Natural Language Understanding, Generation, and Machine Translation

Lecture 8: Transformers

Shay Cohen based on slides by Frank Keller 31 January 2024 (week 3)

School of Informatics University of Edinburgh scohen@inf.ed.ac.uk

Overview

The Story so Far

Self-attention

Multi-head Attention

The Transformer

Reading: [Vaswani et al.2017], [Bloem2019].

The Story so Far

Encoder-Decoder Architecture

When we do MT, we encode a source sentence and then decode it into a target sentence:

Input: Så varför minskar inte vi våra utsläpp?

Output: So why are we not reducing our emissions?

We can model this using an *encoder-decoder* architecture. Sequence transduction is a common way to formulate NLP tasks:

- question answering
- syntactic and semantic parsing
- generation from a database
- image description

Often RNNs are used for both the encoder and the decoder.

Encoder-Decoder Architecture

This works pretty well, but:

- the hidden representation is a bottleneck: it has to represent a sentence of any length, but its size is fixed;
- RNNs and their variants suffer from vanishing gradients;
- the encoder representation also has a *recency bias:* mostly represents final words of the input;
- target words whose corresponding source words are at the beginning therefore more difficult to generate correctly.

Solution: learn which input words are important for the decoder.

In the decoder softmax, the *context* is now a *weighted average* of source hidden state vectors:

$$P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|}) = \operatorname{softmax}(\mathbf{W} \operatorname{concat}(\mathbf{s}_i, \mathbf{c}_i) + \mathbf{b})$$

$$\mathbf{c}_i = \sum_{j=1}^{|x|} \alpha_{ij} \mathbf{h}_j$$

 α_i is a distribution over elements of x. In its simplest form, we can compute it as dot product attention:

$$a_{ij} = \mathbf{s}_i \cdot \mathbf{h}_j$$

 $\alpha_i = \operatorname{softmax}(\mathbf{a}_i)$

Observation:

- Attention is a powerful mechanism; maybe we can use it simplify the encoder and the decoder?
- Removing the RNNs would make our model a lot more efficient and scalable (larger models, more data).

But first, we need to make attention more complicated:

- We use two types of attention: self-attention and multihead attention.
- We split up the attention computation into key, value, and query vectors.

The original [Vaswani et al.2017] paper is a bit impenetrable. We will instead follow the tutorial by [Bloem2019].

Self-attention is what we get when compute attention over the input sequence. Let $\mathbf{x}_1, \dots, \mathbf{x}_t$ be the input vectors and $\mathbf{y}_1, \dots, \mathbf{y}_t$ be the output vectors:

$$\mathbf{y}_i = \sum_j w_{ij} \mathbf{x}_j$$

We now compute the attention weight as the dot-product of each input token with every other token.

$$w'_{ij} = \mathbf{x}_i \cdot \mathbf{x}_j$$

 $\mathbf{w}_i = \operatorname{softmax}(\mathbf{w}'_i)$

Note that the attention weight is now called \mathbf{w}' and the attention distribution \mathbf{w} (rather than \mathbf{a} and α).

Figure from [Bloem2019].

Why is self-attention useful?

- The dot product returns large values when the two vectors are similar. The softmax normalizes the resulting vectors.
- The output y_i is the weighted sum of all input vectors, weighted by their similarity with input x_i.
- We have no trainable parameters! We're relying on the input vectors x_i being good representations for our task.
- The input is a position invariant, i.e., we have no way to represent word order (unlike in an RNN).

Example: represent words as embeddings:

word sequence: the, cat, walks, on, the, street input (embeddings): \mathbf{x}_{the} , \mathbf{x}_{cat} , \mathbf{x}_{walks} , \mathbf{x}_{on} , \mathbf{x}_{the} , \mathbf{x}_{street} output: \mathbf{y}_{the} , \mathbf{y}_{cat} , \mathbf{y}_{walks} , \mathbf{y}_{on} , \mathbf{y}_{the} , \mathbf{y}_{street}

More Advanced Self-attention

Every input vector \mathbf{x}_i is used in three ways in self-attention:

- Query: compare x_i to every other vector to compute attention weights for its own output y_i.
- Key: compare x_i to every other vector to compute attention weights for the other outputs y_j.
- Value: use x_i in the weighted sum to compute every output vector based on these weights.

