离散数学

代数结构 9.2 代数系统

9.2 代数系统

- 代数系统定义
- 同类型与同种的代数系统
- 子代数
- 积代数
- 同态与同构

代数系统定义与实例

• 定义

• 非空集合 S 和 S 上 k 个一元或二元运算 $f_1, f_2, ..., f_k$ 组成的系统 称为一个代数系统, 简称代数,记做 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 。

- S 称为代数系统的载体, S 和运算叫做代数系统的成分。
- 有的代数系统定义指定了*S*中的特殊元素,称为代数常数,例如二元运算的单位元。有时也将代数常数作为系统的成分。

实例

- <N,+>, <Z,+,·>, <R,+,·>是代数系统, + 和·分别表示普通加法和乘法。
- $< M_n(\mathbf{R}), +, \cdot >$ 是代数系统, + 和 · 分别表示n 阶 $(n \ge 2)$ 实矩阵的加法和乘法。
- $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0, 1, ..., n-1\}$, \oplus 和 \otimes 分别表示模 n 的加法和乘法, $\forall x,y \in Z_n$, $x \oplus y = (x+y) \bmod n$, $x \otimes y = (xy) \bmod n$
- <*P*(*S*), ∪, ∩, ~> 也是代数系统,∪和∩为并和交, ~为绝对补

同类型与同种代数系统

定义

- (1) 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统。
- (2) 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统。

同类型与同种代数系统(续)

V_1	$oldsymbol{V_2}$	V_3
+ 可交换, 可结合 ・可交换, 可结合 ・可交换, 可结合 + 満足消去律 ・満足消去律 ・ オー可分配	+ 可交换, 可结合 ・可交换, 可结合 + 满足消去律 ・ 满足消去律 ・ オ+可分配	U可交换,可结合 ○可交换,可结合 U不满足消去律 ○不满足消去律 ○对U可分配
+ 对・不可分配 +与・没有吸收律	+ 对・不可分配 +与・没有吸收律	U对∩可分配 U与∩满足吸收律

- V_1 , V_2 , V_3 是同类型的代数系统
- V_1 , V_2 是同种的代数系统
- V_1 , V_2 与 V_3 不是同种的代数系统

子代数

- 定义 设 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统, $B \in S$ 的非空子集,如果 B 对 $f_1, f_2, ..., f_k$ 都是封闭的,且 B 和 S 含有相同的代数常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是 V 的子代数系统,简称 子代数。 有时将子代数系统简记为 B。
- 实例 N是<Z,+>和<Z,+,0>的子代数。 N-{0}是<Z,+>的子代数,但不是<Z,+,0>的子代数
- 说明:
- 子代数和原代数是同种的代数系统
- •对于任何代数系统V,其子代数一定存在。

关于子代数的术语

- 最大的子代数 就是V本身。
- •如果V中所有代数常数构成集合 B,且 B 对V中所有运算封闭,则 B 就构成了V的最小的子代数。
- 最大和最小子代数称为V的平凡的子代数。
- 若 $B \in S$ 的真子集,则 B 构成的子代数称为V 的真子代数。
- 例2 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n 为自然数,则 nZ 是 V 的子代数,当 n=1 和 0 时,nZ 是 V 的平凡的子代数,其他的都是 V 的非平凡的真子代数。

积代数

定义 设
$$V_1 = \langle S_1, \circ \rangle$$
和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 \circ 和 * 是二元运算。 V_1 与 V_2 的 积代数 是 $V = \langle S_1 \times S_2, * \rangle$, $\forall \langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in S_1 \times S_2$, $\langle x_1, y_1 \rangle$ · $\langle x_2, y_2 \rangle = \langle x_1 \circ x_2, y_1 * y_2 \rangle$ 例3 $V_1 = \langle Z_1, * \rangle$, $V_2 = \langle M_2(R), * \rangle$, 积代数 $\langle Z_1, M_1 \rangle$, $\langle Z_2, M_2 \rangle \in Z \times M_2(R)$, $\langle Z_1, M_1 \rangle$ 。 $\langle Z_2, M_2 \rangle = \langle Z_1 + Z_2, M_1 \cdot M_2 \rangle$ $\langle S_1, M_1 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_1 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_2, M_2 \rangle$ $\langle S_1, M_2 \rangle$ $\langle S_2, M_$

