MTH 343 Homework 2

Philip Warton

April 17, 2020

(1) 3.4.6

Create a multiplication table for U(12). The integers that are co-prime to 12 are $\{1, 5, 7, 11\}$ and their respective equivalence classes. We now compute the multiplication table.

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

(2) 3.4.7

Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Proof. Commutativity We want to show that (S,*) is commutative. If $a*b=b*a \forall a,b\in S$, then the group is commutative. Let $a,b\in S$ be arbitrary. Then,

$$a*b = a+b+ab$$
$$= b+a+ab$$
$$= b+a+ba$$
$$= b*a$$

The group (S, *) is commutative.

Associativity To show associativity, we must show that $(a*b)*c = a*(b*c) \forall a,b,c \in S$. Let $a,b,c \in S$, then,

$$(a*b)*c = (a+b+ab)*c$$

$$= (a+b+ab)+c+(a+b+ab)c$$

$$= a+b+c+ab+ac+bc+abc$$

$$= a+(b+c+bc)+a(b+c+bc)$$

$$= a*(b+c+bc)$$

$$= a*(b*c)$$

The group (S, *) is associative.

Identity We want to show that $\exists e \in S$ such that $e * a = a * e = a \quad \forall a \in S$. Let $x \in (S = \mathbb{R} \setminus \{1\})$.

Denote the identity element e, then x * e = x. This can be written as

$$x * e = x = x + e + xe$$

$$\implies 0 = e + xe$$

$$0 = e(1 + x)$$

$$\implies e = 0$$

Since $0 \in S$, and for any $s \in S$, 0 * s = s = s * 0, we have an identity.

Inverse We want to show that $\forall a \in S, \exists a': s*s' = e$. Let $a \in S$ be arbitrary, then we want to find a' such that.

$$a * a' = e$$

$$a + a' + aa' = 0$$

$$a'(1+a) = -a$$

$$a' = \frac{-1}{1+a}$$

If a = -1, then no a' exists, but since $-1 \notin S$, this situation will never occur. The inverse of 0 is $-1 \notin S$, but since 0 is the identity, it need not have an inverse.

Closure We want to show that $\forall a, b \in S, a * b \in S$. Let $a, b \in S$. Then,

$$a * b = a + b + ab$$

Since \mathbb{R} is closed under addition and multiplication, the only thing we have to check is that it does not ever produce -1. Suppose that a*b=-1. Then

$$a+b+ab = -1$$

$$a(1+b)+b = -1$$

$$a = \frac{-1-b}{1+b}$$

$$a = \frac{-(1+b)}{(1+b)}$$

$$a = -1$$

This is a contradiction since $a=-1 \notin S$. Therefore a*b cannot equal -1. Since all of these conditions are met, we say that (S,*) is an abelian group.

(3) 3.4.21

For each $a \in \mathbb{Z}_n$ find an element $b \in \mathbb{Z}_n$ such that $a + b \equiv 0 \pmod{n}$.

Let $a \in \mathbb{Z}_n$. Then $a \in \{0, 1, \dots, n-1\} = \{n-n, \dots, n-2, n-1\}$. We can write a = n-m where $m \in \mathbb{N} : 1 \le m \le n$. Define $b = m \in \mathbb{Z}_N$. Then $a + b = n - m + m = n \equiv 0 \pmod{n}$.

(4) 3.4.40

Let G consist of 2×2 matricies of the form

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

where $\theta \in \mathbb{R}$. Prove that $G \leq SL_2(\mathbb{R})$.

