Funktionen:

harmonische Schwingung: $y(t) = y_0 \cdot \sin(\omega \cdot t + \varphi_0)$

$$\omega_0 = 2\pi \cdot f_0 \qquad f_0 = \frac{1}{T_0}$$

periodisch, wenn: y(t) = y(t+T) mit $T = \frac{2\pi}{\omega}$

$$y(t) = (nachher - vorher) \cdot h(t \pm c)$$
 Erstes Mal mit Vorsatz (vorher)+

$$y(t) = \pm a \cdot f(\pm b \cdot t \pm c) \pm d$$

$$y(t) = \pm a \cdot e^{\pm b \cdot t \pm c} \pm d$$

 \pm = (+ normal) (- Spiegelung: Spiegelachse horizontal)

a = vertikale: (a>1 Streckung) (0<a<1 Stauchung)

 \pm = (+ normal) (- Spiegelung: Spiegelachse vertikal)

b = horizontale: (0<b<1 Dehnung) (b>1 Stauchung)

Ursprung!

c = horizontale Verschiebung (+ links) (- rechts)

d = vertikale Verschiebung (+ oben) (- unten)

Reihenfolge: $c \rightarrow b \rightarrow a \rightarrow d$

gerader Anteil: $x_g(t) = \frac{1}{2}(x(t) + x(-t))$

ungerader Anteil: $x_u(t) = \frac{1}{2}(x(t) - x(-t))$

mit Regel: $-f(alle\ Vorzeichen\ drehen)$

Kenngrößen von Signalen:

Extremwerte:

Maximum: $y_{max} = \max_{t} y(t)$

Supremum: $y_{sup} = \sup_{t} y(t)$ kleinste obere Schranke falls max \star exist.

 $Minimum: y_{min} = \min_{t} y(t)$

Infimum: $y_{inf} = \inf_t y(t)$ größte untere Schranke falls minimum st exist.

Mittelwerte: im Intervall [a, b] oder von T

Mittel/Gleichwert: $\bar{y} = \frac{1}{b-a} \int_a^b y(t) \cdot dt = \frac{1}{T} \int_0^T y(t) \cdot dt$

Gleichrichtwert: $|\bar{y}| = \frac{1}{b-a} \int_a^b |y(t)| \cdot dt = \frac{1}{T} \int_0^T |y(t)| \cdot dt$

Quadratisches Mittel oder Effektivwert:

$$y_{eff} = \sqrt{\frac{1}{b-a} \int_{a}^{b} (y(t))^{2} \cdot dt} = \sqrt{\frac{1}{T} \int_{0}^{T} (y(t))^{2} \cdot dt}$$

Energie eines Signals:

Reellen skalaren Signal: $E = \int_{-\infty}^{\infty} |y(t)|^2 \cdot dt$

Komplexes skalaren Signal: $E = \int_{-\infty}^{\infty} y^*(t) \cdot y(t) \cdot dt$

Vektorielles Signal: $E = \int_{-\infty}^{\infty} ||y(t)||^2 \cdot dt$ mit $||y(t)|| = \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$

Energiesignal wenn: $E < \infty$; $\lim_{t \to \pm \infty} y(t) = 0$

Leistung eines Signals:

Durchschnittsleistung reellen skalaren: $P = \lim_{T o \infty} rac{1}{2T} \int_{-T}^T \lvert y(t)
vert^2 \cdot dt$

Momentanleistung: $P(t) = \lim_{T \to 0} \frac{1}{2T} \int_{t-T}^{t+T} |y(\tau)|^2 d\tau = |y(t)|^2$

Leistungssignal wenn: 0 < P < ∞

Taylor-Reihe:

$$f(t) = \sum_{k=0}^{\infty} \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k$$

Delta-Distribution: $\int_{-\infty}^{\infty} \delta(t) \cdot f(t) \cdot dt = f(0)$

$$\int_{-\infty}^{\infty} \delta(t) \cdot dt = 1 \qquad \delta(-t) = \delta(t) \qquad \delta(ct) = \frac{1}{|c|} \delta(t)$$

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a)$$

$$\int_{-\infty}^{\infty} \delta^{(n)}(t)f(t)dt = (-1)^n \cdot f^{(n)}(0)$$
Bei +a \(\rightarrow -a\)
$$\int_{-\infty}^{t} \delta(\tau) \cdot d\tau = h(t)$$

$$\int_{-\infty}^{t} \delta(\tau - a)f(\tau)d\tau = f(a)h(t - a)$$

$$\frac{d}{dt}h(t)=\dot{h}(t)=\delta(t)$$
 $h(t)=\mathit{Einheitssprung},\mathit{Sprungfunktion}$

$$\ddot{u}_{rampe}(t-t_0) = \dot{h}(t-t_0) = \delta(t-t_0)$$

Basics:

Mitternachtsformel:

$$0 = ax^2 \cdot bx + c$$

$$\rightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2a}$$

$$e^{0} = 1$$
; $e^{\infty} = \infty$; $e^{-\infty} = 0$

3-er Binom:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Rechentrick: $\frac{\frac{a}{b}}{1+\frac{c}{b}} = \frac{a}{b+c}$

