

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

HOUSATONIC RIVER BASIN SHERMAN, CONNECTICUT

LAKE MAUWEEHOO DAM
CT 00321

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION

CORPS OF ENGINEERS

WALTHAM, MASSACHUSETTS

June, 1981

DISTRIBUTION STATEM NO A

Approved for public release; Distribution Unlimited 84 08 09 045

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
	BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION N	O. 3. RECIPIENT'S CATALOG NUMBER
CT 00321 AD- A144 O	f6
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Lake Mauweehoo Dam	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEERS	June 1981
NEW ENGLAND DIVISION, NEDED	13. NUMBER OF PAGES
424 TRAPELO ROAD, WALTHAM, MA. 02254	. 30
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Centrelling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	The DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Housatonic River Basin Sherman, Connecticut

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Lake Nauweehoo Dam is a combination earth embankment and stone masonry/concrete dam approximately 225 feet long and 22 feet high. In general, the overall condition of the dam is FAIR. Therefore, with a height of 22 feet and a maximum storage capacity of 290 acre-feet, Lake Mauweehoo Dam is classified as SMALL in accordance with the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams. The test flood for this dam ranges from the 50 year flood to the 100 year flood.

June 4, 1981

Mr. E. P. Gould Department of the Army New England Division Corps of Engineers 424 Trapelo Road Waltham, Massachusetts 02154

Subject: Dam Inspection Program

Lake Mauweehoo Dam Sherman, Connecticut

Dear Mr. Gould:

Following the field inspection and hydraulic/hydrologic analysis of the subject dam, we conclude that the dam should be reclassified as having a LOW hazard potential.

Please find attached a brief report substantiating our findings.

Very truly yours,

STORCH ENGINEERS

GJG:11 Wecr 4463 Attachment

WETHERSFIELD CONNECTICUT

BOSTON MASSACHUSETTS HEMPSTEAD

LAKE MAUWEEHOO DAM
CT 00321

HOUSATONIC RIVER BASIN
SHERMAN, CONNECTICUT

PHASE 1 INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

DISTRIBUTION STATE OF A

Approved for public related; Distribution Unlimited

TABLE OF CONTENTS

																PAGE
DESCRIPTION .							•	•		•	•	 •	•	•	•	1
EVALUATION OF	HYDR	AULIC/	HYDRO:	LOGIC	FEAT	URES	•			•	•	 •	•	•	•	2
LOCATION PLAN																
APPENDICE																
APPENDICES																
APPENDIX	A -	INSPEC	TION	CHECK	LIST	•										
APPENDIX	В -	ENGINE	ERING	DATA												
APPENDIX	C -	рнотос	RAPHS													
APPENDIX	D -	HYDRAU	LIC/H	YDROLO	OGIC	COMP	UTA	ATI	ons							
APPENDIX	E -	INVENT	ORY F	ORM												

NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

Identification Number:

Name:

Town:

County and State:

Stream:

Date of Inspection:

Owner/Operator:

CT 00321

Lake Mauweehoo Dam

Sherman

Fairfield County, Connecticut

Tributary of Glen Brook

May 20, 1981

Charles E. Rejcha

Lake Mauweehoo Club

Sherman, Connecticut 06784

DESCRIPTION

Lake Mauweehoo Dam is a combination earth embankment and stone masonry/
concrete dam approximately 225 feet long and 22 feet high. A stone masonry wall
averaging approximately 8.5 feet wide and a 24 inch thick concrete facia on the
upstream side of the masonry wall runs the full length of the dam. Earth fill
lying on a 2:1 slope is on the upstream side of the above-mentioned wall and
stone rubble and miscellaneous debris on a 1:1.5 slope lies on the downstream
side of the wall. There is a 13.7 foot wide principal spillway and 10 foot wide
emergency spillway. Both spillways are at the eastern end of the dam. There is
a 12 inch low-level discharge pipe that passes through the base of the dam.
Control of this pipe is with a valve on the upstream side of the dam. Plan,
section and elevation views of the dam are contained in Appendix B.

