Quiz 4 study guide

September 29th, 2024

General information

Quiz 4 covers sections 1.1-1.5 and 2.1. Here are some general things of note about the quiz:

- You should review the hardest problems on the **homework** when you study for this quiz.
- Technically, any concept in the book in the sections we covered is fair game. However, you should focus on concepts that were covered in lecture and discussion.
- You are welcome to email me me at dbhatia1089@berkeley.edu if you need help on practice problems.

Here are some things you should know for the quiz (feel free to use this as a checklist):

	Limit laws for adding, subtracting, multiplying, dividing, and exponentiating sequences (2.1)
	Limit laws for r^n (2.1)
	The definitions of convergent and divergent sequences (2.1)
	Finding $\lim_{n\to\infty} r^n$ for various values of
	The definitions of functions, domains, ranges, increasing, decreasing, even/odd functions (1.1)
	The general form of linear functions, polynomials, power functions, rational functions, algebraic functions trigonometric functions, exponential functions, and logarithmic functions (1.2)
	How to find the domains and ranges of the above functions (1.2)
	The exponent rules (e.g. $x^a x^b = x^{a+b}$), logarithm rules (e.g. $\log(a^b) = b \log a$), and trigonometry rules (1.4).
	The general form of horizontal shifts to the left and to the right, vertical shifts up and down, horizontal stretches/squeezes, vertical stretches/squeezes (1.3)
	Obtaining the equation of the transformation of a function from the graph of its transformation (1.3)
	How to compose several functions (1.3)
	The definition of a one-to-one function, and that one-to-one functions have inverses (1.3)
	How to find the inverse of a function (1.5)
eln! I'm stuck on	

Help! I'm stuck on....

- ...finding limits of sequences: check out this 30 minute video (lots of examples!)
- ...the definition of a **function**: check out this 14 minute video
- ...the domains and ranges of different types of functions: check out this 18 minute video, or if you'd like a ton of problems you can skip around this very long video
- ...solving problems with increasing and decreasing functions: check out this 11 minute video
- ...determining if a function is even or odd: check out this 12 minute video
- ...using exponent laws: check out this 13 minute video
- ...using logarithm laws: check out this 5 minute video
- ...squeeze/stretch transformations: check out this 8 minute video
- ...compositions of functions: check out this 5 minute video

Practice problems

- 1. For the following sequences, determine whether a_n is convergent or divergent. If convergent, find the limit.
 - a) $a_n = \frac{1}{3n^4}$
- b) $a_n = \frac{n^3 1}{n}$ c) $a_n = \frac{3 + 5n}{2 + 7n}$ d) $a_n = \frac{3^{n+2}}{5^n}$ e) $\frac{e^n + e^{-n}}{e^{2n} 1}$.

- 2. Let $f(x) = \frac{3}{2/x-1}$. Find the domain of f(x) and write your answer in interval notation.
- 3. Consider the function $f(x) = \sqrt{4 x^2}$. Find the domain and range of this function.
- 4. Find the domain and range of $A(x) = \frac{4x+|x|}{x}$.
- 5. For the functions $f(x) = \frac{2}{x}$ and $g(x) = \sin x$, find $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$, as well as their domains (here, $f \circ g$ represents f(g(x)).
- 6. Starting with the graph of $y = e^x$, write the equation of the graph that results from
 - (a) shifting 2 units downward.
 - (b) shifting 2 units to the right.
 - (c) reflecting about the x-axis.
 - (d) reflecting about the y-axis.
 - (e) reflecting about the x-axis and then about the y-axis.
- 7. Find the exact value of $\ln(\ln e^{e^{50}})$.
- 8. Find the exact value(s) of $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$.
- 9. Prove that $\cos(\sin^{-1} x) = \sqrt{1 x^2}$.
- 10. Find the inverse of $\frac{2x+3}{1-5x}$.
- 11. Solve $\log_2(x^2 x 1) = 2$.

Solutions

1. (a)

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{3n^4}=\frac{1}{3}\lim_{n\to\infty}\frac{1}{n^4}=0.\quad \text{Converges}.$$

(b)

$$a_n = \frac{n^3 - 1}{n} = n^2 - \frac{1}{n}$$
 so $\lim_{n \to \infty} a_n = \lim_{n \to \infty} n^2 - \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} n^2$

When n is large, n^2 is large, so $\lim_{n\to\infty}a_n=\infty$ and the sequence diverges.

