

No Transaction Fees? No Problem! Achieving Fairness in Transaction Fee Mechanism Design

Sankarshan Damle, Varul Srivastava, and Sujit Gujar Machine Learning Lab, IIIT, Hyderabad

sankarshan.damle@research.iiit.ac.in; varul.srivastava@research.iiit.ac.in; sujit.gujar@iiit.ac.in

Popular

EIP-1559

- Transaction fees in Bitcoin were envisioned to be 'optional'
- In practice, transactions with marginal fee fail to get confirmed
- E.g., Users paying less fees have a waiting time of ≥ 9 blocks, while it is ≥ 14 blocks for those who pay an insignificant amount [4]

First-price Auction (FPA)

Second-price Auction (SPA)

User Incentive Compatibility

Miner Incentive Compatibility

Transaction Fee Mechanisms (TFMs) [1]

Goal: To design TFMs that are fairer to the transaction creators (or users), while simultaneously preserving the incentive compatibility for both the miner and the users.

Fairness Notions for Transaction Fee Mechanisms

Zero-fee Transaction Inclusion (ZTi)

The probability with which a transaction t with transaction fee $b_t = 0$ gets included in a block B_k is strictly non-zero. That is, $\Pr(t \in B_k) > 0$.

Monotonicity

The probability with which a transaction t gets included in a block B_k increases with an increase in its transaction fee b_t , given the remaining bids $\boldsymbol{b_{-t}}$ are fixed. That is, $\Pr(t \in B_k | \boldsymbol{b_{-t}}, b_t + \epsilon) > \Pr(t \in B_k | \boldsymbol{b_{-t}}, b_t)$ for any $\epsilon > 0$ and fixed b_{-t} .

A TFM satisfying both our fairness notions ensures that each transaction has a non-zero probability of getting accepted!

Impossibility of Simultaneously Maximizing Miner Utility and Satisfying ZTi

Theorem (Informal). No TFM with a non-trivial payment rule, which provides a strategic miner complete control over the transactions to add to its block, satisfies Zero-fee Transaction Inclusion (ZTi).

Results Summary:

We note that most existing TFMs do not satisfy ZTi. In contrast, rTFM – with an appropriate payment and burning rule – simultaneously satisfies our fairness notions along with UIC and MIC.

★ Only if the base fee i
"excessively low"

TFM	UIC	MIC	ZTi	Monotonicity
FPA [1]	X		X	
SPA [1]		X	X	
EIP-1559 [1]	*	/	X	
BitcoinZF [4]		X		
rTFM + FPA	X			
rTFM + FPA	*			

Off-chain Collusion Properties rTFM: Fairness in TFMs using On-chain

opertie

(UIC)

(MIC)

Trusted Biased Coin Toss:

 $O(Hash(B_k, \phi)) = Hash(B_k) < \phi \cdot TD ? MT_{rand} : MT_{opt}$

Uniform Bid Distribution

Exponential Bid Distribution

Key References

- Roughgarden (2021). Transaction Fee Mechanism Design. In: EC
- 2. Chung and Shi (2023). Foundations of transaction fee mechanism design. In: SODA
- Siddiqui et al. (2020). BitcoinF: Achieving Fairness for Bitcoin in Transaction-Fee-Only Model. In: AAMAS

Analyzing Crowdfunding of Public Projects Under Dynamic Beliefs

Sankarshan Damle and Sujit Gujar

sankarshan.damle@research.iiit.ac.in; sujit.gujar@iiit.ac.in

Machine Learning Lab, IIIT, Hyderabad

Crowdfunding of Public Projects

Crowdfunding is the process of raising voluntary funds, from a set of interested agents. Particularly, we focus on crowdfunding for public projects. E.g., public parks, libraries, bridges, and community services.

Non-efficient Equilibria

Seminal approaches for crowdfunding suffer from the existence of inefficient equilibria!

Free-riding Challenge

As public projects are non-excludable, strategic agents may prefer to **not** contribute towards the project's funding; instead, enjoy its benefits post crowdfunding!

I am looking at the project's live status and I would like to change my belief!

Empirically, the probability of funding a project decreases with an increase in its duration

Empirically, agents prefer to contribute even in the absence of refunds

Provision Point Mechanism with Refunds (PPR) [1]

PPRx-DB: Crowdfunding of Public Projects under Dynamic Beliefs

Belief Phase (BP) Reward

• If
$$b_0 \geq 1/2$$

$$\mathrm{BP} \coloneqq \frac{w}{\sum_{\{j \in A_H\}} w_j} \cdot B_B$$

Where, w is calculated using RBTS [4]

Contribution Phase (CP) Reward

 If the project is not funded $CP := \frac{x}{C_0} \cdot B_C$

Where, C_0 is the total contribution to the project

Agent Utility Model

• If
$$b_0 \ge 1/2$$

Utility := $I_{c_0 \ge H_0} \cdot (\theta - x + BP) + I_{C_0 < H_0} \cdot CP$

• If
$$b_0 < 1/2$$

Utility := $I_{C_0 \ge H_0} \cdot (\theta - x) + I_{C_0 < H_0} \cdot (CP + BP)$

Proof for Deriving Equilibrium Time of Contribution when the Belief evolution is a Super-Martingale

