Capitolul 2. Modelul de regresie liniară simplă

Se consideră rata totală a fertilității (copii născuți de o femeie de-a lungul vieții) și procentul femeilor care folosesc metode contraceptive înregistrate pentru 50 de țări.

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.920ª	.847	.844	.5745

a. Predictors: (Constant), Contraceptors

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	87.672	1	87.672	265.668	.000b
	Residual	15.840	48	.330		
	Total	103.513	49			

a. Dependent Variable: Fertility

b. Predictors: (Constant), Contraceptors

Coefficientsa

			Occinicion			
		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6.875	.157		43.829	.000
	Contraceptors	058	.004	920	-16.299	.000

a. Dependent Variable: Fertility

Correlations

		Fertility	Contraceptors
Pearson Correlation	Fertility	1.000	920
	Contraceptors	920	1.000
Sig. (1-tailed)	Fertility		.000
	Contraceptors	.000	
N	Fertility	50	50
	Contraceptors	50	50

Pe baza rezultatelor modelării econometrice, se cere:

1. Considerând reprezentarea grafică de mai sus pentru cele două variabile, analizați ce se poate spune despre o posibilă legătură dintre cele două variabile.

În funcție de reprezentarea grafică, se poate aprecia că forma norului de puncte poate fi aproximată printr-o dreaptă, ceea ce înseamnă că legătura dintre cele două variabile este liniară, iar după sens, inversă.

2. Să se scrie ecuația estimată a modelului de regresie (atât pentru toate valorile variabilelor, cât și pentru fiecare valoare a acestora).

$$Y_X = b_0 + b_1 X = 6,875 - 0,058X$$

 $y_{x_i} = b_0 + b_1 x_i = 6,875 - 0,058x_i$

3. Să se interpreteze estimațiile coeficienților de regresie.

 $b_0 = 6,875$ copii născuți de o femeie de-a lungul vieții: *nivelul mediu estimat* al ratei totale a fertilității (Y) atunci când procentul femeilor care folosesc metode contraceptive (X) ia valoarea zero.

 $b_1 = -0.058$ copii născuți de o femeie de-a lungul vieții: la o creștere a procentului femeilor care folosesc metode contraceptive (X) cu 1 procent, rata totală a fertilității (Y) scade, în medie, cu 0,058 copii născuți de o femeie de-a lungul vieții.

4. Pentru o probabilitate de 90%, estimați prin interval de încredere ordonata la origine a modelului și interpretați rezultatul.

```
\begin{split} & IC(\beta_0) : \left[b_0 \pm t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_0}\right] (1-\alpha) = 90\% \\ & t_{\alpha/2;n-2} = t_{0,10/2;50-2} = t_{0,05;48} = 1,645 \\ & IC(\beta_0) : \left[b_0 - t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_0}; b_0 + t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_0}\right] \\ & IC(\beta_0) : \left[6,875 - 1,645 \cdot 0,157; 6,875 + 1,645 \cdot 0,157\right] \\ & IC(\beta_0) : \left[6,617; 7,133\right] \end{split}
```

Interpretare: Cu o probabilitate de 90%, se poate garanta că ordonata la origine este acoperită de intervalul [6,617; 7,133].

5. Considerând o probabilitate de 95%, estimați prin interval de încredere panta dreptei de regresie și interpretați rezultatul.

$$IC(\beta_{1}): [b_{1} \pm t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_{1}}] (1-\alpha) = 95\%$$

$$t_{\alpha/2;n-2} = t_{0,05/2;50-2} = t_{0,025;48} = 1,96$$

$$IC(\beta_{1}): [b_{1} - t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_{1}}; b_{1} + t_{\alpha/2;n-2} \cdot s_{\widehat{\beta}_{1}}]$$

$$IC(\beta_{1}): [-0,058 - 1,96 \cdot 0,004; -0,058 - 1,96 \cdot 0,004]$$

$$IC(\beta_{1}): [-0,066; -0,050]$$

Interpretare: Cu o probabilitate de 99%, se poate garanta că panta dreptei de regresie este acoperită de intervalul [-0,066; -0,050].

