Relational Algebra

Math Notation

<u>Visualization</u>

Student Relation

Attributes Student = {-----

Tuples

Student Table

Math Notation

Relation

```
Student Course = {
                email,
    id, name,
                                        cid,
                                                title,
                                                         hours,
                                                                 mark
      'Alex', 'alex@carleton.ca',
                                                Math,
                                                         0.5
                                        1,
                                                                 10
                                                Physics, 0.5
    1, 'Alex', 'alex@carleton.ca',
                                        2,
                                                                 9
    1, 'Alex', 'alex@carleton.ca',
                                                DBMS,
                                        3,
                                                        0.5
                                                                 10
      'John', 'john@carleton.ca'
    2,
    3,
       'Mo', 'mo@carleton.ca'
```

One Relation = Redundancy Problem

Math Notation

```
Student = {
   id, name, email
   1, 'Alex', 'alex@carleton.ca'
   2, 'John', 'john@carleton.ca'
   3, 'Mo', 'mo@carleton.ca'
takes = {
   sid, cid, mark
   1, 1, 10
1, 2, 9
   1, 3, 10
   2, 3, 8
Course = {
   id, title,
                      hours
   1, 'Math',
                      0.5
   2, 'Pythics', 0.5
   3, 'DBMS',
                      0.5
```

Visualization

Student

id	name	email
1	Alex	alex@carleton.ca
2	John	john@carleton.ca
3	Мо	mo@carleton.ca

Takes

cid	mark
1	10
2	9
3	10
3	8
1	7
	1 2 3

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Data Querying

Get the title of the courses of Alex.

title
Math
Physics
DBMS

- From Student, Get Alex's id
- From Takes, Gets Courses' ids associated with Alex's id
- 1. From **Course**, Get the title of the courses' ids you got in 2.

Visualization

Student

id	name	email
1	Alex	alex@carleton.ca
2	John	john@carleton.ca
3	Мо	mo@carleton.ca

Takes

sid		cid	mark
1		1	10
1		2	9
1		3	10
2		3	8
3		1	7

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Relational Algebra

What is Algebra?

Operators

Operands

$$\begin{pmatrix}
2 & 3 & 4 \\
1 & 3 & 5 \\
3 & 2 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
3 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 5 & 5 \\
1 & 3 & 5 \\
6 & 3 & 8
\end{pmatrix}$$

Unary Operators - Sigma (σ) - Selection

Unary Operators - Sigma (σ) - Selection

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

id	name	email	salary
1	Alex	a@c	1000
3	Мо	m@c	1200

Get employees whose salary is greater than or equal to \$1000?

Unary Operators - Sigma (σ) - Selection

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

id	name	email	salary
1	Alex	a@c	1000
3	Мо	m@c	1200

Get employees whose salary is greater than or equal to \$1000?

RA

Desertant Ciama (a) Europeanione

Unary Operators - Sigma (σ) - Expressions

U	U

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

id	name	email	salary
1	Alex	a@c	1000
3	Мо	m@c	1200

id	name	email	salary
1	Alex	a@c	1000

$$\sigma_{\text{name=Alex}}$$
 ($\sigma_{\text{Salary}>=1000}$ (Employee))

Unary Operators - Sigma (σ) - Expressions

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

id	name	email	salary
1	Alex	a@c	1000

Commutative

$$\mathbf{\sigma}_{\text{Salary} >= 1000}$$
 ($\mathbf{\sigma}_{\text{name} = \text{Alex}}$ Employee))

$$\sigma_{\text{name=Alex}}$$
 ($\sigma_{\text{Salary}>=1000}$ Employee))

Unary Operators - Sigma (σ) - Expressions

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

id	name	email	salary
1	Alex	a@c	1000

and (Λ) , or (V), not (\neg)

$$\mathbf{\sigma}_{\text{Salary} > 1000}$$
 ($\mathbf{\sigma}_{\text{name} = \text{Alex}}$ Employee)) The

$$oldsymbol{\sigma}_{ ext{salary} >= 1000}$$
 ($oldsymbol{\sigma}_{ ext{name} = ext{Alex}}$ Employee)) The $oldsymbol{\sigma}_{ ext{name} = ext{Alex}}$ (Employee)

Unary Operators - Pi (π) - Projection

Unary Operators - Pi (π) - Projection

TT name, email

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name	email
Alex	a@c
John	j@c
Мо	m@c

Get the name and email of all employees?

Unary Operators - Pi (π) - Projection

TT name, email

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name	email
Alex	a@c
John	j@c
Мо	m@c

Get the name and email of all employees?

