MSp

conf. univ., dr. Elena COJUHARI

elena.cojuhari@mate.utm.md
Technical University of Moldova

Introduction to Complex Analysis

- 1 Integration in the Complex Plane
 - Real Integrals
 - Complex Integrals
 - Cauchy-Goursat Theorem
 - Independence of Path
 - Cauchy's Integral Formulas
 - Consequences of the Integral Formulas

Subsection 1

Real Integrals

Definite Integrals

• If F(x) is an antiderivative of a continuous function f, i.e., F is a function for which F'(x) = f(x), then the definite integral of f on the interval [a, b] is the number

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a).$$

- Example: $\int_{-1}^{2} x^2 dx = \frac{1}{3}x^3\Big|_{-1}^{2} = \frac{8}{3} \frac{-1}{3} = 3.$
- The fundamental theorem of calculus is a method of evaluating $\int_a^b f(x)dx$; it is not the definition of $\int_a^b f(x)dx$.
- We next define:
 - The definite (or Riemann) integral of a function f;
 - Line integrals in the Cartesian plane.

Both definitions rest on the limit concept.

Steps Leading to the Definition of the Definite Integral

- 1. Let f be a function of a single variable x defined at all points in a closed interval [a, b].
- 2. Let P be a partition:

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

of [a, b] into n subintervals $[x_{k-1}, x_k]$ of length $\Delta x_k = x_k - x_{k-1}$.

- 3. Let ||P|| be the **norm** of the partition P of [a, b], i.e., the length of the longest subinterval.
- 4. Choose a number x_k^* in each subinterval $[x_{k-1}, x_k]$ of [a, b].

5. Form n products $f(x_k^*)\Delta x_k$, $k=1,2,\ldots,n$, and then sum these products: $\sum_{k=0}^{n} f(x_k^*)\Delta x_k.$

The Definition of the Definite Integral

Definition (Definite Integral)

The **definite integral** of f on [a, b] is

$$\int_a^b f(x)dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(x_k^*) \Delta x_k.$$

- Whenever the limit exists we say that f is integrable on the interval [a, b] or that the definite integral of f exists.
- It can be proved that if f is continuous on [a, b], then the integral
 exists.

Terminology About Curves

- Suppose a curve C in the plane is parametrized by a set of equations x = x(t), y = y(t), $a \le t \le b$, where x(t) and y(t) are continuous real functions. Let the initial and terminal points of C (x(a), y(a)), (x(b), y(b)) be denoted by A, B. We say that:
 - (i) C is a **smooth curve** if x' and y' are continuous on the closed interval [a, b] and not simultaneously zero on the open interval (a, b).
 - (ii) C is a **piecewise smooth curve** if it consists of a finite number of smooth curves C_1, C_2, \ldots, C_n joined end to end, i.e., the terminal point of one curve C_k coinciding with the initial point of the next curve C_{k+1} .
 - (iii) C is a **simple curve** if the curve C does not cross itself except possibly at t = a and t = b.
 - (iv) C is a **closed curve** if A = B.
 - (v) C is a **simple closed curve** if the curve C does not cross itself and A = B, i.e., C is simple and closed.

Steps Leading to the Definition of Line Integrals

- 1. Let G be a function of two real variables x and y, defined at all points on a smooth curve C that lies in some region of the xy-plane. Let C be defined by the parametrization x = x(t), y = y(t), $a \le t \le b$.
- 2. Let P be a partition of the parameter interval [a, b] into n subintervals $[t_{k-1}, t_k]$ of length $\Delta t_k = t_k t_{k-1}$:

$$a = t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b.$$

The partition P induces a partition of the curve C into n subarcs of length Δs_k . Let the projection of each subarc onto the x- and y-axes have lengths Δx_k and Δy_k , respectively.

Steps Leading to the Definition of Line Integrals (Cont'd)

- 3. Let ||P|| be the **norm** of the partition P of [a, b], that is, the length of the longest subinterval.
- 4. Choose a point (x_k^*, y_k^*) on each subarc of C.
- 5. Form n products $G(x_k^*, y_k^*) \Delta x_k$, $G(x_k^*, y_k^*) \Delta y_k$, $G(x_k^*, y_k^*) \Delta s_k$, $k = 1, 2, \dots, n$, and then sum these products $\sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta y_k = \sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta y_k = \sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta y_k$

$$\sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta x_k, \quad \sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta y_k, \quad \sum_{k=1}^{n} G(x_k^*, y_k^*) \Delta s_k.$$

The Definition of Line Integrals

Definition (Line Integrals in the Plane)

(i) The line integral of G along C with respect to x is

$$\int_C G(x,y)dx = \lim_{\|P\| \to 0} \sum_{k=1}^n G(x_k^*, y_k^*) \Delta x_k.$$

(ii) The line integral of G along C with respect to y is

$$\int_C G(x,y)dy = \lim_{\|P\| \to 0} \sum_{k=1}^n G(x_k^*, y_k^*) \Delta y_k.$$

(iii) The line integral of G along C with respect to arc length s is

$$\int_C G(x,y)ds = \lim_{\|P\|\to 0} \sum_{k=1}^n G(x_k^*,y_k^*) \Delta s_k.$$

- If G is continuous on C, then the three types of line integrals exist.
- The curve *C* is referred to as the **path of integration**.

- Convert a line integral to a definite integral in a single variable.
- If C is a smooth curve parametrized by x = x(t), y = y(t), $a \le t \le b$, then replace
 - x and y in the integral by the functions x(t) and y(t);
 - the appropriate differential dx, dy, or ds by

$$x'(t)dt$$
, $y'(t)dt$, $\sqrt{[x'(t)]^2 + [y'(t)]^2}dt$.

- The term $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$ is called the **differential of the** arc length.
- The line integrals become definite integrals in which the variable of integration is the parameter t:

$$\int_{C} G(x,y)dx = \int_{a}^{b} G(x(t),y(t))x'(t)dt,
\int_{C} G(x,y)dy = \int_{a}^{b} G(x(t),y(t))y'(t)dt,
\int_{C} G(x,y)ds = \int_{a}^{b} G(x(t),y(t))\sqrt{[x'(t)]^{2}+[y'(t)]^{2}}dt.$$

Evaluation of a Line Integral I

• Evaluate $\int_C xy^2 dx$, where the path of integration C is the quarter circle defined by $x = 4 \cos t, y = 4 \sin t, 0 \le t \le \frac{\pi}{2}$.

We have

$$dx = -4 \sin t dt$$
.

Thus.

$$\int_C xy^2 dx = \int_0^{\pi/2} (4\cos t)(4\sin t)^2 (-4\sin t dt)$$

$$= -256 \int_0^{\pi/2} \sin^3 t \cos t dt$$

$$= -256 \left[\frac{1}{4}\sin^4 t\right]_0^{\pi/2}$$

$$= -64.$$

Evaluation of a Line Integral II

• Evaluate $\int_C xy^2 dy$, where the path of integration C is the quarter circle defined by $x=4\cos t, y=4\sin t, \ 0\leq t\leq \frac{\pi}{2}.$

$$dy = 4 \cos t dt$$
.

Thus,

We have

$$\int_{C} xy^{2} dy = \int_{0}^{\pi/2} (4\cos t)(4\sin t)^{2}(4\cos t dt)
= 256 \int_{0}^{\pi/2} \sin^{2} t \cos^{2} t dt
= 256 \int_{0}^{\pi/2} \frac{1}{4} \sin^{2} 2t dt
= 64 \int_{0}^{\pi/2} \frac{1}{2} (1 - \cos 4t) dt
= 32[t - \frac{1}{4}\sin 4t]_{0}^{\pi/2} = 16\pi.$$

Evaluation of a Line Integral III

• Evaluate $\int_C xy^2 ds$, where the path of integration C is the quarter circle defined by $x=4\cos t, y=4\sin t, 0 \le t \le \frac{\pi}{2}$.