(c)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3+5n}{2+7n} = \lim_{n \to \infty} \frac{\frac{3}{n}+5}{\frac{2}{n}+7} = \lim_{n \to \infty} \frac{\frac{3}{n}+5}{\frac{2}{n}+7}$$

$$= \frac{\lim_{n\to\infty} \frac{3}{n} + \lim_{n\to\infty} \frac{5}{7}}{\lim_{n\to\infty} \frac{2}{n} + \lim_{n\to\infty} \frac{5}{7}} = \frac{0+5}{0+7} = \frac{5}{7} \quad \text{Converges.}$$

(d)

$$a_n = \frac{3^{n+2}}{5^n} = \frac{3^2 3^n}{5^n} = 9\left(\frac{3}{5}\right)^n$$
, so $\lim_{n \to \infty} a_n = 9\lim_{n \to \infty} \left(\frac{3}{5}\right)^n = 9 \cdot 0 = 0$

by (3) with $r = \frac{3}{5}$. Converges.

(e)

$$a_n = \frac{e^n + e^{-n}}{e^{2n} - 1} \cdot \frac{e^{-n}}{e^{-n}} = \frac{1 + e^{-2n}}{e^n - e^{-n}} \to 0 \text{ as } n \to \infty \text{ because } 1 + e^{-2n} \to 1 \text{ and } e^n - e^{-n} \to \infty. \text{Converges.}$$

2. To find the domain of the function $f(x) = \frac{3}{\frac{2}{x}-1}$, we need to determine where the denominator $\frac{2}{x}-1$ is defined:

$$\frac{2}{x} - 1 \neq 0.$$

Solving for *x*:

$$\frac{2}{x} \neq 1.$$

Taking the reciprocal:

$$\frac{x}{2} \neq 1$$
.

Simplifying:

$$x \neq 2$$
.

In addition, we know that we cannot divide by 0 in the fraction $\frac{2}{x}$, such that we also have:

$$x \neq 0$$
.

So, the domain of f(x) is:

$$(-\infty,0)\cup(0,2)\cup(2,\infty)$$

3. To find the domain of the function, we need to determine the values of x for which the function is defined. In this case, we have a square root function, and the square root of a negative number is undefined in the real number system. Therefore, we need to ensure that the expression under the square root, $4-x^2$, is non-negative:

$$4 - x^2 \ge 0$$

Solving this inequality:

$$4 - x^2 \ge 0$$
$$x^2 < 4$$

So, the domain of the function is $-2 \le x \le 2$.

Next, let's find the range of the function. The square root of a non-negative number is always non-negative. Therefore, for any valid value of x in the domain, $f(x) = \sqrt{4-x^2}$ will also be non-negative. In other words, the range of the function is $[0,\infty)$.

4. The domain of a function consists of all the values of x for which the function is defined. In this case, we need to consider two cases. First, when x is positive or zero, the absolute value |x| is equal to x. Second, when x is negative, the absolute value |x| is equal to -x.

So, let's consider both cases:

For x > 0, we have |x| = x, and the function is defined as:

$$A(x) = \frac{4x + |x|}{x} = \frac{4x + x}{x} = \frac{5x}{x} = 5$$

For x > 0, the function is always 5.

For x < 0, we have |x| = -x, and the function is defined as:

$$A(x) = \frac{4x - x}{x} = \frac{3x}{x} = 3$$

For x < 0, the function is always 3.

Then the only value for which the function is not defined is x=0, because we cannot divide by 0 in the denominator. So, the domain of A(x) is $(-\infty,0) \cup (0,\infty)$.

The range of a function consists of all the values that the function can take. In this case, we have shown that the function is constant within its domain. For x > 0, A(x) = 5. For x < 0, A(x) = 3. Therefore, the range of A(x) is $\{3,5\}$.

5. 1. $f \circ g$:

$$(f \circ g)(x) = f(g(x)) = f(\sin x) = \frac{2}{\sin x}$$

The domain of $f \circ g$ is all real numbers except where $\sin x = 0$, which occurs at $x = k\pi$, where k is an integer. So the domain is:

Domain of $f \circ q : x \in \mathbb{R}, x \neq k\pi$, where $k \in \mathbb{Z}$

2. $g \circ f$:

$$(g \circ f)(x) = g(f(x)) = \sin\left(\frac{2}{x}\right)$$

The domain of $g \circ f$ is all real numbers x except where x = 0 since $\frac{2}{x}$ is undefined at x = 0. So the domain is:

Domain of
$$g \circ f : x \in \mathbb{R}, x \neq 0$$

3. $f \circ f$:

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2}{x}\right) = \frac{2}{\frac{2}{x}} = x$$

The domain of $f \circ f$ is all real numbers except 0, because we cannot calculate f(0), and therefore cannot calculate f(f(0)).

