

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطن للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: 2024

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

"ختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التعرين الأول: (40 نقاط)

يحتوي كيس على 11 كريّة متماثلة لا نفرّق بينها باللمس موزعة كما يلي: كريّتان بيضاوان مرقمتان بد: 1 ، 3 وأربع كريّات حصراء مرقمة بد: 0 ، 1 ، 1 ، 3 ، 4 ، 6 وخمس كريّات خضراء مرقمة بد: 0 ، 1 ، 1 ، 3 ، 4

I) نسحب عشوائيا وفي آن واحد 3 كريّات من الكيس ونعتبر الحوادث الآتية:

" : " الحصول على 3 كريّات من نفس اللون " ، ق : " الحصول على 3 كريّات جُداء أرقامها عدد فردي " : " الحصول على 3 كريّات جُداء أرقامها عدد زوجي "

$$P(C)$$
 احسب (A) اح

- $P_{\Lambda}(B)$ با احسب الاحتمال الشرطي (عا
- 2) 🗶 المتغيّر العشوائي الذي يرفق بكل عملية سحب لثلاث كريّات، عدد الكريّات التي تحمل رقما زوجيا.
 - E(X) عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي ا
 - (X>1) احسب احتمال الحادثة
 - الآن من الكيس عشوائيا 3 كريّات على التوالي وبدون إرجاع.
 - احسب احتمال الحادثة D: " الحصول على 3 كريّات جُداء أرقامها معدوم "

التمرين الثاني: (04 نقاط)

 $^{\kappa}\lambda$

I) حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول Z الآتية:

$$(z-1+2\sqrt{3})[z^2-2(1-\sqrt{3})z+5-2\sqrt{3}]=0$$

C و B ، A نعتبر النقط B ، A المعلم المتعامد والمتجانس (0; \overline{u} , \overline{v}) ، نعتبر النقط $Z_C = \overline{Z_A}$ و $Z_B = 1 - 2\sqrt{3}$ ، $Z_A = 1 - \sqrt{3} + i$ التي لاحقاتها على الترتيب Z_B ، Z_A و $Z_C = \overline{Z_A}$ و $Z_C = \overline{Z_A}$.

اكتب كلّا من $z_{N}-1$ ، $z_{N}-1$ و z_{B} على الشكل المثلثي.

- $\{(A;1),(B;-1),(C;1)\}$ مرجح الجملة المثقلة D مرجح الجملة (2
 - بين أن الرياعي ABCD معين.

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

التمرين الثالث: (05 نقاط)

$$u_{n+1} = \frac{4-u_n}{2+u_n}$$
 ، n و من أجل كن عدد طبيعي $u_0 = 0$: المنتالية العددية المعرّفة ب $u_0 = 0$

$$0 \le u_n \le 2$$
 ، n عدد طبيعي u_2 ، u_1 احسب الحدود u_1 عدد u_2 ، u_1 عدد طبيعي (1

$$v_n = \frac{u_n - 1}{u_n + 4}$$
 : \mathbb{N} ... \mathbb{N} ...

$$n$$
 اثبت أنّ المتتالية (v_n) هندسية أساسها $-\frac{2}{3}$ شاكت أنّ المتتالية (v_n) هندسية أساسها

$$\lim_{n\to+\infty} u_n$$
 ثم احسب $u_n = \frac{5}{1-v_n} - 4$ ، n عدد طبيعي بين انه: من اجل كل عدد طبيعي بين انه:

3) من أجل كل عدد طبيعي n ، نضع:

$$T_n = \frac{1}{4 + u_n} + \frac{1}{4 + u_{n+1}} + \dots + \frac{1}{4 + u_{n+2024}}$$
 $S_n = v_n + v_{n+1} + \dots + v_{n+2024}$

n بدلالة T_n بدلالة n ثمّ استنتج S_n بدلالة -

التمرين الرابع: (07 نقاط)

 $g(x) = x e^{-x+1} - 2$... $\mathbb R$ يَمثَلُ الجدول المقابِل تغيّرات الدّالة g المعرّفة على $\mathbb R$ يـ: g(x)

$$g(x)$$
 ثمّ استنتج إشارة $g(1)$ مثم استنتج إشارة $g(x) = -2x + 3 - x e^{-x+1}$ بنالة المعرّفة على $f(x) = -2x + 3 - x e^{-x+1}$

(C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(0; \overline{i}, \overline{j})$ ، (وحدة الطول (c_f)

$$\lim_{x\to +\infty} f(x) \cdot \lim_{x\to -\infty} f(x)$$
 الحسب (1)

$$+\infty$$
 عند (C_f) مقارب مائل للمنحني (Δ) ذا المعادلة $y=-2x+3$ مقارب مائل للمنحني (Δ) عند (Δ) عند (Δ) بيّن أنّ الدرس الوضع النسبي للمنحني (C_f) والمستقيم (Δ)

$$f'(x) = g(x) - e^{-x+1}$$
 ، x من اجل كل عدد حقيقي (١ (2

ب) استنتج اتجاه تغيّر الدّالة ﴿ ثُمَّ شُكِّل جدول تغيّراتها.

له. (
$$C_f$$
) موازیا له (Δ) ، يُطلب تعيين معادلة له.

$$(C_f)$$
 (T) (Δ) (I)

ب) عين بيانيا قيم الوسيط الحقيقي
$$m$$
 التي من أجلها تقبل المعادلة $f(x) = -2x + m$ حلين مختلفين .

$$\int_0^1 x e^{-x+1} dx = e^{-2}$$
 : أ باستعمال المكاملة بالتجزئة، بيّن أنّ (5)

ب) استنتج بالسنتيمتر المربع
$$f$$
 مساحة الحيّز المستوي المحدّد بـ (C_f) والمستقيمين اللذين

$$x=1$$
 , $x=0$:

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

الموضوع الثانى

التمرين الأول: (04 نقاط)

يحتوي كيس على 5 قطع كهريانية غير متمايزة ولا نغرق بينها باللمس، منها 3 قطع سليمة وقطعتان غير سليمتين. نرمز إلى القطعة السليمة بالزمز ك. وإلى القطعة غير السليمة بالزمز 5

نسحب عشوائيا من الكيس 3 قطع على التوالي مع الإرجاع ، ونعتبر الحوادث:

" القطعة الأولى المسحوية سليمة " ، B " سحب قطعة واحدة فقط سليمة A

" القطعة الثالثة المسحوية سليمة " : C

- 1) شكّل شجرة الاحتمالات التي تُتمذج هذه التجرية.
- $P(C)=\frac{3}{5}$: احسب A و B ثمّ بين ان P(B) ، P(A) احتمالي الحادثتين P(B) ، P(A)
 - ? احسب الاحتمال الشرطي $P_{C}(A)$ ، هل الحادثتان A و A مستقلتان $P_{C}(A)$
- 4) نُرفق بكل قطعة سليمة العدد 10 ويكل قطعة غير سليمة العدد 10 ، ونعتبر X المتغير العشواني الذي يرفق بكل عملية سحب من الكيس لثلاث قطع مجموع الأعداد المرفقة بها.
 - أ) برّد أنّ قيم المتغير العشوائي X هي: 30- ، 10 ، 10 ، 30
 - E(X) عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي E(X)

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة مع التبرير في كل حالة مما يلى:

z+i عدد مركب مرافقه \overline{z} ، مرافق العدد المركب z+i هو:

$$z-i$$
 (\Rightarrow $\overline{z}+i$ (\Rightarrow $\overline{z}-i$ (\overline{z}

$$-1$$
 (ج i (ب i (ب i) يساوي: $(\frac{1+i}{1-i})^{2024}$ يساوي: (2

 $z=2(1+i\sqrt{3})$ عدد مرکب حیث z (3

، نضع: $S_n = \ln |z| + \ln |z|^2 + \dots + \ln |z|^n$ ، نضع: $S_n = \ln |z| + \ln |z|^2 + \dots + \ln |z|^n$ ، لاينا:

$$S_n = 2\left(\frac{1-(2\ln 2)^n}{1-2\ln 2}\right)\ln 2$$
 (\Rightarrow $S_n = n(n+1)\ln 2$ (\Rightarrow $S_n = (n+1)^2\ln 2$ (\Rightarrow

 $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ الشكل المثاثي للعدد المركب $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ عدد مركب حيث:

$$\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8} \quad (\Rightarrow \qquad \cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \quad (\Rightarrow \qquad -\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} +$$

