A Uniform Analysis of Combinatorial Markov Chains via Hopf Algebras

C.Y. Amy Pang nent of Mathematics HKBI

Department of Mathematics, HKBU

Statistics Seminar, Chinese University of Hong Kong, 4 Oct 2016

slides available from amypang.github.io/cuhk2016.pdf

Motivation: a Dynamic Storage Allocation Problem

- ullet You have n files, arranged in a list.
- You request files one-by-one independently, removing one from the list and returning it in a possibly different position.
- You request file i with a fixed, unknown, probability p_i .
- Each time you make a request, you search from the front of the list for the file you need.

Motivation: a Dynamic Storage Allocation Problem

- ullet You have n files, arranged in a list.
- You request files one-by-one independently, removing one from the list and returning it in a possibly different position.
- You request file i with a fixed, unknown, probability p_i .
- Each time you make a request, you search from the front of the list for the file you need.

Question: where should you return a file to minimise the average search time?

Motivation: a Dynamic Storage Allocation Problem

- ullet You have n files, arranged in a list.
- You request files one-by-one independently, removing one from the list and returning it in a possibly different position.
- You request file i with a fixed, unknown, probability p_i .
- Each time you make a request, you search from the front of the list for the file you need.

Question: where should you return a file to minimise the average search time?

Application to data compression (Bentley-Sleator-Tarjan-Wei, 1986): each word is coded by the binary representation of its position in the list.

Starting list

Stationary distribution: limiting probability of being in rainbow order

$$p_1^{\ 4}p_2^{\ 3}p_3^{\ 2}p_4^{\ }$$

$$p_1^{\ 4}p_2^{\ 3}p_3^{\ 2}p_4 \qquad \frac{p_1}{1} \frac{p_2}{1-p_1} \frac{p_3}{1-p_1-p_2} \frac{p_4}{1-p_1-p_2-p_3}$$

Stationary distribution: limiting probability of being in rainbow order

$$p_1^4 p_2^3 p_3^2 p_4$$

$$\frac{p_1}{1} \frac{p_2}{1 - p_1} \frac{p_3}{1 - p_1 - p_2} \frac{p_4}{1 - p_1 - p_2 - p_3}$$

Rivest (1976): lower average search time when in stationary distribution

Stationary distribution: limiting probability of being in rainbow order

$$p_1^4 p_2^3 p_3^2 p_4$$

$$\frac{p_1}{1} \frac{p_2}{1 - p_1} \frac{p_3}{1 - p_1 - p_2} \frac{p_4}{1 - p_1 - p_2 - p_3}$$

Rivest (1976): lower average search time when in stationary distribution

Bitner (1979): reaches stationary distribution earlier

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)$ is a number K(x,y) independent of $X_1,X_2,...X_{t-1}$ and of t.

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)$ is a number K(x,y) independent of $X_1,X_2,...X_{t-1}$ and of t.
- It follows that $Prob(X_{t+r} = y | X_t = x) = K^r(x, y)$.

Markov Chains

- ullet $\mathcal X$ a (finite) state space. all possible orders of n files
- X_t a random variable taking values in \mathcal{X} , for each $t \in \mathbb{N}$. the order of the files after t requests
- The process $\{X_t\}$ is memoryless, in that $\operatorname{Prob}(X_{t+1}=y|X_t=x)$ is a number K(x,y) independent of $X_1,X_2,...X_{t-1}$ and of t.
- It follows that $Prob(X_{t+r} = y | X_t = x) = K^r(x, y)$.

Important questions:

• Stationary distribution: $\sum_{x \in \mathcal{X}} \pi_x K(x,y) = \pi_y$.

eigenvector of eigenvalue 1

• Convergence rate: $||X_t - \pi|| \le \epsilon$.

subdominant eigenvalue (spectral gap)

Markov Chains in Statistics

Generation of uniform contingency tables with given row and column sums (Hernek 1998)

we show that the number of walk steps required to obtain a random $2 \times n$ array is at most quadratic in n and N. It is an open question to determine whether the chain mixes in polynomial time for arrays with more than two rows.

	Favor	Indifferent	Opposed	TOTAL
Democrat Republican	138 64	83 67	64 84	285 215
TOTAL	202	150	148	500

Fig. 1. Contingency table for political affiliation and opinion.

