Linear Algebra Assignment 8

110307039 財管四 黄柏維

May 15, 2025

Question 1

(CH6.4 Q12) Find the matrix A' for T relative to the basis B', where

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(x, y, z) = (x, x + 2y, x + y + 3z),$$

$$B' = \{(1, -1, 0), (0, 0, 1), (0, 1, -1)\}$$

Solution:

$$T(1,-1,0) = (1,-1,0)$$

$$T(0,0,1) = (0,-2,3)$$

$$T(0,1,-1) = (0,2,-2)$$

Thus the matrix A' is

$$A' = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 3 \\ 0 & 2 & -2 \end{bmatrix}$$

(2)

Question 2

 $(\text{CH6.4 Q14}) \text{ Let } B = \{(1,1), (-2,3)\}, B' = \{(1,-1), (0,1)\}, and \ [v]_{B'} = 1 \quad -3^T, \text{ and let }$

$$A = \begin{bmatrix} 3 & 2 \\ 0 & 4 \end{bmatrix}$$

be the matrix for $T: \mathbb{R}^2 \to \mathbb{R}^2$ relative to B.

- (a) Find the transition matrix P from B' to B.
- (b) Use the matrices P and A to find $[\boldsymbol{v}]_B$ and $[T(\boldsymbol{v})]_B$, where $[\boldsymbol{v}]_{B'} = -1$ 2^T .
- (c) Find P^{-1} and A' (the matrix for T relative to B').
- (d) Find T(v) two ways.

Solution:

(a)

$$P = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix}, \quad [\mathbf{x}]_B = P[\mathbf{x}]_{B'}.$$

(b)
$$[\mathbf{v}]_{B'} = \begin{bmatrix} -1\\2 \end{bmatrix}$$
:

$$[\mathbf{v}]_B = P[\mathbf{v}]_{B'} = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}, \qquad [T(\mathbf{v})]_B = A[\mathbf{v}]_B = \begin{bmatrix} \frac{17}{5} \\ \frac{16}{5} \end{bmatrix}.$$

$$P^{-1} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \qquad A' = P^{-1}AP = \begin{bmatrix} 3 & 0 \\ -2 & 4 \end{bmatrix}.$$

$$[T(\mathbf{v})]_{B'} = A'[\mathbf{v}]_{B'} = \begin{bmatrix} 3 & 0 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 10 \end{bmatrix},$$

$$[T(\mathbf{v})]_{B'} = P^{-1}[T(\mathbf{v})]_{B} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{17}{5} \\ \frac{16}{5} \end{bmatrix} = \begin{bmatrix} -3 \\ 10 \end{bmatrix}.$$

(2)

Question 3

(CH6.4 Q22) Use the matrix P to show that the matrices A and A' are similar.

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A' = \begin{bmatrix} 5 & 2 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution: To prove that A and A' are similar we must show that $A' = P^{-1}AP$.

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

1. Compute P^{-1} .

Because P is unit upper-triangular, its inverse is also unit upper-triangular:

$$P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

2. Evaluate $P^{-1}AP$.

$$P^{-1}A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -3 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix},$$

$$P^{-1}AP = \begin{bmatrix} 5 & -3 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} = A'.$$

3. Conclusion.

Since $A' = P^{-1}AP$ (equivalently $A = PAP^{-1}$), the matrices A and A' are similar. Therefore they represent the same linear transformation with respect to two different bases.

☺

Question 4

(CH7.1 Q6) Verify that λ_i is an eigenvalue of A and that x_i is a corresponding eigenvector.

$$A = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}, \quad \lambda_1 = 4, \quad \mathbf{x}_1 = (1, 0, 0)$$
$$\lambda_2 = 2, \quad \mathbf{x}_2 = (1, 2, 0)$$
$$\lambda_3 = 3, \quad \mathbf{x}_3 = (-2, 1, 1)$$

Solution: Verification that each λ_i is an eigenvalue of A with eigenvector \mathbf{x}_i .

$$A = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \qquad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Eigenpair $\lambda_1 = 4$, \mathbf{x}_1 :

$$A\mathbf{x}_{1} = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \lambda_{1}\mathbf{x}_{1}.$$

(b) Eigenpair $\lambda_2 = 2$, \mathbf{x}_2 :

$$A\mathbf{x}_{2} = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4-2 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \lambda_{2}\mathbf{x}_{2}.$$

(c) Eigenpair $\lambda_3 = 3$, \mathbf{x}_3 :

$$A\mathbf{x}_{3} = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 - 1 + 3 \\ 2 + 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \lambda_{3}\mathbf{x}_{3}.$$

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i$$
 for $i = 1, 2, 3$.

Hence each λ_i is an eigenvalue of A and each \mathbf{x}_i is a corresponding eigenvector.

