Solutions and marking key for Test 1 for concurrent Unit 3 and Unit 4 program

Section One - calculator-free section

(30 marks)

Question 1 (3.1.6, 3.1.15)

(8 marks)

(a) Given $z = \sqrt{3} + i$ evaluate z^6 giving the answer in Cartesian form.

(2 marks)

Given
$$z = \sqrt{3} + i$$
 evaluate z^6

$$z^6 = \left(\sqrt{3} + i\right)^6 = \sqrt{3}^6 + 6 \cdot \left(\sqrt{3}\right)^5 \cdot \left(i\right)^1 + 15 \cdot \left(\sqrt{3}\right)^4 \cdot \left(i\right)^2 + 20 \cdot \left(\sqrt{3}\right)^3 \cdot \left(i\right)^3 + 15 \cdot \left(\sqrt{3}\right)^2 \cdot \left(i\right)^4 + 6 \cdot \left(\sqrt{3}\right)^1 \cdot \left(i\right)^5 + \left(i\right)^6$$

$$= 27 - 135 + 45 - 1 + \left(54\sqrt{3} - 60\sqrt{3} + 6\sqrt{3}\right)i$$

$$= -64$$
OR $z = 2cis\left(\frac{\pi}{6}\right) \Rightarrow z^6 = 64cis\left(\pi\right) = -64$

Specific behaviours	Mark	Item
Expands the Cartesian form of z^6	1	simple
Simplifies correctly	1	simple
Or		
Expresses z^6 in polar form	1	simple
Expresses the answer in Cartesian form	1	simple

(b) Given $Z_1=cis\bigg(\frac{\pi}{3}\bigg)$ and $Z_2=cis\bigg(\frac{\pi}{4}\bigg)$ evaluate the following in exact Cartesian form:

(i) $\overline{Z_1}$ (ii) iZ_2 (iii) $cis\left(\frac{\pi}{12}\right)$

Given
$$Z_1=cis\left(\frac{\pi}{3}\right)$$
 and $Z_2=cis\left(\frac{\pi}{4}\right)$ evaluate the following in exact Cartesian form:

(i)
$$\overline{Z_1} = \frac{1 - \sqrt{3}i}{2}$$

(ii)
$$iZ_2 = \frac{-\sqrt{2} + \sqrt{2}i}{2}$$

(iii)
$$cis\left(\frac{\pi}{12}\right) = \frac{Z_1}{Z_2} = \frac{1+\sqrt{3}i}{2} \times \frac{2}{\sqrt{2}+\sqrt{2}i} = \left(\frac{\left(\sqrt{2}+\sqrt{6}\right)+\left(\sqrt{6}-\sqrt{2}\right)i}{4}\right)$$

Specific behaviours	Mark	Item
Writes the Cartesian form of $\overline{Z_1}$ correctly	1	simple
Writes the Cartesian form of iZ_2 correctly	1	simple
Expresses polar term for $\overline{Z_3}$ in Cartesian form	1	complex
Simplifies the Cartesian form correctly	1	complex

(c) Solve $x^2 - 6x + 13 = 0$ for $x \in Im$ in exact form.

(2 marks)

Solve		Or Solve	
	$x^2 - 6x + 12 = 0$		$x^2 - 6x + 12 = 0$
\Leftrightarrow	$x^2 - 6x + 9 = -3$	⇔	a = 1, b = -6 and $c = 12$
1		⇔	$x = \frac{6 \pm \sqrt{36 - 48}}{3}$
\Leftrightarrow	$\left(x-3\right)^2 = 3i^2$		6+.\frac{2}{-12} =
\Leftrightarrow	$x = 3 \pm \sqrt{3} i$	⇔	$x = \frac{6 \pm \sqrt{-12}}{2} = 3 \pm \sqrt{3}i$

Specific behaviours	Mark	Item
Completes the square correctly	1	simple
Solves the equation using the exact form	1	simple
Or		
Uses the quadratic formula	1	simple
Simplifies the expressions to the correct exact form	1	simple

Question 2 (1.1.7) (6 marks)

(a) Sketch the set of points defined by $|z-(2+3i)| = \sqrt{13}$.

Specific behaviours	Mark	item
Draws a circle	1	simple
Has the correct centre (2 + 3i)	1	simple
Has the correct radius	1	simple
Circumference passes through (0, 0) (4 + 0i) and (0 + 6i)	3	simple

Section Two - calculator-assumed section

(20 marks)

Question 5 (3.1.7)

(10 marks)

(a) Expand and simplify the expression $F(\theta) = (\cos \theta + i \sin \theta)^5$.

(2 marks)

(b) Hence, express the Re(F) in terms of $\cos \theta$.

(3 marks)

Use Re(F) to solve the equation $16x^5 - 20x^3 + 5x - 1 = 0$ and express the solutions in trigonometric form. (5 marks)

Question 6 (3.1.7)

(10 marks)

Given $z = \cos \theta + i \sin \theta$:

(a) Express
$$\frac{\left(z-\frac{1}{z}\right)}{i\left(z+\frac{1}{z}\right)}$$
 in trigonometric form.

(4 marks)

(b) Show $z^2 + \frac{1}{z^2} = 2\cos 2\theta$ and hence prove $\cos 2\theta = 2\cos^2 \theta - 1$.

(6 marks)

Question 3 (3.1.11, 3.1.12)

(8 marks)

Determine and locate all solutions in the Argand plane to the equation $z^5 = 1$.

Question 4 (3.1.13, 3.1.15)

(8 marks)

Given $H(z) = z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8$

(a) Evaluate H(i), H(-i) and H(2).

(3 marks)

(b) Hence, find all roots of the equation $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 = 0$.

(5 marks)