

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MATA42 - Matemática Discreta - I Aulas - Conjuntos

Definição, Operações e Cardinalidade

Professora: Isamara

Noção intuitiva

Noção primitiva de Conjunto em 1874 por Georg Cantor

Chama-se CONJUNTO o grupamento num todo de objetos, bem definidos e discernírveis, de nossa percepção ou de nosso entendimento, chamados os *elementos* do conjunto.

Noção de Conjunto em 1935 por Nicolas Bourbaki

Um CONJUNTO é formado de *elementos* suscetíveis de possuírem certas **propriedades** e de terem em si, ou com *elementos* de outros conjuntos, certas *relações* .

Notações

Os CONJUNTOS serão denotados por letras maiúsculas:

$$A, B, C, \ldots, Z$$
.

Os ELEMENTOS dos conjuntos serão denotados por letras minúsculas:

Representação dos Conjuntos

$$A = \{a, b, c, \dots, z\}.$$

lê-se: "A é o CONJUNTO cujos elementos são a, b, c, \ldots, z ".

- M := { Abril, Junho, Setembro, Novembro } "Conjunto dos nomes dos meses com 30 dias"
- $V := \{a, e, i, o, u\}$ "Conjunto das vogais"
- **3** $E := \{ 0, 1, 2 \}$ "Conjunto das raízes da equação: $x^3 3x^2 + 2x = 0$ "
- **◎** L := { m, c, a, o } "Conjunto das letras da palavra macaco"

Relação de Pertinência - Giuseppe Peano (1858-1932)

Relação de Pertinência

• Se *x* é elemento de um conjunto *A*, escrevemos:

$$x \in A$$

lê-se: "x pertence ao conjunto A".

• Se x não é elemento de um conjunto A, escrevemos:

$$x \notin A$$

lê-se: "x não pertence ao conjunto A".

Relação de Pertinência - Giuseppe Peano (1858-1932)

Relação de Pertinência

Observação:

Podemos também indicar um elemento de um conjunto escrevendo:

$$A \ni x$$

lê-se: "A contém x".

• Se x não é elemento de um conjunto A, podemos também escrever:

$$A \not\ni x$$

lê-se: "A não contém x".

Relação de Pertinência - Giuseppe Peano (1858-1932)

EXEMPLOS: Dado o CONJUNTO dos meses do ano com 30 dias

 $M := \{ Abril, Junho, Setembro, Novembro \}$

podemos afirmar,

- Abril $\in M$ ou $M \ni$ Abril
- Junho, Setembro $\in M$ ou $M \ni$ Junho, Setembro
- Julho $\notin M$ ou $M \not\ni$ Julho
- Janeiro, Agosto $\notin M$ ou $M \not\ni$ Janeiro, Agosto

Família de Conjuntos

Definição(FAMÍLIA DE CONJUNTOS)

Um **conjunto** cujos **elementos** também são conjuntos denomina-se FAMÍLIA DE CONJUNTOS ou uma COLEÇÃO DE CONJUNTOS.

```
A := \{\{ \text{ Abril, Junho, Setembro, Novembro } \}, \{ \text{ Janeiro, Março, Maio, Julho, Agosto, Outubro, Dezembro } \} 
Então, temos
```

- { Abril, Junho, Setembro, Novembro } ∈ A
 A ∋ { Abril, Junho, Setembro, Novembro }
- { Janeiro, Março, Maio, Julho, Agosto, Outubro, Dezembro } $\in A$
- Abril, Agosto ∉ A
- { Fevereiro } ∉ *A*

Conjunto Universo

Definição:

Chama-se CONJUNTO UNIVERSO ou apenas **universo** de uma teoria o *conjunto* de todos os entes que são sempre considerados como *elementos* nessa teoria.

Notação: \mathcal{U}

- Conjunto de todos os meses do ano: $\mathcal{U} = \{$ Janeiro, Fevereiro, Março, Abril, Maio, Junho, Julho, Agosto, Setembro, Outubro, Novembro, Dezembro $\}$
- \mathcal{U} é o conjunto de todos as pessoas matriculadas em 2023-1 no Componente Currilar MATA42 do DMAT-UFBa.
- 777

• Conjunto dos Números Naturais:

$$\mathbb{N} := \{1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots\}$$

• Conjunto dos Números Inteiros:

$$\mathbb{Z} := \{\ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$$

ou

$$\mathbb{Z} := \{0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\}$$

Definindo um Conjunto num Universo

De forma usual, tem-se duas maneiras de DAR ou DEFINIR um **conjunto** num determinado **universo**:

(1) ENUMERANDO individualmente todos os elementos pertencentes ao conjunto obtendo-o na FORMA ANALÍTICA ou FORMA TABULAR

Neste caso, a ordem não importa.

- $M = \{ \text{ Janeiro, Dezembro } \} = \{ \text{ Dezembro, Janeiro } \}$
- $V = \{ a, e, i, o, u \} = \{ o, a, e, i, u \}$

Definindo um Conjunto num Universo

(2) ENUCIANDO um **critério de pertinência** que é satisfeito por todos os elementos do conjunto obtendo-o na FORMA SINTÉTICA ou FORMA CONSTRUTIVA. **critério de pertinência** consiste em definir propriedades para os elementos.

$$\{x\mid x\in\mathcal{U}\ \mathrm{e}\ \psi(x)\};$$
 ou
$$\{x\in\mathcal{U}\mid \psi(x)\};\ \mathrm{ou}\ \{x\mid \psi(x)\};$$

onde,

x é um elemento arbitrário do conjunto.

 $\psi(x)$ é uma propriedade bem definida do elemento x.

Definindo um Conjunto num Universo

(2) FORMA SINTÉTICA ou FORMA CONSTRUTIVA.

- $A := \{x \in \mathbb{N} \mid x \text{ \'e par } \}$
- $B := \{x \in \mathbb{Z} \mid x \ge 7\}$
- $C := \{x \in \mathbb{N} \mid 3 \le x \le 10\}$
- ???

Conjuntos Numéricos Importantes

• Conjunto dos Racionais:

$$\mathbb{Q} := \{x \mid x = \frac{a}{b}; a, b \in \mathbb{Z}; b \neq 0\}$$

Notamos que todo $x \in \mathbb{Z}$ é também um número racional: $x = \frac{a}{1}; a = x$

• Conjunto dos Irracionais:

$$\mathbb{I}:=\{x\mid x\notin\mathbb{Q}\}$$
 todos os números que não podem ser escritos como fração, como as RAÍZES NÃO EXATAS e as DÍZIMAS NÃO PERIÓDICAS.

• Conjunto dos Reais:

$$\mathbb{R} := \{ x \mid x \in \mathbb{Q} \text{ ou } x \in \mathbb{I} \}$$

Conjuntos Numéricos Importantes

• Conjunto dos Complexos:

$$\mathbb{C} := \{ z \mid z = a + bi; a, b \in \mathbb{R}; i = \sqrt{-1} \}$$

Notamos que todo $x \in \mathbb{R}$ é também um número complexo: x = a + 0.i

Sejam
$$z_1, z_2 \in \mathbb{C}$$
; $z_1 = a + bi$; $z_2 = c + di$; a; b; c; $d \in \mathbb{R}$; $i = \sqrt{-1}$; $i^2 = -1$

- Conjugado de z: $\overline{z} = a bi$
- Adição: $z_1 + z_2 = (a + bi) + (c + di) = (a + c) + (b + d)i$
- Multiplicação: $z_1.z_2 = (a.c) + (a.di) + (bi.c) + (bi.di) = ac + adi + bci + bdi^2 = (ac bd) + (bc + ad)i$
- Divisão: $\frac{z_1}{z_2}$

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{\overline{z_2}}{\overline{z_2}} = \frac{(a+bi)}{(c+di)} \frac{(c-di)}{(c-di)} = \frac{ac-adi+bic-bdi^2}{cc-cdi+cdi-didi} = \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$

- Conjunto dos Números Inteiros Não Negativos: $\mathbb{Z}_+ := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots\} = \{x \in \mathbb{Z} | x \geq 0\};$
- Conjunto dos Números Inteiros Não Positivos: $\mathbb{Z}_-:=\{0,-1,-2,-3,-4,-5,-6,-7,-8,-9,\ldots\}=\{x\in\mathbb{Z}|x\leq 0\};$
- Conjunto dos Números Inteiros Positivos ou Negativos: $\mathbb{Z}^* := \{1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \ldots\} = \{x \in \mathbb{Z} | x \neq 0\};$
- Conjunto dos Números Inteiros Positivos: $\mathbb{Z}_+^* := \{1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots\} = \{x \in \mathbb{Z} | x > 0\};$
- Conjunto dos Números Inteiros Negativos: $\mathbb{Z}_{-}^{*} := \{-1, -2, -3, -4, -5, -6, -7, -8, -9, \ldots\} = \{x \in \mathbb{Z} | x < 0\};$

- Conjunto dos Números Racionais Não Negativos:
 - $\mathbb{Q}_+ := \{ x \in \mathbb{Q} | x \ge 0 \};$
- Conjunto dos Números Racionais Não Positivos:
 - $\mathbb{Q}_{-} := \{ x \in \mathbb{Q} | x \le 0 \};$
- Conjunto dos Números Racionais Positivos ou Negativos: $\mathbb{O}^* := \{x \in \mathbb{O} | x \neq 0\}$:
- Conjunto dos Números Racionais Positivos:
 - $\mathbb{Q}_+^* := \{ x \in \mathbb{Q} | x > 0 \};$
- Conjunto dos Números Racionais Negativos:
 - $\mathbb{Q}_{-}^{*}:=\{x\in\mathbb{Q}|x<0\};$

- Conjunto dos Números Reais Não Negativos: $\mathbb{R}_+ := \{x \in \mathbb{R} | x \geq 0\};$
- Conjunto dos Números Reais Não Positivos: $\mathbb{R}_{-} := \{x \in \mathbb{R} | x \leq 0\};$
- Conjunto dos Números Reais Positivos ou Negativos: $\mathbb{R}^* := \{x \in \mathbb{R} | x \neq 0\};$
- Conjunto dos Números Reais Positivos: $\mathbb{R}_+^* := \{x \in \mathbb{R} | x > 0\};$
- Conjunto dos Números Reais Negativos: $\mathbb{R}_{-}^{*}:=\{x\in\mathbb{R}|x<0\};$

Conjunto Unitário

Definição:

Chama-se CONJUNTO UNITÁRIO todo conjunto A constituído de um único elemento, a.

