UNCLASSIFIED

AD NUMBER AD841067 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; SEP 1968. Other requests shall be referred to Atmospheric Sciences Lab., White Sands Missile Range, NM. **AUTHORITY** USAEC 1tr, 13 Sep 1971

DR-352 September 1968

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF ATMOSPHERIC SCIENCE RESEARCH OFFICE, WHITE SANDS MISSILE RANGE, NEW MEXICO.

METEOROLOGICAL DATA REPORT

NIKE-HYDAC STV SR-071 (12 August 1968)

BY

GORDON L. DUNAWAY

ATMOSPHERIC SCIENCE RESEARCH OFFICE WHITE SANDS MISSILE RANGE, NEW MEXICO

ECOM
UNITED STATES ARMY ELECTRONICS COMMAND

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army porition, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

METEOROLOGICAL DATA REPORT

NIKE-HYDAC STV SR-071 (12 August 1968)

Ву

Gordon L. Dunaway

DR-352

September 1968

DA Task 1T665702D127-02

ATMOSPHERIC SCIENCE RESEARCH OFFICE WHITE SANDS MISSILE RANGE, NEW MEXICO

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Atmospheric Science Research Office, White Sands Missile Range, New Mexico.

ABSTRACT

Meteorological data gathered for the launching of Nike-Hydac STV (SR-071), are presented for the Space and Missile Systems Organization and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

CONTENTS

		PAGE
ABSTRAC	T	iii
INTRODU	CTION	1
DISCUSS	IÓN	1
TABLES		
ı.	Theoretical Rocket Performance Values	2
II.	Ballistic Factors	3
III.	Anemometer Wind Speed and Direction	4
IV.	Pilot-Ballcon-Heasured Wind Data	5
v.	Rawinsonde-Measured Wind Data	7
VI.	Significant Level Data (Release Time: 0245 MDT)	8
VII.	Upper Air Data (Release Time: 0245 MDT)	10
VIII.	Mandatory Levels (Release Time: 0245 MDT)	17
IX.	Significant Level Data (Release Time: 0615 MDT)	18
X.	Upper Air Data (Release Time: 0615 MDT)	20
xI.	Mandatory Levels (Release Time: 0615 MDT)	26
XII.	Impact Prediction Data	27

INTRODUCTION

Nike-Hydac STV (SR-071), was launched from Launch Complex 33, L-314, White Sands Missile Range (WSMR), New Mexico, at 0614 hours MDT, 12 August 1968.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Technical Area, Atmospheric Sciences Laboratory (ASL), WSMR, New Mexico. The Ballistics Meteorologists for this firing were Gordon L. Dunaway and John M. Sharpe.

DISCUSSION

Wind data for the first 216 feet above the surface were obtained from a system composed of five Aerovanes mounted on a 200-foot tower and cabled to two component wind indicators for each level.

From 216 to 4,000 feet above the surface, wind data were obtained from T-9 tracked balloon ascents.

Temperature, pressure, and humidity data, along with upper wind data from 4,000 to 100,000 feet above the surface, were obtained from standard rawinsonde observations.

Mean wind component values in each ballistic zone were determined from vertical cross sections by the equal-area method.

Theoretical rocket performance values and ballistic factors as a function of altitude were provided by ASL and are the basis for data appearing in Table I.

PAYIOAD		218	Pounds
CORIOLIS DISPLACEMENT	WEST.	4.9	Miles
WATER TO THE STOCKED	TIME	20.0	Seconds
SECOND-STAGE LUNITION	ALTITUDE	35,760	Feet MSL
	TOME	230	Seconds
PEAK	ALTITUDE	716,000	Feet MSL
	HEAD	2.16	Miles/MPH
UNIT WIND EFFECT	CROSS	2.24	Miles/MPH
	TAIL	2.17	Miles/WFii
TOWER TILL EFFECT		14.53	Miles/Degree

TABLE 1. THEORETICAL EXCRET PERFORMANCE VALUES NIKE-HYDAC STV (SR-071)

LAYERS IN FEET ABOVE GROUND	BALLISTIC FACTORS	LAYERS IN FEET ABOVE GROUND	BALLISTIC FACTORS	LAYERS IN FEET ABOVE GROUND	BALLISTIC FACTORS
15- 60	.126	1000- 1400	.063	21000-2,6000	013
60- 108	.084	1400- 2000	990.	26000-31767	-,016
108- 148	.053	2000- 2500	.035	31767-36000	.129
148 184	.041	2500- 3000	.028	36000-41000	.057
184- 216	.026	3000- 3500	.014	41000-46000	.026
216- 300	.062	3500- 4000	.005	46000-51000	.015
300- 400	.058	4000- 4160	003	51000~56000	.010
400- 600	.072	4160- 9000	014	56000-61000	900.
908 -009	.058	9000-15000	017	00099-00019	.004
800-1000	.039	15000-21000	016	66000-69330	.002

TABLE II. BALLISTIC FACTORS
NIKE-HYDAC STV (SR-071)

C			MEAN W	IND COM	PONENTS	MEAN WIND COMPONENTS IN MILES FER HOUR	ES FER	HOUR		
VANE		1		2		3		7		5
* • 0N	0355	0355 MDT	0415 MDT	MDT	0445	0445 MDT	0200	0500 MDT	0515	0515 MDT
	N-S	E-W	N-S	M	N-S	E-W	N-S	M-A	N-S	M -2
Н	0.0	0.0	8,08	1.0W	6.08	3.05	1.08	0.0	1.08	T.OW
0	2.08	2.0W 10.0	10.0	3.0	0.6	3.0	4.0	0.0	3.5	3.0
٣	4.0	3.0	11.0	3.0	0°6	4.0	4.0	1,0E	5.0	3.0
-7	9.0	3.0	11.0	3.5	11.0	4.0	7.0	1.0	6.5	3,0
77	7.0	2.0 11.0	11.0	3.0 11.0	11.0	5.0 8.0	8.0	1.0	7,0	3.0

4 6000			MEAN W.	IND COM	FONENTS	MEAN WIND COMPONENTS IN MILES PER HOUR	es per 1	HOUR		
VANE NO. *	6 0525 MDT	6 MDT	7 0535 NDT	7 NDT	8 0545 MDT	8 MDT	9 TOM 5550	9 NOT	1 0614	10 0614 MDT
	N-S	E-w	N-S	M-∃	N-S	E-W	N-S	E-W	N-S	3
Н	2.08	1.0W	0.0	0.0	0°0	0.0	3,08	4.0E	7.08	4.0E
8	2.0	1.0	2,0S	1.0E	2.08	2.0E	7.0	a.4	8.0	3.0
m	3.5	0.0	3.0	1.0	3.0	2.0	7.0	5,0	8.0	2.0
71	5.0	0.0	7.0	0.0	4.0	2.0	8.0	0.9	9.0	3.0
2	6.0	0.0	8.0	0.0	4.0	1.0	7.0	5.0	10.0	3.0

ANEMOMETER WIND SPEED AND DIRECTION NIKE-HYDAC STV (SR-071) TABLE III.

* Heights corresponding to Aerovane Numbers:

1 = 35 Feet 2 = 88 Feet

3 = 128 Feet 4 = 168 Feet

\$ = 200 Feet

			MEAN	MEAN WIND COMPONENTS	MPONENT	S IN MI	IN MILES PER HOUR	HOUR		
FEET ABOVE	1 0355 MDT	MDT	2 0415 MDT	2 MDT	3 0445 MDT	3 MDT	0200	4 0500 MDT	5 0515 MDT	5 MDT
GROUND	N-S	E-W	N-S	E-W	N-S	E-W	N-S	M-B	N-S	H-H
216- 300	7.58	2.5W	11.08	3.UW	11.08	4.0E	8.08	0.5E	8.05	3.0W
300- 400	8.0	4.0	11.5	5.0	11.5	2.0	8.5	1.5W	8.5.	4.0
400- 600	8.0	5.0	12.0	4.0	12.0	1.07	0.6	3.0	0.6	0.9
008 -009	8.5	2.0	13.5	1.0	12.5	3.5	9.5	5.3	14.0	4.5
800-1000	10.0	1.0	13.5	1.0	13.0	4.0	8.0	7.0	12.5	ຄຸ
1000-1400	11.0	3.0	15.0	1.0	8.0	5.5	6.0	5.5	6.5	4.5
1400-2000	8.0	5.0	11.5	4.0	2.0	5.0	2.0	4.5	1.5	3.5
2\)00-2500	4.5	0.9	3.5	7.0	0.5	3.0	1.0	3.0	1.0N	2,5
2500-3000	2.0	6.5	1,5	5.0	2.0	2.0	5.	2.5	4.0S	2.0
3000-3500	1.5	11.0	3.0	0.6	4.0	5.0	7.0	4.0	6.9	5.0
3500-4000	2.0	15.0	3.5	12.0	2.0	10.0	3.0	10.5	2.5	8.5
	-	1					-	7		

