

EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016

FORMUŁA OD 2015 ("NOWA MATURA")

MATEMATYKAPOZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

Ogólne zasady oceniania

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	Poprawna odp. (1 p.)	
II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający oblicza potęgi wykładnikach wymiernych i stosuje prawa dzieleć na potogoch a wykładnikach	Wersja I	Wersja II
reprezentacji.	działań na potęgach o wykładnikach wymiernych (1.4).	A	D

Zadanie 2. (0-1)

II. Wykorzystanie	1. Liczby rzeczywiste. Zdający wykorzystuje definicję logarytmu i stosuje w obliczeniach	Wersja I	Wersja II
i interpretowanie reprezentacji.	wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.6).	D	A

Zadanie 3. (0-1)

III. Modelowanie	Liczby rzeczywiste. Zdający wykonuje obliczenia procentowe, oblicza podatki, zysk	Wersja I	Wersja II
matematyczne.	z lokat (1.9).	A	В

Zadanie 4. (0-1)

II. Wykorzystanie i interpretowanie	2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia na $(a \pm b)^2$	Wersja I	Wersja II
reprezentacji.	oraz $a^2 - b^2$ (2.1).	A	D

Zadanie 5. (0-1)

I. Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający sprawdza, czy dana liczba rzeczywista jest rozwiązaniem	Wersja I	Wersja II	
i tworzeme imormacji.	równania lub nierówności (3.1).	C	D	

Zadanie 6. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający oblicza współrzędne punktu	I	II
reprezentacji.	przecięcia dwóch prostych (8.4).	C	A

Zadanie 7. (0-1)

IV. Użycie i tworzenie	7. Planimetria. Zdający stosuje zależności między kątem środkowym i kątem wpisanym	Wersja I	Wersja II
strategii.	(7.1).	D	В

Zadanie 8. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający posługuje się poznanymi metodami rozwiązywania równań do	Wersja I	Wersja II
reprezentacji.	obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość (4.2).	D	A

Zadanie 9. (0-1)

II. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje proste równania wymierne,	Wersja I	Wersja II
i interpretowanie reprezentacji.	prowadzące do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$, $\frac{x+1}{x} = 2x$ (3.8).	A	C

Zadanie 10. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	4. Funkcje. Zdający odczytuje z wykresu	Wersja I	Wersja II
	własności funkcji – zbiór wartości (4.3).	D	В

Zadanie 11. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający odczytuje z wykresu własności funkcji – punkty, w których funkcja	Wersja I	Wersja II
reprezentacji.	przyjmuje w podanym przedziale wartość największą lub najmniejszą (4.3).	В	A

Zadanie 12. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający oblicza ze wzoru wartość	Wersja I	Wersja II
reprezentacji.	funkcji dla danego argumentu (4.2).	В	D

Zadanie 13. (0-1)

IV. Uzycie i tworzenie	6. Trygonometria. Zdający korzysta z przybliżonych wartości funkcji	Wersja I	Wersja II
strategii.	trygonometrycznych (6.2).	A	C

Zadanie 14. (0-1)

III. Modelowanie	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu	Wersja I	Wersja II	
matematyczne.	arytmetycznego (5.3).	A	В	

Zadanie 15. (0-1)

, ,	5. Ciągi. Zdający bada, czy dany ciąg jest	Wersja I	Wersja II	
i tworzenie informacji.	arytmetyczny lub geometryczny (5.2).	D	C	

Zadanie 16. (0-1)

I. Wykorzystanie	7. Planimetria. Zdający rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa	Wersja I	Wersja II
i tworzenie informacji.	trójkątów (7.3).	В	С

Zadanie 17. (0-1)

Ĭ.		Wersja I	Wersja II
strategii.	wartości pozostałych funkcji tego samego kąta ostrego (6.5).	C	В

Zadanie 18. (0-1)

i interpretowanie SP9. Wielokąty, koła, okręgi. Zdający ustala możliwość zbudowania trójkata (SP9.2)	Wersja I	Wersja II	
reprezentacji.	moznwość zbudowania trojkąta (SP9.2).	D	A

Zadanie 19. (0-1)

