

UTILITY PATENT APPLICATION TRANSMITTAL		Attorney Docket No. 210121.419C7 First Inventor or Application Identifier Tony N. Frudakis Title COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER Express Mail Label No. EL487465173US
APPLICATION ELEMENTS <small>See MPEP chapter 600 concerning utility patent application contents.</small>		ADDRESS TO: Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231
1. <input type="checkbox"/> General Authorization Form & Fee Transmittal <small>(Submit an original and a duplicate for fee processing)</small> 2. <input checked="" type="checkbox"/> Specification [Total Pages] 57 <ul style="list-style-type: none"> - Descriptive Title of the Invention - Cross References to Related Applications - Statement Regarding Fed sponsored R & D - Reference to Microfiche Appendix - Background of the Invention - Brief Summary of the Invention - Brief Description of the Drawings (if filed) - Detailed Description - Claim(s) - Abstract of the Disclosure 3. <input checked="" type="checkbox"/> Drawing(s) (35 USC 113) [Total Sheets] 25 4. Oath or Declaration [Total Pages] <ul style="list-style-type: none"> a. <input type="checkbox"/> Newly executed (original or copy) b. <input type="checkbox"/> Copy from a prior application (37 CFR 1.63(d)) <small>(for continuation/divisional with Box 17 completed)</small> <ul style="list-style-type: none"> i. <input type="checkbox"/> DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b) 5. <input type="checkbox"/> Incorporation By Reference (useable if box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered to be part of the disclosure of the accompanying application and is hereby incorporated by reference therein.		6. <input type="checkbox"/> Microfiche Computer Program (Appendix)
7. Nucleotide and Amino Acid Sequence Submission <small>(if applicable, all necessary)</small> <ul style="list-style-type: none"> a. <input checked="" type="checkbox"/> Computer-Readable Copy b. <input checked="" type="checkbox"/> Paper Copy (identical to computer copy) c. <input checked="" type="checkbox"/> Statement verifying identity of above copies 		ACCOMPANYING APPLICATION PARTS <ul style="list-style-type: none"> 8. <input type="checkbox"/> Assignment Papers (cover sheet & document(s)) 9. <input type="checkbox"/> 37 CFR 3.73(b) Statement <small>(when there is an assignee)</small> <input type="checkbox"/> Power of Attorney 10. <input type="checkbox"/> English Translation Document (if applicable) 11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449 <input type="checkbox"/> Copies of IDS Citations 12. <input type="checkbox"/> Preliminary Amendment 13. <input checked="" type="checkbox"/> Return Receipt Postcard 14. <input type="checkbox"/> Small Entity Statement(s) <input type="checkbox"/> Statement filed in prior application, Status still proper and desired 15. <input type="checkbox"/> Certified Copy of Priority Document(s) <small>(if foreign priority is claimed)</small> 16. <input checked="" type="checkbox"/> Other: <u>Certificate of Express Mail</u>
17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information below and in a preliminary amendment		<input type="checkbox"/> Continuation <input type="checkbox"/> Divisional <input checked="" type="checkbox"/> Continuation-In-Part (CIP) of prior Application No. 09/429,755 Prior application information: Examiner <u>(NOT ASSIGNED)</u> Group / Art Unit 1641 <input type="checkbox"/> Claims the benefit of Provisional Application No. _____
CORRESPONDENCE ADDRESS		
David J. Maki Seed Intellectual Property Law Group PLLC 701 Fifth Avenue, Suite 6300 Seattle, Washington 98104-7092 Phone: (206) 622-4900 / Fax: (206) 682-6031		

Respectfully submitted,

TYPED or PRINTED NAME David J. MakiSIGNATURE

L:\210121 - Corixa\419c7\Forms\ptosb05.doc

REGISTRATION NO. **31,392**Date MARCH 25, 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

PATENT

Applicants : Tony N. Frudakis - Sarasota, Florida
John M. Smith - Everett, Washington
Steven G. Reed - Bellevue, Washington
Lynda E. Misher - Seattle, Washington
Marc W. Retter - Carnation, Washington
Davin C. Dillon - Redmond, Washington

Filed : March 23, 2000

For : COMPOSITIONS AND METHODS FOR THE TREATMENT AND
DIAGNOSIS OF BREAST CANCER

Docket No. : 210121.419C7

Date : March 23, 2000

Box Patent Application
Assistant Commissioner for Patents
Washington, DC 20231

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

Assistant Commissioner for Patents:

I hereby certify that the enclosures listed below are being deposited with the United States Postal Service "EXPRESS MAIL Post Office to Addressee" service under 37 C.F.R. § 1.10, Mailing Label Certificate No. EL487465173US, on March 23, 2000, addressed to Box Patent Application, Assistant Commissioner for Patents, Washington, DC 20231.

Respectfully submitted,

Seed Intellectual Property Law Group PLLC

Judith A. Breaks/Jeanette West/Susan Johnson

Enclosures:

Postcard
Form PTO/SB/05
Specification, Claims, Abstract (57 pages)
25 pages of Drawings (Figs. 1-24)
Declaration re Sequence Listing
Computer Diskette Containing Sequence Listing
Hard Copy of Sequence Listing (112 pages)

COMPOSITIONS AND METHODS FOR THE TREATMENT
AND DIAGNOSIS OF BREAST CANCER

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Patent Application No. 5 09/429,755, filed October 28, 1999, which is a continuation-in-part of U.S. Patent Application No. 09/289,198, filed April 9, 1999, which is a continuation-in-part of U.S. Patent Application No. 09/062,451, filed April 17, 1998, which is a continuation in part of U.S. Patent Application No. 08/991,789, filed December 11, 1997, which is a continuation-in-part of U.S. Patent Application No. 08/838,762, filed April 9, 1997, 10 which claims priority from International Patent Application No. PCT/US97/00485, filed January 10, 1997, and is a continuation-in-part of U.S. Patent Application No. 08/700,014, filed August 20, 1996, which is a continuation-in-part of U.S. Patent Application No. 08/585,392, filed January 1, 1996.

TECHNICAL FIELD

15 The present invention relates generally to the detection and therapy of breast cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in breast tumor tissue and to polypeptides encoded by such nucleotide sequences. The nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the prevention and treatment of breast 20 cancer. The polypeptides may also be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of breast cancer in a patient.

BACKGROUND OF THE INVENTION

Breast cancer is a significant health problem for women in the United 25 States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year.

For women in North America, the life-time odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently 5 relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. *See, e.g.*, Porter-Jordan and 10 Lippman, *Breast Cancer* 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality observed in breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy 15 and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the subject invention provides compositions and methods for the diagnosis and therapy of breast cancer. In one aspect, isolated polynucleotides are 20 provided, comprising (a) a nucleotide sequence preferentially expressed in breast cancer tissue, relative to normal tissue; (b) a variant of such a sequence, as defined below; or (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one of the above sequences. In one embodiment, the isolated polynucleotide comprises a human endogenous retroviral sequence recited in SEQ ID NO:1. In other embodiments, 25 the isolated polynucleotide comprises a sequence recited in any one of SEQ ID NO: 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

In related embodiments, the isolated polynucleotide encodes an epitope of a polypeptide, wherein the polypeptide is encoded by a nucleotide sequence that: (a) hybridizes to a sequence recited in any one of SEQ ID NO: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 under stringent conditions; and (b) is at least 80% identical to a sequence recited in any one of SEQ ID NO: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

In another embodiment, the present invention provides an isolated polynucleotide encoding an epitope of a polypeptide, the polypeptide being encoded by: (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained. Isolated DNA and RNA molecules comprising a nucleotide sequence complementary to a polynucleotide as described above are also provided.

In related aspects, the present invention provides recombinant expression vectors comprising a polynucleotide as described above and host cells transformed or transfected with such expression vectors.

In further aspects, polypeptides comprising an amino acid sequence encoded by a polynucleotide as described above, and monoclonal antibodies that bind to such polypeptides are provided. In certain embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 299, 300, 304-306, 308 and 315, and variants thereof as defined below.

In yet another aspect, methods are provided for determining the presence of breast cancer in a patient. In one embodiment, the method comprises detecting, within a biological sample, a polypeptide as described above. In another embodiment, the

method comprises detecting, within a biological sample, an RNA molecule encoding a polypeptide as described above. In yet another embodiment, the method comprises (a) intradermally injecting a patient with a polypeptide as described above; and (b) detecting an immune response on the patient's skin and therefrom detecting the presence of breast cancer in the patient. In further embodiments, the present invention provides methods for determining the presence of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In a related aspect, diagnostic kits useful in the determination of breast cancer are provided. The diagnostic kits generally comprise either one or more monoclonal antibodies as described above, or one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and a detection reagent.

Diagnostic kits are also provided that comprise a first polymerase chain reaction primer and a second polymerase chain reaction primer, at least one of the primers being specific for a polynucleotide described herein. In one embodiment, at least one of the primers comprises at least about 10 contiguous nucleotides of a polynucleotide as described above, or a polynucleotide encoding a polypeptide encoded by a sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

Within another related aspect, the diagnostic kit comprises at least one oligonucleotide probe, the probe being specific for a polynucleotide described herein. In one embodiment, the probe comprises at least about 15 contiguous nucleotides of a polynucleotide as described above, or a polynucleotide selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217,

220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

In another related aspect, the present invention provides methods for monitoring the progression of breast cancer in a patient. In one embodiment, the method 5 comprises: (a) detecting an amount, in a biological sample, of a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In another embodiment, the method comprises (a) detecting an amount, within a biological sample, of an RNA 10 molecule encoding a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In yet other embodiments, the present invention provides methods for monitoring the progression of breast cancer in a patient as described above wherein the 15 polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In still other aspects, pharmaceutical compositions, which comprise a 20 polypeptide as described above in combination with a physiologically acceptable carrier, and vaccines, which comprise a polypeptide as described above in combination with an immunostimulant or adjuvant, are provided. In yet other aspects, the present invention provides pharmaceutical compositions and vaccines comprising a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In related aspects, the present invention provides methods for inhibiting the development of breast cancer in a patient, comprising administering to a patient a 30 pharmaceutical composition or vaccine as described above.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the differential display PCR products, separated by gel electrophoresis, obtained from cDNA prepared from normal breast tissue (lanes 1 and 2) and from cDNA prepared from breast tumor tissue from the same patient (lanes 3 and 4). The arrow indicates the band corresponding to B18Ag1.

10 Figure 2 is a northern blot comparing the level of B18Ag1 mRNA in breast tumor tissue (lane 1) with the level in normal breast tissue.

Figure 3 shows the level of B18Ag1 mRNA in breast tumor tissue compared to that in various normal and non-breast tumor tissues as determined by RNase protection assays.

15 Figure 4 is a genomic clone map showing the location of additional retroviral sequences obtained from ends of XbaI restriction digests (provided in SEQ ID NO:3 - SEQ ID NO:10) relative to B18Ag1.

Figures 5A and 5B show the sequencing strategy, genomic organization and predicted open reading frame for the retroviral element containing B18Ag1.

20 Figure 6 shows the nucleotide sequence of the representative breast tumor-specific cDNA B18Ag1.

Figure 7 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag1.

25 Figure 8 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag2.

Figure 9 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag2a.

Figure 10 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1b.

Figure 11 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1a.

Figure 12 shows the nucleotide sequence of the representative breast tumor-specific cDNA B11Ag1.

5 Figure 13 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3c.

Figure 14 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG1.

10 Figure 15 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG3.

Figure 16 shows the nucleotide sequence of the representative breast tumor-specific cDNA B2CA2.

15 Figure 17 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA1.

Figure 18 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA2.

Figure 19 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3.

20 Figure 20 shows the nucleotide sequence of the representative breast tumor-specific cDNA B4CA1.

Figure 21A depicts RT-PCR analysis of breast tumor genes in breast tumor tissues (lanes 1-8) and normal breast tissues (lanes 9-13) and H₂O (lane 14).

25 Figure 21B depicts RT-PCR analysis of breast tumor genes in prostate tumors (lane 1, 2), colon tumors (lane 3), lung tumor (lane 4), normal prostate (lane 5), normal colon (lane 6), normal kidney (lane 7), normal liver (lane 8), normal lung (lane 9), normal ovary (lanes 10, 18), normal pancreases (lanes 11, 12), normal skeletal muscle (lane 13), normal skin (lane 14), normal stomach (lane 15), normal testes (lane 16), normal small intestine (lane 17), HBL-100 (lane 19), MCF-12A (lane 20), breast tumors (lanes 21-23), H₂O (lane 24), and colon tumor (lane 25).

30 Figure 22 shows the recognition of a B11Ag1 peptide (referred to as B11-8) by an anti-B11-8 CTL line.

Figure 23 shows the recognition of a cell line transduced with the antigen B11Ag1 by the B11-8 specific clone A1.

Figure 24 shows recognition of a lung adenocarcinoma line (LT-140-22) and a breast adenocarcinoma line (CAMA-1) by the B11-8 specific clone A1.

5 DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis, monitoring and therapy of breast cancer. The compositions described herein include polypeptides, polynucleotides and antibodies. Polypeptides of the present invention generally comprise at least a portion of a protein that is expressed at a greater level in human breast tumor tissue than in normal breast tissue (*i.e.*, the level of RNA encoding the polypeptide is at least 2-fold higher in tumor tissue). Such polypeptides are referred to herein as breast tumor-specific polypeptides, and cDNA molecules encoding such polypeptides are referred to as breast tumor-specific cDNAs. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of a polypeptide as described above, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or fragments thereof, that are capable of binding to a portion of a polypeptide as described above. Antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.

Polypeptides within the scope of this invention include, but are not limited to, polypeptides (and epitopes thereof) encoded by a human endogenous retroviral sequence, such as the sequence designated B18Ag1 (Figure 5 and SEQ ID NO:1). Also within the scope of the present invention are polypeptides encoded by other sequences within the retroviral genome containing B18Ag1 (SEQ ID NO: 141). Such sequences include, but are not limited to, the sequences recited in SEQ ID NO:3 - SEQ ID NO:10. B18Ag1 has homology to the *gag* p30 gene of the endogenous human retroviral element S71, as described in Werner et al., *Virology* 174:225-238 (1990) and also shows homology to about thirty other retroviral *gag* genes. As discussed in more detail below, the present invention also includes a number of additional breast tumor-

specific polypeptides, such as those encoded by the nucleotide sequences recited in SEQ ID NO: 11-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 5 316 and 317.

As used herein, the term “polypeptide” encompasses amino acid chains of any length, including full length proteins containing the sequences recited herein. A polypeptide comprising an epitope of a protein containing a sequence as described herein may consist entirely of the epitope, or may contain additional sequences. The additional 10 sequences may be derived from the native protein or may be heterologous, and such sequences may (but need not) possess immunogenic or antigenic properties.

An “epitope,” as used herein is a portion of a polypeptide that is recognized (*i.e.*, specifically bound) by a B-cell and/or T-cell surface antigen receptor. Epitopes may generally be identified using well known techniques, such as those 15 summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides derived from the native polypeptide for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An epitope of a polypeptide is a portion that reacts with such antisera and/or T-cells at a level that is similar to the reactivity of the full length 20 polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold 25 Spring Harbor Laboratory, 1988. B-cell and T-cell epitopes may also be predicted via computer analysis. Polypeptides comprising an epitope of a polypeptide that is preferentially expressed in a tumor tissue (with or without additional amino acid sequence) are within the scope of the present invention.

The term “polynucleotide(s),” as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and 30 anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An

mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes 5 all such operable anti-sense fragments.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that 10 the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures 15 described herein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled 20 in the art of peptide chemistry would expect the secondary structure and hydrophobic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

25 Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydrophobic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. 30 The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance

binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

The breast tumor antigens provided by the present invention include variants that are encoded by DNA sequences which are substantially homologous to one or more of the DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of 5 evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) 10 Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the 15 Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

Preferably, the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison 20 of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which 25 the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity. In general, polynucleotides encoding all or a portion of the polypeptides described herein may be prepared using any 30 of several techniques. For example, cDNA molecules encoding such polypeptides may be cloned on the basis of the breast tumor-specific expression of the corresponding mRNAs, using differential display PCR. This technique compares the amplified

products from RNA template prepared from normal and breast tumor tissue. cDNA may be prepared by reverse transcription of RNA using a (dT)₁₂AG primer. Following amplification of the cDNA using a random primer, a band corresponding to an amplified product specific to the tumor RNA may be cut out from a silver stained gel and 5 subcloned into a suitable vector (e.g., the T-vector, Novagen, Madison, WI). Polynucleotides encoding all or a portion of the breast tumor-specific polypeptides disclosed herein may be amplified from cDNA prepared as described above using the random primers shown in SEQ ID NO.:87-125.

Alternatively, a polynucleotide encoding a polypeptide as described 10 herein (or a portion thereof) may be amplified from human genomic DNA, or from breast tumor cDNA, via polymerase chain reaction. For this approach, B18Ag1 sequence-specific primers may be designed based on the sequence provided in SEQ ID NO:1, and may be purchased or synthesized. One suitable primer pair for amplification from breast tumor cDNA is (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO:126) and 15 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO:127). An amplified portion of B18Ag1 may then be used to isolate the full length gene from a human genomic DNA library or from a breast tumor cDNA library, using well known techniques, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989). Other sequences within the 20 retroviral genome of which B18Ag1 is a part may be similarly prepared by screening human genomic libraries using B18Ag1-specific sequences as probes. Nucleotides translated into protein from the retroviral genome shown in SEQ ID NO: 141 may then be determined by cloning the corresponding cDNAs, predicting the open reading frames and cloning the appropriate cDNAs into a vector containing a viral promoter, such as T7. 25 The resulting constructs can be employed in a translation reaction, using techniques known to those of skill in the art, to identify nucleotide sequences which result in expressed protein. Similarly, primers specific for the remaining breast tumor-specific polypeptides described herein may be designed based on the nucleotide sequences provided in SEQ ID NO:11-86, 142-298, 301-303, 307, 313, 314, 316 and 317.

30 Recombinant polypeptides encoded by the DNA sequences described above may be readily prepared from the DNA sequences. For example, supernatants

from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps 5 can be employed to further purify a recombinant polypeptide.

In general, any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide that 10 encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO.

Such techniques may also be used to prepare polypeptides comprising epitopes or variants of the native polypeptides. For example, variants of a native 15 polypeptide may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence may be removed to permit preparation of truncated polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to 20 those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.* 85:2149-2146 (1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as 25 Perkin Elmer/Applied BioSystems Division, Foster City, CA, and may be operated according to the manufacturer's instructions.

In specific embodiments, polypeptides of the present invention encompass amino acid sequences encoded by a polynucleotide having a sequence recited in any one of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 30 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307,

313, 314, 316 and 317, and variants of such polypeptides. Polypeptides within the scope of the present invention also include polypeptides (and epitopes thereof) encoded by DNA sequences that hybridize to a sequence recited in any one of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-
5 214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-
273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317
under stringent conditions, wherein the DNA sequences are at least 80% identical in overall sequence to a recited sequence and wherein RNA corresponding to the nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal
10 breast tissue. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2 X SSC, 0.1% SDS at 65°C. Polynucleotides according to the present invention include molecules that encode any of the above polypeptides.

15 In another aspect of the present invention, antibodies are provided. Such antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. *See, e.g.*, Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (*e.g.*, mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined
20 schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest
30 may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976), and improvements thereto. Briefly, these methods involve

the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a 5 myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, 10 aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing 15 hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and 20 extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used, for example, in methods for detecting breast cancer in a patient. Such methods involve using an antibody to detect the presence or absence of a breast tumor-specific polypeptide as described herein in a suitable biological 25 sample. As used herein, suitable biological samples include tumor or normal tissue biopsy, mastectomy, blood, lymph node, serum or urine samples, or other tissue, homogenate, or extract thereof obtained from a patient.

There are a variety of assay formats known to those of ordinary skill in the art for using an antibody to detect polypeptide markers in a sample. *See, e.g.*, Harlow 30 and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, the assay may be performed in a Western blot format, wherein a protein

preparation from the biological sample is submitted to gel electrophoresis, transferred to a suitable membrane and allowed to react with the antibody. The presence of the antibody on the membrane may then be detected using a suitable detection reagent, as described below.

5 In another embodiment, the assay involves the use of antibody immobilized on a solid support to bind to the polypeptide and remove it from the remainder of the sample. The bound polypeptide may then be detected using a second antibody or reagent that contains a reporter group. Alternatively, a competitive assay 10 may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized antibody after incubation of the antibody with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the antibody is indicative of the reactivity of the sample with the immobilized antibody, and as a result, indicative of the concentration of polypeptide in the sample.

The solid support may be any material known to those of ordinary skill in 15 the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose filter or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. 20 Patent No. 5,359,681.

The antibody may be immobilized on the solid support using a variety of techniques known to those in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment 25 (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically 30 between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of antibody ranging

from about 10 ng to about 1 μ g, and preferably about 100-200 ng, is sufficient to immobilize an adequate amount of polypeptide.

Covalent attachment of antibody to a solid support may also generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the antibody. For example, the antibody may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook (1991) at A12-A13).

In certain embodiments, the assay for detection of polypeptide in a sample is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the biological sample, such that the polypeptide within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by

assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of breast cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value established from non-tumor tissue. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value may be considered positive for breast cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, p. 106-7 (Little Brown and Co., 1985). Briefly, in

this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is 10 considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, the polypeptide within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then 15 binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the 20 area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually 25 discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 1 μ g. Such tests can typically be performed with a very small amount of 30 biological sample.

The presence or absence of breast cancer in a patient may also be determined by evaluating the level of mRNA encoding a breast tumor-specific polypeptide as described herein within the biological sample (e.g., a biopsy, mastectomy and/or blood sample from a patient) relative to a predetermined cut-off value. Such an 5 evaluation may be achieved using any of a variety of methods known to those of ordinary skill in the art such as, for example, *in situ* hybridization and amplification by polymerase chain reaction.

For example, polymerase chain reaction may be used to amplify sequences from cDNA prepared from RNA that is isolated from one of the above 10 biological samples. Sequence-specific primers for use in such amplification may be designed based on the sequences provided in any one of SEQ ID NO: 1, 11-86, 142-298 301-303, 307, 313, 314, 316 and 317, and may be purchased or synthesized. In the case of B18Ag1, as noted herein, one suitable primer pair is B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO:126) and B18Ag1-3 (5'CCG GTA TCT CCT 15 CGT GGG TAT T) (SEQ ID NO:127). The PCR reaction products may then be separated by gel electrophoresis and visualized according to methods well known to those of ordinary skill in the art. Amplification is typically performed on samples obtained from matched pairs of tissue (tumor and non-tumor tissue from the same 20 individual) or from unmatched pairs of tissue (tumor and non-tumor tissue from different individuals). The amplification reaction is preferably performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the tumor sample as compared to the same dilution of the non-tumor sample is considered positive.

As used herein, the term "primer/probe specific for a polynucleotide" 25 means an oligonucleotide sequence that has at least about 80% identity, preferably at least about 90% and more preferably at least about 95%, identity to the polynucleotide in question, or an oligonucleotide sequence that is anti-sense to a sequence that has at least about 80% identity, preferably at least about 90% and more preferably at least about 95%, identity to the polynucleotide in question. Primers and/or probes which may be 30 usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the polymerase chain reaction primers

comprise at least about 10 contiguous nucleotides of a polynucleotide that encodes one of the polypeptides disclosed herein or that is anti-sense to a sequence that encodes one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a 5 polynucleotide that encodes one of the polypeptides disclosed herein or that is anti-sense to a sequence that encodes one of the polypeptides disclosed herein. Techniques for both PCR based assays and *in situ* hybridization assays are well known in the art.

Conventional RT-PCR protocols using agarose and ethidium bromide staining, while important in defining gene specificity, do not lend themselves to 10 diagnostic kit development because of the time and effort required in making them quantitative (i.e., construction of saturation and/or titration curves), and their sample throughput. This problem is overcome by the development of procedures such as real time RT-PCR which allows for assays to be performed in single tubes, and in turn can be modified for use in 96 well plate formats. Instrumentation to perform such 15 methodologies are available from Perkin Elmer/Applied Biosystems Division. Alternatively, other high throughput assays using labeled probes (e.g., digoxigenin) in combination with labeled (e.g., enzyme fluorescent, radioactive) antibodies to such probes can also be used in the development of 96 well plate assays.

In yet another method for determining the presence or absence of breast 20 cancer in a patient, one or more of the breast tumor-specific polypeptides described may be used in a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable 25 device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in 30 patients that have been exposed previously to a test antigen (i.e., an immunogenic portion of a polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter,

preferably greater than about 5.0 cm in diameter, is a positive response, indicative of breast cancer.

The breast tumor-specific polypeptides described herein are preferably formulated, for use in a skin test, as pharmaceutical compositions containing at least one polypeptide and a physiologically acceptable carrier, such as water, saline, alcohol, or a buffer. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μ g to 100 μ g, preferably from about 10 μ g to 50 μ g in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or 10 Tween 80TM.

In other aspects of the present invention, the progression and/or response to treatment of a breast cancer may be monitored by performing any of the above assays over a period of time, and evaluating the change in the level of the response (*i.e.*, the amount of polypeptide or mRNA detected or, in the case of a skin test, the extent of the 15 immune response detected). For example, the assays may be performed every month to every other month for a period of 1 to 2 years. In general, breast cancer is progressing in those patients in whom the level of the response increases over time. In contrast, breast cancer is not progressing when the signal detected either remains constant or decreases with time.

20 In further aspects of the present invention, the compounds described herein may be used for the immunotherapy of breast cancer. In these aspects, the compounds (which may be polypeptides, antibodies or polynucleotides) are preferably incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable 25 carrier. Vaccines may comprise one or more such compounds in combination with an immunostimulant, such as an adjuvant or a liposome (into which the compound is incorporated). An immunostimulant may be any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous antigen. Examples 30 of immunostimulants include adjuvants, biodegradable microspheres (*e.g.*, polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example,

M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

Alternatively, a vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749 (1993), and reviewed by Cohen, *Science* 259:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable

microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention.

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN- γ , TNF α , IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Corixa Corporation (Seattle, WA; *see* US Patent Nos.

4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, 5 by Sato et al., *Science* 273:352, 1996. Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, MA), which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less 10 reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

Other preferred adjuvants include Montanide ISA 720 (Seppic, France), 15 SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Ribi ImmunoChem Research Inc., Hamilton, MT), RC-529 (Ribi ImmunoChem Research Inc., Hamilton, MT) and Aminoalkyl glucosaminide 4-phosphates (AGPs).

Any vaccine provided herein may be prepared using well known methods 20 that result in a combination of antigen, immunostimulant and a suitable carrier or excipient. The compositions described herein may be administered as part of a sustained release formulation (*i.e.*, a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following 25 administration). Such formulations may generally be prepared using well known technology (see, e.g., Coombes et al., *Vaccine* 14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by 30 a rate controlling membrane.

Carriers for use within such formulations are biocompatible, and may also

be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), as well as polyacrylate, latex, starch, cellulose and dextran. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a 5 cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of 10 the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells 15 that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (i.e., matched HLA 20 haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature* 392:245-251, 1998) and have been shown to be 25 effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, *Ann. Rev. Med.* 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency and their ability to activate naïve T cell 30 responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*,

and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., *Nature Med.* 4:594-600, 1998).

5 Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF α to cultures of monocytes harvested from 10 peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF α , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

15 Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high 20 expression of Fc γ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (*e.g.*, CD54 and CD11) and costimulatory molecules (*e.g.*, CD40, CD80, CD86 and 4-1BB).

25 APCs may generally be transfected with a polynucleotide encoding a polypeptide of the present invention (or portion or other variant thereof) such that the polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. 30 Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo*

and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or 5 progenitor cells with the polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated 10 immunological partner, separately or in the presence of the polypeptide.

Vaccines and pharmaceutical compositions may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are preferably hermetically sealed to preserve sterility of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or 15 aqueous vehicles. Alternatively, a vaccine or pharmaceutical composition may be stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.

The above pharmaceutical compositions and vaccines may be used, for example, for the therapy of breast cancer in a patient. As used herein, a "patient" refers 20 to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with breast cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of breast cancer or to treat a patient afflicted with breast cancer. In a preferred embodiment, the compounds are administered either prior to or following surgical removal of primary tumors and/or treatment by 25 administration of radiotherapy and conventional chemotherapeutic drugs. To prevent or slow the development of breast cancer, a pharmaceutical composition or vaccine comprising one or more polypeptides as described herein may be administered to a patient. Alternatively, naked DNA or plasmid or viral vector encoding the polypeptide may be administered. For treating a patient with breast cancer, the pharmaceutical 30 composition or vaccine may comprise one or more polypeptides, antibodies or

polynucleotides complementary to DNA encoding a polypeptide as described herein (e.g., antisense RNA or antisense deoxyribonucleotide oligonucleotides).

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may 5 be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered for a 52-week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate 10 protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response. Such response can be monitored by measuring the anti-tumor 15 antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated 20 patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 µg to 5 mg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

Polypeptides disclosed herein may also be employed in adoptive immunotherapy for the treatment of cancer. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the *in vivo* stimulation of the endogenous host immune system to 25 react against tumors with the administration of immune response-modifying agents (for example, tumor vaccines, bacterial adjuvants, and/or cytokines).

In passive immunotherapy, treatment involves the delivery of biologic reagents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend 30 on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper, tumor-infiltrating lymphocytes), killer cells (Natural Killer cells, lymphokine-activated killer cells), B

cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive immunotherapy.

5 The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells *in vitro*. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. These *in vitro* culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, 10 such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B-cells, may be pulsed with immunoreactive polypeptides or transfected with a polynucleotide sequence(s), using 15 standard techniques well known in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al. *Ibid*).

20 The polypeptides disclosed herein may also be employed to generate and/or isolate tumor-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ CTL clones may be isolated from the 25 patient, expanded using standard tissue culture techniques, and returned to the patient.

 Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate tumor reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by 30 Chang et al. (*Crit. Rev. Oncol. Hematol.*, 22(3), 213, 1996).

 In another embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide

disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells 5 to eradicate tumors in a murine model has been demonstrated by Cheever et al. ("Therapy With Cultured T Cells: Principles Revisited," *Immunological Reviews*, 157:177, 1997).

Additionally vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated *in vitro* for autologous 10 transplant back into the same patient. In one embodiment, cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as CellPro Incorporated's (Bothell, WA) CEPRATETM system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated 15 with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

20 The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

25 EXAMPLE 1

PREPARATION OF BREAST TUMOR-SPECIFIC cDNAs USING DIFFERENTIAL DISPLAY RT-PCR

30 This Example illustrates the preparation of cDNA molecules encoding breast tumor-specific polypeptides using a differential display screen.

A. Preparation of B18Ag1 cDNA and Characterization of mRNA Expression

Tissue samples were prepared from breast tumor and normal tissue of a patient with breast cancer that was confirmed by pathology after removal from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO:130) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer (CTTCAACCTC) (SEQ ID NO:103). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP, and 1 unit of *Taq* DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94°C denaturation for 30 seconds, 42°C annealing for 1 minute, and 72°C extension for 30 seconds. An RNA fingerprint containing 76 amplified products was obtained. Although the RNA fingerprint of breast tumor tissue was over 98% identical to that of the normal breast tissue, a band was repeatedly observed to be specific to the RNA fingerprint pattern of the tumor. This band was cut out of a silver stained gel, subcloned into the T-vector (Novagen, Madison, WI) and sequenced.

The sequence of the cDNA, referred to as B18Ag1, is provided in SEQ ID NO:1. A database search of GENBANK and EMBL revealed that the B18Ag1 fragment initially cloned is 77% identical to the endogenous human retroviral element S71, which is a truncated retroviral element homologous to the Simian Sarcoma Virus (SSV). S71 contains an incomplete *gag* gene, a portion of the *pol* gene and an LTR-like structure at the 3' terminus (see Werner et al., *Virology* 174:225-238 (1990)). B18Ag1 is also 64% identical to SSV in the region corresponding to the P30 (*gag*) locus. B18Ag1 contains three separate and incomplete reading frames covering a region which shares considerable homology to a wide variety of *gag* proteins of retroviruses which infect mammals. In addition, the homology to S71 is not just within the *gag* gene, but spans several kb of sequence including an LTR.

B18Ag1-specific PCR primers were synthesized using computer analysis guidelines. RT-PCR amplification (94°C, 30 seconds; 60°C → 42°C, 30 seconds; 72°C, 30 seconds for 40 cycles) confirmed that B18Ag1 represents an actual mRNA sequence present at relatively high levels in the patient's breast tumor tissue. The primers used in amplification were B18Ag1-1 (CTG CCT GAG CCA CAA ATG) (SEQ ID NO:128) and

B18Ag1-4 (CCG GAG GAG GAA GCT AGA GGA ATA) (SEQ ID NO:129) at a 3.5 mM magnesium concentration and a pH of 8.5, and B18Ag1-2 (ATG GCT ATT TTC GGG GCC TGA CA) (SEQ ID NO:126) and B18Ag1-3 (CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO:127) at 2 mM magnesium at pH 9.5. The same experiments 5 showed exceedingly low to nonexistent levels of expression in this patient's normal breast tissue (*see* Figure 1). RT-PCR experiments were then used to show that B18Ag1 mRNA is present in nine other breast tumor samples (from Brazilian and American patients) but absent in, or at exceedingly low levels in, the normal breast tissue corresponding to each cancer patient. RT-PCR analysis has also shown that the B18Ag1 10 transcript is not present in various normal tissues (including lymph node, myocardium and liver) and present at relatively low levels in PBMC and lung tissue. The presence of B18Ag1 mRNA in breast tumor samples, and its absence from normal breast tissue, has been confirmed by Northern blot analysis, as shown in Figure 2.

The differential expression of B18Ag1 in breast tumor tissue was also 15 confirmed by RNase protection assays. Figure 3 shows the level of B18Ag1 mRNA in various tissue types as determined in four different RNase protection assays. Lanes 1-12 represent various normal breast tissue samples, lanes 13-25 represent various breast tumor samples; lanes 26-27 represent normal prostate samples; lanes 28-29 represent prostate tumor samples; lanes 30-32 represent colon tumor samples; lane 33 represents 20 normal aorta; lane 34 represents normal small intestine; lane 35 represents normal skin, lane 36 represents normal lymph node; lane 37 represents normal ovary; lane 38 represents normal liver; lane 39 represents normal skeletal muscle; lane 40 represents a first normal stomach sample, lane 41 represents a second normal stomach sample; lane 42 represents a normal lung; lane 43 represents normal kidney; and lane 44 represents 25 normal pancreas. Interexperimental comparison was facilitated by including a positive control RNA of known β -actin message abundance in each assay and normalizing the results of the different assays with respect to this positive control.

RT-PCR and Southern Blot analysis has shown the B18Ag1 locus to be 30 present in human genomic DNA as a single copy endogenous retroviral element. A genomic clone of approximately 12-18 kb was isolated using the initial B18Ag1 sequence as a probe. Four additional subclones were also isolated by XbaI digestion.

Additional retroviral sequences obtained from the ends of the XbaI digests of these clones (located as shown in Figure 4) are shown as SEQ ID NO:3 - SEQ ID NO:10, where SEQ ID NO:3 shows the location of the sequence labeled 10 in Figure 4, SEQ ID NO:4 shows the location of the sequence labeled 11-29, SEQ ID NO:5 shows the 5 location of the sequence labeled 3, SEQ ID NO:6 shows the location of the sequence labeled 6, SEQ ID NO:7 shows the location of the sequence labeled 12, SEQ ID NO:8 shows the location of the sequence labeled 13, SEQ ID NO:9 shows the location of the sequence labeled 14 and SEQ ID NO:10 shows the location of the sequence labeled 11-22.

10 Subsequent studies demonstrated that the 12-18 kb genomic clone contains a retroviral element of about 7.75 kb, as shown in Figures 5A and 5B. The sequence of this retroviral element is shown in SEQ ID NO: 141. The numbered line at the top of Figure 5A represents the sense strand sequence of the retroviral genomic clone. The box below this line shows the position of selected restriction sites. The arrows 15 depict the different overlapping clones used to sequence the retroviral element. The direction of the arrow shows whether the single-pass subclone sequence corresponded to the sense or anti-sense strand. Figure 5B is a schematic diagram of the retroviral element containing B18Ag1 depicting the organization of viral genes within the element. The open boxes correspond to predicted reading frames, starting with a methionine, found 20 throughout the element. Each of the six likely reading frames is shown, as indicated to the left of the boxes, with frames 1-3 corresponding to those found on the sense strand.

Using the cDNA of SEQ ID NO:1 as a probe, a longer cDNA was obtained (SEQ ID NO:227) which contains minor nucleotide differences (less than 1%) compared to the genomic sequence shown in SEQ ID NO:141.

25 B. Preparation of cDNA Molecules Encoding Other Breast Tumor-Specific Polypeptides

Normal RNA and tumor RNA was prepared and mRNA was isolated and converted into cDNA using a (dT)₁₂AG anchored 3' primer, as described above. Differential display PCR was then executed using the randomly chosen primers of SEQ 30 ID NO: 87-125. Amplification conditions were as noted above, and bands observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained

gel, subcloned into either the T-vector (Novagen, Madison, WI) or the pCRII vector (Invitrogen, San Diego, CA) and sequenced. The sequences are provided in SEQ ID NO:11 - SEQ ID NO:86. Of the 79 sequences isolated, 67 were found to be novel (SEQ ID NO:11-26 and 28-77) (*see also* Figures 6-20).

5 An extended DNA sequence (SEQ ID NO: 290) for the antigen B15Ag1 (originally identified partial sequence provided in SEQ ID NO: 27) was obtained in further studies. Comparison of the sequence of SEQ ID NO: 290 with those in the gene bank as described above, revealed homology to the known human β -A activin gene. Further studies led to the isolation of the full-length cDNA sequence for the antigen 10 B21GT2 (also referred to as B311D; originally identified partial cDNA sequence provided in SEQ ID NO: 56). The full-length sequence is provided in SEQ ID NO: 307, with the corresponding amino acid sequence being provided in SEQ ID NO: 308. Further studies led to the isolation of a splice variant of B311D. The B311D clone of 15 SEQ ID NO: 316 was sequenced and a XhoI/NotI fragment from this clone was gel purified and 32P-cDTP labeled by random priming for use as a probe for further screening to obtain additional B311D gene sequence. Two fractions of a human breast tumor cDNA bacterial library were screened using standard techniques. One of the clones isolated in this manner yielded additional sequence which includes a poly A+ tail. The determined cDNA sequence of this clone (referred to as B311D_BT1_1A) is 20 provided in SEQ ID NO: 317. The sequences of SEQ ID NO: 316 and 317 were found to share identity over a 464 bp region, with the sequences diverging near the poly A+ sequence of SEQ ID NO: 317.

Subsequent studies identified an additional 146 sequences (SEQ ID NOS:142-289), of which 115 appeared to be novel (SEQ ID NOS:142, 143, 146-152, 25 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291). To the best of the inventors' knowledge none of the previously identified sequences have heretofore been shown to be expressed at a greater level in human breast tumor tissue than in normal breast tissue.

30 In further studies, several different splice forms of the antigen B11Ag1 (also referred to as B305D) were isolated, with each of the various splice forms

containing slightly different versions of the B11Ag1 coding frame. Splice junction sequences define individual exons which, in various patterns and arrangements, make up the various splice forms. Primers were designed to examine the expression pattern of each of the exons using RT-PCR as described below. Each exon was found to show the same expression pattern as the original B11Ag1 clone, with expression being breast tumor-, normal prostate- and normal testis-specific. The determined cDNA sequences for the isolated protein coding exons are provided in SEQ ID NO: 292-298, respectively. The predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292 and 298 are provided in SEQ ID NO: 299 and 300. Additional studies using rapid amplification of cDNA ends (RACE), a 5' specific primer to one of the splice forms of B11Ag1 provided above and a breast adenocarcinoma, led to the isolation of three additional, related, splice forms referred to as isoforms B11C-15, B11C-8 and B11C-9,16. The determined cDNA sequences for these isoforms are provided in SEQ ID NO: 301-303, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 304-306.

In subsequent studies on B305D isoform A (cDNA sequence provided in SEQ ID NO: 292), the cDNA sequence (provided in SEQ ID NO: 313) was found to contain an additional guanine residue at position 884, leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF is provided in SEQ ID NO: 314. This frameshift generates a protein sequence (provided in SEQ ID NO: 315) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.

EXAMPLE 2

25 PREPARATION OF B18AG1 DNA FROM HUMAN GENOMIC DNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human genomic DNA.

B18Ag1 DNA may be prepared from 250 ng human genomic DNA using 30 20 pmol of B18Ag1 specific primers, 500 pmol dNTPS and 1 unit of *Taq* DNA polymerase (Perkin Elmer, Branchburg, NJ) using the following amplification

parameters: 94°C for 30 seconds denaturing, 30 seconds 60°C to 42°C touchdown annealing in 2°C increments every two cycles and 72°C extension for 30 seconds. The last increment (a 42°C annealing temperature) should cycle 25 times. Primers were selected using computer analysis. Primers synthesized were B18Ag1-1, B18Ag1-2, 5 B18Ag1-3, and B18Ag1-4. Primer pairs that may be used are 1+3, 1+4, 2+3, and 2+4.

Following gel electrophoresis, the band corresponding to B18Ag1 DNA may be excised and cloned into a suitable vector.

EXAMPLE 3

10 PREPARATION OF B18Ag1 DNA FROM BREAST TUMOR cDNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human breast tumor cDNA.

First strand cDNA is synthesized from RNA prepared from human breast 15 tumor tissue in a reaction mixture containing 500 ng poly A+ RNA, 200 pmol of the primer (T)₁₂AG (*i.e.*, TTT TTT TTT TTT AG) (SEQ ID NO: 130), 1X first strand reverse transcriptase buffer, 6.7 mM DTT, 500 mmol dNTPs, and 1 unit AMV or MMLV reverse transcriptase (from any supplier, such as Gibco-BRL (Grand Island, NY)) in a final volume of 30 μ l. After first strand synthesis, the cDNA is diluted approximately 25 20 fold and 1 μ l is used for amplification as described in Example 2. While some primer pairs can result in a heterogeneous population of transcripts, the primers B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO: 126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO: 127) yield a single 151 bp amplification product.

25

EXAMPLE 4

IDENTIFICATION OF B-CELL AND T-CELL EPITOPES OF B18Ag1

This Example illustrates the identification of B18Ag1 epitopes.

30 The B18Ag1 sequence can be screened using a variety of computer algorithms. To determine B-cell epitopes, the sequence can be screened for

hydrophobicity and hydrophilicity values using the method of Hopp, *Prog. Clin. Biol. Res.* 172B:367-77 (1985) or, alternatively, Cease et al., *J. Exp. Med.* 164:1779-84 (1986) or Spouge et al., *J. Immunol.* 138:204-12 (1987). Additional Class II MHC (antibody or B-cell) epitopes can be predicted using programs such as AMPHI (e.g., Margalit et al., *J. Immunol.* 138:2213 (1987)) or the methods of Rothbard and Taylor (e.g., *EMBO J.* 7:93 (1988)).

