Dash Components

Objectives

After completing the lab you will be able to:

- · Create a dash application layout
- · Add HTML H1, P, and Div components
- · Add core graph component
- Add multiple charts

Estimated time needed: 30 minutes

Dataset Used

Airline Reporting Carrier On-Time Performance dataset from Data Asset eXchange

About Skills Network Cloud IDE

This Skills Network Labs Cloud IDE (Integrated Development Environment) provides a hands-on environment in your web browser for completing course and project related labs. It utilizes Theia, an open-source IDE platform, that can be run on desktop or on the cloud.

So far in the course you have been using Jupyter notebooks to run your python code. This IDE provides an alternative for editing and running your Python code. In this lab you will be using this alternative Python runtime to create and launch your Dash applications.

Important Notice about this lab environment

Please be aware that sessions for this lab environment are not persisted. When you launch the Cloud IDE, you are presented with a 'dedicated computer on the cloud' exclusively for you. This is available to you as long as you are actively working on the labs.

Once you close your session or it is timed out due to inactivity, you are logged off, and this 'dedicated computer on the cloud' is deleted along with any files you may have created, dowloaded or installed. The next time you launch this lab, a new environment is created for you.

If you finish only part of the lab and return later, you may have to start from the beginning. So, it is a good idea to plan to your time accordingly and finish your labs in a single session.

Let's start creating dash application

6

Goal

Create a dashboard that displays the percentage of flights running under specific distance group. Distance group is the distance intervals, every 250 miles, for flight segment. If the flight covers to 500 miles, it will be under distance group 2 (250 miles + 250 miles).

Expected Output

Below is the expected result from the lab. Our dashboard application consists of three components:

- Title of the application
- Description of the application
- Chart conveying the proportion of distance group by month

To do:

- 1. Import required libraries and read the dataset
- 2. Create an application layout
- 3. Add title to the dashboard using HTML H1 component
- Add a paragraph about the chart using HTML P component
- 5. Add the pie chart above using core graph component
- 6. Run the app

Get the tool ready

```
• Install python packages required to run the application. Copy and paste the below command to the terminal.
   1. 1
   1. python3 -m pip install packaging
Copied!
   1. 1
   1. python3 -m pip install pandas dash
Copied!
   eia@theiadocker-malikas:/home/project_x
theia@theiadocker-malikas:/home/project$ python3 -m pip install pandas dash
   Downloading https://files.pythonhosted.org/packages/c3/e2/00cacecafbab071c787019f00ad84ca3185952f6bb9bca9550ed83870d4d/pandas-1.1.5-cp36-cp36m-manylinux1 x8
hl (9.5MB)
       100%
                                                                           9.5MB 163kB/s
Collecting dash
Downloading https://files.pythonhosted.org/packages/cc/42/e1692b2d34e4135569db680efe3438e809a6b3f0ae607ad41aeff7741672/dash-2.6.1-py3-none-any.whl (9.9MB)
       100% |
Collecting pytz>=2017.2 (from pandas)
Cache entry deserialization failed,
   Downloading https://files.pythonhosted.org/packages/d5/50/54451e88e3da4616286029a3a17fc377de817f66a0f50e1faaee90161724/pytz-2022.2.1-py2.py3-none-any.whl (100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 1
Collecting python-dateutil>=2.7.3 (from pandas)
    Cache entry deserialization failed, entry ignored 
Cache entry deserialization failed, entry ignored
   Downloading https://files.pythonhosted.org/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-ar
       100% |
                                                                            256kB 5.8MB/s
Collecting numpy>=1.15.4 (from pandas)
Downloading https://files.pythonhosted.org/packages/45/b2/6c7545bb7a38754d63048c7696804a0d947328125d81bf12beaa692c3ae3/numpy-1.19.5-cp36-cp36m-manylinux1_x8
100% | 13.4MB 111kB/s

Collecting contextvars==2.4; python_version < "3.7" (from dash)

Downloading https://files.pythonhosted.org/packages/83/96/55b82d9f13763be9d672622e1b8106c85acb83edd7cc2fa5bc67cd9877e9/contextvars-2.4.tar.gz

Collecting dash-table==5.0.0 (from dash)

Downloading https://files.pythonhosted.org/packages/83/96/55b82d9f13763be9d672622e1b8106c85acb83edd7cc2fa5bc67cd9877e9/contextvars-2.4.tar.gz
   Downloading \ https://files.pythonhosted.org/packages/da/ce/43f77dc8e7bbad02a9f88d07bf794eaf68359df756a28bb9f2f78e255bb1/dash\_table-5.0.0-py3-none-any.whl
    1. pip3 install httpx==0.20 dash plotly
Copied!
                                                                                                                                                                                                                                           Ш
 theia@theiadocker-malikas: /home/project x
 theia@theiadocker-malikas:/home/project$ pip3 install httpx==0.20 dash plotly
 /usr/lib/python3/dist-packages/secretstorage/ancrypto.py:15: CryptograpnyDeprecationWarning: int_from _bytes is deprecated, use int.from_bytes instead
      from cryptography.utils import int from bytes
 /usr/lib/python3/dist-packages/secretstorage/util.py:19: CryptographyDeprecationWarning: int_from_byt
 es is deprecated, use int.from_bytes instead
     from cryptography.utils import int from bytes
Defaulting to user installation because normal site-packages is not writeable Collecting httpx==0.20
      Downloading httpx-0.20.0-py3-none-any.whl (82 kB)
                                                                                           82 kB 779 kB/s
 Collecting dash
     Downloading dash-2.6.1-py3-none-any.whl (9.9 MB)
                                                                                          9.9 MB 40.7 MB/s
 Collecting plotly
      Downloading plotly-5.10.0-py2.py3-none-any.whl (15.2 MB)
                                                                                           15.2 MB 39.3 MB/s
```

