Gibbs Equation

1 Overview

Recall the second law for CM, we can relate entropy changes to heat transfer and irreversibility:

$$dS = \frac{\delta Q}{T} + \delta P_s \tag{1}$$

But entropy is a TD property, we want to relate S changes to changes in other TD properties. Therefore, we need to find a generally applicable state equation.

2 Gibbs Equation

2.1 Derivation

Recall the first law:

$$de = \delta q + \delta w \tag{2}$$

If we only consider internal energy, and the only reversible work mode is compression/expansion:

$$du = \delta q - pdv \tag{3}$$

If we assume the process is reversible, based on second law:

$$ds = \delta q/T \tag{4}$$

Plug back in, we get:

$$du = Tds - pdv (5)$$

Solve ds, we get the **Gibbs Equation**:

$$ds = \frac{du}{T} + \frac{p}{T}dv \tag{6}$$

Recall the definition of enthalpy:

$$dh = du + pdv + vdp (7)$$

We get another version of Gibbs Equation:

$$ds = \frac{dh}{T} - \frac{v}{T}dp \tag{8}$$

2.2 State Equations

During the derivation, we assume reversible process with only compression/expansion work. However, these expressions are valid not only under these conditions, but generally applicable, since they only involve state properties, they are state equations.

2.3 For Ideal Gases

Start from original Gibbs Equation:

$$ds = \frac{du}{T} + \frac{p}{T}dv \tag{9}$$

Recall that:

$$du = c_v dT (10)$$

$$pv = RT \tag{11}$$

So we have:

$$ds = \frac{c_v dT}{T} + \frac{R}{v} dv \tag{12}$$

If we integrate this:

$$\int_{s_1}^{s_2} ds = \int_{T_1}^{T_2} \frac{c_v dT}{T} + \int_{v_1}^{v_2} \frac{R}{v} dv \tag{13}$$

$$s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_v dT}{T} + R \int_{v_1}^{v_2} \frac{dv}{v}$$
 (14)

Finally we have:

$$s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_v dT}{T} + R l n \frac{v_2}{v_1}$$
 (15)

Or:

$$s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_v dT}{T} - R l n \frac{\rho_2}{\rho_1}$$
 (16)

Similarly, we can use enthalpy version:

$$ds = \frac{dh}{T} - \frac{v}{T}dp = \frac{c_p dT}{T} - \frac{R}{p}dp \tag{17}$$

Integrate:

$$\int_{s_1}^{s_2} ds = \int_{T_1}^{T_2} \frac{c_p dT}{T} - R \int_{p_1}^{p_2} \frac{dp}{p}$$
 (18)

$$s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_p dT}{T} - R l n \frac{p_2}{p_1}$$
 (19)

Notice that the dependencies of entropy respect to T, p and ρ are separate.

2.4 For Carlorically Perfect Gas

Under CPG assumption, specific heat is constant. Therefore, we have:

$$s_2 - s_1 = c_v ln \frac{T_2}{T_1} + R ln \frac{v_2}{v_1}$$
 (20)

$$s_2 - s_1 = c_v ln \frac{T_2}{T_1} - R ln \frac{\rho_2}{\rho_1}$$
 (21)

$$s_2 - s_1 = c_p ln \frac{T_2}{T_1} - R ln \frac{p_2}{p_1}$$
 (22)

Normalization:

$$\frac{\Delta s_{12}}{R} = \frac{c_p}{R} ln \frac{T_2}{T_1} - ln \frac{p_2}{p_1} = ln (\frac{T_2}{T_1})^{c_p/R} - ln \frac{p_2}{p_1}$$
 (23)

Recall that:

$$\frac{c_p}{R} = \frac{\gamma}{\gamma - 1} \tag{24}$$

$$\frac{c_v}{R} = \frac{1}{\gamma - 1} \tag{25}$$

Therefore:

$$\frac{\Delta s_{12}}{R} = \ln(\frac{T_2}{T_1})^{\frac{\gamma}{\gamma-1}} - \ln\frac{p_2}{p_1} = \ln(\frac{T_2}{T_1})^{\frac{1}{\gamma-1}} - \ln\frac{\rho_2}{\rho_1}$$
 (26)

3 Isentropic Relations

3.1 TPG

At first, we assume TPG, which means specific heat is a function of temperature. For simplification, we define:

$$s_1^o = \int_{T_{ref}}^{T_1} \frac{c_p dT}{T}$$
 (27)

$$s_2^o = \int_{T_{ref}}^{T_2} \frac{c_p dT}{T}$$
 (28)

$$\Delta s_{12}^o(T) = s_2^o - s_1^o \tag{29}$$

For isentropic process, $\Delta s = 0$. Therefore:

$$0 = \int_{T_1}^{T_2} \frac{c_p dT}{T} - R l n \frac{p_2}{p_1} \tag{30}$$

$$ln\frac{p_2}{p_1} = \frac{1}{R} \int_{T_1}^{T_2} \frac{c_p dT}{T}$$
 (31)

Finally we have:

$$\frac{p_2}{p_1} = e^{\frac{1}{R} \int_{T_1}^{T_2} \frac{c_p dT}{T}} = e^{\frac{\Delta s_{12}^o(T)}{R}}$$
(32)

In terms of specific volume, recall that:

$$\frac{v_1}{v_2} = \frac{T_1/p_1}{T_2/p_2} = \frac{T_1}{T_2} \frac{p_2}{p_1} \tag{33}$$

Therefore:

$$\frac{v_1}{v_2} = \frac{\rho_2}{\rho_1} = \frac{T_1}{T_2} e^{\frac{\Delta s_{12}^o(T)}{R}} \tag{34}$$

3.2 CPG

Now, the specific heat is a constant, then:

$$0 = c_p ln \frac{T_2}{T_1} - R ln \frac{p_2}{p_1} \tag{35}$$

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{c_p}{R}} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \tag{36}$$

$$0 = c_v ln \frac{T_2}{T_1} - R ln \frac{\rho_2}{\rho_1} \tag{37}$$

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{c_v}{R}} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma - 1}} \tag{38}$$

Therefore we have the power law of isentropic process:

$$\frac{\rho_2}{\rho_1} = (\frac{p_2}{p_1})^{\frac{1}{\gamma}} \tag{39}$$

$$\frac{p}{\rho^{\gamma}} = pv^{\gamma} = const \tag{40}$$

3.3 Polytropic Process

We define the general form as polytropic process:

$$pv^n = constant (41)$$

Then we have the following conditions:

1. n = 0: Isobaric

2. n = 1: Isothermal

3. $n = \gamma$: Isentropic

4. $n = \infty$: Isochoric