

The Straight Line

1

G V V Sharma*

Abstract—Solved problems from JEE mains papers related to 2D lines in coordinate geometry are available in this document. These problems are solved using linear algebra/matrix analysis.

1 A straight line through the origin **O** meets the lines

$$\begin{pmatrix} 4 & 3 \end{pmatrix} \mathbf{x} = 10 \tag{1.1}$$

$$(8 6) \mathbf{x} + 5 = 0 (1.2)$$

at **A** and **B** respectively. Find the ratio in which **O** divides *AB*.

Solution: Let

$$\mathbf{n} = \begin{pmatrix} 4 & 3 \end{pmatrix} \tag{1.3}$$

Then (1.1) can be expressed as

$$\mathbf{n}^T \mathbf{x} = 10 \tag{1.4}$$

$$2\mathbf{n}^T \mathbf{x} = -5 \tag{1.5}$$

and since A, B satisfy (1.4) respectively,

$$\mathbf{n}^T \mathbf{A} = 10 \tag{1.6}$$

$$2\mathbf{n}^T\mathbf{B} = -5\tag{1.7}$$

Let **O** divide the segment AB in the ratio k:1. Then

$$\mathbf{O} = \frac{k\mathbf{B} + \mathbf{A}}{k+1} \tag{1.8}$$

$$\mathbf{O} = \mathbf{0}, \tag{1.9}$$

$$\mathbf{A} = -k\mathbf{B} \tag{1.10}$$

Substituting in (1.6), and simplifying,

$$\mathbf{n}^T \mathbf{B} = \frac{10}{-k} \tag{1.11}$$

$$\mathbf{n}^T \mathbf{B} = \frac{-5}{2} \tag{1.12}$$

resulting in

$$\frac{10}{-k} = \frac{-5}{2} \implies k = 4$$
 (1.13)

2 The point

$$\mathbf{P} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{2.1}$$

is translated parallel to the line

$$L: \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 4 \tag{2.2}$$

by $2\sqrt{3}$ units. If the new point **Q** lies in the third quadrant, then find the equation of the line passing through **Q** and perpendicular to *L*. **Solution:** From (2.2), the direction vector of *L* is

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.3}$$

Thus,

$$\mathbf{Q} = \mathbf{P} + \lambda \mathbf{m} \tag{2.4}$$

However,

$$PQ = 2\sqrt{3} \tag{2.5}$$

$$\implies \|\mathbf{P} - \mathbf{Q}\| = |\lambda| \|\mathbf{m}\| = 2\sqrt{3} \tag{2.6}$$

$$\implies \lambda = \pm \frac{2\sqrt{3}}{\|\mathbf{m}\|} = \pm \sqrt{6} \qquad (2.7)$$

$$||\mathbf{m}|| = \sqrt{\mathbf{m}^T \mathbf{m}} = \sqrt{2}$$
 (2.8)

from (2.3). Since **Q** lies in the third quadrant,

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

from (2.4) and (2.7),

$$\mathbf{Q} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \sqrt{6} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 - \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix} \tag{2.9}$$

The equation of the desired line is then obtained as

$$\mathbf{m}^T \left(\mathbf{x} - \mathbf{Q} \right) = 0 \tag{2.10}$$

$$(1 \quad 1)\mathbf{x} = 3 - \sqrt{6}$$
 (2.11)

3 A variable line drawn through the intersection of the lines

$$\begin{pmatrix} 4 & 3 \end{pmatrix} \mathbf{x} = 12 \tag{3.1}$$

$$(3 \quad 4)\mathbf{x} = 12 \tag{3.2}$$

meets the coordinate axes at A and B, then find the locus of the midpoint of AB.

Solution: The intersection of the lines in (3.1) is obtained through the matrix equation

$$\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \tag{3.3}$$

by forming the augmented matrix and row reduction as

$$\begin{pmatrix} 4 & 3 & 12 \\ 3 & 4 & 12 \end{pmatrix} \leftrightarrow \begin{pmatrix} 4 & 3 & 12 \\ 0 & 7 & 12 \end{pmatrix} \leftrightarrow \begin{pmatrix} 28 & 0 & 48 \\ 0 & 7 & 12 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 7 & 0 & 12 \\ 0 & 7 & 12 \end{pmatrix} \tag{3.4}$$

resulting in

$$C = \frac{1}{7} \begin{pmatrix} 12 \\ 12 \end{pmatrix}$$
 (3.5)

