Національний технічний університет України "Київський політехнічний інститут"

Н.М. Задерей, К.Ю. Мамса, Г.Д. Нефьодова

Операційне числення.

Практикум для студентів другого курсу технічних спеціальностей

Операційне числення. Практикум для студентів другого курсу технічних спеціальностей /Уклад.: Н.М.Задерей, К.Ю.Мамса, Г.Д.Нефьодова. - К. - НТУУ "КПІ". -2014.-43 с.

Гриф надано Вченою радою ФМФ НТУУ "КПІ" (Протокол № від 2014р.)

Операційне числення.

Практикум для студентів другого курсу технічних спеціальностей

Укладачі: Задерей Надія Миколаївна, кандидат фіз.-мат наук, доцент. Мамса Катерина Юріївна, кандидат фіз.-мат наук, доцент. Нефьодова Галина Дмитрівна, кандидат фіз.-мат наук.

Відповідальний редактор Ю.П.Буценко, кандидат фіз.-мат наук, доцент.

Рецензент А.М.Кулик, кандидат фіз.-мат наук, доцент.

За редакцією укладачів Електронна версія

3MICT

<u>Вступ</u>	4
Основні поняття і позначення	5
Застосування операційного числення.	6
1. Розв'язання задачі Коші із знаходженням зображення правої частини	
2. Розв'язання задачі Коші без знаходження зображення праві частини	
3. Розв'язання систем лінійних диференціальних рівнянь зі сталими коефіцієнтами	
4. Розв'язання інтегральних рівнянь Вольтера І-го та ІІ-го роду	
5. Структура модульної контрольної роботи з операційного числення	
6. Зразок розв'язання модульної контрольної роботи	
Варіанти модульної контрольної роботи з операційного числення	.18
Відповіді	33
Список рекоменлованої пітератури	43

Вступ

Операційне числення вивчається в курсі математичного аналізу в третьому семестрі. Операційне (символічне) числення широко використовується в різних областях науки і техніки. Особливо велику роль воно відіграє при дослідженні перехідних процесів в лінійних фізичних системах теорії електричних кіл, автоматики, радіотехніки, механіки.

Практикум з операційного числення містить 30 варіантів модульної контрольної роботи, яку виконують студенти другого курсу технічних спеціальностей у третьому семестрі. Робота складається з 5 завдань і розрахована на 90 хвилин.

В першому завданні потрібно за даним оригіналом знайти зображення. Це допомагає засвоїти означення перетворення Лапласа і його властивості.

У другому завданні необхідно за даним зображенням знайти оригінал.

У третьому завданні потрібно розв'язати задачу Коші для лінійного диференціального рівняння з кусково-неперервною правою частиною.

В четвертому завданні пропонується розв'язати задачу Коші для лінійного диференціального рівняння із застосуванням інтеграла Дюамеля.

В п'ятому завданні запропоноване для розв'язання інтегральне рівняння Вольтерра типу згортки.

До кожного варіанту модульної контрольної роботи додаються відповіді.

Основні поняття і позначення

- 1. Функція-оригінал f(t), $t \in (-\infty; +\infty)$ справджує умови:
 - a. f(t) = 0, при t < 0.
 - b. Існують сталі $S \ge 0$ та $M \ge 0$ такі, що $|f(t)| < Me^{st}$, t > 0
 - с. На будь-якому відрізку [0;T] функція може мати лише скінченну кількість точок розриву І-го роду.
- 2. Зображення оригінала f(t) функція F(p) комплексної змінної $p=s+i\tau$ $F(p)=\int_{p}^{\infty}e^{-pt}\,f(t)dt$
- 3. Перехід від оригіналу до зображення називають перетворенням Лапласа і позначають двома символами:

5

$$f(t) \rightarrow F(p), \quad f(t) = F(p)$$

4. Функція Хевісайда

$$\eta(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

5. Згортка функцій

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t - \tau) d\tau$$

6. Теорема Бореля

$$f_1(t) * f_2(t) \doteq F_1(p) \cdot F_2(p)$$

7. Формула Дюамеля

$$pF_1(p)F_2(p) \rightarrow f_1(t)f_2(0) + f_1(t) * f_2'(t)$$

8. Теорема запізнення оригінала

$$\eta(t-a)f(t-a) \rightarrow e^{-pa}F(p), \ a > 0$$

9. Друга теорема розвинення

$$f(t) = \sum_{k=1}^{n} res(e^{p_k t} F(p_k)) ,$$

де $p_1, p_2, ..., p_k$ – особливі точки F(p)

Застосування операційного числення

I. Розв'язування задачі Коші для лінійних диференційних рівнянь зі сталими коефіцієнтами зі знаходженням зображення правої частини

За планом:

- 1. За допомогою перетворення Лапласа переводимо лінійне диференційне рівняння в алгебраїчне відносно зображення
- 2. Знаходимо з цього алгебраїчного рівняння зображення шуканого оригіналу (так званий операторний розв'язок)
- 3. За зображенням відтворюємо оригінал (відповідь)

Приклад 1

$$y''+2y'+y = sint$$
 $y(0)=0, y'(0) = -1$
 $y(t) \rightarrow Y(p)$

$$y'(t) \rightarrow pY(p) - y(0) = pY(p) - 0 = pY(p)$$

$$y''(t) \rightarrow p^2 Y(p) - py(0) - y'(0) = p^2 Y(p) + 1$$

$$\mathsf{sint} \to \frac{1}{p^2 + 1}$$

маємо операторне рівняння

$$p^{2}Y(p)+1+2pY(p)+Y(p) = \frac{1}{p^{2}+1}$$

$$Y(p)(p^2+2p+1) = -1 + \frac{1}{p^2+1}$$

$$Y(p) = -\frac{1}{(p+1)^2} + \frac{1}{(p+1)^2(p^2+1)}$$
 (операторний розв'язок)

Знайдемо оригінал:

a) -
$$\frac{1}{(p+1)^2} = (\frac{1}{p+1})' \to -te^{-t}$$

застосували теорему диференціювання оригіналу

$$F'(p) \rightarrow -tf(t)$$

У нас
$$F(p) = \frac{1}{p+1} \rightarrow e^{-t}$$

б) відносно другого доданка застосуємо другу теорему розкладу

$$\frac{1}{(p+1)^2(p^2+1)} = \frac{1}{(p+1)^2(p+i)(p-i)}$$

 P_1 = -1 полюс II порядку

Р₂= -і простий полюс

Р₃= і простий полюс

$$F(p) = \frac{1}{(p+1)^{2}(p^{2}+1)} = \underset{p=p_{1}}{res} F(p)e^{pt} + \underset{p=p_{2}}{res} F(p)e^{pt} + \underset{p=p_{3}}{res} F(p)e^{pt} =$$

$$= \lim_{p \to -1} \frac{1}{(2-1)!} \cdot \frac{d}{dp} \left(\frac{e^{pt}}{p^{2}+1}\right) + \lim_{p \to i} \frac{e^{pt}}{(p+1)^{2}(p+i)} + \lim_{p \to -i} \frac{e^{pt}}{(p+1)^{2}(p-i)} =$$

$$= \lim_{p \to -1} \frac{te^{pt}(p^{2}+1) - e^{pt} \cdot 2p}{(p^{2}+1)^{2}} + \frac{e^{it}}{2i(i+1)^{2}} + \frac{e^{-it}}{-2i(-i+1)^{2}} = \frac{te^{-t} \cdot 2 + 2e^{-t}}{4} + \frac{e^{it}}{2i \cdot 2i} + \frac{e^{-it}}{-2i(-2i)} =$$

$$= \frac{1}{2}te^{-t} + \frac{1}{2}e^{-t} - \frac{1}{2}\frac{e^{it} + e^{-it}}{2i} = \frac{1}{2}te^{-t} + \frac{1}{2}e^{-t} - \frac{1}{2}\cos t$$

