Multivariate Analysis

Estimation with Missing Not at Random Data

Guillaume Blanc, Phd. Candidate, University of Geneva

February 2022

Multivariate Data with Missing Values

^	Y1 [‡]	Y2 [‡]	Y3	
1	-0.34	-0.64	0.78	
2	-1.16	-2.95	1.94	
3	NA	-0.59	0.19	
4	NA	-0.20	0.24	
5	-1.75	-2.38	2.39	
6	-0.99	-0.99 -2.35		
7	-1.30	-1.28	2.10	
8	-1.32	-2.74	1.86	
9	-0.55	0.06	0.59	
10	-0.70	-1.54	2.41	
11	(NA)	-0.42	1.08	

^	M1	\$	M2	\$	МЗ	÷
1		0		0		0
2		0		0		0
3		1		0		0
4	(1		0		0
5		0		0		0
6		0		0		0
7		0		0		0
8		0		0		0
9		0		0		0
10		0		0		0
11	(1)	0		0

Figure: Data with missing values and the mask.

Goal: estimate μ

Problem: missing values

Solution:

- 1. Impute by the mean (?!)
- 2. Correct the bias.

Requires:

- Generative model for Y
- Missigness mechanism

Experiment: Imputation by the Mean

Experiment: Simulate 1000 datasets with missing data. For each, get estimates of μ_1 .

Two settings:

- MCAR : Missing Completely at Random.
- Truncated : Only smallest 50% of the data are observed.

Missingness Mechanism

Generative Model for **Y**: Factor Analysis /

Figure: Generative model of the data.

Assumptions: for $j, j' = 1, \dots, p$:

- $Y_j^{obs} \perp Y_{j'}^{obs} | \mathbf{Z}$ whenever $j \neq j'$, $Y_i^{obs} | \mathbf{Z} = \mathbf{z} \sim \mathcal{N}(\mathbf{z}^{\top} \mathbf{\Lambda}_{j.} + \mu_j, \ \psi_j)$.

Consequence: the marginal distribution is

$$\mathbf{Y}^{obs} \sim MN(\boldsymbol{\mu}, \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\top} + \boldsymbol{\psi}).$$

Bias Correction with Known Missigness Mechanism

Missingness Mechanism

Modeling the Missingness Mechanism

Figure: Generative model of the data and missingness mechanism.

Assumptions: for $j, j' = 1, \dots, p$,

- $Y_j^{obs} \perp Y_{j'}^{obs} | \mathbf{Z}$ whenever $j \neq j'$,
- $Y_j^{obs} | \mathbf{Z} = \mathbf{z} \sim N(\mathbf{z}^{\top} \mathbf{\Lambda}_{j.} + \mu_j, \psi_j),$
- $M_j \perp M_{j'} | \mathbf{Z}$ whenever $j \neq j'$,
- $M_j | \boldsymbol{Z} = \boldsymbol{z} \sim \mathsf{Bernoulli}(\mathsf{sigmoid}(\boldsymbol{z}^{\top} \widetilde{\boldsymbol{\Lambda}}_{j.} + \widetilde{\mu}_j)).$

Bias Correction with Estimated Missigness Mechanism

iissiiigiless Mechanisiii