

Mathematics for Al and Data Science: Vectors and Vector Operation

Dr. Sangeeta

s.sangeeta@keele.ac.uk

School of Computing and Mathematics

Keele University

UK

Learning Outcome

- **❖**To learn to represent vectors
- To know how to perform basic operations like addition, scalar multiplication, projection using vectors
- To understand how to perform dot product and cross product of vectors

Outline

- ❖Introduction and Motivation of Vectors
- Vector Operations
 - Addition
 - ❖ Scalar multiplication
 - Linear Combination
- Component Representation
 - ❖ Vector Length
 - Vector Algebra
- **❖**Unit Vector
- ❖ Dot product of Vectors
- Projection
 - **❖** Scalar
 - **❖** Vector
- Cross-Product of Vectors

Motivation

Uses of Vectors in Data Science

- ❖ Vectors are important for many different areas of **machine learning** and pattern processing
- ❖ In **machine learning**, feature **vectors** are **used** to represent numeric or symbolic characteristics, called features, of an object in a mathematical, easily analyzable way.

Uses of Vectors in Data Science

- There are many quantities which require only 1 measurement to describe them. e.g Length of a string, or area of any shape or temperature of any surface (Such quantities are called *scalars*)
- ❖ However, most of the quantities or datasets require at **least 2 measurements** to describe them. Along with the magnitude, they have a "direction" associated e.g velocity or force. Hence, they need vector representation.

Example

Let's say you are collecting some data about a group of students in a class. You are measuring the height and weight of each student and the data collected for 5 students is as follows:

Heigt (in feets)	Weight (in Kgs)
6	80
5.4	54
5	50
5.7	65
5.8	72

- ❖ Each individual measurement here is a scalar quantity. So height or weight viewed stand-alone are scalars.
- ❖ However, when you look at the observation about each student as a whole i.e height and weight together for every student, you can think of it as a **vector**.

Example

- ❖ Hence, we can represent the data all the 5 students using vectors.
- Similarly, machine learning algorithms use vectors representation to process high dimensional data

Introduction to Vectors

Vectors

- ❖ The term vector is used by scientists to indicate a quantity (such as displacement or velocity or force) that has both **magnitude and direction.**
- A vector is often represented by an **arrow or a directed line segment**. The length of the arrow represents the **magnitude** of the vector and the **arrow points in the direction of the vector**.
- ❖We denote a vector by printing a letter in boldface (v) or by putting an arrow above the letter

Vectors

- ❖ For instance, suppose a particle moves along a line segment from point A to point B.
- The corresponding displacement vector v, shown in Figure 1, has initial point A (the tail) and terminal point B (the tip) and we indicate this by writing

 $\mathbf{u} = \overrightarrow{CD}$

Equivalent Vectors

- Notice that the vector u has the same length and the same direction as v even though it is in a different position.
- **❖** We say that u and v are **equivalent (or equal)** and we write u = v.

Figure 1Equivalent vectors

Zero Vectors

The zero vector, denoted by 0, has length 0. It is the only vector with no specific direction.

Combining/ Adding Vectors

Combining Vectors

- \clubsuit Suppose a particle moves from A to B, so its displacement vector is \overrightarrow{AB} .
- **Then the particle changes direction and moves from B to C, with displacement vector** \overrightarrow{BC} as in Figure 2.
- ❖ The combined effect of these displacements is that the particle has moved from A to C.
- The resulting displacement vector \overrightarrow{AC} is called the sum of \overrightarrow{AB} and \overrightarrow{BC} , we write

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Figure 2

Combining Vectors

Definition of Vector Addition If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the $\mathbf{sum}\ \mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

The definition of vector addition is illustrated in Figure 3. You can see why this definition is sometimes called the **Triangle Law**.

Figure 3
The Triangle Law

Combining Vectors

❖ In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another copy of v with the same initial point as u.

The Parallelogram Law

- **\diamondsuit** Completing the **parallelogram**, we see that u + v = v + u.
- **❖Parallelogram Law:** If we place u and v so they start at the same point, then u + v lies along the **diagonal** of the parallelogram with u and v as sides. (This is called the Parallelogram Law.)

- ❖ It is possible to multiply a vector by a **real number c**. (In this context we call the real number c a scalar to distinguish it from a vector.)
- For instance, we want 2v to be the same vector as v + v, which has the **same direction** as v but is **twice** as long. In general, we multiply a vector by a scalar as follows.

Definition of Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c < 0. If c = 0 or $\mathbf{v} = \mathbf{0}$, then $c\mathbf{v} = \mathbf{0}$.

