- Maths - Chapitre 16 -

Ensembles, applications et dénombrement

I. Programme officiel

CAPACITÉS ET COMMENTAIRES

Pascal et du binôme de Newton.

Dénombrement

CONTENU

001/121/0			
a) Cardinal d'un ensemble fini			
Cardinal d'un ensemble fini.	Notation $\operatorname{Card} A$, $ A $ ou $\#A$.		
Cardinal d'une partie d'un ensemble fini, cas			
d'égalité.			
Une application entre deux ensembles finis de			
même cardinal est bijective, si et seulement			
si elle est injective, si et seulement si elle est			
surjective.			
Opérations sur les cardinaux : union disjointe	La formule du crible est hors-programme.		
ou quelconque de deux parties, complémen-			
taire, produit cartésien.			
Cardinal de l'ensemble des applications entre			
deux ensembles finis, cardinal de l'ensemble			
des parties.			
b) Listes et combinaisons			
Nombre de p-listes (ou p-uplets) d'éléments			
distincts d'un ensemble de cardinal n . Nombre			
d'applications injectives d'un ensemble de car-			
dinal p dans un ensemble de cardinal n .			
Nombre de permutations d'un ensemble de			
cardinal n .			
Nombre de parties à p éléments (ou p -	Démonstration combinatoire des formules de		

Raisonnement et vocabulaire ensembliste

combinaisons) d'un ensemble de cardinal n

CONTENU	CAPACITÉS ET COMMENTAIRES			
b) Ensembles				
Ensemble des parties d'un ensemble.				
c) Relations d'équivalence				
Fonction indicatrice d'une partie A d'un en-	Notation $\mathbb{1}_A$.			
semble E .				
Image directe.	Notation $f(A)$.			
Image réciproque.	Notation $f^{-1}(B)$.			

gramme.

II. Ensembles et applications

La notion d'ensemble quotient est hors pro-

II.1. Rappels

Cardinal d'un ensemble fini

Relation d'équivalence, classes d'équivalence.

Nous avons déjà défini (voir paragraphe II.7. du chapitre 2) les notions suivantes.

Le nombre d'élément(s) d'un ensemble E fini est appelé cardinal de E.

C'est l'unique entier $n \in \mathbb{N}$ pour lequel il existe des bijections $e : E \to [1; n]$.

Chacune de ces bijections représente $un\ ordre\ possible$ pour le dénombrement des éléments

de E : c'est une numérotation de ces éléments.

Le cardinal de E est noté Card E ou |E| ou encore #E.

On a Card $\emptyset = 0$.

Ex. 16.1 Soit E_n l'ensemble des polynômes de degré inférieur ou égal à $n \in \mathbb{N}$ et dont les coefficients valent 0 ou 1.

Calculer Card E_n .

Cor. 16.1

Commençons par écrire E pour les petites valeurs de n.

```
n = 0 : E_0 = \{0; 1\}. \text{ Card } E_0 = 2.
```

$$n = 1 : E_1 = \{0; 1; X; X + 1\}. \text{ Card } E_1 = 4.$$

$$n = 2 : E_2 = \{0; 1; X; X + 1; X^2; X^2 + 1; X^2 + X; X^2 + X + 1\}. \text{ Card } E_2 = 8.$$

L'observation de ces trois cas laisse augurer que Card $E_n = 2^{n+1}$.

Démontrons le par récurrence. L'initialisation est faite.

Hérédité: supposons que, pour $n \in \mathbb{N}$ donné, Card $E_n = 2^{n+1}$.

Les polynômes de E_{n+1} sont

• ceux de degré n+1, qui s'écrivent donc $P=X^{n+1}+Q$ où Q est de degré inférieur ou égal à n et a des coefficients dans $\{0;1\}$.

Autrement dit, $Q \in E_n$: il y a donc, par hypothèse de récurrence, 2^{n+1} polynômes de ce type.

• ceux de degré strictement inférieur à n+1, c'est-à-dire de degré inférieur ou égal à n.

C'est l'ensemble E_n , de cardinal 2^{n+1} .

Donc Card $E_{n+1} = 2^{n+1} + 2^{n+1} = 2^{n+1+1}$.

Conclusion: la propriété est initialisée au rang 0, héréditaire à partir de ce rang, donc vraie pour tout entier $n \in \mathbb{N}$.

Coefficients binomiaux

Les coefficients binomiaux $\binom{n}{k}$ pour $n \in \mathbb{N}, k \in [0; n]$ ont été introduits en terminale comme le nombre de manières de choisir k objets parmi n objets.