Let the \mathbf{R} be the mid point of AB. Then,

$$\mathbf{A} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{R} \tag{3.6}$$

$$\mathbf{B} = 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{R} \tag{3.7}$$

Let the equation of AB be

$$\mathbf{n}^T \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{3.8}$$

Since **R** lies on AB,

$$\mathbf{n}^T \left(\mathbf{R} - \mathbf{C} \right) = 0 \tag{3.9}$$

Also,

$$\mathbf{n}^T (\mathbf{A} - \mathbf{B}) = 0 \tag{3.10}$$

Substituting from (3.6) in (3.10),

$$\mathbf{n}^T \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{R} = 0 \tag{3.11}$$

From (3.9) and (3.11),

$$(\mathbf{R} - \mathbf{C}) = k \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{R}$$
 (3.12)

for some constant k. Multiplying both sides of (3.12) by

$$\mathbf{R}^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \tag{3.13}$$

$$\mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (\mathbf{R} - \mathbf{C}) = k\mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{R}$$
$$= k\mathbf{R}^{T} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{R} = 0$$
(3.14)

$$\therefore \mathbf{R}^T \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{R} = 0 \tag{3.15}$$

which can be easily verified for any \mathbf{R} . from (3.14),

$$\mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (\mathbf{R} - \mathbf{C}) = 0$$

$$\implies \mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{R} - \mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{C} = 0$$

$$\implies \mathbf{R}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{R} - \mathbf{C}^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{R} = 0 \quad (3.16)$$

which is the desired locus.

4 Two sides of a rhombus are along the lines

$$AB: (1 -1)\mathbf{x} + 1 = 0$$
 (4.1)

$$AD: (7 -1)\mathbf{x} - 5 = 0.$$
 (4.2)

If its diagonals intersect at

$$\mathbf{P} = \begin{pmatrix} -1 \\ -2 \end{pmatrix},\tag{4.3}$$

find its vertices.

Solution: From (4.1) and (4.2),

$$\begin{pmatrix} 1 & -1 \\ 7 & -1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} -1 \\ 5 \end{pmatrix} \tag{4.4}$$

By row reducing the augmented matrix

$$\begin{pmatrix} 1 & -1 & -1 \\ 7 & -1 & 5 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 6 & 12 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \implies \mathbf{A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

$$(4.5)$$

Since diagonals of a rhombus bisect each other,

$$\mathbf{P} = \frac{\mathbf{A} + \mathbf{C}}{2}$$

$$\mathbf{C} = 2\mathbf{P} - \mathbf{A} = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$$
(4.6)

$$\therefore AD \parallel BC,$$

$$BC : (7 -1)(\mathbf{x} - \mathbf{C}) = 0$$

$$\implies (7 -1)\mathbf{x} = -15 \qquad (4.7)$$

From (4.1) and (4.7),

$$\begin{pmatrix} 7 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} -15 \\ -1 \end{pmatrix} \tag{4.8}$$

resulting in the augmented matrix

$$\begin{pmatrix} 7 & -1 & -15 \\ 1 & -1 & -1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 7 & -1 & -15 \\ 0 & 3 & -4 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 21 & 0 & -17 \\ 0 & 3 & -4 \end{pmatrix} \implies \mathbf{B} = -\frac{1}{21} \begin{pmatrix} 17 \\ 28 \end{pmatrix} \tag{4.9}$$

$$\therefore AB \parallel CD,$$

$$CD : (1 -1)(\mathbf{x} - \mathbf{C}) = 0$$

$$\implies (1 -1)\mathbf{x} = 3 \qquad (4.10)$$

From (4.2) and (4.10),

$$\begin{pmatrix} 7 & -1 \\ 1 & -1 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \tag{4.11}$$

resulting in the augmented matrix

$$\begin{pmatrix} 7 & -1 & 5 \\ 1 & -1 & 3 \end{pmatrix} \leftrightarrow \begin{pmatrix} 7 & -1 & 5 \\ 0 & 3 & -8 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -8 \end{pmatrix} \implies \mathbf{D} = \frac{1}{3} \begin{pmatrix} 1 \\ -8 \end{pmatrix} \tag{4.12}$$

5 Let *k* be an integer such that the triangle with vertices

$$\mathbf{A} = \begin{pmatrix} k \\ -3k \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 \\ k \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -k \\ 2 \end{pmatrix}$$
 (5.1)

has area 28. Find the orthocentre of this triangle.

