AG217 PORTFOLIO MANAGEMENT & SECURITY ANALYSIS COURSEWORK SUMMARY

LEWIS BRITTON

Academic Year 2018/2019

Table of Contents

1	Var	⁷ ariables				
2	Mea	nn Variance Analysis	2			
	2.1	Expected Return	2			
		2.1.1 Two-Asset Portfolio	2			
		2.1.2 Generalised Infinite-Asset Portfolio	2			
		2.1.3 Two-Asset Portfolio w/ Risk-Free Asset	2			
	2.2	Variance & Standard Deviation as Risk Measures	2			
		2.2.1 Two-Asset Portfolio	2			
		2.2.2 Risk-Free Asset Portfolio	2			
		2.2.3 Using the 1/N Strategy	2			
	2.3	Correlation & Covariance	2			
		2.3.1 Correlation	2			
		2.3.2 Covariance	3			
	2.4	Optimal Weights in 0-Risk & Perfect Negative Correlation	3			
	2.5	Inputs	3			
		2.5.1 Variance	3			
		2.5.2 Covariance	3			
3	Asset Pricing 4					
	3.1	Abnormal Return	4			
	3.2	Expected Return	4			
		3.2.1 Recall the $\mathbf{R_f}$ Tangent to the Efficient Frontier	4			
		3.2.2 Capital Market Line (CML)	4			
		3.2.3 Security Market Line (SML)	4			
	3.3	Beta Values	4			
		3.3.1 Assets	4			
		3.3.2 Portfolios	4			
4	Bond Pricing					
	4.1	Price	5			
	4.2	Current	5			
	4.3	Yield to Maturity	5			
	4.4	Spot Rates	5			
		4.4.1 Price of Bond Using Spot Rates	5			

	4.4.2	Spot Rates	. 5
	4.4.3	Expected Spot Rates	. 6
	4.4.4	Forward Rates	. 6
4.5	Durat	tion of Bond	. 6
	4.5.1	Basic Duration	. 6
	4.5.2	Modified Duration	. 6
4.6	Conve	exity of Bond	. 6
4.7	Unexp	pected Return	. 6
	4.7.1	With Duration	. 6
	4.7.2	With Duration & Convexity	. 6

1 Variables

```
N = Number of Assets
t = Time
P = Portfolio
f = Risk-Free Asset
m = Market
i = Asset i
E(R)_i = Expected Return on asset i
w_i = Weight of Asset i
(1 - w_i) = Weight of Asset k
\sigma_i = Std.Dev (Risk) of Asset i
\sigma_{\rm i}^2 = Variance (Risk) of Asset i
\rho_{i,k} = Correlation of Assets i and k
cov_{i,k} = Covariance of Assets i and k
In = Number of Input Values
\beta_{i} = Beta Value of Asset i (Sensitivity of Asset i to Another)
\alpha_i = Abnormal Return of Asset i (Residuals' Distance from SML)
P_t = Price at Time t
CF_t = Cash Flow (Or Coupon) at Time t (Final Year of Bond: CF_t = (CF_t + fv))
y = Yield to Maturity
fv = Face Value of Bond
Y = Current Yield
S_{0,t}= Annualised Spot Rate Between Time 0 and Time t
\frac{S_{0,t}}{2} = Semi-Annual Spot Rate Between Time 0 and Time t
E(S_{t1,t2}) = Expected Spot Rate Between Time 1 and Time 2
f_{t1,t2} = Forward Rate Between Time 1 and Time 2
i = Interest Rate (Can = y)
D = Duration
D_A = Modified Duration
C = Convexity
R_u = Unexpected Return
```

2 Mean Variance Analysis

2.1 Expected Return

2.1.1 Two-Asset Portfolio

$$E(R)_P = w_x E(R)_x + w_y E(R)_y$$

2.1.2 Generalised Infinite-Asset Portfolio

$$E(R)_P = \sum_{i=1}^{N} w_i E(R)_i$$

2.1.3 Two-Asset Portfolio w/ Risk-Free Asset

$$E(R)_{P} = w_{f}R_{f} + w_{m}E(R)_{m}$$

2.2 Variance & Standard Deviation as Risk Measures

2.2.1 Two-Asset Portfolio

$$\sigma_P^2 = w_x^2 \sigma_x^2 + w_y^2 \sigma_y^2 + 2 w_x w_y cov_{x,y}$$

2.2.2 Risk-Free Asset Portfolio

$$\sigma_P^2 = w_m^2 \sigma_m^2$$

$$\sigma_{\rm f} = 0$$

$$\therefore cov_{\rm x,y} = 0$$

2.2.3 Using the 1/N Strategy

$$\sigma_{P}^{2}=\left(\frac{1}{N}\right)\sigma^{2}+\left(\frac{N-1}{N}\right)cov$$

