

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Álgebra Lineal (R211 - CE9)

2023

5. Subespacio generado - VERSIÓN BORRADOR

OBJETIVO: caracterizar un evV completo con poquitos vectores.

Recordar lo que sabemos de \mathbb{F}^n ! Queremos mudar estas ideas a V.

Definición 1. V F-ev. $v_1, \ldots, v_n \in V$.

Una combinación lineal (cl) de los vectores v_1, \ldots, v_n es un vector de la forma

$$\alpha_1 v_1 + \cdots + \alpha_n v_n$$

donde $\alpha_1, \ldots, \alpha_n \in F$.

Observación 1. Las cl de vectores de un ev SIEMPRE constan de una cantidad finita de términos. No trabajamos con cl infinitas (no tenemos aún noción de convergencia).

Definición 2. V F-ev. $S \subset V$.

La cápsula lineal o span de S es el conjunto de todas las cl posibles de elementos de S. Se denota por < S > o lin(S) o span(S):

$$\langle S \rangle = \{\alpha_1 v_1 + \dots + \alpha_n v_n : v_1, \dots, v_n \in V, \alpha_1, \dots, \alpha_n \in F, n \in \mathbb{N}_0\}.$$

 $Si S = \emptyset \ tenemos < S >= {\overline{0}}.$

Observación 2. Las el que forman la cápsula lineal son FINITAS, como dijimos antes.

Proposición 1. V F-ev. $S \subset V$. $Entonces < S > \subset V$.

Definición 3. $\langle S \rangle$: subespacio generado por S.

Demostración. Usamos caracterización de subespacios.

 $\alpha, \beta \in F, u, v \in S >$. Veamos que $\alpha u + \beta v \in S >$. En efecto:

$$-u \in \langle S \rangle \Rightarrow \exists \alpha_1, \ldots, \alpha_n \in F \text{ such that } u = \alpha_1 v_1 + \cdots + \alpha_n v_n \text{ with } v_i \in S.$$

-
$$v \in \langle S \rangle \Rightarrow \exists \beta_1, \dots, \beta_m \in F \text{ such that } v = \beta_1 w_1 + \dots + \beta_n w_m \text{ with } w_i \in S.$$

Luego

$$\alpha u + \beta v = \alpha(\alpha_1 v_1 + \dots + \alpha_n v_n) + \beta(\beta_1 w_1 + \dots + \beta_n w_m)$$

= $\alpha \alpha_1 v_1 + \dots + \alpha \alpha_n v_n + \beta \beta_1 w_1 + \dots + \beta \beta_n w_m \in < S >$,

pues es una cl de elementos de S.

Observación 3. $S \subset S >$. En efecto, cada $u \in S$ puede ser escrito como $u = 1 \cdot u$, que es una cl de elementos de S, luego está en S >.

Observación 4. Si $S \subset T$ entonces $\langle S \rangle \subset \langle T \rangle$. EJERCICIO.

Proposición 2. V F-ev. $S \subset V$.

 $Entonces < S >= \bigcap \{U \subset V : U \text{ sev } y \in S \subset U\}.$

O sea, el sev generado por un conjunto es la intersección de todos los sev que lo contienen.

Demostración. Llamemos $\mathcal{F} = \{U \subset V : U \text{ sev y } S \subset U\}$ a la familia de sev que contienen a S. Queremos ver que $\langle S \rangle = \bigcap_{U \in \mathcal{F}} U$.

 \subset) Veamos que $\langle S \rangle \subset U$ para todo $U \in \mathcal{F}$.

Sea $U \in \mathcal{F}$. Entonces $U \supset S$. Sea $u \in \langle S \rangle \Rightarrow \exists \alpha_1, \dots, \alpha_n \in F \text{ tq } u = \alpha_1 v_1 + \dots + \alpha_n v_n \text{ con } v_i \in S$, luego $v_i \in U$, y como $U \subset V$ sev, sigue que $u \in U$.

 \supset) < S >∈ F (porqué???) Luego la intersección de < S > con el resto de los sev de la familia F está contenida en < S >.

Corolario 1. $\langle S \rangle$ es el menor sev de V que contiene a S.

El menor significa que si $U \subset V$ sev tal que $U \supset S$ entonces $\langle S \rangle \subset U$.

Demostración. Es el \subset) de la prueba.

Corolario 2. $S \subset V$ sev ents. $S = \langle S \rangle$.

Es un sii, la vuelta es trivial.

Demostración. EJERCICIO: completar.

Definición 4. V F-ev. $S \subset V$.

Si < S >= V decimos que S genera a V, o que V es generado por S o que S es un subconjunto generador de V o que S es un sistema generador de V.

Si existe un conjunto generador de V que es finito, decimos que V es finitamente generado. Si no existe tal S decimos que es V es infinito dimensional.

Ejemplos 1. TODO QUEDA COMO EJERCICIO.

- 1. Base canónica de \mathbb{R}^3 : ijk.
- 2. $\{1, x, x^2\}$ base de $\mathbb{C}_2[x]$ como \mathbb{C} -ev.
- 3. $\mathbb{C}[x]$ es infinito dimensional.
- 4. Sol del sistema AX = 0 con

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

está generado por $\{(-2, 1, 0, 0, 0), (-3, 0, -1, 1, 0)\}$.

6. Independencia lineal - VERSIÓN BORRADOR

Recordar la def de li que vimos en \mathbb{F}^n ! Queremos mudar estas ideas a V.

Definición 5. V F-ev. $S \subset V$.

 $Si S = \{v_1, ..., v_n\}$ decimos que S es **linealmente independiente** (li) si la única cl de elementos de S que resulta en el vector nulo es la trivial.

2

En símbolos: si $\alpha_1 v_1 + \cdots + \alpha_n v_n = \overline{0}$ p.a. $\alpha_1, \ldots, \alpha_n \in F$ entonces $\alpha_1 = \cdots = \alpha_n = 0$.

 $Si S = \emptyset DECRETAMOS que S sea li.$

 $Si\ S\ es\ un\ conjunto\ infinito,\ decimos\ que\ es\ li\ si\ todo\ subconjunto\ finito\ de\ S\ es\ li.$

Si S no es li decimos que S es linealmente dependiente (ld).

Observaciones 1. TODO TAMBIÉN SE DEBE JUSTIFICAR COMO EJERCICIO

- 1. S es ld sii $\exists v_1, \ldots, v_m \in S$ y $\alpha_1, \ldots, \alpha_m \in F$ no todos nulos tq $\alpha_1 v_1 + \cdots + \alpha_m v_m = \overline{0}$.
- 2. $\overline{0} \in S \Rightarrow S \ ld$.
- 3. S ld entonces todo $T \supset S$ es ld.
- 4. S li entonces todo $T \subset S$ es li.
- 5. $v \in V$, $\{v\}$ $ld \ sii \ v = \overline{0}$.
- 6. $u, v \in V$, $\{u, v\}$ ld $sii <math>\exists \lambda \in F$ st $u = \lambda v$.
- 7. S ld sii \exists un vector en S que es cl de los demás.

Ejemplos 2. JUSTIFICAR TODOS LOS EJEMPLOS

- 1. $ijk son li en \mathbb{R}^3$.
- 2. $\{x^2, x^4, x^6, x^8\}$ li en $\mathbb{R}[x]$.
- 3. $\{\sin x, \cos x\}$ son li en $\mathbb{R}^{[-\pi,\pi]}$.