# **MITSUBISHI**

< Dual-In-Line Package Intelligent Power Module >

# PSS20S92F6/-A/-C PSS20S92E6/-A/-C

トランスファーモールド形

絶縁形

# [外形]

[主回路構成及び定格]]

- DC入力、三相AC出力IGBTインバータ
- 600V, 20A (CSTBT内蔵)
- 絶縁型トランスファーモールドパッケージ
- N側IGBTオープンエミッタ
- 制限抵抗付きブートストラップダイオード内蔵

#### [用途]

AC100~240Vrms(DC 400V以下)系モータ制御用インバータ装置

#### [形名]

| PSS20S92F6/-A/-C | 温度出力機能付き |
|------------------|----------|
| PSS20S92E6/-A/-C | 過熱保護機能付き |

無:短尺端子 A:長尺端子 C:制御側千鳥端子

#### [内蔵機能]

●P側IGBT用 : 駆動回路, 高圧レベルシフト回路, 制御電源電圧低下(UV)保護回路(エラー出力なし)

●N側IGBT用 : 駆動回路, 制御電源電圧低下(UV)保護回路, 短絡電流保護回路(外付けシャント抵抗による),

過熱(OT)保護回路(OTはPSS20S92<u>E</u>6のみ)

●エラー出力 : N側IGBT用短絡電流(SC)保護回路動作時とUV及びOT保護回路動作時エラー(Fo)出力

●温度出力 : N側駆動用IC部の温度をアナログ信号で出力(PSS20S92<u>F</u>6のみ)

●入力インタフェース: 3V,5V系対応(ハイアクティブ)

●UL認証済み: UL1557 File E323585

#### [内部回路]



## < Dual-In-Line Package Intelligent Power Module >

# PSS20S92F6/-A/-C, PSS20S92E6/-A/-C

#### トランスファーモールド形

#### 絶縁形

#### 最大定格(指定のない場合は、T<sub>i</sub>=25℃)

#### インバータ部

| 記号                     | 項目           | 条 件 定格値                     |          |    |  |  |  |
|------------------------|--------------|-----------------------------|----------|----|--|--|--|
| V <sub>cc</sub>        | 電源電圧         | P-NU, NV, NW端子間             | 450      | V  |  |  |  |
| V <sub>CC(surge)</sub> | 電源電圧(サージ)    | P-NU, NV, NW端子間             | 500      | V  |  |  |  |
| V <sub>CES</sub>       | コレクタ・エミッタ間電圧 |                             | 600      | V  |  |  |  |
| ±l <sub>C</sub>        | コレクタ電流       | T <sub>C</sub> =25°C (注1)   | 20       | Α  |  |  |  |
| ±I <sub>CP</sub>       | コレクタ電流(ピーク)  | T <sub>C</sub> =25°C, 1ms以下 | 60       | Α  |  |  |  |
| Pc                     | コレクタ損失       | T <sub>C</sub> =25°C, 1素子当り | 35.7     | W  |  |  |  |
| Tj                     | 接合温度         | (注2)                        | -30~+150 | °C |  |  |  |

注1. パルス幅及び周期は、接合温度で制限されます。

注2. 内蔵パワーチップ自身の最大瞬時接合温度は150°C(@Tc≦100°C)ですが、安全動作させるための平均動作接合温度はTj≦125°C(@Tc≦100°C)と規定します。

#### 制御(保護)部

| 記号              | 項目        | 条件                                                                                                                       | 定格値                      | 単位 |
|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
| $V_D$           | 制御電源電圧    | V <sub>P1</sub> -V <sub>NC</sub> , V <sub>N1</sub> -V <sub>NC</sub> 端子間                                                  | 20                       | V  |
| $V_{DB}$        | 制御電源電圧    | V <sub>UFB</sub> -U, V <sub>VFB</sub> -V, V <sub>WFB</sub> -W 端子間                                                        | 20                       | V  |
| $V_{IN}$        | 入力電圧      | U <sub>P</sub> , V <sub>P</sub> , W <sub>P</sub> , U <sub>N</sub> , V <sub>N</sub> , W <sub>N</sub> -V <sub>NC</sub> 端子間 | -0.5∼V <sub>D</sub> +0.5 | V  |
| $V_{FO}$        | エラー出力印加電圧 | F <sub>O</sub> -V <sub>NC</sub> 端子間                                                                                      | -0.5∼V <sub>D</sub> +0.5 | V  |
| I <sub>FO</sub> | エラー出力電流   | Fo 端子のシンク電流値                                                                                                             | 1                        | mA |
| V <sub>SC</sub> | 電流検出入力電圧  | CIN-V <sub>NC</sub> 端子間                                                                                                  | -0.5∼V <sub>D</sub> +0.5 | V  |

