Bollowing Trees

16

To

G

6

66

6

6

6

6

0

0

0

0

0

0

0

0

1

10

0

(1)

0

3

9

9

5

1

Basectermilongy: Balanced Tree: Ince were suprees heights differ < 1 sken: skew of see is herght (right) - hog ht (lest). Exactise: Binary free of height balanced nodes have a height Ologsa) Droof: Recusion! For a height h hee, we have of FMis H win revices, f(h) = 1 + f(h-1) + f(h-2) > 2 f(h-2)So F(h) =21/2 hance +(h) = d(og2 n) Rotations: - he can preserve all 5 meters of thee with a votation, which is simply shifting the root positione to the left or right. Example: Trep. Roberted left: Rotated Right: (3) le

			80
<u> </u>			
<u> </u>	Exercise: Develop algorithm to height balancing a tree.		0
-	Clame *		6
	1. Rotale 18st light depending on skew to make a	ne	6
<u> </u>	skew1 \leq 1.	e	
	2. Apply method on two children		
	I think this works because it ensues the ballanced conclusion	hos	
-	by making subtrees baranced too.		
Ass.			
, ¹⁴⁴	Rutine Colivation:		
<u> </u>	For each layer, runtime is Das since in defenent	-	
-	possible whatrons. Eeuch time, we cut It needed forward	il.	
	by halfso		Sandir Sandir
	$G(N \cdot \log_2(n)) = O(n \cdot n)$		
	is the nutine		0
			- Care
			-00
			0
_			
-			
			0
			-0
			0
			0
			0
			e