

Heat exchanger

General description

This unit represents the simplified steady-state model of a heat exchanger. The unit calculates the maximum heat that may be transferred between two streams and multiplies this heat with a parameter – the efficiency ε .

$$\begin{aligned} \left| \dot{Q} \right| &= \varepsilon \left| \dot{Q}_{\text{ideal}} \right| = \\ &= \varepsilon \left| \int_{T_1}^{T_{\text{mix}}} \dot{m}_1 c_{\text{p},1}(\theta) \ d\theta \right| = \varepsilon \left| \int_{T_2}^{T_{\text{mix}}} \dot{m}_2 c_{\text{p},2}(\theta) \ d\theta \right| \end{aligned}$$

Application example

Model parameters:

Efficiency

Input Stream 1:	
dm	1 kg/s
T	300 K
x_N2,g	1

Input Stream 2:

Efficiency	1kg/s
T	400 K
x_N2,g	1

Results:

Output Stream 1:

1	
dm	1 kg/s

T	325.036 K
x_N2,g	1

Output Stream 2:

Efficiency	1kg/s
T	375.044 K
x_N2,g	1