Алгебра. Конспект 2 сем.

Мастера Конспектов

(по материалам лекций В. А. Петрова, а также других источников)

12 февраля 2021 г.

с содержанию	к списку объектов	2

	Некотор	рые	записи	по	алгебр	e.
--	---------	-----	--------	----	--------	----

1	Лекция 1.	3
2	Лекция 2.	6

1 Лекция 1.

Пусть R - кольцо главных идеалов, а M - конечно порождённый R-модуль (левый).

$$m_1,\ldots,m_n\in M,\ M=\{\sum r_im_i|r_i\in R\}$$

Пусть $\varphi: \mathbb{R}^n \to M$ - функция, которая действует по правилу $e_i \mapsto m_i$ (базисные элементы \mathbb{R}^n (именно тривиального базиса) в элементы m_i).

Тогдя ядро $\operatorname{Ker} \varphi \leq R^n$ - подмодуль. Причём равен он $\{(r_i) | \sum r_i m_i = 0\}$ - соотношения (линейные) между m_i . А также он есть свободный модуль R^k , $k \leq n$.

$$\operatorname{Ker} \varphi = R^k, \ R^k \le R^n$$
$$\psi : R^k \to R^n$$

Подходящей заменой базиса в R^k и R^n можно добиться того, чтобы ψ стала диагональной матрицей (с нижними нулевыми строками, естественно) и числами $d_1|d_2|\dots|d_k$ на диагонали.

Тогда $M \cong R^{n-k} \oplus R/(d_i) \oplus \ldots \oplus R/(d_k)$ (это планируется доказывать, но перед этим нужно ввести несколько определений).

Определение 1. Пусть R кольцо (не обязательно коммутативное), тогда M - uuклический, если он порождён одним элементом ($M = \{rm | r \in R\}$).

Пусть $\theta:R\to M$ - гомоморфизм R-модулей, действующий по правилу $r\mapsto rm,$ он сюръективен и $M\simeq R/\mathop{\rm Ker} \theta$ по теореме о гоморфизме.

$$\operatorname{Ker} \theta = \{ r \in R | rm = 0 \} \le R,$$

что также является левым идеалом.

А если R - область главных идеалов, то циклический модуль выглядит как R/(d). Если d=0, то R - свободный модуль ранга 1, а если он не равен нулю, то это есть модуль кручения $\forall x \in M \ dx = 0$.

Теорема 1. Конечнопорождённый модуль над областью главных идеалов - конечная прямая сумма циклических модулей.

Была доказана в прошлом семестре (не у нас). Однаком мы можем сформулировать следствие:

Следствие 1. Конечнопорождённая абелева группа - конечная прямая сумма циклических групп.

Пусть R - область, M - R-модуль, тогда подмодуль кручения -

$$Tors(M) = \{ m \in M | \exists r \neq 0, rm = 0 \}$$

Утверждение 1. Tors(M) - модмодуль в M.

Нужно выполнить проверку этого утверждения, но для этого достаточно проверить, что всё хорошо с нулём (он там лежит и $1 \cdot 0 = 0$), а затем несколько свойств:

$$m_1, m_2 \in \text{Tors}(M), \ r_1, r_2 \neq 0, \ r_1 m_1 = r_2 m_2 = 0,$$

тогда

$$r_1r_2(m_1+m_2)=0, r_1r_2\neq 0,$$

а также, если

$$m \in \text{Tors}(M), s \in R, rm = 0 \Rightarrow r(sm) = rsm = s(rm) = 0.$$

Пусть $r \in R, \ r \neq 0, \ M[r] := \{m \in M: \ rm = 0\} \leq M$ - подмодуль, p - пргстой элемент R. Рассмотрим $M[p] \leq M[p^2] \leq M[p^3] \leq \dots$ - получили цепочку вложенных модулей. $M_p := \bigcup_{i \geq 1} M[p^i]$ - подмодуль, p-кручение в M.

