# Project Plan: Heatmap System with ESP32 and AHT21

#### Andrei

July 2025

### 1 Introduction

This document outlines the general plan for a temperature and humidity data collection system using 48 AHT21 sensors arranged in three vertical layers, grouped 4 per wall. The system will use ESP32 boards, cables, and 3D-printed enclosures, with sensors connected to a central PCB.

### 2 Required Components

| Component                    | Qty.   | Unit Price (lei) | Total (lei)  | Link / Product Code |
|------------------------------|--------|------------------|--------------|---------------------|
| ESP32 DevKit                 | 12     | 30.87            | 370.44       | emag.ro             |
| AHT21 temp/humidity sensor   | 48     | 8.84             | 424.32       | ardushop.ro         |
| Wires (4x2m/sensor) – 100m   | ~100m  | 0.88             | 88.00        | ardushop.ro         |
| total                        |        |                  |              |                     |
| USB-C power cable (2m)       | 12     | 10.41            | 124.92       | ardushop.ro         |
| 5V/1A wall adapter           | 12     | 6.31             | 75.72        | emag.ro             |
| Male-female connectors       | 2 sets | 15.90            | 31.80        | ardushop.ro         |
| (Dupont)                     |        |                  |              |                     |
| Custom PCBs                  | 12     | 0.00             | 0.00         | DIY                 |
| 3D printed sensor enclosures | 48     | 0.00             | 0.00         | DIY printing        |
| 3D printed central units     | 12     | 0.00             | 0.00         | DIY printing        |
| Estimated Total              |        |                  | 1,115.20 lei |                     |

# 3 Clarifications / Personal Requirements

- Each node contains a custom PCB and an ESP32 board. Sensors are connected via specially designed connectors. Each node has a unique ID set in firmware.
- The central unit is designed to support additional I2C and GPIO lines, configurable in code. The number of active sensors can be adjusted dynamically, including via Wi-Fi.
- Each sensor has a 3D-printed case with two M3 12mm screw holes and is fixed using double-sided adhesive tape.
- Cable length per sensor is approximately 1–2 meters, depending on placement.
- The central PCB includes:
  - Shared power line (+3.3V and GND);
  - SDA/SCL ports grouped per sensor pair;
  - Male connectors on the PCB and female connectors at the end of sensor wires.
- The ESP32 remains accessible for reprogramming through an opening in the enclosure.

- The design is modular sensors can be added or removed easily.
- Central units are mounted on the wall.
- To reduce cost, one node can handle more than 4 sensors.

### 4 Remarks

- If I2C interference occurs, shielded cables can be used. For longer distances, dedicated modules such as I<sup>2</sup>C extenders may help improve reliability. See: Hackaday I<sup>2</sup>C Over Long Wires.
- 3D-printed cable guides may be used to protect wires between sensors and their enclosures.
- Prices may vary slightly depending on suppliers, but the system remains scalable and adaptable.
- Sensor technical documentation (AHT21): AHT21 Datasheet Aosong.

## 5 Sensor Wall Layout

This section includes a schematic showing how sensors are arranged on a single wall. It illustrates the physical layout: 4 sensors per layer in 3 vertical layers.

The lines labeled 100 and 200 represent wires that connect to sensors mounted in 3D-printed enclosures. In the center, the main box contains the ESP32 unit and a PCB. These units are arranged in sets of three at different heights on the wall. The layout is based on a wall size of approximately 450 cm in width and 400 cm in height.