Umrechnung der Verstärkung

$$A_{dR} = 20 \log_{10}(A)$$

$$A = 10^{(A_{dB})/20}$$

Mathematisch: ひ negativ ひ positiv

Eigenschaftsüberprüfung: mit Funktion aus u(t) und y(t)

Überprüfung Homogenität: (Systemgleichung gilt für u und y)

Einsetzen von cy und cu statt y und u in Gleichung \rightarrow gilt es für $c \in \mathbb{R}$

Überprüfung Additivität: (Systemgleichung gilt für u1 y1 bzw. u2 y2)

Einsetzen von y1 + y2 und u1 + u2 statt y und u → gilt die Gleichung noch?

Überprüfung Zeitinvarianz: (Verhalten vom Startpunkt unabhängig)

Einsetzen von u(t - T) und y(t - T) statt u(t) und y(t)

Transformation: $\tau = t - T$ für beliebige $T \in \mathbb{R}$

Jedes weitere t in Gleichung durch $t = \tau + T$ ersetzen (nicht dt)

Überprüfung Kausalität: (keine Zukunftsvorhersage)

$$u(t) = \left\{ \begin{smallmatrix} \neq & 0 & t > 0 \\ = & 0 & t \leq 0 \end{smallmatrix} \right. ; y(t) = \left\{ \begin{smallmatrix} \neq & 0 & t > 0 \\ = & 0 & t \leq 0 \end{smallmatrix} \right. ; \; y_{(t)} = f(u_{(t+c)}) \text{ mit c} > 0$$

 $(y(t) = \dot{u}(t))$ ist akausal da schon bei t = 0 ein wert vorliegt)

Überprüfung Bibo-Stabilität: Zwei Möglichkeiten:

1.)
$$\int_{-\infty}^{\infty} |g(t)| \cdot dt < \infty$$

Option: den Graph im Diagramm betrachten → negative Flächen hochklappen und Betragsfläche ermitteln

2.)
$$|u_{(t)}| \le u_{max} < \infty \rightarrow |y_{(t)}| = |Gleichung| < \infty$$

$$|a \cdot b| = |a| \cdot |b|$$
; $|a + b| \le |a| + |b|$; $|a - b| \le |a| + |b|$

|Gleichung| sollte vollständig nach oben aufgedröselt werden

Beschränkte Eingabe führt zu beschränkter Ausgabe ightarrow keine unphysikalische Werte

Gleichung	Eigenschaften
$a_1 \dot{y}(t) + a_0 y(t) = u(t)$	linear, zeitinvariant, kausal
$a_1\dot{y}(t) + a_0(y(t))^2 = u(t)$	<i>nichtlinear</i> , zeitinvariant, kausal
$a_1\dot{y}(t) + a_0y(t) + 2 = u(t)$	nichtlinear, zeitinvariant, kausal
$a_1 \dot{y}(t) + a_0 t \dot{y}(t) = u(t)$	linear, <i>zeitvariant</i> , kausal
$a_1\dot{y}(t) + a_0y(t) = u(t+2)$	linear, zeitinvariant, <i>akausal</i>

Links und rechts vom = selbe Regel

$$Y(s) = G(s)U(s)$$
 mit $G(s)$...

$$G(s) = \frac{s}{s^2 + 5s + 5}$$
 linear, zeitinvariant, kausal

$$G(s) = \frac{s}{\sqrt{s^2 + 5s + 5}}$$
 linear, zeitvariant, kausal

Steuerung: offener Wirkungskreis

Regelung: geschlossener Wirkungskreis

Regelgüte: Regelungstechnik ist ein Kompromiss

Normierung: bei $\dot{y} \rightarrow \frac{d}{dt}$, $\ddot{y} \rightarrow \frac{d^2}{dt^2}$ ausklammern!

Orginalgleichung: $y = c \cdot u$

Erweitern: $y \cdot \frac{f_y}{f_y} = c \cdot u \cdot \frac{f_u}{f_u} \mid : f_y$

Umformen: $\frac{y}{f_v} = c \cdot \frac{f_u}{f_v} \cdot \frac{u}{f_u}$

Normierte Gleichung: $\bar{y} = \bar{c} \cdot \bar{u}$

Stabilität: LTI-System 1. Ordnung:

Bei G(s) ist N(s) die charakterische Gleichung

1.) Methode mit Berechnung Eigenwerte λ :

Homogene Dgl.:
$$a_n y^{(n)}(t) + \dots + a_1 \dot{y}(t) + a_0 y(t) = 0$$

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

Bei
$$G(s) = \frac{Z(s)}{N(s)} \rightarrow N(s) = 0$$
 das ist die ch. Gleichung

 λ herausfinden (wenn komplex, dann auch konjugierte) "hier werden Pole berechnet!"

