LOAN DOCUMENT

LOAN DOCUMEN	
PHOTOGRAPH THIS :	SHEET
E	
E LEVEL	INVENTORY
LEVEL DOCUMENT IDENTIFICATION	
DOCUMENT IDENTIFICATION	
	A
·	
DISTRIBUTION	ON STATEMENT I
ANTESSION DE	H
NTIS GRAM DITIC TRAC DUNANNOUNCED DISTRICTION	
	V
ву]]
DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL	l.
DISTRIBUTION AVAILABILITY AND/OR SPECIAL	DATE ACCESSIONED
A-1	
DISTRIBUTION STAMP	A
	F
	DATE RETURNED
19981223 054	
DATE RECEIVED IN DTIC	REGISTERED OR CERTIFIED NUMBER
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FI	DAC
DTIC FORM 70A DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL STOCK IN REHALISTED.

10,9,80

NO DISTRIBUTION STATEMENT

NADC Tech. Info:

270 VOLT DC MARIABLE SPEED

GENERATOR AND CONTROL UNII,

AIRCRAFT ELECTRICAL POWER SOSTIM

September 18, 1983

FINAL TOWNISAL REPORT

Preparation:

OI, And A Cadamal

18. Augustin to tideen Dr

Anthony tideen Dr

Anthony to the Albert

Preparation fol:

Naval Air Devi (opment Conter

Marininster PA TES)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NADC-N62269-80-M-1746		
4. TiTLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
270 Volt DC Variable Speed Generator and Control Unit,		Final Technical Report
Aircraft Electrical Power System		6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(a)
		N62269-80-M-1746
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CACI, Inc Federal 1815 North Fort Myer Drive		
Arlington, VA 22209		12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS		September 18, 1980
Naval Air Development Center		13. NUMBER OF PAGES
Warminster, PA		24
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified
		UNCIASSIFICATION/DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
	•	
	_	
17. DISTRIBUTION STATEMENT (of the abstract entered in	in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
1		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)
is KEI Honos (seminal and		
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)	
20. ABSTRACT (Samuel Street		
		j
		j
1		

SUMMARY

- 1. This task included the setup, instrumentation, testing and data compilation for a single generator 270 volt DC (direct current) aircraft electric power system.
- 2. The generator system was interconnected, instrumentation was completed, and operational tests were conducted. Several deficiencies were observed:
 - (a) The generator coolant reservoir was too small to contain the coolant expansion at operating temperatures. This caused coolant loss through the reservoir relief valve. An external expansion tank was added to correct this problem.
 - (b) A water cooled heat exchanger did not provide controllable generator coolant temperature. An air cooled exchanger was substituted in the test setup with improved results.
 - (c) The generator drive stand speed was limited to 10,500 RPM (revolutions per minute). Repair and adjustment of drive electronics was required to obtain speeds over the range 9,000 to 18,000 RPM.
- 3. Generator voltage regulation tests over the rated speed and load range disclosed:
 - (a) 270 volt DC output voltage was maintained over rated speed and load with momentary application and removal of rated loads.
 - (b) Voltage transients exceed specified limits with load application and removal.
 - (c) Voltage transient recovery time is within allowable limits for rated load application and removal.
 - (d) High ripple voltage developed during tests at 14,000 RPM and remained high during the balance of the voltage regulation tests. The ripple voltage exceeded specified limits - 24 volt P/P (peak to peak). The generator high ripple protection did not trip as required. However, it did trip once during the 17,500 RPM tests and reset when the control switch was cycled.

- 4. Coolant loss was a continuing operational problem. The addition of an expansion tank helped, but it did not solve the problem. During temperature stability tests, coolant was lost. There was no visible dripping but there was a vapor cloud over the generator. On July 1, coolant started to drip from the front and rear generator flanges.
- 5. On July 9, after approximately 100 hours of generator operation, the generator developed a ground fault. There was a blow out, with fire, from the rear manifold. The fire extinguished. Heavy vapor then enveloped the generator and coolant was observed flowing at the front and rear flanges. Fire engulfed the generator and was put out with carbon dioxide extinguishers. The fire was extinguished approximately one minute after symptoms of the ground fault were observed on video tape.
- 6. Subsequent closed cup flash point tests of samples of Coolanol 25 which was drained from the generator coolant system showed that the Coolanol 25 flash point had degraded to room temperature (less than 78°F). The manufacturers' technical bulletin specifies flash point (minimum) 325°F.

