

计算方法/数值分析

Computational Methods / Numerical Analysis

华中科技大学计算机科学与技术学院 HUST

School of Computer Science & Technology 2019 Version 6.9

A HUST

主讲教师

许贵平

Email: gpxu@hust.edu.cn

助教: 邓稳旭(QQ 2315295849)

首次课主要内容:

- 1. 课程简介
- 2. 数值分析/计算方法导引

Computational Methods(Numerical Analysis) Introduction

3. 误差分析的基本理论(Error Analysis)

AT HUST

考评要求

n 作业:

- 5 6 次作业 (about 30% of final grade)
- 请独立完成,不要抄袭,并按时提交作业

n 考试:

• 闭卷 (about 70% of final grade)

Textbook and references

n Textbook:

• 崔国华,许如初. 计算方法, 电子工业出版社, 2002(推荐). (课程组主讲教师提供了配套勘误表, 新教材在规划编写中)

• 崔国华. 计算方法, 华中理工大学出版社, 1996.

Textbook and references

n References:

- Scientific Computing: An Introductory Survey (2nd Edition)
 by Michael T. Heath. (清华大学出版社,影印版)
- Numerical Analysis (7th Edition) by Richard L. Burden and J. Douglas Faires. (高等教育出版社,影印版)

公HUST

- n 先修课程Prerequisite courses
 - 高等数学(微积分,线性代数,常微分方程)
 - 程序设计(C语言编程等)
- n 数学预备知识

Mathematical preliminaries

- Rolle's Theorem ○
- Langrange's Mean Value Theorem
- Weighted Mean Value Theorem for Integrals
- Taylor's Theorem

 $f(x) \in \mathbb{C}[a, b]$, and g(x) is integrable and does not change sign on (a, b). Then $\exists x \in (a,b)$ with $\int_a^b f(x)g(x)dx = f(x)\int_a^b g(x)dx$

 $f(x) \in \mathbb{C}[a, b]$, and

f is differentiable on (a, b).

 $f(a) = f(b) \Longrightarrow \exists x \in (a,b)$ f'(x) = 0

什么是数值分析?

Chapter 1 Introduction

Numerical Analysis is concerned with the design and analysis of algorithms for solving mathematical problems that arise in many fields, especially science and engineering.

----Michael T. Heath

Numerical analysis is the study of algorithms for the problems of continuous mathematics.

----Lloyd N. Trefethen

什么是数值分析?

Chapter 1 Introduction

Numerical Analysis has always been strongly linked to mathematics, applications and the computer. It is a part of applied mathematics and its language is mathematics. Its purpose is to solve real world problems from basic physics to practical engineering. The tool used to obtain the solution is the computer.

Thus its development is often driven by technology, both in terms of computer capacity and architecture and also by the many technological applications.

----Gene Golub

什么是数值分析?

Chapter 1
Introduction

"数值分析"就是研究在计算机上解决连续性数学问题的理论和数值方法。

- 数值算法的构造
- 算法的理论分析

数值分析的学科别名

Chapter 1 Introduction

- q 计算方法
- q 科学与工程计算

₩ HUST

科学计算的重要性

Chapter 1 Introduction

- **Ø科学计算是工程实践的重要工具**
- ❷科学计算是继理论与实验后另一科学研究手段
- **Ø科学计算的国家战略与发展:战略计算**

公HUST

Some past developments in scientific computing Chapter 1 ----Lloyd N. Trefethen

Introduction

Ø Before 1940

Newton's method

Gaussian elimination Gauss quadrature (求积法)

Least-squares fitting

Adams and Runge-Kutta

formulas

Richardson extrapolation

Ø 1940--1970

floating point arithmetic

Fortran

Finite differences Finite elements

Simplex algorithm (单纯形算法)

