Cyclistic Bike-Share Analysis (2021-2024):

Understanding Ride Patterns and Membership Conversion

Prepared by: Rohan Jha March 10, 2025

About Cyclistic

Cyclistic is a **bike-sharing company based in Chicago**, launched in **2016** to promote **sustainable urban mobility**. It operates a **fleet of 5,824 bicycles** across **692 stations**, allowing users to rent bikes for short trips.

Services Offered:

- Classic Bikes Traditional pedal-powered bikes.
- Electric Bikes Battery-assisted bikes for longer distances.
- Electric Scooters A fast and convenient alternative

Pricing Plans:

- Single-Ride Pass Best for occasional users.
- Full-Day Pass Designed for tourists and short-term visitors.
- **Annual Membership** Ideal for frequent riders, offering unlimited rides at a fixed monthly/yearly cost.

Note: Users who purchase **single-ride** or **full-day passes** are referred to as **'casual riders'** in this report. **'Annual members'** are those who have purchased an **annual membership**

© Company Goal:

Cyclistic aims to **increase the number of annual members**, as data suggests that **members generate more revenue** than casual riders. By focusing on rider behavior and usage patterns, Cyclistic plans to implement strategies that encourage casual riders to switch to an annual membership model.

1. 6 Purpose of the Report	1
2. <u>& Methodology</u>	2
3. ★ Data Analysis – R & Tableau	4
3.1 R Analysis	4
3.2 Tableau Analysis	41
4. ★ Business Strategy & Recommendations	73

Cyclistic's finance team has identified that **annual members generate more revenue** than casual riders. While casual riders contribute to the company's user base, they do not provide the **consistent revenue stream** that memberships ensure. Therefore, the company wants to **increase the number of annual members** by understanding how casual riders behave and what factors influence their riding patterns.

This report is designed to provide **data-driven insights** into:

Understanding Ride Trends

- Identifying daily, weekly, and seasonal trends in ridership.
- Analyzing the impact of **time of day** on ride frequency.
- Exploring how different bike types (classic, electric bike, electric scooter) are used.

Analyzing Casual vs. Member Behavior

- Comparing ride duration and frequency for casual riders and annual members.
- Evaluating **station preferences** where casual riders rent bikes vs. where members ride most.
- Understanding whether casual riders tend to take longer or more leisurely trips compared to members.

Assessing Weather Impact on Ridership

- Determining how temperature fluctuations affect ride volume.
- Evaluating the impact of humidity, wind speed, and seasonal changes on ride frequency.
- Identifying whether weather conditions influence casual riders more than members.

Business Recommendations for Membership Growth

- Developing targeted marketing campaigns to encourage casual riders to become members.
- Offering incentives and discounts based on ridership trends.
- Optimizing bike station placements and availability based on peak demand periods.
- Leveraging **seasonal promotions** to maintain ridership during low-traffic months.

By leveraging these insights, Cyclistic can create a **data-backed strategy** to increase **membership conversion rates**, improve **operational efficiency**, and enhance **overall customer experience**.

2. <a> Methodology

To analyze **Cyclistic's ridership trends** and provide **data-driven recommendations**, we followed a structured **five-step approach**, using **R for data cleaning, analysis, and integration** and **Tableau for visualization**.

Data Collection

We gathered two primary datasets:

- → Cyclistic Trip Data (2021-2024) Publicly available dataset containing ride details, including trip duration, bike type, start & end stations, and user type (casual/member). [Dataset]
- **NOAA Weather Data** − Historical **temperature**, **humidity**, **and wind speed** data for Chicago, used to analyze weather impact on ridership.
- ★ Tools Used:
- R (tidyverse, plotly, worldmet) For data processing and statistical analysis.
- ▼ Tableau For interactive visualizations and business insights.

Data Cleaning & Preprocessing (Using R)

To ensure data accuracy and consistency, we performed the following preprocessing steps in R:

- Merged yearly trip data files into a single dataset using rbind().
- ✓ Converted timestamps (started_at, ended_at) into POSIXct format (lubridate package) for accurate time-based analysis.

Extracted new features:

- Month, Day, and Hour To analyze time-based trends (lubridate::month(), wday()).
- Total Ride Duration Calculated as ended_at started_at.
- Time Intervals Grouped ride times into 2-hour blocks (case_when()).
- Checked for missing values (colSums(is.na())) and handled them based on station and weather data availability.

3 Data Integration (Using R)

We used the **R** to integrate weather data:

- Weather Data Integration:
 - Imported Chicago's hourly weather data using the worldmet package.
 - Matched ride timestamps (started_at) with hourly weather conditions (floor_date()).
 - Merged trip data with temperature, humidity, and wind speed information using left_join().

Data Visualization & Interpretation (Using R & Tableau)

R Visualizations:

- Created **EDA plots** (ggplot2) for initial analysis.
- Used ggplotly() (plotly package) to make graphs interactive.

Tableau Dashboards:

- Heatmaps for daily ridership trends.
- Bar graphs for time-based usage patterns.
- Line charts to visualize weather impact on ridership.

5 Business Recommendations & Insights

→ Based on ride behavior, peak demand, and weather influence, we formulated actionable recommendations to increase membership conversions and optimize bike availability.

Why This Approach?

Using **R for data cleaning, integration, and initial EDA** allowed efficient **data processing** and **pattern detection**, while **Tableau** provided a **clear and interactive visualization** for decision-making.

3. * Data Analysis - R & Tableau

We'll first document **3.1 R Analysis**, breaking down the key steps from your script, followed by **3.2 Tableau Analysis** for visualization insights.

3.1 R Analysis

This section focuses on how R was used for **data preprocessing**, **analysis**, **and integration** to extract meaningful insights.

Step 1: Installing & Loading Required Packages

★ What This Code Does?

This section **installs and loads** the necessary R packages for **data cleaning**, **visualization**, **and weather data extraction**.

Installing & Loading tidyverse

```
install.packages("tidyverse")
library(tidyverse)
```

Purpose:

- tidyverse is a collection of R packages designed for data manipulation, visualization, and analysis.
- It includes essential libraries like dplyr, ggplot2, tidyr, readr, and more.
- Key Functions Used Later:
 - dplyr::mutate(), select(), group_by(), summarise() For data transformation.
 - ggplot2::ggplot() For visualization.

Installing & Loading plotly

```
install.packages("plotly")
library(plotly)
```

Purpose:

- plotly allows interactive data visualization in R.
- It enhances ggplot2 graphs, making them zoomable and interactive.
- Key Functions Used Later:
 - o ggplotly() Converts static ggplot2 graphs into interactive charts.

Installing & Loading worldmet

```
install.packages("worldmet")
library(worldmet)
```

Purpose:

- worldmet is used to fetch weather data from NOAA (National Oceanic and Atmospheric Administration).
- We use this package to **import historical weather data** (temperature, humidity, wind speed) for **Chicago**.
- Key Functions Used Later:
 - o importNOAA(year, code) Fetches weather data for a specified location.

Key Takeaways:

✓ tidyverse – Data cleaning & visualization.

√ plotly – Interactive charts.

✓ worldmet – Weather data extraction.

★ Step 2: Load & Merge Monthly Data for 2021

```
# Dist all monthly CSV files for 2021 in the working directory
 csv files <- list.files(pattern = "\\.csv$")</pre>
# | Read each CSV file into a list of data frames
 csv list <- lapply(csv files, read.csv)</pre>
# 🔁 Merge all 12 monthly data frames into a single dataset for 2021
 cyclist 2021 <- do.call(rbind, csv list)</pre>
# 🔍 Check dataset structure (column names, data types, sample values)
 str(cyclist 2021)
# 💾 Save the merged dataset for further analysis
 write.csv(cyclist 2021, "cyclist-2021.csv", row.names = FALSE)
 rm(csv list, cyclist 2021)
```

str() Output:

```
data.frame': 5,595,063 obs. of 13 variables:
$ ride id
                 : chr "E19E6F1B8D4C42ED" "DC88F20C2C55F27F"
$ rideable type : chr "electric bike" "electric bike"
$ ended at : chr "2021-01-23 16:24:44" "2021-01-27 18:47:12"
$ start station name: chr "California Ave & Cortez St" "California Ave &
$ start station id : chr "17660" "17660" "17660" "17660" ...
$ end station name : chr "" "" "" ...
$ start lat : num 41.9 41.9 41.9 41.9 ...
$ start_lng : num -87.7 -87.7 -87.7 -87.7 ...
$ member casual : chr "member" "member" "member" "member" ...
```

- ✓ Merged 12 monthly datasets into a single yearly dataset (5.59M records).
- ✓ Saved the merged data as "cyclist-2021.csv" for future processing.
- ✓ Checked the structure (str()) to ensure all columns are present and correctly formatted.

