

Coursera Capstone - Applied Data Science Final Report

Opening a new Shopping Mall in Delhi NCR

19.03.2019

Yashwanth P

Overview

Delhi being a very vast location and with a very huge population, it makes it difficult to place the location of a new Shopping Mall, given that it might already have a few.

The project aims to leverage Clustering and Machine Learning to find different locations where a new mall or malls would actually be a great fit in North Capital Region (Delhi and its surrounding cities included).

Target Audience - Any property investor who would want to build any type of Public Entertainment. The analysis would also give us an understanding of the locations for other venues such as restaurants, pubs and nightclubs etc.

Background

- Shopping Mall A Shopping Mall is a modern term for a multi level Shopping Precinct or Shopping Center in which one or more buildings form a complex of shops representing merchandisers. Typical Components include
 - > Food Courts
 - Department Stores
 - ➤ Movie Theatres
- Delhi, officially the National Capital Territory of Delhi is the capital of India. The National Capital Region (NCR) is Delhi's urban area which also include the satellite cities of Faridabad, Gurgaon, Ghaziabad & Noida.

NCR has an area of around 1,484 square KM (573 sq mi). The population of NCR is estimated to be over 26 Million people, making it the 2nd largest Urban area according to the United Nations.

It's also the 2nd most productive metro area of India - home to 18 Billionaires

and 23k Millionaires

DELHI NCR Map:

Goals

- 1. Delhi being a very vast location and with a very huge population, it makes it difficult to place the location of a new Shopping Mall, given that it might already have quite a few.
- 2. The project aims to leverage Clustering and Machine Learning to find different locations where a new mall or malls would actually be a great fit in North Capital Region (Delhi and its surrounding cities included).

Target Audience

Any property investor who would want to build any type of Public Entertainment. The analysis would also give us an understanding of the locations for other venues such as restaurants, pubs and nightclubs etc.

Data Sources

1. Postal Code - The Indian Postal Data is present at (https://www.indiapost.gov.in/vas/pages/findpincode.aspx) as a csv file which would enable us to identify all the postal codes in NCR. Postal Codes in India are a 6 - Digit Code (Ex. 122002). Below is the sample of the same data:

As you can see the data is not Processed as required. It has a lot of duplicates and a lot of unnecessary columns. Had to create a final name column from the combination of 'divisionname' and 'districtname' columns present in the data

- 2. Foursquare API The foursquare data would enable us to understand the postal code area venues which would become the base for our clustering. The data would be something like bars or pharmacies near a particular Lat/Long location
- 3. Geocoder data To get the Latitude and Longitude of the Postal Codes taken for consideration
- 4. Folium, Pandas, Matplotlib, Json, Sklearn libraries which help in data wrangling, data visualization, data manipulation for the given clustering analysis in Python

Methodology

The process flow shows the methodology followed for arriving at the conclusions for the analysis

- 1. From the data sources we get all the Postal data for complete India as a csv file. We use the read_csv function to read csv file to a Pandas Dataframe.
- 2. We then proceed to filter out the cities Delhi, Gurgaon, Faridabad, Ghaziabad and Gautam Buddha Nagar (Noida) from the complete list.
- 3. We do create a new derived column for the city name instead of multiple columns and remove all duplicates if any exist. We did find specific nuances where the same postal code was mapped to different cities and updated the data so that it would actually point to the relevant city

4. A total of 212 Postal codes were a part of the analysis region. Used the geocoder to get the Lat-Long data for the selected data and then used Folium to plot the mapping of the data as shown below.

Delhi NCR Postal Code Mapping

- 5. Now that we have all the geo data we proceed with getting the Venue data from the FourSquare API
- 6. I did try with multiple radii as we had very less fill rate for most of the locations with some locations having no venues nearby. Finally I did proceed with the 2 Km as my radius and got 4,286 venues for all the 212 locations.

