CS 224N: Assignment 2

RYAN MCMAHON TUESDAY 7TH FEBRUARY, 2017

Contents

1	Prob	olem	1: Tensorflow Softmax (25 pts)	2
	1.1	(a)	Softmax in Tensorflow (5 pts)	2
	1.2	(b)	Cross-Entropy Loss in Tensorflow (5 pts)	2

Problem 1: Tensorflow Softmax (25 pts)

In this question, we will implement a linear classifier with loss function

$$J(\mathbf{W}) = CE(\mathbf{y}, softmax(\mathbf{x}\mathbf{W}))$$
(1.1)

Where x is a row vector of features and W is the weight matrix for the model. We will use TensorFlow's automatic differentiation capability to fit this model to provided data.

1.1 (a) Softmax in Tensorflow (5 pts)

Implement the softmax function using TensorFlow in q1_softmax.py. Remember that

$$softmax(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$$
 (1.2)

Note that you may not use tf.nn.softmax or related built-in functions. You can run basic (nonexhaustive tests) by running python q1_softmax.py.

Answer:

See code: ~/code/q1_softmax.py.

1.2 (b) Cross-Entropy Loss in Tensorflow (5 pts)

Implement the cross-entropy loss using TensorFlow in q1_softmax.py. Remember that

$$CE(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{i=1}^{N_c} y_i log(\hat{y}_i)$$
(1.3)

where $\mathbf{y} \in \mathbb{R}^{N_c}$ is a one-hot label vector and N_c is the number of classes. This loss is summed over all examples (rows) of a minibatch. Note that you may **not** use TensorFlows built-in cross-entropy functions for this question. You can run basic (non-exhaustive tests) by running python $q1_{softmax}$.

Answer:

See code: ~/code/q1_softmax.py.