E - 85 - 2017

전기설비 설치상의 안전에 관한 기술지침

2017. 10.

한국산업안전보건공단

안전보건기술지침의 개요

0 제정자: 한국산업안전보건공단 류보혁

o 개정자: 한국산업안전안전보건공단 산업안전보건연구원 안전시스템연구실

o 개정자: 서울과학기술대학교 류보혁

o 제·개정 경과

- 1996년 4월 총괄제정위원회 심의
- 2001년 11월 총괄제정위원회 심의
- 2007년 10월 전기안전분야 제정위원회 심의
- 2007년 11월 총괄제정위원회 심의
- 2011년 12월 전기안전분야 제정위원회 심의(개정)
- 2017년 10월 전기안전분야 제정위원회 심의(개정)

o 관련규격 및 자료

- KOSHA GUIDE E-88(감전방지용 누전차단기 설치에 관한 기술지침)
- KOSHA GUIDE E-99(분진폭발 위험장소 설정에 관한 기술지침)
- KOSHA GUIDE E-47(가스폭발위험장소의 설정 및 관리에 관한 기술지침)
- KOSHA GUIDE E-48(가스 폭발분위기에서의 전기설비 설계, 선정 및 설치에 관한 기술지침)
- KOSHA GUIDE E-114(전기작업시의 작업공간 확보에 관한 기술지침)
- 미국 연방직업안전보건국(OSHA) CFR 1910-S(Safeguarding of employees in their workplace)
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2017년 10월 31일

제 정 자 : 한국산업안전보건공단 이사장

전기설비 설치상의 안전에 관한 기술지침

1. 목적

이 「지침은 산업안전보건기준에 관한 규칙 (이하 "안전보건규칙"이라 한다) 제2편 제 3장(전기로 인한 위험방지)」의 규정에 따라, 전기설비 및 전기배선의 설치 등에 관하여 필요한 사항을 정함을 목적으로 한다.

2. 적용범위

- (1) 이 지침은 사업장에 설치되는 옥내외의 전기설비, 배선 및 그 부속설비(이하 '전기·기계기구'라 한다.)의 설치에 대하여 적용한다.
- (2) 이 지침은 다음의 경우에는 적용하지 아니할 수 있다.
 - (가) 건설현장에 설치하는 전기설비
 - (나) 자동차, 배, 수상선박, 철도차량, 비행기 등에 설치하는 전기설비
 - (다) 광산의 지하 갱도에 설치하는 전기설비
 - (라) 철도차량 운영용 전력시설물 및 신호 또는 통신전용 설비

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "전기기계·기구(이하 "전기기기"라 한다)"라 함은 전기설비의 일부로 사용되거나, 전기설비에 접속하는 피팅, 전기기구, 조명기구 등을 총칭하는 일반적인용어를 말한다.
 - (나) "전기기구"라 함은 전기드릴, 전기세탁기 등 하나의 장치로 설치되거나 접속되어 기능을 수행하는 부하설비를 말한다.

E - 85 - 2017

- (다) "본딩(Bonding)"이라 함은 서로 다른 도전성 물체를 저항이 작은 물질로 전기적으로 연결하는 것을 말한다.
- (라) "나도체(Bare conductor)"라 함은 전기 절연물 등으로 피복되지 않은 도체를 말한다.
- (마) "절연도체"라 함은 이 지침에서 인정하는 성분 또는 두께의 절연물질 내에 인입된 도체를 말한다.
- (바) "단로장치"라 함은 전기기기 등을 전원으로부터 분리시키는 장치를 말한다.
- (사) "(밀폐)함(Enclosure)"이라 함은 충전부와의 접촉 사고로부터 작업자를 보호하 거나 또는 물리적인 파손으로부터 장비를 보호하기 위해 설비 주위에 설치 한 기구의 수납함, 외함, 울타리, 벽 등을 말한다.
- (아) "간선"이라 함은 인입구에서 분기과전류차단기에 이르는 배선으로서 분기회로의 분기점에서 전원측까지의 부분을 말한다.
- (자) "분기회로"라 함은 말단회로 보호용 과전류 보호장치와 수구 사이의 전기회로를 말한다.
- (차) "접지"라 함은 전기선로나 설비를 대지 또는 지중 도전성 물체 등과 전기적으로 접속하는 것을 말한다.
- (카) "접지도체"라 함은 접지전극에 설비나 다른 접지도체를 연결하기 위한 도체를 말한다.
- (타) "접지극용 도체(Grounding electrode conductor)"라 함은 접지전극과 전기기 기의 접지도체를 연결하기 위한 도체 또는 인입설비나 별도의 전원회로에 있는 접지도체와 연결하기 위한 도체를 말한다.
- (파) "비접지시스템"이라 함은 절연변압기 또는 전로의 격리를 위한 감시장치를 설치하는 등의 방법으로 전원측의 중성점 또는 전원계통의 공급단이 접지되지 않은 선로를 말한다.
- (하) "수구(Outlet)"라 함은 부하설비에 전류를 공급하기 위한 접속기구의 한 부분으로 소켓, 리셉터클 등을 말한다.
- (거) "과부하"라 함은 설비의 손상이나 과열 우려가 있는 정격 이상의 부하를 일정 시간 이상동안 사용하는 경우를 말하며, 단락이나 지락 고장과 같은 사고는 과 부하에 속하지 않는다.
- (너) "유자격자"라 함은 전기설비의 시공·운전 및 기타 전기작업에 관련된 국 가기술자격 및 공인자격을 보유하거나 교육을 받은 자로서 일정기간 동일 업 무에 종사한 사람을 말한다.
- (더) "폭발위험장소"라 함은 폭발을 일으킬 수 있을 정도로 인화성액체의 증기,

E - 85 - 2017

가스 또는 분진이 대기 중에 존재하거나 존재할 우려가 있는 장소를 말한다.

