GDT ECH with linear Slab Profiles cold electrons, 50ev ions

Open Additional files:

Get dispersion routines by evaluating Disper.nb
Get plotting and printing routines by evaluating PlotPack.nb
Set Parameters by opening a Parameter Window

Note: Slab profile models defined in initialization cells at the bottom of this notebook.

First Do Cold Plasma

Plot Real and Imaginary parts of nx from 2nd order warm plasma dispersion relation (i.e. $E_{\parallel} \equiv 0$)

```
In[1729]:= nPerpCold[x_] := Module[{ne, b, x0}, x0 = x;
    ne = nprof[x0];
    b = bprof[x0];
    ColdDis0[freq, ne, b, nz, etaList]]

nt = Table[{x, nPerpCold[x]}, {x, xmin, xmax, xmax - xmin / nPoints - 1}};

ComplexListPlot[nt, "x (m)", "nx"]
    paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax, BXmin, BXmax, freq, nz, etaList, xmin, xmax}];
```


etaList={0., 1., 0., 0., 0.}

 $xmin=1. \times 10^{19}$ $xmax=3. \times 10^{19}$

Plot Real and Imaginary parts of nx from 4nd order cold plasma dispersion relation (i.e. fast and slow)

```
ln[1733]:= nPerp2FS[x_] := Module[{ne, b, x0}, x0 = x;
         ne = nprof[x0];
         b = bprof[x0];
                ColdDis2FS[freq, ne, b, nz, etaList]]
      nt2FS = Table [Flatten[{x, nPerp2FS[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
      nF = Transpose[{Transpose[nt2FS][[1]], Transpose[nt2FS][[2]]}];
      nS = Transpose[{Transpose[nt2FS][[1]], Transpose[nt2FS][[3]]}];
      g1 = ComplexListPlot[nF, "x (m)", "nx"];
      g2 = ComplexListPlot[nS, "x (m)", "nx"];
      Show[\{g1, g2\}, PlotRange \rightarrow All]
      Show[\{g1, g2\}, PlotRange \rightarrow \{0., 1000.\}]
      paramPrint[{dataSet, xProfileMin, xProfileMax,
          nXmin, nXmax, BXmin, BXmax, freq, nz, etaList, xmin, xmin}];
```


dataSet=GDT Kinetic Alfven 50 ev

 $xProfileMin=1.\times10^{19}$

 $xProfileMax=3. \times 10^{19}$

 $\texttt{nXmin=1.} \times \texttt{10}^{\texttt{19}}$

 $nXmax=3. \times 10^{19}$

BXmin=1.2

BXmax=1.2

freq=7.5

nz=127.324

etaList={0., 1., 0., 0., 0.}

 $\text{xmin=1.}\times \text{10}^{\text{19}}$

 $\text{xmin=1.} \times \text{10}^{\text{19}}$

Now Warm Plasma Stuff

Plot Real and Imaginary parts of nx from 6th order warm plasma dispersion relation (expanded to 2nd order in $k_{\parallel} \rho$)

```
ln[1742]:= nPerpWarm6[x_] := Module[{ne, te, b, x0, TL},
               x0 = x;
        ne = nprof[x0];
        b = bprof[x0];
           TL = tprof[x0] * TList;
           WarmDis6[freq, ne, b, nz, etaList, TL]]
```

Compare to cold plasma roots

```
In[1743]:= nPerp2FS[xmin]
                                                                      nPerpWarm6[xmin]
Out[1743]= \{0. + 54.7543 \, i, 3838.1\}
Out[1744]= \{1.52288 \times 10^{-9} + 50.1853 \, i, 3825.44 - 2529.23 \, i, 3825.44 + 2529.24 \, i
                                                                                   -1.52288 \times 10^{-9} - 50.1853 i, -3825.44 + 2529.23 i, -3825.44 - 2529.23 i
```

