Chapter 5

Sobolev and interpolation inequalities

5.1 Interpolation inequalities

Example 5.1.1

$$||u||_{L^2}^2 \le ||u||_{L^2} ||u'||_{L^2} \text{ for } u \in C^{\infty}(\mathbb{R})$$
 (5.1)

Proof. Idea: use that $(u^2)' = 2uu'$ and Newton-Leibniz

$$\begin{split} u^2(x) &= 2 \int_{-\infty}^x u u' \, \mathrm{d}y = -2 \int_x^\infty u u' \, \mathrm{d}y \\ &= \int_{-\infty}^x u u' \, \mathrm{d}y - \int_x^\infty u u' \, \mathrm{d}y \\ &\leq \int_{-\infty}^x |u| |u'| \, \mathrm{d}y + \int_x^\infty |u| |u'| \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |u| |u'| \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |u| |u'| \, \mathrm{d}y \end{split}$$
 (Hölder's inequality) $\leq \|u\|_{L^2} \|u'\|_{L^2}$

Question 1

Check that 5.1 is sharp. Namely, that 5.1 becomes equality for $u(x) = e^{-|x|}$ (u(x) is an extremal function for 5.1). Also, 5.1 is shift and scaling invariant, i.e. $u_{\alpha}(x+h) = e^{-\alpha|x+h|}$, $h \in \mathbb{R}$, $\alpha > 0$ -extremals.

Example 5.1.2 (Interpolation inequality)

 $\Omega\text{-domain in }\mathbb{R}^n, u \in L_{p_1}(\Omega) \cap L_{p_2}(\Omega), 1 \leq p_1, p_2, \leq \infty, p_1 < p_2, \theta \in [0,1], \frac{1}{p} = \frac{\theta}{p_1} + \frac{1-\theta}{p_2}. \text{ Then } 0 \leq p_1 \leq p_2 \leq p_1 \leq p_2 \leq$

$$||u||_{L^{p}} \le ||u||_{L^{p_{1}}}^{\theta} ||u||_{L^{p_{2}}}^{1-\theta} \tag{5.2}$$

Proof.

$$\int_{\mathbb{R}} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} \, \mathrm{d}x$$

We apply Hölder's inequality with exponents $P = \frac{p_1}{\theta p}$ and $Q = \frac{p_2}{(1-\theta)p}$ (Note $\frac{1}{P} + \frac{1}{Q} = \frac{\theta p}{p_1} + \frac{(1-\theta)p}{p_2} = 1$). Then

$$\int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} \, \mathrm{d}x \le \left(\int_{\mathbb{R}} |u|^{p_1} \, \mathrm{d}x \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}} |u|^{p_2} \, \mathrm{d}x \right)^{\frac{1}{Q}}$$

$$= \|u\|_{L^{p_1}}^{\theta} \|u\|_{L^{p_2}}^{1-\theta}$$

5.2 Sobolev inequalities

Example 5.2.1 (Sobolev inequality 1D)

 $u \in C^{\infty}([0,1])$, want to prove the embedding $W^{1,1}([0,1]) \subset C([0,1])$, i.e.

$$||u||_{C([0,1])} \le ||u||_{L^1([0,1])} + ||u'||_{L^1([0,1])} \tag{5.3}$$

Proof. By the Newton-Leibniz formula, $u(x) - u(y) = \int_y^x u'(s) \, ds$. Also,

$$|u(x)| \le |u(y)| + \int_0^1 |u'(s)| \, \mathrm{d}s \quad \forall x, y \in [0, 1]$$

By integration over $y \in [0, 1]$,

$$|u(x)| \le \int_0^1 |u(s)| \, \mathrm{d} s + \int_0^1 |u'(s)| \, \mathrm{d} s = \|u\|_{W^{1,1}([0,1])}$$

Taking supremum with respect to $x\in[0,1],$ we obtain $\|u\|_{C([0,1])}\leqslant\|u\|_{W^{1,1}([0,1])}$

