Chapter 3 数据通信的基本原理

zibuyu

January 6, 2006

1 傅立叶分析

任何一个周期为T的有理周期性函数g(t)可分解为若干项(可能无限项)正弦和 余弦函数之和:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

其中 $f = \frac{1}{T}$ 是基本频率, a_n, b_n 是n次谐波项的正弦和余弦振幅质值。

已知g(t)求 a_n, b_n, c_n 。

$$c = \frac{2}{T} \int_0^T g(t)dt;$$

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

2 信号在信道上传输的特性

2.1 有限带宽信号

Bandwidth Limited Signals.

频谱(spectrum):一个信号所包含的频率范围。

带宽(bandwidth):信号主要能量集中在相对窄的频带内,这个频带称为有效带宽,或带宽。

注意 :信号的信息承载能力与带宽有直接关系。

2.2 传输特性

- 1. 对不同傅立叶分量的衰减不同,引起输出失真。
- 2. 信道有截止频率 f_c , $0-f_c$ 的振幅衰减较弱, f_c 以上振幅衰减厉害, $0-f_c$ 是信道的有效带宽.
- 3. 通过信道的谐波次数越大,信号越逼真.

2.3 波特率和比特率的关系

波特率(baud): 每秒钟信号变化的次数,也称调制速率.

比特率(bit): 每秒钟传送的二进制位数.

关系: 取决于信号值与比特位的关系.如每个信号值可表示3位,则比特率是波特率的3倍:每个信号值可表示1位,则两率相同.

公式: 能通过信道的最高谐波数目 $N = f_c/f_1$.

结论: 即使对于完善的信道,有限的带宽限制了数据的传输速率.

3 信道的最大传输速率

3.1 奈魁斯特定律

1924年,奈魁斯特(Nyquist)得到**无噪声有限带宽信道**最大数据传输率公式,最大传输率M:

$$M = 2H \log_2 V(bps)$$

任意信号通过一个带宽为H的低通滤波器,每秒采样2H次就能完整重现该信号,信号电平分为V级。

3.2 香农定律

1948年,香农(Shannon)把奈德工作扩大到信道受到**随机(热)噪声**干扰的情况。热噪声大小用<u>信噪比</u>(信号功耗S与噪声功率N之比)来衡量, $10\log_{10}(S/N)$,单位:分贝.结论为:带宽为H赫兹,信噪比为S/N的任意信道最大数据传输率为:

$$H \log_2(1 + S/N)(bps)$$

这与信号电平级数无关,采样速度无关。注意:该式仅为上限,无法达到。

4 数据表示和传输方式

数据表示: 模拟数据(Analog Data)和数字数据(Digital Data).

传输方式: 模拟信号(Analog Signals)和数字信号(Digital Signals).

模拟信号发送(模拟信道):

- ... 模拟数据<-->电话系统<-->模拟信号
- ... 数字数据<-->调制解调器(MODEM)<-->模拟信号

数字信号发送(数字信道):

- ... 模拟数据<-->编码解码器(CODEC)<-->数字信号
- ... 数字数据<-->数字编码解码器<-->数字信号

模拟和数字传输在计算机的应用:

Fig. 2-17. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.

数字信号发送优缺点:

- ... 优点:价格便宜,对噪声不敏感
- ... 缺点:易受衰减,频率越高,衰减越厉害.

5 数据编码技术

5.1 基带传输

基带: 基本频带,指传输变换前所占用的频带,是原始信号所固有的频带.

基带传输: 在传输时直接使用基带信号.

...基带传输是最简单最近本的传输方式,一般用低电平表示0,高电平表示1.

适用范围: 各种情况.

限制: 基带信号所带的频率成分很宽,对传输线有一定的要求.

5.2 基带传输常见编码

如图:

5.2.1 不归零码制

原理 :(NRZ Non-Return to Zero)用两种不同电平表示二进制信息(0/1).

缺点:

- (1)难于辨认一位的结束和另一位的开始;
- (2)发送方和接受方必须有时钟同步;
- (3)若0或1连续出现,信号直流分量将累加。

结论 :容易传播错误。

5.2.2 曼彻斯特编码

原理 :(Manchester),也称<u>相位编码</u>,每一位中间都有一个跳变。从低跳到高表示0,从高跳到低表示1。

优点:克服NRZ不足,每位中间的调变既可作为数据,又可作为时钟,能够自同步.

5.2.3 差分曼彻斯特编码

原理:(Differential Manchester),每一位中间都有一个跳变,每位开始时有跳变表示0,无跳变表示1,位中间的跳变表示时钟。

优点 :时钟、数据分离,便于提取。

5.2.4 逢1变化的NRZ码

原理 :在每位开始时,逢1电平跳变,逢0电平不跳变。

5.2.5 逢0变化的NRZ码

原理 :在每位开始时,逢0电平跳变,逢1电平不跳变。

5.3 数字数据的模拟传输

5.3.1 基本原理

原理:又称<u>频带传输</u>,指在一定频率范围内的线路上,进行载波传输.用基带信号对载波进行调制,使其变为适合于线路传送的信号。

调制(Modulation):用基带脉冲队在波信号的某些参量进行控制,使这些参量随基带脉冲变化.

