### ELECTION MODELLING

DYNAMIC ELECTORAL MODEL USING BIOLOGICALLY INSPIRED PRINCIPLES

Alan Royce Gabriel Shivan Ajay Iyer

# BACKGROUND

### **Traditional Approaches**

- Agent-based simulations
- Opinion dynamics models (DeGroot, voter models)
- Statistical models (historical data)

#### **Limitations:**

- High-dimensional parameters
- Low analytical tractability

### **A New Perspective**

Inspired by computational systems biology:

- SIR model (disease spread)
- Lotka-Volterra equations (predator-prey dynamics)
  - → Capture complex, nonlinear population interactions elegantly.

# PROJECT GOALS

- Apply biological frameworks to model electoral dynamics
- Treat campaigning as a contagious process (opinion spread ~ disease transmission)
- Use predator-prey models to capture candidate-voter competition
- Simulate vote spread and stabilization over time
- Analyse candidate strategies and vote share dynamics
- Compare biologically-inspired models with traditional political models
- Demonstrate the power and interpretability of biological analogies for election modeling

### AGENT BASED MODELLING

- Election dynamics with voter, candidate, and media agents.
- Opinion dynamics using a DeGroot-style averaging process.





## ARIMA

- ARIMA(p, d, q)
  - where p is the order of the autoregressive (AR)
    component, d is the degree of differencing needed to make the time series stationary
  - og is the order of the moving average (MA) component

$$\phi(B)(1-B)^d y_t = \theta(B)\varepsilon_t$$

B is the backshift operator, ie,

$$By_t = y_{t-1}$$
  $\phi(B) = 1 - \phi_1 B - \cdots - \phi_p B^p$  AR polynomial  $(1-B)y_t = \phi_1(1-B)y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$ 

$$\theta(B) = 1 + \theta_1 B + \cdots + \theta_q B^q$$
 MA polynomial  $y(t) = -0.1582 + (-0.1582) \cdot y(t-1) + (-0.9997) \cdot e(t-1)$ 

### DEMOCRAT Vote Share - ARIMA 50 40 Vote % 20 10 Actual DEMOCRAT ARIMA Forecast 2010 1980 1990 2000 2020 Year

### ARIMA

ARIMA(p, d, q)

- Autoregressive (AR): Uses the dependency between an observation and some number of lagged observations.
- Integrated (I): Uses differencing of raw observations to make the time series stationary.
- Moving Average (MA): Uses the dependency between an observation and a residual error from a moving average model applied to lagged observations.
- o **Univariate**: Models a single time series independently.
- Assumptions: Requires data stationarity (or achieving it through differencing), assumes linear relationships

## PINN

$$\frac{dy(t)}{dt} = f(t, y(t)) + \epsilon(t)$$

y(t) is the vote share at time t

f(t, y(t)) represents the dynamic function governing the evolution of support  $\epsilon(t)$  is the error term or residual capturing the discrepancy between the data and the model

Data Loss

$$L_{\text{data}} = \sum_{i} (y(t_i) - \hat{y}(t_i))^2$$

Total loss function for a PINN

Physics Loss

$$L_{\text{physics}} = \sum_{j} \left( \frac{dy(t_j)}{dt} - f(t_j, y(t_j)) \right)^2$$

$$L_{\text{PINN}} = L_{\text{data}} + \lambda L_{\text{physics}}$$

 $\lambda$  is a weight parameter that balances fitting the data versus respecting the dynamics

## PINN



- Hybrid Model: Integrates data fitting (via NN) and physics/mechanism constraints (via ODEs in the loss).
- Neural Network: Uses a feed-forward neural network to map time t to vote shares [D, R].
- Automatic Differentiation: Leverages PyTorch's autograd to compute derivatives needed for the "physics" part of the loss function.
- Physics Loss: Incorporates terms that measure how well the NN output satisfies the assumed differential equations

