UPAAA 2025

ELECTRICITY

PHYSICS

Lecture no - 09

By - ER. RAKSHAK SIR

Topics to be covered

1 NCERT Discussion (Part - 2)

Page No. 221 (INTEXT Q.5)

How is a voltmeter connected in the circuit to measure the potential difference between two points?

Page No. 221 (INTEXT Q.6)

A copper wire has diameter 0.5 mm and resistivity of 1.6 \times 10⁻⁸ W m. What will be the length of this wire to make its resistance 10 Ω ? How much does the resistance change if

the diameter is doubled?

$$A = \pi x^{2} \qquad d = 0.5 \, \text{mm} = \frac{0.5}{1000} \, \text{m}$$

$$= 3.14 \, \text{m} \qquad \lambda = \frac{0.5}{2} \times 10^{-3} \, \text{m}$$

$$\frac{0.5 \times 0.5}{2} \times \frac{0.5}{2} \times \frac{0.5}{2} \times 10^{-6} \, \text{m}$$

$$\times 10^{-6} \quad S = 1.6 \times 10^{-8} \, \text{cm}$$

$$R = 10 \, \text{cm}$$

$$R = 10 \, \text{cm}$$

$$R = \int_{A}^{L}$$

$$10 = \frac{1.6 \times 10^{-8} \times L}{3.14 \times 0.5 \times 0.5 \times 10^{-6}}$$

6th Maths

 $d \rightarrow 2d$ $A \rightarrow 2n$ $A \rightarrow 4A$

$$R = PR \qquad R' = PR \qquad YA$$

$$R' = PR \qquad YA$$

$$R' = R' = 1$$

Page No. 221 (INTEXT Q.7)

 T_{t}

The values of current I flowing in a given resistor for the corresponding values of potential difference V across the resistor are given below – 2ν

I (amperes)	0.5	1.0	2.0	3.0	4.0	
V (volts)	(1.6)	3.4	6.7	10.2	(13.2)	V2

Plot a graph between V and I and calculate the resistance of that resistor.

Page No. 221 (INTEXT Q.8)

When a 12 V battery is connected across an unknown resistor, there is a current of 2.5 mA in the circuit. Find the value of the resistance of the resistor.

$$V = 12V$$

 $i = 2.5 \text{ mA} = 2.5 \times 10^{-3} \text{ A}$
 $R = ?$

$$V = iR$$

$$R = \frac{12}{\sqrt{10^{3}}} = \frac{12}{\sqrt{10^{3}}} = \frac{12 \times 10^{3} \times 10}{\sqrt{10^{3}}} = \frac{12 \times 100 \times 10^{2}}{\sqrt{10^{3}}} = \frac{12 \times 100 \times 10^{2}}{\sqrt$$

Page No. 221 (INTEXT Q.9)

A battery of 9 V is connected in series with resistors of 0.2 Ω , 0.3 Ω , 0.4 Ω , 0.5 Ω and 12 Ω , respectively. How much current would flow through the 12 Ω resistor?

$$V = iR$$

$$I = V = 9A$$

$$R = 13.4$$

Page No. 221 (INTEXT Q.10)

How many 176 Ω resistors (in parallel) are required to carry 5 A on a 220 V line?

$$V_{t} = 220V$$

$$i_{t} = 5A$$

$$R_{t} = ?$$

$$V = iR$$

$$V = iR$$

$$V = kR$$

$$V = yY\Omega$$

$$\frac{1}{Rp} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{1}{44} = \frac{1}{176} + \frac{1}{176} + \frac{1}{176}$$

$$\frac{1}{44} = \frac{1}{176}$$

$$\frac{1}{44} = \frac{1}{176}$$

$$\frac{1}{44} = \frac{1}{176}$$

$$\frac{1}{44} = \frac{1}{176}$$

Page No. 221 (INTEXT Q.11)

Show how you would connect three resistors, each of resistance 6 Ω , so that the combination has a resistance of (i) 9 Ω , (ii) 4 Ω .

Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 W. How many lamps can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A?

$$P_{t} = V \times 1$$

= 220 x 5
= 1100 W

$$P_{\text{tolad}} = P_1 + P_2 + P_3 + P_4 \dots m$$

$$1100 = 10 + 10 + 10 + 10 + \dots m$$

$$110\phi = 10 \text{ Rulbs}$$

$$M = 110 \text{ Rulbs}$$

Page No. 221 (INTEXT Q.13)

A hot plate of an electric oven connected to a 220 V line has two resistance coils A and B, each of 24 Ω resistance, which may be used separately, in series, or in parallel. What are the currents in the three cases?

Page No. 221 (INTEXT Q.14)

guf.

Compare the power used in the 2 Ω resistor in each of the following circuits: (i) a 6 V battery in series with 1 Ω and 2 Ω resistors, and (ii) a 4 V battery in parallel with 12 Ω

and 2 Ω resistors.

$$R_{t} = 3x$$

$$V = 6V$$

$$i = V = \frac{3}{2} = 2A$$

$$i = 2A$$

Two lamps, one rated 100 W at 220 V, and the other 60 W at 220 V, are connected in parallel to electric mains supply. What current is drawn from the line if the supply

voltage is 220 V?

$$P_{total} = P_1 + P_2$$

$$= 100 + 60$$

$$= 160 \text{ M}$$

$$= 160 \text{ M}$$

$$= 160 \text{ M}$$

$$= 160 \text{ M}$$

M-2
$$P = Vi$$
 $P = Vi$ $l = l_1 + l_2$
 $60 = 220 \times l_2$ $l00 = 220 \times l_1$ $l = 60 + 100$
 $\frac{60}{220}A = l_2$ $\frac{100}{220}A = l$ $li = \frac{160}{220}A$

Page No. 221 (INTEXT Q.16)

Which uses more energy, a 250 W TV set in 1 hr, or a 1200 W toaster in 10 minutes?

Toaster $P = 1200 M = \frac{1200}{1000} kw$ $t = 10 min = \frac{10}{60} h$

Page No. 221 (INTEXT Q.17)

By

An electric heater of resistance 8 W draws 15 A from the service mains 2 hours. Calculate the rate at which heat is developed in the heater.

Power =
$$I^2R$$

= $(IS)^2 \times 8$

- Explain the following.

 (a) Why is the tuport

 MP 1 -> 3386°C -> heat -> glow;

 retain -> glow; Why is the tungsten used almost exclusively for filament of electric lamps?
 - Why are the conductors of electric heating devices, such as bread-toasters and electric irons, made of an alloy rather than a pure metal?
- Why is the series arrangement not used for domestic circuits? -> Parallel Series x
- How does the resistance of a wire vary with its area of cross-section? $\rightarrow \mathbb{R}^2 \times \mathbb{R}^2$
- Why are copper and aluminium wires usually employed for electricity transmission?

