Первая контрольная 2 сем.

Кабашный Иван (@keba4ok)

(по материалам лекций Белова Ю. С., а также других источников)

31 марта 2021 г.

Темы задач. Кстати, конкретно про асимптотику суммы тут ничего нет, там всё-таки как-то трудно пером общий случай описать, ну и про определённые интегралы - тоже пусто, из фактов только таблица первообразных и интегрирование по частям, думаю уж, упустить можно. Пока есть время - можете предложить, что стоит добавить помимо всего, что есть.

Содержание

1	Несобственный интеграл.	
	Равномерная сходимость интегралов.	3
2	Кривые.	4
3	Многомерные функции.	5
4	Лифференцирование.	5

Несобственный интеграл. Равномерная сходимость интегралов.

Определение 1. Пусть функция $x \mapsto f(x)$ определена на промежутке $[a,\omega)$ (где ω может быть действительным числом или $+\infty$) и интегрируема на любом промежутке [a,b], содержащемся в этом промежутке. Величина

$$\int_{a}^{\omega} f(x)dx := \lim_{b \to \omega} \int_{a}^{b} f(x)dx,$$

если указанный предел существует, называется несобственным интегралом от функции f по промежутку $[a,\omega)$. Если указанный предел существует, то говорят, что интеграл cxodum-cs, и pacxodumcs в противном случае.

Утверждение 1. (Критерий Коши сходимости несобственного интеграла). Если функция $x\mapsto f(x)$ определена на промежутке $[a,\omega)$ и интегрируема на любом отрезке [a,b], лежащем внутри, то интеграл $\int_a^\omega f(x)dx$ сходится тогда и только тогда, когда для любого $\varepsilon>0$ можно указать $B\in [a,\omega)$ так, что при любых $b_1,b_2\in [a,\omega)$ таких, что $B< b_1,b_2$ имеет место соотношение

$$\left| \int_{b_1}^{b_2} f(x) dx \right| < \varepsilon.$$

Определение 2. Про несобственный интеграл $\int_a^\omega f(x) dx$ говорят, что он *сходится абсолютно*, если сходится интеграл $\int_a^\omega |f|(x) dx$.

Примечание 1. Нетрудно заметить, что если интеграл сходится абсолютно, то он сходится.

Утверждение 2. Если функция f удовлетворяет условиям первого определения и неотрицательна на $[a,\omega)$, то несобственный интеграл существует в том и только том случае, когда функция

$$\mathcal{F}(b) = \int_{a}^{b} f(x)dx$$

ограничена на $[a, \omega)$.

Теорема 1. (Теорема сравнения). Пусть функции f(x) и g(x) определены на промежутке $[a,\omega)$ и интегрируемы на любом его отрезке. Если на данном промежутке выполнено $0 \le f(x) \le g(x)$, то из сходимости несобственного интеграла по g следует сходимость несобственного интеграла g.

Примечание 2. Если к функциям из теоремы выше можно добавить такое условие: существуют две положительные константы c_1 , c_2 , что $c_1 f(x) \le g(x) \le c_2 f(x)$, то с учётом линейности несобственного интеграла, можно заключит, что интегралы по функциям f и g сходятся или расходятся одновременно.

Определение 3. Если несобственный интеграл сходится, но не абсолютно, то говорят, что он *сходится условно*.

Утверждение 3. (Признак Абеля-Дирихле сходимости интеграла). Пусть $x\mapsto f(x), x\mapsto g(x)$ - функции, определённые на промежутке $[a,\omega)$ и интегрируемые на любом его отрезке. Пусть g - монотонная функция.

Тогда для сходимости несобственного интеграла

$$\int_{a}^{\omega} (f \cdot g)(x) dx$$

достаточно, чтобы выполнилась либо пара условий

- интеграл $\int_{a}^{\omega} f(x)dx$ сходится;
- функция g ограничена на $[a, \omega)$,

либо пара условий

- функция $\mathcal{F} = \int_a^b f(x) dx$ ограничена на $[a, \omega)$;
- функция g(x) стремится к нулю при $x \to \omega, x \in [a, \omega)$.

Определение 4. Несобственный параметрический интеграл $\int_a^\omega f(x,\alpha) dx$ называется равномерно сходящимся на множестве E, если

$$\forall \varepsilon > 0 \ \exists t \in (a, \omega) \ \forall \xi \in [t, \omega) \ \forall \alpha \in E \mapsto \left| \int_{\varepsilon}^{\omega} f(x, \alpha) dx \right| < \varepsilon.$$

Теорема 2. (Признак Вейерштрасса). Если подынтегральная функция в параметрическом интеграле может быть ограничена функцией одной переменной сверху, и интеграл от данной функции сходится, то и изначальный интеграл сходится.

Теорема 3. (Признак Дирихле). Достаточное условие равномерной сходимости интеграла вида $\int_a^{+\infty} f(x)g(x)dx$. Если выполнены следующие условия:

- первообразная f(x) ограничена;
- \bullet g(x) дифференцируема, больше нуля, её производная отрицательна;
- $\lim_{x\to+\infty} g(x) = 0$.

Тогда $\int_a^{+\infty} f(x)g(x)dx$ сходится.

Теорема 4. (Критерий Коши). Параметрический интеграл сходится тогда и только тогда, когда выполнено следующее условие:

$$\forall \varepsilon > 0 \,\exists t \in (a, \omega) : \, \forall \xi_1, \xi_2 \in [t, \omega) \, \forall \alpha \in E \mapsto \left| \int_{\xi_1}^{\xi_2} f(x, \alpha) dx \right| < \varepsilon.$$

2 Кривые.