التمرين الثالث: (05 نقاط)

$$f(x) = \frac{x+1}{2x}$$
 : الذَّالة العددية المعرّفة على المجال $f(x) = \frac{x+1}{2x}$ كما يلي: $f(x) = \frac{x+1}{2x}$

$$\frac{1}{2} < f(x) \le \frac{3}{4}$$
 فإنّ $[2;+\infty[$ من أجل كان x من أجل أجدول تغيرات الدّالة f ثمّ استنتج أنّه من أجل كان x من

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

$$u_n=rac{n}{2^n}$$
 : $n\geq 2$ ، n عدد طبیعی $n\geq 2$ ، $n\geq 2$ ب برای المتتالیة العددیة المعرّفة من أجل كل عدد طبیعی (u_n) (2 $rac{u_{n+1}}{u_n}\leq rac{3}{4}$ فإنّ $n\geq 2$ ، \mathbb{N} من $n\geq 2$ ، $n\geq 2$ هر المتتالیة العددیة المعرّفة من أجل كل n من $n\geq 2$ ، $n\geq 2$ ، $n\geq 2$.

$$\lim_{n\to+\infty}u_n$$
 ثم المنتج $u_n\leq \frac{1}{2} imes \left(rac{3}{4}
ight)^{n-2}$ فإن $n\geq 2$ ، $\mathbb N$ من n من n

$$S_n = \frac{u_2}{2} + \frac{u_3}{3} + \dots + \frac{u_n}{n}$$
: $n \ge 2$ ، \mathbb{N} من $n \ge 2$

$$S_n = \frac{511}{1024}$$
 يكون n حتى يكون $S_n = \frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^{n-1} \right)$ - بيّن أنّ:

التمرين الرابع: (07 نقاط)

. الذَّالة المعرَّفة على
$$]0;+\infty[$$
 كما يلي: $g(x)=rac{1}{2}x^3+rac{1}{2}-lnx$ عما في الشَّكل و $g(x)=rac{1}{2}x^3+rac{1}{2}-lnx$

- بقراءة بيانية ، عين إشارة (g(x)

$$f(x)=-x-rac{\ln x}{x^2}$$
 بالذالة المعزفة على $f(x)=-x-rac{\ln x}{x^2}$ بين $f(x)=-x-rac{\ln x}{x^2}$

تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد (C_f)

والمتجانس (O; i, j) ، (وحدة الطول 2cm).

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to +\infty}} f(x)$$

$$f'(x) = \frac{-2g(x)}{x^3}$$
 ا بين اله من أجل كل x من $x = -2g(x)$ فإنّ (1) (2)

ب) استنتج اتجاه تغير الدّالة f ثمُ شكّل جدول تغيراتها.

$$0.7 < \alpha < 0.71$$
 حيث α حيث α تقبل حلا وحيدا α حيث α

د) ا) بين أنّ المنحني
$$(C_f)$$
 يقبل مستقيما مقاربا مائلا (Δ) ، يطلب تعيين معادلة له.

$$(\Delta)$$
 ادرس الوضع النسبي للمنحني (c_r) والمستقيم

.4 بين أنّ المنحني
$$(C_r)$$
 يقبل مماسا (T) معامل توجيهه (C_r) يطلب تعيين معادلة له.

$$(C_f)$$
 و (T) ، (Δ) ارسم کلا من (T)

ب)
$$m$$
 وسيط حقيقي، عين بيانيا قيم m التي من أجلها تقبل المعادلة: $m = \frac{\ln x}{x^2}$ حلين مختلفين.

$$]0;+\infty[$$
 على $h:x\mapsto \frac{\ln x}{x^2}$ على $H:x\mapsto \frac{-1-\ln x}{x}$ على) أثبت أنّ الدّالة $H:x\mapsto \frac{-1-\ln x}{x}$ على) (أ (6

ب
$$A(\alpha)$$
 المساحة بالسنتيمتر المربع للحيّز المستوي المحدّد بالمنحنى والمستقيمات $A(\alpha)$

$$x=1$$
 ، $x=\alpha$ ، $y=-x$ التي معاد لاتها:

$$\mathcal{A}(\alpha) = 4\left(\alpha^2 - \frac{1}{\alpha} + 1\right)$$
 : بین آن

