Advanced Python Data Science Optimization Techniques

Optimizing Data Analysis with Pandas and NumPy

Python's data science ecosystem, particularly Pandas and NumPy, offers powerful capabilities that can be significantly enhanced through advanced optimization techniques. These techniques can transform standard data analysis workflows into high-performance, memory-efficient operations capable of handling massive datasets.

Advanced Data Selection Strategies

Sophisticated data selection techniques can dramatically improve performance and code readability:

```
import pandas as pd
import numpy as np
# MultiIndex for hierarchical data organization
def optimize with multiindex(df):
  # Create a hierarchical index for complex data organization
  df_indexed = df.set_index(['Year', 'Month', 'Category'])
  # Efficient slicing with MultiIndex
  subset = df_indexed.loc[(2023, 'January', slice(None)), :]
  # Cross-sectional selection
  cross_section = df_indexed.xs(('Electronics'), level='Category')
  return subset, cross_section
# Boolean indexing with NumPy for vectorized filtering
def advanced boolean filtering(arr):
  # Complex conditional filtering
  mask1 = (arr > 0) & (arr < 100)
  mask2 = (arr \% 2 == 0) | (arr \% 7 == 0)
  # Combined masks for sophisticated filtering
  combined mask = mask1 & mask2
  filtered_data = arr[combined_mask]
  return filtered_data
```

Performance Optimization Techniques

When working with large datasets, performance optimization becomes critical:

```
# Memory optimization with categorical data
def optimize memory usage(df):
  # Before optimization
  initial_memory = df.memory_usage(deep=True).sum() / 1e6 # MB
  # Convert object columns with few unique values to categorical
  for col in df.select_dtypes(include=['object']).columns:
    if df[col].nunique() / len(df) < 0.5: # If less than 50% unique values</pre>
      df[col] = df[col].astype('category')
  # Convert numeric columns to smaller dtypes where possible
  for col in df.select_dtypes(include=['int64']).columns:
    if df[col].min() >= 0:
      if df[col].max() < 255:
         df[col] = df[col].astype('uint8')
      elif df[col].max() < 65535:
         df[col] = df[col].astype('uint16')
  # After optimization
  optimized_memory = df.memory_usage(deep=True).sum() / 1e6 # MB
  return df, {
    'initial_memory_mb': initial_memory,
    'optimized memory mb': optimized memory,
    'reduction_percentage': (1 - optimized_memory/initial_memory) * 100
  }
# Processing large datasets with chunking
def process_large_dataset(filepath, chunk_size=100000):
  results = []
  # Process file in manageable chunks to avoid memory overload
  for chunk in pd.read_csv(filepath, chunksize=chunk_size):
    # Process each chunk
    processed = chunk.groupby('key').agg({
      'value1': 'sum',
      'value2': 'mean',
      'value3': lambda x: np.percentile(x, 95)
    })
    results.append(processed)
  # Combine results from all chunks
  combined_results = pd.concat(results)
  final_results = combined_results.groupby(level=0).sum()
  return final_results
```

Advanced Time Series Analysis

Time series data requires specialized techniques for optimal analysis:

```
# High-performance time series operations
def advanced time series analysis(df):
  # Ensure datetime index
  df.index = pd.to_datetime(df.index)
  # Efficient resampling for different time frequencies
  daily = df.resample('D').mean()
  weekly = df.resample('W').mean()
  monthly = df.resample('M').mean()
  # Advanced rolling operations with custom window types
  # Exponentially weighted moving average gives more weight to recent observations
  ewma = df.ewm(span=30, min_periods=10).mean()
  # Time-based rolling with variable window size
  expanding_std = df.expanding(min_periods=10).std()
  # Custom rolling function
  def custom_percentile(x):
    return np.percentile(x, q=90)
  custom_rolling = df.rolling(window=20).apply(custom_percentile)
  return {
    'resampled': {'daily': daily, 'weekly': weekly, 'monthly': monthly},
    'rolling': {'ewma': ewma, 'expanding_std': expanding_std, 'custom':
custom_rolling}
  }
```

Vectorized Operations for Maximum Performance

Vectorization is key to achieving optimal performance with NumPy and Pandas:

```
# Vectorized operations instead of loops
def vectorized_calculations(df):
    # Avoid loops with vectorized operations

# Bad practice (slow)
def slow_calculation(df):
    result = []
    for i in range(len(df)):
        result.append(df.iloc[i, 0] * df.iloc[i, 1] + df.iloc[i, 2])
    return result

# Good practice (fast vectorized operation)
```

```
def fast_calculation(df):
  return df.iloc[:, 0] * df.iloc[:, 1] + df.iloc[:, 2]
# Advanced vectorized calculations
def complex_vectorized_operation(df):
  # Element-wise operations across multiple columns
  result1 = np.sqrt(np.square(df['x']) + np.square(df['y']))
  # Conditional vectorized operations
  result2 = np.where(df['value'] > 0,
            np.log1p(df['value']),
            -np.log1p(np.abs(df['value'])))
  # Vectorized statistical functions
  result3 = (df - df.mean()) / df.std() # Z-score normalization
  return pd.DataFrame({
    'euclidean distance': result1,
    'signed_log': result2,
    'normalized': result3
  })
return complex_vectorized_operation(df)
```

