Earthquake prediction using Python Phase -3

Importing Libraries and Dataset

Python libraries make it very easy for us to handle the data and perform typical and complex tasks with a single line of code.

- Pandas This library helps to load the data frame in a 2D array format and has multiple functions to perform analysis tasks in one go.
- Matplotlib/Seaborn This library is used to draw visualizations.

Code:

All the libraries and the file required for the analysis is imported in the code.

import pandas as pd import matplotlib.pyplot as plt import seaborn as sb import warnings

```
warnings.filterwarnings('ignore')
df = pd.read_csv('dataset.csv')
```

df.head()

Dataset Used:

dataset.csv

Locatio	ude	Ma	Depth	Longitude	Latitude	Origin Time	
53km NNE of New Delhi, Ind	2.5		5.0	77.42	29.06	2021-07-31 09:43:23 IST	0
91km W of Nashik, Maharashtra, Ind	2.4		5.0	72.92	19.93	2021-07-30 23:04:57 IST	1
49km WSW of Amritsar, Punjab, Ind	3.4		33.0	74.37	31.50	2021-07-30 21:31:10 IST	2
50km SW of Jhajjar, Haryan	3.1		5.0	76.23	28.34	2021-07-30 13:56:31 IST	3
53km SE of Thimphu, Bhuta	2.1		10.0	89.97	27.09	2021-07-30 07:19:38 IST	4

Analysis of the dataset:

Describing the CSV file

Code:

df.describe()

Output:

	Latitude	Longitude	Depth	Magnitude
count	2719.000000	2719.000000	2719.000000	2719.000000
mean	29.939433	80.905638	53.400478	3.772196
std	7.361564	10.139075	68.239737	0.768076
min	0.120000 25.700000	60.300000	0.800000	1.500000
25%		71.810000	10.000000	3.200000
50%	31.210000	76.610000	15.000000	3.900000
75%	36.390000	92.515000	82.000000	4.300000
max	40.000000	99.960000	471,000000	7.000000

Feature Engineering:

```
Code:
```

	Latitude	Longitude	Depth	Magnitude	Location	Date	Time
0	29.06	77.42	5.0	2.5	53km NNE of New Delhi, India	2021-07-31	09:43:23
1	19.93	72.92	5.0	2.4	91km W of Nashik, Maharashtra, India	2021-07-30	23:04:57
2	31.50	74.37	33.0	3.4	49km WSW of Amritsar, Punjab, India	2021-07-30	21:31:10
3	28.34	76.23	5.0	3.1	50km SW of Jhajjar, Haryana	2021-07-30	13:56:31
4	27.09	89.97	10.0	2.1	53km SE of Thimphu, Bhutan	2021-07-30	07:19:38

Info Gathering:

Code:

df.shape
df.info()

Output:

(2719, 6)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2719 entries, 0 to 2718
Data columns (total 6 columns):
 #
     Column
                 Non-Null Count
                                  Dtype
     Origin Time
                                  object
     Latitude
 1
                  2719 non-null
                                  float64
     Longitude
                                  float64
                  2719 non-null
 3
                                  float64
     Depth
                  2719 non-null
                                  float64
 4
     Magnitude
                  2719 non-null
 5
     Location
                  2719 non-null
                                 object
dtypes: float64(4), object(2)
memory usage: 127.6+ KB
```

Data Visualization:

Code:

```
plt.figure(figsize=(10, 5))
x = df.groupby('year').mean()['Depth']
x.plot.bar()
plt.show()
```

Output:

