Common Marmoset Gut Microbiome Profiles in Health and Intestinal Disease

Alex Sheh and Jose Molina Mora

September 21, 2020

Loading R data file to generate figure 3b-d and Supplemental Figures 5a-c. Includes the following data: fig3b - NMDS1 by source and IBD fig3c - ratio of Bacteroides to Prevotella 9 fig3d - ROC for serum chemistry and CBCs Supplemental figure 5a - microbiome data by source and IBD status Supplemental figure 5b - serum chemistry by source Supplemental figure 5c - CBC by source

```
load("fig3_sfig5_data.RData")
```

```
#for figure 3 images
library(ggplot2)
library(ggthemes)
library(grid)
library(scales)
library(RColorBrewer)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ape)
library(phyloseq)
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-6
```

```
library(reshape2)
# for ML algorithms
library(caret)
##
## Attaching package: 'caret'
## The following object is masked from 'package:vegan':
##
##
       tolerance
library(ROCR)
library(rpart)
library(rattle)
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(ellipse)
## Attaching package: 'ellipse'
## The following object is masked from 'package:graphics':
##
##
       pairs
library(ggfortify)
library(vioplot)
## Loading required package: sm
## Package 'sm', version 2.2-5.6: type help(sm) for summary information
##
## Attaching package: 'sm'
## The following object is masked from 'package:rattle':
##
##
       binning
## Loading required package: zoo
```

```
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(plotrix)
##
## Attaching package: 'plotrix'
## The following object is masked from 'package:scales':
##
       rescale
library(gcrma)
## Loading required package: affy
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
       clusterExport, clusterMap, parApply, parCapply, parLapply,
       parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following objects are masked from 'package:dplyr':
##
##
       combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
##
       union, unique, unsplit, which, which.max, which.min
```

```
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:phyloseq':
##
##
       sampleNames
library(RColorBrewer)
library(kmed)
sessionInfo()
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] parallel grid
                                     graphics grDevices utils
                           stats
                                                                    datasets
## [8] methods
                base
##
## other attached packages:
## [1] kmed_0.3.0
                            gcrma_2.58.0
                                                affy_1.64.0
## [4] Biobase_2.46.0
                            BiocGenerics_0.32.0 plotrix_3.7-8
## [7] vioplot_0.3.5
                            zoo_1.8-8
                                                sm_2.2-5.6
## [10] ggfortify_0.4.10
                            ellipse_0.4.2
                                                rattle_5.4.0
## [13] bitops_1.0-6
                            tibble_3.0.3
                                                rpart_4.1-15
## [16] ROCR_1.0-11
                            caret_6.0-86
                                                reshape2_1.4.4
## [19] vegan_2.5-6
                            lattice_0.20-38
                                                permute_0.9-5
## [22] phyloseq_1.30.0
                            ape_5.4
                                                dplyr_1.0.0
## [25] RColorBrewer_1.1-2 scales_1.1.1
                                                ggthemes_4.2.0
## [28] ggplot2_3.3.2
## loaded via a namespace (and not attached):
## [1] nlme_3.1-144
                             lubridate 1.7.9
                                                    tools_3.6.3
                              R6_2.4.1
## [4] affyio_1.56.0
                                                    mgcv_1.8-31
```

```
## [7] colorspace 1.4-1
                              ade4_1.7-15
                                                    nnet 7.3-12
## [10] withr 2.2.0
                                                    gridExtra 2.3
                              tidyselect_1.1.0
                                                    stringr 1.4.0
## [13] preprocessCore 1.48.0 compiler 3.6.3
## [16] digest_0.6.25
                              rmarkdown_2.3
                                                    XVector_0.26.0
## [19] pkgconfig_2.0.3
                              htmltools_0.5.0
                                                    rlang_0.4.7
## [22] generics 0.0.2
                              jsonlite 1.7.0
                                                    ModelMetrics 1.2.2.2
## [25] magrittr_1.5
                              biomformat 1.14.0
                                                    Matrix 1.2-18
## [28] Rcpp 1.0.5
                              munsell_0.5.0
                                                    S4Vectors_0.24.4
## [31] Rhdf5lib 1.8.0
                              lifecycle_0.2.0
                                                    stringi_1.4.6
## [34] pROC_1.16.2
                              yaml_2.2.1
                                                    MASS_7.3-51.6
## [37] zlibbioc_1.32.0
                              rhdf5_2.30.1
                                                    plyr_1.8.6
## [40] recipes_0.1.13
                              crayon_1.3.4
                                                    Biostrings_2.54.0
## [43] splines_3.6.3
                              multtest_2.42.0
                                                    knitr_1.29
## [46] pillar_1.4.6
                              tcltk_3.6.3
                                                    igraph_1.2.5
## [49] codetools_0.2-16
                              stats4_3.6.3
                                                    glue_1.4.1
## [52] evaluate_0.14
                              BiocManager_1.30.10
                                                    data.table_1.12.8
## [55] vctrs_0.3.1
                              foreach_1.5.0
                                                    gtable_0.3.0
## [58] purrr 0.3.4
                              tidyr 1.1.1
                                                    xfun 0.16
                              prodlim_2019.11.13
                                                    class_7.3-15
## [61] gower_0.2.2
## [64] survival 3.1-8
                              timeDate_3043.102
                                                    iterators 1.0.12
## [67] IRanges_2.20.2
                              cluster_2.1.0
                                                    lava_1.6.7
## [70] ellipsis_0.3.1
                              ipred_0.9-9
```

