CURRICULUM VITAE Vahid Ganjalizadeh

EDUCATION

Ph.D. candidate in Electrical Engineering,
"Optofluidics and its applications"

M.S. in Electrical Engineering,
Non-terminating master degree

M.S. in Electrical Engineering, Microsystems Technology
"Optofluidic Microring Resonator on PDMS Substrate"

B.S. in Electrical Engineering, Electronics
"CORDIC Processor on FPGA for EEG Signals Processing"

2016-current
University of California, Santa Cruz, USA
Dec 2019
University of California, Santa Cruz, USA
Sep 2013
University of Tabriz, Iran
Sep 2011
University of Tabriz, Iran

EXPERIENCE

Applied Optics Group (Professor Holger Schmidt's lab)

Research&Teaching Assistant

Sep 2016 - Current University of California, Santa Cruz, USA

- Speckle Pattern Analysis using Deep-Learning: Developing a deep-learning model with multiple CNN layers followed by a regression layer to map speckle patterns seen in scattered light from waveguide to a 1D array. I'm using Scikit-Image, TensorFlow, and H5py libraries to pre-process, train and inference, and store the image data respectively (on-going project).
- Real-Time Multiplexed Detection on the Edge: Developed an Edge-TPU classifier using Tensorflow and implemented on Google Coral Dev Board for real-time multiplexed event detection in optofluidic devices. It utilizes a fast wavelet-based event detector (called PCWA also developed by me) followed by a quantized DNN model to classify detected events. Due to limited resourced available in the edge device, various parallel-processing schemes including multi-processing, multi-threading, data sharing via queues, etc were utilized to achieve real-time performance. A Plotly Dash App is also implemented as a browser-based GUI to run on the edge device as a server and let the user monitor real-time data plot plus event detection results. A manuscript has been submitted to Scientific Reports and is under review.
- Fast Wavelet Analysis Technique for Single Molecule Detection and Identification: Developed a CWT-based event detection algorithm with pattern matching capability in multi-scale and parallel clustering scheme to group local maxima found in each level into a single event localization independently and in parallel. It is implemented in Python and available at my github repository (PCWA).
- Real-Time Closed-Loop Optofluidic Chip Excitation System: In this project, I have utilized a single-photon-counting-module (SPCM) to read-out real-time photon counts from the chip and adjust input laser power accordingly. Due to limitations of TimeHarp photon counter, I've developed a real-time binning system implemented in Digilent Arty-A7 FPGA board to bin, buffer, and transfer binned photon counts to the PC via Ethernet (UDP socket protocol). This is and on-going project and a manuscript is under preparation.
- Photonic Chip Design, Simulation, and Characterization: Collaborating with Brigham Young University (BYU) on designing, characterizing and optimizing optofluidic devices for point-of-care application. I'm experienced with waveguide-based photonic chip simulation with FIMMWAVE/FIMMPROP-Photon Design software especially in creating Python scripts to communicate and run a batch/routine of FIMMWAVE simulations. Also, I'm experienced on building optical setups (imaging, single-molecule fluorescence detection with SPCM, and optofluidic chip handling and running the experiment (a couple of second author papers).
- 3D Atomic deposition simulation: Developed a 3D atomic deposition model done in *Python* with *PyOpenGL* library as the 3D visualization tool. This was a project for EE216 (Fall 2017) (Atomic Deposition).
- PDMS Optofluidic Chip Design and Fabrication: Well experienced with PDMS chip design and fabrication from mask to final device. I've done numerous fabrications from the scratch: device simulation with FIMMWAVE/FIMMPROP, chrome mask design with AutoCAD, photolitography, testing, and characterizing final chips. A couple of publications based on these PDMS chips. Have developed an AutoCAD script in Lisp to ease and automate design rule check (DRC) publicly available in my github repository (PolyHatch).
- **Mode Analyzer:** Application specific program developed in *Python* for fluorescent and chip facet waveguide mode image analysis (Mode Analyzer).
- Teaching Assistant for EE101 (Fall 2020).
- Teaching Assistant for EE103 (Fall 2018).
- Mentoring undergraduate students for summer research program.