Monte Carlo

FFT

Orthogonal linear algebra

Ø 1970--1998

Quasi-Newton iterations

Adaptivity

Stiff ODE solvers Software libraries

Sparse and iterative linear algebra

Multigrid Matlab

Interior point methods

Spectral methods

M HUST

The future development in scientific computing Chapter 1

---Lloyd N. Trefethen

1998--2048

Linear algebra in $O(N^{2+e})$ flops

Multipole methods

Breakthroughs in preconditioners, spectral methods, time stepping for PDE

- * speech and graphics everywhere
- * fully intelligent, adaptive numerics
- * loss of determinism
- * seamless interoperability
- * massively parallel computing made possible by ideas related to the human brain
- * new programming methods made possible by ideas related to natural selection
- * Evolutionary computation

数值分析课的主要内容(Topics)

Chapter 1 Introduction

- 误差的基本理论
- 插值和函数逼近
- 数值微分和数值积分
- 常微分方程和偏微分方程数值解法
- 求解线性和非线性方程的直接法和间接法
- 代数特征值问题的数值解法

AT HUST

数值分析的学科特点

Chapter 1
Introduction

实用性 理论性 实践性

- (1)面向计算机,根据计算机的特点提供可行的有效算法;
 - 只提供加、 减、 乘、 除和逻辑运算
 - 串行机和并行机、CPU和GPU
- (2)有可靠的理论分析:算法的收敛性、稳定性、误差分析;
- (3)有好的计算复杂性:时间和空间复杂性;
- (4)有充分的数值实验。

构造数值算法的基本思想

Chapter 1 Introduction

- § 近似替代
- § 离散化
- § 递推化

A HUST

以替代

Chapter 1 Introduction

有限次运算求 解的问题

例1 计算无理数e的近似值.

M:
$$\mathbf{Q}e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

$$\therefore e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$$

这是一个无限过程,计算机无法实现。

一般取其前有限项的和作为近似值。

$$e \approx 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

由Taylor公式,由此产生的误差: $\left|R_n\right| < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$

$$\mathbf{Q}e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{qx}}{(n+1)!}x^{n+1}, (0 < q < 1)$$

例2 计算定积分 $I = \int_a^b f(x) dx$

I为如图所示的曲边梯 形的面积,这个连续的问题,无法在计算机上计算。

一般,可以如下计算:

- 1. n**等分**[a, b], $a = x_0 < x_1 < ... < x_n = b, y_i = f(x_i), i = 0, 1, ... n.$
- 2. 用n个小梯形的面积之和近似代替曲边梯形的面积

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{n} \left[\frac{1}{2} (y_0 + y_n) + y_1 + \dots + y_{n-1} \right]$$

AT HUST

递推化---复杂的计算归结为简单过程的多次重复。 易于用循环结构来实现(迭代法)。

Chapter 1 Introduction

例3 计算多项式 $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ 构造递推算法:

$$\mathbf{Q} P_n(x) = (a_n x + a_{n-1}) x^{n-1} + a_{n-2} x^{n-2} \dots + a_1 x + a_0$$

$$\Rightarrow u_0 = a_n, \quad u_1 = a_n x + a_{n-1} = u_0 x + a_{n-1}$$

$$P_n(x) = u_1 x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

$$= (u_1 x + a_{n-2}) x^{n-2} + \dots + a_1 x + a_0$$

$$= u_2 x^{n-2} + \dots + a_1 x + a_0$$

...
$$\begin{cases} u_0 = a_n \\ u_k = u_{k-1}x + a_{n-k} \end{cases} (1.3) \implies P_n(x) = u_n$$

这是宋代数学家秦九韶最先提出的,称为秦九韶算法(Horner 算法)。

好HUST

学习"计算方法"需注意如下几点

Chapter 1 Introduction

- 1. 要掌握算法的原理和思想
- 2. 要掌握算法的处理技巧, 步骤和计算公式
- 3. 重视误差分析, 理解收敛性, 稳定性分析的理论
- 4. 做一定的理论分析证明与计算练习
- 5. 上机实践

A HUST

1.2 误差的基本理论

Chapter 1 Introduction

- 1、用计算机进行实际问题的数值计算时,往往求得的是问题的近似解,存在误差。
- 2、误差是不可避免的, 既要允许误差, 又要控制误差。要重视误差分析, 分析误差的来源, 误差的传播及对误差作出估计。

