## LEC14: Transformation-Part2

Ku-Jin Kim
School of Computer Science & Engineering
Kyungpook National University

Notice: This PPT slide was created by partially extracting & modifying notes from Edward Angel's Lecture Note for E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

#### **Contents**

- Transformations Part 2
  - Rotation
  - Scale
  - Shear
  - Inverse
- Program Example

### **Object Frame & World Frame**

Right-hand rule for x, y, z





#### Object frame

```
GLfloat vertices[] =
{ -0.3, -0.3, -0.3, 1.0,
 +0.3, -0.3, -0.3, 1.0,
 ...
}
```

#### **Rotation**

- Consider rotation about z-axis by  $\theta$  degrees (radian)
  - radius stays the same, rotation angle is  $\theta$



#### Rotation

- Consider rotation about z-axis by  $\theta$  degrees (radian)
  - radius stays the same, rotation angle is  $\theta$

$$x' = r \cos (\phi + \theta)$$
  
 $y' = r \sin (\phi + \theta)$ 



$$x' = x \cos \theta - y \sin \theta$$
  
 $y' = x \sin \theta + y \cos \theta$ 

Greek letters - <a href="https://www.wikipedia.org/">https://www.wikipedia.org/</a>

#### Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
  - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$
  
 $y' = x \sin \theta + y \cos \theta$   
 $z' = z$ 

or in homogeneous coordinates

$$\mathbf{p}' = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

#### **Rotation Matrix**

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### Rotation about x and y axes

- Same argument as for rotation about z axis
  - For rotation about x axis, x is unchanged
  - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### **Program with rotation matrix**

```
#include <math.h>
GLfloat m[16];
void mydisplay(void) {
          GLuint loc;
          glClearColor(0.7f, 0.7f, 0.7f, 1.0f); // gray
          glClear(GL_COLOR_BUFFER_BIT);
          m[0] = cos(t); m[4] = -sin(t); m[8] = 0.0; m[12] = 0.0;
          m[1] = sin(t); m[5] = cos(t); m[9] = 0.0; m[13] = 0.0;
          m[2] = 0.0; m[6] = 0.0; m[10] = 1.0; m[14] = 0.0;
          m[3] = 0.0; m[7] = 0.0; m[11] = 0.0; m[15] = 1.0;
          loc = glGetUniformLocation(prog, "urotate");
          glUniformMatrix4fv(loc, 1, GL_FALSE, m);
          glDrawElements(GL_TRIANGLES, 12 * 3, GL_UNSIGNED_SHORT, indices);
          glFlush();
          glutSwapBuffers();
```

## **Scaling**

 Expand or contract along each axis (fixed point of origin)

$$\mathbf{x}' = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y}' = \mathbf{s}_{y} \mathbf{y}$$

$$\mathbf{z}' = \mathbf{s}_{z} \mathbf{z}$$

$$\mathbf{p}' = \mathbf{S}\mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Reflection

corresponds to negative scale factors



#### **Shear**

• Equivalent to pulling faces in opposite directions



#### **Shear Matrix**

Consider simple shear along x axis

$$x' = x + y \cot \theta$$
, where  $\cot \theta = \tan^{-1} \theta$   
 $y' = y$   
 $z' = z$ 

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



## How can we return the object to the state before transformation?

- For transformation by matrix M
  - $\mathbf{p}' = \mathbf{M} \mathbf{p} \rightarrow \mathbf{p} = \mathbf{M}^{-1} \mathbf{p}'$
- Do we have to compute M<sup>-1</sup>?

#### **Inverses**

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
  - Translation:  $\mathbf{T}^{-1}(d_{x'} d_{y'} d_z) = \mathbf{T}(-d_{x'} -d_{y'} -d_z)$
  - Rotation:  $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
  - Scaling:  $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

#### **Inverse of Translation**

$$\mathbf{p}' = \mathbf{p} + \mathbf{d}$$
  
 $\mathbf{d} = (\mathbf{d}_{x'} \ \mathbf{d}_{y'} \ \mathbf{d}_{z'} \ 0)^T$ 



$$\rightarrow$$
 **p**' = **T**(d<sub>x</sub>, d<sub>y</sub>, d<sub>z</sub>) **p**

$$T(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{p}' - \mathbf{d} \rightarrow \mathbf{p} = \mathbf{T}(-d_{x}, -d_{y}, -d_{z}) \mathbf{p}'$$

$$\mathbf{T}^{-1}(d_{x'} d_{y'} d_{z}) = \mathbf{T}(-d_{x'} -d_{y'} -d_{z}) = \begin{bmatrix} 1 & 0 & 0 & -d_{x} \\ 0 & 1 & 0 & -d_{y} \\ 0 & 0 & 1 & -d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### **Inverse of Rotation**

- Rotation:  $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$ 
  - Holds for any rotation matrix
  - Since  $\cos(-\theta) = \cos(\theta)$  and  $\sin(-\theta) = -\sin(\theta)$ ,  $\mathbf{R}^{-1}(\theta) = \mathbf{R}^{\mathrm{T}}(\theta)$

$$\mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



$$\mathbf{R}_{z}^{-1}(\theta) = \mathbf{R}_{z}(-\theta) = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) & 0 & 0 \\ \sin(-\theta) & \cos(-\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## **Inverse of Scaling**

$$p'=Sp \rightarrow p' = S(s_x, s_y, s_z) p$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



$$\mathbf{S}^{-1}(s_x, s_y, s_z) = \mathbf{S}(1/s_x, 1/s_y, 1/s_z) = \begin{bmatrix} 1/s_x & 0 & 0 & 0 \\ 0 & 1/s_y & 0 & 0 \\ 0 & 0 & 1/s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

# HW#14 Animating Rotation with Menu Callback (1)

- Due date: This Friday 6:00pm
- Program execution example for HW#14 will be given at the end of this video lecture.
- Implement rotation matrices  $R_x(t)$ ,  $R_y(t)$ , and  $R_z(t)$ , where t is increased continuously in myidle().
- You have to use your pyramid shape object that was used in HW#13.
- Use 'glDrawElements' for drawing.

# HW#14 Animating Rotation with Menu Callback (2)

- Initially, the object is rotated about x-axis.
- By using menu callback, either 'x-axis', 'y-axis' or 'z-axis' can be chosen.
- Use depth buffer by the followings:
  - glEnable(GL\_DEPTH\_TEST); // add to myinit()
  - glClear(GL\_COLOR\_BUFFER\_BIT | GL\_DEPTH\_BUFFER\_BIT);
  - glutInitDisplayMode(GLUT\_DOUBLE | GLUT\_RGB | GLUT\_DEPTH);
- Please read the general rule of homework submission in announcement board.