Université du Québec à Montréal

INF4500

Examen intra

Par : Guillaume Lahaie LAHG04077707

 $Remis~\grave{a}~:$ Abdoulaye Baniré Diallo

Date de remise : Le 9 décembre 2013

Table des matières

1	Introduction	2
2	Produisez une analyse sommaire de ces contigs en présentant la distribution des tailles et taux de GC	3
3	Identifiez les annotations Genbank de ces contigs et présentez les dans une table contenant les colonnes : contigs, numéros Accession, description, uniref id	6
	a Numéros d'accessions et description	6
	b Uniref	6
	c Construction du tableau	7
4	Identifiez les contigs qui corderaient pour des protéines et donnez une table de ceux-ci, contenant contig, numéros d'Accession, Uniref, séquences protéiques	15
5	Groupez ces contigs par gènes. Présentez un table des gènes obtenus et des contigs associés	17
6	Identifiez la position des introns dans ces gènes. Illustrez cette cartographie pour chaque gène	19
7	Conclusion	36
8	Annexes	38
	1 Tableau de la taille et du taux de GC des contigs	38

1 Introduction

Le but de ce travail est d'annoter des contigs du génome du blé. Nous n'avons pas d'information concernant la provenance de ces contigs, ou même l'espèce exacte de provenance. Afin de pouvoir fournir une information pertinente, j'ai tout d'abord recherché ce qui est connu concernant le génome du blé.

J'ai tout d'abord cherché à connaître l'état d'avancement des travaux de séquençage du blé. Pour ce faire, j'ai consulté la base de données des génomes de NCBI [1]. On y apprend des informations de base sur le génome du blé. On y apprend que le génome du blé a une taille de 16000 Mb distribué en 21 chromosomes. De plus, les chromosomes ont une forme allohexaploid composée de trois sous-génomes. La nature hexaploid de son génome a ralenti les efforts de séquençage.

Une première référence de génome du blé a été créée avec l'espèce Triticum urartu [2]. Ce génome est toutefois celui d'un progéniteur du Triticum aestivum, il peut être utile pour aider à améliorer le génome du blé.

On peut obtenir une information plus complète concernant l'avancement du séquençage du Triticum aestivum sur le site du International Wheat Genome Sequencing Consortium. On y retrouve deux projets parallèles : en premier lieu, un projet de survey sequencing, afin de produire un contenu de gène potentiel et un ordre de gène virtuel [3]. Un autre projet en cours est de produire une séquence de référence pour le génome du Triticum aestivum [4]. Ce projet semble être à ses débuts, car il semble être en cours d'obtention de financement.

D'autres bases de données offrent de l'information à propos du génome du blé, par exemple CerealsDB [5], ayant un génome de travail du blé. Il y a aussi beaucoup d'autres projets, considérant la place importante occupée par le blé dans l'agriculture moderne.

Basé sur ces informations, j'ai décidé de concentrer mes recherches pour l'annotation des contigs fournis sur les données déjà connues du génome du blé. Je vais donc seulement garder les résultats de Blast provenant du Triticum aestivum. Bien sûr, il s'agit ici d'une première étape de recherche, il serait ensuite possible d'élargir la recherche pour identifier des zones fonctionnelles possibles des contigs, ce qui ne sera pas fait dans ce travail.

Avant de commencer le travail d'annotation, j'ai d'abord jeté un coup sur les informations de qualité des contigs donnés. Pour la majorité des contigs, la qualité est assez basse, avec des scores autour de 10 à 15. Cela pourrait s'expliquer par la longueur de ces contigs. Quoi qu'il en soit, c'est une information à retenir tout au long du travail.

2 Produisez une analyse sommaire de ces contigs en présentant la distribution des tailles et taux de GC

Afin de compiler et de représenter la taille et le taux de GC des contigs produits par CAP3, j'ai écrit un script python (question1.py) permettant d'extraire les informations du fichier seq.data.cap.contigs. Le fichier contient 346 contigs.

Le script produit deux types de graphiques, à l'aide de gnuplot. Le premier type est un histogramme, un pour la taille des contigs, et un pour le taux de GC des contigs. On peut alors remarquer la distribution de ces valeurs. Voici les deux histogrammes :

J'ai ensuite produit deux graphiques permettant de visualiser différemment ces résultats. On peut y retrouver la moyenne de taille, la moyenne de taux de GC, ainsi que les contigs se situant en haut ou en bas ce cette moyenne. On peut aussi voir les valeurs exactes dans le tableau en annexe 1

La taille moyenne des 346 contigs est de 109 nucléotides, avec un taux de GC moyen de 42,96%. Ce taux semble indiquer une prépondérance de région non-codante dans les contigs, car généralement les séquences codantes ont un taux de GC supérieur aux séquences non-codantes [6].

Figure 1 – Histogramme de la taille des contigs

FIGURE 2 – Histogramme du taux de GC des contigs

Figure 3 – Nuage de points de la taille des contigs

FIGURE 4 – Nuage de points du taux de GC des contigs

3 Identifiez les annotations Genbank de ces contigs et présentez les dans une table contenant les colonnes : contigs, numéros Accession, description, uniref id

a Numéros d'accessions et description

Pour trouver les annotations Genbank des contigs, j'ai tout d'abord effectué un blast de chaque contig sur la base de données nr/nt de NCBI [10]. J'ai utilisé le script biopython question2.py pour effectuer tous les blasts, et enregistrer les résultats.

En examinant les résultats de façon sommaire, on remarque une très grande différence entre la qualité des résultats. Certains ont des E-value très haute, alors que certains ont des valeurs indiquant un résultat de haute qualité. On peut s'attendre à cela, considérant la grande variabilité des contigs.

Pour traiter les contigs selon leur taille, je calcule la valeur médiane des E-value pour les contigs plus petits que la taille moyenne. Je fais le même exercice pour les contigs plus grands que la moyenne. Pour le moment, je m'intéresse au meilleur résultat obtenu seulement pour la médiane.

Comme mentionné en introduction, comme cette analyse s'intéresse seulement au contigs ayant des résultats pour le Triticum, je ne considère pas dans mes résultats les valeurs de blast pour des espèces différentes du blé. Je prends donc, dans les résultats de blast, le premier correspondant à un match avec le blé.

J'ai enregistré les résultats dans les fichiers evalue_lower.txt et evalue_higher.txt, à l'aide du script q2_meanEvalue.py. On peut remarquer que la grande majorité des résultats obtenus ont des E-values de bonne qualité, avec un ordre de grandeur permettant d'avoir une grande confiance dans le hit. Basé sur ces données, je garderai donc tous les résultats, peu importe la taille du contig, ayant une E-value plus petite que 0.01.

Afin d'obtenir les données de numéro d'accession, j'ai modifié le script précédent pour créer un fichier associant le numéro du contig avec le hit gardé (pour le moment, je garde seulement le premier hit de blé du résultat), avec le numéro d'accession et la description du hit. Ces données sont gardées seulement si le hit correspond aux exigences de E-value et de description de hit.

b Uniref

Pour obtenir un Uniref [11] pour les contigs retenus, j'ai ensuite utilisé le module bioservices de python permettant de se connecter au service idmapping de uniprot, pour trouver les identifiants uniref des contigs conservés.

Des 223 contigs restant, 113 ont obtenu des résultats de mapping. Avant de sortir les résultats, j'ai vérifié le format des données obtenues par ce mapping. Pour certains contigs, un seul résultat est obtenu, alors que pour certains, on obtient plusieurs mappings différents. Les fichiers XML ne comprennent aucune information concernant le meilleur résultat, toutefois le service REST utilisé pour le mapping demande de trier les résultats selon le meilleur score.

Afin de vérifier le résultat, j'ai tenté de blaster un des contigs directement sur la base de données Uniref100, sur le site http://www.uniprot.org. Le résultat a été surprenant. J'ai utilisé le contig 2 comme essai, et le blastx sur Uniref100 n'a retourné aucun hit. Afin de confirmer ce résultat, j'ai effectué le même blastx en utilisant le service d'EBI et en blastant sur toutes les bases de données de protéines de uniprot. J'ai obtenu le même résultat.

Je crois que ce résutat est dû au mécanisme de mapping. Comme nous avons pu le constater à la questions 1, la plupart des contigs donnés ont une longueur moyenne de 109 nucléotides. Toutefois, le numéro d'accession donnée pour effectuer le id mapping peut correspondre à une très longue séquence. C'est le cas du numéro d'accession pour le contig 2, il s'agit en fait d'un chromosome complet du blé, ce qui explique les nombreux résultats du mapping.

J'ai donc décidé de procéder différemment pour obtenir les identifiants uniref correspondant spécifiquement au contig. J'ai effectué un blastx directement sur la base de données uniref100 pour chaque contig. Pour ce faire, j'ai utilisé le script q2_ebi.py. Encore une fois, j'ai utilisé le module bioservices de python pour cette tâche.

J'ai ensuite vérifier les résultats des blasts pour les contigs retenus précédemment. J'ai appliqué le même filtre : je vérifie tout d'abord si la description du résultat est pour le blé, et ensuite si le E-value correspond à une valeur acceptable. Je prends la même valeur que pour les numéros d'accession genbank : 0.01.

