

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

RECEIVED

AUG 23 2000

C1-901PCTUS

TELEFAX CENTER 16002800

Concise Explanation of the Japanese Reference

Reference 1

In this application, polypeptides having 25-hydroxyvitamin D₃-1alpha-hydroxylase activity, and DNA encoding the polypeptides are claimed. Methods for producing 25-hydroxyvitamin D₃-1alpha-hydroxylase and 1alpha, 25-hydroxyvitamin D₃, and antibodies recognizing these polypeptides as well as immunohistological staining methods using the antibodies are also claimed.

The 25-hydroxyvitamin D₃-1alpha-hydroxylase gene was isolated and identified as follows:

A cDNA library was constructed kidney of rats fed on vitamin D₃-depleted meal; the cDNA of interest was amplified by PCR using primers designed based on the amino acid sequences common among other vitamin D₃ hydroxylases, such as adrenodoxin and hem binding domain sequences; the full-length cDNA was obtained using 5' RACE and plaque hybridization methods; and the sequence obtained was identified by Northern blot analysis and sequencing.

The DNA thus obtained may be used for diagnosis of the diseases associated with vitamin D₃ deficiency. The polypeptide encoded by this DNA can be expressed or synthesized, and purified using conventional methods (e.g. prokaryotic and eucaryotic expression systems, chromatographic methods for purification). The DNA and polypeptides of the invention may also be used for producing antibodies used for various purposes, such as immunohistochemistry.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-75863

(43)公開日 平成11年(1999)3月23日

(51)Int.Cl.⁸
C 12 N 15/09
C 07 K 16/40
C 12 N 5/10
9/02
C 12 P 33/06

識別記号
ZNA

F I
C 12 N 15/00
C 07 K 16/40
C 12 N 9/02
C 12 P 33/06
G 01 N 33/48

P

審査請求 未請求 請求項の数11 OL (全 27 頁) 最終頁に続く

(21)出願番号 特願平9-322651

(22)出願日 平成9年(1997)11月25日

(31)優先権主張番号 特願平9-185399

(32)優先日 平9(1997)7月10日

(33)優先権主張国 日本 (JP)

(71)出願人 000001029

協和醸酵工業株式会社
東京都千代田区大手町1丁目6番1号

(72)発明者 大澤 秀治

東京都練馬区南大泉4-19-18

(72)発明者 鳩田 弘子

東京都新宿区早稲田鶴巣町539

(72)発明者 杉本 整治

東京都八王子市別所2-21-8-306

(72)発明者 須田 立雄

東京都立川市若葉町1-8-5

(72)発明者 新木 敏正

東京都大田区東雪谷5-11-7-310

最終頁に続く

(54)【発明の名称】 25-ヒドロキシビタミンD₃-1 α -水酸化酵素および該酵素をコードするDNA

(57)【要約】

【課題】 活性型ビタミンD₃の低下により惹起される骨粗鬆症等の成人病の予防、診断、治療等に有用な、ビタミンD₃活性化の最終段階を触媒する、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドおよび該ポリペプチドをコードする遺伝子を提供する。

【解決手段】 本発明によれば、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチド、該ポリペプチドをコードするDNA、該DNAをベクターに組み込んで得られる組換え体DNA、該組換え体DNAを保有する形質転換体、該形質転換体を用いた25-ヒドロキシビタミンD₃-1 α -水酸化酵素の製造法、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドを用いた1 α 、25-ジヒドロキシビタミンD₃の製造法および該ポリペプチドを認識する抗体を提供することができる。

【特許請求の範囲】

【請求項1】 配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチド、または配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチドのアミノ酸配列とは一個以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有し、かつ25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチド。

【請求項2】 請求項1記載のポリペプチドをコードするDNAまたは該DNAとストリンジメントな条件下でハイブリダイズするDNA。

【請求項3】 DNAが、配列番号3および4で表わされる塩基配列から選ばれる塩基配列を有するDNAである、請求項2記載のDNA。

【請求項4】 請求項2または3記載のDNAをベクターに組み込んで得られる組換え体DNA。

【請求項5】 請求項4記載の組換え体DNAを保有する形質転換体。

【請求項6】 請求項5記載の形質転換体を培地に培養し、培養物中に25-ヒドロキシビタミンD₃-1 α -水酸化酵素を生成蓄積させ、該培養物より該25-ヒドロキシビタミンD₃-1 α -水酸化酵素を採取することを特徴とする25-ヒドロキシビタミンD₃-1 α -水酸化酵素の製造法。

【請求項7】 請求項1記載のポリペプチドおよび25-ヒドロキシビタミンD₃を水性媒体中に存在させることにより、水性媒体中に1 α , 25-ジヒドロキシビタミンD₃を生成させ、生成した1 α , 25-ジヒドロキシビタミンD₃を該水性媒体中より採取することを特徴とする、1 α , 25-ジヒドロキシビタミンD₃の製造法。

【請求項8】 請求項1記載のポリペプチドを認識する抗体。

【請求項9】 請求項8記載の抗体を用いる、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドの免疫学的検出法。

【請求項10】 請求項8記載の抗体を用いる、免疫組織染色法。

【請求項11】 請求項8記載の抗体を含有する、免疫組織染色剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチド、該ポリペプチドをコードするDNA、該DNAをベクターに組み込んで得られる組換え体DNA、該組換え体DNAを保有する形質転換体、該形質転換体を用いた25-ヒドロキシビタミンD₃-1 α -水酸化酵素の製造法、25-ヒドロキシビタミンD₃-1 α -水酸化

酵素活性を有するポリペプチドを用いた1 α , 25-ヒドロキシビタミンD₃の製造法および該ポリペプチドを認識する抗体に関する。

【0002】

【従来の技術】活性型ビタミンD₃は、カルシウムの代謝調節作用、細胞の分化誘導、免疫調節など多様な生理作用を持つホルモンとして知られている。活性型ビタミンD₃は、生理作用を有しないビタミンD₃が体内で代謝され変換されることにより生成されることが知られている。

【0003】活性型ビタミンD₃の作用機構の一つとして、細胞質レセプターを介した作用機構が明らかになっている。活性型ビタミンD₃の本体は、1 α 位と25位が水酸化された、1 α , 25-ジヒドロキシビタミンD₃であることが知られている。活性化にいたる代謝経路として、25位に水酸基が導入されて、25-ヒドロキシビタミンD₃ができた後、1 α 位が水酸化され、活性体である1 α , 25-ジヒドロキシビタミンD₃ができることが知られている〔ビタミンD₃のすべて、尾形悦郎、須田立雄、小椋陽介編、講談社サイエンティフィク、(1993)〕。

【0004】25位に水酸基を導入する25位水酸化酵素遺伝子は、すでにラット肝臓由來のものがクローニングされ(特開平3-2324893)ている。また、活性型ビタミンD₃の分解に関わる、ビタミンD₃・24位水酸化酵素もクローニングされ(特開平4-207196)ている。ビタミンD₃の1 α 位を水酸化する酵素としては、ヒトのCYP27が報告されているが〔Proc. Natl. Acad. Sci., USA, 91, 10014(1994)〕、該酵素の1 α 位を水酸化する活性は副次的な活性で、非常に弱く、本来の活性ではない、また誘導のかかる活性でもない。

【0005】ラットやニワトリをビタミンD₃欠乏食餌で飼育すると、腎臓での25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性が誘導されることが分かっている〔Gerontology, 42(補遺1), 67-77 (1996)〕。現在まで、ビタミンD₃活性化の最終段階を触媒する、最も重要な1 α 位を水酸化する酵素ポリペプチドおよび該ポリペプチドをコードする遺伝子の単離の報告は、いずれの動物種においてもない。

【0006】1 α , 25-ジヒドロキシビタミンD₃の製造法として、ニワトリなどの動物の腎臓のホモジエナートやミトコンドリア画分を用いる方法〔Nature, 230, 228(1971)、J. Biol. Chem., 247, 7528 (1972)、Bioc hemistry, 25, 5512 (1986)〕が知られているが、該手法においては、大量の動物の腎臓あるいは肝臓が必要であり、調製に手間がかかることより、非効率的で実用的製造法とはいえない。また、1 α 及び25位に直接水酸基を導入する活性を持つ微生物が見出されているが(特公平4-64678)、活性は微弱で、基質特異性も低

く、生成物と副生成物との分離は困難である。

【0007】

【発明が解決しようとする課題】本発明の目的は、活性型ビタミンD₃の低下により惹起される骨粗鬆症等の成人病の予防、診断、治療等に有用な、ビタミンD₃活性化の最終段階を触媒する、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドおよび該ポリペプチドをコードする遺伝子を提供することにある。

【0008】

【課題を解決するための手段】本発明は、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチド、該ポリペプチドをコードするDNA、該DNAをベクターに組み込んで得られる組換え体DNA、該組換え体DNAを保有する形質転換体、該形質転換体を用いた25-ヒドロキシビタミンD₃-1 α -水酸化酵素の製造法、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドを用いた1 α 、25-ジヒドロキシビタミンD₃の製造法および該ポリペプチドを認識する抗体に関する。

【0009】以下、本発明を詳細に説明する。本発明のポリペプチドとして、25-ヒドロキシビタミンD₃-1 α -水酸化活性を有するポリペプチドであればいずれも用いることができ、例えば、配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチド、あるいは配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチドのアミノ酸配列とは一個以上のアミノ酸が欠失、置換もしくは付加したアミノ酸配列を有し、かつ25-ヒドロキシビタミンD₃-1 α -水酸化活性を有するペプチドをあげることができる。

【0010】ポリペプチドの有するアミノ酸配列のうち一個以上のアミノ酸が欠失、置換もしくは付加したアミノ酸配列を有し、かつ25-ヒドロキシビタミンD₃-1 α -水酸化活性を有するポリペプチドは、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci., USA, 79, 6409 (1982)、Proc. Natl. Acad. Sci., USA, 81, 5662 (1984)、Science, 224, 1431 (1984)、PCT WO85/00817 (1985)、Nature, 316, 601 (1985)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、カレント・プロトコルズ・イン・モレキュラー・バイオロジー (Current Protocols in Molecular Biology), 8章 Mutagenesis of Cloned DNA, John Wiley & Sons, Inc. (1989)等に記載の方法に準じて調製することができる。

【0011】本発明のDNAとして、上記本発明のポリペプチドをコードするDNAをあげることができ、例えば、配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチドをコードするDNA、配列番号1、および2で代表されるアミノ酸

配列とは一個以上のアミノ酸が欠失、置換もしくは付加したアミノ酸配列を有し、かつ25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドをコードするDNA、配列番号3および4で表される塩基配列から選ばれる塩基配列を有するDNA、またはこれらDNAとストリンジエントな条件下でハイブリダイズするDNAをあげることができる。

【0012】該ストリンジエントな条件下でハイブリダイズ可能なDNAとは、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドをコードするDNAをプローブとして、コロニー・ハイブリダイゼーション法、ブラーク・ハイブリダイゼーション法あるいはサザンプロット・ハイブリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはブラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターを洗浄することによって同定できるDNAをあげることができる。

【0013】ハイブリダイゼーションは、モレキュラー・クローニング: ア・ラボラトリ・マニュアル(Molecular Cloning, A laboratory manual)、第2版〔サンブルック(Sambrook)、フリッチ(Fritsch)、マニアチス(Maniatis)編集、コールド・スプリング・ハーバー・ラボラトリ・プレス(Cold Spring Harbor Laboratory Press)、1989年刊、以下、モレキュラー・クローニング 第2版と略す〕等に記載されている方法に準じて行うことができる。ハイブリダイズ可能なDNAとして、例えば、配列番号1および2で表わされるアミノ酸配列から選ばれるアミノ酸配列を有するポリペプチドをコードするDNAの塩基配列と少なくとも60%以上の相同性を有するDNA、好ましくは80%以上の相同性を有するDNA、さらに好ましくは95%以上の相同性を有するDNAをあげることができる。

【0014】本発明の抗体は、上述のポリペプチドを認識する抗体をあげることができる。

【0015】

【発明の実施の形態】以下、本発明を詳細に説明する。
1) ラットの腎臓由来のmRNAからのcDNAライブライマーの作製
ビタミンD₃欠乏食で飼育することにより25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性の誘導を行ったラットの組織、例えば腎臓よりmRNA〔ポリ(A)+RNAと呼ぶこともある〕を調製する。

【0016】mRNAを調製する方法としては、ラットの組織より全RNAを調製し、全RNAからオリゴ(dT)固定化セルロースカラム法〔モレキュラー・クロ-

ニング 第2版] 等を用いて、ポリ(A)・RNAとしてmRNAを調製する方法、ファースト・トラック・mRNA・アイソレーション・キット (Fast Track mRNA Isolation Kit; インビトロジエン (Invitrogen) 社製) 、クイック・プレップ・mRNA・ピュリフィケーション・キット (Quick Prep mRNA Purification Kit; ファルマシア社製) などのキットを用いてラットの組織より直接mRNAを調製する方法等をあげることができる。

【0017】全RNAを調製する方法としては、チオシアン酸グアニジンートリフルオロ酢酸セシウム法 [メソップズ・イン・エンザイモロジー (Methods in Enzymol.), 154, 3 (1987)] 、AGPC法 [実験医学, 9, 1937 (1991)] 等をあげることができる。上記と同様の方法で、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性の誘導を行わなかったラットの組織より全RNAおよびmRNAを調製することができる。

