UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS 1120 Elektromagnetisme

Eksamensdag: 7. oktober 2013 Tid for eksamen: 10:00 – 13:00 Oppgavesettet er på 2 sider

Vedlegg: Liste med likninger (3 sider)

Tillatte hjelpemidler: Angell/Øgrim og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Elektronisk kalkulator av godkjent type

Kontroller at denne kopi av oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

I en kule med radius R er ladningsmengden Q fordelt uniformt gjennom volumet. Vi legger et koordinatsystem med origo i kulens sentrum.

- a) Skriv opp Gauss' lov og definer alle symbolene som inngår.
- **b)** Finn et uttrykk for det elektriske feltet i en avstand 2R fra origo.
- c) Hvor inne i kulen er feltet like stort som det du fant i b)?

Oppgave 2

I den klassiske modellen for hydrogen atomet beveger et elektron seg som en punktpartikkel i sirkulær bane rundt atomkjernen. Banen har radius $r = 5.3 \cdot 10^{-11}$ m.

- a) Beregn den elektrostatiske kraften på elektronet, og vis at banefarten er $2.2 \cdot 10^6$ m/s.
- **b**) Betrakt elektronbevegelsen som en elektrisk strøm. Finn strømmen.
- **c**) Definer vektorstørrelsen; magnetisk dipolmoment, og beregn det magnetiske momentet til elektronet i bevegelse.
- **d**) Finn energien til dipolen når den er innrettet parallelt med et magnetfelt på 1 T. Hva er energien dersom dipolmomentet peker normalt på feltet?

Oppgave 3

- **a)** Lag en tegning som illustrerer E-feltet rundt en elektrisk dipol. Hva er en ekvipotensialflate? Inkluder i samme tegningen også hvordan ekvipotensialflatene tar form nær dipolen.
- **b**) La en ladet partikkel være plassert i en avstand fra en plan metalloverflate. Lag figur, og tegn bilde av E-feltet og ekvipotensialflatene i rommet.

Oppgave 4

To parallelle kondensatorplater har motsatte og like store ladninger, og i tomrommet mellom platene er det elektriske feltet $E=3.2\cdot 10^5~V/m$.

a) Finn ladningstettheten på overflaten av hver plate.

To kondensatorer er koplet i parallell. De har kapasitanser 35 nF og 75 nF, og spenningsforskjellen mellom koplingspunktene er 220 V.

b) Hvor stor ladning er det på hver kondensator plate? Finn også hvor stor total energi som er lagret i kondensatorene.

Oppgave 5

Figuren viser skjema for en krets der den ukjente resistansen, *R*, skal bestemmes ut fra at alle resistansene skal avgi en varme-effekt (dissipasjon) på i alt 2.7 W. Batteriet har en ems på 9 V, og en neglisjerbar indre resistans.

