Examen de INFO-F-205, Calcul formel & numérique, juin 2022

000496667, Bourgeois Noé

May 2022

Note : les calculs ont été réalisés sur Matlab.

1 Conditionnement et stabilité

```
\begin{array}{l} \mathrm{x0} = \mathrm{xhat0} = 7.047460535540444\mathrm{e} + 02 = 704.7460535540444\\ \mathrm{x1} = \mathrm{xhat1} = 7.047460500000000\mathrm{e} + 02 = 704.74605000000000\\ d1 = xhat1^2 = 496666, 9949906025\\ \mathrm{a.}\\ \mathrm{m} = 70474605\\ \mathrm{b.}\\ \mathrm{m2} = 4966669949906025\\ \mathrm{c.}\\ x = xhat1 + \frac{d-d1}{\sqrt{d+xhat1}}\\ = 704.74605000000000 + \frac{496667 - 496666.9949906025}{704.7460535540444 + 704.7460500000000}\\ = 704.74605 + 3.5540443875980350985335596468071e - 6\\ \mathrm{donc,\ dans\ matlab:}\\ \mathrm{x} = \mathrm{x1} + \mathrm{e1}\\ = 704.746053554044387598036 \end{array}
```

Pour calculer p, il est préférable de la maximiser.

Mais si elle est trop grande (par exemple 16), p aussi, or p intervient dans le calcul des résultats recherchés.

En calcul machine, le nombre de chiffres significatifs est limité, on perd donc des chiffres nécessaires à la précision des résultats et des erreurs d'arrondi surviennent.

or

 $m=7.047460535540444e{+15}\\$

donc

 $\mathrm{m2} = 4.96667000000000000\mathrm{e}{+31}\ (=\!d*p^2)$

et donc,

r = 0

 et

e1 = 0

2 Systemes linéaires

 \mathbf{a}

Une méthode itérative de la forme

$$x_{i+1} = Bx_i + f,$$

est dite consistante avec le problème Ax = b si f et B sont tels que

$$x = Bx + f$$

cf énoncé :

$$U = A - L$$

$$x_{i+1} = Bx_i + f,$$

avec

$$B = -L^{-1}U$$

et

$$f = L^{-1}b$$

or
$$Ax = b$$

$$<=> x = A^{-1} * b$$

donc

$$= (-L^{-1}(A-L)) * (A^{-1} * b) + L^{-1}b$$

$$= (-L^{-1} * A + L^{-1} * L) * (A^{-1} * b) + L^{-1}b$$

$$= -L^{-1} * A * A^{-1} * b + L^{-1} * L * A^{-1} * b + L^{-1}b$$

$$= -L^{-1} * b + A^{-1} * b + L^{-1}b$$

$$= A^{-1} * b$$

= x

h

Complexité de $B = n^2$

Complexité de f = n^2

c.

La consistance étant démontrée et

$$\rho(B) = 0.9880 < 1$$

οù

 $\rho(.)$ dénote le rayon spectral et

 $\rho(B)$ définit le facteur de convergence asymptotique.

donc,

l'iteration convergera.

d.

La matrice étant creuse, une méthode directe, par ses opérations sur les nombreux zéros entre eux, gaspillerait des ressources computationnelles inutilement.

3 EDO — Equations différentielles

a.

$$\begin{cases} \sin(\mathbf{x}^{3} * exp(r-x) + asin(y_{0}) - g_{0}), & \text{si } |\mathbf{x}^{3} * exp(r-x) + C| \leq \frac{\pi}{2} \\ \frac{exp(asin(y_{0}) - g_{0} - \frac{\pi}{2})^{2} * exp(2*x^{3} * exp(r-x)) + 1}{2*exp(asin(y_{0}) - g_{0} - \frac{\pi}{2})^{2} * exp(x^{3} * exp(r-x))}, & \text{sinon} \end{cases}$$
(1)

b.

cf énoncé :
$$y' = \sqrt{1-y^2}(3-x)x^2e^{r-x}$$

EDO:

$$\begin{cases} y' = \sqrt{1 - y^2}(3 - x)x^2 e^{r - x} \\ y(0) = y_0 \end{cases}$$
 (2)

or Euler explicite(progressive):

$$y(t_{n+1}) = y(t_n) + h * f(t_n, y(t_n))$$

donc

$$y(t_n) + h(\sqrt{1 - y^2(t_n)}g'(t_n))$$

$$= y(t_n) + h(\sqrt{1 - y(t_n)^2}t_n^2(3 - t_n)e^{r - t_n})$$

c.

Nous constatons que réduire le pas réduit les erreurs de troncature et améliore donc les performances jusqu'à perfection apparente pour h tendant vers 0.

4 Interpolation et lissage

a.

$$c \ = \ pinv\left(X \right) {*Y};$$

b. Afficher les resulats avec une precision plus raffinée que via X en posant nn=1000 plutôt que n= samplesize (=30~ici)

c.

$$a \, = \, Xi \, \backslash \, f\, i \ ;$$

d.

e. Étant données les périodes de ces fonctions inférieures ou égales à 1, non.

5 Systèmes non linéaires

a.

Pour que l'iteration donne lieu à une convergence, alpha doit être positif et inférieur à samplesize, Ici, pour un samplesize de 30, nous choisissons

$$alpha=2\ ou\ 4\ ou\ 6$$

b.

Une suite

- oscillante se traduit par une spirale
- croissante ou décroissante se traduit par un escalier