Tlamati Sabiduría

Revisión de los métodos de remediación de suelos agrícolas y forestales afectados por metales y metaloides tóxicos

Fredderick Arroyo-Díaz¹ Columba Rodríguez-Alviso1* José Luis Rosas-Acevedo¹ Oscar Talavera-Mendoza² Elías Hernández-Castro³ Oscar Gabriel Villegas-Torres⁴

¹Doctorado en Ciencias Ambientales, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel 13, Col. El Roble, 39640, Acapulco, Guerrero, México.

*Autor de correspondencia columbaalviso@uagro.mx

Resumen

La contaminación de los suelos agrícolas y forestales se ha convertido en un problema mundial que ha llamado la atención de la población de manera considerable debido a la acumulación excesiva de contaminantes persistentes como metales y metaloides tóxicos. Esta investigación tiene como objetivo identificar cuáles son los métodos utilizados para la remediación de suelos afectados con metales y metaloides tóxicos a través de la revisión de literatura especializada. El estudio es cualitativo, basado en el

Información del Artículo

Cómo citar el artículo:

Arroyo-Díaz F., Rodríguez-Alviso C., Rosas-Acevedo J.L., Talavera-Mendoza O., Hernández-Castro E., Villegas-Torres O.G. (2024). Revisión de los métodos de remediación de suelos agrícolas y forestales afectados por metales y metaloides tóxicos. Tlamati Sabiduría, 19, 76-97.

Editora Asociada: Dra. Teolincacihuatl Romero Rosales

© 2024 Universidad Autónoma de Guerrero

 $^{^2}$ Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda de San Juan Bautista, 40323, Taxco el Viejo, Guerrero, México.

 $^{^3}$ Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Carretera Iguala-Tuxpan, km 2.5, 40101, Iguala de la Independencia, Guerrero, México.

⁴Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, 62210, Avenida Universidad 1001, 62210, Cuernavaca, Morelos, México.

análisis de contenido. Se revisaron 103 artículos publicados entre 1990 y 2023. Los resultados muestran que los métodos más utilizados para remover o inmovilizar los metales y metaloides tóxicos en suelos han sido clasificados de acuerdo con el propósito, las medidas de mitigación, el control de fuentes y la contención de contaminantes. Aunque todos los métodos publicados tienen como objetivo evitar la degradación del ecosistema y el progreso de contaminantes a las cadenas tróficas, es importante separarlos de acuerdo con las técnicas que se utilizan, ya que pueden utilizar agentes físicos, sustancias químicas, microorganismos o plantas. Los métodos para la remediación de suelos afectados con metales y metaloides tóxicos revisados en este documento se clasifican de acuerdo a su naturaleza en tres grupos: métodos físicos, métodos químicos y métodos biológicos.

Palabras clave: Metales y metaloides tóxicos, Remediación, Métodos físicos, Métodos químicos, Métodos biológicos.

Abstract

Agricultural and forestry soils pollution have become a global problem that has attracted considerable public attention due to the excessive accumulation of persistent pollutants such as toxic metals and metalloids. This research aims to identify the methods used for the remediation of soils affected by toxic metals and metalloids by reviewing specialized literature. The study is qualitative, based on content analysis. One hundred and three articles published between 1990 and 2023 were reviewed. The results show that the most used methods to eliminate or immobilize toxic metals and metalloids in affected soils have been classified according to purpose, mitigation measures, source control and containment of contaminants. Although all published methods aim to prevent the degradation of ecosystems and the progression of contaminants to food chains, it is important to separate them according to the techniques used, since they may involve physical, chemical agents, microorganisms, or plants. The methods for the remediation of soils affected with toxic metals and metalloids reviewed in this document are classified according to their nature into three groups: physical methods, chemical methods, and biological methods.

Keywords: Metals and toxic metalloids, Remediation, Physical methods, Chemical methods, Biological methods.

Introducción

La contaminación de suelos urbanos, agrícolas y forestales por metales y metaloides tóxicos (MMT's) ha sido objeto de estudio en distintas regiones del mundo durante las últimas décadas (Khan, 2016). Se estima que actualmente existen más de 10 millones de sitios con suelos agrícolas y forestales contaminados con MMT's en el mundo (Wang et al., 2022). Los MMT's pueden provenir de fuentes naturales y antropogénicas (Jaishankar et al., 2014). Las fuentes naturales incluyen formaciones rocosas, yacimientos minerales y combustibles fósiles (Li et al., 2019). Las fuentes antropogénicas incluyen las

emisiones industriales y vehiculares, baterías, lodos residuales de plantas tratadoras de aguas residuales, industrias del curtido, galvanoplastia, agroquímicos, exploraciones de petróleo y gas y la industria minera (Wei y Yang, 2010; Islam *et al.*, 2019). Los MMT's no sufren degradación química o biológica, su concentración total en los suelos persiste desde miles hasta millones de años son y altamente tóxicos para la biota y ser humano (Adriano, 2001; Kirpichtchikova *et al.*, 2006; Rai *et al.*, 2018). Los suelos contienen de manera natural concentraciones de MMT's provenientes de la roca madre, pero una vez que la concentración de estos elementos supera la línea

geoquímica de base, la calidad del suelo se ve afectada significativamente por la acumulación excesiva de estos contaminantes. Esta acumulación excesiva de MMT's puede tener efectos adversos sobre la calidad, el rendimiento agrícola y forestal, en la composición nutrimental y la actividad microbiana (Yao et al., 2003). Por lo general, cuando los suelos están afectados con MMT's, sus propiedades físicas, químicas y biológicas se modifican. La degradación física del suelo puede identificarse a través de algunas propiedades como el incremento de la densidad aparente, la disminución de la porosidad del suelo y la disminución en la capacidad de retención de agua (Ramamoorthy, 2015). Las propiedades químicas del suelo incluyen el decremento de materia orgánica, baja fertilidad, desequilibrio en la concentración de micronutrientes, disminución de la disponibilidad de nitrógeno y fósforo, el incremento de la conductividad eléctrica y valores de pH muy bajos (Ussiri y Lal, 2005). Las propiedades biológicas afectadas de los suelos incluyen la mala absorción de carbono orgánico del suelo por las plantas y deficiencia en las condiciones para la promoción de comunidades bacterianas que favorecen el crecimiento y desarrollo vegetal (Leita et al., 1995).

En suelos forestales y agrícolas, los MMT's interactúan con compuestos orgánicos e inorgánicos, lo cual, diversifica sus formas químicas y puede aumentar su biodisponibilidad (Maslin y Maier, 2000). Lo anterior provoca una disminución de la flora nativa y baja producción de cultivos de consumo humano (Carrillo y González, 2006). Algunas plantas que crecen en suelos afectados por MMT's pueden absorber estos elementos por la raíz y colocarlos en sus partes aéreas (tallo, hojas, flores y frutos), lo que permite el ingreso de estos elementos en la cadena alimentaria, ya sea por la vía planta-humano o planta-animal-humano (Peralta Videa *et al.*, 2009; Ling *et al.*, 2007).

En las últimas décadas, la remediación de suelos agrícolas y forestales contaminados con MMT's se han convertido en una prioridad para la comunidad científica mundial, debido a que la agricultura es una de las actividades antropogénicas importantes que provee de alimentos (verduras, frutas y granos) a la población mundial

(Lwin, 2018). En el mundo se han desarrollado diferentes métodos para remediar o mitigar los efectos de los MMT's en suelos utilizados con fines agrícolas y forestales. En esta revisión se describen los métodos más eficientes utilizados para remediar suelos contaminados con MMT's, clasificándolos en métodos físicos, químicos y biológicos.

Métodos para la remediación de suelos

Los métodos de remediación de suelos afectados con MMT's tienen como objetivo remover o inmovilizar estos elementos para mantener la salud del suelo y de los ecosistemas sanos (Wuana y Okieimen, 2011). Para seleccionar un método de remediación es importante realizar estudios previos sobre la caracterización fisicoquímica del suelo (Derakhshan *et al.*, 2018; Li *et al.*, 2019).