- $Re[\lambda_i] > 0$ für mindestens ein *i*, oder ein Eigenwert mit $Re[\lambda_i] = 0$ tritt mehrfach auf \rightarrow instabil (wächst unbeschränkt)
- $Re[\lambda_i] \leq 0$ für alle *i*, und alle Eigenwerte mit $Re[\lambda_i] = 0$ treten nur einfach auf \rightarrow grenzstabil $s_{1,2} = \pm j \ oder \ 0$
- $Re[\lambda_i] < 0$ für alle $i \rightarrow$ asymptotisch stabil (klingt

2.) Vorzeichenbedingung (VZB)

Herausfindbar: as. stabil / nicht as. stabil Char. Gl. $a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 = 0, \quad a_n > 0$ (a₀ darf dabei nicht 0 sein) (Durchmultiplizieren möglich)

Möglich bis zum Grad 2, nachweisbar! as. stabil ausschließbar bei egal welcher Grad wenn <0

3.) Hurwitz-Kriterium

Char. Gl. $a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 = 0, \quad a_n > 0$ Für Polynom Grad n eine n x n Matrix aufstellen

$$H = \begin{bmatrix} \frac{a_8}{0} & a_6 & a_4 & a_2 & a_0 & 0 & 0 & 0 & 0 \\ 0 & a_7 & a_5 & a_3 & a_1 & 0 & 0 & 0 & 0 \\ 0 & a_8 & a_6 & a_4 & a_2 & a_0 & 0 & 0 & 0 \\ 0 & 0 & a_7 & a_5 & a_3 & a_1 & 0 & 0 & 0 \\ 0 & 0 & a_8 & a_6 & a_4 & a_2 & a_0 & 0 & 0 \\ 0 & 0 & 0 & a_7 & a_5 & a_3 & a_1 & 0 & 0 \\ 0 & 0 & 0 & a_8 & a_6 & a_4 & a_2 & a_0 & 0 \\ 0 & 0 & 0 & 0 & a_7 & a_5 & a_3 & a_1 & 0 \\ 0 & 0 & 0 & 0 & a_8 & a_6 & a_4 & a_2 & a_0 \\ 0 & 0 & 0 & 0 & a_8 & a_6 & a_4 & a_2 & a_0 \end{bmatrix}$$

 $a_{h\ddot{\circ}chste}$ nicht aufstellen Bei 3x3 Matrix $\Delta_3 = \Delta_2 \cdot a_0$ Determinanten Δ_i ausrechnen, wenn alles positiv und auch nicht 0

→ dann ist es as. stabil sonst nicht as. stabil

Proper: Grenzwert $\lim G(s) = c < \infty; c \in \mathbb{C}$; *existiert*

Für LTI-Übertragungsfkt.: Zählerordnung m ≤ Nennerordnung n = kausal = technisch realisierbar (auch bei Regler-prüfung anwendbar)

streng Proper: Grenzwert $\lim G(s) = 0$

Für LTI-Übertragungsfkt.: Zählerordnung m < Nennerordnung n = nicht sprungfähig

Schwingungsfähig: Pole mit $Re \ge 0$ und $Im \ne 0$ Phasenminimumsystem:

keine Totzeit und Nullstelle Re[qi]<0 und Polstelle Re[pi]<0 Stationärer Zustand:

- Bei DGL n-ter Ordnung mit const. $u_{\infty} = \lim_{t \to \infty} u(t)$ den stationären Ausgang $y_{\infty} = \lim_{t \to \infty} y(t) = \frac{b_0}{a_0} u_{\infty}$
- Stationärer Zustand im Laplace-Bereich bei Y(s) = G(s)U(s) nur Pole mit Re >0 plus s = 0 bei einem Pol $y_{\infty} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)U(s)$
- Stationäre Regelabweichung mit Grenzwertsatz: $\lim e(t) = \lim sE(s)$ (klein, wenn $G(j\omega)K(j\omega) \gg 1$)
- Bei u(t) = h(t), U(s) = 1/s stationäre Verstärkung

$$\mathbf{k_{DC}} = y_{\infty} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} G(s) = \frac{b_0}{a_0} = G(0)$$

Ortskurve/Bodediagramm: kleine Frequenz; Verstärkung ablesen; Umrechnen 10xdB/20; VZ ermitteln im Phasengang → 180° = negativ, 0° = positiv

Für Berechnung des Startwertes y(0) $y_{(0+)} = \lim_{t \to 0+} y(t) = \lim_{s \to \infty} sY(s) = \lim_{s \to \infty} sG(s)U(s)$ Ortskurve/Bodediagramm: große Frequenz; Verstärkung ablesen; Umrechnen 10xdB/20; VZ ermitteln im Phasengang → 180° = negativ, 0° = positiv

Frequenzgang:
$$G(j\omega) = G(s)|_{s=j\omega} = A(\omega)e^{j\varphi(\omega)} = Re[G(j\omega)] + j \cdot Im[G(j\omega)]$$

