Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

Recuperatorio Primer Parcial - 13/12/2023

Métodos Computacionales 2023

Nombre: ________Apellido: ________Cantidad de hojas: ______

Nota: Es indispensable contar con dos ejercicios marcados como B o B- para aprobar el parcial.

Ejercicio 1. Sea la matriz:

$$A = \left[\begin{array}{rrr} 0 & 1 & 2 \\ 2 & 3 & -4 \\ 4 & 8 & 8 \end{array} \right]$$

- 1. Encontrar una base para el espacio columna de A.
- 2. Encontrar una base para el espacio nulo de A.
- 3. El vector $\begin{bmatrix} 8\\1\\1 \end{bmatrix}$ pertenece al espacio columna de A?

Ejercicio 2. Indicar Verdadero o Falso:

- 1. Un vector \mathbf{b} es combinación lineal de las columnas de A sí y solo sí la ecuación $A\mathbf{x} = \mathbf{b}$ tiene una única solución.
- 2. Si las columnas de una matriz A generan \mathbb{R}^n , entonces la ecuación $A\mathbf{x} = \mathbf{b}$ es consistente para todo \mathbf{b} en \mathbb{R}^n .
- 3. Las columnas de una matriz A son linealmente independientes si la ecuación $A\mathbf{x} = \mathbf{0}$ tiene sólo la solución trivial.
- 4. Si dos vectores \mathbf{x} e \mathbf{y} son linealmente independientes y los vectores \mathbf{x} , \mathbf{y} , \mathbf{z} son linealmente dependientes, entonces \mathbf{z} pertenece a $Gen\{\mathbf{x},\mathbf{y}\}$

Ejercicio 3. Sea
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 una transformación lineal que mapea $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{a} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \mathbf{y} \mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mathbf{a} \begin{bmatrix} 1 \\ -5 \end{bmatrix}$

Usar la propiedad de que T es lineal para encontrar las transformaciones de $5\mathbf{u}$, $4\mathbf{v}$ y $5\mathbf{u} + 4\mathbf{v}$.

Ejercicio 4. Sea A una matriz, $\mathbf{v_1}$ y $\mathbf{v_2}$ autovectores de A asociados a autovalores λ_1, λ_2 . Mostrar que si $\mathbf{v_1}$ y $\mathbf{v_2}$ son linealmente dependientes, entonces $\lambda_1 = \lambda_2$.