E6893 Big Data Analytics:

201812-1 Group Community Detection in Anti-Money Laundering (AML)

Team Members (with UNI): Siyu Liu(sI4262), Tianyao Hua(th2706), Anke Xu(ax2127)

Content

- Motivation
- Algorithm
 - Pros
 - Cons
 - Modified
- Visualization & Results

Motivation

The Challenging Money Laundering Issue

- Groups of collaborating individuals
- Numerous transactions
- Offshore accounts and complex investment vehicles with well-connected transaction behaviours

The Effectiveness of Community Detection in AML

- Overcome the problems of focusing on individuals
- Consider collective behaviour for each entities and transfer amount information at the same time

The Objectives of this Project

- Detect suspicious and well-connected entities using CESNA algorithm
- Visualize the graphical data of financial transfers and results of community detection

Algorithm: CESNA ----Pros

Method class	Overlapping	Hard membership	Structure+Att ributes	nodes per 10 hours
Heuristic	No	Yes	No	100,000
LDA-based	Yes	No	Yes	85,000
Clique-based	Yes	Yes	No	100,000
Social circles	Yes	Yes	No	5,000
CESNA	Yes	Yes	Yes	1,000,000

246 Citations!

Ref: Yang, Jaewon & McAuley, Julian & Leskovec, Jure. (2014). **Community Detection in Networks with Node Attributes**. *Proceedings - IEEE International Conference on Data Mining, ICDM*. 10.1109/ICDM.2013.167.

Algorithm: CESNA ----Cons

Model

- Network denoted by G(V, E), has C
- Each Does not support -
- Each weights!

$$P_{uv} = 1 - e^{(-\Sigma_c F_{uc} F_{vc})} \ A_{uv}$$
Bernoulli (P_{uv})

Attributes

$$Q_{uk}=rac{1}{1+e^{-\Sigma_c W_{kc} F_{uc}}}$$

$$X_{uk}$$
~Bernoulli (Q_{uk})

Probabilistic Network Model

Algorithm: CESNA ----Modified

Community 1

Community 2

Model

- ullet Each node has affiliation weights $\{F_i\}$
 - Network Weight Matrix

$$\mu_{uv} = \sum_{c} F_{uc} F_{vc}$$

• Attribu
$$W_{uv} \sim Gaussian(\mu_{uv}, \sigma^2)$$

$$Q_{uk}=rac{1}{1+e^{-\Sigma_c W_{kc} F_{uc}}}$$

Probabilistic Network Model

Algorithm: CESNA ----Modified

Probabilistic Network Model Maximize likelihood to estimate F and W

$$\hat{F}, \hat{W} = \underset{F \ge 0, W}{\operatorname{argmax}} \log P(G, X | F, W)$$

Where

$$\log P(G, X|F, W) = L_G + L_X$$

$$L_G = \log P(G|F)$$
Modified
$$L_X = \log P(X|F, W)$$

Updating community memberships. To update community Adoption multiple States and a second community and second com in BigCLAM [41]. However, we modify the procedure to consider node attributes (win MOCLAM Edite). We undate the membership F_u of an individual node a while fixing all other parameters (the membership P_v of all other nodes, and logistic model parameters W). \nearrow

We solve the following subproblem for each u:

$$\hat{F}_u = \underset{F_{uc} \succeq 0}{\operatorname{argmax}} \mathcal{L}_G(F_u) + \mathcal{L}_X(F_u), \tag{5}$$

$$\mathcal{L}_G(F_u) = \sum_{v \in \mathcal{N}(u)} \log(1 - \exp(-F_u F_v^T)) - \sum_{v \notin \mathcal{N}(u)} F_u F_v^T$$

$$\mathcal{L}_X(F_u) = \sum_{v \in \mathcal{N}(u)} (X_{uk} \log Q_{uk} + (1 - X_{uk}) \log(1 - Q_{uk}))$$

where $\mathcal{N}(u)$ is a set of neighbors of u. Note that this problem is convex: $\mathcal{L}_G(F_u)$ is a concave function of F_u [41], [30] and $\mathcal{L}_X(F_u)$ is a logistic function of F_{uc} when W is fixed.