Après avoir appliqué ce filtre, il me reste 70 contigs pour lesquels j'ai un numéro d'accession genbank et un numéro uniref.

c Construction du tableau

Comme j'utilise latex pour la rédaction de mon rapport, j'ai écrit un script afin de combiner les informations de mes différents scripts dans un tableau que je peux insérer directement dans mon fichier latex (q2_tableau.py).

Le tableau créé rassemble les informations des 223 contigs ayant un résultat de blast pour le blé. Les informations pour les autres contigs n'est pas présenté. Pour ces contigs, j'indique aussi le uniref trouvé, si une valeur correspondante existe.

Contig	Accession	Description	Uniref - EBI
2	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig	
		ctg0954b.	
3	EF109232	Triticum aestivum strain CRB-INRA-CFD-13471 malate dehydroge-	
		nase (Mdh4B) gene, partial cds.	
4	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig	
		ctg0954b.	
5	AK331959	Triticum aestivum cDNA, clone : WT002_M17, cultivar : Chinese	UniRef100_M7YGL9
		Spring.	
6	AK332278	Triticum aestivum cDNA, clone : WT003_J14, cultivar : Chinese	
		Spring.	
7	AK335464	Triticum aestivum cDNA, clone : WT012_P12, cultivar : Chinese	
		Spring.	
10	JQ240472	Triticum urartu clones BAC 70G09, BAC 169L13, and BAC 78P09,	
		complete sequence.	
14	AK332744	Triticum aestivum cDNA, clone : WT004_M05, cultivar : Chinese	
		Spring.	

Contig	Accession	Description	Uniref - EBI		
16	AK332362	Triticum aestivum cDNA, clone : WT003_M19, cultivar : Chinese Spring.			
18	U73217	Triticum aestivum cold acclimation protein WCOR615 (Wcor615) mRNA, complete cds.			
21	DQ286562	Triticum aestivum putative lipid transfer protein mRNA, complete cds.			
22	KC816724	Triticum urartu cultivar G1812 clone BAC 288D18 chromosome 3AL, complete sequence.			
23	AK335482	Triticum aestivum cDNA, clone : WT013_A03, cultivar : Chinese Spring.			
24	AK330641	Triticum aestivum cDNA, clone : SET4_P05, cultivar : Chinese Spring.	UniRef100_M8ABV0		
25	AK331680	Triticum aestivum cDNA, clone : SET1_K05, cultivar : Chinese			
		Spring.			
26	AK332086	Triticum aestivum cDNA, clone : WT003_B19, cultivar : Chinese Spring.	UniRef100_M7YAN9		
27	EU660894	Triticum turgidum subsp. durum clone BAC 1053F12+1054I5 cytoso-			
		lic acetyl-CoA carboxylase (Acc-2) and putative amino acid permease genes, complete cds.			
29	BT008986	Triticum aestivum clone wdk2c.pk008.b17 :fis, full insert mRNA sequence.			
30	HQ596874	Triticum aestivum voucher AP212 trnH-psbA intergenic spacer, partial sequence; chloroplast.			
31	HQ391280	Triticum aestivum clone UCDTA01731 genomic sequence.	UniRef100_M8A3H2		
33	HE996560	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_58725.	UniRef100_D9CJA9		
34	HQ391329	Triticum aestivum clone UCDTA01780 genomic sequence.			
35	EU159424	Triticum turgidum haplotype B DNA repair protein Rad50 gene, complete cds.			
36	DQ251490	Triticum aestivum cultivar Chinese Spring powdery mildew resistance protein PM3CS (Pm3) gene, Pm3-CS allele, complete cds.			
37	KC290909	Triticum aestivum clone pTa-s309 FISH-positive repetitive sequence.	UniRef100_T1L6W5		
39	AJ318783	Triticum sp. partial mRNA for replication factor C, large subunit (rfc-1 gene).	UniRef100_Q8L6A5		
40	AK330233	Triticum aestivum cDNA, clone : SET3_P11, cultivar : Chinese Spring.	UniRef100_T1N886		
41	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.			
44	AJ784900	Triticum aestivum mRNA for type 1 non-specific lipid transfer protein precursor (ltp9.4 gene).			
46	AK330669	Triticum aestivum cDNA, clone : SET1_G08, cultivar : Chinese Spring.			
47	AK331428	Triticum aestivum cDNA, clone : WT007_H14, cultivar : Chinese Spring.	UniRef100_M8AEN7		
48	HE996767	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_66371.	UniRef100_M7Z3W8		
49	AK332525	Triticum aestivum cDNA, clone : SET1_N11, cultivar : Chinese Spring.			
51	AK331813	Spring. Triticum aestivum cDNA, clone : WT002_G19, cultivar : Chinese Spring.			
53	HE996642	Triticum aestivum cv. Arina SNP, chromosome 3B, clone UniRef100_T1M429 Taes_arina_ctg_60579.			
56	HQ390245	Triticum turgidum clone UCDTA00696 genomic sequence.			
57	FJ345689	Triticum aestivum MITE Tourist-3 MITE Islay Tourist, complete sequence.			
58	JF758499	Triticum aestivum clone BAC 425P7, complete sequence.	UniRef100_M7Z3R4		

Contig	Accession	Description	Uniref - EBI			
59	FN645450	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0011b.				
60	FN645450	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0011b.				
61	AK333585	Criticum aestivum cDNA, clone : WT006_N11, cultivar : Chinese UniRef100_M8A091 Cpring.				
63	FN564428	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0091b.				
67	AK332970	Triticum aestivum cDNA, clone : WT005_F05, cultivar : Chinese Spring.	UniRef100_M7YP29			
70	AK332566	Triticum aestivum cDNA, clone : WT004-E21, cultivar : Chinese Spring.				
71	AK334580	Triticum aestivum cDNA, clone : SET1_C02, cultivar : Chinese Spring.				
73	EU660896	Triticum urartu clone BAC 059G16 plastid acetyl-CoA carboxylase (Acc-1) gene, complete cds; nuclear gene for plastid product.	UniRef100_M7ZVV5			
74	KC912694	Triticum aestivum chloroplast, complete genome.				
75	AB238931	Triticum monococcum TmABI1 gene for protein phosphatase 2C, complete cds.	UniRef100_M7YVM1			
76	BT009089	Triticum aestivum clone wkm2c.pk0002.a3 :fis, full insert mRNA sequence.				
78	AK335897	Triticum aestivum cDNA, clone : SET2_L19, cultivar : Chinese Spring.	UniRef100_M7ZH67			
80	AK330275	Triticum aestivum cDNA, clone : SET4_A24, cultivar : Chinese Spring.				
81	HE996341	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_16989.				
84	JF758499	Triticum aestivum clone BAC 425P7, complete sequence.				
86	AK335765	Triticum aestivum cDNA, clone : WT013_L14, cultivar : Chinese Spring.	UniRef100_M7YZ42			
88	FN564432	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0616b.				
91	AM932681	Triticum aestivum 3B chromosome, clone BAC TA3B63B13.				
92	U76215	Triticum aestivum NBS-LRR type protein pseudogene, complete sequence.				
94	HE996549	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_58561.				
95	AY487917	Triticum aestivum Mla-like protein mRNA, partial cds.	UniRef100_Q6RW52			
96	KC912694	Triticum aestivum chloroplast, complete genome.	UniRef100_T1MEW5			
97	KC912694	Triticum aestivum chloroplast, complete genome.				
98	AK333621	Triticum aestivum cDNA, clone : WT006_O21, cultivar : Chinese Spring.				
99	KC912694	Triticum aestivum chloroplast, complete genome.				
100	AK333932	Triticum aestivum cDNA, clone : WT008_N17, cultivar : Chinese Spring.	UniRef100_T1N9G3			
101	AK331581	Triticum aestivum cDNA, clone : SET1_J20, cultivar : Chinese Spring.				
102	KC912694	Triticum aestivum chloroplast, complete genome.				
104	HQ391318	Triticum aestivum clone UCDTA01769 genomic sequence. UniRef100_T1MZT0				
105	HQ391224	Triticum aestivum clone UCDTA01675 genomic sequence. UniRef100_M7ZMV				
108	DQ286562	Triticum aestivum cione CCD ratio agenomic sequence. Cinterio and a complete cds.				
109	AK335062	Triticum aestivum cDNA, clone : WT011_P12, cultivar : Chinese UniRef100_M7ZAY8 Spring.				
110	KC152455	Triticum aestivum clone BAC321B14 MATE1B gene, complete cds.				
112	AK332529	Triticum aestivum cDNA, clone : WT004_D08, cultivar : Chinese Spring.	Triticum aestivum cDNA, clone : WT004_D08, cultivar : Chinese UniRef100_M7ZA56			
115	AY049041	Triticum aestivum 28S ribosomal RNA gene, partial sequence.	UniRef100_T1L6Y4			

