SQL: The Query Language Part II

R&G - Chapter 5

Announcement

- Midterm exam (Oct 26 & 28 tentative)
- Assignment 2 is available in Moodle
 - Relational Algebra and SQL
 - Due time: Monday Oct 31 (11:59pm this time!)

SQL

• The form:

- A_i represents an attribute
- $-r_i$ represents a relation
- P is a predicate
- This query is equivalent to the relational algebra expression:

$$\prod_{A_1,A_2,...,A_n} (\sigma_P(r_1 \times r_2 \times ... \times r_m))$$

Example Schemas

```
Sailors(sid, sname, rating, age)
Boats(bid, bname, color)

Reserves(sid, bid, day)
   FOREIGN KEY (bid) REFERENCES Boats,
   FOREIGN KEY (sid) REFERENCES sailors
)
```

Set Operators UNION/UNION ALL INTERSECT MINUS/EXCEPT

Set Operations

Union: $R \cup S$

<u>In SQL:</u>

SELECT * FROM R

UNION

SELECT * FROM S;

Intersection: $R \cap S$

In SQL:

SELECT * FROM R

INTERSECT

SELECT * FROM S;

Set difference: R - S

In SQL:

SELECT * FROM R

EXCEPT

SELECT * FROM S;

Example of Union

Find sids of sailors who've reserved a red or a green boat

Solution 1 (Without using Set Operations)

$$\pi_{sid}(\sigma_{color = 'red' \lor color = 'green'}Boats)$$
 Re serves)

```
SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color='red'OR B.color='green')
```

Example of Union

Find sids of sailors who've reserved a red <u>or</u> a green boat Solution 2 (with Set operations)

- Find sailors who've reserved red boats *Tempred*;
- Find sailors who've reserved green boats *Tempgreen*;
- find the Union of *Tempred* and *Tempgreen*

```
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'
UNION
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'
```

Question: how to revise the SQL statement if the query is changed to be "find names of sailors who've reserved a red or a green boat

UNION Operator

The UNION operator returns results from both queries after eliminating duplications.

UNION ALL Operator

The UNION ALL operator returns results from both queries, including all duplications.

Examples of UNION and UNION ALL

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

*S*1

SELECT sname

FROM S1

WHERE Age >40

UNION

SELECT sname

FROM S2

WHERE Age >40

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

*S*2

Dustin

Lubber

Result

Examples of UNION and UNION ALL

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

*S*1

SELECT sname

FROM S1

WHERE Age >40

UNION ALL

SELECT sname

FROM S2

WHERE Age >40

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

*S*2

Sname

Dustin

Lubber

Lubber

Result

Intersection

- Find sids of sailors who've reserved a red <u>and</u> a green boat
 - Identify sailors who've reserved red boats (in Tempred),
 - Identify sailors who've reserved green boats (in Tempgreen),
 - find the intersection of *Tempred* and *Tempgreen* $\rho(Tempred,\pi_{sid}((\sigma_{color='red'}Boats))\bowtie Reserves))$

$$\rho \ (Tempgreen, \pi_{sid} ((\sigma_{color='green'} Boats) \bowtie Reserves))$$

$$\pi_{sname} ((Tempred \cap Tempgreen) \bowtie Sailors)$$

Intersection (Cont.)

 INTERSECT: Can be used to compute the intersection of any two union-compatible sets of tuples.

```
SELECT sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'
INTERSECT
SELECT sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green';
```

 Can we write equivalent SQL statement without using set operations?

```
SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid=B.bid AND

(B.color='red' AND B.color='green')
```

- Can we write equivalent SQL statement without using set operations?
 - Hint: join with Boats table TWICE (one for red boats, one for greet boats)
 - Solution:

```
SELECT R1.sid

FROM Boats B1, Reserves R1,

Boats B2, Reserves R2

WHERE R1.sid=R2.sid

AND R1.bid=B1.bid

AND R2.bid=B2.bid

AND B1.color='red'

AND B2.color='green';
```

- Can we write equivalent SQL statement without using set operations?
 - Hint: join with Boats table TWICE (one for red boat, one for greet boat)
 - Question: can we use one single Reserves table in the two joins (as shown below)?

```
SELECT R1.sid
FROM Boats B1, Boats B2, Reserves R
WHERE R.bid=B1.bid
AND R.bid=B2.bid
AND B1.color='red'
AND B2.color='green';
```

- Can we write equivalent SQL statement without using set operations?
 - Hint: join with Boats table TWICE (one for red boat, one for greet boat)
 - Question: can we use one single Reserves table in the two joins (as shown below)?

```
SELECT R1.sid
FROM Boats B1, Boats B2, Reserves R
WHERE R.bid=B1.bid
AND R.bid=B2.bid
AND B1.color='red'
AND B2.color='green';
```

Find sid's of sailors who've reserved a red **but did not reserve** a green boat

EXCEPT (sometimes called MINUS)

Included in the SQL/92 standard, but many systems don't support them.

```
SELECT sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'
EXCEPT
SELECT sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'
```