DIS Galactic Archaeology module

Lecture 6: Chemical evolution & hands-on session

Dr Anke Ardern-Arentsen

Recap from the previous lecture

- ➤ How to build an astronomical dataset? It's a lot of effort!
- > Public survey data products are extremely useful, but they are not perfect

The Gaia mission*

Gaia Collaboration, T. Prusti^{1,★★}, J. H. J. de Bruijne¹, A. G. A. Brown², A. Vallenari³, C. Babusiaux⁴, C. A. L. Bailer-Jones⁵, U. Bastian⁶, M. Biermann⁶, D. W. Evans⁷, L. Eyer⁸, F. Jansen⁹, C. Jordi¹⁰, S. A. Klioner¹¹, U. Lammers¹², L. Lindegren¹³, X. Luri¹⁰, F. Mignard¹⁴, D. J. Milligan¹⁵, C. Panem¹⁶, V. Poinsignon¹⁷, D. Pourbaix^{18,19}, S. Randich²⁰, G. Sarri²¹, P. Sartoretti⁴, H. I. Siddiqui²², C. Soubiran²³, V. Valette¹⁶, F. van Leeuwen⁷, N. A. Walton⁷, C. Aerts^{24, 25}, F. Arenou⁴, M. Cropper²⁶, R. Drimmel²⁷, E. Høg²⁸, D. Katz⁴, M. G. Lattanzi²⁷, W. O'Mullane¹², E. K. Grebel⁶, A. D. Holland²⁹, C. Huc¹⁶, X. Passot¹⁶, L. Bramante³⁰, C. Cacciari³¹, J. Castañeda¹⁰, L. Chaoul¹⁶, N. Cheek³², F. De Angeli⁷, C. Fabricius¹⁰, R. Guerra¹², J. Hernández¹², A. Jean-Antoine-Piccolo¹⁶, E. Masana¹⁰, R. Messineo³⁰, N. Mowlavi⁸, K. Nienartowicz³³, D. Ordóñez-Blanco³³, P. Panuzzo⁴, J. Portell¹⁰, P. J. Richards³⁴, M. Riello⁷, G. M. Seabroke²⁶, P. Tanga¹⁴, F. Thévenin¹⁴, J. Torra¹⁰, S. G. Els^{35,6}, G. Gracia-Abril^{35,10} G. Comoretto²², M. Garcia-Reinaldos¹², T. Lock¹², E. Mercier^{35,6}, M. Altmann^{6,36}, R. Andrae⁵, T. L. Astraatmadja⁵ I. Bellas-Velidis³⁷, K. Benson²⁶, J. Berthier³⁸, R. Blomme³⁹, G. Busso⁷, B. Carry^{14, 38}, A. Cellino²⁷, G. Clementini³¹ S. Cowell⁷, O. Creevey^{14,40}, J. Cuypers³⁹, M. Davidson⁴¹, J. De Ridder²⁴, A. de Torres⁴², L. Delchambre⁴³, A. Dell'Oro²⁰, C. Ducourant²³, Y. Frémat³⁹, M. García-Torres⁴⁴, E. Gosset^{43, 19}, J.