We have

$$ds = \sqrt{16(\sin^2 t + \cos^2 t)}dt = 4dt.$$

Therefore,

$$\int_C xy^2 ds = \int_0^{\pi/2} (4\cos t)(4\sin t)^2 (4dt)
= 256 \int_0^{\pi/2} \sin^2 t \cos t dt
= 256 \left[\frac{1}{3}\sin^3 t\right]_0^{\pi/2}
= \frac{256}{3}.$$

Method of Evaluation: C Defined by a Function

- If the path of integration C is the graph of an explicit function y = f(x), $a \le x \le b$, then we can use x as a parameter:
- The differential of y is dy = f'(x)dx, and the differential of arc length is $ds = \sqrt{1 + [f'(x)]^2}dx$.
- We, thus, obtain the definite integrals:

$$\int_{C} G(x,y)dx = \int_{a}^{b} G(x,f(x))dx,
\int_{C} G(x,y)dy = \int_{a}^{b} G(x,f(x))f'(x)dx,
\int_{C} G(x,y)ds = \int_{a}^{b} G(x,f(x))\sqrt{1+[f'(x)]^{2}}dx.$$

- A line integral along a piecewise smooth curve *C* is defined as the sum of the integrals over the various smooth pieces.
- Example: To evaluate $\int_C G(x,y)ds$ when C is composed of two smooth curves C_1 and C_2 , we write

$$\int_C G(x,y)ds = \int_{C_1} G(x,y)ds + \int_{C_2} G(x,y)ds.$$

Notation for Line Integrals

In many applications, line integrals appear as a sum

$$\int_C P(x,y)dx + \int_C Q(x,y)dy.$$

 It is common practice to write this sum as one integral without parentheses as

$$\int_C P(x,y)dx + Q(x,y)dy$$

or simply

$$\int_C Pdx + Qdy$$
.

• A line integral along a closed curve C is usually denoted by

$$\oint_C Pdx + Qdy$$
.

C Defined by an Explicit Function

• Evaluate $\int_C xydx + x^2dy$, where C is the graph of $y = x^3$, $-1 \le x \le 2$.

We have $dy = 3x^2 dx$. Therefore,

$$\int_C xy dx + x^2 dy = \int_{-1}^2 xx^3 dx + x^2 3x^2 dx
= \int_{-1}^2 (x^4 + 3x^4) dx
= \int_{-1}^2 4x^4 dx
= \left[\frac{4}{5}x^5\right]_{-1}^2
= \left[\frac{4}{5}(32 - (-1))\right] = \frac{132}{5}.$$

C a Closed Curve

• Evaluate $\oint_C x dx$, where C is the circle defined by $x = \cos t, y = \sin t$, $0 \le t \le 2\pi$.

We have $dx = -\sin t dt$, whence:

$$\oint_C x dx = \int_0^{2\pi} \cos t (-\sin t dt)
= \frac{1}{2} \cos^2 t \Big|_0^{2\pi}
= \frac{1}{2} (1-1)
= 0.$$

C Another Closed Curve

• Evaluate $\oint_C y^2 dx - x^2 dy$, where C is the closed curve shown on the left.

C is piecewise smooth. So, the given integral is expressed as a sum of integrals, i.e., we write $\oint_C = \int_{C_1} + \int_{C_2} + \int_{C_3}$, with C_1, C_2, C_3 as shown on the right.

- On C_1 , with x as a parameter: $\int_{C_1} y^2 dx x^2 dy = \int_0^2 0 dx x^2(0) = 0$.
- On C_2 , with y as a parameter: $\int_{C_2} y^2 dx - x^2 dy = \int_0^4 y^2(0) - 4 dy = -\int_0^4 4 dy = -16.$
- On C_3 , we again use x as a parameter. From $y = x^2$, we get dy = 2xdx. Thus, $\int_{C_2} y^2 dx - x^2 dy = \int_2^0 (x^2)^2 dx - x^2 (2xdx) =$ $\int_{2}^{0} (x^{4} - 2x^{3}) dx = \left(\frac{1}{5} x^{5} - \frac{1}{2} x^{4} \right) \Big|_{2}^{0} = \frac{8}{5}.$

Hence, $\oint_C y^2 dx - x^2 dy = \int_{C_1} + \int_{C_2} + \int_{C_3} = 0 + (-16) + \frac{8}{5} = -\frac{72}{5}$.

Orientation of a Curve

- If C is not a closed curve, then we say the **positive direction** on C, or that C has **positive orientation**, if we traverse C from its initial point A to its terminal point B, i.e., if $x = x(t), y = y(t), a \le t \le b$, are parametric equations for C, then the positive direction on C corresponds to increasing values of the parameter t.
- If *C* is traversed in the sense opposite to that of the positive orientation, then *C* is said to have **negative orientation**.
- If C has an orientation (positive or negative), then the **opposite** curve, the curve with the opposite orientation, will be denoted -C.
- Then $\int_{-C} Pdx + Qdy = -\int_{C} Pdx + Qdy,$ or, equivalently $\int_{-C} Pdx + Qdy + \int_{C} Pdx + Qdy = 0.$
- A line integral is independent of the parametrization of *C*, provided *C* is given the same orientation.

Subsection 2

Complex Integrals

Curves Revisited

- Suppose the continuous real-valued functions x = x(t), y = y(t), $a \le t \le b$, are parametric equations of a curve C in the complex plane.
- By considering z=x+iy, we can describe the points z on C by means of a complex-valued function of a real variable t, called a **parametrization** of C: z(t)=x(t)+iy(t), $a\leq t\leq b$. Example: The parametric equations $x=\cos t$, $y=\sin t$, $0\leq t\leq 2\pi$, describe a unit circle centered at the origin. A parametrization of this circle is $z(t)=\cos t+i\sin t$, or $z(t)=e^{it}$, $0\leq t\leq 2\pi$.
- The point z(a) = x(a) + iy(a) or A = (x(a), y(a)) is called the **initial point** of C. and z(b) = x(b) + iy(b) or B = (x(b), y(b)) the **terminal point**.

As t varies from t = a to t = b, C is being traced out by the moving arrowhead of the vector corresponding to z(t).

Smooth Curves and Contours

- Suppose the derivative of z(t) = x(t) + iy(t), $a \le t \le b$, is z'(t) = x'(t) + iy'(t).
- We say C is **smooth** if z'(t) is continuous and never zero in the interval a < t < b.

Since the vector z'(t) is not zero at any point P on C, the vector z'(t) is tangent to C at P. In other words, a smooth curve has a continuously turning tangent.

- A **piecewise smooth curve** C has a continuously turning tangent, except possibly at the points where the component smooth curves C_1, C_2, \ldots, C_n are joined together.
- A curve C in the complex plane is **simple** if $z(t_1) \neq z(t_2)$, for $t_1 \neq t_2$, except possibly for t = a and t = b.
- C is a **closed curve** if z(a) = z(b).
- C is a **simple closed curve** if it is simple and closed.
- A piecewise smooth curve *C* is also called a **contour** or **path**.

Positive and Negative Directions

- We define the **positive direction** on a contour C to be the direction on the curve corresponding to increasing values of the parameter t. It is also said that the curve C has **positive orientation**.
- In the case of a *simple closed curve C*, the **positive direction** roughly corresponds to the counterclockwise direction or the direction that a person must walk on *C* in order to keep the interior of *C* to the left.

- The **negative direction** on a contour *C* is the direction opposite the positive direction.
- If C has an orientation, the **opposite curve**, that is, a curve with opposite orientation, is denoted by -C.
- On a simple closed curve, the negative direction corresponds to the clockwise direction.

Steps Leading to the Definition of the Complex Integral I

- 1. Let f be a function of a complex variable z defined at all points on a smooth curve C that lies in some region of the plane. Suppose C is defined by the parametrization z(t) = x(t) + iy(t), $a \le t \le b$.
- 2. Let P be a partition of the parameter interval [a, b] into n subintervals $[t_{k-1}, t_k]$ of length $\Delta t_k = t_k t_{k-1}$:

$$a = t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = b.$$

The partition P induces a partition of the curve C into n subarcs whose initial and terminal points are the pairs of numbers

$$z_0 = x(t_0) + iy(t_0),$$
 $z_1 = x(t_1) + iy(t_1),$ $z_1 = x(t_1) + iy(t_1),$ $z_2 = x(t_2) + iy(t_2),$ \vdots \vdots \vdots $z_{n-1} = x(t_{n-1}) + iy(t_{n-1}),$ $z_n = x(t_n) + iy(t_n).$

Let $\Delta z_k = z_k - z_{k-1}, \ k = 1, 2, ..., n$.

