Úkol č. 1 do předmětu Teoretická informatika

Vojtěch Havlena (xhavle03)

1. Příklad

- (a) Gramatika G_1 je čtveřice $G_1 = (N, \Sigma, P, S)$, kde
 - $N = \{S, A, B, D\}$ je konečná množina neterminálních symbolů,
 - $\Sigma = \{a,b,c,d\}$ je konečná množina terminálních symbolů,
 - $P = \{S \to AD, A \to aAc, A \to B, B \to bB, B \to \varepsilon, D \to dD, D \to \varepsilon\}$ je konečná množina přepisovacích pravidel a
 - $-S \in N$ je výchozí symbol gramatiky G_1 .
- (b) Gramatika G_1 je typu 2 (není typu 3, protože obsahuje pravidlo se dvěma neterminálními symboly na pravé straně). Jazyk L_1 je jazyk typu 2 (bezkontextový jazyk). Jazyk L_1 není jazyk typu 3, protože neexistuje konečný automat, který by jej přijímal. Tyto typy se mohou obecně lišit, protože gramatika daného typu T může generovat jazyky typu T a vyšších (za jazyk nejvyššího typu považuji jazyk \mathcal{L}_3). Např. gramatika typu 0 může generovat jazyky typu 1. Toto plyne z faktu, že $\mathcal{L}_0 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_3$.

2. Příklad Část (a):

(a) Rozklad regulárního výrazu r_2 si vyjádříme stromem.

- (b) Převod stromu reprezentujícího regulární výraz r_2 na konečný automat.
 - i. Regulárnímu výrazu $r_8=a$ odpovídá automat N_1 :

ii. Regulárnímu výrazu $r_9 = b$ odpovídá automat N_2 :

iii. Regulárnímu výrazu $r_7 = r_8 r_9 = ab$ odpovídá automat N_3 :

iv. Regulárnímu výrazu $r_{10}=c$ odpovídá automat $N_4\colon$

v. Regulárnímu výrazu $r_6 = r_7 r_{10} = abc$ odpovídá automat N_5 :

vi. Automat pro regulární výraz $r_5 = (r_6)$ je stejný jako automat N_5 . Zkonstruujeme tedy rovnou automat N_6 pro výraz $r_4 = r_5^* = (abc)^*$.

vii. Regulárnímu výrazu $r_{13} = a$ odpovídá automat N_7 :

viii. Regulárnímu výrazu $r_{14} = \varepsilon$ odpovídá automat N_8 :

ix. Regulárnímu výrazu $r_{12} = r_{13} + r_{14} = a + \varepsilon$ odpovídá automat N_9 :

x. Automat pro regulární výraz $r_{11} = (r_{12})$ je stejný jako automat N_9 . Zkonstruujeme tedy rovnou automat N_{10} pro výraz $r_4 = r_4 r_{11} = (abc)^* (a + \varepsilon)$.

xi. Automat pro regulární výraz $r_{15}=(abc)^*$ je ekvivalentní automatu N_6 . Uděláme tedy rovnou automat N_{11} pro výraz $r_2=r_3r_{15}$.

- (c) Převod RKA N_{11} na DKA M_1 pomocí algoritmu 3.6 z opory k předmětu TIN. Přechodová funkce DKA M_1 je označena jako δ' .
 - Počáteční stav A je $A = \varepsilon$ -uzávěr $(\{0\}) = \{0, 1, 5, 6, 8, 9, 10, 11, 15\}$
 - $\delta'(A, a) = \varepsilon$ -uzávěr $(\{2, 7, 12\}) = \{2, 7, 10, 11, 12, 15\} = B$
 - $-\delta'(A,b) = \varepsilon$ -uzávěr $(\emptyset) = C$
 - $-\delta'(A,c) = \varepsilon$ -uzávěr $(\emptyset) = C$
 - $\delta'(B,a) = \varepsilon\text{-uzávěr}(\{12\}) = \{12\} = D$
 - $\delta'(B,b) = \varepsilon\text{-uzávěr}(\{3,13\}) = \{3,13\} = E$
 - $\delta'(B,c) = \varepsilon$ -uzávěr $(\emptyset) = C$
 - $-\delta'(C,a) = \varepsilon$ -uzávěr $(\emptyset) = C$

$$-\delta'(C,b)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(C,c)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(D,a)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(D,b)=\varepsilon\text{-uzávěr}(\{13\})=\{13\}=F\\ -\delta'(D,c)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(E,a)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(E,b)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(E,c)=\varepsilon\text{-uzávěr}(\{4,14\})=\{1,4,5,6,8,9,10,11,14,15\}=G\\ -\delta'(F,a)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(F,b)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(F,c)=\varepsilon\text{-uzávěr}(\{14\})=\{11,14,15\}=H\\ -\delta'(G,a)=\varepsilon\text{-uzávěr}(\{14\})=\{11,14,15\}=H\\ -\delta'(G,b)=\varepsilon\text{-uzávěr}(\{2,7,12\})=\{2,7,10,11,12,15\}=B\\ -\delta'(G,b)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(H,a)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(H,a)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(H,b)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(H,c)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\delta'(H,c)=\varepsilon\text{-uzávěr}(\emptyset)=C\\ -\text{Množina koncových stavů}\ F=\{A,B,G,H\}$$

