Algebra a diskrétna matematika Prehľad z 12. týždňa

Izmorfizmus grúp, symetrické grupy, polia

Algebraické štruktúry s jednou binárnou operáciou

Nech M je neprázdna množina a nech platí

- (1) * je binárna operácia na M
- (2) * je asocitívna na M
- (3) $\exists e \in M \ \forall x \in M : \ x * e = e * x = x$
- (4) $\forall x \in M \ \exists x^{-1} \in M : \ x * x^{-1} = x^{-1} * x = e$

Potom dvojicu (M, *) nazývame **grupa**.

Ak sú na M splné iba vlastnosti (1), (2), (3), jedná sa o **monoid**.

Ak na M platí len (1),(2), hovoríme, že (M,*) je **pologrupa**.

Ak na M požadujeme iba platnosť (1), štruktúra (M, *) je **grupoid**.

Priamy súčin grúp

Priamy súčin dvoch grúp (S,*) a (T,\circ) je definovaný ako operácia • na $S \times T$, kde $\forall s_1, s_2 \in S, t_1, t_2 \in T : (s_1, t_1) \bullet (s_2, t_2) = (s_1 * s_2, t_1 \circ t_2)$

Dá sa ukázať, že operácia • je asociatívna.

Neutrálny prvok v $(S \times T, \bullet)$ je (e_1, e_2) , kde e_1 je neutrálny prvok v S a e_2 je neutrálny prvok v T.

 $Inverzný\ prvok$ k prvku (s,t) je prvok (s^{-1},t^{-1}) , pričom s^{-1} je inverzný k s v (S,*) a t^{-1} je inverzný k t v (T,\circ) .

Dvojica $(S \times T, \bullet)$ tvorí grupu.

<u>Príklad 1</u>: Priamy súčin grúp $(\mathbb{Z}_2,+)$ a $(\mathbb{Z}_2,+)$ je množina

 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$

s operáciou súčtu modulo 2 v oboch súradniciach.

Napr. $(0,1) \oplus (1,0) = (1,1), (1,1) \oplus (1,0) = (0,1), (1,0) \oplus (1,1) = (0,1)$ atd'.

<u>Príklad 2</u>: Priamy súčin grúp $(\mathbb{Z}_2,+)$ a $(\mathbb{Z}_3,+)$ je množina

 $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$

s operáciou \oplus , ktorá vykoná súčet modulo 2 v prvej súradnici a súčet modulo 3 v druhej súradnici.

Napr. $(1,2) \oplus (0,2) = (1,1), (1,1) \oplus (1,2) = (0,0).$

Izomorfizmus grúp

Nech $(M_1,*)$ a (M_2,\circ) sú dve grupy. Ak existuje bijekcia φ medzi M_1 a M_2 taká, že $\forall x,y\in M_1$ platí

$$\varphi(x * y) = \varphi(x) \circ \varphi(y),$$

potom grupy $(M_1, *)$ a (M_2, \circ) sú **izomorfné**, píšeme $M_1 \cong M_2$. Zobrazenie φ sa nazýva **izomorfizmus**.

Neformálne: Dve grupy sú izomorfné, ak majú "takú istú štruktúru".

Izomorfné grupy majú rovnaký rád a rovnaký počet prvkov určitého rádu.

Tvrdenie 1: Všetky grupy s jedným prvkom sú izomorfné.

Tvrdenie 2: Existuje konečne veľa grúp daného konečného rádu (až na izomorfizmus).

Jedným zo základných problémov konečnej teóre grúp je ich klasifikovať.

<u>Príklad 3</u>: Grupy (\mathbb{Z}_4 , +) a $\mathbb{Z}_2 \times \mathbb{Z}_2$ nie sú izomorfné, pretože grupa (\mathbb{Z}_4 , +) má dva prvky rádu 4 a také sa v $\mathbb{Z}_2 \times \mathbb{Z}_2$ nenachádzajú. Všetky jej prvky majú rád 2.

<u>Príklad 4</u>: Rozhodnite, či sú niektoré z grúp \mathbb{Z}_6, D_3 a $\mathbb{Z}_2 \times \mathbb{Z}_3$ izomorfné.

Odpoveď: Overením rádov prvkov zistíme, že D_3 nemôže byť izomorfná ani s \mathbb{Z}_6 ani s $\mathbb{Z}_2 \times \mathbb{Z}_3$.

V grupách \mathbb{Z}_6 a $\mathbb{Z}_2 \times \mathbb{Z}_3$ má rovnaký počet prvkov zhodné rády. Príslušný izomorfizmus je $\varphi(0) = (0,0), \varphi(1) = (1,1), \varphi(2) = (0,2), \varphi(3) = (1,0), \varphi(4) = (0,1), \varphi(5) = (1,2).$

<u>Príklad 5</u>: Sú grupy $(\mathbb{Z}_4, +)$ a $(\mathbb{Z}_5 - \{0\}, \cdot)$ izomorfné?

