Содержание

0. Вводная лекция	2
1. Современная физическая картина мира. Кинематика материальной точки	2
2. Кинематика материальной точки	4
3. Кинематика вращательного движения. Динамика материальной точки	6
Движение по окружности	6
Законы Ньютона	9
4. Импульс. Закон сохранения импульса.	9
Силы в механике. Сила гравитационного взаимодействия	10
Вес тела	11
Силы трения	11
Как можно измерить массу тел?	11
5. Вращательное движение. Моменты силы и импульса	12
6. Гироскоп. Механическая работа.	15
Гироскоп	16
Механическая работа	16
7. Закон сохранения энергии.	17
8. Тепловые явления.	19
9. Электрическое поле в вакууме	20
Электромагнитное взаимодействие	20
Теорема Гаусса-Остроградского	24

0. Вводная лекция

Задается вопрос: зачем обучающимся программистам нужна физика в учебном плане?

Приводятся цитаты Л. Богуславского, одного из крупнейших IT инвесторов, и Б. Страуструпа, которые считают, что такие фундаментальные дисциплины, как математика, физика, иностранный язык, способствуют развитию мышления человека

Такие компании, как Bell Labs и IBM создали прорывные изобретения в области физики, на основе которых построены компьютерные технологии

В 3-ем семестре курс физики будет состоять из классической механики и основ электричества В 4-ом семестре будут темы магнетизма, колебаний, волн и волновых процессов

В 5-ом семестре будут рассматриваться оптика, основы квантовой физики и квантовые вычисления

Занятия состоят из лекций, практических и лабораторных занятий. Всего в 3-ем семестре будут 5 лабораторных работ

1. Современная физическая картина мира. Кинематика материальной точки

План лекции

- Историческая справка
- Методы и модели в физике
- Изучаемые объекты
- Физика и другие науки
- Фундаментальные взаимодействия
- Кинематика материальной точки. Начало

Физика - раздел естествознания, изучающий свойства и формы движения материи. Под материей понимают вещество и поля.

Научный метод: сначала проводятся наблюдения и эксперименты, из которых выдвигается гипотеза и ищется адекватная математическая модель, эта гипотеза проверяется, и если она подтверждается, то формируется *теория*

Пример - открытие Нептуна: в 1781-1845 годах наблюдались аномалии в движении Урана, в 1845 проведение расчетов координат новой планеты, а в 1846 обнаружилась новая планета Принцип соответствия (Н. Бор, 1923 г.) - каждая новая теория должна включать предыдущую как частный случай

Изучаемые объекты: вселенная, галактики, звездные системы и планеты, экосистемы, макротела, молекулы, атомы, ядра, элементарные частицы

Всего в физике существуют 4 фундаментальных взаимодействия:

Взаимодействие	Квант поля	Область взаимодействия
Гравитационное	гравитон	Macca
Электромагнитное	фотон	все заряженные частицы, атомы, электротехника
Слабое	бозон	радиоактивный распад
Сильное	глюон	атомные ядра, фундаментальные частицы

Механика - раздел физики, изучающий механическое движение, то есть движение тел в пространстве и времени. Механическое движение тел ОТНОСИТЕЛЬНО.

	$\ll 3 \cdot 10^8$ м/с	$pprox 3 \cdot 10^8$ м/с
≫ 1 нм	Классическая	Релятивистская
≪1 нм	Квантовая	Квантовая теория поля

Материальная точка - тело, размерами которого можно пренебречь в условиях данной задачи Абсолютно твердое тело (ATT) - система материальных точек, расстояние между которыми не меняется в процессе движения (деформации в процессе движения пренебрежимо малы) Тело отсчета - тело, относительно которого определяется положение других тел в пространстве Система отсчета - совокупность тела отсчета, связанной с ним системы координат и синхронизированных между собой часов

Степени свободы - число независимых скалярных величин, однозначно определяющих положение тела в пространстве

Материальная точка: 3 степени свободы

Система N материальных точек: 3N степени свободы

АТТ: 6 степеней свободы

Система единиц (le System International d'unites), 1960

$$[t] = c$$
 $[S, l] = M$

7 основных единиц:

$$[S] = M$$
 $[T] = K$

$$[m] =$$
кг $[v] =$ моль

$$[t] = c$$
 $[l] = Kд$

$$[q] = K$$
л

Изначально все физические единицы основывались на материальных предметов, из-за которых точности единиц была низкой, но недавно все единицы были переопределены на основе физических констант.

В природе нет абсолютно точных вычислений. Измерение любой физической величины без погрешности не имеет смысла!

2. Кинематика материальной точки

- Основные способы описания движения
- Основные понятия кинематики
- Кинематика поступательного и вращательного движения
- Прямая и обратная задачи кинематики
- Численные методы при решении задач

Def. Кинематика - раздел механики, изучающий движение тел, независимо от причин, вызывающих это движение.

Def. Траектория - линия, по которой движется материальная точка в пространстве

Def. Путь - длина траектории

Def. Перемещение - вектор, проведенный из начальной точки в конечную

Способы описания движения

Векторный способ

Координатный способ

Естественный (траекторный) способ

однозначно определено с помощью радиус-вектора

Положение точки может быть Положение точки может быть Положение точки определяетоднозначно определено с помо- ся дуговой координатой щью трех скалярных коорди-

Векторный способ

 $\vec{r_1}, \vec{r_2}$ - радиус-векторы, определяющие положения материальной точки в 1 и 2 $\Delta \vec{r} = \vec{r_2} - \vec{r_1}$ - перемещение материальной точки

нат

Def. Скорость - векторная физическая величина, характеризующая быстроту перемещения материальной точки

Средняя скорость - $\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t}$

Мгновенная скорость - $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$

Средняя путевая скорость - $v_{\rm cp} = \frac{\Delta t}{\Lambda}$

Def. Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости материальной точки

Среднее ускорение -
$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$$

Мгновенное ускорение -
$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

Координатный способ

В координатном способе положение точки описано 3 координатами x, y, z (в данном случае в ДПСК)

$$|r| = \sqrt{x^2 + u^2 + z^2}$$

$$\vec{r}(t) = r_x(t)\vec{i} + r_y(t)\vec{j} + r_z(t)\vec{k} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\vec{v}(t) = v_x(t)\vec{i} + v_y(t)\vec{j} + v_z(t)\vec{k}$$

