A HYBRID ALGORITHM FOR BREAST CANCER DETECTION USING META LEARNING AND ANN

A PROJECT REPORT

for

SOFT COMPUTING (ITE1015)

in

B.Tech - Information Technology and Engineering

by

ARPAN ANAND (19BIT0088) SHUBHAM KUMAR (19BIT0119)

Under the Guidance of

Dr. AGILANDEESWARI L

Associate Professor, SITE

School of Information Technology and Engineering

December, 2021

DECLARATION BY THE CANDIDATE

We hereby declare that the project report entitled "A HYBRID ALGORITHM FOR BREAST CANCER DETECTION USING META LEARNING AND ANN" submitted by us to Vellore Institute of Technology University, Vellore in partial fulfilment of the requirement for the award of the course Soft Computing (ITE1015) is a record of Bonafede project work carried out by us under the guidance of Dr. Agilandeeswari L. We further declare that the work reported in this project has not been submitted and will not be submitted, either in part or in full, for the award of any other course.

Place: Vellore Signature

Shubhama Kumara

Arpan Anand.

Date: 28.11.2021

School of Information Technology & Engineering [SITE]

CERTIFICATE

This is to certify that the project report entitled "A HYBRID ALGORITHM FOR BREAST CANCER DETECTION USING META LEARNING AND ANN" submitted by shubham kumar (19BIT0119) and Arpan Anand (19BIT0088) to Vellore Institute of Technology University, Vellore in partial fulfillment of the requirement for the award of the course Soft Computing (ITE1015) is a record of Bonafede work carried out by them under my guidance.

Dr. Agilandeeswari L

GUIDE

Associate Professor, SITE

Abstract

The cases of Breast Cancer are increasing day by day leading to more cancer-related deaths among women which can be prevented if diagnosed early. In this report, we have analysed the various methods used by the researchers, their advantages and limitations and we have tried to use, various supervised and unsupervised learning models like Random Forest, KNN, SVM, Logistic Regression, AdaBoost, and Perceptron and feature selection (Tree-Based Feature Importance) to try to create a model to increase the accuracy of the model to predict breast cancer. The dataset used for this is Wisconsin Breast Cancer Dataset which has 569 instances of breast cancer patients. Metrics like Accuracy, Precision, Recall, F1-Score, ROC-curve is used to judge the performance of the model

Keywords - Breast Cancer, Stacking Classifier, SVM, Random Forest, Logistics Regression, adam, XGBoost, KNN, AdaBoost, Meta Learning, ANN,C4.5, CART

Introduction

Machine Learning is a collection of techniques for efficient and automated discovery of previously unknown patterns in large databases. Classification and prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict future data trends in the cases of breast cancer helping in diagnosing breast cancer in early stages.

Various supervised and unsupervised learning models like Random Forest, KNN, SVM, Logistic Regression, AdaBoost, and Perceptron. These models are used for classifying the Wisconsin Breast Cancer Dataset (WBCD) from UCI Machine learning depository. In this report we will try to use feature selection to increase the accuracy using meta-learning.

Motivation:

Breast cancer is the most common cancer among women worldwide, claiming the lives of hundreds of thousands of women each year and affecting countries at all levels. It impacts 2.1 million women each year, and also causes the greatest number of cancer-related deaths among women. If it is diagnosed in early stages, the chances of survival are higher. The detection of the pattern of symptoms using machine learning is a very important technique to correctly understand hidden patterns.

OBJECTIVES

The primary objectives to be achieved via this project are:

• Achieve a higher level of accuracy in prediction.

- Create our own hybrid algorithm by combining meta learning and neural network.
- Comparison of various models with our own hybrid model.
- Create an interface where numeric data is entered, and the algorithm predicts for breast cancer.

LITERATURE SURVEY:

PAPER1:

Breast cancer prediction via machine learning.[1]

Authors & Year	Technique used	Advantage	Issue	Metrics used
M. S. Yarabarla,		Both classification	Expected	Precision
L. K. Ravi, and A.		and regression	probabilities of	Recall
Sivasangari		method random	occurrence and	F1-Score
		forest algorithm	non-occurrence	Support
		provided the	are calculated	
		highest accuracy,it	through K fold	
		is a mixture of	cross validation.	
		many train models	Which is more	
		that provides the	expensive task.	
		predictions about	Data pre-	
	Computer Aided	different training	processing Stage	
	Diagnoses System	classifiers. Hybrid	took too much	
	(CAD) for breast	method was	time, because it	
	cancer prediction.	developed to	was converted raw	
		performed the	data into the	
		accurate	valuable form,	
		computation on	also the number of	
		UCI online dataset	patient that are	
		that provide the	already mentioned	
		mode accuracy	in a list were not	
		results.	be considered.	

PAPER 2:

On the scalability of machine learning algorithms for breast cancer prediction in big data context. [2]

Authors	Technique used	Advantage	Issue	Metrics used
S. Alghunaim and	Performance	Support vector	Gene Expression	Accuracy
H. H. Al-Baity	Comparison of	machine based On	data collection is	Error Rate
	classification	parallel	one of the difficult	
	algorithm on	computation, have	task. To achieve	
	Weka and Spark	strength to analyze	the good result of	
		the multiple data	accuracy,	
		at same time, it	precision and	
		provide the	sensitivity of data,	
		highest accuracy	large number of	
		rate on two	samples was	
		different tool	needed for	
		Weka and spark	computations.	
		Error rate and		

	computation time of SVM is lower	
	than the decision	
	tree and random	
	forest	

PAPER3:

A comparative analysis of nonlinear machine learning algorithms for breast cancer detection.[3]

Authors	Technique used	Advantage	Issue	Metrics used
A. A. Bataineh	Non Linear	When dataset are	User was	Accuracy
	machine learning	linearly separable	responsible to set	Precision
	algorithm	it provides good	the hidden layers	Recall
	comparison	accuracy level	for MLP	
		MLP is consists of	algorithm. Setting	
		different layers	some value	
		each layer perform	sometimes	
		one single task	provided under	
		separately, so the	fitting and	
		computation of	sometimes over	
		this algorithm was	fitting	
		faster enough.	results.Without 10	
			fold cross	
			validation, it is	
			impossible to	
			predict the	
			accuracy rate from	
			train data models.	

PAPER 4: Comparison of machine learning methods for breast cancer diagnosis.[4]

Authors	Technique used	Advantage	Issue	Metrics used
E. A. Bayrak, P.	Comparison of	After comparison	Expected	Accuracy
Kirci, and T.	SVM and ANN	most suitable	probabilities of	Precision
Ensari	for breast cancer	technique for the	occurrence and	Recall
	prediction.	prediction of	non-occurrence	ROC Area
		breast cancer was	are calculated	
		found SVM	through K fold	
		because the	cross validation.	
		classes are	Which is more	
		separated through	expensive task.	
		hyper line that		
		provide the more		
		accuracy result		
		than ANN.		

PAPER 5:

Automated breast cancer diagnosis based on machine learning algorithms.[5]

Authors Technique used Advantage Issue	Metrics used
--	--------------

H. Dhahri, E. Al	Optimization of	Comparative	It took too much	Accuracy
Maghayreh, A.	algorithms	analysis of	time during the	Precision
Mahmood, W.	through Genetics	different machine	evaluation process	Recall
Elkilani, and M.	programmmg	algorithm was	and model	ROC Area
Faisal	technique.	performed after,	training.GP	F1-Score
Nagi		selecting some	algorithm was	
		feature through	designed to solve	
		polynomial	the hyper	
		features operator.	parameter	
		Extra tree	problem but this	
		classifier obtained	algorithm process	
		the highest	time was too slow.	
		accuracy than		
		other algorithms.		

PAPER 6:
Breast cancer prediction and detection using data mining classification algorithms: A comparative study.[6]

Authors	Technique used	Advantage	Issue	Metrics used
M. K. Keles	Comparative	Random forest	Separate model	Accuracy
	analysis of Data	provided the	was designed to	
	Mining Classifier	highest accuracy	check that whether	
	for cancer	during evaluation,	there is a tumor or	
	prediction and	this algorithm	not. This model	
	detection.	require less	took too much	
		efforts. Random	processing time. K	
		forest algorithm	fold cross	
		do not require the	validation tech	
		standardization	nique are applied	
		and normalization	for n number of	
		Of data also can	iteration, just to	
		handle nonlinear	get the desire	
		data more	result, each	
		efficiently.	iteration took too	
			much time.	

PAPER 7:
Breast cancer risk prediction using data mining classification techniques.[7]

Authors	Technique used	Advantage	Issue	Metrics used
K. Williams, P. A.	Data Mining	Naive Bayes	Expression rule	TP rate
Idowu, J. A.	classification	provided the less	was designed to	FP rate
Balogun, and A. I.	techniques for risk	error rate while	show the best	Precision
Oluwaranti	prediction of	computations.	attributes for	ROC Area
	breast cancer	Number of the	breast cancer	
		attribute was	prediction but the	
		increases while	evaluation process	
		increases the	was too	
		sample size of	complicated	

Ī		data that provided	
		the good accuracy	
		results.	

PAPER 8: Classification algorithm-based analysis of breast cancer data.[8]

	Technique	Advantage	Issue	Metrics
,	used			used
B. Padmapriya and T.	J48 CART Decision Tree	Comparison of each classification algorithm was done thmugh the evaluation of weighted average values. CART algorithm provided the better accuracy for prognoses of breast cancer	Model was design to comparatively analyzed the data mining decision algorithm J48,CART,ADtree.Evaluation phase took too much time.	Specificity Sensitivity Accuracy Precision Recall F-Measure

PAPER 9: Using machine learning algorithms for breast cancer risk prediction and diagnosis.[9]

Authors	Technique used	Advantage	Issue	Metrics used
H. Asri, H.	C4.5	Evaluation of each	the process time	TP
Mousannif, H. Al	SVM	classifier through	of SVM was	FP
Moatassime, and	NB	confusion matrix	higher than the	Precision
T. Noel	KNN	shows that	KNN algorithm	Recall
		accuracy rate of	but KNN was a	F-Measure
		SVM is higher	lazy learner	
		than the other	method that had	
		SVM provided the	not provided the	
		less error rate for	good accuracy	
		prognoses of	result	
		breast cancer		

PAPER 10: A study on prediction of breast cancer recurrence using data mining techniques.[10]

Authors Technique used Adv	ntage Issue	Metrics used
----------------------------	-------------	--------------

U. Ojha and S.	K-Means	Classification		accuracy,
Goel	KNN	algorithm C45 and		sensitivity
	C5.0	SVM provided the	Finding the effect	specificity
	SVM	better result than	algorithm that	
	Naïve Bayes	the other	predict the	
		algorithm. EM	accruing and	
		was also founded	recurring of	
		the most	diseases is one of	
		appropriate	the most difficult	
		clustering	task.	
		algorithm for		
		breast cancer.		