Notação: $A = \{a\}$; onde a é um único elemento que determina o conjunto A.

- ② $B := \{MATA42\}$
- **3** $C := \{x \in \mathbb{N} \mid x \text{ \'e divisor de } 1\} = \{1\}$

Conjunto Vazio

Definição:

Dizemos que o conjunto de elementos que verificam uma condição impossível, ou seja, o conjunto que não possui elemento é o ${
m Conjunto}$ VAZIO.

Notação: \emptyset ou $\{\}$.

- **1** $A := \{x \in \mathbb{N} \mid x = x + 1\} = \emptyset;$
- **2** $B := \{x \in \mathbb{N} \mid x \neq x\} = \emptyset$
- **3** $C := \{x \in \mathbb{R} \mid x^2 + 1 = 0\} = \emptyset$

Igualdade de Conjuntos

Axioma da Extensionalidade

Dois conjuntos A e B dizem-se IGUAIS se, e somente se, todo elemento que pertence a um deles também pertence ao outro.

Notação: A = B.

Caso contrário, dizem-se que A e B são DIFERENTES.

Notação: $A \neq B$.

- **4** $A := \{1, 3, 5\}$ e $B := \{3, 3, 1, 5, 1, 5\}$; A = B
- ② $A := \{a\} \in B := \{a, b\}; A \neq B$
- **3** $A := \{a, \{a\}\} \in B := \{a\}; A \neq B$
- **4** $A := \{x \in \mathbb{N} \mid 5 < x < 9\} \text{ e } B := \{x \in \mathbb{N} \mid 6 \le x \le 8\}; A = B$

Igualdade de Conjuntos

Propriedades: Dados $A, B \in C$ conjuntos quaisquer em U.

- (i) Reflexiva: A = A
- (ii) SIMÉTRICA: Se A = B então B = A
- (iii) Transitiva: Se A = B e B = C então A = C

Relação de Inclusão: Subconjunto ou Parte

DEFINIÇÃO: Relação de Inclusão

Diz-se que um conjunto A está CONTIDO num conjunto B se, e somente se, todo elemento de A também é um elemento de B.

(Se $x \in A$ então $x \in B$).

Notação: $A \subseteq B$. lê-se: "A está contido em B".

OBSERVAÇÃO: Neste caso, podemos escrever;

 $B \supseteq A$.

lê-se: B contém A.

DEFINIÇÃO: Subconjunto ou Parte

Diz-se que um conjunto A é SUBCONJUNTO ou PARTE de conjunto B se, e somente se, A está CONTIDO em B.

Relação de Inclusão: Subconjunto

Observação:

Se existe pelo menos um elemento de A que **não** pertença a B, então A não está contido em B.

Consequentemente, A não é SUBCONJUNTO(PARTE) de B.

NOTAÇÃO: $A \not\subseteq B$; lê-se: "A não está contido em B".

Ou seja, B não contém A. NOTAÇÃO: $B \not\supseteq A$

Relação de Inclusão: Subconjunto

PROPRIEDADES: Dados $A, B \in C$ conjuntos quaisquer em U.

- (i) REFLEXIVA: A ⊆ AO conjunto A é chamado de PARTE CHEIA de A
- (ii) Transitiva: Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$
- (iii) Anti-Simétrica: Se $A \subseteq B$ e $B \subseteq A$ então A = B
- (iv) O conjunto vazio está contido em qualquer conjunto $A: \emptyset \subseteq A$.

 O conjunto vazio é SUBCONJUNTO(PARTE) de A denomidado PARTE VAZIA de A
- (v) A está contido em \mathcal{U} ; ou seja, $A \subseteq \mathcal{U}$.

Observação: A PARTE CHEIA e a PARTE VAZIA de um conjunto dizem-se as PARTES TRIVIAIS (SUBCONJUNTOS TRIVIAIS) desse conjunto.

Relação de Inclusão: Subconjunto Próprio

DEFINIÇÃO: Subconjunto Próprio

Sejam os conjuntos A e B. Diz-se que A é um SUBCONJUNTO PRÓPRIO de B se, e somente se, A está contido em B mas $A \neq B$ e $A \neq \emptyset$.

NOTAÇÃO (Relação de Inclusão): $A \subset B$; lê-se: " A está contido propriamente em B ou $B \supset A$ lê-se: " B contém propriamente A

OBSERVAÇÃO: Note que todos os elementos de A pertencem ao B; porém, existe pelo menos um elemento em B que não pertence ao A.

Relação de Inclusão

EXEMPLOS:

- **1** $A := \{1, 3, 5\}$ e $B := \{x \in \mathbb{N} \mid 1 \le x \le 8\}$; $A \subset B$ ou $B \supset A$
- ② $A := \{a, \{a\}\} \in B := \{a\}; B \subset A \text{ ou } A \supset B$
- Seja $A := \{x \mid x \text{ \'e um inteiro positivo }\}; \mathbb{N} \subseteq A.$

Observação: Dado o conjunto $A = \{a, b, c, d\}$ pode-se afirmar que

- $\{a, b, c, d\}$ e \emptyset são as PARTES TRIVIAIS de A.
- $\{a,c\}\subset A$; Subconjunto Próprio de A.
- $a, c \in A$.

Conjuntos Comparáveis

Definição:

Dois conjuntos A e B dizem-se COMPARÁVEIS se um dos conjuntos está contido no outro.

- Os conjuntos $A:=\{1,3,5\}$ e $B:=\{x\in\mathbb{N}\mid 1\leq x\leq 8\}$ são comparáveis; pois $A\subset B$
- ② $A := \{a, \{a\}\}\$ e $B := \{a\}$ são comparáveis; pois $B \subset A$
- $\textcircled{0} \ \ \mathbb{Q} \ \ \text{e} \ \mathbb{I} \ \ \text{n\~{a}o} \ \ \text{s\~{a}o} \ \ \text{compar\'aveis} \ \ \text{pois} \ \ \mathbb{Q} \not\subset \mathbb{I} \ \ \text{e} \ \mathbb{I} \not\subset \mathbb{Q}$
- **③** Seja $A := \{x \mid x \text{ \'e um inteiro positivo }\}$; $\mathbb{N} \subseteq A$; logo, os conjuntos $A \in \mathbb{N}$ são comparáveis.

Questão.1: Escreva, sob forma simbólica, os seguintes conjuntos:

- (a) Conjunto dos números $\{1, 3, 5, 7, 9, \ldots\}$
- (b) Conjunto dos números {2, 3, 5, 7, 11, ...}
- (c) Conjunto das letras da palavra "universidade"

Questão.2: Verifique se as sentenças abaixo são verdadeiras ou falsas:

- (a) $\{1\} \in A = \{1, 2, 3, 4\}$
- (b) $3, 4 \in B = \{3, 4, 5\}$
- (c) $\emptyset \in \mathbb{Z}$
- (d) $\{\emptyset\} \in C = \{\{\emptyset\}\}\$

Exercícios

Questão.3: Definir, pela enumeração dos seus elementos, os seguintes conjuntos:

- (a) Conjunto de todos os números primos menores que 10.
- (b) Conjunto de todos os meses que terminam com a letra " o ".
- (c) Conjunto de todos os múltiplos de 5 menores ou iguais a 20.
- (d) Conjunto de todos os divisores de 30.

Questão.4: Sendo $A = \{2, 4, 6, 8, 10\}$, represente sob *forma tabular* os seguintes conjuntos:

- (a) $\{x \in A \mid x^2 \in A\}$
- (b) $\{x \in A \mid x \text{ \'e m\'ultiplo de 2}\}$
- (c) $\{x \in A \mid x+1 \text{ \'e primo }\}$
- (d) $\{x \in A \mid x \text{ \'e impar }\}$

Questão.5: Represente sob forma sintética os seguintes conjuntos:

- (a) $A = \{1, 2, 3, 4, 5\}$
- (b) $B = \{2, 4, 6, 8, 10, \ldots\}$
- (c) $C = \{1, 3, 5, 7, 9, \ldots\}$
- (d) $D = \{3, 6, 9, 12, 15, \ldots\}$

Exercícios

Questão.6: Ache um conjunto igual aos seguintes conjuntos:

- (a) $A = \{x \in \mathbb{N} \mid 2 \le x < 6 \text{ e } x \ne 3\}$
- (b) $B = \{x \in \mathbb{N} \mid x \le 10 \text{ e } x = 2n + 1; n \in \mathbb{N}\}$
- (c) $C = \{x^2 + 1 \mid x \in \mathbb{N} \text{ e } x \le 5\}$
- (d) $D = \{3x \mid x \in \mathbb{N} \text{ e } x \leq 7\}$

Questão.7: Sejam os conjuntos:

$$A = \{2, 3, 4\}, B = \{2, 3, 5, 6, 7\}, C = \{5, 6, 7\}, D = \{2, 4\} \text{ e}$$

$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Verifique quais as seguintes sentenças são falsas.