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Прямая задача:

$$\vec{r}(t), x(t), y(t), z(t) \longrightarrow \vec{v}(t), \vec{a}(t), v_x, v_y, v_z, a_x, a_y, a_z$$

Решением является дифференцирование

Обратная задача:

$$\vec{a}(t), a_x, a_y, a_z \longrightarrow \vec{v}(t), \vec{r}(t), x(t), y(t), z(t)$$

Для обратной задачи решением является интегрирование

$$\vec{v} = \frac{d\vec{r}}{dt}$$
 $d\vec{r} = \vec{v}dt$ $\Delta \vec{r} = \int_{t_1}^{t_2} \vec{v}dt$

$$\vec{r} = \vec{r_0} + \Delta \vec{r} = \vec{r_0} + \int_{t_1}^{t_2} \vec{v} dt$$

Аналогично для ускорения

Численное решение ОДУ (обыкновенного дифференциального уравнения) $\frac{dy}{dx} = f(x,y)$ на отрезке $[x_0, x_n]$ при условии $y(x_0) = y_0$

Разбиваем отрезок $[x_0, x_n]$ на конечное число частей введением узловых точек

Шаг разбиения: $h = \frac{x_N - x_0}{N}$

По определению производной $\frac{dy}{dx} = \frac{y_{i+1} - y_i}{h}$, из этого:

Формула Эйлера: $y_{i+1} = y_i + hf(x_i, y_i)$

$$dy = f(x, y)dx$$

$$\Delta y = y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(x, y) dx$$

Естественный (траекторный) способ

Если траектория точки заранее известна, то положение точки задается дуговой координатой l(t)

$$\vec{v} = v_{\tau}\vec{\tau} \quad v_{\tau}\frac{dl}{dt}|\vec{\tau}| = 1$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{d\vec{\tau}}{dt}v_{\tau} \qquad \frac{d\tau}{dt} = \frac{d\tau}{dl} \cdot \frac{dl}{dt} = \frac{d\tau}{dl}v_{\tau}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{d\vec{\tau}}{dt}v_{\tau}^{2}$$

$$d\tau = \tau d\alpha$$

$$dl = Rd\alpha \qquad d\vec{\tau} \uparrow \uparrow \vec{n}$$

R - радиус кривизны траектории

$$\vec{\alpha} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{1}{R}v_{\tau}^{2}\vec{n} \qquad \vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$$

Тангенциальное ускорение отвечает за изменение модуля скорости, направлено по касательной к траектории движения

Нормальное ускорение отвечает за изменение направления вектора скорости, направлено к центру кривизны траектории

3. Кинематика вращательного движения. Динамика материальной точки

План лекции

- Угловые величины: угол поворота, угловая скорость
- Взаимосвязь между линейными и угловыми величинами
- Плоское движение
- Динамика материальной точки
- Законы Ньютона. Силы в механике
- Принципы работы акселерометра

Движение по окружности

Возьмем точку A, положение которое определим через \vec{r} . Точка A движется по окружности вокруг неподвижной оси OO'

Тогда $d\vec{r}$ - перемещение, $d\vec{\phi}$ - элементарный угол поворота (вектор определяет в какую сторону, по часовой или против, обращается по окружности тело; вектор направлен перпендикулярно окружности)

$$|d\vec{r}| = Rd\varphi = r \cdot \sin \alpha d\varphi$$

$$R = r \cdot \sin \alpha$$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

здесь и далее $[\vec{x}\vec{y}]$ - векторное произведение

Угловая скорость - векторная величина, показывающая как меняется угол поворота тела со временем: $\langle \omega \rangle = \frac{\Delta \varphi}{\Delta t}$ $\vec{\omega} = \frac{d\vec{\varphi}}{dt}$

Направление совпадает с направлением угла поворота $d\vec{\varphi}$: $\vec{\omega} \uparrow \uparrow d\vec{\varphi}$

Угловое ускорение - векторная величина, показывающая как меняется угловая скорость тела со временем

$$\langle \beta \rangle = \frac{\Delta \omega}{\Delta t}$$
 $\vec{\beta} = \frac{d\vec{\omega}}{dt} = \frac{d^2 \vec{\varphi}}{dt^2}$

Направление совпадает с направлением вектора изменения скорости $\Delta \vec{\omega} \colon \vec{\beta} \uparrow \uparrow d\vec{\omega}$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

$$dr = d\varphi \cdot r \cdot \sin \alpha = d\varphi \cdot R$$

Выразим скорость
$$\vec{v} = \frac{d\vec{r}}{dt} = [\frac{d\vec{\phi}}{dt}\vec{r}] = [\vec{\omega}\vec{r}]$$

$$v = \omega \cdot r \cdot \sin \alpha = \omega \cdot R$$

Выразим ускорение:
$$\vec{a} = \frac{d\vec{v}}{dt} = \left[\frac{d\vec{\omega}}{dt}\vec{r}\right] + \left[\vec{\omega}\frac{d\vec{r}}{dt}\right] = \left[\vec{\beta}\vec{r}\right] + \left[\vec{\omega}\vec{v}\right] = \vec{a}_{\tau} + \vec{a}_{n}$$

 \vec{a}_{τ} называют тангенциальным ускорением (напраленным по касательной), \vec{a}_{n} - нормальным (направленным к центру)

$$a_{\tau} = \beta \cdot r \cdot \sin \alpha = \beta \cdot R$$

Перемещение, путь, скорость:

$$d\vec{r} = [d\vec{\varphi}\vec{\rho}](\vec{\rho}$$
 - вектор радиуса окружности) $\vec{v} = [\vec{\omega}\vec{\rho}]$

$$dr = d\varphi \cdot R$$
 $v = \omega \cdot R$

$$S = \varphi \cdot R$$

Ускорение: $\vec{a} = [\vec{\beta}\vec{r}] + [\vec{\omega}\vec{v}]$

$$ec{a}_{ au} = [ec{eta}ec{r}]$$
 $ec{a}_{n} = [ec{\omega}ec{v}] = [ec{\omega}[ec{\omega}ec{
ho}]]$ $T = rac{2\pi}{\omega} = rac{1}{v}$ - период $a_{n} = \omega^{2}R = rac{1}{p}v^{2}$ $v = rac{\omega}{2\pi} = rac{1}{T}$ - частота

