Hall 效应实验 - 实验报告

トレセン学園高等部二年生 アドマイヤベガ 1

1 摘要

本实验的原理是著名的 Hall Effect, 意图使我们熟悉小电阻值测量、实验数据处理和副效应 消除的方法,对 Hall Effect 的了解更加深刻. 实验通过测量 Hall 电阻样品的各项特性,了解样品的载流子类型、载流子浓度和迁移率等物理量.

2 实验原理

考虑导体或半导体一块厚度为 d、宽度为 b、长度为 L 且较长的霍尔片中的载流子在磁场作用下的运动,Lorentz 力和 Hall 电压产生的电场力平衡,有方程:

$$\frac{U_H}{b} \cdot q = qvB \tag{2.1}$$

同时我们知道电流是 I = nqvS = nqvbd, 因此最终得到 Hall 电压表达式为:

$$U_H = \frac{IB}{nqd} \tag{2.2}$$

如果将 1/nq 记作 Hall 系数 R_H ,定义 Hall 元件灵敏度 $K_H=R_H/d$,Hall 电压还可以写成 $U_H=K_HIB$.

从 Hall 效应公式出发,显然可以用来测量磁场、电流大小和电阻样品的有关参数.为了进一步了解材料特性,还可以在零磁场下测量样品的迁移率,为

$$\mu = \sigma \cdot \frac{1}{nq} = \frac{L}{bd} \cdot \frac{1}{nq} \cdot \frac{I}{U}$$
 (2.3)

在实验过程中会遇到 4 种副效应,分别是不等位效应、Etinghausen 效应、Nernst 效应和Righi - Leduc 效应. 这四个效应产生的误差可以通过分别交换 Hall 元件工作电流和磁场方向来消除,得到 4 个电压测量值 U_1,U_2,U_3,U_4 . 不过 Etinghausen 效应无法完全消除,但是因为效应本身产生的影响比较小,因此这里忽略掉这一效应的效果. 最终得到 U_H 的表达式:

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4) \tag{2.4}$$

3 实验仪器及实验步骤

本实验使用的实验仪器有:精密稳压稳流直流电源 (eTOMMENS, eTM-L303SP+)、单路稳压稳流直流电源 (WANPTEK, WPS1203B)、5 位半数字万用表 (Fluke, F8808A)、4 位半数字万用表 (胜利 Victor, 8145B/C)、电磁铁 (ZKY-PD0010)、Hall 效应实验仪.

实验步骤如下:

- (1) 连接实验电路.
- (2) 定性判断单晶硅片的载流子类型.
- (3) 测量单晶硅片的载流子浓度.
- (4) 电磁铁的磁场测量.
- (5) 测量单晶硅片的迁移率.
- (6) 估算导线与单晶硅片的接触电阻.

4 实验数据处理

实验前,先记录电磁铁侧面的标签: 匝数为 N=1616,线径为 $0.69\,\mathrm{mm}$,线圈常数为 $C=249\,\mathrm{mT/A}$.

4.1 定性判断单晶硅片的载流子类型

得到数据如表所示:

表 1: 判断载流子类型

工作电流方向 (内 / 外)	磁场方向 (上 / 下)	霍尔电压方向	导电类型	
内	下	正向	N	

根据 Lorentz 力的方向,电流方向向内和磁场方向向下时,霍尔电压方向为正,因此可以判断载流子类型为 N型.

4.2 测量单晶硅片的载流子浓度

设置励磁电流固定为 $I_M=500\,\mathrm{mA}$,利用线圈常数 C 可以计算出电磁铁的磁场强度 $B=C\cdot I_M=124.5\,\mathrm{mT}$. 测量得到不同工作电流下,Hall 电压的变化数据如表所示:

表 2: 测量载流子浓度

次数	I (mA)	$U_1 \text{ (mV)}$	$U_2 \text{ (mV)}$	$U_3 \text{ (mV)}$	$U_4 \text{ (mV)}$	$U_H \text{ (mV)}$
1	1.55	-0.591	-4.919	-13.627	8.31	-4.40225
2	2.55	2.148	-3.976	-18.362	16.23	-7.117
3	3.57	5.041	-3.349	-24.662	25.327	-10.3998

次数	I (mA)	$U_1 \text{ (mV)}$	$U_2 \text{ (mV)}$	$U_3 \text{ (mV)}$	$U_4 (\mathrm{mV})$	$U_H \text{ (mV)}$
4	4.58	7.824	-3.643	-31.192	34.052	-13.4443
5	5.61	9.613	-3.784	-36.111	42.015	-16.1823
6	6.61	11.818	-2.68	-41.427	50.215	-19.286
7	7.65	7.188	0.9	-44.982	53.205	-22.9748

