

Evoluzione delle architetture di rete e dei servizi di telecomunicazione

Parte 1: Fondamenti

Slide adattate da:

J. Kurose, K. Ross: "Reti di calcolatori e Internet (4a edizione)". Pearson Addison Wesley

Che cos'è Internet?

PC

server

Portatile

Telefono cellulare

Punti di accesso

— Collegam. cablato

- Host = sistema terminale
- Applicazioni di rete
- Collegamenti
 - rame, fibra ottica, onde elettromagnetiche, satellite
 - Frequenza di trasmissione = ampiezza di banda
- Router = instrada i pacchetti verso la loro destinazione finale

Rete mobile

Che cos'è Internet?

- Infrastruttura di comunicazione per applicazioni distribuite
 - Social networks, Web, VoIP, email, giochi, e-commerce, condivisione di file
- Servizi forniti alle applicazioni
 - Servizio affidabile dalla sorgente alla destinazione
 - Servizio "best effort" (non affidabile) senza connessione

Che cos'è Internet?

- Un protocollo definisce il formato e l'ordine dei messaggi scambiati fra due o più entità in comunicazione
 - es.: TCP, IP, HTTP, Skype, Ethernet
- Internet: "rete delle reti"
 - struttura gerarchica
 - Internet pubblica e intranet private
- Standard Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Cos'è un protocollo ?

Protocolli umani:

- "Che ore sono?"
- "Ho una domanda"
- Presentazioni
- ... invio di specifici messaggi
- ... quando il messaggio è ricevuto, vengono intraprese specifiche azioni, o si verificano altri eventi

Protocolli di rete:

- Dispositivi hardware e software
- Tutta l'attività di comunicazione in Internet è governata dai protocolli

Cos'è un protocollo ?

Protocollo umano

Protocollo di rete

Struttura di rete

- ai confini della rete
 - applicazioni
 - sistemi terminali
- reti, dispositivi fisici
 - collegamenti cablati
 - wireless
- al centro della rete
 - router interconnessi
 - la rete delle reti

Ai confini della rete

sistemi terminali (host)

- fanno girare programmi applicativi
 - es.: Web, e-mail
- situati all'estremità di Internet

architettura client/server

- L'host client richiede e riceve un servizio da un programma server in esecuzione su un altro terminale
 - es.: browser/server Web ; client/server email

architettura peer to peer

- uso limitato (o inesistente) di server dedicati
 - es.: Skype, Bit Torrent

Reti d'accesso e mezzi fisici

D: Come collegare sistemi terminali e router esterni?

- reti di accesso residenziale
- reti di accesso aziendale (università, istituzioni, aziende)...
- reti di accesso mobile

Ricordate:

- ampiezza di banda (bit al secondo)?
- condivise o dedicate?

Accesso residenziale: punto-punto

Modem dial-up

- fino a 56 Kbps di accesso diretto al router (ma spesso è inferiore)
- non è possibile "navigare" e telefonare allo stesso momento

DSL: digital subscriber line

- installazione: in genere da un operatore di rete
- ~ 2 Mbps in upstream
- ~ 30 Mbps in downstream
- linea dedicata

Accesso a Larga Banda di rete fissa

Sistemi XDSL

	Family	ITU	Name	Ratified	Maximum Speed capabilities
	ADSL	G.992.1	G.dmt	1999	7 Mbps down 800 kbps up
	ADSL2	G.992.3	G.dmt.bis	2002	8 Mb/s down 1 Mbps up
	ADSL2plus	G.992.5	ADSL2plus	2003	24 Mbps down 1 Mbps up
	ADSL2-RE	G.992.3	Reach Extended	2003	8 Mbps down 1 Mbps up
	SHDSL (updated 2003)	G.991.2	G.SHDSL	2003	5.6 Mbps up/down
	VDSL	G.993.1	Very-high-data-rate DSL	2004	55 Mbps down 15 Mbps up
	VDSL2 -12 MHz long reach	G.993.2	Very-high-data-rate DSL 2	2005	55 Mbps down 30 Mbps up
	VDSL2 - 30 MHz Short reach	G.993.2	Very-high-data-rate DSL 2	2005	100 Mbps up/down

EV

Evoluzione della copertura a Larga Banda di rete fissa

Rete di Distribuzione Telefonica

Obiettivo

 Trasporto e trattamento del segnale dalla centrale (SL) all'apparecchio del cliente

E' costituita da

- Portanti fisici
- Attestazioni e terminazioni
- Apparati trasmissivi
- Altri dispostivi

