中华人民共和国国家标准

GB 3102.8-93

物理化学和分子物理学的量和单位

代替 GB 3102.8-86

Quantities and units-Physical chemistry and molecular physics

引言

本标准等效采用国际标准 ISO 31-8:1992《量和单位 第八部分:物理化学和分子物理学》。 本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于 1984 年 2 月 27 日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准的主要内容以表格的形式列出。表格中有关量的各栏列于左面各页,而将其单位列于对应的 右面各页并对齐。两条实线间的全部单位都是左面各页相应实线间的量的单位。

量的表格列出了本标准领域中最重要的量及其符号,并在大多数情况下给出了量的定义,但这些定义只用于识别,并非都是完全的。

某些量的矢量特性,特别是当定义需要时,已予指明,但并不企图使其完整或一致。

在大多数情况下,每个量只给出一个名称和一个符号。当一个量给出两个或两个以上的名称或符号,而未加以区别时,则它们处于同等的地位。当有两种斜体字母(例如: ϑ 、 θ , φ 、 ϕ ,g,g)存在时,只给出其中之一,但这并不意味另一个不同等适用。一般这种异体字不应给予不同的意义。在括号中的符号为"备用符号",供在特定情况下主符号以不同意义使用时使用。

量的相应单位连同其国际符号和定义一起列出。

单位按下述方式编排:

一般只给出 SI 单位。应使用 SI 单位及其用 SI 词头构成的十进倍数和分数单位。十进倍数和分数

1994-07-01 实施

单位未明确地给出。可与 SI 的单位并用的和属于国家法定计量单位的非 SI 的单位列于 SI 单位之下,并用虚线与相应的 SI 单位隔开。专门领域中使用的非国家法定计量单位列于"换算因数和备注"栏。一些非国家法定计量单位列于附录(参考件)中,这些参考件不是标准的组成部分。

关于量纲一的量的单位说明:

任何量纲一的量的一贯单位都是数字一(1)。在表示这种量的值时,单位 1 一般并不明确写出。词 头不应加在数字 1 上构成此单位的十进倍数或分数单位。词头可用 10 的乘方代替。

例:

折射率 $n=1.53\times1=1.53$ 雷诺数 $Re=1.32\times10^3$

考虑到一般是将平面角表示为两长度之比,将立体角表示为面积与长度的平方之比,国际计量委员会(CIPM)在1980年规定,在国际单位制中弧度和球面度为无量纲的导出单位;这就意味着将平面角和立体角作为无量纲的导出量。为了便于识别量纲相同而性质不同的量,在导出单位的表示式中可以使用单位弧度和球面度。

数值表示:

"定义"栏中的所有数值都是准确的。

在"换算因数和备注"栏中的数值如果是准确的,则在数值后用括号加注"准确值"字样。

本标准的特殊说明:

本标准中的相对原子质量 A_r 和相对分子质量 M_r ,以前分别称为原子量(atomic weight)和分子量(molecular weight)。在使用中,应有计划地逐步采用本标准的名称。不应将它们与摩尔质量混淆。

代表物质的符号表示成右下标,例如 c_B, w_B, p_B 。

一般宜将具体物质的符号及其状态置于与主符号齐线的括号中,例如 $c(H_2SO_4)$ 。

右上标*表示"纯的",而右上标[⊖]表示"标准"。

例:

对于摩尔体积, V_m(K₂SO₄, 在 H₂O 中, 0.1 mol·dm⁻³, 298.15 K);

对于标准摩尔定压热容, $C_{\bullet,m}^{\ominus}(H_2O,g,298.15 \text{ K})=33.58 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ 。

象 $\varphi_B = x_B V_{m,B}^*/\Sigma_A x_A V_{m,A}^*$ 这样的表示式,式中 φ_B 代表在物质 A,B,C,…的混合物中一特殊物质 B 的体积分数, x_A 代表物质 A 的摩尔分数,而 $V_{m,A}^*$ 代表纯物质 A 的摩尔体积,并且式中所有摩尔体积 $V_{m,A}^*$, $V_{m,B}^*$, $V_{m,C}^*$,…都采用在同一温度和压力时的,右边的求和是在组成混合物的 A,B,C,…所有物质的范围求和,这样 $\Sigma_A x_A = 1$ 。

