Introduction to Data Science 1MS041 - Assignment 2

Holger Swartling & Nir Teyar November 4, 2024

Contents

1	Question 1			3	
	1.1	Quest	ion:	3	
	1.2	Answe	er:	3	
2	Question 2:				
	2.1	2.1 Question			
	2.2	Answe	er:	4	
		2.2.1	Part 1:	4	
		2.2.2	Part 2:	4	
		2.2.3	Part 3:	4	
		2.2.4	Part 4:	5	
		2.2.5	Part 5:	5	
3	Question 3 5				
	3.1	Quest		5	
		3.1.1	Question a	5	
		3.1.2	Answer:	5	
		3.1.3	Question b	6	
		3.1.4	Answer:	6	
		3.1.5	Question c	6	
		3.1.6	Answer	7	
4	Que	Question 4			
	4.1	Question:			
	4.2	Answe	er:	8	
		4.2.1	Part 1: Verify the Markov Property	8	
		4.2.2	Part 2: Determine the Transition Matrix P	8	
		4.2.3	Transition Matrix P	9	
5	Question 5			9	
	5.1	.1 Question:			
	5.2	Answer:			
		5.2.1	Part 1: Estimating the Quantile $p \dots \dots \dots$	10	
		5.2.2	Part 2: Applying the DKW Inequality	10	
		5.2.3	Part 3: Constructing the Confidence Interval for the Quan-		
			tile p	10	
6	Contribution statement			12	

1 Question 1

1.1 Question:

Consider a supervised learning problem where we assume that Y|X is Poisson distributed. That is, the conditional density of Y|X is given by

$$f_{Y|X}(y,x) = \frac{\lambda^y e^{-\lambda}}{y!}, \quad \lambda(x) = \exp(\alpha \cdot x + \beta).$$

Here, α is a vector (slope) and β is a number (intercept).

Follow the calculations from Section 4.2.1 to derive a loss that needs to be minimized with respect to α and β .

Note: Do we really need the factorial term?

1.2 Answer:

Suppose we have n i.i.d. samples (X_i, Y_i) for i = 1, ..., n. The likelihood function for observing these samples is:

$$L(\alpha, \beta) = \sum_{i=1}^{n} f_{Y|X}(Y_i, X_i) = \sum_{i=1}^{n} \frac{\lambda(X_i)^{Y_i} e^{-\lambda(X_i)}}{Y_i!},$$

where $\lambda(X_i) = e^{\alpha \cdot X_i + \beta}$.

The log-likelihood function is:

$$\ln L(\alpha, \beta) = \sum_{i=1}^{n} (Y_i \ln \lambda(X_i) - \lambda(X_i) - \ln(Y_i!)).$$

Since $\lambda(X_i) = e^{\alpha \cdot X_i + \beta}$, we can substitute to get:

$$\ln L(\alpha, \beta) = \sum_{i=1}^{n} \left(Y_i(\alpha \cdot X_i + \beta) - e^{\alpha \cdot X_i + \beta} - \ln(Y_i!) \right).$$

The negative log-likelihood, which we aim to minimize, is:

$$-\ln L(\alpha,\beta) = \sum_{i=1}^{n} \left(-Y_i(\alpha \cdot X_i + \beta) + e^{\alpha \cdot X_i + \beta} + \ln(Y_i!) \right).$$

The term $\ln(Y_i!)$ does not depend on α or β , so it can be ignored when minimizing the negative log-likelihood. Therefore, the loss function to minimize with respect to α and β is:

$$\mathcal{L}(\alpha, \beta) = \sum_{i=1}^{n} \left(-Y_i(\alpha \cdot X_i + \beta) + e^{\alpha \cdot X_i + \beta} \right).$$

2 Question 2:

2.1 Question

1. Let X_1, \ldots, X_n be IID from Uniform $(0, \theta)$. Let $\hat{\theta} = \max(X_1, \ldots, X_n)$. First, find the distribution function of $\hat{\theta}$. Then compute the $\mathbf{bias}(\hat{\theta})$, $\mathbf{se}(\hat{\theta})$ and $\mathbf{MSE}_n(\hat{\theta})$.

2.2 Answer:

2.2.1 Part 1:

1. **Determine the Distribution of** $\hat{\theta}$: Since each $X_i \sim \text{Uniform}(0, \theta)$, the cumulative distribution function for any X_i is $F_{X_i}(x) = \frac{x}{\theta}$ for $0 \le x \le \theta$.

