A Method to Identify and Correct Problematic Software Activity Data: Exploiting Capacity Constraints and Data Redundancies

Qimu Zheng Peking University Audris Mockus University of Tennessee

Minghui Zhou Peking University

More Available Data

Mailing list

Empirical SE Research

Software Repository Data

Statistical Model

Research Result

Various Topics

- Measure Productivity[1]
- Duplicate Bug Report Prediction[2]
- Bug-fix Time Prediction[3]
- •

[1] W. F. Boh, S. A. Slaughter, and J. A. Espinosa. Learning from experience in software development: A multilevel analysis.

[2] Chengnian Sun; Lo, D.; Siau-Cheng Khoo; Jing Jiang, Towards more accurate retrieval of duplicate bug reports

[3] P. Bhattacharya and I. Neamtiu. Bug-fix time prediction models: Can we do better?

However...

Software Repository Data

Statistical Model

Research Result

Some real issues

- Task completion time is important
 - For both research and practical development
- Count #bugs fixed by each dev on each day
- Experiment on official data from Mozilla

Some real issues

Research on data quality?

Limited amount of work can be found.

Research mentioning data quality?

Data quality consideration is a minority practice [1][2].

Research on Data Quality?

Limited amount of work can be found.

Researchers love data.

ReseaYet few cares about uality? their quality. Data quality consideration is a minority practice [1][2].

So we try to fix the problem

Before that...

Two observations about software repository data

Method

for identifying and correcting problematic data

Gather data

- Choose primary event type (default choice)
- Choose a set of **redundant event types** (some approximation)
- Obtain event times tik for task i and event k.
- Use the distribution of t_{ik} to identify problematic data. $isProblematic(t_{ik}) = the \ likelihood \ that \ t_{ik} \ being \ incorrect.$
- Obtain $isProblematic(t_{ik})$ for each redundant observation type k.
- Correct problematic data. Choose observations via:

$$correct(t_i) = \begin{cases} arg \min_{k>1} (isProblematic(t_{ik})) & if \ isProblematic(t_{i1}) \\ t_{i1} & if \ !isProblematic(t_{i1}) \end{cases}$$

2000 2002 2004 2006 2008 2010 2

Shorter Version

- Gather data
- Choose primary event type (default choice)
- Choose redundant event types (some approximation)
- Identify problematic data

 $isProblematic(t_{ik}) = the likelihood that t_{ik} being incorrect.$

· Correct problematic data.

$$correct(t_i) = \begin{cases} arg \min_{k>1} (isProblematic(t_{ik})) & if \ isProblematic(t_{i1}) \\ t_{i1} & if \ !isProblematic(t_{i1}) \end{cases}$$

Even Shorter

- Data Gathering
- Primary Event Type
- Redundant Event Types
- Problematic Data Identification
- Problematic data Correction

- Data Gathering
- Primary Type
- Redundant Types
- Problematic Data Identification
 - Problematic Data Correction

Application

of the proposed method

- Data Gathering
- Primary Type
- · Redundant Types
- Problematic Data IdentificationProblematic Data Correction

Data Gathering

- Official Bugzilla dump from Mozilla (January 2013)
- All code commits data from Mozilla (February 2014)

- Data Gathering
- Primary Type
- · Redundant Types
- Problematic Data IdentificationProblematic Data Correction

Primary Event Type

Bug-fix time recorded in issue tracking system.

cdawson	2012-04-03 08:58:14 PDT	Status	NEW	RESOLVED
		Resolution		FIXED
		Last Resolved		2012-04-03 08:58:14

Redundant Event Types?

Choose by understanding error mechanisms!

- Data Gathering
 - Redundant Types
 - Problematic Data Identification
 Problematic Data Correction

Redundant Event Types

- Investigation of error mechanism
 - Development Process Tracked By Other System
 - Dormant issues
 - Closing issues with committed patches
- Good substitutes:
 - Last comment time
 - Last code commit time

- Data Gathering
- Primary Type
- · Redundant Types
- · Problematic Data Identification
 - Problematic Data Correction

Problematic Data Identification

- Data Gathering

- int Types atic Data Identification

Problematic Data Correction

- Available options:
 - Last comment time
 - Last commit time
- Since last commit time will be used for testing, we use **last comment time** for correction:

$$correct(t) = \begin{cases} last comment time & if \ isProblematic(ITS \ recorded \ time) \\ ITS \ recorded \ time & if \ !isProblematic(ITS \ recorded \ time) \end{cases}$$

Does it matter?