Advanced Aggregation and Grouping

Complex aggregation operations can extract deeper insights from data:

```
# Sophisticated aggregation techniques
def advanced_aggregation(df):
  # Multiple aggregations per column
  agg_result = df.groupby('category').agg({
    'numeric1': ['min', 'max', 'mean', 'std'],
    'numeric2': ['median', 'sum', lambda x: x.quantile(0.95)],
    'date_column': ['first', 'last', lambda x: (x.max() - x.min()).days]
  })
  # Named aggregations for better readability
  named_agg = df.groupby('category').agg(
    min_value=('numeric1', 'min'),
    max_value=('numeric1', 'max'),
    avg_value=('numeric1', 'mean'),
    range_days=('date_column', lambda x: (x.max() - x.min()).days)
  )
  # Grouped filter operations
  filtered_groups = df.groupby('category').filter(lambda x: len(x) > 10 and
x['numeric1'].mean() > 100)
  # Transform operations that preserve the original dataframe shape
```

Parallel Processing for Data Science

Leveraging parallel processing can dramatically speed up data operations:

```
import multiprocessing
from joblib import Parallel, delayed
# Parallel data processing
def parallel_data_processing(df, n_jobs=-1):
  # Split dataframe into chunks for parallel processing
  chunks = np.array_split(df, multiprocessing.cpu_count() if n_jobs == -1 else
n_jobs)
  # Define processing function
  def process chunk(chunk):
    # Complex operations on chunk
    result = chunk.groupby('key').apply(lambda x:
      pd.Series({
         'mean_val': x['value'].mean(),
         'max_val': x['value'].max(),
         'count': len(x),
         'complex_calc': np.sum(np.sqrt(x['value']) * np.loq1p(x['value']))
      })
    )
    return result
  # Process chunks in parallel
  results = Parallel(n_jobs=n_jobs)(
    delayed(process_chunk)(chunk) for chunk in chunks
  # Combine results
  combined_results = pd.concat(results)
  # Aggregate results by key
  final_results = combined_results.groupby(level=0).mean()
```

Advanced Data Visualization Integration

Integrating visualization with data processing creates powerful analytical workflows:

```
import matplotlib.pyplot as plt
import seaborn as sns
# Advanced visualization with data processing
def integrated_visualization_workflow(df):
  # Prepare data with advanced processing
  processed_data = df.groupby(['category', pd.Grouper(key='date', freq='M')]).agg({
    'value': ['mean', 'std', 'count'],
    'growth': 'sum'
  })
  # Flatten multi-level columns
  processed_data.columns = ['_'.join(col).strip() for col in
processed_data.columns.values]
  processed_data = processed_data.reset_index()
  # Create visualization
  fig, axes = plt.subplots(2, 2, figsize=(14, 10))
  # Time series by category
  for category, data in processed_data.groupby('category'):
    axes[0, 0].plot(data['date'], data['value_mean'], label=category)
  axes[0, 0].set_title('Monthly Average by Category')
  axes[0, 0].legend()
  # Correlation heatmap
  numeric_cols = [col for col in processed_data.columns if
processed_data[col].dtype in ['float64', 'int64']]
  sns.heatmap(processed_data[numeric_cols].corr(), annot=True,
cmap='coolwarm', ax=axes[0, 1])
  axes[0, 1].set_title('Correlation Matrix')
  # Distribution plot
  sns.histplot(data=processed_data, x='value_mean', hue='category', kde=True,
ax=axes[1, 0]
  axes[1, 0].set_title('Distribution of Monthly Averages')
  # Scatter plot with size representing count
  sns.scatterplot(
    data=processed_data,
    x='value_mean',
    y='value_std',
    size='value_count',
```

```
hue='category',
ax=axes[1, 1]
)
axes[1, 1].set_title('Variability vs. Average (size=count)')

plt.tight_layout()
return fig, processed_data
```

Sources

- Deep Dive into Pandas and NumPy: Advanced Data Analysis Techniques
- Advanced Python Techniques for Efficient Data Analysis
- Mastering Code Optimization with Numpy and Pandas for Large Datasets