"Clostridium difficile vaccine"

Introduction

The invention relates to vaccines to provide immunological protection against *C. difficile* infection.

Background

Clostridium difficile is a common nosocomial pathogen and a major cause of morbidity and mortality among hospitalised patients throughout the world [Kelly et al., 1994]. Outbreaks of C. difficile have necessitated ward and partial hospital closure. With the increasing elderly population and the changing demographics of the population, C. difficile is set to become a major problem in the 21st century. The spectrum of C. difficile diseases range from asymptomatic carriage to mild diarrhoea to fulminant pseudomembranous colitis. Host factors rather than bacterial factors appear to determine the response to C. difficile [Cheng et al., 1997; McFarland et al., 1991; Shim et al., 1998].

Reports indicate that hypogammaglobulinaemia in children appears to predispose to the development of disease due to *C. difficile* and that therapy with intravenously administered gamma globulin can be associated with the clinical resolution of chronic relapsing colitis due to *C. difficile* disease [Leung et al., 1991; Pelmutter et al., 1985]. A study by Mulligan et al. [1993] found elevated levels of immunoglobulins reactive with *C. difficile* in asymptomatic carriers as opposed to symptomatic patients. Recently it has been shown that patients who became colonised with *C. difficile* who had relatively low levels of serum IgG antibody against toxin A had a much greater risk of developing *C. difficile* diarrhoea [Kyne et al., 2000].

It is clear that any advance in the understanding of *C. difficile* disease and methods of preventing or treating *C. difficile* diarrhoea (CDD) and other related diseases will be of major therapeutic potential.

30

20

10

15

25

30

Statements of Invention

According to the invention there is provided a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

The invention also provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.

Preferably the gene encodes a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.

Preferably the peptide/polypeptide is a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.

20 Most preferably the vaccine comprises a chimeric nucleic acid sequence. Preferably the chimeric nucleic acid sequence is derived from the 5' end of the gene, encoding the mature N-terminal moiety of SlpA from *C. difficile*.

In one embodiment of the invention the vaccine comprises a chimeric peptide/polypeptide. Preferably the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from C. difficile.

Preferably the vaccine of the invention contains an amino acid sequence SEQ ID No.1 or a derivative or fragment or mutant or variant thereof.

4_

5

10

Preferably the vaccine contains an amino acid sequence SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

In one embodiment of the invention the vaccine contains a nucleotide sequence SEQ ID No.3 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.4 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.5 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.6 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.7 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.8 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.9 or a derivative or fragment or mutant or variant thereof or a nucleotide sequence SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.

Preferably the vaccine of the invention is in combination with at least one other *C. difficile* sub-unit.

The invention provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising the mature N-terminal moiety of a surface layer protein, SlpA of *C. difficile* or variant or homologue thereof which is immunogenic in humans.

Most preferably the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 1.

In one embodiment of the invention the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 2.

The invention also provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising an immunodominant epitope derived

25

30

10

15

20

25

30

from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

Preferably the vaccine of the invention comprises a pharmaceutically acceptable carrier. Most preferably the vaccine is in combination with a pharmacologically suitable adjuvant. Ideally the adjuvant is interleukin 12. Alternatively the adjuvant may be a heat shock protein.

In one embodiment of the invention the vaccine comprises at least one other pharmaceutical product.

The pharmaceutical product may be an antibiotic, selected from one or more metronidazole, amoxycillin, tetracycline or erythromycin, clarithromycin or tinidazole.

In one embodiment of the invention the pharmaceutical product comprises an acidsuppressing agent such as omeprazole or bismuth salts.

The vaccine of the invention may be in a form for oral administration, intranasal administration, intravenous administration or intramuscular administration.

In one embodiment of the invention the vaccine includes a peptide delivery system.

The invention also provides an immunodominant epitope derived from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof. Preferably the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

In one embodiment of the invention the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.3 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID

No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No. 9 or SEQ ID No. 10 or a derivative or fragment or mutant or variant thereof.

The invention further provides a chimeric nucleic acid sequence derived from the 5' end of the slpA gene encoding the mature N-terminal moiety of SlpA from *C. difficile* which is immunogenic in humans.

The invention also provides a chimeric peptide/polypeptide wherein the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from *C. difficile*.

10

5

The invention provides a *C. difficile* peptide comprising SEQ ID No. 1 or SEQ ID No. 2 or SEQ ID No. 3 or SEQ ID No. 4 or SEQ ID No. 5 or SEQ ID No. 6 or SEQ ID No. 7 or SEQ ID No. 8 or SEQ ID No. 9 or SEQ ID No. 10.

One aspect of the invention provides for the use of a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans in the preparation of a medicament for use in a method for the treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease in a host.

20

Preferably the medicament which is prepared is a vaccine of the invention.

The invention also provides a method for preparing a vaccine for prophylaxis or treatment of *C. difficile* associated disease, the method comprising;

25

obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans; and

30

forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, which is suitable for

administration to a host and which when administered raises an immune response.

Preferably the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

Most preferably the *C. difficile* gene contains an amino acid sequence SEQ ID No.3 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No.9 or SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.

The invention further provides a method for prophylaxis or treatment of *C. difficile* associated disease, the method comprising;

obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans;

forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, and

administering the vaccine preparation to a host to raise an immune response.

One aspect of the invention provides monoclonal or polyclonal antibodies or fragments thereof, to a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

Another aspect of the invention provides monoclonal or polyclonal antibodies or fragments thereof, to *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.

25

30

5

10

15

The invention also provides purified antibodies or serum obtained by immunisation of an animal with a vaccine of the invention.

The invention provides the use of the antibodies or fragments of the invention in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.

Preferably the antibodies or serum are used in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.

Most preferably the antibodies or fragments or serum of the invention are used in passive immunotherapy for established *C. difficile* infection.

In one embodiment of the invention the antibodies or fragment or serum of the invention are used for the eradication of *C. difficile* associated disease.

The invention also provides use of interleukin 12 as an adjuvant in *C. difficile* vaccine.

The invention further provides use of humanised antibodies or serum for passive vaccination of an individual with *C. difficile* infection.

Brief Description of the Drawings

25

10

15

The invention will be more clearly understood from the following description thereof given by way of example only with reference to the accompanying figures, in which:-

Fig. 1A is a Western blot showing recognition of antigens from a crude extract of *C. difficile* 171500 (PCR type 1) by serum antibodies from a

5

10

15

20

25

patient infected with this strain. Lane 1: Pre-infection; Lane 2: Early acute; Lane 3: Late acute; Lane 4: Convalescent;

Fig. 1B is a Western blot showing recognition of antigens from a crude extract of *C. difficile* 170324 (PCR type 12) by serum antibodies from a patient infected with this strain. Lane 1: Pre-infection; Lanes 2-5: Acute; Lanes 6-7: Convalescent;

Fig. 2. is a Western blot showing recognition of antigens from two *C. difficile* strains of different type by serum from convalescent patients.

Lane 1: Strain 170324 (PCR type 12), crude antigen preparation

Lane 2: Strain 170324, surface layer protein preparation

Lane 3: Strain 171500 (PCR type 1), crude antigen preparation

Lane 4: Strain 171500, surface layer protein preparation.

Molecular mass markers (kDa) are shown on the left; and

Fig. 3 is an SDS-PAGE gel showing crude SLP preparations from selected strains of C. difficile. The gel contains 12% acrylamide, and has been stained for protein with Coomassie Blue. Each lane contains 5 μ g of protein. Molecular weight markers are shown on the left.

Lane 1: 171500 (PCR type 1)

Lane 2: 172450 (PCR type 5)

Lane 3: 170324 (PCR type 12)

Lane 4: 171448 (PCR type 12)

Lane 5: 171862 (PCR type 17)

Lane 6: 173644 (PCR type 31)

Lane 7: 170444 (PCR type 46)

Lane 8: 170426 (PCR type 92)

30

Detailed Description of the invention

15

20

25

Two antigenic peptides containing SEQ ID No. 1 and SEQ ID No. 2, associated with two common infecting types of *C. difficile*, were found to be immunogenic in humans. The antigenic peptides were found to induce a strong immune response in individuals who recover from *C. difficile* infection. Individuals who have recovered from *C. difficile* infection are those individuals who have been exposed to *C. difficile* or something strongly related and have recovered. This includes individuals where a carrier state exists in that the *C. difficile* infection has not and will not necessarily become clinically significant.

These antigenic peptides were found to be products of the *slpA* gene from *C. difficile* which is the structural gene for the surface layer protein, SlpA. The gene or its products are therefore ideal candidates for the preparation of vaccines against *C. difficile*.

Surface layer proteins (SLPs), also known as S-layers or crystalline surface layers, are associated with a wide range of bacterial species. They form a 2-dimensional array, which covers the surface of the cell completely, and grows with the cell [Sleytr et al., 1993]. The molecular weight can range from 40 000 to 200 000 Da. The proteins are typically acidic, contain a large proportion of hydrophobic amino acid residues, and have few or no sulphur-containing amino acid residues. Glycosylated S-layer proteins occur in some species. The precise function of S-layers is not always known, but since they comprise approximately 15% of the cell protein, it seems likely that they are important for *in vivo* functioning of the organism. In Gram positive organisms, the SLP has been shown to delay or prevent the excretion of degradative enzymes from the cell to the outside milieu, and may thereby create a space analagous to the periplasmic space of Gram negative bacteria. Many pathogenic species possess SLPs, which have been ascribed functions such as antiphagocytosis (*Campylobacter fetus*), and inhibition of complement-mediated killing (*Aeromonas salmonicida*).

30

35

Kawata et al. [1984] described the SLPs of *Clostridium difficile*. They showed the S-layer to be composed of 2 polypeptides, and demonstrated size heterogeneity for the polypeptides from different strains. Delmée et al. [1986] showed that crude extracts from *C. difficile* strains of different serotype showed different polypeptide profiles in SDS-PAGE. Poxton et al. [1999] made similar observations using

purified SLP preparations. Slide agglutination [Delmée et al., 1990] has identified 21 different serotypes, apparently distinguished by the heterogeneity of the SLP.

Pantosti et al. [1989] isolated *C. difficile* from a number of patients with antibiotic-associated diarrhoea, and prepared SLPs from them.. Cerquetti et al. [2000] published N-terminal sequences of SLPs from several strains, indicating wide differences between strains.. In 2000 the complete DNA sequence of the *C. difficile* genome was published (available at web address http://www.sanger.ac.uk/Projects/C difficile/).

10

5

The peptides of the invention were found to be encoded by a single open reading frame (ORF) named slpA from C. difficile. The peptides identified in our clinical study correspond to a lower molecular weight moiety of the slpA gene product. Since an immune response is also mounted against a higher molecular weight slpA gene product (Fig. 2), this entity may also be included in a vaccine.

15

20

25

30

The slpA gene has been sequenced from a number of strains corresponding to different PCR types. The sequences of strains 171500 (PCR type 1)(NCIMB 41081; PHLS R13537), 172450 (PCR type 5)(PHLS R12884), 170324 (PCR type 12) (NCIMB 41080; PHLS R12882), 171448 (PCR type 12) (PHLS R13550), 171862 (PCR type 17) (PHLS R13702), 173644 (PCR type 31) (PHLS R13711), 170444 (PCR type 46) (PHLS R12883) and 170426 (PCR type 92) (PHLS R12871) with translations thereof are given in Appendices 1 to 8. Substantial variation in nucleotide and predicted amino acid sequence was found between strains of PCR types 1, 5, 12, 17 and 31. The genes from strains of PCR types 46 and 92 are almost identical in sequence to those of PCR type 12. When the DNA sequences of genes of different strains within a PCR type are compared, the sequences are almost if not quite identical, indicating that the potential for variation is not infinite. These findings are in agreement with serotyping studies [Delmée et al., 1986, 1990], and indicate that the production of an effective vaccine based on the slpA product is feasible. In this respect, the present invention includes all variant slpA genes and their products, individually and combined, fragments of them, and their mutants and derivatives.

STATEMENT STATEMENT OF THE STATEMENT OF

One aspect of the invention provides the combination of immunodominant eptopes from the *slpA* gene products from various serotypes into a single vaccine. In this way a single vaccine may be used to immunise against several different *C. difficile* strains.

5

10

The most common PCR types isolated from infections in the clinical study carried out at St. James's Hospital, Dublin, Ireland were PCR types 1 and 12. However, a vaccine which elicits an intense antibody response against many infecting types would be therapeutically very valuable. Recombinant DNA chimera, or several chimeras, encoding contiguous immunodominant epitopes may be made for use in the vaccine. The recombinant DNA may serve as the active component in a vaccine, or may be inserted into an appropriate expression system for the generation of a chimeric peptide vaccine in a suitable host.

