Topic: Solving with conjugate method

Question: Use conjugate method to find the limit.

$$\lim_{m\to 0} \frac{\sqrt{m+4}-2}{m}$$

Answer choices:

A 0

B 4

 $C \qquad \frac{1}{4}$

D ∞

Solution: C

The conjugate of $\sqrt{m+4}-2$ is $\sqrt{m+4}+2$. Multiply both the numerator and denominator by this conjugate.

$$\lim_{m \to 0} \frac{\sqrt{m+4} - 2}{m} \left(\frac{\sqrt{m+4} + 2}{\sqrt{m+4} + 2} \right)$$

$$\lim_{m \to 0} \frac{m+4+2\sqrt{m+4}-2\sqrt{m+4}-4}{m(\sqrt{m+4}+2)}$$

$$\lim_{m\to 0} \frac{m+4-4}{m(\sqrt{m+4}+2)}$$

$$\lim_{m \to 0} \frac{m}{m(\sqrt{m+4}+2)}$$

Cancel the common factor of m from both the numerator and denominator.

$$\lim_{m \to 0} \frac{1}{\sqrt{m+4}+2}$$

Now use substitution to evaluate the limit.

$$\frac{1}{\sqrt{0+4}+2}$$

$$\frac{1}{2+2}$$

Topic: Solving with conjugate method

Question: Use conjugate method to find the limit.

$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

Answer choices:

A 6

B 3

C 9

D 0

Solution: A

The conjugate of $\sqrt{x} - 3$ is $\sqrt{x} + 3$. Multiply both the numerator and denominator by this conjugate.

$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} \left(\frac{\sqrt{x} + 3}{\sqrt{x} + 3} \right)$$

$$\lim_{x \to 9} \frac{(x-9)(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}$$

$$\lim_{x \to 9} \frac{(x-9)(\sqrt{x}+3)}{x+3\sqrt{x}-3\sqrt{x}-9}$$

$$\lim_{x \to 9} \frac{(x-9)(\sqrt{x}+3)}{x-9}$$

Cancel the common factor of x-9 from both the numerator and denominator.

$$\lim_{x \to 9} (\sqrt{x} + 3)$$

Now use substitution to evaluate the limit.

$$\sqrt{9} + 3$$

$$3 + 3$$

6

Topic: Solving with conjugate method

Question: Use conjugate method to find the limit.

$$\lim_{x \to 16} \frac{16 - x}{4 - \sqrt{x}}$$

Answer choices:

A 4

B 8

C 0

D 16

Solution: B

The conjugate of $4 - \sqrt{x}$ is $4 + \sqrt{x}$. Multiply both the numerator and denominator by this conjugate.

$$\lim_{x \to 16} \frac{16 - x}{4 - \sqrt{x}} \left(\frac{4 + \sqrt{x}}{4 + \sqrt{x}} \right)$$

$$\lim_{x \to 16} \frac{(16 - x)(4 + \sqrt{x})}{(4 - \sqrt{x})(4 + \sqrt{x})}$$

$$\lim_{x \to 16} \frac{(16 - x)(4 + \sqrt{x})}{16 + 4\sqrt{x} - 4\sqrt{x} - x}$$

$$\lim_{x \to 16} \frac{(16 - x)(4 + \sqrt{x})}{16 - x}$$

Cancel the common factor of 16 - x from both the numerator and denominator.

$$\lim_{x \to 16} (4 + \sqrt{x})$$

Now use substitution to evaluate the limit.

$$4 + \sqrt{16}$$

$$4 + 4$$

8

