TOR I – Discrete structures

- Problem Set 7 -

- 1. Find $\mathcal{P}(A)$, where $A = \{a, b, c, d\}$.
- 2. Let $A = \{\{1, 2, 3\}, \{4, 5\}, \{6, 7, 8\}\}.$
 - (i) Write down the elements of A.
 - (ii) Is it true?
 - (a) $1 \in A$ (b) $\{1, 2, 3\} \subseteq A$ (c) $\{6, 7, 8\} \in A$ (d) $\{\{4, 5\}\} \subseteq A$
 - (e) $\emptyset \in A$ (f) $\emptyset \subseteq A$
- 3. Show that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- 4. Let A, B in C be arbitrary subsets of the universal set $U = A \cup B \cup C$. Show the following propositions:
 - (a) $A \setminus B \subseteq \overline{B}$.
 - (b) $(A \setminus B) \cap B = \emptyset$.
 - (c) $A \cap B \subseteq C \Leftrightarrow A \subseteq \overline{B} \cup C$.
 - (d) $(A \setminus B) \cup B = A \Leftrightarrow B \subseteq A$.
 - (e) If $B \subseteq A$, then $B \times B = (B \times A) \cap (A \times B)$.
 - (f) Let A be a nonempty set. Which of the following sets

$$\emptyset, \{\emptyset\}, A, \{A\}, \{A,\emptyset\}$$

are elements and which are subsets of (i) $\mathcal{P}(A)$ and (ii) $\mathcal{P}(\mathcal{P}(A))$?

(g) Is it true that $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$?