化学元素的名称和符号,列于附录 A;化学元素和核素的符号,列于附录 B;pH 的定义,列于附录 C。这些附录都是补充件。

1 主题内容与适用范围

本标准规定了物理化学和分子物理学的量和单位的名称与符号;在适当时,给出了换算因数。 本标准适用于所有科学技术领域。

2 名称和符号

量:8-1.1~8-6

相对原子质量 relative atomic mass 相对分子质量 relative molecular mass 分子或其他基本单 元数 number of molecules or other elementary entities	A _r M _r	元素的平均原子质量与核素 ¹² C原子质量的 1/12 之比 物质的分子或特定单元的平均 质量与核素 ¹² C 原子质量的 1/12 之比 分子或其他基本单元在系统中 的数目	例: A _r (Cl) = 35. 453 以前称为原子量 以前称为分子量。 相对原子质量或相对 分子质量决定于核素的 组成
relative molecular mass 分子或其他基本单 元数 number of molecules or other elementary		质量与核素 ¹² C 原子质量的 1/12 之比 分子或其他基本单元在系统中	相对原子质量或相对 分子质量决定于核素的
元数 number of molecules or other elementary	N		
物质的量 amount of substance	n,(v)		物质的量为基本量之一。 当 n 用来表示粒子数 密度时,可用 v 来代替 n。参阅 8-10.1
		. :	
阿伏加德罗常数 Avogadro constant	$L,N_{ m A}$	分子数除以物质的量 $L=N/n$	$L = (6.022\ 136\ 7 \pm 0.000\ 003\ 6) \times 10^{23}\ mol^{-1}$
CODATA Bulletin 63(19	86)		
摩尔质量 molar mass	M	质量除以物质的量 M=m/n	m 为物质的质量
摩尔体积 molar volume	V _m	体积除以物质的量 V _m =V/n	在 273.15 K 和 101.325 kPa时,理想气体的摩尔体积为 $V_{\rm m,0} = (0.022~414~10\pm0.000~000~19)~{\rm m}^3/{\rm mol}$
	阿伏加德罗常数 Avogadro constant CODATA Bulletin 63(19 摩尔质量 molar mass 摩尔体积 molar volume	mount of substance 阿伏加德罗常数 L,NA Avogadro constant CODATA Bulletin 63(1986) 摩尔质量 M molar mass 摩尔体积 V _m	mount of substance Distribution of substance

单位:8-1.a~8-6.a

项 号	単位名称	符号	定 义	换算因数和备注
8-1. a	one	1		参阅引言
8-2. a	one	1		参阅引言
			·	
8-3. a	摩[尔] mole	mol	摩尔是一系统的物质 的量,该系统中所包含 的基本单元数与 0.012 kg碳12的原子 数目相等。在使用摩尔 时,基本单元应予指明, 可以是原子、分子、,可以是原子、电子及其他粒子,或 是这些粒子的特定组合	此定义适用于静止的处于基态 的非结合碳 12 原子
8-4. a	每摩[尔] reciprocal mole, mole to the power minus one	mol⁻¹		
8-5. a	千克每摩[尔] kilogram per mole	kg/mol		$M=10^{-3}M_{\rm r}{ m kg/mol}=$ $M_{\rm r}{ m kg/kmol}=M_{\rm r}{ m g/mol}$ 式中 $M_{\rm r}$ 为确定化学组成的物质 之相对分子质量
8-6. a	立方米每摩[尔] cubic metre per mole	m³/mol		

量:8-7.1~8-9

项 号	量的名称	符号	定义	备注
8-7.1	摩尔热力学能 molar thermodynamic energy	$U_{ m m}$	热力学能除以物质的量 $U_m = U/n$	此量也称为摩尔内能 (molar internal energy)
8-7.2	摩尔焓 molar enthalpy	$H_{\mathtt{m}}$	焓除以物质的量	
8-7.3	摩尔亥姆霍兹函数, 摩尔亥姆霍兹自由 能 molar Helmholtz function, molar Helmholtz free energy	$A_{\mathtt{m}}$	$H_m = H/n$ 亥姆霍兹函数除以物质的量 $A_m = A/n$	
8-7.4	摩尔吉布斯函数, 摩尔吉布斯自由能 molar Gibbs function, molar Gibbs free energy	$G_{\mathtt{m}}$	吉布斯函数除以物质的量 $G_{ m m} = G/n$	参阅 GB 3102.4
8-8.1	摩尔热容 molar heat	$C_{\mathtt{m}}$	热容除以物质的量 $C_{\mathrm{m}} = C/n$	参阅 GB 3102.4
8-8-2	capacity 摩尔定压热容 molar heat capacity at constant pressure	$C_{p,m}$	定压热容除以物质的量 $C_{p,m}=C_p/n$	
8-8.3	摩尔定容热容 molar heat capacity at constant volume	$C_{V,m}$	定容热容除以物质的量 $C_{V,m} = C_V/n$	
8-9	摩尔熵 molar entropy	$S_{\mathtt{m}}$	熵除以物质的量 S _m =S/n	参阅 GB 3102. 4

单位:8-7.a~8-9.a

项 号	单位名称	符号	定义	换算因数和备注
8-7. a	焦[耳]每摩[尔] joule per mole	J/mol		
				,
8-8. a	焦[耳]每摩[尔] 开[尔文] joule per mole kelvin	J/(mol • K)		
				·
8-9. a	焦[耳]每摩[尔] 开[尔文] joule per mole kelvin	J/(mol·K)		

量:8-10.1~8-14.2

项 号	量的名称	符号	定义	备注
8-10.1	体积分子(或粒子) 数 volumic number of molecules (or particles), 分子(或粒子)数密 度 number density of molecules (or particles) B的分子浓度	n	分子(或粒子)数除以体积。 n=N/V B 的分子数除以混合物的体积	
6-10. 2	molecular concentration of B	СВ	D 的为 1 致除以代告初的件件	
8-11.1	体积质量 volumic mass, 质量密度 mass density, 密度 density	ρ	质量除以体积	
8-11.2	B的质量浓度 mass concentration of B	$ ho_{ m B}$	B的质量除以混合物的体积	
8-12	B 的质量分数 mass fraction of B	$w_{\mathtt{B}}$	B的质量与混合物的质量之比	
8-13	B的浓度 concentration of B, B的物质的量浓度 amount-of- substance concentration of B	$c_{ m B}$	B 的物质的量除以混合物的体 积	在化学中也表示成 [B]
8-14.1	B 的摩尔分数 mole fraction of B	x_{B} , (y_{B})	B 的物质的量与混合物的物质 的量之比	这些量的替换名称分 别为物质的量分数和物 质的量比
8-14.2	溶质 B 的摩尔比 mole ratio of solute B	$r_{ m B}$	溶质 B 的物质的量与溶剂的物质的量之比	对于单一溶质的溶液, $r=x/(1-x)$

单位:8-10.a~8-14.a

〔号 阜	单位 名 称	符号	定	义	换算因数和备注
recij met: 负三 met.	E次方米 re to the er minus	m ⁻³			
tine			i.		
			•		
kilo	E每立方米 gram per ic metre	kg/m³			
	記每升 gram per	kg/L			$ \begin{array}{c} 1 \text{ kg/L} = 10^3 \text{ kg/m}^3 = \\ 1 \text{ kg/dm}^3 \end{array} $
-12. a — one		1			参阅引言
	尔]每立方米 e per cubic re	mol/m³			
	尔]每升 le per litre	mol/L			$\frac{1 \text{ mol/L} = 10^3 \text{ mol/m}^3}{1 \text{ mol/dm}^3}$
-14. a one		1			参阅引言
one					

量:8-15~8-19

项 号	量的名称	符号	定义	备注
8-15	B的体积分数 volume fraction of B	9 B	对于混合物, $q_B = x_B V_{m,B}^*/(\Sigma_A x_A V_{m,A}^*)$ 式中 $V_{m,A}^*$ 是纯物质 A 在相同温度和压力时的摩尔体积,而 Σ 代表在全部物质范围求和	也可使用一个替换定义,即以 A 的偏摩尔体积 $V_A = (\partial V/\partial n_A)_{T,\rho,n_B,\cdots}$ 代替纯物质 A 的摩尔体积 $V_{A,A}^*$,纯物质 A 的偏摩尔体积可用 V_A^* 表示, V_A^* 与 $V_{A,A}^*$ 完全相等
8-16	溶质 B 的质量摩尔浓度 molality of solute B	$b_{ m B}$, $m_{ m B}$	溶液中溶质 B 的物质的量除 以溶剂的质量	
8-17	B的化学势 chemical potential of B	$\mu_{ m B}$	对于含有物质 B,C,…的混合物, $\mu_{\rm B} = (\partial G/\partial n_{\rm B})_{T,P,n_{\rm C},}$ 式中 $n_{\rm B}$ 为 B 的物质的量, G 为吉布斯函数	对于纯物质, $\mu = G/n = G_m$ 式中 G_m 为摩尔吉布斯 函数。 符号 μ 也用来表示 量 G_m/L , L 为阿伏加德 罗常数
8-18	B 的绝对活度 absolute activity of B	λ_{B}	$\lambda_{\rm B} = \exp(\mu_{\rm B}/RT)$	关于 R,参阅 8-36,T 为热力学温度
8-19	B 的分压力(在气体混合物中) partial pressure of B (in a gaseous mixture)	Þв	对于气体混合物,	此量也称为 B 的分 压

单位:8-15.a~8-19.a

项 号	单位名称	符号	定义	换算因数和备注
8-15. a	one	1		参阅引言
0.10	₽	1./1		
8-16. a	摩[尔]每千克 mole per kilogram	mol/kg		
8-17. a	焦[耳]每摩[尔] joule per mole	J/mol		
8-18. a	one	1		参阅引言
8-19. a	帕[斯卡] pascal	Pa		

