Behavioral Cloning

Model Architecture and Training Strategy

1. Solution Design Approach

First I used two Convolution2D 5x5 layers with MaxPooling2D after each of this layer, a flatten layer and 3 Dense layers.

With this architecture I was able to get drive the bridge, but my trained model failed to drive the bend directly afterwards.

Afterwards, I used tried out the <u>nvidia architecture</u>, which was recommendend in the course and forum. This is also my final architecture.

2. Final Model Architecture

Dropout

I used the <u>nvidia model</u> as my final architecture (model.py lines 60-87). It consists of the following layers:

Layer	Description
Input	160x320x3 RGB image
Normalization	Normalization and cropping of images, output 160x220x3 RGB image
Convolution2D 5x5	2x2 stride, VALID padding
RELU	Activation
Convolution2D 5x5	2x2 stride, VALID padding
RELU	Activation
Convolution2D 5x5	1x1 stride, VALID padding
RELU	Activation
Convolution2D 3x3	1x1 stride, VALID padding
RELU	Activation
Convolution2D 3x3	1x1 stride, VALID padding
Flatten	-
Dropout	Rate: 0.25
RELU	Activation
Dense	Output = 100
Dropout	Rate: 0.25
RELU	Activation
Dense	Output = 50
Dropout	Rate: 0.25
RELU	Activation
Dense	Output = 10

Rate: 0.25

Layer	Description
RELU	Activation
Dense	Output = 1

The model includes RELU layers for all Convolution2D to introduce nonlinearity (model.py line 68-72) and after each dropout function (model.py lines 76, 79, 82, 85). Furthermore the data is normalized in the model using a Keras lambda layer (model.py line 55) and the images are cropped (75px from the top and 25px from the bottom) with the Keras Cropping2D function.

3. Attempts to reduce overfitting in the model

The model contains dropout layers in order to reduce overfitting (model.py lines 75, 78, 81, 84) with dropout probability of 25%. Additionally I used the keras fit function for training with a validation_split of 20% to ensure that the model was not overfitting (model.py line 96). The model was tested by running it through the simulator and ensuring that the vehicle could stay on the track.

4. Model parameter tuning

The model used an adam optimizer, so the learning rate was not tuned manually (model.py line 91). I used an offset of 0.25 to compute the steering for the images of the left and right of the camera. I tried different values for the offset (e.g.: 0.043, 0.2, 0.002, a calculated one, ...), but this one was the best.

5. Appropriate training data

Training data was chosen to keep the vehicle driving on the road. I only used the training data provided by Udacity as my own records where not good enough for training. I used images of all three cameras.

To augment the data sat, I flipped images and angles thinking that this would generalize the data (model.py lines 46 and 47). I used the keras fit function for training with 20% of the data as validation set.

I used this training data for training the model. The validation set helped determine if the model was over or under fitting. The ideal number of epochs was 5. I used an adam optimizer so that manually training the learning rate wasn't necessary. You can see the mse for each training epoch in the image below.

6. Video for track1

You can see that my model was able to drive the car in the udacity simulator around track in the "video.mp4" file.