ME 315

THEORY OF MACHINES - DESIGN OF ELEMENTS

Fall 2023

Design Project

Group Submission

Input coupling connected to an electric

Input coupling connected to an electric motor, 50% of the power

Group members

Chirag Bachani Shaft system 1
Winston Zhao Shaft system 2
Christopher Luey Shaft system 3

Grade

On-time step dues	/5
Structural design, drawings	/40
Design analysis	/35
Report writing	/20

Total

Final Project

Christopher Luey, Winston Zhao, Chirag Bachani

Introduction	•
Gear Train	•
Gears	!
Shafts	
Bearings	
Assembly Drawings	:
Shaft 1	
Shaft 2	
Shaft 3	10
Shaft Drawings	1
Shaft 1	1
Shaft 2	1
Shaft 3	1:
Gear Drawings	1
Gear 1	14
Gear 2	1
Gear 3	1
Gear 4	1
Shaft One Analysis	18
Gearing	1
Force Analysis	20
Maximum Shear, Bending	2
Shaft Stress Analysis	2
Minimum Shaft Diameter	2
Infinite Life at Critical Cross Section	2
Yielding	2:
Gear Stress Analysis	2
Bending	2:
Contact	24
Factors of Safety for Bending and Contact	2
Bearing Selection	21
Expected Lifetime of Bearing	26
Keyways and Tolerances	2
Shaft Two Analysis	30
Gearing	30
Free Body Diagram	33
Force Analysis	34
Shear and Bending	34
Shaft Fatigue Analysis	34
Gear Stress Analysis	3
Material	3
Allowable Contact Stress	3

Allowable Bending Stress	39
Design Bending Stress	39
Bearing Selection	41
Expected Lifetime of Bearing	41
Keyways and Tolerances	43
Shaft Three Analysis	44
Gearing	44
Geometry	45
Force Analysis	46
Maximum Shear, Bending	47
Shaft Stress Analysis	48
Minimum Shaft Diameter	48
Infinite Life at Critical Cross Section	48
Yielding	49
Gear Stress Analysis	50
Bending	50
Contact	51
Factors of Safety for Bending and Contact	52
Bearing Selection	53
Expected Lifetime of Bearing	53
Keyways and Tolerances	54

Introduction

In our team's engineering project, we designed a robust two-stage gear transmission system depicted in the accompanying figure, aiming to efficiently transmit power from input shaft A to output shaft C with a speed reduction. The system, comprising input shaft A driven by two electric motors, center shaft B with corresponding gears, and output shaft C with a coupling set, was carefully arranged, considering the spatial relationship between A and C. Operating at 2600 rpm, the input motors delivered 70KW to shaft A, with the goal of achieving an output speed (n3) of around 400 ±3 rpm, assuming 100% overall efficiency. Our design incorporated fatigue stress concentration factors to address bending and torsional stresses, and determined geometry using a factor of safety of n=1.1. With a commitment to durability, the transmission system is expected to function continuously for at least 5 years, 7 days a week, 52 weeks a year, and 8 hours a day, with a reliability rate of 99%.

Gear Train

Part	Gear 1	Gear 2	Gear 3	Gear 4
N [teeth]	19	47	27	71
RPM [rev/min]	2600.000	1051.064	1051.064	399.700
Power [kW]	70.0	70.0	70.0	70.0

Gear Train Result

Ratio	6.5049
Output Speed (RPM)	399.7003
% Error	-0.0749%

Gears

Gear Properties

Material	AISI 1045 Steel
Module [mm]	5.00
Pitch Angle [Deg]	20.00
Addendum [mm]	5.00
Dedendum [mm]	6.25
Clearance [mm]	1.25
Tooth Depth [mm]	11.25

	Gear 1	Gear 2	Gear 3	Gear 4
Material Grade	2	1	2	1
Hardness [HB]	500	400	500	400
Pitch Diameter [mm]	95.0	235.0	135.0	355.0
Outer Circle [mm]	105.0	245.0	145.0	365.0
Root Circle [mm]	83.0	223.0	123.0	343.0
Face Width [mm]	65.0	60.0	65.0	60.0
Centerline Distance [mm]	165	.0	24.	5.0
Bending Factor of Safety	4.1069	3.0405	2.7465	2.0373
Contact Stress Factor of Safety	1.4576	1.1201	1.4859	1.1462

	Shaft 1	Shaft 2	Shaft 3
Material	Al	SI 1045 Carbon Steel	
RPM [rev/min]	2600.0000	1051.0638	399.7003
Max Bending Magnitude [Nm]	205.7115	451.2470	343.7668
Max Torque [Nm]	257.096	635.975	1672.380
Minimum Shaft Diameter [mm]	17.000	No pure torque	40.000
Critical Cross Section Location	Gear 1 Center	Gear 3 Center	Gear 4 Center
Shaft Diameter at Critical Cross Section [mm]	45.000	60.000	55.000
Goodman Factor of Safety	1.8467	1.8236	1.6866
Yielding Factor of Safety	7.3976	7.3851	6.3999
Lifetime	Ir	finite (> 10^6 Cycles)	

Bearings

	Shaft 1		Shaft 2		Shaft 3			
As shown in Assembly Drawing	Left	Right	Left	Right	Left	Right		
Radial Load [N]	1645.692	4114.230	8204.490	6835.208	6875.336	3151.196		
Thrust Load [N]		0		0)		
Equivalent Load Used in Calculation [N]	411	4.230	8204	1.490	6875	.336		
C [N]	5408	54081.734 79744.149		48414.597				
Bearing (SKF)	6309		6312		6311			
Bore [mm]	45		65		5	5		
OD [mm]	100		140		12	20		
Width [mm]	25		33		2	9		
C, bearing [N]	55300		55300 97500		741	100		
CO, bearing [N]	31500		31500		31500 60000		450	000
Expected Life [Mil Cycles]	2428	3.3404	1678	.2594	1251.	9091		
Expected Life [Yrs]	5.3455		9.1	288	17.9	265		

Assembly Drawings

Shaft Drawings

Gear Drawings

Shaft One Analysis

Gearing

Given: n1 = 2600 rpm, H = 70000 W, n3 (ideal) = 400, n1/n3 (ideal) = 6.5

Choose gear teeth (odd number, indivisible):

N1 = 19

N2 = 47

N3 = 27

N4 = 71

Choose standard module and pitch angle for off the shelf ordering:

m = a = 0.005 [m]

b = 1.25m = 0.00625 [m]

 ϕ = 20 degree

Calculate transmission ratio:

n1/n3 = N4*N2/(N1*N3) = 6.5049

n3 = 2600/(n1/n3) = 399.7003 rpm

% error = |(n3-400)/400| = -0.0749%

Gear 1:

Geometry

N1 = 19

Pitch Diameter: $d_{p} = N_{1}m = 0.0950 [m]$

Pitch Radius: $r_p = d_p/2 = 0.0480 [m]$

Face Width: $b_{_{W}} = 12m = 0.0650 [m]$

Forces

Note: Forces acting from Gear 1 to Gear 2 are the same as from Gear 2 to Gear 1

Torque: $T = \frac{60H}{2\pi n_s} = 257.096 Nm$

Gear Forces:

$$W_{T12} = T/r_p = 5412.557 N$$

 $W_{12} = W_{T12}/cos(\phi) = 5759.923 N$
 $W_{r12} = W_{12}sin(\phi) = 1970.010 N$

Note: Torque occurs in the same direction on both sides of the shaft, coming from the coupling.