CONTENTS

	Page
	5
INTRODUCTION	_
Background	5
Scope	5
Task One Effort	5
TEST SETUP	6
OPERATIONAL TESTS	8
VOLTAGE REGULATION	14
CONCLUSIONS	23
RECOMMENDATIONS	24

INTRODUCTION

1. Background

The Navy is developing an advanced electric power system for future military aircraft. The system consists of the 270 volt DC generator, regulator, protective and distribution system components necessary to implement a complete aircraft system.

The development of the system components is presently under contract to various avionic and airframe contractors. As each component type is delivered, it is necessary that it be subjected to various performance tests to determine if the essential performance requirements and design goals have been met. This information will be used to establish state-of-art tradeoff alternatives for component development and system performance criteria.

2. Scope

This task includes the setup, instrumentation, testing and data compilation for a single generator 270 volt DC electric power system.

3. Task One Effort

This first phase test consisted of completing a partially assembled test setup, conducting preliminary operational tests, and initiating generator voltage regulation tests over the rated speed and load range.

TEST SETUP

- A wiring diagram of the 270 volt DC system interconnection and instrumentation is shown on Figure 1 (Wiring Diagram, 270 VDC Generator Lab Test, NADC Drawing No. TE22082).
- 2. Additional instrumentation, not shown on Figure 1, consisted of thermocouple temperature monitoring of coolant temperature into the generator, coolant temperature out of the generator, and one generator bearing temperature. The generator had four thermocouples, but the only one operative was the one from the top of the generator rear manifold cover.
- 3. Closed circuit television camera monitoring and recording was also provided.

Figure 1

OPERATIONAL TESTS

- 1. Prior to start of voltage regulation electrical test, operational tests of the generator were conducted to obtain some baseline data. It was established from discussions at NAVAIRDEVCEN that the maximum coolant temperature should be 80° C at the output of the heat exchanger (the input to the generator) with the generator under full load. Test Data Sheet #1 shows the results of tests wherein waterflow through a heat exchanger was adjusted to establish a maximum temperature of 80° C under full load.
- 2. The initial test disclosed an operating deficiency wherein the generator coolant system, including the reservoir, could not contain the coolant as it expanded from operational temperature rise. As a result, an expansion tank was added to test setup. Test Data Sheet #2 presents test results with the expansion tank in the setup. An additional operational problem appeared; coolant was lost during operational test although there were no visible signs of loss such as dripping coolant. However, a heavy vapor cloud was visible over the generator during tests.
- 3. Test Data Sheet #3 presents the data from a test conducted to determine the transient amplitude variations in the 270 volt DC level as the generator control panel three-position switch (OFF-TEST-ON) is switched from OFF to TEST to ON. Transients were recorded on the visicorder (Figure 1) using a fluid damped galvonometer, Type M3300, and matching network.
- 4. Test Data Sheet #4 presents the data from a test conducted to monitor generator coolant and bearing temperature rise under no load using the water cooled heat exchanger with the water flow set as was required to maintain coolant "in" at 80°C under full load. Since coolant exceeded the 80°C limit with

the exchanger water flow set as it had been to maintain 80°C with full load, it was concluded that the water cooled exchanger did not provide a controlled/stable temperature base line as required for generator tests. The water cooled exchanger was replaced by an air cooled exchanger with improved results.

. 3

AiResearch (Div of Garrett), Torrance, CA

SPEC. NO. Water Cooled Heat Exchanger

TED EL NO. QUANTITY TEST BY T. Boyce

DESCRIPTION

MANUFACTURER

Adjust water flow in heat exchanger to maintain generator coolant "in" at approximately 80°C with generator at 9000 RPM and full load.

					OOLAN		REAR	,,,, , , ,					
TIME	SPEED RPM	VOLTS	I AMPS	TEM! IN	OUT		BEARI TEMP	oC NG					
1022	9000	269.5	44	34	38	55	-						
1025	9000	269.5	80	35	39	55	-						
1033	9000	269.5	121	38	44	55	-						
1038	9000	269.5	166	42	50	56	-						
1046	9000	269.5	166	50	62	56	96						
1102	9000	269.5	166	54	67	56	118						
1107	9000	269.5	166	44	54	56	105						
1120	9000	269.5	166	56	64	56	110						
SHUT D	OWN												
1254	9000	269.5	166	37	43	54	52						
1308	9000	269.5	166	60	71	56	110						
1315	9000	269.5	166	73	85	56	120						
1328	9000	269.5	166	82	96	54	136						
1345	9000	269.5	166	80	_	-	142						
1350	9000	269.5	166	82	-	-	145						
1400	9000	269.5	166	76	-	-	143						
1413	9000	269.5	166	78	-	-	143						
1430	COOL	NT BU	BBLIN	G OUT	OF I	RESERV	OIR I	ELIEF	VALV	Ε.			
	SHUT	DOWN .											ATE NO. 10856

