

But first, let's talk smoothing

Intermezzo aperto

CSE486, Penn State Today: Smoothing Reduces Noise

Gaussian Smoothing Filter

An isotropic (circularly symmetric) Gaussian:

Gaussian Smoothing Example

original

sigma = 3

Robert Collins CSE486, Penn State

Gaussian Smoothing at Different Scales

Balancing act: smooth enough to "clean up" the noise, but not so much as to remove important image gradients.

Back to QuPath

Intermezzo chiuso

Creating a region of interest

In the TRITC channel (fibronectin), create a region of interest that enclose high-fibronectin content regions aka stromal regions

Once you have finished your annotation, **lock** it:

Right-click in the viewer > Annotations > Lock

or

Right-click on the annotation in the analysis panel > Lock

Pixel-based tissue annotation

 Simplest case of annotation: every pixel get assigned a class based on its intensity value – or is a given pixel above or below a certain numeric value?

Interactive visualization of thresholding results

Create a class 'Stroma'

Try varying the value of the different parameters!

Create annotations from pixel classifier

- Real-time visualization of results, once happy with it:
 - 1. Save your thresholder
 - 2. Select ROI
 - 3. Click Create objects
 - Keep default parameters > OK

	Create objects		
?	New object type	Annotation	•
	Minimum object size	0	μm^2
	Minimum hole size	0	μm^2
	Split objects Delete existing objects Create objects for ignored classes		
	Set new objects to	Cancel	OK

Create annotations from pixel classifier

Fully annotated image

Spatial information: signed distance

Analyze > Spatial analysis > Signed distance to annotations 2D

- Calculates the signed distance (2D euclidian) between cells and annotations
 - If a cell lies <u>inside</u> the annotation: <u>negative</u> distance
 - If a cell lies <u>outside</u> the annotation: <u>positive</u> distance

Spatial information: signed distance

Measure > Show detection measurements

Export measurements table and use Python/R for visualization based on classes

