1 Билет 1. Основные понятия, простейшие типы дифференциальных уравнений

1.1 Основные понятия

Определение 1.1. Уравнение вида

$$F(x, y'(x), y''(x), \dots, y^{(n)}(x)) = 0$$

называется обыкновенным дифференциальным уравнением, где x – аргумент, y(x) – неизвестная функция, F – известная функция.

Определение 1.2. Если это уравнение удается разрешить относительно старшей производной, такое дифференциальное уравнение называется разрешённым относительно старшей производной и записывается в виде

$$y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$$

Порядок уравнения определяется порядком старшей производной от y.

Определение 1.3. Функция $y = \varphi(x)$ называется решением ДУ, если она n раз дифференцируема u

$$F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \equiv 0 \quad \forall x,$$

где определена функция $\varphi(x)$ с её производными.

Определение 1.4. Система п уравнений

$$\begin{cases} \dot{x}^{1} = f_{1}(t, x^{1}(t), \dots, x^{n}(t)) \\ \dots \\ \dot{x}^{n} = f_{n}(t, x^{1}(t), \dots, x^{n}(t)) \end{cases}$$
(1)

 $ede \ x^1(t), \dots, x^n(t)$ — искомые функции, называется нормальной системой ДУ n-го поряд-ка.

Утверждение 1.1. Рассмотрим ДУ $y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$ п-ого порядка. Это уравнение эквивалентно следующей нормальной системе ДУ:

$$\begin{cases} \dot{v}_{1} = v_{2} \\ \dot{v}_{2} = v_{3} \\ \dots \\ \dot{v}_{n-1} = v_{n} \\ \dot{v}_{n} = f_{n}(x, v_{1}, v_{2}, \dots, v_{n}) \end{cases} \Leftrightarrow y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$$
(2)

Доказательство. Введем обозначения: $y=v_1(x),\,y'=v_2(x),\,y''=v_3(x),\,\ldots,\,y^{(n-1)}=v_n(x).$ Тогда имеем $\dot{v}_1=v_2,\,\,\dot{v}_2=v_3,\,\ldots,\dot{v}_n=f(x,v_1,v_2,\ldots,v_n),$ то есть получилась нормальная система дифференциальных уравнений n-ого порядка с неизвестными v_i .

Обратными заменами системы уравнений можно получить исходное дифференциальное уравнение $y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$.

Определение 1.5. Рассмотрим уравнение 1-ого порядка y' = f(x, y(x)). Тогда задача решить это уравнение с условием $y(x_0) = y_0$ называется задачей Коши.

Определение 1.6. Пусть $\varphi(x)$ – решение дифференциального уравнения y' = f(x, y(x)). График решения $\varphi(x)$ называется интегральной кривой. В силу определения функции f(x,y) на множестве Ω , вся интегральная кривая будет лежать в Ω .

Определение 1.7. Проведём через каждую точку интегральной кривой $(x_0, y_0) \in \Omega$ малый отрезок с углом наклона по отношению к оси х равным α , причём $\operatorname{tg} \alpha = f'(x_0, y_0)$. Получим так называемое поле направлений.

Из построения интегральной кривой следует, что интегральная кривая в каждой своей точке касается поля напрвлений. Верно и обратное: кривая, касающаяся в каждой своей точке поля направлений, является интегральной кривой.

1.2 Простейшие типы уравнений первого порядка

1.2.1 Уравнения в полных дифференциалах

Рассмотрим следующее дифференциальное уравнение: P(x,y)dx + Q(x,y)dy = 0. Тогда кривая

$$\gamma = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, \ t_1 \leqslant t \leqslant t_2$$
 (3)

называется интегральной кривой рассматриваемого уравнения, если $\forall t: t \in [t_1; t_2]$ выполнено

$$P(\varphi(t), \psi(t))\varphi'_t + Q(\varphi(t), \psi(t))\psi'_t = 0.$$
(4)

Определение 1.8. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если $\exists F(x,y) : P(x,y)dx + Q(x,y)dy = dF(x,y)$.

Тогда $dF(x,y)=0 \Rightarrow F(x,y)=const,$ то есть F(x,y) определяет неявную функцию y(x).

Теорема 1.1. Пусть функции P(x,y) и Q(x,y) непрерывно дифференцируемы в области D. Для того, чтобы уравнение P(x,y)dx + Q(x,y)dy = 0 являлось уравнением в полных дифференциалах, необходимо выполнение условия $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $(x,y) \in D$. Если же область D ещё и одвосвязна, то условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ является достаточным.

Доказательство. Пусть P(x,y)dx+Q(x,y)dy=0 – уравнение в полных дифференциалах, тогда $\exists F(x,y): P(x,y)dx+Q(x,y)dy=dF(x,y)\Rightarrow P=\frac{\partial F}{\partial x},\ Q=\frac{\partial F}{\partial y}$. По условию P и Q – непрерывно дифференцируемы, тогда $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ – непрерывные функции, значит

$$\frac{\partial P}{\partial y} = \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = \frac{\partial Q}{\partial x}, \ (x, y) \in D. \tag{5}$$

Пусть теперь D – односвязная область. Рассмотрим значение интеграла

$$F = \int_{(x_0, y_0)}^{(x;y)} P(x, y) dx + Q(x, y) dy,$$

который берётся по кривой γ , лежащей в D и соединяющей точки (x_0, y_0) и (x; y). Пусть $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Тогда по теореме о независимости интеграла от пути интегрирования выходит, что значение интеграла не зависит от пути интегрирования γ , а является функцией от (x, y), значит F = F(x, y) — функция и P(x, y)dx + Q(x, y)dy = dF(x, y).