★ Step 3: Data Cleaning & Formatting

Loading the merged 2021 dataset and preparing it for analysis.

```
# had the merged 2021 dataset
  library(readr)
  cyclist 2021 <- read csv("cyclist-2021.csv")</pre>
# 1 Count missing values in critical columns
  colSums(is.na(cyclist 2021[columns to check]))
# X Convert timestamps to datetime format for time-based analysis
  cyclist 2021$started at <- as.POSIXct(cyclist 2021$started at, format =</pre>
"%Y-%m-%d %H:%M:%S")
  cyclist 2021$ended at <- as.POSIXct(cyclist 2021$ended at, format =</pre>
"%Y-%m-%d %H:%M:%S")
 # 🔠 Extract month name from timestamps for monthly trend analysis
  cyclist 2021$month <- month.name[month(cyclist 2021$started at)]</pre>
# ✓ Verify formatting and month extraction
  str(cyclist 2021)
```

Missing Values Check – Output

```
started_at ended_at rideable_type member_casual

0 0 0 0
```

No missing values found in key columns (started_at, ended_at, rideable_type, member_casual).

* str() Output - Data Structure After Cleaning

```
$ end_station_id : chr "" "" "" "" ...

$ start_lat : num   41.9   41.9   41.9   41.9 ...

$ start_lng : num   -87.7   -87.7   -87.7 ...

$ end_lat : num   41.9   41.9   41.9   41.9 ...

$ end_lng : num   -87.7   -87.7   -87.7 ...

$ member_casual : chr "member" "member" "member" ...

$ month : chr "January" "January" "January" "January" ...
```

- √ Loaded the merged dataset into R.
- √ Confirmed no missing values in key columns.
- ✓ Converted timestamps (started_at, ended_at) to POSIXct format for accurate time analysis.
- ✓ Extracted month names successfully (see "month" column in output).

★ Step 4: Calculate Total Ride Time

Computing total ride duration and summarizing average ride time by user type, bike type, and month.

```
# X Calculate total ride duration in seconds for each trip
  cyclist 2021$Total time secs <- as.numeric(cyclist 2021$ended at -
cyclist 2021$started at)
# 📊 Calculate average ride time (in minutes) grouped by bike type, user
  Mean Time C21 <- cyclist 2021 %>%
 group by (rideable type, member casual, month) %>%
 summarise(Mean Ride Time = mean(Total time secs / 60, na.rm = TRUE))
 # • Preview the calculated mean ride times
  head (Mean Time C21)
# Bave the mean ride time summary to a CSV file
  write.csv(Mean Time C21, "Mean-ridetime-cyclist2021.csv", row.names =
```

head(Mean_Time_C21) Output – First Few Rows

- √ Calculated total ride duration in seconds (ended_at started_at).
- ✓ Converted ride duration to minutes and calculated the mean ride time per bike type, user type, and month.
- ✓ Saved the summary dataset (Mean-ridetime-cyclist2021.csv) for future visualization and analysis.

Step 5: Visualizing Mean Ride Time Over Months

ii Creating a line chart to analyze how mean ride time varies across months for different bike types and user categories.

```
# .... Define the correct chronological order for months
  month levels <- c("January", "February", "March", "April", "May",</pre>
 # 🕒 Convert 'month' to a factor to ensure correct ordering
 mutate(month = factor(month, levels = month levels)) %>%
 arrange(month)
# Plot mean ride time trend across months
  ggplot(Mean Time C21, aes(x = month, y = Mean Ride Time, color =
rideable type, group = rideable type)) +
 geom line() +
 geom point() +
 facet wrap(rideable type ~ member casual, scales = "free") + # Separate
 labs(
```

```
x = "Month",
y = "Mean Ride Time (min)",
color = "Rideable Type"
) +
theme_minimal() +  # Apply a clean theme
scale_color_brewer(palette = "Set1") + # Use a visually appealing color
palette
theme(
    axis.text.x = element_text(angle = 45, hjust = 1), X = element_text
(angle = 45, just = 1), # Rotate x-axis labels for readability
    strip.text = element_text(size = 12), # Adjust facet
label size
    plot.title = element_text(hjust = 0.5, size = 16) # Center-align the
title
```


★ Key Findings from the Mean Ride Time Analysis

- ✓ Casual riders take longer trips compared to annual members, indicating they may use bikes more for leisure rather than commuting.
- ✓ In February, classic bikes are preferred for longer rides, possibly due to fewer tourists and more local users taking extended trips.
- ✓ **During summer, electric bikes become more popular**, likely due to convenience and higher demand for quick, efficient travel.
- ✓ Docked (classic) bikes are the go-to choice for casual riders when trips exceed an hour on average, suggesting they are used for exploration or recreational rides.

Summary of This Step

- ✓ Ordered the months correctly for proper visualization.
- ✓ Created a line chart to track monthly ride duration trends across bike and user types.
- ✓ Identified seasonal patterns in how long people ride.

★ Step 6 & 7: Summarizing and Visualizing Monthly User Counts

Counting the total number of rides per user type, bike type, and month, followed by visualization.

Step 6: Summarizing Monthly User Data

```
# Group data by user type, bike type, and month to count rides

Total_UserCount_Monthly <- cyclist_2021 %>%

group_by(member_casual, rideable_type, month) %>%

summarise(riders_count = n(), .groups = "drop")

# Order months correctly for better readability

Total_UserCount_Monthly <- Total_UserCount_Monthly %>%

mutate(month = factor(month, levels = month_levels)) %>%

arrange(month)

# View summarized data
```

head(Total_UserCount_Monthly) Output - First Few Rows

```
# A tibble: 6 × 4
 member casual rideable_type month riders_count
 <chr>
                       <fct>
             <chr>
                                        <int>
             classic bike January
1 casual
                                         8259
             docked bike January
2 casual
                                         2105
3 casual
             electric bike January
                                         7753
4 member
             classic bike January
                                        53441
5 member
             docked bike January
                                            1
6 member
             electric_bike January
                                       25275
```

Step 7: Visualizing Monthly User Counts (Bar Chart)

```
# Plot bar graph showing user counts per month and bike type
    ggplot(Total_UserCount_Monthly, aes(x = month, y = riders_count, fill =
member_casual)) +
    geom_bar(stat = "identity", position = "dodge") +
    facet_wrap(~ rideable_type, scales = "free", ncol = 1) +
    scale_y_continuous(
        breaks = seq(0, 250000, 25000),
        minor_breaks = seq(0, 250000, 5000),
        labels = scales::comma
    ) +
    scale_fill_manual(values = c("member" = "#alb4f4", "casual" =
"#F4E1A1")) +
    labs(
        title = "Monthly User Count by Rideable Type and Membership Type",
        x = "Month",
```

```
y = "Total User Count",
fill = "Membership Type"
) +
theme_minimal() +
theme(
  panel.grid.major = element_line(color = "grey80", linewidth = 0.8),
  panel.grid.minor = element_line(color = "grey90", linewidth = 0.5),
  axis.text.x = element_text(angle = 45, hjust = 1)
)
```


Key Findings from Monthly User Count Analysis

- ✓ Annual members consistently outnumber casual riders, indicating a strong base of recurring users.
- ✓ Ridership drops significantly during winter months, with casual riders showing the steepest decline.
- ✓ Casual riders prefer electric bikes from June to September, likely due to summer tourism and increased outdoor activities.

✓ Docked bikes are almost exclusively used by casual riders, with only one recorded annual member ride in January. However, their overall usage remains low compared to classic and electric bikes.

Summary of This Step

- ✓ Counted total rides per month by user and bike type.
- √ Saved the dataset for further analysis.
- √ Created a bar chart to visualize monthly user trends

.

★ Step 8: Daily Ride Trends Analysis

Extracting daily ride counts to analyze usage patterns across different days of the month.

```
# Extract the day from 'started_at' and store it in a new 'Date'
column

cyclist_2021 <- cyclist_2021 %>%

mutate(Date = format(started_at, "%d"))

# S Convert 'Date' column to numeric for analysis

cyclist_2021%Date <- as.numeric(cyclist_2021%Date)

# Group by user type, date, month, and bike type to count daily rides

Daily_Trend <- cyclist_2021 %>%

group_by(member_casual, Date, month, rideable_type) %>%
```

```
# Ensure months are correctly ordered for clarity

Daily_Trend <- Daily_Trend %>%

mutate(month = factor(month, levels = month_levels)) %>%

arrange(month)

# Save the summarized daily ride data for further analysis

write.csv(Daily_Trend, "Daily-Trend-cyclist2021.csv", row.names =
FALSE)
```

- ✓ Extracted the day from the timestamp for daily trend analysis.
- ✓ Grouped the data by user type, bike type, and date to track daily ride variations.
- ✓ Saved the dataset for further visualization.

