

Beschreibung**Vorrichtung und Verfahren zum Schutz einer elektrischen Maschine**

5

Die vorliegende Erfindung betrifft eine Schutzvorrichtung für eine elektrische Maschine gegen Stromüberlastung. Darüber hinaus betrifft die vorliegende Erfindung ein entsprechendes Verfahren zum Schutz einer elektrischen Maschine.

10

Elektrische Maschinen, insbesondere Motoren, können zeitweise mit einem Strom betrieben werden, dessen Stärke oberhalb der Nenn- beziehungsweise Dauerstromstärke liegt. Der Grund hierfür ist, dass die Überhitzung der elektrischen Maschine erst nach einer gewissen Zeit eintritt. Die elektrischen Maschinen sind daher in gewisse τ -Klassen (CLASS oder Abschaltklasse) eingeteilt. Hierin ist jeweils das zugelassene Mehrfache des Nennstroms und die Zeitdauer, mit der die elektrische Maschine mit diesem erhöhten Strom betrieben werden kann, ohne dass eine Überhitzung eintritt, definiert.

Bislang werden für den Motorschutz typischerweise mechanische Überlastrelais verwendet. Diese sind durch einen Bimetallstreifen in der Lage, den Energiezufluss bei Überschreitung eines Grenzstroms zu unterbrechen, wobei die Zeit bis zur Unterbrechung eine Funktion des Stroms ist. Das hierfür verwendete Bimetall wird in elektronischen Überlastgeräten seit geheimer Zeit mittels Software/Firmware in seinen thermischen Eigenschaften nachgebildet. Hierbei wird eine thermische Größe, nämlich das Thermische Motormodell (TMM), verwendet, um eine thermische Motormodellkurve in Abhängigkeit eines aktuellen Stroms zu erstellen. Das Thermische Motormodell TMM lässt sich wie folgt darstellen:

35

$$TMM = \left[1 - e^{-\frac{I}{I_{\text{aktu}}}} \right] \cdot \frac{I_{\text{aktu}}}{I_{\text{grenz}}}$$

Dabei entspricht τ derjenigen Zeit aus der τ -Klassifikation, I_{akt} dem aktuellen Stromwert, I_{grenz} einem vorgegebenen Stromgrenzwert und t der Zeit. Das Auslösen eines Überlastgeräts erfolgt, wenn $TMM = 1 = 100\%$ ist. Somit lässt sich unter Annahme von konstanten Strömen der jeweilige Auslösezeitpunkt berechnen, wenn die Maschine neu, d. h. bei $TMM = 0$, gestartet wird.

Da diese Berechnung in der Firmware wegen der Notwendigkeit einer exakten Zeitstempelung aufwändig ist, wird die Funktion über den folgenden rekursiven Zeitansatz nachgebildet:

$$TMM_{n+1} = TMM_n - \frac{TMM_n}{\frac{\tau}{\Delta t}} + \frac{I_{akt}}{\frac{\tau}{\Delta t}}$$

Die Funktionswerte werden im Zeitraster Δt berechnet und der jeweilige Wert TMM_{n+1} wird gegenüber einer stromabhängigen Abschaltschwelle, einem vorgegebenen Wert, überwacht.

Mit dieser Implementierung ist es möglich, einen Auslösetrigger für die Überlastfunktion zu realisieren. Dabei wird ein Auslösen mittels eines Abschaltbefehls oder unmittelbarer Stromunterbrechung durchgeführt.

Eine Meldung/Warnung, ob eine Auslösung durch das Überlastgerät stattfinden wird, ist mit dieser Technologie ebenfalls möglich. Hierzu wird geprüft, ob der aktuelle Strom größer als ein vorgegebener Grenzstrom ist. Dabei bleibt unter Umständen eine große zeitliche, thermische Reserve des Motors unberücksichtigt. Eine Vorhersage, wann voraussichtlich ein Auslösen des Überlastgeräts stattfinden wird, wird bislang wie folgt erstellt: Eine SPS liest aus dem elektronischen Überlastgerät den aktuellen Wert des TMM sowie den aktuellen Strom aus, um dann mit gegebenen Konstanten eine Vorhersage zu treffen. Eine zwangsläufige Voraussetzung ist daher, dass das Überlastgerät kommunikationsfähig ist. Ein weiterer Nach-

teil bei der Erstellung der Vorhersage ist, dass der aktuelle Betriebszustand des Überlastrelais (CLASS, Unsymmetrie, aktueller Stromwert, aktueller Grenzwert,...) nachgebildet werden muss. Die Vorhersage ist deshalb mit sehr hohem Aufwand verbunden und daher nicht mehr in Echtzeit durchführbar. Als weiterer Nachteil stellt sich heraus, dass der Anwender die Modellfunktion im Anwenderprogramm seiner Steuerung nachbilden muss. Dazu ist entsprechendes Know-how notwendig und es kommt zu erheblichen Zyklusbelastungen.

10

Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine Vorrichtung und ein Verfahren zum Schutz elektrischer Maschinen vorzuschlagen mit denen eine Vorhersage einer zeitlichen Auslösereserve ohne großen Aufwand möglich ist.

15

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Schutzaufrichtung für eine elektrische Maschine gegen Stromüberlastung mit einer Stromwertbereitstellungseinrichtung zum Bereitstellen eines aktuellen Stromwerts, mit dem die elektrische Maschine angesteuert wird, einer Vorhersageeinrichtung zum Vorhersagen eines absoluten oder relativen Zeitwerts in Abhängigkeit von dem aktuellen Stromwert und einer Verwertungseinrichtung zum Verwerten des Zeitwerts zur Erzeugung eines Steuerungssignals.

25

Ferner ist erfundungsgemäß vorgesehen ein Verfahren zum Schutz einer elektrischen Maschine gegen Stromüberlastung durch Bereitstellen eines aktuellen Stromwerts, mit dem die elektrische Maschine angesteuert wird, Vorhersagen eines absoluten oder relativen Zeitwerts in Abhängigkeit von dem aktuellen Stromwert und Erzeugen eines Steuerungssignals unter Verwendung des Zeitwerts und Ansteuern der elektrischen Maschine mit dem Steuerungssignal.

35 Erfundungsgemäß ist somit eine zeitliche Vorhersage zusammen mit einer Auswertung der dynamischen zeitlichen Auslösereser-

ve einer elektronischen Überlastfunktion in einem Gerät mit Überlastfunktionalität realisierbar.

In der Vorhersageeinrichtung kann eine aktuelle thermische
5 Größe hinsichtlich der elektrischen Maschine bezogen auf den aktuellen Stromwert berechnet werden, so dass die thermische Größe als Grundlage für die Vorhersage verwendet werden kann. Vorzugsweise wird die thermische Größe, z. B. das Thermische Motormodell TMM, in der Vorhersageeinrichtung rekursiv berechnet. Die aktuelle thermische Größe wird zweckmäßigerweise 10 dazu verwendet, um den Zeitwert für die Vorhersage dynamisch zu berechnen.

Vorteilhafterweise ist die Vorhersageeinrichtung und/oder die
15 Verwertungseinrichtung parametrierbar. Damit können beliebige Grenzwerte und Geräteeigenschaften vorgegeben werden und in die Vorhersage beziehungsweise Verwertung eingehen.

In der Verwertungseinrichtung kann als Steuerungssignal ein
20 Abschaltsignal oder Warnsignal erzeugt werden. Damit kann die Vorhersage dazu verwendet werden, dass ein gewünschter Steuerungszyklus mit überhöhtem Strom überhaupt nicht ermöglicht wird oder bei der Erstellung oder Verwendung des Steuerungszyklusses eine Warnung ausgegeben wird, dass der Steuerungszyklus nicht vollständig durchlaufen und ein vorzeitiger Abbruch erfolgen wird.

Erfindungsgemäß ist es daher möglich, dass die Berechnung der Vorhersage der zeitlichen Auslöserveserve in einem Gerät mit
30 Überlastfunktion integriert ist. Durch diese Integration ist es nicht mehr notwendig, dass das Gerät mit Überlastfunktion kommunikationsfähig ist.