SAPNA.Co ™ R&D Engineer Aug 2015 - Sep 2016 Tabriz, Iran

- Designing and fabrication of microfluidic chips based on PMMA material
- Designing and developing 3D holographic displays
- Developing compact CNC machine for microfluidic applications

Microfabrication Laboratory

Research Assistant

Sep 2012 - Sep 2014 University of Tabriz, Iran

- Experience in masked and maskless photolithography processes
- Softlithography and replica molding processes in microfluidic and optofluidic devices
- Free-space optics, imaging systems and realtime image processing

Tabriz University Robotic Group (TURG)

Team Member

Apr 2010 - Mar 2012 University of Tabriz, Iran

- VHDL codes for robots central processing unit (Xilinx Spartan-3A FPGA chipset)
- Implementation of ZigBee communication between PC-based strategy AI and robots

TECHNICAL STRENGTHS

Code and Data Analysis	C, C#, HDL, Matlab
Python	Data analysis & ML, Software Dev. (multi-processing/threading, socket, instruments)
(Libraries)	Numpy/Scipy, TensorFlow, Scikit-Learn, Scikit-Image, Matplotlib, Pandas, H5py, Tk, PySide, PyOpenGL, Plotly Dash
Finite Elements	ANSYS APDL, CFX/Fluent, COMSOL Multiphysics
CAD and Graphics	AutoCAD, Inventor/Fusion 360, Blender, Illustrator, GIMP
Electronics and PCB	Altium Designer, OrCAD, Eagle Soft, HSPICE, KiCad
Optics & Photonics	PhotonDesign (FIMMWAVE & FIMMPROP), Code V, MEEP (FDTD), TracePro
Board & μC	Coral Dev Board (EdgeTPU), Raspberry Pi, Arduino, Arty A7 (Xilinx: MicroBlaze, Vivado, HLS, AXI-4, Stream)
Script & Tool	Bash, ੴEX, VS Code, Jupyter NB/Lab, Google Colab, MS Office, MS Windows, Linux
Language	Persian (Mother tongue), Turkish (Proficient), English (Proficient), German (Elementary)

AWARDS AND HONORS

* Received gift from the Cisco University Research Program

Winter 2020

* Received EE department fellowship from University of California, Santa Cruz

Spring 2017

* Received full scholarship from University of Tabriz for B.S.

2007

* Top 0.67% ranked among 311,000 participants in the nation-wide entrance examination of state universities

2007

PUBLICATIONS

- [1] V. Ganjalizadeh, G. G. Meena, T. A. Wall, M. A. Stott, A. R. Hawkins, and H. Schmidt, "Fast custom wavelet analysis technique for single molecule detection and identification," Nature Communications, vol. 13, no. 1, pp. 1-9, 2022. DOI: 10.1038/s41467-022-28703-z.
- [2] M. N. Amin, V. Ganjalizadeh, M. Hamblin, A. R. Hawkins, and H. Schmidt, "Free-space excitation of optofluidic devices for pattern-based single particle detection," IEEE Photonics Technology Letters, vol. 33, no. 16, pp. 884-887, 2021. DOI: 10.1109/lpt.2021.3069673.
- [3] G. Meena, A. Stambaugh, V. Ganjalizadeh, M. Stott, A. Hawkins, and H. Schmidt, "Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip," Apl Photonics, vol. 6, no. 6, p. 066 101, 2021. DOI: 10.1063/5.0049735.
- [4] M. Amin, V. Ganjalizadeh, M. Hamblin, A. Hawkins, and H. Schmidt, "Multiplexed single particle sensing in optofluidic sensors using free space excitation," in 2020 IEEE Photonics Conference (IPC), IEEE, 2020, pp. 1-2. DOI: 10.1109/ IPC47351.2020.9252341.