Algunos autores han clasificado los métodos de remediación de suelos de acuerdo con el propósito, debido a que se enfocan en aislar, inmovilizar, reducir la toxicidad, la separación física y la extracción de MMT's (Wuana y Okieimen, 2011). Otros autores clasifican los métodos de remediación de acuerdo con las medidas de mitigación en dos tipos; los llamados "suave in situ", cuyo objetivo es restaurar la fertilidad del suelo agrícola o forestal, y las "medidas destructivas in situ o ex situ", cuyo fin es evitar el contacto de MMT's con las plantas, los animales y el ser humano (Gupta et al., 2020). Por otra parte, otras clasificaciones solo separan los métodos de remediación en dos grupos; el primer grupo es el control de fuentes, el cual involucra métodos de tratamiento in situ y ex situ para fuentes puntuales emisoras de MMT's; el segundo grupo incluye los remedios de contención que incluyen la construcción de barreras y estructuras de recubrimiento para evitar la migración de contaminantes (USEPA, 2007). En este documento se agrupan los métodos de contaminación de acuerdo con su naturaleza física, química y biológica.

Diseño y metodología de la investigación

Se siguió un diseño metodológico cualitativo basado en análisis de contenido de revistas

especializadas sobre los métodos utilizados en la remediación de suelos afectados con MMT's con énfasis en tres aspectos: frecuencia de palabras clave en los resúmenes, fuentes de contaminación de MMT's y métodos de remediación de suelos con MMT's. El proceso se dividió en dos fases: (1) recolección y organización de datos; y, (2) codificación y categorización.

Resultados

El proceso de búsqueda arrojó 103 artículos que cumplieron con lo establecido en el diseño y metodología de la investigación (Apéndice). Se encontraron 30 artículos sobre contaminación de suelos por MMT's, y la clasificación de los métodos de remediación de acuerdo a los propósitos de aislamiento, inmovilización, reducción de toxicidad, separación, extracción, medidas de mitigación, control de fuentes y remedios de contención. De los 73 artículos restantes, 17 abordan métodos físicos, 29 métodos químicos y 33 métodos biológicos (Figura 1). Con respecto al índice de calidad relativo Scimago, de los 103 artículos consultados, 50% son Q1, 21 % son Q2, 6% son Q3, y, 5% son Q4. El restante 18% no tiene cuartil de calidad (Figura 2). A continuación, se describen los métodos físicos, químicos y biológicos encontrados.

Métodos físicos

Los métodos físicos incluyen el reemplazo del suelo, aislamiento y contención de contaminantes, desorción térmica, electrocinética y solidificación (Jankaite y Vasarevicius, 2005; Yao *et al.*, 2012).

El método de reemplazo del suelo puede aislar de manera efectiva el suelo, disminuyendo así el efecto de los MMT's en el medio ambiente. Este método puede ser de tres tipos: 1) de reemplazo total o parcial del suelo afectado con un suelo libre de contaminantes (Qian y Liu, 2000; Zhang et al., 2001); 2) excavación del suelo, el cual consiste en cavar profundamente el suelo contaminado con MMT's, induciendo la propagación del contaminante en los sitios profundos para lograr la dilución y la degradación natural (Derakhshan et al., 2018); y, 3) importación de suelo nuevo, el cual consiste en

agregar una gran cantidad de suelo limpio al suelo contaminado para cubrir la superficie (o mezclándolo) y reducir los niveles de contaminantes (Zhou *et al.*, 2004).

El método de aislamiento y contención de contaminantes tiene como finalidad cubrir en su totalidad las fuentes emisoras para evitar que los MMT's se movilicen hacia los recursos naturales del entorno. Esto puede ser mediante la instalación de barreras impermeables como acero, cemento, bentonita o lechada (mezcla de cemento, agua y un aditivo acrílico). Las barreras cumplen el propósito de evitar la interacción de los sitios contaminados con el viento y el agua para evitar una mayor migración y dispersión de MMT's del sitio afectado (Jankaite Vasarevicius, 2005). Las barreras construidas en posición vertical sobre los suelos afectados tienen la función de minimizar el movimiento de agua subterránea para evitar la movilización de MMT's (Mulligan, 2001). Estas barreras pueden estar rellenas de materiales como lechada, bentonita o cemento, cuyas estructuras pueden ser implementadas en paredes en zanjas excavadas, cortinas y perforaciones del suelo. Por otra parte, las barreras horizontales instaladas dentro del suelo (zanjas o pozos) no han demostrado ser efectivas, pero son potencialmente útiles para restringir el movimiento hacia abajo de los contaminantes metálicos al actuar como revestimientos subyacentes sin los requisitos de excavación (Mulligan, 2001; Jankaite y Vasarevicius, 2005). El método de tratamiento de desorción térmica se basa en la volatilidad del contaminante. removiéndolo del suelo mediante el calentamiento del subsuelo. Los métodos térmicos incluven principalmente calentamiento conductivo, calentamiento resistivo eléctrico, calentamiento a base de vapor, calentamiento por radiación infrarroja y calentamiento por radiofrecuencia (Song et al., 2017). Se ha demostrado que los métodos térmicos eliminan eficazmente MMT's como el Hg y el As. Sin embargo, puede afectar en gran medida las propiedades mineralógicas y fisicoquímicas del suelo (Roh et al., 2000; Chang y Yen, 2006; Li et al., 2010).

Figura 1. Cantidad de artículos consultados en la problemática general y métodos consultados en la remediación física, química y biológica de suelos.

Figura 2. Clasificación y porcentaje de artículos consultados de acuerdo al índice de calidad Scimago.

De acuerdo con Huang *et al.* (2011), la remediación térmica puede provocar la generación de complejos químicos y órganometálicos que resultan difíciles de extraer.

El método de remediación electrocinética sirve para eliminar los MMT's de la matriz del suelo por medio de una corriente eléctrica. Esta técnica incluye mecanismos como electromigración, electroósmosis, electroforesis y electrólisis (Jankaite y Vasarevicius, 2005). Este método ha mostrado buenos resultados. Sin embargo, el anlicar agentes quelantes como ácido etilendiaminodisuccínico, ácido nitrilotriacético y ácido cítrico, mejora la eficiencia de la técnica en la remoción de MMT's como As, Cd, Cr, Cu, Ni, Pb y Zn. Además, algunos investigadores han combinado los métodos de lavado y la electrocinética para complementar la tecnología de lavado en suelos como lo demostró Kim et al. (2008) en la eliminación de Co⁺² y Cs⁺, Ng et al. (2014) en la remoción de Pb, Kim et al. (2015) en suelo contaminado con U y Li et al. (2016) en el tratamiento de suelos contaminados con Cr. La solidificación consiste en la encapsulación física de MMT's en una matriz sólida que puede ser cemento, betún, asfalto o materiales aglutinantes termoplásticos (Li et al., 2019).

Métodos químicos

Los métodos guímicos incluyen el uso de reactivos para reducir la movilidad o inmovilizar los MMT's (Song et al., 2017). Los principales métodos químicos son estabilización, vitrificación y el lavado de suelo con compuestos químicos como surfactantes, codisolventes, ciclodextrinas, agentes quelantes y ácidos orgánicos (Jankaite y Vasarevicius, 2005; Derakhshan et al., 2018; Li et al., 2019). Existen estudios que han demostrado que la adición de compuestos químicos tiene efectos positivos en la inmovilización de MMT's. Por ejemplo, Hodson et al. (2000) indicaron que la adición de apatita (Ca₅(PO₄)₃) finamente molida tiene el potencial de inmovilizar los MMT's en los suelos y reducir la biodisponibilidad de estos elementos mediante la formación de fosfatos metálicos. Por otra parte, la adición de otros compuestos químicos a base de calcio como óxidos, hidróxidos y carbonatos han demostrado ser rentables en la inmovilización de MMT's y amigables con el medio ambiente. Algunas fuentes de estos compuestos pueden ser el cascarón de huevo (Soares *et al.*, 2015), conchas de invertebrados (Ok *et al.*, 2010; Otero *et al.*, 2015; Islam *et al.*, 2017) y la cal, que es el compuesto más utilizado (Lim *et al.*, 2013).