Определение 1.9. Непрерывно дифференцируемая функция $\mu(x,y) \neq 0$ в области G называется интегрирующим множителем для уравнения в полных дифференциалах $\mu(x,y)(P(x,y)dx+Q(x,y)dy)=0$, если исходное уравнение P(x,y)dx+Q(x,y)dy=0 не является уравнением в полных дифференциалах.

Если $\mu(x,y)$ – интегрирующий множитель, то для достаточного условия имеем

$$\frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x} \Leftrightarrow P \frac{\partial \mu}{\partial y} + \mu \frac{\partial P}{\partial y} = Q \frac{\partial \mu}{\partial x} + \mu \frac{\partial Q}{\partial x}.$$

Полученное уравнение не легче исходного, так как теперь задача свелась к нахождению μ . Обычно интегрирующий множитель ищут в виде $\mu(x), \ \mu(y), \ \mu(x^2+y^2), \ \mu(x^\alpha,y^\beta).$

1.2.2 Уравнения с разделяющимися переменными

Рассмотрим ДУ вида P(y)dx+Q(x)dy=0, где $P(y)\in C^1_{[y_1;y_2]},\ Q(x)\in C^1_{[x_1;x_2]}.$ Если $\exists y_0:P(y_0)=0$ или $\exists x_0:Q(x_0)=0$, тогда

$$\begin{cases} x = t \\ y = y_0 \end{cases} \quad \text{или} \quad \begin{cases} x = x_0 \\ y = t \end{cases} \tag{6}$$

являются интегральными кривыми рассматриваемого ДУ соответственно. Если же выполняется $P(x,y) \neq 0$ и $Q(x,y) \neq 0$, то применим к уравнению интегрирующий множитель

$$\mu(x,y) = \frac{1}{P(x,y)Q(x,y)},$$

получив уравнение в полных дифференциалах

$$\frac{dx}{Q(x)} + \frac{dy}{P(y)} = 0. (7)$$

Значение $\mu(x,y)$ действительно является интегрирующим множителем, так как выполняется

$$\frac{\partial}{\partial y} \left(\frac{1}{Q(x)} \right) = \frac{\partial}{\partial x} \left(\frac{1}{P(y)} \right) = 0. \tag{8}$$

Тогда

$$dF(x,y) = \frac{dx}{Q(x)} + \frac{dy}{P(y)} \Rightarrow \frac{\partial F}{\partial x} = \frac{1}{Q(x)} \Rightarrow F(x,y) = \int_{x_1}^{x} \frac{dt}{Q(t)} + C(y), \tag{9}$$

$$\frac{\partial F}{\partial y} = \frac{1}{P(y)} = C'(y) \Rightarrow C(y) = \int_{y_1}^{y} \frac{dt}{P(t)} + C_1 \Rightarrow F(x, y) = \int_{x_1}^{x} \frac{dt}{Q(t)} + \int_{y_1}^{y} \frac{dt}{P(t)} + C_1 = const.$$

$$\tag{10}$$

Определение 1.10. Если дифференциальное уравнение вида $P_1(x,y)dx + Q_1(x,y)dy = 0$ может быть сведено к виду P(y)dx + Q(x)dy = 0, то такое уравнение называется уравнением с разделяющимися переменными.

Утверждение 1.2. Задача Коши уравнения с разделяющимися переменными P(y)dx + Q(x)dy = 0 задаётся в виде $y(x_1) = y_1$, а её решение в виде

$$\int_{x_1}^{x} \frac{dt}{Q(t)} + \int_{y_1}^{y} \frac{dt}{P(t)} = 0.$$
 (11)

1.2.3 Однородные уравнения

Рассмотрим дифференциальное уравнение вида

$$y' = y\left(\frac{y}{x}\right),\,$$

которое назовём уравнением с однородной правой частью. Сделаем замену $v(x)=\frac{y}{x}$, тогда $y(x)=v(x)\cdot x,\ y'_x=x\cdot v'_x+v=g(v),$ откуда имеем $x\frac{dv}{dx}=g(v)-v.$ Если $\exists g(v_0)=v_0,$ то v_0 – решение уравнения $x\frac{dv}{dx}=g(v)-v.$ Если же $v\neq g(v),$ тогда

$$\frac{dv}{g(v) - v} = \frac{dx}{x} \Rightarrow \ln|x| + C = \int_{v_0}^{v} \frac{dt}{g(t) - t}.$$
 (12)

Таким образом, найдено решение исходного уравнения с однородной правой частью в квадратурах.

Определение 1.11. Функция $F(x^1, x^2, ..., x^n)$ называется однородной степени m, если $\forall \lambda > 0 \longrightarrow F(\lambda x^1, \lambda x^2, ..., \lambda x^n) = \lambda^m F(x^1, x^2, ..., x^n)$.

Пример 1.1. Рассмотрим уравнение P(x,y)dx = Q(x,y)dy. Если P(x,y) и Q(x,y) – однородные функции степени m, тогда

$$\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)} = \frac{x^m P(1,\frac{y}{x})}{x^m Q(1,\frac{y}{x})} = \frac{P(1,\frac{y}{x})}{Q(1,\frac{y}{x})} = g\left(\frac{y}{x}\right)$$
(13)

Таким образом исходное уравнение свелось к уравнению с однородной правой частью.

1.2.4 Линейные уравнения первого порядка

Определение 1.12. Дифференциальное уравнение вида y' + a(x)y = f(x) – линейное дифференциальное уравнение первого порядка. Дифференциальное уравнение вида y' + a(x)y = 0 – линейное однородное дифференциальное уравнение первого порядка. При этом $a(x) \in C_{I(x)}$, $f(x) \in C_{I(x)}$, где I(x) – область, на которой определены функции a(x) и f(x).

Введём оператор $L=\frac{d}{dx}+a(x)$, который действует на множество непрерывно дифференцируемых функций $\varphi\in C^1_{I(x)}$. Тогда уравнение y'+a(x)y=f(x) переписывается в виде L(y)=f(x), а уравнение y'+a(x)y=0 переписывается в виде L(y)=0.

