

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

09869309

PCT/EP 00/00390

BUNDESREPUBLIK DEUTSCHLAND

EPOD / 390

EPO - Munich
24

24. Feb. 2000

RECD 06 MAR 2000

PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Bescheinigung

Die MEMOREC Medical Molecular Research Cologne Stoffel GmbH in Köln/Deutschland hat
eine Patentanmeldung unter der Bezeichnung

"Aspartatprotease"

am 22. Januar 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 12 N, C 12 Q und C 07 K der Internationalen Patentklassifikation erhalten.

München, den 8. Februar 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

| 199 02 550.9

Hiebingen

Aspartatprotease

Gegenstand der vorliegenden Erfindung sind eine Aspartatprotease, Nucleinsäuren kodierend für die Aspartatprotease sowie die damit in Verbindung stehenden Inhibitoren, Antikörper, Arznei- und Diagnostikmittel.

Die vorliegende Erfindung stellt eine Aspartatprotease mit zwei Asparatresten in einer katalytisch aktiven Struktur, wobei ein erster Asparatrest in einem Motiv X_1GX_2GD liegt und ein zweiter Asparatrest in einem Motiv $X_3X_4DX_5$ liegt, wobei X_1 , X_2 , X_3 und X_5 unabhängig voneinander ausgewählt werden aus Ala, Val, Leu, Met und Ile und X_4 eine aromatische Aminosäure ist, und die Motive X_1GX_2GD und $X_3X_4DX_5$ in einer Transmembranregion liegen, zur Verfügung. Für die Motive wurde der Einbuchstabencode der Aminosäuren verwendet, d.h. D = Asp, G = Gly usw..

Solche Aspartatproteasen sind mit hoher Wahrscheinlichkeit an der Spaltung des Amyloid Precursor Proteins (APP) beteiligt. In einer Ausführungsform der Erfindung stellt die erfindungsgemäße Aspartatprotease die bisher nicht identifizierte γ -Secretase dar, die an der Prozessierung des APP zu den als $A\beta$ bezeichneten Amyloidpeptiden beteiligt ist.

Ein Überblick über die Rolle der γ -Secretasen bei der Entstehung der Alzheimerschen Erkrankung geben S.L. Ross et al. in J. of Biol. Chem. 273 (1998), 15309-15312.

Bevorzugte Aspartatproteasen der vorliegenden Erfindung weisen zusätzlich eine Sequenz PALX₆YX₇VP auf, wobei X₆ und X₇ die gleiche Bedeutung haben wie X₁. Es wird jedoch bevorzugt, daß X₆ und X₇ Leucin oder Isoleucin sind.

Insbesondere handelt es sich bei den Aspartatproteasen um Aspartatproteasen von Säugetieren, insbesondere von Menschen.

Die erfindungsgemäßen Aspartatproteasen weisen die katalytisch aktiven Aspartatreste in einer Region auf, die innerhalb eines Transmembranbereichs liegt. Transmembranbereiche lassen sich bei Kenntnis der Sequenz eines Proteins aufgrund verschiedener Modelle vorhersagen. Sie sind dadurch gekennzeichnet, daß in einem Bereich überwiegend hydrophobe Aminosäuren liegen, die von Bereichen flankiert werden, in denen eher hydrophile Aminosäuren liegen.

Besonders bevorzugte Aspartatproteasen der vorliegenden Erfindung werden als psnlike 1 bis 4 bezeichnet. Die humanen und murinen Aminosäuresequenzen sind in der Figur 1 gezeigt.

Weiterhin sind Varianten der erfindungsgemäßen Aspartatproteasen Gegenstand der Erfindung. Varianten sind Proteine, die durch einen oder mehrere Mutationen, Insertionen und Deletionen, insbesondere durch konservative Austausche, von den erfindungsgemäßen Aspartatproteasen abgeleitet sind. Auch Nucleinsäuren, die für die erfindungsgemäßen Aspartatproteasen kodieren, sind Gegenstand der Erfindung. Bevorzugte erfindungsgemäße Nucleinsäuren sind solche, die in der Figur 2 gezeigt sind. Auch komplementäre Nucleinsäuren sind Bestandteil der Erfindung.

Die erfindungsgemäßen Aspartatproteasen sind an der Spaltung des APP zum A β beteiligt und sind damit indirekt an der Entstehung beispielsweise der Alzheimerschen

Erkrankung beteiligt. Daher sind auch Inhibitoren, die die Expression oder die Aktivität der Aspartatproteasen hemmen, Gegenstand der Erfindung. Solche Inhibitoren können in einfachen Verfahren identifiziert werden. Entsprechende Inhibitoren können beispielsweise durch Messung der Expression oder der Aktivität der Aspartatproteasen in Gegenwart von potentiellen Inhibitoren identifiziert werden. Insbesondere zur Messung der Expression eignen sich gegen die Aspartatproteasen gerichtete Antikörper, die somit ebenfalls Bestandteil der Erfindung sind.

