SEAT No. :	tal No. of Questions : 4]	AT No.	
------------	---------------------------	--------	--

[Total No. of Pages: 3

[6186]-514

S.E. (ELECTROMCS/E&TC) (Insem) **ELECTRICAL CIRCUITS**

(2019 Pattern) (Semester - III) (204183)

Time: 1 Hour]

P-5388

[*Max. Marks* : 30

Instructions to the candidates:

- Answer Q1 or Q2 and Q3 or Q4. 1)
- Neat diagrams and waveforms must be drawn wherever necessary. 2)
- Figures to the right side indicate full marks. 3)
- Use of nonprogrammable calculator is allowed. 4)
- Assume Suitable data if necessary. 5)
- Using source transformation, convert the given network in fig.1 with a **Q1**) a) single current source and a resistor. [5]

Using Nodal Analysis, determine the current through the 5Ω resistor for b) the network shown in fig.2 [5]

P.T.O.

c) Find the current in the 4Ω resistor shown in network of fig.3.

[5]

Q2) a) Using super mesh analysis, Find the current in the 3Ω resistor of the network shown in Fig.4. [5]

b) Using superposition theorem, find the current through the 3Ω resistor in Fig.5

- c) State and explain Maximum Power Transfer theorem with suitable example. [5]
- Q3) a) What is the significance of Initial conditions? Write the note on initial conditions in the basic circuit elements. [7]

b) In the given network of fig.6, the switch is closed at t=0. With zero current in the inductor, find i, di/dt and di^2/dt^2 at $t=0^+$. [8]

- Q4) a) Derive the equation for the Complementary Solution for current through inductor for driven R-L Circuit. Draw natural Response of the Circuit for various values of t.[7]
 - b) In the network of Fig.7 the switch is closed at t = 0. With the capacitor uncharged, find value for i, di/dt and di^2/dt^2 at $t = 0^+$. [8]

[6186]-514