Devoir à la maison n° 11

À rendre le 24 janvier

Partie 1 : endomorphismes continus de $(\mathbb{R}, +)$.

On veut montrer que l'ensemble des homothéties de \mathbb{R} est égal à l'ensemble \mathscr{E} des endomorphismes continus du groupe additif $(\mathbb{R}, +)$, c'est-à-dire des fonctions **continues** $f: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x, y \in \mathbb{R}$$
, $f(x+y) = f(x) + f(y)$.

- 1) Soit $f \in \mathscr{E}$.
 - a) Montrer que : $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, f(kx) = kf(x)$.
 - b) On pose $\lambda = f(1)$. Démontrer que : $\forall x \in \mathbb{Q}$, $f(x) = \lambda x$. Indication : si $x \in \mathbb{Q}$, on pourra multiplier x par un entier pour obtenir un entier et utiliser la question précédente.
- 2) Conclure.

Partie 2 : une équation fonctionnelle.

On veut maintenant déterminer l'ensemble \mathcal{E}' des fonctions f de \mathbb{R} vers \mathbb{R} continues en $\mathbf{0}$ vérifiant :

$$\forall x, y \in \mathbb{R} , f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}.$$
 (\\(\beta\))

En particulier, cela signifie que $\forall x, y \in \mathbb{R}$, $1 + f(x)f(y) \neq 0$.

- 3) Quelles sont les fonctions constantes de \mathcal{E}' ?
- 4) Soit f un élément de \mathscr{E}' pour lequel il existe un $x_0 \in \mathbb{R}$ tel que $|f(x_0)| = 1$. Montrer que f est une fonction constante sur \mathbb{R} .
- 5) Soit f un élément de \mathcal{E}' qui n'est **pas** une fonction constante.
 - a) Montrer que f(0) = 0. Étudier la parité de f.
 - b) Montrer que f est continue sur \mathbb{R} .
 - c) En déduire que, pour tout réel x, on a |f(x)| < 1.
 - d) On rappelle que th : $\mathbb{R} \to]-1,1[$ est bijective, on note Argth sa réciproque. On pose : $g(x) = \operatorname{Argth}(f(x))$. Justifier l'existence et la continuité de g sur \mathbb{R} .
 - e) Vérifier que la fonction the st un élément de \mathcal{E}' .
 - f) En déduire que g est un élément de \mathscr{E} .
- 6) Donner l'expression des fonctions non constantes de \mathcal{E}' .
- 7) Conclure en donnant une description complète de \mathcal{E}' .

— FIN —