Определение 5. *Кривые в* \mathbb{R}^n - непрерывное отображение $f:[a,b]\to\mathbb{R}^n$.

Утверждение 4. (Длина кривой). Если непрерывная кривая γ задана параметрически: $x_1 = f_1(t), x_2 = f_2(t), \ldots$, то можно найти её длину:

$$\int_{a}^{b} \sqrt{(f_1')^2(x) + \ldots + (f_n')^2(x)} dx.$$

Естественно, все f_i должны быть дифференцируемы на нужном промежутке.

Примечание 3. Ну а площадь - сам бог велел использовать интегралы (наверное).

3 Многомерные функции.

Определение 6. f дифференцируема в точке (x_1, \ldots, x_m) , если f(y) = f(x) + L(y - x) + o(||x - y||), где L - линейное отображение $\mathbb{R}^m \to \mathbb{R}$, причём однородное, то есть, L(0) = 0.

Определение 7. Это линейное отображение L называется $\partial u \phi \phi$ регициалом в точке x.

Определение 8. Частная производная. Пусть имеется $f: \mathbb{R} \to \mathbb{R}$, $f(x_1, \dots, x_n)$, $x^0 = (x_1^0, \dots, x_n^0)$. Тогда частная производная по x_k , $f(x_1^0, \dots, x_{k-1}^0, x, x_{k+1}^0, \dots, x_m^0) = g(x), g'(x_k^0)$. $\frac{\partial f}{\partial x_k} \bigg|_{0} := g'(x_k^0) = \lim_{\varepsilon \to 0} \frac{f(\dots, x_k^0 + \varepsilon, \dots) - f(\dots)}{\varepsilon}$.

Определение 9. Производная по направлению. Пусть направление задаётся $e \in \mathbb{R}^n$, ||e|| = 1, f - дифференцируема по направлению e, если $g(t) = f(x^0 + te)$, $t \in \mathbb{R}$ и существует g'(0), то производная по направлению e - $g'(0) = \lim_{t \to 0} \frac{f(x^0 + te) - f(x^0)}{t}$.

Теорема 5. $f: G \to \mathbb{R}^m, \ G \subset \mathbb{R}^n$ - открытое, f - гладкая в окрестности x^0 (верхние индексы), $y^0 = f(x^0), \ g: V_{f(x^0)} \to \mathbb{R}^k$, гладкая в $f(x^0)$, для f и g существуют линейные операторы A (x_0) и B ($f(x_0)$). Тогда g(f(x)) - гладкое отображение в x_0 с линейным оператором $BA: \mathbb{R}^n \to \mathbb{R}^k$.

Теорема 6. Пусть у нас есть отображение $f: \mathbb{R}^n \to \mathbb{R}^m$, $V_{x_0} \to \mathbb{R}^m$, причём существуют все частные производные в V_{x^0} и они непрерывные в x^0 . Тогда f дифференцируема в точке x^0 .

Теорема 7. Пусть $f: \mathbb{R}^n \to \mathbb{R}$, f - гладкая на G - открытое множестве, причём частные производные сущуствуют и непрерывны в каждой точке (условно говоря, f гладкая). Предположим, что точка x^0 - локальный максимум или минимум. Тогда $\operatorname{grad} f|_{x^0} \equiv 0$.

Теорема 8. Если функция $E \to \mathbb{R}$, определённая на множестве $E \subset \mathbb{R}^m$, дифференцируема во внутренней точке $x \in E$ этого множества, то в этой точке функция имеет все частные производные по каждой переменной и дифференциал функции однозначно определяется этими частными производными в виде

$$df(x)h = \frac{\partial f}{\partial x_1}(x)h_1 + \ldots + \frac{\partial f}{\partial x_m}(x)h_m.$$

4 Дифференцирование.

Теорема 9. Если отображение $f_1: E \to \mathbb{R}^n$, $f_2: E \to \mathbb{R}^n$, определённые на множестве $E \subset \mathbb{R}^m$, дифференцируемы в точке $x \in E$, то их линейная комбинация также является дифференцируемым в этой точке отображением, причём имеет место равенство

$$(\lambda_1 f_1 + \lambda_2 f_2)'(x) = (\lambda_1 f_1' + \lambda_2 f_2')(x).$$

Примечание 4. Про произведени и частное - тоже точно так же, как и в случае с одномерными функциями.

Определение 10. Пусть $x \in \mathbb{R}^m$. Через $T \mathbb{R}^m_x$ обозначим совокупность векторов, приложенных к точке $x \in \mathbb{R}^m$. Это векторное пространство называют *касательным пространством* к \mathbb{R}^m в точке x.

Теорема 10. (Дифференцирование композиции). Если отображение $f: X \to Y$ множества $x \subset \mathbb{R}^m$ в множество $y \subset \mathbb{R}^n$ дифференцируемо в точке $x \in X$, а отображение $g: Y \to \mathbb{R}^k$ дифференцируемо в точке $y = f(x) \in Y$, то композиция $g \circ f: X \to \mathbb{R}^k$ этих отображений дифференцируема в точке x, причём дифференциал $d(g \circ f): T \mathbb{R}^m_x \to T \mathbb{R}^k_{g(f(x))}$ композиции равен композиции дифференциалов.

См также в википедии