

SEQUENCE LISTING

<110> McKeon, F.
Kayako, K.
Ryeom, S.

<120> CALCIPRESSINS: ENDOGENOUS INHIBITORS OF CALCINEURIN,
USES AND REAGENTS RELATED THERETO

<130> HMV-048.01

<140> 09/575,580

<141> 2000-05-22

<150> 60/135,431

<151> 1999-05-21

<150> 60/161,195

<151> 1999-10-22

<160> 49

<170> PatentIn Ver. 2.1

<210> 1

<211> 2484

<212> DNA

<213> Homo sapiens

<400> 1

cttgggtta gctccctgag gacacaaact gtcctaagac tatgataata gtaatcatag 60
aaccgtgcac atggcaagtt ctgaataaaat ctcagctgtt ggatataactt tttgttataa 120
ttacaacac ttcttaacta gagagaatgc ctactctaag aaaaaatata actgttaattt 180
cacaacctcc aaagaaccca gtgcataaac agctaccatt tattaagcac tgactgaatt 240
cttagtaata tgttttcatt ttttcagat gaggaaacta agattcagct tatttgtaca 300
agtagttaaa aagcaaagct gaaattcaga cccaagtct cactgtatca tactgtccaa 360
aaaagaattc tatttttcag gaagagacat gtctgtcac ttgaggctct ttatattttc 420
cgctattccc caaagggaaag gggtgatctc ttaattctt cgttatgtcc tattgtacat 480
agcatataat ggtaattcag aaaaattact tctaattaca taaattttca caatggtata 540
gtgactaata cgctgaaata gaaaagaatgc gcattgttat catggcttag ttcaatgtttt 600
attgcgacta tatctgataa tatacgtaa gcatctaacc acttgcagg ggcacagag 660
ccacaggagg actatgtctc gcttaattc cccaaagtgg gcccctgtgc ttcaaaacgt 720
ccccgcattgg gaaccacaaa aacgttgcct ccccagttat caccggcagg gcccaagagc 780
cgaggactct gcccggcgctc cttcagctgg caccagctgt cagaaaagcg gaactgggaa 840
cgaggacttt gcccctaacc aacatggccg ccctgaggct tcgggcttcg ggcggcagaa 900
ggaaggtcac gtgaagagaa ttccgttccct ttattggccc cgtctctgg aagggcgggg 960
tacaataacc caaccggcgc cggcctaaa gggccacgg ttggatctc cggtggccgg 1020
cccttaggggc tggggggggcg gtgcggcgcc cgggcttctg cccctcccgc gggaaacgg 1080
gacggggcggg gctggcgctg ggaggccgtg tgctgggag actgtgaca gcccggccgc 1140
tgccgcgcgc cgattcccgag ggggttaacg gggagccgc cggccggcg cggaccggag 1200
cgcggtgaggc tccggcgcc aagccggag cagcccgctg gggcgacag ggtcgccgc 1260
gcccggggat ggaggacggc gtggccggc cccagctcg gggccggcg gaggccggcg 1320
aggccggccga ggcgcgagcg cggccgggg tgacgctgcg gcccttcgcg cccctctcg 1380
ggccggccga ggcggacgag ggcggccggc actggagctt cattgactgc gagatggagg 1440
agggtggacct gcaggacctg cccagcgcca ccatcgctg tcacctggac ccgcgcgtgt 1500
tcgtggacgg cctgtgccgg gtgaggacgg cggccggcg gccgtgggg cgaggggcg 1560
acacttggc cccgaggagg cggccgggt cgacgccc agtcccccgc gcgcgcgggg 1620
cggggaggca gcgcgtccc cgggctgct cggccgcggc cccgtcaggg ctggggcggt 1680

gggacggcgc cccgagggtc ccggccccct agcacccccc gggcgccgagc 1740
 agagtccac aggctcgccc cgccccccgt gtgcgcccag gctggtgcga cttaggggggt 1800
 gaattcgctc cccaagggtgg ggcagcgcgg ccgcggccctg cgctctcgcc atcgccccgc 1860
 atttactcgc tggaggaggg ggtcaccta ttccctaggaa ggaggaaaca gacattgagc 1920
 ggcgacgtga ctcagtgttc ataaatagga cgacgtccct gcattcccaa tctgcactat 1980
 tggaaagaaaa gccaatgttt gggtgaggat ccgtgggtgc tcattagcca gccggctggcc 2040
 agtttttgtg gaattgtgtt gggggaaagg ggaccatctt tcagaccttt agatattta 2100
 gtcaagaacc ttgccccctt gtgtgaaggt gtggcttgcc gccatcgggg acacccagta 2160
 catggggagt cgactccttc ccccgctcc ccccacccccc gcaaaaatcca cacaatttag 2220
 acactttggg ggtgagggg caggtatgag taatcaataa tggtggtggg gaggaagaat 2280
 ttatccaaa tctgcagttt ttgtgcagaa taaaatgtgg acaacgtggg cgtcacagaa 2340
 tgaaacccgtt ctgtgagaga tgccccatta ggagagcgc tgtaaaaaaaaaa agcagtgctt 2400
 tcagcgcctt gctgtgggtc cacaatgtt gtcataatgaa tatagttgaa ggctgctgcc 2460
 aataacaacac cactgtgaaa caga 2484

<210> 2
 <211> 597
 <212> DNA
 <213> Mus musculus

<400> 2
 atggaggagg tggatctgca ggacctgccc agcgccacca tcgcctgcca cctggaccgg 60
 cgcgtttcg tggacggcct gtgcggggcc aaatttgaat ccctcttcag aacatatgac 120
 aaggacacca cttccagta ttttaagagc ttcaaacgtg tccggataaa cttcagcaac 180
 cccttatctg cagccgatgc caggctgcgg ctgcacaaga ccgagttctt ggggaaggaa 240
 atgaaggttgt attttgtca gactttacac ataggaagt cacacctggc tcggcccaat 300
 cccgacaaac agttcctcat ctccccctccg gcctctcctc ccgttggctg gaaacaagta 360
 gaagatgcca ccccgctcat aaatttacgt cttttatatg ccatctccaa gctggggcca 420
 ggagagaagt atgaactgca tgcagcgaca gaccccactt ccagtgtggt ggtccacgtg 480
 tgtgagagt accaagagaa tgaggaggaa gaggaagaga tggagagaat gaagagaccc 540
 aagcccaaaaa tcatccagac acggagaccc gagtacacac cgtatccaccc tagctga 597

<210> 3
 <211> 729
 <212> DNA
 <213> Mus musculus

<400> 3
 gaattcgctcg acccacgcgt ccggccacgc gtccgcttgg ggcagcaggc atctatccct 60
 gaagatgggg gacttttctt cctctgctgc atagacagag actgggctgt cactcagtgt 120
 tttgctgaag aggcttcca agcactcact gacttcagtg atctcccaa ctcattgttt 180
 gcctgcatacg ttaccaggc tttgtttggaa gaagaggaga gcaaggaaaa attcgaggga 240
 ctgttccggaa cctatgtga atgtgtgacg ttccagctgt ttaagagttt ccgtacgggtt 300
 cgaataaatt tcatccatcc caaatctgca gcccgtgccc ggatagagct tcatgagact 360
 cagttcagag ggaagaagct accccctctac ttccggccagg tccagacccccc agagacagat 420
 ggagacaaac tgcatttggc acctccacag cctgccaaac agttcctcat ctcacccccc 480
 tcatctccat ctgttggctg gaaggctatc agcgatgcca caccgtctt caactatgac 540
 cttctttagt ctgtggccaa actaggacca ggagagaaat atgagctgca cgctggaaact 600
 gagttctaccc cgagcgtcggt ggtgcattgtg tttgcacagcg acatggagag ggaggaggac 660
 ccaaagactt ccccaaagcc aaaaatcaat cagacccggc ggcctggcct gccacccttc 720
 ggtcactga 729