IV. Użycie i tworzenie strategii.	7. Planimetria. Zdający korzysta z własności stycznej do okręgu i własności okręgów	Wersja I	Wersja II
strategii.	stycznych (7.2).	В	C

Zadanie 20. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający bada równoległość i prostopadłość	Wersja I	Wersja II	
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.2).	C	D	•

Zadanie 21. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający wyznacza współrzędne środka	I	II
reprezentacji.	odcinka (8.6).	В	C

Zadanie 22. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
i interpretowanie reprezentacji.	Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3).	C	В

Zadanie 23. (0-1)

1. wykorzystanie	9. Stereometria. Zdający rozpoznaje	Wersja	Wersja
	w walcach i stożkach kąty między odcinkami	I	II
i tworzenie informacji.	i płaszczyznami (9.3).	D	В

Zadanie 24. (0-1)

I. Wykorzystanie	9. Stereometria. Zdający rozpoznaje	Wersja	Wersja
	w graniastosłupach i ostrosłupach kąty między	I	II
i tworzenie informacji.	odcinkami i płaszczyznami (9.2).	В	A

Zadanie 25. (0-1)

II. Wykorzystanie i interpretowanie	G9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Zdający	Wersja I	Wersja II		
	eprezentacji.	wyznacza średnią arytmetyczną i medianę zestawu danych (G9.4).	C	D	

Zadanie 26. (0-2)

	G9. Statystyka opisowa i wprowadzenie do rachunku
II. Wykorzystanie	prawdopodobieństwa. Zdający wyznacza średnią arytmetyczną
i interpretowanie	i medianę zestawu danych (G9.4).
reprezentacji.	1. Liczby rzeczywiste. Zdający oblicza błąd bezwzględny i błąd
	względny przybliżenia (1.7).

Przykładowe rozwiązanie

Obliczamy średni roczny przyrost sosny: $\bar{x} = 8\frac{1}{3}$.

Obliczamy błąd względny przybliżenia: $\frac{\frac{1}{3}}{\frac{25}{3}} = \frac{1}{25} = 0,04 = 4\%$.

Schemat punktowania

Zdający otrzymuje 1 p.

• gdy obliczy średni roczny przyrost wysokości sosny: $\bar{x} = 8\frac{1}{3}$ i na tym zakończy lub dalej popełnia błędy

albo

• gdy otrzyma średni roczny przyrost wysokości sosny będący liczbą spełniającą nierówność 7 < x < 8,2(3) lub nierówność 8,4(3) < x < 10 i konsekwentnie obliczy błąd względny otrzymanego przybliżenia.

Uwaga:

Akceptujemy wynik przybliżony z przedziału $\langle 8, 2(3); 8, 4(3) \rangle$.

Zadanie 27. (0-2)

II. Wykorzystanie i interpretowanie reprezentacji.	3. Równania i nierówności. Zdający rozwiązuje nierówności kwadratowe z jedną niewiadomą (3.5).
--	--

Przykładowe rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów. Pierwszy polega na ustaleniu pierwiastków trójmianu kwadratowego. Drugi etap polega na ustaleniu zbioru rozwiązań nierówności.

Realizacja pierwszego etapu

I sposób

Redukujemy wyrazy podobne i zapisujemy nierówność w postaci równoważnej

$$-x^2+2x>0$$

Znajdujemy pierwiastki trójmianu kwadratowego $-x^2 + 2x$

• obliczamy wyróżnik tego trójmianu:

$$\Delta = 4 - 4 \cdot (-1) \cdot 0 = 4$$
 i stad $x_1 = \frac{-2 - 2}{-2} = 2$ oraz $x_2 = \frac{-2 + 2}{-2} = 0$

albo

• wykorzystujemy postać iloczynową trójmianu $-x^2 + 2x$: -x(x-2) = 0, stąd $x_1 = 0$ oraz $x_2 = 2$,

albo

• stosujemy wzory Viète'a: $x_1 \cdot x_2 = 0$ oraz $x_1 + x_2 = 2$, stad $x_1 = 0$ oraz $x_2 = 2$,

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu $x_1 = 0$, $x_2 = 2$ lub zaznaczając je na wykresie

II sposób

Wyznaczamy postać kanoniczną trójmianu kwadratowego $-x^2 + 2x$ i zapisujemy nierówność w postaci równoważnej, np.

$$-(x-1)^2+1>0$$
.

