Hiperbolikus függvények és inverzeik

A szinuszhiperbolikusz-függvény

$$\operatorname{sh} x := \frac{e^x - e^{-x}}{2} \quad (x \in \mathbb{R})$$

A sh függvény tulajdonságai:

páratlan
$$[\operatorname{sh} x = -\operatorname{sh}(-x) \ (x \in \mathbb{R})];$$

deriválható \mathbb{R} -en, és

$$\operatorname{sh}' x = \operatorname{ch} x \quad (x \in \mathbb{R}),$$

 $\operatorname{sh}' 0 = \operatorname{ch} 0 = 1;$

 \uparrow az \mathbb{R} -en;

konvex
$$(0, +\infty)$$
, konkáv $(-\infty, 0)$ -n;

$$\lim_{+\infty} sh = +\infty, \lim_{-\infty} sh = -\infty,$$

$$\mathcal{R}_{\mathrm{sh}}=\mathbb{R};$$

A koszinuszhiperbolikusz-függvény

$$\operatorname{ch} x := \frac{e^x + e^{-x}}{2} \quad (x \in \mathbb{R})$$

A ch függvény tulajdonságai:

páros
$$[\operatorname{ch} x = \operatorname{ch} (-x) > 0 \ (x \in \mathbb{R})];$$

deriválható R-en, és

$$\operatorname{ch}' x = \operatorname{sh} x \quad (x \in \mathbb{R}),$$

$$\operatorname{ch}' 0 = \operatorname{sh} 0 = 0;$$

$$\downarrow (-\infty, 0)$$
-n, $\uparrow (0, +\infty)$ -n;

konvex \mathbb{R} -en;

$$\lim_{+\infty} ch = +\infty, \lim_{-\infty} ch = +\infty,$$

$$\mathcal{R}_{ch} = [1, +\infty);$$

A trigonometrikus függvények nevére utalást indokolják az alábbi azonosságok.

Tétel. Fennállnak a következő egyenlőségek:

(a)
$$\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y$$
 $(x, y \in \mathbb{R}),$

(b)
$$\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y$$
 $(x, y \in \mathbb{R})$

(addíciós formulák),

(c)
$$\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$
 $(x \in \mathbb{R})$

(négyzetes összefüggés).

Bizonyítás. Behelyettesítéssel

A hiperbolikus függvényekre vonatkozó négyzetes összefüggés geometriai tartalma a következő: Minden $t \in \mathbb{R}$ valós szám esetén a $(\operatorname{ch} t, \operatorname{sh} t) \in \mathbb{R}^2$ pontok rajta vannak az $x^2 - y^2 = 1$ (x > 0) egyenletű hiperbolaágon. A függvények nevében szereplő hiperbolikus jelző erre a geometriai kapcsolatra utal.

A trigonometrikus esethez hasonlóan az (a), (b) és (c)-ből további azonosságok nyerhetők. Például:

$$\operatorname{sh} 2x = 2\operatorname{sh} x \operatorname{ch} x, \qquad \operatorname{sh} x \pm \operatorname{sh} y = 2\operatorname{sh} \frac{x \pm y}{2} \operatorname{ch} \frac{x \mp y}{2} \quad (x, y \in \mathbb{R}).$$

Megjegyzés. A ch függvény képét **láncgörbé**nek is nevezik, mert egy homogén, hajlékony, nyúlásmentes, két végén felfüggesztett fonal (lánc) ilyen alakot vesz fel.

