Monte-Carlo simulation methods Laboratory work 1

Yerkin Kitapbayev

Фонд "Институт "Вега"

Part I

▶ Let us assume CEV model

$$dS_t = (r - q)S_t dt + \sigma S_t^{\gamma} dW_t$$

under the risk-neutral measure.

Implement the program that takes as an input $(S_0, r, q, \sigma, \gamma, N, n, m, T)$, where T is the maturity date, N is the number of simulations, n is the number of payoffs, m is the number of discretization steps, and produces (using the MC method) the option price estimate of the cliquet contract with the discounted payoff

$$\sum_{i=1}^{n} e^{-rt_i} (S_{t_i} - S_{t_{i-1}})^+$$

where $t_i = iT/n$.

Select some parameters and generate the table of option prices for different pairs of (N, m).

Part II

Assume the Merton jump model under the risk-neutral measure

$$dS_t = rS_{t-}dt + \sigma S_{t-}dW_t + S_{t-}dJ_t$$

where W is a SBM, r, σ are constant parameters, and

$$J_t = \sum_{j=1}^{N_t} \left(Y_j - 1 \right)$$

where Y_1, Y_2, \ldots are i.i.d. random variables and N_t is a Poisson process with intensity parameter λ .

Assume that Y_i takes two values $y_- < y_+$ with probabilities p and 1 - p.

Part II

Implement the program that takes as an input $(S_0, r, \sigma, y_-, y_+, p, \lambda, N, n, T, K)$, where T is the maturity date, N is the number of simulations, n is the number of observation dates, and produces the price estimate of the Asian put option with the fixed strike

$$\left(K - \frac{1}{n} \sum_{i=1}^{n} S_{t_i}\right)^{+}$$

where $t_i = iT/n$.

▶ Select some parameter values and generate the table of option prices for different pairs of (N, m).

Part III

► Assume two correlated stock prices

$$dS_{t}^{1} = rS_{t}^{1}dt + \sigma_{1}S_{t}^{1}dW_{t}^{1}$$
$$dS_{t}^{2} = rS_{t}^{2}dt + \sigma_{2}S_{t}^{2}dW_{t}^{2}$$

where (W^1, W^2) are two standard Brownian motions under Q with the correlation ρ . Suppose that $S_0^1 = S_0^2$.

- ▶ Let us consider an autocallable barrier reverse convertible which is an example of a structured note.
- According to this contract, the holder receives the coupon payments c on dates $0 < t_1 < \ldots < t_n = T$ and principal payment K at T, unless one of the two events below happen:

Part III

- ▶ (i) if $S_{t_i}^1 \ge TB$ and $S_{t_i}^2 \ge TB$ for some i < n, where $TB \ge S_0^1 = S_0^2$ is the trigger barrier. In this case, the contract is terminated early, and the holder receives the final payment of c + K.
- ▶ (ii) if $S_t^1 \leq B$ or $S_t^2 \leq B$ for some t < T, where $B < S_0^1 = S_0^2$ is the lower barrier. In this case, the coupon payments stay the same but the terminal payment (in case the contract is not autocalled before) is given by

$$c+K-(K-\min(S_T^1,S_T^2))^+$$

Assume that $S_0^1 = S_0^2 = K = TB = 100$, $t_i = iT/n$ and $t_i - t_{i-1} = 0.25$. Take some parameter values for $(r, \sigma_1, \sigma_2, \rho, TB, T, n)$. Also, take a reasonably large number N of simulations and number m of discretization steps. Write a program that determines the value of coupon c that makes the contract value $V_0 = 100$ at time 0.