Computer Vision HW1: Harris Corner Detector

2013011446 손윤하

1. Harris corner detector implementation

먼저 Harris corner detection을 수행하는 함수를 정의했다.

Harris(image, window size, detector)

- image: 디텍션을 적용할 이미지

- window size: 윈도우 크기 (3, 5, 9 등)

- detector: 'harmonic' 또는 'shi'

- detection 결과를 반환한다.

Calculation of edge maps

Ix와 Iy를 계산하기 위해서(edge map) x, y 각 방향으로의 그래디언트를 적용시켰다. 각 x 또는 y 방향으로 '얼마나 변했는지'를 통해서 edge를 나타낼 수 있다. 결과는 예제에서 제시된 [-1 0 1] 필터와 거의 동일한데, [-1 0 1] 자체가 그래디언트를 근사하기 위한 계수이기 때문이다(approximated by finite differences).

1.1 Checkerboard

Handling boundary pixels

MATLAB의 conv2와 imgradientxy 함수에서 내부적으로 패딩 처리를 해주므로, 경계 픽셀에 대한 처리를 명시적으로 하지 않았다. (공식 문서 인용 - When applying the gradient operator at the boundaries of the image, values outside the bounds of the image are assumed to equal the nearest image border value.)

1.2 Test images

Noised image

Matlab에서 제공하는 Gaussian 노이즈 함수(standard deviation = 3/255)를 적용했다. 노이즈 영상은 모서리 검출의 정확도가 크게 떨어졌다. 복잡한 영상에서는 변화가 눈에 잘 띄지 않지만, 보다 단순한 체커보드에서 노이즈의 효과가 확실히 드러난다.

1.3 Local maxima of harmonic mean values

가장 단순한 방법으로, 전체 이미지에 대해 5x5 윈도우를 움직이면서, 윈도우의 중심 픽셀이 그 윈도우 내에서 가장 큰 값일 때 local maxima라고 판단하도록 구현했다.

또 다른 방법으로, 그래디언트를 이용하여 어느 해당 픽셀이 변하는 각도를 계산하고(atan(gy/gx) 이용), 이를 양자화해서 이웃 8픽셀들중 두 픽셀을 선택, 크기를 비교하여 local maxima를 찿는 것도 가능할 것이다. (이웃 두 픽셀보다 클 때 극대)

(결과 이미지 리사이징으로 local maxima가 깨져 보임)

