M2PM3 COMPLEX ANALYSIS PROBLEMS 3, 5.2.2009

Q1 The Gamma function (real case).

Define

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt \qquad (x > 0).$$

- (i) Show that the integral converges for x > 0, but not for $x \le 0$.
- (ii) Show that

$$\Gamma(x+1) = x\Gamma(x) \qquad (x > 0).$$

(iii) Show that

$$\Gamma(n+1) = n!$$
 $(n = 0, 1, 2, ...).$

Interpret Γ as providing a continuous extension of the factorial.

(iv) Show that

$$\Gamma(1/2) = \sqrt{\pi}$$
.

Q2 The Gamma function (complex case).

For $z \in \mathbf{C}$, define

$$\Gamma(z):=\int_0^\infty t^{z-1}e^{-t}dt \qquad (x=\Re z>0).$$

- (i) Show that the integral converges for $\Re z > 0$.
- (ii) Show that

$$\Gamma(z+1) = z\Gamma(z) \qquad (x = \Re z > 0).$$

- (iii) Use (ii) to extend the domain of definition of $\Gamma(z)$ from $\Re z > 0$ to $\Re z > -1$.
- (iv) By repeated use of (iii) (or by induction), extend the domain of definition of $\Gamma(z)$ to $\Re z > -n$ $(n=1,2,3,\ldots)$, and so to all of the complex plane ${\bf C}$. Show also that Γ so extended has complex values (i.e., in the complex plane ${\bf C}$ rather than the extended complex plane ${\bf C}^*$) except for $z=0,-1,-2,\ldots$
- (v) Find $\Gamma(-2.5)$ and $\Gamma(3.5)$.
- Q3 The Riemann zeta function ($\sigma > 1$).
- (i) For real σ , define (where convergent)

$$\zeta(\sigma) := \sum_{n=1}^{\infty} 1/n^{\sigma}.$$

Find the set of σ for which the series is convergent.

(ii) For $s = \sigma + i\tau \in \mathbf{C}$, define (where convergent)

$$\zeta(s) := \sum_{n=1}^{\infty} 1/n^s.$$

Find the half-plane of convergence of this Dirichlet series, and its half-plane of absolute convergence.

Q4 The Riemann zeta function ($\sigma > 0$).

(i) By using the Alternating Series Test, or otherwise, show that

$$\sum_{n=1}^{\infty} (-1)^{n-1} / n^{\sigma}$$

converges for $\sigma > 0$ but not for $\sigma \le 0$. Find the half-planes of convergence and of absolute convergence of the Dirichlet series

$$\sum_{n=1}^{\infty} (-1)^{n-1} / n^s.$$

(ii) By considering the sums over n odd and even separately, or otherwise, show that

$$\sum_{n=1}^{\infty} (-1)^{n-1}/n^s = (1 - 2^{1-s})\zeta(s) \qquad (\sigma = \Re s > 1).$$

(iii) Deduce that defining

$$\zeta(s) := \frac{1}{(1 - 2^{1 - s})} \sum_{n=1}^{\infty} (-1)^{n-1} / n^s$$

defines a function ζ for $\sigma = \Re s > 0$, $s \neq 1$.

(iv) Show that as $s \to 1$,

$$\zeta(s) \sim \frac{1}{s-1}.$$

(You may assume that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ldots=\log 2$. Hint: use L'Hospital's Rule.)

NHB