Inducing Phonological Rules: Perspectives from Bayesian Program Learning

Kevin Ellis and Timothy O'Donnell and Joshua B. Tenenbaum and Armando Solar-Lezama

MIT

2017

xau man kwaj çin

xau xauxaudəman manmandəkwaj kwajkwajdəçin çinçində

xau xauxaudə man manmandə kwaj kwajkwajdə çin çinçində lei

xau xauxaudə man manmandə kwaj kwajkwajdə çin çinçində lej lejlejdə

xau xauxaudə man manmanda kwaj kwajkwajdə çin çinçində lei leileidə

$$A \rightarrow AA + de$$

dom

kot

lut

vus

wuk

bur

dom domi

kot koti

lut lodi

vus vozi

wuk wugi

bur bori

dom domi kot koti lut lodi vus vozi wuk wugi bur bori rogi

dom domi kot koti lut lodi vus vozi wuk wugi bur bori ruk rogi

```
dom domi
kot koti
lut lodi
                   A \rightarrow A + /i/
                   o \rightarrow u / [-nasal + voice] #
vus vozi
                   [-sonorant]→[-voice] / _ #
wuk wugi
bur bori
ruk rogi
```

ABA (same/different/same)

wofewo lovilo fimufi

ABA (same/different/same)

wofewo lovilo fimufi

$$arnothing
ightarrow \sigma_{i} \ / \ \sigma_{i} \sigma_{-}$$

 $/\mathsf{wofe}/ \to [\mathsf{wofewo}]$

Motivation

Problem: Understand the principles that underlie linguistic generalization.

Approach: Triangulate these inductive principles with a wide variety of problems/data sets

A (reverse) engineering problem

How is it possible to learn a large number of diverse natural and artificial grammars from relatively small data sets?

Figure 9: Learning to manipulate lists. Trained on lists of length ≤ 3 ; tested on lists of length ≤ 14 .

Talk roadmap

- Bayesian program learning (BPL) for phonology
- Artificial grammar learning: using BPL as a tool for studying simplicity trade-offs
- Phonological rules in natural language: BPL as a tool for explaining a breadth of phenomena
- Simplicity metrics and universal grammar
- A problem with minimum description length as a simplicity metric

Bayesian Program Learning (BPL) for phonology

Probable ⇔low description length ⇔simple

 $\mathsf{descriptionLength}(\mathit{randomEvent}) = -\log \mathbb{P}[\mathit{randomEvent}]$

Probable ⇔low description length ⇔simple

 $\mathsf{descriptionLength}(\mathit{randomEvent}) = -\log \mathbb{P}[\mathit{randomEvent}]$

```
\label{eq:descriptionLength} \begin{split} \mathsf{descriptionLength}(\mathsf{model};\mathsf{data}) &= \mathsf{descriptionLength}(\mathsf{model}) \\ &+ \sum_{x \in \mathsf{data}} \mathsf{descriptionLength}(x;\mathsf{model}) \end{split}
```

Probable ⇔low description length ⇔simple

 $\mathsf{descriptionLength}(\mathit{randomEvent}) = -\log \mathbb{P}[\mathit{randomEvent}]$

$$\label{eq:descriptionLength} \begin{split} \operatorname{descriptionLength}(\operatorname{model};\operatorname{data}) &= \operatorname{descriptionLength}(\operatorname{model}) \\ &+ \sum_{x \in \operatorname{data}} \operatorname{descriptionLength}(x;\operatorname{model}) \end{split}$$

 $descriptionLength(model) \sim program size$

Probable ⇔low description length ⇔simple

 $\mathsf{descriptionLength}(\mathit{randomEvent}) = -\log \mathbb{P}[\mathit{randomEvent}]$

$$\label{eq:descriptionLength} \begin{split} \operatorname{descriptionLength}(\operatorname{model};\operatorname{data}) &= \operatorname{descriptionLength}(\operatorname{model}) \\ &+ \sum_{x \in \operatorname{data}} \operatorname{descriptionLength}(x;\operatorname{model}) \end{split}$$

 $\mathsf{descriptionLength}(\mathsf{model}) \sim \mathsf{program} \ \mathsf{size}$

descriptionLength(x; model) = size of x's UR in model descriptionLength([pofepo]; ABA) = len(/pofe/) = 4 (see Richard Futrell's talk)