Once peptides (15-20 amino acids long) are identified using these techniques, individual peptides can be synthesized using automated peptide synthesis equipment (available from manufacturers such as Perkin Elmer/Applied Biosystems 10 Division, Foster City, CA) and techniques such as Merrifield synthesis. Following synthesis, the peptides can be used to screen sera harvested from either normal or breast cancer patients to determine whether patients with breast cancer possess antibodies reactive with the peptides. Presence of such antibodies in breast cancer patient would confirm the immunogenicity of the specific B-cell epitope in question. The peptides can 15 also be tested for their ability to generate a serologic or humoral immune in animals (mice, rats, rabbits, chimps etc.) following immunization *in vivo*. Generation of a peptide-specific antiserum following such immunization further confirms the immunogenicity of the specific B-cell epitope in question.

To identify T-cell epitopes, the B18Ag1 sequence can be screened using 20 different computer algorithms which are useful in identifying 8-10 amino acid motifs within the B18Ag1 sequence which are capable of binding to HLA Class I MHC molecules. (see, e.g., Rammensee et al., *Immunogenetics* 41:178-228 (1995)). Following synthesis such peptides can be tested for their ability to bind to class I MHC using standard binding assays (e.g., Sette et al., *J. Immunol.* 153:5586-92 (1994)) and more 25 importantly can be tested for their ability to generate antigen reactive cytotoxic T-cells following *in vitro* stimulation of patient or normal peripheral mononuclear cells using, for example, the methods of Bakker et al., *Cancer Res.* 55:5330-34 (1995); Visseren et al., *J. Immunol.* 154:3991-98 (1995); Kawakami et al., *J. Immunol.* 154:3961-68 (1995); and Kast et al., *J. Immunol.* 152:3904-12 (1994). Successful *in vitro* generation of T- 30 cells capable of killing autologous (bearing the same Class I MHC molecules) tumor cells following *in vitro* peptide stimulation further confirms the immunogenicity of the

B18Ag1 antigen. Furthermore, such peptides may be used to generate murine peptide and B18Ag1 reactive cytotoxic T-cells following *in vivo* immunization in mice rendered transgenic for expression of a particular human MHC Class I haplotype (Vitiello et al., *J. Exp. Med.* 173:1007-15 (1991)).

5 A representative list of predicted B18Ag1 B-cell and T-cell epitopes, broken down according to predicted HLA Class I MHC binding antigen, is shown below:

Predicted Th Motifs (B-cell epitopes) (SEQ ID NOS.: 131-133)

10 SSGGRTFDDFHRYLLVGI
QGAAQKPINLSKXIEVVQGHDE
SPGVFLEHLQEAYRIYTPFDLSA

Predicted HLA A2.1 Motifs (T-cell epitopes) (SEQ ID NOS.: 134-140)

15 YLLVGIQGA
GAAQKPINL
NLSKXIEVV
EVVQGHDES
HLQEAYRIY
NLAFVAQAA
20 FVAQAAPDS

EXAMPLE 5

IDENTIFICATION OF T-CELL EPITOPES OF B11Ag1

This Example illustrates the identification of B11Ag1 (also referred to as
25 B305D) epitopes. Four peptides, referred to as B11-8, B11-1, B11-5 and B11-12 (SEQ
ID NO: 309-312, respectfully) were derived from the B11Ag1 gene.

Human CD8 T cells were primed *in vitro* to the peptide B11-8 using dendritic cells according to the protocol of Van Tsai et al. (*Critical Reviews in Immunology* 18:65-75, 1998). The resulting CD8 T cell cultures were tested for their 30 ability to recognize the B11-8 peptide or a negative control peptide, presented by the B-LCL line, JY. Briefly, T cells were incubated with autologous monocytes in the presence

of 10 ug/ml peptide, 10 ng/ml IL-7 and 10 ug/ml IL-2, and assayed for their ability to specifically lyse target cells in a standard 51-Cr release assay. As shown in Fig. 22, the bulk culture line demonstrated strong recognition of the B11-8 peptide with weaker recognition of the peptide B11-1.

5 A clone from this CTL line was isolated following rapid expansion using the monoclonal antibody OKT3 and human IL-2. As shown in Fig. 23, this clone (referred to as A1), in addition to being able to recognize specific peptide, recognized JY LCL transduced with the B11Ag1 gene. This data demonstrates that B11-8 is a naturally processed epitope of the B11Ag1 gene. In addition these T cells were further found to
10 recognize and lyse, in an HLA-A2 restricted manner, an established tumor cell line naturally expressing B11Ag1 (Fig. 24). The T cells strongly recognize a lung adenocarcinoma (LT-140-22) naturally expressing B11Ag1 transduced with HLA-A2, as well as an A2+ breast carcinoma (CAMA-1) transduced with B11Ag1, but not untransduced lines or another negative tumor line (SW620).

15 These data clearly demonstrate that these human T cells recognize not only B11-specific peptides but also transduced cells, as well as naturally expressing tumor lines.

20 CTL lines raised against the antigens B11-5 and B11-12, using the procedures described above, were found to recognize corresponding peptide-coated targets.

Example 6

CHARACTERIZATION OF BREAST TUMOR GENES DISCOVERED BY
DIFFERENTIAL DISPLAY PCR

5 The specificity and sensitivity of the breast tumor genes discovered by differential display PCR were determined using RT-PCR. This procedure enabled the rapid evaluation of breast tumor gene mRNA expression semiquantitatively without using large amounts of RNA. Using gene specific primers, mRNA expression levels in a variety of tissues were examined, including 8 breast tumors, 5 normal breasts, 2 prostate
10 tumors, 2 colon tumors, 1 lung tumor, and 14 other normal adult human tissues, including normal prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach and testes.

To ensure the semiquantitative nature of the RT-PCR, β -actin was used as internal control for each of the tissues examined. Serial dilutions of the first strand
15 cDNAs were prepared and RT-PCR assays performed using β -actin specific primers. A dilution was then selected that enabled the linear range amplification of β -actin template, and which was sensitive enough to reflect the difference in the initial copy number. Using this condition, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and
20 by assuring a negative result when using first strand cDNA that was prepared without adding reverse transcriptase.

Using gene specific primers, the mRNA expression levels were determined in a variety of tissues. To date, 38 genes have been successfully examined by RT-PCR, five of which exhibit good specificity and sensitivity for breast tumors
25 (B15AG-1, B31GA1b, B38GA2a, B11A1a and B18AG1a). Figures 21A and 21B depict the results for three of these genes: B15AG-1 (SEQ ID NO:27), B31GA1b (SEQ ID NO:148) and B38GA2a (SEQ ID NO. 157). Table I summarizes the expression level of all the genes tested in normal breast tissue and breast tumors, and also in other tissues.

TABLE I

Percentage of Breast Cancer Antigens that are Expressed in Various Tissues

5	Over-expressed in Breast Tumors	84%
	Equally Expressed in Normals and Tumor	16%
10	Over-expressed in Breast Tumors but not in any Normal Tissues	9%
	Over-expressed in Breast Tumors but Expressed in Some Normal Tissues	30%
15	Over-expressed in Breast Tumors but Equally Expressed in All Other Tissues	61%
	From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.	
20		

CLAIMS

1. An isolated polypeptide, comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(a) sequences recited in SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317;

(b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(c) complements of sequences of (a) or (b).

20

2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences.

30

3. An isolated polypeptide comprising a sequence recited in any

one of SEQ ID NOs: 299, 300, 304-306, 308 and 315.

4. An isolated polynucleotide encoding at least 15 amino acid residues of a protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the tumor protein 5 comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs: _1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement 10 of any of the foregoing sequences.

5. An isolated polynucleotide encoding a protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NOs: 1, 3-15 26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing sequences.

20 6. An isolated polynucleotide, comprising a sequence recited in any one of SEQ ID Nos: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

25

7. An isolated polynucleotide, comprising a sequence that hybridizes to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 30 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317

under moderately stringent conditions.

8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.

5

9. An expression vector, comprising a polynucleotide according to any one of claims 4-8.

10. A host cell transformed or transfected with an expression vector according to claim 9.

11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences.

20 12. A fusion protein, comprising at least one polypeptide according to claim 1.

25 13. A fusion protein according to claim 12, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.

14. A fusion protein according to claim 12, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.

15. A fusion protein according to claim 12, wherein the fusion protein comprises an affinity tag.

16. An isolated polynucleotide encoding a fusion protein according
5 to claim 12.

17. A pharmaceutical composition, comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:

- (a) a polypeptide according to claim 1;
- 10 (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

15 18. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- 20 (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.

19. A vaccine according to claim 18, wherein the immunostimulant is an adjuvant.

25

20. A vaccine according to any claim 18, wherein the immunostimulant induces a predominantly Type I response.

21. A method for inhibiting the development of a cancer in a
30 patient, comprising administering to a patient an effective amount of a pharmaceutical

composition according to claim 17.

22. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine
5 according to claim 18.

23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.

10

24. A pharmaceutical composition according to claim 23, wherein the antigen presenting cell is a dendritic cell or a macrophage.

25. A vaccine comprising an antigen-presenting cell that expresses
15 a polypeptide comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(a) sequences recited in SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

20 (b) sequences that hybridize to a sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(c) complements of sequences of (i) or (ii);
in combination with an immunostimulant.

25

26. A vaccine according to claim 25, wherein the immunostimulant is an adjuvant.

27. A vaccine according to claim 25, wherein the immunostimulant
30 induces a predominantly Type I response.

28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.

5 29. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group
10 consisting of:

(a) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

(b) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317

15 under moderately stringent conditions; and

(c) complements of sequences encoded by a polynucleotide recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

and thereby inhibiting the development of a cancer in the patient.

20

30. A method according to claim 29, wherein the antigen-presenting cell is a dendritic cell.

31. A method according to any one of claims 21, 22 and 29,
25 wherein the cancer is breast cancer.

32. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a protein, wherein the protein comprises an amino acid sequence that is encoded by a
30 polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317; and
(ii) complements of the foregoing polynucleotides;
wherein the step of contacting is performed under conditions and for a
5 time sufficient to permit the removal of cells expressing the antigen from the sample.

33. A method according to claim 32, wherein the biological sample is blood or a fraction thereof.

10 34. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 32.

15 35. A method for stimulating and/or expanding T cells specific for a protein, comprising contacting T cells with at least one component selected from the group consisting of:

20 (a) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
(i) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;
(ii) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and
25 (iii) complements of sequences of (i) or (ii);
(b) polynucleotides encoding a polypeptide of (a); and
(c) antigen presenting cells that express a polypeptide of (a);
under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

36. An isolated T cell population, comprising T cells prepared according to the method of claim 35.

37. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 36.

38. A method for inhibiting the development of a cancer in a patient, comprising the steps of:

10 (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

15 (i) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

20 (1) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

(2) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

(ii) polynucleotides encoding a polypeptide of (i); and

(iii) antigen presenting cells that expresses a polypeptide of (i);

25 such that T cells proliferate; and

(b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.

39. A method for inhibiting the development of a cancer in a patient, comprising the steps of:

(a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with at least one component selected from the group consisting of:

(i) polypeptides comprising at least an immunogenic portion of a protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(1) sequences recited in SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317;

(2) sequences that hybridize to a sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 under moderately stringent conditions; and

(3) complements of sequences of (1) or (2);

(ii) polynucleotides encoding a polypeptide of (i); and

(iii) antigen presenting cells that express a

15 polypeptide of (i);

such that T cells proliferate;

(b) cloning at least one proliferated cell to provide cloned T cells;

and

20 (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.

40. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with a binding agent that binds to a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

30 (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and

(c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

5 41. A method according to claim 40, wherein the binding agent is an antibody.

42. A method according to claim 43, wherein the antibody is a monoclonal antibody.

10

43. A method according to claim 40, wherein the cancer is breast cancer.

44. A method for monitoring the progression of a cancer in a 15 patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOs: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 20 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of polypeptide that binds to the binding agent;

(c) repeating steps (a) and (b) using a biological sample obtained 25 from the patient at a subsequent point in time; and

(d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

30 45. A method according to claim 44, wherein the binding agent is

an antibody.

46. A method according to claim 45, wherein the antibody is a monoclonal antibody.

5

47. A method according to claim 44, wherein the cancer is a breast cancer.

48. A method for determining the presence or absence of a cancer 10 in a patient, comprising the steps of:

(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 1, 3-26, 28-86, 142-253, 255-298, 301-15 303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;

(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and

(c) comparing the amount of polynucleotide that hybridizes to the 20 oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

49. A method according to claim 48, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a 25 polymerase chain reaction.

50. A method according to claim 48, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

51. A method for monitoring the progression of a cancer in a patient, comprising the steps of:

- (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 1, 3-26, 28-86, 142-253, 255-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotide sequences;
- (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;
- (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and
- (d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

52. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.

20

53. A method according to claim 51, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.

25

54. A diagnostic kit, comprising:

- (a) one or more antibodies according to claim 11; and
- (b) a detection reagent comprising a reporter group.

30

55. A kit according to claim 54, wherein the antibodies are

immobilized on a solid support.

56. A kit according to claim 54, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.

5 57. A kit according to claim 54, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

10 58. An oligonucleotide comprising 10 to 40 contiguous nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NOS: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 15 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317 or a complement of any of the foregoing polynucleotides.

20 59. A oligonucleotide according to claim 58, wherein the oligonucleotide comprises 10-40 contiguous nucleotides recited in any one of SEQ ID Nos: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288, 291-298, 301-303, 307, 313, 314, 316 and 317.

25 60. A diagnostic kit, comprising:
(a) an oligonucleotide according to claim 59; and
(b) a diagnostic reagent for use in a polymerase chain reaction or hybridization assay.

COMPOSITIONS AND METHODS FOR THE TREATMENT
AND DIAGNOSIS OF BREAST CANCER

5

ABSTRACT OF THE DISCLOSURE

Compositions and methods for the detection and therapy of breast
10 cancer are disclosed. The compounds provided include nucleotide sequences that are
preferentially expressed in breast tumor tissue, as well as polypeptides encoded by
such nucleotide sequences. Vaccines and pharmaceutical compositions comprising
such compounds are also provided and may be used, for example, for the prevention
and treatment of breast cancer. The polypeptides may also be used for the production
15 of antibodies, which are useful for diagnosing and monitoring the progression of
breast cancer in a patient.

Fig. 1

Fig. 2

Fig. 3

GENOMIC CLONE MAP

Fig. 4

Fig. 5A

Fig. 5B

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B18Ag1

TTA GAG ACC CAA TTG GGA CCT AAT TGG GAC CCA AAT TTC TCA AGT GGA	48
Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly	
1 5 10 15	
GGG AGA ACT TTT GAC GAT TTC CAC CGG TAT CTC CTC GTG GGT ATT CAG	96
Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln	
20 25 30	
GGA GCT GCC CAG AAA CCT ATA AAC TTG TCT AAG GCG ATT GAA GTC GTC	144
Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val	
35 40 45	
CAG GGG CAT GAT GAG TCA CCA GGA GTG TTT TTA GAG CAC CTC CAG GAG	192
Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu	
50 55 60	
GCT TAT CGG ATT TAC ACC CCT TTT GAC CTG GCA GCC CCC GAA AAT AGC	240
Ala Tyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser	
65 70 75 80	
CAT GCT CTT AAT TTG GCA TTT GTG GCT CAG GCA GCC CCA GAT AGT AAA	288
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys	
85 90 95	
AGG AAA CTC CAA AAA CTA GAG GGA TTT TGC TGG AAT GAA TAC CAG TCA	336
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser	
100 105 110	
GCT TTT AGA GAT AGC CTA AAA GGT TTT	363
Ala Phe Arg Asp Ser Leu Lys Gly Phe	
115 120	

Fig. 6

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA 817Ag1

GC TGGGCACAGT GGCTCATACC TGTAAATCCTG ACCGTTTCAG AGGCTCAGGT	60
CG CTTGAGCCCCA AGATTTCAAG ACTAGTCTGG GTAACATAGT GAGACCCAT	120
AA AAATAAAAAAA ATGAGGCCTGG TGTAGTGGCA CACACCAGCT GAGGAGGGAG	180
CT AGGAGA	196

Fig. 7

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B17Ag2

GC TTGGGGGCTC TGACTAGAAA TTCAAGGAAC CTGGGATTCA AGTCCAAGT	60
AC TTACACTGTG GNCTCCAATA AACTGCTTCT TTCTTATTCC CTCTCTATTA	120
AA GGAAAACGAT GTCTGTGTAT AGCCAAGTCA GNTATCCTAA AAGGAGATAC	180
AT TAAATATCAG AATGTAAAAC CTGGGAACCA GGTTCCCAGC CTGGGATTAA	240
CA AGAAGACTGA ACAGTACTAC TGTGAAAAGC CCGAAGNGGC AATATGTTCA	300
TT GAAGGATGGC TGGGAGAATG AATGCTCTGT CCCCCAGTCC CAAGCTCACT	360
CT CCTTTATAGC CTAGGAGA	388

Fig. 8

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag2a

GC CTATAATCAT GTTTCTCATT ATTTTCACAT TTTATTAACC AATTTCTGTT	60
AA AATATGAGGG AAATATATGA AACAGGGAGG CAATGTTCAAG ATAATTGATC	120
TG ATTTCTACAT CAGATGCTCT TTCCCTTCCT GTTTATTCCT TTTTTATTC	180
GG TCGAATGTAA TAGCTTGTT TCAAGAGAGA GTTTGGCAG TTTCTGTAGC	240
CT GCTCATGTCT CCAGGCATCT ATTTGCACTT TAGGAGGTGT CGTGGGAGAC	300
CT ATTTTTCCA TATTTGGCA ACTACTA	337

Fig. 9

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1b

GC CATACTAGTGC CTTTCCATT ATTAAACCCC CACCTGAACG GCATAAACTG	60
GC TGGTGTAAAA TACTGTAAC AATAAGGAGA CTTTGCTCTT CATTAAACC	120
AT TTCATATTTT ACGCTCGAGG GTTTTACCG GTTCCTTTT ACACTCCTTA	180
TT TAAGTCGTTT GGAACAAGAT ATTTTTCTT TCCTGGCAGC TTTAACATT	240
TT TGTGTCTGGG GGACTGCTGG TCACTGTTTC TCACAGTTCC AAATCAAGGC	300
CC AAGAAAAAAA AATTTTTTG TTTTATTTGA AACTGGACCG GATAAACGGT	360
CG GCTGCTGTAT ATAGTTTAA ATGGTTATT GCACCTCCTT AAGTTGCACT	420
GG GGGGNTTTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTNT	480
NA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	540
TC TCTTAGAGGG GGGAACTNCT A	571

Fig. 10

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B13Ag1a

TA ATAACCTAAA TATATTTGA TCACCCACTG GGGTGATAAG ACAATAGATA	60
TT TCCAAAAAGC ATAAAACCAA AGTATCATAAC CAAACCAAAT TCATACTGCT	120
CC GCACTGAAAC TTCACCTTCT AACTGTCTAC CTAACCAAAT TCTACCCCTTC	180
GG TGCCTGCTCA CTACTCTTTT TTTTTTTTTT TTTNTTTGG AGATGGAGTC	240
CA GCCCAGGGT GGAGTACAAT GGCAACACCT CAGCTCACTG NAACCTCCGC	300
TT CATGAGATTG TCCTGNTTCA GCCTTCCCAG TAGCTGGGAC TACAGGTGTG	360
TG CCTGGNTAAT CTTTTTNGT TTTNGGGTAG AGATGGGGT TTTACATGTT	420
TG GTNTCGAACT CCTGACCTCA AGTGATCCAC CCACCTCAGG CTCCCAAAGT	480
TA CAGACATGAG CCACTGNGCC CAGNCCTGGT GCATGCTCAC TTCTCTAGGC	540
	548

Fig. 11

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B11Ag1

TG CACATGCAGA ATATTCTATC GGTACTTCAG CTATTACTCA TTTTGATGGC 60
AG CCTATCCTCA AGATGAGTAT TTAGAAAGAA TTGATTTAGC GATAGACCAA 120
GC ACTCTGACTA CACGAAATTG TTCAGATGTG ATGGATTAT GACAGTTGAT 180
GA GATTATTAAG TGATTATTT AAAGGGAATC CATTAAATTCC AGAATATCTT 240
TC AAGATGATAT AGAAATAGAA CAGAAAGAGA CTACAAATGA AGATGTATCA 300
TA TTGAAGAGCC TATAGTAGAA AATGAATTAG CTGCATTTAT TAGCCTTACA 360
TT TTCCTGATGA ATCTTATATT CAGCCATCGA CATAAGCATT A CCTGATGGC 420
GA ATAATAGAAA CTGGGTGCGG GGCTATTGAT GAATTCACTCC NCAGTAAATT 480
AC AAAATATAAC TCGATTGCAT TTGGATGATG GAATACTAAA TCTGGCAAAA 540
GG AGCTACTAGT AACCTCTCTT TTTGAGATGC AAAATTTCT TT-TAGGGTTT 600
CT ACTTTACGGA TATTGGAGCA TAACGGGA 638

Fig. 12

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3c

ACTGATGGAT GTCGCCGGAG GCGAGGGGCC TTATCTGATG CTCGGCTGCC TGTTCGTGAT 60
· GTGCGCGGGCG ATTGGGCTGT TTATCTCAAA CACCGCCACG GCGGTGCTGA TGGCGCCTAT 120
TGCCTTAGCG GCGGCGAAGT CAATGGCGT CTCACCCAT CCTTTGCCA TGGTGGTGGC 180
GATGGCGGCT TCGGCGGCGT TTATGACCCC GGTCTCCTCG CGGGTTAACAA CCTGGTGCT 240
TGGCCCTGGC AAGTACTCAT TTAGCGATT TGTCAAAATA GGCGTG 286

Fig. 13

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG1

AG CAGCCCCTTC TTCTCAATT CATCTGTACAC TACCCCTGGTG TAGTATCTCA	60
CA TTTTATAGC CTCCCTCCCTG GTCTGTCTTT TGATTTCCCT GCCTGTAATC	120
AC ATAACGTCAA GTAAACATTT CTAAAGTGTG GTTATGCTCA TGTCACTCCT	180
AA ATAGTTCCA TTACCGTCTT AATAAAATTG GGATTTGTTTC TTTNCTATTN	240
CA CCTATGACCG AA	262

Fig. 14

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B9CG3

AG CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC	60
TA AATGGTGGCA GGATTTTAT TATAAACATG TACCCATGCA AATTCCTAT	120
GA TATATTCTTC TACATTTAAA CAATAAAAAT AATCTATTT TAAAAGCCTA	180
AG TTAGGTAAGA GTGTTAATG AGAGGGTATA AGGTATAAAAT CACCAAGTCAA	240
TG CCTATGACCG A	261

Fig. 15

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B2CA2

GG GCATGGACGC AGACGCCCTGA CGTTTGGCTG AAAATCTTC ATTGATTG	60
AT AGGAAAATTC CCAAAGAGGG AATGTCTGT TGCTGCCAG TTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 16

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA1

GG GCATGGACGC AGACGCCCTGA CGTTTGGCTG AAAATCTTTC ATTGATTGTT	60
AT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTGCCAG TTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGNN ATTNTCGTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 17

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA2

GG GCATGGACGC AGACGCCTGA CGTTGGCTG AAAATCTTC ATTGATTG	60
AT AGGAAAATTC CCAAAGAGGG AATGTCTGT TGCTGCCAG TTTTNTGTT	120
GG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180
CG NCTTGCNANG ATCTTCAT	208

Fig. 18

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B3CA3

AG GGAGCAAGGA	GAAGGCATGG	AGAGGGCTCAN	GCTGGTCCTG	GCCTACGACT	60
CT GTCGCCGGGG	ATGGTGGAGA	ACTGAAGCGG	GACCTCCTCG	AGGTCCCTCCG	120
TC NCCGTCCAGG	AGGAGGGTCT	TTCCCGTGGTC	TNGGAGGAGC	GGGGGGAGAA	180
TC ATGGTCNACA	TCCC				204

Fig. 19

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE
BREAST-TUMOR SPECIFIC cDNA B4CA1

TC AGGAGCGGGT AGAGTGGCAC CATTGAGGGG ATATTCAAAA ATATTATTTT	60
TG ATAGTTGCTG AGTTTTCTT TGACCCATGA GTTATATTGG AGTTTATTTT	120
CC AATCGCATGG ACATGTTAGA CTTATTTCT GTTAATGATT NCTATTTTA	180
GA TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATT GTTGAGTTG	240
GC TTAGTATGTG ACCA	264

Fig. 20

Fig. 21A

B31(A),

B38(A),

B45(A),

b) actinic

Fig. 21B

Recognition of Peptide by D142 anti-B11-8 CTL line

Fig. 22

Recognition of B11 Transductant by B11-8 Specific Clone A1

Fig. 23

Recognition of Tumor Cell Lines by Clone A1

Fig. 24

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Tony N. Frudakis, John M. Smith, Steven G. Reed, Lynda E. Misher
Marc W. Retter and Davin C. Dillon.

Filed : March 23, 2000

For : COMPOSITIONS AND METHODS FOR THE TREATMENT AND
DIAGNOSIS OF BREAST CANCER

Docket No. : 210121.419C7

Date : March 23, 2000

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

DECLARATION

Sir:

I, Monica Steinborn, in accordance with 37 C.F.R. § 1.821(f) do hereby declare that, to the best of my knowledge, the content of the paper entitled "Sequence Listing" and the computer readable copy contained within the floppy disk are the same.

I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated this 23rd day of March, 2000.

Monica Steinborn
Monica Steinborn
Legal Assistant

701 Fifth Avenue, Suite 6300
Seattle, WA 98104-7092
(206) 622-4900
FAX (206) 682-6031

SEQUENCE LISTING

<110> Frudakis, Tony N.
Smith, John M.
Reed, Steven G.
Misher, Lynda
Retter, Marc W.
Dillon, Davin C.

<120> COMPOSITIONS AND METHODS FOR THE
TREATMENT AND DIAGNOSIS OF BREAST CANCER

<130> 210121.419C7

<140> US
<141> 2000-03- 23

<160> 317

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 363
<212> DNA
<213> Homo sapien

<400> 1

ttagagaccc	aattgggacc	taattggac	ccaaatttct	caagtggagg	gagaactttt	60
gacgatttcc	accgttatct	cctcgtgggt	attcagggag	ctgcccagaa	acctataaac	120
ttgtcttaagg	cgattgaagt	cgtccagggg	catgatgagt	caccaggagt	gttttttagag	180
cacctccagg	aggcttatacg	gatttacacc	ccttttgacc	tggcagcccc	cgaaaatagc	240
catgctctta	atttggcatt	tgtggctcag	gcagccccag	atagtaaaag	gaaactccaa	300
aaactagagg	gatttgctg	aatgaatac	cagtcagctt	ttagagatag	cctaaaaggt	360
ttt						363

<210> 2
<211> 121
<212> PRT
<213> Homo sapien

<400> 2

Leu	Glu	Thr	Gln	Leu	Gly	Pro	Asn	Trp	Asp	Pro	Asn	Phe	Ser	Ser	Gly
1				5				10				15			
Gly	Arg	Thr	Phe	Asp	Asp	Phe	His	Arg	Tyr	Leu	Leu	Val	Gly	Ile	Gln
			20					25				30			
Gly	Ala	Ala	Gln	Lys	Pro	Ile	Asn	Leu	Ser	Lys	Ala	Ile	Glu	Val	Val
			35					40				45			
Gln	Gly	His	Asp	Glu	Ser	Pro	Gly	Val	Phe	Leu	Glu	His	Leu	Gln	Glu
			50					55				60			
Ala	Tyr	Arg	Ile	Tyr	Thr	Pro	Phe	Asp	Leu	Ala	Ala	Pro	Glu	Asn	Ser

65	70	75	80
His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys			
85	90	95	
Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser			
100	105	110	
Ala Phe Arg Asp Ser Leu Lys Gly Phe			
115	120		

<210> 3
 <211> 1080
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1080)
 <223> n = A,T,C or G

<400> 3

tcttagaatttccatcccc	gaaacttttgc	atcgttacc	tacagtctac	60
caccat	ggaggagcaa	agctacatca	gctccctccgg	120
tcttcaa	ctaacagatc	aaggcgtct	acctgcgc	180
caaaaaa	aggt	cctaaaccca	gcccaggcca	240
gtgggaa	attt	gacttacag	aaactaaacc	300
actggtag	ac	acaccggct	gggtacaaat	360
atggtag	ttt	acttctctg	acgttgc	420
agggtct	ttt	atggactga	accaaaaacg	480
aatggaa	cc	acttgc	aaactgtcaa	540
aaacatt	ttt	atggaaat	catccctcg	600
atgaact	cc	atggaaat	cgtgggctgc	660
tgttagt	cc	atggaaat	ctgttgccat	720
tcttac	cc	atggaaat	agggtctgt	780
ttttagt	cc	atggaaat	atggaaat	840
tcttac	cc	atggaaat	tttttttt	900
tttttagt	cc	atggaaat	tttttttt	960
tcttac	cc	atggaaat	tttttttt	1020
tttttagt	cc	atggaaat	tttttttt	1080

<210> 4
 <211> 1087
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1087)
 <223> n = A,T,C or G

<400> 4

tcttagagctg	cgcctggatc	ccgcccacagt	gaggagacct	gaagaccaga	gaaaacacag	60
caagtaggccc	ctttaaacta	ctcacctgtg	ttgttctta	atttattctg	ttttattttt	120

tttccatcat	tttaaggggt	taaaatcatc	ttgttcagac	ctcagcatat	aaaatgaccc	180
atctgttagac	ctcaggctcc	aaccataccc	caagagtgt	ctgggtttgt	ttaaattact	240
gccaggttt	agctgcagat	atccctggaa	ggaatattcc	agattccctg	agtagttcc	300
aggttaaaat	cctataggct	tcttctgtt	tgaggaagag	ttcctgtcag	agaaaaaacat	360
gattttggat	tttaacttt	aatgcttgc	aaacgctata	aaaaaaaattt	tctaccctca	420
gctttaaagt	actgttagtg	agaaattaaa	attccctcag	gaggattaa	ctgcatttc	480
agttacccta	attccaaatg	ttttgggtgt	tagaatctc	ttaatgttc	ttgaagaagt	540
gttttatatt	ttcccatcna	gataaattct	ctcnccctt	nnnttntnt	ctnnnttttt	600
aaaacggant	cttgctccgt	tgtccangt	gggaatttt	tttggccaa	tctccgctnc	660
cttgcaanaa	tnctgcntcc	caaaattacc	nccttttcc	caccccccacc	ccnnngaatt	720
accttggaaatt	anaggcccc	ncccccccccc	cggctaattt	gttttggttt	ttagaaaaaa	780
acgggtttcc	tgttttagtt	aggatggccc	anntctgacc	ccntrnatcnt	ccccctcngc	840
cctcnaatnt	tnggntang	gcttacccccc	cccnngngtt	tttccctccat	ttaaattttc	900
tntggantct	tgaatnnccgg	tttttccctt	ttaaaccnat	ttttttttt	nnncccccan	960
tttncctcc	cccnntnta	angggggttt	cccaanccgg	gtccnccccc	angtcccaa	1020
ttttctccc	cccccctctt	ttttctttnc	cccaaaaantc	ctatctttc	ctnnnaaatat	1080
cnantnt						1087

```

<210> 5
<211> 1010
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(1010)
<223> n = A,T,C or G

```

tctagaccaa	gaaatggag	gatttagag	tgactgatga	tttctctatc	atctgcagtt	60
agtaaacatt	ctccacagtt	tatgcaaaaaa	gtaacaaaac	caactgcagat	gacaaacact	120
aggttaacaca	catactatct	cccaaatacc	tacccacaag	ctcaacaatt	ttaaactgtt	180
aggatcactg	gctctaatac	ccatgacatg	aggtcaccac	caaaccatca	agcgctaaac	240
agacagaatg	tttccactcc	tgatccactg	tgtggaaaga	agcaccgaac	ttacccactg	300
gggggcctgc	ntcananaa	aagcccatgc	ccccgggtnt	ncctttnaac	cggacgaaat	360
naacccacca	tccccacanc	tcctctgttc	ntggggccctg	catcttgtgg	cctcntntnc	420
tttngggan	acntgggaa	ggtacccat	ttcnntgacc	ccncnanaaa	accccnctgg	480
ccctttgcc	tgattcncnt	gggcctttc	tctttccct	tttgggttg	ttaaattccc	540
aatgtcccn	gaaccctctc	cntnctgcc	aaaacctacc	taaattnctc	nctangnntt	600
ttcttgggt	tnctttcaa	aggtnacctt	ncctgttcan	ncccnacnaa	aattnttcc	660
ntatnntgg	cccnnaaaaa	nnnatcnnc	cnaattgccc	gaattggtn	ggttttccct	720
nctggggaa	accctttaaa	tttccccctt	ggccggccccc	cctttttcc	cccccttng	780
aggcaggng	ttcttcccga	acttccaatt	ncaacagccn	tgeccattgn	tgaaccctt	840
ttcctaaat	taaaaaatan	ccggtnnngg	nnggccttt	ccccctccng	gnnggnngng	900
aaantccta	ccccnaaaaa	ggttgcttag	cccccnctcc	caactccccc	ngaaaaatn	960
aacctttcn	aaaaaaggaa	tataanttt	ccactccctn	gttctcttcc		1010

```

<210> 6
<211> 950
<212> DNA
<213> Homo sapien

```

<220>
 <221> misc_feature
 <222> (1)...(950)
 <223> n = A,T,C or G

<400> 6

tctagagctc	gcggccgcga	gctctaatac	gactcactat	agggcgtcga	ctcgatctca	60
gctcaactgca	atctctgccc	ccggggcat	gcgattctcc	tgcctcagcc	ttccaagtag	120
ctgggattac	aggcgtgcaa	caccacaccc	ggctaatttt	gtattttaa	tagagatggg	180
gtttccctt	gttggccann	atggtctcna	accctgacc	tcnngtgate	ccccncccn	240
nganctcnna	ctgctggga	ttnccgnnnn	nnncctcccn	ncncnnnnnn	ncncnntccn	300
tnntcttnc	tnnnnnnnnn	cnntcnntcc	nncttctcnc	nnntntttt	cnnccnccnn	360
cnnnccnccnt	ncccncnnnt	tcncntncnn	tntccnnccnn	nnctcnnccnn	cnnnccnccnn	420
ccnntacntc	tnnnncnnnt	ccntctntnn	cctcnnccnt	cnctcncnt	tntctctcn	480
tnnnnnnnct	ccnnnnntct	cntcncnnccn	tncctcnntn	ncncncncnc	ncctcncnncc	540
ctnntttnnn	cnnccnnntcc	ntncnnttcn	nnccnntnnn	cnnctcncn	nnccnntnttc	600
ccnccnnnttc	cttnccnctn	nnntntcnmm	cncntcnntc	ntttntctct	nnntcccnnc	660
tcnnttcncc	cnnntccncc	ccccncctnt	ctctcnnccn	nntnnnnttn	nnncntccncc	720
tntcncnttc	ntcnntncnt	tnctntcncc	nnccnntncnc	tncctntnt	ctnnntcnccn	780
tencntntcn	ccntccntn	ctntctctcn	tntccctccc	ctcncctnct	cnttccnccnc	840
ccnntntntn	tnnccnccnnt	ntnnnnncncc	cntcnnttcn	tctctnctnn	nnntnnccctc	900
nnccntncc	ctnntncnct	ntnnttaccn	tnctnctccn	tcttccttcc		950

<210> 7

<211> 1086

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(1086)

<223> n = A,T,C or G

<400> 7

tctagagctc	gcggccgcga	gctcaattaa	ccctcactaa	agggagtcga	ctcgatcaga	60
ctgttactgt	gtctatgttag	aaagaagtag	acataagaga	ttccatttt	ttctgtacta	120
agaaaaattc	ttctgccttg	agatgctgtt	aatctgtaac	cttagccca	accctgtgt	180
cacagagaca	tgtgctgtgt	tgactcaagg	ttcaatggat	ttagggctat	gtttgttaa	240
aaaagtgcct	gaagataata	tgctgtttaa	aagtcatcac	cattctctaa	tctcaagttac	300
ccagggacac	aatacactgc	ggaaggccgc	agggacctct	gtcttaggaaa	gccaggtatt	360
gtccaagatt	tctcccatg	tgatagcctg	agatatggcc	tcatggaaag	ggttaagacct	420
gactgtcccc	cagccgaca	tcccccagcc	cgacatcccc	cagccgaca	cccgaaaagg	480
gtctgtgctg	aggaagatta	ntaaaagagg	aaggctttt	gcattgaagt	aagaagaagg	540
ctctgtctcc	tgctcgccc	tggcaataa	aatgttttgg	tgttaaaccc	aatgttatgt	600
tctacttact	gagaatagga	aaaaacatcc	ttagggctgg	aggtgagaca	ccctggcggc	660
ataactgctct	ttaatgcacg	agatgtttgt	ntaattgcca	tccagggcca	nncccttcc	720
ttaactttt	atganacaaa	aactttgttcc	nttttccctg	cgAACCTCTC	ccccttattan	780
cctattggcc	tgcccatccc	ctccccaaan	ggtaaaaana	tgttcntaaa	tncgaggaa	840
tccaaaacnt	tttcccggtt	gtcccccttc	caacccgtc	cctggccnn	tttcctccccc	900
aacntgcccc	ggntccttcn	ttcccncccc	cttcccngan	aaaaaacc	gtntganggn	960

gccccctcaa attataacct ttccnaaaca aanngttcn aaggtggttt gnttccggtg	1020
cggctggcct tgaggtcccc cctncacccc aatttggaaan ccngttttt ttattgccc	1080
ntcccc	1086

<210> 8
 <211> 1177
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1177)
 <223> n = A,T,C or G

<400> 8	
nccntttaga tgttgacaan nttaaacaagc ngctcaggca gctgaaaaaa gccactgata	60
aagcatcctg gagtacgaga gtttactgtt agatcagcct catttgactt cccctccac	120
atgggttta aatccagcta cactacttcc tgactcaaac tccactattc ctgttcatga	180
ctgtcagga ctgttgaaa ctactgaaac tggccgacct gatcttcaaa atgtgccc	240
aggaaagggt gatgccaccc tgttcacaga cagtaccncc ttcctcgaga agggactacg	300
agggggccggt gcanctgtta ccaaggagac tnatgtgtt tgggctcagg cttaaccanc	360
aaacacacctca ncncnnaagg ctgaattgtt cgcctcaact caggctctcg gatggggtaa	420
gggatattaa cgtaaacact gacagcagg t acgccttgc tactgtgcat gtacgtggag	480
ccatctacca ggagcgtggg ctactca tc ggcaggtggc tgtnatccac tgtaaangga	540
catcaaaagg aaaacnnggc tgttgcccgt ggtaaccana aanctgatcn ncagctcnaa	600
gatgctgtt tgactttcac tcncnccctct taaacttgct gcccacantc tccttccca	660
accagatctg cctgacaatc cccatactca aaaaaaaaaa aanactggcc ccgaacccna	720
accaataaaa acggggangg tngtgnganc nncctgaccc aaaaataatg gatccccgg	780
gctgcaggaa ttcaattcan ctttatcna tcccccacn ngnggggggg gcccngtncc	840
catnccct ntattnattc tttnnccccc ccccccgcnt ctttttnaa ctcgtgaaag	900
ggaaaacctg ncttaccaan ttatcnctg gacntcccc ttccncggt gnttanaaaaa	960
aaaagccnc antccntcc naaatttgca cngaaaggna aggaatttaa cctttat	1020
ttntcctt anttgtnnn cccctttt cccaggcgaa cngccatnt ttaanaaaaaa	1080
aaanagaang ttattttc ttngaaacca tcccaatana aancacccgc nggggaacgg	1140
ggnggnaggc cnctcacccc cttntgtng gngggnc	1177

<210> 9
 <211> 1146
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(1146)
 <223> n = A,T,C or G

<400> 9	
nccnntnnat gatgttgtct ttttggcctc tctttggata ctccctct cttcagaggt	60
aaaaagggtc aaaaggagct gttgacagtc atccaggtg ggccaatgtg tccagagtg	120
agactccatc agtgaggtca aagcctgggg ctttcagag aagggaggat tatgggttt	180
ccaattatac aagtcaagaag tagaaagaag ggacataaac caggaagggg gtggagcact	240

catcacccag	agggacttgt	gcctctctca	gtggtagtag	aggggctact	tcctccacc	300
acgggtgcaa	ccaagaggca	atgggtgatg	agcctacagg	ggacatancc	gaggagacat	360
gggatgaccc	taagggagta	ggctggttt	aaggcggtgg	gactgggtga	gggaaactct	420
cctcttcttc	agagagaagc	agtacagggc	gagctgaacc	ggctgaaggt	cgaggcgaaa	480
acacggtctg	gctcaggaag	accttggaaag	taaaattatg	aatggtcat	gaatggagcc	540
atggaaagggg	tgctcctgac	caaactcagc	cattgatcaa	tgtagggaa	actgatcagg	600
gaagccggga	atttcattaa	caacccgcca	cacagctga	acattgtgag	gttcagtgac	660
cottcaaggg	gccactccac	tccaactttg	gccattctac	tttgcnaaat	ttccaaaact	720
tccttttta	aggccgaatc	cntantccct	naaaaacnaa	aaaaaatctg	cncctattct	780
ggaaaaggcc	canccttac	caggctggaa	gaaatttnc	ctttttttt	ttttgaagg	840
cnttnttaa	attgaacctn	aattcnccc	cccaaaaaaaaaa	aaccncnng	ggggcggtat	900
ttccaaaaac	naattccctt	accaaaaaaaaac	aaaaaaccnc	ccttnttccc	ttccnccctn	960
ttcttttaat	tagggagaga	ttaagcccc	caattccng	gnctngatnn	gtttccccc	1020
ccccccattt	ccnaaacttt	ttcccancna	ggaancncc	cttttttng	gtcngattna	1080
ncaaccccttcc	aaaccatttt	tccnnaaaaaa	nttgntrgg	ngggaaaaan	acctnnnttt	1140
atagan						1146

