Michael M. Pozulp

pozulp1@llnl.gov (925) 422-0653

Lawrence Livermore National Laboratory 7000 East Avenue, P.O. Box 808, L-405 Livermore, CA 94550

Interests

Scientific Computing, Monte Carlo, Compilers

Education

University of California, Davis

PhD in Computer Science

Davis, CA

Expected May 2025

The College of William & Mary

Bachelor of Science, magna cum laude

Major: Computer Science

Minor: Economics GPA 3.75/4.00 Williamsburg, VA

May 2015

Presentations and Publications

- **Pozulp, M**. (2019). "1D Transport Using Neural Nets, SN, and MC," LLNL-CONF-772639. LLNL-PRES-787894. Paper and presentation at M&C 2019. Portland. OR. 25-29 August.
- **Pozulp, M**. (2017). "Introduction to Monte Carlo," LLNL-PRES-734172. Presented at the College of William & Mary Math Department Colloquium, Williamsburg, VA 20 October.
- Kimko, J., Pozulp, M., et al. (2017). "Porting the Opacity Client Library to a CPU-GPU Cluster Using OpenMP4.5," LLNL-POST-735790. Poster presented at Supercomputing 2017, Denver, CO, 13-16 November.
- Pozulp, M., et al. (2016). "Optimizing Application I/O by Leveraging the Storage Hierarchy Using the Scalable Checkpoint Restart Library with a Monte Carlo Particle Transport Application on the Trinity Advanced Computing System," LLNL-POST-698037. Poster presented at Supercomputing 2016, Salt Lake City, UT, 14-17 November.
- Mohror, K. and Pozulp, M. (2016). "Performance Portability for Burst Buffers with the Scalable Checkpoint/Restart Library (SCR)," LLNL-PRES-689447. Oral presentation at the Department of Energy Centers of Excellence Performance Portability Meeting, Glendale, AZ, 19-21 April.
- Pozulp, M., (2014). "Creating a Framework for Systematic Benchmarking of High Performance Computing Systems." Poster presented at Supercomputing 2014, New Orleans, LA 17-20 November.

Work Experience

Lawrence Livermore National Lab

Livermore, CA

July 2015 – Present

Position: Computer Scientist

Software development for the Monte Carlo Transport Project

W&M High Performance Computing

Williamsburg, VA

February 2012 - May 2015

Position: Undergraduate Assistant to High Performance Computing

- Developed a distributed-memory parallel N-1 and N-N I/O performance benchmark using MPI
- Performed STREAM memory benchmarking, code timing, and cycle counting
- Supported HPC applications with data visualization and performance refactoring
- Assembly/maintenance of diverse CPU + GPU distributed-memory compute clusters, totaling 900+ cores and 21 TFLOP/s theoretical peak performance
- Developed graphical tools for monitoring jobs and node statistics

NASA Langley Research Center

Hampton, VA

January - May 2014

Position: UAV Engineering Intern

 Developed ground control station that controls UAVs with MAVLink transmissions and collects ADS-B, GPS, and other RF data from UAVs to create a live display of UAVs in the local airspace

- Performed Hardware-In-The-Loop Simulation tests of ground control station using autopilot boards and commercial flight simulator
- Prepared hardware/software systems for multi-rotor and fixed-wing aircraft

NASA Ames Research Center

Moffett Field, CA

May - August 2013

Position: Supercomputing Research Intern

- Investigated performance scaling in four generations of Intel Xeon processors running the NASA Parallel Benchmarks on top-20 supercomputer Pleiades
- Researched effects of MPI communication traffic across Pleiades interconnect

Computer Skills

- C/C++, Python, Java, R, Bash, MPI, OpenMP, CUDA, Git/Github, LLVM
- Linux, OS X, Windows, Solaris, Android, Web

Honors, Awards, and Memberships

•	Argonne Training Program in Extreme Scale Computing (ATPESC), Attendee		August 2016
•	Stanford CS148 Raytracing Project, 2 nd Place		December 2015
•	Phi Mu Epsilon Math Honors Fraternity, Student Member		2013 - 2015
•	Association for Computing Machinery (ACM), Student Member		2013 - 2015
•	W&M Small Hall Makerspace Grant Recipient	(\$700)	May 2014
•	ACM Student Research Competition Travel Award	(\$500)	September 2014
•	NASA Ames Poster Contest, 1st Place		August 2013
•	Virginia Space Grant Consortium Grant Recipient	(\$6750)	June 2013

Technical Courses

University	of	California.	Davis
•	•	- a ,	_ ~

iiversity or camornia, bavis			
•	Network Architecture & Resource Management (EEC 273/ECS258)	Fall 2018	
•	Quantum Mechanics (PHY115A)	Spring 2017	
•	Analytical Mechanics II (PHY 105B)	Winter 2017	
•	Analytical Mechanics I (PHY 105A)	Fall 2016	

University of California, Berkeley

Numerical Simulation in Radiation Transport (NE 255)
Fall 2018

University of California, San Diego

High Energy Density Physics (MAE 207)
Fall 2017

Stanford University

•	Partial Differential Equations in Engineering (CME 204)	Winter 2018
•	Compilers (CS 143)	Spring 2016
•	Introduction to Computer Graphics (CS 148)	Fall 2015

The College of William & Mary

CO	onege or william & mary	
•	Random Walks in Biology (APSC 456)	Spring 2015
•	Reliability (CS 668)	Spring 2015
•	General Physics II (PHYS 102H)	Spring 2015
•	Analog Electronics (PHYS 252)	Spring 2015
•	Ordinary Differential Equations (MATH 302)	Fall 2014
•	General Physics I (PHYS 101H)	Fall 2014
•	General Physics I (PHYS 101H)	Fall 2014
•	Digital Electronics (PHYS 351)	Fall 2014
•	Finite Automata (CS 423)	Fall 2013
•	Operating Systems (CS 424)	Fall 2013
•	Applied Financial Derivatives (ECON 415)	Fall 2013
•	Probability (MATH 401)	Fall 2013
•	Numerical Analysis (MATH 413)	Fall 2013
•	Accounting (BUAD 203)	Spring 2013
•	Programming Languages (CS 312)	Spring 2013
•	Systems Programming (CS 415)	Spring 2013