Contig	Accession	Description	Uniref - EBI		
117	AK334519	Triticum aestivum cDNA, clone : WT010_C18, cultivar : Chinese Spring.			
119	AK333035	Triticum aestivum cDNA, clone : WT005_H19, cultivar : Chinese Spring.	UniRef100_Q9FT38		
120	CT009735	Triticum aestivum.			
121	HE996280	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_14118.	UniRef100_M8AZM6		
122	EU626553	Triticum urartu clone BAC 261N5, complete sequence.			
123	HQ391007	Triticum aestivum clone UCDTA01458 genomic sequence.			
125	KC912694	Triticum aestivum chloroplast, complete genome.	UniRef100_T1LKW9		
127	AK330423	Triticum aestivum cDNA, clone : SET4_G18, cultivar : Chinese Spring.	UniRef100_M8AIQ8		
131	HF541875	Triticum aestivum chromosome 3B specific BAC library, BAC clone TaaCsp3BFhA_0147D05.	UniRef100_M7ZGW4		
132	CT009735	Triticum aestivum.	UniRef100_T1LKM3		
135	HQ391329	Triticum aestivum clone UCDTA01780 genomic sequence.			
136	KC912694	Triticum aestivum chloroplast, complete genome.	UniRef100_M7ZC27		
137	AK332255	Triticum aestivum cDNA, clone : WT003_I14, cultivar : Chinese Spring.	UniRef100_M7YN64		
144	AK332897	Triticum aestivum cDNA, clone : WT005_C09, cultivar : Chinese Spring.			
146	EF219468	Triticum aestivum translationally-controlled tumor protein mRNA, complete cds.	UniRef100_M7YF70		
148	AJ001117	Triticum aestivum mRNA for sucrose synthase type I.			
150	AK330745	Triticum aestivum cDNA, clone : SET5_D06, cultivar : Chinese Spring.	UniRef100_M7YEA6		
151	AK335219	Triticum aestivum cDNA, clone : WT012_F19, cultivar : Chinese Spring.	UniRef100_M7ZDI5		
152	AK335725	Triticum aestivum cDNA, clone : SET2_K04, cultivar : Chinese Spring.	UniRef100_M7ZVF6		
153	BT009622	Triticum aestivum clone wre1n.pk0137.c12 :fis, full insert mRNA sequence.			
154	HE774675	Triticum aestivum chromosome arm 3DS-specific BAC library, contig ctg1484.			
157	FN564428	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0091b.			
158	EU626553	Triticum urartu clone BAC 261N5, complete sequence.			
159	DQ862833	Triticum monococcum S-adenosylhomocysteine hydrolase mRNA, partial cds.			
161	AK330639	Triticum aestivum cDNA, clone : SET4_P03, cultivar : Chinese Spring.			
162	KC912694	Triticum aestivum chloroplast, complete genome.	UniRef100_T1LKW9		
164	DQ432014	Triticum aestivum vacuolar proton-ATPase subunit A mRNA, complete cds.			
165	KC912694	Triticum aestivum chloroplast, complete genome.	UniRef100_T1LKW9		
166	EU835980	Triticum aestivum clone BAC 502E09, complete sequence.			
167	FN564426	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0005b.			
168	JF439307	Triticum aestivum cultivar Yang Mai 158 serine/threonine protein kinase Stpk-D (Stpk-D) gene, complete cds.			
171	KC175605	Triticum aestivum calcium-dependent protein kinase 3-like 1 mRNA, UniRef100_M1NQF6 partial cds.			
173	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.	Triticum aestivum chromosome 3B-specific BAC library, contig		
174	AK333177	Triticum aestivum cDNA, clone : WT005_N11, cultivar : Chinese Spring.			

Contig	Accession	Description	Uniref - EBI	
175	AJ132439	Triticum aestivum mRNA for protein encoded by lt1.1 gene, partial.		
176	AK331581	Triticum aestivum cDNA, clone : SET1_J20, cultivar : Chinese Spring.		
177	HQ390713	Triticum aestivum clone UCDTA01164 genomic sequence.		
179	EU660895	Triticum aestivum clone BAC 1825J10 cytosolic acetyl-CoA carboxy-		
		lase (Acc-2) and putative amino acid permeases genes, complete cds.		
180	FN564430	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0464b.		
181	FJ427399	Triticum turgidum clone BAC 738D05 chromosome 4B, partial sequence.		
182	DQ537336	Triticum aestivum clones BAC 1289J04; BAC 1001P20, complete sequence.		
184	AK330153	Triticum aestivum cDNA, clone : SET3_M02, cultivar : Chinese Spring.		
185	JX040632	Triticum turgidum subsp. durum x Secale cereale glutamine synthetase I (GSI) mRNA, complete cds.	UniRef100_M7ZP85	
187	AY951945	Triticum monococcum TmBAC 60J11 FR-Am2 locus, genomic se-		
193	AK332664	quence. Triticum aestivum cDNA, clone : WT004_I22, cultivar : Chinese Spring.		
194	AK330641	Triticum aestivum cDNA, clone : SET4_P05, cultivar : Chinese Spring.	UniRef100_T1MAM1	
195	HE774676	Triticum aestivum chromosome arm 3DS-specific BAC library, contig ctg447.		
197	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.		
198	AK334078	Triticum aestivum cDNA, clone : WT009_E03, cultivar : Chinese Spring.		
199	AM502900	Triticum aestivum mRNA for MIKC-type MADS-box transcription factor WM30 (WM30 gene).		
201	AK331183	Triticum aestivum cDNA, clone : SET6_K07, cultivar : Chinese Spring.		
203	AK331090	Triticum aestivum cDNA, clone : SET6_A20, cultivar : Chinese Spring.		
206	FN564430	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0464b.		
208	FJ345689	Triticum aestivum MITE Tourist-3 MITE Islay Tourist, complete sequence.		
211	GU817319	Triticum aestivum clone BAC_2383A24 chromosome 3B, complete sequence.		
213	AK333846	Triticum aestivum cDNA, clone : WT008_O20, cultivar : Chinese Spring.	UniRef100_M7YLY4	
216	AP013106	Triticum timopheevii mitochondrial DNA, complete sequence.		
217	AK332920	Triticum aestivum cDNA, clone : WT005_D07, cultivar : Chinese Spring.		
221	AK334145	Triticum aestivum cDNA, clone : WT009_O11, cultivar : Chinese Spring.		
222	KC912694	Triticum aestivum chloroplast, complete genome. UniRef100_T1Lk		
224	GU817319	Triticum aestivum clone BAC_2383A24 chromosome 3B, complete se-		
225	FR820619	quence. Triticum turgidum subsp. durum partial mRNA for td3ITN1 protein		
226	AK334286	Triticum turgidum subsp. durum partial mRNA for td3ITN1 protein. Triticum aestivum cDNA, clone: WT009_F09, cultivar: Chinese		
227	AK332238	Spring. Triticum aestivum cDNA, clone : WT003_H22, cultivar : Chinese UniRef100_M7. Spring.		
228	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.		

Contig	Accession	Description	Uniref - EBI	
229	HQ391114	Triticum aestivum clone UCDTA01565 genomic sequence.		
231	GU211169	Triticum aestivum clone 09d3 gliadin/avenin-like seed protein mRNA, complete cds.	UniRef100_D2KFH0	
233	AF532601	Triticum aestivum multidrug resistance associated protein MRP2 mRNA, complete cds.	UniRef100_M7ZK96	
235	AF389882	Triticum aestivum clone PAAC-SCGCA5 AFLP sequence.	UniRef100_T1LCX9	
236	AK333949	Triticum aestivum cDNA, clone : WT008_P23, cultivar : Chinese Spring.		
238	FN564428	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0091b.		
239	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.		
240	HQ435325	Triticum aestivum clone BAC 1J9 Tmemb_185A domain-containing protein (1J9.1), EamA domain-containing protein (1J9.2), and Rht-D1b (Rht-D1b) genes, complete cds, complete sequence.	UniRef100_M7ZYV2	
242	HQ390774	Triticum aestivum clone UCDTA01225 genomic sequence.	UniRef100_M7ZSC0	
243	AK330263	Triticum aestivum cDNA, clone : SET4_A13, cultivar : Chinese Spring.		
244	HQ391044	Triticum aestivum clone UCDTA01495 genomic sequence.		
245	FN564430	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0464b.		
247	KC912694	Triticum aestivum chloroplast, complete genome.		
250	FN564430	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0464b.		
251	DQ537335	Triticum aestivum clones BAC 1031P08; BAC 754K10; BAC 1344C16, complete sequence.		
252	AK335757	Triticum aestivum cDNA, clone : WT013_L07, cultivar : Chinese Spring.		
253	FJ225148	Triticum aestivum ferritin 2A gene, complete cds.		
254	HE774676	Triticum aestivum chromosome arm 3DS-specific BAC library, contig ctg447.		
255	AP013106	Triticum timopheevii mitochondrial DNA, complete sequence.		
256	FN645450	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0011b.		
257	AK332440	Triticum aestivum cDNA, clone : WT003_P20, cultivar : Chinese Spring.		
258	AK333064	Triticum aestivum cDNA, clone : WT005_I23, cultivar : Chinese Spring.		
259	AK332804	Triticum aestivum cDNA, clone : WT004_O17, cultivar : Chinese Spring.		
260	FN645450	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0011b.		
261	AK335863	Triticum aestivum cDNA, clone : WT013_P13, cultivar : Chinese Spring.	UniRef100_M7YYG6	
262	AB646974	Triticum aestivum PRR gene for pseudo-response regulator, complete cds, allele: Ppd-B1a.1.		
263	GU817319	Triticum aestivum clone BAC_2383A24 chromosome 3B, complete sequence.		
264	AK332413	Triticum aestivum cDNA, clone : WT003_O18, cultivar : Chinese UniRef100_M7ZI Spring.		
265	FJ427399	Triticum turgidum clone BAC 738D05 chromosome 4B, partial sequence.		
266	DQ154924	Triticum turgidum RAB7 (RAB7) gene, exons 1, 2 and partial cds; and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) gene, complete cds.		

