Professors d'IDI - UPC

IDI – Interaction Design (II)

Outline

Session 1:

- Understanding the fundamentals of basic interaction in UI
 - Background (Information Theory)
 - · Hick-Hyman Law: Measuring Choice-Reaction Time
 - Fitts' Law: Measuring Pointing Time
 - Crossing and Steering Laws: Continuous Gestures
- Fitts' Law in UI Design
 - Applications in UI Design
 - Accelerating Target Acquisition
- Exercises

Session 2:

- Pointing Devices
- Typing & Keyboards
- Mobile Interaction Design

Outline

Session 1:

- Understanding the fundamentals of basic interaction in UI
 - Background (Information Theory)
 - · Hick-Hyman Law: Measuring Choice-Reaction Time
 - Fitts' Law: Measuring Pointing Time
 - Crossing and Steering Laws: Continuous Gestures
- Fitts' Law in UI Design
 - Applications in UI Design
 - Accelerating Target Acquisition
- Exercises

Session 2:

- Pointing Devices
- Typing & Keyboards
- Mobile Interaction Design

- Direct-control devices:
 - Work directly on the surface of the screen
 - Direct "touch" in VR

- Work away from the surface
- Mapping of the user movement to a pointing element (cursor/ray).

- Direct-control devices:
 - Old
 - Lightpen worked back in 1976
 - May produce fatigue:
 - Moving the lightpen on the screen required much effort
 - Should have a surface to rest the arm

- Direct-control devices. Issues:
 - Imprecision in pointing. Many factors:
 - Quality of the screen:
 Capacitive screens less precise than resistive
 - Size of the pointer
 Fat and not-so-fat fingers

- Direct-control devices. Issues:
 - Land-on strategy:
 - Select on clicking point
 - Faster feedback
 - Prone to errors

- <u>Lift-off strategy:</u>
 - Initial click creates "cursor", dragging used for precision pointing, lift-off selects
 - More time consuming

- Direct-control devices. Advantages:
 - Touch screens can be designed with no moving parts
 - Durable
 - Only device that has survived Walt Disney's theme parks
 - Multi-touch allows for complex data entry or manipulation
 - Pinch-to-zoom gestures

- Direct-control devices. Other issues:
 - Pens may be more suitable for some tasks
 - Reduce occlusion
 - Familiar to users
 - But require to be picked up and put down
 - Pens are more accurate than fingers
 - Fingers are less precise than wrist-based movement

Indirect-control devices:

- Examples:
 - Mouse, trackball, joystick, graphics tablets...
- Issues:
 - Alleviate hand fatigue
 - Eliminate screen occlusion
 - Mouse is the clear king
 - Cost-effective
 - Precise
 - Hand has a surface to rest on
 - Buttons easy to press
 - Long movements require to pick up mouse and replace
 - May be improved using accelerated moves

Outline

Session 1:

- Understanding the fundamentals of basic interaction in UI
 - Background (Information Theory)
 - Hick-Hyman Law: Measuring Choice-Reaction Time
 - Fitts' Law: Measuring Pointing Time
 - Crossing and Steering Laws: Continuous Gestures
- Fitts' Law in UI Design
 - Applications in UI Design
 - Accelerating Target Acquisition
- Exercises

Session 2:

- Pointing Devices
- Typing & Keyboards
- Mobile Interaction Design

QWERTY keyboard layout:

- Design by Christopher Latham Shole.
- The placement of the keys reduces key jams.
- Keys commonly typed together are placed at large physical distance
 - In a typing machine
 - Changing hands
 - Assuming language is English
- Does not make sense with computers
- Not everybody writes in English

QWERTY keyboard layout:

Other ergonomic layouts: AZERTY

optimized for French

Dvorak layout:

- Vowels in one hand
 - Combinations with consonants impose hand change
- Most common letters at the places the fingers rest on the keyboard

Dvorak layout:

- Invented with the objective of reducing travel distances
 - 10-finger typing
- Improvements of up to 30%
 - Other researchers say 5–10%
 - Typing Guinness world record held by a Barbara Blackburn with a DVORAK keyboard in a typewriter for many years
 - 150 wpm for 50 minutes
- Less errors
- Also optimized for English
- Low level of acceptance

- Keyboard layouts
 - Improves posture and reduces tension
 - No proven advantage

Typing & Keyboards.