量:8-20~8-22.2

项 号	量的名称	符号	定义	备注
8-20	B 的逸度(在气体 混合物中) fugacity of B (in a gaseous mixture)	$\widetilde{p}_{\mathrm{B}},(f_{\mathrm{B}})$	对于气体混合物, p_B 比例于绝对活度 λ_B , 比例因子只是温度的函数, 为等温定组成时无限稀薄气体之 p_B/p_B 趋近于 1 的条件所决定	$\mathcal{P}_{B} = \lambda_{B} \cdot \lim_{p \to 0} (x_{B}p/\lambda_{B})$
8-21	B 的标准绝对活度 (在气体混合物中) standard absolute activity of B(in a gaseous mixture)	λ₽̈́	$\lambda_B^{\Theta} = (p^{\Theta}/x_B) \cdot \lim_{p \to 0} (\lambda_B/p)$ 式中 p^{Θ} 为标准压力,通常选择为 100 kPa	此量只是温度的函数。 以前通常将 p [©] 选择 为 101. 325 kPa
8-22.1	B 的活度因子(在 液体或固体混合物中) activity factor of B (in a liquid or a solid mixture)	$f_{\mathtt{B}}$	对于液体混合物, $f_{B}=\lambda_{B}/(\lambda_{B}^{*}x_{B})$ 式中 λ_{B}^{*} 为纯物质 B 在相同温度和压力时的绝对活度	此量也称为 B 的活 度系数(activity coefficient of B)
8-22.2	B 的标准绝对活度 (在液体或固体混合物中) standard absolute activity of B(in a liquid or solid mixture)	λg⊖	$\lambda_{\rm B}^{\ominus} = \lambda_{\rm B}^* (p^{\ominus})$	此量只是温度的函数

Ş

单位:8-20.a~8-22.a

项 号	量的名称	符号	定义	换算因数和备注
8-20. a	帕[斯卡] pascal	Pa		
	X - c			
8-21.a	one	1		参阅引言
		·		
8-22. a	— one	1		参阅引言
				:
		·		
			· .	

量:8-23~8-24.2

项 号	量的名称	符号	定义	备注
8-23	溶质 B 的活度,溶质 B 的相对活度 (特别是在稀薄液体溶液中) activity of solute B, relative activity of solute B (especially in a dilute liquid solution)	а _в , а _{т, в}	对于溶液中的溶质 B, a _B 比例 于绝对活度 λ _B , 比例因子只是温 度和压力的函数, 为等温定压和 无限稀薄时 a _B 除以质量摩尔浓 度比 m _B /m [©] 趋近于 1 的条件所 决定, m [©] 为标准质量摩尔浓度, 通常为 1 mol/kg	$a_{m,B}$ = $\lambda_{B} \cdot \lim_{\sum_{m_{B} \to 0}} \{(m_{B}/m^{\Theta})/\lambda_{B}\}$ 以浓度比 c_{B}/c^{Θ} 作为 类似定义的量 $a_{c,B}$,也 称为溶质 B 的活度或相对活度, c^{Θ} 为标准浓度,通常为 1 mol/dm^{3} 。 $a_{c,B}$ = $\lambda_{B} \cdot \lim_{\sum_{k_{B} \to 0}} \{(c_{B}/c^{\Theta})/\lambda_{B}\}$ 式中 Σ 代表在全部溶质范围求和
8-24.1	溶质 B 的活度因子(特别是在稀薄液体溶液中) activity factor of solute B (especially in a dilute liquid solution)	$\gamma_{_{ m B}}$	对于溶液中的溶质 B, $\gamma_{\mathrm{B}}=a_{\mathrm{B}}/(m_{\mathrm{B}}/m^{\Theta})$	溶质 B 的活度因子 这一名称也用于量 y_B , 其定义为 $y_B = a_{c,B}/(c_B/c^{\Theta})$ 此量也称为溶质 B 的活度系数 (activity coefficient of solute B)
8-24.2	溶质 B 的标准绝对活度(特别是在稀薄液体溶液中) standard absolute activity of solute B (especially in a dilute liquid solution)	λ₽	对于溶液中的溶质 B ,	此量只是温度的函数

单位:8-23.a~8-24.a

项 号	单位名称	符号	定义	换算因数和备注
8-23. a	one	1		参阅引言
	one .			
8-24. a		1		参阅引言
	one			
				, Ay

量:8-25.1~8-25.3

		/s/r 🗆	٧١ بـدر	A 34
项 号	量 的 名 称	符号	定义	· 备 注
8-25. 1	溶剂 A 的活度,溶剂 A 的相对活度 (特别是在稀薄液体溶液中) activity of solvent A, relative activity of solvent A (especially in a dilute liquid solution)	$a_{ m A}$	对于溶液中的溶剂 A,a _A 等于绝对活度 λ _A 与在相同温度和压力下的纯溶剂的绝对活度 λ _A 之比	$a_{\rm A} = \lambda_{\rm A}/\lambda_{\rm A}^*$
8-25.2	溶剂 A 的渗透因子(特别是在稀薄液体溶液中) osmotic factor of solvent A (especially in a dilute liquid solution)	φ	$\varphi=-(M_{\rm A} \Sigma m_{\rm B})^{-1} \ln a_{\rm A}$ 式中 $M_{\rm A}$ 为溶剂 A 的摩尔质量, 而 Σ 代表在全部溶质范围求和	此量也称为溶剂 A 的渗透系数(osmotic coefficient of solvent A)
8-25.3	溶剂 A 的标准绝对活度(特别是在稀薄液体溶液中) standard absolute activity of solvent A (especially in a dilute liquid solution)	λ∯	对于溶液中的溶剂 A , $\lambda^{\bigcirc }_{\lambda} = \lambda^{*}_{\lambda} \left(p^{\bigcirc} \right)$	此量只是温度的函数