★ Step 9: Weekday Analysis

Extracting and analyzing ride trends across different days of the week.

```
# 🔠 Extract the day of the week from 'started at' (e.g., Mon, Tue, Wed)
  cyclist 2021 <- cyclist 2021 %>%
   mutate(Day = wday(started at, label = TRUE, abbr = TRUE))
# 📊 Count total rides per weekday, grouped by user type, bike type, and
  Weekday UserCount <- cyclist 2021 %>%
  group by (Day, member casual, rideable type, Date, month) %>%
  summarise(
   count = n(),
   .groups = "drop"
 # 📊 Calculate the average number of rides per weekday across the
  Weekday mean Usercount <- Weekday UserCount %>%
  group by (Day, month, member casual, rideable type) %>%
  summarise(
   .groups = "drop"
 # 🎳 Round off mean values for better readability
round(Weekday mean Usercount$mean count)
 # 🔠 Ensure months are ordered correctly for better visualization
  Weekday mean Usercount <- Weekday mean Usercount %>%
  arrange (month)
  Check dataset structure after processing
  head(Weekday mean Usercount)
```

```
# Bave the weekday analysis data for further visualization write.csv(Weekday_mean_Usercount, "Weekday_mean-cyclist2021.csv", row.names = FALSE)
```

head(Weekday_mean_Usercount) Output - First Few Rows

```
member_casual rideable_type mean_count
 Day
 <ord> <fct> <chr>
                            <chr>
                                               <dbl>
 Sun January casual
                            classic bike
                                                271
 Sun January casual
                            docked bike
 Sun January casual
                            electric bike
                                                231
                            classic bike
4 Sun January member
                                               1198
 Sun January member
                            electric bike
     January casual
                            classic bike
                                                 234
```

- ✓ Extracted weekday information (Mon, Tue, Wed...) from timestamps.
- ✓ Grouped rides by weekday, user type, bike type, and month to analyze daily trends.
- ✓ Calculated average weekday ridership to identify key commuting and leisure patterns.
- ✓ Saved the dataset for further visualization and insights.

★ Step 10: Time Range Analysis

Grouping rides into specific time intervals to analyze peak and off-peak usage.

```
\# f X Extract hour from 'started at' and categorize into time intervals
  cyclist 2021 <- cyclist 2021 %>%
  mutate(
   Hour = hour(started at),  # Extract hour from timestamp
   Time Range = case when (
     Hour \geq 2 \& Hour < 4 \sim "2-4",
     Hour >= 4 \& Hour < 6 \sim "4-6",
     Hour >= 6 \& Hour < 8 \sim "6-8",
     Hour \geq 8 \& Hour < 10 \sim "8-10",
    Hour \geq 10 \& Hour < 12 \sim "10-12",
    Hour >= 12 \& Hour < 14 \sim "12-14",
     Hour >= 14 \& Hour < 16 \sim "14-16",
     Hour >= 16 & Hour < 18 ~ "16-18",
     Hour >= 18 \& Hour < 20 ~ "18-20",
     Hour \geq 20 \& Hour < 22 \sim "20-22",
# 📊 Group by time range, user type, month, and bike type to count rides
  Time range <- cyclist 2021 %>%
 group by (Time Range, member casual, month, rideable type) %>%
  summarise(count = n(), .groups = "drop")
\# \mathbb{K} Define the correct order for time intervals
  time levels <- c("0-2", "2-4", "4-6", "6-8", "8-10", "10-12",
# 🔁 Convert 'Time Range' into an ordered factor for proper arrangement
 mutate(Time Range = factor(Time Range, levels = time levels, ordered =
```

```
arrange(Time_Range)

# ## Order 'month' correctly for better visualization
   Time_range <- Time_range %>%
   mutate(month = factor(month, levels = month_levels)) %>%
   arrange(month)

# Check dataset structure after processing
   head(Time_range)

# # Save the processed time range dataset for analysis
   write.csv(Time_range, "TimeInterval-cyclist2021.csv", row.names =
FALSE)

# # Save the updated cyclist dataset with time intervals
   write.csv(cyclist_2021, "cyclist-2021-v2.csv", row.names = FALSE)
```

head(Time_range) Output - First Few Rows

```
A tibble: 6 × 5
 Time Range member casual month
                                   rideable type count
 <ord>
             <chr>
                           <fct>
                                   <chr>
                                                  <int>
1 0-2
             casual
                           January classic bike
                                                    182
2 0-2
                           January docked bike
             casual
                                                     57
3 0-2
                           January electric bike
             casual
                                                    227
4 0-2
                           January classic bike
             member
                                                    388
5 0-2
                           January electric bike
             member
                                                    321
6 2-4
                           January classic bike
             casual
                                                     75
```

- ✓ Extracted hour from timestamps and grouped rides into 12 time intervals.
- ✓ Grouped rides by time range, user type, bike type, and month to identify peak hours.
- ✓ Saved the dataset for further visualization and analysis.

Step 11: Extracting Chicago Hourly Weather Data

Fetching hourly weather data for Chicago to analyze its impact on ride patterns.

```
# Get a list of available NOAA weather stations
stations <- getMeta()

# Import weather data for CHICAGO MIDWAY INTL ARPT (Station Code:
725340-14819)
weather_2021 <- importNOAA(year = 2021, code = "725340-14819")

# View the first few rows of the dataset
View(weather_2021)

# Save the extracted weather data for further analysis
write.csv(weather_2021, "chicago_2021.csv", row.names = FALSE)</pre>
```

Screenshot of Weather Dataset (View(weather_2021))

★ Available Weather Parameters & Their Usability

★ The extracted dataset contains 23 weather-related variables, but only a few are useful for our analysis. The table below summarizes their relevance:

0		Ob and d Ma	1
Column Name	Meaning	Should We Use It?	Reason
code	Station code	× No	Only useful for identifying the weather station (we are using just one).
station	Station name	X No	Similar to code, not needed for analysis.
date	Timestamp	✓ Yes	This will be used for merging with ride data.
latitude/ longitude	Location of the weather station	× No	We only have one station, so no variation.
elev	Elevation of station	X No	Not relevant for ridership patterns.
ws (Wind Speed)	Wind speed in m/s	✓ Yes	Can affect ride comfort and safety.
wd (Wind Direction)	Wind direction in degrees	X No	Less impactful compared to wind speed.
air_temp	Air temperature in °C	Yes	Strong influence on ridership trends.
atmos_pr es	Air pressure in hPa	X No	Not significantly affecting bike usage.
visibility	Horizontal visibility distance	× No	Limited impact on bike usage.
dew_point	Temperature at which condensation forms	× No	More relevant for weather forecasting than bike trends.
Relative Humidity	Humidity percentage	✓ Yes	Can impact ride comfort.
ceil_hgt	Height of lowest cloud layer	X No	Not relevant for bike users.
cl_1, cl_2, cl_3	Cloud types	× No	Not relevant for ride behavior.
cl	Cloud cover (0-8 scale)	X No	Indirect effect on ridership, not as significant as temperature/humidity.
cl_1_heig ht, cl_2_heig ht, cl_3_heig	Cloud layer altitudes	∨ No	Irrelevent for evelicte
ht precip_6	Cloud layer altitudes Precipitation measure in 6 inches	× No	Irrelevant for cyclists. Due to single-station limitation (explained below).

pwc			
(Present			
Weather			
Condition	Weather conditions (fog,		Similar limitation as precip_6, data may not be
s)	rain, etc.)	× No	reliable for entire city.

⚠ Why We Are Not Using precip_6 (Precipitation measure in 6 inches)?

- **Limitation:** The precipitation (precip_6) data is sourced **only from a single station** (Chicago Midway International Airport).
- → Why is this an issue? Since precipitation varies across different areas in Chicago, using data from a single weather station may not accurately represent rainfall or snowfall across the entire city.
- → **Impact:** Relying on this data could lead to **misinterpretations** about how rain/snow affects ridership trends.
- **★ Solution:** To ensure reliability, we will **only use air temperature, humidity, and wind speed**, which are more **consistent citywide**.

Key Observations from Weather Data

- √ Hourly weather data is available, allowing us to study its effect on ridership patterns.
- ✓ Temperature and humidity fluctuate significantly, which could impact the number of rides.
- ✓ Wind speed is an important factor, as strong winds may discourage biking.

- ✓ Extracted hourly weather data for Chicago using NOAA API.
- ✓ Filtered only the most relevant weather variables (temperature, humidity, wind speed, timestamp).
- ✓ Explained why precipitation data is not included due to a single-station limitation.
- √ Saved the dataset for further analysis and integration with ride data.

★ Step 12: Joining Weather Data with Ride Data

Integrating weather conditions with bike ride data to analyze the impact of weather on ridership trends.

