Spanning tree: A spanning tree of a connected graph is its connected acyclic sub-graph that contains all the vortices of the graph.

Minimum spanning tree:

Minimum spanning tree of a weighted

Connected graph is its spanning tree of

the smallest weight, where the weight

of a tree is defined as the sum of the

meights on all its edges.

Figure: Graph & ets spanning trees

Ti is the minimum spanning

Pouris Algorithm:

Porimis algorithm constructs a minimum spanning tree through a Sequence of expanding subtrees:

- Initial subtrice consists of a single vertex selected arbitrarily from the set v of the glaph's vertices.

w(T3) - 8

		with a property of
Tree vertices	Remaining vertices	Il/ustration
a(-,-)	e(9,3) $c(-,n)d(1-,n)$ $e(9,6)f(9,5)$	2 8 C
lo (a,3)	$c(b,1) d(-,\infty)$ $e(9,6) f(b,4)$	3 5 4 4 5 6 25 5 00 2 5 00
C(b,1)	d(c,6) e(a,6) f(b,4)	5 6 6
f(B14)		1 4 C 6 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A
e(f, 2)	d(f,5)	4 4 C C C C C C C C C C C C C C C C C C
$d(f, \bar{s})$	(C)	2

Algorithm prim (G)

1/ primis algorithm for constructing Minimum Spanningtree

1/ Input: A weighted connected graph G=(V, E)

1/ Input: E_T, the set of edges composing a minimum

Spanning true of G

V_ < f Vo}

 $\epsilon_{\tau} \leftarrow \phi$

for i ← 1 to |V|-1 do

find a minimum eneight edge $e^* = (\sqrt[t]{t}, u^*)$ among all the edges (u, u) such that v is in V_T and u is in v.

 $V_{\tau} \leftarrow V_{\tau} U (u^{*})$ $E_{\tau} \leftarrow E_{\tau} U (e^{*})$

return E_T

Find suinimum spanning tree using primi Algorithm:

