KMEANS

UNSUPERVISED MACHINE LEARING ALGORITHM

Import Modules

```
import pandas as pd
import numpy as np
import seaborn as sns
import warnings
%matplotlib inline
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')
from mpl toolkits.mplot3d import Axes3D
from sklearn.metrics import silhouette_score, calinski_harabasz_score
```

Load the Dataset

```
df = pd.read_csv('Mall_Customers.csv')
df.head()
```

Out[2]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

```
# statistical info
df.describe()
```

]:	CustomerID		Age	Annual Income (k\$)	Spending Score (1-100)	
	count	200.000000	200.000000	200.000000	200.000000	
	mean	100.500000	38.850000	60.560000	50.200000	
	std	57.879185	13.969007	26.264721	25.823522	
	min	1.000000	18.000000	15.000000	1.000000	
	25%	50.750000	28.750000	41.500000	34.750000	
	50%	100.500000	36.000000	61.500000	50.000000	
	75%	150.250000	49.000000	78.000000	73.000000	
	max	200.000000	70.000000	137.000000	99.000000	

```
In [4]:  # datatype info
        df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
                                    Non-Null Count Dtype
 # Column
 0
     CustomerID
                                    200 non-null
      Gender
                                    200 non-null
                                                         object
     Age
                                    200 non-null
                                                         int64
3 Annual Income (k$) 200 non-null
4 Spending Score (1-100) 200 non-null
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
                                                         int64
                                                         int64
```

Exploratory Data Analysis

```
sns.distplot(df['Age'])
```

Out[5]: <Axes: xlabel='Age', ylabel='Density'>


```
In [6]: sns.distplot(df['Annual Income (k$)'])
```

Out[6]: <Axes: xlabel='Annual Income (k\$)', ylabel='Density'>


```
In [7]: sns.distplot(df['Spending Score (1-100)'])
```

Out[7]: <Axes: xlabel='Spending Score (1-100)', ylabel='Density'>

Correlation Matrix

sns.heatmap(corr, annot=True, cmap='plasma')

Out[8]: <Axes: >

Clustering

In [9]: df.head()

Out[9]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

```
In [10]: # cluster on 2 features
    df1 = df[['Annual Income (k$)', 'Spending Score (1-100)']]
    df1.head()
```

ut[10]:		Annual Income (k\$)	Spending Score (1-100)
	0	15	39
	1	15	81
	2	16	6
	3	16	77
	4	17	40

```
In [11]: sns.scatterplot(x=df1['Annual Income (k$)'], y=df1['Spending Score (1-100)'])
```



```
from sklearn.cluster import KMeans
wcss= []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i)
    kmeans.fit(df1)
    wcss.append(kmeans.inertia_)
```

```
In [13]:  # plot the results for elbow method
  plt.figure(figsize=(13,6))
  plt.plot(range(1,11), wcss)
  plt.plot(range(1,11), wcss, linewidth=3, color='red', marker='*')
  plt.xlabel('No. of clusters')
  plt.ylabel('WCSS')
  plt.xticks(np.arange(1,11,1))
  plt.show()
```


Out[15]:	Annual Income (k\$)	Spending Score (1-100)	Label
0	15	39	0
1	15	81	4
2	16	6	0
3	16	77	4
4	17	40	0

```
Out[16]: <Axes: xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
```


cluster on 3 features

```
Annual Income (k$) Spending Score (1-100) Age
0
                 15
                                             19
                                        39
1
                 15
                                       81
                                             21
2
                 16
                                        6
                                             20
3
                 16
                                       77
                                             23
                  17
                                        40
                                             31
```

```
In [18]: wcss = []
    for i in range(1, 11):
        kmeans = KMeans(n_clusters=i)
        kmeans.fit(df2)
        wcss.append(kmeans.inertia_)
```

```
In [23]:  # plot the results for elbow method
    plt.figure(figsize=(13,6))
    plt.plot(range(1,11), wcss)
    plt.plot(range(1,11), wcss, linewidth=3, color='red', marker='*')
    plt.xlabel('No. of clusters')
    plt.ylabel('WCSS')
    plt.xticks(np.arange(1,11,1))
    plt.show()
```



```
In [20]: km = KMeans(n_clusters=5)
km.fit(df2)
y = km.predict(df2)
df2['Label'] = y
df2.head()
```

	Annual Income (k\$)	Spending Score (1-100)	Age	Label
0	15	39	19	4
1	15	81	21	0
2	16	6	20	4
3	16	77	23	0
4	17	40	31	4

```
In [21]: # 3d scatter plot
    fig = plt.figure(figsize=(20,15))
    ax = fig.add_subplot(111, projection='3d')

ax.scatter(df2['Age'][df2['Label']==0], df2['Annual Income (k$)'][df2['Label']==0], df2['Spending Score (1-100)'][df2['Label']==0], c='red', s=
    ax.scatter(df2['Age'][df2['Label']==1], df2['Annual Income (k$)'][df2['Label']==1], df2['Spending Score (1-100)'][df2['Label']==1], c='green',
    ax.scatter(df2['Age'][df2['Label']==2], df2['Annual Income (k$)'][df2['Label']==2], df2['Spending Score (1-100)'][df2['Label']==2], c='brown',
    ax.scatter(df2['Age'][df2['Label']==3], df2['Annual Income (k$)'][df2['Label']==3], df2['Spending Score (1-100)'][df2['Label']==3], c='brown',
    ax.scatter(df2['Age'][df2['Label']==4], df2['Annual Income (k$)'][df2['Label']==4], df2['Spending Score (1-100)'][df2['Label']==4], c='orange',
    ax.view_init(30, 190)
    ax.set_xlabel('Age')
    ax.set_xlabel('Age')
    ax.set_ylabel('Annual Income')
    ax.set_zlabel('Spending Score')
    plt.show()
```