The dam was constructed in 1907. Design and Construction information are referenced in Appendix B. Presently, the pond is used for recreational purposes. There is neither a formal warning system for this dam nor a specific maintenance program. The dam is maintained as the need arises.

In general, the overall condition of the dam is FAIR. A copy of the visual inspection checklist is contained in Appendix A and selected photos are contained : in Appendix C. The structural stability of the dam is good as evidenced by its

vertical, horizontal and lateral alignment and in accordance with the computations referenced in Appendix B. Trees are standing along the toe of the dam and its abutments. The downstream end of the emergency spillway channel is washing out. The gate valve and low-level discharge pipe are inoperable. There is seepage through the base of the dam in the vicinity of the outlet to the low-level discharge pipe. It is believed that this seepage is coming through the valve on the discharge pipe. Seepage through the dam has been monitored over the past two years (from just before dam reconstruction to January 1980, see Appendix B for tabulated results) and estimated flows at the time of inspection (approximately 7.5-10 g.p.m.) show no increase since the last recording.

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

The watershed of Lake Mauweehoo is 5 percent developed and encompasses 0.7 square miles (448 acres) of hilly terrain. At the spillway elevation, the water surface area and storage capacity is 30.5 acres and 193 acre-feet respectively. The storage capacity when the water level is at the top of the dam is 290 acre-feet. Therefore, with a height of 22 feet and a maximum storage capacity of 290 acre-feet, Lake Mauweehoo Dam is classified as SMALL in accordance with the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams.

A dam failure analysis was performed using the Rule of Thumb method in accordance with guidelines established by the Corps of Engineers. Failure was assumed to occur when the water level in the pond was at the top of the dam. The calculated dam failure discharge is 12,780 cfs. The flood waters were routed through the downstream reaches. Nowhere along the river reach will the failure floodwave endanger human life or cause appreciable property damage. Therefore, the dam is classified as having a LOW hazard potential in accordance

with the guidelines mentioned above. Hydraulic computations and a map showing the limits of flooding are contained in Appendix D.

The test flood for this dam ranges from the 50 year flood to the 100 year flood. The 100 year flood is required by the Department of Environmental Protection (ConnDEP) and therefore is the test flood. The test flood outflow according to ConnDEP's records is 283 cfs. The combined spillway capacity of the principal and emergency spillway when the water in the pond is at the top of the dam is approximately 223 cfs. The test flood would overtop the dam by approximately 0.2 feet. Hydraulic computations and design data are referenced in Appendix B.

APPENDIX A

INSPECTION CHECK LIST

INSPECTION CRECK LIST PARTY ORGANIZATION

PROJECT Lake Mauweehoo Dam			DAT	£ 5,	/20/81		
			TD	E	00 p.m.		
			WEA	DER_	Sunny 70)'s 	
			V.S	. ELF	٧		DN.S.
PARTY:			•				
1. Gary Giroux, Hyd./Struct.		6.					
2. Benjamin Cohen, Civil		7.					
3. Kenneth Pudeler, Civil		в.			~_		
4.		9.					
5		10.					
PROJECT FEATURE			DSP	CIED	BY	. REMA	RS
1. Dam Embankment	Gary	Giroux,	Benjamin (Cohen,	Kenneth	Pudeler	Good
2. Spillway	Gary	Giroux,	Benjamin	Cohen,	Kenneth	Püdeler	Good
3. Discharge Channel	Gary	Giroux,	Benjamin	Cohen,	Kenneth	Pudeler	Fair-so
ų					•		Erosion
5.							•
6.							
7							
8.				······································			
•		,					
7						***************************************	
10.							
				•			

DISPECTION CRECK LIST PROJECT Lake Mauweehoo Dam 5/20/81 DATE PROJECT FEATURE MAE DISCIPLINE ME AREA EVALUATED CONDITIONS DAM EMBANDONT 714 (NGVD) Crest Elevation 711 (NGVD) Current Pool Elevation Maximum Impoundment to Date Good Surface Cracks N/A Pavement Condition N/A Hovement or Settlement of Crest None None Lateral Movement Good Vertical Alignment Good Horizontal Alignment Condition at Abutment and at Concrete Good Structures Indications of Movement of Structural None Items on Slopes Trespassing on Slopes Some Vegitation on Slopes grass and brush Sloughing or Erosion of Slopes or None Abutments Rock Slope Protection - Riprap Failures None Unusual Movement or Cracking at or None Dear Toes Unusual Imbaniment or Downstream None Seepage None Piping or Boils Foundation Drainage Features None Toe Drains None Instrumentation System A-2None

