МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Основы профессиональной деятельности»

Вариант № 15311

Выполнил:

Студент группы P3115 Барсуков Максим Андреевич

Преподаватель:

Абузов Ярослав Александрович

Содержание

Текст задания	3
Описание программы	4
Таблица трассировки	5
Вывод	6

Текст задания

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

455:	046C	463:	0380
456:	A000	464:	0200
457:	E000	465:	0280
458:	0200	466:	2EF1
459:	+ 0200	467:	0400
45A:	EEFD	468:	EEEF
45B:	AF03	469:	8457
45C:	EEFA	46A:	CEF4
45D:	4EF7	46B:	0100
45E:	EEF7	46C:	1000
45F:	ABF6	46D:	845D
460:	0480	46E:	0740
461:	F401	ĺ	
462:	0480	İ	
		-	

Адрес	Код команды	Мнемоника	Комментарии					
455	046C	arr_first_elem	Адрес первого элемента					
456	A000	arr_last_elem	Адрес текущего элемента (начиная с последнего)					
457	E000	arr_length	Количество элементов массива					
458	0200	result	Результат					
459	0200	CLA	Очистка аккумулятора					
45A	EEFD	ST IP-3	Прямое отн. сохранение (Очистка ячейки 458) АС -> М (458)					
45B	AF03	LD #3	Прямая загрузка 0003 -> АС					
45C	EEFA	ST IP-6	Прямое относительное сохранение AC -> M (457)					
45D	4EF7	ADD IP-9	Прямое относительное сложение М(455) + АС -> АС					
45E	EEF7	ST IP-9	Прямое относительное сохранение АС -> М (456)					
45F	ABF6	LD –(IP-10)	Косвенная автодекрементальная загрузка: Зн(456) — 1; Зн(456) -> А					
460	0480	ROR	Циклический сдвиг вправо					
461	F401	BCS IP+1	Если C == 1, то IP = IP + 1 + 1 -> IP					
462	0480	ROR	Циклический сдвиг вправо					
463	0380	CMC	Инверсия флага C: ^C -> C					
464	0200	CLA	Очистка аккумулятора					
465	0280	NOT	^AC -> AC					
466	2EF1	AND IP-15	Прямое относительное логическое И: М(458) & АС -> АС					
467	0400	ROL	Циклический сдвиг влево					
468	EEEF	ST IP-17	Прямое относительное сохранение АС -> М (458)					
469	8457	LOOP 457	M(457) − 1 -> M(457); Если M(457) <= 0, то IP + 1 -> IP					
46A	CEF4	JUMP IP-12	Прямой относительный прыжок IP - 12 + 1 -> IP ()					
46B	0100	HLT	Останов					
46C	1000							
46D	845D		Элементы массива					
46E	0740							

Описание программы

Программа находит элементы массива, которые делятся на 4 и сохраняет информацию о них в биты ячейки результата. Формула результата:

$$MEM(458) = \sum_{i=0}^{MEM(457)} \begin{cases} 2^i \text{ если MEM}(46C+i) : 4 \\ 0 \text{ если MEM}(46C+i) : 4 \end{cases}$$

Область представления

- arr_first_elem, arr_last_elem, arr_length, result 16-ти разрядные целые числа в прямом коде.
- arr[i] 16-ти разрядные целые числа в дополнительном коде

Область допустимых значений

- arr_length ϵ [1; 16] (т. к. при arr_length > 16 битов результата не будет хватать для данных о делимости элементах и он будет ошибочным)
- result $\in [0; 2^{16} 1]$ (T. K. max = $1 + 2 + 4 + ... + 2^{15}$)
- $arr_first_elem \in [0; 455 arr_length] v [46B; 7FF arr_length]$
- arr_last_elem ∈ [arr_first_elem; arr_first_elem + arr_length 1]
- Элементы массива arr[i] ϵ [-32768; 32767] (т. е. [-2¹⁵; 2¹⁵-1])

Расположение данных в памяти

- 455, 457, 46С, 46D, 46Е исходные данные;
- 456 промежуточный результат;
- 458 итоговый результат;
- 459 46В команды.

Адреса первой и последней выполняемой команды

- Адрес первой команды: 459
- Адрес последней команды: 46В

Таблица трассировки

Значения:

 $Arr[0] = 0x1000, \ Arr[1] = 0x845D, \ Arr[2] = 0x0740, \ arr_length = 3, \ arr_first_elem = 0x046C$

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
459	200	459	0	0	0	0	0	0	4	100		
459	200	45A	200	459	200	0	459	0	4	100		
45A	EEFD	45B	EEFD	458	0	0	FFFD	0	4	100	458	0
45B	AF03	45C	AF03	45B	3	0	3	3	0	0		
45C	EEFA	45D	EEFA	457	3	0	FFFA	3	0	0	457	3
45D	4EF7	45E	4EF7	455	046C	0	FFF7	046F	0	0		
45E	EEF7	45F	EEF7	456	046F	0	FFF7	046F	0	0	456	046F
45F	ABF6	460	ABF6	46E	740	0	FFF6	740	0	0	456	046E
460	480	461	480	460	480	0	460	03A0	0	0		
461	F401	462	F401	461	F401	0	461	03A0	0	0		
462	480	463	480	462	480	0	462	01D0	0	0		
463	380	464	380	463	380	0	463	01D0	1	1		
464	200	465	200	464	200	0	464	0	5	101		
465	280	466	280	465	280	0	465	FFFF	9	1001		
466	2EF1	467	2EF1	458	0	0	FFF1	0	5	101		
467	400	468	400	467	400	0	467	1	0	0		
468	EEEF		EEEF	458	1	0	FFEF	1	0	0	458	1
469	8457	46A	8457	457	2	0	1	1	0	0	457	2
46A	CEF4	45F	CEF4	46A	045F		FFF4	1	0	0		
45F	ABF6		ABF6	46D	845D		FFF6	845D	8	1000	456	046D
460	480	461	480	460	480	0		422E	3	11		
461	F401		F401		F401	0		422E	3	11		
463	380	464	380	463	380	0		422E	2	10		
464	200	465	200	464	200	0	464	0	4	100		
465	280	466	280	465	280	0		FFFF	8	1000		
466	2EF1		2EF1	458	1		FFF1	1	0	0		
467	400	468	400	467	400	0	467	2	0	0		
468	EEEF		EEEF	458	2		FFEF	2	0	0	458	2
469	8457		8457	457	1	0	0	2	0	0	457	1
46A	CEF4				045F		FFF4	2	0	0		
45F	ABF6		ABF6	46C	1000		FFF6	1000	0	0	456	046C
460	480	461	480	460	480	0	460	800	0	0		
461	F401		F401		F401	0	461	800	0	0		
462	480	463	480	462	480	0	462	400	0	0		
463	380	464	380	463	380	0	463	400	1	1		
464	200	465	200	464	200	0	464	0	5	101		
465	280	466	280	465	280	0		FFFF	9	1001		
466	2EF1	467	2EF1	458	2		FFF1	2	1	1		
467	400	468	400	467	400	0	467	5	0	0		
468	EEEF		EEEF	458	5	-	FFEF	5	0	0	458	5
469	8457		8457	457	0		FFFF	5	0	0	457	0
46B		46C		46B	100		046B	5	0	0	,	

Вывод

Во время выполнения лабораторной работы я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.