Нижние оценки приближений тригонометическими полиномами

7 декабря 2019 г.

Неравенства. Напомним ряд неравенств для функций и тригонометрических полиномов. Рассматриваем 2π -периодические функции, или, другими словами, функции, определённые на окружности $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. Стандартно определяются пространства $C(\mathbb{T}), L_p(\mathbb{T})$, отметим лишь, что интеграл нормирован: $||f||_p^p = (2\pi)^{-1} \int_{\mathbb{T}} |f(x)|^p dx$.

Также мы будем использовать пространства ℓ_p^N (а также бесконечномерные ℓ_p) с обычной нормой $\|x\|_p = (|x_1|^p + \ldots + |x_N|^p)^{1/p}, \ p < \infty;$ $\|x\|_{\infty} = \max |x_k|$. Полезное неравенство (где $a_+ = a$ при $a \ge 0$, и $a_+ = 0$ при a < 0):

$$||x||_{\ell_p^N} \leqslant N^{(1/p-1/q)} ||x||_{\ell_q^N}, \quad 1 \leqslant p, q \leqslant \infty.$$

(Проверка: при p > q получим неравенство $||x||_p \leqslant ||x||_q$).

Очевидно, что $||f||_p \leqslant ||f||_q$ при $1 \leqslant p \leqslant q \leqslant \infty$. Интерполяцией равенства $||\hat{f}||_2 = ||f||_2$ и неравенства $||\hat{f}||_\infty \leqslant ||f||_1$ получаем неравенство $Xayc dop \phi a$ -Юнга:

$$\|\hat{f}\|_{\ell_p} \leqslant \|f\|_{p'}, \quad 2 \leqslant p \leqslant \infty.$$

Рассмотрим пространство тригонометрических полиномов $\mathcal{T}_n = \{T(x) = \sum_{k=-n}^n c_k e^{ikx}\}$. Обычно рассматриваются вещественные тригонометрические полиномы $(T(x) \in \mathbb{R})$ при всех $x \in \mathbb{T}$; это эквивалентно тому, что $c_{-k} = \overline{c_k}$ при всех k. Если это различие важно, будем писать $\mathcal{T}_n^{\mathbb{R}}$ или $\mathcal{T}_n^{\mathbb{C}}$, соответственно.

Напомним полезные свойства триг. полиномов. Неравенство Бернштейна:

$$||T'||_p \leqslant n||T||_p, \quad \forall T \in \mathcal{T}_n.$$
 (1)

Дискретизация Марцинкевича:

$$||T||_p \simeq \left(\frac{1}{3N} \sum_{k=1}^{3N} |T(\frac{2\pi k}{3N})|^p\right)^p.$$

Константу 3 можно заменить на $2 + \varepsilon$, $\varepsilon > 0$. Следствие:

$$||T||_p \ll N^{(1/q-1/p)_+} ||T||_q, \quad 1 \leqslant p, q \leqslant \infty.$$

Обратная теорема о приближении триг. полиномами. Обратные теоремы (в которых из аппроксимативных свойств функций выводятся их структурные свойства) восходят к С.Н. Бернштейну. Ключевым в их доказательстве является доказанное им неравенство (1). Мы приведём лишь один классический результат (А.Ф. Тиман, М.Ф. Тиман, С.Б. Стечкин).

Теорема 1. Пусть $f \in L_p(\mathbb{T})$, $1 \leqslant p \leqslant \infty$, $r \in \mathbb{N}$, тогда

$$\omega_r(f, \frac{1}{n})_p \leqslant C_r n^{-r} \sum_{k=1}^n k^{r-1} E_k(f)_p, \quad n = 1, 2, \dots$$

Доказательство. Через T_n обозначим многочлены наилучшего приближения для f. Можно считать, что $n=2^m$ и $T_0=0$. Рассмотрим следующую "телескопическую" сумму по лакунарной последовательности номеров:

$$f = (f - T_{2^m}) + (T_{2^m} - T_{2^{m-1}}) + \ldots + (T_1 - T_0).$$

Следовательно,

$$\omega_r(f,\delta)_p \leqslant \omega_r(f-T_{2^m},\delta)_p + \sum_{k=1}^{m-1} \omega_r(T_{2^{k+1}} - T_{2^k},\delta)_p + \omega_r(T_1 - T_0,\delta)_p.$$

Первое слагаемое оценим с помощью неравенства $\omega_r(g,\delta)_p \leqslant 2^r ||g||_p$. Для оценки общего слагаемого в сумме используем неравенство Бернштейна:

$$\omega_r(T_{2^{k+1}} - T_{2^k}, \delta)_p \leqslant \delta^r \| (T_{2^{k+1}} - T_{2^k})^{(r)} \|_p \leqslant \delta^r 2^{(k+1)r} \| T_{2^{k+1}} - T_{2^k} \|_p \leqslant \delta^r 2^{(k+1)r} (E_{2^{k+1}}(f)_p + E_{2^k}(f)_p).$$

Подставляя $\delta = 1/n$ и суммируя по k, получим нужное неравенство. \square

Из теоремы вытекает, например, что если $E_n(f)_{\infty} \leq Cn^{-\alpha}$, $\alpha \in (0,1)$, то f гёльдерова с показателем α . Другими словами, негладкость функции даёт препятствие к хорошему приближению.

Соответствующая "прямая теорема" это неравенство Джексона—Стечкина: $E_n(f)_p \leqslant C_r \omega_r(f,\frac{1}{n})_p$. Отметим также теорему Йохана:

$$\inf_{T \in \mathcal{T}_n} \|f - T\|_p + n^{-r} \|T^{(r)}\|_p \simeq \omega_r(f, \frac{1}{n})_p.$$

Проекторы. Рассмотрим частичные суммы ряда Фурье: $S_n(f,x) = \sum_{k=-n}^n \hat{f}(k)e^{ikx}$. Оператор $S_n \colon f \mapsto S_n(f)$ является проектором на пространство \mathcal{T}_n и является оператором свёртки: $S_n f = f * D_n$, где $D_n = \sum_{k=-n}^n e^{ikx}$ — ядро Дирихле. Норма S_n в пространстве $C(\mathbb{T})$ равна норме D_n в L_1 , следовательно, $||S_n|| \approx \log n$. Далее в этом разделе операторные нормы рассматриваются в $C(\mathbb{T})$.

Рассмотрим теперь произвольный спектр $\Lambda \subset \mathbb{Z}$ и соответствующее пространство $\mathcal{T}(\Lambda) = \{\sum_{k \in \Lambda} c_k e^{ikx}\}$. Зададимся вопросом: существует ли (для некоторого Λ) проектор $P \colon C(\mathbb{T}) \to \mathcal{T}(\Lambda)$ нормы $o(\log n)$?

Упражнение 1. Пусть $P: C(\mathbb{T}) \to \mathcal{T}(\Lambda)$ проектор, т.е. линейный оператор со свойством PT = T для $T \in \mathcal{T}(\Lambda)$. Тогда $\|P\| \geqslant \|S_{\Lambda}\|$, где $S_{\Lambda}f = \sum_{k \in \Lambda} \hat{f}(k)e^{ikx}$.

Ясно, что $||S_{\Lambda}|| = ||\sum_{k \in \Lambda} e^{ikx}||_1$. Как оценить норму этого триг. полинома снизу? Литлвуд предположил, что эта норма всегда не меньше $c \log n$. В начале 1980-х годов эту гипотезу доказали независимо С.В. Конягин и Макги, Пиньо, Смит. Для доказательства процитируем книгу DeVore, Lorentz, "Constructive approximation".

There are at most N^2 terms in the last sum. Thus, the integral does not exceed const N^2 , and we obtain (5.11) from (5.12).

§ 6. Lower Bounds

The main result of this section is the following fact:

Theorem 6.1. The projection of $C(\mathbb{T})$ onto the space Y spanned by N exponentials $e^{in_k t}$, $k = 1, \ldots, N$, where n_k are integers, has norm

$$(6.1) \geq C \log N$$

with a constant C, independent of the n_k .

From $\S 5$ we know that the Fourier projection onto Y has the smallest norm among all projections, and by Theorem 1.2, its norm is the integral (6.2) below. Therefore, Theorem 6.1 follows from

Theorem 6.2. For some absolute constant C > 0,

(6.2)
$$\int_{\mathbb{T}} \left| \sum_{k=1}^{N} e^{in_k t} \right| dt \ge C \log N.$$

It may appear intuitively obvious that the exponentials e^{ikt} , $k=0,\pm 1,\ldots$, if they are N in number, "are the best possible", and that they give rise to a projection of the smallest norm. However, as far as we know, this statement has not been proved.

The inequality (6.2) is known as the *Littlewood conjecture*. After many attempts to its proof, which have resulted in weaker statements, Theorem 6.2 has been established only in 1981 independently by McGehee, Pigno and B. Smith [1981] and Konjagin [1981]. Both proofs are of considerable subtlety. We follow the first paper, because it gives also an interesting intermediate result, Theorem 6.3.

