# The Vortex Æther Model (VAM): Master Mass Formula

# Omar Iskandarani\*

October 31, 2025

#### Abstract

We present the Master Mass Formula [?] used in the Vortex Æther Model (VAM), a topological-fluid framework for deriving particle and atomic mass from knot-like vortex structures. Mass arises as amplified core swirl energy modulated by coherence and tension suppression factors rooted in topological invariants. We introduce a hyperbolic "golden rapidity" layer that cleanly rescales the core velocity scale, preserving dimensional consistency and preventing double-counting of golden factors. The model reproduces first-order particle masses and extends to molecular and atomic systems. This is a living theoretical framework, subject to experimental recalibration and refinement. For a full list of atomic masses up to Uranium, and common molecules calculated using the Master Formula, see Appendix ??.

Email: info@omariskandarani.com ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.15849355 License: CC-BY-NC 4.0 International

<sup>\*</sup> Independent Researcher, Groningen, The Netherlands

### 1 The VAM Mass Formula

The VAM mass of a particle or atomic structure is given by:

Golden ratio and identities. Define the golden ratio via the inverse hyperbolic sine

$$\varphi \equiv e^{\mathrm{asinh}12}$$
, so that  $\mathrm{asinh}x = \ln(x \sqrt{x^2 1})$  [?].

Introduce the golden rapidity

$$\xi_g \equiv \frac{3}{2} \ln \varphi \quad \Rightarrow \quad \tanh(\xi_g) = \frac{1}{\varphi}, \ \coth(\xi_g) = \varphi \ [?].$$
 (2)

**Golden layer** k. We parameterize a discrete hyperbolic scaling by an integer  $k \ge 0$  through the core speed

$$C_e \longmapsto \frac{C_e}{\varphi^k}$$
 (in the energy density only). (3)

Equivalently, this is a multiplicative factor  $\varphi^{-2k}$  on the energy density.

### Corrected Master Mass Formula (two equivalent forms)

Let n be the number of coherent knots, m the internal thread multiplicity,  $s \in R$  a golden tension index, and  $V_i$  constituent volumes. Let  $\rho_-$  denote the mass density of the æther. The core energy density is

$$\mathcal{E}_k = \frac{1}{2} \rho_- \left(\frac{C_e}{\varphi^k}\right)^2.$$

Then the mass is

$$Mn, m, \{V_i\}; k = \frac{4}{\alpha} \underbrace{\left(\frac{1}{m}\right)^{32}}_{\eta} \underbrace{\eta^{-1\varphi}}_{\xi} \underbrace{\varphi^{-s}}_{\tau} \left({}_{i}V_i\right) \frac{\mathcal{E}_k}{c^2}$$

$$\tag{4}$$

or, equivalently, with  $C_e$  left unscaled and the  $\varphi^{-2k}$  absorbed into the tension,

$$| Mn, m, \{V_i\}; k = \frac{4}{\alpha} \left(\frac{1}{m}\right)^{32} n^{-1\varphi} \varphi^{-s2k} \left({}_{i}V_{i}\right) \frac{\frac{1}{2}\rho C_{e}^{2}}{c^{2}} |$$
 (5)

The total golden suppression is controlled by the  $\varphi$ -budget

$$E_{io} \equiv s \ 2k,$$
 (6)

which prevents double-counting when moving  $\varphi$ -weight between k (velocity) and s (tension).

#### Variables and Constants

- $\alpha$  Fine-structure constant ( $\approx 1137$ ).
- $\eta = 1m^{32}$  thread suppression (dimensionless).
- $\xi = n^{-1\varphi}$  coherence suppression (dimensionless).

- $\tau = \varphi^{-s}$  topological tension (dimensionless).
- $k \in N_0$  golden rapidity layer (dimensionless), enters only through  $\mathcal{E}_k$  or equivalently as  $\varphi^{-2k}$  in (??).
- $V_i$  vortex-core volumes for constituent knots (m<sup>3</sup>).
- $\rho_-$  æther mass density (kg/m³);  $\mathcal{E}_k$  above is an energy density (J/m³).
- $C_e$  swirl propagation speed in the æther (m/s).
- c speed of light in vacuum (m/s).

