FIGURE 1

GAGAAGCGCCTGCAGCCAACCAGGGTCAGGCTGTGCTCACAGTTTCCTCTGGCGGCATGTAA AGGCTCCACAAAGGAGTTGGGAGTTCAAATGAGGCTGCTGCGGACGGCCTGAGGATGGACCC CAAGCCCTGGACCTGCCGAGCGTGGCACTGAGGCAGCGCTGACGCTACTGTGAGGGAAAGA AGGTTGTGAGCAGCCCGCAGGACCCCTGGCCAGCCTGGCCCCAGCCTCTGCCGGAGCCCT CTGTGGAGGCAGAGCCAGTGGAGCCAGTGAGGCAGGCTGCTTGGCAGCCACCGGCCTGCA ACTCAGGAACCCCTCCAGAGGCCATGGACAGGCTGCCCCGCTGACGGCCAGGGTGAAGCATG TGAGGAGCCGCCCGGAGCCAAGCAGGAGGGAAGAGGCTTTCATAGATTCTATTCACAAAGA ATAACCACCATTTTGCAAGGACC<u>ATG</u>AGGCCACTGTGCGTGACATGCTGGTGGCTCGGACTG CTGGCTGCCATGGGAGCTGTTGCAGGCCAGGAGGACGGTTTTGAGGGCCACTGAGGAGGGCTC CCTACACCTTCATTGTGCCCCAGCAGCGGGTCACGGGTGCCATCTGCGTCAACTCCAAGGAG CCTGAGGTGCTTCTGGAGAACCGAGTGCATAAGCAGGAGCTAGAGCTGCTCAACAATGAGCT GCTCAAGCAGAAGCGGCAGATCGAGACGCTGCAGCAGCTGGTGGAGGTGGACGGCGGCATTG TGAGCGAGGTGAAGCTGCTGCGCAAGGAGAGCCGCAACATGAACTCGCGGGTCACGCAGCTC TACATGCAGCTCCTGCACGAGATCATCCGCAAGCGGGACAACGCGTTGGAGCTCTCCCAGCT GGAGAACAGGATCCTGAACCAGACAGCCGACATGCTGCAGCTGGCCAGCAAGTACAAGGACC TGGAGCACAAGTACCAGCACCTGGCCACACTGGCCCACAACCAATCAGAGATCATCGCGCAG CTTGAGGAGCACTGCCAGAGGGTGCCCTCGGCCAGGCCGTCCCCCAGCCACCCCCCGCTGC CCCGCCCGGGTCTACCAACCACCCACCTACAACCGCATCATCAACCAGATCTCTACCAACG AGATCCAGAGTGACCAGAACCTGAAGGTGCTGCCACCCCCTCTGCCCACTATGCCCACTCTC GGAGGATGGCCACGACACCAGCTCCATCTACCTGGTGAAGCCGGAGAACACCAACCGCCTCA TGCAGGTGTGGTGCGACCAGAGACACGACCCCGGGGGCTGGACCGTCATCCAGAGACGCCTG CGGCGAATACTGGCTGGGCCTGGAGAACATTTACTGGCTGACGAACCAAGGCAACTACAAAC TCCTGGTGACCATGGAGGACTGGTCCGGCCGCAAAGTCTTTGCAGAATACGCCAGTTTCCGC CTGGAACCTGAGAGCGAGTATTATAAGCTGCGGCTGGGGCGCTACCATGGCAATGCGGGTGA CTCCTTTACATGGCACAACGGCAAGCAGTTCACCACCCTGGACAGAGATCATGATGTCTACA CAGGAAACTGTGCCCACTACCAGAAGGGAGGCTGGTGGTATAACGCCTGTGCCCACTCCAAC CTCAACGGGGTCTGGTACCGCGGGGCCCATTACCGGAGCCGCTACCAGGACGGAGTCTACTG CCAACACCTTCCAC TAA GCCAGCTCCCCCTCCTGACCTCTCGTGGCCATTGCCAGGAGCCCACCCTGGTCACGCTGGCCACAGCACAAGAACAACTCCTCACCAGTTCATCCTGAGGCTGGGA GGACCGGGATGCTGGATTCTGTTTTCCGAAGTCACTGCAGCGGATGATGGAACTGAATCGAT ACGGTGTTTTCTGTCCCTCCTACTTTCCTTCACACCAGACAGCCCCTCATGTCTCCAGGACA

FIGURE 2

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA22779

><subunit 1 of 1, 493 aa, 1 stop

><MW: 57104, pI: 7.67, NX(S/T): 2

MRPLCVTCWWLGLLAAMGAVAGQEDGFEGTEEGSPREFIYLNRYKRAGESQDKCTYTFIVPQ
QRVTGAICVNSKEPEVLLENRVHKQELELLNNELLKQKRQIETLQQLVEVDGGIVSEVKLLR
KESRNMNSRVTQLYMQLLHEIIRKRDNALELSQLENRILNQTADMLQLASKYKDLEHKYQHL
ATLAHNQSEIIAQLEEHCQRVPSARPVPQPPPAAPPRVYQPPTYNRIINQISTNEIQSDQNL
KVLPPPLPTMPTLTSLPSSTDKPSGPWRDCLQALEDGHDTSSIYLVKPENTNRLMQVWCDQR
HDPGGWTVIQRRLDGSVNFFRNWETYKQGFGNIDGEYWLGLENIYWLTNQGNYKLLVTMEDW
SGRKVFAEYASFRLEPESEYYKLRLGRYHGNAGDSFTWHNGKQFTTLDRDHDVYTGNCAHYQ
KGGWWYNACAHSNLNGVWYRGGHYRSRYQDGVYWAEFRGGSYSLKKVVMMIRPNPNTFH

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 164-168, 192-196

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 124-128

Tyrosine kinase phosphorylation sites.

amino acids 177-184, 385-393, 385-394, 461-468

N-myristoylation sites.

amino acids 12-18, 18-24, 22-28, 29-35, 114-120, 341-347, 465-471, 473-479

Amidation site.

amino acids 373-377

Fibrinogen beta and gamma chains C-terminal domain signature.

amino acids 438-451

Fibrinogen beta and gamma chains C-terminal domain proteins.

amino acids 305-343, 365-402, 411-424, 428-458

Trehalase proteins.

amino acids 275-292

FIGURE 3

CCCACGCGTCCGGCCCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCCGCCGCCGCCCCCCCCCCCCCCCGGGGGCCCGGGAGGTAGAGAAAGTCAGT GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGCTTGAGGGATCTGAAGAGGTTCCTAGAAGAGGGT GTTCCCTCTTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGTCGCCCTTCTGAGGAGGCT GCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGATGACAGTGTTGACACCCAACAGCAACAGGCCGAGAACAGTG CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT $\mathsf{GGCAGTAATACGGACTCTTGTAGATAAG} \underline{\mathbf{TAA}} \mathsf{GTATCTGACTCACGGTCACCTCCAGTGGAAT}$ GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTC TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

FIGURE 4

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26846
<subunit 1 of 1, 117 aa, 1 stop
<MW: 12692, pI: 7.50, NX(S/T): 0
MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ
AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDK</pre>

Important features:

Signal peptide:

amino acids 1-16

N-myristoylation sites.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

FIGURE 5

CCCACGCGTCCGCGCAGTCGCGCAGTTCTGCCTCCGCCTGCCAGTCTCGCCCGCGATCCCGG CGCCGGAGGACCTCGGACGCCTCGTGAGCCCCGAGTGCGGAGAA GCCCGGGCAAACGCAGGCTAAGGAGACCAAAGCGGCGAAGTCGCGAGACAGCAGCAGACAGCAG CGTCGTGGCC<u>ATG</u>GCGGCGGCTATCGCCAGCTCGCTCATCCGTCAGAAGAGGCAAGCCCGCG AGCGCGAGAAATCCAACGCCTGCAAGTGTGTCAGCAGCCCCAGCAAAGGCAAGACCAGCTGC GACAAAAACAAGTTAAATGTCTTTTCCCGGGTCAAACTCTTCGGCTCCAAGAAGAGGCGCAG AAGAAGACCAGAGCCTCAGCTTAAGGGTATAGTTACCAAGCTATACAGCCGACAAGGCTACC ACTTGCAGCTGCAGGCGGATGGAACCATTGATGGCACCAAAGATGAGGACAGCACTTACACT CTGTTTAACCTCATCCCTGTGGGTCTGCGAGTGGTGGCTATCCAAGGAGTTCAAACCAAGCT GTACTTGGCAATGAACAGTGAGGGATACTTGTACACCTCGGAACTTTTCACACCTGAGTGCA AATTCAAAGAATCAGTGTTTGAAAATTATTATGTGACATATTCATCAATGATATACCGTCAG CAGCAGTCAGGCCGAGGGTGGTATCTGGGTCTGAACAAAGAAGGAGAGATCATGAAAGGCAA CCATGTGAAGAAGAACAAGCCTGCAGCTCATTTTCTGCCTAAACCACTGAAAGTGGCCATGT ACAAGGAGCCATCACTGCACGATCTCACGGAGTTCTCCCGATCTGGAAGCGGGACCCCAACC AAGAGCAGAAGTGTCTCTGGCGTGCTGAACGGAGGCAAATCCATGAGCCACAATGAATCAAC $\mathsf{G}^{\mathtt{TAG}}\mathsf{CCAGTGAGGGCAAAAGAAGGGCTCTGTAACAGAACCTTACCTCCAGGTGCTGTTGAAT$ CAGAGTTCACTATTCTATCTGCCATTAGACCTTCTTATCATCCATACTAAAGC

FIGURE 6

></usr/segdb2/sst/DNA/Dnasegs.full/ss.DNA28498

><subunit 1 of 1, 245 aa, 1 stop

><MW: 27564, pI: 10.18, NX(S/T): 1

MAAAIASSLIRQKRQAREREKSNACKCVSSPSKGKTSCDKNKLNVFSRVKLFGSKKRRRRP EPQLKGIVTKLYSRQGYHLQLQADGTIDGTKDEDSTYTLFNLIPVGLRVVAIQGVQTKLYLA MNSEGYLYTSELFTPECKFKESVFENYYVTYSSMIYRQQQSGRGWYLGLNKEGEIMKGNHVK KNKPAAHFLPKPLKVAMYKEPSLHDLTEFSRSGSGTPTKSRSVSGVLNGGKSMSHNEST

N-glycosylation site.

amino acids 242-246

Glycosaminoglycan attachment site.

amino acids 165-169, 218-222

Tyrosine kinase phosphorylation site.

amino acids 93-100

N-myristoylation site.

amino acids 87-93, 231-237

ATP/GTP-binding site motif A (P-loop).

amino acids 231-239

HBGF/FGF family proteins

amino acids 78-94, 102-153

FIGURE 7

FIGURE 8

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA28503

><subunit 1 of 1, 247 aa, 1 stop

><MW: 27702, pI: 10.36, NX(S/T): 2

MAAAIASGLIRQKRQAREQHWDRPSASRRRSSPSKNRGLCNGNLVDIFSKVRIFGLKKRRLR RQDPQLKGIVTRLYCRQGYYLQMHPDGALDGTKDDSTNSTLFNLIPVGLRVVAIQGVKTGLY IAMNGEGYLYPSELFTPECKFKESVFENYYVIYSSMLYRQQESGRAWFLGLNKEGQAMKGNR VKKTKPAAHFLPKPLEVAMYREPSLHDVGETVPKPGVTPSKSTSASAIMNGGKPVNKSKTT

N-glycosylation site.

amino acids 100-104, 242-246

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 28-32, 29-33

Tyrosine kinase phosphorylation site.

amino acids 199-207

N-myristoylation site.

amino acids 38-44, 89-95, 118-124, 122-128, 222-228

HBGF/FGF family proteins.

amino acids 104-155, 171-198

FIGURE 9

CTCGCAGCCGAGCGCGGGGGAAGGGCTCTCCTTCCAGCGCCCGAGCACTGGGCCCTGGCA GACGCCCAAGATTGTTGTGAGGAGTCTAGCCAGTTGGTGAGCGCTGTAATCTGAACCAGCT GTGTCCAGACTGAGGCCCCATTTGCATTGTTTAACATACTTAGAAAATGAAGTGTTCATTTT TAACATTCCTCCTCCAATTGGTTTAATGCTGAATTACTGAAGAGGGGCTAAGCAAAACCAGGT GCTTGCGCTGAGGGCTCTGCAGTGGCTGGGAGGACCCCGGCGCTCTCCCCGTGTCCTCCA CGACTCGCTCGGCCCTCTGGAATAAAACACCCGCGAGCCCCGAGGGCCCAGAGGAGGCCGA CGTGCCCGAGCTCCTCCGGGGGTCCCGCCGCGAGCTTTCTTCTCGCCTTCGCATCTCCTCC TCGCGCGTCTTGGACATGCCAGGAATAAAAAGGATACTCACTGTTACCATTCTGGCTCTCTG TCTTCCAAGCCCTGGGAATGCACAGGCACAGTGCACGAATGGCTTTGACCTGGATCGCCAGT CAGGACAGTGTTTAGATATTGATGAATGCCGAACCATCCCCGAGGCCTGCCGAGGAGACATG ATGTGTGTTAACCAAAATGGCGGGTATTTATGCATTCCCCGGACAAACCCTGTGTATCGAGG GCCCTACTCGAACCCCTACTCGACCCCCTACTCAGGTCCGTACCCAGCAGCTGCCCCACCAC TCTCAGCTCCAAACTATCCCACGATCTCCAGGCCTCTTATATGCCGCTTTGGATACCAGATG GATGAAAGCAACCAATGTGTGGATGTGGACGAGTGTGCAACAGATTCCCACCAGTGCAACCC CACCCAGATCTGCATCAATACTGAAGGCGGGTACACCTGCTCCTGCACCGACGGATATTGGC TTCTGGAAGGCCAGTGCTTAGACATTGATGAATGTCGCTATGGTTACTGCCAGCAGCTCTGT GCGAATGTTCCTGGATCCTATTCTTGTACATGCAACCCTGGTTTTACCCTCAATGAGGATGG AAGGTCTTGCCAAGATGTGAACGAGTGTGCCACCGAGAACCCCTGCGTGCAAACCTGCGTCA ACACCTACGGCTCTCTCATCTGCCGCTGTGACCCAGGATATGAACTTGAGGAAGATGGCGTT CATTGCAGTGATATGGACGAGTGCAGCTTCTCTGAGTTCCTCTGCCAACATGAGTGTGTGAA CCAGCCCGGCACATACTTCTGCTCCTGCCCTCCAGGCTACATCCTGCTGGATGACAACCGAA GCTGCCAAGACATCAACGAATGTGAGCACAGGAACCACACGTGCAACCTGCAGCAGACGTGC TACAATTTACAAGGGGGCTTCAAATGCATCGACCCCATCCGCTGTGAGGAGCCTTATCTGAG GATCAGTGATAACCGCTGTATGTGTCCTGCTGAGAACCCTGGCTGCAGAGACCAGCCCTTTA CCATCTTGTACCGGGACATGGACGTGGTGTCAGGACGCTCCGTTCCCGCTGACATCTTCCAA ATGCAAGCCACGACCCGCTACCCTGGGGCCTATTACATTTTCCAGATCAAATCTGGGAATGA GGGCAGAGAATTTTACATGCGGCAAACGGGCCCCATCAGTGCCACCCTGGTGATGACACGCC CCATCAAAGGGCCCCGGGAAATCCAGCTGGACTTGGAAATGATCACTGTCAACACTGTCATC AACTTCAGAGGCAGCTCCGTGATCCGACTGCGGATATATGTGTCGCAGTACCCATTCCTCGGGCTGGAGCCTCCGACGCTGCCTCTCATTGGCACCAAGGGACAGGAGAAGAGAGAAAA TAACAGAGAGAATGAGAGCGACACAGACGTTAGGCATTTCCTGCTGAACGTTTCCCCGAAGA GTCAGCCCCGACTTCCTGACTCTCACCTGTACTATTGCAGACCTGTCACCCTGCAGGACTTG CCACCCCAGTTCCTATGACACAGTTATCAAAAAGTATTATCATTGCTCCCCTGATAGAAGA TTGTTGGTGAATTTTCAAGGCCTTCAGTTTATTTCCACTATTTTCAAAGAAAATAGATTAGG TTTGCGGGGGTCTGAGTCTATGTTCAAAGACTGTGAACAGCTTGCTGTCACTTCTTCACCTC TTCCACTCCTTCTCACTGTGTTACTGCTTTGCAAAGACCCGGGAGCTGGCGGGAACCCT TCGAAGGGTTTTTAGAGAATGTGTTTCAAAACCATGCCTGGTATTTTCAACCATAAAAGAAG TTTCAGTTGTCCTTAAATTTGTATAACGGTTTAATTCTGTCTTGTTCATTTTGAGTATTTTT AAAAAATATGTCGTAGAATTCCTTCGAAAGGCCTTCAGACACATGCTATGTTCTGTCTTCCC AAACCCAGTCTCCTCCATTTTAGCCCAGTGTTTTCTTTGAGGACCCCTTAATCTTGCTTT CTTTAGAATTTTTACCCAATTGGATTGGAATGCAGAGGTCTCCAAACTGATTAAATATTTGA **AGAGA**

