NC State University

Department of Electrical and Computer Engineering

ECE 463/563 (Prof. Rotenberg)

Project #1: Cache Design, Memory Hierarchy Design

REPORT TEMPLATE (Version 1.0)

by

Ashish Tummuri

NCSU Honor Pledge: "I have neith project."	her given nor received unauthorized aid on this
Student's electronic signature:	Ashish Tummuri(sign by typing your name)
Course number: 563 (463 or 563)

1. L1 cache exploration: SIZE and ASSOC

GRAPH #1 (total number of simulations: 55)

For this experiment:

• Benchmark trace: gcc_trace.txt

• L1 cache: SIZE is varied, ASSOC is varied, BLOCKSIZE = 32.

L2 cache: None.Prefetching: None.

Plot L1 miss rate on the y-axis versus log₂(SIZE) on the x-axis, for eleven different cache sizes: SIZE = 1KB, 2KB, ..., 1MB, in powers-of-two. (That is, log₂(SIZE) = 10, 11, ..., 20.) The graph should contain five separate curves (*i.e.*, lines connecting points), one for each of the following associativities: direct-mapped, 2-way set-associative, 4-way set-associative, 8-way set-associative, and fully-associative. All points for direct-mapped caches should be connected with a line, all points for 2-way set-associative caches should be connected with a line, *etc*.

Answer the following questions:

1. For a given associativity, how does increasing cache size affect miss rate?

As the graph shows, increasing the cache size decreases the miss rate exponentially for a given associativity. This is due to the fact that as cache size increases, more blocks may be accommodated in more sets, resulting in fewer misses.

2. For a given cache size, how does increasing associativity affect miss rate?
For a given cache size, increasing associativity decreases miss rate.
However, for large caches, increasing associativity has little influence on the miss rate.

3. Estimate the *compulsory miss rate* from the graph and briefly explain how you arrived at this estimate.

compulsory miss rate = 0.02582
How I arrived at this estimate: By looking at a 1Mb cache of Full associative, we can estimate the obligatory miss rate. The only misses in this cache will be Compulsory
misses.

GRAPH #2 (no additional simulations with respect to GRAPH #1)

Same as GRAPH #1, but the y-axis should be AAT instead of L1 miss rate.

Answer the following question:

1. For a memory hierarchy with only an L1 cache and BLOCKSIZE = 32, which configuration yields the best (*i.e.*, lowest) AAT and what is that AAT?

Configuration that yields the lowest AAT: <u>Fully Associative Cache</u> Lowest AAT: <u>14 KB</u>

GRAPH #3 (total number of simulations: 20)

Same as GRAPH #2, except make the following changes:

- Add the following L2 cache to the memory hierarchy: 16KB, 8-way set-associative, same block size as L1 cache.
- Vary the L1 cache size only between 1KB and 8KB (since L2 cache is 16KB).

Answer the following questions:

1. With the L2 cache added to the system, which L1 cache configuration yields the best (*i.e.*, lowest) AAT and what is that AAT?

L1 configuration	that yields	the lowest	AAT	with	16KB	8-way	L2	added:	13KB	with
$\underline{ASSOC} = 1$										
Lowest AAT:	0.7	<u> 151076</u>								

2. How does the lowest AAT with L2 cache (GRAPH #3) compare with the lowest AAT without L2 cache (GRAPH #2)?

The lowest AAT with L2 cache is _______ ns _____ ns _____ ns _____ the lowest AAT without L2 cache.

3. Compare the *total area* required for the lowest-AAT configurations with L2 cache (GRAPH #3) versus without L2 cache (GRAPH #2).

2. L1 cache exploration: SIZE and BLOCKSIZE

GRAPH #4 (total number of simulations: 24)

For this experiment:

- Benchmark trace: gcc_trace.txt
- L1 cache: SIZE is varied, BLOCKSIZE is varied, ASSOC = 4.
- L2 cache: None.Prefetching: None

5

Plot L1 miss rate on the y-axis versus log₂(BLOCKSIZE) on the x-axis, for four different block sizes: BLOCKSIZE = 16, 32, 64, and 128. (That is, log₂(BLOCKSIZE) = 4, 5, 6, and 7.) The graph should contain six separate curves (*i.e.*, lines connecting points), one for each of the following L1 cache sizes: SIZE = 1KB, 2KB, ..., 32KB, in powers-of-two. All points for SIZE = 1KB should be connected with a line, all points for SIZE = 2KB should be connected with a line, *etc*.