PostalCode	ncr_city		122015	Gurgaon	100
110001	Delhi	100	122016	Gurgaon	100
110002	Delhi	33	122017	Gurgaon	4
110003	Delhi	100	122018	Gurgaon	51
110005	Delhi	35	122052	Gurgaon	4
110006	Delhi	71	122101	Gurgaon	3
			122102	Gurgaon	2
110007	Delhi	25	122413	Gurgaon	4
110008	Delhi	20	122503	Gurgaon	1
110009	Delhi	27	122505	Gurgaon	1
110010	Delhi	7	122506	Gurgaon	1
110011	Delhi	97	123106	Gurgaon	1
110012	Delhi	22	123401	Gurgaon	2
110013	Delhi	19	201001	Ghaziabad	7
			201002	Ghaziabad	6
110014	Delhi	41	201004	Ghaziabad	3
110015	Delhi	42	201005	Ghaziabad	4
110016	Delhi	100	201006	Ghaziabad	7
110017	Delhi	100	201007	Ghaziabad	6
110018	Delhi	45	201008	Noida	1

- 7. Analyzed all neighbourhoods by grouping rows on the Postal code and mean of the frequencies of occurrence of each venue category. Sorted them on the basis of the top 10 occuring common venues
- 8. Clustered them using the K-Means clustering Algorithm with the number of clusters as 10, as the number of locations were high in number.

Cluster Mapping on All Venues

10 Clusters formed

9. The above created clusters can be used for solving any other such as finding the competition in any location or good location for any restaurant etc. The data can be viewed as below:

	PostalCode	ncr_city	Cluster	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue	Latitude	Longitude
0	121005	Faridabad	0	ATM	Accessories Store	Farm	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	28.361354	77.296577
1	110071	Delhi	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.558817	77.001835
2	122505	Gurgaon	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.453836	76.921988
3	201013	Ghaziabad	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.695718	77.505094
4	201102	Ghaziabad	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.768850	77.319183
5	201201	Ghaziabad	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.846978	77.649733
6	201206	Ghaziabad	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.801370	77.469718
7	203202	Noida	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.402380	77.637002
8	203207	Noida	0	ATM	Dance Studio	Frozen Yogurt Shop	Fried Chicken Joint	French Restaurant	Food Truck	Food Stand	Food Service	Food Court	Food & Drink Shop	28.532525	77.638734

- 10. Proceeding with the analysis for the new shopping mall in the Delhi NCR data, I filtered only the shopping mall data from the venue data which we had retrieved
- 11. Now applied the group by Postal Code and mean of frequency of the Shopping Malls in the Location
- 12. Applied the K-Means Clustering on the Malls Data with the number of clusters as 5 to view the variance amongst the clusters

Cluster Mapping on Shopping Mall Data 5 Clusters formed

Results

Now proceeding to Examining all the clusters one after the other: (Example Data)

a. Cluster - 0

	PostalCode	ncr_city	Shopping Mall	Cluster	Latitude	Longitude
0	110001	Delhi	0.000000	0	28.623203	77.222803
1	110002	Delhi	0.000000	0	28.636728	77.247600

b. Cluster - 1

	PostalCode	ncr_city	Shopping Mall	Cluster	Latitude	Longitude
8	110010	Delhi	0.142857	1	28.605315	77.137845
72	110077	Delhi	0.166667	1	28.562683	77.056204

c. Cluster-2

	PostalCode	ncr_city	Shopping Mall	Cluster	Latitude	Longitude
103	121107	Faridabad	0.5	2	27.986715	77.492483

d. Cluster-3

	PostalCode	ncr_city	Shopping Mall	Cluster	Latitude	Longitude
13	110015	Delhi	0.071429	3	28.651296	77.140132
15	110017	Delhi	0.040000	3	28.533665	77.214255

e. Cluster-4

	PostalCode	ncr_city	Shopping Mall	Cluster	Latitude	Longitude
90	121001	Faridabad	0.333333	4	28.403587	77.285945
91	121002	Faridabad	0.333333	4	28.425802	77.373750

From all the Cluster examples we see above, we can infer that

- Cluster 0 Locations which have no shopping malls in the vicinity
- Cluster 3 Locations which have less shopping malls in the vicinity
- Cluster 1 Locations which have shopping malls in the vicinity
- Cluster 4 Locations which have a good number shopping malls in the vicinity
- Cluster 2 Locations which have abundant shopping malls in the vicinity

Conclusion

- Cluster 2 and Cluster 4 already have many shopping malls in their vicinities
- Cluster 0 has no shopping Malls
- I would suggest the builder or property investor to go build near the *Cluster 1 and Cluster 3* as malls which are near Cluster 0 would give rise to Dead Malls as people would not visit a location specifically for a single mall.