

Formulas/Theorems

From The Mean Value Theorem: 4.2

The mean value theorem:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$or$$

$$m_{tan} = m_{sec}.$$

Note:-

If f(a) = f(b), then you can apply rolle's theorem and just set f'(x) = 0 to find c

Notes:

• If rolle's theorem can be applied, just set f'(x) = 0 to find c, remember you are finding all c in the **open interval**, so if c does not obey this interval, it is not a solution

Indeterminate Forms from 4.4

- The ones we want
 - $-\frac{0}{0}$
 - $-\frac{\infty}{\infty}$
- The ones we dont want

$$-\infty-\infty$$

- -0^{0}
- $-\infty^{\infty}$
- -1^{∞}

Newton's Method

Formula:

$$x_{n+1} = n_n - \frac{f(x_n)}{f'(x_n)}.$$

Antiderivatives

Common Antiderivatives

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	$\sin x$	$-\cos x$
f(x) + g(x)	F(x) + G(x)	sec ² x	tan x
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	sec x tan x	sec x
1	$\ln x $	$\frac{1}{\sqrt{1-x^2}}$	sin ⁻¹ x
e^x	e^x	$\frac{1}{1+x^2}$	tan ⁻¹ x
b^x	$\frac{b^x}{\ln b}$	cosh x	sinh x
cos x	$\sin x$	sinh x	$\cosh x$