Figure 7

This definition is illustrated in Figure 7.

- Notice that two nonzero vectors are parallel if they are scalar multiples of one another.
- In particular, the vector -v = (-1)v has the same length as v but points in the opposite direction. We call it the negative of v.
- ❖By the difference u − v of two vectors we mean

$$u - v = u + (-v)$$

Subtraction of Vectors

❖So we can construct u – v by first drawing the negative of v, –v, and then adding it to u by the Parallelogram Law as in Figure 8(a).

Alternatively, since v + (u - v) = u, the vector u - v, when added to v, gives u. So we could construct u - v as in Figure 8(b) by means of the Triangle Law.

Vector Representation

 (a_1, a_2, a_3)

Vector Representation: Components

- ❖ For some purposes it's best to introduce a coordinate system and treat vectors algebraically.
- If we place the initial point of a vector a at the origin of a rectangular coordinate system, then the terminal point of a has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) , depending on whether our coordinate system is two- or three-dimensional (see Figure 11).
- **These coordinates are called** the **components** of a and we write $a = \langle a1, a2 \rangle$ or $a = \langle a1, a2, a3 \rangle$

Figure 11

Position Vector

In three dimensions, the vector $\mathbf{a} = \overrightarrow{OP} = \langle \mathbf{a} \mathbf{1} \rangle$ point P(a1, a2, a3). (See Figure 13.)

$$\overrightarrow{OP}$$
 = $\langle a1, a2, a3 \rangle$ is the **position vector** of the

Representations of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

Figure 13

Length or Magnitude of Vector

- ❖The **magnitude** or **length** of the vector v is denoted by the symbol | v | or || v ||.
- ❖ By using the distance formula to compute the length of a segment OP(a vector through origin), we obtain the following formulas.

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Vector Addition (Algebra)

- *****How do we add vectors algebraically?
- Figure 14 shows that if $a = \langle a1, a2 \rangle$ and $b = \langle b1, b2 \rangle$,
- The sum is $a + b = \langle a1 + b1, a2 + b2 \rangle$,
- **♦**(for the case where the components are **positive**).
- ❖ In other words, to add algebraic vectors we add their components. Similarly, to subtract vectors we subtract components.

Figure 14

Scalar Multiplication (Algebra)

- ❖ To multiply a vector by a scalar we **multiply each component by that scalar**.
- ❖ From the similar triangles in Figure 15 we see that the components of ca are ca1 and ca2.

Figure 15

Linear Combination

For one vector u, the only linear combinations are the multiples cu. For two vectors, the combinations are cu + dv. For three vectors, the combinations are cu + dv + ew.

- **❖**Important Questions
 - ❖ What is the picture of all combination of c*u*?
 - ❖ What is the picture of all combination of cu + dv?

Linear Combination

- Important Questions
 - \clubsuit What is the picture of all combination of cu?: Fill a line through (0,0)
 - \clubsuit What is the picture of all combination of cu + dv: Fill a plane through (0,0)

Figure 1.3: (a) Line through u. (b) The plane containing the lines through u and v.

Properties of Vector

Addition and scalar multiplication are defined in terms of components just as for the cases n = 2 and n = 3.

Properties of Vectors If a, b, and c are vectors in V_n and c and d are scalars, then

1.
$$a + b = b + a$$

3.
$$a + 0 = a$$

$$\mathbf{5.} \ \ c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

7.
$$(cd)a = c(da)$$

2.
$$a + (b + c) = (a + b) + c$$

4.
$$a + (-a) = 0$$

$$\mathbf{6.} \ (c+d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$$

8.
$$1a = a$$

The standard basis vectors

Three vectors in V3 play a special role. Let

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

❖ These vectors i, j, and k are called the **standard basis vectors**. They have length 1 and point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we define i = $\langle 1, 0 \rangle$ and j = $\langle 0, 1 \rangle$. (See Figure 17.)

The standard basis vectors

- A If $a = \langle a_1, a_2, a_3 \rangle$, then we can write
- \Rightarrow = $a_1\langle 1, 0, 0 \rangle + a_2\langle 0, 1, 0 \rangle + a_3\langle 0, 0, 1 \rangle$
- $a = a_1 i + a_2 j + a_3 k$
- ❖Thus any vector in V3 can be expressed in terms of i, j, and k. For instance,
- (1, -2, 6) = i 2j + 6k
- ❖ Similarly, in two dimensions, we can write
- $\mathbf{a} = \langle \mathbf{a}_1, \mathbf{a}_2 \rangle = \mathbf{a}_1 \mathbf{i} + \mathbf{a}_2 \mathbf{j}$

Unit Vector

- **A** unit vector is a vector whose length is 1.
- For instance, i, j, and k are all unit vectors. In general, if $a \neq 0$, then the unit vector that has the same direction as a is

$$\mathbf{u} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

- \clubsuit In order to verify this, we let c = 1/|a|. Then u = ca and c is a positive scalar, so u has the same direction as a.
- **Example:** q = < -2, 1>

*Magnitude:
$$|q| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$
 Unit Vector: $u = \frac{< -2, 1>}{\sqrt{5}} = < -\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} >$

Dot Product

The Dot Product

So far we have added two vectors and multiplied a vector by a scalar. The question arises: **Is it possible to multiply two vectors so that their product** is a useful quantity? One such product is the dot product, whose definition follows.

Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

❖ Thus, to find the dot product of a and b, we multiply corresponding components and add.

The Dot Product

The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot product is sometimes called the scalar product (or inner product).

❖ Although Definition 1 is given for three-dimensional vectors, the dot product of n-dimensional vectors is defined in a similar fashion:

❖ Example n=2:

 $\langle a1, a2 \rangle \cdot \langle b1, b2 \rangle = a1*b1 + a2*b2$

The Dot Product

Examples:

$$(2, 4) \cdot (3, -1) = 2(3) + 4(-1) = 2$$

$$(-1, 7, 4) \cdot (6, 2, -\frac{1}{2}) = (-1)(6) + 7(2) + 4(-\frac{1}{2}) = 6$$

$$(i + 2j - 3k) \cdot (2j - k) = 1(0) + 2(2) + (-3)(-1) = 7$$

Properties of the Dot Product

❖ The dot product obeys many of the laws that hold for ordinary products of real numbers. These are stated in the following theorem.

2 Properties of the Dot Product If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors in V_3 and c is a scalar, then

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

5.
$$0 \cdot a = 0$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

The Dot Product

❖ These properties are easily proved using Definition 1. For instance, here are the proofs of Properties 1 and 3:

1.
$$\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2$$

43.
$$a \cdot (b + c) = \langle a1, a2, a3 \rangle \cdot \langle b1 + c1, b2 + c2, b3 + c3 \rangle$$

$$\Rightarrow$$
 = a1(b1 + c1) + a2(b2 + c2) + a3(b3 + c3)

$$\Rightarrow$$
 = a1b1 + a1c1 + a2b2 + a2c2 + a3b3 + a3c3

$$\Rightarrow$$
 = (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3)

$$\Rightarrow$$
 = $a \cdot b + a \cdot c$

❖ The dot product a • b can be given a geometric interpretation **in terms of the angle** θ between a and b, which is defined to be the angle between the representations of a and b that start at the origin, where $0 \le \theta \le \pi$.

In other words, θ is the angle between the line segments \overrightarrow{OA} and \overrightarrow{OB} in Figure 1.

Note that if a and b are **parallel** vectors, then $\theta = 0$ or $\theta = \pi$.

Figure 1

Geometric Interpretation of the Dot Product

- ❖ The formula in the following theorem is used by physicists as the definition of the dot product.
 - **Theorem** If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Geometric Interpretation of the Dot Product

Example: If the vectors a and b have lengths 4 and 6, and the angle between them is π /3, find a • b?

❖Solution: Using Theorem 3, we have

$$*$$
 $a \cdot b = |a| |b| \cos(\pi/3)$

$$= 4 \cdot 6 \cdot \frac{1}{2}$$

Angle between two Vectors

- ❖The formula in Theorem 3 also enables us to find the angle between two vectors.
 - **6** Corollary If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

❖Note:

Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Example 3

Find the **angle** between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and $\mathbf{b} = \langle 5, -3, 2 \rangle$.

Example 3

Find the angle between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and $\mathbf{b} = \langle 5, -3, 2 \rangle$.

Solution:

Since,
$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$
 and $|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$

$$a \cdot b = 2(5) + 2(-3) + (-1)(2) = 2$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{2}{3\sqrt{38}}$$

❖So the angle between a and b is

$$\theta = \cos^{-1}\left(\frac{2}{3\sqrt{38}}\right) \approx 1.46 \quad (\text{or } 84^\circ)$$

The Dot Product of Orthogonal or Perpendicular Vectors

*Two nonzero vectors a and b are called perpendicular or orthogonal if the angle between them is $\theta = \pi/2$. Then Theorem 3 gives

$$a \cdot b = |a| |b| \cos(\pi/2) = 0$$

- \clubsuit and conversely if a \cdot b = 0, then $\cos \theta = 0$, so $\theta = \pi / 2$.
- ❖The zero vector 0 is considered to be perpendicular to all vectors.
- ❖ Therefore we have the following method for determining whether two vectors are orthogonal.
 - 7 Two vectors **a** and **b** are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

The Dot Product of Orthogonal or Perpendicular Vectors

Example: Show that 2i + 2j – k is perpendicular to 5i – 4j + 2k?