Nous les avons définis (voir paragraphe IV. du chapitre 2) d'une façon complètement différente en début d'année, notamment afin de donner et de démontrer la formule du binôme :

$$\forall n \in \mathbb{N}, \forall p \in \llbracket 0, n \rrbracket, \begin{pmatrix} n \\ p \end{pmatrix} = \frac{n!}{p!(n-p)!}$$

Nous avons étendu leur définition dans le chapitre 9 sur les développements limités - au moment où nous avons obtenu le développement limité à l'ordre n en 0 de $x \mapsto (1+x)^{\alpha}$ - en posant (coefficient binomial généralisé) pour $\alpha \in \mathbb{R}$ et $p \in \mathbb{N}$,

$$\begin{pmatrix} \alpha \\ p \end{pmatrix} = \frac{\prod_{k=0}^{p-1} (\alpha - k)}{p!} = \frac{\alpha(\alpha - 1)...(\alpha - p + 1)}{1 \times 2 \times ... \times p}$$

L'un des objectifs de ce chapitre est de montrer que les deux points de vue - celui de terminale où les coefficients binomiaux sont vus comme un outil de dénombrement, et celui de PCSI où ils sont vus comme un outil de calcul littéral et d'analyse - correspondent bien aux mêmes nombres.

II.2. Ensemble des parties d'un ensemble

Notation

Étant donné un ensemble E, on note $\mathcal{P}(E)$ l'ensemble des parties de E.

Autrement dit $\mathcal{P}(E) = \{K, K \subset E\}$. Notamment $\mathcal{P}(\emptyset) = \{\emptyset\}$ possède un élément et $\mathcal{P}(\{a\}) = \{\emptyset; \{a\}\}$ possède deux éléments.

Remarque

Pour écrire que A est une partie d'un ensemble E on peut écrire

 $A \subset E$: A est inclus dans E

 $A \in \mathcal{P}(E)$: A appartient aux parties de E

Ex. 16.2 Soit $E = \{a; b; c\}$. Que vaut $\mathcal{P}(E)$?

Cor. 16.2

Les sous-ensembles (ou parties) de E sont :

- Ø, seule partie à 0 élément;
- $\{a\}, \{b\}, \{c\},$ les trois parties à 1 élément;
- $\{a;b\}, \{a;c\}, \{b;c\}$, les trois parties à 2 éléments;
- $E = \{a; b; c\}$, la seule partie de E à 3 éléments.

Donc $\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a; b\}, \{a; c\}, \{b; c\}, \{a; b; c\}\}.$

II.3. Image directe, image réciproque d'une partie

Soient E et F deux ensembles et $u: E \to F$ une application.

🔁 Définition 16.1 (Image directe)

Pour une partie A de E, on appelle **image directe de** A **par** u le sous-ensemble de F défini $par \{u(x), x \in A\} = \{y \in F, \exists x \in A, u(x) = y\}$

Autrement dit, c'est l'ensemble des images par u des éléments de A.

On note u(A) l'image directe de A par u.

🙌 Remarque

Avec les notations précédentes :

- \bullet $u(\emptyset) = \emptyset$
- Si A = E, on obtient $u(E) = \operatorname{Im} u$ l'ensemble image de u.

Important!

Ne pas confondre l'ensemble image $u(E)=\operatorname{Im} u$ et l'ensemble d'arrivée F d'une application. En effet $u(E) = F \Leftrightarrow u \text{ est surjective.}$

Ex. 16.3 Soient $E = \{a; b; c\}$, $F = \{r; s; t\}$ et $f: E \to F$ définie par f(a) = r, f(b) = t et f(c) = t. Que valent $f(\{b,c\})$ et f(E)?

Cor. 16.3

 $f(\{b,c\}) = \{t\} \text{ et } f(E) = \{r;t\}.$

\setminus Définition 16.2 (Image réciproque)

Si B est une partie de F, on appelle **image réciproque de** B **par** u le sous-ensemble de Edéfini par $\{x \in E, u(x) \in B\}$

Autrement dit, c'est l'ensemble de tous les antécédents des éléments de B.

Notation

On note $u^{-1}(B)$ l'image réciproque de B par u.

Important!

Cette notation prête à confusion puisque $u^{-1}(B)$ est toujours défini tandis que u^{-1} , bijection réciproque de u, n'est définie que si u est bijective.

