See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/243955085

Ab initio study of the structure, force field, and vibrational spectrum of the LiClO 3 molecule

ARTICLI	E <i>in</i> JOURNAL OF STRUCTURAL CHEMISTRY · MA	AY 199	6
Impact Fac	tor: 0.51 · DOI: 10.1007/BF02578590		
CITATION		READS	
2	,	7	
3 AUTH	ORS:		
	Victor Solomonik Ivanovo State University of Chemistry an		Tatiana Pogrebnaya The Nelson Mandela African Institute of S
	77 PUBLICATIONS 217 CITATIONS		27 PUBLICATIONS 48 CITATIONS
	SEE PROFILE		SEE PROFILE
Q	Valery Sliznev		
	Ivanovo State University of Chemistry an		
	43 PUBLICATIONS 136 CITATIONS		

SEE PROFILE

Ab initio STUDY OF THE STRUCTURE, FORCE FIELD, AND VIBRATIONAL SPECTRUM OF THE LiClO₃ MOLECULE

V. G. Solomonik, T. P. Pogrebnaya, and V. V. Sliznev

UDC 539.194

The geometrical structure and the vibrational spectrum of the LiClO₃ molecule are studied by the Hartree–Fock–Roothaan (HF) and configurational interaction (CI) methods taking into account single and double excitations and Davidson's correction for quadruple excitations. Double-zeta basis sets of Huzinaga–Dunning and McLean–Chandler complemented with polarization and diffuse functions are used. Potential surface sections corresponding to migration of the Li⁺ cation around the CiO₃ fragment are investigated. It was found that the LiClO₃ molecule has a single stable configuration of C_s symmetry with the bidentate coordination of the Li⁺ cation by the ClO₃ anion. The cyclic fragment with the dihedral angle $\theta(\text{LiO}_2\text{Cl}) = 173^\circ$). The tridentate configuration of C_{3v} symmetry lies higher than the equilibrium configuration by 24.5 (HF) or 18.3 (CI) kI/mole and is not an isomer. The ab initio force field of the molecule was refined by the scaling method. Some assignments of the IR bands of the matrix-isolated molecular forms existing in vapor over lithium chlorate are corrected. The vibration frequencies (cm⁻¹) and IR intensities (km/mole; in parentheses) are calculated with the refined force field: A' type 1099(236), 856(81), 630(73), 557(119), 481(87), 156(66); A'' type 887(229), 459(35), 367(23).

The IR spectra of alkali chlorates, MClO₃, isolated in inert gas matrices were investigated in [1-6]. The spectra were interpreted [2-4] on the assumption of the tridentate coordination of the M^+ cation by the ClO_3^- ion $(C_{3\nu})$ symmetry). In [5] the spectra of LiClO₃ and NaClO₃ molecules are explained on the assumption that each of these molecules has tridentate (t) and bidentate (t) isomers. The IR studies of hydrated LiClO₃ and NaClO₃ molecules [6] confirmed the structure of NaClO₃ suggested in [5] and showed that the bidentate coordination in the LiClO₃ molecule is preferable. Ab initio calculations of the properties of LiClO₃ and NaClO₃ molecules were published [7, 8]. They indicate that the bidentate coordination is preferable and that there is one more minimum (corresponding to the tridentate structure) on the potential energy surface (PES) of these molecules. However, the minimal energy path of the $C_{3\nu}(t) \rightarrow C_s(b)$ rearrangement and the value of the potential barrier between the minima were not investigated.

This paper deals with the *ab initio* calculations of the structure and properties of the ClO₃ ion and LiClO₃ molecule and studies the intramolecular rearrangement in LiClO₃. The calculations employ wider basis sets than those used previously and adequately takes into account the electron correlation. Based on the results of calculations, the available experimental data are analyzed, and new interpretation is suggested for the IR spectra of LiClO₃ published in [1-6].