Плоское движение - движение твердого тела, при котором каждая его точка движется в плоскости, параллельной некоторой неподвижной в данной системе отсчета плоскости

$$\vec{r} = \vec{r}_0 + \vec{r}'$$

$$d\vec{r} = d\vec{r}_0 + d\vec{r}' = d\vec{r}_0 + [d\vec{\varphi}\vec{r}]$$

$$\vec{v} = \vec{v}_0 + [\vec{\omega}\vec{r}]$$

 \vec{v}_C - скорость центра колеса относительно точки отсчета

 $\vec{v}_{\rm Bp}$ - скорость точек колеса относительное его центра

Def. Динамика - раздел механики, изучающий причины, вызывающие движение тел 1687 г. - законы Ньютона, основа классической механики (механики Ньютона), обобщение большего количества опытов (Г. Галилей)

Классическая механика - частный случай 1) СТО при скоростях много меньших скорости света $v \ll c$; 2) квантовой механики при массах, много больших массы атома

В динамике существуют различия между системами отсчета и преимущества одних СО над другими.

Существуют такие системы отсчета, относительно которых свободное тело (тело, на которое не действуют другие тела) движется равномерно и прямолинейно или находится в состоянии покоя. Таким системы называются инерциальными (ИСО)

Принцип относительности Галилея:

Любая CO, движущаяся с постоянной скоростью относительно ИСО, также является ИСО. Тогда справедливо любое из этих утверждений:

- 1. все ИСО эквивалентны друг другу по своим механическим свойствам
- 2. во всех ИСО свойства пространства и времени одинаковы
- 3. законы механики одинаковы во всех ИСО

Преобразования Галилея - преобразования координат при переходе от одной ИСО к другой K, K' - ИСО

 $ec{V}$ - скорость, с которой движется СО K' относительно K t=t'

 $\vec{r} = \vec{r}' + \vec{V}t$

 $\vec{c} = \vec{v}' + \vec{V}$

 $\vec{a} = \vec{a}'$

Def. Сила - физическая величина, определяющая количественную характеристику и напраление воздействия, оказываемого на данное тело со стороны других тел.

Силы условно можно разделить на силы, возникающие при непосредственном контакте (силы трения, давления) и на силы, возникающие через поля (электрические, гравитационные).

Def. Инертная масса - мера инертности тела, то есть способности тела сохранять свою скорость при движении

Def. Гравитационная масса - мера гравитацонного взаимодействия, величина, определяющая вес тел.

 $m_{\rm ин} = m_{\rm гр}$ с точностью до 10^{-13} кг

В классической механике 1) масса - величина аддитивная $(m_1+m_2+\cdots=m);\ 2)$ m=const

Законы Ньютона

І закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

II закон Ньютона

Ускорение тела пропорционально действующей на него силе и обратно пропорционально его массе $\vec{a} = \frac{\vec{F}}{m}$

Под равнодействующей всех сил понимают векторную сумму всех сил, действующих на тело (принцип суперпозиции)

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 - II закон в импульсной (дифференциальной) форме

III закон Ньютона

Силы, с которыми два тела действуют друг на друга равны по модулю и направлены в противоположные стороны $\vec{F}_{12}=-\vec{F}_{21}$

Закон Гука: $F = k|\Delta l|$ - сила упругости пропорциональна изменению длины тела Акселерометр - прибор, измеряющий ускорение, точнее проекцию кажущегося ускорения. Акселерометр использует II закон Ньютона $(mg - k\Delta l = ma)$ во всех трех осях, что позволяет измерение ускорения в трех направлениях. Акселерометр используется в автомобилях, авиации, телефонах, игровых контроллерах, компьютерах (защита жесткого диска). Сейчас акселерометры изготавливаются в размерах от 20 мкм до 1 мм из кремния

4. Импульс. Закон сохранения импульса.

План лекции

- Силы в механике
- Универсальные законы природы законы сохранения
- Импульс материальной точки
- Закон сохранения импульса
- Центр масс. Ц-система

Силы в механике. Сила гравитационного взаимодействия

Все силы в механике относятся к гравитационным и электромагниным фундаментальным воздействиям. Это можно заметить на примере законов всемирного тяготения и Кулона:

$$\vec{F} = G \frac{m_1 m_2}{r_{12}^3} \vec{r}_{12}$$

Закон всемирного тяготения

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^3} \vec{r}_{12}$$

Запишем закон всемирного тяготения для тела m на расстоянии r от Земли (радиуса R и массы M_3):

$$|\vec{F}| = G \frac{mM_3}{(R+r)^2}$$

С другой стороны, любое тело вблизи поверхности Земли движется с ускорением свободного падения \vec{q} , следовательно, сила, действующая на тело, равна:

$$F = G\frac{mM_3}{R^2} = mg$$

Одинаково ли ускорение свободного падения на поверхности Земли?

Пусть k - ИСО, k' - НИСО (неинерциальная СО), а \vec{a}', \vec{v}' ускорение и скорость в системе k', а сама система k' движется с ускорением $\vec{a_0}$ и вокруг оси с угловой скоростью $|\vec{\omega}| = const$ Тогда получаем ускорение в НИСО: $\vec{a}' = \vec{a} + \omega^2 \vec{\rho} + 2[\vec{v}'\vec{\omega}] - \vec{a}_0$ $ec{a}$ - ускорение тела в системе k'

 $\omega^2 \vec{\rho}$ - центробежное ускорение

 $2[\vec{v}'\vec{\omega}]$ - ускорение Кориолиса

 \vec{a}_0 - поступательное ускорение (системы отсчета k' для k)

 $m\vec{a}' = \underline{m\vec{a}} + \underline{m\omega^2\vec{\rho} + 2m[\vec{v}'\vec{\omega}] - m\vec{a}_0}$ - основное уравнение динамики в НИСО силы инерции (т. н. фиктивные)

