CS-E400204: Approximation Algorithms

Spring (Fifth Period) 2022

Lecture 10 (May 25): Randomized Rounding for Max-SAT

Lecturer: Kamyar Khodamoradi Scribe: Zeyu Liang

10.1 Problem definition

The maximum satisfiability problem (MAX-SAT) is to find the value of a series of boolean variables, which maximizes the total weight of satisfied ones among the clauses of a conjunctive normal form (CNF) formula.

- Literals: either a variable x_i or its negation \bar{x}_i ;
- Disjunctive: a clause C_i of the disjunction(or) of one or more literals, to avoid triviality, empty clause or a clause containing both x_j and \bar{x}_j of a same variable is not allowed;
- Length of a disjunctive: the number of literals contained in a disjunctive clause;
- Conjunctive Normal Form (CNF): a formula Φ of the conjunction (and) of one or more disjunctive clauses;
- Input:
 - n boolean variables x_1, \ldots, x_n ;
 - m disjunctive clauses C_1, \ldots, C_m (or in the form of CNF);
 - the weight of these clauses w_1, \ldots, w_m ;
- Output:
 - $\forall i \in \{1, ..., n\}$, the value of variable $x_i \leftarrow \mathbf{true} \mid \mathbf{false}$, that maximizes $\sum_{j=1}^m w_j \mid \text{clause } C_j$ satisfied.

10.2 Unbiased randomized algorithm

Consider setting the values of all the variables by coin-flipping: assign $x_i \leftarrow \mathbf{true}$ with probability $\frac{1}{2}$ and $x_i \leftarrow \mathbf{false}$ with probability $\frac{1}{2}$, for $i \in \{1, \dots, n\}$.

Theorem 1 (Unbiased randomized algorithm) This algorithm gives an expected $\frac{1}{2}$ -approximation for MAX-SAT.

Proof. Note the indicator variable y_j as 1 if clause C_j is satisfied, or 0 if not, $\forall j \in \{1, ..., m\}$, and W is the total weight of satisfied clauses. By definition, $W = \sum_{j=1}^{m} w_j y_j$, so by the linearity of expectation,

$$E[W] = E[\sum_{j=1}^{m} w_j y_j] = \sum_{j=1}^{m} w_j E[y_j] = \sum_{j=1}^{m} w_j \cdot (1 \cdot \Pr[C_j \text{ satisfied}] + 0 \cdot \Pr[C_j \text{ not satisfied}])$$

Note l_j as the length of clause C_j , the only case of clause C_j is not satisfied is that every literal in it is not satisfied (x_i is set as **false** for a literal x_i in C_j , and x_i is set as **true** for a literal \bar{x}_i in C_j), so based on unbiased

randomized assignment, $\Pr[C_j \text{ not satisfied}] = 2^{-l_j}$, and $\Pr[C_j \text{ satisfied}] = 1 - \Pr[C_j \text{ not satisfied}] = 1 - 2^{-l_j}$. As an empty clause is trivial and not allowed, $l_j \ge 1$, so $\Pr[C_j \text{ satisfied}] = 1 - 2^{-l_j} \ge \frac{1}{2}$, thus,

$$E[W] = \sum_{j=1}^{m} w_j \cdot \Pr[C_j \text{ satisfied}] \ge \frac{1}{2} \sum_{j=1}^{m} w_j \ge \frac{1}{2} \cdot \text{OPT}$$

10.3 Derandomization via conditional expectations

The approximation factor of the unbiased randomized algorithm is expectational. How to derandomize it, or to ensure that the algorithm gives an $\frac{1}{2}$ -approximation solution in any case?

Algorithm 1 A derandomized $\frac{1}{2}$ -approximation algorithm for MAX-SAT

```
\begin{array}{l} \textbf{for } i \in \{1,\ldots,n\} \ \textbf{do} \\ \textbf{if } E[W \,|\, x_1,\ldots,x_{i-1},x_i = \textbf{true}] \geq E[W \,|\, x_1\ldots,x_{i-1},x_i = \textbf{false}] \ \textbf{then} \\ x_i \leftarrow \textbf{true} \\ \textbf{else} \\ x_i \leftarrow \textbf{false} \\ \textbf{end if} \\ \textbf{end for} \\ \textbf{return } x_1,\ldots,x_n \end{array}
```

Theorem 2 The derandomized algorithm is an $\frac{1}{2}$ -approximation algorithm.

