

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Alejandro Esteban Pimentel Alarcón
Asignatura:	Fundamentos de Programación
Grupo:	3
No de Práctica(s):	3
Integrante(s):	Laureano González David
No. de Equipo de cómputo empleado:	
No. de Lista o Brigada:	9519
Semestre:	2020-1
Fecha de entrega:	2 de Septiembre de 2019
Observaciones:	Tarde entrega.
-	CALIFICACIÓN: 0

Práctica #3.

Objetivo

Elaborar algoritmos correctos y eficientes en la solución de problemas siguiendo las etapas de Análisis y Diseño pertenecientes al Ciclo de vida del software.

Desarrollo

Comenzamos la práctica viendo la definición de lo que es un *algoritmo*, para posteriormente revisar el ciclo de vida del software; cuando terminamos de revisar estos conceptos se nos fue ejemplificado un algoritmo mediante la receta para preparar "Papas al Horno".

Posteriormente, comenzamos a desarrollar las siguientes actividades.

Actividad 1

Explicar las precondiciones y el conjunto de salidas de los algoritmos para:

- Pescar.
 - o Precondiciones:
 - Estar en un lugar apto para la pesca (lago, río, mar, etc.)
 - Poseer una caña de pescar.
 - Tener carnada.
 - Tener o estar en un bote.
 - Tener un lugar donde depositar los peces atrapados.
 - Salidas:
 - Tener peces pescados.

No haber conseguido nada durante la pesca.

Lavarse las manos:

- o Precondiciones:
 - Tener las manos sucias.
 - Tener un lavamanos.
 - Tener agua y jabón.
 - Tener una toalla limpia.

Salidas:

- Lavarse las manos bien y tenerlas limpias.
- No haberse lavado las manos bien y tenerlas sucias.

Cambiar una llanta.

- o Precondiciones:
 - Tener un auto con una llanta ponchada o en mal estado.
 - Tener una llanta de repuesto.
 - Contar con la herramienta necesaria (gato hidráulico, llave de cruz, etc.)
 - Tener la fuerza necesaria para cambiar la llanta.

Salidas:

- Cambiar la llanta correctamente para así poder utilizar nuestro auto.
- No poder cambiar la llanta y por ende no poder utilizar el auto.
- Convertir un número binario a decimal.
 - o Precondiciones:
 - Tener un número binario.
 - Tener la necesidad de transformar dicho número binario a decimal.
 - Tener lápiz y papel o algún lugar donde hacer cuentas.
 - o Salidas:

- Transformar correctamente el número binario a decimal.
- No transformar correctamente el número binario a decimal.

Actividad 2

Desarrollar los algoritmos para:

- Determinar si un número es positivo o negativo:
 - o Precondiciones: Tener el dato del valor de algún número real "x".
 - o Al tener el número, observamos su valor con respecto al cero.
 - Si x > 0, el número es positivo.
 - Si x< 0, el número es negativo.
 - \circ Si x = 0, no es ni positivo ni negativo, es simplemente cero.
 - Salida1: "El número x es positivo" (si x es mayor que cero).
 - Salida2: "El número x es negativo" (Si x es menor que cero).
 - Salida3: "El número es no es positivo ni negativo, es cero" (Si x es igual a cero).
- Obtener el mayor de dos números diferentes:
 - Precondiciones: Tener dos números naturales "x" y "y" cada uno con un valor conocido y diferentes entre sí.
 - Observamos el valor de ambos números.
 - Si x > y, entonces x es el mayor de ambos números.
 - Si x < y, entonces y es el mayor de ambos números.
 - Salida1: "El número x es mayor que y" (Si x > y)
 - Salida2: "El número y es mayor que x" (Si x < y)
 - Salida3: "Alguno de los números no tiene un valor conocido, no se puede saber cuál es el mayor" (Si x o y no tienen un valor conocido)
- Obtener el factorial de un número.

- o Precondiciones: Tener un número entero "x" mayor o igual a cero.
- Si x > 0, multiplicamos entre si todos los números enteros positivos que hay entre el número x y el número 1.
- o Al resultado de esta multiplicación lo bautizamos como "y".
- \circ Si x = 0, su factorial es igual a 1.
- \circ Si x < 0, llegamos a la salida.
- Salida1: "El factorial del número x es igual a y" (Si x es mayor que cero)
- Salida2: "El factorial del número x es igual a 1" (Si x es igual que cero)
- Salida3: "El número x es negativo, no se puede obtener su factorial"
 (Si x es menor que cero).