For functions $f \in L_1(\mathbb{T})$ we denote by $\sum_{-\infty}^{+\infty} \widehat{f}(k)e^{ikt}$ their complex Fourier series; the *spectrum* of f is the set of k with $\widehat{f}(k) \neq 0$. Of particular importance are functions with a positive spectrum, for which $\widehat{f}(k) = 0$ for k < 0. They form the *Hardy class* $H_1(\mathbb{T})$. For $f \in H_1(\mathbb{T})$, the function $\sum_{-\infty}^{+\infty} \widehat{f}(k)z^k$ is analytic in |z| < 1, and has boundary values f(t) for $z = e^{it}$ for radial approach within the circle (see Duren [B-1970, Ch.1]). The subspace $H_\infty(\mathbb{T})$ consists of bounded functions on \mathbb{T} ; they are identical with boundary values of bounded analytic functions in |z| < 1. It follows from this that $h \in H_\infty(\mathbb{T})$ implies $\Phi(h) \in H_\infty(\mathbb{T})$, if Φ is an entire function and if $\Phi(h(t))$ is bounded.

Theorem 6.3 (McGehee, Pigno and Smith). If a function $f \in L_1(\mathbb{T})$ has a spectrum contained in $S = \{n_1 < n_2 < \cdots\}$, then

(6.3)
$$\sum \frac{|\widehat{f}(n_k)|}{k} \le 30 ||f||_1.$$

We begin the proof of Theorem 6.3 by writing the sequence S as $\bigcup_{j=0}^{\infty} S_j$, with subsequences S_j of length 4^j . Thus, $S_0 := \{n_1\}$ and S_j , $j \geq 1$, consist of the terms n_k for which $2+4+\cdots+4^{j-1} \leq k \leq 1+4+\cdots+4^j$. For $n_k \in S_j$,

(6.4)
$$3k \ge 3(2+4+\cdots+4^{j-1}) \ge 1+3\frac{4^{j}-1}{4-1}=4^{j}.$$

We define trigonometric polynomials T_j , j = 1, 2, ..., whose spectra are S_j by means of

(6.5)
$$|\widehat{T}_{j}(n)| = 4^{-j}, n \in S_{j}, \quad \widehat{T}_{j}(n)\widehat{f}(n) \geq 0, n = 0, \pm 1, \dots$$

Then obviously

$$||T_j||_2 = 2^{-j}, \qquad ||T_j||_{\infty} \le 1.$$

We need the Fourier series of the $|T_i|$

$$|T_j(t)| = \sum_{-\infty}^{+\infty} c_k^{(j)} e^{ikt},$$

and a general remark. If a function $g \in L_2$ with the Fourier series $\sum_{-\infty}^{+\infty} c_k e^{ikt}$ has real values, then

(6.7)
$$g(t) = Re h(t), \quad h(t) = c_0 + 2 \sum_{-\infty}^{-1} c_k e^{ikt}.$$

Indeed, in this case we have $\overline{c}_k = c_{-k}$, $k = 0, \pm 1, \ldots$

Let h_j , j = 1, 2, ..., be functions derived in this way from $|T_j|$. They have the following properties:

Also, $Re h_j(t) \ge 0$, and therefore e^{-h_j} is bounded: $|e^{-h_j}| \le e^{-|T_j|}$. By the remark preceding Theorem 6.3, the spectrum of e^{-h_j} is negative.

The idea of the proof is to replace the T_j by new functions F_m which are bounded like the T_j and whose Fourier coefficients $\widehat{F}_m(n)$ behave like those of $\widehat{T}_j(n)$ for many values of j. We define inductively

(6.9)
$$F_0 = \frac{1}{5}T_0, \quad F_{j+1} = F_j e^{-h_{j+1}/4} + \frac{1}{5}T_j, \qquad j = 0, 1, \dots$$

Lemma 6.4. The functions F_i have the properties

$$(6.10)$$
 $||F_1||_{\infty} \leq 1$

(6.11)
$$\widehat{F}_m(n) = \frac{1}{5}(1+\delta)\widehat{T}_j(n), \quad n \in S_j, \quad j = 0, \ldots, m$$

where δ (which depends on n) satisfies $|\delta| \leq \frac{1}{2}$.

Proof. We shall use the inequality

(6.12)
$$e^{-\frac{x}{4}} + \frac{x}{5} \le 1, \quad 0 \le x \le 1.$$

Indeed, the function $\phi(x) = e^{-x/4} + \frac{x}{5} - 1$ has value 0 at x = 0, ϕ' changes sign on [0,1], first it is < 0, then > 0. Hence it is sufficient to check that $\phi(1) < 0$, that is, that $e^{-1/4} < \frac{4}{5}$ or $e > (\frac{5}{4})^4$.