#### 全システム

| 記号                    | 項目                                                                           | 条件           | 定 格 値             | 単位   |
|-----------------------|------------------------------------------------------------------------------|--------------|-------------------|------|
| V <sub>CC(PROT)</sub> | 電源電圧自己保護範囲 V <sub>D</sub> =13.5~16.5V, インバータ部 (短絡) Tj=125℃スタート, 2µs以内, 非繰り返し |              | 400               | V    |
| T <sub>C</sub>        | 動作モジュール温度                                                                    | Tc:測定点は図1に規定 | -30~+100          | °C   |
| T <sub>stg</sub>      | 保存温度                                                                         |              | -40 <b>~</b> +125 | °C   |
| V <sub>iso</sub>      | 絶縁耐圧 正弦波 60Hz, AC 1分間, 全端子共通ーヒートシンク                                          |              | 1500              | Vrms |

#### 図1. ケース温度Tc測定点



#### 熱抵抗

| ***********           |                |                         |    |    |       |      |    |
|-----------------------|----------------|-------------------------|----|----|-------|------|----|
| 記号                    | · 전 - 日        | 項 目 条 作                 | 冬  | 刦  | 見 格 化 | 直    | 単位 |
| 配力                    | · 項 目<br>      | 未 IT                    | 最小 | 標準 | 最大    | 丰四   |    |
| R <sub>th(j-c)Q</sub> | 接合・ケース間熱抵抗(注3) | インバータIGBT (1/6 モジュール )  | -  | -  | 2.8   | °C/W |    |
| R <sub>th(j-c)F</sub> | 接合・グー人间熱抵抗(注3) | インバータFWDi ( 1/6 モジュール ) | -  | -  | 3.9   | °C/W |    |

注3. DIPIPMと放熱ヒートシンクとの接触面には、熱伝導のよいグリースを100~200μm程度、均一になるように塗布の上、規定の締付けトルクにて締め付けることを規定します。(またグリースは使用動作温度範囲内で変質せず、経年変化のないものとします。)

ただし、製品放熱面-ヒートシンク間の熱抵抗は、締め付けた状態におけるグリースの厚さ、グリースの熱伝導率等により異なります。目安として、グリース厚20µm、グリースの熱伝導率が1.0W/m・Kの場合の製品放熱面-ヒートシンク間熱抵抗値(1/6モジュール)は0.3℃/Wとなります。

#### < Dual-In-Line Package Intelligent Power Module >

# PSS20S92F6/-A/-C, PSS20S92E6/-A/-C

#### トランスファーモールド形

#### 絶縁形

電気的特性(指定のない場合は、T<sub>j</sub> = 25℃)

#### インバータ部

| 記号                   | 項目                | 測 定 条 件                                                               |                                                                                      | 規    | 見 格 化 | 直    | 単位   |
|----------------------|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|-------|------|------|
| 記与                   | <b>以</b> 日        | 例                                                                     | 117                                                                                  | 最小   | 標準    | 最大   | 中位   |
|                      |                   |                                                                       | $I_C = 20A, T_j = 25^{\circ}C$                                                       | -    | 1.40  | 1.70 |      |
| $V_{\text{CE(sat)}}$ | コレクタ・エミッタ間飽和電圧    | $V_D = V_{DB} = 15V, V_{IN} = 5V$                                     | $I_C = 20A, T_j = 125^{\circ}C$                                                      | -    | 1.55  | 1.90 | V    |
|                      |                   |                                                                       | $I_C = 2.0A$ , $T_j = 25$ °C                                                         | -    | 0.80  | 1.00 |      |
| $V_{EC}$             | FWDi順電圧降下         | $V_{IN} = 0V, -I_C = 20A$                                             | $V_{IN} = 0V, -I_C = 20A$                                                            |      | 1.80  | 2.30 | V    |
| t <sub>on</sub>      |                   |                                                                       |                                                                                      | 1.00 | 1.50  | 2.20 | μs   |
| t <sub>c(on)</sub>   | スイッチング時間          | $V_{CC} = 300V, V_D = V_{DB} = 15V$                                   | -                                                                                    | 0.35 | 0.55  | μs   |      |
| t <sub>off</sub>     |                   | $I_C = 20A, T_j = 125^{\circ}C, V_{IN} = 0 \leftrightarrow 5^{\circ}$ | I <sub>C</sub> = 20A, T <sub>j</sub> = 125°C, V <sub>IN</sub> = 0↔5V<br>誘導負荷(上一下アーム) |      | 1.60  | 2.30 | μs   |
| $t_{c(off)}$         |                   | 誘導負荷(上一下アーム)                                                          |                                                                                      |      | 0.15  | 0.30 | μs   |
| t <sub>rr</sub>      |                   |                                                                       |                                                                                      | -    | 0.30  | -    | μs   |
| 1                    | コレクタ・エミッタ間遮断電流    | V <sub>CE</sub> = V <sub>CES</sub>                                    | T <sub>j</sub> = 25°C                                                                | -    | -     | 1    | mA   |
| I <sub>CES</sub>     | コレンダ・エミッダ   地断 电流 | VCE = VCES                                                            | $T_{j} = 125^{\circ}C$                                                               | -    | -     | 10   | IIIA |