Figure 3b and Supplemental Figure 5a - IBD

Figure 3b & 5a code

Figure 3b plots the NMDS1 value for each sample divided by source or IBD status

```
# create otu table
otu_lower_allx_hvi = otu_table(lower_allx_hvi, taxa_are_rows = TRUE)
#create a taxa table
taxonomy = tax_table(taxo)
#convert to sample data matrix
meta_lower_allx_hvi <-sample_data(map_lower_allx_hvi)</pre>
# #check
# head(colnames(otu_lower_allx_hvi),20)
# head(rownames(meta_lower_allx_hvi),20)
#making sure rownames are colnames
colnames(otu lower allx hvi)<-rownames(meta lower allx hvi)</pre>
#create the phyloseq object
phylo_lower_allx_hvi <- phyloseq(otu_lower_allx_hvi, taxonomy, meta_lower_allx_hvi)</pre>
# create tree object
set.seed(1234)
tree_lower_allx_hvi <-rtree(ntaxa(phylo_lower_allx_hvi), rooted = TRUE,</pre>
                             tip.label = taxa_names(phylo_lower_allx_hvi))
#incorporate the tree object
```

```
phylo_lower_allx_hvi <- phyloseq(otu_lower_allx_hvi, taxonomy,</pre>
                                  meta_lower_allx_hvi, tree_lower_allx_hvi)
####### FILTERING
# subset by removing OTUs appearing < x times in < 1\% of samples
wh0 = genefilter_sample(phylo_lower_allx_hvi, filterfun_sample(function(x) x>10),
                         A=0.01*nsamples(phylo_lower_allx_hvi))
phylo_lower_allx_hvi_filt = prune_taxa(wh0, phylo_lower_allx_hvi)
#obtain even sampling depth
phylo_lower_allx_hvi_filt = transform_sample_counts(phylo_lower_allx_hvi_filt,
                                                      function(x) 1E6 * x/sum(x))
# ntaxa(phylo_lower_allx_hvi)
# ntaxa(phylo_lower_allx_hvi_filt)
########function stressbar
stressbar<-function(physeq){</pre>
 n = 20
 stress <- vector(length = n)</pre>
  for (i in 1:n) {
    stress[i] <- ordinate(physeq, "NMDS", "bray",k=i)$stress</pre>
 names(stress) <- paste0(1:n, "Dim")</pre>
 par(mar = c(3.5, 3.5, 1, 1), mgp = c(2, 0.6, 0), cex = 0.8, las = 2)
 barplot(stress, ylab = "stress")
}
# ########################## ORDINATE
#### ABUNDANCE FILTER
ord.plh.f <-ordinate (phylo_lower_allx_hvi_filt, "NMDS", "bray",
                       trymax = 50, k=3)
p.f = plot_ordination(phylo_lower_allx_hvi_filt, ord.plh.f,
                       type="taxa", color="Phylum", title="taxa")
p.f = p.f + facet_wrap(~Phylum, 3)
p.fb = plot_ordination(phylo_lower_allx_hvi_filt, ord.plh.f,
                        type="samples", color="dev_ibd_src",shape="dev_ibd")
p.fb = p.fb + geom_point(size=1) + ggtitle("samples")
#### get coordinates for the ordination
a<-cbind(p.fb$data)</pre>
# write.csv(a, "all hvi filtered.csv", row.names = FALSE)
a<-cbind(p.f$data)</pre>
# write.csv(a, "all_hvi_filtered_taxa.csv", row.names = FALSE)
scrs <-scores(ord.plh.f)</pre>
cent <-aggregate(scrs~dev_ibd_src, data=map_lower_allx_hvi, FUN="mean")</pre>
# write.csv(cent, "centroids.txt", row.names = FALSE)
b<-p.fb$data
vio_b<- ggplot(b, aes(x=dev_ibd_src,y=NMDS1,fill=Source)) +</pre>
 geom_violin(trim=FALSE) +
```

```
stat_summary(fun=mean, geom="point",size=2, color="red") +
scale_color_brewer(palette="Dark2") +
labs(title="Plot of NMDS1 by source and IBD status",x="Source and IBD status", y="NMDS1") +
theme(axis.text.x = element_text(size=7)) +
scale_y_continuous(limits=c(-1.5,2.5), breaks=seq(-1.5,2.5,0.5))
```

