

EGR 106 Foundations of Engineering II

Lecture 11 – Part B
Design Project - Week 2

Design Project (Week 2)

Main program structure

Initialize arrays

Calls to functions to define shapes

Calls to functions for creating 3D models

Functions for creating basic 3D shapes

Box, sphere, cylinder_x, cylinder_y, cylinder_z, segment

Creating 3D models

model_gen, model_animate

Examples

truss, lamp, eight_balls

Viewing 3D models in MeshLab

Main program structure (ex. last week: eight_color_demo.m)

Initialize arrays

```
1 -
       clc; clear all; close all
 2
 3 -
       global Nx Ny Nz d color
       % Define design space
 6
 7 -
       Nx=50:
       Ny=50;
 9 -
       Nz = 25:
10
11
       % Initialize array variables
12
13 -
       d=false(Ny,Nx,Nz);
       color=char(zeros(Ny,Nx,Nz));
14 -
```

Define 3D shapes

```
15
16
       % Build geometry
17
18 -
       box(3,47,3,47,1,1,true,'k');
19 -
       box(4,46,4,46,1,2,true,'k');
20 -
       box(5,45,5,45,1,3,true,'k');
21 -
       box(6,44,6,44,1,4,true,'g');
22 -
       box(7,43,7,43,1,5,true,'g');
23 -
       box(8,42,8,42,1,6,true,'g');
24 -
       box(9,41,9,41,1,7,true,'b');
25 -
       box(10,40,10,40,1,8,true,'b');
26 -
       box(11,39,11,39,1,9,true,'b');
27 -
       box(12,38,12,38,1,10,true,'y');
28 -
       box(13,37,13,37,1,11,true,'v');
29 -
       box(14,36,14,36,1,12,true,'y');
30 -
       box(15,35,15,35,1,13,true,'m');
31 -
       box(16,34,16,34,1,14,true,'m');
32 -
       box(17,33,17,33,1,15,true,'m');
33 -
       box(18,32,18,32,1,16,true,'r');
       box(19,31,19,31,1,17,true,'r');
      box(20,30,20,30,1,18,true,'r');
      box(21,29,21,29,1,19,true,'c');
      box(22,28,22,28,1,20,true,'c');
       box(23,27,23,27,1,21,true,'c');
       box(24,26,24,26,1,22,true,'w');
40 -
      box(25,25,25,25,1,23,true,'w');
41
```

Create and view 3D models

```
41
42
       % Preview geometry
43
44 -
       preview
45
46
       % Create 3D model
47
48 -
       model gen
49 -
       movefile('model.obj','eight color demo.obj')
50
51
       % Create animation
52
53 -
       model animate
       movefile('model.gif','eight color demo.gif')
```

eight_color_demo.m - Result with model_gen

Matlab Figure Window

Animated gif (cropped at ezgif.com/crop)

Functions for Creating 3D Shapes (provided on Brightspace as p-files*)

box

sphere

cylinder_x

cylinder_y

cylinder_z

segment

*p files – protected mode Matlab function scripts (can be run but source code not viewable, cannot be edited)

box.p (introduced last week)

Function to create a 3D box

```
function box(xmin,xmax,ymin,ymax,zmin,zmax,D,C)
% creates rectangular prism for points (x,y,z), where
% xmin<=x<=xmax, ymin<=y<=ymax, , zmin<=z<=zmax,
% with D=true (solid), D=false (hole) and color C</pre>
```

Example:

box(5,10,10,15,1,5,true,'r')

sphere.p

Function to create a 3D sphere

```
function sphere(xc,yc,zc,R,D,C)
% creates sphere of radius R, centered at xc, yc, zc
% with D=true (solid), D=false (hole) and color C
```

Example:

sphere (10, 10, 10, 6, true, 'g')

cylinder_x.p

Function to create a circular cylinder parallel to x-axis

```
function cylinder_x(yc,zc,xmin,xmax,R,D,C)
% creates cylinder of radius R oriented in the x-direction,
% from x=xmin to x=xmax, centered at yc, zc
% with D=true (solid), D=false (hole) and color C
```

Example:

cylinder x(10,10,2,19,5,true,'b')

cylinder_y.p

Function to create a circular cylinder parallel to y-axis

```
function cylinder_y(xc,zc,ymin,ymax,R,D,C)
% creates cylinder of radius R oriented in the y-direction,
% from y=ymin to y=ymax, centered at xc, zc
% with D=true (solid), D=false (hole) and color C
```

