Feedback — Homework 4

Help Center

You submitted this quiz on **Sat 2 May 2015 8:03 PM PDT**. You got a score of **10.00** out of **10.00**.

Question 1

Check all the applications where motion estimation can be employed to improve the results:

Your Answer		Score	Explanation
✓ Object tracking	~	0.20	
	~	0.20	
Still image inpainting	~	0.20	
✓ Video compression	~	0.20	
Segmentation of a single image	~	0.20	
Total		1.00 / 1.00	

Question 2

We want to increase the frame rate of a video sequence by inserting a new frame between every two existing consecutive frames. Denote by y the new frame formed via linear interpolation of motion vectors between frames x_{t-1} and x_t in the original video. Assuming that a circular object is centered at pixel (i,j) in x_{t-1} and at pixel (p,q) in x_t , where will it be centered in y?

Your Answer		Score	Explanation
$\bigcirc \; (p+i,q+j)$			
$ \ \bullet \left((p+i)/2,(q+j)/2\right)$	~	1.00	

Question 3

Calculate the Mean Square Error (MSE) between the two given image blocks (enter your answer to at least one decimal point):

You entered:

1	1	2	2
1	1	2	2
2	2	3	4
2	2	5	6

Block 1

Block 2

1.5

Preview Help

Your Answer		Score	Explanation
1.5	~	1.00	
Total		1.00 / 1.00	

Question 4

Assume that we want to perform block matching for the image block x given below. Which of the following image blocks is a better match in the Mean Absolute Error (MAE) sense?

		10 20 10 10 20 40 10 10 30 40 20 20 50 60 20 20 Block x
Your Answer	Score	Explanation
10 20 10 10 20 40 10 10 20 20 30 40 20 20 50 60		
20 30 20 20 30 50 20 20 40 50 30 30 60 70 30 30	✓ 1.00	
10 20 30 40 20 40 50 60 10 10 20 20 10 10 20 20		
1 2 1 1 2 4 1 1 3 4 2 2 5 6 2 2		
Total	1.00 / 1.00	

Question 5

(True or False) Sub-pixel motion estimation is used in applications where a faster and hence less accurate estimation of motion is needed.

Your Answer		Score	Explanation
○ True			
False	~	1.00	
Total		1.00 / 1.00	

Question 6

Refer to the RGB cube shown in the video lecture for this problem. Color magenta can be obtained by 1:1 mixing red and blue; yellow can be obtained by 1:1 mixing red and green; cyan can be obtained by 1:1 mixing blue and green. If magenta, yellow, and cyan are mixed at 1:1:1 proportion, what is the resulting color?

Your Answer	Score	Explanation
o red		
green		
blue		
white	1.00	
○ black		
Total	1.00 / 1.00	

Question 7

(True or False) Intensity in HSI color space is exactly the same as the Y-channel in YCbCr color space, as both represent the "brightness" of an image.

Your Answer	Score	Explanation
O True		
False	1.00	
Total	1.00 / 1.00	

Question 8

In this problem you will perform block matching motion estimation between two consecutive video frames. Follow the instructions below to complete this problem. (1) Download the two video frames from frame_1 and frame_2. The frames/images are of height 288 and width 352. (2) Load the frame with file name "frame_1.jpg" into a 288 imes 352 MATLAB array using function "imread", and then convert the array type from 8-bit integer to real number using function "double" or "cast" (note that the range of intensity values after conversion is between 0 and 255). Denote by I_1 the converted MATLAB array. Repeat this step for the frame with file name "frame_2.jpg" and denote the resulting MATLAB array by I_2 . In this problem, I_2 corresponds to the current frame, and I_1 corresponds to the previous frame (i.e., the reference frame). (3) Consider the 32 imes 32 target block in I_2 that has its upper-left corner at (65,81) and lower-right corner at (96, 112). Note this is MATLAB coordinate convention, i.e., the first number between the parenthesis is the row index extending from 1 to 288 and the second number is the column index extending from 1 to 352. This target block is therefore a 32 imes 32 sub-array of I_2 . (4) Denote the target block by $B_{\it target}$. Motion estimation via block matching searches for the 32 imes 32 sub-array of I_1 that is "most similar" to $B_{\it target}$. Recall in the video lectures we have introduced various forms of matching criteria, e.g., correlation coefficient, mean-squared-error (MSE), mean-absolute-error (MAE), etc. In this problem, we use MAE as the matching criterion. Given two blocks B_1 and B_2 both of size M imes N, the MAE is defined as $MAE(B_1,B_2)=rac{1}{M imes N}\sum_{i=1}^M\sum_{j=1}^N|B_1(i,j)-B_2(i,j)|$ To find the block in I_1 that is most similar to B_{target} in the MAE sense, you will need to scan through all the 32 imes 32 blocks in I_1 , compute the MAE between each of these blocks and $B_{\it target}$, and find the one that yields the

smallest value of MAE. Note in practice motion search is only performed over a certain region of the reference frame, but for the sake of simplicity, we perform motion search over the entire reference frame I_1 in this problem. When you find the matched block in I_1 , enter the following information: (1) the coordinate of the upper-left corner of the matched block in MATLAB convention. This requires two integer numbers; (2) the corresponding MAE value, which is a floating-point number. Enter the last number to two decimal points. As an example for format of answer, suppose the matched block has upper-left corner located at (1,1), and the corresponding MAE is 10.12, then you should enter 1 1 10.12 (the three numbers are separated by spaces).

You entered:

65 81 22.9854

Your Answer		Score	Explanation
65	~	1.00	
81	~	1.00	
22.9854	~	1.00	
Total		3.00 / 3.00	