights may be obtained by utilizing rods wound with different size wires.

5

5

Alternatively coatings may be applied to substrates via other coating methods known to one of ordinary skill in the art, such as the Air Knife method or the Slot Dye method. Other coating methods include the gravure roll, and reverse roll coating methods. Coatings may be applied at levels from about 5 to about 45 grams per square meter (gsm). Desirably, the coatings are applied at between about 15 to about 35 gsm. The samples were then placed in a conventional forced air oven at approximately 75° C for about 3-5 minutes to allow to dry. The samples were stored in ambient room conditions (20-25° C) overnight prior to printing.

25

20

The dried samples were then printed with the indicated printers and settings as shown in Tables 3-5 which follow.

Printing

Color blocks of the colors Cyan (C), Magenta (M), Yellow (Y), Black (K), Red (R), Green (G), and Blue (B) were printed from Microsoft @ MS Paint block pattern in a 2 x 5 inch pattern on the Kimdura@ sheets. The color blocks were printed with inks provided with each printer. A white (unprinted) block was also included in the 2 x 5 inch pattern. The printers used included a Hewlett-Packard 722C on HP Premium lnk Jet Paper/Best Settings, an Epson 850 on Photo Quality lnk Jet Paper/720dpi/Automatic Settings and a Canon 4200 printer on Hi Resolution Paper/Standard/No Color Matching Settings. Following printing, samples were dried overnight under ambient conditions before further testing. Following printing and drying, the samples were cut out into their respective 2 x 5 inch block patterns.

9

oak Testing

15

The cut out 2 x 5 inch samples were placed in a 2 liter plastic beaker containing 2 liters delonized water at 20°C for 24 hours. Samples were clamped to the side of the container such that the entire test pattern remained submerged for the duration of the test. After this period had elapsed, samples were removed and placed flat on a KimWipes® wiper. KimWipes are wipers available from the Kimberly-Clark Corporation. The surfaces of the samples were gently dried with a KimWipe® wiper. The samples were allowed to dry completely before spectral measurements were taken (minimally 2-3 hours). An X-Rite® Model 938 Spectrodensitometer was used to perform L*a*b* spectral measurements, the CIE LAB measurement being one known to one of ordinary skill in the art. The X-Rite spectrodensitometer was obtained from the X-Rite corporation of Grandville, Michigan. In performing the measurements, the illuminant type was a Dsa and the

5

The degree of optical lightening resulting from exposure to water was measured quantitatively using L*a*b* values. Delta E* is calculated in accordance with the following equation: $\Delta E^* = SQRT [(L^* standard - L^* sample)^2 + (a^* standard - a^* sample)^2 + (b^* standard - b^* sample)^2],$

where the standard is representative of the value for the sample that has not been soaked.

The higher the Delta E* (hereinafter ΔΕ*), the greater the change in color intensity. A large increase in delta E* would typically be indicative of fading, washout or bleed of dye. In running the L*a*b* test on the samples, controls of each coating were used as a basis for comparison. The control samples (STD) were just printed with the respective formulations, as opposed to being printed and soaked. More extensive bleeding of the dyes was observed when the unmodified silica was utilized in the tested samples, i.e. Formulation "C".

10

5

Print Results for Hewlett Packard 722 Printer

Sample #	Coating A	Printer HP 722	Print Mode HP Prem.l.J Paper /Best		C B X Color
- 1	>	HP /22	HP Prem.IJ Paper /Best		0.19
				۶	2.81
				В	4.37
				C	8.36
	,			ດ	16.11
,			-	~	14.31
				R ·	2.9
				3	0.74
2	ဂ	HP 722	HP Prem. IJ	X	0.23
			Paper /Best		
				W	7.40

WO 01/53107

PCT/US01/02003

__

B 22.82 C 11.72 G 12.78 Y 24.71 R 6.49 M 6.58 11.59

Print Results for Canon 4200 Printer

Table 4

	0.39 3.82 2.63 2.63 5.58	Z ≺ O O D €	-			
	5.5g 3.3g	≺ o ∩ æ ≤	-		_	
	0.30 2.63 3.30	ତ ପ ଅ ≶				
	0.3g 3.8z 2.6;	O B 8				
	3.83	₩ ≶				
	0.38	8				
_			Standard	4200		
٦	1.18	^	Hi. Res. Paper/	Canon	ဂ	
9. 2.65	3.09	X				
03	2.36	R				
5	3.25	7			٠	
7	5.37	9				
3	1.33	C				
	2.41	В				
3	0.43	٧			•	
•			Standard	4200		
4	2.94	~	Hi. Res. Paper/	Canon	>	ω.
	soak					
24 hr .∆E*	24					#
Avg.	ΔE*	Color	Print Mode	Printer	Coating	Sample