Теорема 1.2. Введённые оператор $L = \frac{d}{dx} + a(x)$ – линейный оператор.

Доказательство. Рассмотрим линейную комбинацию $c_1\varphi_1(x) + c_2\varphi_2(x)$:

$$L(c_1\varphi_1(x) + c_2\varphi_2(x)) = (c_1\varphi_1 + c_2\varphi_2)' + a(x)(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$$
(14)

Таким образом, $L(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$, то есть L – линейный оператор.

Утверждение 1.3. Решением уравнения y' + a(x)y = 0 является

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (15)

Доказательство. Найдём решение уравнения y' + a(x)y = 0:

$$\frac{dy}{y} = -a(x)dx \Rightarrow \ln|y| = -\int_{x_0}^{x} a(t)dt + \ln C \Rightarrow |y| = Ce^{-\int_{x_0}^{x} a(t)dt}, C > 0$$
 (16)

Раскрывая модуль и объединяя полученное решение с нулевым $(y \equiv 0)$, имеем

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (17)

Утверждение 1.4. Решением уравнения y' + a(x)y = f(x) является

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (18)

Доказательство. Найдём решение уравнения y' + a(x)y = f(x): воспользуемся уже найденным решением однородного уравнения, применяя метод вариации постоянной. То есть будем искать решение в виде

$$y = C(x)e^{-\int_{x_0}^x a(t)dt}. (19)$$

Подставим это решение в исходное уравнение:

$$C'(x)e^{-\int_{x_0}^x a(t)dt} - a(x)C(x)e^{-\int_{x_0}^x a(t)dt} + a(x)C(x)e^{-\int_{x_0}^x a(t)dt} = f(x)$$
(20)

$$C'(x)e^{-\int_{x_0}^x a(t)dt} = f(x) \Rightarrow C(x) = \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds} + C_0$$
 (21)

Таким образом найден вид C(x). Теперь подставим эту функцию:

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + e^{-\int_{x_0}^x a(t)dt} \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds}$$
(22)

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + \int_{x_0}^x f(t)e^{-\int_{x_0}^t a(s)ds}$$
(23)

Из полученного решения видно, что оно является суммой решения однородного уравнения и частного решения.

Утверждение 1.5. Если $\varphi_1(x)$ и $\varphi_2(x)$ – некоторые решения уравнения y' + a(x)y = f(x), то $z(x) = \varphi_1(x) - \varphi_2(x)$ – решение однородного уравнения y' + a(x)y = 0.

Доказательство. По условию $\varphi_1' + a(x)\varphi_1 = f(x)$, $\varphi_2' + a(x)\varphi_2 = f(x)$, откуда очевидно, что $(\varphi_1 - \varphi_2)' + a(\varphi_1 - \varphi_2) = 0$. Обозначив $z = \varphi_1 - \varphi_2$, получим z' + a(x)z = 0, то есть z – решение однородного уравнения.

1.3 Уравнение Бернулли и Риккати

1.3.1 Уравнение Бернулли

Определение 1.13. Д.у. вида $y' + a(x) \cdot y = y^r \cdot f(x)$ (24), где $a(x), f(x) \in C^1, r \in \mathbb{R}, r \neq 1$ называется уравнением Бернулли.

Утверждение 1.6. Если r > 0, то $y \equiv 0$ - тривиальное решение. Пусть $y \neq 0$, разделим ДУ на $y^r \Rightarrow \frac{y'}{y^r} + a(x) \cdot y^{1-r} = f(x)$. Замена: $u(x) = y^{1-r} \Rightarrow u' = (1-r) \cdot y^{-r} \cdot y' \Rightarrow \frac{1}{1-r} \cdot u' + a(x) \cdot u = f(x)$ - свелось к линейному уравнению.

1.3.2 Уравнение Риккати

Определение 1.14. Д.у. вида $y' + a(x) \cdot y^2 + b(x) \cdot y + c(x)$ (25), где $a(x), b(x) \in C^1_{I(x)}$, $c(x) \in C_{I(x)}$ называется уравнением Риккати.

Утверждение 1.7. В общем случае уравнение Риккати не допускает решений в квадратурах, однако, если известно некоторое решение $y = \varphi(x)$, то сделав замену $y = u + \varphi$, получаем: $\varphi' = u\varphi^2 + b\varphi + c$ $\varphi' + u' = u\varphi^2 + 2a\varphi u + au^2 + b\varphi + bu + c \Rightarrow u' = au^2 + (2a\varphi + b)u$ - свелось к уравнению Бернулли.

1.4 Методы понижения порядка дифференциальных уравнений

Утверждение 1.8. Рассмотрим множество преобразований плоскости

 $\overline{x} = \varphi(x,y,\lambda), \overline{y} = \psi(x,y,\lambda)$ $(26) \quad \text{каждому } \lambda \in \mathcal{D} \subset \mathbb{R} \quad \text{соответствует некоторое}$ $npeoбразование, \quad \text{например}, \quad \overline{x} = \lambda x, \overline{y} = \lambda y, \lambda > 0 \quad \text{- гомотетия. Множество преобразований (26) является группой преобразований, если оно содержит любую композицию (26), }$ $m.e. \quad \exists \lambda_0 : \varphi(\varphi(x,y,\lambda_1),\psi(x,y,\lambda_2)) = \varphi(x,y,\lambda_0), \quad \text{содержит тожедественное преобразование, }$ $m.e. \quad \exists \lambda_0 : \varphi(x,y,\lambda_0) = x; \quad \psi(x,y,\lambda_0) = y, \quad u \quad \text{вместе с любым преобразованием содержит } u$ $oбратное: \quad \forall \lambda \in \mathcal{D}: \quad \exists \quad \lambda_0: \quad x = \bar{\varphi}(\bar{x},\bar{y},\lambda_0); \quad y = \bar{\psi}(\bar{x},\bar{y},\lambda_0)$ $T.o. \quad ecnu \quad (26) \quad \text{- группа, то } \quad x = \bar{\varphi}(\bar{x},\bar{y},\lambda), \quad y = \bar{\psi}(\bar{x},\bar{y},\lambda); \quad ecnu \quad s \quad \mathcal{J}\mathcal{Y} \quad y' = f(x,y) \quad \text{осуществить переход } \kappa \quad \text{новым координатам. то}$

