Signals of muscles and peripheral nerves

Michal Novotny

Muscles

- Smooth muscles
 - Slow automatic movements of organs (oesophagus, stomach, bowels)
- Striated muscles
 - Cardiac muscles automatic movements of heart
 - Skeletal muscles voluntary movements

https://www.researchgate.net/publication/266253578_Clinical_and_symptomatological_reflections The fascial system/figures?lo=1

Hierarchical structures for muscles

- Muscle can only contract
- Contraction is caused by emision of acetylcholine to the membrane of muscle fiber -> action potential leads to opening of Ca+ canals and leakage of Ca+ ions to sarkoplasma

Sarcomere

https://biologydictionary.net/actin-and-myosin/

Contraction

 ATP arival sauses bending and and the myosin head pulls actine and myosine fibers towards each other

Event order during muscle contraction

Contraction Synapse

https://biologydictionary.net/actin-and-myosin/

Muscle control

Motor unit

- Motor unit = spinal motoneuron
 + axon + all innervated muscle
 fibers
- The most basic voluntarily activated muscle unit
- Excitation vs. inhibition

Axon of motor neurons extend from the spinal cord to the muscle.

There each axon divides into a number of axon terminals that form neromuscular junctions with muscle fibers scattered throughout the muscle.

Motor unit EMG generation

- Anatomy:
 - Motor units ventral spinal horn, moto-neuron, axon, muscle fibers
- Physiological model:
 - Summation of impulses ariving from spinal cord activates motor units generatin action potentials
 - Very low voltage (100μV) but synchronuous in many fibers
- Instrumentation:

Motor unit size

Muscle	# neuronal fibers	# muscle fibers	# motor units	# muscle fibers in motor unit
Platysma	1826	27100	1096	~25
Pointing finger muscles	199	40500	119	~340
Lower limbs muscles	965	1120000	579	~1934

Platysma https://eluc.kr-olomoucky.cz/verejne/lekce/188

Hand muscles

https://fineartamerica.com/featured/9-muscles-of-the-hand-asklepios-medical-atlas.html

Lower limb
muscles
https://anatomyzone.com/lower-limb/

Wave types and action potentials

- Needle electrodes
- Usually bi or triphasic
- 3-15 ms in length, 100 300μV and 6 – 30 Hz
- Shape is given by used electrode

Monophasic waves

Biphasic waves

Triphasic waves

Motor units activation

- Spatial activation
- Temporal activation
- Quantitative characteristics due to the signal complexity

Easy work

Medium work

Hard work

Motor units activation

- Hanemann's rule motor units are activated sequentially
- Muscle force is dependent on number of activated motor units
- Muscle fibers
 - Type I (slow 110ms, 50%, endurance, activated first)
 - Type II (fast 50ms, force)
 - Type IIa 25%
 - Type IIx 25% (strongest, activated last)

Muscle stimulation

- Indirect
 - Local potential at neuromuscular junction
- Direct
 - Electric signal causes artificial depolarization

Contraction Synapse

EMG and contraction power

- Muscle force is given by motor unit recruitment and frequency of incoming impulses
- Frequency modulation
- Similar force can be produced by recruitment of smaller MU stimulated by higherrequency or larger MU with lower frequency

EMG and contraction power

EMG recording

- Surface electrodes
 - Less invasive
 - Easy application
 - 20-500Hz
 - Generalized signal

EMG recording

- Needle electrodes
 - Invasive
 - Up to 5000 Hz
 - Localized
 - Expensive and complicated application

Nihon-Kohden concentric

Nihon-Kohden needle

Surface electrode placement

Electromyography

- Applications
 - Diagnostic
 - Needle EMG
 - Conduction study
 - Kinesiology
 - Fatigue analysis
 - Prosthetics
 - Others

Native EMG

- Acquisition during muscle relaxation
- Needle
- Comarison of features of motor units (duration, amplitude number)

Physiological EMG activity

- No activity during relaxation
- Insertion aktivity
 - Caused by the mechanical stimulation by needle insertion
- Neuromuscular junction aktivity
 - Neuromuscular noise
 - Neuromuscular peaks

Neuromuscular noise

Neuromuscular peaks

Physiological EMG activity

- MU recruitment
- Interferention
- Willis analysis

Minimal contraction

Medium contraction 30%-40%

Maximal contraction

Pathological EMG activity

Neuropathy

- Slow lead, not synchronized activation causing polyphasic action potential with greater amplitude
- Similar Mus shows relatively high frequency of firing in low, median and high effort levels

Myopathy

- · Loss of musice fibers,
- Muscula dystrophy leading to dispersed action potentials with low amplitude
- · During low effort level more Mus is involved

