индивидуальные задания по дисциплине «9u9MM»

Обучающийся выполняет индивидуальные практические задания и оформляет письменный отчет, который представляет в системе СДО.

Номер варианта соответствует порядковому номеру в списке группы. В случае, когда порядковый номер больше 30, то номер варианта выбирается по последней цифре порядкового номера в списке группы.

Критерии оценки (в баллах): **задание 1** – 8 баллов, **задание 2** – 6 баллов, **задание 3** – 6 баллов.

ЗАДАНИЕ 1. Линейная и нелинейная регрессионные модели

За каждым из 10 менеджеров по сбыту закреплена определенная территория. Численность населения на этих территориях (x в тыс. чел.) равна 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. В таблице приведены объемы продаж (y в млн руб.), обеспеченные соответствующим менеджером, и вид нелинейной регрессии.

Требуется:

- 1) рассчитать параметры линейной и указанной нелинейной парных регрессий;
- 2) изобразить графически корреляционное поле и найденные линии регрессий;
- 3) оценить тесноту связи с помощью показателей корреляции и детерминации;
- 4) с помощью F-критерия оценить статистическую надежность результатов моделирования;
- 5) выбрать более адекватное уравнение регрессии.

№ варианта						y					Нелинейная регрессия
1	5	4	4	3	3	3	2	2	2	2	Квадратичная $y = a + bx + cx^2$
2	5	3	4	3	2	3	2	3	1	2	Гиперболическая $y = a + b/x$
3	1	2	3	3	4	4	5	4	5	5	Логарифмическая $y = a + b \cdot \ln x$
4	2	1	3	2	3	2	3	4	3	4	Степенная $y = a \cdot x^b$
5	2	1	2	2	2	2	3	3	3	4	Показательная $y = e^{a+bx}$
6	1	2	3	3	4	4	5	4	5	5	Квадратичная $y = a + bx + cx^2$
7	1	2	2	2	3	3	4	3	4	4	Гиперболическая $y = a + b/x$
8	2	3	3	4	4	5	5	5	6	6	Логарифмическая $y = a + b \cdot \ln x$
9	1	2	3	3	4	3	3	4	3	3	Степенная $y = a \cdot x^b$
10	2	2	3	3	2	3	4	3	4	5	Показательная $y = e^{a+bx}$
11	5	6	5	5	4	4	3	3	2	1	Квадратичная $y = a + bx + cx^2$
12	4	5	5	4	4	3	3	2	1	1	Гиперболическая $y = a + b/x$
13	1	2	2	3	3	4	3	4	5	4	Логарифмическая $y = a + b \cdot \ln x$
14	1	1	2	2	3	3	2	3	3	4	Степенная $y = a \cdot x^b$
15	3	2	2	3	2	3	4	4	5	5	Показательная $y = e^{a+bx}$
16	2	1	3	2	2	2	3	4	5	4	Квадратичная $y = a + bx + cx^2$
17	1	2	2	3	3	4	4	3	4	4	Гиперболическая $y = a + b/x$
18	4	5	4	3	4	3	3	2	2	1	Логарифмическая $y = a + b \cdot \ln x$
19	1	2	2	3	4	4	3	3	5	4	Степенная $y = a \cdot x^b$
20	5	5	4	4	3	2	3	2	2	3	Показательная $y = e^{a+bx}$
21	4	4	3	3	3	3	3	4	4	4	Квадратичная $y = a + bx + cx^2$
22	1	2	2	3	2	3	2	3	3	3	Гиперболическая $y = a + b/x$
23	6	6	5	5	5	4	4	3	3	2	Логарифмическая $y = a + b \cdot \ln x$
24	1	2	3	4	4	4	3	3	5	4	Степенная $y = a \cdot x^b$
25	4	3	3	3	2	2	2	2	1	2	Показательная $y = e^{a+bx}$
26	2	2	3	3	3	3	2	2	2	1	Квадратичная $y = a + bx + cx^2$
27	3	3	2	2	1	1	1	2	2	2	Γ иперболическая $y = a + b/x$
28	5	5	4	5	4	4	3	3	2	1	Логарифмическая $y = a + b \cdot \ln x$
29	3	2	4	3	4	3	4	5	4	5	Степенная $y = a \cdot x^b$
30	5	4	3	4	3	2	3	3	2	2	Показательная $y = e^{a+bx}$

