Seminari d'Àlgebra commutativa 21 de maig de 2024

En tot el seminari R és un domini de Dedekind, amb cos de fraccions F. Recordeu que un ideal enter és simplement un ideal de R, mentre que un ideal fraccional I és un R-submòdul no nul de F tal que $aI \subseteq R$ per algun $0 \neq a \in R$. Recordeu també que els ideals fraccionals formen un monoide $\operatorname{Frac}(R)$ amb el producte i neutre R, que un domini és de Dedekind si $\operatorname{Frac}(R)$ és un grup (i.e., donat I fraccional, existeix I^{-1} tal que $II^{-1} = R$).

- 1. Definim el grup de classes $C(R) = \operatorname{Frac}(R)/\operatorname{Prin}(R)$, on $\operatorname{Prin}(R) = \{\frac{a}{b}R \colon a, b \in R\}$ és el subgrup d'ideals principals. Proveu que C(R) es pot identificar amb el conjunt de classes d'isomorfisme (com R-mòduls) d'ideals enters no nuls.
- 2. (i) Donat I ideal fraccional, utilitzant que $II^{-1}=R$, proveu que I és projectiu i finitament generat. Deduïu que R és noetherià.
 - (ii) Proveu que si M és projectiu fg, aleshores M és isomorf a una suma directa d'ideals (projectius).
 - (iii) Deduïu que les classes d'isomorfisme d'ideals generen $K_0(R)$.
- 3. (i) Proveu que tot ideal primer és maximal. Indicació: Suposeu que existeix I primer no maximal, i agafeu J ideal propi tal que $I\subsetneq J$. Considereu $K=J^{-1}I$.
 - (ii) Proveu que tot ideal propi de R factoritza de manera única com a producte d'ideals primers (=maximals). Indicació: Considereu el conjunt $C = \{I : I \subsetneq R \text{ és ideal que no factoritza}\}$ i si $C \neq \emptyset$ utilitzeu que R és noetherià.
 - (iii) Deduïu que Frac(R) és isomorf al \mathbb{Z} -mòdul lliure amb base el conjunt d'ideals primers de R.