15

Chimeras can be generated by PCR amplification of the DNA encoding peptide regions of interest, incorporating cleavage sites for restriction endonucleases into the primers. The amplified fragments can thus be cleaved to generate compatible ends, and spliced together to create chimeras.

20

The dominant epitopes may be identified by cleavage of the *slpA* products into fragments by agents which cleave at known sites, and by immunoblotting with homologous patient serum. Immunodominant peptides may be tested for their capacity to stimulate T-cell proliferative responses *in vitro*, using mouse splenic T-cells.

25

30

DNA vaccination involves immunisation with recombinant DNA encoding the antigen or epitope of interest, cloned in a vector which promotes high level expression in mammalian cells. Typically, the vector is a plasmid vector which which also replicates in a procaryotic vector such as *Escherichia coli*, so that the DNA can be produced in quantity. Following immunisation, the plasmid enters a host cell, where it remains in the nucleus, and directs synthesis of the recombinant polypeptide. The polypeptide stimulates the production of neutralising antibodies, as well as activating cytotoxic T-cells.

10

15

20

25

Using a DNA vaccine, it may be necessary to modify the DNA sequence to take account of codon usage in humans. The G+C content of mammalian DNA is much higher than that of *C. difficile*. The generation of such synthetic DNA molecules, essentially containing numerous silent mutations, is within the scope of the invention.

A peptide vaccine will ideally be made using recombinant peptides. Similar considerations apply as in the generation of a DNA vaccine with regard to expression in a different host, such as Escherichia coli, which has a different codon usage pattern to C. difficile. Problems of expression may be overcome by the use of a special host strain which carries additional copies of rare tRNAs (e.g. E. coli BL21-CodonPlusTM-RIL from Stratagene), or by using de novo synthesis of a DNA segment carrying silent mutations which will enable normal expression in E. coli. There are many expression systems which are likely to allow high-level expression of slpA genes in E. coli. An example is the pBAD/Thio TOPO vector of Invitrogen, in which expressed genes are under control of the arabinose promoter, which is subject to positive and negative control, enabling very tight control of expression. In this vector, the recombinant protein is typically fused to a modified thioredoxin carrying several histidine residues which enable purification by nickel chromatography. The recombinant protein can be cleaved from the thioredoxin moiety by enterokinase enzyme.

Affinity chromatography may also be used with fixed antibodies or some other agent which strongly binds the peptide of interest to purify the protein from the native organism.

Purified immunogenic peptides may be used in combination with other *C. difficile* sub-units as a combined vaccine against *C. difficile*. Potential candidates are the products of the other *slp* genes, which share limited homology with the *slpA* gene product and with the N-acetylmuramoyl L-alanine amidase, (CwlB), from *Bacillus subtilis*, and which may be involved in remodelling of the peptidoglycan.

Oother purified proteins of *C. difficile* to which constitutive antibodies are detected in individuals recovering from *C. difficile* infection are also within the scope of the present invention

30

A deposit of Clostridium difficile strain 171500, PCR type 1, was made at the NCIMB on January 29, 2001, and accorded the accession number NCIMB 41081.

5 A deposit of *Clostridium difficile* strain 170324, PCR type 12, was made at the NCIMB on January 29, 2001, and accorded the accession number NCIMB 41080.

Two peptides of the invention were found to contain the following sequences:

10 33kDa peptide

> SEQ ID No. 1: DKTKVETADQGYTVVQSKYK

31kDa peptide

SEQ ID No. 2 ATTGTQGYTVVKNDGKKAVK

The invention will be more clearly understood from the following examples.

Example 1. Clinical Study

20 Examination of sequential antibody responses to C. difficile among elderly patients who developed the disease was carried out. The study was based on the hypothesis that the host immune response influenced the development of Clostridium difficile disease. In particular we determined that a particular pattern of immune response to C. difficile antigens correlated with the outcome of CDD.

Materials and Methods

Patients

Serum was collected from over 300 patients and of these 30 patients developed 30 The infecting strain (homologous strain) was grown from each patient. Strains of C. difficile were typed at the Anaerobe Reference Laboratory, Wales [O'Neill et al., 1996]. The most common strains isolated were PCR type 1 (n = 15)which is the most common type causing epidemics and PCR type 12 (n = 5) which is also a common hospital strain. Pre-infection serum samples were obtained from 35 patients. Acute phase sera were then collected from patients who developed C.

difficile disease. Convalescent sera were collected from patients who recovered. Protein extracts of patients' infecting *C. difficile* strain were probed with the patients sera using Western blotting. IgG responses to the antigens were examined.

5 Western blotting

Proteins from SDS-PAGE gels were electroblotted (0.8mA/cm2 for 1 h) to PVDF membrane using a semi-dry blotting apparatus (Atto). Primary antibodies (human serum: 1/50 – 1/10,000 dilution) were detected using a 1/5000 dilution of anti-human IgG (horse radish peroxidase-conjugated) in combination with enhanced chemiluminesence (ECL). Blots were washed in phosphate buffered saline (pH 7.5) containing Tween 20 (0.1% v/v), and incubated in the same solution comprising dried skim milk (5% w/v) and antibodies at the appropriate concentration. Blots were exposed to Kodak X-OMAT film for various periods of time and developed.

15 Results

10

20

25

35

Overall 5 patients made a full recovery and new antibody responses to previously unrecognised antigens were evident in 4 of these patients. Three of these patients had *C. difficile* belonging to PCR type 1 and one patient had *C. difficile* PCR type 12. These patients developed an acute phase antibody response to previously unrecognised *C. difficile* antigens which persisted during convalescence (Figs. 1A and 1B). These antigens were recognised by antibodies from patients who recovered and represent potential candidate vaccine antigens. Fig 1A shows a strong reaction of convalescent antibodies was observed with the 33 kDa antigen (Lane 4, arrow). Fig 1B shows a strong reaction of convalescent antibodies was observed with the 31 kDa antigen (Lanes 6 and 7, arrow).

These antibody responses have also been found in some controls in the same ward who were also on antibiotics but who did not develop CDD.

30 <u>Example 2. Further characterisation of protective antigens</u>

Materials and Methods

Partial purification and N-terminal sequencing of the 33 kDa and the 31 kDa proteins The antigens were partially purified from *C. difficile* based on their molecular weight using preparative continuous-elution SDS-PAGE on a model 491 Prep-Cell (BioRad). The appropriate antigens were subsequently identified on Western blots probed with serum obtained from individuals who recovered from *C. difficile* infection.

5 Preparation of surface layer proteins (SLPs)

SLPs were purified from *C. difficile* by extracting washed cells with 8 M urea, in 50 mM Tris HCl, pH 8.3 in the presence of a cocktail of protease inhibitors (Complete®, Boehringer Mannheim), for 1 h at 37°C, followed by centrifugation for 19 000 x g for 30 min. The SLPs were recovered in the supernatant and dialysed to remove the urea [Cerquetti et al., 2000].

Results

10

15

20

25

The immunodominant protein which was associated with a positive outcome from *C. difficile* strain 171500 (PCR type 1) was identified and purified using preparative SDS-PAGE. The N-terminal region of the protein was sequenced using an Applied Biosystems Procise Sequencer, viz DKTKVETADQGYTVVQSKYK (SEQ ID No. 1)

The antigen which was associated with a protective antibody response from the *C. difficile* strain 170324 (PCR type 12) was identified and the N-terminal sequence obtained, viz ATTGTQGYTVVKNDGKKAVK (SEQ ID No. 2).

These sequences were used to interrogate the C. diffcile genome sequence using the TBLASTN programme, which compared our query sequences with those of the address web (available at genome project http://www.sanger.ac.uk/Projects/C difficile/), translated in all 6 possible reading frames. A nearly identical stretch of sequence was identified when the sequence from strain 1710324 (type 12) was used for interrogation. The same stretch of sequence was picked up with the sequence from strain 171500 (type 1) was used, although the identity was much less strong. Since the homologous sequence belonged to an open reading frame encoding a 719-residue peptide, this result was somewhat surprising. However, when the N-terminal sequences from the higher molecular weight SLP component were later published by Cerquetti et al [2000], it became apparent that they were encoded downstream along the same gene,

subsequently identified as slpA, and the reason for the discrepancy in size between the gene and its products became readily apparent.

The purified SLPs from strains 171500 (PCR type 1) and 170324 (PCR type 12) showed strong reactivity with homologous convalescent serum, and co-migrated with the dominant antigens detected in crude cell extracts as shown in Fig. 2. Lanes 1 and 3 contain crude antigen preparations from PCR types 1 and 12 respectively, and Lanes 2 and 4 contain SLP preparations from PCR types 1 and 12, respectively. Panel A was probed with serum from a patient recovering from infection with PCR type 1, and Panel B was probed with serum from a patient recovering from infection with PCR type 12. Each serum detected 2 major antigens in the infecting strain (Panel A, Lane 3); (Panel B, Lane 1), which co-migrated with the 2 SLPs (Panel A, Lane 4; Panel B, Lane 2), with which the sera also reacted strongly. Note that serum from the patient infected with the PCR type 1 strain recognised the higher molecular weight SLP from the PCR type 12 strain (Panel A, Lanes 1 and 2), whereas the converse did not occur (Panel B, Lanes 3 and 4). There is no apparent antigenic cross-reactivity with regard to the lower molecular weight SLPs.

SLPs were prepared from selected strains by urea extraction, and subjected to SDS-PAGE and staining with Coomassie Blue (Fig. 3). Most strains showed a characteristic profile, with two major bands located in the 29 000 to 36 000 and 45 000 to 50 000 molecular weight range. An exception was strain 172450 (Fig. 3, Lane 2), which showed a single, high molecular weight band, approximately 43 000 in size.

Cloning, sequencing and analysis of slpA genes

The nucleotide sequences of the *slpA* genes from the two sample strains of *C. difficile* (PCR types 1 and 12, deposited at the NCIMB) and of several others (PCR types 5, 12, 17, 31, 46 and 92, available from the Anaerobe Reference Unit at the Department of Medical Microbiology and Public Health Laboratory, Cardiff, Wales were obtained. The *slpA* gene and flanking sequence was amplified by polymerase chain reaction from genomic DNA prepared from *C. difficile* using a commercial kit

25

30

5

10

15

10

15

20

25

(Puregene® DNA isolation kit for yeast and Gram positive bacteria, Gentra systems Minneapolis, MN). The forward primer (5' ATGGATTATTATAGAGATGTGAG 3'), was based on sequence from the genome sequencing project, starting 112 nucleotides upstream from the start of the slpA open reading frame. Two reverse primers were used, depending on the PCR type. A downstream primer (5' CTATTTAAAAGTTTTATTAAAACTTATATTAC 3') was used to amplify slpA from PCR types 12, 17, 31, 46 and 92. A reverse primer based on the 3' end of the slpA open reading frame from strain 630 and the subsequent nonsense codon (5' TTACATATCTAATAAATCTTTCATTTTGTTTATAACTG 3') was used to amplify slpA from PCR types 1 and 5. The choice of primer for the latter two PCR types may have resulted in a small number of systematic errors in the nucleotide sequence obtained. PCR was carried out using HotStar™ Taq polymerase (Qiagen Ltd., Crawley, West Sussex, UK) according to the manufacturer's instructions. A single fragment of approximately 2 kb was obtained for each strain, which was then cloned into the pBAD/Thio TOPO vector (Invitrogen, Groningen, Netherlands). Inserts were sequenced from both ends by standard procedures in commercial facilities at MWG (Wolverton Mill South, Milton Keynes, UK) and Cambridge University. New primers were designed on the basis of initial sequencing results, enabling sequencing of both strands to be completed (a process known as chromosome walking).

The results are shown in Appendices 1-8.

The nucleotide sequences were translated to enable prediction of the amino acid sequence(s) of the product(s) (Appendices 1-8). The N-terminal sequences obtained experimentally for the low molecular weight protective antigens from strains 171500 (PCR type 1) and 170324 (PCR type 12) were almost identical to those predicted from the nucleotide sequences of their respective *slpA* genes (18/20 identical residues for strain 171500, and 19/20 identical residues for strain 170324).

30

35

Appendix 1 shows the open reading frame with translation for *slpA* from strain 171500 (PCR type 1), SEQ ID No 3. Since the reverse primer was based on the 35 nucleotides from the 3' end of the *slpA* gene, the sequence is not necessarily 100% accurate in this region. However, this part of the gene does not seem to vary greatly from strain to strain.

10

15

35

Appendix 2 shows the open reading frame with translation for *slpA* from strain 172450 (PCR type 5), SEQ ID No 4. Again, the sequence obtained for the 3' 35 nucleotides is not fully reliable. This gene is considerably smaller than the other *slpA* genes sequenced, and shows strong sequence divergence from the other PCR types examined.