Otro de los métodos químicos utilizados es la vitrificación la cual estabiliza los MMT's mediante la formación de cristales de vidrio amorfo. Esta técnica utiliza la adición de precursores formadores de vidrio como el ácido silícico (H₄SiO₄), el ácido bórico (H₃BO₃), el ácido fosfórico (H₃PO₄) y el óxido de aluminio (Al₂O₃), los cuales se mezclan con el suelo (Guo et al., 2006). La mezcla resultante se calienta a 1400-2000 °C (Yao et al., 2012). El vidrio resultante inmoviliza los MMT's restringiendo su biodisponibilidad (Navarro, 2012). El suministro de energía térmica puede ser de tres tipos; vitrificación eléctrica, vitrificación térmica y la vitrificación por plasma. En la primera se aplica electricidad de alto voltaje a electrodos de grafito insertados en el suelo contaminado. En la segunda se aplica una fuente de calor externa como la radiación de microondas o gas natural para calentar una retorta rotatoria que contiene suelos contaminado y, la tercera, la alta temperatura se logra a través del plasma de gas inducido por descarga eléctrica (Khan et al., 2004).

La agencia de protección al medio ambiente estadounidense ha recomendado el lavado de suelos utilizando compuestos químicos en solución (USEPA, 1990; Wood et al., 1990; Chu y Chan, 2003; Gao et al., 2003; USEPA, 2007; Maturi y Reddy, 2008; Zhang et al., 2009). Los agentes surfactantes (e.g dodecilsulfato sódico $(C_{12}H_{25}NaO_4S)$, Bromuro de hexadeciltrimetilamonio (CTAB) y Polysorbate 80 $(C_{24}H_{44}O_6(C_2H_4O)n))$ han demostrado resultados eficaces para remover los MMT's en suelos afectados (Sun et al., 2011). Algunos autores han recomendado el agua como un excelente agente de lavado (Dermont et al., 2008). Sin embargo, Maity et al. (2013) y Wei et al. (2011) mostraron mejores resultados en la remoción de MMT's, utilizando saponina y agentes quelantes respectivamente. El ácido etilendiaminotetraacético (EDTA) ha

reportado como el agente quelante más eficiente para la eliminación de MMT's de suelos contaminados (Leštan *et al.*, 2008). Además, durante la aplicación de EDTA se ha observado baja biodegradabilidad de los suelos, alta eficiencia de remoción de MMT's e impactos reducidos en la actividad de enzimas y microorganismos del suelo (Qiao *et al.*, 2017). Otros experimentos han utilizado agentes quelantes como el ácido etilendiaminodisuccínico (EDDS), ácido nitrilotriacético y ácidos orgánicos de bajo peso molecular como el oxálico y cítrico en la solubilización del Cu, Cr y As (Almaroai et al., 2012; Kim et al., 2013).

Métodos biológicos

Los métodos biológicos han sido utilizados en las últimas décadas en la remediación de suelos afectados con MMT's para restaurar los ecosistemas, cuyos resultados han mostrado ser eficaces. Los métodos de remediación biológicos han sido englobados bajo el concepto de biorremediación (Ramachandran et al., 2013). Los métodos de biorremediación utilizan plantas, microorganismos o la combinación de ambos para remover, estabilizar o inmovilizar los MMT's (Ayangbenro y Babalola, 2017). De acuerdo con Ojuederie y Babalola (2017), estas técnicas han mostrado ser más rentables en la eliminación de MMT's en comparación con los métodos químicos y físicos convencionales, que a menudo son muy costosos. La biorremediación con plantas ha sido ampliamente utilizada en el tratamiento de suelos contaminados con MMT's. A la biorremediación con plantas también se conoce como fitorremediación (Ali et al., 2013). La fitorremediación incluye una serie de procesos fitoextracción, fitofiltración, como la fitoestabilización y fitovolatilización (Alkorta et al., 2004). Estos métodos son más recomendados cuando los MMT's cubren un área amplia y cuando están dentro de la zona rizosférica (Chibuike y Obiora, 2014).

El proceso de fitoextracción consiste en la absorción de los MMT's por las raíces de las plantas y su posterior translocación a sus partes aéreas, promoviendo la remoción de MMT's del suelo a largo plazo (Bhargava *et al.*, 2012). La

fitofiltración incluye la rizofiltración (uso de raíces de plantas), la blastofiltración (uso de plántulas) o la caulofiltración (uso de brotes de plantas) (Mesjasz-Przybylowicz et al., 2004). La fitoestabilización es un método que retiene los MMT's en las raíces de las plantas mediante la adsorción, absorción y la formación de complejos metálicos reduciendo la movilidad de la raíz hacia las partes áreas de las plantas (tallo, hojas, frutos) con lo que se disminuye su ingreso a las cadenas tróficas (Barceló y Poschenrieder, 2003; Erakhrumen y Agbontalor, 2007; Radziemska et al., 2018; Bakshe y Jugade, 2023). La fitovolatilización se refiere a la absorción de MMT's como Se y Hg por las raíces de las plantas, su conversión a estado gaseoso y su posterior liberación a la atmósfera influenciado por el proceso de evapotranspiración de las plantas (Kong y Glick, 2017; Naveed et al., 2023).

La biorremediación con microorganismos para suelos contaminados con MMT's utiliza bacterias, hongos, levaduras y algas (Coelho et 2015). Estos microorganismos demostrado ser eficaces en la inmovilización de MMT's mediante procesos como precipitación, biosorción y secuestro de MMT's metalotioneínas y fitoquelatinas (Ojuederie y Babalola, 2017). Algunos microorganismos utilizados en la biorremediación de suelos afectados con MMT's son Sporosarcina ginsengisoli (Achal et al., 2012), Pseudomonas putida (Balamurugan et al., 2014) y Bacillus subtilis (Imam et al., 2016). El uso de consorcios de microorganismos, aumenta la eficacia de la biorremediación (Kang et al., 2016). Lo anterior se basa en los resultados obtenidos del efecto sinérgico de las bacterias Viridibacillus arenosi B-21, Sporosarcina soli B-22, Enterobacter cloacae KJ-46 y E. cloacae KJ-47 en suelos afectados con Cd, Cu, y Pb. Los hongos micorrízicos se han utilizado en la remediación de contaminados suelos por MMT's, resultados obtenidos muestran que estos microorganismos son eficaces debido a que las emplean micorrizas métodos acidificación, la inmovilización y la modificación de los exudados rizosféricos, secuestro de hifas y precipitación química (Hristozkova et al., 2017). Estudios realizados por Cornejo et al. (2013) y Bhalerao (2013) indican que los hongos micorrízicos pueden ser aislados de suelos afectados con MMT's. Estos microorganismos autóctonos tienen mayor resistencia a la toxicidad de los MMT's que los aislados de suelos no contaminados, debido a que su tolerancia a esas condiciones los hace más eficaces que los adaptados en laboratorios, lo que puede servir como una herramienta biotecnológica potencial para la restauración exitosa de ecosistemas deteriorados.

Por otra parte, se ha documentado el uso de levaduras con fines de biorremediación, principalmente de la levadura de cerveza (Saccharomyces cerevisiae) debido a biosorción de capacidad de MMT's comparación con otros biomateriales (Soares y Soares, 2012). Algunos estudios han reportado la capacidad de este microorganismo de separar especies de MMT's en función de su estado de oxidación, como Se^{+4, +6}, el Sb^{+3, +5}, así como el Hg orgánico e inorgánico (Madrid et al., 1995; Pérez-Corona et al., 1997).

Las microalgas son microorganismos que han mostrado buenos resultados en la remoción de MMT's mediante dos mecanismos. El primer mecanismo es la adsorción física a la superficie celular debido a que las microalgas cuentan con alta afinidad de unión a MMT's por su gran superficie de sitios de unión (Cameron *et al.*, 2018). El segundo mecanismo es por biosorción, el cual se basa en el transporte intracelular de MMT's para su quelación y reducción mediante antioxidantes y enzimas reductoras (Gómez-Jacinto *et al.*, 2015).

Ventajas y desventajas de los métodos de remediación

Métodos físicos

Los métodos físicos presentan muchas limitantes en cuanto a su costo y su beneficio. Por ejemplo, los métodos de reemplazo representan una gran carga de trabajo y un alto costo debido a que necesitan cantidades enormes de material particulado libre de MMT´s para diluir o recubrir el suelo afectado y este método solo puede ser efectivo en suelos cuya área es pequeña (Zhou et

al., 2004; Li et al., 2019). Las barreras de lechada. bentonita o cemento han mostrado resultados aceptables al restringir el movimiento de los MMT's hacia horizontes inferiores del suelo (Mulligan, 2001; Jankaite y Vasarevicius, 2005). Sin embargo, la impermeabilidad de las barreras de bentonita disminuve de manera significativa en suelos con altas concentraciones de creosota, sales solubles de cobre, cromo, arsénico o boratos, fosfatos y amoníaco (USEPA, 1997). Los métodos térmicos no eliminan los MMT's por completo, sino que los transfiere del suelo a la atmósfera donde pueden volver a ingresar al suelo continuando con su ciclo en la cadena trófica (Li et al., 2010; Karami v Shamsuddin, 2010; Dixit et al., 2015). Los métodos de electrocinética son efectivos en suelos arcillosos y resultan contraproducentes, ya que requieren de mucho tiempo y destruyen el entorno natural original, además los objetos metálicos enterrados desvían el flujo de corriente y no son efectivos si las interferencias son abundantes (Mulligan et al., 2001; Alshawabkeh y Bricka, 2013; Ramalingam, 2013). El método de solidificación tiene un costo tan alto que a menudo hace que este método no sea rentable y sea contraproducente debido a que encapsula MMT's pero también micronutrientes y macronutrientes del suelo que pueden afectar al desarrollo de las plantas (Li et al., 2019).

Métodos químicos

La técnica de vitrificación se limita a un volumen de suelo bajo (144 m² y 6 m de profundidad) y su costo es muy elevado (330-425 dólares por tonelada) (FRTR, 2012; Meuser, 2012; Navarro, 2012; Liu et al., 2018). El método es eficaz en suelos que contienen concentraciones entre 2 y 5 % de cationes monovalentes (ej. Na⁺ y K⁺) y no funciona en suelos cuya materia orgánica y humedad sea mayor al 7% y 10% respectivamente y exista la presencia de compuestos orgánicos volátiles o inflamables (Liu et al., 2018). La temperatura del método de vitrificación (600-1400 °C) daña de manera significativa la microbiota del suelo, elimina compuestos orgánicos y puede volatilizar elementos tóxicos como el Hg. Asimismo, los cristales amorfos de vidrio además de secuestrar MMT's. también pueden secuestrar

micronutrientes y macronutrientes dejando el suelo inerte (Wuana y Okieimen, 2011). Las técnicas de lavado de suelos con surfactantes mostraron una mayor tasa de eliminación de metales como Cu, Zn, Pb, Ni y Cd (SDS > CTAB > Tween80). Sin embargo, estas condiciones solo funcionaron en suelos arenosos y no en suelos arcillosos (Sun et al., 2011). El EDTA ha mostrado buenos resultados en la remoción de MMT's de suelos y el que menos efectos adversos ejerce en la biota y microbiota del suelo (Leštan et al., 2008; Qiao et al., 2017). Sin embargo, su uso puede favorecer la movilización de MMT's hacia la raíz de las plantas cultivadas en el suelo tratado (Almaroai et al., 2012). El uso de ácidos orgánicos (oxálico, cítrico, fórmico, acético, málico, succínico, malónico, maleico, láctico, aconítico y fumárico) pueden ser los más indicados para remover MMT's. Debido a que estos reactivos son productos naturales de exudados de raíces, secreciones microbianas y de la descomposición de plantas y animales (Naidu y Harter, 1998; Wuana y Okieimen, 2011).

Métodos biológicos

El uso de algunos microorganismos ha dado buenos resultados en la inmovilización de MMT's mediante la precipitación de algunos minerales. Por ejemplo, S. ginsengisoli CR5 mostró eficiencia en la precipitación inducida de calcita para la biorremediación de As (Achal et al., 2012). Bacillos como Saccharomyces cerevisiae Bacillus subtilis, mostraron resultados eficientes en la biosorción e inmovilización de Cd^{+2} (92.68%) y de Hg^{+2} (90.48%) del suelo contaminado en 21 días de incubación (Imam et al., 2016). El efecto sinérgico de las mezclas bacterianas en la biorremediación de suelos contaminados ha mostrado una mayor eficiencia. Kang et al. (2016) registraron una remediación del 98.3 % para Pb, 85.4 % para Cd y 5.6 % para Cu utilizando un consorcio bacteriano compuesto de Viridibacillus arenosi B-21, Sporosarcina soli B-22, Enterobacter cloacae KJ-46 y E. cloacae KJ-47. Otras mezclas de hongos micorrízicos, algas y cianobacterias han ayudado a resistir el estrés expuestas en plantas a MMT's (Hristozkova et al., 2017). El estudio realizado por Cornejo et al. (2013) indica que la asociación de hongos micorrízicos (*Claroideoglomus claroideum*, *Imperata condensata* y *Rhizophagus irregularis*) con raíces de zanahoria ayudaron a las plantas a sobrevivir en ambientes contaminados con Cu, almacenando el Cu en sus esporas.

La fitorremediación (fitoextracción, fitofiltración, fitoestabilización, fitovolatilización y fitodegradación) ha mostrado resultados aceptables en el tratamiento de suelos contaminados con MMT's (Kong y Glick, 2017). Las familias de angiospermas más utilizadas en la fitorremediación incluyen Brassicaceae, Scrophulariaceae, Asteraceae, Lamiaceae, Fabaceae y Euphorbiaceae (Gao et al., 2003; Maturi y Reddy, 2008; Jabeen y Igbal, 2009; Ashraf et al., 2017). Sin embargo, Rajkumar et al. (2009) indican que la mayoría de las plantas no aplicaciones adecuadas para son fitorremediación de campo debido a que son de crecimiento muy lento y de biomasa muy baja.

La combinación de plantas y microorganismos realiza una remoción más rápida y eficiente de MMT's en suelos afectados (Vangronsveld et al., 2009). Existen estudios que indican ampliamente el uso de microorganismos rizosféricos que ayudan al crecimiento de las plantas y a resistir el estrés ocasionado por la exposición a MMT's (Wuana y Okieimen, 2011). Incluso, algunos estudios indican que la combinación de hongos micorrízicos y rizobacterias promotoras del crecimiento vegetal en la rizósfera pueden dar resultados aceptables en la fitorremediación (Zhang et al., 2009; Brereton et al., 2020). El uso Saccharomyces cerevisiae para biorremediación de MMT's ha mostrados resultados muy buenos debido a su facilidad de cultivo a gran escala sin fermentación, los bajos costos, su fácil manipulación a nivel molecular y su alta producción de biomasa. Sin embargo, para que el microorganismo de buenos resultados debe existir condiciones controladas de pH, temperatura, tasa de inoculación, acondicionamientos previos de glucosa y solventes, además se obtienen buenos resultados si las concentraciones de MMT's son menores a 0.5 ppm (Massoud et al., 2019). Las microalgas son eficaces en la remoción de MMT's debido a que se puede utilizar células vivas o muertas

(biomasa). Los reportes indican que este método es amigable con el medio ambiente y los beneficios son robustos en la remoción de B, Co, Cu, Fe, Mo, Mn y Zn, pero no así para la remoción de As, Cd, Cr, Pb y Hg (Sun *et al.*, 2015; Abinandan *et al.*, 2019).

Conclusión

A pesar de la efectividad que han demostrado los métodos físicos, los altos costos y la elevada carga de trabajo que se necesita los hace los métodos menos rentables para su implementación.

Los métodos químicos son eficaces cuando se aplican compuestos como hidróxido de calcio, cal y fosfatos. El lavado de suelos por medio de soluciones químicas difiere considerablemente para diferentes tipos de suelo. Sin embargo, el uso de EDTA resultó ser el método más eficaz, de igual manera para lavados menos dañinos, se sugiere el uso de ácidos orgánicos.