Steps Leading to the Definition of the Complex Integral II

- 3. Let ||P|| be the **norm** of the partition P of [a, b], i.e., the length of the longest subinterval.
- 4. Choose a point $z_k^* = x_k^* + iy_k^*$ on each subarc of C.

5. Form *n* products $f(z_k^*)\Delta z_k$, $k=1,2,\ldots,n$, and then sum these products: $\sum_{k=1}^n f(z_k^*)\Delta z_k$.

The Definition of the Complex Integral

Definition (Complex Integral)

The **complex integral** of f on C is

$$\int_C f(z)dz = \lim_{\|P\| \to 0} \sum_{k=1}^n f(z_k^*) \Delta z_k.$$

- If the limit exists, f is said to be **integrable** on C.
- The limit exists whenever f is continuous at all points on C and C is either smooth or piecewise smooth.
- Thus, we always assume that these conditions are fulfilled.
- By convention, we will use the notation $\oint_C f(z)dz$ to represent a complex integral around a positively oriented closed curve C.
- The notations $\oint_C f(z)dz$, $\oint_C f(z)dz$ denote more explicitly integration in the positive and negative directions, respectively.
- We shall refer to $\int_C f(z)dz$ as a **contour integral**.

- Example: If t represents a real variable, then $f(t) = (2t+i)^2$ is a complex number. For t = 2, $f(2) = (4+i)^2 = 16+8i+i^2 = 15+8i$.
- If f_1 and f_2 are real-valued functions of a real variable t, then $f(t) = f_1(t) + if_2(t)$ is a complex-valued function of a real variable t.
- We are interested in integration of a complex-valued function $f(t) = f_1(t) + if_2(t)$ of a real variable t carried out over a real interval.
- Example: On the interval $0 \le t \le 1$, it seems reasonable for $f(t) = (2t + i)^2$ to write

$$\int_0^1 (2t+i)^2 dt = \int_0^1 (4t^2-1+4ti)dt = \int_0^1 (4t^2-1)dt + i \int_0^1 4t dt.$$

The integrals $\int_0^1 (4t^2 - 1)dt$ and $\int_0^1 4tdt$ are real, and could be called the real and imaginary parts of $\int_0^1 (2t + i)^2 dt$. Each can be evaluated using the fundamental theorem of calculus to get: $\int_0^1 (2t + i)^2 dt = \left(\frac{4}{2}t^3 - t\right)\Big|_0^1 + i \left(2t^2\right)\Big|_0^1 = \frac{1}{2} + 2i.$

Integral of Complex Valued Function of a Real Variable

• If f_1 and f_2 are real-valued functions of a real variable t continuous on a common interval $a \le t \le b$, then we define the **integral** of the complex-valued function $f(t) = f_1(t) + if_2(t)$ on $a \le t \le b$ by

$$\int_a^b f(t)dt = \int_a^b f_1(t)dt + i \int_a^b f_2(t)dt.$$

- The continuity of f_1 and f_2 on [a, b] guarantees that both integrals on the right exist.
- If $f(t) = f_1(t) + if_2(t)$ and $g(t) = g_1(t) + ig_2(t)$, are complex-valued functions of a real variable t continuous on $a \le t \le b$, then
 - $\int_{a}^{b} kf(t)dt = k \int_{a}^{b} f(t)dt$, k a complex constant;
 - $\int_a^b (f(t) + g(t))dt = \int_a^b f(t)dt + \int_a^b g(t)dt$;
 - $\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt$, if $c \in [a, b]$;

- If we use u+iv for f, $\Delta x+i\Delta y$ for Δz , \lim for $\lim_{\|P\|\to 0}$ and \sum for $\sum_{k=1}^n$, we get $\int_C f(z)dz = \lim \sum (u+iv)(\Delta x+i\Delta y) = \lim [\sum (u\Delta x-v\Delta y)+i\sum (v\Delta x+u\Delta y)].$
- Thus, we have

$$\int_C f(z)dz = \int_C udx - vdy + i \int_C vdx + udy.$$

- If x = x(t), y = y(t), $a \le t \le b$, are parametric equations of C, then dx = x'(t)dt, dy = y'(t)dt.
- Now we obtain $\int_a^b [u(x(t), y(t))x'(t) v(x(t), y(t))y'(t)]dt + i \int_a^b [v(x(t), y(t))x'(t) + u(x(t), y(t))y'(t)]dt$.
- This is the same as $\int_a^b f(z(t))z'(t)dt$ when the integrand f(z(t))z'(t) = [u(x(t),y(t))+iv(x(t),y(t))][x'(t)+iy'(t)] is multiplied out and $\int_a^b f(z(t))z'(t)dt$ is expressed in terms of its real and imaginary parts.

Theorem (Evaluation of a Contour Integral)

If f is continuous on a smooth curve C given by z(t) = x(t) + iy(t), $a \le t \le b$, then

$$\int_C f(z)dz = \int_a^b f(z(t))z'(t)dt.$$

• Example: Evaluate $\int_C \overline{z} dz$, where C is given by x = 3t, $y = t^2$, $-1 \le t \le 4$.

A parametrization of the contour C is $z(t) = 3t + it^2$. Thus, since $f(z) = \overline{z}$, we have $f(z(t)) = \overline{3t + it^2} = 3t - it^2$. Also, z'(t) = 3 + 2it. Now, we have

$$\int_{C} \overline{z} dz = \int_{-1}^{4} (3t - it^{2})(3 + 2it) dt
= \int_{-1}^{4} (2t^{3} + 9t) dt + i \int_{-1}^{4} 3t^{2} dt
= \left(\frac{1}{2}t^{4} + \frac{9}{2}t^{2}\right)\Big|_{-1}^{4} + i t^{3}\Big|_{-1}^{4} = 195 + 65i.$$

Another Evaluation of a Contour Integral

• Evaluate $\oint_C \frac{1}{z} dz$, where C is the circle $x = \cos t, y = \sin t$, $0 < t < 2\pi$.

In this case $z(t)=\cos t+i\sin t=e^{it},\ z'(t)=ie^{it},\$ and $f(z(t))=\frac{1}{z(t)}=e^{-it}.$ Hence,

$$\oint_C \frac{1}{z} dz = \int_0^{2\pi} (e^{-it}) i e^{it} dt$$

$$= i \int_0^{2\pi} dt$$

$$= 2\pi i.$$

Using x as a Parameter

- For some curves the real variable x itself can be used as the parameter.
- Example: Evaluate $\int_C (8x^2 iy) dz$ on the line segment y = 5x, $0 \le x \le 2$.

We write z = x + 5xi, whence dz = (1 + 5i)dx. Therefore,

$$\int_{C} (8x^{2} - iy) dz = (1 + 5i) \int_{0}^{2} (8x^{2} - 5ix) dx$$

$$= (1 + 5i) \frac{8}{3}x^{3} \Big|_{0}^{2} - (1 + 5i)i \frac{5}{2}x^{2} \Big|_{0}^{2}$$

$$= \frac{214}{3} + \frac{290}{3}i.$$

• If x and y are related by means of a continuous real function y = f(x), then the corresponding curve C can be parametrized by z(x) = x + if(x).

Theorem (Properties of Contour Integrals)

Suppose the functions f and g are continuous in a domain D, and C is a smooth curve lying entirely in D. Then:

- (i) $\int_C kf(z)dz = k \int_C f(z)dz$, k a complex constant.
- (ii) $\int_C [f(z) + g(z)]dz = \int_C f(z)dz + \int_C g(z)dz$.
- (iii) $\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$, where C consists of the smooth curves C_1 and C_2 joined end to end.
- (iv) $\int_{-C} f(z)dz = -\int_{C} f(z)dz$, where -C denotes the curve having the opposite orientation of C.
 - The four parts of the theorem also hold if *C* is a *piecewise smooth* curve in *D*.

