Logika (MSc)

Elsőrendű logika A logika szintaktikus tárgyalása

Eldöntésprobléma megoldása szemantikai eszközökkel

Elsőrendű n változós B formula logikailag igaz, ha

- ullet minden U univerzumon, a változók minden behelyettesítése mellett kapott B' alapformulák igazak minden, a nyelvnek megfelelő struktúrában.
- $\neg B$ kielégíthetetlen. Egyetlen interpretációban sem igaz.

Ezek a problémák szemantikailag világosak, de megoldásuk a teljes kipróbálást tételezi fel.

Szemantikus eldöntésprobléma megoldhatósága

Gödel bebizonyította, hogy "A szemantikus eldöntésprobléma algoritmikusan nem oldható meg – nem létezik univerzális eldöntési algoritmus".

Kutatások "eldönthető formulaosztályok" keresésére. Logikailag ekvivalens formulaátalakítások.

Az egyik, eldönthető formulaosztályokhoz tartozó formulákkal leírt szemantikus eldöntésproblémára kalkulus keresése (tabló, rezolúciós elv).

A másik, a logika szintaktikai alapon való felépítése, szintaktikus eldöntésprobléma megadása és arra kalkulus kidolgozása.

Tartalom

A logika szintaktikus tárgyalása

Függelél

A logika szintaktikus tárgyalása – bevezetés

Eddig a logika szemantikus tárgyalását tisztáztuk. Mivel el akarjuk kerülni az interpretációval kapcsolatos halmazelméleti problémákat a logika tárgyalását szintaktikai alapokra helyezzük.

Az ítéletlogika szintaktikai alapokon való felépítése az ítéletkalkulus.

Az elsőrendű logika szintaktikai alapokon való felépítése a **predikátumkalkulus** vagy logikai **függvénykalkulus**.

(bizonyításelméleti tárgyalás = szintaktikus következményfogalom – szintaktikus eldöntésprobléma).

Az ítélet vagy állításlogika bizonyításelméleti felépítése.

(Elmélet – egy axiomatizált struktúra)

Axiómasémák az ítéletlogikában

- Ítéletlogika, mint matematikai struktúra: $\langle \{i, h\}, \neg, \supset \rangle$
- Axiómák (axiómasémák): megadják a műveletek tulajdonságait.
- Az ítéletlogikai nyelvben itt a logikai összekötőjelekből csak a ¬, ⊃ párt használjuk (funkcionálisan teljes művelethalmaz).

Axiómasémák – ítéletlogika Tk.168.o.

- (A1) $X\supset (Y\supset X)$
- (A2) $(X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))$
- (A3) $(\neg X \supset Y) \supset ((\neg X \supset \neg Y) \supset X)$

Axiómasémák a bővebb logikai művelethalmaz esetén: ld. Püggelékl

Axiómák kapcsolata a szemantikával

Az axiómák tautológiák/logikai törvények.

Tétel

Legyen egy G formula, G(X|S) az a formula, amit G-ből X változójának egy S formulával való behelyettesítésével kaptunk. Ha G tautológia, akkor G(X|S) is az.

Következmény: Az axiómákból behelyettesítéssel kapott formulák is logikai törvények – axiómának tekinthetők.

Tétel (modus ponens)

$${A \supset B, A} \models_0 B$$

Bizonyításelméleti levezetés

Bizonyításelméleti levezetés fogalma

G-nek \mathcal{F} -ből való levezetése egy olyan $\varphi_1, \varphi_2, \ldots, \varphi_k, \ldots, \varphi_n$ formulásorozat, amelynek utolsó formulája a G, ahol

- $\varphi_k \in \mathcal{F}$, vagy
- φ_k -t axiómasémákból kaptuk, vagy
- φ_k -t a levezetési szabállyal kaptuk φ_s, φ_t -ből (s, t < k), azaz $\varphi_k = mp(\varphi_s, \varphi_t)$

Levezetési szabály a modus ponens: leválasztási szabály.

