catalysis: decomposition of H_2O_2 in solution, $E_{\rm act} = 76 \text{ kJ mol}^{-1}$ at 298K.

```
catalysis: decomposition of H_2O_2 in solution, E_{\rm act}=76~{\rm kJ~mol^{-1}} at 298K. When a little I^- ion is added, E_{\rm act}=57~{\rm kJ~mol^{-1}} k increases by a factor of 2000
```

decomposition of $\rm H_2O_2$ in solution, $E_{\rm act}=76~\rm kJ~mol^{-1}$ at 298K. When a little $\rm I^-$ ion is added, $E_{\rm act}=57~\rm kJ~mol^{-1}$ k increases by a factor of 2000 With Enzyme catalase $E_{\rm act}=8~\rm kJ~mol^{-1}$ k increases by a factor of 10^{15}

Reaction coordinate

decomposition of H_2O_2 in solution, $E_{act} = 76 \text{ kJ mol}^{-1} \text{ at } 298\text{K}.$

When a little I⁻ ion is added, $E_{act} = 57 \text{ kJ mol}^{-1}$ k increases by a factor of 2000

With Enzyme catalase $E_{\rm act} = 8 \; {\rm kJ \; mol^{-1}}$

k increases by a factor of 10^{15}

K increases by a factor of 1019

Reaction coordinate

Homgoeneous: catalyst in same phase as reaction mixture

e.g.,
$$H_2O_2(aq) \xrightarrow[\text{or catalase}]{\text{Br}^-} H_2O$$

decomposition of H_2O_2 in solution, $E_{act} = 76 \text{ kJ mol}^{-1} \text{ at } 298 \text{K}.$

When a little I⁻ ion is added, $E_{act} = 57 \text{ kJ mol}^{-1}$ k increases by a factor of 2000

With Enzyme catalase $E_{act} = 8 \text{ kJ mol}^{-1}$

k increases by a factor of 10^{15}

Ea(uncatalysed) E_a(catalysed) Potential energy Reactants ΔE Products Reaction coordinate

Homgoeneous: catalyst in same phase as reaction mixture

e.g.,
$$H_2O_2(aq) \xrightarrow{Br^-}_{or\ catalase} H_2O$$

Heterogeneous: catalyst in different phase as reaction mixture,

e.g.,

decomposition of H_2O_2 in solution, $E_{act} = 76 \text{ kJ mol}^{-1} \text{ at } 298\text{K}.$

When a little I⁻ ion is added, $E_{act} = 57 \text{ kJ mol}^{-1}$ k increases by a factor of 2000

With Enzyme catalase $E_{act} = 8 \text{ kJ mol}^{-1}$

k increases by a factor of 10^{15}

E_a(uncatalysed)

E_a(catalysed)

Reactants

AE

Products

Reaction coordinate

Homgoeneous: catalyst in same phase as reaction mixture

e.g.,
$$H_2O_2(aq) \xrightarrow[\text{or catalase}]{\text{Br}^-} H_2O$$

Heterogeneous: catalyst in different phase as reaction mixture,

e.g., ethene(g)
$$\overset{Pd/Pt/Ni}{\rightarrow}$$
ethane

decomposition of H_2O_2 in solution, $E_{act} = 76 \text{ kJ mol}^{-1} \text{ at } 298 \text{K}.$

When a little I⁻ ion is added, $E_{act} = 57 \text{ kJ mol}^{-1}$ k increases by a factor of 2000

With Enzyme catalase $E_{act} = 8 \text{ kJ mol}^{-1}$

k increases by a factor of 10^{15}

 E_a (uncatalysed) E_a(catalysed) Potential energy Reactants ΔE Products

Reaction coordinate

Homgoeneous: catalyst in same phase as reaction mixture

e.g.,
$$H_2O_2(aq) \xrightarrow[\text{or catalase}]{\text{Br}^-} H_2O$$

Heterogeneous: catalyst in different phase as reaction mixture,

e.g., ethene(g)
$$\overset{Pd/Pt/Ni}{\rightarrow}$$
ethane

metal provides surface upon which reactants bind

decomposition of H_2O_2 in solution, $E_{act} = 76 \text{ kJ mol}^{-1} \text{ at } 298 \text{K}.$

When a little I⁻ ion is added, $E_{act} = 57 \text{ kJ mol}^{-1}$ k increases by a factor of 2000

With Enzyme catalase $E_{act} = 8 \text{ kJ mol}^{-1}$

k increases by a factor of 10^{15}

Homgoeneous: catalyst in same phase as reaction mixture

e.g.,
$$H_2O_2(aq) \xrightarrow[\text{or catalase}]{\text{Br}^-} H_2O$$

Heterogeneous: catalyst in different phase as reaction mixture,

e.g., ethene(g)
$$\overset{Pd/Pt/Ni}{\rightarrow}$$
ethane

metal provides surface upon which reactants bind binding facilitates encounters between reactants and increases rxn rate

