

Universidade do Minho Escola de Ciências

Departamento de Matemática

Mestrado Integrado em Engenharia Informática

2019/2020

Exercício 7.1 Mostre que a equação $x^2 = x \sin x + \cos x$ possui exatamente duas raízes reais.

Exercício 7.2 Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = 1 - x^{2/3}$.

- a) Verifique que f(-1) = f(1) = 0.
- b) Mostre que f'(x) nunca se anula em $\,]-1,1[\,.\,$
- c) Explique porque não há qualquer contradição com o teorema de Rolle.

Exercício 7.3 Mostre, recorrendo ao teorema de Lagrange, que:

a)
$$\forall x \in \mathbb{R} \setminus \{0\}$$
 $e^x > 1 + x$;

b)
$$\forall x \in \mathbb{R}^+$$
 $x - \frac{x^2}{2} < \ln(1+x) < x;$

c)
$$\forall x, y \in \mathbb{R}$$
 $|\sin x - \sin y| \le |x - y|$.

Exercício 7.4 Indique, se existir, ou justifique porque não existe, uma função $f:[0,2]\to\mathbb{R}$, derivável, tal que f'(x)=0 para $x\in[0,1]$ e f'(x)=1 para $x\in[1,2]$.

Exercício 7.5 Calcule, se existirem, os seguintes limites:

a)
$$\lim_{x \to 0} \frac{1 - \cos(2x)}{\operatorname{tg} x}$$

b)
$$\lim_{x \to +\infty} \frac{2^x}{x}$$

c)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$$

d)
$$\lim_{x \to 0} \left(\frac{1}{x} - \cot x \right)$$

e)
$$\lim_{x \to 0^+} (x \ln x)$$

$$f) \quad \lim_{x \to 0^+} x^{x^2}$$

$$g) \lim_{x \to +\infty} \left(xe^{-x^2+1} \right)$$

h)
$$\lim_{x \to 1^+} (\ln x \ln(x - 1))$$

$$i) \quad \lim_{x \to 1^+} \frac{\ln x}{x^2 - 1}$$

$$\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x$$

Exercício 7.6 Estude as funções (indicando domínio e contradomínio, extremos e intervalos de monotonia, pontos de inflexão e concavidade; esboce o gráfico) definidas por:

a)
$$f(x) = x^2 - 5x + 3$$

c)
$$h(x) = e^{\frac{x^2}{2}}$$

b)
$$g(x) = \frac{x^3}{1+x^2}$$

d)
$$j(x) = \frac{x^3}{1 - x^2}$$

- Exercício 7.7 Em cada das seguintes alíneas, esboce graficamente uma função f satisfazendo os requisitos especificados:
 - a) as primeira e segunda derivadas são sempre positivas;
 - b) a primeira derivada é sempre negativa mas a segunda derivada é positiva em alguns pontos e negativa noutros.
- Exercício 7.8 Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = e^{2x}$.
 - a) Determine uma equação da reta tangente ao gráfico de f no ponto de abcissa zero.
 - b) Determine uma equação da reta normal ao gráfico de f no ponto de abcissa zero.
- Exercício 7.9 Determine o polinómio de Taylor de ordem n da função f indicada em torno do ponto a apresentado:
 - a) $f(x) = e^x, x \in \mathbb{R}, n = 10, a = 0;$
 - b) $f(x) = \cos x, \ x \in \mathbb{R}, \quad n = 8, \quad a = 0;$
 - c) $f(x) = \ln x, \ x \in \mathbb{R}^+, \quad n = 7, \quad a = 1;$
 - d) $f(x) = \frac{1}{x}, x \in \mathbb{R} \setminus \{0\}, n = 7, a = 1;$
 - e) $f(x) = \frac{1}{x-1}, x \in \mathbb{R} \setminus \{1\}, n = 6, a = 0;$
 - f) $f(x) = x \cos x$, $x \in \mathbb{R}$, n = 4, a = 0.
- Exercício 7.10 Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função cujo polinómio de Taylor de ordem 6 em torno da origem é dado por

$$P_{6,0}(x) = 3x - 4x^3 + 5x^6.$$

Determine f(0), f'(0), f''(0), f'''(0), $f^{(4)}(0)$, $f^{(5)}(0)$ e $f^{(6)}(0)$.

- Exercício 7.11 Escreva o polinómio $-x^6+6\,x^5-9\,x^4-4\,x^3+23\,x^2-21\,x+6$ em potências de x-1.
- Exercício 7.12 Seja $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ uma função com derivadas contínuas tal que

$$f(3) = 1$$
, $f'(3) = -2$, $f''(3) = 3$ e $f'''(3) = -5$.

Determine os polinómios de Taylor de ordens 2 e 3 da função f em torno do ponto 3.

Exercício 7.13 Use um polinómio de Taylor, de ordem adequada, em torno de zero, da função definida por $f(x) = \cos x$, para calcular

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}.$$