Redes Industriais e Sistemas Supervisórios

Bacharelado em Engenharia de Controle e Automação

O que são Redes Industriais?

Conceito, história e evolução

O que é uma Rede Industrial ?

O que é uma Rede Industrial ?

Rede de comunicação de dados

Troca de dados entre, ao menos, dois dispositivos

Emissor ---> Mensagem ---> Receptor

O que é uma Rede Industrial ?

Indústria: Local de transformação de
matérias-primas em serviços e bens
comercializáveis, utilizando força humana,
máquinas e energia.

Indústria 1.0

Séc. XVIII/XIX

- Carvão;
- Mudança rápida das tecnologias de produção;
- Novas estruturas econômico-sociais.

Indústria 2.0

Séc. XIX

- Eletricidade;
- Linhas de montagem de produção em massa.

Indústria 3.0

Séc. XX

- Automação;
- Produção parcialmente automatizada com uso da eletrônica e tecnologia da informação;
- 1969: 1ª CLP

Indústria 4.0

Séc. XXI

- Dados;
- Digitalização e conexão de todos os atores do processo de geração de valor;
- Fusão da produção com tecnologias de informação e comunicação.

Foco das inovações

Inovações

- Processo produtivo
- Equipamentos

Inovações

- Produção massiva de dados
- Nuvem (cloud)
- Inteligência Artificial
- Conexão entre um mundo físico e um sistema cibernético

Fusão tecnológica

Fusão

- Tecnologias de Informação
- Tecnologias de
 Automação/Operação

Tecnologias de Informação

- Garante:
 - disponibilidade dos dados;
 - o controle de seu acesso.

- o computadores com softwares e arquivos de dados, costumeiramente dados comerciais,
- o Roteadores;
- Servidores;
- O Bancos de dados;
- o Implementação e manutenção em nuvem.

Tecnologias de Automação/Operação

- Abrangentes e diversas;
 - O Sistemas robóticos;
 - O Sistemas de controle;
 - SCADA Supervisory Control and Data Acquisition;
 - PLCs Programmable logic controller;
 - CNCs Computer numerical control;
 - o Sensores;
 - o Atuadores;
- Aplicações em tempo real.

- Redes de Controle
 - O Interligam equipamentos e sistemas inteligentes de controle, como CLP's, SDCD's, etc;
 - Troca de dados entre equipamentos e o sistema administrativo.

- Redes de dispositivos
 - Subordinadas a um equipamento inteligente de controle, como CLP e SDCD ou computador com software adequado;

- Redes de processos
 - O Para comunicação entre equipamentos de campo (sensores, atuadores, etc) e sistemas inteligentes (SDCD, CLP). Ex: HART, Foundation Fieldbus, Profibus PA, etc).

- Redes abertas
 - o suportam equipamentos e dispositivos de diferentes fabricantes;
 - o Vantagens:
 - não gera dependência ou limitações
 - é mais versátil para controlar processos
 - o Desvantagens:
 - possibilidade de falhas de comunicação
 - velocidades variáveis de comunicação
 - domínio do protocolo de cada fabricante

- Redes proprietárias
 - o utilizadas por fabricantes para estabelecer conectividade entre seus equipamentos
 - o Vantagens:
 - estabilidade de comunicação
 - facilidade de instalação de novos equipamentos
 - o Desvantagens:
 - utiliza um único fabricante
 - dependência de upgrade dedicado

Convergência TI+TA

ERP = Enterprise Resource Planning, MES Manufacturing Execution Systems, SCADA = Supervisory Control and Data Acquisition, CLP = Controlador Lógico Programável, E/S = Entrada/Saída.

Fonte: Altus - Como fica a Segurança Cibernética com a convergência entre TI e TA? Acesso em 20/08/2024

Convergência TI+TA

Arquitetura de referência para uma planta de Automação

Fonte: Cisco

Comparação entre TI e TA

Comparação	TI	TA	
Propósito	Gerenciamento de dados e informações	Controle de sistemas e processos	
Ambiente de operação	Consumidor / Escritório	Ambiente industrial	
Sistema Operacional	Comum	Desenvolvido para propósito específico	
Ciclo de vida	3-5 anos	Décadas	
Manutenção	Simples	Especializada	
Atualizações	Frequente, rápida	Pouco frequente, testes extensos e impacto em produção	
Forma	Poucas opções de configuração	Dispositivos pequenos, montados de forma única	
Interface de rede	Cabeada, óptica ou Wi-Fi	LoraWAN ou WiSun	
Protocolos	Sobre TCP/IP	Muitos INSTITUTO FEDERAL São Paulo Câmpus Salto	

Fonte: Cisco

Comparação entre TI e TA

Requisitos	Descrição
Interoperabilidade	Compartilhar dados significativos entre componentes
Escalabilidade	Aumento da carga de trabalho
Privacidade	Controle dos dados coletados e compartilhados
Confiabilidade	Evitar riscos e interrupções
Baixa Latência	Minimizar atrasos na rede

Necessidades emergentes

- Segurança cibernética
- Adoção de IIoT
 - O Desafios: padronização e interoperabilidade
- 5G + Baixa latência
 - \circ +IIoT,
 - o gêmeos digitais,
 - o operações remotas.
 - Aumenta superfície de ataques.

Necessidades emergentes

- IA
 - Oportunidades e desafios para segurança
- Esforços arquitetônicos de longo prazo.
 - o RAMI, IIRA e OpenFog

Benefícios da convergência

- Redução de defeitos (-48,9%)
 - A análise de dados de TI pode identificar problemas de equipamento para reduzir defeitos.
- Tempo de inatividade não planejado (-47,8%)
 - O Analisar dados de máquinas também prevê necessidades de manutenção.
- Custos de energia (-17,5%)
 - O A otimização do gerenciamento de edifícios reduz os custos de energia.