Si suddivide nelle seguenti sezioni

- Rete Primaria (~ 1 km)
- Rete Secondaria (~ 200 m)
- Raccordo (~ 50 m)

Architetture ibride rame-fibra (FTTx)

Architetture FTTx

Accesso aziendale: reti locali (LAN)

Una LAN collega i sistemi terminali di aziende e università ad un router

Ethernet

- 10 Mb/s, 100 Mb/s, 1 Gb/s, 10 Gb/s
- Sistemi terminali collegati mediante uno switch

Accesso wireless

- Una rete condivisa d'accesso wireless collega i sistemi terminali al router
 - Access Point (AP)
- Wireless LAN
 - 802.11b/g (WiFi): 11 o 54 Mbps
- Rete d'accesso wireless geografica
 - gestita da un provider di telecomunicazioni
 - ~ 1 Mbps per i sistemi cellulari (HSDPA)...
 - WiMax per aree più grandi

Reti domestiche

- Componenti di una tipica rete domestica
 - DSL o modem via cavo
 - router/firewall/NAT
 - Ethernet
 - Punto d'accesso wireless

Mezzi trasmissivi

Mezzo fisico

 ciò che sta tra il trasmittente e il ricevente

Mezzi guidati

 i segnali si propagano in un mezzo fisico: fibra ottica, filo di rame o cavo coassiale

Mezzi a onda libera

i segnali si propagano nell'atmosfera e nello spazio esterno

Twisted Pair (TP)

- due fili di rame distinti
 - Categoria 3: tradizionale cavo telefonico, 10 Mbps Ethernet
 - Categoria 5:100 Mbps Ethernet

Mezzi trasmissivi: cavo coassiale e fibra ottica

Cavo coassiale

- due conduttori in rame concentrici
- bidirezionale
- banda base:
 - singolo canale sul cavo
 - legacy Ethernet
- banda larga

Fibra ottica

- Mezzo sottile e flessibile che conduce impulsi di luce
- Alta frequenze trasmissiva:
 - Elevata velocità di trasmissione punto-punto (da 10 a 100 Gps)
- Basso tasso di errore, immune all'interferenza elettromagnetica

Mezzi trasmissivi: canali radio

- Trasportano segnali nello spettro elettromagnetico
- non richiedono l'installazione fisica di cavi
- bidirezionali
- effetti dell'ambiente di propagazione:
 - riflessione
 - ostruzione da parte di ostacoli
 - interferenza

- Tipi di canali radio
 - Microonde terrestri
 - es.: canali fino a 45 Mbps
 - LAN (es.: Wifi)
 - 11 Mbps, 54 Mbps
 - Wide-area (es.: cellulari)
 - es.: 3G: ~ 1 Mbps
 - Satellitari
 - canali fino a 45 Mbps (o sottomultipli)
 - ritardo punto-punto di 270 msec
 - geostazionari/a bassa quota

Il nucleo della rete

- Rete magliata di router che interconnettono i sistemi terminali
- Come vengono trasferiti i dati attraverso la rete ?
 - Commutazione di circuito: circuito dedicato per l'intera durata della sessione (rete telefonica)
 - Commutazione di pacchetto: i messaggi di una sessione utilizzano le risorse su richiesta, e di conseguenza potrebbero dover attendere per accedere a un collegamento

Commutazione di circuito (Circuit Switching - CS)

Risorse punto-punto riservate alla "chiamata"

- ampiezza di banda, capacità del commutatore
- risorse dedicate: non c'è condivisione
- prestazioni da circuito (garantite)
- necessaria l'impostazione della chiamata

Commutazione di circuito

- Risorse di rete (banda) suddivise in "pezzi"
- ciascun "pezzo" viene allocato ai vari collegamenti
- le risorse rimangono inattive se non utilizzate (non c'è condivisione)

- Suddivisione della banda in "pezzi"
 - divisione di frequenza
 - divisione di tempo

Commutazione di circuito: FDM e TDM

Un esempio numerico

- Quanto tempo occorre per inviare un file di 640.000 bit dall'host A all'host B su una rete a commutazione di circuito ?
 - Tutti i collegamenti presentano un bit rate di 2.048 Mbps
 - Ciascun collegamento utilizza TDM con 32 slot/sec
 - Si impiegano 500 ms per stabilire un circuito puntopunto
- Provate a calcolarlo

Commutazione di pacchetto (Packet Switching - PS)