тому розв'язком лінійного диферційного рівняння ϵ функція:

$$y(t) = -t e^{-t} + \frac{1}{2} t e^{-t} + \frac{1}{2} e^{-t} - \frac{1}{2} \cos t = \frac{1}{2} (e^{-t} - t e^{-t} - \cos t)$$

Приклад 2

$$y''(t) + y(t) = f(t)$$
, де $f(t)$ задана графічно, $y(0) = y'(0) = 0$

Розв'язання

$$y(t) \rightarrow Y(p)$$

$$y''(t) \rightarrow p^2Y(p)-py(o)-y'(0)=p^2Y(p)$$

$$f(t)=\eta(t) - \eta(t-1)-\eta(t-1)+\eta(t-2)=$$

$$= \eta(t) - 2\eta(t-1) + \eta(t-2) \rightarrow \frac{1}{p} - \frac{2}{p}e^{-p} + \frac{1}{p}e^{-2p}$$

Маємо операторне рівняння

$$P^{2}Y(p)+Y(p)=\frac{1}{p}-\frac{2}{p}e^{-p}+\frac{1}{p}e^{-2p}$$

$$Y(p) = \frac{1}{p(p^2 + 1)} - \frac{2e^{-p}}{p(p^2 + 1)} + \frac{1}{p(p^2 + 1)}e^{-2p}$$

це розв'язок в операторному вигляді,

знайдемо оригінал:

a)
$$F(p) = \frac{1}{p(p^2+1)} = \frac{A}{P} + \frac{Mp + N}{p^2+1} = \frac{1}{p} - \frac{p}{p^2+1} \rightarrow$$

$$\rightarrow \eta(t)$$
-cost $\cdot \eta(t) = (1$ -cost) $\eta(t) = 2\sin^2 \frac{t}{2} \eta(t)$

б) наявність множника e^{-pa} вказує на можливість застосування теореми загаювання (русский термин - запаздывания):

$$e^{-pa}F(p) \rightarrow f(t-a) \cdot \eta(t-a)$$

TOMY

$$\frac{2}{p(p^2+1)}e^{-p} \to 4\sin^2\frac{t-1}{2} \cdot \eta(t-1)$$

$$\frac{1}{p(p^2+1)}e^{-2p} \to 2\sin^2\frac{t-2}{2} \cdot \eta(t-2)$$

Відповідь:

$$y(t) = 2\sin^2\frac{t}{2} \cdot \eta(t) - 4\sin^2\frac{t-1}{2} \cdot \eta(t-1) + 2\sin^2\frac{t-2}{2} \cdot \eta(t-2)$$

Зауваження: функція у(t) буде задовольняти рівняння в усіх точках, де вона неперервна.

8

II. Розв'язування задачі Коші без знаходження зображення правої частини

Приклад 3

$$y''(t) = \frac{1}{1+t^2}$$
 $y(0)=y'(0)=0$

Розв'язання

Нехай $\frac{1}{1+t^2}$ → F(p) (де F(p) -деяке невідоме зображення)

Тоді операторне рівняння має вигляд:

$$p^2Y(p)=F(p)$$

$$Y(p) = \frac{1}{p^2} F(p) -$$
операторний розв'язок

Операторний розв'язок отримали у вигляді добутку двох зображень, за теоремою Бореля маємо:

$$G(p) \cdot F(p) \rightarrow g(t) * f(t)$$

У нас
$$G(p) = \frac{1}{p^2} \rightarrow t$$
, $F(p) \rightarrow \frac{1}{1+t^2}$, тому

$$Y(p) = \frac{1}{p^2} \cdot F(p) = G(p) \cdot F(p) \rightarrow g(t) * f(t) =$$

$$= \int_{0}^{t} g(t-\tau)f(\tau)d\tau = t * \frac{1}{1+t^{2}} = \int_{0}^{t} (t-\tau) \cdot \frac{1}{1+\tau^{2}}d\tau = t \int_{0}^{t} \frac{d\tau}{1+\tau^{2}} - \frac{1}{1+\tau^{2}}d\tau = t \int_{0}^{t} \frac{d\tau}{1+\tau^{2}}d\tau = t \int$$

$$-\int_{0}^{t} \frac{\tau d\tau}{1+\tau^{2}} = tarctg\,\tau \Big/_{0}^{t} - \frac{1}{2}\ln(1+\tau^{2})\Big/_{0}^{t} = tarctgt - \frac{1}{2}\ln(1+t^{2}) = y(t)$$

Відповідь: $y(t) = arctgt - \frac{1}{2} ln(1+t^2)$

Зауваження

- 1. Вимога задання початкових умов в точці t=0 не ε істотною, так як лінійною заміною змінної $y=\tau_0+t_0$ (τ_0 -нова змінна) задача Коші при $t=t_0\neq 0$ зводиться до задачі Коші з початковими умовами в точці $\tau_0=0$.
- 2. Аналогічно, заміною шуканої функції задачу з ненульовими початковими умовами можна звести до задачі з нульовими початковими умовами.

Наприклад, якщо початкові умови $y(0)=y_0$ $y'(0)=y_1$

то при заміні функції y(t) на z(t), де $z(t)=y(t)-y_0$ — y_1t отримаємо: z(0)=0 $z'(0)=y'(t)-y_1/_{t=0}=0$

3. Якщо початкові умови y_0 , y_1 , y_2 , y_{n-1} вважати не заданими, а довільними сталими, то y(t) буде не розв'язком задачі Коші, а загальним розв'язком диференційного рівняння.

III. <u>Розв'язуння систем лінійних диференційних рівнянь зі сталими</u> коефіцієнтами.

Системи лінійних диференційних рівнянь розв'язуються аналогічно, відмінність полягає в тому, що отримуємо систему операторних рівнянь.

Приклад 4

$$x'=x+3y$$
 $x=x(t)$ Початкові умови: $y'=x-y$ $y=y(t)$ $x(0)=1$, $y(0)=0$

Розв'язання

$$x(t) \rightarrow X(p)$$
 $x'(t) \rightarrow pX(p)-x(0)=pX(p)-1$
 $y(t) \rightarrow Y(p)$ $y'(t) \rightarrow pY(p)-y(0)=pY(p)$

Система операторних рівнянь:

$$\left\{ \begin{array}{l} pX(p)\text{-}1\text{=}X(p)\text{+}3Y(p) \\ pY(p)\text{=}X(p)\text{-}Y(p) \end{array} \right.$$

перепишемо систему:

$$\begin{cases} (p-1)X - 3Y = 1 & X = \frac{\Delta x}{\Delta} \\ X - (p+1)Y = 0 & Y = \frac{\Delta y}{\Delta} \end{cases}$$

$$\Delta = \begin{vmatrix} p-1 & -3 \\ 1 & -(p+1) \end{vmatrix} = -(p^2 - 1) + 3 = -(p^2 - 4)$$

$$\Delta x = \begin{vmatrix} 1 & -3 \\ 0 & -(p+1) \end{vmatrix} = -(p+1)$$

$$\Delta y = \begin{vmatrix} p-1 & 1 \\ 1 & 0 \end{vmatrix} = -1$$

$$X = \frac{\Delta x}{\Delta} = \frac{p+1}{p^2 - 4} = \frac{p}{p^2 - 4} + \frac{1}{p^2 - 4} \rightarrow \text{ch}2t + \frac{1}{2} sh2t$$

$$Y = \frac{\Delta y}{\Delta} = \frac{1}{p^2 - 4} = \frac{1}{2} \cdot \frac{2}{p^2 - 4} \rightarrow \frac{1}{2} sh2t$$

Відповідь:
$$x(t) = ch2t + \frac{1}{2}sh2t$$
 $y(t) = \frac{1}{2}sh2t$

IV. Розв'язування інтегральних рівнянь Вольтера I та II роду

Інтегральним рівнянням називається рівняння, що містить шукану функцію під знаком інтеграла.

