```
import shap
import pandas as pd
import numpy as np
from xgboost import XGBClassifier
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.compose import ColumnTransformer
from sklearn.model_selection import StratifiedKFold, GridSearchCV,
train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score,
f1_score, confusion_matrix, roc_auc_score
```

```
In [57]: df = pd.read_csv('table.csv')
# replace C with 1 and P with 0
df['Label'] = df['Label'].replace({'C': 1, 'P': 0})
df
```

C:\Users\user\AppData\Local\Temp\ipykernel_13268\3825214023.py:3: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future v ersion. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`

df['Label'] = df['Label'].replace({'C': 1, 'P': 0})

Out[57]:		mean_value_ML	mean_value_AP	mean_distance_ML	mean_distance_AP	mean_dista
	0	0.046123	-1.461512	0.385651	0.543167	
	1	0.042500	-0.365777	0.532939	0.484075	
	2	0.496358	-1.401023	0.364302	0.400104	
	3	0.314393	-0.549541	0.573516	0.486970	
	4	1.412529	0.186249	0.929037	1.094830	
	•••					
	100	2.605348	-2.030942	0.335179	0.524191	
	101	0.776783	1.222163	0.541288	0.659628	
	102	-0.708497	-0.800798	0.466417	0.711986	
	103	0.268076	-1.346882	0.930665	0.949494	
	104	3.524215	-1.546033	0.291584	0.580360	

105 rows × 73 columns

```
In [58]: X = df.drop(['Label'], axis=1)
y = df['Label']

In [59]: cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
```

for i, (train index, test index) in enumerate(cv.split(X, y)):

print(f'Results for split {i+1}')

```
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    clf = XGBClassifier(eval_metric='logloss', random_state=42)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f'Accuracy: {accuracy:.4f}')
    precision = precision_score(y_test, y_pred)
    print(f'Precision: {precision:.4f}')
    recall = recall_score(y_test, y_pred)
    print(f'Recall: {recall:.4f}')
   f1 = f1_score(y_test, y_pred)
    print(f'F1 Score: {f1:.4f}')
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=['Predicted
0', 'Predicted 1'], yticklabels=['Actual 0', 'Actual 1'])
    plt.title('Confusion Matrix')
    plt.show()
    explainer = shap.TreeExplainer(clf)
    shap_values = explainer.shap_values(X_test)
    shap.summary_plot(shap_values, X_test)
```

Results for split 1 Accuracy: 0.8095 Precision: 0.8889 Recall: 0.7273 F1 Score: 0.8000

Results for split 2 Accuracy: 0.7619 Precision: 0.7500 Recall: 0.8182

F1 Score: 0.7826

Results for split 3 Accuracy: 0.7619 Precision: 0.7500 Recall: 0.8182 F1 Score: 0.7826

SHAP value (impact on model output)

Results for split 4 Accuracy: 0.7619 Precision: 0.8000 Recall: 0.7273 F1 Score: 0.7619

Results for split 5 Accuracy: 0.8571 Precision: 0.9000 Recall: 0.8182 F1 Score: 0.8571

