Отчет о выполнении лабораторной работы 2.2.3

Измерение теплопроводности газов при атмосферном давлении

Г. А. Багров

ФРКТ МФТИ, 23.03.2022

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; магазин сопротивлений.

Теоретические сведения:

Теплопроводность — это процесс передачи тепловой энергии за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт передачи кинетической энергии при столкновениях молекул. Перенос тепла описывается законом Фурье:

$$q = -\kappa \cdot \nabla T,\tag{1}$$

где κ - коэффициент теплопроводности, q - плотность потока энергии.

Молекулярно-кинетическая теория дает следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{\nu} \cdot nc_V$$

т.е. коэффициент не зависит от плотности газа, определяется только его температурой.

Рассмотрим стационарную теплопроводность в цилиндрической геометрии, в которой тепловой поток направлен к стенкам цилиндра от нити, полный поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен (как в пространстве, так и во времени). Пусть тонкая нить радиусом r_1 длиной L помещена на оси цилиндра радиусом r_0 . Тогда тепловая мощность

$$Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = const, \tag{2}$$

откуда получаем формулу

$$Q = \frac{2\pi L}{\ln\frac{r_0}{r_1}} \kappa \cdot \Delta T \tag{3}$$

Здесь ΔT - перепад температуры между нитью и стенками цилиндра.

Экспериментальная установка:

Схема лабораторной установке представлена на рисунке 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0$ размещена молибденовая нить диаметром $2r_1$ и длиной L. Для предотвращения конвекции трубка расположена вертикально. Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току и напряжению на ней вычисляется мощность нагрева по закону Джоуля–Ленца, сопротивление нити по закону Ома.

Рис. 1: Схема установки для определения теплопроводности газов

Рис. 2: Установка для определения теплопроводности газов

Схема рис. З предусматривает использование одного вольтметра и эталонного сопротивления,

включённого последовательно с нитью. В положении переключателя 2 вольтметр измеряет напряжение на нити, а в положении 1 — напряжение на эталонном сопротивлении, пропорциональное току через нить. Ток в цепи в обеих схемах регулируется с помощью магазина сопротивлений, подючённого последовательно с источником напряжения.

Рис. 3: Схема измерения сопротивления нити и мощности нагрева с одним вольтметром и эталонным сопротивлением.

Измерения и обработка данных

1) Параметры установки (класс точности 0,01): $L=365\pm 2$ мм;

 $2r_1 = 0.05 \pm 0.005$ mm;

 $2r_2 = 10 \pm 0, 1 \text{ mm};$

 $R_n = 17 \text{ Om};$

 $R_{\rm a} = 10 \; {\rm Om};$

Погрешность: $\pm (0,0035\%U_{\text{изм}} + 0,0005\%U_{\text{max}});$

- 2) По формуле (3) определим максимальную мощность нагрева, считая $\Delta T_{\rm max} = 10~{\rm K},~\kappa \sim 25 {{\rm MBT} \over {\rm M \cdot K}}$: $Q_{\rm max} = 0,292~{\rm Br}.$ Значит, $I_{\rm max} = \sqrt{{Q_{\rm max} \over R_n}} = 77~{\rm mA},~U_{\rm max} = {Q_{\rm max} \over I_{\rm max}} = 1,40~{\rm B}.$
- 3) При комнатной температуре термостата измерим зависимость сопротивления нити $R=\frac{U}{I}$ от подаваемой на неё мощности Q=UI (т.е. нагрузочную прямую R(Q)). Для этого измерим зависимость падения напряжений от температуры металлической нити. Для этого будем устанавливать с помощью магазина напряжений различные напряжения в цепи в интервале от 0,1 до 1,5 В и затем переносить штекер от вольтметра на прибор для измерения теплопроводности. Зависимость снимем для различных температур в интервале от 22°C до 72°C (с шагом 10°C). Результаты измерений занесём в таблицу 1:

T, °C	22								
U_0 , B	0,1076	0,2082	0,5556	0,7396	1,1041	1,2691	1,5225		
U, B	0,1073	0,2080	0,5590	0,7491	1,1415	1,3273	1,6284		
R, OM	9,96	9,97	10,05	10,13	10,34	10,46	10,69		
Q, BT	0,0012	0,0043	0,0312	0,0555	0,1258	0,1684	0,2480		
T, °C	32								
U_0 , B	0,1076	0,2086	0,5534	0,7364	1,0952	1,2509	1,6118		
U, B	0,1109	0,2145	0,5743	0,7689	1,1661	1,3549	1,7897		
R, Om	10,28	10,29	10,37	10,44	10,65	10,83	11,12		
Q, B _T	0,0012	0,0045	0,0318	0,0566	0,1278	0,1695	0,2884		
T, °C	42								
U_0 , B	0,1083	0,2083	0,5523	0,7339	1,0910	1,2516	1,5310		
U, B	0,1366	0,2219	0,5930	0,7930	1,2009	1,3932	1,7434		
R, Om	10,65	10,65	10,74	10,81	11,01	11,13	11,39		
Q, B _T	0,0018	0,0046	0,0328	0,0582	0,1310	0,1744	0,2669		
T, °C				52					
U_0 , B	0,1076	0,2080	0,5509	0,7311	1,0845	1,2435	1,5191		
U, B	0,1184	0,2292	0,6114	0,8166	1,2337	1,4295	1,7846		
R, Om	11,00	11,02	11,10	11,17	11,38	11,50	11,75		
Q, B _T	0,0013	0,0048	0,0337	0,0597	0,1338	0,1778	0,2711		
T, °C				62					
U_0 , B	0,1075	0,2078	0,5492	0,7282	1,0783	1,2582	1,5070		
U, B	0,1223	0,2367	0,6300	0,8405	1,2665	1,4951	1,8256		
R, OM	11,38	11,39	11,47	11,54	11,75	11,88	12,11		
$Q, B_{\rm T}$	0,0013	0,0049	0,0346	0,0612	0,1366	0,1881	0,2751		
T 00									
$T, ^{\circ}\mathrm{C}$	0.1075	0.2070	0.5470	72	1 0000	1 9400	1 4050		
U_0, B	0,1075	0,2076	0,5476	0,7254	1,0080	1,2499	1,4952		
U, B	0,1263	0,2441	0,6483	0,8642	1,2172	1,5314	1,8660		
$R, O_{\rm M}$	11,75	11,76	11,84	11,91	12,08	12,25	12,48		
$Q, B_{\rm T}$	0,0014	0,0051	0,0355	0,0627	0,1227	0,1914	0,2790		

