Training quantum circuit to predict pixel values

The Quompletionists

Xanadu, QHACK

November 26, 2019

Image completion and pixel value prediction

Image completion:

Our approach: QML to predict pixel value based on neighbouring pixels.

The "ansatzes" for the quantum circuit

• Data-encoding based on *data-reuploading*¹ scheme.

	0.87	0.63	0.34	
				$\mapsto x = [0.87, 0.64, 0.34, 0.22, 0.77, 0.45, 0.21, 0.58]$
ĺ	0.45	0.21	?	

• Variational circuit ansatz inspired by QAOA circuit.

¹arxiv.org/abs/1907.02085

The training and optimization

Bitstrings $j \in \{0,1\}^n$ as color-values (e.g., grayscale $j = \sum_{k=1}^n 2^{-k} j_k$).

- QNode outputs "expected" color-values of state produced by PQC.
- Minimize squared difference between the above expectation value and the actual color-value of pixel.
- To predict pixel-value, one just measures outcome of trained PQC.

