1-9 关系及其基本性质(Ⅱ)

魏恒峰

hfwei@nju.edu.cn

2017年12月11日

The Relational Data Model

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Future bowless of large data banks must be protected from howing benow how the data is arganized in the machine (the howing benow). As prompting service which supplies a such information is not a satisfactory solution. Activities of users such information is not a satisfactory solution. Activities of users with information is not a satisfactory solution. Activities of users are unaffected when some capects of the external representation and even when some capects of the external representation and even when some capects of the external representation or enhanced as a result of changes in query, updates, and report restriction and even the property of the control of the restriction of the control of the control of the restriction of the control of the control of the restriction of restr

Existing noninferential, formatted data systems provide user with tree-structured files or slightly more general network models of the data. In Section 1, inadequocies of these models are discussed. A model based on n-ary relations, a normal form for data base aform for more of the sore relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and consistency in the user's access

Codd@CACM'1970

Edgar F. Codd (1923 - 2003)

The Relational Data Model

— 如何靠"关系"赢得图灵奖?

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Future users of lorge data banks must be protected from howing to know how the data is organized in the machine (the howing to know how the data is organized in the machine (the user) and the properties of the protection of the

Existing noninferential, formatted data systems provide user with tree-structured files or slightly more general network models of the data. In Section 1, inadequocies of these models are discussed. A model based on n-ary relations, a normal form for data base aform for more of the sore relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and consistency in the user's access

Codd@CACM'1970

Edgar F. Codd (1923 – 2003)

A Relational View of Data

$$(a,b) = \{\{a\},\{a,b\}\}$$

$$R\subseteq A\times B$$

$$(a,b) = \{\{a\},\{a,b\}\}$$

$$R \subseteq A \times B$$

$$(a,b,c)=((a,b),c)$$

$$(a,b) = \{\{a\}, \{a,b\}\}$$

$$R \subseteq A \times B$$

$$(a,b,c) = ((a,b),c)$$

$$(x_1, x_2, \cdots, x_n) = ((x_1, x_2, \cdots, x_{n-1}), x_n)$$

$$(a,b) = \{\{a\}, \{a,b\}\}\}$$

$$R \subseteq A \times B$$

$$(a,b,c) = ((a,b),c)$$

$$(x_1, x_2, \dots, x_n) = ((x_1, x_2, \dots, x_{n-1}), x_n)$$

 $R \subseteq X_1 \times X_2 \times \cdots \times X_n$

$$\begin{aligned} \text{Course} &= \{\text{CS}101, \text{EE}200, \text{PH}100\} \\ \text{StudentId} &= \{12345, 67890, 22222, 33333\} \\ \text{Grade} &= \{A, B, C, D, A^-, B^+, C^+\} \end{aligned}$$

$$\begin{aligned} \text{Course} &= \{\text{CS}101, \text{EE}200, \text{PH}100\} \\ \text{StudentId} &= \{12345, 67890, 22222, 33333\} \\ \text{Grade} &= \{A, B, C, D, A^-, B^+, C^+\} \end{aligned}$$

 $\mathsf{CSG} \subseteq \mathsf{Course} \times \mathsf{StudentId} \times \mathsf{Grade}$

```
Course = \{CS101, EE200, PH100\}
StudentId = \{12345, 67890, 22222, 33333\}
    Grade = \{A, B, C, D, A^-, B^+, C^+\}
    \mathsf{CSG} \subseteq \mathsf{Course} \times \mathsf{StudentId} \times \mathsf{Grade}
       CSG = \{(CS101, 12345, A),
                  (CS101, 67890, B),
```

(CS101, 33333, C), $(EE200, 12345, B^+),$ $(EE200, 22222, A^-),$

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	С
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	С
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

Row: tuple

Column: attribute/component

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	C
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

StudentId	Name	Address	Phone
$12345 \\ 67890 \\ 22222$	C. Brown	12 Apple St.	555-1234
	L. Van Pelt	34 Pear Ave.	555-5678
	P. Patty	56 Grape Blvd.	555-9999

Course	Day	Hour
CS101	M	9AM
CS101	W	9AM
CS101	F	9AM
EE200	Tu	10AM
EE200	W	1PM
EE200	Th	10AM

Course	Room
CS101	Turing Aud.
EE200	25 Ohm Hall
PH100	Newton Lab.

Too simple?