其中, U_H 数值为 $U_H = (U_1 - U_2 + U_3 - U_4)/4$. 作 U_H - I 图像, 如图所示:

图 1: UH - I 图像

最小二乘法拟合得到斜率为 $k=-3.016\,33\,\Omega$,而理论给出公式为 $U_H=K_HIB$,因此得 到 $k_H=k/B=-24.227\,55\,\Omega/\mathrm{T}$,再根据 Hall 样品的参数 $d=300\,\mu\mathrm{m}$,得到 $R_H=K_Hd=-7.2683\times 10^{-3}\,\Omega\cdot\mathrm{m}/\mathrm{T}$.

载流子的电荷量为 $q=-e=-1.602\,18\,\mathrm{C}$,最终测得载流子浓度 $n=1/(R_Hq)=8.5873\times10^{20}\,\mathrm{m}^{-3}=8.5873\times10^{14}\,\mathrm{cm}^{-3}$.

4.3 电磁铁的磁场测量

Hall 元件工作电流设定为 $I=4.01\,\mathrm{mA}$ 不变,改变励磁电流 I_M ,测量 Hall 电压的变化数据 如下:

表 3: 磁场测量

I_M	U_1	U_2	U_3	U_4	U_H	В	理论值	相对误差
$(100\mathrm{mA})$	(mV)	(mV)	(mV)	(mV)	(mV)	(T)	(T)	(%)
1	14.875	-10.784	-16.065	19.827	-2.55825	0.263323	0.249	5.43939646
2	12.983	-9.981	-18.737	21.936	-4.42725	0.455701	0.498	9.28213405
3	10.558	-6.547	-20.624	24.091	-6.9025	0.710481	0.747	5.14002057
4	8.122	-3.421	-22.502	26.43	-9.34725	0.962122	0.996	3.52121276
5	5.802	-1.893	-24.908	29.144	-11.5893	1.192893	1.245	4.36812736
6	3.766	1.454	-26.342	31.164	-13.7985	1.420293	1.494	5.18954843
7	1.646	4.141	-28.502	33.241	-16.0595	1.65302	1.743	5.4433605
8	-0.58	6.208	-30.729	35.856	-18.3433	1.888089	1.992	5.50351284
9	-2.853	8.174	-33.612	38.633	-20.818	2.142817	2.241	4.58194716
10	-5.719	10.177	-35.738	39.599	-22.8083	2.347676	2.49	6.062352

按照题目要求作出 U_H - I_M 曲线,如图所示:

图 2: UH - IM 曲线

线性拟合的 r 为 0.9996,线性度较好. 利用之前得到的 K_H 值,可以计算电磁铁磁场强度的测量值,已经列在表中;同时可用公式 $B=C\cdot I_M$ 计算电磁铁磁场强度的理论值,对比得到相对误差. 可以看出,相对误差都在 10% 范围内,理论与实验符合得较好.

4.4 测量单晶硅片的迁移率

在无磁场条件下,改变 Hall 元件工作电流,测量 Hall 元件纵向电压 U_{AC} 和电源输出电压 U_{T} ,得到数据如下:

I	U_{AC} (mV)	$U_T \text{ (mV)}$	U_{AC} (mV)	$U_T \text{ (mV)}$	II (mV)	$U_T \text{ (mV)}$	
(mA)	正向	正向	负向	负向	U_{AC} (mV)		
1.54	166.6	7782.5	-144.6	6718.4	155.6	7250.45	
2.53	285.3	9485.9	-253.3	8141.1	269.3	8813.5	
3.54	410.6	10896.5	-366	9251.4	388.3	10073.95	
4.54	534.6	12018.9	-477.3	10193.2	505.95	11106.05	
5.61	661.5	13024.9	-593.8	11003.9	627.65	12014.4	
6.58	787.8	13913.4	-707.3	11802	747.55	12857.7	
7.66	916.2	14727.4	-828.2	12516.1	872.2	13621.75	

表 4: 迁移率实验数据

将得到的数据画在下述图像中,特别地,我们对 U_{AC} - I 散点图作线性拟合.

图 3: 迁移率实验数据图

由图,可见正负向数据重合度较高,同时两组数据都比较线性,其中 U_{AC} - I 的相关系数 r=0.99993, U_T - I 的相关系数 r=0.97788. 由前一组数据的线性拟合,得到斜率为 $R=117.2648\,\Omega$,这是 Hall 元件的纵向电阻.