Grafické znozornění DKA M_1 :

- (d) Převod DKA M_1 na odpovídající redukovaný DKA M_2 . Pro převod je použit algoritmus 3.5 z opory k předmětu TIN.
 - Automat M_1 neobsahuje žádné nedosažitelné stavy.

- Automat M_1 je již úplný.
- Můžeme tedy provést přímo převod na redukovaný KA.

	$\stackrel{0}{\equiv}$	a	b	c
	I: A	B(I)	C(II)	C(II)
	В	D(II)	E(II)	C(II)
	G	B(I)	C(II)	C(II)
	Н	D(I)	C(II)	C(II)
	II: C	C(II)	C(II)	C(II)
	E	C(II)	C(II)	G(I)
	D	C(II)	F(II)	C(II)
	F	C(II)	C(II)	H(I)

	$\stackrel{1}{\equiv}$	a	b	c
	I: A	B(II)	C(III)	C(III)
	G	B(II)	C(III)	C(III)
	II: B	D(III)	E(IV)	C(III)
	Н	D(III)	C(III)	C(III)
	III: C	C(III)	C(III)	C(III)
	$\mid D \mid$	C(III)	F(IV)	C(III)
	IV: E	C(III)	C(III)	G(I)
	F	C(III)	C(III)	H(II)

	$\stackrel{2}{\equiv}$	a	b	c
	I: A	B(II)	C(IV)	C(IV)
	G	B(II)	C(IV)	C(IV)
	II: B	D(V)	E(VI)	C(IV)
	III: H	D(V)	C(IV)	C(IV)
	IV: C	C(IV)	C(IV)	C(IV)
	V: D	C(IV)	F(VII)	C(IV)
	VI: E	C(IV)	C(IV)	G(I)
	VII: F	C(IV)	C(IV)	H(III)

– Počáteční stav automatu: I.

Grafické znozornění výsledného redukovaného DKA ${\cal M}_2$:

Část (b): Počet tříd ekvivalence relace \sim_L pro jazyk $L(M_2)$ odpovídá počtu stavů redukovaného DKA M_2 . Celkem je tedy 7 tříd ekvivalence.

(a) Ekvivalenční třída $L^{-1}(I)$:

(b) Ekvivalenční třída $L^{-1}(II)$:

(c) Ekvivalenční třída $L^{-1}(III)\colon$

(d) Ekvivalenční třída $L^{-1}(IV)$:

(e) Ekvivalenční třída $L^{-1}(V)$:

(f) Ekvivalenční třída $L^{-1}(VI)$:

(g) Ekvivalenční třída $L^{-1}(VII)$:

3. Příklad

Soustava rovnic pro konečný automat M_3 :

$$X_1 = aX_2 \tag{1}$$

$$X_2 = cX_1 + cX_2 + bX_3 (2)$$

$$X_3 = \varepsilon + bX_1 + aX_2 \tag{3}$$

Řešení soustavy rovnic: Výraz pro X_1 dosadíme z (1) do (2) a z (1) do (3) a dostaneme soustavu

$$X_2 = caX_2 + cX_2 + bX_3 (4)$$

$$X_3 = \varepsilon + baX_2 + aX_2 \tag{5}$$

Výraz X_3 dosadíme z (5) do (4) a dostaneme rovnici

$$X_2 = caX_2 + cX_2 + b(\varepsilon + baX_2 + aX_2) \tag{6}$$

Vzhledem k tomu, že operace \cdot a + jsou distributivní, z rovnice (6) dostáváme

$$X_2 = caX_2 + cX_2 + b\varepsilon + bbaX_2 + baX_2 \tag{7}$$

S využitím identity ε a po částečném vytknutí X_2 získáme tvar

$$X_2 = (ca+c+bba+ba)X_2 + b \tag{8}$$

Podle věty 3.14 (opora k předmětu TIN) je řešení rovnice (8) dáno následujícím předpisem

$$X_2 = (ca + c + bba + ba)^*b \tag{9}$$

Abychom získali regulární výraz, který je ekvivalentní automatu M_3 , musíme vyjádřit výraz X_1 .

$$X_1 = aX_2 = a(ca + c + bba + ba)^*b (10)$$

Ekvivalentní regulární výraz k automatu M_3 je tedy $a(ca+c+bba+ba)^*b$.

