HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +500 V or +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V logic compatible
- Separate logic supply range from 3.3 V to 20 V
- Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant

Description

The IRS2110/IRS2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 500 V or 600 V.

Product Summary

VOFFSET (IRS2110) 500 V max. (IRS2113) 600 V max. 2 A/2 A IO+/-**VOUT** 10 V - 20 V ton/off (typ.) 130 ns & 120 ns Delay Matching (IRS2110) 10 ns max. (ÌRS2113) 20 ns max.

Packages

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.

Symbol	Definition		Min.	Max.	Units
\/D	Link aids fleating supply walks as	(IRS2110)	-0.3	520 (Note 1)	
VB	High-side floating supply voltage	(IRS2113)	-0.3	620 (Note 1)	
VS	High-side floating supply offset voltage	V _B - 20	V _B + 0.3		
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low-side fixed supply voltage		-0.3	20 (Note 1)	V
V_{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
V _{DD}	Logic supply voltage		-0.3	V _{SS} +20	
00				(Note 1)	
V _{SS}	Logic supply offset voltage	V _{CC} - 20	V _{CC} + 0.3		
V _{IN}	Logic input voltage (HIN, LIN, & SD)	V _{SS} - 0.3	V _{DD} + 0.3		
dV _s /dt	Allowable offset supply voltage transient (Fi	_	50	V/ns	
Do	5	(14 lead DIP)	_	1.6	W
PD	Package power dissipation @ TA ≤ +25 °C	(16 lead SOIC)	_	1.25	VV
RTHJA	Thermal registeres investiga to embient	(14 lead DIP)	_	75	°C/W
KINA	Thermal resistance, junction to ambient (16 lead SOIC)		_	100	C/VV
TJ	Junction temperature	_	150		
T _S	Storage temperature	-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		300		

Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the recommended conditions. The Vs and Vss offset ratings are tested with all supplies biased at a 15 V differential. Typical ratings at other bias conditions are shown in Figs. 36 and 37.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating supply absolute voltage		V _S + 10	V _S + 20	
Vs	Lligh side fleeting supply offeet veltege	(IRS2110)	Note 2	500	
	High-side floating supply offset voltage (IRS2113)		Note 2	600	
V _{HO}	High-side floating output voltage		Vs	V _B	
Vcc	Low-side fixed supply voltage		10	20	V
V_{LO}	Low-side output voltage		0	VCC	
V_{DD}	Logic supply voltage		V _{SS} + 3	V _{SS} + 20	
V_{SS}	Logic supply offset voltage		-5 (Note 3)	5	
V _{IN}	Logic input voltage (HIN, LIN & SD)		V _{SS}	V_{DD}	
TA	Ambient temperature		-40	125	°C

Note 2: Logic operational for V_S of -4 V to +500 V. Logic state held for V_S of -4 V to -V_{BS}. (Refer to the Design Tip DT97-3) Note 3: When V_{DD} < 5 V, the minimum V_{SS} offset is limited to -V_{DD}.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, C_L = 1000 pF, T_A = 25 °C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.

Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay		_	130	160		V _S = 0 V
t _{off}	Turn-off propagation delay		_	120	150	- V _S = 500 V/600 V	
t _{sd}	Shutdown propagation delay		_	130	160	ns - vs = 300 v/600 v	
t _r	Turn-on rise time		_	25	35	113	
t _f	Turn-off fall time		_	17	25		
МТ	Delay matching, HS & LS	(IRS2110)	_	_	10		
IVI I	turn-on/off	(IRS2113)		_	20		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, T_A = 25 °C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN, and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage	9.5	_	_		
V _{IL}	Logic "0" input voltage	_	_	6.0		
V _{OH}	High level output voltage, V _{BIAS} - V _O	—	_	1.4	V	I _O = 0 A
V _{OL}	Low level output voltage, VO	—	_	0.15		I _O = 20 mA
ILK	Offset supply leakage current	—	_	50		V _B =V _S = 500 V/600 V
I _{QBS}	Quiescent V _{BS} supply current	_	125	230		
IQCC	Quiescent V _{CC} supply current	—	180	340	μA	$V_{IN} = 0 \text{ V or } V_{DD}$
I _{QDD}	Quiescent V _{DD} supply current	—	15	30	μΛ	
I _{IN+}	Logic "1" input bias current	—	20	40		V _{IN} = V _{DD}
I _{IN-}	Logic "0" input bias current	_	_	5.0		V _{IN} = 0 V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	7.5	8.6	9.7		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	7.0	8.2	9.4	.,	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	7.4	8.5	9.6	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.0	8.2	9.4		
I _{O+}	Output high short circuit pulsed current	2.0	2.5	_	_	$V_O = 0 \text{ V}, V_{IN} = V_{DD}$ $PW \le 10 \mu\text{s}$
I _{O-}	Output low short circuit pulsed current	2.0	2.5	_	А	$V_0 = 15 \text{ V}, V_{IN} = 0 \text{V}$ PW \le 10 \mus

