ปรากฏการณ์ดอปเพลอร์

เป็นปรากฏการณ์ที่ผู้สังเกตเสียงได้ยินเสียงจาก แหล่งกำเนิดที่มีความถี่เปลี่ยนแปลงไปจากความถี่ของเสียงเดิม เนื่องจากการเคลื่อนที่ของผู้สังเกตเสียงสัมพัทธ์กับแหล่งกำเนิด เสียง ทำให้ผู้สังเกตได้ยินเสียงแหลม-ทุ้ม มากกว่าปกติ ความ เป็นจริงที่เกิดขึ้นจากแหล่งกำเนิดเสียงเอง ซึ่งจะได้สมการการ The Doppler Effect for a Moving Sound Source

คำนวณดังนี้

$$f_0 = \left(\frac{v \pm v_0}{v \pm v_s}\right) f_s$$

เมื่อ ƒ₀ คือ ความถี่เสียงปรากฏต่อผู้ <u>สังเกต (</u>Hz)

_fs คือ ความถี่เสียงจาก แหล่งกำเนิดเสียง (Hz)

***หมายเหตุ วิธีการใช้สมการ

- ถ้าผู้สังเกตเคลื่อนที่เข้าหาแหล่งกำเนิดเสียง v₀ มีค่าเป็นบวก (+)
- ถ้าผู้สังเกตเคลื่อนที่ออกจากแหล่งกำเนิดเสียง v มีค่าเป็นลบ (-)

ต้นกำเนิดเคลื่อนที่เข้าหาผู้ฟัง ความถี่ที่ได้ยินสูงขึ้น

ต้นกำเนิดเคลื่อนที่เข้าหาผู้ฟัง ความถี่ที่ได้ยินสูงขึ้น (2)

ความยาวคลื่นที่ผู้สังเกตรับรู้คือความยาว ของคลื่นหนึ่งลูก ...

$$\lambda = \frac{vt - v_s t}{f_s t} = \frac{v - v_s}{f_s}$$

ความถี่ที่ผู้สังเกตรับรู้ (f¸) มี คำเท่าไร?

$$f_o = \frac{v}{\lambda} = f_s \left(\frac{v}{v - v_s} \right)$$

ใผู้ฟังเคลื่อนที่เข้าหาต้นกำเนิด ความถี่ที่ได้ยินสูงขึ้น

เกิดอะไรขึ้นกับเสียงที่ผู้สังเกตได้ยินถ้า ผู้ฟังเคลื่อนที่เข้าหาแหล่งกำเนิด?

ความถี่สูงขึ้น

ผู้ฟังจะได้รับสันคลื่นแต่ละลูกเร็วกว่าที่ ส่งออกมา นั่นคือ ความถี่ของเสียงที่ผู้ฟัง ได้ยืน (f_o) จะสูงกว่าความถี่ที่แหล่งกำเนิด ส่งออกมาก

Copyright John Wiley & Sons

$$f_{co} = \frac{V}{\lambda} = f_{sc} \left(\frac{V + V_{oc}}{V} \right)$$

สูตรการคำนวณ ปรากฏการณ์ดอปเพลอร์

$$f_0 = \frac{v}{\lambda} = f_s \left(\frac{v \pm v_0}{v \pm v_s} \right)$$

- •f_O = ความถี่ที่ผู้ฟังได้ยิน
- •f_S = ความถี่ต้นกำเนิดเสียง
- ■V = ความเร็วเสียงในตัวกลาง (ภุณฝั)
- $\lambda = \lambda$ = ความยาวคลื่นเสียงที่เคลื่อนที่ถึงผู้ฟัง
- ${}^{ullet} V_{O} =$ ความเร็วผู้ฟัง (+)ผู้ฟังเข้าหาต้นกำเนิด , (-)ผู้ฟังออกห่างต้นกำเนิด
- V_S = ความเร็วต้นกำเนิดเสียง (+) ออกห่างผู้ฟัง , (-) เข้าหาผู้ฟัง

