## Промежуточная аттестация. Модуль 4. РЕШЕНИЕ КЕЙСОВ. Системы управления полётом.

## «Проектирование и реализация аппаратной архитектуры полётного контроллера»

Задача разработать систему управления полётом для беспилотного летательного аппарата (БЛА) с использованием ПИД-регуляторов. Необходимо реализовать алгоритмы стабилизации и навигации, а также провести тестирование системы управления.

| <b>№</b><br>п/п | Наименованиезадачи                                                     | Решение                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1               | Наименованиезадачи Изучить основы теории управления и ПИД-регуляторов. | На основе лекционного материала. Не менее 200 слов шрифтом 12.  Система управления полетом — это комплексное сочетание оборудования и программного обеспечения, цель которого — обеспечение управления и навигации воздушного судна. Основные элементы системы включают управляющие устройства, навигационные системы (GPS, INS), автопилот, датчики, системы мониторинга состояния, программное обеспечение и планировщик маршрута.  Для обработки информации от датчиков и обеспечения стабилизации, навигации и исполнения команд используются полетные контроллеры. Показания датчиков учитывают силы действующий на БЛА в процессе полета (подъемная сила, гравитация, сопротивление воздуха), а так же другие внешние и внутренние условия, после алгоритмической обработки эти данных, определяются управляющие воздействия через сигналы на управляющие поверхности или изменение скорости моторов. |  |  |
|                 |                                                                        | Стабилизация полета необходима для удержания аппарата в заданном положении и реакции на внешние воздействия. Основные алгоритмы стабилизации включают PID-регуляторы, фильтр Калмана, нелинейные алгоритмы, машинное обучение и SLAM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                                                        | PID-регулятор состоит из трех компонентов: пропорциональной (P), интегральной (I) и дифференциальной (D). Пропорциональная составляющая реагирует на текущую ошибку, интегральная аккумулирует ошибку о времени для устранения накопленной ошибки, а дифференциальная предсказывает будущие ошибки для снижения возможных колебаний.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                 |                                                                        | Настройка PID происходит через метод проб и ошибок, а также методы такие как Ziegler-Nichols, позволяющие определить оптимальные настройки для системы управления, учитывая особенности данных, получаемых от датчиков, и динамические характеристики системы.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

|   |                                                         | Фильтр Калмана используется для слияния информации от различных датчиков с математической моделью движения, вычисляя вероятное состояние объекта управления. Это помогает в прогнозировании и корректировке управления на основе наблюдаемых данных и предполагаемых эффектов естественных шумов и других неточностей.                                                                                                                                                                                                                                    |
|---|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                         | Алгоритмы стабилизации для поддержания заданной ориентации БЛА в пространстве, для управления подъёмом и спуском БЛА, противодействие внешним воздействиям.                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                         | 2.1. Опишите задачу, которую должен будет выполнить БЛА (например, применение в сельском хозяйстве, мониторинг инфраструктуры, обследование здания, обследование шахты и т.д.).                                                                                                                                                                                                                                                                                                                                                                           |
| 2 | Разработать алгоритмы стабилизации и навигации для БЛА. | Беспилотный летательный аппарат (БЛА) предназначен для мониторинга состояния электрических линий передачи. Он должен осуществлять детальный осмотр линий на предмет повреждений, проверку изоляторов и опор, а также обнаружение растительности или других объектов, которые могут представлять угрозу безопасному функционированию ЛЭП.                                                                                                                                                                                                                  |
|   |                                                         | 2.2 Опишите параметры, которыми должен обладать БЛА для выполнения рассматриваемой задачи (например, его масса, размеры, характеристики двигателей, требования ко времени полёта).                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                         | Для выполнения задачи используется БЛА модели DJI Matrice-210 RTK. Этот беспилотник имеет следующие характеристики:  • Масса: около 6,14 кг  • Размеры:  • с разложенными пропеллерами и шасси: 883х886х427 мм  • со сложенными пропеллерами и шасси: 722х282х242 мм  • Полетное время: 33 мин (без груза)  • Двигатели: бесколлекторные электромоторы, антиколебательный подвес, ESC  • Диапазон рабочих температур: -20°+50°C  • Источник питания: аккумулятор Intelligent Battery (Модель: WB37-4920мАч-7,6 В)  • RTK GPS для точного позиционирования |
|   |                                                         | 2.3. Опишите внешние воздействия, которые могут влиять на БЛА (например, ветер, турбулентность, замкнутое пространство, изменение температуры, механические воздействия, в т.ч. столкновения с объектами ил воздействие воздушных потоков и пр.).                                                                                                                                                                                                                                                                                                         |
|   |                                                         | БЛА может сталкиваться с такими внешними воздействиями: - ветер, - турбулентность, - изменения температуры (резкое похолодание), - возможные столкновения с препятствиями вблизи ЛЭП (например, деревьями или столбами), - электромагнитные помехи от электрических линий.                                                                                                                                                                                                                                                                                |

