1. Uma região R é mostrada na figura. Decida se você deve usar coordenadas polares ou retangulares e escreva  $\int \int_R f(x,y) \; dA$  como integral iterada, onde f é uma função qualquer contínua em R.



- 2. Calcule a integral dada colocando-a em coordenadas polares.
  - a)  $\int\int_R x\ dA,$ onde R é o disco com centro na origem e raio 5.
  - b)  $\int \int_R y \; dA$ , onde R é a região do rpimeiro quadrante limitada pelo círculo  $x^2+y^2=9$  e pelas retas y=x e y=0
  - c)  $\int \int_R xy \ dA$ , onde R é a região do rpimeiro quadrante compreendida entre os círculos  $x^2+y^2=4$  e  $x^2+y^2=25$

d) 
$$\int \int_{R} \sqrt{x^2 + y^2} dA$$
, onde  $R = \{(x, y) / 1 \le x^2 + y^2 \le 9, y \ge 0\}$ 

e) 
$$\int \int_R e^{-x^2-y^2} dA$$
, onde  $R$  é a região limitada pelo semicírculo  $x = \sqrt{4-y^2}$  e o eixo  $y$ .

- 3. Utilize a integral dupla para determinar a área da região.
  - a) Um laço da rosácea  $r = cos(3\theta)$
  - b) A região contida pela cardióide  $r = 1 sen(\theta)$
- 4. Calcule a integral iterada convertendo-a antes para coordenadas polares.

a) 
$$\int_0^1 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$$
,

b) 
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} (x^2+y^2)^{\frac{3}{2}} dx dy$$
,

- 5. Calcular  $\int_{R} \int (x^2 + y^2) dxdy$ , onde R é dada por:
  - a) Círculo centrado na origem de raio a. b) Círculo centrado em (a,0) de raio a.
  - c) Círculo centrado em (0, a) de raio a.
- 6. Calcule:

a) 
$$\int \int_{D} \int xyz \, dx \, dy \, dz$$
,  $D: 0 \le x \le 2, \ 0 \le y \le 1, \ 1 \le z \le 2$  resp:  $\frac{3}{2}$ 

b) 
$$\int \int_{D} \int x \, dx \, dy \, dz$$
,  $D: 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le z \le x+y+1$  resp:  $\frac{1}{2}$ 

c) 
$$\int \int_{D} \int \sqrt{1-z^2} \, dV$$
,  $D: 0 \le x \le 1, \ 0 \le z \le 1, \ 0 \le y \le z$  resp:  $\frac{1}{3}$ 

d) 
$$\int \int_{D} \int \sqrt{1-z^2} \, dV$$
,  $D: 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1$  resp.  $\frac{\pi}{2}$ 

e) 
$$\int \int_{D} \int dx dy dz$$
,  $D: x^2 + y^2 \le z \le 2x$  resp.  $\frac{\pi}{2}$ 

7. Calcule o volume do conjunto dos pontos (x, y, z) dado:

a) 
$$0 \le x \le 1$$
,  $0 \le y \le 1$   $e$   $0 \le z \le 5 - x^2 - 3y^2$  resp:  $\frac{11}{3}$ .

b) 
$$0 \le x \le 1$$
,  $0 \le y \le x^2$   $e$   $0 \le z \le x + y^2$  resp.  $\frac{25}{84}$ .

c) 
$$x^2 + y^2 \le z \le 4$$
 resp:  $8\pi$ .

d) 
$$x^2 \le z \le 1 - y \ e \ y \ge 0$$
.  $resp: \frac{8}{15}$ 

8. Usando coordenadas cilíndricas ou esféricas, Calcule:

a) 
$$\int \int_D \int x \ dV$$
, onde  $D; x \ge 0, \ x^2 + y^2 + z^2 \le 4 \text{ resp } 4\pi$ .

b) 
$$\int \int_D \int z \ dV$$
, onde  $D; 1 \le x^2 + y^2 + z^2 \le 4$ ,  $z \ge 0$ . resp $\frac{15\pi}{4}$ .

