Aji Sjamsu

Preliminary design review

Final Project: GPS

Generate reference code

• Input unique space vehicle number (PRN) to gold code gen

Correlate with incoming code

• Search for correlation peak

Search space:

- 1023 chips (4092 quarter-chips)
- Doppler space (break down 10 KHz into 20 * 500Hz bins)

Acquisition

• Search method: Parallel Code Search

Acquisition

- Parallel Code Search: Returns Code Phase and Doppler
- Isolate correlation spike on phase/frequency axes

Code Tracking

- Early, Prompt, Late (EPL)
 - Pipe in generated reference code and additional delayed copies
 - Multiply with received code and accumulate

Carrier Tracking

- Costas PLL: Measure phase error, adjust local oscillator
- Capable of tracking despite BPSK phase changes

Combined Tracking

System Testing

- Creating Testing Data:
 - Generate gold code
 - Generate known data bits, spread with gold code
- Impairments to Introduce:
 - Doppler: Simulate constant carrier frequency offset (no drift)
 - +/- 5 kHz
 - Symbol offset

System Testing

- Test 1: Clean C/A test
 - Acquire and track a noiseless, zero-doppler C/A signal.
- Test 2: Doppler shift
 - Acquire and track a noiseless C/A signal with constant Doppler shift.
- Test 3: Missing signal sequences
 - Acquire and track a noiseless, zero-doppler C/A signal.
 - Signal goes dark part-way into transmission, resumes later
 - Re-acquire and re-establish tracking.

Thanks! Questions?

Code Tracking Loop

- Initial state: Carrier phase unknown
- Normalized early minus late power discriminator

Carrier Tracking: Loop Filter

Digitized second order PLL

F(z): First-order loop filter

Constants c1, c2 from loop parameters

Batch Processing

- Break long signals up in time
 - 20 Repeating chipping sequences (1ms) for every BPSK data symbol (50hz, 20ms)
 - Sum the energy in successive 1ms frames through Energy Detector