```
In [1]:
import pandas as pd
import numpy as np
In [2]:
df=pd.read_csv('student_marks.csv')
In [5]:
df
In [6]:
df['Name']
In [7]:
df[['Name','Gender']]
In [8]:
# iloc and loc
df.loc[2:5]
                                               . . .
In [9]:
df.loc[2:5,2:3]
In [10]:
df.loc[2:5, 'Name']
In [11]:
df.loc[2:5,['Name','Gender']]
                                               . . .
In [12]:
names=df.loc[2:5,['Name','Gender']]
In [13]:
names
```

```
In [18]:
df.loc[:,'Physics':'Biology':2]
In [20]:
df.loc[df['Gender']=='M']
                                              . . .
In [21]:
df.loc[df['Gender']=='M','Name']
In [22]:
males=df.loc[df['Gender']=='M','Name']
In [23]:
males
Out[23]:
0
       John
1
     Suresh
2
     Ramesh
     Ritesh
9
     Mukesh
Name: Name, dtype: object
In [24]:
df.loc[df['Gender']=='M',['Gender','Name']]
In [26]:
df.loc[~(df['Gender']=='M')]
```

```
In [27]:
```

```
#iloc
df.iloc[2:5]
```

## Out[27]:

|   | Name     | Gender | DOB                | Maths | Physics | Chemistry | English | Biology | Economics | History | ( |
|---|----------|--------|--------------------|-------|---------|-----------|---------|---------|-----------|---------|---|
| 2 | Ramesh   | М      | 25-<br>05-<br>1989 | 25    | 54      | 89        | 76      | 95      | 87        | 56      |   |
| 3 | Jessica  | F      | 12-<br>08-<br>1990 | 78    | 96      | 86        | 63      | 54      | 89        | 75      |   |
| 4 | Jennifer | F      | 02-<br>09-<br>1989 | 58    | 96      | 78        | 46      | 96      | 77        | 83      |   |

**→** 

# In [29]:

```
df.iloc[2:5,0]
```

## Out[29]:

- 2 Ramesh
- 3 Jessica
- 4 Jennifer

Name: Name, dtype: object

### In [30]:

```
df.iloc[:,2:5] ...
```

### In [31]:

```
df.iloc[:,[0,7,10]] ...
```

### In [32]:

```
cl=df.iloc[:,[0,7,10]]
```

## In [33]:

c1

## Out[33]:

|   | Name     | Biology | Civics |
|---|----------|---------|--------|
| 0 | John     | 21      | 65     |
| 1 | Suresh   | 90      | 2      |
| 2 | Ramesh   | 95      | 74     |
| 3 | Jessica  | 54      | 45     |
| 4 | Jennifer | 96      | 53     |
| 5 | Annu     | 55      | 52     |
| 6 | pooja    | 75      | 61     |
| 7 | Ritesh   | 25      | 87     |
| 8 | Farha    | 78      | 89     |
| 9 | Mukesh   | 58      | 77     |

# In [34]:

type(cl)

