

Motivation

NMP needs what 5G can provide

- NMP: Network Music Performance
- Ultra-low latency
 - NMP requires 30-40ms one way
- Very high bandwidth
 - Especially with volumetric video
- Processing at the edge
 - To relay or process media streams

Is NMP with PC streaming feasible with 5G?

- Designed our own tool
 - Captures video from depth camera
 - Compresses PC with Draco
 - Frames and transmits the video
 - Renders with OpenGL
- Evaluated in 5G-SA testbed
 - Focus on latency reduction
 - Multithreading
 - Color drop
 - Resolution drop

Design & Implementation

Network setup

- SPIRIT Berlin 5G-SA testbed
 - Band N78, indoor area
 - 20.1 MBps throughput
 - 12.2 ms latency
- Endpoints
 - ASUS TUF A15 Ryzen 9 Ubuntu 24.04
 - Teltonika RUTX50 5G modems
 - Private IP network

Software setup: overview

Software setup: details

- Producer and consumer in C++
 - Network and processing threads
 - Producer can add more processing threads
 - Consumer does not seem to need it
 - FPS depends on overall latency
- Simple framing protocol
 - 1400 byte UDP packets
 - 4 bytes frame ID
 - 4 bytes chunk ID
 - Pacing to prevent drops

Performance metrics

- Processing latency (ms)
- Compression latency (ms)
- PC size (Bytes)
- Transmission latency (ms)
- End-to-end latency (ms)
- Reliability (%)
- Deployability limits
 - Processing latency < 33 ms
 - Bitrate < 20 MBps
 - End-to-end latency < 100 ms

Results

Compression level

EUROXR Winterthur 202

- Levels 4 to 8 are the most interesting
- Compression latency dominates overall latency is very large

Drop color

- Very big difference in processing and frame size
- Color compression is not very efficient in Draco

Drop 25% of points

- Very effective in reducing frame size, but not latency
- Linear reduction if we drop 50% of points

Two compression threads

- Linear reduction in processing latency
- Compression efficiency reduced

Two threads and 50% fewer points

- Can actually reach 30 fps @ 20 MBps
- Latency around a bit more than 100 ms

Frame delay for last scenario

- At least 80 ms of latency
- High variance, around 40 ms
- Too close to channel capacity!

Conclusions & Future Work

What's next?

- TENeMP project has concluded
 - PC streaming close to feasible
 - But quality needs to be sacrificed
 - More (and better) tricks are possible
- AViD-NMP project has started
 - Adds SFU/MCU for multiparty sessions
 - Compose a new scene
 - Reduce quality as needed
 - Render PC to 3D video
 - Project PC to 3D image
 - Exploit video compression

Thanks! xgeorge@aueb.gr