Таблица 1: результаты измерений.

4) Для каждой температуры прибора построим график зависимости выделяемой мощности Q от сопротивления нити R (графики 4-9). Также определим наклон dQ/dR с погрешностью и сопротивление нити $R|_{Q=0}$ при температуре термостата, то есть при нулевой выделяемой мощности, полученные данные занесём в таблицу 2.

Рис. 4: Зависимость сопротивления нити от мощности при $T=22~{
m K}.$

Рис. 5: Зависимость сопротивления нити от мощности при $T=22~{
m K}.$

Рис. 6: Зависимость сопротивления нити от мощности при $T=42~\mathrm{K}.$

Рис. 7: Зависимость сопротивления нити от мощности при $T=52~{
m K}.$

T, °C	22	32	42	52	62	72
$R_0 _{Q=0}, {\rm OM}$	9,96	10,28	10,65	11,00	11,38	11,75
$dQ/dR, \frac{B_T}{O_M}$	0,337	0,329	0,356	0,366	0,370	0,377
$\sigma_{dQ/dR}, \frac{\mathrm{B_T}}{\mathrm{O_M}}$	0,005	0,002	0,001	0,002	0,002	0,002

Таблица 2: результаты обработки данных.

Рис. 8: Зависимость сопротивления нити от мощности при $T=62~\mathrm{K}.$

Рис. 9: Зависимость сопротивления нити от мощности при $T=72~\mathrm{K}.$

- 5) Построим по значениям $R|_{Q=0}$ график (рис. 10) зависимости сопротивления нити от температуры T. Апроксимацию и расчет наклона dR/dT произведем аналогично п. 4.
 - Полученная зависимость линейная, наклон $dR/dT = (0,0359 \pm 0,0016) \text{ Ом/K}.$
- 6) Рассчитаем температурный коэффициент сопротивления материала нити $\alpha = \frac{1}{R_{293}} \frac{dR}{dT}$. Из графика $R_{293} = 19{,}67$ Ом. Значит, $\alpha = (0{,}00183 \pm 0{,}00034)$ К $^{-1}$. Табличное значение для молибдена составляет $\alpha = 0{,}004579$ К $^{-1}$. Таким образом, значения совпадают в пределах погрешности.

Рис. 10: R = R(T)

7) Для каждой температуры прибора определим значение коэффициента теплопроводности газа по формуле $\kappa = \frac{dQ}{dR} \frac{dR}{dT} \frac{1}{2\pi L} \ln \frac{r_2}{r_1}$ (из формулы 3). Результаты вычислений представлены в таблице 3. Предположим, что зависимость коэффициента теплопроводности от температуры имеет вид $\kappa = AT^{\beta}$. Чтобы определить показатель степени β построим график зависимости $\ln \frac{\kappa}{\kappa_0}$ от $\ln \frac{T}{T_0}$, где $\kappa_0 = 25, 9$ мВт/(м·К) – табличное значение теплопроводности воздуха при температуре $T_0 = 293$ К (см. рис. 11). По полученным данным построим апроксимированную кривую рис. 12.

Т, К	295	305	315	325	335	345
$\kappa, \frac{{}_{ ext{M}} {}_{ ext{T}}}{{}_{ ext{M}} \cdot K}$	26,3	27,2	28,3	29,4	29,8	30,4
$\sigma_{\kappa}, \frac{{}^{\mathrm{MBT}}_{\mathrm{M}}}{{}^{\mathrm{M}} \cdot K}$	0,7	0,7	0,7	0,6	0,6	0,6
$\ln T/T_0$	0,0068	0,0401	0,0724	0,1037	0,1340	0,1634
$\ln \kappa / \kappa_0$	0,019	0,056	0,076	0,101	0,115	0,128
$\sigma_{\ln \kappa/\kappa_0}$	0,007	0,005	0,003	0,006	0,005	0,006

Таблица 3: Результаты вычислений.

Получим таким образом $\beta = 0,64 \pm 0,05$.

Рис. 11: Зависимость $\kappa(T)$ в двойном логарифмическом масштабе

Рис. 12: Зависимость теплопроводности воздуха κ от температуры Т

Выводы: 1) В ходе данной работы был определён коэффициент теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде. 2) По полученным результатам был расчитан коэффициент зависимости между изменением теплопроводности при изменении температуры (т.е. коэффициент β в формуле $\kappa = AT^{\beta}$). Полученный коэффициент с учетом погрешности не соотвествует теоретическому значению $\beta = 0, 5$ ($\kappa \propto \sqrt{T}$), т. е. полученное значение оказалось выше на 28%, что превосходит погрешность - 11% - более чем в 2 раза. Это может быть связано с недостаточным количеством измерений и вызванной этим невысокой точностью аппроксимации на этапе обработки измерений. 3) Также был найден температурный коэффициент сопротивления молибдена, его значение совпало с табличным в пределах погрешности.