# Out[34]:

pandas.core.frame.DataFrame

### In [5]:

df

## Out[5]:

|   | Name     | Gender | DOB                | Maths | Physics | Chemistry | English | Biology | <b>Economics</b> | History (   |
|---|----------|--------|--------------------|-------|---------|-----------|---------|---------|------------------|-------------|
| 0 | John     | М      | 05-<br>04-<br>1988 | 55    | 45      | 56        | 87      | 21      | 52               | 89          |
| 1 | Suresh   | М      | 04-<br>05-<br>1987 | 75    | 96      | 78        | 64      | 90      | 61               | 58          |
| 2 | Ramesh   | М      | 25-<br>05-<br>1989 | 25    | 54      | 89        | 76      | 95      | 87               | 56          |
| 3 | Jessica  | F      | 12-<br>08-<br>1990 | 78    | 96      | 86        | 63      | 54      | 89               | 75          |
| 4 | Jennifer | F      | 02-<br>09-<br>1989 | 58    | 96      | 78        | 46      | 96      | 77               | 83          |
| 5 | Annu     | F      | 05-<br>04-<br>1988 | 45    | 87      | 52        | 89      | 55      | 89               | 87          |
| 6 | pooja    | F      | 04-<br>05-<br>1987 | 55    | 64      | 61        | 58      | 75      | 58               | 64          |
| 7 | Ritesh   | М      | 25-<br>05-<br>1989 | 54    | 76      | 87        | 56      | 25      | 56               | 76          |
| 8 | Farha    | F      | 12-<br>08-<br>1990 | 55    | 63      | 89        | 75      | 78      | 75               | 63          |
| 9 | Mukesh   | М      | 02-<br>09-<br>1989 | 96    | 46      | 77        | 83      | 58      | 83               | 46          |
| 4 |          |        |                    |       |         |           |         |         |                  | <b>&gt;</b> |

# In [3]:

df['sci\_total']=df['Maths']+df['Physics']+df['Chemistry']+df['Biology']

```
In [4]:
df['sci_total']
Out[4]:
0
     177
1
     339
2
     263
3
     314
4
     328
5
     239
6
     255
7
     242
8
     285
9
     277
Name: sci_total, dtype: int64
In [42]:
#concat
data1={'Name':['Jay','Raj','Kumar'],
      'Age':[20,25,23],
      'dept':['Hr','Sales','Account']}
df1=pd.DataFrame(data1)
In [51]:
data2={'deptid':list(range(0,3)),
      'count':list(range(10,40,10))}
df2=pd.DataFrame(data2,dtype=int)
In [48]:
newdf=pd.concat([df1,df2])
In [52]:
newdf
In [53]:
newdf=pd.concat([df1,df2],ignore_index=True)
newdf
In [55]:
newdf.isna().sum()
In [57]:
newdf.notna().sum()
                                              . . .
```

```
In [59]:
```

```
newdf['Name'].replace(np.NaN,'abc')
...
```

## In [60]:

```
newdf
...
```

### In [61]:

```
newdf['Name'].replace(np.NaN,'abc',inplace=True)
```

### In [62]:

newdf ...

### In [65]:

```
dmean=np.mean(newdf['deptid'])
```

### In [66]:

dmean

### Out[66]:

1.0

### In [67]:

```
newdf['deptid'].replace(np.NaN,dmean,inplace=True)
```

### In [68]:

newdf

### Out[68]:

|   | Name  | Age  | dept    | deptid | count |
|---|-------|------|---------|--------|-------|
| 0 | Jay   | 20.0 | Hr      | 1.0    | NaN   |
| 1 | Raj   | 25.0 | Sales   | 1.0    | NaN   |
| 2 | Kumar | 23.0 | Account | 1.0    | NaN   |
| 3 | abc   | NaN  | NaN     | 0.0    | 10.0  |
| 4 | abc   | NaN  | NaN     | 1.0    | 20.0  |
| 5 | abc   | NaN  | NaN     | 2.0    | 30.0  |