#### 制御(保護)部

| 記号              | 項目                        | 測定条件                                                                                                                     |                                                           |       | 見 格 化 | <br>直 | ₩ <b>/</b> ± |
|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|-------|-------|--------------|
| 記号              | 項  目                      | 測 定 宋 什                                                                                                                  |                                                           | 最小    | 標準    | 最大    | 単位           |
|                 |                           | .v. v. v. v. の妙和                                                                                                         | V <sub>D</sub> =15V, V <sub>IN</sub> =0V                  | -     | -     | 3.40  |              |
| I <sub>D</sub>  | 回路電流                      | V <sub>P1</sub> -V <sub>NC</sub> ,V <sub>N1</sub> -V <sub>NC</sub> の総和                                                   | V <sub>D</sub> =15V, V <sub>IN</sub> =5V                  | -     | -     | 3.40  | mA           |
|                 | 凹岭电流                      | V <sub>UFB</sub> -U, V <sub>VFB</sub> -V, V <sub>WFB</sub> -W                                                            | V <sub>D</sub> =V <sub>DB</sub> =15V, V <sub>IN</sub> =0V | -     | -     | 0.30  | mA           |
| I <sub>DB</sub> |                           | VUFB-U, VVFB-V, VWFB-VV                                                                                                  | $V_D=V_{DB}=15V, V_{IN}=5V$                               | -     | -     | 0.30  |              |
| $V_{SC(ref)}$   | 短絡保護トリップレベル               | V <sub>D</sub> =15V                                                                                                      | (注4)                                                      | 0.455 | 0.480 | 0.505 | V            |
| $UV_DBt$        | P側制御電源電圧低下保護              |                                                                                                                          | トリップレベル                                                   | 10.0  | -     | 12.0  | V            |
| $UV_DBr$        | 了则                        | T < 125°C                                                                                                                | リセットレベル                                                   | 10.5  | -     | 12.5  | ٧            |
| $UV_Dt$         | N側制御電源電圧低下保護              | T <sub>j</sub> ≦125°C                                                                                                    | トリップレベル                                                   | 10.3  | -     | 12.5  | V            |
| $UV_Dr$         | N侧削岬电冰电压低下床设              |                                                                                                                          | リセットレベル                                                   | 10.8  | ı     | 13.0  | V            |
| Vot             | アナログ温度出力 (注5)             | プルダウン抵抗                                                                                                                  | LVIC温度=90°C                                               | 2.63  | 2.77  | 2.91  | V            |
| VOT             | (PSS**S92 <u>F</u> 6のみ内蔵) | R=5kΩ                                                                                                                    | LVIC温度=25°C                                               | 0.88  | 1.13  | 1.39  | V            |
| OT <sub>t</sub> | 過熱保護 (注6)                 | V <sub>D</sub> =15V,                                                                                                     | トリップレベル                                                   | 100   | 120   | 140   | °C           |
| $OT_{rh}$       | (PSS**S92 <u>E</u> 6のみ内蔵) | LVIC温度検出                                                                                                                 | リセット温度ヒステリシス幅                                             | -     | 10    | -     | °C           |
| $V_{FOH}$       | エラー出力電圧                   | $V_{SC} = 0V$ , $F_O = 10k\Omega$ , $5V$                                                                                 | ′ プルアップ                                                   | 4.9   | -     | -     | V            |
| $V_{FOL}$       | エノー山力電圧                   | $V_{SC} = 1V$ , $I_{FO} = 1mA$                                                                                           |                                                           | -     | -     | 0.95  | ٧            |
| t <sub>FO</sub> | エラ一出カパルス幅                 |                                                                                                                          | (注7)                                                      | 20    | -     | -     | μs           |
| I <sub>IN</sub> | 入力電流                      | $V_{IN} = 5V$                                                                                                            |                                                           | 0.70  | 1.00  | 1.50  | mA           |
| $V_{th(on)}$    | 入力オンしきい電圧                 | U <sub>P</sub> , V <sub>P</sub> , W <sub>P</sub> , U <sub>N</sub> , V <sub>N</sub> , W <sub>N</sub> -V <sub>NC</sub> 端子間 |                                                           | -     | 2.10  | 2.60  | V            |
| $V_{th(off)}$   | 入力オフしきい電圧                 |                                                                                                                          |                                                           | 0.80  | 1.30  | -     | V            |
| $V_{th(hys)}$   | 入力オフしきい値ヒステリシス電圧          |                                                                                                                          |                                                           | 0.35  | 0.65  | -     | V            |
| $V_{F}$         | ブートストラップDi順電圧降下           | I <sub>F</sub> =10mA, 制限抵抗の電                                                                                             | 圧降下含む (注8)                                                | 0.9   | 1.3   | 1.7   | V            |
| R               | 制限抵抗值                     | ブートストラップDiに内蔵                                                                                                            |                                                           | 48    | 60    | 72    | Ω            |

