Quantum Field Theory

- based on A. Zee's textbook -

万思扬

August 16, 2024

Contents

I	Scalar Quantum Field	3
1	free field	4
\mathbf{A}	ppendices	4
\mathbf{A}	Dirac delta function	6
В	Gaussian integrals	7
	B.1 N -dim. generalization	7
\mathbf{C}	the $m_1 + m_2$ decomposition of spacetime	9
	C.1 induced metric	9
	C.2 the decomposition	
	C.3 induced volume form	
D		11
	D.1 classical field theory	11
	D.1.1 Lagrangian density and the action	
	D.1.2 canonical momentum and the Hamiltonian	
	D.2 Noether's theorem	
	D.2.1 in classical particle mechanics	
	D.2.2 in classical field theory	
	D.2.3 spacetime translations and the energy-momentum tensor	
	D.2.4 Lorentz transformations, angular momentum and something else	

笔记中的**度规号差**约定为 (-,+,+,+).

Part I Scalar Quantum Field

Chapter 1

free field

• 考虑如下标量场,

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) \tag{1.0.1}$$

• 含有 source function 的路径积分为,

$$Z(J) = \int D\phi e^{i \int d^d x (-\frac{1}{2}(\partial \phi)^2 - V(\phi) + J(x)\phi(x))}$$
(1.0.2)

• 当 $V(\phi) = \frac{1}{2}m^2\phi^2$ 时, 称作 free or Gaussian theory.

Appendices

Appendix A

Dirac delta function

• 可以认为以下是定义式,

$$\delta(x) = \int \frac{dk}{2\pi} e^{ikx} \iff 1 = \int dx \, \delta(x) e^{-ikx} \tag{A.0.1}$$

• 第一个常用的公式,

$$\int_{-\infty}^{+\infty} \delta(f(x))g(x)dx = \sum_{\{i, f(x_i) = 0\}} \frac{g(x_i)}{|f'(x_i)|}$$
(A.0.2)

• 第二个常用的公式 (Sokhotski-Plemelj theorem),

$$\lim_{\epsilon \to 0^+} \frac{1}{x + i\epsilon} = \mathcal{P}\frac{1}{x} - i\pi\delta(x) \tag{A.0.3}$$

其中 \mathcal{P} 表示复函数的主值 (principal value).

且注意到,

$$\int \frac{\epsilon}{x^2 + \epsilon^2} dx = 2\pi i \operatorname{Res}(f, i\epsilon) = \pi$$
(A.0.5)

所以...

取 $\epsilon = 0.1$ 时, 复变函数的实部, 虚部分别如下,

Appendix B

Gaussian integrals

• 最基本的几个 Gaussian integral 如下,

$$\int dx \, e^{-\frac{1}{2}ax^2} = \sqrt{\frac{2\pi}{a}} \tag{B.0.1}$$

$$\langle x^{2n} \rangle = \frac{\int dx \, e^{-\frac{1}{2}ax^2} x^{2n}}{\int dx \, e^{-\frac{1}{2}ax^2}} = \frac{1}{a^n} (2n-1)!!$$
 (B.0.2)

其中 $(2n-1)!! = 1 \cdot 3 \cdot \cdot \cdot (2n-3)(2n-1)$.

• 一个重要的变体如下,

$$\int dx \, e^{-\frac{a}{2}x^2 + Jx} = \sqrt{\frac{2\pi}{a}} e^{\frac{J^2}{2a}} \tag{B.0.3}$$

另外, 将 a, J 分别替换为 -ia, iJ 也是重要的变体.

B.1 N-dim. generalization

• 考虑如下积分,

$$Z(A,J) = \int dx_1 \cdots dx_N \, e^{-\frac{1}{2}x^T \cdot A \cdot x + J^T \cdot x} = \sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2}J^T \cdot A^{-1} \cdot J}$$
 (B.1.1)

其中 x, J 是 N-dim. 列向量, A 是 $N \times N$ 实对称矩阵.

calculation:

根据 spectral theorem for normal matrices (对称矩阵是厄密矩阵在实数域上的对应), 可知存在 orthogonal transformation 使得,

$$A = O^{-1} \cdot D \cdot O \tag{B.1.2}$$

其中 D 是一个 diagonal matrix. 令 $y = O \cdot x$, 那么,

$$Z(A,J) = \int dy_1 \cdots dy_N \, e^{-\frac{1}{2}y^T \cdot D \cdot y + (OJ)^T \cdot y}$$

$$= \prod_{i=1}^N \sqrt{\frac{2\pi}{D_{ii}}} e^{\frac{1}{2D_{ii}}(OJ)_i^2} = \sqrt{\frac{(2\pi)^N}{\det A}} e^{\frac{1}{2}J^T \cdot A^{-1} \cdot J}$$
(B.1.3)

其中, 注意到了 $\frac{1}{D_{ii}} = (O \cdot A^{-1} \cdot O^{-1})_{ii}$ 以及 $\operatorname{tr} D = \det A$.

- 一个重要的变体是 $A \mapsto -iA, J \mapsto iJ$.
- 考虑 (B.0.2) 的变体, (注意 A 是对称的),

$$\langle x_i x_j \rangle = \frac{1}{Z(A,0)} \frac{\partial}{\partial J_i} \frac{\partial}{\partial J_j} Z(A,J) \Big|_{J=0} = A_{ij}^{-1}$$
 (B.1.4)

$$\langle x_i x_j \cdots x_k x_l \rangle = \sum_{Wick} A_{i'j'}^{-1} \cdots A_{k'l'}^{-1}$$
(B.1.5)

其中 (B.1.5) 中有偶数个 x, 否则等于零.

calculation:

$$\langle x_i x_j \cdots x_k x_l \rangle = \frac{1}{Z(A,0)} \frac{\partial}{\partial J_i} \frac{\partial}{\partial J_j} \cdots \frac{\partial}{\partial J_k} \frac{\partial}{\partial J_l} Z(A,J) \Big|_{J=0} = \cdots$$
 (B.1.6)

例如,

$$\langle x_i x_j x_k x_l \rangle = A_{ij}^{-1} A_{kl}^{-1} + A_{ik}^{-1} A_{jl}^{-1} + A_{il}^{-1} A_{jk}^{-1}$$
 (B.1.7)

其中, 可以用 Wick contraction 计算上式, 如下,

$$\langle \overrightarrow{x_i x_j x_k x_l} \rangle = A_{ik}^{-1} A_{jl}^{-1}$$
(B.1.8)

Appendix C

the $m_1 + m_2$ decomposition of spacetime

- 将 n-dim. 流形分解为 $m_1 + m_2$ 维 $(m_1 + m_2 = n)$, 其中 m_2 是超曲面的维数.
- 选取与超曲面"适配"的坐标, $\{\chi^1,\cdots,\chi^{m_1},\xi^1,\cdots,\xi^{m_2}\}$, 即超曲面上的点的前 m_1 个坐标值为常数.
 - 用 $\alpha, \beta, \gamma = 1, \cdots, m_1$, 以及 $i, j, k = m_1 + 1, \cdots, n$.

C.1 induced metric

• 对 $d\chi^1, \dots, d\chi^{m_1}$ 进行 Schmidt 正交化并归一化, 得到 n^1, \dots, n^{m_1} , 有,

$$(n^{\alpha})^a (n^{\alpha})_a = \epsilon^{\alpha} = \pm 1 \tag{C.1.1}$$

• 投影张量为,

$$h^{a}{}_{b} = \delta^{a}_{b} - \sum_{\alpha} \epsilon^{\alpha} (n^{\alpha})^{a} (n^{\alpha})_{b}$$
 (C.1.2)

• 因此, 诱导度规为,

$$h_{ab} = h^c{}_a h^d{}_b g_{cd} = g_{ab} - \sum_{\alpha} \epsilon^{\alpha} (n^{\alpha})_a (n^{\alpha})_b$$
 (C.1.3)

- 另外,

$$h^{ab} = g^{ab} - \sum_{\alpha} \epsilon^{\alpha} (n^{\alpha})^a (n^{\alpha})^b$$
 (C.1.4)

- 且有 $h^{ac}h_{bc} = h^a{}_b$.

