Álgebra Moderna Tarea 6.4

Tomás Ricardo Basile Álvarez 316617194

15 de enero de 2021

a) Sea G un grupo de orden p^2q con p,q primos. Demuestre que G es soluble

Vamos a resolverlo por casos dependiendo de los valores de p, q

- a) p = q: En este caso G es de orden p^3 . Por tanto, G es un p-grupo y el ejemplo 39.2 b) de las notas nos asegura que G es soluble.
- b) p > q: Sea n_p la cantidad de p-subgrupos de Sylow de G. Por el tercer teorema de Sylow, sabemos que $n_p \equiv 1 \pmod{p}$ y que $n_p | (p^2q)/p^2 = q$ La segunda condición $n_p | q$ implica que $n_p = 1, q$ (porque q es primo). Si $n_p = q$, la primera condición implica que $q \equiv 1 \pmod{p}$ y entonces p|q-1. Pero como p > q y q-1 > 0 (porque q es primo), entonces p|q-1 es imposible.

Luego, la única posibilidad es que $n_p = 1$.

Entonces, G tiene un sólo p-subgrupo de Sylow, le llamamos G_1 (es un grupo de orden p^2). Y por el segundo teorema de Sylow, como es el único p-subgrupo de Sylow, G_1 es normal en G.

Entonces, podemos escribir la serie subnormal:

$$\{e\} \subset G_1 \subset G$$

Donde $\{e\} \subseteq G_1$, $G_1 \subseteq G$.

- Además, los factores son:
 - o $G_1/\{e\} \simeq G_1$. Que es un grupo de orden p^2 . Pero vimos en la tabla de la clase 31 que un grupo de orden p^2 es isomorfo a \mathbb{Z}_{p^2} o a $\mathbb{Z}_p \times \mathbb{Z}_p$, por lo que es abeliano.
 - o G/G_1 . Es un grupo de orden $p^2q/p^2=q$. Como q es primo, dicho grupo es cíclico y por tanto abeliano.

Como los factores son abelianos, G es soluble.

c) q > p:

Sea n_q la cantidad de q-subgrupos de Sylow de G.

Por el tercer teorema de Sylow, sabemos que $n_q \equiv 1 \pmod{q}$ y que $n_q | (p^2 q)/q = p^2$ La segunda condición $n_q | p^2$ implica que $n_q = 1, p, p^2$.

Si $n_q = p$, entonces la primera condición implica que $p \equiv 1 \pmod{q}$ y entonces q|p-1. Lo cual es imposible porque p < q y $p-1 \neq 0$

Si $n_q = 1$, entonces G sólo tiene un q-subgrupo de Sylow, digamos G_1 . Por el segundo teorema de Sylow, como G_1 es el único q-subgrupo de Sylow, tiene que ser normal en G. Entonces tenemos la serie:

$$\{e\} \subset G_1 \subset G$$

Donde por lo dicho antes, $\{e\} \subseteq G_1, G_1 \subseteq G$.

Además, los factores son:

- o $G_1/\{e\} \simeq G_1$. Que es un grupo de orden q y por tanto es cíclico y entonces abeliano.
- o G/G_1 es de orden $p^2q/q=p^2$. De nuevo por la tabla de la clase 31, un grupo de orden p^2 es abeliano.

Por lo que G es soluble.

Si $n_q = p^2$, entonces G tiene p^2 q-subgrupos de Sylow. Cada uno de estos subgrupos tiene q elementos distintos, de los cuales uno es la identidad y los demás son elementos de orden q (porque q es primo). Además, estos subgrupos se intersectan trivialemente porque sino la intersección tendría que ser un subgrupo de orden que divida a q y que no sea 1 o q, lo cual es imposible porque q es primo.

Entonces, tenemos una cantidad de $p^2(q-1)$ elementos de orden q.

Y el grupo tiene $p^2q - p^2(q-1) = p^2$ elementos que no son de orden q.

Por el primer teorema de Sylow, G tiene por lo menos un subgrupo de orden p^2 . Y acabamos de encontrar que sólo hay p^2 elementos que no son de orden q. Justo estos p^2 tienen que formar al único p-subgrupo de Sylow que llamaremos G_1 . Esto porque este grupo de Sylow no puede tener ningún elemento de orden q (pues $q \not\mid p^2$) y entonces un grupo de orden p^2 sólo puede tener a los p^2 elementos que existen que no son de orden q y eso nos deja un única opción.

Entonces, existe un único p-subgrupo de Sylow G_1 y por el segundo teorema de Sylow, es normal. Por lo que podemos formar la serie:

$$\{e\} \subset G_1 \subset G$$

Y es subnormal por lo dicho antes $\{e\} \subseteq G_1$, $G_1 \subseteq G$

Además, los factores son los mismos que en el caso b) y son abelianos.

Entonces G es soluble

b) Muestra un ejemplo de un grupo infinito soluble y un ejemplo de un grupo infinito no soluble

• Grupo infinito Soluble: Consideramos el grupo Z. Tenemos la serie trivial:

$$\{e\} \subset \mathbb{Z}$$

Es subnormal porque se cumple trivialmente que $\{e\} \subseteq \mathbb{Z}$. Además, $\mathbb{Z}/\{e\} \simeq \mathbb{Z}$ y por tanto el factor es abeliano.

Por lo que \mathbb{Z} es soluble.

• Grupo infinito no soluble: Consideramos el Grupo $A_5 \times \mathbb{Z}$.