DETAILS OF CALCULATIONS

The calculations were performed using the GAMESS program [9]. We employed the double-zeta basis sets of Huzinaga-Dunning [10-12] and McLean-Chandler [13] complemented by the polarization d-functions on oxygen

Ivanovo State Chemical Technological Academy. Translated from *Zhumal Struktumoi Khimii*, Vol. 37, No. 3, pp. 440-449, May-June, 1996. Original article submitted May 3, 1995.

and chlorine atoms: Li(9s4p/4s2p), O(9s5p1d/4s2p1d), Cl(12s9p1d/6s4p1d) ($\zeta_d(O) = 0.85$ [11], $\zeta_d(Cl) = 0.68$ [14]). Below the basis set used here is denoted as DZP. A wider basis set, DZPD, was derived from the first basis set by adding diffuse functions on oxygen ($\zeta_p(O) = 0.059$ [11]) and chlorine (the values of $\zeta_s(Cl) = 0.063$ and $\zeta_p(Cl) = 0.044$ were optimized in the Hartree-Fock calculations of the free ClO₃ ion). In order to clarify the reasons for the contradictions between the results of our calculations and those of [8] in which the 6-31G* basis set was used, we reinvestigated some sections of the potential energy surface of the LiClO₃ molecule with the 6-31G* basis set.

To refine the results of Hartree-Fock calculations in the DZPD basis set, we calculated the relative energies of different structures of the molecule by the configurational interaction (CI) method taking into account the singly and doubly excited configurations and introducing Davidson's correction for quadruple excitations (CISD+Q). When constructing configurations, we refined electron transitions from 13 highest occupied MOs to 35 lowest unoccupied MOs. The resulting wave function includes 52,501 configurations.

The geometrical parameters of the molecule were optimized by the gradient method. The force constants were calculated analytically, and the derivatives of the dipole moments were calculated by the numerical method described in [15]. Tables 1-4 represent the calculated parameters of the molecule. The results of calculations depend weakly on the basis expansion $(6-31G^* \rightarrow DZP \rightarrow DZPD)$ and are therefore reliable. Below we discuss the results obtained in the widest, DZPD, basis set (unless specified otherwise).

GEOMETRICAL STRUCTURE OF THE LICIO₃ MOLECULE

We consider the structures of the LiClO₃ molecule shown in Fig. 1. The bidentate C_s structure (I) possesses the lowest energy. The cyclic fragment $U = C_s$ is nonplanar: the lithium atom deviates from the ClO₂ plane by an angle $\gamma = 7^\circ$ (Fig. 1).

We studied an intramolecular rearrangement corresponding to migration of the Li⁺ cation around the ClO₃⁻ fragment. Figure 2 depicts the dependence of the relative energy $\Delta E = E - E_{\min}$ on the γ angle, defining the deformation of the $\frac{1}{2}$ ring. All other geometrical parameters of the molecule were optimized for the C_s structure at certain values of the γ angle. The highest point of the potential curve $\Delta E(\gamma)$ corresponds to configuration III (Fig. 1). The minimum of the potential function $\Delta E(\gamma)$ corresponds to bidentate structure I. The second minimum, which is due to the tridentate structure (structure II, Fig. 1), is very shallow: the barrier between the $C_{3\nu}(t)$ and $C_s(b)$ configurations is only $0.9 \cdot 10^{-7}$ au (0.2 cm^{-1}) . Consequently, the tridentate isomer of the LiClO₃ molecule is nonexistent. The frequency of the corresponding normal vibration $[\omega_6(A') = 57 \text{ cm}^{-1}]$ is very high compared to the barrier of the $C_{3\nu}(t) \rightarrow C_s(b)$ rearrangement, indicating that the harmonic approximation is inappropriate for calculating the vibrational

Fig. 1. Structures of the LiClO₃ molecule.

