Práctico 8

- 1. En cada caso, encontrar los extremos absolutos de la función f en el conjunto dado.
 - a) f(x,y) = ax + by en $C: x^2 + y^2 = 1$ (donde $a^2 + b^2 \neq 0$).
 - b) f(x,y,z) = ax + by + cz en $S: x^2 + y^2 + z^2 = 1$ (donde $a^2 + b^2 + c^2 \neq 0$).
 - c) f(x,y) = xy, en $C = \{(x,y) \in \mathbb{R}^2 : x + y = 1\}$.
 - d) $f(x,y) = x^2 + y^2 xy$, en $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + xy = 1\}$.
 - e) f(x,y) = xy, en $D = \{(x,y) \in \mathbb{R}^2 : 5x^2 6xy + 5y^2 \le 4\}$.
 - f) f(x,y,z) = xyz, en $S = \{(x,y,z) : x^2 + y^2 + z^2 = 1\}.$
- 2. En cada caso, hallar la distancia mínima al origen del conjunto dado. Cuando exista, hallar también la distancia máxima.
 - a) $C: 5x^2 + 6xy + 5y^2 = 8$ en \mathbb{R}^2 .
 - b) $C: (x-2)^2 + (y+3)^2 = 1$ en \mathbb{R}^2 .
 - c) $S: z^2 xy = 1$ en \mathbb{R}^3 .
 - d) $S: x^2(y+z) + 2x(y^2-z^2) + 2 = 0$ en \mathbb{R}^3 .
- 3. En cada caso, hallar la distancia máxima y mínima de $P \in \mathbb{R}^3$ a la curva $C \subset \mathbb{R}^3$.
 - a) $P=(1,-1,0), C: x^2+y^2+(z-2)^2=1, x-y+2z=4$ (intersección de un plano y una esfera).
 - b) $P = (0,0,2), C: z^2 = x^2 + y^2, 3(z-1)^2 + (y-1)^2 4 = 0$ (intersección de un cono y un cilindro).
 - c) $P = (1,1,1), C: x^2 + y^2 z^2 = 0, x^2 + y^2 + (z-1)^2 = 1$ (intersección de un cono y una esfera).
- 4. En cada caso, mostrar que el conjunto C es compacto, y hallar los extremos absolutos de la función f en el conjunto C.
 - a) $C = \{(x, y, z) \in \mathbb{R}^3 : 3x^2 + y^2 = 12, x + y + z = 2\}, f(x, y, z) = x + y + 2z.$
 - b) $C = \{(x, y, z) \in \mathbb{R}^3 : 4x^2 + 3y^2 4z = 0, y^2 z = 0\}, f(x, y, z) = 4xy + 4z 1.$
 - c) $C = \{(x, y, z) \in \mathbb{R}^3 : z x^2 y^2 + 2 = 0, x + y + z 1 = 0\}, f(x, y, z) = xy + xz + yz.$ Hallar también la distancia máxima y mínima de C al plano y + 2z = 0.
- 5. Cuál es la cantidad mínima de cartón que se necesita para hacer una caja de un litro?
- 6. Demostrar que, entre todos los polígonos de n lados inscriptos en una circunferencia, el que tiene área máxima es el polígono regular.
- 7. Consideremos la función $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definida mediante $f(x,y) = x \cdot y$. Hallar los extremos de f sujeta a $||x||^2 + ||y||^2 = 1$ y deducir de aquí la desigualdad de Cauchy-Schwarz.