FIGURE 10

MPGIKRILTVTILALCLPSPGNAQAQCTNGFDLDRQSGQCLDIDECRTIPEACRGDMMCVNQ
NGGYLCIPRTNPVYRGPYSNPYSTPYSGPYPAAAPPLSAPNYPTISRPLICRFGYQMDESNQ
CVDVDECATDSHQCNPTQICINTEGGYTCSCTDGYWLLEGQCLDIDECRYGYCQQLCANVPG
SYSCTCNPGFTLNEDGRSCQDVNECATENPCVQTCVNTYGSLICRCDPGYELEEDGVHCSDM
DECSFSEFLCQHECVNQPGTYFCSCPPGYILLDDNRSCQDINECEHRNHTCNLQQTCYNLQG
GFKCIDPIRCEEPYLRISDNRCMCPAENPGCRDQPFTILYRDMDVVSGRSVPADIFQMQATT
RYPGAYYIFQIKSGNEGREFYMRQTGPISATLVMTRPIKGPREIQLDLEMITVNTVINFRGS
SVIRLRIYVSQYPF

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 283-287, 296-300

N-myristoylation sites.

amino acids 21-27, 64-70, 149-155, 186-192, 226-232, 242-248, 267-273, 310-316

Aspartic acid and asparagine hydroxylation sites.

amino acids 144-156, 181-193, 262-274

Cell attachment sequence.

amino acids 54-57

Calcium-binding EGF-like.

amino acids 131-166, 172-205, 211-245, 251-286

FIGURE 11

CAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC GACCTCGACCCACGCGTCCGAACACAGGTCCTTGTTGCTGCAGAGAAGCAGTTGTTTTGCTG GAAGGAGGGAGTGCGCGGGCTGCCCGGGCTCCTCCCTGCCGCCTCCTCAGTGGATGGTT CCAGGCACCCTGTCTGGGGCAGGGGGGGCACAGGCCTGCACATCGAAGGTGGGGTGGGACCA GGCTGCCCCTCGCCCCAGCATCCAAGTCCTCCCTTGGGCGCCCCGTGGCCCCTGCAGACTCTCA GGGCTAAGGTCCTCTGTTGCTTTTTGGTTCCACCTTAGAAGAGGCTCCGCTTGACTAAGAGT AGCTTGAAGGAGGCACC<u>ATG</u>CAGGAGCTGCATCTGCTCTGGTGGGCGCTTCTCCTGGGCCTG GCTCAGGCCTGCCCTGAGCCCTGCGACTGTGGGGAAAAGTATGGCTTCCAGATCGCCGACTG TGCCTACCGCGACCTAGAATCCGTGCCGCCTGGCTTCCCGGCCAATGTGACTACACTGAGCC TGTCAGCCAACCGGCTGCCAGGCTTGCCGGAGGGTGCCTTCAGGGAGGTGCCCCTGCTGCAG TCGCTGTGGCTGGCACACAATGAGATCCGCACGGTGGCCGCGGAGCCCTGGCCTCTCTGAG ACAACCTCAGTGCCCTCCAATTGCTCAAGATGGACAGCAACGAGCTGACCTTCATCCCCCGC GACGCCTTCCGCAGCCTCCGTGCTCTGCGCTCGCTGCAACTCAACCACAACCGCTTGCACAC ATTGGCCGAGGGCACCTTCACCCGCTCACCGCGCTGTCCCACCTGCAGATCAACGAGAACC CCTTCGACTGCACCTGCGGCATCGTGTGGCTCAAGACATGGGCCCTGACCACGGCCGTGTCC ATCCCGGAGCAGGACAACATCGCCTGCACCTCACCCCATGTGCTCAAGGGTACACCGCTGAG ATGGTGCCGAGCTGCGCCTGGTTTTGTGCTGGCACTGCACTGTGATGTGGACGGCCAGCCG GCCCTCAGCTTCACTGGCACATCCAGATACCCAGTGGCATTGTGGAGATCACCAGCCCCAA CGTGGGCACTGATGGGCGTGCCCTGCCTGGCACCCCTGTGGCCAGCTCCCAGCCGCGCTTCC AGGCCTTTGCCAATGGCAGCCTGCTTATCCCCGACTTTGGCAAGCTGGAGGAAGGCACCTAC AGCTGCCTGGCCACCAATGAGCTGGGCAGTGCTGAGAGCTCAGTGGACGTGGCACTGGCCAC GCCCGGTGAGGGTGAGGACACACTGGGGCGCAGGTTCCATGGCAAAGCGGTTGAGGGAA AGGGCTGCTATACGGTTGACAACGAGGTGCAGCCATCAGGGCCGGAGGACAATGTGGTCATC ATCTACCTCAGCCGTGCTGGGAACCCTGAGGCTGCAGTCGCAGAAGGGGTCCCTGGGCAGCT ${\tt GCCCCAGGCCTGCTGCTGGGCCAAAGCCTCCTCTTCTTCTTCTTCACCTCCTTC}$ **AG**CCCCACCCAGGGCTTCCCTAACTCCTCCCCTTGCCCCTACCAATGCCCCTTTAAGTGCTG CAGGGGTCTGGGGTTGGCAACTCCTGAGGCCTGCATGGGTGACTTCACATTTTCCTACCTCT CCTTCTAATCTCTTCTAGAGCACCTGCTATCCCCAACTTCTAGACCTGCTCCAAACTAGTGA CTAGGATAGAATTTGATCCCCTAACTCACTGTCTGCGGTGCTCATTGCTGCTAACAGCATTG CCTGTGCTCTCCTCTCAGGGGCAGCATGCTAACGGGGCGACGTCCTAATCCAACTGGGAGAA GCCTCAGTGGTGGAATTCCAGGCACTGTGACTGTCAAGCTGGCAAGGGCCAGGATTGGGGGA ATGGAGCTGGGGÇTTAGCTGGGAGGTGGTCTGAAGCAGACAGGGAATGGGAGAGGAGGATGG GAAGTAGACAGTGGCTGGTATGGCTCTGAGGCTCCCTGGGGCCTGCTCAAGCTCCTCCTGCT CCTTGCTGTTTTCTGATGATTTGGGGGGCTTGGGGAGTCCCTTTGTCCTCATCTGAGACTGAAA TGTGGGGATCCAGGATGGCCTTCCTTCCTCTTACCCTTCCTCCTCAGCCTGCAACCTCTAT CCTGGAACCTGTCCTCCCTTTCTCCCCAACTATGCATCTGTTGTCTGCTCCTCTGCAAAGGC AAGGGCGGCCGCGACTCTAGAGTCGACCT

FIGURE 12

MQELHLLWWALLLGLAQACPEPCDCGEKYGFQIADCAYRDLESVPPGFPANVTTLSLSANRL PGLPEGAFREVPLLQSLWLAHNEIRTVAAGALASLSHLKSLDLSHNLISDFAWSDLHNLSAL QLLKMDSNELTFIPRDAFRSLRALRSLQLNHNRLHTLAEGTFTPLTALSHLQINENPFDCTC GIVWLKTWALTTAVSIPEQDNIACTSPHVLKGTPLSRLPPLPCSAPSVQLSYQPSQDGAELR PGFVLALHCDVDGQPAPQLHWHIQIPSGIVEITSPNVGTDGRALPGTPVASSQPRFQAFANG SLLIPDFGKLEEGTYSCLATNELGSAESSVDVALATPGEGGEDTLGRRFHGKAVEGKGCYTV DNEVQPSGPEDNVVIIYLSRAGNPEAAVAEGVPGQLPPGLLLLGQSLLLFFFLTSF

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 403-418

N-glycosylation sites.

amino acids 51-55, 120-124, 309-313

Tyrosine kinase phosphorylation site.

amino acids 319-326

N-myristoylation sites.

amino acids 14-20, 64-70, 92-98, 218-224, 294-300, 323-329, 334-340, 350-356, 394-400

Amidation site.

amino acids 355-359

Leucine rich repeats.

amino acids 51-74, 75-98, 99-122, 123-146, 147-170

Leucine rich repeat C-terminal domain.

amino acids 180-230

FIGURE 13

CCAGGCCGGGAGGCGACGCCCCAGCCGTCTAAACGGGAACAGCCCTGGCTGAGGGAGCTGC AGCGCAGCAGAGTATCTGACGGCGCCAGGTTGCGTAGGTGCGGCACGAGGAGTTTTCCCGGC AGCGAGGAGGTCCTGAGCAGC<u>ATG</u>GCCCGGAGGAGCGCCTTCCCTGCCGCCGCGCTCTGGCT GCCTGTACCTATGGATCGATGCTCACCAGGCAAGAGTACTCATAGGATTTGAAGAAGATATC CTGATTGTTTCAGAGGGGAAAATGGCACCTTTTACACATGATTTCAGAAAAGCGCAACAGAG AATGCCAGCTATTCCTGTCAATATCCATTCCATGAATTTTACCTGGCAAGCTGCAGGCCAGG CAGAATACTTCTATGAATTCCTGTCCTTGCGCTCCCTGGATAAAGGCATCATGGCAGATCCA ACCGTCAATGTCCCTCTGCTGGGAACAGTGCCTCACAAGGCATCAGTTGTTCAAGTTGGTTT CCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTTGAAGTGGATGTGATTGTTATGAATT CTGAAGGCAACACCATTCTCCAAACACCTCAAAATGCTATCTTCTTTAAAACATGTCAACAA GCTGAGTGCCCAGGCGGTGCCGAAATGGAGGCTTTTGTAATGAAAGACGCATCTGCGAGTG TCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTTGTACCCCACGATGTATGAATG GTGGACTTTGTGTGACTCCTGGTTTCTGCATCTGCCCACCTGGATTCTATGGAGTGAACTGT GACAAAGCAAACTGCTCAACCACCTGCTTTAATGGAGGGACCTGTTTCTACCCTGGAAAATG TATTTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAGCAAATGCCCACAACCCTGTC GAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGTTCCAAAGGTTACCAGGGAGAC CTCTGTTCAAAGCCTGTCTGCGAGCCTGGCTGTGGTGCACATGGAACCTGCCATGAACCCAA TCATACATGCCCTGAGGCCAGCAGGCGCCCAGCTCAGGCACACGCCTTCACTTAAAAAG GCCGAGGAGCGGCGGGATCCACCTGAATCCAATTACATCTGG**TGA**ACTCCGACATCTGAAAC GTTTTAAGTTACACCAAGTTCATAGCCTTTGTTAACCTTTCATGTGTTGAATGTTCAAATAA TGTTCATTACACTTAAGAATACTGGCCTGAATTTTATTAGCTTCATTATAAATCACTGAGCT GATATTTACTCTTTTAAGTTTTCTAAGTACGTCTGTAGCATGATGGTATAGATTTTCT TGTTTCAGTGCTTTGGGACAGATTTTATATTATGTCAATTGATCAGGTTAAAATTTTCAGTG TGTAGTTGGCAGATATTTTCAAAATTACAATGCATTTATGGTGTCTGGGGGCAGGGGAACAT CAGAAAGGTTAAATTGGGCAAAAATGCGTAAGTCACAAGAATTTGGATGGTGCAGTTAATGT TTGCTCTTAATTTTTAAACTCTCAATACAATATTTTTGACCTTACCATTATTCCAGAGATT CAGTATTAAAAAAAAAAAATTACACTGTGGTAGTGGCATTTAAACAATATAATATATTCTA AACACAATGAAATAGGGAATATAATGTATGAACTTTTTGCATTGGCTTGAAGCAATATAATA

FIGURE 14

MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPHCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIGKSKCKCSKGYQGDLCSKPVC
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP
PESNYIW

Signal sequence.

amino acids 1-28

N-glycosylation sites.

amino acids 88-92, 245-249

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 15

FIGURE 16

MMGLSLASAVLLASLLSLHLGTATRGSDISKTCCFQYSHKPLPWTWVRSYEFTSNSCSQRAV IFTTKRGKKVCTHPRKKWVQKYISLLKTPKQL

Important features of the protein:

Signal peptide:

amino acids 1-23

N-myristoylation sites.

amino acids 3-9, 26-32

Amidation site.

amino acids 68-72

Small cytokines (intecrine/chemokine).