TABLE IV. PILOT-BAILOON-MERSURED WIND DARA NIKE-HYDAC STV (BR-071)

Ì			MEAN	MEAN WINT COMPONENTS	MPONIENT	S IN MILES	nag ean	PER HOUR		
LATERS IN				,		8		6	1	10
ABOVE	0525	6525 MDT	0535	0535 MNT	0545 MDT	MDT	0555	0555 MDT	0614 MDT	MDT
GROUND	N~8	. EW	N-S	A	N-8	M-3	8N	M-35	Z-Z	M-8
216- 300	6.58	ws.0	8.08	0.58	4.58	1,05	7.58	36.4	8.58	2.58
300- 400	7.0	3.0	8.0	0.5W	0.9	1.5	8.5	0.4	8.6	0.5W
400- 600	9.0	4.5	8.0	ي. ت	7.0	e . 0	11.5	2.5	10.5	4.5
600- 800	1,3.0	4.5	10.5	3.5	0.8	1.5W	13.0	0.0	13.0	5.0
8001000	14.5	4.0	14.5	3.5	13.0	1.5	13.0	1.5W	14.0	2,4
1,000-1400	9.0	2.5	11.0	r. 5	10.5	0.4	12.0	0.5	12.0	4.0
1400-2000	3,5	3.0	5,5	1.5	ნ. გე	1.0E	5.0	0 . 4	3.0	2.0
2000-2500	4.0	1.5	5.0	٥٠٠	3.0	0.0	0.4	0.5	1.5N	0.0
2500-3000	3.5	0.58	3.0	0.0	0'4	3.5W	0.4	3.0	0.5	4. SW
3000-3500	5.0	2.0W	0.0	40.0	1.5N	7.5	3.0N	7.0	1.5	6.3
3500-4000	2.0	8.0	1.0N	10°01	3.0	11.5	3.5	11.0	2.5	11.0
		~	TABLE IV.		KE-IIYDA	TOON -AN	ASURED SR-071)	PLYOT-BALLOON-MERSURED WIND DARA NIKE-HYDAC STV (SR-071)	ra (cont)	NT.)

VAT. CANCELLY 1.		MEAN WIND COMPONENTS	ND COM!		IN KNOTS	8
THEET AND	0245	1 0245 NDT	0615	2 0615 NOT		
GROUND	N~S	M-3	N-8	M-23	N.G	B-W
4000- 4160	2.5N	X.3.0W	1.5N	8.0W		
4160- 9000	3.0	1.6.0	2.5	13.0		
9000-12000	0.0	20.0	3,5	18.3		
15000-21000	3.08	16.0	2.5	13.0		
21000-26000	3.0	8.5	8.58	10.0		
26000-31.770	10.5	4.0	0.9	7.0		
31770-36000	13.0	0.3	11.5	4.0		
36000-41000	11.0	G.5E	15.5	13.0		
41000-46000	11.5	14.09	0.0	13.0		
46000-51000	0.0	10.0	2.5N	13.0		
51000-61000	3.0N	1.01	9.3	3.5%		_
61000-66000	0.0	0'6	1.5	8.0		
66000-69330	0.0	17.0	7.5	19.5		

TABLE V. RAWINSONDE-MEASURED WIND DATA NIKE-HYDAC STV (SR-071)

STA CON ALTITUDE 3989.0 FIET MSI 12 AUG. 68 0245 HRB MDT ASCENSION NO. 640

MSTM SITE COORDINATES E 488,580 PRET N 185,045 FEET

Professional Commence of the C

TABLE VI

REL.HUM. PERCENT (SEE +)	@~#4%\$\@\$\\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
ERATURE DEWPOINT CENTIGRADE		
TEMPI AIR DEGREES	日	
GEOMETRIC ALTITUDE MSL FEET	10000000000000000000000000000000000000	
PRESSURE MILLIBARS	<pre></pre>	

RELATIVE HUMIDITY NOT SUPPLIED. ZERN VALUE ASSUMED FOR COMPUTATIONS.

WINTER WESTERN GARACTER

^{*} RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATICAS. BASE LINE RELATIVE HUTTOITY ABOVE 40 PERTENT.

STATION ALTITUDE 3989.0 FEET MSL 12 AUG. 68 0245 HRS MDT ASCENSION NO. 640

SIGNIFICANT LEVEL DATA 0073003902 WHITE SANDS SITE

THE THE PERSON CHANGE WITH THE PERSON WITH THE

WSTM SITE COURDINATES E 488,580 FEET N 185,045 FEET

TABLE VI (Cont)

REL.HUM. PERCENT	* * * 0 - 1	-0° **			
EMPERATURE R DEWPOINT FFS CENTICEADE	•	•0	•	0	• 0
TEMPE AIR DECREES	s œ	- 50, 3	-45.5	-41.6	-35.8
GEOMETRIC ALTITUDE S MSI FFFT	80954.1	84299.1	89398,5	103686.4	108765.5
PRESSUR	28.0	24.0	19.0	10.0	8.0

RELATIVE HUMIDITY NOT SUPPLIED. ZERO YALUE ASSUMED FOR COMPUTATIONS.

* RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE L'INE RELATIVE HUMIDITY ABOVE 40 PERCENT.

STATION ALTITUDE 3989.0 FEFT MSL 12 AUG. 68 0245 HRS MDZ ASCENSION NO. 640

UPPER AIR DATA 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488 580 FEET N 185,045 SEET

TABLE VII

INDEX	OF	1	•0003	• 0003	.0003	.0002	5000	2000	2000	0000	2000				7000	. 2000	°0005	0005	00051	.00021	1.000212	°3005€	,00020	,0002	00050	,00019	00019	9 1000	00018	4 000		7000	1800	00017
TA	SPEED KNOTS	ć	3 °	0.0	1.9	3.8	2.0	7.5	0	-	ะก	J	20		5 4	š,	ŏ,	ă.	٠.		16.6		. Ā	_•	•	_:	£	_;		-1			3	•
3	DIRECTION Degrees(TN)	t	2 5	•	<u> </u>	4	1	*	5	1	~	~	9	5	3	2	- 9	•		m (283.0	N	<u>,</u>	Ņ.		4	'n	ċ	÷	ŝ	4		• •	•
EED	KNOTS	9	3) (7	2	ŝ	68	9	2	20	\$	53	75	S	3	2	_ <	Ž :	•	6576.3	- (<u>,</u>	ž.,	e d	Č:	•		, , ,	6 0	39.	3.8		ء -
NS L TY	METER	8 60	7 (0)		9 0)))	4	89	ž	ģ	Š	2	ġ	38.	2		5	3 -	3	7	7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 .			<u>.</u>	: <	•	.	Ž.	Ç.	ဆိ	<u>,</u>	Š	4	-
EL.	SEE #)	6		٠ د) e	n	.	ன் .	eri.	خ	á.	٠	ĸ.	÷	-	_	` _ `			•	7 2 7	: -	•	•	•	•	•	3	Ð	2	÷		=	•
RA TURE	CENTIGRADE	! ~	1	٠ ٩	٠.	7 C	> (0.6	6*/	6.9	2.9	4.0	4.6	9. B.	3°0	2.1	; ec	4,0) c	· -			; } ~	; ; ; <u>, , , , , , , , , , , , , , , , , , ,</u>	,	; r	ÿr	,	→ • • • • • • • • • • • • • • • • • • •	- S' 1	-6,5	13,3	
	DEGREES	€.	S	C	C	> <	> (9 (1.07	· .	٠œ	o i	Ň.	٠	m	مٰ	Č	Š	(C)	- A-	6.1	4	. F	(A)	6.4	ر د د	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٠ د ر	1 t	ņ.	3	-5.2	٥	
PRESSURE	MILLIBARS	80	79	4	3	4		֝֞֝֞֝֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֝֓֡֓֡֝֓֡֝	3 :	- ?	ے کے	ָהָ הָ הַי	į:	Š	Ď	ó	8	ñ	2	Ö	648.0	9	4	~	<u>-</u> -	Č	Ó	α,	, ,	- 1	٤,	တိ	Ĉ,	
OME	SL FEE	3989.0	000	500	000	500									2000	10000	0200	1000.	1500.	2000.	900	3000	3500.	4000	4500.	5000.	5 500	6000	6500	0000		3 6	8000%	

