南京信息工程大学试卷

<u>2017</u> - <u>2018</u> 学年 第 学期 线性代数 课程试卷(<u>A</u> 卷)
本试卷共 <u>2</u> 页;考试时间 <u>120</u> 分钟;任课教师;出卷时间 <u>2017</u> 年 <u>12</u> 月
学号
一、填空题(每小题 3 分, 共 15 分)
1、 设 $A = \begin{pmatrix} 1 & -1 & 3 \\ 3 & -3 & 1 \\ 2 & a & -2 \end{pmatrix}$,如果齐次线性方程组 $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$ 有非零解,则 $a = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
2、 已知二阶方阵 $A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$,则其伴随矩阵 $A^* = \underline{}$
3、 设 $A = (\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3), B = (\vec{\alpha}_3, \vec{\alpha}_1, 2\vec{\alpha}_2),$ 其中 $\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3$ 为3维列向量,且 $ A = 2$,则
$ A+B = \underline{\hspace{1cm}}$
4、 $n+1$ 个 n 维向量构成的向量组一定线性
5、 设三阶方阵 A 使 2E – A, E + A, 3A – E 都不可逆,则 A =
二、选择题(每小题 3 分, 共 15 分)
1、设 A 是二阶方阵,且 $ A =a$,则 $ (-2A)^3 =($)
A. $8a^3$ B. $-8a^3$ C. $64a^3$ D. $-64a^3$
2 、设 A 是 n 阶方阵满足 $A^2=A$,则 $A+E$ 可逆,且 $(A+E)^{-1}=($)
A. $A-2E$ B. $\frac{1}{2}(A-2E)$
C. $-\frac{1}{2}(2A-E)$ D. $-\frac{1}{2}(A-2E)$
3、设 $P^{-1}AP = B$,其中 $P = \begin{pmatrix} -1 & -3 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $A^{11} = ($
A. $\begin{pmatrix} 1 & 3 \\ -1 & -1 \end{pmatrix}$ B. $\frac{1}{2} \begin{pmatrix} 1 & -3 \\ -1 & -1 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$

4、设A, X, b 依次为 $m \times n, n \times 1, m \times 1$ 矩阵,则下列命题正确的是(

- A. 若 AX = 0 只有零解,则 AX = b 有唯一解.
- B. 若 AX = 0有非零解,则 AX = b有无穷多解.
- C. 若 AX = b 有无穷多组解,则 AX = 0 有非零解.
- **D.** AX = b 有唯一解的充要条件 R(A) = n.
- 5、下列 R^3 的子集中,构成向量空间的是(

A.
$$\{X = (x_1, x_2, x_3)^T | x_1 - x_2 + x_3 = 1\}$$

A.
$$\left\{ X = (x_1, x_2, x_3)^T \middle| x_1 - x_2 + x_3 = 1 \right\}$$
 B. $\left\{ X = (x_1, x_2, x_3)^T \middle| x_1 = 2x_3, x_2 = 0 \right\}$

C.
$$\left\{ X = (x_1, x_2, x_3)^T \middle| X^T X = 1 \right\}$$
 D. $\left\{ X = (x_1, x_2, x_3)^T \middle| x_1 x_2 = 0 \right\}$

D.
$$\left\{ X = (x_1, x_2, x_3)^T \middle| x_1 x_2 = 0 \right\}$$

三、计算下列行列式. (每小题 6 分, 共 12 分)

(1)
$$\begin{vmatrix} 5 & 3 & 3 & 3 \\ 3 & 5 & 3 & 3 \\ 3 & 3 & 5 & 3 \\ 3 & 3 & 5 & 5 \end{vmatrix}$$
 (2) $\begin{vmatrix} a_1 & 1 & 1 & 1 \\ 1 & a_2 & 0 & 0 \\ 1 & 0 & a_3 & 0 \\ 1 & 0 & 0 & a_4 \end{vmatrix}$, 其中 a_1, a_2, a_3, a_4 均不为 0 .

四、已知矩阵
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 2 \end{pmatrix}$, 求解矩阵方程 $AX = B + 2X$. (10 分)

五、设线性方程组为 $\begin{cases} x_1-3x_2-x_3=0\\ x_1-4x_2+ax_3=b \text{ , id: } a \text{ 、} b \text{ 取何值时,方程组无解、有唯一解、}\\ 2x_1-x_2+3x_3=5 \end{cases}$

有无穷多解? 在有无穷多解时求出其通解. (10分)

六、已知向量组
$$\vec{\alpha}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 , $\vec{\alpha}_2 = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$, $\vec{\alpha}_3 = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$, $\vec{\alpha}_4 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$, 求向量组的秩和一个最大线性无

关组,并将其余的向量用该最大线性无关组线性表示.(10分)

七、已知矩阵
$$A = \begin{pmatrix} 3 & 1 & 2 \\ -4 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
, 求矩阵 A 的所有特征值及对应的特征向量.(10 分)

八、用导出组的基础解系表示线性方程组
$$\begin{cases} x_1 - 5x_2 + 2x_3 - 3x_4 = 11 \\ 5x_1 + 3x_2 + 6x_3 - x_4 = -1 \text{ 的通解. (10 分)} \\ 2x_1 + 4x_2 + 2x_3 + x_4 = -6 \end{cases}$$

九、设 $\vec{\beta}_1 = \vec{\alpha}_1 + \vec{\alpha}_2 + \vec{\alpha}_3$, $\vec{\beta}_2 = \vec{\alpha}_1 + \vec{\alpha}_2 + 2\vec{\alpha}_3$, $\vec{\beta}_3 = \vec{\alpha}_1 + 2\vec{\alpha}_2 + 3\vec{\alpha}_3$, 如果 $\vec{\alpha}_1$, $\vec{\alpha}_2$, $\vec{\alpha}_3$ 线性无关, 证明: $\vec{\beta}_1, \vec{\beta}_2, \vec{\beta}_3$ 也线性无关. (8 分)