

Topics to be covered

- 1) # PhD on Normal force, Tension force, Segulibrium

 8251 IZ=1051
- 3

2

4

aat must have -> Assignment - 3 solve Karna-

moting in play 5 (gat uplas)

* **

A 2m wide truck is moving with a uniform speed $V_0 = 8$ ms⁻¹ along a straight horizontal road. A pedestrian starts to cross the road with a uniform speed v, when the truck is 4 m away from him. The minimum value of v so that he can cross the road safely is

- 2.62 ms⁻¹
- 2 4.6 ms⁻¹
- 3.57 ms⁻¹
- 4 1.414 ms⁻¹

HOME WOK.

(a) Object is Project at angle of such that its Position vector always Increases then find marin angle of Projection.

(1084 Clars में दिशा भा।)

9f Velocity is along Position Vector then 8 - Incre. (010) B 7. V = tre 8 V (030)
Angle 8/w 78V
is actur 2 Joseph T Costy # V= Uxi+(uy-g+) T V.8≥0 Ex 0290 8. N=0 (circula mora) # 8= Vati+(4yt-19+3) 3:20=8 of P.V = -ve (obtuse ange) TV

Notes & ported

FIIT FldY

Cond of collsion.

@ Comprof Velocity It to line Joining

UA sin30 - UB sin60

=> 100 /3 sin300 = UB sin 60

100 xx = 40 xx

SUB= 100 m/s

Consider motion in n-axis

t= length of line Joining

Relative velocity along time Jointy

t = 500 = 500 = 500 = 5500

Airplanes A and B are flying with constant velocity in the same vertical plane at angles 30° and 60° with respect to the horizontal respectively as shown in the figure. The speed of A is $100\sqrt{3}$ ms⁻¹. At the time t = 0s, an observer in A finds B at a distance of 500 m. This observer sees B moving with a constant velocity perpendicular to the line of motion of A. If at $t = t_0$, A just escapes being hit by B, t_0 in seconds is

[JEE ADV, 2014]

Question HID - Assy >5

Positions of two vehicles A and B with reference to origin O and their velocities are as shown. Which of the following options is incorrect?

- They will collide.
- Distance of closest approach is 100 m.
- Their relative velocity is $\frac{40}{\sqrt{3}}$ m/s
- Their relative velocity is $\frac{20}{\sqrt{3}}$ m/s

A particle P is projected from ground with an initial speed of 10 m/s at an angle of 60° with the horizontal. From what height h should an another particle be projected horizontally with velocity 5 m/s so that both the particles collide in ground at point C, if both are projected simultaneously? ($g = 10 \text{ m/s}^2$)

- 10 m
- **2** 30 m
- 3 15 m
- 4 25 m

HIW

Consider the situation as shown in the figure. Two balls are thrown simultaneously with same speed 10 m/s, one horizontally and another at angle 60° in downward direction. After sometime balls collide in mid-air, find distance d.

A particle is projected from ground at an angle θ with horizontal with speed u. The ratio of radius of curvature of its trajectory at the point of projection to the radius of curvature at maximum height is

- $\frac{1}{\sin^2\theta\cos\theta}$
- $\frac{2}{\cos^2 \theta}$
- $\frac{3}{\sin^3\theta}$
- $\frac{1}{\cos^3 \theta}$

A boy throws a ball upwards with velocity $v_0 = 20$ m/s. The wind imparts a horizontal acceleration of 4 m/s² to the ball. The angle θ from vertical at which the ball must be thrown so that the ball returns to the boy's hand is $(g = 10 \text{ m/s}^2)$

- 1 tan⁻¹ (1.2)
- 2 tan⁻¹ (0.2)
- 3 tan⁻¹ (2)
- 4 tan-1 (0.4)

> U= ?? h = 80m Asouth (80,0) (५७०)

find Umin 3 umax so that
bout will fall in given
Contains

$$T = \sqrt{\frac{24}{1}} = \sqrt{\frac{2\times89}{19}} = \sqrt{16} = 4 \text{ sec}$$

Umay = 20m/K

Normal Reaction (Contact Foxce)

to when two object in contact MRX BOX! - for Normal Contact Syrface Ke Ix perpendicular so favalled line draw Karo, Normal force upar wate pe upar, niche Pe Niche, aage pe aage Pichhe Pe Pichhe.

ex (ontact -> 2 ling.

MRY BOX. Normal ka ex hi narq 1 contact IR 2 line ho hamara.

*

,

*

Disn of Normal on man & list!

lift list

Dono foot non liva

٠

(given in question) Ground Rest regulaboin (Fref=0) F+1mg = N (on block due to ground)

DIN Block & gray

Frace applies by Block on grows =

Non gus Ftmg
(downward)

1 E= 20M in question) Grouns, N (ou drong) 1 F=20N R=87 (F=0) Free body 1 Mg N= A0x10-50= A09-50=380N

DIW Block & gray

1

free body diagram (F.B.D)

lixho

(#Likhe

(#Likhe

object to exsath

system assume Karema

to unke bich ka Hormal (ancel hoga

Combined F.B.D of M1, M2 8M3

Now confact N1 = (M1+ M2+ M3) } FBD of M28M3 N2 = (M2+m3)g NI (ou drong) (MR Box Jab bhi 2 ya 3

contel

1) find force on Ground by MT. = (5+4+2+9) (mi+mz+mg+my) Ni= mont g

1 force on m2 3 m3

Combined F.B.D (M3 & My)

(Normal B/W M23M, = (150N)

1) find force on Ground by

$$N_{4} = 90N$$
 $N_{3} = 110N$
 $N_{2} = 150N$
 $N_{1} = 200N$

= 518 M3=2K) Trount

Jind NI, NZ, N3 Ny , Ns . (fusice B/W M3 3 M2

15 = 50N Ny = 1301V N2 = 210N N1 = 250 N

JEE (0) 50 Identical Box of man m placed one over other then find confact force B/W 3rd 34th Box. + Combin F.B.) MW 13 Goud

. 1.

disconfact force B/W M, 8 M2 from Morrizontal ??

53° from Harizontel

37. 37.

.

Tension force L> 9t act away from contact point along 9n massless string Tension Same b/w two length of stoing. >> Mars wale string me har point Pe tension same yadistin ho skta hai. BOX > Contact foint Par baith Ke stoing Ke along chhaata (ettat) khol/lo.

.

Mesino 3 mgrsQ find Tension in string.

along Inclined Plane
Net Force = Zero 7) Ton object

.

T= SON

T, = 201

-

111111 2×9 156 5Kb

WEX BOX

Ko exseth

F.D.D (system)

manega

Sixf Tension Carrel hoga

1) find net force on (m2)

2) find net force on @

Find net force on 2m.

[NEET-2013]

If system is in equilibrium then find value of m.

Find relation between m_1 and m_2 so that system is in equilibrium.

A vertical force *F* is applied at one end of a uniform rope of mass *M* and length *L*. Find out tension in the rope as a function of *x*.

$$r + \frac{MgL}{x}$$

$$\frac{FL + Mgx}{L}$$

$$\frac{Fx + MgL}{L}$$

The adjoining figure shows a block of mass 10 kg connected to free end of a rope of mass 10 kg and length 10 m. The tension of the rope at point A is: $(g = 10 \text{ m/s}^2)$

- 170 N
- 2 30 N
- 3 130 N
- 4 70 N

7 > question of Home-work

Must Toy.

maha-monthon

of motion in Plane