<210> 4
 <211> 198
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Glu Glu Val Asp Leu Gln Asp Leu Pro Ser Ala Thr Ile Ala Cys
 1 5 10 15

His Leu Asp Pro Arg Val Phe Val Asp Gly Leu Cys Arg Ala Lys Phe
 20 25 30

Glu Ser Leu Phe Arg Thr Tyr Asp Lys Asp Thr Thr Phe Gln Tyr Phe
 35 40 45

Lys Ser Phe Lys Arg Val Arg Ile Asn Phe Ser Asn Pro Leu Ser Ala
 50 55 60

Ala Asp Ala Arg Leu Arg Leu His Lys Thr Glu Phe Leu Gly Lys Glu
 65 70 75 80

Met Lys Leu Tyr Phe Ala Gln Thr Leu His Ile Gly Ser Ser His Leu
 85 90 95

Ala Pro Pro Asn Pro Asp Lys Gln Phe Leu Ile Ser Pro Pro Ala Ser
 100 105 110

Pro Pro Val Gly Trp Lys Gln Val Glu Asp Ala Thr Pro Val Ile Asn
 115 120 125

Tyr Asp Leu Leu Tyr Ala Ile Ser Lys Leu Gly Pro Gly Glu Lys Tyr
 130 135 140

Glu Leu His Ala Ala Thr Asp Pro Thr Pro Ser Val Val Val His Val
 145 150 155 160

Cys Glu Ser Asp Gln Glu Asn Glu Glu Glu Glu Glu Met Glu Arg
 165 170 175

Met Lys Arg Pro Lys Pro Lys Ile Ile Gln Thr Arg Arg Pro Glu Tyr
 180 185 190

Thr Pro Ile His Leu Ser
 195

<210> 5
 <211> 242
 <212> PRT
 <213> Mus musculus

<400> 5
 Glu Phe Val Asp Pro Arg Val Arg Pro Arg Val Arg Leu Gly Gln Gln
 1 5 10 15

Ala Ser Ile Pro Glu Asp Gly Gly Leu Phe Phe Leu Cys Cys Ile Asp
 20 25 30

<210> 6
<211> 192
<212> PRT
<213> *Homo sapiens*

```

<400> 6
Met Asp Cys Asp Val Ser Thr Leu Val Ala Cys Val Val Asp Val Glu
      1           5           10          15

Val Phe Thr Asn Gln Glu Val Lys Glu Lys Phe Glu Gly Leu Phe Arg
      20          25          30

Thr Tyr Asp Asp Cys Val Thr Phe Gln Leu Phe Lys Ser Phe Arg Arg
      35          40          45

```

Val	Arg	Ile	Asn	Phe	Ser	Asn	Pro	Lys	Ser	Ala	Ala	Arg	Ala	Arg	Ile
50						55					60				
Glu	Leu	His	Glu	Thr	Gln	Phe	Arg	Gly	Lys	Lys	Leu	Lys	Leu	Tyr	Phe
65						70				75					80
Ala	Gln	Val	Gln	Thr	Pro	Glu	Thr	Asp	Gly	Asp	Lys	Leu	His	Leu	Ala
					85				90						95
Pro	Pro	Gln	Pro	Ala	Lys	Gln	Phe	Leu	Ile	Ser	Pro	Pro	Ser	Ser	Pro
					100			105							110
Pro	Val	Gly	Trp	Gln	Pro	Ile	Asn	Asp	Ala	Thr	Pro	Val	Leu	Asn	Tyr
					115			120							125
Asp	Leu	Leu	Tyr	Ala	Val	Ala	Lys	Leu	Gly	Pro	Gly	Glu	Lys	Tyr	Glu
					130			135							140
Leu	His	Ala	Gly	Thr	Glu	Ser	Thr	Pro	Ser	Val	Val	Val	His	Val	Cys
					145			150				155			160
Asp	Ser	Asp	Ile	Glu	Glu	Glu	Glu	Asp	Pro	Lys	Thr	Ser	Pro	Lys	Pro
					165				170						175
Lys	Ile	Ile	Gln	Thr	Arg	Arg	Pro	Gly	Leu	Pro	Pro	Ser	Val	Ser	Asn
					180			185							190

<210> 7
<211> 170
<212> PRT
<213> *Homo sapiens*

```

<400> 7
Met Val Tyr Ala Lys Phe Glu Ser Leu Phe Arg Thr Tyr Asp Lys Asp
      1           5           10          15

Ile Thr Phe Gln Tyr Phe Lys Ser Phe Lys Arg Val Arg Ile Asn Phe
      20          25          30

Ser Asn Pro Phe Ser Ala Ala Asp Ala Arg Leu Gln Leu His Lys Thr
      35          40          45

Glu Phe Leu Gly Lys Glu Met Lys Leu Tyr Phe Ala Gln Thr Leu His
      50          55          60

Ile Gly Ser Ser His Leu Ala Pro Pro Asn Pro Asp Lys Gln Phe Leu
      65          70          75          80

Ile Ser Pro Pro Ala Ser Pro Pro Val Gly Trp Lys Gln Val Glu Asp
      85          90          95

Ala Thr Pro Val Ile Asn Tyr Asp Leu Leu Tyr Ala Ile Ser Lys Leu
      100         105         110

```

Gly Pro Gly Glu Lys Tyr Glu Leu His Ala Ala Thr Asp Thr Thr Pro
 115 120 125
 Ser Val Val Val His Val Cys Glu Ser Asp Gln Glu Lys Glu Glu Glu
 130 135 140
 Glu Glu Met Glu Arg Met Arg Arg Pro Lys Pro Lys Ile Ile Gln Thr
 145 150 155 160
 Arg Arg Pro Glu Tyr Thr Pro Ile His Leu
 165 170

