

UCD School of Mathematics and Statistics

STAT40840: Data programming with SAS Laura Kirwan

Lecture 9

Lecture 9: Analysing Data

9.1 General Linear Models 9.2 Generalised Linear Models 9.3 Linear Mixed Models 9.4 Generalised Linear Mixed Models

Objectives – 9.1

- Use a SAS procedure to fit a Linear Model
- Use LSMEANS to compare factor means

GLM procedure

 The GLM procedure uses the method of least squares to fit general linear models.

 Among the statistical methods available in PROC GLM are regression, analysis of variance, analysis of covariance, multivariate analysis of variance, and partial correlation.

GLM procedure

- PROC GLM analyzes data within the framework of general linear models.
- PROC GLM handles models relating one or several continuous dependent variables to one or several independent variables.
- The independent variables can be either classification variables, which divide the observations into discrete groups, or continuous variables.

Scenario

We will continue to use the bodyweight dataset (from assignment1).

We will use the GLM procedure to fit a general linear model including both continuous and categorical explanatory variables

GLM procedure

General linear model

Specifying "gender" as a categorical variable

GLM procedure

General linear model

Diagnostic plots

```
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  output out=glm_out r=r p=p;
run;
```

Creating output dataset


```
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  output out=glm_out r=r p=p;
run;
```

Dependent Variable: Bodyweight0

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	15735.73754	5245.24585	35.93	<.0001
Error	215	31389.92392	145.99965		
Corrected Total	218	47125.66146			

R-Square	Coeff Var	Root MSE	Bodyweight0 Mean
0.333910	16 03476	12 08303	75 35525


```
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  output out=glm_out r=r p=p;
run;
```

Source	DF	Type I SS	Mean Square F	Value Pr >	F
Age Energy_Intake0 Gender	-	3699.83242 3759.19360 8276.71151	3 3759.193603		<.0001 <.0001 <.0001
Source	DF	Type III S	S Mean Square	F Value	Pr > F
Age Energy_Intake0 Gender	- -	2410.75137 1032.82587 8276.71151	7 1032.825877	7.07	<.0001 0.0084 <.0001

GLM procedure

General linear model

```
*GLM - Comparing means;
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  lsmeans gender / pdiff;
run;
```

Comparing Means

L9_D2.sas


```
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  output out=glm_out r=r p=p;
run;
```

Dependent Variable: Bodyweight0

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	15735.73754	5245.24585	35.93	<.0001
Error	215	31389.92392	145.99965		
Corrected Total	218	47125.66146			

R-Square	Coeff Var	Root MSE	Bodyweight0 Mean
0.333910	16 03476	12 08303	75 35525

L9_D2.sas

```
*GLM - Comparing means;
ods graphics on;
proc glm data=work.bodyweight1 plots=(diagnostics);
class gender;
  model bodyweight0 = age energy_intake0 gender /;
  lsmeans gender / pdiff;
run;
```

Least Squares Means

		H0:LSMean1=
	Bodyweight0	LSMean2
Gender	LSMEAN	Pr > t
0	82.4322901	<.0001
1	69.4081596	

Objectives - 9.2

- Use a SAS procedure to fit a Generalised Linear Model
- Explore a variety of link functions

- The GENMOD procedure fits generalized linear models.
- The class of generalized linear models is an extension of traditional linear models that allows the mean of a population to depend on a linear predictor through a nonlinear link function and allows the response probability distribution to be any member of an exponential family of distributions.

- The GENMOD procedure fits a generalized linear model to the data by maximum likelihood estimation of the parameter vector. There is, in general, no closed form solution for the maximum likelihood estimates of the parameters.
- The GENMOD procedure estimates the parameters of the model numerically through an iterative fitting process.
- The dispersion parameter is also estimated by maximum likelihood or, optionally, by the residual deviance or by Pearson's chi-square divided by the degrees of freedom.
- Covariances, standard errors, and p-values are computed for the estimated parameters based on the asymptotic normality of maximum likelihood estimators.

