Teoria da Computaçãos - COS700 - 2019.1

Lista 4

Entrega: 11/06/2019

Um Modelo Formal de Computação: A Máquina de Turing

1. Considere a máquina de Turing \mathcal{M} cujo alfabeto da fita é $\{a, b, \sqcup, \triangleright\}$, conjunto de estados $\{q_0, q_1, h\}$, estado inicial q_0 e transições dadas pela tabela:

estado	entrada	transies
q_0	0	$(q_1, 1)$
	1	$(q_1, 0)$
	⊔	(h,\sqcup)
	\triangleright	(q_0, \rightarrow)
q_1	0	(q_0, \rightarrow)
	1	(q_0, \rightarrow)
	⊔	(q_0, \rightarrow)
	\triangleright	(q_1, \rightarrow)

- (a) Descreva a computação de \mathcal{M} a partir da configuração $(q0, \triangleright \underline{0}01110)$;
- (b) Descreva informalmente o que \mathcal{M} faz quando iniciada no estado q_0 e em alguma casa de sua fita.
- **2.** Descreva a tabela de transição de uma máquina de Turing com alfabeto da fita $\{a, b, \sqcup, \triangleright\}$, que se move para a esquerda até encontrar três as na fita e então para.
- **3.** Descreva o diagrama de composição de máquinas de Turing que aceitem as seguintes linguagens:
 - (a) 010*1;
 - (b) $\{w \in \{0,1\}^* : |w| \text{ é par}\};$
 - (c) $\{a^n b^n c^m : m \ge n\};$
 - (d) $\{w \in \{0,1\}^* : w = w^r\};$
 - (e) $\{o^{n^2} : n \ge 1\}.$
- **4.** Sendo $w = \sigma_0 \sigma_1 ... \sigma_{n-1} \sigma_n$, e rotate-right $(w) = \sigma_n \sigma_0 \sigma_1 ... \sigma_{n-1}$. Construa uma máquina que realiza a operação de rotate-right na fita.
- **5.** Construa máquinas de Turing que calculem as seguintes funções $f: \mathbb{N} \to \mathbb{N}$ definidas por:
 - (a) f(n) = n + 1;

- (b) f(n) é o resto da divisão de n por 2;
- (c) f(n,m) = n m se $n m \ge 0$ ou f(n,m) = 0 se n < m.
- **6.** Construa uma máquina que computa a função $f(w) = w^r$, onde $w \in \{0,1\}^*$.
- 7. Descreva uma máquina de Turing que, tendo como entrada uma palavra $w \in \{0, 1\}^*$ encontra o símbolo do meio da palavra (se existir!).
- 8. Descreva uma máquina de Turing que, tendo como entrada uma palavra $w \in \{0, 1\}^*$ com comprimento par, substitui os 0s por as ou cs e os 1s por bs ou ds, de modo que a palavra fica escrita na forma w_1w_2 onde $w_1 \in \{a, b\}^*$ e $w_2 \in \{c, d\}^*$.
- 9. Construa uma máquina que decida a linguagem $L = \{a^n b^n c^n : n \ge 0\}$.
- 10. Dê a definição formal de uma máquina de Turing cuja fita é duplamente infinita (isto é, infinita nos dois sentidos). Mostre como é possível simular uma máquina destas usando uma máquina \mathcal{M} de Turing cuja fita é infinita somente à direita.
- 11. Seja Σ_0 um alfabeto e L uma linguagem no alfabeto Σ_0 que é recursivamente enumerável mas não é recursiva. Suponha que \mathcal{M} é uma máquina de Turing que aceita L. Mostre que existe uma quantidade infinita de palavras em Σ_0 que não é aceita por \mathcal{M} .
- 12. Sejam L_1 e L_2 linguagens recursivas aceitas por máquinas de Turing \mathcal{M}_1 e \mathcal{M}_2 , respectivamente. Mostre como construir uma máquina de Turing \mathcal{M} que aceite a linguagem $L_1 \cup L_2$.
- 13. A interseção de linguagens recursivas é recursiva? Explique sua resposta.