Implementation of the SP3 equations in a MOOSE-based application

Roberto Fairhurst Agosta

NPRE 555 University of Illinois at Urbana-Champaign

December 16, 2020

Outline

- 1 Introduction Objectives
- Methodology MOOSE SP₃ Kernels Diffusion solver C5 MOX Benchmark
- 3 Results
 - 1-D test case
 - 2-D test case
- 4 Conclusions
 Conclusions

Objectives

- Implement and solve SP_3 equations with a MOOSE-based application for the following cases:
- one-dimensional models:
 - fixed source problem with one energy group,
 - eigenvalue problem with one energy group,
 - fixed source problem with multiple energy groups,
 - eigenvalue source problem with multiple energy groups,
 - compare results to diffusion solver,
- two-dimensional model: C5 MOX Benchmark [3].

Outline

- 1 Introduction Objectives
- Methodology MOOSE SP₃ Kernels Diffusion solver C5 MOX Benchmark
- 3 Results
 1-D te
 - 2-D test case
- 4 Conclusions

MOOSE

MOOSE

- Computational framework
- Solves coupled equation systems
- MOOSE defines weak forms
- MOOSE and LibMesh translate them into residual and Jacobian functions
- PetSc solution routines solve the equations

Figure: MOOSE framework. Image reproduced from [4].

P_3 equations

$$\frac{d}{dx}\phi_{1,g} + \Sigma_{t,g}\phi_{0,g} = \sum_{g'=1}^{G} \Sigma_{s0,g'\to g}\phi_{0,g'} + \frac{\chi_g}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'}\phi_{0,g'} + Q_{0,g}$$
(1)

$$\frac{1}{3}\frac{d}{dx}\phi_{0,g} + \frac{2}{3}\frac{d}{dx}\phi_{2,g} + \Sigma_{t,g}\phi_{1,g} = \sum_{g'=1}^{G} \Sigma_{s1,g'\to g}\phi_{1,g'} + Q_{1,g}$$
 (2)

$$\frac{2}{5}\frac{d}{dx}\phi_{1,g} + \frac{3}{5}\frac{d}{dx}\phi_{3,g} + \Sigma_{t,g}\phi_{2,g} = \sum_{g'=1}^{G} \Sigma_{s2,g'\to g}\phi_{2,g'} + Q_{2,g}$$
(3)

$$\frac{3}{7}\frac{d}{dx}\phi_{2,g} + \Sigma_{t,g}\phi_{3,g} = \sum_{g'=1}^{G} \Sigma_{s3,g'\to g}\phi_{3,g'} + Q_{3,g}. \tag{4}$$

Assumptions [2]:

- isotropic external source
- negligible anisotropic group-to-group scattering

P_3 equations (2)

$$\frac{d}{dx}\phi_{1,g} + \Sigma_{0,g}\phi_{0,g} = \sum_{g'\neq g}^{G} \Sigma_{s0,g'\to g}\phi_{0,g'} + \frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'}\phi_{0,g'} + Q_{0,g}$$
(5)

$$\frac{1}{3}\frac{d}{dx}\phi_{0,g} + \frac{2}{3}\frac{d}{dx}\phi_{2,g} + \Sigma_{1,g}\phi_{1,g} = 0 \tag{6}$$

$$\frac{2}{5}\frac{d}{dx}\phi_{1,g} + \frac{3}{5}\frac{d}{dx}\phi_{3,g} + \Sigma_{2,g}\phi_{2,g} = 0 \tag{7}$$

$$\frac{3}{7}\frac{d}{dx}\phi_{2,g} + \Sigma_{3,g}\phi_{3,g} = 0. \tag{8}$$

Defines:

$$\begin{split} D_{0,g} &= \frac{1}{3\Sigma_{1,g}} \\ D_{2,g} &= \frac{9}{35\Sigma_{3,g}} \\ \Phi_{0,g} &= \phi_{0,g} + 2\phi_{2,g} \\ \Phi_{2,g} &= \phi_{2,g}. \end{split}$$

P_3 equations (3)

$$-D_{0,g}\frac{d^2}{dx^2}\Phi_{0,g} + \Sigma_{0,g}\Phi_{0,g} - 2\Sigma_{0,g}\Phi_{2,g} = S_{0,g}$$
(9)

$$-D_{2,g}\frac{d^2}{dx^2}\Phi_{2,g} + \left(\Sigma_{2,g} + \frac{4}{5}\Sigma_{0,g}\right)\Phi_{2,g} - \frac{2}{5}\Sigma_{0,g}\Phi_{0,g} = -\frac{2}{5}S_{0,g}$$
(10)

where

$$S_{0,g} = \sum_{g' \neq g}^{G} \Sigma_{s0,g' \to g} \left(\Phi_{0,g'} - 2 \Phi_{2,g'} \right) + \frac{\chi_g}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2 \Phi_{2,g'} \right) + Q_{0,g}.$$

SP_3 approximation

- P_N : yields the exact transport solution as $N \to \infty$.
- 3D: $(N+1)^2$ equations.
- 1D: (N+1) equations yield (N+1)/2.
- SP_N approximation replaces $\frac{d^2}{dx^2}$ by Δ .