【0018】該mRNAを用いて、常法によりcDNAライブラリーを作製する。cDNAライブラリーの作製方法として、例えば、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性誘導を行ったラットから採取した腎臓由来のmRNAより、Stratagene社製ZAP-cDNA synthesis kit、GIBCO BRL社製のcDNA Synthesis System等を用いcDNAを合成し、適切な制限酵素で切断可能な部位を有するアダプターを連結し、該制限酵素により切断したクローニングベクターへZAPII (Stratagene社製ZAPII cloning Kit) の該切断部位に挿入することにより、cDNAライブラリーを作製する方法等をあげることができる。

【0019】cDNAライブラリーを作成するための、クローニングベクターとしては、大腸菌K12株中で自立増殖できるものであればいずれも用いることができる。該クローニングベクターとして、例えばファージベクター、プラスミッドベクター等をあげることができ、好適には、上記λZAPIIの他、pUC18、pBluescript (Stratagene社) 等をあげることができる。

【0020】宿主微生物としては、大腸菌に属する微生物であれば、いずれも用いることができ、好適には、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000等をあげることができる。

【0021】2) ビタミンD₃水酸化酵素に特徴的なアミノ酸配列の選定
ラットのビタミンD₃・25位水酸化酵素 (特開平3-232493) および24位水酸化酵素 (開平4-207196) の両酵素に共通に存在するアミノ酸配列を有する領域を検索し、該領域に存在するアミノ酸配列をビタミンD₃水酸化酵素に特徴的なアミノ酸配列として選定する。

【0022】該配列を有する領域として、例えばアドレノドキシン結合領域 (以下、A領域と略す) 、ヘム結合

領域 (以下、H領域と略す) 等をあげることができる。

【0023】3) 25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAの部分断片の增幅
2)において選定した領域のアミノ酸配列に基づき、ラットのコドンを参考にして、25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAのポリメラーゼ・チェイン・リアクション (以下、PCRと略す) による增幅に適したセンスプライマーおよびアンチセンスプライマーを設計、作製する。

【0024】これらプライマーとして、例えば、配列番号7、8および9に表された塩基配列から選ばれる塩基配列を有するDNAをあげることができる。1)で取得したmRNAを用いて、逆転写酵素反応により、first strand DNAを合成する。該DNA合成は、Stratagene社製cDNA synthetic kitを用いて行うことができる。

【0025】該first strand DNAをテンプレートとして用い、上記で作製したセンスプライマーおよびアンチセンスプライマーを利用し、RT (リバース・トランスクリプション: reverse-transcription) -PCRを行い、25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAの一部を含むDNA領域を增幅する。

【0026】該RT-PCR增幅断片およびBRL社製3'RACEシステムキットを用い、mRNAの3'末端ポリA構造の間のPCR増幅を行うことで、より長く、さらには3'側の非翻訳領域も含んだPCR増幅断片を得ることができる。即ち、1)で取得したmRNAおよびBRL社製3'RACEシステムキット中のOligo dT/AUAPプライマーを用いcDNAを合成し、該DNAをテンプレートとして用い、BRL社製3'RACEシステムキット中のAUAPプライマーおよび上記RT-PCR増幅断片を利用して、PCR増幅を行うことで3'側の非翻訳領域も含んだPCR増幅断片を得ることができる。

【0027】同様に5'-RACE法を用いて、5'側の領域を含んだPCR増幅断片を得ることができる。上記増幅DNA断片が25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAの部分断片であることは以下の方法により確認することができる。

【0028】上記1)において取得した、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性誘導を行ったラットおよび非誘導ラット由来のポリ(A)・RNAを各々アガロース電気泳動にかけ、泳動されたポリ(A)・RNAをアガロースからメンブレンフィルターへ常法によりトランスファーする。これらメンブレンフィルターを用い、上記増幅DNA断片をプローブとしてノーザンハイブリダイゼーションを行う。

【0029】上記増幅DNA断片が、活性誘導を行ったラット由来のポリ(A)・RNAから作製したメンブ

ンフィルターを用いたときのみ、ハイブリダイズすることを確認することにより、25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAの部分断片であることがわかる。上記増幅DNA断片を、プラスミッドに組み込み、塩基配列の解析や、発現の特異性の解析に用いることができる。

【0030】プラスミッドに組み込む方法としては、例えば、上記増幅DNA断片をアガロースよりDNA purification kit (Bio Rad社製) を用いて抽出し、PCR IIベクター (Invitrogen社製) に連結することにより、プラスミッドに組み込む方法をあげることができる。

【0031】4) 25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを有するクローニングの選択

上記増幅DNA断片を標識化し、常法によりコロニー、あるいはplaquesハイブリダイゼーションを行い、cDNAライブラリーをスクリーニングする。上記増幅DNA断片の標識化は、例えば、DIGラベリングキット (ペーリンガーマンハイム社製 #1175033) 等を用いて行うことができる。即ち、該キットを利用して、上記増幅DNA断片をテンプレートとして用い、PCRを行うことにより、DIGラベル化した増幅DNA断片を得ることができる。

【0032】plaquesハイブリダイゼーション法としては、例えば以下の方法をあげることができる。上記1)で調製したcDNAライブラリー (ファージ) を1シャーレ当たり、1から2万個のplaquesが形成するように寒天培地上に塗布し、培養する。Hybond N⁺膜 (Amersham社製) をplaquesが形成したシャーレ上に乗せ、plaques DNAを該膜に転写する。

【0033】該転写膜を、アルカリ処理 (例えば、1.5M NaCl、0.5M NaOH溶液に浸漬する) やSDS処理 (例えば、2×SSC、0.1% SDS溶液に浸漬する) し、洗浄後、乾燥させ、plaques DNAが膜上に固定されたプロッティング膜としてハイブリダイズに用いる。該プロッティング膜を60℃のハイブリ溶液 [5×SSC、0.1% Sarkosyl、0.02% SDS、1% ハイブリ用ブロッキング試薬 (ペーリンガーマンハイム社製)] に、5時間浸漬した後、上記で調製した標識化増幅DNA断片を熱処理したものを加え、ハイブリダイズさせる。

【0034】ハイブリダイズ後、該膜を洗浄 (例えば、2×SSCおよび0.1% SDSを用い室温で5分間の洗浄を2回、0.1×SSCおよび0.1% SDSを用い60℃で15分間の洗浄を2回実施する洗浄) 、ブロッキング (例えば、1×ブロッキング溶液 (ペーリンガーマンハイム社製) 、0.1Mマレイン酸、0.15M NaCl、pH 7.5を用いたブロッキング) した後、標識化増幅DNA断片の標識に応じた方法で標識化

増幅DNAを検出することにより、目的とするクローニングを選択することができる。

【0035】例えば、DIG標識化したDNA断片を用いた場合には、AP標識した抗DIG抗体との反応、アルカリ処理 (例えば、0.1M Tris-HCl (pH 9.5) 、0.1M NaClおよび50mM MgCl₂溶液に浸漬) を行い、DIG発光検出キット (ペーリンガーマンハイム社製 #1363514) を用いて、プローブとハイブリダイズするplaquesをX線フィルム上でスクリーニングすることにより、25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを有するクローニングを選択することができる。

【0036】5) 25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAの取得

上記4) に記載のスクリーニングによって取得されたクローニングより、常法によってDNAを単離することにより25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを取得することができる。

【0037】該DNAの塩基配列は、通常用いられる塩基配列解析方法、例えばサンガー (Sanger) らのジデオキシ法 [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] あるいは373A・DNAシークエンサー [バーキン・エルマー (Perkin Elmer) 社製] 等の塩基配列分析装置を用いて分析することにより行うことができる。このようにして決定された25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子配列として、例えば配列番号3もしくは配列番号5で示された配列を有するDNAをあげることができる。

【0038】上述の方法により決定されたDNAの塩基配列に基づいて、DNA合成機で化学合成することにより目的とするDNAを調製することもできる。DNA合成機としては、チオホスファイト法を利用した島津製作所社製のDNA合成機、フォスフォアミダイト法を利用したバーキン・エルマー社製のDNA合成機model 392等をあげることができる。

【0039】更に、上記で取得したラット由来の25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子を用い、以下に示す方法により、他の動物、例えば、ヒト由来の25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子を取得することができる。上記で取得した25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを例えばメガプライムDNAラベリングキット (Amersham社製) 等を利用して³²P-dCTPで標識する。目的とする動物組織、例えば、ヒト腎臓等より上記1) 記載の方法と同様にcDNAライブラリーを作成する。

【0040】上記4) 記載の標識DNA断片をプローブとして用い、コロニー、あるいはplaquesハイブリダイゼーションを行って、該cDNAライブラリーをスクリーニングする。該スクリーニングより取得されたクローニング

ンより、上記5)と同様の方法で目的とするDNAを単離し、塩基配列を決定する。

【0041】該塩基配列がラット25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子の塩基配列と相同性が高いものを、目的とする動物由来の25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAとしてあげることができる。該遺伝子としては、ヒト腎臓に由来する配列番号4もしくは配列番号6に示された配列を有するDNA等をあげることができる。

【0042】6) 25-ヒドロキシビタミンD₃-1α-水酸化酵素ポリペプチドの生産

上記5)で取得した25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを宿主細胞中で発現させるために、モレキュラー・クローニング第2版やカレンツ・プロトコールズ・イン・モレキュラー・バイオロジー サブルメント1~34等に記載された方法等を用いることができる。

【0043】即ち、上記5)で取得したDNAを、制限酵素、あるいはDNA分解酵素で、25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを含む適当な長さのDNA断片とした後に、発現ベクター中のプロモータ一下流に挿入し、次いで上記DNAを挿入した発現ベクターを発現ベクターに適合した宿主細胞中に導入する。

【0044】宿主細胞としては、細菌、酵母、動物細胞、昆虫細胞等、目的とする遺伝子を発現できるものであればいずれも用いることができる。発現ベクターとしては、上記宿主細胞において、自立複製可能ないしは、染色体中への組み込みが可能で、25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子を転写できる位置に、プロモーターを含有しているものが用いられる。

【0045】細菌等の原核生物を宿主細胞として用いる場合には、25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子発現ベクターを原核生物中で、自立複製が可能であると同時に、プロモーター、リボソーム結合配列、25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNA、転写終結配列より構成されていることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

【0046】発現ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pSE280(Invitrogen社製)、pGEMEX-1(Promega社製)、pQE-8(QIAGEN社製)、pKYP10(特開昭58-110600)、pKYP200(Agric. Biol. Chem., 48, 669(1984))、pLSA1(Agric. Biol. Chem., 53, 277(1989))、pGEL1(Proc. Natl. Acad. Sci., USA, 82, 4306(1985))、pBluescript(STRATAGENE社)、pTrs30(FERM BP-5407)、pTrs32(FERM BP-5408)、pGHA2

(FERM BP-400)、pGKA2(FERM B-6798)、pTerm2(特開平3-22979、US4686191、US4939094、US5160735)、pKK233-2(Pharmacia社製)、pGEX(Pharmacia社製)、pETシステム(Novagen社製)、pSupex、pUB110、pTP5、pC194等を例示することができる。

【0047】プロモーターとしては、大腸菌等の宿主細胞中で発現できるものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター(P lac)、Ptプロモーター、P_Eプロモーター、P_{letI}プロモーター、P_{S2}プロモーター等の、大腸菌やファージ等に由来するプロモーター、SPO1プロモーター、SPO2プロモーター、penPプロモーター等をあげることができる。またPtrpを2つ直列させたプロモーター(Ptrp x 2)、tacプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。

【0048】リボソーム結合配列としては、大腸菌等の宿主細胞中で発現できるものであればいかなるものでもよいが、シャインダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミッドを用いることが好ましい。本発明の25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子の発現には、転写終結配列は必ずしも必要ではないが、好適には構造遺伝子の直下に転写終結配列を配置することが望ましい。

【0049】宿主細胞としては、エシェリヒア属、セラチア属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、バチルス属等に属する微生物、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium ammoniagenes、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Brevibacterium flavum ATCC14067、Brevibacterium lactofermentum ATCC13869、Corynebacterium glutamicum ATCC13032、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354等をあげることができる。

【0050】組換えベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法(Proc. Natl. Acad. Sci. USA, 69, 2110(1972))、プロトプラスト法(特開昭63-2483942)、Gene, 17, 107(1982)やMolecular & General Genetics, 168, 111(1979)に記載の方法等をあげることができる。

【0051】酵母菌株を宿主細胞として用いる場合には、発現ベクターとして、例えば、YE p 1 3 (ATCC37115)、YE p 2 4 (ATCC37051)、YC p 5 0 (ATCC37419) pH S 1 9、pH S 1 5 等を例示することができる。プロモーターとしては、酵母菌株中で発現できるものであればいかなるものでもよい。例えば、PHO 5 プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1 プロモーター、gal 1 10 プロモーター、ヒートショック蛋白質プロモーター、MF α 1 プロモーター、CUP 1 プロモーター等のプロモーターをあげることができる。

【0052】宿主細胞としては、サッカロミセス・セレビシエ (*Saccharomyces cerevisiae*)、シゾサッカロミセス・ポンベ (*Schizosaccharomyces pombe*)、クリュイペロミセス・ラクチス (*Kluyveromyces lactis*)、トリコスボロン・プルランス (*Trichosporon pullulans*)、シュワニオミセス・アルビウス (*Schwanniomyces alluvius*) 等をあげることができる。