C a Piecewise Smooth Curve

• Evaluate $\int_C (x^2 + iy^2) dz$, where C is the contour shown:

We write
$$\int_C (x^2 + iy^2) dz = \int_{C_1} (x^2 + iy^2) dz + \int_{C_2} (x^2 + iy^2) dz$$
.
Since the curve C_1 is defined by $y = x$, we use x as a parameter: $z(x) = x + ix$, $z'(x) = 1 + i$, $f(z) = x^2 + iy^2$, $f(z(x)) = x^2 + ix^2$,

whence, finally,
$$\int_{C_1} (x^2 + iy^2) dz = \int_0^1 (x^2 + ix^2)(i+1) dx = (1+i)^2 \int_0^1 x^2 dx = \frac{(1+i)^2}{3} = \frac{2}{3}i$$
.

The curve C_2 is defined by $x=1, \ 1 \le y \le 2$. If we use y as a parameter, then $z(y)=1+iy, \ z'(y)=i, \ f(z(y))=1+iy^2, \ \text{and}$ $\int_{C_2} (x^2+iy^2) dz = \int_1^2 (1+iy^2) i dy = -\int_1^2 y^2 dy + i \int_1^2 dy = -\frac{7}{3}+i.$ Therefore $\int_C (x^2+iy^2) dz = \frac{2}{3}i + (-\frac{7}{3}+i) = -\frac{7}{3}+\frac{5}{3}i.$

A Bounding Theorem

- We find an upper bound for the modulus of a contour integral.
- Recall the length of a plane curve $L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$. If z'(t) = x'(t) + iy'(t), then $|z'(t)| = \sqrt{[x'(t)]^2 + [y'(t)]^2}$, whence $L = \int_a^b |z'(t)| dt$.

Theorem (A Bounding Theorem)

If f is continuous on a smooth curve C and if $|f(z)| \le M$, for all z on C, then $|\int_C f(z)dz| \le ML$, where L is the length of C.

• By triangle inequality, $|\sum_{k=1}^n f(z_k^*) \Delta z_k| \leq \sum_{k=1}^n |f(z_k^*)| |\Delta z_k| \leq M \sum_{k=1}^n |\Delta z_k|$. Because $|\Delta z_k| = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$, we can interpret $|\Delta z_k|$ as the length of the chord joining the points z_k and z_{k-1} on C. Moreover, since the sum of the lengths of the chords cannot be greater than L, we get $|\sum_{k=1}^n f(z_k^*) \Delta z_k| \leq ML$. Finally, the continuity of f guarantees that $\int_C f(z) dz$ exists. Thus, letting $||P|| \to 0$, the last inequality yields $|\int_C f(z) dz| \leq ML$.

A Bound for a Contour Integral

• Find an upper bound for the absolute value of $\int_C \frac{e^z}{z+1} dz$ where C is the circle |z|=4.

First, the length L (circumference) of the circle of radius 4 is 8π . Next, for all points z on the circle, we have that $|z+1| \geq |z| - 1 = 4 - 1 = 3$. Thus, $\left|\frac{e^z}{z+1}\right| \leq \frac{|e^z|}{|z|-1} = \frac{|e^z|}{3}$. In addition, $|e^z| = |e^x(\cos y + i\sin y)| = e^x$. For points on the circle |z| = 4, the maximum that x = Re(z) can be is 4, whence $\left|\frac{e^z}{z+1}\right| \leq \frac{e^4}{3}$. From the theorem, we have

$$\left| \int_C \frac{e^z}{z+1} dz \right| \le \frac{8\pi e^4}{3}.$$

Single Contour: Many Parametrizations

- There is no unique parametrization for a contour C.
- Example: All of the following:

$$\begin{split} z(t) &= e^{it} = \cos t + i \sin t, \quad 0 \le t \le 2\pi, \\ z(t) &= e^{2\pi i t} = \cos 2\pi t + i \sin 2\pi t, \quad 0 \le t \le 1, \\ z(t) &= e^{\pi i t/2} = \cos \frac{\pi t}{2} + i \sin \frac{\pi t}{2}, \quad 0 \le t \le 4, \end{split}$$

are all parametrizations, oriented in the positive direction, for the unit circle $\left|z\right|=1.$

Subsection 3

Cauchy-Goursat Theorem

Simply and Multiply Connected Domains

- A **domain** is an open connected set in the complex plane.
- A domain D is simply connected if every simple closed contour C lying entirely in D can be shrunk to a point without leaving D.

Example: The entire complex plane is a simply connected domain. The annulus defined by 1 < |z| < 2 is not simply connected.

- A domain that is not simply connected is called a multiply connected domain.
 - A domain with one "hole" is doubly connected;
 - A domain with two "holes" triply connected, and so on.

Example: The open disk |z| < 2 is a simply connected domain. The open circular annulus 1 < |z| < 2 is doubly connected.

Cauchy's Theorem

Cauchy's Theorem (1825)

Suppose that a function f is analytic in a simply connected domain D and that f' is continuous in D. Then, for every simple closed contour C in D,

$$\oint_C f(z)dz = 0.$$

• We apply Green's theorem and the Cauchy-Riemann equations. Recall from calculus that, if C is a positively oriented, piecewise smooth, simple closed curve forming the boundary of a region R within D, and if the real-valued functions P(x,y) and Q(x,y) along with their first-order partial derivatives are continuous on a domain that contains C and R, then $\oint_C Pdx + Qdy = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$. Since f' is continuous throughout D, the real and imaginary parts of f(z) = u + iv and their first partial derivatives are continuous throughout D.

Proof of Cauchy's Theorem

We have by Green's Theorem

$$\oint_C Pdx + Qdy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA.$$

By continuity of u, v and their first partial derivatives, $\oint_C f(z)dz = \oint_C u(x,y)dx - v(x,y)dy + i\oint_C v(x,y)dx + u(x,y)dy = \iint_R \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)dA + i\iint_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)dA.$ f being analytic in D, u and v satisfy the Cauchy-Riemann equations: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$ Therefore,

$$\oint_C f(z)dz = \iint_R \left(-\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}\right) dA + i \iint_R \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y}\right) dA
= 0.$$

The Cauchy-Goursat Theorem

 Edouard Goursat proved in 1883 that the assumption of continuity of f' is not necessary to reach the conclusion of Cauchy's theorem:

Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain D. Then, for every simple closed contour C in D,

$$\oint_C f(z)dz = 0.$$

 Since the interior of a simple closed contour is a simply connected domain, the Cauchy-Goursat theorem can also be stated as:

If f is analytic at all points within and on a simple closed contour C, then $\oint_C f(z)dz = 0$.

Applying the Cauchy-Goursat Theorem I

• Evaluate $\oint_C e^z dz$, where the contour C is shown below.

 $f(z)=e^z$ is entire. Thus, it is analytic at all points within and on the simple closed contour C. It follows from the Cauchy-Goursat theorem that $\oint_C e^z dz = 0$.

- We have $\oint_C e^z dz = 0$, for any simple closed contour in the complex plane.
- Moreover, for any simple closed contour C and any entire function f, such as $f(z) = \sin z$, $f(z) = \cos z$, and $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, $n = 0, 1, 2, \ldots$, we also have

$$\oint_C \sin z dz = 0, \ \oint_C \cos z dz = 0, \ \oint_C p(z) dz = 0, \ \text{etc.}$$

Applying the Cauchy-Goursat Theorem II

• Evaluate $\oint_C \frac{1}{z^2} dz$, where C is the ellipse $(x-2)^2 + \frac{1}{4}(y-5)^2 = 1$. The rational function $f(z) = \frac{1}{z^2}$ is analytic everywhere except at z = 0. But z = 0 is not a point interior to or on the simple closed elliptical contour C.