(2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 일반 사항

이 지침에서 요구되거나 허용되는 도체와 전기기기는 인증 받은 것이어야 한다.

5. 전기기기의 검사 · 설치 및 사용

5.1 전기기기의 검사, 설치 및 사용

5.1.1 전기기기의 검사

전기기기가 일반작업자에게 위험하지 않도록 다음의 사항을 고려하여 검사한다.

- (1) 이 지침에 따라 적정하게 설치·사용하는지의 여부
 - (가) 전기기기의 적정여부는 공인기관의 규격 표시품 등에 의한다.
 - (나) 설치·사용의 적합성은 이 지침의 내용 또는 제조자가 제공한 설명서, 명판 등에 의한다.
- (2) 전기기기의 방호 또는 둘러싼 부분의 기계적 강도 및 내구성
- (3) 배선의 휨 및 접속 공간
- (4) 전기 절연
- (5) 모든 사용조건에서의 온도상승

E - 85 - 2017

- (6) 아크발생 현상(Arcing effects)
- (7) 형식, 크기, 전압, 허용전류 및 특수 용도별 구분
- (8) 전기기기를 사용하거나 접촉 할 우려가 있는 사람들에 대한 실제적인 보호에 기 여하는 기타 요소들

5.1.2 설치 및 사용

전기기기는 지침 또는 명판에 제시된 내용에 따라 설치되고 사용되어야 한다.

5.1.3 절연유지(Insulation integrity)

전기배선은 이 지침에서 요구하는 것 이외에 단락 및 지락사고 시에도 견딜 수 있도록 시설한다.

5.1.4 차단정격(Interrupting rating)

- (1) 고장전류를 차단하기 위한 장치는 공칭전압에서 고장전류를 충분히 차단할 수 있는 정격을 가져야 한다.
- (2) 고장전류 이외의 전류를 차단하기 위한 장치는 공칭전압에서 차단하고자 하는 전류를 충분히 차단할 수 있는 정격을 가져야 한다.

5.1.5 전로 임피던스 및 기타 특성

보호대상 전로의 과전류보호장치, 전체 임피던스, 단락전류정격 및 기타 특성들은 보호장치가 전로 내의 각종 전기기기들을 손상시키지 않고 안전하게 고장을 해소시키도록 선정되고 협조되어야 한다. 이러한 고장은 둘 이상의 전로 도체, 전로도체와 접지도체 또는 금속 전선관 사이의 일어 날수 있다.

5.1.6 환경조건(Deteriorating agents)

특별히 규정된 것을 제외하고는 습기가 있는 곳 또는 젖은 곳, 가스·흄·증기·액체 등

E - 85 - 2017

기기 또는 도체를 열화시킬 수 있는 물질, 과도한 온도상승에 노출되지 않도록 한다.

5.1.7 설치 작업(Mechanical execution of work)

전기기기는 정해진 기준 및 절차에 따라 설치해야 한다.

- (1) 박스, 배관, 보조 배수구, 캐비닛, 기기 외함 등의 사용하지 않는 개구부는 기기 벽에 상당하는 방호수준으로 효과적으로 막아야 한다.
- (2) 작업자가 설치 및 정비를 위해 출입하여야 하는 지하 등의 밀폐함의 경우, 안전하게 접근할 수 있도록 도체는 랙(Rack) 등에 설치 한다.
- (3) 버스바, 단자, 애자 및 기타 표면을 포함하는 전기기기의 내부부품은 페인트, 석고, 세제, 접착제 또는 부식 잔류물과 같은 이물질에 의해 손상되거나 오염되지 않도록 한다.
- (4) 파손, 화학 작용, 절단 또는 열화에 의해 파손되거나 열화 된 부품과 같이 기기 의 안전한 작동이나 기계적 강도에 악영향을 미칠 수 있는 손상된 부품이 없도 록 한다.

5.1.8 전기기기의 설치 및 냉각

- (1) 전기기기는 설치하는 표면에 견고하게 부착시킨다.
- (2) 전기기기의 냉각방식이 공기의 자연 순환 및 대류에 의한 것이면 공기의 흐름이 방해되지 않도록 설치한다.
- (3) 환기구가 있는 전기기기는 벽 또는 기타 장애물에 의해 공기의 순환이 방해받지 않도록 설치한다.

5.2 전기 접속(Electrical connections)

5.2.1 일반사항

E - 85 - 2017

- (1) 압착 단자 또는 접속기구 및 납땜 등을 이용하여 도체를 접속하는 경우에는 도 체와 동일한 재료를 선정하여 설치·사용한다.
- (2) 구리와 알루미늄처럼 서로 다른 도체가 물리적으로 접촉하는 경우에는 단자 또는 접속기 구에서 혼용되지 않도록 한다.
- (3) 땜납, 용제, 컴파운드 등에 들어 있는 물질은 도체, 설비 및 기기 등에 악영향을 미치지 않는 물질을 사용한다.