Probable ⇔low description length ⇔simple

$$\mathsf{descriptionLength}(\mathit{randomEvent}) = -\log \mathbb{P}[\mathit{randomEvent}]$$

$$\label{eq:descriptionLength} \begin{split} \operatorname{descriptionLength}(\operatorname{model};\operatorname{data}) &= \operatorname{descriptionLength}(\operatorname{model}) \\ &+ \sum_{x \in \operatorname{data}} \operatorname{descriptionLength}(x;\operatorname{model}) \end{split}$$

 $\mathsf{descriptionLength}(\mathsf{model}) \sim \mathsf{program} \ \mathsf{size}$

descriptionLength(
$$x$$
; model) = size of x 's UR in model descriptionLength([pofepo]; ABA) = len(/pofe/) = 4 (see Richard Futrell's talk)

Bayesian Program Learning framed as compression Old idea from Solomonoff

The program space: SPE-style context-sensitive rewrites

Grammar rule	English description
$\mathcal{P} o \mathcal{R} \circ \mathcal{R} \circ \cdots \circ \mathcal{R}$	Phonology is compositions of rewrites
$\mathcal{R} o \mathcal{F} \longrightarrow \mathcal{C}/\mathcal{T}\mathcal{T}$	Rewrite focus to change between triggers
$\mathcal{T} o \# \mathcal{T}' \mathcal{T}'$	Triggers optionally match end of string, #
$\mathcal{T}' ightarrow \epsilon \mathcal{XT}' \mathcal{X}^* \mathcal{T}'$	Triggers are sequences of matrices ${\mathcal X}$
$\mathcal{X} ightarrow a t s \cdots$	Matrices can be constant phonemes
$\mathcal{X} ightarrow [\pm \mathcal{E} \pm \mathcal{E} \cdots \pm \mathcal{E}]$	Matrices check features ${\mathcal E}$
$\mathcal{E} o voice nasal \cdots$	Standard phonological features
$\mathcal{F} o \mathcal{X}$	Focus can be a feature matrix
$\mathcal{F} o \mathbb{Z}$	Focus can be one of the triggers (copies it)
$\mathcal{F} o arnothing$	Insertion rule
$\mathcal{C} o \mathcal{X}$	Structural change can be a feature matrix
$\mathcal{C} o arnothing$	Deletion rule
$\mathcal{C} o \mathbb{Z}$	Structural change constrained to match a triggering feature matrix

The programs

The programs

Morphology: Simple concatenative rules combining underlying forms of morphemes based on morphological function.

SING:
$$\# + rog + \#$$

PLURAL: $\# + rog + i + \#$

Phonology: Ordered rules that transform resulting phone sequences.

$$o\rightarrow u/_{-}$$
 [-nasal +voice]# obstruent \rightarrow [-voice] /_#

The lexicon

The lexicon

Inventory of stems ("underlying representations")

```
Polish:AAB:rogpofeklubwugadvon...
```

Shorter stem \Longrightarrow Better compression \Longleftrightarrow Higher likelihood of data

But how do you find any good programs in the first place?

The search problem

program synthesis techniques from Armando Solar-Lezama

Figure 2: Synthesizing a program via sketching and constraint solving. Typewriter font refers to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem. The variable 1 is the program input.

Sketch: generator int rec(int x, int y, int z){ int t = ??: $if(t == 0){return x:}$ if(t == 1){return v:} $if(t == 2){return z;}$ int a = rec(x.v.z): int b = rec(x.v.z): **if**(t == 3){**return** a * b;} if(t == 4){return a + b:} if(t == 5){return a - b:} harness void sketch(int x, int v, int z){ assert rec(x,v,z) == (x + x) * (v - z);

The search problem

program synthesis techniques from Armando Solar-Lezama

Figure 2: Synthesizing a program via sketching and constraint solving. Typewriter font refers to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem. The variable 1 is the program input.

```
Sketch:
generator int rec(int x, int y, int z){
   int t = ??;
   if(t == 0){return x;}
   if(t == 1){return y;}
   if(t == 2){return z;}

   int a = rec(x,y,z);
   int b = rec(x,y,z);
   if(t == 3){return a * b;}
   if(t == 4){return a + b;}
   if(t == 5){return a - b;}
}

harness void sketch( int x, int y, int z ){
   assert rec(x,y,z) == (x + x) * (y - z);}
```

