Claims

1. A matched set of fluorescent dyes comprising at least two different fluorescent dyes of formula (I):

5

(l)

10

wherein n is different for each said dye and is 1, 2, or 3; Z^1 and Z^2 independently represent the carbon atoms necessary to complete a phenyl or naphthyl ring system;

one of groups R1 and R2 is the group:

where Y is a target bonding group;

remaining group R^1 or R^2 is selected from $-(CH_2)_4-W$ or $-(CH_2)_r-H$; group R^3 is hydrogen, except when either R^1 or R^2 is $-(CH_2)_r-H$, in which case R^3 is W;

W is selected from sulphonic acid and sulphonate;

p is an integer from 3 to 6;

q is selected to be 2 or 3; and

r is an integer from 1 to 5;

and their salts;

30

characterised in that when n of two of said dyes differs by + 1, one of p, q and r of said two dyes differs by -1.

2. A matched set of fluorescent dyes comprising at least two different fluorescent dyes of formula (II):

$$\mathbb{R}^3$$

(II)

wherein n is different for each said dye and is 1, 2, or 3; one of groups R^1 and R^2 is the group:

15

5

where Y is a target bonding group; remaining group R^1 or R^2 is selected from $-(CH_2)_4-W$ or $-(CH_2)_r-H$; group R^3 is hydrogen, except when either R^1 or R^2 is $-(CH_2)_r-H$, in which case R^3 is W;

W is selected from sulphonic acid and sulphonate;

¬p is an integer from 3 to 6;

q is selected to be 2 or 3; and

r is an integer from 1 to 5;

and their salts;

- characterised in that when n of two of said dyes differs by + 1, one of p, q and r of said two dyes differs by -1.
 - 3. A matched set according to claim 1 or claim 2 comprising at least two different fluorescent dyes according to formula (I) or (II) in which:

 $_{30}$ n is selected to be 1 or 2;

p is selected to be 4 or 5;

q is selected to be 2 or 3; and r is selected to be 1, 2 or 3.

- 4. A matched set according to any of claims 1 to 3 wherein said target bonding group Y in each dye of the set of dyes is the same and is selected from a maleimido group and an iodoacetamido group.
 - 5. A matched set according to claim 4 wherein in each said dye Y is a maleimido group.
- 6. A matched set according to any of claims 1 to 5 wherein said salts are selected from K⁺, Na⁺, NH₄⁺, R₃NH⁺ and R₄N⁺ where R is C₁ to C₄ alkyl.
- 7. A matched set of dyes according to any of claims 1 to 6 selected from:

Set 1

10

1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-2[(1*E*,3*E*)-3-(1-ethyl-3,3-dimethyl-5-sulpho-1,3-dihydro-2*H*-indol-2ylidene)prop-1-enyl]-3,3-dimethyl-3*H*-indolium (Compound I); and
1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)3,3-dimethyl-2-[(1*E*,3*E*,5*E*)-5-(1,3,3-trimethyl-5-sulpho-1,3-dihydro-2*H*indol-2-ylidene)penta-1,3-dienyl]-3*H*-indolium (Compound II);

Set 2

1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-2-30 [(1*E*,3*E*)-3-(1-propyl-3,3-dimethyl-5-sulpho-1,3-dihydro-2*H*-indol-2-ylidene)prop-1-enyl]-3,3-dimethyl-3*H*-indolium (Compound III); and 1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-3,3-dimethyl-2-[(1*E*,3*E*,5*E*)-5-(1-ethyl-3,3-trimethyl-5-sulpho-1,3-dihydro-2*H*-indol-2-ylidene)penta-1,3-dienyl]-3*H*-indolium (Compound IV);

5 Set 3

10

15

20

1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-2-[(1*E*,3*E*)-3-(1-ethyl-3,3-dimethyl-5-sulpho-1,3-dihydro-2*H*-indol-2ylidene)prop-1-enyl]-3,3-dimethyl-3*H*-indolium (Compound I); and 1-(5-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxopentyl)-3,3-dimethyl-2-[(1*E*,3*E*,5*E*)-5-(1-ethyl-3,3-trimethyl-5-sulpho-1,3-dihydro-2*H*-indol-2-ylidene)penta-1,3-dienyl]-3*H*-indolium (Compound V);

Set 4

1-(6- $\{[2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-2-[(1<math>E$,3E)-3-(3,3-dimethyl(1-sulpho-butyl)-1,3-dihydro-2H-indol-2-

ylidene)prop-1-enyl]-3,3-dimethyl-3*H*-indolium (Compound VI); and 1-(5-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxopentyl)-

3,3-dimethyl-2-[(1*E*,3*E*,5*E*)-5-(3,3-dimethyl-(1-sulpho-butyl)-1,3-dihydro-2*H*-indol-2-ylidene)penta-1,3-dienyl]-3*H*-indolium (Compound VII).