To solve this convex problem, we use projected gradient ascent. The gradient can be computed straightforwardly:

$$\frac{\partial \mathcal{L}_G(F_u)}{\partial F_u} = \sum_{v \in \mathcal{N}(u)} F_{vc} \frac{\exp(-F_u F_v^T)}{1 - \exp(-F_u F_v^T)} - \sum_{v \notin \mathcal{N}(u)} F_{vc}$$
$$\frac{\partial \mathcal{L}_X(F_u)}{\partial F_u} = \sum_{k} (X_{uk} - Q_{uk}) W_{kc}.$$

$$L_G(F_u) = \sum_{u \neq v} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{||W_u - \mu_u||^2}{2\sigma^2}}$$

we solve the following subproblem for each
$$u$$
.
$$\hat{F}_u = \underset{F_{uv} \neq 0}{\operatorname{argmix}} \mathcal{L}_G(F_u) + \mathcal{L}_X(F_u), \qquad (5) \qquad \frac{\partial L_G}{\partial F_u} = \sum_v (W_{uv} - \mu_{uv}) F_v - (W_{uu} - \mu_{uu}) F_u$$
where $\mathcal{L}_G(F_u)$ and $\mathcal{L}_Y(F_u)$ are the parts of $\mathcal{L}_G, \mathcal{L}_X$ involving F_u , i.e.,
$$\mathcal{L}_G(F_u) = \sum_{v \in \mathcal{N}(u)} \log(1 - \exp(-F_u F_v^T)) - \sum_{v \notin \mathcal{N}(u)} F_u F_v^T$$

$$\mathcal{L}_X(F_u) = \sum_k (X_{uk} \log Q_{uk} + (1 - X_{uk}) \log(1 - Q_{uk}))$$

$$\mathcal{L}_X(F_u) = \sum_k (X_{uk} \log Q_{uk} + (1 - X_{uk}) \log(1 - Q_{uk}))$$

$$F_{uc}^{new} = \max(0, F_{uc}^{old} + \alpha(\frac{\partial \mathcal{L}_G(F_u)}{\partial F_u} + \frac{\partial \mathcal{L}_X(F_u)}{\partial F_u}))$$

$$W_{kc}^{new} = W_{kc}^{old} + \alpha (\sum_{u} \frac{\partial \log P(X_{uk}|F,W_k)}{\partial W_{kc}} - \lambda \cdot \operatorname{Sign}(W_{kc}))$$

11 regularized, select features.

Algorithm: CESNA ----Modified

Algorithm-CESNA

Probabilistic Network Model **Determine Membership**

- ullet u belongs to c if $F_{uc} > \delta$
- Choose threshold?

$$rac{1}{N} < 1 - e^{-\delta^2}$$

What's the number of *C*?

Reserve a holdout set

Visualization & Results

Appendix - Simulated Dataset

Based on the fraud detection data on Kaggle competition, we performed bootstrap, modification, and simulation according to the basic logics we defined for money laundering activities. We generated two dataset based on the following rules. (https://www.kaggle.com/netzone/eda-and-fraud-detection/data)

1	1 data.head()												
	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud		
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	0.0	0.0	0	0		
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	0.0	0.0	0	0		

Dataset 1:

- 1. Bootstrap
- 2. Simulate communities
 - a. Randomly set the size of a community
 - b. Randomly select n ids within non-fraud/fraud data to form groups
- 3. Simulate reasonable node attributes
 - a. Occupation, b. Account open country, c. Account type, d. Amount Modification

Dataset 2:

- Set different number of communities and nodes
- Simulate connections between and within communities
- Simulate node attributes