Rafael de Santiago

Anotações para a Disciplina de Grafos

Universidade Federal de Santa Catarina

Sumário

1	Intr	odução	3
	1.1		co
	1.2	Defini	ções Iniciais
		1.2.1	Grafos Valorados ou Ponderados 6
		1.2.2	Grafos Orientados
		1.2.3	Hipergrafo
		1.2.4	Multigrafo
		1.2.5	Grau de um Vértice
		1.2.6	Igualdade e Isomorfismo
		1.2.7	Partição de Grafos
		1.2.8	Matriz de Incidência
		1.2.9	Operações com Grafos
		1.2.10	Vizinhança
		1.2.11	Grafo Regular
		1.2.12	Grafo Simétrico
			Grafo Anti-simétrico
		1.2.14	Grafo Completo
			Grafo Complementar
			Percursos em Grafos
			Cintura e Circunferência
2			ações Computacionais
	2.1		e Adjacências
	2.2		de Adjacências
_	2.3		cios
3			Grafos
	3.1		em Largura
		3.1.1	Complexidade da Busca em Largura
		3.1.2	Propriedades e Provas
			3.1.2.1 Caminhos Mínimos
			3.1.2.2 Árvores em Largura
	3.2		em Profundidade
		3.2.1	Complexidade da Busca em Profundidade
4			e Ciclos
	4.1		hos e Ciclos Eulerianos
	. ~	4.1.1	Algoritmo de Hierholzer
_	4.2		hos e Ciclos Hamiltonianos
Ke			
		E an Mo	innaromatica increota

Introdução

1.1 Histórico

Uma breve história do passado da Teoria de Grafos (NETTO, 2006):

- 1847: Kirchhoff utilizou modelos de grafos no estudo de circuitos elétricos, criando a teoria de árvores;
- 1857: Cayley usou grafos em química orgânica para enumeração de isômetos dos hidrocarbonetos alifáticos saturados:
- 1859: Hamilton inventou um jogo de buscar um percurso fechado envolvendo todos os vértices de um dodecaedro regular, de tal modo que cada vértice fosse visitado apenas uma vez;
- 1869: Jordan estudou matematicamente as árvores (grafos acíclicos);
- 1878: Sylvester foi o primeiro a utilizar o termo *graph*;
- 1879: Kempe não conseguiu demonstrar a conjectura das 4 cores;
- 1880: Tait falhou ao demonstrar uma prova falsa da conjectura das 4 cores;
- 1890: Haewood provou que a prova de Kempe estava errada e demonstrou uma prova consistente para 5 cores. A de 4 cores só saiu em 1976;

- 1912: Birkhoff definiu os polinômios cromáticos;
- 1926: Menger demonstour um importante teorema sobre o problema de desconexão de itinerários em grafos;
- 1930: Kuratowski encontrou uma condição necessária e suficiente para a planaridade de um grafo;
- 1931: Whitney criou a noção de grafo dual;
- 1936: Primeiro livro sobre grafos foi lançado por König;
- 1941: Brooks enunciou um teorema fornecendo um limite para o número cromático de um grafo;
- 1941: Turán foi o primeiro da teoria extremal dos grafos;
- 1947: Tutte resolveu o problema da existência de uma cobertura minimal em um grafo;
- 1956+: Com as publicações de Ford e Fulkerson, Berge (1957) e Ore (1962), a teoria de grafos passa a receber mais interesse;

1.2 Definições Iniciais

Antes de visitar a representação de grafos, é importante que saibamos o que são vértices e arestas. Vértices geralmente são representados como unidades, elementos ou entidades, enquanto as arestas representam as ligações/conexões entre pares de vértices. Geralmente, chamaremos o conjunto de vértices de V e o conjunto de arestas de E. Define-se que $E \subseteq V \times V$. Também usaremos n e m para denotarem o número de vértices e arestas respectivamente, então n = |V| e m = |E|. O número de arestas possível em um grafo é $\frac{n^2-n}{2}$.

Um grafo pode ser representado de duas formas (CORMEN et al., 2012). A primeira forma é chamada de lista de adjacências e tem mais popularidade em artigos científicos.

1.2. Definições Iniciais

Nela, o grafo é representado como uma dupla para especificar vértices e arestas. Por exemplo, para um grafo G, pode-se dizer que o mesmo é uma dupla G=(V,E), especificando assim que o grafo G possui um conjunto V de vértices e E de arestas. A segunda forma seria uma através de uma matriz binária, chamada de matriz de adjacência. Normalmente representada pela letra A(G), a matriz é definida por $A(G)=\{0,1\}^{|V|\times |V|}$, a qual seus elementos $a_{u,v}=1$ se existir uma aresta entre os vértices u e v. Um exemplo das das formas para um mesmo grafo pode ser visualizado no Exemplo 1.2.1.

Example 1.2.1. A Figura 1 exibe um grafo de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}\}). \tag{1.1}$$

A representação por uma matriz de adjacência ficaria assim

Figura 1 – Exemplo de grafo com 4 vértices e 4 arestas.

1.2.1 Grafos Valorados ou Ponderados

Um grafo é valorado quando um peso ou valor é associado a suas arestas. Na literatura, a definição do grafo passa a ser uma tripla G = (V, E, w), na qual V é o conjunto de vértices, E é o conjunto de arestas e $w : e \in E \to \mathbb{R}$ é a função que especifica o valor.

Quando não se possui valornas arestas, parte-se de uma relação binária entre existir ou não uma aresta entre dois vértices. Neste caso, se u e v possui uma aresta, geralmente se simboliza essa ligação com o valor 1, e se não existir 0.

