FCC 47 CFR PART 15 SUBPART C: 2008 AND ANSI C63.4: 2003

TEST REPORT

For

11n USB Dongle

Model Number: WL306n

Brand Name: ETOP

Issued for

E-Top Network Technology Inc.

No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Tainan Lab.

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua

Township, Tainan Hsien 712, Taiwan R.O.C. TEL: 886-6-580-2201

FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Total Page: 119

REVISION HISTORY

Date of Issue: February 6, 2010

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 6, 2010	Initial Issue	ALL	Leah Peng

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	10
6.1 MEASURING INSTRUMENT CALIBRATION	10
6.2 MEASUREMENT UNCERTAINTY	10
7. SETUP OF EQUIPMENT UNDER TEST	11
7.1 SETUP CONFIGURATION OF EUT	11
7.2 SUPPORT EQUIPMENT	11
7.3 EUT OPERATING CONDITION	12
8. APPLICABLE LIMITS AND TEST RESULTS	13
8.1 6DB BANDWIDTH	13
8.2 99% BANDWIDTH	24
8.3 MAXIMUM PEAK OUTPUT POWER	34
8.4 MAXIMUM PERMISSIBLE EXPOSURE	45
8.5 POWER SPECTRAL DENSITY	47
8.7 CONDUCTED SPURIOUS EMISSION	57
8.8 RADIATED EMISSIONS	66
8.9 POWERLINE CONDUCTED EMISSIONS	111
9. ANTENNA REQUIREMENT	115
9.1 STANDARD APPLICABLE	115
9.2 ANTENNA CONNECTED CONSTRUCTION	115
APPENDIX SETUP PHOTOS	116

1. TEST REPORT CERTIFICATION

Applicant : E-Top Network Technology Inc.

Address : No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Manufacture : E-Top Network Technology Inc.

Address : No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Equipment Under Test : 11n USB Dongle

Model Number : WL306n

Brand Name : ETOP

Date of Test : January 27, 2010 ~ February 4, 2010

APPLICABLE STANDARD			
STANDARD	TEST RESULT		
FCC Part 15 Subpart C : 2008 AND ANSI C63.4 : 2003	No non-compliance noted		

Approved by:	Reviewed by:
Tetersu	Eric Yang
Jeter Wu Section Manager	Eric Yang Senior Engineer

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Draduat Nama	11n USB Dongle		
Product Name	Thi OSB Bongle		
Model Number	WL306n		
Brand Name	ЕТОР		
Frequency Range IEEE 802.11b/g, 802.11n HT20 (DTS Band):2412MHz~24628802.11n HT40 (DTS Band):2422MHz~2452MHz			
Transmit Power IEEE 802.11b Mode : 19.02dBm (DTS Band) (79.7995 mW) IEEE 802.11g Mode : 21.64dBm (DTS Band) (145.881 mW) IEEE 802.11n HT20 Mode : 21.92dBm (DTS Band) (155.597 n IEEE 802.11n HT40 Mode : 21.67dBm (DTS Band) (146.893 n			
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz		
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels IEEE 802.11n HT40 :7 Channels		
	IEEE 802.11b :11, 5.5, 2, 1Mbps		
Transmit Data Rate	IEEE 802.11g: 54, 48, 36, 24, 18, 12, 11, 9, 6Mbps		
Transmit Data Nate	IEEE 802.11n HT20 : 130, 117 ,104, 78, 65, 58.5, 52, 39, 26, 19.5, 3, 6.5Mbps		
	IEEE 802.11n HT40 : 300, 270, 243 ,216, 162, 135, 121.5, 108, 81, 54, 40.5, 27, 13.5Mbps		
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)		
Type of Modulation	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)		
	IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK, BPSK)		
Frequency Selection	By software / firmware		
	This is a 1TX2RX device with two antennas.		
Antenna Type	Antenna A: Dipole antenna *1 (1TX1RX) Gain: 7.0 dBi Model: WF1DI-7A21-2 Connector: Big-SMA Straight Plug/ Reverse		
	Antenna B: Printed antenna*1 (1RX) Gain: 0 dBi		
Power Source	Powered from host device or notebook (DC5V)		
Temperature Range	0 ~ +55°C		

REMARK:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

Date of Issue: February 6, 2010

- 2. This submittal(s) (test report) is intended for FCC ID: <u>U6A-WL306N</u> filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.
- 4. To add a series model is for business necessary. The different of the each model is shown as below:

Multiple Listing:

