Cálculo I-C

Slides de apoio às aulas

Integral de Riemann. Teorema Fundamental do Cálculo Integral. Cálculo de áreas.

Departamento de Matemática Universidade Aveiro

Slides com ligeiras adaptações de outros já existentes fortemente baseados nos textos da Prof.

Doutora Virgínia Santos (indicados na bibliografia).

Motivação

Questão: Como determinar um valor aproximado para a área A da região do plano delimitada pelo gráfico de uma função contínua e positiva $f:[a,b] \to \mathbb{R}$, pelo eixo das abcissas e pelas retas de equações x=a e x=b?

Motivação

Esta área pode ser aproximada de diversas formas. Por exemplo, como a soma das áreas de rectângulos:

Motivação

Se denotarmos por $s_{\mathcal{P}}(f)$ e $S_{\mathcal{P}}(f)$, respetivamente, a soma das áreas dos rectângulos da 1ª figura e da 2ª figura do slide anterior, podemos concluir que

$$s_{\mathcal{P}}(f) \leq A \leq S_{\mathcal{P}}(f),$$

isto é, $s_{\mathcal{P}}(f)$ é uma aproximação por defeito da área A e $S_{\mathcal{P}}(f)$ é uma aproximação por excesso da área A.

Como veremos mais à frente, $s_{\mathcal{P}}(f)$ e $S_{\mathcal{P}}(f)$, são designadas, respetivamente, de soma inferior de Darboux e de soma superior de Darboux da função f relativamente à partição $\mathcal{P} = \{x_0, x_1, \dots, x_5\}$.

Questão: Como determinar o valor (exato) para a área A da região do plano delimitada pelo gráfico de uma função contínua e positiva $f:[a,b] \to \mathbb{R}$, pelo eixo das abcissas e pelas retas x=a e x=b?

Para responder a esta questão, iremos introduzir um novo conceito, o **integral** de Riemann.

Partição de um intervalo

Definição: Chama-se partição do intervalo [a,b] a todo o conjunto finito de pontos de [a,b]

$$\mathcal{P} = \{x_0, x_1, \dots, x_n\}$$

tal que

$$a = x_0 < x_1 < \cdots < x_n = b.$$

Nota: Observe que \mathcal{P} determina n subintervalos $[x_{i-1}, x_i]$ de [a, b], $i = 1, 2, \dots, n$ e

$$[a,b] = \bigcup_{i=1}^{n} [x_{i-1}, x_i].$$

Definição: Uma partição \mathcal{P}^* de [a,b] diz-se um refinamento da partição \mathcal{P} se todos os pontos de \mathcal{P} forem pontos de \mathcal{P}^* . Neste caso, também se diz que \mathcal{P}^* é mais fina do que \mathcal{P} .

Somas de Darboux

Sejam $f:[a,b]\to\mathbb{R}$ <u>limitada</u> e $\mathcal{P}=\left\{x_0,x_1,\ldots,x_n\right\}$ uma partição de [a,b]. Para cada $i=1,\ldots,n$, definam-se

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}$$
 e $m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}.$

Definição: As somas

$$S_{\mathcal{P}}(f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) \quad e \quad S_{\mathcal{P}}(f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$

designam-se, respetivamente, por soma superior de Darboux e soma inferior de Darboux (da função f relativas à partição \mathcal{P}).

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 6 / 28

Somas de Darboux

Observações:

- As somas de Darboux estão bem definidas (porque f é limitada).
- Para qualquer função limitada f e qualquer partição \mathcal{P} ,

$$s_{\mathcal{P}}(f) \leq S_{\mathcal{P}}(f).$$

Proposição: Se \mathcal{P}^* é um refinamento de \mathcal{P} , então

$$s_{\mathcal{P}}(f) \leq s_{\mathcal{P}^*}(f) \leq S_{\mathcal{P}^*}(f) \leq S_{\mathcal{P}}(f).$$

Proposição: Para quaisquer duas partições \mathcal{P}_1 e \mathcal{P}_2 de [a,b], tem-se

$$s_{\mathcal{P}_1}(f) \leq S_{\mathcal{P}_2}(f)$$
.

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Integrais de Darboux

Observações:

- o conjunto de todas as somas superiores de Darboux de f
 (correspondentes às possíveis partições de [a, b]) é limitado
 inferiormente (e não vazio);
- o conjunto de todas as somas inferiores de Darboux de f
 (correspondentes às possíveis partições de [a, b]) é limitado superiormente (e não vazio).

Definição: Seja $f:[a,b] o \mathbb{R}$ limitada. As quantidades

$$\overline{\mathcal{I}}(f) = \inf \left\{ S_{\mathcal{P}}(f) : \mathcal{P} \text{ \'e partição de } [a, b] \right\}$$

e

$$\underline{\mathcal{I}}(f) = \sup \{ s_{\mathcal{P}}(f) : \mathcal{P} \text{ \'e partição de } [a, b] \}$$

designam-se, respetivamente, por integral superior de Darboux e integral inferior de Darboux da função f em [a,b].

