ÜBUNG: Elementare Vierpole

- a) Geben Sie den Frequenzgang der folgenden (unbelasteten) Vierpole an. Gegen welche Werte strebt der Frequenzgang bei $f \to 0$ und $f \to \infty$?
- 1. RC-Tiefpass

2 ur Erinnerung: Xc = 1 (Wechselstronwidestand des)

 $\Rightarrow \text{ fiv } \omega = 0 \text{ (Gleichstrom)} : \times_{c} \rightarrow \infty \text{ (Untrobrechung)}$ $\text{ fiv } \omega \Rightarrow \infty \qquad : \times_{c} \rightarrow 0 \text{ (Kurzschluss)}$

daher: $H(J \rightarrow 0) = 1$, da $U_2 = U_1$ ____ desurgen $H(J \rightarrow \infty) = 0$, da $U_2 = 0$ "Tiglpass"

i. Ally.: $H(j\omega) = \frac{Uz}{U} = \frac{1}{j\omega c} \frac{1}{1\omega c} = \frac{1}{1+j\omega R c}$

unbel. Spannungsteiler

	hnfachung der Freque	nz? = / ①	ekade		
lim 1 w→∞ 1	<u>H</u> (Λοω) <u>H</u> (ω)	= lin	$ \begin{array}{c} 1 \\ \sqrt{1^2 + (10)} \\ \sqrt{1^2 + (\omega)} \end{array} $		
		= lim	V1+(100	c) ² s 2c) ²	
		= lim	1(WRC)2		
		= lim	10 wit	= =	$\frac{1}{10} = c$
pro Dekad	ag ds Fre e (= pro f s d.h.	quentgan requenzon	gs fällt b rzelrfadung	ui f >.	> fg
pro Dekad Fahler 10	e (= pro f	gnentgan Frquenzvi - 20	gs fallt b rzelnfadung dB/Delo	ui f >.	> fg

Beispiel: Zu skizzieren ist die Frequenzgang des folgenden (umbelosteten) 20 - Tief passes. $U_1 \downarrow R \downarrow C \downarrow U_2$ Brechung der Grent frequent $\int_{0}^{2\pi} \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 1000 \times 10^{-6} \text{ As}} = 159.15 \pm \frac{1}{5}$ Bu de Grenz fregueux gilt (s.o.): a) le { #} = Jn { #} lszw. |Pg| = 450 b) $|H| = \left| \frac{U_2}{U_3} \right| = \frac{1}{\sqrt{27}} = 0.707$ S.E.U. A, = 20-log 1/2 = -3 2 B Fir Frequentin f << fg gilt: IH(w>0) = 1 = 018 Für Fregunzen f >> fg gilt: A fällt mit 20 dB/Dekade

ÜBUNG: Belastete Vierpole Geben Sie das Verhältnis $\underline{U}_2(j\omega)/\underline{U}_1(j\omega)$ der beiden Schaltungen an. Vergleichen Sie die Ergebnisse. Welche Schlussfolgerung ist daraus zu ziehen? 1. unbelasteter RC-Tiefpass (1) 2. belasteter RC-Tiefpass \underline{U}_2 : C

 $H(i\omega) = \frac{1}{1+i\omega 2c}$ (1) $\frac{H(j\omega)}{2} = \frac{1}{2+R_L} + j\omega RC \qquad (2)$ => Die Belostung ändert den Frequenzgang! Bei de Brechnung des Frequenzgangs muss die Belostungsingedant mit brücksichtigt weden. oder Impedant worder einsteen (s.u.)

