

PROJET 7

IMPLÉMENTEZ UN MODÈJE DE SCORING

SOMMAIRE

- □ PROBLÉMATIQUE
- **DONNÉES**
- **MODÉLISATION**
- DASHBOARD
- **CONCLUSION**

- PROBLÉMATIQUE
- DONNÉES
- **MODÉLISATION**
- □ DASHBOARD
- **CONCLUSION**

PROBLÉMATIQUE

☐ Prêt à dépenser :

Société financière d'offre de crédit à la consommation pour la clientèle ayant peu ou pas d'historique de prêt.

☐ Mission:

- ✓ Construire un modèle de scoring prédisant automatiquement la probabilité de défaut de paiement d'un client.
- ✓ Développer un dashboard interactif.

□ Objectifs :

- ✓ Étayer la décision d'accorder ou non un prêt.
- ✓ Améliorer la relation avec le client en faisant preuve de transparence.
- ✓ Montrer au client les informations le concernant grâce à l'intéractivité.

PROBLÉMATIQUE

EDA

PRÉ PROCESSING

FEATURES SELECTION

MODELISATION

DASHBOARD

Kaggle, 8 fichiers CSV

Kernel Rishabhrao

Stats, types données, NaN, unique

Nettoyage

- Type de données (bool, mémoire..)
- Val. aberrantes
- Imputation

Feature Engineering

- Création variables métiers
- Création variables automatiques (min, max, mean, sum, count..)
- Encodage
- Suppression des colinéarités fortes
- Assemblage (merge)

train set

test set

LightGbm

- Plusieurs itérations
- Features importances

Boruta

BorutaShap

Permutation importance

Sklearn, eli5

RFECV

→ Conserve les variables les plus répétées pour toutes ces méthodes

Pycaret

- Première idée
- Choix du jeux de données
- Choix du modèle

LightGbm

- Split du jeux de données, rééquilibrage
- Choix des métriques
- Optimisation du modèles
- Seuil de probabilité optimal

Dév. Local

- Prédictions
- Visualisations

Déploiement

Modèle Final

- **PROBLÉMATIQUE**
- DONNÉES
- **MODÉLISATION**
- DASHBOARD
- **CONCLUSION**

DONNÉES

DONNÉES - ANALYSE EXPLORATOIRE

DONNÉES - ANALYSE EXPLORATOIRE

Dataframe initial	Nbr lignes var. initiales	Nbr lignes var. après FE	Merge avec application_train/test et suppr var. colinéaires + > 90% nan
application_train/test	(307511, 122) (48744, 121)	(307507, 206) (48744, 205)	
credit_card_balance	(3840312, 23)	agg_ccb_cat (103558, 21) agg_ccb_num (103558, 68)	(307507, 246) (48744, 245)
installments_payments	(13605401, 8)	agg_pay_num (339587, 30)	(307507, 265) (48744, 264)
POS_CASH_balance	(10001358, 10)	agg_pos_num (337252, 27)	(307507, 285) (48744, 284)
previous_application	(1670214, 37)	agg_prev_num (338857, 114)	(307507, 552) (48744, 551)
bureau_balance	(27299925, 3)	agg_bureau_balance_par_dem andeur (305811, 12)	(307507, 555) (48744, 554)
bureau	(1716428, 17)	agg_bureau_num (305811, 60)	(307507, 615) (48744, 614)

train set: 615 variables

test set: 614 variables

FEATURE SELECTION
NÉCESSAIRE

DONNÉES - FEATURES ENGINEERING

RFECV 382 train set : **615** variables

test set: 614 variables

Nbr répétition	Nbr variables	%_variabl es/615
(0, 1]	99	19.9195
(1, 2]	53	10.6640
(2, 3]	57	11.4688
(3, 4]	182	36.6197
(4, 5]	28	5.6338
(5, 6]	78	15.6942

- IDENTIFIANT

train set : 108 variables

test set: 107 variables

DONNÉES PRÊTES POUR MODELISATION

- **PROBLÉMATIQUE**
- DONNÉES
- **MODÉLISATION**
- DASHBOARD
- **CONCLUSION**

MODÉLISATION

Variable cible binaire

Classe 0

Clients non défaillants

92% majoritaire

Classe 1

Clients défaillants

8% minoritaire

Modélisation

Classification binaire

Avec classes déséquilibrées

MODÉLISATION - CHOIX DES MÉTRIQUES

Rappel:

Classe 0 négative = non défaillant Classe 1 positive = défaillant

Matrice de confusion :

Minimiser les pertes argents :

Prédiction	Réalité	PERTE
+ défaillant	- non-défaillant	Intérêt du prêt non accordé
- non-défaillant	+ défaillant	Somme empruntée en partie ou totale

- minimiser le nombre de faux positifs maximiser la métrique Précision
- minimiser le nombre de faux négatifs maximiser les métriques Recall ou Fbeta 10

Perte > pour FN que FP : privilégier Recall/F10
Compromis FN/FP (si FN FP et vis versa)
Tester métrique métier / fonction coût pour jouer sur le taux de FN/FP et privilégier les bons prêts