5.2.1 단자(Terminal)

- (1) 도체의 단자 접속은 도체가 손상되지 않도록 압착 접속(나사 접속 포함), 리드선 접속기구 등을 이용한다.
- (2) 둘 이상의 도체용 단자 및 알루미늄용 단자에는 이의 내용을 표시한다.

5.2.1 접속기구(Splice)

- (1) 도체는 적절한 접속기구를 사용하거나 납땜 또는 용접으로 접속한다.
- (2) 납땜접속의 경우 접속부분을 먼저 연결한 후 납땜하여야 하며, 도체의 접속부분은 도체 자체의 절연과 동등 이상의 성능을 갖는 절연체 또는 절연기구를 사용하여 접속한다.
- (3) 직접 매설에 사용되는 도체 접속기는 이의 용도를 표시한다.

5.2.2 아크 발생부

정상운전 중에 아크, 불꽃 또는 용융금속을 발생시키는 전기기기의 부품들은 모든 인화성 물질로부터 완전히 밀폐, 분리 또는 차폐시켜야 한다.

5.3 표시

5.3.1 전기기기 및 정격의 표시

E - 85 - 2017

- (1) 모든 전기기기는 그 제품에 관한 책임소재를 알 수 있도록 제조자명, 상표 및 기타 필요한 사항을 전기기기에 표시되도록 한다.
- (2) 상기 (1) 이외에 전압, 전류, 전력 및 기타 필요한 정격사항 등을 표시한다.

5.3.2 내구성

5.3.1항의 표시는 주어진 환경에 충분한 내구성과 강도를 갖도록 한다.

5.4 단로장치

5.4.1 전동기 및 기구

이 지침에서 요구하는 단로장치가 그 용도에 적합하지 않게 설치되어 있으면, 그 목적을 확실하게 표시하도록 한다.

5.4.2 전기배선

인입회로, 주회로, 분기회로 등에 설치된 단로장치 및 과전류차단장치가 그 용도에 적합하지 않게 설치되어 있으면, 그 목적을 확실하게 표시하도록 한다.

5.4.3 표시의 내구성

5.4.1 및 5.4.2에 의한 표시는 주위 환경에 견딜 수 있는 충분한 내구성과 강도를 갖도록 한다.

5.4.4 단로장치의 잠금

이 지침에서 요구하는 단로장치는 개로상태에서 잠금기능을 갖도록 한다.

5.4.5 직렬접속 정격의 표시

(1) 회로차단기 및 퓨즈를 직렬접속으로 설치한 경우, 제조자는 전기기기 외함에 이의 내용을 알기 쉽게 표시한다.

E - 85 - 2017

(2) 상기 (1)항의 표시는 다음과 같이 알기 쉽게 표현되도록 한다. "주의 - 직렬접속계통 OOO A, 부품 교체시 확인"

5.4.6 작업공간의 확보

사용전압에 따른 작업공간 확보에 관한 사항은 KOSHA GUIDE E-114-2011 "전기작업시의 작업공간 확보에 관한 기술지침"을 참조한다.

6. 배선 설계 및 보호

6.1 접지 도체의 사용 및 식별

6.1.1 도체 식별

접지도체로 사용되는 도체는 다른 모든 도체와 식별 가능하고 구별되어야 한다.

6.1.2 접지도체의 접속

접지도체는 임의의 단자에 접속하거나 지정된 극성과 다르게 접속해서는 아니된다.

6.1.3 접지 단자 및 기구의 사용

리셉터클, 코드 접속기 또는 플러그 등의 접지단자 또는 접지형 기구는 접지 이외의 용도로 사용해서는 아니 된다.

6.2 분기회로

6.2.1 분기회로의 식별

2개 이상의 전압시스템이 존재하는 분기회로에서는 접지가 되지 않은 모든 상 도체를 다른 상과 구별이 되도록 분기회로의 분전반에 분기회로명을 표시한다.

E - 85 - 2017

6.2.2 리셉터클 및 코드 접속기

- (1) 15~20 A 분기회로에 설치되는 리셉터클은 접지형을 사용한다. 접지형 리셉터클 은 회로정격에 맞는 전압과 전류의 것을 사용한다.
- (2) 리셉터클과 코드 접속기는 8.3항의 이동형 차량발전기에 설치된 리셉터클을 제외하고는 접지를 시킨다.
- (3) 리셉터클과 코드 접속기의 접지부는 전원을 공급하는 전기기기의 접지도체와 전기적으로 연결되도록 한다.

6.3 누전차단기

안전보건규칙 제304조(누전차단기에 의한 감전방지)에 관한 사항은 KOSHA GUIDE E-88-2011 "감전방지용 누전차단기 설치에 관한 기술지침"을 참조한다.

6.4 수구장치(Outlet devices)

소켓, 리셉터클 등은 부하전류를 충분히 흘릴 수 있어야 하고, 다음의 조건에 따라야한다.