amino acids 23-88

FIGURE 17

TCCCTTCTCATGGGACTTTGGGGACAAAGCGTCCCGACCGCCTCGAGCGCTCGAGCAGGGCGCTATCCAGGAGC CAGGACAGCGTCGGGAACCAGACCATGGCTCCTGGACCCCAAGATCCTTAAGTTCGTCGTCTTCATCGTCGCGG TTCTGCTGCCGGTCCGGGTTGACTCTGCCACCATCCCCCGGCAGGACGAAGTTCCCCAGCAGACAGTGGCCCCA CAGCAACAGAGGCGCAGCCTCAAGGAGGAGGAGTGTCCAGCAGGATCTCATAGATCAGAATATACTGGAGCCTG TAACCCGTGCACAGAGGGTGTGGATTACACCATTGCTTCCAACAATTTGCCTTCTTGCCTGCTATGTACAGTTT GTAAATCAGGTCAAACAAATAAAAGTTCCTGTACCACGACCAGAGACACCGTGTGTCAGTGTGAAAAAGGAAGC TTCCAGGATAAAAACTCCCCTGAGATGTGCCGGACGTGTAGAACAGGGTGTCCCAGAGGGATGGTCAAGGTCAG TAATTGTACGCCCCGGAGTGACATCAAGTGCAAAAATGAATCAGCTGCCAGTTCCACTGGGAAAAACCCCAGCAG CGGAGGAGACAGTGACCACCATCCTGGGGATGCTTGCCTCTCCCTATCACTACCTTATCATCATAGTGGTTTTA GTCATCATTTTAGCTGTGGTTGGGTTGGCTTTTCATGTCGGAAGAAATTCATTTCTTACCTCAAAGGCATCTG $\tt CTCAGGTGGTGGAGGGGTCCCGAACGTGTGCACAGAGTCCTTTTCCGGCGGCGTTCATGTCCTTCACGAGTTC$ GAAATCCAAGGTCAGGAGCTGGCAGAGCTAACAGGTGTGACTGTAGAGTCGCCAGAGGAGCCACAGCGTCTGCT GGAACAGGCAGAAGCTGAAGGGTGTCAGAGGAGGAGGCTGCTGGTTCCAGTGAATGACGCTGACTCCGCTGACA TCAGCACCTTGCTGGATGCCTCGGCAACACTGGAAGAAGGACATGCAAAGGAAACAATTCAGGACCAACTGGTG GAAACCAGAGCTTCCCTCATTTACCTTTTCTCCTACAAAGGGAAGCAGCCTGGAAGAAACAGTCCAGTACTTGA $\tt CCCATGCCCCAACAACTCTACTATCCAATATGGGGCAGCTTACCAATGGTCCTAGAACTTTGTTAACGCACTT$ GGAGTAATTTTTATGAAATACTGCGTGTGATAAGCAAACGGGAGAAATTTATATCAGATTCTTGGCTGCATAGT ${\tt TATACGATTGTGTATTAAGGGTCGTTTTAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCCACATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGCAGATGAGAGATGAGATGAGATGAGATGAGATGAGATGAGAGATGAGAGATGAGAGATGAGAGATGAGATGAGAATGAGAGATGAGAGATGAGAATGAGAGATGAGAGAGAATGAGAGAATGAGAGAATGAGAATGAGAATGAGAGAATGAATGAGAATGAATGAGAATGAGAATGAATGAGAATGAATGAGAATGAATGAATGAATGAATGAATGAGAATGAATGAATGAATGAA$ $\verb|TTCTTATATTGCAAGCTCCATCTCTACTGGTGTGTGTGTATTAATGACATCTAACTACAGATGCCGCACAGCCAC|$ AATGCTTTGCCTTATAGTTTTTTAACTTTAGAACGGGATTATCTTGTTATTACCTGTATTTTCAGTTTCGGATA TTTTTGACTTAATGATGAGATTATCAAGACGTAGCCCTATGCTAAGTCATGAGCATATGGACTTACGAGGGTTC GACTTAGAGTTTTGAGCTTTAAGATAGGATTATTGGGGCTTACCCCCACCTTAATTAGAGAAACATTTATATTG CTTACTACTGTAGGCTGTACATCTCTTTTCCGATTTTTGTATAATGATGTAAACATGGAAAAACTTTAGGAAAT GCACTTATTAGGCTGTTTACATGGGTTGCCTGGATACAAATCAGCAGTCAAAAAATGACTAAAAAATAAACTAGT GACCAGGGTTTGATGGCTGGCAGCTTCTCAAGGGGCCAGCTTGTCTTACTTGTTAATTTTAGAGGTATATAGCCA TATTTATTATAAATAAATATTTATTTATTTATTTATAAGTAGATGTTTACATATGCCCAGGATTTTGAAGAGC CTGGTATCTTTGGGAAGCCATGTGTCTGGTTTGTCGTGCTGGGACAGTCATGGGACTGCATCTTCCGACTTGTC CACAGCAGATGAGGACAGTGAGAATTAAGTTAGATCCGAGACTGCGAAGAGCTTCTCTTTCAAGCGCCATTACA GTTGAACGTTAGTGAATCTTGAGCCTCATTTGGGCTCAGGGCAGAGCAGGTGTTTATCTGCCCCGGCATCTGCC $\tt CCCTCTCGCTTCTGGTGGTCTGTGAACTGAGTCCCTGGGATGCCTTTTAGGGCAGAGATTCCTGAGCTGCGTTT$ TAGGGTACAGATTCCCTGTTTGAGGAGCTTGGCCCCTCTGTAAGCATCTGACTCATCTCAGAGATATCAATTCT TAAACACTGTGACAACGGGATCTAAAATGGCTGACACATTTGTCCTTGTGTCACGTTCCATTATTTTATAAA AACCTCAGTAATCGTTTTAGCTTCTTTCCAGCAAACTCTTCTCCACAGTAGCCCAGTCGTGGTAGGATAAATTA CGGATATAGTCATTCTAGGGGTTTCAGTCTTTTCCATCTCAAGGCATTGTGTGTTTTGTTCCGGGACTGGTTTG GCTGGGACAAAGTTAGAACTGCCTGAAGTTCGCACATTCAGATTGTTGTGTCCATGGAGTTTTAGGAGGGGATG GCCTTTCCGGTCTTCGCACTTCCATCTTCCATCTGGCGTCCCACACCTTGTCCCCTGCACTTCTGGATGACACAGGGTGCTGCTCCTAGTCTTTGCCTTTGCTGGGCCTTCTGTGCAGGAGACTTGGTCTCAAAG ACCAGCCTTATCAGTGTTTAAGCTTATTCCTTTAACATAAGCTTCCTGACAACATGAAATTGTTGGGGTTTTTT GGCGTTGGTTGATTTGTTTAGGTTTTGCTTTATACCCGGGCCAAATAGCACATAACACCTGGTTATATATGAAA

FIGURE 18

MGLWGQSVPTASSARAGRYPGARTASGTRPWLLDPKILKFVVFIVAVLLPVRVDSATIPRQD EVPQQTVAPQQQRRSLKEEECPAGSHRSEYTGACNPCTEGVDYTIASNNLPSCLLCTVCKSG QTNKSSCTTTRDTVCQCEKGSFQDKNSPEMCRTCRTGCPRGMVKVSNCTPRSDIKCKNESAA SSTGKTPAAEETVTTILGMLASPYHYLIIIVVLVIILAVVVVGFSCRKKFISYLKGICSGG GGPERVHRVLFRRRSCPSRVPGAEDNARNETLSNRYLQPTQVSEQEIQGQELAELTGVTVES PEEPQRLLEQAEAEGCQRRRLLVPVNDADSADISTLLDASATLEEGHAKETIQDQLVGSEKL FYEEDEAGSATSCL

Important features of the protein:

Transmembrane domains:

amino acids 35-52, 208-230

N-glycosylation sites.

amino acids 127-131, 182-186, 277-281

Glycosaminoglycan attachment site.

amino acids 245-249

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 260-264

N-myristoylation sites.

amino acids 21-27, 86-92, 102-108, 161-167, 242-248, 270-276, 297-303, 380-386

ATP/GTP-binding site motif A (P-loop).

amino acids 185-193

TNFR/NGFR cysteine-rich region.

amino acids 99-139

FIGURE 19

 ${\tt GCGGCACCTGGAAG}$ ${\tt ATG}$ ${\tt CGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGTTCGTGGTCTTC}$ GCCTCCTTGTGTGCCTGGTATTCGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCACCCCT GTCCAGTGCTGCCTATAGCATCCGCAGCATCGGGGAGAGGCCTGTCCTCAAAGCTCCAGTCC CCAAAAGGCAAAAATGTGACCACTGGACTCCCTGCCCATCTGACACCTATGCCTACAGGTTA CTCAGCGGAGGTGGCAGAAGCAAGTACGCCAAAATCTGCTTTGAGGATAACCTACTTATGGG AGAACAGCTGGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAACTATGTAACTGGGA ATGTGACAGCAACACGATGTTTTGATATGTATGAAGGCGATAACTCTGGACCGATGACAAAG TTTATTCAGAGTGCTCCCAAAATCCCTGCTCTTCATGGTGACCTATGACGACGGAAGCAC AAĞACTGAATAACGATGCCAAGAATGCCATAGAAGCACTTGGAAGTAAAGAAATCAGGAACA TGAAATTCAGGTCTAGCTGGGTATTTATTGCAGCAAAAGGCTTGGAACTCCCTTCCGAAATT ${\sf GATCCAGATAGAAGGCTGCATACCCAAAGAACGAAGC}$ ${\sf CACTGCAGGGTCCTGAGTAAAT}$ GTGTTCTGTATAAACAAATGCAGCTGGAATCGCTCAAGAATCTTATTTTTCTAAATCCAACA GCCCATATTTGATGAGTATTTTGGGTTTGTTGTAAACCAATGAACATTTGCTAGTTGTATCA AATCTTGGTACGCAGTATTTTATACCAGTATTTTATGTAGTGAAGATGTCAATTAGCAGGA AACTAAAATGAATGGAAATTCTTAAAAAAAAAAA

FIGURE 20

MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKRQK CDHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGNVTAT RCFDMYEGDNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIRNMKFRS SWVFIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS

Important features of the protein:

Signal peptide:

amino acids 1-20

N-glycosylation sites.

amino acids 120-124, 208-212

Glycosaminoglycan attachment site.

amino acids 80-84

N-myristoylation sites.

amino acids 81-87, 108-114, 119-125

FIGURE 21

CCGGGGAGGGGAGGCCCGTCCCGCCCTCTCCCGTCTCTCCCCGCCCTCCCCGTCCCTCCC GCCGAAGCTCCGTCCCGCCGCGGGCCGGCTCCGCCCTCACCTCCCGGCCGCGGCTGCCCTC TTCGTGGCGCTACCCGCCTCCGGCTGGCTGACGACGGCGCCCCCGAGCCGCCGCCGCTGTC CGGAGCCCCACAGGACGCATCAGAATTAATGTAACTACACTGAAAGATGATGGGGACATAT CCTGTAAATAGTGGTGTAACCCGAATAAGCTGTCAGACTTTGATAGTGAAGAATGAAAATCT TGAAAATTTGGAGGAAAAAGAATATTTTGGAATTGTCAGTGTAAGGATTTTAGTTCATGAGT GGCCTATGACATCTGGTTCCAGTTTGCAACTAATTGTCATTCAAGAAGAGGTAGTAGAGATT GATGGAAAACAAGTTCAGCAAAAGGATGTCACTGAAATTGATATTTTAGTTAAGAACCGGGG AGTACTCAGACATTCAAACTATACCCTCCCTTTGGAAGAAAGCATGCTCTACTCTATTTCTC CAAACCACTAGCCAGTATCTTATCAGGAATGTGGAAACCACTGTAGATGAAGATGTTTTACC TGGCAAGTTACCTGAAACTCCTCTCAGAGCAGAGCCGCCATCTTCATATAAGGTAATGTGTC AGTGGATGGAAAAGTTTAGAAAAGATCTGTGTAGGTTCTGGAGCAACGTTTTCCCAGTATTC TTTCAGTTTTTGAACATCATGGTGGTTGGAATTACAGGAGCAGCTGTGGTAATAACCATCTT AAAGGTGTTTTTCCCAGTTTCTGAATACAAAGGAATTCTTCAGTTGGATAAAGTGGACGTCA TACCTGTGACAGCTATCAACTTATATCCAGATGGTCCAGAGAAAAGAGCTGAAAACCTTGAA ${\tt GATAAAACATGTATT} \underline{\textbf{TAA}} {\tt AACGCCATCTCATATCATGGACTCCGAAGTAGCCTGTTGCCTCC}$ AAATTTGCCACTTGAATATAATTTTCTTTAAATCGTT

FIGURE 22

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60783

><subunit 1 of 1, 330 aa, 1 stop

><MW: 36840, pI: 4.84, NX(S/T): 4

MEGAPPGSLALRLLLFVALPASGWLTTGAPEPPPLSGAPQDGIRINVTTLKDDGDISKQQVV LNITYESGQVYVNDLPVNSGVTRISCQTLIVKNENLENLEEKEYFGIVSVRILVHEWPMTSG SSLQLIVIQEEVVEIDGKQVQQKDVTEIDILVKNRGVLRHSNYTLPLEESMLYSISRDSDIL FTLPNLSKKESVSSLQTTSQYLIRNVETTVDEDVLPGKLPETPLRAEPPSSYKVMCQWMEKF RKDLCRFWSNVFPVFFQFLNIMVVGITGAAVVITILKVFFPVSEYKGILQLDKVDVIPVTAI NLYPDGPEKRAENLEDKTCI

Important features of the protein:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 266-284

Leucine zipper pattern.

amino acids 155-176

N-glycosylation sites.

amino acids 46-49, 64-67, 166-169, 191-194

FIGURE 23

CGTCTCTGCGTTCGCCATGCGTCCCGGGGCGCCAGGGCCACTCTGGCCTCTGCCCTGGGGGG CCCTGGCTTGGGCCGTGGGCTTCGTGAGCTCCATGGGCTCGGGGAACCCCGCGCCCGGTGGT GTTTGCTGGCTCCAGCAGGGCCAGGAGGCCACCTGCAGCCTGGTGCTCCAGACTGATGTCAC GGAACAAGATCAACCTCCTCGGCTTCTTGGGCCTTGTCCACTGCCTTCCCTGCAAAGATTCG TGCGACGCGTGGAGTGCGGCCCGGGCAAGGCGTGCCGCATGCTGGGGGGGCCGCCGCGCTG CGAGTGCGCGCCGACTGCTCGGGGCTCCCGGCGCGCGCTGCAGGTCTGCGGCTCAGACGGCG GTCATGTACCGGGGCCGCTGCCGCAAGTCCTGTGAGCACGTGGTGTGCCCGCGGCCACAGTC GTGCGTCGTGGACCAGACGGCAGCGCCCACTGCGTGGTGTCGAGCGGCGCCCTGCCCTG TGCCCTCCAGCCCCGGCCAGGAGCTTTGCGGCAACAACAACGTCACCTACATCTCCTCGTGC CACATGCGCCAGGCCACCTGCTTCCTGGGCCGCTCCATCGGCGTGCGCCACGCGGGCAGCTG ${\tt CGCAGGCACCCCTGAGGAGCCGCCAGGTGGTGAGTCTGCAGAAGAGAGAAGAGAACTTCGTG{\tt T}}$ GCCACAGCAGAGTCTAATTTATATGCCACGGACACTCCTTAGAGCCCGGATTCGGACCACTT GGGGATCCCAGAACCTCCCTGACGATATCCTGGAAGGACTGAGGAAGGGAGGCCTGGGGGCC GGCTGGTGGGTGGGATAGACCTGCGTTCCGGACACTGAGCGCCTGATTTAGGGCCCTTCTCT AGGATGCCCCAGCCCTACCCTAAGACCTATTGCCGGGGAGGATTCCACACTTCCGCTCCTT TGGGGATAAACCTATTAATTATTGCTACTATCAAGAGGGCTGGGCATTCTCTGCTGGTAATT CCTGAAGAGGCATGACTGCTTTTCTCAGCCCCAAGCCTCTAGTCTGGGTGTGTACGGAGGGT CTAGCCTGGGTGTACGGAGGGTCTAGCCTGGGTGAGTACGGAGGGTCTAGCCTGGGTGAG TACGGAGGGTCTAGCCTGGGTGAGTACGGAGGGTCTAGCCTGGGTGTGTATGGAGGATCTAG CCTGGGTGAGTATGGAGGGTCTAGCCTGGGTGAGTATGGAGGGTCTAGCCTGGGTGTATG GAGGGTCTAGCCTGGGTGAGTATGGAGGGTCTAGCCTGGGTGTGTATGGAGGGTCTAGCCTG GGTGAGTATGGAGGGTCTAGCCTGGGTGTGTACGGAGGGTCTAGTCTGAGTGCGTGTGGGGA CCTCAGAACACTGTGACCTTAGCCCAGCAAGCCAGGCCCTTCATGAAGGCCAAGAAGGCTGC CACCATTCCCTGCCAGCCCAAGAACTCCAGCTTCCCCACTGCCTCTGTGTGCCCCTTTGCGT CCTGTGAAGGCCATTGAGAAATGCCCAGTGTGCCCCCTGGGAAAGGGCACGGCCTGTGCTCC TGACACGGGCTGTGCTTGGCCACAGAACCACCCAGCGTCTCCCCTGCTGCTGTCCACGTCAG ACTGTGTCCGGCGGAGCCAAGTCCACTCTGGGGGAGCTCTGGCGGGGACCACGGGCCACTGC TCACCCACTGGCCCCGAGGGGGGTGTAGACGCCAAGACTCACGCATGTGTGACATCCGGAGT CCTGGAGCCGGGTGTCCCAGTGGCACCACTAGGTGCCTGCTGCCTCCACAGTGGGGTTCACA CCCAGGGCTCCTTGGTCCCCCACAACCTGCCCCGGCCAGGCCTGCAGACCCAGACTCCAGCC CCAGTTCTCCCACGACGGCTCACCCTCCCTCCATCTGCGTTGATGCTCAGAATCGCCTACC TGTGCCTGCGTGTAAACCACAGCCTCAGACCAGCTATGGGGAGAGACAACACGGAGGATAT CCAGCTTCCCCGGTCTGGGGTGAGGAATGTGGGGGAGCTTGGGCATCCTCCTCCAGCCTCCTC CAGCCCCAGGCAGTGCCTTACCTGTGGTGCCCAGAAAAGTGCCCCTAGGTTGGTGGGTCTA CAGGAGCCTCAGCCAGGCAGCCCACCCTGGGGCCCTGCCTCACCAAGGAAATAAAGA CTCA-AGCCATAAAAAAAA

FIGURE 24

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62306
<subunit 1 of 1, 263 aa, 1 stop</pre>

