Introduction to Machine Learning

May 16, 2019

Concept

The course is organized as a digital lecture, which should be as self-contained and enable self-study as much as possible:

- Slides with lecture videos
- Interactive tutorials
- Complemented by a week-long inverted-classroom block course

Concept - Lecture Videos

Concept - Interactive Tutorials (Quiz)

Concept - Interactive Tutorials (Examples)

Introduction to Machine Learning -Day 2

Introduction to Classification

Logistic Regression

Approaches to Classification

The Two Cultures of Statistical

Stat Over

(P) Training a logistic regression with non-linear decision boundaries

The next demonstration shows how to include the features <u>Age</u> and <u>Fare</u> as polynomials and the effect on the decision boundary. As mentioned in the video, it is possible to transform a linear classifier into a non-linear classifier by just mapping features into a higher dimensional feature space (feature map):

Check it out for yourself:

compstat-lmu.github.io/lecture_i2ml

Technologies:

- Videos: very basic free screen-capture programs (Kazaam, vokoscreen)
- Tutorials/Website: (no HTML/CSS skills required)
 Rmarkdown + shiny + learnr + testwhat
- Webhosting:
 - Videos: YouTube (free)
 - Website: Github (free)
 - Coding Exercise: shinyapps.io (free for limited traffic)