For the maximum, $\hat{\theta} = \max(X_1, \dots, X_n)$, we need to find $P(\hat{\theta} \leq x)$:

$$P(\hat{\theta} \le x) = P(X_1 \le x, X_2 \le x, \dots, X_n \le x) = P(X_i \le x)^n = \left(\frac{x}{\theta}\right)^n, \quad 0 \le x \le \theta.$$

Thus, $\hat{\theta}$ has the cumulative distribution function:

$$F_{\hat{\theta}}(x) = \left(\frac{x}{\theta}\right)^n, \quad 0 \le x \le \theta.$$

2.2.2 Part 2:

2. Compute the Expected Value $E(\hat{\theta})$: The expected value of $\hat{\theta}$ can be calculated using its PDF, which we obtain by differentiating the cumulative distribution function:

$$f_{\hat{\theta}}(x) = \frac{d}{dx} F_{\hat{\theta}}(x) = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1}, \quad 0 \le x \le \theta.$$

Now, calculate $E(\hat{\theta})$:

$$E(\hat{\theta}) = \int_0^{\theta} x f_{\hat{\theta}}(x) dx = \int_0^{\theta} x \cdot \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1} dx = \frac{n}{n+1} \theta.$$

2.2.3 Part 3:

3. Compute the Bias of $\hat{\theta}$: Bias is defined as $E(\hat{\theta}) - \theta$.

$$\operatorname{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta = \frac{n}{n+1}\theta - \theta = -\frac{\theta}{n+1}.$$

2.2.4 Part 4:

Compute the Variance of $\hat{\theta}$:

The variance is given by $\operatorname{Var}(\hat{\theta}) = E(\hat{\theta}^2) - \left(E(\hat{\theta})\right)^2$. We first need $E(\hat{\theta}^2)$:

$$E(\hat{\theta}^2) = \int_0^\theta x^2 f_{\hat{\theta}}(x) \, dx = \int_0^\theta x^2 \cdot \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1} \, dx = \frac{n\theta^2}{(n+1)(n+2)}.$$

Variance is now given by:

$$Var(\hat{\theta}) = \frac{n\theta^2}{(n+1)(n+2)} - \left(\frac{n\theta}{n+1}\right)^2 = \frac{n\theta^2}{(n+1)^2(n+2)}.$$

2.2.5 Part 5:

Compute the Mean Squared Error (MSE) of $\hat{\theta}$: The MSE is given by $MSE(\hat{\theta}) = Var(\hat{\theta}) + \left(Bias(\hat{\theta})\right)^2$.

$$MSE(\hat{\theta}) = \frac{n\theta^2}{(n+1)^2(n+2)} + \left(-\frac{\theta}{n+1}\right)^2.$$

Simplifying this expression gives:

$$\mathrm{MSE}(\hat{\theta}) = \frac{\theta^2}{(n+1)^2}.$$
 some calculation mistake

3 Question 3

3.1 Question:

Consider the continuous distribution with density

$$p(x) = \frac{1}{2}\cos(x), -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

3.1.1 Question a

Find the distribution function F(x).

3.1.2 Answer:

To sample using an Accept-Reject sampler (Algorithm 1), we need to find a density g(x) such that $p(x) \leq Mg(x)$ for some M > 0. Find such a density g(x) and determine the value of M.

The distribution function F(x) is given by the cumulative distribution function (CDF):

$$F(x) = \int_{-\frac{\pi}{2}}^{x} p(t) dt = \int_{-\frac{\pi}{2}}^{x} \frac{1}{2} \cos(t) dt.$$

Integrating, we have:

$$F(x) = \frac{1}{2}(\sin(x) - \sin(-\pi/2)) + C = \frac{1}{2}(\sin(x)) + C$$

Since $\sin\left(\frac{-\pi}{2}\right) = -1$ which is a constant we make it a part of C

$$F(x) = \frac{1}{2}(\sin(x)) + C$$

To determine C we use the boundary condition $F\left(-\frac{\pi}{2}\right) = 0$:

$$F\left(-\frac{\pi}{2}\right) = \frac{1}{2}\sin\left(-\frac{\pi}{2}\right) + C = 0 \implies \frac{1}{2}(-1) + C = 0 \implies -\frac{1}{2} + C = 0 \implies C = \frac{1}{2}.$$

Thus, the CDF is:

$$F(x) = \frac{1}{2}\sin(x) + \frac{1}{2} = \frac{1}{2}(\sin(x) + 1).$$
 domain?

