Tópicos de Matemática

folha 19 -

- 121. Em cada caso, diga, justificando, se os conjuntos indicados são equipotentes:
 - (a) $\{1, 2, 5, 8\}$ e $\{a, b, c\}$.
 - (b) $\{1, 2, 3, 4\}$ e $\mathcal{P}(\{a, b\})$.
 - (c) $\{n \in \mathbb{Z} \mid n < -25\} \in \mathbb{N}$.
 - (d) $4\mathbb{N} \in 3\mathbb{Z}$ (onde $nX = \{nx \mid x \in X\}$).
- 122. Sejam A um conjunto e $\{0,1\}^A$ o conjunto de todas as aplicações de A em $\{0,1\}$. Para cada subconjunto B de A seja $\chi_B: A \to \{0,1\}$ a função característica em A associada a B, i.e., a aplicação definida por

$$\chi_B(x) = \begin{cases} 1 & \text{se } x \in B \\ 0 & \text{se } x \in A \setminus B \end{cases}.$$

- (a) Mostre que
 - i. Para quaisquer $B, C \subseteq A$, se $\chi_B = \chi_C$, então B = C.
 - ii. Para cada aplicação $f: A \to \{0,1\}$, se tem $f = \chi_B$, onde $B = \{x \in A \mid f(x) = 1\}$.
- (b) Conclua que $\mathcal{P}(A) \sim \{0,1\}^A$.
- 123. Sejam B um conjunto e $B^{\{1,2\}}$ o conjunto de todas as aplicações de $\{1,2\}$ em B. Mostre que $B^{\{1,2\}} \sim B \times B$.
- 124. Sejam A, B, C conjuntos. Prove que
 - (a) $A \backsim A$.
 - (b) Se $A \backsim B$, então $B \backsim A$.
 - (c) Se $A \backsim B$ e $B \backsim C$, então $A \backsim C$.
- 125. Sejam A, B, C conjuntos. Prove que
 - (a) $A \times B \sim B \times A$.
 - (b) $(A \times B) \times C \sim A \times (B \times C)$.
 - (c) Se $A \sim B$, então $\mathcal{P}(A) \backsim \mathcal{P}(B)$.
- 126. Diga, justificando, se as afirmações seguintes são verdadeiras para quaisquer conjuntos $A,\,B$ e C:
 - (a) Se $A \sim B$, então $A \backslash B \sim B \backslash A$.
 - (b) Se $A \setminus B \sim B \setminus A$, então $A \sim B$.
 - (c) Se $A \sim B$, então $A \cup C \sim B \cup C$.
 - (d) Se $A \sim B$, então $A \cap C \sim B \cap C$.
 - (e) Se $A \cap C \sim B \cap C$ e $C \neq \emptyset$, então $A \sim B$.
 - (f) Se $A \sim B$ e $A \cap C = B \cap C = \emptyset$, então $A \cup C \sim B \cup C$.
- 127. Para cada $n \in \mathbb{N}$, seja $I_n = \{1, 2, 3, \dots, n\}$. Mostre que
 - (c) Dados $m, n \in \mathbb{N}$, $I_n \sim I_m$ se e só se m = n.
 - (d) Dados $m, n \in \mathbb{N}$, I_m é equipotente a um subconjunto de I_n e I_n não é equipotente a qualquer subconjunto de I_m se e só se m < n.

Tópicos de Matemática

folha 20 –

- 128. Sejam A, B conjuntos. Prove que
 - (a) Se A é finito, então $A \cap B$ é finito.
 - (b) Se A é infinito, então $A \cup B$ é infinito.
 - (c) Se $A \cap B$ é infinito, então A e B são infinitos.
 - (d) Se A e B são finitos, então $A \cup B$ é finito.
 - (e) Se A é infinito e $B \neq \emptyset$, então $A \times B$ é infinito.
 - (f) Se A e B são finitos, então $A \times B$ é finito.
 - (g) Se $A \subseteq B$, A é finito e B é infinito, então $B \setminus A$ é infinito.
- 129. Prove que os conjuntos $\mathbb{N} \times \mathbb{Z}$ e $\mathbb{Z} \times \mathbb{Z}$ são numeráveis.
- 130. Mostre que todo o conjunto infinito tem um subconjunto numerável.
- 131. Sejam A, B conjuntos. Prove que
 - (a) Se A é finito e B é numerável, então $A \cup B$ é numerável.
 - (b) Se $A \in B$ são numeráveis, então $A \cup B$ é numerável.
 - (c) Se A não é contável, B é contável e $B \subseteq A$, então $A \setminus B$ não é contável.
 - (d) Se A é finito e não vazio e B é numerável, então $A \times B$ é numerável.
 - (e) Se A e B são numeráveis, então $A \times B$ é numerável.
- 132. Diga quais dos seguintes conjuntos são contáveis:
 - (a) $\{2^n \mid n \in \mathbb{N}\}.$
- (b) $\mathbb{Q} \cap [2,3)$.
- (c) $[3,4] \cup [5,6]$.
- (d) $[0,1] \times [0,1]$.
- (e) $\{9^x \mid x \in \mathbb{R}\}.$
- (f) $\{\frac{a}{3} \mid a \in \mathbb{Z} \land \text{m.d.c.}(a,3) = 1\}.$
- 133. Prove que
 - (a) O conjunto Q dos números racionais é numerável.
 - (b) O conjunto $\mathbb{R} \setminus \mathbb{Q}$ dos números irracionais não é numerável.
- 134. Sejam A, B, C conjuntos. Prove que
 - (a) $|\emptyset| \le |A|$.
 - (b) $|A| \le |A|$.
 - (c) Se |A| = |B|, então |B| = |A|.
 - (d) Se $|A| \leq |B|$ e $|B| \leq |C|$, então $|A| \leq |C|$.
- 135. Sejam A, B, C conjuntos. Prove que se |A| < |B| e |B| = |C|, então |A| < |C|.
- 136. Sejam A e B conjuntos finitos tais que |A| = |B| e seja $f: A \to B$ uma função. Mostre que as afirmações seguintes são equivalentes:
 - (i) A função f é bijetiva. (ii) A função f é injetiva. (iii) A função f é sobrejetiva.
- 137. Sejam A e B conjuntos numeráveis. Prove que |A| = |B|.
- 138. Sejam A, B conjuntos. Prove que se B é contável e $|A| \leq |B|$, então A é contável.
- 139. Sejam $X, Y \subseteq \mathbb{R}$ e $a, b, c, d \in \mathbb{R}$ tais que a < b e c < d. Recorrendo ao Teorema de Schröder-Bernstein, mostre que se $]a, b[\subseteq X$ e $]c, d[\subseteq Y, \text{então } X \sim Y.$