

ISTANBUL TECHNICAL UNIVERSITY FACULTY OF COMPUTER AND INFORMATICS

Computer Engineering Graduation Project Presentation

PERFORMANCE ANALYSIS OF DEEPFAKE DETECTION USING DIFFERENT FACIAL REGIONS

Egehan Orta • 150160124 • <u>ortae16@itu.edu.tr</u> Advisor: Prof. Dr. Hazım Kemal Ekenel

Contents

- Introduction
- Problem Statement
- Dataset
- Models
- Results
- Future Work

<u>Introduction</u>

What is deepfake?

• Deepfake is visual data that created using the deep learning to replace human faces inside the video or image with another face within the video or image. The name deepfake comes from the combination of the terms "deep learning" and "fake".

Example deepfake images from Celeb-DF [1] Dataset. Left image is the original image and others are Deepfakes generated different donor subjects.

Problem Statement

Comparing deepfake detection performances of models by using different facial regions.

Images: A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Nießner, "FaceForensics++: Learning to Detect Manipulated Facial Images," in ICCV, 2019.

<u>Dataset</u>

	Image Count										
	planne	d	actual								
	manipulated	original	manipulated	original							
Train	12544	14410	12048	13732							
Validation	3150	3610	3061	3447							
Test	3934	4510	3746	4283							

Dataset of train, validation and test splits

Dataset	Туре	Count			
	Deepfake Detection	767			
	Deepfakes	260			
	Face2Face	264			
FaceForensics++ [1]	FaceShifter	263			
	FaceSwap	263			
	Neural Textures	258			
	Original	2542			
Colob DE [2]	Fake	1580			
Celeb-DF [2]	Original	1741			
DeepfakeTIMIT [3]	Fake	91			

Detailed data distribution of test set

^[1] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Nießner, "FaceForensics++: Learning to Detect Manipulated Facial Images," in ICCV, 2019. [2] Y. Li, P. Sun, H. Qi and S. Lyu, "Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics," in IEEE Conference on Computer Vision and Patten Recognition (CVPR), Seattle, WA, United States, 2020.

^[3] P. Korshunov and S. Marcel, "DeepFakes: a New Threat to Face Recognition? Assessment and Detection," 2018.

Models

VGG-19 [1]

Xception [2]

ResNet-50 [3]

^[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2015.

^[2] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," in IEEE/CVF Conference on Computer Vision and Pattern, 2017.

^[3] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"in CVPR, 2016.

Results

Train Results

7/5/2021

Results

Validation Results

7/5/2021

Results

Test Results

region	VGG19 [1]	ResNet50 [2]	Xception [3]
chin_area	0.66185081	0.65250963	0.645534933
eye_area	0.635446489	0.616639674	0.628347218
face_area	0.679412127	0.674305618	0.613899589
midface_area	0.620874345	0.631211877	0.642172098
mouth_area	0.676422954	0.663594484	0.666832745
nose_area	0.610536814	0.607049465	0.602192044

region	VGG19 [1]	ResNet50 [2]	Xception [3]
chin_area	0.720196605	0.704772115	0.697542071
eye_area	0.687221289	0.667445362	0.677461565
face_area	0.74442941	0.736271441	0.642947078
midface_area	0.664794207	0.685279429	0.691203296
mouth_area	0.731904447	0.722529709	0.728539944
nose_area	0.649096489	0.642353654	0.639755368

Accuracies of models and facial regions.

AUC scores of models and facial regions.

^[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2015.

^[2] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"in CVPR, 2016.

^[3] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," in IEEE/CVF Conference on Computer Vision and Pattern, 2017.

<u>Results</u>

Test Results Contd.

Dataset	Category	chin_area		eye_area		face_area			midface_area			mouth_area			nose_area				
		Resnet50	VGG19	Xception	Resnet50	VGG19	Xception	Resnet50	VGG19	Xception	Resnet50	VGG19	Xception	Resnet50	VGG19	Xception	Resnet50	VGG19	Xception
Celeb-DF [1]	Real	0.51	0.53	0.73	0.46	0.53	0.57	0.62	0.70	0.68	0.73	0.66	0.36	0.59	0.51	0.68	0.66	0.52	0.56
	Fake	0.79	0.79	0.53	0.79	0.81	0.69	0.75	0.79	0.68	0.56	0.64	0.85	0.77	0.83	0.64	0.54	0.74	0.70
	Youtube	0.65	0.70	0.82	0.54	0.58	0.66	0.75	0.85	0.76	0.75	0.73	0.42	0.66	0.60	0.72	0.73	0.63	0.60
DeepfakeTIMIT [2]	Fake	0.78	0.80	0.65	0.65	0.84	0.70	0.75	0.73	0.69	0.42	0.74	0.91	0.56	0.75	0.59	0.57	0.80	0.89
	DeepfakeDetection	0.61	0.76	0.67	0.56	0.76	0.61	0.69	0.58	0.68	0.41	0.56	0.84	0.69	0.75	0.64	0.36	0.53	0.58
	Face2Face	0.53	0.45	0.55	0.41	0.36	0.38	0.47	0.38	0.49	0.45	0.38	0.79	0.43	0.56	0.44	0.27	0.35	0.61
	FaceShifter	0.28	0.38	0.43	0.49	0.43	0.44	0.33	0.23	0.34	0.30	0.28	0.65	0.27	0.33	0.27	0.29	0.44	0.51
Faceforensics++ [3]	FaceSwap	0.20	0.27	0.30	0.22	0.41	0.34	0.18	0.33	0.32	0.25	0.26	0.65	0.12	0.24	0.20	0.16	0.23	0.41
	NeuralTextures	0.62	0.52	0.58	0.39	0.35	0.31	0.37	0.22	0.42	0.51	0.32	0.73	0.52	0.60	0.47	0.31	0.38	0.51
	Original	0.74	0.70	0.68	0.76	0.69	0.71	0.80	0.81	0.73	0.83	0.78	0.47	0.80	0.74	0.81	0.83	0.70	0.63
	Deepfakes	0.60	0.68	0.65	0.57	0.50	0.58	0.57	0.48	0.61	0.39	0.47	0.78	0.67	0.71	0.65	0.39	0.53	0.60

Accuracies of each sub dataset for each region and model (VGG19 [4], Resnet50 [5], Xception [6])

^[1] Y. Li, P. Sun, H. Qi and S. Lyu, "Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, United States, 2020.

^[2] P. Korshunov and S. Marcel, "DeepFakes: a New Threat to Face Recognition? Assessment and Detection," 2018.

^[3] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Nießner, "FaceForensics++: Learning to Detect Manipulated Facial Images," in ICCV, 2019.

^[4] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2015.

^[5] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"in CVPR, 2016.

^[6] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," in IEEE/CVF Conference on Computer Vision and Pattern, 2017.

Future Work

- More balanced distributed dataset
- Complex ANNs
- RNN based deepfake detector
- Different face detectors

THANK YOU FOR LISTENING!

Advisor: Prof. Dr. Hazım Kemal Ekenel

Egehan Orta • 150160124 • ortae16@itu.edu.tr