- ✓ Guarantee: Exact optimization
- X No guarantee: runtime

The search problem

program synthesis techniques from Armando Solar-Lezama

Figure 2: Synthesizing a program via sketching and constraint solving. Typewriter font refers to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem. The variable 1 is the program input.

```
Sketch:
generator int rec(int x, int y, int z){
   int t = ??;
   if(t == 0){return x;}
   if(t == 1){return y;}
   if(t == 2){return z;}

   int a = rec(x,y,z);
   int b = rec(x,y,z);
   if(t == 3){return a * b;}
   if(t == 4){return a + b;}
   if(t == 5){return a - b;}
}
harness void sketch( int x, int y, int z ){
   assert rec(x,y,z) == (x + x) * (y - z);}
}
```

- ✓ Guarantee: Exact optimization
- X No guarantee: runtime
- 2 rules, 1 inflection:
- $\geq (10^{18} \text{rules})^2 \times (10^8 \text{morphologies}) = 10^{42} \text{models}$

Artificial Grammar Learning

Widely studied.

Fundamental hypothesis: AGL engages some shared resources with first language acquisition

- ► ABA (same/different/same): wofewo, pikæpi, gugagu
- ► ABB (different/same/same): wowofe, pipikæ, guguga
- Pig Latin
- **.** . . .

Artificial Grammar Learning

Grammar	Example input to learner	MAP grammar	Natural language analogues
ABA (same/different/same) Marcus et al. 1999.	wofewo lovilo fimufi	$arnothing ightarrow \sigma_i$ / #_ $\sigma\sigma_i$	Reduplication (eg, Tagalog)
ABB (different/same/same) Marcus et al. 1999.	wofefe lovivi fimumu	$arnothing ightarrow \sigma_i$ / σ_i _#	Reduplication (eg, Tagalog)
ABx (different/different/constant)	wofeka lovika fimuka	$\varnothing \to x$ / _#	concatenative morphology
AAx (same/same/constant) Gerken 2006.	wowoka loloka fifika	$\varnothing \to \sigma_i$ / #_ σ_i $\varnothing \to x$ / _#	reduplication concatenative morphology
AxA (same/constant/same) Gerken 2006.	wokawo lokalo fikafi	$\varnothing \rightarrow a / \# _{-}$ $\varnothing \rightarrow k / \# _{-}$ $\varnothing \rightarrow \sigma _{i} / \# _{-} \sigma \sigma _{i}$	Infixing Reduplication
Pig Latin	pıg→ıgpe latm→atıle æsk→æske	$\varnothing \to C_i \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Marcus 1999: Babies learn these grammars Gerken 2006: Babies learn these grammars *from only a few* examples

Optimal simplicity front for learning ABB without syllables, 3 examples

Optimal simplicity front for learning ABB without syllables, 6 examples

Learning natural language phonology

The vision: Induce programs describing diverse phonological systems from many languages. Imagine getting data from field linguists

Ours is not the first linguistic rule learner: Ezer Rasin & Roni Katzir (this workshop); Albright & Hayes 2003; Yip & Sussman 1996; Constantine Lignos & Charles Yang 2010; Doyle & Bicknell & Levy 2014; Colin Wilson 2006

What is a good stepping stone toward this vision?

Language	Exa	mple dat	a	Phonology	Morphology	Phenomena
Makonde	amánga akánga avánga amánga utánga avánga tavánga ungánga patánga	amíle akíle avíle amíle utíle avíle tavíle tavíle uŋgíle patíle	áma áka óva óma úta éva táva úŋga póta	[]→[-stress] / _ []* [+stress] [+middle -stress]→a/ _ []	stem+áŋga stem+íle stem+a	Stress patterns Neutralizing rule