- Il flusso di dati punto-punto viene suddiviso in pacchetti
 - I pacchetti condividono le risorse di rete
 - Ciascun pacchetto utilizza completamente il canale
 - Le risorse vengono usate a seconda delle necessità
 - MULTIPLAZIONE STATISTICA

Larghezza di benda suddivisa in pezzi"

Allocazione di dicata

Risorse riservate

Contesa per le risorse

- La richiesta di risorse può eccedere il quantitativo disponibile
- congestione: accodamento dei pacchetti, attesa per l'utilizzo del collegamento
- store and forward: il commutatore deve ricevere l'intero pacchetto prima di poter cominciare a trasmettere sul collegamento in uscita

Multiplazione statistica

- La sequenza dei pacchetti A e B non segue uno schema prefissato Condivisione di risorse su richiesta: multiplazione statistica
- TDM: ciascun host ottiene uno slot di tempo dedicato unicamente a quella connessione.

Store-and-forward

- Occorrono L/R secondi per trasmettere un pacchetto di L bit su un collegamento in uscita da R bps
- store and forward
 - l'intero pacchetto deve arrivare al router prima che questo lo trasmetta sul link successivo
- ritardo = 3L/R (supponendo che il ritardo di propagazione sia zero)
- Occore approfondire

Esempio:

- L = 7,5 Mbit
- R = 1,5 Mbps
- ritardo = 15 sec

Confronto CS e PS

La commutazione di pacchetto consente a più utenti di usare la rete

- 1 collegamento da 1 Mpbs
- Ciascun utente:
 - 100 kpbs quando è "attivo"
 - attivo per il 10% del tempo

- 10 utenti
- commutazione di pacchetto:
 - con 35 utenti, la probabilità di averne > 10 attivi è inferiore allo 0,0004

D: come è stato ottenuto il valore 0,0004?

Confronto CS e PS

La commutazione di pacchetto è la "scelta vincente?"

- Ottima per i dati a "burst"
 - Condivisione delle risorse
 - Più semplice, non necessita l'impostazione della chiamata
- Eccessiva congestione: ritardo e perdita di pacchetti
 - Sono necessari protocolli per il trasferimento affidabile dei dati e per il controllo della congestione
- D: Come ottenere un comportamento simile al circuito ?
 - è necessario fornire garanzie di larghezza di banda per le applicazioni audio/video
 - è ancora un problema irrisolto

Ritardi e perdita

- I pacchetti si accodano nei buffer dei router
- Se il tasso di arrivo dei pacchetti eccede la capacità del collegamento i pacchetti si accodano, in attesa del proprio turno

buffer liberi (disponibili): se non ci sono buffer liberi i pacchetti in arrivo vengono scartati (perdita)

Quattro cause di ritardo per i pacchetti

- 1. Ritardo di elaborazione del nodo
- controllo errori sui bit
- determinazione del canale di uscita (instradamento)

- 2. Ritardo di accodamento
- attesa di trasmissione
- livello di congestione del router

Ritardo nelle reti PS

3. Ritardo di trasmissione (L/R)

- R=frequenza di trasmissione del collegamento (in bps)
- L=lunghezza del pacchetto (in bit)
- Ritardo di trasmissione = L/R

- 4. Ritardo di propagazione (d/s)
- d = lunghezza del collegamento fisico
- s = velocità di propagazione del collegamento (~2×108 m/sec)
- Ritardo di propagazione = d/s

Ritardo di link

$$d_{\text{link}} = d_{\text{elab}} + d_{\text{queue}} + d_{\text{trasm}} + d_{\text{prop}}$$

- d_{elab} = ritardo di elaborazione (processing delay)
 - in genere pochi microsecondi, o anche meno
- d_{queue} = ritardo di accodamento (queuing delay)
 - dipende dalla congestione
- d_{trasm} = ritardo di trasmissione (transmission delay)
 - = L/R, significativo sui collegamenti a bassa velocità
- d_{prop} = ritardo di propagazione (propagation delay)
 - da pochi microsecondi a centinaia di millisecondi

Ritardo di accodamento

- R = frequenza di trasmissione (bp:
- L = lunghezza del pacchetto (bit)
- a = tasso medio di arrivo dei pacc

La/R = intensità di traffico

- L·a/R ~ 0: ritardo molto limitato
- L·a/R -> 1: il ritardo cresce in modo non lineare
- L·a/R > 1: più "lavoro" in arrivo di quanto possa essere effettivamente svolto, ritardo medio infinito

Perdita di pacchetti

- Una coda (detta anche buffer) ha capacità finita
 - quando il pacchetto trova la coda piena, viene scartato (e quindi va perso)
 - un pacchetto perso può essere ritrasmesso dal nodo precedente, dal sistema terminale che lo ha generato, o non essere ritrasmesso affatto

Throughput

- Frequenza (bit/unità di tempo) alla quale i bit sono trasferiti tra mittente e ricevente
 - istantaneo: in un determinato istante
 - medio: in un periodo di tempo più lungo

Throughput (segue)

 $R_s < R_c$ Qual è il throughput medio end to end?

