MATH 612 FINAL PROJECT

HIDENORI SHINOHARA

ABSTRACT. This is based on the book 4-Manifolds and Kirby Calculus by Robert E. Gompf and Andras I. Stipsicz.

Contents

1. Manifolds

1. Manifolds

Definition 1.1. A topological manifold is a separable Hausdorff space such that every point has a neighborhood which is homeomorphic to an open subset of \mathbb{R}^n_+ . Each pair (U_α, ϕ_α) containing a neighborhood and a homeomorphism is called a chart, and a collection of charts covering the manifold is called an atlas of the manifold.

Definition 1.2. A topological manifold is called a C^r -manifold if, for every pair of charts in the given atlas, the transition function $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is C^r .

This definition makes sense because $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ maps U_{β} into U_{α} , both of which are open subsets of \mathbb{R}^n_+ , thus the usual calculus definition of C^r is applied. More rigorously, a C^r -manifold is $(X, \mathcal{T}, \mathcal{A})$ where X is the set, \mathcal{T} is the set of open subsets of X, and \mathcal{A} is the atlas of X. However, just like we normally say a topological space X instead of (X, \mathcal{T}) , we normally just say a C^r -manifold X without specifying the atlas.

Definition 1.3. Let X, X' be C^r -manifolds. Then a map $f: X \to X'$ is called a C^r -map if $\phi_{\alpha} \circ f \circ \phi_{\beta}^{-1}$ is C^r for α, β . Moreover, f is called a C^r -diffeomorphism if f is bijective and both f and f^{-1} are C^r -maps.

Again, in this definition, the usual calculus definition of C^r is used for $\phi_{\alpha} \circ f \circ \phi_{\beta}^{-1}$.

Definition 1.4. Let X be a topological manifold. Let A, A' be two atlases of X such that (X, A) and (X, A') are both C^r manifolds. The two structures are called isotopic if the "identity" map $(X, A) \mapsto (X, A')$ is isotopic to a C^r -diffeomorphism between (X, A) and (X, A').

We will usually consider structures up to isotopy.

Example 1.5. TODO Examples of isotopic structures.

Definition 1.6. A compact manifold with no boundary is said to be closed.

Definition 1.7. A space X is said to be a singular manifold if the complement of a finite subset of X is a smooth manifold.

Definition 1.8. TODO Tangent bundle