

심혈관계질환예측교로젝트

2022-07-08 ~ 07-11 이현민

Contents

- 1. 프로젝트 소개
- 2. 데이터 전처리
- 3. EDA
- 4. 데이터 모델링
- 5. 웹 페이지 with Flask
- 6. 개발 후기 및 느낀점

1 프로젝트 소개

심혈관계 질환 예측 서비스

- 핵심 서비스: 건강 데이터을 활용한 질병 예측 서비스
- 핵심 기술: Keras, DNN을 이용한 예측 AI
- 서비스 설명:
 나의 건강 데이터를 바탕으로
 심혈관 질환에 걸릴 확률을 계산해주어
 질병 예방에 도움을 준다.

1 프로젝트 소개

서비스 구현 배경

전세계 10대 사망원인 중 1위로 매우 높은 사망률을 기록하는 질환.

출처: https://www.mediscan.co.kr/kr/customer/card_news.php?bgu=view&idx=1232

다양한 심혈관계질환의 원인

→ 현대인들에게 흔히 보임

1 프로젝트 소개

데이터 소개

Cardiovascular Disease dataset The dataset consists of 70 000 records of patients data, 11 features + target.	
Data Code (165) Discussion (10) Metadata	
About Dataset	Usability ⊙ 6.47
Data description	License Unknown
There are 3 types of input features:	Unknown
Objective: factual information;	Expected update frequency
Examination: results of medical examination; Subjective: information given by the patient.	Not specified

Kaggle dataset – Cardiovascular Disease dataset (https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset)

- cardio_train.csv 70000 rows x 13 columns

Features:

1. age: 나이

2. gender: 성별

3. height: 키

4. ap-hi: 수축기 혈압

5. ap-lo: 이완기 혈압

6. cholesterol: 콜레스테롤

7. gluc: 포도당

8. smoke: 흡연

9. alco: 알코올 섭취

10. active: 신체활동 유무

- Target:

cardio: 심혈관 질환 유무

2 데이터 전처리

결측치, 데이터 분포

df.isnull().	sum()
id	0
age	0
gender	0
height	0
weight	0
ap_hi	0
ap_lo	0
cholesterol	0
gluc	0
smoke	0
alco	0
active	0
cardio	0
dtype: int64	

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000
mean	49972.419900	19468.865814	1.349571	164.359229	74.205690	128.817286	96.630414	1.366871	1.226457	0.088129	0.053771	0.803729	0.499700
std	28851.302323	2467.251667	0.476838	8.210126	14.395757	154.011419	188.472530	0.680250	0.572270	0.283484	0.225568	0.397179	0.500003
min	0.000000	10798.000000	1.000000	55.000000	10.000000	-150.000000	-70.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000
25%	25006.750000	17664.000000	1.000000	159.000000	65.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.000000	0.000000
50%	50001.500000	19703.000000	1.000000	165.000000	72.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.000000	0.000000
75%	74889.250000	21327.000000	2.000000	170.000000	82.000000	140.000000	90.000000	2.000000	1.000000	0.000000	0.000000	1.000000	1.000000
max	99999.000000	23713.000000	2.000000	250.000000	200.000000	16020.000000	11000.000000	3.000000	3.000000	1.000000	1.000000	1.000000	1.000000

- 결측치: 존재하지 않음

- Numerical data: 'age', 'height', 'weight', 'ap_hi', 'ap_lo'

- Categorical data: 'gendet', 'cholesterol', 'gluc', 'smoke', 'alco', 'active'

2 데이터 전처리

이상치 제거

- height: 120이하, 190이상인 데이터 제거

- weight: 30이하, 150이상인 데이터 제거

- ap_hi: 50이하, 200이상인 데이터 제거

- ap_lo: 40이하, 140이상인 데이터 제거

데이터 간 상관관계

- 'ap_hi' 'ap_lo' & 'gender' 'height'순으로 상관관계가 높다.
- Target data인 'cardio'와 상관관계가 높은 Feature는 'age', 'ap_hi', 'ap_lo' 'cholesterol'이다.