### In [69]:

df

## Out[69]:

|   | Name     | Gender | DOB                | Maths | Physics | Chemistry | English | Biology | Economics | History |
|---|----------|--------|--------------------|-------|---------|-----------|---------|---------|-----------|---------|
| 0 | John     | М      | 05-<br>04-<br>1988 | 55    | 45      | 56        | 87      | 21      | 52        | 89      |
| 1 | Suresh   | М      | 04-<br>05-<br>1987 | 75    | 96      | 78        | 64      | 90      | 61        | 58      |
| 2 | Ramesh   | М      | 25-<br>05-<br>1989 | 25    | 54      | 89        | 76      | 95      | 87        | 56      |
| 3 | Jessica  | F      | 12-<br>08-<br>1990 | 78    | 96      | 86        | 63      | 54      | 89        | 75      |
| 4 | Jennifer | F      | 02-<br>09-<br>1989 | 58    | 96      | 78        | 46      | 96      | 77        | 83      |
| 5 | Annu     | F      | 05-<br>04-<br>1988 | 45    | 87      | 52        | 89      | 55      | 89        | 87      |
| 6 | pooja    | F      | 04-<br>05-<br>1987 | 55    | 64      | 61        | 58      | 75      | 58        | 64      |
| 7 | Ritesh   | М      | 25-<br>05-<br>1989 | 54    | 76      | 87        | 56      | 25      | 56        | 76      |
| 8 | Farha    | F      | 12-<br>08-<br>1990 | 55    | 63      | 89        | 75      | 78      | 75        | 63      |
| 9 | Mukesh   | М      | 02-<br>09-<br>1989 | 96    | 46      | 77        | 83      | 58      | 83        | 46      |
| 4 |          |        |                    |       |         |           |         |         |           | •       |

# In [92]:

import datetime
dt=datetime.datetime.now()
import warnings
warnings.filterwarnings("ignore")

## In [93]:

df.info()

## In [94]:

df['DOB']=pd.to\_datetime(df['DOB'])

```
In [76]:
df['year']=df['DOB'].dt.year
In [77]:
df['year']
In [78]:
df
In [79]:
df['Month']=df['DOB'].dt.month
In [80]:
df['day']=df['DOB'].dt.day
In [81]:
df
                                               . . .
In [91]:
total=df[~(df['sci_total']>=300) & (df['Gender']=='M')]
total
In [8]:
def getgrade(marks):
    if(marks>=300):
        return "A+"
    elif (marks>=200 and marks<300):</pre>
        return 'B'
    else:
        return 'C'
df['Grade']=df['sci_total'].apply(getgrade)
In [9]:
df
```

```
11/10/22, 12:12 PM
                                                  pandasops - Jupyter Notebook
  In [10]:
 df.groupby('Grade')
  Out[10]:
  <pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000166F15320A0>
  In [11]:
  df.groupby('Grade').count()
  In [14]:
 df.groupby('Grade')['Maths'].agg(['mean', 'max', 'min', 'count'])
  Out[14]:
             mean max min count
  Grade
     A+ 70.333333
                     78
                          58
                                 3
      B 55.000000
                          25
                                 6
                     96
      C 55.000000
  In [17]:
  import matplotlib.pyplot as plt
  import numpy as np
  In [20]:
  xdata=[3,6,7,8]
 ydata=[1,2,3,4]
  plt.plot(xdata,ydata)
  plt.show()
                                                  . . .
  In [39]:
```

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]
plt.plot(xdata,ydata)
plt.xlabel("X-axis", color='r')
plt.ylabel("Y-axis",color='g')
plt.title("Example of line chart" ,fontstyle='italic',fontweight='20')
plt.show()
                                              . . .
```

#### In [27]:

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]

plt.plot(xdata,ydata,'-.',color='#FF0000')
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Example of line chart")
plt.show()
```

### In [31]:

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]
xdata1=[5,6,9,7]
ydata1=[2,3,4,5]

plt.plot(xdata,ydata,'-.',color='#FF0000',linewidth=5)
plt.plot(xdata1,ydata1,'-.',color='g')
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Example of line chart")
plt.show()
```

#### In [45]:

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]

plt.bar(xdata,ydata,width=0.8,color='g')
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Example of line chart")
plt.show()
```



#### In [51]:

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]
mycolors=['red','hotpink','blue','g']
plt.bar(xdata,ydata,width=0.8,color=mycolors)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Example of line chart")
plt.show()
```

#### In [57]:

```
xdata=[3,6,7,8]
ydata=[1,2,3,4]
mycolors=['red','pink','blue','g']
plt.bar(xdata,ydata,width=0.8,color=mycolors,alpha=1)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Example of line chart")
plt.show()
```

#### In [ ]: