Rappresentazione informazioni = Formato binario

Ci sono delle codifiche di interpretazione (es. IEEE 754 = numeri in virgola mobile (floating point) --> mantissa / significante (dopo/prima la virgola))

- Base 10
- Base 2

Arrotondamento per virgole --> casi particolari (precisione macchina = come rappresentare il dato numerico --> NaN = Not a Number)

⇒ Rappresentazione Floating Point:

1 0101 1010000000110011001

Errori possibili:

- Underflow = uscire dal dato in negativo
- Overflow = uscire in positivo

Algebra booleana

- Congiunzioni (AND/OR)
- Disgiunzioni (NOT/XOR/XNOR)

Unione in circuiti logici che rappresentano tutte le possibilità di elaborazione combinando le porte logiche

Vari esempi:

Multiplexer

Multiplexer

Multiplexers in Digital Logic

Decoder

Sequenziali:

- Latch
 - Controllo su I/O
 - Vari tipi
 - SR
 - Abilitazione
 - Tipo D
 - Antirimbalzo
 - Variazione uscita sempre in base all'ingresso tramite ciclo di clock

- Flip-flop
 - Sincronizzazione
 - Usati dentro ai latch
 - Attivazione a livelli

 $S = A \otimes B$

 $C = A \cdot B$

Half Adder

Simbolo logico e realizzazione circuitale di un HA

Full Adder

CPU --> Unità principale di calcolo secondo Von Neumann (Memoria fissa = Salvataggio dati permanente + Memoria variabile = Salvataggio dati volatili)

- SISO --> Seriale (Uno alla volta)
- PIPO --> Parallelo (Diversi allo stesso tempo)

L'uso della CPU dipende dall'architettura

- --> ISA = Set di istruzioni per architettura
- --> Operazioni per ciclo macchina (clock)

Architettura di set di istruzioni:

- CISC = Complesso
 - Una istruzione per indirizzare tante cose
- RISC = Ridotto
 - · Pipeline con tante istruzioni

Ciclo macchina:

- Fetch = Prelievo
- Decode = Decodifica
- Execute = Esecuzione

CPU usa registri:

- Program Counter = prelievo istruzione
- Instruction Register = istruzione attuale

Memoria a stack = pila (gestione di tutti i tipi di dato --> FIFO - First In First Out)

Funzioni --> Chiamate e ritorni

Memorie veloci:

- Cache = Recupero dati veloce
- ROM = Salvataggio fisso dei dati
- RAM = Dati che sto usando attualmente e mi servono ora

Codifiche dati:

- Pesate --> Peso dato ai bit
- Non pesate --> Salvataggio dati alla bisogna

Trasmissione deve essere in grado di regolarsi (sapere che ci sono errori) --> correggerli lungo la strada

Hamming/CRC/LRC

Multimedia (descrivibili da segnali):

- Audio --> MIDI/MP3
- Video --> MOV/AVI/MP4

Tecniche di compressione:

- Lossy = Con perdita
- Lossless = Senza perdita

Esempi di compressioni: Huffman

Sistema operativo = Organizza e gestisce tutti i tipi di dato a seconda delle loro funzioni

- Quantità/qualità dei dati e dei processi con relativa gestione
- Politiche di gestione/ordinamento (scheduling)

Gestione di tutti i tipi di dati:

- Memoria centrale
 - Dati veloci e che mi servono subito o che mi serviranno tra poco
- File system
 - Dati fissi che sono salvati permanentemente in memoria
- Dispositivi di I/O
 - Recupero dati in generale