6. Formulați o cerință care presupune o predicție pentru variabila dependentă/ independentă, cunoscând o anumită valoare a variabilei independente/dependente.

Să se specifice procentului femeilor care folosesc metode contraceptive pentru a obține o rată totală a fertilitătii de 2,5 copii născuti de o femeie de-a lungul vietii.

$$y_{x_i} = 6,875 - 0,058x_i \Rightarrow 2,5 = 6,875 - 0,058x_i \Rightarrow$$

$$x_i = \frac{2,5 + 0,058}{6,875} = 0,372$$

Interpretare: Pentru a obține o rată totală a fertilității de 2,5 copii născuți de o femeie, procentul femeilor care folosesc metode contraceptive ar trebui să fie de 0,372 procente.

7. Formulați o cerință care presupune o predicție pentru variația variabilei dependente/ independente, pentru o modificare dată a variabilei independente/dependente.

Să se estimeze cu cât va scădea rata totală a fertilității pentru o creștere a procentului femeilor care folosesc metode contraceptive cu 1,5 procente.

$$b_1 = \frac{\Delta Y}{\Delta X} \Longrightarrow -0.058 = \frac{\Delta Y}{1.5} \Longrightarrow \Delta Y = -0.087$$

Interpretare: La o scădere a procentului femeilor care folosesc metode contraceptive cu 1,5 procente, rata totală a fertilității scade, în medie, cu 0,087 puncte.

8. Verificați dacă procentul femeilor care folosesc metode contraceptive explică semnificativ variația ratei totale a fertilității.

Etapele testării	Testarea parametrului $oldsymbol{eta}_1$
1. Formularea	$H_0: \beta_1 = 0$ (parametrul β_1 nu diferă semnificativ de 0, ceea ce înseamnă că
ipotezelor	între rata totală a fertilității (Y) și procentul femeilor care folosesc metode
	contraceptive (X) nu există o legătură liniară semnificativă SAU procentul
	femeilor care folosesc metode contraceptive (X) nu are o influență
	semnificativă asupra rata totală a fertilității (Y))
	$H_1: \beta_1 \neq 0$ (parametrul β_1 diferă semnificativ de 0 ceea ce înseamnă că între
	rata totală a fertilității (Y) și procentul femeilor care folosesc metode
	contraceptive (X) există o legătură liniară semnificativă SAU procentul
	femeilor care folosesc metode contraceptive (X) are o influență
	semnificativă asupra rata totală a fertilității (Y))
2. Alegerea	$\alpha = 0.05$
pragului de	
semnificație	
3. Alegerea	$\hat{\beta}_1 - \beta_1$
statisticii test	$t = \frac{\beta_1 - \beta_1}{\widehat{\sigma}_{\widehat{\beta}_1}} \sim t(n-2)$

4. Determinarea	$t_{teoretic} = t_{lpha/2;n-2} =$
valorii teoretice a statisticii test	$t_{0,05/2;50-2} = t_{0,025;48} = 1,96$
5. Determinarea valorii calculate a statisticii test	$t_{calc} = \frac{b_1}{s_{\widehat{\beta}_1}} = \frac{-0,058}{0,004} = -16,299$
6. Regula de decizie	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $ t_{calc} \le t_{\alpha/2;n-2}$, nu se respinge ipoteza nulă (H_0) ; - dacă $ t_{calc} > t_{\alpha/2;n-2}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α .
	Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) ; - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea deciziei	$ t_{calc} = 20 > t_{\alpha/2; n-2} = 1,96$ \mathbf{SAU} $Sigt = 0,000 < \alpha = 0,05 \Rightarrow \text{că se respinge ipoteza } H_0 (5\%)$
8. Interpretarea rezultatului	În condițiile unui risc 5%, se consideră că parametrul β_1 diferă semnificativ de 0, ceea ce înseamnă că legătura liniară dintre rata totală a fertilității (<i>Y</i>) și procentul femeilor care folosesc metode contraceptive (<i>X</i>) este semnificativă statistic SAU că procentul femeilor care folosesc metode contraceptive (<i>X</i>) are o influență semnificativă asupra ratei totale a fertilității (<i>Y</i>) SAU procentul femeilor care folosesc metode contraceptive (<i>X</i>) explică semnificativ variația ratei totale a fertilității (<i>Y</i>).

