Página Principal / Mis cursos / Métodos Numéricos 2022 - 1S / Grupo 4 y 5 / Tarea 4, grupo 5.

Comenzado el	miércoles, 22 de junio de 2022, 14:54
Estado	Finalizado
Finalizado en	miércoles, 22 de junio de 2022, 16:54
Tiempo	1 hora 59 minutos
empleado	
Calificación	4.4 de 5.0 (88 %)

Pregunta 1

Correcta

Se puntúa 0.6 sobre 0.6

Considere el problema con valores en la frontera (P.V.F.) siguiente

raiores en la frontera (P.V.F.) signiente
$$\begin{cases} y''(x)+\sin(x)y(x)=\cos(x)y'(x)+ an^{-1}(3x), & 3\leq x\leq 5\ ,\ y(3)=lpha,\ y(5)=eta. \end{cases}$$

Estamos interesados en aplicar el método de diferencias finitas centradas para aproximar la solución y de este P.V.F. con tamaño de paso $h=\frac{1}{6}$.

Completar y seleccionar la opción correcta.

Si denotamos por w_i la aproximación de $y(x_i)$ (recordemos que por notación del texto guía y de clase, $w_0=\alpha$), la ecuación en diferencias que se obtiene al aplicar el método de diferencias finitas centradas con tamaño de paso $h=\frac{1}{6}$ es

$${\cal A}_i \, w_{i+1} + {\cal B}_i \, w_i + {\cal C}_i \, w_{i-1} = an^{-1}(3x_i), \qquad i =$$

1

11

✓ ,···

~

donde el valor \mathcal{A}_i es :

- \bigcirc 36 + 6 cos(x_i)
- $\bigcirc 36 6\sin(x_i)$
- $0.36 + 6\sin(x_i)$
- \bigcirc 36 + 3 sin(x_i)
- \bigcirc 36 3 sin(x_i)
- \bigcirc 36 + 3 $\cos(x_i)$
- $0.36 6\cos(x_i)$
- $0.36 3\cos(x_i)$

el valor de \mathcal{B}_i es :

- $\sin(x_i) 72 \checkmark$
- \bigcirc 72 $-\sin(x_i)$
- $\bigcirc \cos(x_i) + 72$
- $\odot \cos(x_i) 72$
- \bigcirc 72 $-\cos(x_i)$
- \circ $-\sin(x_i)-72$
- $\bigcirc -72-\cos(x_i)$
- \bigcirc 72 + $\sin(x_i)$

y el valor de C_i es :

- \bigcirc 36 3 sin(x_i)
- \bigcirc 36 $-6\sin(x_i)$

- \bigcirc 36 + 6 $\cos(x_i)$
- \bigcirc 36 3 $\cos(x_i)$
- \bigcirc $36+3\sin(x_i)$
- $\bigcirc \, 36 + 6 \sin(x_i)$
- \bigcirc 36 $-6\cos(x_i)$
- $@36 + 3\cos(x_i) \checkmark$

Pregunta 2 Parcialmente correcta Se puntúa 0.6 sobre 0.7

Pregunta 3

Correcta

Se puntúa 0.6 sobre 0.6

Utilice format short para los cálculos

Aplique el método de diferencias finitas centradas de orden $\bigcirc_{\underline{O}(h^2)}$ dado por la rutina **findiff.m** con $\bigcirc_{\underline{h}=0.1}$ para aproximar $\bigcirc_{\underline{N}(1.5)}$ en el siguiente problema con valores en la frontera:

 $\frac{\sqrt{\frac{1}{x^{2}}}y^{$

 $\mathbb{Z}_{y}(0.5)=1$, $\mathbb{Z}_{y}(4.5)=2$

se obtiene

0.3284

Pregunta 4

Correcta

Se puntúa 0.7 sobre 0.7

Use format short

Suponga que se tiene una comunidad de personas que contiene inicialmente personas contagiadas de una cierta enfermedad y personas sin contagiar. Sea y(t) el número de personas contagiadas en un instante to personas de uno y otro grupo, la velocidad de cambio de y(t) es proporcional a pocifica puede modelarse mediante el P.V.I.:

 $y'(\underline{t}) = ky(\underline{t})(\underline{L}-y(\underline{t})), \text{ con } y(\underline{0}) = y \underline{0}$

Tomando $\mathbb{Z}_{\underline{\mathsf{L}}=25000}$, $\mathbb{Z}_{\underline{\mathsf{k}}=0.00003}$ y $\mathbb{Z}_{\underline{\mathsf{h}}=0.2}$ con $\mathbb{Z}_{\underline{\mathsf{y}}(\underline{\mathsf{0}})=250}$, la población $\mathbb{Z}_{\underline{\mathsf{y}}(\underline{\mathsf{t}})}$ para $\mathbb{Z}_{\underline{\mathsf{t}}=10}$ obtenida al aplicar el método clásico de Runge-Kutta de cuarto orden, es

Seleccione una:

- A. 23702
- B. <u>23279</u>
- C. 📝 23505

Pregunta 5
Correcta
Se puntúa 0.6 sobre 0.6

Al resolver el siguiente problema elíptico por el método de diferencias finitas de cinco puntos con tamaño de paso h=0.1=k: $u_{xx}+u_{yy}=\frac{xx}{y}=\frac{xx}{y}+\frac{xy}{y}+\frac{xy}{y}$ en la región $x=\frac{x}{y}=\frac{x}{y}+\frac{xy}{y}$ en la región $x=\frac{x}{y}=\frac{x}{y}+\frac{xy}{y}=\frac{x}{y}+\frac{xy}{y}$ con condiciones de frontera $u_{x,1}=x\frac{xy}{y}+\frac{xy}{y}$ para $u_{x,1}=x\frac{xy}{y}+\frac{xy}{y}$ para $u_{x,2}=x\frac{xy}{y}+\frac{xy}{y}$ para $u_{x,1}=x\frac{xy}{y}+\frac{xy}{y}$ para $u_{x,1}=x\frac{xy}{y}+\frac{xy}{y$

race 4, grape 5 Revision der mente
Pregunta 7
Sin contestar
Puntúa como 0.5
Si aplica el método del disparo lineal con $\triangleright_{h=0.1}$ para aproximar $\triangleright_{x(3)}$ en el siguiente P.V.F.
$\mathbb{Z}_{\underline{X}(1)=1}$
$\sum_{X(6)=0}$
se obtiene:
× (respuesta con 4 decimales)
Pregunta 8
Correcta
Se puntúa 0.6 sobre 0.6
Consideremos el problema de predecir la población de dos especies que compiten por la misma comida. Si \(\int_{\text{x}}\) \(\text{1}\) \(\text{left}(\text{1}\) \(\text{right})\) y \(\text{\text{x}}\) \(\text{2}\) \(\text{left}(\text{1}\) \(\text{right})\) denotan los números de individuos vivos en el tiempo \(\text{x}\) y suponemos que la población de un par determinado de tales especies se describe mediante el modelo: \(\text{\text{left}(\text{1}\) \\text{left}(\text{1}\) \\\text{left}(\text{1}\) \\\\text{left}(\text{1}\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

→ Taller 16 Ecuaciones hiperbólicas

Ir a...

Quiz 3 - Grupo 5 - TANDA 2: 9-9.50am ►