Université Ferhat Abbas, Sétif I Département de mathématiques

Introduction aux Probabilités

§2. Axiomes de probabilités

- **1.** Soient A et B deux événements élémentaires. Donner une expression et représenter le diagramme de Venn de l'événement tel que :
 - (a) A est réalisé mais non B, c.à.d. que seulement A se réalise ;
 - (b) soit A, soit B, se réalise, mais pas les deux en même temps ; c.à.d. exactement un seul des deux événements se produit.
- **2.** Soient A, B et C des événements élémentaires. Trouver une expression et représenter le diagramme de Venn de l'événement tel que
 - (a) A et B mais non C se réalise;
 - (b) A seulement se réalise.
- **3.** On jette en l'air une pièce de monnaie et un dé, et l'on suppose que l'ensemble fondamental S se compose des 12 éléments :

$$S = \{F1, F2, F3, F4, F5, F6, P1, P2, P3, P4, P5, P6\}$$

- (i) Exprimer d'une façon explicite les événements suivants :
- $A = \{ face et un nombre pair apparaissent \},$
- $B = \{un nombre premier apparaît\},\$
- $C = \{ \text{ pile et un nombre impair apparaissent} \}.$
- (ii) Exprimer d'une façon explicite l'événement :
- (a) A ou B est réalisé,
- (b) B et C est réalisé,
- (c) B seulement est réalisé. (iii) Lesquels des événements A, B et C s'excluent mutuellement ?
- **4.** On suppose qu'un ensemble fondamental $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$. Laquelle des fonctions suivantes définit une probabilité sur Ω ?

(i)	ω_i	ω_1	ω_2	ω_3	ω_4
	$P\left(\omega_{i}\right)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
(iii)	ω_i	ω_1	ω_2	ω_3	ω_4
(111)	$P\left(\omega_{i}\right)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

ω_i	ω_1	ω_2	ω_3	ω_4
$P\left(\omega_{i}\right)$	$\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{2}$
ω_i	ω_1	ω_2	ω_3	ω_4
$P\left(\omega_{i}\right)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	0

5. Soit $\Omega=\{\omega_1,\omega_2,\omega_3,\omega_4\}$, et soit P une probabilité sur Ω . Completer les tableaux suivants:

(iv)

(i)	ω_i	ω_1	ω_2	ω_3	ω_4
	$P\left(\omega_{i}\right)$	k	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{9}$
(iii)	ω_i	ω_1	ω_2	ω_3	ω_4
	$P\left(\omega_{i}\right)$	$\frac{1}{2}$	k	k	3k

ω_i	ω_1	ω_2	ω_3	ω_4
$P\left(\omega_{i}\right)$	2k	k	$\frac{1}{4}$	$\frac{1}{4}$
ω_i	ω_1	ω_2	ω_3	ω_4
$P\left(\omega_{i}\right)$	$\frac{1}{k}$	$\frac{2}{k}$	$\frac{3}{k}$	$\frac{4}{k}$