Functional Block Diagram

Lead Definitions

Symbol	Description
V_{DD}	Logic supply
HIN	Logic input for high-side gate driver output (HO), in phase
SD	Logic input for shutdown
LIN	Logic input for low-side gate driver output (LO), in phase
V_{SS}	Logic ground
VB	High-side floating supply
НО	High-side gate drive output
٧s	High-side floating supply return
Vcc	Low-side supply
LO	Low-side gate drive output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

250
(g) 200
Max

150
Typ.

100
10 12 14 16 18 20

V_{BIAS} Supply Voltage (V)

Figure 7A. Turn-On Time vs. Temperature

Figure 7B. Turn-On Time vs. Supply Voltage

Figure 7C. Turn-On Time vs. V_{DD} Supply Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8B. Turn-Off Time vs. Supply Voltage

Figure 8C. Turn-Off Time vs. VDD Supply Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9B. Shutdown Time vs. Supply Voltage

Figure 9C. Shutdown Time vs. VDD Supply Voltage

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13B. Logic "0" Input Threshold vs. Voltage

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 14A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

Figure 14B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

Figure 15B. Low Level Output vs. Supply Voltage

Figure 16B. Offset Supply Current vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 16A. Offset Supply Current vs. Temperature

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18B. V_{CC} Supply Current vs. Voltage

Figure 19B. VDD Supply Current vs. VDD Voltage

Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 19A. V_{DD} Supply Current vs. Temperature

Figure 20A. Logic "1" Input Current vs. Temperature

Figure 20B. Logic "1" Input Current vs. VDD Voltage

Figure 21B. Logic "0" Input Bias Current vs. Voltage

Figure 23. V_{BS} Undervoltage (-) vs. Temperature

Figure 21A. Logic "0" Input Bias Current vs. Temperature

Figure 22. V_{BS} Undervoltage (+) vs. Temperature

Figure 24. V_{CC} Undervoltage (+) vs. Temperature

Figure 25. V_{CC} Undervoltage (-) vs. Temperature

Figure 26B. Output Source Current vs. Voltage

Figure 27B. Output Sink Current vs. Voltage

Figure 26A. Output Source Current vs. Temperature

Figure 27A. Output Sink Current vs. Temperature

Figure 28. IRS2110/IRS2113 T_J vs. Frequency (IRFBC20) $R_{GATE} = 33 \text{ W}, V_{CC} = 15 \text{ V}$

Figure 29. IRS2110/IRS2113 TJ vs. Frequency (IRFBC30) $R_{GATE} = 22 \Omega$, $V_{CC} = 15 V$

Figure 31. IRS2110/IRS2113 T_J vs. Frequency (IRFPE50) $R_{GATE} = 10 \Omega$, $V_{CC} = 15 V$

Figure 33. IRS2110S/IRS2113S T_J vs. Frequency (IRFBC30) R_{GATE} = 22 Ω , V_{CC} = 15 V

Figure 30. IRS2110/IRS2113 T_J vs. Frequency (IRFBC40) $R_{GATE} = 15 \Omega$, $V_{CC} = 15 V$

Figure 32. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC20) $R_{GATE} = 33 \Omega$, $V_{CC} = 15 V$

Figure 34. IRS2110S/IRS2113S T_J vs. Frequency (IRFBC40) $R_{GATE} = 15 \Omega$, $V_{CC} = 15 V$

Figure 35. IRS2110S/IRS2113S T_J vs. Frequency (IRFPE50) R_{GATE} = 10 Ω , Vcc = 15 V

Figure 36. Maximum V_{S} Negative Offset vs. V_{BS} Supply Voltage

Figure 37. Maximum V_{SS} Positive Offset vs. V_{CC} Supply Voltage

Case Outlines

International TOR Rectifier

IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF

Tape & Reel 16-Lead SOIC

CARRIER TAPE DIMENSION FOR 16SOICW

OMMENCE DIMENSION FOR TOOSION						
	M etric		lm perial			
Code	Min	Max	Min	Max		
Α	11.90	12.10	0.468	0.476		
В	3.90	4.10	0.153	0.161		
С	15.70	16.30	0.618	0.641		
D	7.40	7.60	0.291	0.299		
E	10.80	11.00	0.425	0.433		
F	10.60	10.80	0.417	0.425		
G	1.50	n/a	0.059	n/a		
Н	1.50	1.60	0.059	0.062		

REEL DIMENSIONS FOR 16SOICW

	M etric		lm p erial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Н	16.40	18.40	0.645	0.724	

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

14-Lead PDIP IRS2110PbF

14-Lead PDIP IRS2110-1PbF

14-Lead PDIP IRS2113PbF

14-Lead PDIP IRS2113-1PbF

16-Lead PDIP IRS2110-2PbF

16-Lead PDIP IRS2113-2PbF

16-Lead SOIC IRS2110SPbF

16-Lead SOIC IRS2113SPbF

16-Lead SOIC Tape & Reel IRS2110STRPbF

16-Lead SOIC Tape & Reel IRS2113STRPbF

International

The SOIC-14 is MSL3 qualified. The SOIC-16 is MSL3 qualified.

The SOIC-16 is MSL3 qualified. This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 1/22/2007