# Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

## Отчёт по лабораторной работе №1

По дисциплине «Математическая статистика» (четвёртый семестр) Исследование распределения случайной величины

#### Студент:

Билошицкий Михаил Владимирович Беляев Михаил Сергеевич Сиразетдинов Азат Ниязович Преподаватель: Милованович Екатерина Воиславовна

Санкт-Петербург 2024 г.

## Цель работы:

На основании анализа опытных данных

- 1. Построить интервальный ряд; полигон частот; выборочную функцию распределения; гистограмму для изучения признака
  - 2. Вычислить точечные оценки математического ожидания и дисперсии
- 3. Построить доверительные интервалы для мат ожидания и дисперсии с доверительной вероятностью 0,95

### 1 Интервальный ряд

По условию нам дано n = 100. Получим k - число интервалов:

$$k = \sqrt{n}$$

$$k = \sqrt{100} = 10$$
(1)

Таблица для оценивания исследования распределения случайной величины:

| 0.866  | -0.005       | 0.403              | 1.908              | 0.448               | 0.169              | -0.731            |      |
|--------|--------------|--------------------|--------------------|---------------------|--------------------|-------------------|------|
| 1.409  | 0.191        | -0.165             | 0.889              | 0.804               | -2.131             | -0.754            |      |
| -0.693 | -0.732       | 1.073              | -1.724             | -1.810              | 0.947              | -1.118            | 0.66 |
| -0.990 | -0.104       | 0.174              | -0.052             | -0.182              | 1.813              | 0.346 height0.970 |      |
| 1.547  | -0.484       | -0.086             | -0.066             | 0.150               | -0.264 height0.350 | 0.033             |      |
| -0.319 | 0.570        | -0.837             | -0.413             | -1.640 height-0.795 | -0.015             | 1.774             |      |
| -0.917 | -0.091       | 1.118              | 0.277 height-0.622 | -0.554              | -0.470             | 0.700             |      |
| 0.630  | -0.700       | -0.674 height      | 1.429              | -1.163              | -0.925             | 0.973             |      |
| 0.384  | -0.350       | 0.203 height-2.084 | 0.100              | 0.001               | -0.070             | 0.773             |      |
| 1.816  | 1.307 height |                    | 1                  | 1                   | 1                  |                   |      |
|        |              |                    |                    |                     |                    |                   |      |

Таблица 1: Данные

Для выборки  $\min = -2.977$ ,  $\max = 2.247$ . Для удобства расчётов пусть  $\min = -3.0$ ,  $\max = 2.5$ .

$$a_{min} = -3.0; \quad b_{max} = 2.5$$

По формуле найдём шаг разбиения:

$$h = \frac{b-a}{k}$$

$$h = \frac{5.5}{10} = 0.55$$
(2)

Введём отрезок [a, b], длина которого 10h. Разбиваем его на 10 равных частичных интервалов, определяем частоты и относительные частоты. Представитьеля каждого интервала будем считать по формуле:

$$x_i^* = \frac{x_{i-1} + x_i}{2}$$

$$h_i = \frac{p_i^*}{h}$$

$$(3)$$

| Номер     | 1            | 2            | 3               | 4            | 5            | 6           | 7              | 8              | 9              | 10             |
|-----------|--------------|--------------|-----------------|--------------|--------------|-------------|----------------|----------------|----------------|----------------|
| Интервалы | [-3.0;-2.45) | [-2.45;-1.9) | [-1.9 ; -1.35 ) | [-1.35;-0.8) | [-0.8;-0.25) | [-0.25;0.3) | [ 0.3 ; 0.85 ) | [ 0.85 ; 1.4 ) | [ 1.4 ; 1.95 ) | [ 1.95 ; 2.5 ] |
| $x_i^*$   | -2.725       | -2.175       | -1.625          | -1.075       | -0.525       | 0.025       | 0.575          | 1.125          | 1.675          | 2.225          |
| $m_i$     | 3            | 1            | 4               | 9            | 21           | 27          | 14             | 8              | 11             | 2              |
| $p_i^*$   | 0.03         | 0.01         | 0.04            | 0.09         | 0.21         | 0.27        | 0.14           | 0.08           | 0.11           | 0.02           |
| $h_i$     | 0.05         | 0.02         | 0.07            | 0.16         | 0.38         | 0.49        | 0.25           | 0.15           | 0.2            | 0.04           |