Az área szinuszhiperbolikusz-függvény

Mivel a sh függvény szigorúan monoton növő \mathbb{R} -en, ezért invertálható:

$$arsh := sh^{-1}$$

Az arsh függvény tulajdonságai:

$$\mathcal{D}_{arsh} = \mathcal{R}_{sh} = \mathbb{R}, \quad \mathcal{R}_{arsh} = \mathcal{D}_{sh} = \mathbb{R};$$

páratlan [arsh $x = -arsh(-x) \ (x \in \mathbb{R})$];
deriválható \mathbb{R} -en, és

$$\operatorname{arsh}' x = \frac{1}{\sqrt{1+x^2}} \quad (x \in \mathbb{R});$$

 $\uparrow \mathbb{R}$ -en;

konkáv
$$(0, +\infty)$$
-en, konvex $(-\infty, 0)$ -n;

$$\lim_{+\infty} \operatorname{arsh} = +\infty$$
, $\lim_{-\infty} \operatorname{arsh} = -\infty$,

az ln függvénnyel így fejezhető ki:

$$\operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1}) \quad (x \in \mathbb{R})$$

Az área koszinuszhiperbolikusz-függvény

A ch függvény nem, de például az \mathbb{R}_0^+ -ra való leszűkítése már invertálható. Legyen

$$\operatorname{arch} := (\operatorname{ch}_{|\mathbb{R}_0^+})^{-1}$$

Az arch függvény tulajdonságai:

$$\mathcal{D}_{arch} = [1, +\infty), \quad \mathcal{R}_{arch} = [0, +\infty);$$

deriválható
$$(1, +\infty)$$
-en, és

$$\operatorname{arch}' x = \frac{1}{\sqrt{x^2 - 1}} \quad (x \in (1, +\infty));$$

 $\uparrow [1, +\infty)$ -en;

 $\operatorname{konk\acute{a}v} [1, +\infty)$ -en;

$$\lim_{+\infty}$$
 arch = $+\infty$;

az ln függvénnyel így fejezhető ki:

$$\operatorname{arch} x = \ln(x + \sqrt{x^2 - 1}) \ (x \in [1, +\infty))$$

Tétel. Az arsh függvény deriválható az \mathbb{R} -en, és

$$\operatorname{arsh}' x = \frac{1}{\sqrt{1+x^2}} \qquad (x \in \mathbb{R}).$$

Bizonyítás. Mivel a sh függvény differenciálható és sh' $x = \operatorname{ch} x \neq 0 \ (\forall x \in \mathbb{R})$, ezért az inverz függvény deriválására vonatkozó tétel alapján az arsh függvény is differenciálható, és

$$\operatorname{arsh}' x = \frac{1}{\operatorname{sh}'(\operatorname{arsh} x)} = \frac{1}{\operatorname{ch}(\operatorname{arsh} x)} \qquad (x \in \mathbb{R}).$$

Legyen $y := \operatorname{arsh} x$, azaz shy = x. A négyzetes összefüggés alapján ch $y = \sqrt{1 + \operatorname{sh}^2 y} = \sqrt{1 + x^2}$ $(y \in \mathbb{R})$, ezért

$$\operatorname{arsh}' x = \frac{1}{\operatorname{ch} y} = \frac{1}{\sqrt{1+x^2}} \qquad (x \in \mathbb{R}). \blacksquare$$

Tétel. Az arsh függvény az ln függvénnyel így fejezhető ki:

$$\operatorname{arsh} x = \ln(x + \sqrt{1 + x^2}) \qquad (x \in \mathbb{R}).$$

Bizonyítás. Legyen $x \in \mathbb{R}$ és $y := \operatorname{arsh} x$, azaz $x = \operatorname{sh} y = \frac{e^y - e^{-y}}{2}$. Bevezetve a $t := e^y$ jelölést t-re a $t^2 - 2tx - 1 = 0$ másodfokú egyenletet kapjuk. Mivel t > 0, ezért $t = e^y = x + \sqrt{x^2 + 1}$, azaz

$$y = \operatorname{arsh} x = \ln(x + \sqrt{x^2 + 1}) \quad (x \in \mathbb{R}). \blacksquare$$

Az arch függvényre vonatkozó analóg állítások hasonlóan igazolhatók.