- (1) 분기회로에 설치된 리셉터클은 회로의 정격보다 큰 전류정격을 가져야 한다.
- (2) 분기회로에 2개 이상의 리셉터클이 설치된 경우, 하나의 리셉터클에서 공급할 수 있는 최대부하는 <표 1>에서 정한 최대값을 넘을 수 없다.

<표 1> 리셉터클에 접속할 수 있는 최대부하

회로 정격(A)	리셉터클 정격(A)	최대 부하(A)
15 또는 20	15	12
20	20	16
30	30	24

E - 85 - 2017

(3) 분기회로에 2개 이상의 리셉터클이 설치된 경우, 리셉터클의 정격은 <표 2>의 값과 같다. 회로정격 50 A 이상인 곳에서의 리셉터클은 분기회로 정격보다 작으면 안 된다.

회로 정격 (A) 리셉터클 정격 (A) 비고

15 15 이하
20 15 또는 20
30 30
40 40 또는 50
50 50

<표 2> 회로 정격에 따른 리셉터클 정격

7. 전기공급(Services)

7.1 단로장치(Disconnecting means)

7.1.1 일반사항

건물 내의 모든 전로는 인입선으로부터 단로시킬 수 있는 장치를 설치한다. 단로장 치는 개방 또는 투입된 상태를 명확히 표시하여 인입선 부근에서 쉽게 알 수 있도록 조치한다.

7.1.2 극의 동시개로

각 단로장치는 접지되지 않은 상 도체를 동시에 개로하는 구조이어야 한다.

7.2 600 V를 넘는 경우

7.2.1 방호조치

나도체로 설치된 인입선은 유자격자만이 접근할 수 있도록 방호조치를 한다.

E - 85 - 2017

7.2.2 경고표지

유자격자 이외의 사람이 접근 또는 접촉할 우려가 있는 고전압설비의 설치장소에는 고전압 경고표지를 부착한다.

7.3 과전류 보호장치

7.3.1 600 V 이하의 경우

7.3.1.1 도체 및 전기기기의 보호

도체 및 전기기기는 그 용량에 적합한 과전류 보호장치에 의해 보호를 한다.

7.3.1.2 접지도체

전동기의 운전시 과전류 보호장치는 모든 극을 동시에 개방하는 경우를 제외하고는 접지도체를 차단하여서는 안 된다.

7.3.1.3 퓨즈 및 컷아웃 스위치의 단로

- (1) 대지전압 150 V 이상의 퓨즈 및 컷아웃 스위치가 설치된 곳에 유자격자 이외의 사람이 접근할 우려가 있을 경우에는 단로장치를 함께 부착한다.
- (2) 단로장치는 해당 부하의 전원만을 차단할 수 있도록 설치한다.

7.3.1.4 퓨즈 또는 차단기의 조작

- (1) 퓨즈 또는 차단기는 조작시에 작업자가 화상위험이 없는 위치에 설치를 하거나, 차폐를 하여 화상위험이 없도록 조치한다.
- (2) 순간적인 작동으로 작업자를 다치게 할 수 있는 차단기의 손잡이 또는 레버를 고립시키거나 위험방지조치를 한다.

7.3.1.5 차단기의 개폐 표시

E - 85 - 2017

- (1) 차단기는 개방 또는 투입의 상태를 명확하게 표시해야 한다.
- (2) 배전반 내에서의 차단기 조작이 수직방향으로 행해지는 경우, 손잡이를 올렸을 때 투입이 되도록 한다.

7.3.2 600 V를 초과하는 고압의 경우

7.3.2.1 도체의 보호

간선 및 분기선에서 접지되지 않은 상 도체는 전원을 공급하는 곳과 전문가가 필요 하다고 정한 곳에는 과전류 보호장치를 부착한다.

7.3.2.2 과전류 보호장치

- (1) 3상 회로의 과전류 보호장치에는 3개의 변류기 및 과전류계전기가 필요하다.
- (2) 3상3선식 회로에서 1개의 변류기로 모든 상 도체를 감시하는 과전류 계전기는 영상 계전기와 1개의 상 변류기로 대체될 수 있다.
- (3) 부하 측의 중성선이 접지되어 있지 않은 경우, 변류기 공급 측의 3상 전로와 접지된 중성도체를 함께 접속할 수 있다.
- (4) 과전류 보호용으로 퓨즈가 사용될 경우, 퓨즈는 각각 접지되지 않은 상 도체에 직렬로 연결한다.
- (5) 각각의 보호장치는 작동 설정치 또는 용융점을 초과하는 모든 전류를 검출하고 차단할 수 있도록 선정한다.
- (6) 단락사고 하에서 도체 또는 도체의 절연부에 손상을 주거나 위험한 온도상승을 방지하기 위하여, 보호장치의 동작시간, 예상 단락전류 및 사용되는 도체간의 절 연특성이 상호 협조되도록 설치한다.
- (7) 퓨즈의 연속 전류정격은 보호대상 도체의 허용전류 용량의 3배를 넘어서는 안 된다.

E - 85 - 2017

(8) 차단기의 한시트립 요소 또는 최소 트립 설정치는 보호대상 도체의 허용전류의 6배를 넘어서는 안 된다. 다만, 단락사고만 보호하는 소방펌프의 경우는 예외로 한다.

8. 접지

8.1 접지도체의 식별

접지도체는 다른 도체와는 확실히 구분되도록 표시한다.

