Inhaltsverzeichnis

1	$\mathbf{Z}\mathbf{u}\mathbf{f}$	allsvariablen in Banachräumen	2
	1.1	Borelmengen in metrischen Räumen	2
	1.2	Borelmaße auf metrischen Räumen	2
	1.3	Meßbare Vektorräume	4
	1.4	Zufallsvariablen mit Werten in Banachräumen	5
	1.5	Charakteristische Funktionale	5
2	Konvergenzarten		
	2.1	Fast-sichere Konvergenz	6
	2.2	Stochastische Konvergenz	6
	2.3	Verteilungskonvergenz	6
3	Ma	ximal-Ungleichungen und Konvergenz zufälliger Reihen	7
	3.1	Maximal-Ungleichungen	7
	3.2		8
	3.3	Das Kontraktions-Prinzip	8
	3.4		8

1 Zufallsvariablen in Banachräumen

TODO: Einleitung

1.1 Borelmengen in metrischen Räumen

Für einen metrischen Raum (X,d) bezeichne im Folgenden $\mathcal{B}(X)$ die Borel- σ -algebra in X. Zudem werden für $x \in X$ und r > 0 mit B(x,r) bzw. $\overline{B}(x,r)$ die offene bzw. abgeschlossene Kugel um x mit Radius r bezeichnet.

1.1 Proposition

Sei (X,d) ein separabler metrischer Raum. Dann gilt

$$\mathcal{B}(X) = \sigma(\{B(x,r) : x \in X, r > 0\}) = \sigma(\{\overline{B}(x,r) : x \in X, r > 0\}).$$

Beweis.

Setze

$$\mathcal{A}_1 := \sigma(\{B(x,r) : x \in X, r > 0\}),$$

$$\mathcal{A}_2 := \sigma(\{\overline{B}(x,r) : x \in X, r > 0\}).$$

Nach Definition gilt $A_2 = A_1 \subseteq \mathcal{B}(X)$. Zu zeigen ist also nur die Inklusion $\mathcal{B}(X) \subseteq A_1$. Sei dazu $U \subseteq X$ offen und $x \in U$. Nach Voraussetzung existiert eine abzählbare dichte Teilmenge $D \subseteq X$. Definiere

$$R:=\{(y,r):y\in U\cap D, r>0, r\in\mathbb{Q}, B(y,r)\subseteq U\}.$$

Dann ist R abzählbar und da D dicht in X liegt gilt $U = \bigcup_{(y,r) \in R} B(y,r)$. Also gilt $U \in \mathcal{A}_1$ und da $\mathcal{B}(X)$ von den offenen Teilmengen von X erzeugt wird folgt die Behauptung.

1.2 Proposition

Für $i \in \mathbb{N}$ sei (X_i, d_i) ein separabler metrischer Raum. Dann gilt

$$\mathcal{B}(X_1 \times X_2 \times ...) = \bigotimes_{i=1}^{\infty} \mathcal{B}(X_i)$$

Beweis.

Setze $X:=\times_{k\in\mathbb{N}}X_k$ und bezeichne $p_k:X\to X_k$ die Projektion auf die k-te Komponente. Betrachte das Mengensystem

$$\mathcal{E}:=\{\bigcap_{k\in K}p_k^{-1}(O)|\forall k\in K:O_k\subseteq X_k \text{ offen}, K\subseteq\mathbb{N} \text{ endlich}\}.$$

Offensichtlich gilt $\bigotimes_{k\in\mathbb{N}}\mathcal{B}(X_k)=\sigma(\mathcal{E})$. Ferner ist X ein separabler metrischer Raum und \mathcal{E} eine Basis der Produkttopologie auf X, vgl. [2][3.7]. Also lässt sich jede offene Menge $O\subset X$ als abzählbare Vereinigung von Elementen aus \mathcal{E} darstellen. Dies impliziert $\mathcal{B}(X)=\sigma(\mathcal{E})=\bigotimes_{k\in N}\mathcal{B}(X_k)$.

1.2 Borelmaße auf metrischen Räumen

Bis auf weiteres sei (X, d) ein metrischer Raum mit Borel- σ -algebra $\mathcal{B}(X)$. Im Folgenden Abschnitt beschäftigen wir uns mit Maßen auf $\mathcal{B}(X)$, welche teilweise auch als *Borel-Maße* bezeichnet werden. Die Bezeichnung wird in der Literatur allerdings nicht einheitlich verwendet.