Force Analysis

From the gearing section the following are solved:

$$W_{T12} = 5412.557 N$$

 $W_{r12} = 1970.010 N$

From geometry we know the following:

$$a = 55 mm; b + c = 120 mm$$

 $d/2 = 177.5 mm$

Derived from static equilibrium, solve this system of equations:

$$0 = A_y + B_y - W_{t12}$$

$$0 = A_z + B_z - W_{r12}$$

$$0 = W_{t12}(a) - B_y(a + b + c)$$

$$0 = W_{r12}(a) - B_z(a + b + c)$$

System of equations yields the following reactions with force directions as drawn:

 $A_y = 1546.4448 \text{ N}$ $A_z = 562.8599 \text{ N}$

$$B_y = 3866.1120 \text{ N}$$

 $B_z = 1407.1497 \text{ N}$

$$A = \sqrt{A_y^2 + A_z^2} = 1645.6922 N$$

$$B = \sqrt{B_y^2 + B_z^2} = 4114.2304 N$$

Maximum Shear, Bending

Maximum bending occurs at cross section C:

$$M_y = A_y a = 70.3575 Nm$$

 $M_z = A_z a = 193.3056 Nm$
 $M = \sqrt{M_y^2 + M_z^2} = 205.7115 Nm$

The shear magnitude at cross section C is:

$$V_y = A_y = 1546.4448 \text{ N}$$

 $V_z = A_z = 562.8599 \text{ N}$

$$V = \sqrt{{V_y}^2 + {V_z}^2} = 1645.6922 \, N$$

Shaft Stress Analysis

We first choose material:

Material	E (Pa)	UTS (MPa)	Poisson Ratio	Ys (MPa)
AISI 1045 Steel	200000.0000	394.7200	0.2900	294.7400

Minimum Shaft Diameter

Our factor of safety is n=1.1

Calculate the torque magnitude at the coupling:

$$T = W_{t12}d/2 = 257.096 Nm$$

Calculate the minimum shaft diameter:

$$\tau_{all} = 0.557(Y_s)/n = 156.9727 MPa$$

$$d_{min} = \sqrt[3]{\frac{16T/2}{\pi \tau_{all}}} = 16.0967 \ mm$$

Consider keyway effect, round 5% increase:

$$d_{min}' = Round[d_{min}(1.05)] = 17 mm$$

Infinite Life at Critical Cross Section

Choose a shaft diameter of d = 45 mm at cross section C.

Solve for max bending torsion, and shear stresses at cross-section C experienced by point on the surface:

$$\sigma_{bs} = \frac{32M}{\pi d^3} = 22.9944 MPa$$

$$\tau_T = \frac{16T}{\pi d^3} = 14.3691 MPa$$

$$\tau_V = \frac{16V}{3\pi d^2} = 3.4492 MPa$$

Given these stresses, calculate the mean and amplitude stresses for cyclic loading:

$$\sigma_a = \sigma_{bs} = 22.9944 MPa$$

$$\sigma_m = 0 MPa$$

$$\tau_m = \frac{\tau_T}{2} = 7.1845 \, MPa$$
 [The shaft turns on and off]

$$\tau_a = \frac{\tau_T}{2} + \tau_V = 10.6337 \, MPa$$

This is a conservative estimate, since we use the shear and bending stress maximum amplitudes in calculating stress states, although these maximums are out of phase. Furthermore, we do not ignore shear (which is 30% of the mean shear).

Calculate Von-Mises given Kf = 3.000 and Kfs = 2.800

$$\sigma_{vm-a} = \sqrt{(K_f \sigma_a)^2 + 3(K_{fs} \tau_a)^2} = 86.1289 MPa$$

$$\sigma_{vm-m} = \sqrt{(\sigma_m)^2 + 3(\tau_a)^2} = 12.4440 \, MPa$$

<u>Calculate Infinite Criteria given chosen material:</u>

$$k_{f}^{}=\,1.\,58\,*S_{ut}^{}^{}^{}-0.085}=\,0.\,9220\;\text{[Grinding]}$$

$$k_s = 1.189 * d^{-0.112} = 0.7763$$
 [Size Factor]

 $k_{_{r}}=\,0.\,82$ [99% Reliability]

$$k_{t} = k_{m} = 1.000$$

$$S_e' = 0.5(UTS) = 282.500 MPa$$

$$n_{s} = \left[\frac{\sigma_{vm-a}}{k_{f}k_{s}k_{k}k_{m}k_{e}} + \frac{\sigma_{vm-m}}{S_{ut}}\right]^{-1} = 1.8467 > 1.1$$

[Chosen shaft diameter at C is safe]

Yielding

$$n_y = \left[\frac{\sigma_{vm-a}}{S_v} + \frac{\sigma_{vm-m}}{S_v}\right]^{-1} = 7.3976 > 1.1$$
 [Chosen shaft diameter does not pass yield line]

Gear Stress Analysis

Choose material for gear:

Gear Materia	hardness	E (MPa)	Poisson Ratio
AISI 1045 Carbon Steel	400.0000	200000.0000	0.2850

Bending

Calculate number of shaft cycles:

$$t = 5 \ year * 52 \ \frac{week}{year} * 7 \ \frac{day}{week} * 8 \ \frac{hr}{day} * 60 \ \frac{min}{hr} = 873600 \ min$$

Rotation speed n_1 = 2600 RPM.

$$N = t * n_1 = 2271360000 Cycles$$

Calculate allowable bending stress:

$$Y_n = 1.683(N)^{-0.0323} = 0.8392$$

$$S_b = 0.533(HB) + 88.3 = 464.5000MPa$$

 $k_t = k_r = 1.000$

$$\sigma_{b, all} = \frac{S_b Y_n}{k_t k_r} = 389.8179 MPa$$

Calculate actual bending stress:

$$Y_i = 0.350$$
 [From Class Plot]

$$k_{a} = 1.000$$

$$k_{\rm s}=1.000\,\mathrm{[module}$$
 = 5 mm]

$$k_m = 1.100$$
 [Gear]

$$k_i = 1.000$$
 [Non Idler]

$$k_h = 1.000$$

Calculate Kv:

$$V = \pi nd/60 = 12.9329 [m/s]$$

$$Q_{y} = 6$$
 for commercial gears

$$B = \frac{(12 - Q_v)^{2/3}}{4} = 0.8255$$

$$A = 50 + 56(1 - B) = 59.7730$$

$$K_{v} = \left(\frac{A + \sqrt{200V}}{A}\right)^{B} = 1.6623$$

$$\sigma_{b, actual} = \frac{W^t}{mb_w Y_j} k_a k_s k_m k_v k_i k_b = 94.9170 MPa$$