Company Name/ Address	Brand Name	Model Name	Product Name
E-Top Network Technology Inc. No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.	ЕТОР	WL306n,WL307n	11n USB Dongle
Amigo Technology Inc. 1F, No. 333, Sec. 1, Ti-Ding BLVD., NeiHu, Taipei 114, Taiwan	Amigo	WL306n,WL307n	11n USB Dongle
CNet Technology Inc. 1F, No.30, Industry E.RD.IX, Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C.	CNet	CWL-9xx Series, CWL-907	Long Range Wireless-N USB Adapter
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	AU-4612, AU- 4622, AU- 4632	N+ Long Range USB Adapter

3. DESCRIPTION OF TEST MODES

The EUT is a USB dongle. It has one transmitter chain and two receive chain (1x2configurations). The 1x2 configuration is implemented with one outside chain (Chain 0).

Date of Issue: February 6, 2010

The RF chipset is manufactured by Realtek Semiconductor Corp.

The antenna peak gain 7.0dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 11Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2437 MHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: February 6, 2010

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC TW-1037
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI C-2882 R-2635
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 386 ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 893, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 493, ETSI EN 300 220-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	TAF Testing Laboratory 1109
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-1

Date of Issue: February 6, 2010

^{*} No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Date of Issue: February 6, 2010

6.2 MEASUREMENT UNCERTAINTY

Uncertainty figures are valid to a confidence level of 95%, k=2

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

RF TEST

7.2 SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	FCC ID	Signal Cable
1	Note Book	IBM	T43	DOC	Power cable, unshd, 1.6m
2	Router	Belkin	N150	DOC	Adapter power cable , unshd, 1.5m

No.	Signal cable description	
A	USB cable	Shielded, 1m, 1pcs.

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all notebooks like the setup diagram.
- 2. The "MP Diagnostic Pragram" software was used for testing
- 3. Set b/g/n mode \cdot con TX/RX \cdot channel \cdot bandwith \cdot data rate \cdot transmit power
- 4. Start to test
 - (1) TX Mode:
 - ⇒ Tx Mode:CCK OFDM HT MixMode (Bandwidth: 20 40)
 - ⇒ **Tx Data Rate: 11Mbps long** (IEEE 802.11b mode ,chain 0 TX)

6Mbps (IEEE 802.11g mode ,chain 0 TX)

6.5Mbps (IEEE 802.11n HT20 mode ,chain 0 TX)

13.5Mbps (IEEE 802.11n HT40 mode, chain 0 TX)

Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = 44 (Chain 0)

IEEE 802.11b Channel Middle (2437MHz) = 40 (Chain 0) IEEE 802.11b Channel High (2462MHz) = 39 (Chain 0)

Target Power: IEEE 802.11g Channel Low (2412MHz) = 50 (Chain 0)

IEEE 802.11g Channel Middle (2437MHz) = 50 (Chain 0) IEEE 802.11g Channel High (2462MHz) = **41 (Chain 0)**

Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 49 (Chain 0)

IEEE 802.11 n HT20 Channel Middle (2437MHz) = **49 (Chain 0)** IEEE 802.11 n HT20 Channel High (2462MHz) = 41 (Chain 0)

Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 49 (Chain 0)

IEEE 802.11 n HT40 Channel Middle (2437MHz) = 49 (Chain 0) IEEE 802.11 n HT40 Channel High (2452MHz) = 40 (Chain 0)

(2) **RX Mode**:

Start RX

- 3. All of the function are under run.
- 4. Start test.

Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 -t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 -t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 –t to Wireless Access Point (3).

Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

Date of Issue: February 6, 2010

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JAN. 03, 2011

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode (One TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10320	500	PASS
Middle	2437	10315	500	PASS
High	2462	10304	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 11Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Date of Issue: February 6, 2010

IEEE 802.11g mode (One TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16624	500	PASS
Middle	2437	16625	500	PASS
High	2462	16633	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode (One TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	17935	500	PASS
Middle	2437	17932	500	PASS
High	2462	17835	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (One TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2422	36865	500	PASS
Middle	2437	36865	500	PASS
High	2452	36873	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

6dB BANDWIDTH (802.11b MODE)

6dB BANDWIDTH (802.11g MODE)

6dB BANDWIDTH (802.11n HT20 MODE)

6dB BANDWIDTH (802.11n HT40 MODE)

8.2 99% **BANDWIDTH**

LIMIT

None for reporting purposes only.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JAN. 03, 2011

Date of Issue: February 6, 2010

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows:

Span: The minimum span to fully display the emission and approximately 20dB below peak level.

