An Introduction to Bayesian Statistics with two examples from my research

Edward A. Roualdes

Humboldt State University

2018-04-05

Outline

Frequentist

Bayesian

Motivation Fun Example Tougher Example

Theoretical Discussion

Approximations
Mean Squared Error

Examples From Research

Banet, Salmonids Hensler, Archaeological Types

References

outline

Frequentist

Bayesian

Motivation
Fun Example
Tougher Example

Theoretical Discussion

Approximations
Mean Squared Error

Examples From Research

Banet, Salmonids Hensler, Archaeological Types

References

3 / 33

Flipping a coin ...

... on a computer.

Convergence in Probability

$$\lim_{N\to\infty}\mathbb{P}\left(\left|N^{-1}\sum_{n=1}^N f(x_n)-\mathbb{E}f(x)\right|>\epsilon\right)=0$$

5 / 33

E A. Roualdes Intro Bayes 2018-04-05

Frequentist Statistics

Frequentist statistics treats \bar{X} as a random variable, by imagining replications of it under theoretical resampling.

$$\bar{X} \stackrel{.}{\sim} \mathcal{N}(\theta, \sigma^2/N)$$

E A. Roualdes

Confidence Intervals, literal translation

Imagine re-sampling R times and creating a confidence interval from each new sample of size N. Then $(1 - \alpha) * 100\%$ of those intervals would include the true population mean, θ .

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = = ~)٩0

Confidence Intervals, literal translation

Hypothesis Testing

Or you can evaluate a hypothesis test

$$H_0: \theta = 0.5$$

$$H_1: \theta \neq 0.5$$

$$\alpha = 0.05$$

with a p-value calculated from the same distribution that generated the (many) confidence intervals.

2018-04-05

outline

Frequentist

Bayesian

Motivation Fun Example Tougher Example

Theoretical Discussion

Approximations

Mean Squared Erro

Examples From Research

Banet, Salmonids
Hensler, Archaeological Types

References

Conditional Probability

Bayesian statistics emphasizes conditional probability, following from Jaynes' desiderata [Terenin and Draper., 2017, Jaynes, 2003].

1. States of uncertainty are represented by real numbers.

E A. Roualdes Intro Bayes 2018-04-05 11 / 33

Conditional Probability

Bayesian statistics emphasizes conditional probability, following from Jaynes' desiderata [Terenin and Draper., 2017, Jaynes, 2003].

- 1. States of uncertainty are represented by real numbers.
- 2. Qualitative correspondence with common sense (details omitted).

Conditional Probability

Bayesian statistics emphasizes conditional probability, following from Jaynes' desiderata [Terenin and Draper., 2017, Jaynes, 2003].

- 1. States of uncertainty are represented by real numbers.
- Qualitative correspondence with common sense (details omitted).
- 3. Consistency with true-false logic (details omitted).

Conditional Probability, densities

Some notation:

- y is observed data, and
- $m{ heta}$ is parameters to be learned by conditioning on the information contained in y.

Conditional Probability, densities

Some notation:

- y is observed data, and
- $m{ heta}$ is parameters to be learned by conditioning on the information contained in y.
- ▶ $p(\theta|y)$ is the posterior of θ conditioned on y.

Bayes' Rule

Bayes' rule allows one to reduce uncertainty about θ using the data y.

$$p(\theta|y) =$$

E A. Roualdes Intro Bayes 2018-04-05 13 / 33

Bayes' Rule

Bayes' rule allows one to reduce uncertainty about θ using the data у.

$$p(\theta|y) = \frac{p(\theta)p(y|\theta)}{p(y)}$$
 $\propto p(\theta)p(y|\theta)$
 $= prior \cdot model$

E A. Roualdes

Fun Example, baseball

Suppose you are interested the average of baseball players' batting averages, θ . The simplest model might be

$$p(y|\theta) = {K \choose y} \theta^y (1-\theta)^{K-y}.$$

Next a prior, $p(\theta)$.