TEM	COMPONENT OF			DATE	PAGE
270V DC Generator	AAES			13 JUN 80	1 of 1
ANUFACTURER				MFR'S MODEL NO.	
AiResearch (Div of Ga	rrett), To	rrance, (A	518988-1-1	
uster Cooled	SPEC. NO.			TYPE NO.	
Heat Exchanger					
RIORITY NO. TED EL N).	QUANTITY	TEST BY	Г. Воусе	

Added coolant expansion tank. Test systems at full load and 9000 RPM to determine effect of added expansion tank in reduction of operational loss of coolant.

					LANT		REAR						
TIME	SPEED RPM	VOLTS	I AMPS	TEM IN	P °C OUT	FLOW %	BEAR1 TEMP	NG OC					
1130		269.5		-	-	-	_						
1200	9000	269.5	121	60	-	-	88						
1220	9000	269.5	166	-	_	-	_						
1225	9000	269.5	166	78	90	44	112						
1245	9000	269.5	166	77	93	51.5	143						
1300	9000	269.5	166	78	96	48	143						
1300	SHUT	DOWN	- SPE	ED TO	2000	RPM							
1315	_		-	47	_	-	90						
1322	_	_	-	42	-	-	68						
NOTE:	MONDA	Y, 16	JUN,	GENE	RATOR	COOL	ANT I	EVEL	WAS E	ELOW	SIGHT	GAUG	E
	IN GE	NERAI	OR CC	OLANT	RESE	RVOIR	. cc	OLANT	IS E	EING	LOST	DURIN	G
	OPERA	TIONA	L TES	т. 1	HERE	IS NO	VISI	BLE S	OURCE	OF C	OOLAN	T LOS	S -
	NO DE	IPPIN	G. H	OWEVE	R, HE	AVY V	APOR	CLOUL	S ARI	VISI	BLE C	VER 1	НЕ
	GENEF	ATOP.	DURIN	G OPE	RATIC	NAL I	ESTS.						
						1 1						PLAT	E NO. 10856

ITEM	COMPONENT OF			DATE		PAGE
270V DC Generator	AAES			20 JUN	80	1 ^{of} 1
MANUFACTURER AiResearch (Div of	Garrett), To	rrance, CA		MFR'S MODEL NO. 518988-	1-1	
Voltage Transients	NADC-VT-	13 JUN TS-7502,	75	TYPE NO.		
PRIORITY NO. TED	EL NO.	QUANTITY	TEST BY	Г. Воусе		

Record 270V DC voltage as generator is switched from OFF to TEST to ON to TEST by means of the generator control panel three-position switch (OFF-TEST-ON).

			C	OOLAN	IT	REAR		VOLI	AGE I	RANSI			
TIME	SPEED RPM	LOAD	TEM IN	OUT	FLOW	BEAR. TEMPO	TE C +	ST_	+	N -	TE +	ST -	
1035	9000	N/L	47	-	55	55	630	-20	580	+80	650	0	
1120	9000	N/L	62	67	-	80	660	-20	630	+20	660	0	
1320	9000	N/L	42	45	_		625	-20	660	0	660	0	
1322	9000	N/L	42	45	_	58	660	-20	620	+30	635	0	
1325	9000	N/L	52	56	_	65	635	-20	625	+20	655	0	
1420	9000	N/L	61	74	_	85	645	-20	580	60	520	20	
1504	9000	N/L	78	84	54	95	-	-	-	_	_	_	
					-								
									-				
		<u> </u>											F NO. 10856