Stad

$$-((x-1)^2-1)>0$$
.

Następnie przekształcamy nierówność do postaci równoważnej, korzystając z własności wartości bezwzględnej

$$(x-1)^2 < 1$$
,
 $|x-1| < 1$.

Realizacja drugiego etapu

Podajemy zbiór rozwiązań nierówności: (0, 2) lub $x \in (0, 2)$.

Schemat punktowania

• zrealizuje pierwszy etap rozwiązania, tzn. ustali pierwiastki trójmianu kwadratowego i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.:

- o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 0$, $x_2 = 2$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,
- o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = -x^2 + 2x$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,
- o zapisze nierówność |x-1|<1 i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

- przy realizacji pierwszego etapu rozwiązania popełni błąd (ten sam błąd popełniony wielokrotnie traktuje się jak jeden błąd), ale otrzyma dwa różne pierwiastki, i konsekwentnie rozwiąże nierówność, np.:
 - o popełni błędy przy wyznaczaniu pierwiastków trójmianu kwadratowego i konsekwentnie rozwiąże nierówność,
 - o błędnie zapisze równania wynikające ze wzorów Viète'a, np. $x_1 + x_2 = -2$ i konsekwentnie rozwiąże nierówność,
 - o błędnie zapisze nierówność, np. |x-1| > 1 i konsekwentnie ją rozwiąże.

- poda zbiór rozwiązań nierówności: (0,2) lub $x \in (0,2)$, lub x > 0 i x < 2 albo
 - sporządzi poprawną ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x > 0, x < 2,

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Akceptujemy zapis przedziału nieuwzględniający porządku liczb na osi liczbowej, np. (2,0).

Uwagi:

- 1. Jeżeli zdający dzieli obie strony nierówności przez x-2 lub przez x, bez stosownego założenia, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający dzieli obie strony nierówności przez x-2, rozważając przy tym dwa przypadki x>2 i x<2, rozwiąże nierówność w każdym z tych przypadków oraz wyznaczy poprawny zbiór rozwiązań nierówności, to otrzymuje **2 punkty**.

Zadanie 28. (0-2)

I. Wykorzystanie	3. Równania i nierówności. Zdający korzysta z własności iloczynu przy rozwiązywaniu równań typu $x(x+1)(x-7)=0$
i tworzenie informacji	(3.7).

Przykładowe rozwiązanie

Lewa strona równania jest iloczynem dwóch czynników 4-x oraz $x^2+2x-15$. Zatem iloczyn ten jest równy 0, gdy co najmniej jeden z tych czynników jest równy 0, czyli

$$4-x=0$$
 lub $x^2+2x-15=0$.

Rozwiązaniem równania 4 - x = 0 jest x = 4.

Rozwiązania równania $x^2 + 2x - 15 = 0$ możemy wyznaczyć, korzystając:

• ze wzorów na pierwiastki trójmianu kwadratowego:

$$\Delta = 2^2 - 4 \cdot 1 \cdot (-15) = 64 = 8^2$$
, $x_1 = \frac{-2 - 8}{2} = -5$, $x_2 = \frac{-2 + 8}{2} = 3$

albo

ze wzorów Viète'a:

$$x_1 + x_2 = -2$$
 oraz $x_1 \cdot x_2 = -15$ i stąd $x_1 = -5$, $x_2 = 3$,

albo

• z postaci iloczynowej trójmianu $x^2 + 2x - 15$ (x+5)(x-3) = 0, stąd $x_1 = -5$, $x_2 = 3$,

albo

• z własności wartości bezwzględnej, przekształcając najpierw równanie do postaci równoważnej |x+1|=4, skąd x+1=4 lub x+1=-4, czyli x=3 lub x=-5.

Zatem wszystkie rozwiązania równania to: x = 4 lub x = -5, lub x = 3.

Schemat punktowania

Zdający otrzymuje1 p. gdy:

- zapisze dwa równania: 4-x=0 i $x^2+2x-15=0$ (wystarczy, że z rozwiązania wynika, że zdający wyznacza pierwiastki każdego z wielomianów: 4-x, $x^2+2x-15$)
- albo

• zapisze rozwiązanie x = 4,

albo

• obliczy co najmniej jeden pierwiastek trójmianu $x^2 + 2x - 15$: x = -5, x = 3, albo

• wyznaczy jeden z pierwiastków wielomianu $-x^3 + 2x^2 + 23x - 60$

i na tym zakończy lub dalej popełnia błędy.

Uwagi:

1. Jeżeli zdający obliczy trzy pierwiastki, ale w odpowiedzi końcowej podaje tylko dwa, to otrzymuje **1 punkt**.

2. Jeżeli zdający dzieli obie strony równania bez stosownego założenia przez x-4 lub przez drugi czynnik i oblicza pierwiastki (lub pierwiastek) dla pozostałej części, to otrzymuje **0 punktów**.

Zadanie 29. (0-2)

V. Rozumowanie i argumentacja.	7. Planimetria. Zdający rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów (7.3).
--------------------------------	---

Przykładowe rozwiązania

I sposób

Niech $| \angle ACB | = \alpha$.

Ponieważ $| < CAB | = 90^{\circ}$, więc $| < ABC | = 90^{\circ} - \alpha$.

W $\triangle CDE$: $| \blacktriangleleft DEC | = 90^{\circ}$, wiec $| \blacktriangleleft CDE | = 90^{\circ} - \alpha$.

Trójkąt *CDE* jest prostokątny oraz $| \angle DEC | = 90^{\circ}$, więc $| \angle CDE | = 90^{\circ} - \alpha$.

Podobnie trójkąt *BFG* jest prostokątny i $| < FGB | = 90^{\circ}$, więc $| < BFG | = \alpha$.

Ponieważ trójkąty *CDE* i *BFG* mają równe kąty, więc na podstawie cechy podobieństwa *kkk* są podobne.

II sposób

Niech $| \angle ACB | = | \angle DCE | = \alpha i | \angle ABC | = | \angle FBG | = \beta$.

Trójkąt *CED* jest podobny do trójkąta *ABC* (cecha *kkk*), bo $| < ACB | = | < DCE | = \alpha$ oraz $| < CAB | = | < DEC | = 90^{\circ}$.

Podobnie trójkąt GBF jest podobny do trójkąta ABC, (cecha kkk), bo $| \not \prec ABC | = | \not \prec FBG | = \beta$ oraz $| \not \prec CAB | = | \not \prec FGB | = 90^{\circ}$.

Stąd trójkąt *CED* jest podobny do trójkąta *FBG* (z przechodniości relacji podobieństwa).

Schemat punktowania

• wskaże w dwóch trójkątach spośród trójkątów CBA, CDE i FBG jedną parę równych kątów ostrych i na tym zakończy lub dalej popełni błędy, przy czym kąt przy wierzchołku B musi być wskazany dwukrotnie, jako kąt w obu trójkątach CBA i FBG, np. zdający zapisze | < FBG | = | < CBA | lub stwierdzi, że jest to wspólny kąt trójkątów CBA i FBG (analogicznie z kątem przy wierzchołku C w trójkątach CBA i CDE)

albo

• zapisze, że trójkąt *CBA* jest podobny do trójkąta *FBG* i do trójkąta *CDE* i stąd wywnioskuje, że trójkąt *CDE* jest podobny do trójkąta *FBG*, ale nie wskaże żadnej pary równych kątów ostrych w tych trójkątach i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje......2 p. gdy przeprowadzi pełne rozumowanie.

Uwagi:

- 1. Jeżeli zdający przyjmie konkretne miary kątów, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający przyjmie błędne zależności między kątami, to otrzymuje **0 punktów**.

Zadanie 30. (0-2)

V. Rozumowanie i argumentacja.	2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia na $(a \pm b)^2$ oraz $a^2 - b^2$ (2.1).
	mnożenia na $(a \pm b)^2$ oraz $a^2 - b^2$ (2.1).

Przykładowe rozwiązanie

Rozważmy wyraz $a_n = 2n^2 + 2n$.