Em uma matriz de adjacências para grafos valorados, o valor das arestas aparecem nas células da matriz. Em um par de vértices que não possui valor estabelecido (não há aresta), representa-se com uma lacuna ou com um valor simbólico para o problema que o grafo representa. Por exemplo, se os valores representam as distâncias, geralmente se associa o valor infinito aos pares de vértices que não possuem arestas.

Um exemplo de grafo valorado e suas representações pode ser visualizado no Exemplo 1.2.2.

Example 1.2.2. A Figura 2 exibe um grafo valorado de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}\}, w).$$

$$(1.2)$$

A função w teria os seguintes valores: $w(\{1,2\}) = 8$, $w(\{1,4\}) = 9$, $w(\{2,4\}) = 5$ e $w(\{3,4\}) = 7$.

A representação por uma matriz de adjacência ficaria assim

ou desta outra forma para o caso de uma aplicação a problemas que envolvam

Figura 2 – Exemplo de grafo valorado com 4 vértices e 4 arestas.

Grafos com Sinais

Para representar alguns problemas, utiliza-se valores negativos associados às arestas. Um exemplo disso, seriam grafos que representem relações de amizade e de inimizade. Para amizade, utiliza-se o valor 1 e para inimizade o valor -1. Nesse caso, não dizemos que o grafo é valorado ou ponderado, mas sim um grafo com sinais. Quando os valores negativos e positivos podem ser diferentes de 1 e -1, diz-se que os grafos são valorados e com sinais.

1.2.2 Grafos Orientados

Um grafo orientado é aquele no qual suas arestas possuem direção. Nesse caso, não chamamos mais de arestas e sim de arcos. Um grafo orientado é definido como uma

dupla G = (V, A), a qual V é o conjunto de vértices e A é o conjunto de arcos. O conjunto de arcos é composto por pares ordenados (u, v), os quais $u, v \in V$ e representam um arco saindo de u e incidindo em v. Duas funções importantes devem ser consideradas nesse contexto: a função de arcos saintes $\delta^+(v) = \{(v, u) : (v, u) \in A\}$ e arcos entrantes $\delta^-(v) = \{(u, v) : (u, v) \in A\}$.

O Exemplo 1.2.3 exibe a representação de um grafo orientado.

Example 1.2.3. A Figura 3 exibe um grafo orientado de 4 vértices e 4 arestas. Na representação por listas de adjacências, o grafo pode ser representado da seguinte forma

$$G = (\{1, 2, 3, 4\}, \{(1, 4), (2, 1), (4, 2), (4, 3)\}). \tag{1.3}$$

A representação por uma matriz de adjacência ficaria assim

Figura 3 – Exemplo de grafo orientado com 4 vértices e 4 arcos.

1.2.3 Hipergrafo

Um hipergrafo H=(V,E) é um grafo no qual as arestas podem conectar qualquer número de vértices. Cada aresta é chamada de hiperaresta $E\subseteq 2^V\setminus\{\}$.

1.2.4 Multigrafo

Um multigrafo G = (V, E) é um grafo que permite múltiplas arestas para o mesmo par de vértices. Logo, não se tem mais um conjunto de arestas, mas sim uma tupla de arestas. Para o exemplo da Figura 4, têm-se $E = (\{1,2\},\{1,2\},\{1,4\},\{2,4\},\{3,4\},\{3,4\})$.

Figura 4 – Exemplo de um multigrafo com 4 vértices e 6 arestas.

1.2.5 Grau de um Vértice

O grau de um vértice é a quantidade de arestas que se conectam a determinado vértice. É denotada por uma função d_v , onde $v \in V$. Em um grafo orientado, o número de arcos saintes para um vértice v é denotado por d_v^+ , e o número de arcos entrantes é denotado por d_v^- .

1.2.6 Igualdade e Isomorfismo

Diz-se que dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ são iguais se $V_1 = V_2$ e $E_1 = E_2$. Os dois grafos são considerados isomorfos se existir uma função bijetora (uma-por-uma) para todo $v \in V_1$ e para todo $u \in V_2$ preserve as relações de adjacência (NETTO, 2006).

1.2.7 Partição de Grafos

Uma partição de um grafo é uma divisão disjunta de seu conjunto de vértices. Um grafo G = (V, E) é dito k-partido se existir uma partição $P = \{p_i | i = 1, ..., k \land \forall j \in \{1, ..., k\}, j \neq i(p_i \cap p_i \neq \{\})\}$. Quando k = 2, dize que o grafo é bipartido (NETTO, 2006).

1.2.8 Matriz de Incidência

Sobre um grafo orientado G = (V, E), uma matriz de incidência $B(G) = \{+1, -1, \}^{|V| \times |A|}$ mapeia a origem e o destino de cada arco no grafo G. Dado um arco (u, v), $b_{u,(u,v)} = +1$ e $b_{v,(u,v)} = -1$ (NETTO, 2006).

1.2.9 Operações com Grafos

As seguintes operações binárias são descritas em Netto (2006):

- União: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$;
- Soma (ou *join*): Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{u, v\} : u \in V_1 \land v \in V_2\})$;
- Produto cartesiano: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \times G_2 = (V_1 \times V_2, E)$, onde $E = \{\{(v, w), (x, y)\} : (v = x \land \{w, y\} \in E_2) \lor (w = y \land \{x, y\} \in E_1)\}$. $G_1 \times G_2$ e $G_2 \times G_1$ são isomorfos;
- Composição ou produto lexicográfico: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, $G_1 \circ G_2 = (V_1 \times V_2, E)$, onde $E = \{\{(v, w), (x, y)\} : (\{v, x\} \in E_1 \lor v = x) \land \{w, y\} \in E_2\}$;
- Soma de arestas: Dados os grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$, os quais $V_1 = V_2$, $G_1 \oplus G_2 = (V_1, E_1 \cup E_2)$.