	·								DATE			PAGE	
ITEM	0.0-	na o +		COMPONENT O	_F AES					JUN 8	0	1 0	- 1
270V D	C Gene	rator		A	ALS			-	MFR'S MODEL				
AiRese	arch (Div o	f Gar	rett)	, Tor	rance	, CA			988-1	-1		,
Temp	eratur	e Ris	e	SPEC. NO.					TYPE NO.				
PRIORITY NO.	RPM,	NO LO	TED EL NO.			QUANTITY		TEST BY					
				,				T	. Воу	ce			
DESCRIPTION Monito			wa wi	so of	gana	rator	ഹവ	ant a	nd re	ar be	aring	: a 90	00 RPN
with n	o load	. Wa	ter c	ooled	heat	exch	anger	set	to ma	intai	n 80°	C at	full
load.													
				LANT									
TIME	SPEED	LOAD		ГІ	BEARI								
* 1:11	RPM		IN	OUT	TEMP	ا ل							
0830	9000	N/L	45	49	53								
0900	9000	N/L	68	73	83								
0930	9000	N/L	75	80	90								
1000	9000	N/L	78	84	95		_						
1130	9000	N/L	87	93	100								
		ï											
A WAI	ER-COC	LED H	EAT I	XCHAN	GER V	AS IN	USE	TO MA	INTAI	N GEN	IERATO	R CO	LANT
TEMPE	RATURE	WITE	IN DI	SIREI) LIM	TS.	WATE	FLOV	HA.D	BEEN	ADJUS	TED 7	ro
MAINT	AIN TH	E GEN	ERATO	R COC	LANT	AT AF	PROX	MATEI	Y 809	c e s	000 I	PM W	TH
FULL	LOAD.	TEST	RESU	JLTS A	BOVE	INDIC	ATE	OOLA	TEN	IPERA]	URE :	NTO :	THE
	RATOR (1		1					1	1	1
	NO LO	Į.		*		1]	ł	ļ	l	1	1
	SETUP		1	1	i	1	1	1				1	
	VED R												
	122												
												,	
			-	-									
	 	 				 		+			1		

13

VOLTAGE REGULATION

- 1. Test Data Sheet #5 presents data on a voltage regulation test. During this test we observed the first sign of coolant leakage. Coolant was found dripping from both the front and rear generator flanges and voltage transients were observed which exceed the contract referenced specification.
- 2. Test Data Sheet #6 presents generator RPM, voltage, coolant temperature "in", bearing temperature, and coolant flow during voltage regulation tests. Data is given under no load. It was at the completion of these tests that a 100% load was applied to the generator at 18,000 RPM. The purpose was to observe performance, temperature rise, stability, etc., under continuous load at 18,000 RPM for comparison with test results at 9,000 RPM. Shortly after application of the 100% load, a ground fault occurred. A blow-out was observed in the vicinity of the rear manifold, which ignited and then extinguished. A heavy vapor cloud was expelled by the generator and coolant was then observed flowing heavily from the front and rear flanges. Fire then engulfed the generator and was put out by carbon dioxide extinguishers approximately one minute after symptoms of the ground fault were observed. The sequence of events was recorded on video tape.
- 3. Test Data Sheet #7 (6 pages) presents results of tests at speeds from 9,000 to 18,000 RPM with momentary loads of 0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100% applied and removed. At a speed of 14,000 RPM a high ripple voltage developed. Since it was above fault limits, 24V P/P for 200 ms, the generator voltage should have, but did not, cut off. Had this fault been observed, as a results of continual voltage cut off, it would have terminated tests and possibly prevented subsequent loss of the generator from the ground fault fire. Test data shows voltage transients in excess of specified limits with recovery time within allowable limits.

TEST DATA		<i></i> #5											
ITEM				COMPONENT O					DATE 1	JUL 8		PAGE 1 OF	1
	DC Gen	erato	r	A	AES				MFR'S MODEL		0 1		<u> </u>
MANUFACTURER A i Res	earch	(Div	of Ga	rrett). To	rranc	e, CA			8988-	1-1		
TEST Vol	tage R Trans	egula	tion	SPEC. NO.		s-750	13 JU	N 75	TYPE NO.				
PRIORITY NO.	114110		TED EL NO.			QUANTITY		TEST BY	'. Boy	CA			
									. Doy				
DESCRIPTION	genera	tor v	oltag	e reg	ulati	on at	rate	d spe	eds w	ith l	oads	of 25	,
50, 7	5 and	100%.	Gen	erato	r was	set	to de	sirec	spee	d. M	loment	ary 1	oaus
were	applie	d as	follo	ws:	0 to	25%,	0 to	50%,	0 to	75%,	and 0	to 1	00%.
						COOI	LANT	BEARI	NG V	OLTAG	E TRA	NSIEN	TS
	SPEED	LOAD 1	RECOR	VOLTS	RIPPL			TEMP OC	0	N LC	AD O	F	
TIME	SPEED RPM	%	NO.	VOLIS	V P/P	°C IN			+	-	+		
0945	9000	N/L	-	270	_	41	56	55	-		-		
1035	COOLAN	T DRI	P FRC	M FRO	NT AN	D REA	R GEN	ERATO	R FLA	NGES	(16 D	ROP/N	IIN)
1210	9000	100	-	-	_	44	-	58					1
1216	9000	100	-	-	_	50	-	89	COOLA	NT DE	IP (9	DROF	/MIN)
1250	9000	25	4017	270	15	_	-	-	-	218	320	190	
	9000	50	4021	270	8	_	_	_	_	240	415	207	
_	9000	75	4022	270	6	_	_	-	-	230	370	195	
400	9000	100	4023	270	5	-	-	-	_	230	360	195	
1350	10000	25	4028	270	15	-	-	-	-	215	325	175	
	10000	50	4029	270	6	_	-	-	-	210	405	190	
	1	 	 	1	 	 	1						

