12.2

1.

Zu dieser Instanze gibt es für das PCP Problem keine Lösung, da das Alphabet von A und B nicht übereinstimmt. (in A gibt es kein b)

2.

```
Lösungsmenge: \{(1,2), (1,2,3,2), ...\} also ba|aa = b|aaa bzw. ba|aa|aaa|aa = b|aaa|aa|aaa
```

3.

```
Lösung: (3, 1)
abab|a = ab|aba
```

12.3

Beweis: Wir geben eine Transformation $A, B \to A', B'$ mit A, B hat spezielle Lösung $\Leftrightarrow A', B'$ hat Lösung.

Sei smal-PCP das Postsche Korrespondenzproblem mit einem beliebigen zwei Elementigen Alphabet $\Sigma' = \{a, b\}$. Sei weiter zu jedem Element aus dem Alphabet $\Sigma = \{k_1, ..., k_n\}$ des normalen PCP das Wort $k_i' = ab^i$ zu geordnet. Für Wörter bedeutet das $w = k_1, ...k_m \in \Sigma^+$ wird $w' = k_1', ...k_m'$ zugeordnet.

Daraus folgt, dass $A = \{w_{1a}, ..., w^{pa}\}$ und $B = \{w_{1b}, ..., w_{qb}\}$ eine Lösung hat genau dann wenn $A' = \{w'_{1a}, ..., w'_{ap}\}$ und $B' = \{w'_{1b}, ..., w'_{qb}\}$ eine Lösung hat.

12.4

Da $Konst_1 \in R$ gilt, wobei R die Klasse der Turing-Berechenbaren Funktionen ist, lässt sich der Satz von Rice anwenden, wodurch $C(\{Konst_1\}) := \{w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } Konst_1\}$ unentscheidbar ist. Daraus folgt aber im besonderen auch, dass $Konst_1$ für DTM_{ϵ} unentscheidbar ist, daher ist Π unentscheidbar.