In einer konkreten Ausführung kann die zeitliche Auslöserveserve mittels Grenzwertwächter an einem Predictorgrenzwert überwacht werden. Die zeitliche Auslöserveserve und/oder das Ergebnis des Grenzwertwächters kann ferner lokal verarbeitet
35

oder zur Verarbeitung an die Steuerung (SPS) weitergegeben werden. Der Predictorgrenzwert und das anschließende Verhalten lassen sich, wie bereits angedeutet, gegebenenfalls parametrieren beziehungsweise einstellen.

5

In vorteilhafter Weise kann der Anwender die erfindungsgemäße Verbindung von Vorhersage und Auswertung zur Aufrechterhaltung seiner Prozesse nutzen. Darüber hinaus ist es erfindungsgemäß möglich, dass der Anwender die maximal zeitliche, 10 thermische Reserve des Motors für seine Prozesse ausnutzt, ohne die Motorschutzfunktion zu verlieren oder seine Prozesse zu gefährden.

Ein weiterer Vorteil besteht darin, dass immer mit den aktuell gültigen Parametern/Konstanten/Betriebsumständen (CLASS, 15 Ströme, Unsymmetrie bezüglich der Phasen) in Echtzeit gerechnet wird, da die Berechnung in dem Überlastgerät stattfindet. Dies bedeutet aber auch, dass die Vorhersage und Auswertung in nicht kommunikationsfähigen Geräten stattfinden kann, wo- 20 bei die Verknüpfung von Vorhersage und Auswertung – wie bereits erwähnt – durch Parameter und Einstellelemente erfolgen kann.

Die vorliegende Erfindung wird nun anhand der beigefügten 25 Zeichnungen näher erläutert, in denen zeigen:

FIG 1 ein Blockschaltdiagramm eines erfindungsgemäßen Motorschutzgeräts;
FIG 2 ein Stromverlaufsdigramm; und
30 FIG 3 ein Diagramm der thermischen Größe TMM infolge des Stromverlaufs von FIG 2.

Die nachfolgend näher beschriebenen Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfin- 35 dung dar.

- In FIG 1 ist mit gestrichelter Linie ein Motorschutzgerät 1 dargestellt. Dieses besitzt eine Motorschutzeinheit 2 zur Stromerfassung, Strombereitstellung und TMM-Bildung für den Motorschutz, das einen aktuellen Stromwert I_{akt} von einem Motor 7 erhält. Für den Fall der Überhitzung gibt das Überlastgerät 2 einen entsprechenden Befehl an die Motorsteuerung 3 beziehungsweise unterbricht unmittelbar die Stromzufuhr zum angesteuerten Motor.
- 10 Die Motorschutzeinheit 2 liefert einen aktuellen thermischen Wert TMM_{akt} an eine Vorhersageeinheit (TMP) 4, die ebenfalls in das Motorschutzgerät 1 integriert ist. Die Vorhersageeinheit 4 bildet aus dem thermischen Wert TMM_{akt} einen zeitlichen Vorhersagewert, nämlich eine zeitliche Auslösereserve, und 15 liefert ihn an einen an die Vorhersageeinheit 4 angeschlossenen und ebenfalls in das Motorschutzgerät 1 integrierten Vergleicher 5.
- Der Vergleicher 5 ist über eine Parametriereinheit 6, die ebenfalls in das Motorschutzgerät 1 integriert ist, parametrierbar. Über die Parametriereinheit 6 können gegebenenfalls auch die Motorschutzeinheit 2 und die Vorhersageeinheit 4 parametriert werden. Entsprechende Verbindungen sind in FIG 1 der Übersicht halber nicht eingezeichnet.
- 25 Im Vergleicher 5 wird festgestellt, ob die zeitliche Auslösereserve größer oder kleiner als ein parametrierter Grenzwert (Predictorgrenzwert) ist. Ist die Auslösereserve kleiner als der parametrierte Grenzwert (Predictorgrenzwert), so wird an 30 die Motorsteuerung 3 ein Warn- oder Steuersignal abgegeben, so dass der Anwender entweder gewarnt wird, dass bei der gewünschten Ansteuerung voraussichtlich ein automatisches Abschalten zu erwarten ist, oder ein Ansteuern des Motors mit der gewünschten Ansteuerkurve nicht zuglassen wird.
- 35 Die Motorsteuerung 3 kann auch in das Motorschutzgerät 1 integriert sein.