MODÉLISATION - PYCARET

Jeu de données Imputation 3

LightGbm
Class_weight
Très rapide
Formation

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
catboost	CatBoost Classifier	0.9179	0.7685	0.0683	0.4452	0.1184	0.0991	0.1498	65.995
xgboost	Extreme Gradient Boosting	0.9158	0.7562	0.0800	0.3930	0.1329	0.1086	0.1481	51.939
lightgbm	Light Gradient Boosting Machine	0.9162	0.7550	0.0503	0.3640	0.0883	0.0701	0.1104	10.222
rf	Random Forest Classifier	0.9124	0.7342	0.0586	0.2897	0.0974	0.0722	0.0987	49.923
gbc	Gradient Boosting Classifier	0.9019	0.7168	0.1046	0.2466	0.1468	0.1037	0.1146	125.717
et	Extra Trees Classifier	0.9018	0.7124	0.0947	0.2331	0.1347	0.0924	0.1030	42.072
ada	Ada Boost Classifier	0.8723	0.6979	0.1959	0.2010	0.1984	0.1290	0.1291	32.810
lda	Linear Discriminant Analysis	0.7316	0.6739	0.4904	0.1484	0.2278	0.1185	0.1498	7.882
knn	K Neighbors Classifier	0.6839	0.5661	0.3829	0.1040	0.1636	0.0419	0.0556	116.716
nb	Naive Bayes	0.1113	0.5592	0.9762	0.0816	0.1506	0.0019	0.0174	5.304
qda	Quadratic Discriminant Analysis	0.1459	0.5553	0.9502	0.0828	0.1523	0.0044	0.0266	10.489
dt	Decision Tree Classifier	0.8286	0.5473	0.2119	0.1370	0.1664	0.0758	0.0780	10.933
Ir	Logistic Regression	0.6327	0.4720	0.1981	0.0948	0.1270	0.0455	0.0500	22.488
svm	SVM - Linear Kernel	0.5116	0.0000	0.5890	0.0956	0.1613	0.0286	0.0541	9.513
ridge	Ridge Classifier	0.7315	0.0000	0.4898	0.1482	0.2275	0.1182	0.1493	5.319

MODÉLISATION – LES 4 MEILLEURS MODÈLES

Modèle	Jeu_donnees	FN	FP	TP	TN	Metrique	Optimisation	Class_weight	Rappel	Précision	F1	F5	F10	ROC_AUC	PR_AUC	Metier_score D
lgbm_optuna_opt_5	train	1494	15960	3471	40577	F10	optuna	oui	0.6991	0.1786	0.2846	0.6286	0.6795	0.7795	0.2702	0.7135
lgbm_bayesian_opt_8		1515	15278	3450	41259	F10	bayes_opt	oui	0.6949	0.1842	0.2912	0.6279	0.6763	0.7826	0.2728	0.7219
lgbm_optuna_opt_F5		1522	16272	3443	40265	F5	optuna	non	0.6935	0.1746	0.2790	0.6223	0.6736	0.7727	0.2579	0.7079
lgbm_bayesian_opt_4	train	1526	14937	3439	41600	roc_auc	bayes_opt	oui	0.6926	0.1871	0.2947	0.6275	0.6746	0.7843	0.2801	0.7260

lgbm_otuna_opt_5

GLOBAL

MODÉLISATION – INTERPRÉTABILITÉ

Feature importance LightGBM

POUR UN CLIENT

Shap values global

- **PROBLÉMATIQUE**
- DONNÉES
- **MODÉLISATION**
- DASHBOARD
- **CONCLUSION**

DASHBOARD

Prêt à dépenser

Dashboard - Aide à la décision

Plus d'informations

▼ Toutes les informations des clients

Clients similaires

Graphiques comparatifs

Comparer traits stricts

Comparer demande prêt

Facteurs d'influence

✓ Voir facteurs d'influence

Statistiques générales

Les distributions

Prêt à dépenser

DASHBOARD

Informations sur le client & sur le crédit

Informations sur le client

ID Client

Sélectionnez un client :

100013

	Âge (ans)	Sexe	Statut familial	Nbre enfants	Niveau éducation	Type revenu	Ancienneté emploi	Revenus (\$)
100013	54	Masculin	Married	0	Higher education	Working	12	202500

Informations sur la demande de prêt

	Type de prêt	Montant du crédit (\$)	Annuités (\$)	Montant du bien (\$)	Type de logement
100013	Cash loans	663264	69777	630000	House / apartment

Crédit Score

- **PROBLÉMATIQUE**
- DONNÉES
- **MODÉLISATION**
- DASHBOARD
- **CONCLUSION**

Problématique de classification binaire avec classes déséquilibrées

Modèle final LightGBM optimisé avec optuna sur la métrique F10 interprétable

- Échange avec notre client :
 - variables métiers ajoutées adéquates?
 - compromis FN/FP (seuil? Taux?)
 - revoir métrique métier bancaire inefficace lors des essais
 - source externe très influente mais ininterprétable
- Dashboard : fonctions avancées d'optimisation de Streamlit (cache...) phase de réentraînement du modèle
- Éthique : sexe, âge, transparence, automatisation

MERCIPOUR VOTRE ATTENTION!