A set of relations

Operations on relations

Laws of operations

Selection $(\sigma_C(R))$

$$\sigma_{\mathsf{Course}\,=\,\text{``CS}101''}(\mathsf{CSG})$$

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	С
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
CS101	33333	A-

Projection $(\pi_L(R))$

$$\pi_{\mathsf{StudentId}}\Big(\sigma_{\mathsf{Course}\,=\,\text{``CS}101''}(\mathsf{CSG})\Big)$$

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	C
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
CS101	33333	A-

$$\mathsf{Join} \ (R \bowtie_{R.A_i = S.B_j} S)$$

$$R \subseteq A_1 \times \cdots \times A_n$$

$$S \subseteq B_1 \times \cdots \times B_m$$

$$\underset{R.A_i=S.B_j}{\bowtie} S \subseteq A_1 \times \cdots \times A_n \times B_1 \times \cdots B_{j-1} \times B_{j+1} \times \cdots \times B_m$$

$$\mathsf{Join} \ (R \underset{R.A_i = S.B_j}{\bowtie} \ S)$$

$$R \subseteq A_1 \times \cdots \times A_n$$

$$S \subseteq B_1 \times \cdots \times B_m$$

$$\underset{R.A_{i}=S.B_{j}}{\bowtie} S \subseteq A_{1} \times \cdots \times A_{n} \times B_{1} \times \cdots B_{j-1} \times B_{j+1} \times \cdots \times B_{m}$$

Natural Join $(R \bowtie S)$

$$\mathsf{CR} \underset{\mathsf{CR.Course}}{\bowtie} \mathsf{CDH} \quad (\mathsf{CR} \bowtie \mathsf{CDH})$$

Course	Room
CS101	Turing Aud.
EE200	25 Ohm Hall
PH100	Newton Lab.

Course	Day	Hour
CS101	M	9AM
CS101	W	9AM
CS101	F	9AM
EE200	Tu	10AM
EE200	W	1PM
EE200	Th	10AM

Course	Room	Day	Hour
CS101	Turing Aud.	M	9AM
CS101	Turing Aud.	W	9AM
CS101	Turing Aud.	F	9AM
EE200	25 Ohm Hall	Tu	10AM
EE200	25 Ohm Hall	W	1PM
EE200	25 Ohm Hall	Th	10AM

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	С
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

StudentId	Name	Address	Phone
12345	C. Brown	12 Apple St.	555-1234
67890	L. Van Pelt	34 Pear Ave.	555-5678
22222	P. Patty	56 Grape Blvd.	555-9999

Course	Day	Hour
CS101	M	9AM
CS101	W	9AM
CS101	F	9AM
EE200	Tu	10AM
EE200	W	1PM
EE200	Th	10AM

Course	Room
CS101	Turing Aud.
EE200	25 Ohm Hall
PH100	Newton Lab.

Course	StudentId	Grade
CS101	12345	A
CS101	67890	В
EE200	12345	С
EE200	22222	B+
CS101	33333	A-
PH100	67890	C+

StudentId	Name	Address	Phone
12345	C. Brown	12 Apple St.	555-1234
67890	L. Van Pelt	34 Pear Ave.	555-5678
22222	P. Patty	56 Grape Blvd.	555-9999

Course	Day	Hour
CS101	M	9AM
CS101	W	9AM
CS101	F	9AM
EE200	Tu	10AM
EE200	W	1PM
EE200	Th	10AM

Course	Room
CS101	Turing Aud.
EE200	25 Ohm Hall
PH100	Newton Lab.

Q: Where is "C. Brown" 9 AM on Mondays?

22 / 34

23 / 34

Algebraic Laws for Relations

"In fact, the improvement in efficiency made possible by transforming expressions of relational algebra is arguably the most striking example of the power of algebra that we find in computer science."

Laws Involving Selection $(\sigma_C(R))$

Selection Splitting

$$\sigma_{C \wedge C'}(R) \equiv \sigma_C(\sigma_{C'}(R))$$

Commutativity

$$\sigma_C(\sigma_{C'}(R)) \equiv \sigma_{C'}(\sigma_C(R))$$

Laws Involving Selection $(\sigma_C(R))$

Selection Splitting

$$\sigma_{C \wedge C'}(R) \equiv \sigma_C(\sigma_{C'}(R))$$

Commutativity

$$\sigma_C(\sigma_{C'}(R)) \equiv \sigma_{C'}(\sigma_C(R))$$

Selection Pushing

$$(\sigma_C(R \bowtie S)) \equiv (\sigma_C(R) \bowtie S)$$
$$(\sigma_C(R \bowtie S)) \equiv (R \bowtie \sigma_C(S))$$

29 / 34

Laws Involving Projection $(\pi_L(R))$

$$\left(\pi_L(R_{A_i=B_j}S)\right) \equiv \left(\pi_L(\pi_M(R)_{A_i=B_j}\pi_N(S))\right)$$

$$M = \left(L \cup \{A_i\}\right) \cap \{A_i\}_i$$

$$N = \left(L \cup \{B_j\}\right) \cap \{B_j\}_j$$

30 / 34

$$\begin{split} &\pi_{\mathsf{Course}}\Big(\mathsf{CSG} \underset{\mathsf{StudentId}}{\bowtie} \mathsf{SNAP}\Big) \\ &\equiv \pi_{\mathsf{Course}}\Big(\pi_{\mathsf{Course},\mathsf{StudentId}}(\mathsf{CSG}) \underset{\mathsf{StudentId}}{\bowtie} \pi_{\mathsf{StudentId}}(\mathsf{SNAP})\Big) \end{split}$$

Algebra as Language

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn

34 / 34