more information - www.cambridge.org/9780521826693

Lan	guage	Example d	ata :	Phonology		Morphology	Phenomena
		amáŋga amíle akáŋga akíle					
	Language	e	Exar	nple data		Phonology	Morphology
Ma	Kerewe	kubala kugaya kubála kutúbála kutúgáya kutúbála	kubalana kugayana kubálána kukibála kukigáya kukibála	kubalila kugayila kubálila kutúbálila kutúgáyila kutúbálila	kubalilana kugayilana kubálílana kukítúbalila kukítúgayila kukítúbalila	[]→[-H]/[+H] [] _ []→[+H]/[+H] [] _ []	ku+stem+a ku+stem+ila ku+stem+ilana kutú+stem+a kutú+stem+a kutú+stem+ila kukítú+stem+ila
- 11	TUOU	ucing					
ſ	Pho	nolog	gy				
		David Odden					

more information - www.cambridge.org/9780521826693

Exa	ample dat	a	Phonology		Morphology	Phenomena
amáŋga akáŋga	amíle akile	áma áka				
е		Exa	mple data	Phonology		Morphology
kul	bala	kubalana	kubalila	kubalilana		ku+stem+a ku+stem+ana
	Exa	mple data		Phonology	Morphology	Phenomena
a:g ^y ö:r ku:t re:s rab vi:z fal test	a:g ^v ban ö:rben ku:dban re:zben rabban vi:zben falban tezdben	a:k ^y to:l ö:rtö:l ku:tto:l re:stö:l rapto:l vi:stö:l falto:l testtö:l	a:g ^y nak örrnek ku:tnak re:snek rabnak vi:znek falnak testnek	<pre>V >= [+mid +tense +front]/ [+front] []* _ [] >= [+voice]/ _ [+bilabial] [-sonorant] >= [-voice]/ _ [-voice]</pre>	stem stem+ban stem+to:l stem+nak	Vowel harmony Voicing assimilation Rule ordering
David O	dden	J				
	amánga akánga e kui a:g ^y ö:r ku:t re:s rab vi:z fal test	amánga amíle akánga akíle e kubala Exa: a:gy a:gy ban ö:r ö:rben ku:t ku:dban re:s re:zben rab rabban vi:z vi:zben fal falban	akánga akíle áka e Exa kubala kubalana Example data Example data ö:r ö:rben örtőil ku:t ku:dban kutto:l res rezben restőil rab rabban rapto:l viz vizzben vistőil fal falban falto:l test tezdben testtő:l	amánga amíle áma akánga akíle áka e Example data Example data	amánga akánga amíle áma akánga amíle áka e Example data Phonology kubala kubalana kubalila kubalilana Example data Phonology aig³ aig³ ban aik³ toil örrnek kör öirben örrtéil örrnek kuit kuidban kuittoil kuitnak ress reziben restőil resnek rab rabban raptoil rabnak viiz vizben vistőil viznek fal falban faltoil falnak test tezdben testtőil testnek V→[+mid +tense +front]/[-+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+	amánga akánga amíle áka áma áka amánga ákánga amíle áka amána áka e Example data Phonology kubala kubalila kubalilana Example data Phonology Morphology aig³ aig³ ban aik³ toil örröcli örriek kut kutdban kuttoil kutthak ress reizben restőil resnek V→[+mid+tense +front]/ stem kut: kutdban kuttoil kutthak res raban raban raban raban raban raban raban raban raban faltoil falnak test tezdben faltoil falnak test tezdben testföil testnek []→[+voice] / stem+toil

What it can do right now

Kikurai: fricatives alternate with stops after nasals

Farsi: Trills alternate with flaps Amharic: alternation between a & &

Gen: I/r alternation

Greek: Velar stops alternate with palletized versions before front vowels

Osage: coronal stops become dentals before central vowels

Kishambaa: voiced/unvoiced nasals alternate

Thai: stops are unreleased word finally Palauan: a word initial neutralizing rule

Quechua: Velar becomes uvular when followed by uvular (spreading)

Lhasa Tibetan: no contrast between yelar/uvular, or voiced/voiceless stops or fricatives

Axininca Campa: stops become glides

Kikuvu: infinitive prefix can surface as either k or v

Korean: vowel harmony, aspiration only surfaces in certain contexts

Hungarian: vowel harmony and voicing assimilation

Kikuria: vowel harmony

Farsi: a deletion rule explains singular/plural

Tibetan: initial consonant cluster reduction explains counting system

Makonde: stress patterns; unstressed vowels are neutralized

North Saami: 3 neutralization rules explain nominative sg essive

Samoan: 2 deletion rules that explain words that sound the same in one inflection being different in another

Russian: devoicing of word final obstruent

English: verbal inflections (voicing assimilation, epenthesis)

Finnish: nominative/partive explained by vowel raising and vowel harmony

Kerewe: Interacting tone rules

Polish: vowel alternations interacting with devoicing of word final obstruent in singular/plural

Ancient Greek: voicing assimilation, deaspiration, deletion rule. Order matters.