Los métodos biológicos han demostrado ser una alternativa rentable y ecológica y pueden representar una alternativa eficaz a los métodos físicos y químicos para la descontaminación de suelos afectados con MMT's. Sin embargo, la combinación de la fitorremediación con la fitoextracción asistida por quelatos y microbios pueden dar resultados más favorables en la remoción de MMT's de suelos afectados a gran escala.

Agradecimientos

Esta investigación se llevó a cabo gracias al apoyo y subvención del Consejo Nacional de Ciencia y Tecnología del gobierno de México (CONACYT) con número de beca 780882. Este artículo se deriva de la tesis "Potencial afectación de los Elementos Tóxicos contenidos en jitomate (Solanum lycopersicum) cultivado en suelos contaminados con residuos mineros: Estudios geoquímico con propuesta de remediación de suelos", desarrollada en el Doctorado en Ciencias Ambientales del Centro de Ciencias de Desarrollo Regional de la Universidad Autónoma de Guerrero, México.

Bibliografía

- Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., Perera, I.A., Megharaj, M. (2019). Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5. Bioresource technology, 281, 469-473.
- Achal, V., Pan, X., Fu, Q., Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of hazardous materials, 201, 178-184.
- Adriano, D.C. (2001). Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer, New York, NY, USA, 2nd edition.
- Ali, B., Wang, B., Ali, S., Ghani, M.A., Hayat, M. T., Yang, C., Xu, L., Zhou, W.J. (2013). 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. Journal of Plant Growth Regulation, 32, 604-614.
- Alkorta, I., Hernández-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I., Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Biotechnology, 3, 71-90.
- Almaroai, Y.A., Usman, A.R., Ahmad, M., Kim, K.R., Moon, D.H., Lee, S.S., Ok, Y.S. (2012). Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.). Soil science, 177, 655-663.
- Alshawabkeh, A. N., Bricka, R. M. (2013). Basics and application of electrokinetics remediation, Remediation engineering of contaminated soils 95-111.
- Ashraf, M.A., Hussain, I., Rasheed, R., Iqbal, M., Riaz, M., Arif, M.S. (2017). Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. Journal of Environmental Management, 198, 132-143.

- Ayangbenro, A.S., Babalola, O.O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14, 94.
- Bakshe, P., Jugade, R. (2023). Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 10, 100293.
- Balamurugan, D., Udayasooriyan, C., Kamaladevi, B. (2014). Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. International Journal of Environmental Sciences, 5, 522.
- Barceló, J., Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science, 333-344.
- Bhalerao, S.A. (2013). Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils. International Journal of Science and Nature, 4, 1-15.
- Bhargava, A., Carmona, F.F., Bhargava, M., Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of environmental management, 105, 103-120.
- Brereton, N.J.B., Gonzalez, E., Desjardins, D., Labrecque, M.,Pitre, F. E. (2020). Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil. Science of the Total Environment, 711, 135067.
- Cameron, H., Mata, M.T., Riquelme, C. (2018). The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. PeerJ, 6, e5295.
- Carrillo-González R., González-Chávez M.C.A. (2006). Metal accumulation in wild plants surrounding mining wastes. Environmental. Pollution, 144, 84-92.
- Chang, T.C., Yen, J.H. (2006). On-site mercury-contaminated soils remediation by using thermal desorption technology. Journal of hazardous materials, 128, 208-217.

- Chibuike, G.U., Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1-12.
- Chu, W., Chan, K. H. (2003). The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Science of the Total Environment, 307, 83-92.
- Coelho, L.M., Rezende, H.C., Coelho, L.M., De Sousa, P.A., Melo, D.F., Coelho, N.M. (2015). Bioremediation of polluted waters using microorganisms. Advances in bioremediation of wastewater and polluted soil, 10, 60770.
- Cornejo, P., Pérez-Tienda, J., Meier, S., Valderas, A., Borie, F., Azcón-Aguilar, C., Ferrol, N. (2013). Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry, 57, 925-928.
- Derakhshan Nejad, Z., Jung, M.C., Kim, K.H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927-953.
- Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of hazardous materials, 152, 1-31.
- Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B.P., Rai, J.P., Sharma, P.K., Lade, H., Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7, 2189-2212.
- FRTR, 2012. Remediation Technologies Screening Matrix and Reference Guide, Version 4.0. Federal Remediation Technologies Roundtable, Washington, DC.
- Gao, Y., He, J., Ling, W., Hu, H., Liu, F. (2003). Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 29, 613-618.
- Gómez-Jacinto, V., García-Barrera, T., Gómez-Ariza, J.L., Garbayo-Nores, I., Vílchez-Lobato, C. (2015). Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg—

- phytochelatins. Chemico-Biological Interactions, 238, 82-90.
- Guo, G., Zhou, Q., Ma, L.Q. (2006). Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environmental Monitoring and Assessment, 116, 513-528.
- Gupta, S.K., Herren, T., Wenger, K., Krebs, R., Hari, T. (2020). In situ gentle remediation measures for heavy metal-polluted soils. In Phytoremediation of contaminated soil and water (303-322).
- Hodson, M.E., Valsami-Jones, É., Cotter-Howells, J.D. (2000). Bonemeal additions as a remediation treatment for metal contaminated soil. Environmental Science & Technology, 34, 3501-3507.
- Hristozkova, M., Gigova, L., Geneva, M., Stancheva, I., Vasileva, I., Sichanova, M., Mincheva, J. (2017). Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants. Journal of Plant Protection Research, 57, 417-426.
- Huang, Y.T., Hseu, Z.Y., Hsi, H.C. (2011). Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, 84, 1244-1249.
- Imam, S.A., Rajpoot, I.K., Gajjar, B., Sachdeva, A. (2016). Comparative study of heavy metal bioremediation in soil by Bacillus subtilis and Saccharomyces cerevisiae. Indian Journal of Science and Technology, 9, 1-7.
- Islam, M.N., Taki, G., Nguyen, X.P., Jo, Y.T., Kim, J., Park, J.H. (2017). Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environmental Science and Pollution Research, 24, 7177-7183.
- Islam, M.S., Ahmed, M.K., Al-Mamun, M.H., Islam, S.M.A. (2019). Sources and ecological risks of heavy metals in soils under different land uses in Bangladesh. Pedosphere, 29, 665-675.
- Jabeen, R., Ahmad, A., Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Review, 75, 339-364.
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014).

- Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7, 60
- Jankaite, A., Vasarevičius, S. (2005). Remediation technologies for soils contaminated with heavy metals. Journal of environmental engineering and landscape management, 13, 109-113.
- Kang, C.H., Kwon, Y.J., So, J.S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological engineering, 89, 64-69.
- Karami, A., Shamsuddin, Z.H. (2010). Phytoremediation of heavy metals with several efficiency enhancer methods. African Journal of Biotechnology, 9, 3689-3698.
- Khan, F.I., Husain, T., Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of environmental management, 71, 95-122.
- Khan, I., Ghani, A., Rehman, A.U., Awan, S.A., Noreen, A., Khalid, I. (2016). Comparative analysis of heavy metal profile of Brassica campestris (L.) and Raphanus sativus (L.) irrigated with municipal waste water of sargodha city. Journal of Clinical Toxicology, 6, 2161-0495.
- Kim, G.N., Jung, Y.H., Lee, J.J., Moon, J.K., Jung, C.H. (2008). An analysis of a flushing effect on the electrokinetic-flushing removal of cobalt and cesium from a soil around decommissioning site. Separation and purification technology, 63, 116-121.
- Kim, G.N., Kim, S.S., Moon, J.K., Hyun, J.H. (2015). Removal of uranium from soil using full-sized washing electrokinetic separation equipment. Annals of Nuclear Energy, 81, 188-195.
- Kim, J.O., Lee, Y.W., Chung, J. (2013). The role of organic acids in the mobilization of heavy metals from soil. KSCE Journal of Civil Engineering, 17, 1596-1602.
- Kirpichtchikova, T.A., Manceau, A., Spadini, L., Panfili, F., Marcus, M.A., Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic

- modeling. Geochimica et Cosmochimica Acta, 70, 2163-2190.
- Kong, Z., Glick, B.R. (2017). The role of plant growth-promoting bacteria in metal phytoremediation. Advances in microbial physiology, 71, 97-132.
- Leita, L., De Nobili, M., Muhlbachova, G., Mondini, C., Marchiol, L., Zerbi, G. (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils, 19, 103-108.
- Leštan, D., Luo, C.L., Li, X.D. (2008). The use of chelating agents in the remediation of metal-contaminated soils: a review. Environmental Pollution, 153, 3-13.
- Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28, 380-394.
- Li, D., Sun, D., Hu, S., Hu, J., Yuan, X. (2016). Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr (VI)-contaminated soil. Chemosphere, 144, 1823-1830.
- Li, J., Zhang, G.N., Li, Y. (2010). Review on the remediation technologies of POPs. Hebei Environmental Science, 65, 1295-1299.
- Lim, J.E., Ahmad, M., Lee, S.S., Shope, C.L., Hashimoto, Y., Kim, K.R., Usman, A.R.A., Yang, J.E., Ok, Y.S. (2013). Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil. Clean—Soil, Air, Water, 41, 1235-1241.
- Ling, W., Shen, Q., Gao, Y., Gu, X., Yang, Z. (2007). Use of bentonite to control the release of copper from contaminated soils. Soil Research, 45, 618-623.
- Liu, L., Li, W., Song, W., Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the total environment, 633, 206-219.
- Lwin, C.S., Seo, B.H., Kim, H.U., Owens, G., Kim, K.R. (2018). Application of soil amendments to contaminated soils for heavy

- metal immobilization and improved soil quality—A critical review. Soil Science and Plant Nutrition, 64, 156-167.
- Madrid, Y., Cabrera, C., Perez-Corona, T., (1995).Camara, C. Speciation of methylmercury and Hg (II) using baker's yeast biomass (Saccharomyces cerevisiae). Determination by continuous flow mercury cold generation vapor atomic absorption spectrometry. Analytical chemistry, 67, 750-754.
- Maity, J.P., Huang, Y.M., Fan, C.W., Chen, C.C., Li, C. Y., Hsu, C.M., Chang, Y.F., Wu, C.I., Chen, C.Y., Jean, J.S. (2013). Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu, Taiwan. Journal of Environmental Sciences, 25, 1180-1185.
- Maslin, P., Maier, R.M. (2000). Rhamnolipidenhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremediation Journal, 4, 295-308.
- Massoud, R., Hadiani, M.R., Hamzehlou, P., Khosravi-Darani, K. (2019). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 37, 56-60.
- Maturi, K., Reddy, K.R. (2008). Extractants for the removal of mixed contaminants from soils. Soil and sediment contamination, 17, 586-608.
- Mesjasz-Przybyłowicz, J., Nakonieczny, M., Migula, P., Augustyniak, M., Tarnawska, M., Reimold, W.U., Koeberl, C., Przybylowicz, W., Głowacka, E. (2004). Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series. Botica, 46, 75-85.
- Meuser, H. (2012). Soil remediation and rehabilitation: treatment of contaminated and disturbed land (Vol. 23). Springer Science and Business Media.
- Mulligan, C.N., Yong, R.N., Gibbs, B.F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193-207.
- Naidu, R., Harter, R.D. (1998). Effect of different organic ligands on cadmium sorption by and

- extractability from soils. Soil Science Society of America Journal. 62, 644-650.
- Navarro, A. (2012). Effect of sludge amendment on remediation of metal contaminated soils. Minerals, 2, 473-492.
- Naveed, S., Oladoye, P.O., Alli, Y.A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018.
- Ng, Y.S., Gupta, B.S., Hashim, M.A. (2014). Performance evaluation of two-stage electrokinetic washing as soil remediation method for lead removal using different wash solutions. Electrochimica Acta, 147, 9-18.
- Ojuederie, O.B., Babalola, O.O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health, 14, 1504.
- Ok, Y.S., Oh, S.E., Ahmad, M., Hyun, S., Kim, K.R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.T., Yang, J.E. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61, 1301-1308.
- Otero, M., Cutillas-Barreiro, L., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Núñez-Delgado, A. (2015). Cr (VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration. Solid Earth, 6, 373-382.
- Peralta-Videa, J.R., Lopez, M.L., Narayan M., Saupe, G., Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. International Journal of Biochemistry and Cell Biology, 41, 1665-1677.
- Pérez-Corona, T., Madrid, Y., Cámara, C. (1997). Evaluation of selective uptake of selenium (Se (IV) and Se (VI)) and antimony (Sb (III) and Sb (V)) species by baker's yeast cells (Saccharomyces cerevisiae). Analytica Chimica Acta, 345, 249-255.
- Qian, S.Q., Liu, Z. (2000). An overview of development in the soil-remediation technologies. Chemical Industrial and Engineering Process, 4, 20.

- Qiao, J., Sun, H., Luo, X., Zhang, W., Mathews, S., Yin, X. (2017). EDTA-assisted leaching of Pb and Cd from contaminated soil. Chemosphere, 167, 422-428.
- Radziemska, M., Koda, E., Bilgin, A., Vaverková, M.D. (2018). Concept of aided phytostabilization of contaminated soils in postindustrial areas. International journal of environmental research and public health, 15, 24.
- Rai, P.K., Lee, J., Kailasa, S.K., Kwon, E.E., Tsang, Y.F., Ok, Y.S., Kim, K.H. (2018). A critical review of ferrate (VI)-based remediation of soil and groundwater. Environmental research, 160, 420-448.
- Rajkumar, M., Ae, N., Freitas, H. (2009). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77, 153-160.
- Ramachandran, P., Sundharam, R., Palaniyappan, J., Munusamy, A.P. (2013). Potential process implicated in bioremediation of textile effluents: a review. Advances in Applied Science Research, 4, 131-145.
- Ramalingam, V. (2013). Electrokinetic remediation. The International Information Center for Geotechnical Engineers.

Electrokinetic Remediation | Geoengineer.org

- Ramamoorthy, D. (2015). Assessment of heavy metal pollution and its impacts on soil physical, chemical properties and β -glucosidase activities in agricultural lands, Puducherry region. Pol J Environ Stud, 25, 1045-1051.
- Erakhrumen, A.A., Agbontalor, A. (2007). Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Review, 2, 151-156.
- Roh, Y., Edwards, N.T., Lee, S.Y., Stiles, C.A., Armes, S., Foss, J.E. (2000). Thermal-treated soil for mercury removal: Soil and phytotoxicity tests. Journal of Environmental Quality, 29, 415-424.
- Soares, H.M. E.V., Soares, (2012).Bioremediation industrial of effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environmental Science and Pollution Research, 19, 1066-1083.

- Soares, M.A.R., Quina, M.J., Quinta-Ferreira, R. M. (2015). Immobilization of lead and zinc in contaminated soil using compost derived from industrial eggshell. Journal of Environmental Management, 164, 137-145.
- Song, B., Zeng, G., Gong, J., Liang, J., Xu, P., Liu, Z., Zhang, Y., Zhang, C., Cheng, M., Liu, Y., Ye, S., Yi, H., Ren, X. (2017). Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 105, 43-55.
- Sun, H., Wang, H., Qi, J., Shen, L., Lian, X. (2011). Study on surfactants remediation in heavy metals contaminated soils. IEEE. In 2011 International Symposium on Water Resource and Environmental Protection, 3, 1862-1865.
- Sun, J., Cheng, J., Yang, Z., Li, K., Zhou, J., Cen, K. (2015). Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresource Technology, 194, 305-311.
- United States Environmental Protection Agency (USEPA) 2007. Integrated Risk Information System-database. USEPA, Washington, D. C.
- United States. Environmental Protection Agency. (1990). Engineering bulletin: Soil washing treatment.
- Ussiri, D.A.N, Lal, R. (2005). Carbon sequestration in reclaimed minesoils. Critical Reviews in Plant Sciences, 24, 151-165.
- Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765-794.
- Wang, Z., Chen, Y., Wang, S., Yu, Y., Huang, W., Xu, Q., Zeng, L. (2022). Pollution risk assessment and sources analysis of heavy metal in soil from bamboo shoots. International

