Химия простых веществ

Если ты считать не будешь, скоро химию забудешь

Бинарные соединения **X**, **Y** и **Z**, обладают почти одинаковой плотностью в газообразном состоянии. Взаимосвязь между ними показана на схеме, представленной ниже.

Дополнительная информация:

- 1. В состав веществ **X**, **Y** и **Z** входят атомы элемента, образующего простое вещество **A**, молярная масса которого в 8 раз меньше, чем у **E**.
- 2. **А-Е** представляют собой простые вещества, молярная масса которых в ряду возрастает.
- 3. При нормальных условиях вещества **B** и **C** являются твёрдыми, а **A**, **D** и **E** представляют собой газы.
- 4. Объёмное соотношение газообразных веществ Y и Z, полученное из навесок В одной и той же массы, составляет 3:4 при одинаковых условиях.
- 5. При термическом разложении 1 моль соединения I образуется 1 моль вещества X.

Вопросы:

- 1. Вычислите молярную массу соединений **X Z**.
- **2.** Определите вещества A I. Ответ обоснуйте!
- **3.** Установите состав веществ **X Z**. Ответ обоснуйте.

Решение задачи 9-3 (автор: Крысанов Н.С.)

Массы двух газообразных (при н.у.) простых веществ E и A отличаются в 8 раз. В этом случае молярная масса Е может быть записана в виде 8п г/моль. Под это условие отлично подходит кислород $E - O_2$, молярная масса которого составляет 32 г/моль. Тогда молярная масса соединения А окажется в 8 раз меньше и составит 4 г/моль, что свидетельствует о наличие в его составе лёгких атомов – гелия или водорода. Поскольку атомы элемента А входят в состав соединений X-Z, сделаем выбор в пользу водорода. Единственной разумной комбинацией с данной молярной массой является молекула, состоящая из двух атомов дейтерия, $A - D_2$. Существует лишь одно простое вещество, являющееся газом при н.у., молярная масса которого лежит в диапазоне от 4 г/моль до 32 г/моль, — это азот ${\bf D}-N_2$. Тогда среди соединений **X-Z** могут быть дейтериевая (тяжёлая) вода D_2O и тридейтероаммиак ND_3 . Обратим внимание, что они действительно обладают одинаковой молярной массой в 20 г/моль, что соответствует практически одинаковой плотности в газообразном состоянии при одинаковых условиях. Такой же молярной массой обладает и содержащий атомы дейтерия тетрадейтерометан СD₄, тогда одним из простых веществ В-С является углерод. Молярной массой в 20 г/моль также обладают HF и BT_3 . Данные варианты при наличии логичного обоснования могут быть засчитаны как верные и оценены полным баллом.

Анализируя схему, представленную в условии задачи, можно предположить, что в состав вещества \mathbf{Y} , помимо водорода, входит элемент, образующий твёрдое простое вещество \mathbf{C} , вероятно, являющееся углеродом \mathbf{C} — \mathbf{C} . Значит, \mathbf{Y} представляет собой тетрадейтерометан \mathbf{Y} — $\mathbf{C}\mathbf{D}_4$. Он образуется при разложении карбида, образованного элементом \mathbf{B} , с помощью соединения \mathbf{X} . Разумно предположить, что среди тридейтероаммиака $\mathbf{N}\mathbf{D}_3$ и дейтериевой воды $\mathbf{D}_2\mathbf{O}$ на роль \mathbf{X} лучше всего подходит именно тяжёлая вода \mathbf{X} — $\mathbf{D}_2\mathbf{O}$, тогда по остаточному принципу \mathbf{Z} представляет собой тридейтероаммиак \mathbf{Z} — $\mathbf{N}\mathbf{D}_3$.

Дополнительным подтверждением этого факта может послужить стехиометрическое соотношение веществ Y и Z, образующихся из навесок В одинаковой массы. Проверим наше предположение с помощью уравнений химических реакций, считая, что степень окисления элемента **A** равна +k:

1.
$$4B + kC \rightarrow B_4C_k$$

2.
$$3B + 0.5kN_2 \rightarrow B_3N_k$$

3.
$$B_4C_k + 4kD_2O \rightarrow 4B(OD)_k + nCD_k\uparrow$$

4.
$$B_3N_k + 3kD_2O \rightarrow 3B(OD)_k + nND_k\uparrow$$

$$n(CD_4) = k \cdot n(B_4C_k) = \frac{k}{4} \cdot n(B),$$

$$n(ND_3) = k \cdot n(B_3N_k) = \frac{k}{3} \cdot n(B),$$

$$\frac{V(CD_4)}{V(ND_3)} = \frac{n(CD_4)}{n(ND_3)} = \frac{3}{4}.$$

Тогда вещество **I** представляет собой дейтероксид элемента **B** $B(OD)_k$, который при нагревании разлагается на оксид B_2O_k и дейтериевую воду согласно уравнению реакции:

5.
$$2B(OD)_k \rightarrow B_2O_k + kD_2O$$

По условию задачи $\nu(B(OD)_k) = \nu(D_2O)$, откуда k = 2. Тогда твёрдое простое вещество **B** образовано двухвалентным элементом с молярной массой меньше, чем у углерода, что соответствует бериллию **B** – Be.

A	В	C	D	E	F
D_2	Be	C	N_2	O_2	Be ₂ C
G	Н	I	X	Y	Z
Be_3N_2	BeO	Be(OD) ₂	D_2O	CD_4	ND_3

Если участник расшифровал лишь часть представленной схемы, и предположенные им соединения не противоречат информации в условии задачи, можно оценить расшифрованные вещества полным баллом.

Система оценивания:

1.	Определение	химических	формул	соединений	A−I ,	9 баллов			
	подтверждённое логическими рассуждениями по 1 баллу								
2.	Определение	химических	формул	соединений	X – Z ,	6 баллов			
	подтверждённое логическими рассуждениями по 2 балла								
	Итого: 15 баллов								