模型误差.观测误差

Chapter 1
Introduction

- Ø 数学模型是对实际问题的抽象、简化和近似,存在误差 ——模型误差 /* Modeling Error */
 - 例 英国经济学家Malthus的人口模型

$$\begin{cases} \frac{dp}{dt} = a \ p \\ p(t_0) = p_0 \end{cases}$$
 其中 $a = 0.029$ 为生态系数。

$$\begin{cases} \frac{dp}{dt} = a p - b p^2 \\ p(t_0) = p_0 \end{cases}$$
 其中 $b > 0$ 为社会摩擦系数。

☑ 通过测量或实验得到模型中参数的值而产生的误差

—— 观测误差 /* Measurement Error */

截断误差

Chapter 1 Introduction

Ø 求近似解 —— 方法误差 (截断误差 /* Truncation Error */)

Ø4
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

$$e^{x} \approx S_{n}(x) = 1 + x + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!}$$

此时截断误差为

$$R_n(x) = e^x - S_n(x) = \frac{x^{n+1}}{(n+1)!}e^{qx}(0 < q < 1)$$

A HUST

舍入误差

Chapter 1 Introduction

Ø 机器字长有限 —— 舍入误差 /* Roundoff Error */

由于计算机的字长有限,只能对有限位数进行运算,超过的位数按一定规则舍入,产生"舍入误差".

$$p = 3.1415926..., \sqrt{2} = 1.41421356...$$

在计算机上运算时, 只能取前有限位:

若取小数点后4位数字,舍入误差是

$$3.1416 - p = 0.0000074..., 0.3333 - \frac{1}{3} = -0.000033...$$

小结: 模型误差、观测误差不是数值分析讨论的内容, 计算方法主要研究截断误差和舍入误差在计算过程中的传播和对计算结果的影响,以提高计算的精度。

Chapter 1 Introduction

例:近似计算 ∫ ₀ e -x² dx = **0.747....**...

解法之一: 将 e^{-x^2} 作Taylor展开后再积分

$$\hat{0}_{0}^{1} e^{-x^{2}} dx = \hat{0}_{0}^{1} (1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \frac{x^{8}}{4!} - L) dx$$

$$= 1 - \frac{1}{3} + \frac{1}{2!} \cdot \frac{1}{5} - \frac{1}{3!} \cdot \frac{1}{7} + \frac{1}{4!} \cdot \frac{1}{9} - L$$

$$\mathbb{R} \hat{0}_{0}^{1} e^{-x^{2}} dx \gg S_{4}, \qquad S_{4}$$

$$R_{4} / \text{* Remainder */}$$

则 $R_4 = \frac{1}{4!} \cdot \frac{1}{9} - \frac{1}{5!} \cdot \frac{1}{11} + L$ 称为截断误差 /* Truncation Error */

这里
$$|R_4| < \frac{1}{4!} \cdot \frac{1}{9} < 0.005$$
 由截去部分引起 $S_4 = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} \times 1 - 0.333 + 0.1 - 0.024 = 0.743$

| 舍入误差 /* Roundoff Error */ | < 0.0005 ^ 2 = 0.001

|计算 $\hat{\mathbf{h}}^{1}e^{-x^{2}}dx$ 的总体误差 | < 0.005 + 0.001 = 0.006

由留下部分引起

误差、误差限

Chapter 1 Introduction

Ø 绝对误差 /* absolute error */

定义1.1 令 x 是精确值, x^* 是它的一个近似值,则 $e(x) = |x - x^*|$ 是 x^* 的绝对误差:

$$e = x^* - x$$
 是 x^* 误差;

- (1)误差是有量纲的,可正可负;
- $(2) \varepsilon(x)$ 的大小表明了x*的精度,但难以计算其精确值, 不过,可以估计出它的一个上界 n,

$$e(x) = |x - x^*| \le h$$

称 η 为 x^* 的绝对误差限(或误差限) /* accuracy */;

$$x^* - h \le x \le x^* + h \overrightarrow{y}_x \in [x^* - h, x^* + h] \overrightarrow{y}_x = x^* \pm h$$

