AUTOMATIC CONTROL KTH

EL2450 Hybrid and Embedded Control Systems

Exam -, March , 2017

Aid:

Lecture notes (slides) from the course, compendium ("reading material") and textbook from basic course ("Reglerteknik" by Glad & Ljung or similar text approved by course responsible). Mathematical handbook (e.g., "Beta Mathematics Handbook" by Råde & Westergren). Other textbooks, handbooks, exercises, solutions, calculators etc. may **not** be used unless previously approved by course responsible.

Observandum:

- Name and social security number (*personnummer*) on every page.
- Only one solution per page and write on one side per sheet.
- Each answer has to be motivated.
- Specify the total number of handed in pages on the cover.
- Each subproblem is marked with its maximum credit.

Grading:

Grade A: ≥ 43 , Grade B: ≥ 38 Grade C: ≥ 33 , Grade D: ≥ 28

Grade E: ≥ 23 , Grade Fx: ≥ 21

Responsible: Dimos Dimarogonas, dimos@kth.se

Lycka till!

- 1. Consider the hybrid automaton H = (Q, X, Init, f, D, E, G, R) displayed in Figure 1 and defined by:
 - discrete state space $Q = \{q_1, q_2\}$
 - continuous state space X = [0, 3]
 - initial states $Init = \{(q_1, 0)\}$
 - domains $D(q_1) = D(q_2) = X$
 - edges $E = \{(q_1, q_2), (q_2, q_1)\}$
 - guards $G((q_1, q_2)) = [1, 3]$ and $G((q_2, q_1)) = [0, 1)$
 - resets $R((q_1, q_2), x) = R((q_2, q_1), x) = \emptyset$

Figure 1: Hybrid automaton H

The goal of this problem is to do a safety verification on the hybrid automaton H with respect to the bad set $B = \{q_2\} \times [2,3]$ by using the bisimulation quotient algorithm.

- (a) [3p] Provide the equivalent representation of the hybrid automaton H as a transition system $T_H = (S, \Sigma, \to, S_0, S_F)$ by defining its elements S, Σ, S_0, S_F and sketching the transition system T_H .
- (b) [5p] Obtain the quotient transition system $\hat{T} = (\hat{S}, \Sigma, \hat{\rightarrow}, \hat{S}_0, \hat{S}_F)$ of T_H in the following steps:
 - apply the bisimulation quotient algorithm to T_H to obtain the set of equivalence classes \hat{S}
 - prove that the algorithm has terminated
 - define the elements \hat{S} , \hat{S}_0 , \hat{S}_F of \hat{T} and draw the resulting transition system \hat{T} .
- (c) [2p] Compute the reach set $Reach(\hat{S}_0)$ of \hat{T} . Use this result to conclude on the safety verification of the hybrid automaton H with respect to the bad set $B = \{q_2\} \times [2, 3]$.

Solution

- (a) $T_H = (S, \Sigma, \rightarrow, S_0, S_F)$ with:
 - $S = Q \times X = \{q_1, q_2\} \times [0, 3]$
 - $\Sigma = \{g_1, g_2, t\}$, where g_1 corresponds to the jumps with guard $x \in [1, 3]$, g_2 to the jumps with guard $x \in [0, 1)$ and t to the continuous evolution
 - $S_0 = Init = \{(q_1, 0)\}$
 - $S_F = B = \{q_2\} \times [2, 3]$
 - the transition relation of T_H can be sketched as in Figure 2.

Figure 2: Transition system T_H

- (b) Bisimulation quotient algorithm
 - Initialization: $\hat{S} = (P_1, P_2),$

$$- \ {f P_1} = {f S_F} = \{{f q_2}\} imes [{f 2},{f 3}]$$

$$-P_2 = S \setminus S_F = \{q_1\} \times [0,3] \cup \{q_2\} \times [0,2)$$

- $Pre_{g_1}(P_1) = \{q_1\} \times [2,3] \text{ and } Pre_{g_1}(P_1) \cap P_2 = \{q_1\} \times [2,3]$
 - $-\ P_{21} = \{q_1\} \times [2,3]$
 - $P_{22} = \{q_1, q_2\} \times [0, 2)$
- $Pre_t(P_{21}) = \{q_1\} \times [0,3] \text{ and } Pre_t(P_{21}) \cap P_{22} = \{q_1\} \times [0,2)$
 - $P_{221} = \{q_1\} \times [0, 2)$
 - $P_{222} = \{q_2\} \times [0, 2)$