Amplitudengang:
$$A(\omega) = \left| \frac{\hat{y}(\omega)}{\hat{u}(\omega)} \right| = |G(j\omega)| = \sqrt{(Re[G(j\omega)])^2 + (Im[G(j\omega)])^2}$$

Phasengang:
$$\varphi(\omega) = \varphi_y(\omega) - \varphi_u(\omega) =$$
 arg $G(j\omega) = \arctan \frac{Im[G(j\omega)]}{Re[G(j\omega)]}$

Rechenregeln bei Bodediagrammen

$$\log |G_1G_2| = \log |G_1| + \log |G_2|$$

$$\arg(G_1G_2) = \arg G_1 + \arg G_2$$

$$\log |-G| = \log |G|$$

$$\arg(-G) = \arg G \pm 180^{\circ}$$

$$\log |G_1 + G_2| \approx \max[\log A_1, \log A_2]$$

$$\log |G_1 + G_2| \approx \max[\log A_1, \log A_2]$$

$$\arg(G_1 + G_2) \approx \max[\arg G_1, \arg G_2]$$

$$\log |G^{-1}| = -\log |G|$$

$$\log |G^{-1}| = -\log |G$$

$$\arg(G^{-1}) = -\arg G$$

Regelkreisglieder: Regler können durch mal kombiniert werden

Abk.	DGL	Übertragungsfunktion	Loop-Shaping / Auswirkung Grafisch
Р	$y = K_p u$	$G(s) = K_P$	Bode: Amplitude verschieben um $ 20log_{10}(K_p) \rightarrow (K_P > 1 \text{ nach oben})$ ($K_P < 1 \text{ nach unten}$), Phase bleibt gleich, Ortskurve aufgeblähen/zamziehen
PT ₁	$T_1 \dot{y} + y = K_p u$ $y(0) = 0$	$G(s) = \frac{K_P}{T_1 s + 1}$	
PT ₂	$T_2 \ddot{y} + T_1 \dot{y} + y = K_p u$ $\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = K_p \omega_n^2 u$ $y(0) = \dot{y}(0) = 0$	$G(s) = \frac{K_P}{T_2 s^2 + T_1 s + 1}$	Schwingungsfägig: $T(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$
PT _t	$y(t) = K_p u(t - T_t)$	$G(s) = K_P e^{-T_t s}$	
PT₁Tt	$T_1 \dot{y}(t) + y(t) = K_p u(t - T_t)$	$G(s) = \frac{K_P}{T_1 s + 1} e^{-T_t s}$	
I	$y = K_I \int_0^t u(\tau) d\tau$ $\dot{y} = K_I u$	$G(s) = \frac{K_I}{s}$	I-Anteil bewirkt: Bode: niedrige Frequenz Amplitude gegen unendlich
IT ₁	$T_1 \dot{y} + y = K_I \int_0^t u(\tau) d\tau$	$G(s) = \frac{K_I}{s(T_1 s + 1)}$	T_{i} legt die Eckfrequenz des PI-Reglers fest. Weit unterhalb der ω_c so wird die
D	$y = K_D \dot{u}$	$G(s) = K_D s$	Regelgüte verbessert, ohne die
DT ₁	$T_1\dot{y} + y = K_D\dot{u}$	$G(s) = \frac{K_D s}{(T_1 s + 1)}$	Stabilitätsreserve nachteilig zu beeinflussen
PI	$ \begin{array}{c} {\rm Erh\ddot{o}hen\ von\ }K_p\ {\rm oder\ verkleinern\ von\ }T_I \\ \hline \to {\rm kleinere\ }{\rm Anstiegszeit,\ mehr} \\ \hline {\rm \ddot{U}berschwingung} \\ \end{array} $	$G(s) = K_p + \frac{K_I}{s} = K_p \left(1 + \frac{1}{T_I s} \right)$	P-Anteil siehe oben, T_I verändert Phasengang im Bode für Frequenzen $>\omega=2\pi/T_I$ keine wesentliche Phasendrehung mehr
PD		$G(s) = K_p + K_D s = K_p (1 + T_D s)$	
PDT ₁	PPT_1 (Lag-Element) $K(s) = \frac{1}{v} \cdot \frac{s + vw}{s + w}$, $v > 1$	$G(s) = \frac{K_p + K_D s}{T_1 s + 1} = K_p \left(\frac{1 + T_D s}{T_1 s + 1}\right)$	A im Bereich ω_c absenken, ohne Phasenänderung, Phase in anderen Frequenzbereichen absenken
PDT ₁	PDT_1 (Lead-Element) $K(s) = v \cdot \frac{s+w}{s+vw}, v > 1$	$G(s) = \frac{K_p + K_D s}{T_1 s + 1} = K_p \left(\frac{1 + T_D s}{T_1 s + 1}\right)$	Im Bereich ω_c Phasenreserve vergrößern ohne Verstärkung signifikant zu verändern Faustregel: $w \geq \omega_c$ und $w\sqrt{v} > \omega_c$
PA ₁	Allpass	$G(s) = K_p \frac{1 - T_1 s}{1 + T_1 s}$	
PID	Kaum Oszillation, geringes Überschwingen, schnelles Einschwingen, relativ kleine Stellgröße	$G(s) = K_p + \frac{K_I}{s} + K_D s = K_p \left(1 + \frac{1}{T_I s} + T_D s \right)$	
PIDT ₁		$G(s) = \frac{K_p + \frac{K_I}{s} + K_D s}{T_1 s + 1} = K_p \frac{T_D s^2 + s + \frac{1}{T_I}}{s(T_1 s + 1)}$	