A number of popular link functions and probability distributions are available in the GENMOD procedure. The built-in link functions are as follows:

identity: $g(\mu) = \mu$

logit: $g(\mu) = \log(\mu / (1-\mu))$

probit: $g(\mu) = \Phi^{-1}(\mu)$

(where Φ is the standard normal cumulative distribution function)

power: $g(\mu) = \left\lceil \mu^{\lambda} \right\rceil \quad \text{if } \lambda \neq 1$

 $\log(\mu)$ if $\lambda=1$

log: $g(\mu) = \log(\mu)$

complementary log-log: $g(\mu) = log(-log(1-\mu))$

The available distributions are as follows:

- normal
- binomial (proportion)
- Poisson
- gamma
- inverse Gaussian
- negative binomial
- geometric
- multinomial
- zero-inflated Poisson
- zero-inflated negative binomial

Generalised linear model

Specify distribution

```
proc genmod data=work.bodyweight1 plots=all;
  model bodyweight0 = age energy_intake0 / link=log
  dist=normal;
    output out=genmod_out pred= Pred resraw = Resraw;
  run;
```

Create output dataset

Specify link function

L9_D3.sas

Data Set

```
proc genmod data=work.bodyweight1 plots=all;
    model bodyweight0 = age energy_intake0 / link=log
dist=normal;
    output out=genmod_out pred= Pred resraw = Resraw;
run;
```

Distribution Normal
Link Function Log
Dependent Variable Bodyweight0

Number of Observations Read 220
Number of Observations Used 219
Missing Values 1

WORK.BODYWEIGHT1

Distribution and link function

Model fit

Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 216 39836.7582 184.4294 Scaled Deviance 216 219.0000 1.0139 Pearson Chi-Square 39836.7582 184.4294 216 Scaled Pearson X2 216 219.0000 1.0139 Loa Likelihood -880.5279 Full Log Likelihood -880.5279 AIC (smaller is better) 1769.0558 AICC (smaller is better) 1769.2427

1782.6121

BIC (smaller is better)
UCD School of Mathematics and Statistics

L9_D3.sas

```
proc genmod data=work.bodyweight1 plots=all;
    model bodyweight0 = age energy_intake0 / link=log
dist=normal;
    output out=genmod_out pred= Pred resraw = Resraw;
run;
```

Analysis Of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald 95% C Limits	Confidence	Wald Chi- Square	Pr > ChiSq
Intercept	1	3.9595	0.0593	3.8432	4.0757	4455.50	<.0001
Age	1	0.0042	0.0009	0.0025	0.0060	23.14	<.0001
Energy_Int ake0	1	0.0001	0.0000	0.0000	0.0001	21.12	<.0001
Scale	1	13.4871	0.6444	12.2814	14.8113		

L9_D3.sas

Objectives - 9.3

- Use a SAS procedure to fit a Linear Mixed Model
- Explore a variety of structures for variance-covariance matrix

- The MIXED procedure fits a variety of mixed linear models to data and enables you to use these fitted models to make statistical inferences about the data.
- A mixed linear model is a generalisation of the standard linear model used in the GLM procedure, the generalisation being that the data are permitted to exhibit correlation and nonconstant variability.

- The mixed model generalizes the standard linear model for response y as follows: $y = X\beta + Z\gamma + \varepsilon$
- Here, β is an unknown vector of fixed-effects parameters with known design matrix X, γ is an unknown vector of random-effects parameters with known design matrix Z, and ε is an unknown random error vector whose elements are no longer required to be independent and homogeneous.
- To further develop this notion of variance modeling, assume that γ and ε are Gaussian random variables that are uncorrelated and have expectations 0 and variances **G** and **R**, respectively.

- The REPEATED statement is used to specify the R matrix in the mixed model.
- The RANDOM statement defines the random effects constituting the γ vector in the mixed model, and specifies the **G** matrix. It can be used to specify traditional variance component models and to specify random coefficients. The random effects can be classification or continuous, and multiple RANDOM statements are possible.