 $Br^- catalysed \ decomposition \ of \ H_2O_2: \ 2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

 $Br^- catalysed \ decomposition \ of \ H_2O_2: \ 2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightarrows H_3O_2^+ + H_2O; \ \mathcal{K} = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

 $Br^-catalysed$ decomposition of H_2O_2 : $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightharpoons H_3O_2^+ + H_2O; \ \mathcal{K} = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

$$\mathsf{H}_3\mathsf{O}_2^+ + \mathsf{Br}^- {\longrightarrow} \mathsf{HOBr} + \mathsf{H}_2\mathsf{O}, \ \nu = k\big[\mathrm{H}_3\mathsf{O}_2^+\big][\mathrm{Br}^-]$$

Br^catalysed decomposition of H_2O_2 : $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightharpoons H_3O_2^+ + H_2O; \ \mathcal{K} = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

$$\mathsf{H}_3\mathsf{O}_2^+ + \mathsf{Br}^- \longrightarrow \mathsf{HOBr} + \mathsf{H}_2\mathsf{O}, \ \nu = k \big[\mathsf{H}_3\mathsf{O}_2^+ \big] [\mathsf{Br}^-]$$

$$HOBr + H_2O_2 {\longrightarrow} H_3O^+ + O_2 + Br^-; \ fast$$

Br⁻catalysed decomposition of
$$H_2O_2$$
: $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightharpoons H_3O_2^+ + H_2O; \ K = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

$$\mathsf{H}_3\mathsf{O}_2^+ + \mathsf{Br}^- \longrightarrow \mathsf{HOBr} + \mathsf{H}_2\mathsf{O}, \ v = k \left[\mathsf{H}_3\mathsf{O}_2^+ \right] \left[\mathsf{Br}^- \right]$$

$$HOBr+H_2O_2 \longrightarrow H_3O^++O_2+Br^-$$
; fast

rate:
$$\frac{d[O_2]}{dt} = k_{\mbox{eff}} [H_2O_2] [H_3O^+] [{\rm Br}^-]; \quad k_{\mbox{eff}} = k.K$$

$$Br^{-} catalysed \ decomposition \ of \ H_{2}O_{2}: \ 2H_{2}O_{2}(aq) \longrightarrow 2H_{2}O(I) + O_{2}(g)$$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightharpoons H_3O_2^+ + H_2O; \ \mathcal{K} = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

$$\mathsf{H}_3\mathsf{O}_2^+ + \mathsf{Br}^- \longrightarrow \mathsf{HOBr} + \mathsf{H}_2\mathsf{O}, \ v = k \left[\mathsf{H}_3\mathsf{O}_2^+ \right] \left[\mathsf{Br}^- \right]$$

$$HOBr+H_2O_2 \longrightarrow H_3O^++O_2+Br^-$$
; fast

rate:
$$\frac{d[O_2]}{dt} = k_{\text{eff}} [H_2O_2] [H_3O^+] [Br^-]; \quad k_{\text{eff}} = k.K$$

Experimentally variation of rate with [Br-] and pH agrees with above

$$Br^-catalysed$$
 decomposition of H_2O_2 : $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

$$\text{pre-equilibrium: } H_3O^+ + H_2O_2 \leftrightharpoons H_3O_2^+ + H_2O; \; \mathcal{K} = \frac{\left[H_3O_2^+\right]}{\left[H_2O_2\right]\left[H_3O^+\right]}$$

$$\mathsf{H}_3\mathsf{O}_2^+ + \mathsf{Br}^- \longrightarrow \mathsf{HOBr} + \mathsf{H}_2\mathsf{O}, \ v = k \left[\mathsf{H}_3\mathsf{O}_2^+ \right] \left[\mathsf{Br}^- \right]$$

$$HOBr+H_2O_2 \longrightarrow H_3O^++O_2+Br^-$$
; fast

rate:
$$\frac{d[O_2]}{dt} = k_{\text{eff}} [H_2O_2] [H_3O^+] [Br^-]; \quad k_{\text{eff}} = k.K$$

Experimentally variation of rate with $[Br^-]$ and pH agrees with above Other examples: Acid/base catalysis

lock-n-key: active site and substrate have complementary 3D structures

lock-n-key: active site and substrate have complementary 3D structures

induced fit model: binding induces a conformational change in active site

lock-n-key: active site and substrate have complementary 3D structures

induced fit model: binding induces a conformational change in active site

active site returns to its original state after products are released

lock-n-key: active site and substrate have complementary 3D structures

induced fit model: binding induces a conformational change in active site

active site returns to its original state after products are released

Many enzymes consist primarily of proteins some featuring organic or inorganic co-factors in active sites

lock-n-key: active site and substrate have complementary 3D structures

induced fit model: binding induces a conformational change in active site

active site returns to its original state after products are released

Many enzymes consist primarily of proteins some featuring organic or inorganic co-factors in active sites