- 注4.短絡保護は下アームのみ動作します。また、保護電流値は定格の2.7倍以下になるように外部抵抗を選定してください。
  - 5.温度出力機能付き仕様は、自身で温度保護動作はいたしません。 $V_{OT}$ 出力が、貴社設定の温度保護レベルに達した時は、システム側でスイッチング動作をただちに停止してください。LVIC温度- $V_{OT}$ 出力特性を図3に示します。
- 6. 過熱保護(OT)はLVICの温度がOTトリップ温度に達するとFoを出力すると共に、下アームのIGBTの出力を遮断します。製品に取付けた放熱ヒートシンクが緩んだ状態、外れた状態でOT保護遮断した場合は、パワーチップの接合温度が最大瞬時接合温度150℃を超えている場合がありますので、製品を交換してください。(放熱ヒートシンクを締付け直して使用しないでください。)
- 7.エラー出力は、短絡保護・N側(V<sub>D</sub>)制御電源電圧低下保護・過熱保護時に出力します。Fo出力時間は、エラーモードにより異なります。SC保護の場合、Fo出力時間は、min. 20µsとなります。UV及びOT保護時には、UV,OT状態が解消されるまでFo出力し続けます。(最小出力時間は、20µsとなります)
- 8.ブートストラップDiの特性を図2に示します。

図2. ブートストラップDi  $V_{F}$ - $I_{F}$ 特性(制限抵抗による電圧降下含む) (右図は拡大図)





#### 図3. LVIC温度-VoT出力特性



#### 図4. VoT出力回路



- (1) 室温より低い温度時において、出力の線形性が必要な場合、 $V_{OT}-V_{NC}$ (=コントローラGND)間に $5k\Omega$ (5.1 $k\Omega$ 推奨)のプルダウン抵抗の設置を推奨いたします。プルダウン抵抗を設置される場合は、 $V_{OT}$ 出力電圧÷抵抗値程度の電流が、LVICの消費電流として常時余分に流れることになります。過熱保護のためだけに本出力を使用し、室温以下の出力が不要な場合、プルダウン抵抗は接続不要です。
- (2) Vor出力は温度が上昇した際にマイコンの電源電圧を超える可能性があります。3.3Vなど低電圧マイコンなどを使用される場合は、マイコンの保護のため、Vor出力とマイコンの電源(例 3.3V)の間にクランプダイオードの設置を推奨いたします。
- (3)VoT出力を未使用の場合は、本出力端子は、NC(ノーコネクション)としてください。

