Feedback — XIV. Principal Component Analysis

Help

You submitted this quiz on **Sat 4 Jan 2014 10:59 PM PST**. You got a score of **5.00** out of **5.00**.

Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

Your Answer		Score	Explanation
68	~	0.25	The first principal component is aligned with the direction of maximal variance, but this is
04-			aligned with the direction of minimal variance.

Question 2

Which of the following is a reasonable way to select the number of principal components k? (Recall that n is the dimensionality of the input data and m is the number of input examples.)

Your Answer		Score	Explanation
lacktriangle Choose k to be the smallest	~	1.00	This is correct, as it maintains the

value so that at least 99% of the variance is retained.

structure of the data while maximally reducing its dimension.

Choose k to be 99% of m (i.e., k=0.99*m, rounded to the nearest integer).

Choose k to be 99% of n (i.e., k=0.99*n, rounded to the nearest integer).

 \bigcirc Choose k to be the smallest value so that at least 1% of the variance is retained.

Total

1.00 /

1.00

Question 3

Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

Your Answer		Score	Explanation
$rac{rac{1}{m}\sum_{i=1}^{m}\left\ x^{(i)} ight\ ^{2}}{rac{1}{m}\sum_{i=1}^{m}\left\ x^{(i)}-x_{ ext{approx}}^{(i)} ight ^{2}}\leq 0.95$			
$rac{rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}-x_{ ext{approx}}^{(i)}\ ^2}{rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}\ ^2} \leq 0.05$	~	1.00	This is the correct formula
$rac{rac{1}{m}\sum_{i=1}^{m}\left\ x^{(i)} ight\ ^{2}}{rac{1}{m}\sum_{i=1}^{m}\left\ x^{(i)}-x_{ ext{approx}}^{(i)} ight ^{2}}\leq 0.05$			
$rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}\geq 0.05$			
Total		1.00 / 1.00	

Question 4

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
Γ Given only $z^{(i)}$ and $U_{ m reduce}$, there is no way to reconstruct any reasonable approximation to $x^{(i)}$.	~	0.25	You can easily reconstruct an approximation of $x^{(i)}$ by computing $U_{\mathrm{reduce}}z^{(i)}$ where $z^{(i)}$ is padded with $n-k$ zeros in the computation.
If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.	~	0.25	Feature scaling prevents one feature dimension from becoming a strong principal component only because of the large magnitude of the feature values (as opposed to large variance on that dimension).
PCA is susceptible to local optima; trying multiple random initializations may help.	*	0.25	PCA is a deterministic algorithm: there is no initialization and there are no local optima.
Even if all the input features are on very similar scales, we should still perform mean normalization (so that each feature has zero mean) before running PCA.	*	0.25	If you do not perform mean normalization, PCA will rotate the data in a possibly undesired way.
Total		1.00 / 1.00	

Question 5

Which of the following are recommended applications of PCA? Select all that apply.

Your Answer	Sco	re Explanation
Clustering: To automatically group examples into coherent groups.	✔ 0.25	PCA performs no clustering.
Data visualization: Reduce data to 2D (or 3D) so that it can be plotted.	✔ 0.25	This is a good use of PCA, as it can give you intuition about your data that would otherwise be impossible to see.
Data visualization: To take 2D data, and find a different way of plotting it in 2D (using k=2).	✔ 0.25	You should use PCA to visualize data with dimension higher than 3, not data that you can already visualize.
■ Data compression: Reduce the dimension of your data, so that it takes up less memory / disk space.	✔ 0.25	If memory or disk space is limited, PCA allows you to save space in exchange for losing a little of the data's information. This can be a reasonable tradeoff.
Total	1.00 1.00	