单位:8-25.a

项 号	单位名称	符号	定义	换算因数和备注
8-25. a	one	1		参阅引言
				•
		,		

量:8-26~8-29

项号	量的名称	符号	定义	备注
8-26	渗透压力 osmotic pressure	П	为维持只允许溶剂通过的膜所 隔开的溶液与纯溶剂之间的渗透 平衡而需要的超额压力	
8-27	B的化学计量数 stoichiometric number of B	ν _В	出现在化学反应方程式 0=Σ _B ν _B B 中的数字或简分数,式中符号 B 表示包含在反应中的分子、原子 或离子	根据约定,反应物的 化学计量数为负,而产 物的为正
8-28	[化学反应]亲和势 affinity (of a chemical reaction)	A	$A\!=\!-\Sigma_{ ext{ iny B}} u_{ ext{ iny B}}\mu_{ ext{ iny B}}$	如将 A 作为亥姆霍兹函数的符号,则斜黑体字 A 或无衬线的 A 或手写体 $\mathcal A$ 可作为亲和势的符号
•				·
8-29	反应进度 extent of reaction	ę	对于反应 $0=\Sigma_{\rm B}\nu_{\rm B}{\rm B}$, ${\rm d}\xi=\nu_{\rm B}^{-1}{\rm d}n_{\rm B}$ 式中 $n_{\rm B}$ 为 B 的物质的量	应用此量时必须指明 化学反应方程式

单位:8-26.a~8-29.a

项 号	单位名称	符号	定义	换算因数和备注
8-26. a	帕[斯卡] pascal	Pa		
8-27. a	→ one	1		参阅引言
8-28. a	焦[耳]每摩[尔] joule per mole	J/mol		
8-29. a	摩[尔] mole	mol		
	•			
			·	

量:8-30

项 号	单位名称	符号	定义	备注
8-30	标准平衡常数 standard equilibrium constant	K⊖	对于反应 $0 = \Sigma_B \nu_B B$, K^{Θ} 是 $\Pi_B(\lambda_B^{\Theta})^{-\nu_B}$	此量只是温度的函数。 其他的"平衡常数"决定于温度和压力。
,				例: 对气体反应, $K_f = \Pi_B (f_B)^{r_B};$
				对混合物中的反应, $K_{xf} = \Pi_{B} (x_{B} f_{B})^{*_{B}};$
i				对溶液中的反应, $K_a = \Pi_B (a_B)^{r_B}$ 其他一些"平衡常数"
				则决定于温度、压力和 组成 例:
				对气体反应, $K_{p}=\Pi_{B}(p_{B})^{\nu_{B}};$ 对混合物中的反应,
				$K_x = \Pi_B(x_B)^{\nu_B};$ 对溶液中的反应, $K_m = \Pi_B(m_B)^{\nu_B};$
		·		或 $K_c = \Pi_B(c_B)^{\nu_B}$
				上述有些"平衡常数" (K_f, K_ρ, K_m, K_c) 并非总是量纲一的量。
				同样,由电解质 C _x A _y 所饱和的溶液,其标准 溶度积也是量纲一的
				量。 $K^{\Theta} = x^{x} y^{y} (m^{\gamma}/m^{\Theta})^{x+y}$ 式中 m 和 γ 分别为
				C_xA ,在溶液中的质量摩尔浓度和活度因子,而 m^{Θ} 为标准质量摩尔
				浓度,通常为1 mol/kg

