B003725 Intelligenza Artificiale (2016/17)

Studente: Tommaso Scarlatti (5784154) — <2017-01-10 Tue>

Elaborato assegnato per l'esame finale

Istruzioni generali

Il lavoro svolto dovrà essere inviato per email due giorni prima della data dell'esame orale, includendo:

- 1. Sorgenti e/o files ausiliari sviluppati, evidenziando se necessario le parti riprese da altre fonti (che dovranno essere **opportunamente citate**) e le parti sviluppate personalmente.
- 2. Se necessario, un file README che spieghi come compilare o far eseguire i programmi sottomessi (eventualmente indicando dipendenze da pacchetti software non standard).
- 3. Una breve relazione (massimo 4 pagine in formato pdf) che descriva il lavoro ed i risultati sperimentali. Non è necessario ripetere in dettaglio i contenuti del libro di testo o di eventuali articoli, è invece necessario che vengano fornite informazioni sufficienti a *riprodurre* i risultati riportati.

L'elaborato sarà oggetto di discussione durante l'esame orale.

Importante: va evitato di allegare files eseguibili (inclusi files .jar o .class generati da Java) al messaggio email, al fine di evitare il filtraggio automatico da parte del software antispam di ateneo!

Alberi di decisione

Nella prima parte di questo elaborato si sviluppa del codice (in un linguaggio di programmazione a scelta) per l'apprendimento di alberi di decisione come esposto in classe e descritto in R&N 2009 §18.3, utilizzando l'entropia come misura di impurità. Nel passo base, l'algoritmo accetta un parametro m per controllare la complessità dell'albero: se il numero di errori è inferiore ad m, si crea una foglia invece di continuare la ricorsione.

Nella seconda parte, si applica il codice ad almeno tre data sets scelti a piacere dal repository MLData, e si producono delle curve (al variare di *m*) che mostrano l'errore sul training set e sul test set in funzione della complessità dell'albero (misurata dal numero di nodi interni).