第9章e:方向导数与梯度

数学系 梁卓滨

2018-2019 学年 II

提要

- 1. 二元函数的
 - 梯度
 - 等值线
 - 方向导数
- 2. 三元函数的
 - 梯度
 - 等值面
 - 方向导数

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量 $(f_x(x_0,y_0),f_y(x_0,y_0))$

定义 设
$$f(x,y)$$
 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量
$$(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$$

$$(f_x(x_0, y_0), f_y(x_0, y_0))$$
 $p_0(x_0, y_0)$

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量 $(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$

称为f(x,y)在点 $p_0(x_0,y_0)$ 处的梯度

$$(f_x(x_0, y_0), f_y(x_0, y_0))$$
 $p_0(x_0, y_0)$

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量 $(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量 $(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{i}$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

定义 设 f(x,y) 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量 $(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$

称为f(x,y) 在点 $p_0(x_0,y_0)$ 处的梯度,记为 $grad f(x_0,y_0)$ 或 $\nabla f(x_0,y_0)$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

例 1 设 $f(x, y) = \frac{x^2}{4} + y^2$,求 $\nabla f \otimes \nabla f(2, 1)$

定义 设
$$f(x,y)$$
 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量
$$(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

例 1 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 $\nabla f \otimes \nabla f(2, 1)$

$$\mathbf{H} \quad \nabla f = (f_{\mathsf{X}}, f_{\mathsf{Y}}) = (,)$$

定义 设
$$f(x,y)$$
 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量
$$(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

例 1 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 $\nabla f \otimes \nabla f(2, 1)$

$$\mathbf{M} \quad \nabla f = (f_X, f_Y) = \left(\frac{X}{2}, \right)$$

定义 设
$$f(x,y)$$
 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量
$$(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

例 1 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 ∇f 及 $\nabla f(2, 1)$

$$\mathbf{M} \quad \nabla f = (f_x, f_y) = \left(\frac{x}{2}, 2y\right)$$

定义 设
$$f(x,y)$$
 定义在区域 D 上,对每一点 $p_0(x_0,y_0) \in D$,定义向量
$$(f_x(x_0,y_0),f_y(x_0,y_0)) = f_x(x_0,y_0) \overrightarrow{i} + f_y(x_0,y_0) \overrightarrow{j}$$

$$\nabla f(x_0, y_0) := (f_x(x_0, y_0), f_y(x_0, y_0))$$

$$p_0(x_0, y_0)$$

例 1 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 $\nabla f \otimes \nabla f(2, 1)$

$$\mathbf{W} \quad \nabla f = (f_x, f_y) = (\frac{x}{2}, 2y), \ \nabla f(2, 1) = (1, 2)$$

例 2 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
, 则 $\nabla f(x, y) = (\frac{x}{2}, 2y)$

梯度 ∇ƒ 是一个向量场

例 2 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
, 则 $\nabla f(x, y) = (\frac{x}{2}, 2y)$

- 梯度 ∇f 是一个向量场
- 反过来,向量场并不总是某个函数的梯度!

证明 若 $F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$, 则

证明 若 $F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$,则 $f_x = y, \quad f_y = -\sin(xy)$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{XY} =$$
 , $f_{YX} =$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{XY} = 1$$
, $f_{YX} =$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = 1$$
, $f_{yx} = -y\cos(xy)$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则 $f_x = y$, $f_y = -\sin(xy)$

$$f_{xy} = 1$$
, $f_{yx} = -y\cos(xy)$ \Rightarrow $f_{xy} \neq f_{yx}$

证明 若 $F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$,则 $f_x = y, \quad f_y = -\sin(xy)$

 $f_{xy} = 1$, $f_{yx} = -y\cos(xy)$ \Rightarrow $f_{xy} \neq f_{yx}$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \stackrel{\text{隐函数定理}}{\Longrightarrow}$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \xrightarrow{\text{隐函数cp}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = 0$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \xrightarrow{\text{隐函数定理}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_V(p), -f_X(p))$ 。

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与 等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \xrightarrow{\text{隐函数定理}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) =$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0$ $\xrightarrow{\text{隐函数} \text{定理}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

 $\vec{s} \cdot \nabla f(p) = (f_{V}(p), -f_{X}(p)) \cdot (f_{X}(p), f_{V}(p))$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与 等值线 $\{f=c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0$ $\stackrel{\text{隐函数} \text{定理}}{\longrightarrow}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_V(p), -f_X(p))$ 。所以

$$f_{V}(p) = 0$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0$ $\xrightarrow{\text{隐函数} \text{cry}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) = (f_y(p), -f_x(p)) \cdot (f_x(p), f_y(p)) = 0$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \xrightarrow{\text{隐函数} \text{crg}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) = (f_{V}(p), -f_{X}(p)) \cdot (f_{X}(p), f_{V}(p)) = 0$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0$ $\xrightarrow{\text{隐函数} \text{定理}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) = (f_{y}(p), -f_{x}(p)) \cdot (f_{x}(p), f_{y}(p)) = 0$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与 等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0$ $\xrightarrow{\text{隐函数} \text{定理}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) = (f_y(p), -f_x(p)) \cdot (f_x(p), f_y(p)) = 0$$