单位:8-30.a

项 号	单位名称	符号	定 义	换算因数和备注
8-30. a	one	1		参阅引言
	·			
		:		
				٤

量:8-31~8-34.4

项 号	量的名称	符号	定义	备注
8-31	分子质量 mass of molecule	m		m=M _r m _u 式中 m _u 为原子质量常量。 关 于 m _u ,参 阅 GB 3102.9
8-32	分子电偶极矩 electric dipole moment of molecule	φ,μ	电偶极矩是一矢量,其与电场 强度的矢积等于转矩 p×E=T	
8-33	分子电极化率 electric polarizability of molecule	α	诱导电偶极矩除以电场强度	也可用γ
8-34.1	微正则配分函数 microcanonical partition function	Ω	Ω=Σ,1式中Σ代表对与给定能量、体积、外场和含量一致的所有量子态求和	S=k ln Ω 式中 S 为熵,符号 k 可 参阅 8-37
8-34.2	正则配分函数 canonical partition function	Q,Z	$Z=\Sigma_r \exp(E_r/kT)$ 式中 Σ 代表对与给定体积、外场和含量一致的所有量子态求和,而 E_r 是第 r 个量子态的能量	$A=-kT \ln Z$ 式中 A 为亥姆霍兹函 数
8-34.3	巨正则配分函数 grand-canonical partition function, grand partition function	E	$E = \sum_{N_A, N_B,} Z(N_A, N_B,)$ ・ $\lambda_A^{N_A} \cdot \lambda_B^{N_B} \cdot$ 式中 $Z(N_A, N_B,)$ 为指定数目的粒子 $A, B,$ 的正则配分函数,而 $\lambda_A, \lambda_B,$ 的地子 $A, B,$ 的绝对活度	$A-\Sigma_{\mathrm{B}}~\mu_{\mathrm{B}}n_{\mathrm{B}}=$ $-kT~\ln~\Xi$ 式中 $\mu_{\mathrm{B}}~$ 为 B 的化学势
8-34.4	分子配分函数 molecular partition function, partition function of a molecule	q	$q=\Sigma_i \exp(-\epsilon_i/kT)$ 式中 ϵ_i 为与给定体积和外场一 致的分子第 i 个允许的量子态的 能量	

单位:8-31.a~8-34.a

项 号	单位名称	符号	定 义	换算因数和备注
7% 3		10 3		次开码从作品压
8-31. a	十克	kg		
8-31. b	kilogram 原子质量单位 unified atomic mass unit	u	$1 \text{ u} = m(^{12}\text{C})/12$	1 u=(1.660 540 2± 0.000 001 0)×10 ⁻²⁷ kg ¹⁾ 参阅 GB 3102.9
1) (CODATA Bulletin 630	(1986)		
8-32. a	库[仑]米 coulomb metre	C•m		分子电偶极矩的高斯 CGS 单位相当于 3.335 641×10 ⁻¹² C·m
8-33. a	库[仑]二次方米 每伏[特] coulomb metre squared per volt	C·m²/V		分子电极化率的高斯 CGS 单位等于 1 cm³,相当于 1.112 650×10 ⁻¹⁶ C·m²/V
8-34. a	_	1	M 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	参阅引言
	one			
	·			
·				

量:8-35~8-42

项号	量的名称。	符号	定义	备注
8-35	统计权重 statistical weight	g	量子能级的多重度(简并度)	
8-36	摩尔气体常数 molar gas constant	R	在理想气体定律中的普适比例 常数: pV _m =RT	$R = (8.314510 \pm 0.000070) \text{ J/(mol } \cdot \text{K})^{1}$
1) (CODATA Bulletin 63(19	86)		
8-37	玻耳兹曼常数 Boltzmann constant	k	k = R/L	k=(1.380658± 0.000012)×10 ⁻²³ J/K ¹ β用来代表 1/kT,其 中 T 为热力学温度
1) (CODATA Bulletin 63 (19	986)	Y	
8-38	平均自由程 mean free path	ι,λ	对于一个分子来说,为两次连续碰撞之间的平均距离	
8-39	扩散系数 diffusion coefficient	D	$C_{\rm B}\langle \nu_{\rm B} \rangle = -D$ grad $C_{\rm B}$ 式中 $C_{\rm B}$ 为 B 在混合物中的局部 分子浓度,而 $\langle \nu_{\rm B} \rangle$ 为分子 B 的局部平均速度	
8-40.1	热扩散比 thermal diffusion ratio	k_T	在二元混合物的稳定状态中发生的热扩散: grad $x_B = -(k_T/T)$ grad T 式中 x_B 为较重物质 B 的局部摩尔分数,而 T 为局部温度	
8-40.2	热扩散因子 thermal diffusion factor	$lpha_T$	$a_T = k_T/x_A x_B$ 式中 x_A 和 x_B 为两物质的局部摩尔分数	
8-41	热扩散系数 thermal diffusion coefficient	D_T	$D_T = k_T D$	
8-42	质子数 proton number	Z	原子核中的质子数目	周期表中的原子序数 等于质子数

单位:8-35.a~8-42.a

项 号	単位名称	符号	定义	换算因数和备注
8-35. a	one	. 1		参阅引言
8-36. a	焦[耳]每摩[尔] 开[尔文] joule per mole kelvin	J/(mol • K)		
8-37. a	焦[耳]每开[尔 文] joule per kelvin	J/K		
8-38. a	米 metre	m		
8-39. a	二次方米每秒 metre squared per second	m²/s	•	
8-40. a	one	1		参阅引言
8-41. a	二次方米每秒 metre squared per second	m²/s		
8-42. a	one	1		参阅引言