<210> 10
 <211> 545
 <212> DNA
 <213> Homo sapien

<400> 10

cttcattggg	tacggcccc	ctcgaggtcg	acggtatcga	taagcttcat	atcgaattcc	60
tgcagcccg	gggatccact	agttcttagag	tcaggaagaa	ccaccaact	tcctgatttt	120
tattggctct	gagttcttag	gccagtttc	ttcttctgtt	gagttatgogg	gattgtcagg	180
cagatctggc	tgtggaaagg	agactgtggg	cagcaagttt	agaggcgtga	ctgaaagtca	240
cactgcatct	tgagctgctg	aatcagcttt	ctgggtacca	cgggcaacag	ccgtgttttc	300
cttttgcgtgt	ccttacagt	ggattacagc	cacctgctga	ggtgagtagc	ccacgctcct	360
ggttagatggc	tccacgtaca	tgcacagttag	caaaggcgta	cctgctgtca	gtgttaacgt	420
taatatccctt	accccatcg	agagcctgag	tgagggcgat	caattcagcc	ctttgtgct	480
gagggttttgc	ctgggttaagc	cctgaaccca	caacacatct	gtctccatgg	taacagctgc	540
accgg						545

<210> 11
 <211> 196
 <212> DNA
 <213> Homo sapien

<400> 11

tctccttaggc	tggcacagt	ggctcataacc	tgtatcctg	accgtttcag	aggctcaggt	60
ggggggatcg	cttgcaccca	agatttcaag	actagtctgg	gtaacatagt	gagaccctat	120
ctctacgaaa	aaataaaaaaa	atgagcctgg	tgtatggca	cacaccagct	gaggaggag	180
aatcgagcct	aggaga					196

<210> 12
 <211> 388
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(388)
 <223> n = A,T,C or G

<400> 12

tctccttaggc ttgggggctc tgactagaaa ttcaaggaac ctgggattca agtccaactg	60
tgacaccaac ttacactgtg gnctccaata aactgcttct ttcctattcc ctctcttatta	120
aataaaaataa ggaaaacgat gtctgtgtat agccaagtca gntatcctaa aaggagatac	180
taagtgacat taaatatcag aatgtaaaac ctgggaacca ggttcccagc ctgggattaa	240
actgacagca agaagactga acagtaactac tgtaaaaagc ccgaagnngc aatatgttca	300
ctctaccgtt gaaggatggc tgggagaatg aatgctctgt cccccagtc caagctcact	360
tactatacct cctttatagc ctaggaga	388

<210> 13

<211> 337

<212> DNA

<213> Homo sapien

<400> 13

tagtagttgc ctataatcat gtttctcatt attttcacat tttttaacc aatttttgtt	60
taccctgaaa aatatgaggg aatatataatga aacagggagg caatgtttagtataattgtac	120
acaagatatg atttctacat cagatgctct ttcctttccct gtttatttcc tttttatttc	180
ggttgtgggg tcgaatgtaa tagctttgtt tcaagagaga gttttggcag tttctgttagc	240
ttctgacact gctcatgtct ccaggcatctt atttgcactt taggaggtgt cgtggagac	300
tgagaggtct atttttcca tatttggca actacta	337

<210> 14

<211> 571

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(571)

<223> n = A,T,C or G

<400> 14

tagtagttgc catacagtgc ctttccattt attttaacccc cacctgaacg gcataaactg	60
agtgttcaggc tgggttttt tactgtaaac aataaggaga ctttgctctt cattaaacc	120
aaaatcatat ttcatatttt acgctcgagg gtttttaccg gttcctttt acactcctt	180
aaacagtttt taagtcgttt ggaacaagat atttttctt tcctggcagc ttttaacatt	240
atagcaaatt tggctctggg ggactgctgg tcactgtttc tcacagtgc aaatcaaggc	300
atttgcaacc aagaaaaaaa aatttttttg ttttatttga aactggaccc gataaacgg	360
gtttggagcg gctgctgtat atagttttaa atggtttattt gcacccctt aagttgcact	420
tatgtggggg ggggnntttg natagaaagt nttaatcac anagtcacag ggactttnt	480
cttttggnnna ctgagctaaa aagggctgnt tttcgggtgg gggcagatga aggctcacag	540
gaggcccttcc tcttagaggg gggactnct a	571

<210> 15

<211> 548

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(548)

<223> n = A,T,C or G

<400> 15

tatataattta ataacttaaa tatattttga tcacccactg gggtgataag acaatagata	60
taaaaagtatt tccaaaaagc ataaaaccaa agtatcatac caaaccaaat tcatactgct	120
tccccccaccc gcactgaaac ttcaccttct aactgtctac ctaaccaaat tctacccttc	180
aagtcttgg tgcgtctca ctactcttt tttttttt ttnntttgg agatggagtc	240
tggctgtgca gcccagggt ggagtacaat ggcacaacct cagctactg naacctccgc	300
ctcccaggtt catgagattc ttctgnttca gccttccag tagctggac tacaggtgt	360
catcaccatg cctggntaat ctttttngt tttnnggtag agatggggt tttacatgtt	420
ggccaggngt gtnctgaact cctgacctca agtgcattcc acacccagg ctccaaagt	480
gtctaggatta cagacatgag ccactgngcc cagnccgtt gcatgctcac ttctcttaggc	540
aactacta	548

<210> 16

<211> 638

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(638)

<223> n = A,T,C or G

<400> 16

ttccgttagt cacatgcaga atattctatc ggtacttcag ctattactca ttttgcgttgc	60
gcaatccgag cctatccctca agatgagttt ttagaaagaa ttgatgttgc gatagaccaa	120
gctggtaagc actctgacta cacgaaattt ttcatgttgc atggattttt gacagttgt	180
ctttggaaaga gattattaag tgattttttt aaaggaaatc cattaattcc agaatatctt	240
ggtttagctt aagatgatagat agaaatagaa cagaaagaga ctacaaatga agatgtatca	300
ccaaactgata ttgaagagcc tatagtagaa aatgaatttgcattttt tagccttaca	360
catagcgatt ttccctgtatca atcttatattt cagccatcga catagcatta cctgtatggc	420
aaccttacga ataataaaaaa ctgggtgcgg ggctattgtt gaattcatcc ncagtaaattt	480
tggatatnac aaaatataac tcgatttgcattt ttggatgttgc gaataactaaa tctggcaaaa	540
gttaactttgg agctactagt aacctctttt tttgatgttgc aaaatttttctt ttttagggttt	600
cttattctctt actttacggta tattggagca taacggga	638

<210> 17

<211> 286

<212> DNA

<213> Homo sapien

<400> 17

actgatggat gtcgcggag gcgaggggcc ttatctgttgc ctccggctgcc tgttcgtgt	60
gtgcgcggcg attgggtgtt ttatctcaaa caccgcacg gcggtgtga tggccctat	120
tgccttagcg gcccggaaatg caatggcgat ctcaccctat cttttgcac tgggtggc	180

gatggcggct tcggccgcgt ttatgacccc ggtctcctcg ccggtaaca ccctggcgct	240
tggccctggc aagtactcat ttagcgatt tgtcaaaaata ggcgtg	286
<210> 18	
<211> 262	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(262)	
<223> n = A,T,C or G	
<400> 18	
tcggtcatacg cagcccttc ttctcaattt catctgtcac taccctggtg tagtatctca	60
tagccttaca ttttatagc ctcctccctg gtctgtctt tgattttct gcctgtaatc	120
catatcacac ataactgcaa gtaaacattt ctaaaagtgtg gttatgctca tgtcaactcct	180
gtgncaagaa atagttcca ttaccgtctt aataaaaattc ggatttgttc tttnctattn	240
tcactcttca cctatgaccg aa	262
<210> 19	
<211> 261	
<212> DNA	
<213> Homo sapien	
<400> 19	
tcggtcatacg caaagccagt ggttttagct ctctactgtg taaactccctt aaccaggcc	60
atttatgata aatggggca ggattttat tataaacatg tacccatgca aatttcctat	120
aactctgaga tatatttttc tacatttaaa caataaaaat aatctatttt taaaaggctt	180
atttgcgtat ttaggtttaga gtgtttatg agagggtata aggtataaat caccagtcaa	240
cgtttctctg cctatgaccg a	261
<210> 20	
<211> 294	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(294)	
<223> n = A,T,C or G	
<400> 20	
tacaacgagg cgacgtcggt aaaatcgac atgaagccac cgctggctt ttcgtccgag	60
cgataggcgc cggccagcca gcgaaacgggt tgcccgatg gcgaaggcag ccggagttct	120
tcggactgag tatgaatctt gttgtgaaaa tactcgccgc cttcgatcgca cgacgtcgcg	180
tcgaaatctt cgancctt acgatcgaaat tcttcgtggg cgacgatcgca ggtcaagtcc	240
gccccaccga aatcatggtt gagccggatg ctgncccgaa agncctcgat tgn	294
<210> 21	
<211> 208	

<212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(208)
 <223> n = A,T,C or G

<400> 21
 ttggtaaagg gcatggacgc agacgcctga cgtttgctg aaaatcttc attgattcgt 60
 atcaatgaat aggaaaattc ccaaagaggg aatgtcctgt tgctcgccag ttttntgtt 120
 gttctcatgg anaaggcaan gagctctca gactattggn attntcggtc ggtcttctgc 180
 caactagtcg ncttgcnang atcttcat 208

<210> 22
 <211> 287
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(287)
 <223> n = A,T,C or G

<400> 22
 nccnttgagc tgagtgattg agatntgtaa tggttgttaag ggtgattcag gcggattagg 60
 gtggcgggtc acccggcagt gggtctcccg acaggccagc aggatttggg gcaggtacgg 120
 ngtgcgcac gctcgactat atgctatgac aggcgagccg tggaaaggngg atcaggtcac 180
 ggcgctggag cttccacgg tccatgnatt gngatggctg ttctaggcgg ctgttgccaa 240
 gcgtgatggt acgctggctg gagcattgat ttctggtgcc aaggtgg 287

<210> 23
 <211> 204
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(204)
 <223> n = A,T,C or G

<400> 23
 ttgggtaaag ggagcaagga gaaggcatgg agaggctcan gctggtcctg gcctacgact 60
 gggccaagct gtggccgggg atggtgaga actgaagcgg gacctcctcg aggtcctccg 120
 ncgttacttc nccgtccagg aggagggtct ttccgtggtc tnggaggagc gggggggagaa 180
 gatnctcctc atggtnaca tccc 204

<210> 24
 <211> 264
 <212> DNA
 <213> Homo sapien

<220>		
<221> misc_feature		
<222> (1) ... (264)		
<223> n = A,T,C or G		
<400> 24		
tggattggtc aggagcgggt agagtggcac cattgagggg atattcaaaa atattat	60	
gtcctaaatg atagttgctg agtttttctt tgaccatga gttatattgg agtttat	120	
ttaactttcc aatcgcatgg acatgttaga cttat	180	
ttaaattgga tttagaaat tggtnnttataatcaatt ttttgttattt gttgagttt	240	
acattatagc ttagtatgtc acca	264	
<210> 25		
<211> 376		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1) ... (376)		
<223> n = A,T,C or G		
<400> 25		
ttacaacgag gggaaactcc gtctctacaa aaattaaaaa attagccagg tgggtgg	60	
tgcacccgca atcccagcta cttggaggt tgagacacaa gantcaccta natgtggag	120	
gtcaagggtt catgagtcat gatttgccca ctgcactcca gcctgggtga cagaccgaga	180	
ccctgcctca anaganaang aataggaat tcagaaatcn tggntgtgn gcccagcaat	240	
ctgcatctat ncaaccctg caggcaangc tgatgcagcc tangttcaag agctgctgtt	300	
tctggaggca gcagtgnggg cttccatcca gtatcacggc cacactcgca cnagccatct	360	
gtcctccgtt tgtnac	376	
<210> 26		
<211> 372		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1) ... (372)		
<223> n = A,T,C or G		
<400> 26		
ttacaacgag gggaaactcc gtctctacaa aaattaaaaa attagccagg tgggtgg	60	
tgcacctgta atcccagcta cttggcgcc tgagacacaa gaaccaccta aatgtggag	120	
gttcaagggtt gcatgagtca tgatgcgccc actgcactcc agcctgggtg acagactgag	180	
accctgcctc aaaagaaaaa gaataggaag ttcagaaacc ctgggtgtgg ngcccagca	240	
tctgcattta aacaatccct gcaggcaatg ctgatgcagc ctaagttcaa gagctgctgt	300	
tctggaggca gnagtaaggg cttccatcca gcatcacggc caacactgca aaagcacctg	360	
tcctcggtt ta	372	

<210> 27	
<211> 477	
<212> DNA	
<213> Homo sapien	
<400> 27	
ttctgtccac atctacaagt tttatattt ttgtgggtt tcagggtgac taagttttc	60
cctacattga aaagagaagt tgctaaaagg tgcacaggaa atcattttt taagtgaata	120
tgataatatg ggtccgtgct taatacaact gagacatatt tgttctctgt ttttttagag	180
tcacctctta aagtccaatc ccacaatggt gaaaaaaaaa tagaaagtat ttgttctacc	240
tttaaggaga ctgcaggat tctccttcaa aacggagtat ggaatcaatc ttaaataaaat	300
atgaaattgg ttggcttct gggataagaa attccaaact cagtgtgctg aaattcacct	360
gactttttt gggaaaaaat agtcgaaaat gtcaatttg tccataaaaat acatgttact	420
attaaaagat atttaaagac aaattcttc agagctctaa gattggtgac gacagaa	477
<210> 28	
<211> 438	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (438)	
<223> n = A,T,C or G	
<400> 28	
tctncaacct cttgantgtc aaaaaccttn taggctatct ctaaaagctg actggattc	60
attccagcaa aatccctcta gtttttggag tttcctttta cttatctgggg ctgcctgagc	120
cacaaatgcc aaattaagag catggctatt ttccggggct gacaggtcaa aagggtgtaa	180
aatccgataa gcctccttggaa ggtgctctaa aaacactcct ggtgactcat catgccccctg	240
gacgacttca atcgncttag acaagtttat aggttctgg gcagctccct gaataccac	300
gaggagatac cgggtggaaat cgtcaaaagt tctccctcca cttgagaaat ttgggtccca	360
attaggtccc aattgggtct ctaatcacta ttccctctagc ttccctccctt ggnctattgg	420
ttgatgtgag gttgaaga	438
<210> 29	
<211> 620	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (620)	
<223> n = A,T,C or G	
<400> 29	
aagagggtac cagccccaaag ctttgacaac ttccataggg tgtcaaggct gtgggtgcac	60
agaagtcaaa aattgagttt tgggatccctc agccttagatt tcagaggata taaagaaaca	120
cctaaccctt agatattcag acaaaagttt actacaggaa tgaagcttc acggaaaacc	180
tctacttaga aagtacagaa gagaaatgtg ggttggagc ccccaaacag aatccctct	240
agaacactgc ctaatgaaac tgtgagaaga tggccactgt catccagaca ccagaatgat	300

agacccacca aaaacttatg ccatattgcc tataaaacct acagacactc aatgccagcc	360
ccatgaaaaa aaaactgaga agaagactgt nccctacaat gccaccggag cagaactgcc	420
ccaggccatg gaagcacagc tcttatatca atgtgacctg gatgttgaga catggaatcc	480
nangaaatcn tttaaanact tccacggtn aatgactgcc ctattanatt cngaacttan	540
atccnggcct gtgacctctt tgcttgcc attccccctt tttggaatgg ctntttttt	600
cccatgcctg tncccttta	620
<210> 30	
<211> 100	
<212> DNA	
<213> Homo sapien	
<400> 30	
ttacaacgag ggggtcaatg tcataaatgt cacaataaaa caatctcttc tttttttttt	60
tttttttttt tttttttttt tttttttttt tttttttttt	100
<210> 31	
<211> 762	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(762)	
<223> n = A,T,C or G	
<400> 31	
tagtctatgc gccggacaga gcagaattaa attggaagtt gccctccgga ctttctaccc	60
acactcttcc tgaaaagaga aagaaaagag gcaggaaaga gtttaggatt tcattttcaa	120
gagtcagcta attaggagag cagagtttag acagcagtag gcaccccatg atacaaacca	180
tggacaaagt ccctgtttag taactgccag acatgatcct gctcagggtt taaaatctct	240
ctgcccataa aagatggaga gcaggagtgc catccacatc aacacgtgtc caagaaagag	300
tctcaggag acaagggtat caaaaaacaa gattcttaat gggaaaggaaa tcaaaccaaa	360
aaatttagatt tttctctaca tataatataat atacagatatt ttaacacatt attccagagg	420
tggctccagt ccttgggct tgagagatgg taaaacttt tttccacat taacttctgc	480
tctcaaattc tgaagtatat cagaatggga caggaatgt tttgctccac actggggcac	540
agacccaaat gttctgtgc cggagaaga gaagcccgaa agacatgaag gatgcttaag	600
gggggttggg aaagccaaat tggtantatc tttcctcct gcctgtgtc cngaagtctc	660
cnctgaagga attcttaaaa ccctttgtga gaaatgccc ccttaccatg acaantggtc	720
ccattgctt tagggngatg gaaacaccaa ggttttgat cc	762
<210> 32	
<211> 276	
<212> DNA	
<213> Homo sapien	
<400> 32	
tagtctatgc gtgttattaac ctccccccc tcagtaacaa ccaaagagggc aggagctgtt	60
attaccaacc ccattttaca gatgcatcaa taatgacaga gaagtgaagt gacttgcgc	120
cacaaccagt aaattggcag agtcagattt gaatccatgg agtctggct gcactttcaa	180
tcaccgaata cccttctaa gaaacgtgtc ctgaatgagt gcatggataa atcagtgtct	240

actcaacatc	tttgctaga	tatccgcac	agacta	276		
<210> 33						
<211> 477						
<212> DNA						
<213> Homo sapien						
<400> 33						
tagtagttgc	caaataatttgc	aaaatttacc	cagaagtgtat	tgaaaacttt	ttggaaaacaa	60
aaacaaataaa	agccaaaagg	taaaataaaa	atatcttgc	actctcggtt	ttacctatcc	120
ataacttttt	caccgttaagc	tctcctgctt	gttagtgttag	tgtggttata	ttaaaactttt	180
tagttattat	tttttattca	cttttccact	agaaaagtcat	tattgatttgc	gcacacatgt	240
tgtatctcat	tcatttttc	tttttatagg	caaaatttgc	tgctatgca	caaaaataact	300
caagcccatt	atcttttttc	cccccgaaat	ctgaaaatttgc	caggggacag	aggaaagtta	360
tcccattaaa	aaattgtaaa	tatgttcagt	ttatgtttaa	aatgcacaa	aacataagaa	420
aattgtgttt	acttgagctg	ctgattgtaa	gcagtttat	ctcaggggca	actacta	477
<210> 34						
<211> 631						
<212> DNA						
<213> Homo sapien						
<400> 34						
tagtagttgc	caattcagat	gatcagaat	gctgcttcc	tcagcattgt	cttggtaaac	60
cgcgcattt	ttggaacttt	ggcagtgaga	agccaaaagg	aagaggtgaa	tgacatata	120
atatatata	attcaatgaa	agtaaaaatgt	atatgctcat	atactttcta	gttacatgaa	180
ttaggtttagc	ttttagccat	ttggctgtcg	catattttaa	tcagaagata	aaagaaaatc	240
tggcattttt	tagaatgtga	tacatgtttt	tttaaaaactg	ttaaatatta	tttcgatatt	300
tgtctaaagaa	ccggaatgtt	cttaaaaattt	actaaaacag	tattgttga	ggaagagaaa	360
actgtactgt	ttgcccattat	tacagtgcgt	caagtgcgt	tcaagtcacc	cactctctca	420
ggcgcatttgc	tccacctcat	agctttcac	atttgacgg	ggaatattgc	agcatcctca	480
ggcgcatttgc	ctggaaagg	ctcagatcca	cctactgctc	cttgctcg	tttgcatttt	540
aaaatattgt	gcctgggtgtc	acttttaagc	cacagccctg	cctaaaagcc	agcagagaac	600
agaacccgca	ccattctata	ggcaactact	a			631
<210> 35						
<211> 578						
<212> DNA						
<213> Homo sapien						
<400> 35						
tagtagttgc	catcccatat	tacagaaggc	tctgtataca	tgacttattt	ggaagtgtac	60
tgttttctct	ccaaacccat	ttatcgtaat	ttcaccagtc	ttggatcaat	cttggttcc	120
actgatacca	tgaaacctac	ttggagcaga	cattgcacag	ttttctgtgg	taaaaaactaa	180
aggttttattt	gtctagctgt	catcttatgc	tttagtatttt	ttttttacag	tggggatttgc	240
ctgagattac	attttgcattt	tcattagata	ctttgggata	acttgacact	gtcttctttt	300
tttcgcatttt	aattgctatc	atcatgctt	tgaacaacaaga	acacattagt	cctcaagtat	360
tacataagct	tgcttgcatt	gcctgggtgt	ttaaaaggact	atctttggcc	tcaggttcac	420
aagaatgggc	aaagtgttgc	ctttagttct	gtagttctca	ataaaaagatt	gccaggggcc	480
gggtactgtg	gctcgactg	taatcccaagc	actttgggaa	gctgaggctg	gcggatcatg	540
ttagggcagg	tgttcgaaac	cagcctggc	aactacta			578

<210> 36
 <211> 583
 <212> DNA
 <213> Homo sapien

<400> 36
 tagtagttgc ctgtaatccc agcaacttag gaggctgggg caggagaatc agttgaacct 60
 gggaggcaga agttgttaatt agcaaagatc gcaccattgc acttcagcct gggcaacaag 120
 agtgagattc catctcaaaa acaaaaaaaa gaaaaagaaa agaaaaggaa aaaacgtata 180
 aacccagcca aaacaaaatg atcattctt taataagcaa gactaattt atgtgtttat 240
 ttaatcaaag cagttgaatc ttctgagta ttggtaaaaa tacccatgta gtttatttag 300
 gtttcttaact tgggtgaacg tttgatgtc acaggtata aaatggttaa caaggaaaat 360
 gatgcataaa gaatcttata aactactaaa aataaataaa atataaatgg ataggtgcta 420
 tggatggagt ttttgtgtaa tttaaaaatct tgaagtcatt ttggatgctc attgggtgtc 480
 tggtaatttc cattaggaaa aggttatgtat atggggaaac tggttctgga aattgcggaa 540
 tggttctcat ctgtaaaatg ctgtatctc agggcaacta cta 583

<210> 37
 <211> 716
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(716)
 <223> n = A,T,C or G

<400> 37
 gatctactag tcatntggat tctatccatg gcagctaagc ctttctgaat ggattctact 60
 gctttcttgt tcttaatcc agacccttat atatgtttat gttcacagggc agggcaatgt 120
 ttagtggaaa caattctaaa ttttttattt tgcatttca tgctaatttc cgtcacactc 180
 cagcaggctt cctggggagaa taaggagaaa tacagctaaa gacattgtcc ctgcttactt 240
 acagcctaattt ggtatgcaaa accacttcaa taaagtaaca ggaaaagtagt taaccaggta 300
 gaatggacca aaactgatattt agaaaaatca gaggaagaga ggaacaaataa tttactgagt 360
 cctagaatgt acaaggcttt ttaattacat attttatgtt aggcctgcaa aaaacaggtg 420
 agtaatcaac atttgccttca ttatcatat aagggaaactg aagcttaaat tgaataattt 480
 aatgcataaga ttatcatat aagggaaactg aagcttaaat tgaataattt 540
 tgaatatgag aaaataattt tgttatccc ttggcatcag tattttcatc tgcaaaataa 600
 agctaaaggattt atttagcaaa cagtcagcat agtgcctgat acatagtagg tgctccaaac 660
 atgattacnc tantatnngg tattanaaaa atccaatata ggcntggata aaaccg 716

<210> 38
 <211> 688
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(688)
 <223> n = A,T,C or G

<400> 38	
ttctgtccac atatcatccc actttaattt ttaatcagca aaactttcaa tgaaaaatca	60
tccatttaa ccaggatcac accagggaaac tgaaggtgta ttttttttta ccttaaaaaaa	120
aaaaaaaaaaa accaaacaaa ccaaaacaga ttaacagcaa agagttctaa aaaatttaca	180
tttctcttac aactgtcatt cagagaacaa tagttctaa gtctgttaaa tcttggcatt	240
aacagagaaa cttgatgaan agttgtactt ggaatattgt ggattttttt ttttgtctaa	300
tctccccccta ttgttttgcc aacagtaatt taagttgtg tggaacatcc ccgtagttga	360
agtgtaaaca atgtatagga aggaatataat gataagatga tgcatcacat atgcattaca	420
tgtagggacc ttcacaactt catgcactca gaaaacatgc ttgaagagga ggagaggacg	480
gcccagggtc accatccagg tgccttgagg acagagaatg cagaagtggc actgttggaa	540
tttagaagac catgtgtgaa tggtttcagg cctggatgt ttgccaccaa gaagtgcctc	600
cgagaaattt ctttcccatt tggaaatacag ggtggcttga tgggtacggt gggtgaccca	660
acgaagaaaa tggaaattctg ccctttcc	688
<210> 39	
<211> 585	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(585)	
<223> n = A,T,C or G	
<400> 39	
tagtagttgc cgcnaccta aaantggaa agcatgtatgt ctaggaaaca tantaaaata	60
gggtatgcct atgtgctaca gagagatgtt agcattaaa gtgcattttt ttatgttattt	120
tgacaaatgc atatnccctt ataatccaca actgattacg aagctattac aattaaaaag	180
tttggccggg cgtggggc ggtggctgac gcctgtaatc ccagcacattt gggaggccga	240
ggcacgcgga tcacgaggc gggagttcaa gaccatcctg gctaacacgg tgaagtccttca	300
tctctactaa aaatacgaaa aaattacccc ggcgtggtgg cgggcgcctg tagtcccagc	360
tactccggag gctgaggcag gagaatggcg tgaacccagg acacggagct tgcagtgtgc	420
caacatcactg tcactgcctt ccagcctggg ggacaggaac aagantcccg tcctcanaaa	480
agaaaaataac tactnatant ttcnacttta ttttaantta cacagaactn cctttggta	540
cccccttacc attcatctca cccacctcct atagggcacn nctaa	585
<210> 40	
<211> 475	
<212> DNA	
<213> Homo sapien	
<400> 40	
tctgtccaca ccaatcttag aagctctgaa aagaatttgc tttaaatat cttttatag	60
taacatgtat ttatggacc aaattgacat ttgcactgt ttttccaaa aaagtcaagg	120
gaatttcagc acactgagggtt gggaaatttct tatccagaa gaccaaccaa tttcatattt	180
atttaaaggatt gattccatac tccgttttca aggagaatcc ctgcagtctc cttaaaggta	240
gaacaaatac ttccattttt ttttccacca ttgtgggatt ggactttaa aggtgactct	300
aaaaaaaaacag agaacaaata tgcgtcagggtt gtatataagca cggacccata ttatcatatt	360
cactaaaaaa aatgatttcc tgcgtcagggtt ttggcaactt ctctttcaa tgcgtggaaa	420
aacttagtca ccctgaaaac ccacaaaata aataaaactt gtagatgtgg acaga	475

<210> 41		
<211> 423		
<212> DNA		
<213> Homo sapien		
<400> 41		
taagagggtta catcggttaa gaacgttagc acatctagag cttagagaag tctgggttag	60	
gaaaaaaaaatc taagtattta taagggtata ggtaacattt aaaagttaggg ctagctgaca	120	
ttattttagaa agaacacata cggagagata agggcaaagg actaagacca gaggaacact	180	
aatattttagt gatcaacttcc attcttggta aaaatagtaa ctttaagtt agcttcaagg	240	
aagatttttg gccatgatta gttgtcaaaa gttagttctc ttgggtttat attactaatt	300	
ttgttttaag atcctgtta gtgcttaat aaagtcatgt tataatcaaac gctctaaaac	360	
attgttagcat gttaaatgtc acaatatact taccatttgt tgtatatggc tgtaccctct	420	
cta	423	
<210> 42		
<211> 527		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(527)		
<223> n = A,T,C or G		
<400> 42		
tctcctaggc taatgtgtgt gtttctgtta aagaaaaag taaaaaattt taaaaataga	60	
aaaaagctta tagaataaga atatgaagaa agaaaaattt tttgtacatt tgcacaatga	120	
gtttatgttt taagcttaatgtt gtttattacaa aagagccaaa aaggttttaa aaattttaaac	180	
gtttgttaaag ttacagtacc cttatgttaa tttataattt aagaaagaaaa aacttttttt	240	
tataaatgtta gtgttagccta agcatacagt atttataaag tctggcagtg ttcaataatg	300	
tccttaggcct tcacattcac tcactgactc acccagagca acttccagtc ctgttaagctc	360	
cattcgtggta aagtgcctta tacaggtgca ccatttattt tacagtattt ttactgtacc	420	
ttctctatgt ttccatatgt ttcgatatac aaataccact ggttactatn gcccncacagg	480	
taattccagt aacacggcct gtatacgtct ggtancctta gngaaga	527	
<210> 43		
<211> 331		
<212> DNA		
<213> Homo sapien		
<400> 43		
tcttcaacct cgtaggacaa ctctcatatg cctggcact attttttaggt tactaccttg	60	
gctgcccttc tttaagaaaa aaaaaagaag aaaaaagaac ttttccacaa gtttctcttc	120	
ctcttagttgg aaaatttagag aaatcatgtt tttaattttt tgttatttca gatcacaat	180	
tcaaacactt gtaaaacatta agcttctgtt caatccccctg ggaagaggat tcattctgat	240	
atttacggtt caaaaagaagt tgtaatattt tgcttggAAC acagagaacc agttattaac	300	
ttctctactac tattatataa taaaataataa c	331	
<210> 44		

<211> 592
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(592)
 <223> n = A,T,C or G

<400> 44

ggcttagtag ttgccaggca aaatarcgtt gatttcctc aggagccacc cccaacaccc	60
ctgtttgctt ctagacctat acctagacta aagtcccagc agaccctag aggtgagggtt	120
cagagtgacc cttgaggaga tgtgctacac tagaaaagaa ctgcttgagt tttctaattt	180
atataagcag aaatctggag aagagtata ggaatggata ttaagggtgt gagataatgg	240
cggaaaggaat atagagttgg atcaggctgg acttattgtat ttgaaccac taagtagaga	300
ttctgctttt gatgttgcag ctcagggagt taaaaaaggt ttaatggtt ctaatagttt	360
atttgcttgg ttagctgaaa tatggataaa agatggccca ctgtgagcaa gctggaaatg	420
cctgtatctct ctcagttaa tgtagaggaa gggatccaaa agtttaggga ganttggatg	480
ctggraktgg attggtaact ttgrgaccta cccwtcccag ctgggagggt ccagaagata	540
cacccttgcac caacgctttt cgaaatggat ttgtgatggc ggcaactact aa	592

<210> 45
 <211> 567
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(567)
 <223> n = A,T,C or G

<400> 45

ggcttagtag ttgccattgc gagtgcttgc tcaacgagcg ttgaacatgg cggattgtct	60
agattcaacg gatttgagtt ttaccagcaa agcgaaccaa ggcggccca gagaattatg	120
ggttgggtgg ctttggaaatgg atggaaatcc tgtaggccta gtcagaaaaag ctttcttgc	180
gaacagttgg ttctcggcg aacgctcatc aagatgccca ttggaaaggc tagcgtgtat	240
ttgggagagc ctgatagcgt gtcttctgtat gatgtttgtg cttggacagt gacaaaagat	300
atgcaaagcga agtccgaact agacgtcaag cttcggtgaaatattgt agactcctac	360
ttatactgtg aggaatgata gccaagggtg gggactttaa gactaagggtg gtttgtactt	420
gcccggatgatc tcccaaggcag aaagamctga tcgctagttt tatacgggca actactaagc	480
cgaattccag cacactggcg gccgttacta attggatccg anctcggtac cagcttgc	540
catascttga gttwtctata ntgtcnc	567

<210> 46
 <211> 908
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(908)

<223> n = A, T, C or G

<400> 46

gagcgaaaaga ccgagggcag ngnntangng cgangaagcg gagagggcca aaaagcaacc 60
gctttccccg gggggtgcgc attcattaag gcaggtggag gacaggttc ccgatggaag 120
gcggcagggg cgcaagcaat taatgtgagt aggccattca ttagcaccgg ggcttaacat 180
ttaagcttcg gtttggtatg tggtggaat tgtgagcggtaacaatttc acacaggaaa 240
cagctatgac catgattacg ccaagctatt taggtgacat tatagaataa ctcaagttat 300
gcatcaagct tggtaccgag ttccggatcca ctagtaacgg ccgcccagtgt gtggaattcg 360
gcttagtagt tgccgaccat ggagtgctac ctaggctaga atacctgagy tcctccctag 420
cctcactcac attaaattgt atctttcta cattagatgt cctcagcgcc ttatttctgc 480
tggacwatcg ataaattaat cctgatagga tgatagcagc agattaatta ctgagagtat 540
gttaatgtgt catccctcct atataacgta ttgcatttt aatggagcaa ttctggagat 600
aatccctgaa gccaaggaa tgaatcttga gggtgagaaa gccagaatca gtgtccagct 660
gcagttgtgg gagaagggtga tattatgtat gtctcagaag tgacaccata tgggcaacta 720
ctaagccccgaa attccagcac actggcgggc gttactaatg gatccgagct cggtaccaag 780
cttgcattgcat agcttggatc tctatagtgt cactaaatag cctggcgatc tcatggtcat 840
agctgttcc tggatcggatc tggatccgc tcccaattcc cccaccata cgagccggaa 900
cataaaatgt 908

<210> 47

<211> 480

<212> DNA

<213> *Homo sapien*

<220>

<221> misc_feature

<222> (1) . . . (480)

<223> n = A, T, C or G

<400> 47

tgccaacaag gaaagtttta aatttccccct tgaggattct tggtgatcat caaattcagt	60
ggtttttaag gttgtttct gtcaaaataac tctaacttta agccaaacag tatatggaaag	120
cacagataka atattacaca gataaaagag gagttgatct aaagtaraga tagttggggg	180
ctttaatttc tggAACCTAG gtctccccat ctcttctgt gctgaggAAC ttcttggaaag	240
cggggattct aaagttcttt ggaagacagt ttgaaaacca ccatgttgtt ctcagtacct	300
ttatTTTTaa aaagtaggtg aacatttga gagagaaaag ggcttgggtg agatgaagtc	360
cccccccccc cttttttttt ttttagctga aatagatacc ctatgttcaa rgaarggatt	420
attatTTTacc atGCCAYtar scacatqctc tttgatgggc nyctccstac cctccttaag	480

<210> 48

<211> 591

<212> DNA

<213> Homo sapien

<400> 48

aagagggtac cgagtggaaat ttccgcgttca cttagtctgggt gtggctagtc gggttcgtgg 60
tggccaaacat tacgaacttc caactcaacc gttcttggac gttcaagcgg gagtaccggc 120
gaggatggtg gcgtgaattc tggcctttct ttgcccgtggg atcggtagcc gccatcatcg 180
gtatgtttat caagatcttc ttactaacc cgacctctcc gatttacctg cccgagccgt 240
ggtttaacga ggggagggggg atccagtca c gcgagttactg gtcccaagatc ttccatcg 300

tcgtgacaat gcctatcaac ttcgtcgta ataagttgtg gaccttccga acggtaaggc	360
actccgaaaaa cgtccggtgg ctgctgtcg gtgactccca aatcttgat aacaacaagg	420
taaccgaatc gcgctaagga accccggcat ctcgggtact ctgcataatgc gtacccctta	480
agccgaattc cagcacactg gcggccgtta ctaattggat ccgaactccg taaccaagcc	540
tgatgcgtaa cttgagttat tctatagttt ccctaaaata acctggcgaa a	591
<210> 49	
<211> 454	
<212> DNA	
<213> Homo sapien	
<400> 49	
aagagggtac ctgccttgaa atttaaatgt ctaaggaaar tggagatga ttaagagttg	60
gtgtggcyta gtcacaccaa aatgtattta ttacatcctg ctccttctta gttgacagga	120
aagaaagctg ctgtggggaa aggagggata aatactgaag ggatttacta aacaaatgtc	180
catcacagag tttcctttt tttttttt agacagagtc ttgctctgtc acccaggctg	240
gaatgaagwg gtatgatctc agttgaatgc aacctctacc tccttaggtc aagcgattct	300
catgcctcag cctcctgagc agctgggact ataggcgat gctaccatgc caggctaatt	360
tttatattttt tattagagac ggggtgttgc catgttggcc aggcaggctc cgaactcctg	420
ggcctcagat gatctgcccc accgtaccccttta	454
<210> 50	
<211> 463	
<212> DNA	
<213> Homo sapien	
<400> 50	
aagagggtac caaaaaaaag aaaaaggaaa aaaagaaaaa caacttgtat aaggctttct	60
gctgcataaca gctttttttt tttaaataaa tggtgccaaac aaatgtttt gcattcacac	120
caattgctgg ttttggaaatc gtactcttca aaggattttt tgcatgtca tccaatagtg	180
atgccccgta ggttttggactgcccacg ttgtctacct tctcatgttag gagccattga	240
gagactgttt ggacatgcct gtgttcatgt agccgtgatg tccggggggcc gtgtacatca	300
tgttaccgtg ggggtgggtc tgcattggct gctgggcata tggctgggtg cccatcatgc	360
ccatctgcatttgcataggg tattggggcg tttgatccat atagccatga ttgctgtgg	420
agccactgtt catcattggc tggacatgc tggtaccctc tta	463
<210> 51	
<211> 399	
<212> DNA	
<213> Homo sapien	
<400> 51	
cttcaacctc ccaaagtgtct gggattacag gactgagccaa ccacgctcag cctaagcctc	60
tttttcaacta ccctctaaggc gatctaccac agtcatgagg ggctaaagag cagtgcatt	120
tgattacaat aatggaaactt agattttata attaacaatt tttccttagc atgttgggtc	180
cataattattt aagagtatgg acttacttag aaatgagctt tcattttaaag aatttcatct	240
ttgaccttctt ctattagtct gaggcgtatg acactatacg tattttattt aactaaccta	300
ccttgagcta ttactttta aaaggctata tacatgaatg tggatgtca actgtaaagc	360
cccacagttat ttaatttatcatgtatgtct ttgagggttg	399
<210> 52	

<211> 392	
<212> DNA	
<213> Homo sapien	
<400> 52	
cttcaacctc aatcaacctt ggtaattgat aaaatcatca ctttaacttgc tgatataatg	60
gcaataatta tctgagaaaa aaaagtgggtg aaagattaaa cttgcatttc tctcagaatc	120
tttgaaggata tttgaataat tcaaaaagcg aatcagtagt atcagccgaa gaaactca	180
tagctagaac gttggaccca tggatctaag tccctgcctc tccactaacc agctgattgg	240
ttttgtgtaa acctcctaca cgcttgggtc tggtcgcctc atttgtcaaa gtaaaggctg	300
aaataggaag ataatgaacc gtgtctttt ggtctctttt ccatccattt ctctgatttt	360
acaaagagggc ctgtattccc ctggtgaggt tg	392
<210> 53	
<211> 179	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(179)	
<223> n = A,T,C or G	
<400> 53	
ttcgggtgat gcctccctcag gctacagtga agactggatt acagaaaggt gccagcgaga	60
tttcagattc ctgtaaacctt ctaaagaaaa ggagtgcgc ctcactgtat gtagaaatga	120
ctagttcagc atacngagac acntctgact ccgattctag aggactgagt gacctgcan	179
<210> 54	
<211> 112	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(112)	
<223> n = A,T,C or G	
<400> 54	
ttcgggtgat gcctccctcag gctacatcat natagaagca aagtagaaana atcnngtttg	60
tgcattttcc cacanacaaa attcaaatga ntggaagaaaa ttggganagt at	112
<210> 55	
<211> 225	
<212> DNA	
<213> Homo sapien	
<400> 55	
tgagcttcgg cttctgacaa ctcaatagat aatcaaagga caactttaac agggattcac	60
aaaggagttat atccaaatgc caataaacat ataaaaagga attcagcttc atcatcatca	120
gaagwatgca aattaaaacc ataatgagaa accactatgt cccactagaa tagataaaat	180

cttaaaaagac tggtaaaacc aagtgttggt aaggcaagag gagca	225
<210> 56	
<211> 175	
<212> DNA	
<213> Homo sapien	
<400> 56	
gctcctcttg ccttaccaac acattctcaa aaacctgtta gagtcctaag cattctcctg	60
tttagtattgg gatttaccc ctgtcctata aagatgttat gtacaaaaaa tgaagtggag	120
ggccatcaccc tgagggaggg gagggatctc tagtgttgc agaagcggaa gctca	175
<210> 57	
<211> 223	
<212> DNA	
<213> Homo sapien	
<400> 57	
agccatttac cacccatgga tgaatggatt ttgttaattct agctgttgc ttttgtgaat	60
ttgttaattt tggtttttt ctgtgaaaca catacattgg atatgggagg taaaggagtg	120
tcccagttgc tcctggtcac tcccttata gccattactg tcttgttct tgtaactcag	180
gttaggtttt ggtctctctt gctccactgc aaaaaaaaaaaa aaa	223
<210> 58	
<211> 211	
<212> DNA	
<213> Homo sapien	
<400> 58	
gttcgaaggtaaacgtgttag gtagcggatc tcacaactgg ggaactgtca aagacgaatt	60
aactgacttg gatcaatcaa atgtgactga ggaaacacct gaaggtgaag aacatcatcc	120
agtggcagac actgaaaata aggagaatga agttgaagag gtaaaagagg agggtccaaa	180
agagatgact ttggatgggt ggttaatggc t	211
<210> 59	
<211> 208	
<212> DNA	
<213> Homo sapien	
<400> 59	
gctcctcttg ccttaccaac tttgcaccca tcataccca tttggccagg tttgcagccc	60
aggctgcaca tcaggggact gcctcgcaat acttcatgct gttgctgctg actgatggtg	180
120ctgtgacgga tttggaaagcc acacgtgagg ctgtggcgc tgccctcaac ctgcccattgt	208
cagtatcat tatgggtggt aaatggct	
<210> 60	
<211> 171	
<212> DNA	
<213> Homo sapien	
<400> 60	

agccatttac cacccatact aaattctagt tcaaactcca acttcttcca taaaacatct	60
aaccactgac accagttggc aatagcttct tccttcttta acctctttaga gtatttatgg	120
tcaatgccac acatttctgc aactgaataa agttggtaag gcaagaggag c	171
<210> 61	
<211> 134	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(134)	
<223> n = A,T,C or G	
<400> 61	
cgggtgatgc ctcctcaggc tttggtgtgt ccactcnact cactggcctc ttctccagca	60
actggtaan atgtcctcan gaaaancncc acacgcngct cagggtgggg tgggaancat	120
canaatcatc nggc	134
<210> 62	
<211> 145	
<212> DNA	
<213> Homo sapien	
<400> 62	
agagggtaca tatgcaacag tatataaaagg aagaagtgc ctgagaggaa cttcatcaag	60
gccatTTaat caataagtga tagagtcaag gctcaaccca ggtgtgacgg attccaggc	120
ccaagctcct tactggtacc cttt	145
<210> 63	
<211> 297	
<212> DNA	
<213> Homo sapien	
<400> 63	
tgcactgaga ggaattcaaa gggTTTatgc caaagaacaa accagtccctc tgcagcctaa	60
ctcattttttt tttgggctgc gaagccatgt agagggcgat caggcagtag atggccctc	120
ccacagttag cgccatggtg gtccggtaaa gcatttggtc aggcaaggct cgtttcaggt	180
agacggggcac acatcagctt tctggaaaaa ctttgtgc tctggagctt tgTTTTccc	240
agcataatca tacactgtgg aatcgaggat cagtttagtt ggtaaggcaa gaggagc	297
<210> 64	
<211> 300	
<212> DNA	
<213> Homo sapien	
<400> 64	
gcactgagag gaacttccaa tactatgtt aataggagtg gtgagagagg gcatccttgt	60
cttggccgg tttcaaaagg gaatgcttcc agctttgcc cattcagtag aatattaaag	120
aatgttttac cattttctgt cttgcctgtt tttctgtttt tttgttggtc tcttcattct	180
ccatTTtag gcctttacat gtttaggaata tattttttt aatgatactt caccttggt	240

atcttttgtg agactctact catagtgtga taagcactgg gttggtaagg caagaggagc	300
<210> 65	
<211> 203	
<212> DNA	
<213> Homo sapien	
<400> 65	
gctcctcttg ccttaccaac tcacccagta tgcagcaat tttatcrgct ttacctacga	60
aacagcctgt atccaaacac ttaacacact cacctgaaaa gttcaggcaa caatcgctt	120
ctcatgggtc tctctgctcc agttctgaac ctttctctt tcctagaaca tgcatttarg	180
tcgatagaag ttcctctcag tgc	203
<210> 66	
<211> 344	
<212> DNA	
<213> Homo sapien	
<400> 66	
tacggggacc cctgcattga gaaagcgaga ctcactctga agctgaaatg ctgtgcct	60
tgcagtctg gtagcaggag ttctgtgctt tggggctaa ggctcctgga tgacccctga	120
catggagaag gcagagttgt gtgccttc tcatggcctc gtcaaggcat catgactgc	180
cacacacaaa atgcccttt tattaacgac atgaaattga aggagagaac acaattcact	240
gtatggctc gtaaccatgg atatggcac atacagaggt gtgattatgt aaaggttaat	300
tccacccacc tcatgtggaa actagcctca atgcagggtt ccca	344
<210> 67	
<211> 157	
<212> DNA	
<213> Homo sapien	
<400> 67	
gcactgagag gaacttcgta gggaggttga actggctgct gaggaggggg aacaacaggg	60
taaccagact gatagccatt gatggataa tatggtggtt gaggaggac actacttata	120
gcagagggtt gtgtatagcc tgaggaggca tcacccg	157
<210> 68	
<211> 137	
<212> DNA	
<213> Homo sapien	
<400> 68	
gcactgagag gaacttc tag aaagtgaaag tctagacata aaataaaaata aaaatttaaa	60
actcaggaga gacagccag cacggctggct cacgcctgta atcccagaac tttggagcc	120
tgaggaggca tcacccg	137
<210> 69	
<211> 137	
<212> DNA	
<213> Homo sapien	