★ str(cyclist_2021) Output - First Few Rows

```
tibble [5,595,063 × 22] (S3: tbl_df/tbl/data.frame)

$ ride_id : chr [1:5595063] "E19E6F1B8D4C42ED"

"DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...

$ rideable_type : chr [1:5595063] "electric_bike" "electric_bike"

"electric_bike" "electric_bike" ...
```

```
$ started at : POSIXct[1:5595063], format: "2021-01-23 16:14:19"
"2021-01-27 18:43:08" "2021-01-21 22:35:54" "2021-01-07 13:31:13" ...
$ ended at
                    : POSIXct[1:5595063], format: "2021-01-23 16:24:44"
"2021-01-27 18:47:12" "2021-01-21 22:37:14" "2021-01-07 13:42:55" ...
$ start station name: chr [1:5595063] "California Ave & Cortez St"
"California Ave & Cortez St" "California Ave & Cortez St" "California Ave
& Cortez St" ...
$ start station id : chr [1:5595063] "17660" "17660" "17660" "17660" ...
$ end station name : chr [1:5595063] NA NA NA NA ...
$ end station id
                   : chr [1:5595063] NA NA NA NA ...
$ start lat
                   : num [1:5595063] 41.9 41.9 41.9 41.9 ...
$ start lng
                   : num [1:5595063] -87.7 -87.7 -87.7 -87.7 -87.7 ...
$ end lat
                   : num [1:5595063] 41.9 41.9 41.9 41.9 ...
$ end lng
                   : num [1:5595063] -87.7 -87.7 -87.7 -87.7 ...
$ member casual
                   : chr [1:5595063] "member" "member" "member" "member"
$ month
                   : chr [1:5595063] "January" "January" "January"
"January" ...
$ Total time secs : num [1:5595063] 625 244 80 702 43 ...
                   : num [1:5595063] 23 27 21 7 23 9 4 14 9 24 ...
$ Date
$ Day
                   : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<...: 7 4 5
5 7 7 2 5 7 1 ...
                   : int [1:5595063] 16 18 22 13 2 14 5 15 9 19 ...
$ Hour
$ Time Range : chr [1:5595063] "16-18" "18-20" "22-24" "12-14" ...
$ air temp
                   : num [1:5595063] -3.3 -3.3 2.8 2.8 -9.4 -0.6 -2.8
2.25 -0.85 1.1 ...
$ RH
                   : num [1:5595063] 46.3 77.6 52.4 52.4 53.4 ...
$ ws
                   : num [1:5595063] 5.1 5.1 8.8 4.1 3.1 4.1 3.6 4.35
3.6 2.6 ...
```

★ Why We Used a Left Join?

★ A left join ensures that all ride data remains intact, even if some timestamps don't have corresponding weather data.

```
√ What is join_key?
```

• Since our weather data is recorded **hourly**, we rounded the started_at timestamp to the **nearest hour** using floor_date().

This allows us to match each ride with the closest available weather conditions.

√ Why remove join_key after merging?

• It's only needed for merging, and keeping it would take up unnecessary space in the dataset.

★ Key Observations After Merging

- ✓ Each ride now includes weather conditions (temperature, humidity, and wind speed).
- ✓ Total columns increased from 13 to 16, with weather data fully integrated.
- ✓ Some rides may still have missing weather values, which we'll address in the next step.

- ✓ Created a common timestamp (join_key) for merging hourly weather data with ride data.
- ✓ **Performed a left join** to ensure all ride data remains intact.
- ✓ Integrated air_temp, RH, and ws into the cyclist dataset.
- √ Checked dataset structure to confirm successful merging.

Step 13: Handling Missing Weather Data

| Identifying and cleaning missing weather values to maintain data accuracy.

colSums(is.na(cyclist_2021)) Output - Missing Values

```
ride_id
                                0
     rideable type
                                0
        started_at
                                0
          ended at
                                0
start station name
                           690,809
 start station id
                           690,806
  end station name
                           739,170
   end station id
                           739,170
                                0
         start_lat
                                0
         start lng
           end lat
                            4,771
           end lng
                            4,771
                                0
    member casual
                                0
             month
   Total time secs
                                0
             Date
                                0
                                0
              Day
             Hour
       Time Range
                                0
                                0
          air_temp
                RH
                                0
                ws
```

Key Observations:

- 12.34% of rides have missing start_station_name and start_station_id.
- 13.21% of rides have missing end_station_name and end_station_id.
- 0.08% of rides have missing end_lat and end_lng.
- No missing values in weather-related columns (air_temp, RH, ws).

🖈 Handling Missing Station Names & IDs

→ Since this dataset covers the entire city of Chicago, knowing the station names isn't always necessary for understanding ride behavior.

Possible Solutions:

- **1** Leave missing station values as is (✓ Current Approach)
 - Since location-based analysis **isn't our main focus**, this won't significantly impact key findings.
- Estimate missing station names using lat/lng (X Not Feasible)
 - Would require external datasets with full station location details.
- - Without exact station mapping, this could introduce errors.
- **★** Final Decision:
 - **We will not remove these rows**, as they still provide valuable insights on ridership trends, trip duration, and weather impact.
- Handling Missing end_lat and end_lng (0.08%)
- Why Not Remove These Rows?
 - Only 4,771 rows (~0.08%) are affected, making the impact negligible.
 - These rides still provide data on trip duration, ride type, and weather conditions.
- ★ Final Decision:
 - Keep these rows in the dataset.

Key Takeaways from Data Cleaning

- √ Weather data is fully integrated with no missing values.
- ✓ Station names and IDs are missing in ~18% of rides, but we will keep them.

- ✓ Latitude/longitude is missing in <0.1% of rides, which is negligible.
- ✓ No important ride behavior data is lost due to missing values.

- √ Confirmed no missing weather values.
- ✓ Kept rides with missing station names and IDs (~13%) since they don't impact most analyses.
- ✓ Retained rides with missing end_lat and end_lng (~0.08%) since they have minimal effect.
- ✓ No major cleaning was required, and dataset integrity remains intact.

Step 14: Preparing Weather Data for Analysis

Aggregating and structuring weather data to analyze its impact on ridership trends.

```
# / Extract year from 'started at' column
  cyclist 2021$year <- year(cyclist 2021$started at)</pre>
# 📊 Aggregating data for weather-based analysis
  weather <- cyclist 2021 %>%
   group by (Date, Hour, month, year, rideable type, member casual,
air temp, RH, ws) %>%
    summarise(Riders count = n(), .groups = "drop")
# Nounding values for better visualization
  weather <- weather %>%
   mutate(
   month = factor(month, levels = month levels),
   air temp = round(air temp),
   RH = round(RH),
   ws = round(ws) ) %>%
   arrange(month)
 # 💾 Save cleaned weather dataset
  write.csv(weather, "cyclist-2021-weather.csv", row.names = FALSE)
```

Why Are We Extracting the Year?

- The dataset contains **hourly ride data**, and extracting the year allows **multi-year comparisons** in future analyses.
- Why Group By Date, Hour, Month, Year?
 - Since we want to see how **weather affects ridership**, we aggregate the data at an **hourly level** for deeper insights.
 - This structure enables hourly, daily, monthly, and yearly analysis.
- Why Round Temperature, Humidity & Wind Speed?

- Raw weather data can have decimal variations that make charts harder to read.
- Rounding simplifies visualization while maintaining accuracy.

★ Why Save This Dataset?

• This cleaned dataset will be used for visualizing the relationship between weather and ridership trends.

★ Key Takeaways from Data Preparation

- ✓ Grouped ride data by date, hour, and weather conditions for precise analysis.
- √ Rounded weather values for better visualization.
- ✓ Ensured months are ordered correctly for time-series analysis.
- ✓ Dataset is now ready for further visual analysis (line charts, scatter plots, etc.)

★ Step 15: Visualizing Weather Impact on Ridership

Analyzing how temperature, humidity, and wind speed influence bike usage using line and scatter plots.

1 Relationship Between Temperature & Ride Counts

```
# Grouping ride count by temperature
  weather summary <- weather %>%
  group by (air temp, rideable type, member casual) %>%
  summarise(total rides = sum(Riders count), .groups = "drop")
# | Line Chart: Temperature vs. Ride Count
  p \leftarrow ggplot(weather summary, aes(x = air temp, y = total rides, colour
= member casual, group = member casual)) +
 geom line() +
 geom_point() +
 facet wrap(~ rideable type + member casual) +
 labs(
   title = "Impact of Temperature on Ridership",
   x = "Air Temperature (°C)",
   y = "Total Rides",
   colour = "User Type"
 ) +
 theme minimal()
ggplotly(p) # Interactive plot
```


* Key Findings:

- ✓ Rides peak at 15-25°C, indicating comfortable weather is preferred.
- ✓ Fewer rides in extreme cold (<5°C) and heat (>30°C).
- √ Casual riders are more affected by temperature extremes than members.

2 Relationship Between Humidity & Ride Counts

```
#  Grouping ride count by relative humidity
weather_summaryRH <- weather %>%
   group_by(RH, rideable_type, member_casual) %>%
   summarise(total_rides = sum(Riders_count), .groups = "drop")

#  Line Chart: Humidity vs. Ride Count
K <- ggplot(weather_summaryRH, aes(x = RH, y = total_rides, colour = member_casual, group = member_casual)) +
   geom_line() +
   geom_point() +
   facet_wrap(~ rideable_type + member_casual) +</pre>
```

```
labs(
   title = "Impact of Humidity on Ridership",
   x = "Relative Humidity (%)",
   y = "Total Rides",
   colour = "User Type"
) +
   theme_minimal()

ggplotly(K) # Interactive plot
```


★ Key Findings:

- ✓ Rides are highest when humidity is between 40-70%.
- ✓ Humidity above 85% leads to a sharp drop in rides, likely due to discomfort.
- ✓ Casual riders are more affected by high humidity than annual members.