Solution:

$$(2i + 2j - k) \cdot (5i - 4j + 2k) = 2(5) + 2(-4) + (-1)(2) = 0$$

these vectors are perpendicular.

The Dot Product as a Measure of Direction of Two Vectors

Figure 2

- ❖ Because cos $\theta > 0$ if $0 \le \theta < \pi / 2$ and cos $\theta < 0$ if $\pi / 2 < \theta \le \pi$, we see that a b is positive for $\theta < \pi / 2$ and negative for $\theta > \pi / 2$.
- ❖ We can think of a b as measuring the extent to which a and b point in the same direction.
- ❖ a ⋅ b is positive: If a and b point in the same general direction,
- ❖a b is 0: If a and b they are perpendicular
- ❖a b is negative: If a and b point generally opposite directions (see Figure 2).

The direction angles of a nonzero vector a are the angles α , β , and γ (in the interval $[0, \pi]$) that a makes with the **positive** x-, y-, and z-axes. (See Figure 3.)

Figure 3

The cosines of these direction angles, cos α , cos β , and cos γ , are called the direction cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|}$$

❖(This can also be seen directly from Figure 3.) Similarly, we also have

9
$$\cos \beta = \frac{a_2}{|\mathbf{a}|}$$
 $\cos \gamma = \frac{a_3}{|\mathbf{a}|}$

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|} \qquad \cos \beta = \frac{a_2}{|\mathbf{a}|} \qquad \cos \gamma = \frac{a_3}{|\mathbf{a}|}$$

Using the above equations we can write

$$a = \langle a1, a2, a3 \rangle = \langle |a| \cos \alpha, |a| \cos \beta, |a| \cos \gamma \rangle$$

$$\Rightarrow$$
 = | a | $\langle \cos \alpha, \cos \beta, \cos \gamma \rangle$

Example:

Find the direction angles of the vector $a = \langle 1, 2, 3 \rangle$.

$$|\mathbf{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14},$$

❖Since

$$\cos \alpha = \frac{1}{\sqrt{14}} \qquad \qquad \cos \alpha = \frac{1}{\sqrt{14}}$$

$$\cos \alpha = \frac{1}{\sqrt{14}}$$
 $\cos \beta = \frac{2}{\sqrt{14}}$ $\cos \gamma = \frac{3}{\sqrt{14}}$

and so

$$\alpha = \cos^{-1}\left(\frac{1}{\sqrt{14}}\right) \approx 74^{\circ}$$
 $\beta = \cos^{-1}\left(\frac{2}{\sqrt{14}}\right) \approx 58^{\circ}$ $\gamma = \cos^{-1}\left(\frac{3}{\sqrt{14}}\right) \approx 37^{\circ}$

Projections

Projections

- Figure 4 shows representations \overrightarrow{PQ} and \overrightarrow{PR} of two vectors a and b with the same initial point P.
- Projections are of two types: Vector and Scalar

Vector projections

Figure 4

Scalar projections

Scalar Projections

Scalar Projection: The scalar **projection of b onto a** is defined to be **the component of b along a**, which is the number $|\mathbf{b}| \cos \theta$, where θ is the angle between a and b. (See Figure 5.)

❖ Scalar projection is denoted by **comp**_a**b**.

Scalar projection

Figure 5

Relation between Dot Product and Scalar Projection

- **The equation** $a \cdot b = |a| |b| \cos \theta = |a| (|b| \cos \theta)$
- shows that the **dot product** of a and b can be interpreted as the **length of a times the scalar projection of b onto a.** Since

$$|\mathbf{b}| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a}}{|\mathbf{a}|} \cdot \mathbf{b}$$

❖The comp_ab can be computed by taking the dot product of b with the unit vector in the direction of a.

Vector Projections

***Vector Projection**: If S is the foot of the perpendicular from R to the line containing PQ, then the vector with representation \overrightarrow{PS} is called the vector projection of b onto a and is denoted by \overrightarrow{proj}_a b. (You can think of it as a shadow of b).

Vector Projections

•We summarize these ideas as follows.

