Linear Algebra II

Supplementaries - 5 _____

ζ

April 4, 2023

本次补充讲义主要为相关内容的一些题目补充, 选题为相关内容中一些经典的问题.

1 特征值的应用

1.1 方程求解

Problem 1.1. 设 J 是一个特征值等于非零常数 λ 的 n 阶 Jordan 块, 求 J^m $(m \ge 1)$ 的 Jordan 标准型. (也可继续考虑 $\lambda = 0$ 的情况.)

Problem 1.2. 设 A 为 n 阶非奇异复矩阵, 证明: 对任一正整数 m, 存在 n 阶复矩阵 \boldsymbol{B} , 使 得 $\boldsymbol{B}^m = \boldsymbol{A}$. [Hint] 考虑上一问题的结论.

Problem 1.3. 设 A, B 分别是 m, n 阶矩阵, 求证: 矩阵方程 AX - XB = O 只有零解的充分必要条件是 A 和 B 无公共的特征值.

[**Hint**] 注意到此时对于 A 的特征多项式 f_A , 有 $f_A(B)$ 为可逆矩阵, 此结论也留作练习.

Problem 1.4. 设 A, B 分别是 m, n 阶矩阵, C 为 $m \times n$ 矩阵, 求证: 矩阵方程 AX - XB = C 存在唯一解的充分必要条件是 A 和 B 无公共的特征值.

1.2 特征值与交换性

Problem 1.5. 设 φ , ϕ 是数域 \mathbb{F} 上线性空间 V 上可交换的线性变换, 且 φ , ϕ 的特征值都在 \mathbb{F} 中, 求证: φ , ϕ 至少有一个公共的特征向量.

Remark 矩阵的相似标准型只不过是同一线性变换在不同基底下的表示, 因此有些问题可以直接以线性变换的角度去考虑.

Problem 1.6. 设 $A = \text{diag} \{A_1, A_2, \dots, A_m\}$ 为 n 阶分块对角矩阵, 其中 A_i 是 n_i 阶矩阵且 两两没有公共的特征值. 设 B 是 n 阶矩阵, 满足 AB = BA, 求证: $B = \text{diag} \{B_1, B_2, \dots, B_m\}$, 其中 B_i 也是 n_i 阶矩阵.

2 相似对角化 2

2 相似对角化

在这里我们明确,以下所涉及的对角化问题均为相似对角化,在后续的知识学习中,我们会遇到另一种合同对角化的概念. 关于相似对角化的等价命题,我们的课本中已经给出了一些,加之 Jordan 标准型的思想,我们可以清晰看到 Jordan 块的大小称为对角化的阻碍,代数重数也因此大于或等于几何重数.

2.1 一般相似对角化问题

Problem 2.1. 设 A 是 n 阶复矩阵且有 n 个不同的特征值, 求证: n 阶复矩阵 B 可以对角化的充要条件是存在次数不超过 n-1 的多项式 f(x), 使得 B 相似于 f(A).

Corollary 任何复矩阵可对角化当且仅当其相似于循环矩阵.

Problem 2.2. 设 m 阶矩阵 A 与 n 阶矩阵 B 没有公共的特征值,且 bmA, B 均可对角化, C 为任意 $m \times n$ 矩阵,求证: $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$ 也可以对角化.

Problem 2.3. 设 A 为 m 阶矩阵, B 为 n 阶矩阵, C 为 $m \times n$ 矩阵, $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$, 求证: 若 M 可对角化, 则 A, B 均可对角化.

[**Hint**] 这两例均可考虑分析矩阵的特征值的代数重数与几何重数,分别为特征多项式根的重数,与特征向量空间的维数.

2.2 同时相似对角化

Problem 2.4. 设 A, B 为 n 阶矩阵, 若 A 有 n 个不同的特征值且 AB = BA, 求证: B 相似于对角矩阵.

Problem 2.5. 设 n 阶矩阵 $\{A_i \mid i=1,\ldots,m\}$ 两两可交换, 即 $A_iA_j = A_jA_i$ 对于一切 i,j 成立. 假定每个 A_i 均可对角化, 求证: 它们可同时对角化.

Problem 2.6 (同时上三角化). 若 A, B 都是数域 \mathbb{F} 上的 n 阶矩阵, 且 AB = BA, 假定 A, B 的特征值都在 \mathbb{F} 中, 求证: 存在 \mathbb{F} 上的可逆矩阵 P, 使得 $P^{-1}AP$ 及 $P^{-1}BP$ 均为上三角矩阵.

3 交换性与多项式表示

Problem 3.1. 设 J 是 n 阶 Jordan 块且主对角元素为 λ_0 , 求证: 和 J 乘法可交换的 n 阶矩 阵必可表示为 J 的次数不超过 n-1 的多项式.

Problem 3.2 (Jordan-Chevalley 分解定理). 设 A 是 n 阶复矩阵, 证明: A 可分解为

4 其它问题 3

$$A = B + C$$

其中 B 是可对角化矩阵, C 是幂零矩阵且 BC = CB, 并且这种分解是唯一的. Remark 此题虽然不难, 但它是李代数理论中一重要定理.

4 其它问题

Problem 4.1. 设 A 为 n 阶复矩阵, 证明: 存在 n 阶复对称矩阵 B, C, 使得 A = BC, 并且可以指定 B, C 中任何一个为可逆矩阵.

[Hint] 利用 Jordan 标准型.

Problem 4.2. 设 A 是 n 阶矩阵, 若 tr(A) = 0, 则 A 相似于一个主对角线上元素全等于零的矩阵.

Remark 在第十届全国大学生数学竞赛决赛试题中, 高等代数题目为此结论的平凡推论.

Problem 4.3. 设 C 是 n 阶矩阵, 求证: 存在 n 阶矩阵 A, B 使得 AB - BA = C, 的充要条件是 tr(C) = 0.

Remark 此题有一部分李代数的背景.