Pickup Ions

MNF-phys-1311 – Fachliche Spezialisierung

Anne Fischer May 10, 2019

Outline

Introduction

General Concepts

Velocity Distribution Function

Outlook

Introduction – History

- predicted 1971
 Fahr et al.
- measured 1985
 Moebius et al.
 AMPTE/SULEICA

Planet. Space Sci. 1971, Vol. 19, pp. 1121 to 1129. Pergamon Press. Printed in Northern Ireland

INTERSTELLAR MATTER AND THE LOCATION OF THE SHOCK FRONT

H. J. FAHR

Institut für Astrophysik und Extraterrestrische Forschung Der Universität Bonn, 53 Bonn, Germany

(Received in final form 15 March 1971)

Abstract—The initially supersonic flow of the solar wind passes through a magnetic shock front where it wellowly is supposed to be relocated to subnomic values. The inciding of the first where it wellowly is supposed to be relocated to subnomic values. The inciding of the field and the numerical flower of the control of the control of the field and the numerical flower of the control of the property of the field and the numerical flower of the control of the property of the field and the numerical flower of the field and the numerical flower of the field and in the field and field and the field an

I. INTRODUCTION

The solar wind is presumed to drop to subsonic velocities at a specific distance $r = r_s$ from the Sun. This distance is reached, if the energy density of the solar wind plasma has decreased to the value of the energy density $B_s^2/8\pi$ of the external interstellar field. In

Introduction – History

- predicted 1971
 Fahr et al.
- measured 1985
 Moebius et al.
 AMPTE/SULEICA

MpQ = 4, Moebius et al. 1985

Introduction – Today

Observed PUIs:

$$\begin{split} & \text{H}^{1+}, \ ^{3}\text{He}^{1+}, \ \text{He}^{1+}, \\ & \text{He}^{2+}, \ \text{C}^{1+}, \ \text{N}^{1+}, \ \text{O}^{1+}, \\ & \text{Ne}^{1+}, \ \text{Mg}^{1+}, \ \text{Si}^{1+}, \ \text{Fe}^{1+} \end{split}$$

PUI or Solar Wind?

- Charge state
- Velocity distribution function (VDF)

Gloeckler et al. 1999

Neutrals from the LISM – Interstellar PUIs

from http://science.nasa.gov

Neutrals in the heliosphere

Drews et al., AGU Fall Meeting 2014

- Neutrals from LISM enter the heliosphere $v_n \approx 25 50 \mathrm{km \, s^{-1}}$
- subjected to: gravitational force, radiation pressure, solar wind particles

Ionisation

Drews et al., AGU Fall Meeting 2014

Inner-source PUIs

Geiss et al. 1995:
 observation of C⁺ PUIs

Element	PPM	I	II	III
H	10 ⁶	0.776	0.224	-
He	10 ⁵	0.611	0.385	4.36 · 10 ⁻³
C	661	2.68 · 10-4	0.975	0.0244
N	46.8	0.720	0.280	8.52 · 10 ⁻⁵
O	331	0.814	0.186	4.71 · 10 ⁻⁵
Ne	123	0.196	0.652	0.152
Na	2.04	1.47 · 10 ⁻³	0.843	0.155
Mg	6.61	1.98 · 10 ⁻³	0.850	0.148
Si	8.13	4.21 · 10 ⁻⁵	0.999	8.02 · 10-4

Elemental and charge state composition in the LISM Frisch et al. 2011 / Taut 2018

Inner-source PUIs

 Geiss et al. 1995: observation of C⁺ PUIs

Solution:

Inner source of neutrals

 \rightarrow Inner-source PUIs

- production mechanism: unclear (solar wind ↔ dust ?)
- nearly thermalised VDF (peak @ w ≈ 1)

2011 Taut 2018

The pickup-process

Drews et al., AGU Fall Meeting 2014

Assumptions:

- particle at rest
- $\vec{B} \perp \vec{v}_{SW}$

Relative motion

 $\rightarrow \text{Gyro-motion}$

Drews et al., AGU Fall Meeting 2014

Drews et al., AGU Fall Meeting 2014

Drews et al., AGU Fall Meeting 2014

Taut 2018, disputation

Non-perpendicular \vec{B} -field:

- gyro-motion perpendicular to \vec{B}
- inclination of the torus
- \Rightarrow in SW-frame: every possible torus is part of a shell with $r=v_{\rm sw}$

Taut 2018, disputation

→ Injection of PUIs into solar wind: anisotropic torus-shaped VDF

Non-perpendicular \vec{B} -field:

- gyro-motion perpendicular to \vec{B}
- inclination of the torus
- \Rightarrow in SW-frame: every possible torus is part of a shell with $r=v_{\rm sw}$

Taut 2018, with modifications

— Injection of PUIs into solar wind: anisotropic torus-shaped VDF

Velocity Distribution Function – measurement

Reminder:

Gloeckler et al. 1999

Velocity Distribution Function - Diffusion

• Pitch-angle scattering

 Deceleration processes ("cooling")

Taut 2018, disputation

Acceleration processes

Vasyliunas & Siscoe 1978: \rightarrow fast isotropisation

Velocity Distribution Function – Diffusion

• Pitch-angle scattering

Deceleration processes ("cooling")

Taut 2018, disputation

Vasyliunas & Siscoe 1978:

→ fast isotropisation

Velocity Distribution Function – Diffusion

• Pitch-angle scattering

Deceleration processes ("cooling")

Acceleration processes

Drews et al. 2015

- anisotropic feature
- \vec{B} -dependency

Velocity Distribution Function - Diffusion

• Pitch-angle scattering

 Deceleration processes ("cooling")

Gloeckler et al. 1999

Acceleration processes

$$E^{\frac{3}{4}}r = const.$$

$$r_0 = \left(\frac{E}{E_0}\right)^{\frac{3}{4}}r$$

Velocity Distribution Function - Diffusion

• Pitch-angle scattering

 Deceleration processes ("cooling")

Acceleration processes

Taut et al., UNH Space Science Seminar 2017

How does the VDF evolve after injection?

Gloeckler et al. 1999

Assumption: Particles on the shell with $r = v_{sw}$

Gloeckler et al. 1999

Detector integrates over every shell:

$$w = \frac{v_X}{v_{sw}}$$

Ulysses/SWICS: detector can distinguish between segments on one shell

Ulysses/SWICS: detector can distinguish between segments on one shell

Pickup Ions – Anne Fischer – Conclusion

• Introduction to Pickup ions and their basic concepts: sources, pickup-process

• Velocity distribution: models and measurements

 How 2D-measurements can help to understand processes better