Markov Chains and PageRank

Scott Sanner University of Toronto

Markov Models (or Markov Chains)

- · At each time step, probabilistically transition from current state to next state ($S = \{s_1, s_2, ..., s_n\}$)
- Finite State Machine (FSM) view for n=5:

Markov Models

• The graphical model view for t steps:

- Note: for $t = \infty$, an infinite graphical model!

· Or assuming transition stationarity, just:

Transition Probabilities

- - $\begin{array}{l} \text{ Define state set } S^{\dagger} = \{s_1, \, s_2, \, ..., \, s_n\} \, ; \, \forall t \\ \text{ Define transition matrix } T_{ij}^{\dagger} = P(S_i^{\dagger + 1} | \, S_j^{\dagger}) \, ; \, \forall t \end{array}$
- Properties of T_{ij} Stationary: $T_{ij}^{\dagger} = T_{ij}^{\dagger-1}$ OR $P(S^{\dagger+1}|S^{\dagger}) = P(S^{\dagger}|S^{\dagger-1})$; $\forall t$ Irreducible: Possible to get from any s_i to s_j Aperiodic: Time to return has periodicity = 1

 - *Transient:* Positive probability of not returning to state
 - Recurrent: Not transient
 - Ergodic: Aperiodic and (positive) recurrent

Distribution at Time t

- Given P(s0), what is P(s1)?
- Let Ps⁰ & Ps[†] be column vectors...
 - Then simply: Pst = (T^t) Ps0

Stationary Distribution

- Stationary Distribution π at t= ∞
 - $-\pi = (T^{\infty}) Ps^0$
 - If T ergodic & irreducible, Ps⁰ irrelevant
 - Reaches *unique* steady-state distribution: π = $T\pi$
 - So π=any row of T[∞]
 - Can solve via eigenvector analysis (note: $\lambda=1$)
 - Related to (Krylov) iterated eigenvector computation
 - Or use fixed point to solve linear system Why? What

 $- T\pi - \pi = 0 \Rightarrow \pi'T' - \pi' = 0 \Rightarrow \pi' (T' - I) = 0$

s.t. constraints on π

- Can solve linear system via matrix inversion

Markov Model Applications

- Simple theory, ingenious applications:
 - nth-order Markov models
 - · Relax Markovian assumption to previous n states
 - Used in text and speech processing
 - N-grams for predicting next word occurrence
 - http://nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139
 - Colocation identification
 - <u>Dasher</u> for text input, try it in your <u>web browser</u>
 - More generally
 - · Physics (states of systems)
 - · Queuing theory (random entries and exits)
 - Economics, Biology, Chemistry, etc...
 - · Google!

