STAD57: Time Series Analysis Problem Set 4

1. Exercise 3.9 from the textbook.

SOL:

The sample ACF/PACF's roughly match their theoretical behavior based on Table 3.1. Had we used a larger sample size, e.g. $n \ge 1000$, the match would be even closer.

2. Exercise 3.10 from the textbook.

a. The OLS-fitted model is: $X_t = 11.45 + .4286X_{t-1} + .4418X_{t-2} + W_t$, $\{W_t\} \sim WN(0, \sigma_W^2 = 32.32)$.

Call:
ar.ols(x = cmort, order.max = 2, demean = FALSE, intercept = TRUE)

Coefficients: 1 2 0.4286 0.4418

Intercept: 11.45 (2.394)

Order selected 2 sigma^2 estimated as 32.32

b. The forecasts & 95% prediction interval are shown below

3. Exercise 3.11 from the textbook.

- a. For the MA(1) model $X_t = W_t + \theta W_{t-1}$ the causal weights are $\psi_0 = 1, \psi_1 = \theta$, and $\psi_j = 0, \forall j \geq 2$, and the invertible weights are $\pi_j = (-\theta)^j, \forall j \geq 0$. Thus, the 1-step-ahead BLP based on the infinite past of the series is $\tilde{X}_{n+1} = -\sum_{j=1}^\infty \pi_j X_{n+1-j} = -\sum_{j=1}^\infty (-\theta)^j X_{n+1-j}$, and its MSE is $P_{n+1}^n = \sigma_w^2 \sum_{i=0}^{1-1} \psi_i^2 = \sigma_w^2.$
- **b.** For truncated prediction using eqn. (3.92) in the textbook, we have $\tilde{X}_{n+1}^n = \theta \tilde{W}_n^n$, where $\tilde{W}_0^n = 0 \& \tilde{W}_t^n = X_t \theta \tilde{W}_{t-1}^n$, so that:

$$\tilde{W_1}^n = X_1$$

$$\tilde{W}_2^n = X_2 - \theta \tilde{W}_1^n = X_2 - \theta X_1$$

$$\tilde{W}_{3}^{n} = X_{3} - \theta \tilde{W}_{2}^{n} = X_{3} - \theta (X_{2} - \theta X_{1}) = X_{3} - \theta X_{2} + (-\theta)^{2} X_{1}$$

:

$$\tilde{W}_{n}^{n} = X_{n} - \theta X_{n-1} + (-\theta)^{2} X_{n-2} + \dots + (-\theta)^{n-1} X_{1} = \sum_{j=0}^{n-1} (-\theta)^{j} X_{n-j}$$

The truncated 1-step-ahead predictor becomes

$$\tilde{X}_{n+1}^{n} = \theta \tilde{W}_{n}^{n} = \theta \left(\sum\nolimits_{j=0}^{n-1} (-\theta)^{j} X_{n-j} \right) = - \sum\nolimits_{j=1}^{n} (-\theta)^{j} X_{n+1-j}$$

Note that this is the same as the truncated 1-step-ahead formula given in eqn. (3.91), where

$$\tilde{X}_{n+1}^{n} = -\sum_{j=1}^{n} \pi_{j} X_{n+1-j} = -\sum_{j=1}^{n} (-\theta)^{j} X_{n+1-j}$$