RBW: The set to 1% to 3% of the approximate emission width.

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The 99% BW is the bandwidth between the right and left markers.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode (One TX)

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	14.729
Middle	2437	14.729
High	2462	14.629

IEEE 802.11g mode (One TX)

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	17.535
Middle	2437	17.535
High	2462	17.434

IEEE 802.11n HT20 mode (One TX)

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	18.537
Middle	2437	18.637
High	2462	18.436

IEEE 802.11n HT40 mode (One TX)

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2422	36.873
Middle	2437	36.873
High	2452	36.673

99% BANDWIDTH (802.11b MODE)

Date of Issue: February 6, 2010

99% BANDWIDTH (802.11g MODE)

99% BANDWIDTH (802.11n HT20 MODE)

99% BANDWIDTH (802.11n HT40 MODE)

8.3 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

Date of Issue: February 6, 2010

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JAN. 03, 2011

TEST SETUP

TEST PROCEDURE

Connect the EUT to spectrum analyzer, set the center frequency of the spectrum analyzer to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Measurement of Digital Transmission Systems Operating under Section 15.247.

TEST RESULTS

No non-compliance noted

Total peak power calculation formula: 10 log (10[^] (Chain 0 Power / 10)).

The maximum antenna gain is 7.0Bi for other than fixed, point-to-point operations, therefore the limit is 30 dBm. In the legacy mode, the effective antenna gain is $10 \times \log (10^{\circ} (\text{Chain } 0 / 10)) = 7.0 \text{dBi}$.

Peak Power Limit=30(dBm)-(7-6)(dBi)=29(dBm)

RP1 FCC ID: U6A-WL306N Date of Issue: February 6, 2010

IEEE 802.11b mode (One TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	19.02	29	PASS
Middle	2437	18.52	29	PASS
High	2462	18.71	29	PASS

NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode (One TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	21.64	29	PASS
Middle	2437	21.61	29	PASS
High	2462	19.00	29	PASS

NOTE: 1.At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode(One TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	21.61	29	PASS
Middle	2437	21.92	29	PASS
High	2462	19.55	29	PASS

NOTE: 1.At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (One TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2422	21.06	29	PASS
Middle	2437	21.67	29	PASS
High	2452	18.01	29	PASS

NOTE: 1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

MAXIMUM PEAK OUTPUT POWER (802.11b MODE)

MAXIMUM PEAK OUTPUT POWER (802.11g MODE)

Date of Issue: February 6, 2010

MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)

Date of Issue: February 6, 2010

MAXIMUM PEAK OUTPUT POWER (802.11n HT40 MODE)

8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Date of Issue: February 6, 2010

Frequency Range (MHz)	·		Power Density (mW/cm²)	Average Time			
	(A) Limits for Occupational / Control Exposures						
300-1,500			F/300	6			
1,500-100,000			5	6			
	(B) Limits for Genera	al Population / Unco	ontrol Exposures				
300-1,500		-	F/1500	6			
1,500-100,000			1	30			

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

 $S = Power\ density\ in\ milliwatts\ /\ square\ centimeter$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P\left(mW\right)=P\left(W\right)/1000\ and$$

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted.

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

G=7.0dBi=5.0118723mW

IEEE 80211b =0.0796*79.79947*5.01187234/400=0.079589

IEEE 80211g =0.0796*145.8814*5.01187234/400=0.145497

IEEE 802n HT20=0.0796*155.5966*5.01187234/400=0.1551856

IEEE 802n HT40=0.0796*146.8926*5.01187234/400=0.146505

Mode	Minimum separation distance (cm)	Output Power (dBm)	Output Power (mw)	Antenna Gain (dBi)	Power Density Limit (mW/cm²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	20.0	19.02	79.80	7.0	1	0.079589
IEEE 802.11g	20.0	21.64	145.88	7.0	1	0.145497
IEEE 802.11n HT20	20.0	21.92	155.60	7.0	1	0.155186
IEEE 802.11n HT40	20.0	21.67	146.89	7.0	1	0.146505

Date of Issue: February 6, 2010

REMARK: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.5 POWER SPECTRAL DENSITY

LIMIT

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: February 6, 2010

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JAN. 03, 2011

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW \ge RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

Total peak power calculation formula: 10 log (10^ (Chain 0 PPSD / 10)). Maximum Limit=8(dBm)-(7-6)(dBi)=7dBm

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-11.88	7	PASS
Middle	2437	-12.39	7	PASS
High	2462	-13.10	7	PASS