(3) 可取 $h = 0.5 \times 10^{p}$, p为符合条件的最小整数。

Chapter 1 Introduction

例1.8 用有毫米的刻度的米尺测量桌子的长度,读出的长 $x^* = 1235mm$

这是桌子实际长度 x 的近似值, 由米尺的精度知,这个近似值的误差不会超过0.5mm(即绝对误差限为1/2mm), 则

$$|x*-x| = |1235 - x| \le \frac{1}{2}mm$$

 $1234.5 \le x \le 1235.5$

P
$$x \in [1234.5, 1235.5]$$

或
$$x = 1235 \pm 0.5 mm$$

AT HUST

有效数字

Chapter 1 Introduction

Ø有效数字 /* significant digits */

定义1.2 若近似值 x^* 的绝对误差限为某一位上的半个单位,且该位直到 x^* 的第一位非零数字共有n位,则称近似值 x^* 有n位有效数字,或说 x^* 精确到该位。

例1.10 设
$$x = p = 3.1415926...$$
 那么

- 1. $x_1^*=3$, $e_1(x)=0.14159$ **LL** $\leq 0.5\times 10^0$ x_1^* 的有效数字为1位3, 或 x_1^* 精确到个位.
- 2. $x_2^*=3.1416$, $e_2(x)=0.00000734$ **L** $\leq 0.5\times 10^4$ (>0.5×10⁵) x_2^* 的有效数字为5位, 或者说 x_2^* 精确到0.0001.

有效数字

Chapter 1 Introduction

用科学计数法,记 $x^* = \pm 0.a_1a_2...a_l...a_n \times 10^m$ (其中 a_1 , a_2 , ..., a_n 是0到9的自然数, $a_1 \neq 0$)

当
$$|x^*-x| \le \frac{1}{2} \times 10^{m-l}$$
 (1 ≤ *l* ≤ n)

则 x^* 有 l 位 有效数字 $a_1, a_2, ..., a_l$

例1.11 用四舍五入法则取 x=4.26972的近似值。

取其前2位 $x_1^* = 4.3$ 有效数字为2位,此时 $|x_1^* - x| < = 0.5 \times 10^{-1}$ 取其前4位 $x_2^* = 4.270$ 有效数字为4位,此时 $|x_2^* - x| < = 0.5 \times 10^{-3}$

注: 数字末尾的0不可随意省去!

可以通过误差限或四舍五入法则确定其有效数字位数可以通过有效数字的位数来确定其误差限.

定义(1.2)

SHILLET

-

Review

Chapter 1 Introduction

<mark>误差的来源</mark>∶ 模型误差、 观测误差、截断误差和舍入误

差 **篌差的表示**: 误差、绝对误差限、有效数字

 $e(x) = |x - x^*| \le h = \frac{1}{2} \times 10^p$ p为符合条件的最小整数。

$$x^* = \pm 0.a_1 a_2 ... a_l ... a_n \times 10^m \quad |x^* - x| \le \frac{1}{2} \times 10^{m-l} \quad (1 \le l \le n)$$

 \Leftrightarrow 则 x^* 有 l 位 有效数字 $a_1(\neq 0)$, a_2 , ..., a_l

可以通过误差限或四舍五入法则确定其有效数字位数. 可以通过有效数字的位数来确定其误差限.

有效数字练习

Chapter 1 Introduction

例 1.12 (1) 若x*=3587.64是x具有六位有数字的近似值,那么它的误差限是多少? (2) 若x*=0.0023156是x 的具有 5位有效数字的近似值,它的误差限是多少?

M: (1)**Q** $x^* = 0.358764 \times 10^4, (m = 4, l = 6)$

$$|x - x| \le \frac{1}{2} \times 10^{4-6} = \frac{1}{2} \times 10^{-2}$$

(2)
$$\mathbf{Q} \ x^* = 0.23156 \times 10^{-2}, (m = -2, l = 5)$$

$$|x - x| \le \frac{1}{2} \times 10^{-2-5} = \frac{1}{2} \times 10^{-7}$$

例 1.13 若 x=1000,求 $x_1^*=999.9$ 与 $x_2^*=1000.1$ 有效数字位数。

M: $|x_1^*-x|=|x_2^*-x|=0.1<0.5\times10^0$,

则它们分别有3和4位有效数字。