Gets a root near the cutoff fast wave branch, but slow wave is way off. Check if small Γ expansion is valid.

```
ln[1745] = xpoint = 1.0 * 10^19;
                                                          TL = tprof[xpoint] * TList;
                                                          roots6 = nPerpWarm6[xpoint];
                                                          Warmgamma[freq, BXmin, roots6[[1]], TL]
                                                          Warmgamma[freq, BXmin, roots6[[2]], TL]
                                                          Warmgamma[freq, BXmin, roots6[[3]], TL]
Out[1748]= \{0.+0.\dot{1}, 0.+0.\dot{1}, -0.0000899484 + 5.45898 \times 10^{-15}\dot{1}, 0.+0.\dot{1}, 0.+0.\dot{1}, 0.+0.\dot{1}\}
\text{Out}_{[1749]} = \{0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.294178-0.691097\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+
\text{Out}_{[1750]} = \{0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.294178+0.691097\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}}\}
                                                            Small k_x \rho expansion not valid for 2 large roots.
    In[1751]:= nPerp2FS[1.8 * 10 ^ 19]
                                                             nPerpWarm6[1.8 * 10 ^ 19]
Out[1751]= \{276.548, 1784.18\}
Out[1752]= \{300.421 + 1.02095 \times 10^{-8} \text{ i}, 2424.99 - 1850.53 \text{ i}, 2424.99 + 1850.53 \text{ i
                                                                      -300.421 - 1.02095 \times 10^{-8} \ \text{i} \ , \ -2424.99 + 1850.53 \ \text{i} \ , \ -2424.99 - 1850.53 \ \text{i} \ \}
```

Here we get 3 propagating roots. Check if small Γ expansion is valid.

```
ln[1753] = xpoint = 1.8 * 10^19;
                   TL = tprof[xpoint] * TList;
                    roots6 = nPerpWarm6[xpoint];
                   Warmgamma[freq, BXmin, roots6[[1]], TL]
                   Warmgamma[freq, BXmin, roots6[[2]], TL]
                   Warmgamma[freq, BXmin, roots6[[3]], TL]
Out[1756]= \left\{0.+0.\,\dot{\text{i}},\,0.+0.\,\dot{\text{i}},\,0.00322329+2.1908\times10^{-13}\,\dot{\text{i}},\,0.+0.\,\dot{\text{i}},\,0.+0.\,\dot{\text{i}},\,0.+0.\,\dot{\text{i}}\right\}
\text{Out}[1757] = \{0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.0877185 - 0.320536\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}}\}
\text{Out}[1758] = \{0.+0.\,\dot{\text{i}}\,,\,0.+0.\,\dot{\text{i}}\,,\,0.0877185+0.320536\,\dot{\text{i}}\,,\,0.+0.\,\dot{\text{i}}\,,\,0.+0.\,\dot{\text{i}}\,,\,0.+0.\,\dot{\text{i}}\,\}
                    Not valid for the large root, and I worry about the slow wave root too.
 In[1759]:= nPerp2FS[1.9 * 10 ^ 19]
                    nPerpWarm6[1.9 * 10 ^ 19]
Out[1759]= \{407.791, 1288.35\}
Outi17601= \{459.141 + 2.97858 \times 10^{-8} \text{ i}, 2018.57 - 1547.85 \text{ i}, 2018.57 + 1547.85 \text{ i},
                        -459.141 - 2.97858 \times 10^{-8} i, -2018.57 + 1547.85 i, -2018.57 - 1547.85 i}
 In[1761]:= nPerp2FS[2.0 * 10 ^ 19]
                    nPerpWarm6[2.0 * 10^19]
Out[1761]= \{612.814 - 423.427 i, 612.814 + 423.427 i\}
Out[1762]= \{708.224 - 1084.76 i, 708.224 + 1084.76 i, 1866.67 + 2.24612 \times 10^{-7} i, \}
                        -708.224 + 1084.76 i, -708.224 - 1084.76 i, -1866.67 - 2.24612 \times 10^{-7} i
 In[1838]:= nPerp2FS[2.1 * 10 ^ 19]
                    nPerpWarm6[2.1 * 10^19]
Out[1838]= \{175.467 - 742.538 \, \dot{\mathbb{1}}, \, 175.467 + 742.538 \, \dot{\mathbb{1}}\}
Out[1839]= \{8.28196 \times 10^{-8} - 2518.38 \text{ i}, 2.46314 \times 10^{-8} + 483.329 \text{ i}, 2697.35 + 5.79755 \times 10^{-8} \text{ i}, 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35 + 2697.35
                        -8.28196 \times 10^{-8} + 2518.38 i, -2.46314 \times 10^{-8} - 483.329 i, -2697.35 - 5.79755 \times 10^{-8} i
```