<MW: 27663, pI: 6.77, NX(S/T): 2

MRPGAPGPLWPLPWGALAWAVGFVSSMGSGNPAPGGVCWLQQGQEATCSLVLQTDVTRAECC ASGNIDTAWSNLTHPGNKINLLGFLGLVHCLPCKDSCDGVECGPGKACRMLGGRPRCECAPD CSGLPARLQVCGSDGATYRDECELRAARCRGHPDLSVMYRGRCRKSCEHVVCPRPQSCVVDQ TGSAHCVVCRAAPCPVPSSPGQELCGNNNVTYISSCHMRQATCFLGRSIGVRHAGSCAGTPE EPPGGESAEEEENFV

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation sites.

amino acids 73-77, 215-219

Osteonectin domain proteins.

amino acids 97-130, 169-202

FIGURE 25

TGCAGAGCTTGTGGAGGCC**ATG**GGGCGCGTCGTCGCGGAGCTCGTCTCCTCGCTGCTGGGGT TGTGGCTGTTGCTGCAGCTGCGGATGCCCCGAGGGCGCCGAGCTGCGTGCTCCGCCAGAT AAAATCGCGATTATTGGAGCCGGAATTGGTGGCACTTCAGCAGCCTATTACCTGCGGCAGAA CACATGAAACGTTTTGTCAAAGACCTGGGTCTCTCTGCTGTTCAGGCCTCTGGTGGCCTACT GGGGATATATAATGGAGAGACTCTGGTATTTGAGGAGAGCAACTGGTTCATAATTAACGTGA TTAAATTAGTTTGGCGCTATGGATTTCAATCCCTCCGTATGCACATGTGGGTAGAGGACGTG TTAGACAAGTTCATGAGGATCTACCGCTACCAGTCTCATGACTATGCCTTCAGTAGTGTCGA AAAATTACTTCATGCTCTAGGAGGAGATGACTTCCTTGGAATGCTTAATCGAACACTTCTTG AAACCTTGCAAAAGGCCGGCTTTTCTGAGAAGTTCCTCAATGAAATGATTGCTCCTGTTATG AGGGTCAATTATGGCCAAAGCACGGACATCAATGCCTTTGTGGGGGGCGGTGTCACTGTCCTG TTCTGATTCTGGCCTTTGGGCAGTAGAAGGTGGCAATAAACTTGTTTGCTCAGGGCTTCTGC AGGCATCCAAAAGCAATCTTATATCTGGCTCAGTAATGTACATCGAGGAGAAAACAAAGACC AAGTACACAGGAAATCCAACAAAGATGTATGAAGTGGTCTACCAAATTGGAACTGAGACTCG TTCAGACTTCTATGACATCGTCTTGGTGGCCACTCCGTTGAATCGAAAAATGTCGAATATTA CTTTTCTCAACTTTGATCCTCCAATTGAGGAATTCCATCAATATTATCAACATATAGTGACA ACTTTAGTTAAGGGGGAATTGAATACATCTATCTTTAGCTCTAGACCCATAGATAAATTTGG CCTTAATACAGTTTTAACCACTGATAATTCAGATTTGTTCATTAACAGTATTGGGATTGTGC CCTCTGTGAGAGAAAAGGAAGATCCTGAGCCATCAACAGATGGAACATATGTTTGGAAGATC TTTTCCCAAGAAACTCTTACTAAAGCACAAATTTTAAAGCTCTTTCTGTCCTATGATTATGC TGTGAAGAAGCCATGGCTTGCATATCCTCACTATAAGCCCCCGGAGAAATGCCCCTCTATCA TTCTCCATGATCGACTTTATTACCTCAATGGCATAGAGTGTGCAGCAAGTGCCATGGAGATG AGTGCCATTGCAGCCCACAACGCTGCACTCCTTGCCTATCACCGCTGGAACGGGCACACAGA CATGATTGATCAGGATGGCTTATATGAGAAACTTAAAACTGAACTA**TGA**AGTGACACACTCC TTTTTCCCCTCCTAGTTCCAAATGACTATCAGTGGCAAAAAAGAACAAAATCTGAGCAGAGA TGATTTTGAACCAGATATTTTGCCATTATCATTGTTTAATAAAAGTAATCCCTGCTGGTCAT AGGAAAAAAAAAAAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62880</pre>

<subunit 1 of 1, 505 aa, 1 stop

<MW: 56640, pI: 6.10, NX(S/T): 4

MGRVVAELVSSLLGLWLLLCSCGCPEGAELRAPPDKIAIIGAGIGGTSAAYYLRQKFGKDVK
IDLFEREEVGGRLATMMVQGQEYEAGGSVIHPLNLHMKRFVKDLGLSAVQASGGLLGIYNGE
TLVFEESNWFIINVIKLVWRYGFQSLRMHMWVEDVLDKFMRIYRYQSHDYAFSSVEKLLHAL
GGDDFLGMLNRTLLETLQKAGFSEKFLNEMIAPVMRVNYGQSTDINAFVGAVSLSCSDSGLW
AVEGGNKLVCSGLLQASKSNLISGSVMYIEEKTKTKYTGNPTKMYEVVYQIGTETRSDFYDI
VLVATPLNRKMSNITFLNFDPPIEEFHQYYQHIVTTLVKGELNTSIFSSRPIDKFGLNTVLT
TDNSDLFINSIGIVPSVREKEDPEPSTDGTYVWKIFSQETLTKAQILKLFLSYDYAVKKPWL
AYPHYKPPEKCPSIILHDRLYYLNGIECAASAMEMSAIAAHNAALLAYHRWNGHTDMIDQDG
LYEKLKTEL

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation sites.

amino acids 196-200, 323-327, 353-357

Tyrosine kinase phosphorylation site.

amino acids 291-298

N-myristoylation sites.

amino acids 23-29, 41-47, 43-49, 45-51, 46-52, 72-78, 115-121, 119-125, 260-266, 384-390, 459-465

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 12-23, 232-243

FIGURE 27

FIGURE 28

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64896
<subunit 1 of 1, 166 aa, 1 stop
<MW: 19171, pI: 8.26, NX(S/T): 1
MMLHSALGLCLLLVTVSSNLAIAIKKEKRPPQTLSRGWGDDITWVQTYEEGLFYAQKSKKPL
MVIHHLEDCQYSQALKKVFAQNEEIQEMAQNKFIMLNLMHETTDKNLSPDGQYVPRIMFVDP
SLTVRADIAGRYSNRLYTYEPRDLPLLIENMKKALRLIQSEL</pre>

Important features:

Signal peptide:

amino acids 1-23

N-myristoylation site.

amino acids 51-57

FIGURE 29

TAAAACAGCTACAATATTCCAGGGCCAGTCACTTGCCATTTCTCATAACAGCGTCAGAGAGA
AAGAACTGACTGAAACGTTTGAGATGAAAGAAAGTTCTCCTCCTGATCACAGCCATCTTGGCA
GTGGCTGTTGGTTTCCCAGTCTCTCAAGACCAGGAACGAGAAAAAAAGAAGTATCAGTGACAG
CGATGAATTAGCTTCAGGGTTTTTTGTGTTCCCTTACCCATATCCATTTCGCCCACTTCCAC
CAATTCCATTTCCAAGATTTCCATGGTTTAGACGTAATTTTCCTATTCCAATACCTGAATCT
GCCCCTACAACTCCCCTTCCTAGCGAAAAGTAAACAAGAAGGATAAGTCACGATAAACCTGG
TCACCTGAAATTGAAATTGAGCCACTTCCTTGAAGAATCAAAATTCCTGTTAATAAAAGAAA
AACAAATGTAATTGAAATAGCACACAGCATTCTCTAGTCAATATCTTTAGTGATCTTCTTTA
ATAAACATGAAAGCAAAGATTTTGGTTTTCTTAATTTCCACA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71290</pre>

><subunit 1 of 1, 85 aa, 1 stop

><MW: 9700, pI: 9.55, NX(S/T): 0

MKKVLLLITAILAVAVGFPVSQDQEREKRSISDSDELASGFFVFPYPYPFRPLPPIPFPRFP

WFRRNFPIPIPESAPTTPLPSEK

Important features of the protein:

Signal peptide:

amino acids 1-17

Homologous region to B3-hordein:

amino acids 47-85

FIGURE 31

GGGAGCGCCGGGCCCGACGGTTTAGACGTCTGTGCCACTTGCCATGAACATGCCACATGCC AGCAAAGAGAAGGGAAGAAGATCTGTATTTGCAACTATGGATTTGTAGGGAACGGGAGGACT CAGTGTGTTGATAAAAATGAGTGCCAGTTTGGAGCCACTCTTGTCTGTGGGAACCACACATC TTGCCACAACACCCCCGGGGGCTTCTATTGCATTTGCCTGGAAGGATATCGAGCCACAAACA ACAACAAGACATTCATTCCCAACGATGGCACCTTTTGTACAGACATAGATGAGTGTGAAGTT TCTGGCCTGTGCAGGCATGGAGGGCGATGCGTGAACACTCATGGGAGCTTTGAATGCTACTG TATGGATGGATACTTGCCAAGGAATGGACCTGAACCTTTCCACCCGACCACCGATGCCACAT CATGCACAGAAATAGACTGTGGTACCCCTCCTGAGGTTCCAGATGGCTATATCATAGGAAAT TATACGTCTAGTCTGGGCAGCCAGGTTCGTTATGCTTGCAGAGAAGGATTCTTCAGTGTTCC AGAAGATACAGTTTCAAGCTGCACAGGCCTGGGCACATGGGAGTCCCCAAAATTACATTGCC AAGAGATCAACTGTGGCAACCCTCCAGAAATGCGGCACGCCATCTTGGTAGGAAATCACAGC TCCAGGCTGGGCGGTGTGGCTCGCTATGTCTGTCAAGAGGGCTTTGAGAGCCCTGGAGGAAA GATCACTTCTGTTTGCACAGAGAAAGGCACCTGGAGAGAAAGTACTTTAACATGCACAGAAA TTCTGACAAAGATTAATGATGTATCACTGTTTAATGATACCTGTGTGAGATGGCAAATAAAC TCAAGAAGAATAAACCCCAAGATCTCATATGTGATATCCATAAAAGGACAACGGTTGGACCC GCCTAGCCCTGTACCCAGGCACCAACTACACCGTGAACATCTCCACAGCACCTCCCAGGCGC TCGATGCCAGCCGTCATCGGTTTCCAGACAGCTGAAGTTGATCTCTTAGAAGATGATGGAAG TTTCAATATTTCAATATTTAATGAAACTTGTTTGAAATTGAACAGGCGTTCTAGGAAAGTTG GATCAGAACACATGTACCAATTTACCGTTCTGGGTCAGAGGTGGTATCTGGCTAACTTTTCT CATGCAACATCGTTTAACTTCACAACGAGGGAACAAGTGCCTGTAGTGTTTTGGATCTGTA CCCTACGACTGATTATACGGTGAATGTGACCCTGCTGAGATCTCCTAAGCGGCACTCAGTGC AAATAACAATAGCAACTCCCCCAGCAGTAAAACAGACCATCAGTAACATTTCAGGATTTAAT CATTTGGGGCCAGAGATGGTATCAGAAGGAATTTGCCCAGGAAATGACCTTTAATATCAGTA GCAGCAGCCGAGATCCCGAGGTGTGCTTGGACCTACGTCCGGGTACCAACTACAATGTCAGT CTCCGGGCTCTGTCTTCGGAACTTCCTGTGGTCATCTCCCTGACAACCCAGATAACAGAGCC TCCCCTCCCGGAAGTAGAATTTTTTACGGTGCACAGAGGACCTCTACCACGCCTCAGACTGA GGAAAGCCAAGGAGAAAAATGGACCAATCAGTTCATATCAGGTGTTAGTGCTTCCCCTGGCC CTCCAAAGCACATTTTCTTGTGATTCTGAAGGCGCTTCCTCCTTCTTTAGCAACGCCTCTGA TGCTGATGGATACGTGGCTGCAGAACTACTGGCCAAAGATGTTCCAGATGATGCCATGGAGA TACCTATAGGAGACAGGCTGTACTATGGGGAATATTATAATGCACCCTTGAAAAGAGGGAGT GATTACTGCATTATATTACGAATCACAAGTGAATGGAATAAGGTGAGAAGACACTCCTGTGC AGTTTGGGCTCAGGTGAAAGATTCGTCACTCATGCTGCAGATGGCGGGTGTTGGACTGG GACACTGAGTGGGGAGGATGCACTGCTGCTGGGCAGGTGTTCTGGCAGCTTCTCAGGTGCCC GCACAGAGGCTCCGTGTGACTTCCGTCCAGGGAGCATGTGGGCCTGCAACTTTCTCCATTCC CAGCTGGGCCCCATTCCTGGATTTAAGATGGTGGCTATCCCTGAGGAGTCACCATAAGGAGA AAACTCAGGAATTCTGAGTCTTCCCTGCTACAGGACCAGTTCTGTGCAATGAACTTGAGACT CCTGATGTACACTGTGATATTGACCGAAGGCTACATACAGATCTGTGAATCTTGGCTGGGAC TTCCTCTGAGTGATGCCTGAGGGTCAGCTCCTCTAGACATTGACTGCAAGAGAATCTCTGCA ACCTCCTATATAAAAGCATTTCTGTTAATTCATTCAGAATCCATTCTTTACAATATGCAGTG AGATGGGCTTAAGTTTGGGCTAGAGTTTGACTTTATGAAGGAGGTCATTGAAAAAGAGAACA GTGACGTAGGCAAATGTTTCAAGCACTTTAGAAACAGTACTTTTCCTATAATTAGTTGATAT ACTAATGAGAAAATATACTAGCCTGGCCATGCCAATAAGTTTCCTGCTGTGTCTGTTAGGCA GCATTGCTTTGATGCAATTTCTATTGTCCTATATATTCAAAAGTAATGTCTACATTCCAGTA AAAATATCCCGTAATTAAAAA

FIGURE 32

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA96031

><subunit 1 of 1, 747 aa, 1 stop

><MW: 82710, pI: 6.36, NX(S/T): 18

MGRGPWDAGPSRRLLPLLLLLGLARGAAGAPGPDGLDVCATCHEHATCQQREGKKICICNYG
FVGNGRTQCVDKNECQFGATLVCGNHTSCHNTPGGFYCICLEGYRATNNNKTFIPNDGTFCT
DIDECEVSGLCRHGGRCVNTHGSFECYCMDGYLPRNGPEPFHPTTDATSCTEIDCGTPPEVP
DGYIIGNYTSSLGSQVRYACREGFFSVPEDTVSSCTGLGTWESPKLHCQEINCGNPPEMRHA
ILVGNHSSRLGGVARYVCQEGFESPGGKITSVCTEKGTWRESTLTCTEILTKINDVSLFNDT
CVRWQINSRRINPKISYVISIKGQRLDPMESVREETVNLTTDSRTPEVCLALYPGTNYTVNI
STAPPRRSMPAVIGFQTAEVDLLEDDGSFNISIFNETCLKLNRRSRKVGSEHMYQFTVLGQR
WYLANFSHATSFNFTTREQVPVVCLDLYPTTDYTVNVTLLRSPKRHSVQITIATPPAVKQTI
SNISGFNETCLRWRSIKTADMEEMYLFHIWGQRWYQKEFAQEMTFNISSSSRDPEVCLDLRP
GTNYNVSLRALSSELPVVISLTTQITEPPLPEVEFFTVHRGPLPRLRKAKEKNGPISSYQ
VLVLPLALQSTFSCDSEGASSFFSNASDADGYVAAELLAKDVPDDAMEIPIGDRLYYGEYYN
APLKRGSDYCIILRITSEWNKVRRHSCAVWAQVKDSSLMLLQMAGVGLGSLAVVIILTFLSF
SAV

Important features of the protein:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 718-740

N-glycosylation sites.

amino acids 87-91, 112-116, 193-197, 253-257, 308-312, 348-352, 367-371, 371-375, 402-406, 407-411, 439-443, 447-451, 470-474, 498-502, 503-507, 542-546, 563-567, 645-649

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 478-482, 686-690, 705-709

Tyrosine kinase phosphorylation site.

amino acids 419-427

N-myristoylation sites.

amino acids 22-28, 35-41, 65-71, 86-92, 96-102, 120-126, 146-152, 192-198, 252-258, 274-280, 365-371, 559-565, 688-694, 727-733.