EQUIPMENT LIMITATIONS. BASE LINE RELATIVE RAWINSONDE RELATIVE HUMIDITY DOUBTFUL. HUMIDITY ABOVE 40 PERCENT. ¥

STATION ALTITUDE 3989 OFFFT MSL 12 AUG. 68 0245 HRS MDT ASCENSION NO. 640

UPPER AIR DATA 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE VII (Cont)

DEX : CTION	00001 00001	60000 60000
INDI OF REFRA		, red ped a
ATA SPEED KNOTS		• • •
WIND D DIRECTION DEGREES(TN)	200 200 200 200 200 200 200 200 200 200	99.
SPEED OF SOUND KNOTS	1000000000000000000000000000000000000	400
DENSITY GM/CUBIC METER	0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	223
REL.HUM. PERCENT (SEE *)	0 4 0 9 0 4 4 0 9 0 0 0 0 0 0 0 0 0 0 0	2.99
ERATURE DEWPOINT CENTIGRADE		
TEMPI AIR DEGREES		29.6
PRESSURE MILLIBARS	516 444444444444444444444444444444444444	96.
GEOMETRIC ALTITUDE MSL FEET	18500.0 20000.0 20000.0 20000.0 21500.0 21500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0 22500.0	1500 2000 2500

* RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

11

STATION ALTITUDE 3989.0 FEET MSt. 12 AJG. 68 0245 HRS MDT ASCENSION NO. 640

WHITE SANDS SITE UPPER AIR DATA 0073003902

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE VII (Cont)

INDEX OF REFRACTION
TA SPEED KNOTS
MIND DATA DIRECTION S DEGREES(TN) K
SPEED OF SOUND KNOTS
DENSITY SPEED OF GM/CUBIC SOUND METER KNOTS
REL.HUM. F PERCENT DE (SEE *)
TEMPERATURE R DEWPOINT EES CENTIGRADE
TEMP AIR Degrees
PRESSURE TEMPERATURE AIR DEWPOINT MILLIBARS DEGREES CENTIGRAD
SEOMETRIC ALTITUDE 4SL FEET

INDEX OF	REFRACTION	•0000	0000	0000	0000	0000	0000	0000	0000	0000	• 0000	.000.	0000	0000	0000	0000	0000	.0000	1.000065	• 0000	00000	0000°	0000	\circ	0000	0000	3000°	00002	.0000	1.000054	0000
98	KNOTS	E.	‡	\$	r.1	÷	4	4		÷	٠	•	•		ċ		2	÷.	14.9	.	Š.	j,	S		-	7°	8	æ	8	~	Ş
MIND D	201	97.	00	97.	93.	92.	91.	86.	84.	84.	84.	78.	68.	56.	44.	400	27.	25°	132.8	4	33	66.	79	m	90	8	26.	33.	39.	45	53°
SPEED OF SOUND	KNOTS	. 26	95.	94°	92.	90.	89.	87.	53.	84.	82,	80.	78.	7.4.	75.	73.	÷	69	5680	67.	56.	56.	65.	64.	63.	62.	60.	60.	59.	58.	58,
DENSITY S	METER	11.	05.	98	91.	85.	78.	72.	65.	59.	53.	47.	41.4	35.	29.	230	£8.	13,	307.7	01.	94.	87.	81.	75.	69.	64.	59.	53.	47.	42.	36.
REL.HUM.	SEE	Ŝ	*	54.2	*	0	8	4.1	•	÷	2.3		4.4			2.6		જ	à	** ·0-	** °O-	-0° **	## ₽0-	** *0	-0° **	** 0-	₩# °0-	** °0~	** °O-	** °0-	** °0 ··-
EMPERATURE DEMODINE	CENTIGRADE	-43.6	6.44-		٥		.		-54.9	20	ŝ	-		•	80	9	-75.3	င္ပိ	Ľ	•	ô	၀	•	ဝိ	•	0	ó	°O	ô	ဝီ	ဝိ
T.																															
TEAS	DEGREES	۴	-39.0		0				•			3			٥	۰			-60.3	3			۰	æ	•		-65.6	\$	S	67°	-67.8
PRESSURE TE	EGREE	.2 -37.	.2 -39	.04- 40	.6 -41.	.8 -42.	.44.	.2 -45.	.6 -46.	.148.	.7 -49.	.5 -50.	.352.	.353.	.454.	.6 -56.	.0 -57.	.4 -59.	.09- 6.	.4 -60°	.0 -61.	.7 -61.	.4 -62.	.3 -62.	•3 –63。	.3 -64.	.4 -65.	.566.	.8 -555	.1 67.	-67。

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

* RELATIVE HUMICITY NOUPTFU! RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMICITY ARDVE 40 PERCENT.

STATION ALTITUDE 3989.0 FEET MSL 12 AUG. 68 0245 HRS MDT ASCENSION NO. 640

UPPER AIR DATA 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

1

TABLE VII (Cont)

INDEX	REFRACTION	- 00005	00005	.0000	.0000	*0000	*0000	0000	+00000-	90000	.00004	+00000-	+00000-	.00003	.00003	.00003	.00003	.00003	1.000033	.00003	.0000	.00003	.00003	0002	.00002	.00002	0002	.00002	.00002	0002	-00005
TA	KNOTS	Š		ë	2	ö	•	9.1		6	-			2,	- 3	0		•			•	•	•	•	•			•	•	•	•
WIND	· W	61.	68.	74.	76.	760	70.	263.8	64.	69.	74.	79.	84.	85.	87.	85.	83.	88	9	12.	37.	2	6	٠ د	6	03.	ż	2		6	6
SPEED OF	KNOTS	57.	56.	55.	55.	55.	55.	555.2	55,	55.	54.	53.	53.	56.	58.	59.	•09	61.	62.	63.	63,	63.	63.	63.	Ø.	64.	٠	64.	64.	564.4	٠
> L	METER	31.	26.	21.	16.	10.	05.	200-4	95.	90.	85.	82.	77.	710	66.	61.	56.	52.	47.	43.	40.	36.	33.	30.	26.	23.	20.	17.	4	-1	760
HUM.	*	*	*	#	*	*	*	*	*	*	*	*	#	*	*	*	#	*	*	*	*	*	*	*	*	4	*	*	*	# #	*
•	SEE	** *0-	-0·		•		-0* **	** *0	** °0-	-0°	** *0-	-0- **	** ·0-	** •0-	•		## *0-	•	-0- **	** *0-	** •0-	++ *0-	** *0-	•			-0- **	-0-	** •0-	** *0-	** *0-
TURE REL.HUM.	e (See	00-	0	•0-	•0-	•0-	•		•	•	5	•	•	•	0-	-0-	•0-	0-	•	•	•	•	•		• 0-	0-	•	•	•	•	•
EMPERATURE REL.HUM.	ENTIGRADE (SEE	8.3	8.8	9.4 00.	9.6 00.	9.7 00.	9.8 0.	9.9 00.	•	0.0	•1 0.	1.1 0.	1.4 0.	9.0 0.	7.8 00.	00-	6.1 00.	5.2 00.	4.4	3.8	3.7 0.	3.6	3.6 0.	3.5 00.	3.4 00.	3.4 00.	3.3 0.	3.2 0.	3.2 0.	3.1	•0
EMPERATURE REL.HUM.	EGREES CENTIGRADE (SEE	36.1 -68.3	32.7 -68.8 00.	29.4 -69.4 00.	26.269.6 00.	•0 -69-1	19.969.8 0.	16.9 -69.9 00.	4.0 -69.9 0.	11.1 -70.0 0.	08,370,1 0,	05.6 -71.1 0.	2.971.4 0.	00.3 -69.0 0.	7.8 ~67.8 00.	5.4 -66.9 00.	3.166.1 00.	0.865.2 00.	8.5 -64.4 0.	6.4 -63.8 0.	4,2 -63,7 0.	2.2 -63.6 0.	0.2 -63.6 0.	8.2 -63.5 00.	6.3 -63.4 00.	4.5 -63.4 00.	2.7 -63.3 0.	0.9 -53.2 0.	9.2 -63.2 0.	-63.1	5.8 -63.0 0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

