Серия 8. Растём над собой...

Свободная группа с двумя образующими — это не группа, это просто набор слов.

Анатолий Моисеевич Вершик

- **0.** Чему изоморфна группа $\langle a,b,c \mid a^5=1,\ b^{17}=1,\ c^{239}=1,\ [a,b]=1,\ [a,c]=1,\ [b,c]=1 \rangle.$
- **1.** В группе G выполнены соотношения $a^2=b^5=(ab)^4$ и $(ab^{-2}ab^2)^2=a^2$. Докажите, что $(ba)^4=1$.
- **2.** Мама отправила Васю в магазин «Мир теории групп», чтоб он принёс полезную в быту группу, но написала в списке не её название, а задание образующими и соотношениями:

$$G = \langle \eta_1, \dots, \eta_{n-1} \mid \eta_j^2 = 1, (\eta_j \eta_{j+1})^3, \eta_j \eta_\ell = \eta_\ell \eta_j \ \forall \ j, \ell \colon |j - \ell| \ge 1 \rangle.$$

Помогите Васе понять, какую группу ему надо купить в магазине.

- 3. Пусть G транзитивная на уровнях подгруппа в группе автоморфизмов $\mathrm{Aut}(X^*)$, а $w\in X^*$. Докажите, что если $h\in G[w]$ и $g(w)\neq w$, то $[h,g]\neq 1$.
- **4.** Рассмотрим в группе Григорчука **G** следующее правивло переписывания

$$\tau \colon a \mapsto aca, \ c \mapsto cd, \ d \mapsto c.$$

Докажите, что $\tau^i(ad)^4=1$

- 5. Рассмотрим группу $\mathbb{Z}=\langle r,s \rangle$, где 0< r< s. Докажите, что для достаточно больших n сферическая функция роста будет иметь вид $s_{\mathbb{Z}}(n)=2s$.
- **6.** Пусть G произвольная конечнопорожденная группа. Докажите, что для её шаровой функции роста выполнено неравенство

$$b(n+m) \le b(n)b(m).$$

- б) выведите из этого, что $\lim_{n \to \infty} (b(n))^{1/n}$ существует и конечен.
- 7. Заведём на множестве функций $f\colon \mathbb{N} \to \mathbb{R}_+$ такое отношение эквивалентности

$$f \approx g \Leftrightarrow f \leq g \text{ in } g \leq f$$
,

где $f\leqslant g$, если $\exists A\geq 1\colon f(n)\leq A\cdot g(An)$ для достаточно больших n. Убедитесь, что это в самом деле отношение эквивалетности.

Серия 8. Растём над собой...

Свободная группа с двумя образующими — это не группа, это просто набор слов.

Анатолий Моисеевич Вершик

- **0.** Чему изоморфна группа $\langle a,b,c \mid a^5=1,\ b^{17}=1,\ c^{239}=1,\ [a,b]=1,\ [a,c]=1,\ [b,c]=1 \rangle.$
- **1.** В группе G выполнены соотношения $a^2=b^5=(ab)^4$ и $(ab^{-2}ab^2)^2=a^2$. Докажите, что $(ba)^4=1$.
- **2.** Мама отправила Васю в магазин «Мир теории групп», чтоб он принёс полезную в быту группу, но написала в списке не её название, а задание образующими и соотношениями:

$$G = \langle \eta_1, \dots, \eta_{n-1} \mid \eta_j^2 = 1, \ (\eta_j \eta_{j+1})^3, \ \eta_j \eta_\ell = \eta_\ell \eta_j \ \forall \ j, \ell \colon |j - \ell| \ge 1 \rangle.$$

Помогите Васе понять, какую группу ему надо купить в магазине.

- 3. Пусть G транзитивная на уровнях подгруппа в группе автоморфизмов ${\rm Aut}(X^*)$, а $w\in X^*$. Докажите, что если $h\in G[w]$ и $g(w)\neq w$, то $[h,q]\neq 1$.
- **4.** Рассмотрим в группе Григорчука G следующее правивло переписывания

$$\tau: a \mapsto aca, c \mapsto cd, d \mapsto c.$$

Докажите, что $\tau^i(ad)^4=1$

- 5. Рассмотрим группу $\mathbb{Z}=\langle r,s \rangle$, где 0 < r < s. Докажите, что для достаточно больших n сферическая функция роста будет иметь вид $s_{\mathbb{Z}}(n)=2s$.
- **6.** Пусть G произвольная конечнопорожденная группа. Докажите, что для её шаровой функции роста выполнено неравенство

$$b(n+m) \le b(n)b(m).$$

- б) выведите из этого, что $\lim_{n \to \infty} (b(n))^{1/n}$ существует и конечен.
- 7. Заведём на множестве функций $f\colon \mathbb{N} \to \mathbb{R}_+$ такое отношение эквивалентности

$$f \approx g \Leftrightarrow f \leq g \text{ in } g \leq f$$
,

где $f\leqslant g$, если $\exists A\geq 1\colon f(n)\leq A\cdot g(An)$ для достаточно больших n. Убедитесь, что это в самом деле отношение эквивалетности.