The 1-step-ahead MSE is
$$\mathbb{E} \left[\left(X_{n+1} - \tilde{X}_{n+1}^n \right)^2 \right] = \mathbb{E} \left[\left(X_{n+1} + \sum_{j=1}^n (-\theta)^j X_{n+1-j} \right)^2 \right]$$

$$= \mathbb{E} \left[\left(\sum_{j=0}^n (-\theta)^j X_{n+1-j} \right)^2 \right] = \sum_{j=0}^n \sum_{k=0}^n (-\theta)^j (-\theta)^j \mathbb{E} \left[X_{n+1-j} X_{n+1-k} \right]$$

$$= \sum_{j=0}^n \sum_{k=0}^n (-\theta)^j (-\theta)^j \gamma(|j-k|)$$

The auto-covariance function of the MA(1) model is $\gamma(h) = \begin{cases} \sigma_w^2(1+\theta^2), & h=0\\ \sigma_w^2\theta, & h=1 \text{ , so }\\ 0, & h\geq 2 \end{cases}$

$$\begin{split} \mathbb{E}\bigg[\Big(X_{n+1} - \tilde{X}_{n+1}^n\Big)^2\bigg] &= \gamma(0) \sum_{j=0}^n (-\theta)^{2j} + 2\gamma(1) \sum_{j=0}^{n-1} (-\theta)^{2j+1} \\ &= \sigma_w^2 (1 + \theta^2) \sum_{j=0}^n \theta^{2j} + 2\sigma_w^2 \theta \sum_{j=0}^{n-1} (-\theta) \theta^{2j} \\ &= \sigma_w^2 (1 + \theta^2) \frac{1 - \theta^{2(n+1)}}{1 - \theta^2} - 2\sigma_w^2 \theta^2 \frac{1 - \theta^{2n}}{1 - \theta^2} \\ &= \frac{\sigma_w^2}{1 - \theta^2} \Big(1 + \theta^2 - \theta^{2n+2} - \theta^{2n+4} - 2\theta^2 + 2\theta^{2n+2}\Big) \\ &= \frac{\sigma_w^2}{1 - \theta^2} \Big(1 - \theta^{2n+4} - \theta^2 + \theta^{2n+2}\Big) \\ &= \frac{\sigma_w^2 \Big(1 - \theta^2\Big) \Big(1 + \theta^{2n+2}\Big)}{1 - \theta^2} = \sigma_w^2 \Big(1 + \theta^{2n+2}\Big) \end{split}$$

Note that $\mathbb{E}\Big[\left(X_{n+1}-\tilde{X}_{n+1}^n\right)^2\Big]=\sigma_w^2\Big(1+\theta^{2n+2}\Big) \to P_{n+1}^n=\sigma_w^2 \text{ as } n\to\infty \text{ (since } |\theta|<1\text{). So, the MSE}$

of the truncated prediction converges exponentially fast (in the sample size n) to the MSE of the optimal predictor given the infinite past.

4. Exercise 3.14 from the textbook.

a) The MSE is $\mathbb{E}\Big[\big(Y-g(X)\big)^2\Big]$. Using the law of total expectation (a.k.a. tower law), we get $\mathbb{E}\Big[\big(Y-g(X)\big)^2\Big] = \mathbb{E}\Big[\mathbb{E}\Big[\big(Y-g(X)\big)^2 \mid X\Big]\Big]$, so in order to minimize the MSE, we have to minimize the conditional expectation $\mathbb{E}\Big[\big(Y-g(X)\big)^2 \mid X\Big]$, for any value of X. But we know that for any random variable Y, the value of C that minimizes $\mathbb{E}\Big[\big(Y-c\big)^2\Big]$ is the mean of C, i.e. $C = \mathbb{E}\big[Y\big]$. Similarly for conditional expectations, the value of C0 that minimizes

$$\mathbb{E}\Big[ig(Y-g(X)ig)^2\mid X\Big]$$
 is $g(X)=\mathbb{E}ig[Y\mid X\Big]$ (note that we can view $g(X)$ as a constant here,

because, given X, any function of X behaves like a constant in the conditional expectation). For the model $Y = X^2 + Z$, where $X, Z \sim^{iid} N(0,1)$, we have:

$$g(X) = E[Y | X] = \mathbb{E}[X^2 + Z | X] = X^2 + \mathbb{E}[Z | X] = X^2$$

Using this predictor, the minimum MSE is

$$\mathbb{E}\left[\left(Y-g(X)\right)^{2}\right] = \mathbb{E}\left[\left(X^{2}+Z-X^{2}\right)^{2}\right] = \mathbb{E}\left[Z^{2}\right] = 1$$