Supplemental Figure 5a

Ordination plot for microbiome data by source and IBD status

p.fb

Figure 3b

vio_b

Figure 3c

Figure 3c creates boxplots comparing the abundance of Bacteroides and Prevotella 9 for the entire cohort and in subsets by source based on IBD status.

Machine Learning algorithm Machine learning algorithm originally developed by Jose Molina Mora and modified by Alex Sheh. Data normalized by min-max normalization prior to importation.

Figure 3d part I and Supplemental Figure 5b - ROC for serum chemistry

```
#ANALYSIS OF RANKING ALGORITHMS AND PARAMETER SELECTION
#Developed by Jose Molina Mora. Modified by Alex Sheh
# random forest models modeling stricture data based on microbiome

# PART 1. LOAD DATA and metadata. Visualization of data
set.seed(5)
Data <- ibd_chem
conditions <-ibd_meta_chem
pca<-prcomp(Data)
autoplot(pca, data = conditions, colour = 'Class', main = "PCA for all data")</pre>
```

PCA for all data


```
# Split the data into training (80%) and testing (20%) sets
test_index<-createDataPartition(conditions$Class, p=0.80, list = FALSE)</pre>
Dtraining <- Data[test_index, ]</pre>
Dtesting<- Data[-test_index,]</pre>
Conditrain<-conditions[test_index, ]</pre>
Conditesting<-conditions[-test_index,]</pre>
# Distribution in training set
percentage <- prop.table(table(Conditrain$Class)) * 100</pre>
#Distribution in testing set
percentage2 <- prop.table(table(Conditesting$Class))*100</pre>
# PART 2. DISTRIBUTION OF VARIABLES BY CLASS
# Performed on training data but could be done on entire set or testing set
# split input and output
x <- Dtraining
y <- Conditrain Class # class
sx <- Dtraining[,c(1:6)]</pre>
#ALGORITHMS
# Run algorithms using 10-fold cross validation
control <- trainControl(method="cv", number=10, classProbs=TRUE)</pre>
metric <- "Accuracy"</pre>
#Clasification algorithms
# a) linear algorithms
```

```
fit.lda <- train(Dtraining, Conditrain$Class, method="lda", metric=metric,
                 trControl=control)
# b) nonlinear algorithms
# CART
fit.cart <- train(Dtraining, Conditrains*Class, method="rpart", metric=metric,</pre>
                  trControl=control)
# kNN
fit.knn <- train(Dtraining, Conditrain$Class, method="knn", metric=metric,
                 trControl=control)
# c) advanced algorithms
# SVM
fit.svm <- train(Dtraining, Conditrain$Class, method="svmRadial", metric=metric,</pre>
                 trControl=control)
# Random Forest
fit.rf <- train(Dtraining, Conditrain$Class, method="rf", metric=metric,</pre>
                trControl=control)
#summarize accuracy of models
results <- resamples(list(lda=fit.lda,cart=fit.cart,svm=fit.svm,</pre>
                           knn=fit.knn,rf=fit.rf,rf=fit.rf))
summary(results)
# compare accuracy of models
dotplot(results)
```



```
#RANKING
#model=fit.knn
```

```
#kalgoritmo="knn"
#model=fit.sum
#kalgoritmo="sumRadial"
model=fit.rf
kalgoritmo="rf"
importance <- varImp(model, scale=TRUE)
plot(importance, main = paste("All variables with algorithm", kalgoritmo))</pre>
```