* RELATIVE HUMIDITY DOUBTFUL. RAWINSDNDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

STATION ALTITUDE 3989.0 FFFT MS1 12 AUG. 68 0245 HRS MDT ASCENSION NO. 640

UPPER AIR DATA 0073003902 WHITE SANDS SEFE

MSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

STOP STORES TO STORE STO

TABLE VII (Cont)

INDEX OF REFRACTION	1.000024	*00000	0000	.0000	.0000	.0000	*0000	~	.0000	.00001	1.000018	10000	10000	1.000016	.00001	10000	,0000 L	.0000	~0000	.0000	.0000°	1.000013	.0000	.0000	.0000	.00001	0000	100
TA SPEED KNOTS P	₩.4 Ծ ₹.	•						Ġ.	ċ.	•	•	• •	ه س د		J.	*	Š	•	j	•	•			-	8	3	27.8	5
WIND DA' DIRECTION DEGREES(TN)	68.5	Š	4	80		•	'n	\$,	•			•	84.9		9**6	å	90	.	ď	•	8	•	79.5			70°2	72.4
SPEED OF SOUND KNOTS	564.5		567.1	569.8	0	ċ	4	571,3		,	N.	2	i.	57.00	8	3	\$	÷	;	j	Š	575.4	Š	ŝ	ŝ	Ø	Ġ	577.9
DENSITY S GM/CUBIC METER	106.5	01.	98.	+	2	ó	9	L	e e	1	6			9 0	ô	8	ç	Š	8	å	ဝိ	è	٢	\$	•	c	2°	ρ
» N *	* *	*	*	*	# #	*	*	*	*	*	*	* ·	# # * *	*	*	*	*	*	*	*	*	*	*	*	*	特体	*	*
Ξ.W				٠	•		•	č	0	•		•	•	• 6		•	•	•		•			•	9		°0-	°	ို
REL.HUM PERCENT (SEE #)	ô	Ģ	0	Ŷ	0	٦	9	o	Y	9	9	9	o		Ĭ	ĭ	ĭ	0	ì	9	0	-0-	0	9	0	1	0	1
RATURE R DEWPOINT P ENTIGRADE (000	• 0			•	•	•	•	•	•		۰		•			٥	9	•	•	b	۰	•	•	•	•	0	•
RATURE R DEWPOINT P ENTIGRADE (000	62.8 0.	1.0 0.	9.0 0.	8.5	8.3 0.	8.1 0.	7.9 0.	7.7	7.5	7.3	7.1	6.9		6.3	6.0 0° .	5,8	5.6 0.	5°4 0°	5.2 0.	5,0 0,	4°8 0°	4.6 0.	4.4	6.2 0.	4°0 0°	7 0°	2.8 0°
TEMPERATURE AIR DEWPOINT P EGREES CENTIGRADE (62.9	Lo62.8 0°	9.7 -61.0 0.	8.2 -59.0 0.	6.9 -58.5 0.	5.5 -58.3 0.	6.2 -58.1 0.	2.9 -57.9 0.	1.7 -57.7	0.5 -57.5 0.	9.3 -57.3 0.	8.1 -57.1 0.	f.0 -56.9 0.	4.8 156.5 O.	3.8 -56.3 0.	2.7 -56.0 0.	1.7 -55.8 0.	0.7 -55.6 0.	9.8 -55.4 0.	8.8 -55.2 0.	7.9 -55.0 0°	7.0 -54.8 0.	6.2 -54.6 0.	5.3 -54.4 0.	4.5 -54.2 0.	3.7 -54.0 0.	2.9 -53.7 0.	2.1 -52.8 0

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

^{*} RELATIVE HUMIDITY POUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PFRCENT.

STATION ALTITUDE 3989.0 FEET MSL 12 AUG. 68 0245 HRS MDT ASCENSION ND. 640

UPPER AIR DAFA 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE VII (Cont)

INDEX	REFRACTION	000	10000	.0000	.0000	00001	.00001	00000	.00000	00000	00000	.0000	00000	.00000	• 00000	.00000	.00000	.00000	• 00000	00000	.00000	.00000	000000	•00000	.00000	.00000	• 00000	• 00000	.00000	1.000006	00000
A Spire	KNOTS	6	29.3	8	-	•	•	•	•	•	÷	-	8	6	0	-	7	-		7	1.	ô	0	0	0	ð	•	6	8	28.3	8
α	SIT	N	4.47	ŝ	-	6	ċ		2	\$	-	8	•	,	å	6	6	ö	ċ	0	ô	-	2	3.	9	÷	÷	Š	š	92.1	~
SPEED OF	KNOTS	79.	80.	81.	82.	83,	84.	83.	83.	82.	82.	82.	81.	81.	82.	82.	83.	84.	84.	85.	85.	86.	87.	87.	87.	87.	88.	88.	88.	588.6	88.
NS ITY	ETER	•	48.1	•	•	4	ຕ	2	7	ċ	6	8	8	÷	•	Š	4	8	2	2	-	ċ	å	8	8	7.	-	•	5	25.2	•
C) C)																															
.) . 	*	*	*	*	*	*	*	*	*	# #	**	*	₩	**	#	*	**	*	*	*	*	*	**	#	#	*	*	*	*	*
L.HUM. D	SEE **	** •0-	** *0-	** •0-	•	•	** *0-	•		++ *O-	•	** °0-		•	•		** *0-		•			** *O-	** *0-	•	•		•			•	## *0-
TURE REL.HUM. D	TIGRADE (SEE *)	!	1		•0-	0-	•	-0-	0-	*0-	.0-	0-	• 0-	•0-	0	0-		0-	•0-	0-	•0-	•0-	0-	•0-	.0-	• 0-	•0-	• 0-	0-	•0-	•
TEMPERATURE REL.HUM. D	ES CENTIGRADE (SEE *)	2.0 0	1	0.4		8.7 € -0.	8.0 0.	8.4 00.	8.7 00.	9.1 00.	9.4 00.	9.8 00.	0-1 0 -0	0.1 0.	9.6 00.	9.2 00.	8.7 0.	8.2 00.	.8 0.	0- 0-	.0 -0 8	6 e3 0	5.9 00	5.5 00.	00-	.2 00.	5.1 00.	•0- 0- 6•	0- 0. 8.	4.7 00.	•
TEMPERATURE REL.HUM. D	EGREES CENTIGRADE (SEE *)	1.4 -52.0 0	7 -51.2 0	0.0 -50.4 0.	9•3 -49•6 W, -0•	8.6 -48.7 6 -0.	7.9 -48.0 0.	7.3 -48.4 00.	6.7 -48.7 00.	6.1 -49.1 00.	5.5 -49.4 00.	4.949.8 00.	4.3 -50.1 00.	3.8 -50.1 00.	3.249.6 00.	2.7 -49.2 00.	2.2 -48.7 0.	1.7 -48.2 00.	1.2 -47.8 00.	0.7 -47.3 00.	0.3 -46.8 00.	9.8 -46.3 00.	9.4 -45.9 00	8.9 -45.5 00.	8.5 -45.3 00.	8.1 -45.2 00.	7 -45.1 00.	.3 -44.9 00.	6.9 -44.8 00.	4.7 00.	6.244.5 0.