PAPER 11:

Cancer disease prediction using naive Bayes ,K-nearest neighbor and J48 algorithm[11]

Authors	Technique used	Advantage	Issue	Metrics used
S. K. Maliha, R.	Naive Bayes,	Most suitable	Testing phase is	Accuracy
R. Ema, S. K.	KNN	technique for the	slow and also take	Error Rate
Ghosh, H. Ahmed,	J48.	prediction of	too much time	Sensitivity
M. R. J. Mollick,		cancer dataset	Difficult to choose	Specificity
and T. Islam		Classified the data	require K value.	Precision
		according to the	To predict about	F-score
		similarity of each	the new data K-	
		instances Provide	nearest only find	
		the good accuracy	the nearest	
		for both training	neighbor fmm	
		data and testing	training data.	
		data		

PAPER 12:

Breast cancer detection in the IOT health environment using modified recursive feature selection.[12]

Authors	Technique used	Advantage	Issue	Metrics used
M. H. Memon, J.		SVM linear kernel		MCC
P. Li, A. U. Haq,		provide the		Sensitivity
M. H. Memon,		highest accuracy	Computation time	Specificity
and W. Zhou		while the selection	was increases	F-score
		of appropriate	while the	Accuracy
		features for breast	extraction of	
		cancer prediction.	irrelevant features.	
	SVM	Predicted model	Error rate Of	
	RFE	and features	SVM linear kernel	
		selection	was higher than	
		technique was	others, while the	
		designed for	computation	
		computation of	process was	
		large dataset, that	slower.	
		provide the good		
		accuracy.		

PAPER 13:

Machine learning classification techniques for breast cancer diagnosis.[13]

Authors	Technique used	Advantage	Issue	Metrics used
D. A.		Classification		Accuracy
Omondiagbe, S.		model was built		Sensitivity
Veeramani, and A.		through training		Specificity
S. Sidhu		dataset, this phase	R programming	Precision
		took consume too	language is used	F-score
		much time during	for the	Kappa Statistics
		preprocessing.	implementation,	
	SVM	Features selection	this language	
	ANN	and extraction	consist of lots of	
	Naïve Bayes	help to identify	packages,	
	CFS	the presences of	processing is	
	RFE	tumor also	lesser than the	
	PCA	improve the	other languages.	
	LDA	classification of	Evaluation phase	
		benign and	took too much	
		malignant	time because of	
		patients. Featuæs	CFS, LDA, PCA	
		extraction	method	
		decrease the data		
		storages issue		
		efficiently.		

PAPER 14:
Using machine learning algorithms for breast cancer risk prediction and diagnosis.[14]

Authors	Technique used	Advantage	Issue	Metrics used
A. Bharat, N.		ROC curve	Processing time of	Accuracy
Pooja, and R. A.		provide the good	SVM was 0.007	
Reddy		evaluation of each	while KNN was	
		algorithm.	0.01 s.Model was	
		Prediction of	designed to train	
	KNN	correctively	data for the	
	Naïve Bayes	classified	evaluation of	
	CART	instances rate	correctly and in	
	SVM	higher through	correctively	
		SVM algorithm.	classify the	
		Also this	instances that was	
		algorithm	difficult and	
		provided lower	complex task.	
		error rate value.		

PAPER 15: Applying best machine learning algorithms for breast cancer prediction and classification.[15]

PAPER 16:
Classification based on clustering model for predicting main outcomes of breast cancer using hyper-parameters optimization.[16]

Authors	Technique used	Advantage	Issue	Metrics used
A. A. Said, L. A.	Hyper parameter	Hyper parameter	selected features	Efficiency
Abd-Elmegid, S.	Optimization for	through clustering	also provided	Accuracy
Kholeif, and A.	Breast Cancer	method provided	some redundant	
Abdelsamie	Prediction.	the highest	data. BCOAP	
		accuracy. Hyper	model consists of	
		parameter handled	too many phases	
		both categoriCal	each phase took	
		and continues type	lost if time for the	
		of data more	evaluation of	
		effectively.	breast cancer data	

PAPER 17:
Artificial neural network for prediction of breast cancer.[17]

Authors	Technique used	Advantage	Issue	Metrics used
P. Singhal and S.		Multi-layered	Requile high	Precision
Pareek		Neural network	processing and	Accuracy
		created weight	time for large	
		arbitrary that	number of data,	
		provided the Mean	that affect the	
	Artificial Neural	Square Error	overall accuracy	
	Network for breast	whose rate is too	of data To achieve	
	cancer.	less. Feed forward	the good accuracy,	
		algorithm help to	precision and	
		reduce the error	sensitivity of data,	
		through weight	large number of	
		modification.	sample are needed	
			for computations.	

PAPER 18:

A comparison of open source data mining tools for breast cancer classification.[18]

Authors	Technique used	Advantage	Issue	Metrics used
A. A. Ibrahim, A. I. Hashad, and N. E. M. Shawky	Comparison of data mining for breast cancer classification.	Single classification provided the highest accuracy than the fusion classificaLion. WPBC, WBC, LBCD Dataset was provided the better level accuracy during the evaluation of different algorithm when the confusion Metrix was design.	Weka tool provided the best accuracy for WPBC and WBC dataset but the accuracy level was not good for LBCD dataset.	Accuracy

PAPER 19:

A Study of the Suitability of Autoencoders for Pre-processing Data in Breast Cancer Experimentation.[19]

Authors	Technique used	Advantage	Issue	Metrics used
		Autoencoders	Autoencoders	p-values,
Macías-García		could statistically	which are used for	z-value,
Laura, Luna-		be a valuable tool	pre-processing	Holm's α
Romera José		to reduce noise in	have the risk of	
María, García-	Autoencoders to	data (related to	overfitting the	
Gutiérrez Jorge,	improve the	breast cancer but	data, especially	
Martínez-	quality of the data.	potentially to any	when the	
Ballesteros María,		other biomedical	parameterization	
Riquelme-Santos		research area)	was carried out	
José C. and		using hidden	with all the	
González-		relationships	dataset.	
Cámpora Ricardo		between		
		biomarkers.		
2017				

PAPER 20: Machine learning applications in cancer prognosis and prediction.[20]

Authors	Technique used	Advantage	Issue	Metrics used
		Several ML	One of the most	Accuracy
		techniques were	common	
		employed as an	limitations noted	
		aim to find the	in the studies	
		most optimal one.	surveyed in this	

Konstantina		It has been found	review is the small	
Kourou, Themis		that the integration	amount of data	
P, Exarchos,		of	samples. A basic	
Konstantinos P,	ANN	multidimensional	requirement when	
Exarchos,	SVM	heterogeneous	using	
Michalis V,		data, combined	classification	
Karamouzis,		with the	schemes for	
Dimitrios I		application of	modelling a	
and Fotiadis		different	disease is the size	
		techniques for	of the training	
2015		feature selection	datasets that needs	
		and classification	to be sufficiently	
		can provide	large.	
		promising tools		
		for inference in		
		the cancer		
		domain.		

PAPER 21:

Recent advancement in cancer detection using machine learning: Systematic survey of decades:

Comparisons and Challenges.[21]

Authors	Technique used	Advantage	Issue	Metrics used
		This paper	The algorithm for	Accuracy
		proposed a CNN	deep learning has	Specificity
		based method for	improved the	Sensitivity
		the detection of	precision of the	F-Score
		breast carcinoma	breast cancer	MCC
TanzilaSaba		utilizing an	diagnosis to 97%,	Precision
		unmonitored	and but processing	
2020		pathway network	time exceeded	
	CNN	of deep-faith	from 30 to 40 s.	
		beliefs		
		accompanied by a		
		backward		
		propagation route.		
		Wisconsin Breast		
		Cancer Dataset		
		employed for		
		experiments and		
		99.68% accuracy		
		claimed.		

PAPER 22:
Breast Cancer Prediction using Feature Selection and Ensemble Voting.[22]

Authors	Technique used	Advantage	Issue	Metrics used
		This paper	The number of	Precision,
		compares various	baseline models	recall,
Quang H. Nguyen,		Algorithms based	has to be in odd	ROC-AUC,
Trang T.T. Do,		on different	numbers and	F1-measure,
Yijing Wang,		metrics which in	greater than one.	

Sin Swee Heng,	Random Forest,	turn help to	XGBoost,	computational
Kelly Chen, Wei	KNN,	identify the best	Adaboost, SGD	time
Hao Max Ang,	SVM,	algorithms to be	and	
Conceicao Edwin	Logistic	used for this	SVM are	
Philip	Regression,	dataset.	considered black	
	AdaBoost,		box models	
2019	Perceptron		subject to	
			acceptance	
			among industrial	
			practices and	
			regulations.	

PAPER 23:
Analysis of feature selection with classification: Breast cancer datasets.[23]

Authors	Technique used	Advantage	Issue	Metrics used
		In this paper		Reduced No. of
		experimental		Attributes,
Lavanya		results show that		Accuracy,
Doddipalli,		Feature Selection,		Time,
K. Usha Rani	Decision Trees	a Preprocessing		Tree size
		technique greatly		
2011		enhances the		
		accuracy of		
		classification.		

PAPER 24: Support vector machines combined with feature selection for breast cancer diagnosis.[24]

Authors	Technique used	Advantage	Issue	Metrics used
		This paper shows		Accuracy,
		that		sensitivity,
		the proposed		specificity,
	SVM-based model	method yields the		positive predictive
Mehmet Fatih	using grid search,	highest		value, negative
Akay	F-score	classification		predictive value,
		accuracies for a		ROC curves
2009		subset that		and confusion
		contained five		matrices
		features.		