$$\frac{dy}{dx} = \frac{\psi'_{\bar{x}}d\bar{x} + \psi'_{\bar{y}}d\bar{y}}{\varphi'_{\bar{x}}d\bar{x} + \varphi'_{\bar{y}}d\bar{y}} = f(\bar{\varphi}(\bar{x}, \bar{y}, \lambda), \bar{\psi}(\bar{x}, \bar{y}, \lambda)) = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow$$

$$\Rightarrow \frac{\psi'_{\bar{x}} + \psi'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}}{\varphi'_{\bar{x}} + \varphi'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}} = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow \frac{d\bar{y}}{d\bar{x}} = \frac{\tilde{f} \cdot \varphi'_{\bar{x}} - \psi'_{\bar{x}}}{\psi'_{\bar{y}} - \tilde{f} \cdot \varphi'_{\bar{y}}} \tag{27}$$

(27) является записью y'=f(x,y) в новых координатах. Говорят, что y'=f(x,y) допускает группу $x=\bar{\varphi}(\bar{x},\bar{y},\lambda),\ y=\bar{\psi}(\bar{x},\bar{y},\lambda),\ если оно не изменяется при переходе к новым переменным, т.е. <math>\frac{d\bar{y}}{d\bar{x}}=f(\bar{x},\bar{y}).$

Следствие 1.2.1. Рассматриваем уравнения вида F(x, y, y', y'') = 0 (28)

1.
$$F(x,y'',y')=0$$
 (29) Замена $y'(x)=v(x)\Rightarrow y''(x)=v'(x)$ и (29) в этом случае имеет вид $F(x,v(x),v'(x))=0 \xrightarrow{pewaem} V(x)=y(x,c_1)$. Тогда решение (29) запишется в виде

 $\frac{dy}{dx}=g(x,c_1)\Rightarrow y(x)=c_2+\int g(x,c_1)dx$. Заметим, что (29) допускает группу сдвига $x=\bar x,\ y=\bar y+y_0$

- 2. F(y,y',y'') = 0 (не содержит явно x). Замена: y' = V(y), тогда $y'' = \frac{dV}{dx} = \frac{dV}{dy} \frac{dy}{dx} = V \frac{dV}{dy} \Rightarrow F(y,V,y\frac{dV}{dy}) = 0$ ДУ первого порядка. Решение $V(y) = g(y,c_1) \Rightarrow \frac{dy}{dx} = g(y,c_1) \Rightarrow$ Решение (30): $\int \frac{dy}{g(y,c_1)} = x + c_2$. Заметим, что (30) допускает группу сдвигов $x = \bar{x} + x_0$, $y = \bar{y}$
- 3. F(x, y'', y', y) = 0 и F oднородная степени m по y'', y', y, $m.e. \forall \lambda > 0 \rightarrow F(x, \lambda y'', \lambda y', \lambda y) = \lambda^m \cdot F(x, y'', y', y)$. B таком случае ДУ допускает группу $x = \bar{x}, y = \lambda \bar{y}$. Замена: $z(x) = \frac{y'}{y} \Rightarrow y' = z(x)y$ $\Rightarrow y'' = z'y + zy' = z'y + z^2y = y \cdot (z' + z^2) \Rightarrow F(x, y, zy, y(z' + z^2)) = 0$ $\Rightarrow y^m \cdot F(x, 1, z, z' + z^2) = 0$ относительно z имеем ур-ние первого порядка. Если его решение $z(x) = g(x, c_1)$, то $\frac{y'}{y} = g(x, c_1) \Rightarrow \frac{dy}{y} = g(x, c_1)dx \Rightarrow \ln |y| = \int g(x, c_1)dx + c_2$
- 4*. Будем говорить, что функция $F(x,y,y'',...,y^{(n)})$ является квазиоднородной функцией степени r, если $\exists \alpha \in \mathbb{R} : \forall \lambda > 0 : F(\lambda x, \lambda^{\alpha} y, \lambda^{\alpha-1} y',...,\lambda^{\alpha-n} y^{(n)}) = \lambda^r \cdot F(x,y,...,y^{(n)}).$

Рассмотрим множество преобразований:

$$\begin{cases} x = \lambda \bar{x} \\ y = \lambda^{\alpha} \bar{y} \end{cases}, \quad \epsilon \partial e \ \lambda > 0 \tag{31}$$

Такое множество преобразований перепишем в виде:

$$\begin{cases} x = e^{\beta} \cdot \bar{x} \\ y = e^{\alpha\beta} \bar{y} \end{cases}$$

Если F в (30) является квазиоднородной, то (30) допускает группу растяжений (31):

$$F(x, y'', y', y) = 0 \xrightarrow{npeo6p.} F(\lambda \bar{x}, \lambda^{\alpha} \bar{y}, \lambda^{\alpha-1} \bar{y'}, \lambda^{\alpha-2} \bar{y''}) = \lambda^{r} \cdot F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

$$\downarrow \downarrow$$

$$F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

1.5 Метод введения параметра для уравнения первого порядка, не разрешенного относительно производной

Утверждение 1.9. Рассмотрим F(x,y,y')=0 322, где F(x,y,y') как функция трёх переменных является непрерывно дифференцируемой в области $G \subset \mathbb{R}^3$ Решение уравнения F(x,y,y')=0 будем представлять как кривую в параметрическом виде:

$$\gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} t \in [t_1, t_2], \ \varphi(t), \psi(t) \in C^1_{[t_1, t_2]}$$
 (33)

Кривая (33), является интегральной кривой (32) \Rightarrow

$$\Rightarrow F\left(\varphi(t), \psi(t), \frac{\psi_t'}{\varphi_t'}\right) = 0 \quad \forall t \in [t_1, t_2]$$
(34)

Будем решать эквивалентную систему положив $p=rac{dy}{dt}$:

$$\begin{cases} F(x, y, p) = 0 \\ dy = pdx \end{cases}$$
 (35)

Утверждение 1.10. Уравнение (32) эквивалентно системе (35).