Serbo-Croatian: predictable stress, devoicing, neutralizing, epenthesis

Artificial grammar learning: Pig Latin, ABB, ABA, AxA, ABx, AAx, Chinese duplication

What it can do right now

Kikurai: fricatives alternate with stops after nasals

Farsi: Trills alternate with flaps Amharic: alternation between a & &

Gen: I/r alternation

Greek: Velar stops alternate with palletized versions before front vowels

Kishambaa: voiced/unvoiced nasals alternate

Thai: stops are unreleased word finally

Palauan: a word initial neutralizing rule
Quechua: Velar becomes uvular when followed by uvular (spreading textbook

Lhasa Tibetan: no contrast between velar/uvular, or voiced/voiceless stops or fricatives

Axininca Campa: stops become glides

Kikuvu: infinitive prefix can surface as either k or v

Korean: vowel harmony, aspiration only surfaces in certain contexts

Hungarian: vowel harmony and voicing assimilation

Kikuria: vowel harmony

Farsi: a deletion rule explains singular/plural

Tibetan: initial consonant cluster reduction explains counting system

Makonde: stress patterns; unstressed vowels are neutralized

North Saami: 3 neutralization rules explain nominative sg essive

Samoan: 2 deletion rules that explain words that sound the same in one inflection being different in another

Russian: devoicing of word final obstruent

English: verbal inflections (voicing assimilation, epenthesis)

Finnish: nominative/partive explained by vowel raising and vowel harmony

Kerewe: Interacting tone rules

Polish: vowel alternations interacting with devoicing of word final obstruent in singular/plural

Ancient Greek: voicing assimilation, deaspiration, deletion rule. Order matters.

Serbo-Croatian: predictable stress, devoicing, neutralizing, epenthesis

Artificial grammar learning: Pig Latin, ABB, ABA, AxA, ABx, AAx, Chinese duplication

Handles 60%

Polish: Final devoicing + Rule ordering

singular	plural
dom	domi
kot	koti
lut	lodi
vus	vozi
wuk	wugi
ruk	rogi
bur	bori
vsum	vsumi

Polish: Final devoicing + Rule ordering

singular	plural
dom	domi
kot	koti
lut	lodi
vus	vozi
wuk	wugi
ruk	rogi
bur	bori
vsum	vsumi

```
o\rightarrow u/_{-} [-nasal +voice]#
[-sonorant]\rightarrow[-voice] / _ #
```

singular: stem plural: stem+/i/

TOOLKIT: Scaling program synthesis to learn large grammars

Exercises

1 Serbo-Croatian

These data from Serbo-Croatian have been simplified in two ways, to make the problem more manageable. Vowel length is omitted, and some stresses are omitted. The language has both underlying stresses whose position cannot be predicted – these are not marked in the transcriptions – and a predictable 'mobile' stress which is assigned by rule – these are the stresses indicated here. Your analysis should account for how stress is assigned in those words marked with a rule-governed stress; you should not try to write a rule that predicts whether a word has a stress assigned by rule versus an underlying stress. Ignore the stress of words with no stress mark (other parts of the phonology of such words must be accounted for). Past-tense verbs all have the same general past-tense involves the same suffices as are used to mark gender in adjectives.