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Integral de Riemann

Definição: Uma função limitada $f:[a,b]\to\mathbb{R}$ diz-se integrável em [a,b] (no sentido de Riemann) se

$$\underline{\mathcal{I}}(f) = \overline{\mathcal{I}}(f).$$

Sendo f integrável em [a,b], chama-se integral definido (ou integral de Riemann) de f em [a,b] ao valor $\underline{\mathcal{I}}(f)=\overline{\mathcal{I}}(f)$ e representa-se por

$$\mathcal{I}(f) = \int_{a}^{b} f(x) \, dx.$$

Dizemos que a é o limite inferior de integração, b é o limite superior de integração, f é a função integranda e x a variável de integração.

Nota: O símbolo $\int_a^b f(x) dx$ lê-se integral de a até b de f(x) ou integral de f de a para b.

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 9 / 28

Integral de Riemann

Nota: A variável de integração é muda, logo podemos escrever

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(u)du = \cdots$$

Observação: Note-se que na definição de integral de Riemann de f de a para b pressupõe-se que a < b.

Vamos agora dar significado ao símbolo $\int_a^b f(x) dx$ quando a = b e quando a > b. Sendo f integrável em [a, b], escrevemos, por convenção, que

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx \qquad e \qquad \int_{a}^{a} f(x) dx = 0.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Observações

 A definição de integral de Riemann pode também ser apresentada usando as somas de Riemann:

$$\sum_{i=1}^{n} f(x_i^*)(x_i - x_{i-1})$$

onde, para
$$i = 1, 2, ..., n, x_i^* \in [x_{i-1}, x_i] e \mathcal{P} = \{x_0, x_1, ..., x_n\}.$$

As somas de Darboux são casos particulares das somas de Riemann.

Nota: A definição de integral de Riemann baseada nas somas de Riemann não exige que f seja limitada em [a,b]. No entanto, pode-se demonstrar que, se f for integrável no sentido de Riemann no intervalo [a,b], então f é limitada em [a,b]. Prova-se também que o conceito de integral usando somas de Riemann ou somas de Darboux são equivalentes. Nestes slides, optou-se por definir o integral usando as somas de Darboux por serem mais simples do ponto de vista prático.

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Integral de Riemann

Proposição: Uma função limitada $f:[a,b]\to\mathbb{R}$ é integrável em [a,b] se e só se existe uma sucessão de partições $(\mathcal{P}_n)_{n\in\mathbb{N}}$ do intervalo [a,b] tal que

$$\lim_{n\to+\infty} \left(S_{\mathcal{P}_n}(f) - s_{\mathcal{P}_n}(f) \right) = 0.$$

Neste caso,

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} S_{\mathcal{P}_n}(f) = \lim_{n \to +\infty} s_{\mathcal{P}_n}(f).$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 12 / 28

Exercícios

① Seja f(x) = k, $x \in [a, b]$ (onde k é uma constante real). Prove que f é integrável em [a, b] e

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} k \, dx = k(b - a).$$

② Considere a função h definida por $h(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Prove que h não é integrável em [0,1].

Nota: O cálculo do valor de $\int_a^b f(x) dx$ usando a definição ou o resultado apresentado na página anterior é, no caso geral, bastante complicado. Mais à frente veremos como determinar o valor do integral de Riemann conhecendo apenas uma primitiva de f em [a,b].

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Observação

Observação: É importante observar que a condição de f ser limitada em [a,b] não é, por si só, suficiente para garantir que a função seja integrável nesse intervalo.

Exemplo: A função $h: \mathbb{R} \to \mathbb{R}$ definida por

$$h(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

é limitada em [0, 1], mas não é integrável em [0, 1].

Condições suficientes de integrabilidade

Proposição (Condições suficientes de integrabilidade): Seja $f:[a,b] \to \mathbb{R}$ uma função.

- Se f for contínua em [a,b], então f é integrável em [a,b].
- Se f for limitada em [a,b] e descontínua apenas num número finito de pontos, então f é integrável em [a,b].
- Se f for monótona em [a, b], então f é integrável em [a, b].