<210> 8
 <211> 197
 <212> PRT
 <213> Cricetulus griseus

<400> 8
 Met His Phe Arg Asp Phe Asn Tyr Asn Phe Ser Ser Leu Ile Ala Cys
 1 5 10 15
 Val Ala Asn Gly Asp Val Phe Ser Glu Ser Glu Thr Arg Ala Lys Phe
 20 25 30
 Glu Ser Leu Phe Arg Thr Tyr Asp Lys Asp Ile Thr Phe Gln Tyr Phe
 35 40 45
 Lys Ser Phe Lys Arg Val Arg Ile Asn Phe Ser Asn Pro Leu Ser Ala
 50 55 60
 Ala Asp Ala Arg Leu Gln Leu His Lys Thr Glu Phe Leu Gly Lys Glu
 65 70 75 80
 Met Lys Leu Tyr Phe Ala Gln Thr Leu His Ile Gly Ser Ser His Leu
 85 90 95
 Ala Pro Pro Asn Pro Asp Lys Gln Phe Leu Ile Ser Pro Pro Ala Ser
 100 105 110
 Pro Pro Val Gly Trp Lys Gln Val Glu Asp Ala Thr Pro Val Ile Asn
 115 120 125
 Tyr Asp Leu Leu Tyr Ala Ile Ser Lys Leu Gly Pro Gly Glu Lys Tyr
 130 135 140
 Glu Leu His Ala Ala Thr Asp Thr Thr Pro Ser Val Val Val His Val
 145 150 155 160
 Cys Glu Ser Asp Gln Glu Asn Glu Glu Glu Glu Met Glu Arg Met
 165 170 175
 Lys Arg Pro Lys Pro Lys Ile Ile Gln Thr Arg Arg Pro Glu Tyr Thr
 180 185 190
 Pro Ile His Leu Ser
 195

<210> 9
<211> 207
<212> PRT
<213> *Caenorhabditis elegans*

<400> 9
Met Val Ala Asp Asn Ser Glu Lys Ser Thr Lys Ser Val Ala Asn Gly
1 5 10 15
Ser Leu Ile Ser Thr Val Ser Ser Lys Asp Asp Leu Pro Asn Ala Ile
20 25 30
Ile Val Thr Gln Val Pro Glu Asp Val Phe Asp Asn Lys Gln Asp Lys
35 40 45
Ala Asn Phe Ser Ser Leu Phe Thr Gln Ile Glu Lys Asp Ile His Phe
50 55 60
Asp Phe Leu Arg Ser Phe Arg Arg Val Arg Val Ile Phe Ser Ser Pro
65 70 75 80
Glu Asn Ala Thr Ala Ala Lys Leu Ile Val Gln Gly Phe Ser Phe Lys
85 90 95
Gly His Glu Leu Lys Ala Phe Phe Ala Gln Arg Ile Tyr Met Ser Ala
100 105 110
Asn Ser Gln Met Leu Ser Pro Pro Pro Leu Glu Lys Gln Phe Leu Ile
115 120 125
Ser Pro Pro Cys Ser Pro Pro Val Gly Trp Glu Gln Thr Lys Asp Met
130 135 140
Pro Pro Val Val Cys Asn Phe Asp Leu Met Ala Arg Leu Ala Ser Phe
145 150 155 160
Ala Ile Asp Glu Lys Tyr Glu Val His Asn Gly Asp Glu Leu Thr Pro
165 170 175
Ala Ile Ile Val His Pro Cys Glu Thr Pro Ile Asp Val Pro Ser Ala
180 185 190
Ile Glu Met Pro Arg Thr Pro Arg Pro Ser Ser Pro Cys Glu Gln
195 200 205

<210> 10
<211> 211
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 10
Met Gly Asn Ile Ile Thr Asp Thr Ile Ile Ile Thr Ser Asp Lys Cys
1 5 10 15
Asp Ile Val Asp Asn Asp Asn Val Glu Arg Ile Gln Val Trp Leu Ser
20 25 30

Lys Asn Ile Leu Arg Lys Phe Gln Ile Asn Glu Asn Glu Pro Leu Gln
 35 40 45

 Leu Ile Ile Leu Lys Arg Phe Lys Arg Ile Leu Leu Ile Cys Pro Ser
 50 55 60

 His Asp Ile Ser Gln His Val Met Asp Ala Ser Arg Ala Leu Glu Met
 65 70 75 80

 Glu Asn Phe Asn Phe Ser Tyr Ser Leu Gln Asp Gly Gln Arg Asn Leu
 85 90 95

 Thr Lys Gln Tyr Leu Lys Val Pro Glu Ser Glu Lys Met Phe Leu Ile
 100 105 110

 Ser Pro Pro Ala Ser Pro Pro Glu Phe Asp Phe Ser Lys Cys Glu
 115 120 125

 Asp Ala Pro Gln Arg His Ile Gln Ser His Ile Gln Gln Asp Gln Gln
 130 135 140

 Gln Arg Leu Glu Ala Ser Gln Leu Leu Pro Asn Asn Pro Asp Lys Asn
 145 150 155 160

 Asn Asn Gly Thr Phe Thr Leu Leu Lys Ser Lys Val Gly Ala Ile Thr
 165 170 175

 Ile Asp Arg Cys Pro Thr Asn Asp Gly Asn Gly Gln Met Gln Leu Ala
 180 185 190

 Asp His Val Lys Thr Ala Phe Pro Pro Lys Ser Ile Phe Asp Thr Asp
 195 200 205

 Asp Asp Asp
 210

<210> 11
<211> 163
<212> PRT
<213> Schizosaccharomyces pombe

<400> 11
Met Leu Val Phe Thr Thr Ser Pro Asp His Val Asp Glu Leu Asn Glu
 1 5 10 15

Phe Val Gln Gln Leu Asn Pro Val Ala Phe Thr Arg Val Leu Arg Gly
 20 25 30

Leu Gly Lys Val Leu Ala Ser Tyr Asn Asp Lys Ala Val Glu Glu Asp
 35 40 45

Thr Leu Lys Lys Ser Ser Thr Gly Ser Leu Pro Ser Gly Gln Gln Val
 50 55 60

His Cys Gln Tyr Val Leu Asp Asp Pro Asn His Val Glu Gly Ile Ser
 65 70 75 80

Val Asp Gln Ser Leu Gln Val Pro Lys Phe Glu Lys Asn Trp Leu Ile
 85 90 95

 Ser Pro Pro Gly Ser Pro Pro Val Gly Trp Glu Pro Ile Val Glu Glu
 100 105 110

 Ser Pro Asn Ser Gln His Leu Ala His Asp Ile Gln Leu Lys Leu Asp
 115 120 125

 Glu Leu Gly Asn Ala Leu Leu Asn Asp His Ser Ala Gly Pro Gln Ile
 130 135 140

 Val Ile Ser Glu His Asn Asn Thr Lys Glu Thr Ser Pro Ser Arg Gln
 145 150 155 160

 Phe Glu His

<210> 12
 <211> 8
 <212> PRT
 <213> Homo sapiens

<400> 12
 Lys Gln Phe Leu Ile Ser Pro Pro
 1 5

<210> 13
 <211> 11
 <212> PRT
 <213> Homo sapiens

<400> 13
 Pro Lys Pro Lys Ile Asn Gln Thr Arg Arg Pro
 1 5 10

<210> 14
 <211> 16
 <212> PRT
 <213> Homo sapiens

<400> 14
 Glu Arg Met Lys Arg Pro Lys Pro Lys Ile Asn Gln Thr Arg Arg Pro
 1 5 10 15