- (a) $A \subset B$
- (b) $D \supseteq A$
- (c) $C \subset B \subset \mathcal{U}$
- (d) B 对 D

Exercícios

```
Questão.8: Sejam os conjuntos: A = \{x \in \mathbb{N} \mid 2 \text{ divide } x\}, B = \{x \in \mathbb{N} \mid x \text{ é múltiplo de 5}\}, C = \{x \in \mathbb{N} \mid x \text{ é par }\}, D = \{10, 20, 30, 40, \ldots\}. Verifique quais destes conjuntos são comparáveis.
```

Questão.1: Escreva, sob forma simbólica, os seguintes conjuntos:

- (a) $\{x \in \mathbb{N} \mid x = 2y 1; y \in \mathbb{N}\}$
- (b) $\{x \in \mathbb{N} \mid x \text{ \'e n\'umero primo }\}$
- (c) { u, n, i, v, e, r, s, d, a }

Questão.2:

- (a) $\{1\} \in A = \{1, 2, 3, 4\}$ (F)
- (b) $3, 4 \in B = \{3, 4, 5\}$ (V)
- (c) $\emptyset \in \mathbb{Z}$ (F)
- (d) $\{\emptyset\} \in C = \{\{\emptyset\}\}\}$ (V)

Exercícios

Questão.3:

- (a) $\{2,3,5,7\}$
- (b) { janeiro, fevereiro, março, maio, junho, julho, agosto, setembro, outubro, novembro, dezembro }
- (c) {5, 10, 15, 20}
- (d) {1, 2, 3, 5, 6, 10, 15, 30}

Exercícios

```
Questão.4: A = \{2, 4, 6, 8, 10\}
(a) {2}
(b) {2, 4, 6, 8, 10}
(c) {2, 4, 6, 10}
(d) {}
 Questão.5:
(a) A = \{x \in \mathbb{N} \mid x \le 5\}
(b) B = \{x \in \mathbb{N} \mid x = 2v : v \in \mathbb{N}\}
(c) C = \{x \in \mathbb{N} \mid x = 2y - 1; y \in \mathbb{N}\}\
(d) D = \{x \in \mathbb{N} \mid x = 3v; v \in \mathbb{N}\}
```

Exercícios

Questão.6:

- (a) $A = \{x \in \mathbb{N} \mid 1 < x \le 5 \text{ e } x \ne 3\}$
- (b) $B = \{x \in \mathbb{N} \mid 2 \nmid x \text{ e } 1 < x < 11\}$
- (c) $C = \{x \in \mathbb{N} \mid x = y^2 + 1; y = 1, 2, 3, 4, 5\}$
- (d) $D = \{x \in \mathbb{N} \mid 3 \mid x \in x < 8\}$

Questão.7: Sejam os conjuntos:

$$A = \{2, 3, 4\}, B = \{2, 3, 5, 6, 7\}, C = \{5, 6, 7\}, D = \{2, 4\}$$
 e

$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Verifique quais as seguintes sentenças são falsas.

- (a) $A \subset B$ (F)
- (b) $D \supseteq A$ (F)
- (c) $C \subset B \subset \mathcal{U}$ (V)
- $(d) B \supset D (V)$

Exercícios

```
Questão.8: Sejam os conjuntos: A = \{x \in \mathbb{N} \mid 2 \text{ divide } x\}, B = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 5}\}, C = \{x \in \mathbb{N} \mid x \text{ \'e par }\}, D = \{10, 20, 30, 40, \ldots\}.
```

Verifique quais destes conjuntos são comparáveis.

Temos, por definição, que dois conjuntos A e B são ditos comparáveis se, e somente se, $A \subseteq B$ ou $A \supseteq B$.

Verificando a relação de inclusão entre os conjuntos A, B, C, D:

$$A \supseteq C$$
 e $A \subseteq C$, ou seja, $A = C$;

$$A\supset D$$
 , $D\subset C$ e , $D\subset B$;

Portanto, os conjuntos A e C são comparáveis, A e D , C e D; D e B.

Diagrama de Venn

- John Venn foi um matemático e lógico inglês do século XIX (1834 1923).
- Venn fez contribuições importantes para Lógica Matemática, Teoria da Probabiliade e Filosofia da Ciência.
- Venn formou em matemática (1857) e foi nomeado professor (1862) na Universidade de Cambridge.
- Em 1880 surgem os Diagramas de Venn no trabalho de John Venn:
 Da representação mecânica e diagramática de proposições e raciocínios .
- Os Diagramas de Venn são também conhecidos como Diagramas de Euler-Venn.
 O próprio Venn os chamava de Círculos Eulerianos fazendo referência aos Círculos de matemático suiço Leonhard Euler (1707 1783).
- Em 1881 publicou *Symbolic Logic*(*Lógica Simbólica*).
- Em 1888 publicou *Logic of Chance*(A *Lógica de Chance*) influenciando fortemente o desenvolvimento da Estatística.
- Em 1889 publicou The Principles of Empirical Logic (Os Princípios da Lógica Empírica)

Diagrama de Venn

Podemos utilizar os DIAGRAMAS DE VENN a fim de representar, graficamente, os conjuntos e as operações entre os conjuntos.

EXEMPLO.1:

Seja $A\subset \mathcal{U};\ A:=\{1,2,3,4,5,6\}$ e $\mathcal{U}:=\{1,2,3,4,5,6,7,8,9\}$.

Diagrama de Venn

Podemos utilizar os DIAGRAMAS DE VENN a fim de representar, graficamente, os conjuntos e as operações entre os conjuntos.

EXEMPLO.2: Igualdade dos Conjuntos

Sejam
$$A,B\subset\mathcal{U}$$
; $A:=\{1,2,3,4,5,6\}$, $B:=\{x\in\mathbb{N}\mid x\leq 6\}$ e $\mathcal{U}:=\{1,2,3,4,5,6,7,8,9\}$.

Neste exemplo,

$$A = B$$
; istoé, $B \subseteq A$ e $A \subseteq B$.

Diagrama de Venn

EXEMPLO.3: Relação de Inclusão

Sejam
$$A,B\subset\mathcal{U};\ A:=\{1,2,3,4,5,6\}$$
 , $B:=\{1,2,3,4\}$ e $\mathcal{U}:=\{1,2,3,4,5,6,7,8,9\}$

Neste exemplo.

$$B \subset A \subset \mathcal{U}$$
.

Conjuntos Finitos e Infinitos

DEFINICÃO: Correspondência Unívoca

Dados dois conjuntos A e B diz-se que uma CORRESPONDÊNCIA entre os elementos de A e B é UNÍVOCA de A para B, se a todo elemento de A corresponder um único elemento de B

Conjuntos Finitos e Infinitos

DEFINIÇÃO: Correspondência Biunívoca

Dados dois conjuntos A e B diz-se que uma CORRESPONDÊNCIA entre os elementos de A e B é BIUNÍVOCA se for **unívoca** de A para B como de B para A.

Conjuntos Finitos e Infinitos

DEFINIÇÃO: Conjunto Finito

Diz-se que um conjunto A que contém $n \in \mathbb{N}$ elementos é FINITO se pode estabelecer uma **correspondência biunívoca** entre os elementos dos conjuntos:

$$A = \{a_1, a_2, \dots, a_n\} \in \{1, 2, \dots, n\}.$$

Caso contrário, diz-se que o conjunto A é INFINITO.

Conjuntos Finitos e Infinitos

DEFINIÇÃO: Cardinalidade

Diz-se que a CARDINALIDADE de A é o número de elementos de A.

Se existem exatamente $n \in \mathbb{N}$ elementos distintos em A, diz-se que a CARDINALIDADE de A é n.

NOTAÇÃO: |A| ou #A ou card(A) ou n(A).

- $A := \{x \in \mathbb{N} \mid x < 10\}; |A| = 9$
- $|\emptyset| = 0$
- $A := \{x \mid x \text{ \'e uma vogal }\}; \#A = 5$
- $A = \{\emptyset\}; n(A) = 1$

DEFINIÇÃO: Conjunto das Partes

Diz-se Conjunto das Partes (Conjunto Potência) de um conjunto A, o conjunto cujos elementos são todas as partes de A, incluindo as **triviais**. Notação: $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

- $A := \{1, 2, 3\}$ $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

• OBSERVAÇÃO: Se #A = n então seu CONJUNTO POTÊNCIA, $\mathcal{P}(A)$, também é um conjunto **finito** com 2^n elementos.

- $A := \{1, 2, 3\}; |A| = 3$ $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$ $|\mathcal{P}(A)| = 2^3 = 8$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ $|\mathcal{P}(\emptyset)| = 2^0 = 1$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$ $|\mathcal{P}(\{\emptyset\})| = 2^1 = 2$
- $\mathcal{P}(\{b\}) = \{\emptyset, \{b\}\}\$ $|\mathcal{P}(\{b\})| = 2^1 = 2$

Complementar de um Subconjunto

Definição:Complementar Relativo

Seja $A \subseteq B$ $(A \in \mathcal{P}(B))$. Diz-se que o COMPLEMENTAR DE A RELATIVO a B é o conjunto de todos os elementos de B que não pertencem a A.

O conjunto B é denominado CONJUNTO DE REFERÊNCIA ou REFERENCIAL.

Notação: C_B^A .

$$C_B^A = \{x \mid x \in B \text{ e } x \notin A\}$$

Sejam
$$B = \{x \in \mathbb{N} \mid x \le 10\}$$
 e $A := \{x \in \mathbb{N} \mid x = 2n; n = 1, 2, 3, 4, 5\}$ $A \subset B$:

$$C_B^A = \{x \in \mathbb{N} \mid x = 2n - 1; n = 1, 2, 3, 4, 5\}$$

Diagrama de Venn

EXEMPLOS: Complementar Relativo

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{a, b, c, d, e\}$, $B := \{c, d, e\}$, $\mathcal{U} := \{a, b, c, d, e, f, g, h\}$. Neste exemplo,

$$B \subset A \subset \mathcal{U} \in C_A^B = \{a, b\}.$$

Diagrama de Venn

EXEMPLOS: Complementar Relativo

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{manga, lima\}, B := \{uva, pera, mac\tilde{a}\}, \}$

 $\mathcal{U} := \{\textit{laranja}, \textit{manga}, \textit{lima}, \textit{abacaxi}, \textit{uva}, \textit{pera}, \textit{mac}\tilde{a}\} \ .$

Neste exemplo,

 $B \subset \mathcal{U}, A \subset \mathcal{U}$ e Notem que o conjunto $\{uva, pera, mac\tilde{a}\}$ não representa C_B^A pois $A \not\subseteq B$

Diagrama de Venn

EXEMPLOS: Complementar Relativo

Sejam $A,B\in\mathcal{P}(\mathcal{U});\ A:=\{1,2,3,5,7\},\ B:=\{2,4,6,8,10\},\ \mathcal{U}:=\{x\in\mathbb{N}\mid x<11\}$. Neste exemplo,

 $B \subset \mathcal{U}, A \subset \mathcal{U}$ e Notem que o conjunto $\{4,6,8,10\}$ não representa C_B^A pois $A \not\subseteq B$.

Complementar em relação ao Conjunto Universo

Definição:Complementar Relativo

Sejam $\mathcal U$ conjunto universo e $A \in \mathcal P(\mathcal U)$. Diz-se que o conjunto

$$\{x \mid x \in \mathcal{U} \text{ e } x \notin A\}$$

é o Complemento de A relativo a \mathcal{U} ou apenas Complementar de A. Notação: $C_{\mathcal{U}}^{A}$ ou A' ou A^{c} ou $\sim A$ ou \overline{A} .

