Osnove obradbe signala

Ljetni ispitni rok - 12. srpnja 2022.

1. (10 bodova) Želimo odrediti izraze za rastav signala konačnog trajanja od četiri uzorka. Traženi rastav signala mora koristiti sljedeće bazne funkcije:

$$\phi_0[n] = \{ \underline{0}, 1, 0, 0 \}$$

$$\phi_1[n] = \{ \underline{0}, 0, -1, 0 \}$$

$$\phi_2[n] = \{ \underline{1}, 0, 0, 0 \}$$

$$\phi_3[n] = \{ 0, 0, 0, -1 \}$$

- a) (2 boda) Odredite matricu Φ .
- b) (3 boda) Odredite Gramovu matricu G.
- c) (3 boda) Odredite matricu transformacije $\mathbf{T} = \mathbf{G}^{-1} \mathbf{\Phi}^H$.
- d) **(2 boda)** Odredite rastav signala $x[n] = \{3, 1, -2, -4\}.$
- 2. (10 bodova) Vremenski kontinuirani signal x(t) čiji spektar $X(\Omega)$ je zadan slikom najprije očitavamo s periodom očitavanja od $T_s = \pi/2$, a zatim ga rekonstruiramo iz dobivenih uzoraka koristeći idealnu interpolaciju kako je prikazano blokovskim dijagramom.
 - a) (1 bod) Koji uvjet mora zadovoljiti period očitavanja T_s tako da ne dođe do preklapanja spektra?
 - b) (1 bod) Zadovoljava li zadani period očitavanja taj uvjet?
 - c) **(4 boda)** Skicirajte amplitudni i fazni spektar vremenski diskretnog signala $y[n] = x(nT_s)$ dobivenog idealnim očitavanjem signala x(t).
 - d) **(4 boda)** Skicirajte amplitudni i fazni spektar vremenski kontinuiranog signala z(t) dobivenog idealnom interpolacijom iz y[n].

- **3. (10 bodova)** Promatramo digitalni filtar koji je zadan diferencijskom jednadžbom $y[n] = \frac{1}{4}(3x[n] + 3x[n-2] 2y[n-2])$, gdje je x[n] ulazni signal, a y[n] izlazni signal.
 - a) (1 bod) Odredite prijenosnu funkciju filtra.
 - b) (2 boda) Odredite polove i nule zadanog filtra.
 - c) (3 boda) Odredite impulsni odziv filtra.
 - d) (1 bod) Je li filtar FIR ili IIR?
 - e) (2 boda) Odredite i skicirajte amplitudno-frekvencijsku karakteristiku filtra.
 - f) (1 bod) Koji od četiri tipa amplitudno selektivnih filtara (NP, VP, PP ili PB) najbolje opisuje promatrani filtar?

- 4. (10 bodova) Za svaku raspravu o filtriranju poželjno je poznavati kako izgledaju impulsni odzivi idealnih filtara. U ovom zadatku želimo odrediti impulsni odziv vremenski diskretnog sustava čija idealna frekvencijska karakteristika je zadana slikom. Zadana idealna amplitudna karakteristika $A_{\rm NP}(\omega)$ i fazna karakteristika $\phi_{\rm NP}(\omega)$ definiraju idealni nisko-propusni filtar.
 - a) **(2 boda)** Iskažite $H_{\rm NP}(e^{j\omega})=A_{\rm NP}(\omega)e^{j\phi_{\rm NP}(\omega)}$ formulom (npr. kao razlomljenu linearnu funkciju).
 - b) **(4 boda)** Koristeći IDTFT odredite impulsni odziv $h_{\rm NP}[n]$ koji je pridružen $H_{\rm NP}(e^{j\omega})$.
 - c) (2 boda) Kako se $h_{\rm NP}[n]$ ponaša kada $n \to \pm \infty$? Trne li prema 0 ili ne?
 - d) (2 boda) Nakon kojeg n vrijedi $\left|h_{NP}[n]\right| < \frac{1}{100} \max_{n} \left|h_{NP}[n]\right|$?

Uputa: Izračunajte integral za IDTFT; pazite što se događa za n = 0.

- **5. (10 bodova)** Zadana su dva niza konačne duljine od pet uzoraka, $x[n] = \{1, 2, 3, 0, 1\}$ i $y[n] = \{0, 1, 0, -1, 2\}$.
 - a) (4 boda) Izračunajte njihovu linearnu korelaciju $x[n] \star y[n]$.
 - b) (4 boda) Izračunajte njihovu cirkularnu korelaciju $x[n] \otimes y[n]$.
 - c) **(2 boda)** Označimo linearnu korelaciju s $a[n] = x[n] \star y[n]$ i cirkularnu korelaciju duljine N s $b[n] = x[n-N_y+1] \circledast y[n]$, gdje je N pozitivni cijeli broj i gdje je $N_y = 5$. Uz pretpostavku da su svi nedefinirani uzorci signala x[n] i y[n] jednaki nuli za koje N vrijedi jednakost $a[n-N_y+1] = b[n]$?