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

* RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

STATION ALTITUDE 3989.0 FEFT MSL 12 AUG. 68 0245 MRS MDT . ASCENSION NO. 640

UPPER AIR DATA 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

procession of the contract of

TABLE VII (Cont)

INDEX	,	EFKAC 198	000	00	1.000005	1.000005	1.000005	1.000005	1.000005	1.000005	1.000004	1.000004	1.000004	•	•	8	00000	000000	00000°	00000	00000	1.000003	00000	•	00000	00000	00000°	00000	0	1.000003	00000	• 00000	1,000003	
į	•	¥ •A		27.9	27.9	ř	27.1	ÿ		27.7	÷	•	24.5	24.2	•		S	7.4%	●.	÷	ey.	78. 0	~	•	& . O . M .	m M			5	-		•		INTERPOLATION.
9	~	DEGREES (TN)	•	91.2	45.7	38.6	100.9	103.5	107.3	112.1	1111	•	105.9		•	*	e e	•				73.1	•	29.4		64.6	4000	15.1	75.8			-	1	IN THE
PEED OF	CONNOS		588.9	589.1	589.3		589.6	589.8	590.0	890.2	590.3	90	590.7	890.9	591.0	91.	91.	•	91.	591.9	592.1	592.3	592.4	593.0	593.7	504.4	3.5	95.	596.6	0	8	œ	599.5	WAS USED
<i>S</i> 1	GM/CUBIC		9	ij	S.	~	21.9	-		20.5	•		19.8		18,33	٠,٠	. •	-	16.6		•	15.5	ŝ	•	*		9			12.8		•	11.9	IDITY VALUE
ž	>	ī	*	*	**	*	*	*	*	*	**	*	*	*	**	**	**	**	*	*	*	*	*	*	₩	*	*	**	*	*	*	*	*	1 5 E
REL.H	PERCE	(SEE	-0-	0	0-	0		0	0	0	0	ô	9	-0-	0-	0	°°	0-	0	Ģ	-0-	.0-	0	-0-	70-	0	-0°	°	٥-	0	°	°0-	ö	ATIVE
	Z	ADE			_							_													_		_							RELA
EMPERATURE	DEWPOINT	CENTIGR	Ö		် ဝိ							ဝိ					ô		ဝ	ő	ဝီ				ô	ວໍ	o	ċ	ဝိ	ů	o	ô	0	ASSUMED
TEM	AIR	DEGREES	-44-4	4	4	4	6		M	m		-43.2		2	2		9	-42,3			-41.9	-41°8	7-19-	-41.2	-40°7	-40°1	-39.5	-39.0		7.	2°	-36.7	-36.1	-
ESSURE		LIBARS	ار ار ار	'n		4	• 4	. 4	(1)	in	m	~	2	1	12	-	-	, ,	11.0	0	0	0	0	6.6	9°6		•		•	8.6	8,5	8•3	8,1	AT LEA
C PR		# T	c	· c	· C	: c	, c) C		0	. 0	0			0			0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	_	*
EOME TRE	1	SL FEE	93500-	4000		5000	95500	6000	6500	000			•	•	99500	000	500	000	01500	000	586.	900	500.	04000	04500.	05000.	5500.	000090	06500.	07000.	07500-	000	108500.0	

* RELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENY,

STATION ALTITUDE 3989.0 FFFT MSL 12 AUG. 68 0245 HRS MDT ASCENSION NO. 640

MANDATORY LEVELS 0073003902 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE VIII

DATA	SPEED	KNOTS	3.7	į.	15.3	9	1	18.5	4	-	•	ċ	10.1	\$	•	11.6	.	.		11.9	4.2	2.1	•	•	•	28.9	27.6		27.9	
O QNIN	DIRECTION	Degrees (TN)	•	••			282.7			261.6	252.6	271.8	243.8	196.4	192.2	127.8	165.0	234.1	276.2	286.0	31.3	78.3	64.7	82.0	100.7	75.8	83.3	90.7	96.8	63.7
EL.HUM.	PERCENT	SEE *)	540	++.	47.	51.	65.	82.	95.	.99	51.	78.	65.	27.	*** 6 *	11.44	***0-	****O-	***0-	***0-	***0-	***O-	***0-	***0-	## O-	***O-	***0-	***0-	***0-	***0-
TEMPERATURE	DEWPOINT	CENTIGRADE	11.3	7.4	4.6	1.4	0.1	9-1-	-448	-12.5	-20.9	-21.3	-29.7	-39.1	-50.6	-72.9	• •	°	•	•	Ç	°°	0.	•	•	•	°	Ġ	•	0
		DEGREES	20.9	19.9	15.7	11.1	6.3	101	1.4-	-7.2	-12.7	-18.3	-24.8	-33.3	-44.0	-56.7	-61.8	-66.2	7-69-	-68.5	-63.6	-63.2	-61.5	-57.4	-55.5	-50.4	7-64-	-46.6	-4401	-
OPOTENTIA		FEET	4980.	6700-	8513	10420.	12435.	14572.	16849.	19303.	21971.	24893.	28124.	31745.	ະຕ	40632.	43368.	46469.	50061.	54414.	58873.	61564.	64679.	68441.	73088.	79152.	8308C.	87893.	94200	3174
PRESSURE GEOPOTENTIAL		MILLIBARS	8500		750.0	700.0	650.0	0.009	550,0	500.0	450.0	400.0	350.0	300.0	250.0	200-0	175.0	150.0	125.0	100.0	80.0	70.0	0.09	50.0	40.0	30.0	25.0	20.0	15.0	10.0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

^{*} RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

STATION ALTITUDE 3989.C FEET MSL 12 AUG. 68 C615 KHS NDT ASCENSION NO. 641

SIGNIFICANT LEVEL DATA 0073003903 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE IX

REL.HUM. PERCENT	さ 日 日 子	ö	65.0	8	เท	ċ	5	•	**	~	ċ	'n	6	ż	-	ç			2	•	š	-	6	.		## · O-					** "DI
ERATURE DEMPOINT	NT I GA		13.6	•	•	•		*	9	ċ	m	ð	•	16,	-	28.	\$	ç	•	33.	80	Š	8	•	•		°	•	ő	ဝ	•
TEMPI		ò	20.3	-	Ġ.	•	ċ		-2.0	÷		•		ð	-1	ñ	Š		-20.9	å	ŝ		40.	41"	ş	8	?	8	ô	66.	
GEOMETRIC ALTITUDE	SL FEE	-680	4326.5	955.	576-	2279.	4712.	5791.	66740	75810	8024.	9024.	9954.	1568.	2014.	2925	3862,	4951。	793.	0186.	1688.	3760.	5198.	56340	1910,	2921.	4577°	8992.	0206.	2016.	47
PRESSURE	MILLIBARS	80.	870.0	51.	01.	54.0	0.16	73.0	54.0	33.0	26.0	0.90	88.0	58.0	50.0	34.0	18.0	00.00	71.0	22.0	05.0	0°91	59°0	54.0	0.06	0.18	0°29	34.0	26.0	o	O°

^{**} RELATIVE HUMIDITY NOT SUPPLIED. ZERO VALUE ASSUMED FOR COMPUTATIONS.

^{*} RELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE IINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

9.0 FRFT MSI	0615 HRS MDT	
TUDE 3989.0	ŏ	64.1
ON ALTITUDE	AUG. 68	ISTON NO.
STATION	12 AU	ASCENSION

SIGNIFICANT LEVEL DATA 0073003903 WHITE SANDS SITE

KSTM SITE COORDINATES E 488,540 FEET N 185.045 FEET

TABLE IX (Cont)

REL HUM. PERCENT (SEE 4)	_	_	** *0-	-	-
EMPERATURE T DEMPOINT SES CENYIGRADE	0,	ċ	•	•	•
TEMPE AIR Degrees	'n	66.	-6104	57.	8
GEOMEVRIC ALTITUDE MSL FEUT	•	245.	65437.5	657.	478.
PRESSURE MILLIBARS	0 • 6	0	0.6	3.0	3.0

** RELATIVE HUMIDITY NOT SUPPLIED. ZERO VALUE ASSUNED FOR COMPUTATIONS.

* RELATIVE MUMILITY DOUBTFUL. RAWINSCADE EQUIPMENT LIKITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

STATION ALTITUNE 3989.0 FFFT MSL 12 AUG. 68 0615 HRS MDT ASCENSION NO. 641

UPPER AIR DATA 0073003903 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,540 FEET N 185,045 FEET