Set 5

1-(6-{[3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propyl]amino}-6-oxohexyl)-2-[(1E,3E)-3-(1-ethyl-3,3-dimethyl-5-sulpho-1,3-dihydro-2H-indol-2-ylidene)prop-1-enyl]-3,3-dimethyl-3H-indolium (Compound VIII); and 1-(6-{[2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-3,3-dimethyl-2-[(1E,3E,5E)-5-(1-ethyl-3,3-trimethyl-5-sulpho-1,3-dihydro-2H-indol-2-ylidene)penta-1,3-dienyl]-3H-indolium (Compound IV); and

20

30

Set 6

- 1-(6-{[3-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propyl]amino}-6-oxohexyl)-2[(1*E*,3*E*)-3-(3,3-dimethyl(1-sulpho-butyl)-1,3-dihydro-2*H*-indol-2-ylidene)prop1-enyl]-3,3-dimethyl-3*H*-indolium (Compound IX); and
 1-(6-{[2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)ethyl]amino}-6-oxohexyl)-3,3dimethyl-2-[(1*E*,3*E*,5*E*)-5-(3,3-dimethyl-(1-sulpho-butyl)-1,3-dihydro-2*H*-indol2-ylidene)penta-1,3-dienyl]-3*H*-indolium (Compound X).
- 8. A method for labelling a mixture of proteins in a sample wherein each of said proteins contains one or more cysteine residues, said method comprising:
 - i) adding to an aqueous liquid containing said sample a fluorescent dye selected from a matched set of fluorescent dyes wherein each said dye contains a target bonding group that is covalently reactive with said proteins; and
 - ii) reacting said dye with said proteins so that said dye labels said proteins; characterised in that all available cysteine residues in said proteins are labelled with said dye.
 - 9. A method according to claim 8 wherein said fluorescent dye is a cyanine dye.
- 10. A method according to claim 9 wherein said cyanine dye contains a sulphonic acid or sulphonate group.
 - 11. A method according to any of claims 8 to 10 wherein said target bonding group is selected from a maleimido group and an iodoacetamido group.
 - 12. A method according to claim 8 further comprising prior to step i), the step of treating the protein with a reductant.

25

- |3. A method according to claim 8 wherein said dye is used in a range of 5 to 200nmol of dye per 50μg of protein.
- 5 14. A method according to claim 8 wherein said labelling is performed at a pH in the range from 6.0 to 9.0.
 - 15. A method for labelling one or more proteins in a sample, the method comprising:
- i) adding to a liquid sample containing said one or more proteins a fluorescent dye selected from a matched set of fluorescent dyes each dye in said set having the formula (I):

wherein n is different for each said dye and is 1, 2, or 3;

 Z^1 and Z^2 independently represent the carbon atoms necessary to complete a phenyl or naphthyl ring system;

one of groups R1 and R2 is the group:

where Y is a target bonding group;

remaining group R¹ or R² is selected from -(CH₂)₄-W or -(CH₂)_r-H;

group \mathbb{R}^3 is hydrogen, except when either \mathbb{R}^1 or \mathbb{R}^2 is $-(CH_2)_r$ -H, in which case

30 R³ is W;

W is selected from sulphonic acid and sulphonate;

p is an integer from 3 to 6;

q is selected to be 2 or 3; and

15

r is an integer from 1 to 5; and their salts; characterised in that when n of two of said dyes differs by +1, one of p, q and r of said two dyes differs by -1; and

- 5 ii) incubating said dye with said sample under conditions suitable for labelling said one or more proteins.
 - 16. A method according to claim 15 wherein each of Z^1 and Z^2 represents the carbon atoms necessary to complete a phenyl ring system.
 - 17. A method according to claim 15 or claim 16 wherein: n is selected to be 1 or 2; p is selected to be 4 or 5; q is selected to be 2 or 3; and r is selected to be 1, 2 or 3.
 - 18. A method according to any of claims 15 to 17 wherein said target bonding group Y is selected from a maleimido group and an iodoacetamido group.
 - 19. A kit comprising a matched set of fluorescent dyes comprising at least two different fluorescent dyes having the formula (I):

25

20

$$Z^{1}$$
 R^{3}
 R^{1}
 R^{2}
 R^{3}

wherein n is different for each said dye and is 1, 2, or 3; Z^1 and Z^2 independently represent the carbon atoms necessary to complete a phenyl or naphthyl ring system;

one of groups R¹ and R² is the group:

$$-(CH_2)_p$$
 $-(CH_2)_q$ $-(CH$

where Y is a target bonding group; remaining group R¹ or R² is selected from -(CH₂)₄-W or -(CH₂)r-H; group R³ is hydrogen, except when either R¹ or R² is -(CH₂)r-H, in which case R³ is W;

W is selected from sulphonic acid and sulphonate;

p is an integer from 3 to 6; q is selected to be 2 or 3; and r is an integer from 1 to 5; and their salts;

characterised in that when n of two of said dyes differs by + 1, one of p, q and r of said two dyes differs by -1.