Presenting

The Rail Guardians

in requirement of the course project for ST699 - Special Topics in Games

Presented By

Soumyaratna Debnath, 22270004, MTech W&S CSE

Inspired from Eternal Vertex Cover problem, *The Rail Guardians* is a two-player game where the players alternate between defending and attacking positions in a dynamic, strategic showdown.

Minimum Vertex Cover

For a graph G(V, E), as set $S \subseteq V(G)$ is said to be a vertex cover of G if for any $(u, v) \in E(G)$ either $u \in S$ or $v \in S$.

The size of the smallest vertex cover of graph G is called the minimum vertex cover of G, denoted by mvc(G).

Eternal Vertex Cover

- Dynamic variant of the vertex cover problem.
- Guards are placed on some vertices of a graph.
- In every move, the attacker attacks an edge. In response, the defender moves the guards along the edges in such a manner that at least one guard moves along the attacked edge.
- If such a movement is not possible, attacker wins. If the defender can defend an *infinite sequence of attacks*, defender wins.
- The minimum number of guards with which defender has a winning strategy is called the Eternal Vertex Cover Number of the Graph G known as evc(G).
- Klostermeyer and Mynhardt showed $mvc(G) \le evc(G) \le 2mvc(G)$

Eternal Vertex Cover – Some intuitions

Eternal Vertex Cover – A walkthrough

Let's get to the GAME!

Analysis of Max Score for Energy Aware Eternal Vertex Cover on Linear Graphs

Stations	Builders	Energy	Max Score
2	1	K	?

Attack

Stations	Builders	Energy	Max Score
2	1	K	K

Stations	Builders	Energy	Max Score
3	1	K	1

Attack

Stations	Builders	Energy	Max Score
3	2	K	2K - 1

Stations	Builders	Energy	Max Score
4	1	K	0

Stations	Builders	Energy	Max Score
4	2	K	1?

Stations	Builders	Energy	Max Score
4	2	K	2

Stations	Builders	Energy	Max Score
4	3	K	3K - 2

Stations	Builders	Energy	Max Score
5	1	K	0

Stations	Builders	Energy	Max Score
5	2	K	1

Stations	Builders	Energy	Max Score
5	3	K	?

Stations	Builders	Energy	Max Score
5	3	K	3

Stations	Builders	Energy	Max Score
5	4	K	4K - 3

Observation Summary

Stations	Builders	Energy	Max Score
2	1	K	K
3	1	K	1
3	2	K	2K – 1
4	1	K	0
4	2	K	2
4	3	K	3K – 2
5	1	K	0
5	2	K	1
5	3	K	3
5	4	K	4K – 3

References

- 1. Babu, J., Misra, N. and Nanoti, S.G., 2022, June. Eternal vertex cover on bipartite graphs. In International Computer Science Symposium in Russia (pp. 64-76). Cham: Springer International Publishing.
- 2. Paul, K. and Pandey, A., 2023, March. Some algorithmic results for eternal vertex cover problem in graphs. In International Conference and Workshops on Algorithms and Computation (pp. 242-253). Cham: Springer Nature Switzerland.
- 3. Fujito, T. and Nakamura, T., 2020. Eternal connected vertex cover problem. In *Theory and Applications of Models of Computation: 16th International Conference, TAMC 2020, Changsha, China, October 18–20, 2020, Proceedings 16* (pp. 181-192). Springer International Publishing.

Thank You

Acknowledgement

I express my gratitude to Prof. Neeldhara Misra, Prof. Jyothi Krishnan, and Saraswati Girish Nanoti for their constant guidance and encouragement.

I thank all my fellow classmates for the enthusiastic discussions throughout the course.