

深度学习实验报告

实验名称: 优化器

姓 名: 张恒硕

学 号: 2212266

专 业:智能科学与技术

目录

一、	¥	F 验 目 的	4
二、	乡	实验原理	4
	1.	优化器	4
		(1) SGD(随机梯度下降,Stochastic Gradient Descent)	4
		(2) SGD+动量法(Momentum)	4
		(3) Adam (Adaptive Moment Estimation)	4
	2.	初始化权重	4
		高斯分布随机初始化	5
		Xavier 初始化	5
		Kaiming 均匀分布初始化(He 初始化)	5
	3.	批量大小(batch_size)	5
	4.	学习率 (Learning Rate, LR) 策略	5
		固定学习率 (Fixed Learning Rate)	5
		指数衰减(Exponential Decay)	5
		分段学习率(Step Decay、Piecewise Constant Decay)	5
		多项式衰减(Polynomial Decay)	5
		线性衰减 (Linear Decay)	5
		余弦衰减 (Cosine Annealing)	6
		预热 (Warm-up)	6
三、	乡	实验步骤	6
四、	基	基础代码	6
五、	ij	周试训练与分析	13
	1.	SGD	13
		(1) 结果展示	13
		(2) 初始化权重	14
		(3) 批量大小	14
		(4) 学习率策略	16
	2.	SGD+动量法	18
		(1) 结果展示	18
		(2) 初始化权重	18
		(3) 学习率策略	19
		(4) 权重衰减	20
		(5) Nesterov	21
	3.	Adam	21
		(1) 结果展示	22
		(2) 初始化权重	22
		(3) 学习率策略	23
		(4) AMSGrad	24
		(5) AdamW	24
六、	K	付加题	25
	1.	从并行计算角度解释不同批量大小对算法训练速度的影响	25
	2.	SGD+动量法进一步尝试	25
	3.	Adam 进一步尝试 1	25

4.	Adam 进一步尝试 2	. 25
5.	在卷积神经网络上重复实验	. 25

一、实验目的

基于实验一的多层感知机模型,调试优化器配置,探索各种优化器的性能。 使用 Fashin-mnist 数据集(与要求的 mnist 数据集不同)进行实验。

二、实验原理

优化器是神经网络训练过程中调整模型参数以最小化损失函数的关键组件。

- 参数更新:基于损失函数对模型参数的梯度来更新参数。
- 学习率控制:学习率决定了参数更新的步伐,过大会导致模型无法收敛,过 小则需要过多迭代次数。
- 正则化:权重衰减等正则化机制可以防止过拟合,提高模型的泛化能力。

1. 优化器

常用的优化器有 SGD 和 Adam, 在它们基础上, 又演变出更多具有特定功能的优化器, 以下进行简单的介绍。

(1) SGD (随机梯度下降, Stochastic Gradient Descent)

在每次迭代中随机选择一小批样本估计梯度, 计算效率高, 并因为随机性引入噪声能够逃离局部最小值。其公式如下:

$$\theta_{t+1} = \theta_t - \eta \nabla f_i(\theta_t)$$

(2) SGD+动量法 (Momentum)

动量法的加入可以在相关方向上加速 SGD 收敛并抑制振荡。动量法可以抑制梯度变化,进而抑制搜索空间中每个新点的步长。以下图 2 说明了二者的区别。

(a) SGD without momentum

(b) SGD with momentum

图 2 SGD 有无动量法的差别

(3) Adam (Adaptive Moment Estimation)

作为带有动量项的 RMSprop, 利用梯度的一阶矩估计和二阶矩估计动态调整 每个参数的学习率, 使每一次迭代学习率都有确定范围, 变化平稳。其公式如下:

$$m_t = \mu m_{t-1} + (1 - \mu)g_t$$

$$n_t = v n_{t-1} + (1 - v)g_t^2$$

$$\widehat{m}_t = \frac{m_t}{1 - \mu_t}$$

$$\widehat{n}_t = \frac{n_t}{1 - v_t}$$

$$\Delta\theta_t = -\frac{\widehat{m}_t}{\sqrt{\widehat{n}_t} + \varepsilon}\eta$$

2. 初始化权重

合理的初始化权重能减少迭代次数,以下是三种初始化方法:

方法	特点	优点
77 14	13 100	PO /

高斯分布随机初始化	基于正态分布, 权重应围	确保信号在传播中既不
	绕零均值分布,并具有一	会迅速消失也不会爆炸。
	定方差。	
Xavier 初始化	确保前向传播和反向传	对于使用tanh或sigmoid
	播过程中激活值和梯度	激活函数的网络表现较
	的方差保持一致。	好。
Kaiming 均匀分布初始化		对于使用 ReLU 及其变体
(He 初始化)		激活函数的网络表现较
		好。

3. 批量大小 (batch_size)

一次迭代中用于更新模型参数的样本数量,其大小与模型运行速度和收敛效率有关。

4. 学习率 (Learning Rate, LR) 策略

在训练过程中,学习率可以随迭代次数变化,不同的变化方式可能产生不一样的结果。以下是七种常用的学习率策略:

什的结本。以一定也有市内的子为干来谷:				
策略	特点	优点	缺点	公式(实验中
				使用)
固定学习	整个训练过	简单易实现,	可能无法适	$\eta_t = \eta_0$
率(Fixed	程中不变。	无需额外设	应训练的各	
Learning Rate)		置参数。	阶段, 导致收	
			敛慢或不稳	
			定。	
指数衰	按指数函数	有助于稳定	对参数敏感。	$\eta_t = 0.9^t \eta_0$
滅(Exponential	衰减。	收敛, 尤其是		
Decay)		训练后期。		
,				
分段学习率	周期性衰减。	可以手动设	需预先确定	$\eta_t = \begin{cases} 0.1^x \eta_0 \\ \eta_0 \end{cases}$
(Step Decay		定调节点,便	衰减点。	η_0
Piecewise		于控制。		
Constant Decay)				
,	レタナドフ	下词 口一片	五正四卦夕	
多项式衰	按多项式函	平滑且可控	需要调整多	η_t
滅(Polynomial	数衰减。	的衰减曲线,	个参数。	$= \eta_0(1$
Decay)		适合长周期		$-\frac{t}{T})^{0.9}$
,		训练。		T^{J}
线性衰	线性地从初	简单直观,容	对于不同类	η_t
减 (Linear	始学习率衰	易理解。	型的任务和	$= \eta_0 (1 - \frac{t}{T})$
Decay)	减到最终学	77-11/10	数据集,效果	$=\eta_0(1-\overline{T})$
Doday)	习率。		存在差异。	

余弦衰 减 (Cosine Annealing)	按余弦波形 衰减,先快速 下降,然后缓 慢上升,再下 降到最小值。	收敛路径更自然,有助于跳出局部最优解。	需合理设置 最小学习率 和周期长度。	η_t $= \eta_{min}$ $+ \frac{1}{2} (\eta_{max}$ $- \eta_{min}) (1$ $+ \cos(\frac{t\pi}{T}))$
预热 (Warm-up)	训练初期使 用非常率, 所以 明本 明本 明本 明本 明本 明本 明本 明本 明本 明本 明本 明本 明本	有明知是 有明明 是 有明明 是 有明明 是 有 是 是 是 是 是 是 是 是 是	增加了训练 初期的复杂 性和计算成 本。	η_{t} $= \eta_{min}$ $+ \frac{1}{2} (\eta_{max}$ $- \eta_{min}) \frac{t}{5}$ $, for t < 5$

三、实验步骤

- 1. 选择优化器。分别为 SGD(见五、1.)、SGD+动量法(见五、2.)和 Adam(见 五、3.)。
- 2. 分别调节初始化权重,分为 Kaiming 均匀分布初始化、高斯分布随机初始化和 Xavier 初始化。
- 3. 调节批量大小,进行从1到全样本的批量大小的比较(见五、1.(3))。
- 分别调节学习率策略,包括固定学习率、指数衰减、分段学习率、多项式衰减、线性衰减、余弦衰减、预热。
- 5. 尝试其他变种优化器,如 SGD+动量法+权重衰减(见五、2. (4))、SGD+动量法+Nesterov(见五、2. (5))、AMSGrad(见五、3. (4))、AdamW(见五、3. (5))。
- 6. 对卷积神经网络部分重复以上实验(见六、5.)。