TRANSIENT VOLTAGE (REF. SPEC) MUST BE WITHIN 350V/200V WINDOW NOTE: FOR LOAD APPLICATION AND REMOVAL.

DATA ABOVE SHOWS SIX TRANSIENTS ABOVE 350V AND SEVEN BELOW 200V.

75 4030

100 4031

TEM	COMPONENT OF			DATE	PAGE
270V DC Generator	AAES			9 JUL 80	1 of 1
MANUFACTURER	4			MFR'S MODEL NO.	
AiResearch (Div of Ga	rrett), To	rrance, CA	1	518988-1-1	
sugenerator Temperatur During Voltage Regulation Tests	&PEC. NO.	12 11		TYPE NO.	
PRIORITY NO. TED EL NO.		QUANTITY	TEST BY		
			Γ	. Boyce	
DESCRIPTION			-		11 . 11
Data proconted: Cond	erator RPM.	voltage.	coola	nt temperature	"in",

speeds and loads. Data given under no-load condition.

				LANT]	BEARI)	NG								
TIME	SPEED RPM	OUTPU VOLTS	T TEMP	FLOW %	TEMP OC							:		
1030	9000	270	42	56	50									
1035	11000	270	44	66	55									
1040	11500	270	44	69	62									
1042	12000	270	45	-	65									
1046	13000	270	46	76	70									
1050	13500	270	46	79	72									
1051	14000	270	47	81	75									
1053	14500	270	47	84	77									
1055	15000	270	48	86	80									
1057	15500	270	49	87	83									
1100	16000	270	49	89	86									
1102	17000	270	51	90	90									
1105	17500	270	52	92	95									
1107	18000	NO VOLT	-	-	_	SWIT	CH T	OI	FF 1	THEN	TO TH	ST		
1110	17500	270	50	91	95									
1111	18000	270	52	92	97									
*1115	18000	@ 100	% LOA	D										
1115	-	_	54	92	100	FIRE	! E	VIDI	ENC	E OF	GROU	D FA	ULT	
	TRIGGE	RING	THE I	NCIDE	NT.					5. A.				

ITEM	COMPONENT OF		DATE	PAGE				
270V DC Generator	AAES		9 JUL 80 1 of 6					
MANUFACTURER AiResearch (Div of G	MFR'S MODEL NO. 518988-1-1							
Voltage Regulation and Transients	NADC-VT-TS-7502	JUN 75	TYPE NO.					
PRIORITY NO. TED EL NO	QUANTITY	TEST BY	Г. Воусе					

Voltage regulation at rated speeds and with loads of 25, 50, 75 and 100%.

Generator was set to desired speed. Momentary loads were applied as

follows: 0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100%.