Remarque

Avec les notations précédentes :

Ex. 16.4 Soient $E = \{a; b; c\}$, $F = \{r; s; t\}$ et $f: E \to F$ définie par f(a) = r, f(b) = t et f(c) = t. Que valent $f^{-1}(\{r\}), f^{-1}(\{s\})$ et $f^{-1}(\{t\})$.

Cor. 16.4

$$f^{-1}(\{r\})=\{a\},\,f^{-1}(\{s\})=\emptyset\text{ et }f^{-1}(\{t\})=\{b;c\}.$$

II.4. Fonction indicatrice

Définition 16.3 (Fonction indicatrice d'une partie)

Soit E un ensemble et $A \in \mathcal{P}(E)$. On appelle **fonction indicatrice de la partie** A **de** E l'application

$$\mathbb{1}_A: \left\{ \begin{array}{ll} E & \to & \{0;1\} \\ x \in A & \mapsto & \mathbb{1}_A(x) = 1 \\ x \notin A & \mapsto & \mathbb{1}_A(x) = 0 \end{array} \right.$$

Propriété 16.4

Étant donné un ensemble E et deux parties A et B de E, on a

- 1) $\mathbb{1}_E$ est l'application constante égale à 1.
- 5) $A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$ 6) $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$
- 2) $\mathbb{1}_{\emptyset}$ est l'application constante égale à 0.
- 7) $\mathbb{1}_{A \cup B} + \mathbb{1}_{A \cap B} = \mathbb{1}_A + \mathbb{1}_B$

3) $\forall x \in E, 0 \leq \mathbb{1}_A(x) \leq 1$.

8) $1_{\bar{A}} = 1 - 1_A$

- 4) $A \subset B \Leftrightarrow \mathbb{1}_A \leqslant \mathbb{1}_B$
- 9) L'application $\Phi: \left\{ \begin{array}{ll} \mathcal{P}(E) & \to & \mathcal{F}(E, \{0; 1\}) \\ A & \mapsto & \mathbb{1}_A \end{array} \right.$ est bijective.

Démonstration

- Les trois premiers points sont évidents.
- Montrons que $A \subset B \Leftrightarrow \mathbb{1}_A \leqslant \mathbb{1}_B$.

Sens direct: supposons $A \subset B$. Si $x \notin A$, alors $\mathbb{1}_A(x) = 0$ donc $\mathbb{1}_A(x) \leqslant \mathbb{1}_B(x)$. Si $x \in A$, alors $x \in B$ donc $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$ et $\mathbb{1}_A(x) \leqslant \mathbb{1}_B(x)$.

 $R\acute{e}ciproque$: supposons $\mathbb{1}_A \leqslant \mathbb{1}_B$.

Soit $x \in A$. $\mathbb{1}_A(x) = 1 \leqslant \mathbb{1}_B(x)$ donc $\mathbb{1}_B(x) = 1$ et $x \in B$. Donc $A \subset B$.

- $A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$ se montre en utilisant deux fois la propriété précédente à $A \subset B$ et $B \subset A$.
- Montrons que $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$.

Si $x \in A \cap B$, alors $\mathbb{1}_{A \cap B}(x) = 1$. De plus $x \in A$ et $x \in B$ donc $\mathbb{1}_A(x) \times \mathbb{1}_B(x) = 1 =$ $\mathbb{1}_{A\cap B}(x)$.

Sinon, soit $x \notin A$, soit $x \notin B$, donc $\mathbb{1}_A(x) \times \mathbb{1}_B(x) = 0 = \mathbb{1}_{A \cap B}(x)$.

Finalement $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$.

- Les deux points suivants se montrent de façon similaire.
- Montrons que $\Phi: \left\{ \begin{array}{ll} \mathcal{P}(E) & \to & \mathcal{F}(E, \{0; 1\}) \\ A & \mapsto & \mathbb{1}_A \end{array} \right.$

Soit $u \in \mathcal{F}(E, \{0; 1\})$ et $A = u^{-1}(\{1\})$.

Si $x \in A$ alors u(x) = 1, sinon $u(x) \neq 1$ donc u(x) = 0.

Donc $u = \mathbb{1}_A$ donc Φ est surjective.

De plus Φ est injective et par suite bijective puisque $A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$.

II.5. Partition, relation d'équivalence

Définition 16.5 (Partition d'un ensemble)

Soit E un ensemble et $(A_i)_{i \in [1:p]}$ une famille de parties de E.