Thus, again by the Cauchy-Goursat Theorem, we get

$$\oint_C \frac{1}{z^2} dz = 0$$

Cauchy-Goursat Theorem for Multiply Connected Domains

- If f is analytic in a multiply connected domain D, then we cannot conclude that $\oint_C f(z)dz = 0$, for every simple closed contour C in D.
- Suppose that D is a doubly connected domain and C and C_1 are simple closed contours placed as follows:

Suppose, also, that f is analytic on each contour and at each point interior to C but exterior to C_1 .

By introducing the crosscut AB, the region bounded between the curves is now simply connected. So: $\oint_C f(z)dz + \int_{AB} f(z)dz + \oint_{-C_1} f(z)dz + \int_{-AB} f(z)dz = 0$ or $\oint_C f(z)dz = \oint_{C_1} f(z)dz$.

- This is sometimes called the **principle of deformation of contours**.
- It allows evaluation of an integral over a complicated simple closed contour C by replacing C with a more convenient contour C_1 .

Applying Deformation of Contours

• Evaluate $\oint_C \frac{1}{z-i} dz$, where C is the black contour:

We choose the more convenient circular contour C_1 drawn in blue. By taking the radius of the circle to be r=1, we are guaranteed that C_1 lies within C. C_1 is the circle |z-i|=1. It can be parametrized by

$$z=i+e^{it},\ 0\leq t\leq 2\pi.$$

From $z - i = e^{it}$ and $dz = ie^{it}dt$, we get:

$$\oint_C \frac{1}{z-i} dz = \oint_{C_1} \frac{1}{z-i} dz = \int_0^{2\pi} \frac{ie^{it}}{e^{it}} dt$$
$$= i \int_0^{2\pi} dt = 2\pi i.$$

A Generalization

- This result can be generalized: If z_0 is any constant complex number interior to any simple closed contour C, and n an integer, we have $\int_{-\infty}^{\infty} 1 \int_{-\infty}^{\infty} 2\pi i \int_{-\infty}^{\infty} n dx = 1$
 - $\oint_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & \text{if } n=1\\ 0, & \text{if } n \neq 1 \end{cases}.$
- That the integral is zero when $n \neq 1$ follows only partially from the Cauchy-Goursat theorem.
 - When n=0 or negative, $\frac{1}{(z-z_0)^n}$ is a polynomial and therefore entire. Then, clearly, $\oint_C \frac{1}{(z-z_0)^n} dz = 0$.
 - It is not very difficult to see that the integral is still zero when *n* is a positive integer different from 1.
- Analyticity of the function f at all points within and on a simple closed contour C is sufficient to guarantee that $\oint_C f(z)dz = 0$.
- This result emphasizes that analyticity is not necessary, i.e., it can happen that $\oint_C f(z)dz = 0$ without f being analytic within C. Example: If C is the circle |z| = 1, then $\oint_C \frac{1}{z^2} dz = 0$, but $f(z) = \frac{1}{z^2}$ is not analytic at z = 0 within C.

Applying the Formula for the Integral of $1/(z-z_0)^n$

• Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C is circle |z-2|=2.

The denominator factors as $z^2 + 2z - 3 = (z - 1)(z + 3)$. Thus, the integrand fails to be analytic at z = 1 and z = -3.

Of these two points, only z=1 lies within the contour C, which is a circle centered at z=2 of radius r=2. By partial fractions

$$\frac{5z+7}{z^2+2z-3} = \frac{3}{z-1} + \frac{2}{z+3}.$$

Hence, $\oint_C \frac{5z+7}{z^2+2z-3} dz = 3 \oint_C \frac{1}{z-1} dz + 2 \oint_C \frac{1}{z+3} dz$. The first integral has the value $2\pi i$, whereas the value of the second integral is 0 by the Cauchy-Goursat theorem. Hence,

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = 3(2\pi i) + 2(0) = 6\pi i.$$

Cauchy-Goursat Theorem: Multiply Connnected Domains

• If C, C_1 , and C_2 are simple closed contours as shown below

and f is analytic on each of the three contours as well as at each point interior to C but exterior to both C_1 and C_2 .

then by introducing crosscuts between C_1 and C and between C_2 and C, we get $\oint_C f(z)dz + \oint_{-C} f(z)dz + \oint_{-C} f(z)dz = 0$, whence $\oint_C f(z)dz = \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz.$

Cauchy-Goursat Theorem for Multiply Connnected Domains

Suppose C, C_1, \ldots, C_n are simple closed curves with a positive orientation, such that C_1, C_2, \ldots, C_n are interior to C, but the regions interior to each C_k , k = 1, 2, ..., n, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_k , $k=1,2,\ldots,n$, then $\oint_C f(z)dz = \sum_{k=1}^n \oint_C f(z)dz$.

Integrals in Multiply Connected Domains

• Evaluate $\oint_C \frac{1}{z^2+1} dz$, where C is the circle |z|=4.

The denominator of the integrand factors as $z^2 + 1 = (z - i)(z + i)$. So, the integrand $\frac{1}{z^2+1}$ is not analytic at z=i and at z=-i. Both points lie within C. Using partial fractions, $\frac{1}{r^2+1} = \frac{1}{2i} \frac{1}{r-i} - \frac{1}{2i} \frac{1}{r+i}$. whence $\oint_C \frac{1}{z^2+1} dz = \frac{1}{2i} \oint_C (\frac{1}{z^2} - \frac{1}{z^2}) dz$.

Surround z = i and z = -i by circular contours C_1 and C_2 , respectively, that lie entirely within C. The choice $|z-i|=\frac{1}{2}$ for C_1 and $|z+i|=\frac{1}{2}$ for C_2 will suffice. We have $\oint_C \frac{1}{z^2+1} dz =$

 $\frac{1}{2i} \oint_{C_1} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) dz + \frac{1}{2i} \oint_{C_2} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) dz = \frac{1}{2i} \oint_{C_1} \frac{1}{z-i} dz - \frac{1}{2i} \oint_{C_2} \frac{1}{z+i} dz + \frac{1}{2i} \oint_{C_3} \frac{1}{z+i} dz - \frac{1}{2i} 2\pi i - 0 + 0 - \frac{1}{2i} 2\pi i = 0.$

Non-Simple Closed Contours

- Throughout the foregoing discussion we assumed that *C* was a simple closed contour, in other words, *C* did not intersect itself.
- It can be shown that the Cauchy-Goursat theorem is valid for any closed contour C in a simply connected domain D.
- For a contour C that is closed but not simple,
 if f is analytic in D, then

$$\oint_C f(z)dz=0.$$

Subsection 4

Independence of Path

Path Independence

Let z_0 and z_1 be points in a domain D. A contour integral $\int_C f(z)dz$ is said to be **independent of the path** if its value is the same for all contours C in D with initial point z_0 and terminal point z_1 .

- The Cauchy-Goursat theorem holds for closed contours, not just simple closed contours, in a simply connected domain D.
- Suppose that C and C_1 are two contours lying entirely in a simply connected domain D and both with initial point z_0 and terminal point z_1 . C joined with $-C_1$ forms a closed contour. Thus, if f is analytic in D, $\int_C f(z)dz + \int_{-C_1} f(z)dz = 0$. Therefore, $\int_C f(z)dz = \int_{C_1} f(z)dz$.

Suppose that a function f is analytic in a simply connected domain D and C is any contour in D. Then $\int_C f(z)dz$ is independent of the path C.

Choosing a Different Path

• Evaluate $\int_C 2zdz$, where C is the contour shown in blue.

The function f(z)=2z is entire. By the theorem, we can replace the piecewise smooth path C by any convenient contour C_1 joining $z_0=-1$ and $z_1=-1+i$. We choose the contour C_1 to be the vertical line segment $x=-1, 0 \le y \le 1$.

Since z = -1 + iy, dz = idy. Therefore,

$$\int_{C} 2zdz = \int_{C_{1}} 2zdz
= \int_{0}^{1} 2(-1+iy)idy
= \int_{0}^{1} (-2i-2y)dy
= (-2iy-y^{2})\Big|_{0}^{1}
= -1-2i.$$

Antiderivatives

• A contour integral $\int_C f(z)dz$ that is independent of the path C is usually written $\int_{z_0}^{z_1} f(z)dz$, where z_0 and z_1 are the initial and terminal points of C.

