

Infrastruktur Grundlagen Einführung in Netzwerke / OSI, Ethernet Protokoll

Die Besten. Seit 1994. www.technikum-wien.at

Computernetzwerke / Internet - 1

Computernetzwerk:

- Zusammenschluss verschiedener Computersysteme wie
- Server, Laptops, PCs, Drucker, ...

Internet:

- größte weltweite technische Computernetzwerk mit Millionen angeschlossener Systeme
- Hosts / Endsysteme sind über
 - Kommunikationsleitungen (communication link)
 - und Paket-Switches (paket switch)
 - verbunden
- Übertragung von PDU ("packet data unit")

Computernetzwerke / Internet - 2

- Hosts / Endsysteme in Computernetzwerke nutzen "Protokolle" welche
 - das Format und Reihenfolge des Nachrichtenaustausches regeln
- TCP/IP Protokoll Suite
 - TCP (Transmission Control Protocol)
 - IP (Internet Protocol)

Was ist ein Protokoll?

ISO/OSI Referenzmodell

- OSI = Open Systems Interconnection Model
- Referenzmodell für Netzwerke
- 1983 von der ISO als Standard veröffentlicht
- Ziel:
 - Die Kommunikation unterschiedlicher technischer Systeme zu ermöglichen
- OSI Modell ist in Schichten sog. Layers aufgeteilt

ISO/OSI Referenzmodell

- Unterteilt in 7 Schichten
- Je niedriger die Nummer im Stack desto "Hardware-näher"
- Je höher die Nummer desto "softwarelastiger"
- Upper Layer
 - Interaktion mit dem User
 - Implementierung von Software die über das Netz kommuniziert

Lower Layer

Ziel ist der Transport der Daten

ISO/OSI Referenzmodell

ISO/OSI Referenzmodell - Datenkapselung

 Daten der jeweilig höheren Schicht werden in ein eigenes Paket gepackt und mit einem eigenen Layerheader versehen

Überblick der Datenkapselung

Vergleich ISO/OSI vs. TCP/IP Modell

	20	
7	Application	
6	Presentation	Application
5	Session	
4	Transport	(Host-to-Host) Transport
3	Network	Internet
2	Data Link	Network Interface
1	Physical	(Hardware)
OSI Model		TCP/IP Model

Protokollschichten – Layers

Anwendungsschicht

- application layer
- Protokolle für Anwendungen z.b. HTTP für Web, IMAP & SMTP für Email

Transportschicht

- transport layer
- Überträgt Nachrichten der Anwendungsschicht
- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)

Netzwerkschicht

- network layer
- reicht Datagramme von einem Host zum anderen
- Wegfindung (Routing)
- IP Protokoll

Protokollschichten – Layers

Sicherungsschicht

- data link layer
- Übertragung von "frames"
- z.b. über Ethernet, WLAN, PPP (Point-to-Point Protocol)

Bitübertragungsschicht

- physical layer
- Transport der Bits je nach Trägermedium (Kupferdrähte, Glasfaser, Satellit, ...)

Trägermedien

geführte Medien

festes Medium: Lichtwellenleiter, Kupferdraht, Koaxialkabel

nicht geführte Medien

WLAN, Satellitenkanal

Beispiele

- Twisted-Pair
- Koaxialkabel
- Glasfasern
- Terrestrische Funkverbindungen
- Satellitenfunkverbindung

Verzögerung, Verlust, Datendurchsatz

- in paketvermittelnden Netzwerken
- Verzögerung:
 - durch Verarbeitung, Warteschlangen, Übertragung, Ausbreitung

Paketverlust:

z.b. durch überschreiten einer Warteschlangenkapazität

Datendurchsatz:

- Ende-zu-Ende Durchsatz
- Geschwindigkeit in Bit/s
- "Flaschenhals" Engpassleitung (Bottleneck)

Paket- vs. Leitungsvermittlung

- Paketvermittlung: (packet switched)
 - Informationen werden in einzelne Pakete aufgeteilt und über virtuelle Verbindungen übertragen
 - Vorteil: Leitung wird "geteilt", effizienter
 - Nachteil: Stau von Paketen möglich, Nicht verzögerte Übertragung kann nicht garantiert werden
- Leitungsvermittlung: (circuit switched)
 - Reservierung der Netzwerkressourcen für die Dauer der Kommunikationssitzung
 - z.b. traditionelle Fernsprechnetze
 - Nachteil: Ressourcen vollständig belegt (auch wenn ungenutzt)
 - Trend geht zur Paketvermittlung (z.b. VoIP in Telefonie)

Ethernet Protocol – IEEE 802.

