1. (0) when 1(fw, y)=(fw-y)
E[ly(x), y)]= [x[y (fix)-y)2 P(x, y) dy dx
= S_S, (tox) - E(y x) - E(y x) - y) 2. P(x,y) olyolx
of the solution of the solutio
= [[] [(tix) - E(y x)) + (y - E(y x)) - 2 (f(x) - E(y x) (y - E(y x)) p(x, y) dy dx
Led's laok and the last term:
Lex's look of the last term: \$\int_x \int_y \text{(fix)} - \text{E(y(x)} \int y - \text{E(y(x)} \int p(x,y) dx dy
= E(t(x))-E(y) - E(f(x))E(y) - E(y) E(y) + E(y)
-0
Since we can not modify yor Elylx). In order to minimize EIllf(xxx)
Since we can not modify yor E(y x), In order to minimize E[Uff(x), fix) = E(y x), Conditional Expectation of y
(b) when . (fw, y) = fw-y
E[lifin), y)] = Inf I foo - y I P (x, y) dx dy
= Sx(Sx 1 fix - y (P (Y x) - dy) P(x) - dx
Roma & con la chana ladar lada et Como de consta
Because x can be chosen independent of fix, we can ignore
brace over x and instead focus on how to minimize curty
If we take dirivative and set to 0:
) [] fix)-y P(v x) dv
3 Fw (y) fix)-y P(y x) dy
= 2 [ftx) (ftx) y) P(y(x) dy + ftx) (y - ftx) (y - ftx) (y) =0
7
= stor Piyin) dy = stor Piyix) dy
Optimal fox) is the conditional median
The wrattony mervion

2 Correct
Let us consider a classifier f + f*
P(f # y x)
=1-P(f=1&y=1 x)-P(f=-1&y=-1 x)
=1- P(f=1 y=1, x). P(y=1 x) - P(f=-1 y=-1, x). P(y=-1 x)
Because for each (x y) fix's value can be chosen independently of y
=1-P(f=1/x)-P(y=1/x)-P(f=-1/x)-P(y=-1/x)
Because (x, y) is drawn from fixed distribution D, Let X(x) be
X(x)= P(y=1x) = 1- P(y=-1 x)
$P(f \neq y \mid x) = 1 - 1(f = 1) \cdot \alpha(x) - 1(f = -1) \cdot (1 - \alpha(x))$
$P(f \pm y \mid x) - P(f^* \pm y \mid x)$
$= \alpha(x) \cdot [1(f^*=1) - 1(f=1)] + (1 - \alpha(x))[1(f^*=-1) - 1(f=-1)]$
Note $1(f^* = -1) = 1 - 1(f^* = 1)$, $1(f = -1) = 1 - 1(f = +1)$
- X(x) [1(++1)-1(+-1)]-1(-1)
$= \alpha(x) \cdot [1(f^*=1) - 1(f=1)] - (1 - \alpha(x)) [1(f^*=1) - 1(f=1)]$ $= (2\alpha(x) - 1)[1(f^*=1) - 1(f=1)]$
Note $f^*(x) = 51 f(x) \ge \frac{1}{5}$
[-1 else
For x such that $\alpha(x) \ge \frac{1}{2}$
P(f + y x) - P(f * + y x) = (20(x) -1)[1(f*=1)-1(f=1)]
30. 30
tor x such that x(x)<=
P(f + y x) - P(f* + y A) = (2 x (x) -1) [1(f* = 1) - 1(f = 1)]
0 =0 0r 1
This Piff ylx) - Piff + ylx) > 0 always hold
Continuos 115+ -155 always hold
Constision LIft) = L(f) proved

(i)

First calculate between class S_b,within class S_w

$$S_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$

$$S_W = \sum_{\mathbf{x}_n \in C_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^T + \sum_{\mathbf{x}_n \in C_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^T$$

Then

calculate the largest absolute eigenvalue as well as corresponding eigenvectors for inv(S w)*S b

Use this eigenvector to project X and discriminant value by left multiply w^T , and discriminant value is set as the average of two class mean vectors. And then compare the projected X value and project discriminant value.