Die erfindungsgemäßen Aspartatproteasen, Nucleinsäuren, Inhibitoren und Antikörper können in Arznei- und Diagnostikmitteln enthalten sein. Sie eignen sich insbesondere zur Behandlung oder Diagnose von Erkrankungen, die mit der Spaltung des Amyloid Precursor Proteins ursächlich verbunden sind, insbesondere der Alzheimerschen Erkrankung.

Patentansprüche

1. Aspartatprotease mit zwei Asparatresten in einer katalytisch aktiven Struktur, wobei ein erster Asparatrest in einem Motiv X_1GX_2GD liegt und ein zweiter Aspartatrest in einem Motiv $X_3X_4DX_5$ liegt, wobei X_1 , X_2 , X_3 und X_5 unabhängig voneinander ausgewählt werden aus Ala, Val, Leu, Met und Ile und X_4 eine aromatische Aminosäure ist, und die Motive X_1GX_2GD und $X_3X_4DX_5$ in einer Transmembranregion liegen.
2. Aspartatprotease nach Anspruch 1, dadurch gekennzeichnet, daß die Aspartatprotease die Sequenz $PALX_6YX_7VP$ aufweist, wobei X_6 und X_7 die gleiche Bedeutung haben wie X_1 .
3. Aspartatprotease nach Anspruch 2, dadurch gekennzeichnet, daß X_6 und X_7 ausgewählt sind aus Leucin und Isoleucin.
4. Aspartatprotease nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Transmembranregion eine Region ist, bei der die Aminosäuren überwiegend hydrophob sind.
5. Aspartatprotease nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Aspartatprotease eine der Sequenzen psnlike 1, psnlike 2, psnlike 3 oder psnlike 4 aufweist.
6. Nucleinsäuren kodierend für eine Aspartatprotease nach mindestens einem der Ansprüche 1 bis 5.

7. Nucleinsäuren nach Anspruch 6, dadurch gekennzeichnet, daß sie die Sequenzen psnlike 1, psnlike 2, psnlike 3 oder psnlike 4 aufweisen.
8. Inhibitoren, dadurch gekennzeichnet, daß sie die Expression der Aspartatprotease nach einem der Ansprüche 1 bis 5 hemmen.
9. Inhibitoren, dadurch gekennzeichnet, daß sie die Aktivität der Aspartatprotease nach einem der Ansprüche 1 bis 5 hemmen.
10. Antikörper, gerichtet gegen Aspartatproteasen nach einem der Ansprüche 1 bis 5.
11. Verfahren zur Identifizierung von Inhibitoren, dadurch gekennzeichnet, daß die Aktivität der Aspartatproteasen nach einem der Ansprüche 1 bis 5 in Gegenwart von potentiellen Inhibitoren gemessen wird.
12. Arzneimittel enthaltend eine Aspartatprotease nach einem der Ansprüche 1 bis 5, eine Nucleinsäure nach einem der Ansprüche 6 bis 7, einen Inhibitor nach Anspruch 8 oder 9 oder einen Antikörper gemäß Anspruch 10.
13. Verwendung eines Arzneimittels nach Anspruch 12 zur Behandlung von Erkrankungen, die mit der Spaltung des Amyloid Precursor Proteins ursächlich verbunden sind, insbesondere der Alzheimerschen Erkrankung.
14. Diagnostikmittel enthaltend eine Aspartatprotease nach einem der Ansprüche 1 bis 5, eine Nucleinsäure nach einem der Ansprüche 6 bis 7, einen Inhibitor nach Anspruch 8 oder 9 oder einen Antikörper gemäß Anspruch 10.

15. Verwendung des Diagnostikmittels nach Anspruch 14 zur Diagnose von Erkrankungen, die mit der Spaltung des Amyloid Precursor Proteins ursächlich verbunden sind, insbesondere der Alzheimerschen Erkrankung.

Zusammenfassung

Aspartatprotease mit zwei Asparatresten in einer katalytisch aktiven Struktur, wobei ein erster Asparatrest in einem Motiv X_1GX_2GD liegt und ein zweiter Aspartatrest in einem Motiv $X_3X_4DX_5$ liegt, wobei X_1 , X_2 , X_3 und X_5 unabhängig voneinander ausgewählt werden aus Ala, Val, Leu, Met und Ile und X_4 eine aromatische Aminosäure ist, und die Motive X_1GX_2GD und $X_3X_4DX_5$ in einer Transmembranregion liegen.

>psnlike1_human
GGSLHFSSPRVPSCSRVFCPVPPGGCGLPSPVSASRPQGPTPWCLPRRYMKHKRDDGPE
KQEDEAVDVTPVMTCVFVVMCCSMLVLLYYFYDLLVYVVGIFCLASATGLYSCLAPCVR
RLPSASAGESALLAPTIPNNSLPYFHKRQARMLLLALFCVAWSVVGVFRNEDQWAWL
QDALGIAFCLYMLKTIRLPTFKACTLLLLVFLYDIFTVFITPFLTKSGSSIMVEVATGP
SDSATREKLPVLUVKPRLNSSLALCDRPFSSLGFGDILVPGLLVAYCHRFDIQVQSSRV
YFVACTIAYGVLLVTVALALMQRGQPALLYLVPCTLVTSCAVALWRRELGVFWTGSGF
AKVLPPSPWAPAPADGPQPPKDSATPLSPQPPSEEATSPWPAAEQSPKSRTSEEMGAGAP
MREPGSPAEESEGRDQAQSPSPVTQPGASA

>psnlike2_human
LIFLSGLCIAVAVVWAVFRNEDRWAWILQDILGIAFCLNLIKTLKLPNFKSCVILLGLLL
LYDVFFVIFITPFITKNGESIMVELAAGPFGNNEKLPVVIRVPKLIYFSVMSVCLMPVSIL
GFGDIIIVPGLLIAYCRRFDVQTGSSYIYVSVTAYAIGMILTFVVLVLMKKGQPALLYL
VPCTLITASVVAWRRKEMKKFWKGSSYQMDHLDYSTNEENPVTDEQIVQQ

>psnlike2_mouse
VLGFEDIIVPGLLIAYCRRFDVQTGSSIYYISSTIAYAVGMIITFVVLVVMKGTGQPALLY
LVPCTLITVSVVAWSRKEMKKFWKGSSYQVMDHLDYSTNEENPVTDEQIVQQ

like3_human
PASLLQQPELESDPERTSPWTRPSAIRITAVRGRRPHQQHYAAAFHVRGHRAGLRQ
GAAAHLPSPAPLLPVRCARGKNASDMPETITSRDAARFPIIASCTLLGLYLFKIFS
QYINLLSMYFFVILGILALSHTISP FMNKFFPASFPNRQYQOLLFTQGSGENKEEIINYE
FDTKDLVCLGLSSIVGVWYLLRKHWIANNLFGLAFLSLNGVEILLHNNVSTGCILLGGFI
YDWFVWFGTNVMVTVAKSFEAPIKLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLL
RFDISLKKNTHTYFYTSAAYIFGLGLTIFIMHIFKHAQPALYLVPACIGFPVLVALAK
GEVTEMFSYEESNPKDPAAVTESKEGEASASKGLEKKEK

>psnlike3_mouse
SVLCGGTSLPVSLGERGPRSASSPSTFVLRREPELESEPERSSPWIRLSAIRTTAARGWHP
SQRHDAALHARGHRAGLWQPPAHGAAAHLPSPAPLRSVRCAKGKSSSDMPETITSRDAAR
FPIIASCTLLGLYLFKIFSQEYINLLSMYFFVILGILALSHTISP FMNKFFPANFPNRQ
YQOLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRKHWIANNLFGLAFLSLNGV
ELLHNNVSTGCILLGGFIYDIFFWVFGTNVMVTVAKSFEAPIKLVFPQDLLEKGLEADN
FAMLGLGDIVIPGIFIALLRFDISLKKNTHTYFYTSAAYIFGLGLTIFIMHIFKHAQ
ALLYLVPACIGFPVLVALAKGEVAEMFSYEESNPKDPAAVTESKEESTEASASKRLEKKE
K

>psnlike4_human
QVSTFLISILLIVYGSFRSLNMDFENQDKEKSNSSSGSFNGNSTNNSIOTIDSTOALFL
VSLVLMFFFFDSVQVFFTCAVLATIAFAFLLLPMCQYLTRPCSPQNKISFGCC
AELLSFSLSVMLVLIWVLTGHWLLMDALAMGLCVAMIAFVRLPSLKVSCLLISGL
FWVFFSAYIFNSNVMVKVATQPADNPLDVLTSRKLHLGPNVGRDVPRSLPGKLF
PSSTGSHFSMLGIGDIVMPGLLCFVLRYDNYKKQASGDSCGAPGPANISGRMQKVSYFH
CTLIGYFVGLLTATVASRIHRAAQPALYLVPFTLLPLLTMAYLKGDLRMWSEPFHSKS
SSSRLEV

>psnlike4_mouse

QNKISFGCCGRFTAELLSSFYLSVMLVIWVLTGHWLLMDALAMGLCVAMIAFVRLPSLK
VSCLLSSGLIYDVFVWFFSAYIFNSNVMVKVATQPADNPLDVLTSRKLHLGPNVGRDVPR
LSPGKLVPSSTGSHFSMLGIGDIVMPGLLCFVLRYDNYKKQASGDSCGAPGXANISG
RMQKVSYFHCTLIGYFVGLLTATVASRVHRAAQPALYLVPFTLLPLLTMAYLKGDLRM
WSEPFHSKSSSRLEV