Appendix 3 shows the open reading frame with translation for *slpA* from strain 170324 (PCR type 12), SEQ ID No 5. This gene showed a single base difference when compared with the strain used for the genome sequencing project, strain 630, of the same PCR type. The deduced amino acid sequence is identical.

Appendix 4 shows the open reading frame with translation for *slpA* from strain 171448 (PCR type 12), SEQ ID No 6. This gene was almost identical in sequence to that from strain 170324.

Appendix 5 shows the open reading frame with translation for *slpA* from strain 171862 (PCR type 17), SEQ ID No 7.

- Appendix 6 shows the open reading frame with translation for *slpA* from strain 173644 (PCR type 31), SEQ ID No 8. Like the *slpA* from strain 172450, this sequence is very dissimilar to those of *slpA* genes from other PCR types encountered.
- Appendix 7 shows the open reading frame with translation for *slpA* from strain 170444 (PCR type 46), SEQ ID No 9. This sequence is virtually identical to that obtained for *slpA* from PCR type 12 and 92 strains.
- Appendix 8 shows the open reading frame with translation for *slpA* from strain 170426 (PCR type 92), SEQ ID No 10. This sequence is virtually identical to that obtained for *slpA* from PCR type 12 and 46.

The cleavage site of the putative signal sequences from both genes was determined from experimental evidence (the N-terminal sequence of the mature proteins as determined by Edman degradation), and by the prediction tool of the Centre for

Biological Sequence Analysis at the Technical University of Denmark [Nielsen et al., 1997]. The site for cleavage of the *slpA* gene product to form the mature SLPs was predicted from experimental [Cerquetti et al., 2000, Karjalainen et al., 2001 and Calabi et al., 2001]. The cleavage site is typically preceded by the motif TKS. However, the relevant motif is likely to be TKG in strain 173644 (PCR type 31). No obvious motif appeared for strain 172450 (PCR type 5). However, the protein produced by type 5 strains does appear to be cleaved; hence we predicted the site to occur at a point where the SLP sequence aligns with the cleavage sites of other PCR types.

10

15

5

The molecular weight and isoelectric point was calculated for each of the predicted mature proteins by the ExPASy server of the Swiss Institute for Bioinformatics (Table 1). In general, the calculated molecular weights were in fair agreement with apparent molecular masses determined from migration in gels (Fig. 3). No lower molecular weight band was apparent for Strain 172450 (PCR type 5; Lane 2). However, a higher molecular weight band is present, which is similar in size to the predicted weight for the C-terminal moiety. We observed a similar profile for another type 5 strain. It is possible that the lower molecular weight species is subject to degradation in this strain. Another possibility is that it is heavily glycosylated, which can affect staining. All peptides had a predicted isoelectric point below 7, typical of acidic proteins, and characteristic of SLPs in general [Sleyter et al, 1993].

Table 1

C. difficile strain (PCR type)	pΙ	pI	MW	MW
	(N-terminal)	(C-terminal)	(N-terminal)	(C-terminal)
171500 (Type 1)	4.83	4.66	33365.41	44220.37
172450 (Type 5)	4.86	4.65	19364.46	42757.63
170324 (Type 12)	4.92	4.58	34228.25	39522.24
171448 (Type 12)	4.98	4.58	34156.18	39492.21
171862 (Type 17)	5.09	4.53	33783.73	39407.11
173644 (Type 31)	5.05	4.56	33626.48	41821.69
170444 (Type 46)	5.06	4.58	34230.31	39522.24
170426 (Type 92)	4.99	4.58	34242.32	39522.24

The translated nucleotide sequences were compared with published SlpA sequences (EMBL Accession numbers AJ300676, and AJ300677 for examples from PCR types 1, and 17 respectively; strain 630 available from the Sanger Institute for PCR type 12; EMBL Accession number AY004256 for a variant from an unnamed PCR type). The Clustal W alignment programme, which is freely available, was used. Where SlpA sequences from our isolates were compared with those of other strains of the same PCR types, they were found to be nearly or quite identical. This observation indicates, together with existing knowledge from serotyping, that the number of variants of slpA is not infinite, and that natural evolution of the gene is not rapid. Table 2 shows a compilation of homologies, based on amino acid residue identity, for the different translated sequences measured against published sequences. Homologies are compiled for the predicted mature peptides, either combined (Table 2A) or as N-terminal (low molecular weight, less conserved moiety) (Table 2B) and C-terminal (high molecular weight, more conserved) (Table 2C) mature peptides according to predicted cleavage sites. It is clear that the SlpA sequences from strains 172450 (PCR type 5) and 173644 (PCR type 31) are quite distinct particularly with respect to N-terminal region.

Table 2A

5

10

15

Strain.type	630	AJ300676	AJ300677	AY004256
	(type 12)	(type 1)	(type 17)	(type unknown)
171500.type1	55.2	99.7	55.4	56.42
172450.type5	49.8	54.0	49.9	47.77
170324.type12	100.0	57.8	81.7	59.77
171448.type12	99.7			
171862.type17	82.3	58.7	100	57.54
173644.type31	57.9	59.2	60.1	56.88
170444.type46	99.6			
170426.type92	99.9			

Table 2B

Strain.type	630	AJ300676	AJ300677	AY004256
	(type 12)	(type 1)	(type 17)	(type unknown)
171500.type1	35.4	100	34.5	33.54

172450.type5	31.6	32.2	31.0	24.58	
170324.type12	100	34.9	64.6	36.14	
171448.type12	99.7				
171862.type17	64.3	34.4	100	31.55	
173644.type31	37.5	34.1	41.3	31.86	
170444.type46	99.1				
170426.type92	99.7				

Table 2C

Strain.type	630	AJ300676	AJ300677	AY004256
	(type 12)	(type 1)	(type 17)	(type unknown)
171500.type1	70.2	99.5	71.2	73.80
172450.type5	58.4	60.4	63.0	57.60
170324.type12	100	77.3	97.1	80.00
171448.type12	99.7			
171862.type17	97.3	78.8	100	79.62
173644.type31	74.1	78.9	75.1	75.38
170444.type46	100			
170426.type92	100			

The term antibody used throughout the specification includes but is not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library.

10

The antibodies and fragments thereof may be humanised antibodies. Neutralising antibodies such as those which inhibit biological activity of the substance amino acid sequence are especially preferred for diagnostics and therapeutics.

15

Antibodies both polyclonal and monoclonal which are directed against epitopes obtainable from a polypeptide or peptide of the present invention are particularly useful in diagnosis and those which are neutralising are useful in passive immunotherapy.

20

Antibodies may be produced by any of the standard techniques well known in the art.

A therapeutically effective amount of the polypeptide, polynucleotide, peptide or antibody of the invention in the form of pharmaceutical composition may be adminsistered. The composition may optionally comprise a pharmaceutically acceptable carrier, diluent or excipients and including combinations thereof. The pharmaceutical composition may be used in conjugation with one or more additional pharmaceutically active compounds and/or adjuvants.

25

. . Note: there's year old a second of the analysis of the life's

Different adjuvants depending on the host may be used to increase immunological response. The adjuvant may be selected from the group comprising Freunds, mineral gels such as aluminium hydroxide and surface active substances.

The vaccine of the invention may be in the form of an immune modulating composition or pharmaceutical composition and may be administered by a number of different routes such as by injection (which includes parenteral, subcutaneous and intramuscular injection) intranasal, intramuscular, mucosal, oral, intra-vaginal, urethral or ocular administration. There may be different formulation/composition requirements dependent on the different delivery systems.

The invention is not limited to the embodiments hereinbefore described which may be varied in detail.

References

5

10

- Calabi E., Ward S., Wren B., Paxton T., Panico M., Morris H., Dell A., Dougan G., Fairweather N. (2001). Molecular characterization of the surface layer proteins from *Clostridium difficile*. Mol. Microbiol. 40:1187-1199.
- Cerquetti M., Molinari A., Sebastianelli A., Diociaiuti M., Petruzzelli R., Cap C., Mastrantonio P. (2000). Characterization of surface layer proteins from different *Clostridium difficile* clinical isolates. Microbial Pathogenesis, 28:363-372.
- Cheng S.H, Lu J.J, Young T.G, Perng C.L, Chi W.M. (1997) *Clostridium difficile*-associated diseases: comparison of symptomatic infection versus carriage on the basis of risk factors, toxin production, and genotyping results. *Clin Infect Dis*; 25: 157-8.
 - Delmée M., Laroche Y., Avesani V., Cornelis G. (1986). Comparison of serogrouping and polyacrylamide gel electrophoresis for typing *Clostridium difficile*. J. Clin. Microbiol. 24:991-994.
- Delmée M., Avesani V., Delferrière N., Burtonboy G. (1990). Characterization of flagella of Clostridium difficile and their role in serogrouping reactions.
 - Karjalainen T., Waligora-Dupriet A.-J., Cerquetti M., Spigaglia P., Maggioni A., Mauri P., Mastrantonio P., (2001). Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect. Immun. 69:3442-3446.
- 20 Kawata T., Takeoka A., Takumi K., Masuda K. (1984). Demonstration and preliminary characterization of a regular array in the cell wall of *Clostridium difficile*. FEMS Microbiol. Lett 24:323-328.
 - Kelly, C.P., Pothoulakis C and LaMont J.T. Clostridium difficile colitis. New England Journal of Medicine. 1994 330: 257-262.
- 25 Kyne L, Warny M, Qamar A, Kelly C. Asymptomtic carriage of Clostridium difficile and serum levels of IgG antibody against Toxin A. New England Journal of Medicine 2000; 390-7.
 - Leung Y.M, Kelly C.P, Boguniewicz M, Pothoulakis C, LaMont J.T, Flores A. Treatment with intravenous gamma globulin of chronic relapsing colitis by *Clostridium difficile*; toxin: *J. Pediatr* 1991; 118: 633-7.
 - McFarland L.V, Elmer G.W, Stamm W.E, Mulligan M.E. Correlation of immunoblot type, enterotoxin production, and cytokine production with clinical manifestation of *Clostridium difficile* infection in a cohort of hospitalised patients. *Infect Immun*. 1991; 59: 2456-62.

- Mulligan M.E, Miller S.D, McFarland L.V, Fung H.C, Kwok R.Y. Elevated levels of serum immunoglobulins in asymptomatic carriers of *Clostridium difficile*. *Clin Infect Dis* 1993: 16(Suppl 4); S239-44.
- Nielsen H., Engelbrecht J., Brunak S., von Heijne G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1-6.
 - O'Neill G.L., Ogunsota F.T, Brazier J.S, Duerdon B.I, Modification of a PCR ribotyping method for application as a routine typing scheme for *Clostridium difficile*.

 Anaerobe (1996) 2, 205-209.
 - Pantosti A, Cerquetti M, Viti F, Ortisi G, Mastratonio P. Immunoblot Of Serum Immunoglobulin G Response to Surface Proteins of *Clostridium difficile* in Patients With Antibiotic Associated Diarrhoea. *J. Clin Microbiol* 1989: 27; 2594-7.
 - Pelmutter D.H, Leichtnr A.M, Goldman H, Winter H.S. Chronic diarrahoea associated with hypogammaglobulinaemia and enteropathy in infants and children: *Dig Dis Sci* 1985; 30; 1149-55.
 - Poxton I.R., Higgins P.G., Currie C.G., McCoubrey J. (1999). Variation in the cell surface proteins of *Clostridium difficile*. Anaerobe 5:213-215.
 - Shim J. Johnson S, Samone M, Bliss DZ, Gerding D.N. Primary symptomless colonisation by *Clostridium difficile* and decreased risk of subsequent diarrhoea. *The Lancet* Vol 351 1998: 633-5.
 - Sleytr U.B., Messner P., Pum D., Sára M. (1993). Crystalline bacterial cell surface layers. Mol. Microbiol. 10:911-916.

