1 Kombinatorik

Anzahl der Möglichkeiten:

1. Mit Reihenfolge: (Variation)

(a) k aus n mit zurücklegen: n^k

(b) k aus n ohne zurücklegen: $k!\binom{n}{k}$

2. Ohne Reihenfolge: (Kombination)

(a) k aus n mit zurücklegen: $\binom{n+k-1}{k}$

(b) k aus n ohne zurücklegen: $\binom{n}{k}$

3. Ohne Reihenfolge: (Permutation)

(a) n ohne gleiche Elemente: n!

(b) n ohne zurücklegen: $\frac{n!}{\prod (k_i!)}$ mit k_i Anzahl der Elemente i.

2 Wahrscheinlichkeit

2.1 Elementarereignis

Schliessen sich gegenseitig aus. Ein einelementiges Versuchsergebnis ist ein Elementarereignis. Z.B. $\omega_1 = \text{Kopf}$, $\omega_2 = \text{Zahl}$.

2.2 Ereignisraum

Menge aller möglichen Ereignisse: $\Omega = \omega_1 \cup \omega_2$. Werfen zweier Münzen: $\Omega_2 = \Omega \times \Omega$

2.3 Bernoulli/Laplace

Endlich viele Ereignisse: $P = \frac{\sum \text{Erfolgsmoeglichkeiten}}{\sum \text{Alle Moeglichkeiten}}$. Auch Gegenereignis betrachten!!!

2.4 nach von Mises

Statistischer Wahrscheinlichkeitsbegriff: $P(A) = \lim_{n \to \infty} H(A, n) = \lim_{n \to \infty} \frac{n_A}{n}$ mit H(A, n) relative Wahrscheinlichkeit von A, also n_A Anzahl der Versuche wo A eintritt und n Gesamtanzahl der Versuche.

2.5 nach Kolmogorov

Massaxiom: $P(A) \ge 0$, Normierungsaxiom: $P(\Omega) = 1$, Additivitaetsaxiom: $P(A \cup B) = P(A) + P(B)$ mit $A \cap B = \emptyset$. Bertrands Paradoxon.

2.6 Bayes Law

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

2.7 Erwartungswert

 $E\left\{X\right\}$ ist eine lineare Operation. Ausserdem ist $E\left\{X\cdot Y\right\}=E\left\{X\right\}\cdot E\left\{Y\right\}$ wenn X und Y stochastisch unabhängig.

1

2.8 Moment

Das k-te Moment ist $m_k = E\left\{X^k\right\} = \int\limits_{-\infty}^{\infty} x^k \cdot f_X(x) dx.$

Das k-te zentrierte Moment ist $z_k = E\left\{(x - E\left\{X\right\})^k\right\} = \int_{-\infty}^{\infty} (x - E\left\{X\right\})^k \cdot f_X(x) dx$.

2.9 Varianz

Nichtlinear. Fuer statistisch unabhaengige X_i : $Var\left\{\sum_{i=1}^N \{X_i\}\right\} = \sum_{i=1}^N Var\left\{X_i\right\}$

Diskret:
$$Var(X) = \sum (x - \mu)^2 P(X = x)$$

 $Var\{X\} = Cov(X, X) = E\{(X - E\{X\})^2\}$

3 Funktionen

3.1 Verteilungsfunktion

 $F_X(c) = P(X \le c) = \int f_X(c)dc$ wobei f(c) die Wahrscheinlichkeitsdichtefunktion ist.

Erwartungswert:
$$E\{X\} = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
. Varianz: $Var\{X\} = E\{(X - E\{X\})^2\}$

3.2 Bernoulli/Alternativverteilung

$$F_{X_i}(k) = \begin{cases} p & k = 1\\ (1 - p) & k = 0 \end{cases} \text{ dann ist } \mu_{X_i} = p \text{ und } \sigma_{X_i}^2 = p \cdot (1 - p)$$

3.3 Binomialverteilung

$$Z_n = \sum X_i, B_{n,p}(k) = f_Z(k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ dabei ist } \mu = N \cdot p \text{ und } \sigma^2 = Var\left\{Z_n\right\} = n \cdot Var\left\{X_i\right\} = N \cdot p \cdot (1-p)$$