• Create a new python script, by clicking on the menu bar and selecting File->New File, as in the image below.

• Provide the file name as dash_basics.py

 $\bullet \quad \text{Open a new terminal, by clicking on the menu bar and selecting } \textbf{Terminal-} \\ \textbf{New Terminal}, \text{ as in the image below.}$

Now, you have script and terminal ready to start the lab.

TASK 1 - Data Preparation

Let's start with

- Importing necessary libraries
- Reading and sampling 500 random data points
- Get the chart ready

Copy the below code to the dash_basics.py script and review the code.

- 1. 1 2. 2 3. 3
- 4. 4 5. 5
- 6. 6 7. 7
- 8. 8 9. 9
- 10. 10 11. 11
- 12. 12 13. 13
- 14. 14 15. 15 16. 16
- 17. 17 18. 18
- # Import required packages
 import pandas as pd
- 3. import plotly.express as px
- 4. import dash
- 5. from dash import dcc
- 6. from dash import html
- 7.
- 8. # Read the airline data into pandas dataframe

```
9. airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airli
10. encoding = "ISO-8859-1",
11. dtype={'Div1Airport': str, 'Div1TailNum': str,
12. 'Div2Airport': str, 'Div2TailNum': str})
13.
14. # Randomly sample 500 data points. Setting the random state to be 42 so that we get same result.
15. data = airline_data.sample(n=500, random_state=42)
16.
17. # Pie Chart Creation
18. fig = px.pie(data, values='Flights', names='DistanceGroup', title='Distance group proportion by flights')
```

Copied!

TASK 2 - Create dash application and get the layout skeleton

Next, we create a skeleton for our dash application. Our dashboard application has three components as seen before:

· Title of the application

NOTE: Copy below the current code

- · Description of the application
- Chart conveying the proportion of distance group by month

Mapping to the respective Dash HTML tags:

- Title added using html.H1() tag
- · Description added using html.P() tag
- Chart added using dcc.Graph() tag

Copy the below code to the dash_basics.py script and review the structure.

```
1. 1
2. 2
10.10
11. 11
13. 13
14. 14
15. 15
16. 16
1. # Create a dash application
2. app = dash.Dash(__name__)
 4. # Get the layout of the application and adjust it.
 5. # Create an outer division using html.Div and add title to the dashboard using html.H1 component
6. # Add description about the graph using HTML P (paragraph) component
7. # Finally, add graph component.
8. app.layout = html.Div(children=[html.H1(),
                                    html.P(),
10.
                                    dcc.Graph(),
11.
12.
                        ])
14. # Run the application
15. if __name__ == '__main__':
        app.run_server()
```

TASK 3 - Add the application title

Update the html.H1() tag to hold the application title.

- Application title is Airline Dashboard
- $\bullet \quad \text{Use style parameter provided below to make the title } \textbf{center} \text{ aligned, with color code } \textbf{\#503D36, and } \text{font-size as } \textbf{40}$

1. 1

1. 'Airline Dashboard',style={'textAlign': 'center', 'color': '#503D36', 'font-size': 40}

Copied!

After updating the html.H1() with the application title, the app.layout will look like:

```
dash_basics.py ×
          # Create a dash application
    20
          app = dash.Dash(__name__)
    21
    22
          # Get the layout of the application and adjust it.
    23
          # Create an outer division using html.Div and add title to the das
    24
          # Add description about the graph using HTML P (paragraph) compone
    25
          # Finally, add graph component
    26
    27
          app.layout = html.Div(children=[html.H1('Airline Dashboard',
                                                     style={'textAlign': 'cent
    28
                                                             'color': '#503D36'
    29
                                                              'font-size': 40}
    30
    31
                                            html.P(),
                                            dcc.Graph(),
    32
    33
                               1)
    34
    35
```

TASK 4 - Add the application description

Update the html.P() tag to hold the description of the application.

- ullet Description is Proportion of distance group (250 mile distance interval group) by flights.
- Use style parameter to make the description center aligned and with color #F57241.

1. 1

1. 'Proportion of distance group (250 mile distance interval group) by flights.', style={'textAlign':'center', 'color': '#F57241'}

Copied!