PAPER 25: A new classifier for breast cancer detection based on Naïve Bayesian.[25]

Authors	Technique used	Advantage	Issue	Metrics used

Murat Karabatak		The applied	Algorithm uses a	sensitivity,
	NB classifier	weighted NB	grid search	specificity
2015		obtained 99.11%	mechanism	accuracy.
		sensitivity,	to find the	
		98.25% specificity	optimum weight	
		and 98.54% the	values. This	
		accuracy values	search was	
		respectively	computationally	
			expensive and the	
			initialization of	
			the weights	
			vector is crucial	
			and application	
			dependent	

PAPER 26: Investigating the effect of Correlation based Feature Selection on breast cancer diagnosis using Artificial Neural Network and Support Vector Machines.[26]

Authors	Technique used	Advantage	Issue	Metrics used
	SVM and ANN	Based on results		accuracy tests
Reem Alyami,	combined with	achieved, both	The duality	
Jinan Alhajjaj,	feature selection	SVM and ANN	feature in SVM	
Batool Alnajrani,		are observed and	limits the user to	
Ilham Elaalami,		compared	deal	
Abdullah		by means of	with the data as	
Alqahtani, Nahier		classification	two classes.	
Aldhafferi,		accuracy. SVM	Expensive	
Taoreed O.		showed better	implementation	
Owolabi b, and		performance	due to its training	
Sunday O.		results on	computation.	
Olatunji		classifying the		
2017		samples with		
		97.1388		
		% accuracy		
		compared to ANN		
		that achieved		
		96.7096 %		
		accuracy		

PAPER 27: Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques[27]

Authors	Technique used	Advantage	Issue	Metrics used
Md. Milon Islam ·	support vector	The developed	The lowest	confusion
Md. Rezwanul Haque ·	machine, K-	model by ANNs	accuracy	matrix
Hasib Iqbal ·	nearest	is	derived from	
Md. Munirul Hasan ·	neighbors,			

Mahmudul Hasan ·	random forests,	more consistent	the RFs and LR	
Muhammad Nomani Kabir	artifcial neural	than any other	is 95.7%.	
	networks, and	technique stated,		
2020	logistic	and it		
	regression	may be able to		
		bring changes in		
		the feld of		
		prediction		
		of breast cancer.		

PAPER 28:

Predicting breast cancer 5-year survival using machine learning: A systematic review[28]

Authors	Technique used	Advantage	Issue	Metrics used
iaxin Li,Zijun	PROBAST	this is the first	the information on	accuracy
Zhou,Jianyu		systematic review	predictive	
Dong, Ying		of the application	performance (such	
Fu,Yuan Li,Ze		of ML to breast	as true positive,	
Luan,Xin Pen		cancer survival	false positive, true	
		prediction, and	negative, and false	
2021		accurate 5-year	negative in the	
		survival	confusion matrix)	
		predictions are	was insufficient,	
		very important for	and most of the	
		further research.	studies only	
			described a single	
			dimension of	
			predictive	
			performance.	

PAPER 29:

Model Selection for Predicting Breast Cancer using Supervised Machine Learning Algorithms.[29]

Authors	Technique used	Advantage	Issue	Metrics used
Ajit Kumar	Logistics	the dataset contains		accuracy,
; Rajkumar Patra;	Regression, K-	32 features so,		precision, recall,
Anupam Ghosh	Nearest	dimensional		and f-score
2020	Neighbors,	reduction helps in		
	Decision Tree	decreasing the		
	Classifier,	multidimensional		
	Gaussian NB, and	data into few		
	Support Vector	dimensions. On the		
	Machine	whole, the above		
		study proposed that		
		Logistic Regression		
		is efficient for the		
		detection of breast		
		cancer as compared		
		to all the other		
		models while dealing		

	with the complex	
	dataset.	

PAPER 30: Efficient Breast Cancer Prediction Using Ensemble Machine Learning Models[30]

Authors	Technique used	Advantage	Issue	Metrics used
Naveen	decision tree,	Decision tree and		precision, recall,
R. K. Sharma	support vector	KNN gives 100%		F1-score,accuracy
Anil	machine,	accuracy with		
Ramachandran	multilayer	ensemble		
Nair	perceptron, K-	technique.		
	nearest neighbors,			
	logistics			
	regression and			
	random forest			

Conclusion:

The recent works have used various methods in their papers, such as, KNN, SVM, CNN, and grouped them together to increase the various metrics used for the evaluation of their models. Making the model to predict Breast Cancer involves many stages and each stage has its own importance in defining and enhancement of the model. The various types of modalities used for Feature Selection, Classification used in the paper, strategies to make the model better, their advantages and disadvantages and characteristics were discussed in this report. The problems identified by others were solved by others. Although much research work has been done in this field but the scope of improvement is still there with the rise in technologies. And that what we have tried to achieve in this paper via our proposed hybrid algorithm for predicting breast cancer via creating a combination of various kinds of meta learning models whose output was used as input features for the creation of the ANN model, which in turn gave a better performance than other model used in the papers.

Issues in Existing Systems and Conclusions Drawn:

- Some systems had very high hardware requirements.
- Most papers use K means clustering or CNNs.
- We've seen that hybrid approaches work better than normal approaches.
- Which is why we thought of combining various preprocessing algorithms and used a combination of algorithms (hybrid algorithm)
- Most of the papers does not provide a principal component analysis of the model and give various metrics like specificity, efficiency, accuracy and sensitivity.
- Neural network is found to be relatively less accurate, precise, reliable compared to other machine learning models.
- Some models come with much lesser accuracy as compared to others

MODULES AND ITS DESCRIPTION

Dataset

The data used is the Wisconsin Breast Cancer Dataset (WBCD) taken from the UCI machine learning repository. The dataset contained 569 instances taken from needle aspirates from patients' breasts, of which 357 cases were identified as "benign" and the remaining 212 cases were classified as "malignant". Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Attribute Information:

- 1) ID number
- 2) Diagnosis (M = malignant, B = benign)

3-32)

Ten real-valued features are computed for each cell nucleus:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.

All feature values are recoded with four significant digits.

Missing attribute values: none

Class distribution: 357 benign, 212 malignant

Dataset: To be read and stored using Pandas (data used is Wisconsin Breast Cancer Dataset (WBCD))

Data Pre-Processing

Data preprocessing involves the transformation of the raw dataset into an understandable format. Preprocessing data is a fundamental stage to improve data efficiency. The data preprocessing methods directly affect the outcomes of any analytic algorithm. So, pre-processing is required to increase efficiency of the model.

In this report we will be focusing on four things:

Name	Description
Checking for	This check ensures that the conclusion of the model is not affected by missing values
Missing Values	within the dataset.

Checking for	This check ensures that the conclusion of the model is not affected by outlier values
Outliers	within the dataset.
Checking for	In the dataset, the ratio between the two classes, Benign $(B) = 0$ and Malignant $(M) = 0$
Class	1, is 63:37, respectively. This shows that a close gap of 0.26 exists, which shows that
Imbalance	the dataset is pretty much balanced.
Checking for	All variables should have the same scale for fair comparison between them. There is
Normalization	evident difference in scale for each variable. Therefore, feature scaling is needed to
	ensure fair treatment.

Feature Selection

Feature Selection is extremely important in any model as it indicates which variables are most efficient and effective for a system.

Types of Feature Selection Methods:

Method Name	Description	Advantages
Filter	Filter methods select features from a dataset independently for any machine learning algorithm. These methods rely only on the characteristics of these variables, so features are filtered out of the data before learning begins. These methods are powerful and simple and help to quickly remove features	 Selected features can be used in any machine learning algorithm, They're computationally inexpensive
Wrapper	Wrapper methods work by evaluating a subset of features using a machine learning algorithm that employs a search strategy to look through the space of possible feature subsets, evaluating each subset based on the quality of the performance of a given algorithm.	 It detects the interaction between variables It finds the optimal feature subset for the desired machine learning algorithm
Embedded	In embedded methods, the feature selection algorithm is blended as part of the learning algorithm in other words, they perform feature selection during the model training.	 They take into consideration the interaction of features like wrapper methods do. They are faster like filter methods. They are more accurate than filter methods. They find the feature subset for the algorithm being trained. They are much less prone to overfitting.

It can be seen from above that the embedded methods are preferable for feature selection over filter and wrapper methods.

Pictorial Representation of General Filter Feature selection method.

Set of all features → Selecting the best subset → Learning algorithm → Performance

Pictorial Representation of General Wrapper Feature selection method.

Pictorial Representation of General Embedded Feature selection method.

Types of Embedded Feature Selection Methods:

Method Name	Description
Regularization	It adds a penalty to different parameters of the machine learning model to avoid over-fitting of the model. The penalty is applied over the coefficients, thus bringing down some coefficients to zero. The features having zero coefficient can be removed from the dataset.
Tree-based Feature Importance	It tells us which variables are more important in making accurate predictions on the target variable/class. It identifies which features are the most used by the machine learning algorithm in order to predict the target.

From the above it can be seen that the tree-based feature importance is much better option for feature selection than Regularization as it utilizes penalties to reduce the features instead of telling which features affect the model the most.

Thus, we will be using **Tree based feature selection and Random Forest Classification** for feature selection in the Wisconsin dataset.

Classification

METHOD	DESCRIPTION	ADVANTAGES	DISADVANTAGES		
Knn algorithm	Classification of predictors according to cluster of similar behaviour. This is a form of optimization that seek to find the nearest point to a target variable point.	 No Training Period: KNN is called Lazy Learner (Instance based learning). It does not learn anything in the training period. easy to implement 	 It does not work well with large dataset. It does not work well with high dimensions. It needs feature scaling 		

Support Vector Machines	Support vector machines (SVMs) are supervised learning models with associated learning algorithms that analyse data used for classification and regression analysis	•	SVM works relatively well when there is a clear margin of separation between classes. SVM is more effective in high dimensional spaces. SVM is effective in cases where the number of dimensions is greater than the number of samples. SVM is relatively memory efficient	•	SVM algorithm is not suitable for large data sets. SVM does not perform very well when the data set has more noise i.e. target classes are overlapping. In cases where the number of features for each data point exceeds the number of training data samples, the SVM will underperform
Logistic Regression	Logistic regression is a supervised learning classification algorithm used to predict the probability of a target variable. The nature of target or dependent variable is dichotomous, which means there would be only two possible classes.	•	Logistic Regression performs well when the dataset is linearly separable. Logistic regression is less prone to over- fitting but it can overfit in high dimensional datasets. You should consider Regularization (L1 and L2) techniques to avoid over-fitting in these scenarios. Logistic Regression not only gives a measure of how relevant a predictor (coefficient size) is, but also its direction of association (positive or negative).	•	Main limitation of Logistic Regression is the assumption of linearity between the dependent variable and the independent variables. In the real world, the data is rarely linearly separable. Most of the time data would be a jumbled mess. If the number of observations are lesser than the number of features, Logistic Regression should not be used, otherwise it may lead to overfit.
Stochastic Gradient Descent	Gradient descent is a method of	•	It is easier to fit in the memory due	•	Due to frequent updates, the steps

	optimization and stochastic gradient descent (SGD) is an incremental gradient descent for finding the minimum of function. Stochastic is an approximation of gradient descent optimization.	to a single training example being processed by the network. It is computationally fast as only one sample is processed at a time. For larger datasets, it can converge faster as it causes updates to the parameters more frequently.	taken towards the minima are very noisy. This can often lean the gradient descent into other directions. • Also, due to noisy steps, it may take longer to achieve convergence to the minima of the loss function. • Frequent updates are computationally expensive because of using all resources for processing one training sample at a time.
Perceptron	Perceptron is a neural network that decides if an input belongs to a specific class, based on weighted feature vector.	 Single Layer Perceptron is quite easy to set up and train. The neural network model can be explicitly linked to statistical models which means the model can be used to share covariance Gaussian density function. The SLP outputs a function which is a sigmoid and that sigmoid function can easily be linked to posterior probabilities. 	 This neural network can represent only a limited set of functions. The decision boundaries that are the threshold boundaries are only allowed to be hyperplanes. This model only works for the linearly separable data.
AdaBoost	Boosting is an ensemble method that start on a base classifier from the training dataset. AdaBoost is a boosting ensemble method which is building on up	 It is very fast, It is easy to use, It is easy to program, It can be combined with any other machine learning algorithm without the requirement of 	 It is potentially vulnerable to noise due to its own empirical evidence. If weak classifier underperform, they can make the whole model underperform, Adaboost is highly susceptible to

	weighted classification.	•	fine-tuning parameters. It can be used in problems which are not in the form of binary classification		outlier. Thus, not useful in scenarios where outliers are expected to happen.
XGBoost	XGBoost is a type of gradient tree boosting which allows for regularization, in order to avoid overfitting.	•	It is Highly Flexible It uses the power of parallel processing It is faster than Gradient Boosting It supports regularization	•	Difficult interpretation, visualization tough Overfitting possible if parameters not tuned properly. Harder to tune as there are too many hyperparameters.