Amidation site.

amino acids 52-56

Aspartic acid and asparagine hydroxylation sites.

amino acids 91-103, 141-153.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 624-635

Cytochrome c family heme-binding site signature.

amino acids 39-45

Calcium-binding EGF-like domain proteins pattern proteins.

amino acids 85-106, 135-156

Receptor tyrosine kinase class V proteins:

amino acids 389-422

FIGURE 33

GGAAAAGGTACCCGCGAGAGACAGCCAGCAGTTCTGTGGAGCAGCGGTGGCCGGCTAGGATG GGCTGTCTCTGGGGTCTGGCCCCTTTTCTTCTTCTGCTGGGAGGTTGGGGTCTCTGG GAGCTCTGCAGGCCCCAGCACCCGCAGAGCAGACACTGCGATGACAACGGACGACACAGAAG TGCCGCTATGACTCTAGCACCGGGCCACGCCGCTCTGGAAACTCAAACGCTGAGCGCTGAG ACCTCTTCTAGGGCCTCAACCCCAGCCGGCCCCATTCCAGAAGCAGAGACCAGGGGAGCCAA GAGAATTTCCCCTGCAAGAGAGACCAGGAGTTTCACAAAAACATCTCCCAACTTCATGGTGC TGATCGCCACCTCCGTGGAGACATCAGCCGCCAGTGGCAGCCCCGAGGGAGCTGGAATGACC ACAGTTCAGACCATCACAGGCAGTGATCCCGAGGAAGCCATCTTTGACACCCTTTGCACCGA TGACAGCTCTGAAGAGGCAAAGACACTCACAATGGACATATTGACATTGGCTCACACCTCCA CAGAAGCTAAGGGCCTGTCCTCAGAGAGCAGTGCCTCTTCCGACGGCCCCCATCCAGTCATC ACCCCGTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCC GTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCCGTCAT GGTCCCCGGGATCTGATGTCACTCTCCTCGCTGAAGCCCTGGTGACTGTCACAAACATCGAG GTTATTAATTGCAGCATCACAGAAATAGAAACAACAACTTCCAGCATCCCTGGGGCCTCAGA CATAGATCTCATCCCCACGGAAGGGGTGAAGGCCTCGTCCACCTCCGATCCACCAGCTCTGC CTGACTCCACTGAAGCAAAACCACACATCACTGAGGTCACAGCCTCTGCCGAGACCCTGTCC ACAGCCGGCACCACAGAGTCAGCTGCACCTCATGCCACGGTTGGGACCCCACTCCCCACTAA CAGCGCCACAGAAAGAGAAGTGACAGCACCCGGGGCCACGACCCTCAGTGGAGCTCTGGTCA CAGTTAGCAGGAATCCCCTGGAAGAAACCTCAGCCCTCTCTGTTGAGACACCAAGTTACGTC AAAGTCTCAGGAGCAGCTCCGGTCTCCATAGAGGCTGGGTCAGCAGTGGGCAAAACAACTTC CTTTGCTGGGAGCTCTGCTTCCTCCTACAGCCCCTCGGAAGCCGCCCTCAAGAACTTCACCC CTTCAGAGACACCGACCATGGACATCGCAACCAAGGGGCCCTTCCCCACCAGCAGGGACCCT CTTCCTTCTGTCCCTCCGACTACAACCAACAGCAGCCGAGGGACGAACAGCACCTTAGCCAA GATCACAACCTCAGCGAAGACCACGATGAAGCCCCAACAGCCCACGACTGCCCGGAC ${\tt GAGGCCGACCACAGACG} {\color{blue}{\bf TGA}} {\tt GTGCAGGTGAAAATGGAGGTTTCCTCCTCCTGCGGCTGAGTG}$ TGGCTTCCCCGGAAGACCTCACTGACCCCAGAGTGGCAGAAAGGCTGATGCAGCAGCTCCAC CGGGAACTCCACGCCCCACGCGCCTCACTTCCAGGTCTCCTTACTGCGTGTCAGGAGAGGCTA ACGGACATCAGCTGCAGCCAGGCATGTCCCGTATGCCAAAAGAGGGTGCTGCCCCTAGCCTG GGCCCCCACCGACAGACTGCAGCTGCGTTACTGTGCTGAGAGGTACCCAGAAGGTTCCCATG AAGGGCAGCATGTCCAAGCCCCTAACCCCAGATGTGGCAACAGGACCCTCGCTCACATCCAC CGGAGTGTATGTATGGGGAGGGGCTTCACCTGTTCCCAGAGGTGTCCTTGGACTCACCTTGG CACATGTTCTGTGTTTCAGTAAAGAGAGACCTGATCACCCATCTGTGTGCTTCCATCCTGCA TTAAAATTCACTCAGTGTGGCCCAAAAAAA

FIGURE 34

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108722

><subunit 1 of 1, 482 aa, 1 stop

><MW: 49060, pI: 4.74, NX(S/T): 4

MGCLWGLALPLFFFCWEVGVSGSSAGPSTRRADTAMTTDDTEVPAMTLAPGHAALETQTLSA ETSSRASTPAGPIPEAETRGAKRISPARETRSFTKTSPNFMVLIATSVETSAASGSPEGAGM TTVQTITGSDPEEAIFDTLCTDDSSEEAKTLTMDILTLAHTSTEAKGLSSESSASSDGPHPV ITPSRASESSASSDGPHPVITPSRASESSASSDGPHPVITPSWSPGSDVTLLAEALVTVTNI EVINCSITEIETTTSSIPGASDIDLIPTEGVKASSTSDPPALPDSTEAKPHITEVTASAETL STAGTTESAAPHATVGTPLPTNSATEREVTAPGATTLSGALVTVSRNPLEETSALSVETPSY VKVSGAAPVSIEAGSAVGKTTSFAGSSASSYSPSEAALKNFTPSETPTMDIATKGPFPTSRD PLPSVPPTTTNSSRGTNSTLAKITTSAKTTMKPQQPRPRLPGRGRPQT

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 252-256, 445-449, 451-455

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 84-88

N-myristoylation sites.

amino acids 2-8, 19-25, 117-123, 121-127, 232-238, 278-284, 314-320, 349-355, 386-392, 397-403, 449-455

ATP/GTP-binding site motif A (P-loop).

amino acids 385-393

FIGURE 35

GCCTCTGAATTGTTGGGCAGTCTGGCAGTGGAGCTCTCCCCGGTCTGACAGCCACTCCAGAG GCCATGCTTCGTTTCTTGCCAGATTTGGCTTTCAGCTTCCTGTTAATTCTGGCTTTGGGCCA GGCAGTCCAATTTCAAGAATATGTCTTTCTCCAATTTCTGGGCTTAGATAAGGCGCCTTCAC CCCAGAAGTTCCAACCTGTGCCTTATATCTTGAAGAAAATTTTCCAGGATCGCGAGGCAGCA GCGACCACTGGGGTCTCCCGAGACTTATGCTACGTAAAGGAGCTGGGCGTCCGCGGGAATGT ACTTCGCTTTCTCCCAGACCAAGGTTTCTTTCTTTACCCAAAGAAAATTTCCCAAGCTTCCT TTGGCCCAGCTGGGCCTGGACTTGGGGCCCAATTCTTACTATAACCTGGGACCAGAGCTGGA ACTGGCTCTGTTCCTGGTTCAGGAGCCTCATGTGTGGGGCCAGACCACCCCTAAGCCAGGTA AAATGTTTGTGTTGCGGTCAGTCCCATGGCCACAAGGTGCTGTTCACTTCAACCTGCTGGAT GTAGCTAAGGATTGGAATGACAACCCCCGGAAAAATTTCGGGTTATTCCTGGAGATACTGGT CAAAGAAGATAGAGACTCAGGGGTGAATTTTCAGCCTGAAGACACCTGTGCCAGACTAAGAT GCTCCCTTCATGCTTCCCTGCTGGTGGTGACTCTCAACCCTGATCAGTGCCACCCTTCTCGG AAAAGGAGAGCAGCCATCCCTGTCCCCAAGCTTTCTTGTAAGAACCTCTGCCACCGTCACCA GCTATTCATTAACTTCCGGGACCTGGGTTGGCACAAGTGGATCATTGCCCCCAAGGGGTTCA TATGCTTCATGCAAGCCCTGATGCATGCCGTTGACCCAGAGATCCCCCAGGCTGTGTGTAT CCCCACCAAGCTGTCTCCCATTTCCATGCTCTACCAGGACAATAATGACAATGTCATTCTAC GACATTATGAAGACATGGTAGTCGATGAATGTGGGTGTGGGT**AG**GATGTCAGAAATGGGAAT AGAAGGAGTGTTCTTAGGGTAAATCTTTTAATAAAACTACCTATCTGGTTTATGACCACTTA GATCGAAATGTC

FIGURE 36

MLRFLPDLAFSFLLILALGQAVQFQEYVFLQFLGLDKAPSPQKFQPVPYILKKIFQDREAAA
TTGVSRDLCYVKELGVRGNVLRFLPDQGFFLYPKKISQASSCLQKLLYFNLSAIKEREQLTL
AQLGLDLGPNSYYNLGPELELALFLVQEPHVWGQTTPKPGKMFVLRSVPWPQGAVHFNLLDV
AKDWNDNPRKNFGLFLEILVKEDRDSGVNFQPEDTCARLRCSLHASLLVVTLNPDQCHPSRK
RRAAIPVPKLSCKNLCHRHQLFINFRDLGWHKWIIAPKGFMANYCHGECPFSLTISLNSSNY
AFMOALMHAVDPEIPOAVCIPTKLSPISMLYQDNNDNVILRHYEDMVVDECGCG

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 112-116, 306-310

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 96-100

N-myristoylation site.

amino acids 77-83

TGF-beta family proteins.

amino acids 264-299, 327-341, 345-364

FIGURE 37

CACTTTCTCCCTCTTCTTTACTTTCGAGAAACCGCGCTTCCGCTTCTGGTCGCAGAGAC CCGCCCCCACCTCTTTTTCTGCACTGCCGTCCTCCGGAAGACCTTTTCCCCTGCTCTGTT TCCTTCACCGAGTCTGTGCATCGCCCCGGACCTGGCCGGGAGGAGGCTTGGCCGGCGGAGA TCCCGTGGACAGGGACTCTTGCTGGCGTACTGCCTGCTCCTTGCCTTTGCCTCTGGCCTGGT CCTGAGTCGTGTGCCCCATGTCCAGGGGGAACAGCAGGAGTGGGAGGGGACTGAGGAGCTGC CGTCGCCTCCGGACCATGCCGAGAGGGCTGAAGAACAACATGAAAAATACAGGCCCAGTCAG GACCAGGGGCTCCCTGCTTCCCGGTGCTTGCGCTGTGACCCCGGTACCTCCATGTACCC GGCGACCGCCGTGCCCCAGATCAACATCACTATCTTGAAAGGGGAGAAGGGTGACCGCGGAG ATCGAGGCCTCCAAGGGAAATATGGCAAAACAGGCTCAGCAGGGGCCCAGGGGCCACACTGGA CCCAAAGGGCAGAAGGGCTCCATGGGGGCCCCTGGGGAGCGGTGCAAGAGCCACTACGCCGC CTTTTCGGTGGGCCGGAAGAAGCCCATGCACAGCAACCACTACTACCAGACGGTGATCTTCG ACACGGAGTTCGTGAACCTCTACGACCACTTCAACATGTTCACCGGCAAGTTCTACTGCTAC GCACATCATGAAGAACGAGGAGGAGGTGGTGATCTTGTTCGCGCAGGTGGGCGACCGCAGCA TCATGCAAAGCCAGAGCCTGATGCTGGAGCTGCGAGAGCAGGACCAGGTGTGGGTACGCCTC TACAAGGGCGAACGTGAGAACGCCATCTTCAGCGAGGAGCTGGACACCTACATCACCTTCAG TGGCTACCTGGTCAAGCACGCCACCGAGCCC<u>TAG</u>CTGGCCGGCCACCTCCTTTCCTCTCGCC ACCTTCCACCCTGCGCTGTGCTGACCCCACCGCCTCTTCCCCGATCCCTGGACTCCGACTC CCTGGCTTTGGCATTCAGTGAGACGCCCTGCACACAGAAAGCCAAAGCGATCGGTGCTCC GAGAACCCTCTGGGACCTTCCGCGGCCCTCTCTGCACACATCCTCAAGTGACCCCGCACGGC GAGACGCGGGTGGCGGCAGGGCGTCCCAGGGTGCGGCACCGCGGCTCCAGTCCTTGGAAATA ATTAGGCAAATTCTAAAGGTCTCAAAAGGAGCAAAGTAAACCGTGGAGGACAAAGAAAAGGG ACTCTGCTTAAGAGAAGATCCAAAGTTAAAGCTCTGGGGTCAGGGGAGGGGCCGGGGGCAGG AAACTACCTCTGGCTTAATTCTTTTAAGCCACGTAGGAACTTTCTTGAGGGATAGGTGGACC CTGACATCCCTGTGGCCTTGCCCAAGGGCTCTGCTGGTCTTTCTGAGTCACAGCTGCGAGGT GATGGGGGCTGGGGCCCCAGGCGTCAGCCTCCCAGAGGGACAGCTGAGCCCCCTGCCTTGGC ${\tt TCCAGGTTGGTAGAAGCAGCCGAAGGGCTCCTGACAGTGGCCAGGGACCCCTGGGTCCCCCA}$ GGCCTGCAGATGTTTCTATGAGGGGCAGAGCTCCTTGGTACATCCATGTGTGCCTCTCC TTCTGTGCCGCCTCCCACACAATCAGCCCCAGAAGGCCCCGGGGCCTTGGCTTCTGTTTTT TATAAAACACCTCAAGCAGCACTGCAGTCTCCCATCTCCTCGTGGGCTAAGCATCACCGCTT CATCCAGGCCTCTGACCAGTAGCCTGAGAGGGGCTTTTTCTAGGCTTCAGAGCAGGGGAGAG CTGGAAGGGGCTAGAAAGCTCCCGCTTGTCTGTTTTCTCAGGCTCCTGTGAGCCTCAGTCCTG AGACCAGAGTCAAGAGGAAGTACACGTCCCAATCACCCGTGTCAGGATTCACTCTCAGGAGC TGGGTGGCAGGAGAGGCAATAGCCCCTGTGGCAATTGCAGGACCAGCTGGAGCAGGGTTGCG GTGTCTCCACGGTGCTCTCGCCCTGCCCATGGCCACCCCAGACTCTGATCTCCAGGAACCCC ATAGCCCCTCTCCACCTCACCCCATGTTGATGCCCAGGGTCACTCTTGCTACCCGCTGGGCC CCCAAACCCCGCTGCCTCTCTTCCTTCCCCCCATCCCCCACCTGGTTTTGACTAATCCTGC TTCCCTCTCTGGGCCTGCCGGGATCTGGGGGTCCCTAAGTCCCTCTTTAAAGAACTT CTGCGGGTCAGACTCTGAAGCCGAGTTGCTGTGGGCGTGCCCGGAAGCAGAGCGCCACACTC GCTGCTTAAGCTCCCCCAGCTCTTTCCAGAAAACATTAAACTCAGAATTGTGTTTTCAA

FIGURE 38

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41234

><subunit 1 of 1, 281 aa, 1 stop

><MW: 31743, pI: 6.83, NX(S/T): 1

MGSRGQGLLLAYCLLLAFASGLVLSRVPHVQGEQQEWEGTEELPSPPDHAERAEEQHEKYRP SQDQGLPASRCLRCCDPGTSMYPATAVPQINITILKGEKGDRGDRGLQGKYGKTGSAGARGH TGPKGQKGSMGAPGERCKSHYAAFSVGRKKPMHSNHYYQTVIFDTEFVNLYDHFNMFTGKFY CYVPGLYFFSLNVHTWNQKETYLHIMKNEEEVVILFAQVGDRSIMQSQSLMLELREQDQVWV RLYKGERENAIFSEELDTYITFSGYLVKHATEP

Signal sequence.

