Introdução à Ciência da Computação: operações sobre dados

Parte 1: Lógicas, Máscaras e Deslocamentos

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Conteúdo

- Operações Sobre Dados
 - Lógicas
 - Máscaras
 - Deslocamentos
 - Aritmética

Operações Lógicas

- São aquelas que aplicam a mesma operação básica sobre os bits de um padrão
- As operações podem ser efetuadas
 - No nível dos bits e
 - No nível dos padrões

Operações Lógicas

- NOT
- AND
- OR
- XOR

Operações Lógicas – NOT

- A operação NOT inverte o valor do bit
 - NOT(0) = 1
 - NOT(1) = 0

X	NOT(X)
0	
1	

Operações Lógicas – NOT

- A operação NOT inverte o valor do bit
 - NOT(0) = 1
 - NOT(1) = 0

X	NOT(X)
0	1
1	0

Operações Lógicas – AND

 A operação AND resulta em um bit de valor 1 somente se os dois bits da operação forem 1

Operações Lógicas – AND

 A operação AND resulta em um bit de valor 1 somente se os dois bits da operação forem 1

Α	В	AND(A,B)
0	0	
0	1	
1	0	
1	1	

Operações Lógicas – AND

 A operação AND resulta em um bit de valor 1 somente se os dois bits da operação forem 1

Α	В	AND(A,B)
0	0	0
0	1	0
1	0	0
1	1	1

Operações Lógicas – OR

 A operação OR resulta em um bit de valor 1 sempre que pelo menos um dos bits da operação for 1

Α	В	OR(A,B)
0	0	
0	1	
1	0	
1	1	

Operações Lógicas – OR

 A operação OR resulta em um bit de valor 1 sempre que pelo menos um dos bits da operação for 1

Α	В	OR(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

Operações Lógicas – XOR

 A operação XOR (ou exclusivo) resulta em um bit de valor 1 sempre os bits da operação tiverem valores diferentes

Α	В	XOR(A,B)
0	0	
0	1	
1	0	
1	1	

Operações Lógicas – XOR

 A operação XOR (ou exclusivo) resulta em um bit de valor 1 sempre os bits da operação tiverem valores diferentes

Α	В	XOR(A,B)
0	0	0
0	1	1
1	0	1
1	1	0

Portas Lógicas

Portas Lógicas

Entrada1	$1\; 0\; 0\; 1\; 1\; 0\; 0\; 0$
Entrada2	$0\; 0\; 1\; 0\; 1\; 0\; 1\; 0\\$
Saída	10110010

Máscaras

Limpando bits específicos

- O operador AND pode ser utilizado para limpar bits específicos
 - Forçar para 0
- Nesse caso, o segundo padrão binário é chamado de máscara
 - Ex.: 00000111
 - Essa máscara resulta em um padrão binário que considera somente os três bits da direita

Limpando bits específicos

 Exemplo de aplicação da máscara 00000111 com a operação AND

Entrada 1 1 0 1 0 0 1 1 0 Máscara 0 0 0 0 0 1 1 1 Saída

Limpando bits específicos

 Exemplo de aplicação da máscara 00000111 com a operação AND

 Os cinco bits da esquerda foram desconsiderados (zerados)

Marcando bits específicos

- O operador OR pode ser utilizado para marcar bits específicos
 - Isto é, forçar para 1
- Mais uma vez podemos utilizar um segundo padrão binário como máscara
 - Ex.: 11111000
 - Essa máscara forçará que cinco os bits mais à esquerda sejam 1 e os três bits da direita são copiados

Marcando bits específicos

 Exemplo de aplicação da máscara 11111000 com o operador OR

```
Entrada 1 1 0 1 0 0 1 1 0 Máscara 1 1 1 1 1 1 0 0 0 Saída
```


Marcando bits específicos

 Exemplo de aplicação da máscara 11111000 com o operador OR

 Os cinco bits mais à esquerda são forçados a armazenar o valor 1 e os três bits da direita são copiados

Invertendo bits específicos

- Uma das aplicações do XOR é a inversão de bits específicos
 - Ou seja, complemento
- Podemos utilizar um segundo padrão binário como máscara
 - **Ex.:** 11111000
 - Essa máscara fará com que os cinco bits mais à esquerda tenham os seus valores invertidos, enquanto que os três bits mais à direita serão copiados