量:8-43~8-49

项 号	量的名称	符号	定义	备注
8-43	元电荷 elementary charge	e	一个质子的电荷	一个电子的电荷等于 -e e=(1.602 177 33±
				0. 000 000 49) \times $10^{-19} \mathrm{C}^{10}$
1) (CODATA Bulletin 63(198	36)	T-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
8-44	离子的电荷数 charge number of ion	z	离子电荷与元电荷之比	对于负离子,此量为 负
8-45	法拉第常数 Faraday constant	F	F = Le	$F = (9.6485309 \pm 0.0000029) \times 10^4 \text{ C/mol}^{10}$
1) (CODATA Bulletin 63(19	86)		
8-46	离子强度 ionic strength	I .	溶液的离子强度定义为 $I = \frac{1}{2} \sum z_i^2 m_i$	
			式中Σ代表在质量摩尔浓度 m _i 的全部离子范围求和	
8-47	解离度 degree of dissociation	α	解离的分子数与分子总数之比	此量的替换名称为 "解离分数(dissociation fraction)"
8-48	电解质电导率 electrolytic conductivity	κ,σ	电流密度除以电场强度 $\kappa=j/E$	
8-49	摩尔电导率 molar conductivity	$\Lambda_{ m m}$	电导率除以物质的量浓度 $\Lambda_{\rm m} = \kappa/c$	

单位:8-43.a~8-49.a

项 号	单位名称	符号	定义	换算因数和备注
8-43. a	库[仑] coulomb	С		
8-44. a	one	1		参阅引言
8-45. a	库[仑]每摩[尔] coulomb per mole	C/mol		
8-46. a	摩[尔]每千克 mole per kilogram	mol/kg	·	
8-47. a	one	1		参阅引言
8-48. a	西[门子]每米 siemens per metre	S/m		1 S=1 Ω ⁻¹
8-49. a	西[门子]二次方 米每摩[尔] siemens metre squared per mole	S•m²/mol		

量:8-50~8-54

项 号	量的名称	符号	定义	备注
8-50	离子 B 的迁移数 transport number of the ion B, 离子 B 的电流分 数 current fraction of the ion B	$t_{ m B}$	离子 B 运载的电流与总电流 之比	
8-51	转化速率 rate of conversion	ξ,J	<i>ξ</i> =d <i>ξ</i> /d <i>t</i> 式中 <i>t</i> 为时间	应用此量时必须指明 化学反应方程式
8-52	旋光角 angle of optical rotation	α	平面偏振光通过旋光性介质面 向光源观察时向右偏转的角	
8-53	摩尔旋光本领 molar optical rotatory power	$lpha_n$	$\alpha_n = \alpha A/n$ 式中 n 为旋光性组元在横截面积 A 的线性偏振光束途径中之物质	
8-54	质量旋光本领 massic optical rotatory power, 比旋光本领 specific optical rotatory power	α_m	α _m =αA/m 式中 m 为旋光性组元在横截面 积 A 的线性偏振光束途径中之 质量	

单位:8-50.a~8-54.a

项 号	单位名称	符号	定义	换算因数和备注		
8-50. a	one .	1		参阅引言		
			X.			
8-51. a	摩[尔]每秒 mole per second	mol/s				
8-52. a	弧度 radian	rad				
8-53. a	孤度平方米每摩 [尔] radian square metre per mole	rad • m²/mol				
8-54. a	弧度平方米每千 克 radian square metre per kilogram	rad • m²/kg	·			

附 录 A 化学元素的名称和符号¹⁾

(补充件)

原子序数	名称	符号	原子序数	名 称	符号
1	氢 hydrogen	Н	26	铁 iron,(ferrum)	Fe
2	氦 helium	He	27	钴 cobalt	Со
			28	镍 nickel	Ni
3	锂 lithium	Li	29	铜 copper,(cuprum)	Cu
4	铍 beryllium	Ве	30	锌 zinc	Zn
5	硼 boron	В	31	镓 gallium	Ga
6	碳 carbon	c	32	锗 germanium	Ge
7	氦 nitrogen	N	33	砷 arsenic	As
8	氧 oxygen	О	34	硒 selenium	Se
9	氟 fluorine	F	35	溴 bromine	Br
10	氖 neon	Ne	36	氪 krypton	Kr
11	钠 sodium, (natrium)	Na	37	铷 rubidium	Rb
12	镁 magnesium	Mg	38	锶 strontium	Sr
13	铝 aluminium	Al	39	钇 yttrium	Y
14	硅 silicon	Si	40	锆 zirconium	Zr
15	磷 phosphorus	P	41	铌 niobium	Nb
16	硫 sulfur	S	42	钼 molybdenum	Mo
17	氯 chlorine	Cl	43	锝 technetium	Tc
18	氩 argon	Ar	44	钌 ruthenium	Ru
			45	铑 rhodium	Rh
19	钾 potassium,(kalium)	К	46	钯 palladium	Pd
20	钙 calcium	Ca	47	银 silver,(argentum)	Ag
21	钪 scandium	Sc	48	镉 cadmium	Cd
22	钛 titanium	Ti	49	铟 indium	In
23	钒 vanadium	v	50	锡 tin,(stannum)	Sn
24	铬 chromium	Cr	51	锑 antimony,(stibium)	Sb
25	锰 manganese	Mn	52	碲 tellurium	Te

