Our Results

- **Theorem**: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using $\varepsilon^{-2} \log d$ bits of space and $O(\log d)$ update time
 - Valid only for $\varepsilon < 1/d^c$
 - Improves on $O(\log^2 d \log \log d)$ update time of [KNPW '11]
- Many other results for CountSketch, $||x||_{\infty}$ estimation etc.

Main Ideas

- PRGs used to derandomize streaming algorithms ⇒ slow update times
- A new PRG with a symmetry property and space-time tradeoff
- Carefully analyze which parts of existing algorithms need to be derandomized
 - Symmetry of the PRG lets us derandomize CountSketch with small space
 - Space-vs-time tradeoff lets us get fast update times!