Defen	TOR GECK LIST
FROJECT Lake Mauweehoo Dam .	5/20/81
FROJECT FEATURE	RANE
DISCIPLINE	X WE
AREA EVALUATED	CCKDITION
CUTLET WORKS - INTAKE CHARGE AND INTAKE STRUCTURE	N/A
a. Approach Channel	•
Slope Conditions	·
Bottom Conditions	
Rock Slides or Falls	
Log Boom	į
Debris	
Condition of Concrete Lining	
Drains or Weep Holes	
b. Intake Structure	
Condition of Concrete	
Stop Loss and Slots	
į	
A-3	

DISPECT	IDE CHECK LIST
PACIECT Lake Mauweehoo Dam	5/20/81
PROJECT PEATURE	MANE
DISCIPLINE	MANE
•	· · · · · · · · · · · · · · · · · · ·
ÀREA EVALUATED	Coldities
DUTLET WORKS - CONTROL TOWER	N/A
a. Concrete and Structural	· .
General Condition	•
Condition of Joints	
Spelling	
Visible Reinforcing	
Rusting or Staining of Concrete	
Any Seepage or Efflorescence	·
Joint Alignment	
Unusual Seepage or Leaks in Gate Chamber	
Cracks	
Rusting or Corrosion of Steel	·
b. Mechanical and Electrical	·
Air Vents	
Float Wells	
Crane Hoist	,
Elevator	
Kydraulic System	
Service Gates	
Emergency Gates	
Lightning Protection System	
Exergency Power System	
Wiring and Lighting System in Cate Charter	A-4

ACCORDING TO CONTROL T

and the second of the second o

PROJECT Lake Mauweehoo Dam	DATE 5/20/81	
PROJECT FEATURE	RAPE	
DISCIPLIE	TAVE	
AREA EVALUATED	CONDITION	
DUTLET WORKS - TRANSITION AND CONDUIT	N/A	
General Condition of Concrete		
Rust or Staining on Concrete	•	
Spalling		
Erosion or Cavitation		
Cracking		
Alignment of Monoliths		
Alignment of Joints		
Numbering of Monoliths		
÷		
		•

	The Lit Colour Anne
PROJECT Lake Mauweehoo Dam	5/20/81
PROJECT FEATURE	TAVE
DISCIPLINE	RAVE
	•
AREA EVALUATED	CONDITION
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANGEL	N/A
General Condition of Concrete	
Rust or Staining	
Spalling	
Erosion or Cavitation	
Visible Reinforcing	
Any Seepage or Efflorescence	
Condition at Joints	
Drain holes	
Channel	
Loose Rock or Trees Overhanging Channel	
Condition of Discharge Channel	
·	
**	
A-6	

E.

DSFECTI	OF CHECK LIST	
PROJECT Lake Mauweehoo Dam	DATE	5/20/81
PROJECT FEATURE	TAME	
DISCIPLIC	KAME	
AREA EVALUATED	CO	NOITION
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANGELS		
a. Approach Channel		
General Condition	Good	
Loose Rock Overhanging Channel	None	
Trees Overhanging Channel	None	
Floor of Approach Channel	Good	
b. Weir and Training Walls		
General Condition of Concrete	Good	
Rust or Staining	None	
Spilling	None	
Any Visible Reinforcing	None	
Ary Seepage or Efflorescence	None	
Drain Holes	None	1
c. Discharge Channel	Principal	Emergency
General Condition	Good	Fair - some erosion at downstream end
Losse Rock Overhanging Channel	None	None
Trees Overbanging Channel	Some	None
Floor of Champel	Natural	Grass and Earth
Other Obstructions	None	None
	.	•
;·	}	
		٠.
A-7		

