2022-2023 MP2I

17. Convexité

Exercice 1. (c) Justifier sans calcul les inégalités suivantes :

- 1) $\forall x \in \mathbb{R}, e^x \ge x + 1.$
- 2) $\forall x \in \mathbb{R}_{+}^{*}, \ \frac{1}{x} \ge 2 x.$
- 3) $\forall x \in \left[0, \frac{\pi}{2}\right], \frac{2}{\pi}x \le \sin(x) \le x.$
- 4) $\forall x \in [0, 9], \ \frac{x}{9} \le \sqrt{x} \le \frac{1}{6}x + \frac{5}{2}$

Exercice 2. (m) Montrer que $\forall x, y > 1$, $\ln\left(\frac{x+y}{2}\right) \ge (\ln(x)\ln(y))^{\frac{1}{2}}$.

Exercice 3. (m) Soit $n \in \mathbb{N}$. Montrer que $\forall x, y \in \mathbb{R}_+, (x+y)^n \leq 2^{n-1}(x^n+y^n)$.

Exercice 4. (m) Montrer que $\forall x, y \in \mathbb{R}_+, \sqrt{2x+2y} \ge \sqrt{x} + \sqrt{y}$.

Exercice 5. (m) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Montrer que $\forall x \in \mathbb{R}, \ f(x+2) - 2f(x+1) + f(x) \geq 0$.

Exercice 6. (c) Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions convexes.

- 1) Montrer que f+g est convexe. $f \times g$ est-elle convexe ?
- 2) Montrer que si q est croissante, alors $q \circ f$ est convexe. Est-ce encore vrai si q n'est pas croissante?

Exercice 7. (m) Soient $a, b, c \in \mathbb{R}_+^*$ tels que abc = 1. En utilisant la concavité du logarithme (que l'on justifiera brièvement), montrer que $a+b+c \geq 3$ et que $ab+bc+ac \geq 3$.

Exercice 8. (m) Montrer que $f: x \mapsto \frac{1}{1+e^x}$ est convexe sur \mathbb{R}_+ . En déduire que

$$\forall x_1, \dots, x_n \ge 1, \ \frac{n}{1 + \sqrt[n]{x_1 \dots x_n}} \le \frac{1}{1 + x_1} + \dots + \frac{1}{1 + x_n}.$$

Exercice 9. (m)/(i) Soient A, B, C trois points du plan et $\alpha, \beta, \gamma \in [0, \pi]$ les angles du triangle ABC.

- 1) Montrer que sin est concave sur $[0, \pi]$ et que $x \mapsto \frac{1}{1+x}$ est décroissante et convexe sur [0, 1].
- 2) En déduire que $f: x \mapsto \frac{1}{1+\sin(x)}$ est convexe sur $[0,\pi]$, puis que :

$$\frac{1}{1 + \sin(\alpha)} + \frac{1}{1 + \sin(\beta)} + \frac{1}{1 + \sin(\gamma)} \ge \frac{6}{2 + \sqrt{3}}.$$

Exercice 10. (m) Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ deux fois dérivable. Montrer que $x \mapsto xf(x)$ est convexe si et seulement si $x \mapsto f\left(\frac{1}{x}\right)$ l'est.

Exercice 11. (i) Soit $f : \mathbb{R} \to \mathbb{R}$ convexe et $a \in \mathbb{R}$ tel que f admette un minimum local en a. Montrer que f admet un minimum global en a.

Exercice 12. (m) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Montrer que f est bornée ssi elle est constante.

Exercice 13. (i) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Montrer qu'il existe $a \in \mathbb{R} \cup \{+\infty\}$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = a$.

Exercice 14. (m) Soit $f : \mathbb{R}_+ \to \mathbb{R}_+$ concave et $x, y \in \mathbb{R}_+$.

- 1) Justifier qu'il existe $t_1, t_2 \in [0, 1]$ tels que $x = t_1 \times 0 + (1 t_1)(x + y)$ et $y = t_2 \times 0 + (1 t_2)(x + y)$.
- 2) En déduire que $f(x+y) \le f(x) + f(y)$.

Exercice 15. (i) Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et $a \in \mathbb{R}$. Montrer que $g: x \mapsto f(a-x) + f(a+x)$ est croissante sur \mathbb{R}_+ .

Exercice 16. (m) Inégalité de Hölder. Soient $\alpha, \beta \in]0,1[$ tels que $\alpha + \beta = 1$.

- 1) Montrer que $\forall x, y \in \mathbb{R}_+^*, \ x^{\alpha} y^{\beta} \leq \alpha x + \beta y$.
- 2) En déduire que $\forall (a_1, \dots, a_n) \in (\mathbb{R}_+^*)^n$, $\forall (b_1, \dots, b_n) \in (\mathbb{R}_+^*)^n$, $\sum_{i=1}^n a_i b_i \leq \left(\sum_{i=1}^n a_i^{\frac{1}{\alpha}}\right)^{\alpha} \times \left(\sum_{i=1}^n b_i^{\frac{1}{\beta}}\right)^{\beta}$.

 Indication: on pourra tout diviser par $\left(\sum_{i=1}^n a_i^{\frac{1}{\alpha}}\right)^{\alpha} \times \left(\sum_{i=1}^n b_i^{\frac{1}{\beta}}\right)^{\beta}$ dans l'inégalité recherchée.

Exercice 17. (m) Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ et $g \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ convexe. Montrer que :

$$g\left(\int_0^1 f(t)dt\right) \le \int_0^1 g(f(t))dt.$$

On utilisera le fait (approximation d'une intégrale par une somme de Riemann/par la méthode des rectangles, nous démontrerons ceci en fin d'année) que :

$$\forall h \in \mathcal{C}^0([0,1], \mathbb{R}), \ \int_0^1 h(t)dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} h\left(\frac{k}{n}\right).$$

Exercice 18. (*) Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x, y \in \mathbb{R}$, $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$. Montrer que f est convexe.