Machine Learning Project

Autora:

Inma Jiménez

Índice

- 1. Contexto
- 2. Datos
- 3. Análisis de datos
- 4. Optimización
- 5. Conclusión

1. Contexto

- PIR como indicador del rendimiento y potencial de los jugadores de la NBA
- Predicción del PIR medio para mejorar la selección de jugadores
- Modelo de Regresión

2. Datos

- Datos obtenidos directamente de la API de la web oficial de la NBA:
 - Información general de la temporada y año de juego.

- Información relativa a los datos personales de todos los jugados de la NBA por temporada.
- Información específica de sobre los estadísticos de todos los jugados de la NBA por temporada.

3. Análisis de Datos

Matriz de correlación entre las variables

3. Análisis de Datos

	anio	id_jugador	draft_anio	altura	peso_kg	num_ranking	minutos_pp	minutos_total	pir_medio_total	anios_experiencia
anio	1.000000	0.601412	0.068534	-0.080765	-0.097126	0.045623	-0.002116	-0.050493	0.048809	-0.064420
id_jugador	0.601412	1.000000	0.031585	-0.062909	-0.129554	0.217256	-0.192029	-0.216445	-0.146980	-0.553470
draft_anio	0.068534	0.031585	1.000000	0.007366	0.010462	-0.062580	0.065352		0.052372	0.075711
altura	-0.080765	-0.062909	0.007366	1.000000	0.801804	0.059000	-0.083685	-0.036673	0.172631	0.037317
peso_kg	-0.097126	-0.129554	0.010462	0.801804	1.000000			-0.007425	0.230086	0.142467
num_ranking	0.045623	0.217256	-0.062580	0.059000	0.007595	1.000000	-0.920958	-0.814319	-0.782897	-0.194066
minutos_pp	-0.002116	-0.192029	0.065352	-0.083685	-0.039653	-0.920958	1.000000	0.874195	0.768343	0.210756
minutos_total	-0.050493	-0.216445	0.078463	-0.036673	-0.007425	-0.814319	0.874195	1.000000	0.694588	0.186668
pir_medio_total	0.048809	-0.146980	0.052372	0.172631	0.230086	-0.782897	0.768343	0.694588	1.000000	0.197224
anios_experiencia	-0.064420	-0.553470	0.075711	0.037317	0.142467	-0.194066	0.210756	0.186668	0.197224	1.000000

Matriz de correlación en el conjunto train

```
      pir_medio_total
      1.000000

      num_ranking
      0.782897

      minutos_pp
      0.768343

      anios experiencia
      0.197224
```

Features numéricas que seleccionadas

4. Optimización

Modelo Catboost – Feature Importance

4. Optimización

- Modelos:
 - Modelo de Regresión Lineal
 - R2 en test = 0.60
 - Modelo GradientBoostingRegressor
 - R2 en test = 0.67
 - Modelo GradientBoostingRegressor → "posicion juego" → OrdinalEncoding
 - R2 en test = 0.79
 - R2 en conjunto test reservado = 0.82
 - Modelo GradientBoostingRegressor + RandomSearch → "posicion_juego" → OrdinalEncoding
 - R2 en test = 0.99764
 - Modelo GradientBoostingRegressor + GridSearch → "posicion_juego" → OrdinalEncoding
 - R2 en test = 0.9999

5. Conclusiones

- 1- Modelo final: GradientBoostingRegressor + GridSearch
- 2- El R2 y la precisión del modelo es alta porque resulta un modelo simple que trabaja sobre 3 variables principalmente: "num_ranking", "posicion_juego" y "minutos_pp".
- 3- Limitaciones y mejoras:
 - · Simplicidad del modelo
 - No tener acceso a datos anteriores

¡Gracias por vuestra atención!

