# INTEGRATED CIRCUITS

# DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# 74HC/HCT14 Hex inverting Schmitt trigger

Product specification
File under Integrated Circuits, IC06

September 1993





**74HC/HCT14** 

### **FEATURES**

· Output capability: standard

I<sub>CC</sub> category: SSI

### **GENERAL DESCRIPTION**

The 74HC/HCT14 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT14 provide six inverting buffers with Schmitt-trigger action. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

### **QUICK REFERENCE DATA**

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ 

| SYMBOL                              | PARAMETER                              | CONDITIONS                                  | TYF | UNIT |      |  |
|-------------------------------------|----------------------------------------|---------------------------------------------|-----|------|------|--|
| STIVIBOL                            | PARAMETER                              | CONDITIONS                                  | нс  | нст  | UNII |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay nA to nY             | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 12  | 17   | ns   |  |
| Cı                                  | input capacitance                      |                                             | 3.5 | 3.5  | pF   |  |
| C <sub>PD</sub>                     | power dissipation capacitance per gate | notes 1 and 2                               | 7   | 8    | pF   |  |

### **Notes**

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f<sub>i</sub> = input frequency in MHz

 $f_0$  = output frequency in MHz

C<sub>L</sub> = output load capacitance in pF

V<sub>CC</sub> = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ 

2. For HC the condition is  $V_I$  = GND to  $V_{CC}$ For HCT the condition is  $V_I$  = GND to  $V_{CC}$  – 1.5 V

# **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

# 74HC/HCT14

# **PIN DESCRIPTION**

| PIN NO.            | SYMBOL          | NAME AND FUNCTION       |
|--------------------|-----------------|-------------------------|
| 1, 3, 5, 9, 11, 13 | 1A to 6A        | data inputs             |
| 2, 4, 6, 8, 10, 12 | 1Y to 6Y        | data outputs            |
| 7                  | GND             | ground (0 V)            |
| 14                 | V <sub>CC</sub> | positive supply voltage |











Fig.5 Logic diagram (one Schmitt trigger).

# **FUNCTION TABLE**

| INPUT | OUTPUT |
|-------|--------|
| nA    | nY     |
| L     | Н      |
| Н     | L      |

### **Notes**

H = HIGH voltage level
 L = LOW voltage level

# **APPLICATIONS**

- Wave and pulse shapers
- · Astable multivibrators
- Monostable multivibrators

74HC/HCT14

# DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I<sub>CC</sub> category: SSI

# **Transfer characteristics for 74HC**

Voltages are referenced to GND (ground = 0 V)

|                  |                                                     | T <sub>amb</sub> (°C) |                      |                      |                     |                      |                     |                      |      | TEST CONDITIONS        |              |
|------------------|-----------------------------------------------------|-----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|------|------------------------|--------------|
| CVMBOL           | PARAMETER                                           |                       | 74HC                 |                      |                     |                      |                     |                      |      |                        |              |
| SYMBOL           | PARAMETER                                           |                       | +25                  |                      | -40                 | to +85               | −40 t               | o +125               | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS    |
|                  |                                                     | min.                  | typ.                 | max.                 | min.                | max.                 | min.                | max.                 |      |                        |              |
| V <sub>T</sub> + | positive-going<br>threshold                         | 0.7<br>1.7<br>2.1     | 1.18<br>2.38<br>3.14 | 1.5<br>3.15<br>4.2   | 0.7<br>1.7<br>2.1   | 1.5<br>3.15<br>4.2   | 0.7<br>1.7<br>2.1   | 1.5<br>3.15<br>4.2   | V    | 2.0<br>4.5<br>6.0      | Figs 6 and 7 |
| V <sub>T</sub> - | negative-going<br>threshold                         | 0.3<br>0.9<br>1.2     | 0.52<br>1.40<br>1.89 | 0.90<br>2.00<br>2.60 | 0.3<br>0.90<br>1.20 | 0.90<br>2.00<br>2.60 | 0.30<br>0.90<br>1.2 | 0.90<br>2.00<br>2.60 | V    | 2.0<br>4.5<br>6.0      | Figs 6 and 7 |
| V <sub>H</sub>   | hysteresis<br>(V <sub>T</sub> + - V <sub>T</sub> -) | 0.2<br>0.4<br>0.6     | 0.66<br>0.98<br>1.25 | 1.0<br>1.4<br>1.6    | 0.2<br>0.4<br>0.6   | 1.0<br>1.4<br>1.6    | 0.2<br>0.4<br>0.6   | 1.0<br>1.4<br>1.6    | V    | 2.0<br>4.5<br>6.0      | Figs 6 and 7 |

# **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 \ V; \ t_f = t_f = 6 \ ns; \ C_L = 50 \ pF$ 

| SYMBOL                              |                               |      |                | T <sub>amb</sub> (° | C)   |                 |       | TEST CONDITIONS |       |                        |           |
|-------------------------------------|-------------------------------|------|----------------|---------------------|------|-----------------|-------|-----------------|-------|------------------------|-----------|
|                                     | PARAMETER                     |      |                |                     | 74HC | ;               |       |                 | LINUT |                        |           |
|                                     | PARAMETER                     |      | +25            |                     | -40  | to +85          | −40 t | o +125          | UNIT  | V <sub>CC</sub><br>(V) | WAVEFORMS |
|                                     |                               | min. | typ.           | max.                | min. | max.            | min.  | max.            |       |                        |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>nA to nY |      | 41<br>15<br>12 | 125<br>25<br>21     |      | 155<br>31<br>26 |       | 190<br>38<br>32 | ns    | 2.0<br>4.5<br>6.0      | Fig.8     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time        |      | 19<br>7<br>6   | 75<br>15<br>13      |      | 95<br>19<br>15  |       | 110<br>22<br>19 | ns    | 2.0<br>4.5<br>6.0      | Fig.8     |

74HC/HCT14

# DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard

I<sub>CC</sub> category: SSI

### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications.