性质 设 $p(x_0, y_0)$ 在等值线 $\{f = c\}$ 上,并且 $\nabla f(p) \neq 0$,则 $\nabla f(p)$ 与等值线 $\{f = c\}$ 在 p 点处的切线垂直。

证明 $\nabla f(p) \neq 0 \xrightarrow{\text{隐函数} \text{crg}}$ 等值线 $\{f = c\}$ 在 p 点处的切线的方向向量 是 $\vec{s} = (f_v(p), -f_x(p))$ 。所以

$$\vec{s} \cdot \nabla f(p) = (f_{\gamma}(p), -f_{\chi}(p)) \cdot (f_{\chi}(p), f_{\gamma}(p)) = 0$$

z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(\mathbf{x}_0, \mathbf{y}_0)} :=$$

z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} : =$$

z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} : =$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial t} | := \lim_{t \to 0} \frac{f(x_0 + t \cos \alpha, y_0 + t \sin \alpha) - f(x_0, y_0)}{t}$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$Z = f(x, y)$$
 任思 $p_0(x_0, y_0)$ 处治方问 t 的变化率,即方问寻数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$

$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$

$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$
$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$
$$= \nabla f(x_0, y_0) \cdot e_{\ell}$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$
$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$
$$= \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f|\cos\theta$$

• z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

• z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

$$\nabla f(x_0, y_0)$$

$$\ell$$

$$e_{\ell} = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向 上的方向导数。

• z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向 上的方向导数。 \mathbf{H} 1. 方向 $\ell = \overrightarrow{pq} = ($), 对应单位向量 $\mathbf{e}_{\ell} = ($

$$\nabla z = (z_X, z_Y) =$$

$$\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$$

3. 方向导数

z = f(x, y) 在点 p₀(x₀, y₀) 处沿方向 l
 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

$$\nabla f(x_0, y_0)$$

$$e_l = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向上的方向导数。

解 1. 方向
$$\ell = \overrightarrow{pq} = (1, -1)$$
,对应单位向量 $e_{\ell} = ($)

2. 计算梯度 $\nabla z = (z_x)$

$$\nabla z = (z_x, z_y) =$$

 $\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$

3. 方向导数

z = f(x, y) 在点 p₀(x₀, y₀) 处沿方向 l
 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

 $\nabla f(x_0, y_0)$ $e_l = (\cos \alpha, \sin \alpha)$ (x_0, y_0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向上的方向导数。

解 1. 方向
$$\ell = \overrightarrow{pq} = (1, -1)$$
,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

2. 计算梯度

$$\nabla z = (z_x, z_y) =$$

3. 方向导数

$$\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$$

 z = f(x, y) 在点 p₀(x₀, y₀) 处沿方向 ℓ 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向 上的方向导数。 解 1. 方向 $\ell = \overrightarrow{pq} = (1, -1)$,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

2. 计算梯度
$$\nabla z = (z_x, z_y) = (e^{2y}, 2xe^{2y})$$

 $\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$

• z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

 $e_l = (\cos \alpha, \sin \alpha)$

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向 上的方向导数。 解 1. 方向 $\ell = \overrightarrow{pq} = (1, -1)$,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

2. 计算梯度 $\nabla z = (z_x, z_y) = (e^{2y}, 2xe^{2y})$

3. 方向导数 $\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} = (1,2) \cdot (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

第 9 章 e:方向导数与梯度

• z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:

即方向守数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

 $e_l = (\cos \alpha, \sin \alpha)$

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方向 上的方向导数。 解 1. 方向 $\ell = \overrightarrow{pq} = (1, -1)$,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

 $\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} = (1,2) \cdot (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = -\frac{1}{\sqrt{2}}$

2. 计算梯度

 $\nabla z = (z_x, z_y) = (e^{2y}, 2xe^{2y})$ 3. 方向导数

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

• 当
$$\theta$$
 = 0 时,

• 当
$$\theta = \pi$$
 时,

•
$$\theta = \frac{\pi}{2}$$
 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

• 当
$$\theta = 0$$
 时, $e_{\ell} = \overrightarrow{n}$,

• 当
$$\theta = \pi$$
时,

•
$$\theta = \frac{\pi}{2}$$
 时,

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

• 当 $\theta = 0$ 时, $e_l = \overrightarrow{n}$,并且方向导数达到最大值:

$$\left.\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)}=|\nabla f(x_0,y_0)|>0,$$

