Shop Tour (tour)

Em Lineland há N lojas de bolachas em fila, numeradas de 0 a N-1. O Baq quer fazer uma percurso de compras pelas lojas. Um percurso é determinado por N inteiros **distintos** P_0, \ldots, P_{N-1} entre 0 e N-1.

Para um determinado percurso, Baq começa na loja P_0 . Para cada i = 0, ..., N-1, Baq deslocar-se-á da loja P_i para a loja P_{i+1} (aqui dizemos que $P_N = P_0$) comprando uma bolacha de cada uma das lojas entre P_i e P_{i+1} , inclusive. Formalmente, se $L_i = \min(P_i, P_{i+1})$ e $R_i = \max(P_i, P_{i+1})$, então no i-ésimo passo Baq comprará uma bolacha em cada uma das lojas $L_i, L_i + 1, ..., R_i$.

Baq tem agora os números A_0, \ldots, A_{N-1} , em que A_i representa o número total de bolachas compradas na i-ésima loja, mas não se lembra do percurso. A tua tarefa é determinar se a informação na matriz A é consistente com um percurso e, se for, construir esse percurso válido. Além disso, para obter uma pontuação máxima (ver a secção de pontuação para mais detalhes) o percurso que construires tem de ser o lexicograficamente mais pequeno dos percursos.

Dizemos que um percurso P_0, \ldots, P_{N-1} é lexicograficamente mais pequeno do que um percurso diferente Q_0, \ldots, Q_{N-1} se existir um $0 \le k \le N-1$ tal que:

- $P_i = Q_i$ para $0 \le i < k$.
- $P_k < Q_k$.

Um percurso Q é o mais pequeno lexicograficamente entre os que são consistentes com a informação do conjunto A se não existir um percurso diferente P com o mesmo conjunto A de bolachas compradas em cada loja que seja lexicograficamente mais pequeno que Q.

Implementação

Deves submeter um único ficheiro de código .cpp.

Entre os ficheiros do problema encontrarás um template tour.cpp com um exemplo de implementação.

Tens de implementar a seguinte função:

```
C++ | variant<bool, vector<int>> find_tour(int N, vector<int> A);
```

- O inteiro N representa o número de lojas.
- O array A, indexado de 0 até N-1, contém os valores $A_0, A_1, \ldots, A_{N-1}$, onde A_i é o número de bolachas compradas na i-ésima loja.
- A função deve devolver um valor booleano ou um array de inteiros.
 - Se n\(\tilde{a}\) existir nenhum percurso v\(\tilde{a}\) lido que corresponda ao array \(A\), a fun\(\tilde{a}\) deve devolver false.
 - Se um percurso válido existir, tens múltiplas opções:
 - * Para receber pontuação máxima, a função deve devolver um array de N inteiros P_0, \ldots, P_{N-1} representando o percurso **lexicograficamente mais pequeno** que resulta bo array A.

tour Página 1 de 3

- * Para receber uma pontuação parcial, a função deve devolver um array de N inteiros P_0, \ldots, P_{N-1} representando um qualquer percurso que não seja o lexicograficamente menor e resulte no array A.
- * Para receber uma pontuação parcial menor, a função deve devolver true ou um qualquer array de inteiros que não descreva um percurso que resulta no array A.

O avaliador irá chamar a função find_tour e irá escrever o seguinte no ficheiro de output:

- Se o valor devolvido for false, irá escrever uma única linha com a string NO.
- Se o valor devolvido for true ou um array de inteiros com tamanho diferente de N, irá escrever uma única linha com a string YES.
- Se o valor devolvido for um array P de N integers, irá escrever uma linha com a string YES, seguida de uma linha com N inteiros P_0, \ldots, P_{N-1} separados por espaços.

Avaliador Padrão

O diretório do problema contém uma versão simplificada do avaliador oficial, que podes usar para testar o teu problema localmente. O avaliador exemplo lê os dados de input de stdin, chama as funções que deves implementar, e finalmente escreve o output para stdout.

O input é feito de duas linhas, contendo:

- Linha 1: o inteiro N.
- Linha 2: os inteiros A_i , separados por espaços.

O output é feito de uma ou duas linhas, contendo os valores devolvidos pela função find_tour.

Restrições

- $2 \le N \le 10^6$.
- $0 < A_i < 10^6$.

Pontuação

O teu programa será testado num conjunto de casos de teste agrupados por subtarefa. A pontuação de uma subtarefa será o mínimo das pontuações obtidas em cada um dos casos de teste.

- Subtarefa 1 [0 pontos]: Casos de exemplo.
- Subtarefa 2 [8 pontos]: $N \leq 8$.
- Subtarefa 3 [32 pontos]: $N \le 2 \times 10^3$.
- Subtarefa 4 [16 pontos]: $A_i \le 4 \text{ para } i = 0, ..., N-1.$
- Subtarefa 5 [20 pontos]: Existe um $0 \le j \le N-1$ tal que $A_i \le A_{i+1}$ para $0 \le i < j$ e $A_i \ge A_{i+1}$ para $j \le i \le N-2$.
- Subtarefa 6 [24 pontos]: Nenhuma restrição adicional.

Para cada caso de teste onde exista um percurso válido, a tua solução:

- obtém pontuação máxima se devolver um percurso válido que seja o lexocograficamente menor.
- obtém 75% dos pontos se devolver um percurso válido que não seja o lexicograficamente menor.
- obtém 50% dos pontos se devolver true um array que não descreva um percurso válido.

tour Página 2 de 3

• obtém 0 pontos caso contrário.

Para cada caso de teste em que não exista um percurso válido, a tua solução:

- obtém pontuação máxima se devolver false.
- obtém 0 pontos caso contrário.

Exemplos

stdin	stdout
4 2 4 4 2	YES 0 2 1 3
3 2 2 2	NO

Explicação

No **primeiro caso de exemplo**, o percurso P = [0, 2, 1, 3] gera o array A = [2, 4, 4, 2] tal como a seguir descrito:

- Inicialmente, o número de bolachas comprado em cada loja é [0,0,0,0].
- Baq move-se da loja $P_0 = 0$ para a loja $P_1 = 2$, e portanto o array depois deste movimento fica [1, 1, 1, 0].
- Baq move-se da loja $P_1 = 2$ para a loja $P_2 = 1$, e portanto o array depois deste movimento fica [1, 2, 2, 0].
- Baq move-se da loja $P_2 = 1$ para a loja $P_3 = 3$, e portanto o array depois deste movimento fica [1, 3, 3, 1].
- Finalmente, Baq move-se da loja $P_3 = 3$ para a loja $P_0 = 0$, e portanto o array final é [2, 4, 4, 2].

Pode ser mostrado que [0, 2, 1, 3] o percurso que é lexicograficamente menor.

No **segundo caso de exemplo**, pode ser mostrado que não existe um percurso válido resultando no array A = [2, 2, 2].

tour Página 3 de 3