### Hyperbolic Suppression Factor $\varphi$

We adopt

$$\varphi = e^{\operatorname{asinh} 12} = \frac{1\sqrt{5}}{2}, \qquad \tanh(\frac{3}{2}\ln\varphi) = \frac{1}{\varphi} \quad [?].$$
 (7)

This encodes a mild hyperbolic damping across knot count n, thread incoherence, or mode proliferation.

#### **Annotated Master Mass Formula**

$$M = \underbrace{\frac{4}{\alpha}}_{\text{EM amplification}} \cdot \underbrace{\left(\frac{1}{m}\right)^{32}}_{\text{thread suppression}} \cdot \underbrace{n^{-1\varphi}}_{\text{coherence}} \cdot \underbrace{\varphi^{-s}}_{\text{tension}} \cdot \underbrace{\left(\frac{1}{i}V_{i}\right)}_{\text{geometry}} \cdot \underbrace{\frac{\frac{1}{2}\rho_{-}C_{e}\varphi^{k2}}{c^{2}}}_{\text{core energy} \to \text{mass}}$$

#### 2 Canonical Vortex Volume

Each vortex knot is modeled as a torus of core radius  $r_c$  and orbital radius  $R_x$ :

$$V_{\text{knot}} = 2\pi^2 R_x r_c^2, \qquad R_x = \frac{N}{Z} \frac{F_{\text{max}} r_c^2}{M_e C_c^2},$$
 (8)

which is dimensionally consistent ( $R_x$  in m). (Standard torus volume formula; hyperbolic/force mapping as in prior VAM work.)

# 3 Lepton Helicity as a Dimensionless Shape

For light leptons (electron, neutrino), we *retain* the master formula (??)–(??) and encode helicity via a *dimensionless* shaping:

$$V_{\text{eff}}p, q = Sp, q V_{\text{torus}}, \qquad S2, 3 = 1, \quad Sp, q = \frac{\sqrt{p^2 q^2}}{\sqrt{13}},$$
 (9)

or 
$$sp, q = s_0 \chi \frac{\ln \sqrt{p^2 q^2}}{\ln \varphi} \implies \varphi^{-sp,q} = \varphi^{-s_0} (\sqrt{p^2 q^2})^{-\chi}.$$
 (10)

This preserves units while allowing helicity to influence mass through geometry (V) or tension (s); choose either S or  $\chi$ , not both, to avoid double counting.

Note (replaced expression). The earlier form  $M_e \propto \rho_- r_c^3 C_e^{-1} (\sqrt{p^2 \ q^2} \ A)$  was dimensionally inconsistent (units kg sm). The corrected lepton mass uses (??)–(??) with the optional Sp,q or sp,q shaping.

# 4 Implementation Notes

Python uses two calibrated sectors:

- 1. **Quark sector**: k = 0 and a fixed s (e.g. s = 3) for proton/neutron fits.
- 2. **Lepton sector**: enable a *golden layer*  $k \ge 1$  (e.g. k = 1) and refit s so that the electron mass is matched exactly. Maintain the  $\varphi$ -budget  $E_{\varphi} = s \ 2k$ .

#### **Example electron parameters (illustrative):**

- n = 1, single coherent knot; m by scale; k = 1 golden layer.
- $r_c = 1.40897 \times 10^{-15} \,\mathrm{m}, \, V_{\mathrm{torus}} = 4\pi^2 r_c^3.$
- $\rho_{-} = 3.89 \times 10^{18} \,\mathrm{kgm^3}$ ,  $C_e = 1.09384563 \times 10^6 \,\mathrm{ms}$ ,  $\alpha^{-1} = 137.035999$ .

Solve s from  $M_e$  using (??) with  $V_{\text{eff}} = V_{\text{torus}}$  (or S2, 3 = 1).

# 5 Baryons as Linked Knot Assemblies

In the Vortex Æther Model, baryons are stable, confined, topologically nontrivial vortex configurations built from three coherent loops. Up- and down-like excitations use:

- **Up-quark:** Left-handed  $5_2$  knot.
- **Down-quark:** Left-handed  $6_1$  knot.



Figure 1: Static knot diagrams used to model up- and down-quark excitations in the VAM baryon framework.

Left: Up-quark 52 knot. Right: Down-quark 61 knot.