Розглянемо найпростіші інтегральні рівняння Вольтера типу згортки

I роду:
$$\int_{0}^{t} k(t-\tau)y(\tau)d\tau = f(t)$$

II роду:
$$y(t) + \int_0^t k(t-\tau)y(\tau)d\tau = f(t)$$

де y(t) – шукана функція

f(t) – відома функція

k(t- au) — відома функція, яка називається ядром і залежить від різниці аргументів.

Якщо функції k(t-), f(t) є функціями - оригіналами, то за допомогою операційного числення можна знайти розв'язок інтегрального рівняння.

Hexaй y(t) → Y(p)

$$f(t) \rightarrow F(p)$$

$$k(t-\tau) \rightarrow K(p)$$

тоді в операторній формі перше рівняння має вигляд

$$K(p) \cdot Y(p) = F(p)$$

$$Y(p) = \frac{F(p)}{K(p)} \rightarrow y(t)$$

Друге рівняння: $Y(p)+K(p)\cdot Y(p)=F(p)$

$$Y(p) = \frac{F(p)}{1 + K(p)} \rightarrow y(t)$$

В обох випадках скористалися теоремою Бореля про зображення згортки двох функцій.

Приклад 5

 $y(x) = \sin x + \int_{0}^{x} (x-t)y(t)dt$ інтегральне рівняння II роду

$$Y(p) = \frac{1}{p^2 + 1} + \frac{1}{p^2} \cdot Y(p)$$

$$Y(p) = \frac{p^2}{(p^2 + 1)(p^2 - 1)} = \frac{1}{2} \left(\frac{1}{p^2 - 1} + \frac{1}{p^2 + 1} \right) \to \frac{1}{2} (shx + \sin x), x > 0$$

Відповідь:
$$y(x) = \frac{1}{2} (shx + \sin x), x > 0$$

Приклад 6

 $\int\limits_{0}^{t}\cos(t-\tau)y(\tau)d\tau=\sin t \qquad \text{ інтегральне рівняння I роду}$

cost*y(t) = sint

$$\frac{p}{p^2+1} \cdot \mathbf{Y}(\mathbf{p}) = \frac{1}{p^2+1}$$

$$Y(p) = \frac{1}{p} \to 1$$

Відповідь: y(t)=1, t>0

Структура короткочасної модульної контрольної роботи ККР – 3

- 1. Знайти перетворення Лапласа для функції оригіналу
- 2. Знайти оригінал за даним зображенням Лапласа
- 3. Розв'язати лінійне диференційне рівняння операторним методом (45 хвилин)

Структура модульної контрольної роботи МКР – 3

- 1. Знайти перетворення Лапласа для функції оригіналу
- 2. Знайти оригінал за даним зображенням Лапласа
- 3. Розв'язати задачу Коші для лінійного диференційного рівняння операторним методом

- 4. Розв'язати задачу Коші для лінійного диференційного рівняння за допомогою формули Дюамеля
- 5. Розв'язати інтегральне рівняння типу згортки операторним методом (90 хвилин)

Наприклад:

1.
$$f(t) = \sin^2 3t \cdot e^{2t} = \frac{1 - \cos 6t}{2} \cdot e^{2t} \rightarrow \frac{1}{2} \left(\frac{1}{p - 2} - \frac{p - 2}{(p - 2)^2 + 36} \right)$$

2.
$$F(p) = \frac{p}{p^2 - 2p + 5} = \frac{p - 1 + 1}{(p - 1)^2 + 4} = \frac{p - 1}{(p - 1)^2 + 4} + \frac{1}{(p - 1)^2 + 4} \rightarrow e^t \cos 2t + \frac{1}{2}e^t \sin 2t$$

$$3.y''+9y=\eta(t-5)$$

$$y(0) = y'(0) = 0$$

$$p^2Y(p) + 9Y(p) = \frac{1}{p}e^{-5p}$$

$$Y(p) = \frac{1}{p(p^2+9)} \cdot e^{-5p} = \frac{1}{9}e^{-5p}(\frac{1}{p} - \frac{p}{p^2+9})$$

так як
$$\frac{1}{p} - \frac{p}{p^2 + 9} \to 1 - \cos 3t = 2\sin^2 \frac{3t}{2}$$

$$y(t) = \frac{2}{9}\sin^2\frac{3(t-5)}{2}\eta(t-5)$$

4. Знайти зображення графічно заданої функції f(t)

$$f(t) = \eta(t-1) - \eta(t-3) + (-t+4)\eta(t-3) - (-t+4)\eta(t-4) =$$

=
$$\eta(t-1)$$
- $(t-3)\eta(t-3)$ - $(t-4)\eta(t-4)$ \rightarrow

$$\rightarrow \frac{1}{p}e^{-p} - \frac{1}{p^2}e^{-3p} - \frac{1}{p^2}e^{-4p}$$

Зразок розв'язання варіанту модульної контрольної роботи «Операційне числення».

1. Знайти зображення функції

$$f(t) = e^{4(t-5)}\cos(t-5)\eta(t-5)$$

2. Знайти оригінал за даним зображенням

$$F(p) = \frac{3p}{p^2 - 4}$$

3. Розв'язати задачу Коші операційним методом

$$y'' + 2y' + y = f(t), y(0) = y'(0) = 0,$$

$$f(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & t > 1 \end{cases}$$

4. Користуючись формулою Дюамеля, знайти розв'язок рівняння

$$y'' - 2y' + y = \frac{e^t}{1 + t^2}, \quad y(0) = y'(0) = 0$$

5. Розв'язати інтегральне рівняння

$$y(t) + \int_{0}^{t} e^{t-\tau} y(\tau) d\tau = \cos 2t$$

Задача 1. Розв'язання.

Як відомо $\cos t \to \frac{p}{p^2+1}$, тобто $\cos t \cdot \eta(t) \to \frac{p}{p^2+1}$. В силу теореми зміщення

маємо: $e^{4t}\cos t \cdot \eta(t) \to \frac{p-4}{\left(p-4\right)^2+1}$, а за теоремою запізнення отримуємо

$$e^{4(t-5)}\cos(t-5)\cdot\eta(t-5)\to \frac{p-4}{(p-4)^2+1}\cdot e^{-5p}$$
.

Відповідь:
$$F(p) = \frac{p-4}{(p-4)^2+1} \cdot e^{-5p}$$
.

Задача 2. Розв'язання.

Відомо, що $\frac{p}{p^2-4} \to ch2t$, отже, в силу властивості лінійності, $\frac{3p}{p^2-4} \to 3ch2t$.

Відповідь:
$$F(p) = \frac{3p}{p^2-4}$$
.

Задача 3. Розв'язання.

Права частина рівняння f(t) є кусково-неперервною функцією. Запишемо її аналітичний вираз:

 $f(t) = \eta(t) - \eta(t-1)$. Користуючись властивістю лінійності та теоремою запізнення, отримуємо її зображення $f(t) \to \frac{1}{p} - \frac{1}{p} e^{-p}$.

Нехай $y(t) \rightarrow Y(p)$. Тоді $y'(t) \rightarrow pY(p)$, $y''(t) \rightarrow p^2Y(p)$.

Складемо операторне рівняння $p^2Y(p) + 2pY(p) + Y(p) = \frac{1}{p} - \frac{1}{p}e^{-p}$, звідки

 $Y(p) = \frac{1}{p(p+1)^2} - \frac{1}{p(p+1)^2} e^{-p}$. Знайдемо оригінал отриманого зображення. За

таблицею зображень маємо: $\frac{1}{p+1} \to e^{-t}$. За теоремою диференціювання

зображення отримаємо $\left(\frac{1}{p+1}\right)' \to -te^{-t} \Rightarrow -\frac{1}{\left(p+1\right)^2} \to -te^{-t} \Rightarrow \frac{1}{\left(p+1\right)^2} \to te^{-t}$. За

теоремою інтегрування оригіналу:

$$\frac{1}{p(p+1)^2} \to \int_0^t \tau e^{-\tau} d\tau = 1 - e^{-t} - t e^{-t} . \quad \text{Отже} \quad \frac{1}{p(p+1)^2} \to \left(1 - e^{-t} - t e^{-t}\right) \eta(t) . \quad \text{Враховуючи}$$

теорему запізнення, знаходимо $\frac{1}{p(p+1)^2}e^{-p} \rightarrow (1-e^{-(t-1)}-(t-1)e^{-(t-1)})\eta(t-1)$.

