Sensing - lab01

Teammates:

Strain measure Federico Berra, Gaia Arienti **Prof:** Luca Palmieri Lab Date: 06/12/2018 Considerando la fibra come un'insieme di cristalli di silica e misurando il backscattering di rayleigh è possibile ottenere un'impronta digitale unica della fibra, questa impronta rimane invariata fintanto che la fibra non subisce perturbazioni. E quindi possibile realizzare un sensore di misura di strain o di temperatura confrontando il profilo di scattering a riposo con quello sotto sforzo. Immaginando di applicare uno strain alla fibra si può immaginare che questi cristalli vengano tirati e quindi l'impronta venga sfasata nell'intorno del punto di analisi. Applicando quindi la crosscorrelazione è possibile risalire alla quantità di strain misurando lo shift in frequenza tra i due segnali. è importante notare che l'analisi della crosscorrelazione è un'analisi puntuale nel senso che il confronto tra i due segnali non viene fatta prendendo come riferimento tutta la fibra ma solo una porzione. La dimensione della porzione è importante perché influenza la risoluzione spettrale e il rapporto segnale rumore della mirusa effettuata. Sebbene segnmenti lunghi migliorano l'accuracy è necessario scegliere segmenti più piccoli per evitare effentti di interferenza delle regioni non interessate. Uno shift tra i due spettri è possibile ricondurlo ad

$$\frac{\Delta \lambda}{\lambda} = K_T \Delta T + K_\epsilon \epsilon$$

un'effetto di strain rispetto questa formula:

Nel nostro caso siamo interessati ad effettuare una misura di strain e a considerare la variazione in temperatura trascurabile:

$$\frac{\Delta \lambda}{\lambda} \approx K_{\epsilon} \epsilon$$

 $con K_{\epsilon} = -0.$

file name	weight	ymax	ymin
1	0		
2	60		
3	120		
4	180	84,9	-72
5	240	112	-95
6	300	138	-118
7	359	165	-138
8	418	189	-164
9	476	213	-182
10	534	238	-202
11	591	261	-220
12	686	300	-256
13	782	339	-289
14	686		
15	591		
16	534		
17	476		
18	418		
19	359		
20	300		
21	240		
22	180		
23	120		
24	60		
25	0		

Tabella 1: Measures.