Comparing the allowable to the actual bending stress:

$$n_b = \sigma_{all} / \sigma_b = 4.1069 > 1.1$$

The design is sufficient for bending stress since $n_b > n = 1.1$

Contact

Calculate allowable contact stress:

$$HB_{pinion} = 500 (HB)$$

$$HB_{gear} = 400 (HB)$$

$$Z_N = 2.466N^{-0.056} = 0.7380$$

$$\frac{HB_p}{HB_a} = 1.25$$

$$A' = (8.89 * 10^{-3})(\frac{HB_p}{HB_g}) - 8.29 * 10^{-3}$$
 since $1.2 \le \frac{HB_p}{HB_g} = 1.25 \le 1.7$

since
$$1.2 \le \frac{HB_p}{HB_0} = 1.25 \le 1.7$$

$$\frac{N_g}{N_p} = 2.6296$$

$$C_H = 1.0 + A'(\frac{N_g}{N_p} - 1.0) = 1.0042$$

$$K_{T} = 1$$

$$K_{_{\rm P}}=1$$

$$S_c = 2.22 * HB_g + 200 = 1437 MPa$$

$$S_c = 2.22 * HB_g + 200 = 1437 MPa$$

$$\sigma_{c, all} = \frac{S_{c_c} Z_N C_{Hg}}{K_T K_R} = 1060.4686 \text{ MPa}$$

Calculate actual contact stress:

$$K_{a} = 1$$
 [No shock]

$$K_{\rm s}=1$$

$$K_E = \sqrt{\frac{2}{\frac{1-v_p^2}{E_p} + \frac{1-v_g^2}{E_q}}} = 466563.1271 \quad [\sqrt{Pa}]$$

$$K_{m, qear} = 1.1$$

$$K_{11} = 1.6623$$

[From bending calculation]

$$\phi = 20 \ deg; \ d_p = 0.095 \ m; \ d_g = 0.235 \ m$$

$$I = \frac{\pi cos(\phi)sin(\phi)}{1 + \frac{d}{d}} = 0.7190$$

$$\sigma_{c,actual} = K_E \sqrt{\frac{W^t}{b_w d_p I} K_a K_s K_m K_v} = 727.5603 MPa$$

Factors of Safety for Bending and Contact

$$\sigma_{c,actual} = 727.5603 MPa$$

$$\sigma_{c, \, all} = 1060.4686 \, \text{MPa}$$

$$\sigma_{b, actual} = 94.9170 MPa$$

$$\sigma_{b.\,all} = 389.\,8179\,MPa$$

$$n_c = \frac{\sigma_{c,all}}{\sigma_{c,actual}} = 1.4576 > 1.1$$
 [Safe for contact stress]

$$n_b = \frac{\sigma_{b, all}}{\sigma_{b, actual}} = 4.1069 > 1.1$$

[Safe for bending stress]

Bearing Selection

$$h = (5 \ year)(364 \ \frac{day}{year})(8 \ \frac{hr}{day}) = 14560 \ hr$$
 [life hours]

 $n_3 = 2600 \text{ RPM}$ [rotation speed]

$$L_{10} = 60(h)(n_3)(10^{-6}) = 2271.3600 Million Revs$$

$$A_{\scriptscriptstyle D}=1.000$$
 [No Shock]

m = 3 [Ball Bearing]

$$P_r = Max(A, B) = 4114.2304 N$$

[A and B calculated in Force Analysis section]

X = 1.000

$$P = P_r X = 4114.2304 N$$

[No Axial Force]

$$C = PL_{10}^{-1/m} = 54081.7335 \, N$$

Given the calculated C, I specify the following bearing from SKF:

Bearing Spec	C (N)	C0 (N)	d (m)	D (m)	W (m)	
6309	55300.0000	31500.0000	0.0450	0.1000	0.0250	

Reference: https://www.skf.com/us/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6309

This bearing is safe because the bearing specification C is less than our calculated C. Recalculation is not necessary since there is no thrust force and radial factor X is constant, not a function of e or CO.

Expected Lifetime of Bearing

$$L = \left(\frac{C}{P}\right)^m = 2428.3404 \, mil \, rev$$
 [using C=55300 N from SKF]

$$Life = L(10^6)(n_1)^{-1}(60\frac{min}{hr})^{-1}(8\frac{hr}{day})^{-1}(7\frac{day}{week})^{-1}(52\frac{week}{yr})^{-1} = 5.3455 \ yr$$

Bearing does not require maintenance for intended operation of 5 years.

Keyways and Tolerances

Coupling Keyway (40 mm) and Gear Keyway (50 mm):

Shaft diameter d (mm)	Key width W x height H
38 < d <= 44	12 x 8
44 < d <= 50	14 x 9

Fits:

Bearing and Shaft: Interference fit (H7/p6), bearing should be tightly fit with shaft for fluid rotation.

RESULTS						
HOLE						
Parameter	Value	Unit				
Designation	45 H7					
Hole Upper Deviation	25	μm (0.001mm)				
Hole Lower Deviation	0	μm (0.001mm)				
Maximum Hole Size	45.025	mm				
Minimum Hole Size	45	mm				
SHAFT						
Parameter	Value	Unit				
Designation	45 p6					
Shaft Upper Deviation	42	μm (0.001mm)				
Shaft Lower Deviation	26	μm (0.001mm)				
Maximum Shaft Size	45.042	mm				
Minimum Shaft Size	45.026	mm				
	FIT					
Parameter	Value	Unit				
Designation	45 H7/p6					
Fit Type	Interference fit					
Maximum Interference	42	μm (0.001mm)				
Minimum Interference	1	μm (0.001mm)				

Gear and Shaft: Transition fit (H7/k6), shaft rotation will be transmitted from gear torque through interlocked key.

RESULTS					
HOLE					
Parameter	Value	Unit			
Designation	45 H7				
Hole Upper Deviation	25	μm (0.001mm)			
Hole Lower Deviation	0	μm (0.001mm)			
Maximum Hole Size	45.025	mm			
Minimum Hole Size	45	mm			
SHAFT					
Parameter	Value	Unit			
Designation	45 k6				
Shaft Upper Deviation	18	μm (0.001mm)			
Shaft Lower Deviation	2	μm (0.001mm)			
Maximum Shaft Size	45.018	mm			
Minimum Shaft Size	45.002	mm			
FIT					
Parameter	Value	Unit			
Designation	45 H7/k6				
Fit Type	Transition fit				
Maximum Interference	18	μm (0.001mm)			
Maximum Clearance	23	μm (0.001mm)			

Source: https://amesweb.info/fits-tolerances/tolerance-calculator.aspx

Shaft Two Analysis

Gearing

Given: n1 = 2600 rpm, n3 = 400 rpm ideal, n1/n3 = 6.5 ideal

N1 = 19

N2 = 47

N3 = 27

N4 = 71

m = 0.005 m

Phi = 20 degree

Power H = 70000 W

n1/n3 = N4*N2/(N1*N3) = 6.5049

n3 = 2600/(n1/n3) = 399.7003 rpm

% error = (n3-400)/400 = -0.0749%

Gear 2:

Geometry

N2 = 47

Pitch Diameter: dp = N*m = 0.235 m

Pitch Radius: rp = dp/2 = 0.1175 m

Outer Diameter: do = dp + 2*m = 0.245 m

Root Diameter: dr = dp - 2*1.25*m = 0.223 m

Face Width: bw = 12*m = 0.06 m

Forces

Torque: T2 = 60*H/(2*pi*n2) = 635.975Nm

Wt23 = T2/rp = 5412.557 N

W23 = Wt23/cos(phi) = 1970.01 N

Wr23 = W23*sin(phi) = 5759.923 N

Gear 3:

Geometry

N3 = 27

Pitch Diameter: dp = N*m = 0.125 m

Pitch Radius: rp = dp/2 = 0.0675 m

Outer Diameter: do = dp + 2*m = 0.145 m

Root Diameter: dr = dp - 2*1.25*m = 0.123 m

Face Width: bw = 13*m = 0.065 m; Pinion has larger bw than gear

<u>Forces</u>

Torque: T3 = T2 = 60*H/(2*pi*n3) = 635.975 Nm

Wt34 = T3/rp = 9421.858 N

W34 = Wt34/cos(phi) = 10026.532 N

Wr34 = W34*sin(phi) = 3429.276 N

Free Body Diagram

Rotation Speed: n2 = n1*N1/N2 = 1051.0638

Set shaft diameter: d2 = 0.06 m

a = 0.0550 m [bw₃/2 + bearing thickness/2 + spacing]

b = 0.0700 m [bw₃/2 +bw₂/2 + spacing]

c = 0.0500 m [bw₂/2 + bearing thickness/2 + spacing]

Force Analysis

Shaft 2 Reaction Forces

$$\begin{split} B_y &= \frac{W_{t,43}^* a + W_{t,12}^* (a+b)}{a+b+c} = 6827.2674 \, N \\ A_y &= W_{t,43}^{} + W_{t,12}^{} - B_y^{} = 8007.1475 \, N \\ B_z &= \frac{W_{r,43}^* a + W_{r,12}^* (a+b)}{a+b+c} = 1788.6436 \, N \\ A_z &= W_{r,43}^{} - W_{r,12}^{} + B_z^{} = 329.3773 \, N \\ R_A &= \sqrt{A_y^2 + A_y^2} = 8204.4900 \, N \\ R_B &= \sqrt{B_y^2 + B_y^2} = 6835.2081 \, N \end{split}$$

Shear and Bending

Maximum bending occurs at C:

$$Mz = Ay * a = 440.3931 Nm$$

$$My = Az * a = 98.3754 Nm$$

$$M = \sqrt{M_y^2 + M_z^2} = 451.2470Nm$$

The shear at point C is:

$$Vy = Ay = 8007.1475 N$$

$$V = Sqrt(Vy^2 + Vz^2) = 6875.3362 N$$

Shaft Fatigue Analysis

Solve for bending torsion, and shear stresses at Point 1 at cross-section C:

$$\sigma_{bs} = \frac{32M}{\pi d^3} = 21.2795 MPa$$

$$\tau_T = \frac{16T}{\pi d^3} = 14.9954 \, MPa$$

$$\tau_V = \frac{16V}{3\pi d^2} = 3.8690 MPa$$

Given these stresses, calculate the mean and amplitude stresses for cyclic loading:

$$\sigma_a = \sigma_{bs} = 21.2795 MPa$$

 $\sigma_m = 0 MPa$ [ignore axial normal stress due to low magnitude]

$$\tau_m = \frac{\tau_t}{2} = 7.4977 \, MPa$$
 [on/off]

$$\tau_a = \frac{\tau_T}{2} + \tau_v = 11.3667 MPa$$

Calculate Von-Mises given Kf = 3.000 and Kfs = 2.800.

Note: although max σ_{bs} and max τ_{ts} won't coexist at the same point mechanically, we take both magnitudes into account for a conservative design on calculating the factor of safety for our shafts.

$$\sigma_{vm-a} = \sqrt{(K_f \sigma_a)^2 + 3(K_{fs} \tau_a)^2} = 91.2798 MPa$$

$$\sigma_{vm-m} = \sqrt{(\sigma_m)^2 + 3(\tau_m)^2} = 16.8598 MPa$$

Calculate Infinite Criteria given chosen shaft material:

Material	E	UTS	Poisson Ratio	Ys
AISI 1045 Steel	200000.0000	394.7200	0.2900	294.7400

$$k_f = 1.58 * S_{ut}^{-0.085} = 0.9220$$
 [Grinding]

$$k_{\rm s} = 1.189 * d^{-0.112} = 0.7517$$
 [Size Factor]

$$k_{x} = 0.82$$
 [99% Reliability]

 $\boldsymbol{k}_{t} = \boldsymbol{k}_{m} = 1.000$ [ignore temperature and miscellaneous factors]

$$S_e' = 0.5(UTS) = 282.500 MPa$$

<u>Goodman</u>

$$n_{s} = \left[\frac{\sigma_{vm-a}}{k_{s}k_{s}k_{s}k_{s}k_{s}} + \frac{\sigma_{vm-m}}{S_{vt}}\right]^{-1} = 1.8236 > 1.1$$
 [The shaft design is safe]

Yield

$$n_y = \frac{\sigma_{vm-max}}{Sy} = 7.3851$$

Gear Stress Analysis

Material

Gear Material		hardness	E (MPa)	Poisson Ratio	Туре
Gear 3	AISI 1045 Carbon Steel	500.0000	200000.0000	0.2850	pinion
Gear 2	AISI 1045 Carbon Steel	400.0000	200000.0000	0.2850	gear

Allowable Contact Stress

$$HB_{gear} = 400 (HB)$$

$$HB_{pinion} = 500 (HB)$$

$$Z_N = 2.466N^{-0.056} = 0.7764$$

$$\frac{HB_p}{HB_q} = 1.25$$

$$A' = (8.89 * 10^{-3})(\frac{HB_p}{HB_q}) - 8,29 * 10^{-3}$$
 since $1.2 \le \frac{HB_p}{HB_q} = 1.25 \le 1.7$

since
$$1.2 \le \frac{HB_p}{HB_g} = 1.25 \le 1.7$$

$$C_H = 1.0 + A'(\frac{N_g}{N_p} - 1.0) = 1.0042$$

$$K_T = 1$$

$$K_{R} = 1$$

Gear 2:

$$S_{c2} = 2.22 * HB_{g} + 200 = 1088 MPa$$

$$S_{c2} = 2.22 * HB_g + 200 = 1088 MPa$$

$$\sigma_{all,2} = \frac{S_{c_z} Z_N C_{Hg}}{K_T K_R} = 848.2032 \text{ MPa}$$

Gear 3:

$$S_{c3} = 2.4 * HB_p + 237 = 1437 MPa$$

$$\sigma_{all,3} = \frac{S_{c_-} Z_N}{K_T K_R} = 1115.6426 \text{ MPa}$$

Design Contact Stress

Gear 2:

$$K_a = 1$$
 for no shock

$$K_{\rm s}=1$$

$$K_E = \sqrt{\frac{2}{\frac{1-v_p^2}{E_p} + \frac{1-v_g^2}{E_g}}} = 466563.1271 \quad [\sqrt{Pa}]$$

$$K_{m, gear} = 1.1$$

Calculate Kv:

$$Q_{y} = 6$$
 for commercial gears

$$B = \frac{(12 - Q_v)^{2/3}}{4} = 0.8255$$

$$A = 50 + 56(1 - B) = 59.7730$$

$$V_2 = \frac{\pi^* n_2^* d_{p2}}{60} = 12.9329 \text{ m/s}$$

$$K_{v} = \left(\frac{A + \sqrt{200V}}{A}\right)^{B} = 1.6623$$

Calculate Design Contact Stress

$$\sigma_{c,actual} = K_E \left(\sqrt{\frac{W^t}{b_w d_v I}} K_a K_s K_m K_v \right) = 725.0297 MPa$$

Gear 3:

$$K_a = 1$$
 for no shock

$$K_{s} = 1$$

$$K_E = \sqrt{\frac{2}{\frac{1-v_p^2}{E_n} + \frac{1-v_g^2}{E_o}}} = 466563.1271 \quad [\sqrt{Pa}]$$

$$K_{m, pinion} = 1.2$$

Calculate Kv:

$$Q_n = 6$$
 for commercial gears

$$B = \frac{(12 - Q_v)^{2/3}}{4} = 0.8255$$

$$A = 50 + 56(1 - B) = 59.7730$$

$$V_3 = \frac{\pi^* n_2^* d_{p3}}{60} = 7.4295 \text{ m/s}$$

$$K_v = \left(\frac{A + \sqrt{200V}}{A}\right)^B = 1.5081$$

Calculate Design Contact Stress

$$\sigma_{c,actual} = K_E(\sqrt{\frac{W^t}{b_w d_p l} K_a K_s K_m K_v}) = 760.4055 MPa$$

Allowable Bending Stress

Calculate number of shaft cycles:

 $hrs = 5 \ year * 52 \ weeks * 7 \ days * 8 \ hrs * 60 \ minutes = 873600 \ mins$ $N = hrs * shaft \ speed(rpm) = 918209362 \ Cycles$

Gear 2:

Calculate allowable bending stress

$$Y_n = 1.683(N)^{-0.0323} = 0.8915$$

 $S_b = 0.533(HB_{gear}) + 88.3 = 301.5000 MPa$
 $k_t = k_r = 1.000$
 $\sigma_{all,b} = \frac{S_b Y_n}{k_t k_r} = 260.5364 MPa$

Gear 3:

Calculate allowable bending stress

$$Y_n = 1.683(N)^{-0.0323} = 0.8915$$

 $S_b = 0.533(HB_{pinion}) + 88.3 = 464.5000 MPa$
 $k_t = k_r = 1.000$
 $\sigma_{all,b} = \frac{S_b Y_n}{k_t k_r} = 401.3902 MPa$

Design Bending Stress

Gear 2:

$$\begin{split} Y_j &= 0.420 \\ k_a &= 1.000 \\ k_s &= 1.000 \, [\text{module == 5mm}] \\ k_m &= 1.100 \quad [\text{gear}] \\ k_i &= 1.000 \, [\text{not idler}] \\ k_b &= 1.000 \end{split}$$

$$K_{v} = \left(\frac{A + \sqrt{200V}}{A}\right)^{B} = 1.6623$$

$$\sigma_{b} = \frac{W^{t}}{mb_{w}Y_{j}} k_{a}k_{s}k_{m}k_{v}k_{i}k_{b} = 78.5482 MPa$$

Gear 3:

$$Y_{i} = 0.350$$

$$k_a = 1.000$$

$$k_{_S} = 1.000$$
 [module == 5mm]

$$k_m = 1.200$$
 [pinion]

$$k_{i} = 1.000 \text{ [not idler]}$$

$$k_{b} = 1.000$$

$$K_{v} = \left(\frac{A + \sqrt{200V}}{A}\right)^{B} = 1.5081$$

$$\sigma_b = \frac{W^t}{mb_w Y_j} k_a k_s k_m k_v k_i k_b = 149.8943 MPa$$

Factors of Safety

$$n_{c,2} = \frac{\sigma_{all,c2}}{\sigma_{c2}} = 1.1699$$

$$n_{c,3} = \frac{\sigma_{all,c3}}{\sigma_{c3}} = 1.4672$$

$$n_{b,2} = \frac{\sigma_{all,b2}}{\sigma_{b2}} = 3.3169$$

$$n_{b,3} = \frac{\sigma_{all,b3}}{\sigma_{b3}} = 2.6778$$

The design is good

Bearing Selection

$$h = (5 \ year)(364 \ \frac{day}{vear})(8 \ \frac{hr}{day}) = 14560 \ hr$$
 [life hours]

$$n_2 = n1*N1/N2 = 1051.0638 \text{ rpm}$$
 [rotation speed]

$$n_2 = n1*N1/N2 = 1051.0638 \text{ rpm}$$
 [rotallow]
 $L_{10} = 60(h)(n_3)(10^{-6}) = 918.2094 \text{ million cycles}$

$$A_p = 1.000$$
 [no shock]

$$m = 3$$
 [Deep Groove Ball Bearing]

$$P_r = Max(A, B) = 8204.4900 N$$
 [A and B calculated in Force Analysis section]

$$X = 1.000$$

Initial Selection

$$P = P_r X = 8204.4900 N$$
 [No Axial Force]

$$C = PL_{10}^{1/m} = 79744.1494 N$$

Choose SKF 6312 with
$$C = 97500 \, N$$
, $C_0 = 60000 \, N$

No reselection necessary since no thrust load

$$e = 0.22$$
 because $\frac{P_a}{C} = 0$

$$\frac{P_a}{P_r} = 0 < e$$

$$-X = 1$$

$$- Y = 0$$

Pick SKF 6312 for Final Bearing Selection with following specifications

Bearing Spec	C (N)	CO (N)	d (m)	D (m)	W (m)	
SKF 6312	97500.0000	60000.0000	0.0650	0.1400	0.0330	

Reference: https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6312

Expected Lifetime of Bearing

$$L = \left(\frac{C}{P}\right)^m = 1678.2594 \, mil \, rev$$
 [using C=97500 N from SKF]

$$Life = L(10^6)(n_2)^{-1}(60\frac{min}{hr})^{-1}(8\frac{hr}{day})^{-1}(7\frac{day}{week})^{-1}(52\frac{week}{vr})^{-1} = 9.1288 yr$$

Bearing does not require maintenance for intended operation of 5 years.