(2)

Question 5

(CH7.1 Q12) Determine whether x is an eigenvector of A.

$$A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{bmatrix}$$

(a)
$$x = (1, 1, 0)$$

(a)
$$x = (1, 1, 0)$$

(b) $x = (-5, 2, 1)$
(c) $x = (0, 0, 0)$

(c)
$$\mathbf{x} = (0, 0, 0)$$

(d)
$$x = (2\sqrt{6} - 3, -2\sqrt{6} + 6, 3)$$

Solution: Test for each candidate vector x whether $Ax = \lambda x$ for some scalar λ .

$$A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{bmatrix}$$

(a)
$$\mathbf{x} = (1, 1, 0)^{\mathsf{T}}$$

$$A\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \qquad \frac{1}{1} \neq \frac{-2}{1}, \ \mathbf{x}_3 = 0.$$

The three coordinates are not in a common ratio, so no scalar λ satisfies $A\mathbf{x} = \lambda \mathbf{x}$. Not an eigenvector.

(b)
$$\mathbf{x} = (-5, 2, 1)^{\mathsf{T}}$$

$$A\mathbf{x} = \begin{bmatrix} 0 \\ 8 \\ -20 \end{bmatrix}, \qquad \frac{0}{-5} \neq \frac{8}{2}.$$

No common ratio exists. **Not an eigenvector.**

(c)
$$x = 0$$

By definition the zero vector can *never* be an eigenvector (eigenvectors must be non-zero). **Not an eigenvector.**

(d)
$$\mathbf{x} = (2\sqrt{6} - 3, -2\sqrt{6} + 6, 3)^{\mathsf{T}}$$

$$A\mathbf{x} = \begin{bmatrix} 2\sqrt{6} + 12 \\ -4\sqrt{6} \\ 12\sqrt{6} - 24 \end{bmatrix}, \qquad \frac{2\sqrt{6} + 12}{2\sqrt{6} - 3} \neq \frac{-4\sqrt{6}}{-2\sqrt{6} + 6}.$$

Again the coordinates fail to share a common ratio. Not an eigenvector.

Question 6

(CH7.1 Q26) Find (a) the characteristic equation and (b) the eigenvalues of (and corresponding eigenvectors) of the matrix

$$A = \begin{bmatrix} 1 & -\frac{3}{2} & \frac{5}{2} \\ -2 & \frac{13}{2} & -10 \\ \frac{3}{2} & -\frac{9}{2} & 8 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 1 & -\frac{3}{2} & \frac{5}{2} \\ -2 & \frac{13}{2} & -10 \\ \frac{3}{2} & -\frac{9}{2} & 8 \end{bmatrix}$$

(a) Characteristic equation

$$\det(A - \lambda I) = \lambda^3 - \frac{31}{2}\lambda^2 + \frac{59}{4}\lambda - \frac{29}{8} = \frac{1}{8}(2\lambda - 1)^2(2\lambda - 29) = 0.$$

(b) Eigenvalues and eigenvectors

$$\lambda_1 = \frac{1}{2}$$
 (algebraic multiplicity 2) eigenvectors: span $\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\1 \end{bmatrix} \right\}$;

$$\lambda_2 = \frac{29}{2}$$
 (algebraic multiplicity 1)
eigenvectors: span $\left\{ \begin{bmatrix} 1\\ -4\\ 3 \end{bmatrix} \right\}$.

⊜

Question 7

(CH7.2 Q14) Find (if possible) a nonsingular matrix P such that $P^{-1}AP$ is diagonal. Verify that $P^{-1}AP$ is a diagonal matrix with the eigenvalues on the main diagonal.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 4 & 0 \\ 0 & 4 & 4 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 4 & 0 \\ 0 & 4 & 4 \end{bmatrix}$$

(a) Characteristic polynomial

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 0 & 0 \\ 4 & 4 - \lambda & 0 \\ 0 & 4 & 4 - \lambda \end{bmatrix} = (2 - \lambda)((4 - \lambda)^2) = (2 - \lambda)(4 - \lambda)^2.$$

Hence

$$\lambda_1 = 2$$
, $\lambda_2 = \lambda_3 = 4$ (algebraic multiplicity 2).

(b) **Eigenvectors**

$$\lambda = 2 : (A - 2I)\mathbf{x} = 0 \implies \mathbf{x} = t \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}, \text{ so } E_2 = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} \right\}, \dim E_2 = 1.$$

$$\lambda = 4 : (A - 4I)\mathbf{x} = 0 \implies \mathbf{x} = s \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ so } E_4 = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \dim E_4 = 1.$$

(c) Diagonalizability test

To diagonalize A we need

$$\sum_{\lambda} \dim E_{\lambda} = n = 3.$$

Here $\dim E_2 + \dim E_4 = 1 + 1 = 2 < 3$, so A does not possess three linearly independent eigenvectors.

(d) Conclusion

Because the geometric multiplicity of $\lambda = 4$ is 1 < 2 (its algebraic multiplicity), matrix A is not diagonalizable. Consequently, there is no nonsingular matrix P for which $P^{-1}AP$ is diagonal.