To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT | UNIT LOAD COEFFICIENT |
|-------|-----------------------|
| nA    | 0.3                   |

### **Transfer characteristics for 74HCT**

Voltages are referenced to GND (ground = 0 V)

| SYMBOL           |                                                    |            |              |            | T <sub>amb</sub> (° | C)         |            |            |      | TEST CONDITIONS        |              |  |
|------------------|----------------------------------------------------|------------|--------------|------------|---------------------|------------|------------|------------|------|------------------------|--------------|--|
|                  | PARAMETER                                          |            |              |            | 74HC                | Т          |            |            |      |                        |              |  |
|                  | PARAMETER                                          |            | +25          |            | -40                 | to +85     | −40 t      | o +125     | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS    |  |
|                  |                                                    | min.       | typ.         | max.       | min.                | max.       | min.       | max.       |      | (-,                    |              |  |
| V <sub>T</sub> + | positive-going threshold                           | 1.2<br>1.4 | 1.41<br>1.59 | 1.9<br>2.1 | 1.2<br>1.4          | 1.9<br>2.1 | 1.2<br>1.4 | 1.9<br>2.1 | V    | 4.5<br>5.5             | Figs 6 and 7 |  |
| V <sub>T</sub> - | negative-going threshold                           | 0.5<br>0.6 | 0.85<br>0.99 | 1.2<br>1.4 | 0.5<br>0.6          | 1.2<br>1.4 | 0.5<br>0.6 | 1.2<br>1.4 | V    | 4.5<br>5.5             | Figs 6 and 7 |  |
| V <sub>H</sub>   | hysteresis<br>(V <sub>T</sub> + –V <sub>T</sub> –) | 0.4<br>0.4 | 0.56<br>0.60 |            | 0.4<br>0.4          |            | 0.4<br>0.4 |            | V    | 4.5<br>5.5             | Figs 6 and 7 |  |

# **AC CHARACTERISTICS FOR 74HCT**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              |                             |      |      | •    | T <sub>amb</sub> (° | C)     |       |        |       | TEST CONDITIONS        |           |
|-------------------------------------|-----------------------------|------|------|------|---------------------|--------|-------|--------|-------|------------------------|-----------|
|                                     | PARAMETER                   |      |      |      | 74HC                | Т      |       |        | LINIT |                        |           |
|                                     | PARAWEIER                   |      | +25  |      | -40                 | to +85 | −40 t | o +125 | UNIT  | V <sub>CC</sub><br>(V) | WAVEFORMS |
|                                     |                             | min. | typ. | max. | min.                | max.   | min.  | max.   |       |                        |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay nA, to nY |      | 20   | 34   |                     | 43     |       | 51     | ns    | 4.5                    | Fig.8     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time      |      | 7    | 15   |                     | 19     |       | 22     | ns    | 4.5                    | Fig.8     |

# 74HC/HCT14

# TRANSFER CHARACTERISTIC WAVEFORMS







Fig.8 Typical HC transfer characteristics;  $V_{CC} = 2 \text{ V}$ .



Fig.9 Typical HC transfer characteristics;  $V_{CC} = 4.5 \text{ V}$ .



Fig.10 Typical HC transfer characteristics;  $V_{CC} = 6 \text{ V}$ .



Fig.11 Typical HCT transfer characteristics;  $V_{CC} = 4.5 \text{ V}$ .

Philips Semiconductors Product specification

# Hex inverting Schmitt trigger

# 74HC/HCT14



Fig.12 Typical HCT transfer characteristics;  $V_{CC} = 5.5 \text{ V}$ .

# **AC WAVEFORMS**



Fig.13 Waveforms showing the input (nA) to output (nY) propagation delays and output transitions times.

# 74HC/HCT14

### **APPLICATION INFORMATION**

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

$$P_{ad} = f_i \times (t_r \times I_{CCa} + t_f \times I_{CCa}) \times V_{CC}.$$

### Where:

 $P_{ad}$  = additional power dissipation ( $\mu W$ )

f<sub>i</sub> = input frequency (MHz)

 $t_r$  = input rise time ( $\mu$ s); 10% – 90%  $t_f$  = input fall time ( $\mu$ s); 10% – 90%

 $I_{CCa}$  = average additional supply current ( $\mu A$ )

Average  $I_{\text{CCa}}$  differs with positive or negative input transitions, as shown in Figs 14 and 15.



Fig.14 Average I $_{CC}$  for HC Schmitt trigger devices; linear change of V $_i$  between 0.1 V $_{CC}$  to 0.9 V $_{CC}$ 



Fig.15 Average  $I_{CC}$  for HCT Schmitt trigger devices; linear change of  $V_i$  between 0.1  $V_{CC}$  to 0.9  $V_{CC}$ .

HC/HCT14 used in a relaxation oscillator circuit, see Fig.16.



Fig.16 Relaxation oscillator using HC/HCT14.

# **Note to Application information**

All values given are typical unless otherwise specified.

### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".