Covariance structures

Structure	Description	Parms	(i,j)th element
ANTE(1)	Antedependence	2t - 1	$\sigma_i \sigma_j \prod_{k=i}^{j-1} \rho_k$
AR(1)	Autoregressive(1)	2	$\sigma^2 ho^{ i-j }$
ARH(1)	Heterogeneous AR(1)	t+1	$\sigma_i \sigma_j \rho^{ i-j }$
ARMA(1,1)	ARMA(1,1)	3	$\sigma^{2}[\gamma \rho^{ i-j -1} 1 (i \neq j) + 1 (i = j)]$
CS	Compound symmetry	2	$\sigma_1 + \sigma^2 1(i = j)$
CSH	Heterogeneous CS		$\sigma_i \sigma_j [\rho 1(i \neq j) + 1(i = j)]$
FA(q)	Factor analytic	$\tfrac{q}{2}(2t-q+1)+t$	$\sum_{k=1}^{\min(i,j,q)} \lambda_{ik} \lambda_{jk} + \sigma_i^2 1(i=j)$
FA0(q)	No diagonal FA	$\frac{q}{2}(2t-q+1)$	$\sum_{k=1}^{\min(i,j,q)} \lambda_{ik} \lambda_{jk}$
FA1(q)	Equal diagonal FA	$\tfrac{q}{2}(2t-q+1)+1$	$\sum_{k=1}^{\min(i,j,q)} \lambda_{ik} \lambda_{jk} + \sigma^2 1(i=j)$
HF	Huynh-Feldt	t + 1	$(\sigma_i^2 + \sigma_j^2)/2 + \lambda 1(i \neq j)$
LIN(q)	General linear	q	$\sum_{k=1}^{q} \theta_k \mathbf{A}_{ij}$
TOEP	Toeplitz	t	$\sigma_{ i-j +1}$
TOEP(q)	Banded Toeplitz	q	$\sigma_{ i-j +1} 1(i-j < q)$
TOEPH	Heterogeneous TOEP	2t - 1	$\sigma_i \sigma_j \rho_{ i-j }$
TOEPH(q)	Banded hetero TOEP	t+q-1	$\sigma_i \sigma_j \rho_{ i-j } 1(i-j < q)$
UN	Unstructured	t(t+1)/2	σ_{ij}
UN(q)	Banded	$\frac{q}{2}(2t - q + 1)$	$\sigma_{ij} 1(i-j < q)$
UNR	Unstructured corrs	t(t+1)/2	$\sigma_i \sigma_j \rho_{\max(i,j) \min(i,j)}$
UNR(q)	Banded correlations	$\frac{q}{2}(2t - q + 1)$	$\sigma_i \sigma_j \rho_{\max(i,j) \min(i,j)}$
UN@AR(1)	Direct product AR(1)	$t_1(t_1+1)/2+1$	$\sigma_{i_1j_1} ho^{ i_2-j_2 }$
UN@CS	Direct product CS	$t_1(t_1+1)/2+1$	$\begin{cases} \sigma_{i_1 j_1} & i_2 = j_2 \\ \sigma^2 \sigma_{i_1 j_1} & i_2 \neq j_2 \\ 0 \leq \sigma^2 \leq 1 \end{cases}$
UN@UN	Direct product UN	$t_1(t_1+1)/2 + t_2(t_2+1)/2 - 1$	$\sigma_{1,i_1j_1}\sigma_{2,i_2j_2}$
VC	Variance components	q	$\sigma_k^2 l(i = j)$
			and <i>i</i> corresponds to <i>k</i> th effect

Common covariance structures

Description	Structure	Example
Variance components	VC (default)	$\begin{bmatrix} \sigma_B^2 & 0 & 0 & 0 \\ 0 & \sigma_B^2 & 0 & 0 \\ 0 & 0 & \sigma_{AB}^2 & 0 \\ 0 & 0 & 0 & \sigma_{AB}^2 \end{bmatrix}$
Compound symmetry	CS	$\begin{bmatrix} \sigma^2 + \sigma_1 & \sigma_1 & \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma^2 + \sigma_1 & \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma_1 & \sigma^2 + \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma_1 & \sigma_1 & \sigma^2 + \sigma_1 \end{bmatrix}$
Unstructured	UN	$\begin{bmatrix} \sigma_1^2 & \sigma_{21} & \sigma_{31} & \sigma_{41} \\ \sigma_{21} & \sigma_2^2 & \sigma_{32} & \sigma_{42} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{43} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{bmatrix}$
Banded main diagonal	UN(1)	$\begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 \\ 0 & 0 & 0 & \sigma_4^2 \end{bmatrix}$
First-order autoregressive	AR(1)	$\sigma^{2} \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix}$

Linear Mixed model

Specify fixed effects

```
proc mixed data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age gender y2 / solution;
    repeated /subject=Participant_ID type=ar(1) r;
run;
Specify structure of
```

Specify random effect

Specify structure of variance-covariance matrix

L9_D4.sas


```
proc mixed data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age gender y2 / solution;
    repeated /subject=Participant_ID type=ar(1) r;
run;
```

Random Effects

Covariance Parameter Estimates				
Cov Parm Subject Estimate				
AR(1)	Participant_ID	0.9668		
Residual		146.19		


```
proc mixed data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age gender y2 / solution;
    repeated /subject=Participant_ID type=ar(1) r;
run;
```