<u> 19</u> -	1	0.0039	0.0027	0.0032	0.00084	0.0015	0.00055	0.0056	0.002	0.0032	0.00048	0.004	0.0038
age	0.0039	1	0.023	0.085	0.058	0.21	0.15	0.16	0.099	0.048	0.029	0.01	0.24
gender	0.0027	0.023	1	0.52	0.16	0.06	0.067	0.037	0.021	0.34	0.17	0.0057	0.0069
height	- 0.0032	0.085	0.52	1	0.31	0.017	0.035	0.055	0.021	0.2	0.097	0.0082	0.012
weight	0.00084	0.058	0.16	0.31	1	0.27	0.25	0.14	0.11	0.068	0.069	0.019	0.18
id_qe	0.0015	0.21	0.06	0.017	0.27	1	0.71	0.19	0.092	0.027	0.033	0.0011	0.43
ol_de	0.00055	0.15	0.067	0.035	0.25	0.71	1	0.16	0.075	0.025	0.04	0.00031	0.34
cholesterol	0.0056	0.16	0.037	0.055	0.14	0.19	0.16	1	0.45	0.01	0.036	0.0087	0.22
gluc	0.002	0.099	0.021	0.021	0.11	0.092	0.075	0.45	1	0.0055	0.01	0.008	0.09
smoke	0.0032	0.048	0.34	0.2	0.068	0.027	0.025	0.01	0.0055	1	0.34	0.026	0.017
alco -	0.00048	0.029	0.17	0.097	0.069	0.033	0.04	0.036	0.01	0.34	1	0.025	0.0083
active	0.004	0.01	0.0057	0.0082	0.019	0.0011	0.00031	0.0087	0.008	0.026	0.025	1	0.038
cardio	0.0038	0.24	0.0069	0.012	0.18	0.43	0.34	0.22	0.09	0.017	0.0083	0.038	1
	id	1		boight		ne lai	1	halastara	I when		nlen.		cardio

- 0.2

'age' column

- 55세 이상 부터는 심혈관계질환에 걸린 사람이 더 많음을 알 수 있다.
- cardio와 상관관계가 높음을 알 수 있고 예측에 유의미하게 작용할 것이다.

* cardio(1=걸림, 0=안걸림)

Categorical columns

(이상치 처리 후)'height', 'weight', 'ap_hi', 'ap_lo'

Base model

<Modeling Flow>

- 1. Train, Validation, Test split -> 6:2:2
- 2. Keras 모델 생성(5, 10, activation=linear)
- 3. Callback함수 구현 (monitor=val_loss, factor=0.6, patienc=4)
- 4. Model fit (epochs=100, batch_size=32, shuffle=True)
- 5. 성능확인

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 5)	60
dense_1 (Dense)	(None, 10)	60
dense_2 (Dense)	(None, 1)	11
=======================================	=======================================	=======

Total params: 131 Trainable params: 131 Non-trainable params: 0

< base_model.summary() >

Base model 성능

Loss(cross_entropy): 0.5706 Test accuracy: 0.7218

6. Base model을 기준으로 3개의 Case로 테스트해본다.

Non-trainable params: 0

Case 1 & Case 2

Model: "sequential_2"		
Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 2)	24
dense_7 (Dense)	(None, 256)	768
dense_8 (Dense)	(None, 1)	257
Total params: 1,049 Trainable params: 1,049		

Case1 (2, 256, activation=elu)

Case 1 성능

Loss(cross_entropy): 0.5552(-0.015) Test accuracy: 0.7301(+0.01)

Model: "sequential_3"		
Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 2)	24
dense_10 (Dense)	(None, 512)	1536
dense_11 (Dense)	(None, 1)	513
Total params: 2,073 Trainable params: 2,073		

Non-trainable params: 0

Case2 (2, 512, activation=elu)

Case 2 성능

Loss(cross_entropy): 0.5636(-0.01) Test accuracy: 0.7196(-0.003)

Case 3(Best model)

Model: "sequential_4"						
Layer (type)	Output Shape	Param #				
dense_12 (Dense)	(None, 256)	3072				
dense_13 (Dense)	(None, 256)	65792				
dense_14 (Dense)	(None, 1)	257				
======================================						

Trainable params: 69,121 Non-trainable params: 0

Case3 (256, 256, activation=elu)

Case 3 성능

Loss(cross_entropy): 0.5433(-0.03) Test accuracy: 0.7332(+0.013)

Accuracy history

Loss history

Feature importance

5 웹페이지 with Flask

Flow chart

5 웹페이지 with Flask

6 개발후기 및 느낀점

Thank you