Here we get 1 propagating root. Check if small Γ expansion is valid.

```
In[1842]:= xpoint = 2.1 * 10 ^ 19;
                 TL = tprof[xpoint] * TList;
                  roots6 = nPerpWarm6[xpoint];
                 Warmgamma[freq, BXmin, roots6[[1]], TL]
                 Warmgamma[freq, BXmin, roots6[[2]], TL]
                 Warmgamma[freq, BXmin, roots6[[3]], TL]
\text{Out}_{[1845]} = \left\{0.+0.\,\dot{\mathbb{1}}\,,\,0.+0.\,\dot{\mathbb{1}}\,,\,-0.226507-1.48979\times10^{-11}\,\dot{\mathbb{1}}\,,\,0.+0.\,\dot{\mathbb{1}}\,,\,0.+0.\,\dot{\mathbb{1}}\,,\,0.+0.\,\dot{\mathbb{1}}\,,\,0.+0.\,\dot{\mathbb{1}}\,\right\}
\text{Out}[1846] = \left\{0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,-0.00834307+8.5036\times10^{-13}\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}},\,0.+0.\,\dot{\mathbb{1}}\right\}
Out[1847]= \{0. + 0. i, 0. + 0. i, 0.259845 + 1.117 \times 10^{-11} i, 0. + 0. i, 0. + 0. i, 0. + 0. i\}
                  Propagating root has I~0.26, expansion questionable
 In[1818]:= nPerp2FS[3.0 * 10 ^ 19]
                  nPerpWarm6[3.0 * 10^19]
Out[1818]= \{0. + 205.063 \, \dot{\mathbb{1}}, \, 0. + 3728.56 \, \dot{\mathbb{1}}\}
Out[1819]= \{1.56244 \times 10^{-8} - 5301.1 \, \text{i}, 7.17984 \times 10^{-10} + 202.855 \, \text{i}, 3991.03 + 9.86508 \times 10^{-9} \, \text{i}, 3991.03 + 9.8650
                     -1.56244\times10^{-8}+5301.1\,\dot{\text{i}}\,,\,-7.17984\times10^{-10}-202.855\,\dot{\text{i}}\,,\,-3991.03-9.86508\times10^{-9}\,\dot{\text{i}}\,\big\}
                  Plot kx profile for 6 th order system
In[1765]:= nxwarm = Table [Flatten[{x, nPerpWarm6[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
                  roots = rootSort[nxwarm];
                  rootsRe = Table[Flatten[{roots[[i]][[1]],
                                   Table[Re[roots[[i]][[j]]], {j, 2, Length[roots[[i]]]}]}], {i, Length[roots]}];
                  rootsIm = Table[Flatten[{roots[[i]][[1]],
                                  Table[Im[roots[[i]][[j]]], {j, 2, Length[roots[[i]]]}]}], {i, Length[roots]}];
                  g6 = ComplexVectorListPlot[roots, "x (m)", "nx"];
                  paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax, BXmin,
                            BXmax, freq, nz, etaList, TeXmin, TeXmax, TList, modelList, xmin, xmax}];
                  Show[g6, PlotRange → All]
                  Show[g6, PlotRange \rightarrow \{-2000., 2000.\}]
                  ComplexVectorListPlot[rootsRe, "x", "Re[kx]", PlotRange → {-2000., 2000.}]
                  ComplexVectorListPlot[rootsIm, "x", "Im[kx]", PlotRange → {-2000., 2000.}]
                  dataSet=GDT Kinetic Alfven 50 ev
                  xProfileMin=1. × 10<sup>19</sup>
                  xProfileMax=3. \times 10^{19}
                  nXmin=1. \times 10^{19}
```