A seguinte operação unária é descrita em Netto (2006):

Contração de dois vértices: Dado um grafo G = (V, E) e dois vértices u, v ∈ V, a operação de contração desses dois vértices em G, gera um grafo G' = (V', E') o qual
 V' = V\{u, v\} ∪ {uv\} e E' = {{x, y\} ∈ E : x ≠ u ∧ x ≠ v\} ∪ {{x, uv\} : {x, u\}, {x, v\} ∈ E}.

Outras operações sobre grafos são descritas na literatura. Esse texto irá omití-las por enquanto para que sejam utilizados no momento mais oportuno. Sõ elas: inserção e remoção de vértices e arestas, desdobramento de um vértice. Essa última depende do contexto de aplicação.

1.2.10 Vizinhança

A vizinhança de vértices é diferente para grafos não-orientados e orientados. Para um grafo grafo não-orientado G=(V,E), uma função de vizinhança é definida por $N: v \in V \to \{u \in V: \{v,u\} \in E\}$ e indica o conjunto de todos os vizinhos de um vértice específico. Para o grafo do Exemplo 1.2.1, $N(1)=\{2,4\}$.

Para um grafo orientado G=(V,A), diz-se que um vértice $u\in V$ é sucessor de $v\in V$ quando $(v,u)\in A$; e $u\in V$ é antecessor de $v\in V$ quando $(u,v)\in A$. As funções de vizinhança para um grafo orientado G são $N^+:v\in V\to \{u\in V:(v,u)\in A\},\,N^-:v\in V\to \{u\in V:(u,v)\in A\},\,\mathrm{e}\ N(v)=N^+(v)\cup N^-(v).$

Diz-se que a vizinhança de v é fechada quando esse mesmo vértice se inclui no conjunto de vizinhos. A função que representa vizinhança fechada v é simbolizada neste texto como $N_*(v) = N(v) \cup \{v\}$.

As funções de vizinhança também podem ser utilizadas para identificar um conjunto de vértices vizinhos de um grupo de vértices em um grafo G=(V,E) (orientado ou não). Nesse contexto, $N(S)=\bigcup_{v\in S}N(v),\,N^+(S)=\bigcup_{v\in S}N^+(v),\,\mathrm{e}\,N^-(S)=\bigcup_{v\in S}N^-(v).$

As noções de sucessor e antecessor podem ser aplicadas iterativamente. As Equações (1.4), (1.5), (1.6) e (1.7) exibem exemplos de fechos transitivos diretos.

$$N^{0}(\nu) = \{\nu\} \tag{1.4}$$

$$N^{+1}(\nu) = N^{+}(\nu) \tag{1.5}$$

$$N^{+2}(\nu) = N^{+}(N^{+1}(\nu)) \tag{1.6}$$

$$N^{+n}(v) = N^{+}(N^{+(n-1)}(v)) \tag{1.7}$$

Chama-se de fecho transitivo direto aqueles que correspondem aos vizinhos sucessivos e os inversos os que correspondem aos vizinhos antecessores. Um fecho transitivo direto de um vértice v de um grafo G = (V, E) são todos os vértices atingíveis a partir v no grafo G; ele é representado pela função $R^+(v) = \bigcup_{k=0}^{|V|} N^{+k}(v)$. Um fecho transitivo inverso de v é o conjunto de vértices que atingem v; ele é representado pela função $R^-(v) = \bigcup_{k=0}^{|V|} N^{-k}(v)$. Diz-se que w é descendente de v se $w \in R^+(v)$. Diz-se que w é ascendente de v se v0.

1.2.11 Grafo Regular

Um grafo não-orientado G = (V, E) que tenha $d(v) = k \forall v \in V$ é chamado de grafo k-regular ou de grau k. Um grafo orientado $G_o = (V, A)$ que possui a propriedade $d^+(v) = k \forall v \in V$ é chamado de grafo exteriormente regular de semigrau k. Se G_o tiver $d^-(v) = k \forall v \in V$ é chamado de grafo interiormente regular de semigrau k.

1.2.12 Grafo Simétrico

Um grafo orientado G = (V, A) é simétrico se $(u, v) \in A \iff (v, u) \in A \forall u, v \in V$.

1.2.13 Grafo Anti-simétrico

Um grafo orientado G = (V, A) é anti-simétrico se $(u, v) \in A \iff (v, u) \notin A \forall u, v \in V$.

1.2.14 Grafo Completo

Um grafo completo G = (V, E) é completo se $E = V \times V$.

Grafos bipartidos completos $G_B = ((X, Y), E)$ possuem $E = X \times Y$.

1.2.15 Grafo Complementar

Para um grafo G = (V, E), um grafo complementar é definido por $G^c = \overline{G} = (V, (V \times V) \setminus E)$.

1.2.16 Percursos em Grafos

"Um percurso, itinerário ou cadeia é uma família de ligações sucessivamente adjacentes, cada uma tendo uma extremidade adjacente a anterior e a outra à subsequente (à execeção da primeira e da última)" (NETTO, 2006). Diz-se que um percurso é aberto quando a última ligação é adjacente a primeira. Têm-se desse modo um ciclo.

Um percurso é considerado simples se não repetir ligações (NETTO, 2006).

Caminhos são cadeias em grafos orientados.

Circuitos são ciclos em grafos orientados.

1.2.17 Cintura e Circunferência

Cintura de um grafo G é comprimendo do menor ciclo existente no grafo. É representada pela função g(G). A circunferência é comprimento do maior ciclo. A circunferência do grafo G é representada pela função c(G).

