Application of the Kalman Filter to a Satellite Simulator to Predict Orbital Position

Nathan Blackburn–blacknand April 8, 2025

_					_
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}
a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}

Symbol	Description	Dimensions	Role
x	State variable	$n \times 1$ column vector	Output
P	State covariance matrix	$n \times n$ matrix	Output
z	Measurement	$m \times 1$ column vector	Input
A	State transition matrix	$n \times n$ matrix	System Model
H	State-to-measurement	$n \times n$ matrix	System Model
	matrix		
R	Measurement covariance	$m \times m$ matrix	Input
	matrix		
Q	Process noise covariance	$n \times n$ matrix	System Model
	matrix		
K	Kalman Gain	$n \times m$	Internal

Table 1: System variables, matrices, and their roles in the Kalman Filter

Symbol	Name	Description	Example
x_k	State Vector	The current estimate of the system's state at time k .	$x_k = [px, py, pz, vx, vy, vz]^T$ (6x1 column: position in meters, velocity in m/s).
\hat{x}_k	Predicted State	The predicted state at time k before incorporating sensor measurements.	Same 6x1 vector, e.g., $[0,0,0,0,0,9]$ after predicting with $\operatorname{accel}_z = 9 \text{m/s}^2$ for 1s.
z_k	Measurement Vector	The sensor's observation at time k .	$z_k = [vx, vy, vz]$ (3x1), approximated from accel (e.g., [0, 0, 0] if stationary).
F	State Transition Matrix	Describes how the state evolves over time without external inputs. $ \begin{bmatrix} 1 & 0 & 0 & \Delta t & 0 & 0 \\ 0 & 1 & 0 & 0 & \Delta t & 0 \\ 0 & 0 & 1 & 0 & 0 & \Delta t \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} $	6x6 matrix: (position grows with velocity).
В	Control Input Matrix		6x3 matrix: (accel affects velocity).
u_k	Control Vector	The external input affecting the system at time k .	$u_k = [ax, ay, az]^T$ (3x1), e.g., [0,0,9] from MPU6050 in m/s ² .
H	Observation Matrix	Relates the state to the measurement. $ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} $	3x6 matrix: (picks velocities from state).
P_k	Covariance Matrix	Represents the uncertainty in the state estimate at time k .	6x6 matrix, e.g., diagonal starts at 1000 (high uncertainty), adjusts with each step.
Q	Process Noise Covariance	Uncertainty added during prediction due to model imperfections.	6x6 matrix, e.g., diagonal [0.01, 0.01, 0.01, 0.1, 0.1, 0.1] (small noise for pos, vel).
R	Measurement Noise Covariance	Uncertainty in the sensor measurements.	3x3 matrix, e.g., diagonal [1.0, 1.0, 1.0] (noise in accelderived velocity).
K	Kalman Gain	Determines how much to trust the measurement vs. the predic- tion.	6x3 matrix, computed to balance P and R , e.g., 0.5 means half-trust in sensor.
w_k	Process Noise	Random errors in the system model (assumed Gaussian).	Handled by Q , e.g., accel jitter or unmodeled effects.
v_k	Measurement Noise	Random errors in the sensor data (assumed Gaussian).	Handled by R , e.g., noise in MPU6050 accel readings.

Table 2: Kalman Filter Variables and Examples