Are Cryptos becoming alternative Assets?

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Genus differentia approach

Figure: Genus differentia approach in biology

Genus differentia approach

Figure: Genus differentia approach in finance

Aim of classification

- Genotypic differentiation
 - Biology the change in DNA sequences.
 - Finance the underlying process of price manifestation.
- Phenotypic differentiation
 - Biology classification based on behavior and features of a species.
 - Finance classification based on statistical features of the price series.

Motivation

Question: What defines Cryptos?

- □ Plato: man is an upright, featherless biped, with broad, fat nails.
- Aristotle: definition of a species consists of genus proximum and differentia specifica.
- Goal: Define Cryptos in terms of their genus proximum and differentia specifica.
- Method: Find latent variables, to form groups of shared characteristics.
- □ Finding: Synchronic evolution, i.e. asymptotic speciation.
- Implication: Cryptos are a different species in the ecosystem of financial instruments.

Outline

- 1. Motivation
- 2. Data and descriptives
- 3. Factor model
- 4. Explanation
- 5. Expanding window
- 6. Conclusion

Literature review

- Dyhrberg (2016): BTC has similarities to both GOLD and the USD, being in between a currency and a commodity.
- Baur et al. (2018): BTC volatility and correlation characteristics are distinctively different compared to GOLD and USD.
- Härdle et al. (2018): BTC, XRP, LTC, ETH returns exhibit higher volatility, skewness and kurtosis compared to GOLD and S&P500 daily returns.
- Zhang et al. (2018): Cryptos presents heavier tails and higher Hurst exponent than the classical assets.
- □ Liu et al. (2019) developed a three-factor model using the CAPM approach and showed that the cross-sectional expected crypto returns can be captured by three factors: the market factor, the size factor and momentum factor.

Data

- ightharpoonup Sample: n = 906 assets.
- New asset class
 - Cryptos: $n_1 = 234$
- Classical assets
 - ► Stocks (S&P 500, EUROSTOXX 50, FTSE100): $n_2 = 635$
 - \triangleright Exchange rates: $n_3 = 13$ \triangleright List
 - ▶ Commodities (Bloomberg Commodity Index): $n_4 = 17$ ••••••
 - \triangleright Bonds: $n_5 = 6$
 - ightharpoonup Real Estate: $n_6 = 2$
- Daily data from 03/01/2014 31/11/2020 (1740 trading days).

Statistical assessment

- Return X is a r.v. with cdf F() from which p = 24 statistics are estimated.
- □ Moments of order $k ∈ \mathbb{R}^+$, $μ_k = E\{(X μ)^k\}$.
 - variance, skewness, kurtosis
- - $Q_{\alpha} = \inf \{ x \in \mathbb{R} : \alpha \leq F(x) \};$
 - $\mathsf{CTE}_{\alpha} = \begin{cases} \mathsf{E} \left\{ X \mid X < Q_{\alpha} \right\}, & \alpha < 0.5 \\ \mathsf{E} \left\{ X \mid X > Q_{\alpha} \right\}, & \alpha > 0.5 \end{cases}$
- Scaling and memory parameters
 - ► Alpha-stability ► Alpha-stability
 - ightharpoonup autocorrelation coefficient $\rho_{it}(1)$
 - ightharpoonup Hurst exponent H_{it}
 - \triangleright FIGARCH(1, d, 1) d parameter

Assets profile

Indicator	Cryptos	Stocks	Bonds	Exchange rates	Commodities	Real Estate
$\sigma^2 \cdot 10^3$	26.442	0.400	0.745	0.028	0.388	0.146
Skewness	0.686	-0.560	-0.829	-0.937	-0.495	-1.142
Kurtosis	35.163	20.004	35.623	31.949	15.089	17.045
$Stable_{\alpha}$	1.342	1.602	1.460	1.722	1.662	1.696
$Stable_{\gamma}$	0.047	0.009	0.009	0.003	0.009	0.006
$Q_{5\%}$	-0.183	-0.027	-0.029	-0.008	-0.027	-0.018
$Q_{2.5\%}$	-0.251	-0.038	-0.039	-0.010	-0.036	-0.024
Q _{1%}	-0.366	-0.054	-0.057	-0.013	-0.050	-0.034
Q0 =%	-0.485	-0.071	-0.082	-0.015	-0.065	-0.041
CTE _{5%}	-0.308	-0.046	-0.050	-0.011	-0.042	-0.029
CTE _{2 5%}	-0.404	-0.060	-0.066	-0.014	-0.054	-0.038
CTE _{1%}	-0.564	-0.085	-0.097	-0.017	-0.074	-0.052
$CTE_{0.5\%}$	-0.719	-0.106	-0.130	-0.021	-0.091	-0.067
$Q_{95\%}$	0.190	0.027	0.028	0.008	0.027	0.018
$Q_{97.5\%}$	0.276	0.036	0.041	0.010	0.035	0.023
$Q_{99\%}$	0.422	0.051	0.060	0.013	0.050	0.029
$Q_{99.5\%}$	0.581	0.068	0.078	0.015	0.065	0.034
CTE _{95%}	0.346	0.043	0.051	0.011	0.042	0.026
$CTE_{97.5\%}$	0.467	0.056	0.069	0.013	0.053	0.031
CTE _{99%}	0.662	0.078	0.099	0.017	0.071	0.040
CTE99.5%	0.843	0.095	0.130	0.019	0.085	0.048
$\rho(1)$	-0.116	-0.043	0.150	-0.001	0.024	0.070
Hurst	0.523	0.505	0.569	0.506	0.533	0.490
FIGARCHd	0.553	0.289	0.545	0.407	0.426	0.510

Table: Assets profile

Factor analysis

- Estimate the correlation matrix for all variables.
- □ Factor extraction based on the correlation of the coefficients.
- □ Factor rotation.

Correlation matrix

Figure: Correlation matrix of the statistical estimates. Q SFA Cryptos

Factor model

Linear Factor model

$$X = QF + \mu + \varepsilon, \ \varepsilon \sim G() \tag{1}$$

- X is the initial matrix of p variables
- Q is a matrix of the non-random loadings
- F are the common k factors (k < p)
- \triangleright μ is the vector of the means of initial p variables
- \triangleright ε is a matrix of the random specific factors
- \triangleright Random vectors F and U are unobservable and uncorrelated

Factors loadings and scree plot

Figure: Scree plot and factors loadings. Q SFA_Cryptos

Factor rotation

Figure: Path diagram. Q FA Cryptos

Mapping of the factors

- 1. Tail factor 76% of the total variance
 - lacksquare Alpha-stable parameters S_lpha , S_γ
 - Lower and upper quantiles
 - Conditional tail expectations
 - Variance
- 2. Memory factor 6% of the total variance
 - Hurst exponent
 - autocorrelation coefficient
 - ightharpoonup FIGARCH(1, d, 1) d parameter
- 3. Moment factor 6% of the total variance
 - Skewness
 - Kurtosis

Factors

Figure: Assets projections on the factors space: (left) tail and memory factors; (right) tail and moment factors. **Q** SFA_Cryptos

Factor explanation

- Classify between Cryptos and other asset classes
- oxdot Binary logistic regression for each factor $F_k, \ k \in \{1,2,3\}$

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 F_k)}{1 + \exp(\beta_0 + \beta_1 F_k)},$$
 (2)

$$Y = \begin{cases} 1, & \text{if crypto} \\ 0, & \text{if otherwise} \end{cases}$$
 (3)

Factor explanation

Exogenous factor	Tail factor	Memory factor	Moment factor
Estimated β_1	15.450***	-0.738***	0.116
	(4.435)	(0.089)	(0.087)
$\widetilde{R^2}$	0.992	0.122	0.102

Note: Standard errors in (); ** denotes significance at 95% confidence level.

$$\widetilde{R}^{2} = \frac{1 - \left\{\frac{L(0)}{L(\widehat{\beta})}\right\}^{\frac{2}{n}}}{1 - \left\{L(0)\right\}^{\frac{2}{n}}} \tag{4}$$

- \Box L(0) is the likelihood of the intercept-only model

Explanation 5-3

Support Vector Machines

- Finding a projection that maximizes margin in a hyperplane of the original data.
- No parametric assumptions on the underlying probability distribution function.
- Missclassified: Bitcoin (BTC) and Tether (USDT).

Figure: SVM SVM

Explanation — 5-4

K-means clustering

- Projection of the clusters on the 3D space extracted trough Factor Analysis.
- 98.45% accuracy.

Figure: 3D. Q SFA_Cryptos

Explanation — 5-5

Maximum Variance Components Split

- These method have goals to separate, respectively, the components of a structure like the types of assets herein, and clusters defined as the components of a mixture distribution.
- They are based on an unusual variance decomposition in between-group variations.