Grundformen von Regelkreismitgliedern:

P: proportionales Übertragungsverhalten I: integrierendes Übertragungsverhalten

D: differenzierendes Übertragungsverhalten

 $\label{eq:model} \mbox{M\"{o}glicherweise kombiniert mit: T_n $z_{eitverz\"{o}gerung}$, T_t $Totzeit$} \\ \mbox{Reihenfolge PIDT}_nT_t$

Klassifikation Differentialgleichungen:

Basisform:

$$T_{n}y^{(n)}(t) + \dots + T_{1}\dot{y}(t) + T_{0}y(t) = K_{I} \int_{0}^{t} u(\tau)d\tau + Ku(t) + K_{D}\dot{u}(t) + \dots$$

- linke Seite: T_0 y muss da sein \rightarrow sonst umformen \int , $\frac{d}{dt}$
- linke Seite: yⁿ bestimmt die Art der Verzögerung (T_n)
- rechte Seite: I-, P-, oder D-Glieder ermitteln
- rechte Seite: $u(t T_t)$ statt $u(t) \rightarrow$ Totzeit beteiligt

Klassifikation Übertragungsfunktion:

LTI-Basisübertragungsfunktion:

$$G(s) = \frac{\frac{K_I}{s} + K + K_D s + \cdots}{T_n s^n + \cdots + T_1 s + T_0}$$
 Tipp: $\frac{1}{s^n} \to I_n$; $s^n \to D_n$

- Nenner: T₀ muss vorhanden sein, keine 1/s sonst Erweitern/Kürzen mit s auf obige Form bringen
- Nenner: sⁿ bestimmt die Art der Verzögerung (T_n)
 T₀ schreibt man nicht auf!
- Zähler: I-, P-, oder D-Glieder ermitteln
- Falls auf der rechten Seite der Dgl. der Term $e^{-T_t s}$ auftritt, ist eine Totzeit beteiligt 1/s runterziehe

Für Pol- und Nst-Berechnung immer ursprüngliche Form benutzen!

1/s runterziehen wenn alleine und kürzen a.p.

Elemente von Blockschaltbildern:

Elemente von Bioekschaftbildern.				
Signalverzweigung:	Einheitsverstärkung:			
	Y(s) = U(s)			
l y	$u \longrightarrow y$			
	$u \rightarrow 1 \rightarrow y$			
Differenz:	System:			
$Y(s) = U_1(s) - U_2(s)$	Y(s) = G(s)U(s)			
$\begin{array}{c c} u_1 & y \\ \hline u_2 & \end{array}$	$u \longrightarrow G \xrightarrow{y}$			
	Signalverzweigung: y Differenz: $Y(s) = U_1(s) - U_2(s)$ u_1 y			

Vereinfachungen:

entgegen Pfeilrichtung-

Verlagerung:

Standard-Regelkreis (*zweites Erweitert):

Übertragungsweg	Übertragungsweg
$G_{yr}(s) = \frac{Y(s)}{R(s)} = T(s)$	$G_{er}(s) = \frac{E(s)}{R(s)} = S(s)$ "von r nach
$G_{y\eta}(s) = \frac{Y(s)}{H(s)} = -T(s)$	$G_{e\eta}(s) = \frac{E(s)}{H(s)} = T(s)$
$G_{yd_1}(s) = \frac{Y(s)}{D_1(s)} = S(s)$	$G_{ed_1}(s) = \frac{E(s)}{D_1(s)} = -S(s)$
$G_{yd_2}(s) = \frac{Y(s)}{D_2(s)} = G(s)S(s)$	$G_{ed_2}(s) = \frac{E(s)}{D_2(s)} = -G(s)S(s)$
$G_{ur}(s) = \frac{U(s)}{R(s)} = K(s)S(s)$	$G_{ud_1}(s) = \frac{U(s)}{D_1(s)} = -K(s)S(s)$
$G_{u\eta}(s) = \frac{U(s)}{H(s)} = -K(s)S(s)$	$G_{ud_2}(s) = \frac{U(s)}{D_2(s)} = -T(s)$

Beschreibung und Analyse von Regelkreises

Übertragungsfunktionen im Standard Regelkreis

Offener Kreis: $L(s) = G_{yf}(s) = \frac{Y(s)}{F(s)} = G(s)K(s)$

L(s): Verhalten in Ortskurve manchmal gegeben!