Таблица 2: Интервальный ряд с характеристиками



Рис.2 Полигон частот

## 2 Вычисление точечных оценок мат ожидания и дисперсии

Найдем точечные оценки математического ожидания и дисперсии. В качестве таких оценок выбирают среднее выборочное значение:

$$\overline{X} = \sum_{i=1}^{10} x_i^* p_i^*$$



Рис. 1: Эмпирическая функция



Рис. 3 Гистограмма распределения

и выборочную дисперсию:

$$S^{2} = \sum_{i=1}^{10} (x_{i}^{*} - \overline{X})^{2} p_{i}^{*} = \sum_{i=1}^{10} x_{i}^{*2} p_{i}^{*} - \overline{X}^{2} = m_{2} - \overline{X}^{2}$$

где

$$m_2 = \sum_{i=1}^{10} x_i^{*2} p_i^*$$

| Номер           | 1      | 2      | 3      | 4      | 5      | 6     | 7     | 8     | 9     | 10    | некоторые рез-ты |
|-----------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|------------------|
| $x_i^*$         | -2.725 | -2.175 | -1.625 | -1.075 | -0.525 | 0.025 | 0.575 | 1.125 | 1.675 | 2.225 | -                |
| $p_i^*$         | 0.03   | 0.01   | 0.04   | 0.09   | 0.21   | 0.27  | 0.14  | 0.08  | 0.11  | 0.02  | -                |
| $x_i^*p_i^*$    | -0.082 | -0.022 | -0.065 | -0.097 | -0.11  | 0.007 | 0.081 | 0.09  | 0.184 | 0.045 | 0.031            |
| $x_i^{*2}p_i^*$ | 0.223  | 0.047  | 0.106  | 0.104  | 0.058  | 0.0   | 0.046 | 0.101 | 0.309 | 0.099 | 1.093            |

Таблица 3: Данные для подсчёта мат ожидания и дисперсии

Оценка математического ожидания: 0.031

Оценка дисперсии: 1.092

### 3 Построить доверительные интервалы для мат ожидания и дисперсии

Для рассматриваемого примера будем иметь:

$$\gamma = 0,95;$$

тогда находим по таблице распределения Стьюдента для 0.05 квантиль t=2.262, поэтому в нашем примере имеем:

$$\overline{X} - t \frac{S}{\sqrt{n}} = 0.031 - 2.262 \cdot \frac{\sqrt{1.092}}{\sqrt{10}} = -0.716$$

$$\overline{X} + t \frac{S}{\sqrt{n}} = 0.031 + 2.262 \cdot \frac{\sqrt{1.092}}{\sqrt{10}} = 0.778$$

таким образом:

$$-0.716 < m < 0.778$$

Для дисперсии определим квантили распределения хи-квадрат с 9 степенями свободы:

$$\chi^2_{1-\alpha/2,n-1} = \chi^2_{1-\frac{0.05}{2},9} = \chi^2_{0.975,9} = 2.7$$

$$\chi^2_{\alpha/2,n-1} = \chi^2_{0.025,9} = 19.02$$

По формуле подставим:

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2,n-1}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2}\right)$$

$$\left(\frac{9\cdot 1.093}{19.02}, \frac{9\cdot 1.093}{2.7}\right)$$

Доверительный интервал для дисперсии:

$$0.517 < s^2 < 3.643$$

## Вывод

На основании анализа опытных данных: построили интервальный ряд; полигон частот; выборочную функцию распределения; гистограмму для изучения признака. Вычислили точечные оценки мат ожидания и дисперсии. Построили доверительные интервалы для мат ожидания и дисперсии с доверительной вероятностью 0.95.