Expectation Maximization

Administrivia

NEW CHANGE on 16th Novemeber, 2022

```
Add the line below

'''

torch.cuda.empty_cache()

torch.manual_seed(0)

'''

Add the above line
```

From last class

Hierarchical Clustering

How to Define Inter-Cluster Similarity

	p 1	p2	рЗ	p4	р5	<u>_</u>
p1						
p2						
р3						
p 4						
р5						

- MIN
- MAX
- Group Average

Proximity Matrix

How to Define Inter-Cluster Similarity

	p 1	p2	рЗ	p4	р5	<u>L</u>
p1						
p2						
рЗ						
р4						
<u>p4</u> p5						

- MIN
- MAX
- Group Average

Proximity Matrix

How to Define Inter-Cluster Similarity

•	MIN

- MAX
- Group Average

	p 1	p2	р3	p4	р5	<u>L</u>
p1						
p2						
рЗ						
<u>p4</u> p5						

Proximity Matrix

The dendrogram colors don't match the cluster colors (and specifically the "complete" one is backwards)

K-Means Clustering

K-means Clustering

- Each cluster is associated with a Centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- Basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Example

Super cool visualization

https://educlust.dbvis.de/#

Disadvantages of Kmeans

Assumes equal variance in all dims

Easy to see how kmeans could make a mistake here

Soft Clustering

- K means does a hard assignment of points to clusters.
 - Point 1 is in cluster A
- Might also like to know the probability of belonging to a cluster
 - Point 1 has probability 0.5 in cluster A
- Model each cluster with a probability distribution
 - Normal with params μ, Σ

Likelihood for unsupervised case

- In supervised learning we want to maximize
 - -P(x,y) = p(x|y)p(y)
- This is unsupervised learning
 - We have no y!
- We wish to maximize p(x)
 - Find the params of p that maximize p(x)
 - Y can be latent, and we maximize the marginal dist.

$$p(x) = \sum_{y} p(x|y)p(y)$$

Mixture Model

• A density model p(x) may be multi-modal.

Mixture Model

- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different subpopulation (e.g., hip dysplasia vs normal hips).

Mixture Model

- We observe the mixture (blue)
- Can we recover the components? (green)

Likelihood for unsupervised case

- In supervised learning we want to maximize
 - -P(x,y) = p(x|y)p(y)
- This is unsupervised learning
 - We have no y!
- We wish to maximize p(x)
 - We can marginalize over y

$$p(x) = \sum_{y} p(x|y)p(y)$$

Likelihood for unsupervised case

In clustering, what does y represent?

$$p(x) = \sum_{y} p(x|y)p(y)$$

Y is the cluster!

$$p(x|\{y_1...y_K\}) = \sum_{j=1}^{K} p(x|y_j)p(y_j)$$

- Each cluster can be represented with some parameters
 - What could they be (1D case)?

- Each cluster can be represented with some parameters
 - What could they be here (2D case)?

Probability of a point x given

$$\Theta = \{\theta_1 \dots \theta_K\}$$

$$\theta_j = \{\mu_j, \Sigma_j\}$$

$$\mu_j \in \mathbb{R}^D$$
$$\Sigma_j \in \mathbb{R}^{D \times D}$$

%2-d Mean and covariance matrix

MeanVec = [0 0]; CovMatrix = [1 0.6; 0.6 2];

Probability of a point x given

$$\Theta = \{\theta_1 \dots \theta_K\}$$

$$\theta_j = \{\mu_j, \Sigma_j\}$$

$$p(x|\Theta) = \sum_{j=1}^K w_j p_j(x|\theta_j)$$

- w_i is probability any x belongs to cluster j
 - Note: does not depend on any of the other points

Extend this to all points (likelihood of all data)

$$p(X|\Theta) = \prod_{i=1}^{N} p(x_i|\Theta)$$
$$= \prod_{i=1}^{N} \sum_{j=1}^{K} w_j \ p_j(x_i|\theta_j)$$

Univariate Normal Case

$$p_{j}(x|\theta) = p_{j}(x|\mu,\sigma)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

Example Mixture

Two univariate gaussians with

$$-\mu_1$$
=4, μ_2 =-4,

$$-\sigma_1 = 2, \sigma_1 = 2,$$

$$-w_1 = 0.5$$

$$-w_2 = 0.5$$

(a) Probability density function for the mixture model.

(b) 20,000 points generated from the mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively. Both distributions have a standard deviation of 2.

How to Estimate the Params?

Calculate the MLE!

Turns out to be the sample mean and sample standard deviation

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2}$$

We're Missing Some Info

We just calculated:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2}$$

Reminder: Here's what we need to calculate:

$$p(x|\Theta) = \sum_{j=1}^{K} w_j p_j(x|\theta_j)$$

 Can't calculate the mean and std without knowing which m points belong to which cluster

We're Missing Some Info

- Can't calculate the mean and std without knowing which m points belong to which cluster
- But we can't assign points to clusters without knowing the mean and std of the clusters
- EM handles this circularity

EM Algorithm

- Select initial set of parameters
 - i.e. Set μ and σ randomly, set all w = 1/K
- Repeat:
 - E-step: for each item x, calculate the probability that it belongs to each distribution $p(dist j \mid x, \Theta)$
 - M-step: given probs from e-step, calculate new estimates of params that maximize the expected likelihood
- Until the params don't change too much or likelihood doesn't change too much

• To the derivation...

E-step (example with K=2 clusters)

- Find probability for belonging to each cluster
 - e.g. with two clusters:

$$p(dist \ j|x_i, \theta) = \frac{w_j \ p(x_i|\theta_j)}{w_1 \ p(x_i|\theta_1) + w_2 \ p(x_i|\theta_2)}$$

(by Bayes rule)

M-step

$$w_{j} = \frac{1}{N} \sum_{i=1}^{N} p(dist \ j | x_{i}, \theta)$$

$$\mu_{j} = \frac{\sum_{i=1}^{N} p(dist \ j | x_{i}, \theta) x_{i}}{\sum_{i=1}^{N} p(dist \ j | x_{i}, \theta)}$$

$$\sigma_{j} = \frac{\sum_{i=1}^{N} p(dist \ j | x_{i}, \theta) (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{N} p(dist \ j | x_{i}, \theta)}$$

K Means vs EM

Different cluster analysis results on "mouse" data set:

Differences in Density

Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.

Non-spherical data

(a) Clusters produced by mixture model clustering.

(b) Clusters produced by K-means clustering.

Moving to higher D

• In higher D:

$$\mu_j \in \mathbb{R}^D$$
$$\Sigma_j \in \mathbb{R}^{D \times D}$$

- When D becomes very large computing the full DxD cov matrix is expensive
- Let's look at this coding example...

Example code

 https://colab.research.google.com/drive/1dbZ 24FZgaMb7YDY4JIQNJaiRVqf7cJUQ?usp=shari ng

Other resources

- Nice video with example calculations
 - https://www.youtube.com/watch?v=XLKoTqGao7U