SP₃ equations

$$-D_{0,g}\Delta\Phi_{0,g} + \Sigma_{0,g}\Phi_{0,g} - 2\Sigma_{0,g}\Phi_{2,g} = S_{0,g}$$
 (11)

$$-D_{2,g}\Delta\Phi_{2,g} + \left(\Sigma_{2,g} + \frac{4}{5}\Sigma_{0,g}\right)\Phi_{2,g} - \frac{2}{5}\Sigma_{0,g}\Phi_{0,g} = -\frac{2}{5}S_{0,g}.$$
 (12)

With the Marshak vacuum BCs [1]

$$\frac{1}{4}\Phi_{0,g} \pm \frac{1}{2}\hat{n} \cdot J_{0,g} - \frac{3}{16}\Phi_{2,g} = 0 \tag{13}$$

$$-\frac{3}{80}\Phi_{0,g} \pm \frac{1}{2}\hat{n} \cdot J_{2,g} + \frac{21}{80}\Phi_{2,g} = 0$$
 (14)

where

$$J_{n,g} = -D_{n,g} \nabla \Phi_{n,g}.$$

Example Code

Strong Form
$$\rho C p \frac{\partial T}{\partial t} - \nabla \cdot k(T, B) \nabla T = f$$

$$\int\limits_{\Omega} \rho C p \frac{\partial T}{\partial t} \psi_i + \int\limits_{\Omega} k \nabla T \cdot \nabla \psi_i \int\limits_{\partial \Omega} k \nabla T \cdot \mathbf{n} \psi_i - \int\limits_{\Omega} f \psi_i = \mathbf{0}$$
 Kernel Revends Boundary Condition Kernel

Figure: Translation into MOOSE kernels procedure [4].

Weak form: Equation 1

$$\begin{split} &\langle D_{0,g} \nabla \Phi_{0,g}, \nabla \Psi \rangle - \langle D_{0,g} \nabla \Phi_{0,g}, \Psi \rangle_{BC} + \langle \Sigma_{0,g} \Phi_{0,g}, \Psi \rangle + \langle -2\Sigma_{0,g} \Phi_{2,g}, \Psi \rangle \\ &+ \left\langle -\sum_{g' \neq g}^{G} \Sigma_{s0,g' \to g} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle \\ &+ \left\langle -\frac{\chi_g}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle + \langle -Q_{0,g}, \Psi \rangle = 0 \end{split} \tag{15}$$

with the boundary condition

$$\langle D_{0,g} \nabla \Phi_{0,g}, \Psi \rangle_{BC} = \left\langle \frac{1}{2} \Phi_{0,g} - \frac{3}{4} \Phi_{2,g}, \Psi \right\rangle_{BC}. \tag{16}$$

Weak form: Equation 2

$$\langle D_{2,g} \nabla \Phi_{2,g}, \nabla \Psi \rangle - \langle D_{2,g} \nabla \Phi_{2,g}, \Psi \rangle_{BC} + \left\langle \left(\Sigma_{2,g} + \frac{4}{5} \Sigma_{0,g} \right) \Phi_{2,g}, \Psi \right\rangle$$

$$+ \left\langle -\frac{2}{5} \Sigma_{0,g} \Phi_{0,g}, \Psi \right\rangle + \left\langle \frac{2}{5} \sum_{g' \neq g}^{G} \Sigma_{s0,g' \to g} \left(\Phi_{0,g'} - 2 \Phi_{2,g'} \right), \Psi \right\rangle$$

$$+ \left\langle \frac{2}{5} \frac{\chi_g}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2 \Phi_{2,g'} \right), \Psi \right\rangle + \left\langle \frac{2}{5} Q_{0,g}, \Psi \right\rangle = 0.$$

$$(17)$$

with the boundary condition

$$\langle D_{2,g} \nabla \Phi_{2,g}, \Psi \rangle_{BC} = \left\langle -\frac{3}{40} \Phi_{0,g} + \frac{21}{40} \Phi_{2,g}, \Psi \right\rangle_{BC}. \tag{18}$$

SP3 Kernels: Equation 1

Table: SP₃ kernels.

Kernel	Equation 1		
P3Diffusion	$\langle D_{0,g} abla \Phi_{0,g}, abla \Psi angle$		
P3SigmaR	$\langle \Sigma_{0,g} \Phi_{0,g}, \Psi \rangle$		
P3SigmaCoupled	$\langle -2\Sigma_{0,g}\Phi_{2,g},\Psi angle$		
P3InScatter	$\left\langle -\sum_{g'\neq g}^{G} \sum_{s0,g'\rightarrow g} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle$ $\left\langle -\frac{\chi_{g}}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle$		
P3FissionEigenKernel	$\left\langle -\frac{\chi_g}{k_{\alpha ff}} \sum_{g'=1}^G \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle$		
BodyForce	$\langle -Q_{0,g},\Psi angle$		
BC Kernel			
Vacuum	$\left\langle rac{1}{2}\Phi_{0,g}-rac{3}{4}\Phi_{2,g},\Psi ight angle_{BC}$		

SP3 Kernels: Equation 2

Table: SP₃ kernels.

Kernel	Equation 2		
P3Diffusion P3SigmaR P3SigmaCoupled P3InScatter	$ \begin{array}{c} \langle D_{2,g} \nabla \Phi_{2,g}, \nabla \Psi \rangle \\ \langle \left(\Sigma_{2,g} + \frac{4}{5} \Sigma_{0,g} \right) \Phi_{2,g}, \Psi \rangle \\ \langle -\frac{2}{5} \Sigma_{0,g} \Phi_{0,g}, \Psi \rangle \\ \langle \frac{2}{5} \sum_{\sigma' \to \sigma}^G \Sigma_{50,g' \to g} \left(\Phi_{0,g'} - 2 \Phi_{2,g'} \right), \Psi \rangle \end{array} $		
P3FissionEigenKernel BodyForce	$ \left\langle \frac{2}{5} \sum_{g'\neq g}^{G} \Sigma_{s0,g'\to g} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle $ $\left\langle \frac{2}{5} \frac{\chi_g}{k_{eff}} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \left(\Phi_{0,g'} - 2\Phi_{2,g'} \right), \Psi \right\rangle $ $\left\langle \frac{2}{5} Q_{0,g}, \Psi \right\rangle $		
BC Kernel			
Vacuum	$\left\langle -\frac{3}{40}\Phi_{0,g}+rac{21}{40}\Phi_{2,g},\Psi ight angle_{BC}$		

Moltres

$$\nabla \cdot D_{g} \nabla \phi_{g} - \Sigma_{g}' \phi_{g} + \sum_{g' \neq g}^{G} \Sigma_{g' \to g}^{s} \phi_{g'} + \chi_{g}^{t} \sum_{g'=1}^{G} \frac{1}{k_{eff}} \nu \Sigma_{g'}^{f} \phi_{g'} + Q_{g} = 0. \quad (19)$$

Benchmark definition

- 7-group cross-sections: C5G7 [5].
- Capilla et al [3]: C5G2.

Figure: 2-D C5 MOX benchmark configuration. Image reproduced from [3]. R represents the reflectors.

Benchmark definition (2)

Figure: UO_2 assembly. Image reproduced from [3].

Figure: MOX assembly. Image reproduced from [3].

Benchmark geometry

Figure: Gmsh 2D geometry.

Outline

- Introduction
 Objectives
- Methodology MOOSE SP₃ Kernels Diffusion solver C5 MOX Benchmark
- 3 Results
 - 1-D test case
 - 2-D test case
- 4 Conclusions
 Conclusions

Fixed source

Comparison between SP_3 and Diffusion solutions of the scalar flux.

Figure: 1 group.

Figure: 3 groups.

Eigenvalue problem

Comparison between SP_3 and Diffusion solutions of the scalar flux. Solutions are normalized to the maximum value of the flux (fast flux for the 3 group case).

Figure: 1 group.

Figure: 3 groups.

C5G2 MOX Benchmark

	C5G2 Benchmark	SP3	
Case	k_{Ref}	k_{SP_3}	$\Delta_{ ho}$ [pcm]
Heterogeneous	0.96969	0.97106	145
Homogeneous	0.96983	0.97061	83

C5G2 MOX Benchmark (2)

Figure: Comparison of the heterogenous and homogeneous cases scalar flux.

C5G2 MOX Benchmark (3)

Figure: $\Phi_{0,1}$.

Figure: $\Phi_{0,2}$.

C5G2 MOX Benchmark (4)

Figure: $\Phi_{2,1}$. Figure: $\Phi_{2,2}$.

Outline

- 1 Introduction Objectives
- Methodology MOOSE SP₃ Kernels Diffusion solver C5 MOX Benchmark
- 3 Results
 - 1-D test case
 - 2-D test case
- 4 Conclusions Conclusions

Conclusions

- 2-D test case: suggest SP₃ equations implementation is correct
- 1-D test cases: solutions are very similar to diffusion solution
- SP_N have a higher computational expense than diffusion
- further studies are necessary to conclude anything on the accuracy
- In general, SP_N are more accurate than diffusion [2]
- Less computational expense than S_N or P_N
- the study cases do not show an increased accuracy over diffusion

References I

- [1] C. Beckert and U. Grundmann.
 - Development and verification of a nodal approach for solving the multigroup P3 equations. Annals of Nuclear Energy, 2007.
- [2] P.S. Brantley and E.W. Larsen.

The Simplified P3 Approximation.

Nuclear Science and Engineering, 2000.

[3] M. Capilla, D. Ginestar, and G. Verdú.

Applications of the multidimensional equations to complex fuel assembly problems.

Annals of Nuclear Energy, 36(10):1624-1634, October 2009.

[4] INL.

Moose Workshop Slides, December 2020.

https://mooseframework.inl.gov/workshop.

[5] OECD/NEA.

Benchmark on Deterministic Transport Calculations Without Spatial Homogenisation: A 2-D/3-D MOX Fuel Assembly Benchmark.

Technical Report NEA/NSC/DOC(2003)16, OECD, 2003.