

Capstone Project

Team 5: Mobile Price Range Prediction

Content

- Problem statement
- Data summary
- **❖ EDA**
- Modelling
- Metrics
- Challenges
- Conclusions

Problem Statement

The problem statement is to predict the price range of mobile phones based on the features available (price range indicating how high the price is). Here is the description of target classes:

- 0 Low cost Phones
- 1 Medium cost phones
- 2 High cost phones
- 3 Very High cost phones

This will basically help companies to estimate price of mobiles to give tough competition to other mobile manufacturer.

Also, it will be useful for consumers to verify that they are paying best price for a mobile.

Data Summary

- We have records of 2000 mobile phones with 20 columns/features.
- We have perfectly balanced dataset with 500 observations for each class.
- Each column represents the feature of the mobile.
- Interestingly, we had zero null values.

Data Overview

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera megapixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone
- N_cores Number of cores of processor
- Pc Primary Camera megapixels
- Px_height Pixel Resolution Height
- Px width Pixel Resolution Width
- Ram Random Access Memory in MegaBytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last
- Three_g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of 0(low cost), 1(medium cost), 2(high cost) and 3(very high cost).

Handling Discrepancies

In the data we observed that in 9% of rows the value for columns 'sc_w' (screen width) is 0, which is not possible in real life.

As we can see in the plot, for each value of 'sc_h' there are multiple values of 'sc_w', so to handle zero values, we replaced them with mean of all available values 'sc_w' for all values of 'sc_h'.

Handling Discrepancies

There are also discrepancies in 'Px_height' column.

To handle those discrepancies we replaced those values by using linear regression.

Feature Engineering

- Generally the screen size of the phone is expressed in Inches.
- We have columns 'sc_h' and 'sc_w' out of which we have created a new feature 'Screen_size' which is diagonal length of the screen.

Feature Engineering

Grand Total	477	Grand Tot	al 480					
Very High	115	Very High	110					
High	113	High	140					
Medium	122	Medium	116					
Low	127	Low	114		Grand Tota	ıl		
Price Category	▼ Count	Price Cate	gory 🔽 Count		Price Categ	gory 🔽 Cou	ın	
Neither 30	G Nor 4G	30	3G but not 4G			4G but not 3G		
4G	0	₊T 4G	0	.T	4G	1		
3G	0	. ▼ 3G	1	.T	3G	0		

T.	3G	1	→II					
T.	4G	1	T.					
	Both 3G and 4G							
	Price Category	Count						
	Low	259						
	Medium	262						
	High	247						
	Very High	275						
	Grand Total	1043						

- We observed that if a phone supports 4G, it by default has 3G as well. So we don't really need two columns for this.
- We created a single column 'network' by the addition of 3G and 4G. Where:
- 0 2G, 1 3G, 2 4G.

Categorical Analysis

Collinearity

1.0

- 0.8

- 0.2

0.0

Outlier Analysis in continuous features

There were few outliers in 'pixels' column, so to handle outliers we replaced the values of 'Pixels' column with the square root.

Predictive Modelling

Hyperparameter Tuning - Grid Search - Cross Validation

We compared 6 classifiers and evaluated them based on overall accuracy & class based accuracy as well.

- Decision Trees
- Random Forest
- Ada Boost
- Gradient Boosting
- XGBoost
- Logistic Regression

Comparison of Models

CLASS BASED ACCURACY FOR EACH MODEL

Comparison of Models

XG Boost is the best performing model on the given dataset

Feature Importance

Feature Importance Contd..

Feature Importance Contd..

- RAM and battery power are two most important features for the models.
- RAM and
 Battery power
 show the most
 variation along
 the different
 price ranges.

Feature Importance Contd..

- Apart from selected important features any feature doesn't show variation along the different price ranges.
- Here is example of front camera and bluetooth.

Challenges

- We performed "Hypothesis driven EDA" based on domain, but unluckily most of our hypothesis got rejected by our data.
- Most of the models are not able to get good accuracy for each class of target variable.
- We hit a ceiling at 94% accuracy using a single model.

Conclusion

- Gradient Boost, Random forest and ADABoost Models are also giving us good overall accuracy but they didn't perform well on Individual classes.
- Out of all the model we have tried XG Boost is performing well on Overall as well as Individual classes.
- Ram, Battery power, Mobile weight, Screen size and pixels are key features in predicting the mobile price range.
- Most of the mis-classifications were encountered between Medium range phones and high range phones. To counter that we can train a specific model for these two classes and can reclassify the cases when base model predicts the result as Medium range or High range.

THANK YOU

Q & A