Relationship Between Wind Speed & Ride Counts

```
#  Grouping ride count by wind speed
  weather_summaryws <- weather %>%
    group_by(ws, rideable_type, member_casual) %>%
    summarise(total_rides = sum(Riders_count), .groups = "drop")

#  The Chart: Wind Speed vs. Ride Count
    j <- ggplot(weather_summaryws, aes(x = ws, y = total_rides, colour =
    member_casual, group = member_casual)) +
    geom_line() +
    geom_point() +
    facet_wrap(~ rideable_type + member_casual) +
    labs(
        title = "Impact of Wind Speed on Ridership",
        x = "Wind Speed (m/s)",
        y = "Total Rides",
        colour = "User Type"
    ) +
    theme_minimal()

ggplotly(j) # Interactive plot</pre>
```


★ Key Findings:

- ✓ Wind speeds under 5 m/s have little impact on ridership.
- √ As wind speeds exceed 6-10 m/s, ride counts drop sharply.
- ✓ Casual riders reduce rides more drastically than members in windy conditions.

Summary of Weather Impact Analysis

- √ Temperature Impact: Ride counts are highest at 15-25°C, lowest at <5°C and >30°C.
- √ Humidity Impact: Riders prefer 40-70% humidity, with fewer rides in extreme humidity.
- ✓ Wind Speed Impact: Rides drop when wind speed exceeds 7-10 m/s, affecting casual riders more.

★ Extending the Analysis to Other Years (2022-2024)

- The same data cleaning, EDA, and weather integration process was applied to the years 2022, 2023, and 2024 to ensure consistency in our analysis.
- **★** Key Steps Repeated for Each Year:
- ✓ Data Merging & Cleaning Loaded and combined monthly CSV files.
- ✓ Exploratory Data Analysis (EDA) Analyzed ride patterns based on time, user type, and bike type.
- ✓ **Weather Data Integration** Merged ride data with weather parameters (temperature, humidity, wind speed).
- ✓ **Visualizations & Insights** Plotted trends to understand seasonal and weather impacts on ridership.
- This ensures a complete four-year trend analysis (2021-2024) for making data-driven business recommendations.

3.2 Tableau Analysis

🖈 Moving to Tableau Insights 🚀

Now that we've completed the **R-based analysis**, let's focus on **Tableau insights** by documenting the **visualizations**, **key takeaways**, and their business significance.

- ★ Next Steps:
- Summarizing each Tableau visualization (what it represents & how it helps).
- **Explaining how filters & interactions work** in the dashboard.
- 3 Key findings from each graph and their relevance to business decisions.

📌 Understanding the Tableau Dashboard 🛣

- The **Tableau dashboard** was designed to provide an **interactive way** to explore **ride patterns**, **user behavior**, **and weather impact** on Cyclistic's bike-share service.

★ Dashboard Overview

The dashboard is divided into two main sections:

- **1 Ride Pattern Dashboard** Focuses on **ride trends** based on time, user type, and bike type.
- **2** Weather Dashboard Analyzes how weather conditions impact ridership.

Dashboard Layout & Navigation

- 1 Title & Filter Section (Top Bar)
- Contains:
- √ Title: "Cyclistic Dashboard: Explore Ride Patterns"
- ✓ Filters: User Type, Month, Bike Type, Year
- √ Show/Hide Button for filters (funnel icon to toggle visibility)

Cyclistic Dashboard: Explore Ride Patterns

Filters

Purpose:

- Allows users to **customize their view** by selecting different filters.
- Helps in comparing ride trends between members & casual users.

- Sidebar Navigation (Left Panel)
- Contains:
- ✓ Cyclistic Logo for branding.
- ✓ Navigation Options:
 - Ride Patterns (Main dashboard)
 - Weather Impact (Switches to weather-based analysis)
- ✓ Information (11) Button: Provides dashboard details.
- ✓ Social Media Links (LinkedIn & Tableau Public).
- ✓ Export Button: Allows users to download insights in PDF or PPT.

Purpose:

- Provides **easy navigation** between different sections.
- Enhances user experience with **structured layout & additional resources**.

Main Dashboard Sections

1 Ride Pattern Dashboard 📊

√ Heat Map (Calendar Format) ■

- Displays daily ride count trends for each day of the month.
- Helps identify high-traffic days & seasonal patterns.

√ Bar Graphs Section (Three Graphs)

- Bike Rentals by Time Interval (Shows peak riding hours).
- Average Riders by Day (Comparison of daily ride patterns).
- Monthly Rider Count (Tracks seasonal variations).

Shows average ride duration per month.

✓ Donut Chart <a>©

• Displays total ride count with a breakdown of casual vs. member riders.

Weather Dashboard

√ Temperature vs. Ridership (Line + Point Chart)

• Shows how ride count varies with temperature.

√ Humidity vs. Ridership (Line + Point Chart)

• Displays how humidity levels affect ride demand.

✓ Monthly Average Temperature & Humidity Table <a>III

- Displays the average temperature and humidity for each month.
- Helps in **seasonal analysis** of how weather affects ridership trends.

Purpose:

- Helps Cyclistic understand weather-based fluctuations in user behavior.
- Allows better demand forecasting based on seasonal trends.
- Can assist in adjusting marketing & pricing strategies for peak & off-peak months.

★ Interactivity & Filters

✓ Filters Applied Across the Dashboard:

- User Type (Member or Casual) Applied to most visualizations.
- Bike Type (Classic, Electric, Docked) Applied where relevant.
- Month (Single selection for clarity) Used in specific time-based analyses.
- Year (Switch between 2021-2024) Allows for multi-year comparisons.

Note: Not all filters apply to every chart. A detailed breakdown will be provided in the individual visualization sections.

✓ Clickable Navigation:

- Switch between Ride Patterns & Weather Dashboard easily.
- Export Reports for offline use.

Summary

- The **Tableau dashboard provides an interactive and dynamic way** to explore Cyclistic's ridership trends.
- ☑ Users can **filter insights** based on user type, bike type, and time to make **data-driven**

- **Weather analysis helps** in understanding how **climate conditions influence ride** demand.
- **☑ Navigation & Export features enhance usability** for stakeholders.

🖈 Heat Map (Calendar Format) – Tableau Visualization 📰

★ What Does This Chart Show?

- ✓ This heat map represents daily ride counts throughout the year.
- ✓ Each cell corresponds to a day, color-coded based on the number of rides recorded.
- ✓ Darker shades indicate higher ridership, while lighter shades show lower ride activity.
- ✓ The heat map provides a **month-wise breakdown** to highlight **seasonal patterns and daily** variations.

★ Interactivity & Filters

- ✓ **User Type** (Casual or Member) Compare behaviors between different user types.
- ✓ **Bike Type** (Classic, Electric, Docked) Identify bike usage patterns.
- ✓ Month Focus on specific months to track ride fluctuations.
- ✓ Year Switch between 2021-2024 to analyze long-term trends.

How to Use This Visualization?

- Use filters to explore how ridership trends change by user type and bike type.
- Observe **busiest vs. least busy days** over different months.
- Identify seasonal patterns and how weekends vs. weekdays impact ridership.

Heat Map Insights & Analysis

Now that we understand **what the heat map represents**, let's analyze the **key findings from the data** based on:

- 1 Top 50 Busiest Days When does ridership peak? What influences high demand?
- **Top 50 Least Busy Days** When is ridership lowest? What are the possible reasons?

Section 1: Top 50 Busiest Days Analysis

★ Objective: Identify when ridership is highest and compare user behavior.

iii 2021: Top 50 Busiest Days

Category	Casual Riders	Annual Members
Total Data Points	1095	731
Total Rides (Top 50 Days)	515,555 (20.39% of annual total: 2,529,005)	482,672 (15.74% of annual total: 3,066,058)
Weekend vs. Weekday Split	78% Weekends	80% Weekdays
Bike Type Preference	98% Classic Bike, 2% Electric Bike	100% Classic Bike
Peak Months	May to October (August highest: 26%)	May to October (September highest: 28%)

Avg. Temperature During Peak Month	25.47°C	23.89°C
Busiest Single Day	August 14 – 14,997 riders ★ Fun fact: The Race Judicata took place in Lincoln Park!	September 15 – 10,782 riders (Second highest: August 14 – Possible impact from Race Judicata?)