Proof. By definition of expectation,

$$E[W] = \frac{1}{2}(E[W \mid x_1 = \mathbf{true}] + E[W \mid x_1 = \mathbf{false}])$$

$$E[W \mid x_1, \dots, x_{i-1}] = \frac{1}{2}(E[W \mid x_1, \dots, x_{i-1}, x_i = \mathbf{true}] + E[W \mid x_1, \dots, x_{i-1}, x_i = \mathbf{false}]), \forall i \in \{2, \dots, n\}$$

As the larger of two values is surely no less than their average, in the first round of loop (i=1), it sets x_1 as the value leading to a larger expectation $E[W \mid x_1]$, there must be $E[W \mid x_1] \geq E[W]$ at the end of the first round. Similarly, every round i after that it sets x_i as the value leading to a larger expectation $E[W \mid x_1, \ldots, x_i]$, there must be $E[W \mid x_1, \ldots, x_i] \geq E[W \mid x_1, \ldots, x_{i-1}], \forall i \in \{2, \ldots, n\}$. By induction, $E[W \mid x_1, \ldots, x_n] \geq E[W] \geq \frac{1}{2}$ ·OPT, as the expectation $E[W \mid x_1, \ldots, x_n]$ becomes a fixed value of total weight of satisfied clauses after all boolean variables have been assigned, the derandomized algorithm has a definite approximation ratio of $\frac{1}{2}$.

There is one more problem about the derandomized algorithm: how to compute the conditional expectation $E[W | x_1, \ldots, x_i]$ after the value of x_1, \ldots, x_i have been assigned?

By definition, the conditional expectation $E[W \,|\, x_1, \ldots, x_i] = \sum_{j=1}^m w_j \cdot \Pr[C_j \text{ satisfied } |\, x_1, \ldots, x_i]$. For every clause C_j , if it is already satisfied under the value assignment of x_1, \ldots, x_i , then of course $\Pr[C_j \text{ satisfied } |\, x_1, \ldots, x_i] = 1$. Otherwise, assume C_j contains k unassigned variables (k literals of x_j or \bar{x}_j that $i < j \le n$), the only case of C_j is not satisfied is that all of those unassigned literals are not satisfied, so $\Pr[C_j \text{ satisfied } |\, x_1, \ldots, x_i] = 1 - 2^{-k}$. Then the conditional expectation is known via all the conditional probabilities.

10.4 Randomized rounding algorithm

The other solution to Max-SAT is interger programming. To describe the model, we introduce two other sets of variables: z_i is 1 if $x_i = \mathbf{true}$, or 0 if $x_i = \mathbf{false}$, and y_j is 1 if C_j is satisfied, or 0 if C_j is not satisfied. In addition, we separate every clause C_j into variables included as positive literals P_j and variables included as negated literals N_j , such as

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

Then the integer programming model is described as

$$\begin{aligned} \max \sum_{j=1}^m w_j y_j \\ \text{s.t.} \sum_{i \in P_j} z_i + \sum_{i \in N_j} (1-z_i) \geq y_j \\ z_i \in \{0,1\}, \\ y_j \in \{0,1\}, \end{aligned} \qquad \forall C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i \\ i \in \{1,\dots,n\} \\ j \in \{1,\dots,m\} \end{aligned}$$

The main limitation is to ensure that at least one literal is satisfied if a clause C_j is satisfied $(y_j = 1)$, or all the literals is not satisfied, thus C_j is not satisfied $(y_j = 0)$.

The corresponding LP relaxation is

$$\max \sum_{j=1}^{m} w_j y_j$$

$$\text{s.t.} \sum_{i \in P_j} z_i + \sum_{i \in N_j} (1 - z_i) \ge y_j \qquad \forall C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$

$$0 \le z_i \le 1, \qquad i \in \{1, \dots, n\}$$

$$0 \le y_j \le 1, \qquad j \in \{1, \dots, m\}$$

As OPT is the optimum of the integer programming model, note OPT_{LP} as the optimum of the relaxation, then obviously $OPT_{LP} \ge OPT$.

