Nama: Angga Kresnabayu

Kelas: A

NPM: 140810160001

Latihan S-DES

Misalkan nama: Ragil Ananta

- 1. Enkripsikan huruf paling depan nama kalian dengan terlebih dahulu mengkonversikan ke ASCII (R: 82 = 01010010 kapital). Sebagai kunci gunakan huruf terakhir nama kalian yang telah dikonversi ke ASCII dan tambahkan 01 di belakangnya (I: 108 = 01101100+01 = 0110110001 huruf kecil)
- 2. Dekripsikan kembali hingga didapatkan kedua huruf tersebut (R dan I), dengan mengerjakan soal yang sama dan tuliskan juga langkah pengerjaannya.
- Referensi program dalam bahasa pemrograman Java: http://homepage.smc.edu/morgan_david/vpn/website-perry-sdes/all-sdes.html#SDES in Java (dan masih banyak referensi lainnya).

Jawab

1. Enkripsi

Nama: Angga Kresnabayu

A = 65 = 0100 0001 u = 117 = 0111 0101 Plaintext: 0100 0001 Key: 01110 10101

a) Key Generation

				Р	10				
3	5	2	7	4	10	1	9	8	6

Key: 01110 10101

			I	28			
6	3	7	4	8	5	10	9

Mencari nilai k1

Bit#	1	2	3	4	5	6	7	8	9	10
K	0	1	1	1	0	1	0	1	0	1
P10(K)	1	0	1	0	1	1	0	0	1	1
Shift(P10(K))	0	1	0	1	1	0	0	1	1	1
P8(Shift(P10(K))	0	0	0	1	1	1	1	1		

Mencari nilai k2

Bit#	1	2	3	4	5	6	7	8	9	10
K	0	1	1	1	0	1	0	1	0	1
P10(K)	1	0	1	0	1	1	0	0	1	1
Shift3(P10(K))	0	1	1	0	1	1	1	1	0	0
P8(Shift3(P10(K))	1	1	1	0	1	1	0	0		

Maka k1 = 0001 1111 dan k2 = 1110 1100

b) Inisial dan Final Permutasi

		IP						
	2	6	3	1	4	8	5	7
F	Plair	ntex	d: 0	100	00 (01		

Bit#	1	2	3	4	5	6	7	8
Р	0	1	0	0	0	0	0	1
IP(P)	1	0	0	0	0	1	0	0

c) Fungsi Fk, SW, K

			1						/ [
	1	3	4	2	1	4	3	3	2	3	2	1	4
								1					
1 2	U				•		2	1	U				
	Fo.	0	5		-7		-	0		Γ.	0		

$$S0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix} \qquad S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$$

- 1. IP(P) = 1000 0100
- 2. fK(L, R) = (L XOR F(R, SK), R) $fK1 (L, R) = fK1(1000 0100) = (1000 XOR F(0100, {0001 1111}), 0100)$
- 3. $F(0100, \{0001\ 1111\}) = P4 \text{ o SBoxes o } 0001\ 1111\ XOR\ (E/P(0100))$

4. Step

Bit#	1	2	3	4	5	6	7	8
R	0	1	0	0				
E/P(R)	0	0	1	0	1	0	0	0
K1	0	0	0	1	1	1	1	1
E/P(R) XOR K1	0	0	1	1	0	1	1	1
S-Boxes(E/P(R) XOR K1)	1	0	1	1				
P4(S-Boxes(E/P(R) XOR K1)	0	1	1	1				

Perhitungan S-Boxes

- a. For S0: 0011 as input: b1,b4 for row, b2,b3 for column
- b. Row 01, column 01 -> output is 10 (lihat tabel)
- c. For S1: 0111 as input:
- d. Row 01, column 11 -> output is 11 (lihat tabel)
- 5. fK1 (L, R) = fK1(1000 0100) = (1000 XOR F(0100, {0001 1111}), 0100)
- 6. fK1 (L, R) = fK1(1000 0100) = (1000 XOR 0111, 0100)
- 7. fK1(L, R) = fK1(10000100) = (1111, 0100)
- 8. L=1111 dan R=0100, SW -> R = 1111 dan L=0100
- 9. fK(L, R) = (L XOR F(R, SK), R)
- 10. fK2 (L, R) = fK2(0100, 1111) = (0100 XOR F(1111, {1110 1100}), 1111)
- 11. Step untuk F

Bit#	1	2	3	4	5	6	7	8
R	1	1	1	1				
E/P(R)	1	1	1	1	1	1	1	1
K1	1	1	1	0	1	1	0	0
E/P(R) XOR K1	0	0	0	1	0	0	1	1
S-Boxes(E/P(R) XOR K1)	1	1	0	0				
P4(S-Boxes(E/P(R) XOR K1)	1	0	0	1		•	•	•

Perhitungan S-Boxes

- a. For S0: 0001 as input: b1,b4 for row, b2,b3 for column
- b. Row 01, column 00 -> output is 11 (lihat tabel)
- c. For S1: 0011 as input:
- d. Row 01, column 01 -> output is 00 (lihat tabel)
- 12. fK2 (L, R) = fK2(0100, 1111) = (0100 XOR F(1111, {1110 1100}), 1111)
- 13. fK2 (L, R) = fK2(0100, 1111) = (0100 XOR 1001, 1111)
- 14. fK2 (L, R) = fK2(0100, 1111) = (1101, 1111)
- 15. L=1101 dan R=1111, SW -> R = 1111 dan L=1101

16. Invers Permutasi

Bit#	1	2	3	4	5	6	7	8
L,R	1	1	0	1	1	1	1	1
IP^-1(L,R)	1	1	0	1	1	1	1	1

17. Maka Chippertext: 1101 1111

2. Dekripsi

Sama dengan enkripsi, maka didapat Chippertext: 1101 1111 dengan Key: 01110 10101 diperoleh Plaintext: 0100 0001 (A)

3. Sumber

http://mercury.webster.edu/aleshunas/COSC%205130/G-SDES.pdf https://terenceli.github.io/assets/file/mimaxue/SDES.pdf https://sandilands.info/sgordon/teaching/css322y11s2/unprotected/CSS322Y11S2H01-DES-Examples.pdf