Multi-layer Perceptrons (MLP)

Table of contents

01

Perceptrons and MLPs

02

Applications of MLPs

03

Simple use of MLPs

04

Pyrat Predictions

Perceptrons and MLPs

Perceptrons and MLPs

For every MLPs:

- Input layers
- Multiple hidden layers
- Output layers

weights are set to the vertices

Perceptrons and MLPs

Perceptrons

algorithm for supervised learning of binary classifiers.

It uses an activation function to know their importance.

These weights can be modified with the gradient descent.

Applications of MLPs

Image Classification

Financial Forecasting

Natural Language Processing (NLP)

Simple use of MLPs

Parameters

23 parameters with sklearn function

	Strengths	Risks
Maximum number of iterations	Training duration controlAvoid overfitting	 May reduce model accuracy May not converge to an optimal solution
Number of hidden layers	 Capacity for learning complex data representations Capture non-linear relationships 	Overfitting/ Time
Number of neurons per layer	 Learns easily complex representations Enhance complex ability to capture complex patterns 	OverfittingImme
Activation function	Introduce nonlinearities	Can cause troubles with gradients

Training on blobs

Blobs Characteristics:

- 1000 samples
- 5 centers

MLP Parameters trained:

- Activation functions :
 - o Relu
 - Logistic(Sigmoid)
 - Tanh
- Max iterations
- Neurons
- Number of hidden Layers

Results

Results

Results

Pyrat Predictions

1th Training

Data: 500 games in a 5*7 grid with 4 cheeses

MLP Parameters: (Bo81 combinations)

- Max iterations = 300
- Activation function = relu
- Number of hidden layers = 3
- Number of neurons = 150

Normal game settings:

- 5*7 grid
- 4 cheeses

Random game settings:

- ?*? grid
- ? cheeses

2nd Training

Data: 117 files of 50 games each with different game settings for each file

MLP Parameters: (Bo81 combinations)

- Max iterations = 300
- Activation function = relu
- Number of hidden layers = 5
- Number of neurons = 500

Normal game settings:

- 5*7 grid
- 4 cheeses

Random game settings:

- ?*? grid
- ? cheeses

2nd Training

Data : 117 files of 50 games each with different game settings for each file

MLP Parameters: (Bo81 combinations)

- Max iterations = 300
- Activation function = relu
- Number of hidden layers = 5
- Number of neurons = 500

Normal game settings:

- 5*7 grid
- 4 cheeses

Random game settings:

- ?*? grid
- ? cheeses

Potential explanations to low accuracies

Zero-padding:

- 5x7 matrix placed into a 40x40 etc..
- Small shift of data when different parity.

Non-optimal parameters:

 Computational time too high

Lack of exhaustive training data

THANK YOU!

Sources:

• Sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

• Wikipedia: https://en.wikipedia.org/wiki/Multilayer_perceptron

DataCamp: https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning