Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	$C = a_1^T a_1 + C$
7	$\left\{ C = A_0^T A_0 + a_1^T a_1 + \widehat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	{
4	where
2	\{
3	while do
2,3	\ \ \
5a	where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	{

Step	Algorithm: $[C] := SYRK_AC_UNB_VAR2(A, C)$
1a	$\{C = \widehat{C}\}$
4	where
2	 {
3	while do
2,3	\ \ \
5a	where
6	{
8	
7	{
5b	
2	\{
	endwhile
2,3	{
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$ }

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	$\{C = \widehat{C}$
4	where
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \right.$
5a	where
6	{
8	
7	{
5b	
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} \qquad \qquad \right\}$
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg () \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	where
6	\
8	
7	\
5b	
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	where
6	\{
8	
7	{
5b	
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	${C = \widehat{C}}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
6	{
8	
7	{
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{\frac{a_1^T}{A_2}}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	${C = \widehat{C}}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
6	$\left\{ \qquad C = A_0^T A_0 + \widehat{C} $
8	
7	{
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{ C = A_T^T A_T + \widehat{C} \right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	
7	$\left\{ C = A_0^T A_0 + a_1^T a_1 + \widehat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
2	$\left\{C = A_T^T A_T + \widehat{C}\right\}$
3	while $m(A_T) < m(A)$ do
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge m(A_T) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
6	$\left\{ C = A_0^T A_0 + \widehat{C} \right\}$
8	$C = a_1^T a_1 + C$
7	$\left\{ C = A_0^T A_0 + a_1^T a_1 + \widehat{C} \right\}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
2	$\left\{ \qquad C = A_T^T A_T + \widehat{C} $
	endwhile
2,3	$\left\{ C = A_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A)) \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Algorithm: $[C] := \text{SYRK_AC_UNB_VAR2}(A, C)$
$A \to \left(\frac{A_T}{A_B}\right)$ where A_T has 0 rows
while $m(A_T) < m(A)$ do
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right) $ where a_1 has 1 row
$C = a_1^T a_1 + C$
$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$
endwhile

$\textbf{Algorithm:} \ [C] := \texttt{SYRK_AC_UNB_VAR2}(A,C)$

$$A o \left(\frac{A_T}{A_B}\right)$$

where A_T has 0 rows

while $m(A_T) < m(A)$ do

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right)$$

$$A_2$$

where a_1 has 1 row

$$C = a_1^T a_1 + C$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right)$$

endwhile