Homework 4: miR regulatory network

<hw4.tsv> is a tab-separated values (tsv) file that contains the predicted targets of human microRNAs (adapted from TargetScan 6.2)

Preview in Excel

miR Family	Gene Symbol
let-7/98/4458/4500	A1CF
let-7/98/4458/4500	AAK1
let-7/98/4458/4500	AASS
let-7/98/4458/4500	ABCB9
let-7/98/4458/4500	ABCC10
let-7/98/4458/4500	ABCC5

<hw4.tsv> has been sorted and uniquified.

<input file>

miR Family	Gene Symbol
miR-A	geneA
miR-A	geneB
miR-A	geneC
miR-A	geneD
miR-B	geneC
miR-B	geneD
miR-C	geneD
miR-C	geneE

A toy example

The network view

Properties

	Out-degree
miR-A	4
miR-B	2
miR-C	2

	In-degree
geneA	1
geneB	1
geneC	2
geneD	3
geneE	1

Family pairs	Number of shared targets
miR-A & miR-B	2
miR-B & miR-C	1
miR-A & miR-C	1

Homework 4: miR regulatory network

- Write a Python program to construct the network
 - Print out the following information:
 - The name of the miR family that has the max out-degree
 - The number of the max out-degree
 - Average out-degree of all miR families (round to 2 decimal point)
 - The symbol of the gene that has the max in-degree
 - The number of the max in-degree
 - Average in-degree of all genes (round to 2 decimal point)
 - The names of the 2 distinct miR families that have most shared targets
 - The number of the most shared targets

```
let-7/98
876
54.32
TP53
21
3.54
miR-123 miR-456
101
```


- You may use dicts and sets to implement the network.
- When output, use single space to separate strings.

Homework 4: Hints

- File reading
 - 參考作業三或是本次上課內容
- 建立出網路的資料結構
 - 在紙上先畫畫圖可能有幫助
- 在 dictionary 中找出最大值以及擁有最大值的 key(s)
 - 有最大值的 key(s) 不一定只有一個
 - 有多種解法,例如 sorting, 或是先找出最大值再回頭找 key(s)
- 計算 in-degrees for target genes 其實只是反過來
 - 同樣地,改變資料結構或許是個好方法
 - From top-down view to bottom-up view
- What are shared targets?
 - 指的就是兩個 miR families 各自標的基因群的重覆部份
- 本次作業理論上僅憑課堂上教過的基本語法與資料結構便可完成。 有興趣的同學,亦可參考使用其他容器或迭代法:
 - http://docs.python.org/library/collections.html
 - http://docs.python.org/library/itertools.html

More hints for homework 4

- ■將任何容器傳入 len 函數中,會 得到目前該容器中元素的個數
- 如何創造出空的容器:
 - [] or **list(**) 可以得到空的 list
 - **set()** 可以得到空的 set
 - {} or **dict()** 可以得到空的 dict
- 如何創造只含一個元素的容器: e.g., 以下容器都會只含有1這個數字
 - [1] 可以得到只包含 1 的 list, 等同 list((1,)) 或
 - (1,) 可以得到只包含 1 的 tuple, 等同 tuple([1]) 或 tuple((1,))
 - {1} 可以得到只包含 1 的 set, 等同 set([1])或 set((1,))
 - {1: None} 可以得到只包含 (1, None) 的 dict, 等同 dict([(1, None)])

```
>>> a = [4, 5, 6]
>>> len(a)
3
>>> b = set([7, 8, 9])
>>> len(b)
3
>>> c = {'x': 1, 'y': 2, 'z': 3}
>>> len(c)
3
```

Traps!

Preview in Excel

miR Family	Gene Symbol
let-7/98	A2BP1
let-7/98	AAK1
let-7/98	ABCB9
let-7/98	ABCC5
let-7/98	ABL2
let-7/98	ACSL6
let-7/98	ACTR10
let-7/98	ACVR1B
let-7/98	ACVR1C

```
>>> D = {}
>>> D['let-7/98'] = 'A2BP1'
>>> D
{'let-7/98': 'A2BP1'}
>>> D['let-7/98'] = 'AAK1'
>>> D
{'let-7/98': 'AAK1'}
```


字典裡的值不一定只能用數字或字串, 也可以是某**容器(Collection)**

Bonus

- From our site, download
 <Predicted_Targets_Info.txt.zip>*
 - Unzip the file to get the text file <Predicted_Targets_Info.txt>
 - Change your file source from <hw4.tsv> to this file
- Do the processes in homework 4
 - This time you have to parse the table on your own
- Let users decide the species
 - Users will enter a Tax ID (e.g., Tax ID for human, mouse, and rat: 9606, 10090, and 10116)
 - Print out the network information of that species

