Theoretical Particle Physics - physics615

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Specialization:	Theoretical Physics
Module No.	physics61c	

\overline{Course}	Theoretical Particle Physics
Course No.	physics615

		Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester
Elective	Lecture with exercises	English 3+2	7	WT

Requirements for Participation:

Preparation:

Advanced quantum theory (physics606)

Quantum field theory (physics755)

Group theory (physics751)

Form of Testing and Examination: Requirements for the examination (written): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Introduction to the standard model of elementary particle physics and its extensions (unified theories)

Contents of the Course:

Classical field theory, gauge theories, Higgs mechanism;

Standard model of strong and electroweak interactions;

Supersymmetry and the supersymmetric extension of the standard model;

Grand unified theories (GUTs);

Neutrino physics;

Cosmological aspects of particle physics (dark matter, inflation)

Recommended Literature:

- T. P. Cheng, L.F. Li: Gauge theories of elementary particle physics (Clarendon Press, Oxford 1984)
- M. E. Peskin, D.V. Schroeder; An introduction to quantum field theory (Addison Wesley, 1995)
- J. Wess; J. Bagger; Supersymmetry and supergravity (Princeton University Press 1992)