b) If we restrict ourselves to linear functions g(X) = a + bX, the optimal (minimum MSE) parameter values are given by:

$$\begin{cases}
\mathbb{E}[(Y-g(X))1] = 0 \\
\mathbb{E}[(Y-g(X))X] = 0
\end{cases} \Rightarrow \begin{cases}
\mathbb{E}[X^2 + Z - a - bX] = 0 \\
\mathbb{E}[(X^2 + Z - a - bX)X] = 0
\end{cases}$$

$$\Rightarrow \begin{cases}
\mathbb{E}[X^2] + \mathbb{E}[Z] - a - b\mathbb{E}[X] = 0 \\
\mathbb{E}[X^3] + \mathbb{E}[ZX] - a\mathbb{E}[X] - b\mathbb{E}[X^2] = 0
\end{cases}$$

$$\Rightarrow \begin{cases}
1 - a = 0 \\
b = 0
\end{cases} \Rightarrow \begin{cases}
a = 1 \\
b = 0
\end{cases}$$

Thus, the BLP is constant, g(X) = 1, and its MSE is:

$$\mathbb{E}\Big[\big(Y - g(X)\big)^2\Big] = \mathbb{E}\Big[\big(X^2 + Z - 1\big)^2\Big] = \mathbb{E}\Big[\big(X^2 - 1\big)^2 + Z^2 + 2Z(X^2 - 1)^2\Big] =$$

$$= \mathbb{E}\Big[\big(X^2 - 1\big)^2\Big] + \mathbb{E}[Z^2] + 2\mathbb{E}[Z]\mathbb{E}\Big[\big(X^2 - 1\big)\Big] =$$

$$= \mathbb{E}[X^4 + 1 - 2X^2] + 1 = \mathbb{E}[X^4] + 2 - 2\mathbb{E}[X^2] = 3 + 2 - 2 = 3$$

5. Exercise 3.15 from the textbook.

For the AR(1) model $X_{_t}=\varphi X_{_{t-1}}+W_{_t}$ we have $\gamma(h)=\sigma_{_w}^2\frac{\varphi^h}{1-\varphi^2}, \ \ \forall h\geq 0$. Also, the m-step-ahead BLP is $X_{_{n+m}}^n=\sum_{_{j=1}}^n\varphi_{_{nj}}^{_{(m)}}X_{_{n+1-j}}$, where the coefficients are given by