ตัวอย่างโจทย์ ปรากฏการณ์ดอปเพลอร์

รถพยาบาลกำลังวิ่งด้วยความเร็ว 40 เมตร/วินาที เปิดไซเรนส่งเสียงด้วยความถี่ 300 เฮิรตซ์ ชายคนหนึ่ง กำลังวิ่งออกกำลังกายด้วยความเร็ว 10 เมตร/วินาที ถ้ารถพยาบาลกำลังวิ่งเข้าหาชายคนนี้ทางด้านหลัง เขาจะได้ยินเสียงไซเรนมีความถี่ เท่าใด ถ้าเสียงอากาศขณะนั้นมีความเร็ว 340 เมตร/วินาที

ในอากาศเป็น 350 เมตร/วินาที ความย<u>าวคลื่นเสียงไ</u>ซเรนด้านหน้ารถพยาบาลเป็นเท่าใด

$$\frac{1}{\lambda} = \frac{325}{350 - 25}$$

$$\lambda = \frac{325}{400}$$

คลื่นกระแทก (Shock Wave)

พิจารณาแหล่งกำเนิดเสียงที่กำลังเคลื่อนที่อีกครั้ง จะเกิดอะไรขึ้นถ้า

อัตราเร็วของแหล่<u>งกำเน</u>ิดเ<mark>ร็วกว่า</mark>อัตราเร็วของเสียงในตัวกลางที่เสียง

เคลื่อนที่อยู่?

จะเกิด คลื่นกระแทก (shock wave)

คลื่นกระแทก (2)

คลื่นกระแทก (3)

โซนิคบูม (sonic boom)

ความสัมพันธ์ระหว่างมุมของยอดคลื่นกระแทก อัตราเร็วของแหล่งกำเนิด และอัตราเร็วของคลื่น นั้นสัมพันธ์กันอย่างง่าย ๆ คือ

$$\sin \theta = \frac{V}{V_s}$$

นิยามของเลขมัด

Mach Number =
$$\frac{v_s}{v}$$

ดังนั้น

$$\sin \theta = \frac{v}{v_s} = \frac{1}{\text{Mach Number}}$$

คลื่นกระแทก (4)

12.8 คลื่นกระแทก (Shock Wave)

คลื่นกระแทก หมายถึง คลื่นที่เกิดจากการอัดตัว ของหน้าคลื่น เมื่ออัตราเร็วของแหล่งกำเนิดสูงกว่า อัตราเร็วของคลื่นโดยคลื่นเสียงจะแทรกสอดกันเกิด กรวยของคลื่นกระแทกที่มีมุมกรวย 20 ดังรูป

จากรูป จะได้
$$\sin = \frac{v}{v_s}$$

กรณีคลื่นเสียง อัตราส่วน $\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{c}}}$ เรียกว่า เ**ลขมัค (Mach number)**

Mach number
$$=\frac{v_s}{v}=\frac{1}{\sin\theta}=\frac{x}{h}$$

เมื่อ v แทน ความเร็วคลื่นเสียง

(m/s)

vs แทน ความเร็วของ

แหล่งกำเนิด (m/s)

***ซุปเปอร์โซนิก (Supersonic) คือ ความเร็วของวัตถุในอากาศที่มีความเร็วสูงกว่าความเร็วเสียง

<u>ตัวอย่างโจทย์</u> คลื่นกระแทก

Exsample 27. เครื่องบินบินด้วยอัตราเร็ว 510 เมตรต่อวินาที ในแนวระดับเหนือพื้นดิน 4 กิโลเมตร ในขณะที่

เสียงมีอัตราเร็วในอากาศ 340 เมตรต่อวินาที **จงหา**

$$\sinh\theta = \frac{1}{3/2} = \frac{2}{3}$$

$$(\sin^{-1} 2/3)$$

$$\frac{3}{2} = \frac{x}{h} = \frac{x}{4}$$

การซ้อนทับกันของคลื่น (Superposition)

หลักการรวมกันของคลื่น (superposition) "การกระจัดของคลื่นผลลัพธ์ที่ตำแหน่ง ใด ๆ จะมีค่าเท่ากับผลบวกแบบเวกเตอร์ของการกระจัดของคลื่นย่อยที่มารวมกัน"

