Adjunctions as translations between relative equational consequences

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

September 25, 2017

1/1

Aim of the talk

We will try to relate the following concepts:

- ► Adjunctions between quasi-varieties.
- ► Translations between logics:

Kolmogorov's translations of \mathcal{CPC} into \mathcal{IPC} Gödel's translation of \mathcal{IPC} into $\mathcal{S4}$.

► Twist constructions:

 $\begin{array}{ccc} \mathsf{Distributive} \ \mathsf{lattices} & \longmapsto & \mathsf{Kleene} \ \mathsf{lattices} \\ & \mathsf{Lattices} & \longmapsto & \mathsf{Bilattices} \end{array}$

Adjoint Functors

Definition

A pair of functors $\mathcal{F} \colon \mathsf{X} \longleftrightarrow \mathsf{Y} \colon \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta \colon \mathsf{1}_\mathsf{X} \to \mathcal{G}\mathcal{F}$ and $\epsilon \colon \mathcal{F}\mathcal{G} \to \mathsf{1}_\mathsf{Y}$ such that

$$1_{\mathcal{G}(\mathbf{B})} = \mathcal{G}(\epsilon_{\mathbf{B}}) \circ \eta_{\mathcal{G}(\mathbf{B})}$$
 and $1_{\mathcal{F}(\mathbf{A})} = \epsilon_{\mathcal{F}(\mathbf{A})} \circ \mathcal{F}(\eta_{\mathbf{A}})$.

for every $\mathbf{A} \in X$ and $\mathbf{B} \in Y$.

- ▶ In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F} .
- Our first goal is to give an algebraic characterization of adjunctions between quasi-varieties:

right adjoints = generalized twist constructions.

Twist constructions

Well-known example

- ▶ A Kleene lattice $\mathbf{A} = \langle A, \sqcap, \sqcup, \neg, 0, 1 \rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x < y \sqcup \neg y$ holds.
- ▶ Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) := \{\langle a, b \rangle \in A^2 : a \wedge b = 0\}$$

and operations defined as

$$\langle a, b \rangle \sqcap \langle c, d \rangle \coloneqq \langle a \land c, b \lor d \rangle$$

$$\neg \langle a, b \rangle \coloneqq \langle b, a \rangle \quad 1 \coloneqq \langle 1, 0 \rangle \quad 0 \coloneqq \langle 0, 1 \rangle$$

In general twist constructions involve two steps (given an algebra A):

- ▶ Do the κ -power of A for some cardinal κ . (above $\kappa = 2$).
- ▶ Select in some elements $G(A) \subseteq A^{\kappa}$ and define new basic operations for G(A) which are κ -sequences of operations of A.

2/1

3/1

Matrix Powers with Infinite Exponent

- ▶ Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- ▶ Consider the language $\mathcal{L}_{\mathsf{X}}^{\kappa}$ whose *n*-ary operations are the κ -sequences

 $\langle t_i : i < \kappa \rangle$ where each t_i is a term of X in variables $\vec{x}_1, \dots, \vec{x}_n$.

Definition

Consider an algebra $\pmb{A} \in X$. We let $\pmb{A}^{[\kappa]}$ be the algebra of type \mathscr{L}^κ_X with universe A^κ where

$$\langle t_i : i < \kappa \rangle^{\mathbf{A}^{[\kappa]}} (\vec{a}_1, \dots, \vec{a}_n) = \langle t_i^{\mathbf{A}} (\vec{a}_1 / \vec{x}_1, \dots, \vec{a}_n / \vec{x}_n) : i < \kappa \rangle.$$

The κ -th matrix power of X is the class

$$\mathsf{X}^{[\kappa]} := \mathbb{I}\{\boldsymbol{A}^{[\kappa]} : \boldsymbol{A} \in \mathsf{X}\}.$$

6/1

Generalized twist constructions

► According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{K} \to \mathsf{V}$$

where θ is compatible with $\mathscr L$ in $\mathsf Y^{[\kappa]}.$ The idea is that:

- 1. $[\kappa]$ produce powers \mathbf{A}^{κ} of algebras in $\mathbf{A} \in K$.
- 2. $\theta_{\mathscr{L}}$ selects elements of A^{κ} and defined new basic operations.

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_X and $\mathscr{L} \subseteq \mathscr{L}_X$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every n-ary operation $\varphi \in \mathscr{L}$ we have that:

$$\theta(x_1) \cup \cdots \cup \theta(x_n) \vDash_{\mathsf{X}} \theta(\varphi(x_1,\ldots,x_n)).$$

▶ For every $\mathbf{A} \in X$, we let $\mathbf{A}(\theta, \mathcal{L})$ be the algebra of type \mathcal{L} with universe

$$A(\theta, \mathcal{L}) = \{ a \in A : \mathbf{A} \models \theta(a) \}$$

equipped with the restriction of the operations in \mathscr{L} .

