Lecture 3 Artificial Intelligence

Khola Naseem khola.naseem@uet.edu.pk

- ➤ Why search?
- Early works of AI was mainly towards
 - > proving theorems
 - > solving puzzles
 - playing games
- > All AI is search!
 - ➤ Not totally true (obviously) but more true than you might think.
- ➤ All life is problem solving !!
 - ➤ Finding a good/best solution to a problem amongst many possible solutions.

- The simplest agents **Simple reflex agents**, which base their actions on a direct mapping from states to actions.
- Such agents cannot operate well in environments for which this mapping would be too large to store and would take too long to learn
- ➤ **Goal-based agents**, on the other hand, consider future actions and the desirability of their outcomes.
- ➤ Therefore, Goal-based agents is used

≥3*3*3 Rubik's Cube

≥8 Puzzle problem

2	1	3		1	2	3
4	7	6		4	5	6
5	8			7	8	

≥8 Puzzle problem

- ➤ N-Queens:
- ➤ Problem of placing n chess queens on an n×n chessboard so that no two queens attack each other
- A solution requires that no two queens share the same row, column, or diagonal

• 5-Queens:

• 5-Queens:

• 5-Queens:

Map searching (navigation)

- ➤ Problem-solving agent:
 - ➤ Is a kind of goal-based agent
- ➤ It solves problem by
 - Finding sequences of actions that lead to desirable states (goals)
- ➤ To solve a problem,
 - > the first step is the goal formulation, based on the current situation

- ➤ The goal is formulated
 - > as a set of world states, in which the goal is satisfied
- > Reaching from initial state to goal state
- >Actions are required
 - > Actions are the operators
 - > causing transitions between world states

The Problem formulation

- > The process of deciding
 - > what actions and states to consider
- E.g., driving Main campus to Ksk
- in-between states and actions defined
- > States: Some places between main campus & Ksk
- ➤ Actions: Turn left, Turn right, go straight, accelerate & brake, etc

Why searching is important:

- ➤ Because there are many ways to achieve the same goal
- > the agent can examine different possible sequences of actions, and choose the best
- The process of looking for a sequence of actions that reaches the goal is called search
- The best sequence is then a list of actions, called solution
- ➤ Once a solution is found, the actions it recommends can be carried out. This EXECUTION is called the execution phase.

- Example: Romania map
- ➤ Goal: Go to Bucharest from Arad

- ➤ A problem can be defined formally by five components:
 - ➤ Initial state
 - > Actions
 - > Transition model or (Successor functions)
 - ➤ Goal Test
 - > Path Cost

➤ Initial state:

The initial state that the agent starts in. For example, the initial state for our agent in Romania might be described as In(Arad).

>Action:

- A description of the possible actions available to the agent. Given a particular state s, ACTIONS(s) returns the set of actions that can be executed in s. We say that each of these actions is applicable in s.
- For example, from the state In(Arad), the applicable actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}.

>TRANSITION MODEL:

- A description of what each action does; the formal name for this is the transition. TRANSITION MODEL model, specified by a function RESULT(s, a) that returns the state that results from SUCCESSOR doing action a in state s.
- > We also use the term successor to refer to any state reachable from a given state by a single action.
- For example, we have RESULT(In(Arad),Go(Zerind)) = In(Zerind).

>State space :

- Together, the initial state, actions, and transition model implicitly define the **state space** of the problem
- > the set of all states reachable from the initial state by any sequence of actions.

>Path:

A path in the state space is a sequence of states connected by a sequence of actions.

Goal test

- The goal test, which determines whether a given state is a goal state.
- Sometimes there is an explicit set of possible goal states, and the test simply checks whether the given state is one of them.
- The agent's goal in Romania is the singleton set {In(Bucharest)}

Well-defined problems and solutions: path cost:

- ➤ Is a function
- >assigns a numeric cost to each path
- >= performance measure
- >denoted by g
- ➤ to distinguish the best path from others
- > Usually the path cost is the sum of the step costs of the individual actions

> Solution:

A solution to a problem is an action sequence that leads from the initial state to a goal state.

> OPTIMAL SOLUTION

Solution quality is measured by the OPTIMAL SOLUTION path cost function, and an optimal solution has the lowest path cost among all solutions

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

- ➤ Formulate goal:
 - ▶ be in Bucharest
- > Formulate problem:
 - > states: various cities
 - > actions: drive between cities
- Find solution:
 - > sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

➤ A simple problem-solving agent first formulates a goal and a problem, searches for a sequence of actions that would solve the problem, and then executes the actions one at a time.

When this is complete, it formulates another goal and starts over.