<210> 15
 <211> 14
 <212> PRT
 <213> Homo sapiens

<400> 15
 Arg Gln Val Glu Met Ile Arg Arg Arg Pro Thr Pro Ala
 1 5 10

<210> 16
<211> 14
<212> PRT
<213> Homo sapiens

<400> 16
Glu Ala Ala Glu Gln Ile Arg Pro Arg Arg Pro Thr Pro Ala
1 5 10

<210> 17
<211> 14
<212> PRT
<213> Homo sapiens

<400> 17
Ser Glu Ile Lys Gln Val Glu Phe Arg Arg Leu Ser Ile Ser
1 5 10

<210> 18
<211> 14
<212> PRT
<213> Homo sapiens

<400> 18
Val Pro Ile Pro Gly Arg Phe Asp Arg Arg Val Ser Val Cys
1 5 10

<210> 19
<211> 14
<212> PRT
<213> Homo sapiens

<400> 19
Arg Ile Asn Glu Arg Met Pro Pro Arg Arg Asp Ala Met Pro
1 5 10

<210> 20
<211> 14
<212> PRT
<213> Homo sapiens

<400> 20
Pro Lys Pro Lys Ile Ile Gln Thr Arg Arg Pro Glu Tyr Thr
1 5 10

<210> 21
<211> 14
<212> PRT
<213> Homo sapiens

<400> 21
 Pro Lys Pro Lys Ile Asn Gln Thr Arg Arg Pro Gly Leu Pro
 1 5 10

<210> 22
 <211> 724
 <212> DNA
 <213> Mus musculus

<400> 22
 atgctccgg acagcctgaa atcttggaat gacagccagt cagacctctg tagcagcgac 60
 caggaggagg aagaggagat ggtcttcggt gaaaatgagg acggactgga agagatgatg 120
 gaccttaagtg acctgcacac ctcactctt gcttcggatg tccatgaagc agtgttttag 180
 gtccaaagagc aaaaggagag gtttggggcc ctgttcaccc tctacatgaa ccaggtcaca 240
 ttccagggtt tcaagagctt tcgcagatg aggatcaact tcagcaagcc cgaggctgcg 300
 gcaagagcgc ggtatagagct ccacgagatg gagttccacg gacggaaagct gaagctttac 360
 ttgcacacgg tgccagggttc cggggaggcc cgggacaagt cctacttact gccaccacaa 420
 cccaccaagc agttcctcat ctccccccc gcctcacccc ccgtggggtg gaagcagatg 480
 gaagatgcgaa tgccaggatgat caactatgac ctgcgtcgcc ctgtctccaa gctggggccca 540
 gggggagaaat acgaactgca cgcgggaacc gagtccaccc ccagtgtgtt ggtgcacgatc 600
 tgtgagagcg aaactgaaga ggaagaagac aaaaaaaatc caaaacagaa aatcacgcag 660
 acgcggcgcc cggaggctcc cacggccggca ctgagtgagc ggctggactg tgcactctga 720
 gcgg 724

<210> 23
 <211> 958
 <212> DNA
 <213> Mus musculus

<400> 23
 gccgctgcgg cccgcgttga gggcgtgggt gctccgggtgt gtgagggtct gtccggccca 60
 ggcgcgcgtc gtgggcattcc cccctcgggc ctctccctc gagcgcacag aagtatctgg 120
 caggcatcct agaactttac agagaagatg ctccgagaca gcctgaatac ttggaatgac 180
 agccagtcag acctctgttag cagcgaccag gaggaggaag aggagatgtt ctgcgtgtaa 240
 aatgaggacg gactggaaga gatgatggac ctaagtgacc tgcccacctc actctttgct 300
 tgcagtgtcc atgaagcgtt gtttgggttc caagagcaaa aggagagggt tgaggccctg 360
 ttcaccctct acgatgacca ggtcacattc cagttgttca agagcttgc cagagtgggg 420
 atcaacttca gcaagcccgaa ggctgcggca agagcgcggaa tagagctcca cgagagtgg 480
 ttccacggac ggaagctgaa gctttacttc gcacagggtgc aggtgtccgg ggaggcccgg 540
 gacaagtccct acttactgcc accacaaccc accaagcgtt ccctcatctc ccctccgc 600
 tcaccccccgg tgggggtggaa gcagagtggaa gatgcgtatgc cagtgtatcaa ctatgacctg 660
 ctctgcgtc tctccaagct gggcccgagg gagaataacg aactgcacgc gggAACCGAG 720
 tccaccccca gtgtgggtgt gcacgtctgt gagagcggaa ctgaagagga agaagacaca 780
 aaaaatccaa aacagaaaaat cacgcagacg cggcgcccg aggctccac ggcggcactg 840
 agtgagcgcc tggactgtgc actctgagcg gctgcgtgtc ctgcgcgcgg tgcctgtccc 900
 accactacag ctgcgcctgt ctaggagcac agcccaggaa tgctctgca tccgtcag 958

<210> 24
 <211> 236
 <212> PRT
 <213> Mus musculus

<400> 24
 Met Leu Arg Asp Ser Leu Lys Ser Trp Asn Asp Ser Gln Ser Asp Leu
 1 5 10 15

Cys Ser Ser Asp Gln Glu Glu Glu Glu Met Val Phe Gly Glu Asn
 20 25 30

Glu Asp Gly Leu Glu Glu Met Met Asp Leu Ser Asp Leu Pro Thr Ser
 35 40 45

Leu Phe Ala Cys Ser Val His Glu Ala Val Phe Glu Val Gln Glu Gln
 50 55 60

Lys Glu Arg Phe Glu Ala Leu Phe Thr Leu Tyr Asp Asp Gln Val Thr
 65 70 75 80

Phe Gln Leu Phe Lys Ser Phe Arg Arg Val Arg Ile Asn Phe Ser Lys
 85 90 95

Pro Ala Arg Ala Arg Ile Glu Leu His Glu Ser Glu Phe His Gly Arg
 100 105 110

Lys Leu Lys Leu Tyr Phe Ala Gln Val Gln Val Ser Gly Glu Ala Arg
 115 120 125

Asp Lys Ser Tyr Leu Leu Pro Pro Gln Pro Thr Lys Gln Phe Leu Ile
 130 135 140

Ser Pro Pro Ala Ser Pro Pro Val Gly Trp Lys Gln Ser Glu Asp Ala
 145 150 155 160

Met Pro Val Ile Asn Tyr Asp Leu Leu Cys Ala Val Ser Lys Leu Gly
 165 170 175

Pro Gly Glu Lys Tyr Glu Leu His Ala Gly Thr Glu Ser Thr Pro Ser
 180 185 190

Val Val Val His Val Cys Glu Ser Glu Thr Glu Glu Glu Asp Thr
 195 200 205

Lys Asn Pro Lys Gln Lys Ile Thr Gln Thr Arg Arg Pro Glu Ala Pro
 210 215 220

Thr Ala Ala Leu Ser Glu Arg Leu Asp Cys Ala Leu
 225 230 235

<210> 25
 <211> 3983
 <212> DNA
 <213> Mus musculus

<400> 25
 gccaaatttg aatccctt cagaacatat gacaaggaca ccaccttcca gtatTTtaag 60
 agcttcaaac gtgtccggat aaacttcagc aaccCCTtat ctgcagccga tgccaggctg 120
 cggctgcaca agaccgagtt cctgggaag gaaatgaagt tgtattttgc tcaGGtaagt 180
 gtgttcattt tgaAGCGGGT tcctCCGGC aaAGCACCTT atACATGGa AACCTAGAGG 240
 tcacCTCAAA acAGACAGGA ttCCAAACCTT gagttcttaa ggtctccCTG ctGTgtAAAG 300
 ggatctggtg aaggGGGACAG taAGCCTGGA CCTTCCTGGG ttaAACCGTG aAGGAAGGG 360
 agcaAGCTC CCTTGGTcAC cAGAAAGCTT aggGATTGG agGGGAGAAG agGGCATCGC 420
 tgcCCCCCTC CCTTGCACACT agTCAGCTC ACTGGGACTA gGCCAGCGAC CTGTCAAGAG 480
 ctgtctcaag ccagtgcagg ttctccacgc ctcacCTTGT aAGCCTGTat tcAGATCAGC 540