四、基础代码

以下给出代码,各种调试项皆包含在内。网络部分与实验一一致,优化器等 调试部分都是调用的相关函数,在代码中进行了注释,不作额外分析。

import torch

import torch.nn as nn

from d21 import torch as d21

import time

import matplotlib.pyplot as plt

```
初始化权重
def init_weights(m):
   if isinstance(m, nn.Linear):
       # 高斯分布随机初始化
       nn.init.normal_(m.weight, mean=0.0, std=0.01)
       # Xavier 初始化
       # nn.init.xavier_uniform_(m.weight)
       if m.bias is not None:
           nn.init.zeros_(m.bias)
def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor):
   def f(x):
       if x >= warmup_iters:
           return 1
       alpha = float(x) / warmup_iters
       return warmup_factor * (1 - alpha) + alpha
   return torch.optim.lr_scheduler.LambdaLR(optimizer, f)
def train(net, train_iter, test_iter, num_epochs, loss):
   start_time = time.time()
```

```
net.to(device)
   # 初始化模型参数
  params = [p for p in net.parameters() if p.requires_grad]
   # 优化器
   # SGD
   optimizer = torch.optim.SGD(params, |r=learning_rate)
   # SGD+动量
   # optimizer = torch.optim.SGD(params, lr=learning_rate, momentum=0.9)
   # SGD+动量+权重衰减
   # optimizer = torch.optim.SGD(params, Ir=learning_rate, momentum=0.9,
weight_decay=0.0001)
  # SGD+动量+nesterov
  # optimizer = torch.optim.SGD(params, lr=learning_rate, momentum=0.9,
nesterov=True)
  # Adam
   # optimizer = torch.optim.Adam(params, lr=learning_rate)
  # Adam+amsgrad
   # optimizer = torch.optim.Adam(params, Ir=learning_rate, amsgrad=True)
   # Adamw
   # optimizer = torch.optim.AdamW(params, Ir=learning_rate)
   # 学习率策略
```

```
# 指数衰减
   # scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
   # 分段学习率
   # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30, 80]
gamma=0.1)
   # 多项式衰减
   # Ir_lambda = lambda epoch: (1 - float(epoch) / num_epochs) ** 0.9
   # scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
   # 线性衰减
   # scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda
epoch: 1 - epoch / num_epochs)
   # 余弦衰减
   # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=num_epochs)
   warmup_epochs = 5
   # scheduler = warmup_lr_scheduler(optimizer, warmup_epochs,
warmup_factor=0.001)
   train_loss_list, train_acc_list, test_acc_list = [], [], []
   for epoch in range(num_epochs):
```

```
net.train()
train_loss, correct, total_samples = 0.0, 0, 0
for X, y in train_iter:
   X, y = X.to(device), y.to(device)
    optimizer.zero_grad()
    y_hat = net(X)
    l = loss(y_hat, y).mean()
    1.backward()
    optimizer.step()
    train_loss += l.item() * y.shape[0]
    _, predicted = torch.max(y_hat.data, 1)
    total_samples += y.size(O)
    correct += (predicted == y).sum().item()
avg_train_loss = train_loss / total_samples
train_acc = correct / total_samples
net.eval()
with torch.no_grad():
    test_correct, test_total = 0,0
    for X, y in test_iter:
       X, y = X.to(device), y.to(device)
```

```
y_hat = net(X)
               _, predicted = torch.max(y_hat.data, 1)
               test_total += y.size(0)
               test_correct += (predicted == y).sum().item()
           test_acc = test_correct / test_total
       # 学习率变化
       # scheduler.step()
       train_loss_list.append(avg_train_loss)
       train_acc_list.append(train_acc)
       test_acc_list.append(test_acc)
       print(f'Epoch[{epoch + 1}/{num_epochs}],Loss:{avg_train_loss:.4f},Train
Acc:{train_acc:.4f},Test Acc:{test_acc:.4f}")
   best_test_acc = max(test_acc_list)
   print(f"最优验证正确率:{best_test_acc:.4f}")
   end_time = time.time()
   training_time = end_time - start_time
   fig = plt.figure(figsize=(12, 6))
   ax1 = fig.add_subplot(1111)
   ax2 = ax1.twinx()
```

```
epochs = range(1, num_epochs + 1)
   ax1.plot(epochs, train_loss_list, 'bo-', label="Train Loss")
   ax1.set_xlabel('Epochs')
   ax1.set_ylabel('Loss')
   ax1.set_xlim(1, num_epochs)
   ax1.set_ylim(0, max(train_loss_list) * 1.1)
   ax1.legend(loc='upper left')
   ax2.plot(epochs, train_acc_list, 'r+-', label="Train Acc")
   ax2.plot(epochs, test_acc_list, 'g+-', label="Test Acc")
   ax2.set_ylabel('Accuracy')
   ax2.set_ylim(0, 1.1)
   ax2.legend(loc='upper right')
   plt.title('Training Progress')
   plt.show()
   return training_time
if __name__ == "__main__":
   # 参数
   num_epochs = 10
   learning_rate = 0.1 # (SGD)为 0.1, Adam 为 0.001
   batch_size = 256
```

```
# 数据
train_iter, test_iter = d21.load_data_fashion_mnist(batch_size)
# 设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
net = nn.Sequential(
   nn.Flatten(),
   nn.Linear(num_inputs, num_hiddens1),
   nn.ReLU(),
   nn.Linear(num_hiddens1, num_hiddens2),
   nn.ReLU(),
   nn.Linear(num_hiddens2, num_outputs)
# net.apply(init_weights)
# 损失函数
loss = nn.CrossEntropyLoss(reduction='mean')
training_time = train(net, train_iter, test_iter, num_epochs, loss)
print(f"代码运行时间:{training_time}秒")
```

