Hyukdong Kim

Show that followings with definition.

Definition 1. A function f(x) is said to be continuous at a point a if $\lim_{x\to a} f(x) = f(a)$.

Problem 1. Show that (0,1) is open.

Solution: Fix any
$$x$$
 in $(0,1)$, choose $e=e(x)=\min(x,1-x)$. Then, $(x-e,x+e)=(x-e,x+e)=(0,1)$ is subset of $(0,1)$.

Problem 2.

Solution: With negation: 'There exists x in A s.t. for any $\epsilon > 0$, $(x - \epsilon, x + \epsilon)$ is not a subset of A', let x = 0. Then, $(0 - \epsilon, 0 + \epsilon)$ is not a subset of A. Because, $(-\epsilon, 0)$ is subset of $(-\epsilon, \epsilon)$ but, not subset of A.