$$\sum_{j=1}^{n} \varphi_{n_j}^{(m)} \gamma(k-j) = \gamma(m+k-1), \ \forall k=1,\dots,n \Leftrightarrow \\ \begin{cases} (k=1) \ \varphi_{n_1}^{(m)} \gamma(1-1) + \varphi_{n_2}^{(m)} \gamma(1-2) + \dots + \varphi_{m_n}^{(m)} \gamma(1-n) = \gamma(m+1-1) \\ (k=2) \ \varphi_{n_1}^{(m)} \gamma(2-1) + \varphi_{n_2}^{(m)} \gamma(2-2) + \dots + \varphi_{m_n}^{(m)} \gamma(2-n) = \gamma(m+2-1) \\ \vdots \\ (k=n) \ \varphi_{n_1}^{(m)} \gamma(n-1) + \varphi_{n_2}^{(m)} \gamma(n-2) + \dots + \varphi_{m_n}^{(m)} \gamma(n-n) = \gamma(m+n-1) \\ \end{cases} \\ \Leftrightarrow \begin{cases} Q_{n_1}^{(m)} \gamma(0) + \varphi_{n_2}^{(m)} \gamma(1) + \dots + \varphi_{n_n}^{(m)} \gamma(n-1) = \gamma(m) \\ \varphi_{n_1}^{(m)} \gamma(1) + \varphi_{n_2}^{(m)} \gamma(0) + \dots + \varphi_{n_n}^{(m)} \gamma(n-1) = \gamma(m) \\ \varphi_{n_1}^{(m)} \gamma(1) + \varphi_{n_2}^{(m)} \gamma(n-2) + \dots + \varphi_{n_n}^{(m)} \gamma(n-2) = \gamma(m+1) \\ \vdots \\ \varphi_{n_1}^{(m)} \gamma(1) + \varphi_{n_2}^{(m)} \gamma(n-2) + \dots + \varphi_{n_n}^{(m)} \gamma(n-2) = \gamma(m+n-1) \\ \end{cases} \\ \Leftrightarrow \begin{cases} \gamma(0) \ \gamma(1) \ \dots \ \gamma(1) \ \gamma(0) \ \vdots \ \vdots \\ \vdots \ \dots \ y(1) \ \gamma(1) \ \gamma(0) \ \vdots \ \vdots \\ \varphi_{n_n}^{(m)} = \varphi_{n_n}^{(m)} = \varphi_{n_n}^{(m)} = \varphi_{n_n}^{(m)} = \varphi_{n_n}^{(m)} \\ \varphi_{n_n}^{(m)} = \varphi_{n_n}^{$$

6. Exercise 3.16 from the textbook.

First, the invertible weights of the ARMA(1,1) model $X_t = .9X_{t-1} + W_t + .5W_{t-1}$ are given by $\pi_j = -1.4 \left(-.5\right)^{j-1}$, $\forall j \geq 1$ (see Example .3.7 on p. 95). Thus, the truncated predictions from equation (3.91) are: $\tilde{x}_{n+m}^n = -\sum_{j=1}^{m-1} \pi_j \tilde{x}_{n+m-j}^n - \sum_{j=m}^{1+m-1} \pi_j x_{n+m-j}^n \Rightarrow$ $\Rightarrow \tilde{x}_{n+m}^n = 1.4\sum_{j=1}^{m-1} (-.5)^{j-1} \tilde{x}_{n+m-j}^n + 1.4\sum_{j=m}^{1+m-1} \left(-.5\right)^{j-1} x_{n+m-j}^n$ Using equation (3.92), we have: $\tilde{x}_{n+m}^n = .9\tilde{x}_{n+m-1}^n + .5\tilde{w}_{n+m-1}^n$, $\forall m \geq 1$, where

