QUIZ 4 SOLUTION

ADRIAN PĂCURAR

Time: 15 minutes

Problem 1. Evaluate the limit $\lim_{t\to 0} \frac{\sqrt{1+\bar{t}}-\sqrt{1-t}}{t}$

(a)
$$\frac{1}{2\sqrt{1+t}}$$

(a)
$$\frac{1}{2\sqrt{1+t}}$$
 (b) $\frac{1}{2\sqrt{1-t}}$ (c) $\frac{1}{2}$

(c)
$$\frac{1}{2}$$

(d) 1

(e) 2

$$\lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t} = \lim_{t \to 0} \frac{\sqrt{1+t^2} - \sqrt{1-t^2}}{t(\sqrt{1+t} + \sqrt{1-t})} = \lim_{t \to 0} \frac{2t}{t(\sqrt{1+t} + \sqrt{1-t})} = 1$$

Problem 2. Is there a number x that is exactly 1 more than it's cube? (Hint: set up and equation, and figure out if it has any solutions using the Intermediate Value Theorem)

Since the number x needs to be 1 more than it's cube x^3 , if we subtract 1 from x the two should be equal. Hence we get the equation

$$x^3 = x - 1$$

which we rearrange as

$$x^3 - x + 1 = 0$$

Then the original question is the same as trying to determine if the function $f(x) = x^3 - x + 1$ has any zeroes. Notice

$$f(0) = 1$$
 and $f(-2) = -5$

and since f is a polynomial, it is continuous. Hence by the IVT, there exists (at least) a zero on the interval (-2,0), so the correct answer is Yes, such a number exists.

Problem 3. What is the equation of the tangent line to the curve $y = \sqrt{x}$ at the point (1,1)?

(a)
$$y = \frac{1}{2}x - \frac{1}{2}$$

(b)
$$y = 2x - 2$$

(c)
$$y = \frac{1}{2}x + \frac{1}{2}$$

(a)
$$y = \frac{1}{2}x - \frac{1}{2}$$
 (b) $y = 2x - 2$ (c) $y = \frac{1}{2}x + \frac{1}{2}$ (d) $y + 1 = \frac{1}{2}(x + 1)$

Rewrite $y = x^{1/2}$ and apply Power Rule to take the derivative

$$y' = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

At (1,1), the derivative is equal to $y'(1) = \frac{1}{2}$, and we are given the point (1,1), so now we can write the equation of the line using the point-slope form. This is

$$y - 1 = \frac{1}{2}(x - 1)$$

A little algebra shows this is the same as

$$y = \frac{1}{2}x + \frac{1}{2}$$

so the correct answer is (c).

Problem 4. Compute the limit $\lim_{h\to 0} \frac{e^{x+h}-e^x}{h}$. (Hint: definition of derivative). (a) ∞ (b) 0 (c) x (d) e^x (e) e

We know that for a differentiable function f(x), the derivative is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

In our case, we recognize that the function at hand is $f(x) = e^x$, and we know the derivative of e^x is e^x , so the limit in question can be interpreted as the derivative of e^x , i.e.

$$\lim_{h\to 0}\frac{e^{x+h}-e^x}{h}=e^x$$

so the correct answer is (d).