

Machine Learning

Advice for applying machine learning

Deciding what to try next

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples get more data, but sometimes more data does not help!
 - Try smaller sets of features \times , \times , \times 2, \times 3, ..., \times 4.

- Try getting additional features add more features!
 - Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
 - Try decreasing λ
 - Try increasing λ

what many people will do is just randomly pick one of these options! there is a simple technique can easily rule out half of the options!

Machine learning diagnostic: how to evaluate a machine learning algorithm!

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

can take some time but can be very helpful by doing this!

Machine Learning

Advice for applying machine learning

Evaluating a hypothesis

Evaluating your hypothesis

Fails to generalize to new examples not in training set.

but for problems with a lot of features, it is impossible to visualize the overfitting issue! so we need other ways to evaluate hypothesis!

 $x_1 =$ size of house

 $x_2 = \text{ no. of bedrooms}$

 $x_3 = \text{ no. of floors}$

 $x_4 =$ age of house

 $x_5 =$ average income in neighborhood

 $x_6 =$ kitchen size

•

 x_{100}

Dataset:

Training/testing procedure for linear regression

standard procedure!

 \rightarrow - Learn parameter θ from training data (minimizing training error $J(\theta)$)

Compute test set error:

$$\frac{1}{1+1} + \frac{1}{1+1} = \frac{1}{1+1} + \frac{1}{1+1} = \frac{1}{1+1} + \frac{1}{1+1} = \frac{1}{1+1} + \frac{1}{1+1} = \frac{1$$

the avg square error of your test examples!

Training/testing procedure for logistic regression

similar to the cases in linear regression!

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

- Misclassification error (0/1 misclassification error):

other test error measure!

Machine Learning

Advice for applying machine learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization

didigle of polynomial degree of polynomial you want to pick! Model selection **1.** $- h_{\theta}(x) = \theta_0 + \theta_1 x$ $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$ \longrightarrow $\Im_{\text{test}} (\theta^{(n)})$ $h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_3 x^3 \longrightarrow 0$ $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10} \implies 5^{(10)} \implies 5 \text{ test (8}^{(10)})$ Choose $\theta_0 + \dots \theta_5 x^5$ How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$ Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter (d) = degree of

which model to select!

polynomial) is fit to test set.

tis picked using the test set, so it likely to do well with the test set!

Evaluating your hypothesis

Dataset: "

we break the data into 3 pieces!

no ar can the data the o process.			
	Size	Price	_
these should be randomly chosen!	2104	400	
	1600	330	
60%	2400	369	Towny Set
	1416	232	361
	3000	540	we just the validation set
	1985	300	
20%	1534	315 7	Cross validation set (CU)
20%	1427	199	set (CU)
70./	1380	212 7	test out
20	1494	243	1-3, 30

Train/validation/test error

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

7(0)

Cross Validation error:

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

test these hypothesis on cross validation set and pick the model with the lowest validation error!

Pick $\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4$ say if the 4th order is the best! Estimate generalization error for test set $J_{test}(\theta^{(4)})$

Machine Learning

Advice for applying machine learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

"Just right"

high variance: the error for a set of new prediction can be large since overfit hypothesis often fails to predict general data set.

High variance (overfit) 太- 4

Bias/variance

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$ (or Training error training error estimated by the state of the state of

Andrew Ng

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Variance (overfit):

Machine Learning

Advice for applying machine learning

Regularization and bias/variance

Linear regression with regularization

$$\text{Model: } h_{\theta}(x) = \theta_0 + \underbrace{\theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4}_{m} \leftarrow J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2}_{j=1} \leftarrow J(\theta)$$

Large λ ← → High bias (underfit)

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$

"Just right"

 \rightarrow Small λ High variance (overfit)

$$\rightarrow \lambda = 0$$

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$Try \lambda = 0 \leftarrow \gamma \longrightarrow \min_{\Theta} J(\Theta) \longrightarrow \Theta'' \longrightarrow J_{\omega}(\Theta'')$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow min $J(\Theta) \rightarrow \Theta'' \rightarrow J_{CU}(\Theta''')$

2. Try $\lambda = 0.01$ \longrightarrow $J_{CU}(\Theta'')$

3. Try $\lambda = 0.02$ \longrightarrow $J_{CU}(\Theta'')$

4. Try $\lambda = 0.04$ \longrightarrow $J_{CU}(\Theta'')$

5. Try $\lambda = 0.08$

3. Try
$$\lambda = 0.02$$
 \longrightarrow \searrow \searrow \searrow \searrow \swarrow

4. Try
$$\lambda = 0.04$$

Fry
$$\lambda = 0.00$$

Pick (say) $\theta^{(5)}$. Test error: $\mathcal{I}_{\text{test}} \left(\mathbf{S}^{(2)} \right)$

Andrew Ng

Bias/variance as a function of the regularization parameter $\,\lambda\,$

Andrew Ng

Machine Learning

Advice for applying machine learning

Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help. \leftarrow

size

Machine Learning

Advice for applying machine learning

Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high vorione
- Try smaller sets of features -> Fixe high voice
- Try getting additional features -> free high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow \{$
- Try decreasing λ fixes high high
- Try increasing λ -> fixes high variance

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting) Computationally more expensive.

Use regularization (λ) to address overfitting.