10

Appendix 1

5	dif	ID N f <i>icil</i> retor	e s	tra	in	171	500	, P	CR	typ	e 1	, W	ith	tr	ans	lat	ion	•	The	рu		
	two	matu	re	SLP	s (♦)	are	e in	ndio	ate	ed.											
	1 .	ATGAA	AAT																			
10	20	1	M			•			+ A				•						•			
15	CCT	61 GTATT							TGA +													0
	+ 40	21	P	V	F			D	Т	K	V	E	Т	G	D	Q	G	Y	Т	V	V	Q
20	AGC	121 AAGTA	.TAA			TGT														A	18	0
	60	41	s						V											S	I	T
25	GAA	181 ATTAA																				
	80	61							+ E											S		
30	AAT	241 GCAGC																			30	
	100	81							+ К													
35	GGT	301 GATGG	AGA	TTA	TGT.	AGA	TTT	CTT.	AAT	AAC'	TTC'	TCC.	AGG	TCA	AGG	GGA	TAA	AAT	AAC	Т	36	0
40	120	101	G	D	G	-+- D	Y	V	D	F	L	I	+ T	s	P	-+- G	Q	G	D	K	I	T
40	ACA	361 AGTAA																			42	
	140	121							+ Ь													
45	GGA	421 ACATC											-									o
50	160	141							+ G													E

ACAAATTCAGCAGGAACAAAACTTGCAATGTCAGCTATTTTTGACACAGCATATACAGAT 540 161 T N S A G T K L A M S A I F D T A Y T D 181 S S E T A V K I T I K A D M N D T K F G AAAGCAGGTGAGACAACTTATTCAACTGGGCTTACATTTGAAGATGGGTCTACAGAAAAA 201 KAGETTYSTGLTFEDGSTEK ATTGTTAAATTAGGGGACAGTGATATTATAGATATAACTAAAGCTCTTAAACTTACTGTT 720 221 I V K L G D S D I I D I T K A L K L T V GTTCCTGGAAGTAAGCAACTGTTAAGTTTGCTGAAAAAACACCAAGTGCCAGTGTTCAA 241 V P G S K A T V K F A E K T P S A S V Q CCAGTAATAACAAAGCTTAGAATAATAAATGCTAAAGAAGAAACAATAGATATTGACGCT 840 . - - - - - - + - - - - - - - - + - - - - - - + - - - - - - + - - - - - - - - + - - -261 P V I T K L R I I N A K E E T I D I D A AGTTCTAGTAAAACAGCACAAGATTTAGCTAAAAAATATGTATTTAATAAAACTGATTTA 900 281 S S S K T A Q D L A K K Y V F N K T D L AATACTCTTTATAAAGTATTAAATGGAGATGAAGCAGATACTAATGGATTAATAGAAGAA 301 N T L Y K V L N G D E A D T N G L I E E GTTAGTGGAAAATATCAAGTAGTTCTTTATCCAGAAGGAAAAAGAGTTACAACTAAGAGT 1020 321 V S G K Y Q V V L Y P E G K R V T T K S GCTGCAAAGGCTTCAATTGCTGATGAAAATTCACCAGTTAAATTAACTCTTAAGTCAGAT 1080 341 A A K A S I A D E N S P V K L T L K S D AAGAAGAAGACTTAAAAGATTATGTGGATGATTTAAGAACATATAATAATGGATATTCA 1140 361 K K K D L K D Y V D D L R T Y N N G Y S

1141 AATGCTAT	'AG	AAG'l																
381	N	A	I	•			•				•			•				
1201 TATTATAA																		
401 420			N								•							
1261 GTTGGAGG	:AA	ATGO	CAAT	AGI	TGA	TGG	ACT	TGT	'AGC	TTC	TCC	TTT	'AGC	TTC	TGA	AAA	GAA	A
421 440	V	G	G	•		I					•			•				
1321 GCTCCTTT	'AT'	rTAT	CAAC															
441 460	A	P	L	•		Т					•			•				
1381 AGAGTTAT	'GAZ	rat <i>i</i>	TAAA			AAC												
461 480	R	V	M															
1441 GGTGGAGT	TAP	ATTC	CTAI	ATC	TAA	AGA	AGT	AGA	AAA	TGA	ATI	'AAA	AGA	TAT	'GGG	ACT	TAA	A
481 500	G	G	V	N		 I					•			•				
1501 GTTACAAG	'AT'	rago	CAGG	AGA	TGA	TAG	ATA	TGA	AAC	TTC	TCT	'AAA	LAAI	'AGC	TGA	TGA	AGT	A
501 520			R	•							•			•				
1561 GGTCTTGA	TAZ	ATGA	AATA	AGC	:ATI	TGT	'AGT	TGG	AGG	AAC	'AGG	ATT	'AGC	'AGA	TGC	CAT	GAG	Т
521 540			D								•							
			** == 0	· ·	7. CT-CT	יי מו	74 77 77	maa	ת גלידם	መረገ	א אידיו	አአጥ	ica d	ԴԴ	ימקר	ጥር¦ል	ፐርር	т
1621 ATAGCTCC	'AG'	TGC	:A.T.C	TCA	AT.I	AAG	AAA	TGC	THH	TGG	THM	T-T-T-T	COF					

	1681 GATGCTAC	CACC	CAAC	AGT	AGI	TGT	TAGA	TGG	BAAA	AGC	TAA	AAC	TAT:	'AAA	TGA	TGA	TGT	'AA <i>I</i>	λA	17	40
5	561 580	D D	A	T	P	I	V	V	V	D	G	+ К	A	K	~+~ T	I	N	D	D	V	 K
	1741 GATTTCTT																				00
10	581 600 1801		F		D			•						G		N			s		
	GTTGAAAA	ATGC	TAA!	AGA	TGA	TGC	TAC	AGG	TAA	ATC	TCC	'AGA	TAG	ATA	TAG	TGG	AGA	TGF	T	18	60
15	601 620 1861	V	E	N	A	I	D	D	Α	T	G	+ К	S	P	-+- D	R	Y	S	G	D	D
	AGACAAGO	CAAC	TAA	TGC	:AAA	AGT	TAT	'AAA'	AGA	ATC	TTC	TTA	ATTA	TCA	AGA	TAA	CTT	'AAA	Υ	19	20
20	621 640 1921	R	Q	A	T	N	A	K	V	I	K	E	s	S	Y	Y	Q	D	N	L	N
	AATGATAA					-						-									
25	641 660 1981				-			•				•							E		
	TTAGTTGA	TGC	TTT:	AGC	'AGC																
30	661 680	L	V	D	A							•			-+- F		V		L		
	2041 GATGGTAA	rGCC	'AGT	'AGA	TAA	AGA	TGG	TAA	AGt	ATI	'AAC	TGG	TTC	'TGA	AAT	TGA	AAT	AAA	ΥT	21	00
35	681 700 2101	D	G	K	P	V	D	+ К	D	G	K	V	L	T	-+- G	s	D	N	D	K	N
	AAATTAGT	'ATC	TCC	AGC	ACC	TAT	AGT	l'TA'	'AGC	TAC											60
40	701 720	K	L	V	S	P	A	P	I	V	L	+	T	D	S	L	s	S	D	Q	S
	2161 GTATCTAT	`AAG	TAa	AGT	TCT	TGA	TAA	AGA	TAA	TGG	AGA	AAA	.CTT	'AGT	TCA	AGT	TGG	TAF	λA	22	20
45	721 740																		V		K
	2221	GG	TAT	'AGC	TAC									TTT.		AGA	TAT. 	'G -	226	8	
	741	G	I	A	T											D	M		756		
F0																					

<u>and the control of t</u>

Appendix 2

5	difi puta appi	ID ficil ative roxim s (•)	e sati	str ecre on	ain eto: of	ry th	724 sig e <i>a</i>	150 nal ind	, c si	PCR lea	t; vag	ype e s	5, ite	, ,])	wit]])	is	tran ind	nsla dica	atio	on. d,	and	The an
10	ATG	1 AAAAA											TAC									
	20								•				+ А									
15	CCAC	61 FTTTT	TGC	AGC	AGC								AGA +						GTA	T 	12	0
	40	21	P	V	F			A					•						N	D	K	Y
20	ACAC	121 FTATC						TGA	.CTT				TAT. +									
25	60 aca7	41 181 CAGG	Т	V	s	N	Т	K	A	S	D	L	V	K	D	I	L	A	A	Q	N	L
	HCAF	61				-+-			+				+ T			-+-			+		-	
30	80 AAA	241 SATTC	TTC	AAC	TCC	AAC	TGG	AGA	TAA	AAA	AGT	TTA	TTC	AGA	ACA	AAC	TTT:	AAC	TAC	A	30	0
35	100	301	K				_	P					+ K					~		_	T	
	GCTA	AATGG				-+-			+				+			-+-			+		- - -	
40	120	101 361 ATTAT		-							-		T								E 42	
	GCIF	121				-+-			+				+			-+-			+			
45	140	421 3AAAA																				
	AGIO	141				-+-			+				+			-+-			+			
50	160		-	_		-	-	٠	•			_	-		•	-	-	-	•	-		
	TAAA	481 TATGT	GTT																			0
55	180	161	K						•				+ N									D

	541 TTCAGT		CTGA	ATAG	STTA	\CTA	TCA	AGT	'AGT	TCT	TTA	TCC	'AAA	AGG	AAA	GAG	ATI	'ACA	A	60	0
5	183		s		•							•			•			+ K			
	601 GGTTTC		CTTA	TAG	AGC	TAC	'AAA	TTA.	TAA	TGA	AGG	IAAC	TGC	ATA	TGG	TAA	TAC	'ACC	A	66	0
10	200	L G	F					•				•						+ G			
	661 GTAATA		CTCI	• AAA:	▶ \ATC																
15	221		I	L	T							•						V			
	721 CAAAAA	_	\TGC	TAG	TTA									TGA	TGA	CAG	AAT	'ACA	A	78	0
20	241 260	~	K	L	N		s	•				•		L	-+- A	G	D	D	R	I	Q
	781 ACAGCTA	TAG						-													
25	261 280	T	Α		•							•			•						
	841 GCTGATO		AAGA	GAA	TGT	ממדי	ΑΑΑ	ጥርታጥ	ፐርጥ	'ATT	AGT	AGG	TGC.	AAA	TGC	ACT	AGT	'AGA'	${f T}$	90	0
30	281							+										+ A			
30	281	. A	D	V	K	 E	N	~-+ V	K	n	ν	V	L	V	G	A	N	A	L	V	D
30	281 300 901	A A STTGO	D	V TCC	K TTT -+-	E 'AGC	N AGC	+ V AGA	 K AAA	N N AGA	V TGC	V TCC +	L ACT	V ATT	G ATT -+-	A 'AAC	N TTC 	A AAA +	L A 	V 96	D 0
	281 300 901 GGATTAG	A TTTGC	D CGGC	V TCC V	K TTT -+- A	E 'AGC	N AGC P	+ V AGA + L	K AAA A	N AGA A	V TGC E	V TCC + K	L ACT D	V ATT A	G ATT -+- P	A AAC L	N TTC L	A AAA + L	L A T	V 96 S	D 0 K
	281 300 901 GGATTAG 301 320 961 GATAAAT	A TTTGC	D CGGC L	V TCC V	K TTT -+- A AGT	E 'AGC A	N AGC P ATC	V AGA + L TGA	K AAA A AAT	N AGA A AAA	V TGC E GAG	V TCC K K AGT +	L ACT D	V ATT. A AGA	G ATT -+- P CTT	A PAAC L L	N TTC L L AAC	A AAA + L TTC:	L A T T	V 96 S	D 0 K 20
35	281 300 901 GGATTAG 301 320 961 GATAAAT	- A - G - G - TAGF	D CGGC L ATTC	V TCC V GTC	K TTTT -+- A AGT -+- D	E AGC A	N AGC P ATC	+ V AGA + L TGA	K AAAA A	N AGA A AAA S	V TGC E E GAG	V TCC + K AGT +	L ACT. D TTT. K	V ATT A AGA AGA	G ATT -+- P CTT -+- V	A PAAC L AAA L	N TTC L AAC D	AAA + L TTC. + L	L A T A K	V 96 S 10 T	D 0 K 20 S
35	281 300 901 GGATTAG 301 320 961 GATAAAT 321 340 1021 ACAGAAG	A GTTAGA	D CGGC L ATTC	V TTCC V GTC L	K -+- A AGT -+- D	E AGC	AGC P ATC S TTA	+ V AGA + L TGA + V	K AAAA A AAAT K	AGAAAAAAS	V TGC E GAG E	V TCC + K AGT + I AGT +	L ACT. D TTT. K	V ATT: A AGA R	G ATT -+- P CTT -+- V	AAAAAAAL	N TTC L AAC D TAA	AAAAALTTTC.	L A T A K	V 96 S 10 T 10	D 0 K 20 S
35 40 45	281 300 901 GGATTAG 301 320 961 GATAAAT 321 340 1021 ACAGAAG	- A - G - TAGA - T	D CGGC L ATTC	V TCC V GTC L V AAAA	K TTTT -+- A AGT -+- D AAC -+- T	E PAGC A AAAA S S AGT G	AGC P ATC S TTA	TGA V	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AGAAAAAAS	TGC E GAG E	V TCC + K AGT + I AGT + A	L ACT. D TTT. K	V ATT. A AGA R TAG	G ATT -+- P CTT -+- V TGT	AAACLATCN	N TTC L AAC D TAA	AAAA. L TTC+ L AGA+ V	L A T A K	V 96 S 10 T 10 K	D 0 K 20 S
35 40	281 300 901 GGATTAG 301 320 961 GATAAAT 340 1021 ACAGAAG 341 360 1081 GTTGTAA	- A - G - TAGA - T - T - CAGA - T	D CGGC L ATTC K CAGG	V TCC V GTC L AAAA V	K TTTT -+- A AGT -+- D AAC -+- T	E AGC	AGC P ATC S TTA K	TGA+ V TATT+	K AAAA AAATT K AGCC V	AGA AAAA S TGGG Y	V TGC E GAG E TGG	V TCC + K AGT + I AGT AGT + A	L ACT. D TTT. K TAA	V ATT. A AGA R TAG G	G ATT -+- P CTT -+- V TGT -+- V	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TTC L AAC D TAA S TGA	A AAA L TTC:+ L AGA V TAG:	A T A K A	V 966	D 0 K 20 S 80 E