五、调试训练与分析

- 1. SGD
 - (1) 结果展示

SGD+kaiming	g均匀分布初始化	结果展示
+batchsize=	=256+固定学习率	
测试正确	0. 8430	
率		Training Progress Train Loss Train Loss Train Acc Train Acc Train Acc Train Acc
运行时间	69. 69544982910156	0.8
(s)		0.6 (5)
		0.6 C
		02
		00
		1 2 3 4 5 6 7 8 9 10 Epochs

(2) 初始化权重

分析:经比较发现,三者的运行时间基本一致,正确率差别也不大。高斯分布随机初始化的正确率相较最低,因为它没有后两者在前、后传播过程中保持一致的特性。Xavier 初始化略优于 Kaiming 均匀分布初始化,这可能是由于它更适配sigmoid 激活函数。

(3) 批量大小

分析:以1为批量进行训练,效率极低,且难以收敛(单一样本不能很好代表整体数据分布),容易过拟合。而全样本训练,会稳定而缓慢的收敛,可以提供更准确的估计,但缺乏正则化效果,容易过拟合,且需求较大内存。选用适宜的批量大小,能快速收敛到较好的结果。

仿照 11.5.4 节最后一个图绘制了下图图 5, 并总结效果如下表表 1:

图 5 调试批量大小表 1 调试批量大小

			11-1/21	
项目		批量大小	收敛速度	最终损失值
GD (G	Gradient	整个数据集	较慢	较低
Descent)				
SGD (Sto	chastic	1	较快	较高且波动较大
Gradient				
Descent)				
Mini-Bato	ch SGD1	100	较快	较低且波动较小
Mini-Batch SGD2		10	较快	略大且波动较大

经比较,批量大小100时最优。

从并行角度总结如下表:

	* '	
项目	小批量	大批量
硬件利用率 (并行性)	利用率高	利用率低
通信开销	\ <i>i</i>	大
效果	可能导致梯度估计的方	更准确的梯度估计, 带来
	差较大, 从而导致损失函	更平滑的损失下降路径
	数的变化路径更加波动	
内存要求	第	
收敛行为	随机性有助于跳出局部	更为稳定的梯度估计,有
	最优解, 减慢收敛速度	助于更快地收敛到一个
		解, 但可能更容易陷入局
		部最优解