Data Accuracy

- 16% of the issues are fixed with a link pointing to a commit in version control system (VCS)
- We take the timestamp in VCS as gold standard for evaluation

```
absolute error = \frac{|\text{timestamp} - \text{vcs timestamp}|}{|\text{timestamp} - \text{vcs timestamp}|}
\frac{|\text{timestamp} - \text{vcs timestamp}|}{|\text{vcs timestamp} - \text{issue creation time}|}
```

Absolute Error

Quantile	Uncorrected	Corrected
0.50	0d 07:17:13	0d 01:08:17
0.75	1d 00:16:33	1d 11:03:00
0.80	1d 08:52:50	0d 21:21:03
0.90	5d 21:59:42	4d 12:40:42
0.99	75d 03:43:39	72d 11:18:15

Relative Error

Quantile	Uncorrected	Corrected
0.50	0.0205	0.0073
0.75	0.2105	0.0777
0.80	0.3700	0.1544
0.90	1.6504	0.8502
0.99	148.2818	73.3260

Impacts on Research

Existing research

Impacts on Research

 $\ln(days+1) \sim \text{severity} + \ln(attachments+1) + reputation + \ln(assignee+1) \\ + \ln(depends+1) + priority + late + \ln(comments+1) + resolver + last_commenter$

	Estimate	p-value
(Intercept)	4.91	0.00
Critical	0.39	0.00
Major	0.64	0.00
Normal	0.80	0.00
Minor	1.02	0.00
Trivial	0.75	0.00
Enhancement	1.23	0.00
In(attachments+1)	-0.16	0.00
In(depends+1)	0.62	0.00
In(assignee+1)	0.32	0.00
Reputation	-1.04	0.00
P1	-0.22	0.00
P2	0.08	0.11
P3	0.32	0.00
P4	0.52	0.00
P5	1.33	0.00
In(comments+1)	0.54	0.00
Resolver	-0.22	0.00
Late	-0.72	0.00

Ectimatal

	Estimate	p-value
(Intercept)	-2.23	0.02
Critical	0.28	0.01
Major	0.43	0.00
Normal	0.60	0.00
Minor	0.75	0.00
Trivial	0.75	0.00
Enhancement	1.12	0.00
In(attachments+1)	-0.12	0.00
In(depends+1)	0.41	0.00
In(assignee+1)	0.45	0.00
Reputation	-0.52	0.00
P1	-0.09	0.05
P2	0.20	0.00
P3	0.43	0.00
P4	0.49	0.00
P5	0.85	0.00
In(comments+1)	1.08	0.00
Resolver	-0.21	0.00
Late	-0.20	0.00

Impacts on Research

 $\ln(days + 1) \sim \text{severity} + \ln(attachments + 1) + reputation + \ln(assignee + 1)$

 $R_{2}^{+\ln(depends+1) + priority + late + \ln(comments+1) + resolver + last_commenter} = 0.381 = > 0.452$

Predictors: 4 significancy changes

	0.39	0.00
Major	0.64	0.00
Normal	0.80	0.00
Minor	1.02	0.00
Trivial	0.75	0.00

J		
Critical	0.28	0.01
Major	0.43	
Normal	0.60	
Minor	0.75	
Trivial	0.75	0.00
Enhancement		0.00

Correction of data makes a substantial difference.

In(depends+1)	0.62	0.00
In(assignee+1)	0.32	0.00
Reputation	-1.04	0.00
P1		
P2		0.11
P3	0.32	
P4	0.52	
P5	1.33	
In(comments+1)	0.54	
Resolver	-0.22	0.00
Late	-0.72	

OCT OFF	10104
0.41	0.00
0.45	0.00
-0.52	0.00
-0.09	0.05
0.20	0.00
0.43	0.00
0.49	0.00
0.85	0.00
1.08	0.00
-0.21	0.00
-0.20	0.00
	0.41 0.45 -0.52 -0.09 0.20 0.43 0.49 0.85 1.08 -0.21

Generalization

Generalization

Generalization

Exceptionally "Productive" Individuals (Based on Issue Report Events)

Date	User ID	Count
2012-10-01	452624	542
1999-11-22	4415	277
2011-06-24	12809	116
2009-12-16	24572	110
2012-01-27	148348	93
2012-10-12	384312	90
2011-12-14	24572	87
2010-10-13	164048	87
2012-06-01	24572	86
2000-07-08	41	86

Exceptionally "Productive" Individuals (Based on Code Commit Events)

Date	User ID	Count
2013-03-21	Bobby Holley	1160
2013-08-22	Ms2ger	1029
2013-02-25	Gregory Szorc	1024
2014-01-27	B2G Bumper Bot	998
2012-08-04	Ms2ger	991
2013-07-24	Ms2ger	986
2013-01-08	ffxbld	981
2011-07-21	ffxbld	964
2013-08-06	ffxbld	945
2013-02-20	ffxbld	907

Thank you!