Example:

cylinder y(10,10,2,19,5,true,'m')

cylinder_z.p

Function to create a circular cylinder parallel to z-axis

```
function cylinder_z(xc,yc,zmin,zmax,R,D,C)
% creates cylinder of radius R oriented in the z-direction,
% from z=zmin to z=zmax, centered at xc, yc
% with D=true (solid), D=false (hole) and color C
```

Example:

```
cylinder_z(10,10,2,19,5,true,'c')
```


segment.p

Function to create a line segment

```
function segment(pt1,pt2,R,D,C)
% creates cylindrical segment of radius R
% from point pt1=[x1,y1,z1] to point pt2=[x2,y2,z2]
% with D=true (solid), D=false (hole) and color C
```

Example:

```
segment([5,5,5],[15,15,15],3,true,'y')
```


Creating holes

Use 'false' to create holes

Example:

```
box(1,20,1,20,1,20,true,'r')
segment([1,10,10],[20,10,10],8,false,'r')
```


Creating and Animating 3D models

```
model_gen.p
   Smooths the surface
   Generates CAD (.obj) files
model animate.p
   Provides rotating image
   Saves animated gif file
    (can be cropped at ezgif.com/crop)
```

model_gen.p -Algorithm

Marching cube algorithm – defines triangulated surface between solid and void regions

To use, issue command: model_gen (be sure model_gen.p is in your current directory)

model_animate.p code

```
In a 'for' loop, uses Matlab functions:
  view
  getframe
  frame2im
   imwrite
To use, issue command: model animate
   (be sure model animate.p is in your current directory)
```

Example (box with circular hole)

```
box(1,20,1,20,1,20,true,'r')
segment([1,10,10],[20,10,10],8,false,'r')
preview
model_gen
model_animate
```


preview

model_gen

model_animate

Examples

Truss (segment & box)

Lamp (cylinder_z)

Eight balls (sphere)

Example 1 – truss.m

Initialization

```
1
       % Sample program - truss.m
 2
 3
       clear; close all; format compact; format short
 4 -
 5
 6 -
       global Nx Ny Nz d color
 7
 8 -
       Nx = 150;
 9 -
      Ny=30;
10 -
      Nz=30;
11
12 -
     d=false(Ny,Nx,Nz);
      color=char(zeros(Ny,Nx,Nz));
13 -
```

Define key points

```
15 -
       x1=.1*Nx;
16 -
      x2 = .2 * Nx;
     x3 = .3 * Nx;
17 -
18 -
     x4=.4*Nx;
19 -
      x5=.5*Nx;
20 -
      x6=.6*Nx;
21 -
      x7 = .7 * Nx;
22 -
     x8=.8*Nx;
23 -
      x9 = .9 * Nx;
24
25 -
      y1=.1*Ny;
26 -
      y2 = .9 * Ny;
27
28 -
       z1=.1*Nz;
29 -
      z2=.9*Nz;
30
       R=1.5;
31 -
```

Example 1 – truss.m (cont.)

Define top members

```
32
       응
       % top members (green)
33
34
       읒
       segment([x2 y1 z2],[x4 y1 z2],R,true,'g')
35 -
      segment([x4 y1 z2],[x6 y1 z2],R,true,'g')
36 -
       segment([x6 y1 z2],[x8 y1 z2],R,true,'g')
37 -
38
       segment([x2 y2 z2],[x4 y2 z2],R,true,'g')
39 -
40 -
      segment([x4 y2 z2],[x6 y2 z2],R,true,'g')
       segment([x6 y2 z2],[x8 y2 z2],R,true,'g')
41 -
```

Define side truss members

```
42
       % Side truss members (red)
43
44
45 -
       segment([x1 y1 z1],[x2 y1 z2],R,true,'r')
       segment([x2 y1 z2],[x3 y1 z1],R,true,'r')
46 -
47 -
       segment([x3 y1 z1],[x4 y1 z2],R,true,'r')
48 -
       segment([x4 y1 z2],[x5 y1 z1],R,true,'r')
49 -
       segment([x5 y1 z1],[x6 y1 z2],R,true,'r')
       segment([x6 y1 z2],[x7 y1 z1],R,true,'r')
50 -
       segment([x7 y1 z1],[x8 y1 z2],R,true,'r')
51 -
52 -
       segment([x8 y1 z2],[x9 y1 z1],R,true,'r')
53
       segment([x1 y2 z1],[x2 y2 z2],R,true,'r')
54 -
55 -
       segment([x2 y2 z2],[x3 y2 z1],R,true,'r')
56 -
       segment([x3 y2 z1],[x4 y2 z2],R,true,'r')
57 -
       segment([x4 y2 z2],[x5 y2 z1],R,true,'r')
       segment([x5 y2 z1],[x6 y2 z2],R,true,'r')
58 -
59 -
       segment([x6 y2 z2],[x7 y2 z1],R,true,'r')
       segment([x7 y2 z1],[x8 y2 z2],R,true,'r')
60 -
       segment([x8 y2 z2],[x9 y2 z1],R,true,'r')
61 -
```

Example 1 – truss.m (cont.)