3.1.3 Question b

Find the inverse distribution function $F^{-1}(u)$.

3.1.4 Answer:

To find $F^{-1}(u)$, we set F(x) = u and solve for x:

$$u = \frac{1}{2}(\sin(x) + 1)$$

Rearranging gives:

$$\sin(x) = 2u - 1$$

Taking the inverse sine, we have:

$$x = \arcsin(2u - 1)$$

Thus, the inverse distribution function is:

domain?

$$F^{-1}(u) = \arcsin(2u - 1)$$

3.1.5 Question c

To sample using an Accept-Reject sampler, Algorithm 1, we need to find a density g such that $p(x) \leq Mg(x)$ for some M > 0. Find such a density g and find the value of M.

3.1.6 Answer

The maximum value of p(x) occurs when x = 0:

$$p(0) = \frac{1}{2}\cos(0) = \frac{1}{2}.$$

Thus, we have:

$$\max_{x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} p(x) = \frac{1}{2}.$$

A natural choice for the density g(x) which makes the calculations easy is the uniform distribution over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, with density:

$$g(x) = \frac{1}{\pi}, -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

We need to ensure that:

$$p(x) \le Mg(x) \implies \frac{1}{2}\cos(x) \le M \cdot \frac{1}{\pi}.$$

The maximum of g(x) is:

$$M \geq \frac{\pi}{2}$$
.

The density g(x) and constant M are given by:

$$g(x) = \frac{1}{\pi}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}, \quad M = \frac{\pi}{2}.$$

4 Question 4

4.1 Question:

Let Y_1, Y_2, \ldots, Y_n be a sequence of IID discrete random variables, where

$$P(Y_i = 0) = 0.1$$
, $P(Y_i = 1) = 0.3$, $P(Y_i = 2) = 0.2$, and $P(Y_i = 3) = 0.4$.

Let $X_n = \max(Y_1, \dots, Y_n)$. Let $X_0 = 0$ and verify that X_0, X_1, \dots, X_n is a Markov chain. Find the transition matrix P.

4.2 Answer:

4.2.1 Part 1: Verify the Markov Property

Let $X_n = \max(Y_1, \dots, Y_n)$ represent the maximum value observed in the sequence up to the *n*-th draw.

To demonstrate that X_0, X_1, \ldots, X_n forms a Markov chain, we need to show that the future state of the process depends only on the current state and not on any previous values.

Given $X_n = k$, the possible transitions depend solely on the next drawn value, Y_{n+1} , as follows:

- If $Y_{n+1} \leq k$, then $X_{n+1} = k$ (the "max number" does not change).
- If $Y_{n+1} > k$, then $X_{n+1} = Y_{n+1}$ (the "max number" updates to this higher value).

Since the future state X_{n+1} depends only on X_n and Y_{n+1} , this sequence satisfies the Markov property.

4.2.2 Part 2: Determine the Transition Matrix P

The states for X_n are $\{0,1,2,3\}$, as these are the possible maximum values. To construct the transition matrix P, we need to calculate the probability of transitioning from each current "max number" $X_n = k$ to each possible next "max number" $X_{n+1} = j$.

Case 1: $X_n = 0$

If $X_n = 0$, then the possible transitions are:

- Stay at 0 if $Y_{n+1} = 0$: $P(X_{n+1} = 0 \mid X_n = 0) = P(Y_{n+1} = 0) = 0.1$.
- Move to 1 if $Y_{n+1} = 1$: $P(X_{n+1} = 1 \mid X_n = 0) = P(Y_{n+1} = 1) = 0.3$.
- Move to 2 if $Y_{n+1} = 2$: $P(X_{n+1} = 2 \mid X_n = 0) = P(Y_{n+1} = 2) = 0.2$.
- Move to 3 if $Y_{n+1} = 3$: $P(X_{n+1} = 3 \mid X_n = 0) = P(Y_{n+1} = 3) = 0.4$.

Case 2: $X_n = 1$

If $X_n = 1$, then the possible transitions are:

- Stay at 1 if $Y_{n+1} = 0$ or $Y_{n+1} = 1$: $P(X_{n+1} = 1 \mid X_n = 1) = P(Y_{n+1} = 0) + P(Y_{n+1} = 1) = 0.1 + 0.3 = 0.4$.
- Move to 2 if $Y_{n+1} = 2$: $P(X_{n+1} = 2 \mid X_n = 1) = P(Y_{n+1} = 2) = 0.2$.
- Move to 3 if $Y_{n+1} = 3$: $P(X_{n+1} = 3 \mid X_n = 1) = P(Y_{n+1} = 3) = 0.4$.