Komplementäre Sensitivität: (ideal = 1)

$$T(s) = G_{yr}(s) = \frac{Y(s)}{R(s)} = \frac{L(s)}{1 + L(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

Sensitivität: (ideal = 0)

$$S(s) = G_{er}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + L(s)} = \frac{1}{1 + G(s)K(s)}$$

Regelfehler: $E(s) = R(s) - Y(s) = \frac{S(s)R(s)}{S(s)}$

Fall mit *Erweiterung:

$$Y(s) = T(s)R(s) + S(s)D_{1}(s) + G(s)S(s)D_{2}(s) - T(s) \cdot \eta$$

$$E(s) = R(s) - Y(s)$$

$$E(s) = S(s)R(s) - S(s)D_{1}(s) - G(s)S(s)D_{2}(s) + T(s) \cdot \eta$$

$$U(s) = K(s)S(s)R(s) - K(s)S(s)D_{1}(s) - T(s)D_{2}(s) - K(s)S(s) \cdot \eta$$

Interne Stabilität: (verschiedene Methoden)

Strecke: $G(s) = \frac{Z_G(s)}{N_G(s)}$ Regler: $K(s) = \frac{Z_K(s)}{N_K(s)}$

1.) instabiler oder grenzstabiler Pol-/Nullstellenkürzung

Gemeinsamer Faktor $s-\lambda$ mit $Re[\lambda] \geq 0$ zwischen Z_G und N_K bzw. Z_K und N_G

- → Ausschluss von interner asymptotischer Stabilität
- **2.)** Char. Gleichung des Regelkreises keine Kürzung der Brüche möglich

ch. Gleichung: $N_G(s)N_K(s) + Z_G(s)Z_K(s) = 0$

- →danach mit VZB oder Hurwitz Entscheidung machen
- **3.)** Stabilität mit Übertragungsfunktionen (Pole betrachten)
- G(s) und K(s) jeweils proper, $\lim_{s\to\infty}G(s)K(s)\neq -1$ und
- S(s), K(s), G(s) sind asymptotisch stabil
- → Regelkreis ist intern asymptotisch Stabil

G(s) und K(s) jeweils proper und asymptotisch stabil $\lim_{s\to\infty}G(s)K(s)\neq -1$ und S(s) ist asymptotisch stabil

- → Regelkreis ist intern asymptotisch Stabil
- **4.)** Nyquist-Kriterium (Ortskurve/Amplitudengang gegeben) *Keine Pole müssen berechnet werden*

- Gegeben: G(s) und K(s) ohne instabile Pol/Null-Kürzung

- -L(s) = G(s)K(s) ist properes Eingrößensystem
- -L(3) = U(3)K(3) ist properes Elligioisellsystelli
- m_0 = Anzahl der Pole von L(s) mit Realteil>0 (instabile)
- a_0 = Anzahl der Pole von L(s) auf der Imaginärachse (grenzstabil)

 $\Delta \varphi_{soll} = m_0 \cdot \pi + a_0 \cdot \frac{\pi}{2} = m_0 \cdot 180^\circ + a_0 \cdot 90^\circ$

 \rightarrow der Zeiger vom "kritischen Punkt" (-1,0) zur Ortskurve wird abgelesen $\varphi=\Delta\varphi_{soll}$ dann folgt:

- → geschlossener Regelkreis intern asymptotisch stabil
- **5.)** Small-Gain-Kriterium (Ortskurve/Amplitudengang gegeben) *Vorraussetzung:*
- G(s) und K(s) LTI ohne instabile Pol-/Nullstellenkürzungen
- -L(s) = G(s)K(s) ist properes Eingrößensystem
- L(s)=G(s)K(s) ist asymptotisch stabil (falls ja oben skipn) $|L(j\omega)|<1=0dB$ für alle ω =innerhalb Einheitskreis/ unter OdB Linie
- → geschlossener Regelkreis intern asymptotisch Stabil

Robustheit: (Wie weit zur Stabilitätsgrenze)

robust stabil: as. stabil auch bei großen Veränderungen

grenzstabil: $|L(j\omega)| = 1$ und $\Phi = \arg(L(j\omega)) = \pm \pi$

Stabilitätsreserven: mit beiden Diagrammen herausfindbar

mit Einheitskreis

Bode-Diagramm von $L(j\omega)$

Amplitudenreserve: a_r (mit Bode)

- finde $\omega_{180^{\circ}}$ *mit* $argL(j\omega_{180^{\circ}}) = -\pi = -180^{\circ}$
- Bestimme $|L(j\omega_{180^\circ})|$ (Schnittpunkt mit Kennlinie ablesen)
- $a_r = \frac{1}{|L(j\omega_{180^\circ})|} = \frac{1}{S^{-1}(j\omega_{180^\circ}) 1} = -20\log_{10}|L(j\omega_{180^\circ})| dB$

hohes a_r = gute Stabilitätsreserve gegenüber Modellunsicherheiten, langsame Systemantwort, geringe Bandbreite