2.3 Correlation & Covariance

2.3.1 Correlation

$$\rho_{x,y} = \frac{\text{cov}_{x,y}}{\sigma_x \sigma_y}$$

2.3.2 Covariance

$$cov_{x,y} = \sigma_x \sigma_y \rho_{x,y}$$

Where:

 $\rho = 1$: Perfect Positive Correlation (Together)

 $\rho=-1 \colon \text{Perfect Negative Correlation (Apart)}$

 $\rho = 0$: No Correlation

2.4 Optimal Weights in 0-Risk & Perfect Negative Correlation

Perfect Negative Correlation: $\rho = -1$

Yields a 0-Risk Portfolio: $\sigma_{\rm P}^2=0$

$$w_x = \frac{\sigma_y}{\sigma_x + \sigma_y}$$

$$w_y = \frac{\sigma_x}{\sigma_x + \sigma_y}$$

2.5 Inputs

2.5.1 Variance

$$\mathrm{In}_{\sigma_{i}^{2}}=N$$

2.5.2 Covariance

$$In_{cov} = N\left(\frac{N-1}{2}\right)$$

3 Asset Pricing

3.1 Abnormal Return

$$\alpha_{\rm P} = R_{\rm P} - E(R)_{\rm P}$$

3.2 Expected Return

3.2.1 Recall the R_f Tangent to the Efficient Frontier

$$E(R)_P = R_f + \sigma_P \left(\frac{E(R)_m - R_f}{\sigma_m} \right)$$

3.2.2 Capital Market Line (CML)

$$E(R)_P = R_f + w_m \left(E(R)_m - R_f \right)$$

3.2.3 Security Market Line (SML)

$$E(R)_i = R_f + \beta_i (E(R)_m - R_f)$$

Where:

 $(E(R)_m - R_f) = Market Risk Premium$

 $\beta=1$: Tracking Market Folio

 $\beta \neq 1$: Actively Investing

 $\beta > 1$: Aggressively Investing (Expect Market Folio Increase)

 β < 1: Defensively Investing (Expect Market Folio Decrease)

3.3 Beta Values

3.3.1 Assets

$$\beta_i = \frac{cov_{i,m}}{\sigma_m^2}$$

3.3.2 Portfolios

$$\beta_{P} = \sum_{i=1}^{N} w_{i} \beta_{i}$$

4 Bond Pricing

4.1 Price

$$P_0 = \sum_{t=1}^N \frac{CF_t}{(1+y)^t}$$

4.2Current

$$Y = \frac{CF}{P_0}$$

Yield to Maturity 4.3

Step 1

Find upper and lower limites of P varying by y

Step 2

Conclude 1% ΔY gives: $(P_{upper}-P_{lower})=\Delta P_{1\%\Delta y}$

$$\Delta y_{req} = \frac{P_{upper} - P_0}{\Delta P_{1\%\Delta y}}$$
 Step 4

Convert $y_{\rm upper}$ to % and add (+) number from Step 3

- 4.4 **Spot Rates**
- Price of Bond Using Spot Rates 4.4.1

$$P_0 = \frac{CF}{\left(1 + \frac{S_{0,t}}{2}\right)^t}$$

4.4.2**Spot Rates**

$$S_{0,t} = 2\left(\left(\frac{CF}{P_0}\right)^{\frac{1}{t}} - 1\right)$$

Where:

Spot rates are semi-annual (e.g. 1 period (t = 1) means 6 months)

4.4.3 Expected Spot Rates

$$E(S)_{t1,t2} = 2 \left(\frac{\left(1 + \frac{S_{0,t2}}{2}\right)^{t2}}{\left(1 + \frac{S_{0,t1}}{2}\right)^{t1}} - 1 \right)$$

4.4.4 Forward Rates

$$E(S)_{t1,t2} = f_{t1,t2}$$

4.5 Duration of Bond

4.5.1 Basic Duration

$$D = \frac{\sum t \left(\frac{CF_t}{(1+i)^t}\right)}{P_0}$$

4.5.2 Modified Duration

$$D_A = \frac{D}{(1+i)}$$

Where:

Duration (years) captures sensitivity of a bond to Δi

4.6 Convexity of Bond

$$C = \frac{1}{2} \left(\frac{\sum t(t+1) \left(\frac{CF_t}{(1+i)^t} \right)}{P_0} \right)$$

4.7 Unexpected Return

4.7.1 With Duration

$$R_u = -D_A \Delta i$$

4.7.2 With Duration & Convexity

$$R_{uw/C} = -D_A \Delta i + C(\Delta i)^2$$

Where:

Unexpected return is represented as a percentage (%)