Сейчас начнётся пиздец. Наша цель: доказать, что $\mathrm{Tors}(M) \cong \bigoplus_{p-\mathrm{простое}} M_p$. N_i - модули $i \in I$, $\bigoplus := \{(n_i)_{i \in I} | n_i \in N_i$, почти все $n_i = 0\}$, операции покомпонентные. Это, получается, (бесконечная) прямая сумма модулей.

Теорема 2. (О примарном разложении). Пусть R - область главных идеалов, M - R-модуль. Тогда $\bigoplus M_p \to \text{Tors}(M)$, дествующий по правилу $(m_p) \mapsto \sum m_p$ (конечная сумма) - изоморфизм модулей.

Доказательство. Докажем всё по порядку:

- Докажем, что это гомоморфизм. $(m_p + n_p) \mapsto \sum m_p + n_p = \sum m_p + \sum n_p$, а также $(rm_p) \mapsto \sum rm_p = r(\sum m_p)$.
- Теперь нужно доказать сюръективность. $m \in \text{Tors}(m), rm = 0, r = \prod_{i=1}^n p_i^{\alpha_i},$ где p_i простое. Рассмотрим линейное разложение НОД:

$$r_1 p_2^{\alpha_2} \dots p_n^{\alpha_n} + \dots + r_n p_1^{\alpha_1} \dots p_{n-1}^{\alpha_{n-1}} = 1.$$

Тогда если мы домножим равенство на m, получим, что $r_i = \frac{rm}{p_i^{\alpha_i}} \in M_{p_i}$, тогда получим, что $(r_1 p_2^{\alpha_2} \dots p_n^{\alpha_n} m, \dots, r_n p_1^{\alpha_1} \dots p_{n-1}^{\alpha_{n-1}} m) \mapsto m$.

• Осталась инъективность. Пусть $0 \neq (m_p) \mapsto 0$, возьмём наименьшее число индексов, что $\sum m_p = 0$. А теперь начнём его уменьшать. Пусть у нас есть $p_1, \ldots, p_n, p_i^{\alpha_i} m_{p_i} = 0$. Всё домножим на $p_n^{\alpha_n}$, получим $\sum p_n^{\alpha_n} m_p = 0$. Тогда раньше было $m_{p_n} \neq 0$, а теперь $p_n^{\alpha_n} m_{p_m} = 0$. Докажем, что ничего, кроме последнего не обнулилось. Предположим противное, $p_1^{\alpha_1} m_1 = 0$, $p_n^{\alpha_n} m_1 = 0$, но $p_1^{\alpha_1}$, $p_n^{\alpha_n}$ - взаимно просты, тогда есть линейное разложение $r_1 p_1^{\alpha_1} + r_n p_n^{\alpha_n} = 1$, домножим на m, получим $r_1 p_1^{\alpha_1} m_1 + r_n p_n^{\alpha_n} m_1 = m_1$, но оба они не могут быть равны нулю.

Сейчас будем заниматься в основном кольцом многочленов. Пусть R = F[t], F - поле, V - R-модуль. В частности, V - F-модуль, то векторное пространство $A: v \to tv$ - F-линейное отображение $V \to V$ оператор. Линейные операторы образуют кольцо (сумма - поточечно, умножение - композиция). A(v) или Av.

$$(a_0 + a_1t + \dots + a_nt^n)V = a_0v + a_1Av + \dots + a_nA^nv$$

V - векторное порстранство с оператором, значит, F[t] - модуль.

Пусть a - матрица $n \times n$ $F^n \to F^n$, F[t] - модуль на F^n . F[t] - как модуль над собой векторное пространство со счётным базисом.

Утверждение 2. Пусть V возьмём конечнопорождённый модуль над F[t], тогда V - конечномерное векторное пространство над F тогда и только тогда, когда V = Tors(V) (как F[t]-модуль).

Доказательство. $F[t]^n \oplus F[t]/(f_i) \oplus \ldots \oplus F[t]/(f_k)$, где $f_i \neq 0$. Если $n \neq 0$, то в V есть бесконечномерное подпространство F[t]. Если n=0, то $\dim_F F[t]/(f_i) = \deg f_i < \infty$.