It is understood from above analysis that every learning model has its own advantages and disadvantages which help them to be better or worse than the other learning models. We cannot choose any one learning model over other. So, we will be trying to make a meta learning model which will learn from learning, which will in turn help to better predict the breast cancer. It will do so by training a model over previously trained model.

General Architecture

Proposed architecture diagram:

Novelty

- We have tried to developed our own hybrid approach which has not been used till date in any of the paper or anywhere as far our knowledge.
- The Accuracy which we have achieved is one of the highest among all the papers which we have reviewed.
- We have used various matrices for evaluation such as accuracy, precision, recall, F1 score and confusion matrix.

Metrics used

Accuracy is one metric for evaluating classification models. Informally, **accuracy** is the fraction of predictions our model got right. Formally, accuracy has the following definition:

$$Accuracy = \left(\frac{(TP + TN)}{TP + FP + TN + FN}\right)$$

Precision attempts to answer the question what proportion of positive identifications was actually correctly:

$$TN/(TN + FP)$$

Recall attempts to answer the following question about what proportion of actual positives was identified correctly.

$$\text{Recall} = \frac{TP}{TP + FN}$$

F1 Score is the 2*((precision*recall)/(precision+recall))

Pseudocode

- 1. Take data from the dataset.
- 2. Pre-process it for any irregularities like outliers/null value etc.
- 3. Use correlation to select features by reducing the number of highly correlated attributes.
- 4. Use Tree based feature selection and random forest classification to determine the important attributes.
- 5. Use PCA to reduce dimensionality
- 6. Hyper Tune the various algorithms present in the literature review.
- 7. Compare various algorithms present in the literature review.
- 8. Select the best algorithms suited for this model.
- 9. Create various Meta Learning Models by combining various Linear, Non-Linear algorithms to create the meta models.
- 10. Use their output as the input for ANN Model.
- 11. Use the ANN model to predict the **Breast Cancer**.
- 12. The data can be passed through an android app to predict the cancer.

Interface

Flask based interface that allows numeric content to be passed to the model to predict the cancer.

Importing various libraries and data set description-

```
In [ ]: ###Loading the packages.
         import numpy as np
         import pandas as pd
import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
%matplotlib inline
In [ ]: plt.style.use("seaborn")
In [ ]:
        # Loading the data
        df = pd.read_csv('data.csv')
df.head()
Dut[]:
               id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
        0 842302
                                 17.99
                                            10.38
                                                         122.80
                                                                  1001.0
                                                                                 0.11840
                                                                                                 0.27760
                                                                                                               0.3001
        1 842517
                       M
                                20.57
                                            17.77
                                                        132.90
                                                                  1326.0
                                                                                0.08474
                                                                                                 0.07864
                                                                                                               0.0869
        2 84300903
                                19.69
                                                         130.00
                                                                                 0.10960
                                                                                                 0.15990
                                                                                                               0.1974
                        M
                                            21.25
                                                                  1203.0
                                                        77.58 386.1
        3 84348301 M
                                11.42
                                            20.38
                                                                                0.14250
                                                                                                 0.28390
                                                                                                               0.2414
        4 84358402
                                 20.29
                                                         135.10
                                                                                 0.10030
                                                                                                 0.13280
       5 rows × 33 columns
        print("\nShape = ",df.shape)
        dtype='object')
        Shape = (569, 33)
```

```
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
Column Non-Nul Non-Null Count Dtype Column
.....
id
diagnosis
radius_mean
texture_mean
perimeter_mean
area mean
smoothness_mean
concavity_mean
concavity_mean
fractal_dimension_mean
radius_se
texture_se
perimeter_se
area_se
smoothness_se
compactness_se
concavity_se
concavity_se
concavity_se
symmetry_se
fractal_dimension_se
radius_worst
texture_worst 569 non-null
569 non-null int64 object float64 01234567 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 float64 float64

df.describe().T

Out[]: count mean std min 25% 50% 75% max id 569.0 3.037183e+07 1.250206e+08 8670.000000 869218.000000 906024.000000 8.813129e+06 9.113205e+08 radius mean 569.0 1.412729e+01 3.524049e+00 6.981000 11,700000 13.370000 1.578000e+01 2.811000e+01 texture_mean 569.0 1.928965e+01 4.301036e+00 9.710000 16.170000 18.840000 2.180000e+01 3.928000e+01 perimeter_mean 569.0 9.196903e+01 2.429898e+01 43.790000 75.170000 86.240000 1.041000e+02 1.885000e+02 area mean 569.0 6.548891e+02 3.519141e+02 143.500000 420 300000 551 100000 7 827000e+02 2 501000e+03 smoothness_mean 569.0 9.636028e-02 1.406413e-02 0.052630 0.086370 0.095870 1.053000e-01 1.634000e-01 compactness_mean 569.0 1.043410e-01 5.281276e-02 0.019380 0.064920 0.092630 1.304000e-01 3.454000e-01 concavity_mean 569.0 8.879932e-02 7.971981e-02 0.000000 0.029560 0.061540 1.307000e-01 4.268000e-01 concave points_mean 569.0 4.891915e-02 3.880284e-02 0.000000 0.020310 0.033500 7.400000e-02 2.012000e-01 0.106000 0.161900 0.179200 1.957000e-01 3.040000e-01 symmetry_mean 569.0 1.811619e-01 2.741428e-02 fractal_dimension_mean 569.0 6.279761e-02 7.060363e-03 0.049960 0.057700 0.061540 6.612000e-02 9.744000e-02 radius_se 569.0 4.051721e-01 2.773127e-01 0.111500 0.232400 0.324200 4.789000e-01 2.873000e+00

texture_se	569.0	1.216853e+00	5.516484e-01	0.360200	0.833900	1.108000	1.474000e+00	4.885000e+00
perimeter_se	569.0	2.866059e+00	2.021855e+00	0.757000	1.606000	2.287000	3.357000e+00	2.198000e+01
area_se	569.0	4.033708e+01	4.549101e+01	6.802000	17.850000	24.530000	4.519000e+01	5.422000e+02
smoothness_se	569.0	7.040979e-03	3.002518e-03	0.001713	0.005169	0.006380	8.146000e-03	3.113000e-02
compactness_se	569.0	2.547814e-02	1.790818e-02	0.002252	0.013080	0.020450	3.245000e-02	1.354000e-01
concavity_se	569.0	3.189372e-02	3.018606e-02	0.000000	0.015090	0.025890	4.205000e-02	3.960000e-01
concave points_se	569.0	1.179614e-02	6.170285e-03	0.000000	0.007638	0.010930	1.471000e-02	5.279000e-02
symmetry_se	569.0	2.054230e-02	8.266372e-03	0.007882	0.015160	0.018730	2.348000e-02	7.895000e-02
fractal_dimension_se	569.0	3.794904e-03	2.646071e-03	0.000895	0.002248	0.003187	4.558000e-03	2.984000e-02
radius_worst	569.0	1.626919e+01	4.833242e+00	7.930000	13.010000	14.970000	1.879000e+01	3.604000e+01
texture_worst	569.0	2.567722e+01	6.146258e+00	12.020000	21.080000	25.410000	2.972000e+01	4.954000e+01
perimeter_worst	569.0	1.072612e+02	3.360254e+01	50.410000	84.110000	97.660000	1.254000e+02	2.512000e+02
area_worst	569.0	8.805831e+02	5.693570e+02	185.200000	515.300000	686.500000	1.084000e+03	4.254000e+03
smoothness_worst	569.0	1.323686e-01	2.283243e-02	0.071170	0.116600	0.131300	1.460000e-01	2.226000e-01
compactness_worst	569.0	2.542650e-01	1.573365e-01	0.027290	0.147200	0.211900	3.391000e-01	1.058000e+00
concavity_worst	569.0	2.721885e-01	2.086243e-01	0.000000	0.114500	0.226700	3.829000e-01	1.252000e+00
concave points_worst	569.0	1.146062e-01	6.573234e-02	0.000000	0.064930	0.099930	1.614000e-01	2.910000e-01

symmetry_worst	569.0	2.900756e-01	6.186747e-02	0.156500	0.250400	0.282200	3.179000e-01	6.638000e-01
fractal_dimension_worst	569.0	8.394582e-02	1.806127e-02	0.055040	0.071460	0.080040	9.208000e-02	2.075000e-01
Unnamed: 32	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

```
plt.style.use("seaborn")
plt.figure(figsize=(6, 6))
sns.scatterplot(x = df['area_mean'], y = df['smoothness_mean'], hue = df['diagnosis'], data = df)
plt.show()
```



```
### Seperating the Target feature and other features
y = df.diagnosis  # M or B
list = ['Unnamed: 32','id','diagnosis']
x = df.drop(list,axis = 1)
x.head()
```

[]:	r	adius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_m
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1
5	5 rov	vs × 30 colu	mns							
	4									•

In order to conduct our analysis easily, we have converted the target column as:</br>

```
In []: y.replace({"M":1,"B":0},inplace=True)
In []: df.diagnosis.value_counts().plot(kind='bar')
   plt.show()
```


Feature selection with correlation and random forest classification

As it can be seen in map heat figure radius_mean, perimeter_mean and area_mean are correlated with each other so we will use only area_mean. If you ask how i choose area_mean as a feature to use, well actually there is no correct answer, I just look at swarm plots and area_mean looks like clear for me but we cannot

make exact separation among other correlated features without trying. So lets find other correlated features and look accuracy with random forest classifier. Compactness_mean, concavity_mean and concave points_mean are correlated with each other. Therefore I only choose concavity_mean. Apart from these, radius_se, perimeter_se and area_se are correlated and I only use area_se. radius_worst, perimeter_worst and area_worst are correlated so I use area_worst. Compactness_worst, concavity_worst and concave points_worst so I use concavity_worst. Compactness_se, concavity_se and concave points_se so I use concavity_se. texture_mean and texture_worst are correlated and I use texture_mean. area_worst and area_mean are correlated, I use area_mean.

