Résumé MS2

Sami AS

17 mars 2021

- Mécanique du solide
 - Les contraintes
 - Les déformations
 - Les lois de comportement
 - Remarques d'après-TP
- 2 Mécanique des structures
 - Traction/Compression
 - Flexion

Les contraintes Les déformations Les lois de comportement Remarques d'après-TP

Le tenseur de contraintes

La mécanique des solides diffère de la mécanique rationnelle parce que les solides se <u>déforment</u>. Ils vont donc développer des efforts internes, et la notion de *tenseur de contraintes* intervient pour les quantifier.

Tenseur de contraintes de Cauchy

 $T_i^{(n)} \equiv \tau_{ji} n_j$ est l'écriture du tenseur de contraintes. Il s'agit d'un tenseur d'ordre 2, ce qui veut dire que l'élément $T_i^{(n)}$ est un **vecteur**.

Une contrainte représente un effort interne par unité de surface, et est toujours associée à un plan de coupe, lui défini par une normale extérieure. La contrainte représente alors l'action de la partie coupée sur la partie qu'on étudie.

Remarques et propriétés des tenseurs

Propriétés des tenseurs d'ordre 2

- ∃ directions principales : celles pour lesquelles la composante normale du vecteur de contrainte est maximale. $tan(2\theta) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$
- ∃ valeurs principales qui sont la valeur de contrainte normale principale associée à une direction principale.
- On peut définir le tenseur dans d'autres axes à l'aide de la formule de changement d'axes : $T'_{PQ} = \alpha_{Pi}\alpha_{Qi}T_{ij}$.

Remarque : on mesure les contraintes grâce au tenseur de Cauchy une fois que le solide a été déformé (suite aux forces de volume, de surface), donc à l'équilibre après déformation. Cependant il arrive souvent qu'on le représente dans l'état initial sans déformation parce qu'on considère des petites déformations.

Les déformations dans un solide

- Déformations naturelles : non-linéaires, ce sont les déformations de Lagrange. On les garde dans un tenseur de déformation : le tenseur de déformation de Lagrange L_{jk}.
- Déformations linéaires : c'est la partie symétrique du gradient de déplacement, qu'on utilise pour des **petites déformations**. Le tenseur associé aux petites déformations (donc linéaires) est noté ε_{ij} .

Tenseurs de déformations

$$L_{jk} = \frac{1}{2}(u_{j,i} + u_{i,j} + u_{i,j}u_{i,k})$$

$$\varepsilon_{ij} = \frac{1}{2}(u_{j,i} + u_{i,j})$$

Les déformations
Les lois de comportement
Remarques d'après-TP

Lois de comportement

On lie les déformations et les contraintes à travers les lois de comportement. Pour des déformations linéaires, on utilise les lois de **Hooke**.

Lois de Hooke : $\varepsilon_{ij} \leftrightarrow \tau_{ij}$

$$\varepsilon_{ij} = \frac{1}{E} \left[(1 + \nu) \tau_{ij} - \nu \, \delta_{ij} \, \tau_{kk} \right] \tag{1}$$

$$\tau_{ij} = \frac{E}{1+\nu} \left[\varepsilon_{ij} + \frac{\nu}{1-2\nu} \, \delta_{ij} \, \varepsilon_{kk} \right] \tag{2}$$

Les déformations Les lois de comportement Remarques d'après-TP

Les contraintes

Lois fondamentales de la mécanique

Avec:

- Forces de volume f_i
- ullet Masse volumique ho

On peut écrire les lois suivantes.

Lois fondamentales

- Résultante cinétique : $\rho v_i^\circ = \tau_{ji,\ j} + f_i$. C'est la loi de Newton $\vec{f} = m\vec{a}$, avec les forces de volumes et de surface (c'est la dérivée de τ_{ij} parce que l'intégrale de surface des forces de surfaces (= les contraintes) est passée en intégrale de volume de la divergence par le théorème de Gauss). On déduit l'équation d'équilibre de translation en statique : $f_i + \partial_j \tau_{ij} = 0$. Les forces de volumes équilibre le **gradient de contraintes**.
- Moment cinétique : $\tau_{ij} = \tau_{ji}$. Le tenseur est donc symétrique.

Formules utiles

Cercle de Mohr : changement d'axes et valeurs principales

- Les valeurs principales : $\sigma_{I,II} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x \sigma_y}{2}\right)^2 + \tau_{xy}^2}$
- Les contraintes lors dans les nouveaux axes :

$$\begin{cases} \sigma_{u} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) + \tau_{xy}\sin(2\theta) \\ \sigma_{v} = \frac{\sigma_{x} + \sigma_{y}}{2} - \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) - \tau_{xy}\sin(2\theta) \\ \tau_{uv} = -\frac{\sigma_{x} - \sigma_{y}}{2}\sin(2\theta) + \tau_{xy}\cos(2\theta) \end{cases}$$

- Mécanique du solide
 - Les contraintes
 - Les déformations
 - Les lois de comportement
 - Remarques d'après-TP
- 2 Mécanique des structures
 - Traction/Compression
 - Flexion

On commence par l'étude de l'élément structural le plus simple : une poutre, avec faible section transversale. On va étudier les différentes sollicitations : MNV, les efforts internes qui s'appliquent sur toute la section transversale.

Point fondamental

But du chapitre : pour chaque situation, on va essayer de trouver les sollicitations.

$$\Rightarrow M, N, V$$

Traction/Compression

En traction/compression, on n'a que l'effort normal N. On le calcule et puis on calcule les déformations associées.

Hypothèse cinématique 1 de Bernoulli

Les déformations sont constantes sur la section transversale, dont les sections planes restent planes.

Traction/Compression

$$\sigma_{x} = \frac{N}{A} \quad u_{max} = \frac{NL}{EA}$$

$$u_{max} = \frac{NL}{EA}$$

Flexion

Hypothèse cinématique 2 de Bernoulli

- Les sections planes restent planes
- Les normales restent normales

Flexion

$$\sigma_{x} = \frac{M_{z} \ y}{I_{z}}$$