The data augmentation method to compute a posterior distribution from incomplete data (Tanner, Wong 1987)

- Generate the missing data using the current estimate of the parameter,
- Make new parameter estimate using the "completed" data.

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

(time-reversal of move-to-front with equal request probabilities)

- Remove top card
- Reinsert this card at a uniformly chosen position

For example:

Aldous-Diaconis (1986): convergence rate $\sim n \log n$. (asymptotically in n; 205 when n=52).

Cut the deck with symmetric binomial distribution;

$$i\left\{\begin{array}{c} \\ \\ \\ \end{array}\right\}_n \quad \mathsf{Prob} = 2^{-n} \binom{n}{i}$$

• Cut the deck with symmetric binomial distribution;

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$Prob = \frac{3}{5}$$

$$Prob = \frac{2}{5}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{2}{3}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{1}{2} \quad \mathsf{Prob} = \frac{1}{2}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{1}{1}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Bayer-Diaconis (1992): convergence rate $\sim \frac{3}{2} \log_2 n$. (asymptotically in n; 7 when n=52).

Theorem: (2015) (+Diaconis, Ram 2014)
extensions of Diaconis-Fillresults by: Diaconis-FillHanlon (1990)

The unique stationary distribution is the uniform distribution.

Theorem:

extensions of results by:

Top-to-random

(2015)

Diaconis-Fill-Pitman (1992) Riffle

(+Diaconis, Ram 2014)

Bayer-Diaconis (1992), Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues:

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$$
 $2^{-n+1}, \dots, 2^{-1}, 1.$

$$2^{-n+1}, \dots, 2^{-1}, 1$$

Theorem:

extensions of results by:

Top-to-random

(2015)

Diaconis-Fill-Pitman (1992) Riffle

(+Diaconis, Ram 2014)

Bayer-Diaconis (1992), Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues:

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$$
 $2^{-n+1}, \dots, 2^{-1}, 1.$

$$2^{-n+1}, \ldots, 2^{-1}, 1$$

Theorem:

extensions of results by:

Top-to-random

(2015)

Diaconis-Fill-Pitman (1992) Riffle

(+Diaconis, Ram 2014)

Bayer-Diaconis (1992), Hanlon (1990)

The unique stationary distribution is the uniform distribution.

Eigenvalues:

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1.$$

 $2^{-n+1}, \dots, 2^{-1}, 1.$

Multiplicities of eigenvalues, for all cards distinct

number of permutations of n cards with j fixed points.

number of permutations of n cards with j cycles.

An explicit formula for an eigenbasis.

ii) For any
$$p \in \mathcal{H}_{n-j}$$
 satisfying $\Delta_{1,n-j-1}(p) = 0$, and any $c_1, \ldots, c_j \in \mathcal{H}_1$ (not necessarily distinct),
$$\sum_{\sigma \in \mathfrak{S}_j} c_{\sigma(1)} \ldots c_{\sigma(j)} p$$

is an eigenvector for:

• T2R_n and B **Theorem 3.16** Let \mathcal{H} be a cocommutative Hopf algebra (over a field of characteristic zero) that is a free associative algebra with word basis \mathcal{B} . For $b \in \mathcal{B}$ with factorization into generators $b = c_1c_2 \cdots c_l$, set g_b to be the polynomial sym(b) evaluated at $(e(c_1), e(c_2), \ldots, e(c_l))$. In other words, in the terminology of Sect. 2.3,

- for c a generator, set $g_c := e(c)$;
- for b a Lyndon word, inductively define $g_b := [g_{b_1}, g_{b_2}]$ where $b = b_1b_2$ is the standard factorization of b;
- for b with Lyndon factorization $b = b_1 \cdots b_k$, set $g_b := \sum_{\sigma \in S_k} g_{b_{\sigma(1)}} g_{b_{\sigma(2)}} \cdots g_{b_{\sigma(k)}}$.

Then g_b is an eigenvector of Ψ^a of eigenvalue a^k (k the number of Lyndon factors

Related to wavelet bases of a new "multiresolution analysis" of incomplete ranking data (Sibony, Clémençon, Jakubowicz 2016)

• An explicit formula for an eigenbasis.

Corollary (2015): Start with n distinct cards in ascending order. After t top-to-random shuffles:

Prob (descent at the bottom)=
$$\left(1 - \left(\frac{n-2}{n}\right)^t\right) \frac{1}{2}$$
.

big card on small card

Prob (peak at the bottom)=
$$\left(1 - \left(\frac{n-3}{n}\right)^t\right) \frac{1}{3}$$
.

triple of cards with biggest in middle

• An explicit formula for an eigenbasis.

