

MASTER OF SCIENCE IN ENGINEERING

Multimodal Processing, Recognition and Interaction

Practical Information Introduction

Moodle key: mpri_20

Elena Mugellini, Stefano Carrino, Omar Abou Khaled

MPRI Organization

- Class
 - Tuesday 15h00 17h25, Provence A7
 - Moodle key: mpri 20
- Practical Work (TD, TP, mini-proj)
 - ~Once every two weeks
 - Often after the theoretical class => after @home
- Teachers
 - elena.mugellini@hefr.ch
 - stefano.carrino@he-arc.ch
 - <u>omar.aboukhaled@hefr.ch</u>

Course Objectives

- À la fin de ce cours, l'étudiant est capable de:
 - D'identifier les cas d'utilisation de techniques de machine learning
 - D'évaluer et de choisir les meilleures approches d'apprentissage automatique pour correspondre au mieux aux spécificités d'une application pour le traitement d'une activité spécifique.
 - Connaitre les spécificités et savoir traiter les tâches de classification, prédiction, détection des anomalies et clustering
 - D'expliquer les concepts d'apprentissage à partir des données, d'apprentissage supervisé vs non supervisé.
 - De **comparer** et **appliquer** les méthodes de machine learning, incluant les Support Vector Machines, les modèles de Markov cachés, etc.
 - De comparer, de choisir et d'utiliser de différentes solutions technologiques pour l'implémentation de techniques multimodales du traitement de signal.
 - D'**utiliser** des **frameworks** ou biblithèques de machine learning et data mining tels que scikit-learn, NumPy, Pandas sur des données concrètes.
 - D'identifier les différents moyens d'interaction possibles faisant appel à la multimodalité (voix, gestes, mouvements, etc.).
 - D'analyser, de concevoir et d'implémenter un système d'interaction multimodale basé sur les techniques d'apprentissage automatique.

Content

- Introduction to multimodal processing, recognition and interaction
 - General schema for multimodal processing, recognition and interaction
- Cases study: Classification problem
 - Hidden Markov Models applied to time series
- Cases study: Prediction problem
 - Decision Trees / Artificial Neural Networks Regression
- Cases study: Anomaly Detection
 - Support Vector Machine
- Cases study: Unsupervised and Semi-supervised approaches and clustering
 - K-means, Active learning, co-learning...
- Case study: ML and creativity (generative models)
- Advices about ML, Data fusion, Feature extraction...

Evaluation

- Exam 70%
 - Oral exam (no documentation allowed)
 - Theoretical and practical questions (including content presented during TPs/TDs)
- Practical work 30%
 - Mini-Project (challenge)
 - Small report (model will be provided)
 - Présentation

Practical Work

Goal

- Apply theoretical concepts to implement a specific MPRI problem
- Using SVM, HMM, RF (or other algorithms)

Organization

- Completion of the assignments is mandatory
- Each work that is not submitted on Moodle impact the final results (-0.5)
- Bonus/malus on the final note!

Practical Work (2)

- TD
 - individual work
 - during the lecture
- TP
 - groups of 2 students
 - over 1-2 weeks
 - to return on Moodle
- Mini-Project
 - groups of 3 students
 - over 3-4 weeks
 - final presentation + report

Projects

- @HES-SO
 - Human-Computer Interaction
 - Hguitar
 - Predict
 - ARAMIS
 - MAGI
 - EmoTV
 - Security
 - ADABeV
 - DEMIS
 - Biomedical application
 - SensiMed
 - VideoProtector

- Web & information retrieval
 - NAMASTEE
- Green Application
 - GreenMod
- etc.

HGuitar Project

MIR - Music Information Retrieval

Goal

- Automatically recognize guitar music performed by a learner
- Provide suggestions on how to improve
- In collaboration with www.hguitare.com

PREDICT Project

Prediction & Anomaly detection

Goal

- Predictive maintenance in a vehicle
- Faults prediction
- Remaining Useful Life (RUL) Estimation of Critical Components

Image source: http://dataconomy.com/wp-content/uploads/2015/04/Predictive-Maintenance-Big-Data-on-Rails-1.png

Hes⋅so

de Suisse occidentale

ARAMIS Project

Human-Computer Interaction

Goal

- Augmented Natural Interaction
- Hybrid interaction approach combining wearable and environmental paradigm of interaction

Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz

University of Applied Sciences

MAGI Project

Human-Computer Interaction

Goal

- Gesture recognition and segmentation based on psychophysiological signals
 - EEG, EMG
- Hybrid interaction approach combining wearable and environmental paradigm of interaction

EmoTV Project

Human-Computer Interaction

Goal

- Emotion recognition in movies for empathic TV
- Multimodal transmission of emotions
- Dynamic lights
- Smart watch/smartphone vibrations & emoticons
- Dynamic subtitles
- ...

ADABeV Project

Security

Goal:

- Automatic Detection of Abnormal Behavior in Video-surveillance
- Framework for event recognition in crowded scene surveillance videos to detect the abnormal human behaviour, automatically and in real time

Morphean VideoProtector

Biomedical application

- Fonds de Soutien à l'Innovation, Fribourg
- Machine learning applied to the detection of events in video streams

Sensimed Plus Project

Biomedical application

From sensors to cloud to intelligence

Patient

Embedded system

Visualisation and basic analysis (PC of the doctor)

Scalable server architecture \$

(private at Sensimed)

Automated aid for the diagnostic / indexation of similar cases (at Sensimed)

NAMASTEE Project

Web & information retrieval

Goal

- Novel Automatic Multimedia Annotation System for Television Experience Enhancement
- Improve the automatic multimedia content enrichment process
 - visual search on the web
 - user emotion recognition

Hasler Smart Living Green-Mod

Green application

- Hasler Green-Mod project, 2012-2015
 - Machine learning applied to the maximization of energy efficiency in buildings
 - Identification of electric appliances from their load traces
 - Identification of activities, modeling the behavior of building users

University of Applied Sciences

Green-Mod Identification of electric appliances

Plug-based measuremen device

This is a

"heating cycle machine"

"coffee machine"

"nespresso machine" "machine in standby"

recognition **Appliance** recognition Brand recognition State recognition

http://www.youtube.com/watch?v=Xr662k3f

References

R. O. Duda, P. E. Hart and D. G. Stork Pattern Classification

E. AlpaydinIntroduction tomachine leaning

C. M. Bishop
Pattern Recognition
and Machine Learning

S. Theodoridis andK. KoutroumbasPattern Recognition

References

A. R. Webb & K. D. Copsey statistical Pattern Recognition

Berthold et al., Intelligent Data Analysis