Abnormal EMGactivity

200

Myotonic impulses

Needle EMG Audiomyogram

Potential	Source	Sound character	Frequency	Regularity
Junction noise	MEPP	Shell	20-40Hz	Irregular
Junction potential	Terminal axon branching	Crackling	5-50Hz	Irregular
Fibrilation	Denerved muscle fiber	Rain/ticking	0.5-10Hz	Regular
Positve sharp peak	Denerved muscle fiber	Rain/ticking	0.5-10Hz	Regular
Myotonic firing	Transversal tubulae	Motorbike start	20-150Hz	In/decreasing
Fasciculation	Motoneuron or axon	Popcorn	0.1-10Hz	Irregular
Complex repetitive firing	Denerved fibers	Engine	5-100Hz	Regular
Myokymia	Motoneron or axon	Steps	5-60Hz	Groups
Neuromyothonia	Motoneuron or axon	Release	150-250Hz	Decreasing

Needle EMG

Stimulation EMG (Conduction study)

- Stimulation and acquisiton
- Electric stimulation resulting in muscle twitch
- uncomfortable
- Examination aims:
 - Comarison of propagation speed
 - Comparison of the potential size
 - Abnormal values:
 - Nerv damage by injury, chronical pressure, infalmation, metabolic disorder aot intoxication
 - Detection of leision
 - Demyelinization
 - Axonal

Conduction study

Muscle response on stimulus

Direct response: M-wave

Pozdní odpovědi: F-wave

H-reflex

EMG examination

MNC	Pozice	Latence [ms]	Amplituda [mV]	CV [m/s]	Amp % [%]	Vzdálenost [mm]
	ADD	3,9	12,0			-
Medianus-Pravá	Wrist - APB	2,5	8,0		STATE AND ADDRESS.	
Ulnaris-Pravá	Wrist - ADQ		4,5			-
Ulnaris-Levá	Wrist - ADQ	3,4	6,4			
Medianus-Levá	Wrist - APB	4,5	0,1			

SNC	Pozice	Latence peak [ms]	Amplituda [mV]	CV [m/s]	Vzdálenost [mm]
			29,4	67	75
Median-Palm-II, Wrist-	Palm - Digit II	1,6	18,6	53	100
Pravá	Wrist - Palm	3,8	9,0	67	160
Ulnaris x Medianus Dig IV-	Ulnaris - Digit IV	3,7	10,5	52	150
Pravá	Medianus - Digit IV	3,8	24,9	60	80
Median-Palm-II, Wrist-	Palm - Digit II	1,9		39	80
Levá	Wrist - Palm	3,9	19,1	56	140
Ulnaris x Medianus Dig IV-	Ulnaris - Digit IV	3,4	17,9	43	140
Levá	Medianus - Digit IV	4,0	7,9	13	

F-Vina	M-Latence [ms]	M-Amplituda [mV]	Fmin [ms]	F-M [ms]	F/M [%]
	[IIIE]	12.0	29,0	25,1	80,0
Medianus-Pravá	4,0	12,0	28,4	25,9	100,0
Ulnaris-Pravá	2,4	1,8	29,1	25,8	100,0
Ulnaris-Levá	3,4	9.7	29,4	24,9	71,0
Medianus-Levá	4,5	0,2			

EMG examination

Závěr: EMG nález svědčí pro středně těžku chronickou radikulopatii C8 obostranně s větším postižením vlevo, Aktuálně nejsou známky léze n medianus či ulnaris bilat ani přední porce kořenů C5-7 bilat.

EMG examination

KT Motor

Nerve / Sites	Lat ms	Amp mV	Dist
R MEDIANUS - APB K	T 8,80	0,4	8
+ Prinxett	0,00	0,1	-
L MEDIANUS - APB K 1. Zápěstí	4,75	3,5	8

F Wave

Nerve	Mean FLat ms	Min F Lat	Max F Lat	% F %	Mean FAmp mV
L TIBIAL (KNEE) - AH	52,09	51,50	52,40	100	0,2
L COMM PERONEAL - EDB	50,48	49,55	51,35	75	0,2

Tabulka EMG										
	Spontaneous				MUAP			Recruitment	Reduction	
	IA	Fib	PSW	Fasc	H.F.	Amp	Dur.	PPP	Pattern	Klasifikace
L. TIB ANTERIOR	N	None	None	None		N	N	N	N	5

Závěr:

EMG vyšetření neprokázalo polyneuropatii HK či DK, ani významnější radikulopatii L5, svědčí pro středně těžkou kompresivní lézi n. medianus v oblasti zápěstí vlevo, vpravo je téměř úplná axonopatie tohoto nervu (dle anamnézy již 15 let).

