T1: Fljótandi sívalningur (10 stig)

Einsleitur, gegnheill sívalningur með hæð $h=10~{\rm cm}$ og hringlaga grunnflöt með flatarmál $s=100~{\rm cm}^2$ flýtur í vökva ofan í aðeins stærra, sívalningslaga bikarglasi með hæð $H=20~{\rm cm}$ og hringlaga grunnflöt með flatarmál $S=102~{\rm cm}^2$. Hlutfallið á eðlismassa gegnheila sívalningsins deilt með eðlismassa vökvans er $\gamma=0.70$. Í jafnvægisstöðu flýtur botninn á gegnheila sívalningnum fyrir ofan botninn á bikarglasinu um það sem nemur nokkrum sentímetrum. Nú er gegnheila sívalningnum ýtt ofan í vökvann um það sem nemur $A=1~{\rm mm}$ og sleppt. Sívalningurinn sveiflast þá lóðrétt með einfaldri sveifluhreyfingu um jafnvægisstöðuna með útslag $A=1~{\rm mm}$. Gerið ráð fyrir að sívalningurinn sveiflist einungis í lóðrétta stefnu og hunsið allan núning og seigju vökvans.

Ákvarðið sveiflutíma hreyfingarinnar, T.

T2: Varmasveiflur í rafrás (10 stig)

Viðnám í rafrás er gert úr efni sem verður fyrir fasaskiptum við ákveðið hitastig, T_c . Þetta þýðir að viðnámið sjálft getur tekið tvö gildi. Það hefur annars vegar gildið R_1 ef hitastig viðnámsins er minna heldur en T_c og hinsvegar gildið $R_2 > R_1$ ef hitastigið er stærra heldur en T_c .

Viðnámið er tengt við stillanlegan jafnspennugjafa með stillanlegan spennumun V og spólu með spanstuðul L. Ef stillanlegi jafnspennugjafinn er stilltur á gildi V þar sem $V_1 < V < V_2$ þá mun hitastig viðnámsins breytast lotubundið sem fall af tíma. Gerið ráð fyrir að: (i) Varmaaflið, P, sem tapast frá viðnáminu til umhverfisins sé $P = \alpha (T - T_0)$ þar sem α er fasti; T táknar hitastig viðánsmins; T_0 táknar hitastig umhverfisins; (ii) Viðnámið er pínulítið svo að tíminn sem það tekur fyrir það að ná varmajafnvægi er miklu minni heldur en kennitíminn $\frac{L}{R_2}$.

- (a) (2 stig) Ákvarðið stærðirnar V_1 og V_2 sem fall af hinum breytistærðunum sem eru skilgreindar í dæminu.
- **(b)** (6 stig) Gerum ráð fyrir að spennumunurinn, V, sé þannig að $V_1 < V < V_2$. Teiknið graf sem sýnir hitastig viðnámsins, T sem fall af tíma, t. Látum $T_{\rm max}$ og $T_{\rm min}$ tákna mesta og minnsta gildi hitastigsins, T, sem að viðnámið nær í lotubundnu hreyfingunni. Ákvarðið þar að auki fræðilegt gildi á hlutfallinu $\frac{T_{\rm max} T_0}{T_{\rm min} T_0}$.
- (c) (2 stig) Sér í lagi: Ákvarðið lotutímann ef $V=\sqrt{V_1V_2}$ og $R_2=16R_1$.

T3: Tvískaut í segulsviði (10 stig)

Tvískaut samanstendur af tveimur litlum kúlum með massa m og hleðslu $\pm q$ sem eru tengdar með massalausri stöng af lengd d. Tvískautið liggur í XY-planinu í einsleitu segulsviði \vec{B} sem er hornrétt á XY-planið.

Til að byrja með liggur tvískautið samsíða X-ás og snýst í XY-planinu með hornhraða sem er til að byrja með ω_0 . Massamiðjan er staðsett í upphafspunkti hnitakerfisins og fær upphafshraða \vec{v}_0 sem liggur einnig í XY-planinu.

Skoðum þrjár mismunandi atburðarrásir (a, b, c-d):

- (a) (2 stig) Ákvarðið fyrir hvaða ω_0 og fyrir hvaða stefnu á \vec{v}_0 við höfum að massamiðjan hreyfist alltaf með föstum hraða $\vec{v}=\vec{v}_0$.
- **(b)** (3 stig) Látum ω_0 vera gefna stærð. Ákvarðið stærð og stefnu upphafshraðans, \vec{v}_0 , þannig að massamiðja tvískautsins hreyfist eftir hringferli. Ákvarðið geisla hringsins, R_c , og hnitin, (x_c, y_c) , á miðju hringsins. Sleppið því að sýna að lausnin sé ótvírætt ákvörðuð.
- (c) (4 stig) Látum $\vec{v}_0=0$. Ákvarðið minnsta gildið á hornhraðanum, $\omega_0=\omega_{\min}$, þannig að tvískautið nær að snúa við í hreyfingunni (hleðslurnar skipta um stað miðað við myndina).
- (d) (1 stig) Látum $\vec{v}_0=0$ og $\omega_0=\omega_{\min}$ úr (c)-lið. Þá mun ferillinn sem að massamiðja tvískautsins fylgir hafa aðfellu. Ákvarðið fjarlægðina, D, frá upphafspunkti hnitakerfisins að aðfellunni.

Eftirfarandi vigurregla gæti komið að góðum notum:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}),$$

þar sem "×" táknar krossfeldi og "·" táknar innfeldi.