1.3 Definition

Ein Maß μ auf $\mathcal{B}(X)$ heißt regulär, falls

$$\forall B \in \mathcal{B}(X): \quad \mu(B) = \sup\{\mu(C) : C \subseteq B, \ C \text{ abgeschlossen}\}\$$

= $\inf\{\mu(O) : B \subseteq O, \ O \text{ offen}\}.$

1.4 Proposition

Sei μ ein Wahrscheinlichkeitsmaß auf $\mathcal{B}(X)$. Dann ist μ regulär.

Beweis.

TODO

1.5 Definition

Ein Maß μ auf $\mathcal{B}(X)$ heißt *straff*, falls es für alle $\varepsilon > 0$ eine kompakte Menge $K \subseteq X$ gibt mit

$$\mu(K) \ge 1 - \varepsilon$$
.

1.6 Korollar

Sei μ ein straffes Wahrscheinlichkeitsmaß auf $\mathcal{B}(X)$. Dann gilt

$$\forall A \in \mathcal{B}(X) : \quad \mu(A) = \sup{\{\mu(K) : K \subseteq A, K \text{ kompakt}\}}.$$

Beweis.

Sei $A \in \mathcal{B}(X)$ und $\varepsilon > 0$. Wegen der Straffheit von μ existiert eine kompakte Menge $K_{\varepsilon} \subseteq X$ mit $\mu(K_{\varepsilon}) \geq 1 - \frac{\varepsilon}{2}$, und da μ nach Proposition 1.4 regulär ist gibt es eine abgeschlossene Menge $C \subseteq A$ mit $\mu(C) > \mu(A) - \frac{\varepsilon}{2}$. Dann ist die Menge $K_{\varepsilon} \cap C$ wiederum kompakt und es gilt

$$\mu(A) \ge \mu(K_{\varepsilon} \cap C) > \mu(C) - \frac{\varepsilon}{2} > \mu(A) - \varepsilon.$$

1.7 Bemerkung

Ein Wahrscheinlichkeitsmaß μ auf $\mathcal{B}(X)$ mit der Eigenschaft

$$\forall A \in \mathcal{B}(X) : \quad \mu(A) = \sup{\{\mu(K) : K \subseteq A, K \text{ kompakt}\}}.$$

wird auch als Radon-Wahrscheinlichkeitsmaß oder Radon-Maß bezeichnet.

1.8 Proposition

Sei (X, d) ein vollständiger separabler metrischer Raum. Dann ist jedes Wahrscheinlichkeitsmaß μ auf $\mathcal{B}(X)$ straff.

Wir verwenden zum Beweis der Proposition die folgende Charakterisierung kompakter Teilmengen metrischer Räume. Ein Beweis findet sich etwa in [1].

1.9 Lemma

Sei (X,d) ein metrischer Raum. Eine Menge $K\subseteq X$ ist genau dann kompakt, wenn sie die folgenden beiden Eigenschaften erfüllt:

- (i) K ist vollständig,
- (ii) K ist total-beschränkt, d.h.

$$\forall \varepsilon > 0 \ \exists x_1, ..., x_n \in K : \ K \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon).$$

Beweis.

TODO Sei $\varepsilon > 0$. Nach Voraussetzung existiert eine abzählbare dichte Teilmenge $D = \{x_1, x_2, ...\}$ von X. Also gilt insbesondere für $q \in \mathbb{N}$

$$\bigcup_{i\in\mathbb{N}} \overline{B}(x_i, 2^{-q}) = X.$$

Wegen der σ -Stetigkeit von μ existiert also ein $N_q \in \mathbb{N}$ mit

$$\mu(\cup_{i=1}^{N_q} \overline{B}(x_i, 2^{-q}) \ge 1 - \varepsilon 2^{-q}.$$

Setze nun

$$K := \bigcap_{q \in \mathbb{N}} \bigcup_{i=1}^{N_q} \overline{B}(x_i, 2^{-q}).$$