<400> 69		
cggtgatgc ctctcaggc tgtatggc agactatcga ctggacttct tatcaactga	60	
agaatccgtt aaaaatacca gttgtattat ttctacctgt caaaatccat ttcaatgtt	120	
gaagttcctc tcagtgc	137	
<210> 70		
<211> 220		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(220)		
<223> n = A,T,C or G		
<400> 70		
agcatgttga gcccagacac gcaatctgaa tgagtgtgca cctcaagtaa atgtctacac	60	
gctgcctggc ctgacatggc acaccatcnc gtggagggca casctctgct cngcctacwa	120	
cgagggcant ctcatwgaca gttccaccc accaaactgc aagaggctca nnaagtactr	180	
ccagggtmya sgacmasgg tggaytyca ycacwcacatct	220	
<210> 71		
<211> 353		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(353)		
<223> n = A,T,C or G		
<400> 71		
cgttagggtc tctatccact gctaaaccat acacctgggt aaacagggac catttaacat	60	
tcccanctaa atatgccaag tgacttcaca tgtttatctt aaagatgtcc aaaacgcaac	120	
tgattttctc ccctaaacct gtgatggtgg gatgattaan cctgagtggt ctacagcaag	180	
ttaagtgc当地 ggtgctaaat gaangtgacc tgagatacag catctacaag gcagtacctc	240	
tcaacncagg gcaactttgc ttctcanagg gcatttagca gtgtctgaag taatttctgt	300	
attacaactc acggggcggg gggtaatctt ctantggana gnagacccta acg	353	
<210> 72		
<211> 343		
<212> DNA		
<213> Homo sapien		
<400> 72		
gcactgagag gaacttccaa tacyatkac agagtgaaca rgcarccyac agaacaggag	60	
aaaatgttgc caatctctcc atctgacaaa aggttaatccat ccagawtcta awaggaactt	120	
aaacaaattt atgagaaaag aacaracaac ctcawcaaaa agtgggtgaa ggawatgcts	180	
aaargaagac atytattcag ccagtaaaca yataaaaaaa aggctcatsa tcactgawca	240	
ttagagaaaat gcaaataaaa accacaatga gataccatct yayrccagtt agaayggta	300	
tcattaaaar stcagggaaac aacagatgct ggacaagggtg tca	343	

<210> 73	
<211> 321	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (321)	
<223> n = A,T,C or G	
<400> 73	
gcactgagag gaacttcaga gagagagaga gagttccacc ctgtacttgg ggagagaaaac	60
agaaggttag aaagtctttg gttctgaagc agcttctaag atctttcat ttgcttcatt	120
tcaaagttcc catgctgcca aagtgccatc ctttgggta ctgtttctg agctccagtg	180
ataactcatt tatacaaggg agataccag aaaaaaagtg agcaaatctt aaaaaggtgg	240
ctttagttca gccttaataa ccatcttcaa atgacacaga gaaagaanga tggtgggtgg	300
gagtggatag agaccctaac g	321
<210> 74	
<211> 321	
<212> DNA	
<213> Homo sapien	
<400> 74	
gcactgagag gaacttcaga gagagagaga gagttccacc ctgtacttgg ggagagaaaac	60
agaaggttag aaagtctttg gttctgaagc agcttctaag atctttcat ttgcttcatt	120
tcaaagttcc catgctgcca aagtgccatc ctttgggta ctgtttctg agctccagtg	180
ataactcatt tatacaaggg agataccag aaaaaaagtg agcaaatctt aaaaaggtgg	240
ctttagttca gccttaataa ccatcttcaa atgamacaga gaaagaagga tggtgggtgg	300
gagtggatag agaccctaac g	321
<210> 75	
<211> 317	
<212> DNA	
<213> Homo sapien	
<400> 75	
gcactgagag gaacttccac atgcacttag aaatgcattt tcacaaggac tgaagtctgg	60
aactcagtt ctcagttcca atcctgattc aggtgtttac cagctacaca accttaagca	120
agtcagataa ccttagcttc ctcatatgca aaatgagaat gaaaagtact catcgctgaa	180
ttgttttag gattaaaaa acatctggca tgcagtagaa attcaatttag tattcatttt	240
cattcttcta aattaaacaa ataggattt tagtggtaga acttcagaca ccagaaatgg	300
gagtggatag agaccct	317
<210> 76	
<211> 244	
<212> DNA	
<213> Homo sapien	
<400> 76	

cgtagggtc tctatccact cccactactg atcaaactct atttatttaa ttatTTtat	60
catactttaa gttctggat acacgtgcag catgcgcagg tttgttgcatt aggtatacac	120
ttgccatggt gtttgctgc acccatcagt ccatcatcta cattaggtat ttctcttaat	180
gctatccctc ccctagcccc ttacaccccc aacaggctct agtgtgtgaa gttcctctca	240
gtgc	244
<210> 77	
<211> 254	
<212> DNA	
<213> Homo sapien	
<400> 77	
cgtagggtc tctatccact gaaatctgaa gcacaggagg aagagaagca gtyctagtga	60
gatggcaagt tcwtttacca cactctttaa catttgcgtt agtttaacc tttatTTat	120
gataataaag gttaatatta ataatgatt attttaaggc attccraat ttgcataatt	180
ctccctttgg agataccctt ttatctccag tgcaagtctg gatcaaagtg atasamagaa	240
gttcctctca gtgc	254
<210> 78	
<211> 355	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(355)	
<223> n = A,T,C or G	
<400> 78	
ttcgatacatg gcaaacatga actgcaggag ggtgggtgacg atcatgatgt tgccgatgg	60
ccggatggnc acgaagacgc actggancac gtgcTTacgt cctttgctc tggatggc	120
cctgagggga cgcaggaccc ttatgacccct cagaatctc acaacggag atggcactgg	180
attgantccc antgacacca gagacacccc aaccaccagn atatcantat attgatgttag	240
ttcctgtaga nggccccctt gtggaggaaa gctccatnag ttggatcatct tcaacaggat	300
ctcaacagtt tccgatggct gtatggca tagtcatant taaccntgtn tcgaa	355
<210> 79	
<211> 406	
<212> DNA	
<213> Homo sapien	
<400> 79	
taagagggtt ccagcagaaa ggtagtac atcagatagc atcttatacg agtaatatgc	60
ctgctatttg aagttaattt gagaaggaaa attttacgt gtcactgac ctgcctgttag	120
ccccagtgcac agctaggatg tgcattctcc agccatcaag agactgagtc aagttgttcc	180
ttaagtcaaa acagcagact cagctctgac attctgattt gatatgacact gttcaggaat	240
cgaaatccgtt tcgatttagac tggacagctt gtggcaagtg aatttgcctg taacaagcca	300
gatttttaa aatttatattt gtaaataatg tttgtgtgtg tttgtgtata tatatatata	360
tgtacagtta tctaaatgtttaa tttaaaatgtt gtttggtaacc ctctta	406
<210> 80	

<211> 327		
<212> DNA		
<213> Homo sapien		
<400> 80		
ttttttttt tttactcggc tcagtcta at cctttt gta gtcactcata gcccagactt	60	
agggct tagga tgatgattaa taagaggat gacataacta ttagtggcag gtttagttgtt	120	
tgttagggctc atggtagggg taaaaggagg gcaatttcta gatcaaataa taagaaggta	180	
atagctacta agaagaattt tatggagaaa gggacgcggg cgggggatat agggtcgaag	240	
ccgcactcgt aagggtgga ttttctatg tagccgttga gttgtggtag tcaaaatgta	300	
ataattatta gtagtaagcc taggaga	327	
<210> 81		
<211> 318		
<212> DNA		
<213> Homo sapien		
<400> 81		
tagtctatgc ggtt gattcg gcaatccatt atttgctgga ttttgc atg tgtttgc ca	60	
attgcattca taatttata tgcatttata cttgtatctc ctaagtcatg gtatataatc	120	
catgctttt atgtttgtc tgacataaac tcttatacaga gccc ttgca cacaggatt	180	
caataaaat taacacagtc tacatttatt tggtaatat tgcataatctg ctgtactgaa	240	
agcacattaa gtaacaagg caagtgagaa gaatgaaaag cactactcac aacagttatc	300	
atgattgcgc atagacta	318	
<210> 82		
<211> 338		
<212> DNA		
<213> Homo sapien		
<400> 82		
tcttcaaccc ctactccac taatagcttt ttgatgactt ctagcaagcc tcgctaacc	60	
cgccttaccc cccactatta acctactggg agaactctct gtgcttagaa ccacgttctc	120	
ctgatcaa at atcactctcc tacttacagg actcaacata ctagtcacag ccctataactc	180	
cctctacata ttaccacaa cacaatgggg ctcactcacc caccacatta acaacataaa	240	
accctcatc acacgagaaa acaccctcat gttcatacac ctagccccca ttctccct	300	
atccctcaac cccgacatca ttaccgggtt ttcccttt	338	
<210> 83		
<211> 111		
<212> DNA		
<213> Homo sapien		
<400> 83		
agccatttac caccatcca caaaaaaaaaaaa aaaaaaaaaaag aaaaatatca aggaataaaaa	60	
atagactttg aacaaaaagg aacatttgct ggcctgagga ggcacatcaccc g	111	
<210> 84		
<211> 224		
<212> DNA		
<213> Homo sapien		

<400> 84	
tcgggtatg cctcctcagg ccaagaagat aaagcttcag acccctaaca cattccaaa	60
aaggaagaaa ggagaaaaaa gggcatcatc cccgttccga agggtcaggg aggaggaaat	120
tgaggtggat tcacgagttg cggacaactc ctttgcgtt aagcgagggtg cagccggaga	180
ctggggagag cgagccaatc aggtttgaa gttcctctca gtgc	224
<210> 85	
<211> 348	
<212> DNA	
<213> Homo sapien	
<400> 85	
gcactgagag gaacctcggtt ggaaacgggt tttttcatg taaggctaga cagaagaatt	60
ctcagtaact tccttgcgtt gtgtgtattc aactcacasa gttgaacgtat ctttacaca	120
gagcagactt gtaacactct twttgtggaa tttgcaagtg gagatttcag scgcttgaa	180
gtsaaaggta gaaaaggaaa tatcttcota taaaaactag acagaatgtat tctcagaaac	240
tccttgcgtt tgcgtgcgtt caactcacag agttaacct ttcwttcat agaagcagtt	300
aggaaacact ctgtttgtaa agtctgcaag tggatagaga ccctaacg	348
<210> 86	
<211> 293	
<212> DNA	
<213> Homo sapien	
<400> 86	
gcactgagag gaacctcytt gtgtgtktg yattcaactc acagagttga asswtsmtt	60
acabagwkca ggcttkcaaa cactctttt gtmaatyg caagwggaka tttsrrccrc	120
tttgwggycw wysktmgaaw mggrwatatac ttctwyatmra amctagacag aksattctc	180
akaawstyyy ytgtgawgws tgcrttcaac tcacagagkt kaacmwtyct kytsatrgag	240
cagttwkgaactctmttca ttggattct gcaagtggat agagacccta acg	293
<210> 87	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 87	
ctccttaggt	10
<210> 88	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	

<400> 88
agttagttgcc 10

<210> 89
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 89
ttcccgttatg c 11

<210> 90
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 90
tggtaaaaggg 10

<210> 91
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 91
tcgggtcatag 10

<210> 92
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 92
tacaaacgagg 10

<210> 93
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 93
tggattggtc 10

<210> 94
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 94
ctttctaccc 10

<210> 95
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 95
ttttggctcc 10

<210> 96
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 96
ggaaccaatc 10

<210> 97
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 97
tcgatacagg 10

<210> 98
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 98
ggtactaagg 10

<210> 99
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 99
agtctatgcg 10

<210> 100
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 100
ctatccatgg 10

<210> 101
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 101
tctgtccaca 10

<210> 102
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 102
aagagggtac 10

<210> 103
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 103
cttcaacctc 10

<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 104
gctcctcttg ccttaccaac 20

<210> 105
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 105
gtaagtcgag cagtgtgatg 20

<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 106
gtaagtcgag cagtctgatg 20

<210> 107
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA

<400> 107
gacttagtgtt aaagaatgtt 20

<210> 108
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA

<400> 108
gttaattccgc caaccgttgtt 20

<210> 109
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA

<400> 109
atggtttgc gatagtggaa 20

<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA

<400> 110
acggggaccc ctgcatttagt 20

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA

<400> 111
tattctagac cattcgctac 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 112
acataaccac ttttagcgttc 20

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 113
cgggtgatgc ctcctcaggc 20

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 114
agcatgttga gcccagacac 20

<210> 115
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 115
gacacccttgt ccagcatctg 20

<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for amplification from breast tumor cDNA	
<400> 116	
tacgctgcaa cactgtggag	20
<210> 117	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 117	
cgttagggtc tctatccact	20
<210> 118	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 118	
agactgactc atgtccccta	20
<210> 119	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 119	
tcatcgctcg gtgactcaag	20
<210> 120	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 120	
caagattcca taggctgacc	20
<210> 121	
<211> 20	

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 121
acgtactggc cttgaaggc 20

<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 122
gacgcttggc cacttgacac 20

<210> 123
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 123
gtatcgacgt agtggtctcc 20

<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 124
tagtgacatt acgacgctgg 20

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for amplification from breast tumor cDNA

<400> 125

cgggtgatgc ctcctcaggc	20
<210> 126	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 126	
atggctattt tcgggggctg aca	23
<210> 127	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 127	
ccggtatctc ctcgtggta tt	22
<210> 128	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 128	
ctgcctgagc cacaaatg	18
<210> 129	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for amplification from breast tumor cDNA	
<400> 129	
ccggaggagg aagctagagg aata	24
<210> 130	
<211> 14	
<212> DNA	
<213> Artificial Sequence	

<220>
 <223> Primer

<400> 130
 tttttttttt ttag 14

<210> 131
 <211> 18
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited Th Motifs (B-cell epitopes)

<400> 131
 Ser Ser Gly Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val
 1 5 10 15
 Gly Ile

<210> 132
 <211> 22
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited Th Motifs (B-cell epitopes)

<221> VARIANT
 <222> (1)...(22)
 <223> Xaa = Any Amino Acid

<400> 132
 Gln Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Xaa Ile Glu Val
 1 5 10 15
 Val Gln Gly His Asp Glu
 20

<210> 133
 <211> 23
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited Th Motifs (B-cell epitopes)

<400> 133
 Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu Ala Tyr Arg Ile Tyr
 1 5 10 15
 Thr Pro Phe Asp Leu Ser Ala
 20

<210> 134
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 134
Tyr Leu Leu Val Gly Ile Gln Gly Ala
1 5

<210> 135
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 135
Gly Ala Ala Gln Lys Pro Ile Asn Leu
1 5

<210> 136
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<221> VARIANT
<222> (1) ... (9)
<223> Xaa = Any Amino Acid

<400> 136
Asn Leu Ser Lys Xaa Ile Glu Val Val
1 5

<210> 137
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 137
Glu Val Val Gln Gly His Asp Glu Ser

1

5

<210> 138
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 138
 His Leu Gln Glu Ala Tyr Arg Ile Tyr
 1 5

<210> 139
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 139
 Asn Leu Ala Phe Val Ala Gln Ala Ala
 1 5

<210> 140
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Predicited HLA A2.1 Motifs (T-cell epitopes)

<400> 140
 Phe Val Ala Gln Ala Ala Pro Asp Ser
 1 5

<210> 141
 <211> 9388
 <212> DNA
 <213> Homo sapien

<400> 141

gctcgccggcc	gcgagctcaa	ttaaccctca	ctaaaggag	tcgactcgat	cagactgtta	60
ctgtgtctat	gtagaaaagaa	gtagacataa	gagattccat	tttggctgt	actaagaaaa	120
attttctgc	cttgagatgc	tgttaatctg	taaccctgc	cccaaccctg	tgctcacaga	180
gacatgtgct	gtgttactc	aagggttcaat	ggatttaggg	ctatgcttt	ttaaaaaagt	240
gcttgaagat	aatatgcttg	ttaaaaagtca	tcaccattct	ctaatctcaa	gtaccagg	300
acacaataca	ctgcggaaagg	ccgcagggac	ctctgtctag	gaaagccagg	tattgtccaa	360
gatttctccc	catgtgatag	cctgagatat	ggcctcatgg	gaagggtaaag	acctgactgt	420

ccccccagccc gacatcccccc agcccgacat cccccagccc gacacccgaa aagggtctgt 480
gctgaggagg attagtaaaa gaggaaggcc tctttcgcgt tgaggtaaga ggaaggcatc 540
tgtctcctgc tctgtccctgg gcaatagaat gtcttgggtgaaaacccgat tgtatgttct 600
acttactgag ataggagaaa acatcccttag ggctggaggt gagacacgct ggcggcaata 660
ctgctctta atgcaccggatgtttgtat aagtgcacat caaggcacag caccttcct 720
taaacttatt tatgacacag agaccttgcacat tcacgtttc ctgctgaccc tctccccact 780
attaccctat tggcctgcca catccccctc tccgagatgg tagagataat gatcaataaa 840
tactgaggga actcagagac cagtgtccct gttaggtcctc cgtgtgctga ggcgggtcc 900
cttggctca cttttcttc tctatacttt gtctctgtgt ctcttctt tctcagtctc 960
tcgttccacc tgacgagaaa tacccacagg tgtggagggg cagggccaccc cttcaataat 1020
ttactagcct gttcgctgac aacaagactg gtgggtcaga aggttgggtc ttgggtttca 1080
ccgggtggca ggcattggcc aggtggggagg gtctccagcg cctgggtcaaa atctccaaga 1140
aagtgcagga aacagcacca agggtgatttga taaattttga tttggcgcgg caggtagcga 1200
ttccagcgca aaaatgcgca gggaaagctt tgctgtgctt gttaggcaggt aggccccaaag 1260
cacttcttat tggctaattgt ggagggaaacc tgcacatcca ttggctgaaa tctccgtcta 1320
tttgaggctg actgagcgcg ttcctttctt ctgtgttgc tggaaacgga ctgtctgcct 1380
agtaacatct gatcacgtt cccattggcc gccgtttccg gaagcccggc ctcccatttc 1440
cggaaggctg ggcacaaagggtt ggtctgcagg tggcctccag gtgc当地gtg ggaagtgtga 1500
gtcctcagtc ttggcttattt cggccacgtg cctggccggac atgggacgct ggagggtcag 1560
cagcgtggag tccctggcattt tgctgtccac gggtggggaaa ttggccatttgc acacggcggg 1620
aactggact caggctgccc cccggccgtt tctcatccgt ccacccggact cgtggcgct 1680
cgcaactggcg ctgatgttagt ttcctgaccc tgcacccgta ttgtctccag attaaaggta 1740
aaaacggggc ttttcagcc cactcgggta aaacgcctt tgattctag gcagggttt 1800
tggtgcacgc ctggggaggga gtgacccgca gggtgaggtt tattaaaata cattcctgg 1860
ttatgttagt ttataataaa agcaccccaa cctttacaaa atctacttt tgccagttg 1920
tattatggtag tggactgtct ctgataagga cagccagttt aaatggaatt ttgttggttc 1980
taattaaacc aatttttagt tttgggtttt gtcctaatacg caacaacttc tcaggcttta 2040
taaaaccata ttcttgggg gaaatttctg tgtaaggcac agcgagttttaggaaattt 2100
ttttaaagga agtaagttcc tgggtttgtat atcttagtag tgtaatgccc aacctgggtt 2160
ttactaacc tgggttttaga ctctccctt ccttaatca cctagccctt tttccacctg 2220
aattgactct cccttagcta agagcgccag atggactcca tcttggctct ttcactggca 2280
gcccccttcc caaggactta acttgcacaa gtcactccc agcacatcca agaatgcaat 2340
taactgttaa gatactgtgg caagctatccgcacatccctt ccttggctct ttcactggca 2400
tatgcccggaa agcccccggcgt ctatcacctt gtaataatct taaagccccct gcacccggaa 2460
ctattaactt ttctgttaacc atttacccctt ttaactttt tgcttactttt atttctgtaa 2520
aattgtttta actagacccctt ccctccctt tctaaaccaa agtataaaag aagatctagc 2580
cccttcttca gagcggagag aattttgagc attagccatc tcttggccggc cagctaaataa 2640
aatggacttt taatttgcgt caaagtgtgg cggtttctt aactcgctca ggtacgacat 2700
ttggaggccc cagcggagaaa cgtcacccgg agaaacgtca cggggccgaga gcccggcccg 2760
ctgtgtgctc ccccccggagg acagccagct tgggggggggg agtgcacccctt gaaaaaaaaa 2820
tttccaggtc cccaaagggtt gaccgtcttcc cggaggacag cggatcgact accatgcggg 2880
tgccccaccaa aattccacccctt ctgagttccctt aactgctgac cccggggcgtca ggttaggtcag 2940
atttgacttt ggttctggca gagggaaagcg accctgtatgaa ggggtccctt ttttgcactc 3000
tgccccatcc tctaggatgc tagagggtag agccctgggtt ttctgttaga cgcctctgtg 3060
tctctgtctg ggagggaaagt ggcctgcaca gggggccatcc cttgagtcag tccacatccc 3120
aggatgtgg gggactgtgg cctgggttctt ggcagactgg tctctctctc tctcttttc 3180
tatctctaatttttcttgcgt tcaggtttctt tggagaatct ctggaaaaga aaaaagaaaa 3240
actgttataaa actctgtgtg aatggtaat gaatgggggaa gacaaaggc ttgcgttgc 3300
cctccaggtt gtagctccac ggcgaaagctt acggagttca agtggccctt cacctgcgtt 3360
tccgtggcga cctcataagg cttaaaggcag catccggcat agctcgatcc gagccgggg 3420
tttataccgg cctgtcaatg ctaagaggaa cccaaagtccctt ctaagggggaa gcccggccaggc 3480

ggcatctga ctgatccat cacgggaccc ccccccttg tttgtctaaa aaaaaaaaaa	3540
gaagaaactg tcataactgt ttacatgccc tagggtaaac tgggtttttt atgttattg	3600
ttctgttcgg tgtctattgt ctgttttagt ggttgcac gtttgcatt tcaggacgtc	3660
gatattgccc aagacgtctg ggttggaaact tctgcaaggt ctttagtgc gatttttgt	3720
cacaggaggt taaatttctc atcaatcatt taggctggcc accacagtcc tgcctttct	3780
gccagaagca agtcagggtgt ttttacggga atgagtgtaa aaaaacattc gctgattgg	3840
gatttctggc accatgatgg ttgtattttagt attgtcatac cccacatcca gtttgcattgg	3900
acccctctta aactaaactg gtgggggtt caaaacagcc accctgcaga ttcccttgct	3960
caccttttgc tgcattctgt aacttttctt gtgccttaa atagcacact gtgttagggaa	4020
acctaccctc gtactgcttt acttcgttta gattctact ctgttctct gtggctactc	4080
tcccatctta aaaacgatcc aagtggctt ttccctctc ctcgcctt accccacaca	4140
tctcggtttc cagtgcgaca gcaagttcaag cgttccagg acttggctt gctctcactc	4200
cttgaaccct taaaagaaaa agctgggtt gagctatttgc ctttgcgtc atggagacac	4260
aaaaggtatt tagggtacag atctagaaga agagagagaa cacctagatc caactgaccc	4320
aggagatctc gggctggctt ctatccctcc tccctcaatc taaagctac agtgcgttgg	4380
caagtggat ttatctgtt tggtttttctt gctttcttgc tgcatttttgc ttctgtttt	4440
tcgatactcc agccccccag ggagtgcgtt tctctgttgc tgctgggtt gatatctatg	4500
ttcaaatctt attaaattgc ctcaaaaaaa aaaaaaaaaa gggaaacact tcctccagc	4560
cttgcgggtt ttggagccctt ctccagttata tgctgcgaa ttttctctc gtttctcag	4620
aggattatgg agtccgcctt aaaaaaggca agctctggac actctgcacaa gtagaatggc	4680
caaagtttgg agttgcgtgg cccttgcgaa ggtcaactgaa cctcacaatt gttcaagctg	4740
tgtggcggtt tggtactgaa actcccgcc tccctgtatca gtttccctac attgtatcaat	4800
ggctgagttt ggtcaggagc acccccttcca tggcttccact catgcacccat tcataat	4860
accccttccaagg tccctcttgc ccagaccgtg ttttcgcctc gaccctcagc cggttcagct	4920
cggccctgtac tgcctctctc tgaagaagag gaggtctcc ctcacccagt cccaccgcct	4980
taaaaccaggc ctactccctt agggtcatcc catgtctctt cggctatgtc ccctgttaggc	5040
tcatcaccca ttgccttgc ttgcacccg tgggtggagg aagtagcccc tctactacca	5100
ctgagagagg cacaagtccc tctgggtgat gagtgctcca ccccttcctt gtttatgtc	5160
ccttcttctt acttctgact tggtataatttgc gaaaacccat aatccctccct tctctgaaaa	5220
gccccaggct ttgacccatc tgatggagtc tgcattcttgc acacattggc ccacccggaa	5280
tgactgtcaa cagctctttt tgaccctttt caccttgcgaa gagaggggaaa gtagccaaag	5340
agaggccaaa aagtacaacc tcacatcaac caataggccg gaggaggaaat ctagaggaat	5400
agtgattaga gacccaaatttgc ggacctaattt gggccaaa ttctcaagt ggaggggagaa	5460
cttttgcgaa ttccacccgg tatctcttgc tgggtattca gggagctgtc cagaaaccta	5520
taaacttgc taaggcgact gaagtcgtcc agggccatgc tgactcacca ggagtgtttt	5580
tagagcacct ccaggaggct ttcggattt acaccctttt tgacccgttgc gccccggaaa	5640
atagccatgc tcttaatttgc gcatgttgc ttcaggcagc cccagatagt aaaaggaaac	5700
tccaaaaactt agagggttttgc tgcgttgcattt aataccatgc agcttttgc gatgcctaa	5760
aagggttttgc acgttcaaga ggttggaaa caaaaacaag cagtcaggc agctgaaaaa	5820
agccactgtatca aagcatcc tggatgtatca agtttactgt tagatcagcc tcatttgc	5880
tccctccca catgggtttt aaatccagctt acactacttc tgcactcaaa ctccactatt	5940
cctgttcatg actgtcaggaa actgttggaa actactgaaa ctggccgacc tgatcttcaa	6000
aatgtgcccc taggaaagggtt ggtatgccacc tggttgcacag acagtagcag cttccctcgag	6060
aagggactac gaaaggccgg tgcagctgtt accatggaga cagatgttttgc tggttgc	6120
gctttaccag caaacacccctc agcacaatggc gctgaatttgc tgccttcac tcaggcttc	6180
cgatgggttta aggttattaa cttaacactt gacagcaggat acgccttgc tactgtgc	6240
gtacgtggag ccattctacca ggagcgtggg ctactcacctt cagcagggttgc tgtaatcca	6300
ctgttaaggaa catcaaaaagg aaaacacccggc tggatggccat ggttgcacag acagtagcag	6360
agcagctcaa gatgcgtgtt gactttcagt caccctcttca aacttgcgc ccacagtc	6420
ctttccacccat ccagatctgc ctgacaaatcc cgcataactca acagaagaag aaaaactggcc	6480
tcagaactca gagccaataa aaatcaggaa ggttgggttgc ttcttccttgc ctctagaatc	6540

ttcatacccc	gaactcttgg	gaaaacttta	atcagtcacc	taacgtctac	caccattta	6600
ggaggagcaa	agctaccta	gctcctccgg	agccgttta	agatccccca	tcttcaaagc	6660
ctaacagatc	aagcagctct	ccgggtgcaca	acctgcgccc	aggtaaatgc	caaaaaaggt	6720
cctaaaccca	gcccaggcca	ccgtctccaa	gaaaactcac	caggagaaaa	gtgggaaatt	6780
gactttacag	aagtaaaaacc	acacccggct	gggtacaaat	accttctagt	actggtagac	6840
accttctctg	gatggactga	agcatttgc	accaaaaacg	aaactgtcaa	tatggtagtt	6900
aagttttac	tcaatgaaat	catccctcga	cgtgggctgc	ctgttgcct	agggtctgtat	6960
aatggaccgg	ccttcgcctt	gtctatagtt	tagtcagtca	gtaaggcgtt	aaacattcaa	7020
tggaagctcc	attgtgccta	tcgacccca	agctctggc	aagttagaacg	catgaactgc	7080
accctaaaaa	acactcttac	aaaattaatc	ttagaaaccg	gtgtaaattt	tgtaagtctc	7140
cttcctttag	ccctacttag	agtaagggtgc	accccttact	gggctgggtt	cttaccttt	7200
gaaatcatgt	atgggagggc	gctgcctatc	ttgcctaagc	taagagatgc	ccaattggca	7260
aaaatatcac	aaactaattt	attacagtac	ctacagtctc	cccaacaggt	acaagatatc	7320
atcctgccac	ttgttcgagg	aacccatccc	aatccaattc	ctgaacagac	agggccctgc	7380
cattcattcc	cgccaggtga	cctgttgttt	gttaaaaagt	tccagagaga	aggactccct	7440
cctgcttgg	agagacacta	caccgtcatac	acgatccaa	cggtctgtaa	ggtggatggc	7500
attcctcggt	ggattcatca	ctcccgcatc	aaaaaggcca	acggagccca	actagaaaca	7560
tgggtcccc	gggctgggtc	aggcccccta	aaactgcacc	taagttgggt	gaagccatta	7620
gattaattct	ttttcttaat	tttgtaaaac	aatgcatacg	ttctgtcaaa	tttatgtatc	7680
ttaagactca	atataaaaa	cttgcataaa	ctgaggaatc	aatgatttga	ttccccaaaa	7740
acacaagtgg	ggaatgtagt	gtccaaacctg	gttttacta	accctgttt	tagactctcc	7800
ctttccttta	atcaactcagc	cttgcatttca	cctgaattga	ctctccctt	gctaaagagcg	7860
ccagatggac	tccatcttgg	ctctttcaact	ggcagccgct	ccctcaagga	cttaacttgt	7920
gcaagctgac	tcccagcaca	tccaagaatg	caattaactg	ataagatact	gtggcaagct	7980
atatccgcag	ttcccaggaa	ttcgtccaat	tgattacacc	caaaagcccc	gcgtctatca	8040
ccttgaata	atcttaaagc	ccctgcaccc	ggaactatta	acgttctgt	aaccatttat	8100
ccttttaact	ttttgccta	ctttatttct	gtaaaattgt	tttaactaga	ccccccctct	8160
cctttctaaa	ccaaagtata	aaagcaaattc	tagcccttc	ttcaggccga	gagaatttcg	8220
agcgttagcc	gtctcttggc	caccagctaa	ataaacggat	tcttcatgt	tctcaaagt	8280
tggcgtttcc	tctaactcgc	tcaggtacga	ccgtggtagt	atttccccca	acgtcttatt	8340
tttagggcac	gtatgttagag	taactttat	gaaagaaaacc	agtttagggag	gttttggat	8400
ttcctttatc	aactgtata	ctgggtttga	ttattttat	atttatttt	tttttttag	8460
aaggagttt	actcttgg	cccaggctgg	agtgcataatgg	tgcgatctt	gctcaactgca	8520
acttccgcct	cccaggttca	agcgattctc	ctgcctcagc	ctcgagagta	gctgggatta	8580
taggcattcg	ccaccacacc	cagctaattt	tgtattttt	gtaaagatgg	ggtttcttca	8640
tgttggtcaa	gctggctctgg	aactccccgc	ctcggtgtat	ctgcccgcct	cgccctccga	8700
aagtgtctgg	attacaggtg	tgatccacca	cacccagccg	atttatatgt	atataaatca	8760
cattcctcta	acaaaaatgt	agtgtttcct	tccatcttga	atataaggct	tagacccct	8820
gggtatggga	cattgttaac	agtgagacca	cagcagttt	tatgtcatct	gacagcatct	8880
ccaaatagcc	ttcatgggtt	tcactgcattc	ccaaagacaat	tccaaataac	acttccctgt	8940
gatgacttgc	tacttgcata	tgttactttaa	tgtgttaagg	tggctgttac	agacactatt	9000
agtatgtcag	gaattacacc	aaaatttagt	ggctcaaaca	atcattttat	tatgtatgt	9060
gattctcatg	gtcaggtcag	gatttcagac	agggcacaag	ggtagccac	ttgtctctgt	9120
ctatgatgtc	tggcctcagc	acaggagact	caacagctgg	ggtctgggac	catttggagg	9180
cttgccttcc	cacatctgat	acctggcttg	ggatgttgg	agaggggggt	agctgagact	9240
gagtgccctat	atgtatgtt	tccatatggc	cttgacttcc	ttacagcctg	gcagcctcag	9300
ggttagtcaga	attcttagga	ggcacagggc	tccaggcag	atgctgaggg	gtctttatg	9360
aggtagcaca	gcaaattccac	ccaggatc				9388

<210> 142

<211> 419

<212> DNA

<213> Homo sapien

<400> 142

tgtaagtcga gcagtggtat ggaaggaatg	gtcttggag agagcatatc	catctcctcc	60
tcactgcctc ctaatgtcat gaggtacact	gagcagaatt aaacaggta	gtcttaacca	120
cactatttt agctacccctg tcaagcta	at ggttaaagaa	cacttttgtt ttacacttgt	180
tgggtcatag aagtgcctt cgcacatcac	gcaataagtt	tgtgtgtaat cagaaggagt	240
taccttatgg ttccatgtc attcttagt	taacttggg	gctgtgtaat tttaggcttg	300
cgtattattt cacttctgtt ctccacttat	gaagtgattt	tgtgtcgcg tgcgtgtgcg	360
tgcgcatgtg ctccoggcag	ttaacataag	caaataccca acatcacact	419

<210> 143

<211> 402

<212> DNA

<213> Homo sapien

<400> 143

tgtaagtcga gcagtggtat gtccactgca	gtgtgttgct gggAACAGTT	aatgagcaaa	60
ttgtatacaa tggctagttatc	attgaccggg	atttgttggaa	120
aggcctgttag actagtctat	gcacatggct	ctggtaact accgctctct	180
gataaaatccc ccatgttta	tattctcttc	caaacataact atcctcatca	240
cctttgttaa tgcttgcattc	tagactttcc	ccacatagtt	300
tctttgcata gattgttaat	tcaaatgc	tcagggtgca ggcagttcat	360
gaggctagcc agtgagatct	gcatcacact	gtaaggaggagg	402

<210> 144

<211> 224

<212> DNA

<213> Homo sapien

<400> 144

tcgggtgatg ctccttcagg ccaagaagat	aaagcttcag	accctaaaca	catttccaaa	60
aaggaagaaa ggagaaaaaaa	gggcatcatc	cccgttccga	agggtcaggg	120
tgaggtggat tcacgagtttgc	cgacacaactc	cttgcatttgc	aagcgagggtg	180
ctggggagag cgagccaatc	aggtttggaa	gttcctctca	cgccggaga	224

<210> 145

<211> 111

<212> DNA

<213> Homo sapien

<400> 145

agccatttac cacccatcca	caaaaaaaaaa	aaaaaaaaag	aaaaatatca	aggaataaaaa	60
atagacttttgc	aacaaaaagg	aacatttgc	ggcctgagga	ggcatcaccc	111

<210> 146

<211> 585

<212> DNA

<213> Homo sapien

<400> 146
 tagcatgtt agccagaca cttgttagaga gaggaggaca gttagaagaa gaagaaaagt 60
 tttaaatgc tgaaagttac tataagaaag ctggctt ggatgagact tttaaagatg 120
 cagaggatgc ttgcagaaa cttcataaat atatgcaggt gattccttat ttcctcctag 180
 aaatttatgt atatttggaa taatgccaa acttaattt ctcctgagga aaactattct 240
 acattactt agtaaggcat tatgaaaagt ttcttttag gtatagttt tcctaattgg 300
 gtttgacatt gcttcatagt gcctctgtt ttgtccataa tcgaaagatgaa agatagctgt 360
 gagaaaacta ttacccaaat ttggatgtt gtttgagaa atgtccttat agggagctca 420
 cctgggtgggt tttaaattat ttgtgctact ataattgagc taattataaa aaccttttg 480
 agacatattt taaattgtct ttccctgtaa tactgatgtat gatgtttct catgcatttt 540
 cttctgaatt gggaccattt ctgctgtgtc tggcatac tgcta 585

<210> 147
 <211> 579
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(579)
 <223> n = A,T,C or G

<400> 147
 tagcatgtt agccagaca ctgggcagcg ggggtggcca cggcagctcc tgccgagccc 60
 aacgcgtttt gtctgtgaag gaccctgacg tcacccgttca ggctagggag gggtcaatgt 120
 ggagtgaatg ttcaccgact ttgcgcaggag tgtgcagaag ccaggtgcaa cttgggttgc 180
 ttgtgttcat caccctcaa gatatgcaca ctgcttcca aataaaagcat caactgtcat 240
 ctccagatgg ggaagacttt ttctccaacc agcaggcagg tccccatcca ctccagacacc 300
 agcacgttcca ccttcgtggc cagcaccacg tcctccacct tctgctggta cacggtgatg 360
 atgtcagcaa agccgttctg cangaccagc tgccccgtgt gctgtgccat ctcactggcc 420
 tccaccgcgtt acaccgctctt agggccgcga tantgtgcac agaanaaaatg atgatccagt 480
 cccacagccc acgttcaaga ngactttatc cgtcaggat tctttattct gcaggatgac 540
 ctgtggattt aattgttgcgt gtctggcgtc aacatgcta 579

<210> 148
 <211> 249
 <212> DNA
 <213> Homo sapien

<400> 148
 tgacaccccttgc tccagcatct gcaagccagg aagagagtcc tcaccaagat ccccaaaaa 60
 ttggcaccag gatctggac ttccaaatctc cagaactgtg agaaataagt atttgtcgct 120
 aaataaaatct ttgtggtttc agatatttag ctatagcaga tcaggctgac taagagaaac 180
 cccataagag ttacataactc attaatctcc gtctctatcc ccaggtctca gatgtggac 240
 aagggtgtca 249

<210> 149
 <211> 255
 <212> DNA
 <213> Homo sapien

<pre> <400> 149 tgacacccgg tccagcatct gctattttgt gacttttaa taatagccat tctgactgg 60 gtgagatgg aactcattgt gggttggc tgcattctc taatgatcat tgatattaag 120 cttttttaa atatgcttgc tgaccacatg tatacatct tttgagaagt gtctgttcat 180 atcctttgcc cacttttaa ttttttatac ttgtaaattt gtttaatttc cttacagatg 240 ctggacaagg tgtca 255 </pre> <pre> <210> 150 <211> 318 <212> DNA <213> Homo sapien </pre> <pre> <400> 150 ttacgctgca acactgtgga ggccaagctg ggatcacttc ttcattctaa ctggagagga 60 ggaaagttca agtccagcag agggtgggtg ggttagacagt ggcactcaga aatgtcagct 120 ggacccctgt ccccgcatag gcaggacagc aaggctgtgg ctctccaggg ccagctgaag 180 aacaggacac tgtctccgct gccacaaaagc gtcagagact cccatcttgc aagcacggcc 240 ttcttggct tcctgcactt ccctgttctg ttagagacct gtttatagac aaggcttctc 300 cacagtgttgcagcgtaa 318 </pre> <pre> <210> 151 <211> 323 <212> DNA <213> Homo sapien </pre> <pre> <220> <221> misc_feature <222> (1) ... (323) <223> n = A,T,C or G </pre> <pre> <400> 151tnacgcngcn acnntgtaga ganggnaagg cttccccac attnccctt catnanagaa 60 </pre>	<pre> ttattcnacc aagnntgacc natgccntt atgacttaca tgcnnactnc ntaatctgt 120 tcnngcctta aaagcnntc cactacatgc ntcancactg tntgtgtnc ntcatnaact 180 gtcngnaata ggggcncata actacagaaa tgcanttcact gtttccatnccatng 240 cgtgtggcct tncctactct tcttntattc caagtagcat ctctggantg cttccccact 300 ctccacattt ttgcagcat aat 323 </pre> <pre> <210> 152 <211> 311 <212> DNA <213> Homo sapien </pre> <pre> <400> 152 tcaagattcc ataggctgac cagtccaaagg agagttgaaa tcatgaagga gagtctatct 60 ggagagagct gtagtttga gggttgcaaa gacttaggat ggagttggtg ggtgtggta 120 gtctctaagg ttgattttgt tcataaaattt catgccctga atgccttgct tgcctcaccc 180 tggtccaagc ctttgtaac acctaaaagt ctctgttcc ttgctctcca aacttctct 240 gaggatttcc tcagattgtc tacattcaga tcgaagccag ttggcaaaca agatgcagtc 300 cagagggtca g 311 </pre>
--	---