8.2 접지도체의 접속

접지도체는 극성이 바뀔 우려가 있는 단자나 리드선에 연결되어서는 안 된다.

- 8.3 접지하여야 할 시스템
 - (1) 직류 3선식의 중성선
 - (2) 직류 2선식 시스템(선간전압 50~300 V)이 다음에 해당되지 않을 경우
 - (가) 제한구역 내의 산업용 설비에만 공급하고 지락감시장치가 설치된 시스템
 - (나) 다음 (3)~(5)에 적합한 교류시스템에서 정류기를 통해 공급되는 시스템
 - (다) 최대전류 0.03 A 이하의 화재경보회로
 - (3) 50 V 이하의 교류시스템에서 다음에 해당하는 경우
 - (가) 건물 외부에 가공으로 설치된 전로
 - (나) 변압기의 1차측이 비접지이거나, 대지전압이 150 V를 넘는 변압기를 통해 공급되는 전로
 - (4) 50V ~ 1.000 V의 교류시스템에서 다음의 조건에 해당되는 경우
 - (가) 비접지측 도체의 최고 대지전압이 150 V 이하인 시스템
 - (나) 3상 4선식 Y결선(380/220 V)에서 중성선이 전로로 사용되는 시스템

E - 85 - 2017

- (다) 3상 4선식 △결선(220/110 V)에서 중간단자를 전로로 사용하는 시스템
- (라) 인입도체가 절연되지 않은 경우
- (5) 50~1,000 V의 교류시스템에서 접지하지 않아도 되는 경우
 - (가) 용해·정련·담금질 등을 하는 산업용 전기로에 공급하는 시스템
 - (나) 시스템이 분리되어 있고, 산업용 가변속설비의 정류기에 공급하는 시스템
 - (다) 480~1,000 V인 3상 교류시스템의 고 임피던스 접지시스템에서 다음 모두를 만족하는 경우
 - ① 유자격자만이 설비를 운용하는 경우
 - ② 전력의 연속성이 요구되는 시스템
 - ③ 시스템에 지락감시장치가 설치된 경우
 - ④ 중성도체와 선로 사이에 전기부하가 없는 경우

8.4 접지하여야 할 도체

교류시스템에서 접지하여야 할 도체는 다음과 같다.

- (1) 단상 2선식 시스템에서의 1선
- (2) 단상 3선식 시스템에서의 중성선
- (3) 한 도체를 공통으로 사용하는 다상 시스템에서의 공통 도체 또는 중성도체

8.5 이동형 차량 발전기

- (1) 다음의 조건하에서 사용되는 이동형 차량 발전기의 프레임은 접지할 필요가 없다.
 - (가) 발전기 위에 설치된 전기기기에만 전기를 공급하는 경우 또는 발전기 위에 설치된 리셉터클을 통하여 전기기기에 전기를 공급하는 경우
 - (나) 전기기기의 비충전 금속부와 리셉터클의 접지단자가 발전기 프레임에서 본딩 된 경우
- (2) 다음의 조건하에서 차량에 설치된 발전기는 차량의 프레임을 접지할 필요가 없다.

E - 85 - 2017

- (가) 발전기의 프레임과 차량 프레임이 본딩된 경우
- (나) 차량 위에 설치된 전기기기에만 전기를 공급하거나, 차량 위에 설치된 리셉터 클을 통하여 전기기기에 전기를 공급하는 경우
- (다) 전기기기의 비충전 금속부와 리셉터클의 접지단자가 발전기 프레임에서 본딩된 경우

8.6 접지도체의 연결

- (1) 접지시스템은 접지도체를 이용하여 전기기기와 접지극 사이를 연결한다. 만약 접지시스템이 독립되어 있다면, 전기기기측의 접지도체와 접지극용 도체를 인입부 단로장치의 전원측, 시스템 단로장치의 전원측, 과전류 차단장치 등의 중성도체와 연결을 한다.
- (2) 비접지시스템의 경우, 전기기기의 접지도체를 접지극용 도체와 연결시킨다. 시스템이 독립되어 있다면, 전기기기의 접지도체를 시스템의 단로장치나 과전류장치 앞에 설치되어 있는 접지극용 도체와 연결을 한다.
- (3) 전기기기의 접지도체가 설치되어 있지 않은 분기회로를 연장하여 사용하고자 할때는 주변에서 접지된 수도배관을 접지극으로 사용할 수 있다.

8.7 접지경로

회로, 전기기기, 외함 등의 접지경로는 영구적으로 연속적이어야 한다.

8.8 접지개소

- 8.8.1 전로의 금속제 외함은 다음의 경우를 제외하고는 접지한다.
 - (1) 케이블 배선의 물리적 손상방지를 위해 사용하는 슬리브, 외함 및 기타 이와 유사한 금속제 외함
 - (2) 기존 시설에 추가되는 도체용 금속 외함이 다음에 해당하는 경우
 - (가) 길이가 7.5 m 미만인 경우