Keyways and Tolerances

Gear Keyway (65 mm):

Shaft diameter d (mm)	Key width W x height H
58 < d <= 65	18 x 11

Fits:

Bearing inner ring and Shaft:

Interference fit (H7/p6) for hole basis. Interference needed for inner ring to rotate with shaft Gear and Shaft:

Transition fit (H7/k6) for hole basis. Locational transition since shaft rotation will be transmitted from gear torque through interlocked key.

Table 3. (Continued) American National Standard Preferred Hole Basis Metric Transition and Interference Fits ANSI B4.2-1978 (R1999)

		Lo	cational Trans	sition	Lo	cational Trans	sition	Loc	Locational Interference Medium Drive		ve	Force				
Basic Size ^a		Hole H7	Shaft k6	Fitb	Hole H7	Shaft n6	Fitb	Hole H7	Shaft p6	Fitb	Hole H7	Shaft s6	Fitb	Hole H7	Shaft u6	Fitb
30	Max	30.021	30.015	+0.019	30.021	30.028	+0.006	30.021	30.035	-0.001	30.021	30.048	-0.014	30.021	30.061	-0.027
	Min	30.000	30.002	-0.015	30.000	30.015	-0.028	30.000	30.022	-0.035	30.000	30.035	-0.048	30.000	30.048	-0.061
40	Max	40.025	40.018	+0.023	40.025	40.033	+0.008	40.025	40.042	-0.001	40.025	40.059	-0.018	40.025	40.076	-0.035
	Min	40.000	40.002	-0.018	40.000	40.017	-0.033	40.000	40.026	-0.042	40.000	40.043	-0.059	40.000	40.060	-0.076
50	Max	50.025	50.018	+0.023	50.025	50.033	+0.008	50.025	50.042	-0.001	50.025	50.059	-0.018	50.025	50.086	-0.045
	Min	50.000	50.002	-0.018	50.000	50.017	-0.033	50.000	50.026	-0.042	50.000	50.043	-0.059	50.000	50.070	-0.086
60	Max	60.030	60.021	+0.028	60.030	60.039	+0.010	60.030	60.051	-0.002	60.030	60.072	-0.023	60.030	60.106	-0.057
	Min	60.000	60.002	-0.021	60.000	60.020	-0.039	60.000	60.032	-0.051	60.000	60.053	-0.072	60.000	60.087	-0.106
80	Max	80.030	80.021	+0.028	80.030	80.039	+0.010	80.030	80.051	-0.002	80.030	80.078	-0.029	80.030	80.121	-0.072
	Min	80.000	80.002	-0.021	80.000	80.020	-0.039	80.000	80.032	-0.051	80.000	80.059	-0.078	80.000	80.102	-0.121
100	Max	100.035	100.025	+0.032	100.035	100.045	+0.012	100.035	100.059	-0.002	100.035	100.093	-0.036	100.035	100.146	-0.089
	Min	100.000	100.003	-0.025	100.000	100.023	-0.045	100.000	100.037	-0.059	100.000	100.071	-0.093	100.000	100.124	-0.146
120	Max	120.035	120.025	+0.032	120.035	120.045	+0.012	120.035	120.059	-0.002	120.035	120.101	-0.044	120.035	120.166	-0.109
	Min	120.000	120.003	-0.025	120.000	120.023	-0.045	120.000	120.037	-0.059	120.000	120.079	-0.101	120.000	120.144	-0.166
160	Max	160.040	160.028	+0.037	160.040	160.052	+0.013	160.040	160.068	-0.003	160.040	160.125	-0.060	160.040	160.215	-0.150
	Min	160.000	160.003	-0.028	160.000	160.027	-0.052	160.000	160.043	-0.068	160.000	160.100	-0.125	160.000	160.190	-0.215
200	Max	200.046	200.033	+0.042	200.046	200.060	+0.015	200.046	200.079	-0.004	200.046	200.151	-0.076	200.046	200.265	-0.190
	Min	200.000	200.004	-0.033	200.000	200.031	-0.060	200.000	200.050	-0.079	200.000	200.122	-0.151	200.000	200.236	-0.265
250	Max	250.046	250.033	+0.042	250.046	250.060	+0.015	250.046	250.079	-0.004	250.046	250.169	-0.094	250.046	250.313	-0.238
	Min	250.000	250.004	-0.033	250.000	250.031	-0.060	250.000	250.050	-0.079	250.000	250.140	-0.169	250.000	250.284	-0.313
300	Max	300.052	300.036	+0.048	300.052	300.066	+0.018	300.052	300.088	-0.004	300.052	300.202	-0.118	300.052	300.382	-0.298
	Min	300.000	300.004	-0.036	300.000	300.034	-0.066	300.000	300.056	-0.088	300.000	300.170	-0.202	300.000	300.350	-0.382
400	Max	400.057	400.040	+0.053	400.057	400.073	+0.020	400.057	400.098	-0.005	400.057	400.244	-0.151	400.057	400.471	-0.378
	Min	400.000	400.004	-0.040	400.000	400.037	-0.073	400.000	400.062	-0.098	400.000	400.208	-0.244	400.000	400.435	-0.471
500	Max	500.063	500.045	+0.058	500.063	500.080	+0.023	500.063	500.108	-0.005	500.063	500.292	-0.189	500.063	500.580	-0.477
	Min	500.000	500.005	-0.045	500.000	500.040	-0.080	500.000	500.068	-0.108	500.000	500.252	-0.292	500.000	500.540	-0.580

^aThe sizes shown are first-choice basic sizes (see Table 1). Preferred fits for other sizes can be calculated from data given in ANSI B4.2-1978 (R1999).

HOLE BASIS METRIC TRANSITION FITS

^b A plus sign indicates clearance; a minus sign indicates interference. All dimensions are in millimeters.

Shaft Three Analysis

Gearing

Given: n1 = 2600 rpm, H = 70000 W

Choose gear teeth (odd number, indivisible):

N1 = 19

N2 = 47

N3 = 27

N4 = 71

Choose standard module m=5mm and pitch angle phi = 20 deg for off the shelf ordering:

m = a = 0.005 [m]

b = 1.25m = 0.00625 [m]

 ϕ = 20 degree

Calculate transmission ratio:

$$n_1/n_3 = (N4)(N2)(N1)^{-1}(N3)^{-1} = 6.5049$$

n3 = 2600/(n1/n3) = 399.7003 rpm

% error = |(n3-400)/400| = 0.0749%

Gear 4:

Geometry

N4 = 71 [Teeth]