 $m\omega^2\vec{\rho}$ - центробежная сила

 $2m[\vec{v}'\vec{\omega}]$ - сила Кориолиса

 $m\vec{a}_0$ - поступательная сила инерции

В НИСО возникают так называемые силы инерции (фиктивные), центробежная и Кориолиса связаны с вращением

Сила Кориолиса будет действовать только на те тела, которые движутся

Из закона всемирного тяготения можно вывести ускорение свободного падения гравитационное: $g_{\text{грав}} = G \frac{M_3}{p^2} = 9.81 \dots 9.83 \frac{M_3}{c^2}$

Из этого получить ускорение эффективное: $g_{\rm 9фф} = g_{\rm rpas} + a_{\rm цб} = 9.78 \dots 9.83$ (ускорение свободного падения уменьшается на 3 сотых из-за вращения)

Вес тела

Def. Вес тела - сила, с которой тело действует на неподвижную относительно него опору В случае опоры |P| = |N| (N - сила реакции опоры)

Рассмотрим случай, когда тело находится в неподвижном состоянии на поверхности:

$$m\vec{g} + \vec{N} = 0$$
 $N - mg = 0$ $P = mg$

Вес тела равен силе тяжести только при $\vec{a} = 0$ системы отсчета

Силы трения

Силы трения появляются при перемещении соприкасающихся тел или их частей относительно друг друга. Различают сухое и вязкое трение. К сухому трению относится трение покоя, трение скольжения и трение качения

Сила трения покоя применима не телам, которые покоятся; она не может превышать некоторого максимального значения: $0 \le F_{\text{TD.}} \le \mu_0 N$ (где μ_0 - коэффициент трения покоя)

Сила трения скольжения возникает при движении соприкасающихся тел. В общем случае сила трения скольжения зависит от скорости движения, но для широкого класса тел равна максимальной силе трения покоя и подчиняется закону Амонтона-Кулона: $F_{\rm Tp} = \mu N$ В задачах принимается, что $\mu_0 = \mu$, тогда во время покоя сила трения растет линейно, пока не

В задачах принимается, что $\mu_0 = \mu$, тогда во время покоя сила трения растет линейно, пока не достигнет μN , тогда тело начинает движение, и применяется сила трения скольжения

Как можно измерить массу тел?

Для измерения массы необходимо сравнить ее с другой, принятой за эталон. Сравним массы m_1 и m_2

Опыт показывает, что в замкнутой системе - системе, в которой можно пренебречь взаимодействием с другими телами, выполняется соотношение:

$$\begin{array}{l} \frac{\Delta \vec{v}_1}{\Delta \vec{v}_2} = \frac{m_2}{m_1} \\ \Delta \vec{v}_1 \uparrow \downarrow \Delta \vec{v}_2 & v \ll c \end{array}$$

 $m_1 \Delta \vec{v}_1 = -m_2 \Delta \vec{v}_2$ или $m_1 \Delta \vec{v}_1 + m_2 \Delta \vec{v}_2 = 0$

Импульс (количество движения) - векторная величина, равная произведению массы тела на его скорость: $\vec{p} = m\vec{v}$ [p] = $\mathbf{K} \cdot \mathbf{M} / \mathbf{C}$

Определение справедливо для материальной точки и для поступательного движения твердого тела

Импульс системы материальных точек: $\vec{P} = \sum_{i=1}^{N} \vec{p}_i$

Для системы N материальных точек (\vec{F}_i - внешние силы)

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_i \qquad \vec{P} = const$$

Закон сохранения импульса - импульс замкнутой системы остается постоянным

При изменении состояния системы всегда существуют такие величины, которые сохраняются с течением времени. Среди этих величин наиболее важное значение имеют импульс, энергия и момент импульса.

Эти величины обладают свойством аддитивности – значение величин для системы, состоящей из частей, равно сумме значений для каждой из частей в отдельности.

Законы сохранения – универсальные законы природы, связаны с фундаментальными свойствами пространства и времени.

Закон сохранения импульса – однородность пространства
Закон сохранения энергии – однородность времени
Закон сохранения момента импульса – изотропность пространства

5. Вращательное движение. Моменты силы и импульса

Одной из лабораторный работ в курсе механики является работа с маятником Обербека (представлен на рисунке). Принцип его работы таков: к вращающемуся колесу с грузиками на спицах привязана нить, другой конец которой привязан к грузу через блок, груз падает, вращает колесо. В ходе эксперимента можно заметить, что при приближении грузиков к центру колесо начинает раскручиваться быстрее.

Рассмотрим величины, действующие при вращательном движении:

1. Момент силы М

$$M = F \cdot l$$

$$\vec{M} = [\vec{r}\vec{F}]$$
 $M = r \cdot F \cdot \sin \alpha = l \cdot F$

Так как момент силы - векторное произведение, то вектор момента силы направлен перпендикулярно к плоскости радиус-вектора и вектора силы

$$[M] = H \cdot M$$

Аналогично рассмотрим момент силы для противоположных сил:

2. Момент пары сил

$$\vec{M} = \vec{M}_1 + \vec{M}_2 = [\vec{r}_1 \vec{F}_{12}] + [\vec{r}_2 \vec{F}_{21}] = [(\vec{r}_2 + \vec{r}_{21})\vec{F}_{12}] + [\vec{r}_2 \vec{F}_{21}] = [\vec{r}_2 \vec{F}_{12}] + [\vec{r}_2 \vec{F}_{21}] + [\vec{r}_2 \vec{F}_{21}]$$

$$\vec{M} = [\vec{r}_{21}\vec{F}_{12}] = [\vec{r}_{12}\vec{F}_{21}]$$

Момент пары сил равен произведению вектора силы на радиусвектор между точками приложения сил

Аналогично моменту силы можем определить момент импульса:

$$\vec{L} = [\vec{r}\vec{p}]$$

$$L = r \cdot p \cdot \sin \alpha = p \cdot l$$

$$[L] = \kappa \Gamma \frac{M^2}{C} = H \cdot C \cdot M$$

4. Уравнение моментов

$$\frac{d\vec{L}}{dt} = \left[\frac{d\vec{r}}{dt}\vec{p}\right] + \left[\vec{r}\frac{d\vec{p}}{dt}\right] = \left[\vec{v}\vec{p}\right] + \left[\vec{r}\vec{F}\right] = \vec{M}$$

$$\frac{d\vec{L}}{dt} - \vec{M}$$

$$[\vec{v}\vec{p}] \stackrel{0}{\longleftarrow} \vec{v} \uparrow \uparrow \vec{p}$$

$$\frac{d\vec{p}}{dt} = \vec{F} \implies \vec{F}_{\text{внешн}} = 0 \Longrightarrow \vec{p} = const$$
 - закон сохранения импульса
5. Закон сохранения момента импульса

