	Grammatik	Maschinentyp	Abgeschlossenheit						Probleme			
			Λ	U	Ē	+	*		Wort	Leer	Äq.	Isect
Typ-0 (Rekursiv aufzählbare Sprachen)	Alle Gr.	TM (Y/?)	J	J	(N)	J	J	J	N	N	N	N
Entscheidbare Sprachen	~	TM (Y/N)	~	~	~	~	~	~	J	~	~	~
Typ-1 (Kontextsensitive Sprachen)	Nichtverkürzende Gr.	LBA $\{\Sigma,\Gamma\supset\Sigma,Q,\delta,\neg,S,E\}$ δ: $Qx\Gamma\rightarrow Qx\Gamma x\{L,R,N\}$ (Satz von Kuroda)	J	J	J Satz von Immerman, Szelepcsényi	J	J	J	J Exp., NP-Hart	N	N	N
Typ-2 (Kontextfreie Sprachen)	Kontextfreie Gr.	PDA $\{\Sigma,\Gamma,Q,\delta,S,\#\}$ $\delta:(Qx\Sigma x\Gamma) \rightarrow (Q,\Gamma^*)$	N	J	N	J	J	J	J (CYK) O(n ³)	J	N	N
Deterministisch Kontextfreie Sprachen	LR(k)-Gr.	DPDA $\{\Sigma,\Gamma,Q,\delta,S,\#\}$ $\delta:(Qx\Sigma x\Gamma) \rightarrow (Q,\Gamma^*)$	N	N	J	N	N	N	J 0(n)	J	J	N
Typ-3 Reguläre Sprachen / Kontextfreie Sprachen mit $ \Sigma =1$	Reguläre Gr. {V,Σ,P,S} P⊂VxΣxV	NEA, DEA, Reg Exp. {Σ,Q,P,S,E} P⊂QxΣxQ	J	J	J	J	J	J	J 0(n)	J	J	J

Chomsky-Normalform: $A \rightarrow a, A \rightarrow BC$ **Greibach-Normalform:** $A_0 \rightarrow a \ A_1 \ A_2 \dots A_k$

Kuroda-Normalform: $A \rightarrow a, A \rightarrow B, A \rightarrow BC, AB \rightarrow CD$

CYK-Algorithmus:

Minimalautomat:

Markierungsalgorithmus Markiere erst A→a, B→b, dann alle C→AB, bis S→C.

Wenn S nicht markiert, dann ist die Sprache L(G) leer.

Pumping Lemma: uvw-Theorem: Notwendig für Typ-3:

(Lemma von Bar-Hillel) $\exists n \in \mathbb{N}: \forall z \in L: z = uvw, |v| \ge 1, |uv| \le n, uv^i w \in L$

uvwxy-Theorem: Notwendig für Typ-2:

 $\exists n \in \mathbb{N}: \forall z \in \mathbb{L}: z = uvwxy, |vx| \ge 1, |vwx| \le n, uv^i wx^i y \in \mathbb{L}$

Satz von Myhill-Nerode: $L \in Typ-3 \leftrightarrows |R_L| < \infty$

 $|R_L| \leq |R_M|$