Fig. 2. Dependence of the energy $\Delta E = E(\gamma) - E_{\min}$ of the LiClO₃ molecule on the γ angle (the γ angle is shown in Fig. 1).

spectrum corresponding to this normal coordinate. It is interesting to note that in the 6-31G* basis set the $C_{3\nu}(t)$ configuration does not correspond to the energy minimum on the PES.

Inclusion of the electron correlation leads to a slight decrease in the relative energy of the tridentate structure: $\Delta E(II - I) = 24.5$ (HF), 18.3 kJ/mole (CISD+Q) and to an increase in the relative energy of structure III: $\Delta E(III - I) = 241$ (HF), 251 kJ/mole (CISD+Q).

Analysis of Mulliken populations (q(Li) = +0.73, +0.62, and +0.68 e for structures I, II, and III, respectively) and comparison of the geometrical parameters of the ClO_3 fragment of $LiClO_3$ with the parameters of the free ClO_3^- ion confirm the conclusions of previous papers that the structure of the molecule may be described by the scheme $Li^+ClO_3^-$. Nevertheless, there is pronounced distortion of the configuration of the ClO_3^- ion in the field of the Li^+ cation (Table 1). The force constants of the ClO_3^- fragment also change considerably as a result of its coordination by the Li^+ ion (Table 2).

The results of our calculations show some discrepancies from the data of the previous theoretical investigation (HF/6-31G*) [8].

- 1. According to our calculations, in the equilibrium $C_s(b)$ configuration of the LiClO₃ molecule, the fragment is nonplanar, whereas the authors of [8] postulated the planar structure of this ring.
- 2. The calculated potential curve $\Delta E(\gamma)$ (Fig. 2) shows that in going from configuration II to the top of the barrier of III (region of monodentate configurations with Li-O bonds), the energy smoothly increases. This result conflicts with the data of [8], according to which the energy of the molecule with the angle $\varphi(\text{LiOCl}) = 128^{\circ}$ (corresponding to $\gamma = 154^{\circ}$) is lower than that of the structure with a linear LiOCl segment ($\gamma \approx 130^{\circ}$). Our calculation in the 6-31G* basis set gave the values of energies at these points that coincide with the curve $\Delta E(\gamma)$ calculated in the DZPD basis set (Fig. 2). Evidently, the energy of the LiClO₃ molecule obtained in [8] for $\varphi(\text{LiOCl}) = 128^{\circ}$ is erroneous.
- 3. The energy and the geometrical parameters of structure III calculated by us in the 6-31G* basis set disagree with the data of [8]. Our calculations showed that the calculations of [8] for structure III were performed without using standard scale factors for the Gaussian exponents of the 6-31G* basis set.
- 4. The value of the vibration frequency ω_6 obtained by us in the 6-31G* basis set for the $C_{3\nu}(t)$ structure disagrees with the value given in [8] (Table 3). The reason for this discrepancy is unknown to us.

TABLE 1. Results of ab initio Calculations of the Geometrical Parameters, Total and Relative Energies, and Dipole Moments of the LiClO₃ Molecule and ClO₃ Ion $(R_e \text{ in Å}, \alpha_e \text{ in deg}, E \text{ in au}, \Delta E \text{ in kJ/mole}, \mu_e \text{ in D})$

