Machine Learning and Statistical Learning Lecture 1

Daniel Yu

September 9, 2024

Contents

1	Review of Machine Learning Basics	3
	1.1 Supervised Learning	4
	1.2 Regression Model Assumptions	4
	1.3 Expected Prediction Error	4
	1.3.1 Squared Error Loss	5
	1.3.2 Absolute Error	5
	1.4 Classification	6
2	Bias-Variance Tradeoff 2.1 Mathematical Decomposition of Expected Prediction Error at fixed $\vec{x}^{(0)}$	6 7
3	KNN	8
1	Linear Regression - OLS	8
5	Ridge Regression	8
3	Readings	8

1 Review of Machine Learning Basics

Statistical Learning

- Input (aka feature/predictor): $\vec{x} = (\vec{x_1}, \dots, \vec{x_d}) = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in X = \mathbb{R}^d$
- Output (label): $y \in C \subseteq \mathbb{R}$

Note: here y is an outcome we wish to predict from \vec{x} .

Remark. Measuring a pair (\vec{x}, y) is a sample of pair of random variables R.V. (\vec{X}, Y) with underlying distributions.

We want to learn relation between \vec{x} and y from training set $D = \{(\vec{x}^i, y^i), i = 1, \dots, n\}$

Statistical Learning \approx Machine Learning only that Statistical learning is less focused on algorithms than ML.

Definition 1. A learning algorithm is a function that takes training set $D = \{(\vec{x}^i, y^i), i = 1, ..., n\}$ as input and has as output a prediction $y = \hat{f}(\vec{x})$ that for every \vec{x} predicts y value.

Definition 2. A probability model is a joint probability distribution P of $\vec{x} \in X$ and $y \in C$ on the pair $(\vec{X}, Y) \in X \times C = \mathbb{R}^d \times C$ of a random vector $\vec{X} \subseteq \mathbb{R}^d$ and random variable $Y \in C$.

Definition 3. A function model is a single function $f: X \to C$ or a class F of such functions where one function is assumed to give a good prediction $y \in C$ from $\vec{x} \in X$.

- 1. Supervised Learning (regression and classification)
- 2. Unsupervised Learning

Remark. One example of Supervised Learning is in generative models: $(y, \vec{x}) \rightarrow P(y|\vec{x})P(\vec{x})$ note that this is just the chain rule in probability where P(x,y) = P(y|x)P(x) where $P(y|\vec{x})$ is the conditional probability that a set of inputs \vec{x} produces y and $P(\vec{x})$ represents the marginal probability of the input features \vec{x} are in a dataset (i.e. how likely different feature combinations are as each x_i is a feature).

However, in discriminant models, the above does not apply as they focus solely on learning $P(y|\vec{x})$ the conditional probability.

One example of Unsupervised Learning is probablistic modeling: $(\vec{x}) \to P(\vec{(x)})$, so we are simply estimating the probability distribution of underlying data, using

each datapoint \vec{x} to improve our estimation of the probability distribution $P(\vec{x})$.

1.1 Supervised Learning

- 1. regression $y \in R$ is continuous, quantitative
- 2. classification $y \in 1, ..., K$ is discrete, qualitative

In a statistical learning (theoretical standpoint) they are the same but in a ML algorithmic standpoint they are different!

Remark. A probability model has fixed joint prob distribution: $(\vec{X}, Y) \sim P(\vec{x}, y)$. For some measurable set $A \subset \mathbb{R} \times C$, the probability that $(\vec{X}, Y) \in A$ is:

$$P(A) = P((\vec{X}, Y) \in A).$$

TODO: Missing stuff - parametric vs non-parametric

1.2 Regression Model Assumptions

$$y^{(i)} = h(\vec{x}^{(i)}) + \varepsilon_i.$$

Here $h(\vec{x})$ depends on some finite or infinite collection of parameters $\vec{\theta}$ We assume that errors are random variables of the form $\varepsilon_i \sim Normal\ (0, \sigma^2)$.

Remark. This is a strong assumption!

Proof.

$$E(Y|\vec{X} = \vec{x}) = E(h(\vec{X}) + \varepsilon|\vec{X} = \vec{x})$$
 since $h(\vec{X})$ and ε are independent (1)

$$= E(h(\vec{X})|\vec{X} = \vec{x}) + E(\varepsilon|\vec{X} = \vec{x}) \tag{2}$$

$$=h(\vec{x})+0\tag{3}$$

$$=h(\vec{x})\tag{4}$$

Remark. Proof above is only true for the assumption that ε is random white noise.

1.3 Expected Prediction Error

Assume we have an algorithm for estimating $h(\vec{x}^0)$ for test point \vec{x}^0 . The estimator is:

$$\vec{y}^0 = \hat{h}(\vec{x}^0) \approx h(\vec{x}^0).$$

Definition 4. Our loss function is then defined as:

$$L(Y, h(\vec{X})).$$

Loss Function Types

- $L(Y, h(\vec{X})) = (Y h(\vec{X}))^2$ square loss error
- $L(Y, h(\vec{X})) = |Y h(\vec{X})|$ absolute loss error

Definition 5. Expected Prediction Error (Expected Value of Error)

$$EPE(h) = E_{Y \mid \vec{X}}[L(Y, h(\vec{X}))] = E_{\vec{X}}E_{Y \mid \vec{X}}[L(Y, h(\vec{X}) | \vec{X}].$$

We want to minimize pointwise:

$$\hat{h}(\vec{x}) = argmin_c E_{Y|X}[L(Y,c)|\vec{X} \to \vec{x}].$$

where $c = h(\vec{X})$

Remark. In Theory we want prediction error for all future values but in practice we only have to the test error.

1.3.1 Squared Error Loss

Let $L(Y, h(\vec{X})) = (Y - h(\vec{X}))^2$ square loss error

$$\hat{h}(\vec{x}) = argmin_c E_{Y|\vec{X}}[(Y-c)^2|\vec{X} = \vec{x}].$$

$$= argmin_c E_{Y|\vec{X}}[Y^2 - 2cY + c^2|\vec{X} = \vec{x}].$$

Note:

$$E[Y^{2} - 2cY + c^{2}|\vec{X} = \vec{x}] = E[Y]^{2} - 2cE[Y] + c^{2}.$$

$$\frac{d}{dc}[E[Y]^{2} - 2cE[Y] + c^{2}] = -2E[Y] + 2c = 0.$$

$$c = E[Y] = E[Y|\vec{X} = \vec{x}].$$

Logically this makes sense because the minimizer of the squared loss function when $h(x) = E[Y|\vec{X} = \vec{x}]$ is the mean (expected value) of Y given X = x which captures the squared loss function's central tendency as it squares distance.

1.3.2 Absolute Error

Let $L(Y, h(\vec{X})) = |Y - h(\vec{X})|$ absolute loss error:

$$\hat{h}(\vec{x}) = argmin_c E_{Y|\vec{X}}[|Y - c||\vec{X} = \vec{x}].$$

Expand the |Y-c| piecewise:

$$E[|Y-c|] = \int_{-\infty}^{c} (c-y)p(y)dy + \int_{c}^{\infty} (y-c)p(y)dy.$$

Take the derivative to minimize the expected value:

$$\frac{d}{dc}(E[|Y-c|]) = \frac{d}{dc}\left[\int_{-\infty}^{c} (c-y)p(y)dy + \int_{c}^{\infty} (y-c)p(y)dy\right] = 0.$$

$$= \int_{-\infty}^{c} p(y)dy - \int_{c}^{\infty} p(y)dy = 0.$$
$$\int_{-\infty}^{c} p(y)dy = \int_{c}^{\infty} p(y)dy.$$

This implies that to minimize the Expected Value, c is the median of the distribution of Y, because the cumulative probability mass to the left of c must be equal to the cumulative probability mass to the right of c.

$$\hat{h}(\vec{x}) = median(Y|\vec{X} = \vec{x}).$$

Remark. Absolute Value is not differentiable (although it is continuous) so greedy descent methods can't be used.

1.4 Classification

Consider the binary case where Y = 0, 1 for class 1 and class 2 respectively:

$$\begin{split} \hat{h}(\vec{x}) &= E[Y|\vec{X} = \vec{x}] \\ &= P(\text{class } 1|\vec{X} = \vec{x}) \cdot 1 + P(\text{class2}|\vec{X} = \vec{x}) \cdot 0 \\ &= P(Y = 1|\vec{X} = \vec{x}) \cdot 1 + P(Y = 0|\vec{X} = \vec{x}) \cdot 0 \\ &= P(Y = 1|\vec{X} = \vec{x}) \in \mathbb{R}. \end{split}$$

In the multiclass case: Y = 1, ..., K:

$$\begin{split} \hat{\vec{x}} &= \arg\min_{f(x)} E_{Y|\vec{X}}[L(Y,h(X))|\vec{X} = \vec{x}] \\ &= \arg\min_{k} E_{Y|\vec{X}}[L(Y,k)|\vec{X} = \vec{x}] \\ &= \arg\min_{k} \sum_{y=1}^{K} L(y,k)P(Y = y|\vec{X} = \vec{x}). \end{split}$$

TODO classifiers stuff

2 Bias-Variance Tradeoff

Assuming, iid ε_i as noise:

Definition 6. The Expected Prediction (in practice test) Error (EPE) for a fixed test point \vec{x}^0 is the average over both y^0 and the entire training set D.

$$EPE(\vec{x}^0) = E_{y^0 D}[L(y^0, \hat{h}(\vec{x}^0))].$$

We want in theory **full expected prediction error**, meaning we average over all training sets: $D = \{(\vec{x}^i, \vec{y}^i, i = 1, ..., n\}$ where each D_i is one possible split of train/test data and over all possible values $Y = y^0$ at \vec{x}^0 .

Remark. D is a random variable whose distribution is all possible train/test splits. y^0 is a random variable representing the true value of the outcome at \vec{x}^0 but inherents the random "noise" in the data generation process, leading to different \hat{y}^0 being observed.

2.1 Mathematical Decomposition of Expected Prediction Error at fixed $\vec{x}^{(0)}$

Note. This is for the case where the loss function is the **Mean Squared Error** loss function.

$$EPE(\vec{x}^0) = E_{y^0,D}[(y^0 - \hat{y}^0)^2]$$

= $E_{y^0}E_D[(y^0 - \hat{y}^0)^2]$

$$= E_{y^0} E_D \{ [(y^0 - E_{y^0}[y^0]) + (E_{y^0}[y^0] - E_D[\hat{y}^0]) + (E_D[\hat{y}^0] - \hat{y}^0)]^2 \}.$$

$$= E_{y^0} [y^0 - E_{y^0}[y^0]]^2 + [E_{y^0}[y^0] - E_D[\hat{y}^0]]^2 + E_D[E_D[\hat{y}^0] - \hat{y}^0]^2.$$

where $y_0 = h(\vec{x}^0) + \varepsilon$ and $\hat{y}^0 = \hat{h}(\vec{x})$

Note. Note all the cross terms dissappear from the expression about which is why we can eliminate them:

$$E_{y^0}E_D[(Y^0 - E_{y^0}[y^0]) (E_D[\hat{y}^0] - \hat{y}^0)]$$
 the first expression does not depend on D
= $E_{y^0}[(y^0 - E_{y^0}[y^0]) E_D (E_D[\hat{y}^0] - \hat{y}^0)]$ = 0

The last step is possible because y^0 , \hat{y}^0 are independent since ε_i are independent and \hat{y}^0 depends on D, and by probability $E[X \cdot Y] = E[X] \cdot E[Y]$ when X, Y are independent.

- 1. $(y^0 E_{y^0}[y^0])$ can be thought of as the **noise** of the model that distorts the true value of y from its expected value (coming from the ε assumed to be random gaussian noise)
- 2. $E_{y^0}[y^0] E_D[\hat{y}^0]$ can be thought of as the **bias**, difference between true expected output $E_{y^0}[y^0]$ and the model's prediction $E_D[\hat{y}^0]$.
- 3. $(E_D[\hat{y}^0] \hat{y}^0)$ can be thought of as **variance**, variability of model's prediction \hat{y}^0 from the actual expected value $E_D[\hat{y}^0]$ (recall that D is the set of all possible training sets from different train/test splits where our model takes only train set).

We can rewrite the formula since $var = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$:

$$= var_{y^0}(y^0) + [E_{y^0}[y^0] - E_D[\hat{y}^0]]^2 + var_D(\hat{y}^0)$$

$$= \sigma^2 + [h(x^0) - E_D[\hat{y}^0]]^2 + var_D(\hat{y}^0) \quad \text{from } N(\mu = h(x^0), \sigma)$$

$$= \sigma^2 + [bias]^2(\hat{y}^0) + var_D(\hat{y}^0)$$

$$= \text{unavoidable error } + \text{bias}^2 + var_D(\hat{y}^0)$$

where bias is difference between true and predicted

TODO knn and LINEAR model notes

3 KNN

4 Linear Regression - OLS

5 Ridge Regression

Motivation: no longer working with unbiased estimators, trade off some biass to large decrease in variance.

Definition 7. Assume data $D=(X,\vec{y})$ is centered, the mean $E(X)=\vec{0}$ and $E(\vec{y})=0$, so

$$h(\vec{x}) = \vec{\theta}^T \vec{x} = \theta_1 x_1 + \ldots + \theta_d x_d.$$

Ridge Regression minimize cost function:

$$J(\vec{\theta}) = \sum_{i=1}^{n} (y^{i} - h_{\theta}(\vec{x}^{i}))^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2} = (X\vec{\theta} - \vec{y})^{T} (X\vec{\theta} - \vec{y}) + \lambda \vec{\theta}^{T} \vec{\theta}.$$

Taking the first derivative:

$$\frac{d}{d\vec{\theta}}J = \dots$$

$$\vec{\theta} = (X^T X + \lambda I)^{-1} X^T \vec{y}.$$

TODO More examples: TODO High Dimension Data and Reduction

6 Readings

1. https://mlu-explain.github.io/bias-variance/