ALGORITHM ANALYSIS

CSE/IT 122 ~ Algorithms and Data Structures

EX: $N < 2^N$

- \rightarrow Show that n < 2ⁿ for all positive integers
- → Proof:
 - Basis Step: $1 < 2^1 = 2$, which is true
 - Inductive Step: Assume true for P(n). That is we assume $n < 2^n$ for some value n.
 - Need to show $(n + 1) < 2^{n+1}$
 - Add 1 to each side of n < 2ⁿ
 - $N + 1 < 2^n + 1$ using the assumption for P(n)
 - Now $n + 1 < 2^n + 1 <= 2^n + 2^n = 2^n(1 + 1) = 2^n2 = 2^{n+1}$

$[X: N \rangle = 4, N! \rangle 2^N$

- \rightarrow Show for n >= 4, n! > 2ⁿ
- → Proof:
 - Basis Step: n = 4, $4! = 24 > 2^4 = 16$
 - Inductive Step: Assume for some n, n! > 2ⁿ
 - Show $(n + 1)! > 2^{n+1}$
 - $(n + 1)! = (n + 1) * n! > (n + 1) * 2^n$
 - Now for $n \ge 4$, $n + 1 \ge 2$ for all n
 - So $(n + 1) * 2^n >= 2 * 2^n = 2^{n+1}$

FOR YOU TO TRY: N³ - N IS DIVISIBLE BY 3

→ Prove n³ - n is divisible by 3 whenever n is a positive integer

FOR YOU TO TRY: N³ - N IS DIVISIBLE BY 3

- → Show n³ n is divisible by 3 whenever n is a positive integer
- → Proof:
 - Basis Step: $1^3 1 = 0$ which is divisible by 3
 - Inductive Step: Assume n³ n is divisible by 3
 - Need to show $(n + 1)^3 (n + 1)$ is divisible by 3
 - $(n + 1)^3 (n + 1) = n^3 + 3n^2 + 3n + 1 (n + 1)$
 - $+ = (n^3 n) + 3(n^2 + n)$
 - First term is divisible by 3, and by inductive step, 2nd term is divisible by 3

EX: FIBONACCI

- \rightarrow Fibonacci numbers $F_{n+1} = F_n + F_{n-1}$ and $F_0 = 1$, $F_1 = 1$
- \rightarrow This produces the sequence 1,1,2,3,5,8,13,21,...
- → Fibonacci sequences appear in all kinds of weird places.
 - For example, the length of strings you can form from the alphabet
 {0,1} with no consecutive 1's in the string
 - Strings are:
 - The empty string ~ length 0, one of those
 - 1,0 ~ length 1, two of those
 - 00, 01, 10 ~ length 2, 3 of those
 - 000, 001, 010, 100, 101 ~ length 3, five of those
- → To proof, simply take $n \to \infty, \frac{F_{n+1}}{F_n} = \phi$ and show that $\left|F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \right] \right|$

EX: A PERFECT BINARY TREE

- \rightarrow Claim: A perfect binary tree (every child has two nodes except the leaves and every level is completely filled aka complete binary tree by some authors) with k levels has exactly $2^k 1$ nodes. Root node is at level 1.
- → Proof: Proof by induction on number of levels.

EX: A PERFECT BINARY TREE

- → Proof: Proof by induction on number of levels.
 - Basis Step: This is true for k = 1, since a complete binary tree with on level consists of a single node and $2^1 1 = 1$
 - Inductive Step: Suppose a complete binary tree with k levels has 2^k-1 nodes.
 - Show a complete k+1 binary tree with k+1 levels has 2^{k+1}-1 nodes
 - A complete binary tree with k+1 levels consists of a root plus two trees with k levels
 - So by the induction hypothesis, the total number of nodes is $0 + 2(2^k 1) = 2^{k+1} 1$

FOR YOU TO TRY: A TILING PROBLEM

→ Show that any 2ⁿ x 2ⁿ chessboard, where n is any positive integer, with one square removed can be tiled using L-shaped pieces. The L-shaped piece covers 3 squares at a time.

The black tile represents the removed square

A TILING PROBLEM: SOLUTION

→ Basis Step: P(1) is true, since any 2x2 chessboard can be tiled with an L-shaped piece. As seen in the picture below.