Vot出力の使用方法につきましては、本製品のアプリケーションノートもご参照ください。

#### 機械的定格及び特性

| 記号 | 項目       | 測定条件                                           | 準拠規格         | 刔    | 見 格 化 | 直    | 単位  |
|----|----------|------------------------------------------------|--------------|------|-------|------|-----|
| 記与 | 垻 口      | 测 足 未 计                                        | <b>华拠</b> 况怕 | 最小   | 標準    | 最大   | 中位  |
| _  | 締付けトルク強度 | 取付けネジ(M3) (注9) 推奨値 0.69N·m                     | _            | 0.59 | 0.69  | 0.78 | N·m |
| -  | 端子引張り強度  | 荷重 制御端子 : 4.9N<br>パワー端子 : 9.8N                 | EIAJ-ED-4701 | 10   | -     | -    | s   |
| _  | 端子曲げ強度   | 荷重 制御端子 : 2.45N<br>パワー端子 : 4.9N<br>上記荷重にて90度曲げ | EIAJ-ED-4701 | 2    | ı     | ı    | 回   |
| _  | 質 量      |                                                | -            | -    | 8.5   | -    | g   |
| _  | 放熱面平面度   | (注10)                                          | -            | -50  | -     | 100  | μm  |

注9.取り付けネジには平座金(推奨; JIS B1256)を使用してください。

注10. 放熱面平面度測定位置



#### 推奨使用条件

| 記号                             | 項目                   | 測 定 条 件 -                                                                                            |                         | 規格値  |      |      | 単位     |
|--------------------------------|----------------------|------------------------------------------------------------------------------------------------------|-------------------------|------|------|------|--------|
| 記 亏                            | 項目                   |                                                                                                      |                         | 最小   | 標準   | 最大   | 甲亚     |
| V <sub>CC</sub>                | 電源電圧                 | P-NU, NV, NW 端子間                                                                                     |                         | 0    | 300  | 400  | V      |
| $V_D$                          | 制御電源電圧               | V <sub>P1</sub> -V <sub>NC</sub> , V <sub>N1</sub> -V <sub>NC</sub> 端子間                              |                         | 13.5 | 15.0 | 16.5 | V      |
| $V_{DB}$                       | 制御電源電圧               | V <sub>UFB</sub> -U, V <sub>VFB</sub> -V, V <sub>WFB</sub> -W端子間                                     |                         | 13.0 | 15.0 | 18.5 | V      |
| $\Delta V_D$ , $\Delta V_{DB}$ | 制御電源電圧変動率            |                                                                                                      |                         | -1   | -    | +1   | V/µs   |
| t <sub>dead</sub>              | 上下アーム休止時間            | 各アーム段入力に対応                                                                                           | 各アーム段入力に対応              |      |      | -    | μs     |
| $f_{PWM}$                      | PWM制御入力信号            | $T_{C} \le 100^{\circ}C$ , $T_{j} \le 125^{\circ}C$                                                  |                         |      | -    | 20   | kHz    |
| Io                             | 許容実効電流               | $V_{CC} = 300V, V_D = V_{DB} = 15V, P.F = 0.8,$                                                      | f <sub>PWM</sub> = 5kHz | -    | -    | 11.0 | Arms   |
| 10                             | T 分大 刈 电 川           | 正弦波出力,T <sub>C</sub> ≦100℃, T <sub>j</sub> ≦125℃, (注11)                                              |                         | -    | -    | 6.5  | Aiiiis |
| PWIN(on)                       |                      |                                                                                                      | (注12)                   | 0.7  | -    | -    |        |
| PWIN(off)                      | 許容最小入力<br>パルス幅       | 200≦V <sub>CC</sub> ≦350V, 13.5≦V <sub>D</sub> ≦16.5V<br>13.0≦V <sub>DB</sub> ≦18.5V, -30°C≦Tc≦100°C | 定格電流の<br>1.7倍以下         | 0.7  | -    | -    | μs     |
| i vviiv(Oii)                   | , VIVINTE            | Nライン配線インダクタンス ≦10nH 定格電流 1.7<br>(注13) 定格電流 2.7                                                       |                         | 1.5  | -    | -    |        |
| $V_{NC}$                       | V <sub>NC</sub> 端子変動 | V <sub>NC</sub> -NU, NV, NW 端子間の電位差, サージ電圧含む                                                         |                         | -5.0 | -    | +5.0 | V      |
| Tj                             | 接合温度                 |                                                                                                      | ·                       | -20  | -    | +125 | °C     |