Доказательство. Пусть γ - интегр. кривая (32). Положим $p = \frac{\psi'}{\varphi'} = \frac{dy}{dx}$ - второе уравнение в системе (35) выполнено, а первое выполнено в силу подстановки в (34). Обратно, пусть $x(t) = \varphi(t), \ y(t) = \psi(t), p$ - решение (34). \Rightarrow Из второго уравнения системы: $p = \frac{\psi'_t}{\varphi'_t} \to \Pi$ одставляем в первое уравнение системы и получаем само уравнение (34)

Утверждение 1.11. Рассмотрим метод решения (32), который называется методом введения параметра.

Первое ур-ние в системе (35) рассмотрим как задающее в $\mathbb{R}^3_{(x,y,p)}$ гладкую поверхность S, для которой параметрическое представление имеет вид:

$$\begin{cases} x = \varphi(u, v) \\ y = \psi(u, v) \Rightarrow F(\varphi(u, v); \psi(u, v); \chi(u, v)) \equiv 0 \\ p = \chi(u, v) \end{cases}$$

Потребуем, чтобы $rank \begin{pmatrix} \frac{\delta \varphi}{\delta u} & \frac{\delta \psi}{\delta u} & \frac{\delta \chi}{\delta u} \\ \frac{\delta \varphi}{\delta v} & \frac{\delta \psi}{\delta v} & \frac{\delta \chi}{\delta v} \end{pmatrix} = 2, \ \forall u,v \in G \ m.e. \ S \ была \ простой гладкой пов.$

Тогда остаётся удовлетворить второму уравнению системы (35):

$$\frac{\delta\psi}{\delta u}du + \frac{\delta\psi}{\delta v}dv = \chi \cdot \left(\frac{\delta\varphi}{\delta u}du + \frac{\delta\varphi}{\delta v}dv\right) \Rightarrow \left(\frac{\delta\psi}{\delta u} - \chi\frac{\delta\varphi}{\delta v}\right)du = \left(\chi\frac{\delta\varphi}{\delta v} - \frac{\delta\psi}{\delta v}\right)dv \tag{36}$$

Если $P(u,v) \neq 0 \ \forall (u,v) \in G$, то из (36) получаем Д.У.: $\frac{du}{dv} = \frac{Q(u,v)}{P(u,v)}$

Его решение u=u(v,c), тогда $\begin{cases} x=\varphi(u(v,c),v)=x(v,c) & \text{- является параметрическим} \\ y=\psi(u(v,c),v)=y(v,c) & \text{представлением решения (32)} \end{cases}$

Если жее существует связь между u u v: $u=f(v), P(f(v),v)=Q(f(v),v)=0 \ \forall v\in G,$ то u=f(v) явл. решением $\left(\chi\frac{\delta\varphi}{\delta v}-\frac{\delta\psi}{\delta v}\right)dv,$ a

$$\begin{cases} x = x(v) \\ y = y(v) \end{cases}$$
 - явл. решением (36)

2 Билет 2. Задача Коши

2.1 Принцип сжимающих отображений

Работаем в $E=\mathbb{R}^n$ - пространство точек с n координатами. E - аффинное пространство, а \vec{E} – его присоединенное линейное пространство, состоящее из векторов, натянутых на точки E.

Определение 2.1. Пусть L - это векторное пространство, u на нем задано отображение $\|\cdot\|: L \longrightarrow \mathbb{R}$ такое, что:

- 1. $\forall x \in L \longmapsto ||x|| \geqslant 0$. A maxime $||x|| = 0 \Longleftrightarrow x = 0$;
- 2. $\forall x \in L \& \forall \lambda \in \mathbb{R} \longmapsto ||\lambda x|| = |\lambda| \cdot ||x||$;
- 3. $\forall x, y \in L \longmapsto ||x + y|| \le ||x|| + ||y||$ неравенство треугольника.

Tогда данное отображение называется нормой, а пространство L нормированным.

Пример 2.1. Приведем пример норм. Пусть $a(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Тогда норму можно определить, допустим, так:

$$||a||_1 = \sqrt{\sum_{j=1}^n x_j^2}. (37)$$

Или так:

$$||a||_2 = \max_{j=1,\dots,n} |x_j|. \tag{38}$$

И тогда можно ввести понятие эквивалентности норм.

Определение 2.2. Пусть снова L - линейное пространство. Тогда нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на L называются эквивалентными, если $\exists C_1, C_2 > 0 : \forall x \in L \longmapsto C_1 \|x\|_1 \leq \|x\|_2 \leq C_2 \|x\|_1$.

Как видно, для определенных выше двух норм это соотношение удовлетворяется.

Утверждение 2.1. В конечномерном линейном пространстве все нормы эквивалентны.

Рассмотрим множество функций, непрерывных на отрезке [a;b] для некоторых неравных $a,b \in \mathbb{R}$ и обозначим данное множество C[a;b]. Понятно, что C[a;b] является линейным пространством. Тогда введем на нем норму.