• 当
$$\theta = \pi$$
 时,

•
$$\theta = \frac{\pi}{2}$$
 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时,

• $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0,y_0)} = |\nabla f(x_0,y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_{\ell} = -\overrightarrow{n}$,

• $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = -|\nabla f(x_0, y_0)| < 0,$$

• 当 $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = \left| \nabla f(x_0, y_0) \right| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

• 当 $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left|\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)} = |\nabla f(x_0,y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\left|\frac{\partial f}{\partial l}\right|_{(x_0,y_0)} = -|\nabla f(x_0,y_0)| < 0$$
,说明沿梯度反方向,函数减速最快

• 当 $\theta = \frac{\pi}{2}$ 时, $e_{\ell} \perp \overrightarrow{n}$,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

- 当 $\theta = 0$ 时, $e_{\ell} = \overrightarrow{n}$,并且方向导数达到最大值:
- $\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = \left| \nabla f(x_0, y_0) \right| > 0$,说明沿梯度方向,函数增速最快
- 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值: $\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} = -|\nabla f(x_0,y_0)| < 0$,说明沿梯度反方向,函数减速最快
- 当 $\theta = \frac{\pi}{2}$ 时, $e_{\ell} \perp \overrightarrow{n}$,并且方向导数为零: $\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = 0$ 。

大? 并思考: 在点 (0,0) 的时候呢?

解梯度 $\nabla z = (2x, -2y),$

解梯度 $\nabla z = (2x, -2y),$

- 沿方向 ∇z(0,1) = ()增加最快
- 沿方向 -∇z(0, 1) = (减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 $-\nabla z(0, 1) = (0, 2)$ 减少最快

三元函数 z = f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 的梯度: $\operatorname{grad} f(p) \stackrel{\underline{\operatorname{sl}}}{=} \nabla f(p) :=$

三元函数
$$z = f(x, y, z)$$
 在点 $p(x_0, y_0, z_0)$ 的梯度:

$$\operatorname{grad} f(p) \stackrel{\vec{\boxtimes}}{=\!\!\!=\!\!\!=} \nabla f(p) := (f_X(p), f_Y(p), f_Z(p))$$

三元函数 z = f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 的梯度:

 $\operatorname{grad} f(p) \stackrel{\underline{\vec{y}}}{=\!\!\!=\!\!\!=} \nabla f(p) := (f_X(p), f_Y(p), f_Z(p))$

三元函数 z = f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 的梯度:

 $\operatorname{grad} f(p) \stackrel{\underline{\vec{y}}}{=\!\!\!=} \nabla f(p) := (f_X(p), f_Y(p), f_Z(p))$

三元函数 z = f(x, y, z) 在点 $p(x_0, y_0, z_0)$ 的梯度:

$$\operatorname{grad} f(p) \stackrel{\underline{\vec{y}}}{=\!\!\!=\!\!\!=} \nabla f(p) := (f_X(p), f_Y(p), f_Z(p))$$

$$\mathbf{H} \nabla f = (f_X, f_Y, f_Z) =$$

$$\mathbf{H} \nabla f = (f_x, f_y, f_z) = = (-3x^2 + y^2, 2xy, 1)$$

$$\mathbb{H} \nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) \Rightarrow \nabla f(p) = (-\frac{1}{2}, \frac{1}{2}, 1)$$

$$\mathfrak{M} \nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) \Rightarrow \nabla f(p) = (-\frac{1}{2}, \frac{1}{2}, 1)$$

$$\mathfrak{M} \nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) \Rightarrow \nabla f(p) = (-\frac{1}{2}, \frac{1}{2}, 1)$$

$$\mathfrak{M} \nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) \Rightarrow \nabla f(p) = (-\frac{1}{2}, \frac{1}{2}, 1)$$

设三元函数 f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的一个邻域内有定义,设 ℓ

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

设三元函数 f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的一个邻域内有定义,设 ℓ

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$\frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma) - f(x_0, y_0, z_0)}{t}$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$\lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 l 的变化率,即方向导数 ,为
$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0, z_0)} : f(x_0 + t\cos \alpha, y_0 + t\cos \beta, z_0 + t\cos \alpha) - f(x_0, y_0, z_0)$$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 ℓ 的变化率,即方向导数,为
$$\frac{\partial f}{\partial \ell} \bigg|_{(x_0, y_0, z_0)} :$$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$= \frac{d}{dt} \bigg|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 l 的变化率,即方向导数,为 $\frac{\partial f}{\partial l} \bigg|_{(x_0, y_0, z_0)} :$ $= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$ $= \frac{d}{dt} \bigg|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$ $= f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数,为 $= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$ $= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma)$ $= f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$ $=\nabla f(x_0, y_0, z_0) \cdot e_{\ell}$