Case 3: $X_n = 2$

If $X_n = 2$, then the possible transitions are:

- Stay at 2 if $Y_{n+1}=0$, $Y_{n+1}=1$, or $Y_{n+1}=2$: $P(X_{n+1}=2\mid X_n=2)=P(Y_{n+1}=0)+P(Y_{n+1}=1)+P(Y_{n+1}=2)=0.1+0.3+0.2=0.6$.
- Move to 3 if $Y_{n+1} = 3$: $P(X_{n+1} = 3 \mid X_n = 2) = P(Y_{n+1} = 3) = 0.4$.

Case 4: $X_n = 3$

If $X_n = 3$, then the possible transitions are:

• Stay at 3 regardless of Y_{n+1} , since 3 is the highest possible value: $P(X_{n+1} = 3 \mid X_n = 3) = 1$.

4.2.3 Transition Matrix P

Based on the calculations above, the transition matrix P is:

$$P = \begin{bmatrix} 0.1 & 0.3 & 0.2 & 0.4 \\ 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Each entry P_{ij} in this matrix represents the probability of transitioning from state i to state j.

5 Question 5

5.1 Question:

The quantile p of a distribution F is the value x_p such that:

$$F(x_p) = p,$$

where F is the cumulative distribution function of X, the random variable from which X_1, X_2, \ldots, X_n are IID samples.

 x_p is the value below which p proportion of the data lies.

The empirical distribution function \hat{F}_n is an approximation of F based on the sample data X_1, \ldots, X_n . It is defined as:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_i \le x\}},$$

where $\mathbf{1}_{\{X_i \leq x\}}$ is an indicator function that is 1 if $X_i \leq x$ and 0 otherwise. $\hat{F}_n(x)$ gives the proportion of sample points less than or equal to x, and it converges to F(x) as $n \to \infty$ by the Law of Large Numbers.

5.2 Answer:

5.2.1 Part 1: Estimating the Quantile p

To estimate the quantile p, we find the value x such that $\hat{F}_n(x) \approx p$. This x serves as an empirical approximation of x_p (the p-th quantile of F).

Define \hat{x}_p such that:

$$\hat{F}_n(\hat{x}_p) = p.$$

You can obtain \hat{x}_p by sorting the sample X_1, \ldots, X_n and finding the data point at the $\lceil np \rceil$ -th position.

5.2.2 Part 2: Applying the DKW Inequality

The DKW inequality provides a probabilistic bound on the difference between $\hat{F}_n(x)$ and F(x):

$$P\left(\sup_{x} \left| \hat{F}_n(x) - F(x) \right| > \epsilon \right) \le 2e^{-2n\epsilon^2}.$$

With high probability, the empirical cumulative distribution function $\hat{F}_n(x)$ is close to the true cumulative distribution function F(x).

To construct a confidence interval, we rearrange the inequality to bound the probability that $\hat{F}_n(x)$ differs from F(x) by more than ϵ . For a given confidence level $1 - \alpha$, set:

$$2e^{-2n\epsilon^2} = \alpha.$$

Solving for ϵ , we get:

$$\epsilon = \sqrt{\frac{\ln(2/\alpha)}{2n}}.$$

5.2.3 Part 3: Constructing the Confidence Interval for the Quantile p

Since $\hat{F}_n(\hat{x}_p) = p$, we can use the DKW bound to say that, with probability at least $1 - \alpha$:

$$F(\hat{x}_n - \epsilon) \le p \le F(\hat{x}_n + \epsilon).$$

This provides an interval around p for the empirical estimate $F_n(\hat{x}_p)$.

In terms of x values, we can interpret this as a confidence interval for x_p based on the points where $\hat{F}_n(x)$ differs from p by no more than ϵ . Therefore, the confidence interval for the quantile p can be approximated as:

$$[\hat{x}_{p-\epsilon}, \hat{x}_{p+\epsilon}],$$

where $\hat{x}_{p-\epsilon}$ and $\hat{x}_{p+\epsilon}$ are the empirical values corresponding to the probabilities $p-\epsilon$ and $p+\epsilon$ in \hat{F}_n .

6 Contribution statement

The assignment as a whole was done by both group members. The group members did the assignment first individually and then checked answers with each other upon completion, thus resulting in approximately 50% contribution from each member.