	802.1 Internet-Working	802.2 Logical Link Control (LLC)				
2		802.1 Media Access Control (MAC)				
1		802.3 Ethernet	802.4 Token-Bus	802.5 Token-Ring	802.11 Wireless LAN	

Ethernet Frame

Netzwerktopologien

- Physische Anordnung von Netzwerkstationen
- Verbunden über Kabel oder Funknetz
- Bestimmt den Einsatz von Hardware & Zugriffsmethoden
- In weiterer Folge Einfluss auf:
 - Das Übertragungsmedium (Kabel, Lichtwellenleiter, Luft,...)
 - Die Übertragungsgeschwindigkeit
 - Den Datendurchsatz

Bus-Topologie

- Eine gemeinsame Übertragungsleitung
- Stationen sind hintereinander geschaltet
- Um Störungen zu vermeiden werden an den Enden der Leitung sog.
 Abschlusswiderstände eingesetzt
- Trennung des Kabels führt zum Ausfall des Netzwerkes
- Keine zentrale Netzwerkkomponenten die den Datenverkehr regelt
- Daten erreichen alle Stationen, Stationen die nicht adressiert sind ignorieren Daten
- Adressierte Station liest Daten und sendet Empfangsbestätigung an den Sender
- Bei Kollision von Datenpaketen entsteht eine Störung am Bus (= > 2 Stationen senden gleichzeitig)
 - → Nach Zufallszeit versuchen die Stationen erneut zu senden, bis die Daten am Ziel ankommen

Ring-Topologie

- Geschlossene Kabelstrecke
- Netzwerkteilnehmer sind im Kreis angeordnet
- An jeder Station kommt ein Kabel an und ein Kabel geht ab
- Trennung des Kabels führt zu Ausfall des Netzwerkes
 - → Ausnahme: Netzwerk kennt Busbetrieb und stellt auf diesen um
 - Aufwendige Fehlersuche
 - Bei Störung = Netzausfall
 - Verkabelungsaufwand

- + Verteilte Steuerung
- + Große Ausdehnung

Hub/Switch

Stern-Topologie

- Eine zentrale Station unterhält eine Verbindung zu allen Stationen
- Jede Station ist somit über eine eigene Leitung angebunden
- Zentrales Element ist zumeist ein Hub oder **Switch**
- Übernimmt die **Verteilfunktion** der Datenpakete
- Datenlast von Hub/Switch sehr hoch
 - → Alle Datenpakete müssen darübür
- Ausfall Hub/Switch = Stillstand des Netzwerkes
- Kann leicht erweitert werden
- Zumeist Kombination aus Bus + Stern üblich
- + Einfache Vernetzung
- + Einfache Erweiterung
- Hoher Verkabelungsaufwand - Netzausfall bei Ausfall des Hubs/Switch
- + Hohe Ausfallsicherheit

Baum-Topologie

- Erweiterte Sterntopologie
- Größere Netze nehmen solche Strukturen an
- Zumeist ein übergeordnetes Netzwerkelement das die Wurzel des Baumes bildet
- Wird wie ein Baum verzweigt

Kombinationen von Topologien

- Kombination aus Bus- und Sterntopologie
- Über eine Sternstruktur sind die Stationen über ein HUB verbunden

Vermaschte Topologie

- Dezentrales Netzwerk
- Muss keinen verbindlichen Strukturen unterliegen
- Modell dient häufig als "perfektes Netzwerk" indem jede Netzwerk-Station mit allen anderen Stationen verbunden ist
- Beim Ausfall einer Verbindung gibt es im zumeist alternative Routen
- Entspricht einem "kontrolliertem Chaos" das Internet stellt so ein gewolltes Netzwerk dar

- + Dezentrale Steuerung
- + Unendliche Netzausdehnung
- + Hohe Ausfallsicherheit