Corollary (+Diaconis, Ram, 2014): Start with n distinct cards in ascending order. After t riffle shuffles:

Expect (number of descents)=
$$\left(1-\left(\frac{1}{2}\right)^t\right)\frac{n-1}{2}$$
.

Expect (number of peaks)=
$$\left(1-\left(\frac{1}{4}\right)^t\right)\frac{n-2}{3}$$
.

A New Connection: Ree's Shuffle (Hopf) Algebra

• \mathcal{H}_n is the vector space with basis all decks of n cards.

- \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array}$ \otimes $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array} \otimes$ $\left(\begin{array}{c} \\ \\ \end{array} \right)$

- ullet \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array}$ \otimes $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array} \otimes$ $\left(\begin{array}{c} \\ \\ \end{array} \right)$

• "interleaving" product $\operatorname{mult}: \mathcal{H}_i \otimes \mathcal{H}_j \to \mathcal{H}_{i+j}$

- ullet \mathcal{H}_n is the vector space with basis all decks of n cards.
- "deconcatenation" coproduct $\Delta_{i,j}: \mathcal{H}_{i+j} \to \mathcal{H}_i \otimes \mathcal{H}_j$

$$\Delta_{1,3}$$
 $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array}$ \otimes $\left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \end{array} \otimes$ $\left(\begin{array}{c} \\ \\ \end{array} \right)$

• "interleaving" product $\operatorname{mult}: \mathcal{H}_i \otimes \mathcal{H}_j \to \mathcal{H}_{i+j}$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\Delta_{1,3}$$
 \otimes \otimes

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\operatorname{mult} \circ \Delta_{1,3} \left(\begin{array}{c} \\ \\ \end{array} \right) = \operatorname{mult} \left(\begin{array}{c} \\ \\ \end{array} \right)$$
$$= \begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \end{array} + \begin{array}{c} \\ \\ \end{array} - \begin{array}{c} \\ \end{array}$$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\frac{1}{4} \text{ mult } \circ \Delta_{1,3} \left(\begin{array}{c} \\ \\ \end{array} \right) = \frac{1}{4} \text{ mult } \left(\begin{array}{c} \\ \\ \end{array} \right)$$

$$= \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array}$$

(x, y are decks of n cards)

Top-to-random:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}(x).$

$$\frac{1}{4} \text{ mult } \circ \Delta_{1,3} \left(\begin{array}{c} \\ \\ \end{array} \right) = \frac{1}{4} \text{ mult } \left(\begin{array}{c} \\ \\ \end{array} \right)$$

$$= \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array} + \frac{1}{4} \begin{array}{c} \\ \end{array}$$

Riffle:

 $\operatorname{Prob}(x \to y) = \text{coefficient of } y \text{ in } \frac{1}{2^n} \operatorname{mult} \circ \sum_{i=0}^n \Delta_{i,n-i}(x).$

Chains on Other Combinatorial Objects

Markov chain	Hopf algebra / Hopf		basis		stationary distribution
	? free?	cofree?		free-comm	IIBI
shuffling	shuffle algebra .5	X	words / decks of cards		uniform
inverse-shuffling	free associative a	llg eb	words / decks of cards		uniform
edge-removal	9		unlabelled graphs	X	absorbing at empty graph
edge-removal	g x		labelled graphs		absorbing at empty graph
restriction-then-induction	representations of	X	irreducible representations	H	plancherel
rock-breaking	symmetric functi	(X) S	elementary or complete	X	absorbing at (1,1,,1)
tree-pruning	Connes-Kreimer		rooted forests	X	absorbing at disconnected forest
descent-set-under-shuffling	quasisymmetric	X	fundamental (compositions)		proportion of permutations with this de
jeu-de-taquin	Poirier-Reutenau	er F	standard Young tableaux	in of shape	proportion of standard table aux with th
shuffle with standardisation	Malvenuto-Reut	X	fundamental (permutations)		uniform

also Servando Pineda's masters thesis (2015), "Hopf Random Walks on the Faces of Permutohedra", and Bergeron-Ceballos (2015), "A Hopf Algebra of Subword Complexes":

