MATH3075/3975 Financial Derivatives

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

Tutorial sheet 7

Background: Chapter 3 - Multi-Period Market Models.

Exercise 1 We consider the conditional expectation $\mathbb{E}_{\mathbb{P}}(X | \mathcal{G})$ where \mathcal{G} is generated by a finite partition $(A_i)_{i \in I}$ of the sample space $\Omega = \{\omega_1, \ldots, \omega_k\}$. Specifically, let k = 5 and

$$A_1 = \{\omega_1, \omega_2\}, \ A_2 = \{\omega_3\}, \ A_3 = \{\omega_4, \omega_5\}.$$

Let the probability measure \mathbb{P} be given by

$$\mathbb{P}(\omega_1) = \mathbb{P}(\omega_2) = 0.1, \ \mathbb{P}(\omega_3) = 0.3, \ \mathbb{P}(\omega_4) = 0.2, \ \mathbb{P}(\omega_5) = 0.3.$$

Consider the random variable $X: \Omega \to \mathbb{R}$ given by $X(\omega_i) = i$ for $i = 1, \ldots, 5$.

- (a) Find the probability distribution of the random variable X.
- (b) Compute the conditional expectation $\mathbb{E}_{\mathbb{P}}(X \mid \mathcal{G})$.
- (c) Find the probability distribution of the random variable $Y := \mathbb{E}_{\mathbb{P}}(X \mid \mathcal{G})$.
- (d) Show that $\mathbb{E}_{\mathbb{P}}(X) = \mathbb{E}_{\mathbb{P}}(\mathbb{E}_{\mathbb{P}}(X|\mathcal{G})).$

Exercise 2 Consider the two-period market model $\mathcal{M} = (B, S)$ with the savings account B given by

$$B_0 = 1$$
, $B_1 = 1 + r$, $B_2 = (1 + r)^2$

with r=0.25 and the stock price S evolving according to the following diagram

- (a) Compute the probabilities of the states $\omega_1, \omega_2, \omega_3, \omega_4$.
- (b) Compute the conditional expectation $\mathbb{E}_{\mathbb{P}}(S_2 \mid \mathcal{F}_1)$:
 - (b1) using the formula

$$\mathbb{E}_{\mathbb{P}}(S_2|\mathcal{F}_1) = \sum_{i=1}^m \frac{\mathbb{1}_{A_i}}{\mathbb{P}(A_i)} \sum_{\omega \in A_i} S_2(\omega) \mathbb{P}(\omega),$$

- (b2) using directly the conditional probabilities.
- (c) Compute $\mathbb{E}_{\mathbb{P}}(S_2)$ directly and using the equality

$$\mathbb{E}_{\mathbb{P}}(S_2) = \mathbb{E}_{\mathbb{P}}(\mathbb{E}_{\mathbb{P}}(S_2|\mathcal{F}_1)).$$

Exercise 3 (MATH3975) Consider a finite probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an arbitrary σ -field $\mathcal{G} \subset \mathcal{F}$. Let X be any \mathcal{F} -measurable random variable.

(a) Show that the conditional expectation $\mathbb{E}_{\mathbb{P}}(X \mid \mathcal{G})$ satisfies

$$\sum_{\omega \in G} X(\omega) \mathbb{P}(\omega) = \sum_{\omega \in G} \mathbb{E}_{\mathbb{P}}(X|\mathcal{G})(\omega) \mathbb{P}(\omega), \quad \forall G \in \mathcal{G}.$$

Deduce from this equality that $\mathbb{E}_{\mathbb{P}}(X) = \mathbb{E}_{\mathbb{P}}(\mathbb{E}_{\mathbb{P}}(X|\mathcal{G})).$

(b) Let η be a random variable such that η is \mathcal{G} -measurable and

$$\sum_{\omega \in G} X(\omega) \mathbb{P}(\omega) = \sum_{\omega \in G} \eta(\omega) \mathbb{P}(\omega), \quad \forall G \in \mathcal{G}.$$

Show that $\eta = \mathbb{E}_{\mathbb{P}}(X|\mathcal{G})$.