Egy G formula az $\mathcal{F} = \{F_1, F_2, \dots, F_n\}$ formulahalmazból levezethető $(\mathcal{F} = \{F_1, F_2, \dots, F_n\} \vdash_0 G)$, ha van G-nek \mathcal{F} -ből való levezetése. Ez a szintaktikus következményfogalom.

Egy A formulának az üres feltételhalmazból (csak axiómákból) való levezetése az A bizonyítása ($\vdash_0 A$).

Predikátumkalkulus

Az elsőrendű logika bizonyításelméleti felépítése: **predikátumkalkulus**. A szintaktikus következményfogalom definiálásához csak az elsőrendű logika axiomatizálását kell megadni. Ehhez még a kvantorok és a műveletek kapcsolatát kell axiómákkal megadni.

Axiómasémák – elsőrendű logika

- (B1) $A\supset (B\supset A)$
- (B2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (B3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$
- (B4) $\forall xA \supset [A(x \parallel t)]$
- (B5) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$
- (B6) $A \supset \forall xA$, ahol $x \notin Par(A)$
- (B7) a (B1)-(B6) axiómák általánosításai

A levezetés fogalma, a dedukciós tétel és a szintaktikus következményfogalom: mint az ítletlogikában.

Bővített axiómarendszer: Függelék2 Függelék3

Bizonyításelmélet helyessége, teljessége

Tétel

A bizonyításelméleti kalkulus **helyes**, azaz ha $\{F_1, F_2, \dots, F_n\} \vdash_0 G$, akkor $\{F_1, F_2, \dots, F_n\} \models_0 G$.

Tétel

A bizonyításelméleti kalkulus **teljes**, azaz ha $\{F_1, F_2, \dots, F_n\} \models_0 G$, akkor $\{F_1, F_2, \dots, F_n\} \vdash_0 G$.

Biz.: ítéletkalkulus esetén ld. később; predikátumkalkulus teljességét nem bizonyítjuk.

Tulajdonságok

Egy G formula az $\mathcal{F} = \{F_1, F_2, \dots, F_n\}$ formulahalmazból **levezethető** $(\mathcal{F} = \{F_1, F_2, \dots, F_n\} \vdash_0 G)$, ha van G-nek \mathcal{F} -ből való levezetése.

G bizonyítható ($\vdash_0 G$), ha a G formula bármely $\mathcal F$ feltételhalmazból levezethető.

Egy $\mathcal{F} = \{F_1, F_2, \dots, F_n\}$ formulahalmaz **ellentmondásos** (inkonzisztens), ha $\mathcal{F} \vdash_0 G$ és $\mathcal{F} \vdash_0 \neg G$. Egyébként a formulahalmaz **nem ellentmondásos** (konzisztens).

Tételek I.

Tétel

Két levezetés konkatenációja is levezetés. Ha \mathcal{F} -ből levezethető G_1 és \mathcal{S} -ből levezethető G_2 , akkor a két levezetés konkatenációja az $\mathcal{F} \cup \mathcal{S}$ -ből való levezetés.

Tétel

Ha \mathcal{F} -ből levezethető G_1 és \mathcal{S} -ből levezethető G_2 , valamint $\{G_1, G_2\}$ -ből levezethető A, akkor az $\mathcal{F} \cup \mathcal{S}$ -ből levezethető A.

Az eldöntésprobléma tétele a bizonyításelméletben

Az
$$\{F_1, F_2, \dots, F_n\} \vdash_0 G \iff \vdash_0 F_1 \supset (F_2 \supset (\dots \supset (F_{n-1} \supset (F_n \supset G))\dots)).$$

Biz.: a dedukciós tétel következménye

Tételek II.

Tétel

Ha \mathcal{F} -ből levezethető G, akkor az $\mathcal{F} \cup \{\neg G\}$ ellentmondásos.

Tétel

Ha $\{F_1,F_2,\ldots,F_n\}$ ellentmondásos, akkor kielégíthetetlen.

