DS4300 Midterm Prep - RAG Guide

- 1. What is the difference between a list where memory is contiguously allocated and a list where linked structures are used?
 - Contiguously allocated lists (like arrays) store elements in back-to-back memory locations.
 - o Pros: Fast random access via indexing.
 - Cons: Insertions/deletions (especially in the middle) require shifting elements.
 - Linked lists store elements as nodes connected by pointers.
 - Pros: Insertions/deletions are efficient if the node is known.
 - Cons: Slower access (no indexing) due to traversal.
- 2. When are linked lists faster than contiguously-allocated lists?
 - When frequent insertions or deletions happen, especially at the beginning or middle of the list.
 - When list size is unpredictable, so avoiding reallocation overhead is valuable.
 - Random access isn't needed, and traversal-based access is sufficient.
- 3. Add 23 to the AVL Tree below. What imbalance case is created?

```
30
/\
25 35
/
20
```

- Inserting $23 \rightarrow \text{goes to } 30 \rightarrow 25 \rightarrow 20 \rightarrow \text{inserted as right child of } 20$.
- This causes a Left-Right (LR) Imbalance at node 25.
- Fix: Rotate left at 20, then right at 25.
- 4. Why is a B+ Tree better than an AVL tree for large datasets?
 - B+ Trees:
 - Designed for disk-based access.
 - All data in leaf nodes fast range queries.
 - Higher fan-out = shallower trees \rightarrow fewer disk I/Os.
 - AVL Trees:
 - o Balanced in memory.
 - Not optimized for disk access or range scanning.

- 5. What is disk-based indexing and why is it important for databases?
 - Storing indexes on disk instead of RAM.
 - Used for very large datasets.
 - Indexing structures like B-Trees minimize disk reads.
 - Enables fast lookup, insertion, and deletion on persistent storage.
- 6. In a relational DB, what is a transaction?
 - A transaction is a sequence of operations performed as a single unit.
 - Either all operations succeed (commit) or none are applied (rollback).

7. Four Components of ACID Transactions

- A Atomicity: All-or-nothing execution.
- C Consistency: Maintains data integrity rules.
- I Isolation: Transactions don't interfere with each other.
- D Durability: Committed changes persist even during crashes.

8. Why does CAP not apply to single-node MongoDB?

- CAP Theorem applies to distributed systems.
- In a single-node MongoDB:
 - No partitioning possible.
 - So, the tradeoff between Consistency, Availability, and Partition Tolerance doesn't make sense.

9. Horizontal vs Vertical Scaling

- Horizontal Scaling: Add more machines (scale out).
 - o Pros: More scalable, fault-tolerant.
- Vertical Scaling: Upgrade existing machine's hardware.
 - Pros: Simpler but limited by hardware.

10. How can a key-value store act as a feature store?

- Use entity IDs as keys and feature vectors as values.
- Fast retrieval of precomputed features during model inference.

11. When was Redis released?

• Redis was released in 2009.

12. Redis: INC vs INCR

- INCR: Increments the value at a key by 1.
- INC: Not a valid Redis command.

13. BSON vs JSON in MongoDB

- BSON:
 - o Binary format.
 - Supports more types (e.g., Date, Binary).
 - More efficient for storage and transmission.
- JSON:
 - o Text-based.
 - o Easier to read, but limited in type support.

14. MongoDB Query: Suspense movies between 2010–2015

```
db.movies.find(
    {
        year: { $gte: 2010, $lte: 2015 },
        genre: "suspense"
    },
      {
        title: 1,
        _id: 0
    }
}
```

15. What does \$nin mean in MongoDB?

- \$nin: "Not in" Matches values not in a given array.
- Example: { rating: { \$nin: [3, 4] } } matches documents where rating is not 3 or 4.