Contig	Accession	Description	Uniref - EBI		
267	FN564433	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0661b.			
268	AK334924	Triticum aestivum cDNA, clone : WT011_I02, cultivar : Chinese Spring.			
269	AK334063	Triticum aestivum cDNA, clone : WT009_A23, cultivar : Chinese UniRef100_M7YK Spring.			
270	AY465427	Triticum turgidum subsp. durum putative C3H2C3 RING-finger protein (6G2) gene, complete cds.			
271	DQ167201	Triticum aestivum eukaryotic translation initiation factor 5A1 gene, complete cds.			
274	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.			
275	GU817319	Triticum aestivum clone BAC_2383A24 chromosome 3B, complete sequence.			
276	AK330938	Triticum aestivum cDNA, clone : SET5_K22, cultivar : Chinese Spring.	UniRef100_M7ZJN7		
277	GQ409824	Triticum turgidum subsp. durum cultivar Langdon clone BAC 406B11, complete sequence.			
278	JF946486	Triticum aestivum transposon TREP 3040_Harbinger, complete sequence; pseudo-response regulator (Ppd-B1) gene, Ppd-B1a allele, complete cds; and retrotransposon Gypsy TREP 3457_Danae, complete sequence.	UniRef100_M8B455		
279	JF701619	Triticum aestivum cultivar Chinese Spring clone BAC CS12224M17_A, complete sequence.			
280	AK334173	Triticum aestivum cDNA, clone : WT009_C16, cultivar : Chinese Spring.			
281	KF282629	Triticum aestivum cultivar Chinese Spring clone BAC 351D1 chromosome 4A DELLA protein (Rht-A) gene, complete cds, complete sequence.			
284	AK332097	Triticum aestivum cDNA, clone : WT003_C06, cultivar : Chinese Spring.			
286	EU626553	Triticum urartu clone BAC 261N5, complete sequence.			
287	BT009432	Triticum aestivum clone wlmk1.pk0037.b8 :fis, full insert mRNA sequence.	UniRef100_M7YEM7		
289	FN564432	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0616b.			
290	AK335883	Triticum aestivum cDNA, clone : SET2_L04, cultivar : Chinese Spring.			
292	HE774676	Triticum aestivum chromosome arm 3DS-specific BAC library, contig ctg447.			
293	AB238931	Triticum monococcum TmABI1 gene for protein phosphatase 2C, complete cds.			
294	JQ269664	Triticum aestivum cultivar WL 711 betaine aldehyde dehydrogenasellike protein mRNA, partial cds.			
296	AK335270	Triticum aestivum cDNA, clone : WT012_H16, cultivar : Chinese Spring.			
297	AY968588	Triticum aestivum ice recrystallization inhibition protein 1 precursor, mRNA, complete cds.			
300	AK332508	Triticum aestivum cDNA, clone : WT004_C11, cultivar : Chinese UniRef100_M7ZMZ Spring.			
301	DQ537335	Triticum aestivum clones BAC 1031P08; BAC 754K10; BAC 1344C16, complete sequence.			
302	KC912694	Triticum aestivum chloroplast, complete genome.			
303	GU211251	Triticum aestivum pyruvate dehydrogenase E1 component alpha subunit (PDHA1) gene, partial cds.			
306	JF261156	Triticum monococcum cultivar DV92 Mla1 gene, complete cds.			

Contig	Accession	Description	Uniref - EBI		
307	AK335953	Triticum aestivum cDNA, clone : SET1_C22, cultivar : Chinese Spring.	UniRef100_M8A0S9		
308	KC912694	Triticum aestivum chloroplast, complete genome.			
309	HQ821868	Triticum aestivum cultivar Jasna glutamate dehydrogenase mRNA, complete cds.	UniRef100_E9NX12		
311	JF946486	Triticum aestivum transposon TREP 3040_Harbinger, complete sequence; pseudo-response regulator (Ppd-B1) gene, Ppd-B1a allele, complete cds; and retrotransposon Gypsy TREP 3457_Danae, complete sequence.			
312	AK335209	Triticum aestivum cDNA, clone : WT012_F09, cultivar : Chinese Spring.	UniRef100_Q41591		
313	AK336081	Triticum aestivum cDNA, clone : SET3_C24, cultivar : Chinese Spring.	UniRef100_M7YMK8		
314	AM932685	Triticum aestivum 3B chromosome, clone BAC TA3B95F5.			
316	GQ169688	Triticum aestivum plastid glutamine synthetase 2 (GS2) gene, GS2- D1a allele, complete cds; nuclear gene for plastid product.			
318	FN564428	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0091b.			
320	KC573058	Triticum monococcum subsp. monococcum cultivar DV92 Sr35 region, genomic sequence.			
321	HE996762	Triticum aestivum cv. Arina SNP, chromosome 3B, clone Taes_arina_ctg_66287.	UniRef100_M8A6Z7		
324	GQ409824	Triticum turgidum subsp. durum cultivar Langdon clone BAC 406B11, complete sequence.			
326	KC573058	Triticum monococcum subsp. monococcum cultivar DV92 Sr35 region, genomic sequence.	UniRef100_M7Z2V6		
327	BT009452	Triticum aestivum clone wlmk8.pk0022.f7 :fis, full insert mRNA sequence.			
328	HE774675	Triticum aestivum chromosome arm 3DS-specific BAC library, contig ctg1484.			
329	AM502905	Triticum aestivum mRNA for MIKC-type MADS-box transcription UniRef100_T1LUM factor WM32B (WM32B gene).			
330	AK334989	Triticum aestivum cDNA, clone : WT011_L15, cultivar : Chinese Spring.			
333	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.			
334	AK333292	Triticum aestivum cDNA, clone : WT006_B19, cultivar : Chinese Spring.	UniRef100_M7ZHG4		
336	BT009004	Triticum aestivum clone wdk2c.pk018.c16 :fis, full insert mRNA sequence.	UniRef100_Q8S9G0		
337	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.	UniRef100_M7YVM1		
339	AK335226	Triticum aestivum cDNA, clone : WT012_G01, cultivar : Chinese Spring.			
340	FN564434	Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.			
341	HQ435325	Triticum aestivum clone BAC 1J9 Tmemb_185A domain-containing protein (1J9.1), EamA domain-containing protein (1J9.2), and Rht-D1b (Rht-D1b) genes, complete cds, complete sequence.			
342	HQ390713	Triticum aestivum clone UCDTA01164 genomic sequence.	II ID GOODAFF		
344	AK336242 FN564434	Triticum aestivum cDNA, clone: SET1_E02, cultivar: Chinese Spring. Triticum aestivum chromosome 3B-specific BAC library, contig ctg0954b.	UniRef100_M8B455		

4 Identifiez les contigs qui corderaient pour des protéines et donnez une table de ceux-ci, contenant contig, numéros d'Accession, Uniref, séquences protéiques

Pour identifier les contigs qui coderaient en protéines, j'ai éxaminé de nouveau les résultats de blast choisis en numéro 2. Je vais chercher la position des hits dans les résultats retenus, pour ensuite vérifier dans les fichiers genbank si ces hits correspondent à une région codante d'un gène.

Tout d'abord, j'ai créé un script biopython permettant d'extraire les régions des hits pour le résultat choisi à la question précédente (q3_hits.py). Comme certains hits contiennent plusieurs séquences différentes, j'ai gardé chaque partie du résultat ayant un E-value plus petit que 0.01. Les résultats de ce script sont enregistrés dans le fichier hit_locations.txt.

J'ai ensuite vérifié si ces hits correspondent à une région codante dans les fichiers genbank obtenus à la question précédente. Pour ce faire, j'ai utilisé le script getCDS.py. Après un premier essai, 55 contigs des 223 restants feraient partie d'une région codante. Toutefois, pour 2 des résultats, la région codante trouvée ne contient pas d'information à propos de la séquence protéique obtenue. Par exemple, pour le contig 120, le CDS observé indique que la région codante correspond à un pseudogène qui n'est pas encore identifié.

Ce résultat est étonnant aussi car le blast des contigs sur la base de données Uniref100 a trouvé 70 résultats, donc on devrait s'attendre à un résultat similaire.

J'ai essayé d'autres approches afin d'identifier les gènes qui coderaient pour les protéines. J'ai tenté de faire des blastx des contigs sur chaque contig retenu à la question précédente, toutefois j'ai rencontré des problèmes techniques lors des blasts. Certains blasts prenaient trop de temps à effectuer, et NCBI retournait un message d'erreur. J'ai utilisé le script python q3_blastx.py pour tenter cette approche.

