- ±1% Output Tolerance at 25°C
- ±2% Output Tolerance Over Full Operating Range
- Thermal Shutdown

- Internal Short-Circuit Current Limiting
- Pinout Identical to μA7800 Series
- Improved Version of μA7800 Series

description

Each fixed-voltage precision regulator in the TL780 series is capable of supplying 1.5 A of load current. A unique temperature-compensation technique, coupled with an internally trimmed band-gap reference, has resulted in improved accuracy when compared to other three-terminal regulators. Advanced layout techniques provide excellent line, load, and thermal regulation. The internal current-limiting and thermal-shutdown features make the devices essentially immune to overload.

The TL780-xxC series regulators are characterized for operation over the virtual junction temperature range of 0°C to 125°C.

The COMMON terminal is in electrical contact with the mounting base.

The COMMON terminal is in electrical contact with the mounting base.

AVAILABLE OPTIONS

		PACKAGEI	DEVICES	CHIP
TJ	V _O TYP (V)	I LEAT-SINK MOLINTED I 10110		FORM (Y)
	5	TL780-05CKC	TL780-05CKTE	TL780-05Y
0°C to 125°C	12	TL780-12CKC	TL780-12CKTE	TL780-12Y
	15	TL780-15CKC	TL780-15CKTE	TL780-15Y

The KTE package is available taped and reeled. Add the suffix R to the device type (e.g., TL780-05CKTER). Chip forms are tested at $25^{\circ}C$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic

absolute maximum ratings over operating temperature range (unless otherwise noted)†

NOTES: 1. Maximum power dissipation is a function of T_J(max), θ_JA, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_JA. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		MIN	MAX	UNIT
	TL780-05C	7	25	
Input voltage, V _I	TL780-12C		30	V
	TL780-15C	17.5	30	
Output current, IO			1.5	А
Operating virtual junction temperature, TJ			125	°C

electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 500 mA (unless otherwise noted)

DADAMETER	TEST COMPLIANC	_ +	TL780-05C			UNIT	
PARAMETER	TEST CONDITIONS	TJ [‡]	MIN	TYP	MAX	UNIT	
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad P \le 15 \text{ W},$	25°C	4.95	5	5.05	V	
Output voltage	$V_I = 7 \text{ V to } 20 \text{ V}$	0°C to 125°C	4.9		5.1	V	
Input voltage regulation	V _I = 7 V to 25 V	25°C		0.5	5	.,	
Input voltage regulation	V _I = 8 V to 12 V	25.0		0.5	5	mV	
Ripple rejection	$V_{I} = 8 \text{ V to } 18 \text{ V}, \qquad f = 120 \text{ Hz}$	0°C to 125°C	70	85		dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		4	25	mV	
	$I_O = 250 \text{ mA to } 750 \text{ mA}$	25-0		1.5	15		
Output resistance	f = 1 kHz	0°C to 125°C		0.0035		W	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		0.25		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		75		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Input bias current		25°C		5	8	mA	
Input high current change	V _I = 7 V to 25 V	0°C to 125°C		0.7	1.3	mA	
Input bias-current change	$I_O = 5 \text{ mA to 1 A}$	0 0 10 125 0		0.003	0.5	_ '''^	
Short-circuit output current		25°C		750		mA	
Peak output current		25°C		2.2		Α	