Benefícios da convergência

- Tempo de introdução de novos produtos (-23,1%)
 - Os dados de fabricação aceleram a introdução de novos produtos.
- Aumento do giro de estoque (34,8%)
 - O rastreamento de estoque via RFID melhora o gerenciamento de estoque.
- Eficácia do equipamento (+16,2%)

Objetivos da Rede Industrial

- Qualidade e eficácia no processo produtivo;
- Redução de custos;
- ☐ Agilidade empresarial;
- Informações em tempo real;
- ☐ Eliminação do uso de interfaces manuais;

Objetivos da Rede Industrial

- Otimização e qualidade do fluxo das informações dentro da organização (eficiência);
- 🖵 Otimização do processo de tomada de decisão;
- Eliminação da redundância de atividades;
- Redução dos limites de tempo de resposta ao mercado.

Objetivos da Rede Industrial

- Interligar todos os envolvidos no processo de automação e fazer o transporte de dados;
- Transportar o fluxo de informações de toda a planta para todas as camadas, ajudando no processo de tomada de decisão;
- ☐ Combinar de forma gradual diferentes sistemas e **protocolos**de comunicação.

Protocolos de comunicação

Conjunto de regras que define como uma mensagem vai chegar ao destino.

Ao conjunto de regras, procedimentos e leis que governam a troca de informações entre dois ou mais processos, define-se como protocolo de comunicação.

Funções de Protocolos de comunicação

- Endereçamento;
- Estabelecimento de conexões;
- ☐ Confirmação de recebimento;
- ☐ Pedido de retransmissão;
- ☐ Conversão de código;
- ☐ Numeração e sequência;
- 🗖 Controle de fluxo.

Pirâmide da Automação

Empresa

Gerenciamento corporativo - ERP

Centro de Trabalho

Gerenciamento de planta - MES, PIMS

Estações

Supervisão do Processo - IHM, SCADA

Dispositivos de Controle

Controle automatizado - CLP, SDCD, CNC, PID

Dispositivos de Campo

Sensores e Atuadores

Protocolos comuns entre camadas da Pirâmide da Automação

Centro de Trabalho

Gerenciamento corporativo - ERP

Ethernet, TCP/IP, OCP, DDE, DCOM

Gerenciamento de planta - MES, PIMS

Ethernet, TCP/IP, OCP, DDE, DCOM

Estações

Supervisão do Processo - IHM, SCADA

ControlNet, EthernetDP, OCP, ModBus, ProfibusFMS, DP, Profinet

> Controle automatizado - CLP, SDCD, CNC, PID

Dispositivos de Campo

Fieldbus H1, CAN, Profibus DP, HART, ASi

Sensores e Atuadores

Níveis da rede industrial

Nível 0 - SensorBus

CAN BUS

- Objetivo: Minimizar o custo
- Sensores e Atuadores tipicamente discretos;
- Dados em formato de bits;
- Conexão:
 - Poucos equipamentos;
 - o Equipamentos simples;
 - O Ligação direta.
- Características:
 - Comunicação rápida em níveis discretos, dezenas de milisegundos;
 - O Pequenas distâncias, dezenas de metros;
 - Concepção determinística;
 - O Sensores de baixo custo.

Nível 0.5 - DeviceBus

- Distribuição de periféricos de controle;
- Mensagens de dados de bytes ou words;
- Comunicação rápida em níveis discretos, dezenas de milisegundos;
- Distância de centenas de metros, até 500m;
- Concepção determinística;
- Possuem os mesmos requisitos temporais da rede SensorBus, porém podem manipular mais equipamentos e dados.

Nível 1 - FieldBus

- Redes mais inteligentes;
- Podem conectar mais equipamentos a distâncias mais longas;
- Mensagens de dados de words ou blocos;
- Comunicação na escala de centenas de milisegundos:
 - taxa de transferência menor, porém é capaz de se comunicar com vários tipos de dados: discretos, analógicos, parâmetros, programas e informações de usuários.
- Distância em centenas de metros;

Nível 2 - DataBus

- Transferência maciça de dados entre equipamentos;
- Mensagens de dados de blocos ou arquivos;
- Comunicação na escala de segundos ou minutos;
- Grandes distâncias (LAN / WAN / Internet).

Característica das Redes Industriais

A evolução das redes industriais

1940: a instrumentação operava com sinais de 3..15
 PSI para monitorar dispositivos de controle no chão de fábrica;

• 1960: introdução dos sinais analógicos de 4..20 mA para medição e monitoramento de dispositivos;

• déc. **1970**: utilização de **computadores** para monitorar os processos.

A evolução das redes industriais

• 1980: desenvolvimento dos primeiros sensores inteligentes, bem como controles digitais;

 Nasce a ideia de uma rede para unir todos os dispositivos e disponibilizar todos os sinais do processo em um mesmo meio físico;

- Necessidade clara de uma rede fieldbus
 - O Necessidade de um padrão que torne compatível com o controle de instrumentos inteligentes.

Tipos de transmissão

- Pneumática (3-15 PSI)
- Eletrônica (4-20 mA, 1-5Vcc)
- Digital (RS-485 protocolo modbus, RS-232 protocolo HART, RS-422 "Foundation™ Fieldbus";
- Hidráulica;
- Eletromagnética (sem fio);
- Óptica (fibra-óptica).

A finalidade dos protocolos no meio industrial

- Aperfeiçoar o controle dos instrumentos de campo;
- Aumentar a capacidade do tráfego de informações;
- Prover mensagens de diagnóstico;
- Configurar componentes de forma remota.

Redes Industriais

