Inteligência Artificial

Redes Neurais Artificiais

Universidade Estadual do Paraná - Unespar

27 de Junho de 2024

Conceitos

- Computador:
 - Melhor em cálculo e lógica;
 - Multi-tarefas;
 - Base elétrica.
- Humano:
 - Melhor em raciocínio e criação;
 - Aprendizagem;
 - Base elétrica (Reação química).

Conceitos

- Redes neurais artificiais (RNA);
- Surgimento na década de 50;
- Popular tema de pesquisa científica;
- A partir 1990.

Aplicações

- Avaliação de imagens ruidosas;
- Controle automatizado de equipamentos;
- Sistema de controle e previsão financeira;
- Identificação de anomalias e patologias em bases de sinais digitais;
- Reconhecimento facial;
- Classificação de padrões de escrita e fala.

Conceitos

- RNAs são modelos computacionais inspirados no sistema nervoso;
- Possuem a capacidade de:
 - Aquisição;
 - Manutenção;
 - Conhecimento.
- Caracterizada pela unidade de processamento:
 - Neurônio;
 - Como é representado computacionalmente?

Conceitos

- Principais características:
 - Adaptação por experiência;
 - Capacidade de aprendizado;
 - Habilidade de generalização;
 - Organização de dados;
 - Tolerância a falhas;
 - Facilidade de prototipagem.

Neurônios

Conceitos

- Entradas:
 - Sinais ou medidas que representam as variações aceitas.
- Pesos sinápticos:
 - Valores de ponderação da relevância das entradas.
- Combinador linear:
 - Agregador de valores de entradas, produzindo um potencial de ativação.
- Limiar de ativação:
 - Identificador de variação apropriada para o resultado.

Neurônios Artificiais

- Potencial de ativação:
 - Resultado produzido com a função soma e o limiar de ativação.
- Função de ativação:
 - Limitador da saída em um intervalo assumido pela arquitetura da RNA.
- Bias (viés):
 - Valor adicional somado ao potencial de ativação, permitindo o ajuste da função de ativação.
- Saída:
 - Valor final produzido pelo neurônio em relação ao conjunto de entrada.

Função de ativação

- Degrau (Hard Limiter);
- Degrau Bipolar (Symmetric Hard Limiter);
- Rampa simétrica;
- Relu.

- Frank Rosenblatt em 1957:
- Aprendizagem Supervisionada;
- Base para o desenvolvimento de modelos mais avançados;
- Incapacidade de lidar com problemas não linearmente separáveis.

- Um perceptron é um modelo linear;
 - Resolve problemas linearmente separáveis;
- Classes que podem ser separadas por um hiperplano são ditas linearmente separáveis;
- Perceptron encontrará um hiperplano separador;
- Não necessariamente o melhor hiperplano.

- O treinamento de um perceptron corresponde ao processos de encontrar valores dos pesos;
- Diminuir o erro produzido pelos neurônios;
- Aprendizado por correção de erro;
- Processo iterativo;
- Muitas épocas;
- Erro seja suficientemente pequeno.

- Inicializar todos os pesos com zero;
- Até que todos os exemplos de treino sejam corretamente classificados faça:
 - Para cada dado D do conjunto de treino faça:
 - Se D for incorretamente classificado faça:
 - Calcule o erro e atualize os pesos.

- Aprendizagem por correção de erro:
 - Se o resultado não é o desejado é necessário ajustar o peso dos neurônios para um valor proporcional ao sinal de entrada;
 - Atualização dos pesos:
 - $W_{novo} = W_{atual} + TaxaAprendizagem * Erro * SinalDeEntrada$
 - $Erro(\Delta) = saidaDesejada saidaObtida$
 - TaxaAprendizagem(n) = [0, 1]
 - SinalEntrada = valorEntrada;

Exemplo: Função AND

- Taxa de aprendizagem = 1;
- Função de ativação:
 - 1 se > 0;
 - 0 se <= 0;

Table: Porta lógica AND

AND	bias	a1	a2	У
E_1	1	0	0	0
E_2	1	0	1	0
$E_{-}3$	1	1	0	0
E_4	1	1	1	1
E_3	1	1	0	

Exemplo: Função AND (1º Epoca)

•
$$w_0 = 0, w_1 = 0, w_2 = 0$$

E1:
$$y = f(w_0a_0 + w_1a_1 + w_2a_2)$$

 $= f(0 \times 1 + 0 \times 0 + 0 \times 0) = f(0) = 0 \rightarrow y = d$
 $w_0 = 0$ $w_1 = 0$ $w_2 = 0$
E2: $y = f(0 \times 1 + 0 \times 0 + 0 \times 1) = f(0) = 0 \rightarrow y = d$
 $w_0 = 0$ $w_1 = 0$ $w_2 = 0$
E3: $y = f(0 \times 1 + 0 \times 1 + 0 \times 0) = f(0) = 0 \rightarrow y = d$
 $w_0 = 0$ $w_1 = 0$ $w_2 = 0$
E4: $y = f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 \rightarrow y \neq d$
 $w_0 = 0 + 1 * (1 - 0) * 1 = 1$ $w_1 = 0 + 1 * (1 - 0) * 1 = 1$ $w_2 = 0 + 1 * (1 - 0) * 1 = 1$

Exemplo: Função AND (2º Epoca)