Date of Issue: February 6, 2010

NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-11.94	7	PASS
Middle	2437	-12.86	7	PASS
High	2462	-13.70	7	PASS

NOTE: 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-13.58	7	PASS
Middle	2437	-12.87	7	PASS
High	2462	-12.35	7	PASS

NOTE: 1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode

Channel	Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2422	-13.56	7	PASS
Middle	2437	-12.92	7	PASS
High	2452	-12.42	7	PASS

NOTE: 1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

POWER SPECTRAL DENSITY (IEEE 802.11b MODE)

POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

POWER SPECTRAL DENSITY (802.11n HT20 MODE)

POWER SPECTRAL DENSITY (802.11n HT40 MODE)

8.7 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Date of Issue: February 6, 2010

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

Date of Issue: February 6, 2010

(IEEE 802.11b MODE)

Date of Issue: February 6, 2010

(802.11g MODE)

Date of Issue: February 6, 2010

(802.11n HT20 MODE)

Date of Issue: February 6, 2010

(802.11n HT40 MODE)

8.8 RADIATED EMISSIONS

8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: February 6, 2010

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Date of Issue: February 6, 2010

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENTS

The following test equipments are utilized in making the measurements contained in this report.

Open Area Test Site # 6						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
TYPE N COAXIAL CABLE	SUHNER	CHA9513	6	AUG. 31, 2010		
BI-LOG Antenna	Sunol	JB1	A070506-2	NOV. 12, 2010		
Pre-Amplifier	HP	8447F	2944A03817	AUG. 31, 2010		
EMI Receiver	R&S	ESVS10	833206/012	APR. 28, 2010		
RF Cable	SUHNER	SUCOFLEX104PEA	20520/4PEA	NOV. 10, 2010		
Horn Antenna	Com-Power	AH-118	071032	DEC. 29, 2010		
Spectrum Analyzer	R&S	FSEK 30	835253/002	JAN. 03, 2011		
Pre-Amplifier	MITEQ	AFS44-00108650-42-10P-44	1205908	NOV. 10, 2010		
Turn Table	Yo Chen	001		N.C.R.		
Antenna Tower	AR	TP1000A	309874	N.C.R.		
Controller	CT	SC101		N.C.R.		
RF Swicth	E-INSTRUMEN T TELH LTD	ERS-180A	EC1204141	N.C.R		
Test S/W		e-3 (5.0430)3e)			

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Antenna Elevation Variable

TEST PROCEDURE

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

Date of Issue: February 6, 2010

- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)

TEST RESULTS

No non-compliance noted.

8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	11n USB Dongle	Test Date	2010/02/4
Model	WL306n	Test By	Eric Yang
Test Mode	Normal operating (worst case)	TEMP& Humidity	26.5℃, 49%

Date of Issue: February 6, 2010

Horizontal

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Level	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dB \mu V/M)	(dB)	PK/QP
64.83	21.50	7.73	1.49	30.72	40.00	-9.28	QP
179.10	23.54	11.29	2.53	37.36	43.50	-6.14	QP
200.43	22.81	13.51	2.67	38.99	43.50	-4.51	QP
225.00	14.70	11.63	2.85	29.18	46.00	-16.82	QP
400.93	16.50	16.15	3.84	36.48	46.00	-9.52	QP
672.12	7.20	20.27	5.38	32.85	46.00	-13.15	QP
720.00	6.90	20.85	5.57	33.32	46.00	-12.68	QP
N/A							

Vertical

Frequency	Meter Reading Fact		Cable Loss	Emission Level	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dB \mu V/M)	(dB)	PK/QP
62.59	21.35	7.71	1.47	30.53	40.00	-9.47	QP
158.60 22.52 12.4		12.44	2.37	37.33	43.50	-6.17	QP
189.68	19.84	12.36	2.60	34.80	43.50	-8.70	QP
200.43	16.70	13.51	2.67	32.88	43.50	-10.62	QP
226.51	18.70	11.68	2.87	33.25	46.00	-12.75	QP
399.75	12.60	16.12	3.83	32.55	46.00	-13.45	QP
666.65	6.70	20.20	5.36	32.26	46.00	-13.74	QP
N/A							

REMARK: Emission level $(dB\mu V/m)$ =Antenna Factor (dB/m) + Cable loss (dB) + Meter Reading $(dB\mu V)$.

8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	11n USB Dongle	Test Date	2010/1/27	
Model	WL306n	Test By	Eric Yang	
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	24.5°C, 51%	

Date of Issue: February 6, 2010

Horizontal

	TX / IEEE 802.11b mode / CH Low				Measurement Distance at 3m Horizontal polarity					rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)
*	4824.21	55.35	32.81	3.71	41.34	0.69	51.23	74.00	-22.77	P
*	4824.21	51.42	32.81	3.71	41.34	0.69	47.30	54.00	-6.70	A
	7236.17	51.26	38.83	4.93	41.42	1.44	55.03	74.00	-18.97	P
	7236.17	42.33	38.83	4.93	41.42	1.44	46.10	54.00	-7.90	A
	N/A									P
	N/A									A

REMARK:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IEEE 802.11b mode / CH Low				Measurement Distance at 3m Vertical polarity					ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	4824.31	59.29	32.81	3.71	41.34	0.69	55.17	74.00	-18.83	P
*	4824.31	56.71	32.81	3.71	41.34	0.69	52.59	54.00	-1.41	A
	7236.11	52.42	38.83	4.93	41.42	1.44	56.19	74.00	-17.81	P
	7236.11	43.20	38.83	4.93	41.42	1.44	46.97	54.00	-7.03	A
	N/A									P
	N/A									A

REMARK:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	11n USB Dongle Test Date				
Model	WL306n	Test By	Eric Yang			
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	24.5°C, 51%			

Horizontal

	TX / IE	EEE 802.111	o mode / C	H Middle	M	Measurement Distance at 3m Horizontal polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)	
*	4874.16	54.35	32.92	3.73	41.41	0.71	50.31	74.00	-23.69	P	
*	4874.16	51.42	32.92	3.73	41.41	0.71	47.38	54.00	-6.62	A	
*	7310.19	51.27	38.93	4.96	41.32	1.59	55.44	74.00	-18.56	P	
*	7310.19	42.68	38.93	4.96	41.32	1.59	46.85	54.00	-7.15	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	24.5°C, 51%

Vertical

	TX / IEI	EE 802.11b	mode / Cl	H Middle	N	Measurement Distance at 3m Vertical polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)	
*	4874.12	59.74	32.92	3.73	41.41	0.71	55.70	74.00	-18.30	P	
*	4874.12	56.84	32.92	3.73	41.41	0.71	52.80	54.00	-1.20	A	
*	7310.16	54.32	38.93	4.96	41.32	1.59	58.49	74.00	-15.51	P	
*	7310.16	43.68	38.93	4.96	41.32	1.59	47.85	54.00	-6.15	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	24.5℃, 51%

Horizontal

	TX / IE	EE 802.111	o mode / C	H High	Measurement Distance at 3m Horizontal polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)
*	4923.86	54.24	33.03	3.76	41.49	0.73	50.28	74.00	-23.72	P
*	4923.86	53.21	33.03	3.76	41.49	0.73	49.25	54.00	-4.75	A
*	7385.46	51.42	39.04	4.99	41.21	1.75	55.99	74.00	-18.01	P
*	7385.46	40.86	39.04	4.99	41.21	1.75	45.43	54.00	-8.57	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IE	EE 802.111	o mode / C	H High	M	Measurement Distance at 3m Vertical polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	4924.03	58.86	33.03	3.76	41.49	0.73	54.90	74.00	-19.10	P	
*	4924.03	56.17	33.03	3.76	41.49	0.73	52.21	54.00	-1.79	A	
*	7385.67	53.25	39.04	4.99	41.21	1.76	57.82	74.00	-16.18	P	
*	7385.67	42.11	39.04	4.99	41.21	1.76	46.68	54.00	-7.32	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27			
Model	WL306n	Test By Eric Yan				
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	24.5°C, 51%			

Horizontal

	TX / IE	EEE 802.11g	g mode / C	H Low	M	Measurement Distance at 3m Horizontal polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)	
*	4824.15	53.24	32.81	3.71	41.34	0.69	49.12	74.00	-24.88	P	
*	4824.15	41.62	32.81	3.71	41.34	0.69	37.50	54.00	-16.50	A	
	7236.28	52.11	38.83	4.93	41.42	1.44	55.88	74.00	-18.12	P	
	7236.28	41.38	38.83	4.93	41.42	1.44	45.15	54.00	-8.85	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27			
Model	WL306n	Test By	Eric Yang			
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	24.5℃, 51%			

Vertical

	TX / IE	EEE 802.11g	g mode / C	CH Low	M	leasuren	nent Distance at 3m Vertical polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	4824.06	56.16	32.81	3.70	41.34	0.69	52.03	74.00	-21.97	P	
*	4824.06	42.74	32.81	3.70	41.34	0.69	38.61	54.00	-15.39	A	
	7235.42	53.62	38.83	4.93	41.43	1.43	57.39	74.00	-16.61	P	
	7235.42	42.81	38.83	4.93	41.43	1.43	46.58	54.00	-7.42	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	24.5°C, 51%

Horizontal

	TX / IEE	E 802.11g	mode / C	H Middle	M	easurem	ent Distanc	e at 3m l	Horizontal polai	ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4874.36	53.24	32.92	3.73	41.41	0.71	49.20	74.00	-24.80	P
*	4874.36	41.42	32.92	3.73	41.41	0.71	37.38	54.00	-16.62	A
*	7308.46	51.11	38.93	4.96	41.32	1.59	55.27	74.00	-18.73	P
*	7308.46	41.73	38.93	4.96	41.32	1.59	45.89	54.00	-8.11	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IEI	EE 802.11g	mode / CI	H Middle	N	1 easuren	nent Distan	ce at 3m	ertical polari	ty
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4874.51	56.42	32.92	3.73	41.41	0.71	52.38	74.00	-21.62	P
*	4874.51	43.51	32.92	3.73	41.41	0.71	39.47	54.00	-14.53	A
*	7308.26	52.87	38.93	4.96	41.32	1.59	57.03	74.00	-16.97	P
*	7308.26	43.22	38.93	4.96	41.32	1.59	47.38	54.00	-6.62	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	24.5°C, 51%

Horizontal

	TX / IE	EEE 802.11g	g mode / C	H High	M	easurem	ent Distance	e at 3m I	Horizontal polar	rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4923.97	53.42	33.03	3.76	41.49	0.73	49.46	74.00	-24.54	P
*	4923.97	41.11	33.03	3.76	41.49	0.73	37.15	54.00	-16.85	A
*	7385.26	52.42	39.04	4.99	41.21	1.75	56.99	74.00	-17.01	P
*	7385.26	41.35	39.04	4.99	41.21	1.75	45.92	54.00	-8.08	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IE	EEE 802.11g	g mode / C	H High	M	leasurem	ent Distanc	e at 3m	Vertical polar	ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)
*	4924.06	56.54	33.03	3.76	41.49	0.73	52.58	74.00	-21.42	P
*	4924.06	42.87	33.03	3.76	41.49	0.73	38.91	54.00	-15.09	A
*	7385.22	54.22	39.04	4.99	41.21	1.75	58.79	74.00	-15.21	P
*	7385.22	43.67	39.04	4.99	41.21	1.75	48.24	54.00	-5.76	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT20 TX (CH Low)	TEMP& Humidity	24.5℃, 51%

Horizontal

	TX / IEE	E 802.11n I	HT20 mode	e / CH Low	M	easurem	ent Distance	e at 3m I	Horizontal polar	polarity			
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark			
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)			
*	4823.97	53.62	32.81	3.70	41.34	0.69	49.49	74.00	-24.51	P			
*	4823.97	42.22	32.81	3.70	41.34	0.69	38.09	54.00	-15.91	A			
	7236.11	51.42	38.83	4.93	41.42	1.44	55.19	74.00	-18.81	P			
	7236.11	41.87	38.83	4.93	41.42	1.44	45.64	54.00	-8.36	A			
	N/A									P			
	N/A									A			

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT20 TX (CH Low)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IEE	E 802.11n I	HT20 mode	e / CH Low	M	Measurement Distance at 3m Vertical polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	4824.06	56.42	32.81	3.70	41.34	0.69	52.29	74.00	-21.71	P	
*	4824.06	44.75	32.81	3.70	41.34	0.69	40.62	54.00	-13.38	A	
	7236.24	53.24	38.83	4.93	41.42	1.44	57.01	74.00	-16.99	P	
	7236.24	43.26	38.83	4.93	41.42	1.44	47.03	54.00	-6.97	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT20 TX (CH Middle)	TEMP& Humidity	24.5°C, 51%

Horizontal

	TX / IEEF	E 802.11n H	T20 mode	/ CH Middle	M	easurem	surement Distance at 3m Horizontal polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	4874.06	53.24	32.92	3.73	41.41	0.71	49.20	74.00	-24.80	P	
*	4874.06	41.62	32.92	3.73	41.41	0.71	37.58	54.00	-16.42	A	
*	7309.18	51.42	38.93	4.96	41.32	1.59	55.58	74.00	-18.42	P	
*	7309.18	41.53	38.93	4.96	41.32	1.59	45.69	54.00	-8.31	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	gle Test Date				
Model	WL306n	Test By	Eric Yang			
Test Mode	IEEE 802.11n HT20 TX (CH Middle)	TEMP& Humidity	24.5℃, 51%			