After updating the html.Hl() with the application title, the app.layout will look like:

```
Terminal
File
     Edit
          Selection View
                                Run
                           Go
                                               Help
dash_basics.py ●
          # create a dash application
    שע
          app = dash.Dash(__name__)
    21
    22
          # Get the layout of the application and adjust it.
    23
          # Create an outer division using html.Div and add title to the das
    24
          # Add description about the graph using HTML P (paragraph) compone
    25
    26
          # Finally, add graph component.
          app.layout = html.Div(children=[html.H1('Airline Dashboard',
    27
                                                      style={'textAlign': 'cent
    28
                                                             'color': '#503D36'
    29
                                                              'font-size': 40})
    30
                                            html.P('Proportion of distance gro
    31
                                                    style={'textAlign':'center
    32
    33
                                            dcc.Graph(),
    34
                               1)
    35
    36
```

TASK 5 - Update the graph

Update figure parameter of dcc.Graph() component to add the pie chart. We have created pie chart and assigned it to fig. Let's use that to update the figure parameter.

- 1. 1
- 1. figure=fig

Copied!

After updating the dcc . Graph() with the application title, the app . layout will look like:

```
File
     Edit
           Selection View
                                      Terminal
                           Go
                                Run
                                               Help
dash_basics.py ×
          # create a dash application
    ۷۷
    21
          app = dash.Dash(__name__)
    22
    23
          # Get the layout of the application and adjust it.
          # Create an outer division using html.Div and add title to the das
    24
    25
          # Add description about the graph using HTML P (paragraph) compone
    26
          # Finally, add graph component.
          app.layout = html.Div(children=[html.H1('Airline Dashboard',
    27
                                                      style={'textAlign': 'cent
    28
                                                              'color': '#503D36
    29
                                                               'font-size': 40}
    30
                                            html.P('Proportion of distance gro
    31
                                                     style={'textAlign':'center
    32
                                            dcc.Graph(figure=fig),
    33
    34
    35
                                1)
    36
```

Before running the application, save the file by clicking on File -> Save from the menu bar.

You can Refer to the entire python code here

```
3. 3
4. 4
5. 5
6. 6
7. 7
8. 8
9. 9
10. 10
11. 11
12. 12
13. 13
```

```
15. 15
 16. 16
 17. 17
 18 18
 19. 19
 20. 20
 21. 21
 22. 22
 23. 23
 24. 24
 25. 25
 26. 26
 27. 27
 28. 28
 29. 29
 30.30
 31. 31
 32. 32
 33. 33
 34. 34
 35. 35
 36. 36
  2. # Import required packages
  3. import pandas as pd
  4. import plotly.express as px
  5. import dash
  6. from dash import dcc
  7. from dash import html
  9. # Read the airline data into pandas dataframe
 10. airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airli
                                 encoding = "ISO-8859-1",
 11.
                                 dtype={'Div1Airport': str, 'Div1TailNum': str,
 12.
 13.
                                        'Div2Airport': str, 'Div2TailNum': str})
 14.
 15. # Randomly sample 500 data points. Setting the random state to be 42 so that we get same result.
 16. data = airline_data.sample(n=500, random_state=42)
 17.
 18. # Pie Chart Creation
 19. fig = px.pie(data, values='Flights', names='DistanceGroup', title='Distance group proportion by flights')
 20.
 21. # Create a dash application
 22. app = dash.Dash(__name__)
 23.
 24. # Get the layout of the application and adjust it.
 25. # Create an outer division using html.Div and add title to the dashboard using html.H1 component
 26. # Add description about the graph using HTML P (paragraph) component
 27. # Finally, add graph component.
 28. app.layout = html.Div(children=[html.H1('Airline Dashboard', style={'textAlign': 'center', 'color': '#503D36', 'font-size': 40}),
 29.
                                     html.P('Proportion of distance group (250 mile distance interval group) by flights.', style={'textAlign':'center', 'color': '#F5724
 30.
                                     dcc.Graph(figure=fig),
 31.
 32.
                         ])
 34. # Run the application
 35. if __name__ == '__main_
 36.
         app.run_server()
Copied!
TASK 6 - Run the application
```

- Run the python file using the following command in the terminal
- python3 dash_basics.py

Copied!

14. 14

 $\bullet \quad \text{Observe the port number shown in the terminal.} \\$

The app will open in a new browser tab like below:

Airline Dashboard

Proportion of distance group (250 mile distance interval group) by flights.

Distance group proportion by flights

Congratulations, you have successfully created your first dash application!

Exercise: Practice Tasks

You will practice some tasks to update the dashboard.

- 1. Change the title to the dashboard from "Airline Dashboard" to "Airline On-time Performance Dashboard" using HTML H1 component and font-size as 50.
 - ► Answer
- 2. Save the above changes and relaunch the dashboard application to see the updated dashboard title.
- Answer
- Write a command to stop the running app in the terminal
- ► Answer

Author

Saishruthi Swaminathan

Changelog

Date	Version	Changed by	Change Description
05-07-2021	1.1	Saishruthi	Initial version created
24-08-2022	1.2	Pratiksha	Updated instructions
29-08-2022	1.3	Pratiksha Verma	Updated Screenshot

DateVersionChanged byChange Description06-07-20231.4Dr. PoojaCode update

© IBM Corporation 2020. All rights reserved.