TABLE X

INDEX OF REFRACTION	1.000322	.00029	.00028	.00027	.00026	.00025	.00025	.00024	.00024	.3000.	.00023	,00022	. 00022	.00022	.00021	.0002L	.00020	.00020	.00019	61000	. 00018	.00017	.00017	40000	41000	.00016	91000"
TA SPEED KNOTS	99			•	2 (÷	2		•		6	ċ	0	0	-	=	-	-	-	ċ	ċ	\$	÷
WIND DA DIRECTION DEGREES(TN)	180.0	72°	, <u>, , , , , , , , , , , , , , , , , , </u>	0	71.	83.	80.	6	78.	38.	79.	Š.	80.		8.	79.	7.5	76.	**	3.	75.	77.	73.	8 10	84.0	86.	.: 40
SPEED OF SOUND KNOTS	669.0	49	50	69	68	63	64.	62.	61.	60.	58,	17.7	e S	54.	52	51.	49.	48.	46.	4 50.		₩.	42.	41.	40.	39.	38.
DENSITY GM/CUBIC METER	1039.0	018.	62.	68.	53.	24.	14.	01.	89.	77.	53.	53.	41.	30.	18.	07.	3	85.	*	63.	52.	30.	2	33.	380	92.	82.
REL.HUM. PERCENT (SEE *)	90.08	w t	: 🌫	5	RU K	:	9	6	•	\$	ë	+	'n	!	æ	ż	ė	å	m •	4	+	ç	Š	30	ž	ŝ	Ö
PERATURE DEWPOINT CENTIGRADE	17.9	ار د	, e	-	0		•			5.7				•		•		-1.5		•	-6.1	-40.8	4	-15.8	3.	-10,9	ň
TEMPE AIR DEGREES C	19.5 19.5	ပံ -	; 0	•	o a	,	•		٠ س		.	ő	9	9	•					0		-0°3		-1.8	•	-3.6	•
PRESSURE MILLIBARS	880.4 880.1			•	806.0				736.4	•	•			٠			•	•	m,	7	590.5	÷	*	-	547.1	536.7	CJ
GEOMETRIC ALTITUDE MSL FEET	989	500	500.	000	7000-0	500	300,	500.	000	9500.	100001	500.	11000.	1500.	2000-	2500.	3000	3500.	4000	4500-	S	5500.	6000	500.	7000.	500.	8000

^{*} RELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT,

STATION ALTITUDE 3989 OF FFT MS1 12 AUG. 68 0615 HRS MDT ASCENSION NG. 641

UPPER AIR DATA 0073003903 WHITE SANDS SITE

WSTM SITE COURDINATES E 468, NBO FEET N 185,045 FEET

TABLE X (Cont)

INDEX	REFRACTION	• 10001	.00016	.00015	.00015	1.000149	.00014	+1000°	.00013	.00013	.00013	.00013	.00013	.00012	.00012	.00012	.00012	.00012	10000-	.00011	.0001	.0001	.00010	.000010	.00010	.00010	- 00010	60000	6000	*0000	6000
TA SPEE	KNOTS	÷	÷	ĸ,	3	12.6			-:	ċ	Ċ	်	ċ	ċ		~	2:	ë			•	3	*		•	.	<u>.</u>		•	•	5.0
AIND IRECTIO	S	89.	**	94.	35.		95.	933	89.	48	40.	7.	66.	57.	48.	4 0.	37.	34.	31.	28.	26.	25.	.92	28.	34.	38.	40,	42.	43.	90	
SPEED OF	S	37.	36.	W Si	34.	633.6	32.	31.	30.	29.	27.	26.	**	₩. ₩	23.	21,	20.	19.	28.	16.	15,	13.	7	77.	60	08.	06.	05.	03.	02.	00
DENSITY S	MATER	71.	60.	49	38.		18.	60	98.	89.	79.	71.	62.	53.	44.	35.	26.	17.	08.	000	92.	84.	76.	68.	.19	53.	46.	380	31.	24.	17.
REL.HUM. PERCENT	1 III III III III III III III III III I	-	*	-	ċ	53.4			-	3.		3	*	2	.	ë	6	\$	2	2	3.	*	4	Š	'n	3.	0	\$	š	ŝ	
ERATURE DEWPOIN	NTIG	11.	•	دن	16.	-16.8	ċ	16.	-	25.	28.	27.	25.	22.	20.	22.	Ė	25,	•	27.	282	59.	30.	31.	32.	34.	ئة. •	37.	38.	39.	-
	DEGREES	S.	•	ŧ	. •	-8.7	•	-10.8	:	\$	EJ)		Š	\$	•	&	6	20.	:	2	8	4	ŝ	;	နှ	ċ	ċ		•	34.	2
PRESSURE	MILLIBARS	16.	90	•96	84	47.7.6	68.	59.	50.	41.4	32.	24.	15.	07.	66	91.	83°	75.	2.29	60.	52.	45.	38.	31.	24.	17.	11.	04.	97.	91.	85.
GEOMETRIC ALTITUDE	SL FEE	8500.	\$000.	9500.	.0000	20500.0	10001	1500.	2000~	2500.	3000.	3500.	4000+	4500	25000-	5500.	. 0009	6500.	7000.	7500.	8000.	8500.	9000	9500.	.0000	0500.	10001	1500.	2000.	2500.	.000

* RELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT,

UPPER AIR DATA 0073003903 WHITE SANDS SITE

STATION ALTITUDE 3589.0 FFFT MSL 12 AUG. 68 ASCENSION NO. 641

MSTN SITE COORDINATES E 468+580 FEET N 185,045 FEET

TABLE X (Cont)

	z		0	89	Œ	8	8	83	8	8	~	~		~	~	~	~	Ó	•	٠	O	•	·C	•	O	5	*	*	37	S	53
INDEX	110	• 00	00	00.	• 000	000	• 000	1.0000	000	000	• 000	000	9	000	• 000	000	.000	0000	0000.	0000	• 0000	000	000	000	9	000*	9	000	000	000	1.0000
U. U.	KNOTS			3		•	•	6.1		•	•	*			•		19.1	•	•	9	•						9	¢			•
MIND D	S(T	30.	27.	16.	03.	95.	92.	195.5	96.	95	96	97.	91.	3 B	86.	84.	3	83.	86.	÷	98.	90	Įć.	23.	32.	39.	47.	59.	62.	68.	74.
SPEED OF	KNOTS	99.	97.	98.	94.	93.	93.	590.0	88.	86.	85.	83.	92.	80.	79.	27.	73.	74.	72.	1	20.	69.	67.	99	4	63.	62.	61.	60.	59	33 33
TX BIC	METER	10.	03.	97.	90.	83.	7 %	370.3	63.	57.	51.	44"	38.	32.	27.	21.	33.	10.	5	98.	92.	86.	81.	76.	70.	65.	SS.	53.	480	43.	38°
Ιu	SEG		*		+	-	8	35.344	Š	8	ň	u.	0	~	٠	7	Õ		** *0	-0° **	** *0-	-0° **	-0. **	-0° **	•	-0° **	-0. **	** °0-	** °0 ·-	-0° **	** *0-
	. •				4																					•	1	•		•	
RATURE	CENTI GRADE (.0	.5	٠ دي د	s.			-52.9		ě	8	0	-63.2	••	8-3	1.4	-75.2	-81.1		°						ø	•	۰	•		°
	S CENTIGRADE (6.4 -42.0 5	.6 -43.5 5	8.745.5	9.9 -47.5	1.2 -49.	2.4 -51.	-55.	t.8 -54.	.0 -56.	.2 ~58.	0	• 69 63 •	0.865.6	-068-3	3.2 -71.4	4.4 -75	.681	6.7 0	7.4 0	8.2 0	9.4	9°	0 8 1	2.7 0	\$°4 0°	4.2 0.	5.0 0.	۰۳ 0	6.5	Ö
EMPERATURE DEUPDINI	EGREES CENTIGRADE (3,1 -36,4 -42,0 5	1.1 -37.6 -43.5 5	7.1 -38.7 -45.5 4	1-3 -39.9 -47.5	5.5 -41.2 -49.	7.7 -42.4 -51.	3.6 -52.	3.5 -44.8 -54.	3.0 -46.0 -56.	7.7 -47.2 -58.	2.5 -48.4 -60.	7.449.663.	2.4 -50.8 -65.6	7.6 -52.0 -68.3	2.8 -53.2 -71.4	3.2 -54.4 -75	3.6 -55.6 -81	3.2 -56.7 0	4.7 -57.4 0	3.3 ~58.2 0	5.0 -59.4 0	0 9°09- 8°1	7.6 -61.8 0	3.5 -62.7 0	3.5 -62.4 0.	5.6 -64.2 0.	L.7 -65.0 0.	8.0 -65.7 0	44.466.5 0.	40.8 -67.3 O