Определение 2.3. Нормой функции $f(x) \in C[a;b]$ будем называть число

$$||f(x)|| = \max_{x \in [a;b]} |f(x)|.$$

Определение 2.4. Набор функций $f_1(x), f_2(x), \dots, f_n(x) \in C[a; b]$ будем называть векторфункцией и обозначать $f(x) = \vec{f}(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$.

Определение 2.5. Вектор-функция f(x) называется непрерывной (дифференцируемой, непрерывно дифференцируемой и т.п.), если все ее компоненты непрерывны (дифференцируемы, непрерывно дифференцируемы и т.п.).

Определение 2.6. *Модулем вектор-функции* f(x) *назовем число*

$$|f(x)| = \sqrt{\sum_{j=1}^{n} f_j^2(x)}.$$
 (39)

Норму вектор-функции можно определить как

$$||f(x)||_1 = \max_{x \in [a;b]} |f(x)|.$$

Или же как

$$||f(x)||_2 = \max_{j=1,\dots,n} \max_{x \in [a:b]} f_j(x).$$

Понятно, что эти две нормы эквивалентны.

Определение 2.7. Пусть имеется функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$, где $f_n(x) \in C[a;b]$ - линейное пространство функций с нормой (1 или 2 – неважно). Тогда говорят, что данная последовательность сходится к функции f(x) по норме, если:

$$\lim_{n \to \infty} ||f_n(x) - f(x)|| = 0.$$
(40)

Аналогично все то же самое и точно так же определяется и для вектор-функций $f(x) = \vec{f}(x) \in C[a;b]^n$.

Определение 2.8. Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ называется фундаментальной, если:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \geqslant N \ \& \ \forall m \geqslant N \longmapsto ||f_n(x) - f_m(x)|| < \varepsilon. \tag{41}$$

Определение 2.9. Функциональное пространство L называется полным по [данной] норме, если любая фундаментальная функциональная последовательность данного пространства сходится по норме к функции из этого же пространства L.

Теорема 2.1. Функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Доказательство. Возьмем произвольную функциональную последовательность $\{f_n(x)\}_{n=1}^{\infty}$ из нашего пространства непрерывных функции. Тогда из определения фундаментальности следует, что $||f_n(x) - f_m(x)|| < \varepsilon$.

Однако
$$|f_n(x) - f_m(x)| \le ||f_n(x) - f_m(x)|| < \varepsilon \ \forall x \in [a; b].$$

А значит, последовательность $f_n(x)$ сходится к некоторой f(x), причем равномерно на [a;b] (числовая последовательность $||f_n(x)||$ мажорирует функциональную последовательность $f_n(x)$).

Так как $f_n(x) \in C[a;b]$ – непрерывны $\forall n \in \mathbb{N}$, и последовательность сходится равномерно на [a;b], то предельная функция f(x) также является непрерывной на [a;b], а значит, $f(x) \in C[a;b]$.

Таким образом, последовательность $\{f_n(x)\}_{n=1}^\infty$ сходится к $f(x) \in C[a;b]$. В силу произвольности $\{f_n(x)\}_{n=1}^\infty$ заключаем, что функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Определение 2.10. Полное нормированное линейное пространство называется Банаховым. Обозначается В.

Определение 2.11. Функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ называется сходящемся по норме, если последовательность его частичных сумм $S_n(x) = \sum_{k=1}^n f_k(x)$ является сходящейся по норме.

Определение 2.12. Пусть $\forall x \in M \subseteq B$ определен элемент $Ax \in B$. Тогда говорят, что на множестве B задан оператор A с областью определения M.

Будем рассматривать уравнение x = Ax.

Определение 2.13. *Множество* $M \subseteq B$ *называется ограниченным, если* $\exists C > 0$ *такое,* $umo \ \forall x \in M \longmapsto ||x|| \leqslant C.$

Определение 2.14. Оператор А называется сжатием на М, если:

- 1. $\forall x \in M \longmapsto Ax \in M$:
- 2. $\exists k \in (0,1): \forall x, y \in M \longmapsto ||Ax Ay|| \le k||x y||.$

Теорема 2.2 (Принцип сжимающих отображений). Пусть множество $M \subseteq B$ является ограниченным и замкнутым, а оператор A является сжатием. Тогда решение уравнения x = Ax существует и единственно.

Доказательство. Будем использовать итерационный метод, согласно которому мы выбираем начальное x_0 , а затем строим последовательность $x_n = Ax_{n-1}$. Тогда, если $\exists \lim x_n =$ x и \exists lim $Ax_n = Ax$, то x = Ax.

Пусть $x_n = S_n = x_0 + (x_1 - x_0) + \ldots + (x_n - x_{n-1})$. Докажем, что $||x_{n+1} - x_n|| \leqslant 2Ck^n$ для некоторого C > 0, ограничивающего последовательность x_n . Сделаем это по индукции.

База индукции: $||x_1 - x_0|| \le ||x_1|| + ||x_0|| \le 2C$.

Предположим, что $||x_n - x_{n-1}|| \le 2Ck^{n-1}$. Тогда получаем, что $||x_{n+1} - x_n|| = ||Ax_n - x_n||$ $||Ax_{n-1}|| \le k||x_n - x_{n-1}|| \le 2Ck^n.$

И получаем, что $x_0 + \sum\limits_{j=1}^{\infty} (x_j - x_{j-1}) \leqslant x_0 + \sum\limits_{j=1}^{\infty} 2Ck^{n-1} < \infty.$ А значит $\exists \lim_{n \to \infty} x_n = x.$ А поскольку M замкнуто, то $x \in M$.

Теперь рассмотрим разность $||Ax_n - Ax|| \leqslant k||x_n - x|| \underset{n \to \infty}{\longrightarrow} 0$. Это означает, что $\exists \lim Ax_n = Ax.$

 $\overset{\infty}{\mathrm{V}}$ читывая, что $x_{n+1}=Ax_n$, то, перейдя к пределу с обеих частей равенства, мы получаем, что итерационный метод сходится к решению уравнения x = Ax. И таким образом, доказано существование решения. Теперь докажем его единственность.