Теперь рассмотрим матрицы. Пусть dim $V=n,\,A:V\to V$. Если зафиксировать базис в V, получается матрица $a\,\,n\times n$. Взали другой базис, получим матрицу перехода $c.\,\,V\to V$ посредством A, причём стороны соответственно изоморфны вот таким вещам (по центру, я не умею так круто чертить, загляните в лекцию) $F^n \stackrel{c^{-1}}{\longrightarrow} F^n \stackrel{a}{\to} F^n \stackrel{c}{\to} F^n$. И, кстати, $a\sim c^{-1}ac$ (сопряжённая матрица).

Рассмотрим модуль F[t]/(f), что также есть V, A. Поймём, что такое f. Он обладает таким свойством: $(f) = \operatorname{Ker}(F[t \to F[t/(f)]]) = \{g(t)|\ g(t)\cdot v = 0\ \forall v \in V\}$. Однако последнее равенство неочевидно. По определению там может быть написано $\{g(t)|\ g(t)\cdot [1]=0\}$, но $[h(t)] = h(t)\cdot 1$, поэтому он обнуляется $g(t)\colon g(t)\cdot [h(t)] = h(t)\cdot g(t)\cdot [1] = 0$, откуда и получаем искомое.

Давайте теперь запишем это в терминах оператора. Если

$$g(t) = a_0 + a_1 t + \ldots + a_k t^k,$$

тогда

$$g(t) \cdot v = a_0 v + a_1 A v + \ldots + a_k A^k v.$$

Каждый раз писать такие длинные вещи неудобно, поэтому введём следующее обозначение:

$$g(A) := a_0 v + a_1 A + \ldots + a_k A^k.$$

В силу того, что A коммутирует с собой, то такая запись корректна. Тогда мы можем переписать:

$$\{q(t)|\ q(t)\cdot v = 0\ \forall v\in V\} = \{q(t)|\ q(A)v = 0\ \forall v\in V\},\$$

но если последнее выполнено для любого $v \in V$, то получаем, что оператор - тождественный нуль, получаем $\{g(t)|\ g(A)=0\}.$

Также можно пойти и в обратныую сторону, то есть, пусть мы знаем A, рассмотрим $\{g(t)|\ g(A)=0\}$. Это - идеал в F[t], скажем, что это (f(t)), тогда f(t) мы будем называть минимальным многочленом оператора A. Можно заметить, что минимальный многочлен не равен нулю, если у нас имеется конечномерное пространство, не может быть такого, что никакой многочлен A не обнуляет. Покажем это.

Найдём некую линейную зависимость между степенями A. Рассмотрим Id,A,A^2,\ldots элементы кольца операторов. Рассмотрим это кольцо как векторное пространство над F. Если $\dim V=\mathsf{T},$ то у полученного пространства размерность есть $n^2,$ то есть, конечна. Потому бесконечной линейно независимой системы быть не может, тогда когда-то мы получим линейную зависимость:

$$a_0 + a_1 A + \ldots + a_k A^k = 0,$$

тогда отсюда мы и нашли требуемый многочлен.

2 Лекция 2.

Начинаем опять с оператора. Рассматриваем векторной пространство V над каким-то полем F и мы действуем на него оператором $A:V\to V$. Мы его также рассматривали как F[t] модуль, $t\cdot v=Av$. Мы определили минимальный многочлен A такой, что $\{g(t)\in F[t]|g(a)=0\}$ $\lhd F[t]$, причём F[t]=(f(t)) - идеал унитарного (нуо) многочлена. Такой f(t) и называется минимальным многочленом.

Теперь немного понятнее на языке модулей. Рассмотрим V - F[t]-модуль, а также $\mathrm{Ann}(V) := \{r \in V | rv = 0, \ \forall v \in V\}$. Это - идеал в R, причём даже двусторонний (можно будет потом записать проверку). Причём получаем, что $\mathrm{Ann}(V) = (f(t))$, легко заметить, что они совпадают.

g(A)v=0, но тогда

$$g = a_0 + a_1 t + \dots + a_k t^k$$

 $g = a_0 + a_1 A v + \dots + a_k A^t v = 0$

что также и равно $g(t) \cdot v$. Тогда $f(A)v = g(t) \cdot v$ как оператор и из структуры модуля соответственно. Тогда $g(A) = 0 \Leftrightarrow g(A) \cdot v = 0$ для любого $v \in V \Leftrightarrow g(t) \cdot v = 0 \ \forall v \in V \Leftrightarrow g(t) \in \mathrm{Ann}(v)$.