Відповідь: $y(t) = (1 - e^{-t} - te^{-t})\eta(t) - (1 - e^{-(t-1)} - (t-1)e^{-(t-1)})\eta(t-1)$.

Задача 4. Розв'язання.

Спочатку знаходимо розв'язок $y_1(t)$ допоміжного рівняння y'' - 2y' + y = 1 при початкових умовах y(0) = y'(0) = 0.

Нехай $y_1(t) \to Y_1(p)$. Тоді $y_1'(t) \to pY_1(p)$, $y_1''(t) \to p^2Y_1(p)$. Оскільки $1 \to \frac{1}{p}$, то

маємо операторне рівняння: $p^2Y_1(p)-2pY_1(p)+Y_1(p)=\frac{1}{p}$, з якого знаходимо

$$Y_1(p) = \frac{1}{p(p-1)^2}.$$

За отриманим зображенням знаходимо оригінал. Це можна зробити різними способами.

Спосіб перший. За теоремою розвинення

$$\begin{split} y_{1}(t) &= \underset{p \to 0}{res} \, y_{1}(t) e^{pt} + \underset{p \to 1}{res} \, y_{1}(t) e^{pt} = \lim_{p \to 0} \frac{e^{pt} \, p}{p \left(p-1\right)^{2}} + \lim_{p \to 1} \left(\frac{e^{pt} \left(p-1\right)^{2}}{p \left(p-1\right)^{2}}\right)' = \\ &= 1 + \lim_{p \to 1} \frac{t e^{pt} \, p - e^{pt}}{p^{2}} \, y_{1}'(t) = -e^{t} + e^{t} + t e^{t} = t e^{t} \\ &t e^{t} \to \frac{1}{p \left(p-1\right)^{2}} \to 1 + t e^{t} - e^{t} \\ &\frac{1}{p \left(p-1\right)^{2}} = \frac{1}{p} - \frac{1}{p-1} + \frac{1}{\left(p-1\right)^{2}} \\ &y(t) = \int_{0}^{t} \frac{e^{\tau}}{1 + \tau^{2}} \left(t - \tau\right) e^{t-\tau} d\tau = e^{t} \int_{0}^{t} \frac{t - \tau}{1 + \tau^{2}} d\tau = e^{t} \left(t \cdot \operatorname{arct} gt - \frac{1}{2} \ln\left(1 + t^{2}\right)\right) \\ &y(t) = \int_{0}^{t} \frac{e^{\tau}}{1 + \tau^{2}} \left(t - \tau\right) e^{t-\tau} d\tau = e^{t} \int_{0}^{t} e^{t} \left(t \cdot \operatorname{arct} gt - \frac{1}{2} \ln\left(1 + t^{2}\right)\right) \\ &y(t) = e^{t} \left(t \cdot \operatorname{arct} gt - \frac{1}{2} \ln\left(1 + t^{2}\right)\right) \\ &\int_{0}^{t} e^{t-\tau} \, y(\tau) d\tau = e^{t} * y(t) \end{split}$$

Другий спосіб.

3 таблиці зображень маємо: $te^t \to \frac{1}{\left(p-1\right)^2}$. За теоремою інтегрування оригіналу

отримуємо

$$\frac{1}{p(p-1)^2} \to \int_0^t \tau e^{\tau} d\tau = 1 + te^t - e^t.$$

Третій спосіб.

Розкладемо правильний раціональний дріб в суму простих дробів, тобто

$$\frac{1}{p(p-1)^2} = \frac{1}{p} - \frac{1}{p-1} + \frac{1}{(p-1)^2}.$$

3 таблиці зображень отримуємо $\frac{1}{p(p-1)^2} \to 1 + te^t - e^t$. Отже $y_1(t) = 1 + te^t - e^t$.

Знаходимо $y_1'(t) = -e^t + e^t + te^t = te^t$. За формулою Дюамеля, маємо:

$$y(t) = \int_{0}^{t} f(\tau) y_{1}'(\tau) d\tau.$$

Отже,
$$y(t) = \int_{0}^{t} \frac{e^{\tau}}{1+\tau^{2}} (t-\tau) e^{t-\tau} d\tau = e^{t} \int_{0}^{t} \frac{t-\tau}{1+\tau^{2}} d\tau = e^{t} \left(t \cdot arctgt - \frac{1}{2} \ln(1+t^{2}) \right).$$

Відповідь:
$$y(t) = e^t \left(t \cdot arctgt - \frac{1}{2} \ln \left(1 + t^2 \right) \right).$$

Задача 5. Розв'язання.

 ϵ згорткою функцій e^t та y(t).

Нехай $y(t) \to Y(p)$. З таблиці зображень маємо: $e^t \to \frac{1}{p-1}$, $\cos 2t \to \frac{p}{p^2+4}$, а з теореми Бореля випливає, що $e^t * y(t) \to \frac{Y(p)}{p-1}$. В силу викладеного, операторне

рівняння має вид:

$$Y(p) + \frac{Y(p)}{p-1} = \frac{p}{p^2+4}$$
, а його розв'язок $Y(p) = \frac{p-1}{p^2+4}$ можна подати у вигляді

$$Y(p) = \frac{p}{p^2 + 4} - \frac{1}{p^2 + 4} = \frac{p}{p^2 + 4} - \frac{1}{2} \frac{2}{p^2 + 4}$$
. З таблиці зображень знаходимо оригінал

$$y(t) = \cos 2t - \frac{1}{2}\sin 2t.$$

Відповідь: $y(t) = \cos 2t - \frac{1}{2}\sin 2t$.

Варіанти модульної контрольної роботи

Варіант 1

- 1. Знайти зображення оригіналу $f(t) = \frac{e^{-2t} \sin^2 t}{t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{2p+1}{(p-2)^2}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 4y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} t, \ 0 \leq t < 1 \\ 2 t, \ 1 \leq t < 2 \\ 0, \ t \geq 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші y'' y = tht, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $\int_{0}^{t} y(\tau) \sin(t-\tau) d\tau = 1 \cos t.$

- 1. Знайти зображення оригіналу $f(t) = e^{4(t-5)}\cos(t-5)\eta(t-5)$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{3p}{p^2 4}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 2y' + y = f(t), \ y(0) = y'(0) = 0, \ \text{де } f(t) = \begin{cases} 1, \ 0 \le t \le 1 \\ 0, \ t > 1 \end{cases}.$
- 4. 3 допомогою інтеграла Дюамеля розв'язати задачу Коші $y''-2y'+y=\frac{e^t}{1+t^2},\ y(0)=y'(0)=0\ .$
- 5. Розв'язати інтегральне рівняння $y(t) + \int_0^t e^{t-\tau} y(\tau) d\tau = \cos 2t$.

- 1. Знайти зображення оригіналу $f(t) = t \sin 5t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{p^3 + p^2 2p + 1}{p^5 2p^4 + p^3}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 2y' + 2y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \le t \le 2 \\ 0, \ t > 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y' = \frac{1}{1 + e^t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $\int_{0}^{t} y(\tau)(t-\tau)^{2} d\tau = \frac{t^{3}}{3}$

- 1. Знайти зображення оригіналу $f(t) = e^{-4t} \cos 2t \cos 5t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{(p^2+4)(p^2+9)}$.
- 3. Розв'язати задачу Коші операційним методом y' + 4y = f(t), y(0) = 0 де $f(t) = \begin{cases} 3, & 0 \le t < 3 \\ 6, & t > 3 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' 2y' + 2y = 2e^t \cos t, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $-\int_{0}^{t} y(\tau)(t-\tau) d\tau + y(t) = \sin t$.