Fig. 2

>psnlike1_human

GGGGCGGTTCTTGCaCTTCAGTCCCCCGGGTCCCCTCCTGCTCCCGG
 GTTTCTgcCcCGTCCCCGGGTGGCTGGGCTCCGAGCCCCGTGTC
 GGCCAGCCGCCAGGGCCCACGACCCATGGTGCTCCAAAGAAGGT
 ACATGAAGCACAAGCGCAGATGGGCCAGAGAACGAGGAGCAGGGCG
 GTGGACGTGACGCCGTGATGACCTCGCTGTTGGTGATGTGCTGCTC
 CATGCTGGTGTGCTACTATTTCTACGATCTCCCTCGTGTACGTGGTCA
 TCGGGATCTCTGCCTGGCCTCCGCCACCGGCCCTACAGCTGCCTGGC
 CCCTGTGCGGCCGCTGCCTCGGCAAGTGCAGGTGAGTCTGCCCTGCT
 GGCCCCGACGATCCCAAACACAGCCTGCCCTACTTCCACAAAGGCCCG
 AGGCCCCTATGCTGCTCTGGCGCTTCTGCCTGGCGCTCAGCGTGGT
 TGGGGCGCTTCCGCAACGAGGACCAGTGGGCTGGGTCTCAGGATGC
 CCTGGGCATGCCCTCTGCCTACATGCTGAAGACCATCCGTCTGCCCA
 CCTTCAAGGCCCTGCACGCTGCTGCTGGTGCTGTTCTCTACGACATC
 TTCTCGTGTTCATCACGCCCTCCTGACCAAGAGTGGGAGCAGCATCAT
 GGTGGAGGTGGCCACTGGGCCCTCGGACTCAGGCCACCGCTGAGAACGCTGC
 CCATGGTCTGTAAGGTGCCAGGCTGAACCTCCTCACCTCTGGCCCTGTGT
 GACCGGCCCTCTCCCTGGGTTTGGAGACATTTGGTGCAGGGCT
 GCTGGTGGCCTACTGCCACAGGTTTGACATCCAGGTACAGTCTCCAGGG
 TATACTTCGTGGCTTGACCATCGCCTATGGCTTGGCCCTCTGTGACA
 TTCGTGGCACTGGGCCCTGATGCGAGCTGGCTGTGGCGCTCTGGCGCCGG
 CCTCTGCACGCCGCTGGTACGGAGCTGCCCTGGGAGACATCTGGCCAGGGCT
 CGTGGGCCCTCAGCACCAGCCGACGGCCGAGCCCTCCAAAGACTC
 TGCCACGCCACTCTCCCCGCAAGCCGCCAGCGAAGAACCAAGGCCACATCCC
 CCTGGCCCTGCTGAGCAGTCCCCAAATACGCACGTCCGAGGAGATGGGG
 GCTGGAGCCcccATGCGGGAGCCTGGAGGCCAGCTGAATCCGAGGGCCG
 GGACCAGGCCcAGCCGTCCCCGTAACCCAGCCTGGCCCTGGGCCCTAGG
 GGAGGGGTGAGACGCTCGCTGCCGTGCCGCCACACCAAGATTTGGG
 TGCCTGGGCCCTGGAGACAGACAGACAGACGCCCTGTCCCCGGGACC
 GAGGCCCTGCGCTGCCGCTGGAGACAGACAGACGCCCTGTCCCCGGGACC
 GACCCCTGCGCTGTGCCGCCAGCCAGCTGCCCTGGCTGCACGC
 CTGCTGCTCCAGCTGCCCTGCCACAAGCTCTGCCGGTGCAC
 TCCCCACGGGGTCCGTCTCGCAGGCCCTGCCGCCCTGTGCCGAGACC
 CTCAAGCGCTGCTGCATGACTGAGCAGGCCGTGGGTGGACTCTGGCGCG
 GCCACACTGGTGCCTACCAGCTGCTCCGCCCTCAGGTGACCTCCCTCC
 CCACGGCATCCCTGCTCTCCGGTGGAAAGAGCAGCTTCTGTCTCCAGAA
 GGCATGCCCTTCCCTCTTGAGGAGACATCGGAGGCCCTGGAGGTTGGAA
 GCTGCCCTCCAAGCTAGGACACGGACCAGTGGCCGGGGCTCTGCC
 CCTGACGCTGGCTGAGACAGGCCGTGGCGGGCTTTGGGGCTGAAAC
 AAGGCTGGCAGTAAGTGGACAAGCTGCTCCCTGGCTAAGGCCCTGCCCT
 CCTGCAGCCAGAGGTGCCATGCCCTGCACACTCCCTCCATTAA
 TGGTCGCAACTTCAaaaaaaaaaaaaaaaaaaaaaaa

>psnlike2_human

CTTATTTCTCTGGACTGTGCATAGCAGTAGCTGTTGGCTGT
 GTTTCGAAATGAAGACAGCTGGCTTGGATTTACAGGATATCTGGGG
 TTGCTTCTGTCTGAATTAAATTAAACACTGAAGTTGCCAACCTCAAG
 TCATGTTGATACCTCTAGGCCCTCTCCCTCTATGATGTATTTTG
 TTICATAACACCATCATCACAAAGAACTGGAGACTATCATGGTTGAAC
 TCGCAGCTGGACCTTTGGAAATAATGAAAAGTGCCTAGTCAG
 GTACAAAAACTGATCTATTCTCAGTAATGACTGTCTGCCATGCC
 TTCAATATTGGTTTGAGACATTATTGTAACGCCCTGTGATTGCA
 ACTGTAAGAGATTGATGTTGAGACTGGTTCTTCTACATATACTATG
 TCGCTCACAGTTGCCATGCTATTGGCATGATACTACATTGTTCT
 GGTGCTGATGAAAAGGGCAACCTGCTCTCCCTATTTAGTACCTTGC
 CACTTATTACTGCCCTCAGTTGCTGGAGACGTAAGGAATGAAAAG
 TTCTGGAAAGGTAACAGCTACAGATGATGGACCAATTGGATTGTGCA
 AAATGAAGAAAACCTGTGATATCTGGTAACAGATTGTCAGCAATA
 ATTATGTTGAAACTGCTATAATTGTCATTGATTTCTACAAATAGACT
 GACTTTTAAATTGACTTTGAAATTGACAATCTGAAAGAGTCTCA
 TATGCTGCAAAATATATTGAGCTGGTACTGACAGTTACATCAT
 AAATAACTAAAACGCTTGTCTTAAATGTTAAGTGTGAGATGTACT
 AATAAAACATATGGTCTGTGAGTTCCGAGATGTACTATAAAAAAA

>psnlike2_mouse

CACTATGGGTTCCGAGATATCATTGTACCAGGCTGTTGATTGCATAT
 TGTAGAAGATTGATGTCAGACTGGTTCTTCTATATACTATATTCATC
 CACAATTGCCATGCTGTTGGCATGATCATTACCTTGTTGTCCTGATGG
 TGATGAAAACAGGGCAGCCTGCTCTACTTGCTACACTGGTACCTTGTAACATT
 ATTACTGTCAGTCGTTGAGTCGAAGAAATGAAAAAGTTCTG
 GAAAGGCAGCAGCTACAGGTGATGGACCACTGGACTATTCAACAAATG
 AAGAAAATCCAGTGACGACTGATGAGCAGATTGTACAACAGTAATTACGT
 GGACTTACAATGATGTTGTTCTACAAATACTTTGGCCTTT
 TTTCTTTGCTCTGCTCCCCAAAGTTAGTTAGGACTATAGCTGG
 ACAACACTATGCCAGCAAGTTAAATCAAAGTTGAGTTGAAAATTGG
 GAACATTACAGCGATGTTGAAATCTGTATATTTTATGAGTTGGTAA
 AAATCCCACATACATAGTGAATGCTTTCTTTAATTATGTTAAA
 TTGTGCCTCACAGTCAGCTTAAACATAGCGTTGTTGAGTTCCAAA
 CGAATTATATACATTATATTCTTAAAGAAAAAAAGCTACCC
 GACCTTCCCTTGTACTTTCTTAATGAAATATTCTCCAAATGCTAAGGT
 TAGATCATGTGTAAGTGTAAAGCAAGTTCTGAGTATATTAAAGATTAA
 TGTAACTTAACCCCTACAGAAATAACTTAAAGACTGCAAGAAGA
 CAGTTCATGTAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

>psnlike3_human

TGTCTCCGCCTGCGTCCCTNCTGCAGCAACCGGAGCTGGAGTCGGA
 TCCCGAACGCACCTGCCATGGACTCGGCCCTCAGCGATCCGCATAACGG
 CAGTCGAGGCAGGGCCCCACCAACAGCACTACGGGGCCCTTCAC
 GTCCGAGGCATCGCGCTGGCCTACGGCAGCCTCTGCTCATGGCGCTGC
 TGCCCCTTCCTTCCTGCGCCgCTGCTGCCGgTACGCTGCGCCCCGGGnA
 AGAATGCTCAGACATGCCCTGAAACAATCACCAGCGGGATGCCGCC
 TTCCCCATCATGCCAGCTGCACACTCTGGGCTCTACCTCTTTCAA
 AATATTCTCCAGGAGTACATCAACCTCTGCTGTCATGTTTCTCG
 TGCTGGGAATCTGGCCCTGTCCCACACCATCAGCCCCCTCATGAAATAAG
 TTTTTCCAGCCAGCTTCAAATGACAGTACCAAGCTGCTCTTCACACA
 GGGTCTGGGAAAACAAGGAAGAGATCATCAATTATGAAATTGACACCA
 AGGACCTGGTGTGCTGGCCTGAGCAGCATCGTTGGCGTCTGGTACCTG
 CTGAGGAAGCACTGGATTGCCAACACCTTTGGCCTGGCCTTCTCCCT
 TAATGGAGTAGAGCTCTGCACCTCAACAATGTCAGCACTGGCTGCATCC
 TGCTGGGGACTCTTCATCTACGATGTTCTGGTATTGGCACCAAT
 GTGATGGTACAGTGCCAAGTCTTCGAGGCACCAATAAAATTGGTGT
 TCCCAGGATCTGCTGGAGAAAGGCCTCGAACACAAACTTGCCATGC
 TGGGACTGGAGATGTCGTATCCAGGGATCTCATGCCCTGCTGCTG
 CAGTTATGAGGAGTCAAATCTAAGGATCCAGCGGAGTACAGAACCCA
 AAGAGGGACAGAGGCATCAGCATCGAAGGGCTGGAGAAGAAAGAGAAA
 TGATGCAGCTGGTGGCCAGGCCTCTCAGGGCAGACAGACAGATGGGG
 CTGGGCCACACAGGGTGCACCCGGTAGAGGGCACAGGAGGCCAGGGCA
 GCTCCCAGGACAGGGCAGGGCAGCAGGATACTCCAGCCAGGCCTCTG
 TGCCCTCTGTTCCCTCCCTTCTGGCCCTCTGCTCCTCCCCAC
 ACCCTGCAGGCAAAGAAACCCCGAGCTCCCCCTCCCCGGGAGCCAGG
 TGGGAAAAGGGTGTGATTAGATTGTTGACTGATTTG
 CTCACATAAAATCATCCATGCCAGGGGGCACTGTGCTCTGG
 AAAAAAAA