[‡] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.22-μF capacitor across the output.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	TL780-12C			UNIT
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	UNIT
Output voltage	$I_0 = 5 \text{ mA to 1 A}, P \le 15 \text{ V}$	√, 25°C	11.88	12	12.12	V
Output voltage	V _I = 14.5 V to 27 V	0°C to 125°C	11.76		12.24	V
Input voltage regulation	V _I = 14.5 V to 30 V	25°C		1.2	12	mV
Imput voitage regulation	V _I = 16 V to 22 V	25 C		1.2	12	IIIV
Ripple rejection	$V_I = 15 \text{ V to } 25 \text{ V}, \qquad f = 120 \text{ H}$	dz 0°C to 125°C	65	80		dB
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		6.5	60	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25 C		2.5	36	
Output resistance	f = 1 kHz	0°C to 125°C	0.0	0035		W
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		180		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Input bias current		25°C		5.5	8	mA
Input biog gurrent change	V _I = 14.5 V to 30 V	0°C to 125°C		0.4	1.3	mA
Input bias-current change	$I_O = 5$ mA to 1 A	0 C to 125 C		0.03	0.5	IIIA
Short-circuit output current		25°C		350		mA
Peak output current		25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.22-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	TL780-15C			UNIT	
PARAMETER	TEST CONDITIONS	T _J †	MIN	TYP	MAX	ONIT	
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad P \le 15 \text{ W},$	25°C	14.85	15	15.15	V	
Output voltage	V _I = 17.5 V to 30 V	0°C to 125°C	14.7		15.3	V	
Input voltage regulation	V _I = 17.5 V to 30 V	25°C		1.5	15	>/	
Input voltage regulation	V _I = 20 V to 26 V	25 C		1.5	15	mV	
Ripple rejection	$V_I = 18.5 \text{ V to } 28.5 \text{ V}, f = 120 \text{ Hz}$	0°C to 125°C	60	75		dB	
Output voltage regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$	25°C		7	75	mV	
	I _O = 250 mA to 750 mA	25 C		2.5	45		
Output resistance	f = 1 kHz	0°C to 125°C		0.0035		W	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		0.62		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		225		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Input bias current		25°C		5.5	8	mA	
Input bias-current change	V _I = 17.5 V to 30 V	0°C to 125°C		0.4	1.3	mA	
Imput bias-current change	$I_O = 5$ mA to 1 A	0 0 10 123 0	0.02		0.5] ""A	
Short-circuit output current		25°C		230		mA	
Peak output current		25°C		2.2		Α	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.22-µF capacitor across the output.

electrical characteristics, V_I = 10 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

DADAMETER		TL780-05Y			UNIT
PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNII
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad P \le 15 \text{ W}$		5		V
Input voltage regulation	V _I = 7 V to 25 V	0.5		\/	
	V _I = 8 V to 12 V		0.5		mV
	I _O = 5 mA to 1.5 A	4		mV	
Output voltage regulation	I _O = 250 mA to 750 mA		1.5		mv
Output noise voltage	f = 10 Hz to 100 kHz		75		μV
Dropout voltage	I _O = 1 A		2		V
Input bias current			5		mA
Short-circuit output current			750		mA
Peak output current			2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.22-μF capacitor across the output.

electrical characteristics, V_I = 19 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST SOMBITIONS!	TL780-12Y			UNIT
PARAINETER	TEST CONDITIONS†		TYP	MAX	UNIT
Output voltage	$I_O = 5 \text{ mA to 1 A}, \qquad P \le 15 \text{ W}$		12		V
lanut valta an annulation	$V_{I} = 14.5 \text{ V to } 30 \text{ V}$	1.2			mV
Input voltage regulation	V _I = 16 V to 22 V		1.2		IIIV
Output with an analysis	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		6.5		mV
Output voltage regulation	$I_O = 250 \text{ mA to } 750 \text{ mA}$		2.5		IIIV
Output noise voltage	f = 10 Hz to 100 kHz		180		μV
Dropout voltage	I _O = 1 A		2		V
Input bias current			5.5		mA
Short-circuit output current			350		mA
Peak output current			2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.22-µF capacitor across the output.

electrical characteristics, V_I = 23 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	7707 00VD/7/0V0†	TL780-15Y	UNIT	
PARAMETER	TEST CONDITIONS†	MIN TYP MAX	UNIT	
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad P \le 15 \text{ W}$	15	V	
Input voltage regulation	V _I = 17.5 V to 30 V	1.5	mV	
Input voltage regulation	V _I = 20 V to 26 V	1.5	111.0	
Output voltage regulation	I _O = 5 mA to 1.5 A	7	mV	
Output voltage regulation	I _O = 250 mA to 750 mA	2.5	1117	
Output resistance	f = 1 kHz	0.0035	W	
Output noise voltage	f = 10 Hz to 100 kHz	225	μV	
Dropout voltage	I _O = 1 A	2	V	
Input bias current		5.5	mA	
Short-circuit output current		230	mA	
Peak output current		2.2	Α	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.22-μF capacitor across the output.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C1 is required when the regulator is far from the power-supply filter.

- B. C2 is not required for stability; however, transient response is improved.
- C. Permanent damage can occur when OUTPUT is pulled below ground.

Figure 1. Test Circuit

APPLICATION INFORMATION

Figure 2. Positive Regulator in Negative Configuration (V_I Must Float)

Figure 3. Current Regulator

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 4. This protects the regulator from output polarity reversals during startup and short-circuit operation.

Figure 4. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This, for example, could occur when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed, as shown in Figure 5.

Figure 5. Reverse-Bias-Protection Circuit

KC (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- F. The chamfer is optional.
- G. Falls within JEDEC TO-220AB
- H. Tab contour optional within these dimensions