- 1. Знайти зображення оригіналу $f(t) = \frac{\cos 6t \cos 2t}{t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{pe^{-2p}}{p^2 + 16}$.
- 3. Розв'язати задачу Коші операційним методом y' + y = f(t), y(0) = 0 де $f(t) = \begin{cases} 1, & 0 \le t < 2 \\ 0, & t \ge 2 \end{cases}.$
- 4. 3 допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = th^2t, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $\int_0^t y(\tau)\sin(t-\tau) d\tau = \sin^2 t$.

- 1. Знайти зображення оригіналу $f(t) = \frac{\sin^2 t}{t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{(p^2-4)(p-1)}$.
- 3. Розв'язати задачу Коші операційним методом y' + 3y = f(t), y(0) = 1 де $f(t) = \begin{cases} 2, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = \frac{1}{cht}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $\int_{0}^{t} y(\tau) \cos(t-\tau) d\tau = t + t^{2}$.

- 1. Знайти зображення оригіналу $f(t) = \frac{\sin 7t \cdot \sin 3t}{t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{(p-1)^2(p+1)}$.
- 3. Розв'язати задачу Коші операційним методом y' + 2y = f(t), y(0) = 3де $f(t) = \begin{cases} 2, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y' = \frac{e^t}{1 + e^t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = t + \frac{1}{2} \int_{0}^{t} (t \tau)^{2} y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \int_0^t sh\tau d\tau$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p^3 8}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0 \, \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \le t < 1 \\ -1, \ 1 \le t < 2 \, . \\ 0, \ t \ge 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' 2y' + y = \frac{e^t}{1+t}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) \int_0^t y(\tau) \sin(t-\tau) d\tau = t$.

- 1. Знайти зображення оригіналу $f(t) = sh2t \cos 3t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{p+3}{p(p^2-4p+3)}$.
- 3. Розв'язати задачу Коші операційним методом y'+y=f(t), y(0)=0, де $f(t)=\begin{cases} 1, & 0 \leq t < 2 \\ 0, & t \geq 2 \end{cases}.$
- 4. 3 допомогою інтеграла Дюамеля розв'язати задачу Коші $y'-y=\frac{1}{3+o^t},\;y(0)=0\;.$
- 5. Розв'язати інтегральне рівняння $y(t) = \cos t + \int_{0}^{t} e^{t-\tau} y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \cos^3 t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p(p^2+4)(p^2+1)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \leq t < 1 \\ -1, \ 1 \leq t < 2 \ . \\ 0, \ t \geq 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = \frac{1}{1+cht}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = 1 + t + \int_{0}^{t} \cos(t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \frac{1 e^{-4t}}{te^t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{p}{(p^2 + 2)^2}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y' = f(t), \ y(0) = y'(0) = 0, \text{де } f(t) = \begin{cases} 2, \ 0 \le t < 1 \\ 1, \ 1 \le t < 2 \\ 0, \ t \ge 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + y = \frac{1}{1 + e^t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = \frac{t^2}{2} + \int_0^t (t-\tau)e^{-(t-\tau)}d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \int_0^t \frac{\sin \tau}{\tau} d\tau$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{e^{-3p}}{p(p-1)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1-t, \ 0 \leq t < 1 \\ 0, \ t \geq 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' 4y = \frac{1}{ch^3 2t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = e^{-t} + \frac{1}{2} \int_{0}^{t} (t \tau)^{2} y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = sh2t \cdot \sin 5t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p(p^2+1)(p^2+4)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 4y = f(t), \ y(0) = y'(0) = 0, \text{де } f(t) = \begin{cases} t, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = \frac{1}{ch^2t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = t + 2 \int_{0}^{t} ((t \tau) \sin(t \tau)) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = e^{-t} \sin 2t \cdot \cos t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{3p+1}{(p-5)^6}$.
- 3. Розв'язати задачу Коші операційним методом $y'' y' = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \leq t < 1 \\ 2, \ 1 \leq t < 2 \\ 0, \ t \geq 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + y' = \frac{e^t}{1 + e^t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = \sin t + 2 \int_{0}^{t} \cos(t-\tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = e^{-3t}t^8$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{5p+1}{\left(p^2+9\right)^2}$.
- 3. Розв'язати задачу Коші операційним методом $y''-4y'=f\left(t\right),\ y\left(0\right)=y'\left(0\right)=0, \text{де } f\left(t\right)=\begin{cases} 1,\ 0\leq t<1\\ -1,\ 1\leq t<2\\ 0,\ t\geq 2 \end{cases}$
- 4. 3 допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + 2y' + y = \frac{e^{-t}}{\left(1+t\right)^2}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) = 1 + \frac{1}{2} \int_{0}^{t} \sin(t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = e^{4(t-5)}\cos(t-5)\eta(t-5)$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{p+2}{p^2-5p+6}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \leq t < 1 \\ -1, \ 1 \leq t < 2 \ . \\ 0, \ t \geq 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = \frac{1}{ch^3t},$ y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = e^{-t} 2 \int_{0}^{t} \cos(t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = ch2t \cdot \sin 3t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{(p^2+1)(p^2+9)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 3y = f(t), \ y(0) = y'(0) = 0, \ \text{де} \ f(t) = \begin{cases} 1, \ 0 \le t < 4 \\ 0, \ t \ge 4 \end{cases}.$
- 4. 3 допомогою інтеграла Дюамеля розв'язати задачу Коші $y''-y'=\frac{e^{2t}}{\left(1+e^t\right)^2},\ y(0)=y'(0)=0\ .$
- 5. Розв'язати інтегральне рівняння $y(t) = 1 + \frac{1}{6} \int_{0}^{t} (t \tau)^{3} y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = t \cdot \sin 4t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{e^{-2p}}{(p-1)^2}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + y = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 1, \ 0 \le t < 2 \\ 4, \ t \ge 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + 2y' + y = \frac{te^{-t}}{t+1}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) = t \int_{0}^{t} sh(t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \sin t \cdot \eta(t \pi)$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p^4 5p^2 + 4}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 4y = f(t), \ y(0) = y'(0) = 0, \ \text{де} \ f(t) = \begin{cases} 1, \ 0 \le t < \pi \\ 0, \ t \ge \pi \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y' = \frac{e^{2t}}{e^t + 2},$ y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = sht \int_{0}^{t} ch(t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = sht \cdot \cos 3t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{p+3}{p(p^2-4p+3)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 9y = f(t), \ y(0) = y'(0) = 0, \ \text{де} \ f(t) = \begin{cases} 0, \ 0 \le t < 3 \\ 1, \ t \ge 3 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y' = \frac{sht}{ch^2 t}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = \sin t + \int_0^t (t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \int_{0}^{t} \sin^{2} \tau d\tau$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p^3(p-1)}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 4y = f(t), \ y(0) = y'(0) = 0, \ \text{де} \ f(t) = \begin{cases} 0, \ t < 2 \\ 2, \ t \ge 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + y' = \frac{e^t}{\left(e^t + 1\right)^2}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) = t \int_{0}^{t} e^{t-\tau} y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = (2t+1)\cos 3t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p(p^2 + 1)}$.
- 3. Розв'язати задачу Коші операційним методом y' + 2y = f(t), y(0) = 0 де $f(t) = \begin{cases} 2, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + 2y' + y = \frac{e^{-t}}{t^2 + 1}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $t = \int_{0}^{t} ch(t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = t \cdot e^{-t} cht$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{(p^2 + 1)^2}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 3y' = f\left(t\right), \ y(0) = y'(0) = 0, \ \text{де} \ f\left(t\right) = \begin{cases} 0, \ t < 2 \\ 1, \ t \geq 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' 2y' + y = \frac{e^t}{ch^2t}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) = t \int_{0}^{t} sh(t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = (t+1)\sin 2t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{e^{-3p}}{(p+1)^3}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 3y' = f\left(t\right), \ y\left(0\right) = y'\left(0\right) = 0, \text{де } f\left(t\right) = \begin{cases} 0, \ t < 1 \\ 1, \ t \geq 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + 2y' + y = \frac{e^{-t}}{ch^2t}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $t+t^2=\int\limits_0^t\cos\left(t-\tau\right)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = t^2 e^{3t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p^2 p + 7}$.
- 3. Розв'язати задачу Коші операційним методом $y'+3y=f(t),\ y(0)=0$ де $f(t)=\begin{cases} 1,\ 0\leq t<1\\ -1,\ 1\leq t<2\\ 1,\ t\geq 2 \end{cases}$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + 2y' + y = \frac{e^{-t}}{t+1}, \ y(0) = y'(0) = 0 \ .$
- 5. Розв'язати інтегральне рівняння $y(t) = sht + \int_{0}^{t} (t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = t \cdot \cos^2 t$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{3e^{-4p}}{p^2 + 9}$.
- 3. Розв'язати задачу Коші операційним методом $y'' + 4y = f(t), \ y(0) = y'(0) = 0, \ \text{де} \ f(t) = \begin{cases} 0, \ t < 2 \\ 2, \ t \geq 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y = \frac{1}{e^t + 3}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = 1 + 2 \int_{0}^{t} \cos(t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \int_{0}^{t} (t-\tau)^{2} \sin \tau d\tau$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{e^{-2p}}{p^2}$.
- 3. Розв'язати задачу Коші операційним методом y' + 2y = f(t), y(0) = 3 де $f(t) = \begin{cases} 2, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + y = \frac{1}{e^t + 1}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = 1 + t + \int_{0}^{t} \sin(t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = (t^2 + 1)e^{-t}$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{2p+3}{p^3+1}$.
- 3. Розв'язати задачу Коші операційним методом $y'+y=f(t),\ y(0)=0$ де $f(t)=\begin{cases} 1,\ 0\leq t<2\\ 0,\ t\geq 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' y' = \frac{1}{e^t + 1},$ y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = t \int_{0}^{t} (t \tau) y(\tau) d\tau$.