Therefore, by induction,

$$|F_{j+1}(t)| \le e^{-\frac{1}{4}Re\,h_{j+1}} + \frac{1}{5}|T_{j+1}| \le e^{-\frac{1}{4}|T_{j+1}(t)|} + \frac{1}{5}|T_{j+1}(t)| \le 1.$$

To establish (6.11), we show that

(6.13)
$$|\widehat{F}_m(n) - \frac{1}{5}\widehat{T}_j(n)| \leq \frac{1}{10}\widehat{T}_j(n), \quad n \in S_j, \quad j = 0, \ldots, m.$$

From the definition (6.9),

(6.14)
$$F_m = \frac{1}{5} \sum_{l=0}^{m-1} T_l e^{-\frac{1}{4}(h_{l+1} + \dots + h_m)} + \frac{1}{5} T_m.$$

The Fourier series of F_m can be obtained by multiplying out and adding the Fourier series of the different functions in the sum (6.14). For l < j, the spectrum of T_l is to the left of S_j , and the spectrum of $e^{-\frac{1}{4}(h_{l+1}+\cdots+h_m)}$ is negative. Hence the spectrum of T_l $e^{-\frac{1}{4}(h_{l+1}+\cdots+h_m)}$ is to the left of S_j . These terms can be omitted from the sum (6.14), without changing $\widehat{F}_m(n)$. In particular, this shows that $\widehat{F}_m(n) = \frac{1}{5}\widehat{T}_m(n)$, $n \in S_m$, so we can further restrict our attention to the case j < m in the remainder of the proof. We can also add on the right in (6.14) any linear combination of T_k , $k \neq j$. Hence $\widehat{F}_m(n) = \widehat{G}(n)$, $n \in S_j$, $0 \leq j \leq m$, for the function

$$G = \frac{1}{5}T_j + \frac{1}{5}\sum_{l=1}^{m-1} T_l \left(e^{-\frac{1}{4}(h_{l+1} + \dots + h_m)} - 1\right).$$

By the Cauchy-Schwarz inequality,

(6.15)
$$\left|\widehat{F}_m(n) - \frac{1}{5}\widehat{T}_j(n)\right| \le \frac{1}{5} \sum_{l=j}^{m-1} \|T_l\|_2 \|e^{-\frac{1}{4}(h_{l+1} + \dots + h_m)} - 1\|_2.$$

We need here the inequality

which is valid for a function $h \in L_{\infty}(\mathbb{T})$ with $Re h \geq 0$. This can be seen from

$$|1 - e^{-z}| = |\int_0^z e^{-t} dt| \le |z|, \qquad Re \, z \ge 0.$$

Therefore, (6.15), (6.6) and (6.8) imply that for $n \in S_j$, $0 \le j < m$,

$$\left| \widehat{F}_m(n) - \frac{1}{5} \widehat{T}_j(n) \right| \le \frac{1}{5} \sum_{l=j}^{m-1} 2^{-l} \frac{3}{8} \left(2^{-l-1} + \dots + 2^{-m} \right)$$

$$\le \frac{3}{40} \sum_{l=j}^{\infty} 2^{-l} 2^{-l} = \frac{1}{10} 4^{-j} = \frac{1}{10} |\widehat{T}_j(n)|,$$

and this implies (6.11).

We can now complete the proof of Theorem 6.3. Let m be fixed, let $n = n_k \in S_j$, $0 \le j \le m$. Since $\widehat{T}_j(n)\widehat{f}(n) \ge 0$, for all n

$$\widehat{F}_{m}(n)\widehat{f}(n) = \frac{1}{5}(1+\delta)\widehat{T}_{j}(n)\widehat{f}(n) = \frac{1}{5}(1+\delta)4^{-j}|\widehat{f}(n)|,$$

$$Re\{\widehat{F}_{m}(n)\widehat{f}(n)\} \ge \frac{1}{10}4^{-j}|\widehat{f}(n)|.$$

From (6.4), $4^j < 3k$, therefore with $B_m = \bigcup_{j \leq m} S_j$,

$$Re \sum_{n \in B_m} \widehat{F}_m(n)\widehat{f}(n) \ge \frac{1}{30} \sum_{n_k \in B_m} \frac{|\widehat{f}(n_k)|}{k}.$$

On the other hand, since $||F_m||_{\infty} \leq 1$,

$$Re \sum_{n \in B_m} \widehat{F}_m(n)\widehat{f}(n) = Re \int_T F_m f \, dt \le ||f||_1.$$

Letting $n \to \infty$, we arrive at (6.3).

§ 7. Projections in Arbitrary Banach Spaces

For a real Banach space X and any of its n-dimensional subspaces Y, we are interested in projections of X onto Y whose norm is small. It is fairly easy to show the existence of a projection of norm $\leq n$. But this bound is not the best possible. The striking result of Kadec and Snobar is that there is always a projection of norm $\leq \sqrt{n}$ (see Theorem 7.6 below). If X is a Hilbert space, there is a projection of norm 1 – the orthogonal projection of X onto Y. The spaces L_p , $1 \leq p \leq +\infty$, take an intermediate position, with projections of norm $n^{\lfloor (1/2)-(1/p) \rfloor}$ (see Theorem 7.5). This is a result of Lewis [1978], but we follow the basic ideas of the proof of Lorentz and Tomczak-Jaegermann [1984].