<210> 153
 <211> 332
 <212> DNA
 <213> Homo sapien

<400> 153

caagattcca taggctgacc aggaggctat tcaagatctc tggcagttga ggaagtctct	60
ttaagaaaat agttaaaaca atttgttaaa attttctgt cttaatccat ttctgttagca	120
gttgcataatct ggctgtcctt ttataatgc agagtggaa cttccctac catgtttgat	180
aaatgttgc caggctccat tgccaataat gtgtgtcca aaatgcctgt ttagtttta	240
aagacgaaac tccaccctt gcttggtctt aagtatgtat ggaatgttat gataggacat	300
agtatgtacgt gtggcagcc tatggaatct tg	332

<210> 154
 <211> 345
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (345)
 <223> n = A,T,C or G

<400> 154

tcaagattcc ataggctgac ctggacagag atctcctggg tctggccag gacagcaggc	60
tcaagctca taggaaagggt ttccatgacc ctcatgttcc cccaaacctt ggattgggtg	120
acattgcatttcc tccttagaga gggaggagat gtangtctgg gcttccacag ggacctggta	180
tttttaggatc agggtaccgc tggcctgagg cttggatcat tcanagcctg ggggtgaaat	240
ggctggcagc ctgtggccccc attgaaatag gctctggggc actccctctg ttccatanttg	300
aacttggta aggaacagga atgtggtcan cctatggaaat cttga	345

<210> 155
 <211> 295
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (295)
 <223> n = A,T,C or G

<400> 155

gacgcttggc cacttgacac attaaacagt tttgcataat cactancatg tatttctagt	60
ttgctgtctg ctgtgatgcc ctgcctgtat tctctggcgt taatgatggc aagcataatc	120
aaacgctgtt ctgttaattc caagttataa ctggcattga ttaaaggcatt atcttcaca	180
actaaaactgt tcttcatana acagcccata ttattatcaa attaagagac aatgtattcc	240
aatatcctt anggccaata tatttnatgt cccttaatta agagctactg tccgt	295

<210> 156
 <211> 406
 <212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (406)

<223> n = A,T,C or G

<400> 156

gacgcttggc cacttgacac tgcagtggga aaaccagcat gagccgctgc	ccccaggaa	60
cctcgaagcc caggcagagg accagccatc ccagcctgca ggtaaagtgt	gtcacctgtc	120
aggtgggctt ggggtgagtg ggtggggaa gtgtgtgtgc aaaggggggtg	tnaatgtnta	180
tgcgtgtgag catgagtgtat ggctagtgtg actgcatgtc agggagtg	tgaaacgcgtg	240
cggggggtgtg tgtcaagtg cgtatgcata tgagaatatg tgtctgtgga	tgagtgcatt	300
tgaaagtctg tgtgtgtgcg tgtggtcatg angtaantt antgactgcg	caggatgtgt	360
gagtgtgcat ggaacactca ntgtgtgtgt caagtggccn ancg	tc	406

<210> 157

<211> 208

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (208)

<223> n = A,T,C or G

<400> 157

tgacgcttgg ccacttgaca cactaaaggg tgttactcat cactttcttc	tctcctcggt	60
ggcatgtgag tgcatctatt cacttggcac tcattgttt ggcagtgact	gtaanccana	120
tctgatgcat acaccagctt gtaaattgaa taaatgtctc taatactatg	tgctcacaat	180
anggtanggg tgaggagaag gggagaga		208

<210> 158

<211> 547

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (547)

<223> n = A,T,C or G

<400> 158

cttcaacctc cttcaacctc cttcaacctc ctggattcaa acaatcatcc	cacccagac	60
tccttagtag ctgagactac agactcacgc cactacatct ggctaaattt	ttgttagagat	120
agggtttcat catgttgccc tggctggct caaactcctg acctcaagca	atgtgcccac	180
ctcagcctcc caaagtgcgt ggattacagg cataagccac catgcccagt	ccatnnttaa	240
tctttcctac cacattctta ccacacttc ttttatgttt agatacataa	atgcttacca	300
ttatgataca attgcccaca gtattaagac agtaacatgc tgcacaggtt	tgtagcctag	360
gaacagtagg caataccaca tagcttagt gtgtggtaga ctataccatc	taggtttgt	420
taagttacac tttatgctgt ttacacaatg acaaaaaccat ctaatgatgc	atttctcaga	480

atgtatcctt gtcagtaagc tatgatgtac aggaaacact gcccaaggac acagatattg	540
tacctgt	547
<210> 159	
<211> 203	
<212> DNA	
<213> Homo sapien	
<400> 159	
gctcctcttg ccttaccaac tcacccagta tgcagcaat tttatcrgct ttacctacga	60
aacagcctgt atccaaacac ttaacacact cacctgaaaa gttcaggcaa caatgcctt	120
ctcatgggtc tctctgtcc agttctgaac ctttctcttt tcctagaaca tgcatttarg	180
tcgatagaag ttctctcag tgc	203
<210> 160	
<211> 402	
<212> DNA	
<213> Homo sapien	
<400> 160	
tgtaagtgcg gcagtgtgat ggggtggaaaca ggggttgtaag cagtaattgc aaactgtatt	60
taaacaataa taataatatt tagcatttt agagcacttt atatcttcaa agtacttgca	120
aacattayct aattaaatac cctctctgtat tataatctgg atacaaatgc acttaaaactc	180
aggacagggt catgagaraa gtagtcattt gaaagttggt gctagctatg ctttaaaaac	240
ctataacaatg atgggraagt tagagttcag attctgttgg actgtttttg tgcatttcag	300
ttcagcctga tggcagaatt agatcatatc tgcactcgat gactytgctt gataacttat	360
cactgaaatc tgagtgttga tcatcacact gctcgactta ca	402
<210> 161	
<211> 193	
<212> DNA	
<213> Homo sapien	
<400> 161	
agcatgttga gcccagacac tgaccaggag aaaaaccaac caatagaaac acgcccagac	60
actgaccagg agaaaaacca accaataaaa acaggcccgg acataagaca aataataaaa	120
ttagcggaca aggacatgaa aacagctatt gtaagagcgg atatagtggt gtgtgtctgg	180
gctcaacatg cta	193
<210> 162	
<211> 147	
<212> DNA	
<213> Homo sapien	
<400> 162	
tgttgagccc agacactgac caggagaaaa accaaccaat aaaaacaggc ccggacataa	60
gacaataat aaaattagcg gacaaggaca tgaaaacagc tattgtaaga gcggatatacg	120
tgggtgtgt ctgggctcaa catgcta	147
<210> 163	
<211> 294	

<212> DNA
 <213> Homo sapien

<400> 163

tagcatgttg agccagaca caaatcttc cttaagcaat aaatcatttc tgcatatgtt	60
tttaaaacca cagctaagcc atgattattc aaaaggacta ttgtattggg tattttgatt	120
tgggttctt tctccctcac attatcttca tttctatcat tgacctctt tcccagagac	180
tctcaaactt ttatgttata caaatcacat tctgtctcaa aaaatatctc acccacttct	240
cttctgtttc tgcgtgtgt tgcgtgtgt tgcgtgtgt ggctcaacat gcta	294

<210> 164
 <211> 412
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(412)
 <223> n = A,T,C or G

<400> 164

cgggattggc tttgagctgc agatgctgcc tgtgaccgca cccggcgtgg aacagaaaagc	60
cacctggctg caagtgcgcc agagccgccc tgactacgtg ctgctgtgg gctggggcgt	120
gatgaactcc accgcctga aggaagccca ggccaccgga taccggcccg acaagatgt	180
cggcgtgtgg tggcccggtg cggagcccgta tgcgtgtac gtggcgaag ggcggcaagg	240
ctacaacgcg ctggctctga acggctacgg cacgcagtcc aaggtgatcc angacatcct	300
gaaacacgtg cacgacaagg gcaaggcac gggggccaaa gacgaagtgg gctcggtgt	360
gtacacccgc ggcgtatca tccagatgtt ggacaagggtg tcaatcacta at	412

<210> 165
 <211> 361
 <212> DNA
 <213> Homo sapien

<400> 165

ttgacacccgtt gtccagcatc tgcacatgtt gagaacatcc gatggctacc actaatggca	60
gaaggcaaaag gagaacacaggc attgtatggc aagaaaggaa gaaagagaga ggggagaaag	120
gtgcttaggtt ctttcaaca accagttttt gatgaaactg agagtaagag ctcaaggcca	180
gggtgtgtga ctccaaaccag taatcccaac atttttaggg gctgaggcag gcagatgtct	240
tgaccccatg agtttgcac cagccatggc aacatcatgtt gactccatct ctacaataat	300
tacaaaaatt aatcaggcat tgcgtgtatgc cctgtatgtt cagatgctgg acaagggtgc	360
a	361

<210> 166
 <211> 427
 <212> DNA
 <213> Homo sapien

<400> 166

twgactgact catgtccctt acacccaaact atcttcttca ggtggccagg catgatagaa	60
tctgtatcctt acttagggta atattttctt tttacttccc atcttgcattc cctggccgtg	120

agtttcctgg ttcagggtaa gaaaggagct caggccaaag taatgaacaa atccatcctc acagacgtac agaataagag aacwtggacw tagccagcag aacmcaaktg aaamcagaac mcttamctag gatracaaamc mcrraratar ktgcycmcmc wtataataga aacccaaactt gtatctaatt aaatatttat ccacygttag ggcattagtg gtttgataa atacgcttg gctaggattc ctgaggttag aatggaaraa caattgcamc gagggttaggg gacatgagtc aktctaa	180 240 300 360 420 427
<210> 167 <211> 500 <212> DNA <213> Homo sapien	
<220> <221> misc_feature <222> (1)...(500) <223> n = A,T,C or G	
<400> 167 aacgtcgcat gctccggcc gccatggccg cgggatagac tgactcatgt cccctaagat agaggagaca cctgctaggt gtaaggagaa gatggtagg tctacggagg ctccagggtg ggagtagttc cctgctaagg gagggttagac tgttcaacct gttcctgctc cggcctccac tatagcagat gcgagcagga ttaggagaga gggaggtaaag agtcagaagc ttatgttgg tatgcgggaa aacgcrtat cggggcagc cragttatta gggacantr tagwyartcw agntagcatc caaagcgnng gagttntccc atatggttgg acctgcaggc ggccgcatta gtgatttagca tgtgagcccc agacacgcat agcaacaagg acctaaactc agatcctgtg ctgattactt aacatgaatt attgtattta ttacaact ttgagttatg aggcatatta ttaggtccat attacctgga	60 120 180 240 300 360 420 480 500
<210> 168 <211> 358 <212> DNA <213> Homo sapien	
<400> 168 ttcatcgctc ggtgactcaa gcctgtatac ccagaacttt gggaggccga ggggagcaga tcacctgagg ttgggagttt gagaccagcc tggccaacat ggtgacaacc cgtctctgct aaaaatacaa aaattagcca agcatggtgg catgcacttg taatcccagc tactcgggag gctgaggcag gagaatcact tgaggccagg aggcagaggt tgcaagtggagg cagaggttga gatcatgcca ctgcactcca gcctggccaa cagagtaaga ctccatctca aaaaaaaaaaa aaaaaaaaagaa tgatcagagc cacaataca gaaaaccttg agtcaccgag cgatgaaa	60 120 180 240 300 358
<210> 169 <211> 1265 <212> DNA <213> Homo sapien	
<400> 169 ttctgtccac accaatctta gagctctgaa agaatttgc tttaaatatac ttttaatagt aacatgtatt ttatggacca aattgacatt ttcgactatt ttttccaaaa aaaagtcaagg tgaatttcag cacactgagt tggaaatttc ttatcccaga agwccgcacg agcaatttca tatttattta agattgattc catactccgt tttcaaggag aatccctgca gtctccttaa	60 120 180 240

aggtagaaca aatactttctt atttttttttt caccattgtg ggattggact ttaagaggtg	300
actctaaaaa aacagagaac aaatatgtct cagttgtatt aagcacggac ccatattatc	360
atattcactt aaaaaaatga tttcctgtgc acctttggc aacttctctt ttcaatgtag	420
ggaaaaaactt agtcaccctg aaaacccaca aaataaataa aacttgtaga tgtgggcaga	480
argtttgggg gtggacattt tatgtgttta aattaaaccc tgtatcactg agaagctgtt	540
gtatgggtca gagaaaaatga atgcttagaa gctgttcaca tcttcaagag cagaagcaaa	600
ccacatgtct cagctatattt attattttttt ttttatgtcat aaagtgaatc atttcttctg	660
tattaatttc caaagggttt taccctctat ttaaatgctt tgaaaaacag tgcattgaca	720
atgggttgat attttctttt aaaagaaaaa tataattatg aaagccaaga taatctgaag	780
cctgttttat tttaaaaactt tttatgttct gtgggttgatg ttgtttgtt gttgtttct	840
attttgttgg tttttactt tggtttttgt tttgtttgt tttggtttdg catactacat	900
gcagtttctt taaccaatgt ctgtttggct aatgtatattt aagttgtttaa ttttatatgag	960
tgcatttcaa ctatgtcaat ggtttcttaa tatttatttgt gttagaagtac tggtatattt	1020
tttatttaca atatgtttaa agagataaca gtttgatatg ttttcatgtg ttttagcag	1080
aagttatataa tttctatggc attccagcgg atatttggt gtttgcgagg catgcagtca	1140
atattttgttta cagtttagtgg acagtattca gcaacgcctg atagcttctt tggccttatg	1200
ttaaaataaaaaa agacctgtttt gggatgtaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	1260
aaaaaa	1265

```
<210> 170
<211> 383
<212> DNA
<213> Homo sapien
```

```
<400> 170
gtcga gcagtgtat gac
gatac tgatcctgag cta
gatcc agagaacatg ctg
ttctta caaccattgt atg
aaatg tgaaaaggat aat
atgaa aagaggagat cta
```

```
<210> 171
<211> 383
<212> DNA
<213> Homo sapien
```

```

<400> 171
acctt caaatatcgca agt
ccaaac agggtgaagg cat
ccataa tgaagttaaca ttt
atacc tctacttttt gtt
ggtaa aatcggttcaa gta
taggg aaagaggctg agc
cacac tgctcgactt aca

```

```
<210> 172
<211> 699
<212> DNA
<213> Homo sapien
```

<220>
 <221> misc_feature
 <222> (1)...(699)
 <223> n = A,T,C or G

<400> 172

tcgggtgatg cctcctcagg cttgtcgta gtgtacacag agctgctcat gaagcgacag	60
cggtctcccc tggcaacttca gaacctcttc ctctacactt ttggcgct tctgaatcta	120
ggtctgcatt ctggcgccgg ctctggcca ggccctctgg aaagttctc aggatggca	180
gcactcgtgg tgctgagcca ggcactaaat ggactgctca tgtctgctgt catggagcat	240
ggcagcagca tcacacgcct ctttgggtg tcctgctgc tggtggtaa cgccgtgctc	300
tcagcagtcc tgctacggct gcagctcaca gccgccttct tcctggccac attgctcatt	360
ggcctggcca tgcgcctgta ctatggcagc cgctagttcc tgacaacttc caccctgatt	420
ccggaccctg tagattgggc gccaccacca gatccccctc ccaggccttc ctccctctcc	480
catcagcggc cctgtaacaa gtgccttggt agaaaagctg gagaagttag ggcagccagg	540
ttattctctg gaggttgggt gatgaagggg tacccttagg agatgtgaag tgtgggttg	600
gttaaggaaa tgcttaccat ccccccacccca aacccaagtt nttccagact aaagaattaa	660
ggtaacatca atacctaggc ctgaggagc atcaccgc	699

<210> 173

<211> 701

<212> DNA

<213> Homo sapien

<400> 173

tcgggtgatg cctcctcagg ccagatcaa cttggggttg aaaactgtgc aaagaaatca	60
atgtcgagaa aagaattttg caaaagaaaa atgcctaattc agtactaatt taataggtca	120
cattagcagt ggaagaagaa atgttgatattttatgtcag ctatttata atcaccagag	180
tgcttagctt catgtaaagcc atctcgattt cattagaaat aagaacaatt ttattcgtcg	240
gaaagaactt ttcaatttat agcatcttaa ttgctcagga ttttaattt tgataaagaa	300
agctccactt ttggcaggag tagggggcag ggagagagga ggctccatcc acaaggacag	360
agacaccagg gccagtaggg tagctgggtt ctggatcagt cacaacggac tgacttatgc	420
catgagaaga aacaacctcc aaatctcagt tgcttaatac aacacaagct catttcttgc	480
tcacgttaca tgcctatgt agatcaacag cagtgactc agggacccag gctccatctc	540
catatgagct tccatagtca ccaggacacg ggctctgaaa gtgtcctcca tgcaggagca	600
catgcctctt ctttcattt ggcagagcaa gtcacttatg gccagaagtc acactgcagg	660
gcagtgccat cctgctgtat gcctgaggag gcatcacccg a	701

<210> 174

<211> 700

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(700)

<223> n = A,T,C or G

<400> 174

tcgggtgatg cctcctcang cccctaaatc agatccagg gtcagagcca caggagacag	60
--	----

ggaaagacat agatttaac cggccccc tt caggagattc tgaggctcag ttcactttgt	120
tgcagttga acagaggcag caaggctagt ggttagggc acggctctta aagctgcact	180
gcctggatct gcctcccagc tctgccagga accagctgcg tggccttgc ctgcgtacac	240
gcagaaagcc ccctgtggac ccagtctct cgtctgtaa atgaggacag gactcttagga	300
accctttccc ttgggttggc ctcactttca caggctccca tcttgaactc tatctactct	360
tttcctgaaa ccttgtaaaa gaaaaaaagtg ctaggcctggg caacatggca aaaccctgtc	420
tctacaaaaa atacaaaaat tagttgggtg tggtggcatg tgcctgttagt cccagccact	480
tgggaggtgc tgaggtggga ggtacttg agccggag gtggaggtg cagtgagcca	540
agatcatgcc actgcactcc agcctgagta atagagtaag actctgtctc aaaaacaaca	600
acaacaacag tgagtgtgcc tctgtttccg gtttggatgg ggcaccacat ttatgcacatct	660
ctcagatttgc gacgctgcag cctgaggagg catcacccga	700
<210> 175	
<211> 484	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (484)	
<223> n = A,T,C or G	
<400> 175	
tatagggcga attgggccc agttgcattgn tccggccgc catggccgc ggattcgggt	60
gatgcctcct caggcttgc tgccacaagc tacttctctg agctcagaaa gtgccttgc	120
atgagggaaa atgtcctact gcactgcgaa tttctcagtt ccattttacc tccctgtcct	180
ccttctaaac cagttataaa attcattcca caagtattta ctgattaccc gcttgcgc	240
gggactattc tcaggctgaa gaaggtggga ggggaggggcg gaacctgagg agccacctga	300
gccagcttta tatttcaacc atggctggcc catctgagag catctccca ctctgc	360
cctatcgaaa catagccca ggtatgcggccca aggccggccca ggttagatgc gtcccttgg	420
cttgcagtg atgacataca ccttagctgc ttagctggc ctggcctgag gaggcatcac	480
ccgaa	484
<210> 176	
<211> 432	
<212> DNA	
<213> Homo sapien	
<400> 176	
tcgggtgatg cctccctcagg gctcaaggaa tgagaagtga cttctttctg gaggaccgt	60
tcatgccacc caggatgaaa atggataggg acccaactgg aggacttgc gatatgtttg	120
gacaaatgcc aggtagcga attggactcg gtccaggagt tatccaggat agatttcac	180
ccaccatggg acgtcatcgt tcaaatacc tcttcaatgg ccatggggga cacatcatgc	240
ctcccacaca atcgcagttt ggagagatgg gaggcaagtt tatgaaaagc cagggctaa	300
gccagctcta ccataaccag agtcaggac tcttatccca gctgcaagga cagtcgaagg	360
atatgccacc tcggttttct aagaaaggac agcttaatgc agatgagatt agcctgagga	420
ggcatcaccc ga	432
<210> 177	
<211> 788	
<212> DNA	

<213> Homo sapien

<400> 177

tagcatgtt	agcccagaca	cagtagcatt	tgtccaatt	tctggttgga	atggtgacaa	60
catgctggag	ccaaagtcta	acatgcctg	gttcaaggga	tggaaagtca	cccgtaagga	120
tggcaatgcc	agtggAACCA	cgctgcttga	ggctctggac	tgcacatcctac	caccaactcg	180
cccaactgac	aaggccttgc	gcctgcctc	ccagggatgtc	tacaaaattt	gtggatttgg	240
tactgttcct	gttggccgag	tggagactgg	tgttctcaaa	cccggtatgg	tggtcacctt	300
tgctccagtc	aacgttacaa	cggaagtaaa	atctgtcgaa	atgcaccatg	aagctttgag	360
tgaagctt	cctggggaca	atgtgggctt	caatgtcaag	aatgtgtctg	tcaaggatgt	420
tcgtcgtggc	aacgttgctg	gtgacagcaa	aaatgaccca	ccaatggaaag	cagctggctt	480
cactgctcag	gtgattatcc	tgaaccatcc	aggccaaata	agtggccgct	atgcccctgt	540
attggattgc	cacacggctc	acattgtcatg	caagtttgct	gagctgaagg	aaaagattga	600
tcgcccgttct	gttaaaaagc	tggaagatgg	ccctaaattt	ttgaagtctg	gtgatgctgc	660
cattgttcat	atggttcctg	gcaagcccat	gtgtgtttag	agcttctcag	actatccacc	720
tttgggtcgc	tttgcgttgc	gtgatatgag	acagacagtt	gcgggtgggt	tctgggctca	780
acatgcta						788

<210> 178

<211> 786

<212> DNA

<213> Homo sapien

<400> 178

tagcatgtt	agcccagaca	cctgtgtttc	tggagctct	ggcagtggcg	gattcatagg	60
cacttgggct	gcactttgaa	tgacacactt	ggctttatta	gattcaactg	tttttaaaaa	120
attgttggttc	gtttttttc	attaaaggtt	taatcagaca	gatcagacag	cataatttt	180
tatthaatga	cagaaacgtt	ggtacattt	ttcatgaatg	agcttgcatt	ctgaagcaag	240
agcctacaaa	aggcacttgt	tataaatgaa	agttctggct	ctagaggcca	gtactctgga	300
gtttcagagc	agccagtgtat	tgttccagtc	agtgtatgcct	agttatata	aggaggagta	360
cactgtgcac	tcttcaggt	gtaagggtat	gcaactttgg	atcttaaaat	tctgtacaca	420
tacacactt	atataatgt	atgtatgtat	gaaaacatga	aattagttt	tcaaataatgt	480
gtgtgtttag	tattttagct	tagtgcaact	atttccacat	tatttattaa	attgtatctaa	540
gacactttct	tgttgacacc	ttgaatatta	atgttcaagg	gtgcaatgtg	tatccctta	600
gattgttaaa	gcttaattac	tatgatttgt	agtaaattaa	cttttaaaat	gtatttgagc	660
ccttctgttag	tgtcgtaggg	ctcttacagg	gtggaaaaga	tttaatttt	ccagttgcta	720
attgaacagt	atggcctcat	tatataattt	gattatagg	agtttgtgtc	tgggctcaac	780
atgcta						786

<210> 179

<211> 796

<212> DNA

<213> Homo sapien

<400> 179

tagcatgtt	agcccagaca	ctggttacaa	gaccagacct	gcttcctcca	tatgtaaaca	60
gcttttaaaa	agccagtgaa	ccttttaat	acttggcaa	ccttcttca	caggcaaaga	120
acaccccccatt	ccgccccctt	tttggagtgc	agagtttggc	tttggtttctt	tgccttgcct	180
ggagtatact	tctaattcct	gttgcctgc	acaagctgaa	taccgagct	cccacccgcca	240
cccaggccag	gttccactc	atttattact	ttatgtttct	gttccattgc	tggtccacag	300
aaataagttt	tccttggag	aatgtgatt	atacccttt	aatttcctcc	ttttgttttt	360

tttaatatac attggatgt gtttggcca gagaaaactg aaattcacca tcatttgac	420
tggcaatccc attaccatgc ttttttaaa aaacgtaatt tttcttgct tacattggca	480
gagtagccct tcctggctac tggcttaatg tagtcactca gtttcttaggt ggcattaggc	540
atgagacctg aagcacagac tgccttacca caaaaggtga caagatctca aaccttagcc	600
aaaggctat gtcaggttc aatgctatct gttctgttc ctgctcactg ttctggatt	660
tgtccttctt catcccttagc accagaattt cccagtctcc ctccctacct tcccttgttt	720
taattctaat ctatcagcaa aataactttt caaatgtttt aaccggatc tccatgtgtc	780
ttggctcaac atgcta	796
<210> 180	
<211> 488	
<212> DNA	
<213> Homo sapien	
<400> 180	
ggatgtgctg caaggcgatt aagttggta acgccagggt tttccagtc acgacgttgt	60
aaaacgacgg ccagtgaatt gtaatacgc tcactatagg gcgaattggg cccgacgtcg	120
catgctcccg gccgcacatgg cgcgggata gcatgttag cccagacacc tgcaaggcat	180
ttggagagat tttcacgtt accagcttga tggctttt caggaggaga gacactgagc	240
actcccaagg tgaggtgaa gatttcctct agatagccgg ataagaagac taggaggat	300
gcctagaaaa tgattagcat gcaaatttct acctgccatt tcagaactgt gtgtcagccc	360
acattcagct gcttcttgc aactgaaaag agagaggtat tgagactttt ctgtatggccg	420
ctctaacatt gtaacacagt aatctgtgtg tggctgggtg tggctgtgtg tctggctca	480
acatgcta	488
<210> 181	
<211> 317	
<212> DNA	
<213> Homo sapien	
<400> 181	
tagcatgttg agcccgacaca cggcgacggt acctgtatgag tgggtgtatg gcacctgtga	60
aaaggagggaa cgtcatcccc catgatattt gggacccaga tggatgaacca tggctcccg	120
tcaatgcata tttatccat gatactgttgc attgaaaggc cctgaacctg aagttgtgc	180
tgcagggttta tcgggactat tacctcacgg gtatcaaaa cttcctgaag gacatgtggc	240
ctgtgtgtct agtaagggat gcacatgcag tggccagtgt gcccagggtt ggggtgtgt	300
ctgggctcaa catgcta	317
<210> 182	
<211> 507	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (507)	
<223> n = A, T, C or G	
<400> 182	
tagcatgttg agcccgacaca ctggctgtta gccaattcct ctctcagctg ctccctgtgg	60
tttgggtact caggattaca gaggcatcct gtttcaggga acaaaaagat tttagctgcc	120

agcagagagc accacataca tttagaatggt aaggactgcc acctccttca agaacaggag	180
tgagggtggt ggtgaatggg aatggaaagcc tgcattccct gatgcattt tgctctctca	240
aatcctgtct tagtcttagg aaaggaagta aagttcaag gacggttccg aactgcttt	300
tgtgtctggg ctcaacatgc tatcccgccg ccatggcgcc cgggagcatg cgacgtcggg	360
cccaattcgc cctatagtga gtcgttattac aattcactgg ccgtcggttt acaacgtcgt	420
gactgggaaa accctggcgt tacccaaactt aatgccttg cagcacatcc cccttccca	480
gctggcgtaa tancggaaag gccccca	507
<210> 183	
<211> 227	
<212> DNA	
<213> Homo sapien	
<400> 183	
gatttacgct gcaacactgt ggaggttagcc ctggagcaag gcaggcatgg atgcttctgc	60
aatccccaaa tggagcctgg tatttcagcc aggaatctga gcagagcccc ctctaattgt	120
agcaatgata agttattctc ttgttcttc aaccccaa tagcctttag cttccagggg	180
agtgtcgtaa atcattacag cctggtctcc acagtgttgc agcgtaa	227
<210> 184	
<211> 225	
<212> DNA	
<213> Homo sapien	
<400> 184	
ttacgctgca acactgtgga gcagattaac atcagacttt tctatcaaca tgactgggt	60
tactaaaaag acaacaaatc aatggcttca aaagtctaag gaataatttc gataattcaa	120
ctttataaaaaa cctgacaaaaa ctatcaatca agcataaaga cagatgaaga acattccag	180
atttggcca atcagatatt ttacctccac agtgttgcag cgtaa	225
<210> 185	
<211> 597	
<212> DNA	
<213> Homo sapien	
<400> 185	
ggcccgacgt cgcatgctcc cggccgccat ggccgcggga ttcttaggg tctctatcca	60
ctgggaccctt taggtagtgc agagtattt gagttgagtt cttttctgtc tcccagaatt	120
tgaaagaaaa ggagttaggt gatagagctg agagatcaga ttgcctctg aagcctgttc	180
aagatgtatg tgctcagacc ccaccactgg ggcctgtggg tgaggctctg ggcatttatt	240
tgaatgaatt gctgaagggg agcaactatgc caaggaaggga gaaccatcc tggcaactggc	300
acaggggtca ctttatccag tgctcagtgcc ttcttgcgtc ctacctgggtt ttctctcata	360
tgtgagggggc aggttagaag aagtgcctc tggttgcga gtttttagaaatctaccagt	420
aagtggggaa gtttccacaaa gcagcagctt tgttttgtt atttcacct tcagtttagaa	480
gaggaaggct gtgagatgaa tgtagttga gtggaaaaga cgggtaagct tagtggatag	540
agaccctaaac gaatcactag tgcggccgccc ttgcaggtcg accatatggg agagctc	597
<210> 186	
<211> 597	
<212> DNA	
<213> Homo sapien	

<400> 186	
ggcccgaagt tgcatgttcc cggccgccat ggccgcggga ttcgttaggg tctctatcca	60
ctacctaaaa aatcccaaac atataactga actcctcaca cccaatttga ccaatccatc	120
accccagagg cctacagatc ctcctttagt acataagaaa atttcccaa actacctaac	180
tatatcatt tgcaagattt gtttaccaa attttgatgg cctttctgag cttgtcagtg	240
tgaaccacta ttacgaacga tcggatatta actgcccctc accgtccagg tgtagctggc	300
aacatcaagt gcagtaataa ttcattaagt tttcacctac taaggtgctt aaacacccta	360
gggtgccatg tcggtagcag atctttgat ttgttttat ttcccataag ggtcctgttc	420
aaggtcaatc atacatgttag tgtgagcagc tagtcaactat cgcatgactt ggagggtgat	480
aatagaggcc tcctttctg ttaaagaact cttgtcccag cctgtcaaag tggatagaga	540
ccctaacgaa tcactagtgc ggccgcctgc aggtcgacca tatggagag ctc当地	597
<210> 187	
<211> 324	
<212> DNA	
<213> Homo sapien	
<400> 187	
tcgttaggg ctctatccac ttgcaggtaa aatccaatcc tgggtatatac ttatagtctt	60
ccatatgttag tgggtcaaga gactgcagg ccagaaagac tagccgagcc catccatgtc	120
ttccacttaa ccctgcttt ggttacacat cttaactttt ctgttcaagt ttctctgtgt	180
agtttatagc atgagtattt ggawaatgcc ctgaaacctg acatgagatc tggaaacac	240
aaacttactc aataagaatt tctccatata ttatgtg gaaaaatttc acatgcacag	300
aggagtggat agagacccta acga	324
<210> 188	
<211> 178	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(178)	
<223> n = A,T,C or G	
<400> 188	
gcgccggat tcgggtgat acctcctcat gccaaaatac aacgtntaat ttcacaactt	60
gccttccaat ttacgcattt tcaatttgct ctcccccattt gttgagtcac aacaaacacc	120
attgcccaga aacatgtatt acctaacatg cacatactct taaaactact catccctt	178
<210> 189	
<211> 367	
<212> DNA	
<213> Homo sapien	
<400> 189	
tgacaccccttgc cccaggatct gacacagtct tggctttgg aaaatattgg ataaatgaaa	60
atgaatttctt ttagcaagtgtgtataagctg agaatatacg tttcacatcat cctcattcta	120
agacacattc agtgcctgtt aaatttagaat aggacttaca ataagtggtt tcactttctc	180
aatagctgtt attcaatttga tggtaggcct taaaagtcaa agaaatgaga gggcatgtga	240

aaaaaaagctc aacatcactg atcattagaa aacttccatt caaacccca atgagatacc	300
atctcataacc agtcagaatg gctattattha aaaagtcaaa aaataacaga tgctggacaa	360
ggtgtca	367

<210> 190
 <211> 369
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(369)
 <223> n = A,T,C or G

<400> 190

gacaccctgt ccagcatctg acaacgctaa cagcctgagg agatctttat ttatttattt	60
agttttact ctggctaggc agatggtggc taaaacattc atttaccat ttattcattt	120
aattgttcct gcaaggccta tggatagagt attgtccagc actgctctgg aagctaggag	180
catggggatg aacaagatag gctacatcct gttcccacag aacttccact ttagtctggg	240
aaacagatga tatatacaaa tatataaaatg aattcaggtt gtttaagta cgaaaagaat	300
aagaaagcag agtcatgatt tanaatgctg gaaacagggg ctattgctt agatattgaa	360
ggtgcctaa	369

<210> 191
 <211> 369
 <212> DNA
 <213> Homo sapien

<400> 191

tgacaccttg tccagcatct gcacaggaa aagaaactat tatcagagtg aacaggcaac	60
ctacagaatg ggagaaaatt ttgcattct atccatctga caaaggctt atatccagaa	120
tctacaaaga acttatacaa atttacaaga aacaaacaaa caaacaactc ctcaaaaagt	180
gggtgaagga tgtgaacaga cacttctcaa aagaagacat ttatggggcc aacaaacata	240
tgaaaaaaaaag ctcatcatca ctggtcacta gataatgca aatcaaaacc acaatgagat	300
accatctcat tccagttaga atggcaatca ttaaaaagtc aggaaacaac agatgctgga	360
caaggtgtc	369

<210> 192
 <211> 449
 <212> DNA
 <213> Homo sapien

<400> 192

tgacgcttgg ccacttgaca cttcatctt gcacagaaaa acttctttac agatttaatt	60
caagactggc ctagtgacag tcctccagac attttttcat ttgttccata tacgtggaaat	120
ttttaaaatca tgtttcatca gtttggaaatg atttgggctg ctaatcaaca caattggatc	180
gactgttcta ctaaacaaca ggaaaaatgtg tatctggcag cctgtggaga aacactaaac	240
attgattttt ctttgcctt tacggacttt gttccagctt catgttaatac caagttctct	300
ttaagaggag aagatgttga ttttcatttg tttctaccag actgccaccc tagtaaatat	360
tctttattta tgctggtaaa aaattgccat ccaataaga tgattcatga tactggatt	420
cctgctgagt gtcaagtggc caagcgtca	449

<210> 193	
<211> 372	
<212> DNA	
<213> Homo sapien	
<400> 193	
tgacgcttgg ccacttgaca ccagggatgt akcagttgaa tataatcctg caattgtaca	60
tattggcaat ttcccatcaa acattctaga aagagacaac caggattgct aggccataaa	120
agctgcaata aataactggt aattgcagta atcatttcag gccaattcaa tccagttgg	180
ctcagaggtg ctttggctg agagaagagg tgagatataa tgtgtttct tgcaacttct	240
tggaagaata actccacaat agtctgagga ctagatacaa acctatttc cattaaagca	300
ccagagtctg ttaattccag tactgataag tggagat tagactccag tgtgtcaagt	360
ggccaagcgt ca	372
<210> 194	
<211> 309	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (309)	
<223> n = A,T,C or G	
<400> 194	
tgacgcttgg ccacttgaca cttatgtaga atccatcggt ggctgatgca agccctttat	60
ttaggcttag tgggtgggc accttcaata tcacactaga gacaaacgcc acaagatctg	120
cagaaacatt cagttctgan cactcgaatg gcaggataac ttttgtgtt gtaatccttc	180
acatatacacaa aaacaaaactc tgcantctca cttacaaaaaa aaacgtactg ctgtaaaata	240
ttaagaagggtt gtaaaggata ccatctataa caaagtaact tacaactagt gtcaagtggc	300
caagcgtca	309
<210> 195	
<211> 312	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (312)	
<223> n = A,T,C or G	
<400> 195	
tgacgcttgg ccacttgaca cccaatctcg cacttcattcc tcccagcacc tgatgaagta	60
ggactgcaac tatccccact tcccagatga ggggaccaan gtacacatta ggaccggat	120
gggagcacag atttgcgttccga tcccagactc caagcactca gcgtcactcc aggacagcgg	180
ctttcagata aggtcacaaaa catgaatggc tccgacaacc ggagtcaagt cgtgctgagt	240
taaggcaatg gtgacacgga tgcacgtgtt acctgtaatg gttcatcgta agtgtcaagt	300
ggccaagcgt ca	312

<210> 196		
<211> 288		
<212> DNA		
<213> Homo sapien		
<400> 196		
tgtatcgacg tagtgttctc ctcagccatg cagaactgtg actcaattaa acctcttcc	60	
tttatgaatt acccaatctc gggtagtgtc tttatagtag tgtgagaatg gactaataca	120	
agtacatttt acttagtaat aataataaaac aaatatatta cattttgtg tatttactac	180	
accatatttt ttattgttat tgttagtgtac accttctact tattaaaaga aataggcccg	240	
aggcgggcag atcacgaggt caggagatgg agaccactac gtcgatac	288	
<210> 197		
<211> 289		
<212> DNA		
<213> Homo sapien		
<400> 197		
ttgggcaccc tcaatatcat gacaggtgat gtgataacca agaaggctac taagtgatta	60	
atgggtgggt aatgtataca gagtaggtac actggacaga ggggttaattc atagccaagg	120	
caggagaagc agaatggcaa aacatttcat cacactactc aggatagcat gcagttaaa	180	
acctataagt agtttatttt tggaaatttc cacttaatat tttcagactg caggtaacta	240	
aactgtggaa cacaagaaca tagataaggg gagaccacta cgtcgatac	289	
<210> 198		
<211> 288		
<212> DNA		
<213> Homo sapien		
<400> 198		
gtatcgacgt agtgttctcc caagcagtgg gaagaaaacg tgaaccaatt aaaatgtatc	60	
agataccccca aagaaaggcg cttgagtaaa gattccaagt gggtcacaat ctcagatctt	120	
aaaattcagg ctgtcaaaga gatttgctat gaggttgtc tcaatgactt cagggcacagt	180	
cggcaggaga ttgaagccct ggcattgtc aagatgaagg agctttgtgc catgtatggc	240	
aagaaagacc ccaatgagcg ggactcctgg agaccactac gtcgatac	288	
<210> 199		
<211> 1027		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1) ... (1027)		
<223> n = A,T,C or G		
<400> 199		
gctttttggg aaaaacncaa ntggggaaaa gggggntnn tngcaagggg ataaaggggg	60	
aancccgagg tttccccatt cagggaggtg taaaaagnncg gccaggggat tgtaanagga	120	
ttcaataata gggggatgg gcccngaagt tgcaaggttc cngccgccta tgnccgcggg	180	
atttagtgac attacgacgs tggtaataaa gtggsccaa waaatattt tgatgtgatt	240	

tttsgaccag tgaacccatt gwacaggacc tcatttccty tgagatgrta gccataatca	300
gataaaagrt tagaagtytt tctgcacggt aacagcatca ttaaatggag tggcatcacc	360
aatttcaccc tttgttagcc gataccttcc cttgaaggc attcaattaa gtgaccaatc	420
gtcatacgag agggatggc atggggattg atgatgatat caggggtgat accttcacag	480
gtgaaaggca tattccttgc tctatactga ataccacaag taccctttg accatgtcga	540
ctagcaaatt tgcctccaaat ctgtgtwatt cctaacagag cgtaccctta ttttacaaaa	600
tttatatacct tcctgattga gagttaccat aacctgatcc acaatgcccgt tctcgctwgt	660
tctgagaaaa gtgctacagt ctctcttggt atagcgtcta ttgggtgctct ccaattcatc	720
ttcattttc aggcaagggtg aactgttttgc cctataataaa cmtcatctcc tgatacmcgaa	780
aacccckgga rctatcaaaccatcatc cagcgttckt watgtymcta aatccctatt	840
gcggccgcct gcaggtcaac atatngggaa accccccacc ccttnngagc ntaccttgaa	900
ttttccatat gtccccntaaa ttanctngnc ttancctggc cntaacctnt tcccggtttaa	960
attgttccg cccccnttcc ccnccttnna accggaaacc ttaattttna accnggggtt	1020
cctatcc	1027

<210> 200

<211> 207

<212> DNA

<213> Homo sapien

<400> 200

agtgcacatcgacgctggccatcttgaatccatggggcatgaagttgccc caaagttcag 60
cacttggtaaaggctgatccctctggttatcacaagaa taggatggataaagaaagt 120
ggacacttaataagctataaattatatggtccttgtcta gcaggagaca actgcacagg 180
tatactacca gcgtcgtaat gtcacta 207

<210> 201

<211> 209

<212> DNA

<213> Homo sapien

<400> 201

tgggcacctt caatatctat taaaagcaca aatactgaag aacacaccaa gactatcaat 60
gaggttacat ctggagtcct cgatatatca ggaaaaaaatg aagtgaacat tcacagagtt 120
ttacttcttt gggactcaa atgctagaaa agaaaagggt gccctttc tctggcttcc 180
tggtcctatc cagcgtcgta atgtcacta 209

<210> 202

<211> 349

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) . . . (349)

<223> n = A, T, C or G

<400> 202

ntacgctgca acactgtgga gccactgggtt ttatcccg gcagggttac cagcaaacag	60
tcactgaaca caccgaagac cgtggatgg taaccgttca cagtaatcgt tccagtcgtc	120
tgcgggaccc cgacgagcgt cactgggtac agaccagatt cagccggaag agaaagcgcc	180

gcagggagag actcgaactc cactccgctg gtgagcagcc ccatgtttc aactcgaagt	240
tcaaacggca ttgggttata taccatcagc tgaacttcac acacatctcc ttgaacccac	300
tggaaatcta ttttcttgtt cgcctttct ccacagtgtt gcagcgtaa	349