- Sejam $\mathcal{U}=\mathbb{N}$ e $A:=\{x\in\mathbb{N}\mid x\geq 15\}$ então $C_{\mathcal{U}}^A:=\{x\in\mathbb{N}\mid x<15\}$
- ② Sejam $\mathcal{U} = \mathbb{N}$, $A := \{x \in \mathbb{N} \mid x = 2y; \text{ para algum } y \in \mathbb{N}\}$, e $B := \{x \in \mathbb{N} \mid x = 2y 1; \text{ para algum } y \in \mathbb{N}\}$, então $\sim A = B$ e $\sim B = A$;

Diagrama de Venn

EXEMPLOS: Complementar

Sejam ${\cal A}\subset {\cal U};\; {\cal A}:=\{1,2,3,4,5,6\}\; {\cal U}:=\{1,2,3,4,5,6,7,8,9\}$.

$$C_{\mathcal{U}}^{A}=\{7,8,9\}$$

Diagrama de Venn

EXEMPLOS: Complementar

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{a, b, c, d, e\}$, $B := \{c, d, e\}$, $\mathcal{U} := \{a, b, c, d, e, f, g, h\}$. Neste exemplo.

$$B \subset A \subset \mathcal{U} \in B' = \{a, b, f, g, h\}.$$

Diagrama de Venn

EXEMPLOS: Complementar

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{manga, lima\}$, $B := \{uva, pera, mac\tilde{a}\}$,

 $\mathcal{U} := \{\textit{laranja}, \textit{manga}, \textit{lima}, \textit{abacaxi}, \textit{uva}, \textit{pera}, \textit{mac}\tilde{a}\} \ .$

Neste exemplo,

$$B \subset \mathcal{U}, A \subset \mathcal{U}$$
 e $A' = \{laranja, abacaxi, uva, pera, macã\}.$

Diagrama de Venn

EXEMPLOS: Complementar

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{1, 2, 3, 5, 7\}$, $B := \{2, 4, 6, 8, 10\}$, $\mathcal{U} := \{x \in \mathbb{N} \mid x < 11\}$. Neste exemplo.

$$B \subset \mathcal{U}, A \subset \mathcal{U} \text{ e} \sim A = \{4, 6, 8, 9, 10\}.$$

Sejam o conjunto universo \mathcal{U} e $A \in \mathcal{P}(\mathcal{U})$. Então;

- (i) $\sim (\sim A) = A$ $C_{\mathcal{U}}^{C_{\mathcal{U}}^{A}} = \{x \mid x \in \mathcal{U} \text{ e } x \notin C_{\mathcal{U}}^{A}\} = \{x \mid x \in \mathcal{U} \text{ e } x \in A\} = \{x \mid x \in A\} = A$
- (ii) $\sim \emptyset = \mathcal{U}$ $C_{\mathcal{U}}^{\emptyset} = \{x \mid x \in \mathcal{U} \text{ e } x \notin \emptyset\} = \{x \mid x \in \mathcal{U}\} = \mathcal{U}$
- (iii) $\sim \mathcal{U} = \emptyset$ $C_{\mathcal{U}}^{\mathcal{U}} = \{ x \mid x \in \mathcal{U} \text{ e } x \notin \mathcal{U} \} = \emptyset$
- (iv) Se $A \subseteq B$ então $C_{\mathcal{U}}^B \subseteq C_{\mathcal{U}}^A$ e, Se $C_{\mathcal{U}}^B \subseteq C_{\mathcal{U}}^A$ então $A \subseteq B$. Supondo que $A \subseteq B$, ou seja, se $x \in A$ então $x \in B$.
 - E, considerando, por definição: $C_{\mathcal{U}}^B = \{x \mid x \in \mathcal{U} \text{ e } x \notin B\}$ então
 - E, considerando, por definição: $C_{\mathcal{U}} = \{x \mid x \in \mathcal{U} \text{ e } x \notin B\}$ então $x \in \mathcal{U} \text{ e } x \notin A = C_{\mathcal{U}}^A$. Ou seja, se $x \in C_{\mathcal{U}}^B$ então $x \in C_{\mathcal{U}}^A$. Portanto, $C_{\mathcal{U}}^A \supset C_{\mathcal{U}}^B$.
 - Agora, supondo $C_{\mathcal{U}}^{A} \supseteq C_{\mathcal{U}}^{B}$.
 - Se $x \in A$ então $x \notin C_{\mathcal{U}}^A$. Se $x \notin C_{\mathcal{U}}^A$ então $x \notin C_{\mathcal{U}}^B$. Portanto, $x \in B$. Concluindo que $A \subseteq B$.

Operações: Intersecção

Definição:

Chama-se **interseção** de dois conjuntos A e B ao conjunto de todos os elementos que pertencem simultaneamente a A e a B.

Notação: $A \cap B$.

$$A \cap B := \{x \mid x \in A \mathbf{e} x \in B\}$$

lê-se: "A INTERSECÇÃO B" ou "A INTER B".

- **①** Sejam $A := \{0, 1, 4, 6\}$ e $B := \{1, 3, 4, 5\}$ então $(A \cap B) := \{1, 4\}$
- ② Sejam $A := \{x \in \mathbb{N} \mid x < 15\}$ e $B := \{x \in \mathbb{N} \mid 10 < x < 20\}$ então $(A \cap B) := \{x \in \mathbb{N} \mid 10 < x < 15\}$

Diagrama de Venn

EXEMPLOS: Intersecção

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{a, b, c, d, e\}$, $B := \{c, d, e\}$, $\mathcal{U} := \{a, b, c, d, e, f, g, h\}$. Neste exemplo,

$$B \subset A \subset \mathcal{U}$$
 então $A \cap B = B$ e $A \cap \mathcal{U} = A$

Operações: Intersecção

Definição: Conjuntos Disjuntos

Dois conjuntos A e B dizem-se DISJUNTOS se, e somente se, não têm elementos comuns, $A \cap B = \emptyset$.

Caso contrário, diz-se que A e B SE CORTAM (ou SE INTERCEPTAM).

Notação: A ≬ B.

lê-se: "A INTERCEPTA B" ou "A CORTA B".

Diagrama de Venn

EXEMPLOS: Interseção - Conjuntos Disjuntos Sejam $A, B \in \mathcal{P}(\mathcal{U}); A := \{ \text{ manga, lima } \}, B := \{ \text{ uva, pera, maçã } \}, \mathcal{U} := \{ \text{ laranja, manga, lima, abacaxi, uva, pera, maçã } \}.$ Neste exemplo,

$$B \subset \mathcal{U}, A \subset \mathcal{U} \in A \cap B = \{\}.$$

Diagrama de Venn

EXEMPLOS: Interseção - Conjuntos que se Cortam

Sejam $A, B \in \mathcal{P}(\mathcal{U})$; $A := \{1, 2, 3, 5, 7\}$, $B := \{2, 4, 6, 8, 10\}$, $\mathcal{U} := \{x \in \mathbb{N} \mid x < 11\}$. Neste exemplo,

$$A \cap B = \{2\} \neq \emptyset$$
, isto é , $A \between B$.

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

- (i) $(A \cap B) \subseteq A \in (A \cap B) \subseteq B$
 - Se $x \in A \cap B$ então $x \in A$ e $x \in B$. Logo, todo elemento de $A \cap B$ é também um elemento de A. Portanto, $A \cap B \subseteq A$.
 - E, todo elemento de $A \cap B$ é também um elemento de B . Portanto, $A \cap B \subseteq B$.
- (ii) $(A \subseteq B)$ se, e somente se, $(A \cap B) = A$.
 - Se $(A \subseteq B)$ então $(A \cap B) = A$ e Se $(A \cap B) = A$ então $(A \subseteq B)$
 - Supondo $(A \subseteq B)$; tem-se que se $x \in A$ então $x \in A$ e $x \in B$.
 - Se $x \in A$ e $x \in B$ então $x \in A \cap B$. Portanto, $A \subseteq A \cap B$.
 - Por (i): $A \cap B \subseteq A$. Logo, pela propriedade **anti-simétrica** da inclusão entre conjuntos, segue-se que $(A \cap B) = A$
 - Agora, vamos provar que Se $(A \cap B) = A$ então $(A \subseteq B)$
 - Supondo que $(A \cap B) = A$ e pela propriedade (i): $A \cap B \subseteq B$ e, portanto, $A \subseteq B$.

Propriedades (Intersecção)

```
Sejam os conjuntos A, B, C \in \mathcal{P}(\mathcal{U}). Então;
```

- (iii) $C \subseteq A$ e $C \subseteq B$ se, e somente se $C \subseteq (A \cap B)$
 - Se $C \subseteq A$ e $C \subseteq B$ então $C \subseteq (A \cap B)$, e
 - Se $C \subseteq (A \cap B)$ então $C \subseteq A$ e $C \subseteq B$
 - Supondo que $C \subseteq A$ e $C \subseteq B$ então se $x \in C$ segue que $x \in A$ e $x \in B$.
 - consequentemente, $x \in A \cap B$ e; portanto, $C \subseteq A \cap B$.
 - Agora, supondo $C \subseteq A \cap B$ e utilizando a propriedade (i) : Se $C \subseteq A \cap B$ e $A \cap B \subseteq A$ então $C \subseteq A$.
 - Se $C \subseteq A \cap B$ e $A \cap B \subseteq B$ então $C \subseteq B$.
- (iv) Se $A \subseteq B$ então $(A \cap C) \subseteq (B \cap C)$
 - Se $x \in A$ então $x \in B$.
 - Supondo que $x \in A \cap C$ segue que $x \in A$ e $x \in C$ e, portanto, $x \in B$ e $x \in C$.
 - Logo, Se $x \in A \cap C$ tem-se que $x \in (B \cap C)$.
 - Concluindo que $(A \cap C) \subseteq (B \cap C)$

Propriedades(Intersecção)

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

- (v) IDEMPOTENTE: $A \cap A = A$
- $A \subseteq A$, portanto $A \cap A = A$. (vi) Elemento Absorvente: $A \cap \emptyset = \emptyset$
 - $\emptyset \subseteq A$, portanto $A \cap \emptyset = \emptyset$.
- (vii) ELEMENTO NEUTRO: $A \cap \mathcal{U} = A$ $A \subseteq \mathcal{U}$, portanto $A \cap \mathcal{U} = A$.
- (viii) Complemento: $A \cap A' = \emptyset$
 - Se $x \in A$, então $x \notin A'$; portanto, $(A \cap A') = \emptyset$. (ix) COMUTATIVA: $A \cap B = B \cap A$
 - $A \cap B = \{x \mid x \in A \text{ e } x \in B\} = \{x \mid x \in B \text{ e } x \in A\} = B \cap A.$
 - (x) ASSOCIATIVA: $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cap B) \cap C = \{x \mid x \in A \cap B \in x \in C\} = \{x \mid x \in A \in x \in B \in x \in C\} = \{x \mid x \in A \in x \in B \cap C\} = A \cap (B \cap C)$

Operações: Intersecção - Família de Conjuntos

DEFINIÇÃO:Intersecção - Família de Conjuntos

Chama-se INTERSECÇÃO DOS n CONJUNTOS A_1, A_2, \ldots, A_n ao conjunto dos elementos que pertencem simultaneamente a todos esses n conjuntos.

$$\{x \mid x \in A_1 \ \mathbf{e} \ x \in A_2 \ \mathbf{e} \ , \dots, \ \mathbf{e} \ x \in A_n\}$$

Notação:

$$A_1 \cap A_2 \cap \ldots \cap A_n$$

ou

$$\bigcap_{i=1}^n A_i$$
.