Representações Computacionais

Duas formas de representação computacional de grafos são amplamente utilizadas. São elas "listas de adjacências" e "por matriz de adjacências" (CORMEN et al., 2012). Elas possuem vantagens e desvantagens principamente relacionadas à complexidade computacional (consumo de recursos em tempo e espaço). Detalhes sobre vantagens e desvantagens não aparecerão nesse documento. Um de nossos objetivos do momento será implementar e avaliar as duas formas de representação.

2.1 Lista de Adjacências

A representação de um grafo G = (V, E) por listas de adjacências consiste em um arranjo, chamado aqui de Adj. Esse arranjo é composto por |V| listas, e cada posição do arranjo representa as adjacências de um vértice específico (CORMEN et al., 2012). Para cada $\{u,v\} \in E$, têm-se Adj[u] = (...,v,...) e Adj[v] = (...,u,...) quando G for não-dirigido. Quando G for dirigido, para cada $(u,v) \in E$, têm-se Adj[u] = (...,v,...).

Para grafos ponderados, Cormen et al. (2012) sugere o uso da própria estrutura de adjacências para armazenar o peso. Dado um grafo ponderado não-dirigido G = (V, E, w), para cada $\{u, v\} \in E$, têm-se $Adj[u] = (..., (v, w(\{u, v\})), ...)$ e $Adj[v] = (..., (u, w(\{u, v\})), ...)$. Quando o grafo for dirigido, para cada $(u, v) \in E$, têm-se Adj[u] = (..., (v, w((u, v))), ...).

O Algoritmo 1 representa a carga de um grafo dirigido e ponderado G = (V, A, w) em uma lista de adjacências Adj.

Algoritmo 1: Criação de uma lista de adjacências para um grafo dirigido e ponderado.

```
Input :um grafo dirigido e ponderado G = (V, A, w)

1 criar arranjo Adj[|V|]

2 foreach v \in V do

3 Adj[v] \leftarrow \text{listaVazia}()

4 foreach (u, v) \in A do

5 Adj[u] \leftarrow Adj[u] \cup (v, w((u, v)))

6 return Adj
```

2.2 Matriz de Adjacências

Uma matriz de adjacência é uma representação de um grado através de uma matriz A. Para um grafo não-dirigido G=(V,E), $A=\mathbb{B}^{|V|\times |V|}$, na qual cada elemento $a_{u,v}=1$ e $a_{v,u}=1$ se $\{u,v\}\in E$; $a_{u,v}=0$ e $a_{v,u}=0$ caso $\{u,v\}\notin E$. Para todo grafo não-dirigido G, $a_{u,v}=a_{v,u}$.

Para um grafo dirigido $G=(V,A),\ A=\mathbb{B}^{|V|\times |V|},$ na qual cada elemento $a_{u,v}=1$ se $(u,v)\in A;\ a_{u,v}=0$ e $a_{u,v}=0$ caso $(u,v)\notin A.$

Para um grafo não-dirigido e ponderado G=(V,E,w), a matriz será formada por células que comportem o tipo de dado representado pelos pesos. Assumindo que os pesos serão números reais, então a matriz de adjacências será $A=\mathbb{R}^{|V|\times |V|}$. Cada elemento $a_{u,v}=w(\{u,v\})$ e $a_{v,u}=w(\{u,v\})$ se $\{u,v\}\in E$; $a_{u,v}=\epsilon$ e $a_{v,u}=\epsilon$ caso $\{u,v\}\notin E$. ϵ é um valor que representa a não conexão, geralmente 0, $+\infty$ ou $-\infty$ dependendo do contexto de aplicação.

O Algoritmo 2 representa a carga de um grafo dirigido e ponderado G = (V, A, w) em uma matriz de adjacências Adj.

2.3. Exercícios 17

Algoritmo 2: Criação de uma matriz de adjacências para um grafo dirigido e ponderado.

```
Input :um grafo dirigido e ponderado G = (V, A, w : A \rightarrow \mathbb{R}), um símbolo \epsilon que representa a não adjacência

1 Adj \leftarrow \mathbb{R}^{|V| \times |V|}

2 foreach v \in V do

3 | foreach u \in V do

4 | Adj_{u,v} \leftarrow \epsilon

5 foreach (u, v) \in A do

6 | Adj_{u,v} \leftarrow w((u, v))

7 return Adj
```

2.3 Exercícios

Implemente as duas bibliotecas para grafos. Preencha a seguinte tabela a partir da análise computacional, de acordo com as operações abaixo determinadas.

	Lista de Adjacências	Matriz de Adjacências
Inserção de vértice		
inserção de arestas		
Remoção de vértice		
Remoção de arestas		
Teste se $\{u, v\} \in E$		
Percorrer vizinhos		
Grau de um vértice		

Buscas em Grafos

3.1 Busca em Largura

Dado um grafo G = (V, E) e uma origem s, a **busca em largura** (Breadth-First Search - BFS) explora as arestas/arcos de G a partir de s para cada vértice que pode ser atingido a partir de s. É uma exploração por nível. O procedimento descobre as distâncias (número de arestas/arcos) entre s e os demais vértices atingíveis de G. Pode ser aplicado para grafos orientados e não-orientados (CORMEN et al., 2012).

O algoritmo pode produzir uma árvore de busca em largur com raiz *s*. Nesta árvore, o caminho de *s* até qualquer outro vértice é um caminho mínimo em número de arestas/arcos (CORMEN et al., 2012).

