Review Chapter 1 Probability

Thanh Hung Duong

1/28/2021

1.2 Sample space

Experiments = Situations in which the outcomes occur randomly.

The sample space Ω corresponding to an experiment is the set of all possible outcomes. An element of Ω is denoted by ω .

An **event** is a subsets of Ω

The **union** of two events, A and B, is the event C that either A occurs or B occurs or both occur: $C = A \cup B$

The **intersection** of two events, $C = A \cap B$, is the event that both A and B occur.

The **complement** of an event, A^c , is the event that A does not occur and thus consists of all those elements in the sample space that are not in A.

The **empty set**, \emptyset , is the set with no elements; it is the event with no outcomes.

A and C are said to be **disjoint**, if A and C have no outcomes in common $A \cup C = \emptyset$

Commutative Laws:

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$

Associative Laws:

- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive Laws:

- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

1.3 Probability measures

- 1. $P(\Omega) = 1$
- 2. If $A \supset \Omega$, then $P(A) \geq 0$.
- 3. If A1 and A2 are disjoint, then $P(A1 \cup A2) = P(A1) + P(A2)$
- 4. $P(A^c) = 1 P(A)$ and $P(\emptyset) = 0$.
- 5. If $A \subset B$, then $P(A) \leq P(B)$.
- 6. Addition Law $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

1.4 Computing Probabilities: Counting methods

The elements of Ω all have <u>equal probability</u>; so if there are N elements in Ω , each of them has probability 1/N. If A can occur in any of n mutually exclusive ways, then P(A) = n/N

$$P(A) = \frac{number\ of\ ways\ A\ can\ occur}{total\ number\ of\ outcomes}$$

- Multiplication principle: If one experiment has m outcomes and another experiment has n outcomes, then there are mn possible outcomes for the two experiments.
- Extended multiplication principle: If there are p experiments, and the first has n1 possible outcomes, the second n2, ..., and the pth np possible outcomes, then there are a total of n1n2...np possible outcomes for the p experiments.
- A **permutation** is an ordered arrangement of objects.
- For a set of size n and a sample of size r, there are n^r different ordered samples with replacement and n(n-1)(n-2)...(n-r+1)=n! different ordered samples without replacement.
- A combination is unordered sample
- The number of unordered samples of r objects selected from n objects without replacement is $\binom{n}{r}$
- The numbers $\binom{n}{r}$, called the **binomial coefficients**, occur in the expansion

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

- In particular, $2^n = \sum_{k=0}^n \binom{n}{k}$
- Suppose that n items are in a lot and a sample of size r is taken. The lot contains k defective items. What is the probability that the sample contains exactly m defectives?

$$P(A) = \frac{\binom{k}{m}\binom{n-k}{r-m}}{\binom{n}{r}}$$

• The number of ways that n objects can be grouped into r classes with n_i in the i^{th} class, i = 1, ..., r, and $\sum_{i=1}^{r} n_i = n$

$$\binom{n}{n_1 n_2 \dots n_r} = \frac{n!}{n_1! n_2! \dots n_r!} = multinomial \ coefficients$$

Important examples:

- Simpson's Paradox
- Birthday problems
- Capture/recapture method

1.5 Conditional Probability

Let A and B be two events with $P(B) \neq 0$. The conditional probability of A given B is defined to be

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- MULTIPLICATION LAW: Let A and B be events and assume $P(B) \neq 0$. Then $P(A \cap B) = P(A|B)P(B)$
- LAW OF TOTAL PROBABILITY: Let B1, B2, ..., Bn be such that $\bigcup_{i=1}^{n} B_i = \Omega$ and $Bi \cap Bj = \emptyset$ for $i \neq j$, with $P(B_i) > 0$ for all i. Then, for any event A,

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

BAYES' RULE: Let A and B1, ..., Bn be events where the Bi are disjoint, $\bigcup_{i=1}^{n} B_i = \Omega$ and $P(B_i) > 0$ for all i. Then

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

1.6 Independence

A and B are said to be independent events if $P(A \cap B) = P(A)P(B)$.

a collection of events, $A_1, A_2, ..., A_n$, to be **mutually independent** if for any subcollection, Ai1, ..., Aim, $P(A_{i_1} \cap ... \cap A_{i_m}) = P(A_{i_1})...P(A_{i_m})$

Special examples - Matching DNA Fragments

1.7 Remarks

One might ask what is meant by the statement "The probability that this coin will land heads up is 1/2." Two commonly advocated views are the **frequentist approach** and the **Bayesian approach**.

- According to the frequentist approach, the statement means that if the experiment were repeated many times, the long-run average number of heads would tend to 1/2.
- According to the Bayesian approach, the statement is a quantification of the speaker's uncertainty about the outcome of the experiment and thus is a personal or subjective notion;