$\mathbf{V}_{\mathrm{DSS}}$

 V_{DGR} \mathbf{V}_{gs}

 $\mathbf{V}_{\mathsf{GSM}}$

I_{D25}

IAR

HiPerFET™ Power MOSFETs

N-Channel Enhancement Mode High dv/dt, Low t_{...}, HDMOS™ Family

IXFH14N80 IXFH15N80

 $\mathbf{V}_{\mathrm{DSS}}$ $\boldsymbol{R}_{\text{DS(on)}}$ 800 V 14 A **0.70** Ω **800 V | 15 A | 0.60** Ω $t_{rr} \leq 250 \text{ ns}$

Prelimina	ry data	
Symbol	Test Conditions	Maximum Ratings

Test Conditions	Maximum Ratings			TO-247 AD
T _J = 25°C to 150°C		800	V	
$T_J^c = 25^{\circ}C$ to $150^{\circ}C$; $R_{GS} = 1 M\Omega$		800	V	
Continuous		±20	V	
Transient		±30	V	G (TAB)
T _C = 25°C	14N80	14	A	D S
	15N80	15	Α	
$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	14N80	56	Α	G = Gate D = Drain
	15N80	60	Α	S = Source TAB = Drain
$T_{c} = 25^{\circ}C$	14N80	14	Α	

AK	C	15N80	15	Α
E _{AR}	T _c = 25°C		30	mJ
dv/dt	$I_{_{S}} \leq I_{_{DM}}$, di/dt \leq 100 A/ μ s, $V_{_{DD}} \leq V_{_{DSS}}$, $T_{_{J}} \leq$ 150°C, $R_{_{G}} = 2 \Omega$		5	V/ns
P _D	T _c = 25°C		300	W
T,		-55	+150	°C
T _{JM}			150	°C
T _{stg}		-55	+150	°C
T _L	1.6 mm (0.062 in.) from case for 10 s		300	°C
M _d	Mountingtorque	1.	13/10	Nm/lb.in.
Weight			6	g

Features

- International standard packages
 Low R_{DS (on)} HDMOS[™] process
 Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- · Low package inductance
- easy to drive and to protect
- · Fast intrinsic Rectifier

Symbol Test Conditions $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$			Cł Min.		ic Values Max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 3 \text{ mA}$ V_{DSS} temperature coefficient		800	0.096		V %/K
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$ $V_{GS(th)}$ temperature coefficien	t	2.0	-0.214	4.5	V %/K
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
DSS	$V_{DS} = 0.8 V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			250 1	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$	14N80 15N80			0.70 0.60	Ω Ω
	Pulse test, $t \le 300 \mu s$, duty of	cycle d ≤2 %				

Applications

g

- · DC-DC converters
- · Synchronous rectification
- · Battery chargers
- Switched-mode and resonant-mode power supplies
- · DC choppers
- · AC motor control
- · Temperature and lighting controls
- · Low voltage relays

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Space savings
- High power density

Symbol		ditions Characteristic Values (T ₁ = 25°C, unless otherwise specified)		
	Min.	Тур.	Max.	
\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V; } I_{D} = 0.5 \text{ I}_{D25}, \text{ pulse test}$ 8	14		S
C _{iss}	3965		4870	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ 315		395	pF
C _{rss}	73		120	pF
t _{d(on)})	20	50	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$	33	50	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 2 \Omega \text{ (External)}$	63	100	ns
t,)	32	50	ns
Q _{g(on)})	128	155	nC
Q_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$	30	45	nC
\mathbf{Q}_{gd}	J	55	80	nC
R _{thJC}			0.42	K/W
R_{thCK}		0.25		K/W

Source-Drain Diode		Characteristic Values				
Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless of} $	tnerwi typ.	se specii max.	iea)	
I _s	V _{GS} = 0 V	14N80 15N80		14 15	A A	
I _{SM}	Repetitive;	14N80 15N80		56 60	A A	
V _{sD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, du	ty cycle d≤2 %		1.5	V	
$\left\{egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array}\right\}$	$I_{F} = I_{S}$ -di/dt = 100 A/ μ s, $V_{R} = 100 \text{ V}$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	1 8.5	250 400	ns ns μC A	

1.65 2.13 0.065 0.084

0.177

0.040 0.055

11.0 0.426 0.433 5.3 0.185 0.209

0.8 0.016 0.031 1.5 2.49 0.087 0.102

4.5

1.4

1.0

10.8

4 7

0.4

G

Н

J

K

L

М

Figure 1. Output Characteristics at 25°C

Figure 3. $\rm R_{\rm DS(on)}$ normalized to 0.5 $\rm ~I_{\rm D25}$ value vs. $\rm I_{\rm D}$

Figure 5. Drain Current vs. Case Temperature

Figure 2. Output Characteristics at 125°C

Figure 4. $\rm R_{\rm DS(on)}$ normalized to 0.5 $\rm ~I_{\rm D25}$ value vs. $\rm T_{\rm J}$

Figure 6. Admittance Curves

35

40

Figure 7. Gate Charge

Figure 9. Source Current vs. Source to Drain Voltage

Figure 11. Transient Thermal Resistance

100

50

5

10

20

V_{DS} - Volts

© 2000 IXYS All rights reserved