Learning Structured Sparsity in Deep Neural Networks

Wei Wen¹ Chunpeng Wu¹ Yandan Wang¹ Yiran Chen¹ Hai Li¹

¹University of Pittsburgh

NIPS, 2016 Presenter: Bargav Jayaraman

- Introduction
- Related Works
- Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

Introduction

- Problem: Deployment of large-scale deep learning model is computationally expensive
- **Solution:** Occam's Razor Simple is better! Remove or zero-out the non-essential weights / layers of the model

Introduction

- Problem: Deployment of large-scale deep learning model is computationally expensive
- Solution: Occam's Razor Simple is better!
 Remove or zero-out the non-essential weights / layers of the model
 Catch: Trade-off between model complexity and accuracy

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers!
 Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers! Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space
- Low rank approximation. LRA compresses the deep network by decomposing the weight matrix $W \in \mathbb{R}^{u \times v}$ at every layer into product of two matrices $U \in \mathbb{R}^{u \times \alpha}$ and $V \in \mathbb{R}^{\alpha \times v}$, where $\alpha < u, v$.
 - This work dynamically optimizes the model and obtains lower rank approximation

Related Works

- Connection pruning and weight sparsifying. Connection pruning removes unwanted weight connections from the fully connected layers of a CNN. Not much beneficial for convolutional layers! Hard-coding sparse weights for convolutional layers introduces non-structured sparsity with slight accuracy loss.
 - This work achieves structured sparsity in adjacent memory space
- Low rank approximation. LRA compresses the deep network by decomposing the weight matrix $W \in \mathbb{R}^{u \times v}$ at every layer into product of two matrices $U \in \mathbb{R}^{u \times \alpha}$ and $V \in \mathbb{R}^{\alpha \times v}$, where $\alpha < u, v$.
 - This work dynamically optimizes the model and obtains lower rank approximation
- Model structure learning. Group Lasso has been used for structure sparsity in deep models to learn the appropriate number of filters or filter shapes.
 - This work applies group Lasso at various levels of the deep model

- Introduction
- 2 Related Works
- 3 Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

Structure Sparsity Learning for Generic Structures

Consider the weights of a deep network as a 4-D tensor: $W^{(I)} \in \mathbb{R}^{N_I \times C_I \times M_I \times K_I}$, where N_I , C_I , M_I and K_I are the dimensions of the I-th layer $(1 \le I \le L)$ weight tensor along the axes of filter, channel, spatial height and spatial width. L denotes the number of convolutional layers. Then the proposed generic optimization is:

$$E(W) = E_D(W) + \lambda . R(W) + \lambda_g . \sum_{l=1}^{L} R_g(W^{(l)})$$

 $E_D(W)$ is the loss on data, R(.) is the non-structured regularizer, like I_2 -norm, and $R_g(.)$ is the structured regularizer. This work uses group Lasso for $R_g(.)$.

Group Lasso

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^G \|w^{(g)}\|_g$, where g is a group of partial weights in w and G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

Group Lasso

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^G \|w^{(g)}\|_g$, where g is a group of partial weights in w and G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

Question: Why is this called group "Lasso" if it uses *l*₂-regularization?

Group Lasso

- The regularization of group Lasso on a set of weights w is given as: $R_g(w) = \sum_{g=1}^G \|w^{(g)}\|_g$, where g is a group of partial weights in w and G is the total number of groups.
- $\|.\|_g$ is the group Lasso, or $\|w^{(g)}\|_g = \sqrt{\sum_{i=1}^{|w^{(g)}|} (w_i^{(g)})^2}$, where $|w^{(g)}|$ is the number of weights in $w^{(g)}$.

Question: Why is this called group "Lasso" if it uses l_2 -regularization? Answer: l_2 -regularization has all-or-none zero effect!

- Introduction
- 2 Related Works
- Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

SSL for Filters and Channels

Suppose $W_{n_l,:,:,:}^{(l)}$ is the n_l -th filter and $W_{:,c_l,:,:}^{(l)}$ is the c_l -th channel of all filters in the l-th layer. Then the optimization target is defined as:

$$E(W) = E_D(W) + \lambda_n \cdot \sum_{l=1}^{L} \left(\sum_{n_l=1}^{N_l} \|W_{n_l,:,:,:}^{(l)}\|_g \right) + \lambda_c \cdot \sum_{l=1}^{L} \left(\sum_{c_l=1}^{C_l} \|W_{:,c_l,:,:}^{(l)}\|_g \right)$$

- Introduction
- 2 Related Works
- 3 Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

SSL for Filter Shapes

Suppose $W_{:,c_l,m_l,k_l}^{(l)}$ denotes the vector of all corresponding weights of spatial position (m_l,k_l) in the filters across c_l -th channel, then:

$$E(W) = E_D(W) + \lambda_s. \sum_{l=1}^{L} (\sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} \|W_{:,c_l,m_l,k_l}^{(l)}\|_g)$$

- Introduction
- 2 Related Works
- Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

SSL for Layer Depth

Depth sparsity reduces the computation cost and improves accuracy. The optimization is given as:

$$E(W) = E_D(W) + \lambda_d \cdot \sum_{l=1}^{L} \|W^{(l)}\|_{g}$$

Zeroing out all filters in a layer can hinder the message passing across layers, and hence shortcut is used to transfer the feature map.