In dem in FIG 2 gewählten Beispiel wird der Motor zunächst mit einem Strom betrieben, der unterhalb eines normierten Grenzstromtors liegt. Dieses Grenzstromtor ist definiert als 5 $1,1 \dots 1,2 \times I_e$. Dabei entspricht I_e dem Einstell- beziehungsweise Nennstrom, mit dem der Motor dauerhaft betrieben werden kann. Nach einer gewissen Zeit sinkt (z. B. durch Lastveränderung) der Strom I_{akt} und steigt dann über das Grenzstromtor, 10 in dem ein zu definierender Grenzstrom I_{grenz} liegt, an. Dieser hohe Strom würde dazu führen, dass der Motor langfristig überhitzt wird.

In FIG 3 ist die dem Stromverlauf gemäß FIG 2 zeitlich entsprechende thermische Größe TMM aufgetragen. Der Kurvenverlauf in den stetigen Abschnitten ist durch die in der Beschreibungseinleitung beschriebene Exponentialfunktion gegeben. Dementsprechend steigt die Temperatur des Motors nach dem Einschalten des Motors gemäß der genannten Exponentialfunktion an und würde aber nicht eine bestimmte Auslöseschwelle, hier 100 %, erreichen, da sich der Strom unterhalb 20 des Grenzstroms (vergleiche FIG 2) befindet. Bei der anschließenden Reduzierung des Stroms sinkt auch die Temperatur wieder ab. Wird dann der Strom auf einen Wert oberhalb des Grenzstroms I_{grenz} erhöht, so steigt die Temperatur stetig an 25 und erreicht die Auslöseschwelle $TMM = 100 \%$. An diesem Punkt wird der Strom zum Motor abgeschaltet (vergleich FIG 2), so dass auch die Temperatur des Motors wieder allmählich absinkt (vergleiche FIG 3).

30 Für die Ansteuerung des Motors beziehungsweise die Festlegung von Stromansteuerprofilen ist es notwendig, die zeitliche Auslösereserve, bei der TMM den Schwellwert 100 % erreicht, zu kennen. Es soll damit eine Vorhersage der zeitlichen Auslösereserve zu beliebigen Zeitpunkten in Echtzeit erfolgen 35 können. Dabei soll nicht nur von dem statischen Fall ausgegangen werden, dass der Motor dauerhaft mit konstantem Strom angesteuert wird, sondern auch die dynamische Variante be-

trachtet werden können, wenn sich der Strom im Laufe der Ansteuerung ändert.

Eine Berechnungsmöglichkeit zur Bestimmung der Auslöserveserve
5 basiert beispielsweise darauf, dass man sich einen fiktiven Nullpunkt der e-Funktion errechnet. Dieser Nullpunkt definiert den Zeitpunkt, an dem unter Berücksichtigung des aktuellen TMM und des aktuellen Stroms $I_{akt\ TMM} = 0$ ist. In der Kenntnis des Grenzstroms I_{grenz} , der τ -Klasse und der Unsymmetrieinformation bezüglich der Phasen, die aktuell vorliegen, kann eine dynamische Vorhersage der Zeit bis zur Auslösung, d. h. dem Abschalten des Motors, gemacht werden. Auf der Basis des fiktiven Nullpunkts kann zu jedem Zeitpunkt eine aktuelle zeitliche Vorhersage getroffen werden, wie dies in FIG
10 15 3 unten durch horizontale Balken angezeigt ist. Dabei kann bei jeder Aktualisierung der aktuelle TMM-Wert sowie der aktuelle Strom berücksichtigt werden.