A tangenshiperbolikusz-függvény

$$th x := \frac{sh x}{ch x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad (x \in \mathbb{R})$$

A th függvény tulajdonságai:

$$\mathcal{D}_{\mathrm{th}}=\mathbb{R};$$

páratlan [th $x = -\text{th}(-x) \ (x \in \mathbb{R})$]; deriválható az \mathbb{R} -en, és

$$th' x = \frac{1}{ch^2 x} > 0 \quad (x \in \mathbb{R}),$$

$$th' 0 = 1;$$

 \uparrow az \mathbb{R} -en;

konvex $(-\infty, 0)$ -n, konkáv $(0, +\infty)$ -n;

$$\lim_{-\infty}\,th=-1,\,\lim_{+\infty}\,th=1;$$

$$\mathcal{R}_{\text{th}} = (-1, 1);$$

Az área tangenshiperbolikusz-függvény

Mivel a th függvény szigorúan monoton növő R-en, ezért invertálható. Legyen

$$arth := th^{-1}$$

A arth függvény tulajdonságai:

$$\mathcal{D}_{arth} = \mathcal{R}_{th} = (-1, 1), \quad \mathcal{R}_{arth} = \mathcal{D}_{th} = \mathbb{R};$$
 páratlan;

deriválható (-1,1)-en, és

$$\operatorname{arth}' x = \frac{1}{1 - x^2} \quad (x \in (-1, 1)),$$

 $\operatorname{arth}' 0 = 1$:

 \uparrow az \mathbb{R} -en;

konkáv (-1,0)-n, konvex (0,1)-en,

$$\lim_{-1+0} \operatorname{arth} = -\infty, \lim_{1-0} \operatorname{arth} = +\infty,$$

$$arth x = \frac{1}{2} \cdot \ln \frac{1+x}{1-x} \quad (x \in (-1,1));$$

A kotangenshiperbolikusz-függvény

$$\operatorname{cth} x := \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad (x \in \mathbb{R} \setminus \{0\})$$

A cth függvény tulajdonságai:

$$\mathcal{D}_{cth} = \mathbb{R} \setminus \{0\};$$

páratlan;

deriválható az
$$\mathbb{R} \setminus \{0\}$$
-n, és
$$\operatorname{cth}' x = -\frac{1}{\operatorname{sh}^2 x} \quad (x \in \mathbb{R} \setminus \{0\});$$

$$\downarrow (-\infty, 0)$$
-n, $\downarrow (0, +\infty)$ -n;

konkáv $(-\infty, 0)$ -n, konvex $(0, +\infty)$ -n;

$$\lim_{-\infty} cth = -1, \lim_{0 \to 0} cth = -\infty,$$

$$\lim_{+\infty} cth = 1, \lim_{0+0} cth = +\infty,$$

$$\mathcal{R}_{\mathrm{cth}} = (-\infty, -1) \cup (1, +\infty);$$

Az área kotangenshiperbolikusz-függvény

A cth függvény invertálható.

Legyen

$$\operatorname{arcth} := \operatorname{cth}^{-1}$$

A arcth függvény tulajdonságai:

$$\mathcal{D}_{\mathrm{arcth}} = \mathcal{R}_{\mathrm{cth}}, \ \mathcal{R}_{\mathrm{arcth}} = \mathcal{D}_{\mathrm{cth}};$$

páratlan;

deriválható, és

$$\operatorname{arcth}' x = \frac{1}{1 - x^2} \quad (|x| > 1);$$

$$\downarrow$$
 $(-\infty,-1)\text{-en},$ \downarrow $(1,+\infty)\text{-en};$

konkáv $(-\infty, -1)$ -en, konvex $(1, +\infty)$ -n;

$$\lim_{-\infty} \operatorname{arcth} = 0, \quad \lim_{-1-0} \operatorname{arcth} = -\infty,$$

 $\lim_{+\infty} \operatorname{arcth} = 0, \lim_{1+0} \operatorname{arth} = +\infty,$

$$\operatorname{arcth} x = \frac{1}{2} \cdot \ln \frac{x+1}{x-1} \ (|x| > 1);$$