积代数的性质

- 设 $V_1 = \langle S_1, \mathbf{o} \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 *是二元运算。 V_1 与 V_2 的积代数是 $V = \langle S_1 \times S_2, * \rangle$
 - (1) 若 o 和 * 运算是可交换的,那么·运算也是可交换的
 - (2) 若 o 和 * 运算是可结合的,那么·运算也是可结合的
 - (3) 若 o 和 * 运算是幂等的,那么·运算也是幂等的
 - (4) 若 o 和 * 运算分别具有单位元 e_1 和 e_2 ,那么·运算也具有单位元 $< e_1, e_2 >$
 - (5) 若 o 和 * 运算分别具有零元 θ_1 和 θ_2 ,那么·运算也具有零元< θ_1 , θ_2 >
 - (6) 若 x 关于 o 的逆元为 x^{-1} , y 关于 * 的逆元为 y^{-1} ,那么< x, y>关于· 运算也具有逆元 $< x^{-1}, y^{-1}>$

同态映射的定义

• 定义 设 $V_1 = \langle S_1, \circ \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 • 和 *是二元运算。 $f: S_1 \to S_2$,且 $\forall x, y \in S_1$, $f(x \circ y) = f(x) * f(y)$,则称 $f \to V_1$ 到 V_2 的 同态映射,简称同态。

更广泛的同态映射定义

• 定义 设 $V_1 = \langle S_1, \circ, \cdot \rangle$ 和 $V_2 = \langle S_2, *, \diamond \rangle$ 是代数系统,其中 \circ 、 *、 · 和 \diamond 都是二元运算。 $f: S_1 \to S_2$,且 $\forall x, y \in S_1$ $f(x \circ y) = f(x) * f(y)$, $f(x \cdot y) = f(x) \diamond f(y)$ 则称 $f \to V_1$ 到 V_2 的同态映射,简称同态。

• 定义 设 $V_1 = \langle S_1, \circ, \cdot, \Delta \rangle$ 和 $V_2 = \langle S_2, *, \diamond, \nabla \rangle$ 是代数系统,其中 • 和 * 是二元运算。 Δ 和 ∇ 是一元运算, $f: S_1 \to S_2$,且 $\forall x, y \in S_1$ $f(x \circ y) = f(x) * f(y)$, $f(x \cdot y) = f(x) \diamond f(y)$, $f(\Delta x) = \nabla f(x)$ 则称 $f(X) = f(X) \Leftrightarrow f(X) \Rightarrow f$

特殊同态映射的分类

- 同态映射如果是单射,则称为单同态;
- 如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$;
- 如果是双射,则称为 同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$ 。
- •对于代数系统 V,它到自身的同态称为自同态。
- 类似地可以定义单自同态、满自同态和自同构。

例题

例1 $V=<\mathbf{R}^*,>$,判断下面的哪些函数是V的自同态?

(1)
$$f(x)=|x|$$
 (2) $f(x)=2x$ (3) $f(x)=x^2$

(4)
$$f(x)=1/x$$
 (5) $f(x)=-x$ (6) $f(x)=x+1$

解 (2),(5),(6) 不是自同态。

(1) 是同态,
$$f(x\cdot y) = |x \cdot y| = |x| \cdot |y| = f(x) \cdot f(y)$$

(3) 是同态,
$$f(xy) = (xy)^2 = x^2 \cdot y^2 = f(x) \cdot f(y)$$

(4) 是同态,
$$f(x\cdot y) = 1/(x\cdot y) = 1/x \cdot 1/y = f(x) \cdot f(y)$$

同态映射的实例

例2 设 $V=\langle Z,+\rangle$, $\forall a\in Z$, 令 f_a : $Z\to Z$, $f_a(x)=ax$ 那么 f_a 是V的 自同态。

