Jungle Chess

Trabalho Prático 1 - Jogo adversarial

Realizado por: Ezequiel Paulo Filipe Huang Manuel Mota

Introdução ao Jogo

- Jungle Chess, também conhecido por Dou Shou Qi, é um tabuleiro tradicional chinês de dois jogadores que consiste em:
 - 8 animais: Rato, Gato, Cão, Lobo, Leopardo, Tigre, Leão e Elefante
 - Com uma hierarquia crescente de captura dos animais, por ordem, com a exceção que o rato captura o elefante
 - Objetivo: invadir a "toca" (den) do adversário ou capturar todos os animais do mesmo
 - O tabuleiro é constituído por 3 terrenos além de casas normais: rios, armadilhas e tocas
 - Casos especiais: tigre e leão pode saltar por cima do rio e o rato pode nadar

Estrutura do Projeto

- Organização dos códigos:
 - main.py Interface gráfica e a execução do jogo
 - utils.py Constantes de funções auxiliares
 - aiPlayer.py Implementações dos las
 - images imagens utilizadas para as peças do jogo na interface gráfica

```
images
          green_Cat.png
          green_Dog.png
         green_Elephant.png
         green_Leopard.png
        green_Lion.png
       green_Rat.png
       green_Tiger.png
      green_Wolf.png
     red_Cat.png
    red_Dog.png
    red_Elephant.png
   red_Leopard.png
  red_Lion.png
 red_Rat.png
red_Tiger.png
red_Wolf.png
```

Formulação do Jogo

- Representação de estados:
 - Matriz bidimensional 9 por 7, com 16 peças (8 animais verdes e 8 animais vermelhos)
 - Dois jogadores: verde (baixo) e vermelho (cima)
 - Estado do jogo: a decorrer ou término com um vencedor
- Estado inicial:
 - Peças nas posições de acordo com as regras tradicionais
 - Terreno: zona dos rios, das armadilhas e das tocas
 - Turno inicial: começa o verde (jogador de baixo)
- Estado objetivo:
 - Mover a peça para a toca do oponente
 - Capturar todas as peças do oponente

Formulação do Jogo - Continuação

- Ações e operadores:
 - Movimentos normais: frente, trás, direito, esquerdo
 - Movimentos especiais: saltar o rio (tigre e leão) e entrar na água (rato)
 - Armadilhas: peças nas armadilhas podem ser capturadas por todos os animais
 - Captura das peças: de acordo com a hierarquia dos animais, e capturar o mesmo tipo
 - Exceção de captura: rato pode capturar o elefante, mas não o oposto

Algoritmos implementados

- Jogador random (RandomPlayer): escolhe o movimento aleatório de todas as jogadas legais e possíveis
- Jogador negamax (NegamaxPlayer): variante de Minimax, procurar sempre o movimento que dá máximo de pontuação e mínimo de adversário
- Jogador Alpha-Beta cut (AlphaBetaPlayer):
 - com base no algoritmo de negamax, cortar os ramos desnecessários, ou seja, não é importante verificar
 - Ordenação das pontuações dos movimentos para ser mais eficiente
 - Algoritmo de Iterative Deepening, facilitar as pesquisas
- Heurística:
 - Valor das peças baseado nos ranks
 - Proximidade da toca do adversário
 - Ameaças dos ambos às peças e à toca

Interface Gráfica

Alguns resultados

Estatísticas de casa IA em 10 tentativas:

Win/Loss (Av Time)	Random (red)	Negamax (red)	Alpha-Beta (red)
Random (green)	4/6 (32s)	0/10 (7s)	0/10 (4s)
Negamax (green)	10/0 (11s)	7/3 (37s)	5/5 (17s)
Alpha-Beta (green)	10/0 (2s)	4/6 (42s)	8/2 (12s)

- Jogo mais rápido: Negamax (green) vs. Alpha-Beta (red) 2.37s
- Jogo mais lento: Negamax (green) vs. Negamax (red) 1min 02

Bibliografia

- https://github.com/ManuelMota10/Jungle_GAME GitHub do Projeto
- No fim do ReadMe tem todas as fontes que precisamos para o Projeto