Fixed Effects

Solution for Fixed Effects						
Effect	Gender	Estimate	Standard Error	DF	t Value	Pr > t
Intercept		56.5605	2.7823	217	20.33	<.0001
Age		0.2271	0.05941	217	3.82	0.0002
Gender	0	13.9088	1.6442	217	8.46	<.0001
Gender	1	0				
y2		0.000903	0.000263	174	3.44	0.0007

L9_D4.sas

Alternative covariance structure

```
proc mixed data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age gender y2 / solution;
    repeated /subject=Participant_ID type=arh(1) r;
run;
```

Random Effects

Covariance Pa				
Cov Parm	Subject	Estimate	_	
Var(1)	Participant_ID	147.27		Heterogeneous
Var(2)	Participant_ID	144.24		variance
ARH(1)	Participant_ID	0.9667		

Objectives - 9.4

- Use a SAS procedure to fit a Generalised Linear Mixed Model
- Explore a variety of structures for variance-covariance matrix

- The GLIMMIX procedure fits statistical models to data with correlations or nonconstant variability and where the response is not necessarily normally distributed. These models are known as generalized linear mixed models (GLMM).
- GLMMs, like linear mixed models, assume normal (Gaussian) random effects. Conditional on these random effects, data can have any distribution in the exponential family.

- The exponential family comprises many of the elementary discrete and continuous distributions. The binary, binomial, Poisson, and negative binomial distributions, for example, are discrete members of this family. The normal, beta, gamma, and chi-square distributions are representatives of the continuous distributions in this family.
- In the absence of random effects, the GLIMMIX procedure fits generalized linear models (fit by the GENMOD procedure).

Generalised Linear Mixed model

```
proc glimmix data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age gender y2 / solution link=log dist=normal;
    random    _residual_ /subject=Participant_ID type=arh(1) g;
run;
```

Specify random effect

Specify link function and distribution

L9_D6.sas

- The RANDOM statement defines the Z matrix of the mixed model, the random effects in the γ vector, the structure of G, and the structure of R.
- You can specify the _RESIDUAL_ keyword before the option slash (/) to indicate a residual-type (R-side) random component that defines the matrix. Basically, the _RESIDUAL_ keyword takes the place of the random-effect if you want to specify R-side variances and covariance structures.

Heterogenous variance-covariance matrix

Provides a mechanism to obtain statistical inferences for the covariance parameters.

Identifies groups by which to vary the covariance parameters

L9_D6.sas

- The RANDOM statement defines the Z matrix of the mixed model, the random effects in the γ vector, the structure of G, and the structure of R.
- You can specify the _RESIDUAL_ keyword before the option slash (/) to indicate a residual-type (R-side) random component that defines the matrix. Basically, the _RESIDUAL_ keyword takes the place of the random-effect if you want to specify R-side variances and covariance structures.

Heterogenous covariance structure

```
proc glimmix data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age    gender y2 / solution link=power(0.5) dist=normal;
    random _residual_ /subject=Participant_ID type=arh(1) group=gender;
    covtest 'Equal Covariance Matrices' homogeneity;
r_n;
```

Covariance Parameter Estimates								
Cov Parm	Subject	Group	Estimate	Standard Error				
Var(1)	Participant_ID	Gender 0	143.30	20.3454				
Var(2)	Participant_ID	Gender 0	145.94	20.9289				
ARH(1)	Participant_ID	Gender 0	0.9597	0.008335				
Var(1)	Participant_ID	Gender 1	150.43	19.6600				
Var(2)	Participant_ID	Gender 1	141.57	19.0865				
ARH(1)	Participant_ID	Gender 1	0.9730	0.005322				

L9_D6.sas

Heterogenous covariance structure

```
proc glimmix data=work.stacked plots=all;
    class gender time Participant_ID;
    model y1 = age    gender y2 / solution link=power(0.5) dist=normal;
    random _residual_ /subject=Participant_ID type=arh(1) group=gender;
    covtest 'Equal Covariance Matrices' homogeneity;
r_n;
```

Tests of Covariance Parameters Based on the Residual Pseudo-Likelihood								
Label	DF	-2 Res Log P-Like	ChiSq	Pr > ChiSq	Note			
Equal Covariance Matrices	3	393.92	4.31	0.2302	DF			