Answer the following questions:

1. Do smaller caches prefer smaller or larger block sizes?

Smaller caches prefer <u>smaller</u> block sizes. For example, the smallest cache considered in Graph #4 (1KB) achieves its lowest miss rate with a block size of <u>32</u> B.

2. Do larger caches prefer smaller or larger block sizes?

Larger caches prefer <u>larger</u> block sizes. For example, the largest cache considered in Graph #4 (32KB) achieves its lowest miss rate with a block size of <u>128</u> B.

3. As block size is increased from 16 to 128, is the tension between *exploiting more spatial locality* and *cache pollution* evident in the graph? Explain.

Yes, the tension between *exploiting more spatial locality* and *cache pollution* is evident in the graph.

For example, consider the smallest (1KB) cache in Graph #4. Increasing block size from **16** B to **32** B is helpful (reduces miss rate) due to **exploiting more spatial locality**. But then increasing block size further, from **32** B to **128** B, is not helpful (increases miss rate) due to **cache pollution** having greater effect.

3. L1 + L2 co-exploration

GRAPH #5 (total number of simulations: 12)

For this experiment:

- Benchmark trace: gcc_trace.txt
- L1 cache: SIZE is varied, BLOCKSIZE = 32, ASSOC = 4.
- L2 cache: SIZE is varied, BLOCKSIZE = 32, ASSOC = 8.
- Prefetching: None.

Plot AAT on the y-axis versus log₂(L1 SIZE) on the x-axis, for four different L1 cache sizes: L1 SIZE = 1KB, 2KB, 4KB, 8KB. (That is, log₂(L1 SIZE) = 10, 11, 12, 13.) The graph should contain three separate curves (*i.e.*, lines connecting points), one for each of the following L2 cache sizes: 16KB, 32KB, 64KB. All points for the 16KB L2 cache should be connected with a line, all points for the 32KB L2 cache should be connected with a line, *etc*.

Answer the following question:

1. Which memory hierarchy configuration in Graph #5 yields the best (*i.e.*, lowest) AAT and what is that AAT?

Configuration that yields the lowest AAT: <u>L1 cache of 2Kb and L2 cache of 64Kb</u> Lowest AAT: <u>0.699302</u>

4. Stream buffers study (ECE 563 students only)

TABLE #1 (total number of simulations: 5)

For this experiment:

- Microbenchmark: stream_trace.txt
- L1 cache: SIZE = 1KB, ASSOC = 1, BLOCKSIZE = 16.
- L2 cache: None.
- PREF_N (number of stream buffers): 0 (pref. disabled), 1, 2, 3, 4
- PREF_M (number of blocks in each stream buffer): 4

The trace "stream_trace.txt" was generated from the loads and stores in the loop of interest of the following microbenchmark:

Fill in the following table and answer the following questions:

PREF_N, PREF_M	L1 miss rate
0,0 (pref. disabled)	
1,4	
2,4	
3,4	
4,4	

1. For this streaming microbenchmark, with prefetching disabled, do L1 cache size and/or associativity affect the L1 miss rate (feel free to simulate L1 configurations besides the one used for the table)? Why or why not?

, , ,
With prefetching disabled, L1 cache size and/or associativity << do / do not >> affect L1 miss rate (for this streaming microbenchmark).
The reason:

2. For this streaming microbenchmark, what is the L1 miss rate with prefetching disabled? Why is it that value, *i.e.*, what is causing it to be that value? Hint: each element of arrays a, b, and c, is 4 bytes (uint32_t).

The L1 miss rate with prefetching disabled is	, because

will be and then check your hypothesis with a simulation)			
The L1 miss rate with prefetching disabled and a block size of 32B is,			
because			
4. With prefetching enabled, what is the minimum number of stream buffers			
required to have any effect on L1 miss rate? What is the effect on L1 miss rate			
when this many stream buffers are used: specifically, is it a modest effect or huge			
effect? Why are this many stream buffers required? Why is using fewer stream			
buffers futile? Why is using more stream buffers wasteful?			
Minimum number of stream buffers needed to have any effect on L1 miss rate:			
With this many stream buffers, the effect on L1 miss rate is << modest / huge >>.			
Specifically, the L1 miss rate is nearly We only miss on the first elements of			
(hence a total of misses).			
This many stream buffers are required because			
Using fewer stream buffers is futile because			
Using more stream buffers is wasteful because			

3. For this streaming microbenchmark, with prefetching disabled, what would the L1 miss rate be if you doubled the block size from 16B to 32B? (hypothesize what it