Overview

- 1. Introduction (Lecture 1 + Introductory slides)
 - What is an optimization problem?
 - Examples of optimization problems.
- 2. Unconstrained optimization and iterative algorithms (Lectures 2-5)
 - Unconstrained optimization
 - Convex functions
 - Gradient descent (steepest descent, step length, linear least squares)
 - Convergence of iterative methods
 - Convergence of gradient descent
 - Newton's method
 - Machine learning / supervised learning
- 3. Linear Programming Theory (Lectures 6-10)
 - Convex sets
 - Linear programming duality: a first glance
 - Polyhedra
 - Farkas' Lemma
 - Linear programming duality
 - A first algorithm
 - Optimality condition for linear programming

Questions and Answers

- Q: Which lectures are relevant for the test?
- A: Weeks 1-5 (lectures 1-10).
- Q: What do we have to know from the lectures?
- A: The following will not be asked, though the statements should be known:
 - Python code will not be part of the test;
 - Proofs in Section 4.3 on the convergence of gradient descent. What needs to be remembered from this section is that gradient descent has *linear* convergence (implied by the last Theorem in that section).
 - Proof of Theorem 5.6 (quadratic convergence of Newton's method), though the statement should be known.
 - Section 5.2 (Quasinewton methods)
 - Proof of Lemma 7.8.
 - Proof of Corollary 9.3.

As a rule of thumb, it is beneficial for the understanding to know the proof ideas, though precise reconstruction of proofs will not be asked.

Q: Which problems are relevant?

A: Problem that use Python or require cutting a shape out of paper will not be relevant to the test. More precisely, the following problems will not feature:

- Part B problems.
- Problem 2.1(c) (the derivation).
- Problem 2.3
- Problem 3.2