381 Y E T S L K I A G E I G L D N D K A Y V 400 1201 GTTGGTGGAACAGGATTAGCAGATGCCATGAGTATAGCTTCAGTTGCTTCTACTAAATTA 1260 5 401 V G G T G L A D A M S I A S V A S T K L 420 1261 GATGGTAATGGTGTTGTAGATAGAACAAATGGACATGCTACTCCAATAGTTGTTGTAGAT 1320 10 421 D G N G V V D R T N G H A T P I V V V D 440 1321 GGAAAAGCTGATAAAATATCTGATGACTTAGATAGTTTCTTAGGAAGCGCTGATGTAGAT 1380 15 441 G K A D K I S D D L D S F L G S A D V D 460 1381 ATAATAGGTGGATTTGCAAGTGTATCTGAAAAGATGGAAGAAGCTATATCAGATGCTACT 1440 20 461 I I G G F A S V S E K M E E A I S D A T 480 1441 GGTAAAGGCGTTACAAGAGTTAAAGGCGACGATAGACAAGACACTAACTCTGAAGTTATA 1500 25 481 G K G V T R V K G D D R Q D T N S E V I 500 1501 AAAACATATTATGCTAATGATACTGAAATAGCTAAAGCTGCAGTTTTAGATAAAGATTCA 1560 30 501 K T Y Y A N D T E I A K A A V L D K D S 520 1561 GGTGCTTCAAGTAGTGATGCAGGAGTATTTAATTTCTATGTAGCTAAAGATGGATCTACA 1620 35 521 G A S S D A G V F N F Y V A K D G S T 540 1621 AAAGAAGATCAATTAGTTGATGCATTAGCAGTAGGAGCTGTTGCTGGATATAAACTTGCT 1680 40 541 K E D Q L V D A L A V G A V A G Y K L A 560

	1681 CCAGTTGT	ATT	`AGC	TAC	'TGA	TTC	TTT:	'ATC	TTC	TGA	TCA	ATO	CGGT	TGC	TAT	'AAG	CAA	AGT	T	17	40
					-+-			+				+	- -		-+~			+			
5	561	P	V	V	L	A	Т	D	S	L	S	s	D	Q	S	V	A	I	S	K	V
	580																				
	1741																				
	GTAGGAGA	AAA	ATA	TTC	'TAA	AGA	TTT	'AAC	ACA	AGT	TGG	TC	AAGG	AAT	'AGC	'TAA	TTC	AGT	T	18	00
			- - ~		-+-			+				+			-+-			+			
10	581	V	G	E	K	Y	S	K	D	L	T	Q	V	G	Q	G	I	A	N	S	V
	600																				
	1801	AT	'AAA'	CAA	TAA	GAA	AGA	TTT	ATT	'AGA	TAT	'G	183	0							
					-+-			+				+									
	601	I	N	K	M	K	D	L	L	D	M		610								
15																					

Appendix 3

SEQ ID No. 5. Nucleotide sequence of slpA from Clostridium difficile strain 170324, PCR type 12, with translation. The putative secretory signal cleavage site (□) and site of cleavage to form the two mature SLPs (♦) are indicated.

	10111	ii CIIC		, C	ucu		011	5 (. 🔻 /	ar		iiui	Juci	-u·								
		1																				
10		AT 60		AATA	GAA	AAA	TAT	'AGC	LAA.	'AGC	TAT	GTC	'AGG	TTT	'AAC	AGT	TTT	'AGC	TTC	:GGC	TGC	T
10		60				-+-			+				+			-+-			+			
		1	M	N	K	K	N	I	A	I	Α	M	S	G	L	\mathbf{T}	V	L	A	S	A	A
	20	61																				
15	CCTC	TTTT	TGC	TGC	'AAC	TAC	TGG	AAC	ACA	AGG	TTA	TAC	TGT	'AGT	'TAA	AAA	.CGA	CTG	GAA	A	12	0
		0.1				•							•			•						
	40	21	Р	V	P.	A	А	Т	Т	G	1	Õ	G	Y	.1	٧	V	V	1/1	ע	γv	K
20	- •																					
20	<u>አ</u> አአረ	121 CAGT	ת ת תי	አ ሮአ	א חיים	י א רי א	አር አ	TOO	יא רייד	י אי אי	አር [‡] አ	ת תייים	ጥአር	ייי אידי	יא כיכ	ר א א	CAT	ממי	тст	מי	18	n
	MAAC	CAGI																				
		41	K	A	V	K	Q	L	Q	D	G	L	K	D	N	S	I	G	K	I	Т	V
25	60	181																				
_0	TCTT	TTAA	TGA	TGG	GGT	TGT	'GGG	TGA	AGT	'AGC	TCC	'TAA	AAG	TGC	'TAA	AAT	.GAA	AGC	GGA	.C	24	0
		61		 F		'							•				 A		•		 A	
	80	0.1	5	r	14	ם	G	V	V	G	-	V	Ω	r	10	J	7.	14	10	10	**	
30		241				~~~	~				~-		a	·	3			3 E2CC		m	2.0	0
	AGAG	BATGC		AGC																	30	
		81	R	D	A	A	A	E	K	L	Y	N	L	V	N	T	Q	L	D	K	L	G
35	100	301																				
00	GATO	GAGA	TTA	TGI	'TGA	TTT	TTC	TGT	AGA	TTA	TAA	TTT	'AGA	AAA	CAA	TAA	'AAT	'AAC	TAA	T	36	0
		101		 G		•																 N
	120	101	D	G	Ŋ	1	V	D	F	5	٧	ע	ĭ	IA	П	Ŀ	IN	I.	Т	Т.	1	14
40		361																				_
	CAAG	ECAGA		AGA																		
		121																	K		L	
45	140	407																				
40	GATA	421 ATAGO	'AAC	TAA	AGA	ΛΤΑC	TTT	TGG	FAA	'GG'I	TAG	TAA	AAC	ACA	AGA	TAG	TGA	AGG	TAA	A	48	0
									~ -+		- - -		+			-+-			+			
	160	141	D	I	A	T	K	D	Т	F	G	M	V	S	K	T	Q	D	S	Ε	G	K
50	200																					

	481 AATGTTGO	TGC	CAAC	CAAA	'GGC	CACT	TAA	AGI	'TAA	AGA	TGI	TGC	'TAC	TTA	TGG"	TTT	'GAA	\GTC	T	54	0		
5	161 180			Α	•							·+ К			•	Т				K	S		
	541 GGTGGAAC	GGA	AGA	TAC	TGC	SATA	ATGT					\AGC											
10	181 200 601	G	G	S	Ē	D	Т					E									K		
	TATGGTAA	AGT	TGG	AGA	TAC	TAC	CGGC	AGG	TAT	TGC	LAA!	'AAA	TCT	TCC	TAG	TAC	TGG	ACI	T	66	0		
15	201 220 661	Y	G	K	V	G	D	s	T	A	G	I	A	I	N	L	P	s	T	G	L		
	GAATATGO	AGG	TAA	AGG	AAC	'AAC	TAA:			TAA'		AAC								_			
20	221 240	E	Y	A	G	K	G				D	•	N	K	•		K	V	D	V			
	721 GGTGGTTC	AAC	ACC	TAG	TGC															78	0		
25	241 260	G	G	s	-+- T			•				+ S			•						D		
	781 TTAGCAAA	ATC	'AGG	TAC	TAT	'AAA	TGT	'AAG	AGT	TAT	AAA	TGC	AAA	AGA	AGA	ATC	AAT	TGA	T	84	0		
30	261 280	L	A	 K	-+- S	G	T	+ I	N	v	 R	+ V	 I	N	-+- A	К	 E	+ E	s	I	D		
	841 ATAGATGO	'AAG	CTC	'ATA	TAC	ATC	'AGC	'TGA	AAA	TTT	AGC	'TAA	AAG	ATA	TGT	ATT	TGA	TCC	A	90	0		
35	281 300 901			Α								N +					 Y	V V		D	P		
														96	0								
40	301 320 961	D	E	I	s S	E	A	Y	K	 А		V	A	L	Q	N	D	G	I	E	S		
	AACTTAGT	TCA																			20		
4 5	340	N										+ Q			•						R		
	1021 TTAGAAAC	TAA	ATC	AGC	AAA	TGA	TAC	AAT	AGC	TAG	TCA	AGA	TAC	ACC	AGC	TAA	AGT	'AG'T	T	10	80		
50	341 360	L	E		•			•				+ A			•			•			V		
55	1081 ATAAAAGC	TAA	AAT.	ATT.	AAA	↓ AGA	· TTT	AAA	AGA	TTA	TGT	'AGA	TGA	TTT.	AAA	AAC.	ATA	TAA	Т	11	40		

361 380	Ι	K	A	N	K	L	K	D	L	K	D	Y	V	D	D	L	K	Т	
1141 AATACTT	ATT	CAA	ATG1	TGT	'AAC	CAGI	'AGC	AGG	AGA	AGA	ATAC	raae	AGA	AAC	TGC:	TAT!	`AGP	ΔA	
381	И	Т	Y	S	Ŋ	V	•			Α	•			-+- R	I	 E	T	Α	٠ -
1201 TTAAGTA	3TA	XTAA	ATT <i>P</i>	ATA	TTC	CTGA	TGA	AAT.	AAA	TGC	raa:	'AAC	CTGA	TAA	AGC	'AGT	'TAP	\mathbf{T}	
401 420	L	s	s	K	Y	Y	+ N	s	D	D	+ K	N	A	-+- I	т	D	+ K	Α	-
1261 GATATAG	rat'	TAG:	rtgo	ATC	TAC	CATC	TAT	AGT	'TGA	TGG	TCT	TGI	TGC	'ATC	ACC	'ATT	'AGC	T	
421 440	D	I	V	L	V	G	+ S	T	s	I	V	D	G	-+- L	ν		•	P	
1321 TCAGAAA), AA	CAGO	CTCC	rta:	TTA:	TTA:	'AAC	TTC	'AAA	AGA	TAA	lTA.	'AGA	TTC	ATC	AGT	'AAA	ιA	
441 460	s	E	 К	T	A		+ L			T	•	K	D	-+- K	 L	D	s	 S	
1381 TCTGAAA	raa:	AGAC	GAGI	TAT	'GAA	CTI	'AAA'	GAG	TGA	CAC	'TGG	rat:	'AAA	TAC	TTC	TAA	AAA	.A	
461 480	S	E	I	-+- К	R	V	+ М	N	L	K	+ S	D	T	-+- G	I	N	+ T	S	
1441 GTTTATT	rago	CTGC	3TGC	AGT	'TAA	TTC	TAT	ATC	TAA	AGA	TGT.	'AGA	AAA						
481 500	V	Y	L	A	G	G	V	N	s	I	+ S	K	D	-+- V		N	+ E	L	
1501 ATGGGTC	rta <i>l</i>	AAGI	TAC	'T'AC	ATT	ATC	'AGG	AGA	AGA	.CAG	ATA	.CGA	AAC	TTC					
501 520	М	G	L	-+- К	V	T	+ R	L	s	G	+	D	R	-+- Y	E	T	S	L	•
1561 GCTGATG	\AA:	rago	TCT	'TGA	TAA	TGA	AAT.	AGC	ATT	TGT	'AGT	"TGG	TGG	TAC	TGG	ATT	'AGC	!A	
521 540		D																	
1621 GATGCTA	rgao	TAT	TAGC	TCC	'AGT	'TGC	TTC	TCA	ACT	TAA	AGA	.TGG	AGA	TGC	TAC	TCC	AAT	'A	
541 560	D	 А	M	-+- S	 I	 А	•				•		 К	•			•	т	
1681 GTAGTTG																			
561 580		V					,												
1741																			