>psnlike3_mouse

ATTCGGTCCTGGAGGCACGTCACTCCTGTTCTTAGGGAACGTGGC
 TTCCCCCGCAGTGCCTTCTCCGTCTACGTTGCGTGCAGGGCCCGGA
 GCTGGAGTCGGAGCCGAGCGCAG CTCGCCATGGATTGGCTGTCAGCG
 ATCCGCACAACGGCAGCGAGGGCTGGCACCCAGCCAACGGCACGACGC
 GGGCGCCCTCCAGGCCAGGGCATCGCGCTGGCCTATGGCAGCCTCTG
 CTCATGGCGCTGCCCCTTCGGCGCTGCGCTGGTGC
 TGGGCCCGGGCAAGAGCTTCCGACATGCCAGAAACCATCACCAGTCG
 AGATGCCGCCGCTTCCCATCATGCCAGCTGCACACTCCTGGGCTCT
 ACCTTTCAAAATATTCTCCAGGAGTACATCAACCTCTGCTGTC

ATGTATTCCTCGTGGGATCCTGGCCCTGTACACACCATCAGCCC
 CTTCATGAATAAGTTTCCAGCCAACCTCCAAACGCCAGTATCAGC
 TGCTCTCACACAGGGCTCTGGGAAAACAAAGAAGAGATCATCAACTAT
 GAGTTTGACACTAAGGACCTGGTGTGCCTGGGCTAAGCAGCGTGTGG
 TGTCTGGTACCTCTGAGGAAGACTGGATTGCCAACACCTGTTGGCC
 TGGCCTTCCTTAATGGGTAGAGCTCTGCACCTGAACAACGTGAGC
 ACTGGCTGTATCCTGCTGGAGACTCTTCATCTATGACATCTCTGGGT
 ATTCCGGACCAACGTGATGGTACAGTGGCAAGTCCTTGAGGCACCAA
 TAAAATTGGTGTCCCCCAGGACTGCTGGAGAAGGGCCTGAAGCAGAC
 AACTTIGCCATGCTGGGACTTGGAGACATTGTCATTCAGGGATCTTCAT
 TGCCTTACTGCTTCGTTTGACATCAGCTGAAGAAGAACGCCACACCT
 ACTTCTACACCAGCTCGCGCTACATCTCGGCTGGGTCTACCATC
 TTCATCATGCACATCTCAAGCACGCCAGCCGCTCTGTACCTGGT
 CCCTGCCTGCATCGGCTTCCTGCTGGCACTAGCCAAGGGAGAAG
 TGGCCGAGATGTTAGTTATGAGGAGTCCAACCCCTAAAGATCCAGCAGCC
 GTGACTGAATCCAAGAGGAGTCAACAGAGGGCTGGCATCGAAGAGGCT
 AGAGAAGAAGGAGAAATGAGGAGCGCTGGCTGACCTTGAGGGCAGAT
 CGGACAGGGCAGGGATGACCTGAGGGCACACAGAACAGAACACCTGC
 AGGAGGCGACGGTGGCCCAAGGATGGGGAGCAGGCCCTGCTGCCGTTC
 CCTCTGCCCTTCTCGGCTCTGCTCCTCATCCCTGCAGGCAA
 AGGAAACCCCTCTGCTGCTCCCTCCCCAGGAGCCAGGTGGGACTGAATG
 TTTTAGATTTTGATTTGAACTGCTTGTGCTCATATTTAAAAAC
 CCCATGGCCGCTacagcCGTGCTCCAAGGGAGCTCTCAGCaaaaaa
 a