 $\Pi_{\text{name, email}}$ (Employee)

Unary Operators - Pi (π) - Expressions

ππ

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name
Alex
John
Мо

$$\Pi_{\text{name}} \ \Pi_{\text{name, email}}$$
 (Employee)

Unary Operators - Pi (π) - Expressions

ππ

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name
Alex
John
Мо

$$\Pi_{\text{name}}$$
 $\Pi_{\text{name, email}}$ (Employee)

 The
 $Same$

Unary Operators - Pi (π) - Expressions

ππ

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name
Alex
John
Мо

NOT Commutative

$$\Pi_{\text{name}}$$
 ($\Pi_{\text{name, email}}$ (Employee))

 The
 $\Pi_{\text{name, email}}$ (Π_{name} (Employee))

 $Same$

Unary Operators - Sigma (σ) and Pi (π)

Unary Operators - Sigma (σ) and Pi (π)

πσ

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name	email
John	j@c
Мо	m@c

Get the name and email of employees whose id greater than or equal to 2?

RA

Unary Operators - Sigma (σ) and Pi (π)

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name	email
John	j@c
Мо	m@c

Get the name and email of employees whose id greater than or equal to 2?

$$\Pi_{\text{name, email}}$$
 ($\sigma_{\text{id}>=2}$ (Employee))

Unary Operators - Sigma (σ) and Pi (π)

πσ

Employee

id	name	email	salary
1	Alex	a@c	1000
2	John	j@c	600
3	Мо	m@c	1200

Employee

name	email
John	j@c
Мо	m@c

Get the name and email of employees whose id greater than or equal to 2?

$$\Pi_{\text{name, mail}}$$
 ($\sigma_{\text{id}>=2}$ (Employee))

Can we change the order???

$$\sigma_{\text{id}>=2}$$
 ($\Pi_{\text{name, email}}$ (Employee))

Unary Operators		Binary Operators	
♂ Condition			
T _{Columns}			
$\pi_{ ext{Columns}}$			

Binary Operators - Cartesian Product (X)

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Department

name	budget	
Finance	20,000	
Sales	30,000	
HR	25,000	

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Мо	m@c	HR	Finance	20,000
3	Мо	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Binary Operators - Cartesian Product (X) with Sigma (σ)

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Department

name	budget	
Finance	20,000	
Sales	30,000	
HR	25,000	

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Mo	m@c	HR	Finance	20,000
3	Mo	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Get the employees with the budget of their departments?

Binary Operators - Inner Join (\bowtie) = $(\times \text{ with } \sigma)$

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

name	budget
Finance	20,000
Sales	30,000
HR	25,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Мо	m@c	HR	Finance	20,000
3	Мо	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Get the employees with the budget of their departments?

The Same

Binary Operators - Natural Join (\bowtie) = $(\times \text{ with } \sigma)$

Employee

RA

id	name	email	dname
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Department

dname	budget
Finance	20,000
Sales	30,000
HR	25,000

Get the employees with the budget of their departments?

 $\sigma_{\tt Employee.dname=Department.dname}$

(Employee × Department)

Employee ⋈ Department

The Same RA

Binary Operators - Inner Join (⋈)

No Match for some tuples

Employee

Alex

John

Мо

2

3

name email

a@c

j@c

m@c

Dept Sales Finance HR

Department

name	budget
Finance	20,000
Sales	30,000
ΙΤ	40,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Sales	30,000
2	John	j@c	Finance	Finance	20,000

Get the employees with the budget of their departments?

→ Right Outer Join (⋈)
→ Full Outer Join (⋈)

No Match for some tuples

Employee

d	name	email	Dept	
1	Alex	a@c	Sales	
2	John	j@c	Finance	\times
3	Mο	m@c	HR	`

Department

name	budget
Finance	20,000
Sales	30,000
ΙΤ	40,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Sales	30,000
2	John	j@c	Finance	Finance	20,000

Get the employees with the budget of their departments?

Employee ⋈_{Employee.Dept=Department.name} Department

No Match for some tuples

Employee

Department

Ia	name	emaii	Dept	
1	Alex	a@c	Sales	
2	John	j@c	Finance	\square
3	Мо	m@c	HR	_ `

name	budget
Finance	20,000
Sales	30,000
ΙΤ	40,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Sales	30,000
2	John	j@c	Finance	Finance	20,000
3	Мо	m@c	HR	NULL	NULL

Get the employees with the budget of their departments?