O Algoritmo 3 descreve as operações realizadas em uma busca em largura. Nele, criam-se três estruturas de dados que serão utilizados para armazenar os resultados da busca. O arranjo C_v é utilizado para determinar se um vértice $v \in V$ foi visitado ou não; D_v determina a distância percorrida até encontrar o vértice $v \in V$; e A_v determina o vértice antecessor ao $v \in V$ em uma busca em largura a partir de s (CORMEN et al., 2012).

Algoritmo 3: Busca em largura.

```
Input : um grafo G = (V, E), vértice de origem s \in V
    // configurando todos os vértices
 1 C_v \leftarrow \mathbf{false} \ \forall v \in V
 2 D_v \leftarrow \infty \ \forall v \in V
 3 A_v ← null \forall v \in V
    // configurando o vértice de origem
 4 C_s \leftarrow \text{true}
 5 D_s \leftarrow 0
    // preparando fila de visitas
 6 Q \leftarrow Fila()
 7 Q.enqueue(s)
    // propagação das visitas
 8 while Q.empty() = false do
         u \leftarrow Q.dequeue()
 9
         foreach v \in \{u, v\} \in E do
10
              if C_v = false then
11
                   C_{\nu} \leftarrow \mathbf{true}
12
                   D_v \leftarrow D_u + 1
13
                   A_v \leftarrow u
14
                   Q.enqueue(v)
15
16 return (D, A)
```

3.1.1 Complexidade da Busca em Largura

O número de operações de enfileiramento e desenfileiramento é limitado a |V| vezes, pois visita-se no máximo |V| vértices. Como as operações de enfileirar e desenfileirar podem ser realizadas em tempo $\Theta(1)$, então para realizar estas operações demanda-se tempo de O(|V|). Deve-se considerar ainda, que muitas arestas/arcos incidem em vértices já visitados, então inclui-se na complexidade de uma BFS a varredura de todas as adjacências, que demandaria $\Theta(|E|)$. Diz-se então, que a complexidade computacional da BFS é O(|V|+|E|).

3.1.2 Propriedades e Provas

3.1.2.1 Caminhos Mínimos

A busca em largura garante a descoberta dos caminhos mínimos em um grafo nãoponderados G = (V, E) de um vértice de origem $s \in V$ para todos os demais atingíveis. 3.1. Busca em Largura 21

Para demonstrar isso, Cormen et al. (2012) examina algumas propriedades importantes a seguir. Considere a distância de um caminho mínimo $\delta(s, v)$ de s a v como o número mínimo de arestas/arcos necessários para percorrer esse caminho.

Lema 3.1.1. Seja G = (V, E) um grafo orientado ou não-orientado e seja $s \in V$ um vértice arbitrário, então $\delta(s, v) \le \delta(s, u) + 1$ para qualquer aresta/arco $(u, v) \in E$.

Prova: Se u pode ser atingido a partir de s, então o mesmo ocorre com v. Desse modo, o caminho mínimo de s para v não pode ser mais longo do que o caminho de s para u seguido pela aresta/arco (u, v) e a desigualdade vale. Se u não pode ser alcançado por s, então $\delta(s, u) = \infty$, e a desigualdade é válida.

Lema 3.1.2. Seja G = (V, E) um grafo orientado ou não-orientado e suponha que G tenha sido submetido ao algoritmo BFS (Algoritmo 3) partindo de um dado vértice de origem $s \in V$. Ao parar, o algoritmo BFS satisfará $D_v \ge \delta(s, v) \forall v i n V$.

Prova: Utiliza-se a indução em relação ao número de operações de enfileiramento (*enqueue*). A hipótese indutiva é $D_v \ge \delta(s, v) \forall vinV$.

A base da indução é a dsituação imediatamente após s ser enfileirado na linha 7 do Algoritmo 3. A hipótese indutiva se mantém válida nesse momento porque $D_s = 0 = \delta(s,s)$ e $D_v = \infty \gcd \delta(s,V) \forall v \in V \setminus \{s\}$.

Para o passo da indução, considere um vértice v não-visitado (C_v =**false**) que é descoberto durante a visita ao vértice $u \in V$. A hipótese da indução implica que $D_u \ge \delta(s, u)$. Pela atribuição da linha 13 e pelo Lema 3.1.1, obtem-se

$$D_v = D_u + 1 \ge \delta(s, u) + 1 \ge \delta(s, v).$$
 (3.1)

Então, o vértice v é enfileirado e nunca será enfileirado novamente porque ele também é marcado como visitado e as operações entre as linhas 12 e 15 são apenas executadas para vértices não-visitados. Desse modo, o valor de D_v nunca muda novamente e a hipótese de indução é mantida.

Lema 3.1.3. Suponha que durante a execução do algoritmo de busca em largura (Algoritmo 3) em um grafo G = (V, E), a fila Q contenha os vértices $(v_1, v_2, ..., v_r)$, onde v_1 é o início da fila e v_r é o final da fila. Então, $D_{v_r} \le D_{v_1} + 1$ e $D_{v_i} \le D_{v_{i+1}}$ para todo $i \in \{1, 2, ..., r-1\}$.

Prova: A prova é realizada por indução relacionada ao número de operações de fila.

Para a base da indução, imediatamente antes do laço de repetição (antes da linha 8), têm-se apenas o vértice *s* na fila. O lema se mantém nessa condição.

Para o passo da indução, deve-se provar que o lema se mantém para depois do desenfileiramento quanto do enfileiramento de um vértice. Se o início v_1 é desenfileirado, v_2 torna-se o início. Pela hipótese de indução, $D_{v_1} \leq D_{v_2}$. Então $D_{v_r} \leq D_{v_1} + 1 \leq D_{v_2} + 1$. Assim, o lema prossegue com v_2 no início. Quando enfileira-se um vértice (linha 15), ele se torna v_{r+1} . Nesse momento, já se removeu da fila o vértice u cujo as adjacências estão sendo analisadas, e pela hipótese de indução, o novo início v_1 deve ter $D_{v_1} \geq D_u$. Assim, $D_{v_{i+1}} = D_v = D_u + 1 \leq D_{v_1} + 1$. Pela hipótese indutiva, têm-se $D_{v_r} \leq D_u + 1$, portanto $D_{v_r} \leq D_u + 1 = D_v = D_{v_{i+1}}$ e o lema se mantém quando um vértice é enfileirado.

Corolário 3.1.4. Suponha que os vértices v_i e v_j sejam enfileirados durante a execução do algoritmo de busca em largura (Algoritmo 3) e que v_i seja enfileirado antes de v_k . Então, $D_{v_i} \leq D_{v_j}$ no momento que v_j é enfileirado.

Prova: Imediata pelo Lema 3.1.3 e pela propriedade de que cada vértice recebe um valor D finito no máximo uma vez durante a execução do algoritmo.

Teorema 3.1.5. Seja G = (V, E) um grafo orientado ou não-orientado, e suponha que o algoritmo de busca em largura (Algoritmo 3) seja executado em G partindo de um dado vértice $s \in V$. Então, durante sua execução, o algoritmo descobre todo o vértice $v \in V$ atingível por s. Ao findar sua execução, o algoritmo retornará a distância mínima entre s e $v \in V$, então $D_v = \delta(s, v) \forall v \in V$.

Prova: Por contradição, suponha que algum vértice receba um valor d não igual à distância de seu caminho mínimo. Seja v um vértice com $\delta(s, v)$ mínimo que recebe tal

valor d incorreto. O vértice v não poderia ser s, pois o algoritmo define $D_s = 0$, o que estaria correto. Então deve-se encontrar um outro $v \neq s$. Pelo Lema 3.1.2, $D_v \geq \delta(s,v)$ e portanto, temos $D_v > \delta(s,v)$. O vértice v deve poder ser visitado a partir de s, se não $\delta(s,v) = \infty \geq D_v$. Seja u o vértice imediatamente anterior a v em um caminho mínimo de s a v, de modo que $\delta(s,v) = \delta(s,u) + 1$. Como $\delta(s,u) < \delta(s,v)$, e em razão de selecionar-se v, têm-se $D_u = \delta(s,u)$. Reunindo essas propriedades, têm-se

$$D_{\nu} > \delta(s, \nu) = \delta(s, \mu) + 1 = D_{\mu} + 1.$$
 (3.2)

Considere o momento que o algoritmo opta por desenfileirar o vértice u de Q. Nesse momento, o vértice v pode ser visitado ou não-visitado. Se v é não-visitado (C_v =false), então a operação na linha 13 define $D_v = D_u + 1$, contradizendo o que é dito na Equação 3.2. Se v já foi visitado (C_v =true), então pode ter sido removido da fila, e nesse caso, pelo Corolário 3.1.4, temos $D_v \le D_u$ que também contradiz o que é dito na Equação 3.2. Se v já foi visitado e permanece na fila, considere w o vértice antecessor imediato no caminho; então, $D_v = D_w + 1$. Porém, pelo Corolário 3.1.4, $D_w \le D_u$, então, temos $D_v = D_w + 1 \le D_u + 1$, contradizendo a Equação 3.2.

3.1.2.2 Árvores em Largura

O algoritmo de busca em largura (Algoritmo 3) criar uma árvore de busca em largura à medida que efetua busca no grafo G=(V,E). Também chamada de "subgrafo dos predecessores", uma árvore de busca em lagura pode ser definida como $G_{\pi}=(V_{\pi},E_{\pi})$, na qual $V_{\pi}=\{v\in V: A_{v}\neq \mathbf{null}\}\cup \{s\}$ e $E_{\pi}=\{(A_{v},\pi,v):v\in V_{\pi}\setminus \{s\}\}$.

3.2 Busca em Profundidade

A busca em profundidade (Depth-First Search - DFS) realiza a visita a vértices cada vez mais profundos/distantes de um vértice de origem *s* até que todos os vértices sejam visitados. Parte-se a busca do vértice mais recentemente descoberto do qual ainda saem

arestas inexploradas. Depois que todas as arestas foram visitadas no mesmo caminho, a busca retorna pelo mesmo caminho para passar por arestas inexploradas. Quando não houver mais arestas inexploradas a busca em profundidade pára (CORMEN et al., 2012).

O Algoritmo 4 apresenta um pseudo-código para a busca em profundidade. Note que no lugar de usar uma fila, como na busca em largura (vide Algoritmo 3, utiliza-se uma pilha. Os arranjos C_v , T_v , e $A_v \, \forall \, v \in V$ são respectivamente o arranjo de marcação de visitados, do tempo de visita e do vértice antecessor à visita.

```
Algoritmo 4: Busca em profundidade.
```

```
Input : um grafo G = (V, E), vértice de origem s \in V
    // configurando todos os vértices
 1 C_v \leftarrow \mathbf{false} \ \forall v \in V
 2 T_v \leftarrow \infty \ \forall v \in V
 3 A_v ← null \forall v \in V
    // configurando o vértice de origem
 4 C_s \leftarrow \mathbf{true}
 5 T_s \leftarrow 0
 6 tempo \leftarrow 0
    // preparando fila de visitas
 7 S \leftarrow Pilha()
 8 S.push(s)
    // propagação das visitas
 9 while S.empty() = false do
         tempo ← tempo +1
10
         T_u \leftarrow \text{tempo}
11
         u \leftarrow S.pop()
12
         foreach v \in \{u, v\} \in E do
13
              if C_v = false then
14
                    C_v \leftarrow \mathbf{true}
                    A_v \leftarrow u
16
                    S.push(v)
17
18 return (C, T, A)
```

Cormen et al. (2012) afirma que é mais comum realizar a busca em profundidade de várias fontes. Desse modo, seu livro reporta um algoritmo que sempre que um subgrafo conexo é completamente buscado, parte-se de um outro vértice de origem não-visitado ainda (um vértice não atingível por *s*).

3.2.1 Complexidade da Busca em Profundidade

Da mesma maneira que a complexidade da busca em largura, a busca em profundidade possui complexidade O(|V| + |E|). As operações da pilha resultariam tempo O(|V|). Muitos arestas/arcos incidem em vértices já visitados, então inclui-se na complexidade de uma DFS a varredura de todas as adjacências, que demandaria $\Theta(|E|)$.

Caminhos e Ciclos

Este capítulo tem o objetivo de introduzir o conceito de caminhos e ciclos, e seus principais problemas. Inicialmente, dois problemas clássicos serão definidos e algoritmos para os mesmos, apresentados. Em seguida, serão abordades poblemas relacionados a caminhos e ciclos de custo mínimo.

Antes de iniciar a abordar os conteúdos deste capítulo, é importante entender o que é um caminho e um ciclo, para estabelecer suas diferenças no contexto de grafos. Um caminho é uma sequência de vértices $(v_1, v_2, \dots v_n)$ conectados por uma aresta ou arco. Gross e Yellen (2006) definem um caminho como um grafo com dois vértices com grau 1 e os demais vértices com grau 2, formando uma estrutura linear. Um ciclo (ou circuito) é uma cadeia fechada de vértices $(v_1, v_2, \dots, v_n, v_1)$ onde cada par consecutivo é conectado por uma aresta ou arco. É como um caminho com o fim e o início conectados.

4.1 Caminhos e Ciclos Eulerianos

Dado um grafo orientado ou não orientado G=(V,E), um caminho Euleriano é uma "trilha" ou seja, uma sequência de arestas/arcos onde cada aresta/arco é visitada(o) uma

¹ Em inglês, chamado de *path*.

² Em inglês, chamado de *cycle* ou *circuit*.

única vez. O ciclo Euleriano é semelhante ao caminho, com exceção de que começa e termina na mesma aresta/arco.

Os problemas de caminho e ciclo Euleriano surgiram com o conhecido problema das Sete Pontes de Königsberg por Euler em 1736. O problema consistia em atravessar as todas as sete pontes da cidade de Königsberg da Prussia (hoje Kaliningrado na Rússia) sem repetí-las.

Observando um mapa antigo das sete pontes, você consegue determinar o caminho Euleriano?

Figura 5 – Mapa das sete pontes de Königsberg na época de in Euler.

4.1.1 Algoritmo de Hierholzer

O algoritmo de Hierholzer (Algoritmo 5) foi desenvolvido em 1873. Ele identifica o ciclo Euleriano em tempo O(|E|).

Algoritmo 5: Busca em profundidade.

Input : um grafo G = (V, E)

- ı Escolha um vértice $v \in V$
- 2 Encontre um caminho de arestas a partir de v que retorne a v
- 3 Verifique se existe um vértice u que pertença ao tour corrente que tenha um edge adjacente que não faça parte do tour
- 4 Se houver, considere que v é u e volte para linha v

Desafio

Explique porque a complexidade de Algoritmo de Hierholzer é de O(|E|).

Teorema 4.1.1. *Um* grafo não-orientado G = (V, E) é (ou possui um ciclo) Euleriano se e somente se G é conectado e cada vértice tem um grau par.

Prova: Para o grafo conectado G, para todo $m \ge 0$, considere S(m) ser a hipótese de que se G têm m arestas e todos os graus dos vértices forem pares, então G é Euleriano.

Vamos a prova por indução.

A base da indução é o S(0). Nessa hipótese, G não tem arestas, então para todo $v \in V$, $d_v = 0$. Como zero é par G é trivialmente Euleriano.

O passo da indução implica que as hipoteses $S(0) \wedge S(1) \wedge ... \wedge S(k-1) \implies S(k)$. Suponha um $k \ge 1$ e assuma que $S(1) \wedge ... \wedge S(k+1)$ é verdade. Precisa-se provar que S(k) é verdade. Suponha que G tenha k arestas, é conectado e possui somente vértices com valor de grau par.

- Desde que G é um grafo conectado e possui vértices com grau par, o menor grau
 é 2. Então esse grafo G precisa ter um ciclo C.
- Suponha um novo grafo H gerado a partir de G sem as arestas que estão no ciclo C. Note que H pode estar desconectado. Pode-se dizer que H é a união dos componentes conectados H₁, H₂,... H_t. O grau dos vértices cada H_i precisa ser par.
- Aplicando a hipótese de indução a cada H_i , que é $S(|E(H_1)|), ..., S(|E(H_t)|)$, cada H_i terá um ciclo Euleriano C_i .
- Pode-se criar um circuito Euleriano para G por dividir o ciclo C em ciclos C_i.
 Primeiro, comece em qualquer vértice em C_i e percorra até atingir outro H_i.
 Então, percorra C_i e volte ao C até atingir o próximo H_i.

Finalmente, G precisa ser Euleriano. Isso completa o passo da indução como $S(0) \land S(1) \land ... \land S(k-1) \implies S(k)$. Por esse princípio, para $m \ge 0$, S(m) é verdadeiro.