C.2 the decomposition

• def.: 定义系数 $N^{\alpha\beta}$, $M^{\alpha i}$ 如下,

$$\left(\frac{\partial}{\partial \chi^{\alpha}}\right)^{a} = \sum_{\beta} N^{\alpha\beta} (n^{\beta})^{a} + \sum_{i} M^{\alpha i} \left(\frac{\partial}{\partial \xi^{i}}\right)^{a} \tag{C.2.1}$$

- 有,

$$N^{\alpha\beta} = \epsilon^{\beta} (n^{\beta})_a \left(\frac{\partial}{\partial \gamma^{\alpha}}\right)^a \tag{C.2.2}$$

• 那么,

$$g_{\mu\nu} = \begin{pmatrix} \epsilon^{\gamma} N^{\alpha\gamma} N^{\beta\gamma} + M^{\alpha i} M^{\beta j} g_{ij} & \{M^{\alpha j} g_{ji}\}^T \\ M^{\alpha j} g_{ji} & g_{ij} \end{pmatrix}$$
(C.2.3)

$$\Longrightarrow \det\{g_{\mu\nu}\} = \det\{\epsilon^{\gamma} N^{\alpha\gamma} N^{\beta\gamma}\} \det\{g_{ij}\}$$
 (C.2.4)

calculation:

注意到 $(n^{\alpha})_a \left(\frac{\partial}{\partial \xi^i}\right)^a = 0$, 且 $g_{ab}(n^{\alpha})^a (n^{\beta})^b = \epsilon^{\alpha} \delta_{\alpha\beta}$, 所以...

C.3 induced volume form

• def.: 令,

$$g = |\det\{g_{\mu\nu}\}| \quad \epsilon N^2 = \det\{\epsilon^{\gamma} N^{\alpha\gamma} N^{\beta\gamma}\} \quad h = |\det\{h_{ij}\}|$$
 (C.3.1)

其中, 根据 (C.1.3), 有 $h_{ij} = g_{ij}$.

• 那么,

$$g = N^2 h \iff \sqrt{h} = \frac{\sqrt{g}}{N}$$
 (C.3.2)

• the induced volume form is,

$$\tilde{\epsilon} = \sqrt{h} \underbrace{b_{a_1}^{b_1}(d\xi^1)_{b_1}}_{=(d\xi^1)_{a_1} - \sum_{\alpha} \epsilon^{\alpha}(n^{\alpha})_{a_1}(n^{\alpha})^{b_1}(d\xi^1)_{b_1}}_{\wedge \cdots \wedge h_{a_{m_2}}^{b_{m_2}}(d\xi^{m_2})_{b_{m_2}}} \wedge \cdots \wedge h_{a_{m_2}}^{b_{m_2}}(d\xi^{m_2})_{b_{m_2}} \\
= \frac{\sqrt{g}}{N} \Big((d\xi^1)_{b_1} \wedge \cdots \wedge (d\xi^{m_2})_{b_{m_2}} - (\epsilon^{\alpha}(n^{\alpha})^{b_1}(d\xi^1)_{b_1})(n^{\alpha})_{a_1} \wedge \cdots \wedge (d\xi^{m_2})_{b_{m_2}} - \cdots \Big) \tag{C.3.3}$$

注意到,

$$\epsilon = \sqrt{g} \underbrace{d\chi^1 \wedge \cdots d\chi^{m_1}}_{=\frac{1}{N}n^1 \wedge \cdots \wedge n^{m_1}} \wedge d\xi^1 \wedge \cdots \wedge d\xi^{m_2}$$
(C.3.4)

对比 (C.3.3) 和 (C.3.4), 所以,

$$\epsilon = n^1 \wedge \dots \wedge n^{m_1} \wedge \tilde{\epsilon} \Longrightarrow \tilde{\epsilon} = \frac{\prod_{\alpha} \epsilon^{\alpha}}{m_1!} (n^1)^{b_1} \wedge \dots \wedge (n^{m_1})^{b_{m_1}} \epsilon_{b_1 \dots b_{m_1} a_1 \dots a_{m_2}}$$
 (C.3.5)

- 其中,我们还需要证明 $d\chi^1 \wedge \cdots d\chi^{m_1} = \frac{1}{N} n^1 \wedge \cdots \wedge n^{m_1}$.