. Da	FECTION CLECK LIST
PROJECT Lake Mauweehoo Dam	. DATE 5/20/81
Project Feature	TAME
DISCIPLIE	TANE
AREA EVALUATED	CONDITION
OUTLET WORKS - SERVICE BRIDGE	N/A
a. Super Structure	
Bearings	
Anchor Bolts	
Bridge Seat	
Longitudinal Members	
Under Side of Deck	
Secondary Bracing	
Deck	
Drainage System	
Railings	
Expansion Joints	
Point	
b. Abutment & Piers	
General Condition of Concrete	
Alignment of Abutment	
· Approach to Bridge	
Condition of Seat & Backwall	·

K

APPENDIX B

ENGINEERING DATA

LIST OF REFERENCES

References are located at the Department of Environmental Protection,
Office of the Superintendent of Dams, State Office Building, Hartford,
Connecticut, 06115.

- 1. Miscellaneous correspondence on dam.
- 2. Engineering Report Computations and Drawings for the reconstruction of Lake Mauweehoo Dam, Sherman, Connecticut, by Charles E. Rejcha, P.E., (December 11, 1978).

CHARLES E. REJCHA RRI BOX 334A SHERMAN, CT. 06784

WATER RESCURCE UNIT RECEIVED

FEB 5 1980

State of Connecticut

Dept. of Environmental ProtectSTERED

Water Resources U.it
State Office Bld.

NAME FORD, Ot. 06115

January 20, 1030.

Re: Like Mauwechoo Dam, Sherman, Ot.
Your permit of June 5, 1373. (Copy ENCLOSES)

Gertiemen:

Please be notified that the spilling repair is completed and recay for inspection.

To the pest of my knowledge cir work is done in accordance with leas, specifications and as described in the enclosures. At precent the late is full and the new spillway is performing satisfactorily.

As noted in swoche ter 1.2 of "Engineering Report" deted December 11, 1975, prepared by the undersigned, my responsibilities are lifited to frems which can be inspected visually.

The following enclosures are attached:

El - Instation report

E2 - Underwanter valve inspection

E3 - Plow measurements at earlier of day

E4 - Photographs taken Jan. 12, 1950.

Yours truly,

Charles Rajdes

Charles Rejoha P.E.

Cricus .

c.c.: Sherman Town Clerk

Sherman Wetland Commission

Hars. J. Scholze, president of Heuwethoo belte Clue.

INSPECTION: REPORT

Re: Mauweehoo Lake Dam, Sherman, Ct. Date: Jan. 20, 1930.

This report pertains to the replacement of spillway and flow observations. Work this inspection report with "Engineering Report" date Dec. 11, 1978, prepared by C. Rejcha P.E.

The following are the details :

- 1. In August 79, the undersigned had a telephone conversation with Mr. Victor Galgowski of the Department of Environmenta Protection. He was notified about the start of construction
- 2. Construction was performed by Mr. Warren Pitcher, contracto residing in Sherman, Ct. Work was done during months September through November 1979.
- 3. During the construction, periodic inspections were made by K. Rogers P.E. and the undersigned.
- 4. During construction, we found that the old spillway was not a substential structure. It did not have any foundations. There was no dry stone wall nor curtain wall underneath.
- 5. The reinforcing of the spillway was slightly altered as shown on the enclosed drawing (803) SK-1.
- 6. The "flow measurement at center of dam" is tabulated in enclosure E3. The flow does not include water going over the spillway. This flow seems to be due to the following:
 - 6.1 Valve leakage (Reportedly existing for 60 years).
 - 6.2 Seapase through concrete curtain wall through fine crack (Water traveling through the dry stone wall acting like a collecting drain).
 - 6.3 Seapage under the old spillway. The water passing underneath the old spillway is believed to have found its way to the nearby dry stone wall, which was acting as a collecting drain.
- 7. Relating to flow measurements listed in point 6, the following is to be noted:
 - 7.1 Flow reportedly has existed for past 60 years.

