

Réseaux Convolutifs

ConvNet ou CNN: Convolutional Networks

RAPPELS

2012: Le Choc

- ImageNet Large Scale Visual Recognition Challenge est une compétition annuelle de reconnaissance d'image basée sur 10 millions d'images annotées et 1000 labels.
- En 2017 repris pas Kaggle.

ImageNet

I. RÉSEAUX DE NEURONES CONVOLUTIFS

Une image vue par un ANN

What the computer sees

image classification

82% cat 15% dog 2% hat 1% mug

Couches de convolution et de Pooling

- Dans AlexNet, le réseau ANN proprement dit est précédé de deux autres types de couches : Convolution et Pooling.
- Idée : Apprendre les features.

A Krizhevsky, I Sutskever, GE Hinton "Imagenet classification with deep convolutional neural networks" NIPS 2012

Préparation des Features

60

HOW A DEEP NEURAL NETWORK SEES

- La premier partie de ce type de réseaux de neurones fonctionne comme un extracteur de features.
- Elle applique plusieurs opérations de filtrage par convolution.
- Les paramètres de filtrages sont appris pendant la backpropagation.

Augmentation du nombre de couches

On assiste à une surenchère dans le nombre de couches.

Encore la métaphore biologique

- Les réseaux convolutifs imitent le fonctionnement de la vision dans le cerveau.
 - The ventral (recognition) pathway in the visual cortex
 Retina → LGN → V1 → V2 → V4 → PIT → AIT (80-100ms)

Apprentissage des Features

- Les features ne sont pas pré-définies, mais apprises par le modèle lors la phase d'entraînement
- Les noyaux de filtre désignent les poids de la couche de convolution. Ils sont initialisés puis mis à jour par rétropropagation du gradient.
- Les CNN sont capables de déterminer tout seul les éléments discriminants d'une image, en s'adaptant au problème posé.
- Par exemple, si la question est de distinguer les chats des chiens, les features appris automatiquement peuvent décrire la forme des oreilles ou des pattes. ...

Exemple: Distinguer les 'X' et les 'O'

Source: "<u>How Convolutional Neural Networks Work</u>".
 Brandon Rohrer (Senior Data Scientist à Facebook)

- Problème : Comment reconnaître les images déformées, pivotées, redimensionnées....
- Dans notre exemple, chaque pixel vaut 1 ou -1.

Fragments intéressants

Le modèle va **apprendre** des fragments utiles pour reconnaitre des « X ». noyaux des filtres

Opération de Convolution

- On multiplie pixel par pixel le filtre et une zone de l'image.
- On obtient, une matrice de la taille de l'image. On en prend la moyenne.

Opération de Convolution

```
1+1-1+1+1+1-1+1+1
-1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1
                               1
-1 1 -1 -1 1 -1
1 -1 -1 -1 -1 1
```

Convolution – Padding - Stride

- On parcourt l'image d'origine (en bleu) et on crée une « carte » appelé « feature map » (vert)
- La taille du filtre (3) et le pas entre chaque étape (padding = 1) sont des hyper-paramètres.
- Le stride est le pas entre chaque projection (1 en général)
- Les deux grilles n'ont pas forcément la même taille.

Dimension de sortie

- Sans padding, la grille de résultat est plus petite que celle d'origine.
- Ici on voit que la grille 32 x 32 avec un filtre 5 x 5 donne une grille 28 x 28.

Convolution 3D

 Le noyau de filtre peut être en 3D. On change alors éventuellement la profondeur de la

Convolution pour un filtre

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Couche de Convolution

On applique tous les filtres :