การซ้อนทับกันของคลื่น (2)

การแทรกสอดของคลื่น

ถ้าเราให้แหล่งกำเนิดคลื่นอาพัน(แหล่งกำเนิดคลื่น 2 แหล่ง ที่ให้คลื่นที่มีความถี่และเฟสตรงกันตลอด) วางอยู่ ห่างกันในระยะที่พอเหมาะ แล้วสร้างคลื่นพร้อมๆ กันจะพบว่าคลื่นทั้งสองจะเกิดการแทรกสอดกัน โดยจะมีแนวคลื่นที่ เสริมกันตลอดเวลา แนวนี้เรียก แนวปฏิบัพ (Anti node, A) และมีแนวที่เกิดการหักล้างกันตลอดเวลา เรียกว่า แนวบัพ (Node, N)

สูตรการค้านวณการแทรกสอด

สำหรับแนวปฏิบัพลำดับที่ n(A_n) พุทธภัหภาเร็ก → Avai webs

สำหรับแนวบัพลำดับที่ n (N,)

$$\begin{vmatrix} s_{1}P - s_{2}P | = (n - \frac{1}{2})\lambda \\ d\sin\theta = (n - \frac{1}{2})\lambda \end{vmatrix}$$

เมื่อ P คือจุดซึ่งอยู่บนแนวปฎิบัพลำดับที่ n(An)

 $\mathbf{S}_{_{\mathbf{l}}}\mathbf{P}$ คือ ระยะจาก $\mathbf{S}_{_{\mathbf{l}}}$ ถึง \mathbf{P}

 S_2P คือ ระยะจาก S_2 ถึง P

λ คือ ความยาวคลื่น (m)

ท คือ 0,1,2,3,...

d คือ ระยะห่างจาก $\mathbf{S}_{\scriptscriptstyle 1}$ ถึง $\mathbf{S}_{\scriptscriptstyle 2}$

 $\boldsymbol{\theta}$ คือ มุมที่วัดจาก $\mathbf{A}_{_{\!0}}$ ถึง $\mathbf{A}_{_{\!n}}$

คลื่นนิ่ง (Standing Wave)

คลื่นนิ่ง (standing wave) คือการแทรกสอดของคลื่นต่อเนื่อง 2 ขบวนที่มีลักษณะเหมือน กัน เคลื่อนที่เข้าหากันในตัวกลางเดียวกัน ทำให้เราเห็นตำแหน่งบัพและปฏิบัพที่เกิดขึ้นมี ตำแหน่งที่อยู่คงที่แน่นอน

ไม่มีการย้ายตำแหน่ง จะเห็นว่าบางตำแหน่งไม่มีการสั่นเลย เราเรียกจุดนี้ว่า**จุดบัพ** (Node) และมีบางตำแหน่งที่สั่นได้มากที่สุดเราเรียกจุดนี้ว่า<mark>ปฏิบัพ (Antinode)</mark>

ตัวอย่างโจทย์ การแทรกสอดคลื่น

ตัวอย่าง จากรูปเป็นภาพการแทรกสอดของคลื่นของผิวน้ำที่เกิดจากแหล่งกำเนิดอาพันธ์ S_1 และ S_2 โดยมี P เป็นจุดใดๆบนแนวเส้นบัพ $S_1P=15$ เซนติเมตร และ $S_2P=5$ เซนติเมตร ถ้าอัตราเร็วของคลื่นทั้ง สองเท่ากับ 50 เซนติเมตรต่อวินาที แหล่งกำเนิดคลื่นทั้งสองมีความถี่กี่เฮิรตซ์ A_2 A_3 A_4 A_5 A_5

ตัวอย่าง S_1 และ S_2 เป็นแหล่งกำเนิดคลื่นอาพันธ์ห่างกัน 10 cm ปล่อยคลื่นซึ่งมีความยาวคลื่น 3 cm จุด P ซึ่งเป็นจุดบนแนวปฏิบัพที่ 2 นับจากแนวกลาง จงหาค่ามุม $oldsymbol{ heta}$ ที่จุด P เบี่ยงจากแนวกลาง

$$dsin\theta = a(0.03) = \frac{3}{5}$$

ตัวอย่างโจทย์ การแทรกสอดคลื่น (2)