🗰 2022: Top 50 Busiest Days

Category	Casual Riders	Annual Members
Total Data Points	1094	730
Total Rides (Top 50 Days)	430,509 (18.54% of annual total: 2,322,032)	421,824 (12.61% of annual total: 3,345,685)
Weekend vs. Weekday Split	76% Weekends	90% Weekdays
Bike Type Preference	68% Electric Bike, 32% Classic Bike	76% Classic Bike, 24% Electric Bike
Peak Months	April to October (July highest: 32%)	April to September, plus November (June highest: 34%)
Avg. Temperature During Peak Month	25.6°C	24.16°C

Busiest Single Day	May 29 – 11,029 riders	May 14 – 9,361 riders
--------------------	------------------------	-----------------------

iii 2023: Top 50 Busiest Days

Category	Casual Riders	Annual Members
Total Data Points	972	730
Total Rides (Top 50 Days)	366,916 (17.82% of annual total: 2,059,179)	432,034 (11% of annual total: 3,660,698)
Weekend vs. Weekday Split	78% Weekends	94% Weekdays
Bike Type Preference	56% Electric Bike, 44% Classic Bike	68% Classic Bike, 32% Electric Bike
Peak Months	April to October (July highest: 30%)	June to October (August highest: 40%)
Avg. Temperature During Peak Month	24.27°C	23.59°C
Busiest Single Day	June 10 – 10,024 riders ★ Fun fact: Andersonville Midsommarfest, a Swedish heritage festival, took place!	August 22 – 9,334 riders

iii 2024: Top 50 Busiest Days

Category	Casual Riders	Annual Members
Total Data Points	762	763
Total Rides (Top 50 Days)	385,567 (17.92% of annual total: 2,151,658)	417,933 (11.27% of annual total: 3,708,910)
Weekend vs. Weekday Split	90% Weekends	98% Weekdays
Bike Type Preference	56% Classic Bike, 44% Electric Bike	82% Electric Bike, 18% Classic Bike
Peak Months	April to October (June-August equally highest: 24% each)	May to October (September highest: 26%)
Avg. Temperature During Peak Month	24.27°C	22.16°C
Busiest Single Day	July 27 – 9,283 riders	September 25 – 9,019 riders

★ Key Takeaways from the Top 50 Busiest Days

- **Gasual Riders:**
- **✓ Peak on weekends** (76%-90%).
- ✓ Prefer summer months (June-August).

- √ Shift from classic to electric bikes over time.
- \checkmark Some of the busiest days align with major events (e.g., Race Judicata, Midsommarfest).
- Annual Members:
- **✓ Peak on weekdays** (80%-98%).
- √ Steady ridership across seasons.
- ✓ Strong preference for classic bikes, but electric bikes gained popularity in 2024.

Section 2: Top 50 Least Busy Days Analysis

→ Objective: Identify **when ridership is at its lowest**, analyze possible reasons, and compare Casual vs. Annual users.

iii 2021: Top 50 Least Busy Days

Category	Casual Riders	Annual Members
Total Rides (Top 50 Days)	1,056 (0.04% of annual total: 2,529,005)	19,007 (0.62% of annual total: 3,066,058)
Bike Type Preference	74% Docked Bike, 26% Classic Bike	72% Electric Bike, 28% Classic Bike
Seasonal Trend	January to March, December (February highest: 68%)	January to March (February highest: 74%)
Avg. Temperature During Lowest Ridership Month	-5.02°C (February)	-5.02°C (February)

Fun Fact -	Only 1 annual member used a docked bike all year (Jan 13th).
------------	--

iii 2022: Top 50 Least Busy Days

Category	Casual Riders	Annual Members
Total Rides (Top 50 Days)	1,008 (0.04% of annual total: 2,322,032)	38,712 (1.16% of annual total: 3,345,685)
Bike Type Preference	96% Docked Bike, 4% Classic Bike	56% Electric Bike, 44% Classic Bike
Seasonal Trend	January, February, and December (January highest: 44%)	January, February, and December (January highest: 50%)
Avg. Temperature During Lowest Ridership Month	-4.67°C (January)	-4.67°C (January)

🗰 2023: Top 50 Least Busy Days

Category	Casual Riders	Annual Members
Total Rides (Top 50 Days)	2,029 (0.1% of annual total: 2,059,179)	71,487 (1.95% of annual total: 3,660,698)

Bike Type Preference	100% Docked Bike	54% Classic Bike, 46% Electric Bike
Seasonal Trend	January to May, and August (January highest: 42%)	January, February, March, July, November, and December (December highest: 32%)
Avg. Temperature During Lowest Ridership Month	0.39°C (January)	4.9°C (December)

▶ Important Note: Docked bikes were discontinued after 2023, meaning they do not appear in 2024 data.

iii 2024: Top 50 Least Busy Days

Category	Casual Riders	Annual Members
Total Rides (Top 50 Days)	11,338 (0.53% of annual total: 2,151,658)	45,759 (1.23% of annual total: 3,708,910)
Bike Type Preference	74% Classic Bike, 24% Electric Bike, 1% Electric Scooter (Only in Aug 31st & Sept)	48% Classic Bike, 42% Electric Bike, 10% Electric Scooter (Only in Aug & Sept)
Seasonal Trend	January, March, April, August, November, and December (January highest: 50%)	January to March, August, September, November, and December (January highest: 40%)

Avg. Temperature During Lowest Ridership Month	-1.46°C (January)	-1.46°C (January)
Fun Fact	Electric Scooters were introduced on August 31st but discontinued after September.	Annual members also used Electric Scooters, but only in Aug & Sept.

★ Key Takeaways from the Top 50 Least Busy Days

- Casual Riders:
- √ Low ridership mostly in winter (Jan-Feb) and late fall (Nov-Dec).
- ✓ Preferred docked bikes in earlier years, but switched to classic bikes after 2023.
- ✓ Electric Scooters saw minor usage in 2024 but were quickly discontinued.
- Annual Members:
- **✓** Low ridership follows similar trends (Jan-Mar, Nov-Dec).
- √ Higher adoption of electric bikes over the years.
- ✓ Electric Scooters were briefly used in 2024 but were never a major choice.

★ Final Thoughts on the Heat Map Analysis

- **✓** Heat maps effectively visualize ride fluctuations across seasons, weekdays vs. weekends, and extreme weather conditions.
- **☑** Busiest days are concentrated in warm months (June-August), while lowest ridership occurs in cold months (January-February).
- **☑** Casual riders relied on docked bikes on low-ridership days until 2023, after which they switched to classic bikes.
- Annual members had a steady ride pattern, with a gradual shift to electric bikes in later years.
- Electric Scooters were tested in 2024 but discontinued after just a month.

★ What Does This Chart Show?

- √ This line graph displays the average ride duration across months for different user types and bike types.
- √ Helps analyze seasonal variations and changes in user behavior over time.
- ✓ Provides insights into how **bike type** affects ride duration.
- ✓ Identifies whether **casual riders** take longer trips than **annual members** and if these patterns shift across years.

★ Interactivity & Filters

- ✓ **User Type (Casual or Member)** Compare how ride duration varies between casual users and annual members.
- ✓ Bike Type (Classic, Electric, Docked, Electric Scooter) Understand how bike preference influences ride time.
- ✓ **Year (2021-2024)** Observe long-term trends in ride duration.

★ Yearly Mean Ride Time Overview

2021: Ride Duration Trends

Casual Riders (Avg Ride Time in Minutes)

Classic Bike: 30 min
Docked Bike: 88 min
Electric Bike: 19 min

Annual Members (Avg Ride Time in Minutes)

• Classic Bike: 14 min

• Docked Bike: 3 min (Only 1 ride, insignificant)

• Electric Bike: 13 min

100 2022: Ride Duration Trends

Casual Riders

Classic Bike: 29 min
Docked Bike: 137 min
Electric Bike: 15 min

Annual Members

• Classic Bike: 13 min

• Docked Bike: (Discontinued)

• Electric Bike: 11 min

2023: Ride Duration Trends

Casual Riders

Classic Bike: 31 min
Docked Bike: 174 min
Electric Bike: 13 min

Annual Members

• Classic Bike: 13 min

• Docked Bike: (Discontinued)

• Electric Bike: 11 min

11 2024: Ride Duration Trends

Casual Riders

Classic Bike: 37 min
Electric Scooter: 24 min
Electric Bike: 13 min

Annual Members

Classic Bike: 14 min
Electric Scooter: 14 min
Electric Bike: 11 min

Monthly Trends in Ride Duration

2021: Seasonal Trends

- ✓ Classic Bike: Ride durations were longer in colder months. When temperatures exceeded 20°C, the ride time decreased.
- ☑ Electric Bike: Opposite trend—ride time was higher in warmer months (20-26°C range).
- Annual Members: Classic bike durations were steady (12-15 min) except for a spike to 20 min in February when the Avg temp was -5.02°C.

2022: Seasonal Trends

- ✓ Classic Bike (Casual Riders): Ride time decreased above 20°C, but Nov- Dec remained lowest despite cool weather.
- ☑ Electric Bike (Casual Riders): Higher temperatures led to longer rides. Nov- Dec had the lowest ride times.
- Annual Members: Classic and electric bike durations declined in Nov- Dec and when temperatures neared 0°C.

2023: Seasonal Trends

- ✓ Classic Bike (Casual Riders): Reversed trend—higher temperatures now led to longer ride durations, and the Nov- Dec decline disappeared (likely due to docked bike discontinuation in Aug 2023).
- **☑** Electric Bike (Casual Riders): Direct proportionality—higher temperatures led to longer rides.
- Annual Members: Ride durations remained stable but slightly favored summer months.

2024: Seasonal Trends

- ✓ Classic Bike (Casual Riders): Nov- Dec had the shortest ride times, while Apr- July peaked (possibly due to docked bike discontinuation).
- ✓ Electric Bike (Casual Riders): Ride durations peaked in warmer months.
- Annual Members: Classic bike durations were **consistent**, but electric bike durations favored summer while declining in **early-year months**.

★ Key Takeaways from the Mean Ride Time Analysis

- Casual Riders:
- ✓ Ride durations are longer than annual members, especially in warmer months.
- ✓ Winter months significantly reduce ride time, particularly for casual users.
- ✓ Shift from docked bikes to classic bikes in 2024 increased casual riders' mean time.
- Annual Members:
- ✓ **Steady ride durations** across the year, with small fluctuations in extreme temperatures.
- ✓ Increased electric bike usage in later years, but ride time remained stable.
- ***** Business Impact:
- ✓ Cyclistic can optimize pricing strategies for longer casual rides in warm months.
- ✓ The discontinuation of docked bikes in 2024 resulted in increased reliance on classic bikes for casual riders.
- ✓ Understanding seasonal ride time trends can help in bike availability planning and targeted promotions.

🖈 User Type Analysis: Casual vs. Annual Riders 🚴

★ What Does This Chart Show?

- √ This donut chart represents the total rides split between Casual and Annual Members.
- ✓ The inner circle displays the total ride count, while the outer rings break it down by user type.
- ✓ Users can explore how ridership varies across different years, bike types, and months.

★ Interactivity & Filters

- ✓ Year (2021-2024) Switch between years to see membership trends over time.
- ✓ Bike Type (Classic, Electric, Docked, Electric Scooter) Analyze which bike types are preferred by each user type.
- ✓ Month (January to December) Observe how user distribution changes seasonally.

★ General Trend

✓ During winter months, the ride distribution is heavily dominated by annual members, often exceeding 80% of total rides.

✓ In summer months, casual riders contribute significantly more, making it a closer split (near 50-50), but annual members still maintain a slight lead.

★ Growth Over the Years

User Type	Month	% change 21 to 22	22 to 23	23 to 24
casual	January	2.22%	116.03%	-38.86%
casual	February	111.39%	100.86%	9.64%
casual	March	6.96%	-30.80%	32.71%
casual	April	-7.46%	16.51%	-10.51%
casual	May	9.15%	-16.49%	-1.29%
casual	June	-0.44%	-18.38%	-0.02%
casual	July	-8.14%	-18.40%	-3.25%
casual	August	-13.02%	-13.32%	2.34%
casual	September	-18.47%	-11.82%	32.43%
casual	October	-18.76%	-15.27%	22.24%
casual	November	-5.76%	-2.36%	-5.42%
casual	December	-35.62%	15.10%	-25.75%
member	January	8.30%	76.30%	-19.88%
member	February	138.52%	56.52%	19.38%
member	March	34.40%	1.19%	11.53%
member	April	22.03%	14.08%	1.40%
member	May	29.02%	4.57%	2.13%
member	June	11.49%	4.56%	-2.11%
member	July	9.75%	4.52%	-1.80%
member	August	9.02%	7.86%	-5.03%
member	September	3.16%	0.02%	17.21%

member	October	-6.49%	2.96%	11.05%
member	November	-6.36%	11.46%	-8.38%
member	December	-23.00%	25.92%	-18.80%

✓ The table above shows year-over-year percentage change in ridership for casual and annual members, broken down by month.

✓ Key Takeaways from Growth Trends:

- Casual riders saw high fluctuations in winter (e.g., 111.39% growth in February 2022, but 35.62% decline in December 2021).
- Summer ridership for casual users has seen a downward trend over the years, while September 2024 rebounded with a 32.43% increase.
- Annual members consistently grew in winter, with February 2022 seeing a massive 138.52% increase.
- **Growth rates slowed in late 2023 and 2024**, possibly indicating market saturation or shifting preferences.

📌 Bike Rentals by Time Interval 🏅 📊

What Does This Chart Show?

- √ This bar chart visualizes ride activity by 2-hour time intervals throughout the day.
- ✓ It helps track **peak riding hours** and **low-traffic periods** for casual riders and annual members.
- √ The analysis focuses on classic bikes and electric bikes, as these were the primary options available.

Interactivity & Filters

- ✓ User Type (Casual vs. Member) Compare ride timing preferences for different users.
- ✓ Bike Type (Classic vs. Electric Bike) Identify usage differences between bike types.
- ✓ Month (January to December) Observe seasonal variations in riding patterns.
- ✓ Year (2021-2024) Track how ridership behavior evolved over time.

★ General Trends in Peak Usage Hours

- ✓ Annual members follow a structured commute pattern, riding from 6 AM to 8 PM, with a sharp peak between 16-18 PM.
- ✓ Casual riders show a strong preference for 12-20 PM, with an increasing shift toward evening rides (18-22 PM) in later years.
- ✓ Late-night ridership (20-24 PM) was more significant among casual users, particularly in 2022 and 2023.

★ Yearly Breakdown & Patterns (2021-2024) iiii

- **★** 2021: Classic Bikes Dominate, Evening Rides Gain Popularity
- Annual Members → Consistent usage from 6 AM 8 PM, with peak at 16-18 PM.
- Casual Riders \rightarrow Preferred 12-18 PM, but noticeable increase in late evening (18-22 PM) rides.
- 2022: Casual Riders Shift Towards Night Rides
- Annual Members \rightarrow Same structured work commute pattern (6-20 PM), but evening usage (18-20 PM) grew.
- Casual Riders → Higher evening demand (16-20 PM), with notable growth in late-night riding (20-24 PM).
- ★ 2023: Electric Bike Popularity Increases, Casual Riders Extend Ride Time
- Annual Members → Continued dominance of work commute slots (6-20 PM).
- Casual Riders → Strong ride volume between 12-22 PM, especially for electric bikes.
- ★ 2024: Late Night Riding Declines, Peak Hours Stabilize
- Annual Members → Stable pattern from 6-20 PM, with a continued 16-18 PM peak.
- \bullet Casual Riders \to Peak usage remains 12-20 PM, but post-October, late-night rides (20-24 PM) drop.

🖈 Key Insights & Business Impact 🚀

- Annual members consistently use bikes during commuting hours, making them predictable customers.
- Casual riders drive demand in afternoon and evening hours, signaling opportunities for promotions.
- Electric bike usage increased over the years, particularly in peak traffic hours.
- ✓ Understanding hourly trends helps optimize bike availability, maintenance schedules, and marketing strategies.

🖈 Average Riders by Day Analysis i 📊

★ What Does This Chart Show?

- √ This bar chart visualizes the average number of rides taken on each day of the week.
- \checkmark It helps identify which days are most popular for casual riders vs. annual members.

★ Interactivity & Filters

- ✓ User Type (Casual vs. Member) Compare ride preferences across weekdays & weekends.
- ✓ Bike Type (Classic vs. Electric Bike) Understand bike preference variations.
- ✓ Month (January to December) Analyze seasonal trends in weekday ridership.
- ✓ Year (2021-2024) Track changes over time.

★ Key Trends & Observations

- √ Casual riders dominate weekends (Saturday & Sunday).
- \checkmark Annual members are the primary users on weekdays, with peaks on Tuesday to Thursday.
- √ Casual users show a sharp decline in ridership on Mondays and Fridays.
- ✓ Overall, ridership is lowest on Mondays for both user types.

🖈 Business Implications 🚀

- **Weekend promotions** could be targeted at casual riders to **increase conversions to** annual membership.
- Ensuring higher bike availability on weekdays would cater to member commuters.
- Mondays could be leveraged for maintenance and operational adjustments.

📌 Monthly Rider Count Trends i iii

★ What Does This Chart Show?

- ✓ This bar chart displays the total number of rides per month for both user types.
- ✓ It highlights **seasonal ridership trends** and **growth patterns** for casual riders vs. annual members.

★ Interactivity & Filters

- ✓ User Type (Casual vs. Member) Compare ride volume trends.
- ✓ Bike Type (Classic vs. Electric Bike) Understand bike preference changes.
- ✓ Year (2021-2024) Track long-term trends in ridership growth.

★ Key Trends & Observations

- ✓ Annual members show consistent ridership throughout the year.
- √ Casual riders experience a significant surge during summer months (June–August).
- ✓ Casual ridership drops sharply in winter, while members maintain steady usage.