Adjectives				
Masc	Fem	Neut	Pl	
mlád	mladá	mladó	mladí	'young'
túp	tupá	tupó	tupí	'blunt'
blág	blagá	blagó	blagí	'mild'
grúb	grubá	grubó	grubí	'coarse'
béo	belá	beló	belí	'white'
veseo	vesela	veselo	veseli	'gay'
debéo	debelá	debeló	debelí	'fat'
mío	milá	miló	milí	'dear'
zelén	zelená	zelenó	zelení	'green'
kradén	kradená	kradenó	kradení	'stolen'
dalék	daleká	dalekó	dalekí	'far'
visók	visoká	visokó	visokí	'high'
dubók	duboká	dubokó	dubokí	'deep'

križan	križana	križano	križani	'cross'
sunčan	sunčana	sunčano	sunčani	'sunny'
svečan	svečana	svečano	svečani	'formal'
bogat	bogata	bogato	bogati	'rich'
rapav	rapava	rapavo	rapavi	'rough'
yásan	yasná	yasnó	yasní	'clear'
vážan	važná	važnó	važní	'important
sítan	sitná	sitnó	sitní	'tiny'
ledan	ledna	ledno	ledni	'frozen'
tának	tanká	tankó	tankí	'slim'
krátak	kratká	kratkó	kratkí	'short'
blízak	bliská	bliskó	bliskí	'close'
úzak	uská	uskó	uskí	'narrow'
dóbar	dobrá	dobró	dobrí	'kind'
óštar	oštrá	oštró	oštrí	'sharp'
bodar	bodra	bodro	bodri	'alert'
ustao	ustala	ustalo	ustali	'tired'
múkao	muklá	mukló	muklí	'hoarse'
óbao	oblá	obló	oblí	'plump'
pódao	podlá	podló	podlí	'base'
Verbs				
	Mass past	Form part	Nort part	
<i>1 sg pres</i> tepém	Masc past tépao	Fem past teplá	<i>Neut past</i> tepló	'wander'
skubém	skúbao	skublá	skubló	'tear'
tresém	trésao	treslá	tresló	'shake'
vezém	vézao	vezlá	vezló	'lead'
vezeni				

TOOLKIT: Scaling program synthesis to learn large grammars

Investigating the inductive bias over grammars

Motivation: Counting in Tibetan

7 Tibetan

Numbers between 11 and 19 are formed by placing the appropriate digit after the number 10, and multiples of 10 are formed by placing the appropriate multiplier before the number 10. What are the underlying forms of the basic numerals, and what phonological rule is involved in accounting for these data?

jи	'10'	jig	'1'	jugjig	'11'
ši	'4'	jubši	'14'	šibju	'40'
gu	'9'	jurgu	'19'	gubju	'90'
ŋa	'5'	juŋa	'15'	ŋabju	'50'

Motivation: Counting in Tibetan

Number	Pronunciation
1	j̇̃ig
4	ši
10	ju
11	j̇́u+gj̇̃ig (10+1)
40	ju+gjig (10+1) ši+bju (4+10)

Motivation: Counting in Tibetan

Number	Pronunciation
1	j̇̃ig
4	ši
10	ju
11	j̇́u+gj̇̃ig (10+1)
40	ju+gjig (10+1) ši+bju (4+10)

Explanation:

j̇̃ig ("1") is really gj̇̃ig j̇̃u ("10") is really bj̇̃u

Program:

 $C \rightarrow \varnothing / \# \ _ C$

(Delete initial cluster of consonants)

Counting in Tibetan

Number	Pronunciation
1	j̇̃ig
4	ši
10	ju
11	ju+gjig (10+1)
40	ju+gjig (10+1) ši+bju (4+10)

Explanation:

j̇̃ig ("1") is really gj̇̃ig j̇̃u ("10") is really bj̇̃u

Program:

 $[-nasal] \rightarrow \varnothing/\#_{-}$

Delete initial nonnasal???

Problem:

 $Probable\ grammar\ \neq\ grammars\ children/linguists\ prefer$

Problem:

Probable grammar \neq grammars children/linguists prefer

Solution:

Get a better inductive bias (a better universal grammar)