【0053】組換えベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods. Enzymol., 194, 182 (1990)]、スフェロプラスト法 [Proc. Natl. Acad. Sci. USA, 84, 1929 (1978)]、酢酸リチウム法 [ジャーナル・オブ・バクテリオロジー (J. Bacteriol.) 153, 163 (1983)]、Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) 記載の方法等をあげることができる。

【0054】動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pcDNA I、pcDM 8 (フナコシ社より市販)、pAGE 107 (特開平3-22979; サイトテクノロジー (Cytotechnology) 3, 133, (1990))、pAS 3-3 (特開平2-227075)、pCD M 8 (ネイチャー (Nature) 329, 840, (1987))、pcDNA I/Amp (Invitrogen社製)、pREP 4 (Invitrogen社製) pAGE 103 (J. Biochem., 101, 1307 (1987))、pAGE 210 等を例示することができる。

【0055】プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス (ヒトCMV) のIE (immediateearly) 遺伝子のプロモーター、SV 40 の初期プロモーターあるいはメタロチオネインのプロモーター、レトロウイルスのプロモーター、ヒートショックプロモーター、SR α プロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてよい。

【0056】宿主細胞としては、ナマルバ細胞、HBT 5637 (特開昭63-299)、COS 1 細胞、CO S 7 細胞、CHO 細胞等をあげることができる。動物細胞への組換えベクターの導入法としては、動物細胞にD

NAを導入できるいかなる方法も用いることができる。例えば、エレクトロポレーション法 [Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)]、virology, 52, 456 (1973) に記載の方法等を用いることができる。形質転換体の取得および培養は、特開平2-227075号公報あるいは特開平2-257891号公報に記載されている方法に準じて行なうことができる。

【0057】昆虫細胞を宿主として用いる場合には、例えばバキュロウイルス・イクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブリュー・エイチ・フィリーマン・アンド・カンパニー、ニューヨーク 1992年 (Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York, 1992)、カレント・プロトコルズ・イン・モレキュラー・バイオロジー、サブルメント 38, 28, ユニット 16, 9, 16, 11, ジョン・ウィリー・アンド・サン、ニューヨーク、1995年 (Current Protocols in Molecular Biology, Supplement 38, 28, Unit 16.9, 16.11, John Wiley and Sons, New York, 1995)、Bio/Technology, 6, 47 (1988) 等に記載された方法によって、タンパク質を発現することができる。

【0058】即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を発現させることができる。該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL 1392、pVL 1393、pBlueBac III (ともにInvitrogen社製) 等をあげることができる。

【0059】バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニア・ヌクレア・ポリヘドロシス・ウイルス (*Autographa californica nuclear polyhedrosis virus*) などを用いることができる。昆虫細胞としては、Spodoptera frugiperda の卵巣細胞であるSf 9、Sf 21 (バキュロウイルス・イクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブリュー・エイチ・フィリーマン・アンド・カンパニー、ニューヨーク 1992年 (Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York, 1992))、Trichoplusia ni の卵巣細胞であるHigh 5 (Invitrogen社製) 等を用いることができる。

【0060】組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。遺伝子の発現方法としては、直接発現以外

に、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。

【0061】酵母、動物細胞または昆虫細胞により発現させた場合には、糖あるいは糖鎖が付加されたポリペプチドを得ることができる。以上のようにして得られる形質転換体を培地に培養し、培養物中に本発明のポリペプチドを生成蓄積させ、該培養物から採取することにより、本発明のポリペプチドを製造することができる。本発明の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。

【0062】大腸菌等の原核生物あるいは酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。炭素源としては、該生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパンオールなどのアルコール類等を用いることができる。

【0063】窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチーピリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体、およびその消化物等を用いることができる。

【0064】無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は15～40℃がよく、培養時間は、通常16～96時間である。培養中pHは3.0～9.0に保持する。pHの調整は、無機または有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

【0065】また、培養中必要に応じて、アンビシリソーやテトラサイクリン等の抗生物質を培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときは、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。

【0066】動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI 1640培地〔The Journal of the American Medical Association, 199, 519 (1967)〕、EagleのMEM培地〔Science, 122, 501(1952)〕、DMEM培地〔Virology, 8, 396 (1959)〕、199培地〔Proceeding of the Society for the Biological Medicine, 73, 1 (1950)〕またはこれら培地に牛胎児血清等を添加した培地等が用いられる。

【0067】培養は、通常pH 6～8、30～40℃、5%CO₂存在下等の条件下で1～7日間行う。また、培養中必要に応じて、カナマイシン、ベニシリソーや等の抗生物質を培地に添加してもよい。昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地〔ファーミンジエン(Pharmingen)社製〕、SF-900 II SFM培地〔ギブコBRL社製〕、ExCell 1400、ExCell 1405〔いずれもJRHバイオサイエンシーズ(JRH Biosciences)社製〕、Grace's Insect Medium〔Grace, T.C.C., ネイチャー(Nature), 195, 788 (1962)〕等を用いることができる。

【0068】pH 6～7、培養温度25～30℃がよく、培養時間は、通常1～5日間である。また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。上記形質転換体の培養液から、上記方法により発現させたポリペプチドを単離精製するためには、通常の酵素の単離、精製法を用いればよい。

【0069】例えば、本発明のポリペプチドが、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん渦後、超音波破碎機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破碎し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティーコロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

【0070】また、該ポリペプチドが細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破碎し、遠心分離を行うことにより得られた沈殿画分より、通常の方法により該ポリペプチドを回収後、該ポリペプチドの不溶体をポリペプチド変性剤で可溶化する。該可溶化

液を、ポリペプチド変性剤を含まないあるいはポリペプチド変性剤の濃度がポリペプチドが変性しない程度に希薄な溶液に希釈、あるいは透析し、該ポリペプチドを正常な立体構造に構成させた後、上記と同様の単離精製法により精製標品を得ることができる。

【0071】本発明のポリペプチドあるいはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清に該ポリペプチドあるいはその糖鎖付加体等の誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

【0072】また、上記方法により発現させたポリペプチドを、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法によても製造することができる。また、桑和貿易(米国AdvancedChemTech社製)、バーキンエルマージャパン(米国Perkin-Elmer社製)、ファルマシアバイオテク(スウェーデンPharmacia Biotech社製)、アロカ(米国Protein Technology Instrument社製)、クラボウ(米国SyntheCell-Vega社製)、日本バーセプティブ・リミテッド(米国PerSeptive社製)、島津製作所等のペプチド合成機を利用し合成することもできる。

【0073】7) 1 α , 25-ジヒドロキシビタミンD₃の製造

上記6)に記載の方法により取得した25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドおよび25-ヒドロキシビタミンD₃を水性媒体中に存在させることにより、水性媒体中に1 α , 25-ジヒドロキシビタミンD₃を生成させ、生成した1 α , 25-ジヒドロキシビタミンD₃を該水性媒体中より採取することにより、1 α , 25-ジヒドロキシビタミンD₃を製造することができる。

【0074】25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドとしては、上記6)に記載の方法により精製したポリペプチドおよび上記6)に記載の方法により取得した形質転換体の培養物、菌体、菌体処理物等を用いることができる。菌体処理物としては、菌体の乾燥物、凍結乾燥物、界面活性剤または有機溶剤処理物、酵素処理物、超音波処理物、機械的摩碎処理物、菌体の蛋白質分画(25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有する画分)、菌体および菌体処理物の固定化物等をあげることができる。

【0075】25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドの濃度は、微生物菌体換算で0.01~50g/l、好ましくは0.05~10g/lである。水性媒体としては、水、リン酸塩、炭酸塩、酢酸塩、ほう酸塩、クエン酸塩、トリスなどの緩衝液、ならびに、メタノール、エタノールなどのアルコール類、酢酸エチルなどのエステル類、アセトンなど

のケトン類、アセトアミド等のアミド類などの有機溶媒を含有した水性溶液があげられる。また必要に応じてトリトンX-100(ナカライトスク社製)やノニオンHS-204(日本油脂社製)などの界面活性剤あるいはトルエンやキシレンのような有機溶媒を0.1~20g/1程度添加してもよい。

【0076】25-ヒドロキシビタミンD₃の濃度は、0.01~50g/l、好ましくは0.01~10g/lである。水性媒体に、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチド、25-ヒドロキシビタミンD₃を上記濃度添加し、温度15~80℃、好ましくは20~40℃、pH3~11、好ましくはpH4~9の条件下で、5分間~96時間反応させ、1 α , 25-ジヒドロキシビタミンD₃を製造することができる。

【0077】8) 25-ヒドロキシビタミンD₃-1 α -水酸化酵素を認識する抗体の調製
上記6)に記載の方法により取得したポリペプチドの全長または部分断片精製標品(抗原)を50~100μg/匹程、ウサギ、ヤギまたは3~20週令のラット、マウスもしくはハムスターの皮下、静脈内または腹腔内に、適当なアジュバント〔例えば、フロイントの完全アジュバント(Complete Freund's Adjuvant)または、水酸化アルミニウムゲルと百日咳菌ワクチンなど〕とともに投与する。該抗原の投与は、1回目の投与の後1~2週間おきに3~10回行う。各投与後、3~7日目に眼底静脈収より採血し、該血清が免疫に用いた抗原と反応することを酵素免疫測定法〔酵素免疫測定法(ELISA法):医学書院刊1976年、Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988〕などで確認する。

【0078】免疫に用いた抗原に対し、該血清が充分な抗体価を示したウサギ、ヤギ、マウス、ラットまたはハムスターより血清を取得し、該血清より、40~50%飽和硫酸アンモニウムによる塩析法、カプリル酸沈殿法、DEAE-セファロースカラム、プロテインA-カラムあるいはゲルろ過カラム等を用いたクロマト法等の常法を用いて精製抗体を取得することができる。

【0079】また、上記方法により免疫した動物の脾細胞とマウスのミエローマ細胞とを融合させてハイブリドーマを作製し、このハイブリドーマを培養するか、動物に投与して該動物を腹水癌化させ、該培養液または腹水を採取することにより本発明のポリペプチドに対するモノクローナル抗体を製造することができる。

【0080】9) 本発明のポリペプチド、該ポリペプチドをコードするDNAまたは本発明のポリペプチドを認識する抗体の利用

(1) 本発明のポリペプチドは、活性型ビタミンD₃である1 α , 25-ジヒドロキシビタミンD₃を製造するために利用することができる。

(2) 本発明のポリペプチドの全長、あるいは部分断片

は、25-ヒドロキシビタミンD₃-1 α -水酸化酵素を認識する抗体の抗原として利用することができる。

【0081】(3) 本発明の25-ヒドロキシビタミンD₃-1 α -水酸化酵素の全長または活性を持つ部分断片を生体に投与することにより、該酵素タンパクの低下が原因となる疾病、例えば骨粗鬆症の治療が可能となる。

(4) 本発明のDNAを用い、ノーザンハイブリダイゼーション法(モレキュラー・クローニング 第2版)、PCR法[PCRプロトコールズ(PCR Protocols)、アカデミック・プレス(Academic Press)(1990)]、RT-PCR法等により、25-ヒドロキシビタミンD₃-1 α -水酸化酵素遺伝子のmRNAを検出することができる。

【0082】該検出法を利用し、25-ヒドロキシビタミンD₃-1 α -水酸化酵素遺伝子のmRNAの発現量を測定する診断法は、活性型ビタミンD₃量の低減により起こる骨粗鬆症等の成人病の発症を抑制するうえで有用であり、該25-ヒドロキシビタミンD₃-1 α -水酸化酵素遺伝子の先天的な欠損による遺伝子病の早期診断に有効である。

【0083】mRNAの発現量は、ノーザン・ハイブリダイゼーション法の場合は、ハイブリダイズしたプローブの量をプローブの標識に応じて、例えば³²P標識の場合は放射能量を、蛍光標識の場合は蛍光量を測定することにより測定できる。RT-PCR法の場合は、例えば增幅断片をエチジウムプロミドやサイバーグリーン1などのDNA特異的な蛍光染色剤で染色し、その蛍光量を測定することにより測定できる。

【0084】(5) 本発明のDNAをレトロウイルス、アデノウイルス等のウイルスベクターや、その他のベクターに組み込み、遺伝子治療の方法により、治療に用いることができる。

(6) 本発明の抗25-ヒドロキシビタミンD₃-1 α -水酸化酵素抗体を用いることにより、血液、臓器の一部、細胞等のサンプルで、25-ヒドロキシビタミンD₃-1 α -水酸化酵素の検出、定量を行うことが出来る。具体的に好適な手法としてはマイクロタイタープレートを用いるELISA法、蛍光抗体法、ウェスタンブロット法などが上げられ、また病理切片を用いた免疫組織染色にも利用出来る。従って、該抗体はビタミンD₃-1 α -水酸化酵素発現の低下に伴う骨粗鬆症等の疾病やその発症の診断や発症の可能性を早期に予知すること等に有用である。同様に、該タンパクを対象とした研究における研究用試薬としても有用である。

【0085】(7) 本発明の抗体を用いて、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性を有するポリペプチドの免疫組織染色に利用でき、該抗体を含有する免疫組織染色剤を提供することができる。

(8) 本発明のDNAを用い、ゲノムDNAとのハイブ

リダイゼーションによって、本遺伝子のプロモーター領域のDNAをクローニングすることができる。そのプロモーター領域のDNA断片を用いて、本遺伝子の発現調節に関わる分子の探索、解析を行うことができる。