>psnlike4_human
 GTCAAGTGTCTCACATTCTGATTTCCATTCTCTTATAGTCTATGGTAGT
 TTCAAG/GTCCCTTAATATGGACTTGAAGAATCAAGATAAGGAGAAAGACA
 GTAATAGTTCTCTGGTCTTCAATGCCAACAGCACCAATAATAGCATC
 CAAACAAATTGACTCACCCAGGCTCTGTCCTCCAATTGGAGCATCTGT
 CTCTCTTTAGTAATGTTCTCTTGTACTCAGTTCAAGTAGTTTTA
 CAATATGTACAGCAGTTCTGCAACGATAGCTTTGCTTTCTCTCCTC
 CCGATGTGCCAGTATTTAACAGACCTGCTCACCTCAGAACAGATTT
 CTTTGGTGCTGTGGACGTTACTGCTGCTGAGTTGCTGCTATTCTCTC
 TGTCTGTCATGCTCGTCCTCATCTGGGTCTCACTGGCAATTGGCTTCTC
 ATGGATGCACTGGcatggGccctGTGTCGCCATGATGCCCTTGTCCG
 CCTGCCGAGCCTCAAGGTCTCTGCCCTCTCAGGCCCTCTCATCT
 ATGATGTTGGGATTTGGGATTTCTCAGCCTACATCTCAATAGAACGTC
 ATGGTGAAGGTGGCCACTCAGCCGGCTGACAATCCCTTGACGGTCTATC
 CCGGAAGCTCCACCTGGGCCAATGTTGGCGTGTGATGTTCTGCCGT
 CTCTGCCCTGGAAAATGGTCTCCCAAGCTCCACTGGCAGCCACTCTCC
 TGGGATCGGAGACATGTTATGCTGGTCTCTACTATGTTGT
 GCTATGACAACACTACAAAAGCAAGCCAGTGGGACTCTGTGGGG
 GGACCTGCCAACATCTCCGGCGCATGCAAGAACGGTCTCTACTTT
 TGCAACCTCATCGATACTTTGTAGGCCCTGCTCACTGCTACTGTGGC
 GTCTCGCATTCACCGGGGCCAGCCCTCTCTCATTTGGTGCCAT
 TTACTTATTGCCACTCCCTACGATGCCCTATTAAAGGGCACCTCCGG
 CGGATGTGGCTGAGCCCTTCACTCCAAGTCCAGCAGCTCCGATTCC
 GGAAGTATGATGGATCACGTGGAAAGTGACCGAGATGGCGTCAAGTCCT
 TTTCTCTCAACTCATGGTTGTTCTCTTAGAGCTGGCTGGTACTCAG
 AAATGTAACCTGTGTTAACGAAACTGCCGTGACTGGATTGGCATTAA
 AGGGAGCTGTTGCAAGGAGAGAGGTGCTGGAGCCCTGTTGGTCTTC
 TCTCTGCCGATGTAAGAGTGGGGCCCTTCAAGAGGGACAGGCCCT
 CCCAGCCGCTTCTCCACGTTTATGGATCTGCACCAAGACTGTTA
 CCTCTGGGGAGATGGAGATTGACTGTTAAAAACTGAAAACAGCGAG
 GAGTCTTCTAGAACTTTGAACACTAAAGGATAAAAAAATTAGCAA
 CCGAAGTTCTCAATGACCCCTCGAGAATTGGGACCAGTTCTATTA
 GGGGACTCAGTTCAAGAGAACTGAGACAGAACGCTTCTGTCGTTATATT
 CTTCTTCTTTTGGATTATTAATATTCTGTTGCTGTGAAGTGA
 CTTATTAATCCACAGACATTGAGTGAATTCTTACAACATCCACATAAGA
 ATTTGTGTAATGAGTTCATGTCACCCAGATGTTGTGGCAGTGAAC
 AAGGGCACGGTTTATACATACGTACATATATATATAACACACACA
 TAGATATATATGAATAACAAAATGAAATCCTGCTAAGATCACGCTGT
 TAGCTGACAGGGGCTGCTGCTTTGAGCATGTCGAGCAGTTACTGT
 GGCTCCTGTATATGGATAAGCTGCTGCTCCCTTCACAACTGACC
 CGCAGTTACAAACTAGTATGACATTGCTGATTGATGATGACTCAT

GGACTTCAGGAGCCCTTACTGGTTTGATCAGTGTAGCAAATTAGGGAT
 GAAGAGTCAAAACCTTTGCCCTTCTTCTTCTAGGCTTCTCCCTC
 GCAGGGTGTCCCGTAGTTCTCGAGCCAATGCATGTATTAGCAGC
 AGGTGTCTTGCTTCTCATAGTAACGTACTACTTGAAATACAT
 TTTTCTATTTCTATTTTTGTATTTTTTGACATTTGTTCAT
 TGGTGTGCTGTATATTTCCATGCCCTCACTCCTTAAGAAAAAAA
 GGAAAAAAAGCAACACAATCTGCTTGTGATTATAGTCTTGGT
 TTACCTGTGGTGACAACCCGGGTGTTGGGACACATGTCAAATGCCCT
 GAGATGGGCCCTAAATTCCAGTAACTGGGAAAGAACAGCTGCTGTG
 CTGAGGCCCTGGCCCTGTGCTGTGCTCTGCTGCAAGCCCAGATTCTG
 GGAGTAACTAGTGTAGGTCTGCTGACCTTACCTAAGCAGGCCCTGCC
 GTGAAGAAGGTGCCATTGTTAGGCAAGAGAACGCTGCGGTTGGCA
 TGAGGATGCCGTGACAACAAAGGCTGGAGAAGGCCCTGAGTTCCAGCCTC
 TCCCCAAGGGTCCCCGCCCACTGGCTGCCCTGTCTTGACCTGTGTAAT
 GAATTAGTGTGCTGTCACTGTGGCTTGAAGTCAGTGGATCGAGCTC
 ACAGGGGCCACCCATCCTGTTGTCACACAGAGTCTGAAAGCAGTCAGGGTGT
 TGGATTCTCTGTTGTCATCAATTCTGCTGAGGGTTCTGGGTTT
 TGTAAAAATGACTCCTTGTaaaaaaa
 aaaa