Key References

- Zubrickas (2014). The provision point mechanism with refund bonuses. In: Journal of **Public Economics**
- Damle et al. (2019). Civic Crowdfunding for Agents with Negative Valuations and Agents with Asymmetric Beliefs. In: IJCAI
- Damle et al. (2023). Combinatorial Civic Crowdfunding with Budgeted Agents: Welfare Optimality at Equilibrium and Optimal Deviation. In: AAAI
- 4. Witkowski and Parkes (2012). A Robust Bayesian Truth Serum for Small Populations. In: **AAAI**

^{*}Depends on agent's prior belief and the random walks type

DecentBRM: Decentralization through Block Reward Mechanisms

Varul Srivastava and Sujit Gujar Machine Learning Lab, IIIT, Hyderabad

varul.srivastava@research.iiit.ac.in sujit.gujar@iiit.ac.in

Question: Are Proof-of-Work (PoW) Blockchains truly decentralized?

Definition: BRMs are mechanisms to

distribute cryptocurrency (payment)

among miners for participating in the

(cost consuming) mining process.

Solo Mining: Get 1 Bitcoin 1/100 times.

Join Mining Pool: Get 0.1

Bitcoin 1/10 times.

Miner gets compensated with Block Reward

Miner spends resource (computational power) to mine a block.

Miner gets compensated with Block Reward

PoW mining

WHY does it happen?

What would you rather pick \$100 bill or a lottery ticket?

Choice 1: Get \$1 million with a probability of 1/10,000

Choice 2: Get \$100 with certainty.

Both choices have same expected reward, but **Choice 2** is preferred by many as has lesser variance.

<u>Takeaway:</u> Out of different strategies with same expected payoff, **risk-averse** players opt for a <u>lower variance strategy</u>.

HOW does it impact blockchain?

PoW blockchain security relies on honest majority. Mining pools pose a threat to this through "centralization of power"

Block Reward Mechanisms (BRM)

Rewards for a block are <u>independent of history</u> of the blockchain ledger.

Memoryless BRMs

Rewards for a block is <u>dependent of history</u> of the blockchain ledger.

Retentive BRMs

Reward for block C in both chains is same in Memoryless BRMs and (can be) different for Retentive BRMs.

Modelling as a Game/Optimization Problem

Players:

averseness ρ

 p_1 is the <u>miner joining the system</u>. p_1 has mining power M_1 and risk

 p_2 is the <u>current PoW system</u>. p_2 has mining power M_2 $(M_2 \gg M_1)$

There are n mining pools, each controlling f_i fraction of M_2

Strategy Space:

Strategy for p_1 is choosing $g \coloneqq \{g_0, g_1, g_2, ..., g_n\}$ g_i is fraction of M_1 given to pool i

Strategy for p_2 is choosing $\mathbf{f} \coloneqq \{f_1, f_2, ..., f_n\}$

Game Progression: (Stackelberg type game)

1. p_2 chooses f

2. p_1 chooses g with the knowledge of f

Reward: Each block is mined by pool i with probability $z_i \coloneqq \frac{f_i M_2 + g_i M_1}{M_1 + M_2}$. Reward for round k: $R_k = \Gamma(H_k, B_k) \psi_i$ w. $p. z_i$

Utility: Utility is given for p_1 with (M_1, ρ) is: $U = aE[R_k] + b(E[R_k^{\rho}])^{1/\rho} - c D(g)$ Expected RISK Switching Cost (Penalty)

Decentralization: A PoW blockchain is decentralized if the following holds:

 $\underset{i}{\text{arg max }} f_i \ge \underset{i}{\text{arg max}} \frac{f_i M_1 + g_i M_2}{M_1 + M_2}$

Theoretical Results

For Memoryless BRMs

Theorem (Informal). It is impossible to have a decentralized PoW system using a *Memoryless* Reward Mechanism when $c \ge \underline{c}$.

$$c \ge \underline{c} = \frac{b \cdot R_{block} \cdot M_1 \cdot p}{M_2 \cdot D_{min}} \quad \text{open}$$

$$\leftarrow \text{centralized} \qquad \text{decentralized}$$

For Retentive BRMs

For Retentive BRMs:

- Risk is reduced (still non-zero).
- Fruitchain¹ is still centralized (pool formation incentivized)

DecentBRM²

DecentBRM A Retentive BRM which has higher utility for solo mining than pool formation.

Block Reward Rule: For any new block X, total reward R_{block} for block X is distributed equally among all miners till block X equally.

Theorem (Informal). Following solo-mining in DecentBRM is (weakly dominant) equilibrium strategy for p_1 after T rounds of the protocol.

DecentBRM serves as existence proof for decentralized Retentive BRMs.

²Srivastava, Varul, and Sujit Gujar. "DECENT-BRM: Decentralization through Block Reward Mechanisms." *arXiv preprint arXiv:2401.08988* (2024).