```
In []:
    drop_list1 = ['perimeter_mean', 'radius_mean', 'compactness_mean', 'concave points_mean', 'radius_se', 'perimeter_se',
    x_1 = x.drop(drop_list1,axis = 1 )
    print(x_1.shape)
    x_1.head()

(569, 16)
```

Out[]:		texture_mean	area_mean	smoothness_mean	concavity_mean	symmetry_mean	fractal_dimension_mean	texture_se	area_se	smoothness_se
	0	10.38	1001.0	0.11840	0.3001	0.2419	0.07871	0.9053	153.40	0.006399
	1	17.77	1326.0	0.08474	0.0869	0.1812	0.05667	0.7339	74.08	0.005225
	2	21.25	1203.0	0.10960	0.1974	0.2069	0.05999	0.7869	94.03	0.006150
	3	20.38	386.1	0.14250	0.2414	0.2597	0.09744	1.1560	27.23	0.009110
	4	14.34	1297.0	0.10030	0.1980	0.1809	0.05883	0.7813	94.44	0.011490
										1>

After drop correlated features, as it can be seen in below correlation matrix, there are no more correlated features. Actually, I know and you see there is correlation value 0.9 but lets see together what happen if we do not drop it.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

```
In [ ]: from sklearn.model_selection import train_test_split
             from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import fl_score,confusion_matrix
from sklearn.metrics import accuracy_score
In [ ]: # split data train 64 % and test 36 %
             x_train, x_test, y_train, y_test = train_test_split(x_1, y, test_size=0.36, random_state=18)
             #random forest classifier with n_estimators=10 (default)
             clf_rf = RandomForestClassifier(random_state=43)
clr_rf = clf_rf.fit(x_train,y_train)
             ac = accuracy_score(y_test,clf_rf.predict(x_test))
print('Accuracy is: ',ac)
cm = confusion_matrix(y_test,clf_rf.predict(x_test))
             sns.heatmap(cm,annot=True,fmt="d")
            Accuracy is: 0.9463414634146341
Out[]: <AxesSubplot:>
                              123
```

We can see that, we have achieved an accurary of 94.6% with making a few wrong predictions.

for f in range(x_train.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))

Plot the feature importances of the forest

plt.figure(1, figsize=(20, 5))

plt.show()

In []:

Tree based feature selection and random forest classification

```
clf_rf_1 = RandomForestClassifier()
clr_rf_1 = clf_rf_1.fit(x_train,y_train)
 \label{eq:continuous} \begin{split} & importances = clr\_rf\_1.feature\_importances\_\\ & std = np.std([tree.feature\_importances\_for\_tree\_in\_clf\_rf.estimators\_], \ axis=0)\\ & indices = np.argsort(importances)[:::-1] \end{split}
  # Print the feature ranking
  # print("Feature ranking:")
```



```
In [ ]:
                test_accuracies = []
                t = x_train
t_2 = x_test
                to_be_removed = []
for f in range(16):
                       to_be_removed.append(x_train.columns[indices[f]])
                for i in range(16,0,-1):
                       clf_rf = RandomForestClassifier(random_state=43)
clr_rf = clf_rf.fit(t,y_train)
test_ac = accuracy_score(y_test,clf_rf.predict(t_2))
test_accuracies.append(test_ac)
t = t.drop(to_be_removed[i-1],axis=1)
                       t_2 = t_2.drop(to_be_removed[i-1],axis=1)
In [ ]:
               plt.figure(figsize=(8,3))
x_place = [16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
plt.plot(x_place,test_accuracies)
                plt.show()
               0.975
               0.950
               0.925
               0.900
               0.875
               0.850
               0.825
               0.800
```

So, we can see that 12 features give us the best accuracy = 97.07%.

Selecting top 12 features required for training the model for feature extraction using PCA

```
In []:
    tweleve = indices[:12]
    for f in range(len(tweleve)):
        print(%d. feature %d (%f)" % (f + 1, tweleve[f], importances[tweleve[f]]),end=' - ')
        print(x_train.columns[tweleve[f]])
    removal list = ['symmetry_mean','texture_se','symmetry_se','smoothness_se']
    x_train_12 = x_train.drop(removal_list,axis=1)
    print(x_train_12.shape)
    x_train_12.head()

1. feature 1 (0.215407) - area_mean
    2. feature 3 (0.205646) - concavity_mean
    3. feature 7 (0.196049) - area_se
    4. feature 13 (0.141192) - concavity_worst
    5. feature 0 (0.044247) - texture_mean
    6. feature 9 (0.036530) - concavity_se
    7. feature 12 (0.030493) - smoothness_worst
    8. feature 14 (0.022128) - symmetry_worst
    9. feature 2 (0.020994) - smoothness_mean
    10. feature 15 (0.014807) - fractal_dimension_worst
    11. feature 11 (0.014151) - fractal_dimension_se
    12. feature 4 (0.013977) - symmetry_mean
    (364, 12)
```

	(c)	texture_mean	area_mean	smoothness_mean	concavity_mean	fractal_dimension_mean	area_se	concavity_se	fractal_dimension_se	smo
	276	14.16	396.6	0.09379	0.001487	0.05821	17.09	0.001487	0.001627	
	494	20.54	538.7	0.07335	0.018000	0.05888	26.07	0.013410	0.002701	
1	239	39.28	920.6	0.09812	0.141700	0.05966	49.00	0.026020	0.002759	
2	227	15.51	684.5	0.08371	0.065050	0.05907	19.88	0.036440	0.003204	
	484	11.28	747.2	0.10430	0.119100	0.06259	13.87	0.033360	0.002256	
		est_12 = x est 12.head		o(removal_list,a	xis=1)					
	x_te	est_12.head	()			fractal_dimension_mean	area_se	concavity_se	fractal_dimension_se	smoo
1	x_te	est_12.head	()			fractal_dimension_mean 0.05828	area_se	concavity_se 0.003223	fractal_dimension_se 0.002534	smoo
3	x_te	est_12.head	() area_mean	smoothness_mean	concavity_mean	12 227790		12002000	20000000	smoo
3	x_te	texture_mean 33.81	area_mean 386.8	smoothness_mean 0.07780	concavity_mean 0.004967	0.05828	15.46	0.003223	0.002534	smoo
1	232 490	texture_mean 33.81 22.44	area_mean 386.8 466.5	smoothness_mean 0.07780 0.08192	concavity_mean 0.004967 0.017140	0.05828 0.05976	15.46 18.04	0.003223 0.009410	0.002534 0.002399	smoo

Using PCA for Feature Extraction

```
In []:
    #normalization
    x_train N = (x_train-x_train.mean())/(x_train.max()-x_train.min())
    x_test_N = (x_test-x_test.mean())/(x_test.max()-x_test.min())

    from sklearn.decomposition import PCA
    pca = PCA()
    pca.fit(x_train_N)

    plt.figure(1, figsize=(5, 5))
    plt.clf()
    plt.axes([.2, .2, .7, .7])
    plt.grid(True)
    plt.plot(pca.explained_variance_ratio_, linewidth=2)
    plt.axis('tight')
    plt.xlabel('n_components')
    plt.ylabel('explained_variance_ratio_')
    plt.show()
```


Using various ML Algorithms

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
               from sklearn.ensemble import RandomForestClassifier
               from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
               from sklearn.svm import SVC
               from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import AdaBoostClassifier
               from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import GridSearchCV
import xgboost as xgb
               import time
               from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
               from sklearn.metrics import recall_score
In [ ]:
              acc_train = []
               acc_test = []
pres_train = []
pres_test = []
               rec_train = []
rec_test = []
               f1_train = []
f1_test = []
               train_time = []
               test_time = []
confusion_matrixs = []
In [ ]: def classification_model_report(model,name,n):
                  #Fit the mode
                  model = model.fit(x_train_12,y_train)
                  #Make predictions on training set:
                  start_time = time.time()
pred_train = model.predict(x_train_12)
end_time = time.time()
                  train_time_model = end_time-start_time
train_time.append(train_time_model)
                  start_time = time.time()
pred_test = model.predict(x_test_12)
end_time = time.time()
                  test_time_model = end_time-start_time
test_time.append(test_time_model)
                   #Print accuracy
                   ac_train = accuracy_score(y_train,pred_train)
                  ac_test = accuracy_score(y_test,pred_test)
acc_train.append(ac_train)
acc_test.append(ac_test)
                  pr_train = precision_score(y_train, pred_train)
pr_test = precision_score(y_test, pred_test)
pres_train.append(pr_train)
                   pres_test.append(pr_test)
```

```
#Print recall
re_train = recall_score(y_train, pred_train)
re_test = recall_score(y_test, pred_test)
rec_train.append(re_train)
rec_test.append(re_test)

#Print fl_score
f_train = fl_score(y_train, pred_train)
f_test = fl_score(y_test, pred_test)
fl_train.append(f_train)
fl_test.append(f_test)

#confusion matrix
cm = confusion_matrix(y_test, pred_test)
confusion_matrixs.append(cm)
```

```
if n==1:
    print("|| "+name+" ||\n")
    print("-
    print("Trainning\n")
    print("Time: ",train_time_model, end=" || ")
    print("Accuracy: ",round(ac_train,5), end=" || ")
    print("Precision: ",round(pr_train,5), end=" || ")
    print("Recall: ",round(re_train,5), end=" || ")
    print("fl_score: ",round(f_train,5))
    print("\n-
    print("Testing\n")
    print("Time: ",test_time_model, end=" || ")
    print("Accuracy: ",round(ac_test,5), end=" || ")
    print("Precision: ",round(pr_test,5), end=" || ")
    print("Recall: ",round(re_test,5), end=" || ")
    print("fl_score: ",round(f_test,5))
    print("\n-
```

Hyper tuning various algorithms

KNN

```
In []: acc_rate=[]

for i in range(1,11):
    knn=KNeighborsClassifier(n_neighbors=i)
    knn.fit(x_train_12, y_train)
    pred=knn.predict(x_test_12)
    acc_rate.append(np.mean(pred==y_test))

plt.figure(figsize=(5,5))
plt.grid(True)
plt.plot(range(1,11), acc_rate,marker='o', markersize=9)
plt.show()
```


Thus KNN works best at neighbours=5.

