CS612 Assignment 1

Kasun Gamlath September 6, 2025

Exercise 1

Assuming the reference image R is a black image with all pixel values 0, i.e., R = [0, 0, ..., 0] (784 zeros for a 28x28 image).

$L_1 - norm$ with a threshold (inclusive) of 2

Condition: $\sum |r_i - c_i| <= 2$

Since $r_i = 0$, this becomes $\sum |c_i| <= 2$

As pixel values are non-negative, $\sum c_i <= 2$.

This means the sum of all pixel values in the candidate image C must be 0, 1, or 2.

• Case 1: $\sum c_i = 0$

This means all c_i must be 0.

Only 1 image: [0, 0, ..., 0] (which is identical to R).

• Case 1: $\sum c_i = 1$

One pixel c_k is 1, and all other pixels are 0.

There are 784 possible positions for this 1.

So, 784 images. (e.g., [1, 0, ..., 0], [0, 1, ..., 0], etc.)

- Case 3: $\sum c_i = 2$
 - Subcase 3a: One pixel c_k is 2, and all other pixels are 0.

There are 784 possible positions for this 2.

So, 784 images.

- Subcase 3b: Two pixels c_k and $c_j (k \neq j)$ are 1, and all other pixels are 0.

This is "784 choose 2" (combinations). C(784, 2) = 784 * 783 / 2 = 306912.

So, 306912 images.

Total Images for $L_1 = <2 = 1 + 784 + 784 + 306912 = 308481$

$L_2 - norm$ with a threshold (inclusive) of 2

Condition: $\sqrt{\sum (r_i - c_i)^2} <= 2$

• Case 1: $\sum c_i = 0$

All c_i must be 0.

Only 1 image: [0, 0, ..., 0].

• Case 2: $\sum c_i = 1$

One pixel c_k is 1, all others 0. $1^2 = 1$.

There are 784 positions for this 1.

So, 784 images.

• Case 3: $\sum c_i = 2$

Two pixels c_k, c_j are 1, all others 0. $1^2 + 1^2 = 2$.

There are C(784, 2) ways to choose these two positions. C(784, 2) = 306912.

So, 306912 images.

• Case 4: $\sum c_i = 3$

Three pixels c_k, c_j, c_m are 1, all others 0. $1^2 + 1^2 + 1^2 = 3$.

There are C(784, 3) ways. C(784, 3) = 784 * 783 * 782 / (3 * 2 * 1) = 80119296.

So, 80119296 images.

- Case 5: $\sum c_i = 4$
 - Subcase 5a: One pixel $c_k is2$, all others 0. $2^2=4$. There are 784 positions for this 2.

So, 784 images.

- Subcase 5b: Four pixels c_k, c_j, c_m, c_n are 1, all others 0. $1^2 + 1^2 + 1^2 + 1^2 = 4$. There are C(784, 4) ways. C(784, 4) = 784 * 783 * 782 * 781 / (4 * 3 * 2 * 1) = 15683222004.

So, 15683222004 images.

Total Images for $L_2 = <2 = 1 + 784 + 306912 + 80119296 + 784 + 15683222004 \approx 15.76 Billion$

L_{∞} – norm with a threshold (inclusive) of 2

Condition: $\max(|r_i - c_i|) = < 2$ Since $r_i = 0$, this becomes $\max(c_i) = < 2$.

This means that every single pixel c_i in the candidate image C must have a value between 0 and 2 (inclusive).

For each of the 784 pixels, it can independently take on one of 3 values: 0, 1, or 2. Total Images for $L_{\infty}=<2=3^{784}$

Exercise 2

eps	untargeted	targeted	
0.2	5/5	1/5	
0.1	4/5	0/5	
0.05	1/5	0/5	
0.01	0/5	0/5	

Exercise 3

modification	Number of labels changed
(-0.01, 0.01)	1/20
(-0.05, 0.05)	6/20
(-0.1, 0.1)	11/20

Conclusion: When the noise gets large, more adversarial samples lose their adversarial label.

Exercise 4

eps	vanila	adversarial trained
0.2	20/20	19/20
0.1	12/20	9/20
0.05	4/20	3/20
0.02	0/20	0/20

Observation: Model with adversarial training has fewer labels changed.

Conclusion: Model with adversarial training is more robust.

Exercise 5

	vanila	robust
training time (sec)	8.2	8.7
accuracy (%)	93	94.22
success rate of FGSM attack (%)	97	69.6