가 .

Eq 4. 휘발에 의한 질소 손실량과 이를 통해 휘발에 들어간 간접적 N₂O 배출량

IPCC96

$$N_2 O_{(G)} = (N_{FERT} \times Frac_{GASF} + N_{EX} \times Frac_{GASM}) \times EF_4$$

 $N_2O_{(G)}$ = 휘발된 NH_3 와 NOx로 인한 간접적 N_2O 배출량

Frac_{GASM} = 배설된 질소량에서 NH₃와 NOx로 휘발되는 질소의 분율

 EF_4 = 휘발된 질소에 의한 간접적 N_2O 배출계수 $(kg\ N_2O-N/kg\ NH_3-N\ and\ NOx-N)$

IPCC06

$$N_{volatilization\,-\,MMS} = \sum_{S} \sum_{T} \left[N_{(\,T)} \times N_{ex\,(\,T)} \times MS_{(\,T,\,S)} \right] \times \left(\frac{Frac_{GasMS}}{100} \right)_{(\,T,\,S)}$$

N_{volatilization-MMS} = NH₃와 NOx로 손실되는 분뇨의 질소량, kg N yr⁻¹

 $N_{(T)} = 국가 내에서 가축 종류와 분류에 다른 두수$

Nex_(T) = 국가 내 가축 당 배출하는 연평균 양, kg N 가축⁻¹ yr⁻¹

 $MS_{(T,S)}$ = 국가 내에서 분뇨 처리 시스템S 안에서 관리하는 각각의 가축 수의 총 연간 배출량의 부분, 단위 없음

 $Frac_{GasMS}$ = 분뇨 처리 시스템 S안에서 NH_3 와 NOx로 휘발되는 가축 분류 T에서, 처리된 분뇨의 질소 백분율, %

$$N_2O_{G(mm)} = (N_{volatilization-MMS} \cdot EF_4) \cdot \frac{44}{28}$$

 $N_2O_{G(nm)}$ = 국가 내에서 분뇨 처리로부터의 N의 휘발 때문에 간접적인 N_2O 배출량, kg N_2O yr $^{-1}$

 EF_4 = 토양과 물 표면의 대기상태의 N_2O 배출의 배출계수, kg N_2O -N (휘발된 kg NH_3 -N + NOx-N) $^{-1}$, 기본값 : 0.01 kg N_2O -N (kg NH_3 -N + NOx-N) $^{-1}$ (표 27).

o Tier 2

국가들은 국가 고유의 환경을 반영하여 배추계수 산출의 불확도를 감소시키기 위해 Tier 2를 개발할 것이다. 분뇨 처리로부터의 직접적 N_2O 배출 측정 방법과 같이, Tier 2는 Tier 1과 같은 계산 방법을 사용하지만 부분적 혹은 모든 변수를 위해 국가 고유 데이터를 사용할 수 있다. Tier 2 방법은 국가에서 사용되는 축사와 분뇨처리시스템을 통한 질소의 흐름에 대한 자세한 정보가 필요하다.

다양한 분뇨관리시스템에서 leaching과 runoff 손실에 대한 극히 제한적인 측정값들이 있다. 일반적으로 가축이 drylot에 있을 때 leaching과 runoff로 가장 큰 질소 손실