Learning what rules look like

Learning a (fragment) grammar over grammars

```
Fragment grammars: O'Donnell 2011
 FEATUREMATRIX → [-voice]
 FEATUREMATRIX \rightarrow [-sonorant]
 FEATUREMATRIX → [+voice]
 FEATUREMATRIX \rightarrow [+tense]
 FEATUREMATRIX \rightarrow [+highTone]
 FEATUREMATRIX \rightarrow [+middle]
 TRIGGER \rightarrow
                        [ +sibilant ]
 TRIGGER \rightarrow
                             [][+highTone]
 \mathsf{TRIGGER} \to
                             [ +stop +voice ]
 TRIGGER \rightarrow
                             [ -low ]
 \mathsf{TRIGGFR} \rightarrow
                             []* FEATUREMATRIX
 RULE \rightarrow
                             [ -vowel ] \rightarrow \varnothing / TRIGGER _ TRIGGER
 RULE \rightarrow
                             [ +low ] \rightarrow CONSTANT / [ ]* FEATUREMATRIX _
 RULE \rightarrow
                             ] \rightarrow [+voice] / _TRIGGER
                             CONSTANT \rightarrow CONSTANT / []_TRIGGER
 RULE \rightarrow
 RULE \rightarrow
                             [\ ] \rightarrow [\ -highTone\ ]\ /\ TRIGGER\ _\ TRIGGER
 RULE \rightarrow
                             [-sonorant] \rightarrow [-voice] / _{-} #
 RULE \rightarrow
                             [] \rightarrow FC / TRIGGER _ [] FEATUREMATRIX
```

Learning a (fragment) grammar over grammars

```
Fragment grammars: O'Donnell 2011
 FEATUREMATRIX → [-voice]
 FEATUREMATRIX \rightarrow [-sonorant]
 FEATUREMATRIX → [+voice]
 FEATUREMATRIX \rightarrow [+tense]
 FEATUREMATRIX \rightarrow [+highTone]
 FEATUREMATRIX \rightarrow [+middle]
 TRIGGER \rightarrow
                             [ +sibilant ]
 TRIGGER \rightarrow
                             [][+highTone]
 \mathsf{TRIGGER} \to
                             [ +stop +voice ]
 TRIGGER \rightarrow
                             [ -low ]
 \mathsf{TRIGGFR} \rightarrow
                             []* FEATUREMATRIX
 RULE \rightarrow
                              [ -vowel ] 
ightarrow \varnothing / TRIGGER _{-} TRIGGER
 RULE \rightarrow
                              [ +low ] \rightarrow CONSTANT / [ ]* FEATUREMATRIX _
 RULE \rightarrow
                             ] \rightarrow [+voice] / _TRIGGER
                             CONSTANT \rightarrow CONSTANT / []_TRIGGER
 RULE \rightarrow
 RULE \rightarrow
                             [\ ] \rightarrow [\ -highTone\ ]\ /\ TRIGGER\ _\ TRIGGER
 RULE \rightarrow
                             [-sonorant] \rightarrow [-voice] / _{-} #
 RULE \rightarrow
                             [] \rightarrow FC / TRIGGER _ [] FEATUREMATRIX
```

Learning a (fragment) grammar over grammars

```
Fragment grammars: O'Donnell 2011
 FEATUREMATRIX → [-voice]
 FEATUREMATRIX \rightarrow [-sonorant]
 FEATUREM
               `_``ln light of this UG, the
 FEATUREM
                   system revises its rule for
 FEATUREM
                   Tibetan to match the good
 FEATUREM
                   linguistics students judgment:
 TRIGGER -
 TRIGGER - [-vowel] \rightarrow \varnothing / # _ [-vowel]
 TRIGGER \rightarrow
                             [ +stop +voice ]
 TRIGGER \rightarrow
                             [ -low ]
 \mathsf{TRIGGFR} \rightarrow
                             []* FEATUREMATRIX
 RULE \rightarrow
                             [ -vowel ] 
ightarrow \varnothing / TRIGGER _{-} TRIGGER
 RULE \rightarrow
                             [ +low ] \rightarrow CONSTANT / [ ]* FEATUREMATRIX _
 RULE \rightarrow
                            ] \rightarrow [+voice] / _TRIGGER
                            CONSTANT \rightarrow CONSTANT / []_TRIGGER
 RULE \rightarrow
 RULE \rightarrow
                             [\ ] \rightarrow [\ -highTone\ ]\ /\ TRIGGER\ _\ TRIGGER
 RULE \rightarrow
                             [-sonorant] \rightarrow [-voice] / _{-} #
 RULE \rightarrow
                             [] \rightarrow FC / TRIGGER_{-}[] FEATUREMATRIX
```