Certain RNA molecules can also be biological catalysts, forming ribozymes

lock-n-key: active site and substrate have complementary 3D structures

induced fit model: binding induces a conformational change in active site

active site returns to its original state after products are released

Many enzymes consist primarily of proteins some featuring organic or inorganic co-factors in active sites

Certain RNA molecules can also be biological catalysts, forming ribozymes example of ribozyme \Rightarrow ribosome, large assembly of proteins and catalytically active RNA molecules responsible for synthesis of proteins in cell

1. For a given initial concentration of substrate, $[S]_0$, initial rate of product formation ∞ total concentration of enzyme, $[E]_0$

- 1. For a given initial concentration of substrate, $[S]_0$, initial rate of product formation ∞ total concentration of enzyme, $[E]_0$
- 2. For a given $[E]_0$ and low values of $[S]_0$,

rate of product formation $\propto [S]_0$.

- 1. For a given initial concentration of substrate, $[S]_0$, initial rate of product formation ∞ total concentration of enzyme, $[E]_0$ 2. For a given $[E]_0$ and low values of $[S]_0$,
 - rate of product formation $\propto [S]_0$.
- 3. For a given $[E]_0$ and high values of $[S]_0$, rate of product formation : independent of $[S]_0$ reaches maximum velocity, ν_{max}

Michaelis-Menten mechanism: $E+S \underset{k_a}{\overset{k_a}{\rightleftharpoons}} ES \xrightarrow{k_b} P+E$;

Michaelis-Menten mechanism: $E+S \stackrel{k_a}{\rightleftharpoons} ES \stackrel{k_b}{\longrightarrow} P+E;$

$$SSA \Longrightarrow \frac{d[ES]}{dt} = k_a[E][S] - k'_a[ES] - k_b[ES] = 0$$

Michaelis-Menten mechanism: $E+S \underset{k_{a}}{\overset{k_{a}}{\rightleftharpoons}} ES \xrightarrow{k_{b}} P+E;$

$$\begin{split} \text{SSA} &\Longrightarrow \frac{d[\text{ES}]}{dt} = k_{\text{a}}[\text{E}][\text{S}] - k_{\text{a}}^{'}[\text{ES}] - k_{\text{b}}[\text{ES}] = 0 \\ \text{or, } [\text{ES}] &= \frac{k_{\text{a}}}{k_{\text{a}}^{'} + k_{\text{b}}^{'}}[\text{E}][\text{S}] = K_{M}^{-1}[\text{E}][\text{S}] \end{split}$$

Michaelis-Menten mechanism:
$$E+S \stackrel{k_a}{\underset{k'_a}{\rightleftharpoons}} ES \stackrel{k_b}{\longrightarrow} P+E$$
;

$$\begin{split} \text{SSA} &\Longrightarrow \frac{d[\text{ES}]}{dt} = k_{\text{a}}[\text{E}][\text{S}] - k_{\text{a}}^{'}[\text{ES}] - k_{\text{b}}[\text{ES}] = 0 \\ \text{or, [ES]} &= \frac{k_{\text{a}}}{k_{\text{a}}^{'} + k_{\text{b}}}[\text{E}][\text{S}] = \mathcal{K}_{M}^{-1}[\text{E}][\text{S}] \\ \text{Using [E]} &= [\text{E}]_{0} - [\text{ES}]; \quad \mathcal{K}_{M}[\text{ES}] = ([\text{E}]_{0} - [\text{ES}])[\text{S}] \end{split}$$

Michaelis-Menten mechanism:
$$E+S \stackrel{k_a}{\rightleftharpoons} ES \stackrel{k_b}{\longrightarrow} P+E$$
;

$$SSA \Longrightarrow \frac{d[ES]}{dt} = k_a[E][S] - k_a^{'}[ES] - k_b[ES] = 0$$
or,
$$[ES] = \frac{k_a}{k_a^{'} + k_b^{'}}[E][S] = K_M^{-1}[E][S]$$

Using
$$[E] = [E]_0 - [ES];$$
 $K_M[ES] = ([E]_0 - [ES])[S]$

or,
$$(K_M + [S])[ES] = [E]_0[S] \implies [ES] = \frac{[E]_0}{1 + \frac{K_M}{[S]}} \approx \frac{[E]_0}{1 + \frac{K_M}{[S]_0}}$$

Michaelis-Menten mechanism:
$$E+S \xrightarrow{k_a} ES \xrightarrow{k_b} P+E$$
;

$$\begin{split} \text{SSA} &\Longrightarrow \frac{d[\text{ES}]}{dt} = k_{\text{a}}[\text{E}][\text{S}] - k_{\text{a}}^{'}[\text{ES}] - k_{\text{b}}[\text{ES}] = 0 \\ \text{or, } [\text{ES}] &= \frac{k_{\text{a}}}{k_{\text{a}}^{'} + k_{\text{b}}^{'}}[\text{E}][\text{S}] = K_{M}^{-1}[\text{E}][\text{S}] \end{split}$$

Using
$$[E] = [E]_0 - [ES]$$
; $K_M [ES] = ([E]_0 - [ES])[S]$

or,
$$(K_M + [S])[ES] = [E]_0[S] \implies [ES] = \frac{[E]_0}{1 + \frac{K_M}{|S|}} \approx \frac{[E]_0}{1 + \frac{K_M}{|S|_0}}$$

$$v = rac{v_{ ext{max}}}{1 + rac{K_{ ext{M}}}{|S|_0}}; \ v_{ ext{max}} = k_b[\mathsf{E}]_0$$

Michaelis-Menten mechanism:
$$E+S \stackrel{k_a}{\rightleftharpoons} ES \stackrel{k_b}{\longrightarrow} P+E;$$

$$SSA \Longrightarrow \frac{d[ES]}{dt} = k_a[E][S] - k'_a[ES] - k_b[ES] = 0$$
or,
$$[ES] = \frac{k_a}{k'_a + k'_b}[E][S] = K_M^{-1}[E][S]$$

Using
$$[E] = [E]_0 - [ES];$$
 $K_M [ES] = ([E]_0 - [ES])[S]$

or,
$$(K_M + [S])[ES] = [E]_0[S] \implies [ES] = \frac{[E]_0}{1 + \frac{K_M}{[S]_0}} \approx \frac{[E]_0}{1 + \frac{K_M}{[S]_0}}$$

Michaelis-Menten mechanism:
$$E+S \underset{k'_a}{\overset{k_a}{\rightleftharpoons}} ES \xrightarrow{k_b} P+E;$$

$$SSA \Longrightarrow \frac{d[ES]}{dt} = k_a[E][S] - k'_a[ES] - k_b[ES] = 0$$
or, $[ES] = \frac{k_a}{k'_a + k_b}[E][S] = K_M^{-1}[E][S]$
Using $[E] = [E]_0 - [ES]; \quad K_M[ES] = ([E]_0 - [ES])[S]$
or, $(K_M + [S])[ES] = [E]_0[S] \Longrightarrow [ES] = \frac{[E]_0}{1 + \frac{K_M}{[S]_0}} \approx \frac{[E]_0}{1 + \frac{K_M}{[S]_0}}; \quad v_{max} = k_b[E]_0$

$$v_{max} = \frac{v_{max}}{v_{max}}; \quad v_{max} = k_b[E]_0$$

$$[S]_0 \ll K_M \Longrightarrow v = v_{max} = k_b[E]_0$$

$$[S]_0 \gg K_M \Longrightarrow v = v_{max} = k_b[E]_0$$

 $-1/K_{N}$

Substrate concentration, [S]

1/[S]₀

 $\frac{1}{V} = \frac{1}{V_{max}} + \left(\frac{K_M}{V_{max}}\right) \frac{1}{[S]_0}$

Lineweaver-Burk plot

Lineweaver-Burk plot

Lineweaver-Burk plot catalysis of hydration of CO_2 in red blood cells by carbonic anhydrase $[CO_2]/(mmol dm^{-3})$ 1.25 2.5 5 20

Lineweaver-Burk plot catalysis of hydration of CO_2 in red blood cells by carbonic anhydrase

$$v_{max} = \frac{1}{4} = 0.25 \, \text{mmol.dm}^{-3} \, \text{s}^{-1}$$

Lineweaver-Burk plot catalysis of hydration of CO₂ in red blood cells by carbonic anhydrase

[CO₂]/(mmol dm⁻³) 1.25 2.5 5 20 rate/(mmol dm⁻³ s⁻¹) 2.78×10^{-2} 5.00×10^{-2} 8.33×10^{-2} 1.67×10^{-1} 1/([CO₂]/(mmol dm⁻³)) 0.800 0.200 0.4000.0500