Define cross bars and road surface

Preview design, create 3D model and animation

```
62
       % Cross bars (yellow)
63
64
       segment([x2 y1 z2],[x2 y2 z2],R,true,'y')
65 -
       segment([x4 y1 z2],[x4 y2 z2],R,true,'y')
66 -
67 -
       segment([x6 y1 z2],[x6 y2 z2],R,true,'y')
       segment([x8 y1 z2],[x8 y2 z2],R,true,'y')
68 -
69
       응
70
       % Road surface (blue)
71
72 -
       box(x1-1,x9+1,y1-1,y2+1,z1-1,z1+1,true,'b')
72
```

```
73
       % Preview design
74
75
76 -
       preview
77
       % Create 3D model
78
79
       model gen
80 -
       movefile('model.obj','truss.obj')
81 -
82
       % Create animation
83
84
       model animate
85 -
       movefile('model.gif','truss.gif')
86 -
```

Use movefile command to rename .obj and .gif files

Example 1 – truss.m (cont.)

Result

Example 2 – lamp.m

```
function lamp
%
clc; clear; close all
%
global Nx Ny Nz d color
%
% Define design space
%
Nx=50;
Ny=50;
Nz=50;
%
% Initialize array variables
%
d=false(Ny,Nx,Nz);
color=char(zeros(Ny,Nx,Nz));
```

```
% Build geometry
cylinder z(.5*Nx,.5*Ny,.50*Nz,.55*Nz,.48*Nx,true,'r');
cylinder z(.5*Nx,.5*Ny,.50*Nz,.55*Nz,.40*Nx,false,'r');
cylinder z(.5*Nx,.5*Ny,.55*Nz,.60*Nz,.45*Nx,true,'r');
cylinder z(.5*Nx,.5*Ny,.55*Nz,.60*Nz,.35*Nx,false,'r');
cylinder z(.5*Nx,.5*Ny,.60*Nz,.65*Nz,.40*Nx,true,'r');
cylinder z(.5*Nx,.5*Ny,.60*Nz,.65*Nz,.30*Nx,false,'r');
cylinder z(.5*Nx,.5*Ny,.65*Nz,.70*Nz,.35*Nx,true,'q');
cylinder z(.5*Nx,.5*Ny,.65*Nz,.70*Nz,.25*Nx, false,'q');
cylinder z(.5*Nx,.5*Ny,.70*Nz,.75*Nz,.30*Nx,true,'g');
cylinder z(.5*Nx,.5*Ny,.70*Nz,.75*Nz,.20*Nx,false,'g');
cylinder z(.5*Nx,.5*Ny,.75*Nz,.80*Nz,.25*Nx,true,'g');
cylinder z(.5*Nx,.5*Ny,.70*Nz,.80*Nz,.15*Nx,false,'g');
cylinder z(.5*Nx,.5*Ny,.75*Nz,.85*Nz,.20*Nx,true,'b');
cylinder z(.5*Nx,.5*Ny,.75*Nz,.85*Nz,.10*Nx,false,'b');
cylinder z(.5*Nx,.5*Ny,.85*Nz,.90*Nz,.15*Nx,true,'b');
cylinder z(.5*Nx,.5*Ny,.85*Nz,.90*Nz,.05*Nx,false,'b');
```