E - 85 - 2017

- (나) 접지된 금속체 또는 기타 도전성 물질과 접촉할 우려가 없는 외함
- (다) 작업자가 접촉되지 않도록 방호된 외함
- 8.8.2 전기기기의 금속제 외함 및 철대는 접지를 한다.
- 8.8.3 전기기기의 충전되지 않은 금속부분이 다음에 해당하는 경우 접지를 한다.
 - (1) 지면 또는 접지된 금속체로부터 수직 2.4 m, 수평 1.5 m 이내에 있고, 근로자의 접촉우려가 있는 경우
 - (2) 습기 또는 물이 있는 장소에 설치된 경우
 - (3) 폭발위험장소 내에 있는 경우
 - (4) 금속제의 외장케이블에 의해 전원이 공급되는 경우
 - (5) 대지전압 150 V 이상의 전기기기. 단, 다음의 경우에는 접지하지 않을 수 있다.
 - (가) 유자격자만이 접근할 수 있는 곳의 차단기 또는 개폐기 외함
 - (나) 대지로부터 절연된 전기가열장치
 - (다) 지표상 높이 2.4 m 이상의 목주에 설치되어 있는 배전용 기기의 외함
 - (라) 이중절연기기 또는 이와 동등 이상으로 방호된 기기
- 8.8.4 전기를 사용하지 않는 설비 중 다음의 금속체
 - (1) 크레인의 주행레일과 프레임
 - (2) 전동 엘리베이터의 금속제 로프
 - (3) 선간전압 750 V를 넘는 전기기기 주위의 금속제 구획망 및 이와 유사한 장치
- 8.9 고압의 이동형 전기기기

E - 85 - 2017

- (1) 전력시스템에서 공급받는 고압의 이동형 전기기기는 다음에 따라 사용한다.
 - (가) 중성점이 임피던스 접지된 시스템에서 전원을 공급받는다. 고압시스템이 델 타결선일 경우, 별도의 중성점을 인출한다.
 - (나) 전기기기의 비충전 노출 금속부는 접지도체를 통하여 임피던스 접지된 중성점 에 연결한다.
 - (다) 고압시스템의 지락사고시 자동차단할 수 있는 지락감시장치 및 보호계전장치를 설치한다. 또한, 접지도체의 단선시에 자동 차단될 수 있도록 지속적인 감시장 치를 설치한다.
- (2) 이동형 전기기기의 모든 금속체, 울타리, 외함, 지지 구조물 등은 접지를 한다. 다만, 지표면으로부터 2.4 m 이상 높이의 전주에 설치되어 있는 배전기기는 접지하지 않을 수 있다.

9. 배선방법

9.1 일반 요구사항

- (1) 접지도체로서의 역할을 하는 전선관, 케이블의 외장, 기타 비충전 외함 등의 금속 체는 고장전류를 충분히 흘릴 수 있어야 하고 전기적으로 상호 연결되도록 한다.
- (2) 비도전성인 페인트, 에나멜 또는 기타 유사한 도장은 나사부, 접속점, 접속표면 등에서 제거한다.
- (3) 분진, 인화성 증기 등의 이송에 사용하는 덕트 내에는 어떠한 형태의 배선도 있어서는 안 되며, 상업용 조리기구의 증기 배출용이나 환기용 덕트 내에도 배선이설치되지 않도록 한다.

9.2 임시배선

- (1) 600 V 이하에서 임시배선이 허용되는 경우는 다음과 같다.
 - (가) 건물·설비의 개조, 해체, 건설공사 및 기타 이와 유사한 작업을 하는 경우의

E - 85 - 2017

전원공급

- (나) 장식용 램프, 축제 및 이와 유사한 목적으로 90 일 이하만 사용되는 전원
- (다) 일시적인 실험 또는 연구 개발용의 전원공급
- (2) 임시배선은 해당 공사 또는 목적을 달성했을 경우에는 즉시 철거를 한다.
- (3) 임시배선은 다음의 조건에 따라 설치한다.
 - (가) 전원은 인증된 분전반에서 인출한다.
 - (나) 전원은 다심 코드 또는 케이블을 사용한다. 다만, 8.2.(1)항 (다)의 경우 또는 유자격자만이 접근할 수 있는 경우에는 단심 절연도체를 사용할 수 있다.
- (4) 분기회로는 다음에 따른다.
 - (가) 분기회로는 인증된 전력수구 또는 분전반에서 인출한다.
 - (나) 도체는 다심 코드, 케이블, 노출전선 등을 사용한다. 만약 노출전선을 사용할 경우에는 매 높이 3 m 마다 고정시킨다.
 - (다) 바닥에 분기회로를 배선해서는 안 된다.
 - (라) 리셉터클 또는 전기기기용 분기회로를 노출 배선으로 설치할 경우에는 별도 의 기기 접지선을 갖도록 한다.
- (5) 임시배선에서 접지되지 않은 상 도체를 단로하기 위해 개폐기 또는 플러그형 접속기를 설치한다. 분기회로용 전력수구 또는 분전반에서 모든 상 도체를 동시에 분리시킬 수 있어야 한다.
- (6) 등기구는 우발적인 접촉이나 파손으로부터 보호되도록 방호용 램프홀더 또는 적절한 등기구를 사용한다. 놋쇠 외피 및 기타 금속 소켓 등은 접지되어 있지 않으면 사용할 수 없다.
- (7) 유연코드 및 케이블은 우발적 손상으로부터 방호되어야 하며, 날카로운 모서리나 돌출부를 피하고 문 등 좁은 구역을 통과하는 경우에는 손상을 방지하기 위한 방호조치를 한다.