All variables with algorithm rf


```
"Detection Prevalence", "Balanced Accuracy", "K")
k=1
DtrainK<-as.data.frame(DtrainingRanked[,1])</pre>
colnames(DtrainK)<-colnames(DtrainingRanked)[1]</pre>
DtestK<-as.data.frame(DtestingRanked[,1])</pre>
colnames(DtestK)<-colnames(DtestingRanked)[1]</pre>
fit.algorK <- train(DtrainK, Conditrain$Class, method=kalgoritmo, metric=metric,</pre>
                     trControl=control)
predictionsK <- predict(fit.algorK, DtestK)</pre>
StatisticsK<-confusionMatrix(predictionsK, Conditesting$Class)
kEvaluacion[1,1:18]<-t(as.data.frame(c(StatisticsK$overall,StatisticsK$byClass)))
for (k in 2:kvalue){
  DtrainK<-DtrainingRanked[,c(1:k)]</pre>
  DtestK<-DtestingRanked[,c(1:k)]</pre>
  fit.algorK <- train(DtrainK, Conditrain$Class, method=kalgoritmo, metric=metric,</pre>
                       trControl=control)
  predictionsK <- predict(fit.algorK, DtestK)</pre>
  StatisticsK<-confusionMatrix(predictionsK, Conditesting$Class)</pre>
  kEvaluacion[k,1:18] <-t(as.data.frame(c(StatisticsK$overall,StatisticsK$byClass)))
EvalK<-as.data.frame(kEvaluacion)</pre>
par(mfrow = c(1,1))
plot(EvalK$Accuracy,type="o",pch=1,col="green",
     main = paste("Evaluation by ranked genes with algorithm",
                   kalgoritmo,sed=""),xlab = "Top genes",
                   ylab = "Metrics", ylim=c(0,1))
lines(EvalK$F1,type = "o", pch=2, col="blue")
lines(EvalK$Kappa,type = "o", pch=3, col="red")
legend("bottomright",legend=c("Accuracy","F1","Kappa"),pch=c(1,2,3),
       col=c("green","blue","red"))
```

Evaluation by ranked genes with algorithm rf

Top 7 genes with algorithm rf

Supplemental Figure 5b

Ordination plot for serum chemistry for Healthy/IBD cohort based on source

```
autoplot(pca, data = conditions, colour = 'Source', main = "PCA for all data")
```


Figure 3d part I

ROC curve for serum chemistry

Method: rf for top 7

Figure 3d part II and Supplemental Figure 5c - ROC for CBC

```
#ANALYSIS OF RANKING ALGORITHMS AND PARAMETER SELECTION
#Developed by Jose Molina Mora. Modified by Alex Sheh
# random forest models modeling stricture data based on microbiome

# PART 1. LOAD DATA and metadata. Visualization of data
set.seed(5)
Data <- ibd_cbc
conditions <-ibd_meta_cbc
pca<-prcomp(Data)
autoplot(pca, data = conditions, colour = 'Class', main = "PCA for all data")</pre>
```

