Wednesday Warm Up: Unit 6: Fixed axis rotation

Prof. Jordan C. Hanson

November 20, 2024

1 Memory Bank

- $\vec{s} = \vec{\theta} \times \vec{r}$... Geometric relationship.
- $\vec{v} = \vec{\omega} \times \vec{r}$... Geometric relationship.
- $\vec{\tau} = \vec{r} \times \vec{F}$... The relationship between torque, $\vec{\tau}$, the moment arm, \vec{r} , and the force, \vec{F} .
- $\vec{\tau} = I\vec{\alpha}$... Newton's 2nd law, in angular form.
- $W = \vec{\tau} \cdot \vec{\theta}$... Definition of work, angular form.
- $d\vec{L}/dt = \vec{\tau}$... Newton's 2nd law in angular form, with angular momentum.

2 Fixed Axis Rotation, Torque, and Kinetic Energy

1. An aircraft is coming in for a landing at 300 meters height when the propeller falls off. When it comes off, the propeller has a rotation rate of 20 rev/s, a moment of inertia of $70.0~\rm kg~m^2$, and a mass of $200~\rm kg$. If air resistance is present and reduces the propeller's rotational kinetic energy at impact by 30%, what is the propeller's rotation rate at impact?

Figure 1: A bicycle turns left if you lean left.

3. Using $d\vec{L}/dt = \vec{\tau}$, show qualitatively that when a bicyclist leans left, he turns left.

- 4. If $\vec{\tau} = 0$, explain why angular momentum is conserved.
- 2. A neutron star of mass 2×10^{30} kg and radius 10 km rotates with a period of 0.02 seconds. (a) What is its rotational kinetic energy? (b) If, 10 years later, a period of 0.04 seconds is observed, what energy was lost? (c) What is loss rate (power) that caused the slowdown?