Formalized Linear Orders

Eric Paul

Linear Order Definition

Definition 1 (LE). A type is an instance of LE if it has a binary relation \leq .

Definition 2 (LT). A type is an instance of LT if it has a binary relation <.

Definition 3 (Preorder). A type α is an instance of Preorder if it extends LE and LT and satisfies the following properties:

- Reflexivity: $\forall a : \alpha, a \leq a$
- Transitivity: $\forall a, b, c : \alpha, a \leq b \rightarrow b \leq c \rightarrow a \leq c$
- Relationship between < and \le : $\forall a, b : \alpha, a < b \iff a \le b \land \neg b \le a$

Definition 4 (PartialOrder). A type α is an instance of PartialOrder if it extends Preorder and satisfies the following property:

• Antisymmetry: $\forall a, b : \alpha, a \leq b \rightarrow b \leq a \rightarrow a = b$

Definition 5 (LinearOrder). A type α is an instance of LinearOrder if it extends PartialOrder and satisfies the following property:

• Total: $\forall a, b : \alpha, a \leq b \lor b \leq a$

Initial and Final

Definition 6 (Embedding α β). An element of type Embedding α β has the following:

- A function from α to β
- A proof that the function is injective

Definition 7 (RelEmbedding $\alpha \beta r s$). An element of type RelEmbedding $\alpha \beta r s$ extends Embedding $\alpha \beta$ and satisfies the following:

• Order preserving: $\forall a, b : \alpha, s \ (fa) \ (fb) \iff r \ a \ b \ (where \ f \ is the function from Embedding <math>\alpha \ \beta$ and s and r are binary relations)

Definition 8 ($\alpha \leq i \beta$). An element f of type $\alpha \leq i \beta$ extends RelEmbedding $\alpha \beta \leq_{\alpha} \leq_{\beta}$ (where α and β are instances of LinearOrder and each \leq is the corresponding one for the linear order) and satisfies the following:

• Is initial: $\forall a: \alpha, \forall b: \beta, b \leq fa \rightarrow \exists a': \alpha, fa' = b$ (where f is the function from Embedding α β)

Definition 9 ($\alpha \leq f \beta$). An element f of type $\alpha \leq f \beta$ extends RelEmbedding $\alpha \beta \leq_{\alpha} \leq_{\beta}$ (where α and β are instances of LinearOrder and each \leq is the corresponding one for the linear order) and satisfies the following:

• Is final: $\forall a: \alpha, \forall b: \beta, fa \leq b \rightarrow \exists a', fa' = b$ (where f is the function from Embedding α β

Definition 10 (isInitial s). The meaning of isInitial s is that s is a subset of the elements of α where α is an instance of LinearOrder and that

$$\forall x \in s, \forall y : \alpha, y < x \rightarrow y \in s$$

Definition 11 (isFinal s). The meaning of isFinal s is that s a subset of the elements of α where α is an instance of LinearOrder and that

$$\forall x \in s, \forall y : \alpha, y > x \to y \in s$$

Variable Definitions

For the rest of this section, we let α and β be types with instances of LinearOrder. We let f be an element of type $\alpha \leq i \beta$ and we let g be an element of type $\beta \leq f \alpha$.

Theorem 1 (Initial Maps Initial Initial). Let s be a subset of α such that is Initial s. Then we have that is Initial f[s].

Proof. Our goal is to prove that is Initial f[s]. By the definition of is Initial f[s], this means that we have to show that for all $x \in f[s]$, for all y < x, we have that $y \in f[s]$. So let $x \in f[s]$ and let y < x. Since $x \in f[s]$, there exists a $w \in s$ such that f(w) = s. Since y < f(w), then since f is of type $\alpha \preccurlyeq i \beta$, there exists a $z : \alpha$ such that f(z) = y.

So we now have that f(z) < f(w). Since f extends RelEmbedding $\alpha \beta \le_{\alpha} \le_{\beta}$, this implies that f is order preserving and so we have that z < w. Since $w \in s$ and z < w, we have by the definition of isInitial s that $z \in s$. Thus, we have found a $z \in s$ such that f(z) = y. Therefore, $y \in f[s]$.

Theorem 2 (Image of Univ Initial). We have that is Initial $f[\alpha]$.

Proof. Our goal is to prove that isInitial $f[\alpha]$. By Theorem 1, it is sufficient to show that isInitial α . By the definition of isInitial α our goal is to show that for all $x \in \alpha$, for all $y : \alpha$ such that y < x, we have that $y : \alpha$. Since we already know that $y \in \alpha$ we are done.

Theorem 3 (Final Maps Final Final). Let s be a subset of α such that is Final s. Then we have that is Final f[s].