# Model Comparision

| Feature          | ARIMA                       | PPM (Lotka-Volterra)       | PINNs                       | ABM                          |
|------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|
| Approach         | Statistical Time Series     | ODE-based (Analogy)        | Hybrid (NN + ODE)           | Bottom-Up Simulation         |
| Level            | Aggregate (Univariate)      | Aggregate (Multivariate)   | Aggregate (Multivariate)    | Micro/Individual             |
| Mechanism        | No (Data-driven)            | Yes (Assumed ODE)          | Yes (Assumed ODE)           | Yes (Agent Rules)            |
| Interactions     | No (Implicit in lags)       | Yes (Explicit in ODEs)     | Yes (Explicit in ODEs)      | Yes (Explicit Agent Rules)   |
| Heterogeneity    | No                          | No                         | No                          | Yes (Agent Attributes)       |
| Interpretability | High (Stats)                | Medium (ODE Params)        | Low (NN Weights)            | Medium (Rules → Emergence)   |
| Flexibility      | Low                         | Medium                     | Medium                      | High                         |
| Data Needs       | Time Series Data            | Time Series Data (Fit)     | Time Series Data (Fit+Loss) | Rules/Params + Calibration   |
| Advantage        | Simple, Baseline            | Models Interaction, Theory | Handles Non-linearity, Data | Heterogeneity, Emergence     |
| Disadvantage     | Ignores Interaction, Linear | Analogy? Homogeneity       | Complex, Needs ODE, Debug?  | Complex, Calibration, Costly |

# SIR

### SIR(beta, gamma)

Mechanistic (Analogy): Uses an epidemic spread analogy. Voters are categorized as:

**S (Susceptible):** Undecided or persuadable voters.

**I (Infected)**: Voters decided for the party being modeled (this is the vote\_percentage data).

**R (Recovered)**: Voters no longer susceptible or supporting this party (e.g., decided for the other party, became apathetic).

**ODE System**: Models the flow between these compartments using differential equations:. The total population S + I + R is implicitly normalized to 1.

**Univariate Focus**: Fits the model to a single time series (I = vote percentage for one party). S and R are derived relative to this.

Aggregate Model: Treats voters as homogeneous within the S, I, R compartments





## LOTKA VOLTERRA



- Mechanistic (Analogy): Assumes an underlying dynamic process governs the vote shares, analogous to species competition.
- Coupled ODEs: Models Democrat and Republican shares (x, y\_val) simultaneously using differential equations that include growth terms (logistic-like) and interaction terms (beta \* x \* y\_val, delta \* x \* y\_val).
- Parameter Estimation: Uses optimization (scipy.optimize.minimize) to find ODE parameters (alpha, beta, delta, gamma) that best fit the historical data.
- Aggregate Model: Treats the entire vote share percentage as homogeneous entities following the ODEs.

## VAR



## NEURAL ODE



## SCURVE



## EA



## CONCLUSION

INTEGRATING BOTH THESE MODELS WITH AGENT BASED MODELS IS A VERY INTERESTING AND POWERFUL APPLICATION

Both the SIR and Lotka-Volterra models serve as useful conceptual tools with a large scope to be modified

Embedding the SIR contagion within realistic social and contact networks could facilitate studies on clustering phenomena and echo chambers,

We propose a framework for a Multi-Compartment and Multi-Group Susceptible-Infected-(SIR) model, which opens several promising avenues for further research into electoral dynamics.

# REFERENCES

- J. M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling (Princeton University Press, 2006).
- G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control (Wiley, 2008), 4th ed.
- C. A. Sims, Econometrica 48, 1 (1980).
- R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, "Neural ordinary differential equations," in Advances in Neural Information Processing Systems (NeurlPS), , vol. 31 (2018).
- 5. R. Pearl and L. J. Reed, Proc. National Acad. Sci. United States Am. 6, 175 (1920).
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput. Phys. 378, 686 (2019).
- W. O. Kermack and A. G. McKendrick, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 115, 700 (1927).
- J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, 1975)