Introduction to Cryptography Lecture 12

Monika K. Polak

March 11, 2021

Encryption with Block Ciphers: Modes of Operation

- Electronic Code Book mode (ECB)
- Cipher Block Chaining mode (CBC)
- Output Feedback mode (OFB)
- Cipher Feedback mode (CFB)
- Counter mode (CTR)

Block Ciphers

- A block cipher is much more than just an encryption algorithm, it can be used ...
 - to build different types of block-based encryption schemes
 - to realize stream ciphers
 - to construct hash functions
 - to make message authentication codes
 - to build key establishment protocols
 - to make a pseudo-random number generator
 - **.**..

Encryption with Block Ciphers

- There are several ways of encrypting long plaintexts, e.g., an e-mail or a computer file, with a block cipher ("modes of operation")
 - ► Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Output Feedback mode (OFB)
 - Cipher Feedback mode (CFB)
 - Counter mode (CTR)
 - Galois Counter Mode (GCM)

Electronic Code Book mode (ECB)

- ► The simplest of the encryption modes
- ▶ Messages which exceed b bits are partitioned into b-bit blocks
- Each Block is encrypted separately

In case the plaintext message's length is not a multiple of the block size we add padding (extra padding bits after the last plaintext bit).

Electronic Code Book mode (ECB)

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Electronic Code Book mode (ECB)

Advantages

- no block synchronization between sender and receiver is required
- bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
- Block cipher operating can be parallelized
 - advantage for high-speed implementations

Disadvantages

- ► ECB encrypts highly deterministically
- identical plaintexts result in identical ciphertexts
- an attacker recognizes if the same message has been sent twice
- plaintext blocks are encrypted independently of previous blocks
- an attacker may reorder ciphertext blocks which results in valid plaintext

Substitution Attack on ECB

- Once a particular plaintext to ciphertext block mapping $x_i \rightarrow y_i$ is known, a sequence of ciphertext blocks can easily be manipulated
- Consider an electronic bank transfer

Block#	1	2	3	4	5
	Sending Bank A	Sending Account #			Amount \$

- the encryption key between the two banks does not change too frequently
- ▶ The attacker sends \$1.00 transfers from his account at bank A to his account at bank B repeatedly
 - ► He can check for ciphertext blocks that repeat, and he stores blocks 1.3 and 4 of these transfers
- ► He now simply replaces block 4 of other transfers with the block 4 that he stored before
 - all transfers from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

- Identical plaintexts are mapped to identical ciphertexts
- Statistical properties in the plaintext are preserved in the ciphertext:

Cipher Block Chaining mode (CBC)

There are two main ideas behind the CBC mode:

- ► The encryption of all blocks are "chained together" (ciphertext y_i depends not only on block x_i but on all previous plaintext blocks as well)
- The encryption is randomized by using an initialization vector (IV)

Cipher Block Chaining mode (CBC)

- Requires padding (same as ECB)
- Messages longer than $2^{n/2}$ blocks, where n is the block size in bits shouldn't be encrypted with this mode
- Encryption cannot be parallelizabled but dencryption can be

Substitution Attack on CBC

- Suppose the last example (electronic bank transfer)
- ► If the IV is properly chosen for every wire transfer, the attack will not work at all
- If the IV is kept the same for several transfers, the attacker would recognize the transfers from his account at bank A to back B
- If we choose a new IV every time we encrypt, the CBC mode becomes a probabilistic encryption scheme, i.e., two encryptions of the same plaintext look entirely different
- ▶ It is not needed to keep the IV secret!
- Typically, the IV should be a non-secret nonce (value used only once)

AES and CBC

One last tidbit: I shouldn't be used as-is. but rather as a building block to a decent 'mode." Cipher-block Chaining Electronic Codebook Mode (CBC) (ECB) Initialization Input, Inputs Vector (IV) Input Input Output Output2 Output, Better BAD!

Output Feedback mode (OFB)

- It is used to build a synchronous stream cipher from a block cipher
- The key stream is not generated bitwise but instead in a blockwise fashion
- ► The output of the cipher gives us key stream bits with which we can encrypt plaintext bits using the XOR operation
- Does not require using the decryption algorithm
- Requires an initialization vector IV
- ► Each new messages shall use a new IV (nonce)

Output Feedback mode (OFB)

Output Feedback (OFB) mode encryption

Cipher Feedback mode (CFB)

- It uses a block cipher as a building block for an asynchronous stream cipher (similar to the OFB mode)
- ► The key stream Si is generated in a blockwise fashion and is also a function of the ciphertext
- As a result of the use of an IV, the CFB encryption is also nondeterministic
- It can be used in situations where short plaintext blocks are to be encrypted
- ► No real advantage over OFB mode

Cipher Feedback mode (CFB)

Cipher Feedback (CFB) mode encryption

Counter mode (CTR)

- Counter mode turns a block cipher into a stream cipher (like the OFB and CFB modes)
- ▶ The key stream is computed in a blockwise fashion
- ► The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block
- Unlike CFB and OFB modes, the CTR mode can be parallelized (desirable for high-speed implementations, e.g., in network routers)
- Does not require padding; just discard unneeded portion of last key block

Counter mode (CTR)

Counter (CTR) mode encryption

Thanks for Your attention.