				1							1						1			
581 600		D					•				•									I
1801 GATAGTGO	:AAC	TGG	JAAA	AAC	TCC	'AGA	TAG	AAT	'AAG	TGG	AGA	TGA	TAG	ACA	AGC	!AAC	TAP	T	18	60
601	ص ص	_	 A	+		 К			 D					-+- D				 A	 Т	 N
620	ב	5		-	•	10	-	-		**	-	٥	Ü				Ž	••	-	
1861																				
GCTGAAGT	TTT.	'AAA'	AGA	AGA																
621	 A	Ē	v	L			•				•			•			•		 F	
640																				
1921																				
GCAAAAGA	TGG	TTC																	19	
641	A	K		•			•				•			•						
60																				
1981 CAGGTAG	יא חחד	ע ער ודיים	aa 2	ama	mac	יז ממ	maa	71 71 FF		יא מים	יז ממ	1111 A C	יייייי	ma c	mmm	יז ידיר	inime	ıL.	20	4.0
CAGGIAG																				
	A	G	R	F	K	Ε	S	P	Α	P	I	I	L	Α	Т	D	т	L	S	S
680																				
2041 GACCAAAA	TGT	'AGC	TGT	'AAG	AAT	AGC	AGT	TCC	בבדי	.AGA	TGG	TGG	AAC	'TAA	CTT	'AGT	'TCA	A	21	00
														-+-						
681	D	Q	N	V	A	V	S	K	A	V	P	K	D	G	G	T	N	L	V	Q
700 2101	СT	י אַ מיַנ	מ מידי!	AGG	:ጥልጥ	יאמר	كىئىت	ጥጥር	יים	יידי עיידיי	מממי	$C\Delta\Delta$	דעע	ימא.	AGA	ተጥተ	י איי	'AGA	TAT.	G
2157	O1													_						
701	V	G		-			•				•									
719																				

5	SEQ ID diffici putative form the	le s e se	stra ecre	in etor	171 y s	.448 sign	3, E nal	PCR cle	typ ava	e 1 ge	.2, sit	wit e (h t	ran	sla	tic	n.	Th	le.	ge	to
10	1 ATGAATA							TAT													
10	20							A													
15	61 CCTGTTT	rtgc	CTGC	CAAC	TAC	TGG	JAAC				TAC		AGT	TAA	AAA.	.CGA	CTG	GAA	.A	12	0
10	21 40	P	V	F	A	A	T	T				•	Y	T	V	V	K	N	D	W	K
20	121 AAAGCAG	ГААА	ACA	ATT	'ACA		TGG	ACT	'AAA	AGA	TAA	TAG	TAT	'AGG	AAA	.GAT	'AAC	TGT	'A	18	0
	41				-+-	· -		Q				+			-+-			+			 V
25	60 181 TCTTTTA	ATGA	\TGG	GGT	TGT:	rgge	TGA	AGT	'AGC	TCC	TAA	AAG	TGC	'TAA	TAA	.GAA	AGC	'GGA	.C	24	0
	61 80	S						V													D
30	241 AGAGATGO	CTGC							-	-											
	81	R						+ К							-						
35	301 GATGGAG																				
	101 120							+ F												Т	
40	361 CAAGCAG							'AAA' ++												42	
	121 140				-																
45	421 GATATAGO	CAAC	TAA					TAA													0
	141 160	D	I					•				•			•						K

	AAT	481 GTTGC	TGC	AAC	AAA	GGC	ACT	TAA	AGT	TAA	AGA	TGT	TGC	TAC	ATT	TGG	$\mathrm{T}\mathrm{T}\mathrm{T}$	GAA	GTC	Т	54	0
5	180	161	N	V	 А	-+- A	т	 К	+ A	 L	K	V	+ K	D	v	-+- A	т	 F	+ G	L	K	s
	GGT	541 GGAAG	CGA	AGA	TAC																	
10	200	181	G	G	s		D	т				v	•			•	G		V	 E	D	
	TAT	601 GGTAA	AGT	TGG.	AGA																	0
15	220	201	Y	G	K	•							•				L			т	G	L
	GAA'	661 TATGC	AGG	TAA	AGG.	AAC	AAC	AAT	TGA	TTT	AAT	TAA	AAC	TTT	AAA	AGT	TGA	TGT.	AAC	A	72	0
20	240	221	E	Y	 А	-+- G	 К	G	+ T	T	I	D	+ F	N	K	-+- T	L	K	+ V	D	V	T
	GGT	721 GGTTC																				_
25	260	241		G				s							F	v -+-	T	K	D	D	Т	
	TTA	781 GCAAA	ATC	AGG	TAC	TAT														T 		0
30	280	261	L	A	K	S		T	•							•	K		E	S	Ι	D
	ATA	841 GATGC	AAG	CTC.	ATA	TAC																0
35	300	281	I	D	A	s S		Y					•			•				 F		P
	GAT	901 GAAAT	TTC	TGA	AGC.	ATA	TAA	GGC.														
40	320	301	D	E	I	-+- S	E	 А	+ Y				V +	A	L	-+- Q		D	G G	I	E	s
	AAT'	961 TTAGT																				20
45	340			L																		R
		1021 GAAAC	TAA																	T 		80
50	360	341	L	E		•			•				•			•						V
55		1081 AAAGC	-	TAA																		

	361 380 1141	I	K	A	N	K	L	K	D	L	K	D	Y	V	D	D	L	K	Т	Υ	Ŋ
-	AATACTTA	ATTC	'AAA	TGT	TGI	'AAC	CAGI	'AGC	'AGG	AGA	AGA	TAG	IAA	'AGA	AAC	TGC	TAT	'AGA	A	12	00
5	381 400	N	Т	Y	-+- S	N		V+						D	-+- R		E	•		 I	
	1201 TTAAGTAG	TAA	ATA	ATT.	TAA	TTC	TGA	TGA	TAA	AAA	TGC	'AA'I	'AAC	TGA	TAA	AGC	'AGT	'T'AA	T	12	60
10	401	 L	 g	 S	-+-			+ И				•						+ K		 V	
	420 1261	<u></u>	5	ט	K	1	1	14	ט	D	ע	ıc	14	r.	1	1	D	K	A	٧	14
15	GATATAGT	TTA: 	'AGT	TGG	ATC	TAC	ATC	TAT	AGI	'TGA	TGG	TCT	TGT	TGC					T 		20
10	421 440	D	I	V	L	V	G	S	T	S	I	V	D	G	•					_	A
	1321 TCAGAAAA	חממ	'AGC	ייירכ	ייים.	חידי∆י	יידי∆י	'ልርር	ጥጥር	מממי	AGA	ααT	דידע.	'AGA	ጥጥር	'ልጥር	'AGT	'אא	Д	13	80
20					-+-			+				+			-+-			~-+			
	441 460 1381	S	Е	K	Т	Α	P	L	L	L	A	S	K	D	K	L	D	S	S	V	K
25	TCTGAAAT	'AAA	GAG	AGT	rat'			'AAA								-					
20	461 480	ន	E	I	K			M				•			,	I	N		S	K	
	1441 GTTTATTT	'AGC	'TGG	TGG	AGT	'T'A A	TTC	TAT!	ATC	ΊΆΑ	.AGA	TGT	'AGA	AAA	TGA	TTA	'GAA	AAA	C	15	00
30					-+-		- - -	+				+			-+- V			+		 K	
	481 500 1501	V	1	ή	A	G	G	V	IN	Ö	1	۵	Л	ט	V	Ð	14	E	יר	K	14
35	ATGGGTCT	TAA	AGT					AGG													60
33	501 520	М	G					+ R				•	D		-+- Y	Е	Т			A	I
40	1561 GCTGATGA	LAAI																		16	
40	521	- - А						D				•			-						
	540 1621 GATGCTAT	ימאמ	יבי עניבויו	א מימי	יתיכר	יא ביית	יידיכור	·ጥጥረ	ጣ ፖ አ	አ ረጣ	ע ענידיו	<u>አ</u> ር! አ	TOO	יא כי א	ጥረረ	יתי א כי	ייייריר	አአጥ	7\	16	80
45					-+-			+				+			-+-			+			
	541 560	D	A	M	S	Ι	Α	P	V	Α	S	Q	L	K	D	G	D	A	Т	P	Ι
50	1681 GTAGTTGT	'AGA	.TGG	AAA	AGC	'AAA	AGA	TAA	AAG	TGA	TGA.	.TGC	TAA	.GAG	TTT	'CTT	'AGG	AAC	т	17	40
	561							+				•			•						
55	580 1741	V	V	V	ע	ن	ĸ	A	ĸ	E	Ţ	5	ט	Ŋ	А	ĸ	Ď	Ľ.	ы	ڼ	ī
	TCTGATGT	'TGA	TAT	AAT	'AGG	TGC	AAA	AAA	TAG	CGT	ATC	'T'AA	AGA	GAT.	TGA	AGA	GTC	AAT	A	18	00

												4									
	581 600 1801	s	D	V	D	I	I	G	G	K	N	s	V	s	K	E	I	Ε	Е	S	Ι
5	GATAGTGC	AAC	TGG	AAA																18 	60
	601 620 1861	D	S	A	T	G	K	T	P	D	R	I								T	
10	GCTGAAGT	TTT	AAA	AGA	AGA	TGA	TTA	TTT	CAC	AGA	TGG	TGA			GAA		CTT	TGT	T 	19	20
	621 640 1921	A	E	V	L	K	E	D	D	Y	F	T	D		E		V	N	Y	F	V
15	GCAAAAGA'	TGG	TTC	TAC	TAA	AGA									AGC				A 	19	80
	641 660 1981	A	K	D	G	S		•							•				A	P	Ι
20	GCAGGTAG														TAC						40
	661 680 2041	A		R	•	K	E	S	₽			I								s	s
25	GACCAAAA'	TGT													TAA -+-						00
	681 700	D		N	•							•			G		T			V	Q
30	2101 2157	GT	'AGG	TAA	AGG	TAT	'AGC	TTC	TTC	AGT										TAT 	
	701 719	v	G	K	-+- G	I	Α	+ S	s	V					-+- K			•			

5	SEQ I diffi putat form	<i>cil</i> ive	e s se	tra cre	in tor	171 y s	862 ign	, P al	CR cle	typ ava	e 1 ge	7, sit	wit e (h t □)	ran	sla	tio	n.	Th	e	ge	to
10	ATGAA	1 TAA																				
10	20	1				-			+ A													
15	CCAAT	61 'ATT'	TGC.						AGG												12	
10	40	21	P			A	D															
20	1 GCAGT	.21 'AAA	ACA.	ATT.	ACA	_ AGA		GTT	'GAA	AAA	TAA	AAC	TAT	ATC	AAC	TAA	AAA	.GGT	GTC	Т	18	0
	60	41				•			+ D				•									
25		.81 ATGG.	AAA																			
	80	61	F						+ G													
30	2 AGAGA	41 TGC	TGC.	AGC'					TAA													-
	100	81	R	D					K													
35	GATGG	01 BAGA							'AAC													
	120	.01							F													
40	3 GCAGA	61 AGC							ATT												42	
	140	.21	A	E	A	Ε	Α	V	L	Т	K	L	Q	Q	Y	И	D	K	V	L	I	N
45	TCTGC	21 CAAC	AGA	TAC	AGT 	AAA - + -	AGG	TAT	GGT	ATC	TGA	TAC	'ACA +	AGT 	TGA	TAG -+-	CAA	AAA - - -	TGT. +	T 	48 	0
	1 160	.41	ន	A	T	D	T	V	K	G	М	V	S	D	T	Q	V	D	s	K	N	V

1021 TCTGCAGATATAATAGCTGATGCAGATAGTCCAGCTAAAATAACTATAAAAGCTAATAAA 1080 -----341 S A D I I A D A D S P A K I T I K A N K 5 360 1081 10 361 L K D L K D Y V D D L K T Y N N T Y S N 380 1141 GTTGTAACAGTAGCAGGAGAAGATAGAATAGAACTGCTATAGAATTAAGTAGTAAATAT 1200 ______ 15 381 V V T V A G E D R I E T A I E L S S K Y 400 1201 TATAATTCTGATGATAAAAATGCAATAACTGATGATGCAGTTAATAATATATAGTATTAGTT 1260 20 401 Y N S D D K N A I T D D A V N N I V L V 420 1261 GGATCTACATCTATAGTTGATGGTCTTGTTGCATCACCATTAGCTTCAGAAAAAAACAGCT 1320 ______ 25 421 G S T S I V D G L V A S P L A S E K T A 1321 CCATTATTATTAACTTCAAAAGATAAATTAGATTCATCAGTAAAATCTGAGATAAAAAGA 1380 30 441 P L L T S K D K L D S S V K S E I K R 460 1381 35 461 V M N L K S D T G I N T S K K V Y L A G 480 GGAGTTAATTCTATATCTAAAGATGTAGAAGATGAATTGAAAAATATGGGCCTTAAAGTT 1500 40 481 G V N S I S K D V E D E L K N M G L K V 500 1501 ACTAGATTATCAGGAGAAGACAGATACGAAACTTCTTTAGCAATAGCTGATGAAATAGGT 1560 45 501 T R L S G E D R Y E T S L A I A D E I G 520 1561 CTTGATAATGATAAAGCATTTGTAGTTGGTGGTACTGGATTGGCAGATGCTATGAGTATA 50 521 L D N D K A F V V G G T G L A D A M S I 540 1621 55 GCTCCAGTTGCTTCTCAACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGTAGATGGA 1680

