Blatt 4 Marcel Schoppmeier (Matrikelnummer3)

Übungsgruppe: Fr. 10-12, I07

Aufgabe 14.

(a)

Definition. Fuer $g: \mathbb{N}_0 \to \mathbb{R}^+$ definieren wir

$$\mathcal{O}'(q) := \{ f : \mathbb{N}_0 \to \mathbb{R}^+ | \exists n_0 \in \mathbb{N}_0 \forall n > n_0 : f(n) < c \cdot q(n) \}$$

Behauptung. Es gilt $\mathcal{O}(g) = \mathcal{O}'(g)$ fuer alle $g : \mathbb{N}_0 \to \mathbb{R}^+$

Beweis. Sei $g: \mathbb{N}_0 \to \mathbb{R}^+$ beliebig.

"⊂": Sei $f \in \mathcal{O}(g)$. Dann existiert ein $c \in \mathbb{R}^+$ fuer alle $n \ge n_0$ mit $f(n) \le c \cdot g(n)$. Insbesondere gilt fuer beliebiges $n_0 \in \mathbb{N}_0$:

$$\forall n \geq n_0 : f(n) \leq c \cdot g(n)$$

Damit folgt $f \in \mathcal{O}'(q)$.

"⊃": Sei nun $f \in \mathcal{O}'(g)$. Dann finden wir $c \in \mathbb{R}^+$ und $n_0 \in \mathbb{N}_0$ mit $f(n) \leq c \cdot g(n)$ fuer alle $n \geq n_0$. O.B.d.A. sei $n_0 \neq 0$, sonst ist nichts zu zeigen. Nun definieren wir $M := \{1, \ldots, n_0 - 1\}$ und $\tilde{c} := \max_{n \in M} \frac{f(n)}{g(n)} > 0$. Fuer alle $n \in M$ gilt dann $\frac{f(n)}{g(n)} \leq \tilde{c} \Leftrightarrow f(n) \leq \tilde{c} \cdot g(n)$. Wir setzen $c^* = \max\{\tilde{c}, c\}$. Dann gilt

$$\forall n \in \mathbb{N}_0 : f(n) \le c^* \cdot g(n)$$

Folglich
$$f \in \mathcal{O}(q)$$
.

(b)

Behauptung. Fuer Funktionen $f, g : \mathbb{N}_0 \to \mathbb{R}^+$ gilt:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) \in \mathcal{O}(g)$$

Beweis. Seien also $f, g : \mathbb{N}_0 \to \mathbb{R}^+$ mit $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Insbesondere zu c = 1 finden wir ein $n_0 \in \mathbb{N}_0$, sodass $\frac{f(n)}{g(n)} < 1$ fuer alle $n \ge n_0$ gilt. Damit gilt auch f(n) < g(n) fuer alle $n \ge n_0$. Dann ist $f \in \mathcal{O}'(g)$ und nach (a) folgt $f \in \mathcal{O}(g)$.

(c)

Definition Sei $\mathcal{F} := \{f : \mathbb{N}_0 \to \mathbb{R}^+\}$ die Menge aller Abbildungen von \mathbb{N}_0 nach \mathbb{R}^+ . Auf \mathcal{F} definieren wir eine Aequivalenzrelation \sim folgendermassen:

$$f \sim g : \Leftrightarrow f \in \Theta(g)$$
 , fuer alle $f, g \in \mathcal{F}$

Wir erhalten damit

$$\mathcal{F}/\sim = \{\Theta(f) : f \in \mathcal{F}\}$$

Weiter laesst sich auf \mathcal{F}/\sim eine Halbordnung \leq folgendermassen definieren:

$$\Theta(f) \preceq \Theta(g) : \Leftrightarrow f \in \mathcal{O}(g) \qquad ; f, g \in \mathcal{F}$$

Beobachtung. Es gilt $f \in \Theta(g) \Leftrightarrow \Theta(f) = \Theta(g) \Leftrightarrow \Theta(f) \preccurlyeq \Theta(g)$ und $\Theta(g) \preccurlyeq \Theta(f)$. **Beispiel**. Wir erhalten somit:

$$\Theta(f_{16}) \preccurlyeq \Theta(f_{18}) \preccurlyeq \Theta(f_{15}) \preccurlyeq \Theta(f_{9}) = \Theta(f_{13}) \preccurlyeq \Theta(f_{11}) \preccurlyeq \Theta(f_{10}) \preccurlyeq \Theta(f_{1}) \preccurlyeq \Theta(f_{14}) \preccurlyeq \Theta(f_{2}) \preccurlyeq \Theta(f_{4}) \preccurlyeq \Theta(f_{6}) = \Theta(f_{7}) \preccurlyeq \Theta(f_{8}) \preccurlyeq \Theta(f_{5}) \preccurlyeq \Theta(f_{17}) \preccurlyeq \Theta(f_{3}) \preccurlyeq \Theta(f_{12})$$