4.2 Caminhos e Ciclos Hamiltonianos

Ciclos ou caminhos Hamiltonianos são aqueles que percorrem todos os vértices de um grafo. Mais especificamente para um ciclo Hamiltoniano, o início e o fim terminam no mesmo vértice.

Agradecimentos

Referências

CORMEN, T. H. et al. *Algoritmos: teoria e prática*. Rio de Janeiro: Elsevier, 2012. Citado 5 vezes nas páginas 4, 15, 19, 21 e 24.

GROSS, J. T.; YELLEN, J. *Graph Theory and Its Applications*. FL: CRC Press, 2006. Citado na página 27.

NETTO, P. O. B. *Grafos: teoria, modelos, algoritmos*. São Paulo: Edgard Blucher, 2006. Citado 4 vezes nas páginas 3, 9, 10 e 13.

Revisão de Matemática Discreta

Conjuntos é uma coleção de elementos sem repetição em que a sequência não importa. No Brasil, utilizamos a seguinte notação para enumerar todos os elementos de um conjunto. Na Equação (A.1), é possível visualizar a representação de um conjunto denominado A, formado pelos elementos e_1, e_2, \ldots, e_n . Devido ao uso da vírgula como separador de decimais, usa-se formalmente o ponto-e-vírgula. Para essa disciplina, podemos utilizar a vírgula como o separador de elementos em um conjunto, desde que utilizados o ponto como separador de decimais¹. Para dar nome a um conjunto, geralmente utiliza-se uma letra maiúscula ou uma palavra com a inicial em maiúscula.

$$A = \{e_1; e_2; \dots; e_n\}$$
 (A.1)

Há duas formas de definir conjuntos. A forma por enumeração por elementos, utiliza notação semelhante a da Equação (A.1). São exemplos de definição de conjuntos por enumeração:

- $N = \{ \diamondsuit, \spadesuit, \heartsuit, \clubsuit \};$
- $V = \{a, e, i, o, u\};$
- $G = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega\};$
- $R = \{-100.9, 12.432, 15.0\};$
- $D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

A forma por descrição de propriedades utiliza-se de uma notação que evidencia a natureza de cada elemento pela descrição de um em um formato genérico. Por exemplo o conjunto D, descrito na Equação (A.2), denota um conjunto com os mesmos elementos em $\{1,2,3,4,5,6,7,8,9,10\}$.

$$D = \{x \in \mathbb{Z} | x > 1 \land x \le 10\} \tag{A.2}$$

. Então para que complicar utilizando uma notação não enumerativa? Por dois motivos: por questões de simplicidade, dado a quantidade de conjuntos; ou para representar conjuntos infinitos, como no exemplo dos inteiros pares $Pares = \{x \in \mathbb{Z} | x \equiv 0 \pmod{2}\}$.

Nas anotações presentes nesse documento, utiliza-se a "notação americana". Para a Equação (A.1) , teria-se $A = \{e_1, e_2, ..., e_n\}$.

Para o conjunto dos pares, ainda podemos utilizar uma descrição mais informal, mas que é dependente da conhecimento sobre a linguagem Portuguesa: $Pares = \{x \in \mathbb{Z} | x \in inteiro e par \}$.

Para denotar a cardinalidade (quantidade de elementos) de um conjunto, utilizamos o símbolo "|". Para os conjuntos apresentados acima, é correto afirmar que:

- |N| = 4;
- |V| = 5;
- |R| = 3;
- |D| = 10;
- $|Pares| = \infty$.

A cardinalidade pode ser utilizada para identificar quantos símbolos são necessários para representar um elemento. Por exemplo, |12,66| = 5

Para denotar conjuntos vazios, adota-se duas formas de representação: $\{\}$ ou \emptyset . Utilizando o operador de cardinalidade, têm-se $|\{\}| = |\emptyset| = 0$.

Como principais operações entre conjuntos, pode-se destacar:

- União (\cup): união de dois conjuntos. Exemplo: $\{1,2,3,4,5\} \cup \{2,4,6,8\} = \{1,2,3,4,5,6,8\}$;
- Intersecção (\cap): intersecção de dois conjuntos. Exemplo: $\{1,2,3,4,5\} \cup \{2,4,6,8\} = \{2,4\}$;
- Diferença (- ou \): diferença de dois conjuntos. Exemplo {1,2,3,4,5}\{2,4,6,8} = {1,3,5};
- Produto cartesiano (×): Exemplo $\{1, 2, 3\} \times \{A, B\} = \{(1, A), (2, A), (3, A), (1, B), (2, B), (3, B)\}$;
- Conjunto de partes (ou *power set*): o conjunto de todos os subconjuntos dos elementos de um conjunto. Para o conjunto $A = \{1,2,3\}$ o conjunto das partes seria $2^A = P(A) = \{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

Funções são representadas de forma diferente na matemática discreta. Busca-se estabelecer a relação entre um conjunto de domínio (entrada da função) e um contradomínio (resposta da função). A Equação (A.3) exibe a forma como é utilizada para formalizar uma função. Nesse formato, passa-se a natureza da entrada e da saída de um problema. Por exemplo, a função que gera a correspondência entre o domínio dos inteiros positivos em base decimal para base binária seria $f: x \in Z^+ \to \{0,1\}^{\log_2(|x|+1)}$.

nome da funcao: dominio
$$\rightarrow$$
 contradominio (A.3)

Para representar uma coleção de itens onde a sequência importa e a repetição pode ocorrer, utiliza-se as tuplas. Uma tupla é representada da forma demonstrada na Equação (A.4).

$$A = (e_1, e_2, \dots, e_n) \tag{A.4}$$

. Um exemplo de uma tupla, pode ser lista de chamada de uma turma ordenada lexicograficamente.