Finalement, j'ai préféré utilisé les résultats de la question précédente pour identifier les contigs qui coderaient pour des protéines. Comme j'ai déjà fait un blastx sur la base de données Uniref100, je considère donc que les contigs qui rencontrent les critères pour les résultats du blast à la question précédente sont ceux qui coderaient pour des protéines.

Dans le tableau des réstultats, la séquence protéique donnée est celle correspondante au hit obtenu de blastx. Donc, la séquence représentée est seulement une partie de la séquence représentative du cluster identifié par l'identifiant Uniref. Il serait possible de convertir l'identifiant uniref en identifiant Uniprot afin d'obtenir la séquence complète.

Voici le tableau des contigs qui coderaient pour des protéines :

Contig	Accession	Uniref	Séquence protéique
5	AK331959	UniRef100_M7YGL9	LMMQLLIRNEKDGILVPIPQYPLYSAS
24	AK330641	UniRef100_M8ABV0	DTSTAESGSEAEDVTSPKALRSYISHPKLTPVRE
26	AK332086	UniRef100_M7YAN9	VITDFMSQVGQGKRRALATNEWLRVPECD
31	HQ391280	UniRef100_M8A3H2	TYDSYAREKQIGGQLLLQTYKT
33	HE996560	UniRef100_D9CJA9	RKTMRIQALRCHVLYSHDGSKLNFIPV
37	KC290909	UniRef100_T1L6W5	LHRRPLRPGSRPGFCSGRRALLL
39	AJ318783	UniRef100_Q8L6A5	GMSAGDRGGVADLIASIKISKIPI

Contig	Accession	Uniref	Séquence protéique
40	AK330233	UniRef100_T1N886	ASIVFISSVSGVVAISSGSIYAMTKGAMNQL
47	AK331428	UniRef100_M8AEN7	TVIARGSAIRQDAVNKAKSFDER
48	HE996767	UniRef100_M7Z3W8	ITDFALYLVDPDADILKRRIALAAVDKLCISKLSDNFFAII
53	HE996642	UniRef100_T1M429	QEDDLQLIDGAMEYHDLVTP
58	JF758499	UniRef100_M7Z3R4	FSKYYSLRSELLVSNMDVSRTKIHLDTSISAT
61	AK333585	UniRef100_M8A091	GLHFLHSIPLIHMDLKPQNILLDDNMTPKIS
67	AK332970	UniRef100_M7YP29	PRLVEIFQRHNVLPPNAILSAGSANCACTAGGGQLYMWGKM
•			KTTGDDTMY
73	EU660896	UniRef100_M7ZVV5	HSGTLNESTNVGVKTGGPRIGGPEL
75	AB238931	UniRef100_M7YVM1	KRDVSRTNICLDTSRFIHFDNKYFQTD
78	AK335897	UniRef100_M7ZH67	GFCSRKLGGSALQEHDLLD
86	AK335765	UniRef100_M7YZ42	LKQTARLVYQTALMESGFNLPDPKDFASSIYRSV
95	AY487917	UniRef100_Q6RW52	WVAEGFVHHGNQGTSLFLLGLNYFNQLINR
96	KC912694	UniRef100_T1MEW5	KNYGRACYECLRGGLDFTKDDENVNSQPFMRWRDR
100	AK333932	UniRef100_T1N9G3	VFGDNYGDETTWNFDDQDTESVWGSNAMNEPGHHGS
104		UniRef100_T1MZT0	LLENGEDGFIYVGNAVNPATLEQIFGFSSLAGAPNLLALEQFD
104	HQ391318	UniRei100_11MZ10	NALSRK
105	HQ391224	UniRef100_M7ZMV6	ATRIFSNASGSYSSNVNLAVENASWTDEKQLQDM
109	AK335062	UniRef100_M7ZAY8	ELHALIIGINFEEIDFDKNDVVDKIMDDFD
112	AK332529	UniRef100_M7ZA56	EMAATFNVNAEAGLQKLDGYLLSRS
115	AY049041	UniRef100_T1L6Y4	PRTRRLSADCSSCSRGESGSPRAGRG
119	AK333035	UniRef100_Q9FT38	NGTPLAPNRIKDCRSYPLYQFVREVCGTEYLTGEKTRSPGEE
			LNKV
121	HE996280	UniRef100_M8AZM6	FYIAGESYGGHYVPQL
125	KC912694	UniRef100_T1LKW9	AGVFGGSLFSAMHGSLVTSSLIRETTENESAN
127	AK330423	UniRef100_M8AIQ8	NELILSDEDVVRFQIGEVFAHMPVDDVEA
131	HF541875	UniRef100_M7ZGW4	RAQQRLQEEGCVVDIKLFSGAVAGELLSAAY
132	CT009735	UniRef100_T1LKM3	GYMAPERIDEGIITPKSDIFSLGVIIMEI
136	KC912694	UniRef100_M7ZC27	ANRVALEACVQARNEGRDLAREGNEIIRAACKWSPEL
137	AK332255	UniRef100_M7YN64	ATGKTIMTAAAQMVKPVSLELGGKSPLVIFDDVAD
146	EF219468	UniRef100_M7YF70	NLSAKLEGDDLDAFKKNVESATKYLLSKLKDLQFFVGES
150	AK330745	UniRef100_M7YEA6	SFYTMKAVNNNVSRVSKLTT
151	AK335219	UniRef100_M7ZDI5	RHTIEGSDDMPAHIKSSMFGCALTI
152	AK335725	UniRef100_M7ZVF6	LCTDDIPISSATEEDRQL
162	KC912694	UniRef100_T1LKW9	AAWPVVGIWFTALGIST
165	KC912694	UniRef100_T1LKW9	FQYASFNNSRSLHFFLAAWPVVGIWFTALG
171	KC175605	UniRef100_M1NQF6	PLDITVISRMKQFRTMNKLKKVALKIVAESLSEEEIVG
185	JX040632	UniRef100_M7ZP85	VYRVLSAACEDGDLSIQEAIDAVEDIFRRN
194	AK330641	UniRef100_T1MAM1	PTRHDDYHMLLRFLKARKFDIEKAKQMWTDMLQWRKEYGT
134	7111000041	CHIRCHOOLI IMITIMI	DTI
213	AK333846	UniRef100_M7YLY4	PPCGKPASSRTRRCDSVQRDMVFITGEFQMMQAFIKAERVEN
222	KC912694	UniRef100_T1LKW9	LGISTMAFNLNGFNFNQSVVDSQGRVINTW
227	AK332238	UniRef100_M7ZLU3	TERAYKYRPLKVVEFDQPYPQCIAYLDLKRE
231	GU211169	UniRef100_D2KFH0	SRCLAINSVAHAIILHEQQQHQQQQQYSWGV
233	AF532601	UniRef100_M7ZK96	DEVRRKELKLDSPVVENGENWSVGQRQLVCLG
235	AF389882	UniRef100_T1LCX9	KGICEGLHYLHENHIVHLDLKPANILLDDNMVPKI
240		UniRef100_HTLCX9 UniRef100_M7ZYV2	NPVLKVMLLDHDEPTNYEEAMMSPDSDKWLEAMKSEIG
	HQ435325		
242	HQ390774	UniRef100_M7ZSC0	LSALAKYTQGFSGADITEICQRACKYAIREN
261	AK335863	UniRef100_M7YYG6	LLSFMMDDALTTGSIRSTDGEK
264	AK332413	UniRef100_M7ZIU6	FIAVIVCWIKEGDSKLFFLATIYALLGIPLSYLMWYRPLYRAM
0.00	A IZBO 10CC	II 'D GOO METATOS	R REDNILLED DAN BUDGHAD DEGLEG GUARDA GLEGO DAN DEGLEG
269	AK334063	UniRef100_M7YKC3	KPDNILLDDNMVPKIADFGLSKYFRAGLSFQNLDEH
276	AK330938	UniRef100_M7ZJN7	VDPVDVVSKLRKGWSASIDSVGPAKEP
278	JF946486	UniRef100_M8B455	YSIRLEILVLEMIVSRLILVIDTSILFNF

Contig	Accession	Uniref	Séquence protéique		
287	BT009432	UniRef100_M7YEM7	GSYGNLFRVFGSTPGSTEVTTLEASRNPMRRQ		
294	JQ269664	UniRef100_H9NAU5	AVIKVSEHASWSGCFYSRIIQAALLAV		
300	AK332508	UniRef100_M7ZMZ7	DTAIATALRESKPVYLSISCNLPGLPHPTF		
307	AK335953	UniRef100_M8A0S9	DNRINKAEILFTGVACFLVAVILGSAVHASN		
309	HQ821868	UniRef100_E9NX12	TMAWILDEYSKFHGYSPAVVTGKPVDLGGSLG		
312	AK335209	UniRef100_Q41591	LLTTFTVDEFATPGLKSILSLVVP		
313	AK336081	UniRef100_M7YMK8	REAYDRGKLVEPNDVSEARRKLVELMLLR		
321	HE996762	UniRef100_M8A6Z7	DLEDSTASEAPDAYKAAWTLLKGA		
326	KC573058	UniRef100_M7Z2V6	MKNKGLASLNSVVELLSEIVNRSMIQPIDINVDKGMEKSYCIHD		
			MVIDSIC		
329	AM502905	UniRef100_T1LUM5	LWQREAASLRQQLHDLQESHK		
334	AK333292	UniRef100_M7ZHG4	VKQPYNRLRDKFPAASFSGRPNLSEAGFDLLNKLLTY		
336	BT009004	UniRef100_Q8S9G0	SPNYAAPEVISGKLYAGPEVDVWSCGVIL		
337	FN564434	UniRef100_M7YVM1	MDKRDVSRTNICLDTSRFIHFDNKYFQTD		
344	AK336242	UniRef100_M8B455	IELVSYSIRLEILVLEMIVSRLILVIDTSILFNF		

5 Groupez ces contigs par gènes. Présentez un table des gènes obtenus et des contigs associés

Comme nous avons identifié les protéines que les contigs pourraient coder à la question précédente, nous alons partir de cette information pour identifier les gènes.

