Project Development Phase

Date	18 November 2022
Team ID	PNT2022TMID07703
Project Name	AI-powered Nutrition Analyzer for Fitness Enthusiasts
Maximum Marks	10 Marks

ModelPerformance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 21,885,485 Trainable params: 1,024,005 Non-trainable params: 20,861,480	Attached below
2.	Accuracy	Training Accuracy - 72% Validation Accuracy - 59%	Attached below
3.	Confidence Score (Only Yol oProjects)	Class Detected - NILL Confidence Score - NILL	NILL

User Acceptance Testing

We are performing White Box Testing for select the package module.

Pseudocode for select the package module is-

- 1. select_the_package() píoceduíe begins
- 2. READ the package name, featuies, offeis and duiation fiom the package database
- 3. DISPLAY the package name, featuses, offess and dusation
- 4. DO
- 5. GEl' the package name, featuies, offeis and duiation
- 6. S1 ORE the package selected to the custome i's database
- 7. PROCEED to payment scíeen //anotheí module
- 8. WHILE select package is NULL
- 9. //End DO...WHILE
- 10.píoceduíe ends

CYCLOMATIC COMPLEXITY OF RESULTANT GRAPH

LINEARLY INDEPENDENT PATHS FOR FLOW GRAPHS

Path 1: 1-2-3-4-5-6-7-8-9-10

Path 2: 1-2-3-4-5-6-7-8-4-5-6-7-8-9-10

TEST	INPUT	ACTUAL	EXPECTED OUTPUT	
ID	VALUES	OUTPUT	EXPECTED OUTPUT	
1	Package is selected	To be observed	Display the selected	
	selected	after execution	package	
2	Package is not	To be observed	Show the packages to select	
	selected	after execution	until one is selected	

Peifoimance 1 esting

```
| Set | Set
```

Future Scope:

- Offeis payment convenience in peisonal tiaining subsciiptions.
- Useful aíticles.
- Video instíuctions.
- Diet Plans.
- Individual píogíess tíacking.

SCREENSHOTS:

Dat	a Collection		
Download the dataset here			
[]	<pre>from google.colab import drive drive.mount('/content/drive')</pre>		
1	Mounted at /content/drive		
[]	cd/content/drive/MyDrive/Colab Notebooks		
	/content/drive/MyDrive/Colab Notebooks		
[]	# Unzipping the dataset !unzip 'Dataset.zip'		

```
Image Preprocessing
        from keras.preprocessing.image import ImageDataGenerator
Image Data Augmentation
        train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
        test_datagen=ImageDataGenerator(rescale=1./255)
Applying Image DataGenerator Functionality To Trainset And Testset
       x_train = train_datagen.flow_from_directory(
            r'/content/drive/MyDrive/Colab Notebooks/Dataset/TRAIN_SET',
            target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
       x_test = test_datagen.flow_from_directory(
            target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
     3. Adding CNN Layers
          classifier = Sequential()
          classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
          classifier.add(Flatten())
     4. Adding Dense Layers
          classifier.add(Dense(units=5, activation='softmax'))
          classifier.summary()
        Layer (type)
                                               Output Shape
                                                                                    Param #
        conv2d (Conv2D)
  5. Configure The Learning Process
[] classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
  6. Train The Model
 [ \ ] \quad \text{classifier.fit\_generator(generator=x\_train,steps\_per\_epoch = len(x\_train),epochs=20, validation\_data=x\_test,validation\_steps = len(x\_test)) } 
   /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Pl
  7. Saving The Model
```