Figure 2: Top-down visualizations and 3D perspective views of the vortex knots  $5_2$  and  $6_1$ , showing their spatial structure and chirality. These configurations correspond to up- and down-type quark analogs in VAM/SST.

### **5.1** Proton: Linked *uud* Configuration

The proton is modeled as two right-handed  $5_2$  (up-type) knots and one left-handed  $6_1$  (down-type) knot, topologically linked:



Figure 3: Left: Proton as a triple-link of vortex rings. The chiral linking ensures net helicity and stability, and corresponds to two up-like and one down-like excitation.

Right: Neutron as a Borromean configuration of knotted components. No two rings are linked, but all three together are inseparable, modeling electric neutrality and metastability.

# 5.2 Neutron: Linked udd Configuration

The neutron is represented by one right-handed  $5_2$  knot (up-type) and two left-handed  $6_1$  knots (down-type) in a Borromean configuration. Although the components are individually knotted, their spatial embedding ensures:

- No two knots are pairwise linked (linking number zero),
- All three are topologically inseparable (nontrivial triple linking),
- The full configuration exhibits global helicity cancellation and electric neutrality.

This is known in knot theory as a *Borromean link of knots* and is valid so long as the global linking structure retains the Borromean property even with knotted components.

#### 5.3 Unified Mass Evaluation via the Master Formula

We apply  $(\ref{eq:condition})$  with k=0 for baryons (no golden velocity layer in the core energy), using adjusted volumes:

$$M = \frac{4}{\alpha} \left(\frac{1}{m}\right)^{32} n^{-1\varphi} \varphi^{-s} \left({}_{i}V_{i}\right) \frac{\frac{1}{2}\rho_{-}C_{e}^{2}}{c^{2}}$$

$$\tag{11}$$

**Representative volumes.**  $V_u \approx 1.17 \times 10^{-44} \,\mathrm{m}^3$ ,  $V_d \approx 1.32 \times 10^{-44} \,\mathrm{m}^3$ .

$$V_{\text{tot}}^p = 2V_u \ V_d, \qquad V_{\text{tot}}^n = V_u \ 2V_d.$$

Shared parameters (illustrative).  $n=3,\ m=3,\ s=2,\ \rho_-=3.89\times 10^{18}\ {\rm kgm^3},\ C_e=1.0938\times 10^6\ {\rm ms},\ \alpha^{-1}=137.035999,\ \varphi\simeq 1.618.$ 

**Mass results.** With the above, one obtains first-order proton and neutron masses consistent with experimental values within stated tolerances (see tables).

#### 5.4 Conclusion

- **Proton**:  $uud = 5_2 \ 5_2 \ 6_1$  chiral triple link;  $M_p$  within percent-level of experiment.
- **Neutron**:  $udd = 5_2 \ 6_1 \ 6_1$  Borromean link;  $M_n$  slightly heavier and within percent-level of experiment.

This document is a living theoretical framework and subject to experimental recalibration.

# A Calculating Atomic Masses with the Master Formula

The Master Formula applied to atomic masses, comparing VAM-derived values (VAM-Mass) with experimental data(Mass). Showing the % difference (Err<sub>M</sub>), with the emperical version first used (Err<sub> $\beta$ </sub>).

$$\operatorname{Err}_{\mathbf{M}} Mn, m, \{V_i\} = \tfrac{4}{\alpha} \cdot \left(\tfrac{1}{m}\right)^{32} \cdot \tfrac{1}{\varphi^s} \cdot n^{-1\varphi} \cdot (_i\,V_i) \cdot \left(\tfrac{1}{2}\rho_{\mathbf{æ}}^{\mathsf{energy}}C_e^2\right)$$

 ${\rm Err}_{\beta}\ Mp, q = 8\pi\ \rho_{\bf x}\ r_c^3\ C_e\left(\sqrt{p^2\ q^2}\ \gamma\ p\ q\right)$  Here  $\sqrt{p^2\ q^2}$  represents the "swirl length" of the knot and the  $\gamma pq$  term represents the additional energy from the knot's inter-linking/twisting, with  $\gamma\approx 5.9\times 10^{-3}$ .