Domain of
$$f \circ f : x \in \mathbb{R}, x \neq 0$$

4. $g \circ g$:

$$(g \circ g)(x) = g(g(x)) = \sin(\sin x)$$

The domain of $g \circ g$ is also all real numbers since there are no restrictions on x:

Domain of
$$g \circ g : x \in \mathbb{R}$$

- 6. These can be found using the transformation rules.
 - (a) Shifting 2 units downward:

$$y = e^x - 2$$

(b) Shifting 2 units to the right:

$$y = e^{(x-2)}$$

(c) Reflecting about the x-axis:

$$y = -e^x$$

(d) Reflecting about the y-axis:

$$y = e^{-x}$$

(e) Reflecting about the x-axis and then about the y-axis:

$$y = -e^{-x}$$

- 7. To find the exact value, we can simplify step by step. Working with the inner value first, notice that $\ln(e^{e^{50}})$ simplifies to e^{50} because $\ln(e^x) = x$. Now we have $\ln(e^{50})$, which again simplifies to 50. So, the exact value of $\ln(\ln(e^{e^{50}}))$ is 50.
- 8. To find the exact value, we can use the properties of the sine function.

The sine function $\sin(\theta)$ represents the ratio of the length of the side opposite to angle θ in a right triangle to the length of the hypotenuse. So, we want to find an angle θ such that:

$$\sin(\theta) = \frac{-1}{\sqrt{2}}$$

Now, consider the angle $-\frac{\pi}{4}$ radians (or -45°). In a unit circle, the coordinates of the point corresponding to this angle are $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, which matches the ratio we are looking for.

Therefore, we have:

$$\sin\left(-\frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}$$

So, the exact value of $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is $-\frac{\pi}{4}$.

9. Let's consider a right triangle with one angle, θ , such that $\sin(\theta) = x$, where $0 \le \theta \le \frac{\pi}{2}$. In this triangle, the side opposite θ has a length of x, and the hypotenuse has a length of 1.

Now, we can use the Pythagorean theorem to find the length of the adjacent side:

$$\sqrt{x^2 + (\text{adjacent side})^2} = 1$$

Solving for the adjacent side:

adjacent side =
$$\sqrt{1-x^2}$$

Now, we can find $cos(\theta)$ using the definition of cosine in a right triangle:

$$cos(\theta) = \frac{\text{adjacent side}}{\text{hypotenuse}} = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2}$$

Therefore, we have shown that $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$.

10. First, replace y with x and x with y:

$$x = \frac{2y+3}{1-5y}$$

Then solve for y. First, cross-multiply:

$$x(1-5y) = 2y + 3$$

Distribute x on the left side:

$$x - 5xy = 2y + 3$$

Move all terms involving y to the right side by adding 5xy to both sides:

$$x = 2y + 5xy + 3$$

Now, subtract 3 from both sides:

$$x - 3 = 2y + 5xy$$

Move all terms involving *y* to the left side:

$$2y + 5xy = x - 3$$

Factor out *y* on the left side:

$$y(2+5x) = x - 3$$

Finally, divide both sides by (2 + 5x) to solve for y:

$$y = \frac{x - 3}{2 + 5x}$$

Then replace y with $f^{-1}(x)$. So, the inverse function is:

$$f^{-1}(x) = \frac{x-3}{2+5x}.$$

11. Rewrite the equation using the definition of logarithms:

$$2^2 = x^2 - x - 1.$$

Simplify to get

$$x^2 - x - 5 = 0.$$

Solve the quadratic equation. You can use the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In this case, a = 1, b = -1, and c = -5. Plug these values into the formula:

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-5)}}{2(1)}$$

Simplify further:

$$x = \frac{1 \pm \sqrt{1 + 20}}{2}$$

$$x = \frac{1 \pm \sqrt{21}}{2}$$

So, the solutions are:

$$x_1 = \frac{1 + \sqrt{21}}{2}$$
 and $x_2 = \frac{1 - \sqrt{21}}{2}$.