SRM Unmanned Aerial Vehicle Developmental Testing for Buck Convertor

Part 1 : Software Analysis 18 July 2019 Dikshant Jangid

- 1. Capable of maintaining a constant Output of 23V for powering the motors whatsoever be the state of the battery pack.
- 2. The heart of the buck is a **Texas Instruments LM5145** Buck Regulator.
- 3. Three of these operate in parallel to each other with their outputs interleaved.
- 4. The maximum rated Current draw is 80A.
- 5. An External phase shifted clock Pulse is Supplied from the Linear Technologies timer IC to the three bucks.
- 6. Capable of handling Inputs ranging from 25V to 50V.
- 7. Has the ability of providing extremely low output ripple.
- 8. Extremely fast response time to the Load transient.
- 9. Reached Steady state in just 662 microseconds.
- 10. Overcurrent Protection Feature.
- 11. Low Cost Design.

$Bill\ of\ Materials$

Count	Ref Des	Value	Description
1	Своот	0.1µF	Capacitor, Ceramic, 0.1µF, 25V, X7R, 20%
1	C _{C1}	3300pF	Capacitor, Ceramic, 3300pF, 16V, X7R, 10%
1	C _{C2}	47pF	Capacitor, Ceramic, 47pF, 50V, NP0, 5%
1	C _{C3}	2200pF	Capacitor, Ceramic, 2200pF, 50V, NP0, 5%
1	Cs	10pF	Capacitor, Ceramic, 10pF, 100V, X7R, 20%
20	Cin	4.7µF	Capacitor, Ceramic, 4.7µF, 100V, X7S, 10%
23	C _{OUT}	10μF	Capacitor, Ceramic, 10µF, 50V, X7R, 10%
1	C _{ss}	220nF	Capacitor, Ceramic, 220nF, 16V, X7R, 10%
1	C _{vcc}	2.2µF	Capacitor, Ceramic, 2.2µF, 25V, X7R, 20%
1	C _{VIN}	0.1µF	Capacitor, Ceramic, 0.1µF, 50V, X7R, 20%
1	L _F	10μΗ	Inductor, 10μH, 14mΩ, >38A
1	Q ₁	See description	MOSFET, N-CH, 80V/100V, 12mΩ
1	Q ₂	See description	MOSFET, N-CH, 80V/100V, 3.9mΩ
1	R _{c1}	20k	Resistor, Chip, 20kΩ, 1/16W, 1%
1	R _{c2}	2940	Resistor, Chip, 2940Ω, 1/16W, 1%
1	RILIM	536	Resistor, Chip, 536Ω, 1/16W, 1%
1	R _{RT}	28.7k	Resistor, Chip, 28.7kΩ, 1/16W, 1%
1	R _{FB1}	20k	Resistor, Chip, 20kΩ, 1/16W, 1%
1	R _{FB2}	0.715k	Resistor, Chip, 0.715kΩ, 1/16W, 1%
1	R _{PGOOD}	20k	Resistor, Chip, 20kΩ, 1/16W, 1%
1	R _{UV1}	499k	Resistor, Chip, 499kΩ, 1/16W, 1%
1	R _{UV2}	24.9k	Resistor, Chip, 24.9kΩ, 1/16W, 1%
1	R _{VIN}	2.2	Resistor, Chip, 2.2Ω, 1/16W, 1%
1	U ₁	LM5145	IC, LM5145, PWM Controller, 6V-42V Input

A. Simulation For Fully charged Voltage of Li-on (12cell Pack)

Figure 1. (Input Cap. ESR:-15mohm Out Cap. ESR:-15mohm DCR L:-10mohm)

Vin

Iload (lpk-pk):-

Vload :-

Switching Frequency

Inductor current

50V

346Khz

Duty Cycle :- 46.58%

Ton 1.16us Toff 1.33us

Peak current: 40.14A During Steady State

Min. Current :- 18.36A Max. Current :- 21.86A

Figure 2. (Vin:- 25V Cap. ESR:-15mohm Out Cap. ESR:-15mohm DCR L:-10mohm)

Vin Switching Frequency

Iload (Ipk-pk) :-Vload Inductor 25V 344Khz

Duty Cycle 96.9%

Ton :- 2.58us Toff :- 81ns

20.16A-20.17 4.16mA

23.19V 5.33mV of ripple
Peak Current :- 62.69A(during start)

Steady State ripple Current :- 386.58mA

Max :- 20.36A Min :- 19.97A

C. Simulation for Discharged Li-on (12 cell pack)

Figure 3. (Vin:- 30V Cap. ESR:-15mohm Out Cap. ESR:-15mohm DCR L:-10mohm)

Vin Switching Frequency

lload (lpk-pk)

Vload

Inductor

30V

344.82Khz

Duty Cycle 78.54%

Ton 2.19us

Toff 598.1ns

20.16A-20.17A 18.32mA

20.18V-20.20V 20.47mV

Peak Current :- 57.21 A(during start)

Steady State ripple Current :- 1.38A

Max :- 20.89A

Min: 19.50A

D. Simulation for fully Charged Li-on(10cell Pack)

File Edit Very Process Help

23 30

VOut

28 00

50 00

Inductor

VSW

1.82m

1.88m

1.88m

1.88m

1.90m

Figure 4. (Vin:- 42V In Cap. ESR:-15mohm Out Cap. ESR:-15mohm DCR L:-10mohm)

Vin Switching Frequency

Iload Vload Inductor 42V

Time (s)

343.64Khz

Duty Cycle57.93%Ton1.46usToff1.06us20.15A-20.18A30.12mA23.17V - 23.21V42.04mVPeak Current :41.52A

During Steady State ripple :-2.79A

Max. 21.58A Min. 18.79A