Employee ⋈_{Employee.Dept=Department.name} Department

Binary Operators - Outer Join → Left Outer Join (⋈)

→ Right Outer Join (⋈)
→ Full Outer Join (⋈)

No Match for some tuples

Employee

Department

id	name	email	Dept	
1	Alex	a@c	Sales	
2	John	j@c	Finance	
3	Мо	m@c	HR	ľ

budget
20,000
30,000
40,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Sales	30,000
2	John	j@c	Finance	Finance	20,000
NULL	NULL	NULL	NULL	ΙΤ	40,000

Get the employees with the budget of their departments?

Employee ⋈_{Employee.Dept=Department.name} Department

No Match for some tuples

Employee

name email **Dept** Sales Alex a@c Finance John j@c 2 3 m@c HR Мо

Department

name	budget
Finance	20,000
Sales	30,000
ΙΤ	40,000

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Sales	30,000
2	John	j@c	Finance	Finance	20,000
3	Мо	m@c	HR	NULL	NULL
NULL	NULL	NULL	NULL	ΙΤ	40,000

Get the employees with the budget of their departments?

Employee M_{Employee.Dept=Department.name} Department

Binary Operators - Set Operators - Intersection (n) Union (U) Minus (-)

Employee

name	email	Dept
Alex	a@c	Sales
John	j@c	Finance
Мо	m@c	HR

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
Alex	a@c	Sales

Get the employees which are graduate student at the same time?

Employee N GradeStudent

Binary Operators - Set Operators Intersection (n) Union (U) Minus (-)

Compatibility problem

Employee

name	email	Dept	Salary
Alex	a@c	Sales	1000
John	j@c	Finance	1200
Мо	m@c	HR	1500

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
Alex	a@c	Sales

Get the employees which are graduate student at the same time?

Compatibility problem

Employee

name	email	Dept	Salary
Alex	a@c	Sales	1000
John	j@c	Finance	1200
Мо	m@c	HR	1500

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
Alex	a@c	Sales

Get the employees which are graduate student at the same time?

$$(\Pi_{\text{name,email,Dept}} \text{ Employee}) \cap (GradeStudent)$$

Binary Operators - Set Operators → Intersection (∩) → Union (U) → Minus (-)

Employee

name	email	Dept
Alex	a@c	Sales
John	j@c	Finance
Мо	m@c	HR

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
Alex	a@c	Sales
John	j@c	Finance
Мо	m@c	HR
Max	х@с	Finance
Go	g@c	HR

Get all employees and graduate students?

Employee U GradeStudent

Binary Operators - Set Operators → Intersection (∩) Union (U) Minus (-)

Employee

name	email	Dept
Alex	a@c	Sales
John	j@c	Finance
Мо	m@c	HR

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
John	j@c	Finance
Мо	m@c	HR

Get all employees which are NOT graduate students?

Employee - GradeStudent

Binary Operators - Set Operators → Intersection (∩) Union (U) Minus (-)

Employee

name	email	Dept
Alex	a@c	Sales
John	j@c	Finance
Мо	m@c	HR

GradeStudent

name	email	Depar
Alex	a@c	Sales
Max	х@с	Finance
Go	g@c	HR

name	email	Dept
John	j@c	Finance
Мо	m@c	HR

Get all employees which are NOT graduate students?

Employee - GradeStudent ≠ GradeStudent - Employee

Binary Operators - Divide by (/)

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Department

name	budget
Finance	20,000
Sales	30,000
HR	25,000

Emp_Dep

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Мо	m@c	HR	Finance	20,000
3	Мо	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Binary Operators - Divide by (/)

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Department

name	budget
Finance	20,000
Sales	30,000
HR	25,000

Emp_Dep

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Мо	m@c	HR	Finance	20,000
3	Мо	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Emp Dep

id	name	email	Dept	name	budget
1	Alex	a@c	Sales	Finance	20,000
1	Alex	a@c	Sales	Sales	30,000
1	Alex	a@c	Sales	HR	25,000
2	John	j@c	Finance	Finance	20,000
2	John	j@c	Finance	Sales	30,000
2	John	j@c	Finance	HR	25,000
3	Мо	m@c	HR	Finance	20,000
3	Мо	m@c	HR	Sales	30,000
3	Мо	m@c	HR	HR	25,000

Department

name	budget
Finance	20,000
Sales	30,000
HR	25,000

Employee

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Binary Operators - Divide by (/) Stud Course

sid	cname	mark
1	Math	3
1	Pythics	2
1	Network	3
2	Math	3
2	Pythics	2
2	Network	3
3	Network	3

Course

cname	Hours
Math	3
Pythics	2
Network	3

Student

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance

Student

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Get students who studied **ALL** courses?

$$(\Pi_{\text{sid,cname}} \text{Stud_Course}) / (\Pi_{\text{cname}} \text{Course})$$

Binary Operators - Divide by (/) Stud Course

sid	cname	mark				
1	Math	3				
1	Pythics	2				
1	Network	3				
2	Math	3				
2	Pythics	2				
2	Network	3				
3	Network	3				

Course

S	t	11	d	0	n	+
\sim		u	u	C	77	

cname	Hours
Math	3
Pythics	2
Network	3

C	+1	ıd		n	+
J	L	14	Œ	\mathbf{T}	_

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Get students who studied ALL courses?

$$(\Pi_{\text{sid,cname}} \text{Stud_Course}) / (\Pi_{\text{cname}} \text{Course})$$

Binary Operators - Divide by (/) Stud Course

sid	cname	mark			
1	Math	3			
1	Pythics	2			
1	Network	3			
2	Math	3			
2	Pythics	2			
2	Network	3			
3	Network	3			

Course

cname	Hours
Math	3
Pythics	2
Network	3

Student

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance

Student

id	name	email	Dept
1	Alex	a@c	Sales
2	John	j@c	Finance
3	Мо	m@c	HR

Get students who studied **ALL** courses?

((
$$\Pi_{ ext{sid,cname}}$$
 Stud_Course) / ($\Pi_{ ext{cname}}$ Course))

Try it https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

```
Relational Algebra
                  SQL
                          Group Editor

■ 1 Student = {
   2 id, name, email
   3 1, 'Alex', 'alex@carleton.ca'
   4 2, 'John', 'john@carleton.ca'
   5|3, 'Mo', 'mo@carleton.ca'
   6 }
   7
■ 8 Course = {
   9 name, hours
  10 'Math', 3
  11 'Pythics', 2
  12 'Network', 3
  13 }
  14
Ⅲ 15 takes = {
  16 sid, cname
  17 1, 'Math'
  18 1, 'Pythics'
  19 1, 'Network'
  20 2, 'Network'
  21 3, 'Math'
  22 }
  23
  24 (Student) M id=sid (takes)
   execute query
                                                                                ♣ Download
                                                                                            history
```

Copy code from here

```
Student = {
id, name, email
1, 'Alex', 'alex@carleton.ca'
2, 'John', 'john@carleton.ca'
3, 'Mo', 'mo@carleton.ca'
Course = {
name, hours
'Math', 3
'Pythics', 2
'Network', 3
takes = {
sid, cname
1, 'Math'
1, 'Pythics'
1, 'Network'
2, 'Network'
3, 'Math'
(Student) ⋈ id=sid (takes)
```


Try it https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

Examples

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: List all the students (name and email only) that live in Ottawa

name	email
Alex	al@c.ca
John	jo@c.ca

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: List all the students (name and email only) that live in Ottawa

name	email
Alex	al@c.ca
John	jo@c.ca

$$\Pi_{\text{name, email}}$$
 ($\sigma_{\text{city='Ottawa'}}$ (Student))

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Return Makela's email

Student

email ma@c.ca

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Return Makela's email

$$\Pi_{\text{email}}$$
 ($\sigma_{\text{name='Makela'}}$ (Student))

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

	4941	
id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Return the <u>students' names</u>, their <u>courses' titles</u>, and their <u>marks</u> in these courses.

name	title	mark
Alex	Math	9
Alex	Physics	10
Alex	DBMS	8
John	Math	8

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Return the <u>students' names</u>, their <u>courses' titles</u>, and their <u>marks</u> in these courses.

title	mark
Math	9
Physics	10
DBMS	8
Math	8
	Math Physics DBMS

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Students' names that take courses.

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Students' names that take courses.

```
Student
```


$$\Pi_{\text{name}}$$
 (

```
(Student ⋈<sub>Student.id=Takes.sid</sub> Takes)
```

)

Note: In Relation Algebra, we use Sets which do not allow duplicates in the result. For example, if the output is {Alex, Alex, John}, this will be {Alex, John} only.

id	name	email	city
1	Alex	al@c.ca	Ottawa
2	John	jo@c.ca	Ottawa
3	Makela	ma@c.ca	Toronto

Takes

sid	cid	mark
1	1	9
1	2	10
1	3	8
2	1	8

Course

id	title	hours
1	Math	0.5
2	Physics	0.5
3	DBMS	0.5

Example: Students' names that are **NOT** take courses.

