

# Using simpegMT

To demonstrate a modular modelling and inversion framework applied in a workflow for a hydrothermal system

Guðni Rosenkjær, Lindsey Heagy, Rowan Cockett & Seogi Kang



### Motivation:



Geothermal systems are

- Large
- Open

They have complex

- geological structures
- tectonics
- physical properties

It is important to assess the resource with geophysics

http://www.unugtp.is/en/organization/what-is-

Resistivity in Geothermal systems



# **Magneto Tellurics**



#### Impedance Data





$$\mathbf{Z}(\omega) = \begin{bmatrix} Z_{ii}(\omega) & Z_{ij}(\omega) \\ Z_{ji}(\omega) & Z_{jj}(\omega) \end{bmatrix} = \begin{bmatrix} \frac{E_i(\omega)}{H_i(\omega)} & \frac{E_i(\omega)}{H_j(\omega)} \\ \frac{E_j(\omega)}{H_i(\omega)} & \frac{E_j(\omega)}{H_j(\omega)} \end{bmatrix}$$

## Work approach with simpegMT



In order to be able invert the data we need to

- Process the data
  - Assign uncertainties
- Setup the inversion
  - Define the physics
- Assess the results
  - View the models

Prefer having a single platform to do all these tasks.

## Inversion

Want to recover conductivity model based on our MT observation



## Implementation



#### Implemented in Python!

```
import SimPEG
   In [1]:
            SimPEG.
   In [ ]:
            SimPEG.DataMisfit
            SimPEG.Directives
            SimPEG.Fields
            SimPEG.InvProblem
            SimPEG.Inversion
            SimPEG.Maps
            SimPEG.Mesh
            SimPEG.Models
            SimPEG.Optimization
jupyter
            SimPEG.Problem
```



http://simpeg.xyz



## simpegMT

Built on the SimPEG framework

- Fully compatible elements
  - Meshing
  - Inversion
  - etc...

Interoperable with other problems built on the SimPEG framework

simpegMT implements the MT forward problem, data projections and method specifics



## Krysuvik geothermal area



The Krysuvík geothermal area is 30km South of Reykjavík.

On Reykjanes peninsula SW-NE directed fissures and faults (brown lines)

100 MT data stations (purple dots)

3 main hydrothermal area's (yellow polygons)

### 1D inversion

#### Motivation:

Find a layer model that fits data at each measurement location

- Fast preliminary estimate
- One component at a time  $~Z_{xy}$  ,  $Z_{yx}$  or  $~Z_{det} = \sqrt{Z_{xx}Z_{yy} Z_{xy}Z_{yx}}$

```
In [1]: import SimPEG as simpeg
import simpegMT as simpegmt

# Load EDI data
MTdata = simpegmt.Utils.EDIimporter(ediFileList)

# Make a mesh and problem
mesh1D = simpeg.Mesh.TensorMesh([LayerThickness])
problem = simpegmt.ProblemMT1D.eForm_psField(mld,sigmaPrimary = sigmald)

# Run for all the locations
for dat in simpegmt.Utils.dataUtils.convert3Dto1Dobject(KryDobs,'zdet'):
    runInversion(dat,problem,mld,'zdet')
```

## 1D inversion results



### 3D inversion

#### Motivation:

Find a 3D model that explain the measurements

- Explain geological structures in the area
- Use off-diagonal components only  $Z_{xy\, {\sf and}} \,\, Z_{yx}$

```
import SimPEG as simpeg
In [1]:
        import simpegMT as simpegmt
        # Load FDT data
        MTdata = simpegmt.Utils.EDIimporter(ediFileList)
        # Make the mesh
        mesh = simpeg.Mesh.TensorMesh([cellSizeTensor],origin)
        ## Setup the problem object
        problem = simpegmt.ProblemMT3D.eForm ps(mesh,sigmaPrimary)
        # Set the optimization
        opt = simpeg.Optimization.InexactGaussNewton(maxIter = 50)
        # Data misfit
        dmis = simpeq.DataMisfit.l2 DataMisfit(survey)
        # Regularization
        reg = simpeg.Regularization.Tikhonov(mesh)
        # Inversion problem
        invProb = simpeq.InvProblem.BaseInvProblem(dmis, req, opt)
        # Create an inversion object
        inv = simpeg.Inversion.BaseInversion(invProb, directiveList)
        # Run the inversion
        mopt = inv.run(m 0)
```

## 3D inversion results







## Summary of talk

- Motivated by geothermal problems
- Overview of the simpegMT code
- Example
  - Krysuvik geothermal area
    - 1D determinant inversion
    - 3D off-diagonal element inversion

### Further work

#### Use of simpegMT:

- Continue work in Krysuvik
- Apply to other area's
- Etc..

Get others to use simpegMT

#### Development of simpegMT:

- Release stable version early 2016 within SimPEG
- Add functionality
  - Tipper inversions
  - ZTEM

Leverage new developments in SimPEG

### Thank You!

Questions?



simpeg.xyz



github.com/simpeg



grosenkj@eos.ubc.ca

Thanks to Iceland GeoSurvey and HS Orka



Except where noted, this work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>