Tétel

Legyen A egy formula, és $\mathcal F$ egy konzisztens formulahalmaz, ekkor

- (a) \mathcal{F} , $\neg A$ ellentmondásos, akkor és csak akkor, ha $\mathcal{F} \vdash_0 A$.
- (b) \mathcal{F} , A ellentmondásos, akkor és csak akkor, ha $\mathcal{F} \vdash_0 \neg A$.

Tétel – bizonyítás

Az előző dia utolsó tételének bizonyítása.

- (a) \Rightarrow : Ha \mathcal{F} , $\neg A$ ellentmondásos, akkor \mathcal{F} , $\neg A \vdash_0 B$ és \mathcal{F} , $\neg A \vdash_0 \neg B$. A dedukciós tétel miatt $\mathcal{F} \vdash_0 \neg A \supset B$ és $\mathcal{F} \vdash_0 \neg A \supset \neg B$. A két levezetés konkatenációját folytatva a 3. axióma $(\neg A \supset B) \supset (\neg A \supset \neg B) \supset A$ alakjával, majd a $\neg A \supset B$ és a $\neg A \supset \neg B$ leválasztásával megkapjuk az A levezetését az \mathcal{F} -ből.
 - $\Leftarrow : \text{ Ha } \mathcal{F} \vdash_0 A \text{, akkor } \mathcal{F}, \neg A \text{ ellentmond\'asos, mivel } \mathcal{F}, \neg A \vdash_0 A \text{ \'es } \mathcal{F}, \neg A \vdash_0 \neg A$
- (b) \Rightarrow : \mathcal{F} , A ellentmondásos, akkor mivel minden, ami \mathcal{F} , A-ból levezethető, az \mathcal{F} , $\neg \neg A$ -ból is levezethető; tehát, ha \mathcal{F} , A ellentmondásos, akkor \mathcal{F} , $\neg \neg A$ is az. Használva a tétel (a) részét, A helyett $\neg A$ -ra: $F \models_0 \neg A$.
 - \Leftarrow : Ha $F \vdash_0 \neg A$, akkor \mathcal{F}, A ellentmondásos, mivel $F, A \vdash_0 A$ és $F, A \vdash_0 \neg A$.

Tételek III

Kalmár László lemmája

Egy k változós G formula igazságtáblájának minden sorában $X_1', X_2', \ldots, X_k' \vdash_0 G'$.

Tétel

Ha
$$X_1',X_2',\ldots,X_k'\vdash_0 G'$$
 és $\neg X_1',X_2',\ldots,X_k'\vdash_0 G'$, akkor $X_2',\ldots,X_k'\vdash_0 G'$.

Tétel

Ha G tautológia, akkor G bizonyítható.

Tétel (gyenge teljesség)

Legyen
$$\{F_1,F_2,\ldots,F_n\}$$
 véges formulahalmaz. Ha $\{F_1,F_2,\ldots,F_n\}\models_0 G$, akkor $\{F_1,F_2,\ldots,F_n\}\vdash_0 G$.

Teljesség bizonyítása (Gödel)

Tétel

Ha
$$\{F_1, F_2, \ldots\} \models_0 G$$
, akkor $\{F_1, F_2, \ldots\} \vdash_0 G$.

Bizonyítás a Gödel-féle gondolatmenettel:

- $\bullet \ \, \mathsf{Ha} \, \left\{ F_1, F_2, \ldots \right\} \models_0 G, \, \mathsf{akkor} \, \left\{ F_1, F_2, \ldots \right\} \cup \left\{ \neg G \right\} \, \mathsf{kiel\acute{e}g\acute{e}thetetlen}.$
- 2 Ha $\{F_1,F_2,\ldots\}\cup\{\neg G\}$ ellentmondásos (inkonzisztens), akkor $\{F_1,F_2,\ldots\}\vdash_0 G.$

Bizonyítás – folytatás

Azt tudjuk, hogy az ellentmondásos formulahalmaz kielégíthetetlen. Ha meg tudjuk mutatni, hogy a **kielégíthetetlenség** mint **szemantikus** tulajdonság és az **inkonzisztencia** mint **szintaktikus** tulajdonság a formulahalmazok halmazát ugyanúgy osztja két diszjunkt részre, akkor a bizonyítás a következő lenne:

Ha $\{F_1, F_2, \ldots\} \models_0 G$, akkor $\{F_1, F_2, \ldots\} \cup \{\neg G\}$ kielégíthetetlen. Ha egy formulahalmaz kielégíthetetlen, akkor ellentmondásos (inkonzisztens) is.