- Keyboard arrangements should be designed so that:
 - 1. Balance the loads on the right and left hands
 - 2. Maximize the load on the home row
 - 3. Maximize the frequency of alternating hand sequences
 - Alternating fingers avoids the need to wait for the end of the movement of the first finger before starting the second movement.
 - 4. Minimizing the frequency of same finger typing

Especially good job: 3

- Experiment with keyboards layouts is difficult
 - Users get their proficiency for practice
 - It requires months of training in any layout
 - The same people would require to be training back to original arrangement for starting a new experiment
- It is commonly accepted formal results based as predictive human performance model rather than user testing for evaluation

Source: http://minuum.com/

- Touchable layouts (some issues)
 - Size depends on screen size
 - Limited and occluded text
 - Require significant visual attention
 - No physical feedback. Sometimes sound
 - Distance from the keyboard to the insertion point
 - Especially on larger form factors
 - Errors: accidentally touching the screen
 - Touch and stylus based may be a good combined with stroke gestures or other ideas...

- Expert typing model [Bi2013]:
 - Based on Fitts' Law
 - Time to move the tapping device with a single finger from one key (i) to another (j) depends on the distance and the width of the keys:

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W_{ij}} + 1 \right)$$

- D_{ij} is the distance between keys *i* and *j*,
- W_{ij} is the width of each key
- Bi et al. also use the effective width

- Fitts Law accurately predicts pointing movement
 - If improvement required, it can help us modify our UI
 - Change target width:
 - Increase size for faster reach
 - Change distance:
 - Move targets closer to reduce movement time
 - Change pointer movement:
 - Increase speed

$$MT_{ij} = a + b \log_2 \left(\frac{D_{ij}}{W_{ij}} + 1 \right)$$

- Improving mobile layouts:
 - Different parameters to take into account:
 - 10-finger typing? As of tablets
 - 2-thumb typing? Mobiles/tablets.
 - 1-finger typing? Most commonly mobile
- Optimize for the number of fingers
 - Tactile screen form factor
 - Maybe hand positions too

- Proposed mobile layouts. Minuum:
 - Two or one finger typing
 - Compressing the three key rows into one
 - Reduction of distances (in vertical)
 - Larger targets (the whole region of e. g. QAZ)
 - Proficient word prediction/correction is required
 - More room in your screen

Minuum is intended to type everywhere:

- Digram-based layout for single-finger typing [Lewis99]:
 - Optimized distances
 - Up to 25 wpm (over the typical 20 wpm on a complete QWERTY)

- Single finger gesture typing [Kristensson2012, Zhai2012]
 - The finger traverses all the letters of a word without lifting off the screen
 - More comfortable (subjective evaluation) in tablets [Nguyen2012]
 - Not faster than regular typing (objective evaluation) in tablets [Nguyen2012]. Not so negative

- Proposed mobile layouts. KALQ:
 - Optimize layout for better 2 thumb typing
 - Analyzed hand position, digram frequency, tablet orientation...

- Two finger gesture typing [Bi2012]
 - The two thumbs swipe to compose a word
 - Lifting the finger when a part of the word belongs to the other thumb
 - Or with a continuous trace
 - Finger traveling shortened by 50%
 - Speed does not increase over one finger entry (objective evaluation). Not so negative
 - High demand of attention (subjective evaluation)

Designing virtual keyboards. Elements to consider for usability:

- Auto-correction
- Auto-capitalization
- Input data type & custom keyboards
- (Multiple-)Language support

1. Auto-correction:

- Only suitable if proper dictionaries:
 - Commonly, users do not notice the corrections
 - Some data such as address very prone to wrong correction
 - 92% sites do it wrong
- Best practices:
 - Skip auto-correction for certain fields
 - Usually, it is safer to opt for a predictive approach and let the user to choose the best option.

2. Auto-capitalization:

- In e-mail addresses, disable auto-capitalization
 - Even if correct, people tries to fix

3. Appropriate layouts for the input data type:

- Virtual keyboards are small
 - \circ An iPhone 4 character (portrait) measures 4 \times 5.9 mm
 - Minimum recommended clickable size is 6.85×6.85 mm
 - Increase typos, validation errors...
 - 60% top mobile websites do it wrong
- Dedicated keyboards may increase the size enough (phone numbers, ZIP codes, currency...)
 - Invoke them, and do it consistently

Dedicated keyboards examples (space gain):

4. (Multiple-)Language support:

- Most custom keyboards provide the possibility of changing the language on demand
 - In many cases correctors or word predictions mix languages

Outline

Session 1:

- Understanding the fundamentals of basic interaction in UI
 - Background (Information Theory)
 - · Hick-Hyman Law: Measuring Choice-Reaction Time
 - Fitts' Law: Measuring Pointing Time
 - Crossing and Steering Laws: Continuous Gestures
- Fitts' Law in UI Design
 - Applications in UI Design
 - Accelerating Target Acquisition
- Exercises

Session 2:

- Pointing Devices
- Typing & Keyboards
- Mobile Interaction Design