Une première approche est d'obtenir les informations de concernant la séquence représentative du cluster Uniref identifié à la question précédente. Cela Nous permettra d'identifier le gène qui produit cette protéine. Ensuite, nous pourrons tenter de regrouper les contigs par gènes

Pour obtenir les informations des séquences représentatives, j'ai utilisé le module bioservices de python, dans le script q4_prot.py. Une première analyse sommaire nous permet de voir que seulement cinq des contigs font parties des mêmes clusters de protéines. De plus, En cherchant dans les fichiers obtenus, seulement 6 des résultats on des références vers Unigene. Donc il n'est pas possible d'utiliser cette ressource pour identifier les gènes.

J'ai ensuite regardé combien des fichiers ont des balises gènes. 47 des fichiers ont ces balises, je vais donc utiliser cette information pour regrouper les contigs. Pour les 23 autres fichiers, je vais effectuer un tblastn sur la séquence protéique contenue dans le fichier pour tenter d'identifier un gène relié à ces protéines.

Pour extraires l'information des balises gènes des 47 fichiers où elle est disponible, j'ai utilisé le script q4_genes.py. En examinant les 23 fichiers restant, j'ai remarqué que la majorité des protéines identifiées avaient des informations concernant le gène qui y est relié, mais dans une balise différente. Par exemple, la plupart avait une référence vers la base de données EnsemblPlants [7], dans le même format que ceux identifiés auparavant. J'ai donc ajouté cette information au fichier de résultat. Dans d'autres cas, les fichiers contenaient une référence vers unigene, dans ces cas, j'ai gardé aussi cette information.

Finalement, pour le autres fichiers, j'ai utilisé la référence NCBI du fichier pour identifier le gène. J'ai aussi insérer ces informations dans le fichier des résultats.

En regardant le type de gène identifié pour la plupart des résultats, il semble s'agir de données prédites par logiciel. En effet, pour la plupart des gènes sont de type ORF (Open Reading Frame), un outil utilisé pour la prédiction de gènes. Donc, l'information à propos de ces gènes est incomplète. De plus, tous les gènes identifiés ayant un nom commençant par TRIUR sont des gènes provenant de l'espèce *Triticum urartu*. Tel que discuté à l'introduction, c'est une espèce présentement utilisée pour tenter d'obtenir de l'information concernant le blé. J'ai donc décidé d'utiliser ces gènes pour tenter d'annoter les contigs.

Voici le tableau présentant les gènes identifiés, ainsi que leurs sources.

Gène	Référence	Contigs
SNF1-related protein kinase (snRK1)	EnsemblPlants	336
Phenylalanine ammonia-lyase (PAL)	EnsemblPlants	119
Voltage dependent anion channel (VDAC) (TAVDAC3)	EnsemblPlants	312
Replication factor C subunit 1 (rfc-1)	European Nucleotide Archive	39
TRIUR3_07936	EnsemblPlants	150
TRIUR3_03073	EnsemblPlants	31
TRIUR3_11137	EnsemblPlants	321
TRIUR3_05845	EnsemblPlants	213
TRIUR3_34300	EnsemblPlants	276
TRIUR3_10330	EnsemblPlants	61
TRIUR3_14115	EnsemblPlants	269
TRIUR3_30937	Ensembl Plants Ensembler tants	307
TRIUR3_16229	EnsemblPlants	96
TRIUR3_19685	EnsemblPlants EnsemblPlants	109
TRIUR3_27038	EnsemblPlants EnsemblPlants	261
TRIUR3_28576	EnsemblPlants	287
	EnsemblPlants EnsemblPlants	
TRIUR3_10936	EnsemblPlants EnsemblPlants	105
TRIUR3_13173		313
TRIUR3_13503	EnsemblPlants	151
TRIUR3_13835	EnsemblPlants	67
TRIUR3_30764	EnsemblPlants	112
TRIUR3_31408	EnsemblPlants	337 75
TRIUR3_01363	EnsemblPlants	127
TRIUR3_29691	EnsemblPlants	48
TRIUR3_14429	EnsemblPlants	240
TRIUR3_07487	EnsemblPlants	86
TRIUR3_30579	EnsemblPlants	300
TRIUR3_07580	EnsemblPlants	26
TRIUR3_20221	EnsemblPlants	152
TRIUR3_26676	EnsemblPlants	40
TRIUR3_08705	EnsemblPlants	329
TRIUR3_14151	EnsemblPlants	233
TRIUR3_03695	EnsemblPlants	334
TRIUR3_33179	EnsemblPlants	131
TRIUR3_05640	EnsemblPlants	137
TRIUR3_19087	EnsemblPlants	24
TRIUR3_05333	EnsemblPlants	132
TRIUR3_27314	EnsemblPlants	78
TRIUR3_02411	EnsemblPlants	235
TRIUR3_23427	EnsemblPlants	5
TRIUR3_05274	EnsemblPlants	344 278
TRIUR3_13694	EnsemblPlants	47
TRIUR3_27124	EnsemblPlants	100

Gène	Référence	Contigs	
TRIUR3_23579	EnsemblPlants	104	
TRIUR3_00113	EnsemblPlants	37	
TRIUR3_33541	EnsemblPlants	264	
TRIUR3_12227	EnsemblPlants	53	
TRIUR3_05438	EnsemblPlants	162 125 222 165	
TRIUR3_22350	EnsemblPlants	185	
TRIUR3_02173	EnsemblPlants	326	
TRIUR3_14643	EnsemblPlants	194	
TRIUR3_07502	EnsemblPlants	58	
TRIUR3_18045	EnsemblPlants	121	
TRIUR3_00007	EnsemblPlants	115	
TRIUR3_27725	EnsemblPlants	146	
TRIUR3_27641	EnsemblPlants	73	
TRIUR3_23654	EnsemblPlants	242	
TRIUR3_25715	EnsemblPlants	227	
TRIUR3_12384	EnsemblPlants	136	
Glutamate dehydrogenase (Ta.5091)	UniGene	309	
Triticum aestivum Unigene32879 (Ta.78700)	UniGene	171	
Gliadin/avenin-like seed protein (Ta.2415)	UniGene	231	
Betaine aldehyde dehydrogenase-like protein	NCBI (JQ269663)	294	
Mla-like protein	NCBI (AY487917)	95	
Sucrose phosphate synthase II	NCBI (GU797179)	33	

6 Identifiez la position des introns dans ces gènes. Illustrez cette cartographie pour chaque gène

Afin d'identifier les introns des gènes identifiés, j'ai utilisé la base de données EnsemblPlants pour me procurer les informations sur les séquences représentants ces gènes. J'ai du effectuer cette étape à la main, car il est seulement possible d'accéder à ENSEMBL à l'aide de BioPerl, que je ne connais pas. J'ai donc fait des recherches dans EnsemblPlants pour les noms des gènes trouvés à la question précédente, et j'ai ensuite enregistré les informations concernant le gène dans un fichier genbank. Ces fichiers sont enregistrés dans le dossier genbank_genes.

Chaque fichier genbank comprend les informations à propos des exons contenus dans le gène. J'ai donc pu facilement identifier les introns de ces gènes. Je considère que chaque intron est une zone où il n'y a pas d'exon.

Pour les gènes n'étant pas présent dans la base de données EnsemblPlants, j'ai utilisé les différentes bases de données de NCBI pour trouver de l'information concernant la séquence nucléotidique codant la protéine. Pour les gènes ayant une référence à la base de données UniGene, j'ai utilisé cette ressource pour identifier une séquence protéique associée au gène. J'ai ensuite obtenu la séquence nucléotidique à partir de cette séquence protéique. Pour les gènes où j'avais déjà un numéro d'accession pour la séquence nucléotidique, j'ai tout simplement consulté le fichier genbank.

Afin d'identifier les introns dans ces cas, j'ai consulté le feature CDS afin d'y trouver la location des régions codantes. Encore une fois, tout ce qui est à l'extérieur de ces régions est considéré comme un intron.

Pour illustrer ces gènes, et la position des contigs, j'ai utilisé le module GenomeDiagram de BioPython. Cela m'a permis de situer les exons dans le gène. Pour automatiser le travail, j'ai utilisé le script draw_sequence.py. Pour les cartographies faites à la main, j'ai utilisé le script draw_unigene.py.