ЗАДАНИЕ 2. Множественная линейная регрессия

По 10 предприятиям области изучается зависимость выработки продукции на одного работника w (усл. ед.) от ввода в действие новых основных фондов u (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих v (%).

Требуется:

- 1) построить линейное уравнение регрессии, характеризующее зависимость w от факторов u и v;
- 2) с уровнем значимости $\alpha = 0.05$ проверить гипотезы: о влиянии фактора u на результат и о влиянии фактора v на результат;
- 3) найти коэффициент детерминации R^2 ;
- 4) с помощью F-критерия при $\alpha = 0.05$ проверить качество модели в целом.

Вариант 1	u	4.4	4	4.3	3.7	4.1	3.8	3.5	6	2.4	4.4
	v	19	16	19	14	17	14	12	6	14	19
	w	27	27	26	29	29	32	31	45	30	26
Вариант 2	u	6.3	6.4	7	7.5	7.9	8.2	8	8.6	9.5	9
	v	21	22	24	25	28	30	30	31	33	36
	w	9	11	11	12	12	13	13	13	14	14
Вариант 3	u	2.8	4.4	2.5	4	3.6	2.8	2.4	3.5	2.4	3.7
	v	8	19	6	16	13	8	6	12	6	14
	w	84	140	77	120	100	84	75	97	74	107
Вариант 4	u	6.3	6.4	7	7.5	7.9	8.2	8.4	8.6	9.5	10
	v	21	22	23	25	28	30	31	31	35	36
	w	10	11	11	12	12	13	13	14	14	15
Вариант 5	u	3	3.3	4.1	4.4	3.7	3	4.4	4	3.5	2.4
	v	9	11	17	19	14	9	19	16	12	6
	w	24	28	32	27	32	27	33	31	27	21
Вариант 6	u	6.3	6.4	7.2	7.5	7.9	8.1	8.4	8.6	9.5	9.5
	v	22	22	23	25	27	30	31	32	35	35
	w	11	11	11	12	12	13	13	13	14	15
Вариант 7	u	2.6	2.4	3.7	2.6	4	4.4	3.7	3	4	2.4
	v	7	6	14	7	16	19	14	9	16	6
	w	23	18	36	21	39	52	37	20	41	17
Вариант 8	u	6.3	6.5	7.2	7.5	7.9	8.2	8.4	8.6	9.5	9.6
	v	22	22	24	25	27	30	31	33	35	36
	w	10	10	11	12	12	13	13	14	14	15
Вариант 9	u	4.1	3.9	2.8	2.2	4	3.7	4.5	4	3.5	3.5
	v	17	15	8	5	16	14	20	16	12	12
	w	158	138	129	114	155	151	163	145	144	148
Вариант 10	u	6.3	6.9	7.2	7.8	8.1	8.2	8.4	8.8	9.5	9.7
	v	21	23	24	25	27	29	31	33	35	34
	w	10	11	11	12	13	13	13	14	14	15

