Teorie grafů

21. přednáška z LGR

Obsah

- Rovinné grafy
 - Rovinné nakreslení grafu
 - Eulerův vzorec
 - Věta o čtyřech barvách

V této kapitole nás budou zajímat neorientované prosté grafy bez smyček a jejich nakreslení. Kreslení grafu se dotýká geometrie a topologie, pro nás bude postačující opírat se o intuitivní představu.

Definice

Nakreslení neorientovaného grafu G=(V,E) na plochu je dvojice prostých zobrazení f a g takových, že

- f přiřazuje vrcholům $v \in V$ body dané plochy,
- ullet g přiřazuje hranám $e \in E$ prosté spojité křivky na této ploše,
- je-li $e = \{u, v\}$, pak křivka g(e) má krajní body f(u) a f(v).

Definice

Rovinné (planární) nakreslení grafu G, je takové nakreslení grafu na rovinu, že se křivky odpovídající různým hranám nekříží (tj. mají společné nejvýše krajní body).

Definice

Graf G je rovinný graf, jestliže existuje jeho rovinné nakreslení.

Tvrzení

- Úplný graf K₅ není rovinný.
- Úplný bipartitní graf $K_{3,3}$ není rovinný.

Jordanova věta: Každá topologická kružnice (spojitá uzavřená křivka, která sama sebe neprotíná) rozdělí rovinu na dvě souvislé oblasti.

Libovolná křivka spojující bod uvnitř kružnice s bodem vně musí protnout tuto topologickou kružnici.

Kuratovského věta

Graf je rovinný, právě když neobsahuje podgraf vzniklý dělením grafu K_5 nebo grafu $K_{3,3}$.

Dělení grafu přidává nové vrcholy "doprostřed" existujících hran, tedy např. místo původní hrany $\{u, v\}$ budou v novém grafu hrany $\{u, z\}$ a $\{z, v\}$, kde z je přidaný nový vrchol.

Definice

Sférické nakreslení grafu G, je takové nakreslení grafu na kouli, že se křivky odpovídající různým hranám nekříží (tj. mají společné nejvýše krajní body).

Tvrzení

Graf má sférické nakreslení, právě když má rovinné nakreslení.

Důkaz: Stereografická projekce je (téměř) bijekce.

Důsledek: Trojrozměrné mnohostěny odpovídají rovinným grafům.

Teorie grafů

Definice

Rovinný graf spolu se svým rovinným nakreslením se nazývá topologický rovinný graf.

Definice

Stěna topologického rovinného grafu G je minimální část roviny, která je ohraničena křivkami odpovídajícími hranám grafu. Jedna ze stěn je vždy neomezená, ostatní jsou omezené.

Stupeň stěny je počet hran s nimiž je stěna incidentní s tím, že každou hranu, která leží celá v jedné stěně, počítáme dvakrát. Označíme deg(S) nebo d(S).

Tvrzení

Nechť je dán rovinný graf G spolu se svým rovinným nakreslením. Pak $\sum_{S} d(S) = 2|E|$, kde součet je přes všechny stěny grafu G.

Poznámka

Duální graf k topologickému grafu G je graf, jehož vrcholy tvoří stěny grafu G, a za každou hranu incidentní s oběma stěnami je hrana v duálním grafu. Tvrzení výše je vlastně Hand Shaking Lemma pro duální graf.

Věta (Eulerův vzorec)

Pro každý souvislý topologický rovinný graf, který má n vrcholů, m hran a s stěn, platí

$$n + s = m + 2$$
.

Speciálně: Počet stěn nezávisí na způsobu rovinného nakreslení.

Eulerův vzorec je základní kvantitativní vztah pro rovinné grafy, Euler jej znal v r. 1752.

Tvrzení

Pro každý topologický rovinný graf o k komponentách souvislosti, který má n vrcholů, m hran a s stěn, platí

$$n + s = m + k + 1$$
.

Věta

Existuje právě pět Platónských těles (pravidelných mnohostěnů), pravidelný čtyřstěn, krychle, pravidelný osmistěn, dvanáctistěn a dvacetistěn.

Platónská tělesa jsou pravidelné mnohostěny, kde každá stěna je pravidelný k-úhelník, $d(S)=k\geq 3$, a v každém vrcholu se stýká stejný počet stěn, $d(v)=d\geq 3$.

Rovinné grafy - max. počet hran

Pomocí Eulerova vzorce odhadneme, kolik maximálně hran může souvislý graf o *n* vrcholech mít, chceme-li jej nakreslit do roviny bez křížení hran, tj. má-li to být rovinný graf.

Tvrzení

Pro prostý rovinný graf bez smyček s $n \geq 3$ vrcholy a m hranami platí

$$m \leq 3n - 6$$
.

Důsledek

Úplný graf K₅ není rovinný.

Rovinné grafy - max. počet hran

Tvrzení

Pro prostý rovinný graf bez smyček a bez trojúhelníků s $n \geq 3$ vrcholy a m hranami platí

$$m < 2n - 4$$
.

Důsledek

Úplný bipartitní graf $K_{3,3}$ není rovinný.

Rovinné grafy - max. počet hran

Tvrzení

- V každém prostém rovinném grafu G bez smyček existuje vrchol, který má stupeň $d(v) \leq 5$.
- V každém prostém rovinném grafu G bez smyček a bez trojúhelníků existuje vrchol, který má stupeň $d(v) \leq 3$.

Rovinné grafy - barevnost

Tvrzení

Každý rovinný graf bez smyček lze obarvit pěti barvami.

Tvrzení, že barevnost rovinných grafů $\chi(G) \leq 5$, bylo dokázáno v r. 1890. Otázka, zda by stačily barvy čtyři, zůstávala dlouho otevřená.

Rovinné grafy - barevnost

Věta (o čtyřech barvách)

Každý rovinný graf bez smyček lze obarvit čtyřmi barvami.

Důkaz věty o čtyřech barvách byl provedem v r. 1976 pomocí počítače, který prozkoumal obrovské množství dílčích případů.

Použití: Na obarvení mapy světa tak, aby sousední státy měly vždy jinou barvu, postačí pouhé čtyři barvy!

Literatura

- J. Demel: Grafy a jejich aplikace, Academia, 2015.
- J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum, 2000.
- M. Dostál: Cvičení k přednášce LGR (najdete v nich důkazy některých tvrzení z přednášky a mnoho dalších příkladů).
- M.Olšák: Jednoduchý "důkaz" věty o čtyřech barvách (Aprílový žertík), https://www.youtube.com/watch?v=YTCuNNMea60