【0086】以下に実施例を示し、本発明の詳細を説明する。各操作でキットを使用した場合は、特に記載した以外は、添付のプロトコールに従つて実験を進めた。基本的な遺伝子操作技術は、モレキュラー・クローニング 第2版に従つた。

【0087】

【実施例】

実施例1 ビタミンD₃欠乏食で飼育したラットからの腎臓の調製

S.D.系ラットの雄4匹について、離乳後直ちにビタミンD₃欠乏食を与え、3週間飼育する(6週令)。ビタミンD₃欠乏食は、DIE T 11(須田ら; J. Nutrition, 100, 1049(1970)、Teklad社(Madison, WI, USA)よりPurified diet for Ratとして販売)を用いた。飼料中のカルシウムは0.03%、リン酸は0.6%のビタミンD欠乏低カルシウム飼料となっている。

【0088】ラットの水分補給にはイオン交換水を用いた。屠殺48時間前に、1 α 、25-ヒドロキシビタミンD₃(CALVIOCHEM社製、CA, USA)を1 μ g/ラット静脈注射した。予定の期間飼育の後、ラットをエーテル麻酔した。該ラットの腹大動脈より採血し、瀉血法で屠殺した後、直ちに解剖して、腎臓を取り出した。

【0089】該腎臓を、PBS(1L中にNaCl 8g、KCl 0.2g、Na₂HPO₄·12H₂O 2.9gおよびKH₂PO₄ 0.2gを含有する)で洗浄後、液体窒素中で凍結した。対照として、通常の飼料(Rat diet: 100g中にカルシウム0.5g、リン酸0.6gおよびビタミンD₃を200IU含有する)を与えて同様に飼育したラットについても、上記と同様の方法により腎臓を調製し、活性非誘導ラット由来の腎臓として用いた。

【0090】実施例2 ラット腎臓より、mRNAの調製

ビタミンD₃欠乏食で飼育したラットより調製した腎臓0.78g、通常の飼料で飼育したラットより調製した腎臓0.94gをそれぞれPBSで洗浄後、液体窒素中で凍結した。該凍結腎臓は-80°Cで保存することができる。該凍結腎臓を、ワーリングブレンダーで液体窒素中で細断し、組織が砂状になったら、液体窒素を蒸発させた。

【0091】該砂状組織を、5.5M GTC溶液(500ml中にグアニジンイソチオシアネート 324.5g、クエン酸ナトリウム 3.7gおよびザルコシール(Sarkosyl) 3.3gを含有する)35mlおよび2-メルカプトエタノール 492 μ lを加え、氷冷しながらホモジナイザー(Digital Homogenizer井内社

製)でホモゲナize後、50ml容注射筒に18ゲージの注射針を装着し、ホモゲナizeした懸濁液を4回通筒する。

【0092】該懸濁液を15ml容遠心チューブに移し、6000回転、20℃の条件下で10分間遠心分離を行い、上清を取得した。該上清を16mlずつ、CsTFA調製液(Pharmacia社製CsTFA溶液100ml、0.25M EDTA溶液(pH7.0)82.06ml、H₂O 23.09mlを混合した溶液)17mlの入った40ml容の超遠心用ポリアロマー製のチューブに重層した後、25000回転、18℃の条件下で25時間超遠心分離を行った。

【0093】上清を除き、チューブの下から1.5cmほどの位置から切断し、沈殿を4MGTC溶液(5.5M GTC溶液4ml、H₂O 1.5ml、2-メルカプトエタノール56μlを混合した溶液)0.6mlに溶かした。該溶解液を14000回転で15秒間遠心分離し、上清を取得した。該上清に1M酢酸ナトリウムを15μl、エタノールを0.45ml加え懸濁後、遠心分離し、沈殿を取得した。

【0094】該沈殿を70%エタノールで洗浄後、TE緩衝液[10mM Tris-HCl(pH8.0)、1mM EDTA-NaOH(pH8.0)]1mlに懸濁し、14000回転で15秒間遠心分離後、上清を取得した。該上清に2.5倍容の70%エタノールを加え、遠心分離し、沈殿を取得した。

【0095】該沈殿を70%エタノールで洗浄後、TE緩衝液500μlに溶解した。該操作により、260nmの吸光度より計算して、活性誘導ラット由來の腎臓より639μg、非誘導ラット由來の腎臓より918μgの総RNAを取得した。活性誘導ラット由來の総RNA溶液150μlを65℃で5分間熱処理し、直ちに氷冷した。

【0096】該溶液に、5M NaClを0.5mlおよびTE/NaCl[10mM Tris-HCl(pH7.5)、NaCl 500mM]で平衡化したオリゴdTセルロース(Collaborative research社、type 3)を0.15g加え、該セルロースに総RNAを吸着させた。該セルロースをカラムに充填し、TE/NaCl液を8ml通塔し、洗浄した後、0.5mlのTE液でmRNAを溶出し、溶出液を200μlずつ分画採取した。

【0097】該分画液より2μlずつサンプリングし、該サンプリング液に1μg/mlのエチジウムプロマイドを20μl添加後、紫外線照射により光るサンプリング液を検出した。該サンプリング液に相当する分画液にエタノールを添加し、沈殿を得た。該沈殿を80%エタノールで洗浄後、TE緩衝液に懸濁した。

【0098】上記操作により、活性誘導ラット由來の腎臓より14.3μgのmRNAを取得した。

【0099】実施例3 cDNAライブラリーの構築Stratagene社製ZAP-cDNA synthesis kit (#200400)を用い、添付の説明書に従ってcDNAライブラリーを構築した。実施例2で調製した活性誘導ラット由來のmRNAを4μg用い、逆転写酵素反応により、first strand DNAを合成し、RNA分解酵素反応後、DNAポリメラーゼIでsecond strandDNAを合成した。

【0100】高温条件下でPfuDNAポリメラーゼ反応を行い、該cDNAの端を平滑末端化した。該cDNAにEcoRIアダプター断片を連結し、リン酸化後、XhoIで切断し、EcoRI-XhoIの切断サイトを両端に持つcDNA断片とした。該cDNA断片を、ラムダZAPIのEcoRI-XhoI部位に挿入し、Giga pack Gold Pakaging Kit (Stratagene社製)を用いたパッケージング、大腸菌宿主XL1-Blue、MRF'株とヘルバーファージVCS257を用いた、感染により、cDNAライブラリーを構築した。

【0101】実施例4 活性誘導ラットの腎臓で特異的に発現しているmRNA分子の選択

既に報告のあるラット由来ビタミンD₃・25位水酸化酵素、および24位水酸化酵素についてアミノ酸配列を解析し、これらP450ファミリーに属するビタミンD₃水酸化酵素に良く保存されている領域のうち、酵素活性に必須なアドレノドキシン結合領域(A領域)、および、ヘム結合領域(H領域)の部分アミノ酸配列を選択し、そのDNA配列から、その部分の遺伝子をPCR増幅するためのセンスプライマーおよびアンチセンスプライマーを設計した。

【0102】具体的には、センスプライマーとしてA領域に相当する配列番号7に示された塩基配列を有するDNAを、アンチセンスプライマーとしてH領域に相当する配列番号8に示された塩基配列を有するDNAを用いた。Stratagene社製ZAP-cDNA synthesis kit (#200400)および実施例2で取得した活性誘導ラット由來のmRNAを4μg用い、random hexamerをプライマーとして、first strand DNAを合成した。

【0103】該first strand DNAをテンプレートとして、配列番号7に示された塩基配列を有するDNAをセンスプライマーとして、配列番号8に示された塩基配列を有するDNAをアンチセンスプライマーとして用い、Stratagene社製RT-PCR kitを利用して、PCRを行った。PCRは、PERKIN ELMER社製のDNA Thermal Cycler480を用い、94℃で30秒間、42℃で1分間、72℃で1分間の工程を1サイクルとして、35サイクル行った。

【0104】反応物をアガロースゲル電気泳動で解析したところ、255bpの増幅断片(AH断片)が認められた。該断片をアガロースより、DNA purification kit (Bio Rad社製)を用いて抽出しPCR IIベクター

(Invitrogen社製)に挿入した。実施例2で取得した、25-ヒドロキシビタミンD₃-1 α -水酸化酵素活性誘導を行ったラットおよび非誘導ラット由来の全RNAからポリ(A)+RNAを調製し、各々アガロース電気泳動にかけ、泳動されたmRNAをアガロースからメンブレンフィルターへ常法によりトランスファーした。

【0105】これらメンブレンフィルターを用い、上記増幅AH断片をプローブとしてノーザンハイブリダイゼーションを行った。上記増幅AH断片は、活性誘導を行ったラット由来のmRNAから作製したメンブレンフィルターを用いたときのみ、ハイブリダイズした。該AH断片はA領域およびH領域に相応する塩基配列を有していた。

【0106】該AH断片を用い、BRL社製3'RACEシステムキットを利用して、以下の方法で25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAの3'側の非翻訳領域も含んだPCR増幅断片を得た。BRL社製3'RACEシステムキットに付属の01igodT/AUAPプライマーおよび、実施例2で取得した活性誘導を行ったラット由来のmRNAを4 μ g用いcDNAを合成させた。

【0107】該cDNAをテンプレートとして用いた。上記で増幅されたAH断片の有する配列から、配列番号9で示された塩基配列を有するDNAを合成し、センスプライマーとして用いた。BRL社製3'RACEシステムキットに付属のAUAPプライマーをアンチセンスプライマーとして用いた。

【0108】上記テンプレート、センスプライマーおよびアンチセンスプライマーを用い、PCRを、94℃で1分間、55℃で1分間、72℃で2分間の工程を1サイクルとし、35サイクル行った。反応物をアガロースゲル電気泳動で解析したところ、1.3kbの増幅断片(A3断片)が認められた。該断片をアガロースより、DNA purification kit (Bio Rad社製)を用いて抽出し、PCR Iベクターに挿入した。

【0109】A3断片もAH断片と同様に、活性誘導ラット由来のmRNAに特異的にハイブリダイズした。該A3断片はAH断片のほぼ全長を含んでいた。

【0110】実施例5 25-ヒドロキシビタミンD₃-1 α -水酸化酵素をコードするDNAの取得
実施例2で調製したcDNAライプラリー(ファージ)を1シャーレ当たり、1から2万個のブラークが形成するように寒天培地上に塗布し、培養した。Hybond N+膜(Amersham社製)をブラークが形成したシャーレ上に乗せ、ブラークDNAを該膜に転写した。シャーレ1枚に付いて、2枚ずつの転写膜を作成した。

【0111】該転写膜を、アルカリ処理(1.5M NaCl、0.5M NaOH溶液に浸漬)およびSDS処理(2×SSC、0.1% SDS溶液に浸漬)し、洗浄後、乾燥させ、ブラークDNAが膜上に固定された

プロッティング膜として、後述のハイブリダイズに用いた。DIGラベリングキット(ペーリングガーマンハイム社製#1175033)および、AH断片またはA3断片各々2ngをテンプレートとして用い、PCRを行い、DIGラベル化したAH断片またはA3断片を取得した。

【0112】PCRは、94℃で1分間、50℃で1分間、72℃で1分間の工程を1サイクルとして、30サイクルの条件で行った。得られたDIGラベル化AH断片およびDIGラベル化A3断片を後述のプローブとして用いた。上記で調製したプロッティング膜を60℃のハイブリ溶液[5×SSC、0.1% Sarkosyl、0.02% SDS、1%ハイブリ用プロッキング試薬(ペーリングガーマンハイム社製)]に、5時間浸漬した後、熱処理したDIGラベルプローブ(10 μ l/10mlハイブリ溶液)を加え、65℃で一夜ハイブリダイズした。

【0113】ハイブリダイズ後、膜の洗浄(2×SSCおよび0.1% SDSを用い室温で5分間の洗浄を2回、0.1×SSCおよび0.1% SDSを用い60℃で15分間の洗浄を2回実施)、プロッキング[1×プロッキング溶液(ペーリングガーマンハイム社製)、0.1Mマレイン酸、0.15M NaCl、pH7.5を用いて実施]、AP標識した抗DIG抗体との反応(ペーリングガーマンハイム社プロトコールに準じて実施)、アルカリ処理(0.1M Tris-HCl(pH9.5)、0.1M NaClおよび50mM MgCl₂を用いて実施)を行い、DIG発光検出キット(ペーリングガーマンハイム社製#1363514)を用いて、プローブとハイブリダイズするブラークをX線フィルム上でスクリーニングした。

【0114】このとき、DIGラベルプローブとしてまずDIGラベル化AH断片を用い、該断片とハイブリダイズするブラークを選択し、次にDIGラベル化A3断片を用い、該ブラークより、該断片とハイブリダイズするブラークを選択した。各段階で選択されたブラークは、再度シャーレに撒き、ハイブリダイズすることを確認した。また、A領域、AUAPの両プライマーを用いたPCRにより、該ブラークがA3断片の塩基配列を有することを確認した。

【0115】総計35枚のシャーレを探索し、最終的に4つのブラークを(No. 221、522、411、111)選択した。各ブラーククローンからDNAを抽出し、Rapid excision kit (Stratagene社製、#211204)を用いて、pBluescriptベクターに繋ぎ換え、M13プライマーを用いクローン中に挿入されたDNAの塩基配列を解析した。

【0116】No. 221クローンによる解析により、配列番号5に示された、2469bpの塩基配列を有するDNAが認められた。該DNAには、501アミノ酸をコードするオープンリーディングフレーム(以下、O