Пусть дана система материальных точек. На них действуют силы, которые мы можен разделить на внутренние и внешние В замкнутой системе внешние силы сведены к 0:

$$\frac{d\vec{L}}{dt} = \vec{M} = \vec{M}_{\text{внешн}} + \vec{M}_{\text{внутр}}$$

Поэтому

$$\vec{M}_{ ext{внешн}} = 0 \Longrightarrow \vec{L} = const$$
 - закон сохранения момента импульса

6. Основное уравнение динамики вращательного движения $L_i = m_i v_i \cdot r_i = m_i \omega \cdot r_i^2 = \omega m_i r_i^2$

$$L = \sum L_i = \omega \sum m_i r_i^2$$

$$\vec{p} = m\vec{v} \qquad L_z = I\omega_z$$

 $I = \sum m_i r_i^2$ - момент инерции системы материальных точек, $[I] = \mathbf{c} \cdot \mathbf{m}^2$

В интегральной форме: $I = \int r^2 dm$

Здесь же выделим различное распределение массы

b) Поверхностное:
$$\sigma = \frac{m}{s} = \frac{dm}{ds}$$

c) Объемное: $\rho = \frac{m}{V} = \frac{dm}{dV}$

c) Объемное:
$$\rho = \frac{m}{V} = \frac{dm}{dV}$$

$$L_z = I\omega_z$$

$$\frac{dL_z}{dL_z} = I\frac{d\omega_z}{d\omega_z}$$

$$\begin{split} L_z &= I\omega_z \\ \frac{dL_z}{dt} &= I\frac{d\omega_z}{dt} = I\beta_z \end{split}$$

 $M_z = I eta_z$ - основное уравнение динамики вращательного движения

Рассмотрим моменты инерции для твердых тел разной формы:

$$I = \int r^{2} dm$$

$$I_{\text{M.T.}} = mr^{2}$$

$$dI = r^{2}$$

$$I = \sum_{i} dI_{i} = \int_{0}^{l} dI = \int_{0}^{l} r^{2} dm = \int_{0}^{l} r^{2} \tau dl = \int_{0}^{l} r^{2} \tau dr = \tau \frac{r^{3}}{3} \Big|_{0}^{l} = \tau \frac{l^{3}}{3} = \frac{ml^{2}}{3}$$

$$I_{\text{Стерж}} = \frac{ml^2}{3}$$

Для кольца тривиально: $I_{\text{кольн}} = r^2 m$

(c) **Диск**

Разбиваем диск на кольца с радиусом r толщиной dr

$$dI = dmr^{2} = \sigma dsr^{2} = \sigma 2\pi r drr^{2} = \sigma dsr^{2}$$

$$I = \int \sigma 2\pi r^{3} dr = \sigma 2\pi \frac{R^{4}}{4} = \frac{mR^{2}}{2}$$

$$I_{\text{диск}} = \frac{mR^2}{2}$$

(d) **Теорема Штейнера**

Теорема Штейнера гласит, что момент инерции тела для неподвижной оси равен сумме момента инерции для оси тела, проходящей через центр масс и параллельной исходной и произведению квадрата расстояния и массы

$$I = I_0 + md^2$$

Пример: кольцо вращается вокруг оси, расположенной на торце кольца, зная момент импульса в центральной оси кольца и расстояние между осями, можем узнать момент импульса для кольца

6. Гироскоп. Механическая работа.

Повторим то, что было на прошлой лекции. Рассмотрим два типа движения:

Поступательное движение

$$d\vec{r}; x, y, z$$
 $\vec{v} = \frac{d\vec{r}}{dt}$
 $\vec{a}_{\tau} = \frac{d\vec{v}}{dt}$
 m
 $\vec{p} = m\vec{v}$
 $\vec{p} = const$ при $\vec{F}_{\rm BH.} = 0$ (ЗСИ)
 $\vec{F} = m\vec{a}$
 $\vec{F} = \frac{d\vec{p}}{dt}$

Вращательное движение

$$\begin{split} d\vec{\varphi} \\ \vec{\omega} &= \frac{d\vec{\phi}}{dt} \\ \vec{\beta} &= \frac{d\vec{\omega}}{dt} \\ I & I_{\text{M.T.}} = mr^2, \qquad I = \int r^2 dm \\ \vec{L} &= I\vec{\omega} \qquad \vec{L} = [\vec{r}\vec{p}] \\ \vec{L} &= const \text{ при } \vec{M}_{\text{BH}} = 0 \text{ (ЗСМИ)} \\ M_z &= I\beta_z \\ \vec{M} &= \frac{d\vec{L}}{dt} \qquad = [\vec{r}\vec{F}] \end{split}$$

Теорема Штейнера: момент инерции I тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела I_0 относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

$$I = I_0 + md^2$$

Также мы рассмотрели моменты инерции для разных тел

Гироскоп

Рассмотрим вращающийся волчок: вращаясь, он постепенно теряет энергию из-за трения и сопротивления воздуха, из-за чего его вращение замедляется, и его ось начинает вращаться по другой оси.

Обозначим за \vec{L}_{ω} момент инерции волчка и за \vec{L}' момент инерции оси. Тогда:

$$\vec{L} = \vec{L}_{\omega} + \vec{L}'$$

$$\vec{L}_{\omega} = I\vec{\omega}$$

Заметим, что в опыте скорость вращения волчка намного больше скорости вращения оси $\omega \gg \omega'$

Из этого $d\vec{L} = L \sin \theta \cdot \omega' dt$

Или в векторной форме:

$$d\vec{L} = [\vec{\omega}\vec{L}]dt$$

$$\vec{M} = [\vec{\omega}\vec{L}]$$

Также заметим, что $L_{\omega} \gg L'$

Способность сохранять положение вращающегося волчка используется в таком приборе, как гироскоп. Гироскоп применяется для определения положения аппарата (например, самолет, космического корабля) в авионике.