$$\begin{cases} \tilde{w}_{i}^{n} = 0, \forall \left[t \leq 0, t > n\right] \\ \tilde{w}_{i}^{n} = \tilde{x}_{i}^{n} - 9\tilde{x}_{i-1}^{n} + 5\tilde{w}_{i-1}^{n} \\ \tilde{w}_{i}^{n} = \tilde{x}_{i}^{n} - 9\tilde{x}_{i-1}^{n} + 5\tilde{w}_{i-1}^{n} \\ \tilde{w}_{i}^{n} = \tilde{x}_{i}^{n} - 9\tilde{x}_{i}^{n} - 5\tilde{w}_{i}^{n} = x_{2} - 1.4x_{1} \\ \tilde{w}_{i}^{n} = \tilde{x}_{i}^{n} - 9\tilde{x}_{i}^{n} - 5\tilde{w}_{i}^{n} = x_{2} - 1.4x_{1} \\ \tilde{w}_{i}^{n} = \tilde{x}_{i}^{n} - 9\tilde{x}_{i}^{n} - 5\tilde{w}_{i}^{n} = x_{3} - 9x_{2} - 5\left(x_{2} - 1.4x_{1}\right) = x_{3} - 1.4\left(x_{2} + (-.5)x_{1}\right) \\ \vdots \\ \tilde{w}_{n}^{n} = \tilde{x}_{n}^{n} - 9\tilde{x}_{n-1}^{n} - 5\tilde{w}_{i}^{n} = x_{n} - 1.4\left(x_{n-1} + (-.5)x_{n-2} + \dots + (-.5)^{n-2}x_{1}\right) = x_{n} - 1.4\sum_{j=1}^{n-1}(-.5)^{j-1}x_{n-j} \\ \vdots \\ \tilde{w}_{n}^{n} = \tilde{x}_{n}^{n} - 9\tilde{x}_{n-1}^{n} - 5\tilde{w}_{n-1}^{n} = x_{n} - 1.4\left(x_{n-1} + (-.5)x_{n-2} + \dots + (-.5)^{n-2}x_{1}\right) = x_{n} - 1.4\sum_{j=1}^{n-1}(-.5)^{j-1}x_{n-j} \\ \vdots \\ \tilde{w}_{n+1}^{n} = 9\tilde{x}_{n}^{n} + 5\tilde{w}_{n}^{n} = .9x_{n} + .5\left(x_{n} - 1.4\sum_{j=1}^{n-1}(-.5)^{j-1}x_{n-j}\right) = \\ = 1.4x_{n} + 1.4\sum_{j=1}^{n-1}(-.5)^{j}x_{n-j} = 1.4\sum_{j=1}^{n}(-.5)^{j-1}x_{n+1-j} \\ \tilde{x}_{n+2}^{n} = .9\tilde{x}_{n+1}^{n} + 5\tilde{y}_{n+1}^{n} = 0 \\ = (1.4 - .5)\tilde{x}_{n+1}^{n} = 1.4\tilde{x}_{n+1}^{n} + 1.4\sum_{j=2}^{n+1}(-.5)^{j-1}x_{n+2-j} \\ \vdots \\ \tilde{x}_{n+3}^{n} = .9\tilde{x}_{n+2}^{n} + .5\tilde{y}_{n+2}^{n} = 0 \\ = (1.4 - .5)\tilde{x}_{n+1}^{n} + 1.4\sum_{j=2}^{n+1}(-.5)^{j}x_{n+2-j} = 1.4\left(\tilde{x}_{n+2}^{n} + (-.5)\tilde{x}_{n+1}^{n} + 1.4\sum_{j=2}^{n+2}(-.5)^{j-1}x_{n+2-j} \\ \vdots \\ \tilde{x}_{n+m}^{n} = 9\tilde{x}_{n+m-1}^{n} + .5\tilde{y}_{n+m-1}^{n-1} = (1.4 - .5)\tilde{x}_{n+m-1}^{n} = \\ = 1.4\tilde{x}_{n+m-1}^{n} + 1.4\sum_{j=1}^{n+2}(-.5)^{j}\tilde{x}_{n+m-1-j}^{n} + 1.4\sum_{j=m-1}^{n+m-2}(-.5)^{j-1}x_{n+m-1} \\ = 1.4\tilde{x}_{n+m-1}^{n} + 1.4\sum_{j=1}^{m-2}(-.5)^{j}\tilde{x}_{n+m-1-j}^{n} + 1.4\sum_{j=m-1}^{n+m-1}(-.5)^{j-1}x_{n+m-1} \\ = 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1}^{n} + 1.4\sum_{j=m}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1}^{n} \\ = 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1}^{n} + 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1-j}^{n} \\ = 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1}^{n} + 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1-j}^{n} \\ = 1.4\sum_{j=1}^{m-1}(-.5)^{j-1}\tilde{x}_{n+m-1-j}^{n} +$$

which is exactly the same as the truncated prediction formula from (3.91).