train error rate: 0.310283625731 test error rate: 0.310785714286

test error standard deviation: 0.220061320304

We can not project Boston50 dataset to 2D subspace, because the S_B is composed of sum of K matrices, each of which is an outer product of two vectors and thus S_B has rank 1. In addition, only (K-1) matrices are independent due to constraint that overall mean =weighted average of each class. So S_B has at most (K-1) rank and at most (K-1) nonzero eigenvalues. Because we need projection matrix to project onto subspace, we can not find more than (K-1) eigenvectors to compose the projection matrix and can not find more than (K-1) dimensional subspace. (ii)

Do the same calculations of S_b and S_w, except the S_w consists of sum of ten classes. Because we want to project to 2D dimensional subspace, we choose two eigenvectors with largest eigenvalues.

Stack two eigenvectors horizontally as projection matrix to project whole dataset X In 2D subspace, calculate the covariance matrix and mean using bi_vairate joint density function

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)\right\}$$

 $P(C_k|x)$ is proportional to $P(x|C_k)^*P(C_k)$

Prior $P(C_k)=N_k/N$

After we calculate covariance and mean, we can use them to predict $P(C_k|x)$ and choose the k corresponding to the largest posterior probability.

train error rate: 0.817658457499 test error rate: 0.830756292425

test error standard deviation: 0.0421947670347

4.

Summary of algorithm

(i)Logistic regression:

First, I will check the number of class K is larger than 2 or not.

I used the iterative update approach called gradient descent:

Following is for two class classification(K=2):

 $y=P(C|x)=1/(1+exp(-w^Tx+w_0))$, we use sigmoid function to calculate y

```
For j=0,\ldots,d
w_{j} \leftarrow \operatorname{rand}(-0.01,0.01)
Repeat
\operatorname{For} j=0,\ldots,d
\Delta w_{j} \leftarrow 0
For t=1,\ldots,N
o \leftarrow 0
\operatorname{For} j=0,\ldots,d
o \leftarrow o+w_{j}x_{j}^{t}
y \leftarrow \operatorname{sigmoid}(o)
\operatorname{For} j=0,\ldots,d
\Delta w_{j} \leftarrow \Delta w_{j}+(r^{t}-y)x_{j}^{t}
For j=0,\ldots,d
w_{j} \leftarrow w_{j}+\eta\Delta w_{j}
Until convergence
```

If the classification problem is a multi-class classification(K>2), use following update rule:We use softmax function to calculate y.

 $\begin{aligned} & y \text{=} exp(o_k) / (\Sigma_i \, exp(o_i)) \\ & o_k \text{=} w_k^\top X \end{aligned}$

For
$$i = 1, ..., K$$

For $j = 0, ..., d$
 $w_{ij} \leftarrow \text{rand}(-0.01, 0.01)$
Repeat
For $i = 1, ..., K$
For $j = 0, ..., d$
 $\Delta w_{ij} \leftarrow 0$
For $t = 1, ..., K$
 $o_i \leftarrow 0$
For $j = 0, ..., d$
 $o_i \leftarrow o_i + w_{ij}x_j^t$
For $i = 1, ..., K$
 $y_i \leftarrow \exp(o_i) / \sum_k \exp(o_k)$
For $i = 1, ..., K$
For $j = 0, ..., d$
 $\Delta w_{ij} \leftarrow \Delta w_{ij} + (r_i^t - y_i)x_j^t$
For $i = 1, ..., K$
For $j = 0, ..., d$
 $w_{ij} \leftarrow w_{ij} + \eta \Delta w_{ij}$
Until convergence

Both these two rules came from Introduction to Machine Learning book.

(ii)

Naive bayes with marginal Gaussian distribution:

 $P(x|C_k)=P(x_1|C_k)*P(x_2|C_k)...*P(x_d|C_k)*P(C_k)$

$$p(\mathbf{x}|C_k) = \prod_{i=1}^{D} p(x_i|C_k) = \frac{1}{(2\pi)^{D/2} \left(\prod_{i=1}^{D} \sigma_{ik}\right)} \exp\left\{-\sum_{i=1}^{D} \frac{(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right\}$$

 $P(C_k)=N_k/N$

First, we calculate the sigma, mean and prior probability.