已知样品尺寸 $L = 7 \,\mathrm{mm}, \ b = 10 \,\mathrm{mm}, \ d = 300 \,\mu\mathrm{m}, \ \mathrm{可以计算电导率}$:

$$\sigma = \frac{L}{Rbd} = 19.898 (\Omega \cdot m)^{-1} = 0.19898 (\Omega \cdot cm)^{-1}$$
 (4.1)

因此可以计算迁移率:

$$\mu = \frac{\sigma}{n|a|} = |R_H|\sigma = 0.14462 \,\mathrm{m}^2/(\mathrm{V} \cdot \mathrm{s}) = 1446.2 \,\mathrm{cm}^2/(\mathrm{V} \cdot \mathrm{s}) \tag{4.2}$$

4.5 估算导线与单晶硅片的接触电阻

四引线法测量得到 AC 之间电阻为 $R_{AC}=117.2648\,\Omega$,总电路的电阻值为 $R_T=1020.297\,27\,\Omega$,其中相差的部分为接触电阻 $R_{\rm con}^+$ 和 $R_{\rm con}^-$,还有 + 电极与 A 电极之间的材料电阻 R_A^+ ,以及 – 电极与 C 电极之间的材料电阻 R_C^- .

所以总的接触电阻为

$$R_{\text{con}}^{+} + R_{\text{con}}^{-} + R_{A}^{+} + R_{C}^{-} = R_{T} - R_{AC} = 903.03247\Omega \tag{4.3}$$

但是实际上接触电阻会随着电压 / 电流而变化,因为接触处的温度会导致电阻变化. 同时正负不同方向测量也会得到不同数值,因为温差电动势有方向.

5 分析与讨论

本实验的误差来源主要是以下方面:

- 1. Etinghausen 效应无法完全消除;
- 2. 接触电阻非常大, 受到焊接技术的制约.

6 原始数据截图

图 4: 实验原始数据截图

工作电流方向(内/外)	磁场方向(上/下)	霍尔电压方向	导电类型							
内	下	正向	N							
I_M=500	mA	C=0.249	mT/A	B=0.1	245mT	d=30	0μm			
次数	1	2	3	4	5	6	7			
I(mA)	1.55	2.55	3.57	4.58	5.61	6.61	7.65			
U_1(mV)	-0.591	2.148	5.041	7.824	9.613	11.818	7.188			
U_2(mV)	-4.919	-3.976	-3.349	-3.643	-3.784	-2.68	0.9			
U_3(mV)	-13.627	-18.362	-24.662	-31.192	-36.111	-41.427	-44.982			
U_4(mV)	8.31	16.23	25.327	34.052	42.015	50.215	53.205			
U_H(mV)	-4.40225	-7.117	-10.39975	-13.4443	-16.1823	-19.286	-22.975			
BK H	-3.01633		K_H	-24.2276						
R_H	0.43975		_							
I=	4.01	mA								
次数	1	2	3	4	5	6	7	8	9	10
I M(mA)	1	2	3	4	5	6	7	8	9	10
U_1(mV)	14.875	12.983	10.558	8.122	5.802	3.766	1.646	-0.58	-2.853	-5.719
U_2(mV)	-10.784	-9.981	-6.547	-3.421	-1.893	1.454	4.141	6.208	8.174	10.177
U_3(mV)	-16.065	-18.737	-20.624	-22.502	-24.908	-26.342	-28.502	-30.729	-33.612	-35.738
U_4(mV)	19.827	21.936	24.091	26.43	29.144	31.164	33.241	35.856	38.633	39.599
U_H(mV)	-2.55825	-4.42725	-6.9025	-9.34725	-11.5893	-13.7985	-16.06	-18.343	-20.818	-22.808
B(mT)	0.263323192	0.455701203	0.7104811	0.962122	1.192893	1.420293	1.65302	1.88809	2.1428172	2.34767
B 理论(mT)	0.249	0.498	0.747	0.996	1.245	1.494	1.743	1.992	2.241	2.49
相对误差%	5.439396464	9.282134054	5.1400206	3.521213	4.368127	5.189548	5.44336	5.50351	4.5819472	6.06235
样品尺寸:	L=7mm	b=10mm	d=300µm							
次数	1	2	3	4	5	6	7			
I(mA)	1.54	2.53	3.54	4.54	5.61	6.58	7.66			
U AC(mV)正向	166.6	285.3	410.6	534.6	661.5	787.8	916.2			
U T(mV)正向	7782.5	9485.9	10896.5	12018.9	13024.9	13913.4	14727.4			
U AC(mV)负向	-144.6	-253.3	-366	-477.3	-593.8	-707.3	-828.2			
U T(mV)负向	6718.4	8141.1	9251.4	10193.2	11003.9	11802	12516.1	1		