министерство науки и высшего образования российской федерации

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

КАФЕДРА 22

ЛАБОРАТОРНАЯ РАБОТА ЗАЩИЩЕНА С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

канд. тех. наук, доцент

должность, уч. степень, звание

Филатов В.Н.

инициалы, фамилия

11.4.24

ЛАБОРАТОРНАЯ РАБОТА №4

поднись, дата

Исследование частотных свойств транзисторного усилителя с обратной связью

по курсу: Схемотехника аналоговых электронных устройств

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №

2221

/ /!

К.Д.Гусева, Астанина В, Пустошный И.,

Ноинский А

инициалы, фамилия

Санкт-Петербург 2024

Лабораторная работа № 4. Исследование частотных свойств транзисторного усилителя с ООС.

Таблица 1

	Kаскад с ООС при A Параметры A Ч X – $Ku(F)$ $Ku = Usыx/Usx$				Параметры сквозной $AЧX - Ke(F)$ $Ke = Uвыx/E_{H}$			
R_H , Om	Ku	Ku = Ue	F_B	ΔF	Ке	F_H	F_B	ΔF
15	0,5	3814	2,75 M/L	2,45114				
47	1,4	37 /4	2,05 14/2	2,05MIZ				
100	2,55	35 Fus	1,98MP4	1,984/2		100	1	
300	6,3	31/4	1,45414	1,45 414			17	
750	11,345	23,5 /4	1,08H/4	1,08M14				
2400	16,5	17 Pu	9.85M/4	0,85 141				
00	-	13 FB	0,71M/4	0,7111				

Таблица 2

			аскад с ($R_H = 2 \text{ K}$	ОМ	W 4 TTX	TZ (TT)
R_H , Om	Параметры A Ч $X - Ku(F)$ $Ku = Usыx/Usx$				Параметры сквозной A Ч $X - Ke(F)$ $Ke = Uвыx/E_{H}$			
	Ku	F_H	F_B	ΔF	Ке	F_H	F_B	ΔF
15	0,5	39 Pu.	1,6MP4	1,6M/4				
47	1,4	35,5 Ps.	0,88M/4	0,8841				
100	2,62	33/4.	0,82MI	0,82414				
300	6,9	26 Fu	0,74112	0,74 11	1			
750	12,3	21/4	0,62M14	0,62141	1			
2400	18,4	13,5 14	0,55 1/4	0,5511/4				
00	-	10 Tu	0,45M/4	10,45 MP4				

Actanuna B.

Tyceba K.

Mounckul #

Nyctournoil U.

Nyctournoil U.

1 Цель работы

Анализ частотных свойств транзисторного усилительного каскада с OOC по переменному току.

2 Принципиальная схема исследуемого усилителя

Рисунок 1 – Каскад с ООС

В качестве активного элемента применен биполярный транзистор p-n-p-типа. U_{II} — напряжение источника питания. Вход усилителя соединен с источником входного сигнала, имеющим внутреннее сопротивление R_{II} , а выход усилителя подключен к нагрузке с эквивалентным сопротивлением R_{II} .

 R_K — коллекторная нагрузка транзистора. Она определяет режим работы транзистора по переменному току и выходные параметры усилителя, так как по переменному току параллельна R_H . Чем больше R_K , тем больше коэффициент усиления по напряжению. Чем меньше R_K , тем больше коэффициент усиления по току. При соизмеримости R_K и R_H возможно получение максимального коэффициента усиления по мощности. Кроме того, эти сопротивления определяют выходное сопротивление усилителя.

 R_{61} и R_{62} — делитель напряжения, служащий для задания исходного режима работы транзистора по постоянному току (напряжения смещения).

 $R_{\mathfrak{I}}$ и $C_{\mathfrak{I}}$ – цепочка автоматического смещения по постоянному току.

Разделительные конденсаторы C_P на входе и выходе устраняют связь усилителя по постоянному току с предшествующей и последующей цепями.

Применение отрицательной обратной связи (ООС) в усилителе при некотором снижении коэффициента усиления позволяет стабилизировать его работу и улучшить ряд существенных показателей. Резистор R_{OC} осуществляет ООС по переменному току.

3 Результаты измерений и расчетов

Т а б л и ц а 1 – результат измерений при $Ru = 510 \ Om$

Каскад с ООС при Rи = 510 Ом							
	Параметры АЧХ – K _u (F)						
R _H , O _M	$\mathbf{K}_{\mathrm{u}} = \mathbf{U}_{\scriptscriptstyle\mathrm{BbIX}}/\mathbf{U}_{\scriptscriptstyle\mathrm{BX}}$						
	K_u	F_H	F_B	ΔF			
15	0,5	38 Гц	2,75 МГц	2,75 МГц			
47	1,4	37 Гц	2,05 МГц	2,05 МГц			
100	2,55	35 Гц	1,98 МГц	1,98 МГц			
300	6,3	31 Гц	1,45 МГц	1,45 МГц			
750	11,375	23,5 Гц	1,08 МГц	1,08 МГц			
2400	16,5	17 Гц	0,85 МГц	0,85 МГц			
∞	-	13 Гц	0,71 МГц	0,71 МГц			

Т а б л и ц а 2 – результаты измерений при Rи = 2кОм

Каскад с ООС при Rи = 2 кОм							
	Параметры АЧХ – K _u (F)						
R _H , O _M	$K_{\mathrm{u}} = U_{\scriptscriptstyle \mathrm{BbIX}}/U_{\scriptscriptstyle \mathrm{BX}}$						
	K_u	F_H	F_B	ΔF			
15	0,5	39 Гц	1,6 МГц	1,6 МГц			
47	1,4	35,5 Гц	0,88 МГц	0,88 МГц			
100	2,62	33 Гц	0,82 МГц	0,82 МГц			
300	6,9	26 Гц	0,74 МГц	0,74 МГц			

750	12,3	21 Гц	0,62 МГц	0,62 МГц
2400	18,4	13,5 Гц	0,55 МГц	0,55 МГц
∞	-	10 Гц	0,45 МГц	0,45 МГц

Примеры вычислений:

1)
$$\Delta F = F_B - F_H$$

$$\Delta F = 2,75 \cdot 10^6 - 38 = 2,75 \ M\Gamma ц$$

2) $K_u = \frac{U_{\text{вых}}}{U_{\text{вх}}} -$ коэффициент усиления по напряжению (берем из ЛР 2)

4 Графики

График 1 - $R_{\text{И}} = 510 \text{ Ом}$

График $2 - R_{\text{И}} = 2$ кОм

Рисунок 3 – сравнение двух графиков

5 Выводы

- 1) С увеличением сопротивления нагрузки ширина полосы пропускания уменьшается.
- 2) Чем меньше сопротивление источника, тем больше ширина полосы пропускания.
- 3) Чем больше сопротивление источника, тем больше крутизна изменения ширины полосы пропускания.