DISTRIBUTIONS DISCRÈTES							
	Support	Paramètres	FMP	Répartition	$\mathrm{E}(X)$	$\operatorname{var}(X)$	FGM
Bernoulli (θ)	{0,1}	$\theta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1 - \theta + \theta e^t$
$\mathrm{Binomiale}(n,\theta)$	$\{0,\ldots,n\}$	$n \in \mathbb{N}, \theta \in (0,1)$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$		$n\theta$	$n\theta(1-\theta)$	$(1 - \theta + \theta e^t)^n$
$Poisson(\lambda)$	$\left\{0,1,2,\ldots\right\}$	$\lambda \in \mathbb{R}^+$	$e^{-\lambda} \frac{\lambda^x}{x!}$		λ	λ	$\exp\{\lambda(e^t-1)\}$
$\operatorname{Geom\'etrique}(\theta)$	{1, 2,}	$\theta \in (0,1)$	$\theta(1-\theta)^{x-1}$	$1 - (1 - \theta)^x$	$\frac{1}{\theta}$	$\frac{1-\theta}{\theta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$
Binomiale négative (r, θ)	$\{r,r+1,\ldots\}$	$r \in \mathbb{N}, \theta \in (0,1)$	$ \binom{x-1}{r-1} \theta^r (1-\theta)^{x-r} $		$\frac{r}{\theta}$	$\frac{r(1-\theta)}{\theta^2}$	$\left\{ \frac{\theta e^t}{1 - e^t (1 - \theta)} \right\}^r$ $\left\{ \frac{\theta}{1 - e^t (1 - \theta)} \right\}^r$
Binomiale négative (r, θ) ou	$\left \{0,1,2,\ldots\} \right $	$r \in \mathbb{N}, \theta \in (0, 1)$	$\binom{r+x-1}{x}\theta^r(1-\theta)^x$		$\frac{r(1-\theta)}{\theta}$	$ \frac{r(1-\theta)}{\theta^2} $	$\left\{\frac{\theta}{1 - e^t(1 - \theta)}\right\}^r$

Pour les distributions continues (voir page suivante), on définit la fonction gamma d'Euler, pour tout $\alpha > 0$, par

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, \mathrm{d}x.$$

On note aussi que la transformation $localisation/\acute{e}chelle~Y=\mu+\sigma X$ donne

$$f_Y(y) = \frac{1}{\sigma} f_X\left(\frac{y-\mu}{\sigma}\right), \quad F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right), \quad M_Y(t) = e^{\mu t} M_X(\sigma t), \quad \mathbf{E}(Y) = \mu + \sigma \mathbf{E}(X), \quad \text{et} \quad \operatorname{var}(Y) = \sigma^2 \operatorname{var}(X).$$

DISTRIBUTIONS CONTINUES

Répartition

Densité

E(X)

var(X)

FGM

Support

(0,1)

 $Beta(\alpha, \beta)$

Param.