Мы уже начинали рассматривать такой модуль: F[t]/(f(t)) - F[t]-модуль, имеем также $V, Av = t \cdot v$. Мы хотим придумать базис V, в которм матрица A имеет простой вид. Возьмём такой базис: $[1], [t], \ldots, [t^{k-1}]$, тогда $[t^k] = -a_0[1] - \ldots - a_{k-1}[t^{k-1}]$. Как выглядит матрица A в этом базисе?

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & 0 & -a_{k-2} \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

Такая матрица называется фробениусовой клеткой. А вообще, в итоге мы получили, что если V - циклический F[t]-модуль, то A в некотором базисе записывается фробениусовой клеткой, причём последним столбцом будут коэффициенты минимального многочлена, только со знаком "минус".

А если модуль не циклический (произвольный и с конечномерным V), то мы можем его разложить в прямую сумма циклических:

$$F[t]/(f_1(t)) \oplus F[t]/(f_2(t)) \oplus \ldots \oplus F[t]/(f_m(t)),$$

причём мы можем даже потребовать, чтобы $f_1|f_2|\dots|f_n$.

Умножение на t будет действовать поккординатно.

Для каждого слагаемого мы умеем выписывать матрицу оператора A в подходящем базисе. Матрица A тогда выглядит на всём пространстве как цепочка фробениусовых клеток, расставленных по порядку по диагонали.

Зададимся теперь вопросом: чему же в таком случае равен минимальный многочлен? Ответ таков:

$$A = f_m(t),$$

причём принципиально условие цепочки делений.

Как считать инвариантные факторы (то есть, $f_1(t), \ldots, f_n(t)$)? Рассмотрим V и F[t]. e_1, \ldots, e_n - базис V как векторное пространство над F, а тем более, это система образующих V как F[t]-модуля. Какими соотношениями обладает этот набор? $t \cdot e_i = Ae_i$ - линейная комбинация e_1, \ldots, e_n . Это соотношение между e_i с коэффициентами из f(t), получаем $(t \cdot I - A)e_i = 0$.

Мы имеем n образующих и n таких последних соотношений. Рассмотрим матрицу $(t \cdot I - A)$, она имеет размер $n \times n$ над F[t] и выглядит так:

$$\begin{pmatrix} t - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & t - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & -a_{nn} \end{pmatrix}$$

Домножим её слева и справа на обратимые над F[t] матрица и приведём её к диагональному виду, а на диагонали будут расставлены f_1, \ldots, f_m (перед которыми n-m единиц). Последний многочлен будет минимальным многочленом A.

Сравним определители этих матриц. Определитель обратимой матрицы лежит в $F[t]^* = F^*$. Идеал, порождённый в F[t] определителем, не поменяется, тогда

$$(\det(t \cdot I - A)) = (f_1(t) \dots f_n(t)),$$

тогда $\det(t \cdot I - A)$) $\in F[t]$ мы будем называть характеристическим многочленом матрицы A (обозначаем $\chi_A(t)$). Имеет он степень n, причём он ещё и унитарный в силу того, что максимальная степень будет содержаться в $(t-a_{11})(t-a_{22})\dots(t-a_{nn})$.

Причём тогда мы можем получить такое равенство из того, что и характеристический многочлен, и призведение f_i унитарно:

$$\chi_a(t) = f_1(t) \cdot \ldots \cdot f_n(t),$$

откуда минимальный многочлен делит характеристический многочлен, а характеристический делит минимальный в степени n.

Наборы неприводимых делителей у минимаьлного и характеристического многочленов совпадают. В частности, наборы корней без учёта кратности совпадают.

Теорема 3. (Теорема Гамильтона-Кэли). Минимальный многочлен делит характеристичесий, имеет такие эке корни [и у них совпадают неприводимые делители].