- 2.4. Опишите сенсоры (например, гироскоп, акселерометр, GPS, барометры, магнитометры, лидар, инфракрасный датчик, GPS-модуль и пр.) и их потребуется ли их калибровка для устранения, например, смещений или шумов.
  - Гироскоп и акселерометр: для обеспечения стабильности полета.
  - RTK GPS: для точного позиционирования.
  - Инфракрасная камера: для обнаружения повреждений и нагрева оборудования.
  - Лидар: для точного определения расстояния до объектов и замеров растительности.

Калибровка этих сенсоров необходима для минимизации смещений и шумов, так как точность и надежность данных критичны для качества мониторинга.

2.5. Опишите какие фильтры планируется применять для создания уточнённой оценки состояния БЛА с учётом как предсказанных, так и измеренных данных и какой их принцип работы.

Применяется фильтр Калмана для создания уточненной оценки состояния БЛА, сочетая измеренные данные с моделью физического поведения дрона. Фильтр помогает корректно оценивать положение, скорость и ориентацию БЛА в условиях шума измерений и внешних помех.

2.6. Опишите алгоритм стабилизации БЛА при взаимодействии акселерометра и гироскопа.

Алгоритм стабилизации для БЛА основан на объединении данных, получаемых от акселерометра и гироскопа, через управляющий контур с обратной связью:

- *Акселерометр* измеряет линейное ускорение БЛА. Но, эти показатели могут включать в себя как движение, так и гравитационную силу, поэтому для точности необходимо провести соответствующую коррекцию сигналов.
- Гироскоп измеряет угловую скорость вращения БЛА вокруг своих осей. Информация от гироскопа важная для определения реальных угловых изменений и компенсации случайных движений.

Алгоритмически данные с обоих сенсоров обрабатываются в реальном времени для вычисления текущего положения и ориентации БЛА, затем используются PID-контроллеры для коррекции движений по каждой оси, чтобы минимизировать ошибку между желаемым и текущим положением/ориентацией.

2.7. Опишите алгоритм навигации БЛА при взаимодействии барометра, акселерометра и гироскопа.

Навигационный алгоритм БЛА использует данные от барометра, акселерометра и гироскопа для точного определения положения в пространстве:

• Барометр предоставляет данные о высоте полета, используя атмосферное давление. Эти данные

помогают контролировать высоту полета над землей и другими объектами.

Гироскоп и акселерометр совместно работают для точного определения ориентации и ускорения БЛА, что критически важно для поддержания курса в условиях ветра или при выполнении маневров.

Для интеграции данных с этих трех сенсоров тоже используется фильтр Калмана, который помогает сгладить данные от случайных шумов и обеспечить более стабильное и надежное управление полетом. Алгоритмы навигации анализируют входные данные в реальном времени и корректируют управляющие воздействия, чтобы обеспечить желаемую траекторию движения и точное позиционирование БЛА. времени, обеспечивая безопасное маневрирование вблизи препятствий и точное следование заданной маршрутной карте.

Реализовать ПИДрегуляторы для управления полётом. См. pid.py

Написать и загрузить программное обеспечение для системы управления полётом.

См. flight\_control.py