ตัวอย่าง S_1 และ S_2 เป็นแหล่งกำเนิดคลื่นอาพันธ์อยู่ห่างกัน 15 cm ปล่อยคลื่นความถี่ 8 Hz $\sqrt{}$ จงหาจำนวนแนวปฏิบัพและแนวบัพที่เกิดขึ้นจากการแทรกสอดว่ามีกี่แนว ถ้าอัตราเร็วของคลื่นเป็น 32 cm/s

$$\lambda = \frac{v}{f} = \frac{32}{3} = 4 \text{ CM}$$
 $dsin\theta = (m - \frac{1}{3})\lambda$
 $dsin\theta$

เส้นด้ายปลายด้านหนึ่งผูกติดกับปลายของส้อมเสียงที่สั่นด้วยความถี่ 250 Hz ส่วนปลายอีกด้านหนึ่งผ่านรอกลื่น และมีมวลถ่วงให้เส้นด้ายตึง เมื่อส้อมเสียงปรากฏคลื่นนิ่งดังรูป แสดงว่าความเร็วคลื่นในเส้นด้ายมีค่าเท่าใด

- 1. 50 m/s
- 2. 100 m/s
- 3. 150 m/s
- 4. 200 m/s

3 loop = 0.6 m
1 loop = 0.2 m
$$\ge \frac{\lambda}{2}$$

ความถี่ปิตส์ของเสียง

เมื่อคลื่นสองคลื่นที่มีความถี่ ใกล้เคียงกันเกิดการแทรกสอด กัน จะทำให้เกิดปรากฏการณ์ที่ เรียกว่า บีตส์ (Beats)

โดยเสียงที่ได้ยินจะเป็นเสียงที่ดัง

เบาดังเบาสลับกันไปเรื่อย ๆ

ความถี่บีตส์ของเสียง (2)

เสียงบีตส์เป็นฟังก์ชันของเวลา

ความถี่บีตส์ (beat frequency)

คำนวณได้จาก

$$f_B = |f_1 - f_2|$$

ความถี่บีตส์ที่มนุษย์ยังสามารถ แยกแยะได้มีค่าประมาณไม่เกิน 7 Hz

d Engineers

ความถี่บีตส์ของเสียง (3)

ความถี่บีตส์ (Beat frequency) คือ จำนวนครั้งที่ได้ยินเสียงดังในหนึ่งวินาที หาได้จากผลต่างระหว่างความถี่ของ

แหล่งกำเนิดทั้งสอง ซึ่งหาได้จาก

$$\mathbf{f}_{\mathrm{B}} = \left| \mathbf{f}_{2} - \mathbf{f}_{1} \right|$$

หมายเหตุ

บีตส์ไม่ใช้ความถี่ของเสียงที่เราได้ ยิน สังเกตได้จากความถี่บีตส์จะมีค่าไม่เกิน

7 Hz ซึ่งต่ำกว่าความถี่เสียงต่ำสดที่มนษย์

$$f_{av} = \frac{f_1 + f_2}{2}$$

เมื่อ f_1 คือ ความถี่เสียงที่ 1 f_2 คือ ความถี่เสียงที่ 2

***หูของมนุษย์สามารถจำแนกเสียงบีตส์ที่มี**ความถื่ไม่เกิน 7 เฮิรตส**์

ตัวคย่างโจทย์ ความถี่าไตส์

ตัวอย่างที่ 9.6 คลื่นเสียง 2 ขบวนมาพบกันเกิดบีตส์ 4 บีตส์/วินาที และได้ยินเสียงความถี่ 350 เสิรตซ์ จงหาความถี่ จริงของคลื่นทั้งสองนี้

วิธีทำ

ความถี่บีตส์มีค่าเท่ากับผลต่างของความถี่ของคลื่นเสียงสองขบวน สมมติให้ความถี่ของคลื่นเสียงทั้งสอง