 $\text{nXmax=3.}\times \text{10}^{\text{19}}$

BXmin=1.2

BXmax=1.2

freq=7.5

nz=127.324

etaList={0., 1., 0., 0., 0.}

TeXmin=0.1

TeXmax=0.1

TList={0., 0., 1., 0., 0., 0.}

modelList={2, 2, 2, 2, 2, 2}

 $\text{xmin=1.}\times \text{10}^{\text{19}}$

 $xmax\!=\!3.\times10^{19}$

There finally is something that looks like Stix's KAW picture. BUT electrons are cold and $k_x \rho$ expansion is questionable.

Now Try with Hot Plasma Dispersion using root finder

```
In[1775]:= nPerpHot[x_, nxGuess_] := Module[{ne, b, x0, TL, nx0},
               x0 = x;
        nx0 = nxGuess;
        ne = nprof[x0];
        b = bprof[x0];
        TL = tprof[x0] * TList;
      rootRule = FindRoot[DisFuncGeneral[freq, ne, b, nz, nx, etaList, TL,
            nminList, nmaxList, modelList], {nx, nx0}, MaxIterations -> 30];
        nx /. rootRule]
```

First try root finding on warm plasma dispersion rel (model = 1)

```
In[1776]:= modelList = Table[1, {i, 1, 6}];
```

Compare to cold plasma and 6th order system roots

```
In[1777]:= xpoint = 1.0 * 10 ^ 19;
       TL = tprof[xpoint] * TList;
       roots6 = nPerpWarm6[xpoint]
       nPerpHot[xpoint, roots6[[1]]]
       nPerpHot[xpoint, roots6[[2]]]
       nPerpHot[xpoint, roots6[[1]]]
       nPerpHot[xpoint, roots6[[2]]]
       nPerpHot[xpoint, roots6[[3]]]
Out[1779]= \{1.52288 \times 10^{-9} + 50.1853 \, i, 3825.44 - 2529.23 \, i, 3825.44 + 2529.23 \, i, \}
         -1.52288 \times 10^{-9} - 50.1853 i, -3825.44 + 2529.23 i, -3825.44 - 2529.23 i
Out[1780]= 1.52288 \times 10^{-9} + 50.1853 \text{ i}
Out[1781]= 3825.44 - 2529.23 i
Out[1782]= 1.52288 \times 10^{-9} + 50.1853 \text{ i}
Out[1783]= 3825.44 - 2529.23 i
Out[1784]= 3825.44 + 2529.23 i
```

Solutions from FindRoot (nPerpHot) agree with solutions from NSolve (nPerpWarm). But still not valid.

Look closer to resonance

```
ln[1785]:= xpoint = 1.8 * 10 ^ 19;
                                   TL = tprof[xpoint] * TList;
                                   roots6 = nPerpWarm6[xpoint]
                                   nPerpHot[xpoint, roots6[[1]]]
                                   nPerpHot[xpoint, roots6[[2]]]
                                   nPerpHot[xpoint, roots6[[1]]]
                                   nPerpHot[xpoint, roots6[[2]]]
                                   nPerpHot[xpoint, roots6[[3]]]
Out[1787]= \{300.421 + 1.02095 \times 10^{-8} \text{ i}, 2424.99 - 1850.53 \text{ i}, 2424.99 + 1850.53 \text{ i
                                          -300.421 - 1.02095 \times 10^{-8} i, -2424.99 + 1850.53 i, -2424.99 - 1850.53 i
Out[1788]= 300.421 + 1.02095 \times 10^{-8} i
Out[1789]= 2424.99 - 1850.53 i
Out[1790]= 300.421 + 1.02095 \times 10^{-8} i
Out[1791]= 2424.99 - 1850.53 i
Out[1792]= 2424.99 + 1850.53 i
```