Actividad 3

Verificar sus algoritmos anteriores, al "ejecutarlos" paso a paso con los siguientes valores:

• 54, -9, -14, 8, 0.

a) 54=x	6)-9		
.s: x>0 of nómero ex positivo.	.5:	x>0 e no	mero a positiv
· X=54; 54>0	151	X < 0 el núm	into a negetru
· "El número 54 es positivo"		9; -9<0	
· · · · · · · · · · · · · · · · · · ·			es negativo
c)-14=X	8 (11177	- 1 . 24
·Si X>O el número es positivo:		(>0 el ni	mero es posi
·S: X <o el="" es="" negativo.<="" número="" td=""><td>. X=8</td><td>19870</td><td>of the same</td></o>	. X=8	19870	of the same
·x=-14; -14<0	-"E	número 8	es positivo
· "El número - 14 es negativo"	yn Da	A CALL	14 4
· · · · · · · · · · · · · · · · · · ·	1.1	in soil	Africa
6)0	1. 91		4
· S: X20 el número es positivo			
·S: X <o el="" es="" negotivo:<="" número="" td=""><td></td><td>5. 5. 6.</td><td></td></o>		5. 5. 6.	
·S: X=0, no es positivo ni negativo	es sim	olemento cerc	2.
. x=0; 0=0	,		- 1
. "El número no es positivo ni neg	1.00	roca "	

• (4, 5), (-9, 16), (127, 8+4i), (7, m).

a)(4,5), x=4, y=5 · Si XXY, entonces x es el mozor de ambos números. · Si XXy, entonces y es el maror de ambos números. · 4<5 = X<Y · "El número 5 es mayor que 4" b) (-9,16); x=-9, 7=16 ·S: X) y, entonces x es el marior de ambos números. ·S: XXX/ entonces y es el mazor de ambos números. ·-9<16 = x<y · "El número 16 es mazor que -9" c) (127, 8+4;); x=127, y=8+4;=0? ·Sixx, entences x as el major de ambos números. ·Si X<7, entonces + es el mayor de ambos números. · "Alguno de los números no tiene un valor conocido, no se puede saber cual es major." d)(7,m); x=7, y=m=0? "Alguno de los números no tiene un valor conocido, no se puede saber cuál es major.

a)5=)	
	O, multiplicamos entre sí todos los números enteros
positi	ves que hay entre X y 1.
-)· .: 1 . Z · 3 · 4 · 5 = 120
·120	Factorial del número 5 es igual a 120"
b)9=x	
.51	x>0, multiplicamos entre sítodos los números enteros
	ivos que hat entre x + 1.
c)0=X	
·Si x	=0, su factorial es igual a 1.
• "F!	factorial del número O es igual a 1."
d)-3=X	
· x<0	
."El	número -3 es negativo, no se puede obtener su factorial

Actividad 4. Desarrollar algoritmos propios de un procesador (asignando registros genéricos) para:

- Cambiar el signo de un número binario.
 - Precondiciones: Tener los registros "binariosigno1" (este con algún número binario) y "binariosigno2".
 - o Tomar un número binario del "binariosigno1".
 - Empezando de derecha a izquierda, copiar los valores de dicho número en el "binariosigno2" hasta llegar al primer 1.
 - o Copiar también el primer 1.
 - A partir de este punto, invertir los valores al copiarlos, si se tiene un
 0, copiar un 1 y viceversa.
 - o En caso de tenerlo, cambiar el bit de signo.
 - Salida: "El número con el cambio de signo es binariosigno2"
- Hacer una suma larga binaria.
 - Precondiciones: Tener los registros "númerobinario",
 "númeroasumar" y "númerofinal".
 - Tomar un valor de númerobinario.
 - Tomar un valor de númeroasumar.
 - Empezando de derecha a izquierda, emparejar las columnas de los números.
 - Si en una columna se tienen un uno y un cero, el resultado será uno.
 - Si en una columna se tienen un uno y otro uno, el resultado será cero y se le agregará un uno a la siguiente columna.
 - Guardar el resultado final en el registro númerofinal.
 - Salida: "El resultado de la suma es númerofinal."

De esta forma concluyó la práctica.