

Ex. 04 - Comparações Múltiplas

Exercício 01. Considere os contrastes $Y_1+Y_2+Y_3$ dados por:

$$Y_1=\mu_1-\mu_2$$

$$Y_2 = 2\mu_2 - \mu_3 - \mu_4$$

$$Y_3 = \mu_3 - \mu_4$$

 $Y_1=\mu_1-\mu_2$ $Y_2=2\mu_2-\mu_3-\mu_4$ $Y_3=\mu_3-\mu_4$ Verifique quais são ortogonais.

Exercício 02. Construa um grupo de contrastes ortogonais para os dados do exemplo 2.

EXERCÍCIO 01

Por definição, dois contrastes são ditos como ortogonais quando atendem a igualdade $\sum_{i=1}^l rac{a_i b_i}{J_i} = 0$ e todos os tratamentos apresentam o mesmo número de repetições.

Para facilitar a análise, irei isolar previamente cada termo dos contrastes apresentados:

Contraste	μ1	μ2	μ3	μ4
$Y_1=\mu_1-\mu_2$	1	-1	0	0
$Y_2 = 2\mu_2 - \mu_3 - \mu_4$	0	2	-1	-1
$Y_3=\mu_3-\mu_4$	0	0	1	-1

Logo, temos que testar cada contraste individualmente, par a par.

a. Ortogonalidade entre $Y_1|Y_2$:

$$\sum_{i=1}^{l} \frac{a_i b_i}{J_i} = \frac{(c_{1.1} \times c_{2.1}) + (c_{1.2} \times c_{2.2}) + (c_{1.3} \times c_{2.3}) + (c_{1.4} \times c_{2.4})}{x} = \frac{1 \times 0}{x} + \frac{(-1) \times 2}{x} + \frac{0 \times (-1)}{x} + \frac{0 \times (-1)}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0}{x} + \frac{1 \times 0}{x} + \frac{1 \times 0}{x} = \frac{1 \times 0$$

 \therefore Visto que a igualdade não é atendida, $Y_1 | Y_2$ não são contrastes ortogonais.

b. Ortogonalidade entre $Y_1 | Y_3$:

$$\sum_{i=1}^{l} rac{a_i b_i}{J_i} = rac{\left(c_{1.1} imes c_{3.1}
ight) + \left(c_{1.2} imes c_{3.2}
ight) + \left(c_{1.3} imes c_{3.3}
ight) + \left(c_{1.4} imes c_{3.4}
ight)}{x} = rac{1 imes 0}{x} + rac{\left(-1
ight) imes 0}{x} + rac{0 imes \left(-1
ight)}{x} + rac{0 imes \left(-1
ight)}{x} = rac{1}{x} + rac{0 imes \left(-1
ight)}{x} = rac{1}{x} + rac$$

 \therefore Visto que a igualdade não é atendida, $Y_1|Y_3$ são contrastes ortogonais.

c. Ortogonalidade entre $Y_2|Y_3$:

$$\sum_{i=1}^{l} rac{a_i b_i}{J_i} = rac{(c_{2.1} imes c_{3.1}) + (c_{2.2} imes c_{3.2}) + (c_{2.3} imes c_{3.3}) + (c_{2.4} imes c_{3.4})}{x} = rac{0 imes 0}{x} + rac{2 imes 0}{x} + rac{(-1) imes 1}{x} + rac{(-1) imes (-1)}{x} = rac{1}{x} + rac{1}{x} = 0$$

 \therefore Visto que a igualdade não é atendida, $Y_2|Y_3$ são contrastes ortogonais.

CONCLUSÕES

Os contrastes ortogonais são:

 Y_1 e Y_3

 Y_2 e Y_3

EXERCÍCIO 02

O exemplo 02 aborda um experimento com as seguintes características:

- Delineamento: DIC
- Fonte de variação: Cultivares (A, B, C e D)
- Variável resposta: Produtividade (kg/100m²)

▼ CONSTRUÇÃO DE CONTRASTES

Grupos de contrastes possíveis seriam:

a.
$$Y_1 = \mu_1 - \mu_2$$

b.
$$Y_2 = \mu_3 - \mu_4$$

c.
$$Y_3 = \mu_1 + \mu_2 - \mu_3 - \mu_4$$

Isolando os termos em forma de tabela, teríamos:

Contraste	μ1	μ2	μ3	μ4
Y_1	1	-1	0	0
Y_2	0	0	1	-1
Y_3	1	1	-1	-1

▼ TESTE DE ORTOGONALIDADE

a. Ortogonalidade entre $Y_1 | Y_2$:

$$\sum_{i=1}^{l} rac{a_i b_i}{J_i} = rac{(c_{1.1} imes c_{2.1}) + (c_{1.2} imes c_{2.2}) + (c_{1.3} imes c_{2.3}) + (c_{1.4} imes c_{2.4})}{x} = rac{1 imes 0}{x} + rac{(-1) imes 0}{x} + rac{0 imes 1}{x} + rac{0 imes (-1)}{x} = rac{1 imes 0}{x} + rac{1 imes 0}{x} = rac{1 imes 0}{x} + rac{1 imes 0}{x} = 0$$

- \therefore Visto que a igualdade não é atendida, $Y_1|Y_2$ são contrastes ortogonais.
- b. Ortogonalidade entre $Y_1 | Y_3$:

$$\sum_{i=1}^{l} \frac{a_i b_i}{J_i} = \frac{(c_{1.1} \times c_{3.1}) + (c_{1.2} \times c_{3.2}) + (c_{1.3} \times c_{3.3}) + (c_{1.4} \times c_{3.4})}{x} = \frac{1 \times 1}{x} + \frac{(-1) \times 1}{x} + \frac{0 \times (-1)}{x} + \frac{0 \times (-1)}{x} = \frac{1}{x} + \frac{1}{x} + 0 + 0 = 0$$

- \therefore Visto que a igualdade não é atendida, $Y_1|Y_3$ são contrastes ortogonais.
- c. Ortogonalidade entre $Y_2 | Y_3$:

$$\sum_{i=1}^{l} \frac{a_i b_i}{J_i} = \frac{(c_{2.1} \times c_{3.1}) + (c_{2.2} \times c_{3.2}) + (c_{2.3} \times c_{3.3}) + (c_{2.4} \times c_{3.4})}{x} = \frac{0 \times 1}{x} + \frac{0 \times 1}{x} + \frac{1 \times (-1)}{x} + \frac{(-1) \times (-1)}{x} = \frac{1}{x} + \frac{1}{x} = 0$$

 \therefore Visto que a igualdade não é atendida, $Y_2 | Y_3$ são contrastes ortogonais.

II CONCLUSÕES

Os contrastes propostos são ortogonais entre si.