- 1. Знайти зображення оригіналу $f(t) = te^{2t} cht$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{2pe^{-p}}{p^2 4}$.
- 3. Розв'язати задачу Коші операційним методом y' + 4y = f(t), y(0) = 0 де $f(t) = \begin{cases} 1, & 0 \le t < 3 \\ 2, & t \ge 3 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші $y'' + y' = \frac{e^t}{e^t + 1}$, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = t + \int_{0}^{t} \sin(t-\tau)y(\tau)d\tau$.

- 1. Знайти зображення оригіналу $f(t) = \int_{0}^{t} e^{\tau} \sin \tau d\tau$.
- 2. Знайти оригінал за даним зображенням $F(p) = \frac{1}{p^3 + 2p^2 + p}$.
- 3. Розв'язати задачу Коші операційним методом $y'+y=f(t),\ y(0)=0$ де $f(t)=\begin{cases} 1,\ 0\leq t<2\\ 0,\ t\geq 2 \end{cases}.$
- 4. З допомогою інтеграла Дюамеля розв'язати задачу Коші y'' y = tht, y(0) = y'(0) = 0.
- 5. Розв'язати інтегральне рівняння $y(t) = e^{t} + \int_{0}^{t} e^{t-\tau} y(\tau) d\tau$.

Відповіді:

Варіант 1

1.
$$F(p) = \frac{1}{2} \ln \frac{p+2}{\sqrt{(p+2)^2+4}}$$

2.
$$f(t) = 2e^{2t} + 5te^{2t}$$

3.
$$y(t) = \frac{1}{4} \left(t - \frac{1}{2} \sin 2t \right) \eta(t) - \frac{1}{2} \left((t-1) - \frac{1}{2} \sin 2(t-1) \eta(t-1) \right) + \frac{1}{4} \left(t - 2 - \frac{1}{2} \sin 2(t-2) \right) \eta(t-2)$$

4.
$$y(t) = -sht + 2cht \cdot arctg\left(th\frac{t}{2}\right)$$

$$5. \quad y(t) = \eta(t)$$

Варіант 2

1.
$$F(p) = \frac{e^{-5p}(p-4)}{(p-4)^2+1}$$

$$2. \quad f(t) = 3ch2t$$

3.
$$y(t) = \eta(t)(1 - e^{-t} - te^{-t}) - \eta(t-1)(1 - e^{-(t-1)}(t-1)e^{-(t-1)})$$

4.
$$y(t) = e^{t} \left(t \cdot arctgt - \frac{1}{2} \ln \left(1 + t^2 \right) \right)$$

5.
$$y(t) = \cos 2t - \frac{1}{2}\sin 2t$$

1.
$$F(p) = \frac{10p}{(p^2 + 25)^2}$$

2.
$$f(t) = te^t + \frac{1}{2}t^2$$

3.
$$y(t) = \frac{1}{2} (1 - e^{-t} (\cos t + \sin t)) \eta(t) - \frac{1}{2} (1 - e^{-(t-2)} (\cos (t-2) + \sin (t-2))) \eta(t-2)$$

4.
$$y(t) = e^{t} - 1 - (1 + e^{t})(t + \ln 2) + (1 + e^{t})\ln(1 + e^{t})$$

$$5. \quad y(t) = \eta(t)$$

1.
$$F(p) = \frac{1}{2} \left(\frac{p+4}{(p+4)^2+9} + \frac{p+4}{(p+4)^2+49} \right)$$

2.
$$f(t) = \frac{1}{5} \left(\frac{1}{2} \sin 2t - \frac{1}{3} \sin 3t \right)$$

3.
$$y(t) = \frac{3}{4} (1 - e^{-4t}) \eta(t) + \frac{3}{4} (1 - e^{-4(t-3)}) \eta(t-3)$$

4.
$$y(t) = te^t \sin t$$

5.
$$y(t) = \frac{3}{2}\cos 2t + \frac{1}{2}$$

Варіант 5

1.
$$F(p) = \frac{1}{2} \ln \frac{p^2 + 4}{p^2 + 36}$$

2.
$$f(t) = \cos 4(t-2)\eta(t-2)$$

3.
$$y(t) = (1 - e^{-t})\eta(t) - (1 - e^{-(t-2)})\eta(t-2)$$

4.
$$y(t) = -2sht\left(arctge^t - \frac{\pi}{4}\right) + cht - 2$$

5.
$$y(t) = \frac{3}{2}\cos 2t + \frac{1}{2}$$

1.
$$F(p) = \frac{1}{2} \ln \frac{\sqrt{p^2 + 4}}{p}$$

2.
$$f(t) = -\frac{1}{3}e^{t} + \frac{1}{4}e^{2t} + \frac{1}{12}e^{-2t}$$

3.
$$y(t) = \frac{2}{3} (1 - e^{-3t}) \eta(t) - \frac{1}{3} (1 - e^{-3(t-1)}) \eta(t-1)$$

4.
$$y(t) = tsht - cht \ln cht$$

5.
$$y(t) = 1 + 2t + \frac{t^2}{2} + \frac{t^3}{3}$$

1.
$$F(p) = -\frac{1}{4} \ln \frac{p^2 + 16}{p^2 + 100}$$

2.
$$f(t) = e^{-2t} + e^{-t}(t-1)$$

3.
$$y(t) = 3e^{-2t}\eta(t) + (1 - e^{-2t})\eta(t) - \frac{1}{2}(1 - e^{-2(t-1)})\eta(t-1)$$

4.
$$y(t) = te^t - (1 + e^t) \ln \frac{1 + e^t}{2}$$

5.
$$y(t) = \frac{1}{3} \left(e^t - e^{\frac{t}{2}} \cos \frac{\sqrt{3}}{2} t + \sqrt{3} e^{\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t \right)$$