Вариант 11	u	4.4	4.3	3.6	4.4	2.6	4.1	3	4.2	2.8	3
Beplient 22	v	19	19	13	19	7	17	9	18	8	9
	w	26	25	30	27	41	26	37	$\overline{27}$	38	37
Вариант 12	u	6.3	6.8	7.2	7.9	8.1	8.3	8.4	8.8	9.6	9.7
	v	21	22	24	25	26	29	31	32	35	36
	w	10	10	11	12	12	13	13	13	14	15
Вариант 13	u	2.2	4.2	3.2	2.6	3.9	3.2	2.2	2.8	4.4	2.6
	v	5	18	10	7	15	10	5	8	19	7
	w	72	136	88	75	114	97	73	84	143	79
Вариант 14	u	6.8	7.4	7.8	7.5	7.9	8.1	8.4	8.7	9.5	9.7
	v	21	23	24	26	28	30	31	32	33	35
	w	10	11	11	12	12	12	13	13	13	14
Вариант 15	u	3	2.8	4.5	3	3.9	3.9	3.7	4.4	4.2	4.4
	v	9	8	20	9	15	15	14	19	18	19
	w	22	20	27	22	26	26	26	26	27	27
Вариант 16	u	7.1	7.5	7.8	7.6	7.9	8.1	8.5	8.7	9.6	9.8
	v	22	23	25	27	29	30	32	32	33	36
	w	11	11	12	12	12	13	13	14	14	15
Вариант 17	u	3.6	3.9	3.9	3.7	2.4	4.4	3.3	3.7	2.6	4
	v	13	15	15	14	6	19	11	14	7	16
	w	52	66	62	61	26	89	41	54	25	70
Вариант 18	u	7.1	7.5	7.8	7.9	8.1	8.4	8.6	8.8	9.6	9.9
	v	22	25	26	27	30	31	32	32	34	36
	w	11	12	13	12	13	13	13	14	14	14
Вариант 19	u	9	11	15	6	17	13	14	16	7	11
	v	3	3.3	3.9	2.4	4.1	3.6	3.7	4	2.6	3.3
	w	31	31	35	28	33	31	34	34	28	31
Вариант 20	u	7.2	7.6	7.8	7.9	8.2	8.4	8.6	8.8	9.2	9.6
	v	23	25	26	28	30	31	32	32	33	34
	w	10	11	12	11	12	12	12	13	13	14
Вариант 21	u	3.9	4.1	2.6	4.1	3.9	4	3.7	3.6	2.4	3.9
	v	15	17	7	17	15	16	14	13	6	15
	w	60	84	19	75	59	65	50	55	32	53
Вариант 22	u	3.6	3	3.9	3.9	4.2	2.4	3.3	3.7	4.2	2.8
	v	13	9	15	15	18	6	11	14	18	8
	w	25	22	25	25	27	18	24	25	27	21
Вариант 23	u	2.8	4.2	4	2.8	4.4	2.4	4	3.6	2.8	2.4
	v	14	18	16	8	19	6	16	13	8	6
	w	110	136	125	84	140	77	120	100	84	75
Вариант 24	u	4.4	3.3	2.4	3	3.9	4.1	4.2	3.3	4.4	3.3
	v	19	11	6	9	15	17	18	11	19	11
	w	26	33	42	36	28	28	28	34	25	33

Вариант 25	u	3	2.6	4	3.3	4.1	2.8	4.4	4.2	3.5	3.7
	v	9	7	16	11	17	8	19	18	12	14
	w	131	130	144	140	157	123	155	159	145	153
Вариант 26	u	2.6	3.3	3.7	3	2.6	3.9	3.2	3.5	2.4	2.6
	v	7	11	14	9	7	15	10	12	6	7
	w	16	26	38	25	21	40	24	32	18	19
Вариант 27	u	3	4.2	4.5	4.1	2.4	2.6	2.6	2.8	4.5	4.2
	v	9	18	20	17	6	7	7	8	20	18
	w	25	31	31	29	17	23	21	21	30	30
D 00		2 5	0.4	2 7	2.6	4.0	3.7	4.5	3.7	2.0	27
Вариант 28	u	3.5	2.4	3.7	3.6	4.2	5.1	4.0	5.1	3.2	3.7
Бариант 28	$\left \begin{array}{c} u \\ v \end{array}\right $	$\begin{array}{ c c } 3.5 \\ 12 \end{array}$	2.4 6	3.1 14	3.0 13	4.2 18	3.7 14	20	3.7 14	3.2 10	3.7 14
Вариант 28											
Вариант 28	v	12	6	14	13	18	14	20	14	10	14
	$\begin{bmatrix} v \\ w \end{bmatrix}$	12 97	6 74	14 107	13 108	18 128	14 113	20 141	14 109	10 88	14 112
	$\begin{bmatrix} v \\ w \end{bmatrix}$	12 97 3.2	6 74 4.4	14 107 3.7	13 108 4.1	18 128 4.4	14 113 3.7	20 141 2.4	14 109 4	10 88 3	14 112 3.2
	$\begin{bmatrix} v \\ w \end{bmatrix}$	12 97 3.2 10	6 74 4.4 19	14 107 3.7 14	13 108 4.1 17	18 128 4.4 19	14 113 3.7 14	20 141 2.4 6	14 109 4 16	10 88 3 9	14 112 3.2 10
Вариант 29	$\begin{bmatrix} v \\ w \end{bmatrix}$	12 97 3.2 10 33	6 74 4.4 19 25	14 107 3.7 14 31	13 108 4.1 17 28	18 128 4.4 19 27	14 113 3.7 14 29	20 141 2.4 6 43	14 109 4 16 28	10 88 3 9 39	14 112 3.2 10 36

