

Multi-Domain Vehicle Concept for Detecting Oil-Based Water Pollution

Abigail Berube, Nicholas Grumski, Tyler Guertin, Drake Hamblin, Zachary Rivernider, and Jeremy Trembley

Project Motivations

Oil Pollution in the Baltic Sea

- 788 spills between 2004 and 2020
- Intentional discharging of oil

Current Technology

- Focused on pipeline monitoring
- Autonomous oil detection is not exact

Worcester Polytechnic Institute

Project Goals

3D Mapping of Oil Spill

Conceptual Vehicle Design

Identifying Mission Design

Intended Impacts of the Vehicle

Worcester Polytechnic Institute

Methodology

Conceptual Vehicle Mission Design

AAV Functionality Aspects

Slide 6

J0 Slow down animations and point Jeremy, 2022-04-28T11:26:13.489 J0 0 Try and time yourself better Jeremy, 2022-04-28T11:26:28.490 RZ0 1 - Master Oogway (Probably) Rivernider, Zachary, 2022-04-29T10:34:23.464

Oil Perception and Vehicle Autonomy Sensors

Selection of Vehicle Geometry

Discussion on Wing Design

Slide 9

maybe just pictures less words Berube, Abigail D., 2022-04-26T11:38:56.313 BAD0

GT1

Be explicit with choice Guertin, Tyler, 2022-04-26T14:54:13.404

Wing Actuation Analyses (Water)

TJ0

Simulation	Main Concern	Min. Drag (N) @ Angle (°)	Comments
Water Wing (1 m/s)	Drag	0.1 N @10°-12°	Small amount of drag occurring at Max AOAL/D not prevalent
Water Flap (1 m/s)		0.25 N @ 0°	 Min. Drag at 0° Less lift achieved in water

Slide 10

TJ0 In air down is bad in water up is bad
Trembley, Jeremy, 2022-04-26T11:41:58.075

TJ0 0 not quite what you said, and im not sure this is the slide
Trembley, Jeremy, 2022-04-26T11:42:18.732

GT1 Motivations

Guertin, Tyler, 2022-04-26T14:12:21.215

Wing Actuation Analyses (Air)

Simulation	Main Concern	Max L/D @ Angle (°)	Comments
Air Wing (20 m/s)	L/D Ratio	Unstable	Unstable L/DDrag is small
Air Flap (20 m/s)		9.5 @ 7.5° - 10°	High L/DStable L/D ratio trend

Light-weighting the Wing

D'22 Moscow IQP presentation

12

Worcester Polytechnic Institute

Applications of Materials to AAVs

Aluminum Alloy

Carbon Fiber Composite

- Material Considerations
 - Lightweight
 - Durable
 - Resistant
 - Corrosion from seawater
 - Deformation
- Best choice: carbon fiber

D'22 Moscow IQP presentation

Worcester Polytechnic Institute

Slide 13

table ends of wings rather than have the color Berube, Abigail D., 2022-04-26T13:29:46.373 BAD0

BAD0 0

bending a ruler example Berube, Abigail D., 2022-04-26T14:55:51.600

Power and Buoyancy Considerations

Sustainable Power

- Oxygen, Hydrogen, and batteries
- Batteries are simple and customizable

Buoyancy

- Ability to sink or float in water
- Variable Buoyancy
 - System to manually change buoyancy
- Neutral Buoyancy
 - Always maintain the same depth in water

Worcester Polytechnic Institute

Single Propeller Propulsion

Summary

Conclusions and Going Forward

Thank You!

- Advisors
 - Dr. Svetlana Nikitina
 - Dr. Ivan Mardilovich
- Interviewees
 - Dr. Mark Patterson (NEU)
 - Dr. Nicholas Bertozzi (WPI)
 - Dr. Paul Mathisen (WPI)
 - Dr. Michael Buckholt (WPI)
 - Dr. John Bergendahl (WPI)
 - Anne McGoldrick (USCG)
 - Colt Cotton (Petty Officer 3rd Class, USCG)
 - Michael Lypen (Marine Science Technician, USCG)
 - Dr. Olof Linden (WMU)
- Other Thanks
 - Dr. Carol Stimmel
 - Dean Kent Rissimiller & The Global School

References

Allachi, H., Chaouket, F., & Draoui, K. (2010). Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides. Journal of Alloys and Compounds, 491(1), 223–229. https://doi.org/10.1016/j.jallcom.2009.11.042

Aluminum extrusion metal, 6060 series alloys safety data sheet. (2015). Sierra Aluminum. https://www.samuel.com/globalassets/our-businesses/sierra-aluminum/pdfs/sds_6060_alloys.pdf

Carbon fiber products: Safety data sheet. (2018). Finite Fiber. https://www.finitefiber.com/images/pdf/Carbon%20SDS.pdf

Diekamp, V. (2011). The AUV MARUM-SEAL on the water surface in the Black Sea [Digital]. https://commons.wikimedia.org/wiki/File:MARUM-AUV-en-03-HiRes.jpg

Fingas, M., & Brown, C. E. (2015). Oil Spill remote sensing. 311–356. https://doi.org/10.1002/9781118989982.ch12

International Bird Rescue Research Center. (2010). Gulf Oiled Pelicans [Digital]. https://flickr.com/photos/49788193@N03/4670207222

Kato, N., Choyekh, M., Dewantara, R., Senga, H., Chiba, H., Kobayashi, E., Yoshie, M., Tanaka, T., & Short, T. (2017). An autonomous underwater robot for tracking and monitoring of subsea plumes after oil spills and gas leaks from seafloor. Journal of Loss Prevention in the Process Industries, 50, 386–396. https://doi.org/10.1016/j.jlp.2017.03.006

Krek, E. V., Krek, A. V., & Kostianoy, A. G. (2021). Chronic oil pollution from vessels and its role in background pollution in the southeastern Baltic Sea. Remote Sensing, 13(21), 4307. http://dx.doi.org/10.3390/rs13214307

NASA. (2010a). ASTB100524164951 [Digital]. MADAS. https://aster.geogrid.org/ASTER/thumb/vnir/small/ASTB100524164951.pngNASA. (2010b). Deepwater Horizon oil spill [Digital]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Deepwater Horizon oil spill - May 24, 2010.jpg

NASA. (2010). Deepwater Horizon oil spill [Digital]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Deepwater_Horizon_oil_spill_-_May_24,_2010.jpg

Walsh, I. (2018). Identifying oil in water with the SeaOWL UV-A fluorescence and backscattering instrument. Sea-Bird Scientific. https://www.seabird.com/technical-papers/SeaOWL-case-study

Walsh, I., Robinson, B., Koegler, J., & Conmy, R. (2016). Oil in water fluorescence and backscattering relationships. https://www.seabird.com/asset-get.download.jsa?id=54627861907

Zhao, Q., Zhang, D., Zhao, X.-L., & Sharma, S. (2021). Modelling damage evolution of carbon fiber-reinforced epoxy polymer composites in seawater sea sand concrete environment. Composites Science and Technology, 215, 108961. https://doi.org/10.1016/j.compscitech.2021.108961