The Markov process induced by the top-to-random shuffle for fixed n, k on \mathcal{Y} can be interpreted as follows. We imagine that the elements (W, Q, π, I) are types of rocks. More precisely, we think that if $W = W_1 \times W_2 \times \cdots W_k$ and the W_i are indecomposable, then (W, Q, π, I) is exactly k rocks of certain types. The operator $m_{1,n-1} \circ \Delta_{1,n-1}$ can be though off as a small hammer hitting on the rocks. The expansion in Equation (11) describes the types of rocks (W', Q', π', I') we can get

Chains on Other Combinatorial Objects

Markov chain	Hopf algebra / Hopf	basis		stationary distribution
	firee? cofrex	e?	free-comm	utal
shuffling	shuffle algebra // x	words / decks of cards		uniform
inverse-shuffling	free associative algo-	words / decks of cards		uniform
edge-removal	9	unlabelled graphs	X	absorbing at empty graph
edge-removal	g x	labelled graphs		absorbing at empty graph
restriction-then-induction	representations of x	irreducible representations	011	plancherel
rock-breaking	symmetric functions	elementary or complete	X	absorbing at $(1, 1,, 1)$
tree-pruning	Connes-Kreimer	rooted forests	X	absorbing at disconnected forest
descent-set-under-shuffling	quasisymmetric x	fundamental (compositions)		proportion of permutations with this de
jeu-de-taquin	Poirier-Reutenater	standard Young tableaux	on of shape	proportion of standard table aux with th
shuffle with standardisation	Malvenuto-Reutex	fundamental (permutations)		uniform

also Servando Pineda's masters thesis (2015), "Hopf Random Walks on the Faces of Permutohedra", and Bergeron-Ceballos (2015), "A Hopf Algebra of Subword Complexes":

The Markov process induced by the top-to-random shuffle for fixed n, k on \mathcal{Y} can be interpreted as follows. We imagine that the elements (W, Q, π, I) are types of rocks. More precisely, we think that if $W = W_1 \times W_2 \times \cdots W_k$ and the W_i are indecomposable, then (W, Q, π, I) is exactly k rocks of certain types. The operator $m_{1,n-1} \circ \Delta_{1,n-1}$ can be though off as a small hammer hitting on the rocks. The expansion in Fountier (11) describes the types of rocks (W', Q', π', I') we can get

Hopf algebra of trees: Butcher (1972), Connes-Kreimer (1998) Transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$

• Fire a random employee

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

Hopf algebra of trees: Butcher (1972), Connes-Kreimer (1998) Transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$

- Fire a random employee
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

C E B

Hopf algebra of trees: Butcher (1972), Connes-Kreimer (1998) Transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$

- Fire a random employee with probability n_t/n , else no change
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

 $C \quad E \quad E$

Hopf algebra of trees: Butcher (1972), Connes-Kreimer (1998) Transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$

- ullet Fire a random employee with probability n_t/n , else no change
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

Theorem (2016): The eigenvalues are $0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, 1$.

Expected number of teams of s_i employees from department i falls roughly by a factor of $\frac{n-1-\sum s_i}{n}$ per unit time.

Hopf algebra of trees: Butcher (1972), Connes-Kreimer (1998) Transition probabilities from $\frac{1}{n} \operatorname{mult} \circ \Delta_{1,n-1}$

- ullet Fire all employees with performance below q
- Promote a randomly chosen subordinate to replace him.
- Repeat the promotions until the vacated position has no subordinates.

Theorem (2016): The eigenvalues are $q^{-n}, \ldots, q^{-3}, q^{-2}, 1$.

Expected number of teams of s_i employees from department i falls roughly by a factor of $q^{1+\sum s_i}$ per unit time.

The Future

- More combinatorial objects (e.g. phylogenetic trees)
- More linear maps (e.g. move-to-front with arbitrary request probabilities, a version with involutions)
- Maps between Hopf algebras give relationship between chains (2015)
- Use probability to understand Hopf algebras (+Josuat-Vergès, 2016)
- How to characterise chains which come from Hopf algebras in this way??

The Future

- More combinatorial objects (e.g. phylogenetic trees)
- More linear maps (e.g. move-to-front with arbitrary request probabilities, a version with involutions)
- Maps between Hopf algebras give relationship between chains (2015)
- Use probability to understand Hopf algebras (+Josuat-Vergès, 2016)
- How to characterise chains which come from Hopf algebras in this way??

Thank you!