Ha
$$\{F_1,F_2,\ldots\}\cup\{\neg G\}$$
 ellentmondásos, akkor $\{F_1,F_2,\ldots\}\vdash_0 G.$

Azt nem tudjuk közvetlenül belátni, hogy ha egy formulahalmaz kielégíthetetlen, akkor ellentmondásos (inkonzisztens) is. E helyett belátjuk azt, hogy ha egy formulahalmaz ellentmondásmentes (konzisztens), akkor kielégíthető.

Összegzés

Az ítéletkalkulus tehát a szemantikus tárgyalásával ekvivalens szintaktikus tárgyalásmód. A bizonyításelméleti levezetés konstrukciója a tételbizonyítás eszköze, szintaktikus **kalkulus**.

Tartalom

A logika szintaktikus tárgyalása

Függelék

Az ítéletkalkulus axiómasémái kibővítve

```
(A1) X\supset (Y\supset X)
 (A2) (X \supset (Y \supset Z)) \supset ((X \supset Y) \supset (X \supset Z))
 (A3) (\neg X \supset Y) \supset ((\neg X \supset \neg Y) \supset X)
 (A4) \neg \neg X \supset X
 (A5) X \supset (Y \supset X \land Y)
 (A6) X \wedge Y \supset X
 (A7) X \wedge Y \supset Y
 (A8) (X \supset Z) \supset ((Y \supset Z) \supset (X \lor Y \supset Z))
 (A9) X \supset X \vee Y
(A10) Y \supset X \vee Y
```

◀ Alap axiómasémák

A predikátumkalkulus axiómasémái kibővítve

- (C1) $A\supset (B\supset A)$
- (C2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$
- (C4) $\neg \neg A \supset A$
- (C5) $A\supset (B\supset A\wedge B)$
- (C6) $A \wedge B \supset A$
- (C7) $A \wedge B \supset B$
- (C8) $(A \supset C) \supset ((B \supset C) \supset (A \lor B \supset C))$
- (C9) $A \supset A \vee B$
- (C10) $B \supset A \vee B$
- (C11) $\forall xA \supset [A(x \parallel t)]$
- (C12) $\forall x(B \supset A) \supset (B \supset \forall xA)$, ahol $x \notin Par(B)$
- (C13) $[A(x \parallel t)] \supset \exists xA$
- (C14) $\forall x(A \supset B) \supset (\exists xA \supset B)$, ahol $x \notin Par(B)$.
- (C15) $A \supset \forall xA$, ahol $x \notin Par(A)$
- (C16) a (C1)–(C15) axiómák általánosításai

◀ Alap axiómasémák

Az egyenlőségjeles predikátumkalkulus axiómasémái

- (D1) $A \supset (B \supset A)$ (D2) $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$
- (D3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$
- (D4) $\forall xA \supset [A(x \parallel t)]$
- (D5) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$
- (D6) $A \supset \forall xA$, ahol $x \notin Par(A)$
- (D7) t = t
- (D8) $t_1 = t_{n+1} \supset \ldots \supset t_n = t_{2n} \supset f(t_1, t_2, \ldots, t_n) = f(t_{n+1}, t_{n+2}, \ldots, t_{2n})$
- (D9) $t_1 = t_{n+1} \supset \ldots \supset t_n = t_{2n} \supset P(t_1, t_2, \ldots, t_n) \supset P(t_{n+1}, t_{n+2}, \ldots, t_{2n})$
- (D10) a (D1)–(D9) axiómák általánosításai

◀ Alap axiómasémák