	541 560 1681	A	P	V	A	S	Q	Ŀ	K	D	G	D	A	Т	P	Ι	V	V	V	D	G
5	AAAGCAAA	AGA	TAA	'AAG	TGA	TGA	TGC	TAA	GAG	TTT	'CTT	'AGG	AAC	TTC	TGA	TGT.	'TGA	TAT.	A	17	40
3	561 580 1741	K	A	K	E	I	S	D	D	A	K	s	F	L	G	Т	s	D	V	D	I
10	ATAGGTGG	AAA	AAA	TAG	CGI																
10	581 600 1801	I	G	G	-+- K			V		K	E	1 	E	E	-+- S		D			т	
15	AAAACTCC	AGA	TAG	AAT	'AAG			TGA													60
15	601 620 1861	K	Т	P	D			s				•			•			•			K
20	GAAGATGA	TTA.	TTT	'CAA	AGA	TGG	TGA	AGT	TGT	GAA	TTA.	CTI.	TGT	TGC	AAA	AGA	TGG	TTC	T 	19	20
20	621 640 1921	E	D	D	Y	F	K	D	G	E	V	V	N	Y	F	V	A	ĸ	D	G	s
25	ACTAAAGA							ATT +													
	641 660 1981	T	K	Е	D	Q	L	V	D	A	L	A	A	A	P	I	A	G	R	F	K
30	GAGTCTCC	AGC 	TCC	AA! 	'CAT			TAC													40
	661 680 2041	Е	ន	P	A	P	I	ı.	L	A	T	D	Т	L	s	S	D	Q	N	V	А
35	GTAAGTAA	AGC	AGT	TCC	'TAA	AGA	TGG	TGG	AAC	TAA	.CTT	AGI	TCA	AGT	AGG	TAA	AGG	TAT	A	21	00
<i>3</i> 0	681 700	V		K	-+- A	V	P		D	G	G	_	N	L	V	~	V	+ G 214	K	G	I
	2101							CAA +										∠ 14	٦		
40	701	A	S	S	V	I	N	K	M	K	D	L	L	D	M	*		715			

5	SEQ ID diffici	le s	tra	in	173	644	, P	CR	- typ	e 3	1,	wit	h t	ran	sla	tio	n.	Th	e	ge	to
	form the	e tw	o m	atu	re	SLP	's (♦)	are	e ir	ndio	cate	ed.								
	1 ATGAATA		.GGA	TAT.	AGC	T'AA'	'AGC	TAT	GTC	AGG	ATT	AAC	AGT	ATT.	AGC	TTC	TGC	AGC	A	60	
10	-				-+-			+				•			-+-		 T	+		 7\	- - -
	20 61	М	W	Х	ĸ	D	Ţ	A	T	A	ΙVI	5	G	Г	Т	V	با	A	Þ	А	A
15	CCTGTAT'																				
15	21			 F																	
20	121 TATCAAA			'AAC																	0
	41 60	Y																			I
25	181 GATGTAA'	תיתו ענית	יידיכי	THE C	<u>አአ</u> ረግ	ጥጥረ	יח א ת	TOO	ምር እ	cam	አ <i>ር</i> ነጥ	מממ	אממ	ጥጥረ	ጥርነ	יזיכירי	ሞርረ	nac	ייף	24	Λ
20	AAIGIAA			 	-+-		 WWT	+				+			-+-			+	- 		
	61 80 241	D	V	I	F	D	G	S	S	I	G	Ε	V	V	P	G	S	D	Α	Α	A
30	GCAGCTA	CTAA	ATT	'AAA	AAG	TTT	'AGT	TGA	TGA	TAA	GTT	AGA	TAA	CTT.	AGG	TGA	TGG	AAA	A	30	0
					•			-													
	81 100 301	A	Α	Т	K	L	K	S	L	V	D	D	K	L	D	N	L	G	D	G	K
35	TACGTTC	TTAA	'TAA	TGT	TAC	TTA	TAC	TAC	TAA	ATC	TAT	AAT	AAC	TAA	AGC	AGA	ATT	AAA	A	36	0
	101 120			Q																	
40	361																		_		_
40	AATTATT	ATAA 		ATT.																	
	140	N			•							•									
45	421 GATACAG	<u> </u>	ጥ አ እ	λαα	יייטייי	ur∧ur	י אי אי	71.02.02	ጥር፤እ	ጥአሮ	ጥርአ	ጥሮር	יי א רי	<u> </u>	ጥርር	ጥርጥ	ጥርር	ልርር	Z	48	0
10	GAIACAG				-+-			+				+			-+-			+			
	141 160	D	Т	G	T	K	G	L	Ι	K	A	D	T	D	G	Т	T	A	V	Α	A
50																					
	481 GCTGCAC	CATT																			0
55	161 180	Α		 Р	,							•									V

541 CTTAAAGCAGAACCAACAAGTAAAGTAAGCGCTGGTAAAGTTCAAGGTCTAAAATATGGA 600 181 L K A E P T S K V S A G K V O G L K Y G 5 200 AATACAGGAGCAACTAACTATACTTCTGGAGCTGAAATATCTGTTCCTACTACAGGCTTA 201 N T G A T N Y T S G A E I S V P T T G L 10 220 661 ACATTAACTGCTGATACAACTGCAACAACAGATGTAAATATTTCTGATGTTATGAGTGCA 720 221 T L T A D T T A T T D V N I S D V M S A 15 721 TTTAAATTTAATGGTACTGATACGATTAGTGGATTCCCAGCTGGTTCATCAGCTTCTACT 780 ______ 241 F K F N G T D T I S G F P A G S S A S T 20 260 781 CTTAGAGCAAGTATAAAAGTAATAAATGCAAAAGAAGAATCTATAGATGTTGATTCAAGT _______ 261 L R A S I K V I N A K E E S I D V D S S 25 280 841 TCACATAGAACAGCTGAAGATTTAGCTGAAAAATATGTATTTAAACCAGAAGATGTGAAT 281 S H R T A E D L A E K Y V F K P E D V N 30 300 901 AAAACTTATGAGGCACTGACTGATTTATATAAAGAAGGTATAACAAGTAATCTTATCACT 960 301 K T Y E A L T D L Y K E G I T S N L I T 35 320 1020 CAAGATGGTGGAAAATATCAAGTTGTTTTATTTGCTCAAGGAAAGAGATTAACTACTAAA 321 Q D G G K Y Q V V L F A Q G K R L T T K 40 340 1021 GGAGCAACTGGAACTTTAGCAGATGAAAATTCTCCTCTTAAAGTAACAATAAAAGCAGAT 1080 341 G A T G T L A D E N S P L K V T I K A D 45 360 1081 AAAGTAAAAGACTTAAAAGATTATGTTGAAGATTTAAAAAATGCTAACAATGGATATTCA 1140 50 361 K V K D L K D Y V E D L K N A N N G Y S 380 1141 AATTCTGTTGTTGTAGCAGGTGAAGATAGAATAGAAACAGCAATAGAGTTAAGTAGCAAA 55

381 N S V V V A G E D R I E T A I E L S S K 400 1201 TACTATAACTCTGATGACAATGCAATAACTAAAGATCCAGTTAACAATGTTGTTTTA 1260 5 401 Y Y N S D D D N A I T K D P V N N V V L 420 1261 GTTGGTTCTCAAGCTGTAGTTGATGGGCTTGTAGCTTCACCTTTAGCATCTGAAAAAAGA 10 421 V G S Q A V V D G L V A S P L A S E K R 440 1321 GCTCCTTTACTATTAACTTCAGCAGGAAAATTAGATTCAAGTGTTAAAGCTGAGTTGAAA 1380 15 441 A P L L T S A G K L D S S V K A E L K 460 1381 AGAGTAATGGATTTAAAATCTACAACAGGTGTAAATACTTCTAAAAAAGTTTACTTAGCT 1440 20 461 R V M D L K S T T G V N T S K K V Y L A 480 1441 GGTGGAGTAAACTCTATATCTAAAGATGTAGAAAATGAATTAAAAGATATGGGACTTAAA 25 481 G G V N S I S K D V E N E L K D M G L K 500 1501 GTTACAAGATTATCAGGAGATGATAGATATGAAACTTCTTTAGCTATAGCTGATGAAATA 1560 30 501 V T R L S G D D R Y E T S L A I A D E I 520 1561 GGTCTTGATAATGATAAAGCTTTTGTAGTTGGAGGAACAGGATTAGCGGATGCTATGAGT 1620 35 521 G L D N D K A F V V G G T G L A D A M S 540 1621 ATAGCTCCAGTTGCTTCTCAATTAAGAAACTCAAATGGAGAACTTGACTTAAAAGGTGAT 40 541 I A P V A S Q L R N S N G E L D L K G D 560 45 1681 GCAACTCCAATAGTAGTTGTTGATGGAAAAGCTAAAGATATAAATTCTGAAGTAAAAGAT 1740 561 A T P I V V V D G K A K D I N S E V K D 580 50 1741 TTCTTAGATGATTCACAAGTTGATATAATAGGTGGTGTAAATAGTGTTTCTAAAGAAGTA 1800 581 F L D D S Q V D I I G G V N S V S K E V 600 55 1801 ATGGAAGCAATAGATGATGCTACTGGAAAATCACCTGAGAGATATAGTGGAGAAGATAGA 1.860

	601 620			A								•								D	R
5	1861 CAAGCAAC	'AAA	TGC	TAA	AGT	TAT	'AAA'	AGA	AGA	TGA	TTT.	CTT	'TAA	AAA	TGG	AGA	AGT	TAC	'A	19	20
	621 640		A	Т	•		 К		I			•			-+- F						
10	1921 AACTTCTT	TGT	'AGC	'TAA	AGA	TGG	TTC	AAC	TAA	AGA	AGA	TCA	ATT	'AGT	'AGA	TGC	TTT	AGC	'A	19	80
	641 660	N	F	F	V	Α	K	+ D	G	s	Т	+ K	E	D	-+- Q	L	v	D	A	L	Α
15	1981 GGTGCTGC			TGG																	
	680			A																	
20	2041 GCTGATAA	AAA		TTC																	
	681 700	A			-					P	I				T					S	
25	2101 CAAAATGT	AGC	TAT:	AAG	TAA	AGC	TGT	AAA	TGA						.GAA -+-						
	701 720	Q	N	V	-+- A	I	S	K	A			•			N			•			
30	2161 2217			TAA																	
	721 739			K								•									-

5	str:	ID I ain 1 retor matu	704 y s	44, ign	PC al	R t cle	ype ava	46 ge	, w sit	ith e (tr [])	ans	lat	ion		The	pu	tat	ive			
10	ATG	1 AATAA	GAA																		60 	
10	20	1 61	М										•								A	
15	CCT	GTTTT	TGC	TGC	AAC	TAC	TGG	AAC	ACA	AGG	TTA	TAC	TGT.	AGT	TAA	AAA	CGA	CTG	GAA	A 	12	0
10	40	21	P	٧	F			Т	T	G	Т	Q	Ğ	Y	Т	V	V	K	N,	D	W	K
20	AAA	121 GCAGT				ACA																
	60	41																			Т	
25	TCT'	181 TTTAA																			24	
	80	61																			A	
30	AGA	241 GATGC	TGC	AGC	TGA																30	
	100	81	R	D	Α																L	
35	GAT	301 GGAGA		_								_										
	120																				T	
40	CAA	361 GCAGA																			42	
	140																				 L	
45	GAT	421 ATAGC	AAC	TAA	AGA			-									TGA	AGG	TAA	A	48	0
	160	141	D	I	 А	•		D	•								Q	D	+ S	E	G	K