RFと略す)が認められ、P450ファミリータンパクに共通するヘム結合領域、アデノノドキシン結合領域と思われるアミノ酸配列が存在していた。

【0117】実施例6 分離した25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子の動物細胞系での発現

実施例5で記載したNo. 221クローンより、プラスミッドを調製し、HindIIIおよびXbaIで切断した。動物細胞用発現ベクターpCDNA3 (Invitrogen社製)を同様にHindIIIおよびXbaIで切断した。

【0118】上記で得られた切断断片、各々をアガロース電気泳動にかけ、各々の断片を分離抽出した。得られたベクター側DNA断片および挿入遺伝子断片をDNAライゲーションキット(宝酒造製)を用いて連結し、連結プラスミッドを取得した。該プラスミッドを用いた大腸菌DH5α株を形質転換し、アンピシリン耐性株を選択し、公知の方法に準じてプラスミッドを抽出した。

【0119】該プラスミッドの制限酵素切断による解析から、該プラスミッドが目的の遺伝子を組み込んでいることを確認し、pCMD3Rと命名した。pCMD3Rをエレクトロポーレイション法(Potterら、Proc. Natl. Acad. Sci. USA., 81, 716(1984))により、動物細胞に導入し、以下のように発現させた。COS7細胞を10%FCS(ウシ胎児血清)を添加したDMEM培地(GibcoBRL社製)を用い、ディッシュ中で2日間培養した。

【0120】培養後、トリプシン処理によって、ディッシュから細胞を剥離させ、該細胞をPBSを用いて洗浄し、2~6.0×10⁶/mlになるように細胞をKPB(137mM KCl、2.7mM NaCl、8.1mM Na₂HPO₄、1.5mM NaH₂PO₄、4mM MgCl₂) 0.5mlに懸濁した。該懸濁液およびpCMD3Rプラスミド 15μgを溝幅0.4cmのpulsed cuvette(BIO-RAD社製)に加え、混合した後、エレクトロポーレイション装置Gene pulser(BIO-RAD社製)を用い、960μF、0.22kVの条件で、パルス印加を行い、DNAを導入した。

【0121】該DNA導入細胞を10%FCSを含むDMEM培地10mlに懸濁し、5%CO₂インキュベーター中、37℃で48~72時間培養した。ディッシュの培養液を除いてPBSで2回洗浄し、スクレーパーで細胞をかきとり、遠心して細胞を集めめた。

【0122】実施例7 ヒト由来25-ヒドロキシビタミンD₃-1α-水酸化酵素遺伝子の取得

ヒト腎臓より摘出した組織1.2gより、実施例2に記載の方法に準じ、総RNA 750μgを取得し、該総RNAより9.5μgのmRNAを取得した。該mRNA 5μgを用いて、実施例3に記載の方法に準じ、ヒトcDNAライブラリーを構築した。

【0123】実施例5に記載の方法に準じ、ヒト由来の25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードするDNAを取得した。実施例5において分離された2469bpのラットビタミンD₃水酸化酵素遺伝子の全長を、実施例5に記載の方法でDIGラベル化したものをプローブとして用いた。

【0124】ハイブリダイゼーションは、ホルムアミドを40%含むハイブリ溶液を用い、一晩、42℃の条件で行った。該ハイブリダイゼーションにより4つのクローンを選択した。実施例5に記載の方法に準じ、これらクローンよりDNAを抽出し、クローン中に挿入されたDNAの塩基配列を解析した。

【0125】該DNAは配列番号6に示された塩基配列を有していた。該DNA断片には、508アミノ酸のペプチドがコードされているORFが認められた。該ペプチドは、ラット由来の25-ヒドロキシビタミンD₃-1α-水酸化酵素と413アミノ酸残基ほど同じ配列を有し、P450ファミリータンパクに共通する、ヘム結合領域、アデノノドキシン結合領域と思われるアミノ酸配列を有していた。

【0126】また、該DNA配列は、ラット由来のものと1724残基同じ配列を有し、高い相同性が認められた。

【0127】実施例8 ラット由来ビタミンD₃-1α-水酸化酵素遺伝子の発現と活性測定

実施例6の方法に準じエレクトロポーレイション法で、ラット由来ビタミンD₃-1α-水酸化酵素遺伝子を含む遺伝子発現プラスミッドpCMD3RをCOS-7細胞へ導入した。該遺伝子導入細胞5×10⁵を10%FCSを含むDMEM培地10ml中で24時間培養後、培地を1%FCSを含むDMEM培地8mlに交換し、[26, 27-³H]-25-ヒドロキシビタミンD₃(Amersham社製)を2000Bq/3μlメタノール溶液を加え、24時間培養した。

【0128】培養後、該培養上清および細胞より、Bligh&Dyerの方法(Can. J. Biochem., 37, 911(1959))でビタミンD₃代謝産物を抽出した。即ち、50ml用のスクリューキャップ付きの遠心管に該培養液を移し、残ったシャーレに10mlのメタノールを加え、スクレーパーで細胞を搔きとり該遠心管に移した。再度該シャーレにメタノール10mlを添加し、シャーレに残っていた細胞を懸濁後、該懸濁液を全て該遠心管に移した。

【0129】該遠心管にクロロホルム10mlを加えよく混合し、さらに、10mlのクロロホルムを加え、再びよく混合後、静置し、クロロホルム層と水層とに分離させた。分離されたクロロホルム層のクロロホルム抽出液を別の遠心管に取り、残った水層に再びクロロホルム10mlを加え、同様に混合抽出を行い、得られたクロロホルム抽出液を、先に取得したクロロホルム抽出液と合わせた。

【0130】該クロロホルム抽出液に、蒸留水を全容が60mlになるまで加え、飽和食塩水を2滴添加後、充分に混合した。該混合液を遠心分離し、クロロホルム層と水層とに分離させた。得られたクロロホルム層の画分を窒素ガス気流下で、濃縮し残滓を取得した。該残滓をiso-プロパノール／メタノール／n-ヘキサン=6:6:8.8の混合溶液400μlに溶解した。

【0131】JASCO社製HPLCシステム880PUを用い、TSKsilicage1150カラム(4.6×250mm, tosoh社製)を装着し、iso-プロパノール／メタノール／n-ヘキサン=6:6:8.8の混合溶液を移動相として、流速1ml/分の条件で分析した。標準物質の流出時間との対比によって、ビタミンD₃代謝物の同定を行った。

【0132】同様に、本遺伝子を含まないベクターp cDNA3を用いてビタミンD₃代謝物の同定を行った。結果を図1に示した。Aがp cMD3Rを導入した細胞による代謝産物、Bがp cDNA3を導入した細胞による代謝産物の分析結果である。本発明の遺伝子を含むp cMD3Rを導入した細胞のみ、1α, 25-ジヒドロキシビタミンD₃が検出されたことより、この細胞のみが25-ヒドロキシビタミンD₃-1α-水酸化酵素活性を持つことが示され、本発明の遺伝子が25-ヒドロキシビタミンD₃-1α-水酸化酵素をコードしている

ことが分かった。

【0133】

【発明の効果】本発明により、活性型ビタミンD₃の低下により惹起される骨粗鬆症等の成人病の予防、診断、治療等に有用な、25-ヒドロキシビタミンD₃-1α-水酸化酵素活性を有するポリペプチド、該ポリペプチドをコードするDNA、該DNAをベクターに組み込んで得られる組換え体DNA、該組換え体DNAを保有する形質転換体、該形質転換体を用いた25-ヒドロキシビタミンD₃-1α-水酸化酵素の製造法、25-ヒドロキシビタミンD₃-1α-水酸化酵素活性を有するポリペプチドを用いた1α, 25-ジヒドロキシビタミンD₃の製造法および該ポリペプチドを認識する抗体を提供することができる。

【0134】

【配列表】

配列番号：1
配列の長さ：501
配列の型：アミノ酸
トポロジー：直鎖状
配列の種類：ペプチド
起源：
生物名：ラット
組織の種類：腎臓

配列

Met	Thr	Gln	Ala	Val	Lys	Leu	Ala	Ser	Arg	Val	Phe	His	Arg	Val	Gln
1															
10															
Leu	Pro	Ser	Gln	Leu	Gly	Ser	Asp	Ser	Val	Leu	Arg	Ser	Leu	Ser	Asp
20															
25															
Ile	Pro	Gly	Pro	Ser	Thr	Pro	Ser	Phe	Leu	Ala	Glu	Leu	Phe	Cys	Lys
35															
40															
45															
Gly	Gly	Leu	Ser	Arg	Leu	His	Glu	Leu	Gln	Val	His	Gly	Ala	Ala	Arg
50															
55															
60															
Tyr	Gly	Pro	Ile	Trp	Ser	Gly	Ser	Phe	Gly	Thr	Leu	Arg	Thr	Val	Tyr
65															
70															
75															
Val	Ala	Asp	Pro	Ala	Leu	Val	Glu	Gln	Leu	Leu	Arg	Gln	Glu	Ser	His
85															
90															
95															
Cys	Pro	Glu	Arg	Cys	Ser	Phe	Ser	Ser	Trp	Ser	Glu	His	Arg	Arg	Arg
100															
105															
110															
His	Gln	Arg	Ala	Cys	Gly	Leu	Leu	Thr	Ala	Asp	Gly	Glu	Trp	Gln	
115															
120															
125															
Arg	Leu	Arg	Ser	Leu	Leu	Ala	Pro	Leu	Leu	Leu	Arg	Pro	Gln	Ala	Ala
130															
135															
140															
Ala	Gly	Tyr	Ala	Gly	Thr	Leu	Asp	Ser	Val	Val	Ser	Asp	Leu	Val	Arg
145															
150															
155															
160															
Arg	Leu	Arg	Arg	Gln	Arg	Gly	Arg	Gly	Ser	Gly	Leu	Pro	Asp	Leu	Val
165															
170															
175															
Leu	Asp	Val	Ala	Gly	Glu	Phe	Tyr	Lys	Phe	Gly	Leu	Glu	Gly	Ile	Gly
180															
185															
190															
Ala	Val	Leu	Leu	Gly	Ser	Arg	Leu	Gly	Cys	Leu	Glu	Ala	Glu	Val	Pro

195	200	205
Pro Asp Thr Glu Thr Phe Ile Glu Ala Val Gly Ser Val Phe Val Ser		
210	215	220
Thr Leu Leu Thr Met Ala Met Pro Ser Trp Leu His Arg Leu Ile Pro		
225	230	235
Gly Pro Trp Ala Arg Leu Cys Arg Asp Trp Asp Gln Met Phe Ala Phe		
245	250	255
Ala Gln Lys His Val Glu Gln Arg Glu Gly Glu Ala Ala Val Arg Asn		
260	265	270
Gln Gly Lys Pro Glu Glu Asp Leu Pro Thr Gly His His Leu Thr His		
275	280	285
Phe Leu Phe Arg Glu Lys Val Ser Val Gln Ser Ile Val Gly Asn Val		
290	295	300
Thr Glu Leu Leu Leu Ala Gly Val Asp Thr Val Ser Asn Thr Leu Ser		
305	310	315
Trp Ala Leu Tyr Glu Leu Ser Arg His Pro Glu Val Gln Ser Ala Leu		
325	330	335
His Ser Glu Ile Thr Gly Ala Val Asn Pro Gly Ser Tyr Ala His Leu		
340	345	350
Gln Ala Thr Ala Leu Ser Gln Leu Pro Leu Leu Lys Ala Val Ile Lys		
355	360	365
Glu Val Leu Arg Leu Tyr Pro Val Val Pro Gly Asn Ser Arg Val Pro		
370	375	380
Asp Arg Asp Ile Cys Val Gly Asn Tyr Val Ile Pro Gln Asp Thr Leu		
385	390	395
Val Ser Leu Cys His Tyr Ala Thr Ser Arg Asp Pro Ala Gln Phe Arg		
405	410	415
Glu Pro Asn Ser Phe Asn Pro Ala Arg Trp Leu Gly Glu Gly Pro Ala		
420	425	430
Pro His Pro Phe Ala Ser Leu Pro Phe Gly Phe Gly Lys Arg Ser Cys		
435	440	445
Ile Gly Arg Arg Leu Ala Glu Leu Glu Leu Gln Met Ala Leu Ala Gln		
450	455	460
Ile Leu Thr His Phe Glu Val Leu Pro Glu Pro Gly Ala Leu Pro Val		
465	470	475
Lys Pro Met Thr Arg Thr Val Leu Val Pro Glu Arg Ser Ile His Leu		
485	490	495
Gln Phe Val Asp Arg		
500		

【0135】配列番号：2

配列の長さ：508

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

起源：

生物名：ヒト

組織の種類：腎臓

配列：

Met Thr Gln Thr Leu Lys Tyr Ala Ser Arg Val Phe His Arg Val Arg			
1	5	10	15
Trp Ala Pro Glu Leu Gly Ala Ser Leu Gly Tyr Arg Glu Tyr His Ser			
20	25	30	
Ala Arg Arg Ser Leu Ala Asp Ile Pro Gly Pro Ser Thr Pro Ser Phe			
35	40	45	