Exercise 4 (MATH3975) Let \mathbb{P} and \mathbb{Q} be two equivalent probability measures on a (finite) probability space (Ω, \mathcal{F}) . Let \mathbb{F} be an arbitrary filtration. For any fixed $t = 0, 1, \ldots, T$, we denote by L_t the Radon-Nikodym density of \mathbb{Q} with respect to \mathbb{P} when \mathbb{Q} and \mathbb{P} are restricted to the σ -field \mathcal{F}_t .

- (a) Show that $\mathbb{E}_{\mathbb{P}}(L_s \mid \mathcal{F}_t) = L_t$ for every $0 \le t \le s \le T$. You may use part (b) in Exercise 3.
- (b) Using the abstract Bayes formula, establish the following equality, for an arbitrary \mathcal{F}_s -measurable random variable Y and for every $0 \le t \le s$

$$\mathbb{E}_{\mathbb{Q}}(Y \mid \mathcal{F}_t) = (L_t)^{-1} \, \mathbb{E}_{\mathbb{P}}(Y L_s \mid \mathcal{F}_t).$$

- (c) Let M be a process such that M_t is \mathcal{F}_t -measurable for every t. Show that the following conditions are equivalent:
 - (i) $\mathbb{E}_{\mathbb{O}}(M_s \mid \mathcal{F}_t) = M_t$ for every $0 \le t \le s \le T$,
 - (ii) $\mathbb{E}_{\mathbb{P}}(L_s M_s \mid \mathcal{F}_t) = L_t M_t$ for every $0 \le t \le s \le T$.

If a process M is such that M_t is \mathcal{F}_t -measurable for every t, then we say that M is \mathbb{F} -adapted. If for an \mathbb{F} -adapted process M the equality $\mathbb{E}_{\mathbb{Q}}(M_s \mid \mathcal{F}_t) = M_t$ is satisfied for every $0 \leq t \leq s \leq T$, then we say that M is an \mathbb{F} -martingale under \mathbb{Q} . Hence it was shown in part (c) that the following conditions are equivalent for an \mathbb{F} -adapted process M:

- (i) the process M is an \mathbb{F} -martingale under \mathbb{Q} ,
- (ii) the process LM is an \mathbb{F} -martingale under \mathbb{P} .

Note also that it was shown in (a) that the Radon-Nikodym density process L of \mathbb{Q} with respect to \mathbb{P} is an \mathbb{F} -martingale under \mathbb{P} .

Exercise 5 (MATH3975) Using the tower property of conditional expectation, show that if M is an \mathbb{F} -adapted process, then the following conditions are equivalent:

- (i) the process M is a martingale under \mathbb{P} ,
- (ii) $\mathbb{E}_{\mathbb{P}}(M_{t+1} \mid \mathcal{F}_t) = M_t$ for every $0 \le t \le T 1$,
- (iii) $\mathbb{E}_{\mathbb{P}}(M_T | \mathcal{F}_t) = M_t$ for every $0 \le t \le T$.

Deduce that if X an \mathcal{F}_T -measurable random variable, then the process $M_t := \mathbb{E}_{\mathbb{P}}(X \mid \mathcal{F}_t)$ is the unique martingale under \mathbb{P} with the terminal value $M_T = X$.

Exercise 6 (MATH3975) Consider the process S from Exercise 2.

- (a) Show that S is not a martingale under \mathbb{P} .
- (b) Find the unique probability measure \mathbb{Q} on (Ω, \mathcal{F}_2) such that S is a martingale under \mathbb{Q} .
- (c) Find the Radon-Nikodym density process L of \mathbb{Q} with respect to \mathbb{P} and show that L is a martingale under \mathbb{P} .