The PageRank Citation Ranking: Bring Order to the Web

2022.03.13 발표자 | 김진영

: 웹 페이지의 상대적인 중요성을 측정하는 방법 (measure the relative importance of web pages)

어떤 웹 페이지가 중요한 웹페이지인가?

어떤 페이지의 모든 백링크를 찾아내는 것은 불가능 하지만, 모든 페이지를 크롤링한뒤, 포워드 링크는 알아낼 수 있다 라는 생각에서 출발 (사실 "전세계의 모든 웹페이지를 크롤링한다는 생각" 이건 98년도 논문이기에 가능한 일이지 않을까 싶음)

Figure 1: A and B are Backlinks of C

* 사전지식 점검)

포워드 링크 : 해당 페이지로부터 밖으로 나가는 링크

백 링크 : 해당 페이지를 가리키는 링크

* 사진 설명)

C는 2개의 백링크(A,B)를 가진다.

: 웹 페이지의 상대적인 중요성을 측정하는 방법 (measure the relative importance of web pages)

어떤 웹 페이지가 중요한 웹페이지인가?

어떤 페이지의 모든 백링크를 찾아내는 것은 불가능 하지만, 모든 페이지를 크롤링한뒤, 포워드 링크는 알아낼 수 있다 라는 생각에서 출발 (사실 "전세계의 모든 웹페이지를 크롤링한다는 생각" 이건 98년도 논문이기에 가능한 일이지 않을까 싶음)

- 얼마나 많은 페이지가 참조하였는가? (when a page has many backlinks)

- 얼마나 많은 "중요하다고 평가된" 페이지가 참조하였는가? (when a page has a few highly ranked backlinks)

: Definition of PageRank (Simple)

$$R(u) = c\sum_{v \in B_u} rac{R(v)}{N_v}$$
 \leftarrow backlink의 영향력 N_v \leftarrow 가리키는 페이지의 rank에 동일하게 일마나 많은 backlink를 가지고 있는지

u : 웹 페이지

FL: u 페이지가 가리키는 페이지들의 집합 (u페이지의 포워드 링크 집합)

Bu : u 페이지를 가리키는 페이지의 집합 (u페이지의 백 링크 집합)

Nu: u 페이지로부터 나가는 링크의 개수 (= Fu 의 갯수)

c : 정규화를 하기 위해 사용하는 상수 (전체 웹 페이지의 rank 합을 일정하게 하기 위해 정규화 사용)

: Definition of PageRank (Simple)

$$R(u) = c\sum_{v \in B_u} rac{R(v)}{N_v}$$
 \leftarrow backlink의 영향력 N_v \sim 가리키는 페이지의 rank에 동일하게 일마나 많은 backlink를 가지고 있는지

u : 웹 페이지

FL: u 페이지가 가리키는 페이지들의 집합 (u페이지의 포워드 링크 집합)

Bu : u 페이지를 가리키는 페이지의 집합 (u페이지의 백 링크 집합)

Nu: u 페이지로부터 나가는 링크의 개수 (= Fu 의 갯수)

c : 정규화를 하기 위해 사용하는 상수 (전체 웹 페이지의 rank 합을 일정하게 하기 위해 정규화 사용)

: Definition of PageRank (Matrix)

$$0 \cdot R(A) + \frac{1}{2}R(B) + 0 \cdot R(C) + 0 \cdot R(D)$$

$$\frac{1}{3} \cdot R(A) + 0 \cdot R(B) + \frac{1}{2} \cdot R(C) + \frac{1}{2} \cdot R(D)$$

$$\frac{1}{3} \cdot R(A) + 0 \cdot R(B) + 0 \cdot R(C) + \frac{1}{2} \cdot R(D)$$

$$\frac{1}{3} \cdot R(A) + \frac{1}{2}R(B) + \frac{1}{2} \cdot R(C) + 0 \cdot R(D)$$

$$R(u) = \sum_{\{v \in B_u\}} \frac{R(v)}{N_v}$$
 BackLink의 영향력

얼마나 많은 BackLink가 있는가?

: problem of ranking function - Rank Sink

case1, Dead End (= Dangling Node)

: 노드가 연결이 되어 있으나, 해당 Dangling Node는 다른 노드로의 연결이 되어 있지 않은 경우

Dead End

case2. Spider Trap

: 노드들이 자신들끼리만 linked 되어 있는 경우

Spider Trap

: problem of ranking function - Rank Sink

case1. Dead End (= Dangling Node) 가 문제가 되는 이유

이미지 출처: Mining of Massive Datasets - Figure 5.4

웹의 변환행렬(H)의 특정 열의 합이 1이 아닌 0이 된다.

- -> 변환행렬은 더이상 확률적(stochatic)하지 않는다.
- -> web 페이지에 대한 상대 중요성 정보를 얻을 수 없다.

: problem of ranking function - Rank Sink

case2. Spider Trap 이 문제가 되는 이유

이미지 출처 : Mining of Massive Datasets - Figure 5.6

PageRank 계산 계속 반복하다 보면,,,

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24 \\ 5/24 \\ 11/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48 \\ 7/48 \\ 29/48 \\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288 \\ 31/288 \\ 205/288 \\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

모든 페이지랭크가 C에 있게 된다

-> 페이지가 트랩에 갇혀서 다른 페이지로 갈 수 없다.

