机械原理

一、是非题(正确的画"√",错误的画"X")(每题 2 分,共 10 分)
(1) 平面机构高副低代的条件是代替机构与原机构的自由度、瞬时速度和瞬时加
速度必需完全相同。
(2) 凡曲柄摇杆机构, 极位夹角 θ 必不等于 0, 故该类机构总具有急回特征。
(3)满足动平衡条件的刚性转子也肯定同时满足了静平衡条件。 (4)一个渐开线标准直齿圆柱齿轮和一个变位直齿圆柱齿轮,若其模数和压力角分别相等,则它们能够正确啮合,而且其顶隙也是标准的。 (5)在直动从动件盘形凸轮机构中进行合理的偏置,是为了同时减小推程压力角和回程压力角。
一、填空题(每空 2 分,共 30 分)
(1) 在平面机构中,两构件构成运动副引入的约束至少为
按
(6)移动副的自锁条件是
三、 选择题(每选项 2 分,共 16 分) (1)在图示 4 个分图中,图是Ⅲ级杆组,其余都是个Ⅱ级杆组的组合。

- (2) 模数为 2 mm ,压力角 $a=20^{\circ}$,齿数 Z=20 ,齿顶圆直径 $d_a=43.2$ 的渐开线 直齿圆柱齿轮是 齿轮。
- A 标准
- B 正变位 C 负变位
- (3)图示为摆动导杆机构,以1杆为主动件,则机构的传动角 γ = 。
- $A \angle A$
- B \angle B C \angle C D 0° E 90°

- (4) 斜齿圆柱齿轮的端面模数 m_t 法面模数 m_n 。
- A 小于
- B 大于 C 等于
- (5) 如图所示 a、b、c 三根曲轴中,已知 $m_1 r_1 = m_2 r_2 = m_3 r_3 = m_4 r_4$,并作轴向等 间隔布置,且都在曲轴的同一含轴平面内,则其中 轴已达静平衡, 轴已达动平衡。

- (6) 若忽略摩擦,一对渐开线齿廓从进入啮合到脱离啮合,齿廓间作用力方向 ____,并且要沿着_____方向。
- A 不断改变:
- B 维持不变:
- C 中心线;

- D 基圆内公切线:
- E 节圆公切线

四、简答题(每题4分,共16分)

1. 简述斜齿轮在工程应用中的优缺点。

2.什么是三心定理?如何在理论上证明其正确性。

- **3.** 偏心曲柄滑块机构具有曲柄的条件是什么?指出该类机构最大压力角出现的位置(可以是文字说明或者图示说明)。
- 4. 渐开线齿廓具有什么优点而在实际中获得了最广泛的应用?

五、图解题(共20分)

1. (10') 在偏置直动滚子从动件盘形凸轮机构中,已知基圆半径 r_0 ,偏距 e , ω_1 的 转向如图 (b) 所示,滚子半径 r_r =5mm ,运动规律如下表:

凸轮转角 δ	0° —90°	90° —	120 ° —	210° —
		120°	210°	360°
从动件运动	等速上升 24 <i>mm</i>	静止	等加等减速 回原位	静止

按下列要求作题:

- ① 在图 (a) 坐标中画出从动件位移线图 $S(\delta)$;
- ② 在图中绘制推杆上升阶段的凸轮实际廓线。

2. (10')图示为一脚踏轧棉机曲柄摇杆机构的示意图,已设定 $L_{AD}=1.0m$, $L_{CD}=0.5m$,要求脚踏板 CD 在水平面上下各摆动 15° ,K=1.5,试用图解法确定 AB 、 BC 两杆的长度。(取比例尺 $\mu_l=0.01m/mm$ 。)

设计结果为:

$$L_{BC} = \underline{\hspace{1cm}}$$
mm

$$L_{AB} = \underline{\hspace{1cm}}$$
mm

六、计算题(共58分)

1. (10') 试计算图示机构的自由度,如有复合铰链、局部自由度和虚约束,需在图上明确指出,并判断该机构是否具有确定的运动。

2. (18') 已知一对渐开线直齿圆柱齿轮,其 $m=4~{
m mm}$, $a=20^{\circ}$, $h_{
m a}^*=1$, $c^*=0.25$, $z_1=20$, $z_2=70$, 试计算:

- 1)求两个齿轮的基圆半径 r_{b1} 、 r_{b2} 和法向齿距 p_{n1} 、 p_{n2} ;
- 2)求小齿轮的齿顶圆半径 r_{a1} 和大齿轮的齿根圆半径 r_{f2} ;
- 3) 求这对齿轮正确安装时的啮合角 α' 和中心距a';
- 4) 将上述中心距 a' 加大 3 mm,求此时的啮合角 α' 及此时两轮的节圆半径 r_1' 、 r_2' 。

- 3. (8') 在图中:
 - (1) 若轮1为主动, 啮合线如图示, 标出各轮转向;
- (2) 画 出 轮 齿 啮 合 起 始 点 B_2 及 啮 合 终 了 点 B_1 , 用 图 上 有 关 线 段 算 出 重 合 度 ε 的 大 小;
 - (3) 画 出 单、 双 齿 啮 合 区。

4. (15') 在图示轮系中,已知各轮齿数分别为 Z_1 =1(右旋), Z_2 =40 , Z_2 =20 , Z_3 =18, Z_4 =20 , Z_4 =30, Z_5 =20 Z_5 =55, Z_4 =100(r/min, 试求 Z_8 =10 大小和方向(方向可用箭头表示)。

5. (15')图示圆盘上有三个已知不平衡重: $Q_1 = 2N$, $Q_2 = 0.5N$, $Q_3 = 1N$,它们分布在 R = 20mm 的同一圆周上。今欲在 R' = 30mm 的圆周上钻孔去重使它达到平衡,试求应去重的大小,并在图上表示出钻孔的位置。

6.已知某机械一个稳定运动循环内的等效阻力矩 M_r 如图所示,等效驱动力矩 M_d 为常数,等效构件的最大及最小角速度分别为: $\omega_{\max}=200\,rad/s$ 及 $\omega_{\min}=180\,rad/s$ 。试求:(1) 等效驱动力矩 M_d 的大小; (2) 运转的速度不均匀系数 δ ; (3) 当要求 δ 在 0.05 范围内,并不计其余构件的转动惯量时,应装在等效构件上的飞轮的转动惯量 J_F 。.

7 (10 分) 图示为曲柄导杆机构运动简图。已知生产阻力Q=50N,转动副 C 处的摩擦圆及 2、3 构件间移动副的摩擦角 φ 均已在图中画出,其余运动副的摩擦不计。试用图解法求机构在图示位置时构件 3 上的运动副反力 R_{43} 、 R_{23} 及应加在构件 1 上的平衡力矩 M_b (取比例尺

 $\mu_P = 1N / mm \ \mu_L = 0.001 m / mm$