ARITHMETIC

Chapter 3 Sesion 2

Teoría de conjuntos l

MOTIVATING STRATEGY

La Teoría de Conjuntos fue estudiada por el Matemático Alemán George Ferdinand Cantor (1845 – 1918)

Otro matemático que contribuyó a la Teoría fue el Inglés **John Venn** (1834 – 1923) a quien se deben los diagramas que llevan su nombre.

HELICO THEORY

CONJUNTO

Ejemplo

 $A = \{x \mid x \text{ es una vocal}\}$

B = {fresa, pera, manzana,...}

RELACIÓN DE PERTENENCIA(E)

Ejemplo En el conjunto $A = \{a; e; i; o; u\}$, se observa

√ 5 ∉ A

CARDINAL DE UN CONJUNTO

Ejemplo

$$A = \{x \mid x \text{ es una vocal}\}$$

$$n(A) = 5$$

DETERMINACION DE UN CONJUNTO

Por comprensión

$$M = \{x + 1 / x \in \mathbb{Z}^+ \land 3 \le x < 7\}$$

Por extensión

$$M = \{4; 5; 6; 7\}$$

RELACIONES ENTRE CONJUNTO

Inclusión o subconjunto

$$A \subset B \leftrightarrow x \in A \rightarrow x \in B$$

HELICO THEORY

CONJUNTOS

Simbóli G JALES

$$A = B \leftrightarrow A \subset B \land B \subset A$$
Ejemplo

Si los conjuntos A y B son iguales

$$A = \{y + 3; 13\}$$
 $B = \{x - 5; 17\}$

Conjuntos

disjuntos
Ejemplo
$$P = \{x \mid x \text{ es un felino}\}$$

 $Q = \{x \mid x \text{ es un ave}\}$

CONJUNTO ESPECIALES

CONJUNTO VACÍO (Ø)

Notación:

CONJUNTO UNITARIO

$$✓$$
 A = {m}
✓ B = {13; 13; 13}

CONJUNTO POTENCIA (P(A))

$$n[P(A)] = 2^{n(A)}$$

Ejemplo Si A =
$$\{1; 2; 3\}$$

 $n(A) = 3$
 $n[P(A)] = 2^{n(A)} = 2^3 = 8$

Los cuales son

$$P(A) = \{\{1\}; \{2\}; \{3\}; \{1; 2\}; \{1; 3\}; \{2; 3\}; \{1; 2; 3\}; \emptyset\}$$

Subconjuntos propios: $2^{n(A)} - 1$

HELICO PRACTICE

Dado el conjunto unitario $A = \{2x + 3; 17; y^2 + 1\}$ calcule xy si $y \in \mathbb{Z}^+$.

M

$$2x + 3 = 17 = y^2 + 1$$

$$x \cdot y = 7 \cdot 4 = RPTA$$
: 28

HELICO PRACTICE

Halle la cantidad de subconjuntos de $A = \{3x / x \in \mathbb{Z}^+, x < 5\}$

RESOLUCIÓ

$$x \in \mathbb{Z}^+, x < 5 \implies x : 1; 2; 3; 4$$

$$A = \{3; 6; 9; 12\}$$

$$n(A) = 4$$

$$2^{n(A)} = 2^4 =$$

$$2^4 =$$

RPTA:

3

En el conjunto $C = \{2x \mid x \in \mathbb{Z}, 6 \le 3x < 21\}$ halle la cantidad de subconjuntos propios.

RESOLUCIÓ N

$$x \in \mathbb{Z}, 6 \le 3x < 21$$
 $2 \le x < 7 \implies x : 2; 3; 4; 5; 6$

$$C = \{4; 6; 8; 10; 12\}$$

$$n(C) = 5$$

N° de subconjuntos propios:

$$2^{n(C)} - 1 =$$

$$2^5 - 1 =$$

RPTA:

Sean los conjuntos A, B y C, tales que

$$n[P(A)] = 16$$

$$n[P(B)] = 64$$

$$n[P(C)] = 128$$

Calcule n(A) + n(C) - n(B).