 $R_s > R_c$ Qual è il throughput medio end to end?

Collo di bottiglia (Bottleneck)

Collegamento su un percorso punto-punto che vincola un throughput end to end

DIET Dept

Networking Group

Throughput: scenario Internet

- Throughput end to end per ciascuna connessione
 - $= \min(R_c, R_s, R/10)$
- In pratica R_c o R_s è spesso nel collo di bottiglia

10 collegamenti (equamente) condivisi collegamento collo di bottiglia R bit/sec

Struttura di Internet: rete di reti

- Fondamentalmente gerarchica
 - al centro: "ISP di livello 1"
 - Verizon, Sprint, AT&T, Cable&Wireless
 - copertura nazionale/internazionale
 - Comunicano tra di loro come "pari"

Gli ISP di livello 1 sono direttamente connessi a ciascuno degli altri ISP di livello 1

ISP di livello 1 - Un esempio: Sprint

Struttura di Internet

- ISP di livello 2: ISP più piccoli (nazionali o distrettuali)
 - Si può connettere solo al alcuni ISP di livello 1, e possibilmente ad altri ISP di livello 2

Un ISP di livello 2
paga l'ISP di livello 1
che gli fornisce la
connettività per il
resto della rete
un ISP di livello 2 è
cliente di un ISP di
livello 1

Struttura di Internet

- ISP di livello 3 e ISP locali (ISP di accesso)
 - Reti "ultimo salto" (last hop network), le più vicine ai sistemi terminali

Struttura di Internet

Un pacchetto attraversa un numero anche molto elvato di reti

Elementi architetturali di una Computer Network

- Trasmissioni digitali
- Scambio di frames tra elementi di rete adiacenti
 - Framing e error control
- Medium access control (MAC) regola l'accesso ai mezzi condivisi
- Indirizzi identificano il punto di accesso alla rete (interfaccia)
- Trasferimento dei pacchetti in rete
- Calcolo distribuito delle tabelle di routing

Elementi architetturali di una Computer Network

- Congestion control all'interno della rete
- Internetworking tra reti diverse
- Segmentazione e riassemblaggio dei messaggi in pacchetti all'ingresso e all'uscita da una rete
- Protocolli di trasporto end-to-end per comunicazioni tra processi
- Applicazioni che utilizzano le informazioni che attraversano la rete
- Intelligenza ai bordi della rete

Esercizio 1 (1)

- Consideriamo un pacchetto di lunghezza L (bit) trasmesso da un host A ad un host B attraverso tre link. Siano d_i, v_i, e R_i la lunghezza (km), la velocità di propagazione (m/s) ed il bit rate di trasmissione (bit/s) sul link i=1,2,3; sia inoltre d_{proc} il tempo di elaborazione (ms) necessario in ogni router per le operazioni di switching.
- Assumendo che il tempo di accodamento in ogni router sia nullo, si determini il tempo complessivo D_{e2e} di trasferimento del pacchetto dall'host A all'host B.

Esercizio 1 (2)

Il ritardo end-to-end (D_{e2e}) è dato da:

$$D_{\rm e2e} = t_{\rm trasm1} + t_{\rm prop1} + d_{\rm proc1} + t_{\rm trasm2} + t_{\rm prop2} + d_{\rm proc2} + t_{\rm trasm3} + t_{\rm prop3}$$

$$D_{\text{e2e}} = \frac{L}{R_1} + \frac{d_1}{v_1} + d_{\text{proc1}} + \frac{L}{R_2} + \frac{d_2}{v_2} + d_{\text{proc2}} + \frac{L}{R_3} + \frac{d_3}{v_3} =$$

$$= L \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} \right) + \frac{d_1}{v_1} + \frac{d_2}{v_2} + \frac{d_3}{v_2} + d_{\text{proc1}} + d_{\text{proc2}}$$

Esercizio 1 (3)