- Introduction
- 2 Related Works
- Proposed Structure Sparsity Learning Approach
 - SSL for Generic Structures
 - SSL for Filters and Channels
 - SSL for Filter Shapes
 - SSL for Layer Depth
 - SSL for Computationally Efficient Structures
- 4 Experimental Results
- Summary

SSL for Computationally Efficient Structures

- 2D-filter-wise sparsity for convolution. Fine-grain variant of filter-wise sparsity is zeroing out 2D filters instead of 3D filters for efficient computation reduction. Since, 2D filters are smaller groups and hence easy to zero-out.
- Combination of filter-wise and shape-wise sparsity for GEMM.
 Convolutional operation is represented as a matrix in GEneral Matrix Multiplication (GEMM) such that each row is represented as a feature and each column is a collection of weight corresponding to shape sparsity. Combining filter-wise and shape-wise sparsity zeroes out the rows and columns of the weight matrix and hence reduces the dimensionality.

Experimental Results

- Filter-wise, Channel-wise and Shape-wise SSL on LeNet
- SSL on fully-connected MLP
- Filter-wise and Shape-wise SSL on ConvNet
- Depth-wise SSL on ResNet
- SSL on AlexNet

LeNet

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet#	Error	Filter # §	Channel # §	FLOP §	Speedup §	
1 (baseline)	0.9%	20—50	1—20	100%—100%	1.00×—1.00×	
2	0.8%	5—19	1—4	25%—7.6%	$1.64 \times -5.23 \times$	
3	1.0%	3—12	1—3	15%—3.6%	$1.99 \times -7.44 \times$	

[§]In the order of conv1—conv2

Table 2: Results after learning filter shapes in LeNet

LeNet #	Error	Filter size §	Channel #	FLOP	Speedup
1 (baseline)	0.9%	25—500	1—20	100%—100%	$1.00 \times -1.00 \times$
4	0.8%	21—41	1—2	8.4%—8.2%	2.33×—6.93×
5	1.0%	7—14	1—1	1.4%—2.8%	5.19×—10.82×

[§] The sizes of filters after removing zero shape fibers, in the order of conv1—conv2

Figure 3: Learned conv1 filters in LeNet 1 (top), LeNet 2 (middle) and LeNet 3 (bottom)

MLP

MLP#	Error	Neuron # per layer §	FLOP per layer §	1	
1 (baseline)	1.43%	784-500-300-10	100%-100%-100%		
2	1.34%	469-294-166-10	35.18%-32.54%-55.33%		
3	1.53%	434-174-78-10	19.26%-9.05%-26.00%	N.	
§In the order of input layer-hidden layer 1-hidden layer 2-output layer					

(a)

Figure 4: (a) Results of learning the number of neurons in *MLP*. (b) the connection numbers of input neurons (*i.e.* pixels) in *MLP* 2 after SSL.

ConvNet

Table 3: Learning row-wise and column-wise sparsity of ConvNet on CIFAR-10

ConvNet #	Error	Row sparsity §	Column sparsity §	Speedup §	
1 (baseline)	17.9%	12.5%-0%-0%	0%-0%-0%	1.00×-1.00×-1.00×	
2	17.9%	50.0%-28.1%-1.6%	0%-59.3%-35.1%	1.43×-3.05×-1.57×	
3	16.9%	31.3%-0%-1.6%	0%-42.8%-9.8%	1.25×-2.01×-1.18×	

[§]in the order of conv1-conv2-conv3

Figure 5: Learned conv1 filters in ConvNet 1 (top), ConvNet 2 (middle) and ConvNet 3 (bottom)

ResNet

Figure 6: Error vs. layer number after depth regularization by SSL. *ResNet-#* is the original *ResNet* in [5] with # layers. *SSL-ResNet-#* is the depth-regularized *ResNet* by SSL with # layers, including the last fully-connected layer. 32×32 indicates the convolutional layers with an output map size of 32×32, and so forth.

AlexNet

Table 4: Sparsity and speedup of AlexNet on ILSVRC 2012

#	Method	Top1 err.	Statistics	conv1	conv2	conv3	conv4	conv5
1	ℓ_1	44.67%	sparsity CPU × GPU ×	67.6% 0.80 0.25	92.4% 2.91 0.52	97.2% 4.84 1.38	96.6% 3.83 1.04	94.3% 2.76 1.36
2	SSL	44.66%	column sparsity row sparsity CPU × GPU ×	0.0% 9.4% 1.05 1.00	63.2% 12.9% 3.37 2.37	76.9% 40.6% 6.27 4.94	84.7% 46.9% 9.73 4.03	80.7% 0.0% 4.93 3.05
3	pruning[7]	42.80%	sparsity	16.0%	62.0%	65.0%	63.0%	63.0%
4	ℓ_1	42.51%	sparsity CPU × GPU ×	14.7% 0.34 0.08	76.2% 0.99 0.17	85.3% 1.30 0.42	81.5% 1.10 0.30	76.3% 0.93 0.32
5	SSL	42.53%	column sparsity CPU × GPU ×	0.00% 1.00 1.00	20.9% 1.27 1.25	39.7% 1.64 1.63	39.7% 1.68 1.72	24.6% 1.32 1.36

Summary

- Filter-wise, channel-wise, shape-wise and depth-wise SSL
- Dynamic compact structure learning without loss of accuracy
- Significant speed-ups with both CPUs and GPUs