Inteligencia Artificial 2

Tema: Modelo Sistema Hibrido para identificación de personas mediante la palma de la mano

UNSA – EPIS Alumno: Wilder Nina Choquehuayta

Arequipa - 2013

Agenda

- Problema
- Objetivos y Hipótesis
- Limitaciones
- Metodología
- Diagrama casos de uso
- Diagrama componentes
- Diagrama de clases
- Referencias

Problema

- La huella dactilar es el rasgo biométrico más utilizado en la actualidad. Uno de sus mayores problemas radica en su dificultad para la identificación de personas mayores o trabajadores manuales. Por otro lado, los sistemas biométricos de iris presentan grandes índices de precisión y fiabilidad; sin embargo, los dispositivos para la captura del iris son demasiado costosos.
- De este modo, un sistema biométrico basado en imágenes de la mano se convierte en una buena alternativa para aplicaciones comerciales, obteniendo un equilibrado balance entre rendimiento y facilidad de uso. Otras de las ventajas de la huella palmar es la facilidad con la que pueden extraerse las principales características (crestas y líneas principales) mediante imágenes de muy baja resolución (de ahí que los dispositivos de captura puedan resultar mucho más económicos).

Objetivo General

 Es proponer un modelo de sistema hibrido para identificación de personas basado en la información extraída de las líneas principales y otras crestas, usando redes neuronal BackPropagation y Algoritmos Genéticos

Objetivos Específicos

- Verificar que el uso de algoritmos genéticos ayuda a la optimización de pesos en la parte de entrenamiento de una red neuronal.
- Verificar que selección de vector características para la capa de entrada usada [5] es óptima y válida para la clasificación de personas.
- Usar la base de datos del "Centro de Investigación Biométrico de la Universidad Politécnica de Hong-Kong "que consta de 396 palmas diferentes.

Hipótesis

El modelo sistema hibrido propuesto **deberá** identificar personas usando las líneas de la mano mediante redes neuronal backPropagation para la clasificación y Algoritmos Genéticos para el optimización de pesos.

Limitaciones

- No se cuenta con una base de datos propia para realizar pruebas ni tampoco con un scanner o cámara especializada que nos tome una foto de la imagen de la mano (palma).
- Se tomara la base de datos del centro investigación biométrico de HongKong, en donde se usara 50 palmas derecha o <u>izquierda</u> cada una contara con 5 tomas (4 para la en tapa de entrenamiento). Las edad de personas de la palmas de la mano varían de 20 a 50 años

Metodología

Diagrama casos de uso(Uml vs 2.0)

Diagrama de Componentes

Diagrama de clases

Referencias

- [1] Anil K. Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology., 14(1), 2004.
- [2] Chin-Chuan Han, Hsu-Liang Cheng, Chih-Lung Lin, and Kuo-Chin Fan. Personal authentication using palm-print features. Pattern Recognition 36, 371 - 381, 2003.
- [3] De-Shuang Huang, Wei Jia, and David Zhang. Palmprint verication based on principal lines. Pattern Recognition 41 1316-1328, 2008.
- [4] Tesis de Maria Merida Aguilera: Reconocimiento biométrico basado en imágenes de huellas palmares, usando la textura.
- [5] Personal authentication using palm-print features of Chin-Chuan Hana; *, Hsu-Liang Chengb, Chih-Lung Linb, Kuo-Chin Fanb
- ▶ [6] Palmprint verification based on principal lines De-Shuang Huanga,∗,Wei Jiaa,b, David Zhangc
- [7] David Zhang, Wai-Kin Kong, Jane You, and Michael Wong. Online palmprint identication. IEEE Transactions on Pattern Analysis and Machine Intelligence,
- [8] Entrenamiento de redes neuronales, basado en algoritmos evolutivos [Dr. Ramón García Martínez]