- Aufwendige Administration
- Teuere & hochwertige Vernetzung

Netzwerkgeräte - Netzwerkkarte

- Alternativ Netzwerkadapter oder NIC → Network Interface Card
- Ermöglicht den Zugriff auf ein Netzwerk
- Arbeitet auf dem OSI Layer 1
- Jede Netzwerkkarte hat eine Hardwareadresse die weltweit eindeutig ist (bzw. sein sollte)
 - → Beispielsweise: A4-23-7B-47-C1-66
- Diese Adresse wird als MAC-Adresse bezeichnet → Media Access Control
- Über die MAC lässt sich ein Client eindeutig identifizieren
- LEDs auf dem NIC zeigen den aktuellen Status (verbunden?) und die Datenübertragung

Netzwerkgeräte - Repeater

- Kopplungselement
- Frischt Datensignale auf = Verstärker
- Arbeitet auf OSI Layer 1
- Erhöht dadurch die Übertragungsstrecke
- Zumeist 2 Ports: Eingang und Ausgang
- Arbeitet transparent

Ist f
ür andere Ger
äte nicht erken

Netzwerkgeräte - Hub

- Kopplungselement
- Verbindet mehrere Stationen
- Arbeitet auf OSI Layer 1

- Somit "broadcasten" Hubs
- Besitzt sog. "Uplink-Port" um weitere Hubs zu verbinden

Netzwerkgeräte - Switch

- Kopplungselement
- Verbindet Stationen in einem Netzwerk
- Arbeitet auf OSI Layer 2 Data Layer
- Ähnlich einem HUB aber...
 - → Verbindungen werden direkt zwischen den Stationen geschalten
 - → Sofern die zugehörigen Ports bekannt sind
 - → Verwendung von MAC-Table zur Zuordnung der Stationen
- Switch kann mit SPAN-Port zur Datenanalyse konfiguriert werden
 - → Switched Port Analyser (Mirror Port)

CSMA / CD

- Carrier Sense Multiple Access Collission
 Detection
- Zugriffsverfahren
- Carrier Sense:
 - Träger Zustandserkennung
- Multiple Access:
 - Mehrfachzugriff
- Collission Detection:
 - Kollisionserkennung
- IFS = Interframe Spacing
 - → zeitlichen Abstand zwischen gesendeten Paketen

Kollisionsdomainen

Paketkollisionen entstehen durch Multiple Access (CSMA/CD)

Kollisionsdomäne

Kollisionsdomänen

Router

- Verbinden Netze untereinander
- Arbeitet auf OSI-Layer 3
- Häufig an den Außengrenzen von Netzwerken
- Aufgaben
 - Ermittlung der verfügbaren Routen
 - Auswahl der geeignetsten Route
 - Herstellen der Verbindung
 - Anpassung der Datenpakete an Übertragungstechnik

MTU Size

- MTU beschreibt die maximale Paketgröße eines Protokolls der Vermittlungsschicht
 - Fragmentierung (Aufteilung) eines Datenpaktes in mehrere physische Blöcke
 - findet statt, wenn die Maximum Transmission Unit (MTU) überschritten ist
 - Kann unterschiedliche Werte für unterschiedliche Protokolle annehmen

MTU Size / Fragmentierung

- Unterschiedliche Netzwerke haben unterschiedliche MTUs
 - Ethernet 1500 Bytes
 - Wifi 2300 Bytes
- Große MTUs sollten aus Effizienzgründen bevorzugt werden
- Schwierig da nicht jeder Router die gleichen MTU-Größen verwendet
- Zusammensetzung findet am Endclient statt (=Entlastung der Router)

MTU Size / Fragmentierung

- Router teilt Pakete die zu groß sind
 - Typischerweise in die größtmöglichen Paketteile
 - Kopiert den IP Header des Originals und stattet damit die Paketteile aus
 - Setzt ein Offset im IP-Header um die Fragmentposition anzugeben
 - Setzt das MF-Flag (More Fragments) im IP-Header bei jedem Fragment (außer das Letzte)
- Empfänger baut die Fragmente wieder zusammen
 - Identifiziert über das Identification Field welche Fragmente wie zusammengehören
 - Über das MF-Flag 0 erkennt der Empfänger das letzte Fragment