FAKULTA ústav výrobních s STROJNÍHO systémů INŽENÝRSTVÍ a robotiky	IČENÍ ronika			
Jméno: Filip Plachý			Datum měření: 22.2 2023	
Akademický rok: 2022/23	Ročník: 2	Semestr:	Datum odevzdání: 28.2. 2023	
Přednášková skupina: Studijní skupina: 2pAIŘ/1		Vyučující: Šubrt Kamil, Ing	Hodnocení:	
Číslo úlohy:	Název úlohy: Stejnosměrné obvody a elektronické prvky			

Úkoly cvičení

- 1. V zadaném stejnosměrném elektrickém obvodu podle obr. 1 změřte proudy ve všech
 - jeho větvích a dále úbytky napětí na jednotlivých prvcích. Takto získané výsledky

 ověřte
 - výpočtem metodou postupného zjednodušování obvodu.
- 2. Určete celkový odpor zapojení dle obr. 2 a jeho hodnotu ověřte výpočtem.
- 3. V zadaném stejnosměrném elektrickém obvodu podle obr. 3 změřte proudy ve všech
 - jeho větvích a výsledky opět ověřte výpočtem metodou Kirchhoffových zákonů.
- 4. Změřte a nakreslete charakteristiky fotovoltaického panelu I=f(U) a P=f(U).

Úkol 1

Metoda postupného zjednodušování Seznam použitých přístrojů – digitální multimetry laboratoře Schéma zapojení

Obrázek 1: Schéma zapojení SS obvodu (metoda postupného zjednodušení)

Naměřené hodnoty

R1	R2	R3	I1	I2	I3	U	U1	U2	U3
$[\Omega]$	[Ω]	[Ω]	[A]	[A]	[A]	[V]	[V]	[V]	[V]
8	33,2	34,6	0,087	0,023	0,111	5	0,69	0,79	3,92

Výpočet:

$$\sum_{i=1}^{n} R_i = R$$
 - pro sériové zapojení

$$\sum\nolimits_{i=1}^{n} \frac{1}{R_{i}} = \frac{1}{R} - \text{pro paralelní zapojení}$$

$$U = R * I - Ohmův zákon$$

$$R = R_{123} = \frac{R_1 * R_2}{R_1 + R_2} + R_3 = \frac{8 * 33.2}{8 + 32.2} + 34.6 = 41.05 [\Omega]$$

$$I_3 = \frac{U}{R_{123}} = \frac{5}{41.05} = 0.12180 [A] = 121.8 [mA]$$

$$U_3 = I_3 * R_3 = 0.1218 * 34.6 = 4.21 [V]$$

$$U_{12} = U - U_3 = 5 - 4.21 = 0.79 [V]$$

$$I_1 = \frac{U_1}{R_1} = \frac{0.79}{8} = 0.09875 [A] = 98.75 [mA]$$

$$I_2 = \frac{U_2}{R_2} = \frac{0.79}{33.1} = 0.023867 [A] = 23.87 [mA]$$

Výpočítané hodnoty

I1	I2	13	U1	U2	U3
[A]	[A]	[A]	[V]	[V]	[V]
0,09875	0,02387	0,1218	0,79	0,79	4,21

Úkol 2

Metoda transfigurace

Seznam použitých přístrojů – digitální multimetry laboratoře Schéma zapojení

Obrázek 2: Schéma zapojení SS obvodu (metoda transfigurace)

Naměřené hodnoty:

R1	R2	R3	R4	R5	I	U
[Ω]	[Ω]	$[\Omega]$	$[\Omega]$	$[\Omega]$	[A]	[V]
32,8	33,6	7,8	32,9	102,7	0,111	4,6

Výpočet

$$R = \frac{U}{I} = \frac{4.6}{0.111} = 41.44 \,\Omega$$

Zjednodušení pomocí trojúhelníku

Obrázek 3: Překreslení zadaného zapojení v konfiguraci "trojúhelník"

$$R_A = R_{12} = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = \frac{32,8 * 33,6}{32,8 + 33,6 + 7,8} = 14,85 [A]$$

$$R_B = R_{23} = \frac{R_2 * R_3}{R_1 + R_2 + R_3} = \frac{33,6 * 7,8}{32,8 + 33,6 + 7,8} = 3,53 [A]$$

$$R_C = R_{13} = \frac{R_1 * R_3}{R_1 + R_2 + R_3} = \frac{32,8 * 7,8}{32,8 + 33,6 + 7,8} = 3,45 [A]$$

$$R = R_A + \frac{(R_B + R_4) * (R_C + R_5)}{(R_B + R_4) + (R_C + R_5)} = 14,85 + \frac{(3,53 + 32,9) * (3,45 + 102,7)}{(3,53 + 32,9) + (3,45 + 102,7)} = \frac{41,97 \Omega}{100}$$