-L. Halbwachs⁴⁵, N. C. Hambly⁴¹, D. L. Harrison^{7,46}, M. Hauser⁶, D. Hestroffer³⁸, S. T. Hodgkin⁷, H. E. Huckle²⁶, A. Hutton⁴⁷, G. Jasniewicz⁴⁸, S. Jordan⁶, M. Kontizas⁴⁹, A. J. Korn⁵⁰, A. C. Lanzafame^{51,52}, M. Manteiga⁵³, A. Moitinho⁵⁴, K. Muinonen^{55,56} J. Osinde⁵⁷, E. Pancino^{20,58}, T. Pauwels³⁹, J.-M. Petit⁵⁹, A. Recio-Blanco¹⁴, A. C. Robin⁵⁹, L. M. Sarro⁶⁰, C. Siopis¹⁸ M. Smith²⁶, K. W. Smith⁵, A. Sozzetti²⁷, W. Thuillot³⁸, W. van Reeven⁴⁷, Y. Viala⁴, U. Abbas²⁷, A. Abreu Aramburu⁶¹, S. Accart⁶², J. J. Aguado⁶⁰, P. M. Allan³⁴, W. Allasia⁶³, G. Altavilla³¹, M. A. Álvarez⁵³, J. Alves⁶⁴ R. I. Anderson^{65,8}, A. H. Andrei^{66,67,36}, E. Anglada Varela^{57,32}, E. Antiche¹⁰, T. Antoja¹, S. Antón^{68,69}, B. Arcay⁵³ A. Atzei²¹, L. Ayache⁷⁰, N. Bach⁴⁷, S. G. Baker²⁶, L. Balaguer-Núñez¹⁰, C. Barache³⁶, C. Barata⁵⁴, A. Barbier⁶², F. Barblan⁸, M. Baroni²¹, D. Barrado y Navascués⁷¹, M. Barros⁵⁴, M. A. Barstow⁷², U. Becciani⁵², M. Bellazzini³¹ G. Bellei⁷³, A. Bello García⁷⁴, V. Belokurov⁷, P. Bendjoya¹⁴, A. Berihuete⁷⁵, L. Bianchi⁶³, O. Bienaymé⁴⁵, F. Billebaud²³, N. Blagorodnova⁷, S. Blanco-Cuaresma^{8, 23}, T. Boch⁴⁵, A. Bombrun⁴², R. Borrachero¹⁰. S. Bouquillon³⁶, G. Bourda²³, H. Bouy⁷¹, A. Bragaglia³¹, M. A. Breddels⁷⁶, N. Brouillet²³, T. Brüsemeister⁶ B. Bucciarelli²⁷, F. Budnik¹⁵, P. Burgess⁷, R. Burgon²⁹, A. Burlacu¹⁶, D. Busonero²⁷, R. Buzzi²⁷, E. Caffau⁴. J. Cambras⁷⁷, H. Campbell⁷, R. Cancelliere⁷⁸, T. Cantat-Gaudin³, T. Carlucci³⁶, J. M. Carrasco¹⁰, M. Castellani⁷⁹ P. Charlot²³, J. Charnas³³, P. Charvet¹⁷, F. Chassat¹⁷, A. Chiavassa¹⁴, M. Clotet¹⁰, G. Cocozza³¹, R. S. Collins⁴¹ P. Collins¹⁵, G. Costigan², F. Crifo⁴, N. J. G. Cross⁴¹, M. Crosta²⁷, C. Crowley⁴², C. Dafonte⁵³, Y. Damerdji^{43,80} A. Dapergolas³⁷, P. David³⁸, M. David⁸¹, P. De Cat³⁹, F. de Felice⁸², P. de Laverny¹⁴, F. De Luise⁸³, R. De March³⁰ D. de Martino⁸⁴, R. de Souza⁸⁵, J. Debosscher²⁴, E. del Pozo⁴⁷, M. Delbo¹⁴, A. Delgado⁷, H. E. Delgado⁶⁰ F. di Marco⁸⁶, P. Di Matteo⁴, S. Diakite⁵⁹, E. Distefano⁵², C. Dolding²⁶, S. Dos Anjos⁸⁵, P. Drazinos⁴⁹, J. Durán⁵⁷ Y. Dzigan^{87,88}, E. Ecale¹⁷, B. Edvardsson⁵⁰, H. Enke⁸⁹, M. Erdmann²¹, D. Escolar²¹, M. Espina¹⁵, N. W. Evans⁷, G. Eynard Bontemps⁶², C. Fabre⁹⁰, M. Fabrizio^{58,83}, S. Faigler⁹¹, A. J. Falcão⁹², M. Farràs Casas¹⁰, F. Faye¹⁷, L. Federici³¹, G. Fedorets⁵⁵, J. Fernández-Hernández³², P. Fernique⁴⁵, A. Fienga⁹³, F. Figueras¹⁰, F. Filippi³⁰, K. Findeisen⁴, A. Fonti³⁰, M. Fouesneau⁵, E. Fraile⁹⁴, M. Fraser⁷, J. Fuchs⁹⁵, R. Furnell²¹, M. Gai²⁷, S. Galleti³¹ L. Galluccio¹⁴, D. Garabato⁵³, F. García-Sedano⁶⁰, P. Garé²¹, A. Garofalo³¹, N. Garralda¹⁰, P. Gavras^{4,37,49} J. Gerssen⁸⁹, R. Geyer¹¹, G. Gilmore⁷, S. Girona⁹⁶, G. Giuffrida⁵⁸, M. Gomes⁵⁴, A. González-Marcos⁹⁷ J. González-Núñez^{32, 98}, J. J. González-Vidal¹⁰, M. Granvik⁵⁵, A. Guerrier⁶², P. Guillout⁴⁵, J. Guiraud¹⁶, A. Gúrpide¹⁰ R. Gutiérrez-Sánchez²², L. P. Guy³³, R. Haigron⁴, D. Hatzidimitriou⁴⁹, M. Haywood⁴, U. Heiter⁵⁰, A. Helmi⁷⁶, D. Hobbs¹³, W. Hofmann⁶, B. Holl⁸, G. Holland⁷, J. A. S. Hunt²⁶, A. Hypki², V. Icardi³⁰, M. Irwin⁷, G. Jevardat de Fombelle³³, P. Jofré^{7,23}, P. G. Jonker^{99,25}, A. Jorissen¹⁸, F. Julbe¹⁰, A. Karampelas^{49,3} A. Kochoska¹⁰⁰, R. Kohley¹², K. Kolenberg^{101, 24, 102}, E. Kontizas³⁷, S. E. Koposov⁷, G. Kordopatis^{89, 14}, P. Koubsky⁹⁵ A. Kowalczyk¹⁵, A. Krone-Martins⁵⁴, M. Kudryashova³⁸, I. Kull⁹¹, R. K. Bachchan¹³, F. Lacoste-Seris⁶², A. F. Lanza⁵², J.-B. Lavigne⁶², C. Le Poncin-Lafitte³⁶, Y. Lebreton^{4, 103}, T. Lebzelter⁶⁴, S. Leccia⁸⁴, N. Leclerc⁴ I. Lecoeur-Taibi³³, V. Lemaitre⁶², H. Lenhardt⁶, F. Leroux⁶², S. Liao^{27, 104}, E. Licata⁶³, H. E. P. Lindstrøm^{28, 105}