Pitch Diameter: $d_p = N_4 m = 0.3550 [m]$

Pitch Radius: $r_{p} = d_{p}/2 = 0.1775 [m]$

Face Width: $b_{_{W}} = 12m = 0.0600 [m]$

Forces

Torque:
$$T = \frac{60H}{2\pi n_3} = 1672.380 \, Nm$$

Gear Forces:
$$W_{T34} = T/r_p = 9421.8581 N$$

$$W_{34} = W_{734}/cos(\phi) = 10026.532$$

$$W_{r34} = W_{34} sin(\phi) = 3429.276 N$$

Geometry

Force Analysis

From the gearing section the following are solved:

$$W_{r34} = 3429.2759 N$$

$$W_{t34} = 9421.8581 N$$

From geometry we know the following:

$$a = 55 mm; b + c = 120 mm$$

$$d/2 = 177.5 \, mm$$

Derived from static equilibrium, solve this system of equations:

$$0 = A_{y} + B_{y} - W_{t34}$$

$$0 = A_z + B_z - W_{r34}$$

$$0 = W_{t34}(a) - B_{v}(a + b + c)$$

$$0 = W_{r34}(a) - B_z(a + b + c)$$

System of equations yields the following reactions with force directions as drawn:

 $A_v = 6460.7027 \text{ N}$

 $A_z = 2351.5035 \text{ N}$

 $B_v = 2961.1554 N$

 $B_7 = 1077.7724 \text{ N}$

$$A = \sqrt{A_y^2 + A_z^2} = 6875.3362 N$$
$$B = \sqrt{B_y^2 + B_z^2} = 3151.1958 N$$

Maximum Shear, Bending

Maximum bending occurs at cross section C:

$$M_{max,y} = A_y a = 117.5752 Nm$$

$$M_{max,z} = A_z a = 323.0351 \, Nm$$

$$M = \sqrt{M_y^2 + M_z^2} = 343.7668 \, Nm$$

The shear magnitude at cross section C is:

$$V_y = A_y = 6460.7027 \text{ N}$$

$$V_z = A_z = 2351.5035 \text{ N}$$

$$V = \sqrt{{V_y}^2 + {V_z}^2} = 6875.3362 N$$

Shaft Stress Analysis

We first choose material:

Material	E [Pa]	UTS [MPa]	Poisson Ratio	Ys [MPa]	
AISI 1045 Medium Carbon Steel	200000.0000	565.0000	0.2850	310.0000	

Minimum Shaft Diameter

Our factor of safety is n=1.1

Calculate the torque magnitude at the coupling:

$$T = W_{t34} d/2 = 1672.380 Nm$$

Calculate the minimum shaft diameter:

$$\tau_{all} = 0.557(Y_s)/n = 156.9727 MPa$$

After unit conversion:

$$d_{min} = \sqrt[3]{\frac{16T}{\pi \tau_{all}}} = 37.858 \, mm$$

Consider keyway effect, round 5% increase [conservative]:

$$d_{min}' = Round[d_{min}(1.05)] \approx 40 mm$$

Infinite Life at Critical Cross Section

Choose a shaft diameter of d = 55 mm at cross section C.

Solve for max bending torsion, and shear stresses at cross-section C experienced by point on the shaft surface:

$$\sigma_{bs} = \frac{32M}{\pi d^3} = 21.0463 MPa$$

$$\tau_T = \frac{16T}{\pi d^3} = 19.4680 MPa$$

$$\tau_{V} = \frac{16V}{3\pi d^{2}} = 3.8585 \, MPa$$

Given these stresses, calculate the mean and amplitude stresses for cyclic loading:

$$\sigma_a = \sigma_{bs} = 21.0463 \, MPa$$

$$\sigma_m = 0 \, MPa$$

$$\tau_m = \frac{\tau_T}{2} = 9.7340 MPa \, [\text{The shaft turns on and off}]$$

$$\tau_a = \frac{\tau_T}{2} + \tau_v = 13.5925 \, MPa$$

This is a conservative estimate, since we use the shear and bending stress maximum amplitudes in calculating stress states, although these maximums are out of phase. Furthermore, we do not ignore shear (which is 30% of the mean shear).

Calculate Von-Mises given Kf = 3.000 and Kfs = 2.800 [conservative estimate]:

$$\sigma_{vm-a} = \sqrt{(K_f \sigma_a)^2 + 3(K_{fs} \tau_a)^2} = 91.2798 MPa$$

$$\sigma_{vm-m} = \sqrt{(\sigma_m)^2 + 3(\tau_a)^2} = 16.8598 MPa$$

Calculate Infinite Criteria given chosen material:

$$k_f = 1.58 * UTS^{-0.085} = 0.9220$$
 [Grinding]

$$k_{\rm s} = 1.189 * d^{-0.112} = 0.7590$$
 [Size Factor]

$$k_{_{x}}=0.82$$
 [99% Reliability]

$$k_{t} = k_{m} = 1.000$$

$$S_{\rho}' = 0.5(UTS) = 282.500 MPa$$

$$n_{s} = \left[\frac{\sigma_{vm-a}}{k_{f}k_{s}k_{k}k_{m}k_{e}} + \frac{\sigma_{vm-m}}{UTS}\right]^{-1} = 1.6866 > 1.1$$

[Chosen shaft diameter at C is safe]

Yielding

$$n_y = \left[\frac{\sigma_{vm-a}}{S_y} + \frac{\sigma_{vm-m}}{S_y}\right]^{-1} = 6.3999 > 1.1$$
 [55mm shaft diameter does not pass yield line]

Gear Stress Analysis

Choose material for gear:

Gear Material	Hardness [HB]	E (MPa)	Poisson Ratio	Material Grade
AISI 1045 Carbon Steel	400.0000	200000.0000	0.2850	1

Bending

Calculate number of shaft cycles:

$$t = 5 \ year * 52 \ \frac{week}{year} * 7 \ \frac{day}{week} * 8 \ \frac{hr}{day} * 60 \ \frac{min}{hr} = 873600 \ min$$

Rotation speed n_3 = 399.7003 RPM.

$$N = t * n_3 = 349178207.9712 Cycles$$

Calculate allowable bending stress:

$$Y_n = 1.683(N)^{-0.0323} = 0.8915$$
 [Stress cycle factor]

$$S_b = 0.533(HB) + 88.3 = 301.5000 MPa$$
 [Material strength for gear grade 1]

 $k_{_{t}}=k_{_{T}}=1.000~$ [Temperature not higher than 125 C, 99% reliability]

$$\sigma_{b, all} = \frac{S_b Y_n}{k_t k_r} = 268.8011 \, MPa$$

Calculate actual bending stress:

$$Y_{i} = 0.420$$
 [Hamrock et al., 2005, N_{3} =27, N_{4} =71]

$$k_a = 1.000$$
 [No shock, Electric motor]

$$k_{_S} = 1.000$$
 [Module = 5 mm]

$$k_m = 1.17$$
 [From Hamrock et al, 1999 table] $[b_w/d_p = 0.4444, b_w = 60 \ mm]$

$$k_i = 1.000$$
 [Non Idler]

$$k_h = 1.000$$
 [Rim thickness for solid disk]

Calculate Kv dynamic factor:

$$V = \pi n_3 d/60 = 7.4295 [m/s]$$

$$Q_{y} = 6$$
 [Commercial gear]

$$B = \frac{(12 - Q_v)^{2/3}}{4} = 0.8255$$

$$A = 50 + 56(1 - B) = 59.7730$$

$$K_{v} = \left(\frac{A + \sqrt{200V}}{A}\right)^{B} = 1.5081$$

$$\sigma_{b, actual} = \frac{W^{t}}{mb_{w}Y_{i}} k_{a} k_{s} k_{m} k_{v} k_{i} k_{b} = 131.9382 MPa$$

Comparing the allowable to the actual bending stress:

$$n_b = \sigma_{all} / \sigma_b = 2.0373 > 1.1$$

The design is sufficient for bending stress since $n_b > n = 1.1$

Contact

Calculate allowable contact stress:

$$HB_{pinion} = 500 [HB]$$
 $HB_{gear} = 400 [HB]$

$$Z_N = 2.466N^{-0.056} = 0.8196$$
 [Cycle factor]

$$\frac{HB_p}{HB_g} = 1.25$$
 [Hardness ratio]

$$A' = (8.89 * 10^{-3})(\frac{HB_p}{HB_g}) - 8.29 * 10^{-3}$$
 $[1.2 \le \frac{HB_p}{HB_g} = 1.25 \le 1.7]$

$$\frac{N_g}{N_p} = 2.6296$$

$$C_H = 1.0 + A'(\frac{N_g}{N_p} - 1.0) = 1.0046$$
 [Hardness Factor, for gear only]

$$K_{_T} = 1$$
 [Temperature less than 125 C]

$$K_{R} = 1$$
 [99% reliability]

$$S_c = 2.22 * HB_g + 200 = 1088 MPa$$
 [Material strength for contact]

$$\sigma_{c, all} = \frac{S_{c_{-}} Z_{N} C_{Hg}}{K_{T} K_{R}} = 895.7861 \text{ MPa}$$

Calculate actual contact stress:

$$K_a = 1$$
 [No shock, electric motor]

$$K_{\rm s} = 1$$
 [m = 5 mm]

$$K_E = \sqrt{\frac{2}{\frac{1-v_p^2}{E_p} + \frac{1-v_g^2}{E_g}}} = 466563.1271 \quad [\sqrt{Pa}]$$

 $K_{m, gear} = 1.17$ [Same from bending]

$$K_{v} = 1.5081$$

 $K_{y} = 1.5081$ [From bending calculation]

$$\phi = 20 \ deg; \ d_p = 0.135 \ m; \ d_g = 0.355 \ m$$

$$I = \frac{\pi cos(\phi)sin(\phi)}{1 + \frac{d_p}{d_a}} = 0.7315$$
 [Geometry factor]

$$\sigma_{c,actual} = K_E \sqrt{\frac{W^t}{b_w d_p I} K_a K_s K_m K_v} = 781.4993 MPa$$

Factors of Safety for Bending and Contact

$$\sigma_{c,actual} = 781.4993 MPa$$

$$\sigma_{c,\,all}=895.\,7861\,\mathrm{MPa}$$

$$\sigma_{b, actual} = 131.9382 MPa$$

$$\sigma_{b, all} = 268.8011 MPa$$

$$\frac{n_c}{\sigma_{c,actual}} = 1.1462 > 1.1$$
 [Safe for contact stress]

$$n_b = \frac{\sigma_{b,all}}{\sigma_{b,actual}} = 2.0373 > 1.1$$

[Safe for bending stress]

Bearing Selection

$$h = (5 year)(364 \frac{day}{year})(8 \frac{hr}{day}) = 14560 hr$$
 [lifetime hours]

 $n_3 = 399.7003 RPM$

$$L_{10} = 60(h)(n_3)(10^{-6}) = 349.1782 Million Revs$$

$$A_p = 1.000$$

[No Shock, electric motor]

m = 3 [Ball Bearing]

$$P_r = Max(A, B) = 6875.3362 N$$

[A and B calculated in Force Analysis section]

X = 1.000

$$P = P_r X = 6875.3362 N$$

[No Axial Force]

$$C = PL_{10}^{1/m} = 48414.5965 \, N$$

Given the calculated C, I specify the following bearing from SKF:

Bearing Spec	C (N)	C0 (N)	d (m)	D (m)	W (m)
6311	74100.0000	45000.0000	0.0550	0.1200	0.0290

Reference: https://www.skf.com/us/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6311

This bearing is safe because the bearing specification C is less than our calculated C. Recalculation is not necessary since there is no thrust force and radial factor X is constant, not a function of e or CO.

Expected Lifetime of Bearing

$$L = \left(\frac{C}{P}\right)^m = 1251.9091 \, mil \, rev$$
 [using C=74100 N from SKF]

$$Life = L(10^{6})(n_{3})^{-1}(60\frac{min}{hr})^{-1}(8\frac{hr}{day})^{-1}(7\frac{day}{week})^{-1}(52\frac{week}{yr})^{-1} = 17.9265 yr$$

Bearing does not require maintenance for intended operation of 5 years.

Keyways and Tolerances

Coupling Keyway (50 mm) and Gear Keyway (55 mm):

Shaft diameter d (mm)	Key width W x height H
50 < d <= 58	16 x 10

Fits:

Bearing and Shaft: Interference fit (H7/p6), bearing should be tightly fit with shaft for fluid rotation.

RESULTS							
	HOLE						
Parameter	Value	Unit					
Designation	55 H7						
Hole Upper Deviation	30	μm (0.001mm)					
Hole Lower Deviation	0	μm (0.001mm)					
Maximum Hole Size	55.03	mm					
Minimum Hole Size	55	mm					
	SHAFT						
Parameter	Value	Unit					
Designation	55 p6						
Shaft Upper Deviation	51	μm (0.001mm)					
Shaft Lower Deviation	32	μm (0.001mm)					
Maximum Shaft Size	55.051	mm					
Minimum Shaft Size	55.032	mm					
	FIT						
Parameter	Value	Unit					
Designation	55 H7/p6						
Fit Type	Interference fit						
Maximum Interference	51	μm (0.001mm)					
Minimum Interference	2	μm (0.001mm)					

Gear and Shaft: Transition fit (H7/k6), shaft rotation will be transmitted from gear torque through interlocked key.

RESULTS							
	HOLE						
Parameter	Value	Unit					
Designation	55 H7						
Hole Upper Deviation	30	μm (0.001mm)					
Hole Lower Deviation	0	μm (0.001mm)					
Maximum Hole Size	55.03	mm					
Minimum Hole Size	55	mm					
	SHAFT						
Parameter	Value	Unit					
Designation	55 k6						
Shaft Upper Deviation	21	μm (0.001mm)					
Shaft Lower Deviation	2	μm (0.001mm)					
Maximum Shaft Size	55.021	mm					
Minimum Shaft Size	55.002	mm					
	FIT						
Parameter	Value	Unit					
Designation	55 H7/k6						
Fit Type	Transition fit						
Maximum Interference	21	μm (0.001mm)					
Maximum Clearance	28	μm (0.001mm)					

Source: https://amesweb.info/fits-tolerances/tolerance-calculator.aspx