Proof. Since $G \leq SL_2(\mathbb{R}) \iff ab^{-1} \in G \quad \forall a, b \in G$, we will show the right hand side. Let $A, B \in G$ such that

$$A = \begin{bmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{bmatrix}, \qquad B = \begin{bmatrix} \cos(b) & -\sin(b) \\ \sin(b) & \cos(b) \end{bmatrix}$$

Then we know by properties of rotation matricies that

$$B^{-1} = \begin{bmatrix} \cos(-b) & -\sin(-b) \\ \sin(-b) & \cos(-b) \end{bmatrix}$$

Computing AB^{-1} we get the following result,

$$AB^{-1} = \begin{bmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{bmatrix} \begin{bmatrix} \cos(-b) & -\sin(-b) \\ \sin(-b) & \cos(-b) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(a)\cos(-b) - \sin(a)\sin(-b) & -\cos(a)\sin(-b) - \sin(a)\cos(-b) \\ \sin(a)\cos(-b) + \cos(a)\sin(-b) & \cos(a)\cos(-b) - \sin(a)\sin(-b) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(a-b) & -\sin(a-b) \\ \sin(a-b) & \cos(a-b) \end{bmatrix} \in G$$

Therefore $G \leq SL_2(\mathbb{R})$.

(5) 3.4.41

Let $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q}, \ a \neq 0 \text{ or } b \neq 0\}$. Show $G \leq \mathbb{R}^*$ under multiplication.

Proof. Let $\alpha, \beta \in G$. We want to show that $\alpha\beta^{-1} \in G$. Denote

$$\alpha = a_1 + b_1\sqrt{2}, \quad \beta = a_2 + b_2\sqrt{2}$$

Then $\beta^{-1} = \frac{1}{a_2 + b_2 \sqrt{2}}$. We can compute the product

$$\alpha\beta^{-1} = (a_1 + b_1\sqrt{2}) \left(\frac{1}{a_2 + b_2\sqrt{2}}\right)$$

$$= \frac{a_1 + b_1\sqrt{2}}{a_2 + b_2\sqrt{2}}$$

$$= \frac{a_1 + b_1\sqrt{2}}{a_2 + b_2\sqrt{2}} \cdot \frac{a_2 - b_2\sqrt{2}}{a_2 - b_2\sqrt{2}}$$

$$= \frac{a_1a_2 - a_1b_2\sqrt{2} + a_2b_1\sqrt{2} - 2b_1b_2}{a_2^2 - 2b_2^2}$$

$$= \frac{a_1a_2 - 2b_1b_2}{a_2^2 - 2b_2^2} (1) + \frac{a_2b_1 - a_1b_2}{a_2^2 - 2b_2^2} (\sqrt{2})$$

We say that this final result is an element of G. Suppose the denominator was equal to 0, then

$$a_2^2 - 2b_2^2 = 0$$

$$a_2^2 = 2b_2^2$$

$$|a_2| = \sqrt{2}|b_2|$$

$$\implies a_2 \notin \mathbb{Q} \text{ or } b_2 \notin \mathbb{Q} \quad \text{ (contradiction)}$$

If both numerators are 0, it would mean $\alpha\beta^{-1}=0$, since neither $\alpha=0$ or $\beta=0=\beta^{-1}$ this is impossible.

(6) 3.4.45

Show that the intersection of two subgroups is also a subgroup.

Proof. Let $H, K \leq G$. We want to show that $H \cap K \leq G$. Let $a, b \in H \cap K$, then we need to show that $ab^{-1} \in H \cap K$. We know that $a, b \in H$, and since H is a subgroup $b^{-1} \in H$ as well. Therefore $ab^{-1} \in H$. Similarly $a, b^{-1} \in K$, with the same inverse as G and as H, and thus $ab^{-1} \in K$. Therefore $ab^{-1} \in H \cap K$.

(7) 3.4.46

If $H, K \leq G$, it is not implied that $H \cup K \leq G$.