Invertendo bits específicos

 Exemplo de aplicação da máscara 11111000 com o operador XOR

Entrada 1 1 0 1 0 0 1 1 0 Máscara 1 1 1 1 1 1 0 0 0 Saída

Invertendo bits específicos

 Exemplo de aplicação da máscara 11111000 com o operador XOR

 Os cinco bits da esquerda tiveram seus valores invertidos e os três bits da direita foram apenas copiados

Operações de Deslocamento

Operações de Deslocamento

- Movem bits em um padrão binário, modificando suas posições
- Podem mover bits para a direita ou esquerda
- Deslocamento à esquerda
 - Desloca os bits à esquerda e adiciona um 0

```
    10011000 Original
    00110000 Após o deslocamento
```


Operações de Deslocamento

- Movem bits em um padrão binário, modificando suas posições
- Podem mover bits para a direita ou esquerda
- Deslocamento à direita
 - Desloca os bits à direita e adiciona um 0

```
    → 10011000 Original
    01001100 Após o deslocamento
```


 A operação de deslocamento à esquerda pode fazer a multiplicação por dois

 \leftarrow 0000011 Original = 3 em decimal

 A operação de deslocamento à esquerda pode fazer a multiplicação por dois

```
0000011 Original = 3 em decimal Original = 6 em decimal
```


 A operação de deslocamento à esquerda pode fazer a multiplicação por dois

```
0000011 Original = 3 em decimal 

0000110 Deslocamento = 6 em decimal 

00001100 Deslocamento = 12 em decimal
```


 A operação de deslocamento à esquerda pode fazer a multiplicação por dois

```
0000011 Original = 3 em decimal 

0000110 Deslocamento = 6 em decimal 

0001100 Deslocamento = 12 em decimal 

0001100 Deslocamento = 24 em decimal
```


 A operação de deslocamento à direita pode fazer a divisão por dois

 \longrightarrow 0 0 0 **1 1 0 0 0** Original = 24 em decimal

 A operação de deslocamento à direita pode fazer a divisão por dois

```
\longrightarrow 0 0 0 1 1 0 0 0 Original = 24 em decimal 0 0 0 0 1 1 0 0 Deslocamento = 12 em decimal
```


 A operação de deslocamento à direita pode fazer a divisão por dois

```
00011000 Original = 24 em decimal 

00001100 Deslocamento = 12 em decimal 

0000110 Deslocamento = 6 em decimal
```


 A operação de deslocamento à direita pode fazer a divisão por dois

```
00011000 Original = 24 em decimal 00001100 Deslocamento = 12 em decimal 0000110 Deslocamento = 6 em decimal 0000011 Deslocamento = 3 em decimal
```


Deslocamento circular à direita

Deslocamento circular à esquerda

```
    10011000 Original
    00110001 Após o deslocamento
```


- Podemos combinar operações lógicas, máscaras e deslocamentos para manipular os padrões binários
- Por exemplo, podemos deslocar um bit ou um conjunto de bits até uma posição específica do padrão e então aplicar uma máscara

 Exemplo para obter o valor do terceiro e quarto bits de um padrão binário

1 0 0 1 **1 0** 0 0 Original

 Exemplo para obter o valor do terceiro e quarto bits de um padrão binário

1 0 0 1 **1 0** 0 0 Original
0 1 0 0 1 **1 0** 0 Um deslocamento para a direita

 Exemplo para obter o valor do terceiro e quarto bits de um padrão binário

```
1 0 0 1 1 0 0 0 Original
0 1 0 0 1 1 0 0 Um deslocamento para a direita
0 0 1 0 0 1 1 0 Dois deslocamentos para a direita
```


 Exemplo para obter o valor do terceiro e quarto bits de um padrão binário

1 0 0 1 1 0 0 0	Original
01001 10 0	Um deslocamento para a direita
0 0 1 0 0 1 1 0	Dois deslocamentos para a direita
$0\ 0\ 0\ 0\ 0\ 0\ 1\ 1$	Máscara e Operação AND

 Exemplo para obter o valor do terceiro e quarto bits de um padrão binário

1001 10 00	Original
01001 10 0	Um deslocamento para a direita
001001 10	Dois deslocamentos para a direita
$0\ 0\ 0\ 0\ 0\ 0\ 1\ 1$	Máscara e Operação AND
00000010	Resultado