- Journal of Environmental Research and Public Health, 19, 14806.
- Wei, B., Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99-107.
- Wei, J., Tao, T., Zhi-Ming, L. (2011). Removal of heavy metal from contaminated soil with chelating agents. Open Journal of Soil Science, 1, 70-76.
- Wood, A.L., Bouchard, D.C., Brusseau, M.L., Rao, P.S.C. (1990). Cosolvent effects on sorption and mobility of organic contaminants in soils. Chemosphere, 21, 575-587.
- Wuana, R.A., Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 1, 402647.
- Yao, H., Xu, J., Huang, C. (2003). Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma, 115, 139-148.
- Yao, Z., Li, J., Xie, H., Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722-729.
- Zhang, H., Dang, Z., Zheng, L. C., Yi, X.Y. (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science and Technology, 6, 249-258.
- Zhang, X.H., Wang, H., Luo, Q.S. (2001). Electrokinetics in remediation of contaminated groundwater and soils. Advances in Water Science, 12, 249-255.
- Zhou, D.M., Hao, X. Z., Xue, Y. (2004). Advances in remediation technologies of contaminated soils. Ecology and Environmental Science, 13, 234–242.

Apéndice

Lista de los 103 artículos consultados sobre la problemática general de contaminación de suelos por metales y metaloides tóxicos, así como los métodos de naturaleza física, química y biológica utilizados en la remediación de suelos afectados.

	Título	Autor	Año	Revista	Cuartil	Editorial
1	Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5	Abinandan et al.	2019	Bioresource technology	Q1	Elsevier
2	Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli	Achal et al.	2012	Journal of Hazardous Materials	Q1	Elsevier
3	Trace Elementsin Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer, New York, NY, USA, 2nd edition.	Adriano	2003	Reviews of Environmental Contamination and Toxicology	Q1	Springer
4	Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L.	Ali et al.	2013	Journal of Plant Growth Regulation	Q1	Springer
5	Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic	Alkorta et al.	2004	Reviews in Environmental Science and Biotechnology	Q2	Springer
6	Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.)	Almaroai et al.	2012	soil science an interdisciplinary approach to soils research		
7	Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review	Alshawabkeh y Bricka	2017	Journal of Environmental Management	Q1	Elsevier
8	Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review	Ashraf et al.	2017	Journal of Environmental Management	Q1	Elsevier
9	A new strategy for heavy metal polluted environments: a review of microbial biosorbents	Ayangbenro y Babalola	2017	International journal of environmental research and public health	Q2	MDPI
10	Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review	Bakshe y Jugade	2023	Journal of Hazardous Materials Advances	Q1	Elsevier
11	Chromium (VI) reduction by Pseudomonas putida and Bacillus	Balamurugan et al.	2014	International Journal of Environmental Sciences	Q4	CAB Direct

	subtilis isolated from contaminated soils					
12	Arbuscular mycorrhizal fungi: a potential biotechnological tool for phytoremediation of heavy metal contaminated soils	Bhalerao	2013	International Journal of Science and Nature		SOCIETY FOR SCIENCE AND NATURE
13	Approaches for enhanced phytoextraction of heavy metals	Bhargava <i>et</i> al.	2012	Journal of environmental management	Q1	Elsevier
14	Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil	Bereton et al.	2020	Science of the Total Environment	Q1	Elsevier
15	The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation	Cameron et al.	2018	Microbiology		PeerJ
16	Metal accumulation in wild plants surrounding mining wastes	Carrillo- González y González- Chávez	2006	Environmental Pollution	Q1	Elsevier
17	On-site mercury-contaminated soils remediation by using thermal desorption technology	Chang y Yen	2006	Journal of Hazardous Materials	Q1	Elsevier
18	Heavy metal polluted soils: effect on plants and bioremediation methods	Chibuike y Obiora	2014	Applied and environmental soil science	Q2	Hindawi Publishing Corporation
19	The mechanism of the surfactant- aided soil washing system for hydrophobic and partial hydrophobic organics	Chu y Chan	2003	Science of the Total Environment	Q1	Elsevier
20	Bioremediation of polluted waters using microorganisms	Coelho et al.	2015	Advances in bioremediation of wastewater and polluted soil		
21	Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu- polluted environments	Cornejo et al.	2013	Soil Biology and Biochemistry	Q1	Elsevier
22	Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology	Derakhshan et al.	2018	Environmental geochemistry and health	Q1	Springer Netherlands
23	Soil washing for metal removal: a review of physical/chemical technologies and field applications	Dermont et al.	2008	Journal of hazardous materials	Q1	Elsevier
24	Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes	Dixit et al.	2015	Sustainability	Q2	MDPI AG
25	Remediation Technologies Screening Matrix and Reference Guide, Version 4.0.	FRTR	2012	Version 4.0. Federal Remediation Technologies Roundtable		
26	Effects of organic acids on copper and cadmium desorption from contaminated soils	Gao et al.	2003	Environment International	Q1	Elsevier

27	Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg-phytochelatins	Gómez- Jacinto <i>et al</i> .	2015	Chemico-Biological Interactions	Q1	Elsevier
28	Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review	Guo et al.	2006	Environmental monitoring and assessment	Q2	Springer Netherlands
29	In situ gentle remediation measures for heavy metal-polluted soils	Gupta et al.	2020	In Phytoremediation of contaminated soil and water		Libro
30	Bonemeal additions as a remediation treatment for metal contaminated soil	Hodson et al.	2000	Environmental Science & Technology	Q1	American Chemical Society
31	Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants	Hristozkova et al.	2017	Journal of Plant Protection Research	Q2	Polish Academy of Sciences, Committee of Plant Protection
32	Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals	Huang et al.	2011	Chemosphere	Q1	Elsevier
33	Comparative study of heavy metal bioremediation in soil by Bacillus subtilis and Saccharomyces cerevisiae	Imam et al.	2016	Indian Journal of Science and Technology	Q2	Indian Society for Education and Environment
34	Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell	Islam et al.	2017	Environmental Science and Pollution Research	Q2	Springer Science + Business Media
35	Sources and ecological risks of heavy metals in soils under different land uses in Bangladesh	Islam <i>et al</i> .	2019	Pedosphere	Q1	Institute of Soil Science
36	Phytoremediation of heavy metals: physiological and molecular mechanisms	Jabeen et al.	2009	The Botanical Review	Q2	Springer New York
37	Toxicity, mechanism and health effects of some heavy metals	Jaishankar <i>et</i> al.	2014	Interdisciplinary toxicology	Q3	Slovak Toxicology Society SETOX
38	Remediation technologies for soils contaminated with heavy metals	Jankaite y Vasarevičius	2005	Journal of environmental engineering and landscape management	Q3	Vilnius Gediminas Technical University
39	Bioremediation of heavy metals by using bacterial mixtures	Kang et al.	2016	Ecological engineering	Q1	Elsevier
40	Phytoremediation of heavy metals with several efficiency enhancer methods	Karami y Shamsuddin	2010	African Journal of Biotechnology	Q3	Academic Journals
41	An overview and analysis of site remediation technologies	Khan et al.	2004	Journal of environmental management	Q2	Academic Press Inc
42	Comparative analysis of heavy metal profile of Brassica campestris (L.) and Raphanus sativus (L.) irrigated with municipal waste water of sargodha city	Khan et al.	2016	J Clin Toxicol	Q1	Informa Healthcare

