MANIFOLDS

Braden Hoagland

Based on An Introduction to Manifolds by L. Tu.

CONTENTS

1	Four	ndations: Euclidean Space	1
	1.1	Reminders]
	1.2	Tangent Vectors as Derivations	2

1 FOUNDATIONS: EUCLIDEAN SPACE

1.1 REMINDERS

We say f is **real analytic** at p if it's equal to its Taylor series at p in some neighborhood of p. Note that if f is real analytic, then it's also C^{∞} (the converse isn't true in general, though).

Proposition 1 (Baby Taylor's Theorem with Remainder). Let U be open in \mathbb{R}^n and star-convex wrt p. If f is C^{∞} on U, then there are C^{∞} functions g_1, \ldots, g_n on U such that

$$f(x) = f(p) + \sum_{i} (x^{i} - p^{i})g_{i}(x)$$

and $g_i(p) = \frac{\partial f}{\partial x^i}(p)$ for all i.

Proof. Since U is star-convex wrt p, we can draw a straight line from p to any $x \in U$. Intuitively, f(x) should be f(p) plus all the changes in f along this line. We can use the FToC to formalize this:

$$f(x) - f(p) = \int_0^1 \frac{d}{dt} f(p + t(x - p)) dt.$$

We can use the chain rule to evaluate $\frac{d}{dt}f(p+t(x-p))$, giving

$$f(x) - f(p) = \sum_{i} (x^{i} - p^{i}) \int_{0}^{1} \frac{\partial f}{\partial x^{i}} (p + t(x - p)) dt.$$

Set $g_i(x)$ to be its respective integral in the above sum.

1.2 TANGENT VECTORS AS DERIVATIONS