Aufgabe 1:

Gegeben ist die Übertragungsfunktion einer Regelstrecke:

$$G_S(s) = \frac{10}{(2s+1)\cdot(s+1)\cdot(s+10)}$$

- a) Das System soll mit einem PID-Regler geregelt werden.
 Suchen Sie eine passende Einstellregel heraus und dimensionieren Sie den Regler.
- b) Angenommen die Parameter des PID-Reglers sind $T_N = 2$, $T_V = 1$, $K_P = 5$. Die Übertragungsfunktion des (idealen) PID-Reglers sei:

$$G_R(s) = \frac{K_P(sT_N + 1)(sT_V + 1)}{sT_N}$$

Wie lautet die Übertragungsfunktion des geregelten Systems?

c) Schwingt die Regelgröße bei einem Sollwertsprung über? (Begründung)

Aufgabe 2:

Ein System wird durch die folgende Differentialgleichung beschrieben:

$$\ddot{y}(t) + 8\ddot{y}(t) + 12\dot{y}(t) = 5e(t) + 12$$

- a) Linearisieren Sie das System und geben Sie die Übertragungsfunktion an.
- b) Das System soll mit einem PID-Regler geregelt werden (schnelles Anregeln). Suchen Sie eine passende Einstellregel heraus und dimensionieren Sie den Regler.

Aufgabe 3:

Am Korb eines Fesselballons sind zwei durch Elektromotoren angetriebene Propeller P_1 und P_2 angebracht. Propeller P_1 dreht mit konstanter Drehzahl, die Drehzahl des Propellers P_2 ist über die Antriebsspannung u einstellbar.

Durch Veränderung der Drehzahl des Propellers P₂ kann der Korb in verschiedene Richtungen gedreht werden (Zweck: Schwenken einer Luftbildkamera).

Es gelten folgende Gleichungen:

 $J\ddot{\varphi}(t) = r \cdot (F_2(t) - F_1)$

(1) J: Massenträgheitsmoment der Anordnung,

 $\ddot{\varphi}$: Winkelbeschleunigung, F_1, F_2 : Antriebskräfte

 $T \cdot \dot{F}_{2}(t) + F_{2}(t) = k_{1} \cdot u(t)$ (2)

k₁: Konstante, u: Antriebsspannung, T: Zeitkonstante

Folgende Werte sind gegeben: $F_1 = 5N$, $k_1 = 0.5 \text{ N/V}$, r = 0.5 m, T = 0.5 s, $J = 2.5 \text{ kg} \cdot \text{m}^2$

- a) Linearisieren und Normieren (auf SI-Einheiten) Sie Differentialgleichung (1).
- b) Geben Sie die Übertragungsfunktion $G_1(s) = \frac{\phi(s)}{F_2(s)}$ an.
- c) Geben Sie die Spannung uo des ruhenden Systems an.
- d) Linearisieren und Normieren (auf SI-Einheiten) Sie Differentialgleichung (2).
- e) Geben Sie die Übertragungsfunktion $G_2(s) = \frac{F_2(s)}{U(s)}$ an.
- f) Geben Sie die Übertragungsfunktion $G_s(s) = \frac{\phi(s)}{U(s)}$ an.
- g) Das System soll mit einem PD-Regler stabilisiert werden. Legen Sie die Reglerparameter (K_R , T_V) so fest (20% Überschwingen erlaubt).

Ergebnisse:

1a) $3 \times PT1 \rightarrow Betragsoptimum$

$$T_N = 2$$
, $T_V = 1$, $K_P = 10$

1b)
$$G(s) = \frac{25}{s^2 + 10s + 25}$$

1c) 2 reelle Pole bei s=-5 → kein Überschwingen

2a)
$$\Delta \ddot{y} = -8\Delta \ddot{y} - 12\Delta \dot{y} + 5\Delta e$$
$$G_{S}(s) = \frac{\frac{5}{12}}{s(\frac{1}{2}s+1)(\frac{1}{6}s+1)}$$

2b) $2 \times PT1 + 1 \times I \rightarrow symm$. Optimum

$$\beta = 2$$
, $T_N = \frac{2}{3}$, $T_V = \frac{1}{2}$, $K_P = 7.2$

3a/b)
$$\Delta \ddot{\varphi} = 0.2\Delta F_2$$

$$G_1(s) = \frac{0.2}{s^2}$$

3c/d/e)
$$u_0 = 10V$$

$$\Delta \dot{F}_2 = \Delta u - 2\Delta F_2$$

$$G_2(s) = \frac{1}{s+2}$$

3f)
$$G_S(s) = \frac{0.1}{s^2(\frac{1}{2}s+1)}$$

3g) → Einstellregel für doppelt-integrierende Syteme

$$\alpha = 20$$
, $T_1 = 1.12$, $K_R = 0.089$