43	An analysis of a flushing effect on the electrokinetic-flushing removal of cobalt and cesium from a soil around decommissioning site	Kim et al.	2008	Separation and purification technology	Q2	Elsevier
44	Removal of uranium from soil using full-sized washing electrokinetic separation equipment	Kim et al.	2015	Annals of Nuclear Energy	Q1	Elsevier
45	The role of organic acids in the mobilization of heavy metals from soil	Kim et al.	2013	KSCE Journal of Civil Engineering	Q3	Korean Society of Civil Engineers
46	Speciation and solubility of heavy metals in contaminated soil using X- ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling	Kirpichtchik ova et al.	2006	Geochimica et Cosmochimica Acta	Q1	Elsevier
47	The role of plant growth-promoting bacteria in metal phytoremediation	Kong y Glick	2017	Advances in microbial physiology	Q2	Academic Press Inc.
48	Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation	Leita et al.	1995	Biology and Fertility of Soils	Q1	Springer Verlag
49	The use of chelating agents in the remediation of metal-contaminated soils: a review	Leštan et al.	2008	Environmental Pollution	Q1	Elsevier
50	A review on heavy metals contamination in soil: effects, sources, and remediation techniques	Li et al.	2019	Soil and Sediment Contamination: An International Journal		
51	Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr (VI)-contaminated soil	Li et al.	2016	Chemsphere	Q1	Elsevier
52	Review on the remediation technologies of POPs	Li et al.	2010	Hebei Environmental Science		
53	Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil	Lim et al.	2013	Clean–Soil, Air, Water	Q2	Wiley-VCH Verlag
54	Use of bentonite to control the release of copper from contaminated soils	Ling et al.	2007	Soil research	Q1	CSIRO
55	Remediation techniques for heavy metal-contaminated soils: Principles and applicability	Liu et al.	2018	Science of the Total Environment	Q1	Elsevier
56	Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review.	Lwin et al.	2018	Soil science and plant nutrition	Q2	Taylor and Francis Ltd.
57	Speciation of methylmercury and Hg (II) using baker's yeast biomass (Saccharomyces cerevisiae). Determination by continuous flow mercury cold vapor generation atomic absorption spectrometry	Madrid et al.	1995	Analytical chemistry	Q1	American Chemical Society
58	Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu, Taiwan	Maity et al.	2013	Journal of Environmental Sciences	Q1	Chinese Academy of Sciences

59	Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils	Maslin y Maier	2000	Bioremediation Journal	Q1	Taylor and Francis
60	Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae	Massoud et al.,	2019	Electronic Journal of Biotechnology	Q3	Elsevier
61	Extractants for the removal of mixed contaminants from soils	Maturi y Reddy	2008	Soil & sediment contamination	Q2	Taylor and Francis
62	Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii	Mesjasz- Przybyłowicz et al.	2004	Acta Biologica Cracoviensia Series Botanica	Q4	Polish Academy of Sciences, Biological Commission
63	Soil remediation and rehabilitation: treatment of contaminated and disturbed land (Vol. 23)	Meuser, H.	2012	Libro		Springer Science & Business Media
64	Remediation technologies for metal- contaminated soils and groundwater: an evaluation	Mulligan	2001	Engineering geology	Q1	Elsevier
65	Effect of different organic ligands on cadmium sorption by and extractability from soils	Naidu y Harter	1998	Soil Science Society of America Journal	Q1	John Wiley & Sons Inc.
66	Effect of sludge amendment on remediation of metal contaminated soils	Navarro	2012	Minerals	Q3	Multidisciplinary Digital Publishing Institute (MDPI)
67	Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology	Naveed et al.	2023	Q1		
68	Performance evaluation of two-stage electrokinetic washing as soil remediation method for lead removal using different wash solutions	Ng et al.	2014	Electrochimica Acta	Q1	Elsevier
69	Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review	Ojuederie y Babalola	2017	International journal of environmental research and public health	Q2	Multidisciplinary Digital Publishing Institute (MDPI)
70	Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils	Ok et al.	2010	Environmental Earth Sciences	Q2	Springer Verlag
71	Cr (VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration	Oteto et al.	2015	Solid Earth	Q1	Copernicus Gesellschaft mbH
72	The biochemistry of environmental heavy metal uptake by plants: implications for the food chain	Peralta-Videa et al.	2009	International Journal of Biochemistry and Cell Biology	Q1	Elsevier
73	Evaluation of selective uptake of selenium (Se (IV) and Se (VI)) and antimony (Sb (III) and Sb (V)) species by baker's yeast cells (Saccharomyces cerevisiae)	Pérez-Corona et al.	1997	Analytica Chimica Acta	Q1	Elsevier
74	Phytoremediation: principles and perspectives	Barceló y Poschenriede	2003	Contributions to science		Institut d'Estudis Catalans

75	An overview of development in the soil-remediation technologies	Qian y Liu	2000	Chemical Industrial and Engineering Process	Q4	American Chemical Society
76	EDTA-assisted leaching of Pb and Cd from contaminated soil	Oiao et al.	2017	Chemosphere	Q1	Elsevier
77	Concept of aided phytostabilization of contaminated soils in postindustrial areas	Radziemska et al.	2018	International journal of environmental research and public health	Q2	Multidisciplinary Digital Publishing Institute (MDPI)
78	A critical review of ferrate (VI)- based remediation of soil and groundwater	Rai <i>et al</i> .	2018	Environmental research	Q1	Academic Press Inc.
79	Endophytic bacteria and their potential to enhance heavy metal phytoextraction	Rajkumar <i>et</i> al.	2009	Chemosphere	Q1	Elsevier
80	Potential process implicated in bioremediation of textile effluents: a review	Ramachandra n et al.	2013	Adv Appl Sci Res		
81	Electrokinetic remediation	Ramalingam et al.	2013	Elxis sa Available at:< http://www.geoengineer. org/education/web-based- class- projects/geoenvironmental- remediation- technologies/electrokinetic- remediation		
82	Assessment of heavy metal pollution and its impacts on soil physical, chemical properties and β-glucosidase activities in agricultural lands, Puducherry region	Ramamoorth y et al.	2015	Pol J Environ Stud	Q2	HARD
83	Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries	Erakhrumen y Agbontalor,	2007	Educational Research and Reviews	Q4	Academic Journals
84	Thermal-treated soil for mercury removal: Soil and phytotoxicity tests	Roh et al.	2000	American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America	Q1	John Wiley & Sons Inc.
85	Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review	Soares y Soares	2012	Environmental Science and Pollution Research	Q1	Springer
86	Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell	Soares et al.	2015	Journal of environmental management	Q1	Academic Press Inc
87	Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals	Song et al.	2017	Environment international	Q1	Elsevier
88	Study on surfactants remediation in heavy metals contaminated soils	Sun et al.	2011	In 2011 International Symposium on Water Resource and Environmental Protection (Vol. 3, pp. 1862-1865)		

89	Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation	Sun et al.	2015	Bioresource Technology	Q1	Elsevier
90	Integrated Risk Information System- database	United States. Environment al Protection Agency	2007	US Environmental Protection Agency		
91	Engineering bulletin: Soil washing treatment	US Environment al Protection Agency	1990	US Environmental Protection Agency		
92	Carbon sequestration in reclaimed minesoils	Ussiri y Lal	2005	Critical Reviews in Plant Sciences	Q1	Taylor and Francis
93	Phytoremediation of contaminated soils and groundwater: lessons from the field	Vangronsvel d et al.	2009	Environmental Science and Pollution Research	Q1	Springer Science + Business Media
94	Pollution risk assessment and sources analysis of heavy metal in soil from bamboo shoots	Wang et al.	2022	International Journal of Environmental Research and Public Health	Q2	MDPI
95	A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China	Wei y Yang	2010	Microchemical journal	Q2	Elsevier
96	Removal of heavy metal from contaminated soil with chelating agents	Wei et al.	2011	Open Journal of Soil Science		
97	Cosolvent effects on sorption and mobility of organic contaminants in soils	Wood et al.	1990	Chemosphere	Q1	Elsevier
98	Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation	Wuana y Okieimen	2011	International Scholarly Research Notices	-	
99	Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils	Yao et al.	2003	Geoderma	Q1	Elsevier
100	Review on remediation technologies of soil contaminated by heavy metals	Yao et al.	2012	Procedia Environmental Sciences		
101	Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.)	Zhang et al.	2009	International Journal of Environmental Science & Technology	Q2	CEERS
102	Electrokinetics in remediation of contaminated groundwater and soils	Zhang et al.	2001	Ad vances in Water Resources	Q1	Elsevier
103	Advances in remediation technologies of contaminated soils	Zhou et al.	2004	Ecology and Environmental Science	Q4	International Scientific Publications