

化工数据统计与处理 习题集

班级	化工	
学号		
姓名		

年 月 日

1. 设由来自总体 $X\sim N(a,0.9^2)$ 容量为 9 的样本,得样本均值 \overline{x} =5,求参数 a 的置信度为 0.95, 0.99 的置信区间。($z_{0.01}=2.330$, $z_{0.05}=1.645$, $z_{0.025}=1.960$, $z_{0.005}=2.570$)

2. 水泥厂用自动包装机包装水泥, 每袋额定重量为 50 公斤, 某日开工后随机抽查了 9 袋, 称得重量如下(单位:公斤):

49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2 ($\bar{x}=49.9$, s=0.5362;)设每袋重量服从正态分布 $N(\mu,\sigma^2)$ 。试问该包装机工作是否正常? $(\alpha=0.05)$ ($t_{0.1}(8)=1.3968$, $t_{0.1}(9)=1.3830$, $t_{0.1}(10)=1.3722$, $t_{0.05}(8)=1.8695$, $t_{0.05}(9)=1.8331$, $t_{0.05}(10)=1.8125$, $t_{0.025}(8)=2.3060$, $t_{0.025}(9)=2.2622$, $t_{0.05}(10)=2.2280$)

3. 测定某种溶液中的水份,设水份含量的总体服从正态分布 $N(a,\sigma^2)$,得到的 10 个测定值给出 $\overline{x}=0.452$, $\tilde{s}=0.037$,试问可否认为水份含量的方差 $\sigma^2=0.04$? ($\alpha=0.05$)

附表:

$$\chi^2_{0.05}(10) = 3.94, \quad \chi^2_{0.025}(10) = 3.247, \quad \chi^2_{0.05}(9) = 3.325, \quad \chi^2_{0.05}(9) = 2.7,$$
 $\chi^2_{0.975}(10) = 20.483, \quad \chi^2_{0.975}(9) = 19.023, \quad \chi^2_{0.95}(10) = 18.307, \quad \chi^2_{0.95}(9) = 16.919,$

4. 在相同条件下对两种品牌的洗涤剂分别进行去污试验,测得去污率(%)结果如下:

假定两品牌的去污率服从正态分布且方差相同, 问两品牌的去污率是否有显著差异? (α =0.01) ($t_{0.01}$ (9) = 3.25)

5. 为研究反应物浓度和反应温度对某一化工过程产率的影响,选取3种浓度和4个不同温度进行有重复两因素交叉分组试验,每种情况试验三次,结果见下表。 (二因素2重复),试对结果进行分析,填写括弧内的内容。

交叉分组试验结果

浓度	温			度				
1八人]	B1	B2		В3		B4	
A1	49	50	56	54	47	44	45	42
A2	55	60	56	64	60	57	56	58
A3	49	47	52	55	45	45	44	41

解: (1)建立假设:

• (2) 计算相应的均值和平方和:

$$\overline{X} = () = 51.29$$

	j=1	j=2	j=3	j=4	$\overline{X_{i\bullet \bullet}}$
i=1	49.5	55	45.5	43.5	48.375
i=2	57.5	60	58.5	57	58.25
i=3	48	53.5	45	42.5	47.25
$\overline{X_{\bullet j \bullet}}$	51.667	56.167	49.667	47.667	

方 差 来 源	平方和	自由度		均方		F值	
A	1364.418	()	()	()
В	238.1251	()	()	()
AXB	61.25	()	()	()
误差	73.5	()	()		

统计决策:

()
$$F_{0.05}(2,12) = 3.89$$

()
$$F_{0.05}(3,12) = 3.49$$

()
$$F_{0.05}(6,12) = 3.00$$

说明 ()。

6. 设样本 $^{X_1,X_2,\cdots,X_9}$ 来自正态总体 $^{N(a,1.44)}$,计算得样本观察值 $^{\overline{x}}$ = 10 ,求参数 a 的置信度为 95%的置信区间。($^{Z_{0.01}}$ = $^{2.330}$, $^{Z_{0.05}}$ = $^{1.645}$, $^{Z_{0.025}}$ = $^{1.960}$, $^{Z_{0.005}}$ = $^{2.570}$)

7.设某一次考试考生的成绩服从正态分布,从中随机抽取了 36 位考生的成绩,算得平均成绩 $\bar{x}=66.5$ 分,标准差 $\bar{s}=15$ 分,问在显著性水平 $\alpha=0.05$ 下,是否可以认为这次考试全体考生的平均成绩为 70 分,并给出检验过程。 $(t_{0.025}(35)=2.0301)$

8. 某工厂生产的保健饮料中游离氨基酸含量(mg/100ml)在正常情况下服从正态分布 *N*(200,25²)。某生产日抽测了 6 个样品,得数据如下:

205, 170, 185, 210, 230, 190 $(\bar{x}=198,S^2=477)$ 试问这一天生产的产品游离氨基酸含量的总方差是否正常。 $(\alpha=0.05)$ 附 $\chi^2_{0.025}(5)=12.833,\chi^2_{0.975}(5)=0.831$

9. 用原子吸收光谱法(新法)和 EDTA(旧法)测定某废水中 Al³+的含量(%), 测定结果如下:

新法: 0.163, 0.175, 0.159, 0.168, 0.169, 0.161, 0.166, 0.179, 0.174, 0.173

 $s_1^2 = 3.86 \times 10^{-5}$,

旧法: 0.153, 0.181, 0.165, 0.155, 0.156, 0.161, 0.175, 0.174, 0.164, 0.183, 0.179

 $s_2^2 = 1.11 \times 10^{-4}$

试问: 两种方法的精密度是否有显著差异? (α =0.05) (F0.975(9,10)=0.252, F0.025(9,10)=3.779)

10.写出回归模型的高斯假定。

11. 岩石密度的测量误差服从正态分布,随机抽测 12 个样品,得 s=0.2, $求\sigma^2$ 的置信区间($\alpha=0.1$)。 $(\chi^2_{0.05}(11)=4.57, \chi^2_{0.95}(11)=19.7)$

- 12. 根据某地环境保护法规定,倾入河流的废水中某种有毒化学物质含量不得超过 3ppm。该地区环保组织对沿河各厂进行检查,测定每日倾入河流的废水中该物质的含量。某厂连日的记录为
- 3.1 3.2 3.3 2.9 3.5 3.4 2.5 4.3 2.9 3.6 3.2 3.0 2.7 3.5 2.9

试在显著性水平 α =0.05 上判断该厂是否符合环保规定(假定废水中有毒物质含量 X 服从正态分布)($t_{0.95}(14)=1.7613$)

13. 、两台机床加工同一种零件,分别取 6 个和 9 个零件测量其长度,计算得 $s_1^2=0.345$, $s_2^2=0.357$,假设零件长度服从正态分布,问:是否认为两台机床加工的零件长度的方差无显著差异($\alpha=0.05$)? ($F_{0.025}(5,8)=0.1479$, $F_{0.975}(5,8)=4.82$)

14. 合格苹果的重量标准差应小于 0.005 公斤 .在一批苹果中随机取 9 个苹果称重,得其样本修正标准差为 S=0.007 公斤,试问: (1) 在显著性水平 $\alpha=0.05$ 下,可否认为该批苹果重量标准差达到要求? (2) 如果调整显著性水平 $\alpha=0.025$,结果会怎样?

 $\left(\ \chi^2_{0.025}(9) = 19.023 \,, \qquad \chi^2_{0.05}(9) = 16.919 \,, \qquad \chi^2_{0.025}(8) = 17.535 \,, \qquad \chi^2_{0.05}(8) = 15.507 \,\right)$

15 在一项调查中,研究者想要了解房屋装修情况对房屋价格(单位:万元/平方米)的影响。为此调查了30间粗装修,35间精装修和35间毛坯房的价格情况。现对每种房屋的价格进行方差分析,得到的部分计算结果如下表所示。请回答:(α=0.05)

	平方和	df	均方	F	显著性
组间	207. 21				<.0001
组内	14. 35			_	_
总变异		99	_	_	_

- (1) 写出上述方差分析表所检验问题的原假设和备选假设。
- (2) 请补充填写上面方差分析结果表中的所有空格部分。
- (3) 不同装修情况的房屋价格是否有显著差异? 为什么?

16. 设 A, B 二化验员独立地对某种聚合物的含氯量用相同的方法各作了 10 次测定,其测 量值的修正方差分别为 $\mathbf{s}_A^2=0.5419$, $\mathbf{s}_B^2=0.6065$, 设 σ_A^2 和 $\sigma_B^2=$ 分别为所测量的数据总体(设为正态总体)的方差,求方差比 σ_A^2/σ_B^2 的 0.95 的置信区间。 $(F_{0075}(9,9)=4.03)$

17.设某一次考试考生的成绩服从正态分布,从中随机抽取了 36 位考生的成绩,算得平均成绩 $\bar{x}=66.5$ 分,标准差 $\bar{s}=15$ 分,问在显著性水平 $\alpha=0.05$ 下,是否可以认为这次考试全体考生的平均成绩为 70 分,并给出检验过程。 $(t_{0.025}(35)=2.0301)$

18. 某工厂生产的保健饮料中游离氨基酸含量(mg/100ml)在正常情况下服从正态分布 *M*(200,25²)。某生产日抽测了 6 个样品,得数据如下:

205, 170, 185, 210, 230, 190 $(\bar{x}=198, S^2=477)$ 试问这一天生产的产品游离氨基酸含量的总方差是否正常。 $(\alpha=0.05)$ 附 $\chi^2_{0.025}(5)=12.833, \chi^2_{0.975}(5)=0.831$

19. 用原子吸收光谱法(新法)和 EDTA(旧法)测定某废水中 Al³+的含量(%), 测定结果如下:

新法: 0.163, 0.175, 0.159, 0.168, 0.169, 0.161, 0.166, 0.179, 0.174, 0.173

$$s_1^2 = 3.86 \times 10^{-5}$$
,

旧法: 0.153, 0.181, 0.165, 0.155, 0.156, 0.161, 0.175, 0.174, 0.164, 0.183, 0.179

$$S_2^2 = 1.11 \times 10^{-4}$$

试问: 两种方法的精密度是否有显著差异? (α =0.05) (F_{0.975}(9,10)=0.252, F_{0.025}(9,10)=3.779)