9. Calculați valoarea testului Student pentru parametrul β_0 și luați decizia, considerând un risc de 10%, privind semnificația parametrilor modelului de regresie.

Etapele testării	Testarea parametrului $oldsymbol{eta}_0$
1. Formularea	$H_0: \beta_0 = 0$ (parametrul β_0 nu diferă <u>semnificativ</u> de 0 SAU constanta
ipotezelor	modelului nu este <u>semnificativă</u> statistic)
	$H_1: \beta_0 \neq 0$ (parametrul β_0 diferă <u>semnificativ</u> de 0 SAU constanta modelului
	este <u>semnificativă</u> statistic)
2. Alegerea	$\alpha = 0.10$
pragului de	
semnificație	
3. Alegerea	$\hat{\beta}_0 - \beta_0$
statisticii test	$t = \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t(n-2)$
4. Determinarea	$t_{teoretic} = t_{lpha/2; n-2} =$
valorii teoretice a	$t_{0,10/2; 50-2} = t_{0,05; 48} = 1,645$
statisticii test	, and the second
5. Determinarea	$t_{calc} = \frac{b_0}{s_{\widehat{B}_0}} = \frac{6,875}{0,157} = 43,829$
valorii calculate a	$t_{calc} - \frac{1}{s_{\hat{R}_0}} - \frac{1}{0,157} - \frac{1}{43,829}$
statisticii test	P0
6. Regula de	Dacă se ține cont de valoarea calculată a testului, regula de decizie este
decizie	următoarea:

	 dacă t_{calc} ≤ t_{α/2; n-2}, nu se respinge ipoteza nulă (H₀); dacă t_{calc} > t_{α/2; n-2}, se respinge ipoteza nulă (H₀), în condițiile unui risc α.
	Dacă se ține cont de semnificația testului, regula de decizie este următoarea:
	- dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) ;
	- dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea deciziei	$ t_{calc} = 43,829 > t_{\alpha/2; n-2} = 1,645$
	SAU
	$Sigt = 0.000 < \alpha = 0.10 \Rightarrow$ că se respinge ipoteza H_0 (10%)
8. Interpretarea	În condițiile unui risc de 10%, se consideră că parametrul sau constanta
rezultatului	modelului diferă semnificativ de 0.

10. Interpretați valoarea estimată a coeficientului de corelație.

r = -0.920

Interpretare:

- în funcție de *semnul* coeficientului de corelație: legătura liniară dintre rata totală a fertilității (*Y*) și procentul femeilor care folosesc metode contraceptive (*X*) este inversă
- în funcție de *valoarea* în *modul* a coeficientului de corelație (|r| = 0.920), această legătură este de intensitate puternică

Interpretarea integrală:

- între rata totală a fertilității (*Y*) și procentul femeilor care folosesc metode contraceptive (*X*) există o legătură liniară inversă și de intensitate puternică.