- [5] E. S. Hamilton, V. Ganjalizadeh, J. G. Wright, H. Schmidt, and A. R. Hawkins, "3D hydrodynamic focusing in microscale optofluidic channels formed with a single sacrificial layer," *Micromachines*, vol. 11, no. 4, p. 349, 2020. DOI: 10.3390/mi11040349.
- [6] V. Ganjalizadeh, G. Meena, M. Stott, H. Schmidt, and A. Hawkins, "Single particle detection enhancement with wavelet-based signal processing technique," in *CLEO*: Science and Innovations, Optical Society of America, 2019, STu₃H-4.
- [7] E. S. Hamilton, V. Ganjalizadeh, J. G. Wright, W. G. Pitt, H. Schmidt, and A. R. Hawkins, "3D hydrodynamic focusing in microscale channels formed with two photoresist layers," *Microfluidics and Nanofluidics*, vol. 23, no. 11, pp. 1–8, 2019. DOI: 10.1007/s10404-019-2293-z.
- [8] E. S. Hamilton, J. G. Wright, V. Ganjalizadeh, H. Schmidt, and A. R. Hawkins, "Three-dimensional hydrodynamic focusing designs for integrated optofluidic detection enhancement," in 2019 IEEE Photonics Conference (IPC), IEEE, 2019, pp. 1–2. DOI: 10.1109/IPCon.2019.8908414.
- [9] J. A. Black, V. Ganjalizadeh, J. W. Parks, and H. Schmidt, "Multi-channel velocity multiplexing of single virus detection on an optofluidic chip," *Optics letters*, vol. 43, no. 18, pp. 4425–4428, 2018. DOI: 10.1364/o1.43.004425.
- [10] M. A. Stott, V. Ganjalizadeh, G. Meena, J. McMurray, M. Olsen, M. Orfila, H. Schmidt, and A. R. Hawkins, "Buried rib SiO 2 multimode interference waveguides for optofluidic multiplexing," *IEEE Photonics Technology Letters*, vol. 30, no. 16, pp. 1487–1490, 2018. DOI: 10.1109/lpt.2018.2858258.
- [11] M. A. Stott, V. Ganjalizadeh, M. H. Olsen, M. Orfila, J. McMurray, H. Schmidt, and A. R. Hawkins, "Optimized ARROW-based MMI waveguides for high fidelity excitation patterns for optofluidic multiplexing," *IEEE journal of quantum electronics*, vol. 54, no. 3, pp. 1–7, 2018. DOI: 10.1109/jqe.2018.2816120.
- [12] M. A. Stott, V. Ganjalizadeh, M. Olsen, M. Orfila, J. McMurray, H. Schmidt, and A. R. Hawkins, "High fidelity MMI excitation patterns for optofluidic multiplexing," in *CLEO: QELS_Fundamental Science*, Optical Society of America, 2018, IW2A–24.
- [13] M. A. Stott, V. Ganjalizadeh, H. Schmidt, and A. R. Hawkins, "High fidelity MMI-based multi-spot excitation for optofluidic multiplexing," in 2017 IEEE Photonics Conference (IPC), IEEE, 2017, pp. 703–704. DOI: 10.1109/ipcon.2017.8116287.
- [14] T. Wall, J. McMurray, G. Meena, V. Ganjalizadeh, H. Schmidt, and A. R. Hawkins, "Optofluidic lab-on-a-chip fluorescence sensor using integrated buried ARROW (bARROW) waveguides," *Micromachines*, vol. 8, no. 8, p. 252, 2017. DOI: 10.3390/mi8080252.
- [15] V. Ganjalizade, N. Talebzadeh, and H. Veladi, "Simulation and optimization of a novel structure for capacitive pressure sensor based on out of plane electrodes," 2014.
- [16] V. Ganjalizadeh, N. Talebzadeh, and H. Veladi, "Design, analysis and optimization of a novel capacitive pressure sensor based on vertical comb-grid configuration," in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICROM), IEEE, 2014, pp. 498–502. DOI: 10.1109/icrom.2014.6990951.
- [17] V. Ganjalizadeh, H. Veladi, and R. Yadipour, "A novel pressure sensor based on optofluidic micro-ring resonator," in 2014 International Conference on Optical MEMS and Nanophotonics, IEEE, 2014, pp. 133–134. DOI: 10.1109/omn. 2014.6924556.
- [18] N. Talebzadeh, S. A. Chorsi, V. Ganjalizadeh, M. R. Malekshahi, and H. Veladi, "Investigation of voltage phase shift effect on microfluidic electroosmotic mixer," 2014.
- [19] N. Talebzadeh, V. Ganjalizadeh, M. R. Malekshahi, and H. Veladi, "Time analyses of an active micromixer and effect of frequency and voltage on mixing time," 2014.