acagggttgt cagtcggggc aggggtgagg gtcatcacat ggttgagact cttagctgag 600
 gggcagaaaa gggggctgtg gatgaggtgt ccattgttct gccaacctcg gggacaccc 660
 caaggcgact cccaaacttcc atgtgactgt aacggggact ggtagatcgc agcttctcg 720
 tggtatcccc aaggtaatgt cagtccttc caggctctga agccgcttcc ttcttctca 780
 gttgtctaca ctcacttcct gccagcttag gcccagcgg gtcctgtgga gtgtggctca 840
 tggccctcac ctctcggtaa tgtagattt tgaccatgaa ataccctctg tggtcatgt 900
 atttgaatac ttgggtcctc tgggtgcag tttacagtt agggaaacctt aggaggtggg 960
 gcctccctaa aggaatgaga tccccgaggg agactctgag gggtagagc ccagcccc 1020
 gtcagattga agtctttgc ttctgttg gcaccatgtg acagggttacc acaggcttct 1080
 gcagccctca gctaccatga catccgttcc ttctgttcc cctatgtgg ctgcgcactc 1140
 tcgaactgtg agccaggaa aggcttccc gttttttt tcatccaggg ctgtcataga 1200
 cacttggaaa gtttacccaa cacaggcacc aaatccggaa ttcatgttcc cttcaccc 1260
 tatacagacc acatcttcg ttcttgaat cgatctgtt ccagagctt accatcggtc 1320
 tgccttcca tgcttcctt ccagaagctt ccatgaactg tcgtgaccc tcgtcgcttgc 1380
 tgcataatga tgaactcatt tctctctca gactttacac ataggaagtt cacacctggc 1440
 tccgccccat cccgacaaac agttccat cttccctccg gcctcttcc ccttggctg 1500
 gaaacaagta gaagatgcca cccccgtcat aaattacgtat cttttatatg ccatctccaa 1560
 gctggggcca ggttaagcgc accctcaggt gggaaagtgt cgggaggtgt ggagagactc 1620
 tctggggtcc ccaggcctca cggccccca tgctgtcgta tggtgtgacc cctgcgttat 1680
 tccacattgc tgcaagctcg tctggaggtgt gtgcccctt gaggattcca ggagatggta 1740
 gcaacctgtg gtttgtgca ccactgtccc cccccaagtg tcccccaat ctatcccttc 1800
 acccagcagg cacacctgtg tggctcactc caggccccag atcatgttgc tccagggtgg 1860
 atggggaaagg gcaaacagtc caacctgttag ggagtctcgta caactgtcat tccacttcc 1920
 gtactgggtg ggagggtatgt ggcacatctt caccacccac acgcaagccg atcagcactg 1980
 cccatcagcc cctcgtcatc tgaagttcct ttagggcaag gtttttattt tcatggctca 2040
 tcagcagaaa gattacattt ctgagaacac agcctaaatg gaaatttcc cctgtgttaca 2100
 aactgagact cacgttacta gtgctaattt tagcatgaag gtcaaaagtg gaaacggcca 2160
 gtgtgagcaa ggagacggct cagcatggcg gctctcagca cagttgaggg gtctgttgc 2220
 tgtggatgtg ttatacatgg acacagaccc tcatctggcg caagggaaaca ggctgttcca 2280
 gaggcaggaa ttgaggcgag cttctgttct ttaagaaccc aaaccagaaaa tcaaggggct 2340
 gaaacattcc taccaggggcc atgacagagt tctccagacc cagaggcagg acacttcagt 2400
 cagccttcgg ggctgcaaag gggctgtgtt gagagcttgc tgacccatcc ccaacgaagg 2460
 agtctgtgt gtgtctgtgc tatagaaacg cccctccac ttacagttt cccagcagcc ctcaagactt gggagagcc 2580
 gagctccctc gtttttttag catgaggctt gtgcctccca catctatggc gcagactaaa aagcaggcag cctcaccac 2700
 ccgctacagc agctggaaac ttacccgtt taacaacagg gctcaaaaccc gggccttgc 2760
 tctgtggca agcaccctt gtctgtcta catccccagg accctccatt ttaaatctt 2820
 ggtggcattt gtcaaggat ttagtgcattt agcccccgcg tggcggttt ggatttggc 2880
 tctcatggaa atggcccccac caatgcctt gtcggccat ttacagagga ggcgaaaggc 2940
 acaaagaagt gagacagccc gggacaagt cctcatccac tcaactccca ccatacacgg 3000
 ccactccgccc atgccaccc tccctcagtgt ctatgcaga cccctcaag gggaaatccca 3060
 gacccttcct ttccagccag gtttctgtt gacagaaggc ccattctaat ctgtctatgc 3120
 cacagtggtg tgaagggtct tgacccctgg caagctcagg ctggccaga agagcaagga 3180
 gggagcata gatagataga tagata gatagataga tagata gatagataga 3240
 tggatgatgg tgggtgtt ggtgtcaattt gggcatgaag cacttggccct ccagtgtcac 3300
 ataaatcagg catgggtgtt cagaacctt ggtcccagca tccagaaggat gaggcaagag 3360
 cagcagacat ctaaggctaa atgcaggccat cagttagttc caggcagctc atacataaaac 3420
 aatataaaac caaggaaagg atgttaaggt ttagcagattt cacttggggc tctctgtgc 3480
 catgctctgg agcccccaccc acaggacatt tgcctccagg agtggcattt gtcatgtttt 3540
 tctctgtact gatgcctcc ataaccctgc cttggagaat gctgctggg gcccctgggt 3600
 ggacatgaga aaggtagcg aacagcgtt gactgagggc aattctcgcc tgcaaatgtt 3660
 ctgtctgtt aataagttt ccatgaggag gcacaaggcc agactgtgtc tgccaagca 3720
 aaccctgggt tccctccagg tccctggccctt ccatgctcagg ggacaaggcc cggttaccac 3780
 tcaccatgtt cttgtcttcc tcccccaagga gagaaggatg aactgoatgc agcgacagac 3840
 accactccca gtgtgggtt ccacgtgtgtt gagagtgacc aagagaatga ggaggaagag 3900
 gaagagatgg agagaatgaa gagaccaag cccaaaatca tccagacacg gagaccgagt 3960
 acacacccat ccacccatcagc tga 3983

