Reasoning about Neural Network Learning

Caleb Kisby, Saúl Blanco, and Lawrence Moss

Luddy School of Informatics, Computing, and Engineering

Neural Network

 $A \cup B$

 $A \supseteq B$

a (fuzzy) set of neurons

the set of neurons reachable from A

Reasoning about Static Nets

Monotonicity Axioms

know (A \rightarrow B) \rightarrow (know A \rightarrow know B) (typ A1 \rightarrow A2) ... (typ An \rightarrow A1) \rightarrow $(\texttt{typ}\ \texttt{Ai}\ \leftrightarrow\ \texttt{Aj})$

Basic Modal Axioms

 $\mathtt{know} \ \mathtt{A} \ \longrightarrow \ \mathtt{A}$

 $\mathtt{know} \ \mathtt{A} \ o \ \mathtt{know} \ \mathtt{know} \ \mathtt{A}$

 $\texttt{typ} \ \mathtt{A} \ \to \ \mathtt{A}$

 $\texttt{typ} \ \texttt{A} \ \to \ \texttt{typ} \ \texttt{typ} \ \texttt{A}$

know A \rightarrow typ A

Syntax

A and B

 $A \rightarrow B$ know A

typ A $A \Rightarrow B$

[hebb A] B

Classical Meaning

proposition A and B

A implies B

the agent knows A typically A

Reasoning about Learning

Induction Axioms

[hebb* A] B \rightarrow B and [hebb A] [hebb* A] B [hebb* A] (B \rightarrow [hebb A] B) \rightarrow [hebb* A] B

What The Net Learns

[hebb* A] typ B \leftrightarrow

typ [hebb* A] B

if typ A or typ B is \emptyset

typ [hebb* A] B and (typ A or know B)

otherwise

Model Checking [hebb* A] B

Task: Does the net satisfy P?

 $\mathcal{N} \vDash \mathtt{typ} \ \mathtt{penguin} \to \mathtt{flies}, \ \mathtt{but}$ $\mathcal{N} \not\models [\text{hebb orca}] [\text{hebb zebra}] [\text{hebb panda}]$ $\texttt{typ penguin} \to \texttt{flies}$

>>> print(model.is_model("typ penguin ->> flies")) True

>>> print(model.is_model("[hebb orca] [hebb zebra] [hebb panda] \ $\texttt{typ penguin} \to \texttt{flies))}$

False

the set of neurons activated by A on input A the net predicts B $\texttt{typ} \ \mathtt{A} \to \mathtt{B}$ incremental pref upgrade on A learn A (Hebbian) preference upgrade on A repeatedly learn A (Hebbian) penguin \rightarrow bird Knowledge bird \Rightarrow flies Engineering

github.com/ais-climber/neural-semantics

Model Building

Task: Build a net that satisfies P.

Goal. (Binary, feedforward) nets are equivalent to a certain class of classical modal frames.

COROLLARY. Given a knowledge base Γ , we can construct a net \mathcal{N} such that $\mathcal{N} \models \Gamma$

COROLLARY. The axioms for reasoning about know, typ, and [hebb* A] are complete.

Work in Progress

- Use Lean to verify model checking code
- Finish proof for model building
- Extend system to reason about fuzzy sets
- Extend with [backprop A] (backpropagation)

Acknowledgments: This work was funded by the US Department of Defense (Contract W52P1J2093009). Thank you for your support!