Wyraz a_{n+1} można zapisać, jako

$$a_{n+1} = 2(n+1)^2 + 2(n+1) = 2n^2 + 6n + 4$$
.

Wtedy

$$a_n + a_{n+1} = 2n^2 + 2n + 2n^2 + 6n + 4 = 4n^2 + 8n + 4$$

Zatem

$$a_n + a_{n+1} = (2n+2)^2$$
.

Liczba 2n+2 jest naturalna. To kończy dowód.

Schemat punktowania

$$a_n + a_{n+1} = 2n^2 + 2n + 2(n+1)^2 + 2(n+1)$$

i na tym zakończy lub dalej popełnia błędy.

Uwaga:

Jeżeli zdający sprawdzi prawdziwość tezy tylko dla konkretnych wartości n, to otrzymuje **0 punktów**.

Zadanie 31. (0-2)

	1. Liczby rzeczywiste. Zdający wykorzystuje definicję logarytmu
	i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm
III. Modelowanie	ilorazu i logarytm potęgi o wykładniku naturalnym oraz
matematyczne.	wykorzystuje podstawowe własności potęg – również
	w zagadnieniach związanych z innymi dziedzinami wiedzy,
	np. fizyką, chemią, informatyką (1.6, 1.5).

Przykładowe rozwiązania

I sposób

Zapisujemy równanie

$$6, 2 = \log \frac{A}{10^{-4}}.$$

Korzystamy z definicji logarytmu

$$10^{6,2} = \frac{A}{10^{-4}}.$$

Stad

$$A = 10^{6,2} \cdot 10^{-4} ,$$
$$A = 10^{2,2} .$$

Stwierdzamy, że $10^{2,2} > 10^2 = 100$, gdyż funkcja wykładnicza $y = 10^x$ jest rosnąca. Oznacza to, że A > 100 cm.

II sposób

Zapisujemy równanie

$$6, 2 = \log \frac{A}{10^{-4}}.$$

To równanie jest równoważne kolejno równaniom

$$6,2 = \log(10^4 A),$$

$$6,2 = \log 10^4 + \log A,$$

$$6,2 = 4 + \log A.$$

Zatem $2, 2 = \log A$. Korzystamy z definicji logarytmu i otrzymujemy równość

$$A = 10^{2,2}$$

Stwierdzamy, że $10^{2,2} > 10^2 = 100$, gdyż funkcja wykładnicza $y = 10^x$ jest rosnąca. Oznacza to, że A > 100 cm.

Schemat punktowania

Zdający otrzymuje 1 p. gdy

• wykorzysta definicję logarytmu i przekształci równanie $6,2 = \log \frac{A}{10^{-4}}$ do postaci $10^{6,2} = \frac{A}{10^{-4}}$

albo

• wykorzysta własność logarytmu i przekształci równanie $6, 2 = \log \frac{A}{10^{-4}}$ do postaci

$$6,2 = \log A - \log 10^{-4}$$
 lub $6,2 = \log A + \log 10^{4}$

i na tym zakończy lub dalej popełnia błędy.

gdy zapisze, że $A = 10^{2.2}$ i stwierdzi, że amplituda tego trzęsienia ziemi była większa od 100 cm.

- 1. Jeżeli zdający błędnie interpretuje treść zadania, w szczególności stosuje niepoprawne podstawienie do wzoru, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający nie obliczy amplitudy, ale uzasadni, że amplituda jest większa od 100 cm, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający nie obliczy amplitudy tylko zapisze bez uzasadnienia, że amplituda jest większa od 100 cm, to otrzymuje **0 punktów**.

Zadanie 32. (0-4)

	SP9. Wielokąty, koła, okręgi. Zdający stosuje twierdzenie
IV. Użycie i tworzenie	o sumie kątów trójkąta (SP9.3).
strategii.	G7. Równania. Zdający rozwiązuje równania stopnia pierwszego
	z jedną niewiadomą (G7.3).

Przykładowe rozwiazania

I sposób

Niech α oznacza najmniejszy kąt trójkąta. Zatem pozostałe dwa kąty tego trójkąta równe są $\alpha+50^\circ$ oraz 3α . Suma kątów trójkąta jest równa 180° , więc

$$\alpha + 3\alpha + \alpha + 50^{\circ} = 180^{\circ},$$

$$5\alpha = 130^{\circ},$$

$$\alpha = 26^{\circ}.$$

Stad $\alpha + 50^{\circ} = 76^{\circ}$ oraz $3\alpha = 78^{\circ}$.

II sposób

Niech α oznacza największy kąt trójkąta. Zatem pozostałe dwa kąty tego trójkąta równe są $\frac{\alpha}{3}+50^{\circ}$ oraz $\frac{\alpha}{3}$. Suma kątów trójkąta jest równa 180° , więc

$$\frac{\alpha}{3} + \frac{\alpha}{3} + 50^{\circ} + \alpha = 180^{\circ},$$

$$5\alpha = 390^{\circ},$$

$$\alpha = 78^{\circ}.$$

Stand
$$\frac{\alpha}{3} = 26^{\circ}$$
 oraz $\frac{\alpha}{3} + 50^{\circ} = 76^{\circ}$.

III sposób

Niech α oznacza ten kąt trójkąta, który nie jest ani największy, ani najmniejszy. Zatem pozostałe dwa kąty tego trójkąta równe są $\alpha-50^\circ$ oraz $3(\alpha-50^\circ)$. Suma kątów trójkąta jest równa 180° , wiec

$$\alpha - 50^{\circ} + \alpha + 3(\alpha - 50^{\circ}) = 180^{\circ},$$

 $5\alpha = 380^{\circ},$
 $\alpha = 76^{\circ}.$

Stad $\alpha - 50^{\circ} = 26^{\circ}$ oraz $3(\alpha - 50^{\circ}) = 78^{\circ}$.

Schemat punktowania

• katy trójkata w zależności od jednego kata, np.:

$$\alpha$$
, $\alpha + 50^{\circ}$, 3α lub $\frac{\alpha}{3}$, $\frac{\alpha}{3} + 50^{\circ}$, α , lub $\alpha - 50^{\circ}$, α , $3(\alpha - 50^{\circ})$

albo

• układ dwóch równań, np.

$$\begin{cases} \alpha + \alpha + 50^{\circ} + \beta = 180^{\circ} \\ \beta = 3\alpha, \end{cases}$$

albo

• układ trzech równań, np.

$$\begin{cases} \alpha + \beta + \gamma = 180^{\circ} \\ \gamma = 3\alpha \\ \beta = \alpha + 50^{\circ} \end{cases}$$

i na tym zakończy lub dalej popełnia błędy.

$$\alpha + 3\alpha + \alpha + 50^{\circ} = 180^{\circ}$$
 lub $\frac{\alpha}{3} + \frac{\alpha}{3} + 50^{\circ} + \alpha = 180^{\circ}$, lub $\alpha - 50^{\circ} + \alpha + 3(\alpha - 50^{\circ}) = 180^{\circ}$

i na tym zakończy lub dalej popełnia błędy.

Uwagi:

- 1. Jeżeli zdający tylko poda kąty (26°, 76°, 78°), to otrzymuje 1 punkt.
- 2. Jeżeli zdający tylko poda kąty i sprawdzi wszystkie warunki zadania, to otrzymuje **2 punkty**.

Zadanie 33. (0-5)

IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający stosuje trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości (9.6). G10. Figury płaskie. Zdający stosuje twierdzenie Pitagorasa (G10.7).
-----------------------------------	---

Przykładowe rozwiązanie

Wprowadzamy oznaczenia jak na rysunku.

Ponieważ wysokość tego ostrosłupa jest równa wysokości jego podstawy, to $H = \frac{a\sqrt{3}}{2}$. Objętość ostrosłupa jest równa 27, więc otrzymujemy równanie

$$\frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot \frac{a\sqrt{3}}{2} = 27$$

skąd otrzymujemy a = 6.

Wysokość ostrosłupa jest równa

$$H = \frac{6\sqrt{3}}{2} = 3\sqrt{3} .$$

Punkt O jest środkiem okręgu opisanego na trójkącie równobocznym ABC, zatem długość odcinka PO stanowi $\frac{1}{3}$ wysokości trójkąta ABC, czyli

$$|OP| = \frac{1}{3}H = \frac{1}{3} \cdot 3\sqrt{3} = \sqrt{3}$$
.

