

Infrastrukturstrategien für nachhaltige Forschungssoftware in befristeten Projekten

Stephan Druskat¹, Thomas Krause², Anke Lüdeling², Volker Gast¹

¹Friedrich-Schiller-Universität Jena, ²Humboldt-Universität zu Berlin

Entwickler*innen/Projekt

Problem

Forschungssoftware: häufig entwickelt von Einzelpersonen oder Kleinstteams, in befristeten Projekten, ohne Software-Engineering-Expertise, optimiert für Projektabschluss und Features, nicht für Nachhaltigkeit.

Nachhaltigkeit von Forschungssoftware

- Verwendbarkeit durch Dritte (oder Zweite)
- Wartbarkeit
- Reproduzierbarkeit von Forschungsergebnissen
- etc.

Warum?

Tote Software \rightarrow keine Uberprüfbarkeit von Forschungsergebnissen \rightarrow Invalidierung von Forschungsergebnissen \rightarrow Zunichtemachen von Forschungsaktivitäten.

Wo liegt Wissen über Software und Projektorganisation? Wie kann man Nachhaltigkeit kostenoptimiert erreichen?

Anzahl Projekte

Unsere Domäne: Projekte, deren Busfaktor gegen 1 tendiert.

 $\textbf{L\"osungsansatz:} \ \ technisches \ \ Nachhaltigkeitspotential + Dokumentation + \\ offene \ Infrastrukturen + Maintenance-Strategie$

technische Nachhaltigkeit

- Prinzipien des Software Engineering
- -Verständnis, Planung, Ausführung, Prüfung
- Architekturdesign
- Erweiterbarkeit, Generizität
- Codequalität
- "Data-driven" Technologieentscheidungen

Dokumentation

- "Document all the things!"
- Metadokumentation
- Dokumentation von Entscheidungen
- Dokumentation von Infrastruktur
- Nachhaltiges Tooling
- Code und Dokumentation zusammen vorhalten

offene Infrastrukturen

- Vorbild: erfolgreiche Open Source-Projekte
- kostenlose "Communitystandards" nutzen
- -Entwicklungsplattformen (VCS, CI, etc.)
- Repositorien für Buildartefakte
- Repositorien für Dependency-Artefakte
- generische Austausch-/Konfigurationsformate

Schlüsselrolle: Maintainer

Ziel: Maintenance ermöglichen = Nachhaltigkeit ermöglichen

Gewährleistet Umsetzung und funktionierendes Zusammenspiel von technischer Nachhaltigkeit, Dokumentation und offenen Infrastrukturen. Sichert und stellt Wissen über Software und Projektorganisation bereit. Sichert Funktionsfähigkeit des Softwareprojekts & der Software. Ermöglicht jederzeitige Weiterführung/Wiederaufnahme des Projekts für, z.B., funktionale Erweiterungen (Voraussetzung: Finanzierung).

Fallstudie: Hexatomic

Projekt

A minimal infrastructure for the sustainable provision of extensible multi-layer annotation software for linguistic corpora, https://hexatomic.github.io Gefördert durch die Deutsche Forschungsgemeinschaft (LU 856/11-1 + GA 1288/11-1) unter "Nachhaltigkeit von Forschungssoftware".

Ziel: Zusammenführung zweier Prototypen für Annotationssoftware für linguistische Mehrebenenkorpora – Entwicklung, Bereitstellung, Pflege – unter Erprobung minimaler Infrastruktur.

initiale, austauschbare Infrastrukturkomponenten:

- Entwicklungsplattform: GitHub
- -Host für: Sourcecode, Dokumentation(en), Landing Page; Anbindung an CI; Anbindung an Zenodo; Quelle für Software Heritage
- Repositorium für Buildartefakte: Zenodo & Maven Central
- -Langfristige Bereitstellung, eindeutige und versionierte Identifikation, Software Citation, Nachnutzbarkeit (Maven)
- Repositorium für Dependency-Artefakte: Maven Central, Eclipse P2
- Langlebig, eingebunden in Build-Infrastruktur, unabhängig finanziert
- Maintainer: dreistufige Erprobung von Maintainerwechseln
- 1. Wechsel von Projektentwickler zu Projektentwickler
- 2. Wechsel von Projektentwickler zu wisenschaftlicher Hilfskraft (team-intern)
- 3. Wechsel von wissenschaftlicher Hilfskraft (team-intern) zu externer wissenschaftlicher Hilfskraft (Michael Stifel Zentrum Jena)