<210> 203
 <211> 241
 <212> DNA
 <213> Homo sapien

<400> 203	
tgctcctctt gccttaccaa cccaaagccc actgtgaaat atgaagtgaa tgacaaaatt	60
cagtttcaa cgcaatatag tatagttat ctgattctt tgatctccag gacactttaa	120
acaactgcta ccaccaccac caacctaggg atttaggatt ctccacagac cagaaattat	180
ttctcctttt agtttcaggc tcctctggta ctccgttca tcaatgggtg gtaaatggct	240
a	241

<210> 204
 <211> 248
 <212> DNA
 <213> Homo sapien

<400> 204	
tagccattta ccaccatct gcaaaccswg acmwwcargr cywgcwackya ggcgatttga	60
agtactggta atgctctgat catgttagtt acataagtgt ggtcagttt caaaaattca	120
cagaactaaa tactcaatgc tatgtgttca tgtctgtt tatgtgtgtg taatgtttca	180
attaagtttt tttaaaaaaaa agagatgatt tccaaataag aaagccgtgt tggttaaggca	240
agaggagc	248

<210> 205
 <211> 505
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1) ... (505)
 <223> n = A,T,C or G

<400> 205
 tacgctgcaa cactgtggag ccattcatac aggtccctaa ttaaggaaca agtgattatg
 ctaccttgc acggtaggg taccgcggcc gttaaacatg tgtcaactggg caggcggtgc

ctctaatact ggtatgcta gaggtgatgt ttttgtaaa caggcggtt aagatttgc	180
gagttccctt tactttttt aaccttcct tatgagcatg cctgtgttgg gttgacagtg	240
gggtaataa tgacttggta gttgattgta gatattggc tgttaattgt cagttcagtg	300
ttttaatctg acgcaggctt atgcggagga gaatgtttc atgttactta tactaacatt	360
agttcttcta taggggtata gattggtcca attgggtgtg aggagttcag ttatatgttt	420
gggattttt aggttagtggg tggtganctt gaacgctttc ttaattgggt gctgctttta	480
rgcctactat gggtggtaaa tggct	505

<210> 206
 <211> 179

<212> DNA		
<213> Homo sapien		
<400> 206		
tagactgact catgtcccct accaaagccc atgtaaggag ctgagttctt aaagactgaa	60	
gacagactat tctctggaga aaaataaaat ggaattgta cttaaaaaaa aaaaaaaatc	120	
ggccgggcat ggtacacac acctgtaatc ccagctacta gggacatga gtcagtcta	179	
<210> 207		
<211> 176		
<212> DNA		
<213> Homo sapien		
<400> 207		
agactgactc atgtccccta ccccaccttc tgctgtgctg ccgtgttctt aacaggtcac	60	
agactggtagc tggtcagtgg cctgggggtt ggggacctctt attatatggg atacaattt	120	
aggagttgga attgacacga ttttagtact gatggatat ggggtggtaaa tggcta	176	
<210> 208		
<211> 196		
<212> DNA		
<213> Homo sapien		
<400> 208		
agactgactc atgtccccta tttaacaggg tctctagtgc tgtaaaaaaa aaaaatgctg	60	
aacattgcat ataacttata ttgtaaagaaa tactgtacaa tgactttattt gcatctgggt	120	
agctgttaagg catgaaggat gccaagaat ttaaggaata tgggtggtaa atggctaggg	180	
gacatgagtc agtcta	196	
<210> 209		
<211> 345		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(345)		
<223> n = A,T,C or G		
<400> 209		
gacgcttggc cacttgacac cttttatattt ttaaggattc ttaagtcatt tangtnactt	60	
tgtaagtttt tcctgtcccc ccataagaat gatacttta aaaattatgc tgggttagca	120	
aagaagatac ttctagctt agaatgtgta ggtatagcca ggattcttgt gaggaggggt	180	
gattttagagc aaatttctta ttctccttgc ctcatctgta acatggggat aataatagaa	240	
ctggcttgcac aagggtggaa ttagtattac atggtaaata catgtaaaat gtttagaatg	300	
gtgccaagta tctaggaagt acttggcat ggggtggtaaa tggct	345	
<210> 210		
<211> 178		
<212> DNA		
<213> Homo sapien		

<400> 210		
gacgcttggc cacttgacac tagagtaggg tttggccaac ttttctata aaggaccaga	60	
gagtaaatat ttcaaggctt gtgggttgtg cagtcctct tgcaactact cagctctgcc	120	
atttagcat agaaatcagc catagacagg acagaaatga atgggtggta aatggcta	178	
<210> 211		
<211> 454		
<212> DNA		
<213> Homo sapien		
<400> 211		
tgggcacct caatatctat ccagcgcac taaattcgct ttttcttga taaaaaattt	60	
caccacttgc tgttttgtct catgtataacc aagtagcagt ggtgtgaggc catgttggtt	120	
ttttgattcg atatcagcac cgtataagag cagtgccttgc cccattaatt tatcttcatt	180	
gtagacagca tagttagttagg tggatctcc atactcatct ggaatatttg gatcagtgc	240	
atgttccagc aacattaacg cacattcatc ttccctggcat tgcacggct ttgtcagagc	300	
tgtcctcttt ttgttgtcaa ggacattaag ttgacatcgt ctgtccagca cgagttttac	360	
tacttctgaa ttcccattgg cagaggccag atgttagagca gtcctttttt gcttgc	420	
cttggttcaca tcagtgcccc tgagcataac ggaa	454	
<210> 212		
<211> 337		
<212> DNA		
<213> Homo sapien		
<400> 212		
tccgttatgc caccagaaaa acctactgga gttacttatt aacatcaagg ctggAACCTA	60	
tttgccttag tcctatctga ttcatgagca catggttatt actgatcgca ttgaaaacat	120	
tgatcacctg ggtttttttt tttatcgact gtgtcatgac aaggaaactt acaaactgca	180	
acgcagagaa actattaaag gtattcagaa acgtgaagcc agcaattgtt tcgcaattcg	240	
gcattttgaa aacaaatttg ccgtggaaac tttaatttgt tcttgaacag tcaagaaaaa	300	
cattattgag gaaaatttaat atcacagcat aacgaa	337	
<210> 213		
<211> 715		
<212> DNA		
<213> Homo sapien		
<220>		
<221> misc_feature		
<222> (1)...(715)		
<223> n = A,T,C or G		
<400> 213		
tcgggtgatg cctcctcagg catctccat ccacatcttc aagattagct gtcccaaatg	60	
tttttccttc tcttcttac tgataaaattt ggactccttc ttgacactga tgacagctt	120	
agtatccttc ttgtcacctt gcagacttta aacataaaaa tactcattgg ttttaaaagg	180	
aaaaaaagtat acattagcac tattaagctt ggccttggaa cattttctat cttttattaa	240	
atgtcggtt gctgaacaga attcatttta caatgcagag tgagaaaaaga agggagctat	300	
atgcatttga gaatgcaagc attgtcaaatttta aatgcttct taaagtgagc	360	

acatacagaa atacattaag atattagaaa gtgtttgc ttgtgtacta ctaattaggg	420
aagcacctt tatagttcct cttctaaaat tgaagtagat tttaaaaacc catgttaattt	480
aattgagctc tcagttcaga ttttaggaga atttaacag ggatttgggtt ttgtctaaat	540
tttgcatt tnttagtta atctgtataa ttttataaaat gtcaaactgt atttagtccg	600
ttttcatgct gctatgaaag aaatacccan gacagggtta ttataaaang gaaagangtt	660
aatttactc ccagttcaca ggcctgagga ngnatcnccc gaaatcctta ttgcg	715
<210> 214	
<211> 345	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (345)	
<223> n = A,T,C or G	
<400> 214	
ggtaangngc atacntcggg gtcggggccg ccggagtcgg gggattcggg tggatgcctcc	60
tcaggcccac ttgggcctgc ttttcccaa tggcagctcc tctggacatg ccatcttc	120
tcccacactgc ctgattcttc atatgttggg tgcctgtt tttctgggtc tatttcctga	180
ctgctgttca gctgcccactg tcctgcaaaag cctgccttt taaatgcctc accattcctt	240
catttgcatttca ttaaatatgg gaagtgaaag tgccacctga ggccgggac agtggctcac	300
gcctgttaatc ccagcacttt gggagcctga ggaggcatca cccga	345
<210> 215	
<211> 429	
<212> DNA	
<213> Homo sapien	
<400> 215	
ggtgatgcct cctcaggcga agtcaggaa ggacagaaac ctcccggttga gcagaaggc	60
aaaagctcgc ttgatcttga ttttcagttac gaatacagac cgtgaaagcg gggcctcagc	120
atccttcgttca cctttgggt ttaaggcagg aggtgtcaga aaagttacca caggataac	180
tggctgtgg cggccaagcg ttcatagcga cgtcgcttt tgatccttcg atgtcggctc	240
ttccttatcat tgtgaagcag aattcacca gcgttggatt gttcacccac taataggaa	300
cgtgagctgg gtttagaccg tcgtgagaca ggttagttt accctactga tgatgtgtkg	360
ttgccatggt aatcctgctc agtacgagag gaaccgcagg ttcasacatt tggtgtatgt	420
gcctgcctt	429
<210> 216	
<211> 593	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (593)	
<223> n = A,T,C or G	
<400> 216	

tgacacccat gtcnngcatc tgttcacagt ttccacaaat agccagcctt tggccacctc	60
tctgtcctga ggtataacaag tatatcagga ggtgtatacc ttcttcttc ttccccacca	120
aagagaacat gcaggctctg gaagctgtct taggagcctt tggctcaga atttcagagt	180
cttgggtacc ttggatgtgg tctggaagga gaaacattgg ctctggataa ggagtacagc	240
cggaggaggg tcacagagcc ctcaagctcaa gcccctgtgc ctttagtctaa aagcagctt	300
ggatgaggaa gcaggttaag taacatacgt aagcgtacac aggtagaaag tgctggaggt	360
cagaattgca cagtgtgttag gagtagtacc tcaatcaatg agggcaaatc aactgaaaga	420
agaagaccna ttaatgaatt gcttanggg aaggatcaag gctatcatgg agatcttct	480
aggaagatta ttgtttanaa ttatgaaagg antagggcag ggacagggcc agaagtanaa	540
ganaacatttgc cctatancctt ttgtcttgc cccagatgct ggacaagggtg tca	593
<210> 217	
<211> 335	
<212> DNA	
<213> Homo sapien	
<400> 217	
tgacacccat gtcnngcatc tgttcacagt ttccacaaat agccagcctt tggccacctc	60
cctgggtacc ttggatgtgg tctggaagga gaaacattgg ctctggataa ggagtacagc	120
aggacaaatt taatcttact ggactcaatg agcaggtccc tcactatcga caagctctag	180
acatgtatctt ggacctggag cctgatgaag aactggaaga caaccccaac cagagtgacc	240
tgattgagca ggcagccgag atgctttatg gattgatcca cgcggctac atccttacca	300
accgtggcat cgcccaagatg ctggacaagg tgtca	335
<210> 218	
<211> 248	
<212> DNA	
<213> Homo sapien	
<400> 218	
tacgtactgg tcttgaaggt cttaggtaga gaaaaatgt gaatatttaa tcaaagacta	60
tgtatgaaat gggactgtaa gtacagaggg aagggtggcc cttatcgcca gaagttggta	120
gatgcgtccc cgtcatgaaa tggatgtgtca ctggccgaca tttggccgaat tactgaaatt	180
ccgtagaatt agtgc当地 ctaacgttgt tcatacataa ttatggttcc atggttctag	240
tactttta	248
<210> 219	
<211> 530	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (530)	
<223> n = A,T,C or G	
<400> 219	
tgacgcttgg ccacttgaca caagttagggg ataaggacaa agacccatna ggtggcctgt	60
cagccttttgc ttactgttgc ttccctgtca ccacggcccc ctctgttaggg gtgtgtgt	120
ctctgtggac attgggtgcattttcacacat accattctct ttctgcttca cagcagtcct	180
gaggcgggag cacacaggac taccttgta gatgangata atgatgtctg gccaactcac	240

cccccaacct tctcaactgt tatangaaga gccangccta naaccttcta tcctgncccc	300
ttgcctatg acctcatccc tgttccatgc cctattctga tttctggta actttggagc	360
agcctggttt ntcctcctca ctccagcctc tctccatacc atggtaggg ggtgctgttc	420
cacncaaang gtcaggtgtg tctggggaat cctnananct gccnngagtt tccnangcat	480
tcttaaaaac cttcttgct aatcanatng tgtccagtgg ccaaccntcn	530
<210> 220	
<211> 531	
<212> DNA	
<213> Homo sapien	
<400> 220	
tgacgcttgg ccacttgaca ctaaatagca tcttctaaag gcctgattca gagttgtgga	60
aaattctccc agtgtcaggg attgtcagga acaggcgtgc tcctgtgctc actttacctg	120
ctgtgtttct gctggaaaag gagggaaagag gaatggctga ttttaccta atgtctccca	180
gtttttcata ttcttcttgg atcctcttct ctgacaactg tcccttttgc tcttcttct	240
tcttgcttag agagoaggc tctttaaaac tgagaaggaa gaatgagcaaa atgattaaag	300
aaaacacact tctgaggccc agagatcaaatttaggtaa atactaaacc gcttcctgc	360
tgtggtcact tttctcccttct ttcacatgtc ctatccctct atccccccacc tattcatatg	420
gcttttatct gccaagttat coggccttc atcaaccttc tcccttagcc tactggggga	480
tatccatctg ggtctgtctc tgggttatttgc tggtaagtgc gccaagcgtca a	531
<210> 221	
<211> 530	
<212> DNA	
<213> Homo sapien	
<400> 221	
attgacgctt ggccacttga caccggcctg cctgaatac tggggcaagg gccttcactg	60
ctttcctgcc accagctgcc actgcacaca gagatcagaa atgctaccaa ccaagactgt	120
tggtccttag cctctcttag gagaaagagc agaaggcctgg aagtcagaag agaagctaga	180
tcggctacgg cttggcagc cagttcccc acctgtggca ataaagtctgt gcatggctta	240
acaatggggg cacctcctga gaaacacatt gtaggcaat tcggcgtgtg ttcatcagag	300
catatttaca caaacctcga tagtgcagcc tactatccac tattgtcct acgctgcaaa	360
cctgaacagc atggactgt actgaataact ggaagcagct ggtgatggta cttatttg	420
tatctaaaca cagagaaggt acagtaagaa tatgttatca taaacttaca gggaccgcca	480
tccttatatgc agtctgttgc gacccaaatgc tgtcaagtgg ccaagcgtca	530
<210> 222	
<211> 578	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(578)	
<223> n = A,T,C or G	
<400> 222	
tgtatcgacg tagtggtctc cgggctacta ggccgtgtg tgctggtagt acctggttca	60
ctgaaaggcg catctccctc cccgcgtcgc cctgaagcag ggggaggact tcgcccagcc	120

aaggcagttt	tatgagttt	agctgcggca	cttcgagacc	tctgagccca	cctccttcag	180
gagccttccc	cgattaagga	agccagggtt	aggattcctt	cctccccag	acaccacgaa	240
caaaccacca	ccccccctat	tctggcagcc	catatacatc	agaacgaaac	aaaaataaca	300
aataaacnnaa	aaccaaaaaa	aaaagagaag	gggaaatgtt	tatgtctgtc	catcctgttg	360
ctttagcctg	ttagtccta	nagggcaggg	accgtgtt	ccgaatggtc	tgtgcagcgc	420
cgactgcggg	aagtatcgga	ggaggaagca	gagtcagcag	aagttgaacg	gtgggccccgg	480
cggcttgg	gggctgtgt	tgtacttcga	gaccgctt	gcttttgtc	ttagatttac	540
gtttgctt	tggagtggga	naccactacn	tcnataca			578
<210> 223						
<211> 578						
<212> DNA						
<213> Homo sapien						
<400> 223						
tgtatcgacg	tagtggtctc	ctttgcaaa	ggactggctg	gtgaatggtt	tccctgaatt	60
atggacttac	cctaaacata	tcttatcatc	attaccagtt	gcaaaatatt	agaatgtgtt	120
gtcactgttt	catttgattc	ctagaaggtt	agtcttagat	atgttacttt	aacctgtatg	180
ctgttagtgct	ttgaatgcat	tttttggttt	cattttgtt	tgcccaacct	gtcaattata	240
gctgctttagg	tctggactgt	cctggataaa	gctgttaaaa	tattcaccag	tccagccatc	300
ttacaagcta	attaagtcaa	ctaaatgctt	ccttgttttt	ccagacttgt	tatgtcaatc	360
ctcaatttct	gggttcattt	ttgggtgcctt	aaatctttagg	gtgtgacttt	cttagcatcc	420
tgtaacatcc	attcccaagc	aagcacaact	tcacataata	ctttccagaa	gttcattgct	480
gaagccttcc	cttcacccag	cgagcaact	tgattttcta	caactccct	catcagagcc	540
acaagagtat	gggatatggaa	gaccactacg	tcgataca			578
<210> 224						
<211> 345						
<212> DNA						
<213> Homo sapien						
<220>						
<221> misc_feature						
<222> (1)...(345)						
<223> n = A,T,C or G						
<400> 224						
tgtatcgacg	tantggtctc	ccaagggtct	gggattgcag	gcatgagccca	ccactccca	60
gtggatctt	ttcttatac	ttacttcatt	aggttctgt	tattcaagaa	gtgttagtggt	120
aaaagtcttt	tcaatctaca	ttgtttaata	atgatagcct	gggaaataaaa	tagaaatttt	180
ttctttcatc	tttaggttga	ataaagaaaac	agaaaaata	gaacataactg	aaaataatct	240
agttccaac	catagaagaa	ctgcagaaga	aatgaagaaa	gtgtatgtga	tttagatttt	300
gatattgatt	tagaagacac	aggaggagac	cactacgtcg	ataca		345
<210> 225						
<211> 347						
<212> DNA						
<213> Homo sapien						
<400> 225						
tgtatcgacg	tagtggtctc	caaactgagg	tatgtgtgcc	actagcacac	aaagccttcc	60

aacagggacg caggcacagg cagttaaag ggaatctgtt tctaaattaa tttccacctt	120
ctctaagtat ctttctaa aactgatcaa ggtgtqaagc ctgtgctct tcccaactcc	180
cctttgacaa cagccttcaa ctaacacaag aaaaggcatg tctgacactc ttcctgagtc	240
tgactctgat acgttgttct gatgtctaaa gagctccaga acaccaaagg gacaattcag	300
aatgctgggt tataacagac tccaatggag accactacgt cgataca	347
<210> 226	
<211> 281	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (281)	
<223> n = A,T,C or G	
<400> 226	
aggngnggga ntgtatcgac gtagtggct cccaacagtc tgtcattcag tctgcaggt	60
tcagtgtttt ggacaatgag gcaccattgt cacttattga ctcctcagct ctaaatgctg	120
aaattaaatc ttgtcatgac aagtctggaa ttccctgatga ggttttacaa agtattttgg	180
atcaatactc caacaaatca gaaagccaga aagaggatcc tttcaatatt gcagaaccac	240
gagtggattt acacacctca ggagaccact acgtcgatac a	281
<210> 227	
<211> 3646	
<212> DNA	
<213> Homo sapien	
<400> 227	
ggaaacact tcctcccagc ttgtaaaggg ttggagccct ctccagtata tgctgcagaa	60
tttttctctc ggtttctcag aggattatgg agtccgcctt aaaaaaggca agctctggac	120
actctgcaaa gtagaatggc caaagtttg agttgagtgg ccccttgaag ggtcactgaa	180
cctcacaatt gttcaagctg tttggcggt tgtaactgaa actcccgccc tccctgatca	240
ttttccctac attgatcaat ggctgagtt ggtcaggagc accccttccg tggctccact	300
catgcaccat tcataatttt acctccaagg tcctctgag ccagaccgtg ttttcgcctc	360
gaccctcagc cgggtcggt cgcctgtac tgcctctctc tgaagaagag gagagtctcc	420
ctcaccctagt cccacccgcct taaaaccagc ctactccctt agggtcatcc catgtctcct	480
cggctatgtc ccctgtaggc tcatcaccca ttgcctctt gttgcaaccg tgggtggagg	540
aagtagcccc tctactacca ctgagagagg cacaagtccc tctgggtgat gagtgctcca	600
cccccttcct ggttatgtc cttcttttct acttctgact ttttataattt gaaaacccat	660
aatcctccct tctctgaaaa gccccaggtt ttgacctcac tgatggagtc ttttactctgg	720
acacattggc ccacctggga tgactgtcaa cagtccttt tgacccttt cacctctgaa	780
gagagggaaa gtatccaaag agaggccaaa aagtacaacc tcacatcaac caataggccg	840
gaggaggaag ctagaggaat agtGattaga gaccaattt ggacctaattt gggacccaaa	900
tttctcaagt ggagggagaa cttttgacga ttccacccgg tatctcctcg tgggtattca	960
gggagctgt cagaaaccta taaacttgc taaggcgact gaagtcgtcc agggcatga	1020
tgagtccacca ggagtgttt tagagcacct ccaggaggct tatcagattt acacccttt	1080
tgacctggca gccccccgaaa atagccatgc tcttaatttgcatttgcatttgcatttgcatttgc	1140
cccagatagt aaaagggaaac tccaaaaact agaggattt tgctggatg aataccatgc	1200
agcttttaga gatagcctaa aaggtttttgc acgtcaaga ggttggaaaaaaa caaaaacaag	1260
cagctcagggc agctgaaaaaa agccactgtt aaagcatcctt ggagtatcag agtttactgt	1320

tagatcagcc tcatttgact tcccctccca catggtgttt aaatccagct acactacttc	1380
ctgactcaaa ctccactatt cctgttcatg actgtcagga actgttgaa actactgaaa	1440
ctggccgacc tgatcttcaa aatgtgcccc tagggaaaggt gtagccacc atgttcacag	1500
acagtagcag cttcctcgag aaggactac gaaaggccgg tgcagctgtt accatggaga	1560
cagatgtgtt gtgggctcgag gcttaccag caaacacctc agcacaaaag gctgaattga	1620
tcgcccctcac tcaggtctc cgatgggta aggatattaa cgtaacact gacagcaggt	1680
acgccttgc tactgtgcat gtacgtggag ccatctacca ggagcgtggg ctactcacct	1740
cagcaggtgg ctgtaatcca ctgtaaaggaa catcaaaaagg aaaacacggc tggtgcccgt	1800
ggtaaccaga aagctgattc agcagctcaa gatgcagtgt gacttcagt cacgcctcta	1860
aacttgctgc ccacagtctc cttccacag ccagatctgc ctgacaatcc cgcatactca	1920
acagaagaag aaaactggcc tcagaactca gagccaataa aaatcaggaa ggttgggtgga	1980
ttcttcctga ctctagaatc ttcataccctt gaactcttgg gaaaacttta atcagtacc	2040
taacgtctac caccattta ggaggagcaa agctacctca gctcctccgg agccgtttta	2100
agatccccca tcttcaaaggc ctaacagatc aagcagctc ccgtgcaca acctgcgccc	2160
aggttaatgc caaaaaagggt cctaaaccca gcccaggca ccgtctccaa gaaaactcac	2220
caggagaaaaa gtgggaaatt gactttacag aagtaaaaacc acaccgggct gggtacaaat	2280
accttctagt actggtagac accttctctg gatggactga agcatttgct accaaaaacg	2340
aaactgtcaa tatggtagtt aagttttac tcaatgaaat catccctcga catgggctgc	2400
ctgtttgcca tagggctcga taatggaccc gccttcgcct tgtctatagt ttagtcgtc	2460
agtaaggcgt taaacattca atggaagctc cattgtgcct atcgaccctt gagctctggg	2520
caagtagaac gcatgaactg caccctaaaa aacactcttca caaaattaat cttagaaacc	2580
gggttaaatt gtgttaagtct cttccctta gcctactta gagtaagggtg cacccttac	2640
tgggctgggt tcttacctt taaaatcatg tatgggaggg tgctgcctat cttgcctaag	2700
ctaagagatg cccaaattggc aaaaatatca caaaacttatttattacatgta cttacagtct	2760
cccccaacagg tacaagatatttcatctgc cttgttcgag gaaccatcc caatccaatt	2820
cctgaacaga cagggccctg ccattcatc ccgcaggtg acctgttgg tggtaaaaag	2880
ttccagagag aaggactccc tcctgcttgg aagagacctc acaccgtcat cacgtgc	2940
acggctctga aggtggatgg cattcctgcg tggattcatc actcccgcat caaaaaggcc	3000
aacagagccc aactagaaac atgggtcccc agggctgggt caggcccctt aaaactgcac	3060
ctaagttggg tgaagccatt agattaatttctttaa tttttaaaa caatgcata	3120
tttctgtcaa acttatgtat cttaagactc aatataaccc cttgttata actgaggaat	3180
caatgattt attcccccaa aacacacaatg gggaaatgtt gtgtccaaacc tggttttac	3240
taaccctgtt tttagactct cccttcctt taatctactca gttgtttcc acctgaattt	3300
actctccctt agctaagagc gccagatgga ctccatcttgc gcttttac tggcagccgc	3360
ttcctcaagg acttaacttg tgcaagctga ctccagcac atccaagaat gcaattaact	3420
gataagatac tgtggcaagc tatatccgca gttcccagga attcgtccaa ttgatcacag	3480
ccctctacc cttcagcaac caccaccctg atcagtcagc agccatcagc accgaggca	3540
ggccctccac cagaaaaaag attctgactc actgaagact tggatgatca ttatgtat	3600
tagcagtaaa gttttttttt ctttttctt cttttttctt cgtgcc	3646

```

<210> 228
<211> 419
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1) ... (419)
<223> n = A,T,C or G

<400> 228

```

taagagggtta caagatctaa gcacagccgt caatgcagaa cacagaacgt agcctggtaa	60
gtgtgttaag agtggaaatt tttggagtagc agagtaaggc acctaaccct agctggggtt	120
tggtgacggc cccagatggc ttacagaaga aagtgcctg agatgagttt ttaagaatga	180
ataaggatag acacaagtga ggactgactt ggcagtggc aatggtggtt ggcaaaaaac	240
ttcgcatgtt tggaaactgc acgtacagga atgaagaatg agactgtgtt gtgtttaatg	300
agctgcaaat actaattttt tcctgaaagt tttgaagagt taactaaaaa gtattttta	360
gtaaggaaat aaccctacat ttcagggtt ttgtttgtt anatattgaa ggtgccccaa	419
<210> 229	
<211> 148	
<212> DNA	
<213> Homo sapien	
<400> 229	
aagagggtac ctgtatgttag ccatggtggc aatgagagac tgattactac ctgctggaga	60
ttgtttaagt gagttaatat attaaggata aaggagcca ggttttttga ctgttgaga	120
aggaaattac agatattgaa ggtcccaa	148
<210> 230	
<211> 257	
<212> DNA	
<213> Homo sapien	
<400> 230	
taagagggtta cmaaaaaaaaaaa aaaatagaac gaatgagtaa gacctactat ttgatagtagc	60
aacagggtga ctatagtcaa tgataactta attatacatt taacatagag tgtaattgga	120
ttgtttgtaa ctcgaaggat aaatgcttga gaggatggat accccattct ccatgatgtt	180
cttatttcac attacatgcc tgtatcaaag catctcatat accctataaaa tatgtacacc	240
tactatgtac cctctta	257
<210> 231	
<211> 260	
<212> DNA	
<213> Homo sapien	
<400> 231	
taagagggtta cgggtatttg ctgatggat tttttttct ttcttttct ttggaaaaca	60
aaatgaaagc cagaacaaaaa ttattgaaca aaagacaggg actaaatctg gagaaatgaa	120
gtcccctcac ctgactgccca tttcattcta tctgacccctc cagtcttaggt taggagaata	180
gggggtggag gggattaatc tgatacaggt atattaaag caactctgca tgtgtgccag	240
aagtccatgg taccctctta	260
<210> 232	
<211> 596	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (596)	
<223> n = A,T,C or G	

<400> 232	
tgctcctctt gccttaccaa ccacaaattha gaaccataat gagatgtcac ctcataccctg	60
gtgggattaa cattattha aaaatcagaa gtattgacaa ggatgtgaag aaattagaac	120
atctgtgcac tggtggggg aatgtaaaaa aggtgtggcc actatggta acagcatgaa	180
ggttcctcaa aaaaattht tttatcta ctctatgatc gatcttgagg ttgttatgc	240
aaaagaactg aaatcaggat ttgaggaaa tattcacatt cccacatcca tttctgctt	300
attcataata ctcagagat gaaacaacc taaatgtcca tcccggatg aatggataaa	360
cacagtgtgg tatatgcata caatggaata ttatttagtc tttaaaaaga aaaattctat	420
catatactac aacttanatn aacccgtt gacacaatgct nagtgaata agccacggaa	480
ggacgaataac tgcatatttc ctttatatga agtataaaa gtgtcaaac tcttanagca	540
naaagtaaaa atgggtggtt gccanacagt tggttagcn agaaganaan cctant	596
<210> 233	
<211> 96	
<212> DNA	
<213> Homo sapien	
<400> 233	
tcttcgaag accttcgcg actcttaagc tcgtggttgg taaggcaaga ggagcggtgg	60
taaggcaaga ggagcggtgg taaggcaaga ggagca	96
<210> 234	
<211> 313	
<212> DNA	
<213> Homo sapien	
<400> 234	
tgtaagtcga gcagtgtgat gataaaactt gaatggatca atagttgctt cttatggatg	60
agcaaagaaa gtagtttctt gtgatggat ctgctcctgg caaaaatgct gtgaacgttg	120
ttgaaaagac aacaaagagt ttagagtagt acataaattt agaatagtagc ataaacttag	180
aatagtagcat aaacttagta cataaataat gcaccaagca ggggcaggc ttgagagaat	240
tgacttcaat ttggaaagag tatctactgt aggttagatg ctctcaaaca gcatcacact	300
gctcgactta caa	313
<210> 235	
<211> 550	
<212> DNA	
<213> Homo sapien	
<400> 235	
aacgaggaca gatccttaaa aagaatgtt agtggaaaaa gtagaaaata agataatctc	60
caaagtccag tagcattatt taaacatttt taaaatatac actgataaaa attttgtaca	120
tttcccaaaa atacatatgg aagcacagca gcatgaatgc ctatggrrt gaggataggg	180
gttggggata gggatggggta aaaaaggaaa aaataaaacc agagaggagt cttacacatt	240
tcatgaacca aggagtataa ttatttcaac tatttgtacc wgaagtccag aaagagtgg	300
ggcagaagggg ggagaagagg gcgaagaaa gttttgggta gaggggtccc asaagagaga	360
tttcgcgtat gtggcgctac atacgtttt ccagatgcc ttaagctctg caccctattt	420
ttctcatcac taatattaga ttaaaccctt tgaagacagc gtctgtggtt tctctacttc	480
agctttccct ccgtgtctt cacacagtag ctgtttaca aggggtgaac tgactgaagt	540
gagattattc	550

<210> 236	
<211> 325	
<212> DNA	
<213> Homo sapien	
<400> 236	
tagactgact catgtccctt accagagtag ctagaattaa tagcacaagc ctctacaccc	60
aggaactcac tattgaatac ataaatggaa tttattcagc cttaaaaagt ttggaaggaa	120
attctgacat atgctaaaac atggatgaac cttgaagact ttatgataag taaaagaagc	180
cagtcataaa aggaaaaata ttgcatgatt ccacttatac gaggtaccta gagtagtcaa	240
tttcatagaa acacaaaata gaatgggttt tgccagggtt tttgaggaaa aggaaatgac	300
aagtttaggg acatgagtca gtcta	325
<210> 237	
<211> 373	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(373)	
<223> n = A,T,C or G	
<400> 237	
tagactgact catgtccctt atctactcaa catttccact tgaagtctga taggcacatctc	60
agacttatct tgcctccaaag caaactctttt attccttagtct ttatttcttg	120
tgctgtctt cccatctcaa aagagtgcacaa aaatccacca agttgctgaa acagaaatct	180
aagaaaatatc cttgattctt cttttccca tctacttcac ttcttaattca ttagtaaata	240
atctgtttca gaaaacccaaa cacctcatgt tctcactcat aagggggagt tgaacaatga	300
gaacacacacag acacagggag gggaaacatca cacaccacgg cccgtcaggg agtangggac	360
atgagtcatgt cta	373
<210> 238	
<211> 492	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(492)	
<223> n = A,T,C or G	
<400> 238	
tagactgact catgtccctt ataatgctcc caggcatcag aaagcatctc aaactggagc	60
tgacaccatg gcagagggttt caggtaaatc acaaaaagggg tcctaaagaa tttgcctca	120
atatacagagt gattagaaga agtggacaga gctacccaaatg ttaaacatat gcgagataaa	180
aaaaatatgg cacttgtaa cacacactac aggagggaaaa taaggaacat aatagcatat	240
tgtgttattt tgatgatgaa gaacctctt anaagaaaac ataaccaaag aaacaaagaa	300
aattcctgcn aatgtttat gctatagaag aaattaacaa aaacatataat tcaatgaatt	360
cagaaaagtt agcaggtcan aagaaaacaa atcaaagacc agaataatcc catttttagat	420

tgtcgagtaa	actanaaacag	aaagaatacc	actggaaatt	gaattcctac	gtangggaca	480
tgantcantc	ta					492
<210> 239						
<211> 482						
<212> DNA						
<213> Homo sapien						
<220>						
<221> misc_feature						
<222> (1)...(482)						
<223> n = A,T,C or G						
<400> 239						
tggaaagtat	ttaatgatgg	gcaacttgc	gtttacttcc	tacatatccc	atcatcttct	60
gtatTTTTT	aaataacttt	tttttgatt	tttaaagtaa	ccttattctg	agaggtaaca	120
tggattacat	acttctaagc	cattaggaga	ctctatgtta	aacccaaagg	aaatgttact	180
agatcttcat	ttgatcaata	ggatgtgata	atcatcatct	ttctgctcta	atggaaaagt	240
actanaaaaca	tggaaccata	atcttagatg	aacaacgtta	gaatttgcac	taattctacg	300
gaatttcagt	aattcggcaa	atgtcggca	gtgacacaac	atttcatgac	ggggacgcat	360
ctaccaactt	ctggcgataa	gggccaccct	tcctctgta	cttacagttc	catttcatac	420
acagtctttt	attaaatatt	cacatTTTT	ctctacctaa	agaccttcaa	gaccagtacg	480
ta						482
<210> 240						
<211> 519						
<212> DNA						
<213> Homo sapien						
<220>						
<221> misc_feature						
<222> (1)...(519)						
<223> n = A,T,C or G						
<400> 240						
tgtatcgacg	tagtggtctc	cccatgtgat	agtctgaaat	atagcctcat	gggatgagag	60
gctgtcccc	agcccgacac	cgtaaaggg	tctgtgctga	ggtggattag	taaaagagga	120
aaggccttgc	gttggatag	aggaaggca	ctgtctcctg	cctgcccctg	ggaactgaaat	180
gtctcggtat	aaaacccgat	tgtacatttg	ttcaattctg	agataggaga	aaaaccaccc	240
tatggcggga	ggcgagacat	gttggcagca	atgctgcctt	gttatgctt	actccacaga	300
tgtttggcgc	gaggaaaaca	taaatctggc	ctacgtgcac	atccaggcat	agtacccc	360
tttgaactta	attatgacac	agattcctt	gctcacatgt	tttttgctg	accttctcct	420
tattatcacc	ctgctctcct	accgcattcc	ttgtgctgag	ataatgaaaa	taatatcaat	480
aaaaacttga	nggaactcgg	agaccactac	gtcgataca			519
<210> 241						
<211> 771						
<212> DNA						
<213> Homo sapien						
<220>						

<221> misc_feature		
<222> (1)...(771)		
<223> n = A,T,C or G		
<400> 241		
tgtatcgacg tagtgttctc cactccggcc ttgacggggc tgctatctgc cttccaggcc	60	
actgtcacgg ctccgggta gaagtcaatt atgagacaca ccagtgtggc cttgttggct	120	
tgaagctctt cagaggaggg tgggaacaga gtgaccgagg gggcagccctt gggctgacct	180	
aggacggtca gcttggtccc tccgccaac acgagagtgc tgctgcttgc atatgagctg	240	
cagtaataat cagcctcgtc ctcagcctgg agccagaga tggtcaggga ggcctgttg	300	
ccanacttgg agccagagaa gcgattagaa acccctgagg gccgattacc gacctcataa	360	
atcatgaatt tgggggctt gcctgggtgc tgggttacc angagacatt attataacca	420	
ccaacgtcac tgctggttcc antgcagggaa aaatgggtga tcnaactgtc caagaaaaacc	480	
actacgtcca taccaatcca ctaattgcn gcccctgca ggttcaacca tattggggaa	540	
naactcccn ccgcgtttt ggttgcattt naacccttga aatttttcc tattanttgt	600	
ccccctaaaaaa taaaccnntt ggcnttaatc cattgggtcc atanctntt tncccggtt	660	
ttaaaaanttgc ttatccgc cncccnattt ccccccaac tttccaaaac ccgaaaccnt	720	
ttnaaatttnt tnaaaccctg ggggggttccc nnaatnnan tttnaancntc c	771	
<210> 242		
<211> 167		
<212> DNA		
<213> Homo sapien		
<400> 242		
tgggcaccc ttatcgaaa ctcatcgata acatcacgct gctgatgctg ctgttgctgg	60	
tectctctag gaacctctgg attttcaat tctttgagga attcatccaa attatctgcc	120	
tctcctcctt tcctcctttt tctaaggctc tctggtacaa gcggtca	167	
<210> 243		
<211> 338		
<212> DNA		
<213> Homo sapien		
<400> 243		
ttgggcaccc tcaatatcta ctgatctaaa tagtgtggtt tgaggcctct tgttcctggc	60	
taaaaaatcct tggcaagagt caatctccac tttacaatag aggtaaaaat cttacaatgg	120	
atattcttga caaagcttagc atagagacag caattttaca caaggtattt ttcacctgtt	180	
taataacagt ggtttccta caccatagg gtgcacccaa gggaggagtg cacagttgca	240	
gaaacaaatt aagatactga agacaacact acttaccatt tcccgtatag ctaaccacca	300	
gttcaactgt acatgtatgt tctttagggc aatcaaga	338	
<210> 244		
<211> 346		
<212> DNA		
<213> Homo sapien		
<400> 244		
tttttggctc ccatacagca cactctcatg ggaaatgtct gttctaaggtaa caaccataa	60	
tgcaaaaaatc atcaatatac ttgaagatcc ccgtgttaagg tacaatgtat ttaatattt	120	
cactgataca attgatccaa taccagttt agtctggcat tgaatcaa cactgtttt	180	

gttgttaaaa aagagaaaata ttttagcttat atttaagtac catattgtaa gaaaaaaagat
 gcttatcttt acatgctaaa atcatgatct gtacattggc gcagtgata ttactgtaaa
 agggagaag gaatgaagac gagctaagga tattgaaggt gcccaa

240
 300
 346

<210> 245
 <211> 521
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(521)
 <223> n = A,T,C or G

<400> 245

accaatccca cacggatact gagggacaag tatatcatcc catttcattcc ctacagcagc
 aacttcatga ggcaggagtt attagtccca ttttacagaa gaggaaactg agacttaggg
 agatcaagta atttgcggcag gtcgcacaat tagtgataga gccaggggctt gaagcgcacgt
 ctgtcttaag ccaatgaccc ctgcagatta ttagagcaac tggctccac aacagtgtaa
 gcctcttgct anaagcttag gtcgcacaagg gcagagatt ttgtctgttt tgctcattgc
 tccttccccca ttgcttagag cagggtctgc cacgaancag gttctcaatg catagttatt
 aaatgtatat aagagcaaac atatgttaca gagaactttc tgtatgctt tcacttacat
 gaatcacctg tganatgggt atgctgttc cccantgtt cagatnaaga tattgaangt
 gcccaaatca ctanttgcgg gcgcctgcan gtccancata t

60
 120
 180
 240
 300
 360
 420
 480
 521

<210> 246
 <211> 482
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(482)
 <223> n = A,T,C or G

<400> 246

tggAACCAAT ccaaataccca atcaatgata gactggataa agaaaatttg gcacatgttc
 accatgaaat actatgcagc cataaaaaag gatgagttca tattttgc agggacatgg
 atgaaggctgg agaccatcat tctcagcaaa ctaacaaggg aacagaaaac caaacactgc
 atgttctcac tccttaagtgg gagctgaaca atgagaacac atggacacag ggagggaaac
 atcacacagt gggcctgct ggtgggtagg ggtctagggg agggatagca ttaggagaaa
 tacctaattgt agatgacggg ttgatgggtc cagcaaacca ccatgacacg tgtataccta
 tggtaacaaac ctgcatttgc tgcacatgtt ccccagaact taaaatgttta ataaaaaaat
 taagaaaaaa gttaaatgtt tcatagatac ataaaatattt gttttttttt aaggtgc
 aa

60
 120
 180
 240
 300
 360
 420
 480
 482

<210> 247
 <211> 474
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(474)
 <223> n = A,T,C or G

<400> 247

ttcgatacag gcacagagta agcagaaaaa tggctgtggt ttaaccaagt gagtacagtt	60
aagtgagaga ggggcagaga agacaaggc atatgcaggg ggtgattata acaggtggtt	120
gtgctggaa gtgagggta tcggggatga ggaacagtga aaaagtggca aaaagtggta	180
agatcagtga attgtacttc tccagaattt gatttctggn ggagtcaaatt aactatccag	240
tttgggtat catanggcaa cagttgaggt ataggaggt gaagtcncag tggataatt	300
gaggttatga anggtttggt actgactggt actgacaang tctgggttat gaccatggga	360
atgaatgact gtanaagcgt anaggatgaa actattccac ganaaagggg tccnaaaact	420
aaaaannnaa gnnnnngggg aatattattt atgtggatat tgaangtgcc caaa	474

<210> 248

<211> 355

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(355)

<223> n = A,T,C or G

<400> 248

ttcgatacag gcaaacatga actgcaggag ggtgggtgacg atcatgatgt tgccgatgg	60
ccggatggnc acgaagacgc actggancac gtgcctacgt cctttgctc tggtgatggc	120
cctgagggga cgcaggaccc ttatgaccct cagaatctc acaacgggag atggcactgg	180
attgantccc antgacacca gagacacccc aaccaccagn atatcantat attgtatgtag	240
ttcctgtaga nggccccctt gtggaggaaa gtcctatnag ttggcatct tcaacaggat	300
ctcaacagtt tccgatggct gtgatggca tagtcatant taaccntgtn tcgaa	355

