Neural Networks and Learning Systems TBMI 26, 2017

Lecture 6 Unsupervised Learning

Magnus Borga

Three main categories of machine learning methods

• Supervised learning (predictive)

Learn to generalize and classify new data based on labeled training data.

- Pattern recognition
- Classification

Unsupervised learning (descriptive)

Discover structure and relationships in complex highdimensional data.

Reinforcement learning (active)

Generate policies/strategies that lead to a (possibly delayed) reward. Learning by doing.

Unsupervised learning

- Task: Find underlying structure in data.
- Input: Training data examples {x_i} i=1...N.
- Output: Description of the data in a simpler form, e.g., with fewer dimensions or parameters.

Unsupervised learning

- Optimizes an internal cost function, e.g.
- max variance (PCA)
- max class separability (LDA)
- Finds a new representation of the data

Applications

- Feature extraction
 - find order or structure in data
- · Dimensionality reduction
 - keep the most "important" parts of the signal

Too many dimensions/features

Correlated features or features that do not carry any information:

- Introduce noise in the analysis/classification
- Introduce more parameters in the learning model
 - More local optima in the optimization
 - Poorer generalization
 - Higher computational effort
- Difficult to visualize high-dimensional data

Independent vs. uncorrelated

- Statistically independent means that there is no relationship (linear or nonlinear) between variables. Independent -> uncorrelated.
- · Uncorrelated means that there is no linear relationship between variables. Uncorrelated does not imply independent.
- Special case: For Gaussian distributions, uncorrelated also means independent.

Describing linear data dependence

$$Var(x) = \sigma^2 = E\left[\left(x - \overline{x}\right)^2\right] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

$$Cov(x, y) = E[(x - \overline{x})(y - \overline{y})] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

$$\rho(x,y) = \operatorname{Corr}(x,y) = \frac{\operatorname{Cov}(x,y)}{\sqrt{\operatorname{Var}(x)\operatorname{Var}(y)}} - 1 \le \rho \le 1$$

Scaling: $Var(a \cdot x) = a^2 Var(x)$ Influenced by scaling $\rho(a \cdot x, b \cdot y) = \rho(x, y)$ Invariant to scaling

Multidimensional linear dependence

$$\mathbf{C} = \operatorname{Cov}(\mathbf{x}) = \operatorname{E}\left[\left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T}\right] = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{x}_{i} - \overline{\mathbf{x}}\right)\left(\mathbf{x}_{i} - \overline{\mathbf{x}}\right)^{T}$$

Example:

Symmetric covariance matrix

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 $\mathbf{C} = \begin{bmatrix} Var(x_1) & Cov(x_1, x_2) & Cov(x_1, x_3) \\ Cov(x_2, x_1) & Var(x_2) & Cov(x_2, x_3) \\ Cov(x_3, x_1) & Cov(x_3, x_2) & Var(x_3) \end{bmatrix}$

Sometimes we also use the correlation matrix $Corr(x_2, x_1)$ 1 $Corr(x_2, x_3)$ $Corr(x_3, x_1) \quad Corr(x_3, x_2)$

Projection/transformation

Can "uncorrelate" data through a linear transformation!!

$$\mathbf{C}_{x} = \begin{bmatrix} \operatorname{Var}(x_{1}) & \operatorname{Cov}(x_{1}, x_{2}) \\ \operatorname{Cov}(x_{2}, x_{1}) & \operatorname{Var}(x_{2}) \end{bmatrix} \qquad \qquad \mathbf{C}_{y} = \begin{bmatrix} \operatorname{Var}(y_{1}) & 0 \\ 0 & \operatorname{Var}(y_{2}) \end{bmatrix}$$

$$\mathbf{C}_{y} = \begin{bmatrix} \operatorname{Var}(y_{1}) & 0\\ 0 & \operatorname{Var}(y_{2}) \end{bmatrix}$$

PCA

Principal Component Analysis

- Pearson 1901
 (A.k.a. Hotelling-transform or Karhunen-Loéve-transform)
- Coordinate transformation to an orthogonal basis where the data is uncorrelated.
- Dimensionality reduction that preserves maximum variance (minimizes the mean square error).

Dimensionality reduction with least mean square error

- Chose a new basis whose dimensionality is smaller than the original
- The basis vectors that preserve maximum variance gives the least mean square error.

Dimensionality reduction with least mean square error

Suppose **y** is a representation of **x** where some dimensions are removed, i.e. some $y_i = 0$.

