# Bayesian Analysis Workshop:

Introduction to Bayesian Framework





#### Overview

- What's a statistical model?
- Frequentist vs. Bayesian
- Bayes Theorem
- Review of (generalized) linear models
- Side-by-side comparison of frequentist and Bayesian analysis
- Steps of Bayesian data analysis

# Acknowledgements

- Ohio Division of Wildlife Sponsor
- Federal Aid in Wildlife Restoration (PR)
- Dennis Hull Support, coordination, logistics
- Trisha Taylor Catering support





### Purpose of statistical models

- Help describe how we think a system works
- Can summarize data (e.g., mean, SD)



### Purpose of statistical models

- Help describe how we think a system works
- Can summarize data (e.g., mean, SD)
- Comparing model predictions with data helps our understanding of the system
- Models allow for predictions, including estimates of uncertainty
  - Help with decision making
- Statistics help us make probabilistic conclusions about parameters, based on a model and observations

# What's a statistical model?

- (simplified) mathematical expression of reality
- Data are observations of a system
- Express what we know about a system
  - No model is perfect, but a good model is useful!



#### Statistical Approaches

\* Data = observed realization of stochastic systems containing random processes

\* Differ in their definition of probability



#### **Classical (Frequentist)**

- Parameters (random processes) are fixed and unknown constants
- Uncertainty evaluated in terms of *frequency* of hypothetical data sets
- Relative frequency of a feature of observed data

#### Bayesian

- Parameters are viewed as unobserved realizations of random processes
- Uncertainty evaluated using posterior distribution of parameter
- Probability used to express uncertainty of estimated parameters

#### Bayesian vs. Frequentist

- Both rely on defining a likelihood function
  - $p(x|\theta)$
  - Reads: "Probability of data, given theta"
- Bayesian distinguishes between observable (x) and unobservable ( $\theta$ )
  - $\theta \rightarrow$  Random quantities that can only be determine probabilistically
  - Statistical parameters, missing data, mismeasured data, future outcomes (predictions)
  - Makes inference about entire distribution of possibilities
- Frequentist approach seeks point estimate (maximum likelihood estimate) of  $\theta$ , which is an unknown constant

#### Posterior Distribution

• The conditional probability distribution of all unknown quantities (parameters), given the **data**, the **model**, and what we know about these quantities (**priors**) before conducting the analysis

Bayes' Theorem

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$



Posterior distribution ∝ Likelihood × Prior distribution

#### Struggles with Priors

- Perhaps the most 'contentious' aspect of Bayesian modeling
- Prior represents our understanding and/or assumptions about a parameter before modeling

Posterior distribution ∝ Likelihood × Prior distribution

### Benefits of Bayes

- Valid with small sample size
  - More reliance placed on prior information
- Principled way of combining prior information with data
- Flexible and customizable...virtually anything is possible if you can code it!
- With large sample sizes and/or uninformed priors, Bayesian models give similar point estimates to frequentist MLE models
- Provides interpretable answers
  - Bayes: "The true parameter  $\theta$  has a 0.95 probability of falling within the estimated 95% credible interval"
  - Frequentist: "Given an infinite number of calculated intervals, the true parameter  $\theta$  will be within the confidence interval 95% of the time

# Worked example

- Overview / Description of Data
  - Data summary, descriptive stats, scatterplot
- Frequentist
  - Linear model estimates
- Bayesian (brms)
  - uninformed priors
  - informed priors

#### (Generalized) Linear Models – Refresher

- Broadly and generally used
- Two parts
  - Systematic
    - Describes how predictors (x) relate to observations (y)
    - Produces fitted value (i.e. slope and intercept)
  - Stochastic
    - Describes the uncertainty/scatter around our estimates
    - Residuals



### Linear Model Assumptions

- The observed y-values are *independent*, conditional on x.
- The y-values are *normally distributed* with *constant variance* 
  - $y \sim N(\mu y, \sigma^2)$
- There is a *straight-line relationship* between the mean of y and each x:
  - $\mu y = \beta 0 + xT \beta$
- There is a straight-line relationship between some known function of the mean of y and each  $\boldsymbol{x}$ 
  - $g(\mu y) = \beta 0 + xT \beta$

# **Generalized** Linear Model Assumptions

- The observed y-values are *independent*, conditional on x.
- The y-values are normally distributed with constant variance

```
• \gamma \sim N(\mu y, \sigma 2)
```

• There is a straight-line relationship between the mean of y and each x:

• 
$$\mu y = \beta 0 + xT \beta$$

- There is a straight-line relationship between some known function of the mean of y and each  $\boldsymbol{x}$ 
  - $g(\mu y) = \beta 0 + xT \beta$

$$g(\mu_y) = \beta_0 + X^T \beta$$

- Link function
  - Transforms predicted values into the range of the *linear* predictor ( $-\infty$  to  $+\infty$ )



FIGURE 8-3 Left panel: Shape of different link functions commonly used in binomial models. Right panel: The relationship between the predictor X (x-axis) and p on the scale of the link function (y-axis) is assumed to be linear.

