Genetic Algorithms - Brachistochrone Curve

João Rafael (2008111876, jprafael@student.dei.uc.pt) José Ribeiro (2008112181, jbaia@student.dei.uc.pt)

31 de Maio de 2011

Conteúdo

1	Introduction
	1.1 Curva Braquistócrona
2	Implementação
	2.1
	2.2
	2.2.1
	2.2.2
	2.3
	2.4
	2.5
3	Validação
	3.1
4	Experimentação
	4.1
5	Análise de resultados
	5.1
6	Conclusão
	6.1

1 Introduction

Este projecto está inserido no âmbito da disciplina de Introdução à Inteligência Artificial, mais concretamente no seguimento do primeiro projecto, uma vez que implementamos outro tipo de Agentes: Agentes Adaptativos. Ao contrário dos já estudados (Agentes Reactivos), estes baseiam-se fundamentalmente em conceitos da Biologia, nomeadamente a teoria da selecção natural de Darwin aplicada à genética. Este agente representa uma população, que ao longo do tempo (iterações da aplicação), evolui ao sofrer mutações, recombinações entre individos (e os seus genes) e posterior selecção dos mais aptos. Desta forma pretende-se que a aptidão da população evolua, convergindo para o óptimo global.

1.1 Curva Braquistócrona

O problema estudado neste projecto é um clásico da disciplina de cálculo:

Tendo dois pontos, A e B, o objectivo é conhecer a trajectória que minimiza o tempo que uma esfera demora a deslocar-se entre eles, quando sujeita apenas à força da gravidade (com atrito desprezável).

Este problema apenas é válido quando se consideram pares de pontos com a altura de B inferior à de A (ou igual, quando a velocidade inicial é diferente de 0) pois em caso contrário a esfera não consegue efectuar o percurso. Soluções analíticas existem formuladas em separado por Leibniz, L'Hospital, Newton, e Bernoulli. No entanto, o estudo deste problema segundo o paradigma de agentes adaptativos continua interessante pois permite calcular uma aproximação da curva não necessitando de ferramentas matemáticas complexas.

2 Implementação

...

2.2 ...

...

2.2.1 ...

•••

2.2.2 ...

•••

• • •

2.3 ...

...

...

2.4 ...

•••

...

2.5 ...

•••

3 Validação

4 Experimentação

5 Análise de resultados

6 Conclusão