Intro to ABMs

2024-04-09

What is an agent-based model (ABM)?

- No rigorous definition (like most applied science)
- But: can characterize as a model consisting of
 - 1. **entities** (the agents)...
 - 2. ...which **act**¹ upon each other...
 - 3. ...to create some **emergent** outcome
- "Emergent" = collective is more than the sum of its parts
- Implemented computationally, sometimes also analysed mathematically

What is the benefit of ABMs?

"Like equation-based modeling, but unlike prose, agent-based models must be complete, consistent, and unambiguous if they are to be capable of being executed on a computer" (Gilbert 2020, xii, my emphasis)

- complete: the modeller cannot leave anything out of the model description
- consistent: no part of the model can logically contradict another part of the same model
- unambiguous: the meaning of every part of the model must be objectively clear

Examples

These concepts are best explained through the use of examples...

...so let's look at a few!²

¹Eng. agent < Lat. agens, pres. part. of ago 'act'

²The examples are taken from the Example Zoo of the Agents.jl package (released under the MIT license).

Example 1: Conway's Game of Life

- Early example of a **cellular automaton** (subclass of ABMs) (Gardner 1970)
- Lattice; each cell either "live" (L) or "dead" (D)
- Rules:
 - 1. Underpopulation: if a L cell is surrounded by fewer than two L neighbours, it dies
 - 2. Sustenance: if a L cell is surrounded by two or three L neighbours, it continues to
 - 3. Overpopulation: If a L cell is surrounded by more than three L neighbours, it dies
 - 4. Reproduction: If a D cell is surrounded by three L neighbours, it becomes L

Example 1: Conway's Game of Life

../videos/game_of_life.mp4

Question

Earlier we said ABMs are complete, consistent and unambiguous.

What have I left out of the definition of Conway's Game of Life? (I.e. why is my description so far incomplete?)

Answer

Two very important things:

- 1. Is the lattice **finite** or **infinite**? If finite, then what happens at the boundaries? It
- 2. Are the agents (the cells) updated synchronously (all at once) or asyn**chronously**? Synchronously.

Species

The game supports many life forms ("species"), categorized into:³

- still lifes
- oscillators
- spaceships (moving oscillators)

³Images of Game of Life species from Wikimedia Commons (public domain).

Emergence

- The game has simple rules, complex behaviour
- It is **undecidable**: given a starting state S and a proposed other state O, we can prove that it impossible to prove whether O will ever be reached from S!
- New facts about the game are still being discovered: 2018 discovery of "knightships" (spaceships that move like the knight in chess)

Example 2: Flocking

- A simple model of the emergence of collective behaviour, namely flocking in birds
- Birds follow three rules:
 - Collision avoidance: maintain a minimum distance to other birds
 - Tracking: fly towards the average position of neighbouring birds
 - Navigation: fly in the average direction of your neighbours

Example 2: Flocking

../videos/flocking.mp4

Example 3: Social Distancing

Bounded rationality / Locality

- Common to all these examples is the following observation: the agents have **bounded** rationality
 - In Flocking, individual birds follow only three simple rules defined over the bird's neighbours
 - A bird does not know what flocking means, nor does it have a rule to accomplish
 flocking
 - Rather, flocking emerges as the collective behaviour of a group of birds
- In other words, global patterns arise from numerous local interactions
- Similar remarks apply to Game of Life and Social Distancing, indeed to any ABM

Challenges in ABM

- How do we know what to model?
- How do we test our models against empirical data?
- How do we implement our models computationally?

Challenges of computational implementation

- Speed: we want simulations to be fast
- Randomness: when our code calls for random numbers, we want them to be really random!
- Cleanliness: we want our code to be understandable to other users
- Reproducibility: when others run our code, they should get the same results we do

Why is speed an issue?

- Central processing units (CPUs) in modern computers carry out billions of instructions each second
- However, with ABMs, computational requirements may be significant, and may not **scale** nicely

Speed issues: an example

- You have a model such that one simulation run, with a given set of parameter values, takes 1 minute to complete.
 - Suppose your model has 2 parameters, each of which can assume 100 different values. This means a total of $100 \times 100 = 10,000$ parameter combinations.
 - Suppose you want to replicate the simulation for each parameter combination 100 times for statistical reasons.
 - Then you're looking at a total of 1 million runs.
- With 1 minute / run, we're looking at 2 years to get the results!

How to deal with issues of speed

- 1. Choose a suitable programming language
- 2. Write **performant** code
- 3. Whenever possible, **parallelize** your code
 - This means running it simultaneously across many CPUs/computers; we will see later how it's done

Why is randomness needed?

- Quite simple: real-world processes are complex, and to model such complex processes we resort to **stochastic processes**
- A stochastic process is a sequence of random variables
- For example, consider a "navigating" agent that turns into a random direction whenever it doesn't know how to proceed otherwise. In this case, the random direction needs to be generated using a **random number**.
- Or consider a linguistic example: suppose Mary is friends with Bob, Fiona and Charles. Unless we want to claim that Mary's interactions with the other people are **deterministic** (which does not seem particularly sensible), we need some way of selecting interlocutors at random.

Why is randomness an issue?

- Conventional computers are deterministic devices
- So, if we need, say, a random number between 0 and 1, how is that accomplished?
- The answer is a **pseudorandom number generator** (PRNG)
 - This is an algorithm that generates a (long, but not infinite!) sequence of numbers which has the *appearance* of being random
 - The sequence is generated from a **seed** number. If you give the PRNG the same seed, you will get the same "random" sequence of numbers (this takes care of the reproducibility requirement).
 - However, there are significant issues...

Issues with PRNGs

- Suppose your PRNG generates a sequence of 1M numbers...
- ...but in your simulation you need to generate 10M random numbers⁴
- Then your "random" numbers will repeat 10 times
- This means that different parts of your simulation are **not** independent of each other a major problem!
- Further issues can arise when we look at parallel processing... but more on that later!

Summary

- ABM is a powerful framework for modelling real-world processes
- Models are complete, consistent and unambiguous

⁴We'll see later that this is by no means a crazy requirement!

- Individual agents exhibit bounded rationality
- Challenges involve, among other things, simulation speed and proper implementation of randomness

The scientific community

- ABMs are created and explored by people in all manners of disciplines from physics and chemistry to linguistics and economics
- Examples of professional organisation in social sciences and linguistics:
 - European Social Simulation Association
 - The Journal of Artificial Societies and Social Simulation
 - The International Society for Computational Social Science (+IC2S2 conference)
 - Language Dynamics and Change (journal)

Homework

Next week, we will start programming. To prepare your computer for this, complete the homework Installing Julia.

References

Gardner, Martin. 1970. "The Fantastic Combinations of John Conway's New Solitaire Game 'Life'." *Scientific American* 223 (4): 120–23. https://doi.org/10.1038/scientificamerican10 70-120.

Gilbert, Nigel. 2020. Agent-Based Models. Second edition. London: SAGE.