: solution of Rank Sink problem

Dead End 의 해결방법

이미지 출처: Mining of Massive Datasets - Figure 5.4

: solution of Rank Sink problem

Spider Trap 의 해결방법 - Random Suffer Model

이미지 출처: Mining of Massive Datasets - Figure 5.6

: 논문에서의 pagerank 정리

$$R(u) = \operatorname{c} \sum_{\{v \in B_u\}} \frac{R(v)}{N_v}$$
 BackLink의 প্ৰকৃষ্ণ

얼마나 많은 BackLink가 있는가?

$$R'(u) = c \sum_{\{v \in B_u\}} \frac{R(v)}{N_v} + c E(u)$$

random suffer 모델을 사용하여, spider trap은 해결 but, dead node에 대한 해결책은 적용되지 않은 rank 식

$$R' = c(AR' + E)$$

Matrix Form

A: transition matrix

E:random suffer model을 의미

$$R' = c(A + E \cdot 1) R'$$

$$R' = ||R'||_{_1}$$

Final Matrix Form

Transition Matrix · Rank

Markov chain

: 마르코프 체인의 사용 예로 볼 수 있는 PageRank 알고리즘

Markov Chain?

: 어떤 사건이 발생할 확률값이 시간에 따라 변화해 가는 라정 Markov Chain은 마르코프 성질을 가진 이산 확률 라정을 의미한다.

> 특정 상태의 확률은 오직 과거의 상태에 의존한다. (조건1) 시간은 이산적으로 변한다. (조건2) 시간 †+1에 사건이 발생할 확률이 시간 †에 발생한 사건에만 영향을 받는다.

Markov Chain의 중요 특징

markov chain 계산을 충분히 많은 횟수를 반복하다보면, 어느 순간에 전이행렬이 변하지 않는 상태가 된다. (수렴하게 된다.)

Markov chain

: 마르코프 체인 계산 ex.

0.75

$$P = \begin{bmatrix} 0.7 & 0.3 \\ 0.25 & 0.75 \end{bmatrix}$$

전이행렬(transition matrix)으로의 표현

모레의 날씨 전이행렬(transition matrix)

: searching with pagerank

Title Search

PageRank를 사용하여 제목기반/ 전체 검색어 기반의 검색 엔진을 개발하였고, 전체 검색의 기반 검색엔진이 구글임.

PageRank는 불특정 검색어에 대하여 우수한 rank로 정렬된 결과를 보여준다는 장점을 가진다.

: personalized pagerank

$$R' = c(A + E \cdot 1) R'$$

$$R' = |R'|_1$$

PageRank에서의 E

: ranksink에서, spider trap을 해결하기 위한 하나의 방법인 (random suffer model)

: page rank 값을 조정하는 강력한 parameter

-> random suffer가 주기적으로 이동하는 웹 페이지의 분포

-> 웹을 거시적인 란점에서 바라보거나, 특정 부분에 대한 개인화된 관점에서 파악 가능

개인화된 검색 엔진이 가지게 되는 특징

- 단순히 북마크나 홈페이지를 입력하는 것 만으로, 사용자의 취향 추측 가능
- 상업적 이익을 위한 검색순위 조작을 방지할 수 있다.

높은 페이지 랭크: 중요한 페이지에서 언급 or 중요하지 않은 페이지에서 언급X (중요한 페이지의 랑고(링크)를 구매하여 조작하는 경우가 생길 수 있으나, 비용이 소요되므로 어느정도의 상업적 이익을 위한 조작을 방지한다고 볼 수 있다.)

: Applications

1. Estimating Web Traffic

PageRank와 실제 웹 페이지의 사용도 사이의 차이점을 살펴 보는 것을 통하여, 사람들이 보고는 싶어하는데, 자신의 웹페이지에서는 언급하고 싶지 않은 것이 무엇이 있는지 파악할 수 있다.

2. PageRank as Backlink Predictor

3. User Navigation: The PageRank Proxy

web proxy?

: 사용자가 각 링크의 pagerank와 함께 부가적인 정보도 함께 볼 수 있음

: 사용자가 링크를 클릭하기 이전에 관련 정보를 미리 알 수 있다는 장점有

: Conclusion

PageRank를 사용함으로써, 더 중요하고 중심적인 웹 페이지들의 검색 결과를 정렬할 수 있다. PageRank에 기반이 되는 개념은, 웹페이지 외부의 정보(=백링크)를 사용한다는 것이다. 중요한 페이지들로부터의 백링크는 평균적인 페이지로부터의 백링크보다 더 중요하고, pagerank는 이러한 특징을 반영하여 구현되어 있다. PageRank는 대부분의 질의어들을 사용하여, 소수에게만 자주 사용되는 문서들을 분리해내는 데에도 용이하게 사용될 수 있다. PageRank는 검색 이외에도 트래픽 추정이나 사용자 네비게이션라 같이 다양한 곳에 적용될 수 있다.

웹 그래프의 구조가 다양한 정보 검색 작업에서 유용하게 사용될 수 있다.