ขบวนนี้มีค่าเท่ากับ f_1 และ f_2 โดยที่ $f_1 > f_2$ เราจะได้ว่า

$$f_1 - f_2 = 4 \text{ Hz}$$

$$\frac{f_1 + f_2}{2} = 350 \text{ Hz}$$

หรือ

$$f_1 + f_2 = 700 \text{ Hz}$$

ดังนั้นเราสามารถแก๊สมการทั้งสองเพื่อหาค่าของ f_1 และ f_2 ซึ่งจะได้ $f_1=352~{
m Hz}$ และ $f_2=348~{
m Hz}$

การสั่นพ้อง (Resonance)

•ถ้ามีคลื่นชนิดหนึ่ง (หรือแรงกระทำ) ที่มีความถี่เท่ากับความถี่ธรรมชาติของ วัตถุและมีความเข้มที่มากพอมากระทำกับวัตถุ ผลที่เกิดขึ้นก็คือวัตถุจะเกิด การสั่นอย่างรุนแรง (นั่นคือมีแอมพลิจูดของการสั่นสูง สูงกว่าปกติ) เราเรียก ปรากฏการณ์เช่นนี้ว่าเรโซแนนซ์ (resonance) หรือ การกำทอน หรือ การสั่นพ้อง

การสั้นพ้อง (2)

คำถามชวนคิด

จากรูป ถ้าแกว่งลูกตุ้ม A ลูกตุ้มใดจะแกว่งได้ ดีที่สุด เพราะอะไร

ตอบ C

คลื่นที่เกิดจากลูกตุ้ม A จะเคลื่อนที่ ไปตามคาน ทำให้ลูกตุ้มอื่นๆ สั่น แต่ ลูกตุ้ม B และ D จะสั่นด้วยความถี่ที่ ไม่ใกล้กับความถี่ของ A ทำให้คลื่น หักล้างกัน ส่วน C จะสั่นด้วยความถี่ ใกล้เคียงกับ A เพราะมีสายยาวใกล้ กัน

การสั้นพ้องในท่อปลายเปิดความยาวคงที่

รูปที่ 9-8 การเกิดเรโชแนนซ์ที่ความยาวคลื่นต่างๆ ในท่อปลายเปิด

$\lambda = 2L$ Must $\lambda = \frac{\lambda}{2}$

$$\lambda_2 = L$$
 who has

$$1.5\lambda_3 = L \qquad L = \frac{3\lambda_3}{2}$$

สันพ้อง ท่อปลายเปิด L คงที

นั่นคือในกรณีทั่วไป

$$\lambda_{n} = \frac{2L}{n}$$

$$n = 1, 2, 3,...$$

ความยาวคลื่นเรโซแนนซ์

เลขฮาร์มอนิค

การสั่นพ้องในท่อปลายเปิดความยาวคงที่ (2)

