CONFERENZA DI ATENEO PER LA RICERCA E IL TRASFERIMENTO TECNOLOGICO

PRIMA GIORNATA TEMATICA

RICERCA E TRASFERIMENTO TECNOLOGICO SULLE TEMATICHE ENERGETICO AMBIENTALI

Università degli Studi di Firenze

Firenze, 13 Dicembre 2007

Anna Vinattieri Dip. Fisica-LENS

Nanostrutture innovative per emettitori nell' IR-VIS-UV

- -Fisica delle microcavita' (M.Gurioli): Nuovi tipi di laser
- -Fisica delle nanostrutture a nitruri (A.Vinattieri): LED e Laser
- -Fisica degli emettitori a singolo fotone (F. Intonti): Nanosorgenti per trattamento quantistico dell'informazione

Fisica delle nanostrutture a nitruri

PERIODO DI RIFERIMENTO: 2003-2007

Soggetti coinvolti: UNIFI, UNIPD, CHREA-CNRS, EPFL

Gruppo di lavoro UNIFI: Dip. Fisica, LENS, Dip. Energetica

Finanziamento della ricerca:

PRIN 2005 (Partner industriale Osram OptoSem) RTN EU "Physics of Microcavities" (2003-2007) Richiesta PRIN 2007 (Partner industriali Osram, Panasonic)

I nitruri: i materiali vincenti per l'illuminazione a stato solido?

Sommario

- 1. Le potenzialita' dell'illuminazione a stato solido
- 2. La ricerca di base nell'Ateneo
- 3. Problemi aperti
- 4. Conclusioni

La storia dell'illuminazione

Il passato

Il presente ed il futuro

Semiconductors

La svolta: 1990 HP e Toshiba (AlInGaP giallo-rosso), Nichia (Nakamura LED blu-verdi-bianchi e diodi laser blu)

Shuji Nakamura: Millenium Technology Prize 2006

Due differenti esigenze

✓ Sorgenti quasi-monocromatiche (applicazioni luci semaforiche, litografia ottica, agricoltura, settore biomedicale, etc.)

✓ Sorgenti di luce bianca (mercato automobilistico, illuminazione per usi civili, retroilluminatori per displays, etc.)

Sorgenti tradizionali

- ✓ Illuminazione domestica
 - Lampade ad incandescenza o lampade a fluorescenza con resa più elevata
- ✓ <u>Ambienti lavorativi</u> Lampade a fluorescenza
- ✓ <u>Illuminazione stradale</u> Lampade a sodio

✓ Buona resa del colore

✓ Sorgenti non monocromatiche: richiedono filtraggio spettrale per applicazioni specifiche

Alogene

Riproduzione dello spettro solare per temperature del filamento superiori a 5000 K

Attualmente è la soluzione più utilizzata per illuminazione domestica

Significativa componente IR

Lampade a fluorescenza

Distribuzione spettrale differente da quella solare

Efficienza aumentata rispetto all'incandescenza

Accensione lenta

Mercurio o Sodio (giallo)

Le potenzialità dell'illuminazione a stato solido

- Consistenti risparmi energetici: da dati USA costo settore energetico \$60 miliardi /anno di cui circa il 21% per illuminazione. Le proiezioni di risparmio energetico nel caso di utilizzo dell'illuminazione a stato solido sarebbero pari a circa \$ 100 miliardi (2000-2020) (risparmio ≈ 50% consumi) e riduzione di 110 milioni di tonnellate/anno di emissione di carbonio nell'atmosfera.
- Vita media attesa sorgenti 100000 h
- Alta efficienza rispetto a lampade tradizionali
- Alta resistenza meccanica a vibrazioni e shock
- Compattezza
- Monocromaticita' e controllo dell' emissione
- Assenza mercurio
- No IR e UV per LED nel visibile

Sviluppo del mercato per i dispositivi a GaN

2003- 184 compagnie coinvolte in produzione e sviluppo. 293 universita' coinvolte in R/D (incremento rispetto al 2000 74 % per industrie e 24% per universita')

Dal 1995 ad oggi crescita annuale mercato LED a GaN ≈ 46%

Previsioni 2009: \$ 6.8 Miliardi

Dati USA (Strategies Unlimited)

Dati Cina: \$ 4 Miliardi (2010) con crescita annuale >35% (2002-2006)

Efficienza

U.S. Department of Energy

Energy Efficiency and Renewable Energy

Costi e Prestazioni

Lumen:

The SI unit of luminous flux. The total amount of light emitted by a light source, without regard to directionality, is given in lumens.

Luminous efficacy:

The total luminous flux emitted by the light source divided by the lamp wattage; expressed in lumens per watt (lm/W).

Typical System Efficacy Range in lm/W			
(varies depending on wattage and lamp type)			
10-18			
15-20			
35-60			
50-100			
50-90			
45-59*			
22-37*			

*Current as of October 2006.

Crescita esponenziale nelle prestazioni e decrescita esponenziale nei costi!

Nel prossimo futuro

High Investment Economic Model						
	Year	2005	2010	2015	2020	2025
LED Penetration	%	0.05	2	12	30	55
Energy Savings per year	TWh/yr	2	67	330	720	1100
Energy Cost Savings per year	\$B/yr	0.2	7	33	72	110
Energy Generating Capacity Savings	GW	0.2	8	38	82	125
						_ ^

Applicazioni con luce monocromatica

Applicazioni su larga scala

Cellphone (Nokia)

streetlights

Traffic signals (Gelcore)

TVs (LED DLPtm) (samsung)

Large Displays (NASDAQ)

Automotive

La competitività delle sorgenti luminose a stato solido dipende dal raggiungimento di alcuni traguardi:

- -Aumento dell'efficienza della generazione di luce (fortemente dipendente dalla qualita' del materiale)
- -Aumento dell'efficienza dell'estrazione di luce (attualmente < 40%)
- -Aumento della qualità della luce (CRI)
- -Riduzione dei costi (attualmente 2-3 E per package, confrontabile con CFL)

Poiche' per poter illuminare occorrono sorgenti luminose che emettano oltre i 1000 lumens (KI) occorrono dispositivi di potenza ed aumento del package (da 100 verso 1KI per package)

Il materiale: I nitruri

Controllo colore su ampio range (NUV-NIR)

Elevata efficienza radiativa

Costi relativamente bassi di produzione

- ✓ Piezoelettricita'
- ✓ Elevato numero difetti strutturali
- ✓ Scarso controllo drogaggio

Gli sviluppi tecnologici per i nitruri

Anno	Evento	Autore
1969	GaN da VPE	Maruska et al.
1971	GaN da MOCVD MIS LEDs	Pankove, Dingle et al.
1974	GaN da MBE	Akasaki et al.
1975	AIN da evaporazione reattiva	Yoshida et al.
1982	Sintesi (alta pressione)	Karpinski et al.
1983	AIN da MBE	Yoshida
1986	Film speculari di AIN	Amano et al.
1989	P-doping GaN p-n LED InGaN per epitassia	Amano, Akasaki, Nagamoto et al.
1991	GaN buffer layer per MOCVD	Nakamura
1992	AlGaN UV/Blu LED ad alta luminosita'	Nakamura, Akasaki, Amano et al.
1993	InGaN MQW	Nakamura
1994	InGaN/AlGaN LED blu-verdi	Nakamura
1995	InGaN LED blu-verdi-gialli	Nakamura
1996	UV laser a diodo Pulsed e CW laser a diodo blu	Akasaki, Nakamura et al.

Dal 1996- sviluppi tecnologici (pendoepitaxy, non-polar material, design dell'emettitore, ottimizzazione contatti, doping, etc) per max potenza ed efficienza

Alcuni problemi

Efficienza

Interna
Qualita' materiale
Distribuzione corrente-contatti

Esterna

Design struttura emettitore

Nostra attivita' ricerca

L'efficienza complessiva del dispositivo e' il prodotto di η_{int} e η_{ext} . η_{int} e' limitata dalla presenza di canali non radiativi. η_{ext} e' limitata da riflessioni totali e riassorbimento.

IL LED "old style"

II LED "new style"

Il confinamento dei portatori migliora drasticamente l'efficienza interna Realizzando anche il confinamento della luce si riduce il riassorbimento

Per ottenere il confinamento la struttura e' cresciuta con tecniche epitassiali

Le nostre competenze

Parameters: T (2-300K), exc. density, bias etc.

Misura dello spettro di emissione

Obiettivi: determinazione presenza canali non radiativi e dipendenza dell'efficienza da trattamenti post-crescita e ageing

Ad esempio

Cinetica di ricombinazione

Misura efficienza interna

Individuazione componenti spettrali diverse e loro cinetica

Prototipo da Osram OptoSem

Imaging e spettroscopia con risoluzione spaziale submicrometrica

OBIETTIVI

- 1. Caratterizzazione avanzata di nanostrutture base per emettitori VIS-UV come feedback per crescitori
- 2. Studio della cinetica di ricombinazione
- 3. Individuazione origine canali non radiativi
- 4. Studio del ruolo del disordine su scala microscopica
- 5. Effetti non-lineari: emissione stimolata in strutture a microcavita'

Obiettivi conseguiti

- •Comprensione del ruolo del campo elettrico interno sulla cinetica di ricombinazione nei nitruri di tipo wurztite. Dinamica in nitruri non polari (strutture a pozzo quantico e punto quantico)
- •Studio di strutture a microcavita' di GaN come nanostrutture per laser innovativi

Altri aspetti rilevanti dal punto di vista tecnologico non ancora ottimizzati

Miglioramento efficienza esterna: modifica geometria emettitore con substrato trasparente

Absorbing Substrate 1991

Truncated Inverted Pyramid (TIP) Chip 2000

Generazione di luce bianca

RGB, UV LED+fosfori, BLU LED+fosfori (100I/W UCBS)

Da pochi I/W a >100 I/W

Conclusioni

- Esistono competenze locali per studi avanzati su materiale per la realizzazione di emettitori con elevato impatto tecnologico.
- Purtroppo, per quanto concerne la ricerca di base, l'interazione con settori industriali interessati allo sviluppo di sorgenti avviene in primo luogo con partner stranieri.