With the help of LP relaxation, there is a randomized rounding strategy that to solve the relaxation and (z^*, y^*) is the optimum, then set $x_i \leftarrow \mathbf{true}$ with probability of z_i^* , and $x_i \leftarrow \mathbf{false}$ with probability of $1 - z_i^*$.

Theorem 3 (Randomized rounding algorithm) The randomized rounding strategy above gives an $(1-\frac{1}{e})$ -approximation algorithm of MAX-SAT.

There are two facts required to proof it.

Definition 1 A function $f: \mathbb{R} \to \mathbb{R}$ is called concave on its domain, if $f''(x) \leq 0$ on the entire domain.

Fact 1 If a function f(x) is concave on [0,1], and f(0)=a,f(1)=a+b, then $f(x)\geq a+bx, \forall x\in [0,1]$.

Fact 2 (Arithmetic-geometric mean inequality) For any nonnegative a_1, \ldots, a_k , there is

$$(\prod_{i=1}^{k} a_i)^{\frac{1}{k}} \le \frac{1}{k} \sum_{i=1}^{k} a_i$$

Figure 10.1: A concave function on the interval [0,1]

Proof. [Randomized rounding algorithm] According to Fact 2, for every clause C_j , the probability of not satisfied under assignment by randomized rounding is

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - z_i^*) \prod_{i \in N_j} z_i^* \\ &\leq [\frac{1}{l_j} (\sum_{i \in P_j} (1 - z_i^*) + \sum_{i \in N_j} z_i^*)]^{l_j} \\ &= \{1 - \frac{1}{l_j} [\sum_{i \in P_j} z_i^* + \sum_{i \in N_j} (1 - z_i^*)]\}^{l_j} \\ &\leq (1 - \frac{y_j^*}{l_j})^{l_j} \end{split}$$

For any specific $l \geq 1$, consider the function $g_l(u) = 1 - (1 - \frac{u}{l})^l, u \in [0, 1]$, then

$$g'_l(u) = -l(1 - \frac{u}{l})^{l-1} \cdot (-\frac{1}{l}) = (1 - \frac{u}{l})^{l-1}$$

$$g_l''(u) = (l-1)(1-\frac{u}{l})^{l-2} \cdot (-\frac{1}{l}) = \frac{1-l}{l}(1-\frac{u}{l})^{l-2}, l \ge 2$$

$$g_1''(u) = \frac{\mathrm{d}}{\mathrm{d}u}(1) = 0$$

When $l \ge 1, 0 \le u \le 1$, there must be $g''_l(u) \le 0$, so g_l is concave on [0,1]. As $g_{l_j}(0) = 0, g_{l_j}(1) = 1 - (1 - 1)$

 $\frac{1}{l_i}$) l_j , $y_j^* \in [0, 1]$, according to fact 1,

$$\begin{split} \Pr[C_j \text{ satisfied}] &= 1 - \Pr[C_j \text{ not satisfied}] \\ &\geq 1 - (1 - \frac{y_j^*}{l_j})^{l_j} \\ &= g_{l_j}(y_j^*) \\ &\geq g_{l_j}(0) + [g_{l_j}(1) - g_{l_j}(0)] y_j^* \\ &= [1 - (1 - \frac{1}{l_j})^{l_j}] y_j^* \\ &\geq (1 - \frac{1}{e}) y_j^* \end{split}$$

Therefore,

$$E[W] = \sum_{j=1}^{m} w_j \cdot \Pr[C_j \text{ satisfied}]$$

$$\geq (1 - \frac{1}{e}) \sum_{j=1}^{m} w_j y_j^*$$

$$= (1 - \frac{1}{e}) \text{OPT}_{LP}$$

$$\geq (1 - \frac{1}{e}) \text{OPT}$$

this algorithm has an approximation-factor of $(1 - \frac{1}{e})$.

10.5 Combining both algorithms

Theorem 4 (Meta-ALG) Let both of the unbiased randomized and the randomized rounding algorithm run, and return the better solution, it leads to a $\frac{3}{4}$ -approximation algorithm.