Then we use X to calculate posterior probabilities of different classes and select the largest one as class label

Boston50 dataset:

(i)

Mean_error_rate:

[0.34653465 0.23861386 0.20792079 0.1960396 0.18613861]

Error_matrix:(row index represents num_split and column index is train_percent)

[0.17821782 0.27722772 0.18811881 0.16831683 0.13861386]

[0.38613861 0.34653465 0.26732673 0.3960396 0.3960396]

[0.48514851 0.24752475 0.21782178 0.26732673 0.27722772]

[0.14851485 0.22772277 0.0990099 0.13861386 0.14851485]

[0.45544554 0.27722772 0.24752475 0.14851485 0.18811881]

[0.13861386 0.27722772 0.16831683 0.12871287 0.13861386]

 $[0.4950495 \quad 0.24752475 \quad 0.21782178 \quad 0.26732673 \quad 0.27722772]$

[0.17821782 0.27722772 0.18811881 0.16831683 0.13861386]]

Error standard deviation:

[0.15522782 0.07623762 0.04930653 0.08375559 0.09668559]

Boston75 dataset:

(i)

Mean_error_rate: [0.73465347 0.73465347 0.73465347 0.73465347 0.73465347] Error_matrix:(row index represents num_split and column index is train_percent) [[0.87128713 0.87128713 0.87128713 0.87128713 0.87128713] [0.3960396 0.3960396 0.3960396 0.3960396 0.3960396] [0.81188119 0.81188119 0.81188119 0.81188119] [0.58415842 0.58415842 0.58415842 0.58415842] [0.82178218 0.82178218 0.82178218 0.82178218 0.82178218] [0.67326733 0.67326733 0.67326733 0.67326733] [0.7029703 0.7029703 0.7029703 0.7029703 0.7029703] [0.83168317 0.83168317 0.83168317 0.83168317 0.83168317] [0.79207921 0.79207921 0.79207921 0.79207921] [0.86138614 0.86138614 0.86138614 0.86138614]] Error standard deviation: [0.14250548 0.14250548 0.14250548 0.14250548]

Mean_error_rate:

[0.18613861 0.1980198 0.15247525 0.17722772 0.1960396]

Error_matrix:(row index represents num_split and column index is train_percent)

[[0.23762376 0.10891089 0.11881188 0.0990099 0.08910891]

[0.3960396 0.35643564 0.25742574 0.21782178 0.30693069]

[0.03960396 0.03960396 0.04950495 0.06930693 0.03960396]

[0.02970297 0.02970297 0.02970297 0.04950495 0.02970297]

[0.30693069 0.41584158 0.30693069 0.41584158 0.48514851]

[0.35643564 0.21782178 0.14851485 0.16831683 0.20792079]

[0.14851485 0.15841584 0.17821782 0.16831683 0.16831683]

[0.23762376 0.54455446 0.31683168 0.41584158 0.52475248]

[0.06930693 0.06930693 0.06930693 0.07920792 0.06930693]

[0.03960396 0.03960396 0.04950495 0.08910891 0.03960396]]

Error standard deviation:

[0.13245142 0.17251605 0.10338834 0.12927903 0.17576977]

Digits dataset:

(i)

Mean_error_rate: [0.18885794 0.10891365 0.08857939 0.08300836 0.07520891] Error_matrix:(row index represents num_split and column index is train_percent) [[0.13649025 0.06128134 0.07520891 0.07799443 0.05292479] [0.28412256 0.15320334 0.11977716 0.09749304 0.11420613] [0.15320334 0.09470752 0.07799443 0.08913649 0.06406685] [0.15320334 0.06963788 0.06685237 0.06685237 0.02785515] [0.13091922 0.07799443 0.06685237 0.05571031 0.04456825] [0.27019499 0.15598886 0.09192201 0.10584958 0.11420613] [0.14206128 0.08635097 0.0724234 0.05292479 0.0362117] [0.25905292 0.1643454 0.1086351 0.09470752 0.11977716] [0.15877437 0.09749304 0.08913649 0.07799443 0.07799443]] Error standard deviation: [0.05700174 0.03637098 0.01920996 0.01916953 0.03314646] (ii)

[0.08747405 0.0432787 0.02779939 0.04669042 0.0500998]