Nelle ipotesi che:

- a) il pacchetto abbia una lunghezza L=1500 byte;
- b) la velocità di propagazione sui tre link sia v=2 108 m/s (5 μs/km);
- c) il rate di trasmissione sui tre link sia R=2 Mbit/s;
- d) il tempo di processa mento dei due router sia d_{proc}=3 ms;
- e) le lunghezze dei link siani d_1 = 5000 km, d_2 =4000 km, d_3 =1000 km
- qual è il ritardo end-to-end D_{e2e} del pacchetto ?
- Si ha

$$\begin{split} D_{\text{e2e}} &= L \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) + \frac{d_1}{v_1} + \frac{d_2}{v_2} + d_{\text{proc}1} + d_{\text{proc}2} = \\ &= \frac{3L}{R} + \frac{1}{v} \cdot (d_1 + d_2 + d_3) + 2 \cdot d_{\text{proc}} \end{split}$$

Esercizio 1 (4)

Quindi

$$D_{\text{e2e}} = \frac{3L}{R} + \frac{1}{v} \cdot (d_1 + d_2 + d_3) + 2 \cdot d_{\text{proc}}$$

- = 3L = 3.1500.8 = 36.000 bit
- $d_1+d_2+d_3 = 5000 + 4000 + 1000 = 10.000 \text{ km}$
- $= 2 \cdot d_{proc} = 6 \text{ ms}$

Da cui

$$\frac{3L}{R} = \frac{36000}{2 \cdot 10^6} = 18 \text{ ms}$$

$$\frac{3L}{R} = \frac{36000}{2 \cdot 10^6} = 18 \text{ ms} \qquad \frac{1}{v} \cdot (d_1 + d_2 + d_3) = \frac{10000}{2 \cdot 10^5} = 50 \text{ ms} \qquad 2 \cdot d_{\text{proc}} = 6 \text{ ms}$$

$$2 \cdot d_{\text{proc}} = 6 \text{ ms}$$

$$D_{\rm e2e} = 18 + 50 + 6 = 74 \, ms$$

Esercizio 2(1)

L'host sorgente suddivide i messaggi (per esempio, un'immagine o un file di musica) in pacchetti che trasmette in rete. Il destinatario riassembla i pacchetti per ricostruire il messaggio originario.
Chiamiamo questo processo segmentazione del messaggio. La Figura illustra il trasporto end-to-end di un messaggio con e senza segmentazione.

- (a) Si consideri un messaggio lungo M=8·10⁶ bit e si supponga che ogni link abbia un bit rate R=2 Mbit/s. Si trascurino i ritardi di propagazione, di accodamento e di elaborazione.
 - Calcolare il tempo di trasferimento del messaggio dall'host sorgente al primo router.
 - Qual è il tempo totale richiesto per trasferire il messaggio tra l'host sorgente e quello di destinazione?
- (b) Si consideri ora che il messaggio venga segmentato in N=800 pacchetti, di lunghezza L=10000 bit.
 - Quanto tempo è richiesto per trasferire il primo pacchetto dall'host sorgente al primo router?
 - In quale istante il secondo pacchetto sarà completamente ricevuto dal primo router?
- (c) Quanto tempo richiede la trasmissione del file se si usa la segmentazione del messaggio in pacchetti?
- Confrontate questo risultato con la risposta del punto (a).

Esercizio 2(2)

Quesito (a)

Riprendendo l'espressione del ritardo di trasferimento calcolato nell'esercizio 1 e considerando che sono trascurabili i tempi di propagazione e di elaborazione, si ha:

$$D_1 = \frac{M}{R} + t_{prop} = \frac{8 \cdot 10^6}{2 \cdot 10^6} + 0 = 4 \text{ s}$$

$$D_{\text{e2e}} = \frac{3M}{R} + 3t_{prop} = \frac{3 \cdot 8 \cdot 10^6}{2 \cdot 10^6} + 0 = 12 \text{ s}$$

Networking Group

Esercizio 2(3)

Quesiti (b) e (c)

Il trasferimento dei pacchetti avviene secondo lo schema illustrato in figura

$$t_{\text{trasm}} = \frac{L}{R} = \frac{10^4}{2 \cdot 10^6} = 5 \text{ ms}$$

$$T_1 = \frac{L}{R} + t_{prop} = 5 + 0 = 5 \text{ ms}$$

$$T_2 = \frac{2L}{R} + t_{prop} = 10 + 0 = 10 \text{ ms}$$

$$D_{\text{e2e}} = \left[3 \cdot t_{trasm} + 3 \cdot t_{prop} \right] + \left[\left(N - 1 \right) \cdot t_{trasm} \right]$$

