

Exhibition

هيثم هو القَيِّم على معرض فني مرموق. لديك N لوحة، كل لوحة لها خاصيتان: حجم اللوحة A_i وقيمة فنية B_i . كما أن لديه M إطارًا متاحًا، كل إطار له حجم S_i .

يريد اختيار وترتيب k لوحات i_1,i_2,\ldots,i_k وأطر i_1,i_2,\ldots,i_k للعرض بحيث:

- $A_{i_t} \leq S_{j_t}$: كل لوحة مختارة i_t توضع في الإطار j_t حيث لا يتجاوز حجم اللوحة حجم الإطار i_t
 - أحجام اللوحات المختارة تكون غير متناقصة بترتيب العرض:

$$A_{i_1} \leq A_{i_2} \leq \ldots \leq A_{i_k}$$

.. القيم الفنية للوحات المختارة تكون غير متناقصة بترتيب العرض:

$$B_{i_1} \leq B_{i_2} \leq \ldots \leq B_{i_k}$$

أوجد القيمة العظمى لـ k التي يمكن أن يوجد لها ترتيب صالح.

تفاصيل التتفيذ

Implementation Details

:You need to implement the following function

- 1. N: عدد اللوحات
- 2. *M*: عدد الإطارات
- i مصفوفة بطول N، حيث A[i] هو حجم اللوحة A
- i هي القيمة الفنية للوحة B[i] هي القيمة الفنية للوحة B.4
 - j مصفوفة بطول M، حيث S[j] هو حجم الإطار S .5
- 6. يجب أن تُرجع الدالة العدد الأقصى من اللوحات التي يمكن عرضها

Constraints

- $1 \leq N, M \leq 10^5$ •
- for all valid indices $1 \leq A_i, B_i, S_j \leq 10^9$ •

Scoring

- $N,M \leq 10$:**Subtask 1** (10 points) •
- **Subtask 2** (20 points): All frame sizes are larger than all painting sizes ($S_i > A_i$ for all i,j) ullet
 - **Subtask 3** (20 points): All artistic values are equal ($B_i = B_j$ for all i,j)
 - N, M < 2000 :**Subtask 4** (20 points) •
 - **Subtask 5** (30 points): No additional constraints •

Examples

النداء التالي (max_paintings (3, 3, [1, 2, 3], [1, 2, 4], [2, 3, 5]) يجب أن يُرجع 3

- . [1,2,4] وقيم فنية [1,2,3] والمحات بأحجام والمحات بأحجام
 - [2,3,5] لدينا 3 إطارات بأحجام
- يمكننا اختيار اللوحات الثلاث جميعها: اللوحة 1 (حجم 1، قيمة 1) في الإطار 1 (حجم 2)، اللوحة 2 (حجم 2، قيمة 2) في الإطار 2 (حجم 3)، اللوحة 3 (حجم 3، قيمة 4) في الإطار 3 (حجم 5).
 - الأحجام غير متناقصة: $2 \leq 2 \leq 1$ والقيم الفنية غير متناقصة: $2 \leq 1$

النداء التالي (max_paintings (4, 3, [1, 3, 2, 4], [3, 2, 3, 5], [3, 6, 4]) يجب أن يُرجع 3

- . [3,2,3,5] وقيم فنية [1,3,2,4] وقيم فنية لدينا 4 لوحات بأحجام
 - [3,6,4] لدينا 3 إطارات بأحجام
- يمكننا اختيار اللوحات ذات الفهارس 1، 3، و4: اللوحة 1 (حجم 1، قيمة 3) في الإطار 1 (حجم 3)، اللوحة 3 (حجم 2، قيمة 3) في الإطار 3 (حجم 4)، اللوحة 4 (حجم 4، قيمة 5) في الإطار 3 (حجم 4).
 - $3 \leq 3 \leq 5$ والقيم الفنية غير متناقصة: $1 \leq 2 \leq 4$ والقيم الفنية غير متناقصة $0 \leq 3 \leq 5$

يجب أن يُرجع 2 max_paintings (4, 3, [1, 3, 2, 4], [3, 2, 3, 5], [1, 1, 4]) النداء التالي

- [3,2,3,5] وقيم فنية [1,3,2,4] وقيم فنية
 - لدينا 3 إطارات بأحجام [1,1,4].
- يمكننا اختيار اللوحة 1 (حجم 1، قيمة 3) في الإطار 1 أو 2 (حجم 1)، واللوحة 4 (حجم 4، قيمة 5) في الإطار 3 (حجم 4).
 - الأحجام غير متناقصة: 4 > 1 والقيم الفنية غير متناقصة: 5 < 5

Sample Grader

المُصحِّح التجريبي يقرأ المدخلات بالتنسيق التالي:

M و N السطر N عددان صحيحان N

- السطر 2: N عددًا صحيحًا A_1,A_2,\ldots,A_N الحجام اللوحات)
 - القيم الفنية) B_1, B_2, \dots, B_N القيم الفنية) •
- السطر 4: M عددًا صحيحًا S_1, S_2, \dots, S_M الحجام الإطارات) •

المُصحِّح التجريبي يستدعي max_paintings (N, M, A, B, S) ويطبع القيمة المرجعة.

ملاحظة: المُصحِّح التجريبي المرفق مع هذه المسألة مخصص فقط لاختبار حلك محليًا. المُصحِّح الفعلي المستخدم أثناء المسابقة قد يكون مختلف