Question 8

(CH7.2 Q20) Show that the matrix A is not diagonalizable, where

$$A = \begin{bmatrix} 3 & 2 & -2 \\ 0 & -2 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

Solution:

1. Characteristic polynomial

Because A is upper-triangular, its eigenvalues are the diagonal entries. Formally,

$$\chi_A(\lambda) = \det(A - \lambda I) = (3 - \lambda)(-2 - \lambda)^2.$$

$$\lambda_1 = 3$$
 (alg. mult. 1), $\lambda_2 = -2$ (alg. mult. 2)

2. Eigenspaces

(a) $\lambda = 3$

$$A - 3I = \begin{bmatrix} 0 & 2 & -2 \\ 0 & -5 & 3 \\ 0 & 0 & -5 \end{bmatrix}, \qquad (A - 3I)\mathbf{x} = 0 \Longrightarrow \mathbf{x} = t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

$$E_3 = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}, \qquad \dim E_3 = 1.$$

(b) $\lambda = -2$

$$A + 2I = \begin{bmatrix} 5 & 2 & -2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \qquad (A + 2I)\mathbf{x} = 0 \Longrightarrow \mathbf{x} = s \begin{bmatrix} 2 \\ -5 \\ 0 \end{bmatrix}.$$

$$E_{-2} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ -5 \\ 0 \end{bmatrix} \right\}, \qquad \dim E_{-2} = 1.$$

3. Diagonalizability test

A matrix of size n=3 is diagonalizable iff the sum of the geometric multiplicities equals n.

$$\dim E_3 + \dim E_{-2} = 1 + 1 = 2 < 3.$$

Hence A has only two linearly independent eigenvectors.

A is not diagonalizable

The failure arises because the geometric multiplicity of $\lambda = -2$ (1) is strictly less than its algebraic multiplicity (2).

☺

Question 9

(CH7.2 Q26) Find the eigenvalues of the matrix A and determine whether there is a sufficient number

of eigenvalues to guarantee the matrix is diagonalizable by Theorem 7.6, where

$$A = \begin{bmatrix} 4 & 3 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix},$$

and Theorem 7.6 states that

If an $n \times n$ matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable.

Solution:

(a) Eigenvalues

Because A is upper-triangular, its eigenvalues are the diagonal entries:

$$\lambda_1 = 4$$
, $\lambda_2 = 1$, $\lambda_3 = -2$.

(b) Test for diagonalizability via Theorem 7.6

The matrix is 3×3 (n = 3) and has n distinct eigenvalues $\{4, 1, -2\}$.

Therefore, by Theorem 7.6, the three corresponding eigenvectors are linearly independent, and A is diagonalizable.

(2)

Question 10

(CH7.2 Q30) Find a basis B for the domain of T such that the matrix for T relative to B is diagonal.

$$T: P_2 \to P_2: T(c+bx+ax^2) = (3c+a) + (2b+3a)x + ax^2$$

Solution:

$$T(c+bx+ax^2)=(3c+a)+(2b+3a)x+ax^2$$
, $P_2\equiv \{\text{polynomials of degree} \leq 2\}$.

1. Matrix of T in the standard basis $S = \{1, x, x^2\}$

Writing a polynomial $p = c + bx + ax^2$ as the column vector $[c\ b\ a]^\mathsf{T}$, the action of T is

$$\begin{bmatrix} c \\ b \\ a \end{bmatrix} \xrightarrow{T} \begin{bmatrix} 3c + a \\ 2b + 3a \\ a \end{bmatrix} = \underbrace{\begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}}_{A = [T]_s} \begin{bmatrix} c \\ b \\ a \end{bmatrix}.$$

2. Eigenvalues of A

Because A is upper-triangular, its eigenvalues are the diagonal entries:

$$\lambda_1 = 3$$
, $\lambda_2 = 2$, $\lambda_3 = 1$ (all distinct).

3. Eigenvectors

$$\lambda_1 = 3 : (A - 3I) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & -2 \end{bmatrix} \implies \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad (p_1 = 1).$$

$$\lambda_2 = 2 : (A - 2I) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & -1 \end{bmatrix} \implies \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad (p_2 = x).$$

$$\lambda_3 = 1 : (A - I) = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \implies \mathbf{v}_3 = \begin{bmatrix} -1 \\ -6 \\ 2 \end{bmatrix} \quad (p_3 = 2x^2 - 6x - 1).$$

4. A diagonalizing basis and the diagonal matrix

Set

$$B = \{ p_1 = 1, p_2 = x, p_3 = 2x^2 - 6x - 1 \}.$$

Since the three eigenvalues are distinct, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, so B is a basis of P_2 . With $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ the change-of-basis matrix from B to S,

$$P^{-1}AP = \operatorname{diag}(3,2,1) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$[T]_B = diag(3, 2, 1)$$

Hence T is diagonal in the eigenbasis B.

☺