🖈 Business Implications 🚀

- Summer campaigns & incentives could attract casual riders to long-term membership.
- ✓ Wintertime strategies (discounted rides, promotions) might help retain casual users.
- Consistent member growth indicates a stable revenue stream from annual subscribers.

🖈 Temperature & Humidity vs. Ridership Trends 🍾 🐠 📊

♦ What Do These Charts Show?

- ✓ The **temperature impact graph** highlights how ridership fluctuates across different temperatures.
- ✓ The **humidity impact graph** explores if humidity significantly affects ride volume.

★ Interactivity & Filters

- ✓ **User Type (Casual vs. Member)** Compare ride behavior under different weather conditions.
- ✓ Bike Type (Classic vs. Electric Bike) Identify if weather influences bike choice.
- ✓ Year (2021-2024) Track long-term patterns in weather-based ridership.

★ Key Trends & Observations

- ✓ Temperature has a strong correlation with ridership, with peak usage in the 20-29°C range.
- ✓ Casual riders are more temperature-sensitive, while annual members remain more consistent.
- ✓ Humidity doesn't show a significant impact on ridership, meaning riders likely prioritize temperature over air moisture.
- ✓ Extreme conditions (below 5°C or above 35°C) lead to noticeable declines in overall ridership.

📌 Business Implications 🚀

- Summer promotions (when temperatures are ideal) can help increase ridership and convert casual riders to members.
- **Extreme cold and heat require operational adjustments** (e.g., more bike availability during mild weather).
- ✓ Humidity alone is not a major deciding factor for riders, so marketing strategies should focus on temperature trends.

🖈 Final Thoughts on the Tableau Analysis 🎯

- **☑ Data-backed decision-making** The dashboard provides actionable insights into user behavior, bike usage, and weather impact.
- **☑** Casual vs. Member behavior Clear distinctions in ride duration, preferred time slots, and seasonality offer opportunities for user conversion.
- ✓ Operational efficiency Understanding peak usage hours and seasonal trends can help optimize bike availability.
- ✓ Marketing strategies Targeting casual users with seasonal promotions during peak temperatures (20-29°C) can drive higher conversions to memberships.

4. * Business Strategy & Recommendations

Acknowledging Shortcomings

Before presenting **strategic recommendations**, it is crucial to **recognize the limitations** of the dataset. These **gaps in data** do not hinder our analysis but rather indicate **opportunities for deeper insights** in future studies.

Lack of Pricing Data

One of the biggest **limitations** of this analysis is the **absence of pricing details**. Cyclistic's **financial analysts have already concluded** that annual memberships are more profitable than casual rides, but **without cost-per-trip data**, we cannot:

- ✓ Confirm whether casual riders spend more cumulatively than members.
- ✓ Analyze whether certain ride types (electric vs. classic) have a higher profit margin.
- ✓ Test whether **price sensitivity** plays a role in membership conversions.

No Unique User IDs

The dataset tracks trips, not individuals, meaning:

- ✓ We cannot differentiate repeat riders from one-time users.
- ✓ It is unclear whether casual riders are truly "new" or simply repeating one-time purchases.
- ✓ Without understanding how many casual users **never return**, it is difficult to measure **conversion potential**.

3 No Demographic Segmentation

Understanding **who rides these bikes** is critical. Yet, the dataset **lacks demographic details**, meaning:

- ✓ We cannot distinguish students, tourists, professionals, or locals.
- √ Age-based preferences remain unknown.
- ✓ Without segmentation, marketing strategies **remain broad**, rather than **personalized** for each user group.

⊘ Despite these challenges, powerful insights have emerged, forming the foundation for targeted strategies.

Data-Backed Business Strategies

1 Leveraging Psychological Triggers to Convert Casual Riders 6

Casual riders exhibit strong seasonal patterns, peaking in **July and August**. This is not a coincidence—Chicago's summer months drive outdoor activities, and many casual riders opt for **single rides rather than committing to a membership**.

- Key Insights from the Data:
- ✓ July consistently records the highest casual ridership, except for 2024.
- ✓ Casual users take longer rides than members—indicating engagement but reluctance to commit.
- ✓ Peak ridership occurs in the evenings, making nighttime marketing a key touchpoint.
- * Strategic Plan:
- 1 April July: Build Psychological Ownership
- → Send personalized ride summaries to casual users, showing:
 - Total distance traveled 🚲
 - Amount spent
 - CO₂ saved by choosing bikes over cars
 - Late-evening digital & physical ads (targeting peak casual ridership hours).

Purpose:

- √ This builds a sense of ownership and makes casual users feel invested in their journey.
- ✓ Evening marketing increases psychological triggers when ridership is highest.

August Limited-Time Offer:

- Two Membership Options:
- √ Offer 1: Flat \$130 membership (originally \$150).
- ✓ Offer 2: \$135 membership + Free premium riding gloves (valued at \$20).
- Why This Works?
- ✓ Behavioral economist Dan Ariely's research suggests that adding a small extra perk makes people more likely to commit (even if the monetary value is similar).
- ✓ Riding gloves align with the biking experience, making it more attractive than generic gifts.
- ✓ Evening marketing reinforces the decision when casual users are most active.

- ***** Expected Outcome:
- ✓ Converts casual users right before their seasonal peak ends.
- ✓ Uses psychological nudges to make the membership more attractive than single rides.
- ✓ Physical marketing during night hours capitalizes on peak casual ridership.
- This ensures maximum conversion at the right time, using the right triggers!

Capturing the Tourist & Student Market < 0</p>

Chicago is a **highly transient city**, attracting **millions of tourists** and a **large student population** every year. These **two segments** present a **unique opportunity** for Cyclistic to **expand its user base**.

- Key Insights from the Data:
- √ 40-50 million tourists visit Chicago, from June September being the most popular amongst tourists.
- ✓ Casual ridership spikes in September, coinciding with student migration for academic years.
- * Strategic Plan:
- Targeting Tourists (June September):
- 1 Launch a Tourist Pass only available at airports and major visitor hubs.
- 2 Promote Cyclistic rentals at key locations:
 - O'Hare & Midway Airports
 - Millennium Park & Navy Pier
 - Hotel partnerships
- Targeting Students (August September):
- 1 Offer **student discounts** on annual memberships during college orientation weeks.
- Partner with universities for pre-loaded student passes.
- **Properties** Properties States Properties Pr
- ✓ Boosts short-term revenue from tourists without impacting local demand.
- ✓ Ensures early adoption among students, creating long-term retention.

💶 Launching a Fitness-Based Initiative in Winter 浑 🚴

January and February see the **steepest ridership decline** due to Chicago's harsh winters. However, **New Year's resolutions** create a **massive opportunity** for fitness-driven initiatives.

Key Insights from the Data:

✓ January and February show a **significant decline in casual ridership** compared to peak summer months:

- 2021: 96% decline
- **2022:** 94% decline
- 2023: 86% decline
- 2024: 89% decline
- ✓ Classic bikes dominate casual ridership, making them ideal for fitness challenges.
- ✓ Chicago has a **rising obesity rate**, meaning **fitness incentives could align with community health efforts**.
- **★** Strategic Plan:
- 🚺 Jan 1 Jan 31: "Cyclistic Fitness Challenge" 🫣
- → Riders must complete a 20-minute ride daily for 31 days at Lakefront Trail (6 AM 10 AM).
- → All bikes in this area will be classic bikes only to maximize physical effort.
- Completion Reward:
- ✓ Discounted annual membership
- √ Special "Cyclistic Fit" community badge
- **★** Additional Social Impact:
- \checkmark 50% of profits from the Fitness Pass will be donated to Chicago Public Schools for public education
- ***** Expected Outcome:
- ✓ Leverages New Year's fitness resolutions to increase engagement.
- √ Encourages habit formation, increasing membership sign-ups.
- ✓ Strengthens Cyclistic's brand identity as a community-driven organization.

Strengthening Infrastructure & Operations

While marketing strategies **increase ridership**, long-term **sustainability** depends on **operational improvements**:

- ✓ Optimize Station Placement Use heat map data to relocate underutilized stations to high-traffic areas.
- ✓ Winter-Optimized Bikes ∰ Introduce heated seats & snow tires to reduce seasonal drop-offs.
- ✓ University Partnerships Embed Cyclistic memberships into student ID cards.

★ Conclusion & Key Takeaways

- Seasonal ridership peaks provide an opportunity for targeted membership conversions.
- Tourists and students are underutilized segments that can drive growth.
- ✓ A fitness-based membership initiative aligns with Chicago's health concerns & New Year resolutions.
- Operational investments can improve long-term ridership and retention.

With data-driven insights and structured strategies, Cyclistic can increase annual memberships, maximize revenue, and establish itself as a lifestyle-oriented mobility solution. ⅓ ♀

Closing Note

"This report isn't just about analyzing bike rides; it's about understanding user behavior, leveraging data for strategic growth, and reimagining urban mobility. With the right insights, Cyclistic can not only expand its membership base but also contribute to a more sustainable and connected city."