Sabemos que A_5 es simple, por lo que sus únicos subgrupos normales son los triviales $\{e\}$ y A_5 . Y por tanto, la única serie subnormal de A_5 es $\{e\} \subset A_5$. Ahora consideramos una serie subnormal cualquiera de $A_5 \times \mathbb{Z}$:

$$\{e,e\} = G_{n+1} \subset G_n \subset \cdots \subset G_1 \subset G_0 = A_5 \times \mathbb{Z}$$

Donde cada subgrupo es normal en el siguiente.

Y cada G_i se ve de la forma $G_i = (H_i, K_i)$ con $H_i \leq A_5$, $K_i \leq \mathbb{Z}$.

Ahora bien, si consideramos solamente la serie de los subgrupos H_i , tendríamos una serie de la forma:

$$\{e\} = H_{n+1} \subset H_n \subset \cdots \subset H_1 \subset H_0 = A_5$$

Y ésta es una serie subnormal, porque sabemos que cada $(H_i, K_i) \subseteq (H_{i-1}, K_{i-1})$ por la serie subnormal de $A_5 \times \mathbb{Z}$. Y entonces en particular se cumple que $H_i \subseteq H_{i-1}$ Por lo que la serie $e_{A_5} \subset H_{n+1} \subset H_n \subset \cdots \subset H_1 \subset H_0 = A_5$ es subnormal. Pero por lo dicho antes, la única serie subnormal de A_5 es $\{e\} \subset A_5$.

Entonces, todos los grupos H_i son $\{e\}$ o A_5 (En particular, como cada grupo está metido en el siguiente, existe una $k \in \{1, \dots, n+1\}$ tal que los primeros grupos $H_{n+1}, H_n, H_{n-1}, \dots H_k$ son $\{e\}$ y a partir de ahí, los grupos $H_{k-1}, H_{k-2}, \dots, H_0$ son A_5)

Entonces, hay algún k tal que $H_k = \{e\}$ pero $H_{k-1} = A_5$.

Ahora consideramos el k-ésimo factor de la serie de composición de $A_5 \times \mathbb{Z}$:

$$\circ G_{k-1}/G_k = (H_{k-1}, K_{k-1})/(H_k, K_k) \simeq H_{k-1}/H_k \times K_{k-1}/K_k = A_5/\{e\} \times K_{k-1}/K_k \simeq A_5 \times K_{k-1}/K_k$$

Pero este factor $A_5 \times K_{k-1}/K_k$ no es abeliano porque A_5 no es abeliano. Con lo que hemos probado que toda serie subnormal de $A_5 \times \mathbb{Z}$ tiene un factor no abeliano y por tanto $A_5 \times \mathbb{Z}$ no es soluble.

c) Encuentra el primer derivado de A_4

Tenemos por definición que:

$$A_4' = \langle aba^{-1}b^{-1} \mid a, b \in A_4 \rangle$$

Consideramos el grupo de Klein $V = \{1, (12)(34), (14)(23), (13)(24)\} \subseteq A_4$ Sabemos que $V \subseteq A_4$.

Y además A_4/V tiene 12/4=3 elementos, por lo que este grupo cociente es abeliano. Ahora probaremos que $A_4'=V_4$:

• $A_4' \leq V$

Como A_4/V es abeliano, entonces para cualesquiera $a,b \in A_4$ se cumple que $aVbV = bVaV \implies abV = baV \implies ab(ba)^{-1}V = V \implies aba^{-1}b^{-1}V = V.$ $\implies aba^{-1}b^{-1} \in V$

Es decir, para todo $a, b \in A_4$ se cumple que $aba^{-1}b^{-1} \in V$.

Por lo que todos los elementos de A_4' están en V.

Además, en clase vimos que el grupo derivado es normal en el grupo original, es decir $A'_4 \leq A_4$.

Pero los únicos subgrupos normales de A_4 son $\{e\}$, V y A_4 .

Y como $A'_4 \leq V$, entonces no se puede tener que $A'_4 = A_4$.

Además, $A'_4 \neq \{e\}$, pues contiene por lo menos un elementos distinto a la identidad. Pues si escogemos a = (234), b = (123) entonces:

$$aba^{-1}b^{-1} = (234)(123)(234)^{-1}(123)^{-1} = (234)(123)(243)(132) = (14)(23)$$

Por lo que la única posibilidad que nos queda es que $A_4^\prime=V$

d) Sean $n \geq 5$ y k un campo finito. Determina si $GL_n(k)$ es un grupo soluble. (Utiliza lo que sabes de $PSL_n(k)$

No es soluble.

Supongamos que $GL_n(k)$ es soluble. Entonces el teorema 39.7 nos asegura que todo subgrupo y todo cociente de $GL_n(k)$ es soluble.

En particular, consideramos el subgrupo $SL_n(k) \leq GL_n(k)$. Y consideramos ahora el cociente $PSL_n(k) := GL_n(k)/SL_n(k)$. Según el teorema 39.7, este grupo debería de ser soluble.

Sin embargo, vimos en clase que $PSL_n(k)$ es simple, por lo que la única serie subnormal es $\{e\} \subset PSL_n(k)$.

Sin embargo, $PSL_n(k)$ no es abeliano, por lo que el cociente $PSL_n(k)/\{e\} \simeq PSL_n(k)$ no es abeliano y entonces la única serie subnormal no tiene factores abelianos. Esto implica que $PSL_n(k)$ no es soluble y por tanto, contradice al teorema 39.7.

Entonces, concluimos que $GL_n(k)$ no es soluble.