Phasenreserve: ϕ_r (mit Bode)

- finde ω_C mit $L(j\omega_C) = 1 = 0$ dB (an OdB Linie rübergehen bis Graph 1 kommt, dann runtergehen und Abstand zwischen Graph 2 und -180° ablesen)
- Bestimme arg $L(i\omega_C)$
- $\Phi_r = 180^\circ + \arg L(j\omega_C) = \pi + \arg L(j\omega_C) = \pi + \arg (S^{-1}(j\omega_C) 1)$

hohes ϕ_r = Stabilitätsreserve gegenüber Modellunsicherheiten, hohe Dämpfung

Abstand zum kritischen Punkt: (-1,0)

 $d_r = \min_{\omega} |L(j\omega) + 1| = \min_{\omega} S^{-1}(j\omega)$ (kreisförmige Methode)

Verhalten im Zeitbereich

Kenngrößen einer Regelgröße

Stationärer Wert a

*Stationäre Abweichung |r - a| (r ist Sollwert)

Überschwingen b (absolut) oder b/a (relativ)

Abklingverhältnis c/a

Anstiegsdauer t_r (bis x% von a erreicht)

Einschwingdauer t_s

(bis|r-y|bzw. |a-y|bzw. |(a-y)/a| klein genug)

Stationärer Zustand (Eingangsgröße ändert nimmer) $t \to \infty$

Beim Standardregelkreis!

$$\begin{array}{l} \text{mit Sollwert } r(t) \to r_\infty = \text{const. und } d_1 = d_2 = \eta \equiv 0 \text{:} \\ y_\infty = \lim_{t \to \infty} y(t) = \lim_{s \to 0} s T(s) R(s), \quad e_\infty = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s S(s) R(s) \end{array}$$

mit Ausgangsstörung
$$d_1(t) \to d_{1,\infty}$$
 und $r=d_2=\eta\equiv 0$: $y_\infty=\lim_{t\to\infty}y(t)=\lim_{s\to 0}sS(s)D_1(s), \quad e_\infty=\lim_{t\to\infty}e(t)=\lim_{s\to 0}-sS(s)D_1(s)$

mit Sollwert $r(t) \to r_{\infty}$, Eingangsstörung $d_2(t) \to d_{2,\infty}$ und $d_1 = \eta \equiv 0$: $e_{\infty} = \lim_{t \to \infty} e(t) = \lim_{s \to \infty} s \left(S(s)R(s) - G(s)S(s)D_2(s) \right)$

Anfangswert: (für Standardregelkreis!)

mit Sollwert $r(t) \to r_{\infty} = \text{const.}$ und $d_1 = d_2 = \eta \equiv 0$: $y(0+) = \lim_{t \to 0+} y(t) = \lim_{s \to \infty} sT(s)R(s)$

10^{−1} 1∪ Freq. [rad/s] ----lande Gain of T(jω)

Verhalten im Frequenzbereich:

Durchtrittsfrequenz

 $|L(j\omega_C)| = 1 = 0 \ dB$

Bandbreite (hoch = gut)

$$|T(j\omega_B)| = \frac{1}{\sqrt{2}} \approx 0.707 \approx -3 \ dB$$

 $[0,\omega_B] o$ Regelung effektiv für Führungsfolge, Störunterdrückung

 ω_R klein: langsames System, geringer Stellaufwand, größere Robustheit

Zusammenfassung Regelkreis-Analyse:

- Interne Stabilität im Nominalfall, → wenn ja, weiter
- Amplituden- und Phasenreserve → wenn ok, weiter
- Durchtrittsfrequenz, Bandbreite
- Simulation

$$Y = TR$$
 , $Y = SD_1$, $Y = GSD_2$, $E = SR$, $U = KSR$

Stationäre Verstärkung S(0), T(0), GS(0), KS(0)

Klassische Reglerentwurfsmethoden:

Prinzip des internen Modells:

Regelfehler e im stationären Zustand für r(t) = h(t) weg:

- → Entweder G(s) oder K(s) müssen Integrator enthalten Um konstanten Sollwert erzeugen / konstante D₁ kompensieren:
- → Integrator in der Strecke

Um konstante D₂ kompensieren:

→ Integrator im Regler

Einstellregeln für Einfache Regler:

1.) Schwingungsmethode nach Ziegler-Nichols:

Idealen P-Regler K(s) = k, k erhöhen bis harmonische

Dauerschwingung = $k_{krit} \rightarrow T_{krit}$ ablesen

Reglerstruktur	K_P	T_{I}	T_D
Р	$0.5 k_{ m krit}$	_	_
PI	$0.45k_{ m krit}$	$0.85T_{ m krit}$	_
PID	$0.6 k_{ m krit}$	$0.5T_{ m krit}$	$0.12T_{ m krit}$
PID verbessert	$0.2 k_{ m krit}$	$0.5T_{ m krit}$	$0.33T_{ m krit}$

2.) Sprungmethode nach Ziegler-Nichols:

Anwendungsvorraussetzung: Regelstrecke as. Stabil und Sprungantwort $\approx PT_1T_t$ - Verhalten (Totzeit!)