11. Verificați dacă cele două variabile sunt corelate semnificativ.

Etapele testării	Testarea coeficientului de corelație $ ho$
1. Formularea	$H_0: \rho = 0$ (coeficientul de corelație ρ nu diferă semnificativ de 0, ceea ce
ipotezelor	înseamnă între rata totală a fertilității (Y) și procentul femeilor care
	folosesc metode contraceptive (X) nu există o legătură liniară semnificativă
	SAU cele două variabile nu sunt corelate semnificativ)
	$H_1: \rho \neq 0$ (coeficientul de corelație ρ diferă semnificativ de 0, ceea ce
	înseamnă între rata totală a fertilității (Y) și procentul femeilor care
	folosesc metode contraceptive (X) există o legătură liniară semnificativă
	SAU cele două variabile sunt corelate semnificativ)
2. Alegerea pragului	$\alpha = 0.05$
de semnificație	
3. Alegerea statisticii	$\hat{\rho}$ $t(n-2)$
test	$t = \frac{\rho}{\sqrt{\frac{1-\hat{\rho}^2}{n-2}}} \sim t(n-2)$
	$\sqrt{n-2}$
4. Determinarea	$t_{teoretic} = t_{\alpha/2; n-2} =$
valorii teoretice a statisticii test	$t_{teoretic} = t_{\alpha/2; n-2} = t_{0,05/2; 50-2} = t_{0,025; 48} = 1,96$

5. Determinarea valorii calculate a statisticii test	$t_{calc} = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{-0.920}{\sqrt{\frac{1-(-0.959)^2}{50-2}}} = \frac{-0.921}{0.056} = -16.446$
6. Regula de decizie	Dacă se ține cont de valoarea calculată a testului, regula de decizie este
	următoarea:
	- dacă $ t_{calc} \le t_{\alpha/2; n-2}$, nu se respinge ipoteza nulă (H_0) ;
	- dacă $ t_{calc} > t_{\alpha/2; n-2}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α .
	Dacă se ține cont de semnificația testului, regula de decizie este
	următoarea:
	- dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) ;
	- dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea deciziei	$ t_{calc} = 16,446 > t_{\alpha/2; n-2} = 1,96 \Rightarrow \text{că se respinge ipoteza } H_0 (5\%)$
	SAU
	$Sigt = 0.000 < \alpha = 0.05 \Rightarrow$ că se respinge ipoteza H_0 (5%)
8. Interpretarea	În condițiile unui risc de 5%, se poate garanta că între rata totală a
deciziei luate	fertilității (<i>Y</i>) și procentul femeilor care folosesc metode contraceptive (<i>X</i>)
	există o legătură liniară semnificativă SAU între rata totală a fertilității (Y)
	și procentul femeilor care folosesc metode contraceptive (X) sunt corelate
	semnificativ.

12. Estimați raportul de determinație și interpretați rezultatul.

Estimarea raportului de determinație

$$R^2 = \frac{ESS}{TSS} = \frac{87.672}{103.513} = 0,847$$

$$R^2 = 1 - \frac{RSS}{TSS} = 1 - \frac{15.840}{103.513} = 1 - 0.153 = 0.847$$

- în cazul regresiei liniare simple, raportul de determinație se poate determina și pe baza coeficientului de corelație astfel:

$$R^2 = r^2 = (-0.920)^2 = 0.847$$

Interpretare:

- 84,7% din variația totală a ratei totale a fertilității este explicată de variația procentului femeilor care folosesc metode contraceptive. Iar restul de 15,3% (diferența până la 100%) din variația totală a ratei totale a fertilității este explicată de influența factorilor aleatori sau nespecificați în model.

13. Estimați raportul de corelație și interpretați rezultatul.

Estimarea raportului de determinație

$$R = \sqrt{R^2} = \sqrt{0.847} = 0.920$$

- în cazul regresiei liniare simple, raportul de corelație se poate determina și pe baza coeficientului de corelație astfel:

$$R = |r| = |-0.920| = 0.920$$

Interpretare:

- între rata totală a fertilității (*Y*) și procentul femeilor care folosesc metode contraceptive (*X*) există o legătură liniară de intensitate puternică.