Пойдем от противного: пусть x и y – два разных решения. Тогда $||x-y|| = ||Ax-Ay|| \le$ $k\|x-y\|.$ Учитывая, что $k\in(0;1),$ то данная ситуация возможна тогда и только тогда, когда ||x-y|| = 0. Следовательно, x = y, что противоречит тому, что это два разных решения. Итак, теорема доказана.

2.2Теорема существования и единственности решения задачи Коши для нормальной системы дифференциальных уравнений

Определение 2.15. Система вида

$$\begin{cases} \dot{x}^1 = f^1(t, \bar{x}) \\ \dot{x}^2 = f^2(t, \bar{x}) \\ \dots \\ \dot{x}^n = f^n(t, \bar{x}) \end{cases}$$

$$(42)$$

называется нормальной системой дифференциальных уравнений п-ого порядка.

Определение 2.16. Система

$$\begin{cases} x^{1}(t_{0}) = x_{0}^{1} \\ x^{2}(t_{0}) = x_{0}^{2} \\ \dots \\ x^{n}(t_{0}) = x_{0}^{n} \end{cases}$$

$$(43)$$

называется начальным условием

Утверждение 2.2. Решить задачу Коши означает решить нормальную систему дифференциальных уравнений при заданном начальном условии

Теорема 2.3 (Теорема Коши о существовании и единственности решения). Пусть $\forall i, j = \overline{1, n}$ функции $f^i, \frac{\partial f^i}{\partial x^j}$ непрерывны в области $\Omega \subset \mathbb{R}^{n+1}$, тогда, $\forall (t_0, \overline{x_0}) \in \Omega \ \exists h > 0 : \forall t \in [t_0 - h, t_0 + h]$ решение задачи Коши существует и единственно.

Лемма 2.1. Если $\bar{f}(t,\bar{x})$ - непрерывны на Ω , то система уравнений

$$\overline{x}(t) = \overline{x_0} + \int_{t_0}^{t} \overline{f}(\tau, \overline{x}(\tau)) d\tau$$
(44)

эквивалентна задаче Коши.

Доказательство. Пусть $\varphi(t)$ - решение (42) при условии (43), тогда

$$\dot{\varphi}^i = f^i(t, \varphi^1(t), \dots, \varphi^n(t))$$

Проинтегрируем полученное равенство по отрезку $[t_0, t]$

$$\int_{t_0}^t \dot{\varphi}^i(\tau)d\tau = \int_{t_0}^t f^i(\tau, \varphi^1(\tau), \dots, \varphi^n(\tau))d\tau$$
$$\varphi^i(t) - \varphi^i(t_0) = \int_{t_0}^t f^i(\tau, \bar{\varphi}(\tau))d\tau$$
$$\varphi^i(t) = x_0^i + \int_{t_0}^t f^i(\tau, \bar{\varphi}(\tau))d\tau$$

Теперь пусть $\bar{\varphi}(t)$ - решение (44). Тогда

$$\varphi^{i}(t) \equiv x_0^{i} + \int_{t_0}^{t} f^{i}(\tau, \bar{\varphi}(\tau)) d\tau$$

Отсюда видно, что функция $\varphi^i(t)$ - дифференцируемы. Тогда

$$\begin{cases} \dot{\varphi}^i(t) = f^i(t, \bar{\varphi}(t)) \\ \varphi^i(t_0) = x_0^i \end{cases}$$
(45)

Следствие 2.3.1. Из 2 части леммы следует, что решение задачи Коши непрерывно дифференцируемо.

Введем оператор $A(\bar{x}) = \bar{x}_0 + \int\limits_{t_0}^t \bar{f}(\tau,\bar{x}(\tau))d\tau$. Тогда систему интегральных уравнений (44) можно записать в виде

$$\bar{x}(t) = A(\bar{x}) \tag{46}$$

Лемма 2.2.

$$\left\| \int_{t_0}^t \bar{x}(\tau)d\tau \right\| \le \left| \int_{t_0}^t \|\bar{x}(\tau)\|d\tau \right|$$

Доказательство.

$$\left| \int_{t_0}^t x^i(\tau) d\tau \right| \le \left| \int_{t_0}^t \left| x^i(\tau) \right| d\tau \right| \le \left| \int_{t_0}^t \|\bar{x}(\tau)\| d\tau \right| \tag{47}$$

Таким образом
$$\max\{|\int\limits_{t_0}^t x^i(\tau)d\tau|\} = ||\int\limits_{t_0}^t \bar{x}(\tau)d\tau|| \le |\int\limits_{t_0}^t \|\bar{x}(\tau)\|d\tau|$$

Лемма 2.3. (Адамара) Пусть $\bar{f}(\bar{x}), \frac{\partial f^i}{\partial x_j}$ непрерывны в $\Omega \subset \mathbb{R}$ - замкнутой, ограниченной, выпуклой области. Тогда $\forall i = \overline{1,n}, \bar{y} \in \Omega \hookrightarrow \|\bar{f}(\bar{y}) - \bar{f}(\bar{x})\| \leq n^{3/2} K_1 \|\overline{y-x}\|$, где $K_1 = \max_{i,j=\overline{1,n}} \{ \max_{x \in \Omega} \left\{ \left| \frac{\partial f^i}{\partial x_j} \right| \right\} \}$

Доказательство.
$$|\bar{f}| = \sqrt{\sum_{i=1}^n (f^i)^2}, \ ||\bar{f}||_C = \max_{x \in \Omega} \{|\bar{f}(\bar{x})|\}$$