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

^{*} RELATIVE HUL DITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

	ASCENSION NO. 641
WHITE SANDS SITE	12 AUG. 68 0615 HRS MDT
E035005100	STATION ALTITUDE 3989.0 FEET MSL
UPPER AIR DATA	

ш

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE X (Cont)

INDEX OF REFRACTION		.00005	1.000048	.0000	.00004	1.000043		0000	£0000°	00003	0000	~		0000	~	.00003	4	00003	.00003	.00002	A.	00002	00002	0002	0000	.0000	0005
TA SPEED KNOTS	11.8	-		6	•	•	• •	3	3	'n	5	3.	•	•	9		•	•	•	•	•	•	•	•	•		
WIND DATA	280.6 283.7	285.3	. 0	-	•	4 00	- 10	-	•	-	•	3.	306.3	æ	8	6	-	•	0	0	6	2.	61.	2°	10.	258.2	. 90
SPEED OF SOUND KNOTS	557.7	56.	9 9 9 9	57.	58.	50 G	58.	58.	58.	57.	61.	.09	59.	59.	550.8	60,	60.	61.	61.	61.	62.	62.	63.	53.	63.	564.3	64.
DENSITY GM/CUBIC METER		22.		05.	00	40	\circ	80.	176.5	72.	δ N	62.	8	55.	51.	47.	43.	39.	36.	2	29.	25.	ç.	19.	16.		•
L.HUM. RCENT EE ♠)	养 ·	* i	* *	*	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
REL. PERC. (SEE	0-1	ဝိုင်	ှိ ဂို	0-	0	0 0	0	-0-	-0	0	0	0	-0-	-0-	0-1	-0	0-	0-	0	-0-	-0	9	-0	0	-0-	-0-	-0-
EMPERATURE DEWPOINT ES CENTIGRADE	•••	ċ	. 0	•	o (•	•	°	•	° 0	•	o	°0	0	•	•	.	•0	°	•	°	•0	•	°O	•
TEMF AIR DEGREES	-68.0	6.9		¢		-64.3				•			•	-66.7		6.		ŝ	.*	•	.	4.	•	-63.8	•	m	
PRESSURE MILLIBARS		30.	24.	21.	18.	15.	.60	.90	04.	01.	6	è	÷	-	6	7	3	9		6	7.	ŝ	e m	-	6	8	• 9
ETRIC TUDE FEET	0.0	•		ô	0	• 6			•	•	•		,			c		•	•			•			•	500.0	•

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY: YALUE WAS USED IN THE INTERPOLATION.

* RELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT,

UPPER AIR DATA 0073003403

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET VACAT ATAN CATA TABLE X (Cont) STATION ALTITUDE 3989.0 FEET MSL 12 AUG. 68 0615 HRS MDT ASCENSION ND. 641

INDEX	REFRACTION	744.3	• 0000	0005	*00005	.00002	1.000022	.00002	.0000	00002	.0000	.00001	,00001	· 00001	0000	.0000	*0000	.0000	.00001	.00001	.0000	00000	~	10000	-00001	000	.00001	.00001	10000°	00001	0000	3 OO
4	KNOTS		•	•	•		6.9	•	•	•	•	•	•		12.1		•	;		•	ċ	ö	21.5	'n	S	3	w.	m	3	2	4	ę
IM	DEGREES (TN)	0 L L C C C C C C C C C C C C C C C C C	4	•		2.	45.7	8	æ		æ	÷	Ň	8	9.89	*	æ	6	ð	ő	ò	Ġ	•	ô		~	ů	2	œ	0	ဆိ	83.1
SPEED OF	KNOTS		55.	55.	55.	56.	56.	58.	59.	70.	72.	72.	73.	73.	573.7	740	74.	÷	75.	75°	75.	76.	2	76.	770	77.	17.	78.	78.	78.	43	79°
_ 9	ى		07.	•	02.	•		•		•		•		•	78.0	•	•		9		•	Š	1.49	2	ï	¢.	æ	ç,	ŝ	4	•	51.4
3	9																															
			*	*	*	*	*	*	*	*	# #	*	*	*	*	*	¥	*	*	*	*	*	*	*	*	*	* *	*	*	*	*	* *
	PERCENT G		** *0	-0-	-0. **	-0° **	-	** *0-	-0° **	-0. **	-0, **	** •0-	** *0-		••		••	** *0-	** °0-	** °0-	** *0-	** °0-	-0° **	-0° **	••	7	** °0	-0- **	** °0-	++ °∪-	** °0~	** °0
REL.HUM.	PERCENT	ENTICKADE (SEE *!	0-	0-	•	•	-0-	.0-	-0-	•	•	. 0-	•	0-	••	•0-	0-			•	0-	9-	00	•	" " "	. 0-	°0	• 0-	•	0-	0	· ·
MPERATURE REL.HUM.	DEMPOINT PERCENT	EGKEES CENIIGRADE (SEE *)	0-	2,3 00	•0 0•	1.7 0.	1.3 00.	.3 00.	.3 0° -0°.	.3	.3 0.	.8 00.	.6	.3 00.	1 00.	. *0- °0 8	.6 00.	,3 0°	, 1 0.	.8 0.	0- 0 9°	00 Es	0- 00	•8 0 8		3.3 00.	3.0 00	2.8 00.	2.5 G.	2.3 0O	0	1.8 0. ~
MPERATURE REL.HUM.	AIR DEWENT PERCENT	AKS DECKEES CENTICKADE (SEE *)	4.9 -62.6 00	.4 -62,3 00	1.8 -62.0 0.	0.3 -61.7 0.	1.3 00.	7.4 -60.3 00.	6.0 -59.3 00.	4.7 -58.3 0.	3.4 -57.3 0.	2.2 -56.8 00.	0.9 -56.6 0.	9.856.3 00.	-56.1 0° -0.	7.555.8 00.	.4 -55.6 00.	5.3 -55.3 0.	•3 -55.1 0.	.2 -54.8 0.	2.2 -54.6 00	1.3 -54.3 00	0.3 -54.0 00	9.4 -53.8 0.	8,5 -53.5 00.	7,6 -53,3 00.	6.7 -53.0 00.	5.9 -52.8 00.	5.0 -52.5 Q.	4.2 -52.3 00	3.4 -52.0 00	51.8 0

^{**} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

^{*} KELATIVE HUMIDITY DOUBTFUL, RAWINSONDE EQUIPMENT LIMITATIONS, BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT,

STATION ALTITUDE 3989.0 FFFT MS1.
12 AUG. 68 0615 HRS MDT
A SCENSION NO. 641

UPPER AIR DATA 0073C03903 WHITE SANDS SITE

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

TABLE X (Cont)

INDEX OF REFRACTION	1,000011	1.000011	1.000011	1.000010	1.000010	1.000010	1.000010	1.000009	1.000009	1.000009	1.000009	1.000000°	1.000078	•
DATA SPEED) KNOTS	23.9	24.7	26.4	28.2	29.8	29.7	29.7	29.4	28.9	28.4				
WIND DA DIRECTION DEGREES(TN)	85.9	88.8	91.5	94.1	96.2	6.46	93.7	93.7	95.1	4.96				
SPEED OF SOUND KNOTS	579.7	ĸ	580.3	580.7	581.0	81.	581.6	582.0	582.3	582.6	583.U	583.3	583.6	583"6
DENSITY GM/CUBIC METER	50.1	48.9	47.7	46.6	45.4	44.3	43.3	42.2	41.2	40.2	39.2	38,3	37.3	36.4
* H *	*	*	*	*	*	*	*	*	¥	*	*	*	¥	¥
REL.HUM. PERCENT (SEE *)	0	-0-	0-	-0-	-0-	•0	-0-	-0-	-0	0-	-0-	0-	0	0
NT AUE	•0	.	•0	•	•	0	•0	•	•	°	°	•	•	° 0
TEMPERATURE AIR DEWPOI DEGREES CENTIGR	•	-	-51.0		-50.5		3	-46°B			0.64-	٠.		-48.2
PRESSURE MILLIBARS		31.2		29.1	29.0	28.4	27.7	27.1	26.4	25.8	25.2	24.6	24.1	23.5
GEOMETRIC ALTITUDE MSL FEET	78500.0	79000 • 0	79500.0	800000	80500.0	81000.0	81500.0	82000.0	82500.0	83000.0	83500.0	84000°0	84500.0	85000.0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