We can make attention more flexible by assuming separate, trainable weights for each of these roles: the $k \times k$ weight matrices W_q , W_k , and W_v (k: dimensionality of ${\bf x}$ and ${\bf y}$).

More Advanced Self-attention

Now we compute attention as follows:

$$\mathbf{q}_{i} = W_{q}\mathbf{x}_{i} \quad \mathbf{k}_{i} = W_{k}\mathbf{x}_{i} \quad \mathbf{v}_{i} = W_{v}\mathbf{x}_{i}$$

$$w'_{ij} = \mathbf{q}_{i} \cdot \mathbf{k}_{j}$$

$$\mathbf{w}_{i} = \operatorname{softmax}(\mathbf{w}'_{i})$$

$$\mathbf{y}_{i} = \sum_{j} w_{ij}\mathbf{v}_{j}$$

Now the self-attention layer has parameters that allow it to modify the incoming vectors to suit the three roles they must play.

More Advanced Self-attention

Scaling the Dot Product

- The softmax function can be sensitive to very large input values;
- this kills the gradient and can slow down learning or cause it to stop;
- it helps to scale the dot product back to stop the inputs to the softmax function from growing too large:

$$w'_{ij} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{k}}$$

Multi-head Attention

Multi-head Attention

Multi-head attention is able to jointly attend to different parts of the input. If we just have a single head, have to average.

For example, one head could attend to the subject of a verb, another one to its object. Or different heads could attend to different referents of a pronoun.

Multi-head Attention

We use separate weight matrices for each head: W_q^r , W_k^r , W_v^r , where r is an index over heads.

For the input \mathbf{x}_i , each attention head now produces a different output \mathbf{y}_i^r . We concatenate them and pass them through a linear transformation to reduce the dimensions to k. Two variants:

- Narrow self-attention: cut the input into chunks of size k/h
 (h: number of heads), use weight matrices of size k/h × k/h.
- Wide self-attention: use weight matrices that cover the whole input for each head, i.e., of size k × k.

The Transformer

The Transformer

The multi-head self attention mechanism needs to be integrated into a larger architecture to be useful:

Figure from [Bloem2019].

The Transformer

- The blue connections are residual connections. They prevent the gradients from getting too large or small.
- Layer normalization makes training faster.
- The feedforward layer applies a single MLP independently to each input vector.

Example: Movie Classification

Transformer to classify a movie review as positive or negative:

Figure from [Bloem2019].

Example: Movie Classification

- At the core is a chain for transformer blocks.
- *Input:* represent words as embeddings; these are then combined with position encodings.
- Recall that attention is position invariant, i.e., the transformer cannot directly represent word order.
- Output: apply average pooling to the final output sequence, map the result to a softmaxed class vector.

Position Encodings

We choose a function $f: \mathbb{N} \to \mathbb{R}^k$ that maps positions to real valued vectors, and let the network learn how to interpret these.

The choice of encoding function is a hyperparameter. [Vaswani et al.2017] use:

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/k})$$

 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/k})$

where pos is the position and i is an index over dimensions.

The positions encoding is then added to the input embedding (both are of dimensionality k).

Masking

What if we want to *generate text* as an output? Then we need an *autoregressive* model:

For this, we need to ensure that the transformer cannot look forward in the input when generating the output.

Else it would just generate a copy of the input! We need masking.

23

Masking

We apply a mask to the matrix of dot products, before the softmax is applied. This disables all elements above the diagonal:

The model can no longer look forward and just copy the upcoming input; it behaves like an RNN!

Figure from [Bloem2019].

Summary

- The transformer overcomes the problem with recurrent connections (serial bottleneck).
- It can model long-range dependencies using self-attention.
- Position encodings are needed to capture word order.
- Transformer blocks can be stacked to make models more powerful; only limited by compute and memory.
- The transformer has only two sources of non-linearity: the feedforward layer and the softmax in the self-attention.
- Masking makes it possible to use transformers in an autoregressive way for sequence-to-sequence tasks.

Now we have covered most of the key modeling ideas in the course!

Next class: Word embeddings with and without transformers.

References

Peter Bloem.

2019.

Transformers from Scratch.

http://www.peterbloem.nl/blog/transformers.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.

2017.

Attention is all you need.

Advances in neural information processing systems, 30.