8

Describe fully the single transformation that maps triangle A on to triangle B.

3

9

The formula for the surface area, A, of a closed box is given by

$$A = 2wb + 2wh + 2bh.$$

Rearrange this formula to make b the subject.

.....[3]

3

10 This table summarises the prices of 100 houses advertised for sale in a newspaper.

Price $EC \text{ (thousands)}$ $50 \le C < 150$ $150 \le C < 250$	Number of house		
50 ≤ C < 150	23		
150 ≤ C < 250	32		
250 ≤ C < 500	40		
500 ≤ C < 1000	5		

Draw a histogram to show these data.

[3]

3

		175	
11	The cost, $\pm C$, of printing a film is prop the width, w cm, of the prints.	portional to the square of	
	C = 1.60 when $w = 8$.		
	(a) Express C in terms of w.		
			(a)[3]
	(b) Calculate w when $C = 3.60$.		
			a) (a)
			(b)[2]
			5)

- 12 A standard ice cream cone has diameter 5 cm and height 10 cm.
 - (a) Ice cream is put into a standard cone until it is filled level with the top.

What volume of ice cream does the cone contain?

(m)	cm ³	131
140,	ACCOUNT OF THE PARTY OF THE PAR	1-1

(b) A super cone is mathematically similar to a standard cone and contains 30% more ice cream.

What is the height of the super cone to the nearest centimetre?

(b)cm	[3]
6	-57

- During a chemical reaction, the mass, m grams, of a chemical present after time, t minutes, is given by the formula m = 80 × 0.5t.
 - (a) Complete this table of values.

Time (t minutes)	0	1	2	3	4	5
Mass (m grams)			20		190	2.5

[2]

(b) Draw the graph of m against t.

[2]

(e) Use your graph to solve the equation $80 \times 0.5^t = 30$.

(c)....minutes [1]

3