Mixed Effects Model Estimation

Ryan Brill

August 2025

1 Model

We consider the mixed effects model

$$y = X\beta + Zb + \varepsilon, \tag{1.1}$$

where

$y \in \mathbb{R}^n$	response vector,
$X \in \mathbb{R}^{n \times p}$	fixed effects design matrix,
$Z \in \mathbb{R}^{n \times q}$	random effects design matrix,
$\beta \in \mathbb{R}^p$	fixed effects coefficients,
$b \in \mathbb{R}^q$	random effects coefficients,
$\varepsilon \in \mathbb{R}^n$	residual noise.

Distributional assumptions.

$$b \sim N(0, \Sigma_{\theta}),$$

 $\varepsilon \sim N(0, \sigma^2 I_n),$
 $b \perp \varepsilon,$
 X, Z known and fixed,
 β unknown and fixed.

Covariance structure. $\Sigma_{\theta} \in \mathbb{R}^{q \times q}$ is a symmetric positive semidefinite covariance matrix. There exists a unique lower triangular matrix Λ_{θ} such that

$$\Sigma_{\theta} = \Lambda_{\theta} \Lambda_{\theta}^{T}$$
.

The parameters θ are the q(q+1)/2 nonzero lower triangular entries of Λ_{θ} to be estimated.

2 Two Log-Likelihoods

2.1 Maximum Likelihood (ML)

We first find the marginal distribution of y:

$$y \mid b \sim N(X\beta + Zb, \sigma^{2}I_{n}),$$

$$b \sim N(0, \Sigma_{\theta})$$

$$\Rightarrow Zb \sim N(0, Z\Sigma_{\theta}Z^{T}),$$

$$\Rightarrow y \sim N(X\beta, V_{\theta}),$$

where

$$V_{\theta} = Z\Sigma_{\theta}Z^{\mathsf{T}} + \sigma^{2}I_{n}. \tag{2.1}$$

The log-likelihood is

$$\ell_{\mathsf{ML}}(\beta, \theta, \sigma^2) \propto -\frac{1}{2} \left[\log |V_{\theta}| + (y - X\beta)^{\mathsf{T}} V_{\theta}^{-1} (y - X\beta) \right]. \tag{2.2}$$

2.2 Restricted Maximum Likelihood (REML)

Now, we will integrate out β . Find an error contrast matrix $A \in \mathbb{R}^{n \times (n-p)}$ satisfying

$$A^TX = 0$$
, $A^TA = I_{n-n}$.

Such an A exists since X is full rank, by the Rank–Nullity Theorem: Nullity(X^T) = Nullity(X) = n - Rank(X) = n - p.

Then

$$A^T y \sim N_{n-n} (0, A^T V_{\theta} A),$$

which is free of β . The REML log-likelihood becomes

$$\ell_{\text{REML}}(\theta, \sigma^2) \propto -\frac{1}{2} \left[\log |A^T V_{\theta} A| + y^T P_{\theta} y \right],$$
 (2.3)

where

$$P_{\theta} = A(A^T V_{\theta} A)^{-1} A^T.$$

A ton of linear algebra (not shown) will allow you to re-write the REML and P_{θ} just in terms of V_{θ} and X, without A:

$$\ell_{\text{REML}}(\theta, \sigma^2) \propto -\frac{1}{2} \left[\log |V_{\theta}| + \log |X^T V_{\theta}^{-1} X| + y^T P_{\theta} y \right], \tag{2.4}$$

where

$$P_{\theta} = V_{\theta}^{-1} - V_{\theta}^{-1} X (X^T V_{\theta}^{-1} X)^{-1} X^T V_{\theta}^{-1}.$$

3 Estimation Procedure

- 1. Initialize θ (e.g., entries of Λ_{θ}) and σ^2 (e.g., $\hat{\text{Var}}(y)$).
- 2. Given (θ, σ^2) , estimate β by maximum likelihood via GLS:

$$\hat{\beta} = (X^T V_{\theta}^{-1} X)^{-1} X^T V_{\theta}^{-1} y, \qquad V_{\theta} = Z \Sigma_{\theta} Z^T + \sigma^2 I_n.$$

- 3. Update the variance parameters: maximize $\ell_{\text{REML}}(\theta, \sigma^2)$ numerically.
- 4. Iterate 2-3 until convergence (e.g., relative parameter & objective change $< 10^{-6}$).
- 5. After convergence (reporting/inference):
 - Fixed effects: $\hat{\beta}$ with $Var(\hat{\beta}) = (X^T V_{\hat{\theta}}^{-1} X)^{-1}$.
 - Random effects (BLUPs): $\hat{b} = \Sigma_{\hat{\theta}} Z^T V_{\hat{\theta}}^{-1} (y X \hat{\beta})$ with conditional $Var(b \mid y) = (\Sigma_{\hat{\theta}}^{-1} + Z^T (\hat{\sigma}^{-2} I) Z)^{-1}$.
- 6. Numerical tips. Use Cholesky factorizations for solves and log-determinants; avoid explicit inverses.