Example 5.2.2 (Sobolev inequality 2D)

$$u\in C^{\infty}([0,1]^2), \text{ i.e. } \Omega=[0,1]^2, \text{ then } W^{1,1}(\Omega)\subset L^2(\Omega): \|u\|_{L^2}\leqslant \|u\|_{W^{1,1}(\Omega)}$$

Proof. $\int_{\Omega} u^2(x_1, x_2) dx_1 dx_2$ should be estimated. From 5.3, we know that

$$|u(x_1, x_2)| \le \int_0^1 |u(s, x_2)| + |\partial_{x_1} u(s, x_2)| \, \mathrm{d}s := f(x_2)$$

$$|u(x_1, x_2)| \le \int_0^1 |u(x_1, s)| + |\partial_{x_2} u(x_1, s)| \, \mathrm{d}s := g(x_1)$$

Then

$$\int_{\Omega} u^{2} dx \leq \int_{0}^{1} g(x_{1}) f(x_{2}) dx_{1} dx_{2}
= \int_{0}^{1} f(x_{2}) dx_{2} \int_{0}^{1} g(x_{1}) dx_{1}
= \left(\int_{\Omega} |u(x_{1}, x_{2})| + |\partial_{x_{1}} u(x_{1}, x_{2})| dx_{1} \right) \left(\int_{\Omega} |u(x_{1}, x_{2})| + |\partial_{x_{2}} u(x_{1}, x_{2})| dx_{2} \right)
\leq ||u||_{W^{1,1}(\Omega)}$$

Question 2: Sobolev inequality 3D

 $u \in C^{\infty}(\bar{\Omega}), \Omega = (0,1)^3$. Prove that $W^{1,1}(\Omega) \subset L^{\frac{3}{2}}(\Omega)$, i.e.

$$||u||_{L^{\frac{3}{2}}(\Omega)} \le ||u||_{W^{1,1}(\Omega)} \tag{5.4}$$

Hint: first, prove that

$$\int_{\Omega} f(x_1, x_2) g(x_2, x_3) h(x_1, x_3) \, \mathrm{d}x \le \|f\|_{L^2} \|g\|_{L^2} \|h\|_{L^2}$$

and use 5.3.

Example 5.2.3

 $u \in C^{\infty}(\bar{\Omega}), \Omega = (0,1)^3$. Then

$$||u||_{L^{6}(\Omega)} \le C||u||_{W^{1,2}(\Omega)} \tag{5.5}$$

Proof.

$$\begin{split} \int_{\Omega} |u|^6 \, \mathrm{d}x &= \int_{\Omega} (|u|^4)^{\frac{3}{2}} \, \mathrm{d}x \\ &\leqslant C \left(\int_{\Omega} |u|^4 \, \mathrm{d}x + \int_{\Omega} u^3 |\nabla u| \, \mathrm{d}x \right)^{\frac{3}{2}} \\ &(\text{by (5.3)}) \quad \leqslant C \left(\int_{\Omega} |u|^4 \, \mathrm{d}x \right)^{\frac{3}{2}} + C \left(u^3 |\nabla u| \, \mathrm{d}x \right)^{\frac{3}{2}} \\ &\leqslant C \|u\|_{L^2}^{\frac{3}{2} \cdot \theta \cdot 4} \|u\|_{L^6}^{\frac{3}{2} \cdot (1-\theta) \cdot 4} + C \|u\|_{L^6}^{\frac{3}{2} \cdot 3} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left(\theta = \frac{1}{4} \right) \quad = C \|u\|_{L^2}^{\frac{3}{2}} \|u\|_{L^6}^{\frac{9}{2}} + C \|u\|_{L^6}^{\frac{9}{2}} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left(\text{Young's inequality with } p = \frac{4}{5} \text{ and } q = -4 \right) \quad \leqslant \varepsilon \|u\|_{L^6}^6 + C_\varepsilon (\|u\|_{L^2} + \|\nabla u\|_{L^2})^6 \end{split}$$

Setting for example, $\varepsilon = \frac{1}{2}$, we obtain

$$||u||_{L^6(\Omega)} \le C||u||_{W^{1,2}(\Omega)}$$

Theorem 5.2.1 Sobolev embeddings

- $\widehat{\textbf{1}} \ \ W^{k_1,p_1}(\Omega) \subset W^{k_2,p_2}(\Omega) \Longleftrightarrow k_1 \geq k_2 \ \text{and} \ 1 \leq p_1,p_2 < \infty, k_1 \tfrac{n}{p_1} \geq k_2 \tfrac{n}{p_2}, \Omega \subset \mathbb{R}^n.$
- ② $W^{k,p}(\Omega) \subset C^{\alpha}(\Omega)$ if $\alpha < k \frac{n}{v}$.

Example 5.2.4

 $H^s(\mathbb{R}^n) \subset C(\mathbb{R}^n) \iff s > \frac{n}{2}$

Proof. $u(x) = \int_{\mathbb{R}^n} e^{i\xi x} \hat{u}(\xi) d\xi$

$$\begin{split} |u(x)| & \leq \int_{\mathbb{R}^n} |\hat{u}(\xi)| \,\mathrm{d}\xi \\ & = \int_{\mathbb{R}^n} \left(1 + |\xi|^2\right)^{-\frac{s}{2}} \left(1 + |\xi|^2\right)^{\frac{s}{2}} |\hat{u}(\xi)| \,\mathrm{d}\xi \\ & (\text{H\"{o}lder's inequality}) \quad \leqslant \left(\int_{\mathbb{R}^n} \frac{1}{(1 + |\xi|^2)^s} \,\mathrm{d}\xi\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \left(1 + |\xi|^2\right)^s |\hat{u}(\xi)|^2 \,\mathrm{d}\xi\right)^{\frac{1}{2}} \end{split}$$

 $\int_{\mathbb{R}^n} \frac{1}{(1+|\xi|^2)^s} \, \mathrm{d}\xi < \infty \iff s > \tfrac{n}{2}. \text{ Taking the supremum with respect to } x \in \mathbb{R}^n, \text{ we get}$

$$\|u\|_{C(\mathbb{R}^n)} \leq C_s \|u\|_{H^s(\mathbb{R}^n)}$$

Theorem 5.2.2 Interpolation inequalities

Let $u \in W^{k_1,p_1}(\Omega) \cap W^{k_2,p_2}(\Omega), \theta \in [0,1], 1 \leq p_1, p_2 \leq \infty$ with $k = \theta k_1 + (1-\theta)k_2, \frac{1}{p} = \frac{\theta}{p_1} + \frac{1-\theta}{p_2}$. Then

$$\|u\|_{W^{k,p}} \leq C\|u\|_{W^{k_1,p_1}}^{\theta} \|u\|_{W^{k_2,p_2}}^{1-\theta}$$

Corollary 5.2.1 Particular cases

- 1. $||u||_{H^1} \le ||u||_{L^2}^{\frac{1}{2}} ||u||_{H^2}^{\frac{1}{2}}$ 2. $||u||_{L^p} \le ||u||_{L^p}^{\theta} ||u||_{H^2}^{1-\theta}$

5.3 Spaces with zero boundary traces

Definition 5.3.1

$$W_0^{1,p}(\Omega) := \left\{ u \in W^{1,p}(\Omega), \ u|_{\partial\Omega} = 0 \right\}$$

$$\begin{split} W_0^{1,p}(\Omega) &:= \left\{u \in W^{1,p}(\Omega), \, u|_{\partial\Omega} = 0\right\} \\ &\text{Equivalent definition: } W_0^{1,p}(\Omega) = \text{``closure of } C_0^\infty(\Omega) \text{ in } W^{1,p} \text{ norm.''} \end{split}$$

Lemma 5.3.1

These two definitions are equivalent. $u \in \text{``closure''}: u = \lim_{n \to \infty} \varphi_n, \varphi_n \in C_0^\infty(\Omega) \implies \varphi_n|_{\partial\Omega} = 0$. By continuity, $u|_{\partial\Omega}=0$. The proof of the converse statement is more technical and is omitted.

Proposition 5.3.1 Friedrich's inequality

Let Ω be a bounded domain and $u \in W^{1,p}_0(\Omega)$. Then

$$||u||_{L^p} \leqslant C||\nabla u||_{L^p} \tag{5.6}$$

Proof. It is enough to prove 5.6 for $\varphi \in C_0^{\infty}(\Omega)$. By the Newton-Leibniz formula,

$$u(x_1,x') - u(-L,x') = u(x_1,x') = \int_{-L}^{x_1} \partial_{x_1} u(s,x') \, \mathrm{d}s$$

$$\begin{split} |u(x_1,x')|^p & \leq \left(\int_{-L}^L |\partial_{x_1} u(s,x')| \, \mathrm{d}s\right)^p \\ \text{(H\"{o}lder's inequality)} & \leq C_L \int_{-L}^L |\partial_{x_1} u(s,x')|^p \, \mathrm{d}s \end{split}$$

Integration with respect to x' gives us

$$\int_{\mathbb{R}^{n-1}} |u(x_1,x')|^p \,\mathrm{d}x' \leq C_L \|\partial_{x_1} u\|_{L^p}^p$$

Finally, integrating over $x_1 \in [-L, L]$, we obtain

$$||u||_{L^p}^p \leq 2LC_L||\partial_{x_1}u||_{L^p}^p$$

Corollary 5.3.1 Equivalent norm in $W^{1,p}_0(\Omega)$

Homogeneous norm:

$$\|u\|_{W^{1,p}_0(\Omega)}\coloneqq \|\nabla u\|_{L^p}$$

Note:-

 $u|_{\partial\Omega}=0$ is important! Otherwise, 5.6 will fail for $u\equiv c$. Since ∇u defines u up to a constant; $u|_{\partial\Omega}=0$ removes this constant.

Proposition 5.3.2 Poincaré inequality

Let Ω be a bounded domain with a smooth boundary and $\langle u \rangle := \frac{1}{|\Omega|} \int_{\Omega} u(x) \, \mathrm{d}x = 0$. Then

$$\|u\|_{L^p} \leq C \|\nabla u\|_{L^p}$$

Definition 5.3.2: Sequential compactness

A metric space (X,d) is compact if any sequence $\{x_n\}_{n=1}^{\infty}\subset X$ has a convergent sub-sequence, i.e. there exists $\{x_{n_k}\}_{n=1}^{\infty}$: $\lim_{k\to\infty}x_{n_k}=x_0\in X$

Definition 5.3.3

A topological space X is compact if any covering of X by open sets has a finite sub-covering

Note:-

In metric spaces, compactness is equivalent to sequential compactness.

In general topological spaces, they are not related.

Theorem 5.3.1 Hausdorff

Let (X, d) be a metric space. Then X is compact \iff X is complete and totally bounded.

Definition 5.3.4

X is totally bounded if $\forall \varepsilon > 0, \exists$ covering of X by finitely many ε -balls, i.e. $X = \bigcup_{k=1}^{N} B_{\varepsilon}(x_k), N = N(\varepsilon)$ and $\{x_k\}$ is an ε -net in X.

5.4 Why do we need compactness?

Let X be compact and $f: X \to Y$ be continuous, then f(X) is compact in Y. How do we solve PDEs of the form (or more general equations)?

$$F(x) = 0 (5.7)$$

- 1. Construct approximate solutions
 - $F(x_n) = g_n$, where $\lim_{n \to \infty} g_n = 0$
- 2. Obtain a priori estimates, i.e. that $\{x_n\}$ is bounded in a proper space
- 3. If $\{x_n\}$ is pre-compact and F is continuous $\implies x = \lim_{x \to \infty} x_{n_k}$ is a solution of 5.7.