					VOLT			ENTS !	RECOVI	ERY T	IME		
RECORD NUMBER	SPEED RPM	LOAD	VOLTS	RIPPLI V P/P	E 0	V LO	AD O	FF_	MILL	OFF			
4306		N/L	270	1.2	-	-	-	-	-	_			
4306	9000	25	270	13.2	-	-	312	208	-	40			
4307	9000	50	270	8.5	_	208	378	199	15	40			
4308	9000	75	270	6.6	_	227	322	208	15	45			
4309	9000	100	270	6.6	-	227	312	199	-	45			
4310	10000	N/L	270	1.2	-		-	_	_	-			
4310	10000	25	270	14.9		208	322	199	_	45			
4311	10000	50	270	8.5	_	199	341	199	15	45			
4312	10000	75	270	5.7	-	194	312	185	_	45			
4313	10000	100	270	4.7	-	246	350	194	15	45			
4314	11000	N/L	270	1.2	_	_	-		_				
4314	11000	25	270	14.9				_	-				
4315	11000	50	270	7.6		222	331	180	_	50			
4316	11000	75	270	7.6	-	246	416	180	-	40			
4317	11000	100	270	7.6	_	232	289	204		-			
TRAN	SIENT	VOLTA	GE MU	ST BE	WITH	IN LI	ITS	350V/	200V	OR L	DAD		
APPL	ICATIO	n AND	LOAD	REMO'	VAL.	DATA	ABOV	E SHO	VS TW	TRA	NSIENT	.'S	
ABOV	E 350V	AND	TEN B	FLOW	200V.	1						D1 4.	TE NO. 10856

ITEM	COMPONENT OF			DATE	PAGE			
270V DC Generator	AAES		9 JUL 80 2					
MANUFACTURER				MFR'S MODEL NO.				
AiResearch (Div of	Garrett), To	orrance, (CA	51 8988-1 - 1				
TEST Voltage Regulation			JUN 75	TYPE NO.				
and Transients	NADC-VT-	TS-7502						
PRIORITY NO. TED EL	10.	QUANTITY	TEST BY					
	,		7	C. Boyce				

Voltage regulation rated speeds and with loads of 25, 50, 75 and 100%.

Generator was set to desired speed. Momentary loads were applied as

0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100%. follows:

					VOLT	AGE 7	RANSI	ENTS	RECOV		IME		
RECORD NUMBER	SPEED RPM	LOAD %	VOLTS	RIPPL V P/P	E 0 +	N LO.	AD O +	FF 	MII.L ON	ISEC OFF			
4318	11500	N/L	270	1.2	-	_	-	-	_	-			
4318	11500	25	270	13.4	-	246	_	203	-	_			
4319	11500	50	270	7.6	_		322	185	-	45			
4320	11500	75	270	-	-	_	_	-	_	_			
4321	11500	100	270	6.6	-	251	331	189	-	50			
4322	12000	N/L	270	1.2	-	_	_	-	-	_			
4322	12000	25	270	12.3	-	218	331	208	15	40			
4323	12000	50	270	8.5	-	203	397	199	20	45			
4324	12000	75	270	4.7	-	237	326	189	_	40			
4325	12000	100	270	_	-	UNREA	DABLI	<u> </u>	-	_			
4326	12500	N/L	270	1.2	_	-		_	_	_			-
4326	12500	25	270	12.3	-	246	367	208	-	40			
4327	12500	50	270	8.5	_	237	379	189	-	40			
4328	12500	75	270	8.5	_	237	377	208	15	45			
4329	12500	100	270	7.6	-	237	327	208	15	40		į	
TRANS	IENT '	OLTA	SE (RI	F. SI	EC) 1	MUST	BE WI	THIN	350V/	00V	WINDOV	J FOR	
LOAD	APPLI	CATIO	N AND	REMO	VAL.	ABOV	E DAT.	A SHO	ws Fo	R TR	ANSIE	ITS	
EXCE	DING :	350V	AND F	VE B	LOW	200V.							

ITEM				COMPONENT O	F				DATE			PAGE	_
	DC Gen	erato	r	A	AES					<u>UL 80</u>	1	3 °	f 6
MANUFACTURER	20 001.							-	MFR'S MODEL		_		
AiRes	earch	(Div	of Ga	rrett), To	rranc	ce, CA	<u>A</u>		<u>988-1</u>	-1		
TEST Volt		gulat		SPEC. NO.		TS-75	13 JU	JN 75	TYPE NO.				
PRIORITY NO.			TED EL NO.			QUANTITY		TEST BY	_				
				1					Г. Воу	ce			
follo	ws: () to 5	י זטע			and 0			TME		
			T	ртррт	AOT1		AD C		MILL				T T
	CDDED	TOAD											
		LOAD	VOLTS	V P/P	· +	_	+	_	ON	OFF			
RECORD NUMBER 4330			VOLTS 270	V P/P 1.2	-	-	1 .	-	ON -	OFF -			
4330	RPM				-	- - 218	1 .	218	ON	OFF - 40			
4330 4330	RPM 13000	N/L	270	1.2	-	-	+	-	ON 15				