20.0

12.0

6.0

36.0

$$v_{max} = \frac{1}{4} = 0.25 \,\mathrm{mmol.dm^{-3}s^{-1}}$$

$$\mathsf{K}_{M}=rac{40}{4}=10\mathsf{m}\,\mathsf{mol.dm}^{-3}$$

Lineweaver-Burk plot

catalysis of hydration of CO_2 in red blood cells by carbonic anhydrase

$$v_{max} = \frac{1}{4} = 0.25 \,\mathrm{mmol.dm^{-3}s^{-1}}$$

$$\mathsf{K}_{M} = \frac{40}{4} = 10 \mathsf{m} \, \mathsf{mol.dm}^{-3}$$

$$k_{cat} = \frac{v_{max}}{[E]_0} = \frac{2.5 \times 10^{-4}}{2.3 \times 10^{-9}} = 1.1 \times 10^5 s^{-1}$$

Lineweaver-Burk plot

catalysis of hydration of CO_2 in red blood cells by carbonic anhydrase

$$v_{max} = \frac{1}{4} = 0.25 \, \text{mmol.dm}^{-3} \, \text{s}^{-1}$$

$$\mathsf{K}_M = \frac{40}{4} = 10 \mathsf{m} \, \mathsf{mol.dm}^{-3}$$

$$k_{cat} = \frac{v_{max}}{[E]_0} = \frac{2.5 \times 10^{-4}}{2.3 \times 10^{-9}} = 1.1 \times 10^5 s^{-1}$$

$$\epsilon = \frac{k_{\text{cat}}}{K_{\text{M}}} = \frac{1.1 \times 10^{5}}{10^{-2}} = 1.1 \times 10^{7} \text{dm}^{3} \text{mol}^{-1} \text{s}^{-1}$$

turnover frequency or catalytic constant, $k_{cat} = \frac{\# \text{catalytic cycles performed by active site}}{\text{duration of interval}}$ has units of 1st order rate constant

turnover frequency or catalytic constant, $k_{cat} = \frac{\# \text{catalytic cycles performed by active site}}{\text{duration of interval}}$ has units of 1st order rate constant numerically equivalent to k_b in Michaelis-Menten mechanism $k_{cat} = k_b = \frac{v_{max}}{|E|_0}$

$$k_{cat} = k_b = \frac{V_{max}}{[E]_0}$$

turnover frequency or catalytic constant, $k_{cat} = \frac{\# \text{catalytic cycles performed by active site}}{\text{duration of interval}}$ has units of 1st order rate constant numerically equivalent to k_b in Michaelis-Menten mechanism $k_{cat} = k_b = \frac{v_{max}}{|E|_0}$ catalytic efficiency, $\varepsilon = \frac{k_{cat}}{K_M} = \frac{k_a k_b}{k_z^2 + k_b}$

Higher $\varepsilon \implies$ more efficient

turnover frequency or catalytic constant, $k_{cat} = \frac{\# \text{catalytic cycles performed by active site}}{\text{duration of interval}}$ has units of 1st order rate constant numerically equivalent to k_b in Michaelis-Menten mechanism $k_{cat} = k_b = \frac{v_{max}}{|E|_0}$ catalytic efficiency, $\varepsilon = \frac{k_{cat}}{K_M} = \frac{k_a k_b}{k_a' + k_b}$ Higher $\varepsilon \implies$ more efficient

efficiency is max $(= k_a)$ when $k_b \gg k'_a$.

turnover frequency or catalytic constant, $k_{cat} = \frac{\# \text{catalytic cycles performed by active site}}{\text{duration of interval}}$ has units of 1st order rate constant numerically equivalent to k_b in Michaelis-Menten mechanism $k_{cat} = k_b = \frac{v_{max}}{[E]_0}$ catalytic efficiency, $\varepsilon = \frac{k_{cat}}{K_M} = \frac{k_a k_b}{k_a' + k_b}$ Higher $\varepsilon \implies$ more efficient efficiency is max $(= k_a)$ when $k_b \gg k_a'$. max efficiency related to max rate of diffusion of E and E in solution

 \implies rate constants $\approx 10^8 - 10^9 \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1} \text{(catalytic perfection)}$

$$\begin{array}{lll} \mathsf{E} + \mathsf{S} \rightleftharpoons \mathit{ES} & k_a, \ k_a' \\ \mathsf{ES} \rightarrow \mathsf{E} + \mathsf{P} & k_b \\ \mathsf{E} ! \rightleftharpoons \mathsf{E} + \mathsf{I} & \mathcal{K}_I = \frac{[E][I]}{[EI]} \\ \mathsf{ES} ! \rightleftharpoons \mathsf{ES} + \mathsf{I} & \mathcal{K}_I' = \frac{[ES][I]}{[ESI]} \end{array}$$