Dann ist K als Schnitt abgeschlossener Teilmengen abgeschlossen, und da X vollständig ist, folgt daraus bereits die Vollständigkeit von K. Ferner ist K total-beschränkt, denn zu $\varepsilon > 0$ existiert ein $q \in \mathbb{N}$ mit $2^{-q} < \varepsilon$ und $K \subseteq \bigcup_{i=1}^{N_q} B(x_i, 2^{-q}) \subseteq \bigcup_{i=1}^{N_q} B(x_i, \varepsilon)$. Zudem gilt

$$\mu(K) = 1 - \mu(\bigcup_{q \in \mathbb{N}} \bigcap_{i=1}^{N_q} \overline{B}(x_i, 2^{-q})^c) \ge 1 - \sum_{q=1}^{\infty} \mu(\bigcap_{i=1}^{N_q} \overline{B}(x_i, 2^{-q})^c)$$
$$\ge 1 - \sum_{q=1}^{\infty} \varepsilon 2^{-q} = 1 - \varepsilon.$$

Also ist μ straff.

1.10 Proposition

Sei (X,d) ein vollständiger metrischer Raum und μ ein Wahrscheinlichkeitsmaß auf $\mathcal{B}(X)$. Dann sind äquivalent

- (i) μ ist straff.
- (ii) Es gibt eine separable Teilmenge $E \subseteq X$ mit $\mu(E) = 1$.

Beweis.

zu (i) \Rightarrow (ii): Für alle $n \in \mathbb{N}$ existiert $K_n \subseteq X$ kompakt mit $\mu(K_n) \ge 1 - \frac{1}{n}$, o.E. gelte $K_n \subseteq K_{n+1}$. Es folgt

$$\mu(\bigcup_{n=1}^{\infty} K_n) = \lim_{n \to \infty} \mu(K_{n+1}) = 1.$$

Da kompakte Teilmengen metrischer Räume insbesondere separabel sind, ist $E := \bigcup_{n=1}^{\infty} K_n$ als abzählbare Vereinigung separabler Mengen ebenso separabel. zu (ii) \Rightarrow (i): Analog zum Beweis von Proposition 1.8.

1.3 Meßbare Vektorräume

1.11 Definition

Sei X ein Vektorraum und \mathcal{C} eine σ -Algebra auf X. Das Tupel (X,\mathcal{C}) heißt messbarer Vektorraum, falls

(a) Die Abbildung

$$+: X \times X \to X, \quad (x,y) \mapsto x + y$$

ist $\mathcal{A} \otimes \mathcal{C}/\mathcal{C}$ -messbar, und

(b) die Abbildung

$$\cdot : \mathbb{R} \times X \to X, \quad (\alpha, x) \mapsto \alpha x$$

ist $\mathcal{B}(\mathbb{R}) \otimes \mathcal{C}/\mathcal{C}$ -messbar.

1.12 Bemerkung

Sei (X, \mathcal{C}) ein messbarer Vektorraum. Dann gilt

(i) Für alle $\alpha \in \mathbb{R}$ ist die Abbildung

$$f_{\alpha}: X \to X, x \mapsto \alpha x$$

 \mathcal{C}/\mathcal{C} -messbar.

(ii) Für alle $y \in X$ ist die Abbildung

$$g_y: X \to X, x \mapsto x + y$$

 \mathcal{C}/\mathcal{C} -messbar.

Beweis.

Man beachte, dass für beliebige messbare Räume $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2)$, Mengen $A \in \mathcal{A}_1 \otimes \mathcal{A}_2$ und $\omega_1 \in \Omega_1$

$$A(\omega_1) = \{\omega_2 : (\omega_1, \omega_2) \in A\} \in \mathcal{A}_2$$

gilt.

1.13 Proposition

Sei X ein separabler Banachraum. Dann ist $(X, \mathcal{B}(X))$ ein messbarer Vektorraum.

Beweis.

Nach Proposition 1.2 gilt $\mathcal{B}(X \times X) = \mathcal{B}(X) \otimes \mathcal{B}(X)$ und $\mathcal{B}(\mathbb{R} \times X) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(X)$. Ferner sind die Abbildungen

$$+: X \times X \to X, \quad (x,y) \mapsto x + y,$$

 $\cdot: \mathbb{R} \times X \to X, \quad (\alpha,x) \mapsto \alpha x$

stetig bzgl. der jeweiligen Produkttopologien und somit insbesondere $\mathcal{B}(X \times X)/\mathcal{B}(X)$ bzw. $\mathcal{B}(\mathbb{R} \times X)/\mathcal{B}(X)$ -messbar.