(4) 学习率策略

指数衰减		结果展示
测试正确	0. 8526	
率		Training Progress → Train Loss → Train Loss
运行时间	67. 94014978408813	
	07. 94014976406613	0.8
(s)		6.6 4000
		0.4
		02-
		0.0 1 2 3 4 5 6 7 8 9 130 Epochs
分段学习率		结果展示
测试正确	0. 8602	
率	0.0002	Training Progress → Train Loss
	(= 00050=000(0	→ Rest Acc - 10
运行时间	67. 32852792739868	0.8
(s)		0.0
		04-
		02-
		0.0 1 2 3 4 5 6 7 8 9 10 Epochs
カナトナト		ALBERT -
多项式衰减	T	结果展示
测试正确	0. 8523	Training Progress
率		Tain Acc Test Acc 1.0
运行时间	66. 33056902885437	0.8
(s)	001 000007 02000 107	
(5)		0.6 b
		0.4
		-02
		00 1 2 3 4 5 6 7 8 9 10
		0.0 1 2 3 4 5 6 7 8 9 30 0 Epochs 7 8 9 30 0
线性衰减		结果展示
测试正确	0. 8510	
率		Training Progress → Train Loss 10-3 Training Progress
运行时间	66. 07158517837524	
	00. 07 100017007024	0.8
(s)		0.6 - 0
		0.4
		02 -
		00 1 2 3 4 5 6 7 8 9 10
		1 2 3 4 5 6 7 8 9 10 fpocks
余弦衰减	ı	结果展示
测试正确	0. 8534	
率		Training Progress
运行时间	67. 5896897315979	The Rec 10
	01.0070071313717	0.8
(s)		0.6-
		0.4
		62-
		0.0 2 3 4 5 6 7 8 9 10 6 6 7 8 9 10 6 6 7 8 9 10 6 6 7 8 9 10 6 6 7 8 9 10 6 6 7 8 9 10 7 8 9 10 6 7 8 9 10

预热		结果展示
测试正确 率	0. 8426 67. 12294793128967	Training Progress Training Progress Training Progress Train Loss 1.0 0.8 0.8 0.8 0.9 0.4
		0.5

分析:对于当前任务来说,以上各策略的优点无法完美体现,结果与耗时都大抵相当。但是由展示的曲线可以发现,尤其是在训练初期,不同的策略还是有一定的差异的。

2. SGD+动量法

(1) 结果展示

分析: 加了动量法的 SGD 结果明显更好, 这可能是因为动量法带来的明确下降方向, 使迭代更具效率。

(2) 初始化权重

Kaiming 均多	分布初始化	结果展示
测试正确率 运行时间 (s)		Training Progress Train Acc Tra
分析: 结果	同 SGD, 不做赘述。	,

(3) 学习率策略

统一配置: SGD+动量法+kaiming 均匀分布初始化+batchsize=256 结果展示 固定学习率 测试正确 0.8811 运行时间 67.64800548553467 (s) 结果展示 指数衰减 测试正确 0.8835 Train Acc Test Acc - 1.0 运行时间 67. 57790231704712 (s) 分段学习率 结果展示 测试正确 0.8812 运行时间 68. 08002805709839 (s) 多项式衰减 结果展示 测试正确 0.8921 率 运行时间 68.34606003761292 (s)

线性衰减		结果展示
测试正确率 运行时间 (s)	0. 8876 67. 54336619377136	Training Progress
余弦衰减		结果展示
测试正确率 运行时间(s)	0. 8895 67. 78437638282776	Training Progress Training Progress Training Progress Train Loss Train Loss Train Loss Train Loss Train Loss
(\$)		0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
预热		结果展示
测试正确率 运行时间 (s)	0. 8797 67. 29184865951538	2.5 Training Progress Training
分析: 结果	 同 SGD,不做赘述。	

(4) 权重衰减

权重衰减(Weight Decay)作为一种正则化方式,在损失函数中添加参数范数惩罚项来防止过拟合。

	<u> </u>	11 11 11 -
不加权重衰	减	结果展示
测试正确率	0. 8811	Training Progress 0.7 — Train Loss — Train Acc — Test Acc 1.0
· ·	67. 64800548553467	0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
加权重衰减		结果展示
(weight_de	ecay=0.0001)	
测试正确	0. 8759	
率		Training Progress — Train Loss

运行时间 (s)	67. 42794966697693	
加权重衰减		结果展示
(weight_de	ecay=0.001)	
测试正确率	0. 7914	Training Progress Train Loss Train Loss Train Loss
运行时间 (s)	67. 11317253112793	2.0 1.5 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

分析:不加权重衰减前模型也未过拟合,其加入影响不大。在一定程度上,权重衰减的加入使测试与训练更加贴合。不同大小的权重衰减因子也会对结果产生影响。较小的权重衰减因子,正则化力度较小,使模型复杂,能学习到更精细的数据特征,但有过拟合的风险,适用于大型数据集或特征丰富、复杂的任务。较大的权重衰减因子会强烈地抑制大权重值,使模型倾向于选择更简单的解决方案,减弱表达复杂函数的能力,但同时可以有效减少过拟合,提高模型的泛化能力。