E - 85 - 2017

10. 배전반 및 분전반(Switchboards and panelboards)

- (1) 노출충전부를 가진 배전반은 건조한 장소에 고정 설치하되, 유자격자만이 접근할 수 있도록 한다.
- (2) 분전반은 전면에 충전부가 없는 외부 조작형으로 제작하고, 캐비닛, 컷아웃 박스패널 또는 밀폐함 내에 설치하며, 나이프 스위치의 날은 개방 시 충전되지 않아야 한다.

11. 배선용 도체

11.1 일반 배선용 도체

- (1) 모든 도체는 특별히 허용되지 않는 한 절연하여야 하며, 절연은 당해 전압, 사용 온도, 사용장소에 적합하도록 한다.
- (2) 절연도체는 색깔 또는 기타 적합한 방법으로 접지도체와 비접지도체를 서로 구분이 되도록 한다.
- 11.2 저압 유연코드 및 케이블
- 11.2.1 유연코드 및 케이블의 사용
 - (1) 유연코드와 케이블은 사용조건과 장소에 적합한 것으로서, 다음의 경우에 사용된다.
 - (가) 펜던트
 - (나) 전기기구의 배선
 - (다) 휴대형 조명등 또는 전기기구의 접속
 - (라) 엘리베이터 케이블
 - (마) 크레인과 호이스트의 배선
 - (바) 빈번하게 교체하는 전기기기의 접속
 - (사) 잡음이나 진동의 전달 방지

E - 85 - 2017

- (아) 데이터처리 설비의 일부인 데이터처리 케이블
- (자) 가동부의 접속
- (2) 상기 (1)항의 경우를 제외하고는 유연코드와 케이블이 다음의 경우에 사용되어서는 안 된다.
 - (가) 구조물에 고정된 배선의 대용
 - (나) 벽, 천장, 바닥을 관통하는 배선
 - (다) 문, 창문 또는 이와 유사한 개구부를 관통하는 배선
 - (라) 건물 표면에 부착된 경우
 - (마) 건물의 벽, 천장, 바닥 뒤에 은폐된 경우

11.2.2 표시, 접속 및 단자처리

- (1) 접지도체로 사용하는 유연코드와 케이블의 도체는 다른 도체와 적절한 방법으로 구별한다.
- (2) 유연코드는 접속점 또는 분기점 없이 연속적으로 설치를 하고, 코드의 보수시에 는 접속된 코드의 특성 및 절연 등이 유지될 경우에 한하여 교체하며, 접속부에 인장력이 직접 가해지지 않도록 인장 완화기구를 사용하여 접속시킨다.

11.3 전기기구용 배선

11.3.1 일반 사항

전기기구용 배선은 전압, 온도, 사용 장소에 적합한 제품을 사용하고, 접지측 도체가 사용되는 경우에는 명확히 구별을 한다.

11.3.2 전기기구용 배선이 허용되는 경우

(1) 조명기구 및 이와 유사한 기구용으로 배선의 구부러짐 또는 꼬임의 우려가 없도록 밀폐되거나 인입된 경우

E - 85 - 2017

- (2) 전기기구용 분기회로에 연결된 등기구용
- 11.3.3 분기회로의 사용 금지

전기기구용 배선은 예외규정이 있는 경우를 제외하고는 분기회로로 사용하면 안 된다.

12. 일반 전기기기

- 12.1 조명기구, 램프홀더, 조명등 및 리셉터클
 - (1) 노출충전부가 허용되는 바닥 위 2.4 m 이상의 높이에 설치된 리셉터클·쇄기형 램프홀더·로젯 등을 제외하고는 노출 충전부가 없어야 한다.
 - (2) 유연코드를 통해 공급되는 이동형 조명등의 손잡이는 몰드형이거나 당해 용도로 제작된 재질이어야 하고, 방호장치를 램프홀더 또는 손잡이에 부착한다.
 - (3) 나사형 램프홀더는 램프홀더용으로만 사용하여야 하며, 물기 또는 습기가 있는 장소에 설치된 램프홀더는 옥외형이어야 한다.
 - (4) 물 또는 습기가 있는 장소에 설치된 기구는 사용환경에 적합한 용도로 제작된 것이어야 하고, 전선로나 램프홀더 또는 기타 전기 부품에 물이 침입하지 못하도록 설치한다.
- 12.2 리셉터클, 코드접속기 및 부속 플러그
 - (1) 15 A 및 20 A용 플러그와 접속기는 날, 핀 등을 제외하고는 노출 충전부가 없어야 한다.
 - (2) 리셉터클, 코드 접속기, 플러그 등은 서로 다른 전압일 경우 상호 접속할 수 없는 구조이어야 한다.
 - (3) 접지형 플러그를 비접지형 리셉터클 및 접속기에 사용해서는 안 된다.
 - (4) 물 또는 습기가 있는 장소에서 사용되는 리셉터클은 그 장소에 적합한 형식의

E - 85 - 2017

것을 사용한다.

(5) 옥외에 시설하는 리셉터클은 기후 또는 기타 습한 장소로부터 보호되는 방후형 (Weather proof) 덮개를 설치한다.