Варіант 8

1.
$$F(p) = \frac{1}{p(p^2+1)}$$

2.
$$f(t) = \frac{1}{12}e^{2t} - \frac{1}{12}e^{-t}\cos\sqrt{3}t - \frac{1}{4\sqrt{3}}e^{-t}\sin\sqrt{3}t$$

3.
$$y(t) = (1-\cos t)\eta(t) - 2(1-\cos(t-1)\eta(t-1)) + (1-\cos(t-2))\eta(t-2)$$

4.
$$y(t) = e^{t}((t+1)\ln(t+1)-t)$$

5.
$$y(t) = t + \frac{1}{6}t^3$$

1.
$$F(p) = \frac{1}{2} \left(\frac{p-2}{(p-2)^2 + 9} - \frac{p+2}{(p+2)^2 + 9} \right)$$

2.
$$f(t) = 1 - 2e^t + e^{3t}$$

3.
$$y(t) = (1 - e^{-t})\eta(t) - (1 - e^{-(t-2)})\eta(t-2)$$

4.
$$y(t) = \frac{1}{3}(e^t - 1) - \frac{t}{9}e^t + \frac{1}{9}e^t \ln \frac{e^t + 3}{4}$$

5.
$$y(t) = \frac{2}{5}e^{2t} + \frac{3}{5}\cos t + \frac{1}{5}\sin t$$

1.
$$F(p) = \frac{1}{4} \left(\frac{p}{p^2 + 9} + \frac{3p}{p^2 + 1} \right)$$

2.
$$f(t) = \frac{1}{12}(3 - 4\cos t + \cos 2t)$$

3.
$$y(t) = 2\left(\sin^2\frac{t}{2}\eta(t) - 2\sin^2\frac{t-1}{2}\eta(t-1) + \sin^2\frac{t-2}{2}\eta(t-2)\right)$$

4.
$$y(t) = sht\left(t - \frac{2}{e^t + 1} + 1\right) - cht \cdot \ln\frac{1 + cht}{2}$$

5.
$$y(t) = 2 + t - e^{\frac{t}{2}} \left(\cos \frac{\sqrt{3}}{2} t - \sqrt{3} \sin \frac{\sqrt{3}}{2} t \right)$$

Варіант 11

1.
$$F(p) = \ln |\frac{p+5}{p+1}|$$

$$2. \quad f(t) = \frac{t}{2\sqrt{2}}\sin(t\sqrt{2})$$

3.
$$y(t) = 2(t - e^{-t} - 1)\eta(t) - (t - 1 + e^{-(t-1)} - 1)\eta(t-1) - (t - 2 + e^{-(t-2)} - 1)\eta(t-2)$$

4.
$$y(t) = \frac{1}{2}(e^t - 1 - te^t) + sht \cdot \ln \frac{1 + e^t}{2}$$

5.
$$y(t) = -\frac{1}{16} - \frac{t}{8} + \frac{3t^2}{8} - \frac{t^3}{12} + \frac{1}{16}e^{2t}$$

1.
$$F(p) = \frac{arcctg \ p}{p}$$

2.
$$f(t) = e^{(t-3)}\eta(t-3) - \eta(t-3)$$

3.
$$y(t) = (1 - \cos t)\eta(t) - (t - \sin t)\eta(t) + (t - 1 - \sin(t - 1))\eta(t - 1)$$

4.
$$y(t) = \frac{sh^2 2t}{ch^2 t}$$

5.
$$y(t) = \frac{1}{2}e^{-t} + \frac{1}{6}e^{t} + \frac{1}{3}e^{-\frac{t}{2}} \left(\cos\frac{\sqrt{3}}{2}t - \sqrt{3}\sin\frac{\sqrt{3}}{2}t\right)$$

1.
$$F(p) = \frac{5}{2} \left(\frac{1}{(p-2)^2 + 25} - \frac{1}{(p+2)^2 + 25} \right)$$

2.
$$f(t) = \frac{1}{3} \left(\frac{3}{4} - \cos t + \frac{1}{4} \cos 2t \right)$$

3.
$$y(t) = \frac{1}{4} \left(t - \frac{1}{2} \sin 2t \right) \eta(t) - \frac{1}{4} \left(t - 1 - \frac{1}{2} \sin 2(t - 1) \right) \eta(t - 1) - \frac{1}{4} \left(1 - \cos 2(t - 1) \right) \eta(t - 1)$$

4.
$$y(t) = 2sht \cdot arctge^t - 1 + cht$$

5.
$$y(t) = \frac{1}{3} \left(e^t - e^{-t} + \frac{\sqrt{2}}{2} \sin\left(t\sqrt{2\sqrt{t}}\right) \right)$$

Варіант 14

1.
$$F(p) = \frac{1}{2} \left(\frac{1}{(p+1)^2 + 1} + \frac{3}{(p+1)^2 + 9} \right)$$

2.
$$f(t) = \frac{3}{4!}t^4e^{5t} + \frac{16}{5!}t^5e^{5t}$$

3.
$$y(t) = (e^{t} - 1 - t)\eta(t) + (e^{t-1} - 1 - (t-1))\eta(t-1) - 2(e^{t-2} - 1 - (t-2))\eta(t-2)$$

4.
$$y(t) = \frac{e^t + 1}{e^t} \ln \frac{e^t + 1}{2} + \frac{1 - e^t}{e^t}$$

$$5. \quad y(t) = te^t$$

1.
$$F(p) = \frac{8!}{(p+3)^9}$$

$$2. \quad f(t) = \frac{5t}{6}\sin 3t$$

3.
$$y(t) = \left(\frac{1}{16}e^{4t} - \frac{1}{16} - \frac{t}{4}\right)\eta(t) - 2\left(\frac{1}{16}e^{4(t-1)} - \frac{1}{16} - \frac{t-1}{16}\right)\eta(t-1) + \left(\frac{1}{16}e^{4(t-2)} - \frac{1}{16} - \frac{t-2}{16}\right)\eta(t-2)$$

4.
$$y(t) = t^2 e^{-t} \frac{t+2}{(t+1)^2} + e^{-t} (t+1-\ln(t+1))$$

5.
$$y(t) = \frac{1}{3} (4 - \cos(t\sqrt{3}))$$

1.
$$F(p) = \frac{e^{-5p}(p-4)}{(p-4)^2+1}$$

2.
$$f(t) = -4e^{2t} + 5e^{3t}$$

3.
$$y(t) = (1-\cos t)\eta(t) - 2(1-\cos(t-1)\eta(t-1)) + (1-\cos(t-2))\eta(t-2)$$

$$4. \quad y(t) = \frac{1}{2} \frac{sh^2 2t}{cht}$$

$$5. \quad y(t) = cht - te^{-t}$$

Варіант 17

1.
$$F(p) = \frac{3}{2} \left(\frac{1}{(p-2)^2 + 9} + \frac{1}{(p+2)^2 + 9} \right)$$

$$2. \quad f(t) = \frac{1}{8} (\cos t - \cos 3t)$$

3.
$$y(t) = \frac{1}{3} (1 - \cos \sqrt{3}t) \eta(t) - \frac{1}{3} (1 - \cos \sqrt{3}(t - 4) \eta(t - 4))$$

4.
$$y(t) = \frac{1}{2}(e^t - 1) - \ln \frac{1 + e^t}{2}$$

5.
$$y(t) = \frac{1}{2}(cht + \cos t)$$

1.
$$F(p) = \frac{8p}{(p^2 + 16)^2}$$

2.
$$f(t) = (t-2)e^{t-2}\eta(t-2)$$

3.
$$y(t) = (1-\cos t)\eta(t) + 3(1-\cos(t-2))\eta(t-2)$$

4.
$$y(t) = e^{-t} (\frac{t^2}{2} + t - (t+1) \ln(t+1))$$

5.
$$y(t) = t - \frac{t^3}{6}$$

1.
$$F(p) = -\frac{e^{-p\pi}}{p^2 + 1}$$

$$2. \quad y(t) = \frac{1}{3} \left(\frac{sh2t}{2} - sht \right)$$

3.
$$y(t) = \frac{1}{4}(1-\cos 2t)\eta(t) - \frac{1}{4}(1-\cos 2(t-\pi))\eta(t-\pi)$$