 $d\vec{r}$ - элементарное перемещение, в пределах которого сила \vec{F} постоянна

 Fs - проекция силы на направление перемещения

$$d\vec{r} = ds$$

Элементарная работа силы \vec{F} на перемещении $d\vec{r}$

$$dA = \vec{F}d\vec{r} = F \cdot ds \cos \alpha = F_s ds$$

$$A = \sum dA = \int dA$$

$$A = \int_1^2 \vec{F} d\vec{r} = \int_1^2 F_s ds$$

Допустим на тело действует несколько сил:

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots$$

$$A = \int_1^2 \vec{F} d\vec{r} = \int_1^2 (\vec{F}_1 + \vec{F}_2 + \dots) d\vec{r}$$

Мощность - скалярная величина, равная работе силы, совершаемой за единицу времени.

Характеризует скорость, с которой совершается работа

$$N = \frac{dA}{dt} = \frac{\vec{F}d\vec{r}}{dt} = \vec{F}\vec{v}$$
$$A = \int Ndt$$

Работа силы упругости:
$$A = \int_{x_1}^{x_2} (-kx) dx = \frac{kx_1^2}{2} - \frac{kx_2^2}{2}$$

Работа силы тяжести: $A = \int_{1}^{2} m\vec{g}d\vec{r} = mgh_1 - mgh_2$

Работа силы тяготения:
$$A = \int_{r_1}^{r_2} \frac{Gm_1m_2}{r^2} dr = -\frac{Gm_1m_2}{r}\Big|_{r_1}^{r_2} = \frac{Gm_1m_2}{r_1} - \frac{Gm_1m_2}{r_2}$$

Силы, чья работа не зависит от траектории пути, будет называть консервативными (потенциальными)

Тогда из этого мы можем вывести потенциальную энергию:

Потенциальная энергия для силы упругости: $U = \frac{kx^2}{2}$

Потенциальная энергия для силы тяжести: $U = mg\tilde{h}$

Потенциальная энергия для силы тяготения: $U = \frac{Gm_1m_2}{...}$

В общем виде получаем $A = U_1 - U_2$

$$dA = -dU \qquad \vec{F}d\vec{r} = -dU$$

$$\vec{F} = -\left(\frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k}\right)$$

$$\vec{F} = -\operatorname{grad} U = -\nabla U$$

7. Закон сохранения энергии.

$$A = \int \vec{F} d\vec{r} = \int F_s ds \quad F_s = F \cdot \cos \alpha$$

$$A_{\text{ynp.}} = \frac{kx_1^2}{2} - \frac{kx_2^2}{2}$$

$$A = mgh_1^2 - mgh_2$$

$$A = \frac{Gm_1m_2}{r_1^2} - \frac{Gm_1m_2}{r_2^2}$$

$$A = mgh_1^2 - mgh_2$$
 $A = \frac{Gm_1m_2}{r_1^2} - \frac{Gm_1m_2}{r_2^2}$
 $A = U_1 - U_2$, $U(x, y, z)$ - потенциальная энергия, Дж $dA = -dU$

$$dA = -dU$$

$$\vec{F}d\vec{r} = -dU$$

$$d\vec{r}$$
 по Ox

$$F_x dx = -dU$$
$$F_x = -\frac{\partial U}{\partial x}$$

Аналогично для других осей: $F_y = -\frac{\partial U}{\partial u};$ $F_z = -\frac{\partial U}{\partial \tau}$

$$\begin{split} \vec{F} &= F_x \vec{i} + F_y \vec{j} + F_z \vec{k} \\ \vec{F} &= -\left(\frac{\partial u}{\partial x} \vec{i} + \frac{\partial u}{\partial y} \vec{j} + \frac{\partial u}{\partial z} \vec{k}\right) = -\mathrm{grad} U \end{split}$$

 $\vec{F}(x, y, z) \longrightarrow U(x, y, z)$

Например, в электростатике напряженность поля $\vec{E} = -\nabla \varphi$ - это градиент потенциал

Кинетическая энергия

$$A = \int \vec{F} d\vec{r} = \int m\vec{a}d\vec{r} = \int m\frac{d\vec{v}}{dt}d\vec{r} = \int_{v_1}^{v_2} m\vec{v}d\vec{v} = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$$

$$A = U_1 - U_2$$

Энергия вращательного движения
$$E_{\text{кин}} = \frac{mv^2}{2} = \frac{m\omega^2 r^2}{2} = \frac{I\omega^2}{2}$$

Работа при вращательном движении

$$dA = \vec{F}_i d\vec{r}_i = F_{r_i} dr = F_{r_i} r_i d\varphi_i = M_i d\varphi_i$$

$$A = \int \vec{M} d\vec{\varphi} = \int \vec{F} d\vec{r}$$

Механическая энергия - скалярная физическая величина, характеризующая способность тел совершать работу

 $E_{\mathrm{mex}} = E_k + U$ - сумма кинетической и потенциальной энергий

Кинетическая энергия - функция состояния движения системы: $E_k = \frac{mv^2}{2} = \frac{p^2}{2m}$

Потенциальная энергия - функция состояния системы U(x,y,z)

Работа всех сил:

$$A_{12} + A_{\text{внешн}} = E_{\kappa 2} - E_{\kappa 1}$$

$$A_{\text{внешн}} = (E_{\text{K2}} + U_2) - (E_{\text{K1}} + U_1) = E_{\text{Mex2}} - E_{\text{mex1}} = \Delta E$$

Если работа внешних сил равна нулю, то $\Delta E = 0 \Longleftrightarrow E_{\text{mex}} = E_{\text{K}} + U = const$

Закон сохранения энергии: полная механическая энергия замкнутой системы тел, между которым действуют только консервативные силы остается постоянной

Если в системе действуют неконсервативные силы, из-за которых механическая энергия системы уменьшается, то такие силы называют диссипативными. При этом общий ЗСЭ выполняется: потерянная энергия переходит в другие виды, например, тепловую.