MUDr.

Adresa: 4

Age: 75 Years 9 Months

z.p.: 111 Dg.: G 61.9

Sensory NCS

Výška: 1,6 m

Nerve / Sites	Rec. Site	Latency ms	Peak Ampl	Distance	Velocity m/s
L SURAL - Lat Malleoli	ıs				
1. Lýtko	Zevní kotník	2,00	13,5	10	50.0
R SURAL - Lat Malleol	us				
1. Lýtko	Zevní kotník	2,05	23,3	10	48,8
L SUP PERONEAL - Fo	oot				
1. Nad kotníkem	Nárt	3,10	1.5	12	38,7

KT Sens

Nerve / Sites	Rec. Site	Latency ms	Peak Ampl	Distance em	Velocity m/s
L MEDIANUS - 2 prst					
1. Dlaň	II	1,85	9,8	7,3	39,5
2. Zápěstí	II	3,60	19,0	7,5	42,9
R MEDIANUS - 2 prst					
1. Dlaň	II	0,00			
2. Zápěstí	II	4,20	6,6	14,7	35,0
L MEDIANUS - x ULNAR 4, pr	st				
1. zápěstí - ulnar	IV	2,85	7,9	14,2	49,8
2. zápěstí - median	IV	3,50	6,0	14,2	40,6
R MEDIANUS - x ULNAR 4, pr	rst				
1. zápěstí - ulnar	IV	2,90	9,3	14,2	49,0
2. zápěstí - median	IV	3,80	6,0	14	36,8

Motor NCS

Nerve / Sites	Lat. ms	Amp. mV	Dist. cm	RV m/s
L TIBIAL (KNEE) - AH				
1. Ankle	4,80	6,9		
2. Knee	13,30	4,5	38,2	44,9
L COMM PERONEAL - EI)B			
1. Ankle	5,50	5,1		
2. Fib Head	11,90	5,0	29	45,3
3. Knce	13,55	5,1	8,5	51,5

Kineziological surface EMG

Kineziological surface EMG

Kineziological surface EMG

- Sequential Fourier analysis
- Window length (1 to 5 s)
- Segment overlap increases resolution
- Decision threshold for the fatigue level

Prosthetics

Other EMG applications

- Detection of myoclonic twitches
- Localisation CNS source

Other EMG applications

Emotion detection

EMG analysis

- Artefcts
- EMG envelopes
- Feature extraction
 - Temporal
 - Frequency
- Advanced methods

EMG history

1791 - Luigi Galvani (Italy)

Relationship between elektricity and muscle contractions

• 19. century

Muscle contractions by electro stimulation

• 1907 - Louis Lapicque (France)

Cell membrane model

• 1918 - Arthur E. Baines (england)

First cable model of stimulus propagation

• 1928 - R. Proebster (Germany)

First pathological signaů

• 1929 – needle electrode

následuje rychlý rozmach klinické myografie

• 2nd half of 20th century

Electronichand prosthesis

EMG signal

- 20-500Hz
- Minimal Fs = 1000Hz
- Median frequencies around 70 to 80Hz
- Do not use narow band stopbands to suppres 50Hz brum
- It is complicated to estimate contraction level

Artefacts

ECG artefacts

Powergrid brum

DC offset

Artefacts

Movement artefact

Amplifier saturation

Envelope EMG

• (band pass) EMG

• envelope EMG (threshold frequency 4 Hz)

Synchronous averaging

Triangular detection method

Integrated EMG

Envelope EMG examples

Moving Average

Quantitive characteristics in Frequency domain

- Median frequency
- First spectral moment
- Second spectral moment

Quantitive characteristics in Frequency domain

Power spectral density

flexor digitorum longus (MVC) Fourier Analysis

Fatigue analysis

erector spinae 60 seconds (50% overlap)

Zerocrossing

Frequency median

First spectral moment

$$mom_1 = \frac{\sum \mathbf{f} \cdot \mathbf{I}}{\sum \mathbf{I}}$$

where **f** is vector of corresponding frequencies. Defines spectrum center of gravity

Second spectral moment

$$mom_2 = \sqrt{\frac{\sum \mathbf{f}^2 \cdot \mathbf{I}}{\sum \mathbf{I}} - \left(\frac{\sum \mathbf{f} \cdot \mathbf{I}}{\sum \mathbf{I}}\right)^2}$$

Is analogous to static dispersion and represent spectrum dispersion

Advanced DSP methods

Decomposition of intramuscular and surface EMG

Individual Motor Units Action Potential Trains

