

Master Humanités Numériques

Machine Learning pour les données textuelles Représenter les données textuelles

Julien Velcin

Laboratoire ERIC – Université Lyon 2

http://eric.univ-lyon2.fr/jvelcin

Quelques définitions

• On appelle **document** un objet numérique qui véhicule un ensemble d'informations souvent structurées :

• On appelle **corpus** un ensemble de documents. Le corpus est souvent associé à une structure (par ex. hyperliens, citations, etc.).

Représenter les données textuelles

Quelques définitions

De multiples manières de représenter les données textuelles

• Comme une chaîne de caractères (string) :

« Les humanités numériques peuvent être définies comme l'application du "savoir-faire des technologies de l'information [et de l'informatique/infosciences] aux questions de sciences humaines et sociales » (source : Wikipedia).

0	1	2	3	4	5	6	7	8	9	oto
L	е	s		h	u	m	а	n	i	ett.

- Comme un sac de mots (bag of words) ou de termes :
- Comme une séquence de mots ou tokens :
- Comme un vecteur dans un espace vectoriel :
- Comme une matrice, un arbre, un graphe, etc. (non présenté dans le du cours)

De multiples manières de représenter les données textuelles

- Comme une chaîne de caractères (string) :
- Comme un sac de mots (bag of words) ou de termes :

- Comme une séquence de mots ou tokens :
- Comme un vecteur dans un espace vectoriel :
- Comme une matrice, un arbre, un graphe, etc. (non présenté dans le du cours)

De multiples manières de représenter les données textuelles

- Comme une chaîne de caractères (string) :
- Comme un sac de mots (bag of words) ou de termes :
- Comme une séquence de mots ou tokens :

• Comme un vecteur dans un espace vectoriel :

Les dimensions de l'espace (dim1, dim2...) sont, par exemple, les mots possibles dans le vocabulaire (ici : humanités, numériques, et, savoir-faire, etc.)

• Comme une matrice, un arbre, un graphe, etc. (non présenté dans le du cours)

De multiples manières de représenter les données textuelles

- Comme une chaîne de caractères (string) :
- Comme un sac de mots (bag of words) ou de termes :
- Comme une séquence de mots ou tokens :

0	1	2	3	4	5	6	7	
Les	humanités	numériques	peuvent	être	définies	comme	ľ	etc.
Com	ime iin ved	,/	ı toke	an .				

- Comme un vecteur dans un espace vectoriel :
- Comme une matrice, un arbre, un graphe, etc. (non présenté dans le du cours)

6

Représenter les données textuelles

Motivation

document

dim 3

Encoder le texte

 On transforme le texte (ou on le « projette », ou on le « plonge ») dans une représentation informatique qui cherche à capturer le sens du texte :

Représentation d'un document

Les scores sont, par exemple, le nombre de fois où un mot est employé dans un document (TF)

Représentation d'un document

espace mathématique (le plus souvent vectoriel) multi-dimensionnel (ici à 3 dimensions pour illustrer)

10

Représenter d dans un espace vectoriel (VSM de Salton)

Comparer dans un espace vectoriel

Comparer dans un espace vectoriel

14

13

Classer dans un espace vectoriel

Catégoriser dans un espace vectoriel (*clustering*)

Aller plus loin : prise en compte de l'incertitude

Représenter les données textuelles

Représentations classiques

Aller plus loin : prise en compte de méta-données

18

Document Network Projection in Pretrained Word Embedding Space A. Gourru, J. Velcin, J. Jacques and A. Guille. ECIR 2020. https://github.com/AntoineGourru/DNEmbedding

Représentation classique : la matrice Documents x Termes (1)

• On transforme la chaîne de caractères pour construire un tableau où on compte les mots :

Représentation classique : la matrice Documents x Termes (2)

Cela possède bien sûr des limitations :

