SEUNGCHAN KIM

seungch2@andrew.cmu.edu

https://seungchan-kim.github.io

Education Carnegie Mellon University

Pittsburgh, Pennsylvania

Ph.D. student at Robotics Institute

Sep 2020 - Present

Advisor: Sebastian Scherer

Brown University

Providence, Rhode Island

M.S. in Computer Science B.S. in Applied Mathematics & Computer Science Sep 2019 - May 2020 Sep 2013 - May 2019

Advisor: George Konidaris

Research Experience CMU Air Lab

Oct 2020 - Present

• Conducting AI research with a focus on multi-robot semantic exploration

Brown University Intelligent Robot Lab

Sep 2017 - May 2020

• Researched on deep reinforcement learning, model-based reinforcement learning

Brown University Serre Lab

Jan 2018 - May 2019

· Developed algorithm to analyze visual attention in childhood development

Publications

[7] AirDet: Few-Shot Detection without Fine-tuning for Autonomous Exploration

Bowen Li, Chen Wang, Pranay Reddy, **Seungchan Kim**, Sebastian Scherer.

European Conference on Computer Vision (ECCV) 2022.

[6] Robotic Interestingness via Human-Informed Few-Shot Object Detection

Seungchan Kim, Chen Wang, Bowen Li, Sebastian Scherer.

IEEE/RSJ International Conference on Robotics and Systems (IROS) 2022.

[5] Unsupervised Online Learning for Robotic Interestingness with Visual Memory

Chen Wang, Yuheng Qiu, Wenshan Wang, Yafei Hu, **Seungchan Kim**, Sebastian Scherer. *IEEE Transactions on Robotics (T-RO) 2021.*

[4] Using Computational Analysis of Behavior to Discover Developmental Change in Memory-Guided Attention Mechanisms in Childhood

Dima Amso, Lakshmi Govindarajan, Pankaj Gupta, Heidi Baumgartner, Andrew Lynn, Kelley Gunther, Diego Placido, Tarun Sharma, Vijay Veerabadran, Kalpit Thakkar, **Seungchan Kim**, Thomas Serre. *PsyArXiv. doi:10.31234/osf.io/gq4rt*.

[3] Combating the Compounding-Error Problem with a Multi-step Model

Kavosh Asadi, Dipendra Misra, **Seungchan Kim**, Michael Littman.

arXiv preprint. CoRR abs/1905.13320 [cs.LG]

[2] DeepMellow: Removing the Need for a Target Network in Deep Q-Learning

Seungchan Kim, Kavosh Asadi, Michael Littman, George Konidaris. *International Joint Conference on Artificial Intelligence (IJCAI) 2019.*

Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM) 2019.

[1] Removing the Target Network from Deep Q-Networks with the Mellowmax Operator

Seungchan Kim, Kavosh Asadi, Michael Littman, George Konidaris.

International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2019.

Invited Talks

DeepMellow: Removing the Need for a Target Network in Deep Q-Learning

Brown University Robotics Lab, Providence, RI.

Oct 2019

	Machine Intelligence Community (MIC) Conference, Boston, MA.	Sep 2019
Teaching	16-833 Robot Localization and Mapping, CMU Robotics, TA	Jan 2022 - May 2022
	CSCI1430 Computer Vision, Brown CS, TA	Jan 2019 - May 2019
	CSCI0040 Scientific Computing and Problem Solving, Brown CS, TA	Jan 2015 - May 2015
	ENGN0040 Dynamics and Vibrations, Brown Engineering, TA	Jan 2015 - May 2015

An Alternative Softmax Operator for Deep Reinforcement Learning

Academic Activities Reviewer

- IEEE Robotics and Automation Letters 2021
- International Conference on Robotics and Automation 2023
- International Conference on Machine Learning 2020
- AAAI Conference on Artificial Intelligence 2021
- International Conference on Learning Representations 2021, 2023
- Neural Information Processing Systems 2021, 2022

Mentor

- CMU AI Mentorship Program 2021, 2022
- CMU SCS Graduate Application Support Program 2020

Graduate	
Coursework	

16-811	Math Fundamentals for Robotics
16-720B	Computer Vision
10-715	Advanced Introduction to Machine Learning
16-711	Kinematics, Dynamics, and Control
16-833	Robot Localization and Mapping
16-824	Visual Learning and Recognition
16-782	Planning and Decision Making in Robotics
16-884	Deep Learning for Robotics