Knapsack problem - formulation, examples of a problem and algorithms

Formulation

- Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
- There are a few versions of that problem:
 - 0/1 Knapsack problem
 - Each item can be either included or excluded, you cannot take fractional parts of an item or include an item twice.
 - Fractional Knapsack
 Items can be divided into fractions, but still cannot take an item twice.
 - Bounded Knapsack problem
 - The same as 0/1 knapsack, but now you get the number of copies of each item, and you can take multiple instances of that item.
 - Unbounded Knapsack
 - The same as bounded knapsack, but now there is no limit on number of instances of an item.

Examples of a problem

- A project manager needs to allocate limited resources (like budget, manpower, or time) to various project tasks.
- A shipping company needs to load a cargo ship with goods, where each type of good has a different weight and value.

- An individual or organization has a fixed budget to spend on various items or investments.
- Least wasteful way to cut raw materials

Algorithms

Brute force

- Produce every possible combination and calculate the sum of values for each to find the best.
- It has O(n!) complexity

Greedy

- It doesn't always produce the best solution for the 0/1 knapsack problem, it is a heuristic. But for the fractional it always gives the best solution.
- Algorithms:
 - 1. For each item, compute the value-to-weight ratio
 - 2. Sort the items based on that ratio
 - 3. Insert the item with the greatest ratio into the stack
 - 4. For the fractional knapsack problem if the next item doesn't fit fully, take a fraction of that item.

Dynamic programming for the 0/1 knapsack

- Assume weights are positive integers.
- This method has time complexity $O(n \times W)$ where n is the number of items and W is the value of the weight limit.
- Define dp[i,w] to be the maximum value that can be attained with first i items that have the total weight less than or equal to w.
- ullet We can define dp recursively as follows:

- o dp[0, w] = 0
- $\circ \ dp[i,w] = dp[i-1,w]$ if the new item doesn't fit into the knapsack, or:
- $\circ \;\; dp[i,w] = \max(dp[i-1,w],\; dp[i-1,w-w_i]+v_i)$ if the new item does fit into the knapsack
- We can then solve the problem by filling the table from the top to bottom and taking the value dp[n,W] where n is the number of items and W is the weight limit.
- Example of such a table:

-	0	1	2	3	4	5	6	7	8	9	10
0 items	0	0	0	0	0	0	0	0	0	0	0
5 Item 1	0	0	0	0	0	10	10	10	10	10	10
Item 2 w	0	0	0	0	40	40	40	40	40	50	50
6 Item 330	0	D	0	0	чо	40	3P/40 -> 40	40	40	50	*% → 70
3 Item 4 9	0	0	0	20	50	20	50	90	90	90	90