$$\begin{array}{lll} \mathsf{E} + \mathsf{S} \rightleftharpoons \mathsf{ES} & k_a, \ k_a' \\ \mathsf{ES} \to \mathsf{E} + \mathsf{P} & k_b \\ \mathsf{E} | \rightleftharpoons \mathsf{E} + \mathsf{I} & \mathcal{K}_I = \frac{[E][I]}{[EI]} \\ \mathsf{ESI} \rightleftharpoons \mathsf{ES} + \mathsf{I} & \mathcal{K}_I' = \frac{[ES][I]}{[ESI]} \\ [\mathsf{E}]_0 = [\mathsf{E}] + [\mathsf{EI}] + [\mathsf{ES}] + [\mathsf{ES}] \end{array}$$

define:
$$lpha=1+rac{[l]}{K_{l}}$$
 $lpha'=1+rac{[l]}{K_{l}'}$

$$\begin{array}{lll} \mathsf{E} + \mathsf{S} \rightleftharpoons \mathsf{ES} & k_a, \ k_a' \\ \mathsf{ES} \to \mathsf{E} + \mathsf{P} & k_b \\ \mathsf{E} | \rightleftharpoons \mathsf{E} + \mathsf{I} & \mathcal{K}_I = \frac{[E][I]}{[EI]} \\ \mathsf{ESI} \rightleftharpoons \mathsf{ES} + \mathsf{I} & \mathcal{K}_I' = \frac{[ES][I]}{[ESI]} \\ [\mathsf{E}]_0 = [\mathsf{E}] + [\mathsf{EI}] + [\mathsf{ES}] + [\mathsf{ESI}] \end{array}$$

$$\begin{array}{ll} \mathsf{E} + \mathsf{S} \rightleftharpoons \mathsf{ES} & k_a, \ k_a' \\ \mathsf{ES} \rightarrow \mathsf{E} + \mathsf{P} & k_b \\ \mathsf{EI} \rightleftharpoons \mathsf{E} + \mathsf{I} & \mathcal{K}_I = \frac{[E][I]}{[EI]} \\ \mathsf{ESI} \rightleftharpoons \mathsf{ES} + \mathsf{I} & \mathcal{K}_I' = \frac{[ES][I]}{[ESI]} \\ [\mathsf{E}]_0 = [\mathsf{E}] + [\mathsf{EI}] + [\mathsf{ES}] + [\mathsf{ESI}] \end{array}$$

define:
$$\alpha = 1 + \frac{|\mathbb{I}|}{K_I}$$

$$\alpha' = 1 + \frac{|\mathbb{I}|}{K_I'}$$

$$[\mathbb{E}]_0 = [\mathbb{E}]\alpha + [\mathbb{ES}]\alpha'$$
using $K_M = \frac{[\mathbb{E}][S]}{[\mathbb{ES}]}$

$$\begin{array}{lll} \mathsf{E} + \mathsf{S} & \mathsf{ES} & k_a, \ k_a' \\ \mathsf{ES} \rightarrow \mathsf{E} + \mathsf{P} & k_b \\ \mathsf{E} | \rightleftharpoons \mathsf{E} + \mathsf{I} & \mathsf{K}_I = \frac{[E][I]}{[EI]} \\ \mathsf{ESI} \rightleftharpoons \mathsf{ES} + \mathsf{I} & \mathsf{K}_I' = \frac{[ES][I]}{[ESI]} \\ [\mathsf{E}]_0 = [\mathsf{E}] + [\mathsf{EI}] + [\mathsf{ES}] + [\mathsf{ES}] \end{array}$$

$$\begin{aligned} \text{define: } \alpha &= 1 + \frac{|I|}{K_I} \\ \alpha' &= 1 + \frac{|I|}{K_I'} \\ \text{[E]}_0 &= [E] \alpha + [ES] \alpha' \\ \text{Using } K_M &= \frac{[E][S]}{[ES]} \\ \text{ES} \rightarrow \text{E+P} & k_b \\ \text{EI} \rightleftharpoons \text{E+I} & K_I &= \frac{[E][I]}{[EI]} \\ \text{ESI} \rightleftharpoons \text{ES+I} & K_I' &= \frac{[ES][I]}{[ESI]} \\ \text{[E]}_0 &= [E] + [EI] + [ES] + [ESI] \end{aligned} \qquad \begin{aligned} \text{define: } \alpha &= 1 + \frac{|I|}{K_I} \\ \text{using } K_M &= \frac{[E][S]}{[ES]} \\ \text{using } K_M &= \frac{[E][S]}{[ES]} \\ \text{[E]}_0 &= \frac{K_M[ES]}{[S]_0} \alpha + [ES] \alpha' &= [ES] \left(\frac{\alpha K_M}{[S]_0} + \alpha'\right) \\ v &= k_b [ES] &= \frac{k_b [E]_0}{\alpha K_M} + \alpha' &= \frac{v_{max}}{\alpha' + \frac{\alpha K_M}{[S]_0}} \\ \text{or, } \frac{1}{v} &= \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_M}{v_{max}}\right) \frac{1}{[S]_0} \end{aligned}$$