* RELATIVE HUMIDITY DOUBTFUL. RAWINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

E

MANDATORY LEVELS 0073003903 WHITE SANDS SETE

E 488,580 FEET N 185,045 FEET HSTM SITE COORDINATES

TABLE XX

PRESSURE (PRESSURE GEOPOTENITAL		TEMPERATURE	REL . HUM.	CATAGATO	DATA
MILLIBARS	FEET	DEGREES	CENTIGRADE	(SEE *)	DEGREES(TN)	KNOTS
850.0	4987.	21.6	13.0	58.	104.8	4.0
800.0	6109.	19.3	10.2	92°	284.2	4.8
750.0	8519.	15.1	7.4	•09	278.9	8.8
700.0	10425.	10.6	4-2	64°	280.7	14.4
650.0	1,2437.	5.8	9•0	69.	279.9	19.7
9009	,	0,3	9 n:	75.	275.4	21.5
550.0	, -	-2.4	-10.7	38.	283.8	19.5
500.0		-7.0	-12-2	\$60	293.1	15.5
450.0	21988°	-11.2	-21.9	41.	289.0	11.0
400.0	24917.	-17.8	-20°-1	79 •	249.6	**
350.0	28159.	-24.1	-29.1	64.	226.1	13-7
300.0	31789.	-32.4	-38.5	55.	242.8	\$• 6
250.0	35921.	-42.3	184.0	39.44	192.1	8.6
200.0		-53.9	-73.5	** · /	163.3	18.6
175.0		59° 7	0	-0.**	208.9	19.6
150.0		-65.3	°• •	***0-	258.7	13.5
125.0		0.69-	ć	****O-	281.4	10,3
100.0		58.0	ဝံ	***0-	314.5	15.1
80.0	59083.	-65.1	ő	***.0-	215.5	5
70.0	61764.	-63.5	ċ	** °O-	205.4	2.8
0.09	64884.	-61.6	ċ	****O-	inst	8.8
50.0	68643.	-56.4	ô	***0-	6983	10,3
40.0	73317.	-54.0	•	***0-	ъ.	21.6
30.0	79619.	-50.9	¢.	-0-	•	27.2
25.0	, 833333	-48.9	ċ	***0-		.

AT LEAST ONE ASSUMED RELATIVE HUMIDITY: VALUE WAS USED IN THE INTERPOLATION. *

**** -0.* -0.**

-54.0 -50.9

79619. 833311.

50.0 40.0 30.0 25.0

* RELATIVE HUMIDITY DOUBTFUL. RAMINSONDE EQUIPMENT LIMITATIONS. BASE LINE RELATIVE HUMIDITY ABOVE 40 PERCENT.

RELEASE TIME		SECO	ND-STAG	SECOND-STAGE IMPAC'T DISPLACEMENT IN MILES DUE, TO WIND	DISPLACE	WI THEME	MILES DI	UR TO WIN	8	AZI-	THEORE	THEORETICAL IMPAUT	T. A.T.
(MDT)		15-21	15-216 FT	216-4000 FT	00 FT	4000-6	4000-69330 FT	TOT	TOTAL	MUTH CDEC	OF THE	FROM LAUNCHER (IN MITES)	Her 3)
RAWIN - SONDE	PIBAL	N-S	E-W	N-S	M-II	N-S	E-W	S-X	E-W	REGES)	PANGE	N-S	E-W
0245 0	0355	1.85	1.1 W	8.48	4.6W	5.9s	2.3E	16.18	3.4W	352.6	4.40	63.9N	8.3W
0245 0	0415	86.9	1.7W	11.88	4.3W	5.98	2.3E	24.68	3.7%	351.2	56.1	55.4%	8.6W
0245 0	0445	5,98	2.5E	9.28	2.2W	5.98	2.3E	21.08	2.6E	357.8	59.0	59.0N	2.3W
0245 0	0200	2.58	0.38	7.18	4.0W	5.98	2.3E	15.58	1.4W	354.4	8.49	64.5N	6.3W
0245 0	0515	2.58	1,7W	7.98	4.5W	5.98	2.3E	16.35	3.9W	352.1	64.3	63.7N	8.8W
0245 0	0525	2.18	0.4W	9.18	2.9W	5.98	2.38	17.18	1.0W	354.6	63.2	62.9N	5.9W
0245 0	0535	1.8s	0.3E	8.45	2.0W	5.98	2.3E	16.18	0.6E	356.2	64.0	63.9N	4.3W
0245 0	0545	1.38	36°0	86.9	0.4W	5.98	2.3E	14.15	2.88	358.2	62.9	N6.39	2.1W
0245 0	0555	4.0s	3.3E	9.48	0.6E	5.98	2.3E	19.38	6.2E	001.2	60.7	60.7N	1.3E
0615* 0	0614*	5.78	2.4E	8.78	3.0%	5.28	1.8W	19.68	2.47	353.1	8.09	60.4N	7.3W

12.5W

N6.65

0.0

80.0N

0.2E

J. 3N

V/V

N/A

N/A

N/A

ACTUAL BOOSTER IMPACT

4.9W

80.0N

0.0

80.0N

E-W

N-S

MILES FROM LAUNCHER

TABLE XII. IMPACT PREDICTION DATA NIKE-HYDAC STV (SR-071)

*Post-Shoot Data

Security Classification			
A STATE OF THE PROPERTY OF THE	CONTROL DATA . R	* D	
(Security classification of title, body of abatract and i			amorali seconi in vincelliado
1. ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION
U. S. Army Electronics Command		1	UNCLASSIFIED
Ft. Monmouth, New Jersey		28. GROUP	
3. REPORT TITLE			
AMMERICA COLOLI DAMA DEDODO NIKE II	VDAC 6777 (CD071)	•	
METEOROLOGICAL DATA REPORT, NIKE-H	IDAC SIV (SK-0/I)		
4. DESCRIFTIVE NOTES (Type of report and inclusive dates)			
S. AUTHOR(S) (First same, middle initial, last rease)			
Gordon L. Dunaway			
6. REPORT DATE	74. TOTAL HO.		78. NO. OF REFS NONE
September 1968	SE ORIGINATUR		
CONTRACT ON GRANT NO.	SEL ORIGINATOR	S MEPONY NUM	ie C K(D)
à. PROJECT NO.	n	₹-352	
	<i>D</i> :	(-5)4	
- DA Task 1T665702D127-02	SE, OTHER REPO	RT N.2'S) (Amr 4	ther sumbers that may be seal(not
DA TASK TX003/02D12/ C2	Skie sopert)		
4			
10. DISTRIBUTION STATEMENT			
This document is subject to specia	1 export controls	and each	transmittal to
foreign governments or foreign nat	ionals may be mad	ie only wit	th prior approval of
Atmospheric Science Research Offic	e, White Sands Mi	issile Rong	ge, New Mexico.
11. SUPPLEMENTARY NOTES	12. SPONSORING		
			onics Command
			e Research Office
	White Sa	nds Missil	Le Range, New Mexico
13. ABSTRACT			
Y	C M 1	c Mate v	(m.) - 073 (cp. 071)
Meteorological data gathered	for the Launching	; or Nike-n	iydac SIV (SK-U/I)
are presented for the Space and Mi	ssile Systems Org	ganization	and for parification
studies. The data appear, along w	ith calculated ba	illistic da	ica, in cabular
form.			
•			
ç :			

DD PON 1473 REPLACES DO FORM 1475, 1 JAN 64, WHICH IS

UNCLASSIFIED Security Classification

UNCLASSIFIED Security Classification

14.	KEY WONCS	LIN	KA	LIN	K D	LINI	кс
	ne. wones	ROLE	WŦ	ROLR	WT	NOLE	WT
•	Ballietics						
1.	parrierics						
2	Mcteorology						
	.mccorozogy						
3.	Wind						
				-			
					,		
	.			ĩ			
	•						
					1		
			Î				
			•				
			Į]	!		
		1	1		Į		
	•		Ĭ			í	
			l	l	İ		
		1	I		1		
			•	<u> </u>	{		
				l	ĺ		
		l	•				
			I	L	<u> </u>		L

UNCL	٩S	S	Ι	FΙ	ED
------	----	---	---	----	----