Z twierdzenia Pitagorasa zastosowanego dla trójkąta POS otrzymujemy

$$h^{2} = |OP|^{2} + H^{2},$$

$$h^{2} = (\sqrt{3})^{2} + (3\sqrt{3})^{2},$$

$$h^{2} = 30.$$

Stad

$$h = \sqrt{30}$$
.

Pole powierzchni bocznej ostrosłupa jest zatem równe

$$P_b = 3 \cdot \frac{1}{2} ah = 3 \cdot \frac{1}{2} \cdot 6\sqrt{30} = 9\sqrt{30}$$
.

Cosinus kąta nachylenia wysokości ściany bocznej do płaszczyzny podstawy jest równy

$$\cos \alpha = \frac{|OP|}{h} = \frac{\sqrt{3}}{\sqrt{30}} = \frac{\sqrt{10}}{10}$$
.

Schemat punktowania

• zapisze równanie, z którego można obliczyć długość krawędzi podstawy ostrosłupa:

$$\frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot \frac{a\sqrt{3}}{2} = 27$$

albo

• zapisze równanie, z którego można obliczyć wysokość ostrosłupa:

$$\frac{1}{3} \cdot \frac{\left(\frac{2H}{\sqrt{3}}\right)^2 \sqrt{3}}{4} \cdot H = 27$$

i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie, w którym jest istotny postęp......2 p.

Zdający obliczy długość krawędzi podstawy ostrosłupa a=6 lub wysokość ostrosłupa $H=3\sqrt{3}$ i na tym zakończy lub dalej popełnia błędy.

Uwaga:

Zdający może obliczyć od razu tangens kąta nachylenia wysokości ściany bocznej do płaszczyzny podstawy ostrosłupa:

$$tg\alpha = \frac{H}{\frac{1}{3}H} = 3,$$

a następnie obliczyć szukaną wartość cosinusa tego kąta:

$$\cos \alpha = \frac{\sqrt{10}}{10}$$
.

Otrzymuje wtedy 2 punkty.

- wysokość ściany bocznej ostrosłupa: $\sqrt{30}$ albo
- długość krawędzi bocznej ostrosłupa: $\sqrt{39}$ i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie prawie pełne......4 p. Zdający obliczy:

- pole powierzchni bocznej ostrosłupa *ABCS*: $9\sqrt{30}$ albo
 - cosinus kąta nachylenia wysokości ściany bocznej do płaszczyzny podstawy:

$$\cos\alpha = \frac{\sqrt{10}}{10}$$

i na tym zakończy lub dalej popełnia błędy.

Uwagi:

- 1. Jeżeli zdający rozważa inną bryłę niż podana w zadaniu, to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający popełni błąd merytoryczny np. w zastosowaniu twierdzenia Pitagorasa przy obliczaniu wysokości ściany bocznej lub w interpretacji własności trójkąta równobocznego, to otrzymuje za całe rozwiązanie otrzymuje co najwyżej **2 punkty**.
- 3. Akceptujemy poprawne przybliżenia dziesiętne liczb rzeczywistych.

Zadanie 34. (0-4)

III. Modelowanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający oblicza prawdopodobieństwa
matematyczne.	w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3).

Przykładowe rozwiązania

I sposób

Zdarzeniem elementarnym jest uporządkowana para (x,y) dwóch różnych liczb ze zbioru $\{10,11,12,...,99\}$, który zawiera 90 liczb. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 90.89$. Wszystkie zdarzenia elementarne są równo prawdopodobne. Mamy więc do czynienia z modelem klasycznym.

Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest 30. Zatem zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(10,20)$$
, $(11,19)$, $(12,18)$, $(13,17)$, $(14,16)$, $(16,14)$, $(17,13)$, $(18,12)$, $(19,11)$, $(20,10)$.

