Indian Institute of Technology Patna

CS571:AI and ML Lab

ASSIGNMENT-5: Decision Trees Submission Date: 12^h May 2024

Baskar Natarajan - 2403res19(IITP001799) Jyotisman Kar – 2403res35(IITP001751)

SEMESTER-1
MTECH AI & DSC
INDIAN INSTITUTE OF TECHNOLOGY PATNA.

1.Pr	oblem Description:3	
1.	Decision Tree:3	
2.	Components of Decision Trees:	
3.	Types of Decision Trees:4	
4.	When to Use Decision Trees:4	
5.	How to Use Decision Trees:4	
6.	Advantages of Decision Trees:	
7.	Disadvantages of Decision Trees:5	
8.	Real-Time Example:	
9.	GINI Index / Impurity:5	
10.	Information Gain:6	
11.	Pruning:6	
12.	Ensemble Methods:6	
13.	Model and Programming Steps:	
a.	Importing Necessary Libraries:	
b.	Loading the Dataset:7	
c.	Data Preprocessing:	
d.	Splitting the Dataset:	
e.	Model Building:7	
f.	Hyperparameter Tuning:7	
a.	Model Evaluation:8	
b.	Visualization: 8	
c.	Documentation: 8	
А	Output:	

1. Problem Description:

Problem Statement:

 Use Decision Trees to prepare a model on fraud data treating those who have taxable_income <= 30000 as "Risky" and others as "Good."

Data Description and Link:

https://www.dropbox.com/scl/fi/kd8z3309rk0yc5ugdnuqh/Fraud_check.csv?rlkey=ssj0u1w0s3ok09gb07e06swth&st=m1gmtrxs&dl=1

- Undergrad: A person is under-graduated or not
- Marital.Status: marital status of a person
- **Taxable.Income**: Taxable income is the amount of how much tax an individual owes to the government (not to use)
- Work Experience: Work experience of a person
- Urban: Whether that person belongs to an urban area or not Implementation Details:
- Assume: taxable_income <= 30000 as "Risky=0" and others are "Good=1"
- Use the first 80% of data as a training set and the remaining 20% as a test set.
- Report accuracy on the test set

Documents to submit:

- Model code
- A detailed document describing results such as time taken for the execution, confusion matrix, and accuracy results

1. Decision Tree:

- A Decision Tree is a hierarchical structure that recursively splits data based on feature values, aiming to classify instances into predefined classes or predict continuous target variables.
- It is a supervised learning algorithm used for both classification and regression tasks.

2. Components of Decision Trees:

Nodes: Represent decision points based on feature values.

Edges: Connect nodes and represent the outcome of a decision.

Root Node: The topmost node in the tree, representing the initial decision point.

Internal Nodes: Decision points that lead to further splits.

Leaf Nodes: Terminal nodes representing the final class or predicted value.

Splitting Criteria: Measures used to determine the best feature and value to split the data.

Pruning: Technique to prevent overfitting by removing unnecessary branches.

3. Types of Decision Trees:

Classification Trees: Used for classification tasks where the target variable is categorical.

Regression Trees: Used for regression tasks where the target variable is continuous.

4. When to Use Decision Trees:

- Decision Trees are suitable for both classification and regression tasks.
- They are particularly useful when the data has a hierarchical structure and can be easily represented in a tree-like format.
- Decision Trees are interpretable and easy to understand, making them suitable for applications where model transparency is important.

5. How to Use Decision Trees:

Data Preparation: Preprocess the data by handling missing values, encoding categorical variables, and scaling features if necessary.

Model Training: Train the Decision Tree model using the prepared dataset.

Model Evaluation: Evaluate the model's performance using appropriate metrics such as accuracy, precision, recall, and F1-score for classification, or mean squared error for regression.

Model Tuning: Fine-tune hyperparameters using techniques like grid search and cross-validation to improve model performance.

Deployment: Deploy the trained model in production to make predictions on new data.

6. Advantages of Decision Trees:

- Easy to understand and interpret.
- Can handle both numerical and categorical data.
- Non-parametric, meaning they do not make assumptions about the distribution of data.
- Robust to outliers and missing values.
- Can capture non-linear relationships between features and target variables.

7. Disadvantages of Decision Trees:

- Prone to overfitting, especially on complex datasets with many features.
- Can be sensitive to small variations in the data.
- Lack of robustness, meaning small changes in the data can lead to significantly different trees.
- May not generalize well to unseen data, especially when the tree is deep.

8. Real-Time Example:

- Suppose you are building a credit risk assessment system for a bank.
- Decision Trees can be used to classify loan applicants into "Low Risk," "Medium Risk," and "High Risk" categories based on features such as credit score, income, debt-to-income ratio, etc.
- The bank can then use these classifications to make decisions on whether to approve or deny a loan application.

9. GINI Index / Impurity:

- GINI index is a measure of impurity or randomness in a dataset.
- In the context of Decision Trees, GINI index is used to evaluate the homogeneity of a node.
- A GINI index of 0 indicates perfect homogeneity, meaning all the samples in the node belong to the same class.
- A GINI index of 0.5 indicates maximum impurity, meaning the samples are evenly distributed across all classes.
- Mathematically, for a node kk with KK classes, the GINI index is calculated as:

$$GINI(k) = 1 - \sum_{i=1}^{K} p(i)^2$$

• p(i) is the probability of an instance being classified as class i in node k.

10. Information Gain:

- Information gain is a measure used to decide the order of feature splitting in Decision Trees.
- It quantifies the reduction in entropy or increase in homogeneity achieved by splitting a dataset based on a particular feature.
- Entropy measures the randomness or impurity in a dataset. The lower the entropy, the more homogeneous the dataset is.
- Information gain is calculated as the difference between the entropy of the parent node and the weighted average of the entropies of the child nodes after the split.
- Mathematically, the information gain IGIG for a split on feature AA is given by:

$$IG(A) = H(parent) - \sum_{j} rac{N(j)}{N} H(child_j)$$

• H denotes entropy, N(j) is the number of instances in the child node j, N is the total number of instances in the parent node, and childj represents each child node.

11. Pruning:

- Pruning is a technique used to prevent overfitting in Decision Trees.
- It involves removing parts of the tree that do not provide significant predictive power on the validation set.
- Pre-pruning involves stopping the tree-building process early by setting constraints on tree depth, minimum samples per leaf, or minimum samples per split.
- Post-pruning involves building the full tree first and then removing or collapsing nodes that are least useful based on statistical significance tests or crossvalidation.

12. Ensemble Methods:

- Ensemble methods combine multiple Decision Trees to improve predictive performance.
- Random Forest is an ensemble method that builds multiple Decision Trees using random subsets of the training data and features.

• Gradient Boosting Machines (GBM) sequentially train Decision Trees, with each tree correcting the errors of the previous one, to improve prediction accuracy.

13. Model and Programming Steps:

a. Importing Necessary Libraries:

• Imports essential libraries for data manipulation, model building, evaluation, visualization, and time tracking.

b. Loading the Dataset:

• Loads the dataset "Fraud_check.csv" using pandas.

c. Data Preprocessing:

- Dataset is loaded and preprocessed:
- A new column "Income_Category" is created based on "Taxable.Income".
- Encodes categorical variables ("Undergrad", "Marital.Status", "Urban") into numerical format using LabelEncoder.

d. Splitting the Dataset:

- Splits the dataset into training and testing sets using train_test_split from scikit-learn.
- Uses 80% of the data for training and 20% for testing, with a random state for reproducibility.

e. Model Building:

- DecisionTreeClassifier is initialized.
- Hyperparameter Tuning:
- GridSearchCV is used to find the best hyperparameters via crossvalidation.

f. Hyperparameter Tuning:

- Defines a parameter grid containing different hyperparameters for the DecisionTreeClassifier:
- max_depth: Maximum depth of the tree.

- min_samples_split: Minimum number of samples required to split an internal node.
- min_samples_leaf: Minimum number of samples required to be at a leaf node.
- Utilizes GridSearchCV to perform an exhaustive search over the specified parameter values, optimizing model performance with 5fold cross-validation.

a. Model Evaluation:

- The best model is evaluated on the test set.
- Accuracy, confusion matrix, and classification report are printed.

b. Visualization:

 Confusion matrix heatmap and Decision Tree visualization are plotted.

c. Documentation:

- Results including best parameters, accuracy, confusion matrix, classification report, and Decision Tree statistics are saved to "results_document.txt".
- This program streamlines the process of building and evaluating a
 Decision Tree classifier for fraud detection, providing insights into
 model performance and visualizations for better understanding.
- Plotted.

d. Output:

Best Parameters: {'max_depth': 5, 'min_samples_leaf': 4,

'min_samples_split': 2}

Best Accuracy: 0.7812499999999999

Confusion Matrix: [[91 3] [26 0]]

Decision Tree Statistics:

Number of nodes: 39

Depth of tree: 5

Classificatio	on Report: precision	recall	f1-score	support
Good	0.78	0.97	0.86	94
Risky	0.00	0.00	0.00	26
accuracy			0.76	120
macro avg	0.39	0.48	0.43	120
weighted avg	0.61	0.76	0.68	120

Decision Tree

Time taken for execution: 1.8353145122528076 seconds