Leu Ala Glu Leu Phe Cys Lys Gly Gly Leu Ser Arg Leu His Glu Leu
 50 55 60
 Gln Val Gln Gly Ala Ala His Phe Gly Pro Val Trp Leu Ala Ser Phe
 65 70 75 80
 Gly Thr Val Arg Thr Val Tyr Val Ala Ala Pro Ala Leu Val Glu Glu
 85 90 95
 Leu Leu Arg Gln Glu Gly Pro Arg Pro Glu Arg Cys Ser Phe Ser Pro
 100 105 110
 Trp Thr Glu His Arg Arg Cys Arg Gln Arg Ala Cys Gly Leu Leu Thr
 115 120 125
 Ala Glu Gly Glu Glu Trp Gln Arg Leu Arg Ser Leu Leu Ala Pro Leu
 130 135 140
 Leu Leu Arg Pro Gln Ala Ala Ala Arg Tyr Ala Gly Thr Leu Asn Asn
 145 150 155 160
 Val Val Cys Asp Leu Val Arg Arg Leu Arg Arg Gln Arg Gly Arg Gly
 165 170 175
 Thr Gly Pro Pro Ala Leu Val Arg Asp Val Ala Gly Glu Phe Tyr Lys
 180 185 190
 Phe Gly Leu Glu Gly Ile Ala Ala Val Leu Leu Gly Ser Arg Leu Gly
 195 200 205
 Cys Leu Glu Ala Gln Val Pro Pro Asp Thr Glu Thr Phe Ile Arg Ala
 210 215 220
 Val Gly Ser Val Phe Val Ser Thr Leu Leu Thr Met Ala Met Pro His
 225 230 235 240
 Trp Leu Arg His Leu Val Pro Gly Pro Trp Gly Arg Leu Cys Arg Asp
 245 250 255
 Trp Asp Gln Met Phe Ala Phe Ala Gln Arg His Val Glu Arg Arg Glu
 260 265 270
 Ala Glu Ala Ala Met Arg Asn Gly Gly Gln Pro Glu Lys Asp Leu Glu
 275 280 285
 Ser Gly Ala His Leu Thr His Phe Leu Phe Arg Glu Glu Leu Pro Ala
 290 295 300
 Gln Ser Ile Leu Gly Asn Val Thr Glu Leu Leu Ala Gly Val Asp
 305 310 315 320
 Thr Val Ser Asn Thr Leu Ser Trp Ala Leu Tyr Glu Leu Ser Arg His
 325 330 335
 Pro Glu Val Gln Thr Ala Leu His Ser Glu Ile Thr Ala Ala Leu Ser
 340 345 350
 Pro Gly Ser Ser Ala Tyr Pro Ser Ala Thr Val Leu Ser Gln Leu Pro
 355 360 365
 Leu Leu Lys Ala Val Val Lys Glu Val Leu Arg Leu Tyr Pro Val Val
 370 375 380
 Pro Gly Asn Ser Arg Val Pro Asp Lys Asp Ile His Val Gly Asp Tyr
 385 390 395 400
 Ile Ile Pro Lys Asn Thr Leu Val Thr Leu Cys His Tyr Ala Thr Ser
 405 410 415
 Arg Asp Pro Ala Gln Phe Pro Glu Pro Asn Ser Phe Arg Pro Ala Arg
 420 425 430
 Trp Leu Gly Glu Gly Pro Thr Pro His Pro Phe Ala Ser Leu Pro Phe
 435 440 445

Gly Phe Gly Lys Arg Ser Cys Met Gly Arg Arg Leu Ala Glu Leu Glu
 450 455 460
 Leu Gln Met Ala Leu Ala Gln Ile Leu Thr His Phe Glu Val Gln Pro
 465 470 475 480
 Glu Pro Gly Ala Ala Pro Val Arg Pro Lys Thr Arg Thr Val Leu Val
 485 490 495
 Pro Glu Arg Ser Ile Asn Leu Gln Phe Leu Asp Arg
 500 505

【0136】配列番号：3

配列の長さ：1503

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA to mRNA

起源：

生物名：ラット

組織の種類：腎臓

配列

ATG ACC CAG GCA GTC AAG CTC GCC TCC AGA GTC TTC CAT CGA GTC CAA	48
Met Thr Gln Ala Val Lys Leu Ala Ser Arg Val Phe His Arg Val Gln	
1 5 10 15	
CTG CCT TCT CAG CTG CGC AGT GAC TCG GTT CTC CGG ACT TTA TCT GAT	96
Leu Pro Ser Gln Leu Gly Ser Asp Ser Val Leu Arg Ser Leu Ser Asp	
20 25 30	
ATC CCT GGG CCC TCT ACA CCT AGC TTC CTG GCT GAA CTC TTC TGC AAA	144
Ile Pro Gly Pro Ser Thr Pro Ser Phe Leu Ala Glu Leu Phe Cys Lys	
35 40 45	
GGG GGG CTG TCC AGG CTA CAT GAA CTG CAG GTG CAT GGC GCT GCG CGG	192
Gly Gly Leu Ser Arg Leu His Glu Leu Gln Val His Gly Ala Ala Arg	
50 55 60	
TAC GGG CCA ATA TGG TCC GGC AGC TTC GGG ACA CTT CGC ACA GTT TAT	240
Tyr Gly Pro Ile Trp Ser Gly Ser Phe Gly Thr Leu Arg Thr Val Tyr	
65 70 75 80	
GTG GCC GAC CCT GCA CTT GTC GAG CAG CTC CTG CGA CAA GAA AGT CAT	288
Val Ala Asp Pro Ala Leu Val Glu Gln Leu Leu Arg Gln Glu Ser His	
85 90 95	
TGT CCA GAG CCC TGT AGT TTC TCA TCT TCG TCA GAG CAC CGT CGC CCC	336
Cys Pro Glu Arg Cys Ser Phe Ser Ser Trp Ser Glu His Arg Arg Arg	
100 105 110	
CAC CAG CGG GCT TGC GGG TTG CTA ACG CGG GAT CGT GAA GAA TGG CAG	384
His Gln Arg Ala Cys Gly Leu Leu Thr Ala Asp Gly Glu Glu Trp Gln	
115 120 125	
AGG CTC CGA AGT CTC CTG GCC CCG CTA CTC CGA CCT CAA GCA GCC	432
Arg Leu Arg Ser Leu Leu Ala Pro Leu Leu Arg Pro Gln Ala Ala	
130 135 140	
GCC GGC TAT GCT GGA ACT CTG GAC ACC GTC GTC ACT GAC CTC GTG CGA	480
Ala Gly Tyr Ala Gly Thr Leu Asp Ser Val Val Ser Asp Leu Val Arg	
145 150 155 160	
CGA CTA AGG CGC CAG CGG CGA CGT GGC TCT GGG CTA CGG GAC CTA GTT	528
Arg Leu Arg Arg Gln Arg Gly Arg Gly Ser Gly Leu Pro Asp Leu Val	
165 170 175	
CTG GAC GTG CGG GGA GAG TTT TAC AAA TTT GGC CTA GAA GGC ATA GGC	576
Leu Asp Val Ala Gly Glu Phe Tyr Lys Phe Gly Leu Glu Gly Ile Gly	
180 185 190	

GGC GTG CTG CTC CGA TCG CCC CTG CCC TGC CTG GAC GCT CAA GTT CCT		624
Ala Val Leu Leu Gly Ser Arg Leu Gly Cys Leu Glu Ala Glu Val Pro		
195 200 205		
CCC GAC ACA GAA ACC TTC ATT GAG GCC GTG CCC TCG TGT TTT GTC TCT		672
Pro Asp Thr Glu Thr Phe Ile Glu Ala Val Gly Ser Val Phe Val Ser		
210 215 220		
ACA CTC TTG ACC ATG GCA ATG CCC AGT TGG CTG CAC CGC CTT ATA CCC		720
Thr Leu Leu Thr Met Ala Met Pro Ser Trp Leu His Arg Leu Ile Pro		
225 230 235 240		
GGA CCC TGG GCC CGC CTC TGC AGA GAC TGG CAT CAG ATG TTT GCC TTT		768
Gly Pro Trp Ala Arg Leu Cys Arg Asp Trp Asp Gln Met Phe Ala Phe		
245 250 255		
GCC CAG AAC CAC GTG GAG CAG CGC GAA CCC GAA GCT GCC GTG AGG AAC		816
Ala Gln Lys His Val Glu Gln Arg Glu Gly Glu Ala Ala Val Arg Asn		
260 265 270		
CAG GGA AAG CCT GAG GAG GAT TTG CCA ACG GGG CAT CAC TTA ACC CAC		864
Gln Gly Lys Pro Glu Glu Asp Leu Pro Thr Gly His His Leu Thr His		
275 280 285		
TTC CTT TTT CCG GAA AAG GTG TCT GTC CAG TCC ATA GTG GGA AAT GTG		912
Phe Leu Phe Arg Glu Lys Val Ser Val Gln Ser Ile Val Gly Asn Val		
290 295 300		
ACA GAG CTA CTA CTG GCT GGA GTG GAC ACC GTC TCC AAT ACC CTC TCC		960
Thr Glu Leu Leu Ala Gly Val Asp Thr Val Ser Asn Thr Leu Ser		
305 310 315 320		
TGG GCA CTC TAT GAG CTC TCC CGG CAC CCG GAA GTC CAG TCT GCA CTC		1008
Trp Ala Leu Tyr Glu Leu Ser Arg His Pro Glu Val Gln Ser Ala Leu		
325 330 335		
CAC TCT GAG ATC ACA GCC GCT GTG AAC CCT GGC TCC TAT GCC CAC CTC		1056
His Ser Glu Ile Thr Gly Ala Val Asn Pro Gly Ser Tyr Ala His Leu		
340 345 350		
CAA GCC ACT GCT CTG TCC CAG CTA CCC CTG CTA AAC GCT GTG ATC AAA		1104
Gln Ala Thr Ala Leu Ser Gln Leu Pro Leu Leu Lys Ala Val Ile Lys		
355 360 365		
GAA GTG TTG AGA TTG TAC CCT GTG GTA CCT GGG AAC TCC CGT GTC CCA		1152
Glu Val Leu Arg Leu Tyr Pro Val Val Pro Gly Asn Ser Arg Val Pro		
370 375 380		
GAC ACA GAC ATC TGT GTA CGA AAC TAT GTT ATT CCC CAA GAT ACA CTG		1200
Asp Arg Asp Ile Cys Val Gly Asn Tyr Val Ile Pro Gln Asp Thr Leu		
385 390 395 400		
GTT TCC CTC TGT CAC TAT GCC ACT TCA AGG GAC CCC GCC CAG TTT CGG		1248
Val Ser Leu Cys His Tyr Ala Thr Ser Arg Asp Pro Ala Gln Phe Arg		
405 410 415		
GAA CCC AAC TCT TTT AAT CCA GCT CGA TGG CTT GGA GAG GGT CCA CCC		1296
Glu Pro Asn Ser Phe Asn Pro Ala Arg Trp Leu Gly Glu Gly Pro Ala		
420 425 430		
CCC CAC CCA TTT GCA TCT CTT CCT TTT GGC TTT GGC AAA CGA AGT TGC		1344
Pro His Pro Phe Ala Ser Leu Pro Phe Gly Phe Gly Lys Arg Ser Cys		
435 440 445		
ATA CGG AGA CGC TTG GCA GAG CTC GAC CTA CAA ATG GCG TTG GCC CAG		1392
Ile Gly Arg Arg Leu Ala Glu Leu Glu Leu Gln Met Ala Leu Ala Gln		

450	455	460	
ATC TTG ACC CAT TTT GAG GTG CTG CCT GAG CCA GGT GCT CTT CCA GTC			1440
Ile Leu Thr His Phe Glu Val Leu Pro Glu Pro Gly Ala Leu Pro Val			
465	470	475	480
AAA CCC ATG ACC CGG ACT GTC CTG GTA CCT GAC AGG AGC ATC CAT CTC			1488
Lys Pro Met Thr Arg Thr Val Leu Val Pro Glu Arg Ser Ile His Leu			
485	490	495	
CAG TTT GTA GAC AGA			1503
Gln Phe Val Asp Arg			
500			

【0137】配列番号：4

配列の長さ：2469

配列の型：核酸

鎖の数：二本鎖

トポロジー：直線状

配列の種類：cDNA to mRNA

起源：

生物名：ヒト

組織の種類：腎臓

配列			
ATG ACC CAG ACC CTC AAC TAC GCC TCC ACA GTG TTC CAT CGC GTC CGC			48
Met Thr Gln Thr Leu Lys Tyr Ala Ser Arg Val Phe His Arg Val Arg			
1	5	10	15
TGG GCG CCC GAG TTG GGC GCC TCC CTA CGC TAC CGA GAG TAC CAC TCA			96
Trp Ala Pro Glu Leu Gly Ala Ser Leu Gly Tyr Arg Glu Tyr His Ser			
20	25	30	
GCA CGC CGG AGC TTG GCA GAC ATC CCA CGC CCC TCT ACG CCC AGC TTT			144
Ala Arg Arg Ser Leu Ala Asp Ile Pro Gly Pro Ser Thr Pro Ser Phe			
35	40	45	
CTG GCC GAA CTT TTC TGC AAG CGG CGG CTG TCG AGG CTA CAC GAG CTG			192
Leu Ala Glu Leu Phe Cys Lys Gly Gly Leu Ser Arg Leu His Glu Leu			
50	55	60	
CAG GTG CAG CGC CGC CGG CAC TTC CGG CGG GTG TGG CTA GCC AGC TTT			240
Gln Val Gln Gly Ala Ala His Phe Gly Pro Val Trp Leu Ala Ser Phe			
65	70	75	80
GGG ACA GTG CCC ACC GTG TAC GTG GCT CCC CCT GCA CTC GTC GAG GAG			288
Gly Thr Val Arg Thr Val Tyr Val Ala Ala Pro Ala Leu Val Glu Glu			
85	90	95	
CTG CTC CGA CAG GGA CCC CGG CCC GAG CGC TGC AGC TTC TCG CCC			336
Leu Leu Arg Gln Glu Gly Pro Arg Pro Glu Arg Cys Ser Phe Ser Pro			
100	105	110	
TGG ACC GAG CAC CGC CGC TGC CGC CAG CGG CCT TGC GGA CTG CTC ACT			384
Trp Thr Glu His Arg Arg Cys Arg Gln Arg Ala Cys Gly Leu Leu Thr			
115	120	125	
GGC GAA CGC GAA GAA TCG CAA AGG CTC CGC ACT CTC CTG GCC CCG CTC			432
Ala Glu Gly Glu Glu Trp Gln Arg Leu Arg Ser Leu Leu Ala Pro Leu			
130	135	140	
CTC CTC CGG CCT CAA CGC CGC CCC CGC TAC CCC CGA ACC CTG AAC AAC			480
Leu Leu Arg Pro Gln Ala Ala Arg Tyr Ala Gly Thr Leu Asn Asn			
145	150	155	160
CTA GTC TGC GAC CTT GTG CGG CGT CTG AGG CCC CAG CGG CGA CGT CGC			528
Val Val Cys Asp Leu Val Arg Arg Leu Arg Arg Gln Arg Gly Arg Gly			
165	170	175	
ACG CGG CGC CCC CGC CTG CTT CGG GAC GTG CGG CGG GAA TTT TAC AAC			576