Ou seja;

$$\bigcap_{i=1}^{n} A_i = \{x \mid x \in A_i; i = 1, 2, \dots, n\}$$

EXEMPLOS:

$$(A \cap B) = \emptyset, (A \cap C) = \{2\}, (B \cap C) = \{1, 3, 5, 7\} = B \in (A \cap B \cap C) = \emptyset$$

② Sejam os conjuntos $A_1=\{x\in\mathbb{R}\mid x\leq 17\}$, $A_2=\{x\in\mathbb{R}\mid 10< x< 20\}$ e $A_3=\{x\in\mathbb{R}\mid x\geq -3\}$ então

$$\bigcap_{i=1}^{3} A_i = \{ x \in \mathbb{R} \mid x \le 17 \text{ e } 10 < x < 20 \text{ e } x \ge -3 \} = \{ x \in \mathbb{R} \mid 10 < x \le 17 \}$$

Operações: Reunião ou União

Definição: Reunião ou União

Chama-se REUNIÃO ou UNIÃO de dois conjuntos A e B ao conjunto de **todos os** elementos que pertencem a A ou a B.

Notação: $A \cup B$.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

- **①** Sejam $A := \{2,4,6\}$ e $B := \{1,3,5\}$ então $(A \cup B) := \{1,2,3,4,5,6\}$
- ② Sejam $A:=\{x\in\mathbb{N}\mid x<7\}$ e $B:=\{x\in\mathbb{N}\mid 10< x<20\}$ então $(A\cup B):=\{x\in\mathbb{N}\mid x<7$ ou $10< x<20\}$
- **③** Sejam $A = \{x \in \mathbb{N} \mid x \text{ \'e par }\}$ e $B := \{x \in \mathbb{N} \mid x \text{ \'e impar }\}$ então $(A \cup B) = \{x \in \mathbb{N} \mid x \text{ \'e par ou } x \text{ \'e impar }\} = \mathbb{N}$
- **③** Sejam os conjuntos $A = \{x \in \mathbb{Z}_+ \mid x = 5y; y \in \mathbb{Z}_+ \}$ e $B = \{x \in \mathbb{Z}_+ \mid 10 \mid x\}$ então $(A \cup B) = \{x \in \mathbb{Z}_+ \mid x = 5y; y \in \mathbb{Z}_+ \text{ ou } 10 \mid x\} = A$

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

- (i) $A \subseteq A \cup B$ e $B \subseteq A \cup B$ Se $x \in A$ então $x \in A \cup B$. Logo, todo elemento de A é também um elemento de $A \cup B$. Portanto, $A \subseteq A \cup B$.
 - E, todo elemento de B é também um elemento de $A \cup B$. Portanto, $B \subseteq A \cup B$.
- (ii) $(A \subseteq B)$ se, e somente se, $(A \cup B) = B$. Se $(A \subseteq B)$ então $(A \cup B) = B$ e Se $(A \cup B) = B$ então $(A \subseteq B)$ Supondo $(A \subseteq B)$.
 - Se $x \in A \cup B$ então $x \in A$ ou $x \in B$; mas, por suposição, $(A \subseteq B)$ então, $x \in B$. Portanto, $A \cup B \subseteq B$ e pela propriedade (i) $B \subseteq A \cup B$, segue-se que $A \cup B = B$. Agora, vamos provar que Se $(A \cup B) = B$ então $(A \subseteq B)$
 - Supondo que $(A \cup B) = B$ e pela propriedade (i): $A \subseteq A \cup B$; portanto, $A \subseteq B$.

Propriedades(União)

```
Sejam os conjuntos A, B, C \in \mathcal{P}(\mathcal{U}). Então;
(iii) A \subset C e B \subset C se, e somente se (A \cup B) \subset C
      Se A \subseteq C e B \subseteq C então (A \cup B) \subseteq C
      e , Se (A \cup B) \subset C então A \subseteq C e B \subseteq C
      Supondo que A \subseteq C e B \subseteq C.
      então se x \in A \cup B segue que x \in C ou x \in B; mas, por suposição, se x \in A
      então x \in C e se x \in B então x \in C
      Logo, se x \in A \cup B então x \in C. Portanto, A \cup B \subseteq C.
      Agora, supondo (A \cup B) \subseteq C e pela a propriedade (i) :
      A \subseteq A \cup B e B \subseteq A \cup B. Segue que A \subseteq C e B \subseteq C.
      Se C \subseteq A \cap B e A \cap B \subseteq B então C \subseteq B.
```

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

- (iv) Se $A \subseteq B$ então $(A \cup C) \subseteq (B \cup C)$ Se $x \in A$ então $x \in B$. Supondo que $x \in A \cup C$ segue que $x \in A$ ou $x \in C$ e, portanto, $x \in B$ ou $x \in C$. Logo, Se $x \in A \cup C$ tem-se que $x \in (B \cup C)$. Concluindo que $(A \cup C) \subseteq (B \cup C)$
- (v) IDEMPOTENTE: $A \cup A = A$ $A \subseteq A$, portanto $A \cup A = A$.

Propriedades (União)

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

(vi) Elemento Neutro:
$$A \cup \emptyset = A$$

$$\emptyset \subseteq A$$
, portanto $A \cup \emptyset = A$.
(vii) Elemento Absorvente: $A \cup \mathcal{U} = \mathcal{U}$

$$A \subseteq \mathcal{U}$$
, portanto $A \cup \mathcal{U} = \mathcal{U}$.

(viii) Complemento:
$$A \cup A' = \mathcal{U}$$

Se
$$x \in A \cup A'$$
, então $x \in \mathcal{U}$; logo $A \cup A' \subseteq \mathcal{U}$.

E, se
$$x \in \mathcal{U}$$
 então $x \in A$ ou $x \in A'$; portanto, $\mathcal{U} \subseteq A \cup A'$.
Assim, como $A \cup A' \subseteq \mathcal{U}$ e $\mathcal{U} \subseteq A \cup A'$, Conclui-se que $A \cup A' = \mathcal{U}$.

(ix) COMUTATIVA:
$$A \cup B = B \cup A$$

 $A \cup B = \{x \mid x \in A \text{ ou } x \in B\} = \{x \mid x \in B \text{ ou } x \in A\} = B \cup A.$

(x) ASSOCIATIVA:
$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cup B) \cup C = \{x \mid x \in A \cup B \text{ ou } x \in C\} = \{x \mid x \in A \text{ ou } x \in B \text{ ou } x \in C\} = \{x \mid x \in A \text{ ou } x \in B \cup C\} = A \cup (B \cup C)$

Propriedades - União e Intersecção

Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cap (B \cup C) = \{x \mid x \in A \text{ e } x \in B \cup C\} = \{x \mid x \in A \text{ e } (x \in B \text{ ou } x \in C)\} = \{x \mid (x \in A \text{ e } x \in B) \text{ ou } (x \in A \text{ e } x \in C)\} = \{x \mid x \in (A \cap B) \text{ ou } x \in (A \cap C)\} = (A \cap B) \cup (A \cap C)$$

(xii) Distributiva da união com relação à interseção :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C) = \{x \mid x \in A \text{ ou } x \in B \cap C\} = \{x \mid x \in A \text{ ou } (x \in B \text{ e } x \in C)\} = \{x \mid (x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \in C)\} = \{x \mid x \in (A \cup B) \text{ e } x \in (A \cup C)\} = (A \cup B) \cap (A \cup C)$$

(xiii) LEIS DE ABSORÇÃO: $A \cup (A \cap B) = A$ e $A \cap (A \cup B) = A$ Supondo que $A \subseteq (A \cup B)$ então $A \cap (A \cup B) = A$; E, supondo que $(A \cap B) \subseteq A$ então $A \cup (A \cap B) = A$. Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$. Então;

```
(xiv) Leis de De Morgan: (A \cap B)' = A' \cup B' = (A \cup B)' = A' \cap B'

(A \cap B)' = \{x | x \in \mathcal{U} \text{ e } x \notin A \cap B\} = \{x | x \in \mathcal{U} \text{ e } (x \notin A \text{ ou } x \notin B)\} = \{x | (x \in \mathcal{U} \text{ e } x \notin A) \text{ ou } (x \in \mathcal{U} \text{ e } x \notin B)\} = \{x | (x \in A') \text{ ou } (x \in B')\} = A' \cup B';

(A \cup B)' = \{x | x \in \mathcal{U} \text{ e } x \notin A \cup B\} = \{x | x \in \mathcal{U} \text{ e } (x \notin A \text{ e } x \notin B)\} = \{x | (x \in \mathcal{U} \text{ e } x \notin A) \text{ e } (x \in \mathcal{U} \text{ e } x \notin B)\} = \{x | (x \in A') \text{ e } (x \in B')\} = A' \cap B'.
```

Operações: União - Família de Conjuntos

DEFINIÇÃO: União - Família de Conjuntos

Chama-se UNIÃO DOS n CONJUNTOS A_1, A_2, \ldots, A_n ao conjunto dos elementos que pertencem a, pelo menos, um desses n conjuntos.

$$\{x\mid x\in A_1 \text{ ou } x\in A_2 \text{ ou },\ldots, \text{ ou } x\in A_n\}$$

Notação:

$$A_1 \cup A_2 \cup \ldots \cup A_n$$

ou

$$\bigcup_{i=1}^n A_i$$
.