Úkol 3

Metoda Kirchhoffových zákonů

Seznam použitých přístrojů – digitální multimetry laboratoře

Schéma zapojení

Obrázek 4: Schéma zapojení SS obvodu (metoda Kirchhoffových zákonů)

Naměřené hodnoty

R1	R2	R3	I1	I2	13	U1	U2
[Ω]	[Ω]	[Ω]	[A]	[A]	[A]	[V]	[V]
68,1	17,3	95,4	0,036	-0,135	0,099	7	12,09

Uzel A -
$$I_1 + I_2 - I_3 = 0$$

Smyčka s
1 -
$$-U_1 + U_{R1} - U_{R2} + U_2 = 0 \dots - U_1 + R_1 * I_1 - R_2 * I_2 + U_2 = 0$$

Smyčka s
2 -
$$-U_2 + U_{R2} + U_{R3} = 0 \dots -U_2 + R_2 * I_2 + R_3 * I_3 = 0$$

3 rovnice o 3 neznámých

Úprava Pomocí matice:

$$\begin{pmatrix} 1 & 1 & -1 \\ R_1 & -R_2 & 0 \\ 0 & R_2 & R_3 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} 0 \\ U_1 - U_2 \\ U_2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -1 \\ 68,1 & -17,3 & 0 \\ 0 & 17,3 & 95,4 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 - 12,09 \\ 12,09 \end{pmatrix}$$

Výsledky pomocí Photomathu:

$$I_1 = -0.0390 [A]$$

 $I_2 = 0.140 [A]$
 $I_3 = 0.1012 [A]$

Úkol 4

Volt-ampérová a výkonová char. PV článku Seznam použitých přístrojů – digitální multimetry laboratoře Naměřené hodnoty

Výkon P = U * I

Osvícení 100% - Iz = 100 mA				
U[mV]	I[mA]	P[mW]		
5,33	8,78	46,7974		
5,28	9,04	47,7312		
5,18	9,53	49,3654		
5,07	9,78	49,5846		
4,84	9,87	47,7708		
4,43	9,87	43,7241		
3,95	9,87	38,9865		
3,82	9,83	37,5506		
3,64	9,82	35,7448		
3,51	9,82	34,4682		

Osvícení 80% - Iz = 83 mA				
U[mV]	I[mA]	P[mW]		
5,31	6,81	36,1611		

5,23	7,34	38,3882
5,15	7,7	39,655
5,06	8,01	40,5306
4,8	8,21	39,408
4,55	8,23	37,4465
4,18	8,24	34,4432
3,83	8,24	31,5592
3,54	8,25	29,205
3,26	8,26	26,9276

Osvícení 60% - Iz = 61 mA				
U[mV]	I[mA]	P[mW]		
5,22	5	26,1		
5,19	5,19	26,9361		
5,15	5,36	27,604		
5,13	5,46	28,0098		
5,1	5,57	28,407		
5,07	5,65	28,6455		
5,03	5,76	28,9728		
4,97	5,87	29,1739		
4,81	5,97	28,7157		
4,53	5,99	27,1347		

Grafy:

Závěr

1. Metoda postupného zjednodušování – Úloha pojednává o rozdílu mezi vypočítanými a naměřenými proudy a odpory. Měřená hodnota bude vždy nabývat nejistot v podobě

- nedokonalostí měřícího stroje, odporu spojovacích drátů atd. Naměřené hodnoty vyšly relativně přesně krom II a UI, kde nejspíš došlo k chybě měření.
- 2. Metoda transfigurace Cílem úlohy bylo porovnat odpory. Jeden pomocí naměřeného celkového proudu a napětí. Druhý zjednodušením schématu pomocí transfigurace (pomocí metody "trojúhelníku". Hodnoty se liší o půlku ohmu, což je v našem měřítku relativně malý rozdíl.
- 3. Metoda Kirchhoffových zákonů Úloha opět porovnávala vypočítané a něměřené hodnoty. Tentokrát se pro výpočet použili Kirchhoffové zákony, kdy jsem si určil jeden uzel a 2 smyčky (viz obrázek). Hodnoty jsou si podobné, krom přehozených znamínek, které byli způsobeny směrem meření multimetrem.
- 4. V A a Výkonová charakteristika PV článku U téhle úlohy jsme bohužel ve skupině udělali chybu ve měření. Špatně jsme pochopili to, že se máme zaměřit okolo maxima. Takže místo toho, abychom naměřili hodnoty v celé škále, tak jsme měřili čistě JENOM okolo maximálního bodu.