On dit que cette famille forme une partition de E si

$$\bigcup_{i=1}^{p} A_i = E \text{ et } \forall i \neq j \in [[1; p]], A_i \cap A_j = \emptyset$$

Définition 16.6 (Relation d'équivalence sur un ensemble)

Étant donné un ensemble E, on dit d'une relation \approx : $\begin{cases} E \times E \rightarrow \{VRAI; FAUX\} \\ (x;y) \mapsto x \approx y \end{cases}$

c'est une $\boldsymbol{relation}$ $\boldsymbol{d'\acute{e}quivalence}$ si elle est

- réflexive : $\forall x \in E, x \asymp x \text{ (est vrai)};$ symétrique : $\forall (x;y) \in E^2, x \asymp y \Rightarrow y \asymp x;$ transitive : $\forall (x;y;z) \in E^3, (x \asymp y \text{ et } y \asymp z) \Rightarrow x \asymp z.$

Ex. 16.5 Nous connaissons déjà de nombreuses relations d'équivalences. L'égalité (de réels, de complexes, d'ensembles, d'applications, etc...) en est toujours une. En citer d'autres.

Cor. 16.5

L'équivalence logique est une relation d'équivalence.

L'équivalence de fonctions, l'équivalence de suites, l'équivalence par ligne des systèmes linéaires, etc...

Définition 16.7 (Classes d'équivalence)

Étant donnés un ensemble E, une relation d'équivalence \approx sur E et un élément x de E, on appelle classe d'équivalence de x l'ensemble $\{y \in E, y \asymp x\}$.

Notation

On note souvent $\dot{x} = \{y \in E, y \asymp x\}$ la classe d'équivalence de x.

Proposition 16.8

L'ensemble des classes d'équivalence d'une relation d'équivalence sur E forme une partition de E.

Démonstration

Soient \dot{x} et \dot{y} deux classes d'équivalence.

- Si $\dot{x} \cap \dot{y} \neq \emptyset$, alors par transitivité (et symétrie) de la relation d'équivalence, $\dot{x} = \dot{y}$.
- Sinon, $\dot{x} \cap \dot{y} = \emptyset$.

Donc deux classes d'équivalence distinctes sont disjointes. Et la réunion des classes d'équivalence de E est E puisque tout élément de E est dans sa propre classe d'équivalence par réflexivité de la relation d'équivalence.

III. Cardinal d'une partie d'un ensemble

Cardinal et fonction indicatrice d'une partie III.1.

Lemme 16.9

Soit E un ensemble fini et A une partie de E.

$$\operatorname{Card} A = \sum_{x \in E} \mathbb{1}_A(x)$$

Conformément au programme officiel, cette propriété, très intuitive, est admise sans démonstration.

III.2. Cardinal d'une partie

Proposition 16.10

Si E est un ensemble fini et $A \subset E$ alors

$$\operatorname{Card} A \leqslant \operatorname{Card} E$$
 et $\operatorname{Card} A = \operatorname{Card} E \Leftrightarrow A = E$

Démonstration

- Card $A = \sum_{x \in E} \mathbb{1}_A(x) \leqslant \sum_{x \in E} 1 = \text{Card } E$. Si A = E, Card A = Card E.
- Sinon, il existe $x_0 \in E, x_0 \notin A$ d'où $\mathbb{1}_A(x_0) = 0 < 1$.

$$\begin{aligned} & \text{Donc Card} \, A = \sum_{x \in E} \mathbb{1}_A(x) < \sum_{x \in E} 1 = \text{Card} \, E. \\ & \text{Donc Card} \, A = \overset{}{\text{Card}} \, E \Leftrightarrow A = E. \end{aligned}$$

III.3. Opérations sur les cardinaux

Proposition 16.11

Soient E un ensemble et A et B deux parties de E.

$$Card(A \cup B) = Card A + Card B - Card(A \cap B)$$

En particulier,

 $Card(A \cup B) \leq Card A + Card B$

 $Card(A \cup B) = Card A + Card B \Leftrightarrow A \cap B = \emptyset$

et $\operatorname{Card} \overline{A} = \operatorname{Card} E - \operatorname{Card} A$.