задание 3. Временные ряды

Имеются условные данные об объемах продаж некоторой фирмы за 16 кварталов.

- 1) Постройте диаграмму наблюдений временного ряда.
- 2) По виду диаграммы постройте соответствующую модель временного ряда.
- 3) Оценить значимость построенной модели.
- 4) С помощью построенной модели сделайте прогноз для следующих четырех наблюдений временного ряда.

Вар	иант	1													
3.7	1.0	3.0	5.2	4.3	1.6	3.2	5.9	5.0	2.1	3.3	6.4	5.7	2.7	3.4	7.0
Вар	иант	2													
3.7	1.2	3.1	5.2	4.5	1.6	3.2	6.4	5.3	2.0	3.3	7.6	6.1	2.4	3.5	8.8
Bap	иант	3													
5.8	4.5	5.1	9.1	7.0	5.0	6.0	10.1	7.9	5.5	6.3	10.8	9.0	6.5	7.0	11.1
Вар	иант	4													
4.8	1.6	2.8	6.4	5.4	2.8	4.0	6.8	6.0	4.0	5.3	7.2	6.6	5.2	6.6	7.6
Вар	иант	5													
5.5	4.6	5.0	9.2	7.1	5.1	5.9	10.0	8.0	5.6	6.4	10.9	9.1	6.4	7.2	11.0
Вар	иант	6													
3.4	1.4	3.3	6.0	5.0	2.2	3.7	8.0	6.6	3.0	4.1	10.0	8.2	3.8	4.5	12.0
Вар	иант	7													
5.3	4.7	5.2	9.1	7.0	5.0	6.0	10.1	8.2	5.5	6.5	11.0	8.9	6.5	7.3	11.2