Figure: MVCS. Q VCS_cryptos

Video — 6-1

Video

- Expanding rolling window estimation
 - ► Starting window 03-01-2014 until 22-04-2016 (1/2 of the data)
 - ▶ Increases daily up to full window 31/11/2020
 - ► Kernel density contour level 0.05
- □ Clusters converge over time

Q DFA cryptos

Video — 6-2

Synchronic evolution

Figure: Likelihood Ratios for the binary logistic model, estimated for the period 03/01/2014- 31/11/2020 CONV_cryptos

Impact of Covid-19

Figure: Variance, skewness and kurtosis dynamics by assets class. ¹

CONV cryptos

 $^{^{1}}$ For classical assets, the variance is multiplied by 10^{2} .

Impact of Covid-19

Figure: Quantile dynamics by assets class.

Q CONV cryptos

Market risk example

Table: : Average 1% VaR

VaR method	Classical assets	Cryptos only	Mixed portfolio
Historical VaR	3.01	16.34	4.37
MVaR	4.00	24.22	6.82
Normal GARCH(1,1)	2.04	12.24	3.21
Student's t GARCH(1,1)	2.22	14.39	3.56
Normal GJR-GARCH(1,1,1)	2.07	12.00	3.11
Student's t GJR-GARCH(1,1,1)	2.16	14.15	3.48

The average 1% VaR is reported in percentage terms; VaR was estimated using a rolling window of 250 trading days, for the period 03/01/2014-30/11/2020.

Market risk example

Figure: Estimated volatilities from Student's t GJR-GARCH(1,1,1) model, using a rolling window approach VaR Cryptos

Policy implications

- Given Cryptos' unpredictable and highly volatile behaviour, investors may be exposed to higher risks than investing in classical assets.
- Cryptos can be seen as an alternative for portfolio diversification, if investors are looking for higher compensation from riskier assets.
- Cryptos may not be suitable for risk-averse investors, especially in bear market circumstances.
- Conventional inference based on normal distribution appears to be inappropriate when it comes to the prudential treatment of Cryptos.
- Cryptos may require extra attention and monitoring, as their high volatility could jeopardize overall financial stability.

Conclusion — 9-1

Conclusion

- Financial perspective
 - Main statistical difference between Cryptos and other asset classes: tail behavior.
 - Moments and memory are of subliminal importance.
 - Nonlinear classification with SVM provides proficient results for risk analysts and regulators.
 - Cryptos are completely separated by the other types of assets, as proved by Maximum Variance Components Split method.
- Biological perspective
 - Speciation takes time to form distinct species, which potentially evolve further away from each other.
 - Cryptos establish themselves as unique asset classes.

Are Cryptos becoming alternative Assets?

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Exchange rates

▶ Data

- 1. EUR/USD Euro
- 2. JPY/USD Japanese Yen
- 3. GBP/USD Great Britain Pound
- 4. CAD/USD Canada Dollar
- 5. AUD/USD Australia Dollar
- 6. NZD/USD New Zealand Dollar
- 7. CHF/USD Swiss Franc
- 8. DKK/USD Danish Krone
- 9. NOK/USD Norwegian Krone
- 10. SEK/USD Swedish Krone
- 11. CNY/USD Chinese Yuan Renminbi
- 12. HKD/USD Hong Kong Dollar
- 13. INR/USD Indian Rupee

Commodities

▶ Data

- 1. WTI Crude oil USCRWTIC Index
- 2. Natural Gas NGUSHHUB Index
- 3. Brent oil EUCRBRDT Index
- 4. Unleaded Gasoline RBOB87PM Index
- 5. ULS Diesel DIEINULP Index
- 6. Live cattle SPGSLC Index
- 7. Lean hogs HOGSNATL Index
- 8. Wheat WEATTKHR Index
- 9. Corn CRNUSPOT Index
- 10. Soybeans SOYBCH1Y Index
- 11. Aluminum LMAHDY Comdty
- 12. Copper LMCADY Comdty
- 13. Zinc ZSDY Comdty
- 14. Nickel CKEL Comdty
- 15. Tin JMC1DLTS Index
- 16. Gold XAU Curncy
- 17. Silver XAG Curncy
- 18. Platinum XPT Curncy
- 19. Cotton COTNMAVG Index
- 20. Cocoa MLCXCCSP Index