Erfindungsgemäß wird nun die zeitliche Vorhersage der Auslöserveserve mit einer Anwenderfunktion verknüpft. Beispielsweise kann so die dynamische zeitliche Vorhersage der Auslöserveserve einer elektronischen Überlastfunktion mit einer Überlastmeldung beziehungsweise -warnung verknüpft werden. Der Anwender kann, wie bereits erwähnt, vor der Benutzung eines
20 25 Ansteuerprofils, das aller Voraussicht nach zu einem automatischen Abschalten des Motors führen wird, gewarnt werden. Dieses ungewollte Abschalten kann bei gewissen Prozessen sehr nachteilige Folgen haben.

30 Die einzelnen Parameter zur Bestimmung der Auslöserveserve können dabei durch die Parametriereinheit 6 (vergleiche FIG 1) mit entsprechender Eingabeschnittstelle eingegeben werden. Ferner kann ein entsprechend erhaltener, gegebenenfalls normierter Vorhersagewert der zeitlichen Auslöserveserve zur Weiterverarbeitung einer speicherprogrammierbaren Steuerung (SPS) oder einem sonstigen System zur Verfügung gestellt werden.
35

Nachfolgend sei ein konkretes Ausführungsbeispiel der vorliegenden Erfindung beschrieben. Demnach ist beispielsweise ein Lüftermotor zwingend zur Kühlung eines Produktionsprozesses 5 notwendig. Ein Lüfterausfall würde zu einem Schaden an einer Veredelung und somit zum Ausschuss führen. Nach bisherigem Stand der Technik gibt es vor Beginn des Veredelungsprozesses keine Aussage, ob die Kühlung über die Dauer des Veredelungs- prozesses aufrechterhalten werden kann. Erfindungsgemäß para- 10 metriert nun der Anwender die maximale Prozesslaufzeit als Predictorgrenzwert. Durch entsprechende Parametereinstellung wird eine Unterschreitung der notwendigen Kühlzeit als Pro- zessstörung definiert. Vor Einfahrt des Rohteils in den Ver- edelungsprozess wird anhand des Thermal Memory Predictor TMP 15 und dessen Grenzwertwächter geprüft, ob die zeitliche thermische Reserve für das Durchlaufen des Veredelungsprozesses gegeben ist. Auf diese Weise lässt sich der Motor und somit der Gesamtprozess gezielter nutzen. Insbesondere können kritische Prozessabschnitte besser abgesichert werden.

Patentansprüche

1. Schutzvorrichtung für eine elektrische Maschine gegen Stromüberlastung

5 gekennzeichnet durch

- eine Stromwertbereitstellungseinrichtung zum Bereitstellen eines aktuellen Stromwerts, mit dem die elektrische Maschine betrieben wird,
- eine Vorhersageeinrichtung (2, 4) zum Vorhersagen eines absoluten oder relativen Zeitwerts in Abhängigkeit von dem aktuellen Stromwert und
- eine Verwertungseinrichtung (5) zum Verwerten des Zeitwerts zur Erzeugung eines Steuerungssignals.

15 2. Schutzvorrichtung nach Anspruch 1, wobei in der Vorhersageeinrichtung (2, 4) eine aktuelle thermische Größe bezogen auf den aktuellen Stromwert berechenbar ist, so dass die thermische Größe als Grundlage für die Vorhersage verwendbar ist.

20

3. Schutzvorrichtung nach Anspruch 2, wobei die thermische Größe in der Vorhersageeinrichtung (2, 4) rekursiv berechenbar ist.

25 4. Schutzvorrichtung nach Anspruch 2 oder 3, wobei der Zeitwert mit der aktuellen thermischen Größe dynamisch berechenbar ist.

30 5. Schutzvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorhersageeinrichtung (2, 4) und/oder die Verwertungseinrichtung (5) parametrierbar ist.

35 6. Schutzvorrichtung nach einem der vorhergehenden Ansprüche, wobei in der Verwertungseinrichtung (5) als Steuerungssignal ein Abschaltsignal oder Warnsignal erzeugbar ist.

11

7. Verfahren zum Schutz einer elektrischen Maschine gegen Stromüberlastung

g e k e n n z e i c h n e t d u r c h

- Bereitstellen eines aktuellen Stromwerts, mit dem die elektrische Maschine betrieben wird,

5 - Vorhersagen eines absoluten oder relativen Zeitwerts in Abhängigkeit von dem aktuellen Stromwert und

- Erzeugen eines Steuerungssignals unter Verwendung des Zeitwerts und

10 - Ansteuern der elektrischen Maschine mit dem Steuerungssignal.