Operações: União - Família de Conjuntos

EXEMPLOS:

- **1** Sejam $A = \{2, 4, 6\}$, $B = \{1, 3, 5, 7\}$ e $C = \{1, 2, 3, 5, 7\}$ então $(A \cup B) = \{1, 2, 3, 4, 5, 6, 7\}, (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\}, (B \cup C) = \{1, 2, 3, 5, 7\} = C$ e $(A \cup B \cup C) = (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\}$
- ② Sejam os conjuntos $A_1=\{x\in\mathbb{R}\mid x\leq 17\}$, $A_2=\{x\in\mathbb{R}\mid 10< x< 20\}$ e $A_3=\{x\in\mathbb{R}\mid x\geq -3\}$ então

$$\bigcap_{i=1}^{3} A_i = \{ x \in \mathbb{R} \mid x \le 17 \text{ ou } 10 < x < 20 \text{ ou } x \ge -3 \} = \{ x \in \mathbb{R} \mid x \ge -3 \} = A_3$$

Operações: Complementar - Interseção - União

Exercícios:

(1) Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$; tais que:

$$A \cap B = \{b, c\}, C_{\mathcal{U}}^{A} = \{d, e, f, g\}, C_{\mathcal{U}}^{B} = \{a, e, f\}$$

Determine os elementos dos conjuntos A, B, \mathcal{U} .

- (2) Sejam os conjuntos não-vazios $A, B, C \in \mathcal{P}(\mathcal{U})$. Construir os diagramas de Venn em cada item abaixo.
 - (a) $A \subset B, C \subset B, A \cap C = \emptyset$
 - (b) $A \subset C, B \cap C = \emptyset$
 - (c) $A \subset (B \cap C), B \subset C, A \neq C$
- (3) Prove que

Se
$$A \subseteq B$$
 e $C \subseteq D$, então $(A \cap C) \subseteq (B \cap D)$.

Operações: Complementar - Interseção - União

Exercícios:

- (4) Demonstre:

 - (a) Se $A \cap B = \emptyset$ então $A \cap B' = A$ (b) $A' \subset B'$ se, e somente se, $A \cap B = B$
- (5) Sejam os conjuntos $A, B \in \mathcal{P}(\mathcal{U})$; tais que:

$$A \cup B = \{1, 3, 8, 9\}, C_{\mathcal{U}}^A = \{4, 6, 9\}, C_{\mathcal{U}}^B = \{3, 4, 6\}$$

Determine os elementos dos conjuntos A, B, \mathcal{U} .

(6) Sejam os conjuntos $A, B, C \in \mathcal{P}(\mathcal{U})$; tais que:

$$A \cap B = \{2,4\}, A \cup B = \{2,3,4,5\}, A \cap C = \{2,3\}, A \cup C = \{1,2,3,4\}$$

Determine os elementos dos conjuntos A, B, C.

Exercícios:

- (7) Sejam os conjuntos não-vazios $A, B \in \mathcal{P}(\mathcal{U})$. Construir os diagramas de Venn em cada item abaixo.
 - (a) $A \cup (A' \cap B) = A \cup B$
 - (b) $A \cap (A' \cup B) = A \cap B$
- (8) Verifique, utilizando as propriedades, as igualdades apresentadas nos itens abaixo:
 - (a) $A \cap B \cap A' = \emptyset$
 - (b) $(A \cup B)' \cup (A' \cap B) = A'$
 - (c) $[(A \cap B) \cup (A \cap B')] \cap (A' \cup B) = A \cap B$

Operações: Complementar - Interseção - União

Exercícios:

- (9) Simplifique, utilizando as propriedades, as seguintes expressões :
 - (a) $(A \cup B) \cap (A \cup B')$
 - (b) $(\mathcal{U} \cup B) \cap (A \cup \emptyset)$
 - (c) $(A \cup B) \cap (A \cup B')$
 - (d) $(A \cup B) \cap (A \cup B')$
- (10) Demonstre as fórmulas abaixo, utilizando as propriedades:
 - (a) $(A \cap C) \cup (A \cap D) \cup (B \cap C) \cup (B \cap D) = (A \cup B) \cap (C \cup D)$
 - (b) $(A \cup C) \cap (A \cup D) \cap (B \cup C) \cap (B \cup D) = (A \cap B) \cup (C \cap D)$
- (11) Prove que

Se
$$A \subseteq B$$
 e $C \subseteq D$, então $(A \cup C) \subseteq (B \cup D)$.

Exercícios:

- (12) Demonstre:
 - (a) Se $A \cap B = \emptyset$ então $A \cup B' = B'$
 - (b) $A' \subseteq B'$ se, e somente se, $A \cup B = A$
 - (c) $A \cup B = A \cap B$ se, e somente se , A = B
- (13) Escreva a DUAL de cada expressão abaixo: (Na expressão DUAL à original trocamos \emptyset por \mathcal{U} e as operações \subseteq por \supseteq , \cap por \cup e vice versa, mantendo a igualdade.)
 - (a) $(A \cap U) \cap (\emptyset \cup A') = \emptyset$
 - (b) $(A \cup U) \cap (\emptyset \cap A) = \emptyset$

Operações: Diferença

Definição:

Chama-se DIFERENÇA entre os conjuntos A e B ao conjunto de todos os elementos de A que não pertencem a B.

Notação: A - B ou $A \setminus B$.

lê-se: "A menos B" ou diferença entre A e B.

$$A - B = \{x \mid x \in A \mathbf{e} \ x \notin B\}$$

Note que:

• Se $A \subseteq B$ então $C_B^A = \{x \mid x \in B \text{ e } x \notin A\} = B - A$. Ou seja, a DIFERENÇA entre B e A é o COMPLEMENTO DE A RELATIVO AO B. Do mesmo modo, a DIFERENÇA entre \mathcal{U} e A é o COMPLEMENTAR de A:

$$A' = C_{\mathcal{U}}^{A} = \mathcal{U} - A = \{x \mid x \in \mathcal{U} \text{ e } x \notin A\}$$

• $B - A = \{x \mid x \in B \text{ e } x \notin A\} = \{x \mid x \in B \text{ e } x \in A'\} = B \cap A'.$

EXEMPLOS:

- Sejam $A := \{0, 1, 4, 5, 6\}$ e $B := \{1, 3, 5\}$ então $(A \setminus B) := \{0, 4, 6\}$
- § Sejam $A:=\{x\in\mathbb{N}\mid 10\leq x\leq 20\}$ e $B:=\{x\in\mathbb{N}\mid 10< x< 20\}$ então $(A\backslash B):=\{10,20\}$

Operações: Diferença

Observe que:

A DIFERENÇA ENTRE CONJUNTOS não é uma operação comutativa. Ou seja,

$$A - B \neq B - A$$

EXEMPLOS:

- **①** Sejam $A := \{0, 1, 4, 5, 6\}$ e $B := \{1, 3, 5\}$ então $(A \setminus B) := \{0, 4, 6\}$ e, $(B \setminus A) := \{3\}$
- ② Sejam $A:=\{x\in\mathbb{N}\mid 10\leq x\leq 20\}$ e $B:=\{x\in\mathbb{N}\mid 10< x< 20\}$ então $(A\backslash B):=\{10,20\}$ e, $(B\backslash A):=\emptyset$

Operações: Diferença

PROPRIEDADES:

(i)
$$A - \emptyset = A \in \emptyset - A = \emptyset$$

D]:

$$A - \emptyset = A \cap \emptyset' = A \cap \mathcal{U} = A$$
.

$$\emptyset - A = \emptyset \cap A' = \emptyset.$$

(ii)
$$A - \mathcal{U} = \emptyset$$
 e $\mathcal{U} - A = A'$

D]:

$$A - \mathcal{U} = A \cap \mathcal{U}' = A \cap \emptyset = \emptyset.$$

$$\mathcal{U} - A = \mathcal{U} \cap A' = A'$$
.

(iii)
$$A - A = \emptyset$$

D]:

$$A - A = A \cap A' = \emptyset$$

Operações: Diferença

PROPRIEDADES:

(iv)
$$A - A' = A$$

D]:
 $A - A' = A \cap (A')' == A \cap A = A$

(v)
$$(A - B)' = A' \cup B$$

D]:
 $(A - B)' = (A \cap B')' = (A)' \cup (B')' = A' \cup B$

(vi)
$$A - B = B' - A'$$

D]:
 $A - B = A \cap B' = (B)' \cap A = B' \cap (A')' = B' - A'$

Operações: Diferença

Propriedades:

(vii)
$$(A - B) - C = A - (B \cup C) e A - (B - C) = (A - B) \cup (A \cap C)$$

D]:
 $(A - B) - C = (A \cap B') \cap C' = A \cap (B' \cap C') = A \cap (B \cup C)' = A - (B \cup C)$
 $e A - (B - C) = A \cap (B \cap C')' = A \cap (B' \cup (C')') = A \cap (B' \cup C) =$
 $(A \cap B') \cup (A \cap C) = (A - B) \cup (A \cap C)$
(viii) $A \cup (B - C) = (A \cup B) - (C - A) e A \cap (B - C) = (A \cap B) - (A \cap C)$
D]:
 $A \cup (B - C) = A \cup (B \cap C') = (A \cup B) \cap (A \cup C') = (A \cup B) \cap (A' \cap (C')')' =$
 $(A \cup B) - (A' \cap C) = (A \cup B) - (C \cap A') = (A \cup B) - (C - A)$
 $e A \cap (B - C) = A \cap (B \cap C') = (A \cap B) \cap C' = [(A \cap B) \cap A'] \cup [(A \cap B) \cap C'] =$
 $(A \cap B) \cap (A' \cup C') = (A \cap B) \cap (A \cap C)' = (A \cap B) - (A \cap C)$

Note que $[(A \cap B) \cap A'] = \emptyset$ e $\emptyset \cup [(A \cap B) \cap C'] = [(A \cap B) \cap C']$. Assim, a igualdade é mantida.