- 注11. 許容実効電流に関しては、使用条件によって変わります。
  - 12. PWIN(on)以下のパルス幅の入力オン信号には出力が応答しないことがあります。
  - 13. PWIN(off)以下のパルス幅の入力オフ信号には出力が応答しない、またはP側のみターンオン時間が大きくなる場合があります。ただし、この場合 においても入力オンの状態にて出力オフの状態を維持し続けることはありません。詳細は下図のタイミング図を参照ください。 また、Nライン配線 インダクタンスについては、図8の外付けシャント抵抗周辺配線応用例を参照ください。

#### 許容最小入力パルス幅PWIN(off)以下の信号を印加した場合の出力動作(P側のみ)



実線…オフパルス幅≧PWIN(off)の場合 ターンオン時間:t1(通常) 破線…オフパルス幅<PWIN(off)の場合

ターンオン時間:t2(長くなる場合有り)

#### 図5. 保護動作シーケンス

- A. SC動作シーケンス(N側のみ)・・・・外付けシャント抵抗、RC時定数による保護
  - a1. 正常動作=IGBTオン=出力電流有り
  - a2. 過電流検出(SCトリガ)・・・・RC時定数は、2µs以内に遮断するように最適遮断時間を設定(1.5~2.0µs以下推奨)
  - a3. N側全相のIGBTゲートをハード遮断
  - a4. N側全相のIGBTがオフ
  - a5. Fo出力····Fo出力時間:min. 20μs
  - a6. 入力 "L"=オフ
  - a7. Fo出力終了。入力 "H"途中でも次のオン信号(L→H)が入力されるまで、IGBTはオフ状態。 (各相への入力で相ごとに通常状態に復帰します)
  - a8. 正常動作=IGBTオン=出力電流有り



- B. 制御電源電圧低下保護動作シーケンス(N側、UVD)
  - b1. 制御電源電圧立上り・・・・ $UV_{Dr}$ にて次のオン信号 $(L \rightarrow H)$ 入力より動作開始 (各相への入力で相ごとに通常状態に復帰します)
  - b2. 正常動作=IGBTオン=出力電流有り
  - b3. 制御電源電圧低下(UV<sub>Dt</sub>)
  - b4. N側全相のIGBTオフ····制御入力の状態に関らずオフ
  - b5. Fo動作開始(min. 20µs以上、制御電源電圧が復帰するまでの間Fo出力)
  - b6. 制御電源電圧復帰(UV<sub>Dr</sub>)
  - b7. 正常動作=IGBTオン=出力電流有り



## < Dual-In-Line Package Intelligent Power Module >

# PSS20S92F6/-A/-C, PSS20S92E6/-A/-C

#### トランスファーモールド形

#### 絶縁形

- C. 制御電源電圧低下保護動作シーケンス(P側、UVDB)
  - c1. 制御電源電圧立上り・・・・UV<sub>DBr</sub>にて次のオン信号(L→H)入力より動作開始
  - c2. 正常動作=IGBTオン=出力電流有り
  - c3. 制御電源電圧低下(UV<sub>DBt</sub>)
  - c4. 該当相のIGBTのみオフ・・・・制御入力に関らずオフ、Fo出力はなし
  - c5. 制御電源電圧復帰(UV<sub>DBr</sub>)
  - c6. 正常動作=IGBTオン=出力電流有り



- D. 過熱保護動作シーケンス(N側のみ、LVICの温度をモニタ)
  - d1. 正常動作=IGBTオン=出力電流有り
  - d2. LVIC温度上昇
  - d3. N側全相のIGBTオフ・・・・制御入力の状態に関らずオフ
  - d4. Fo動作開始(min. 20µs以上、LVIC温度が低下するまでの間Fo出力)
  - d5. LVIC温度低下(OT<sub>t</sub>-OT<sub>rh</sub>)
  - d6. 次のオン信号(L→H)入力より正常動作開始(各相への入力で相ごとに通常状態に復帰します)