UFAS: El-Bachir Yallaoui

6. On pipe une pièce de monnaie de telle sorte que face apparaisse deux fois plus que pile. Calculer P(P) et P(F).

- 7. On pipe un dé de telle sorte que la probabilité du résultat obtenu quand on jette le dé soit proportionnelle au résultat (par exemple, 6 a une probabilité deux fois plus grande que 3).
 - Soit $A = \{nombre pair\}, B = \{nombre premier\}, C = \{nombre impair\}.$
 - (i) Donner la probabilité de chaque résultat possible.
 - (ii) Calculer P (A), P(B), et P(C).
 - (iii) Calculer la probabilité pour que :
 - (a) on obtienne un nombre pair ou un nombre premier.
 - (b) on obtienne un nombre premier impair;
 - (c) A mais non B se réalise.
- **8.** Calculer la probabilité p de chacun des événements suivants :
 - (i) un nombre pair apparaît quand on jette un dé bien équilibré;
 - (ii) un roi apparaît quand on tire une seule carte d'un jeu de cartes ordinaire de 52 cartes ;
 - (iii) pile apparaît au moins une fois quand on jette trois pièces de monnaie bien équilibrées ;
 - (iv) on obtient une bille blanche en tirant une seule bille dans une urne contenant 4 billes blanches, 3 billes rouges et 2 billes bleues.
- 9. On joue à pile ou face en lançant une pièce trois fois.
 - (a) Quelle est la probabilité d'avoir face au moins une fois ?
 - (b) Quelle est la probabilité d'avoir exactement une face ?
- 10. Un magasin accepte les cartes de crédit American Express ou VISA. 24% de ses clients possèdent une carte American Express, 61% une VISA et 11% possèdent les deux. Quel est le pourcentage de clients ne possédant pas une carte de crédit acceptée par le magasin ?
- 11. On tire au hasard deux cartes d'un jeu ordinaire de 52 cartes. Calculer la probabilité p pour que
 - (i) les deux cartes soient des piques,
 - (ii) une carte soit un pique et l'autre soit un cœur.
- **12.** On prend au hasard trois ampoules électriques d'un lot de 15 ampoules dont 5 sont défectueuses. Calculer la probabilité p pour que
 - (i) aucune ampoule ne soit défectueuse,
 - (ii) exactement une ampoule soit défectueuse,
 - (iii) au moins une ampoule soit défectueuse.
- 13. Une classe comporte 10 garçons dont la moitié a les yeux marron et 20 filles dont la moitié a également les yeux marron. Calculer la probabilité p pour qu'une personne tirée au hasard soit un garçon ou ait les yeux marron.
- 14. Dans un restaurant universitaire, on propose deux desserts à chaque repas. La probabilité que l'un d'eux soit un yaourt est $\frac{4}{10}$, une orange $\frac{8}{10}$. La probabilité que les deux desserts soient un yaourt et une orange est $\frac{3}{10}$. Calculer la probabilité que l'on propose:
 - (a) un yaourt et pas d'orange?

UFAS: El-Bachir Yallaoui

- (b) une orange et pas de yaourt?
- (c) ni yaourt, ni orange?
- **15.** Soient A et B des événements tels que $P(A) = \frac{3}{8}$, $P(B) = \frac{1}{2}$ et $P(A \cap B) = \frac{1}{4}$. Calculer:

(i)
$$P(AUB)$$
, (ii) $P(\overline{A})$ et $P(\overline{B})$, (iii) $P(\overline{A} \cap \overline{B})$, (iv) $P(\overline{A}U\overline{B})$, (v) $P(A \cap \overline{B})$, (vi) $P(B \cap \overline{A})$.

- **16.** Événements A et B sont des tels que P(A)=0.6, P(B)=0.3 et $P(A\cap B)=0.1$.
 - (1) Quelle est la probabilité que A ou B arrivent?
 - (2) Quelle est la probabilité que exactement un des deux évènements arrive?
 - (3) Quelle est la probabilité qu'au plus un des deux évènements arrive?
 - (4) Quelle est la probabilité que ni A ni B n'arrivent?
- 17. On considère un espace fondamental $\Omega = \{a, b, c, d\}$. On définit les événements $E = \{a, d\}$; $F = \{a, b, c\}$ et $G = \{b, d\}$: Peut-on trouver une (ou plusieurs) mesure(s) de probabilité sur Ω vérifiant l'une des trois séries de conditions:

1.
$$P(E) = 0.5$$

$$P(F) = 0.9$$
 $P(G) = 0.4$?

2.
$$P(E) = 0.6$$

$$P(F) = 0.8 \quad P(G) = 0.7$$
?

3.
$$P(E) = P(F) = P(G)$$
?

Déterminer le cas échéant ces mesures de probabilité.

- **18.** Montrer que si A et B sont indépendants soit aussi :
 - (a) A et B^c
- (b) A^c et B^c
- 19. Trouver une expression simple pour les évènements suivants:

(a)
$$(E \cup F) \cap (E \cup F^c)$$

(b)
$$(E \cup F) \cap (E^c \cup F) \cap (E \cup F^c)$$

(c)
$$(E \cup F) \cap (F \cup G)$$
.