 Ω - компакт, поэтому непрерывность частных производных позволяет говорить о существовании K_1 . Возьмем производные точки \bar{x} и \bar{y} и соединим их отрезком $\bar{x} + t(\bar{y} - \bar{x})$, где $t \in [0,1]$. Рассмотрим значение компоненты f^i на отрезке:

$$f^{i}(\bar{x} + t(\bar{y} - \bar{x})) = f^{i}(t)$$

 $f^i(t)$ - дифференцируема, тогда

$$|f^{i}(\bar{y}) - f^{i}(\bar{x})| = |f^{i}(1) - f^{i}(0)| = \left| \frac{df}{dt}(t^{*}) \cdot (1 - 0) \right| =$$

$$= \left| \sum_{j=1}^{n} \frac{\partial f^{i}}{\partial x^{j}}(t^{*}) \cdot (y^{j} - x^{j}) \right| \leq \sum_{j=1}^{n} \left| \frac{\partial f^{i}}{\partial x^{j}}(t^{*}) \right| \cdot \left| (y^{j} - x^{j}) \right| \leq K_{1} ||\bar{y} - \bar{x}|| \cdot n$$

Теперь рассмотрим вектор-функцию

$$|\bar{f}(\bar{y}) - \bar{f}(\bar{x})| = \sqrt{\sum_{k=1}^{n} (f^{k}(\bar{y}) - f^{k}(\bar{x}))^{2}} \le K_{1} n^{3/2} ||\bar{y} - \bar{x}||$$

$$\Rightarrow ||\bar{f}(\bar{y}) - \bar{f}(\bar{x})|| \le K_{1} n^{3/2} ||\bar{y} - \bar{x}||$$

Доказательство. (Основная теорема)

Докажем, что $A(\bar{x})$ из системы (46) является сжатием.

Рассмотрим $\Pi = \{\|\bar{x}(t) - \bar{x}_0(t)\| \le b, |t - t_0| \le a\} \subset \Omega$. Определим $K = \|\bar{f}\|_C = \max_{\Pi} |\bar{f}|$. K_1 тоже определено в силу условий.

Рассмотрим $\Pi_h = \{ \|\bar{x}(t) - \bar{x}_0(t)\| \le b, |t - t_0| \le h \le a \}$

Банахово пространство B - множество функций $\bar{x}(t)$ непрерывных на отрезке $|t-t_0| \le b$. $M \subset B$ - множество функций $\|\bar{x}(t) - \bar{x}_0\| \le b$. M ограничено, так как $\forall \bar{x}(t) \in M \hookrightarrow \|\bar{x}(t)\| = \|\bar{x}(t) - \bar{x}_0 + \bar{x}_0\| \le b + \|\bar{x}_0\| = C$

Докажем, что M замкнуто. Пусть $\bar{x}_n(t), n=1,2,\ldots$ - последовательность точек в M, такая что $\lim_{n\to\infty} \bar{x}_n(t) = \bar{x}(t). \|\bar{x}(t)\| = \|\bar{x}(t) - \bar{x}_n + \bar{x}_n\| \le \|\bar{x}(t) - \bar{x}_n\| + \|\bar{x}_n\| \le \varepsilon + b \Rightarrow \bar{x}(t) \in M$ Подберем h так, чтобы $A: M \to M$. То есть $\|A(\bar{x}) - \bar{x}_0\| \le b$.

$$||A(\bar{x}) - \bar{x}_0|| = ||\int_{t_0}^t \bar{f}(\tau, \bar{x}(\tau))d\tau|| \le |\int_{t_0}^t ||\bar{f}||d\tau|| \le Kh$$

Получаем условие $h \leq b/K$

Чтобы доказать, что A - сжатие, рассмотрим норму

$$||A(\bar{y}) - A(\bar{x})|| = ||\int_{t_0}^t (\bar{f}(\tau, \bar{y}(\tau)) - \bar{f}(\tau, \bar{x}(\tau))) d\tau|| \le$$

$$\le |\int_{t_0}^t ||\bar{f}(\tau, \bar{y}) - \bar{f}(\tau, \bar{x})|| d\tau| \le K_1 n^{3/2} ||\overline{y} - \overline{x}|| \cdot |\int_{t_0}^t d\tau| \le K_1 h n^{3/2} ||\overline{y} - \overline{x}||$$

Откуда второе условие: $h < \frac{1}{n^{3/2}K_1}$

Тогда оператор A будет сжатием. Соответственно решение задачи Коши существует и единственно.

2.3 Теорема существования и единственности решения задачи Коши для уравнения n-го порядка в нормальном виде

Определение 2.17. Уравнение вида

$$y^{(n)} = f(x, y, \dots, y^{(n-1)})$$
(48)

называется уравнением п-го порядка в нормальной форме.

Определение 2.18. Система

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$
(49)

называется начальным условием уравнения п-го порядка в нормальной форме.

Утверждение 2.3. Решить задачу Коши означает найти такое решение (48), которое удовлетворяет условию (49)

Теорема 2.4 (Теорема Коши о существовании и единственности решения). Если $f, \frac{\partial f}{\partial y'}, \dots, \frac{\partial f}{\partial y^{(n-1)}}$ непрерывны в $\Omega \subset \mathbb{R}^{n+1}$, тогда $\forall (x_0, \bar{y}_0) \in \Omega \exists h > 0 : \forall x \in [x_0 + h, x_0 - h]$ решение задачи Коши существует и единственно.

Доказательство. Введем следующие функции: $y(x)=v_1(x),y'(x)=v_2(x),\ldots,y^{(n-1)}(x)=v_n(x)$. Таким образом получаем систему уравнений в нормальной форме

$$\begin{cases}
\frac{dv_1}{dx} = v_2 \\
\dots \\
\frac{dv_n}{dx} = f(x, \bar{v})
\end{cases}$$
(50)

А для нее решение существует и единственно.