-4000

Plot nx profile from root finder but still with 6th order system (model = 1)

```
In[1793]:= modelList = Table[1, {i, 1, 6}];(* Set model *)
in[1794]:= nxhot[iRoot_] := Module { iRoot0, nxWarm, rootsWarm, nxH, x0, ne, b, t, TL},
          nxWarm = Table [Flatten[{x, nPerpWarm6[x]}], \{x, xmin, xmax, \frac{xmax - xmin}{nPoints - 1}\}];
           iRoot0 = iRoot;
           rootsWarm = rootSort[nxWarm];
          nxH = Table[0., {i, 1, nPoints}];
          Do
            \left(x0 = xmin + (i - 1) \frac{xmax - xmin}{nPoints - 1};\right)
             nxGuess = rootsWarm[[i]][[iRoot0 + 1]];
             (*Print["x0 = ", x0," nxGuess= ",nxGuess];*)
             nxH[[i]] = {x0, nPerpHot[x0, nxGuess]}; |, {i, 1, nPoints}];
          nxH];
       g7 = ComplexVectorListPlot[nxhot[1], "x (m)", "nx"];
       g8 = ComplexVectorListPlot[nxhot[2], "x (m)", "nx"];
       g9 = ComplexVectorListPlot[nxhot[3], "x (m)", "nx"];
       g10 = ComplexVectorListPlot[nxhot[4], "x (m)", "nx"];
       g11 = ComplexVectorListPlot[nxhot[5], "x (m)", "nx"];
       g12 = ComplexVectorListPlot[nxhot[6], "x (m)", "nx"];
       Show[\{g7, g8, g10, g11\}, PlotRange \rightarrow All]
       Show[\{g7, g8, g10, g11\}, PlotRange \rightarrow \{-1000., 1000.\}]
       paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax, BXmin,
           BXmax, freq, nz, etaList, TeXmin, TeXmax, TList, modelList, xmin, xmax}];
          nx
       4000
       2000
Out[1798]=
                                          2.5×10<sup>19</sup>
       -2000
```


Now try with hot plasma (model = 2) for all species. Can I find the warm plasma roots with the full dispersion relation?

■ Change model to 2

```
In[1801]:= modelList = Table[2, {i, 1, 6}];
In[1802]:= xPoint = xmin;
        nPerp2FS[xPoint]
        guesses = nPerpWarm6[xPoint] (* Warm plasma roots at x=0 *)
Out[1803]= \{0. + 54.7543 \,\dot{\mathbb{1}}, 3838.1\}
Out[1804]= \{1.52288 \times 10^{-9} + 50.1853 \, \text{i}, 3825.44 - 2529.23 \, \text{i}, 3825.44 + 2529.23 \, \text{i}, 
         -1.52288 \times 10^{-9} - 50.1853 i, -3825.44 + 2529.23 i, -3825.44 - 2529.23 i
```

```
In[1805]:= {nPerpHot[xPoint, guesses[[1]]],
                       nPerpHot[xPoint, guesses[[2]]],
                       nPerpHot[xPoint, guesses[[3]]],
                       nPerpHot[xPoint, guesses[[4]]],
                       nPerpHot[xPoint, guesses[[5]]],
                       nPerpHot[xPoint, guesses[[6]]]}
                    paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax, BXmin, BXmax, freq,
                               nz, etaList, TeXmin, TeXmax, TList, modelList, nminList, nmaxList, xmin, xmax}];
Out[1805]= \{1.52288 \times 10^{-9} + 50.1853 \, \text{i}, 4476.34 - 3958.2 \, \text{i}, 4476.34 + 3958.2 \, \text{
                        -1.52288 \times 10^{-9} - 50.1853 i, -4476.34 + 3958.2 i, -4476.34 - 3958.2 i
                   dataSet=GDT Kinetic Alfven 50 ev
                    xProfileMin=1. × 10<sup>19</sup>
                    xProfileMax=3. \times 10^{19}
                    nXmin=1. \times 10^{19}
                    nXmax=3. \times 10^{19}
                    BXmin=1.2
                    BXmax=1.2
                    freq=7.5
                   nz=127.324
                   etaList={0., 1., 0., 0., 0.}
                   TeXmin=0.1
                   TeXmax=0.1
                   TList={0., 0., 1., 0., 0., 0.}
                   modelList={2, 2, 2, 2, 2, 2}
                   nminList=\{-1, -2, -2, -2, -2, -2\}
                    nmaxList={1, 2, 2, 2, 2, 2}
                    xmin=1. \times 10^{19}
                    xmax=3. \times 10^{19}
                    Hot plasma root finder gets fast root but slow root is way different from 6th order, i.e. not damped. Not
                   surprising since k_x \rho expansion not valid Try initializing with cold plasma roots
 In[1807]:= nPerp2FS[xPoint]
                     {nPerpHot[xPoint, nPerp2FS[xPoint][[1]]], nPerpHot[xPoint, nPerp2FS[xPoint][[2]]]}
Out[1807]= \{0. + 54.7543 i, 3838.1\}
Out[1808]= \{1.52288 \times 10^{-9} + 50.1853 \text{ i}, 0.0114009 + 3.46098 \times 10^{-8} \text{ i}\}
                    Same as before.
```

