Stochastik 1 Hausaufgaben Blatt 11

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 15, 2025)

Problem 1. Betrachte den Wahrscheinlichkeitsraum ([0,1], $\mathcal{B}([0,1]), \mathcal{U}([0,1])$), mit $\Omega = [0,1]$ und der uniformen Verteilung $\mathcal{U}([0,1])$. Mit den Teilmengen

$$E_1 = [0, 1/4] \cup [1/2, 3/4], \quad E_2 = [0, 1/3] \cup [2/3, 1] \quad \text{und} \quad E_3 = [0, 1/2],$$

seien zwei Mengensysteme \mathcal{E}_1 und \mathcal{E}_2 gegeben durch

$$\mathcal{E}_1 = \{E_1, E_2\}, \quad \mathcal{E}_2 = \{E_3\}.$$

- (a) Zeigen Sie, dass \mathcal{E}_1 und \mathcal{E}_2 unabhängig sind.
- (b) Zeigen Sie, dass $\sigma(\mathcal{E}_1)$ und \mathcal{E}_2 nicht unabhängig sind.
- (c) Folgern Sie, dass die von \mathcal{E}_1 und \mathcal{E}_2 erzeugten σ -Algebren nicht unabhängig sind. Wieso folgt aus (a) nicht die Unabhängigkeit der erzeugten σ -Algebren?

Problem 2. Es sei X eine exponentialverteilte Zufallsvariable, $X \sim \text{Exp}(\lambda)$, $\lambda > 0$. Die Zufallsvariable Y sei unabhängig von X mit

$$\mathbb{P}(Y=1) = \mathbb{P}(Y=-1) = \frac{1}{2}.$$

Leiten Sie die Verteilungsfunktion der Zufallsvariablen $Z = X \cdot Y$ her.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de