Reglerstruktur	K_P	T_{I}	T_D
Р	$\tau/(K_SL)$	_	_
PI	$0.9 au/(K_SL)$	L/0.3	_
PID	$1.2 au/(K_SL)$	2L	0.5L

3.) Sprungmethode nach Aström:

Anwendungsvorraussetzung: Regelstrecke as. Stabil und Sprungantwort $\approx PT_1T_t$ - Verhalten

$$K_P = \left\{ \begin{array}{ll} 0.3 \, T/(K_S L) & \mbox{für } L < 2T \\ 0.15 \, K_S & \mbox{für } L > 2T \end{array} \right., \quad T_I = \left\{ \begin{array}{ll} 8 \, L & \mbox{für } L < 0.1T \\ 0.8 \, T & \mbox{für } 0.1T < L < 2T \\ 0.4 \, L & \mbox{für } L > 2T \end{array} \right.$$

Open Loop-Shaping

Einfacher Loop-Shaping-Reglerentwurf:

Regler K(s) so wählen, für Anforderungen an offener Kreis L(s) → Stabilität, Regelabweichung, Bandbreite,

Stabilitätsreserven, Regelgüte

Infos im Bode-Diagramm von $L(s)=G(s)K(s) \rightarrow L(s)$ "formen" Schraffiert sind verbotene Bereiche:

- (2) Amplitudenreserve
- (3) Phasenreserve
- (4) |L(0)| "groß"
- (5) Durchtrittsfrequenz

K(s) Einfluss mit Formeln: (siehe auch Tabelle oben)

$$L(j\omega) = A_L(\omega) e^{j\varphi_L(\omega)}$$

$$\log A_L(\omega) = \log A_G(\omega) + \log A_K(\omega)$$

$$\varphi_L(\omega) = \varphi_G(\omega) + \varphi_K(\omega)$$

Kochrezept:

I-Anteil ja/nein? (Regelabweichung)

D-Anteil ja/nein? (Oszillationen abdämpfen)

Durchtrittsfrequenz mittels P-Anteil anpassen

Lead- bzw. Lag-Glied ja/nein? Welcher Frequenzbereich?

Weitere Lead-/Lag-Glieder?

Amplituden- und Phasenreserve verbessern

Maximalwerte von S und T verbessern (nicht zu hoch)

Anti-Windup: (Stellgrößenbeschränkung in Praxis)

Wenn (|u| > maximale Stellgröße), instabiler oder grenzstabiler Anteil (I-Anteil) → starkes Überschwingen das,

bis Instabilität führt (Abhilfe = Anti-Windup)

 $u - v \ge 0$ ist nur ungleich wenn Aktuatorlimitierung läuft

Faustregel: $T_D < T_t < T_I$, $T_t \approx \sqrt{T_I T_D}$

Zusatzwissen: (aus Aufgaben)

Grenzwertsätze (nur benutzbar bei konstantem Endwert)

$$\lim_{t \to 0} y(t) = \lim_{s \to \infty} s \cdot Y(s)$$

$$\lim_{t \to 0} \dot{y}(t) = \lim_{s \to \infty} s^2 \cdot Y(s)$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s \cdot Y(s)$$

$$\lim_{t \to \infty} \dot{y}(t) = \lim_{s \to 0} s^2 \cdot Y(s)$$

Konstanter Endwert: wenn nicht schwingungsfähig \rightarrow keine Pole mit Eigenschaft $Re \geq 0$ und $Im \neq 0$

Minimalphasig: wenn Pole Realteile < 0 sind (as. Stabil) und zusätzlich Nullstellen auch Realteile < 0 sind. Herausfindbar: VZB oder Stellen ermitteln

Sprungfähig: $\lim_{t \to 0} y(t) > 0$ (Zählergrad = Nennergrad)

Instabile Regelstrecke kann nicht mit einer Steuerung stabilisiert werden! (keine instabile Pol/Nullstellen Kürzung machen)

Instabile Regelstrecke kann mit einer Regelung stabilisiert werden, der Regler darf keine kürzbare instabile Pol/Nst Stelle haben

Ordnung vom System: Grad vom N(s) bei G(s) oder bei einer DGL die linke Seite mit y betrachten

Kompensationsregler

Direkte Vorgabe des Führungsverhaltens im Standard-Regelkreis

$$K(s) = \frac{T(s)}{G(s) \cdot (1 - T(s))} = \frac{N_G(s)Z_T(s)}{Z_G(s)(N_T(s) - Z_T(s))}$$

 $Z_G(s) \rightarrow instabile \ Nst \rightarrow Z_T(s) \ Nst \ rein, falls \ formen$

Falls G(s) instabile Nst oder Polstelle hat (z.B (1-s)) dann muss man zusätzlich in der T(s) das genauso einfügen.

Instabile Nst in $G(s) \rightarrow$ instabile Nst in T(s)