Plot hot plasma vs x

freq=7.5

```
In[1809]:= g7 = ComplexVectorListPlot[nxhot[1], "x (m)", "nx"];
        g8 = ComplexVectorListPlot[nxhot[2], "x (m)", "nx"];
        g9 = ComplexVectorListPlot[nxhot[3], "x (m)", "nx"];
       g10 = ComplexVectorListPlot[nxhot[4], "x (m)", "nx"];
       g11 = ComplexVectorListPlot[nxhot[5], "x (m)", "nx"];
        g12 = ComplexVectorListPlot[nxhot[6], "x (m)", "nx"];
        Show[\{g7, g8, g9, g10, g11, g12\}, PlotRange \rightarrow All]
        Show[\{g7, g8, g9, g10, g11, g12\}, PlotRange \rightarrow \{-1000., 1000.\}]
        paramPrint[{dataSet, xProfileMin, xProfileMax, nXmin, nXmax, BXmin, BXmax, freq, nz,
            etaList, TeXmin, TeXmax, TList, modelList, nminList, nmaxList, xmin, xmax}];
            nx
        6000
         4000
        2000
Out[1812]=
                                                            3.0 × 10<sup>19</sup> x (m)
                       1.5 \times 10^{1}
        -2000
        -4000
        -6000
            nx
         1000
         500
Out[1813]=
                                                            \frac{1}{3.0 \times 10^{19}} x (m)
                                   2.0
                                                2.5 \times 10^{19}
         -500
        -1000
       dataSet=GDT Kinetic Alfven 50 ev
        xProfileMin=1.\times 10^{19}
       xProfileMax=3. \times 10<sup>19</sup>
        nXmin=1. \times 10^{19}
       \texttt{nXmax=3.} \times \texttt{10}^{\texttt{19}}
        BXmin=1.2
       BXmax=1.2
```

```
nz=127.324
etaList={0., 1., 0., 0., 0.}
TeXmin=0.1
TeXmax=0.1
TList={0., 0., 1., 0., 0., 0.}
modelList={2, 2, 2, 2, 2, 2}
nminList=\{-1, -2, -2, -2, -2, -2\}
nmaxList={1, 2, 2, 2, 2, 2}
xmin=1. \times 10^{19}
xmax=3. \times 10^{19}
```

No sign of any kinetic Alfven wave. Really looks about the same as with warm electrons

Initialization

Magnetic field, Density and Temperature Profiles

```
bprof[x_] := If[Abs[(BXmax - BXmin) / BXmax] > 10^{-6},
In[1815]:=
             BXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (BXmax - BXmin), BXmin];
         nprof[x_] := If[Abs[(nXmax - nXmin) / nXmax] > 10^{-6},
In[1816]:=
             nXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (nXmax - nXmin), nXmin];
         tprof[x_] := If[Abs[(TeXmax - TeXmin) / TeXmax] > 10<sup>-6</sup>,
In[1817]:=
            TeXmin + (x - xProfileMin) / (xProfileMax - xProfileMin) (TeXmax - TeXmin), TeXmin];
```