• 因为 $\forall x,y \in \mathbb{Z}$,有

$$f_a(x+y) = a(x+y) = ax+ay = f_a(x)+f_a(y)$$

当 a=0 时称 f_0 为零同态;

当 $a=\pm 1$ 时,称 f_a 为自同构;

除此之外其他的 f_a 都是单自同态。

同态映射的实例 (续)

例3 设
$$V_1$$
=< Q ,+>, V_2 =< Q *,->, 其中 Q *= Q -{ 0 },令 $f: Q \rightarrow Q$ *, $f(x)$ = e^x

那么f是 V_1 到 V_2 的同态映射,

• 因为 $\forall x, y \in Q$ 有

$$f(x+y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y)$$

不难看出ƒ是单同态。

同态映射的实例 (续)

例4 V_1 =< Z_1 +>, V_2 =< Z_n , \oplus >, Z_n ={0,1, ..., n-1}, \oplus 是模 n 加。 令 $f: Z \to Z_n$, $f(x) = (x) \mod n$ 则 f 是 V_1 到 V_2 的 同态映射。

• $\forall x, y \in \mathbf{Z}$ 有 $f(x+y) = (x+y) \mod n$ $= (x) \mod n \oplus (y) \mod n$ $= f(x) \oplus f(y)$

• 不难看出 ƒ 是满同态。

同态映射的实例 (续)

```
例5 设 V=\langle \mathbf{Z}_n, \oplus \rangle, \oplus是模 n 加。 可以证明恰有 n 个V 的自同态f_n:
 \mathbb{Z}_n \to \mathbb{Z}_n
       f_p(x) = (px) \mod n, p = 0,1, ..., n-1
例如 n=6, 那么
      f_0为零同态;
      f_1与f_5为同构;
      f_2与f_4的同态像是\{0, 2, 4\};
      f_3 的同态像是\{0,3\}。
```

同态映射保持运算的算律

- 设 V_1,V_2 是代数系统。 o,*是 V_1 上的二元运算,o',*'是 V_2 上对应的二元运算,如果 $f: V_1 \rightarrow V_2$ 是满同态,那么
- (1)若。运算是可交换的(可结合、幂等的),则。'运算也是可交换的(可结合、幂等的)。
- (2) 若。运算对*运算是可分配的,则。'运算对*'运算也是可分配的; 若。和*运算是可吸收的,则。'和*'运算也是可吸收的。

同态映射保持运算的特异元素

- (3) 若e为。运算的单位元,则f(e)为。'运算的单位元。
- (4) 若 θ 为。运算的零元,则 $f(\theta)$ 为。'运算的零元。
- (5) 设 $u \in V_1$,若 u^{-1} 是 u 关于。运算的逆元,则 $f(u^{-1})$ 是 f(u) 关于。' 运算的逆元。

同态映射的性质

- 说明:
- 上述性质仅在满同态时成立,如果不是满同态,那么相关性质在同态像中成立。
- 同态映射不一定能保持消去律成立。
- 例如 $f: \mathbb{Z} \to \mathbb{Z}_n$ 是 $V_1 = \langle \mathbb{Z}_r, \rangle \to \mathbb{Z}_n$ 以 为 的 同态, $f(x) = (x) \mod n$, V_1 中满足消去律,但是当 n 为合数时, V_2 中不满足消去律。

例题

• 例6 设 V_1 =<Q,+>, V_2 =<Q*,·>,其中 Q 为有理数集合, Q*=Q-{0},+和・分别表示普通加法和乘法。证明不存在 V_2 到 V_1 的同构。

证 假设 f 是 V_2 到 V_1 的同构,那么有f: $V_2 \rightarrow V_1$, f(1)=0。 于是有

$$f(-1)+f(-1) = f((-1)(-1))=f(1)=0$$

从而f(-1)=0,又有f(1)=0,这与f的单射性矛盾。

问题?

