Exercice 1. En tenant compte des contraintes du milieu naturel dans le- Exercice 2. Calculer les limites suivantes : quel évoluent les insectes, des biologistes modélisent le nombre d'insectes à l'aide de la suite (v_n) , définie par :

 $v_0 = 0.5$ et, pour tout entier naturel n, $v_{n+1} = 1.6v_n - 1.6v_n^2$,

où, pour tout entier naturel n, v_n est le nombre d'insectes, exprimé en millions, au bout de *n* mois.

- 1. Déterminer le nombre d'insectes au bout d'un mois.
- 2. On considère la fonction f définie sur l'intervalle $\left[0; \frac{1}{2}\right]$ par

$$f(x) = 1,6x-1,6x^2$$
.

- (a) Résoudre l'équation f(x) = x.
- (b) Montrer que la fonction f est croissante sur l'intervalle $\left[0; \frac{1}{2}\right]$.
- (a) Montrer par récurrence que, pour tout entier naturel *n*,

$$0\leqslant v_{n+1}\leqslant v_n\leqslant \frac{1}{2}.$$

- (b) Montrer que la suite (v_n) est convergente. On note ℓ la valeur de sa limite. On admet que ℓ est solution de l'équation f(x) = x.
- (c) Déterminer la valeur de ℓ et interpréter ce résultat dans le contexte de l'exercice.

1.
$$\lim_{n \to +\infty} -2n^2 + 4n + 5$$

2.
$$\lim_{n \to +\infty} 5 \left(\frac{12}{13}\right)^n + 200$$

$$3. \lim_{n \to +\infty} 4n - \sqrt{n}$$

$$4. \lim_{n \to +\infty} 14^n + \cos(2n)$$

5.
$$\lim_{n \to +\infty} 2(-1)^n - n$$