<210> 249

<211> 434

<212> DNA

<213> Homo sapien

<400> 249

ttggattggc cctccaggag aacaagggga aaaaggtgac cgagggctcc ctggactca	60
aggatctcca ggagcaaaag gggatgggg aattcctggc cctgctggc ctttaggtcc	120
acctggcctt ccaggcttac caggtcctca aggccaaag gtaacaaag gctctactgg	180
acccgctggc cagaaagggtg acagtggctt tccagggcct cctggccctc caggtccacc	240
tggtaagtc attcagccctt taccatctt gtcctccaaa aaaacgagaa gacatactga	300
aggcatgcaa gcagatgcag atgataatat tcttgattac tcggatggaa tgaaagaaat	360
atttggttcc ctcaattccc tgaaacaaga catcgagcat atgaaatttc caatgggtac	420
tcagaccaat ccaa	434

<210> 250

<211> 430

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(430)

<223> n = A,T,C or G

<400> 250

tggattggtc acatggcaga gacaggattc caaggcagtg agaggaggat acaatgcttc	60
tcactagtta ttattattta ttttattttt gagatgaagt ctcgctttgt ctcccaggct	120
ggagagcgggt ggtgcgatct tggctctctg caaccccccgc ctcaagcaat tctcctgtct	180
tagcctcgcg ggttagatgga attacaggcg cccacccgcca tgcccaacta atttttttgt	240
gtcttcagta gagacagggt ttcgccatgt tggcaggct ggtcttgaac tcctgacctc	300
nagtgatctg ccctcctcggt cctcacaag tgctggaatt acaggcatgg gctgctgcac	360
ccagtcaact tctcaactgt tatggcctta tcattttcac cacattctat tggcccaaaaa	420
aaaaaaaaaaan	430

<210> 251

<211> 329

<212> DNA

<213> Homo sapien

<400> 251

tggtaactcca ccatyatggg gtcaaccggcc atcctcgccc tcctcctggc tgttctccaa	60
ggagtctgtg ccgaggtgca gctgrtgca gtcggaggag aggtaaaaaa gtccggggag	120
tctctgaaga tctcctgtaa gggttctgta tacacctta agatctactg gatccctgg	180
gtgcgccagt tgcccgaa aggctggag tggatgggc tcatcttcc tgatgactct	240
gataccagat acagcccggtc cttccaaggc caggtcacca tctcagtcga taagtccatc	300
agcaccgcct atctgcagtg gagtagccaa	329

<210> 252

<211> 536

<212> DNA

<213> Homo sapien

<400> 252

tggtaactcca ctcagccaa ccttaattaa gaattaagag ggaacctatt actattctcc	60
caggctcctc tgctctaacc aggcttctgg gacagtatta gaaaaggatg tctcaacaag	120
tatgttagatc ctgtactggc ctaagaagtt aaactgagaa tagcataaat cagaccaa	180
ttaatggtcg ttgagacttg tgcctggag cagctggat aggaaaactt ttggcagca	240
agaggaagaa ctgcctggaa gggggcatca tgtaaaaaat tacaagggaa acccacacca	300
ggccccccttc ccagctctca gcctagagta ttagcatttc tcagcttagag actcacaact	360
tccttgctta gaatgtgcca cggggggag tccctgtgg tgatgaggct ctcaagagtg	420
agagtggcat cctatcttct gtgtgccac aggacgtgg cccgagactt agcaggtgaa	480
gtttctggtc caggcttgc cttgactca ctatgtgacc tctggtagag taccaa	536

<210> 253

<211> 507

<212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(507)
 <223> n = A,T,C or G

<400> 253

ntgttgcgat cccagtaact cgggaagctg aggcgggagg atcacctgag ctcaggaggt 60
 tgaggccgca gtgagccggg accacgcccac tacactccag cctggggcat agagttagac 120
 cctccaagac agaaaaagaaa agaaaggaaag ggaaaggaaagg aaaaggaaaa 180
 ggaaaaggaa aagaaaaaga caagacaaaa caagacttga atttggatct cctgacttca 240
 attttatgtt ctttctacac cacaattcct ctgcttacta agatgataat ttagaaaccc 300
 ctcgttccat tcttacagc aagcttggaaat tttggtcaag taattacaat aatagtaaca 360
 aatttgaata ttatatgcca ggtgttttc attcctgctc tcacttaatt ctcaccactc 420
 tgatataaaat acaatttgcg ccgggtgtgg tggctcatgc ctgtaatccc ggcactttgg 480
 gagaccgagg tggcggats gcaacaa 507

<210> 254

<211> 222

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(222)

<223> n = A,T,C or G

<400> 254

ttggatttgt cactgtgagg aagccaaatc ggatccgaga gtcttttct aaaggccagt 60
 actggccaca ctttctcctg cgccttcct caaagctgaa gacacacaga gcaaggcgct 120
 tctgttttac tcccaatgg taactccaaa ccatagatgg ttagctnccc tgctcatctt 180
 tccacatccc tgctattcag tatagtcgtt ggaccaatcc aa 222

<210> 255

<211> 463

<212> DNA

<213> Homo sapien

<400> 255

tgttgcgatc cataaatgct gaaatggaaa taaacaacat gatgagggag gattaagttg 60
 gggagggagc acattaaggt ggccatgaag tttttggaa gaagtgactt ttgaacaagg 120
 ctttgggttt aagagctgat gagagtgtcc cagacagagg ggccacttggt acaatagacg 180
 agatgggaga gggcttggaa ggtgtcgaa atagaagga gtttggcttgc gtatgagtct 240
 agtgaacaca gaggcgagag gcccgggtgg gtgcagctgg agagttatgc agaataacat 300
 tagggccctgt gggggactgt agactgtcaag caataatcca cagttggat tttattctaa 360
 gagtgtatggg aagccgtgga aagggggta agcaaggagt gaaattatca gatttacagt 420
 gataaaaata aattggctcg gctactgggg aaaaaaaaaaaa aaa 463

<210> 256

<211> 262

<212> DNA

<213> Homo sapien

<400> 256	
ttggattggc caacctgctc aactctacyt ttccctcctc ttccctaaaaa attaatgaat	60
ccaatacatt aatgcaaaaa cccttgggtt ttatcaatat ttctgttaaa aagtattatc	120
cagaactgga cataatacta cataataata cataacaacc cttcatctg gatgaaaca	180
tctattaata tagctaaga tcactttcac tttacagaag caacatcctg ttgatgttat	240
tttgatgttt ggaccaatcc aa	262
<210> 257	
<211> 461	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(461)	
<223> n = A,T,C or G	
<400> 257	
gnngnnnnnn nnnaattcg actcngttcc cttggtancc ggtcgacatg gccgcgggat	60
taccgcttgc nnctgggggt gtatggggga ctatgaccgc ttgttagctgg ggggtgtatgg	120
gggactatga ccgcttgc tag mtggkgtgt atggggact atgaccgc ttgtgggtgg	180
cgataaaacc gacgcaaggg acgtgatcga agctcggttc ccgcctttc gcatcggtag	240
ggatcatgga cagcaataatc cgcattcgyc tgaaggcggtt cgaccatcgc gtgtcgatc	300
aggcgaccgg cgacatcgcc gacaccgcac gccgtaccgg cgcgctcatc cgccgtccga	360
tcccgcttcc cacgacgcatc gagaagttca cggtaaccg tggcccgac gtcgacaaga	420
agtcgacgca gcaagttcgag gtgcgtaccc acaagcggtc a	461
<210> 258	
<211> 332	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(332)	
<223> n = A,T,C or G	
<400> 258	
tgaccgcttg tagctggggg tttatggggg actacgaccg cttgttagctg ggggtgtatg	60
ggggactatg accgcttgc gctgggggtg tatggggac tatgaccgc ttgttagctgg	120
gggtgtatggg ggactaggac cgcttgc tagt tgggggtgtatg ggggtgtatg gggactatg	180
tagctggggg tttatggggg actacgaccg cttgttagctg ggggtgtatg gggactatg	240
accgcttgc nctgggggtg tatggggac tatgaccgc ttgtgtccct ggggtgtatgg	300
aggagagttg tgggtggggaa aaaaaaaaaaa aa	332
<210> 259	
<211> 291	
<212> DNA	
<213> Homo sapien	

<220>
 <221> misc_feature
 <222> (1)...(291)
 <223> n = A,T,C or G

<400> 259
 taccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt 60
 gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt gaccgcttgt 120
 gaccgcttgt gaccgcttgt naacnggggt gtctggggga ctatganna ntgtactgg 180
 ggggtctgg gggncatga nngantgtna cnggggggtgt ctgggggact atganngact 240
 gtgcnnctg ggggatcnga ggagantnngn ggntagngat ggttngggan a 291

<210> 260
 <211> 238
 <212> DNA
 <213> Homo sapien

<400> 260
 taagagggta ctggtaaaa tacaggaat ctgggtaat gaggcagaga accaggatac 60
 tttgaggtca gggataaaaa ctagaatttt tttctttttt tttgcctgag aaacttgctg 120
 ctctgaagag gcccatttat taattgctt gatttcctt ttcttacagc ccttcaagg 180
 gcagagccct cttatcctg aaggaatctt atccttagct atagttatgta ccctctta 238

<210> 261
 <211> 746
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(746)
 <223> n = A,T,C or G

<400> 261
 ttgggcacct tcaatatcaa tagctaacat ttattgagtg ttatcgat cataaaacac 60
 tgttctaagc cttaaacgt actaattcat ttaatgctca taatcacttt agaagggtggg 120
 tactagtatt agtctcattt acagatgcaa catgcaggca cagagaggaa aattaacttg 180
 cccaaaggtaa cacagctaag aaatagaaaa aatattgaat ctggaaagtt gggcttctgg 240
 gtaacccaca gagtcttcaa tgagcctggg gcctcactca gtttgccttt acaaagcgaa 300
 tgtagtaacat cacttaattt agtgatgttgg ccaaattggag gtcagctacg agtttctgt 360
 gttcttgcag tggactgaca gatgtttaca acgtctggcc atcagtwaat ggactgatta 420
 tcattggaw gtgggtgggc tgaatgttgg ccagtgaagt ttattcawgc catatttta 480
 tgtttagat gacttttggc tggtcctagg gcaagctctg tctgscacgg aacacagaat 540
 wacacaggga ccccccaat ttctgggtgt gctagaacca tgaaccactg gttgggggaa 600
 caagcggtaa aaacctaagt gcggccggct ggcagggtcc acccatatgg ggaaaactcc 660
 cnacgcgttt ggaatgcctn agctngaaatt attctaanaat ttgtccncnt aaaatttagcc 720
 tggcgtaa tcangggtn naagcc 746

<210> 262
 <211> 588
 <212> DNA

<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(588)
 <223> n = A,T,C or G

<400> 262

tgaccgcttg tcatctcaca tggggtcctg cacgctttg cctttgtagg aaacctgaca	60
tttgtctgt tcttctttct ctttccttc ccatatcctc ctaatttacg tttgacttgt	120
ttgctgagga ggcaggagct agagactgt gtgagctcat aggggtggga agtttatcct	180
tcaagtcccg cccactcatac actgcttc acctccctt gaccaggctt acaagtgggt	240
tcttgcctgc ttccctttg gacccaacaa gcccctgtaa tgagtgtgca tgactctgac	300
agctgtggac tcagggtcct tggctacagc tgccatgtaa aatatctcat ccagttctcg	360
caaattgtta aaataaaccac atttctttaga ttccagtacc caaatcatgt cttaacgaac	420
tgctcctcac acccagaagt ggcacaataa ttcttggga attattactt tttttttct	480
ctctntnnnc gnnngnnnng gnnngnccag gaattaccac ntggaaagac ctggccngaa	540
tttattatan agggagccg attnttttc ctaacacaaa gcgggtca	588

<210> 263

<211> 730
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(730)
 <223> n = A,T,C or G

<400> 263

ttttttttt tttggctga gcaactgaaa ttatgaaatt tccatatact caaaagagta	60
agactgcaaa aagattaaat gtaaaagtgt tcttgtatac agtaatgtt aagataccta	120
ttanatttat aaatggaaaa ttagggcatt tggatataca agttgaaaat tcaggagtga	180
gttgggctg gctgggtata tactgaaaac tgcgtacatc cagatgacat ctaaaaccac	240
aaatctgggt ttatttttagc agtgatatgt gtcactccca caaaagcctt cccaaattggc	300
ctcagcatac acaacaagtc acctccccac agccctctac acataaacaa attccttagt	360
ttagttcagg aggaaatgctg ccctttcct tccgtctag gtgaccgcaa ggcccgatcc	420
tgcgtaccaa gatgttaagg gaagtctgcc aaagaggcat ctgaaaggaa ataaggggaa	480
tgggagtgtac cacaaaggaa agccaagggaa aaactttgga gaccgtttct aganccctgg	540
catttcacaa caaaactcng gaacaaaacct tgcgtacatca atcattaaag ccctcggtt	600
ggannagact ttctgaactg ggctgtgaac ataancctca ttgaatgtct tcacagtctc	660
ccagctgaag gcacacccctt ggcctggaaagg ggaatcttcc aggtcctcaa nacaggcctc	720
gccctttgnc	730

<210> 264

<211> 715
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (715)

<223> n = A, T, C or G

<400> 264

ttttttttttt	tttggccagt atgatagtct ctaccactat attgaagctc ttaggtcatt	60
tacacttaat	gtggttatag atgctgttga gcttacttct accaccttgc tatttctccc	120
gtctcttttt	tgttcctttt ctcttctttt cctcccttat tttataattt aatttttttag	180
gattctattt	tatatagatt tattcagctat aacactttgt attctttgt tttgtgggtc	240
ttctgtcatt	tcaatgtgca tcttaaactc atcacaatct atttcaaat aatatcatat	300
aaccttacat	ataatgttaag aatctaccac catatattc catttctccc ttccatccta	360
tgtntgtcat	atttttcctt ttatataatgt tttaaagaca taatagtata tggaggtt	420
ttgcttaaaa	tgtgatcaat attccttcaa ngaaacgtaa aaattcaaaa taaatntctg	480
tttattctca	aatnnnaccta atatttccta ccatntctna tacntttcaa gaatctgaag	540
gcattggttt	tttccggctt aagaacctcc tctaaagcac tctaaggcaga attaagtctt	600
ctgggagagg	aattctccca agcttgggcc ttanntgta ctccnntnang gttaaanttt	660
ggccgggaaa	tagaaattcc aagttAACAG gntantttt nttnnttn tcncc	715

<210> 265

<211> 152

<212> DNA

<213> Homo sapien

<400> 265

ttttttttttt	tttcccaaca caaaggcacca ttatctttcc tcacaatttt caacatagtt	60
tgattcccat	gaagaggta tgatttctaa agaaaacatg gctactatac tatcaatcag	120
ggttaaatct	ttttttttt agacggagtt ta	152

<210> 266

<211> 193

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1) ... (193)

<223> n = A, T, C or G

<400> 266

taaactccgt	ccccttctta atcaatatgg aggctaccca ctccacatata ctttcttttc	60
aagggactgt	ttccgtaact gttgtgggtt ttcacgacca ggcttctaaa ctttcttaaaa	120
ctcccccaatt	ctggtgccaa cttggacaac atgctttttt tttttttttt ttttttttn	180
gagacggagt	tta	193

<210> 267

<211> 460

<212> DNA

<213> Homo sapien

<400> 267

tgttgcgatc	ccttaaggcat gggtgctatt aaaaaatgg tggagaagaa aatacctgga	60
atttacgtct	tatctttaga gattgggaag accctgtatgg aggacgtgga gaacagctc	120

ttcttgaatg tcaattccca agtaacaaca gtgtgtcagg cacttgctaa ggatcctaaa	180
ttgcagcaag gctacaatgc tatgggattc tcccaggag gccaatttct gagggcagtg	240
gctcagagat gcccctcacc tcccatgatc aatctgatct cggttgggg acaacatcaa	300
ggtgttttg gactccctcg atgcccagga gagagctctc acatctgtga cttcatccga	360
aaaacactga atgctggggc gtactccaaa gttgttcagg aacgcctcgt gcaagccgaa	420
tactggcatg acccataaaa ggaggatgtg gatcgcaaca	460
<210> 268	
<211> 533	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1) ... (533)	
<223> n = A, T, C or G	
<400> 268	
tgttgcgatc cgttgataga atagcgacgt ggtaatgagt gcatggcacg cctccgactt	60
accttcgccc gtggggaccc cgagtacgtc tacggcgtcg tcacttagag taccoctctgg	120
acgcccgggc gcgttcgatt taccggaaagc gcgagctgca gtgggcttgc gccccggcc	180
aaattctttg gggggtttaa gcgcgcggg aatttgaggt atctctatca gtatgttagcc	240
aagttgaaac agtcggcatt cccgaaatcg ctttcttga atccgcaccc cctccagcat	300
tgcctcattc atcaacctga aggcacgcatt aagtgacggt tttgttca gcagctccac	360
tccataacta gcgcgctcga cctcgtctc gtacgcgcca ggtccgtgcg tgcaattcc	420
caactccgggt gagttgcgca tttcaagtn cgaaactgtt cgcctccacn atttggcatg	480
ttcacgcatg acacggaaata aactcgatca gtaccggaa tggatcgca aca	533
<210> 269	
<211> 50	
<212> DNA	
<213> Homo sapien	
<400> 269	
ttttttttttt ttgcgcctgaa ttagctacag atcctcctca caagcggtca	50
<210> 270	
<211> 519	
<212> DNA	
<213> Homo sapien	
<400> 270	
tgttgcgatc caaataaccc accagcttct tgcacacttc gcagaagcca cggccctttg	60
gctgagtcac gtgaacggtc agtgcaagca gccgcgtgcc agagcagagg tgcagcatgc	120
tgcacaccag ctcaggcgtg acctcctcca gcagatggc caggatggag ctgcgtacg	180
tgtccaccac ctccctggcac tttccgaca gggacttcgg cagcttcgag cacatttgt	240
caaaagcgtc gagtatttct ttctcagttct tggtgttgc aatcagtttgc tgcacccct	300
tcaccaggaa ttcacacacc tcacagtaaa catcagactt tgctgggacc tcgtgttct	360
taatgggctc caccagtcc agggcaggaa tgacattctt ggaggccact ttggcgggaa	420
ccagagtctg catgggcatac tcttcacact catcacagaa cccaaaccagc gcacagatct	480
ccttgggttg catgtgcatac atcatctggg atcgcaaca	519

<210> 271
 <211> 457
 <212> DNA
 <213> Homo sapien

<400> 271

ttttttttttt	ttcggggcggc	gaccggacgt	gcactcctcc	agtagcggct	gcacgtcg	60
ccaaatggccc	gctatgagga	ggtgagcgtg	tccggcttcg	aggagttcca	ccggggccgtg	120
gaacagcaca	atggcaagac	cattttcggc	tactttacgg	gttctaagga	cgccgggggg	180
aaaagctgg	gccccgactg	cgtgcaggt	gaaccagtgc	tacgagaggg	gctgaagcac	240
attagtgaag	gatgtgtgtt	catctactgc	caagtaggag	aagagcctta	ttggaaagat	300
ccaaataatg	acttcagaaa	aaacttgaaa	gtaacagcag	tgcctacact	acttaagtat	360
ggaacaccc	aaaaactgg	agaatctgag	tgtcttcagg	ccaacctgg	ggaaatgttg	420
ttctctgaag	attaagattt	taggatggca	atcaaga			457

<210> 272

<211> 102

<212> DNA

<213> Homo sapien

<400> 272

ttttttttttt	ttgggcaaca	acctgaatac	ctttcaagg	ctctggcttg	ggctcaagcc	60
cgcaggggaa	atgcaactgg	ccaggtcaca	gggcaatcaa	ga		102

<210> 273

<211> 455

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(455)

<223> n = A,T,C or G

<400> 273

ttttttttttt	ttggcaatca	acaggttaa	gtcttcggcc	gaagttaatc	tcgtgttttt	60
ggcaatcaac	aggtttaagt	ttcggccga	agttaatctc	gtgtttttgg	caatcaacag	120
gtttaagtct	tcggccgaag	ttaatctcg	gtttttggca	atcaacaggt	ttaagtcttc	180
ggccgaagtt	aatctcggt	ttttggcaat	caacaggttt	aagtcttcgg	ccgaagttaa	240
tctcggttt	ttggcaatca	acaggttaa	gtcttcggcc	gaagttaatc	tcgtgttttt	300
ggcaatcaag	aggtttaagt	ttcggccga	agttaatctc	gtgtttttgg	caatcaacag	360
gtttaagtct	tcggccgaan	ttaatctcg	gtttttggca	atcaacaggt	ttaantcttc	420
ggccgaagtt	aatctcggt	ttttggcaat	caana			455

<210> 274

<211> 461

<212> DNA

<213> Homo sapien

<400> 274

tttttttttt ttggccaata cccttgatga acatcaatgt gaaaatcctc ggtaaaatac
tggcaaacca aatccagcag cacatcaaaa agcttatcca ccatgatcaa gtgggcttca
tccctggat gcaaggctgg ttcaacataa gaaaatcaat aaatgtaatc catcacataa
acagaaccaa agacaaaaac cacatgatta tctcaataga tgcagaaaag gccttgaca
aattcaacag cccttcatgc taaacactct taataaacta gatattgatg gaatgtatct
caaaataata agagctattt atgacaaaacc cacagccaat atcatactga atgggcaaag
actggaaagca ttcccttga aaactggcac aagacaagga tgccctctc caccgctcct
attcaacata gtattggaag ttctggccag ggcaatcaag a 60

<210> 275
<211> 729
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1)...(729)
<223> n = A,T,C or G

<400> 275
tttttttttt ttggccaaca ccaagtcttc cacgtggag gttttattat gttttacaac
catgaaaaca taggaagggt gctgttacag caaacatttc agatagacga atcggccaag
ctccccaaac cccaccttca cagcctcttc cacacgtctc ccanagattg ttgtccttca
cttgcaaatt canggatgtt ggaagtngac atttnnagtn gcnggaaccc catcagtgaa
ncantaagca gaantacgt gactttgana nacanctgtat gaagaacacn ctacnganana
ccctttctnt cgtgttanga tctcnngtcc ntcaactaatg cggccccctg cnggtccacc
atttgggaga actccccccn cgttgatcc ccccttgagt ntcccattct ngtcccccan
accngncttg nngncantn cnncctcnca ccntgtttcc ctgnngtnaa aatnnngttt
nccgcccccc naattcccac ccnaatcaca ggaancng aaggcctcn naagtgtta
angcccnngt gtttctcnnt ntanttgatc cttaccctcc cnctnnnnnt tncgngtgg
tcgcgcctg gncncgcctn gttcctctt nnggnnacaa cctngntcnn nggcncntcn
nnnctnttcc tnnnactagc tngcctntcc ncncgngn ncaangcaca ttncncnnac
tntgtnncc 729

<210> 276
<211> 339
<212> DNA
<213> Homo sapien

<400> 276
tgacctgaca tgttagtagat acttaataaaa tatttggat atgaatggat gaagtggagt
tacagagaaa aatagaaaaag tacaaattgt tgtcagtgtt ttgaaggaaa attatgtatct
ttcccaaaatgt tctgacttca ttctaaagaca gggtagtat ctccatacat aatttactt
gctttggaaa atcaaatggat ataatctatt tagattgata atttatttag actggctata
aactattaag tgcttagcaaa tatacatttt aatctcattt tccaccttgcgtatagc
tatgttaggtt ttgactttaa tggatgtcag gtcaatccc 339

<210> 277
<211> 664
<212> DNA
<213> Homo sapien

<220>
 <221> misc_feature
 <222> (1)...(664)
 <223> n = A,T,C or G

<400> 277

tgacctgaca	tccataacaa	aatcttctc	cattatattc	ttctagggga	atttcttgaa	60
aagcatccaa	aggaaacaaa	tgatggtaag	accgtgccaa	gtggggagca	gacaccaaag	120
taagaccaca	gatttacat	tcaacaggtt	gctcacagta	cttgcccgaa	cactgtggc	180
agaaatagcc	tcctaatgtt	agccctggct	cagtattgcc	atccaaatgc	gccatgctga	240
aagagggtt	tgcattctgg	ttagatnaag	aagcaatggt	gtgctgagga	aatccatac	300
gaataagtga	gcattcagaa	ctttagctag	caggaggagg	actaagatga	tgtgtgagca	360
actctttgtt	atggcttca	tctaaaataa	catggtacgt	gccaccagt	tcacgagcaa	420
gtacagtgca	aacgcgaact	tctgcagaca	atccaaataac	agataactcta	attttagctg	480
cctttaggg	tttgattaaa	tcataaaat	tagatggatc	gcaagttgtt	aggntgctaa	540
aagatgatta	gtacttctcg	acttgtatgt	ccaggcatgt	tgttttaan	tctgccttag	600
ncctgctta	gggaaatttt	taaagaagat	ggctctccat	gttcanggtc	aatcacnaat	660
tgc						664

<210> 278

<211> 452
 <212> DNA
 <213> Homo sapien

<220>

<221> misc_feature
 <222> (1)...(452)
 <223> n = A,T,C or G

<400> 278

tgacctgaca	ttgaggaaga	gcacacaccc	ctgaaattcc	tttagtttag	aagggcattt	60
gacacagagt	gggcctctga	taattcatga	aatgcattct	gaagtcattcc	agaatggagg	120
ctgcaatctg	ctgtgtttt	ggggttgcct	cactgtgtc	ctggatatac	cacaaaagct	180
gcaatccttc	ttcttcaact	aacatttgc	agtatttgct	gggattttta	ctgcagacat	240
gatacatagc	ccatagtgcc	cagagctgaa	cctctgggtt	agagaagttt	ccaaggagcg	300
ggaaaaatgt	tttgaaaagat	ctataggc	ccaatgtgt	catcttacaa	cttgaacttg	360
gccaattctg	tatgggttgc	tgcagatctt	ggagaagagt	acgcctctgg	aagtacacggg	420
atatccaaan	ctgtctgtca	gatgtcaggt	ca			452

<210> 279

<211> 274
 <212> DNA
 <213> Homo sapien

<400> 279

tttttttttt	ttcggcaagg	caaatttact	tctgaaaag	ggtgctgctt	gcacttttgg	60
ccactgcgag	agcacaccaa	acaaaagttag	gaaggggtt	ttatccctaa	cgcggttatt	120
ccctggttct	gtgtctgtc	cccattggct	ggagtcagac	tgcacaatct	acactgaccc	180
aactggctac	tgtttaaaat	tgaatatgaa	taatttaggtt	ggaaggggaa	ggctgtttgt	240
tacggtacaa	gacgtgtttt	ggcatgtcag	gtca			274

<210> 280	
<211> 272	
<212> DNA	
<213> Homo sapien	
<400> 280	
tacctgacat ggagaaaataa cttgttagtat tttgcgtgca atggaataact atatgagggt	60
gaaaatgaat gaactagcaa tgcgtgtatc aacatgaata aatccccaaa acataataat	120
gttgaatgga aaaggtgagt ttcagaagga tatatatgcc ctctaaatcc atttatgtaa	180
acctttaaaaa aactacatta tttatggtca taagtccatc cagaaaatat taaaaaacct	240
acatgggatt gataactact gatgtcaggt ca	272
<210> 281	
<211> 431	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(431)	
<223> n = A,T,C or G	
<400> 281	
tttttttttt ttggccaata gcatgattta aacattggaa aaagtcaa at gagcaatgcg	60
aatttttatg ttctcttgaa taatcaaaag agtaggcaac attggttcct cattcttgaa	120
tagcattaat cagaaaatat tgcatacgct ctagcctcct tagagtaggt gtgcgtcttc	180
aaatatataca tagtcccaca gtttattttca tgtatatttt ctgcctgaat cacatagaca	240
tttgaatttg caacgcctga tgtaaatata taaattctta ccaatcagaa acatagcaag	300
aaattcaggg acttggtcat yatcagggtt tgacagcana tccctgtara aacactgata	360
cacactcaca cacgtatgca acgtggagat gtcgcyyttww kkktwywcwm rmrycrwcgn	420
aatcacttan n	431
<210> 282	
<211> 98	
<212> DNA	
<213> Homo sapien	
<400> 282	
attcgattcg atgcttgagc ccaggagttc aagactgcag tgagccactg cacttcaggc	60
tggacaacag agcgagtccc tgtgccaaaa aaaaaaaaaa	98
<210> 283	
<211> 764	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1)...(764)	
<223> n = A,T,C or G	

<400> 283	
tttttttttt ttgcgaagca cgtgcacttt attgaatgac actgttagaca ggtgtgtggg	60
tataaaactgc tgtatctagg ggcaggacca agggggcagg ggcaacagcc ccagcgtgca	120
gggccascat tgcacagtgg astgcaaagg ttgcaggcta tgggcggota ctavtaaccc	180
cgttttcct gtattatctg taacataata tggtagactg tcacagagcc gaatwccart	240
hacasgatga atccaawggt caygaggatg cccasaatca gggcccasat sttcaggcac	300
ttggcggtgg gggcatasgc ctgkgccccg gtcacgtcsc caaccwtcty cctgtcccta	360
cmcttgawtc cncncctnn nntncntna tntgcccgc cncctctng ngtcaaccng	420
natctgact anctccctcn cccctntgg antctcntcc ttcaantaan nttatccttn	480
acnccccct cnccttccc ctnccnccn tnatccngn nccnctatca ntcntnccct	540
cnctntnctn cnnatcggtc cncctnntaa ctacncttn nacnannct cactnatncc	600
ngnnanttct ttccctccct cccnacgcnn tgctgcgcg cgtctngct nnctncgna	660
cccnacttt atttacctt ncaccctagc nctctacttn acccancnc tcctacctcc	720
nggnccaccc nnccctnatac nctnnctctn tcnntcntt cccc	764
<210> 284	
<211> 157	
<212> DNA	
<213> Homo sapien	
<400> 284	
caagtgtagg cacagtgtatg aaagcctgga gcaaacacaa tctgtggta attaacgttt	60
atttctcccc ttccaggaac gtcttgcattg gatgatcaa gatcagctcc tggtaacat	120
aaataagcta gtttaagata cgttccctta cacttga	157
<210> 285	
<211> 150	
<212> DNA	
<213> Homo sapien	
<400> 285	
attcgattgt actcagacaa caatatgcta agtggaaagaa gtcagtcaca aaagaccaca	60
tactgtatga cttcatttac attaagtgtc cagaataggc aaatccgtag agacagaaaag	120
tagatgagca gctgcctagg tctgagtaca	150
<210> 286	
<211> 219	
<212> DNA	
<213> Homo sapien	
<400> 286	
attcgatttt ttttttttg gccatgatga aattcttact ccctcagatt ttttgtctgg	60
ataaaatgcaa gtctcaccac cagatgtgaa attacagtaa actttgaagg aatctcctga	120
gcaacccttgg ttaggatcaa tccaatattc accatctggg aagtcaggat ggctgagttg	180
caggtcttta caagttcggg ctggatttgt ctgagtaca	219
<210> 287	
<211> 196	
<212> DNA	
<213> Homo sapien	

<400> 287		
attcgattct tgaggctacc aggagctagg agaagaggca tggaacaaat tttccctcat	60	
atccatactc agaaggaacc aaccctgctg acacctaatt ttcagcttct ggccctctaga	120	
actgtgagag agtacatttc tcttggttta agccaagaga atctgtcttt tggtacttta	180	
tatcatagcc tcaaga	196	
<210> 288		
<211> 199		
<212> DNA		
<213> Homo sapien		
<400> 288		
attcgatttc agtccagtcc cagaacccac attgtcaatt actactctgt araagattca	60	
tttggtaaaa ttcattgagt aaaacattta tgatccctta atatatgcca attaccatgc	120	
taggtactga agattcaagt gaccgagatg ctagcccttg ggttcaagtg atccctctcc	180	
cagagtgcac tggactgaa	199	
<210> 289		
<211> 182		
<212> DNA		
<213> Homo sapien		
<400> 289		
attcgattct tgaggctaca aacctgtaca gtatgttact ctactgaata ctgtaggcaa	60	
tagtaataca gaagcaagta tctgtatatg taaacattaa aaaggtacag taaaacttca	120	
gtattataat cttagggacc accattatat atgtggtcca tcattggcca aaaaaaaaaa	180	
aa	182	
<210> 290		
<211> 1646		
<212> DNA		
<213> Homo sapien		
<400> 290		
ggcacgagga gaaatgtaat tccatatttt atttggaaact tattccatat tttatggaa	60	
tattgagtga ttgggttatac aaacacccac aaaccttaat tttgttaaat ttatatggct	120	
ttgaaataga agtataagtt gctaccattt tttgataaca ttgaaagata gtatttacc	180	
atcttaatc atcttggaaa atacaagtcc tgtgaacaac cactcttca cctagcagca	240	
tgaggccaaa agtaaaggct ttaaattata acatatggaa ttcttagtag tatgttttt	300	
tcttggaaact cagtggctc atctaaccctt actatctcct cactcttct ctaagactaa	360	
actctaggct cttaaaaatc tgcccacacc aatcttagaa gctctgaaaa gaatttgc	420	
ttaaatatct ttaatagta acatgtattt tatgacccaa attgacattt tcgactattt	480	
tttccaaaaa agtcaggtga atttcagcac actgagttgg gaatttctta tcccagaaga	540	
ccaaccaatt tcataattat ttaagattga ttccatactc cgtttcaag gagaatccct	600	
gcagtctcct taaaggtaga acaaatactt tctatttttt ttccaccatt gtgggattgg	660	
actttaagag gtgactctaa aaaaacagag aacaaatatg tctcagttgt attaagcagc	720	
gaccatattt atcatattca cttaaaaaaa tgatttctg tgaccccttt ggcaacttct	780	
cttttcaatg tagggaaaaa ottagtcacc ctgaaaaccc acaaaataaa taaaacttgt	840	
agatgtgggc agaaggtttggggatggaca ttgtatgtgt taaaattaaa ccctgtatca	900	
ctgagaagct gttgtatggg tcagagaaaa tgaatgctta gaagctgttc acatcttcaa	960	

gaggcagaagc aaaccacatg tctcagctat attattattt atttttatg cataaaagtga	1020
atcatttctt ctgtattaaat ttccaaaggg ttttaccctc tatttaaatg ctttggaaaa	1080
cagtcatttgc acaatgggtt gatattttc tttaaaagaa aaatataatt atgaaagcca	1140
agataatctg aagcctgttt tattttaaaa ctttttatgt tctgtggttg atgttgggg	1200
tttgggggtt tctattttgt tggttttta ctttggggg tttttttttt tggttttttt	1260
kgcataactac atgcaggcttctttaaccatg tctgtttggc taatgttaatt aaagggttta	1320
atttatatga gtgcatttca actatgtcaa tgggttttta atatttattt tttttttttt	1380
ctggtaattt ttttatttac aatatgttta aagagataaac agtttgatat gttttcatgt	1440
gttttagca gaagtttattt atttctatgg cattccagcg gatattttgg tggttgcgg	1500
gcatgcagtc aatattttgtt acagtttagtg gacagtattt cttttttttt tttttttttt	1560
ttggccttat gttaaataaaa aagaccgtt tgggatgtat tttttttttt tttttttttt	1620
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa	1646

```
<210> 291
<211> 1851
<212> DNA
<213> Homo sapien
```

<400> 291
tcatcaccat tgccagcagc ggcaccgtta gtcagggttt ctgggaatcc cacatgagta
cttccgtgtt cttcatttctt cttcaatagc cataaatctt ctagctctgg ctggctgtt
tcacttcctt taagcctttg tgactcttcc tctgatgtca gctttaagtc ttgttctgga
ttgctgtttt cagaagagat ttttaacatc tggttttctt tgttagtcaga aagtaactgg
caaattacat gatgatgact agaaaacagca tactctctgg ccgtcttcc agatcttgag
aagatacatc aacattttgc tcaagtagag ggctgactat acttgctgat ccacaacata
cagcaagtat gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct
tgattaaaaa tttcaccact tgctgtttt gctcatgtat accaagtagc agtgggtgtga
ggccatgctt gtttttgc tgcgatatcag caccgtataa ggcgactgct ttggccatta
atttatcttc attgttagaca gcatagtgta gagtggattt tccatactca tctggaatat
ttggatcagt gccatgttcc agcaacattt acgcacattt atcttcctgg cattgtacgg
cctttgtcag agctgttcc tttttgtgtt caaggacattt aagttgacat cgtctgttcca
gcacgagttt tactacttctt gattccat tggcagagggc cagatgtaga gcagtcctt
tttgctgtc cctcttgc acatccgtt ccctgagcat gacgatgaga tccttctgg
ggactttacc ccaccaggca gctctgttgg gctgttccag atcttcttcca tggacgttgg
acctgggatc catgaaggcg ctgtcatcgt agtctccca agcgcaccacg ttgctcttgc
cgctccctg cagcagggga agcagtggca gcaccactt cacctcttgc tcccaagcgt
cttcacagag gagtcgttgc ggtctccaga agtgcacacg ttgctcttgc cgctccctt
gtccatccag ggaggaagaa atgcaggaaa tgaaagatgc atgcacgatg gtataacttcc
cagccatcaa acttctggac agcaggtcac ttccagcaag gtggagaaag ctgtccaccc
acagaggatg agatccagaa accacaatat ccattcacaa acaaacactt ttcagccaga
cacaggtact gaaatcatgt catctgcggc aacatgggtt aacccatcca atcacacatc
aagagatgaa gacactgcag tataatctgca caacgtataa ctcttcatcc ataacaaaat
aatataattt tcctctggag ccatatggat gaactatgaa ggaagaactc cccgaagaag
ccagtgcgcg agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggar
tgtgtttctt cccccagtgtat gcagctcaa gttatccca agctgcgcgca gcacacgggt
gctccctgaga aacacccca gtcctccggc ttaacacagg caagtcataa aatgtgataa
tcacataaaac agaattaaaaa gcaaaagtcaac ataagcatctt caacagacac agaaaaggca
tttgacaaaaa tccagcatcc ttgttattt tggcagttt ctcagaggaa atgcttctt
ctttcccca tttagtattt tggcagttt gggcttgc tagtggttt ttattacttt
aaggtatgtc cttcttatgc ctgtttgtt gagggttttta attctcgatc c
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1851

<210> 292
 <211> 1851
 <212> DNA
 <213> Homo sapien

<400> 292

tcatcaccat	tgccagcagc	ggcaccgtta	gtcagggttt	ctggaaatcc	cacatgagta	60
cttccgtgtt	cttcattctt	cttcaatagc	cataaatctt	ctagctctgg	ctggctgttt	120
tcacttcctt	taagccttg	tgactcttcc	tctgtatgtca	gctttaagtc	ttgttctgga	180
ttgctgtttt	cagaagagat	ttttaacatc	tgttttctt	tgttagtcaga	aagtaactgg	240
caaattacat	gatgtgact	agaaacagca	tactctctgg	ccgtctttcc	agatcttgag	300
aagatacatc	aacatttgc	tcaagttagag	ggctgactat	acttgctgtat	ccacaacata	360
cagcaagtat	gagagcagtt	cttccataatc	tatccagcgc	atttaaatcc	gctttttct	420
tgattaaaaa	tttcaccact	tgctgtttt	gctcatgtat	accaagttagc	agtgtgtga	480
ggccatgctt	gtttttgtat	tcgatatcag	caccgtataa	gagcagtgtct	ttggccattt	540
atttatcttc	attttagaca	gcatagtgtat	gagtggattt	tccataactca	tctggaatat	600
ttggatcagt	gccatgttcc	agcaacattn	acgcacattc	atcttcctgg	cattgtacgg	660
cctttgtca	agctgtcctc	tttttgggt	caaggacatt	aagttgacat	cgtctgtcca	720
gcacgagttt	tactacttct	gaattccat	tggcagaggc	cagatgtaga	gcagtcctct	780
tttgcttgc	cctctgttcc	acatccgtgt	ccctgagcat	gacgatgaga	tcctttctgg	840
ggactttacc	ccaccaggca	gctctgtgg	gcttgcctag	atcttctcca	tggacgtgg	900
acctgggatc	catgaaggcg	ctgtcatct	agtctccca	agcgaccacg	ttgctcttgc	960
cgctccctgt	cagcagggga	agcagtggca	gcaccactt	cacctcttgc	tcccaagcgt	1020
cttcacagag	gagtcgtgt	ggtctccaga	agtgcacacg	ttgctcttgc	cgctccccc	1080
gtccatccag	ggaggaagaa	atgcaggaaa	tgaaagatgc	atgcacgatg	gtataactcct	1140
cagccatcaa	acttctggac	agcaggtcac	ttccagcaag	gtggagaaag	ctgtccaccc	1200
acagaggatg	agatccagaa	accacaat	ccattcacaa	acaaacactt	ttcagccaga	1260
cacaggtact	gaaatcatgt	catctgcggc	aacatgggt	aacctaccca	atcacacatc	1320
aagagatgaa	gacactgcag	tatatctgca	caacgtaata	ctcttcatcc	ataacaaaat	1380
aatataattt	tcctctggag	ccatatggat	gaactatgaa	ggaagaactc	cccgaaagaag	1440
ccagtcgcag	agaagccaca	ctgaagctct	gtcctcagcc	atcagcgc	cgacacagg	1500
tgtgtttctt	ccccagtgtat	gcagcctcaa	gttatcccga	agctgcgc	gcacacgg	1560
gtcctgaga	aacacccag	ctcttccgt	ctaacacagg	caagtcaata	aatgtataa	1620
tcacataaaac	agaataaaaa	gcaaagtcac	ataagcatct	caacagacac	agaaaaggca	1680
tttgacaaaa	tccagcatcc	ttgttattt	tgttgcagtt	ctcagaggaa	atgcttctaa	1740
cttttccca	tttagtatta	ttgtggctgt	gggcttgc	tagtggttt	ttattacttt	1800
aaggtatgtc	ccttctatgc	ctgttttgc	gagggtttt	attctcg	tc c	1851

<210> 293

<211> 668

<212> DNA

<213> Homo sapien

<400> 293

ctttagcttc	caaataaygga	agactggccc	ttacacasgt	caatgttaaa	atgaatgc	60
ttcagtattt	tgaagataaa	attrgttagat	ctataccctt	tttttgcatt	cgatatcagc	120
accrtataag	agcagtgc	tttgcattaa	tttatcttcc	attrtagaca	gcrtagtg	180
gagtggtatt	tccatactca	tctggatata	ttggatcgt	gccatgttcc	agcaacatta	240
acgcacattc	atcttcctgg	cattgtacgg	cctgtcagta	ttagacccaa	aaacaaat	300
catatcttag	gaattcaaaa	taacattcca	cagcttcac	caactagtt	tattaaagg	360
agaaaaactca	tttttatgcc	atgttattgaa	atcaaaccca	cctcatgt	atatagttgg	420

ctactgcata cctttatcag agctgtcctc tttttgttgc caaggacatt aagttgacat	480
cgtctgtcca gcaggagtt tactacttct gaattccat tggcagaggc cagatgtaga	540
gcagtcctat gagagtgaga agactttta ggaaattgtt gtgcactagc tacagccata	600
gcaatgattc atgtaactgc aaacactgaa tagcctgcta ttactctgcc ttcaaaaaaa	660
aaaaaaaaaa	668