>psnlike4_mouse

CAGAACAAAGATTCCTTCGgTTGCTGTGGCGTTTCACTGCTGCCAGCT
 CTCGTCTCACCTGTCTGTCATGCTCGTCTCATCTGGTTCTCACTG
 CTGGCTCTCATGGATGCTCTGGCCATGGGCTCTGTGTTGCCATG
 CCTTCGTCGCCGTGCAAGCCTCAAGGTTCTGCTGCCCTGCTTCTC
 AGGGCTTCATCTACGATGTCCTCTGGGTTCTCAGCCTACATCT
 TCAACAGTAATGTCATGGTGAAGTGGCCACACAGCCAGCTGACAATCCC
 CTCGACGTTCTGTCAGGAAGCTCCACCTGGGACCCAATGTGGGCGTGA
 TGTTCCCTGCCCTGTCTTGCTGGAAAATTGGCTTCCCAAGCTCCACTG
 GCAGTCACCTCTCATGCTGGGATCGGGACATTGTGATGCCCGGCCTC
 CTGTTATGCTTGTCTCGTATGACAACATACAAGAAACAAGCCAGTGG
 TGACTCGTGTGGGCCCTGGCAAnGCCAATATCTCTGGCGCATGCAGA
 AGGTCTCTACTTCACTGCAACCTCATCGGGTACTTGTAGGTCTGCTC
 ACTGCGACTGTGGCGTCGCGTCCACCGAGCTGCCAGCCAGCTCTCCT
 CTACTGGTGCCATTACCTATTGCCACTCCTCACCATGGCTACCTAA
 AGGGTGACTTACGGAGGATGTGGCTGAGCCCTTCACTCCAAGTCCAGC
 AGCTCCCGTTCTGGAAGTATGATGACGCCGGAGAGGTGACCAGAGCGC
 TGTCCTCACCTCCTCTCACCAGCGGTTTGTCCCTCTACAAGCTG
 GCCTGACTCAGGCATGCCGTGTCACGGAACACTGCAGTGTGACTGGAGTGT
 TGTCTGAGGGAGCGTTGCAAGAGGCACTGGAGCCCTGCACAGCCCTTC
 TCTTCTCCGCTCTGGAGAGTGGACCCCTCAGAAGGGGAGGCCGGCCC
 TTCGCCCGGTGCTCTCTCGTGTGTTTATGGATCTGCAACCAGACT
 CTAACTGTGGGAGATGGGAAGTTGACTTATTTAAAAACTACAAACA
 TTGTTGTTCTAGAACACTAAATGGAAGAAAATCCATTA
 CCAGGTCTTCAGTGAACCCCTCGAAACTCTGGGACCAGTTTC
 GGGGCTCCATACAGAGACCCAGGGAGAACCTCTGCCATT
 TTCTTTTTCTTGGATTTAAATATTTCTGTTGTAAGTGAC
 TTATTACATCCACAGACATTGAATGACTCTTACAACATAACATAAGAA
 TTGTTGTAATGACTGTGTCAGCCGTGTTGGCAGTGGAGCAGGACGCC
 TGTTTATACATACGTACATATATATATACACACACAGTCACAT
 AGATATCTGTGAGTAAACAGCGACTAACGCTGCTAAGGTACGCCATGCA
 GCTGCCGGGGCTTGTGCAAGGGAGCATGTAGAACAGTTACCTGGCT
 TCCTCGCACACGCTGCTGCTCCCTTGAGAGTCGCGTGCAGGGTTGTAAGCT
 GTGGATGCCGTGAACTGATAGACTTGTGGCTGTGGGACTCCCTCTT
 GATCAGTGTAGCAAATTAGGGATGAAAAGTTGAACCTTTGACCCCTT
 CTTTTACAGGCTTCCCTCGCAGTTTAGTAACCGCCTTGAACCA
 GTGCATGTATTATAGCAGCCGGTGTCTTGCTTGTGATCATAGTTAT
 GTACTACCTGTAAATACATTTCTATTTAaaaaaaaaaaaaaaa
 aaa

THIS PAGE BLANK (USPTO)