トランスファーモールド形

絶縁形

図6. 外部応用回路例



- (1) 制御側電源GNDとパワー側GNDの配線を共通のベタ配線で配線すると大電流が流れるパワーGNDの変動の影響を受け誤動作の可能性がありますので、制御側電源GNDとパワー側GNDの配線は分けて配線し、N1点(シャント抵抗の端子部)にて一点接続としてください。
- (2) 制御電源端子部へ印加されたサージ電圧の吸収用にツェナダイオードD1(ツェナ電圧24V、許容損失1W程度)を制御電源端子近傍への接続を推奨します。
- (3) サージ電圧による過電圧破壊を防止するために、平滑コンデンサとP、N1端子間の配線はできるだけ短くしてください。またP-N1端子間に 0.1μ~0.22μF程度のスナバコンデンサC3を挿入してください。
- (4) 短絡(SC)保護機能の誤動作防止用RCフィルタのR1、C4には温度補償用などバラツキの小さいものを推奨します。(CIN端子近傍への設置を 推奨) また、その時定数は、短絡時に2µs以下で遮断できるように設定(1.5~2µs推奨)してください。遮断時間は、配線パターンによって変わり ますので実システムにて十分評価してください。
- (5) A、B、Cの配線はIGBTの動作に大きな影響をあたえるため、配線はできるだけ短く配線してください。
- (6) 短絡保護の誤動作防止のため、CIN端子への配線はシャント抵抗端子部直近のD点で分岐し、できるだけ短くしてください。また、NU,NV,NW端子相互の接続は端子近傍で実施してください。
- (7) 各コンデンサはDIPIPMの端子近傍に設置してください。C1は、温度特性、周波数特性が優れた電解コンデンサ、C2は0.22μ-2μFでノイズ除去用の温度、周波数、DCバイアス特性に優れたセラミックコンデンサ(B、R特性などを推奨。)を推奨します。
- (8) 入力信号はハイアクティブです。IC内部で3.3kΩ(min)の抵抗でプルダウンしています。誤動作防止のため、入力信号配線はできるだけ短く配線してください。誤動作防止のためRCフィルタを挿入する場合は、入力のしきい値電圧を満足するように設定してください。専用HVICを採用しているため、MCUに直接接続することができます。(電気的絶縁にはなりません)
- (9) Fo端子はオープンドレインです。I<sub>Fo</sub>=1mA以下となるような抵抗値で制御電源(5V、15V)にプルアップしてご使用ください。 (I<sub>Fo</sub>=プルアップ電源電圧/プルアップ抵抗値で概算できます。5Vにプルアップする場合、5kΩ以上、10kΩを推奨します)
- (10)HVICを採用しているため、絶縁素子は不要であり、MCUに直接接続することができます。(電気的絶縁にはなりません)
- (11) V<sub>NC</sub>端子は、9ピン、16ピンの2ヶ所有りますが、内部で接続されていますので、外部では、どちらか一方のみ接続し他方はオープン状態で使用してください。
- (12) 制御ICの電源ラインに高周波の急峻なノイズが重畳されると、ICの誤動作が起きてFoを出力し、停止することがあります。制御電源ラインの ノイズは、dV/dt≤1V/µs, Vripple≤2Vp-pとなるように電源回路を設計してください。
- (13)DIPIPMでは、各相あるいは、個体間で並列接続して同一負荷を駆動するような使用方法は、推奨いたしません。

#### 図7. 制御端子接続例



注. 入力のRCカップリングは、応用システムに使われるPWM制御入力方式、入力配線パターンにより変わります。

DIPIPM入力信号部は、IC内部で3.3kΩ(min)の抵抗プルダウンを行っています。入力信号ラインに抵抗を挿入される場合は、DIPIPMの入力しきい値を満足する設定としてください。

Fo端子はオープンドレインです。制御電源(5V,15V)に $I_{Fo}$ =1mA以下となるような抵抗でプルアップしてご使用ください。

(5Vにプルアップする場合、5kΩ以上、10kΩを推奨します)

#### 図8. 外付けシャント抵抗周辺配線



シャント抵抗には表面実装タイプなど低インダクタンスタイプを推奨します。

#### 図9. N側オープンエミッタ(3シャント)時外部SC保護回路例

3シャント使用時には、短絡保護のために3相のシャント抵抗の電圧をそのままCIN端子に入力できないため、下図のような外部回路が必要です。



- (1) 短絡保護の誤動作防止用RCフィルタ(R<sub>i</sub>C<sub>i</sub>)の時定数は、短絡時に2µs以下で遮断できるように設定してください。(1.5~2µs推奨) 遮断時間は、配線パターン、コンパレータの反応速度などにも依存します。
- (2) しきい値電圧Vrefは、DIPIPMの短絡トリップ電圧Vsc(ref)の規格値と同じにすることを推奨します。(typ.0.48V)
- (3) シャント抵抗値は、短絡保護トリップ電流値が規定の値(定格の2.7倍)以下となるように設定してください。
- (4) 誤動作防止のため、A、B、Cの配線は、可能な限り短くしてください。
- (5) コンパレータへの入力の配線は、シャント抵抗の端子部直近(D点)で分岐してください。
- (6) OR 出力の High レベル(保護時出力)は、CIN 端子の短絡トリップ電圧の最大値である 0.505V 以上となるように設定してください。

