Reg. No.: Name :

Continuous Assessment Test (CAT)- II- December, 2022

Programme	:	B.Tech.	Semester	:	Fall Semester Year I 2022-2023
Course Title		Calculus	Code	:	BMAT101L
Course Title			Slot	:	E1+TE1
Faculty	:	Dr. Saroj Kumar Dash, Dr. Manivannan A, Dr. C.	Class Nbr	:	CH2022231700190,
		Rajivganthi, Dr. Harshavarthini, Dr. Prosenjit, Dr. Ashis			189, 191, 192, 196,
		Bera, Dr. Ankit Kumar, Dr. Sandip Saha, Dr. Kriti Arya			194, 257, 323, 883
Duration	:	1 ½ Hours	Max. Marks	:	50

Answer all the Questions (50 marks)

Q.No.	Question Description			
1.	A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x, y, z) on the probe's surface is $T = 8x^2 + 4yz - 16z + 600$. Find the hottest point on the probe's.			
2.	Find the absolute maximum and minimum of $f(x, y) = x + y - xy$ on the triangle ABC with vertices A (0,50), B(50,0) and C(-50,-50).			
3.	a) Change the order of integration, evaluate $\int_0^2 \int_0^{9-x^2} x dy dx$. b) Find the area of $r = \sin \theta$ in polar coordinates.			
4.	A spherical tank of radius 3 meters is filled with water to a height of 2 meters. Find the volume of the water using the cylindrical coordinates.	[10]		
5.	a) Evaluate $\int_0^\infty \sqrt{x} e^{-x^5} dx$. b) Evaluate $\int_0^1 x^7 (1-x^2)^6 dx$.	[5] [5]		

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$