¹⁾ 引自:IUPAC, Physical Chemistry Division: Quantities, Units and Symbols in Physical Chemistry (1988)。括号中附加的名称作为资料用。

续表

原子序数	名 称	符号	原子序数	名	称	符号
53	碘 iodine	I	81	铊	thallium	Tl
54	氙 xenon	Xe	82	铅	lead, (plumbum)	Pb
			83	铋	bismuth	Bi
55	铯 caesium	Cs	84	钋	polonium	Po
56	钡 barium	Ba	85	砹	astatine	At
57	镧 lanthanum	La	86	氡	radon	Rn
58	铈 cerium	Ce				
59	镨 praseodymium	Pr	87	钫	francium	Fr
60	钕 neodymium	Nd	88	镭	radium	Ra
61	钷 promethium	Pm	89	锕	actinium	Ac
62	钐 samarium	Sm	90	钍	thorium	Th
63	铕 europium	Eu	91	镤	protactinium	Pa
64	钆 gadolinium	Gd	92	铀	uranium	U
65	試 terbium	ТЪ	93	镎	neptunium	Np
66	镝 dysprosium	Dy	94	钚	plutonium	Pu
67	钬 holmium	Но	95	镅	americium	Am
68	铒 erbium	Er	96	锔	curium	Cm
		-	97	锫	berkelium	Bk
69	铥 thulium	Tm	98	锎	californium	Cf
70	镱 ytterbium	Yb	99	锿	einsteinium	Es
71	镥 lutetium	Lu	100	镄	fermium	Fm
72	铪 hafnium	Hf	101	钔	mendelevium	Md
73	钽 tantalum	Ta	102	锘	nobelium	No
74	钨 tungsten,(wolfram)	w	103	铹	lawrencium	Lr
75	铼 rhenium	Re	104		unnilquadium	Unq
76	锇 osmium	Os	105		unnilpentium	Unp
77	铱 iridium	Ir	106		unnilhexium	Unh
78	铂 platinum	Pt	107		unnilseptium	Uns
79	金 gold,(aurum)	Au	108		unniloctium	Uno
80	汞 mercury, (hydrargyrum)	Hg	109		unnilennium	Une

附 录 B 化学元素和核素的符号

(补充件)

化学元素符号应当用罗马(正)体书写,在符号后不得附加圆点(句子结尾的正常标点除外)。例:

H He C Ca

说明核素或分子的附加下标或上标,应具有下列意义及位置:

核素的核子数(质量数)表示在左上标位置,例如

14 N

分子中核素的原子数表示在右下标位置,例如 14N。

质子数(原子序数)可在左下标位置指出,例如

64Gc

如有必要,离子态或激发态可在右上标位置指出。 例:

离子态: Na⁺,PO₄³⁻或(PO₄)³⁻

电子激发态: He*,NO*

核激发态: ¹¹⁰Ag*, ¹¹⁰Ag^m

附 录 C

pН

(补充件)

pH 是从操作上定义的。对于溶液 X,测量下列伽伐尼电池的电动势 E_x : 参比电极 |KC| 浓溶液 |KC| 溶液 |KC| 浓溶液 |KC|

将未知 pH(X)的溶液 X 换成标准 pH(S)的溶液 S,同样测量电池的电动势 E_s 。则 pH(X)=pH(S)+(E_s - E_x)F/(RT ln10)

式中F 为法拉第常数,R 为摩尔气体常数,T 为热力学温度。因此,所定义的 pH 是量纲一的量 11 。

一些标准溶液的 pH(S)值,载于 IUPAC, Definition of pH Scales, Standard Reference Values, Measurement of pH and Related Terminology, Pure Appl. Chem, 57(1985), 531—542。

pH 没有基本的意义,其定义为一种实用定义。但是在总离子强度小于 0.1 mol/kg 的稀薄水溶液有限范围,既非强酸性又非强碱性(2<pH<12),则定义使有

 $pH = -lg\{m(H^+)\gamma_{\pm}/m^{\Theta}\}\pm 0.02$, $gpH = -lg\{c(H^+)\gamma_{\pm}/c^{\Theta}\}\pm 0.02$

式中 $m(H^+)$ 或 $c(H^+)$ 代表氢离子 H^+ 的质量摩尔浓度或氢离子 H^+ 的浓度,而 γ_\pm 或 y_\pm 代表溶液中典型 1-1 电解质的以质量摩尔浓度为基础的平均离子活度因子或以浓度为基础的平均离子活度因子。

¹⁾根据 GB 3101-93 规定,量的符号一般应以斜体书写和印刷,而量 pH 则例外,以正体书写和印刷。

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。

本标准由全国量和单位标准化技术委员会第五分委员会负责起草。

本标准主要起草人刘天和、刘芸、胡日恒。