Odpoveď: Áno

Symetrická grupa

Nech $X = \{1, 2, ..., n\}$ a nech S_n je množina všetkých bijekcií (čiže permutácií) $\sigma: X \to X$. Potom platí

- zloženie dvoch bijekcií je bijekcia
- skladanie bijekcií je asociatívne

$$(\sigma \circ \tau) \circ \pi(x) = (\sigma \circ \tau)(\pi(x)) = \sigma(\tau(\pi(x))) = \sigma(\tau \circ \pi)(x) = \sigma \circ (\tau \circ \pi)(x)$$

- ullet identické zobrazenie je bijekcia na X
- ullet inverzné zobrazenie bijekcie v S_n je tiež bijekcia v S_n

Množina S_n všetkých permutácií n objektov spolu s operáciou skladania permutácií tvorí grupu rádu n! a nazýva sa **symetrická grupa** stupňa n.

Inverzný prvok sa počíta nasledujúcim spôsobom

$$(a_1a_2a_3a_4\dots a_{n-1}a_n)^{-1} = (a_1a_na_{n-1}\dots a_4a_3a_2)$$

<u>Príklad 6</u>: Vypíšte všetky prvky symetrickej grupy S_3 a overte komutatívnosť. Zistite, či je izomorfná s niektorou známou grupou rovnakého rádu.

Odpoved':
$$S_3 = \{e, (12), (13), (23), (123), (132)\}$$

Komutatívnosť neplatí; napr. $(12)(123) \neq (123)(12)$.

 S_3 je izomorfná s dihedrálnou grupou $D_3 = \{e, r, r^2, s, rs, r^2s\}$, kde r je rotácia okolo stredu o 120° v smere hodinových ručičiek a s je osová symetria podľa zvislej osi.

Zodpovedajúci izomorfizmus $\varphi: S_3 \to D_3$ je

$$\varphi(e) = e, \varphi((123)) = r, \varphi((132)) = r^2,$$

 $\varphi((12)) = s, \varphi((23)) = rs, \varphi((13)) = r^2s$

<u>Príklad 7</u>: Aké rôzne rády majú prvky grupy S_5 ?

Odpoveď: Rád 1 má identita,

```
rád 2 majú prvky typu (ij), i, j \in \{1, 2, 3, 4, 5\}, i < j rád 2 majú tiež prvky typu (ij)(k\ell), i, j, k, \ell \in \{1, 2, 3, 4, 5\}, i < j, k < \ell, rád 3 majú prvky tvaru (ijk), i, j, k \in \{1, 2, 3, 4, 5\}, i < j, k rád 4 majú prvky (ijk\ell), i, j, k, \ell \in \{1, 2, 3, 4, 5\}, i < j, k, \ell, rád 5 majú prvky (1ijk\ell), i, j, k, \ell \in \{2, 3, 4, 5\}, rád 6 majú prvky tvaru (1i)(jk\ell), i, j, \ell \in \{2, 3, 4, 5\}, j < k, \ell, pričom prvky i, j, k, \ell sú vždy navzájom rôzne.
```

Alternujúca grupa

Permutácia zamieňajúca dva prvky a fixujúca všetky ostatné sa nazýva **transpozícia**.

Každú permutáciu je možné napísať vo forme súčinu transpozícií.

$$(a_1a_2a_3a_4\ldots a_n)=(a_1a_2)(a_1a_3)(a_1a_4)\ldots(a_1a_n)$$

Permutácia je **párna**, ak je súčinom párneho počtu transpozícií. Permutácia je **nepárna**, ak je súčinom nepárneho počtu transpozícií.

Príklad 8: Určte paritu daných permutácií

- a) (13587)
- b) (245398)
- c) (142)(3875)

Odpoveď: a) párna permutácia, lebo (13587) = (13)(15)(18)(17)

- b) nepárna permutácia; (245398) = (24)(25)(23)(29)(28)
- c) nepárna permutácia; (142)(3875) = (14)(12)(38)(37)(35)

Množina všetkých párnych premutácií n prvkovej množiny spolu s operáciou skladania permutácií tvorí grupu, ktorá sa nazýva **alternujúca grupa** stupňa n a označuje sa A_n .

Počet prvkov A_n je $\frac{n!}{2}$.

<u>Príklad 9:</u> Vypíšte všetky prvky grupy A_3 a grupy A_4 .

Odpoved': $A_3 = \{e, (123), (132)\}$

$$A_4 = \{e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}$$

Platónske telesá

Platónske teleso je mnohosten tvorený pravidelnými zhodnými mnohouholníkmi.

Existuje len 5 nasledujúcich platónskych telies.

<u>Príklad 10</u>: Určte grupu rotácií pravidelného štvorstena.

Odpoveď: Prvky grupy sú:

- identita,
- 8 prvkov rádu 3 otočenia okolo 4 osí prechádzajúcich cez vrchol a stred protiľahlej steny o 120° a 240°,
- 3 prvky rádu 2 otočenia okolo 3 osí prchádzajúcich stredmi protiľahlých hrán o 180°.

Grupa rotácií pravidelného štvorstena je izomorfná s grupou A_4 .

Príklad 11: Určte grupu rotácií kocky.