1.14 Beispiel

Für $d \in \mathbb{N}$ ist $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ ein messbarer Vektorraum.

Im Folgenden sei $(X, ||\cdot||)$ ein Banachraum und $(X', ||\cdot||_{op})$ der zugehörige Dualraum.

1.15 Proposition

Sei $\emptyset \neq \Gamma \subseteq X'$. Dann ist $(X, \sigma(\Gamma))$ ein messbarer Vektorraum.

Beweis.

TODO

1.16 Proposition

Sei X ein separabler Banachraum. Dann gilt $\sigma(X') = \mathcal{B}(X)$.

1.4 Zufallsvariablen mit Werten in Banachräumen

TODO

1.5 Charakteristische Funktionale

TODO

- 2 Konvergenzarten
- 2.1 Fast-sichere Konvergenz
- 2.2 Stochastische Konvergenz
- ${\bf 2.3 \quad Verteilungskonvergenz}$

3 Maximal-Ungleichungen und Konvergenz zufälliger Reihen

Bezeichne $L_0(E)$ den Vektorraum der E-wertigen-Zufallsvariablen.

3.1 Maximal-Ungleichungen

3.1 Definition

Eine E-wertige Zufallsvariable X heißt symmetrisch, falls -X die selbe Verteilung hat wie X, d.h.

$$\forall A \in \mathcal{B}(E) : P(\{X \in A\}) = P(\{-X \in A\}).$$

3.2 Definition

Eine Folge $X_1, X_2, ...$ von E-wertigen Zufallsvariablen heißt symmetrisch, falls $(\varepsilon_1 X_1, \varepsilon_2 X_2, ...)$ für jede Wahl von $\varepsilon_i = \pm 1$ die gleiche Verteilung hat wie $(X_1, X_2, ...)$.

3.3 Bemerkung

Sind $X_1, X_2, ...$ unabhängige E-wertige Zufallsvariablen, sodass X_n für alle $n \in \mathbb{N}$ symmetrisch ist, dann ist $(X_1, X_2, ...)$ symmetrisch.

3.4 Satz (Lévys Maximal-Ungleichung)

Seien $X_1,...,X_N \in L_0(E)$ unabhängige und symmetrische Zufallsvariablen und setze

$$S_n := \sum_{i=1}^n X_i, \quad 1 \le n \le N.$$

Dann gilt für alle t > 0

$$P(\{\max_{1 \le n \le N} ||S_n|| > t\}) \le 2P(\{||S_N|| > t\}), \tag{3.1}$$

$$P(\{\max_{1 \le n \le N} ||X_n|| > t\}) \le 2P(\{||S_N|| > t\}).$$
(3.2)

Beweis.

TODO

Für nicht-symmetrische Zufallsvariablen erhalten wir mit einer ähnlichen Beweismethode die folgende auf Ottaviani und Skorohod zurückgehende Maximal-Ungleichung.

3.5 Satz (Maximal-Ungleichung von Ottaviani-Skorohod)

Seien $X_1, ..., X_N$ unabhängige E-wertige Zufallsvariablen, $N \in \mathbb{N}$. Setze

$$S_k := \sum_{i=1}^k X_i, \quad k = 1, ..., N.$$

Dann gilt für alle s, t > 0

$$P(\{\max_{1 \le k \le N} ||S_k|| > s + t\}) \le \frac{P(\{||S_N|| > t\})}{1 - \max_{1 \le k \le N} P(\{||S_N - S_k|| > s\})}.$$
 (3.3)

Beweis.

TODO

- 3.2 Der Satz von Itô-Nisio
- 3.3 Das Kontraktions-Prinzip
- 3.4 Beschränktheit und der Satz von Hoffman-Jorgensen-Kwapien

Literaturverzeichnis

- $[1]\,$ Amann, H. ; Escher, J.: Analysis I. Birkhäuser, Basel, 2006
- $[2]\ \ {\rm QUERENBURG},\ {\rm B.v.}:\ Mengentheoretische\ Topologie.\ Springer-Verlag,\ Berlin,\ 2001$