proof:

根据 (C.2.2), 可知 Schmidt 正交化并归一化的系数为,

$$n^{\alpha} = \sum_{\beta} N^{\alpha\beta} d\chi^{\beta} \tag{C.3.6}$$

 $N^{\alpha\beta}$ 的两条性质 (并不重要),

* 考虑到归一化条件, 有,

$$\sum_{\gamma,\delta} g^{\gamma\delta} N^{\alpha\gamma} N^{\beta\delta} = \epsilon^{\alpha} \delta_{\alpha\beta} \iff N \cdot \{g^{\alpha\beta}\} \cdot N^T = \begin{pmatrix} \epsilon^1 & & \\ & \ddots & \\ & & \epsilon^{m_1} \end{pmatrix}$$
 (C.3.7)

* 另外, 注意到 (C.2.2), 有,

$$N^{\alpha\beta} = \epsilon^{\beta} \sum_{\gamma} N^{\beta\gamma} (d\chi^{\gamma})_a \left(\frac{\partial}{\partial \chi^{\alpha}}\right)^a$$

$$\Longrightarrow N^T = \operatorname{diag}(\epsilon^1, \cdots, \epsilon^{m_1}) \cdot N \tag{C.3.8}$$

所以,

$$n^{1} \wedge \dots \wedge n^{m_{1}} = N^{1\alpha_{1}} d\chi^{\alpha_{1}} \wedge \dots \wedge N^{m_{1}\alpha_{m_{1}}} d\chi^{\alpha_{m_{1}}}$$

$$= \underbrace{\det N}_{=N} d\chi^{1} \wedge \dots \wedge d\chi^{m_{1}}$$
(C.3.9)

Appendix D

classical field theory and Noether's theorem

D.1 classical field theory

D.1.1 Lagrangian density and the action

- Lagrangian density, \mathcal{L} , 是 $\phi^a(x)$, $\partial_\mu \phi^a(x)$, t 的函数.
- 对作用量变分得到 Euler-Lagrangian equation of motion,

$$\frac{\partial \mathcal{L}}{\partial \phi^a} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi^a)} \right) = 0 \tag{D.1.1}$$

calculation:

对作用量进行变分.

$$\delta S = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi^a} \delta \phi^a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi^a)} \partial_\mu \delta \phi^a \right)$$

$$= \int d^4x \left(\left(\frac{\partial \mathcal{L}}{\partial \phi^a} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi^a)} \right) \right) \delta \phi^a + \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi^a)} \delta \phi^a \right) \right)$$
(D.1.2)

由于边界变分为零...

D.1.2 canonical momentum and the Hamiltonian

• def.: \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} π_a^{μ} 的量,

$$\pi_a^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^a)} \tag{D.1.3}$$

其中 $\pi_a \equiv \pi_a^0$ 称作 canonical momentum of the field.

• def.: the Hamiltonian density is,

$$\mathcal{H} = \pi_a \partial_0 \phi^a - \mathcal{L} \tag{D.1.4}$$

• the Hamilton's equations are,

$$\begin{cases}
\partial_0 \phi^a = \frac{\partial \mathcal{H}}{\partial \pi_a} \\
-\partial_0 \pi^a = \frac{\partial \mathcal{H}}{\partial \phi^a} - \partial_i \left(\frac{\partial \mathcal{H}}{\partial (\partial_i \phi^a)} \right)
\end{cases}$$
(D.1.5)

- 第二个方程可以写成更紧凑的形式,

$$\partial_{\mu}\pi_{a}^{\mu} = \frac{\partial \mathcal{H}}{\partial \phi^{a}} \tag{D.1.6}$$

D.2 Noether's theorem

D.2.1 in classical particle mechanics

- 系统的 Lagrangian 为 $L(q^a, \dot{q}^a, t)$.
- 系统通过以下形式变换,

$$q^a(t) \mapsto q^a(\lambda, t)$$
 and $q^a(t, 0) = q^a(t)$ (D.2.1)

并定义,

$$D_{\lambda}q^{a} = \frac{\partial q^{a}}{\partial \lambda} \Big|_{\lambda=0} \tag{D.2.2}$$