Odpoveď: Prvky grupy sú:

- identita,
- 8 prvkov rádu 3 otočenia okolo 4 telesových uhlopriečok o 120° a 240°,
- 9 prvkov rádu 4 otočenia okolo 3 osí prechádzajúcich stredmi protiľahlých stien o 90°, 180° a 270°
- 6 prvkov rádu 2 otočenia okolo 6 osí prechádzajúcich stredmi protiľahlých hrán o 180°.

Grupa rotácií kocky je izomorfná s grupou S_4 .

Polia

Medzi slávne antické problémy, ktoré sa viac ako dvetisíc rokov nedarilo vyriešiť patria:

- Problém trisekcie uhla Pomocou pravítka a kružidla zostrojte uhol, ktorý je tretinou daného uhla.
- \bullet $Problém \ kvadratúry \ kruhu$ Pomocou pravítka a kružidla zostrojte štvorec, ktorý má rovnaký obsah ako daný kruh.
- *Problém zdvojenia kocky* Pomocou pravítka a kružidla zostrojte kocku, ktorá má dvojnásobný objem ako daná kocka.

Odpoveď o ich neriešiteľ nosti priniesla až moderná algebra v 19. storočí. Pomocou prostriedkov algebry sa dá dokázať, že pomocou pravítka a kružidla nedokážeme žiadnou konštrukciou

- rozdeliť daný uhol na tri rovnaké časti,
- -zostrojiť z úsečky dĺžky $\,1\,$ úsečku dĺžky $\,\pi,\,$
- zostrojiť z úsečky dĺžky a úsečku dĺžky $a\sqrt[3]{2}$.

Dôležitá algebraická štruktúra v tomto dôkaze je pole.

Pole je množina F s dvoma binárnymi operáciami \oplus, \otimes , pričom sú splnené nasledujúce podmienky

- (F, \oplus) a $(F \{0\}, \otimes)$ tvoria komutívne grupy,
- ullet Na F platí distributívny zákon

$$\forall a, b, c \in F : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

Operácie \oplus , \otimes zvyčajne nazývame *sčitovanie* a *násobenie*.

Pole potom jednoducho zapisujeme $(F, +, \cdot)$.

Grupa (F, +) sa nazýva *aditívnou* grupou poľa, skrátene F^+ .

Grupa $(F - \{0\}, \cdot)$ sa nazýva *multiplikatívnou* grupou poľa, skrátene F^{\times} .

<u>Príklad 12</u>: Najznámejšie nekonečné polia sú $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$.

Príklad 13: Príklad konečného poľa je $(\mathbb{Z}_5, +, \cdot)$.

Jeho aditívny neutrálny prvok je 0 a inverzné prvky v aditínej grupe sú -1=4, -2=3, -3=2, -4=1.

Multiplikatívny inverzný prvok je 1 a inverzné prvky v multiplikatívnej grupe sú $2^{-1}=3, 3^{-1}=2, 4^{-1}=4.$

Rovnicu $3x + 4 \equiv 1$ v \mathbb{Z}_5 riešime nasledovne

$$3x + 4 + 1 = 1 + 1$$
$$3x = 2$$
$$3^{-1} \cdot 3x = 3^{-1} \cdot 2$$
$$2 \cdot 3x = 2 \cdot 2$$
$$x = 4$$

Príklad 14: V poli $(\mathbb{Z}_5, +, \cdot)$ riešte rovnicu

$$x^2 + 4x + 3 = 0$$

Odpoved': $x_1 = 2, x_2 = 4$

<u>Príklad 15</u>: V poli \mathbb{Z}_5 riešte sústavu rovníc

$$3x + y = 3$$
$$x + 3y = 2$$

Odpoveď: x = 4, y = 1

<u>Príklad 16</u>: V \mathbb{Z}_6 rovnica 3x+4=2 nemá riešenie, lebo k 3 neexistuje multiplikatívny inverz. \mathbb{Z}_6 nie je pole!

Tvrdenie 3: Ak p je prvočíslo, tak pre každé $x \in \mathbb{Z}_p - \{0\}$ existuje $y \in \mathbb{Z}_p - \{0\}$ také, že $x \cdot y \equiv 1 \pmod{p}$.

Aditívnym rádom prvku x poľa $(F, +, \cdot)$ je najmenšie prirodzené číslo n, pre ktoré platí $n \cdot x = 0$; ak také n neexistuje, rádom prvku x je ∞ .

Tvrdenie 4: V každom poli majú všetky prvky $(\neq 0)$ rovnaký aditívny rád. Multiplikatívnym rádom prvku x poľa $(F, +, \cdot)$ je najmenšie prirodzené číslo n, pre ktoré platí $x^n = 1$; ak také n neexistuje, rádom prvku x je ∞ .

Rád poľa je počet prvkov poľa.

Tvrdenie 5: Rád konečného poľa je mocnina prvočísla.

Tvrdenie 6: Pre každé prvočíslo p a prirodzené číslo n existuje práve jedno (až na izomorfizmus) pole rádu $p^n = q$.

Toto pole sa nazýva **Galoisove pole** a označuje sa GF(q).