SAT & PSAT Must-Know Math Formulas LOTLOUISCHO STEM CLUB

1 Algebra – Linear Equations and Functions

y: Function or Graph m: Slope x: Variable b: Y-Intercept

NOTE: X-intercept means when y = 0. Y-intercept means x = 0.

Standard Form Ax + By = CSlope $= -\frac{A}{B}$ Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope-Intercept Form: y = mx + bPoint-slope Form: $y - y_1 = m(x - x_1)$

Average rate of change between (a,f(a)) and (b, f(b)) can be determined by

$$m = \frac{f(b) - f(a)}{b - a}$$

Let's say we have two lines $y_1 = m_1x + b_1$ and $y_2 = m_2x + b_2$. We can say that:

 $m_1 = m_2$ PARALLEL LINES (SAME SLOPE) $m_1 \cdot m_2 = -1$ PERPENDICULAR LINES

When you are given something like this:

$$ax + by = c_1$$
$$ax + by = c_2$$

If $c_1 = c_2$, then there are infinite many solutions. If $c_1 \neq c_2$, then there are no solutions to the system of linear equations above.

Distance a vehicle or a person travels can be determined by

 $Distance = Velocity \times Time$

The distance d between two points (x_1, y_1) and (x_2, y_2) can be computed by

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

and the midpoint M between two points can be determined by

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

2 Exponent Rules & Radicals

Be aware of MADSPM or in other words Mad Steve Pours Milkshake. What does this mean and what do we do with the exponents?

Multiplying Exponents mean **ADD**Dividing Exponents mean **SUBTRACT**Powering Exponents mean **MULTIPLY**

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \cdot n}$$

$$(ab)^{m} = a^{m} \cdot b^{m}$$

$$a^{-m} = \frac{1}{a^{m}}$$

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \sqrt[n]{a^{m}}$$

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$

y₀: Initial value
b: Growth/Decay Factor
t: Time
r: Rate
n: Time period

$$y = y_0 b^t$$

$$y = y_0 (1 \pm r)^t \quad \text{(Growth/decay model)}$$

$$A = P \left(1 + \frac{r}{n} \right)^{nt} \quad \text{(Compound interest)}$$

$$A = P e^{rt} \quad \text{(Continuous growth/decay)}$$

3 Quadratics and Polynomials

$$y = ax^2 + bx + c$$
 (Standard form)
 $y = a(x - h)^2 + k$ (Vertex form, vertex = (h, k))
 $y = a(x - r_1)(x - r_2)$ (Factored form, roots r_1, r_2)
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (Quadratic formula)

NOTE: These kind of questions shown below ALWAYS appear on the exam!

$$b^2 - 4ac > 0$$
 TWO Real Solutions

$$b^2-4ac=0 \ \ {\bf ONE} \ \ {\bf Real \ Solution}$$

$$b^2-4ac<0 \ \ {\bf NO \ \ Real \ Solutions}$$
 Sum of solutions
$$=\frac{-b}{a}, \ \ {\bf Product \ of \ Solutions} \ =\frac{c}{a}$$

DISCLAIMER: If you are currently enrolled in AP Calculus, then you will know what this part is about. For those of you not enrolled in AP Calculus, this is a quick shortcut to determine the minimum or the maximum points on the quadratic equation $y = ax^2 + bx + c$.

$$y = ax^{2} + bx + c$$

$$\frac{dy}{dx} = 2ax + b$$

$$\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = 2ax + b = 0$$

$$2ax = -b$$

$$x = -\frac{b}{2a}$$

Thus the minimum/maximum of $f(x) = ax^2 + bx + c$ is at $(-\frac{b}{2a}, f(-\frac{b}{2a}))$.

4 Factoring

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

$$a^{2} - 2ab + b^{2} = (a - b)^{2}$$

$$a^{2} - b^{2} = (a - b)(a + b)$$

5 Complex Numbers

The canonical form for complex numbers is a + bi where a is the real number and b is in the imaginary axis. The patterns shown below will repeat after four cycles.

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

Now look what happens after we pass i^4 :

$$i^5 = \sqrt{-1}$$
$$i^6 = -1$$
$$i^7 = -i$$
$$i^8 = 1$$

6 Geometry

6.1 Triangle Theorems

The inequality theorem states that when you have sides a, b and c, then a + b > c.

Equilateral Triangle: ALL sides are EQUAL Isosceles Triangle: Two sides are EQUAL Scalene Triangle: ALL unequal sides
Acute angle means less than 90°
Right angle means 90°
Obtuse angle means greater than 90°

6.2 Shapes

The number of degrees of arc in a circle is 360.

The number of radians of arc in a circle is 2π .

The sum of the measures in degrees of the angles of a triangle is 180.

Figure 1: Geometry Formulas from Official College Board SAT and PSAT Exams.

$$A_{\triangle} = \frac{1}{2}bh$$
, $A_{\text{circle}} = \pi r^2$, $C = 2\pi r$
 $A_{\text{rect}} = bh$, $A_{\text{trap}} = \frac{1}{2}(b_1 + b_2)h$

 $a^2 + b^2 = c^2$ (Pythagorean theorem)

45-45-90 triangle: $x, x, x\sqrt{2}$; 30-60-90: $x, x\sqrt{3}, 2x$

$$s = \frac{\theta}{360}(2\pi r), \quad A_{\text{sector}} = \frac{\theta}{360}(\pi r^2)$$

7 Solid Geometry

$$V_{\text{rect prism}} = lwh, \quad V_{\text{cyl}} = \pi r^2 h$$

$$V_{\text{cone}} = \frac{1}{3}\pi r^2 h, \quad V_{\text{sphere}} = \frac{4}{3}\pi r^3$$

$$A_{\text{sphere}} = 4\pi r^2$$

8 Statistics and Data

 $\begin{array}{c} \text{Mean (Average)} \ \mu = \frac{\text{Sum of Data}}{\text{Number of Data Points}} \\ \text{Median} = \text{Middle value} \\ \text{Mode} = \text{Most Frequent Value} \\ \text{Range R} = \text{Max - Min} \\ \text{Standard Deviation } \sigma = \text{Spread of data and how far apart from mean value} \\ \text{Line of best fit:} \ \ y = mx + b \\ \text{Percent} = \frac{Part}{Whole} \times 100 \\ \text{Percent change:} \ \ \frac{\text{new-old}}{\text{old}} \times 100\% \\ \end{array}$

9 Probability and Counting

$$P = \frac{\text{favorable outcomes}}{\text{total outcomes}}$$

$$P(A \cap B) = P(A)P(B) \text{ (Independent Events)}$$

$$P(A \cup B) = P(A) + P(B) \text{ (Mutually Exclusive Events)}$$

10 Conversions and Constants

1 in = 2.54 cm, 1 ft = 12 in, 1 yd = 3 ft
$$\pi \approx 3.1416, e \approx 2.718$$

11 Bonus: Quick Test Tips

- Memorize special right triangle ratios.
- Know how to use the built-in Desmos calculator efficiently.
- Check units for geometry problems.
- For variables, plug in easy numbers.
- Estimate magnitude to spot unreasonable answers.