Тестовое задание

Требуемое аппаратное и программное обеспечение

Любая отладочная плата на базе STM32. Зеленый и красный светодиоды с резисторами. Пьезо излучатель для звуковых сигналов. USB кабель для подключения и программирования. Язык программы — С в IDE Keil uVision. Конфигурирование микроконтроллера в STM32Cube.

Результат тестового задания

Результат тестового задания предоставляется в виде 2 проектов с исходным кодом «Программа 1» и «Программа 2» в IDE Keil uVision. Программа должна быть структурирована по процедурам и по файлам, для примера см. рисунок

Также производится демонстрация работы каждой программы вживую на отладочной плате.

Любые вопросы по выполнению тестовых программ задаются по телефону.

Незначительные уточнения вносятся программистом самостоятельно.

Задействованные интерфейсы устройства

Входы:

GPIO - цифровой ввод-вывод общего назначения.

АЦП – измерение напряжения от 0 до 3,3В через переменный резистор.

Кнопка - В состоянии покоя порт кнопки подтянут к логической "1", при нажатии - "0". Обязательно применение программного фильтра для устранения дребезга контактов.

Выходы:

GPIO - красный светодиод, логический "0" на порту - не светится, "1" - светится.

GPIO - зеленый светодиод, логический "0" на порту - не светится, "1" - светится.

ШИМ - выход для пьезоизлучателя, состояние покоя - логический "0", тишина. Активный уровень "успех" - 800 Гц, уровень "ошибка" - 1250 Гц с заполненностью 50%.

Рабочая частота кристалла - 8МГц. Задана внутренним генератором.

Реализовать следующую логику обработки сигнала с кнопки:

Однократным нажатием считается нажатие продолжительностью от 50 до 350 мс, после которого на протяжении 400мс не последует следующего нажатия.

Двойное нажатие, тройное нажатие - нажатие продолжительностью от 50 до 350 мс, после которого через 50-400мс следует последующее.

Удержанием кнопки считается нажатие продолжительностью от 5 до 10 секунд, и последующее отпускание.

Все события кнопки, не попадающие под эту классификацию, игнорируются.

Светозвуковой сигнал "успех"

Зеленый светодиод загорается на 1 секунду, одновременно с ним подается звуковой сигнал "успех" продолжительностью 350мс.

Светозвуковой сигнал "ошибка"

Красный светодиод загорается на 1.5 секунды, одновременно с ним - звуковой сигнал "ошибка" продолжительностью 650мс.

Программа 1

При подаче питания на микроконтроллер происходит приветствие:

Подается звуковой сигнал "успех".

Параллельно плавно загорается и потухает зеленый светодиод (1 секунда плавное загорание, еще 1 секунда плавное затухание).

После приветствия микроконтроллер переходит в режим ожидания.

В режиме ожидания считываются команды с кнопки и происходит опрос АЦП.

После однократного нажатия кнопки в режиме ожидания зеленый светодиод мигает через 2 секунды после нажатия 1 раз, одновременно с ним подается звуковой сигнал "успех".

После двукратного нажатия кнопки в режиме ожидания зеленый светодиод мигает через 2 секунды после нажатия 2 раза, одновременно с ним подается звуковой сигнал "успех" также 2 раза.

После трехкратного нажатия кнопки в режиме ожидания зеленый светодиод мигает через 2 секунды после нажатия 3 раза, одновременно с ним подается звуковой сигнал "успех" также 3 раза.

В случае снижения напряжения на входе АЦП до 1,5В или ниже после **каждого 3 обращения** к микроконтроллеру выдается **светозвуковой сигнал "ошибка".** Обращением к микроконтроллеру считается любое нажатие кнопки (1, 2 или 3-кратное).

Например:

	1 обращение	2 обращение	3 обращение
Напряжение на АЦП	2 кратное нажатие	3 кратное нажатие	1 кратное нажатие
снизилось до 1,5В	кнопки	кнопки	кнопки
			светозвуковой сигнал
			"ошибка"

Если напряжение сначала понизилось до 1,5В, а затем повысилось выше 1,5В, то светозвуковой сигнал "ошибка" больше не подается при любом количестве обращений.

Программа 2

При подаче питания на микроконтроллер происходит приветствие:

Подается звуковой сигнал "ошибка".

3 раза мигает красный светодиод.

После приветствия микроконтроллер переходит в режим ожидания.

В режиме ожидания считываются команды с кнопки и происходит опрос АЦП.

Каждое снижение напряжения на АЦП ниже 1,5В увеличивает значение счетчика на 1. Значение счетчика хранится в энергонезависимой памяти и сохраняется при пропадании питания.

Например:

Напряжение	Напряжение	Напряжение	Выключили и
снизилось с	повысилось с	снизилось с	включили питание
2,5В до 1В	1В до 3В	3В до 1,2В	микроконтроллера
Счетчик +1	Счетчик не	Счетчик +1	Счетчик не
	изменился		изменился

После однократного нажатия кнопки в режиме ожидания зеленый светодиод мигает со скважностью 1 секунда столько раз, сколько прописано в счетчике АЦП. Например, если напряжение на АЦП 3 раза опускалось ниже 1,5В, то светодиод мигнет 3 раза за 3 секунды (согласно счетчику).

После трехкратного нажатия кнопки в режиме ожидания подается звуковой сигнал "ошибка", 1 раз мигает красный светодиод и микроконтроллер переходит в режим «Подтверждение удаления» и находится в нем 10 секунд. В режиме «Подтверждение удаления» трехкратное нажатие кнопки приводит к обнулению счетчика АЦП в энергонезависимой памяти. Любые другие нажатия (однократное, двукратное и т.д.) в данном режиме игнорируются. После обнуления счетчика подается звуковой сигнал "успех", 1 раз мигает зеленый светодиод, микроконтроллер возвращается в режим ожидания.

Все остальные нажатия кнопки в режиме ожидания игнорируются.

Обработка событий должна идти параллельно. Например, если в режиме «Подтверждение удаления» Напряжение снизилось с 2,5В до 1В, то счетчик +1.