Pre-Calculus 11

Chapter 6.6: Absolute Values and Reciprocal Functions Summary /

Created by Yi-Chen Lin

June 19, 2025

Chapter 6.6 Overview /

Topics Covered

- 6.1 Basics with Absolute Values
- 6.2 Absolute Value Functions
- 6.3 Solving Absolute Value Equations
- 6.4 Reciprocal Functions
- 6.5 Solving Equations with Two Absolute Values

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 19, 2025
 2 / 19

6.1 Basics with Absolute Values /

Key Points

$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

- $|x| = \sqrt{x^2}$
- Distance from zero on number line
- Always non-negative

Created by Yi-Chen Lin

Pre-Calculus 11

6.1 Practice Problems /

Practice

- Evaluate |25 17|
- ② Solve |x + 5| = 12
- **3** Solve |2x 4| = 9
- **1** Order from least to greatest: |-7.5|, |-8.2|, |-3.4|

6.1 Solutions /

Solutions

$$|25-17|=|8|=8$$

2
$$x + 5 = 12$$
 or $x + 5 = -12$; $x = 7$ or $x = -17$

3
$$2x-4=9$$
 or $2x-4=-9$; $x=6.5$ or $x=-2.5$

$$| -3.4|, | -7.5|, | -8.2|$$
 (3.4, 7.5, 8.2)

6.2 Absolute Value Functions /

Key Points

- y = |f(x)| reflects negative parts above x-axis
- Piecewise definition: $y = \begin{cases} f(x), & f(x) \ge 0 \\ -f(x), & f(x) < 0 \end{cases}$
- Find x-intercepts to determine reflection points

6.2 Practice Problems /

Practice

- **1** Graph $y = |x^2 4|$
- 2 Write piecewise form for y = |x + 2|
- **3** Find x-intercepts of $y = |x^2 9|$
- **1** Graph $y = |x^3 x|$

6.2 Solutions /

Solutions

1 V-shape with vertex at (0,4), x-intercepts at $x=\pm 2$

$$y = \begin{cases} x+2, & x \ge -2 \\ -(x+2), & x < -2 \end{cases}$$

- 3 $x = \pm 3$ (where $x^2 9 = 0$)
- 4 Reflects negative parts of $y = x^3 x$ above x-axis

6.3 Solving Absolute Value Equations /

Key Points

- For |x| = a, set up two cases: x = a and x = -a
- Always check for extraneous roots
- |x| = -a has no solution if a > 0

Example:
$$|x - 3| = 7$$

 $x - 3 = 7$ or $x - 3 = -7$
 $x = 10$ or $x = -4$

6.3 Practice Problems /

Practice

1 Solve
$$|x - 1| = x + 1$$

2 Solve
$$|2x - 5| = |x + 4|$$

3 Solve
$$|x^2 - 6x + 8| = 2$$

1 Which has no solution: |x + 3| = -5 or |x + 3| = 5?

6.3 Solutions /

Solutions

- ① Case 1: x 1 = x + 1 (no solution); Case 2: x 1 = -(x + 1); x = 0
- ② $x = 9 \text{ or } x = \frac{1}{3}$
- **3** $x = 3 \pm \sqrt{3}$
- |x+3| = -5 has no solution (absolute value cannot be negative)

6.4 Reciprocal Functions /

Key Points

- $y = \frac{1}{f(x)}$
- Vertical asymptotes where f(x) = 0
- Invariant points where $f(x) = \pm 1$
- Horizontal asymptote usually y = 0

6.4 Practice Problems /

Practice

- **1** Find vertical asymptotes of $y = \frac{1}{x^2-4}$
- 2 Find invariant points of $y = \frac{1}{x+2}$
- ① Domain of $y = \frac{1}{\sqrt{x-3}}$?

6.4 Solutions /

Solutions

- ① $x = \pm 2$ (where $x^2 4 = 0$)
- ② x = -1 and x = -3 (where $x + 2 = \pm 1$)
- 3 Hyperbola with VA at x = 0, HA at y = 0
- \bigcirc x > 3 (to avoid division by zero and negative under square root)

6.5 Solving Equations with Two Absolute Values /

Key Points

- Consider all possible sign combinations (4 cases)
- Use number line to determine valid intervals
- Always check solutions for extraneous roots

Example:
$$|x - 2| + |x + 6| = 11$$

Cases: $x \ge 2$, $-6 \le x < 2$, $x < -6$
Solutions: $x = 3.5$, $x = -7.5$

15 / 19

6.5 Practice Problems /

Practice

1 Solve
$$|x-1| + |x+5| = 8$$

② Solve
$$|x+3| - |x-2| = 4$$

3 Solve
$$|x-4|+|x+2|=10$$

1 How many cases for
$$|x - a| + |x - b| = c$$
?

6.5 Solutions /

Solutions

- ① x = 2 and x = -6
- **3** x = 6 and x = -4
- \bigcirc 3 cases: $x \ge \max(a, b)$, $\min(a, b) \le x < \max(a, b)$, $x < \min(a, b)$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 19, 2025
 17/19

Final Review Questions /

Comprehensive Review

- ① Evaluate |-15| + |7|
- 2 Solve |2x 3| = 7
- **3** Graph $y = |x^2 1|$
- **1** Find asymptotes of $y = \frac{1}{x^2 9}$
- **5** Solve |x-3| + |x+1| = 6
- **o** Explain the difference between |f(x)| and $\frac{1}{f(x)}$

Final Review Solutions /

Solutions

2
$$2x-3=7$$
 or $2x-3=-7$; $x=5$ or $x=-2$

- **3** V-shape with vertex at (0,1), x-intercepts at $x=\pm 1$
- **1** Vertical asymptotes: $x = \pm 3$; Horizontal asymptote: y = 0
- **5** x = 4 and x = -2
- **1** |f(x)| reflects negative parts above x-axis; $\frac{1}{f(x)}$ creates reciprocal with asymptotes

19 / 19