Трансляция сетевых адресов (NAT)

Статическая NAT отображает один внутренний адрес на один внешний. **Динамическая NAT** отображает частный IP-адрес на один из свободных из группы зарегистрированных IP-адресов.

Каждый внутренний сетевой адрес компьютера клиента отображается на один и тот же внешний IP-адрес, но с разными номерами портов - Port Address Translation (PAT).

Трансляция сетевых адресов (NAT)

Различают 4 адреса, которые фигурируют в процессе трансляции адресов:

1) Inside local; 2) Inside global; 3) Outside local; 4) Outside global.

Inside local — Это частный адрес компьютера локальной сети, которому предоставлена возможность работать с сетью Интернет. Пакет запроса на обслуживание сервером отправляется на адрес внешнего маршрутизатора глобальной сети (**outside global**).

Когда пакет проходит через NAT-модуль, то адрес отправителя подменяется на публичный адрес, имеющийся в распоряжении NAT-модуля (*inside global*). Если сервер-получателя имеет публичный адрес *outside global* и доступен по нему извне, то *outside global* и *outside local* – **coвпадают**, если сам сервер тоже скрыт за каким-то NAT-устройством, то именно оно получает вместо него запрос на *outside global* адрес и транслирует адрес получателя на *outside local* (во внутренней сети получателя).

Трансляция сетевых адресов (NAT)

Статическая трансляция сетевых адресов (NAT)

Задание режима статической трансляции осуществляется путем ввода команды R1(config)#ip nat inside source static <локальный адрес> <глобальный адрес>

G1(config)#ip nat inside source static 10.10.1.2 169.10.1.2

G1(config)#interface fa0/0

G1(config-if)# ip nat inside

G1(config-if)#interface s2/0

G1(config-if#ip nat outside

G1#show ip nat translations

Inside global Inside local 169.10.1.2 10.10.1.2

Outside local

Outside global

Динамическая трансляция сетевых адресов (NAT)

Динамическая трансляция предполагает назначения диапазона адресов (адресного пула) с указанием начального и конечного адресов и маски сети.

ip nat pool <имя> <первый адрес> <последний адрес> netmask < обратная маска подсети> или prefix-length <длина префикса>

Определение пула адресов **pool1**

G1(config)#ip nat pool pool1 169.10.1.50 169.10.1.100 netmask 255.255.255.0

Задание для модуля NAT преобразование адресов из списка 1 в пул адресов **pool1**

G1(config)#ip nat inside source list 1 pool pool1

Создание списка доступа 1 для внутренних адресов, которые будут преобразовываться

G1(config)#access-list 1 permit 10.10.1.0 0.0.0.255

G1(config)#interface fa0/0

G1(config-if)# ip nat inside

G1(config-if)#interface s2/0

G1(config-if#ip nat outside

G1#show ip nat

Pro	Inside global	Inside local	Outside local	Outside global
tcp	169.10.1.50:1025	10.10.1.2:1025	175.10.1.2:23	175.10.1.2:23
tcp	169.10.1.50:1026	10.10.1.2:1026	175.10.1.2:23	175.10.1.2:23
tcp	169.10.1.50:1027	10.10.1.2:1027	175.10.1.2:23	175.10.1.2:23
tcp	169.10.1.50:1028	10.10.1.2:1028	175.10.1.2:23	175.10.1.2:23
tcp	169.10.1.50:1029	10.10.1.2:1029	175.10.1.2:23	175.10.1.2:23

Трансляция сетевых адресов (портов) (РАТ)

G1(config)#ip nat inside source list 1 interface s2/0 overload

G1(config)#access-list 1 permit 10.10.1.0 0.0.0.255

G1(config)#interface fa0/0

G1(config-if)# ip nat inside

G1(config-if)#interface s2/0

G1(config-if#ip nat outside

G1#show ip nat

Pro	Inside global	Inside local	Outside local	Outside global
tcp	175.10.1.1:1025	10.10.1.2:1025	175.10.1.2:23	175.10.1.2:23
tcp	175.10.1.1:1026	10.10.1.2:1026	175.10.1.2:23	175.10.1.2:23
tcp	175.10.1.1:1027	10.10.1.2:1027	175.10.1.2:23	175.10.1.2:23
tcp	175.10.1.1:1028	10.10.1.2:1028	175.10.1.2:23	175.10.1.2:23
tcp	175.10.1.1:1029	10.10.1.2:1029	175.10.1.2:23	175.10.1.2:23

Демилитаризованная зона (DMZ)

DMZ (*Demilitarized Zone*, ДМ3) — сегмент сети, содержащий общедоступные сервисы и отделяющий их от частных. В качестве общедоступного может выступать, например, вебсервис, при этом другие локальные ресурсы (например, файловые серверы, рабочие станции) необходимо изолировать от внешнего доступа.

СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ ACL (Access Control Lists)

Списки управления доступом являются частью комплексной системы безопасности сети. Они содержат набор инструкций (директив) какие порты и адреса блокировать, а какие наоборот разрешить.

Включают перечень особых директив (предписаний): «разрешить» (*permit*) и «запретить» (*deny*). В процессе приема кадра осуществляется проверка полей заголовка пакета и сегмента.

СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ АСЬ - ФУНКЦИОНИРОВАНИЕ

Пакет из локальной частной сети приходит на интерфейс маршрутизатора fa0/1. Маршрутизатор проверяет есть ли ACL на интерфейсе или нет, если он есть, то дальше обработка ведется по правилам списка доступа строго в том порядке, в котором записаны выражения.

Если в списке доступа разрешается проходить пакету, то маршрутизатор отправляет пакет провайдеру через интерфейс **fa0/0**, если список доступа не разрешает проходить пакету, пакет уничтожается. Если список доступа отсутствует — пакет пропускается без всяких ограничений. Перед тем как отправить пакет провайдеру, маршрутизатор ещё проверяет интерфейс **fa0/0** на наличие исходящего ACL.

ACL не оказывает никакого влияния на трафик, генерируемый самим маршрутизатором.

СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ ACL (Access Control Lists)

Каждое предписание в списке доступа записывается отдельной строкой. Для одного списка можно определить несколько директив.

В конце каждого списка стоит неявное правило «deny all».

Для протокола ІР поддерживаются списки доступа:

- ✓ стандартные (проверяют только адрес отправителя пакета, номера 1-99);
- ✓ расширенные (проверяют адрес отправителя, адрес получателя, порты, тип протокола и др. номера 100-199).
- ✓ динамические (Dynamic ACL), в котором некоторые строчки списка до поры до времени не работают, но когда администратор подключается к маршрутизатору по протоколу telnet, эти строчки включаются на ограниченное время, то есть администратор может оставить для себя «дыру» в безопасности для отладки или выхода в сеть.

СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ *ACL*

TimeBased ACL — временные ACL, у которых некоторые строчки срабатывают только в какое-то время. Например, с помощью таких ACL легко настроить, чтобы в офисе доступ в Интернет был только в рабочее время.

Reflexive ACL — зеркальные списки контроля доступа, позволяют запоминать, кто обращался из данной сети наружу (с каких адресов, с каких портов, на какие адреса, на какие порты) и автоматически формировать зеркальный ACL, который будет пропускать обратный трафик извне вовнутрь только в том случае, если изнутри было обращение к данному ресурсу.

ТСР/UDP/ICMP сессии, инициируемые из LAN

ACL reflect evaluate

Gio/1 Gio/0

INTERNET

ПРИМЕРЫ СТАНДАРТНЫХ СПИСКОВ ДОСТУПА

Router(config)#access-list <номер списка от 1 до 99> {permit|deny|remark} {address | any | host} [source-wildcard] [log]

remark - комментарий; source-wildcard — инвертированная маска 000...01111

0 в обратной маске означает проверку этого бита адреса, а 1 означает, что проверка этого бита не производится.

Any — это специальное слово, которое заменяет адрес сети и обратную маску соответствующие 0.0.0.0 0.0.0.0 и означает, что под правило проверки подпадают абсолютно все хосты из любых сетей.

Специальное слово — **host** означает, что неявно используется маска 0.0.0.0 — то есть проверке подлежит один единственный указанный адрес.

Пример 1.

Маршрутизатор должен разрешить прохождение трафика из сети только компьютеру (хосту) с адресом 192.168.3.2.

access-list 1 permit 192.168.3.2 0.0.0.0

ПРИМЕРЫ СТАНДАРТНЫХ СПИСКОВ ДОСТУПА

Пример 2.

Разрешить прохождение пакетов через маршрутизатор от всех хостов сети с номером 140.12.11.0, кроме хостов 140.12.11.5 и 140.12.11.6, а также разрешить прохождение всего остального трафика через интерфейс, на котором установлен список доступа:

```
access-list 2 deny host 140.12.11.5
access-list 2 deny host 140.12.11.6
access-list 2 permit 140.12.11.0 0.0.0.255
access-list 2 permit any
```

ПРИМЕРЫ РАСШИРЕННЫХ СПИСКОВ ДОСТУПА

Router(config)#access-list access-list-number {deny | permit} protocol source \ source-

wildcard destination destination-wildcard \ [precedence precedence] [tos tos] [established] [log]

established: разрешается прохождение TCP-сегментов, которые являются частью уже созданной TCP-сессии.

log: вызывает выдачу записи о совпадении пакета с данным критерием на консоль и в системный лог-файл.

tos: Type of Service (тип обслуживания); precedence: приоритет.