- 7.2 Prior to the construction of the new spillway, the flow has been reported to have increased significantly through the last years.
- 7.3 Prior to the construction of the new spillway, the flow intensity was related to the lake elevation.
- 7.4 After the new spillway was constructed and the lake filled, the flow decreased to roughly one quarter and does not seem to iluctuate.
- 8. Relating to the flow lived in points 6 & 7, the following conclusions can be made:
 - 8.1 Flow due to valve leakage and seapage (6.1 & 6.2) does not appear to be deterimental to the stability of the dam, due to its small intensity.
 - 8.2 Seapage under the old spillway seems to have been the major cause of flow. It appears that the construction of the new spillway has eliminated this flow.
- 9. The underwater valve inspection is described in enclosure E2. The repair of this valve is not possible without siphoning the lake dry, and is not required at present (see 8.1)

Charle Rojala

Charles Rejcha P.E.

UNDERWATER VALVE INSPECTION

Re: Mauweehoo Lake Dam, Sherman, Ct.

Date: Jan. 20, 1980.

This underwater scuba diving inspection was performed July 29 1979 by Roland Rizzi, Sherman, Ct.

The following is his report:

- 1. The fill slope is about 2 to 1 as shown on drawings, howeve it is steeper at the lower part.
- 2. The depth of water is about 10 ft. Bottom is covered with silt and weeds.
- 3. At a depth of about 8 ft. boulders are projecting from fill They appear to be the remains of the original dry stone U shaped wall built around the valve (gate). A metal rod is projecting from the rubble on an angle of about 45 degrees. This is propably the original valve operation rod.
- 4. For schematic lay out see the enclosed sketch.

Charles Rejcha P.E.

chalo Rajche

Tie ins: East sake = 21-55 Web 1: 19.30 MATE 18.2 DET WALL! 24" 12.35 :

FLOW MEASUREMENTS

AT CENTER OF SAM

Re: Mauweehoo Lake Dam, Sherman, Ct. Date: Jan. 20, 1980.

This report is related to the measured flow, at the down stream face of dam at the valley stream. This point is locates roughly at the center of dam and alignes with the 12" drain pipe. This flow does not include the water going over the spillway, which joins the stream about 300 ft. downstream.

The stream is funneled through a 4" pipe. The flow is measured recording the time needed to fill a bucket of 0.330 cu. it.

For details see enclosed sheet.

Chal Rejde

MAUWESTOS PLOW HEALURS MENTON AT CENTER OF SAN 0.335 FT BUCLST TIME NEEDED TO FILL THE QUELET! PT 3/ SFC QF = 133 Flows: GAL/MIN Q6 = Q= >60 x 7.48 BEX TTS'S LAKE ELEVATIONS : ± 0.00 ORIGINAL SPILLWAY FT NEV SPILLWAY (ASSUMES) - 0. 50 ET PLOW LAKE 7 DATE Q_E Q_G REHARKS としてくろうっか FT3/SEC GAL/MIN FT SEC SPRING AFTER HEAVY 124124 OLD SOILLWAY 120 TOIZS FLOW WAS ESTIMATED 79 30 5 8.5.75 0.00 RAINY .066 3.14.75 5 1366 30 0.00 -11---- 2.50 .018 8 SVXX 18 9.1575 -3,00 30 4 .009 9.2374 118 -3.50 3 11.31.75 CLOWDY .007 : 8 .018 RAILS -0.50 18 SPILLWAY 12.25.79 .018 SULLY RAILS 18 -0,50 1. 1. 20 15 -0.33 ISPILWAY FLOW: 2"x 13-4" .017 1.11.20 AT LIEU AFR 12 PT +72/ R=1311x 1/2 13 0 6, 67 /102 NEW B-9

PHOTOGRAPHS

E 4)

Re: Meuweehoo Lake Dam, Sherman, Ct. Date: Photos taken Jan. 12, 1980.