*
$$n[P(A)] = 16$$
 * $n[P(B)] = 64$

$$2^{n(A)} = 2^4$$

$$n(A) = 4$$

$$n[P(B)] = \underline{64}$$

$$2^{n(B)} = 2^6$$

$$n(B) = 6$$

$$n[P(C)] = 128$$

$$2^{n(C)} = 2^7$$

$$n(C) = 7$$

$$n(A) + n(C) - n(B) = 4 + 7 - 6 =$$

$$4 + 7 - 6 =$$

HELICO PRACTICE

Sea I = $\left\{ \left(\frac{x-3}{2} \right) \in \mathbb{Z} / x \in \mathbb{Z}^+, x < 10 \right\}$. ¿Cuántos subconjuntos propios tiene el conjunto I?

 $X \in \mathbb{Z}^+, x < 10$

X:1;2;3;4;5;6;7;8;9

$$\left(\frac{X-3}{2}\right) \in \mathbb{Z} \Rightarrow I = \{-1; 0; 1; 2; 3\}$$

N° de subconjuntos propios:

$$2^{n(I)} - 1 =$$
 $2^5 - 1 =$

RPTA: 31

HELICO PRACTICE

6 Si los conjuntos A, B y C son unitarios

A =
$$\{a; b^2 - 1\}$$

B = $\{3c; a - 2\}$
C = $\{2b; 6\}$
calcule $a^2 + c - b$.

RESOLUCIÓ N

Conjunto
$$C \Rightarrow 2b = 6$$

 $b = 3$

Conjunto A
$$\Rightarrow a = b^2 - 1$$

$$a = 3^2 - 1$$

$$a = 8$$

Conjunto B
$$\Rightarrow 3c = a - 2$$

 $3c = 6$
 $c = 2$

Piden:
$$a^2 + c - b = 8^2 + 2 - 3 =$$

7 Si

Si

$$n[P(A)] + n[P(B)] = 40$$

calcule $n(A) + n(B)$.

RESOLUCIÓ

N

$$n[P(A)] + n[P(B)] = 40$$

$$2^{n(A)} + 2^{n(B)} = 40$$

$$2^5 + 2^3 = 40$$

$$n(A) = 5$$

$$n(B) = 3$$

Piden: n(A) + n(B) = 5 + 3 =

8

Irma promete a José, por ser el mes de su aniversario de matrimonio, prepararle un jugo de frutas todos los días pero de un sabor diferente cada día. Solo dispone de 5 frutas que son preferidas por José. ¿Podrá cumplir su promesa si se casaron un 15 de julio?

RPTA: Si cumple su promesa

RESOLUCIÓ

 Λ

Sean el conjunto de las frutas:

$$F = \{a ; b ; c ; d ; e\}$$

Para preparar un sabor diferente de jugo se podrá agrupar de 1 en 1, 2 en 2 en 2, 3 en 3, 4 en 4, 5 en 5.

N° de subconjuntos: $2^{n(F)} = 2^5 = 32$ $31 \ dias(Julio) + 1 \ dia = 1 \ ero \ de \ Agosto$

$$* 2x + 3 = 17$$

$$y^2 + 1 = 17$$

$$2x = 14$$

$$y^2 = 16$$

$$x = 7$$

$$y = 4$$

$$x \cdot y = 7 \cdot 4 =$$

RPTA:

28

Resolución

$$x \in \mathbb{Z}$$
, $6 \le 3x < 21$

$$2 \le x < 7 \implies x: 2; 3; 4; 5; 6$$

$$2x \Rightarrow C = \{4; 6; 8; 10; 12\}$$

$$n(C) = 5$$

31

$$N^{\circ}$$
 de subconjuntos propios : $2^{n(C)} - 1$

$$2^5 - 1 =$$
 RPTA:

Resolución

$$x \in \mathbb{Z}^+, x < 5 \implies x:1; 2; 3; 4$$

$$3x \Rightarrow A = \{3; 6; 9; 12\}$$

$$n(A) = 4$$

$$N^{\circ}$$
 de subconjuntos : $2^{n(A)} = 2^4 =$

RPTA:

*
$$n[P(A)] = 16$$
 * $n[P(B)] = 64$ * $n[P(C)] = 128$
 $2^{n(A)} = 2^4$ * $2^{n(B)} = 2^6$ * $2^{n(C)} = 2^7$

$$n(A) = 4$$
 $n(B) = 6$ $n(C) = 7$

$$n(A) + n(C) - n(B) = 4 + 7 - 6 = RPTA:$$
 5