481 AATGTTGCTGCAACAAAGGCACTTAAAGTTAAAGATGTTGCTACATTTGGTTTGAAGTCT 540 5 161 N V A A T K A L K V K D V A T F G L K S 180 541 10 181 G G S E D T G Y V I E M K A G A V E D K 200 601 TATGGTAAAGTTGGAGATAGTACGGCAGGTATTGCAATAAATCTTCCTAGTACTGGACTT 660 15 201 Y G K V G D S T A G I A I N L P S T G L 220 GAATATGCAGGTAAAGGAACAACAATTGATTTTAATAAAACTTTAAAAAGTTGATGTAACA 20 221 E Y A G K G T T I D F N K T L K V D V T 240 721 GGTGGTTCAACACCTAGTGCTGTAGCTGTAAGTGGTTTTGTAACTAAAGATGATACTGAT 780 25 241 G G S T P S A V A V S G F V T K D D T D 260 781 TTAGCAAAATCAGGTACTATAAATGTAAGAGTTATAAATGCAAAAGAAGAATCAATTGAT 840 ______ 30 261 L A K S G T I N V R V I N A K E E S I D 280 ATAGATGCAAGCTCATATACATCAGCTGAAAATTTAGCTAAAAGACATGTATTTGATCCA 900 35 281 I D A S S Y T S A E N L A K R H V F D P 300 901 GATGAAATTTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT 960 40 301 DEISEAYKAIVALQNDGIES 320 961 AATTTAGTTCAGTTAGTTAATGGAAAATATCAAGTGATTTTTTATCCAGAAGGTAAAAGA 45 321 N L V Q L V N G K Y Q V I F Y P E G K R 340

THE REPORT OF THE PROPERTY OF

	1021 TT 1080	'AGA		TAA																	
5	341 360											•			-			•			
	1081 ATAAAAGC	TAA	AAT.					-													
10	361 380 1141	I	K		,			•				•			-+- D				 Т		
	AATACTTA																				
15	381			Y	•							•			•			•			
	1201 TTAAGTAG																				
20	401 420 1261	L		s																	
	GATATAGT	'TTA'	AGT												ATC						
25	421 440 1321	D	I																		
	TCAGAAAA																				
30	441 460 1381			K	•			•				•									
	TCTGAAAT	'AAA' 		AGT																	
35	461 480 1441	S	Е	Ι	K	R	V	М	N	L	K	s	D	Т	G	I	N	Т	S	K	K
	GTTTATTT			TGG																	
40	481 500 1501																				
	ATGGGTCT	TAA 	AGT												TTC						60
45	501 520 1561	М	G		•							•			,			•			I
	GCTGATGA			TCT																	
50	521 540											•									
55	1621 GATGCTAT			AGC'																	

54 560		D	A	M	S	I	A	P	V	A	S	Q	L	K	D	G	D	A	Т	P	Ι
168 GTAGTT	_																		-		40
56 580 174	_				•		K	•				+ S		D	•			•		G	T
TCTGAT	_	GΑ	TAT	'AA'I	'AGG	TGG	AAA	AAA	TAG	CGT	ATC	'TAA	AGA	GAT	TGA	AGA	GTC	LAA!	'A	18	00
58 600 180		s	D	v	-+- D	I	I	+ G	G	K	N	+ S	V	S	-+- K	E	I	+ E	E	S	I
GATAGT																				18	
620 186)1 :		S		•		K	•	P			•		G			R	Q			N
GCTGAA	_	ΤT	'AAA	AGA	AGA	TGA	TTA	TTT	CAC	AGA	TGG	TGA	AGT	TGT	'GAA	TTA.	.CTI	TGT	T'	19	20
62 640 192		 A	E	V	-+- L	K	E	D	D	Y	 F	+ T	D	G	-+- E	v	V	N N	Y	F	v
GCAAAA	_	GG																		19	
64 660 198		 A																		P	
GCAGGT	'AGA'	TT 	TAA 	.GGA	GTC	TCC	AGC	TCC	AAT	CAT	ACT	'AGC	TAC	TGA	TAC - + -	TTT"	ATC	TTC:+	'T 	20	40
680 204		A	G	R	F	K	E	ຮ່	P	A	P	·I	I	L	A	Т	D	T	L	S	s
GACCAA	_	-																			00
68 700	31 :				-									D						v	Q
210 2157)1	GΤ	'AGG	TAA	AGG															TAT	G
70 719)1	v	G	 К	-+- G		 А					N +		 М		D				M	-

SEQ ID No 10. Nucleotide sequence of slpA from Clostridium difficile

strain 170426, PCR type 92, with translation. The putative 5 secretory signal cleavage site (\square) and site of cleavage to form the two mature SLPs (♦) are indicated. 1 ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTTAACAGTTTTAGCTTCGGCTGCT 10 1 M N K K N I A I A M S G L T V L A S A A 20 61 $\verb|CCTGTTTTTGCTGCAACTACTGGAACACAAGGTTATACTGTAGTTAAAAACGACTGGAAA||$ 15 21 P V F A A T T G T Q G Y T V V K N D W K 40 121 20 AAAGCAGTAAAACAATTACAGGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTA 41 K A V K O L O D G L K D N S I G K I T V 60 181 25 TCTTTTAATGATGGGGTTGTGGGTGAAGTAGCTCCTAAAAGTGCTAATAAGAAAGCGGAC 61 S F N D G V V G E V A P K S A N K K A D 80 241 30 AGAGATGCTGCAGCTGAGAAGTTATATAATCTTGTTAACACTCAATTAGATAAATTAGGT 81 R D A A A E K L Y N L V N T Q L D K L G 100 301 35 101 D G D Y V D F S V D Y N L E K K I I T N 120 40 CAAGCAGATGCAGAAGCAATTGTTACAAAGTTAAATTCACTTAATGAGAAAACTCTTATT 420 121 Q A D A E A I V T K L N S L N E K T L I 140 427 45 GATATAGCAACTAAAGATACTTTTGGAATGGTTAGTAAAACACAAGATAGTGAAGGTAAA 141 DIATKDTFGMVSKTQDSEGK 160 50 AATGTTGCTGCAACAAAGGCACTTAAAGTTAAAGATGTTGCTACATTTGGTTTGAAGTCT 55 161 N V A A T K A L K V K D V A T F G L K S 180

	541 GGTGGAAG	:CGA	AGA	TAC	TGC!	SATA	ATG1	TGT	TGA	LAAI	GAF	AGC	AGG	:AGC	TGT	AGA	.GGA	TAA	rG	60	0	
5	181 200	G	G	s	-+- E	D		G		v					A				E		 K	
	601 TATGGTAA	AGT	TGG	aga	TAC															-	0	
10	201 220	Y	G	K	V			S				I			•			•		G	L	
	661 GAATATGC	'AGG	AAT	AGG	AAC	'AAC	'AA'	TGA	TTT	'TAA	TAA	AAC	'TTI	'AAA	AGT	'TGA	TGT	'AAC	!A	72	720	
15	240	E	Υ	Α	-+- G	K	G	T	Т	I	D	+ F	N	K	T	L	K	V	D	V	т	
	721 GGTGGTTCAACACCTAGTGCTGTAGCTGTAAGTGGTTTTGTAACTAAAGATGATACTGAT														78	780						
20	241 260	G	G	s	T	P		A				•						D	D	T	D	
	781 TTAGCAAAATCAGGTACTATAAATGTAAGAGTTATAAATGCAAAAGAAGAATCAATTGAT														84	840						
25	261 280	L	A	K	S	G	Т	I	N	V	R	V	I	N	A	K	E	E	S	I	D	
	841 ATAGATGCAAGCTCATATACATCAGCTGAAAATTTAGCTAAAAGATATGTATTTGATCCA												900									
30	281 300	I	D	A	-+- S	s	Y	•				•			•			•		D	P	
	901 GATGAAAT	GATGAAATTTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT													960							
35	301 320	D		ī	•			+ Y				•			•			•		E		
		961 AATTTAGTTCAGTTAATGGAAAATATCAAGTGATTTTTTATCCAGAAGGTAAAAGA														10	20					
40	321 340	N	 L	V	-+- Q	 Ь	V	N +	G	K	Y	+ Q	V	I	-+- F	Y	P	+ E	G	K	R	
	1021 TTAGAAACTAAATCAGCAAATGATACAATAGCTAGTCAAGATACACCAGCTAAAGTAGTT																					
45	341 360	L	E		-													•	K		V	
	1081 ATAAAAGC	TAA	TAA	ATT.	AAA	AGA	.TTT	'AAA	AGA'	TTA	TGT	AGA	TGA	${ m TTT}$	AAA	AAC	ATA	TAA	т	1140		
50	361 380							+ K				•			•			•			n	
55	1141 AATACTTA	TTC.	AAA	TGT	TGT	AAC	AGT	AGC	AGG.	AGA	AGA	TAG	AAT	AGA	AAC	TGC	TAT	AGA	A	12	00	

4 * 7

381 N T Y S N V V T V A G E D R I E T A I E 400 1201 TTAAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGCAGTTAAT 1260 5 401 L S S K Y Y N S D D K N A I T D K A V N 420 1261 GATATAGTATTAGTTGGATCTACATCTATAGTTGATGGTCTTGTTGCATCACCATTAGCT 10 421 D I V L V G S T S I V D G L V A S P L A 440 1321 TCAGAAAAACAGCTCCATTATTATTAACTTCAAAAGATAAATTAGATTCATCAGTAAAA 1380 15 441 SEKTAPLLTSKDKLDSSVK 460 1381 TCTGAAATAAAGAGGGTTATGAACTTAAAGAGTGACACTGGTATAAATACTTCTAAAAAA 1440 20 461 SEIKRVMNLKSDTGINTSKK 480 1441 GTTTATTTAGCTGGTGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAAAAC 25 481 V Y L A G G V N S I S K D V E N E L K N 500 1501 ATGGGTCTTAAAGTTACTAGATTATCAGGAGAAGACAGATACGAAACTTCTTTAGCAATA 1560 30 501 M G L K V T R L S G E D R Y E T S L A I 520 1561 GCTGATGAAATAGGTCTTGATAATGATAAAGCATTTGTAGTTGGTGGTACTGGATTAGCA 1620 35 521 A D E I G L D N D K A F V V G G T G L A 540 1621 GATGCTATGAGTATAGCTCCAGTTGCTTCTCAACTTAAAGATGGAGATGCTACTCCAATA 40 541 D A M S I A P V A S Q L K D G D A T P I 560 45 1681 GTAGTTGTAGATGGAAAAGCAAAAGAAATAAGTGATGATGCTAAGAGTTTCTTAGGAACT 1740 561 V V V D G K A K E I S D D A K S F L G T 580 50 1741 TCTGATGTTGATATAAGGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAATA 1800 581 S D V D I I G G K N S V S K E I E E S I 600 55 1801 GATAGTGCAACTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1860

	601	D	S	A	$^{ au}$	G	K	Т	Р	D	R	I	S	G	D	D	R	Q	А	Т	N
	620																				
	1861																				
5	GCTGAAGT'	TTT 	AAA 	AGA	AGA -+-	TGA	TTA.	TTT +	'CAC	AGA	TGG	FTGA	AGT	TGI	'GAA -+-	TTA.	CTT.	TGT +	Ϋ́ 	19 	20
	621	A	E	V	Ŀ	K	E	D	D	Y	F	T	D	G	E	V	V	N	Y	F	V
	640																				
	1921																				
10	GCAAAAGATGGTTCTACTAAAGAAGATCAATTAGTAGATGCCTTAGCAGCAGCACCAATA 1980															80					
	641	 A			-+- G	s	т	+ K	 E	D	0	+ T,		 D	•		 А	4	 А	 Р	 I
	660	~~	10	ע	G	J	_	17		ט	Q	ц	٧	ט	Fi		2.3			-	_
	1981																				
15	GCAGGTAG	יייי ע	מ מידי	CCA	ርጥሮ	ייירכ	'A מכר	ጥርር	ידי מ' מ'	יריםיד	יט מי	ישמכ	יידי	יתים א	יים כי	ئىلىك	ישרכי	ידידיכ	т	20	4 0
10	CHOCIAO																				
	661	Α	G	R	F	K	E	•		Α	P	·I	I		Ā	T	D		L	S	S
	680																				
	2041																				
20	GACCAAAA'	TGT	AGC	TGT	AAG	TAA	AGC.	AGT	TCC	TAA	AGA	TGG	TGG	AAC	TAA	CTT	AGT	TCA	A	21	00
					-+-			~-+				+			-+-			+	-		
	681	D	Q	N	V	А	V	S	K	Α	V	P	K	D	G	G	T	N	L	V	Q
	700																				
	2101	GT	AGG	TAA	AGG	TAT	AGC	TTC	TTC	'AGT	TAT'	'AAA'	CAA	TAA	'GAA	AGA	TTT	TTA'	'AGA	TAT	G
25	2157																				
					-+-			~ -+				+			-+-			+			-
	701	V	G	K	G	I	A	S	S	V	I	N	K	M	K	D	L	L	D	M	
	719																				
30																					