Operações: Diferença

PROPRIEDADES:

(ix)
$$A - (B \cup C) = (A - B) \cap (A - C)$$
 e $A - (B \cap C) = (A - B) \cup (A - C)$
D]:
 $A \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A - B) \cap (A - C)$
e
 $A - (B \cap C) = A \cap (B \cap C)' = A \cap (B' \cup C') = (A \cap B') \cup (A \cap C') = (A - B) \cup (A - C)$

Notas

- Na propriedade (viii) tem-se a DISTRIBUTIVA em relação à interseção mas o mesmo não acontece em relação à união.
- Na propriedade (ix) não vale a DISTRIBUTIVA em relação à interseção e nem em relação à união.

Todavia, nota-se que a DISTRIBUTIVIDADE acontece com a troca das operações interseção por união e vice-versa.

Operações: Diferença

PROPRIEDADES:

(x)
$$(A \cup B) - C = (A - C) \cup (B - C)$$
 e $(A \cap B) - C = (A - C) \cap (B - C)$
D]:
 $(A - C) \cup (B - C)$
e
 $(A - C) \cap (B - C)$
Nota:

Na propriedade (x) é válida a propriedade DISTRIBUTIVA em relação à interseção e à união. O que comprova, comparando com a propriedade (ix), que a propriedade **comutativa** não é válida na operação DIFERENÇA.

(xi)
$$A - (A - B) = A \cap B$$
 e $(A - B) - B = A - B$
D]:
 $A - (A - B) = A \cap (A \cap B')' = A \cap (A' \cup B) = (A \cap A') \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B$
e $(A - B) - B = (A \cap B') \cap B' = A \cap (B' \cap B') = A \cap B' = A - B$

Operações: Diferença Simétrica

Definição:

Chama-se DIFERENÇA SIMÉTRICA dos conjuntos A e B ao conjunto de todos os elementos que pertencem a um e somente a um dos conjuntos A e B.

Noτação: AΔB

lê-se: "Diferença Simétrica de A e B"

$$A\Delta B = \{x \mid (x \in A \text{ e } x \notin B) \text{ ou } (x \in B \text{ e } x \notin A)\} = \{(A - B) \cup (B - A)\}$$

DIAGRAMA DE VENN - DIFERENÇA SIMÉTRICA

EXEMPLOS: Sejam $A, B \in \mathcal{P}(\mathcal{U}); A := \{a, b, c, d, e\}, B := \{c, d, e, f, g\}, \mathcal{U} := \{a, b, c, d, e, f, g, h\}$.

$$A\Delta B = (A - B) \cup (B - A) = \{a, b\} \cup \{f, g\} = \{a, b, f, g\}$$

Note que
$$A\Delta B = (A \cup B) - (A \cap B) = C_{A \cup B}^{(A \cap B)}$$

Diferença Simétrica

Note que
$$A \triangle B = (A \cup B) - (A \cap B) = C_{A \cup B}^{(A \cap B)}$$

 $A \triangle B = (A - B) \cup (B - A) = (A \cap B') \cup (B \cap A') = [(A \cap B') \cup B] \cap [(A \cap B') \cup A'] = [(A \cup B) \cap (B' \cup B)] \cap [(A \cup A') \cap (B' \cup A')] = [(A \cup B) \cap (U)] \cap [(U) \cap (B' \cup A')] = (A \cup B) \cap (B' \cup A') = (A \cup B) \cap (A \cap B)' = (A \cup B) - (A \cap B) = C_{A \cup B}^{(A \cap B)}$

Operações: Diferença Simétrica

EXEMPLOS:

- **1** Sejam $A := \{x \in \mathbb{N} \mid x \ge 5\}$ e $B := \{x \in \mathbb{N} \mid x \le 10\}$ então $(A \setminus B) := \{x \in \mathbb{N} \mid x > 10\}$ $(B \setminus A) := \{x \in \mathbb{N} \mid x < 5\}$ $(A \triangle B) := \{x \in \mathbb{N} \mid x < 5 \text{ ou } x > 10\}$
- Sejam $A:=\{x\in\mathbb{N}\mid x=2y; \text{ para algum }y\in\mathbb{N}\}$ e $B:=\{x\in\mathbb{N}\mid x=2y-1; \text{ para algum }y\in\mathbb{N}\}$ então $(A\backslash B):=A$ $(B\backslash A):=B$ $(A\Delta B):=A\cup B=\mathbb{N}$

Propriedades: Diferença Simétrica

Sejam
$$A, B, C \in \mathcal{P}(\mathcal{U})$$
.

(i)
$$A\Delta A = \emptyset$$

 $A\Delta A = (A \cup A) - (A \cap A) = A - A = \emptyset$

(ii)
$$A\Delta\emptyset = A$$

 $A\Delta\emptyset = (A\cup\emptyset) - (\emptyset\cap A) = A\cup\emptyset = A$

(iii)
$$A\Delta \mathcal{U} = A'$$

 $A\Delta \mathcal{U} = (A \cup \mathcal{U}) - (\mathcal{U} \cap A) = \mathcal{U} - A = A'$

(iv)
$$A\Delta A' = \mathcal{U}$$

 $A\Delta A' = (A \cup A') - (A \cap A') = \mathcal{U} \cup \emptyset = \mathcal{U}$

Sejam $A, B, C \in \mathcal{P}(\mathcal{U})$.

- (v) COMUTATIVA: $A\Delta B = B\Delta A$ $A\Delta B = (A \cup B) - (A \cap B) = (B \cup A) - (B \cap A) = (B\Delta A)$
- (vi) $(A\Delta B)' = (A\cap B)\cup (A'\cap B')$ $(A\Delta B)' = ((A-B)\cup (B-A))' = (A-B)'\cap (B-A)' = (A\cap B')'\cap (B\cap A')' =$ $(A'\cup B)\cap (B'\cup A) = ((A'\cup B)\cap B')\cup ((A'\cup B)\cap A) =$ $((A'\cap B')\cup (B\cap B'))\cup ((A'\cap A)\cup (B\cap A)) =$ $((A'\cap B')\cup (\emptyset))\cup ((\emptyset)\cup (B\cap A)) = (A'\cap B')\cup (B\cap A) = (B\cap A)\cup (A'\cap B')$

Propriedades: Diferença Simétrica

```
(vii) Associativa: (A\Delta B)\Delta C = A\Delta(B\Delta C)
                           (A\Delta B)\Delta C = \{x \mid (x \in (A\Delta B) \text{ e } x \notin C) \text{ ou } (x \notin (A\Delta B) \text{ e } x \in C)\}; \text{ mas }.
                            (A \Delta B) = \{x \mid (x \in A \in x \notin B) \text{ ou } (x \notin A \in x \in B)\}:
                              então .
                           \{x - ((x \in A \in x \notin B) \text{ ou } (x \notin A \in x \in B)) \in x \notin C) \text{ ou } (((x \notin A \text{ ou } x \in B) \in (x \in A)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \in x \notin C) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } ((x \notin A \text{ ou } x \in B)) \text{ ou } (
                          A \in x \notin B)) e x \in C)}.
                           Portanto.
                           (x \in A \in x \in B \in x \in C) ou (x \in A \in x \notin B \in x \notin C) ou (x \notin A \in x \in B \in x \notin C)
                           C) ou (x \notin A \in x \notin B \in x \in C)
                           A\Delta(B\Delta C) = \{x \mid (x \in A \text{ e } x \notin (B\Delta C)) \text{ ou } (x \notin A \text{ e } x \in (B\Delta C))\}; \text{ mas },
                           (B \Delta C) = \{x \mid (x \in B \text{ e } x \notin C) \text{ ou } (x \notin B \text{ e } x \in C)\}; \text{ então } .\{x \mid (x \notin A \text{ e } ((x \in C)))\}
                           B \in x \notin C) ou (x \notin B \in x \in C))) ou (x \in A \in ((x \notin B \text{ ou } x \in C) \in (x \in B \in x \notin C)))}.
                           Neste caso, obtém-se também.
                            (x \in A \in x \in B \in x \in C) ou (x \in A \in x \notin B \in x \notin C) ou (x \notin A \in x \in B \in x \notin C)
                            C) ou (x \notin A \in x \notin B \in x \in C)
                           Consequentemente, (A\Delta B)\Delta C = A\Delta(B\Delta C).
```

Sejam $A, B, C \in \mathcal{P}(\mathcal{U})$.

(viii) DISTRIBUTIVA DA INTERSEÇÃO EM RELAÇÃO À DIFERENÇA SIMÉTRICA: $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ $A \cap (B \triangle C) = A \cap ((B \cup C) - (B \cap C)) = (A \cap (B \cup C)) - (A \cap (B \cap C)) =$ $(A \cap (B \cup C)) \cap (A \cap (B \cap C))' = (A \cap (B \cup C)) \cap (A' \cup B') \cup (A \cap C)' =$ $((A \cap B) \cup (A \cap C)) \cap ((A' \cup B') \cup (A' \cup C')) = ((A \cap B) \cup (A \cap C)) \cap ((A \cap B) \cap (A \cap C))'$

$$((A \cap B) \cup (A \cap C)) \cap ((A' \cup B') \cup (A' \cup C')) = ((A \cap B) \cup (A \cap C)) \cap ((A \cap B) \cap (A \cap C))' =$$

$$((A \cap B) \cup (A \cap C)) - ((A \cap B) \cap (A \cap C)) = ((A \cap B) \triangle (A \cap C))$$

$$(A \cap B) \cup (B \cap C) = (A \cup B \cup C) - (A' \cap B \cap C)$$

(ix)
$$A \cup (B \triangle C) = (A \cup B \cup C) - (A' \cap B \cap C)$$

 $A \cup (B \triangle C) = A \cup ((B \cup C) - (B \cap C)) = (A \cup (B \cup C)) - ((B \cap C) - A) =$
 $(A \cup B \cup C) - ((B \cap C) \cap A') = (A \cup B \cup C) - (A' \cap B \cap C)$