8. Verfahren nach Anspruch 7, wobei eine aktuelle thermische Größe bezogen auf den aktuellen Stromwert berechnet und die 15 thermische Größe als Grundlage für die Vorhersage verwendet wird.

9. Verfahren nach Anspruch 8, wobei die thermische Größe rekursiv berechnet wird.

20 10. Verfahren nach Anspruch 8 oder 9, wobei der Zeitwert mit der aktuellen thermischen Größe dynamisch berechnet wird.

25 11. Verfahren nach einem der Ansprüche 7 bis 10, wobei der Prozess des Erzeugens eines Steuerungssignals individuell parametriert wird.

30 12. Verfahren nach einem der Ansprüche 7 bis 11, wobei als Steuerungssignal ein Abschaltsignal oder Warnsignal erzeugt wird.

2 / 2

FIG 2

FIG 3

Zeit vom fiktiven Nullpunkt bis Auslösung

Zeit vom fiktiven Nullpunkt bis aktuellen Wert TMM

Vorhersagezeit bis Auslösung (zeitliche Auslösereserve)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/004783

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H02H6/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H02H H02P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	US 6 424 266 B1 (COISH ROBERT GEORGE ET AL) 23 July 2002 (2002-07-23) paragraph '0057! – paragraph '0064!; claim 1 paragraphs '0082!, '0086! – paragraph '0089! -----	1-12
X	EP 0 999 629 A (ABB RESEARCH LTD) 10 May 2000 (2000-05-10) claims 1,9 -----	1,5-7, 11,12
X	US 4 467 260 A (MALLICK JR GEORGE T ET AL) 21 August 1984 (1984-08-21) column 31, line 46 – column 32, line 11 column 1, line 45 – column 2, line 47 -----	1-12
A	GB 2 151 862 A (GEN ELECTRIC PLC) 24 July 1985 (1985-07-24) the whole document -----	1,7

Further documents are listed in the continuation of box C

Patent family members are listed in annex

* Special categories of cited documents

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"8" document member of the same patent family

Date of the actual completion of the international search

14 July 2004

Date of mailing of the international search report

26/07/2004

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Imbernon, L

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/004783

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6424266	B1	23-07-2002	US	2002180611 A1		05-12-2002
EP 0999629	A	10-05-2000	EP	0999629 A1		10-05-2000
US 4467260	A	21-08-1984		NONE		
GB 2151862	A	24-07-1985		NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationale Aktenzeichen
PCT/EP2004/004783

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 H02H6/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpräfiziert (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H02H H02P

Recherchierte aber nicht zum Mindestpräfiziert gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr
X	US 6 424 266 B1 (COISH ROBERT GEORGE ET AL) 23. Juli 2002 (2002-07-23) Absatz '0057! - Absatz '0064!; Anspruch 1 Absätze '0082!, '0086! - Absatz '0089! -----	1-12
X	EP 0 999 629 A (ABB RESEARCH LTD) 10. Mai 2000 (2000-05-10) Ansprüche 1,9 -----	1,5-7, 11,12
X	US 4 467 260 A (MALLICK JR GEORGE T ET AL) 21. August 1984 (1984-08-21) Spalte 31, Zeile 46 - Spalte 32, Zeile 11 Spalte 1, Zeile 45 - Spalte 2, Zeile 47 -----	1-12
A	GB 2 151 862 A (GEN ELECTRIC PLC) 24. Juli 1985 (1985-07-24) das ganze Dokument -----	1,7

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

14. Juli 2004

Absendedatum des internationalen Recherchenberichts

26/07/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl.
Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Imbernon, L

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/004783

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 6424266	B1	23-07-2002	US	2002180611 A1		05-12-2002
EP 0999629	A	10-05-2000	EP	0999629 A1		10-05-2000
US 4467260	A	21-08-1984		KEINE		
GB 2151862	A	24-07-1985		KEINE		