<210> 26
 <211> 3360
 <212> DNA
 <213> Mus musculus

<400> 26
 gaaaaattcg agggactgtt ccggacctat gatgaatgtg tgacgttcca gctgttttaag 60
 agtttccgac gggttcgaat aaatttcagc catcccaaatt ctgcagcccc tgccccggat 120
 agagctcat gagctcaggat cagagggaaag aagctaaaac tctacttcgc ccaggtgagt 180
 cttaaacctg ctggtttggc acaacatctt gaggacgtgt tgctatttga gtagaatcag 240
 attcaattt cagcatgcac atgggtgttca acaaacatctt ggtgccttcca tctgaccctt 300
 tagggtacca cacacacaca cacacacaca cacacacaca cacacacaca catacacaca 360
 cagtagtatac acataagtgtt gggcaataca ttcatgcaca taaattaaat ttagaagtat 420
 aaaaagtcat tggtaattgg aaaataaata aattaaatta aatgtaaaat gaggacctcg 480
 ggagatgggtt atgcagttaa gaaagctggc tgcttctca gaggacatga gttcgagtcc 540
 tagcactcat atgggtgttca ataattgttt gtaaccccttgc ttacagggaa accaatgcct 600
 tcttctagcc tcctacacac ccacaatag gtttgcgtt acagttactt cactaagaaa 660
 ttaatttagt ggttgcctaa gacctggccca agataaaccat gtcacatcc tagcatggag 720
 agaaaagggg gaccctgagc ccagacctcc aacttgaggaa ctttcaacag ttgtatggat 780
 cttggggggg gggatgtttc cttgggtgtt tggctctgg taggttgagt atgggtccagg 840
 ggatggtccc acacccatgc tcacatggac accactaact ggactcagcg gatatgaaaa 900
 cataaaagaac acgaggaagg gaaaggaatg gaagcaatc tgatcaaaat atatttatac 960
 atgtatgaaa tcctccgagc tatttataca tggatgaaaat cctctgagct aatgttctta 1020
 aaataaggaa agaaaacagac actgacagtg agttccagat tgagcagttt ctgtgtcccta 1080
 ggacagagggc tctaagaccc gccaagctaa gttcttaacta ggacaagttt cagaacacctca 1140
 ctgggactca gagtcctcat ctataagatg gcaatgaaga cattatcaac ccatgttagct 1200
 gctgtatgg tgacatggaa agctgtgtgc agctgtgcct agatttctgg taaagggaca 1260
 ataatttcca gcttaggaact gcaacagaac tgatctcacc acagccgact cctaacccttc 1320
 ccgacaggggt tggattaaa atttaaatga tatgttttaat ggtataactaa atacattcat 1380
 gataaaaagt tataaatcca tggaaattaa ttgtatgttt tgcaaaagcca aataactcatt 1440
 atcctgaaca gggatgggtt gttcttaggg atgttcatga agcccccacagc actagttgtc 1500
 ggttatttactt cttccatcaag gccttatcca tcaatggca acagtccactt ctcaggatg 1560
 gcttcagctg ctgactccttgc cttaaaatctt acatcttta taaattcatg tagctagaac 1620
 aatcttagat catcattttat taaaacctgc atcagaacta gttgtgtcag ctgttagactc 1680
 ctgtctaaat cttacatcttgc ttacaatttca atgttagctt aacacacttta gatcatcatt 1740
 tattaaaacc tgcattcagga ccagttggcc tgaggcagga gaccttgcatt tcaaggccag 1800
 cctgagctat ccagtaaggt cctgtctcaa aaagactgtg tggatgtgtg tggatgtgtg 1860
 tggatgtgtg tggatgtgtg tggatgtgtg tttatatatgt gggatgtgtg tggatgtgtg 1920
 tggatgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 1980
 agacacatac atagatacat acatagctat atagatacga gagagagaca gagagagaga 2040
 tttccattaa aagataacat ggatgttacca tggactcgtt aaattcttca ttaggttcca 2100
 aaaatcatga actcaaacaa atagtttacg aagaatttac acgagcactg ttccacaatag 2160
 gccaacactg agaactaccc aagatcttca aacagataaa gggataaaga gacaatagta 2220
 tggatgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2280
 atcaccatccaaat aatgggcctt taaaatgttacca tggactcgtt acacaaaagtc tcatctgttc 2340
 tggatgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2400
 ccatcagggg tagtagggaaat ctacatttttgc atgtgttattttaatggatgtc atgttgggg 2460
 tggatgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2520
 atcccacccaaat ccatatgggtt gctcacacc accataatgtt acatgtgttgc ccctttctg 2580
 gagttgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2640
 aagggtgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2700
 tcaacccttccaaat taatgtgttgc accctttat accatgttacca tggatgtgttgc cagccacaaa 2760
 atcccttccaaat taatgtgttgc accctttat accatgttacca tggatgtgttgc cagccacaaa 2820
 tggatgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2880
 ttattgtgttataatataatgt atatatgggt acatagatat atgatacata catacatgtat 2940
 aggacatttag aagttgttcca ctagcttcca catgtacacaca ctcataaggc cacacaatgt 3000
 agtacaggc ttggatgtgttcca tggatgtgttcca taaaatgttgc aaactgtgttgc ttggatgtgttcca 3060

ttatgtaaac aatgagttca gcacactgtg tactgttaagg agtgattgct actgcagtct 3120
 ggcctcagt gaagccctgc ccagctgcaa gcatggacaa tcacatgtct cattatctt 3180
 tttgaaaggt ccagacccca gagacagatg gagacaaaact gcatttggca cctccacagc 3240
 ctgccaaaca gtcctcata tcacccctt catctccatc tggctggctgg aagcctatca 3300
 gcgatgccac accagtccctc aactatgacc ttcttatgc tggccaaa ctaggaccag 3360