- Essa estratégia pode ser utilizada para recuperar as intensidades de cor em padrões binários que armazenem pixels de imagens
- Deslocamentos e máscaras seriam utilizados para se obter os valores das intensidades de vermelho (R), verde (V) e azul (A)
 - Exemplo com 6 bits:

$$011110 \rightarrow 01 11 10$$

 $011110 \rightarrow 01 11 10$

0 1 1 1 1 0 Original

 $011110 \rightarrow 01 11 10$

0 1 1 1 1 0 Original0 0 0 0 1 1 Máscara Blue e Operação AND

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original

0 0 0 0 1 1 Máscara Blue e Operação AND

0 0 0 0 **1 0** Resultado

Valor da intensidade de azul é 2

 $011110 \rightarrow 01 11 10$

0 1 1 1 1 0 Original

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original0 0 1 1 0 0 Máscara Green e Operação AND

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original

0 0 1 1 0 0 Máscara Green e Operação AND

0 0 1 1 0 0 Resultado da Máscara Green

$$011110 \rightarrow 01 11 10$$

```
0 1 1 1 1 0 Original
0 0 1 1 0 0 Máscara Green e Operação AND
0 0 1 1 0 0 Resultado da Máscara Green
```

0 0 0 1 1 0 Um deslocamento à direita

$$011110 \rightarrow 01 11 10$$

```
0 1 1 1 1 0 Original
0 0 1 1 0 0 Máscara Green e Operação AND
0 0 1 1 0 0 Resultado da Máscara Green
0 0 0 1 1 0 Um deslocamento à direita
0 0 0 0 1 1 Dois deslocamentos à direita
```


$$011110 \rightarrow 01 11 10$$

```
0 1 1 1 1 0 Original
```

0 0 1 1 0 0 Máscara Green e Operação AND

0 0 1 1 0 0 Resultado da Máscara Green

0 0 0 1 1 0 Um deslocamento à direita

0 0 0 0 1 1 Dois deslocamentos à direita

0 0 0 0 **1 1** Resultado

Valor da intensidade de verde é 3

 $011110 \rightarrow 01 11 10$

0 1 1 1 1 0 Original

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original1 1 0 0 0 0 Máscara Red e Operação AND

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original

110000 Máscara Red e Operação AND

0 1 0 0 0 0 Resultado da Máscara Red

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original

110000 Máscara Red e Operação AND

0 1 0 0 0 0 Resultado da Máscara Red

1 0 0 0 0 Um deslocamento circular à esquerda

$$011110 \rightarrow 01 11 10$$

0 1 1 1 1 0 Original
1 1 0 0 0 0 Máscara Red e Operação AND
0 1 0 0 0 0 Resultado da Máscara Red
1 0 0 0 0 0 Um deslocamento circular à esquerda

0 0 0 0 1 Dois deslocamentos circulares à esquerda

$$011110 \rightarrow 01 11 10$$

```
0 1 1 1 1 0 Original
```

110000 Máscara Red e Operação AND

0 1 0 0 0 0 Resultado da Máscara Red

1 0 0 0 0 Um deslocamento circular à esquerda

0 0 0 0 1 Dois deslocamentos circulares à esquerda

0 0 0 0 **0 1** Resultado

Valor da intensidade de Vermelho é 1

Bibliografia

BIBLIOGRAFIA BÁSICA

- BROOKSHEAR, J. G. Ciência da computação: uma visão abrangente. 5ª ed., Bookman Editora, 2000. 499p.
- FOROUZAN, B. A., MOSHARRAF, F. Fundamentos da Ciência da Computação. 2ª ed., São Paulo: Cengage Learning, 2011. 560p.

BIBLIOGRAFIA COMPLEMENTAR

- BROOKSHEAR, J. G. Ciência da computação: uma visão abrangente. 5ª ed., Bookman Editora, 2000. 499p.
- CORMEN, T.H., Leiserson, C.E., Rivest R.L., Stein, C. Algoritmos: teoria e Prática. Rio de janeiro: Editora Campus, 2002. 916p.
- PLAUGER, P. L. A Biblioteca Standard C. Rio de Janeiro: Editora Campus, 1994. 614p.
- 4. PRATA, S. C primer plus, 4ª ed. SAMS Publishing, 2002. 931p.