• Noether's theorem: the continuous transform λ is a continuous symmetry iff.,

$$D_{\lambda}L = \frac{dF(q^a, \dot{q}^a, t)}{dt}$$
 (D.2.3)

for some $F(q^a, \dot{q}^a, t)$, and the corresponding **conserved quantity** is,

$$Q = p_a D_\lambda q^a - F(q^a, \dot{q}^a, t) \tag{D.2.4}$$

proof:

$$D_{\lambda}L = \frac{\partial L}{\partial q^{a}} D_{\lambda} q^{a} + \frac{\partial L}{\partial \dot{q}^{a}} \frac{dD_{\lambda} q^{a}}{dt} = \frac{d}{dt} (p_{a} D_{\lambda} q^{a})$$
 (D.2.5)

- 几个例子如下,
 - **空间平移**, $\vec{x}(t) \mapsto \vec{x}(t) + \hat{e}_i \lambda$, 相应地, $D_{\lambda} \vec{x} = \hat{e}_i$, 且,

$$D_{\lambda}L = \frac{\partial L}{\partial x^i} \tag{D.2.6}$$

如果 $\frac{\partial L}{\partial x^i} = 0$, 那么, 有守恒量 p_i .

- **时间平移**, $q^a(t) \mapsto q^a(t+\lambda)$, 相应地, $D_{\lambda}q^a = \dot{q}^a$, 且,

$$D_{\lambda}L = \frac{dL}{dt} - \frac{\partial L}{\partial t} \tag{D.2.7}$$

如果 $\frac{\partial L}{\partial t} = 0$, 那么, 有守恒量 $H = p_a \dot{q}^a - L$.

- **转动**, $\vec{x}(t) \mapsto R(\lambda, \hat{e}) \cdot \vec{x}(t)$, 相应地, $D_{\lambda}\vec{x} = \hat{e} \times \vec{x}$, 且,

$$D_{\lambda}L = \vec{x} \cdot \left(\frac{\partial L}{\partial \vec{x}} \times \hat{e}\right) + \hat{e}(\dot{\vec{x}} \times \vec{p})$$
 (D.2.8)

如果上式中两个括号内的项都为零, 那么, 有守恒量 $\hat{e} \cdot \vec{J} = \hat{e} \cdot (\vec{x} \times \vec{p})$.

D.2.2 in classical field theory

• 类似地,系统通过以下形式变换,

$$\phi^a(x) \mapsto \phi^a(x, \lambda)$$
 and $\phi^a(x, 0) = \phi^a(x)$ (D.2.9)

并定义,

$$D_{\lambda}\phi^{a} = \frac{\partial\phi^{a}}{\partial\lambda}\Big|_{\lambda=0} \tag{D.2.10}$$

• Noether's theorem: the continuous transform λ is a continuous symmetry iff.,

$$D_{\lambda}\mathcal{L} = \partial_{\mu}F^{\mu}(\phi^{a}, \partial_{\mu}\phi^{a}, t) \tag{D.2.11}$$

for some $F^{\mu}(\phi^a, \partial_{\mu}\phi^a, t)$, and the **conserved current** is,

$$J^{\mu} = \pi^{\mu}_{a} D_{\lambda} \phi^{a} - F^{\mu} \tag{D.2.12}$$

proof:

$$D_{\lambda}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi^{a}} D_{\lambda} \phi^{a} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{a})} \partial_{\mu} D_{\lambda} \phi^{a}$$

$$= \left(\frac{\partial \mathcal{L}}{\partial \phi^{a}} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{a})} \right) \right) D_{\lambda} \phi^{a} + \partial_{\mu} \left(\underbrace{\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{a})}}_{=\pi_{c}^{\mu}} D_{\lambda} \phi^{a} \right)$$
(D.2.13)

代入 (D.1.1), 得...

• 注意, conserved current 并不是唯一确定的, 考虑如下变换,

$$F^{\mu} \mapsto F'^{\mu} = F^{\mu} + \partial_{\nu} A^{\mu\nu} \quad \text{with} \quad A^{\mu\nu} = A^{[\mu\nu]}$$
 (D.2.14)

新 F'^{μ} 依然能满足 (D.2.11).