- c) Volume da esfera de raio R.
- d)  $\int \int_D \int \sqrt{x^2+y^2} \ dV$ , onde D é o sólido no primeiro octante limitado pelos planos coordenados, pelo plano z=4 e  $x^2+y^2=25$ .
- 9. Calcule a integral iterada.

a) 
$$\int_0^1 \int_0^z \int_0^{x+z} 6xz \, dy \, dx \, dz \operatorname{resp} 1$$
 b)  $\int_1^2 \int_0^x \int_0^{1-y} x^3 y^2 z \, dz \, dy \, dx$  c)  $\int_0^3 \int_0^1 \int_0^{\sqrt{1-z^2}} z e^y \, dx \, dz \, dy$ .  
resp:  $\frac{1}{3}(e^3 - 1)$ 

10. Calcule a integral tripla.

a) 
$$\int \int \int_E 2x \ dV$$
, onde  $E = \{(x, y, z) \ / \ 0 \le y \le 2, 0 \le x \le \sqrt{4 - y^2}, \ 0 \le z \le y\}$  resp:4

b) 
$$\int \int \int_E 6xy \ dV$$
, onde E está abaixo do plano  $z=1+x+y$  e acima da região do plano

xylimitada pelas curvas  $y=\sqrt{x} \;\; y=0 \;\; x=1.$ resp<br/>: $\frac{65}{28}$ 

11. Expresse a integral  $\int \int \int_E f(x, y, z) dV$  como uma integral iterada de três modelos diferentes, onde E é o sólido limitado pelas superfícies dadas.

a) 
$$x^2 + z^2 = 4$$
,  $y = 0$ ,  $y = 6$  resp:  $\int_{-2}^{2} \int_{0}^{6} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y, z) dz dy dx = \int_{0}^{6} \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y, z) dz dx dy = \int_{-2}^{2} \int_{0}^{6} \int_{-\sqrt{4-x^2}}^{\sqrt{4-z^2}} f(x, y, z) dx dy dz$ . b)  $z = 0$ ,  $z = y$ ,  $x^2 = 1 - y$ .

12. A figura mostra a região de integração para a integral  $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} \,dz\,dy\,dx$ 

(2.8, 15.98)



Reescreva essa integral como uma integral iterada equivalente de quatro formas diferentes. algumas respostas:

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x,y,z) \ dz dy dx = \int_0^1 \int_0^{y^2} \int_0^{1-y} f(x,y,z) \ dz dx dy = \int_0^1 \int_0^{1-z} \int_0^{y^2} f(x,y,z) \ dx dy dz.$$

13. Utilize coordenadas esféricas:

a) Calcule 
$$\int \int \int_{B} (x^2 + y^2 + z^2) dV$$
, onde  $B$  é a bola unitária  $x^2 + y^2 + z^2 \leq 1$ .resp:  $\frac{4\pi}{5}$ 

b) Calcule 
$$\int \int \int_H (x^2+y^2)dV$$
, onde  $H$  é a região hemisférica que está acima do plano  $xy$  e abaixo da esfera  $x^2+y^2+z^2=1$ .

c) Calcule 
$$\int \int \int_E z dV$$
, onde  $E$  está contido entre as esferas  $x^2 + y^2 + z^2 = 1$  e  $x^2 + y^2 + z^2 = 4$  no primeiro octante.resp:  $\frac{15\pi}{16}$ 

d) Calcule 
$$\int \int \int_E x e^{(x^2+y^2+z^2)^2} dV$$
, onde  $E$  é o sólido que está entre as esferas  $x^2+y^2+z^2=1$  e  $x^2+y^2+z^2=4$  no primeiro octante.

- e) Calcule  $\int \int \int_E \sqrt{x^2+y^2+z^2} dV$ , onde E é limitado abaixo pelo cone  $\phi=\frac{\pi}{3}$  e acima pela esfera  $\rho=2$ .resp:  $4\pi(2-\sqrt{3})$
- 14. Determine por integral tripla o volume do cilindro dado por  $x^2+y^2=4$  e limitado pelos planos z=-2 e z=2. resp;  $16\pi$ .