amino acids 1-25

N-glycosylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 7-13, 21-27, 67-73, 117-123, 129-135

Amidation site.

amino acids 150-154

Cell attachment sequence.

amino acids 104-107

FIGURE 39

GAATTCGGCACGAGGGAAGAAGAAAAATCTCCGGGGCTGCTGGGAGCATATAAAGAA GCCCTGTGGCCTTGCTGGTTTTACCATCCAGACCAGAGTCAGGCCACAGACGGACATGGCTG CATTAAAAATATAATGGTGATATTCGAGACCATTTACTGCAACAGAAAGGAAGTGATAGCAG TCCCAAAAAATGGGAGTATGATTTGTTTGGATCCTGATGCTCCATGGGTGAAGGCTACTGTT GAAGCTTCTGTATAGTGTTGAGCATGAAAAGCCTCTATATCTTTCATTTGGGAGACCTGAGA ACAAGAGAATATTTCCCTTTCCAATTCGGGAGACCTCTAGACACTTTGCTGATTTAGCTCAC AACAGTGATAGGAATTTTCTACGGGACTCCAGTGAAGTCAGCTTGACAGGCAGTGATGCC**TA** AAAGCCACTCATGAGGCAAAGAGTTTCAAGGAAGCTCTCCTCCTGGAGTTTTGGCGTTCTCA TTCTTATACTCTATTCCCGCGTTAGTCTGGTGTATGGATCTATGAGCTCTCTTTTAATATTT TATTATAAATGTTTTATTTACTTAACTTCCTAGTGAATGTTCACAGGTGACTGCTCCCCCAT CAGATTGCTTAACATTTTGTGCTTCAAAGTCTTATCCCACTCCACTATGGGCTGTTACAGAG TGCATCTCGGTGTAGAGCAAGGCTCCTTGTCTTCAGTGCCCCAGGGTGAAATACTTCTTTGA AAAATTTTCATTCATCAGAAAATCTGAAATAAAAATATGTCTTAATTGAG

FIGURE 40

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73838

><subunit 1 of 1, 167 aa, 1 stop

><MW: 19091, pI: 7.48, NX(S/T): 1

MAAQGWSMLLLAVLNLGIFVRPCDTQELRCLCIQEHSEFIPLKLIKNIMVIFETIYCNRKEV IAVPKNGSMICLDPDAPWVKATVGPITNRFLPEDLKQKEFPPAMKLLYSVEHEKPLYLSFGR PENKRIFPFPIRETSRHFADLAHNSDRNFLRDSSEVSLTGSDA

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 68-72

N-myristoylation site.

amino acids 69-75

Small cytokines (intercrine/chemokine) C-x-C subfamily signature amino acids 40-85

FIGURE 41

CAGACATGCTCAGTCACTGCTCTGAGCCTCCTTATCCTGGTTCTGGCCTTTGGCATCCCC
AGGACCCAAGGCAGTGATGGAGGGGCTCAGGACTGTTGCCTCAAGTACAGCCAAAGGAAGAT
TCCCGCCAAGGTTGTCCGCAGCTACCGGAAGCAGGAACCAAGCTTAGGCTGCTCCATCCCAG
CTATCCTGTTCTTGCCCCGCAAGCGCTCTCAGGCAGAGCTATGTGCAGACCCAAAGGAGCTC
TGGGTGCAGCAGCTGATGCAGCATCTGGACAAGACACCATCCCCACAGAAACCAGCCCAGGG
CTGCAGGAAGGACAGGGGGGCCTCCAAGACTGGCAAGAAAGGAAAGGGCTCCAAAGGCTGCA
AGAGGACTGAGCGGTCACAGACCCCTAAAGGGCCAATGCCAAGATGCAAGAAAGGAACCCTG
GAGACCCCACCAGCCTCACCAGCGCTTGAAGCCTGAACCCAAGATGCAAGAAAGGAGGCTATG
CTCAGGGGCCCTGGAGCACCCCATGCTGGCCTTGCCACACTCTTTCTCCTGCTTTAAC
CACCCCATCTGCATTCCCAGCTCTACCCTGCATGGCTGAGCCACACAGCAGGCCAGGTCC
AGAGAGACCGAGGAGGAGGAGGAGTCTCCCAGGGAGCATGAGAGGAGGCAGCAGGACTGTCCCCT
TGAAGGAGAATCATCAGGACCCTGGACCTGATACAGCCCCACCTCTTCCT
TGTAAATATGATTTATACCTAACTGAATAAAAAGCTGTTCTGTCTTCCCNCCCA

FIGURE 42

><MW: 14646, pI: 10.45, NX(S/T): 0
MAQSLALSLLILVLAFGIPRTQGSDGGAQDCCLKYSQRKIPAKVVRSYRKQEPSLGCSIPAI
LFLPRKRSQAELCADPKELWVQQLMQHLDKTPSPQKPAQGCRKDRGASKTGKKGKGSKGCKR
TERSQTPKGP

Important features of the protein:

Signal peptide:

amino acids 1-17

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 67-71

N-myristoylation sites.

amino acids 17-23, 23-29, 27-33, 108-114, 118-124, 121-127

Amidation site.

amino acids 112-116

Small cytokines.

amino acids 51-91

FIGURE 43

FIGURE 44

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA92282

><subunit 1 of 1, 177 aa, 1 stop

><MW: 20452, pI: 8.00, NX(S/T): 2

MKLQCVSLWLLGTILILCSVDNHGLRRCLISŢDMHHIEESFQEIKRAIQAKDTFPNVTILST LETLQIIKPLDVCCVTKNLLAFYVDRVFKDHQEPNPKILRKISSIANSFLYMQKTLRQCQEQ RQCHCRQEATNATRVIHDNYDQLEVHAAAIKSLGELDVFLAWINKNHEVMFSA

Signal sequence:

amino acids 1-18

N-glycosylation sites.

amino acids 56-60, 135-139

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 102-106

N-myristoylation site.

amino acids 24-30

Actinin-type actin-binding domain signature 1.

amino acids 159-169

FIGURE 45

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG CTAAGCGAGGCCTCCTCCTCCCGCAGATCCGAACGGCCTGGGCGGGTCACCCCGGCTGGGA GGTGTGAGTGGGTGTGCGGGGGGGGGGGGGGTTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG CCGCCGCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCCCAGCCTCCCGCACCCCCATCGCCGG AGCTGCGCCGAGAGCCCCAGGGAGGTGCC**ATG**CGGAGCGGGTGTGTGGTGGTCCACGTATGG ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCCCCCTCGCCTTCTCGGACGCGGGCCC CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGC CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG CGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG ${\tt GACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAG} {\color{red}{\bf TAA}} {\tt CT}$ GAGACCATGCCGGGCCTCTTCACTGCTGCCAGGGGCTGTGGTACCTGCAGCGTGGGGGACG TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAAACATCTAGAA GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC CCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC CTGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAGAT TTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGTGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

FIGURE 46

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 47

GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTGTCAGTGGCCTGATCGCG**ATG**GGGACAAA GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGG CATTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAATAATCCT GTGAAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCGTGTGGAGTGGAAGTTTGACCA AGGAGACACCAGCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTATGAGGACCGGG TGACCTTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGACACTGGGACATAC ACTTGTATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGGAGGTCAAGGTCAAGCTCATCGT GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTCTGCCACCATTGGGAACCGGG CAGTGCTGACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAATACACCTGGTTCAAAGAT GGGATAGTGATGCCTACGAATCCCAAAAGCACCCGTGCCTTCAGCAACTCTTCCTATGTCCT GAATCCCACAACAGGAGAGCTGGTCTTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACA GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAGCT GTGGAGCGGAATGTGGGGGTCATCGTGGCAGCCGTCCTTGTAACCCTGATTCTCCTGGGAAT CTTCGAGTAAGAAGGTGATTTACAGCCAGCCTAGTGCCCGAAGTGAAGGAGAATTCAAACAG ACCTCGTCATTCCTGGTG**TGA**GCCTGGTCGGCTCACCGCCTATCATCTGCATTTGCCTTACT CAGGTGCTACCGGACTCTGGCCCCTGATGTCTGTAGTTTCACAGGATGCCTTATTTGTCTTC TACACCCCACAGGGCCCCCTACTTCTTCGGATGTGTTTTTAATAATGTCAGCTATGTGCCCC ATCCTCCTTCATGCCCTCCCTTCCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAA GTGTTTATTCCCCATTTCTTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC TTCTAAGTAGACAGCAAAAATGGCGGGGGTCGCAGGAATCTGCACTCAACTGCCCACCTGGC TGGCAGGGATCTTTGAATAGGTATCTTGAGCTTGGTTCTGGGCTCTTTCCTTGTGTACTGAC GACCAGGGCCAGCTGTTCTAGAGCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGG TGATGACACTGGGGTCCTTCCATCTCTGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTG GGAAAATGGGAGCTCTTGTTGTGGAGAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAG GATTTAAAACCGCTGCTCTAAAGAAAAGAAAACTGGAGGCTGGGCGCAGTGGCTCACGCCTG TAATCCCAGAGGCTGAGGCAGGCGGATCACCTGAGGTCGGGAGTTCGGGATCAGCCTGACCA ACATGGAGAAACCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC

FIGURE 48

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158, 193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 49

GCTTACAGCTGCTGATTCTCTGCTGTCAAACTCAGTACGTGAGGGACCAGGGCGCCATGACC GACCAGCTGAGCAGGCGGCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA CGTGCAGGTCACCGGGCGTCGCATCTCCGCCACCGCCGAGGACGCCAACAAGTTTGCCAAGC TCATAGTGGAGACGGACACGTTTGGCAGCCGGGTTCGCATCAAAGGGGCTGAGAGTGAGAAG TACATCTGTATGAACAAGAGGGGCAAGCTCATCGGGAAGCCCAGCGGGAAGACCAAAGACTG CGTGTTCACGGAGATCGTGCTGGAGAACAACTATACGGCCTTCCAGAACGCCCGGCACGAGG GCTGGTTCATGGCCTTCACGCGGCAGGGGCGCCCCGCCAGGCTTCCCGCAGCCGCCAGAAC CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTTCCCCAACCACGC CGAGAAGCAGAAGCAGTTCGAGTTTGTGGGCTCCGCCCCCACCCGCCGGACCAAGCGCACAC $\mathsf{GGCGCCCCAGCCCTCACGTAG}$ TCTGGGAGGCAGGGGGGCAGCAGCCCCTGGGCCGCCTCCC CACCCCTTTCCCTTCTTAATCCAAGGACTGGGCTGGGGTGGCGGGAGGGGAGCCAGATCCCC GAGGGAGGACCCTGAGGGCCGCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCCAGGCCGGTG CCCCAGGGGCGGCTGGCACAGTGCCCCCTTCCCGGACGGGTGGCAGGCCCTGGAGAGGAACT GAGTGTCACCCTGATCTCAGGCCACCAGCCTCTGCCGGCCTCCCAGCCGGGCTCCTGAAGCC CGCTGAAAGGTCAGCGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCTCAAAA TCTGCTTCTCGGATCTCCCTCAGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGACTGTA AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCCACCCCCAACTCCCAGCCC CGGAATAAAACCATTTTCCTGC

FIGURE 50

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 51

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA TCTATCAGGAAAGAAAGAAAGAAAAAACCGAACCTGACAAAAAAGAAGAAAAAAGAAGAAGAAGAAGA AAAAAAATC**ATG**AAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCAC GGGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCGCCGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTACAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACACCAATGCCAGC ATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGG CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGC ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAA

FIGURE 52

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR
VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK
TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL
EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV
PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML
FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

FIGURE 53

GGGAGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGCGCACAGAGACGCAGAGCAAGGGCG AAGTTCCAGGGGCCCCTGGCCTGCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGG CCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCC TGGGAGACGCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGAGGGCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGCAGCAGTGGCAGTGGCAGCAATGGTGACAACAACAATGGCAGCAGTGG TGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCGGCAACCACGGTGGGAGCGCGGAGGAAATGGACATAAACC CGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCA GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA AGCTCTCGCATCCCG**TGA**CCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACT CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTA

FIGURE 54

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA59212

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

FIGURE 55

FIGURE 56

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA86576

><subunit 1 of 1, 251 aa, 1 stop

><MW: 26935, pI: 7.42, NX(S/T): 2

MAMGVPRVILLCLFGAALCLTGSQALQCYSFEHTYFGPFDLRAMKLPSISCPHECFEAILSL DTGYRAPVTLVRKGCWTGPPAGQTQSNPDALPPDYSVVRGCTTDKCNAHLMTHDALPNLSQA PDPPTLSGAECYACIGVHQDDCAIGRSRRVQCHQDQTACFQGSGRMTVGNFSVPVYIRTCHR PSCTTEGTTSPWTAIDLQGSCCEGYLCNRKSMTQPFTSASATTPPRALQVLALLLPVLLLVG LSA

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 233-251

N-glycosylation sites.

amino acids 120-124, 174-178

N-myristoylation sites.

amino acids 15-21, 84-90

FIGURE 57

GGAGCCGCCTGGGTGTCAGCGGCTCGGCTCCCGCGCACGCTCCGGCCGTCGCGCAGCCTCG ${\tt CATG} {\tt ATTTCCCTCCCGGGGCCCCTGGTGACCAACTTGCTGCGGTTTTTGTTCCTGGGGCTGA}$ GTGCCCTCGCGCCCCCTCGCGGGCCCAGCTGCAACTGCACTTGCCCGCCAACCGGTTGCAG GCGGTGGAGGGGGAAGTGGTGCTTCCAGCGTGGTACACCTTGCACGGGGAGGTGTCTTC AGGTGTTGTCCTACATCAATGGGGTCACAACAAGCAAACCTGGAGTATCCTTGGTCTACTCC ATGCCCTCCGGAACCTGTCCCTGCGGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTA CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATCAAAACCT TAGAACTCAATGTACTGGTTCCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCAT GTGGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCCGCTGTCCAATACCA GTGGGATCGGCAGCTTCCATCCTTCCAGACTTTCTTTGCACCAGCATTAGATGTCATCCGTG GGTCTTTAAGCCTCACCAACCTTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCCAC AATGAGGTGGCCACTGCCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCCTGGAGCTGC ATTGCTCCCCGGACCCTGCCCTGGCCCAAGAGCTCAGACACAATCTCCAAGAATGGGACCCT TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCCATGGCCCTCCCAGGCCTGGTGCAT TGACCCCACGCCCAGTCTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCCACGACAGAT GGGGCCCACCTCAACCAATATCCCCCATCCCTGGTGGGGTTTCTTCCTCTGGCTTGAGCCG CATGGGTGCTGTGCCTGTGATGGTGCCTGCCCAGAGTCAAGCTGGCTCTCTGGTA**TGA**TGAC AGAGGCCTGAGTCATGGGAAAGAGTCACACTCCTGACCCTTAGTACTCTGCCCCCACCTCTC TTTACTGTGGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGAGA AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCTGACTCCTTATGAAGCCAGCTG CTGAAATTAGCTACTCACCAAGAGTGAGGGGCAGAGACTTCCAGTCACTGAGTCTCCCAGGC CCCCTTGATCTGTACCCCACCCCTATCTAACACCACCCTTGGCTCCCACTCCAGCTCCCTGT ATTGATATAACCTGTCAGGCTGGCTTGGTTAGGTTTTACTGGGGCAGAGGATAGGGAATCTC TGTTTGTATGAAAAA

FIGURE 58

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDSGPY SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAA VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTL SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSR MGAVPVMVPAQSQAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262, 262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 59