•
$$Pre_{g_2}(P_{221}) = \{q_2\} \times [0, 1)$$
 and $Pre_{g_2}(P_{221}) \cap P_{222} = \{q_2\} \times [0, 1)$
- $\mathbf{P_{2221}} = \{\mathbf{q_2}\} \times [\mathbf{0}, \mathbf{1})$
- $\mathbf{P_{2222}} = \{\mathbf{q_2}\} \times [\mathbf{1}, \mathbf{2})$
• $Pre_{g_1}(P_{2222}) = \{q_1\} \times [1, 2)$ and $Pre_{g_1}(P_{2222}) \cap P_{221} = \{q_1\} \times [1, 2)$
- $\mathbf{P_{2211}} = \{\mathbf{q_1}\} \times [\mathbf{1}, \mathbf{2})$
- $\mathbf{P_{2212}} = \{\mathbf{q_1}\} \times [\mathbf{0}, \mathbf{1})$

•
$$\hat{S} = \{P_1, P_{21}, P_{2221}, P_{2222}, P_{2211}, P_{2212}\}$$

Confirm that the algorithm terminated by checking that for all $\sigma \in \Sigma$ and all $P \in \hat{S}$, $Pre_{\sigma}(P)$ is either empty or equal to the union of elements in \hat{S} (i.e. for all $P' \in \hat{S}$, $Pre_{\sigma}(P) \cap P' = \emptyset$ or $Pre_{\sigma}(P) \cap P' = P'$).

$$-Pre_{g_1}(P_1) = P_{21}$$

$$-Pre_{g_1}(P_{2222}) = P_{2211}$$

$$-Pre_{g_1}(P) = \emptyset \text{ for all other } P$$
• $\sigma = g_2$:
$$-Pre_{g_2}(P_{2212}) = P_{2221}$$

$$-Pre_{g_2}(P) = \emptyset \text{ for all other } P$$
• $\sigma = t$:
$$-Pre_t(P_1) = P_1$$

$$-Pre_t(P_{21}) = P_{2212} \cup P_{2211} \cup P_{21}$$

$$-Pre_t(P_{2221}) = P_{2221} \cup P_{2222} \cup P_1$$

$$-Pre_t(P_{2222}) = P_{2222} \cup P_1$$

$$-Pre_t(P_{2211}) = P_{2212} \cup P_{2211}$$

$$-Pre_t(P_{2212}) = P_{2212}$$

Resulting quotient transition system $\hat{T} = (\hat{S}, \Sigma, \hat{\rightarrow}, \hat{S}_0, \hat{S}_F)$ with:

•
$$\hat{S} = \{P_1, P_{21}, P_{2221}, P_{2222}, P_{2211}, P_{2212}\}$$

$$\bullet \ \Sigma = \{g_1, g_2, t\}$$

• $\sigma = g_1$:

•
$$\hat{S}_0 = \{P_{2212}\}$$

•
$$\hat{S}_F = \{P_1\}$$

• transition relation as in Figure 3.

(c) Reach set algorithm

•
$$R_{-1} = \emptyset$$
, $R_0 = \hat{S}_0 = \{P_{2212}\}$

•
$$R_1 = \{P_{2212}, P_{2211}, P_{21}\}$$

•
$$R_2 = \{P_{2212}, P_{2211}, P_{21}, P_{2222}, P_1\}$$

•
$$R_3 = \hat{S}, R_4 = R_3$$
, so $Reach(\hat{S}_0) = R_3 = \hat{S}$.

Safety verification:

Figure 3: Quotient transition system \hat{T}

- Quotient transition system \hat{T} : $Reach(\hat{S}_0) \cap \hat{S}_F \neq \emptyset$.
- Due to bisimulation between T_H and \hat{T} , we also have $Reach(S_0) \cap S_F \neq \emptyset$.
- Since T_H is an equivalent representation of H, we have $Reach_H(Init) \cap B \neq \emptyset$.