解调(Demodulation):调制的反变换。

调制解调器 :MODEM(Modulation-Demodulation).

5.3.2 调制技术

根据载波 $A\sin(\omega t + \varphi)$ 的三个特性:幅度、频率、相位进行调制。

幅移键控法(调幅) :Amplitude-shift keying(ASK).

频移键控法(调频) :Frequency-shift keying(FSK).

相移键控法(调相) :Phase-shift keying (PSK).

5.4 模拟数据的数字传输

解决模拟数据数字化问题,也称为脉冲代码调制PCM(Pulse Code Modulation). 根据Nyquist原理进行采样.

5.4.1 差分脉冲代码调制

差分脉冲代码调制:不是将振幅值数字化,而是根据前后两个采样值得差进行编码,输出二进制数字。

5.4.2 δ调制

原理:根据每个采样值与前一个值之差+1或-1来决定输出二进制1或0。

缺点 :编码速度跟不是变化太快的信号。

6 多路复用技术

时分复用 :TDM(Time Division Multiplexing).

- ...主要用于数字数据传输.
- ... T1载波,分成24个信道.见下图:

频分复用:FDM(Frequency Division Multiplexing).

波分复用:WDM(Wavelength Division Multiplexing)...例如可见光,就是由不同波长单色光合成的.

7 通信线路的通信方式

7.1 连接方式

点到点连接; 多点方式。

7.2 通信方式

单工 :信息单向传输,监视信号可回送。

半双工 :信息可双向传输,但在某一时刻只能单向传输.

全双工 :信息可同时双向传输。

7.3 同步方式

目的:接受方必须知道每一位信号的开始和宽度,以便正确接收和采样。既可采取同步方式,也可采取异步方式。

7.3.1 异步方式

原理 信息以<u>字符</u>为单位传送。每个字符由发送方异步产生。需要辅助位,每个字符需要10或11位才能传送。

特点 传输效率低,主要用于字符终端和计算机之间通信。

7.3.2 同步方式

原理 :信息以报文为单位传送。传输开始时以同步字符使收发双方同步。

特点:

- ...可以不间断传输信息;
- ... 传输效率高,字符间减少辅助信息;
- ...传输信息中不能有同步字符出现,透明性较差。

7.3.3 基于位的传送

原理 :采用同步方式。以二进制位流为单位传送。收发以位为单位同步。传输 开始与结束以特定八位二进制位同步。

特点:传输效率高,透明性好.

8 交换方式

在多结点通信网络中,动态的接通或断开通信线路,成为交换.

分类 :电路交换;报文交换(存储转发方式);分组交换(包交换、存储转发方式);混合交换。

8.1 电路交换

Circuit Switching

原理 : 直接利用可切换的物理通信线路,连接通信双方.

三阶段 :建立电路, 传输数据, 拆除电路。

特点:

- ...发送数据前,必须建立点到点物理通路;
- ...建立物理通路时间较长,数据传送延迟较短.

举例 :电话网络;ISDN(Integrated Services Digital Networks).

复用/解复用 :时间被分为帧(frame),帧被分为槽(slot).

8.2 报文交换

Message Switching

原理 :信息以报文(逻辑上完整的信息段)为单位进行存储转发.

特点:

- ...线路利用率高;
- ...要求中间结点(网络通信设备)缓冲大;
- ...延迟时间长.

8.3 分组交换

Packet Switching

原理:信息以分组为单位进行存储转发,源结点把报文分为分组,中间结点存储转发,目的结点把分组合成报文.

分组 :比报文还小的信息段,可定长也可变长.

特点:

- ...每个分组包括目的地址,独立进行路由选择;
- ... 网络节点设备中不预先分配资源;
- ...线路利用率高.

分组交换分为:数据报(datagram)分组交换;虚电路(virtual circuit)分组交换.

复用/解复用 :来自任意会话的数据可以立即发送,不需要等待slot.用附加的报文头区分数据.

8.3.1 数据报分组交换

每个分组带有全称网络地址(源、目的),可走不同路径。如IP networks。

8.3.2 虚电路分组交换

是电路交换与分组交换的结合。

特点:

- 1.数据以报文形式传输;
- 2.来自同一报文流的报文通过一个预先建立的路径(虚电路)传输;
- 3.同源报文保证顺序;不同虚电路报文可能会交错.

举例 : ATM networks.

8.4 比较

Item	Circuit-switched	Packet-switched
Dedicated "copper" path	Yes	No
Bandwidth available	Fixed	Dynamic
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Each packet follows the same route	Yes	No
Call setup	Required	Not needed
When can congestion occur	At setup time	On every packet
Charging	Per minute	Per packet

Fig. 2-36. A comparison of circuit-switched and packet-switched networks.

比较:

- 1.分组交换较电路交换,实现统计复用,充分利用带宽.
- 2.分组交换需要处理拥塞.

结论:

1.电路交换:适合实时信息传送;线路带宽较低时比较经济。

- 2.报文交换: 适合线路带宽较高的情况,可靠灵活,但延迟大. 3.分组交换: 在高带宽中更经济,合理.是公认最好的交换技术.

交换结构 9

crossbar交换; 空分交换; 时分交换.