Ich liczba jest równa |A| = 10.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{90.89} = \frac{1}{9.89} = \frac{1}{801}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

II sposób

Zdarzeniem elementarnym jest zbiór dwuelementowy $\{x,y\}$ dwóch różnych liczb ze zbioru $\{10,11,12,...,99\}$, który zawiera 90 liczb. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = {90 \choose 2} = \frac{90!}{88! \cdot 2!} = \frac{90 \cdot 89}{2} = 4005$. Wszystkie zdarzenia elementarne są równo prawdopodobne. Mamy więc do czynienia z modelem klasycznym.

Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest 30. Zatem zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$\{10,20\}$$
, $\{11,19\}$, $\{12,18\}$, $\{13,17\}$, $\{14,16\}$.

Ich liczba jest równa |A| = 5.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{5}{45 \cdot 89} = \frac{1}{9 \cdot 89} = \frac{1}{801}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

III sposób

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyjających zdarzeniu A (polegającemu na tym, że suma wylosowanych liczb będzie równa 30).

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = 10 \cdot \frac{1}{90} \cdot \frac{1}{89} = \frac{1}{9.89} = \frac{1}{801}$$
.

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy dwie różne liczby dwucyfrowe, których suma jest równa 30 jest równe $\frac{1}{801}$.

Schemat punktowania

- zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 albo
 - wypisze zdarzenia elementarne sprzyjające zdarzeniu *A*:

albo

• zapisze, że |A| = 10 lub |A| = 5,

albo

narysuje drzewo ilustrujące przebieg doświadczenia (na rysunku muszą wystąpić wszystkie istotne gałęzie)

i na tym zakończy lub dalej popełni błędy.

• zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 oraz wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu *A*:

albo

• zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90 oraz zapisze, że |A| = 10 lub |A| = 5,

albo

• obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 90.89$ lub $|\Omega| = {90 \choose 2}$, lub $|\Omega| = {90.89 \choose 2}$, lub $|\Omega| = 4005$,

albo

 narysuje drzewo ze wszystkimi istotnymi gałęziami i zapisze prawdopodobieństwa na wszystkich istotnych odcinkach jednego z etapów lub na jednej z istotnych gałęzi i na tym zakończy lub dalej popełni błędy. Pokonanie zasadniczych trudności zadania......3 p. Zdający

- obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega|$ = 90 · 89 oraz zapisze, że |A| = 10 albo
 - obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = \binom{90}{2}$ lub $|\Omega| = \frac{90 \cdot 89}{2}$, lub $|\Omega| = 4005$ oraz zapisze, że |A| = 5,

albo

obliczy prawdopodobieństwo wzdłuż jednej istotnej gałęzi narysowanego drzewa:
 1/90 · 1/89

i na tym zakończy lub dalej popełni błędy.

Uwagi:

- 1. Jeżeli zdający poprawnie wyznaczy moc zbioru wszystkich zdarzeń elementarnych, ale przy wyznaczaniu liczby zdarzeń sprzyjających zdarzeniu *A* pominie jedno zdarzenie elementarne lub popełni błąd przy zliczaniu poprawnie wypisanych zdarzeń elementarnych sprzyjających zdarzeniu *A* i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający błędnie zapisze, że wszystkich liczb dwucyfrowych jest 89 i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty**.
- 3. Jeżeli w rozwiązaniu występuje sprzeczność modeli probabilistycznych, to zdający może otrzymać, co najwyżej **2 punkty**.
- 4. Akceptujemy sytuacje, gdy zdający zamiast wypisywania zdarzeń elementarnych sprzyjających zdarzeniu *A* zapisze następujące sumy 10+20, 11+19, 12+18, 13+17, 14+16, 16+14, 17+13, 18+12, 19+11, 20+10 (lub tylko 10+20, 11+19, 12+18, 13+17, 14+16).
- 5. Jeżeli zdający zapisze, że wszystkich liczb naturalnych dwucyfrowych jest 90, ale przy wypisywaniu zdarzeń elementarnych sprzyjających zdarzeniu *A*, zapisuje sumę 15+15 i na tym zakończy to otrzymuje **1 punkt**.
- 6. Jeżeli zdający bez żadnych obliczeń poda tylko wynik, np. $\frac{1}{801}$, to otrzymuje za całe rozwiązanie **1 punkt**.