4.
$$y(t) = (e^t + 2) \ln \frac{2 + e^t}{3} - e^t + 1$$

5.
$$y(t) = \frac{2}{\sqrt{5}}e^{-\frac{t}{2}}sh\frac{\sqrt{5}}{2}t$$

Варіант 20

1.
$$F(p) = \frac{1}{2} \left(\frac{p-1}{(p-1)^2 + 9} - \frac{p+1}{(p+1)^2 + 9} \right)$$

2.
$$f(t) = 1 - 2e^t + e^{3t}$$

3.
$$y(t) = \frac{1}{9}\eta(t-3) - \frac{1}{9}\cos 3(t-3)\eta(t-3)$$

4.
$$y(t) = \frac{1}{cht} - 1 + e^{t} \left(tht - \ln \frac{2e^{2t}}{e^{2t} + 1} - \frac{1}{e^{2t} + 1} + \frac{1}{2} \right)$$

5.
$$y(t) = \frac{1}{2} sht + \frac{1}{2} sin t$$

1.
$$F(p) = \frac{2}{p(p^2 + 4)}$$

2.
$$y(t) = e^t - 1 - t - \frac{t^2}{2}$$

3.
$$y(t) = \frac{1}{2}\eta(t-2) - \frac{1}{2}\cos 2(t-2)\eta(t-2)$$

4.
$$y(t) = \frac{cht}{1+e^t} - e^{-t} \left(\frac{1}{1+e^t} + \ln(1+e^t) \right)$$

5.
$$y(t) = t - \frac{t^2}{2}$$

1.
$$F(p) = \frac{2(p^2 - 9)}{(p^2 + 9)^2} + \frac{p}{p^2 + 9}$$

2.
$$y(t) = 1 - \cos t$$

3.
$$y(t) = (1 - e^{-2t})\eta(t) - \frac{1}{2}(1 - e^{-2(t-1)})\eta(t-1)$$

4.
$$y(t) = e^{-t} (arctgt - \ln(t^2 + 1))$$

5.
$$y(t) = 1 - \frac{t^2}{2}$$

Варіант 23

1.
$$F(p) = \frac{1}{2} \left(\frac{1}{p^2} + \frac{1}{(p+2)^2} \right)$$

$$2. \quad f(t) = \frac{1}{2} (\sin t + t \cos t)$$

3.
$$y(t) = \frac{1}{9}(e^{-3(t-2)} + 3(t-2) - 1)\eta(t-2)$$

4.
$$y(t) = e^t \ln cht$$

5.
$$y(t) = t - \frac{t^3}{6}$$

1.
$$F(p) = \frac{4p}{(p^2+1)^2} + \frac{2}{p^2+4}$$

2.
$$f(t) = \frac{1}{2}(t-3)^2 e^{-(t-3)}\eta(t-3)$$

3.
$$y(t) = \frac{1}{9} (e^{-3(t-1)} + 3(t-1) - 1)\eta(t-1)$$

$$4. \quad y(t) = e^{-t} \ln cht$$

5.
$$y(t) = 1 + 2t + \frac{t^2}{2} + \frac{t^3}{3}$$

1.
$$F(p) = \frac{2}{(p-3)^3}$$

2.
$$f(t) = \frac{2}{3\sqrt{3}}e^{\frac{t}{2}}\sin\frac{3\sqrt{3}}{2}t$$

3.
$$y(t) = e^{-3t} \eta(t) + \frac{1}{3} (t - e^{-3t}) \eta(t) - \frac{2}{3} ((t-1) - e^{-3(t-1)}) \eta(t-1)$$

4.
$$y(t) = e^{-t} ((t+1) \ln (t+1) - t)$$

$$5. \quad y(t) = \frac{1}{2} t cht + \frac{1}{2} sht$$

Варіант 26

1.
$$F(p) = \frac{1}{2} \left(\frac{1}{p^2} + \frac{p^2 - 4}{(p^2 + 4)^2} \right)$$

2.
$$f(t) = \sin 3(t-4)\eta(t-4)$$

3.
$$y(t) = \left(\frac{1}{2} - \frac{1}{4}\cos 2(t-2)\right)\eta(t-2)$$

4.
$$y(t) = \frac{1}{3}(e^t - 1) - \frac{t}{9}e^t + \frac{1}{9}e^t \ln \frac{e^t + 3}{4}$$

5.
$$y(t) = 1 - 2te^t$$

1.
$$F(p) = \frac{2}{p^3} \cdot \frac{1}{p^2 - 1}$$

2.
$$f(t) = (t-2)\eta(t-2)$$

3.
$$y(t) = (1 - e^{-2t})\eta(t) - \frac{1}{2}(1 - e^{-2(t-1)})\eta(t-1)$$

4.
$$y(t) = \frac{1}{2}(e^t - 1 - te^t) + sht \cdot \ln \frac{e^t + 1}{2}$$

5.
$$y(t) = 1 + t + \frac{t^2}{2} + \frac{t^3}{6}$$

1.
$$F(p) = \frac{2}{(p+1)^3} + \frac{1}{p+1}$$

2.
$$f(t) = \frac{1}{3}e^{-t} - \frac{1}{3}e^{\frac{t}{2}}\cos{\frac{\sqrt{3}}{2}}t - \frac{5}{\sqrt{3}}e^{\frac{t}{2}}\sin{\frac{\sqrt{3}}{2}}t$$

3.
$$y(t) = (1 - e^{-t})\eta(t) - (1 - e^{-(t-2)})\eta(t-2)$$

4.
$$y(t) = e^{t} - 1 - (1 + e^{t})(t + \ln 2) + (1 + e^{t})\ln(1 + e^{t})$$

$$5. \quad y(t) = \sin t$$

Варіант 29

1.
$$F(p) = \frac{1}{2} \left(\frac{1}{(p-3)^2} + \frac{1}{(p-1)^2} \right)$$

2.
$$f(t) = (ch2(t-1))\eta(t-1)$$

3.
$$y(t) = \frac{1}{4}(t - e^{-4t})\eta(t) + \frac{1}{4}((t-3) - e^{-4(t-3)})\eta(t-3)$$

4.
$$y(t) = (e^{-t} + 1) \ln \frac{e^t + 1}{2} + e^{-t} - 1$$

5.
$$y(t) = 1 + \frac{t^2}{2}$$

1.
$$F(p) = \frac{1}{p^2(p-2)}$$

2.
$$f(t) = 1 - te^{-t} - e^{-t}$$

3.
$$y(t) = (1 - e^{-t})\eta(t) - (1 - e^{-(t-2)})\eta(t-2)$$

4.
$$y(t) = -sht + 2cht \cdot arctg\left(th\frac{t}{2}\right)$$

$$5. \quad y(t) = e^{2t}$$

Список рекомендованої літератури

- 1. М.Л.Краснов, А.И.Киселев, Г.И.Макаренко. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М., "Наука", 1981г. -300с.
- 2. Сборник задач по математике для втузов. Специальные разделы математического анализа.-В4ч. Ч.2. учебное пособие (Под редакцией А.В.Ефимова, Б.П.Демидовича). Москва "Наука". 1981.-306с.
- 3. В.Ф.Чудесенко. Сборник заданий по специальным курсам высшей математики. (типовые расчеты): Учебное пособие для втузов.- М.: Высш. школа, 1983.-112с.
- 4. І.В.Алєксєєва, В.О.Гайдей, О.О.Диховичний, Л.Б.Федорова. Ряди. Теорія функцій комплексної змінної. Операційне числення. Практикум. Київ.-2013.-160с.