SICSS

Data Storytelling and Visulization

Dr. Emma Slayton
Data Education Librarian
CMU Libraries

What We Will Cover

01. Introduction to Data Storytelling

and Visualization Best Practices

02. R Shiny Workshop

Data Storytelling

TIME: 2 hours

Why Use Stories as a Device

- People remember stories better than data, helps us recall and retell information
- Details of information in context, helps put data in order
- Repetition within a story frame, helps to keep keep points clear and memorable

What is your mission statement?

Identifying a research question that aligns with the data can go a long way to impacting data storytelling!

What is your conext?

What does your audience know about the subject? What do they need to know about the data?

Who / What is your protagonist?

What is the core data variable/s that can best tell your story? What kinds of graphs do we need to tell those stories?

Age of individual can impact likely of crime reports

The WPRDC provides access to police reporting on arrest data. This data was collected between 2016 and 2023.

As our question deals with Age, we know we need to identify any demographic data that deals with that value.

Understanding Data and Communicating Data

- Making data a pivotal point in an overarching story
 - Don't just show data, use data
- Break out of default assumptions
 - O What does your audience know?
 - What can they learn based on what they know?
- What do you need to share, to share the point
 - What data elements are essential, which distract
 - How can we showcase this information

Data visualization

is the process of presenting information through visual means

Servings Per Container 1 Serving Size 1 bottle (414 ml						
Amount Per Serving Calories	400					
	% Daily Value					
Total Fat 21g	32%					
Saturated Fat 2g	10%					
Polyunsaturated Fat 2.5g						
Monounsaturated Fat 16g						
Trans Fat Og						
Cholesterol Omg	0%					
Sodium 300mg	13%					
Total Carbohydrate 37g	12%					
Dietary Fiber 3g	12%					
Soluble Fiber 1g						
Total Sugars 9g						
Includes 9g Added Sugars	18%					
Protein 20g						

What would it hurt your audience to not know about the data you are visualizing before it is in a graph?

What clues can we give to our audience?

 $\textbf{Sources | Data: } \underline{\text{http://earthquake.usgs.gov/earthquakes/search/, Dates: } \underline{\text{http://pubs.usgs.gov/fs/2011/3065/pdf/FS11-3065.pdf}} \\ \underline{\text{Notes: } \underline{\text{http://pubs.usgs.gov/fs/2011/3065.pdf}} \\ \underline{\text{Notes: } \underline{\text{http://pubs.usgs.gov/fs/2011/3065.pdf}} \\ \underline{\text{http://pubs.usg$

Tips and Tricks

data-ink ratio = data

- total ink used to print the graphic

 the proportion of a graphic's ink devoted to the non-redundant
- display of data-information
 = 1.0 proportion of a graphic that can be erased without
- $= \ 1.0-proportion \ of \ a \ graphic \ that \ can \ be \ erased \ without \\ loss \ of \ data-information$

Pre-Perception in visualizations

What we see and understand before we even consciously read a graph

What elements do you see?

Form Vs Function

Mean Happiness

For decades, the World Database of Happiness has tracked how happy people are—not at all happy (1), not very happy (2), quite happy (3), or very happy (4). As it turns out, most of us are mostly happy, even when things aren't going so well. Here's a look at how happy some people said they were (on average) over the last 30 years

The Big Cheese

Papa John's founder
John Schnatter has been
the dominant presence
at his company since
its founding—
even after turning
over the CEO role to
a rotating cast
of executives

Let's Practice Graph Storytelling

In groups of **2 - 3** design either by hand or in ggplot graphs that focus on a story in this data set.

Include a research question, a data protagonist, and needed context!

_id :	PK ‡	CCR	AGE ‡	GENDER	RACE	ARRESTTIME	ARRESTLOCATION
I						yyyy-mm-dd	
1	1975272	16158872	42	F	В	Wed, Aug 24, 2016 12:20 PM	4700 Block Centre AV Pittsburgh, PA 15213
2	1974456	16144120	31	М	W	Wed, Aug 3, 2016 2:55 PM	4200 Block Steubenville PKE Pittsburgh, PA 1
3	1974466	16144165	63	F	В	Wed, Aug 3, 2016 4:45 PM	900 Block Freeport RD Fox Chapel, PA 15238
4	1974550	16145257	25	F	W	Fri, Aug 5, 2016 2:36 AM	Foreland ST & Cedar AV Pittsburgh, PA 15212
5	1974596	16145962	25	М	В	Sat, Aug 6, 2016 2:00 AM	900 Block Woodlow ST Pittsburgh, PA 15205
6	1974556	16144301	45	М	W	Mon, Aug 15, 2016 1:30 PM	600 Block 1st AV Pittsburgh, PA 15219
7	1974628	16147655	29	М	W	Tue, Aug 16, 2016 1:00 PM	2300 Block Pioneer AV Pittsburgh, PA 15226
8	1974607	16146037	21	F	В	Tue, Aug 16, 2016 4:25 AM	600 Block 1st AV Pittsburgh, PA 15219
9	1974643	16132537	17	М	В	Mon, Aug 29, 2016 5:55 PM	1400 Block Washington BL Pittsburgh, PA 1520
10	1974647	16138646	14	М	В	Tue, Aug 23, 2016 1:36 PM	Zone 2

https://shorturl.at/CF7yy

R SHINY

TIME: 1 hour

What is R Shiny?

Shiny is an R package that makes it easy to build interactive web applications (apps) straight from R

Shiny Apps can be hosted locally, making the easy to access for anyone with R!

R Shiny is dependent on two elements, the **ui** and the **server** code.

Wrap Up

Want Help? Contact me to attend a consultation: eslayton@andrew.cmu.edu