C4.5 and CART

Thus, **CART** works best at max_depth = 5 and **C4.5** works best at max_depth=4

SVM

```
In []:
    svc = SVC()
    parameters = {
        'gamma' : [0.0001, 0.001, 0.01],
        'C' : [0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20]
}

grid_search = GridSearchCV(svc, parameters)
    grid_search.fit(x_train_12, y_train)
    grid_search.best_params_
Out[]: {'C': 15, 'gamma': 0.0001}
```

Gradient Boosting

```
In []:
    gbc = GradientBoostingClassifier()

parameters = {
        'loss': ['deviance', 'exponential'],
            'learning_rate': [0.001, 0.1, 1, 10],
        'n_estimators': [100, 150, 180, 200]
}

grid_search_gbc = GridSearchCV(gbc, parameters, cv = 5, n_jobs = -1, verbose = 1)
    grid_search_gbc.fit(x_train_12, y_train)
    grid_search_gbc.best_params_

Fitting 5 folds for each of 32 candidates, totalling 160 fits

Out[]: {'learning_rate': 1, 'loss': 'exponential', 'n_estimators': 150}
```

Creating ML Models

```
fig, axs = plt.subplots(ncols=2, nrows=2,figsize=(20,15),sharey=True)
gs = axs[1, 0].get_gridspec()
plt.subplot(2,2,1)
plt.plot(model_name,acc_train,'r',marker='o', markersize=9)
plt.plot(model_name,pres_train,'b:',marker='o', markersize=9)
plt.plot(model_name,rec_train,'c--',marker='o', markersize=9)
plt.plot(model_name,fl_train,'g',marker='s', markersize=9)
plt.xticks(rotation=90)
plt.title("Trainning")
plt.grid(True)
plt.legend(['Accuracy','Precision','Recall','F1 Score'],loc ="lower right")

plt.subplot(2,2,2)
plt.plot(model_name,acc_test,'r',marker='o', markersize=9)
plt.plot(model_name,pres_test,'b:',marker='o', markersize=9)
plt.plot(model_name,rec_test,'c--',marker='o', markersize=9)
plt.plot(model_name,fl_test,'g',marker='s', markersize=9)
plt.xticks(rotation=90)
plt.title("Testing")
plt.grid(True)
plt.legend(['Accuracy','Precision','Recall','F1 Score'],loc ="lower right")
```

```
for ax in axs[1,:]:
    ax.remove()
axbig = fig.add_subplot(gs[1,:])

plt.plot(model_name,train_time,'y--')
plt.plot(model_name,test_time,'c--')
plt.legend(['Trainning Time','Testing Time'],loc ="upper right")
plt.grid(True)
plt.tight_layout()
plt.show()
```


Here, we observe that Logistic Regression performs very well both in terms of time and performance. It has accquired an accuracy of 99.5%

Creating Meta - Learning models

```
def estimate_creator(l):
                    estm = []
for i in l:
                          estm.append((selected_names[i],selected_models[i]))
                    return estm
In [ ]: from sklearn.ensemble import StackingClassifier
              l = [[0,1,2,3,4],[3,1,5,6,2],[0,3,5],[0,1,3,5],[0,1,2,3,4,5,6],[3,6,1,2,4],[3,2,1,6,5],[3,1]]
              estimator list = []
              for i in range(len(l)):
                   estimator_list.append(estimate_creator(l[i]))
              # Build stack model
              # BultO Stack model
stack_model_list = []
for i in range(len(l)):
    stack_model_list.append(StackingClassifier(estimators=estimator_list[i], final_estimator=LogisticRegression()
              stack_model_name = []
for i in range(len(l)):
                  stack_model_name.append(str("Meta Model "+str(i+1)))
In []: stack_acc_train = [] stack_acc_test = [] stack_pres_train = [] stack_pres_test = []
              stack_pres_test = []
stack_rec_train = []
stack_rec_test = []
stack_fl_train = []
stack_fl_test = []
stack_train_time = []
stack_test_time = []
stack_confusion_matrixs = []
test_prediction = []
train_prediction = []
              train_prediction = []
```

```
In [ ]: def stack_classification_model_report(model,name,n):
                 #Fit the model:
model = model.fit(x_train_12,y_train)
                 #Make predictions on training set:
start_time = time.time()
pred_train = model.predict(x_train_12)
                 end_time = time.time()
train_time_model = end_time-start_time
                  stack_train_time.append(train_time_model)
                 train_prediction.append(pred_train)
                 start_time = time.time()
pred_test = model.predict(x_test_12)
                  end time = time.time()
                 test_time_model = end_time-start_time
stack_test_time.append(test_time_model)
                 test_prediction.append(pred_test)
                 #Print accuracy
                 ac_train = accuracy_score(y_train,pred_train)
ac_test = accuracy_score(y_test,pred_test)
stack_acc_train.append(ac_train)
                 stack_acc_test.append(ac_test)
                 pr_train = precision_score(y_train, pred_train)
pr_test = precision_score(y_test, pred_test)
               stack_pres_train.append(pr_train)
               stack_pres_test.append(pr_test)
               re_train = recall_score(y_train, pred_train)
re_test = recall_score(y_test, pred_test)
stack_rec_train.append(re_train)
               stack_rec_test.append(re_test)
               #Print f1_score
f_train = f1_score(y_train, pred_train)
f_test = f1_score(y_test, pred_test)
              stack_f1_train.append(f_train)
stack_f1_test.append(f_test)
               #confusion matrix
              cm = confusion_matrix(y_test,pred_test)
stack_confusion_matrixs.append(cm)
               if n==1:
                 print("\n-
print("Testing\n")
print("Time: ",test_time_model, end=" || ")
print("Time: ",test_time_model, end=" || ")
                 in []: for i in range(len(l)):
                stack_classification_model_report(stack_model_list[i],stack_model_name[i],0)
            plt.subplots(ncols=5, nrows=2,figsize=(20,8),sharey=True,sharex=True)
            for i in range(len(l))
```

plt.subplot(2,5,i+1)

plt.title(stack_model_name[i])

sns.heatmap(stack_confusion_matrixs[i],annot=True,fmt="d",cbar=False)


```
fig, axs = plt.subplots(ncols=2, nrows=2,figsize=(20,15),sharey=True)
gs = axs[1, 0].get_gridspec()
plt.subplot(2,2,1)
plt.plot(stack_model_name,stack_acc_train,'r',marker='o', markersize=9)
plt.plot(stack_model_name,stack_pres_train,'b:',marker='o', markersize=9)
plt.plot(stack_model_name,stack_rec_train,'c--',marker='o', markersize=9)
plt.plot(stack_model_name,stack_f1_train,'g',marker='s', markersize=9)
plt.xticks(rotation=90)
plt.title("Trainning")
plt.grid(True)
plt.legend(['Accuracy','Precision','Recall','F1 Score'],loc ="lower right")
plt.subplot(2,2,2)
```

```
plt.plot(stack_model_name,stack_acc_test,'r',marker='o', markersize=9)
plt.plot(stack_model_name,stack_pres_test,'b:',marker='o', markersize=9)
plt.plot(stack_model_name,stack_rec_test,'c--',marker='o', markersize=9)
plt.plot(stack_model_name,stack_fl_test,'g',marker='s', markersize=9)
plt.xticks(rotation=90)
plt.title("Testing")
plt.grid(True)
plt.legend(['Accuracy','Precision','Recall','Fl Score'],loc ="lower right")

for ax in axs[1,:]:
    ax.remove()
axbig = fig.add_subplot(gs[1,:])
plt.plot(stack_model_name,stack_train_time,'y--')
plt.plot(stack_model_name,stack_test_time,'c--')
plt.legend(['Trainning Time','Testing Time'],loc ="upper right")
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
for i in range(len(stack_model_name)):
    print(stack_model_name[i]+": "+str(stack_acc_test[i]*100))

Meta Model 1: 98.04878048780488
Meta Model 2: 99.02439024390245
Meta Model 3: 98.04878048780488
Meta Model 4: 99.02439024390245
Meta Model 5: 99.02439024390245
Meta Model 6: 98.53658536585365
Meta Model 6: 98.53658536585365
Meta Model 7: 99.02439024390245
Meta Model 8: 98.53658536585365
Meta Model 8: 98.53658536585365
```

Creating ANN Model using Meta Learning Models

```
### Creating dataset for ANN Model
creator = {}
for i in range(len(1)):
    creator[stack_model_name[i]] = train_prediction[i]

df_ann = pd.DataFrame(creator)
df_ann.head()
```

Out[]:		Meta Model 1	Meta Model 2	Meta Model 3	Meta Model 4	Meta Model 5	Meta Model 6	Meta Model 7	Meta Model 8
	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0
	2	1	1	1	1	1	1	1	1
	3	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0

