

Olimpiada Națională de Matematică Etapa Națională, Târgu Mureș, aprilie 2024

CLASA a IX-a – soluţii şi bareme

Problema 1. Pe latura (BC) a triunghiului ABC se consideră punctele D și E, cu D între B și E.

Despre un punct R al segmentului (AE) vom spune că este remarcabil dacă dreptele PQ și BC sunt paralele, unde $\{P\} = DR \cap AC$, iar $\{Q\} = CR \cap AB$. Despre un punct R' al segmentului (AD) vom spune că este remarcabil dacă dreptele P'Q' și BC sunt paralele, unde $\{P'\} = BR' \cap AC$, iar $\{Q'\} = ER' \cap AB$.

- a) Dacă pe segmentul (AE) există un punct remarcabil, arătați că orice punct al segmentului (AE) este remarcabil.
- b) Dacă fiecare dintre segmentele (AD) și (AE) conține câte un punct remarcabil, demonstrați că $BD=CE=\varphi\cdot DE$, unde $\varphi=\frac{1+\sqrt{5}}{2}$ este numărul de aur.

 $Soluție. \ a) \ Aplicând teorema lui Menelau în triunghiul ABE cu transversala $Q-R-C$, obținem că $\frac{AQ}{QB} \cdot \frac{BC}{CE} \cdot \frac{ER}{RA} = 1$, prin urmare $\frac{AQ}{QB} = \frac{CE}{BC} \cdot \frac{RA}{ER}$. Analog, aplicând teorema lui Menelau în triunghiul AEC cu transversala $P-R-D$, obținem că $\frac{AP}{PC} = \frac{DE}{CD} \cdot \frac{RA}{ER}$. Avem:$

$$PQ\|BC \Leftrightarrow \frac{AQ}{QB} = \frac{AP}{PC} \Leftrightarrow \frac{CE}{BC} = \frac{DE}{CD}.$$

b) Notăm cu $x,\ y$ și z lungimile segmentelor $BD,\ DE,$ respectiv EC. Conform celor de mai sus, pe segmentul (AE) există un punct remarcabil dacă și numai dacă

$$\frac{x+y+z}{z} = \frac{y+z}{y} \Leftrightarrow \frac{x+y}{z} = \frac{z}{y} \Leftrightarrow z^2 = y^2 + xy.$$

Problema 2. Fie a și b două numere reale din intervalul (0, 1), astfel încât a este număr rațional și

 $\{na\} \ge \{nb\}$, oricare ar fi numărul natural n.

Demonstrați că a = b.

(Am notat cu $\{x\}$ partea fracționară a numărului real x.)

Soluție. Fie $a = \frac{p}{q}$, unde p și q sunt numere naturale nenule, prime între ele, cu p < q.

Atunci $0 = \{qa\} \ge \{qb\} \ge 0$, prin urmare qb este un număr natural. Rezultă că $b = \frac{s}{q}$, unde s este un număr natural nenul.

Deoarece numerele p și q sunt prime între ele, există un număr natural nenul k astfel încât $kp \equiv 1 \pmod{q}$.

Dacă $\left\{k \cdot \frac{s}{q}\right\} = 0$, atunci $q \mid ks$; cum (q, k) = 1, înseamnă că $q \mid s$, fals.

Problema 3. Determinați funcțiile $f: \mathbb{R} \to \mathbb{R}$ cu proprietatea că

$$(f(x) - y) \cdot f(x + f(y)) = f(x^2) - yf(y),$$

oricare ar fi numerele reale x și y.

Solutia 1. Considerăm afirmația

$$P(x,y): (f(x) - y) \cdot f(x + f(y)) = f(x^{2}) - yf(y),$$

adevărată pentru orice valori ale numerelor x şi y.

În rezolvarea problemei ne vom baza pe următoarea

Lemă. Dacă există două valori reale distincte $y_1 \neq y_2$ astfel încât $f(y_1) = f(y_2) = k$, atunci f este funcție constantă: f(x) = k, pentru orice număr reale x.

Într-adevăr, considerând $P(x, y_1)$ și $P(x, y_2)$, obținem relațiile $(f(x) - y_1) \cdot f(x+k) = f(x^2) - ky_1$, respectiv $(f(x) - y_2) \cdot f(x+k) = f(x^2) - ky_2$. Prin scădere, acestea conduc la $(y_1 - y_2) f(x+k) = k(y_1 - y_2)$, adică f(x+k) = k, pentru orice număr real x. Astfel, funcția f este constantă...... $2\mathbf{p}$ + Din P(0,0) deducem că $f(0) \cdot f(f(0)) = f(0)$. Să presupunem că f(0) = 0.