Solution: Let \mathbf{m}_1 be the direction vector of BC. Then,

$$\mathbf{m}_1 = \begin{pmatrix} 5+k\\ k-2 \end{pmatrix},\tag{5.2}$$

If AD be an altitude, its equation can be obtained as

$$\mathbf{m}_{1}^{T}(\mathbf{x} - \mathbf{A}) = 0 \tag{5.3}$$

Similarly, considering the side AC the equation of the altitude BE is

$$\mathbf{m}_2^T (\mathbf{x} - \mathbf{B}) = 0 \tag{5.4}$$

where

$$\mathbf{m}_2 = \begin{pmatrix} 2k \\ -2 - 3k \end{pmatrix}, \tag{5.5}$$

The orthocentre is obtained by solving (5.3) and (5.4) using the matrix equation

$$\begin{pmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{pmatrix}^T \mathbf{x} = \begin{pmatrix} \mathbf{m}_1^T \mathbf{A} \\ \mathbf{m}_2^T \mathbf{B} \end{pmatrix}$$
 (5.6)

which can be expressed using (5.2), (5.5), (5.3) and (5.4) as

$${5+k k-2 \choose 2k -2-3k} \mathbf{x} = {k^2 + 5k + 6k - 3k^2 \choose 10k - 2k - 3k^2}$$

$$= k {11-4k \choose 8-3k}$$
 (5.7)

From (5.1), using the expression for the area of triangle,

$$\begin{vmatrix} k & 5 & -k \\ -3k & k & 2 \\ 1 & 1 & 1 \end{vmatrix} = 56$$

$$\implies \begin{vmatrix} k & 5 - k & -2k \\ -3k & 4k & 2 + 3k \\ 1 & 0 & 0 \end{vmatrix} = 56 \qquad (5.8)$$

resulting in

$$(5-k)(2+3k) + 8k^2 = 56 (5.9)$$

$$\implies 5k^2 + 13k - 46 = 0 \tag{5.10}$$

or,
$$k = 2, -\frac{23}{5}$$
 (5.11)

Substituting the above in (5.7) and solving yields the orthocentre.

6 If an equilateral triangle, having centroid at the origin, has a side along the line

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{6.1}$$

then find the area of this triangle.

Solution: Let the vertices be **A**, **B**, **C**. From the given information,

$$\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} = \mathbf{0}$$

$$\implies \mathbf{A} + \mathbf{B} + \mathbf{C} = \mathbf{0} \tag{6.2}$$

If AB be the line in (6.1), the equation of CF, where

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{6.3}$$

is

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 0 \tag{6.4}$$

since CF passes through the origin and $CF \perp AB$. From (6.1) and (6.4),

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \mathbf{F} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{6.5}$$

Forming the augmented matrix,

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \implies \mathbf{F} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (6.6)$$

From (6.2),

$$\mathbf{C} = -(\mathbf{A} + \mathbf{B}) = -2\mathbf{F} = -2\begin{pmatrix} 1\\1 \end{pmatrix}$$
 (6.7)

after substituting from (6.6). Thus,

$$CF = \|\mathbf{C} - \mathbf{F}\| = 3\sqrt{2} \tag{6.8}$$

$$\implies AB = CF \frac{2}{\sqrt{3}} = \sqrt{6} \tag{6.9}$$

and the area of the triangle is

$$\frac{1}{2}AB \times CF = 3\sqrt{3} \tag{6.10}$$

7 A square, of each side 2, lies above the *x*-axis and has one vertex at the origin. If one of the sides passing through the origin makes an angle 30° with the positive direction of the *x*-axis, then find the sum of the *x*-coordinates of the vertices of the square.

Solution: Consider the square ABCD with A = 0, AB = 2 such that **B** and **D** lie on the x and y-axis respectively. Then

$$\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D} = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{7.1}$$

Multiplying (7.1) with the rotation matrix

$$\mathbf{T} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \tag{7.2}$$

$$\mathbf{T}(\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}) = 4 \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 4 \begin{pmatrix} \cos \theta - \sin \theta \\ \cos \theta + \sin \theta \end{pmatrix} \quad (7.3)$$

$$\implies (1 \quad 0) \mathbf{T} (\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D})$$
$$= 4 (\cos \theta - \sin \theta) = 2 (\sqrt{3} - 1) \quad (7.4)$$

for $\theta = 30^{\circ}$.