ÍNDICE

		PAGINA
	CE DE TABLAS	v viii
INDIC	NDICE DE FIGURAS ABSTRACT RESUMEN	
ABST		
RESU		
INTR	ODUCCIÓN	xviii
OBJE	ETIVO	xxiii
1	MARCO TEORICO	
1.1	Tratamiento biológico de aguas residuales industriales	2
1.2	Proceso de lodos activados	5
1.3	Principios de la oxidación biológica	10
1.4	Cinética y remoción de compuestos orgánicos	13
1.5	Crecimiento bacteriano en presencia de sustancias tóxicas	19
1.6	Interferencia e inhibición en el proceso de lodos activados	21
1.6.1	Mecanismos y modelos para la remoción de compuestos orgánicos tóxicos volátiles	21
1.6.2	Efecto de la temperatura sobre el crecimiento bacteriano	25
1.6.3	Efecto de la temperatura sobre la nitrificación y desnitrificación	31
164	Efecto de la temperatura sobre el proceso de lodos activados	33

1.6.5	Efecto de la temperatura del reactor con aireación sobre otros parámetros biocinéticos.	PAGINA 35
II	ESTADO DEL ARTE	
2.1	Efecto de la temperatura sobre el crecimiento bacteriano	38
2.2	Modelos de crecimiento bacteriano en función de la temperatura	41
2.3	Efecto de la temperatura sobre la remoción del nitrógeno y fósforo	46
2.4	Efecto de la temperatura y sistemas de aireación sobre la remoción de compuestos orgánicos volátiles	48
2.5	Casos de plantas de aguas residuales industriales en operación y trabajos experimentales con impactos por alta temperatura	51
2.6	Tratamiento de aguas residuales industriales en México y marco normativo	54
Ш	DESCRIPCION DEL SITIO DE ESTUDIO	
3.1	Descripción general del Complejo Petroquímico Morelos	59
3.2	Planta de tratamiento de efluentes	60
3.2.1	Efecto de la temperatura en el reactor biológico "B" del sistema de lodos activados de Petroquímica Morelos	63
IV	METODOLOGIA Y DESARROLLO	
4.1	Equipos y técnicas de análisis	69

		PAGINA
4.1.1	Equipo y reactores escala laboratorio	69
4.1.2	Resistencias o calentadores de temperatura	71
4.1.3	Montaje de reactores	71
4.1.4	Técnicas de análisis	71
4.2	Desarrollo experimental	73
4.2.1	Pruebas en reactor a flujo continuo de mezcla completa (RFCTA) a nivel laboratorio (16 litros)	73
4.2.2	Determinación de condiciones de operación del reactor de flujo continuo	75
4.2.3	Distribución de las temperaturas para el diseño experimental	76
4.2.4	Operación de los reactores	76
4.2.5	Control de análisis del afluente, reactor y efluente	77
4.2.6	Validación del modelo cinético sobre el crecimiento celular y la remoción de la materia carbonácea, afectada por la temperatura	78
v	ANALISIS DE RESULTADOS Y DISCUSIÓN	
5.1	Respuesta de los reactores experimentales bióticos en función de la temperatura	83
5.1.1	Efecto sobre velocidad del crecimiento celular y remoción de la materia carbonácea (DQOs)	84

		PAGINA
5.1.2	Efecto sobre las características de sedimentación del lodo	89
5.1.3	Efecto sobre el consumo de oxígeno	93
5.1.4	Efecto sobre la remoción del N-NH ₃ y fosforo total (P-total)	95
5.2	Remoción de la DQOs por efecto de agotamiento (o volatilización) y la temperatura en el reactor abiótico (RA)	98
5.3	Validación del modelo cinético sobre el crecimiento celular y remoción de la materia carbonácea, afectada por la temperatura	102
VI	CONCLUSIONES Y RECOMENDACIONES	109
BIBLIOGRAFIA		

INDICE DE TABLAS

		PAGINA
1	Condiciones especificas a cumplir por el afluente a una planta de lodos activados	xx
1.1	Definición de símbolos utilizados en el proceso de lodos activados	8
1.2	Desempeño de tratamiento de LACM de algunas aguas residuales industriales en USA	9
1.3	Remoción de contaminantes prioritarios en el proceso de lodos activados	21
1.4	Tipos de microorganismos en función de la temperatura	26
2.1	Modelos de crecimiento bacteriano	41
2.2	Efecto de la temperatura sobre la nitrificación	46
2.3	Temperatura y tiempo de retención celular (TRC) requerido para la nitrificación	47
2.4	Eficiencias de remoción mediante biodegradación y volatilización en diversos compuestos orgánicos de procesos de lodos activados	50
2.5	Resultado de las condiciones de operación de 4 reactores experimentales (SBR) sometidos a variaciones de temperatura, en el tratamiento de aguas residuales de la industria de pulpa y papel	52
2.6	Caudal descargado por diferentes tipos de industria	54
2.7	Caudal de aguas residuales industriales tratado (1996-2001)	54

		PAGINA
2.8	Promedio y carga de DQO y SST en las aguas residuales del sector industrial en México	55
2.9	Volumen de descarga de aguas residuales industriales 2001	56
3.1	Procesos en el Complejo Petroquímico Morelos	59
3.2	Valores promedio de los parámetros operacionales en el RB-B y sedimentador B del tratamiento biológico durante las cuatro estaciones del año	63
3.3	Relación de la carga orgánica, temperatura y consumo de energía eléctrica promedio diario en un mes frío y caliente	66
4.1	Procedimientos de las técnicas de análisis de agua residual y pruebas de control operacional del sistema de lodos activados	72
4.2	Características principales del reactor (RFCTA) y aditamentos	74
4.3	Distribución de las temperaturas en los reactores	76
4.4	Análisis a realizar para el monitoreo y control de los reactores experimentales	78
5.1	Características del afluente durante la prueba experimental	83
5.2	Condiciones de operación y respuesta de los 4 reactores (valores promedio y desviación estándar)	83
5.3	Características de sedimentación del lodo para los 4 reactores (valores promedio y desviación estandar)	89

