OLLSCOIL NA hÉIREANN, GAILLIMH NATIONAL UNIVERSITY OF IRELAND, GALWAY

AUTUMN EXAMINATIONS 2008

B.Sc. (Part II) EXAMINATION

MATHEMATICS - [MA490/482]

MEASURE THEORY AND FUNCTIONAL ANALYSIS

Professor D. Armitage Professor T. C. Hurley Dr. R. A. Ryan. Dr. A. McCluskey

Time allowed: **Three** hours.

Full marks for five questions.

Use separate answer books for each section.

SECTION A — *MEASURE THEORY*

A1. Answer *four* of the following:

- (a) In Bernoulli space, let E be the event that the sequence HHH appears only a finite number of times. Express E in terms of the simple events E_n .
- (b) Let $X = \{a, b, c, d\}$ be a set with four elements and let $\mathcal{A} = \{\emptyset, X, \{a\}, \{b, c, d\}\}$. Give an example, with proof, of function on X that is not measurable.
- (c) Let \mathcal{A} be the σ -algebra of all subsets of \mathbb{N} and let μ be counting measure on \mathcal{A} . Give an example of a bounded function $f: \mathbb{N} \to \mathbb{R}$ that is *not* integrable with respect to μ .
- (d) Let P be the probability measure on \mathbb{R} given by

$$P = \frac{1}{4}\delta_{-1} + \frac{1}{2}\delta_0 + \frac{1}{4}\delta_1.$$

Compute the expected value E(X), where X is the random variable defined by $X(t) = t^2$.

- (e) Show that the set of irrational numbers belongs to the σ -algebra generated by the intervals.
- (f) Explain why the function

$$\sum_{n=0}^{\infty} 2^{-n} \chi_{[n,n+1)}$$

is Lebesgue integrable and evaluate its integral.

- **A2.** Let (X, \mathcal{A}, μ) be a *Probability Space*.
 - (a) If (A_n) is an decreasing sequence of sets in \mathcal{A} , show that

$$\mu\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n)$$

- (b) Give the definitions of the sets $\liminf E_n$ and $\limsup E_n$. What are these sets if (E_n) is an increasing sequence?
- (c) Give examples to show that each of the following inequalities can be strict:

$$\mu(\liminf E_n) \le \liminf \mu(E_n) \le \limsup \mu(E_n) \le \mu(\limsup E_n)$$
.

A3. Let (X, \mathcal{A}, μ) be a measure space.

- (a) Give the definition of a measurable function on X. If f and g are measurable, show that the function f + g is also measurable.
- (b) Let (f_n) be a sequence of measurable functions. Show that the functions $\sup_n f_n$ and $\inf_n f_n$ are measurable. Explain how these results are used to show that the limit of a pointwise convergent sequence of measurable functions is measurable.
- (c) Let f and g be functions on a complete measure space. If f is measurable and f = g almost everywhere, show that g is measurable.

A4. Let (X, \mathcal{A}, μ) be a measure space.

- (a) Give an account (without proofs) of the definition of the integral $\int_X f d\mu$, starting with the integral of a simple measurable function.
- (b) Give an example of a sequence (f_n) of integrable functions that converges at every point to an integrable function f, with the property that

$$\int_X f \, d\mu \neq \lim_n \int_X f_n \, d\mu \, .$$

State (without proof) a result that permits term-by-term integration of a sequence of integrable functions. Why does this result not apply to the example you have given?

(c) Give the definition of the Cantor Set, C. Show that C is uncountable and has Lebesgue measure zero.

p.t.o.

SECTION B — FUNCTIONAL ANALYSIS

- **B1.** (a) What is meant by saying that a normed space is *complete*? Give, without proof, an example of a normed space that is complete and an example of a normed space that is not complete.
 - (b) State the Hölder and Minkowski inequalities in ℓ_p , where $1 \leq p < \infty$, and prove one of them.
 - (c) What is a convex set? Show that the closed unit ball of a normed space is convex. Show that the set

$$B = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1|^{\frac{1}{3}} + |x_2|^{\frac{1}{3}} \le 1\}$$

is not convex and sketch this set.

- **B2.** Let T be a linear operator between normed spaces X and Y.
 - (a) Let T be bounded. Define ||T||, and prove that $||T(x)|| \le ||T|| ||x||$ for all $x \in X$.
 - (b) Let X be \mathbb{R}^2 with the ℓ_1 -norm, let Y be \mathbb{R}^2 with the ℓ_2 -norm and let $T((x_1, x_2)) = (2x_1 + 3x_2, x_1 + 2x_2)$. Determine the norm of T.
 - (c) Prove that if X is finite dimensional, then T is bounded.
- **B3.** Let X and Y be normed spaces and L(X,Y) the set of all bounded linear operators from X into Y.
 - (a) Show that if Y is complete, then L(X,Y) is also complete.
 - (b) Define the dual space X^* of X. A linear functional ϕ is defined on ℓ_2 by $\phi(x) = x_1 + x_2 + x_3 + x_5 + x_7$, where $x = (x_1, x_2, \ldots) \in \ell_2$. Find the norm of ϕ .
 - (c) Let e^n be the sequence whose nth term is 1 and all other terms are 0. Show that (e^n) is a Schauder basis for c_0 but not for ℓ_{∞} .

B4. Let H be a Hilbert space.

(a) The parallelogram law $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||x||^2$ for all $x, y \in H$ fails in C[0,1] with the norm

$$||f|| = \sup_{t \in [0,1]} \{|f(t)|\}.$$

What may we deduce from this failure?

- (b) Given a closed subspace F of H, define the orthogonal complement, F^{\perp} , of F and show that it is a closed subspace of H.
- (c) Show that for every $x \in H$ there exist unique $x_1 \in F$ and $x_2 \in F^{\perp}$ such that $x = x_1 + x_2$.