<210> 27
<211> 3717
<212> DNA
<213> Mus musculus

<220>
<221> modified_base
<222> (2410)
<223> n=a, c, g, or t

<400> 27
 cggaaagctga agcttactt cgcacaggta atggccgttc tgccctgcg cacacagcct 60
 gctccagttc ccgctccagc acggggtcag aggtctgtga ggtcagcagt cacgtgagcc 120
 agggctcccg tgcttttct gacttacac atacgtcatt tcatgtattt taggagcaca 180
 ttaagcctct gtcatgttt ctctgagacg aacacctaag gggttcattt ttctggcgat 240
 tttgctcagc tagggctctg tgagggaaat cctgatactt cgaagttggc agattaaaca 300
 ctgtcatct aaaatggcac cgaggacatg acatccgtgg gaaaacagaa caaaaccttc 360
 aagggtcatc aagatggccc agggggtaa ggtgcttgc accaaggctg gcaagccgag 420
 tttgatccc ggaactcatc cacgggtgga agaaaagaac caacctgtgt cctctgagga 480
 ccacatatgc agttttctct ctctgagac agtagtgtgt tagtcagccc ttcccagcga 540
 attagttact gggatgagac actgtgacca aaagcaccca ggagacaaaat ggtgtatgt 600
 cttaacttat aatgaatcac cattcattga gggaaagccaa ggcaagaact caacctggc 660
 agaaacctgg aggcagaggc catgggggg cgctgtttac tggctctca tggctactc 720
 agcctgtttt ctttttttt ttttttttga gacagggttt ctctgtata 780
 ccctggctgt cctgaaactc actctgtaga ccaggctggc ctcgaactca gaaatccgc 840
 tgcctctgca tccccagttgc tggattaaa ggcgtgtgc actgtgcctg gttcagcc 900
 gtttcttat agaacctaga accacaaccc agctggat catccacagt gggcaggcc 960
 ttccccacat tggtaactaa gaaaactcc tgcctgcagt caggtcttct ggagacattt 1020
 tctcagttgg gtcctgtct ctgtatgact aaagcttgc tcaggttgc atatagtagc 1080
 cagcacaccc actcacacca ctagcaata cctggagag tcagctgtaa aggagaaaa 1140
 tctcggttttgcag gtttcaacttgc gcatgtgatt ggcactttc ctgtgagcc 1200
 gctgtcagt agcacatagg ggcagacaa agctttcac ttcgttcat ggaaggcagga 1260
 agagtaaggg gttgggggtt cactgtccct tagggatgt ccccatgact aaaggcctcc 1320
 ctgcctctg aaggctccca gtttgcattc tcagggagc aagcctctat ttactatgt 1380
 gagcccaagg gtcacttgc gcccagacca cagagtagca cgtttatcaa gggtccagg 1440
 cctgtggcca ctcccaacttcc accacctggc agtcacaga cagtttgaga gacagttta 1500
 atcacccttc caagaaagta acaattacca taaagttgg aatgaaagcc ctgtgggtat 1560
 ggtgcaggcc ttaatctaa gaactggagg cagagaccgt gagatctgtg agtcaggcc 1620
 acagagttagt ttcaggaca gccaggata cacggagaaa ccctgtctca gaaaaagaaa 1680
 agaaaggaca gctgctcaca agcacgcctt tccctgcagg tgcagggtgc cggggaggcc 1740
 cgggacaagt cctacttact gccaccacag cccaccaagc agttccat ctccccctcc 1800
 gcctcacccc cctgtgggtg gaagcagagt gaagatgca tgccagtgt caactatgac 1860
 ctgctctgcg ctgtctccaa gctggggccca ggtactgcattcc tccacccctcg ctctccgcgt 1920
 cctcgacat tgcgttctg tgggtggag actgtgtgc gtatgggtg cagagccca 1980
 caacaccacgc accgtccatg gggcggtgtg gccacaccag tctgagttca cactcgagct 2040
 gtacacttc cagtgtgtg gtcctcagcc agttgcctag cctgggttat ctgagttgt 2100
 tctaaggatt aacacgtgtc tgcaggtga taactttac cattcagcca gaagttata 2160
 taggcgttta gtacatcc tcactgtttt ctctctgc ggcagtcagc acagtgtctg 2220
 tcgtttggca gctgcttgg gtgacagtga caatgaccta tcgcccattcc aaagttctat 2280
 ctctctctt tttcacttct tacttccatc ttttctgtct cggtctcaactttaat 2340
 actgcaagaa gccgattttt ctagggcact tcagaggctt ttgagaaggc actctatgt 2400

cctgggcggn ttagctttc gatggcagag gccctaccgt agacaccgct gccttagagct 2460
 tagccagtgc ctccccatggc gccccaaacac cactgtaat ttaactatcc caccttagtt 2520
 atctatagaa cagcagttttag catttatatt aacattttaa ttatgtatataa 2580
 tcaatgggtt ctcgtcttct tcctgagcac aaagccagag taagcataga acagaagaga 2640
 caagaagaga agagatagga agagacagga gctgtttgca aagcaagccc tccccgagtg 2700
 aaggaagctg tgtatattca tacagttggca tgactgactcc tgagcacgctg cagttgaaaa 2760
 tcatggagat gaacatgggtg gacagggtgt gcttgggttc gcttgcacca tgaagttca 2820
 cttgaaaata agagaaggat gtttttaagg tttgtgtctaa caggagtctg ccttgaagg 2880
 gcctgaagtgc ttggatttactccttaggg ctccaggacag aagggacgggt gtcttttattt 2940
 atttttttttaaagacttatgt tatatgtatgtt cattgtatgtt gtacatgtgg ctgtgagcc 3000
 tcatgtgggtt gggatttggaa tttaggac ctttgcctgc tcccatcaac ccctctcgct 3060
 ctggtcggcc ctgctcgcta gtcctgcctt gtcctcggcc aaagatttat ttattttat 3120
 atataagtac actgttagctg acttcagacg taccagaaga ggacatcaga ttcattgcg 3180
 ggttagttgtg agccactatgt tggttgcgtt gatttgaact cttcggaaaga gcatcaagtgc 3240
 ttcttactca ctgagccatc gcattagccc gacagtgtct ttacaatag aatttctgca 3300
 gggcatgggtg gtactcaact ttaacagcac ttggggaggca gaggctggca gtcctcgg 3360
 agttccaggt cagcctgtct acacagttag cctaggccag cctgggtac atagtgcgac 3420
 tccaggaggat ttttgggtt tttttaaatgt ccagcacttg ggagatggaa 3480
 gcagaagaat tagagttcaa ggtcagccctc agctacagca gcaagttct aactggccca 3540
 gatttcatga gacgcgtct taaaaaaaaaaaaaaaat cagccactga atgacgtatg 3600
 agaagaggaa gttggggagat agaagaactt gatttccttc actggggagta aggctccttc 3660
 ctgtgcttgc aggggagaaa tacgaactgc acgcggaaac cgagtccacc cccagta 3717

<210> 28
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: general
calcineurin antagonist peptide

<220>
<221> SITE
<222> (6)
<223> Xaa=any amino acid residue

<400> 28
Pro Lys Pro Lys Ile Xaa Gln Thr Arg Arg Pro Glu
1 5 10

<210> 29
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: calcineurin
antagonist

<400> 29
Pro Lys Pro Lys Ile Ile Gln Thr Arg Arg Pro Glu
1 5 10

<210> 30
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: calcineurin antagonist

<400> 30
Pro Lys Pro Lys Ile Asn Gln Thr Arg Arg Pro Gly
1 5 10

<210> 31
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: EGF-derived peptide

<400> 31
Cys Met His Ile Glu Ser Leu Asp Ser Tyr Thr Cys
1 5 10

<210> 32
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: EGF-derived peptide

<400> 32
Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys
1 5 10

<210> 33
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: pH-dependent membrane-binding internalizing peptide

<220>
<221> SITE
<222> (1)
<223> Xaa=preferably a unique residue, such as Cys or Lys, that facilitates chemical conjugation of the

internalizing peptide to a targeting protein conjugate

```

<220>
<221> SITE
<222> (2)..(3)
<223> Xaa=residues selected to modulate the affinity of
      the internalizing peptide for different membranes

<400> 33
Xaa Xaa Xaa Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala
     1           5           10          15

Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala
     20          25          30

<210> 34
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide
      substrate

<400> 34
Gly Asn Ala Ala Ala Ala Arg Arg
     1           5

<210> 35
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (4)..(75)

<220>
<223> Description of Artificial Sequence: synthetic
      construct

<400> 35
cat atg ggt ggc tgc cgt ggc gat atg ttc ggt tgc ggt gct cct cca      48
      Met Gly Gly Cys Arg Gly Asp Met Phe Gly Cys Gly Ala Pro Pro
     1           5           10          15

aaa aag aag aag aag gta gct gga ttc
Lys Lys Lys Arg Lys Val Ala Gly Phe
     20