Afin de m'assurer de placer le contig à l'endroit le plus probable gène, j'ai effectué, pour chaque contig, un alignement local du contig avec la séquence nucléotidique du gène. J'ai utilisé l'application water de EMBOSS pour effectuer ce travail. Il n'y a aucune vérification faite concernant la qualité de l'alignement obtenu. J'ai vérifié manuellement certains résultat, et il y avait une grande variation : certains alignements avaient un identité autour de 40%, alors que pour certains, l'identité était de 100%.

J'ai aussi rencontré une difficulté avec certains fichiers genbank pour produire la cartographie, car le fichier contient plusieurs variations du gène, qui sont alors dessinés plusieurs fois.

Il y a aussi une très grande variation dans les gènes cartographiés. En effet, on peut y remarquer ce qui semble être des données expérimentales, car plusieurs gènes semblent contenir un seul exon, et cet exon occupe la presque totalité du gène. Il s'agit probablement d'une prédiction dans ces cas, Une application a détecté la probabilité d'un exon, et cette information a été annotée et insérée à la base de données.

Diagramme du gène Betaine aldehyde dehydrogenase-like protein (JQ269663)

Diagramme du gène TRIUR3_14643

Taille de la séquence : 2735 nucléotides

Taille de la séquence : 5122 nucléotides

Diagramme du gène TRIUR3_13173

Taille de la séquence : 756 nucléotides

Diagramme du gène TRIUR3_02173

Taille de la séquence : 153 nucléotides

Diagramme du gène TRIUR3_00113

Taille de la séquence : 279 nucléotides

Taille de la séquence : 2946 nucléotides

Diagramme du gène TRIUR3_27641

Taille de la séquence : 5950 nucléotides

Diagramme du gène TRIUR3_13694

Taille de la séquence : 3585 nucléotides

Diagramme du gène TRIUR3_10936

Taille de la séquence : 5197 nucléotides

Taille de la séquence : 5799 nucléotides

Diagramme du gène TRIUR3_34300

Taille de la séquence : 747 nucléotides

Diagramme du gène TRIUR3_23579

Taille de la séquence : 4278 nucléotides

Diagramme du gène TRIUR3_25715

Taille de la séquence : 2599 nucléotides

Taille de la séquence : 3563 nucléotides

Diagramme du gène TRIUR3_27314

Taille de la séquence : 9511 nucléotides

Diagramme du gène TRIUR3_02411

Taille de la séquence : 6646 nucléotides

Diagramme du gène TRIUR3_03073

Taille de la séquence : $4500~\mathrm{nucl\acute{e}otides}$

Taille de la séquence : 3615 nucléotides

Diagramme du gène TRIUR3_13503

Taille de la séquence : 4089 nucléotides

Diagramme du gène TRIUR3_07487

Taille de la séquence : 4887 nucléotides

Diagramme du gène TRIUR3_05333

Taille de la séquence : 1856 nucléotides

Diagramme du gène Phenylalanine ammonia-lyase (PAL)

Taille de la séquence : 2924 nucléotides

Diagramme du gène TRIUR3_27725

Taille de la séquence : 1641 nucléotides

Diagramme du gène TRIUR3_08705

Taille de la séquence : 4719 nucléotides

Diagramme du gène TRIUR3_33541

Taille de la séquence : 3678 nucléotides

Taille de la séquence : 14319 nucléotides

Diagramme du gène Glutamate dehydrogenase (Ta.5091)

Diagramme du gène Triticum aestivum Unigene 32879 (Ta. 78700)

Diagramme du gène TRIUR3_05274

Taille de la séquence : 3227 nucléotides

Diagramme du gène Mla-like protein (AY487917)

Diagramme du gène Gliadin/avenin-like seed protein (Ta.2415)

Diagramme du gène TRIUR3_19685

Taille de la séquence : 12586 nucléotides

Diagramme du gène TRIUR3 $_01363$

Taille de la séquence : 2191 nucléotides

Taille de la séquence : 2142 nucléotides

Diagramme du gène TRIUR3_22350

Taille de la séquence : 8138 nucléotides

Diagramme du gène TRIUR3_16229

Taille de la séquence : 321 nucléotides

Diagramme du gène TRIUR3_14429

Taille de la séquence : 4058 nucléotides

Taille de la séquence : 4115 nucléotides

Diagramme du gène TRIUR3_13835

Taille de la séquence : 5947 nucléotides

Diagramme du gène TRIUR3_05438

Taille de la séquence : 663 nucléotides

Diagramme du gène TRIUR3_30579

Taille de la séquence : 16467 nucléotides

Taille de la séquence : 4219 nucléotides

Diagramme du gène TRIUR3_23427

Taille de la séquence : 4426 nucléotides

Diagramme du gène TRIUR3_18045

Taille de la séquence : 3789 nucléotides

Diagramme du gène TRIUR3_12384

Taille de la séquence : 1750 nucléotides

Taille de la séquence : 7184 nucléotides

Diagramme du gène TRIUR3_31408

Taille de la séquence : 4209 nucléotides

Diagramme du gène Voltage dependent anion channel (VDAC) (TAVDAC3)

Taille de la séquence : 2461 nucléotides

Diagramme du gène TRIUR3_03695

Taille de la séquence : 2516 nucléotides

Taille de la séquence : 4786 nucléotides

Diagramme du gène Sucrose phosphate synthase II (GU797179)

Diagramme du gène TRIUR3_29691

Taille de la séquence : 1892 nucléotides

Diagramme du gène TRIUR3_14115

Taille de la séquence : 2485 nucléotides

Taille de la séquence : 3813 nucléotides

Diagramme du gène TRIUR3_10330

Taille de la séquence : 3728 nucléotides

Diagramme du gène TRIUR3_19087

Taille de la séquence : 4533 nucléotides

Diagramme du gène Replication factor C subunit 1 (RFC-1)

Taille de la séquence : 6393 nucléotides

Diagramme du gène TRIUR3_30764

Taille de la séquence : 22944 nucléotides

Diagramme du gène TRIUR3_05640

Taille de la séquence : 4604 nucléotides

Diagramme du gène SNF1-related protein kinase (snRK1)

Taille de la séquence : 303 nucléotides

Diagramme du gène TRIUR3_11137

Taille de la séquence : 3873 nucléotides

Diagramme du gène TRIUR3_05845

Taille de la séquence : 417 nucléotides

7 Conclusion

Le but donné de ce travail était d'annoter et de cartographier des contigs provenant des ESTs du blé. J'ai choisi d'orienter ma recherche directement dans les séquences, protéines et gènes déjà connus du blé. Donc, pour j'ai seulement recherché à annoter les contigs pour lesquels j'avais des résultats de bonne qualité pour les résultats. J'ai défini cet élément de qualité par la E-value du blast qui tentait d'associer le contig à une séquence connue.

En vérifiant la E-value médiane des résultats selon la longueur du contig, j'ai remarqué que, malgré une différence dans l'ordre de grandeur des E-value, les résultats pour les contigs plus courts étaient quand même de bonne qualité. J'ai donc appliqué la même règle pour chaque contig.

Lorsque j'ai identifié si au moins un des résultats de blast était le blé, je n'ai pas tenu compte du nombre de hit correspondant au blé. C'est une information qui aurait été intéressante à avoir, il aurait peut-être été possible de regrouper certains contigs en un gène plutôt que d'avoir des gènes différents. Toutefois, comme les résultats du blast sur la base de données ont démontré, la plupart des contigs faisaient partie de différentes familles, ou clusters, de protéines, il est donc peu probable qu'il ait été possible de les regrouper d'avantage.

Une analyse sommaire des résultats obtenus semblent indiquer que plusieurs des ESTS proviennent du chromosome 3 du blé. D'abord, car les résultats des blasts ont trouvé un nombre de hits pour le chromosome 3B, mais aussi car les gènes identifiés proviennent en grande partie du chromosome 3 du *Triticum urartu*, une espèce utilisée pour tenter de prédire les gènes du blé.

Toutefois, je n'ai pas su comment mettre en place une façon de vérifier les résultats obtenus. En effet, pour le moment, je vérifie seulement la qualité du résultat si elle est donnée, par exemple, dans un blast, mais je n'ai aucune autre façon de vérifier si j'obtiens bien le bon résultat.

Ce travail d'annotation et de cartographie représente une première étape à propos de l'identification de ces ESTs. IL aurait été possible d'étendre la recherche à des espèces proches du blé, qui sont mieux annotées présentement. Par exemple, le riz.