Энергия никогда не создается и не уничтожается - она переходит из одной формы в другой.

Задача: полнотелый шарик радиуса r катится со склона с высоты H, на конце склона есть мертвая петля радиуса R. Какая изначальная высота склона H должна быть у шара, чтобы он смог прокатиться по мертвой петле.

Условие прохождения шара по мертвой петле:

$$mg = a_{\text{II}} = \frac{mv^2}{R} \implies v = \sqrt{gR}$$

Кинетическая энергия в верхней точке петли:

$$E_{\rm K} = \frac{mv^2}{2} + \frac{I\omega^2}{2}$$

Шар катится без скольжения, значит имеет место быть вращательное движение, момент инерции

Получаем
$$mgH = 2mgR + \frac{mv^2}{2} + \frac{I\omega^2}{2} = 2mgR + \frac{mv^2}{2} + \frac{1}{3}mr^2 \cdot \frac{v^2}{r^2} = 2mgR + \frac{5}{6}mv^2$$

быть вращательное движение, момент инерции для полнотелого шара
$$I=\frac{2}{3}mr^2$$
 Получаем $mgH=2mgR+\frac{mv^2}{2}+\frac{I\omega^2}{2}=2mgR+\frac{mv^2}{2}+\frac{1}{3}mr^2\cdot\frac{v^2}{r^2}=2mgR+\frac{5}{6}mv^2$ $h=2R+\frac{5v^2}{6a}=2R+\frac{5}{6}R=\frac{17}{6}R$

8. Тепловые явления.

Тепловые явления в физике изучают 2 раздела: молекулярная кинетическая теория (МКТ) и термодинамика. МКТ обычно изучает макроскопические системы, используя статистику, а термодинамика описывает макросистемы, исходя из глобальных параметров

Здесь же исследователи выделили основные положения МКТ: все тела состоят из очень большого числа частиц, и эти частицы постоянно находятся в хаотичном, беспорядочном движении - броуновском движении

Возьмем поршень и посчитаем давление на него - силу на единицу площади:

$$p = \frac{F}{S} \Longrightarrow F = p \cdot S$$

Работа силы давления:

$$dA = \vec{F} \cdot d\vec{s} = p \cdot S \cdot dx$$
$$A = \int pSdx = \int pdV$$

Или знакомая со школы формула $A=p\Delta V$ при p=const (изобарный процесс)

Внутренняя энергия молекул идеального газа $U = \frac{1}{2} \nu RT$

і - степень свободы

 ν - количество вещества (в молях)

 $R = 8.31 \ \frac{\rm Дж}{\rm моль \cdot K} \ - \ \rm универсальная \ газовая постоянная \\ T - \ \rm температура \ (\it T = t^{\circ}C + 273.15 \ K)$

Или для одной молекулы $U = \frac{1}{2}kT$

 $k=1.38\cdot 10^{-23}~\frac{\ensuremath{\upmu\rm{K}}}{\ensuremath{\mbox{K}}}$ - постоянная Больцмана

На каждую степень свободы молекулы приходится $\frac{1}{2}kT$ У инертных газов степень свободы - 3

У двухатомных газов степень свободы - 5 (еще 2 вращательных)

У молекул газов, состоящих из более 2 атомов, степень свободы - 6

 $Q = A + \Delta U$ - количество теплоты, которое получает газ, преобразовывается в работу и изменение внутренней энергии

Закон сохранения тепловой энергии - первое начало термодинамики

Равновесное состояние - состояние системы, при котором нет направленного движения вещества или энергии между ее составляющими или между системой и окружающей средой. Обратимым может быть только равновесный процесс

Второе начало термодинамики гласит: энтропия либо остаётся неизменной, либо возрастает в неравновесных процессах, достигая максимума при установлении термодинамического равновесия

Элементарное приращение энтропии: $dS = \frac{dQ}{T}$

$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$

Для обратимых процессов $\Delta S = 0 \Longrightarrow S = \text{const}$

Для необратимых $\Delta S > 0 \Longrightarrow S \uparrow$

9. Электрическое поле в вакууме

Электромагнитное взаимодействие

Электромагнитное взаимодействие - одно из четырёх фундаментальных взаимодействий, оно существует между частицами, обладающими электрическим зарядом

Электрон переводится с древнегреческого как янтарь - греки заметили, что натертый мехом янтарь притягивает вещи

С тех пор человек обозначил заряд положительным, если в теле образовался его избыток, и отрицательным при его дефиците.

У. Гильберт предложил первый электроскоп: два лепестка фольги в банке, соединенные с металлическим шариком, при касании заряженного предметом шарика лепестки расходятся В 1861 году Максвелл вывел уравнения Максвелла, который стали основой классической электродинамикой:

Уравнения Максвелла

$$\begin{split} \oint_{l} \vec{E} d\vec{l} &= -\int_{S} \frac{\partial \vec{B}}{\partial t} d\vec{S} \\ \oint_{l} \vec{H} d\vec{l} &= I_{\text{полн}} = \int_{S} (\vec{j} - \frac{\partial \vec{D}}{\partial t}) d\vec{S} \\ \oint \vec{D} d\vec{S} &= \int_{V} \rho dV \\ \int_{S} \vec{B} d\vec{S} &= 0 \end{split}$$

Смысл уравнений:

1 уравнение: изменение магнитной индукции порождает вихревое электрическое поле - закон электромагнитной индукции Фарадея

2уравнение: переменное электрическое поле Dи электрический ток \vec{j} будут вызывать магнитное поле - теорема о циркуляции магнитного поля

3 уравнение: электрический заряд порождает электрическую индукции - закон Гаусса

4 уравнение: поток магнитной индукции через замкнутую поверхность равен нулю - закон Гаусса для магнитного поля

Эти уравнения можно переписать в дифференциальной форме:

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$
$$\operatorname{div} \vec{D} = \rho$$
$$\operatorname{div} \vec{B} = 0$$

Второй уравнение можно представить так: $\vec{j} = \sigma \vec{E}$ - плотность тока равна проводимости среды на напряженность поля (закон Ома)

Заряд - характеристика вещества, показывающая, может ли тело участвовать в электромагнитом взаимодействии