14. Testați semnificația raportului de corelație.

Etapele testării	Testarea raportului de corelație η
1. Formularea	$H_0: \eta = 0$ (raportul de determinație η^2 sau raportul de corelația η nu diferă
ipotezelor	semnificativ de 0, ceea ce înseamnă că între rata totală a fertilității (Y) și
	procentul femeilor care folosesc metode contraceptive (X) nu există o legătură
	liniară semnificativă)
	$H_1: \eta > 0$ (raportul de determinație η^2 sau raportul de corelația η este
	semnificativ statistic, ceea ce înseamnă că între rata totală a fertilității (Y) și
	procentul femeilor care folosesc metode contraceptive (X) există o legătură
2 41	liniară semnificativă)
2. Alegerea	$\alpha = 0.05$
pragului de	
semnificație	â2 l.
3. Alegerea statisticii test	$F = \frac{\eta^{2}}{1 + n^{2}} \cdot \frac{n - k}{1 + n^{2}} \sim F(k - 1; n - k)$
	$F = \frac{\hat{\eta}^2}{1 - \hat{\eta}^2} \cdot \frac{n - k}{k - 1} \sim F(k - 1; n - k)$ $F_{teoretic} = F_{\alpha; k - 1; n - k} =$
4. Determinarea	$F_{teoretic} = F_{\alpha; k-1; n-k} =$
valorii teoretice	$F_{0,05;\ 1;\ 48} = 4,085$
a statisticii test	p? l.
5. Determinarea valorii calculate	$F_{calc} = \frac{R^2}{1 - R^2} \cdot \frac{n - \kappa}{1 - \kappa}$
a statisticii test	$\begin{pmatrix} 1 - R^2 & k - 1 \\ 0.847 & 48 \end{pmatrix}$
a statisticii test	$F_{calc} = \frac{R^2}{1 - R^2} \cdot \frac{n - k}{k - 1}$ $F_{calc} = \frac{0,847}{1 - 0,847} \cdot \frac{48}{1} = 265,658$
6. Regula de	Dacă se ține cont de valoarea calculată a testului, regula de decizie este
decizie	următoarea:
	- dacă $F_{calc} \le F_{\alpha: k-1: n-k}$, nu se respinge ipoteza nulă (H_0) ;
	- dacă $F_{calc} > F_{\alpha; k-1; n-k}$, se respinge ipoteza nulă (H_0) , în condițiile
	unui risc α .
	Dacă se ține cont de semnificația testului, regula de decizie este următoarea:
	- dacă $SigF \ge \alpha$, nu se respinge ipoteza nulă (H_0) ;
	- dacă $SigF < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea	$F_{calc} = 265,658 > F_{\alpha; k-1; n-k} = 4,085 \Rightarrow$ că se respinge ipoteza H_0 (5%)
deciziei	$u, \kappa = 1, h = \kappa$ SAU
	$SigF = 0.000 < \alpha = 0.05 \Rightarrow$ că se respinge ipoteza H_0 (5%)
8. Interpretarea	În condițiile unui risc de 5%, se consideră că între rata totală a fertilității (Y) și
deciziei luate	procentul femeilor care folosesc metode contraceptive (X) există o legătură
	liniară semnificativă SAU modelul de regresie explică semnificativ dependența
	liniară dintre rata totală a fertilității (Y) și procentul femeilor care folosesc

metode contraceptive (X) SAU modelul de regresie liniară simplă ales este
corect specificat.

15. Interpretați probabilitatea asociată statisticii test Student în vederea testării modelului de regresie.

$$SigF = 0.000 < \alpha = 0.05 \Rightarrow$$
 că se respinge ipoteza H_0 (5%)

Interpretare:

În condițiile unui risc de 5%, se consideră că între rata totală a fertilității (Y) și procentul femeilor care folosesc metode contraceptive (X) există o legătură liniară semnificativă **SAU** modelul de regresie explică semnificativ dependența liniară dintre rata totală a fertilității (Y) și procentul femeilor care folosesc metode contraceptive (X) **SAU** modelul de regresie liniară este corect specificat.