ความถีมูลฐาน

$$\lambda_1 = 2L$$

$$\lambda_2 = L$$

$$1.5\lambda_{3} = L$$

รูปที่ 9-8 การเกิดเรโซแนนซ์ที่ความยาวคลื่นต่างๆ ในท่อปลายเปิด

L คงที

ความยาวคลื่นเรโซแนนซ์

$$\lambda_{\mathbf{n}} = \frac{2L}{n}$$

$$n = 1, 2, 3, ...$$

ความถี่คลื่นเรโซแนนซ์

$$f_{\rm n} = \frac{v}{\lambda} = \frac{nv}{2I}$$

$$n = 1, 2, 3, ...$$

การสั่นพ้องในท่อปลายปิดความยาวคงที่

เรโซแนนซ์ภายในท่อปลายเปิดหนึ่งด้านปิดหนึ่งด้าน L คงที่

$$\lambda = \frac{4L}{5}$$

ความยาวคลื่นเรโซแนนซ์

ความถี่คลื่นเรโซแนนซ์

$$\lambda_{n} = \frac{4L}{n}$$
, $n = 1, 3, 5,...$

$$f_{n} = \frac{v}{\lambda} = \frac{nv}{4L}, \qquad n = 1, 3, 5,...$$

สังเกตว่าเลขฮาร์มอนิคในกรณีนี้มีเพียงเลขคี้เท่านั้น

สรุปสูตรการสั่นพ้อง **หรูปร_ังง**ร

1. ท่อออร์แกนปลายปิด (ปิด 1 ข้าง หรือปิด 2 ข้าง) จะได้

$$f_n = \left(\frac{2n-1}{4L}\right)v$$
, $n = 1$ เรียก f_1 ว่า ความถี่พื้นฐาน $n = 2$ เรียก f_2 ว่า First Overtone

n = 3 เรียก f_3 ว่า Second Overtone

2. ท่อออร์แกนปลายเปิด (เปิดทั้ง 2 ข้าง)

$$f_n = \frac{n}{2L}v = nf_1$$
, $n = 1$ เรียก f_1 ว่า ความถี่พื้นฐาน

n = 2 เรียก f₂ ว่า Second harmonic frequency

หรือ First harmonic frequency

3. การสั่นพ้องของลวดขึงตรึงทั้ง 2 ข้าง

fn =
$$\frac{n}{2L}v=\frac{n}{2L}\sqrt{\frac{T}{\mu}}=nf_1$$
, $T=$ แรงตึงในลวด (N)
$$\mu=$$
 มวลต่อความยาว (kg/m)

ตัวอย่างโจทย์ การสั่นพ้อง

จากการทดลองเรื่องการสั่นพ้องของเสียงโดยใช้หลอดสั่นพ้อง พบว่าเกิดสั่นพ้องครั้งแรกและครั้งที่ สองที่ระยะ 0.15 เมตร และ 0.50 เมตร จากปากท่อตามลำดับ ถ้าความเร็วของเสียงในขณะนั้น เท่ากับ 350 เมตร/วินาที จงหาความถี่ของคลื่นเสียงที่ใช้

ท่อปลายปิดอันหนึ่งยาว 5 เซนติเมตร เมื่อนำส้อมเสียงมาเคาะแล้วจ่อที่ปากท่อพบว่าจะเกิดกำทอน (การสั่นพ้อง) กับลำอากาศในท่อพอดี ถ้าเสียงในอากาศมีอัตราเร็ว 340 m/s ความถี่ของส้อมเสียง จะ มีค่ากี่เฮิรตซ์

1. 17

2. 68

3. 680

4. 1700

ตัวอย่างโจทย์ การสั้นพ้อง (2)

ส้อมเสียงอันหนึ่ง เมื่อเคาะเหนือท่อ เรโซแนนซ์ เกิดเสียงดังครั้งแรกเมื่อน้ำอยู่ต่ำจากปากท่อ 17 cm. และดังครั้งที่สองเมื่อน้ำอยู่ต่ำจากปากท่อ 53 เซนติเมตร ส้อมเสียงอีกอันหนึ่งมีความถี่ 450 เฮิรตซ์ทำ ให้เกิดเสียงดัง ครั้งที่สองเมื่อน้ำอยู่ต่ำจากปากท่อ 59 เซนติเมตร และดังครั้งที่สาม เมื่อน้ำอยู่ต่ำจากปาก ท่อ 99 เซนติเมตร ส้อมเสียงอันแรกมีความถี่กี่เฮิรตซ์

. 350 *Hz* 2. 450 *Hz*

3. 500 Hz 4. 550 Hz

ลำโพงเสียงคู่หนึ่งวางหันหน้าเข้าหากันให้คลื่นเสียงความยาวคลื่น 2 เมตร คน ๆ หนึ่งยืนอยู่ตรง กลาง ระหว่างลำโพง เสียงคู่นั้น ถ้าเขาเดินเข้าไปหาลำโพงเสียงข้างหนึ่งพบว่าเขาจะได้ยินเสียง ดังเป็นครั้งแรก อยากทราบว่า เขาเดินห่าง จากจุดเริ่มต้นกี่เมตร

1. 1 2. 2

3. 3