ESP-WROOM-S2 技术规格表

版本 1.1 版权 © 2016

关于本手册

本文介绍了 ESP-WROOM-S2 的产品规格,包括以下内容:

章	标题	内容
第1章	产品概述	概述 ESP-WROOM-S2 模组,包括尺寸和规格。
第2章	管脚描述	管脚布局和描述。
第3章	功能描述	描述 ESP-WROOM-S2 的功能模块和协议,包括 CPU、Flash、存储和接口。
第4章	电气参数	提供 ESP-WROOM-S2 的电气数据。
第5章	原理图	提供 ESP-WROOM-S2 的原理图。

发布说明

日期	版本	发布说明
2016.06	V1.0	首次发布。
2016.08	V1.1	修订工作温度范围; 增加 NCC 标准认证; 更新 3.4 接口说明。

目录

1.	产品标	既述	.1
2.	管脚排	描述	3
3.	功能	描述	5
	3.1.	MCU	.5
	3.2.	存储描述	.5
		3.2.1. 内置 SRAM 与 ROM	.5
		3.2.2. SPI Flash	.5
	3.3.	晶振	.5
	3.4.	接口说明	.7
4.	电气	参数	8
	4.1.	最大额定值	.8
	4.2.	建议工作环境	.8
	4.3.	数字端口特征	.8
	4.4.	射频参数	.9
	4.5.	接收灵敏度	.9
	4.6.	功耗1	0
	4.7.	倾斜升温1	1
5.	原理	图1	2

产品概述

乐鑫为客户提供加载 ESP8266EX 的贴片式模组 ESP-WROOM-S2。该模组的 RF 性能已调试到最佳状态。建议用户在初期使用 ESP8266EX 进行测试或二次开发时,采购我司提供的模组。

说明:

更多关于 ESP8266EX 的信息,请参考《ESP8266EX 技术规格表》。

ESP-WROOM-S2 贴片式模组的外观尺寸为 16 毫米 x 23 毫米 x 3 毫米 (见图 1-1)。目前该模组配置 2 MB, 封装为 SOP 8-150 mil 的 SPI Flash, Flash 接在 HSPI 上。模组使用 2 dBi 的 PCB 板载天线。

ESP-WROOM-S2 作为 SDIO 中的 SPI 从机模式工作时,传输速率可达 8 Mbps。

图 1-1. ESP-WROOM-S2 模组外观

表 1-1. ESP-WROOM-S2 参数表

类别	参数	说明
	标准认证	FCC / CE / TELEC / NCC
无线参数	Wi-Fi 协议	802.11 b/g/n
	频率范围	2.4 GHz ~ 2.5 GHz (2400M ~ 2483.5M)
	数据接□	UART / I2C / GPIO / PWM / SDIO / SPI / 红外遥控 / ADC
	数据按口	GPIO / PWM
	工作电压	3.0V ~ 3.6V
	工作电流	平均值: 80 毫安

类别	参数	说明
硬件参数	工作温度	-40°C ~ 85°C
	存储温度	-40°C ~ 85°C
	封装大小	16 毫米 x 23 毫米 x 3 毫米
	外部接口	-
	无线网络模式	Station / SoftAP / SoftAP + Station
	安全机制	WPA / WPA2
软件参数	加密类型	WEP / TKIP / AES
拟什多数	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录
	软件开发	支持客户自定义服务器,提供二次开发所需的 SDK
	网络协议	IPv4, TCP/UDP/HTTP/FTP
	用户配置	AT+ 指令集,云端服务器,Android / iOS APP

🔐 说明:

可另行定制通过 125℃ 条件下 2000 小时可靠性测试的高温版模组。

管脚描述

ESP-WROOM-S2 贴片式模组的管脚分布如图 2-1 所示。

图 2-1. ESP-WROOM-S2 模组尺寸俯视图

表 2-1. ESP-WROOM-S2 模组尺寸表

K	宽	高	PAD 尺寸(底部)	管脚间距
16 毫米	23 毫米	3 毫米	0.9 毫米 x 0.85 毫米	1.5 毫米

ESP-WROOM-S2 共接出 20 个管脚, 管脚定义见表 2-2。

表 2-2. ESP-WROOM-S2 管脚定义

序号	管脚名称	功能说明
1	GND	接地
2	3V3	3.3 V 供电(VDD) 過 说明: 外部供电电源的最大输出电流建议在 <i>500</i> 毫安及以上。
3	IO16	GPIO16;接到RST管脚时可做 Deep-sleep 的唤醒。
4	IO15	HSPICS ・ UART 下载: 外部拉低。 ・ SDIO 启动: 悬空 (内部有上拉) 或外部拉高。
5	102	GPIO2; UART1_TXD ・ UART 下载: 外部拉低。 ・ SDIO 启动: 无关项。
6	100	GPIOO ・ UART 下载: 外部拉低。 ・ SDIO 启动: 无关项。
7	104	GPIO4
8	SD2/IO9	SD_D2(串联 100 ~ 200 Ω,加 10 k 上拉电阻);GPIO9
9	SD3/CS	SD_D3(串联 100 \sim 200 Ω ,加 10 k 上拉电阻);SLAVE_ SPI_CS
10	CMD/MOSI	SD_CMD(串联 100 \sim 200 Ω ,加 10 k 上拉电阻); SLAVE_ SPI_MOSI
11	GND	接地
12	SCLK	SD_CLK(串联 100 \sim 200 Ω);SLAVE_SPI_CLK
13	SD0/MISO	SD_D0(串联 100 \sim 200 Ω ,加 10 k 上拉电阻);SLAVE_ SPI_MISO
14	SD1/INT	SD_D1(串联 100 \sim 200 Ω ,加 10 k 上拉电阻);SLAVE_ SPI_INT
15	RXD	UARTO_RXD, UART 下载的接收端; GPIO3
16	TXD	UARTO_TXD,UART 下载的发送端,可悬空(内部有上拉)或外部拉高; GPIO1
17	IO5	GPIO5
18	RST	复位管脚
19	ADC_IN	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)
20	EN	芯片使能端(不可悬空),高电平有效

功能描述

3.1. MCU

ESP8266EX 内置 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS。目前 Wi-Fi 协议栈只用了 20% 的处理能力,剩下的处理能力都可以用来做应用开发。MCU 可通过以下接口和芯片其他部分协同工作:

- 连接存储控制器、也可以用来访问外接 Flash 的编码 RAM/ROM 接口(iBus);
- · 连接存储控制器的数据 RAM 接□ (dBus);
- · 访问寄存器的 AHB 接口。

3.2. 存储描述

3.2.1. 内置 SRAM 与 ROM

ESP8266EX 芯片自身内置了存储控制器,包含 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储控制器。这些接口都可以访问 ROM 或 RAM 单元,存储仲裁器以到达顺序确定运行顺序。

基于目前我司 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:

- RAM < 50 kB(Station 模式下,连上路由后,Heap + Data 区大致可用 50 kB 左右)。
- 目前 ESP8266EX 片上没有可编程 ROM、用户程序存放在 SPI Flash 中。

3.2.2. SPI Flash

当前 ESP8266EX 芯片支持使用 SPI 接口的外置 Flash, 理论上最大支持 16 MB 的 SPI Flash。

ESP-WROOM-02 配置了 2 MB 的 SPI Flash, 支持的 SPI 模式包括: Standard SPI、DIO (Dual I/O) 、DOUT (Dual Output) 、QIO (Quad I/O) 以及 QOUT (Quad Output) 。

1 注意:

请使用最新版本的下载工具,并注意在下载工具中选择 SPI MODE 为 DIO 或者 DOUT。

3.3. 晶振

ESP-WROOM-S2 使用 26 MHz 晶振,使用时注意在下载工具中选择对应晶体类型。选用的晶振自身精度需在 ± 10 PPM。晶振的工作温度为 -20° C $\sim 85^{\circ}$ C。

晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 $6~pF\sim 22~pF$,具体值需要通过对系统测试后进行调节确定。基于目前市场中主流晶振的情况,一般 26~MHz 晶振的输入输出所加电容 C1、C2 在 10~pF 以内。

晶振位置尽量靠近芯片的 XTAL 管脚(走线不要太长),同时晶振走线须用地包起来周围密集地孔屏蔽隔离。

晶振的输入输出走线不能打孔走线,即不能跨层。

晶振的输入输出的旁路电容请靠近芯片左右侧摆放,尽量不要放在走线上。

晶振下方 4 层都不能走高频数字信号,最佳情况是晶振下方不走任何信号线,晶振顶层的 铺铜区域越大越好。晶振为敏感器件,晶振周围不能有磁感应器件,比如大电感等。

3.4. 接口说明

表 3-1. 接口说明

接口名称	管脚	功能说明
SPI 接口	GPIO12/13/14/15 或者 GPIO6/7/8/11	可以作为主机读写 SPI 从设备。也可以作为从机与外部单片机通信。在 overlap 模式下,可以与 Flash 共用 SPI 脚,通过不同的 CS 信号进行切换。
PWM 接口	任意空闲通用 IO(除了 GPIO16)	Demo 中提供 4 路 PWM(用户可自行扩展 6 路),可用来控制彩灯、蜂鸣器、继电器及电机等。
IR 接口	任意空闲通用 IO(除了 GPIO16)	IR 遥控接口由软件实现,接口使用 NEC 编码及调制解调,采用 38 kHz 的调制载波。
ADC 接口	TOUT	可用于检测 VDD3P3(Pin3、Pin4)电源电压和 TOUT(Pin6)的输入电压(二者不可同时使用)。可用于传 感器等应用。
I2C 接口	任意空闲通用 IO(除了 GPIO16)	可外接传感器及显示屏等。
UART 接口	UARTO: • TXD (U0TXD) • RXD (U0RXD) UART1: IO2 (TXD)	可以与 UART 设备通信。 下载: U0TXD + U0RXD 或者 GPIO2 + U0RXD 通信(UART0): U0TXD, U0RXD 调试: UART1_TXD(GPIO2)可作为调试信息的打印。

电气参数

说明:

若无特殊说明,测试条件为: VDD = 3.3 V, 温度为 25℃。

4.1. 最大额定值

表 4-1. 最大额定值

额定值	条件	值	单位
存储温度	-	-40 ~ 85	°C
最大焊接温度	-	260	°C
供电电压	IPC/JEDEC J-STD-020	3.0 ~ 3.6	V

4.2. 建议工作环境

表 4-2. 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度	-	-40	20	85	°C
供电电压	VDD	3.0	3.3	3.6	V

4.3. 数字端口特征

表 4-3. 数字端口特征

端口	名称	最小值	典型值	最大值	单位
输入逻辑电平低	VIL	-0.3	-	0.25 VDD	V
输入逻辑电平高	VIH	0.75 VDD	-	VDD + 0.3	V
输出逻辑电平低	VOL	N	-	0.1 VDD	V
输出逻辑电平高	VOH	0.8 VDD	-	N	V

4.4. 射频参数

表 4-4. 射频参数

描述	最小值	典型值	最大值	单位
输入频率	2400	-	2483.5	MHz
输入阻抗值	-	50	-	ohm
输入反射值	-	-	-10	dB
PA 输出功率为 72.2 Mbps	15.5	16.5	17.5	dBm
11b 模式下 PA 输出功率	19.5	20.5	21.5	dBm
	接收灵敏原	鼓		
CCK, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	-75	-	dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)	-	-72	-	dBm
	邻频抑制	l		
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.5. 接收灵敏度

表 4-5. 接收灵敏度

参数	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输入电阻	-	50	-	Ω
输入反射	-	-	-10	dB
72.2 Mbps 下,PA 的输出功率	15.5	16.5	17.5	dBm
11b 模式下,PA 的输出功率	19.5	20.5	21.5	dBm
灵敏度				
DSSS, 1 Mbps	-	-98	-	dBm

参数	最小值	典型值	最大值	单位
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	-75	-	dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)	-	-72	-	dBm
	邻频抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.6. 功耗

功耗数据是基于 3.3 V 的电源、25°C 的周围温度,并使用内部稳压器测得。

- · 所有测量数据是基于没有 SAW 滤波器的情况,在天线接口处测得。
- 所有发射数据是基于 90% 的占空比, 在持续发射的模式下测得。

表 4-6. 功耗

模式	最小值	典型值	最大值	单位
传送 802.11b,CCK 11 Mbps,Pout = +17 dBm	-	170	-	毫安
传送 802.11g,OFDM 54 Mbps,Pout = +15 dBm	-	140	-	毫安
传送 802.11n,MCS7,Pout = +13 dBm	-	120	-	毫安
接收 802.11b,包长 1024 字节,-80 dBm	-	50	-	毫安
接收 802.11g,包长 1024 字节,-70 dBm	-	56	-	毫安
接收 802.11n,包长 1024 字节,-65 dBm	-	56	-	毫安
Modem-Sleep ^①	-	15	-	毫安
Light-Sleep ^②	-	0.9	-	毫安
Deep-Sleep [®]	-	10	-	微安
断电	-	0.5	-	微安

说明:

- ① *Modem-Sleep* 用于需要 *CPU* 一直处于工作状态的应用,如 *PWM* 或 *I2S* 应用等。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 *802.11* 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路来省电。例如,在 *DTIM3* 时,每睡眠 *300* 毫秒,醒来 *3* 毫秒接收 *AP* 的 *Beacon* 包等,则整体平均电流约 *15* 毫安。
- ② **Light-Sleep** 用于 *CPU* 可暂停的应用,如 *Wi-Fi* 开关。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 802.11 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路并暂停 *CPU* 来省电。例如,在 *DTIM3* 时,每 睡眠 300 毫秒,醒来 3 毫秒接收 *AP* 的 *Beacon* 包等,则整体平均电流约 0.9 毫安。
- ③ **Deep-Sleep** 用于不需一直保持 Wi-Fi 连接,很长时间才发送一次数据包的应用,如每 100 秒测量一次温度的传感器。例如,每 300 秒醒来后需 0.3 秒 ~ 1 秒连上 AP 发送数据,则整体平均电流可远小于 1 毫安。

4.7. 倾斜升温

表 4-7. 倾斜升温

指标	取值
倾斜升温速率(Ts Max. 至 TL)	最大值 3°C / 秒
预热	_
最小温度值(T _S Min.)	150°C
典型温度值(Ts Typ.)	175°C
最大温度值(Ts Max.)	200°C
时间 (T _{S)}	60~180秒
倾斜升温速率(TL至 TP)	最大值 3℃ / 秒
以上持续时间:温度 (TL) / 时间 (TL)	217°C / 60 ~ 150 秒
温度峰值(T _P)	最高温度值 260°C,持续 10 秒
目标温度峰值(T _P 目标值)	260°C + 0 / -5°C
在实际峰值(T _P)5°C 以内持续的时间	20~40秒
倾斜降温速率(Ts Max. 至 TL)	最大值 6°C / 秒
从 25°C 调至温度峰值所需时间(t)	最长8分钟

原理图

图 5-1. ESP-WROOM-S2 原理图

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2016 乐鑫所有。保留所有权利。