Table 10.1: Common choices of distribution and suggested link functions  $g(\mu)$  in generalised linear models. Each distribution implies a particular mean–variance assumption  $V(\mu)$ . The required family argument to use each of these in R is also given

| Distribution           | $V(\mu)$           | Good for                                 | Link, $g(\mu)$                                                              | family=                                                    |
|------------------------|--------------------|------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|
| Binomial               | $n\mu(1-\mu)$      | Binary responses (e.g. presence–absence) | $\log\left(\frac{\mu}{1-\mu}\right)$ Probit $\log\left(-\log(1-\mu)\right)$ | <pre>binomial binomial("probit") binomial("cloglog")</pre> |
| Poisson                | μ                  | Counts <sup>a</sup>                      | $\log(\mu)$                                                                 | poisson                                                    |
| Negative bi-<br>nomial | $\mu + \phi \mu^2$ | Counts                                   | $\log(\mu)$                                                                 | "negative.binomial" (in mvabund)                           |
| Tweedie                | $a\mu^p$           | Biomass                                  | $\log(\mu)$                                                                 | <pre>tweedie(p,link=0) (in statmod)</pre>                  |
| Normal                 | $ \sigma^2 $       | Continuous responses                     | $\mu$                                                                       | gaussian                                                   |

<sup>&</sup>lt;sup>a</sup> But does not account for overdispersion (i.e. all individuals being counted need to be independent, no missing predictors in the model.)

## Height Weight example

**Goal**: estimate the relationship between height and weight

- 1. Simulate heights and weights
- 2. Fit three models:
  - 1. Maximum likelihood estimation
  - 2. Bayesian estimation (flat priors)
  - 3. Bayesian estimation (informed priors)
- 3. Compare estimates



#### Simulated dataset

#### # Simulation parameters

$$N = 15$$

$$bH = 0.5$$

$$error = 10$$

$$Y_i = 66 + 0.5 * X_i + error$$



#### Three models

Maximum likelihood estimator
 Parameters based on theoretical t-distribution

2. Bayesian estimator

brms default: Flat priors for slopes (uniform), t-distribution for intercept

3. Bayesian estimator

brms: informed priors (next slide)

#### Priors for models 2 & 3

intercept

student-t(3, 0, 12.8) uniform(-Inf, Inf) half-student-t(3, 0, 12.8) normal(70,10) half-normal(70,10) exponential(1) 0.04 -0.4 8.0 probability density probability density informed informed default informed default default 0.00 0.0 0.0-100 200 -10 10 20 10 15 20 -100 -20

slope

sigma

#### Intercept priors



- Default is a student-t with long tails that allows negative weight
- Informed uses a normal with a mean of 70 and SD of 10
- Informed prior encodes our expectation that average weight will be normally distributed and greater than 0.

### Slope priors



- Default is a flat uniform; any slope value equally likely
- Informed uses a half-normal with a mean of 0 and SD of 2
- Informed prior encodes our expectation that the relationship between height and weight must be positive

### Sigma priors



- Default is a half-student-t, again with a very long tail
- Informed uses an exponential with rate of 1.
- Informed prior is skeptical of extreme levels of error

#### Results

#### **True values**

bH = 0.5

b\_intercept = 66

| Model                  | Intercept<br>(SE) | Height<br>(SE) |
|------------------------|-------------------|----------------|
| MLE                    | 62.77<br>(3.60)   | 3.19<br>(3.72) |
| Bayesian (flat)        | 62.35<br>(3.65)   | 3.14<br>(3.99) |
| Bayesian<br>(informed) | 63.23<br>(2.78)   | 1.78<br>(1.22) |

# Informed models performs best



## Informed models performs best



#### Predictions



### Steps to Bayesian Data Analysis

- Data: Identify variables to be predicted and variables that act as predictors
- Define a descriptive model
- Specify a prior distribution on the parameters
- Use Bayesian inference to re-allocate credibility across parameter values.
- Check that posterior predictions mimic the data with reasonable accuracy (i.e., posterior predictive check)