1- در ابتدا داده ها را اسکیل کردیم و x , y را جدا کردیم و طبق مطلب گفته شده کلاس ها را از چهار گروه به دو گروه گران و ارزان تبدیل کردیم (0, 1). سپس forward feature selection را پیاده سازی کردیم.

```
def forward_selection(x, y):
  features = []
  final_features = {'features': [], 'scores': []}
  rem features = x.columns
  for i in range(len(x.columns)):
    max_score = 0
    best_feature = ""
    best score = 0
    for feature in rem features:
      new_x = x[features + [feature]]
      x_train, x_test, y_train, y_test = train_test_split(new_x, y,
test_size=0.2, random state=21)
      logisticregression = LogisticRegression()
      logisticregression.fit(x_train, y_train)
      y_pred = logisticregression.predict(x_test)
      score = metrics.roc_auc_score(y_test, y_pred)
      if score > max score :
        max score = score
        best feature = feature
        best score = score
    rem features = rem features.drop(best feature)
    features.append(best_feature)
    final_features['features'].append(best_feature)
    final_features['scores'].append(best_score)
  final_features['features_rank'] = range(len(x.columns))
  best index = 0
  mx feature = 0
  for i in range(len(final features['scores'])):
    if final_features['scores'][i] > mx_feature:
      mx_feature = final_features['scores'][i]
      best_index = i
  final_features['best_features'] = final_features['features'][:best_index]
  return final features
```

با استفاده از آن و مقایسه امتیاز ها 4 تا از بهترین فیچر ها انتخاب شدند.

'best_features': ['ram', 'px_height', 'battery_power', 'px_width']}

2- حال نوبت به آموزش می رسد. 20 درصد دادهها را برای تست جدا می کنیم. برای آموزش از رگرسیون الجستیک استفاده می کنیم. و بعد از آن پیش بینی مقادیر تست را انجام می دهیم. سپس precision, recall, f1-score, را چاپ می کنیم که در آن مقادیر accuracy آمده.

	precision	recall	f1-score	support
0	1.00	0.98	0.99	215
1	0.97	0.99	0.98	185
accuracy			0.98	400
accuracy macro avg	0.98	0.99	0.98	400
weighted avg	0.99	0.98	0.99	400

با توجه به شکل بالا متوجه می شویم که مدل به خوبی آموزش دیده و تقریبا درست پیشبینی کرده. -3 از PCA استفاده کرده و آن را روی داده ها فیت می کنیم با تعداد 4 component. دیتاست را تغییر داده.

```
pca = PCA(n_components=4)
pca.fit_transform(x)
pca.n_components_
```

4- از همان رگرسیون لجستیک برای آموزش داده ها استفاده می کنیم تا نتایج را بسنجیم و پس از آموزش از classification report استفاده کرده تا گزارش کاملی بدهد و کار مقایسه راحت تر باشد.

	precision	recall	f1-score	support
	0.00	2 22	0.00	215
0	0.99	0.99	0.99	215
1	0.98	0.99	0.99	185
accuracy			0.99	400
macro avg	0.99	0.99	0.99	400
weighted avg	0.99	0.99	0.99	400

همانطور که مشاهده می شود تقریبا هردو به خوبی عمل کرده اند و نتایجی نزدیک به صد درصد داده اند.

5- ندارد.

-6

الف)

10 بین که اندازه هرکدام 149.7 است.

3 بين كه اندازه هركدام 499 است.

5 بين هم اندازه.

5 بين غير هم اندازه.

ب) در فایل انجام شده.

ج) برای این فیچر ها انجام شده.

یک نمونه از قبل و بعد در اینجا مشاهده می شود.

1.5

2.0

2.5

1.0

0.5

د) فیچر حجم را ساختیم.

df['mobile_volume'] = df['sc_w'] * df['sc_h'] * df['m_dep']

<pre>df[['sc_h','sc_h','m_dep','mobile_volume']] </pre> <pre> 0.6s</pre>					
	sc_h	sc_h	m_dep	mobile_volume	
0	9	9	0.6	37.8	
1	17	17	0.7	35.7	
2	11	11	0.9	19.8	
3	16	16	0.8	102.4	
4	8	8	0.6	9.6	
1995	13	13	8.0	41.6	
1996	11	11	0.2	22.0	
1997	9	9	0.7	6.3	
1998	18	18	0.1	18.0	
1999	19	19	0.9	68.4	
2000 ro	ws × 4	columr	ns		

همانطور که مشاهده میشود به خوبی حجم گوشی ها حساب شده و ستون آن به ستون های اصلی دیتافریم ما اضافه شده.

7- امتیازات مدل های ساخته شده توسط svm به صورت زیر است.

	precision	recall	f1-score	support
0	0.95	0.87	0.90	120
1	0.72	0.79	0.75	95
2	0.72	0.70	0.71	90
3	0.86	0.88	0.87	95
accuracy			0.81	400
macro avg	0.81	0.81	0.81	400
weighted avg	0.82	0.81	0.82	400
	precision	recall	f1-score	support
0	0.97	0.93	0.94	120
Ø 1	0.97 0.86	0.93 0.89	0.94 0.88	
_				120
1	0.86	0.89	0.88	120 95
1 2	0.86 0.88	0.89 0.88	0.88 0.88	120 95 90
1 2	0.86 0.88	0.89 0.88	0.88 0.88	120 95 90
1 2 3	0.86 0.88	0.89 0.88	0.88 0.88 0.94	120 95 90 95

	precision	recall	f1-score	support
0	1.00	0.97	0.98	120
1	0.93	0.98	0.95	95
2	0.94	0.91	0.93	90
3	0.95	0.97	0.96	95
accuracy			0.96	400
macro avg	0.96	0.96	0.96	400
weighted avg	0.96	0.96	0.96	400

8, 9, 10 در فایل اصلی به طور کامل نوشته شده.