T. A. Lister¹⁰⁶, E. Livanou⁴⁹, A. Lobel³⁹ W. Löffler⁶, M. López⁷¹, A. Lopez-Lozano¹⁰⁷, D. Lorenz⁶⁴, T. Loureiro¹⁵, I. MacDonald⁴¹, T. Magalhães Fernandes⁹², S. Managau⁶², R. G. Mann⁴¹, G. Mantelet⁶, O. Marchal⁴, J. M. Marchant¹⁰⁸, M. Marconi⁸⁴, J. Marie¹⁰⁹, S. Marinoni^{79,58}, P. M. Marrese^{79,58}, G. Marschalkó^{110,111} D. J. Marshall¹¹², J. M. Martín-Fleitas⁴⁷, M. Martino³⁰, N. Mary⁶², G. Matijevič⁸⁹, T. Mazeh⁹¹, P. J. McMillan¹³ S. Messina⁵², A. Mestre¹¹³, D. Michalik¹³, N. R. Millar⁷, B. M. H. Miranda⁵⁴, D. Molina¹⁰, R. Molinaro⁸⁴, M. Molinaro¹¹⁴, L. Molnár¹¹⁰, M. Moniez¹¹⁵, P. Montegriffo³¹, D. Monteiro²¹, R. Mor¹⁰, A. Mora⁴⁷, R. Morbidelli²⁷ T. Morel⁴³, S. Morgenthaler¹¹⁶, T. Morley⁸⁶, D. Morris⁴¹, A. F. Mulone³⁰, T. Muraveva³¹, I. Musella⁸⁴, J. Narbonne⁶². G. Nelemans^{25,24}, L. Nicastro¹¹⁷, L. Noval⁶², C. Ordénovic¹⁴, J. Ordieres-Meré¹¹⁸, P. Osborne⁷, C. Pagani⁷², I. Pagano⁵², F. Pailler¹⁶, H. Palacin⁶², L. Palaversa⁸, P. Parsons²², T. Paulsen²¹, M. Pecoraro⁶³, R. Pedrosa¹¹⁹ H. Pentikäinen⁵⁵, J. Pereira²¹, B. Pichon¹⁴, A. M. Piersimoni⁸³, F.-X. Pineau⁴⁵, E. Plachy¹¹⁰, G. Plum⁴, E. Poujoulet¹²⁰, A. Prša¹²¹, L. Pulone⁷⁹, S. Ragaini³¹, S. Rago²⁷, N. Rambaux³⁸, M. Ramos-Lerate¹²², P. Ranalli¹³ G. Rauw⁴³, A. Read⁷², S. Regibo²⁴, F. Renk¹⁵, C. Reylé⁵⁹, R. A. Ribeiro⁹², L. Rimoldini³³, V. Ripepi⁸⁴, A. Riva²⁷, G. Rixon⁷, M. Roelens⁸, M. Romero-Gómez¹⁰, N. Rowell⁴¹, F. Royer⁴, A. Rudolph¹⁵, L. Ruiz-Dern⁴, G. Sadowski¹⁴ T. Sagristà Sellés⁶, J. Sahlmann¹², J. Salgado⁵⁷, E. Salguero⁵⁷, M. Sarasso²⁷, H. Savietto¹²³, A. Schnorhk²¹, M. Schultheis¹⁴, E. Sciacca⁵², M. Segol¹²⁴, J. C. Segovia³², D. Segransan⁸, E. Serpell⁸⁶, I-C. Shih⁴, R. Smareglia¹¹ R. L. Smart²⁷, C. Smith¹²⁵, E. Solano^{71,126}, F. Solitro³⁰, R. Sordo³, S. Soria Nieto¹⁰, J. Souchay³⁶, A. Spagna²⁷, F. Spoto¹⁴, U. Stampa⁶, I. A. Steele¹⁰⁸, H. Steidelmüller¹¹, C. A. Stephenson²², H. Stoev¹²⁷, F. F. Suess⁷, M. Süveges³³, J. Surdej⁴³, L. Szabados¹¹⁰, E. Szegedi-Elek¹¹⁰, D. Tapiador^{128, 129}, F. Taris³⁶, G. Tauran⁶² M. B. Taylor¹³⁰, R. Teixeira⁸⁵, D. Terrett³⁴, B. Tingley¹³¹, S. C. Trager⁷⁶, C. Turon⁴, A. Ulla¹³², E. Utrilla⁴⁷ G. Valentini⁸³, A. van Elteren², E. Van Hemelryck³⁹, M. van Leeuwen⁷, M. Varadi^{8, 110}, A. Vecchiato²⁷, J. Veljanoski⁷⁶ T. Via⁷⁷, D. Vicente⁹⁶, S. Vogt¹³³, H. Voss¹⁰, V. Votruba⁹⁵, S. Voutsinas⁴¹, G. Walmsley¹⁶, M. Weiler¹⁰, K. Weingrill⁸⁹ D. Werner¹⁵, T. Wevers²⁵, G. Whitehead¹⁵, Ł. Wyrzykowski^{7,134}, A. Yoldas⁷, M. Žerjal¹⁰⁰, S. Zucker⁸⁷, C. Zurbach⁴⁸, T. Zwitter¹⁰⁰, A. Alecu⁷, M. Allen¹, C. Allende Prieto^{26, 135, 136}, A. Amorim⁵⁴, G. Anglada-Escudé¹⁰, V. Arsenijevic⁵⁴ S. Azaz¹, P. Balm²², M. Beck³³, H.