Property	HF,	6-31G*	HF/DZP	110/000	
Property	[8]	Our calculation	HF/DZF	HF/ZPD	
	LiClo				
$R_e(\text{ClO}_t)$	1.4498	1.4510	1.4562	1.4567	
$R_e(ClO_b)$	1.5199	1.5197	1.5231	1.5232	
$R_e(\text{LiO}_b)$	1.8697	1.8730	1.8990	1.8932	
$\alpha_e(O_bClO_b)$	100.1	100.1	99.5	99.5	
$\beta_e(O_bClO_t)$	109.5	109.3	109.1	109.2	
θ_e (LiOOCl)	(180)	173.4	171.6	173.1	
-E	691.27858	691.278812	691.359417	691.363616	
μ_e		5.82	6.11	6.16	
	LiCIC	$C_{3\nu}(t)$			
$R_e(ClO)$	1.4982	1.4982	1.5027	1.5024	
$R_e(\text{LiO})$	2.1083	2.1084	2.1390	2.1293	
$\alpha_e(OClO)$	103.2	103.2	103.1	103.1	
-E	691.26953	691.269534	691.350953	691.354271	
ΔE	23.8	24.4	22.2	24.5	
μ_e		3.49	3.83	3.75	
	LiClO	$C_{3\nu}(m)$			
$R_e(CIO)$	1.4667	1.4671		1.4725	
$R_e(\text{LiCl})$	2.2782	2.2733		2.2860	
$\alpha_e(OClO)$	111.4	111.3		110.9	
- Е	691.17838	691.180567		691.271960	
Δ <i>E</i> 263.2		233.6	240.6		
μ_e		11.93		12.38	
	CIO	$\frac{1}{3}$, $C_{3\nu}$			
$R_e(ClO)$	1.4866		1.4925	1.4946	
$\alpha_e(OClO)$ 108.6			108.4	108.3	
-E			683.89336	683.887598	

VIBRATIONAL SPECTRUM OF THE Liclo₃ MOLECULE

Let us compare the theoretical vibrational spectrum with the available experimental data. To eliminate the errors of theoretical force constants that are due to the incomplete basis set and neglect of electron correlation, we performed empirical scaling of the force field of the molecule by a standard method [17]. The force field of the molecule was refined in four steps. The vibration frequencies and IR intensities calculated during the sequential refinement of the force field are represented in Table 4.

In the first step (M1), the estimated values of scale indices transferred from the ClO₃ ion and the LiNO₃ molecule were used: $c_r(\text{Cl-O}) = 0.895$, $c_{\alpha}(\text{OClO}) = 0.947$, $c_r(\text{Li-O}) = 0.809$. The ab initio force fields of the ClO₃

TABLE 2. Ab initio (AI) and Scaled (M) Force Fields of the ClO_3^- Ion and the $LiClO_3$, $C_s(b)$, Molecule

	CIO	03		LiClO ₃			LiC	ClO ₃
	AI	М		AI	M4		AI	M4
f_t	6.533	5.845	f_t	7.949	7.541	f_{rr}	0.168	0.136
			f_d	5.913	5.041	f_{tr}	-0.053	-0.046
$f_{m{lpha}}$	2.443	2.313	f_{α}	3.738	3.281	f_{dr}	0.091	0.076
			fβ	2.074	1.790	$f_{dr'}$	-0.133	-0.111
f_{tt}	0.062	0.055	f_{td}	-0.019	-0.018	$f_{r\alpha}$	-0.379	-0.319
			fad	0.224	0.191	f_{reta}	0.034	0.028
f_{ra}	0.103	0.094	$f_{t\beta}$	0.204	0.185	$f_{reta'}$	-0.039	-0.033
			$f_{d\alpha}$	0.616	0.533	f_{γ}	0.156	0.156
			$f_{d\beta}$	0.152	0.131	f_{ty}	0.082	0.080
$f_{tlpha'}$	-0.266	-0.244	$f_{t\alpha}$	-0.252	-0.230	$f_{d\gamma}$	-0.008	-0.007
			$f_{d\beta'}$	-0.168	-0.144	$f_{r\gamma}$	0.037	0.033
$f_{lphalpha}$	0.790	0.748	$f_{\alpha\beta}$	0.585	0.509	$f_{\alpha \gamma}$	-0.042	-0.039
			f_{etaeta}	0.513	0.443	$f_{oldsymbol{eta_{\gamma}}}$	-0.051	-0.047
			f_r	0.822	0.622			