トランスファーモールド形

絶縁形

図10. 外形図 単位:mm





- 1) 9,16ピンのV<sub>NC</sub>(制御電源GND端子)は、内部で接続されていますのでどちらか一方のみ使用して、他方はNC(ノーコネクション)状態でご使用ください。
- 2) 温度出力仕様(PSS\*\*S92F6)はVoT端子、過熱(OT)保護付き仕様(PSS\*\*S92E6)はNC (ノーコネクション)端子となります。

QRコードは株式会社デンソーウェーブの登録商標です。

絶縁形



- 1) 9,16ピンのV<sub>NC</sub>(制御電源GND端子)は、内部で接続されていますのでどちらか一方のみ使用して、他方はNC(ノーコネクション)状態でご使用ください。
- 2) 温度出力仕様(PSS\*\*S92F6)はV<sub>OT</sub>端子、過熱(OT)保護付き仕様(PSS\*\*S92E6)はNC (ノーコネクション)端子となります。

# < Dual-In-Line Package Intelligent Power Module > PSS20S92F6/-A/-C, PSS20S92E6/-A/-C

トランスファーモールド形

#### 絶縁形

# 改訂履歴

| Rev. | 発行日        | ページ | 改訂内容                   |
|------|------------|-----|------------------------|
| 1    | 2013/12/25 | -   | 新規作成                   |
| 2    | 2014/ 2/17 | 7   | 制御電源電圧低下保護動作シーケンスの誤記訂正 |
| 3    | 2014/ 3/15 | 2   | 注1を追加                  |

絶縁形

## 安全設計に関するお願い

弊社は品質、信頼性の向上に努めておりますが、半導体製品は故障が発生したり、誤動作する場合があります。弊社の半導体製品の故障又は誤動作によって結果として、人身事故、火災事故、社会的損害などを生じさせないような安全性を考慮した冗長設計、延焼対策設計、誤動作防止設計などの安全設計に十分ご留意ください。

#### 本資料ご利用に際しての留意事項

- ・本資料は、お客様が用途に応じた適切な三菱半導体製品をご購入いただくための参考資料であり、本資料中に記載の技術情報について三菱電機が所有する知的財産権その他の権利の実施、使用を許諾するものではありません。
- ・本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例の使用に起因する損害、 第三者所有の権利に対する侵害に関し、三菱電機は責任を負いません。
- ・本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他全ての情報は本資料発行時点のものであり、三菱電機は、予告なしに、本資料に記載した製品または仕様を変更することがあります。三菱半導体製品のご購入に当たりましては、事前に三菱電機または特約店へ最新の情報をご確認頂きますとともに、三菱電機半導体情報ホームページ (www. MitsubishiElectric. co. jp/semiconductors) などを通じて公開される情報に常にご注意ください。
- ・本資料に記載した情報は、正確を期すため、慎重に制作したものですが万一本資料の記述誤りに起因する 損害がお客様に生じた場合には、三菱電機はその責任を負いません。
- ・本資料に記載の製品データ、図、表に示す技術的な内容、プログラム及びアルゴリズムを流用する場合は、 技術内容、プログラム、アルゴリズム単位で評価するだけでなく、システム全体で十分に評価し、お客様 の責任において適用可否を判断してください。三菱電機は、適用可否に対する責任は負いません。
- ・本資料に記載された製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに用いられることを目的として設計、製造されたものではありません。本資料に記載の製品を運輸、移動体用、医療用、航空宇宙用、原子力制御用、海底中継用機器あるいはシステムなど、特殊用途へのご利用をご検討の際には、三菱電機または特約店へご照会ください。
- 本資料の転載、複製については、文書による三菱電機の事前の承諾が必要です。
- ・本資料に関し詳細についてのお問い合わせ、その他お気付きの点がございましたら三菱電機または特約店までご照会ください。

© 2014 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. DIPIPM,CSTBTは三菱電機株式会社の登録商標です。