

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 8. Classification: Basic Concepts

□ Classification: Basic Concepts

- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Supervised vs. Unsupervised Learning (1)

- 🗖 Supervised learning (classification) เป็นการสร้างโมเดลแบบมีผู้สอน
 - Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
 - New data is classified based on the models built from the training set

ข้อมูลลูกค้าร้านขาย คอมพิวเตอร์

Supervised vs. Unsupervised Learning (2)

Unsupervised learning (clustering)

เป็นการสร้างโมเดลแบบไม่มีผู้สอน ไม่มี จุดมุ่งหมายตั้งแต่ต้น เป็นเพียงการจัดกลุ่ม

The class labels of training data are unknown

Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

5

Prediction Problems: Classification vs. Numeric Prediction

- Classification สร้างโมเดลเพื่อใช้ฟีเจอร์มาทำนายคำตอบ
 - Predict categorical class labels (discrete or nominal)
 - Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - ☐ Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- Model construction
 - □ Each sample is assumed to belong to a predefined class (shown by the **class label**)
- ☐ The set of samples used for model construction is **training set**
- Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing:
 - ☐ **Test:** Estimate accuracy of the model
 - ☐ The known label of test sample is compared with the classified result from the model
 - ☐ Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- □ Model Deployment: If the accuracy is acceptable, use the model to classify new data

7

Chapter 8. Classification: Basic Concepts

- □ Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

8

From Entropy to Info Gain: A Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - □ Calculation: For a discrete random variable Y taking m distinct values {y₁, y₂, ..., ym}

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
 where $p_i = P(Y = y_i)$

- ☐ Higher entropy → higher uncertainty
- Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

10

11

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

☐ Class P: buys_computer = "yes"

☐ Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14} I(2,3) + \frac{4}{14} I(4,0) + \frac{5}{14} I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

cs สแกนด้วย CamScanner

Info credit (D)	= = = I(1,2) + = I(1,2)
	$= \frac{9}{5} \left[\frac{1}{3} \log_2 \left(\frac{1}{3} \right) - \frac{2}{3} \log_2 \left(\frac{1}{5} \right) \right] + \frac{2}{5} \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) - \frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right]$ $= 0.5510 + 0.4 = 0.4910$
(Join (Income) = Info (Garin (Gudons) Gain (Credis)	$\begin{array}{l} (D) - \text{Informe}(D) &= 0.971 - 0.40 = 0.571 \\ &= 0.971 - 0 = 6.971 \\ &= 0.971 - 0.951 = 0.02 \end{array}$
Fge 31-40	
Info (0) = I(4,0)	$= -\frac{4}{4} \log_{2}(\frac{4}{4}) - \frac{0}{4} \log_{2}(\frac{0}{4})$ $= 0$
Information (D)	> 2 I(2,0) + 1 I(1,0) + 1 I(1,0)
	$= \frac{2}{7} \left[-\frac{2}{7} \log_{2} \left(\frac{9}{2} \right) - \frac{O}{2} \log_{2} \left(\frac{9}{2} \right) \right] + \frac{1}{4} \left[-\frac{1}{7} \log_{2} \left(\frac{1}{4} \right) - \frac{O}{7} \log_{2} \left(\frac{6}{7} \right) \right]$
	$+\frac{1}{4}\left[-\frac{1}{4}\log_2\left(\frac{1}{1}\right)-\frac{2}{4}\log_2\left(\frac{0}{1}\right)\right]=0$
Infoscadem (D)	= 2 I(2,0) -2 I(2,0)
	$= \frac{2}{4} \left[-\frac{2}{2} \log_{1} \left(\frac{1}{2} \right) - \frac{6}{2} \log_{2} \left(\frac{6}{2} \right) \right] + \frac{2}{4} \left[-\frac{2}{1} \log_{2} \left(\frac{1}{2} \right) - \frac{6}{12} \log_{2} \left(\frac{1}{2} \right) \right]$
Info credit (D)	= 2 1(2,0) + 2 (2,0)
	$= 2 \left[-\frac{2}{2} \log_{1} \left(\frac{2}{2} \right) - \frac{9}{2} \log_{2} \left(\frac{9}{2} \right) \right] + 2 \left[-\frac{9}{2} \log_{2} \left(\frac{9}{2} \right) - \frac{9}{2} \log_{2} \left(\frac{9}{2} \right) \right]$
o and designation of	= 0 [Age 31-40 buy-Computer = ges miles]

Info (D) = I (3,2) =
$$\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{1}{3})$$

= 0,442 + 0.51589 = 0.9910
In incore (D) = $\frac{2}{3} I(0,0) + \frac{1}{3} I(2,1) + \frac{1}{3} I(1,1)$
= $\frac{2}{3} \left[-\frac{2}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right] + \frac{2}{3} \left[\frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right]$
= 0.551 + 0.4 = 0.951
Info Gardin (D) = $\frac{2}{3} I(2,1) + \frac{2}{3} (1,1)$
= $\frac{2}{3} I(2,1) + \frac{2}{3} (1,1)$
= $\frac{2}{3} I(3,0) + \frac{2}{3} I(0,2)$
= $\frac{2}{3} I(0,2) + \frac{2}{3} I(0,2)$
= $\frac{2}{3} I(0,2)$