Table 5

4

Print Results for Epson 850 Printer

Avg.	ΔE*					,					2.97								-		8.53
ΔE* 24 Avg.	hr soak	2.41			99.0	5.44	4.79	3.48	3.92	1.25	1.81	3.17			0.84	18.42	4.03	11.15	4.18	18.58	7.87
Color		¥			8	В	ပ	9	7	œ	2	¥			≥	В	ပ	ဖ	>	<u>د</u>	Σ
Print Mode		Photo Qual	IJ Paper/	720 dpi								Photo Qual	IJ Paper/	720 dpl						·	
Printer		Epson	850									Epson	850								
Coating		A										ပ									
Sample	*	5					·					9									

substrate, as measured by a spectrodensitometer. For instance, in From the data it can be seen that use of a coating including both a cationically charged clay and cationically charged silica (Coating A) enhances waterfastness of an ink jet printed image on a coated observing data from the Epson 850 printer, the red ΔE^{\star} values for the control (Coating C) compared with the cationic clay/silica combination (Coating A) demonstrates a significant difference in light fastness.

WO 01/53107

5

PCT/US01/02003

While the invention has been described in detail with particular reference to a preferred embodiment thereof, it should be understood that many modifications, additions, and deletions can be made thereto without departure from the spirit and the scope of the invention as set forth in the following claims.

Ŋ

BNSDCCID: <WO__0153107A2.1_>

WO 01/53107

PCT/US01/02003

4

What is claimed is:

following ink jet printing, said media coating comprising A media coating which demonstrates waterfastness

a cationically modified silica;

a cationically modified clay; and

cationically modified clay comprises an aqueous dispersion of Kaolin and a polyquaternary amine. The media coating according to claim 1, wherein the

including a polyquaternary amine cationically modified silica comprises an aqueous silica dispersion The media coating according to claim 1, wherein the

6

stabilized with alumina cationically modified silica comprises aqueous amorphous silica The media coating according to claim 1, wherein the

5

addition, a cationic surface modifier The media coating according to claim 4, comprising in

with the cationic clay and the cationic silica comprises a film forming, water insoluble polymer that is compatible <u>,</u> The media coating according to claim 1, wherein the binder

maleic anhydride (SMA), and styrene acrylonitrile (SAN); cationic latexes; mildly anionic latexes; and mixtures thereof is selected from the group consisting of nonionic latexes comprising vinyl acetate; styrenics comprising styrene rubbers (SBR), styrene polymers of vinyl acetate, ethylene vinyl acetate, acrylates, acrylate The media coating according to claim 6, wherein the binder

25

ratio of clay to silica is from about 1% to about 99% The media coating according to claim 7, wherein the weight

ratio of clay to silica is from about 10% to about 50% The media coating according to claim 8, wherein the weight

30

ratio of clay to silica is from about 25% to about 35%. The media coating according to claim 9, wherein the weight

ratio of total clay and silica to binder is from about 20% to about 80% The media coating according to claim 1, wherein the weight

weight ratio of total clay and silica to binder is from about 65% to about 7 The media coating according to claim 11, wherein the

Ċ,

UV absorbers/light stabilizers, surfactants, wetting agents, leveling addition, one or more materials selected from the group consisting of agents, flow modifiers, optical whiteners, and brighteners. The media coating according to claim 1, comprising in

6

surfactant that is selected from the group consisting of nonionic cationic, and zwitterionic surfactants 14. The media coating according to claim 13, comprising a

comprises aliphatic diol coating comprises a leveling agent, wherein the leveling agent The media coating according to claim 13, wherein the media

15

ΔE* for a control media coating which is free of cationically modified water at 20°C for 24 hours that is no more than 80% of the average media coating has an average ΔE* for cyan, magenta, yellow, black modified silica; a cationically modified clay; and a binder, where said red, green, and blue ink jet printing inks after soaking in de-ionized following ink jet printing; said media coating comprising a cationically A media coating which demonstrates waterfastness

20

substrate a coating comprising a cationically modified silica; a cationically modified clay; and a binde A method of coating a substrate comprising applying to a 25

wherein the substrate is selected from the group consisting of paper, film and scrim The method of coating a substrate according to claim 17,

. WO 01/53107

PCT/US01/02003

16

19. The method of coating a substrate according to claim 18, wherein the paper comprises synthetic paper that can feed through an ink jet printer.

20. The method of coating a substrate according to claim 19, wherein the synthetic paper has a thickness of from about 60 to about 500 microbe.

ß

- 21. The method of coating a substrate according to claim 20, wherein the synthetic paper has a thickness of about 150 microns.
- 22. The method of coating a substrate according to claim 18, wherein the substrate comprises a material selected from the group consisting of nonwoven substrate, woven substrate, polyester film, vinyl film, and latex saturated paper.