Theorem 5.4.1 Arzelà-Ascoli

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Then $V \subset C(\bar{\Omega})$ is compact iff:

- 1. V is closed
- 2. V is bounded
- 3. V is equicontinuous = V has a common modulus of continuity

Theorem 5.4.2 Arzelà-Ascoli for L^p

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, (and $\partial\Omega$ smooth, although not needed), $K \subset L^p(\Omega)$, $1 \leq p \leq \infty$. Then K is compact iff:

- 1. K is closed
- 2. K is bounded
- 3. K is equicontinuous in mean (possesses a joint modulus of continuity in L^p).

Definition 5.4.1

Let $f \in L^p(\Omega), 1 \leq p \leq \infty, \Omega \subset \mathbb{R}^n$ bounded $(\partial \Omega \text{ smooth not needed}). <math>\omega \colon \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{z \to 0} w(z) = 0$ is a modulus of continuity of f in $L_p(\Omega)$ if

$$\int_{\Omega} |f(x+h) - f(x)|^p dx \le \omega(|h|), \quad \forall h \in \mathbb{R}^n,$$

where we used to 0-extension of f outside of Ω .

Corollary 5.4.1

Let $K=B_1(0)\in W^{1,p}(\Omega); \Omega\subset \mathbb{R}^n$ is bounded, $\partial\Omega$ is smooth, $1\leq p<\infty$. Then K is pre-compact in $L^p(\Omega)$.

Proof. We need to check equicontinuity, i.e. estimate $\int_{\Omega} |f(x+h) - f(x)|^p dx$.

$$f(x+h) - f(x) = h \int_0^1 \nabla f(x+sh) \, \mathrm{d}s$$

Taking modulus and p-th power of both sides, we get

$$|f(x+h) - f(x)|^p \le |h| \int_0^1 |\nabla f(x+sh)|^p \, \mathrm{d}s$$

Finally, we take an integral over $x \in \Omega$.

$$\int_{\Omega} |f(x+h) - f(x)|^p \, \mathrm{d}x \le |h| \int_0^1 \int_{\Omega} |\nabla f(x+sh)|^p \, \mathrm{d}x \, \mathrm{d}s$$
$$\le C|h|$$

 $\omega(z) = cz$ is a joint modulus of continuity.

Definition 5.4.2

Let $V \subset W$ be Banach spaces. Then the embedding is compact if the unit ball of V is pre-compact in W.

Note:-

We proved that $W^{1,p}(\Omega) \subset L^p(\Omega)$ is a compact embedding.

Corollary 5.4.2

 $W^{1,p}(\Omega) \subset L^q(\Omega)$ is a compact embedding if q < q*, where q* is defined such that $\frac{1}{q*} = \frac{1}{p} - \frac{1}{n}$ and $\Omega \subset \mathbb{R}^n$, Ω is bounded, $\partial \Omega$ is smooth.

Proof. Let us check equicontinuity.

$$||f(\cdot + h) - f(\cdot)||_{L^q} \le ||f(\cdot + h) - f(\cdot)||_{L^p}^{\theta} ||f(\cdot + h) - f(\cdot)||_{L^{q^*}}^{1-\theta}$$

since p < q < q* and $0 < \theta < 1$. q* is a critical exponent in Sobolev embeddings, indeed, $W^{1,p}(\Omega) \subset L^q(\Omega) \implies 1 - \frac{n}{p} \geqslant -\frac{1}{q}$. Then

$$\begin{split} \|f(\cdot+h)-f(\cdot)\|_{L^{p}}^{\theta}\|f(\cdot+h)-f(\cdot)\|_{L^{q_{*}}}^{1-\theta} &\leq C|h|^{\theta}(2\|f\|_{L^{q_{*}}})^{1-\theta} \\ &\leq C_{1}|h|^{\theta}\|f\|_{W^{1,p}}^{1-\theta} \\ &\leq C_{1}|h|^{\theta} \end{split}$$

General fact: $W^{s_1,p_1}(\Omega) \subset W^{s_2,p_2}(\Omega)$, where Ω is bounded, $\partial\Omega$ is smooth. Embedding is compact \iff embedding is not critical.