7. Exercise 3.17 from the textbook.

 $\tilde{x}_{t}^{n} = 0, \forall t \leq 0, \& \tilde{x}_{t}^{n} = x_{t}, \forall 1 \leq t \leq n$

We have
$$X_{n+m} - \tilde{X}_{n+m} = \sum_{j=0}^{m-1} \psi_j W_{n+m-j}$$
, so that:
$$E\Big[\Big(X_{n+m} - \tilde{X}_{n+m}\Big)\Big(X_{n+m+k} - \tilde{X}_{n+m+k}\Big)\Big] =$$

$$= E\Big[\Big(\sum_{j=0}^{m-1} \psi_j W_{n+m-j}\Big)\Big(\sum_{i=0}^{m-1} \psi_i W_{n+m+k-i}\Big)\Big] =$$

$$= \sum_{j=0}^{m-1} \sum_{i=0}^{m-1} \psi_j \psi_i \underbrace{E\Big[W_{n+m-j} W_{n+m+k-i}\Big]}_{=\sigma_w^2 \text{ only if } j=i-k, \text{ otherwise } = 0} = \sigma_w^2 \sum_{j=0}^{m-1} \psi_j \psi_{j+k}$$

8. Revisit the data in PS2, Q2: Plot the ACF & PACF for each of the 3 stationary series you produced (i.e. the series *after* any preprocessing). Based on these plots, try to identify an appropriate ARMA(p,q) model.

We have the following ACF/PACF plots:

a. Monthly Canadian reserves (in \$)

Since neither the ACF or the PACF seem to cut-off, we can go with a general ARMA(p,q) model. The exact order of the model is not obvious, but we should have $p\ge 1$ AND $q\ge 1$.

b. Monthly car sales in Quebec (in # cars)

The PACF looks like it cuts off after lag 1, while the ACF decreases more smoothly \rightarrow we can go with an AR(1) model.

c. Daily average temperatures in Toronto (in °C)

The situation here is similar to part **b.**, but even clearer. The PACF cuts off after lag 1, and the ACF tails off exponentially \rightarrow we can go with an AR(1) model.

9. Consider the discrete random variables $X, Y \in \{-1, 0, 1\}$ with joint bivariate probabilities given by the following contingency table:

	Y = -1	Y = 0	Y=1
X = -1	.05	.10	.15
X = 0	.20	.10	.10
$\overline{X} = +1$.15	0	.15

- **a.** Find the minimum mean square error (MMSE) predictor of Y given X (i.e. the conditional expectation $g(X) = \mathbb{E}[Y \mid X]$) and the MSE it achieves (i.e. $\mathbb{E}\left[\left(Y g(X)\right)^2\right]$).
- **b.** Find the best linear predictor (BLP) of Y given X (i.e. $g(X) = \alpha_0 + \alpha_1 X$ for the BLP coefficients α_0, α_1) and the MSE it achieves.

(Note: This is an example where the MMSE predictor and the BLP are *different*. The two would be equal only if the random variables were Gaussian, i.e. their joint distribution was Normal.)

a. The following table has the conditional distributions of Y given X=-1,0,1

	Y = -1	Y = 0	Y=1
X = -1	$\frac{.05}{.00} = \frac{1}{.00}$	$\frac{.10}{} = \frac{1}{}$	$\frac{.15}{} = \frac{1}{}$
	.3 6	.3 3	.3 2
X = 0	$\frac{.2}{.4} = \frac{1}{2}$	$\frac{.1}{.4} = \frac{1}{4}$	$\frac{.1}{.4} = \frac{1}{4}$
X = +1	$\frac{.15}{.3} = \frac{1}{2}$	0	$\frac{.15}{.3} = \frac{1}{2}$

$$\left(\text{from } P(Y = y \mid X = x) = \frac{P(Y = y, X = x)}{P(X = x)}\right)$$

$$\mathbb{E}[Y \mid X = -1] = \sum_{y=-1}^{+1} y P(Y = y \mid X = -1) = -1 \times \frac{1}{6} + 0 \times \frac{1}{3} + 1 \times \frac{1}{2} = \frac{1}{3}$$

$$\mathbb{E}[Y \mid X = 0] = \sum_{y=-1}^{+1} y P(Y = y \mid X = 0) = -1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{4} = -\frac{1}{4}$$

$$\mathbb{E}[Y \mid X = +1] = \sum_{y=-1}^{+1} y P(Y = y \mid X = +1) = -1 \times \frac{1}{2} + 0 \times 0 + 1 \times \frac{1}{2} = 0$$