(Assume mean = 0)

$$\varepsilon = E\left[\sum_{i} (x_i - y_i)^2\right] = E\left[\sum_{k} x_k^2\right] = \sum_{k} E[x_k^2] = \sum_{k} \sigma_k^2$$

k is the indices of the removed components, i.e. $k: y_k = 0$

Dimensionality reduction with least mean square error

- Expected mean square error = sum of the variance in the removed dimensions.
- The mean square error is minimized by keeping the components with highest variance.

2017-02-10

TBMI 26: Lecture 1

Maximize the variance

The variance in direction $\hat{\mathbf{w}}$: (Suppose \mathbf{x} has mean 0.)

$$\sigma_{\hat{\mathbf{w}}}^2 = E[(\mathbf{x}^T \hat{\mathbf{w}})^2] = E[(\hat{\mathbf{w}}^T \mathbf{x})(\mathbf{x}^T \hat{\mathbf{w}})]$$
$$= \hat{\mathbf{w}}^T E[\mathbf{x} \mathbf{x}^T] \hat{\mathbf{w}} = \hat{\mathbf{w}}^T \mathbf{C} \hat{\mathbf{w}} = \frac{\mathbf{w}^T \mathbf{C} \mathbf{w}}{\mathbf{w}^T \mathbf{w}}$$

The covariance matrix of **x**.

Maximize the variance

$$\sigma_{\hat{\mathbf{w}}}^{2} = \frac{\mathbf{w}^{T} \mathbf{C} \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}}$$

$$\frac{\partial \sigma_{\hat{\mathbf{w}}}^{2}}{\partial \mathbf{w}} = \frac{2}{\mathbf{w}^{T} \mathbf{w}} (\mathbf{C} \mathbf{w} - \sigma_{\hat{\mathbf{w}}}^{2} \mathbf{w}) = 0 \implies$$

$$\mathbf{C} \mathbf{w} = \sigma_{\hat{\mathbf{w}}}^{2} \mathbf{w}$$

PCA is the Eigen-value decomposition of the data covariance matrix.

The Eigen-value decomposition

$$\mathbf{C}\mathbf{e} = \lambda \mathbf{e}$$
$$\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{T}$$

If C is a covariance matrix:

$$\mathbf{C} = E[(\mathbf{x} - \overline{\mathbf{x}})(\mathbf{x} - \overline{\mathbf{x}})^T] \qquad \lambda_i = \sigma_{\mathbf{e}_i}^2$$

2017-02-10 TBMI 26: Lecture 1

Class separability

- Small variance Large distance
 - Large variance Small distance

Goal: minimize variance and maximize distance.

Linear Discriminant Analysis (LDA)

a.k.a. Fishers Linear Discriminant (FLD)

- Minimize variance
- · Maximize distance

Maximize:
$$\varepsilon(\mathbf{w}) = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$$

LDA – Cost function $\varepsilon = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$

Distance: $\mu(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{w}^{T} \mathbf{x}_{i} = \mathbf{w}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \right) = \mathbf{w}^{T} \overline{\mathbf{x}}$

$$(\mu_1(\mathbf{w}) - \mu_2(\mathbf{w}))^2 = (\mathbf{w}^T (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2))^2 = \mathbf{w}^T (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T \mathbf{w} = \underline{\mathbf{w}}^T \mathbf{M} \mathbf{w}$$

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \mathbf{w} = \mathbf{w}^{T} \mathbf{C} \mathbf{w}$$

$$\sigma_1^2(\mathbf{w}) + \sigma_2^2(\mathbf{w}) = \mathbf{w}^T \mathbf{C}_1 \mathbf{w} + \mathbf{w}^T \mathbf{C}_2 \mathbf{w} = \mathbf{w}^T \mathbf{C}_{tot} \mathbf{w}$$

Exercise:

Complete all the steps!

$$\varepsilon(\mathbf{w}) = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2} = \frac{\mathbf{w}^T \mathbf{M} \mathbf{w}}{\mathbf{w}^T \mathbf{C}_{tot} \mathbf{w}}$$

This form is called a Rayleigh quotient, which is maximized by the largest eigenvector to the generalized eigenvalue problem C_{tot} w = $\lambda Mw!$

Simplification: $\mathbf{M}\mathbf{w} = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T\mathbf{w} = K(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)$ Some scalar K

LDA - Summary

Projection direction w on which two classes are maximally separated

- Closed form solution, no parameters to set easy to calculate.
- Components of \boldsymbol{w} give the importance of each feature in $\boldsymbol{x}.$
- Can find a series of directions (as in PCA) by applying the algorithm several times – orthogonal LDA/FLD
- Can be used as a classifier!

LDA as a classifier

- Easy to use!
 - Closed form solution
 - Fast to calculate
 - No dependency on initialization
 - No step length to choose
 - No local optima
 - No parameters to set

Very useful as a first classifier to try and as a benchmark!