« Mary asked Fred out »

word	Frequency		
Mary	1		
asked	1		
Fred	1		
out	1		

Représentation classique : la matrice Documents x Termes (4)

Représentation classique : la matrice Documents x Termes (3)

• On calcule cette matrice pour un corpus :

Une chaîne de traitement

• Voilà typiquement la chaîne qu'on applique :

Schémas de pondération

- Le score qu'on attribue à un mot (ou partie de mot, ou terme) pour un document peut varier :
 - présence ou absence : 0 ou 1
 - nombre d'occurrences (**TF**) : valeur entière (0, 1, 2, 3...)
 - ...normalisé par la longueur du texte : TF / #mots
 - TFxIDF: prise en compte de la rareté des mots
 Score TFxIDF(terme t, document d) = TF(t,d) × idf(t)
 où idf(t) = log N / df(t), N = nombre de documents
 et df(t) = nombre de documents contenant t
 - **OKAPI BM25** : variante de TFxIDF basé sur un modèle probabiliste de pertinence

Quelques prétraitements standards

- Les prétraitements permettent souvent de réduire la taille du vocabulaire et de rendre les traitements aval plus robustes aux mots choisis
- Quelques prétraitements :
 - mise en minuscule
 - suppression de la ponctuation, des nombres...
 - suppression des mots-outils (stopwords)
 - suppression des mots trop fréquents ou trop rares (par ex. les *hapax* qui n'apparaissent qu'une fois)
 - racinisation (stemming) et lemmatisation

Limitations du modèle classique

- Les matrices qui encodent l'information d'un corpus sont très grandes et **creuses** (*sparse*)
- La similarité entre deux documents (calculée par ex. avec une mesure de cosinus, cf. slide ultérieur) se base sur une correspondance exacte (par ex. « bateau » et « bateaux » sont des mots aussi différents que « bateau » et « poisson »)
- En conséquence, deux textes *similaires* en sens mais employant des termes *différents* seront considérés comme éloignés

Comparer des textes (1)

- Avec l'approche classique, les distances usuelles (ex. euclidienne) ne sont pas adaptées.
- Dans les espaces à beaucoup de dimensions :
 - Pourquoi les banquiers n'ont jamais de lingots sphériques ?
 - Pourquoi les marchands d'oranges occupent beaucoup de place pour empiler peu d'oranges ?
- Voir la partie « curiosités du calcul » de http://www.brouty.fr/Maths/sphere.html
- En lien avec ce qu'on appelle la « malédiction de la dimension » (curse of dimensionality)
- Richard E. Bellman (1920-1984): les hypervolumes sont presque **vides**!

Comparer des textes (2)

Produit scalaire et cosinus

• Produit scalaire: $\mathbf{x}.\mathbf{y} = \sum_{i=0}^{i=n} x_i y_i = x_0 * y_0 + x_1 * y_1 \dots + x_n * y_n$

	mot1	mot2	mot3	mot4	mot5	mot6	 motn
d_1	0	2	0	0	2	0	0
d_2	1	3	1	0	1	0	1

• Mesure du cosinus : $cosine(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}.\mathbf{y}}{\frac{\|\mathbf{x}\|_2.\|\mathbf{y}\|_2}{}}$ on normalise le produit scalaire

Avec des vecteurs positifs ou nuls (c'est le cas avec TF), la mesure s'étend de 0 (documents sans mots communs) et 1 (similarité maximum)

Comparer des textes (2)

Cosinus : interprétation géométrique

Algorithme d'un moteur de recherche classique

- Indexer la BD pour obtenir une matrice X de format Documents x Termes
- Représenter la requête q dans le même espace (ie avec le même vocabulaire)
- Pour chaque document **d** de **X** :
 - calculer la similarité cos(d,q)
- Trier les documents en fonction de la similarité
- Afficher les K premiers documents de la liste

Représenter les données textuelles

Représentation du sens des mots et représentations denses

Illustration

Retour sur la limitation du modèle classique

• Prenons des mots du Petit Larousse illustré de 2007 avec leur numéro dans l'ordre d'apparition :

Mot	N°
BAVARDE	8955
BAVARDER	8956
BAVAROIS	8957
ECOUTER	27959
ENTENDRE	30439

• Qu'observons-nous ?