•
$$w_0 = 1, w_1 = 1, w_2 = 1$$

E1:
$$y = f(w_0a_0 + w_1a_1 + w_2a_2)$$

 $= f(1 \times 1 + 1 \times 0 + 1 \times 0) = f(1) = 1 \rightarrow y \neq d$
 $w_0 = 1 + 1 * (0 - 1) * 1 = 0$ $w_1 = 1 + 1 * (0 - 1) * 0 = 1$ $w_2 = 1 + 1 * (0 - 1) * 0 = 1$
E2: $y = f(0 \times 1 + 1 \times 0 + 1 \times 1) = f(1) = 1 \rightarrow y \neq d$
 $w_0 = 0 - 1 = -1$ $w_1 = 1 - 0 = 1$ $w_2 = 1 - 1 = 0$
E3: $y = f(-1 \times 1 + 1 \times 1 + 0 \times 0) = f(0) = 0 \rightarrow y = d$
 $w_0 = -1$ $w_1 = 1$ $w_2 = 0$
E4: $y = f(-1 \times 1 + 1 \times 1 + 0 \times 1) = f(0) = 0 \rightarrow y \neq d$
 $w_0 = -1 + 1 = 0$ $w_1 = 1 + 1 = 2$ $w_2 = 0 + 1 = 1$

Exemplo: Função AND (3º Epoca)

•
$$w_0 = 0, w_1 = 2, w_2 = 1$$

E1:
$$y = f(w_0a_0 + w_1a_1 + w_2a_2)$$

 $= f(0 \times 1 + 2 \times 0 + 1 \times 0) = f(0) = 0 \rightarrow y = d$
 $w_0 = 0$ $w_1 = 2$ $w_2 = 1$
E2: $y = f(0 \times 1 + 2 \times 0 + 1 \times 1) = f(1) = 1 \rightarrow y \neq d$
 $w_0 = 0 - 1 = -1$ $w_1 = 2 - 0 = 2$ $w_2 = 1 - 1 = 0$
E3: $y = f(-1 \times 1 + 2 \times 1 + 0 \times 0) = f(1) = 1 \rightarrow y \neq d$
 $w_0 = -1 - 1 = -2$ $w_1 = 2 - 1 = 1$ $w_2 = 0$
E4: $y = f(-2 \times 1 + 1 \times 1 + 0 \times 1) = f(-1) = 0 \rightarrow y \neq d$
 $w_0 = -2 + 1 = -1$ $w_1 = 1 + 1 = 2$ $w_2 = 0 + 1 = 1$

Exemplo: Função AND (4º Epoca)

•
$$w_0 = -1, w_1 = 2, w_2 = 1$$

E1:
$$y = f(w_0a_0 + w_1a_1 + w_2a_2)$$

 $= f(-1\times1+2\times0+1\times0) = f(-1) = 0 \rightarrow y = d$
 $w_0=-1$ $w_1=2$ $w_2=1$
E2: $y = f(-1\times1+2\times0+1\times1) = f(0) = 0 \rightarrow y = d$
 $w_0=-1$ $w_1=2$ $w_2=1$
E3: $y = f(-1\times1+2\times1+1\times0) = f(1) = 1 \rightarrow y \neq d$
 $w_0=-1-1=-2$ $w_1=2-1=1$ $w_2=1-0=1$
E4: $y = f(-2\times1+1\times1+1\times1) = f(0) = 0 \rightarrow y \neq d$
 $w_0=-2+1=-1$ $w_1=1+1=2$ $w_2=1+1=2$

Exemplo: Função AND (5º Epoca)

•
$$w_0 = -1, w_1 = 2, w_2 = 2$$

E1:
$$y = f(w_0a_0 + w_1a_1 + w_2a_2)$$

 $= f(-1\times1+2\times0+2\times0) = f(-1) = 0 \rightarrow y = d$
 $w_0=-1$ $w_1=2$ $w_2=2$
E2: $y = f(-1\times1+2\times0+2\times1) = f(1) = 1 \rightarrow y \neq d$
 $w_0=-1-1=-2$ $w_1=2-0=2$ $w_2=2-1=1$
E3: $y = f(-2\times1+2\times1+1\times0) = f(0) = 0 \rightarrow y = d$
 $w_0=-2$ $w_1=2$ $w_2=1$
E4: $y = f(-2\times1+2\times1+1\times1) = f(1) = 1 \rightarrow y = d$
 $w_0=-2$ $w_1=2$ $w_2=1$

Exemplo: Função AND (6º Epoca)

•
$$w_0 = -2, w_1 = 2, w_2 = 1$$

E1:
$$y = f(w_0\alpha_0 + w_1\alpha_1 + w_2\alpha_2)$$

 $= f(-2\times1 + 2\times0 + 1\times0) = f(-2) = 0 \rightarrow y = d$
E2: $y = f(-2\times1 + 2\times0 + 1\times1) = f(-1) = 0 \rightarrow y = d$
E3: $y = f(-2\times1 + 2\times1 + 1\times0) = f(0) = 0 \rightarrow y = d$
E4: $y = f(-2\times1 + 2\times1 + 1\times1) = f(1) = 1 \rightarrow y = d$
 $w_0 = -2$ $w_1 = 2$ $w_2 = 1$

Limitação Perceptron

- Se os dados forem linearmente separáveis:
 - Algoritmo termina em número finito de iterações;
- Caso contrário o algoritmo não terminará:
 - Número máximo de épocas;
 - Não tem garantia sobre a qualidade do modelo de saída;
- Redes de uma única camadas resolvem apenas problemas linearmente separáveis;
- Porta lógica XOR.

Limitação Perceptron

Função XOR

	aı	a ₂	у
E ₁	0	0	0
E ₂	0	1	1
E ₃	1	0	1
E ₄	1	1	0

Solução?

- Utilizar mais de uma camada!
 - Multi-Layer Perceptron (MLP);
 - Redes Neurais Convolucionais (CNNs);
 - Redes Neurais Recorrentes (RNNs);
 - Redes Neurais Generativas Adversariais (GANs);

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024