A TILING PROBLEM: SOLUTION

- → Inductive Step: Assume P(n) is true, any 2ⁿx2ⁿ chessboard can be tiled with L-shape pieces with one square removed from the chessboard
 - Have to show that it is true for P(n + 1) case given P(n) is true.
 - Take any $2^{n+1}x2^{n+1}$ chessboard and remove a piece. A $2^{n+1}x2^{n+1}$ chessboard contains 4 2^nx2^n chessboards as $2^{n+1}x2^{n+1} = 2(2^n) = 4x2^nx2^n$
 - The missing piece must be in one of the $2^n \times 2^n$ chessboards. By assumption, this can be tiled.
 - For the other 3 2ⁿx2ⁿ boards remove the piece that touches the center of the larger chessboard. All 3 boards can now be tiled and the remaining 3 pieces which forms an L-shape can also be tiled.

A TILING PROBLEM: SOLUTION

ALGORITHMS AND ANALYSIS

→ Definition: An algorithm is a definite procedure for solving a problem using a finite number of steps.

CALCULATING THE SUM OF 1 TO N

→ First attempt with a for loop long sum_forloop(long n) long i = 1; long sum = 0.0; for(; i <= n; i++) sum += i;return sum;

CALCULATING THE SUM OF 1 TO N

- → How many times does this function execute?
- → Estimate the running time of the program.
- → We will use T(n) to denote the running time of a program.
 - T(n) does not have units
 - Can think of T(n) as the number of instructions executed on an idealized computer
- → Why no units?
 - Run time of a program depends on:
 - Speed of the machine code is running on
 - Compiler used
 - Quality of code

```
long sum_forloop(long n)
{
    long i = 1;
    long sum = 0.0;

for(; i <= n; i++)
    sum += i;

return sum;</pre>
```

RAM MODEL

- → RAM ~ Random Access Machine
- → Machine Independent algorithms
- → RAM Model is a hypothetical computer where:
 - Simple operations, e.g. +,-,/,*,if, etc. take only **one** time step. We do not need to worry about units of the time step or exactly how long a single time step is. The time step has been normalized to 1.
 - Loops and function calls are not simple operations, but involve many single step operations. In general, the time it takes to run through a loop depends on the number of loop iterations.
 - Each memory access takes one time step. No difference if access is on the disk or cache. You have as much memory as you need.

RAM MODEL

- → Measure running time by counting up the number of steps an algorithm takes to execute.
- → If you assume the RAM model can do a given number of steps per second, can get an actual running time.
- → RAM model is a simple model of an idealized computer
- → Although simple, it helps describe algorithms in practice

COUNTING STEPS

- → Consecutive statements
 - Add running time of each statement
- → Loops
 - Loops are not simple operations
 - Running time of the statements inside the loop multiplied by the number of iterations
 - The **for** loop depends on the input n. This is general principle. The running time of a program depends on the inputs to that program.

EX: ONE FOR LOOP

- \rightarrow Note: Fencepost errors ((n-1)-0+1)+1
 - (n-1)-0+1 comes from the loop
 - The plus 1 comes from the last test.

	Cost	Number of Times
for(i = 0; i < n; i++)	c_1	n+1
sum += i;	c_2	n

$$T(n) = c_1 \cdot (n+1) + c_2 \cdot n$$

```
1A)
                                     2)
p = 0
                                     for i = 1 to floor (n/2)
x = 2
                                         a = n - i
for i = 2 to n
    p = (p + i) * x
                                     3)
                                     for i = 0 to n
1B)
                                         b = b * i;
for i = n to 4
    a = 3 * i
    b = 6 * i
```

```
→ 1) for loop fencepost in () and + 1 for test:
     \cdot (n-1-3+1)+1 = n-2

    Inside loop n-3 times (just the fencepost portion)

     • Cost = c_1(n-2) + c_2(n-3)
    1A)
     • p = 0 ~ 1 time, cost c<sub>1</sub>
     • x = 2 \sim 1 time, cost c_3
     • for i = 2 to n \sim (n-2+1)+1, cost c,
     • p = (p+1)*x \sim (n-2+1), cost c_A
     • Cost = c_1 + c_2 + c_3 n + c_4 (n-1)
```

```
2) Fencepost |\frac{n}{2}| - 1 + 1
plus 1 for the test
get for executes c_1 \cdot \lfloor \frac{n}{2} \rfloor + 1
and body of loop executes \left|\frac{n}{2}\right| times
Add together
3) fencepost n - 0 + 1 = n + 1
plus 1 for the test, so executes n+2 times
body of loop
```

HWK O AND HWK 1 AVAILABLE NOW