Definition (Antiderivative)

Suppose that a function f is continuous on a domain D. If there exists a function F such that F'(z) = f(z), for each z in D, then F is called an **antiderivative** of f.

Example: The function $F(z) = -\cos z$ is an antiderivative of $f(z) = \sin z$ since $F'(z) = \sin z$.

- The most general antiderivative, or **indefinite integral**, of a function f(z) is written $\int f(z)dz = F(z) + C$, where F'(z) = f(z) and C is some complex constant.
- Differentiability implies continuity, whence, since an antiderivative F
 of a function f has a derivative at each point in a domain D, it is
 necessarily analytic and hence continuous at each point in D.

Fundamental Theorem for Contour Integrals

Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an antiderivative of f in D. Then, for any contour C in D with initial point z_0 and terminal point z_1 ,

$$\int_C f(z)dz = F(z_1) - F(z_0).$$

• We prove the FTCI in the case when C is a smooth curve parametrized by z=z(t), $a \le t \le b$. The initial and terminal points on C are $z(a)=z_0$ and $z(b)=z_1$. Since F'(z)=f(z), for all z in D,

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} F'(z(t))z'(t)dt
= \int_{a}^{b} \frac{d}{dt} F(z(t))dt = F(z(t))|_{a}^{b}
= F(z(b)) - F(z(a))
= F(z_{1}) - F(z_{0}).$$

Applying the Fundamental Theorem I

• The integral $\int_C 2zdz$, where C is shown

is independent of the path. Since f(z) = 2z is an entire function, it is continuous. Moreover, $F(z) = z^2$ is an antiderivative of f since F'(z) = 2z = f(z). Hence, by the Fundamental Theorem, we have

$$\int_{-1}^{-1+i} 2z dz = z^2 \Big|_{-1}^{-1+i}$$

$$= (-1+i)^2 - (-1)^2$$

$$= -1-2i.$$

Applying the Fundamental Theorem II

• Evaluate $\int_C \cos z dz$, where C is any contour with initial point $z_0 = 0$ and terminal point $z_1 = 2 + i$.

 $F(z) = \sin z$ is an antiderivative of $f(z) = \cos z$, since $F'(z) = \cos z = f(z)$. Therefore, by the Fundamental Theorem, we have

$$\int_C \cos z dz = \int_0^{2+i} \cos z dz$$

$$= \sin z \Big|_0^{2+i}$$

$$= \sin (2+i) - \sin 0$$

$$= \sin (2+i).$$

Some Conclusions

- Observe that if the contour C is closed, then $z_0 = z_1$ and, consequently, $\oint_C f(z)dz = F(z_1) F(z_0) = 0$.
- Since the value of $\int_C f(z)dz$ depends only on the points z_0 and z_1 , this value is the same for any contour C in D connecting these points:

If a continuous function f has an antiderivative F in D, then $\int_C f(z)dz$ is independent of the path.

• Moreover, we have a sufficient condition:

If f is continuous and $\int_C f(z)dz$ is independent of the path C in a domain D, then f has an antiderivative everywhere in D.

• Assume f is continuous and $\int_C f(z)dz$ is independent of the path in a domain D and that F is a function defined by $F(z) = \int_{z_0}^z f(s)ds$, where s denotes a complex variable, z_0 is a fixed point in D, and z represents any point in D. We wish to show that F'(z) = f(z), i.e., that $F(z) = \int_{z_0}^z f(s)ds$ is an antiderivative of f in D.

$F(z) = \int_{z_0}^{z} f(s)ds$ is an Antiderivative of f in D

We have

$$F(z+\Delta z)-F(z)=\int_{z_0}^{z+\Delta z}f(s)ds-\int_{z_0}^zf(s)ds=\int_z^{z+\Delta z}f(s)ds.$$
 Because D is a domain, we can choose Δz so that $z+\Delta z$ is in D . Moreover, z and $z+\Delta z$ can be joined by a straight segment. With z fixed, we can write $f(z)\Delta z=f(z)\int_z^{z+\Delta z}ds=\int_z^{z+\Delta z}f(z)ds$ or $f(z)=\frac{1}{\Delta z}\int_z^{z+\Delta z}f(z)ds$. Therefore, we have
$$\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z}\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds.$$
 Since f is continuous at the point z , for any $\varepsilon>0$, there exists a $\delta>0$, so that $|f(s)-f(z)|<\epsilon$ whenever $|s-z|<\delta$. Consequently, if we choose Δz so that $|\Delta z|<\delta$, it follows from the ML-inequality, that
$$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=\left|\frac{1}{\Delta z}\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds\right|=\left|\frac{1}{\Delta z}\left|\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds\right|\leq \left|\frac{1}{\Delta z}|\varepsilon|\Delta z\right|=\varepsilon.$$
 Hence, $\lim_{\Delta z\to0}\frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z)$ or $F'(z)=f(z).$

Existence of Antiderivative

 If f is an analytic function in a simply connected domain D, it is continuous throughout D. This implies, by the Path Independence Theorem, that path independence holds for f in D. Therefore,

Theorem (Existence of Antiderivative)

Suppose that a function f is analytic in a simply connected domain D. Then f has an antiderivative in D, i.e., there exists a function F such that F'(z) = f(z), for all z in D.

• We have seen that, for |z| > 0, $-\pi < \arg(z) < \pi$, $\frac{1}{z}$ is the derivative of Lnz. Thus, under some circumstances Lnz is an antiderivative of $\frac{1}{z}$, but one must be careful! If D is the entire complex plane without the origin, $\frac{1}{z}$ is analytic in this multiply connected domain. If C is any simple closed contour containing the origin, it does not follow that $\oint_C \frac{1}{z} dz = 0$. In this case, Lnz is not an antiderivative of $\frac{1}{z}$ in D since Lnz is not analytic in D (Lnz fails to be analytic on the non-positive real axis).

Using the Logarithmic Function

• Evaluate $\int_C \frac{1}{z} dz$, where C is the contour shown:

Suppose that D is the simply connected domain defined by x>0, y>0, i.e., the first quadrant. In this case, $\operatorname{Ln} z$ is an antiderivative of $\frac{1}{z}$ since both these functions are analytic in D.

Therefore,

$$\int_C \frac{1}{z} dz = \int_3^{2i} \frac{1}{z} dz = |\operatorname{Ln} z|_3^{2i} = \operatorname{Ln}(2i) - \operatorname{Ln} 3.$$

Recall
$$Ln(2i) = \log_e 2 + \frac{\pi}{2}i$$
 and $Ln3 = \log_e 3$. Hence, $\int_C \frac{1}{z} dz = \log_e 2 + \frac{\pi}{2}i - \log_e 3 = \log_e \frac{2}{3} + \frac{\pi}{2}i$.

Using an Antiderivative of $z^{-1/2}$

• Evaluate $\int_C \frac{1}{z^{1/2}} dz$, where C is the line segment between $z_0 = i$ and $z_1 = 9$.

We take $f_1(z)=z^{1/2}$ to be the principal branch of the square root function. In the domain |z|>0, $-\pi<\arg(z)<\pi$, the function $\frac{1}{f_1(z)}=\frac{1}{z^{1/2}}=z^{-1/2}$ is analytic and possesses the antiderivative $F(z)=2z^{1/2}$. Hence,

$$\int_{C} \frac{1}{z^{1/2}} dz = \int_{i}^{9} \frac{1}{z^{1/2}} dz$$

$$= 2z^{1/2} \Big|_{i}^{9}$$

$$= 2[3 - (\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})]$$

$$= (6 - \sqrt{2}) - i\sqrt{2}.$$

Integration-By-Parts

 In calculus indefinite integrals of certain kinds can be evaluated by integration by parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

More compactly, $\int u dv = uv - \int v du$.

ullet Suppose f and g are analytic in a simply connected domain D. Then

$$\int f(z)g'(z)dz = f(z)g(z) - \int g(z)f'(z)dz.$$

 In addition, if z₀ and z₁ are the initial and terminal points of a contour C lying entirely in D, then

$$\int_{z_0}^{z_1} f(z)g'(z)dz = f(z)g(z)|_{z_0}^{z_1} - \int_{z_0}^{z_1} g(z)f'(z)dz.$$

The Mean Value Theorem for Definite Integrals

• The **Mean Value Theorem for Definite Integrals**: If f is a real function continuous on the closed interval [a, b], then there exists a number c in the open interval (a, b), such that

$$\int_a^b f(x)dx = f(c)(b-a).$$

- Let f be a complex function analytic in a simply connected domain D. Then, f is continuous at every point on a contour C in D with initial point z₀ and terminal point z₁.
 - Unfortunately, no analog of the Mean Value Theorem exists for the contour integral $\int_{z_0}^{z_1} f(z)dz$.