设三元函数 f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的一个邻域内有定义,设 ℓ 是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 ℓ 的变化率,即方向导数,为 $\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0, z_0)}$:
$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$$

$$= f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$$

$$= \nabla f(x_0, y_0, z_0) \cdot e_\ell = |\nabla f| \cos \theta$$

其中 θ 是 $\nabla f(x_0, y_0, z_0)$ 与 e_i 的夹角

- 沿梯度方向,增加速度最快,
- 沿梯度反方向,减少速度最快,
- 梯度垂直方向, 其变化率为零

- 沿梯度方向,增加速度最快,达到 |∇ƒ(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

- 沿梯度方向,增加速度最快,达到 |∇ƒ(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

$$\mathbf{H} \, \mathbf{1}.\nabla f = (f_{\mathsf{X}}, f_{\mathsf{y}}, f_{\mathsf{z}}) = ($$

- 沿梯度方向,增加速度最快,达到 |∇ƒ(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 -|∇f(x₀, y₀, z₀)|
- 梯度垂直方向, 其变化率为零

$$\mathbf{H} \mathbf{1}.\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2,$$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 -|∇f(x₀, y₀, z₀)|
- 梯度垂直方向,其变化率为零

$$\mathbb{H} \mathbf{1}.\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy,)$$

- 沿梯度方向,增加速度最快,达到 |∇ƒ(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 -|∇f(x₀, y₀, z₀)|
- 梯度垂直方向, 其变化率为零

$$\mathbb{H} \mathbf{1}.\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

$$\mathbb{H} \mathbf{1}.\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) \Rightarrow \nabla f(0.5, 0.5, 1) =$$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

I
$$\mathbf{H}$$
 1. $\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) ⇒ $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

例 设
$$f(x, y, z) = -x^3 + xy^2 + z$$
, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿什么方向变化最快,变化率是多少?

I
$$\mathbf{H}$$
 1. $\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1) ⇒ $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$$

2. 函数沿梯度方向 ∇f(0.5, 0.5, 1) ,增加速度最大,

达到 $|\nabla f(x_0, y_0, z_0)|$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

例 设
$$f(x, y, z) = -x^3 + xy^2 + z$$
, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿什么方向变化最快,变化率是多少?

M 1.∇
$$f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$
 \Rightarrow ∇ $f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0, z_0)|$

- 沿梯度方向,增加速度最快,达到 $|\nabla f(x_0, y_0, z_0)|$
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其变化率为零

例 设
$$f(x, y, z) = -x^3 + xy^2 + z$$
, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿什么方向变化最快,变化率是多少?

M 1.∇
$$f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$
 \Rightarrow ∇ $f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0, z_0)| = \sqrt{1.5}$

- 沿梯度方向,增加速度最快,达到 |∇ƒ(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向,其变化率为零

例设 $f(x, y, z) = -x^3 + xy^2 + z$, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿

$$(-0.5, 0.5, 1)$$
2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,

- 达到 $|\nabla f(x_0, y_0, z_0)| = \sqrt{1.5}$
- 3. 函数沿梯度反方向 --∇f(0.5, 0.5, 1)

,减少速度

最大,达到 -|∇ƒ(x₀, y₀, z₀)| ^{第9章 e: 方向导数与梯度}

- 弘梯度方向、增加速度最快、达到 |∇f(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 |∇f(x₀, y₀, z₀)|
- 梯度垂直方向, 其变化率为零

例设 $f(x, y, z) = -x^3 + xy^2 + z$, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿

$$(-0.5, 0.5, 1)$$
2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,

达到 $|\nabla f(x_0, y_0, z_0)| = \sqrt{1.5}$

3. 函数沿梯度反方向 $-\nabla f(0.5, 0.5, 1) = (0.5, -0.5, -1)$,减少速度 最大,达到一|∇ƒ(x₀, y₀, z₀)| ^{第9章 e: 方向导数与梯度}

- 弘梯度方向、增加速度最快、达到 |∇f(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 |∇f(x₀, y₀, z₀)|
- 梯度垂直方向, 其变化率为零

例设 $f(x, y, z) = -x^3 + xy^2 + z$, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点沿

$$(-0.5, 0.5, 1)$$
2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,

达到 $|\nabla f(x_0, y_0, z_0)| = \sqrt{1.5}$

3. 函数沿梯度反方向 $-\nabla f(0.5, 0.5, 1) = (0.5, -0.5, -1)$,减少速度 最大,达到 $-|\nabla f(x_0, y_0, z_0)| = -\sqrt{1.5}$