Out[]:		Meta Model 1	Meta Model 2	Meta Model 3	Meta Model 4	Meta Model 5	Meta Model 6	Meta Model 7	Meta Model 8
	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0
	4	1	1	1	1	1	1	1	1

```
In [ ]:
    df_ann_test.to_csv('test.csv',index=False)
     y_test.to_csv('y_test.csv',index=False)
In [ ]: from keras.models import Sequential
     from keras.layers import Dense, Dropout
In [ ]:
    # Initialising the ANN
     classifier = Sequential()
     # Adding the input layer and the first hidden layer classifier.add(Dense(5, kernel_initializer='uniform', activation='relu', input_dim=len(l))) # Adding dropout to prevent overfitting
     classifier.add(Dropout(0.1))
     Adding the second hidden layer
     classifier.add(Dense(3, kernel_initializer='uniform', activation='relu'))
     # Adding dropout to prevent overfitting classifier.add(Dropout(0.1))
     classifier.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
     classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
In [ ]: classifier.fit(df_ann.values, y_train, batch_size=100, epochs=150)
Epoch 1/150
y: 0.6401
Epoch 2/150
y: 0.6401
Epoch 3/150
y: 0.6401
Epoch 4/150
y: 0.6401
Epoch 5/150
4/4 [============= ] - 0s 3ms/step - loss: 0.6908 - accurac
y: 0.6401
Epoch 6/150
y: 0.6401
Epoch 7/150
4/4 [============= ] - 0s 2ms/step - loss: 0.6897 - accurac
y: 0.6401
Epoch 8/150
y: 0.6401
Epoch 9/150
y: 0.6401
Epoch 10/150
y: 0.6401
Epoch 11/150
y: 0.6401
Epoch 12/150
y: 0.6401
Epoch 13/150
```

```
y: 0.6401
Epoch 14/150
y: 0.6401
Epoch 15/150
4/4 [============== ] - 0s 2ms/step - loss: 0.6851 - accurac
y: 0.6401
Epoch 16/150
4/4 [======== ] - 0s 2ms/step - loss: 0.6846 - accurac
y: 0.6401
Epoch 17/150
y: 0.6401
Epoch 18/150
y: 0.6401
Epoch 19/150
y: 0.6401
Epoch 20/150
y: 0.6401
Epoch 21/150
y: 0.6401
Epoch 22/150
y: 0.6401
Epoch 23/150
y: 0.6401
Epoch 24/150
v: 0.6401
Epoch 25/150
y: 0.6401
Epoch 26/150
y: 0.6401
Epoch 27/150
y: 0.6401
Epoch 28/150
y: 0.6401
Epoch 29/150
y: 0.6401
Epoch 30/150
y: 0.6401
Epoch 31/150
y: 0.6401
Epoch 32/150
```

```
y: 0.6401
Epoch 33/150
y: 0.6401
Epoch 34/150
4/4 [============= ] - 0s 2ms/step - loss: 0.6655 - accurac
y: 0.6401
Epoch 35/150
4/4 [======== ] - 0s 2ms/step - loss: 0.6628 - accurac
y: 0.6401
Epoch 36/150
y: 0.6401
Epoch 37/150
y: 0.6401
Epoch 38/150
y: 0.6401
Epoch 39/150
y: 0.6401
Epoch 40/150
y: 0.6401
Epoch 41/150
y: 0.6401
Epoch 42/150
y: 0.6401
Epoch 43/150
v: 0.6401
Epoch 44/150
y: 0.6401
Epoch 45/150
y: 0.6401
Epoch 46/150
y: 0.6401
Epoch 47/150
y: 0.6401
Epoch 48/150
y: 0.6401
Epoch 49/150
y: 0.6401
Epoch 50/150
y: 0.6401
Epoch 51/150
```

```
y: 0.6401
Epoch 52/150
y: 0.6401
Epoch 53/150
y: 0.6401
Epoch 54/150
4/4 [======== ] - 0s 2ms/step - loss: 0.6220 - accurac
y: 0.6401
Epoch 55/150
y: 0.6401
Epoch 56/150
y: 0.6401
Epoch 57/150
y: 0.6401
Epoch 58/150
y: 0.6401
Epoch 59/150
y: 0.6401
Epoch 60/150
y: 0.6401
Epoch 61/150
y: 0.6401
Epoch 62/150
v: 0.6401
Epoch 63/150
y: 0.6401
Epoch 64/150
y: 0.6401
Epoch 65/150
y: 0.6896
Epoch 66/150
y: 0.8736
Epoch 67/150
y: 0.8819
Epoch 68/150
y: 0.9038
Epoch 69/150
y: 0.9038
Epoch 70/150
```

```
y: 0.9258
Epoch 71/150
y: 0.9478
Epoch 72/150
4/4 [============== ] - 0s 2ms/step - loss: 0.5161 - accurac
y: 0.9505
Epoch 73/150
4/4 [======== ] - 0s 2ms/step - loss: 0.5038 - accurac
y: 0.9478
Epoch 74/150
y: 0.9505
Epoch 75/150
y: 0.9615
Epoch 76/150
y: 0.9643
Epoch 77/150
y: 0.9560
Epoch 78/150
y: 0.9588
Epoch 79/150
y: 0.9368
Epoch 80/150
y: 0.9643
Epoch 81/150
v: 0.9423
Epoch 82/150
y: 0.9505
Epoch 83/150
y: 0.9698
Epoch 84/150
4/4 [============= ] - 0s 2ms/step - loss: 0.3948 - accurac
y: 0.9533
Epoch 85/150
y: 0.9643
Epoch 86/150
y: 0.9451
Epoch 87/150
y: 0.9478
Epoch 88/150
y: 0.9423
Epoch 89/150
```

```
y: 0.9423
Epoch 90/150
y: 0.9615
Epoch 91/150
y: 0.9368
Epoch 92/150
4/4 [======== ] - Os 2ms/step - loss: 0.3113 - accurac
y: 0.9670
Epoch 93/150
y: 0.9560
Epoch 94/150
4/4 [============= ] - 0s 2ms/step - loss: 0.3082 - accurac
y: 0.9505
Epoch 95/150
y: 0.9451
Epoch 96/150
y: 0.9533
Epoch 97/150
y: 0.9396
Epoch 98/150
y: 0.9423
Epoch 99/150
y: 0.9258
Epoch 100/150
v: 0.9560
Epoch 101/150
y: 0.9505
Epoch 102/150
y: 0.9533
Epoch 103/150
y: 0.9423
Epoch 104/150
y: 0.9643
Epoch 105/150
y: 0.9560
Epoch 106/150
y: 0.9478
Epoch 107/150
y: 0.9368
Epoch 108/150
```

```
y: 0.9451
Epoch 109/150
y: 0.9615
Epoch 110/150
4/4 [============= ] - 0s 2ms/step - loss: 0.2453 - accurac
y: 0.9505
Epoch 111/150
4/4 [======== ] - 0s 2ms/step - loss: 0.2255 - accurac
y: 0.9643
Epoch 112/150
y: 0.9560
Epoch 113/150
4/4 [============== ] - 0s 3ms/step - loss: 0.2395 - accurac
y: 0.9423
Epoch 114/150
y: 0.9835
Epoch 115/150
y: 0.9478
Epoch 116/150
y: 0.9670
Epoch 117/150
y: 0.9643
Epoch 118/150
y: 0.9560
Epoch 119/150
v: 0.9451
Epoch 120/150
y: 0.9588
Epoch 121/150
y: 0.9533
Epoch 122/150
y: 0.9451
Epoch 123/150
y: 0.9478
Epoch 124/150
y: 0.9505
Epoch 125/150
y: 0.9643
Epoch 126/150
y: 0.9643
Epoch 127/150
```

```
y: 0.9588
Epoch 128/150
y: 0.9615
Epoch 129/150
y: 0.9615
Epoch 130/150
4/4 [======== ] - 0s 2ms/step - loss: 0.2115 - accurac
y: 0.9286
Epoch 131/150
y: 0.9588
Epoch 132/150
4/4 [============= ] - 0s 2ms/step - loss: 0.2081 - accurac
y: 0.9341
Epoch 133/150
y: 0.9670
Epoch 134/150
y: 0.9313
Epoch 135/150
y: 0.9478
Epoch 136/150
y: 0.9588
Epoch 137/150
y: 0.9505
Epoch 138/150
v: 0.9643
Epoch 139/150
y: 0.9451
Epoch 140/150
y: 0.9588
Epoch 141/150
y: 0.9505
Epoch 142/150
y: 0.9505
Epoch 143/150
y: 0.9505
Epoch 144/150
y: 0.9478
Epoch 145/150
y: 0.9368
Epoch 146/150
```

```
4/4 [============ ] - 0s 3ms/step - loss: 0.1635 - accurac
y: 0.9478
Epoch 147/150
y: 0.9396
Epoch 148/150
y: 0.9588
Epoch 149/150
y: 0.9698
Epoch 150/150
Out[]: <keras.callbacks.History at 0x275917dd970>
In [ ]:
     \begin{array}{lll} \texttt{pred\_train} = \texttt{classifier.predict}(\texttt{df\_ann.values}) \\ \texttt{pred\_train} = (\texttt{pred\_train} > 0.5) \\ \end{array}
```

```
In []: pred_train = classifier.predict(df_ann.values)
    pred_test = classifier.predict(df_ann_test.values)
    pred_test = (pred_test > 0.5)

In []: ann_acc_train = accuracy_score(y_train,pred_train)
    ann_acc_test = accuracy_score(y_test,pred_test)
    ann_pr_train = precision_score(y_train, pred_train)
    ann_pr_test = precision_score(y_train, pred_test)
    ann_re_train = recall_score(y_train, pred_train)
    ann_re_train = fl_score(y_train, pred_train)
    ann_f_train = fl_score(y_train, pred_train)
    ann_f_train = fl_score(y_test, pred_test)

    print("Accuracy Training: ",ann_acc_train)
    print("Accuracy Training: ",ann_acc_train)
    print("Accuracy Testing: ",ann_acc_train)
    Accuracy Training: 0.9917582417582418
    Accuracy Testing: 0.9902439024390244
```