Вариант	0													
<u>Бариант</u> 5.6 1.5	2.8	6.2	5.7	2.5	3.6	6.4	5.7	3.5	4.4	6.6	5.9	4.5	5.2	6.8
Вариант 5.5 4.8	$\frac{9}{5.1}$	9.0	7.1	4.9	6.1	10.0	8.3	5.4	6.4	10.9	9.0	6.6	7.5	11.2
		0.0	1.1	1.0	0.1	10.0			0.1	10.0	0.0	0.0	1.0	
Вариант 2.9 1.2	$\frac{10}{2.2}$	5.0	4.5	1.6	2.6	7.0	6.1	2.0	2.9	9.0	7.7	2.4	3.2	11.0
	2.2	5.0	4.0	1.0	2.0	7.0	0.1	2.0	2.9	9.0	1.1	2.4	ა.∠	
Вариант						10.0				100				
5.6 4.7	5.2	9.1	7.0	5.1	6.0	10.2	8.2	5.6	6.4	10.8	9.1	6.7	7.5	11.3
Вариант	12													
4.6 1.0	2.4	5.2	4.8	2.0	3.2	5.4	4.9	3.0	4.0	5.6	5.0	4.0	4.8	5.8
Вариант	13													
3.1 2.1	3.1	4.3	3.5	2.4	3.2	4.5	3.8	2.6	3.3	4.8	4.2	2.9	3.5	5
Вариант	14													
2.8 1.1	1.6	4.0	3.6	1.3	2.1	5.0	4.4	1.5	2.6	6.0	5.2	1.7	3.1	7.0
Вариант	15													
$\frac{\text{Daphan1}}{2.6 \ 2.1}$	$\frac{13}{2.0}$	1.2	2.97	2.4	2.1	1.5	3.3	2.6	2.1	1.8	3.7	2.9	2.2	2
Вариант 4.0 0.6	$\frac{16}{1.7}$	4.4	4.2	1.6	2.5	4.6	4.3	2.6	3.3	4.8	4.4	3.6	4.1	5.0
		4.4	4.2	1.0	2.0	4.0	4.0	2.0	J.J	4.0	4.4	3.0	4.1	
Вариант		F C	F 1	1.0	0.7	C 1	F 0	0.4	2.0	C 7	<i>c</i> -	2.0	0.7	
4.5 1.3	2.2	5.6	5.1	1.9	2.7	6.1	5.8	2.4	3.2	6.7	6.5	3.0	3.7	7.3
Вариант														
1.8 1.1	1.6	3.0	2.6	1.3	2.1	4.0	3.4	1.5	2.6	5.0	4.2	1.7	3.2	6.0
Вариант	19													
3.2 1.4	2.4	4.8	3.8	2.2	3.0	5.6	4.5	3.0	3.6	6.4	5.1	3.8	4.1	7.2
Вариант	20													
3.0 0.5	1.0	3.4	3.2	1.2	1.8	3.6	3.3	1.9	2.6	3.8	3.4	2.6	3.4	4.0
Вариант	21													
$\frac{Baphan1}{4.7 1.7}$	4.1	6.3	5.8	3.0	4.9	7.7	6.8	4.3	5.7	9.0	7.8	5.7	6.5	10.3
Вариант 3.3 2.2	$\frac{zz}{3.2}$	4.2	4.2	2.6	3.4	5.4	5.1	3.0	3.7	6.6	6.0	3.4	3.9	7.8
		1.4		0	9.1	<u> </u>	J.1	9.0	0.1		0.0	9.1	9.0	
Вариант 3.4 1.0		1 5	4.2	2.0	9 1	5.5	5.0	2 0	1 5	6.5	5.8	4.0	5.0	
3.4 1.0	1.8	4.5	4.2	∠.0	3.1	0.0	ე.0	3.0	4.5	6.0	ა.გ	4.0	5.8	7.5
Вариант														
4.7 0.6	1.7	5.4	5.0	1.6	2.9	5.8	5.3	2.6	4.1	6.2	5.6	3.6	5.3	6.6

Вариант	25													
3.3 1.2	2.0	4.4	3.9	1.7	2.3	4.9	4.5	2.1	2.7	5.3	5.1	2.6	3.1	5.8
Вариант	Вариант 26													
1.8 0.3	1.6	3.3	2.7	0.7	1.9	4.5	3.6	1.1	2.2	5.7	4.5	1.5	2.5	6.9
Вариант	27													
2.6 1.2	1.8	3.4	3.1	1.7	2.1	3.9	3.6	2.1	2.5	4.3	4.1	2.6	2.9	4.8
Вариант	Вариант 28													
3.7 0.6	1.2	4.4	4.0	1.6	2.2	4.8	4.3	2.6	3.2	5.2	4.6	3.6	4.3	5.6
Вариант	29													
1.8 1.2	1.6	2.4	2.2	1.5	1.9	2.7	2.6	1.9	2.2	3.1	3.0	2.3	2.6	3.5
Вариант	30													