-1 -1 -1 -1 -1 -1 -1 -1				0.77 -0.11 0	11 0.33	0.55	-0.11 0.33	3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1		-0.11 1.00 -0	11 0.33	-0.11	0.11 -0.11	1
51 51 51 1 51 1 51 51 51		1 -1 -1		0.11 -0.11 1	00 -0.33	0.11	-0.11 0.55	5
-1 -1 -1 -1 1 -1 -1 -1 -1	\sim	-1 1 -1	_	0.33 0.33 -0	33 0.55	-0.33	0.33 0.33	3
-1 -1 -1 1 -1 -1 -1 -1			_	0.55 -0.11 0	11 -0.33	1.00	-0.11 0.11	ı
-1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1		-1 -1 1		-0.11 0.11 -0	11 0.33	-0.11	1.00 -0.11	1
1 1 1 1 1 1 1 1 1 1				0.33 -0.11 0.	55 0.33	0.11	-0.11 0.77	,
-1 -1 -1 -1 -1 -1 -1 -1				0.33 -0.55 0	11 -0.11	0.11	-0.55 0.33	3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-0.55 0.55 -0	55 0.33	-0.55	0.55 -0.55	5
-1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 -1 1		1 -1 1		0.11 -0.55 0.	55 -0.77	0.55	-0.55 0.11	1
51 51 51 51 51 51 51 51 51 51 51 51 51 5	\triangle	-1 1 -1	_	-0.11 0.33 -0	77 1.00	-0.77	0.33 -0.11	1
-1 -1 -1 1 -1 1 -1 -1 -1			_	0.11 -0.55 0.	55 -0.77	0.55	-0.55 0.11	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 -1 1		-0.55 0.55 -0	55 0.33	-0.55	0.55 -0.55	5
-1 1 -1 -1 -1 -1 1 -1				0.33 -0.55 0.	11 -0.11	0.11	-0.55 0.33	3
-1 -1 -1 -1 -1 -1 -1 -1								
-1 -1 -1 -1 -1 -1 -1 -1				0.33 -0.11 0	55 0.33	0.11	-0.11 0.77	7
-1 1 -1 -1 -1 -1 1 -1				-0.11 0.11 -0	11 0.33	-0.11	1.00 -0.1	1
1111111111		-1 -1 1		0.55 -0.11 0.	11 -0.33	1.00	-0.11 0.11	1
-1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1	$\langle x \rangle$	1 1 1	_				0.33 0.33	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							-0.11 0.55	
-1 -1 1 -1 -1 -1 1 -1 -1		1 -1 -1						
-1 1 -1 -1 -1 -1 1 -1		الكالمات		-0.11 1.00 -0				
-1 -1 -1 -1 -1 -1 -1 -1				0.77 -0.11 0	11 0.33	0.55	-0.11 0.33	3

Pooling

- Pour réduire les features map, on va appliquer une opération de pooling.
- On utilise généralement la valeur max. La somme est possible.

	maximum										
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33					
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11					
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55					
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33					
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11					
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11					
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77					

Pooling d'une feature map

 on utilise souvent une fenêtre de 2 ou 3 pixels de côté et une valeur de 2 pixels le pas.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

Couche de Pooling

Le Pooling est appliqué à chaque « feature map »:

Couche RELU

Les valeurs négatives sont passées à 0

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33	
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11	
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33	
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11	
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77	

0).77	0	0.11	0.33	0.55	0	0.33
	0	1.00	0	0.33	0	0.11	0
0	.11	0	1.00	0	0.11	0	0.55
0	.33	0.33	0	0.55	0	0.33	0.33
0	.55	0	0.11	0	1.00	0	0.11
	0	0.11	0	0.33	0	1.00	0
0	.33	0	0.55	0.33	0.11	0	0.77

Combinaison des couches

On peut combiner à l'infini les 3 couches.

Dépliement et couche dense

Résultat Final

 Les couches de convolutions sont complétées par des couches ANN « fully connected »:

https://www.youtube.com/watch?v=f0t-OCG79-U

```
import torch
import torch.nn as nn
   def init (self, inp dim=(10, 10), outp dim=(10, 10)):
        super(BasicCNNModel, self). init ()
        CONV IN = 3
        KERNEL SIZE = 3
       CONV OUT 1 = 50
       CONV OUT 2 = 100
       DENSE IN = CONV OUT 2
        self.relu = nn.ReLU()
       self.conv2d 1 = nn.Conv2d(CONV IN, CONV OUT 1, kernel_size=KERNEL_SIZE)
        self.conv2d 2 = nn.Conv2d(CONV OUT 1, CONV OUT 2, kernel size=KERNEL SIZE)
        self.dense 1 = nn.Linear(DENSE IN, outp dim[0]*outp dim[1]*10)
        self.softmax = nn.Softmax(dim=1)
    def forward(self, x, outp_dim):
        self.conv2d 1.in features = x.shape[1]
        conv 1 out = self.relu(self.conv2d 1(x))
        self.conv2d 2.in features = conv 1 out.shape[1]
        conv 2 out = self.relu(self.conv2d 2(conv 1 out))
        self.dense 1.out features = outp dim
        feature_vector, _ = torch.max(conv_2_out, 2)
        feature vector, = torch.max(feature vector, 2)
        logit outputs = self.dense 1(feature vector)
        return self.softmax(logit outputs)
```