Милликен показал, что $\overline{\it e} = -1.6 \cdot 10^{-19} \ {\rm K}_{
m J}$

Позже были найдены заряд электрона $|p|=-1.6\cdot 10^{-19}$ Кл, массы электрона $m_{\overline{e}}=9.1\cdot 10^{-31}$ кг и протона $m_p=1836\cdot m_{\overline{e}}=1.67\cdot 10^{-27}$ кг

Отрицательно заряженное тело - тело, где электронов больше, чем протонов; положительное тело - тело, где электронов меньше, чем протонов

Если тело не заряжено, то его суммарный заряд равен нулю

Точечный заряд - заряженное тело, размерами которого можно пренебречь по сравнению с расстоянием до других заряженных тел

F - q, q2

Путем бесчисленного количества опытов Кулон установил, что $|F| \sim \frac{1}{r^2} \sim q_1 \sim q_2$

В итоге появилась сила Кулона в вакууме: $\vec{F} = \frac{k|q_1||q_2|}{r^3} \vec{r}$

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{\text{H} \cdot \text{m}^2}{\text{K}\pi^2}$$

 $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{\text{M}}$

Электрическое (электромагнитное) поле - определенная форма материи, через которую осуществляются электромагнитные взаимодействия. Любое заряженное тело, помещенное в какую-либо точку поля оказывается под воздействием силы.

Электростатическое поле - поле неподвижных зарядов

Пробный заряд - точечный положительный заряд, который не искажает исследуемое поле, то есть не вызывает в нем перераспределения зарядов

Выделяют 2 характеристики поля:

- Напряженность (силовая)
- Потенциал (энергетическая)

Напряженность электрического поля - векторная величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля. Вектор напряженности совпадает по направлению с силой, действующей на «+» заряд

$$ec{E}=rac{ec{F}}{q}$$
 $ec{E}=rac{k|q|}{r^3}ec{r}$ - напряженность поля точечного заряда

Линии напряженности - линии, касательные к которым в каждой точке поля направлены также, как и вектор напряженности. Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных зарядах. Линии не пересекаются, не замкнуты. Густота линий напряженности пропорциональна модулю вектора напряженности электрического поля

Диполь - система из равных по модулю, но разных по знаку точечных зарядов

Принцип суперпозиции: напряженность поля системы зарядов равна векторной сумме напряженностей полей, которое создает каждый из этих зарядов в отдельности

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n$$

Однородное поле - поле, в каждой точке которого напряженность одинакова по модулю и направлению, например, поле конденсатора

Линейная плотность заряда (однородное распределение заряда): $\tau = \frac{dq}{dl} = \frac{q}{l}$ [τ] = $\frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{J}_{\mathrm{M}}}$

Поверхностная плотность заряда $\sigma = \frac{dq}{dS} = \frac{q}{S}$

Объемная плотность заряда $\rho = \frac{dq}{dV} = \frac{q}{V}$ [ρ] = $\frac{K_{\rm M}^{\rm M}}{M_{\rm M}^{\rm M}}$

Поле на оси тонкого равномерно-заряженного кольца:

Заряд q равномерно распределен по тонкому кольцу радиусом

 $\it R$. Найти напряженность, создаваемую кольцом как функцию расстояния $\it z$ от его центра

$$E = \int_{l} dE = \int_{l} k \frac{dq}{z^{2} + R^{2}}$$

$$dEz = dE \cos \alpha$$

$$E = \sum dE \cdot z = \int dE \cdot z = \int k \frac{dq}{r^{2}} \cdot z$$

$$E = \int \frac{kdq}{r^{2}} \cos \alpha = \frac{k \cos \alpha}{r^{2}} \int dq = \frac{kq \cos \alpha}{r^{2}}$$

$$\cos \alpha = \frac{z}{r}$$

$$r = \sqrt{R^{2} + z^{2}}$$

$$E = \frac{kqz}{(R^{2} + z^{2})^{\frac{3}{2}}}$$

При слишком больших z получаем формулу напряженность для точечного заряда - размерами кольца можно пренебречь

Поле равномерно-заряженной прямой нити:

Бесконечная прямая нить равномерно заряжена с линейной плотностью au. Найти напряженность, создаваемую нитью на расстоянии a от ее центра

В силу симметрии напряженность будет направлена вправо

$$dE_x = dE \cos \alpha = \frac{kdq}{r^2} \cos \alpha$$

$$dq = \tau dl = \left[dl = \frac{dx}{\cos \alpha} = \frac{rd\alpha}{\cos \alpha} \right] = \tau \frac{rd\alpha}{\cos \alpha}$$

$$dE_x = \frac{k\tau rd\alpha}{r^2 \cos \alpha} \cos \alpha = \frac{k\tau d\alpha}{r} = \left[r = \frac{a}{\cos \alpha} \right] = \frac{k\tau}{a} \cos \alpha d\alpha$$

$$E = \frac{k\tau}{a} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \alpha d\alpha = \frac{2k\tau}{a}$$

$$E = \frac{2k\tau}{a}$$

Теорема Гаусса-Остроградского

Подробнее о теореме можно прочитать в конспекте математического анализа

Поток вектора напряженности электрического поля

Поток
$$d\Phi = \vec{E} \cdot d\vec{S} = E_n dS = E \cdot dS \cdot \cos \alpha$$

Поток пропорционален числу линий напряженности электрического поля, пронизывающих площадку dS

$$[\Phi] = \frac{B}{M} \cdot M^2 = B \cdot M$$

Через произвольную поверхность $\Phi = \int_{S} d\Phi = \int \vec{E} d\vec{S}$.

Отсюда $\Phi = E \cdot S \cdot \cos \alpha$

Заряд q в центре замкнутой сферической поверхности

$$\Phi = \oint \vec{E} d\vec{s} \quad \vec{E} \uparrow \uparrow \vec{n}$$

$$E = \frac{kq}{r^2} = \text{const}$$

$$\Phi = \frac{kq}{r^2} \cdot S = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \cdot 4\pi r^2 = \frac{q}{\varepsilon_0}$$

$$\oint \vec{E} d\vec{S} = \Phi = rac{q_{
m BHyTp}}{arepsilon_0}$$
 - теорема Гаусса-Остроградского