Propriedades: Diferença Simétrica

Sejam
$$A, B, C \in \mathcal{P}(\mathcal{U})$$
.
(x) $(A\Delta B) - C = (A \cap C')\Delta(B \cap C')$ e $A - (B\Delta C) = (A \cap B \cap C) \cup (A \cap B' \cap C')$
 $(A\Delta B) - C = (A\Delta B)\cap C' = C'\cap(A\Delta B) = (C'\cap A)\Delta(C'\cap B) = (A\cap C')\Delta(B\cap C')$
e;
 $A - (B\Delta C) = A\cap(B\Delta C)' = A\cap((B\cap C)\cup(B'\cap C')) = (A\cap B\cap C)\cup(A\cap B'\cap C')$

Exercícios

Questão.1: Sejam os conjuntos:
$$A = \{0, 1, 3, 4\}, B = \{2, 3, 4, 5\}, C = \{4, 5\}, D = \{5, 6, 7\}. Determine :$$

(a) $(A \cup C) \cap B$

(b) $(B \cap C) \cup D$

(c) $(B - A) \cap C$

(d) $(B - C) \cup (A \cap B)$

(e) $(B \Delta C)$

(f) $(A \Delta D)$

(g) $\mathcal{P}(C)$

(h) $\mathcal{P}(D)$

Exercícios

Questão.2: Sejam os conjuntos: $A = \{2, 3, 4\}, B = \{2, 3, 5, 6, 7\}, C = \{5, 6, 7\}, D = \{2, 4\}.$ Determine as seguintes relações entre os conjuntos:

- (a) $(A \cap B) \cup C =$
- (b) $(C \cup D) \cap B =$
- (c) $(A \cap D) \cup (A \cap C) =$
- (d) $(C \cap D) \cup A =$
- (e) $(B \setminus A) \cup D =$
- (f) $B (C \cup D) =$
- (g) B (A D) =
- (h) $A (D \cap A) =$
- (i) $(A \setminus D) \cup (B \setminus C) =$

uestão.3: Demonstrar:

- (a) $(A-B) \subseteq A \in (A-B) \subseteq (A \cup B)$
- (b) (A = B) se, e somente se A B = B A
- (c) $(A \subseteq B)$ se, e somente se $A B = \emptyset$
- (d) $(A \cap B) = \emptyset$ se, e somente se A B = A
- (e) Se $(A \subseteq B)$ e C = B A, então A = B C
- (f) Se $(A \cap B) = \emptyset$ e $(A \cup B) = C$, então A = C B
- (g) $(A-B) \cap B = \emptyset$
- (h) $(A B) \cup B = A \cup B$
- (i) $(A \cup B) B = A B$

Exercícios

uestão.4: Demonstrar:

- (a) $A\Delta B = A'\Delta B'$
- (b) $(A \cap B) \cap (A \Delta B) = \emptyset$
- (c) Se $A\Delta C = B\Delta C$, então A = B
- (d) $A\Delta B = \emptyset$ se e somente se A = B

Exercícios

Questão.5: Sejam os conjuntos A e B, tais que $\#A = 10, \#(A \cap B) = 3$ e $\#(A \cup B) = 12$. Determine #B utilizando o Diagrama de Venn.

Exercícios

Questão.5: Sejam os conjuntos A e B, tais que $\#A = 10, \#(A \cap B) = 3$ e $\#(A \cup B) = 12$. Determine #B.

Logo, #B = 5.

Princípio da Inclusão e Exclusão

Sejam A e B conjuntos finitos tais que $A \cap B = \emptyset$; isto é, são CONJUNTOS DISJUNTOS. Verificamos que o "número total" de elementos que pertencem a A ou a B, ou seja, a $A \cup B$ é dado por:

$$\#(A \cup B) = \#A + \#B.$$

Princípio da Inclusão e Exclusão

Sejam A e B conjuntos finitos. Então, quando unimos os elementos de A com os de B, INCLUIMOS alguns elementos que pertencem a ambos os conjuntos. Desta forma, para obtermos $\#(A \cup B)$ precisamos EXCLUÍ-los. Assim,

$$\#(A \cup B) = \#A + \#B - \#(A \cap B).$$

Princípio da Inclusão e Exclusão

Exemplo.1: Um repórter entrevista 35 pessoas que optam pela CONDIÇÃO.1, CONDIÇÃO.2 ou ambos e conclui que 14 entrevistados optaram pela CONDIÇÃO.1, 26 pela CONDIÇÃO.2. Quantos entrevistados escolheram ambos?

Princípio da Inclusão e Exclusão

Exemplo.1:

Resolução:

A =pessoas que optam pela CONDIÇÃO.1

B= pessoas que optam pela CONDIÇÃO.2

Então, $\#(A \cup B) = 35$.

Como, $\#(A \cup B) = \#A + \#B - \#(A \cap B)$

$$35 = 14 + 26 - \#(A \cap B)$$

$$\#(A \cap B) = 5.$$

Portanto, 5 pessoas optaram pelas CONDIÇÕES.1 e 2.

Princípio da Inclusão e Exclusão

Exemplo.2: Todos os convidados de uma festa BEBEM CAFÉ e/ou BEBEM CHÁ. 13 convidados BEBEM CAFÉ, 10 BEBEM CHÁ e 4 BEBEM CAFÉ E CHÁ. Quantas pessoas tem na festa?

Resolução:

$$A=$$
 pessoas que BEBEM CAFÉ $B=$ pessoas que BEBEM CHÁ Como, $\#(A\cup B)=\#A+\#B-\#(A\cap B)$ $\#(A\cup B)=13+10-4$ $\#(A\cup B)=19$ pessoas estão na festa.

Extensão do Princípio da Inclusão e Exclusão

Proposição:

Sejam $A, B \in C$ CONJUNTOS FINITOS, então $\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$.

Demonstração:

$$#(A \cup B \cup C) = #(A \cup (B \cup C)) = #A + #(B \cup C) - #(A \cap (B \cup C)) =$$

$$#A + #B + #C - #(B \cap C) - #[(A \cap B) \cup (A \cap C)] =$$

$$#A + #B + #C - #(B \cap C) - [#(A \cap B) + #(A \cap C) - #((A \cap B) \cap (A \cap C))] =$$

$$#A + #B + #C - #(B \cap C) - #(A \cap B) - #(A \cap C) + #(A \cap B \cap C).$$
■

Extensão do Princípio da Inclusão e Exclusão

Exemplo.3: O controle de qualidade em uma fábrica verificou 47 pe com DEFEITOS DE PINTURA, DEFEITOS DE EMBALAGEM e/ou DEFEITOS NA PARTE ELETRÔNICA.

> Dessas peças, 28 tinham defeitos de pintura, 17 tinham defeitos na embalagem, 12 tinham defeitos na parte eletrônica, 7 tinham defeitos na embalagem e na parte eletrônica. 3 tinham defeitos de pintura e na parte eletrônica mas nenhuma tinha defeitos de pintura e na embalagem. Alguma peca tinha os três defeitos?

Extensão do Princípio da Inclusão e Exclusão

Exemplo.3:

Resolução:

A = DEFEITOS DE PINTURA

B = DEFEITOS DE EMBALAGEM

C = DEFEITOS NA PARTE ELETRÔNICA

Então; $\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$;

$$47 = 28 + 17 + 12 - 0 - 3 - 7 + \#(A \cap B \cap C);$$

 $\#(A \cap B \cap C) = 0$. Logo, nenhuma peça apresentou os três defeitos ao mesmo tempo.

Extensão do Princípio da Inclusão e Exclusão

Exemplo.4: Uma quitanda vende BROCÓLIS, CENOURA, QUIABO. Em determinado dia, a quitanda atendeu 204 pessoas.

Se 114 pessoas compraram brocólis, 152 compraram cenouras, 17 compraram quiabos, 64 compraram brocólis e cenouras, 12 compraram cenouras e quiabos e 3 compraram os três. Quantas pessoas compraram brocólis e quiabos?

Extensão do Princípio da Inclusão e Exclusão

Exemplo.4:

Resolução:

A =pessoas que compraram BROCÓLIS

B= pessoas que compraram CENOURAS

C = pessoas que compraram QUIABOS

Então;
$$\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$$
;

$$204 = 114 + 152 + 17 - 64 - \#(A \cap C) - 12 + 3;$$

 $\#(A \cap C) = 6$ pessoas compraram brocólis e quiabos.

O Princípio da Inclusão e Exclusão

Proposição:

Sejam A_1, A_2, \ldots, A_n CONJUNTOS FINITOS, então

$$|\bigcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |\bigcap_{i=1}^n A_i|.$$

Partição

Definição:

Sejam $A \neq \emptyset$ um conjunto e $\mathcal P$ um conjunto cujos elementos são subconjuntos de A, ou seja, $\mathcal P \subset \mathcal P(A)$. Diz-se que o conjunto $\mathcal P$ é uma PARTIÇÃO de A se, e somente se, os elementos de $\mathcal P$ são não vazios, disjuntos dois a dois, e a união de todos os elementos de $\mathcal P$ é A.

Notação: \mathcal{P} .

Partição

EXEMPLO:

$$\begin{split} &A := \{1,2,3\} \\ &\mathcal{P}(A) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}; \ e \\ &\mathcal{P}_1 = \{\{1\},\{2\},\{3\}\} \ \text{ou} \ \mathcal{P}_2 = \{\{1\},\{2,3\}\} \ \text{ou} \ \mathcal{P}_3 = \{\{2\},\{1,3\}\} \ \text{ou} \\ &\mathcal{P}_4 = \{\{1,2\},\{3\}\} \ \text{ou} \ \mathcal{P}_5 = \{\{1,2,3\}\} \end{split}$$

Propriedades

Observação.12:

• A é sempre um subconjunto de A. Portanto, uma PARTIÇÃO de A pode ser

$$P = \{A\}.$$

Propriedades

Observação.12:

• A é sempre um subconjunto de A. Portanto, uma PARTIÇÃO de A pode ser

$$P = \{A\}.$$

• Se $B \subset A$ e $B \neq \emptyset$ então o conjunto $\{B, A \setminus B\}$ também é uma partição de A.

Observação.12:

• A é sempre um subconjunto de A. Portanto, uma PARTIÇÃO de A pode ser

$$P = \{A\}.$$

- Se $B \subset A$ e $B \neq \emptyset$ então o conjunto $\{B, A \setminus B\}$ também é uma partição de A.
- Se $A = \emptyset$ então A tem apenas um subconjunto que será o próprio conjunto A. Assim, uma partição para A

$$P = {\emptyset}.$$