Vertical

	TX / IEEE	802.11n HT	20 mode / (CH Middle	M	easuren	nent Distan	ce at 3m	Vertical polar	larity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark				
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(P/Q/A)				
*	4874.15	55.87	32.92	3.73	41.41	0.71	51.83	74.00	-22.17	P				
*	4874.15	43.92	32.92	3.73	41.41	0.71	39.88	54.00	-14.12	A				
*	7309.22	53.42	38.93	4.96	41.32	1.59	57.58	74.00	-16.42	P				
*	7309.22	43.16	38.93	4.96	41.32	1.59	47.32	54.00	-6.68	A				
	N/A									P				
	N/A									A				

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT20 TX (CH High)	TEMP& Humidity	24.5℃, 51%

Horizontal

	TX / IEEE	E 802.11n H	T20 mode	/ CH High	M	easurem	asurement Distance at 3m Horizontal polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)	
*	4924.06	53.24	33.03	3.76	41.49	0.73	49.28	74.00	-24.72	P	
*	4924.06	41.24	33.03	3.76	41.49	0.73	37.28	54.00	-16.72	A	
*	7385.16	51.42	39.04	4.99	41.21	1.75	55.99	74.00	-18.01	P	
*	7385.16	40.69	39.04	4.99	41.21	1.75	45.26	54.00	-8.74	A	
	N/A									P	
	N/A									A	

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT20 TX (CH High)	TEMP& Humidity	24.5℃, 51%

Vertical

	TX / IEEF	E 802.11 n H	T20 mode	/ CH High	M	leasuren	nent Distanc	ce at 3m	Vertical polarity			
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark		
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)		
*	4924.03	55.46	33.03	3.76	41.49	0.73	51.50	74.00	-22.50	P		
*	4924.03	44.72	33.03	3.76	41.49	0.73	40.76	54.00	-13.24	A		
*	7385.97	53.62	39.04	4.99	41.21	1.76	58.20	74.00	-15.80	P		
*	7385.97	42.08	39.04	4.99	41.21	1.76	46.66	54.00	-7.34	A		
	N/A									P		
	N/A									A		

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT40 TX (CH Low)	TEMP& Humidity	24.5°C, 51%

Horizontal

	TX / IEE	E 802.11n I	HT40 mode	e / CH Low	M	easurem	ent Distance	e at 3m I	Iorizontal polar	larity			
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark			
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)			
*	4843.96	52.11	32.86	3.72	41.37	0.70	48.02	74.00	-25.98	P			
*	4843.96	41.37	32.86	3.72	41.37	0.70	37.28	54.00	-16.72	A			
*	7263.65	51.42	38.87	4.94	41.39	1.49	55.34	74.00	-18.66	P			
*	7263.65	41.38	38.87	4.94	41.39	1.49	45.30	54.00	-8.70	A			
	N/A									P			
	N/A									A			

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	gle Test Date			
Model	WL306n	Test By	Eric Yang		
Test Mode	IEEE 802.11n HT40 TX (CH Low)	TEMP& Humidity	24.5°C, 51%		

Vertical

	TX / IEE	E 802.11n I	HT40 mode	e / CH Low	M	leasurem	ent Distanc	e at 3m	Vertical polar	polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark				
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)				
*	4844.35	54.62	32.86	3.72	41.37	0.70	50.53	74.00	-23.47	P				
*	4844.35	43.81	32.86	3.72	41.37	0.70	39.72	54.00	-14.28	A				
*	7263.59	53.42	38.87	4.94	41.39	1.49	57.34	74.00	-16.66	P				
*	7263.59	43.28	38.87	4.94	41.39	1.49	47.20	54.00	-6.80	A				
	N/A									P				
	N/A									A				

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT40 TX (CH Middle)	TEMP& Humidity	24.5℃, 51%

Horizontal

	TX / IEEE 802.11n HT40 mode / CH Middle				Measurement Distance at 3m Horizontal polarity				rity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(P/Q/A)
*	4873.02	52.42	32.92	3.73	41.41	0.71	48.37	74.00	-25.63	P
*	4873.02	40.65	32.92	3.73	41.41	0.71	36.60	54.00	-17.40	A
*	7311.16	51.44	38.94	4.96	41.32	1.60	55.61	74.00	-18.39	P
*	7311.16	40.37	38.94	4.96	41.32	1.60	44.54	54.00	-9.46	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT40 TX (CH Middle)	TEMP& Humidity	24.5°C, 51%

