

GOAL AND MOTIVATION

Motivation

RNNs have been used previously for music generation.

Jazz contains subtle patterns in multiple dimensions.

Maybe another way would be better?

Goal

To implement a Deep Convolutional Generative Adversarial Net (DCGAN) for generation of jazz music.

OVERALL SOFTWARE STRUCTURE

LET'S LISTEN TO THE RESULTS!

Trained Generator Output

Training Data (Authentic Music)

DATA COLLECTION & PREPROCESSING

- Source (authentic data for training): https://bushgrafts.com/midi/
- Pre-Processing:

PREPROCESSED DATA

		0	1	2	3	4	
Pitch	0	0.3779527559055118	0.3779527559055118	0.3779527559055118	0.3779527559055118	0.3779527559055118	0.3779527
		0.0	0.0	0.0	0.0	0.0	0
		0.0	0.0	0.0	0.0	0.0	0
		0.0	0.0	0.0	0.0	0.0	0
	4	0.0	0.0	0.0	0.0	0.0	0
	5	0.0	0.0	0.0	0.0	0.0	0
		0.48031496062992124	0.48031496062992124	0.48031496062992124	0.48031496062992124	0.48031496062992124	0.48031496
	7	0.0	0.0	0.0	0.0	0.0	0
		0.4094488188976378	0.4094488188976378	0.4094488188976378	0.4094488188976378	0.4094488188976378	0.4094488
		0.36220472440944884	0.36220472440944884	0.36220472440944884	0.36220472440944884	0.36220472440944884	0.36220472
	10	0.0	0.0	0.0	0.0	0.0	0
	11	0.49606299212598426	0.49606299212598426	0.49606299212598426	0.49606299212598426	0.49606299212598426	0.49606299
	12	0.0	0.0	0.0	0.0	0.0	0
	13	0.0	0.0	0.0	0.0	0.0	0
	14	0.0	0.0	0.0	0.0	0.0	0
	15	0.0	0.0	0.0	0.0	0.0	0
	16	0.0	0.0	0.0	0.0	0.0	0
	17	0.0	0.0	0.0	0.0	0.0	0
	18	0.0	0.0	0.0	0.0	0.0	0
	19	0.0	0.0	0.0	0.0	0.0	0
	20	0.0	0.0	0.0	0.0	0.0	0
	21	0.5984251968503937	0.5984251968503937	0.5984251968503937	0.5984251968503937	0.0	0

DISCRIMINATOR CNN

GENERATOR GAN

Note: Receptive field of discriminator was designed to span multiple bars of music and a wide pitch range.

RESULTS OF TRAINING - Notable Metrics

Training Accuracy of Discriminator

- Begins high (~78%) and then stabilises at ~50%
 - i.e. Good at distinguishing non-authentic and authentic music, but as training progresses, is 'fooled' by the generated music
 - Encountered issues where discriminator trains faster than generator

Loss of Discriminator and Generator

- Both highly fluctuating in the beginning, then stabilises (~1.3 and ~0.7 respectively)
 - i.e. Discriminator is improving (in distinguishing authentic and non-authentic music) at an equivalent rate as the generator

KEY LEARNINGS

Improvised music is extremely diverse - the musical commonalities between samples are subtle.

➤ A larger generator/ discriminator model may be able capture intricate jazz features to a higher degree.

GANs are difficult to train! Evaluating training quality is subjective.

- Surveying multiple people to evaluate results is useful
 - Amazon Mechanical Turk?
- Replicating subtle features in the generated data requires a large amount of computational power.

FUTURE WORK

Use of transposed convolution ("deconvolution") in generator network over fully connected layers

Greater ability to replicate spatial patterns

Implementing a "conditioner" CNN

Enhances the generator to give it a memory property

Incorporating more features into training data

- Multi-instrumental tracks
- > Tempo

