Material	Quest	Worksheet
Function,	Task 1	
Multi		► TASK 1: Modify emac.m so that the command emac(x) returns an estimate of
Output,		e^x using the Maclaurin series with terms up to x^5 (I'll call this the 5th-order series).
Multi		Test it to make sure that it is more accurate than the cubic series.
Input		
	Answer	Command Window
		>> maclaurin(1)
		ans = 2.6667
		>> maclaurin(1) ans = 2.7167
		>>
	Code	## Author: izzar <izzar@avezoor></izzar@avezoor>
		<pre>function y = maclaurin(x) %emac(x)gives the value of e^x using Maclaurin series up to x^3</pre>
		$y = 1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120;$
	- 10	end
	Task 2	
		► TASK 2: Modify emac.m so that it gives an output of the form [y,err], where
		$y = 5$ th-order Maclaurin estimate for e^x , and $err = the$ fractional error.
	Answer	Command Window
		>> maclaurin(1) ans = 2.7167
		>> [y,err] = maclaurin(1)
		y = 2.7167
		err = -5.9418e-04
		## Author: izzar <izzar@avezoor></izzar@avezoor>
	Code	<pre>function [v,err] = maclaurin(x)</pre>
		%emac(x)gives the value of e^x using Maclaurin series up to x^3
		$y = Maclaurin's series for e^x, err = error$ $y = 1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120;$
		err = (y - exp(x))/exp(x);
		end
	Task 3	
		► TASK 3: Modify emac.m so that it takes 2 inputs (x,N) (where x is a number,
		and N is an integer) and produces two outputs [y,err], as described above.
	Answer	Command Window ★
		>> [y,err] = maclaurin(3,10)
		y = 20.080 err = -2.9234e-04
		>> [y,err] = maclaurin(10,5)
		y = 1477.7
		err = -0.9329 >> _
	Code	## Author: izzar <izzar@avezoor></izzar@avezoor>
	Loue	<pre>function [y,err] = maclaurin(x,N)</pre>
		%emac(x)gives the value of e^x using Maclaurin series up to x^3
		<pre>%create an array n for natural number n = 0:N;</pre>
		%terms = Maclaurin's series for e^x,err = error
		terms = (x.^n) ./ factorial(n);
		<pre>%sum up all the elements of array terms y = sum(terms);</pre>
		err = (y - exp(x))/exp(x);
		end