Resources

Daniel Ari Friedman ORCID: 0000-0001-6232-9096 Email: daniel@activeinference.institute

August 14, 2025

Contents

L	Resources (References and Further Reading)
	1.1 Quadrays and Synergetics (core starting points)
	1.2 4dsolutions (Kirby Urner) — repositories and key artifacts
	1.3 Comprehensive index of 4dsolutions artifacts (selected)
	1.3.1 Primary hub: School_of_Tomorrow (Python + notebooks)
	1.3.2 Additional repositories
	1.3.3 Additional educational resources
	1.3.4 Media and publications
	1.3.5 Background and community materials
	1.4 Geometry and volumes (Coxeter.4D context)
	1.5 Optimization and information geometry
	1.6 Active Inference
	1.7 Community discussions and context
	1.8 Related projects and applications
	1.9 Tooling
	1.10 Cross-language and cross-platform validation

1 Resources (References and Further Reading)

1.1 Quadrays and Synergetics (core starting points)

ourses (Deferences and Further Deading)

- Quadray coordinates (intro and conversions): Urner Quadray intro, Urner Quadrays and XYZ
- Synergetics background and IVM: Synergetics (Fuller, overview)

1.2 4dsolutions (Kirby Urner) — repositories and key artifacts

- Organization overview: 4dsolutions (GitHub org) Python-centered explorations of Quadrays and synergetic geometry.
- Math for Wisdom (m4w): m4w (repo)
 - Quadray vectors and conversions: qrays.py (Qvector, SymPy-aware)
 - Synergetic tetravolumes and modules: tetravolume.py PdF/CM vs native IVM, BEAST
- School_of_Tomorrow (notebooks/code): School_of_Tomorrow (repo)
 - Tom Ace 5×5 determinant: Qvolume.ipynb
 - Bridging vs native tetravolumes: VolumeTalk.ipynb
- **Historical variants**: grays.py also appears in Python5 (archive).

Context: These materials popularize the IVM/CCP/FCC framing of space, integer tetravolumes, and projective Quadray normalization. They inform the methods in this paper and complement the src/ implementations (see quadray.py, cayley menger.py, linal quils.py).

1.3 Comprehensive index of 4dsolutions artifacts (selected)

1.3.1 Primary hub: School_of_Tomorrow (Python + notebooks)

- Repository: School of Tomorrow
- Core modules:
 - qrays.py: Quadray implementation with normalization, conversions, and vector ops (qrays.py source School_of_Tomorrow)
 - quadcraft.py: POV-Ray scenes for CCP/IVM arrangements, animations, and tutorials (quadcraft.py source School of Tomorrow)
 - flextegrity.py: Polyhedron framework, concentric hierarchy, POV-Ray export (flextegrity.py source School of Tomorrow)
 - Additional: polyhedra.py, identities.py, smod play.py (synergetic modules)
- · Notebooks:
 - QuadCraft_Project.ipynb: Interactive tutorials; CCP navigation and tetra demos (QuadCraft_Project.ipynb School of Tomorrow)
 - Qvolume.ipynb: Tom Ace 5×5 determinant; random-walk IVM volumes (Qvolume.ipynb School of Tomorrow)
 - VolumeTalk.ipynb: Bridging (CM/PdF) vs native (Ace/GdJ) tetravolumes (VolumeTalk.ipynb School of Tomorr
 - TetraBook.ipynb, CascadianSynergetics.ipynb, Rendering_IVM.ipynb, SphereVolumes.ipynb (visual and curricular materials)

1.3.2 Additional repositories

- tetravolumes: algorithms and pedagogy for tetra volumes
 - Repo: tetravolumes
 - Code: tetravolume.py
 - Notebooks: Atoms R Us.ipynb, Computing Volumes.ipynb
- rusty_rays: Rust port highlighting cross-language consistency
 - Repo: rusty rays
 - Sources: Rust library implementation, Rust command-line interface
- synmods: Clojure/functional approach to Quadrays and synergetic modules
 - Repo: synmods
 - Sources: qrays.clj, ramping up.clj
- BookCovers: VPython for interactive educational animations
 - Repo: BookCovers
 - Examples: bookdemo.py, stickworks.py, tetravolumes.py

1.3.3 Additional educational resources

- Oregon Curriculum Network (OCN): OCN portal
- Python for Everyone: pymath page
- Python5 notebooks: Polyhedrons 101.ipynb

1.3.4 Media and publications

- YouTube demonstrations: Synergetics talk 1, Synergetics talk 2, Additional
- Academia profile: Kirby Urner at Academia.edu
- Fuller Institute: BFI Big Ideas: Synergetics

1.3.5 Background and community materials

- RW Gray projects Synergetics text: rwgrayprojects.com (synergetics)
- Fuller FAQ: C. J. Fearnley's Fuller FAQ
- Synergetics resource list: C. J. Fearnley's resource page
- Wikieducator: Synergetics hub
- Quadray animation: Quadray.gif (Wikimedia Commons)

1.4 Geometry and volumes (Coxeter.4D context)

- Regular polytopes (Euclidean E⁴): H. S. M. Coxeter, Regular Polytopes (Dover ed.), p. 119 clarifies Euclidean 4D vs spacetime.
- Sphere packings and lattices: J. H. Conway & N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer)
- Cayley-Menger determinant: Cayley-Menger determinant (reference)
- Tetrahedron volume: Tetrahedron: volume (reference)
- Bareiss algorithm (exact determinants): Bareiss algorithm (reference)

1.5 Optimization and information geometry

- Nelder-Mead method: Nelder-Mead (reference)
- **Fisher information**: Fisher information (reference) see also Eq. (??)
- Natural gradient: Natural gradient (reference) see Eq. (??)

1.6 Active Inference

- Free energy principle: Free energy principle (reference)
- Comprehensive review: Active Inference recent review (UCL Discovery, 2023)

1.7 Community discussions and context

- Math4Wisdom: IVM→XYZ conversions (curated page)
- synergeo (groups.io): Synergetics discussion archive
- GeodesicHelp: Geodesic computations archive (Google Groups)

1.8 Related projects and applications

- QuadCraft: Tetrahedral voxel engine using Quadrays
- Flextegrity: Generating the Flextegrity Lattice (academia.edu)

1.9 Tooling

• GCC libquadmath (binary128): Official GCC libquadmath documentation

1.10 Cross-language and cross-platform validation

- **Rust (rusty_rays)** and **Clojure (synmods)** mirror the Python algorithms for vector ops and tetravolumes, serving as independent checks on correctness and performance comparisons.
- POV-Ray (quadcraft.py) and VPython (BookCovers) demonstrate rendering pipelines for CCP/IVM scenes and educational animations.