E4-1

APPENDIX C

PHOTOGRAPHS

LAKE MAUWEEHOO DAM - DOWNSTREAM FACE

UPSTREAM FACE

CREST OF DAM

EMERGENCY SPILLWAY - PRINCIPAL SPILLWAY

: PRINCIPAL SPILLWAY

DOWNSTREAM CHANNEL - PRINCIPAL SPILLWAY
RUTTING - EMERGENCY SPILLWAY

DOWNSTREAM FACE - AREA OF LEAKAGE

APPENDIX D

HYDRAULIC/HYDROLOGIC COMPUTATIONS

STORCH ENGINEERS Engineers - Landscape Architects Planners - Environmental Consultants

JOB Phase I Dam Insp	ection - #4463 (Lake /42-W
SHEET NO	OF
CALCULATED BY LOC	DATE 5/23/9/
CHECKED BY 916	DATE 5/20/81

Downstream Hydrographs

"Rule of Thumb" Guidance for Estimating Downstream Failure Hydrographs

NAME OF DAM Lake Mauweehos Dam

Section I at Dam

1.
$$S = \frac{290}{Q_{P1}} = \frac{8}{27} \frac{Acft}{W_b} \sqrt{\frac{9}{9}} \sqrt{\frac{3}{2}} = \frac{8}{27} \sqrt{\frac{29}{3}} = \frac{2}{27} \sqrt{\frac{21}{2}} = \frac{12}{2} \sqrt{\frac{80}{5}} = \frac{12}{2} \sqrt{\frac{80}{5}$$

See Sections

Section II at

4a.
$$H_2 = \frac{17.6}{1.00}$$
 $A_2 = \frac{1200}{1.00}$ $L_2 = \frac{1000}{1.00}$ $V_2 = \frac{27.5}{1.00}$ Acft

b.
$$Q_{P2} = Q_{P1} (1-V_2/S) = 1/570$$
 cfs

c.
$$H_2 = 13.5$$
 $A_2 = 1000$ $A_A = 1100$ $A_A = 1100$

Section III at

4a.
$$H_3 = \frac{/3.5}{}$$
 $A_3 = \frac{/000}{}$ $L_3 = \frac{/000}{}$ $V_3 = 23.0$ Acft

b.
$$Q_{P3} = Q_{P2} (1-V_3/S) = \frac{9720}{}$$
 cfs

c.
$$H_3 = \frac{12.7}{2.2}$$
 $A_3 = \frac{130}{2.2}$ $A_4 = \frac{130}{2.2}$ $A_5 = \frac{10.560}{2.2}$ $A_7 = \frac{12.2}{2.90}$ $A_7 = \frac{12.2}{2.90}$ $A_7 = \frac{12.4}{2.90}$

Section IV at

4a.
$$H_4 = \frac{12.4}{2}$$
 $A_4 = \frac{930}{2}$ $L_4 = \frac{1000}{2}$ $V_4 = \frac{21.3}{2}$ Acft

b.
$$Q_{P4} = Q_{P3}(1-V_4/S) = 9030$$
 cfs

c.
$$H_4 = 12.2$$
 $A_4 = 750$
 $A_A = 900$ $V_4 = 20.5$ Acft
 $Q_{p4} = 9750(1-20.5/290) = 9060$ $H_7 = 12.0$

STORCH ENGINEERS Engineers - Landscape Architects Planners - Environmental Consultants

JOB Phase I Dan	1 Inspection - #4463/Lake House
SHEET NO	OF
CALCULATED BY BOC	DATE 5/22/81
CHECKED BY GJG	DATE 5/26/81
Downstream	Hydrographs (Continued)

Section V at

4a.
$$H_5 = 13.0$$

$$A_5 = 860$$

$$A_5 = 860$$
 $L_5 = 1000$ $V_5 = 19.7$ Acft

$$V_5 = \frac{19.7}{4}$$
 Acft

b.
$$Q_{P5} = Q_{P4} (1-V_5/S) =$$

c.
$$H_5 = /1.6$$

$$V_5 = 19.2$$
 Acft

Section VI at

c. H₆ = _____

b.
$$Q_{P6} = Q_{P5} (1-V_6/S) =$$

Section VII at

b.
$$Q_{P7} = Q_{P6}(1-V_7/S) =$$

$$V_7 = Acft$$

STORCH ENGINEERS - STORCH ASSOCIATES Engineers - Landscape architects Planners - Environmental Consultants

E

SHEET NO OF DATE 5/21/21

CHECKED BY GJG DATE 5/26/81

TRANSPORTER STATE OF THE PROPERTY OF THE PROPE