Identificação de potenciais nódulos em mamografias utilizando Transformada Rápida de Fourier (FFT)

Andresa Almeida da Silva Centro de Informática, UFPE Recife, Brasil aas10@cin.ufpe.br Maria Clara Alves Acruchi Centro de Informática, UFPE Recife, Brasil mcaa@cin.ufpe.br Maria Luísa dos Santos Silva Centro de Informática, UFPE Recife, Brasil mlss@cin.ufpe.br

Maria Vitória Soares Muniz Centro de Informática, UFPE Recife, Brasil mvsm3@cin.ufpe.br

I. Introdução

Atualmente o câncer de mama é tido como o segundo câncer mais comum no mundo. Estatisticamente, a detecção no estágio inicial é associada a um potencial de cura de 99%. Portanto, técnicas computadorizadas se tornam atualmente de altíssima relevância no processo de identificação e classificação de resultados. Assim, o projeto objetiva o estudo e a implementação de diferentes técnicas de segmentação de imagem com a utilização da Transformada Rápida de Fourier (FFT) visando a identificação de potenciais nódulos em mamografias.

A Transformada Rápida de Fourier consiste em um dos algoritmos voltados para a implementação da Tranformada de Fourier, operação que converte sinais no domínio do tempo para o domínio da frequência. Apesar de não ser o único algoritmo existente, nesse projeto foi o escolhido em detrimento da sua complexidade assintótica O(nlogn) – superior à Transformada de Fourier tradicional –, comportamento essencial no processamento de imagens de alta qualidade, pois reduz significativamente o tempo de execução.

II. METODOLOGIA

A partir da seleção de um *dataset* de 10 imagens [1], a heurística de identificação dos potenciais nódulos dividiu-se em duas etapas: segmentação e classificação. A primeira sendo voltada para a simplificação da imagem original, removendo informações desnecessárias, enquanto a segunda, para a análise da imagem resultante em busca da identificação de nódulos.

A. Segmentação

A segmentação pode ser vista como o processo de multiplexação da imagem em diferentes regiões ou objetos a partir de características – como cor ou intensidade –, visando a simplificação da imagem em um conjunto de *pixels* que permitam eventual análise.

No contexto da proposta, aplicou-se a seguintes etapas de processamento em cima da leitura da imagem em tons de cinza: transformação linear, limiarização, Transformada Rápida de Fourier, filtro passa-faixa, Transformada Rápida de Fourier Inversa (IFFT) e *Gaussian Blur*.

1) Transformação Linear: Nas imagens de mamografia, as regiões que podem indicar um potencial nódulo são representadas por cores claras. Assim, a fim de evidenciar tais regiões, aplicou-se uma transformação linear para aumentar o contraste entre as cores (Figura 1).

A operação consistiu na utilização de uma função *convertS-caleAbs* associada a biblioteca OpenCV de Python, que leva em consideração o ajuste da diferença entre os valores máximo e mínimo de tons de cinzas da imagem para um intervalo maior de valores, ampliando a escala e tornando a imagem mais contrastada.

Figura 1. Aplicação da transformação linear.

2) *Limiarização*: Visando uniformizar o tom do fundo da imagem para eliminar informações fora da área de interesse e, portanto, evidenciar a borda entre estas regiões, aplicou-se a limiarização em cima da imagem contrastada (Figure 2).

Tal operação consistiu na utilização de uma operação *bitwise* de uma máscara binária com o auxílio da função *threshold* da biblioteca OpenCV de Python, na qual os tons de cinza até 100 (tons mais escuros) foram definidos como 0 (cor preta).

3) Transformada Rápida de Fourier: Aplicou-se a FFT sobre a imagem visando objetivo filtrá-la no domínio da frequência através da utilização da função fft2 da biblioteca

Figura 2. Aplicação da limiarização.

Numpy de Python, capaz de obter a transformada em duas dimensões (Figure 3).

Figura 3. Aplicação da Transformada Rápida de Fourier.

4) Filtro Passa-Faixa: Com a imagem no domínio da frequência, aplicou-se um filtro passa-faixa, visando a melhor definição dos contornos e remoção de ruído associado a frequências indesejadas (Figure 4).