Subsection 5

Cauchy's Integral Formulas

Cauchy's First Formula

- If f is analytic in a simply connected domain D and z_0 is a point in D, the quotient $\frac{f(z)}{z-z_0}$ is not defined at z_0 and, hence, is not analytic in D.
- Therefore, we cannot conclude that the integral of $\frac{f(z)}{z-z_0}$ around a simple closed contour C that contains z_0 is zero.
- Indeed, the integral of $\frac{f(z)}{z-z_0}$ around C has the value $2\pi i f(z_0)$.

Theorem (Cauchy's Integral Formula)

Suppose that f is analytic in a simply connected domain D and C is any simple closed contour lying entirely within D. Then, for any point z_0 within C,

1 f = f(z)

 $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$

• Let D be a simply connected domain, C a simple closed contour in D, and z_0 an interior point of C. In addition, let C_1 be a circle centered at z_0 with radius small enough so that C_1 lies within the interior of C. By the principle of deformation of contours, $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z)}{z-z_0} dz$.

• From $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z)}{z-z_0} dz$, we get by adding and subtracting $f(z_0)$ in the numerator: $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z_0)-f(z_0)+f(z)}{z-z_0} dz =$ $f(z_0) \oint_{C_1} \frac{1}{z-z_0} dz + \oint_{C_1} \frac{f(z)-f(z_0)}{z-z_0} dz$. We know that $\oint_{C_1} \frac{1}{z-z_0} dz = 2\pi i$, whence $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0) + \oint_{C_1} \frac{f(z)-f(z_0)}{z-z_0} dz$. Since f is continuous at z_0 , for any $\varepsilon > 0$, there exists a $\delta > 0$, such that $|f(z) - f(z_0)| < \varepsilon$, whenever $|z - z_0| < \delta$. In particular, if we choose C_1 to be $|z-z_0|=\frac{1}{2}\delta<\delta$, then by the *ML*-inequality, $\left|\oint_{C_1}rac{f(z)-f(z_0)}{z-z_0}dz ight|\leq rac{arepsilon}{\delta/2}2\pirac{\delta}{2}=2\piarepsilon.$ Thus, the absolute value of the integral can be made arbitrarily small by taking the radius of the circle C_1 to be sufficiently small. This implies that the integral is 0. We conclude that $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$.

Using Cauchy's Integral Formula

- Cauchy's integral formula shows that the values of an analytic function f at points z₀ inside a simple closed contour C are determined by the values of f on the contour C.
- Since we often work problems without a simply connected domain explicitly defined, a more practical restatement is:

If f is analytic at all points within and on a simple closed contour C, and z_0 is any point interior to C, then $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-z_0} dz$.

• Example: Evaluate $\oint_C \frac{z^2-4z+4}{z+i}dz$, where C is the circle |z|=2. We identify $f(z)=z^2-4z+4$ and $z_0=-i$ as a point within the circle C. Next, we observe that f is analytic at all points within and on the contour C. Thus, by the Cauchy integral formula, $\oint_C \frac{z^2-4z+4}{z+i}dz=2\pi i f(-i)=2\pi i (3+4i)=\pi(-8+6i)$.

Another Application of Cauchys Integral Formula

• Evaluate $\oint_C \frac{z}{z^2+9} dz$, where C is the circle |z-2i|=4.

By factoring the denominator as $z^2 + 9 = (z - 3i)(z + 3i)$, we see that 3i is the only point within the closed contour C at which the integrand fails to be analytic. By rewriting the integrand as $\frac{z}{z^2 + 9} = \frac{\frac{z}{z + 3i}}{z - 3i}$, we identify $f(z) = \frac{z}{z + 3i}$

The function f is analytic at all points within and on the contour C. Hence, by Cauchy's integral formula

$$\oint_C \frac{z}{z^2 + 9} dz = \oint_C \frac{\frac{z}{z + 3i}}{z - 3i} dz = 2\pi i f(3i) = 2\pi i \frac{3i}{6i} = \pi i.$$

Cauchy's Second Formula

• We prove that the values of the derivatives $f^{(n)}(z_0)$, n = 1, 2, 3, ... of an analytic function are also given by an integral formula.

Theorem (Cauchy's Integral Formula for Derivatives)

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz.$

Partial Proof (for n=1): By the definition of the derivative and Cauchy's Integral Formula, $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{1}{2\pi i \Delta z} \left[\oint_C \frac{f(z)}{z - (z_0 + \Delta z)} dz - \oint_C \frac{f(z)}{z - z_0} dz \right] = \lim_{\Delta z \to 0} \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)} dz.$

Prof of Cauchy's Second Formula for n = 1

- We work out some preliminaries:
 - Continuity of f on the contour C guarantees that f is bounded, i.e., there exists real number M, such that $|f(z)| \le M$, for all points z on C.
 - In addition, let L be the length of C and let δ denote the shortest distance between points on C and the point z_0 . Thus, for all points z on C, we have $|z-z_0| \ge \delta$, or $\frac{1}{|z-z_0|^2} \le \frac{1}{\delta^2}$.
 - Furthermore, if we choose $|\Delta z| \leq \frac{1}{2}\delta$, then $|z z_0 \Delta z| \geq ||z z_0| |\Delta z|| \geq \delta |\Delta z| \geq \frac{1}{2}\delta$, whence $\frac{1}{|z z_0 \Delta z|} \leq \frac{2}{\delta}$.

Now,
$$\left|\oint_C \frac{f(z)}{(z-z_0)^2}dz - \oint_C \frac{f(z)}{(z-z_0-\Delta z)(z-z_0)}dz\right| = \left|\oint_C \frac{-\Delta z \ f(z)}{(z-z_0-\Delta z)(z-z_0)^2}dz\right| \leq \frac{2ML|\Delta z|}{\delta^3}$$
. The last expression approaches zero as $\Delta z \to 0$, whence

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$

Using Cauchy's Integral Formula for Derivatives

Evaluate $\oint_C \frac{z+1}{z^4+2iz^3}dz$, where C is the circle |z|=1. Inspection of the integrand shows that it is not analytic at z=0 and z=-2i, but only z=0 lies within the closed contour. By writing the integrand as $\frac{z+1}{z^4+2iz^3}=\frac{\frac{z+1}{z+2i}}{z^3}$ we can identify, $z_0=0,\ n=2,$ and $f(z)=\frac{z+1}{z+2i}$. The quotient rule gives $f'(z)=\frac{-1+2i}{(z+2i)^2}$ and $f''(z)=\frac{2-4i}{(z+2i)^3}$, whence $f''(0)=\frac{2i-1}{4i}$. Therefore, we get

$$\oint_C \frac{z+1}{z^4 + 4z^3} dz = \frac{2\pi i}{2!} f''(0)$$

$$= \frac{2\pi i}{2!} \frac{2i - 1}{4i}$$

$$= -\frac{\pi}{4} + \frac{\pi}{2}i.$$

Another Application of the Integral Formula for Derivatives

• Evaluate $\oint_C \frac{z^3+3}{z(z-i)^2} dz$, where C is the figure-eight contour shown below:

Although C is not a simple closed contour, we can think of it as the union of two simple closed contours C_1 and C_2 . We write $\oint_C \frac{z^3+3}{z(z-i)^2} dz = \oint_{C_1} \frac{z^3+3}{z(z-i)^2} dz + \oint_{C_2} \frac{z^3+3}{z(z-i)^2} dz = \oint_{C_3} \frac{z^3+3}{z(z-i)^2} dz + \oint_{C_3} \frac{z^3+3}{z(z-i)^2} dz = f_{C_3} \frac{z^3+3}{z(z-i)^2} dz = f_{C_3$

$$C_1 \text{ and } C_2. \text{ We write } \oint_C \frac{z^3+3}{z(z-i)^2} dz = \oint_{C_1} \frac{z^3+3}{z(z-i)^2} dz + \int_{C_2} \frac{z^3+3}{z(z-i)^2} dz = -\oint_{-C_1} \frac{z^3+3}{z} dz + \oint_{C_2} \frac{z^3+3}{z(z-i)^2} dz = -I_1 + I_2.$$

- $I_1 = \oint_{-C_1} \frac{\frac{z^3+3}{(z-i)^2}}{z^3} dz = 2\pi i f(0) = 2\pi i (-3) = -6\pi i$.
- For I_2 , $f(z) = \frac{z^3+3}{z}$, whence $f'(z) = \frac{2z^3-3}{z^2}$, and f'(i) = 3+2i. Thus, $I_2 = \oint_{C_2} \frac{z^3 + 3}{(z - i)^2} dz = \frac{2\pi i}{1!} f'(i) = 2\pi i (3 + 2i) = -4\pi + 6\pi i.$

Finally,
$$\oint_C \frac{z^3+3}{z(z-i)^2} dz = -I_1 + I_2 = 6\pi i + (-4\pi + 6\pi i) = -4\pi + 12\pi i$$
.

Subsection 6

Consequences of the Integral Formulas

The Derivatives of an Analytic Function are Analytic

Theorem (Derivative of an Analytic Function Is Analytic)

Suppose that f is analytic in a simply connected domain D. Then fpossesses derivatives of all orders at every point z in D. The derivatives f', f'', f''', \ldots are analytic functions in D.

• If f(z) = u(x, y) + iv(x, y) is analytic in a simply connected domain D, its derivatives of all orders exist at any point z in D. Thus, f', f'', f''', ... are continuous. From

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y},$$

$$f''(z) = \frac{\partial^2 u}{\partial x^2} + i \frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial y \partial x} - i \frac{\partial^2 u}{\partial y \partial x}$$

$$\vdots$$

we can also conclude that the real functions u and v have continuous partial derivatives of all orders at a point of analyticity.

Cauchy's Inequality

Theorem (Cauchy's Inequality)

Suppose that f is analytic in a simply connected domain D and C is a circle defined by $|z-z_0|=r$ that lies entirely in D. If $|f(z)|\leq M$, for all points z on C, then $|f(z)|\leq n!M$

 $|f^{(n)}(z_0)|\leq \frac{n!M}{r^n}.$

• From the hypothesis, $\left|\frac{f(z)}{(z-z_0)^{n+1}}\right| = \frac{|f(z)|}{r^{n+1}} \le \frac{M}{r^{n+1}}$. Thus, by Cauchy's Formula for Derivatives and the ML-inequality,

$$|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right| \leq \frac{n!}{2\pi} \frac{M}{r^{n+1}} 2\pi r = \frac{n!M}{r^n}.$$

• The number M depends on the circle $|z-z_0|=r$. But, if n=0, then $M \ge |f(z_0)|$, for any circle C centered at z_0 , as long as C lies within D. Thus, an upper bound M of |f(z)| on C cannot be smaller than $|f(z_0)|$.

Liouville's Theorem

- Although the next result is known as "Liouville's Theorem", it was probably first proved by Cauchy.
- The gist of the theorem is that an entire function f, one that is analytic for all z, cannot be bounded unless f itself is a constant:

Theorem (Liouville's Theorem)

The only bounded entire functions are constants.

• Suppose f is an entire bounded function, i.e., $|f(z)| \leq M$, for all z. Then, for any point z_0 , by Cauchy's Inequality, $|f'(z_0)| \leq \frac{M}{r}$. By making r arbitrarily large we can make $|f'(z_0)|$ as small as we wish. This means $f'(z_0) = 0$, for all points z_0 in the complex plane. Hence, by a preceding theorem, f must be a constant.

Fundamental Theorem of Algebra

Liouville's Theorem enables us to establish the celebrated

Fundamental Theorem of Algebra

If p(z) is a nonconstant polynomial, then the equation p(z) = 0 has at least one root.

• Suppose that the polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, n > 0, is not 0 for any complex number z. This implies that the reciprocal of p, $f(z) = \frac{1}{p(z)}$, is an entire function. Now

$$|f(z)| = \frac{1}{|a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0|}$$

$$= \frac{1}{|z|^n |a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_1}{z^{n-1}} + \frac{a_0}{z^n}|}.$$

Thus, $|f(z)| \to 0$ as $|z| \to \infty$. So the function f must be bounded for finite z. By Liouville's Theorem, f is a constant. Hence, p is a constant. But this contradicts p not being a constant polynomial. Therefore, there must exist at least one z for which p(z) = 0.

Morera's Theorem

 Morera's theorem, which gives a sufficient condition for analyticity, is often taken to be the converse of the Cauchy-Goursat Theorem:

Theorem (Morera's Theorem)

If f is continuous in a simply connected domain D and if $\oint_C f(z)dz = 0$, for every closed contour C in D, then f is analytic in D.

• By the hypotheses of continuity of f and $\oint_C f(z)dz = 0$, for every closed contour C in D, we conclude that $\int_C f(z)dz$ is independent of the path. Then, the function F, defined by $F(z) = \int_{z_0}^z f(s)ds$ (where s denotes a complex variable, z_0 is a fixed point in D, and z any point in D) is an antiderivative of f, i.e., F'(z) = f(z). Hence, F is analytic in D. In addition, F'(z) is analytic in view of the analyticity of the derivative of any analytic function. Since f(z) = F'(z), we see that f is analytic in D.

The Maximum Modulus Theorem

- We saw that, if a function f is continuous on a closed and bounded region R, then f is bounded, i.e., there exists some constant M, such that $|f(z)| \leq M$, for z in R.
- If the boundary of R is a simple closed curve C, then the modulus |f(z)| assumes its maximum value at some z on the boundary C:

Theorem (Maximum Modulus Theorem)

Suppose that f is analytic and nonconstant on a closed region R bounded by a simple closed curve C. Then the modulus |f(z)| attains its maximum on C.

• If the stipulation that $f(z) \neq 0$, for all z in R, is added to the hypotheses, then the modulus |f(z)| also attains its minimum on C.

Finding The Maximum Modulus

• Find the maximum modulus of f(z) = 2z + 5i on the closed circular region defined by $|z| \le 2$.

We know that $|z|^2=z\cdot\overline{z}$. By replacing z by 2z+5i, we have $|2z+5i|^2=(2z+5i)(\overline{2z+5i})=(2z+5i)(2\overline{z}-5i)=4z\overline{z}-10i(z-\overline{z})+25$. But, $z-\overline{z}=2i\mathrm{Im}(z)$, whence $|2z+5i|^2=4|z|^2+20\mathrm{Im}(z)+25$. Because f is a polynomial, it is analytic on the region defined by $|z|\leq 2$. Thus, $\max_{|z|\leq 2}|2z+5i|$ occurs on the boundary |z|=2. There, $|2z+5i|=\sqrt{41+20\mathrm{Im}(z)}$. This attains its maximum when $\mathrm{Im}(z)$ attains its maximum on |z|=2, namely, at the point z=2i. Thus, $\max_{|z|\leq 2}|2z+5i|=\sqrt{81}=9$.

• Note that f(z)=0 only at $z=-\frac{5}{2}i$ and that this point is outside the region defined by $|z|\leq 2$. Hence we can conclude that we have a minimum when Im(z) attains its minimum on |z|=2 at z=-2i. As a result, $\min_{|z|<2}|2z+5i|=\sqrt{1}=1$.