Table 1: Results of the Master Formula applied to atomic masses.

| Atom | Mass (kg) | VAM Mass  | Err <sub>M</sub> | $\operatorname{Err}_{eta}$ | Species | Mass (kg) | VAM Mass  | Err <sub>M</sub> | $\operatorname{Err}_{eta}$ |
|------|-----------|-----------|------------------|----------------------------|---------|-----------|-----------|------------------|----------------------------|
| H    | 1.674e-27 | 1.657e-27 | -0.97% 💚         | +15.86%                    | Cu      | 1.055e-25 | 1.082e-25 | +2.58%           | +6.77%                     |
| He   | 6.646e-27 | 6.754e-27 | +1.61%           | -5.20%                     | Zn      | 1.086e-25 | 1.099e-25 | +1.23%           | +6.08%                     |
| Li   | 1.152e-26 | 1.185e-26 | +2.83%           | -6.05%                     | Ga      | 1.158e-25 | 1.184e-25 | +2.30%           | +6.13%                     |
| Be   | 1.497e-26 | 1.523e-26 | +1.75%           | -4.68%                     | Ge      | 1.206e-25 | 1.235e-25 | +2.43%           | +6.13%                     |
| В    | 1.795e-26 | 1.860e-26 | +3.64%           | -1.15%                     | As      | 1.244e-25 | 1.269e-25 | +2.01%           | +5.96%                     |
| C    | 1.994e-26 | 2.026e-26 | +1.58%           | +0.54%                     | Se      | 1.311e-25 | 1.337e-25 | +1.98%           | +5.44%                     |
| N    | 2.326e-26 | 2.364e-26 | +1.63%           | +1.40%                     | Br      | 1.327e-25 | 1.354e-25 | +2.03%           | +6.12%                     |
| О    | 2.657e-26 | 2.701e-26 | +1.68%           | +2.15%                     | Kr      | 1.391e-25 | 1.422e-25 | +2.19%           | +5.83%                     |
| F    | 3.155e-26 | 3.211e-26 | +1.79%           | +1.25%                     | Rb      | 1.419e-25 | 1.439e-25 | +1.36%           | +5.55%                     |
| Ne   | 3.351e-26 | 3.377e-26 | +0.77%           | +2.40%                     | Sr      | 1.455e-25 | 1.490e-25 | +2.37%           | +6.51%                     |
| Na   | 3.818e-26 | 3.886e-26 | +1.80%           | +2.59%                     | Y       | 1.476e-25 | 1.506e-25 | +2.02%           | +6.70% 🛑                   |
| Mg   | 4.036e-26 | 4.052e-26 | +0.40%           | +2.97%                     | Zr      | 1.515e-25 | 1.540e-25 | +1.65%           | +6.53%                     |
| Al   | 4.480e-26 | 4.562e-26 | +1.82%           | +3.67%                     | Nb      | 1.543e-25 | 1.574e-25 | +2.00%           | +7.11% 🛑                   |
| Si   | 4.664e-26 | 4.727e-26 | +1.37%           | +4.77%                     | Mo      | 1.593e-25 | 1.625e-25 | +1.96% 🛑         | +6.97% 🛑                   |
| P    | 5.143e-26 | 5.237e-26 | +1.82%           | +4.57%                     | Tc      | 1.627e-25 | 1.658e-25 | +1.91% 🛑         | +7.11% 🛑                   |
| S    | 5.324e-26 | 5.403e-26 | +1.49%           | +5.59% 🛑                   | Ru      | 1.678e-25 | 1.709e-25 | +1.85%           | +6.96% 🛑                   |
| Cl   | 5.887e-26 | 5.912e-26 | +0.44%           | +3.91%                     | Rh      | 1.709e-25 | 1.743e-25 | +2.00%           | +7.31%                     |
| Ar   | 6.634e-26 | 6.766e-26 | +2.00%           | +3.53%                     | Pd      | 1.767e-25 | 1.794e-25 | +1.52%           | +6.72% 🛑                   |
| K    | 6.492e-26 | 6.588e-26 | +1.47%           | +5.65%                     | Ag      | 1.791e-25 | 1.828e-25 | +2.04%           | +7.46% 🛑                   |
| Ca   | 6.655e-26 | 6.754e-26 | +1.48%           | +6.75%                     | Cd      | 1.867e-25 | 1.896e-25 | +1.57%           | +6.63% 🛑                   |
| Sc   | 7.465e-26 | 7.607e-26 | +1.90%           | +5.29%                     | In      | 1.907e-25 | 1.947e-25 | +2.11%           | +7.13% 🛑                   |
| Ti   | 7.949e-26 | 8.117e-26 | +2.12%           | +5.21%                     | Sn      | 1.971e-25 | 2.015e-25 | +2.23%           | +6.95% 🛑                   |
| V    | 8.459e-26 | 8.626e-26 | +1.98%           | +4.82%                     | Sb      | 2.022e-25 | 2.066e-25 | +2.19%           | +6.86% 🛑                   |
| Cr   | 8.634e-26 | 8.792e-26 | +1.83%           | +5.57%                     | Te      | 2.119e-25 | 2.169e-25 | +2.35%           | +6.34%                     |
| Mn   | 9.123e-26 | 9.302e-26 | +1.96% 🛑         | +5.46%                     | I       | 2.107e-25 | 2.151e-25 | +2.06%           | +6.88%                     |
| Fe   | 9.273e-26 | 9.467e-26 | +2.09%           | +6.43%                     | Xe      | 2.180e-25 | 2.219e-25 | +1.78% 🛑         | +6.33%                     |
| Co   | 9.786e-26 | 9.977e-26 | +1.95%           | +6.04%                     | Cs      | 2.207e-25 | 2.253e-25 | +2.07%           | +6.82%                     |
| Ni   | 9.746e-26 | 9.971e-26 | +2.30%           | +7.72%                     | Ba      | 2.280e-25 | 2.321e-25 | +1.77%           | +6.27%                     |

**Legend:** pink  $\sqrt[\infty]{<0.5\%}$ , green  $\boxed{\bullet}$  <2.5%, orange  $\boxed{\bullet}$  <10%, red  $\boxed{\bullet}$  <25%, black  $\boxed{\bullet}$   $\ge$ 25%; Dots are placed *after* the error value, indicate of deviation.

Table 2: Results of the Master Formula applied to atomic masses.

| Atom | Mass (kg) | VAM Mass  | Err <sub>M</sub> | $\operatorname{Err}_{\beta}$ | Species              | Mass (kg) | VAM Mass  | Err <sub>M</sub> | $\operatorname{Err}_{eta}$ |
|------|-----------|-----------|------------------|------------------------------|----------------------|-----------|-----------|------------------|----------------------------|
| La   | 2.307e-25 | 2.355e-25 | +2.08%           | +6.77% 🛑                     | At                   | 3.487e-25 | 3.558e-25 | +2.03%           | +8.33%                     |
| Ce   | 2.327e-25 | 2.371e-25 | +1.91%           | +6.96%                       | Rn                   | 3.686e-25 | 3.764e-25 | +2.10%           | +7.26%                     |
| Pr   | 2.340e-25 | 2.388e-25 | +2.05%           | +7.47%                       | Fr                   | 3.703e-25 | 3.780e-25 | +2.09%           | +7.49%                     |
| Nd   | 2.395e-25 | 2.439e-25 | +1.82%           | +7.20%                       | Ra                   | 3.753e-25 | 3.831e-25 | +2.09%           | +7.50%                     |
| Pm   | 2.408e-25 | 2.455e-25 | +1.97%           | +7.71%                       | Ac                   | 3.769e-25 | 3.848e-25 | +2.08%           | +7.73%                     |
| Sm   | 2.497e-25 | 2.541e-25 | +1.76%           | +7.07%                       | Th                   | 3.853e-25 | 3.933e-25 | +2.08%           | +7.50%                     |
| Eu   | 2.523e-25 | 2.574e-25 | +2.02%           | +7.50%                       | Pa                   | 3.837e-25 | 3.915e-25 | +2.06%           | +7.94%                     |
| Gd   | 2.611e-25 | 2.660e-25 | +1.86%           | +6.95% 🛑                     | U                    | 3.953e-25 | 4.035e-25 | +2.09%           | +7.52%                     |
| Tb   | 2.639e-25 | 2.694e-25 | +2.06%           | +7.32%                       | $H_2O$               | 2.991e-26 | 3.033e-26 | +1.38%           | +6.48%                     |
| Dy   | 2.698e-25 | 2.762e-25 | +2.35%           | +7.42%                       | $CO_2$               | 7.308e-26 | 7.429e-26 | +1.65%           | +7.44%                     |
| Но   | 2.739e-25 | 2.795e-25 | +2.07%           | +7.29% 🛑                     | $O_2$                | 5.314e-26 | 5.403e-26 | +1.68%           | +5.79%                     |
| Er   | 2.777e-25 | 2.829e-25 | +1.87%           | +7.22%                       | $N_2$                | 4.652e-26 | 4.727e-26 | +1.63%           | +5.04%                     |
| Tm   | 2.805e-25 | 2.863e-25 | +2.06%           | +7.57%                       | $CH_4$               | 2.664e-26 | 3.377e-26 | +26.78%          | +28.83%                    |