<210> 294
 <211> 1512
 <212> DNA
 <213> Homo sapien

<400> 294	
gggtcgccca gggggsgcgt gggcttcct cgggtgggtg tgggtttcc ctgggtgggg	60
tgggctgggc trgaatcccc tgctggggtt ggcagggttt ggctgggatt gacttttytc	120
ttcaaaacaga ttggaaaccc ggagttacct gctagttggt gaaactgggtt ggtagacgcg	180
atctgttggc tactactggc ttctcctggc tgtaaaaagc agatgggtt tgaggttgc	240
tccatgccgg ctgcttcctc tgtgaagaag ccattggc tcaggagcaa gatgggcaag	300
tggtgctgcc gttgcttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct	360
ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaat gttgtccgc	420
cactgcttcc cctgctgcag ggggagtgcc aagagcaacg tggcgcttc tggagaccac	480
gacgaytctg ctatgaagac actcaggaac aagatggca agtgggtctg ccactgcttc	540
ccctgctgca gggggagcrg caagagcaag gtggcgctt ggggagacta cgatgacagt	600
gccttcatgg agcccaggta ccacgtccgt ggagaagatc tggacaagct ccacagagct	660
gcctgggtgg gttaagtccc cagaaaggat ctcatcgta tgctcaggaa cactgacgtg	720
aacaagaagg acaagcaaaa gaggactgt ctacatctgg cctctgccaat tggaaattca	780
gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttgc caacaaaaag	840
aggacagctc tgayaaaggc cgtacaatgc caggaagatg aatgtgcgtt aatgttgc	900
gaacatggca ctgatccaaa tattccagat gagatggaa ataccactt ractaygct	960
rtctayaatg aagataaaatt aatggccaaa gcactgcttct tataygggtc tgatatcgaa	1020
tcaaaaaaca aggtatagat ctactaattt tatcttcaaa atactgaaat gcattcattt	1080
taacattgac gtgtgttaagg gccagtcttc cgtatggaa agctcaagca taacttgaat	1140
aaaaatattt tgaaatgacc taattatctm agactttt ttaaatattt ttatatttcaa	1200
agaagcatta gagggtacag tttttttt ttaaatgcac ttctggtaaa tacttttgc	1260
aaaaacactg aattttgtaaa aggtataact tactatttt caattttcc ctcctaggat	1320
tttttccccca taatgaatgt aagatggcaa aatttgcctt gaaatagggtt ttacatgaaa	1380
actccaagaaa aagttaaaca tgtttcagtg aatagagatc ctgctccctt ggcaagttcc	1440
taaaaaacacag taatagatac gaggtgtatgc gcctgtcagt ggcaagggtt aagatatttc	1500
tgatctcgta cc	1512

<210> 295
 <211> 1853
 <212> DNA
 <213> Homo sapien

<400> 295	
gggtcgccca gggggsgcgt gggcttcct cgggtgggtg tgggtttcc ctgggtgggg	60
tgggctgggc trgaatcccc tgctggggtt ggcagggttt ggctgggatt gacttttytc	120
ttcaaaacaga ttggaaaccc ggagttacct gctagttggt gaaactgggtt ggtagacgcg	180
atctgttggc tactactggc ttctcctggc tgtaaaaagc agatgggtt tgaggttgc	240
tccatgccgg ctgcttcctc tgtgaagaag ccattggc tcaggagcaa gatgggcaag	300
tggtgctgcc gttgcttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct	360

ggagaccacg acgactctgc tatgaagaca ctcaggagca agatggcaa gtgggccgc	420
cactgcttcc cctgctgcag ggggagtgcc aagagcaacg tggcgcttc tggagaccac	480
gacgaytctg ctatgaagac actcaggaac aagatggca agtggtgctg ccactgcttc	
540ccctgctgca ggggagcrg caagagcaag gtggcgctt ggggagacta cgatgacagy	600
gccttcatgg akcccaggta ccacgtccrt ggagaagatc tggacaagct ccacagagct	660
gcctgggtgg gtaaagtccc cagaaaggat ctcatgtca tgctcaggga cackgaygtg	720
aacaagargg acaagaaaaa gaggactgct ctacatctgg cctctgccaa tggaaattca	780
gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttga caacaaaaag	840
aggacagctc tgayaaaggc cgtacaatgc caggaagatg aatgtgcgtt aatgttgctg	900
gaacatggca ctgatccaaa tattccagat gагtатggaa ataccactt ractaygct	960
rtctayaatg aagataaaatt aatggccaaa gcactgctct tatayggtc tgatatcgaa	1020
tcaaaaaaca agcatggcct cacaccactg ytacttgtr tacatgagca aaaacagcaa	1080
gtsgtggaaat ttttaatyaa gaaaaaaagcg aattttaaat gcrctggata gatatggaaag	1140
ractgctctc atactgctg tatgttgtgg atcagcaagt atagtcagcc ytctacttga	1200
gcaaaaatrtt gatgtatctt ctcaagatct ggaaagacgg ccagagagta tgctgttct	1260
agtcatcattc atgtaatttgc cagttactt tctgactaca aagaaaaaca gatgttaaaa	1320
atctcttctg aaaacagcaa tccagaacaa gacttaaagc tgacatcaga ggaagagtca	1380
caaaggctta aaggaagtga aaacagccag ccagaggcat gggaaactttt aaatttaaac	1440
ttttggttta atgtttttt ttttgcctt aataatatta gatagtccca aatgaaatwa	1500
cctatgagac taggcttga gaatcaatag attctttttt taagaatctt ttggtagga	1560
gccccgtctc acgcctgtaa ttccagcacc ttgagaggct gaggtgggca gatcacgaga	1620
tcaggagatc gagaccatcc tggctaacac ggtggaaaccc catctctact aaaaatacaa	1680
aaacttagct ggggtgggtg gccccgtccct gtagtcccag ctactcagga rgctgaggca	1740
ggagaatggc atgaacccgg gaggtggagg ttgcagttagt ccgagatccg ccactacact	1800
ccagcctggg tgacagagca agactctgtc tcaaaaaaaaaaaa aaaaaaaaaaaa aaa	1853

<210> 296
 <211> 2184
 <212> DNA
 <213> Homo sapien

<400> 296

ggcacgagaa taaaaccct cagcaaaaca ggcatagaag ggacataacct taaagtaata	60
aaaaccacot atgacaagcc cacagccaaatataactaa atggggaaaa gttagaagca	120
tttcctctga gaactgcaac aataataca aggatgctgg atttgtcaa atgcctttc	180
tgtgtctgtt gagatgctta tgtgactttg cttaattc tggttatgtt attatcacat	240
ttattgactt gcctgtgtta gaccggaaga gctgggtgt ttctcaggag ccaccgtgt	300
ctgcggcagc ttccggataa cttggggctg catcaactggg gaagaaacac aytccgttcc	360
gtggcgctga tggctgagga cagagctca gtgtggctt cttgcgactg gcttcttcgg	420
ggagttcttc ttccatagtt catccatatg gctccagagg aaaattatat tattttgtta	480
tggatgaaga gtattacgtt gtgcagatatt actgcagtgt cttcatctt tgatgtgtga	540
ttgggttaggt tccaccatgt tgccgcagat gacatgattt cagttactgt gtctggctga	600
aaagtgtttt ttgtgaatgt gatattgtgg ttctggatc tcattctctg tgggtggaca	660
gctttctcca cttgtctggaa agtgcacctgc tgtccagaag ttgtatggct gaggagtata	720
ccatcggtca tgcatttttccatcccttgc tttcttcctc cttggatggaa caggggggagc	780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg	840
agcaagaggt gcaagtggtg ctgccactgc ttccctgtt gcagggggagc ggcaagagca	900
acgtggtcgc ttggggagac tacatgacca ggccttcat ggtatcccagg taccacgtcc	960
atggagaaga tctggacaag ctccacagag ctgcctgggtt gggtaaagtc cccagaaaagg	1020
atctcatctt catgcgtcagg gacacggatg tgaacaagag ggacaagcaa aagaggactg	1080
ctctacatctt ggcctctgcc aatggaaatt cagaagtagt aaaactcggtt ctggacagac	1140

gatgtcaact	taatgtcctt	gacaacaaaa	agaggacagc	tctgacaaag	gccgtacaat	1200
gccaggaaga	tgaatgtcg	ttaatgtgc	tggAACATGG	cactgatcca	aatattccag	1260
ataggatgg	aaataccact	ctacactatg	ctgtctacaa	tgaagataaa	ttaatggcca	1320
aagcaactgct	cttatacgg	gctgatatcg	aatcaaaaaa	caagcatggc	ctcacaccac	1380
tgctacttgg	tatacatgag	caaaaacagc	aagtggtaa	attttaatc	aagaaaaaaag	1440
cgaattaaa	tgcgctggat	agatatggaa	gaactgctc	cataacttgc	gtatgttg	1500
gatcagcaag	tatagtgcag	cctctacttg	agcaaaaatgt	tgtatgtatc	tctcaagatc	1560
tggaaagacg	gccagagagt	atgctgtttc	tagtcatcat	catgttaattt	gccagttact	1620
ttctgactac	aaagaaaaac	agatgttaaa	aatctttct	gaaaacagca	atccagaaca	1680
agacttaaag	ctgacatcag	aggaagagtc	acaaaggctt	aaaggaagtg	aaaacagcca	1740
gccagaggca	tggaaacttt	taaattaaa	cttttggttt	aatgtttttt	tttttgcct	1800
taataatatt	agatagtccc	aatgaaatw	acctatgaga	ctaggcttgc	agaatcaata	1860
gattttttt	ttaagaatct	tttggctagg	agcgggtgtc	cacgcctgta	attccagcac	1920
cttgagaggc	tgaggtgggc	agatcacgag	atcaggagat	cgagaccatc	ctggctaaca	1980
cggtaaacc	ccatctctac	taaaaataca	aaaacttagc	tgggtgtggt	ggcgggtgcc	2040
tgtatccc	gctactcagg	argctgaggc	aggagaatgg	catgaacccg	ggaggtggag	2100
gttgcagtga	gccgagatcc	gccactacac	tccagcctgg	gtgacagagc	aagactctgt	2160
ctcaaaaaaa	aaaaaaaaaa	aaaa				2184

<210> 297
 <211> 1855
 <212> DNA
 <213> Homo sapien

 <220>
 <221> misc_feature
 <222> (1)...(1855)
 <223> n = A,T,C or G

<400> 297						
tgcacgcac	ggccagtgtc	tgtgccacgt	acactgacgc	cccctgagat	gtgcacgccc	60
caacgcac	ttgcacgcgc	ggcagcggt	tggctggctt	gtaacggctt	gcacgcgcac	120
gcccccccc	cataaccgtc	agactggct	gtaacggctt	gcaggcgcac	gccgcacgc	180
cgtaacggc	tggctgcct	gtaacggctt	gcaacgtgc	gctgcacgc	cgttaacggc	240
ttggctggca	tgtacccgt	tggctggct	ttgcattttt	tgctkggctk	ggcgttgkty	300
tcttggattt	acgcttcctc	ttggatkg	cgtttcc	ttggatkgac	gtttcytyt	360
tcgcgttcc	ttgctggact	tgacctt	tctgtgggt	ttggcattcc	tttgggggtgg	420
gctgggtgtt	tttccgggg	gggkkgcccc	ttccctgggt	gggcgtgggk	cgccccagg	480
gggcgtggc	tttccccggg	ttgggtgtgg	ttttccctgg	ttgggtgtgg	ctgtgtggg	540
atccccctgc	ttgggttggc	agggatttac	tttttctt	aaacagattt	gaaacccgga	600
gtaacntgc	agttggtaa	actgggtgtt	agacgcgatc	tgctggact	actgtttctc	660
ctggctgtt	aaagcagatg	gtggctgagg	ttgattcaat	gccggctgt	tcttctgtga	720
agaaggcatt	tggctcagg	agcaagatgg	gcaagtgg	cgccactgt	tccctgtgc	780
cagggggagc	ggcaagagca	acgtggcac	ttctggagac	cacaacgact	cctctgtgaa	840
gacgcttgg	agcaagaggt	gcaagtgg	ctgcccact	tttcccctgc	tgcaaggggag	900
cgcaagagc	aacgtggkcg	cttggggaga	ctacatgac	agcgccttca	tggakcccag	960
gtaccacgtc	crtggagaag	atctggacaa	gctccacaga	gctgcctggt	ggggtaaagt	1020
ccccagaaa	gatctcatcg	tcatgtcg	ggacactg	gtgacaaca	rggacaagca	1080
aaagaggact	gctctacatc	tggcctctgc	caatggaa	tcagaagtag	taaaactcgt	1140
gctggacaga	cgatgtcaac	ttaatgtcct	tgacaacaaa	aaggagacag	ctctgacaaa	1200
ggccgtacaa	tgccaggaag	atgaatgtgc	gttaatgttg	ctggaacatg	gcactgatcc	1260

aaatattcca gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa	1320
attaatggcc aaagcactgc tcttatacgg tgctgatatac gaatcaaaaa acaaggtata	1380
gatctactaa ttttatcttc aaaatactga aatgcattca ttttaacatt gacgtgtgt	1440
agggccagtc ttccgtatcc ggaagctcaa gcataacttg aatgaaaata ttttcaaattg	1500
acctaattat ctaagactttt attttaaata ttgttatttt caaagaagca ttagaggta	1560
cagttttttt tttttaaattg cacttctggc aaatactttt gttgaaaaca ctgaatttgc	1620
aaaaggtaat acttactattt ttcattttt tccctccatg gattttttc ccctaattgaa	1680
tgttaagatgg caaaaatttgc cctgaaatag gtttacatg aaaaactccaa gaaaagttaa	1740
acatgtttca gtgaatagag atcctgctcc tttggcaagt tcctaaaaaa cagtaataga	1800
tacgaggtga tgccctgtc agtggcaagg tttaagatat ttctgatctc gtgcc	1855

<210> 298
 <211> 1059
 <212> DNA
 <213> Homo sapien

<400> 298

gcaacgtggg cacttcttggaa gaccacaacg actcctctgt gaagacgctt gggagcaaga	60
ggtgcaagtgt gtgctcccc ctgcttcccc tgctgcaggg gagcggcaag agcaacgtgg	120
gcccgttgrgg agactmcgt gacagygctt tcattggagcc caggtaccac gtccgtggag	180
aagatcttggaa caagctccac agagctgccc tggtggggta aagtccccag aaaggatctc	240
atcgtcatgc tcaggacac tgaygtgaac aagarggaca agcaaaaagag gactgctcta	300
catctggccct ctgccaatgg gaattcagaa gtagtaaaac tcstgcttggaa cagacgatgt	360
caacttaatgt tccttgcacaa caaaaagagg acagctctga yaaaggccgt acaatgccag	420
gaagatgaat gtgcgttaat gttgctggaa catggcactg atccaaatat tccagatgag	480
tatggaaata ccactctrca ctaygctrtc tayaatgaag ataaattaaat ggccaaagca	540
ctgctcttat aygggtgtca tatcaatca aaaaacaagg tatagatcta ctaattttat	600
cttcaaaata ctgaaatgca ttcattttaa cattgacgtg tgtaaggggcc agtcttccgt	660
atttggaaagc tcaagcataa cttgaatgaa aatattttga aatgacctaa ttatctaaga	720
ctttatttta aatattgtta ttttcaaaga agcattagag ggtacagttt tttttttta	780
aatgcacttc tggtaataac ttttggtaa aacactgaat ttgtaaaagg taataacttac	840
tatttttcaa tttttccctc cttagatttt tttccctaa tgaatgtaa atggccaaat	900
ttgcccgtgaa ataggtttta catgaaaact ccaagaaaag ttaaacatgt ttctgtgaa	960
agagatcctg ctcccttggc aagttccctaa aaaacagtaa tagatacgg gtgtatgcgccc	1020
tgtcagtggc aagggttaag atatttctga tctcgtgcc	1059

<210> 299
 <211> 329
 <212> PRT
 <213> Homo sapien

<400> 299

Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe	
1 5 10 15	
L Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu	
20 25 30	
Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser	
35 40 45	
L Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg	
50 55 60	
Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val	

65	70	75	80
Val Leu Pro Leu Leu Pro	Leu Leu Gln Gly Ser	Gly Lys Ser Asn Val	
85	90		95
Val Ala Trp Gly Asp Tyr Asp Asp	Ser Ala Phe Met Asp	Pro Arg Tyr	
100	105		110
His Val His Gly Glu Asp Leu Asp	Lys Leu His Arg Ala	Ala Ala Trp Trp	
115	120		125
Gly Lys Val Pro Arg Lys Asp	Leu Ile Val Met Leu	Arg Asp Thr Asp	
130	135		140
Val Asn Lys Arg Asp Lys Gln	Lys Arg Thr Ala	Leu His Leu Ala Ser	
145	150		160
Ala Asn Gly Asn Ser Glu Val Val	Lys Leu Val Leu Asp	Arg Arg Cys	
165	170		175
Gln Leu Asn Val Leu Asp Asn Lys	Lys Arg Thr Ala	Leu Thr Lys Ala	
180	185		190
Val Gln Cys Gln Glu Asp Glu Cys	Ala Leu Met Leu	Leu Glu His Gly	
195	200		205
Thr Asp Pro Asn Ile Pro Asp Glu	Tyr Gly Asn Thr	Thr Leu His Tyr	
210	215		220
Ala Val Tyr Asn Glu Asp Lys Leu	Met Ala Lys Ala	Leu Leu Leu Tyr	
225	230		240
Gly Ala Asp Ile Glu Ser Lys Asn	Lys His Gly Leu	Thr Pro Leu Leu	
245	250		255
Leu Gly Ile His Glu Gln Lys Gln	Gln Val Val Lys	Phe Leu Ile Lys	
260	265		270
Lys Lys Ala Asn Leu Asn Ala	Leu Asp Arg Tyr	Gly Arg Thr Ala Leu	
275	280		285
Ile Leu Ala Val Cys Cys Gly	Ser Ala Ser Ile	Val Ser Pro Leu Leu	
290	295		300
Glu Gln Asn Val Asp Val Ser	Ser Gln Asp	Leu Glu Arg Arg Pro	Glu
305	310		320
Ser Met Leu Phe Leu Val Ile	Ile Met		
325			

<210> 300
<211> 148
<212> PRT
<213> *Homo sapien*

<220>
<221> VARIANT
<222> (1)...(148)
<223> Xaa = Any Amino Acid

<400> 300

Met	Thr	Xaa	Pro	Ser	Trp	Ser	Pro	Gly	Thr	Thr	Ser	Val	Glu	Lys	Ile
1					5				10					15	
Trp	Thr	Ser	Ser	Thr	Glu	Leu	Pro	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys
								20		25				30	
Asp	Leu	Ile	Val	Met	Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Xaa	Asp	Lys
							35		40			45			

Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu
 50 55 60
 Val Val Lys Leu Xaa Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp
 65 70 75 80
 Asn Lys Lys Arg Thr Ala Leu Xaa Lys Ala Val Gln Cys Gln Glu Asp
 85 90 95
 Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro
 100 105 110
 Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp
 115 120 125
 Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser
 130 135 140
 Lys Asn Lys Val
 145

<210> 301
 <211> 1155
 <212> DNA
 <213> Homo sapien

<400> 301

atgggtggttg	agggttatttc	catgccggct	gcctttctg	tgaagaagcc	atgggtctc	60
aggagcaaga	tggcaagtg	gtgctccgt	tgctccct	gctgcaggga	gagcggcaag	120
agcaacgtgg	gcacttctgg	agaccacgac	gactctgta	tgaagacact	caggagcaag	180
atggggcaagt	ggtcgcgcca	ctgctcccc	tgctgcaggg	ggagtggcaa	gagcaacgtg	240
ggcgcttctg	gagaccacga	cgactctgt	atgaagacac	tcaggaacaa	atggggcaag	300
tgtgtctgca	actgcttccc	ctgctgcagg	ggagcggca	agagcaaggt	ggcgcttgg	360
ggagactacg	atgacagtgc	cttcatggag	cccaggtacc	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctgggtgggt	aaagtcccc	gaaaggatct	catgtcatg	480
ctcagggaca	ctgacgtgaa	caagaaggac	aagcaaaaga	ggactgctct	acatctggcc	540
tctgccaatg	ggaattcaga	agtagtaaaa	ctcctgctgg	acagacgtg	tcaacttaat	600
gtccttgaca	acaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtgcgtta	tgttgcgtt	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgttat	ctataatgaa	gataaattaa	tggccaaagc	actgctctta	780
tatggtgctg	atatcgaaatc	aaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgctctcata	cttgctgtat	gttggatc	agcaagtata	960
gtcagccttc	tacttggca	aaatattgt	gtatcttc	aagatctatac	tggacagacg	1020
gccagagagt	atgcttttc	tagtcatcat	catgtat	gccagttact	ttctgactac	1080
aaagaaaaac	agatgctaaa	aatctttct	gaaaacagca	atccagaaaa	tgtctcaaga	1140
accagaaaata	aataa					1155

<210> 302

<211> 2000

<212> DNA

<213> Homo sapien

<400> 302

atgggtggttg	agggttatttc	catgccggct	gcctttctg	tgaagaagcc	atgggtctc	60
aggagcaaga	tggcaagtg	gtgctccgt	tgctccct	gctgcaggga	gagcggcaag	120
agcaacgtgg	gcacttctgg	agaccacgac	gactctgta	tgaagacact	caggagcaag	180

atgggcaagt ggtgccgcca ctgctcccc tgctgcaggg ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgt atgaagacac tcaggaacaa gatgggcaag	300
tggctgccc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagctcc acagagctgc ctggggggt aaagtccccaa gaaaggatct catgtcatg	480
ctcagggaca ctgacgtgaa caagaaggac aagaaaaaga ggactgctct acatctggcc	540
tctgccaatg ggaattcaga agtagtaaaa ctccctgctgg acagacgtg tcaacttaat	600
gtccttgaca aaaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa	660
tgtgcgttaa tggctggttggaa acatggcact gatccaaata ttccagatga gtatggaaat	720
accactctgc actacgttat ctataatgaa gataaaattaa tggccaaagc actgcttta	780
tatggtgctg atatcaatc aaaaaacaag catggcctca caccactgtt acttgggtgt	840
catgagcaaa aacagcaagt cgtgaaat ttatcaaga aaaaagcgaa tttaaatgca	900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata	960
gtcagccttc tacttgagca aaatattgtat gtatcttc aagatctatc tggacagacg	1020
gccagagagt atgcttttc tagtcatcat catgtat cccagttact ttctgactac	1080
aaagaaaaac agatgctaaa aatcttttct gaaaacagca atccagaaca agacttaaag	1140
ctgacatcaag aggaagagtc acaaagggttc aaaggcagtg aaaatagcca gccagagaaa	1200
atgtctcaag aaccagaaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag	1260
aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatgggtt cactgctggc	1320
aatggtgata atggatataat tcctcaaagg aagagcagaa cacctgaaaa tcagcaattt	1380
cctgacaacg aaagtgaaga gtatcacaga atttgcata tagttctga ctacaaagaa	1440
aaacagatgc caaaaacttc ttctgaaaac agcaacccag aacaagactt aaagctgaca	1500
tcagaggaag agtcacaaag gcttgaggc agtggaaatg gccagccaga gctagaaaaat	1560
tttatggcta tcgaagaaaat gaagaagcac ggaagtaactc atgtcgatt cccagaaaaac	1620
ctgactaatg gtgccactgc tggcaatggat gatgatggat taattcctcc aaggaagac	1680
agaacacccctg aaagccagca atttcctgac actgagaatg aagagtatca cagtgacgaa	1740
caaaaatgata ctcagaagca attttgtgaa gaacagaaca ctgaaatatt acacgatgag	1800
attctgattc atgaagaaaaa gcagatagaa gtgggtgaaa aatgaattc tgagcttct	1860
cttagttgttta agaaagaaaaa agacatctg catgaaaata gtacgttgcg ggaagaaaatt	1920
gccatgctaa gactggagct agacacaatg aaacatcaga gccagctaaa aaaaaaaaaaa	1980
aaaaaaaaaaaa aaaaaaaaaaaa	2000

<210> 303
 <211> 2040
 <212> DNA
 <213> Homo sapien

<400> 303

atgggtgttggatc catgccggct gccttcttctg tgaagaagcc atttggtctc	60
aggagcaaga tggcaagtgtgctccgt tgctccccct gctgcaggaa gagccggcaag	120
agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag	180
atgggcaagt ggtgccggcca ctgctccccct tgctgcaggaa ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgtt atgaagacac tcaggaacaa gatgggcaag	300
tggctgccc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagctcc acagagctgc ctggggggtt aaagtccccaa gaaaggatct catgtcatg	480
ctcagggaca ctgacgtgaa caagaaggac aagaaaaaga ggactgctct acatctggcc	540
tctgccaatg ggaattcaga agtagtaaaa ctccctgctgg acagacgtg tcaacttaat	600
gtccttgaca aaaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa	660
tgtgcgttaa tggctggttggaa acatggcact gatccaaata ttccagatga gtatggaaat	720
accactctgc actacgttat ctataatgaa gataaaattaa tggccaaagc actgcttta	780

tatggtgctg atatcgaaatc	aaaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	900
ctggatagat	atggaggac	tgctctata	cttgctgtat	gttggatc	960
gtcagccttc	tacttgagca	aaatattgtat	gtatcttc	aagatctata	1020
gccagagagt	atgctgttc	tagtcatcat	catgtat	gccagttact	1080
aaagaaaaac	agatgctaaa	aatctttct	gaaaacagca	atccagaaca	1140
ctgacatcg	aggaagagtc	acaaaggttc	aaaggcagtg	aaaatagcca	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	agggtgaa	1260
aagcatgaaa	gtaataatgt	gggattacta	gaaaacctga	ctaattgggt	1320
aatggtgata	atggattat	tcctcaaagg	aagagcagaa	cacctgaaa	1380
cctgacaacg	aaagtgaaga	gtatcacaga	atttgcgat	tagttctga	1440
aaacagatgc	caaaatactc	ttctgaaaac	agcaacccag	aacaagactt	1500
tcagaggaag	agtcacaaag	gcttgagggc	agtggaaatg	gccagccaga	1560
caagaaccag	aaataaataa	ggatggtgat	agagagctg	aaaattttat	1620
gaaatgaaga	agcacggaag	tactcatgtc	ggattccag	aaaacctgac	1680
actgctggca	atggtgatga	ttggattaatt	cctccaaagga	agagcagaac	1740
cagcaatttc	ctgacactga	gaatgaagag	tatcacagt	acgaacaaa	1800
aagcaatttt	gtgaagaaca	gaacactgga	atattacacg	atgagattct	1860
gaaaagcaga	tagaagtgg	tgaaaaatg	aattctgagc	tttctcttag	1920
gaaaaagaca	tcttgcata	aaatagtacg	ttgcgggaag	aaattgcac	1980
gagctagaca	caatgaaaca	tcagagccag	ctaaaaaaaaa	aaaaaaaaaa	2040

<210> 304

<211> 384

<212> PRT

<213> Homo sapien

<400> 304

Met	Val	Val	Glu	Val	Asp	Ser	Met	Pro	Ala	Ala	Ser	Ser	Val	Lys	Lys
1				5					10					15	
Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys	Cys	Arg	Cys	Phe
							20			25				30	
Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys	Ser	Asn	Val	Gly	Thr	Ser	Gly	Asp
							35			40				45	
His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp
						50			55					60	
Cys	Arg	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly	Lys	Ser	Asn	Val
						65			70					80	
Gly	Ala	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Asn
						85								95	
Lys	Met	Gly	Lys	Trp	Cys	Cys	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser
							100			105				110	
Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp	Gly	Asp	Tyr	Asp	Asp	Ser	Ala	Phe
							115			120				125	
Met	Glu	Pro	Arg	Tyr	His	Val	Arg	Gly	Glu	Asp	Leu	Asp	Lys	Leu	His
							130			135				140	
Arg	Ala	Ala	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys	Asp	Leu	Ile	Val	Met
							145			150				155	
Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Lys	Asp	Lys	Gln	Lys	Arg	Thr	Ala
							165			170				175	
Leu	His	Leu	Ala	Ser	Ala	Asn	Asn	Ser	Glu	Val	Val	Lys	Leu	Leu	

180	185	190
Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr		
195	200	205
Ala Leu Ile Lys Ala Val Gln Cys Glu Asp Glu Cys Ala Leu Met		
210	215	220
Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn		
225	230	235
Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys		
245	250	255
Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly		
260	265	270
Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val		
275	280	285
Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr		
290	295	300
Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile		
305	310	315
Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu		
325	330	335
Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val		
340	345	350
Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile		
355	360	365
Ser Ser Glu Asn Ser Asn Pro Glu Asn Val Ser Arg Thr Arg Asn Lys		
370	375	380

<210> 305

<211> 656

<212> PRT

<213> Homo sapien

<400> 305

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys		
1	5	10
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe		
20	25	30
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp		
35	40	45
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp		
50	55	60
Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val		
65	70	75
Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn		
85	90	95
Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser		
100	105	110
Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe		
115	120	125
Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His		
130	135	140
Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met		

145	150	155	160
Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala			
165	170	175	
Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu			
180	185	190	
Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr			
195	200	205	
Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met			
210	215	220	
Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn			
225	230	235	240
Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys			
245	250	255	
Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly			
260	265	270	
Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val			
275	280	285	
Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr			
290	295	300	
Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile			
305	310	315	320
Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu			
325	330	335	
Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val			
340	345	350	
Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile			
355	360	365	
Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu			
370	375	380	
Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys			
385	390	395	400
Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu			
405	410	415	
Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn			
420	425	430	
Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro			
435	440	445	
Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu			
450	455	460	
Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu			
465	470	475	480
Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp			
485	490	495	
Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu			
500	505	510	
Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys			
515	520	525	
Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly			
530	535	540	
Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser			
545	550	555	560

Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr
 565 570 575
 His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln
 580 585 590
 Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln
 595 600 605
 Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys
 610 615 620
 Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile
 625 630 635 640
 Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
 645 650 655

<210> 306
 <211> 671
 <212> PRT
 <213> Homo sapien

<400> 306

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
 1 5 10 15
 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
 20 25 30
 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
 35 40 45
 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
 50 55 60
 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
 65 70 75 80
 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn
 85 90 95
 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
 100 105 110
 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe
 115 120 125
 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His
 130 135 140
 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met
 145 150 155 160
 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala
 165 170 175
 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu
 180 185 190
 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr
 195 200 205
 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met
 210 215 220
 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn
 225 230 235 240
 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys
 245 250 255

Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly
 260 265 270
 Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val
 275 280 285
 Lys Phe Leu Ile Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr
 290 295 300
 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile
 305 310 315 320
 Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu
 325 330 335
 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val
 340 345 350
 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile
 355 360 365
 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu
 370 375 380
 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys
 385 390 395 400
 Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu
 405 410 415
 Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn
 420 425 430
 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro
 435 440 445
 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu
 450 455 460
 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu
 465 470 475 480
 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp
 485 490 495
 Leu Lys Leu Thr Ser Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu
 500 505 510
 Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp
 515 520 525
 Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys
 530 535 540
 His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala
 545 550 555 560
 Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg
 565 570 575
 Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His
 580 585 590
 Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn
 595 600 605
 Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile
 610 615 620
 Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys
 625 630 635 640
 Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala
 645 650 655
 Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu

660

665

670

<210> 307
 <211> 800
 <212> DNA
 <213> Homo sapien

<400> 307

atkagcttc gttctgaca acactagaga tccctccct ccctcagggt atggccctcc 60
 acttcatttt tggcacataa catcttataa ggacagggtt aaaatcccaa tactaacagg 120
 agaatgctta ggactctaac aggttttga gaatgtgtt gtaaggccca ctcaatccaa 180
 ttttcttgg tcctccttgc ggtctaggag gacaggcaag ggtcagatt ttcaagaatg 240
 catcagtaag ggccactaaa tccgacccctc ctcgttccctc cttgtggctt gggagggaaa 300
 ctatgtttc tggctgttgc tcaatgttcc gatcagcagg gtccaggggac 360
 cactgcagg tcttgggcag gggggagaaac aaaacaaacc aaaaccatgg gcrgtttgt 420
 ctttcagatg ggaaacactc aggcatcaac aggctcacct ttgaaatgca tcctaaagcca 480
 atgggacaaa tttgacccac aaacccttggaa aaaagaggtt gtcattttt tttgcactat 540
 ggcttggccc caacattctc tctctgtatgg ggaaaaatgg ccacctgagg gaagtacaga 600
 ttacaataact atcctgcagc ttgacccctt ctgttaagagg gaaggcaaat ggagtgaaat 660
 accttatgttc caagcttct tttcatttggaa ggagaataca ctatgcaaag cttgaaattt 720
 acatcccaca ggaggaccc tcagcttacc cccatatcctt agcctcccta tagctcccct 780
 tcctattatgataaggccctc 800

<210> 308
 <211> 102
 <212> PRT
 <213> Homo sapien

<220>
 <221> VARIANT
 <222> (1) ... (102)
 <223> Xaa = Any Amino Acid

<400> 308

Met	Gly	Xaa	Phe	Val	Phe	Gln	Met	Gly	Asn	Thr	Gln	Ala	Ser	Thr	Gly
1							5			10				15	
Ser	Pro	Leu	Lys	Cys	Ile	Leu	Ser	Gln	Trp	Asp	Lys	Phe	Asp	Pro	Gln
							20			25				30	
Thr	Leu	Glu	Lys	Glu	Val	Ala	His	Phe	Phe	Cys	Thr	Met	Ala	Trp	Pro
							35			40			45		
Gln	His	Ser	Leu	Ser	Asp	Gly	Glu	Lys	Trp	Pro	Pro	Glu	Gly	Ser	Thr
							50			55			60		
Asp	Tyr	Asn	Thr	Ile	Leu	Gln	Leu	Asp	Leu	Phe	Cys	Lys	Arg	Glu	Gly
65								70			75			80	
Lys	Trp	Ser	Glu	Ile	Pro	Tyr	Val	Gln	Ala	Phe	Phe	Ser	Leu	Lys	Glu
							85			90			95		
Asn	Thr	Leu	Cys	Lys	Ala										
					100										

<210> 309

<211> 9

<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 309

Leu Met Ala Glu Glu Tyr Thr Ile Val
1 5

<210> 310
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 310

Lys Leu Met Ala Lys Ala Leu Leu Leu
1 5

<210> 311
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 311

Gly Leu Thr Pro Leu Leu Leu Gly Ile
1 5

<210> 312
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 312

Lys Leu Val Leu Asp Arg Arg Cys Gln Leu
1 5 10

<210> 313
<211> 1852
<212> DNA
<213> Homo sapiens

<400> 313

ggcacgagaa ttaaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata 60
 aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca 120
 tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgcctttc 180
 tgtgtctgtt gagatgctta tgtgactttg ctttaattc tgtttatgtg attatcacat 240
 ttattgactt gcctgttta gaccggaaga gctgggggtgt ttctcaggag ccaccgtgtg 300
 ctgcggcagc ttccggataa ctggaggctg catcaactggg gaagaaaacac aytccctgtcc 360
 gtggcgctga tggctgagga cagagctca gtgtggcttc tctgcgactg gcttcttcgg 420
 ggagttcttc cttcatagtt catccatata gctccagagg aaaattata tattttgtta 480
 tggatgaaga gtattacgtt gtgcagatac actgcagtgt cttcatctt tgatgtgtga 540
 ttgggttaggt tccaccatgt tgccgcagat gacatgattt cagttacgtt gtctggctga 600
 aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatacctctg tgggtggaca 660
 gcttctcca ctttgcgttga agtgacactgc tttccagaag tttgtatggct gaggagtata 720
 ccatcgtgca tgcacatcttc atttctgtca tttcttcctc cttggatggc caggggggagc 780
 ggcacagac acgtggcac ttctggagac cacaacgact cttctgtgaa gacgottggg 840
 agcaagaggt gcaagtgggtg ctggccactgc ttccctgtc gcaggggggag cggcaagagc 900
 aacgtggtcg cttggggaga ctacgtatc acgcgcctca tggatcccag gtaccacgtc 960
 catggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt ccccaagaaaag 1020
 gatctcatcg tcacgttcag ggacacggat gtgaacaaga gggacaagca aaagaggact 1080
 gctctacatc tggcctctgc caatggaaat tcagaagtag taaaactcgt gctggacaga 1140
 ccatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggcgtacaa 1200
 tgccaggaag atgaatgtgc gttaatgttg ctggacatcg gcactgtatcc aaatattcca 1260
 gatgagttatg gaaataccac tctacactat gctgtctaca atgaagataa attaatggcc 1320
 aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380
 ctgctacttg gtatacatga gcaaaaaacag caagtggta aatttttaat caagaaaaaaa 1440
 gcaatttaa atgcgttgg tagatatggg agaactgctc tcatacttgc tgtatgttg 1500
 ggtatcggaa gtatagtcag ccctctactt gagcaaaatg ttgtatgttac ttctcaagat 1560
 ctggaaagac ggcacagag tatgctgtt ctgtcatca tcatacttgc tgccagttac 1620
 tttctgacta caaagaaaaa cagatgttaa aaatctttc tgaaaacagc aatccagaac 1680
 aagacttaaa gctgacatca gaggaagagt cacaaggct taaaggaagt gaaaacagcc 1740
 agccagagct agaagattta tggctattga agaagaatga agaacacggg agtactcatg 1800
 tgggattccc agaaaacctg actaacggtg ccgctgctgg caatggtgat ga 1852

<210> 314

<211> 879

<212> DNA

<213> Homo sapiens

<400> 314

atgcacatctt catttcttc cccctggatgg acaggggggag cggcaagagc 60
 aacgtggca cttctggaga ccacaacgac tcctctgtga agacgcttgg gagcaagagg 120
 tgcaagtgggt gctgccactg cttcccttc tgcaggggga gcccgaagag caacgtggc 180
 gcttggggag actacgtga cagcccttc atggatccc ggtaccacgt ccatggagaa 240
 gatctggaca agtccacag agtgcctgg tgggtaaag tcccccagaaa ggatctcatc 300
 gtcacatgtca gggacacggg tggtaacaag agggacaagc aaaagaggac tgctctacat 360
 ctggcctctg ccaatggaa ttcaaaactcg tgctggacag acgtatgtcaa 420
 cttaatgtcc ttgacacaaa aaagaggaca gctctgacaa aggccgtaca atgcacggaa 480
 gatgaatgtg cgttaatgtt gctggaaatc ggcactgtatc cttatattcc agatgagttat 540
 gggaaatcca ctctacacta tgctgtctac aatgaagata attaatggc caaagcactg 600
 ctcttatacg gtgctgtatc cgaatcaaaa aacaaggctg gcctcacacc actgctactt 660
 ggtatacatg agcaaaaaaca gcaagtgggtg aaatttttaa tcaagaaaaa agcgaattta 720

aatgcgctgg atagatatgg aagaactgct ctcatacttg ctgtatgttg tggatcagca 780
 agtatagtca gccctctact ttagcaaaaat gttgatgtat cttctcaaga tctggaaaga 840
 cggccagaga gtatgctgtt tctagtcatc atcatgtaa 879

<210> 315
 <211> 293
 <212> PRT
 <213> Homo sapiens

<400> 315
 Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
 5 10 15
 Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
 20 25 30
 Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe
 35 40 45
 Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp
 50 55 60
 Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu
 65 70 75 80
 Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg
 85 90 95
 Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp
 100 105 110
 Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser
 115 120 125
 Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu
 130 135 140
 Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu
 145 150 155 160
 Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile
 165 170 175
 Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu
 180 185 190
 Asp Lys Leu Met Ala Lys Ala Leu Leu Tyr Gly Ala Asp Ile Glu
 195 200 205
 Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu
 210 215 220

Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu
 225 230 235 240

Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys
 245 250 255

Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp
 260 265 270

Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu
 275 280 285

Val Ile Ile Met
 290

<210> 316

<211> 584

<212> DNA

<213> Homo sapiens

<400> 316

agtggggcca aattcccttc cccctacagc ttgaagggga cataaccaat agcctggggt 60
 ttttttgtgg tcctttggag atttctttgc ttatttctt ctgggtgggg gtgatttagag 120
 gaggcttatac actaatagga agggagcta tagggaggct aggatatggg ggttaagctga 180
 gaggtcctcc tgtggatgt aaatttcaag ctttgcatacg tgtattctcc ttcaatgaaa 240
 agaaaagcttgc gacataaggt atttcactcc atttgccttc cctcttacag aaaaggtcaa 300
 gctgcaggat agtattgtaa tctgtacttc cctcagggtgg ccatttttcc ccatcagaga 360
 gagaatgttg gggccaagcc atagtgcaga aaaaaaaaaatg agccacctct ttttccaggg 420
 tttgtgggtc aaatttgcctt cattggctt ggtatgcattt caaaggttag cctgttgatg 480
 cctgagtgtt tcccatctga aagacaaaac tgcccatggt tttgggttgt tttgtttctc 540
 cccctgccc aagaactatca aactccttag ccaacaacta aaaa 584

<210> 317

<211> 829

<212> DNA

<213> Homo sapiens

<400> 317

attagcttcc gcttctgaca acactagaga tccctccctt ccctcagggt atggccctcc 60
 acttcatttt tggtacataa catcttataa ggacagggtt aaaatccaa tactaacagg 120
 agaatgctta ggactctaac aggttttga gaatgtttg gtaaggggcca ctcaatccaa 180
 tttttcttgg tcctccttgc ggtctaggag gacaggcaag ggtgcagatt ttcaagaatg 240
 catcagtaag ggccactaaa tccgaccttc ctcgttccctc cttgtggct gggaggaaaa 300
 ctatgtttc tggtgcgttg tcagtgcataca caactattcc gatcagcagg gtccaggac 360
 cactgcaggat tcttgggcag ggggagaaaac aaaacaaacc aaaaccatgg gcagttttgt 420
 ctttcagatg gaaaaacactc aggcatcaac aggctcacct ttgaaatgca tcctaagcc 480
 atgggacaaa tttgacccac aaaccctgga aaaagaggtg gctcatttt tttgcactat 540
 ggcttggccc caacatttctc tctctgtatgg ggaaaaatgg ccacctgagg gaagtacaga 600
 ttacaatact atccctgcacg ttgacctttt ctgtaagagg gaaggcaaat ggagtgaaat 660
 accttatgtc caagctttct tttcattgaa ggagaataca ctatgcaaag cttgaaattt 720

acatcccaca ggaggacctc tcagcttacc cccatatacct agcctcccta tagctccct 780
tccttattgt gataaggcctc ctctaatcac ccccacccag aagaaaata 829