MAP 573 - Group 12

Time Series Forecast using (LSTM) RNN network

Data Visualization

Energy Forecast Data Visualisation

Time Series

3D Time Series

Statistical Analysis

Data Visualization

Energy Forecast Data Visualisation Time Series 3D Time Series Statistical Analysis Plot Summary Table Date range 2004-01-01 to 2008-06-30 Data source (Zones, stations) Zone 1 Load Periodicity an 01 2004 24 Jul 01 2004 Jan 01 2005-☐ Include Forecast Data (if it exists) Jul 01 2005-Jan 01 2008-Jul 01 2000 Jan 01 2007-Jul 01 2007 Jan 01 2008 Jun 30 2008

Relationship between energy load and temperature

'Heatmap' of zones for the first year

LSTM Network with Python

```
1 def get predict and score(model, X, Y):
In [19]:
                # transform the prediction to the original scale.
                                                                                                                         1785505942920
                pred = normalizer.inverse transform(model.predict(X))
                # transform also the label to the original scale for interpretability.
                orig data =normalizer.inverse transform([Y])
                # calculate RMSE.
                score = math.sqrt(mean squared error(orig data[0], pred[:, 0]))
                return(score, pred)
         10 mse train, train predict = get predict and score(vanilla rnn, train X, train Y)
                                                                                                                                                (None, 1, 1)
                                                                                                                                  input:
         11 mse test, test predict = get predict and score(vanilla rnn, test X, test Y)
                                                                                                       1stm 5: LSTM
         13 print("Training data error: %.2f MSE" % mse train)
                                                                                                                                                  (None, 5)
                                                                                                                                 output:
         14 print("Test data error: %.2f MSE" % mse test)
        Training data error: 1437.70 MSE
        Test data error: 1494.71 MSE
          1 # Training predictions.
In [20]:
          2 train predictions = np.empty like(dataset)
          3 train predictions[:, :] = np.nan
                                                                                                                                                   (None, 5)
                                                                                                                                     input:
          4 train predictions[window size:len(train predict) + window size, :] = train predict
                                                                                                        dense 5: Dense
                                                                                                                                                   (None, 1)
          6 # Test predictions.
                                                                                                                                    output:
          7 test predictions = np.empty like(dataset)
          8 test predictions[:, :] = np.nan
          9 test predictions[len(train predict) + (window size * 2) + 1:len(dataset) - 1, :] = test predict
         11 # Create the plot.
         12 plt.figure(figsize = (15, 5))
         13 plt.plot(normalizer.inverse transform(dataset), label = "True Value")
         14 plt.plot(train predictions, label = "Training Predictions")
         15 plt.plot(test predictions, label = "Test Predictions")
         16 plt.xlabel("Hours")
         17 plt.ylabel("Load (MWh)")
         18 plt.title("Zone 1 Comparison True vs. Predicted in Training and Testing")
         19 plt.legend()
         20 plt.show()
```

Results

Results