UFAS: El-Bachir Yallaoui

20. Si P(E) = 0.9 et P(F) = 0.8, montrer que $P(EF) \ge 0.7$.

De manière plus générale, démontrer l'inégalité de Bonferroni, à savoir

$$P(EF) \ge P(E) + P(F) - 1.$$

- **21.** Montrer que
 - 1. $P(EF^c) = P(E) P(EF)$.
 - 2. $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$.

$$3.P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(E^cFG) - P(EF^cG) - P(EFG^c) - 2P(EFG).$$

- **22.** On jette une paire de dés bien équilibrés. Calculer la probabilité p pour que la somme obtenue soit supérieure ou égale à 10, sachant que
 - (i) le premier dé a donné 5,
 - (ii) au moins l'un des dés a donné 5.
- 23. On jette trois pièces de monnaie bien équilibrées. Calculer la probabilité p pour que toutes les trois donnent face, sachant que
 - (i) la première pièce donne face à priori,
 - (ii) l'une des pièces donne face à priori.
- **24.** On tire au hasard deux des chiffres de 1 à 9. Sachant que la somme obtenue est paire, calculer la probabilité p pour que les deux chiffres soient impairs.
- **25.** Une classe contient 12 garçons et 4 filles. Si l'on choisit trois élèves de la classe au hasard, quelle est la probabilité p pour que tous soient des garçons ?
- **26.** Un joueur obtient l'une après l'autre 5 cartes d'un jeu de 52 cartes. Quelle est la probabilité p pour qu'elles soient toutes des piques ?

- **27.** Une urne contient 7 billes rouges et 3 billes blanches. On tire trois billes de l'urne, l'une après l'autre. Calculer la probabilité *p* pour que les deux premières billes soient rouges et la troisième soit blanche.
- **28.** Dans un lycée du Quartier Latin, 25% des élèves échouent en mathématiques, 15% échouent en chimie, et 10% échouent à la fois en mathématiques et en chimie. On choisit un élève au hasard.
 - (a) Si l'élève a échoué en chimie, quelle est la probabilité pour qu'il ait aussi échoué en mathématiques ?
 - **(b)** Si l'élève a échoué en mathématiques, quelle est la probabilité pour qu'il ait aussi échoué en chimie ?
 - (c) Quelle est la probabilité pour qu'il ait échoué en mathématiques ou en chimie ?
- **29.** On considère deux événements A et B tels que $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ et $P(A \cap B) = \frac{1}{4}$. Calculer (i) P(A|B), (ii) P(B|A), (iii) $P(A \cup B)$, (iv) $P(A^c|B^c)$, (v) $P(B^c|A^c)$.
- **30.** On jette deux dés équilibrés. Quelle est la probabilité qu'au moins l'un d'entre eux montre 6, sachant que les deux résultats sont différents?
- **31.** On considère une population composée de 48% d'hommes et de 52% de femmes. La probabilité qu'un homme soit daltonien est 5%, la probabilité qu'une femme soit daltonienne est 0.25%.
 - (a) Quelle proportion de la population est-elle daltonienne?
 - (b) probabilité qu'il s'agisse d'un homme?
- **32.** Dans une entreprise, une machine A fabrique 40% des pièces et une machine B en fabrique 60%. La proportion de pièces défectueuses fabriquées par A est de 3% et par B de 2%. On choisit une pièce au hasard.
 - (a) Calculer la probabilité qu'elle soit défectueuse.
 - (b) Sachant qu'elle est défectueuse, calculer la probabilité qu'elle soit fabriquée par A.
- **33.** Une armoire contient 10 paires de chaussures et on en tire 8 chaussures au hasard. Quelle est la probabilité:
 - (a) qu'il n'y ait aucune paire?
 - **(b)** qu'il y ait une paire exactement?

UFAS: El-Bachir Yallaoui