Notes: The natural coordinates r, d, t, α , β , and γ are shown in Fig. 1. The force constants $f_{t\alpha}$, etc., define the interactions of the t and α coordinates with two common atoms; the force constants with primed coordinates (e.g., $f_{t\alpha'}$) define the interactions of the t and α coordinates with one common atom. The dimensionalities are: for the force constants of bond stretching (f_r, f_d, f_t) and bond interaction $(f_m, f_m, \text{etc.})$, mdyn/Å; for the force constants of the deformations of angles $(f_\alpha, f_\beta, \text{and } f_\gamma)$ and interactions $(f_{\alpha\beta}, f_{\beta\beta}, \text{etc.})$, mdyn-Å; for the coefficients of $f_{t\alpha}, f_{t\beta}$, etc., types, mdyn.

ion and the LiNO₃ molecule that we calculated in the HF/DZPD approximation were preliminarily scaled using the vibration frequencies of the ClO₃ ion in an aqueous solution (933, 608, 977, and 477 cm⁻¹ [16]) and the vibration frequencies of the LiNO₃ molecules isolated in argon matrices [18] (the frequency of the stretching vibration ν (Li-O) = $\nu_4(A_1) = 528$ cm⁻¹ [18]). The calculations confirmed the assignment of two intense IR bands, 1099 and 887 cm⁻¹ ($\Delta\nu$ (35 Cl - 37 Cl) = 12 and 9 cm⁻¹, respectively), to the LiClO₃ molecule of C_s symmetry made in [5, 6]. According to theory, the IR spectrum of LiClO₃ must primarily show two vibrations: ν_1 (Cl-O_t) = 1073, $\Delta\nu$ = 11 cm⁻¹ and ν_7 (Cl-O_b) = 909, $\Delta\nu$ = 9 cm⁻¹. The minor deviations of the values of ν_1 and ν_7 calculated with the force field M1 from the experimental values are explained by the rough estimation of the scale indices c_r (Cl-O_t), which disregards the difference between the bridging and terminal bonds leading to different values of the c_r (Cl-O_t) and c_r (Cl-O_t) coefficients.

In the second step of the force field refinement (M2), this difference was taken into consideration: the values of the coefficients $c_r(\text{Cl-O}_b) = 0.851$ and $c_r(\text{Cl-O}_t) = 0.948$ were found by fitting the calculated frequencies ν_1 and ν_7 and their isotopic shifts to the observed values [5, 6].

The frequency $v_3 = 651 \text{ cm}^{-1}$, $\Delta v(^{35}\text{Cl} - ^{37}\text{Cl}) = 3.7 \text{ cm}^{-1}$, calculated with the refined force constants is in good agreement with the frequency 630.5 cm^{-1} , $\Delta v(^{35}\text{Cl} - ^{37}\text{Cl}) = 4.8 \text{ cm}^{-1}$, assigned in [1] and [3] to the LiClO₃

^{*}The parameters of the LiNO₃ molecule obtained in the HF/DZPD approximation are: $R_e(NO_t) = 1.1808$ Å, $R_e(NO_b) = 1.2581$ Å, $R_e(LiO_b) = 1.8790$ Å, $\alpha(O_bNO_b) = 114.7^\circ$; ω_i : A_1 type 1828, 1192, 842, 590; B_1 type 939, 183; B_2 type 1497, 783, 414 cm⁻¹.

TABLE 3. Results of ab initio Calculations of the Frequencies of Normal Vibrations ω_i (cm⁻¹) and IR Intensities A_i (km/mole) of the LiClO₃ Molecule and ClO₃ Ion

Assignment		HF/6-31G*		HF/DZP	HF/DZPD		
		[8]	Our calculation	ω_i	ω_i	A_i	
			$LiClO_3, C_s(b)$				
A'	ω_1	1176	1171	1139	1133	243	
	ω_2	942	942	927	923	73	
	ω_3	694	696	679	676	91	
	ω_4	635	630	611	607	119	
	ω_5	532	529	528	523	68	
	ω_6	167	156	157	157	68	
$A^{\prime\prime}$	ω_7	984	983	963	960	230	
	ω_8	529	521	498	498	39	
	ω_9	429	434	403	406	19	
$LiClO_3, C_{3\nu}(t)$							
A_1	ω_1	941	941	919	918	28	
•	ω_2	697	687	690	691	23	
	ω_3	509	509	491	495	206	
$\boldsymbol{\mathit{E}}$	ω_4	1037	1037	1014	1013	429	
	ω_5	536	536	536	534	71	
	ω_6	187	9.41	45	57	92	
$ClO_3^-, C_{3\nu}$							
A_1	$ \omega_1 $	993		964	949	60	
	ω_2	640		625	620	46	
$\boldsymbol{\mathit{E}}$	ω_3	1105		1066	1044	581	
	ω_4	507		502	498	42	

molecule. Therefore in the third step of the scaling (M3), we used the coefficient $c_{\alpha}(OCIO) = 0.876$ found from the experimental frequency $v_3 = 630.5$ cm⁻¹ (the value of c_{α} was taken the same for the O_tCIO_b and O_bCIO_b angles).

A comparison of the calculated (M3) vibration frequencies with the published IR spectra [1, 3, 5, 6] shows that the 557 cm⁻¹ [1] and 481 cm⁻¹ [1, 3] bands may be assigned to vibrations of the LiClO₃ molecule. As follows from our calculations, these are the ν_4 and ν_5 vibrations (M3 calculation: 559 and 482 cm⁻¹), whose modes are mixed: the coordinates r(Li-O), $\alpha(O_b\text{ClO}_b)$, and $\beta(O_t\text{ClO}_b)$ make approximately the same contributions to these vibrations. The assignments of the bands at 972, 961, 904, and 896 cm⁻¹ [3] to LiClO₃ are not confirmed. These assignments were also doubted in [6]. Evidently, the 533 cm⁻¹ [1] and 891 cm⁻¹ [6] bands do not belong to LiClO₃ either. In the fourth step (M4), the theoretical force field was refined using the experimental frequencies ν_1 , ν_3 , ν_4 , ν_5 , and ν_7 for the isotopic varieties Li³⁵ClO₃ and Li³⁷ClO₃. The following scale factors were obtained: $c_t(\text{Cl-O}_t) = 0.9487$, $c_d(\text{Cl-O}_b) = 0.8528$, $c_\alpha(O_b\text{ClO}_b) = 0.8776$, $c_\beta(O_t\text{ClO}_b) = 0.8632$, $c_r(\text{Li-O}) = 0.8062$. The c_γ factor was again estimated at unity.

Thus the IR spectrum of LiClO₃ has: a) two intense bands: $v_1(A') = 1099 \text{ cm}^{-1}$ [potential energy distribution (PED) in coordinates: 0.89t + 0.07d] and $v_7(A'') = 887 \text{ cm}^{-1}$ (0.96d); b) five medium-intensity bands: $v_2(A') = 856 \text{ cm}^{-1}$ (0.85d + 0.06 α), $v_3(A') = 630 \text{ cm}^{-1}$ (0.18r + 0.68 α + 0.08 β), $v_4(A') = 557 \text{ cm}^{-1}$ (0.41r + 0.13 α + 0.40 β), $v_5(A') = 481 \text{ cm}^{-1}$ (0.40r + 0.27 α + 0.30 β), and $v_6(A') = 156 \text{ cm}^{-1}$ (0.83 γ + 0.14 β); c) two weak bands: $v_8(A'') = 459 \text{ cm}^{-1}$ (0.78 β + 0.20r) and $v_9(A'') = 367 \text{ cm}^{-1}$ (0.76r + 0.23 β). In the experimental works [1, 3, 5, 6], both intense

TABLE 4. Frequencies of Vibrations v_i (cm⁻¹) and IR Intensities A_i (km/mole) of the LiClO₃ (C_s , b) Molecule Calculated with the Scaled^a Force Field

