Production Line Performance

Qianying Diao Xinrong Chen Shirley Zhang Jiaru Xu

Agenda

- □ Introduction
- ☐ Feature Selection and Engineering
- Modeling and Evaluation
- ☐ Further Improvement

Data Source

- Kaggle competition: https://www.kaggle.com/c/bosch-production-line-performance/overview
- Predict <u>internal failures</u> using thousands of measurements and tests made for each component along the assembly line
- Features represent measurements of parts as moving through production lines
- <u>Target</u> is to predict which parts (ID) will fail quality control
- An extremely large number of <u>anonymized</u> features with information of production line, station, and feature number
- Features separated into 3 files: numerical, categorical, and date

Target and Tools

- <u>Target</u>: predict which parts (ID) will fail quality control
- Tools we use:
 - Loading Data with Amazon S3 bucket
 - Exploratory Analysis: Spark SQL, Spark Dataframe
 - Feature Selection and Engineering: **Spark** SQL, **Spark** Dataframe, UDF in Pandas, visualization with matplotlib
 - O Modeling: **Spark** ML (Logistic Regression, Random Forest, Gradient Boosted Tree), XGBoost

Biggest Challenges

• **4,265** features in the dataset

Extremely imbalanced data

```
In [12]: cat.printSchema()
      root
        -- Id: integer (nullable = true)
        -- LO S1 F25: string (nullable = true)
        -- LO S1 F27: string (nullable = true)
        -- LO S1 F29: string (nullable = true)
        -- LO S1 F31: string (nullable = true)
        -- LO S2 F33: string (nullable = true)
        -- LO S2 F35: string (nullable = true)
        -- LO S2 F37: string (nullable = true)
        -- LO S2 F39: string (nullable = true)
        -- LO S2 F41: string (nullable = true)
        -- LO S2 F43: string (nullable = true)
        -- LO S2 F45: string (nullable = true)
        -- LO S2 F47: string (nullable = true)
        -- LO S2 F49: string (nullable = true)
        -- LO S2 F51: string (nullable = true)
        -- LO S2 F53: string (nullable = true)
        -- LO S2 F55: string (nullable = true)
        -- L0 S2 F57: string (nullable = true)
```

• The number of rows in cat: 1,183,747

• The number of columns in cat: 2,141

0.58%

V.S

Success Rate=99.42%

Failure rate at different stations

Top 1: S32

Top 2: S38

Top 3: S26

Imbalanced Response

Data Preparation:Oversampling (SMOTE)

Model Evaluation:
Matthews correlation coefficient (MCC)

$$ext{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Feature Selection --- XGBoost

Feature Engineering

Failure rate differs based on stations **Numeric Features** Generate Features for each station Type of features has most NaN Categorical Features (Only two have missing values less than 900k.) Pick columns with largest variance A lot of duplicate columns for each station **Date Features** (Prob. for station to have the same values: 0.98) Observations are unique for station Id pair

Modeling & Evaluation

Model	MCC Score
Random Forest	0
Logistic Regression	0.019
Gradient Boosted Tree	0.097
XGBoost	0.15

Further Improvement

- Alternative methods to deal with imbalanced, sparse data
- Hyperparameters tuning

Thank you

Q & A