Vertical

	TX / IEEE 802.11n HT40 mode / CH Middle				Measurement Distance at 3m Vertical polarity					ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4873.82	54.71	32.92	3.73	41.41	0.71	50.67	74.00	-23.33	P
*	4873.82	43.62	32.92	3.73	41.41	0.71	39.58	54.00	-14.42	A
*	7311.24	52.25	38.94	4.96	41.32	1.60	56.42	74.00	-17.58	P
*	7311.24	41.78	38.94	4.96	41.32	1.60	45.95	54.00	-8.05	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT40 TX (CH High)	TEMP& Humidity	24.5°C, 51%

Horizontal

	TX / IEEE 802.11n HT40 mode / CH High				Measurement Distance at 3m Horizontal polarity					rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4904.11	52.42	32.99	3.75	41.46	0.72	48.42	74.00	-25.58	P
*	4904.11	42.35	32.99	3.75	41.46	0.72	38.35	54.00	-15.65	A
*	7353.62	52.14	39.00	4.98	41.26	1.69	56.54	74.00	-17.46	P
*	7353.62	41.36	39.00	4.98	41.26	1.69	45.76	54.00	-8.24	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	11n USB Dongle	Test Date	2010/1/27
Model	WL306n	Test By	Eric Yang
Test Mode	IEEE 802.11n HT40 TX (CH High)	TEMP& Humidity	24.5°C, 51%

Vertical

	TX / IEEE 802.11n HT40 mode / CH High				Measurement Distance at 3m Vertical polarity					rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(P/Q/A)
*	4903.86	54.26	32.99	3.75	41.46	0.72	50.26	74.00	-23.74	P
*	4903.86	44.71	32.99	3.75	41.46	0.72	40.71	54.00	-13.29	A
*	7353.56	53.62	38.99	4.98	41.26	1.69	58.02	74.00	-15.98	P
*	7353.56	42.87	38.99	4.98	41.26	1.69	47.27	54.00	-6.73	A
	N/A									P
	N/A									A

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

8.8.4 RESTRICTED BAND EDGES

Detector mode: Peak Polarity: Horizontal

Date of Issue: February 6, 2010

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = $54/74 \text{ dB } \mu \text{ V/m}$.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

8.9 POWERLINE CONDUCTED EMISSIONS

LIMITS

 \S 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

Date of Issue: February 6, 2010

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBμv)			
	Quasi-peak	Average		
0.15 - 0.5	66 to 56	56 to 46		
0.5 - 5	56	46		
5 - 30	60	50		

TEST EQUIPMENTS

The following test equipments are used during the conducted power line tests:

	Conducted Emission room #1								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
L.I.S.N.	SCHWARZBECK	NNLK 8121	8121-446	NOV. 19, 2010 For Insertion loss					
	Rohde & Schwarz	ESH 3-Z5	840062/021	NOV. 29, 2010					
TEST RECEIVER	Rohde & Schwarz	ESCS 30	100348	JUL. 16, 2010					
TYPE N COAXIAL CABLE	CCS	BNC50	11	AUG. 26, 2010					
Test S/W	e-3 (5.04211c) R&S (2.27)								

TEST SETUP

Date of Issue: February 6, 2010

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

TEST RESULTS

No non-compliance noted.

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	11n USB Dongle	Test Date	2010/2/4
Model	WL306n	Test By	Eric Yang
Test Mode	Normal operating (worst case)	TEMP& Humidity	25.4°C, 57%

LINE

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	11n USB Dongle	Test Date	2010/2/4
Model	WL306n	Test By	Eric Yang
Test Mode	Normal operating (worst case)	TEMP& Humidity	25.4°C, 57%

NEUTRAL

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Date of Issue: February 6, 2010

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

The antennas used for this product are two printed PCB antennas.

The peak Gain of these antennas is 0dBi and 7.0dBi at 2.4GHz.

The antenna spec. as below:

This is a 1TX2RX device with two antennas.

Antenna A: Dipole antenna *1 (1TX1RX)

Gain: 7.0 dBi

Model: WF1DI-7A21-2

Connector: Big-SMA Straight Plug/ Reverse

Antenna B: Printed antenna*1 (1RX)

Gain: 0 dBi