Example 2 – lamp.m (cont.)

```
cylinder z(.5*Nx,.5*Ny,.90*Nz,.95*Nz,.10*Nx,true,'m');
cylinder z(.5*Nx,.5*Ny,.00*Nz,.05*Nz,.10*Nx,true,'m');
cylinder z(.5*Nx,.5*Ny,.05*Nz,.10*Nz,.12*Nx,true,'m');
cylinder z(.5*Nx,.5*Ny,.10*Nz,.15*Nz,.14*Nx,true,'m');
cylinder z(.5*Nx,.5*Ny,.15*Nz,.20*Nz,.14*Nx,true,'y');
cylinder z(.5*Nx,.5*Ny,.20*Nz,.25*Nz,.12*Nx,true,'y');
cylinder z(.5*Nx,.5*Ny,.25*Nz,.30*Nz,.10*Nx,true,'y');
cylinder z(.5*Nx,.5*Ny,.30*Nz,.35*Nz,.10*Nx,true,'c');
cylinder z(.5*Nx,.5*Ny,.35*Nz,.40*Nz,.12*Nx,true,'c');
cylinder z(.5*Nx,.5*Ny,.40*Nz,.45*Nz,.14*Nx,true,'c');
cylinder z(.5*Nx,.5*Ny,.45*Nz,.50*Nz,.14*Nx,true,'q');
cylinder z(.5*Nx,.5*Ny,.50*Nz,.55*Nz,.12*Nx,true,'g');
cylinder z(.5*Nx,.5*Ny,.55*Nz,.60*Nz,.10*Nx,true,'q');
cylinder z(.5*Nx,.5*Ny,.60*Nz,.65*Nz,.10*Nx,true,'b');
cylinder z(.5*Nx,.5*Ny,.65*Nz,.70*Nz,.12*Nx,true,'b');
cylinder z(.5*Nx,.5*Ny,.70*Nz,.75*Nz,.14*Nx,true,'b');
cylinder z(.5*Nx,.5*Ny,.75*Nz,.80*Nz,.14*Nx,true,'k');
cylinder z(.5*Nx,.5*Ny,.80*Nz,.85*Nz,.12*Nx,true,'k');
cylinder z(.5*Nx,.5*Ny,.85*Nz,.90*Nz,.10*Nx,true,'k');
```

```
%
% Preview geometry
%
preview
%
% Create 3D model
%
model_gen
movefile('model.obj','lamp.obj')
%
% Create animation
%
model_animate
movefile('model.gif','lamp.gif')
```

Example 2 – lamp.m (cont.)

Result

Example 3 – eight_balls.m

```
function eight balls
clc; clear; close all;
global Nx Ny Nz d color
% Define design space
응
Nx=50;
Ny=50;
Nz=50;
% Initialize array variables
d=false(Ny, Nx, Nz);
color=char(zeros(Ny,Nx,Nz));
```

```
% Build geometry
sphere (.25*Nx,.25*Nx,.25*Nx,.15*Nx,true,'r');
sphere(.25*Nx,.25*Nx,.75*Nx,.15*Nx,true,'g');
sphere (.25*Nx, .75*Nx, .25*Nx, .15*Nx, true, 'b');
sphere (.25*Nx, .75*Nx, .75*Nx, .15*Nx, true, 'y');
sphere(.75*Nx,.25*Nx,.25*Nx,.15*Nx,true,'m');
sphere(.75*Nx,.25*Nx,.75*Nx,.15*Nx,true,'c');
sphere(.75*Nx,.75*Nx,.25*Nx,.15*Nx,true,'k');
sphere(.75*Nx,.75*Nx,.75*Nx,.15*Nx,true,'w');
% Preview geometry
preview
% Create 3D model
model gen
movefile('model.obj','eight balls.obj')
% Create animation
model animate
movefile('model.gif','eight balls.gif')
```

Example 3 – eight_balls.m (cont.)

Result

Viewing 3D models in MeshLab

Files needed:

obj file (created by model_gen)

Color definition files (available on Brightspace)

colors.mtl, red.jpg, green.jpg, blue.jpg, yellow.jpg

magenta.jpg, cyan.jpg, black.jpg, white.jpg

Installing and Running Meshlab

Free download from: http://www.meshlab.net/

Available on ECC computers

To run:

File => New Empty Project

File=> Import Mesh

Navigate and select 'obj' file

If you don't see colors, select

View => Show Layer Dialog

Select => Color => Face

To change background color

Tools =>Options

Background top => variable value => click => click => select color

Background bottom => variable value => click => click => select color

MeshLab Demonstration

```
truss.obj
lamp.obj
eight_balls.obj
```

hw8.obj (last week's assignment)

Files available on Brightspace (compressed in week_11.zip)

m files

truss.m

lamp.m

eight_balls.m

p files*

box.p

sphere.p

cylinder_x.p

cylinder_y.p

cylinder_z.p

segment.p

preview.p

model_gen.p

model_animate.p

Color definition files

colors.mtl

red.jpg

green.jpg

blue.jpg

yellow.jpg

magenta.jpg

cyan.jpg

black.jpg

white.jpg

*p files – protected mode Matlab function scripts (can be run but source code not viewable, cannot be edited)