Tempo di trasferimento del primo pacchetto

Tempo di trasmissione dei restanti (N-1) pacchetti

Esercizio 2(4)

Il tempo di trasferimento complessivo D_{e2e} sarà:

$$D_{\text{e2e}} = \left[3 \cdot t_{trasm} + 3 \cdot t_{prop}\right] + \left[(N-1) \cdot t_{trasm}\right] = 3 \frac{L}{R} + 3 \cdot t_{prop} + (N-1) \frac{L}{R} = 4.01 \text{ s}$$

- (d) Oltre a ridurre il ritardo, ci sono altri vantaggi della segmentazione dei messaggi ?
 - Migliori prestazioni dei meccanismi di error recovery e di ritrasmissione
- (e) Quali sono gli svantaggi della segmentazione dei messaggi.
 - Maggiore overhead

Esercizio 3(1)

- Si consideri il trasferimento di un messaggio di M=1000 bit tra due host A e B attraverso una sezione di rete a pacchetto costituita da K=3 nodi.
- Si suppone che:
 - il ritardo di propagazione su ogni link sia di D=0,1 s
 - il bit rate su ogni link sia R=400 bit/s
 - il carico su ogni nodo e il tempo di elaborazione dei nodi siano trascurabili
 - l'intestazione dei pacchetti sia di lunghezza costante H=20 bit
- Si vogliono confrontare due soluzioni:
 - a) i pacchetti della rete hanno un campo informativo di dimensione costante L=80 bit
 - b) i pacchetti della rete hanno un campo informativo di dimensione variabile di dimensione massima L=80 bit
- Si chiede di:
 - 1. calcolare il ritardo di trasferimento del messaggio nelle soluzioni a) e b)
 - 2. indicare, in generale, come la differenza di ritardi di trasferimento delle due soluzioni
 a) e b) varia al crescere L

Esercizio 3(2)

- Caso (a): lunghezza pacchetti costante L
 - Il messaggio è segmentato in N pacchetti

$$N = \left\lceil \frac{M}{L} \right\rceil = \left\lceil \frac{1000}{80} \right\rceil = 13$$

Considerando che ogni pacchetto avrà lunghezza complessiva $L_{\rm D}=H+L=100$ bit e quindi $t_{\rm ti}=250$ ms (i=1,...,4), il ritardo $D_{\rm e2e}(a)$ è dato da

$$D_{\text{e2e}}(a) = 4\frac{H+L}{R} + 4D + \left(\left\lceil \frac{M}{L} \right\rceil - 1\right) \frac{(H+L)}{R} = 4 \cdot 250 + 4 \cdot 100 + 12 \cdot 250 = 4400 \ ms = 4.4 \ s$$

Tempo di trasferimento del primo pacchetto

Tempo di trasmissione dei restanti (N-1) pacchetti

Esercizio 3(3)

- Caso (b): pacchetti di lunghezza variabile con lunghezza massima L
 - In questo caso il messaggio sarà segmentato in N=13 pacchetti, di cui i primi N-1=12 saranno di lunghezza massima L, mentre l'ultimo avrà lunghezza L₂

$$L_2 = M - (N-1) \cdot L = 1000 - 12 \cdot 80 = 40 \ bit$$

Da cui il tempo di trasferimento $D_{e2e}(b)$

$$D_{\text{e2e}}(a) = 4\frac{H+L}{R} + 4D + \left(\left\lceil \frac{M}{L} \right\rceil - 2\right) \frac{(H+L)}{R} + \frac{(H+L_2)}{R} = 4 \cdot 250 + 4 \cdot 100 + 11 \cdot 250 + 150 = 4300 \text{ } ms = 4.3 \text{ } s$$

Esercizio 3(4)

Differenza dei ritardi al variare di L

- Diff= $D_{e2e}(a)-D_{e2e}(b)$
- I due ritardi sono uguali per valori di L sottomultipli di M
- Al crescere di L la differenza tendenzialmente cresce perché pesa maggiormente in D_{e2e}(a) il tempo di trasmissione dell'ultimo pacchetto

$$Diff = D_{e2e}(a) - D_{e2e}(b) =$$

$$= \frac{1}{R} \left(\left\lceil \frac{M}{L} \right\rceil \cdot L - M \right)$$