4. Příklad

- Vstup algoritmu: Dva konečné automaty $M_1=(Q_1,\Sigma_1,\delta_1,q_1^0,F_1)$ a $M_2=(Q_2,\Sigma_2,\delta_2,q_2^0,F_2)$.
- Výstup: Konečný automat $M_{restrict}$ takový, že $L(M_{restrict}) = restrict(L(M_1), L(M_2))$, při čemž operace restrict je dána následovně

$$restrict(L_1, L_2) = \{w | w \in L_1 \land \exists w' \in L_2 : |w| = |w'|\}.$$

- Metoda:

KA $M_{restrict} = (Q_3, \Sigma_3, \delta_3, q_3^0, F_3)$ je zkonstruován následovně:

- o Množina stavů $Q_3 = Q_1 \times Q_2$
- \circ Vstupní abeceda $\Sigma_3 = \Sigma_1$
- o Přechodová funkce $\delta_3: Q_3 \times \Sigma_3 \to 2^{Q_3}$ je dána následovně: $\forall a \in \Sigma_1, \forall q_1^1, q_1^2 \in Q_1$ a $\forall q_2^1, q_2^2 \in Q_2$:

$$(q_1^2, q_2^2) \in \delta_3((q_1^1, q_2^1), a) \Leftrightarrow q_1^2 \in \delta_1(q_1^1, a) \land \exists b \in \Sigma_2 : q_2^2 \in \delta_2(q_2^1, b)$$

- o Počáteční stav $q_3^0 = (q_1^0, q_2^0)$
- o Množina koncových stavů $F_3 = F_1 \times F_2$

5. Příklad

- Předpokládejme, že jazyk L je regulární. Potom podle Pumping lemma (PL) existuje konstanta p>0 taková, že platí: $w\in L \wedge |w|\geq p \Rightarrow w=xyz \wedge y\neq \varepsilon \wedge |xy|\leq p \wedge xy^iz\in L$ pro $i\geq 0$.
- Uvažujme libovolné celočíselné p>0. Řetezec w zvolme následovně: $w=a^{2p}b^{4p}c^{2p+1}\in L$, přičemž $|w|=8p+1\geq p$.
- Potom tedy z PL plyne, že $\exists x, y, z \in \Sigma^*$: $w = xyz \land y \neq \varepsilon \land |xy| \leq p \land xy^iz \in L$ pro $i \geq 0$.

- Z řetězců $x,y,z\in \Sigma^*$, které splňují předchozí podmínku zvolíme libovolné z nich. Tím pádem $x=a^n,\ y=a^m,\ z=a^{2p-m-n}b^{4p}c^{2p+1}$ pro nějaké $n,m\in\mathbb{N}_0, m\neq 0, m+n\leq p.$
- Potom ale také musí platit, že $xy^iz=a^{2p-m+mi}b^{4p}c^{2p+1}\in L$ pro $i\geq 0$. Zvolíme-li i=0, dostáváme $w=a^{2p-m}b^{4p}c^{2p+1}$, což ale znamená, že $w\notin L$, protože $4p\neq 2(2p-m)$, kde m>0. Což je spor. Jazyk L tedy není regulární.

6. Příklad

(a) Z definice regulárních množin plyne, že každá regulární množina je zároveň i jazyk nad danou abecedou. Je možné tedy používat operace definované pro jazyky. Zejména tedy pro operaci \cdot platí distributivní zákon vzhledem k \cup i pro regulární množiny. Nechť A je libovolná regulární množina. Potom z definice A^* (definice 2.9, opora k předmětu TIN) dostáváme:

$$\{\varepsilon\} \cup A \cdot A^* = \{\varepsilon\} \cup A \cdot (A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots)$$

S využitím distributivity operací \cdot a \cup a faktu, že $A^0 = \{\varepsilon\}$, můžeme předchozí rovnost upravit následovně

$$\{\varepsilon\} \cup A \cdot (A^0 \cup A^1 \cup A^2 \cup \cdots) = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots = A^*,$$

čímž je rovnost $\{\varepsilon\} \cup A \cdot A^* = A^*$ pro A_{RM} dokázána.

(b) Nechť Σ je libovolná abeceda. Dále předpokládejme regulární množiny $A = \{a\}$ a $B = \{aa\}$, pro $a \in \Sigma$ (a je libovolný symbol abecedy Σ). Vzhledem k tomu, že abeceda je konečná, neprázdná množina symbolů, takový prvek a určitě existuje. Potom ale $A \not\subseteq B$ a $B \not\subseteq A$. \subseteq tedy v A_{RM} není totální uspořádání.