273 246

248

237

246

275

4333 | 13000 | 100

4334 13500 N/L

4334 13500

4335 13500

4336 13500

270

270

270

270

270

25

50

75

6.6

1.2

12.3

8.5

6.6

199

213

194

197

331

331

329

360

15

-

15

15

15

40

40

40

40

ITEM	COMPONENT OF			DATE	PAGE			
270V DC Generator	AAES			9 JUL 80	4	of 6		
MANUFACTURER			MFR'S MODEL NO.					
AiResearch (Div of G	arrett), To	rrance,	CA	518988-1-1				
TEST Voltage Regulation	SPEC. NO.		JUN 75	TYPE NO.				
and Transients	NADC-VT-	TS-7502						
PRIORITY NO. TED EL NO		QUANTITY	TEST BY					
	,		7	ľ. Boyce				

Voltage regulation at rated speed with loads of 25%, 50%, 75%, and 100%. Generator was set to desired speed. Momentary loads were applied as follows: 0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100%.

					VOLT	AGE T	RANSI	ENTS	RECOVE		IME		
RECORD	SPEED	LOAD	VOLTS	RIPPL	E Q	N LQ	AD O	FF	MILLI				
NUMBER	RPM	%	VOLIS	V P/P	+		+		ON	OFF			
4338	14000	N/L	270	1.2	-	-	-	-	-	-			
4338	14000	25	270	57	-	227	374	179	15	40			
4339	14000	50	270	45	284	227	412	175	15	40			<u></u>
4340	14000	75	270	36	283	232	340	199	15	40			
4341	14000	100	270	27	-	232	358	197	15	40			
4342	14500	N/L	270	9.5	_	_	-	***	-	-			
4342	14500	25	270	57	283	220	365	168	-	-			
4343	14500	50	270	43	279	227	407	192	15	40			
4344	14500	75	270	33	279	232	416	170	15	40			
4345	14500	100	270	26	-	232	355	189	15	40			
4346	15000	N/L	270	9.5	-	_	-	-	-	_			
4346	15000	25	270	53	_	222	379	175	15	40			<u> </u>
4347	15000	50	270	41	293	229	341	189	15	40			
4348	15000	75	270	29		227	388	161	15	40			
4349	15000	100	270	26	281	236	335	161	15	40			
RIPP	LE VOL	TAGE	EXCEE	S REC	UIRE	ENTS	- 247	P/P	(REF.	SPEC). [TRANSI	ENT
VOLT	AGE (R	EF. S	PEC) I	UST 1	BE WIT	THIN 3	50V/2	00V 1	VINDOW	FOR	LOAD	APPL	CATION
AND	REMOVA	L. A	BOVE	PATA :	HOWS	ELEVI	N TRA	NSIE	NTS IN	EXC	SS O	350	AND
TWEL	VE BEL	OW 20	oν.										5 NO 10055

ITEM	COMPONENT OF			DATE	PAGE				
270V DC Generator	AAES			9 JUL 80 5 of 6					
MANUFACTURER				MFR'S MODEL NO.					
AiResearch (Div of	Garrett), T	orrance, C	Α	518988-1-1					
TEST Voltage Regulation	SPEC. NO.	13 JU	TYPE NO.						
and Transients	NADC-VT-	TS-7502							
PRIORITY NO. TED EL	10.	QUANTITY	TEST BY						
			'	Т. Воусе					
DESCRIPTION									

Voltage regulation at rated speed with loads of 25%, 50%, 75%, and 100%. Generator was set to desired speed. Momentary loads were

applied as follows: 0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100%.

					VOLTA				RECOVI		IME		
RECORD NUMBER	SPEED RPM	LOAD	VOLTS	RIPPL V P/P	E 01	1 LO	AD OF	F _	MILL ON	ISEC OFF			
4350	15500	N/L	270	9.5	-	-	-	-	-	-			
4350	15500	25	270	52	288	253	379	165	15	40			<u></u>
4351	15500	50	270	38	283	227	378	170	15	40			
4352	15500	75	270	31	293	228	338	160	15	40			
4353	15500	100	270	24	291	229	350	165	15	40			
4354	16000	N/L	270	12	-	-	-	-	-	_			
4354	16000	25	270	43	298	227	378	156	-	40			
4355	16000	50	270	38	293	212	421	165	,	45			
4356	16000	75	270	24	283	227	378	151	-	45			
4357	16000	100	270	24	293	237	357	160	15	40			
4358	16500	N/L	270	11.4	-		-			_			
4358	16500	25	270	47	300	225	364	172	15	40			
4359	16500	50	270	37	295	229	395	156	_	40	·		
4360	16500	75	270	30	291	220	350	182	15	40			
4361	16500	100	270	23	285	229	345	160	15	40			
RIPP	E VOL	TAGE 1	EXCEE	S REC	QUIREN	IENTS	- 241	P/P	(REF	SPE	\$). 7	TRANS	ENT
VOLTA	GE (R	F. S	PEC) 1	MUST 1	BE WIT	THIN 3	50V/2	00V I	INDO	FOR	LOAD	APPL	CATION
AND	REMOVA	L. A	BOVE 1	ATA :	SHOWS	NINE	TRANS	IENTS	IN	XCES	OF :	350V A	ND
TWEL	VE BEL	φw 20	φv.										
				_		2	1					PLATI	E NO. 10856

ITEM	COMPONENT OF	DATE	PAGE
270V DC Generator	AAES	9 JUL 80	6 ° 6
MANUFACTURER	<u> </u>	MFR'S MODEL NO.	
AiResearch (Div of G	arrett), Torrance, CA	518988-1	_1
TEST Voltage Regulation	SPEC. NO. 13 JUN		
and Transients	NADC-VT-TS-7502		
PRIORITY NO. TED EL NO	QUANTITY	TEST BY	
		T. Boyce	

Voltage regulation at rated speed with loads of 25%, 50%, 75%, and 100%. Generator was set to desired speed. Momentary loads were applied as follows: 0 to 25%, 0 to 50%, 0 to 75%, and 0 to 100%.

							RANSIE		RECOVI		IME		
RECORD	SPEED	LOAD	VOLTS	RIPPL	E O			F	MILL	ISEC OFF			!
NUMBER	RPM	%		V P/P	+		+		ON	Orr			
4362	17000	N/L	270	9.5			-	_	-	-			
4362	17000	25	270	3.7	-	-	398	159	_	40			
4363	17000	50	270	37	304	217	380	172	15	40			
4364	17000	75	270	28	291	236	463	149	15	40			
4365	17000	100	270	22	283	227	335	158	15	40			
4366	17500	N/L	270	9.5		-	_	-	-				
4366	17500	25	270	43.2	VOL:	TAGE 1	DROPS	OUT A	AFTER	440	MSEC		
4367	17500	50	NO V	JOLTA	ĢΕ								
4368	17500	75	NO Y	OLTA	ĢΕ								
4369	17500	100	NO Y	VOLTA	GE .								
	GENER	ATOR	DRIVE	REDU	CED T	900	0 RPM	- NO	VOLTA	AGE			
	GENER	ATOR	TO OF	F THE	OT 0	TEST,	VOLT	AGE 2	70V				
4370	18000	25	270	42	-	-	395	169	-	40			
4371	18000	50	270	38	313	219	420	170	15	45			
*4372	18000	75	270	24 31	293	231	437	162	15	40			
4373	18000	100	270	24	291	250	357	165	15	40			
*RIPP	LE STA	RTED	AT 24	V P/P	, INC	REASE	р то	31V P	/P 25	0 MSE	C AFT	ER	
LOAD	WAS A	PPLIE	. p.										
	1	<u> </u>	<u> </u>	<u> </u>	<u></u>			<u></u>	<u> </u>		-t	<u></u>	TE NO 10856

CONCLUSIONS

- 1. The generator control unit failed to shut down the generator under high ripple voltage. There is a malfunction in the "Fault" circuitry.
- Coolanol 25 flash point changed after use in the generator cooling system; it became flammable at room temperature. Therefore, it is not suitable for aircraft generator coolant application.

RECOMMENDATIONS

- Investigate high ripple fault circuitry to determine cause of malfunction.
- 2. Use Aircraft Turbo Shaft Engine Lube Oil (MIL-L-23699) as coolant in subsequent AiResearch 270 volt DC generators.
- 3. Return the failed generator to AiResearch for failure analysis, repair, and refurbish if practical.

U 800 0675

CACI, Inc.

270 Volt DC variable speed generator and control unit...

DATE ISSUED TO

NAVAL GENERAL LIBRARIES (CHIEF OF NAVAL TRAINING SUPPORT)

NAVTRA 5070/2 (3/73) S/N 0115-LF-050-7020