In []:
 metrics_name = ['Accuracy', 'Precision', 'Recall', 'F1 Score']
 train_metrics = [ann_acc_train, ann_pr_train, ann_re_train, ann_f_train]
 test_metrics = [ann_acc_test, ann_pr_test, ann_re_test, ann_f_test]
 plt.plot(metrics_name,train_metrics, 'r')
 plt.plot(metrics_name,test_metrics, 'g')
 plt.xticks(rotation=90)
 plt.legend(['Trainning', 'Testing'],loc ="upper right")
 plt.tight_layout()
 plt.show()


```
creator_train = {}
creator_train['Model'] = model_name
creator_train['Accuracy'] = acc_train
creator_train['Precision'] = pres_train
creator_train['Recall'] = rec_train
creator_train['F1 Score'] = f1_train
            training_ML_models = pd.DataFrame(creator_train)
            training_ML_models
                        Model Accuracy Precision Recall F1 Score
                            C4.5 0.972527 0.991870 0.931298 0.960630
          1 CART 0.989011 0.992248 0.977099 0.984615
          2
                RandomForest 1.000000 1.000000 1.000000 1.000000
          3 Gaussian NaiveBayes 0.936813 0.928571 0.893130 0.910506
           4
                           SVM 0.969780 0.991803 0.923664 0.956522
          5 KNN 0.953297 0.967213 0.900763 0.932806
           6 LogisticRegression 0.975275 0.991935 0.938931 0.964706
          7 AdaBoost 1.000000 1.000000 1.000000 1.000000
                  GradientBoosting 1.000000 1.000000 1.000000 1.000000
               xgb 1.000000 1.000000 1.000000 1.000000
           9
In [ ]: training_ML_models.to_csv('compare_train.csv',index=False)
In [ ]:
           creator_test = {}
creator_test['Model'] = model_name
creator_test['Accuracy'] = acc_test
creator_test['Precision'] = pres_test
creator_test['Recall'] = rec_test
creator_test['F1 Score'] = f1_test
testime_models_name_name.
            testing_MI_models = pd.DataFrame(creator_test)
            testing_ML_models
Out[]:
                             Model Accuracy Precision Recall F1 Score
           0
                             C4.5 0.892683 0.927536 0.790123 0.853333
           1
                       CART 0.892683 0.893333 0.827160 0.858974
           2
                     RandomForest 0.956098 1.000000 0.888889 0.941176
           3 Gaussian NaiveBayes 0.917073 0.910256 0.876543 0.893082
           4
                             SVM 0.975610 0.987179 0.950617 0.968553
           5
                           KNN 0.960976 0.986667 0.913580 0.948718
              LogisticRegression 0.995122 1.000000 0.987654 0.993789
           7 AdaBoost 0.960976 0.962025 0.938272 0.950000
           8
                GradientBoosting 0.975610 0.987179 0.950617 0.968553
              xgb 0.970732 0.962963 0.962963 0.962963
In [ ]: testing_ML_models.to_csv('compare_test.csv',index=False)
In [ ]:
           stack_creator_train = {}
stack_creator_train['Model'] = stack_model_name
            stack_creator_train['Accuracy'] = stack_acc_train
stack_creator_train['Precision'] = stack_pres_train
            stack_creator_train['Recall'] = stack_rec_train
stack_creator_train['F1 Score'] = stack_f1_train
stack_training_ML_models = pd.DataFrame(stack_creator_train)
            stack_training_ML_models
```

```
Model Accuracy Precision Recall F1 Score
Out[]:
           0 Meta Model 1 0.978022 0.992000 0.946565 0.968750
           1 Meta Model 2 0.991758 1.000000 0.977099 0.988417
           2 Meta Model 3 1.000000 1.000000 1.000000 1.000000
           3 Meta Model 4 0.989011 1.000000 0.969466 0.984496
           4 Meta Model 5 0.991758 1.000000 0.977099 0.988417
           5 Meta Model 6 0.989011 1.000000 0.969466 0.984496
           6 Meta Model 7 0.991758 1.000000 0.977099 0.988417
           7 Meta Model 8 0.975275 0.991935 0.938931 0.964706
 In [ ]: stack_training_ML_models.to_csv('compare_train_stack.csv',index=False)
              stack_creator_test = {}
stack_creator_test['Model'] = stack_model_name
stack_creator_test['Accuracy'] = stack_acc_test
stack_creator_test['Precision'] = stack_pres_test
stack_creator_test['Recall'] = stack_rec_test
stack_creator_test['F1 Score'] = stack_f1_test
stack_testing_ML_models = pd.DataFrame(stack_creator_test)
stack_testing_ML_models
 In [ ]:
                      Model Accuracy Precision Recall F1 Score
             0 Meta Model 1 0.980488 0.987342 0.962963 0.975000
             1 Meta Model 2 0.990244 1.000000 0.975309 0.987500
             2 Meta Model 3 0.980488 1.000000 0.950617 0.974684
             3 Meta Model 4 0.990244 1.000000 0.975309 0.987500
             4 Meta Model 5 0.990244 1.000000 0.975309 0.987500
             5 Meta Model 6 0.985366 0.975610 0.987654 0.981595
             6 Meta Model 7 0.990244 1.000000 0.975309 0.987500
             7 Meta Model 8 0.985366 0.987500 0.975309 0.981366
 In [ ]: stack_testing_ML_models.to_csv('compare_test_stack.csv',index=False)
 In [ ]:
              ann creator = {}
               ann_creator['ANN'] = ['Trainning', 'Testing']
              amn_creator['Accuracy'] = [ann_acc_train,ann_acc_test]
ann_creator['Precision'] = [ann_pr_train,ann_pr_test]
ann_creator['Recall'] = [ann_re_train,ann_re_test]
ann_creator['F1 Score'] = [ann_f_train,ann_f_test]
ann_models = pd.DataFrame(ann_creator)
              ann models
 Out[]: ANN Accuracy Precision Recall F1 Score
             0 Trainning 0.991758 1.000000 0.977099 0.988417
             1 Testing 0.990244 0.987654 0.987654 0.987654
```

COMPARATIVE STUDY / RESULTS AND DISCUSSION

Parameters	[15]	[17]	Proposed System	
Models Used	SVM	ANN	Random Forest, Logistic	
		(back propagation)	Regression,SVM,KNN,Gradient	
			Boosting,xgb,ANN	
Training/Testing Ratio	70:30	79:21	64:36	
Training Accuracy	-	-	0.991758	
Testing Accuracy	97.9%	99.4624%	0.990244	
Training Precision	-	-	1.000000	
Testing Precision	97.9%	-	0.987654	
Training Recall	-	-	0.977099	
Testing Recall	97.9%	-	0.987654	
Training F1-Score	-	-	0.988417	
Testing F1-Score	-	-	0.987654	

Future works

we will hyper tune various machine learning models and combine them in various permutation to create new meta models with higher accuracy which will in turn increase the accuracy of the hybrid model.

REFERENCES:

- [1] .M S. Yarabarla, L. K. Ravi, and A. Sivasangari, "Breast cancer prediction via machine learning," in Proc. 3rd Int. Conf. Trends Electron. Informat. (ICOEI), Apr. 2019, pp. 121–124.
- [2].S Alghunaim and H. H. Al-Baity, "On the scalability of machine learning algorithms for breast cancer prediction in big data context," IEEE Access, vol. 7, pp. 91535–91546, 2019.
- [3]. A. A. Bataineh, "A comparative analysis of nonlinear machine learning algorithms for breast cancer detection," Int. J. Mach. Learn. Comput., vol. 9, no. 3, pp. 248–254, Jun. 2019.
- [4]. E A. Bayrak, P. Kirci, and T. Ensari, "Comparison of machine learning methods for breast cancer diagnosis," in Proc. Sci. Meeting Elect.- Electron. Biomed. Eng. Comput. Sci. (EBBT), Apr. 2019, pp. 1–3.
- [5]. H. Dhahri, E. Al Maghayreh, A. Mahmood, W. Elkilani, and M. Faisal Nagi, "Automated breast cancer diagnosis based on machine learning algorithms," J. Healthcare Eng., vol. 2019, pp. 1–11, Nov. 2019.
- [6]. M. K. Keles, "Breast cancer prediction and detection using data mining classification algorithms: A comparative study," Tehnički Vjesnik, vol. 26, no. 1, pp. 149–155, 2019.
- [7]. K. Williams, P. A. Idowu, J. A. Balogun, and A. I. Oluwaranti, "Breast cancer risk prediction using data mining classification techniques," Trans. Netw. Commun., vol. 3, no. 2, p. 1, Apr. 2015.
- [8]. B Padmapriya and T. Velmurugan, "Classification algorithm based analysis of breast cancer data," Int. J. Data Mining Techn. Appl., vol. 5, no. 1, pp. 43–49, Jun. 2016.
- [9]. H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel, "Using machine learning algorithms for breast cancer risk prediction and diagnosis," Procedia Comput. Sci., vol. 83, pp. 1064–1069, Jan. 2016.
- [10].U. Ojha and S. Goel, "A study on prediction of breast cancer recurrence using data mining techniques," in Proc. 7th Int. Conf. Cloud Comput., Data Sci. Eng.-Confluence, Jan. 2017, pp. 527–530.
- [11]. S. K. Maliha, R. R. Ema, S. K. Ghosh, H. Ahmed, M. R. J. Mollick, and T. Islam, "Cancer disease prediction using naive Bayes,K-nearest neighbor and J48 algorithm," in Proc. 10th Int. Conf. Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2019, pp. 1–7.
- [12].M. H. Memon, J. P. Li, A. U. Haq, M. H. Memon, and W. Zhou, "Breast cancer detection in the IOT health environment using modified recursive feature selection," Wireless Commun. Mobile Comput., vol. 2019, pp. 1–19, Nov. 2019.
- [13]. D. A. Omondiagbe, S. Veeramani, and A. S. Sidhu, "Machine learning classification techniques for breast cancer diagnosis," IOP Conf. Ser., Mater. Sci. Eng., vol. 495, Jun. 2019, Art. no. 012033.
- [14]. A Bharat, N. Pooja, and R. A. Reddy, "Using machine learning algorithms for breast cancer risk prediction and diagnosis," in Proc. 3rd Int. Conf. Circuits, Control, Commun. Comput. (IC), Oct. 2018, pp. 1–4.
- [15]. Y. Khourdifi and M. Bahaj, "Applying best machine learning algorithms for breast cancer prediction and classification," in Proc. Int. Conf. Electron., Control, Optim. Comput. Sci. (ICECOCS), Dec. 2018, pp. 1–5.
- [16].AA Said, L. A. Abd-Elmegid, S. Kholeif, and A. Abdelsamie, "Classification based on clustering model for predicting main outcomes of breast cancer using hyper-parameters optimization," Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 12, pp. 268–273, 2018
- [17]. P. Singhal and S. Pareek, "Artificial neural network for prediction of breast cancer," in Proc. 2nd Int. Conf. I-SMAC (IoT Social, Mobile, Anal. Cloud)(I-SMAC), 2018, pp. 464–468.
- [18]. A. A. Ibrahim, A. I. Hashad, and N. E. M. Shawky, "A comparison of open source data mining tools for breast cancer classification," in Handbook of Research on Machine Learning Innovations and Trends. Hershey, PA, USA: IGI Global, 2017, pp. 636–651.

- [19].Macías-García, L., Luna-Romera, J. M., García-Gutiérrez, J., Martínez-Ballesteros, M., Riquelme-Santos, J. C., & González-Cámpora, R. (2017). A study of the suitability of autoencoders for preprocessing data in breast cancer experimentation. Journal of Biomedical Informatics, 72, 33–44. doi:10.1016/j.jbi.2017.06.020
- [20]. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. doi:10.1016/j.csbi.2014.11.005
- [21]. Saba, T. (2020). Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health.
- [22]. Nonita Sharma, Monika Mangla, Sachi Nandan Mohanty, Suneeta Satpaty, "A Stochastic Neighbor Embedding Approach for Cancer Prediction", Emerging Smart Computing and Informatics (ESCI) 2021 International Conference on, pp. 599-603, 2021
- [23]. Doddipalli, Lavanya & Rani, K.. (2011). Analysis of feature selection with classification: Breast cancer datasets. Indian Journal of Computer Science and Engineering (IJCSE). 2. 756-763.
- [24]. Mehmet Fatih Akay, Support vector machines combined with feature selection for breast cancer diagnosis, Expert Systems with Applications, Volume 36, Issue 2, Part 2, 2009, Pages 3240-3247, ISSN 0957-4174.
- [25]. Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement, 72, 32–36.
- [26]. Alyami, R., Alhajjaj, J., Alnajrani, B., Elaalami, I., Alqahtani, A., Aldhafferi, N., ... Olatunji, S. O. (2017). Investigating the effect of correlation based feature selection on breast cancer diagnosis using artificial neural network and support vector machines. 2017
- [27]. Islam, M. M., Haque, M. R., Iqbal, H., Hasan, M. M., Hasan, M., & Kabir, M. N. (2020). Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
- [28]. Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, et al. (2021) Predicting breast cancer 5-year survival using machine learning: A systematic review.
- [29]. A. Kumar, R. Patra and A. Ghosh, "Model Selection for Predicting Breast Cancer using Supervised Machine Learning Algorithms," 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), 2020, pp. 320-324, doi: 10.1109/ICCE50343.2020.9290578.
- [30].Naveen, R. K. Sharma and A. Ramachandran Nair, "Efficient Breast Cancer Prediction Using Ensemble Machine Learning Models," 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 2019, pp. 100-104, doi: 10.1109/RTEICT46194.2019.90169