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCTGTTGAATTTTTTGCACATGGAG GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTTAC CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT ${\tt TTCCGTACTTCAGAA} \underline{{\tt ATG}} {\tt GGCCTACAGACCACAAAGTGGCCCAGCCATGGGGCTTTTTTCCT}$ GAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGTCCAAACTCCTGGCCTGCC CTAGTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAAGCTTGACCTCAGTG CCTCTTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC TGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGCACACGGTCTACCTGTATGGCAACC AACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAGTTCTCCATTTGCAGGAAAAC AATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCTTGAAGCTTGAAGAGCTGCACCT GGATGACAACTCCATATCCACAGTGGGGGGTGGAAGACGGGGCCTTCCGGGAGGCTATTAGCC TCAAATTGTTGTTTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTTCCTGTGGAC TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTCATATCCGACATGGCCTTCCAGAA TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGGAACCTCCTGACCAACAAGGGTATCGCCG AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTTCAATTGTACGTAATTCGCTGTCC CACCCTCCTCCCGATCTCCCAGGTACGCATCTGATCAGGCTCTATTTGCAGGACAACCAGAT AAACCACATTCCTTTGACAGCCTTCTCAAATCTGCGTAAGCTGGAACGGCTGGATATATCCA ACAACCAACTGCGGATGCTGACTCAAGGGGTTTTTTGATAATCTCTCCAACCTGAAGCAGCTC ACTGCTCGGAATAACCCTTGGTTTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAA ATATATCCCTTCATCTCTCAACGTGCGGGGTTTCATGTGCCAAGGTCCTGAACAAGTCCGGG GGATGGCCGTCAGGGAATTAAATATGAATCTTTTGTCCTGTCCCACCACGACCCCCGGCCTG CCTCTCTCACCCCAGCCCCAAGTACAGCTTCTCCGACCACTCAGCCTCCCACCCTCTCTAT TCCAAACCCTAGCAGAAGCTACACGCCTCCAACTCCTACCACATCGAAACTTCCCACGATTC CTGACTGGGATGGCAGAGAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATC CAAACTCACATGGGTGAAAATGGGCCACAGTTTAGTAGGGGGCATCGTTCAGGAGCGCATAG TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT TGTTTAGTGCCACTGGATGCTTTTAACTACCGCGCGGTAGAAGACACCATTTGTTCAGAGGC CACCACCCATGCCTCCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA CGTCCCACAGCATGGGCTCCCCCTTTCTGCTGGCGGGCTTGATCGGGGGGCGCGGTGATATTT GTGCTGGTGGTCTTGCTCAGCGTCTTTTGCTGGCATATGCACAAAAAGGGGCGCTACACCTC CCAGAAGTGGAAATACAACCGGGGCCGGCGGAAAGATGATTATTGCGAGGCAGCACCAAGA AGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAAATAACGAT CACAGACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC ACTGCCATACG**TGA**CAGCCAGAGGCCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA CACACTCGTGTGCACATAAAGACACGCAGATTACATTTGATAAATGTTACACAGATGCAT CTATCTTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAACTCTTTGCTTTTTAAATCTT

FIGURE 60

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLSSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARNN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELNMNLLSCPTTTPGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTPTTSKLPTIPDWDGRERVTPPISERIQLSIHFVND
TSIQVSWLSLFTVMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHASYLNNGSNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQKWKYNRGRRKDDYCEAGTKKDNSILEMTETSFQIVSLNNDQLLKG
DFRLOPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653 Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655 Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300, 522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 61

TGAAGAGTAATAGTTGGAATCAAAAGAGTCAACGCA**ATG**AACTGTTATTTACTGCTGCGTTT AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAAGTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGGGGCGATCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCTTACTTCAAGGCCAGCC ATATTTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGCCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGTGTCTGCCACAGACCCAGACAATAGGAAAT CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCAATGATAATGGTACAATC ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAAACACCCTTAC CATCCATGTCTGTGACTGTGGTGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTG TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGATGAAGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG CCCCTCCTTTTGATTCCCTCCAGACCTACGCTTTTGAGGGGAACAGGGTCATTAGCTGGATCC CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAAT**TAG**G GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

FIGURE 62

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVOSNN

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

FIGURE 63

CGCCCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTC TCTTGGCCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGGCTTGAC AAGTCCAACTTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAG CTTGGCTGATAACAACACAGACGTTCGTCTCATTGGGGAGAAACTGTTCCACGGAGTCAGTA TGAGTGAGCGCTGCTATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTC CCTCAATCTGATAGGTTCCAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAG CAACAGGCTAAGCACATGTCATATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAA AGCTGAAGGACACAGTGAAAAAGCTTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTG GATTTGCTGTTTATGTCTCTGAGAAATGCCTGCATT**TGA**CCAGAGCAAAGCTGAAAAATGAA TAACTAACCCCCTTTCCCTGCTAGAAATAACAATTAGATGCCCCAAAGCGATTTTTTTAAC CAAAAGGAAGATGGGAAGCCAAACTCCATCATGATGGGTGGATTCCAAATGAACCCCTGCGT TAGTTACAAAGGAAACCAATGCCACTTTTGTTTATAAGACCAGAAGGTAGACTTTCTAAGCA TTTAAATAATTGTCTTTTTCCATAAAAAAGATTACTTTCCATTCCTTTAGGGGAAAAAACCC ATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTATAGAGCTATAAC ATGTTTATTTGACCTCAATAAACACTTGGATATCCC

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA125185

><subunit 1 of 1, 179 aa, 1 stop

><MW: 20011, pI: 8.10, NX(S/T): 3

MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKE ASLADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLAR LSNRLSTCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

FIGURE 65

GCCCTAACCTTCCCAGGGCTCAGCTCTTTGGAGCTGCCCATTCCTCCGGCTGCGAGAAAGGA CGCGCGCCCTGCGTCGGGCGAAGAAAAGAAGCAAAACTTGTCGGGAGGGTTTCGTCATCAAC CTCCTTCCCGCAAACCTAAACCTCCTGCCGGGGCCATCCCTAGACAGAGGAAAGTTCCTGCA TTTGAACCCAGTGGAGCGCATCGCTGGGGCTCGGAAGTCACCGTCCGCGGGCACCGGGTTGG CGCTGCCCGAGTGGAACCGACAGTTTGCGAGCCTCGGCTGCAAGTGGCCTCTCCTCCCCGCG GTTGTTGTTCAGTGTCGGGTGAGGGCTGCGAGTGTGGCAAGTTGCAAAGAGAGCCTCAGAGG AATCGCAGCGACATTTACAAAGGCCTCCGGGTCCTACCGAGACCGATCCGCAGCGTTTGGCC CGGTCGTGCCTATTGCATCGGGAGCCCCCGAGCACCGGCGAAAATGGCGAGGTTCCCGAAGGC CGACCTGGCCGCTGCAGGAGTTATGTTACTTTGCCACTTCTTCACGGACCAGTTTCAGTTCG CCGATGGGAAACCCGGAGACCAAATCCTTGATTGGCAGTATGGAGTTACTCAGGCCTTCCCT CACACAGAGGAGGAGGTGGAAGTTGATTCACACGCGTACAGCCACAGGTGGAAAAGAAACTT GGACTTTCTCAAGGCGGTAGACACGAACCGAGCAAGCGTCGGCCAAGACTCTCCTGAGCCCA GAAGCTTCACAGACCTGCTGCTGGATGATGGGCAGGACAATAACACTCAGATCGAGGAGGAT ACAGACCACAATTACTATATCTCGAATATATGGTCCATCTGATTCTGCCAGCCGGGATTT ATGGGTGAACATAGACCAAATGGAAAAAGATAAAGTGAAGATTCATGGAATATTGTCCAATA CTCATCGGCAAGCTGCAAGAGTGAATCTGTCCTTCGATTTTCCATTTTATGGCCACTTCCTA CGTGAAATCACTGTGGCAACCGGGGGTTTCATATACACTGGAGAAGTCGTACATCGAATGCT AACAGCCACACAGTACATAGCACCTTTAATGGCAAATTTCGATCCCAGTGTATCCAGAAATT CAACTGTCAGATATTTTGATAATGGCACAGCACTTGTGGTCCAGTGGGACCATGTACATCTC CATCTTTGGATACAAAGAAATTCCTGTCTTGGTCACACAGATAAGTTCAACCAATCATCCAG TGAAAGTCGGACTGTCCGATGCATTTGTCGTTGTCCACAGGATCCAACAAATTCCCAATGTT CGAAGAAGAACAATTTATGAATACCACCGAGTAGAGCTACAAATGTCAAAAATTACCAACAT TTCGGCTGTGGAGATGACCCCATTACCCACATGCCTCCAGTTTAACAGATGTGGCCCCTGTG TATCTTCTCAGATTGGCTTCAACTGCAGTTGGTGTAGTAAACTTCAAAGATGTTCCAGTGGA TTTGATCGTCATCGGCAGGACTGGGTGGACAGTGGATGCCCTGAAGAGTCAAAAGAGAAGAT GTGTGAGAATACAGAACCAGTGGAAACTTCTTCTCGAACCACCACAACCGTAGGAGCGACAA CCACCCAGTTCAGGGTCCTAACTACCACCAGAAGAGCAGTGACTTCTCAGTTTCCCACCAGC CTCCCTACAGAAGATGATACCAAGATAGCACTACATCTAAAAGATAATGGAGCTTCTACAGA TGACAGTGCAGCTGAGAAGAAGGGGGAACCCTCCACGCTGGCCTCATCATTGGAATCCTCA TCCTGGTCCTCATTGTAGCCACAGCCATTCTTGTGACAGTCTATATGTATCACCACCCAACA TCAGCAGCCAGCATCTTCTTTATTGAGAGACGCCCAAGCAGATGGCCTGCGATGAAGTTTAG ${\tt TTGTATCAGAGCAGTGC} {\tt TAA} {\tt AATTTCTAGGACAGAACACACCAGTACTGGTTTACAGGTGT}$ TAAGCTGCTGTAGCCTGAAGAAGACAAGATTTCTGGACAAGCTCAGCCCAGGAAACAAAGGG TAAACAAAAACTAAAACTTATACAAGATACCATTTACACTGAACATAGAATTCCCTAGTGG AATGTCATCTATAGTTCACTCGGAACATCTCCCGTGGACTTATCTGAAGTATGACAAGATTA TTTAGTTCATGAGGG

FIGURE 66

MARFPKADLAAAGVMLLCHFFTDQFQFADGKPGDQILDWQYGVTQAFPHTEEEVEVDSHAYS
HRWKRNLDFLKAVDTNRASVGQDSPEPRSFTDLLLDDGQDNNTQIEEDTDHNYYISRIYGPS
DSASRDLWVNIDQMEKDKVKIHGILSNTHRQAARVNLSFDFPFYGHFLREITVATGGFIYTG
EVVHRMLTATQYIAPLMANFDPSVSRNSTVRYFDNGTALVVQWDHVHLQDNYNLGSFTFQAT
LLMDGRIIFGYKEIPVLVTQISSTNHPVKVGLSDAFVVVHRIQQIPNVRRRTIYEYHRVELQ
MSKITNISAVEMTPLPTCLQFNRCGPCVSSQIGFNCSWCSKLQRCSSGFDRHRQDWVDSGCP
EESKEKMCENTEPVETSSRTTTTVGATTTQFRVLTTTRRAVTSQFPTSLPTEDDTKIALHLK
DNGASTDDSAAEKKGGTLHAGLIIGILILVLIVATAILVTVYMYHHPTSAASIFFIERRPSR
WPAMKFRRGSGHPAYAEVEPVGEKEGFIVSEQC

Important features of the protein:

Transmembrane domain:

amino acids 454-478

N-glycosylation sites.

amino acids 103-107, 160-164, 213-217, 221-225, 316-320, 345-349

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 297-301, 492-496, 503-507

N-myristoylation sites.

amino acids 42-48, 100-106, 147-153, 279-285, 397-403, 450-456, 455-461

FIGURE 67A

GCAGCCCTAGCAGGGATGCATGATGCTGTTGGTGCAGGGTGCTTGTTGCTCGAACCAGTG GCTGGCGGCGGTGCTCCTCAGCCTGTGCTGCCTGCTACCCTCCTGCCTCCCGGCTGGACAGA GTGTGGACTTCCCCTGGGCGGCCGTGGACAACATGATGGTCAGAAAAGGGGACACGGCGGTG CTTAGGTGTTATTTGGAAGATGGAGCTTCAAAGGGTGCCTGGCTGAACCGGTCAAGTATTAT TTTTGCGGGAGGTGATAAGTGGTCAGTGGATCCTCGAGTTTCAATTTCAACATTGAATAAAA GGGACTACAGCCTCCAGATACAGAATGTAGATGTGACAGATGATGGCCCCATACACGTGTTCT GTTCAGACTCAACATACACCCAGAACATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAA GATATATGACATCTCAAATGATATGACCGTCAATGAAGGAACCAACGTCACTCTTACTTGTT TGGCCACTGGGAAACCAGAGCCTTCCATTTCTTGGCGACACATCTCCCCATCAGCAAAACCA TTTGAAAATGGACAATATTTGGACATTTATGGAATTACAAGGGACCAGGCTGGGGAATATGA ATGCAGTGCGGAAAATGATGTGTCATTCCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACT TTGCTCCTACTATTCAGGAAATTAAATCTGGCACCGTGACCCCCGGACGCAGTGGCCTGATA AGATGTGAAGGTGCAGGTGTGCCGCCTCCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCT CTTCAATGGCCAACAAGGAATTATTATTCAAAATTTTAGCACAAGATCCATTCTCACTGTTA CCAACGTGACACAGGAGCACTTCGGCAATTATACTTGTGTGGCTGCCAACAAGCTAGGCACA ACCAATGCGAGCCTGCCTCTTAACCCTCCAAGTACAGCCCAGTATGGAATTACCGGGAGCGC TGATGTTCTTTTCTCCTGCTGGTACCTTGTGTTGACACTGTCCTCTTTCACCAGCATATTCT ACCTGAAGAATGCCATTCTACAA**TAA**ATTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCT GAAAGTGCTGATGGCTGGATCCAATCTGGTACAGTTTGTTAAAAGCAGCGTGGGATATAATC AGCAGTGCTTACATGGGGATGATCGCCTTCTGTAGAATTGCTCATTATGTAAATACTTTAAT TCTACTCTTTTTTGATTAGCTACATTACCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAG ACGTGAAAGCTCTGAAATTACTTTTAGAGGATATTAATTGTGATTTCATGTTTTGTAATCTAC AACTTTTCAAAAGCATTCAGTCATGGTCTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAA TATTGCAGTGAATATGTGATTCTTTAAGGCTGCAATACAAGCATTCAGTTCCCTGTTTCAAT TTGCCTTCAGATTATTTCTTCAAAATATAACACATATCTAGATTTTTCTGCTCGCATGATAT TCAGGTTTCAGGAATGAGCCTTGTAATATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGT AAGTTCAGCATGGGTGTGCCTTCATACAATAATATTTTTCTCTTTTGTCTCCAACTAATATAA AATGTTTTGCTAAATCTTACAATTTGAAAGTAAAAATAAACCAGAGTGATCAAGTTAAACCA TACACTATCTCTAAGTAACGAAGGAGCTATTGGACTGTAAAAATCTCTTCCTGCACTGACAA TGGGGTTTGAGAATTTTGCCCCACACTAACTCAGTTCTTGTGATGAGAGACAATTTAATAAC AGTATAGTAAATATACCATATGATTTCTTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGA AATCATTCCCTTTAAAATGACAGCACAGTCCACTCAAAGGATTGCCTAGCAATACAGCATCT TTTCCTTTCACTAGTCCAAGCCAAAAATTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCC TATCACCTAATATTACAAGAGTTGGTAAGCGCTCATCATTAATTTTATTTTGTGGCAGCTAA GTTAGTATGACAGAGGCAGTGCTCCTGTGGACAGGAGCATTTTGCATATTTTCCATCTGAAA GTATCACTCAGTTGATAGTCTGGAATGCATGTTATATATTTTAAAACTTCCAAAATATATTA TAACAAACATTCTATATCGGTATGTAGCAGACCAATCTCTAAAATAGCTAATTCTTCAATAA AATCTTTCTATATAGCCATTTCAGTGCAAACAAGTAAAATCAAAAAAGACCATCCTTTATTT TTCCTTACATGATATATGTAAGATGCGATCAAATAAAGACAAAAACACCAGTGATGAGAATAT CTTAAGATAAGTAATTATCAAATTATTGTGAATGTTAAATTATTTCTACTATAAAGAAGCAA AACTACATTTTTGAAGGAAAATGCTGTTACTCTAACATTAATTTACAGGAATAGTTTGATGG TTTCACTCTTTACTAAAGAAAGGCCATCACCTTGAAAGCCATTTTACAGGTTTGATGAAGTT ACCAATTTCAGTACACCTAAATTTCTACAAATAGTCCCCTTTTACAAGTTGTAACAACAAAG ACCCTATAATAAAATTAGATACAAGAAATTTTGCAGTGGTTATACATATTTGAGATATCTAG CCCAAAGTACATCATAAATCAATTTTAATTAGAAAAATGAATCTTAAATGAGGGGACATAAG TATACTCTTTCCACAAAATGGCAATAATAAGGCATAAAGCTAGTAAATCTACTAACTGTAAT AAATGTATGACATTATTTTGATTGATACATTAAAAAAGAGTTTTTAGAACAAATATGGCATT TAACTTTATTATTTATTTGCTTTTAAGAAATATTCTTTGTGGAATTGTTGAATAAACTATAA