Thr Gly Pro Pro Ala Leu Val Arg Asp Val Ala Gly Glu Phe Tyr Lys			
180	185	190	
TTC GCA CTG GAA GGC ATC CCC GCG CTT CTG CTC CGC TCG CGC TTG CGC			624
Phe Gly Leu Glu Gly Ile Ala Ala Val Leu Leu Gly Ser Arg Leu Gly			
195	200	205	
TGC CTG GAG CCT CAA CTG CCA CCC GAC ACC GAG ACC TTC ATC CCC GCT			672
Cys Leu Glu Ala Gln Val Pro Pro Asp Thr Glu Thr Phe Ile Arg Ala			
210	215	220	
GTG GGC TCG CTG TTT CTG TCC ACG CTG TTC ACC ATG GGG ATG CCC CAC			720
Val Gly Ser Val Phe Val Ser Thr Leu Leu Thr Met Ala Met Pro His			
225	230	235	240
TCG CTG CGC CAC CTT CTG CCT GGG CCC TGG GGC CGC CTC TGC CGA GAC			768
Trp Leu Arg His Leu Val Pro Gly Pro Trp Gly Arg Leu Cys Arg Asp			
245	250	255	
TGG GAC CAG ATG TTT GCA TTT GCT CAG AGG CAC GTG GAG CGG CGA GAG			816
Trp Asp Gln Met Phe Ala Phe Ala Gln Arg His Val Glu Arg Arg Glu			
260	265	270	
GCA GAG GCA GCC ATG AGG AAC GGA GGA CAG CCC GAG AAG GAC CTG GAG			864
Ala Glu Ala Ala Met Arg Asn Gly Gly Gln Pro Glu Lys Asp Leu Glu			
275	280	285	
TCT CGG CGG CAC CTG ACC CAC TTC CTG TTC CCG GAA GAG TTG CCT GCC			912
Ser Gly Ala His Leu Thr His Phe Leu Phe Arg Glu Glu Leu Pro Ala			
290	295	300	
CAG TCC ATC CTG GCA AAT GTG ACA GAG TTG CTA TTG CGC CGA CTG CAC			960
Gln Ser Ile Leu Gly Asn Val Thr Glu Leu Leu Ala Gly Val Asp			
305	310	315	320
ACG GTG TCC AAC ACC CTC TCT TGG GCT CTG TAT GAG CTC TCC CGG CAC			1008
Thr Val Ser Asn Thr Leu Ser Trp Ala Leu Tyr Glu Leu Ser Arg His			
325	330	335	
CCC CAA GTC CAG ACA GCA CTC CAC TCA CAG ATC ACA GCT GCC CTG ACC			1056
Pro Glu Val Gln Thr Ala Leu His Ser Glu Ile Thr Ala Ala Leu Ser			
340	345	350	
CCT GCC TCC AGT GCC TAC CCC TCA GCC ACT GTT CTG TCC CAG CTG CCC			1104
Pro Gly Ser Ser Ala Tyr Pro Ser Ala Thr Val Leu Ser Gln Leu Pro			
355	360	365	
CTG CTG AAG CGG GTG GTC AAG GAA GTG CTA AGA CTG TAC CCT GTG GTC			1152
Leu Leu Lys Ala Val Val Lys Glu Val Leu Arg Leu Tyr Pro Val Val			
370	375	380	
CCT GGA AAT TCT CGT GTC CCA GAC AAA GAC ATT CAT GTG GGT GAC TAT			1200
Pro Gly Asn Ser Arg Val Pro Asp Lys Asp Ile His Val Gly Asp Tyr			
385	390	395	400
ATT ATC CCC AAA AAT ACC CTG GTC ACT CTG TGT CAC TAT GCC ACT TCA			1248
Ile Ile Pro Lys Asn Thr Leu Val Thr Leu Cys His Tyr Ala Thr Ser			
405	410	415	
AGG GAC CCT GCC CAG TTC CCA GAG CCA AAT TCT TTT CGT CCA GCT CGC			1296
Arg Asp Pro Ala Gln Phe Pro Glu Pro Asn Ser Phe Arg Pro Ala Arg			
420	425	430	
TGG CTG CGG CAG CGT CCC ACC CCC CAC CCA TTT GCA TCT CTT CCC TTT			1344
Trp Leu Gly Glu Gly Pro Thr Pro His Pro Phe Ala Ser Leu Pro Phe			
435	440	445	

GGC TTT GGC AAG CGC AGC TGT ATG CGG AGA CGC CTG GCA GAG CTT GAA Gly Phe Gly Lys Arg Ser Cys Met Gly Arg Arg Leu Ala Glu Leu Glu 450 455 460	1392
TTG CAA ATG CCT TTG GCC CAG ATC CTA ACA CAT TTT GAC GTG CAG CCT Leu Gln Met Ala Leu Ala Gln Ile Leu Thr His Phe Glu Val Gln Pro 465 470 475 480	1440
CAG CCA GGT CGG GCC CCA CTT ACA CCC AAG ACC CGG ACT GTC CTC GTA Glu Pro Gly Ala Ala Pro Val Arg Pro Lys Thr Arg Thr Val Leu Val 485 490 495	1488
CCT GAA AGG ACC ATC AAC CTA CAG TTT TTC GAC AGA Pro Glu Arg Ser Ile Asn Leu Gln Phe Leu Asp Arg 500 505	1524

【0138】配列番号：5

配列の長さ：2469

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA to mRNA

起源：

生物名：ラット

組織の種類：腎臓

配列	
GAGCACACTC CTCAAACACA AAC ATG ACC CAG GCA GTC AAG CTC GCC TCC AGA Met Thr Gln Ala Val Lys Leu Ala Ser Arg 1 5 10	53
GTC TTC CAT CGA GTC CAA CTG CCT TCT CAG CTG CGC AGT GAC TCG GTT Val Phe His Arg Val Gln Leu Pro Ser Gln Leu Gly Ser Asp Ser Val 15 20 25	101
CTC CGG ACT TTA TCT GAT ATC CCT GGG CCC TCT ACA CCT ACC TTC CTG Leu Arg Ser Leu Ser Asp Ile Pro Gly Pro Ser Thr Pro Ser Phe Leu 30 35 40	149
GCT GAA CTC TTC TGC AAA CGG CGG CTG TCC AGG CTA CAT GAA CTG CAG Ala Glu Leu Phe Cys Lys Gly Leu Ser Arg Leu His Glu Leu Gln 45 50 55	197
GTC CAT CGC CCT CGG CGG TAC CGG CCA ATA TGG TCC CGC ACC TTC CGG Val His Gly Ala Ala Arg Tyr Gly Pro Ile Trp Ser Gly Ser Phe Gly 60 65 70	245
ACA CTT CGC ACA GTT TAT GTG GCC GAC CCT CCA CTT GTC GAG CAG CTC Thr Leu Arg Thr Val Ala Asp Pro Ala Leu Val Glu Gln Leu 75 80 85 90	293
CTG CCA CAA GAA ACT CAT TGT CCA GAG CCC TGT AGT TTC TCA TCT TGG Leu Arg Gln Glu Ser His Cys Pro Glu Arg Cys Ser Phe Ser Ser Trp 95 100 105	341
TCA GAG CAC CGT CGC CGC CAC CAG CGG GCT TGC CGG TTG CTA ACG CGG Ser Glu His Arg Arg His Gln Arg Ala Cys Gly Leu Leu Thr Ala 110 115 120	389
GAT GGT GAA GAA TGG CAG AGG CTC CGA AGT CTC CTG GCC CGG CTA CTC Asp Gly Glu Glu Trp Gln Arg Leu Arg Ser Leu Leu Ala Pro Leu Leu 125 130 135	437
CTC CGA CCT CAA GCA CCC GCC CGC TAT GCT CGA ACT CTG GAC ACC GTC Leu Arg Pro Gln Ala Ala Gly Tyr Ala Gly Thr Leu Asp Ser Val 140 145 150	485
GTC AGT GAC CTC CTG CGA CGA CTA AGG CGC CAG CGG CGA CGT GGC TCT Val Ser Asp Leu Val Arg Arg Leu Arg Arg Gln Arg Gly Arg Gly Ser	533

155	160	165	170	
GGC CTA CGG GAC CTA GTT CTG GAC GTG GCG GCA CAG TTT TAC AAA TTT				581
Gly Leu Pro Asp Leu Val Leu Asp Val Ala Gly Glu Phe Tyr Lys Phe				
175	180	185		
GGC CTA GAA GGC ATA GGC GCG GTG CTG CTG GGA TCG CCC CTG GGC TGC				629
Gly Leu Glu Gly Ile Gly Ala Val Leu Leu Gly Ser Arg Leu Gly Cys				
190	195	200		
CTG GAG CCT GAA GTT CCT CCC GAC ACA GAA ACC TTC ATT GAG GCC CTG				677
Leu Glu Ala Glu Val Pro Pro Asp Thr Glu Thr Phe Ile Glu Ala Val				
205	210	215		
GGC TCG TGC TTT GTG TCT ACA CTC TTG ACC ATG GCA ATG CCC AGT TGG				725
Gly Ser Val Phe Val Ser Thr Leu Leu Thr Met Ala Met Pro Ser Trp				
220	225	230		
CTG CAC CGG CTT ATA CCC GGA CCC TGG CCC CTC TCC AGA GAC TCG				773
Leu His Arg Leu Ile Pro Gly Pro Trp Ala Arg Leu Cys Arg Asp Trp				
235	240	245	250	
CAT CAG ATG TTT GCC TTT CCC CAG AAG CAC GTG GAG CAG CCC GAA GCC				821
Asp Gln Met Phe Ala Phe Ala Gln Lys His Val Glu Gln Arg Glu Gly				
255	260	265		
CAA GCT GCC GTC AGG AAC CAG GGA AAG CCT GAG GAG GAT TTG CCA ACC				869
Glu Ala Ala Val Arg Asn Gln Gly Lys Pro Glu Glu Asp Leu Pro Thr				
270	275	280		
GGG CAT CAC TTA ACC CAC TTC CTT TTT CCG GAA AAG GTG TCT GTC CAG				917
Gly His His Leu Thr His Phe Leu Phe Arg Glu Lys Val Ser Val Gln				
285	290	295		
TCC ATA GTG GGA AAT CTG ACA GAG CTA CTA CTG GCT CGA CTG GAC ACC				965
Ser Ile Val Gly Asn Val Thr Glu Leu Leu Leu Ala Gly Val Asp Thr				
300	305	310		
GTA TCC AAT ACC CTC TCC TCG GCA CTC TAT GAG CTC TCC CGG CAC CCG				1013
Val Ser Asn Thr Leu Ser Trp Ala Leu Tyr Glu Leu Ser Arg His Pro				
315	320	325	330	
GAA GTC CAG TCT GCA CTC CAC TCT GAG ATC ACA GGC GCT GTG AAC CCT				1061
Glu Val Gln Ser Ala Leu His Ser Glu Ile Thr Gly Ala Val Asn Pro				
335	340	345		
GGC TCC TAT GCC CAC CTC CAA GCC ACT GCT CTG TCC CAG CTA CCC CTG				1109
Gly Ser Tyr Ala His Leu Gln Ala Thr Ala Leu Ser Gln Leu Pro Leu				
350	355	360		
CTA AAG CCT GTG ATC AAA GAA GTG TTG AGA TTG TAC CCT GTG GTA CCT				1157
Leu Lys Ala Val Ile Lys Glu Val Leu Arg Leu Tyr Pro Val Val Pro				
365	370	375		
GGG AAC TCC CGT GTC CCA CAC AGA GAC ATC TGT GTA GGA AAC TAT CTT				1205
Gly Asn Ser Arg Val Pro Asp Arg Asp Ile Cys Val Gly Asn Tyr Val				
380	385	390		
ATT CCC CAA GAT ACA CTG GTT TCC CTC TGT CAC TAT GCC ACT TCA AGG				1253
Ile Pro Gln Asp Thr Leu Val Ser Leu Cys His Tyr Ala Thr Ser Arg				
395	400	405	410	
GAC CCC GCC CAG TTT CCG GAA CCC AAC TCT TTT AAT CCA GCT CGA TGG				1301
Asp Pro Ala Gln Phe Arg Glu Pro Asn Ser Phe Asn Pro Ala Arg Trp				
415	420	425		
CTT CGA GAG GGT CCA CCC CAC CCA TTT CCA TCT CTT CCT TTT GGC				1349