Dacă $f(0) \neq 0$, rezultă că f(f(0)) = 1. Din P(1, f(1)) deducem $f(1) = f(1) \cdot f(f(1))$.

Dacă f(1) = 0, egalitățile P(1, f(0)), P(2, 1) și P(2, 4) conduc la f(2) = 1, f(4) = 0, respectiv -3 = 0, contradicție. Deducem că f(f(1)) = 1.

Astfel, atât în cazul $f(0) \neq f(1)$, cât și în cazul f(0) = f(1) putem aplica Lema; obținem că f este funcție constantă: f(x) = 1, pentru orice număr real x.

Toate cele trei funcții găsite verifică relația din ipoteză.2p

Solutia 2. Considerăm afirmația

$$P(x,y): (f(x) - y) \cdot f(x + f(y)) = f(x^{2}) - yf(y),$$

adevărată pentru orice valori ale numerelor reale x şi y.

Din P(0,0) deducem că $f(0) \cdot f(f(0)) = f(0)$.

Dacă f(0) = 0, din P(0, y) și P(x, 0) obținem f(f(y)) = f(y) (1), respectiv $f^2(x) = f(x^2)$ (2), pentru orice numere reale x și y. Apoi, P(-f(y), y)

conduce la $yf(y) = f(f^2(y)) \stackrel{(2)}{=} [f(f(y))]^2 \stackrel{(1)}{=} f^2(y)$, deci $yf(y) = f^2(y)$. Deducem că f(y) = y, oricare ar fi numărul real y cu $f(y) \neq 0$3p

Dacă $f(0) \neq 0$, rezultă f(f(0)) = 1. Din P(1, f(1)) deducem $f(1) = f(1) \cdot f(f(1))$.

În cazul în care f(1) = 0, egalitățile P(1, f(0)), P(2, 1) și P(2, 4) conduc la f(2) = 1, f(4) = 0, respectiv -3 = 0, contradicție. Așadar f(f(1)) = 1. 1p

Din P(0,1) și P(-1,1) obținem f(1)=1, respectiv f(-1)=1. Pentru x real, din P(x,1) deducem $(f(x)-1)\cdot f(x+1)=f(x^2)-1$, iar din P(x,-1) obținem $(f(x)+1)\cdot f(x+1)=f(x^2)+1$. Prin scăderea acestor două relații, rezultă că f(x+1)=1, pentru orice număr real x. În concluzie, f(x)=1 pentru orice număr real x.

Toate cele trei funcții găsite verifică relația din ipoteză.2p

Problema 4. Fie a un număr natural nenul dat. Considerăm șirul $(x_n)_{n\geq 1}$ definit prin $x_n=\frac{1}{1+na}$, oricare ar fi numărul natural nenul n.

Demonstrați că, oricare ar fi numărul natural $k \geq 3$, există numere naturale nenule $n_1 < n_2 < \cdots < n_k$ astfel încât numerele $x_{n_1}, x_{n_2}, \ldots, x_{n_k}$ să fie termeni consecutivi ai unei progresii aritmetice.

Soluție. Vom demonstra cerința prin inducție după k. Observăm că

$$\frac{1}{1+ma} + \frac{1}{(1+ma)(1+2ma)} = \frac{2}{1+2ma},$$

Presupunem că există k numere naturale nenule $n_1 < n_2 < \cdots < n_k$ astfel încât numerele $x_{n_1}, x_{n_2}, \ldots, x_{n_k}$ să fie termeni consecutivi ai unei progresii aritmetice. Considerând $y = 2x_{n_1} - x_{n_2}$, numerele $y, x_{n_1}, x_{n_2}, \ldots, x_{n_k}$ sunt în progresie aritmetică (în număr de k+1).

Avem:

$$y = \frac{2}{1 + n_1 a} - \frac{1}{1 + n_2 a} = \frac{1 + pa}{(1 + n_1 a)(1 + n_2 a)} = \frac{1 + pa}{1 + (n_1 + n_2 + n_1 n_2 a)a},$$

Rezultă că $\frac{y}{1+pa}$, $\frac{x_{n_1}}{1+pa}$, $\frac{x_{n_2}}{1+pa}$, ..., $\frac{x_{n_k}}{1+pa}$

sunt k+1 termeni $x_{m_1}, x_{m_2}, \ldots, x_{m_{k+1}}$ ai șirului $(x_n)_{n\geq 1}$. Aceștia sunt în progresie aritmetică, deoarece atunci când împărțim termenii unei progresii aritmetice printr-un număr real nenul, obținem tot o progresie aritmetică.

 În plus, avem $m_1 < m_2 < \dots < m_{k+1}$, pentru că șirul $(x_n)_{n \geq 1}$ este strict monoton. Cu aceasta, demonstrația este completă. 3p