```

75

<210> 36
 <211> 24
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: synthetic
 construct

<400> 36
 Met Gly Gly Cys Arg Gly Asp Met Phe Gly Cys Gly Ala Pro Pro Lys
 1 5 10 15
 Lys Lys Arg Lys Val Ala Gly Phe
 20

<210> 37
 <211> 225
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: synthetic
 construct

<220>
 <221> CDS
 <222> (4) .. (225)

<400> 37
 cat atg gag cca gta gat cct aga cta gag ccc tgg aag cat cca gga 48
 Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly
 1 5 10 15
 agt cag cct aaa act gct tgt acc aat tgc tat tgt aaa aag tgt tgc 96
 Ser Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys
 20 25 30
 ttt cat tgc caa gtt tgt ttc ata aca aaa gcc ctt ggc atc tcc tat 144
 Phe His Cys Gln Val Cys Phe Ile Thr Lys Ala Leu Gly Ile Ser Tyr
 35 40 45
 ggc agg aag aag cgg aga cag cga cga aga cct cct caa ggc agt cag 192
 Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln
 50 55 60
 act cat caa gtt tct cta agt aag caa gga ttc 225
 Thr His Gln Val Ser Leu Ser Lys Gln Gly Phe
 65 70

<210> 38
 <211> 74

<212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: synthetic
 construct

 <400> 38
 Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
 1 5 10 15

 Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe
 20 25 30

 His Cys Gln Val Cys Phe Ile Thr Lys Ala Leu Gly Ile Ser Tyr Gly
 35 40 45

 Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln Thr
 50 55 60

 His Gln Val Ser Leu Ser Lys Gln Gly Phe
 65 70

<210> 39
 <211> 912
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: synthetic
 construct

 <220>
 <221> CDS
 <222> (4)...(912)

 <400> 39
 cat atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg 48
 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro
 1 5 10 15

 cgc gat gag tac gag gat ctg tac acc ccg tct tca ggt atg gcg 96
 Arg Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala
 20 25 30

 agt ccc gat agt ccg cct gac acc tcc cgc cgt ggc gcc cta cag aca 144
 Ser Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr
 35 40 45

 cgc tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gac gag tcg 192
 Arg Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser
 50 55 60

 gat tat gcc ctc tac ggg ggc tcg tca tcc gaa gac gac gaa cac ccg 240
 Asp Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro
 65 70 75

gag gtc ccc cgg acg cgg cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc		288
Glu Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly		
80	85	90
95		
ccg ggg cct gcg cgg gcg cct ccg cca ccc gct ggg tcc gga ggg gcc		336
Pro Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala		
100	105	110
Gly Arg Thr Pro Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val		
115	120	125
gga cgc aca ccc acc acc gcc ccc cgg gcc ccc cga acc cag cgg gtg		384
Gly Arg Thr Pro Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val		
115	120	125
gcg act aag gcc ccc gcg gcc ccg gcg gag acc acc cgc ggc agg		432
Ala Thr Lys Ala Pro Ala Ala Pro Ala Glu Thr Thr Arg Gly Arg		
130	135	140
Lys Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser		
145	150	155
aaa tcg gcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc gcg tcg		480
Lys Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser		
145	150	155
acg gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag		528
Thr Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys		
160	165	170
175		
ctg cac ttt agc acc gcc ccc cca aac ccc gac gcg cca tgg acc ccc		576
Leu His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro		
180	185	190
cgg gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc		624
Arg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg		
195	200	205
ctg gcg gcc atg cat gcc cgg atg gcg gcg gtc cag ctc tgg gac atg		672
Leu Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met		
210	215	220
tcg cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc		720
Ser Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr		
225	230	235
acc atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cgc gcc		768
Thr Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala		
240	245	250
255		
aac gag ttg gtg aat cca gac gtg gtg cag gac gtc gac gcg gcc acg		816
Asn Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr		
260	265	270
gcg act cga ggg cgt tct gcg gcg tcg cgc ccc acc gag cga cct cga		864
Ala Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg		
275	280	285
gcc cca gcc cgc tcc gct tct cgc ccc aga cgg ccc gtc gag gaa ttc		912
Ala Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Glu Phe		
290	295	300

<210> 40
<211> 303
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
construct

<400> 40																
Met	Thr	Ser	Arg	Arg	Ser	Val	Lys	Ser	Gly	Pro	Arg	Glu	Val	Pro	Arg	
1						5				10				15		
Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser																
						20				25				30		
Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg																
						35				40				45		
Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp																
						50				55				60		
Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu																
						65				70				75		80
Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro																
						85				90				95		
Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly																
						100				105				110		
Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala																
						115				120				125		
Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys																
						130				135				140		
Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr																
						145				150				155		160
Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu																
						165				170				175		
His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg																
						180				185				190		
Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu																
						195				200				205		
Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser																
						210				215				220		
Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr																
						225				230				235		240
Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn																
						245				250				255		

Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala
 260 265 270

Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala
 275 280 285

Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Glu Phe
 290 295 300

<210> 41
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
 construct

<220>
<221> CDS
<222> (4)..(120)

<400> 41 48
cat atg gac gtc gac gcg gcc acg gcg act cga ggg cgt tct gcg gcg
 Met Asp Val Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala
 1 5 10 15

tcg cgc ccc acc gag cga cct cga gcc cca gcc cgc tcc gct tct cgc 96
 Ser Arg Pro Thr Glu Arg Pro Arg Ala Pro Ala Arg Ser Ala Ser Arg
 20 25 30

ccc aga cgg ccc gtc gag gaa ttc 120
 Pro Arg Arg Pro Val Glu Glu Phe
 35

<210> 42
<211> 39
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
 construct

<400> 42
Met Asp Val Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala Ser
 1 5 10 15

Arg Pro Thr Glu Arg Pro Arg Ala Pro Ala Arg Ser Ala Ser Arg Pro
 20 25 30

Arg Arg Pro Val Glu Glu Phe
 35

<210> 43
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 43
aggaggtgga tctgc 15

<210> 44
<211> 6
<212> PRT
<213> Mus musculus

<400> 44
Glu Arg Met Arg Arg Pro
1 5

<210> 45
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: consensus sequence

<400> 45
Glu Arg Met Pro Pro Arg Arg Asp
1 5

<210> 46
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: cross-species conserved motif

<220>
<221> MOD_RES
<222> (6)
<223> Variable amino acid

<400> 46
Leu Ile Ser Pro Pro Xaa Ser Pro
1 5

<210> 47
<211> 4

```
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: calcineurin antagonist
      peptide fragment

<220>
<221> MOD_RES
<222> (4)
<223> Any amino acid residue other than Ser or Thr

<400> 47
Arg Arg Pro Xaa
1

<210> 48
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: calcineurin antagonist
      peptide fragment

<220>
<221> MOD_RES
<222> (4)
<223> Ala, Gly or Glu

<400> 48
Arg Arg Pro Xaa
1

<210> 49
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: calcineurin antagonist
      peptide fragment

<400> 49
Arg Arg Pro Glu
1
```