(5) Nesterov

Nesterov (加速梯度, Nesterov Accelerated Gradient, NAG) 是一种改进动量梯度下降法。其先根据当前动量进行试探性更新, 然后计算在这个新位置上的梯度, 而不是像标准动量那样在当前位置计算梯度。其减少了振荡, 能更有效地收敛到最小值。

分析:在一定程度上,Nesterov的加入甚至比不加入要差,这可能和学习率或动量参数的不当设置有关,也可能与初始化权重有关。

3. Adam

(注意:与前两个使用不同的学习率)

(1) 结果展示

Adam+kaimi	ng均匀分布初始化	结果展示
+batchsize	=256+固定学习率	
测试正确 率	0. 8844	Training Progress Train Loss Train Loss Train Acc Train Loss
运行时间 (s)	68. 0420184135437	0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

分析:与不加动量的 SGD 相比, Adam 的结果明显更好。这可能是因为变化平稳加快了收敛。

(2) 初始化权重

(3) 学习率策略

) 千 <u>収</u> 略 Adam+动量法+kaiming コ	均匀分布初始化+batchsize=256
固定学习率	<u> </u>	结果展示
测试正确	0. 8844	Training Progress → Train Loss → Train Loss
率 运行时间 (s)	68. 0420184135437	Tan Loss
指数衰减		结果展示
测试正确率	0. 8815	Training Progress Training Progress Train Loss Train Loss Train Loss
运行时间 (s)	67. 03829288482666	03 04 03 02 01 01 02 01 02 01 02 03 03 04 04 05 06 07 08 08 08 08 08 08 08 08 08 08 08 08 08
分段学习率		结果展示
测试正确率 运行时间 (s)	0. 8833 67. 07558917999268	Training Progress
多项式衰减		结果展示
测试正确率 运行时间 (s)	0. 8879 68. 37529373168945	Training Progress Training Prog
线性衰减	l	结果展示
测试正确率 运行时间 (s)	0. 8862 68. 27660632133484	Training Progress Train Acc 10 0.8 0.8 0.4 0.4 0.4

余弦衰减		结果展示
测试正确率 运行时间 (s)	0. 8871 68. 24571871757507	Training Progress Training Prog
预热		结果展示
测试正确率	0. 8752	2.5 Training Progress + Train Loss + Train KC Train KC Train Loss + Train KC Train Loss + Train KC Tra
运行时间 (s)	68. 60260462760925	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
分析: 结果	同 SGD, 不做赘述。	

(4) AMSGrad

AMSGrad (Amortized Mean Squared Gradient) 是一种改进版 Adam 优化算法,旨在解决后者可能收敛到非最优解的问题。其修正 Adam 中指数移动更新规则,确保了学习率不会单调递减,从而有助于模型跳出局部极小值或鞍点。

(5) AdamW

AdamW 结合了 Adam 的自适应学习率和权重衰减, 在更新步骤中明确应用权

重衰减, 更有效地防止过拟合, 并提高模型的泛化能力。

不加 AdamW		结果展示
测试正确 率	0. 8844	Training Progress — Train Acc — Train Loss — Test Acc 1.0
运行时间 (s)	68. 0420184135437	0.6 Color
加 AdamW	I	结果展示
测试正确率	0. 8823	Training Progress — Tran Loss — Tran Acc — T

Adam 的权重衰减通过在损失函数中添加 L2 惩罚项实现,其权重衰减因子会乘以学习率并作用于梯度。而 AdamW 的权重衰减直接应用于权重的更新步骤,不依赖于学习率,对所有参数公平一致地施加。

六、附加题

- 1. 从并行计算角度解释不同批量大小对算法训练速度的影响 见五、1. (3) 表格(最后一个)。
- SGD+动量法进一步尝试
 见五、2. (4) (5)。
- 3. Adam 进一步尝试 1 见五、3. (4)。
- 4. Adam 进一步尝试 2 见五、3. (5)。
- 5. 在卷积神经网络上重复实验 由于以上实验项目过于庞大,这里只针对卷积神经网络和三种优化器进行实 验. 代码基于实验二代码。

SGD	结果展示
测试正确 0.843	
运行时间 102.03244996070862 (s)	2.0 — train loss —— train acc —— test acc

分析: 卷积神经网络的平均耗时要远超多层感知机, 而结果优于后者。三种优化器对卷积神经网络的优化效果与对多层感知机的优化效果大体一致。