4□ > 4同 > 4 = > 4 = > ■ 900

Problems with minimum description length

varit varihin oahpis oahpisin

bissobeahtset bissobeahtsehin

yaa?min yaa?mimin gahpir gahpirin gaauhtsis gaauhtsisin beštor beštorin

heevemeahhtun heevemeahhtunin bissomeahtun bissomeahtumin

laðas laðasin

heaŋkkan heaŋkkanin yaman yamanin

varit varihin
oahpis oahpisin
bissobeahtset bissobeahtsehin

yaa?min yaa?mimin qahpir qahpirin

gaauhtsis gaauhtsisin beštor beštorin

heevemeahhtun heevemeahhtunin bissomeahtun bissomeahtumin

laðas laðasin heaŋkkan heaŋkkanin yaman yamanin $\begin{array}{l} \mathtt{stem} + / \mathsf{in} / \\ \mathsf{m} {\rightarrow} \mathsf{n} \text{ word finally} \end{array}$

yaa?mim→yaa?min yaa?mim+in→yaa?mimin

varit varihin
oahpis oahpisin
bissobeahtset bissobeahtsehin

yaa?min yaa?mimin qahpir qahpirin

gaauhtsis gaauhtsisin beštor beštorin

heevemeahhtun heevemeahhtunin bissomeahtun bissomeahtumin

laðas laðasin heaŋkkan heaŋkkanin yaman yamanin $\begin{array}{l} \mathtt{stem} + / \mathsf{in} / \\ \mathsf{m} {\rightarrow} \mathsf{n} \text{ word finally} \end{array}$

yaa?mim→yaa?min yaa?mim+in→yaa?mimin

varit varihin stem+/im/ oahpisin oahpis $m\rightarrow n$ word finally bissobeahtset bissobeahtsehin yaa?min yaa?mimin gahpir gahpirin yaa?mim→yaa?min gaauhtsis gaauhtsisin yaa? $mim+im\rightarrow$ beštor beštorin heevemeahhtun heevemeahhtunin $yaa?mimim \rightarrow$ bissomeahtun bissomeahtumin yaa?mimin laðas laðasin heankkan heankkanin yamanin yaman

varit varihin stem+/im/ oahpisin oahpis bissobeahtset m→n word finally bissobeahtsehin yaa?min yaa?mimin gahpir gahpirin yaa?mim→yaa?min gaauhtsis gaauhtsisin yaa? $mim+im\rightarrow$ beštor beštorin heevemeahhtun heevemeahhtunin yaa?mimim→ bissomeahtun bissomeahtumin yaa?mimin laðasin laðas MDL heankkan heankkanin yamanin yaman unchanged!

varit varihin stem+/im/ oahpis oahpisin $m\rightarrow n$ word finally bissobeahtset bissobeahtsehin yaa?min yaa?mimin gahpir gahpirin yaa?mim→yaa?min gaauhtsis gaauhtsisin yaa? $mim+im\rightarrow$ beštor beštorin heevemeahhtun heevemeahhtunin yaa?mimim→ bissomeahtun bissomeahtumin yaa?mimin laðas laðasin MDL heankkan heankkanin yaman yamanin unchanged!

 $\begin{aligned} & \mathsf{cost}(\mathsf{model};\mathsf{data}) = \\ & \mathsf{cost}(\mathsf{model}) + \sum_{\mathsf{x} \in \mathsf{data}} \mathsf{cost}(\mathsf{x};\mathsf{model}) + \mathsf{runtimeCost}(\mathsf{x};\mathsf{model}) \end{aligned}$

Contributions

Engineered new approaches to grammar learning drawn from program synthesis. Allows exact study of simplicity trade-offs between different grammars.

A system that can learn many morphophonologies, both natural and artificial, from relatively small amounts of data

Learning to learn phonological rules as a way of estimating and probing universal grammar

Contributions

Engineered new approaches to grammar learning drawn from program synthesis. Allows exact study of simplicity trade-offs between different grammars.

A system that can learn many morphophonologies, both natural and artificial, from relatively small amounts of data

Learning to learn phonological rules as a way of estimating and probing universal grammar

The end.