Scalar projection of **b** onto **a**:
$$\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

Vector projection of **b** onto **a**:
$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

❖ Notice that the vector projection is the **scalar projection times the unit vector in the direction of a.**

Projection

Example: Find the scalar projection and vector projection of $b = \langle 1, 1, 2 \rangle$ onto $a = \langle -2, 3, 1 \rangle$.

- **Solution:**

The **scalar projection** of b onto a is:
$$comp_a b = \frac{a \cdot b}{|a|}$$

$$\begin{vmatrix} \mathbf{a} | = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14},$$

$$\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{(-2)(1) + 3(1) + 1(2)}{\sqrt{14}}$$

$$= \frac{3}{\sqrt{14}}$$

Example 6 - Solution

cont'd

Vector projection: is this scalar projection times the unit vector in the direction of a:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|}$$

$$= \frac{3}{14} \mathbf{a}$$

$$= \left\langle -\frac{3}{7}, \frac{9}{14}, \frac{3}{14} \right\rangle$$

❖The cross product (also known as vector product) a × b , is a vector c that is perpendicular to both a and b.

8 Theorem The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Given two nonzero vectors $a = \langle a1, a2, a3 \rangle$ and $b = \langle b1, b2, b3 \rangle$, we want to find c that is perpendicular to both a and b,

 \clubsuit If $c = \langle c1, c2, c3 \rangle$ is such a vector, then $\mathbf{a} \cdot \mathbf{c} = \mathbf{0}$ and $\mathbf{b} \cdot \mathbf{c} = \mathbf{0}$ and so

$$41c1 + a2c2 + a3c3 = 0$$

$$b1c1 + b2c2 + b3c3 = 0$$

Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

- Notice that the cross product a × b of two vectors a and b, unlike the dot product, is a vector. For this reason it is also called **the vector product**.
- ❖ Note that a × b is defined only when a and b are **three-dimensional vectors**.

The Cross Product using Determinant

❖ A determinant of order 2:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

For example,

$$\begin{vmatrix} 2 & 1 \\ -6 & 4 \end{vmatrix} = 2(4) - 1(-6) = 14$$

The Cross Product using Determinant

Cont'd

❖ A determinant of order 3:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

- The number a_i in the first row is multiplied by the second-order determinant (obtained from the left side by deleting the row and column in which a_i appears.)
- ❖ Notice also the minus sign in the second term.

Example:

 \clubsuit If a = $\langle 1, 3, 4 \rangle$ and b = $\langle 2, 7, -5 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$

$$= (-15 - 28)i - (-5 - 8)j + (7 - 6)k$$

$$-43i + 13j + k$$

Right-hand Rule: The Cross Product

❖ If a and b are represented by directed line segments with the same initial point (as in Figure 1), then the cross product **a** × **b points in a direction perpendicular** to the plane through a and b.

The right-hand rule gives the **direction** of $\mathbf{a} \times \mathbf{b}$.

Figure 1

Right-hand Rule: The Cross Product

- **❖The right-hand rule:** If the fingers of your **right hand curl** in the direction of a rotation (through an angle less than 180°) from to a to b, then your **thumb points in the direction** of a × b.
- ❖ Now that we know the direction of the vector a × b, the remaining thing we need to complete its geometric description is its **length** | **a** × **b** |. This is given by the following theorem.
 - **9** Theorem If θ is the angle between **a** and **b** (so $0 \le \theta \le \pi$), then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

Properties of The Cross Product

❖The following theorem summarizes the properties of vector products.

Theorem If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and c is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

4.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

5.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

6.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Summary

- ❖Introduction and Motivation of Vectors
- Vector Operations
 - **❖** Addition
 - ❖ Scalar multiplication
 - Linear Combination
- Component Representation
 - ❖ Vector Length
 - ❖ Vector Algebra
- **❖**Unit Vector
- ❖ Dot product of Vectors
- Projection
 - **❖** Scalar
 - **❖** Vector
- Cross-Product of Vectors

References

- ❖Some portion of these slides are adopted from the following places:
 - **❖** Motivation example:
 - * https://towardsdatascience.com/why-data-is-represented-as-a-vector-in-data-science-problems-a195e0b17e99
 - https://college.cengage.com/mathematics/larson/calculus_analytic/8e/chapters/chapter12.
 html

Recommended Reading

- **❖**Book Chapter/Section:
 - ❖ Chapter 1 (sec 1.1, sec 1.2), Introduction to Linear Algebra, Gilbert Strange, 5th Edition
 - ❖Chapter 12 (section 12.1 to 12.4) of Early Transcendentals by James Stewart, 7th Ed