We obtain a functor

$$\theta_{\mathscr{L}} \colon \mathsf{X} \to \mathbb{I}\{\boldsymbol{A}(\theta,\mathscr{L}) : \boldsymbol{A} \in \mathsf{X}\}.$$

7/1

Canonical form

- ► It turns out that among quasi-varieties right adjoints = generalized twist constructions.
- ▶ More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

$$\mathcal{G}\colon Y \to X$$

there is a (generalized) quasi-variety K and functors

$$[\kappa]: \mathsf{Y} \to \mathsf{K} \text{ and } \theta_{\mathscr{C}}: \mathsf{K} \to \mathsf{X}$$

such that \mathcal{G} is naturally isomorphic to $\theta_{\mathscr{L}} \circ [\kappa]$.

2. Every functor of the form $\theta_{\mathscr{L}} \circ [\kappa] \colon Y \to X$ is a right adjoint.

Translations Between Languages

Definition

Consider a cardinal $\kappa > 0$. A κ -translation of \mathcal{L}_X into \mathcal{L}_Y is a map $\tau \colon \mathcal{L}_X \to \mathcal{L}_Y^{\kappa}$ that preserves arities.

- ightharpoonup au extends to a map from formulas of X to formulas of Y^[κ]
- ▶ and lifts to a map from sets of equations of X to sets of equations of Y as follows:

$$\Phi \longmapsto \{ \tau(\epsilon)(i) \approx \tau(\delta)(i) : i < \kappa \text{ and } \epsilon \approx \delta \in \Phi \}.$$

11/1

13 / 1

Gödel's Translation

- ightharpoonup Gödel provided an interpretation of \mathcal{IPC} into global $\mathcal{S}4$.
- lacktriangle Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$
 for $\star \in \{\land, \lor\}$.

- ▶ Let σ be the substitution sending x to $\Box x$ for every $x \in Var$.
- ► Then we have:

$$\Gamma \vdash_{\mathcal{IPC}} \varphi \iff \sigma \tau(\Gamma) \vdash_{\mathcal{S}4} \sigma \tau(\varphi)$$

▶ Define $\Theta(x) = \{x \approx \Box x\}$. Then:

$$\Phi \vDash_{\mathsf{HA}} \epsilon \approx \delta \Longleftrightarrow \tau(\Phi) \cup \bigcup_{x \in \mathsf{Var}} \Theta(x) \vDash_{\mathsf{IA}} \tau(\epsilon \approx \delta)$$

▶ Moreover $\langle \tau, \Theta \rangle$ is a translation of \vDash_{HA} into \vDash_{IA} .

Translations Between Relative Equational Consequences

Definition

A translation of \vDash_{X} into \vDash_{Y} is a pair $\langle \tau, \Theta \rangle$ where τ is a κ -translation of \mathscr{L}_{X} into \mathscr{L}_{Y} and a set of equations Θ of Y in κ -many variables that satisfies the following conditions:

1. For every set of equations $\Phi \cup \{\epsilon \approx \delta\}$:

If
$$\Phi \vDash_{\mathsf{X}} \epsilon \approx \delta$$
, then $\tau(\Phi) \cup \bigcup_{x \in Var} \Theta(\vec{x}) \vDash_{\mathsf{Y}} \tau(\epsilon \approx \delta)$.

2. For every *n*-ary operation $\psi \in \mathscr{L}_X$:

$$\Theta(\tau(x_1)) \cup \cdots \cup \Theta(\tau(x_n)) \vDash_{\mathsf{Y}} \Theta(\tau \psi(x_1, \ldots, x_n)).$$

From Translations to Right Adjoints

- ▶ Let $\langle \tau, \Theta \rangle$ be a κ -translation of \vDash_{X} into \vDash_{Y} .
- ▶ Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

▶ Consider the set of equations of $Y^{[\kappa]}$ in one variable:

$$\theta = \{\vec{\epsilon} \approx \vec{\delta} : \epsilon \approx \delta \in \Theta\}.$$

Lemma

The map $\theta_{\mathscr{L}} \circ [\kappa] \colon Y \to X$ is a right adjoint.

► Gödel's translation induces the functor

Open: IA \rightarrow HA

and Kolmogorov's translation the functor

Regular: $HA \rightarrow BA$.

14/1

From Adjunctions to Translations

- ▶ Consider $\mathcal{F}: X \to Y$ left adjoint.
- We have $\mathcal{F}(\mathbf{F}\mathbf{m}_{\mathsf{X}}(1)) = \mathbf{F}\mathbf{m}_{\mathsf{Y}}(\kappa)/\theta$ for some κ and θ .
- ▶ Consider the homomorphism $\psi : \mathbf{Fm}_{\mathsf{X}}(1) \to \mathbf{Fm}_{\mathsf{X}}(n)$.

Lemma

The pair $\langle \tau, \Theta \rangle$ is a translation of \vDash_X into \vDash_Y .

15 / 1

Finally...

...thank you for coming!

17 / 1

Miscellanea

Some applications of these tools:

- ▶ Universal Algebra: congruence regularity is not a linear Maltsev condition.
- ► Abstract Algebraic Logic: every prevariety is categorically equivalent to the equivalent algebraic semantics of an algebraizable logic.
- ► Computational aspects: the problem of determining whether two finite algebras are related by an adjunction is decidable.

16 /