【0.139】配列番号：6

配列の長さ : 2469

配列の型：核酸

鎖の数：二本鎖

トポロジー：直線状

配列の種類：cDNA to mRNA

起源：

生物名：ヒト

組織の種類：腎臓

配列

AGGAGGGATT GGCTGAGCAG CTTGGAGAGG GGGCGTCATC ACCTCACCCA AAGGTTAAAT	60		
AGGGGTTCA ATATGATGCT CAGGACAAGC GCTTCTTTC GCGACCCACCC TGAACCAGAC	120		
C ATG ACC CAG ACC CTC AAG TAC GCC TCC AGA GTG TTC CAT CGC GTC CGC	169		
Met Thr Gln Thr Leu Lys Tyr Ala Ser Arg Val Phe His Arg Val Arg			
1	5	10	15
TGG CGC CCC GAG TTG GGC GCC TCC CTA GGC TAC CGA GAG TAC CAC TCA	217		
Trp Ala Pro Glu Leu Gly Ala Ser Leu Gly Tyr Arg Glu Tyr His Ser			
20	25	30	
GCA CGC CGG ACC TTG GCA GAC ATC CCA GGC CCC TCT ACC CCC AGC TTT	265		
Ala Arg Arg Ser Leu Ala Asp Ile Pro Gly Pro Ser Thr Pro Ser Phe			
35	40	45	
CTG GCC GAA CTT TTC TCC AAG CGG CGG CTG TCG AGG CTA CAC GAG CTG	313		
Leu Ala Glu Leu Phe Cys Lys Gly Gly Leu Ser Arg Leu His Glu Leu			
50	55	60	

CAG GTG CAG CCC GCC CCC CAC TTC CGG CCG GTG TCG CTA CCC ACC TTT		361
Gln Val Gln Gly Ala Ala His Phe Gly Pro Val Trp Leu Ala Ser Phe		
65 70 75 80		
GGG ACA GTG CGC ACC GTC TAC CTG GCT GCC CCT GCA CTC GTC GAG CAG		409
Gly Thr Val Arg Thr Val Tyr Val Ala Ala Pro Ala Leu Val Glu Glu		
85 90 95		
CTG CTG CGA CAG GGA CCC CGG CCC GAG CGC TGC AGC TTC TCG CCC		457
Leu Leu Arg Gln Glu Gly Pro Arg Pro Glu Arg Cys Ser Phe Ser Pro		
100 105 110		
TCG ACG GAG CAC CGC CGC TCC CGC CAG CGG CCT TCC GGA CTG CTC ACT		505
Trp Thr Glu His Arg Arg Cys Arg Gln Arg Ala Cys Gly Leu Leu Thr		
115 120 125		
GGG GAA GGC GAA GAA TGG CAA AGG CTC CGC ACT CTC CTG GCC CCC CTC		553
Ala Glu Gly Glu Glu Trp Gln Arg Leu Arg Ser Leu Leu Ala Pro Leu		
130 135 140		
CTC CTC CGG CCT CAA CGG CCC CCC CCC TAC GCC CGA ACC CTC AAC AAC		601
Leu Leu Arg Pro Gln Ala Ala Ala Arg Tyr Ala Gly Thr Leu Asn Asn		
145 150 155 160		
GTA GTC TGC GAC CTT GTG CGG CGT CTG AGG CGC CAG CGG GGA CGT CCC		649
Val Val Cys Asp Leu Val Arg Arg Leu Arg Arg Gln Arg Gly Arg Gly		
165 170 175		
ACG GGG CCC CCC GCC CTG GTT CGG CAC GTG CGG CGG GAA TTT TAC AAG		697
Thr Gly Pro Pro Ala Leu Val Arg Asp Val Ala Gly Glu Phe Tyr Lys		
180 185 190		
TTC GGA CTG GAA GGC ATC GCC GCG GTT CTG CTC CGC TCG CGC TTG GGC		745
Phe Gly Leu Glu Gly Ile Ala Ala Val Leu Leu Gly Ser Arg Leu Gly		
195 200 205		
TGC CTG GAG CCT CAA CTG CCA CCC GAC ACG GAG ACC TTC ATC CCC GCT		793
Cys Leu Glu Ala Gln Val Pro Pro Asp Thr Glu Thr Phe Ile Arg Ala		
210 215 220		
GTC GCC TCG GTG TTT GTG TCC ACG CTG TTG ACC ATG GCG ATG CCC CAC		841
Val Gly Ser Val Phe Val Ser Thr Leu Leu Thr Met Ala Met Pro His		
225 230 235 240		
TGG CTG CGC CAC CTT GTG CCT CGG CCC TGG GGC CGC CTC TGC CGA GAC		889
Trp Leu Arg His Leu Val Pro Gly Pro Trp Gly Arg Leu Cys Arg Asp		
245 250 255		
TGG GAC CAG ATG TTT GCA TTT GCT CAG AGG CAC GTG GAG CGG CGA GAG		937
Trp Asp Gln Met Phe Ala Phe Ala Gln Arg His Val Glu Arg Arg Glu		
260 265 270		
GCA CAG GCA CCC ATG AGG AAC CGA CGA CAG CCC GAG AAG GAC CTG CAC		985
Ala Glu Ala Ala Met Arg Asn Gly Gly Gln Pro Glu Lys Asp Leu Glu		
275 280 285		
TCT GGG CGC CAC CTG ACC CAC TTC CTG TTC CGG GAA GAG TTG CCT GCC		1033
Ser Gly Ala His Leu Thr His Phe Leu Phe Arg Glu Glu Leu Pro Ala		
290 295 300		
CAG TCC ATC CTG CGA AAT GTG ACA GAG TTG CTA TTG GCG GGA GTG CAC		1081
Gln Ser Ile Leu Gly Asn Val Thr Glu Leu Leu Ala Gly Val Asp		
305 310 315 320		
ACC GTG TCC AAC ACC CTC TCT TGG GCT CTG TAT GAG CTC TCC CGG CAC		1129
Thr Val Ser Asn Thr Leu Ser Trp Ala Leu Tyr Glu Leu Ser Arg His		

	325	330	335	
CCC GAA GTC CAG ACA GCA CTC CAC TCA GAG ATC ACA GCT CCC CTG ACC				1177
Pro Glu Val Gln Thr Ala Leu His Ser Glu Ile Thr Ala Ala Leu Ser				
340	345	350		
CCT GGC TCC ACT GCC TAC CCC TCA GCC ACT GTT CTG TCC CAG CTG CCC				1225
Pro Gly Ser Ser Ala Tyr Pro Ser Ala Thr Val Leu Ser Gln Leu Pro				
355	360	365		
CTG CTG AAG GCG GTC GTC AAG GAA GTG CTA AGA CTG TAC CCT CTG GTA				1273
Leu Leu Lys Ala Val Val Lys Glu Val Leu Arg Leu Tyr Pro Val Val				
370	375	380		
CCT GCA AAT TCT CGT CTC CCA GAC AAA GAC ATT CAT CTG GGT GAC TAT				1321
Pro Gly Asn Ser Arg Val Pro Asp Lys Asp Ile His Val Gly Asp Tyr				
385	390	395	400	
ATT ATC CCC AAA AAT ACG CTG GTC ACT CTG TGT CAC TAT GCC ACT TCA				1369
Ile Ile Pro Lys Asn Thr Leu Val Thr Leu Cys His Tyr Ala Thr Ser				
405	410	415		
AGG GAC CCT GCC CAG TTC CCA GAG CCA AAT TCT TTT CGT CCA CCT CGC				1417
Arg Asp Pro Ala Gln Phe Pro Glu Pro Asn Ser Phe Arg Pro Ala Arg				
420	425	430		
TGG CTG CGG GAG GGT CCC ACC CCC CAC CCA TTT GCA TCT CTT CCC TTT				1465
Trp Leu Gly Glu Gly Pro Thr Pro His Pro Phe Ala Ser Leu Pro Phe				
435	440	445		
GGC TTT CGC AAG CGC AGC TGT ATG GGG AGA CGC CTC GCA GAG CTT GAA				1513
Gly Phe Gly Lys Arg Ser Cys Met Gly Arg Arg Leu Ala Glu Leu Glu				
450	455	460		
TTG CAA ATG GCT TTG GCC CAG ATC CTA ACA CAT TTT GAG CTG CAG CCT				1561
Leu Gln Met Ala Leu Ala Gln Ile Leu Thr His Phe Glu Val Gln Pro				
465	470	475	480	
GAG CCA CGT GCG GCC CCA GTT AGA CCC AAG ACC CGG ACT GTC CTC GTA				1609
Gl Glu Pro Gly Ala Ala Pro Val Arg Pro Lys Thr Arg Thr Val Leu Val				
485	490	495		
CCT GAA AGG ACC ATC AAC CTA CAG TTT TTG GAC AGA TAGTCCCCATG GAAAGAG				1662
Pro Glu Arg Ser Ile Asn Leu Gln Phe Leu Asp Arg				
500	505			
ACTGTCATCA TCACCCCTTC ATTTCATCATA GGGATAAGAT TTTTCTAGG CACAACACCA				1722
AGGTATACAT CTCCCCCTAA TGCTTATCTG ACCAAACTGG ATAGAACAC CATACTGAAG				1782
TGTGAGGCCG CCCTGACCAA TGTCTGAAGT ATGCACTTGG CCTGACTCTG GAAGCCAGGT				1842
GAGAAAACCA TGGCTCTCTG GCTTGCTTGG CCCTTCTGAT CATGTATGCA TCCCCCAAGG				1902
ATGAAATCAG ATTAACTA ATAATGCTGG ATGGCCTGAG GAAAGATTCA ACTGCCCTCTC				1962
TTTTGGGCT TTCATAGTGT TCATTGATCC TGCTGGCTAA GCATTTATCA AAGCATAAGC				2022
TCAGTAAC TG TGCTACCTGG CTCTACCTGG TTGGCTCTTC CTCTTCTCAT GTAGCTCTT				2082
TGACAGGAAC GGTGAAGCCT TATTTGTTT TTATGCTCCC TGCCAGGCC TGTCTCTGAC				2142
TAGGCTCAC CATAACACATT CTAGATTGA ATCTGAACCA TGTGGCAGAA GGGATAAGCA				2202
GCTTACTTAG TAGGCTCTGT CTACCCCTT CCTTCTTGT CTTGCCCTA GGAAGCTGAA				2262
TCTGCCCTAG CCTGGTTTAC GGTTCTTAT AACTCTCTT TGCTCTCTGG CCACTATTAA				2322
GTGGGTTTGC CCCATCACTT AGTCTCAGG CAGACACATC TTTGGCCCTG TCCCTGCCA				2382
GGCCCTCTGGC TTTTATATT GAAAATTTT AAATATTCA AAATTTAGA ATAAATCAA				2442
TATTCCATTA AAAAAAAA AAAAAAA				2469

【0140】配列番号：7

配列の長さ：23

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列

CTSCTSAARG CHCTSATYAA RCA

【0141】配列番号：8

配列の長さ：22

配列の型：核酸

配列

CKCTTBCCRA ABCCRAARGG VA

【0142】配列番号：9

配列の長さ：25

配列の型：核酸

配列

AACGCCAGTCA TTAACGGAAGT GTTGA

【図面の簡単な説明】

【図1】p c MD 3 Rを導入した細胞またはp c DNA

3を導入した細胞によるビタミンD₃代謝物の同定結果をH

PLCを用いて行った結果を示した図である。

【符号の説明】

A : p c MD 3 Rを導入した細胞によるビタミンD₃代
謝物の同定結果

配列の種類：他の核酸、合成DNA

23

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸、合成DNA

22

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸、合成DNA

25

B : p c DNA 3を導入した細胞によるビタミンD₃代
謝物の同定結果

(1) : 25-ヒドロキシビタミンD₃

(2) : 24, 25-ジヒドロキシビタミンD₃

(3) : 10-oxo-19-nor-25-ヒドロキシビタミンD₃

(4) : α, 25-ジヒドロキシビタミンD₃

【図1】

フロントページの続き

(51)Int.Cl.⁶

G 01 N 33/48

33/50

33/53

//(C 12 N 5/10

C 12 R 1:91)

識別記号

F I

G 01 N 33/50

P

33/53

D

C 12 N 5/00

B

(C 1 2 N 9/02

C 1 2 R 1:91)

(C 1 2 P 33/06

C 1 2 R 1:91)

(72) 発明者 猿田 享男
東京都大田区上池台 3-28-2
(72) 発明者 石村 ▲翼▼
東京都三鷹市下連雀 7-7-14
(72) 発明者 林 松彦
東京都渋谷区神宮前 4-15-9

(72) 発明者 脇野 修
東京都練馬区石神井台 7-12-14
(72) 発明者 門川 俊明
東京都中野区中野 1-21-10
(72) 発明者 吉田 理
東京都目黒区緑ヶ丘 3-10-24
(72) 発明者 鈴木 洋通
東京都板橋区中丸町 36-10