Proof. Let $H, K \leq G$ where neither $H \subset K$ or $K \subset H$. Then $\exists a \in H \setminus K$ and $\exists b \in K \setminus H$. Suppose by contradiction that $H \cup K$ is a subgroup of G. Then $ab^{-1} \in H \cup K$. This means that either $ab^{-1} \in H$ or $ab^{-1} \in K$. If $ab^{-1} \in H$, since $a \in H$ we must have $a^{-1} \in H$. This would mean $a^{-1}ab^{-1} \in H \Longrightarrow b \in H$ (contradiction). Otherwise $ab^{-1} \in K$ therefore $ab^{-1}b \in K \Longrightarrow a \in K$ (contradiction). Hence $H \cup K$ is not a subgroup of G.

(8) 4.4.1

(a)

Prove or disprove that all generators of \mathbb{Z}_{60} are prime.

Proof. Take the number $49 \in \mathbb{Z}_{60}$. Since $\gcd(49,60) = 1$, we know that $\langle 49 \rangle = \mathbb{Z}_{60}$. However, 49 is not prime. \square

(b)

Prove or disprove that U(8) is cyclic.

Proof. If $U(8) = \{1, 3, 5, 7\}$ then there exists $a \in U(8)$ such that $\langle a \rangle = U(8)$. Let us check each element,

- $\langle 1 \rangle = \{1\}$
- $\langle 3 \rangle = \{1, 3\}$
- $\langle 5 \rangle = \{1, 5\}$
- $\langle 7 \rangle = \{1, 7\}$

Since none generate U(8), the group is not cyclic.

(e)

(9) 4.4.2

Find the order of the element in the group.

(a)

 $5 \in \mathbb{Z}_{12}$

We know that the least common multiple of 5 and 12 is 60 = 5(12). Therefore 5 is order 12.

(b)

 $\sqrt{3} \in \mathbb{R}$

Since \mathbb{R} is infinite, there is no natural degree which will result in the identity, so we say that the order is infinite. Order of $\sqrt{3} = \infty$.

(d)

 $-i \in \mathbb{C}^*$

We know that

$$-i = -i$$
$$-i^{2} = -1$$
$$-i^{3} = i$$
$$-i^{4} = 1$$

Therefore i is order 4.

(10) 4.4.3

List every...

(a)

Element of $7\mathbb{Z}$.

$$7\mathbb{Z} = \{\cdots, -14, -7, 0, 7, 14, \cdots\}$$

(b)

Element generated by $15 \in \mathbb{Z}_{24}$.

$$\langle 15 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21\}$$

(c)

Subgroups of \mathbb{Z}_{12}

$$\begin{cases} 0 \\ \{0,6\} \\ \{0,4,8\} \\ \{0,3,6,9\} \\ \{0,2,4,6,8,10\} \end{cases}$$
 \mathbb{Z}_{12}

(d)

Subgroups of \mathbb{Z}_{60} .

 $\begin{cases} \{0\} \\ \{0,30\} \\ \{0,20,40\} \\ \{0,15,30,45\} \\ \{0,12,24,\cdots,48\} \\ \{0,10,20,30,\cdots,50\} \\ \{0,6,12,18,\cdots,54\} \\ \{0,5,10,15,\cdots,55\} \\ \{0,4,8,12,\cdots,56\} \\ \{0,3,6,9,\cdots,57\} \\ \{0,2,4,6,\cdots,58\} \end{cases}$

(e)

Subgroups of \mathbb{Z}_{13} .

 $\{0\}$ \mathbb{Z}_{13}

(f)

Subgroups of \mathbb{Z}_{48} .

 $\begin{cases} \{0\} \\ \{0,24\} \\ \{0,16,32\} \\ \{0,12,24,36\} \\ \{0,8,16,\cdots,40\} \\ \{0,6,12,\cdots,42\} \\ \{0,4,8,12,\cdots,40,44\} \\ \{0,3,6,9,\cdots,42,45\} \\ \{0,2,4,6,\cdots,44,46\} \end{cases}$ \mathbb{Z}_{48}

(g)

The subgroup generated by $3 \in U(20)$.

$$\langle 3 \rangle = \{1, 3, 7, 9\}$$