Exercises: Straight Lines and Quadratics

Exercises

- 1. The cost of hiring a car for a day is £90 plus £1.50 per mile travelled.
 - (a) If $\pounds y$ is the cost of hiring a car for a day and x is the number of miles travelled, write down the relationship between x and y.
 - (b) Draw the line represented by this equation, identifying the gradient and intercept.
 - (c) If the car is driven 350 miles in a day, what is the cost of hire?
 - (d) How far could one travel for £150?
- 2. To convert between temperatures in Fahrenheit and Centigrade, the following formulae are used:

$$F = \frac{9}{5}C + 32,$$

$$C = \frac{5}{9}(F - 32)$$

where F and C are the temperatures in Fahrenheit and Centigrade, respectively.

- (a) Find the Fahrenheit equivalent of 30 degrees Centigrade and the Centigrade equivalent of 12 degrees Fahrenheit.
- (b) What temperature is the same in Fahrenheit and Centigrade?
- 3. Solve the following simultaneous equations:
 - (a) 2x 3y = 0, 4x + 5y = 22,
 - (b) 3x + y = 15, 2x 3y = -1,
 - (c) x + y = 4, 6x 2y = 2.
- 4. Find the equations of the lines going through the points:
 - (a) (1,1) and (5,10),
 - (b) (2,12) and (6,6).

Calculate their point of intersection (crossing point).

- 5. Where possible, solve the following quadratic equations:
 - (a) $2x^2 + 7x 4 = 0$,
 - (b) $x^2 10x + 8 = 0$,
 - (c) $x^2 + 3x + 5 = 0$.

In each case sketch the relevant quadratic curve, indicating where it crosses the x and y axes and state the coordinates of the lowest (minimum) point on the curve.

Solutions

- 1. The cost of hiring a car for a day is £90 plus £1.50 per mile travelled.
 - (a) If $\pounds y$ is the cost of hiring a car for a day and x is the number of miles travelled, write down the relationship between x and y. y = 1.5x + 90
 - (b) Draw the line represented by this equation, identifying the gradient and intercept.
 - (c) If the car is driven 350 miles in a day, what is the cost of hire? £615
 - (d) How far could one travel for £150? 40miles
- 2. To convert between temperatures in Fahrenheit and Centigrade, the following formulae are used:

$$F = \frac{9}{5}C + 32,$$

$$C = \frac{5}{9}(F - 32)$$

where ${\cal F}$ and ${\cal C}$ are the temperatures in Fahrenheit and Centigrade, respectively.

- (a) Find the Fahrenheit equivalent of 30 degrees Centigrade and the Centigrade equivalent of 12 degrees Fahrenheit. $30C=86F,\,12F=-11.1C$
- (b) What temperature is the same in Fahrenheit and Centigrade? Set F=C, e.g.,

$$C = \frac{9}{5}C + 32.$$

Then solve for C to get C = F = -40.

- 3. Solve the following simultaneous equations:
 - (a) 2x 3y = 0, 4x + 5y = 22: x = 3, y = 2,
 - (b) 3x + y = 15, 2x 3y = -1: x = 3, y = 4,
 - (c) x + y = 4, 6x 2y = 2: $x = \frac{5}{4} = 1.25$, $y = \frac{11}{4} = 2.75$.

2

- 4. Find the equations of the lines going through the points:
 - (a) (1,1) and (5,10): $y = \frac{9}{4}x \frac{5}{4} = 2.25x 1.25$,

(b) (2,12) and (6,6): y = -1.5x + 15.

Calculate their point of intersection (crossing point).

- 5. Where possible, solve the following quadratic equations:
 - (a) $2x^2 + 7x 4 = 0$: x = -4, $x = \frac{1}{2}$,
 - (b) $x^2 10x + 8 = 0$: x = 9.12, x = 0.88 (2 d.p.),
 - (c) $x^2 + 3x + 5 = 0$: No solutions.

In each case sketch the relevant quadratic curve, indicating where it crosses the x and y axes and state the coordinates of the lowest (minimum) point on the curve.