PCA for all data


```
# Split the data into training (80%) and testing (20%) sets
test_index<-createDataPartition(conditions$Class, p=0.80, list = FALSE)</pre>
Dtraining <- Data[test_index, ]</pre>
Dtesting<- Data[-test_index,]</pre>
Conditrain<-conditions[test_index, ]</pre>
Conditesting<-conditions[-test_index,]</pre>
# Distribution in training set
percentage <- prop.table(table(Conditrain$Class)) * 100</pre>
#Distribution in testing set
percentage2 <- prop.table(table(Conditesting$Class))*100</pre>
# PART 2. DISTRIBUTION OF VARIABLES BY CLASS
# Performed on training data but could be done on entire set or testing set
# split input and output
x <- Dtraining
y <- Conditrain Class # class
sx <- Dtraining[,c(1:6)]</pre>
#ALGORITHMS
# Run algorithms using 10-fold cross validation
control <- trainControl(method="cv", number=10, classProbs=TRUE)</pre>
metric <- "Accuracy"</pre>
#Clasification algorithms
# a) linear algorithms
```

```
fit.lda <- train(Dtraining, Conditrain$Class, method="lda", metric=metric,
                 trControl=control)
# b) nonlinear algorithms
# CART
fit.cart <- train(Dtraining, Conditrains*Class, method="rpart", metric=metric,</pre>
                  trControl=control)
# kNN
fit.knn <- train(Dtraining, Conditrain$Class, method="knn", metric=metric,
                 trControl=control)
# c) advanced algorithms
# SVM
fit.svm <- train(Dtraining, Conditrain$Class, method="svmRadial", metric=metric,</pre>
                 trControl=control)
# Random Forest
fit.rf <- train(Dtraining, Conditrain$Class, method="rf", metric=metric,</pre>
                trControl=control)
#summarize accuracy of models
results <- resamples(list(lda=fit.lda,cart=fit.cart,svm=fit.svm,</pre>
                           knn=fit.knn,rf=fit.rf,rf=fit.rf))
summary(results)
# compare accuracy of models
dotplot(results)
```



```
#RANKING
#model=fit.knn
```

```
#kalgoritmo="knn"
#model=fit.sum
#kalgoritmo="sumRadial"
model=fit.rf
kalgoritmo="rf"
importance <- varImp(model, scale=TRUE)
plot(importance, main = paste("All variables with algorithm", kalgoritmo))</pre>
```

All variables with algorithm rf


```
"Detection Prevalence", "Balanced Accuracy", "K")
k=1
DtrainK<-as.data.frame(DtrainingRanked[,1])</pre>
colnames(DtrainK)<-colnames(DtrainingRanked)[1]</pre>
DtestK<-as.data.frame(DtestingRanked[,1])</pre>
colnames(DtestK)<-colnames(DtestingRanked)[1]</pre>
fit.algorK <- train(DtrainK, Conditrain$Class, method=kalgoritmo, metric=metric,</pre>
                     trControl=control)
predictionsK <- predict(fit.algorK, DtestK)</pre>
StatisticsK<-confusionMatrix(predictionsK, Conditesting$Class)</pre>
kEvaluacion[1,1:18]<-t(as.data.frame(c(StatisticsK$overall,StatisticsK$byClass)))
for (k in 2:kvalue){
  DtrainK<-DtrainingRanked[,c(1:k)]</pre>
  DtestK<-DtestingRanked[,c(1:k)]</pre>
  fit.algorK <- train(DtrainK, Conditrain$Class, method=kalgoritmo, metric=metric,</pre>
                       trControl=control)
  predictionsK <- predict(fit.algorK, DtestK)</pre>
  StatisticsK<-confusionMatrix(predictionsK, Conditesting$Class)
  kEvaluacion[k,1:18] <-t(as.data.frame(c(StatisticsK$overall,StatisticsK$byClass)))
EvalK<-as.data.frame(kEvaluacion)</pre>
par(mfrow = c(1,1))
plot(EvalK$Accuracy,type="o",pch=1,col="green",
     main = paste("Evaluation by ranked genes with algorithm", kalgoritmo, sed=""),
     xlab = "Top genes",ylab = "Metrics", ylim=c(0,1))
lines(EvalK$F1,type = "o", pch=2, col="blue")
lines(EvalK$Kappa,type = "o", pch=3, col="red")
legend("bottomright",legend=c("Accuracy","F1","Kappa"),pch=c(1,2,3),
       col=c("green","blue","red"))
```

Evaluation by ranked genes with algorithm rf

Top 5 genes with algorithm rf

Supplemental Figure 5c

Ordination plot for CBCs for Healthy/IBD cohort based on source

```
autoplot(pca, data = conditions, colour = 'Source', main = "PCA for all data")
```


Figure 3d part II

ROC curve for CBC

Method: rf for top 5