Приступим теперь к рассмотрению нильпотентным операторам.

Определение 2. $A:V \to V$ - *нильпотентный*, если $A^k=0$ для некоторого k.

Нужно теперь научиться понимать, когда это выполнено. Берём $k:A^k=0,A^{k-1}\neq 0$ (наименьшее возможное?). Минимальный многочлен у A - t^k , потому что он подходит, и никакой его делитель не подходит. Какой же характеристический многочлен у A? Это есть t^n , где $n=\dim V$ из теоремы Гамильтона-Кэли.

Пусть $A^k=0$ - минимальная такая степень. Рассмотрим V как F[t]-модуль.

$$F[t]/(t^{k_1}) \oplus F[t]/(t^{k_2}) \oplus \ldots \oplus F[t]/(t^{k_m}), k_1 < k_2 < \ldots < k_m = k,$$

а само k мы называем cmenehbo нильпотентности. Кстати, фробениусова клетка нильпотентного оператора теперь выглядит ещё лучше, весь правый столбец теперь состоит из нулей (в подходящем базисе). В общем случае, она составлена из квадратиков такого вида. Получили мы матрицу строгонижнетреугольного вида.

Определение 3. *Нижнетреугольная матрица* - всё, выше главной диагонали - нули. *Строгонижнетреугольная матрица* - ещё и диагональ - нули.

Как найти такой базис (без формы Смита)? Запишем по индукции:

$$V[t] = \{v \in V | tv = 0\} = \text{Ker}(A),$$

$$V[t^{2}] = \{v \in V | t^{2}v = 0\} = \text{Ker}(A^{2}),$$

$$...$$

$$V[t^{k-1}] = \text{Ker}(A^{k-1}),$$

$$V[t^{k}] = \text{Ker}(A^{k}) = V.$$

Рассмотрим цепочку вложенных пространств:

$$0 < \operatorname{Ker}(A) \le \operatorname{Ker}(A^2) \le \dots \le \operatorname{Ker}(A^{k-1}) < V.$$

Посмотрим на образ A (то есть, $\operatorname{Im} A$), он попадёт в $\operatorname{Ker}(A^{k-1})$, а вот $A(\operatorname{Ker}(A^{k-2})) \leq \operatorname{Ker}(A^{k-2})$.

Осталось найти тот самый базис, в котором матрица A имеет нужный вид. Рассмотрим фактор-пространство $V/\operatorname{Ker}(A^{k-1})$, и выберем в нём базис. Это даёт нам относительный базис V относительно $\operatorname{Ker}(A^{k-1})$ (скажем, это e_1,\ldots,e_s). Тогда что с ними происходит: $e_1.Ae_1,\ldots,A^{k-1}e_1$, причём получается, что все они не равны нулю, так как они не лежат в классе нуля.

Рассмотрим $\langle e_1.Ae_1,\dots,A^{k-1}e_1\rangle$ - A переводит его в себя. Рассмотрим матрицу A в данном базисе, это как раз будет фробениусова клетка размера k. Так проделаем для каждого элемента базиса и получим s фробениусовых клеток размера k, где s также было размерностью отфакторизованного пространства, тогда $s=\dim V-\dim \operatorname{Ker}(A^{k-1})$.

Теперь рассмотрим $\operatorname{Ker}(A^{k-1})/(\operatorname{Ker} A^{k-2} + \operatorname{Im} A)$ - подпространство, порождённое $\operatorname{Ker} A^{k-2}$ и $\operatorname{Im} A$. Возьмём относительный базис $e_{1,1},\ldots,e_{s_1,1}$, опять перейдём к $\langle e_{1,1}.Ae_{1,1},\ldots,A^{k-1}e_{1,1}\rangle$ - тут A имеет матрицу в виде фробениусовой клетки размера k-1 (если фробениусовых клеток такого размера нет, это пространство равно нулю). s_1 - количество таких клеток.

W, наконец, клетки размера k-i: $\operatorname{Ker}(A^{k-i})/(\operatorname{Ker}(\mathring{A}^{k-i-1})+\operatorname{Im} A^i)$, рассмотрим тут базис и проделаем аналогичные операции.