情報リテラシー(第13回)

情報のディジタル表現1

今日のねらい

- **アナログとデジタル**の違いを理解する
- 2進数の仕組みと情報量を理解する
- 数値と文字の表現方法を理解する

アナログとデジタル

■ 基本概念

アナログとは、連続的に変化する信号のことです。 デジタルとは、離散的に変化する信号のことです。

△ イメージ

- アナログ:なめらかな波 ~~~~~
- デジタル:階段状の波

■ 分 身近な例

アナログ:アナログ時計・レコード・水銀温度計

デジタル:デジタル時計・CD・デジタル温度計

2進数と16進数

34 基本概念

2進数とは、0と1の2つの数字だけで表現する数の体系です。

16進数とは、0~9とA~Fの16個の文字で表現する数の体系です。

→ なぜ16進数を使うのか?

• **2進数との相性:**16進数1桁=2進数4桁なので変換が簡単

▶ コンピュータの基本

コンピュータは内部で2進数で処理している

◎ 演習①:進数変換

やること

以下を変換してみよう!

愛換問題

10進数→2進数:5、10、15

2進数→10進数:101、1010、1111

16進数→10進数:A、1F、FF

♪ 進め方

- 個人で考える:まず自分で変換してみる
- ペアで確認:隣の人と答えを確認
- **方法を共有**:変換のコツを話し合う

演習①:変換のヒント

10進数→2進数

2で割り続けて、余りを逆順に並べる

例: $5 \rightarrow 5\div2=2$ 余り1 $\rightarrow 2\div2=1$ 余り0 $\rightarrow 1\div2=0$ 余り1 \rightarrow **101**

→ 2進数→10進数

位の重みをかけて足す

例: $101 \rightarrow 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5$

⑥ 16進数→10進数

A=10、B=11、C=12、D=13、E=14、F=15

例:A → 10

Ⅲ 正解一覧

10進数→2進数	2進数→10進数	16進数→10進数
5 → 101	101 → 5	A → 10
10 → 1010	1010 → 10	1F → 31
15 → 1111	1111 → 15	FF → 255

★ 変換のコツ

• 2進数:2で割って余りを見る

• **16進数**:A~Fは10~15を表す

• 練習すれば慣れる!

情報量の単位

□ 基本単位

1**ビット**とは、0または1を表現できる最小の情報単位です。 1**バイト**とは、8ビットのことです。

🦠 情報量の関係

1B = 8ビット

1KB = 1,024B

1MB = 1,024KB

1GB = 1,024MB

♥ 覚え方

ビット→バイト→キロ→メガ→ギガ それぞれ約1000倍(正確には1024倍)

演算の仕組み

→ 論理演算

コンピュータは論理演算を使って計算を行います。

→基本的な論理演算

論理積 (AND):両方が真のとき真

論理和 (OR): どちらかが真のとき真

否定 (NOT): 真偽を反転

AND演算

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

OR演算

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

NOT演算

Α	NOT A
0	1
1	0

数値と文字の表現

盟 数値の表現

整数:2進数で表現(2の補数)

小数:浮動小数点で表現(完全に正確ではない)

ジ 文字の表現

文字コードとは、文字を**数値**で表現するための**対応表**のことです。

→ 主な文字コード

ASCII(英数字・記号、7ビット固定長、例:A=65)

Unicode(文字集合、世界中の文字、例:あ=12354)

UTF-8(UTF-8符号化方式、可変長1-4バイト、日本語・絵文字も含む)

◎ 演習②:情報量計算

やること

ペアで情報量を計算してみよう!

₩ 計算問題

- 1. 「Hello」という文字列(1文字=1バイト)→何バイト?
- 2. **写真1枚(2MB)** →何バイト?
- 3. 1GBのUSBメモリに500KBのファイルは何個入る?

♥ペアワークの進め方

- 2人で相談して計算方法を考える
- 単位変換に注意して計算
- 答えを確認し合う

演習②:計算のヒント

計算のポイント

文字数の計算

「Hello」 = 5文字 × 1バイト = **5バイト**

単位変換

 $2MB = 2 \times 1,024KB = 2,048KB = 2,048 \times 1,024B = 2,097,152/17$

割り算

1GB = 1,024MB = 1,048,576KB $1,048,576KB \div 500KB = 2,097個$

▲ 注意点

単位変換は**1024倍**であることを忘れずに!

☑ 演習②:計算の解説

直 正解

問題	計算過程	答え
「Hello」	5文字 × 1バイト	5バイト
写真1枚(2MB)	2 × 1,024 × 1,024	2,097,152バイト
USBメモリの容量	1,048,576KB ÷ 500KB	2,097個

♥ 学んだこと

- **単位変換**の重要性
- 情報量の感覚
- **計算**の基本手順

コンピュータの情報表現全体像

第13回のまとめ

```
【アナログ世界】 → 【デジタル変換】 → 【コンピュータ内部】

連続信号 → 0と1 → 2進数処理

【文字・数値表現】

文字コード

論理演算
```

◎ 重要なポイント

すべての情報は最終的に0と1で表現されている

まとめ

今日学んだキーワード

アナログ、デジタル、2進数、ビット、バイト、論理演算、文字コード

★ 重要ポイント

- **アナログとデジタル**には明確な違いがある
- 2進数がコンピュータの基本
- 情報量の単位を理解することが大切
- **すべての情報**は数値として表現される

● 振り返り

今日の感想をチャット欄に書こう!