Subject Description Form

Subject Code	COMP1002					
Subject Title	Computational Thinking and Problem Solving					
Credit Value	4					
Level	1					
Pre-requisite / Co-requisite / Exclusion	Nil					
Objectives	The objective of this subject is to:					
	• equip students with no prior experience on computer programming with fundamental computational and skills. In particular, the students will learn how to abstract and solve problems, and how to implement them in a high-level programming language.					
Intended	Upon completion of the subject, students will be able to:					
Learning Outcomes	Professional/academic knowledge and skills:					
	(a) understand the basic concepts of computational thinking, including sequential logic, abstractions, conceptualization and problem-solving;					
	(b) model real-life problems as computational problems;					
	(c) develop computer solutions to problems of low-to-moderate complexity and implement them using a high-level programming language, e.g. Python; and					
	(d) acquire the basic programming skills to implement solutions using suitable data types and constructs.					
Subject Synonyie/	Topic					
Synopsis/ Indicative Syllabus	1. Introduction to Computational Thinking					
	Formulating problems for computers to solve them; logically organizing and analyzing data; representing data through abstractions; automating solutions through algorithmic thinking; implementing efficient solutions; generalizing the problem-solving process.					
	2. Problem Solving through a High-level Programming Language					
	Computing with numbers and strings; lists and files; functions; decision structures; loop structures and Booleans; sets and dictionaries.					
	3. Program Design					
	Problem analysis and design; function abstraction and modularization; bottom up and top down approaches					

Teaching/ Learning Methodology	4. Application of Computational Techniques Applications in different domains, for example, financial data computing, puzzle solving, development of games, web development, and scientific computation. The 39-hour lecture will cover the main concepts and ideas in solving problems with computers and illustrate them using many examples. The students will also be given time to practice those concepts and ideas right away. The laboratory will be used to mainly cover program design. Specific assessment % Intended subject learning outcomes to							
Methods in Alignment with Intended Learning Outcomes	methods/tasks	weighting	be assessed (Please tick as appropriate)					
			a	b	c	d		
	Continuous Assessment (such as assignments, quizzes and mini-projects)	55%	✓	✓	✓	✓		
	Examination	45%	✓	✓	✓	✓		
	Total	100%						
	Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: Assignments and quizzes are designed to help achieve learning outcome (a) and (d), whereas the two mini-projects are designed for achieving (b) and (c). The examination will cover both (a), (c) and (d).							
Student Study	Class contact:							
Effort Expected	 Lecture/Lab/Tutorials 				52 Hrs.			
	Other student study effort:							
	■ Assignments, Tests, Examination 53 Hrs.						53 Hrs.	
	Self-Study				35 Hrs.			
	Total student study effort				140 Hrs.			
Reading List and References	 Reference Books: Kowalski, Robert, Computational Logic and Human Thinking: How to be Artificially Intelligent, 1st Edition, Cambridge University Press, 2011. Dromey, R. G., How to Solve It by Computer. Prentice-Hall International, Englewood Cliffs, NJ, USA, 1982. (There is a free copy online.) 							

- 3. Zelle, John, *Python Programming: An Introduction to Computer Science* 3rd Edition. Franklin, Beedle & Associates Inc., 2017.
- 4. Downey, Allen B., *Think Python: How to Think Like a Computer Scientist*, Green Tea Press, 2015.
- 5. Punch, William F. and Enbody, Richard, *The Practice of Computing Using Python*, 3rd Edition, Addison Wesley, 2017.
- 6. Gries, Paul, Campbell, Jennifer and Montojo, Jason, *Practical Programming: An Introduction to Computer Science Using Python 3.6. Pragmatic Bookshelf*, 3rd Edition, 2017.