Démonstration

$$\operatorname{Card}(A \cup B) = \sum_{x \in E} \mathbb{1}_{A \cup B}(x) = \sum_{x \in E} \mathbb{1}_{A}(x) + \sum_{x \in E} \mathbb{1}_{B}(x) - \sum_{x \in E} \mathbb{1}_{A \cap B}(x) \text{ donc}$$
$$\operatorname{Card}(A \cup B) = \operatorname{Card}A + \operatorname{Card}B - \operatorname{Card}(A \cap B).$$

Proposition 16.12

Si $(A_i)_{i \in [1;p]}$ est une partition d'un ensemble E fini, alors

$$\operatorname{Card} E = \sum_{i=1}^{p} \operatorname{Card} A_{i}$$

Démonstration

C'est un corollaire de la proposition précédente que l'on démontre par récurrence sur p.

Proposition 16.13

Si E et F sont deux ensembles finis, alors $E \times F$ est fini et $\operatorname{Card}(E \times F) = \operatorname{Card} E \times \operatorname{Card} F$.

Démonstration

Soient n le cardinal de E et $b: E \to [1; n]$ une bijection associée.

$$E \times F = \left(\bigcup_{i=1}^{n} \left\{b^{-1}(i)\right\}\right) \times F = \bigcup_{i=1}^{n} \left(\left\{b^{-1}(i)\right\} \times F\right) \text{ est une partition de } E \times F \text{ donc}$$

$$\operatorname{Card} E \times F = \sum_{i=1}^{n} \operatorname{Card} \left(\left\{ b^{-1}(i) \right\} \times F \right)$$
 d'après la proposition précédente, d'où

$$\operatorname{Card} E \times F = \sum_{i=1}^{n} \operatorname{Card} F = n \operatorname{Card} F = \operatorname{Card} E \times \operatorname{Card} F.$$

Une façon plus simple de se représenter ce résultat consiste à se représenter les éléments de $E \times F$, c'est-à-dire les couples formés d'un élément de E et d'un élément de F

comme les cases d'un tableau où chaque ligne correspond à un élément de E et chaque colonne à un élément de F:

		f_1	f_2	 f_p	
	e_1	$(e_1;f_1)$	$(e_1; f_2)$	 $(e_1; f_p)$	
	e_2	$(e_2; f_1)$	$(e_2; f_2)$	 $(e_2; f_p)$	
	÷	:	:	:	
•	e_n	$(e_n; f_1)$	$(e_n; f_2)$	 $(e_n; f_n)$	

Le nombre d'éléments de $E \times F$ est le nombre de cases

du tableau, c'est-à-dire $n \times p = \operatorname{Card} E \times \operatorname{Card} F$.

Corollaire 16.14

Pour $p \in \mathbb{N}^*$, Card $(E^p) = (\operatorname{Card} E)^p$.

III.4. Principe additif, principe multiplicatif

Méthode

Le *principe additif* de dénombrement est l'utilisation des formules 16.11 et 16.12 aux problèmes de dénombrement. Il s'utilise lorsque l'on cherche à dénombrer des ensembles vérifiant une ou plusieurs propriétés données : choisir les éléments vérifiant une première propriété ou une seconde propriété ou...

Graphiquement, on représente ces problèmes par des diagrammes de Venn (cf. chapitre 1 section III.7.).

Le *principe multiplicatif* de dénombrement est l'utilisation de la propriété 16.13 et de son corollaire aux problèmes de dénombrement. Il s'utilise lorsque l'on cherche à dénombrer des ensembles résultant de choix successifs : on choisit un premier élément PUIS un deuxième élément PUIS...

Graphiquement, on représente ces problèmes par des arbres de choix.

Ex. 16.6 Combien y a-t-il de mots possibles formés avec 2 lettres de l'alphabet? Combien y a-t-il de mots de 2 lettres commençant par la lettre a ou se terminant par la lettre z. Combien y a-t-il de mots de 2 lettres distinctes?

Cor. 16.6

On note \mathcal{A} l'alphabet, Card $\mathcal{A} = 26$.

Les mots de deux lettres sont les éléments de $E = \mathcal{A} \times \mathcal{A}$, il y en a donc $26 \times 26 = 26^2$.

Notons $A \subset E$ l'ensemble des mots de deux lettres commençant par a et $B \subset E$ l'ensemble des mots de deux lettres se terminant par z.

L'ensemble des mots de deux lettres commençant par a ou se terminant par z est $A \cup B$, il y en a donc

 $\operatorname{Card} A \cup B = \operatorname{Card} A + \operatorname{Card} B - \operatorname{Card} A \cap B = 26 + 26 - 1 = 51.$

L'ensemble C des mots de deux lettres distinctes et l'ensemble D des mots de deux lettres identiques forment une partition de E. Donc

 $Card C = Card E - Card D = 26 \times 26 - 26 = 26 \times 25.$