-H. Bernstein^{†,6}, L. Bigot¹⁴, A. Bijaoui¹⁴, C. Blasco¹³⁷, M. Bonfigli⁸³, G. Bono⁷⁹ S. Boudreault^{26, 138}, A. Bressan¹³⁹, S. Brown⁷, P.-M. Brunet¹⁶, P. Bunclark^{†,7}, R. Buonanno⁷⁹, A. G. Butkevich¹¹ C. Carret¹¹⁹, C. Carrion⁶⁰, L. Chemin^{23,140}, F. Chéreau⁴, L. Corcione²⁷, E. Darmigny¹⁶, K. S. de Boer¹⁴¹, P. de Teodoro³², P. T. de Zeeuw^{2, 142}, C. Delle Luche^{4, 62}, C. D. Domingues¹⁴³, P. Dubath³³, F. Fodor¹⁶, B. Frézouls¹⁶ A. Fries¹⁰, D. Fustes⁵³, D. Fyfe⁷², E. Gallardo¹⁰, J. Gallegos³², D. Gardiol²⁷, M. Gebran^{10, 144}, A. Gomboc^{100, 14} A. Gómez⁴, E. Grux⁵⁹, A. Gueguen^{4,146}, A. Heyrovsky⁴¹, J. Hoar¹², G. Iannicola⁷⁹, Y. Isasi Parache¹⁰, A.-M. Janotto¹⁶, E. Joliet^{42, 147}, A. Jonckheere³⁹, R. Keil^{148, 149}, D.-W. Kim⁵, P. Klagyivik¹¹⁰, J. Klar⁸⁹, J. Knude²⁸ O. Kochukhov⁵⁰, I. Kolka¹⁵⁰, J. Kos^{100, 151}, A. Kutka^{95, 152}, V. Lainey³⁸, D. LeBouquin⁶², C. Liu^{5, 153}, D. Loreggia²⁷ V. V. Makarov¹⁵⁴, M. G. Marseille⁶², C. Martayan^{39, 155}, O. Martinez-Rubi¹⁰, B. Massart^{14, 62, 17}, F. Meynadier^{4, 3} S. Mignot⁴, U. Munari³, A.-T. Nguyen¹⁶, T. Nordlander⁵⁰, P. Ocvirk^{89, 45}, K. S. O'Flaherty¹⁵⁶, A. Olias Sanz¹⁵⁷ P. Ortiz⁷², J. Osorio⁶⁸, D. Oszkiewicz^{55, 158}, A. Ouzounis⁴¹, M. Palmer¹⁰, P. Park⁸, E. Pasquato¹⁸, C. Peltzer⁷. J. Peralta¹⁰, F. Péturaud⁴, T. Pieniluoma⁵⁵, E. Pigozzi³⁰, J. Poels^{†,43}, G. Prat¹⁵⁹, T. Prod'homme^{2,2} J. M. Rebordao¹⁴³, D. Risquez², B. Rocca-Volmerange¹⁶¹, S. Rosen^{26,72}, M. I. Ruiz-Fuertes³³, F. Russo²⁷ S. Sembay⁷², I. Serraller Vizcaino¹⁶², A. Short¹, A. Siebert^{45,89}, H. Silva⁹², D. Sinachopoulos³⁷, E. Slezak¹⁴ M. Soffel¹¹, D. Sosnowska⁸, V. Straižys¹⁶³, M. ter Linden^{42,164}, D. Terrell¹⁶⁵, S. Theil¹⁶⁶, C. Tiede^{5,167}, L. Troisi^{58,168}, P. Tsalmantza⁵, D. Tur⁷⁷, M. Vaccari^{169,170}, F. Vachier³⁸, P. Valles¹⁰, W. Van Hamme¹⁷¹, L. Veltz^{89,40}, J. Virtanen^{55,56}, J.-M. Wallut¹⁶, R. Wichmann¹⁷², M. I. Wilkinson^{7,72}, H. Ziaeepour⁵⁹, and S. Zschocke¹¹