5

23. The method of coating a substrate according to claim 22, wherein the substrate comprises a nonwoven substrate comprising a polyolefin.

5

- 24. A coated substrate comprising a substrate and a coating comprising a cattonically modified silica; a cationically modified clay; and a binder.
- 25. The coated substrate according to claim 24, wherein the catlonically modified clay comprises an aqueous dispersion of Kaolin and a polyquaternary amine.

20.

- 26. The coated substrate according to claim 24, wherein the cationically modified silica comprises an aqueous silica dispersion including a polyquaternary amine.
- 27. The coated substrate according to claim 24, wherein the cationically modified silica comprises aqueous amorphous silica stabilized with alumina.
- 28. The coated substrate according to claim 24, wherein the binder comprises a film forming, water insoluble polymer that is compatible with the cationic clay and the cationic silica.

8

29. The coated substrate according to claim 28, wherein the binder is selected from the group consisting of nonlonic latexes

WO 01/53107

11

PCT/US01/02003

comprising polymers of vinyl acetate, ethylene vinyl acetate, acrylates, acrylate vinyl acetate; styrenics comprising styrene rubbers (SBR), styrene maleic anhydride (SMA), and styrene acrylonitrile (SAN); cationic latexes; mildly anionic latexes; and mixtures thereof.

 The coated substrate according to claim 24, wherein the weight ratio of clay to silica is from about 1% to about 99%.

Ŋ

- 31. The coated substrate according to claim 30, wherein the weight ratio of clay to silica is from about 10% to about 50%.
- 32. The coated substrate according to claim 31, wherein the weight ratio of clay to silica is from about 25% to about 35%.

9

- 33. The coated substrate according to claim 24, wherein the weight ratio of total clay and silica to binder is from about 20% to about 80%.
- 34. The coated substrate according to claim 33, wherein the weight ratio of total clay and silica to binder is from about 65% to about

ξ

35. The coated substrate according to claim 24, comprising in addition, one or more materials selected from the group consisting of UV absorbers/light stabilizers, surfactants, wetting agents, leveling agent, flow modifiers, optical whiteners, and brighteners.

8

- 36. The coated substrate according to claim 35, comprising a surfactant that is selected from the group consisting of nonionic, cationic, and zwitterionic surfactants.
- 37. The coated substrate according to claim 35, wherein the media coating comprises a leveling agent, wherein the leveling agent comprises aliphatic diol.

(12) INTERNATIONAL APPLICATIÓN PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 July 2001 (26.07.2001)

(10) International Publication Number PCT

WO 01/53107

3 B41M 5/00, International Patent Classification?: C09D 123/08, 131/04, D06P 5/00

PCT/US01/02003 International Application Number:

Ē

<u>s</u>

(22) International Filing Date: 19 January 2001 (19.01.2001)

(25) Filing Language:

English

(26) Publication Language:

English

19 January 2000 (19.01.2000) 19 January 2001 (19.01.2001) (30) Priority Data: 60/177,074 09/166,262

SS

(71) Applicant: KIMBERLY-CLARR, Truster, 11NC. [US/US]; 401 North Lake Street, Neenah, WI 54956

(R) Inventor: BRANHAM, Kelly, Dean; 3337 Rae Place, Lawranceville, GA 3004 (US). SNOWDEN, Han, Scott; For 1940; Roberts Drive, Apartment 32G, Atlanta, GA 30350 an (US).

(US). (US). (US). Columbia, SC 29201 (US).

Columbia, SC 29201 (US).

11) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BB, BB, BB, TC, AC, HC, NC, RC, CC, CZ, DE, DK, DM, DZ, EB, ES, FI, GB, GD, CB, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LW, MA, ADD, MG, MK, MM, MW, MX, MZ, NO, NZ, PT, FRO, RU, SD, SB, SG, SI, SK, SL, TT, TM, TT, LU, UG, UG, VN, YU, ZA, ZW,

(84) Designated States fregionalj: ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD; RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAFI patent (BF, BI, GF, CG, CG, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

with international search report Published:

(88) Date of publication of the international search report:

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

THEREWITH MATEREAST INK RECEPTIVE COATINGS FOR INK JET PRINTING MATERIALS AND COATING METHODS THEREWITH

THEREWITH

(A) THEREWITH

(B) THEREWITH

(C) Abstract Media coatings for use on aubstract for ink jet printing include a cationically modified day, a cationically modified day, a cationically modified day, a cationically modified day, a cationically modified day to cationically modified day to cationically modified alter writes in the coating formulation from about 15 to about 95. Desirably, the ratio of the cationically modified at alter a writes from about 10 % to about 50 %. More desirably, the ratio of cationically modified at alter a write from about 10 % to about 35 %. The ratio of the cationically modified silica to binder-writes from about 25 % to about 35 %. The ratio of the total cationically modified clay and cationically modified silica to binder-writes from about 55 % to about 75 %. Desirably, the ratio of the total cationically modified silica to binder-writes from about 55 % to about 75 %. cationically modified silica to binder varies from about 65 % to about 75 %.