Lineweaver-Burk plots characteristic of three modes of enzyme inhibition:

$$\frac{1}{v} = \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_{M}}{v_{max}}\right) \frac{1}{[S]_{0}}$$

Lineweaver-Burk plots characteristic of three modes of enzyme inhibition: competitive inhibition: inhibitor binds only to active site of enzyme and inhibits attachment of substrate; $\alpha>1$ and $\alpha'=1$

$$\frac{1}{v} = \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_{M}}{v_{max}}\right) \frac{1}{[S]_{0}}$$

Lineweaver-Burk plots characteristic of three modes of enzyme inhibition:

competitive inhibition: inhibitor binds only to active site of enzyme and inhibits attachment of substrate; $\alpha>1$ and $\alpha'=1$

$$\frac{1}{v} = \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_{M}}{v_{max}}\right) \frac{1}{[S]_{0}}$$

uncompetitive inhibition : inhibitor binds to enzyme site removed from active site, but only if substrate is already present. ESI reduces the concentration of ES (active complex). In this case $\alpha=1$ (: EI does not form) and $\alpha'>1$.

 $\label{lineweaver-Burk} \mbox{Lineweaver-Burk plots characteristic of three modes of enzyme inhibition:}$

competitive inhibition: inhibitor binds only to active site of enzyme and inhibits attachment of substrate: $\alpha > 1$ and $\alpha' = 1$

uncompetitive inhibition: inhibitor binds to enzyme site removed from active site, but only if substrate is already present. ESI reduces the concentration of ES (active complex). In this case $\alpha = 1$ (: El does not form) and $\alpha' > 1$.

non-competitive (mixed) inhibition: inhibitor binds to site other than active site, and its presence reduces ability of substrate to bind to active site.

Inhibition occurs at both E and ES sites : $\alpha > 1$ and $\alpha' > 1$.

$$\frac{1}{v} = \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_{M}}{v_{max}}\right) \frac{1}{[S]_{0}}$$

 $\label{lineweaver-Burk} \mbox{Lineweaver-Burk plots characteristic of three modes of enzyme inhibition:}$

competitive inhibition: inhibitor binds only to active site of enzyme and inhibits attachment of substrate; $\alpha>1$ and $\alpha'=1$

$$\frac{1}{v} = \frac{\alpha'}{v_{max}} + \alpha \left(\frac{K_{M}}{v_{max}}\right) \frac{1}{[S]_{0}}$$

uncompetitive inhibition: inhibitor binds to enzyme site removed from active site, but only if substrate is already present. ESI reduces the concentration of ES (active complex). In this case $\alpha=1$ (: El does not form) and $\alpha'>1$.

non-competitive (mixed) inhibition: inhibitor binds to site other than active site, and its presence reduces ability of substrate to bind to active site.

Inhibition occurs at both E and ES sites : $\alpha > 1$ and $\alpha' > 1$.

Slope and y-intercept of Lineweaver-Burk plot increase upon addition of inhibitor. Fig. c : special case : $K_I = K_I'$; and $\alpha = \alpha'$, which results in intersection of lines on x-axis

$$\begin{array}{ccc}
A \longrightarrow P & v = k[A][P] \\
[A]_0 - x & x
\end{array}$$

labelled by b

labelled by
$$b$$

$$A \longrightarrow P \qquad v = k[A][P]$$

$$[A]_0 - x \quad x$$

$$\frac{dx}{dt} = k([A]_0 - x)([P]_0 + x)$$

labelled by b

$$\begin{split} \mathbf{A} &\longrightarrow \mathbf{P} \qquad \mathbf{v} = \mathbf{k}[\mathbf{A}][\mathbf{P}] \\ [\mathbf{A}]_0 - \mathbf{x} \quad \mathbf{x} \\ \frac{d\mathbf{x}}{dt} &= \mathbf{k} \left([\mathbf{A}]_0 - \mathbf{x} \right) \left([\mathbf{P}]_0 + \mathbf{x} \right) \\ \text{integrating:} \\ \frac{1}{[\mathbf{A}]_0 + [\mathbf{P}]_0} \ln \frac{\left([\mathbf{P}]_0 + \mathbf{x} \right) [\mathbf{A}]_0}{[\mathbf{P}]_0 \left([\mathbf{A}]_0 - \mathbf{x} \right)} = \mathbf{k} \mathbf{t} \end{split}$$