Lévy-Stable distributions

 \Box Fourier transform of characteristic function $\varphi_X(u)$

$$S(X \mid \alpha, \beta, \gamma, \delta) = \frac{1}{2\pi} \int \varphi_X(u) \exp(-iuX) du$$

- Characteristic function representation, 0 < α < 2, α ≠ 1</p> $\log \varphi_X(u) = iu\delta \gamma |u|^{\alpha} \left\{ 1 + i\beta \left(u/|u| \right) \tan \left(\alpha \pi/2 \right) \right\} \quad (5)$
- Stability or invariance under addition $n\log \varphi_X(u) = iu(n\delta) (n\gamma)|u|^{\alpha} \left\{1 + i\beta \left(u/|u|\right) \tan \left(\alpha \pi/2\right)\right\}$
- ☑ Limiting distribution of *n* i.i.d. stable r.v., $0 < \alpha \le 2$ GCLT (Gnedenko and Kolmogorov, 1954)

$$n^{-\frac{1}{\alpha}} \sum_{i=1}^{n} (X_i - \delta) \xrightarrow{\mathcal{L}} S(\alpha, \beta, \gamma, 0)$$
 (6)

Linear Discriminant Analysis

- □ Let $X_i \sim N(\mu_i, \Sigma_i)$ belonging to class $ω_i, Σ_i = Σ_j$
- $\ \ \$ Project samples X onto a line $Y = w^{\top}X$
- Select the projection that maximized the separability
- Maximize normalized, squared distance in the means of the classes

$$w^* = \arg\max_{w} \frac{|w^{\top}(\mu_i - \mu_j)|^2}{s_i^2 + s_j^2},$$
 (7)

$$s_i^2 = \sum_{x_i \in \omega_i} (w^\top x_i - w^\top \mu_i)^2 = w^\top S_i w$$
 (8)

□ Linear Discriminant of Fisher (1936)

$$w^* = S_W^{-1}(\mu_i - \mu_j), \ S_W = S_i + S_j$$
 (9)

▶ LDA

Support Vector Machines

☑ Given training data set D with n samples and 2 dimensions

$$D = (X_1, Y_1), \dots (X_n, Y_n),$$

 $X_i \in \mathbb{R}^2, \quad Y_i \in [0, 1]$

 Finding a hyperplane that maximizes the margin

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t.
$$Y_i(w^\top X_i + b) \ge 1$$
,

$$i=1,\ldots,n$$

Figure: SVM

Variance Component Split

 $oxed{oxed}$ Consider the groups $X_{(1)},\ldots,X_{(i)}$ and $X_{(i+1)},\ldots,X_{(n)}$ with averages, respectively, $\overline{X}_{[1,i]}$ and $\overline{X}_{[i+1,n]},\ i=1,...,n-1$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}=\sum_{i=1}^{n-1}\frac{i(n-i)}{n^{2}}(\overline{X}_{[i+1,n]}-\overline{X}_{[1,i]})(X_{(i+1)}-X_{(i)}).$$
(10)

⊡ The relative contribution of the groups $X_{(1)},...,X_{(i)}$ and $X_{(i+1)},...,X_{(n)}$ in the sample variability:

$$W_{i} = W_{i}(X_{1},...,X_{n}) = \frac{i(n-i)}{n} \frac{(\overline{X}_{[i+1,n]} - \overline{X}_{[1,i]})(X_{(i+1)} - X_{(i)})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
(11)

☑ Index $\mathcal{I}_n = \max\{W_i, i = 1, ..., n-1\}$ determines two potential clusters or parts of a structure and is based on averages and inter-point distances.

Maximum Variance Component Split

- The Maximum Variance Component Split (MVCS) method compares known components of a structure, e.g. Cryptos herein, with data splits for a set of unit projection directions \mathcal{D}_M usually determined by M positive equidistant angles of $[0,\pi]$; e.g. when r=2 and M=3 the angles used are $\pi/3, 2\pi/3, \pi$.
- When one of the data split along projection direction a coincides with a component of the structure we have complete separation of this component along a.
- oxdot A set of projection directions \mathcal{D}_M can be

$$(\Pi_{l=1}^{r}\cos\theta_{l}, \sin\theta_{1}\Pi_{l=2}^{r}\cos\theta_{l}, ..., \sin\theta_{r-1}\cos\theta_{r}, \sin\theta_{r}), \tag{12}$$

where θ_l takes values in $\{\frac{m\pi}{M}, m=1,...,M\}, l=1,...,r$.

