Sound

Pulse-Width Modulation (PWM)

pwm_clock, pwm_range, pwm_width

pwm.c

	PWMO	PWM1
GPIO 12	Alt Fun 0	-
GPIO 13	-	Alt Fun 0
GPIO 18	Alt Fun 5	-
GPIO 19		Alt Fun 5
GPIO 40	Alt Fun 0	-
GPIO 41	-	Alt Fun 0
GPIO 45	-	Alt Fun 0
GPIO 52	Alt Fun 1	-
GPIO 53	-	Alt Fun 1

PWM0 is output on GPIO_PIN18 ALT_FUN5

pwm.c tone.c melody.c

Raspberry Pi Stereo Jack

	PWM0	PWM1
GPIO 12	Alt Fun 0	-
GPIO 13	-	Alt Fun 0
GPIO 18	Alt Fun 5	-
GPIO 19	-	Alt Fun 5
GPIO 40	Alt Fun 0	-
GPIO 41	-	Alt Fun 0
GPIO 45	-	Alt Fun 0
GPIO 52	Alt Fun 1	-
GPIO 53	-	Alt Fun 1

Stereo Jack connected to GPIO_PIN40 and GPIO_PIN45

Sound Waves

(c) teachwithict.weebly.com

Continuous Values

Can simulate continuous values with fast enough PWM clocking

Like you did to control the LED brightness

audio.c