Chemical evolution

The origin of the elements

The origin of the elements & associated timescales

Element Group	Tracer	Mode of entry into the Interstellar Medium	Timescale	Example Elements
Alpha	High mass stars ${\rm M} > 8 {\rm M}_{\odot}$	Core collapse (CC) supernovae	0 - 100 Myr	O, Na, Mg, Al, Si, Ca, Ti
Iron peak	Low mass stars ${ m M} < 8 { m M}_{\odot}$	mostly Type la supernovae (exploding white dwarfs)	100 Myr - 1 Gyr	Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
Iron	Low AND high mass stars	CC SNe, Type Ia SNe	0 - 100 Myr 100 Myr - 1 Gyr	Fe
Slow neutron-capture (s-)process	Low mass stars $1~{ m M}_{\odot} < { m M} < 3~{ m M}_{\odot}$	Winds during asymptotic giant branch phase	300 Myr - 5 Gyr	Sr, Y, Zr, Ba, La, Ce, Nd
Rapid neutron-capture (r-)process	High mass stars $8~{ m M}_{\odot} < { m M} < 22~{ m M}_{\odot}$	CC SNe Neutron star mergers	0 - 100 Myr 50 Myr - 14 Gyr	Nd, Eu, Th, U

The origin of the elements & associated timescales

Element Group	Tracer	Mode of entry into the Interstellar Medium	Timescale	Example Elements
Alpha	High mass stars $ m M > 8~M_{\odot}$	Core collapse (CC) supernovae	0 - 100 Myr	O, Na, Mg, Al, Si, Ca, Ti
Iron peak	Low mass stars ${ m M} < 8~{ m M}_{\odot}$	mostly Type la supernovae (exploding white dwarfs)	100 Myr - 1 Gyr	Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
Iron	Low AND high mass stars	CC SNe, Type Ia SNe	0 - 100 Myr 100 Myr - 1 Gyr	Fe
Slow neutron-capture (s-)process	Low mass stars $1~{ m M}_{\odot} < { m M} < 3~{ m M}_{\odot}$	Winds during asymptotic giant branch phase	300 Myr - 5 Gyr	Sr, Y, Zr, Ba, La, Ce, Nd
Rapid neutron-capture (r-)process	High mass stars $8~{ m M}_{\odot} < { m M} < 22~{ m M}_{\odot}$	CC SNe Neutron star mergers	0 - 100 Myr 50 Myr - 14 Gyr	Nd, Eu, Th, U

The origin of the elements & associated timescales

Element Group	Tracer	Mode of entry into the Interstellar Medium	Timescale	Example Elements
Alpha	High mass stars $ m M > 8~M_{\odot}$	Core collapse (CC) supernovae	0 - 100 Myr	O, Na, Mg, Al, Si, Ca, Ti
Iron peak	Low mass stars $ m M < 8~M_{\odot}$	mostly Type la supernovae (exploding white dwarfs)	100 Myr - 1 Gyr	Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
lron	Low AND high mass stars	CC SNe, Type Ia SNe	0 - 100 Myr 100 Myr - 1 Gyr	Fe
Slow neutron-capture (s-)process	Low mass stars $1~{ m M}_{\odot} < { m M} < 3~{ m M}_{\odot}$	Winds during asymptotic giant branch phase	300 Myr - 5 Gyr	Sr, Y, Zr, Ba, La, Ce, Nd
Rapid neutron-capture (r-)process	High mass stars $8~{ m M}_{\odot} < { m M} < 22~{ m M}_{\odot}$	CC SNe Neutron star mergers	0 - 100 Myr 50 Myr - 14 Gyr	Nd, Eu, Th, U

Key ingredients:

Key ingredients:

> Star formation history and efficiency: how many stars were formed at each time?

De Boer et al. 2012

Key ingredients:

- > Star formation history and efficiency: how many stars were formed at each time?
- > Chemical yields: how much of each element is made in each progenitor? (model-dependent)

Key ingredients:

- > Star formation history and efficiency: how many stars were formed at each time?
- > Chemical yields: how much of each element is made in each progenitor? (model-dependent)
- > Other model assumptions: how does the enriched gas mix? Is the system closed?

De Boer et al. 2012

What could cause the difference between Fornax and Sculptor?

onset of supernovae type la

What could cause the difference between Fornax and Sculptor?

onset of supernovae type la

- Fornax formed stars for **longer** (higher metallicity)
- ➤ Fornax formed stars more efficiently ("alpha knee" location)

Height above the Galactic plane (z)

Height above the Galactic plane (z)

Hayden et al. 2015

more on Milky Way chemo-dynamics in the lectures by GyuChul

Height above the Galactic plane (z)

Hayden et al. 2015

Hands-on session

- ➤ Via the Notebooks sub-folder on Moodle, with a link to the data inside the notebook (Lecture6_hands-on_Gaia-RVS.ipynb)
- ➤ Exploring the Gaia Radial Velocity Spectrometer (RVS) spectra

To do

- \succ Plot the Kiel diagram, metallicity distribution and [α /Fe] vs. [Fe/H] diagram
- > Explore what the differences are in the spectra for different stellar parameters
- > Run dimensionality reduction algorithms, explore trends with stellar parameters

Some things to try next (order up to you):

- > Relax or remove quality cuts on the stellar parameters & repeat the above
- ➤ Compare the Gaia collaboration & the Guiglion/CNN stellar parameters
- > Vary the dimensionality reduction algorithms' parameters
- ➤ Anything else you'd like to explore

Example results

10 random spectra

[Fe/H] < -1.3

Dimensionality

t-SNE

6500

6000