O filtro passa-faixa consiste em um dos filtros utilizados no processo de segmentação de imagem que visa a filtragem das frequências a partir de dois valores predefinidos. Ou seja, permite a passagem das frequências em uma determinada faixa e rejeita as demais.

Figura 4. Aplicação do Filtro Passa-Faixa.

- 5) Transformada Rápida de Fourier Inversa: Visando retornar a imagem para o domínio do tempo para a aplicação do último método, aplicou-se a IFFT através da função *ifft2* da biblioteca Numpy de Python (Figure 5).
- 6) Gaussian Blur: Visando a suavização da imagem e finalização da segmentação, aplicou-se o Gaussian Blur e o método da limiarização explicado anteriormente, mas dessa vez convertendo os tons mais escuros para o 35, proporcio-

Figura 5. Aplicação da Transformada Rápida de Fourier Inversa.

nando a binarização da imagem nos tons de preto e branco (Figure 6 e 7).

O Gaussian Blur consiste em um método estatístico baseado em distribuição gaussiana que calcula a média de valores em regiões próximas, podendo tornar a imagem mais ou menos embaçada a depender da matriz utilizada.

Figura 6. Aplicação do Gaussian Blur.

Figura 7. Aplicação da limiarização final.

B. Classificação

A classificação consistiu na identificação dos possíveis nódulos através das imagens resultantes do processo de segmentação descrito anteriormente. Para isso, implementouse uma função *polygon_contours* responsável pelos seguintes passos:

- Encontrar os contornos com a utilização de uma função findContours disponibilizada pela biblioteca OpenCV de Python.
- Verificar quais destes consistem em curvas fechadas, ou seja, analisar se o formato da região pode ser aproximada a um polígono.

- 3) Reconhecer e filtrar os resultados para eliminar aqueles que são inválidos, ou seja, possuem limites incluindo bordas da imagem e/ou áreas muito pequenas.
- 4) Desenhar os possíveis nódulos identificados a partir dos contornos resultantes.

As Figuras 8 e 9 exemplificam duas mamografias, com detecção e sem detecção de nódulo, respectivamente, como esperado conforme o banco de dados utilizado.

Figura 8. Mamografia classificada com o possível nódulo identificado.

Figura 9. Mamografia classificada sem possível nódulo identificado.

III. RESULTADOS

O modelo apresentou bons resultados na detecção da região de interesse em imagens de mamografia, encontrando cerca de 90% dessas áreas segundo o banco de imagens.

A Tabela I mostra o resultado esperado e o obtido pelo método proposto.

 $\label{table_equation} \mbox{Tabela I}$ $\mbox{Tabela com resultados esperados e obtidos.}$

Imagem	Resultado esperado	Resultado obtido
mdb028rl	com nódulo	com nódulo
mdb072rm	com nódulo	com nódulo
mdb0871m	sem nódulo	sem nódulo
mdb170rm	com nódulo	sem nódulo
mdb211lm	com nódulo	com nódulo
mdb212rm	com nódulo	com nódulo
mdb244rm	com nódulo	com nódulo
mdb2491m	com nódulo	com nódulo
mdb265lm	com nódulo	com nódulo
mdb315ll	com nódulo	com nódulo

O maior desafio encontrado deveu-se à grande variação na aparência dos nódulos e à presença de ruídos nas imagens. Ou seja, como os nódulos podem ter diferentes formas e tamanhos, além de apresentarem texturas variadas, a detecção pode ser dificultada. Ademais, a mamografia é uma imagem médica que pode ser afetada por diversos tipos de ruídos, como os provenientes do equipamento de imagem, da técnica de posicionamento do paciente e do próprio tecido mamário.

IV. CONCLUSÃO

Considerando os objetivos do modelo proposto para a detecção de nódulos em imagens de mamografia, concluiuse que a utilização da Transformada Rápida de Fourier é uma abordagem promissora. Além disso, essa técnica pode ser combinada com outras tecnologias, como aprendizado de máquina, para melhorar ainda mais a precisão da detecção de nódulos. No entanto, vale ressaltar que essa abordagem é apenas uma dentre as várias possíveis, e deve ser avaliada em conjunto com outras técnicas para se obter os melhores resultados.

REFERÊNCIAS

 Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., et al. (2015). Mammographic Image Analysis Society (MIAS) database v1.21 [Dataset].