	得分	教师签名	批改日期
课程编号1800440081			

深圳大学实验报告

课程名称:_	<u>大学物埋实验(一)</u>	_
实验名称:_		
学 院:_		_
指导教师 <u>:</u>		_
报告人:	组号:	_
学号	实验地点 致原楼 210	
实验时间:_		日
提交时间:		

1

一、实验目的

- 1. 掌握电位差计的补偿式工作原理、结构和特点
- 2. 训练使用精密仪器的技巧
- 3. 设计线式电位差计,测量未知电动势或电位差
- 4. 掌握电表的校准方法,校准电流计

二、实验原理

1. 补偿原理

 E_0 为校准过的连续可调补偿电压 E_x 为待测电动势 G 检流计

通俗的来讲,补偿原理就是利用一个补偿电压去抵消另一个电压或电动势。将 E_x 与 E_0 通过检流计并 联在一起,接通电路后调节 E_0 的大小,当 E_x = E_0 时,检流计不偏转,即电路中没有电流,两个电源的电动势大小相等,称为"补偿",若已知补偿状态下 E_0 的大小,就可以确定 E_x ,这种测定电源电动势的方法叫作补偿法。

2. UJ33a 型直流携带式电位差计的工作原理

该电位差计的内部电路主要由三个电路组成,如上图所示:

- (1) 工作电路: 该电路实际上是一个限流回路,主要作用是提供工作电流 I,
- (2) 电流校准回路: 该电路的作用是校准工作电流, 使其保持一个固定的值
- (3) 测量回路:该电路实际上是一个分压电路,电路的作用是输出一个电压去补偿未知电压或电动势,由于工作电流 I_p 是一定的,可将补偿电阻 R_k 的不同取值标定成相应的输出电压值。故我们可以直接从电位差计读取到它输出的电压。在测量档位达到补偿状态时,这个电压就是 E_k

三、实验仪器:

- 1. UJ33a 型直流携带式电位差计
- 2. 直流恒压电源
- 3. 标准电阻: 阻值为 100 Ω
- 4. 数字毫安表

四、实验内容:

用 UJ33a 型直流携带式电位差计校准毫安表:

1. 校准毫安表的意义

用经过校准的毫安表测量电流,测量值按校准曲线修正后,可以认为测量结果接近标准表测电流的精度,比原来精度有所提高。

2. 电位差计校准毫安表的方法

电位差计只能直接测量电压,故在校准电流表时,需要将电流转化为电压来测量,方法是在电路中串入一个高精度的取样电阻,通过测量电阻上的电压就可以知道电路中的电流。

- 3. 校准毫安表的具体要求
 - (1) 对毫安表的整刻度分上行和下行两个方向进行校对, 并根据校对数据做出毫安表的校对曲线。
 - (2)根据所测数据校验毫安表的等级。
- (3)分析用上述方法校准毫安表的误差,对比校对所得数据,分析测量时仪器可能引起的误差是否小于电流表基本误差限的 1/3,进而评估测量方法是否合理。

Ŧī、	数据记录:
<u>т</u> ,	ᄷᄉ ᆘᄱ ᄱᅛᄼᄉᄾᄾ

组号: ___1 ; 姓名 _____ 张植楷

校准值						
被校刻度值 Ι(μΑ)		上行	下行	平均值		ΔI=I-Ī
		电压值 (m♥)	电压值 (m♥)	电压值 <i>V</i>	电流值 Ţ (μA)	(µA)
200				(mv)	(μΩ)	
400						
600						
800						
1000						
1200						
1400						
1600						
1800						
1999						

六、数据处理

根据实验数据做出校准曲线,如下图:

七、结果陈述:

- 1. 该电表的等级为 0.2, 可以使用。
- 2.仪器测量时可能引起的误差小于电流表基本误差限的1/3, 所以测量方法比较合理。

八、实验总结与思考题

- 1. 本次实验锻炼了我使用精密仪器的技巧,掌握了电表的校准方法,校准电流计,绘制了校准曲线。使我初步体了解了实验数据分析的流程,进行了误差分析。
- 2. 思考题
- (1) 电位差计一共有三个回路,分别是:
 - 工作电路. 该电路实际上是一个限流回路,主要作用是提供工作电流.
 - 电流校准回路: 该电路的作用是校准工作电流, 使其保持一个固定的值.
 - 测量回路: 该电路实际上是一个分压电路,电路的作用是输出一个电压去补偿未知电压或电动势.
- (2) 原因可能是倍率过大或者过小;调节电阻的档位过小
- (3)对于精度较低的毫安表,用比它精度高的标准表进行校准,考察它的精度级别,并做出它的校准曲线,测量值按校准曲线修正后,可以认为测量结果接近标准表测电流的精度,比原来的精度有所提高,因此比较精确。
- (4) 电位差计除了可以测量电动势,也可以测量电流和电阻。

指导教师批阅意见:							
成绩评定:							
)*X	预习			思考题			
	(20 分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	10分	报告整体 印象	总分	