8 Annexes

1 Tableau de la taille et du taux de GC des contigs

Contig	Taille	Taux GC	Contig	Taille	Taux GC
1	91	51.65	2	182	31.87
3	183	42.62	4	103	39.81
5	83	42.17	6	90	42.22
7	100	46.00	8	88	38.64
9	122	33.61	10	110	37.27
11	140	43.57	12	96	37.50
13	120	37.50	14	114	39.47
15	79	64.56	16	238	41.60
17	143	55.24	18	97	51.55
19	143	53.85	20	82	45.12
21	209	45.45	22	105	38.10
23	150	48.67	24	102	47.06
25	101	36.63	26	88	43.18
27	151	35.76	28	137	59.85
29	97	44.33	30	112	25.89
31	70	38.57	32	125	44.80
33	83	40.96	34	95	32.63
35	201	38.31	36	203	30.05
37	69	79.71	38	153	36.60
39	75	44.00	40	96	46.88
41	52	44.23	42	74	45.95
43	96	63.54	44	115	43.48
45	87	44.83	46	96	48.96
47	82	45.12	48	125	40.00
49	131	35.88	50	102	49.02
51	70	47.14	52	80	43.75
53	99	42.42	54	124	40.32
55	108	45.37	56	142	40.85
57	87	36.78	58	133	40.60
59	112	33.04	60	90	40.00
61	94	44.68	62	95	44.21
63	103	44.66	64	185	59.46
65	142	41.55	66	99	40.40
67	150	49.33	68	84	34.52
69	46	50.00	70		
71	80	47.50	70	110	34.55 50.00
73	113	53.10	74	93	
					45.16
75 77	179	36.87	76	82	46.34
77	106	42.45	78	61	
79	157	31.21	80	111	69.37
81	92	47.83	82	183	45.90
83	51	39.22	84	143	34.97
85	87	40.23	86	102	62.75
87	51	29.41	88	116	46.55
89	107	42.99	90	76	46.05
91	73	47.95	92	104	36.54
93	201	45.27	94	85	31.76
95	99	41.41	96	108	38.89
97	63	33.33	98	131	45.80
99	62	25.81	100	111	40.54

101 103 105 107 109	121 70 105 105	38.84 37.14 46.67	102	109 148	43.12 43.92
105 107 109 111	105				43.92
107 109 111		46.67	400		
109 111	105		106	103	70.87
111		37.14	108	104	42.31
	92	41.30	110	80	38.75
119	120	22.50	112	101	47.52
113	69	44.93	114	76	38.16
115	92	76.09	116	69	36.23
117	94	47.87	118	55	34.55
119	138	67.39	120	112	38.39
121	78	47.44	122	111	32.43
123	104	31.73	124	136	42.65
125	104	46.15	126	72	34.72
127	88	47.73	128	76	38.16
129	120	42.50	130	114	42.98
131	105	49.52	132	100	39.00
133	114	42.11	134	69	42.03
135	112	41.07	136	117	49.57
137	106	45.28	138	79	54.43
139	117	51.28	140	100	67.00
141	146	43.15	142	113	46.02
143	120	44.17	144	155	40.65
145	88	40.91	146	121	46.28
147	98	47.96	148	100	50.00
149	81	44.44	150	60	41.67
151	80	46.25	152	56	41.07
153	109	44.04	154	89	55.06
155	179	44.69	156	107	43.93
157	99	38.38	158	101	35.64
159	125	46.40	160	80	41.25
161	93	56.99	162	57	47.37
163	79	50.63	164	221	32.58
165	96	41.67	166	94	45.74
167	119	32.77	168	89	35.96
169	81	51.85	170	94	39.36
171	115	46.09	172	92	41.30
173	117	43.59	174	215	41.40
175	83	30.12	176	111	37.84
177	104	32.69	178	76	46.05
179	204	33.82	180	159	41.51
181	123	35.77	182	87	27.59
183	100	40.00	184	90	46.67
185	93	41.94	186	67	40.30
187	138	39.13	188	83	36.14
189	81	32.10	190	77	45.45
191	101	46.53	192	78	42.31
193	82	46.34	194	131	38.93
195	96	34.38	196	69	47.83
197	115	47.83	198	90	51.11
199	154	45.45	200	77	49.35
201	93	41.94	202	189	42.86
203	84	39.29	204	96	37.50
205	109	56.88	206	81	46.91
207	106	51.89	208	131	29.77
209	94	45.74	210	75	36.00

211 213 215	109 128	36.70	212	120	55.83
	198				
215		57.03	214	77	38.96
	121	36.36	216	72	50.00
217	139	48.20	218	71	49.30
219	106	44.34	220	84	39.29
221	81	35.80	222	91	35.16
223	98	43.88	224	104	33.65
225	84	46.43	226	130	31.54
227	94	46.81	228	166	41.57
229	138	41.30	230	90	45.56
231	95	47.37	232	94	45.74
233	98	55.10	234	92	41.30
235	130	33.08	236	79	43.04
237	127	46.46	238	203	43.84
239	92	40.22	240	127	47.24
241	120	39.17	242	95	49.47
243	174	35.06	244	115	46.09
245	155	36.13	246	84	47.62
247	82	52.44	248	103	39.81
249	94	48.94	250	101	33.66
251	90	37.78	252	73	64.38
253	110	42.73	254	125	36.80
255	82	53.66	256	152	24.34
257	80	43.75	258	95	38.95
259	61	49.18	260	106	36.79
261	68	39.71	262	95	35.79
263	114	41.23	264	133	44.36
265	93	40.86	266	97	42.27
267	99	43.43	268	133	40.60
269	118	33.90	270	157	38.85
271	188	42.55	272	94	52.13
273	126	26.98	274	247	34.82
275	101	31.68	276	104	71.15
277	94	34.04	278	149	34.90
279	111	32.43	280	139	47.48
281	95	32.63	282	87	27.59
283	107	72.90	284	115	30.43
285	133	48.87	286	112	33.93
287	100	48.00	288	128	41.41
289	90	41.11	290	92	40.22
291	137	48.18	292	90	41.11
293	153	41.83	294	84	45.24
295	80	40.00	296	82	28.05
297	92	51.09	298	108	70.37
299	101	40.59	300	94	64.89
301	173	35.26	302	112	41.96
303	107	37.38	304	106	38.68
305	81	40.74	306	118	33.05
307	95	47.37	308	90	44.44
309	96	51.04	310	94	43.62
311	99	40.40	312	121	35.54
313	89	49.44	314	94	39.36
315	99	56.57	316	70	42.86
317	90	51.11	318	233	38.63
319	118	48.31	320	118	33.05

321	76	48.68	322	87	37.93
323	105	47.62	324	117	39.32
325	88	47.73	326	179	37.43
327	262	36.64	328	166	37.35
329	200	50.00	330	128	34.38
331	111	36.94	332	119	36.97
333	150	40.00	334	113	42.48
335	94	43.62	336	91	47.25
337	174	33.33	338	86	41.86
339	187	34.76	340	73	36.99
341	92	39.13	342	114	37.72
343	80	43.75	344	153	35.29
345	77	54.55	346	92	43.48

contigs, taille moyenne : 109.176300578 Taux GC moyen : 42.9628288283

Références

- [1] Triticum aestivum (ID 11) Genome NCBI (2013). Retrieved December 17, 2013 from http://www.ncbi.nlm.nih.gov/genome/11.
- [2] Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013 Apr 4;496(7443):87-90. doi: 10.1038/nature11997. Epub 2013 Mar 24. PubMed PMID: 23535596.
- [3] Whole Chromosome Survey Sequencing (2013). Retrieved December 17, 2013 from http://www.wheatgenome.org/Projects/IWGSC-Bread-Wheat-Projects/Sequencing/Whole-Chromosome-Survey-Sequencing
- [4] Sequencing Projects (2013). Retrieved December 17, 2013 from http://www.wheatgenome.org/Projects/IWGSC-Bread-Wheat-Projects/Sequencing
- [5] Wilkinson, P.A., Winfield, M.O., Barker, G.L.A., Allen, A.M., Burridge, A, Coghill, J.A., Burridge, A. and Edwards, K.J. 2012. CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics 13: 219.
- [6] GC content. In Wikipedia. Retrieved December 17, 2013, from http://en.wikipedia.org/wiki/GC-content
- [7] Paul Flicek, Ikhlak Ahmed, M. Ridwan Amode, Daniel Barrell, Kathryn Beal, Simon Brent, Denise Carvalho-Silva, Peter Clapham, Guy Coates, Susan Fairley, Stephen Fitzgerald, Laurent Gil, Carlos Garcia-Girón, Leo Gordon, Thibaut Hourlier, Sarah Hunt, Thomas Juettemann, Andreas Kähäri, Stephen Keenan, Monika Komorowska, Eugene Kulesha, Ian Longden, Thomas Maurel, William McLaren, Mattieu Muffato, Rishi Nag, Bert Overduin, Miguel Pignatelli, Bethan Pritchard, Emily Pritchard, Harpreet Singh Riat, Graham R. S. Ritchie, Magali Ruffier, Michael Schuster, Daniel Sheppard, Daniel Sobral, Kieron Taylor, Anja Thormann, Stephen Trevanion, Simon White, Steven P. Wilder, Bronwen L. Aken, Ewan Birney, Fiona Cunningham, Ian Dunham, Jennifer Harrow, Javier Herrero, Tim J. P. Hubbard, Nathan Johnson, Rhoda Kinsella, Anne Parker, Giulietta Spudich, Andy Yates, Amonida Zadissa and Stephen M. J. Searle Ensembl 2013 Nucleic Acids Research 2013 41 Database issue: D48-D55 doi: 10.1093/nar/gks1236
- [8] Open Reading Frame. In Wikipedia. Retrieved December 19, 2013, from http://en.wikipedia.org/wiki/Open_reading_frame
- [9] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun; 12(6):996-1006.
- [10] Basic Local Alignment Search Tool (Altschul et al., J Mol Biol 215:403-410; 1990).
- [11] Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007 May 15;23(10):1282-8. Epub 2007 Mar 22. PubMed PMID: 17379688.