Isotopomer	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν9
$M1 \nu_i (^7 \text{Li}^{35} \text{Cl}^{16} \text{O}_3)$	1073	876	653	570	490	157	909	477	371
A_i	245	77	63	105	106	67	229	31	28
$M2 \nu_i (^7 \text{Li}^{35} \text{Cl}^{16} \text{O}_3)$	1099	860	651	570	491	157	887	476	371
$M3 \nu_i (^7 \text{Li}^{35} \text{Cl}^{16} \text{O}_3)$	1099	887	630.5	559	482	156	887	462	368
<i>M</i> 4									
v_i (7 Li 35 Cl 16 O ₃) $\left\{$	1098.5 1099 ^b	856.4	630.0 630.5 ^b	557.0 557 ^b	481.1 481.2 ^b	156.0	886.9 887 ^b	458.8	367.2
$v_i (^7 \text{Li}^{37} \text{Cl}^{16} \text{O}_3) $	1987.5 1087 ^b	849.2	626.3 625.7 ^b	555.1	479.8	156.0	878.1 878 ^b	457.7	366.8
$v_i (^7 \text{Li}^{35} \text{Cl}^{18} \text{O}_3)$	1059.3	823.6	601.8	541.1	470.1	152.5	855.4	437.6	358.3
$v_i (^7 \text{Li}^{35} \text{Cl}^{16} \text{O}_t^{18} \text{O}_2)$	1096.8	826.5	604.6	544.7	474.6	154.3	855.5	446.4	361.0
$v_i (^7 \text{Li}^{35} \text{Cl}^{18} \text{O}_t^{16} \text{O}_2)$	1061.6	853.0	627.8	552.3	477.3	154.1	886.9	450.3	354.6
v_i (7 Li 35 Cl 16 O $_t^{16}$ O 18 O)	1097.7	835.1	617.3	551.1	478.5	155.2	877.6	451.8	364.0
v_i (7 Li 35 Cl 18 O $_t^{16}$ O 18 O)	1960.4	832.5	614.8	546.9	474.4	153.3	877.0	443.2	361.3
v_i (6 Li 35 Cl 16 O ₃)	1098.6	856.5	631.3	575.5	499.0	163.4	887.2	463.4	382.5
A_i	236	81	73	119	87	66	229	35	23

Notes. ^aThe refinement of the force field was carried out in four steps $M1 \rightarrow M4$ (see text). ^bExperimental values of the frequencies of vibrations ν_1 [6], ν_3 , ν_5 [1, 3], ν_4 [1], ν_7 [6].

bands (ν_1 , ν_7 [5, 6]) and three of the five medium-intensity bands (ν_3 [1, 3], ν_4 [1], ν_5 [1, 3]) were observed. The band $\nu_6 = 156$ cm⁻¹, corresponding to the ring-puckering vibration, lies in the spectral region that has not yet been studied experimentally. Among the medium-intensity bands, the band $\nu_2 = 856$ cm⁻¹ was not observed in the experimentally studied region of the IR spectrum. According to the calculations, this band is nearly three times less intense than the strong band $\nu_7 = 877$ cm⁻¹.

The calculated isotopic shifts agree with the experimental ones. An exception is the $v_3(A')$ frequency. Some details of the isotopic structure of this band observed in [3] for the $^{16}\text{O} \rightarrow ^{18}\text{O}$ isotopic substitution do not quite agree with theory:

Experiment [3]	Calculation (M4)	Isotopomer		
630.5	630.0	$^{7}\text{Li}^{35}\text{Cl}^{16}\text{O}_{3}$		
(25.5	∫627.8 ∫626.3	$^{7}\text{Li}^{35}\text{Cl}^{18}\text{O}_{t}^{16}\text{O}_{2}$		
625.5	[626.3	$^{7}\text{Li}^{37}\text{Cl}^{16}\text{O}_{3}$		
622.1	•••	?		
(15 + 1	∫617.3 ∫614.8	⁷ Li ³⁵ Cl ¹⁶ O _t ¹⁶ O ¹⁸ O		
615 ± 1	(614.8	$^{7}\text{Li}^{35}\text{Cl}^{18}\text{O}_{t}^{16}\text{O}^{18}\text{O}$		
604 1 1	∫604.6	$^{7}\text{Li}^{35}\text{Cl}^{16}\text{O}_{t}^{18}\text{O}_{2}$		
604 ± 1	601.8	$^{7}\text{Li}^{35}\text{Cl}^{18}\text{O}_{3}$		

All observed components of the multiplet in the region of 630 cm⁻¹ may be assigned to different isotopic varieties of the LiClO₃ (C_s) molecule if we assume that the frequencies of vibrations of some isotopomers overlap in the spectrum. An exception is the observed frequency 622.1 cm⁻¹; it may not be assigned to any of the isotopomers.

To further clarify peculiarities of the vibrational spectrum of the LiClO₃ molecule, it would be useful to carry out additional spectral investigations, including studies of IR and Raman spectra using the $^{16}O \rightarrow ^{18}O$, $^{35}Cl \rightarrow ^{37}Cl$, and $^{7}Li \rightarrow ^{6}Li$ isotopic substitutions. We hope that our calculations will be helpful for future studies of the LiClO₃ molecule.

REFERENCES

- 1. N. Smyrl and J. P. Devlin, J. Chem. Phys., 60, No. 6, 2540-2546 (1974).
- 2. I. R. Beattie and J. E. Parkinson, J. Chem. Soc., Dalton Trans., No. 6, 1185-1188 (1983).
- 3. L. Bencivenni, K. A. Gingerich, and R. Teghil, Inorg. Chim. Acta, 85, No. 1, 11-14 (1984).
- 4. L. Bencivenni, H. M. Nagarathna, K. A. Gingerich, and R. Teghil, J. Chem. Phys., 81, No. 8, 3415-3423 (1984).
- 5. G. Ritzhaupt, H. H. Richardson, and J. P. Devlin, High Temp. Sci., 19, 163-172 (1985).
- 6. G. Ritzhaupt and J. P. Devlin, J. Phys. Chem., 90, No. 26, 6764-6766 (1986).
- 7. J. S. Francisco and I. H. Williams, Chem. Phys., 114, No. 3, 339-345 (1987).
- 8. F. Ramondo, L. Bencivenni, and F. Grandinetti, Chem. Phys. Lett., 173, No. 5/6, 562-568 (1990).
- 9. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347-1363 (1993).
- 10. S. Husinaga, J. Chem. Phys., 42, No. 4, 1293-1302 (1965).
- 11. T. H. Dunning and P. J. Hay, Methods of Electronic Structure Theory, Vol. 3, H. F. Schaefer (ed.), Plenum, New York (1977).
- 12. T. H. Dunning, J. Chem. Phys., 53, No. 7, 2823-2833 (1970).
- 13. A. D. McLean and G. S. Chandler, ibid., 72, No. 10, 5639-5648 (1980).
- 14. H. Johansen, Chem. Phys. Lett., 11, No. 4, 466-471 (1971).
- 15. V. G. Solomonik, V. M. Ozerova, and V. V. Sliznev, Zh. Neorg. Khim., 27, No. 7, 1636-1642 (1982).
- 16. D. J. Gardiner, R. B. Girling, and R. E. Hester, J. Mol. Struct., 13, No. 1, 105-114 (1972).
- 17. G. Fogarasi and P. Pulay, in: Vibrational Spectra and Structure, Vol. 14, Amsterdam (1985), pp. 125-219.
- 18. N. Smyrl and J. P. Devlin, J. Phys. Chem., 77, No. 26, 3067-3070 (1973).