Getting to Know Vivado

Course Workbook

Table of Contents

About this Workbook	Page 3
A ROUGE LINE TO THE COIL	<u>. 490</u>

Pre-Lab: Workshop Pre-requisites Page 4

Lab 3: Advanced Vivado Page 7

About this Workbook

This workbook is designed to be used in conjunction with the Getting to Know Vivado course.

The contents of this workbook are created by Adiuvo Engineering & Training, Ltd.

If you have any questions about the contents or need assistance, please contact Adam Taylor at adam@adiuvoengineering.com.

Pre-LabWorkshop Pre-requisites

Required Hardware

There is no required hardware for this course.

Downloads and Installations

Step 1 – Download and install the following at least one day prior to the workshop. This may take a significant amount of time and drive space.

Vivado 2020.1	Download
Source Project Files	Download
Lab 2 must be completed	

Step 1 – Open the project created in part two.

Step 2 – In the TCL window, check the PWD and change directory to the location containing your project. Then enter the command write project tcl average.tcl.

Step 3 – This will write a project description in TCL to the project directory.

Step 4 – Open the TCL file and change the project name from 01_Vivado to 01_Vivado_rebuild.

Step 5 – Close the current project and type source average.tcl. in the TCL window.

Step 6 – This will rebuild the project exactly as before from the TCL file.

Step 7 – Open the block design and click on the + symbol to add in IP. In the search bar, enter ILA and then double click on the ILA (Integrated Logic Analyzer) to add in the IP core.

Step 8 – Double click on the **ILA** to customize it.

Step 9 – Change the monitor type to **Native**.

Step 10 – Set the number of probes to **5**.

Step 11 – Click on the Probe Ports Tab and set the widths of PROBE3 to 8 and PROBE4 to 12, click OK.

Step 12 – The block diagram should now show the ILA with five ports and a clock input.

Step 13 – Connect up the ILA as shown below. This will provide us visibility of all input and output of the average block.

Step 14 - Click on the + symbol to add in IP and type VIO in the search box. Double click on the VIO

symbol.

Step 15 – When the VIO is added onto the block diagram, double click it to customize and explore the three tabs. Leave it all unchanged and click **OK**.

Step 16 – Select the **RST_0 line** and delete it.

Step 17 – Connect the **VIO probe output** to the **RST** and **ILA**.

Step 18 – Connect the **RST_0 input** to the VIO Probe in.

Step 19 – From the Menu bar, select Tools → Create and Package IP. Select Next when the dialog opens.

Step 20 - Select Package your current project and then Next.

Step 21 – Select the location the IP should be saved in and click **Next**.

Step 22 – Click on Finish.

Step 23 – This will open a package view in the project. Enter Name, Version and Company URL.

Step 24 - Click on the Compatibility tab. This defines what FPGA / SoC the core will work with.

Step 25 - Click on + and select Add Family Explicitly.

Step 26 – In the resultant dialog, select All Families and Parts and Production from the Life-cycle.

Step 27 – This will make the IP core available to all families and devices.

Step 28 - Click on Ports and Interfaces. This should show all the blocks' inputs and outputs.

Step 29 - Click on Customization. This shows the symbol.

Step 30 - Click on Settings.

Step 31 – Select Create archive of IP and click OK.

Step 32 - Click on Review and Package and then Package IP.

Step 33 – This should show the message below. Click **OK**.

Step 34 – You will see a ZIP file of the component in the directory you identified to save the IP in.

Step 35 – Close the project and create a new Vivado project. In the wizard, click **Next**, then enter the **name and location** and click **Next** again.

Step 36 - Select RTL Project and Next, followed by Next again.

Step 37 – Click **Next** on the Constraints tab. On the Default Part, select the **ZCU104 board** and click **Next**.

Step 38 – On the final page of the Project Summary, click **OK**.

Step 39 – From the menu bar, select Window → IP Catalog.

Step 40 – Right click on the Vivado Repository and select Add Repository.

Step 41 – In the open dialog, select Create New Folder and name it IP and click Select.

Step 42 – This will show a dialog indicating that one repository was added.

Step 43 – This will add in the repository. Right click on it and select Add IP to Repository.

Step 44 – Select the **component ZIP file** in the file dialog and click **OK**.

Step 45 - You should now see the IP core in the library ready to go in our new design.

Step 46 – Create a block design and type in the search bar average. Double click on the **design_1_wrapper_V1_0** which comes up.

Step 47 – This will add in the Average block we have created and we are ready to go reusing it in our new developments.