The MMSE is $g(X) = \mathbb{E}[Y \mid X] = \begin{cases} 1/3, & X = -1 \\ -1/4, & X = 0 \end{cases}$, and the MSE it achieves is: $0, & X = +1 \end{cases}$

$$\mathbb{E}\Big[\big(Y - g(X)\big)^2\Big] = \sum_{y=-1}^{+1} \sum_{x=-1}^{+1} \big(y - g(x)\big)^2 P(Y = y, X = x) =$$

$$= (-1 - 1/3)^2 \times .05 + (0 - 1/3)^2 \times .10 + (1 - 1/3)^2 \times .15 +$$

$$+ (-1 + 1/4)^2 \times .20 + (0 + 1/4)^2 \times .10 + (1 + 1/4)^2 \times .10 +$$

$$+ (-1 - 0)^2 \times .15 + (0 - 0)^2 \times 0 + (1 - 0)^2 \times .15 = \underline{0.7416667}$$

b. Solving the prediction equations we get $\alpha_1 = \frac{Cov(Y,X)}{\mathbb{V}(X)}$, $\alpha_0 = \mathbb{E}[Y] - \alpha_1 \mathbb{E}[X]$, which are exactly

the same coefficient estimators as in the simple linear regression of Y on X.

$$\mathbb{E}[Y] = \sum_{y=-1}^{+1} yP(Y=y) = -1 \times .4 + 0 \times .2 + 1 \times .4 = 0$$

$$\mathbb{E}[X] = \sum_{x=-1}^{+1} xP(X=x) = -1 \times .3 + 0 \times .4 + 1 \times .3 = 0$$

$$\mathbb{V}[X] = \sum_{x=-1}^{+1} (x - E[X])^2 P(X = x) = (-1 - 0)^2 \times .3 + (0 - 0)^2 \times .4 + (1 - 0)^2 \times .3 = .6$$

$$Cov[Y, X] = E[X \cdot Y] - E[X] \cdot E[Y] = \sum_{x=-1}^{+1} y \cdot x \cdot P(Y = y, X = x) = 0$$

$$=(-1)(-1)\times.05+(0)(-1)\times.10+(1)(-1)\times.15+$$

$$+(-1)(0)\times.20+(0)(0)\times.10+(1)(0)\times.10+$$

$$+(-1)(1) \times .15 + (0)(1) \times 0 + (1)(1) \times .15 = \underline{-0.1}$$

$$\Rightarrow \alpha_1 = \frac{-.1}{.6} = -\frac{1}{6}, \quad \alpha_0 = 0 \text{ , so the BLP is } g(X) = -\frac{1}{6}X = \begin{cases} 1/6, & X = -1 \\ 0, & X = 0 \text{ and its MSE is } \\ -1/6, & X = +1 \end{cases}$$

$$\mathbb{E}\Big[\big(Y - g(X)\big)^2\Big] = \sum_{y=-1}^{+1} \sum_{x=-1}^{+1} \big(y - g(x)\big)^2 P(Y = y, X = x) =$$

$$= (-1 - 1/6)^2 \times .05 + (0 - 1/6)^2 \times .10 + (1 - 1/6)^2 \times .15 +$$

$$+ (-1 - 0)^2 \times .20 + (0 - 0)^2 \times .10 + (1 - 0)^2 \times .10 +$$

$$+ (-1 + 1/6)^2 \times .15 + (0 + 1/6)^2 \times 0 + (1 + 1/6)^2 \times .15 = 0.78333333$$