Some baseball data

```
Choosing a prior before looking at (current) data
```

```
if some baseball knowledge then
  prior ← weakly informative (utilizes prior information)
else
  prior ← flat (maximizes entropy)
end if
```

Fun Example, baseball

E A. Roualdes Intro Bayes 2018-04-05 16 / 33

Fun Example, baseball

Less-identifiable Posterior

Let $\theta = (\mu_{sp}, \delta_{sp}, \sigma_{sp}, \beta, \sigma)'$, K = # predictors, P = # sibling pairs, and N = # observations.

$$\begin{split} p(\theta|y) &\propto \left(1 + \frac{\mu_{sb}}{3}\right)^{-2} \prod_{k=1}^K \left(1 + \frac{\beta_k}{3}\right)^{-2} \\ &\cdot \exp\left(-\sigma_{sb}\right) \sigma^{-P/2} \exp\left(\frac{-\sum_{p=1}^P \delta_{sb,p}^2}{2\sigma_{sb}^2}\right) \\ &\cdot \exp\left(-\sigma\right) \sigma^{-N/2} \exp\left(\frac{-\sum_{n=1}^N (y_n - X_n\beta)^2}{2\sigma^2}\right); \end{split}$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0

outline

Frequentist

Bayesian

Motivation Fun Example Tougher Example

Theoretical Discussion Approximations Mean Squared Error

Examples From Research Banet, Salmonids Hensler, Archaeological Typ

References

Approximations

All of statistics is based on approximations.

▶ Frequentist: Central Limit Theorem; $N \to \infty$

E A. Roualdes Intro Bayes 2018-04-05 20 / 33

Approximations

All of statistics is based on approximations.

- ▶ Frequentist: Central Limit Theorem; $N \to \infty$
- **B** Bayesian: Markov Chain Monte Carlo approximates $\mathbb{E}f$

CLT, $N \to \infty$

E A. Roualdes Intro Bayes 2018-04-05 21 / 33

Bayesian Summary Statistics

Calculate posterior summary statistics via choice of f.

$$\mathbb{E}f = \int f(\theta)p(\theta|y)d\theta$$

Convergence Almost Surely

$$\mathbb{P}\left(\lim_{N o\infty}N^{-1}\sum_{n=1}^Nf(heta_n)=\mathbb{E}f(heta)
ight)=1$$

Mean Squared Error

Much of statistics revolves around minimizing

$$\begin{split} \mathbb{E}(\hat{\theta} - \theta)^2 &= \mathbb{E}(\theta - \mathbb{E}\hat{\theta})^2 + (\mathbb{E}\hat{\theta} - \theta)^2 \\ &= \mathbb{V}\hat{\theta} + \textit{Bias}^2(\hat{\theta}) \end{split}$$

24 / 33

E A. Roualdes Intro Bayes 2018-04-05

outline

Frequentist

Bayesian

Motivation Fun Example Tougher Example

Theoretical Discussion

Approximations

Mean Squared Error

Examples From Research

Banet, Salmonids Hensler, Archaeological Types

References

Salmonids

Dr. Banet designed an experiment to directly test the impact of maternal stress on the next generation of Pacific salmonids. Stress was simulated via cortisol baths that were randomly applied to sibling pairs at fertilization.

Salmonids, results

27 / 33

E A. Roualdes Intro Bayes 2018-04-05

Salmonids, model

Frequentist:

$$AerobicScope_n \sim \mathcal{N}(SiblingPair_{j[n]} + X\beta, \sigma^2)$$

E A. Roualdes Intro Bayes 2018-04-05 28 / 33

Salmonids, model

Frequentist:

$$AerobicScope_n \sim \mathcal{N}(SiblingPair_{j[n]} + X\beta, \sigma^2)$$

Bayesian:

$$AerobicScope_n \sim \mathcal{N}(SiblingPair_{j[n]} + X\beta, \sigma^2)$$

 $SiblingPair_j \sim \mathcal{N}(\mu_{sp}, \sigma^2_{sp})$

E A. Roualdes Intro Bayes 2018-04-05 28 / 33

Archaeological Types

(Soon to be Dr.) Hensler surveyed multiple sites in middle South, Georgia to estimate the number of artifact classes that population groups at these sites produced. Such measures of *richness* provide evidence for interpretations of changing frequency of interaction with groups living on coastal Georgia.

E A. Roualdes Intro Bayes 2018-04-05 29 / 33

Archaeological Types, results

Archaeological Types, model

Frequentist: ? Bayesian:

```
x_n := d_{k_n} \text{ for } n = 1, ..., N

k_n \sim Multinomial(1, \pi)

\pi \sim Dirichlet(1)
```

outline

Frequentist

Bayesian

Motivation
Fun Example
Tougher Example

Theoretical Discussion

Approximations
Mean Squared Error

Examples From Research

Banet, Salmonids Hensler, Archaeological Types

References

32 / 33

references I

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. *Bayesian data analysis*, volume e. CRC press Boca Raton, FL, 2014.

Edwin T Jaynes. Probability theory: The logic of science. 2003.

Alex Terenin and D. Draper. Cox's theorem and the jaynesian interpretation of probability. *arXiv:1507.06597*, 2017.

E A. Roualdes Intro Bayes 2018-04-05 33 / 33