Language Models

Dan Klein, John DeNero UC Berkeley

Language Models

Language Models

Acoustic Confusions

-14732 the station signs are in deep in english the stations signs are in deep in english -14735 the station signs are in deep into english -14739 -14740 the station 's signs are in deep in english the station signs are in deep in the english -14741 -14757 the station signs are indeed in english the station 's signs are indeed in english -14760 -14790 the station signs are indians in english

Noisy Channel Model: ASR

■ We want to predict a sentence given acoustics:

$$w^* = \arg\max_{w} P(w|a)$$

■ The noisy-channel approach:

$$w^* = \arg\max_{w} P(w|a)$$

$$= \arg\max_{w} P(a|w)P(w)/P(a)$$

$$\propto \arg\max_{w} P(a|w)P(w)$$

Acoustic model: score fit between sounds and words

Language model: score plausibility of word sequences

Noisy Channel Model: Translation

"Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

Warren Weaver (1947)

Perplexity

- How do we measure LM "goodness"?
- The Shannon game: predict the next word

When I eat pizza, I wipe off the _____

Formally: test set log likelihood

$$\log P(X|\theta) = \sum_{w \in X} \log(P(w|\theta))$$

Perplexity: "average per word branching factor" (not per-step)

$$perp(X, \theta) = exp\left(-\frac{\log P(X|\theta)}{|X|}\right)$$

grease 0.5
sauce 0.4
dust 0.05
....
mice 0.0001
....
the 1e-100

3516 wipe off the excess 1034 wipe off the dust 547 wipe off the sweat 518 wipe off the mouthpiece

120 wipe off the grease 0 wipe off the sauce 0 wipe off the mice

28048 wipe off the *

N-Gram Models

N-Gram Models

Use chain rule to generate words left-to-right

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_1 \dots w_{i-1})$$

Can't condition atomically on the entire left context

P(??? | The computer I had put into the machine room on the fifth floor just)

N-gram models make a Markov assumption

$$P(w_1 ... w_n) = \prod_i P(w_i | w_{i-k} ... w_{i-1})$$

$$P(\text{please close the door}) = P(\text{please}|\text{START})P(\text{close}|\text{please}) ... P(\text{STOP}|\text{door})$$

Empirical N-Grams

Use statistics from data (examples here from Google N-Grams)

$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$
$$= 0.0006$$

This is the maximum likelihood estimate, which needs modification

Increasing N-Gram Order

Higher orders capture more correlations

Bigram Model

198015222 the first 194623024 the same 168504105 the following 158562063 the world

14112454 the door

23135851162 the *

Trigram Model

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

3785230 close the *

P(door | the) = 0.0006

P(door | close the) = 0.05

Increasing N-Gram Order

- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- Every enter now severally so, let
- Hill he late speaks; or! a more to leg less first you enter
- Are where excunt and sighs have rise excellency took of.. Sleep knave we, near, vile like

What's in an N-Gram?

Just about every local correlation!

- Word class restrictions: "will have been "
- Morphology: "she ____", "they ____"
- Semantic class restrictions: "danced a ____"
- Idioms: "add insult to ____"
- World knowledge: "ice caps have _____"
- Pop culture: "the empire strikes ____"

But not the long-distance ones

"The computer which I had put into the machine room on the fifth floor just ____."

Linguistic Pain

■ The N-Gram assumption hurts your inner linguist

- Many linguistic arguments that language isn't regular
- Long-distance dependencies
- Recursive structure
- At the core of the early hesitance in linguistics about statistical methods

Answers

- N-grams only model local correlations... but they get them all
- As N increases, they catch even more correlations
- N-gram models scale much more easily than combinatorially-structured LMs
- Can build LMs from structured models, eg grammars (though people generally don't)

Structured Language Models

Bigram model:

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
- [outside, new, car, parking, lot, of, the, agreement, reached]
- [this, would, be, a, record, november]

PCFG model:

- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

N-Gram Models: Challenges

Discounting

Observation: N-grams occur more in training data than they will later

Empirical Bigram Counts (Church and Gale, 91)

Count in 22M Words	Future c* (Next 22M)
1	
2	
3	
4	
5	

 Absolute discounting: reduce counts by a small constant, redistribute "shaved" mass to a model of new events

$$P_{\mathsf{ad}}(w|w') = \frac{c(w',w) - d}{c(w')} + \alpha(w')\hat{P}(w)$$

Fertility

Shannon game: "There was an unexpected _____"

delay?

Francisco?

- Context fertility: number of distinct context types that a word occurs in
- What is the fertility of "delay"?
- What is the fertility of "Francisco"?
- Which is more likely in an arbitrary new context?
- Kneser-Ney smoothing: new events proportional to context fertility, not frequency [Kneser & Ney, 1995]

$$P(w) \propto |\{w' : c(w', w) > 0\}|$$

• Can be derived as inference in a hierarchical Pitman-Yor process [Teh, 2006]

Storage

 For 5+-gram models, need to store between 100M and 10B contextword-count triples

(a) Context-Encoding				(b) Context Deltas				(c) Bits Required			
v	c	val		Δw	Δc	val]	$ \Delta w $	$ \Delta c $	val	
33	15176585	3	П	1933	15176585	3	П	24	40	3	
33	15176587	2	П	+0	+2	-1		2	3	3	
33	15176593	1		+0	+5	1		2	3	3	
33	15176613	8		+0	+40	8		2	9	6	
33	15179801	1		+0	+188	1		2	12	3	
35	15176585	298		+2	15176585	298		4	36	15	
35	15176589	1		+0	+4	1		2	6	3	
	v 33 33 33 33 33 35	v C 33 15176585 33 15176587 33 15176593 33 15176613 33 15179801 35 15176585	v c val 333 15176585 3 333 15176587 2 333 15176593 1 33 15176613 8 33 15179801 1 35 15176585 298	y c val 33 15176585 3 33 15176587 2 33 15176593 1 33 15176613 8 33 15179801 1 35 15176585 298	v c val Aw 333 15176585 3 1933 334 15176587 2 +0 33 15176593 1 +0 33 15176613 8 +0 33 15176810 1 +0 33 15176585 298 +2	v c val	v c val \(\Delta \) \(\Delta \) </th <th>v c val 33 15176585 3 33 15176587 2 33 15176593 1 33 15176991 1 40 +5 1 33 15176613 8 40 +40 8 33 15176585 298 42 15176585 298</th> <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th>	v c val 33 15176585 3 33 15176587 2 33 15176593 1 33 15176991 1 40 +5 1 33 15176613 8 40 +40 8 33 15176585 298 42 15176585 298	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

▶ Make it fit in memory by *delta encoding* scheme: store deltas instead of values and use variable-length encoding

Pauls and Klein (2011), Heafield (2011)

Slide: Greg Durrett

Entirely Unseen Words

- What about totally unseen words?
- Classical real world option: systems are actually closed vocabulary
- ASR systems will only propose words that are in their pronunciation dictionary
- MT systems will only propose words that are in their phrase tables (modulo special models for numbers, etc)
- Classical theoretical option: build open vocabulary LMs
- Models over character sequences rather than word sequences
- N-Grams: back-off needs to go down into a "generate new word" model
- Typically if you need this, a high-order character model will do
- Modern approach: syllable-sized subword units (more later)

Graveyard of Correlations

- Skip-grams
- Cluster models
- Topic variables
- Cache models
- Structural zeros
- Dependency models
- Maximum entropy models
- Subword models
- ..