12.3 전기기구

- (1) 부득이 충전부를 노출하여야 하는 저항열 요소를 제외하고는 전기기구에 정상상 태에서 노출된 충전부는 없어야 한다.
- (2) 전기기구의 모든 비접지 도체에는 단로장치를 설치한다.
- (3) 전기기구의 명판에는 정격전압과 전류를 명기하여야 하며, 표시내용은 설치된 후에 쉽게 식별 가능하여야 한다.

12.4 전동기

12.4.1 가시범위 내 설치

동일한 전기기기에서 서로 다른 부위에 설치된 전동기는 직선거리로 15 m 이내의 가시범위 내에 있어야 한다.

12.4.2 단로장치

- (1) 단로장치는 각각의 제어기에 설치하되 가시범위 내에 있어야 한다. 다만, 다수의 전동기와 인접하여 설치된 제어기 군이 있을 경우, 이 제어기 군에는 단일 단로 장치를 설치할 수 있다. 만일, 제어기의 전원이 개방된 경우 단로장치의 잠금표 시와 위치를 확인할 수 있는 경고표시가 있다면, 그 단로장치는 해당 제어기의 가시범위 밖에 설치할 수 있다.
- (2) 단로장치는 비접지된 상 도체를 일괄 단로시키고, 각각의 상 도체를 개별적으로 단로시킬 수 없는 구조이어야 한다.
- (3) 단로장치는 개방 또는 투입상태를 명확하게 나타내어야 한다.

E - 85 - 2017

- (4) 단로장치에 쉽게 접근할 수 있어야 한다. 동일한 전기기기에 하나 이상의 단로장치 가 설치될 경우 그 중 하나는 쉽게 접근 가능해야 한다.
- (5) 각각의 전동기에는 각각의 단로장치가 설치되어야 하나, 다음 조건 중 하나에 해당하는 경우에는 일련의 전동기에 하나의 단로장치를 사용할 수 있다.
 - (가) 철제 또는 목가공 기계, 호이스트, 크레인 등과 같이 하나의 기계를 위해 특정부분을 구동시키는 여러 대의 전동기가 있는 경우
 - (나) 다수의 전동기가 하나의 분기회로 보호장치에 의해 운전되고 있는 경우
 - (다) 다수의 전동기가 하나의 해당 단로장치 위치에서 가시범위 내에 있는 경우
- (6) 전동기, 제어장치, 전동기용 분기회로 등은 과부하나 기동실패로 인한 과열, 단락 또는 지락으로부터 보호되도록 한다.
- (7) 소방펌프 등과 같이 운전정지가 더 큰 위험을 초래하거나 설비나 공정의 안전한 운전정지를 위해 계속적인 운전이 필요한 경우처럼 전동기 보호장치의 작동이 위험을 증가시킬 우려가 있을 경우에는 과부하 보호를 필요로 하지 않는다.

12.5 변압기

- (1) 변압기의 전압을 구조물 위의 적절한 위치에 표시를 한다.
- (2) 정격전압이 35 kV 이상인 건식변압기, 난연성 절연유 또는 아스카렐 절연(Askarel-insulated) 변압기일 경우는 전용실 내에 설치한다.
- (3) 유입변압기를 옥내에 설치하는 경우에는 전용실 내에 설치한다.
- (4) 유입변압기 주변에 가연성 물질, 가연성 건물, 건물의 개구부 등이 있을 경우에는 유입변압기 화재로부터의 방호조치를 한다.
- (5) 변압기 실은 유자격자 이외의 출입을 금하도록 하고, 잠금장치는 변전실 내부에서 쉽고 빠르게 열 수 있는 구조이어야 한다.
- (6) 변압기 실에는 외부로부터의 어떠한 배관이나 닥트를 인입 또는 통과해서도 안

E - 85 - 2017

되고, 내부에는 어떠한 물품도 보관하여서는 안 된다.

12.6 콘덴서(Capacitors)

서지(Surge)콘덴서 또는 다른 기기의 일부로 포함된 콘덴서를 제외하고는 모든 콘덴서에 전원차단 후에 잔류전하를 자동 방전시키는 장치가 있어야 한다.

12.7 축전지(Storage Batteries)

축전지 실은 축전지로부터 발생하는 폭발성 혼합가스의 축적을 방지하기 위하여 충분한 환기 및 배출조치를 한다.

13. 고압의 전기기기

고압전기기기의 설치에 관한 사항은 KOSHA GUIDE E-163 "특수전력시스템 설치 및 운영에 관한 기술지침"을 참조한다.

14. 폭발위험장소

- (1) 안전보건규칙 제230조(폭발위험이 있는 장소의 설정 및 관리)에 의한 폭발위험장소에 관한 사항은 KOSHA GUIDE E-47 "가스폭발위험장소의 설정 및 관리에 관한 기술지침" 및 KOSHA GUIDE E-99 "분진폭발위험장소 설정에 관한 기술지침"을 참조한다.
- (2) 안전보건규칙 제311조(폭발위험장소에서 사용하는 전기기계·기구의 선정 등)에 의한 폭발위험장소에 관한 사항은 KOSHA GUIDE E-48 "가스 폭발분위기에서 의 전기기기 설계, 선정 및 설치에 관한 기술지침"을 참조한다.

15. 비상 전원

비상전원 설치에 관한 사항은 KOSHA GUIDE E-84 "비상전원의 선정 및 설치에 관한 기술지침"을 참조한다.