5.4	Concentraciones de fósforo total y SDT de los 4 reactores como promedio aritmético y desviación estándar	PAGINA 97
5.5	Comparación de la remoción de contaminantes orgánicos volátiles mediante agotamiento y sorción y/o biodegradación en los 4 reactores bióticos y un reactor abiótico	101

INDICE DE FIGURAS

		PAGINA
1.1	Diagrama de flujo del proceso de lodos activados	7
1.2	Mecanismo de degradación biológica aerobia	9
1.3	Las 3 fases del metabolismo	11
1.4	Efecto de la concentración del sustrato sobre la velocidad de una reacción catalizada enzimáticamente	13
1.5	Diagrama de energía para una reacción química, catalizada y no catalizada	15
1.6	El efecto de la temperatura sobre la velocidad de reacción	16
1.7	Comparación de las funciones de velocidad de crecimiento de Monod (no tóxico) y Haldane (tóxico)	24
1.8	Efecto de la temperatura en el crecimiento microbiano	27
1.9	Determinación de la temperatura óptima de crecimiento	29
1.10	Balance térmico del reactor aerobio	33
3.1	Esquema de tratamiento de aguas residuales del Complejo Petroquímico Morelos	61
3.2	Variación de la concentración de los SSV en relación con la temperatura (a) y (b) relación de la concentración de los SSV y la DQOs en el RB-B de la planta de tratamiento de efluentes	64

		PAGINA
3.3	Comportamiento de los SST en el efluente del clarificador "B" (a), y del $N-NH_3$ y P -total (b) en el reactor de la planta de tratamiento de efluentes	65
	en el efluente de Petroquímica Morelos, en relación con la temperatura para diferentes meses del año	
3.4	Termografía a la línea principal y llegada a las líneas de conducción de aire a los difusores de las cámaras de los reactores biológicos B y A	66
4.1	Vista frontal, lateral y superior del reactor aerobio de lodos activados (Tipo Eckenfelder)	70
4.1bis	Isométrico del reactor continuo de tanque agitado	70
4.2	Montaje del reactor de flujo continúo de tanque agitado	74
4.3	Perfiles de temperatura de los 5 reactores (RFCTA) durante el periodo experimental	77
5.1	Comportamiento de la DQOs, SSV y remoción de la DQOs en función de la temperatura en los reactores R1 a 45°C (a) y R2 a 40°C (b)	85
5.1bis	Comportamiento de la DQOs, SSV y remoción de la DQOs, en función de la temperatura en los reactores R3 a 35° (c) y RT a 30°C (d)	86
5.2	Reducción de la velocidad específica de crecimiento maximo (μ_{max}) en función de la temperatura del R1 a 45°C (a) y R2 a 40°C (b)	87
5.3	Relación entre el índice volumétrico de lodos (IVL) y la velocidad de sedimentación por zonas (VSZ) de los R1 (a), R2 (b), R3 (c) y RT (d)	90
5.4	Relación entre el índice volumétrico de lodos (IVL) y los sólidos disueltos totales (SDT) en los R1 (a), R2 (b), R3 (c) y RT (d)	92

		PAGINA
5.5	Comportamiento de los SST en el efluente de cada uno de los 4 reactores bióticos a lo largo del periodo experimental	93
5.6	Variación del oxígeno disuelto (OD) y la velocidad de consumo de oxígeno (VUO) en los R1 (a), R2 (b), R3 (c) y RT (d)	94
5.7	Variación del nitrógeno amoniacal y fósforo total en el efluente y los SDT en el licor mezclado de los R1 (a), R2 (b), R3 (c) y RT (d)	96
5.8	Promedio de remoción de la DQOs en el reactor experimental abiótico a temperatura baja, media y alta en los periodos de operación. El error de las barras representa el 95% de nivel de confianza	98
5.9	Comportamiento de la DQOs de los 4 reactores experimentales bióticos y reactor abiótico	99
5.10	Comparación del promedio de remoción de la DQOs en los reactores experimentales bióticos y abiótico con temperatura baja (35°C), media (40°C) y alta (45°C) en los periodos de operación. El error de las barras representa el 95% de nivel de confianza	100
5.11	Mecanismo de remoción en por ciento de los compuestos orgánicos volátiles identificados en los reactores bióticos	102
5.12	Simulación de la DQOs y los SSV en función de la temperatura, a partir del modelo dinámico empleado, contra los datos reales del experimento para el R1 (a) y R2 (b)	103
5.12bis	Simulación de la DQOs y los SSV en función de la temperatura, a partir del modelo dinámico empleado, contra los datos reales del experimento para el R3 (c) y RT (d)	104

		PAGINA
5.13	Modelo dinámico para remoción por agotamiento (o volatilización) de la	105
	DQOs en los reactores por efecto de la temperatura	

5.14 Efecto de la temperatura sobre μ_{max} , de acuerdo al modelo obtenido para 106 μ_{max} (a1 =0.7594, b1 = 26.42 y c1=33.27), con un límite de confianza del 95%.