INTERNATIONAL SEARCH REPORT

on a Application No PCT/US 01/02003

D06P5/00 C09D131/04 A. CLASSIFICATION OF SUBJECT MATTER CO90123/08

According to International Patent Classification (IPC) or to both national classification and IPC

C09D B41M B. FIELDS-SEARCHED

ntation searched other than minimum doc

ation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name ol date base and, where practical, search forms used) WPI Data, PAJ, EPO-Internal, CHEM ABS Data

2. DOCUM	C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Calagory	Calegory Citation of document, with indication, where appropriate, of the ratewall passages	Relavant to ctalm No.
4	DATABASE WPI Section Ch, Week 198703 Derwent Publications Ltd., London, GB; Class A97, AN 1987-018948 XP002169433 & JP 61 277481 A (CANON KK), B December 1986 (1986-12-08) abstract	1,16,17, 24
⋖	PATENT ABSTRACTS OF JAPAN vol. 014, no. 056 (M-0929), 31 January 1990 (1990-01-31) & JP 01 281982 A (CANON INC), 13 November 1989 (1989-11-13) abstract	1,16,17, 24

The blet document published after the international filting date or priority date and not in conflict with the application but cled to understand the principle or theory underlying the **Y document of particular relevance; the claimed Invontion Cancil be considered in ferious an Inventive sup-whan document is combined with one or note other such document is combined with one or note other such at implie, such combination being obvicus to a person stall in the art. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered involve an inventive step when the document is taken × Further documents are listed in the continuation of box C. 'O' document referring to an oral disclosure, use, exhibition or other means A document defining the general state of the art which is not considered to be of particular relevance 'L' document which may throw doubts on priority dain(\$) or which is cited to establish the publication date of another Earlier document but published on or after the internation fling date Special categories of cited dor ×

Palent family members are listed in annex.

Date of mailing of the international search 11/07/2001 Authorized office European Patent Office, P.B. 5818 Patentlaan 2 NL - 2800 HV Riswilk Tot (+31-70) 940-2040, Tx. 31 551 epo nl, Fax (+31-70) 340-2016 Date of the actual completion of the inter Name and mailing address of the ISA 13 June 2001

document member of the same patent family

-P docurrent published prior to the international filing date but later than the priority date claimed

Form PCT/SA/210 (second sheet) (July

BNSDOCID: <WO .. 0163107A3_1.>

page 1 of 2

Markham, R

INTERNATIONAL SEARCH REPORT

Mion) DOCUMENTS CONSIDERED TO BE RELEVANT

Inter. ... inal Application No. PCT/US 01/02003

Claion of document, with indication, where appropriate, of the relevant passages Retevant to claim No.

1,16,17, 24

EP 0 709 223 A (CANON KK)
1 May 1996 (1996-05-01)
page 3, line 8 - line 14
page 4, line 52 -page 5, line

line 15

bade 2 of 2

Form PCT/ISA/210 (continuation of secon

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

International Application No. PCT/US 01 02003

Continuation of Box I.2

Claims Nos.: 16 (part)

Present claim 16 relates to a product defined by reference to the parameter Delta E* as defined in the present description (page 10, lines 2-7).

The use of this parameter in the present context is considered to lead to a lack of clarity within the meaning of Article 6 PCI. It is impossible to compare this parameter, which the applicant has chosen to employ, with what is set out in the prior art. This lack of clarity is such as to render a meaningful complete search over the area encompassed by present claim 16 impossible. Consequently, the present search has been restricted by limiting the search of claim 16 to the coating "A" described in the example (see Table 1) in the present description.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66:1(e) PCT). The applicant is advised that the EPO policy when acting as an International 'siminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Inten. John Application No PCT/US 01/02003

· 1		··	
Publication date			31-03-1999 09-07-1996 17-06-1999 09-05-1996 28-04-1996 29-10-1998 22-04-1999 16-11-1998 21-10-1997 14-12-1999
Palent famlly membar(s)	NONE	NONE	JP 2877740 B JP 8174993 A AU 706622 B AU 3448095 A CA 2161400 A DE 69504936 D DE 69504936 T ES 2121275 T US 6679451 A US 6000794 A
Publication date	08-12-1986	. 13-11-1989	01-05-1996
	~	4	⋖ .
Patent document alted in search report	JP 61277481	JP 01281982	EP 0709223

THIS PAGE BLANK (USPT)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)