

Loss of Genotypes

Allele frequencies stay the same!

3

Allele Identity

Autozygous - Two alleles are the same because they can be traced directly back to a common ancestor.

pF

Expected Genotype Frequency

5

Estimation of F

$$F = \frac{H_E - H_O}{H_E}$$
$$= 1 - \frac{H_O}{H_E}$$

Estimate of F is 'relative' to the expected frequency of heterozygotes under HWE

6

Example from arapat

Complete Selfing

Mating Frequencies

$$P = f(AA)$$

$$Q = f(AB)$$

$$R = f(BB)$$

9

Mating Frequencies

Parental Genotype	Offspring Genotype	Frequency
AA	AA	Р
AB	1/4 AA	Q/4
	1/2 AB	Q/2
	1/4 BB	Q/4
BB	BB	R

10

$$p_{t+1} = P_{t+1} + \frac{1}{2}Q_{t+1}$$

$$= \left(P_t + \frac{1}{4}Q_t\right) + \frac{1}{2}\left(\frac{1}{2}Q_t\right)$$

$$= P_t + \frac{1}{2}Q_t$$

$$= p_t$$

Inbreeding DOES NOT change allele frequencies, only genotype frequencies!

Generational Changes in F

$$F_1 = 1 - \frac{H_O}{H_E} = 1 - \frac{Q_1}{2pq}$$

$$F_2 = 1 - \frac{\frac{Q_1}{2}}{2pq}$$

$$F_3 = \frac{\frac{Q_2}{2}}{2pq} = \frac{\frac{Q_1}{2}}{2pq}$$

$$F_4 = \frac{\frac{Q_3}{2}}{2pq} = \frac{\frac{\frac{Q_2}{2}}{2}}{2pq} = \frac{\frac{\frac{Q_1}{2}}{2}}{2pq}$$

$$F_{t+1} = \frac{1}{2} + \frac{1}{2}F_t$$

$$F_t = 1 - \left(\frac{1}{2}\right)^t (1 - F_O)$$


```
require(gstudio)
AA <- locus( c("A", "A") )
AB <- locus( c("A", "B") )
BB <- locus( c("B", "B") )
pop <- data.frame(ID=1:100, Locus1=c( rep(AA,25), rep(AB,50), rep(BB,25) ) )
genetic_diversity(pop,mode="Fis")
## Locus Fis
## 1 Locus1 0
df$Category = "Expectations"
for( rep in 0:9 ) {
  data <- pop
  F <- rep(0, length(T) )
  for(t in T){
    # estimate F
    F[(t+1)] <- genetic_diversity(data,mode="Fis")$Fis[1]</pre>
    # self all adults to make offspring
    data <- mate( data, data, N=1 )</pre>
  df.rep <- data.frame( T, F, Category=paste("Replicate",rep))</pre>
  df <- rbind( df, df.rep )
```


Mixed Mating Systems

Category	Mating	Frequency	E[AA]	E[AB]	E[BB]
Selfed (s)	AA x AA	sP	sP		
	AB x AB	sQ	sQ/4	sQ/2	sQ/4
	BB x BB	sR			sR
Outcross (1-s)	AA x AA	(1-s)P ²	(1-s)P ²		
	AA x AB	(1-s)2PQ	(1-s)PQ	(1-s)PQ	
	AA x BB	(1-s)2PR		(1-s)2PR	
	AB x AB	(1-s)Q ²	(1-s)Q ² /4	(1-s)Q ² /2	(1-s)Q ² /4
	AB x BB	(1-s)2QR		(1-s)QR	(1-s)QR
	BB x BB	(1-s)R ²			(1-s)R ²

$$E[AA]_{t+1} = sP_t + s\frac{Q_t}{4} + (1-s)P_t^2 + (1-s)P_tQ_t + (1-s)\frac{Q_t^2}{4}$$

$$= \cdots$$

$$= s\left[P_t + \frac{Q_t}{4}\right] + (1-s)p_t^2$$

$$E[AB]_{t+1} = s\frac{Q_t}{2} + (1-s)2p_tq_t$$

$$E[BB]_{t+1} = s \left[R_t + \frac{Q_t}{4} \right] + (1-s)q_t^2$$

```
p \leftarrow fAA \leftarrow fAB \leftarrow fBB \leftarrow rep(NA,10)

p[1] \leftarrow 0.25

fAA[1] \leftarrow p[1]^2
fAB[1] <- 2*p[1]*(1-p[1])
fBB[1] <- (1-p[1])^2
cbind(p,fAA,fAB,fBB)
                           fAA
                                     fAB
                   p
      [1,] 0.25 0.0625 0.375 0.5625
      [3,]
[4,]
## [5,]
## [6,]
## [7,]
## [8,]
## [9,]
      [5,]
[6,]
[7,]
                 NA
                 NA
                NA
NA
## [10,]
s <- 0.5
for(i in 2:10){
   fAA[i] <- s*(fAA[i-1] + fAB[i-1]/4) + (1-s)*p[i-1]^2

fAB[i] <- s*fAB[i-1]/2 + (1-s)*2*p[i-1]*(1-p[i-1])
  fBB[i] <- s*(fBB[i-1] + fAB[i-1]/4) + (1-s)*(1-p[i-1])^2
p[i] <- fAA[i] + fAB[i]/2
```


Equilibrium Heterozygosity

$$\hat{Q} = s\frac{\hat{Q}}{2} + (1-s)2pq$$

Equilibrium F

$$\hat{Q} = \frac{(1-s)4pq}{2-s}$$

$$F = 1 - \frac{H_O}{H_E}$$

$$\hat{F} = \frac{s}{2 - s}$$

Expected F@t

$$F_t = \frac{s}{2-s} \left[1 - \frac{s^t}{2} \right] + \left[\frac{s}{2} \right]^t F_0$$

Wahlund Effects

25

Unknown Partitioning

- 1. What is *F* for each population?
- 2. What is *F* if you combined populations?