FIGURE 67B

AAGAATGCATATTATTCAGTGACCGCTTTCCTAGAGTTAAAATACCTCCTCTTTGTAAGGTT TGTAGGTAAATTGAGGTATAAACTATGGATGAACCAAATAATTAGTTCAAAGTGTTGTCATG ATTCCAAATTTGTGGAGTCTGGTGTTTTTACCATAGAATGTGACAGAAGTACAGTCATAGCT CAGTAGCTATATGTATTTGCCTTTATGTTAGAAGAGACTTTCTTGAGTGACATTTTTAAATA GAGGAGGTATTCACTATGTTTTTCTGTATCACAGCAGCATTCCTAGTCCTTAGGCCCTCGGA CAGAGTGAAATCATGAGTATTTATGAGTTCAATATTGTCAAATAAGGCTACAGTATTTGCTT TTTTGTGTGAATGTATTGCATATAATGTTCAAGTAGATGATTTTACATTTATGGACATATAA AATGTCTGATTACCCCATTTTATCAGTCCTGACTGTACAAGATTGTTGCAATTTCAGAATAG CAGTTTTATAAATTGATTTATCTTTTAATCTATAACAATTTGTGTTAGCTGTTCATTTCAGG AAGGAAGAAAGAAAATAAGTAGCAGTTTAAAAAATGAGAATGGAGAGAAAAAGAAAAGAATG GTAGTTAACTTACACATTTGCATTCTTAGTTTAACTGCAAGTGGTGTAACTATGTTTTTCAA TGATCGCATTTGAAACATAAGTCCTATTATACCATTAAGTTCCTATTATGCAGCAATTATAT AATAAAAAGTACTGCCCAAGTTATAGTAATGTGGGTGTTTTTGAGACACTAAAAGATTTGAG AGGGAGAATTTCAAACTTAAAGCCACTTTTGGGGGGGTTTATAACTTAACTGAAAAATTAATG CTTCATCATAACATTTAAGCTATATCTAGAAAGTAGACTGGAGAACTGAGAAAATTACCCAG GTAATTCAGGGAAAAAAAAAATATATATATATATAAATACCCCTACATTTGAAGTCAGAAA ACTCTGAAAAACTGAATTATCAAAGTCAATCATCTATAATGATCAAATTTACTGAACAATTG TTAATTTATCCATTGTGCTTAGCTTTGTGACACAGCCAAAAGTTACCTATTTAATCTTTTCA ATAAAAATTGTTTTTTGAAATCCAGAAATGATTTAAAAAGAGGTCAGGTTTTTAACTATTTA TTGAAGTATGTGGATGTACAGTATTTCAATAGATATGAATATGAATAAATGGTATGCCTTAA GATTCTTTGAATATGTATTTACTTTAAAGACTGGAAAAAGCTCTTCCTGTCTTTTAGTAAAA CATCCATATTTCATAACCTGATGTAAAATATGTTGTACTGTTTCCAATAGGTGAATATAAAC

FIGURE 68

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA92259

><subunit 1 of 1, 354 aa, 1 stop

><MW: 38719, pI: 6.12, NX(S/T): 6

MDMMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYL EDGASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQH TPRTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQ YLDIYGITRDQAGEYECSAENDVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGA GVPPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASL PLNPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 322-343

N-glycosylation sites.

amino acids 73-77, 155-159, 275-279, 286-290, 294-298, 307-311

Tyrosine kinase phosphorylation site.

amino acids 180-188

N-myristoylation sites.

amino acids 9-15, 65-71, 69-75, 153-159, 241-247, 293-299, 304-310, 321-327

Myelin P0 protein.

amino acids 94-123

FIGURE 69

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA44175

><subunit 1 of 1, 155 aa, 1 stop

><MW: 17194, pI: 10.44, NX(S/T): 0

MYRHKNSWRLGLKYPPSSKEETQVPKTLISGLPGRKSSSRVGEKLQSAHKMPLSPGLLLLLL SGATATAALPLEGGPTGRDSEHMQEAAGIRKSSLLTFLAWWFEWTSQASAGPLIGEEAREVA RRQEGAPPQQSARRDRMPCRNFFWKTFSSCK

Important features of the protein:

Transmembrane domain:

amino acids 51-69

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 35-39, 92-96

N-myristoylation sites.

amino acids 64-70, 75-81, 90-96

Amidation site.

amino acids 33-37

FIGURE 71

GCTGGCTGGCTGCTGGTGTCAGCATTGGGAATGGTACCACCTCCCGAAAATGTC AGAATGAATTCTGTTAATTTCAAGAACATTCTACAGTGGGAGTCACCTGCTTTTGCCAAAGG GAACCTGACTTTCACAGCTCAGTACCTAAGTTATAGGATATTCCAAGATAAATGCATGAATA CTACCTTGACGGAATGTGATTTCTCAAGTCTTTCCAAGTATGGTGACCACACCTTGAGAGTC AGGGCTGAATTTGCAGATGAGCATTCAGACTGGGTAAACATCACCTTCTGTCCTGTGGATGA CACCATTATTGGACCCCCTGGAATGCAAGTAGAAGTACTTGCTGATTCTTTACATATGCGTT TCTTAGCCCCTAAAATTGAGAATGAATACGAAACTTGGACTATGAAGAATGTGTATAACTCA TGGACTTATAATGTGCAATACTGGAAAAACGGTACTGATGAAAAGTTTCAAATTACTCCCCA GTATGACTTTGAGGTCCTCAGAAACCTGGAGCCATGGACAACTTATTGTGTTCAAGTTCGAG CATGACGAAACGGTCCCTCCTGGATGGTGGCCGTCATCCTCATGGCCTCGGTCTTCATGGT CTGCCTGGCACTCCTCGGCTGCTTCTCCTTGCTGTGGTGCGTTTACAAGAAGACAAAGTACG CCTTCTCCCCTAGGAATTCTCTTCCACAGCACCTGAAAGAGTTTTTTGGGCCATCCTCATCAT AACACACTTCTGTTTTTCTCCTTTCCATTGTCGGATGAGAATGATGTTTTTGACAAGCTAAG TGTCATTGCAGAAGACTCTGAGAGCGGCAAGCAGAATCCTGGTGACAGCTGCAGCCTCGGGA CCCCGCCTGGGCAGGGCCCCAAAGCTAGGCTCTGAGAAGGAAACACACTCGGCTGGGCACA GTGACGTACTCCATCTCACATCTGCCTCAGTGAGGGATCAGGGCCAGCAAACAAGGGCCAAGA CCATCTGAGCCAGCCCCACATCTAGAACTCCAGACCTGGACTTAGCCACCAGAGAGCTACAT TTTAAAGGCTGTCTTGGCAAAAATACTCCATTTGGGAACTCACTGCCTTATAAAGGCTTTCA TGATGTTTTCAGAAGTTGGCCACTGAGAGTGTAATTTTCAGCCTTTTATATCACTAAAATAA GATCATGTTTAATTGTGAGAAACAGGGCCGAGCACAGTGGCTCACGCCTGTAATACCAGCA CCTTAGAGGTCGAGGCAGGCGGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAATA TGGTGAAACCCAGTCTCTACTAAAAATACAAAAATTAGCTAGGCATGATGGCGCATGCCTAT AATCCCAGCTACTCGAGTGCCTGAGGCAGGAGAATTGCATGAACCCGGGAGGAGGAGGAGGA GGTTGCAGTGAGCCGAGATAGCGGCACTGCACTCCAGCCTGGGTGACAAAGTGAGACTCCAT CTCAAAAAAAAAAAAAAATTGTGAGAAACAGAAATACTTAAAATGAGGAATAAGAATGG ACCTCAACTCAAGGGTGGTCAGCTCAATGCTACACAGAGCACGGACTTTTGGATTCTTTGCA GTACTTTGAATTTATTTTCTACCTATATATGTTTTATATGCTGCTGGTGCTCCATTAAAGT TTTACTCTGTGTTGC

FIGURE 72

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA83551

><subunit 1 of 1, 325 aa, 1 stop

><MW: 37011, pI: 5.09, NX(S/T): 4

MAWSLGSWLGGCLLVSALGMVPPPENVRMNSVNFKNILQWESPAFAKGNLTFTAQYLSYRIF
QDKCMNTTLTECDFSSLSKYGDHTLRVRAEFADEHSDWVNITFCPVDDTIIGPPGMQVEVLA
DSLHMRFLAPKIENEYETWTMKNVYNSWTYNVQYWKNGTDEKFQITPQYDFEVLRNLEPWTT
YCVQVRGFLPDRNKAGEWSEPVCEQTTHDETVPSWMVAVILMASVFMVCLALLGCFSLLWCV
YKKTKYAFSPRNSLPQHLKEFLGHPHHNTLLFFSFPLSDENDVFDKLSVIAEDSESGKQNPG
DSCSLGTPPGOGPOS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 222-245

N-glycosylation sites.

amino acids 49-53, 68-72, 102-106, 161-165

N-myristoylation sites.

amino acids 6-12, 316-322

FIGURE 73

GCGCAGCCCGCTGCTCGCCGCGTTGACCGCGCTCCTCGCCGCCGCCGCTGCTGGCGGAGAT GCCCGCCGGCAAAATCGCGGTGGTTGGGGGCTGGGATTGGGGGCTCTGCTGTGGCCCATTT TCTCCAGCAGCACTTTGGACCTCGGGTGCAGATCGACGTGTACGAGAAGGGAACCGTGGGTG GCCGCTTGGCCACCATCTCAGTCAACAAGCAGCACTATGAGAGCGGGGCTGCCTCCTTCCAC TCCCTGAGCCTGCACATGCAGGACTTCGTCAAGCTGCTGGGGCTGAGGCACCGGCGCGAGGT TGCTGAACCTCTTCCGCCTCTGGTGGCACTATGGCATCAGCTTCCTGAGGCTGCAGATGTGG GTGGAGGAGGTCATGGAGAAGTTCATGAGGATCTATAAGTACCAGGCCCACGGCTATGCCTT CTCGGGTGTGGAGGAGCTGCTCTACTCACTGGGGGAGTCCACCTTTGTTAACATGACCCAGC ACTCTGTGGCTGAGTCCCTGCTGCAGGTGGGCGTCACGCAGCGCTTTATTGATGATGTCGTT TCTGCTGTCCTGCGGGCCAGCTATGGCCAGTCAGCAGCGATGCCCGCCTTTGCAGGAGCCAT GTCACTAGCCGGGGCCCAAGGCAGCCTGTGGTCTGTGGAAGGAGGCAATAAGCTGGTTTGTT CCGGTTTGCTGAAGCTCACCAAGGCCAATGTGATCCATGCCACAGTGACCTCTGTGACCCTG CACAGCACAGAGGGGAAAGCCCTGTACCAGGTGGCGTATGAGAATGAGGTAGGCAACAGCTC TGACTTCTATGACATCGTGGTCATCGCCACCCCCTGCACCTGGACAACAGCAGCAGCAACT TAACCTTTGCAGGCTTCCACCGCCCATTGATGACGTGCAGGGCTCTTTCCAGCCCACCGTC GTCTCCTTGGTCCACGGCTACCTCAACTCGTCCTACTTCGGTTTCCCAGACCCTAAGCTTTT CCCCTTTGCCAACATCCTTACCACAGATTTCCCCAGCTTCTTCTGCACTCTGGACAACATCT GCCCTGTCAACATCTCTGCCAGCTTCCGGCGAAAGCAGCCCCAGGAGGCAGCTGTTTGGCGA GTCCAGTCCCCAAGCCCCTCTTTCGGACCCAGCTAAAGACCCTGTTCCGTTCCTATTACTC AGTGCAGACAGCTGAGTGGCAGGCCCATCCCCTCTATGGCTCCCGCCCCACGCTCCCGAGGT TTGCACTCCATGACCAGCTCTTCTACCTCAATGCCCTGGAGTGGGCGGCCAGCTCCGTGGAG GTGATGGCCGTGGCTGCCAAGAATGTGGCCTTGCTGGCTTACAACCGCTGGTACCAGGACCT AGACAAGATTGATCAAAAAGATTTGATGCACAAGGTCAAGACTGAACTGTGAGGGCTCTAGG GAGAGCCTGGGAACTTTCATCCCCCACTGAAGATGGATCATCCCACAGCAGCCCAGGACTGA ATAAGCCATGCTCGCCCACCAGGCTTCTTTCTGACCCCTCATGTATCAAGCATCTCCAGGTG AAAAGTTCATCTTCACAAGGTGCTTCAGACTTGGTTTCTTAGCTAGAAACCAGAAGACTACG CCACAATGGACAATCAATTGAGGCAACCTACAAGAAAACATTTACAACCAGATGGTTACAAA TAAAGTAGAAGGGAAGATCAGAAAACCTAAGAAATGATCATAGCTCCTGGTTACTGTGGACT TGATGGATTTGAAGTACCTAGTTCAGAACTCCCTAGTCACCATCTCCAAGCCTGTCAACATC ACTGCATATTGGAGGAGATGACTGTGGTAGGACCCAAGGAAGAGATGTGTGCCTGAATAGTC GTCACCATATCTCCAAGCTTCCTGGCAACCAGTGGGAAAAGAAACATGCGAGGCTGTAGGAA GAGGGAAGCTCTTCCTTGGCACCTAGAGGAATTAGCCATTCTCTTCCTTATGCAAAGATTGA GGAATGCAACAATATAAAGAAGAGAGAGTCCCCAGATGGTAGAGAGCAGTCATATCTTACCCC TAGATGTTCATCCCAGCAGAAGAAGAAGAAGGTGTTGGGGGTAGGATTCTTCAGAGGTTAGC CTGGTACTTTCTCATCAGACACTAGCTTGAAGTAAGAGGAGAATTATGCTTTTCTTTGCTTT

FIGURE 74

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA116510</pre>

><subunit 1 of 1, 494 aa, 1 stop

><MW: 54646, pI: 7.27, NX(S/T): 6

MARAAPLLAALTALLAAAAAGGDAPPGKIAVVGAGIGGSAVAHFLQQHFGPRVQIDVYEKGT
VGGRLATISVNKQHYESGAASFHSLSLHMQDFVKLLGLRHRREVVGRSAIFGGEHFMLEETD
WYLLNLFRLWWHYGISFLRLQMWVEEVMEKFMRIYKYQAHGYAFSGVEELLYSLGESTFVNM
TQHSVAESLLQVGVTQRFIDDVVSAVLRASYGQSAAMPAFAGAMSLAGAQGSLWSVEGGNKL
VCSGLLKLTKANVIHATVTSVTLHSTEGKALYQVAYENEVGNSSDFYDIVVIATPLHLDNSS
SNLTFAGFHPPIDDVQGSFQPTVVSLVHGYLNSSYFGFPDPKLFPFANILTTDFPSFFCTLD
NICPVNISASFRRKQPQEAAVWRVQSPKPLFRTQLKTLFRSYYSVQTAEWQAHPLYGSRPTL
PRFALHDQLFYLNALEWAASSVEVMAVAAKNVALLAYNRWYQDLDKIDQKDLMHKVKTEL

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 185-189, 290-294, 308-312, 312-316, 342-346, 378-382

N-myristoylation sites.

amino acids 33-39, 35-41, 38-44, 61-67, 64-70, 218-224, 234-240, 237-243, 429-435