

MACHINE LEARNING 2018

Homework 2's Solutions

December 12, 2018

Problem 1. (10 points)

Using the formula for multinomial coefficients, the number of divisions is given by

$$\left(\begin{array}{c} 15\\ 4,5,6 \end{array}\right) = \frac{15!}{4!\ 5!\ 6!} = 630630$$

One will get full mark if he/she states that he/she applies the formula for multinomial coefficients as above.

Problem 2. (15 points)

(a) (7 points) If we draw the second marble after replacing the first marble, the sample space will be

$$S = \{(R, R), (R, G), (R, B), (G, R), (G, G), (G, B), (B, R), (B, G), (B, B)\}$$

(b) (8 points) If we draw the second marble without replacing the first marble, the sample space is given by

$$S = \{(R, R), (R, G), (R, B), (G, R), (G, B), (B, R), (B, G)\}$$

Note that when we do not replace the first marble, we still have (R, R) as there are two red marbles in the box.

Problem 3. (10 points)

(a) (5 points) The number of ways we can draw two cards from a deck of 52 playing cards:

$$\begin{pmatrix} 52\\2 \end{pmatrix} = 1326 \tag{1}$$

Out of these 1326 combinations, the number of ways we can draw two Jacks from the same deck:

$$\begin{pmatrix} 4\\2 \end{pmatrix} = 6 \tag{2}$$

Note that all the above combinations are equally likely (having the same probability). Thus the probability that the two cards are both Jacks is

$$P\{both\ Jacks\} = \frac{6}{1326} \approx 0.0045$$

(b) (5 points) The number of ways we can draw 2 cards of the same value for a given value is given in Eq (2). As there are a total of 13 different values, the number of ways we can draw 2 cards of the same value for any value is given by $13 \times 6 = 78$. Thus the probability that the two cards have the same value is

$$P\{same\ value\} = \frac{78}{1326} \approx 0.059$$

Problem 4. (10 points)

 $P\{at \ least \ one \ 5 \mid i\} = 0 \ for \ i = 3, 4, 5.$

For i = 6, there are 5 possible outcomes $\{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}$, out of which there are 2 outcomes with at least one 5. Thus

 $P\{at \ least \ one \ 5 \mid i = 6\} = 0.4.$

Similarly,

 $P\{\text{at least one 5} \mid i=7\} = 1/3 (\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}).$

 $P\{\text{at least one 5} \mid i=8\} = 0.4 (\{(2,6),(3,5),(4,4),(5,3),(6,2)\}).$

 $P\{\text{at least one } 5 \mid i=9\} = 0.5 \ (\{(3,6),(4,5),(5,4),(6,3)\}).$

 $P\{\text{at least one 5} \mid i = 10\} = 1/3 (\{(4,6), (5,5), (6,4)\}).$

 $P\{\text{at least one 5} \mid i = 11\} = 1 (\{(5,6), (6,5)\}).$

 $P\{\text{at least one 5} \mid i = 12\} = 0 (\{(6,6)\}).$

Problem 5. (15 points)

The pmf of a Poisson distribution with parameter λ is given as

$$P\{X = i\} = \frac{e^{-\lambda}\lambda^i}{i!}$$

Thus we have

$$\frac{P\{X=i\}}{P\{X=i-1\}} = \frac{e^{-\lambda}\lambda^i}{i!} / \frac{e^{-\lambda}\lambda^{i-1}}{(i-1)!}$$
$$= \frac{\lambda}{i}$$

As i increases and $i < \lambda$, $(\lambda/i) > 1$, so $P\{X = i\}$ increases monotonically. If λ is a nonnegative integer, when $i = \lambda$, $P\{X = i\} = P\{X = i - 1\}$ and $P\{X = i\}$ will decrease monotonically when $i > \lambda$. If λ is not an integer, then $P\{X = i\}$ will reach its maximum when i is the largest integer not exceeding λ . After that, $P\{X = i\}$ will decrease monotonically as $(\lambda/i) < 1$.

Problem 6. (10 points)

Var(aX + b) = Var(aX) + Var(b) (a constant is independent of another random variable / constant).

$$Var(aX + b) = Var(aX)$$
 (Note that $Var(b)=0$)
= $a^2Var(X)$
= $a^2\sigma^2$

Thus

$$SD(aX + b) = |a|\sigma$$

2 points should be deducted if there are no absolute sign for a.

Problem 7. (30 points)

(a) (10 points) Recall that in the jointly continuous case, x and y are independent iff (if and only if):

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \quad \forall x,y \tag{3}$$

Here $f_{X,Y}(x,y)$ does not factor into a function of x and a function of y, so X and Y are not independent.

We can also calculate $f_X(x)$ (as in Part (b)) and $f_Y(y)$ to disprove Equation (3).

(b) (10 points)

$$f_X(x) = \int_0^1 f(x,y)dy$$

$$= \int_0^1 (x+y)dy$$

$$= \left(xy + \frac{y^2}{2}\right)\Big|_0^1$$

$$= x + \frac{1}{2}, \quad 0 < x < 1$$

(c) (10 points) We only taking the integration in the area (0 < x < 1, 0 < y < 1)

$$1-x$$
) (as $X+Y<1$).

$$P\{X+Y<1\} = \int_0^1 \left(\int_0^{1-x} f(x,y) dy \right) dx$$

$$= \int_0^1 \left(xy + \frac{y^2}{2} \right) \Big|_0^{1-x} dx$$

$$= \int_0^1 \left(x(1-x) + \frac{(1-x)^2}{2} \right) dx$$

$$= \int_0^1 \left(\frac{-x^2+1}{2} \right) dx$$

$$= \frac{1}{2} \left(\frac{-x^3}{3} + x \right) \Big|_0^1$$

$$= \frac{1}{3}$$

Figure 1: Graph of f(x,y) (Problem 7) (Using Wolfram Alpha).