Coder le sens des mots...

...permet de capturer le sens

...permet de capturer le sens

Sémantique distributionnelle

• Deux linguistes sont souvent cités :

Harris (1954): Des mots apparaissant dans des contextes similaires ont des sens proches

Firth (1957): « You shall know a word by the company it keeps »

Par exemple

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk We make **tesgüino** out of corn.

(tiré du cours de D. Jurafksy à Stanford)

Pouvez-vous deviner ce qu'est le « tesgüino »?

Limitations de cette approche

- Elles ressemblent à celles de la représentation classique des documents à partir des mots :
 - vecteurs très grands et creux (beaucoup de 0)
 - correspondance **exacte** entre les mots du contexte (par ex. on ne prend pas en compte les synonymes)
- La solution consiste à calculer des représentations denses avec des dimensions plus informatives

Encoder le sens des mots

• Une approche simple : prendre comme contexte les documents où apparaissent les mots :

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	5	117	0	0
Figure 15	The term-docum	ent matrix for four w	ords in four Shakesp	eare plays. Eac

• ou bien partir de la matrice de co-occurrences :

Word embedding

- L'objectif du plongement de mots (word embedding) est donc de calculer une représentation dense du sens des mots dans un espace vectoriel
- Dans cet espace, les mots proches au sens géométrique seront aussi proches dans leur sémantique

Apprendre des représentations statiques

- Différentes approches qui font l'hypothèse d'un vecteur *unique* pour chaque mot du vocabulaire :
 - Word2Vec (Mikolov et al., 2013)
 - FastText (Bojanowski et al., 2017)
 - Glove (Pennington et al., 2014)
- L'arrivée du Transformer (Vaswani et al., 2017) change la donne en permettant de construire des représentations *contextuelles* (cf. cours suivant)

Représenter les données textuelles

Apprendre des représentations de mots

Word2Vec (Mikolov et al., 2013)

Les vecteurs sont des paramètres

Observations sur l'espace ainsi construit

• Des régularités se retrouvent dans l'espace :

• Cela permet par ex. de résoudre des analogies :

Modèles de langue

 Le type de tâche traitée avec ces architectures (par ex. prédire le mot masqué du milieu) est fortement liée à ce qu'on appelle un modèle de langue :

$$p(w_0,w_1,w_2\dots w_n) = p(w_0)*p(w_1|w_0)*p(w_2|w_0,w_1)*p(w_3|w_0,w_1,w_2)\dots$$

 Pour calculer ces probabilités, il faut réussir à prédire un mot à partir de son contexte, comme les mots qui le précèdent

Des résultats surprenants

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Mikolov, T., Yih, W. T., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word Representations. Proceedings of HLT-NAACL, pp. 746-751.

Conclusion

 Les plongements de mots sont devenus incontournables en TAL

"The use of word representations... has become a key "secret sauce" for the success of many NLP systems in recent years, across tasks including named entity recognition, part-of-speech tagging, parsing, and semantic role labeling." (Luong et al., 2013)

- Ils répondent aux problèmes des représentations creuses : taille réduite, correspondance approchée, capture de la sémantique
- Ils se couplent naturellement avec les architectures de réseaux de neurones profonds (*deep learning*)

Luong, T., Socher, R., & Manning, C. D. (2013). Better Word Representations with Recursive Neural Networks for Morphology. Proceedings of CoNLL, pp. 104-113.

Et pour les documents?

• Solution naïve : prendre le centre d'inertie du nuage de points que sont les mots dans l'espace

 Apprendre des représentations contextuelles des mots et des documents (cf. cours suivant)