Пример:

Блокировать (запретить) доступ TCP пакетов со всех хостов к серверу с IP-адресом 140.12.11.10

!access-list 102 deny TCP 0.0.0.0 255.255.255.255 140.12.11.10 0.0.0.0 !или сокращенная запись: access-list 102 deny TCP any host 140.12.11.10

ОБРАБОТКА СПИСКОВ ДОСТУПА

Трафик, поступающий на маршрутизатор, сравнивается с записями ACL на основе очередности появления записей в маршрутизаторе. Новые записи добавляются в конец списка. Маршрутизатор продолжает поиск до нахождения соответствия. Если маршрутизатор доходит до конца списка, не найдя соответствий, трафик не принимается. По этой причине наиболее часто используемые записи должны располагаться в начале списка. Существует неявный запрет на трафик, который не разрешен. Список ACL с единственной записью "deny" приводит к запрету всего трафика. Необходимо использовать как минимум одну разрешающую запись ACL, иначе весь трафик будет блокироваться.

Результаты применения этих двух списков ACL (101 и 102) аналогичны. access-list 101 permit ip 10.1.1.0 0.0.0.255 172.16.1.0 0.0.0.255

access-list 102 permit ip 10.1.1.0 0.0.0.255 172.16.1.0 0.0.0.255 access-list 102 deny ip any any

СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ АСЬ

После того, как список создан, необходимо определить направление (входящий или исходящий) трафика и на каком интерфейсе он будет фильтроваться:

Router(config-if)# ip access-group номер_списка in | out

Пример назначения списка доступа 33 интерфейсу fast ethernet:

Router(config)#interface fa 0/1
Router(config-if)#ip access-group 33 in

Запретить весь TCP трафик от любого хоста на конкретный хост с адресом 172.16.1.5. Причем запрет действует при условии, что запросы идут на порты получателя от 5001 и выше

Router(config)#access-list 100 deny tcp any host 172.16.1.5 gt 5000

Для просмотра настроек используются следующие команды:

Router# show running-config Router# show ip access-lists

ИМЕНОВАННЫЕ СПИСКИ УПРАВЛЕНИЯ ДОСТУПОМ *NACL*

Ничем не отличаются от стандартных и расширенных списков, однако позволяют гибко редактировать вновь созданные списки.

Стандартные и расширенные списки **редактировать нельзя**. К примеру, нельзя в середину списка вставить команду или удалить ее. Для этого нужно сначала **деактивировать список на самом интерфейсе**, а затем полностью его удалить и настроить заново.

Именованный список **требует** использовать **названия** списков **вместо их номеров**. Все введенные команды нумеруются **с шагом 10**, что позволяет легко добавлять и удалять команды.

Для стандартных именованных списков:

Router(config)# ip access-list standard название
Router(config-std-nacl)# deny IP_aдрес отправителя инверт_маска

Чтобы удалить ненужную команду достаточно узнать ее номер. Для этого нужно ввести команду:

Router# show ip access-list название затем ввести команду удаление строки (no) Router(config-ext-nacl)# no 10

РЕДАКТИРОВАНИЕ ИМЕНОВАННЫХ СПИСКОВ УПРАВЛЕНИЯ ДОСТУПОМ *NACL*

У именованных списках ACL можно удалять конкретные записи, а также добавлять записи между имеющимися правилами с присвоением им номера между номерами правил, между которыми добавляется новое правило.

Например, имеется ACL с темя записями:

R1# show access-lists

Standard IP access-list WEBSERVER

10 permit 192.168.10.10

20 deny 192.168.10.0, wildcard bits 0.0.0.255

30 deny 192.168.12.0, wildcard bits 0.0.0.255

Пусть надо добавить еще одно правило:

R1(config)# access-list standard WEBSERVER R1(config-std-nacl)# 15 permit 192.168.10.13

Вот, что получилось:

R1# show access-lists

Standard IP access-list WEBSERVER

10 permit 192.168.10.10

15 permit 192.168.10.13

20 deny 192.168.10.0, wildcard bits 0.0.0.255

30 deny 192.168.12.0, wildcard bits 0.0.0.255

ПРОСМОТР И ПРОВЕРКА СПИСКОВ УПРАВЛЕНИЯ ДОСТУПОМ

Используется команда:

Router# show access-lists {access-list-mumber | name}

Например,

R1# show access-lists - выводит все ACL

R1# show access-lists 10 - выводит ACL с номером 10

R1# show access-lists NAM - выводит ACL с именем NAM