# Reinforcement Learning I

Lecture 20

# Types of machine learning

|                   | Unsupervised<br>Learning                                                                                                | Supervised<br>Learning                              | Reinforcement<br>Learning                                          |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| Goal              | <b>Describe</b> structure in data                                                                                       | Predictfrom examples                                | Strategize  learn through interaction                              |
| Data<br>available | predictors, x                                                                                                           | predictor and response pairs, (x, y)                | actions and delayed responses (called rewards)                     |
| Examples          | <ul> <li>Density estimation</li> <li>Clustering</li> <li>Dimensionality reduction</li> <li>Anomaly detection</li> </ul> | <ul><li>Classification</li><li>Regression</li></ul> | <ul><li>Model-free learning</li><li>Model-based learning</li></ul> |

## Reinforcement learning

Control Theory (optimal control)

Psychology and Neuroscience

Reinforcement Learning Machine Learning / Artificial Intelligence

Operations Research

(dynamic programming)

### Resources

#### Sutton and Barto, 1998

Reinforcement Learning: An Introduction

Draft of 2018 edition available free online:

http://www.incompleteideas.net/book/the-book-2nd.html



#### David Silver, 2015

University College London Advanced Topics 2015 (COMPM050/COMPGI13)

#### Course website:

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

#### Video series:

https://www.youtube.com/watch?v=2pWv7GOvuf0&list= PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT



Image from Amazon.com (where the book may be purchased)

Image from Youtube.com

### Reinforcement Learning

#### Goal: select actions to maximize total long-term rewards

#### Sequential decision making

An action needs to be taken at each step

Evaluation (rewards) versus instruction (examples of correct actions)

This leads to a trial-and-error approach to learning

#### Rewards may be delayed

Credit assignment: which action(s) led to the reward

May be better to sacrifice immediate reward for long-term gains

Exploration (of untried actions) vs exploitation (of current knowledge)

David Silver, 2015

# **Agent-environment Interaction**



**Agent** at each step t...

Executes action  $a_t$ Receives state,  $s_t$ Receives scalar reward,  $r_t$ 

**Environment** at each step t...

Receives action  $a_t$ Emits state,  $s_{t+1}$ Emits scalar reward,  $r_{t+1}$ 

**Actions**: choices made by the agent **States**: basis on which choices are made **Rewards**: define the agent's goals

David Silver, 2015

### **RL Components**



#### **Policy** (agent behavior), $\pi(s_t)$

- Determines action given current state
- Agent's way of behaving at a given time

#### **Reward function** (the goal to max), $r_t$

- Maps state of the environment to a reward that describes the state desirability
- Objective is to maximize total rewards

#### **Value function** (state reward), $v(s_t)$

- Total expected reward from a state
- How good is each state

# **Policy**



#### Policy, $\pi(s_t)$

- Agent's way of behaving at a given time
- Maps state to actions

Deterministic:  $a = \pi(s_t)$ 

Stochastic:  $\pi(a|s_t) = P(a_t = a|s_t = s)$ Helps us "explore" the state space

RL tries to learn the "best" policy

### Goals and rewards

Rewards are the **only way** of communicating what to accomplish

Ex 1: Robot learning a maze

- 0 until it escapes, then +1 when it does
- -1 until it escapes (encourages it to escape quickly)

Ex 2: Robot collecting empty soda cans

- +1 for each empty soda can
- Negative rewards for bumping into things

Chess: what if we set +1 for capturing a piece? (it may not win the game and still maximize rewards)

### Returns / cumulative reward

**Episodic** tasks (finite number, T, of steps, then reset)

$$G_t = r_{t+1} + r_{t+2} + \dots + r_T$$

**Continuous** tasks with discounting  $(T \rightarrow \infty)$ 

$$G_t=r_{t+1}+\gamma r_{t+2}+\gamma^2 r_{t+3} \ldots=\sum_{k=0}^\infty \gamma^k r_{t+k+1}$$
 where  $0\leq \gamma\leq 1$  is the discount rate

This makes the agent care more about immediate rewards

### Value function

#### Value function, $v(s_t)$

- How good is each state / action
- Total expected reward

$$v_{\pi}(s) = E_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s]$$



### Model

#### **Model**

Transitions: predicts what state the environment will transition to next



(internal state, s<sub>t</sub><sup>e</sup>)

$$P_{ss'}^a = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Rewards: predicts the next reward given an action

$$R_s^a = E[r_{t+1}|s_t = s, a_t = a]$$

"Planning" is the process of using these predictions

Model-based RL uses a model
Model-free RL does not use a model

## Reinforcement Learning Examples

Winning at Atari: <a href="https://youtu.be/V1eYniJ0Rnk">https://youtu.be/V1eYniJ0Rnk</a>

Balancing an inverted pendulum: <a href="https://youtu.be/b1c0N">https://youtu.be/b1c0N</a> Fs9wc

Flipping pancakes: <a href="https://youtu.be/W\_gxLKSsSIE">https://youtu.be/W\_gxLKSsSIE</a>

Car Drifting: <a href="https://youtu.be/opsmd5yuBF0">https://youtu.be/opsmd5yuBF0</a>

RL is a unifying framework for a wide range of problems

# **Reinforcement Learning Components**



#### **Policy** (agent behavior), $\pi(s_t)$

- Determines action given current state
- Agent's way of behaving at a given time

#### **Reward function** (the goal to max), $r_t$

- Maps state of the environment to a reward that describes the state desirability
- Objective is to maximize total rewards

### **Value function** (state reward), $v(s_t)$

- Total expected reward from a state
- How good is each state



### Multi-armed bandit example

You have N slot machines to choose from

For each trial/episode, you take an **action**: pick one machine to play

Each machine has an unknown probability of payoff/reward

The reward distributions are unknown

Only 1 "state"

i.e. create a policy,  $\pi(s)$ 

#### How do we choose actions to maximize our total rewards?

(if we knew the best machine, we'd always pick it, but we have to learn it)

### **Multi-armed Bandit Demo**

https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits

### **Multi-armed bandit**

The "true" **value** of an action is  $v^*(a)$ 

Our estimated **value** at the  $t^{th}$  play is  $v_t(a)$ 

If action a has been chosen  $k_a$  times prior to t:

$$v_t(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

As we take action a more, our value estimates improve

# Multi-armed bandit policies, $\pi(s)$

#### Greedy action:

Select  $a^* = \arg \max_{a} V_t(a)$ 

Problem: if the initial rewards are not representative, this will be suboptimal

#### *∈*-Greedy methods:

Select a\* with probability  $1 - \epsilon$ , otherwise, randomly select another option

Problem: in the long run, this will waste reward once the best action is known

Solution: reduce  $\epsilon$  over time

#### **Alternative:**

Select the action probabilities based on the expected value

Probability of selecting action 
$$\mathbf{a} = \frac{\exp(v_t(a)/\tau)}{\sum_{b=1}^n \exp(v_t(b)/\tau)}$$
 Can reduce  $\tau$  over time to reduce exploration



### **Next steps**

The multi-armed bandit only has 1 state, but the full RL problem learns policies when there are many states

State representations and Markov decision processes (MDPs) (with an aside on Markov processes)

Mathematically formulating the RL problem with MDPs

Methods for solving RL problems in practice