• 但是, 守恒荷是唯一确定的.

proof:

$$Q' = \int d^3x J^0 = \int d^3x (\pi_a D_\lambda \phi^a - F^0) - \int d^3x \, \partial_\mu A^{0\mu}$$
 (D.2.15)

考虑到边界值为零, 且 $A^{00}=0$, 所以 Q'=Q.

D.2.3 spacetime translations and the energy-momentum tensor

• 时空平移变换为,

$$\phi^a(x) \mapsto \phi^a(x + \lambda e)$$
 (D.2.16)

• 所以,

$$D_{\lambda}\phi^{a} = e^{\mu}\partial_{\mu}\phi^{a}$$
 and $D_{\lambda}\mathcal{L} = e^{\mu}\partial_{\mu}\mathcal{L}$ (D.2.17)

代入 (D.2.12),

$$J^{\mu} = e^{\nu} \underbrace{\left(\underbrace{\pi_a^{\mu} \partial_{\nu} \phi^a - \delta_{\nu}^{\mu} \mathcal{L}}_{=T^{\mu}_{\nu}} \right)}$$
(D.2.18)

• 并且有,

$$\partial_{\mu}T^{\mu\nu} = 0 \Longrightarrow P^{\mu} = \int d^3x \, T^{0\mu} = \text{Const.}$$
 (D.2.19)

来自守恒流散度为零.

D.2.4 Lorentz transformations, angular momentum and something else

• Lorentz transformation 下坐标做变换 $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$, 其中 Λ 满足,

$$\eta = \Lambda^T \eta \Lambda \tag{D.2.20}$$

• infinitesimal Lorentz transformation 是,

$$\Lambda = I + \epsilon \tag{D.2.21}$$

其中 $\{\epsilon^{\mu\nu}\}=\epsilon\eta$ 是反对称矩阵.

proof:

考虑,

$$\boldsymbol{\eta} = (\boldsymbol{\Lambda}\boldsymbol{\eta})^T\boldsymbol{\eta}(\boldsymbol{\Lambda}\boldsymbol{\eta}) = (\boldsymbol{\eta} + \boldsymbol{\epsilon}\boldsymbol{\eta})^T\boldsymbol{\eta}(\boldsymbol{\eta} + \boldsymbol{\epsilon}\boldsymbol{\eta})$$

$$= \eta + \eta \epsilon^T + \epsilon \eta + O(\epsilon^2) \tag{D.2.22}$$

• 标量场在 Lorentz transform 下的变换为,

$$\Lambda: \phi^a(x) \mapsto \phi^a(\Lambda^{-1}x') \tag{D.2.23}$$

有,

$$D_{\lambda}\phi^{a} = -\epsilon^{\mu}_{\ \nu}x^{\nu}\partial_{\mu}\phi^{a}$$
 and $D_{\lambda}\mathcal{L} = -\epsilon^{\mu}_{\ \nu}x^{\nu}\partial_{\mu}\mathcal{L} = -\epsilon_{\mu\nu}\partial^{\mu}(x^{\nu}\mathcal{L})$ (D.2.24)

代入 (D.2.12),

$$J^{\mu} = \frac{1}{2} \epsilon_{\nu\rho} M^{\mu\nu\rho} \quad \text{where} \quad M^{\mu\nu\rho} = x^{\nu} T^{\mu\rho} - x^{\rho} T^{\mu\nu}$$
 (D.2.25)

且有,

$$\partial_{\mu}M^{\mu\nu\rho} = 0 \tag{D.2.26}$$

• 对全空间积分,得到6个守恒量,

$$J^{\mu\nu} = \int d^3x \, M^{0\mu\nu} = \text{Const.} \tag{D.2.27}$$

不难发现 J^{ij} 对应角动量, 现在来讨论 J^{0i} 的物理意义,

$$0 = \frac{d}{dt}J^{0i} = \frac{d}{dt}\int d^3x(tT^{0i} - x^iT^{00}) = P^i - \frac{d}{dt}\int d^3x \, x^iT^{00}$$
 (D.2.28)

其中, 用到了 $\frac{dP^i}{dt} = 0$ (见 (D.2.19)), 可以将上式的第二项理解为质心运动的动量.