| Yb   | 2.874e-25 | 2.931e-25 | +2.00%           | +7.33%                       | $C_6H_{12}O_6$       | 2.992e-25 | 2.431e-25 | -18.73% 🛑        | -9.13%                     |
| Lu   | 2.905e-25 | 2.965e-25 | +2.05%           | +7.52% 🛑                     | $NH_3$               | 2.828e-26 | 3.377e-26 | +19.41% 🛑        | +21.33%                    |
| Hf   | 2.964e-25 | 3.016e-25 | +1.75%           | +7.20%                       | HCl                  | 6.054e-26 | 6.078e-26 | +0.39%           | +5.06%                     |
| Ta   | 3.005e-25 | 3.067e-25 | +2.07%           | +7.52%                       | $C_2H_6$             | 4.993e-26 | 6.078e-26 | +21.73%          | +27.39%                    |
| W    | 3.053e-25 | 3.118e-25 | +2.13%           | +7.57% 🛑                     | $C_2H_4$             | 4.658e-26 | 5.403e-26 | +16.00% 🛑        | +20.68%                    |
| Re   | 3.092e-25 | 3.152e-25 | +1.92%           | +7.49% 🛑                     | $C_2H_2$             | 4.324e-26 | 4.727e-26 | +9.33%           | +13.00%                    |
| Os   | 3.159e-25 | 3.220e-25 | +1.93%           | +7.34% 🛑                     | NaCl                 | 9.704e-26 | 9.455e-26 | -2.57% 🛑         | +4.19%                     |
| Ir   | 3.192e-25 | 3.254e-25 | +1.93%           | +7.48% 🛑                     | $C_8H_{18}$          | 1.897e-25 | 3.309e-25 | +74.46%          | +97.85% ●                  |
| Pt   | 3.239e-25 | 3.304e-25 | +2.01%           | +7.55% 🛑                     | $C_6H_6$             | 1.297e-25 | 1.621e-25 | +24.96% 🛑        | +37.11%                    |
| Au   | 3.271e-25 | 3.338e-25 | +2.06%           | +7.74% 🛑                     | $CH_3COOH$           | 9.972e-26 | 1.081e-25 | +8.36% 🛑         | +16.62%                    |
| Hg   | 3.331e-25 | 3.406e-25 | +2.27%           | +7.81% 🛑                     | $H_2SO_4$            | 1.629e-25 | 1.688e-25 | +3.67%           | +13.96%                    |
| Tl   | 3.394e-25 | 3.457e-25 | +1.87%           | +7.39% 🛑                     | $CaCO_3$             | 1.662e-25 | 1.688e-25 | +1.59% 🛑         | +11.68%                    |
| Pb   | 3.441e-25 | 3.508e-25 | +1.97% 🛑         | +7.49% 🛑                     | $C_{12}H_{22}O_{11}$ | 5.684e-25 | 5.943e-25 | +4.56% 🛑         | +21.74%                    |
| Bi   | 3.470e-25 | 3.542e-25 | +2.07%           | +7.73% 🛑                     | Caffeine             | 3.225e-25 | 6.551e-25 | +103.16%         | +137.57%                   |
| Po   | 3.471e-25 | 3.541e-25 | +2.04%           | +8.09%                       | DNA (avg)            | 1.079e-23 | 3.377e-23 | +212.85%         | +329.59%                   |

**Legend:** pink  $\sqrt[\infty]{<0.5\%}$ , green  $\boxed{\bullet}$  <2.5%, orange  $\boxed{\bullet}$  <10%, red  $\boxed{\bullet}$  <25%, black  $\boxed{\bullet}$  ≥25%; Dots are placed *after* the error value, indicate of deviation.