3.4 Poissionverteilung

$$f_X(k) = \frac{A^k e^{-A}}{k!}$$

3.5 Gleichverteilung

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a,b] \\ 0 & \text{sonst} \end{cases} \text{ und } F_X(x) = \begin{cases} 0 & \text{für } x \le a \\ \frac{x-a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } b \le x \end{cases}$$

3.6 Normalverteilung

$$f_X(x) = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sqrt{2\pi}\sigma} \text{ und } F_X(x) = \int\limits_{-\infty}^x \frac{e^{-\frac{1}{2}\left(\frac{u-\mu}{\sigma}\right)^2}}{\sqrt{2\pi}\sigma} du. \text{ Standard-NV hat Varianz } \sigma^2 = 1 \text{ und Erwartungswert } \mu = 0.$$

3.7 Exponential verteilung

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{für } x < 0 \end{cases} \text{ hat den Erwartungswert } \frac{1}{\lambda}. \text{ Dazugehörige Verteilungsfunktion: } F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{für } x < 0 \end{cases}$$

3.7.1 Bedingte Wahrscheinlichkeit

$$c,d\in\mathbb{R},P(x>c|x>d)=\frac{P(x>c\cap x>d)}{P(x>d)},c>d\Rightarrow\{x>c\}\subset\{x>d\}\Rightarrow P(x>c|x>d)=\frac{P(x>c)}{P(x>d)}$$

Im Falle der Exponantialfunktion: $\frac{P(x>c)}{P(x>d)} = F_X(c-d)$

4 Mehrdimensionaler Kram

4.1 Verbundverteilungsfunktion

$$x \in [a,b], y \in [c,d] \quad F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t)dtds \qquad F_{\vec{X}} = \begin{cases} 0 & x \leq a, y \leq c \\ F_{X,Y}(x,y) & a \leq x \leq b, c \leq y \leq d \\ F_{X,Y}(b,y) & b \leq x, c \leq y \leq d \\ F_{X,Y}(x,d) & a \leq x \leq b, d \leq y \\ 1 & b \leq x, d \leq y \end{cases}$$

4.2 Randdichteverteilung

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$

2

4.3 Kovarianz/Unkorreliertheit

$$Cov \{X,Y\} := E \{(X - E \{X\})(Y - E \{Y\})\} = E \{X,Y\} - E \{X\} E \{Y\}$$

$$E \{U \cdot V\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f(x,y) dx dy$$

statistische Unabhaengigkeit $\Rightarrow Cov\{X,Y\} = 0$.

$$Var\left\{\sum_{i=1}^{n} a_{i} X_{i}\right\} = \sum_{i=1}^{n} a_{i}^{2} Var\left\{X_{i}\right\} + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i} a_{j} Cov\left\{X_{i}, X_{j}\right\}$$

4.4 Stochastische Unabhängigkeit

A und B sind stochastisch Unabhängig $\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$.

4.5 Eindimensional Summieren

Sei $Z = \sum X_i$ so ist $f_Z(z) = (\prod f_{X_i})(z)$. (Faltung!)

Faltung der Rechteckfunktion mit sich selbst ist die dreiecksfunktion.

4.6 Tschebyscheff Ungleichung

Erwartungswert $\mu = E\{X\}$ und Varianz σ^2 sowie $k \in \mathbb{R}$, dann $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$ und $P(|X - \mu| \ge k \cdot \sigma) \le \frac{1}{k^2}$

4.7 Charakteristische Funktion

Diskret:
$$\Phi_X(j\omega) = \sum_{k=1}^{\infty} e^{j\omega x_k} P(X = x_k)$$

Kontinuierlich: $\Phi_X(j\omega) = \int\limits_{-\infty}^{\infty} e^{j\omega x} f_X(x) dx$ Char. Funktionen fuer versch. Verteilungen bei Maike abschreiben! $\Phi(0) = 1$

4.8 Misc

X und Y sind statistisch unabhängig $\Leftrightarrow F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$.

$$P(a \le x \le b, c \le y \le d) = F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

Erwartungswert fuer jede Dimension einzeln normal ueber Randdichteverteilungsfunktionen berechnen.

5 Weird Stuff

5.1 Leistungsdichtespektrum

 $S_{XX}(j\omega) = Fourier(r_{XX}(\tau)) = r$ nehmen und $\phi(t) = 1$.

5.2 Leistung

$$P = r_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f)df$$