labelled by b

$$\begin{array}{ll} \mathsf{A} \longrightarrow \mathsf{P} & v = k[\mathsf{A}][\mathsf{P}] \\ [\mathsf{A}]_0 - x & x \\ \frac{dx}{dt} = k\left([\mathsf{A}]_0 - x\right)\left([\mathsf{P}]_0 + x\right) \\ \text{integrating:} \\ \frac{1}{[\mathsf{A}]_0 + [\mathsf{P}]_0} \ln \frac{\left([\mathsf{P}]_0 + x\right)[\mathsf{A}]_0}{[\mathsf{P}]_0\left([\mathsf{A}]_0 - x\right)} = kt \\ \\ \mathsf{or,} & \frac{x}{[\mathsf{P}]_0} = \frac{e^{at} - 1}{1 + be^{at}}, \text{ where } a = \left([\mathsf{A}]_0 + [\mathsf{P}]_0\right)k \\ \\ \mathsf{and} & b = \frac{[\mathsf{P}]_0}{[\mathsf{A}]_0} \end{array}$$

oscillating reactions: Feedback mechanism in which a product either increases o decreases the reaction rate

- can be sustained indefinitely only if the reaction is carried at far from equilibrium conditions (continuous supply and dissipation of species)

oscillating reactions: Feedback mechanism in which a product either increases o decreases the reaction rate

- can be sustained indefinitely only if the reaction is carried at far from equilibrium conditions (continuous supply and dissipation of species)

$$A+X \xrightarrow{k_a} 2X; \quad \frac{d[X]}{dt} = k_a[A][X] - k_b[X][Y]$$

$$A + X \xrightarrow{k_a} 2X; \quad \frac{d[X]}{dt} = k_a[A][X] - k_b[X][Y]$$

$$X+Y \xrightarrow{k_b} 2Y; \quad \frac{d[Y]}{dt} = k_b[X][Y] - k_c[Y]$$

$$\begin{array}{ll} \mathsf{A} + \mathsf{X} \xrightarrow{k_a} 2\mathsf{X}; & \frac{d[X]}{dt} = k_a[A][X] - k_b[X][Y] \\ \mathsf{X} + \mathsf{Y} \xrightarrow{k_b} 2\mathsf{Y}; & \frac{d[Y]}{dt} = k_b[X][Y] - k_c[Y] \end{array}$$

$$X+Y \xrightarrow{\kappa_b} 2Y; \quad \frac{d[Y]}{dt} = k_b[X][Y] - k_c[Y]$$

Belousov-Zhabotinski reaction (KBrO $_3$, malonic acid, cerium (IV) salt in acidic solution):

Belousov-Zhabotinski reaction (KBrO $_3$, malonic acid, cerium (IV) salt in acidic solution):

 $\mathsf{BrO}_3^-\!+\!\mathsf{HBrO}_2\!+\!\mathsf{H}_3\mathsf{O}^+\longrightarrow\!\!2\mathsf{BrO}_2\!\cdot\!+\!2\mathsf{H}_2\mathsf{O}$

Belousov-Zhabotinski reaction (KBrO₃, malonic acid, cerium (IV) salt in acidic solution):

 $\begin{array}{l} BrO_3^- + HBrO_2 + H_3O^+ \longrightarrow 2BrO_2 \cdot + 2H_2O \\ 2BrO_2 \cdot + 2Ce(III) + 2H_3O^+ \longrightarrow 2HBrO_2 + 2Ce(IV) + 2H_2O \end{array}$

Belousov-Zhabotinski reaction (KBrO₃, malonic acid, cerium (IV) salt in acidic solution):

$$\mathsf{BrO}_3^- + \mathsf{HBrO}_2 + \mathsf{H}_3\mathsf{O}^+ \longrightarrow 2\mathsf{BrO}_2 \cdot + 2\mathsf{H}_2\mathsf{O}$$

 $2BrO_2 + 2Ce(III) + 2H_3O^+ \longrightarrow 2HBrO_2 + 2Ce(IV) + 2H_2O$

product HBrO₂ is a reactant in first step and provides a feedback mechanism that enhances rate of formation of HBrO₂

 $\label{eq:https://en.wikipedia.org/wiki/Brusselator} \begin{array}{l} A \to X \\ 2X + Y \to 3X \\ B + X \to Y + D \\ X \to E \end{array}$

```
https://en.wikipedia.org/wiki/Brusselator A \rightarrow X  
2X + Y \rightarrow 3X  
B + X \rightarrow Y + D  
X \rightarrow E  
https://en.wikipedia.org/wiki/Oregonator A + Y \longrightarrow X + P  
X + Y \longrightarrow 2 P  
A + X \longrightarrow 2 X + 2 Z  
A + X \longrightarrow A + B   
A + X \longrightarrow
```