Proposição: Sejam f e g funções definidas em [a,b]. Se f é integrável em [a,b] e g difere de f apenas num número finito de pontos (isto é, f(x)=g(x), para todo o $x\in [a,b]$, excepto para um número finito de x), então g é integrável em [a,b] e

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} f(x) dx.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 15 / 28

Exemplos

- ① A função f definida por $f(x) = \arctan(x^2 2x) + \cos^5 x$ é integrável em [-1,3] (porquê?).
- ② Considere a função *g* definida do modo seguinte:

$$g(x) = \begin{cases} & \text{sen } x & \text{se} & 0 \le x < \frac{\pi}{2} \\ & 100 & \text{se} & x = \frac{\pi}{2}. \end{cases}$$

A função g é integrável em $[0, \frac{\pi}{2}]$ (porquê?) e

$$\int_0^{\frac{\pi}{2}} g(x) dx = \int_0^{\frac{\pi}{2}} \operatorname{sen} x dx \quad \text{(porquê?)}.$$

3 Considere a função *h* definida do modo seguinte:

$$h(x) = \begin{cases} e^{x^2} + 1 & \text{se } x \in [0, 10] \cap \mathbb{N} \\ 0 & \text{se } x \in [0, 10] \setminus \mathbb{N}. \end{cases}$$

A função h é integrável em [0, 10] e $\int_0^{10} h(x) dx = 0$ (porquê?).

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Propriedades do integral de Riemann

Proposição: Sejam f e g funções integráveis em [a,b] e $k \in \mathbb{R}$.

- f é integrável em qualquer sub-intervalo [c,d] de [a,b].
- f + g é integrável em [a, b] e

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

- kf é integrável em [a,b] e $\int_a^b kf(x) dx = k \int_a^b f(x) dx$.
- fg é integrável em [a, b].
- Se $c \in]a, b[$, então

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

17/28

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Propriedades do integral de Riemann

• Se $f(x) \ge 0$, para todo o $x \in [a, b]$, então

$$\int_{a}^{b} f(x) \, dx \ge 0.$$

• Se $f(x) \le g(x)$, para todo o $x \in [a, b]$, então

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

• Se $m \le f(x) \le M$, para todo o $x \in [a, b]$, onde $m, M \in \mathbb{R}$, então

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

18 / 28

• |f| é integrável em [a,b] e $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$.

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Exemplos

- a) $\int_{1}^{\frac{\pi}{2}} (2\cos x 4\ln x) \ dx = 2\int_{1}^{\frac{\pi}{2}} \cos x \, dx 4\int_{1}^{\frac{\pi}{2}} \ln x \, dx.$
- b) Uma vez que $e^{-x^2} \ge 0$ para todo o $x \in [0,2]$ e esta função é integrável em [0,2], podemos concluir que

$$\int_0^2 e^{-x^2} \, dx \ge 0.$$

c) A função f definida em [0,4] por

$$f(x) = \begin{cases} -1 & \text{se } 0 \le x < 1\\ 0 & \text{se } 1 \le x \le 2\\ 2 & \text{se } 2 < x \le 4 \end{cases}$$

é integrável em [0,4] (porquê?) e tem-se que

$$\int_0^4 f(x) \, dx = \int_0^1 (-1) \, dx + \int_1^2 0 \, dx + \int_2^4 2 \, dx = 3.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Teorema Fundamental do Cálculo Integral

Proposição (Teorema Fundamental do Cálculo Integral): Seja f integrável em [a,b] (com a < b) e seja

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$

Então:

- F é contínua em [a, b].
- Adicionalmente, se f é contínua em $c \in [a, b]$, então F é diferenciável em c e F'(c) = f(c).

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 20 / 28

Teorema Fundamental do Cálculo Integral

Corolário: Sejam f uma função contínua em [a,b] e

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$

Então F é diferenciável em [a,b] e tem-se que

$$F'(x) = f(x), \quad \forall x \in [a, b],$$

isto é,

$$\left(\int_{a}^{x} f(t) dt\right)' = f(x), \quad \forall x \in [a, b].$$

Teorema Fundamental do Cálculo Integral

Corolário: Se f é contínua em [a,b], então f é primitivável em [a,b].

Corolário (Teorema do valor médio para integrais): Se f é contínua em [a,b], então existe $c \in]a,b[$ tal que

$$\int_{a}^{b} f(x) dx = f(c)(b-a).$$

Corolário (Derivação de integrais com limites de integração variáveis): Sejam I um intervalo aberto de $\mathbb{R}, f: [a,b] \to \mathbb{R}$ uma função contínua em]a,b[e g_1 e g_2 funções definidas em I tais que $g_1(I) \subseteq]a,b[$ e $g_2(I) \subseteq]a,b[$. Se g_1 e g_2 forem diferenciáveis então, para cada $x \in I$,

$$\left(\int_{g_1(x)}^{g_2(x)} f(t) dt\right)' = f(g_2(x))g_2'(x) - f(g_1(x))g_1'(x).$$

Nota: O resultado anterior é consequência do Teorema Fundamental do Cálculo Integral e do Teorema da derivada da função composta.

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 22 / 28

Fórmula de Barrow

Questão: Sendo f contínua, como calcular $\int_a^b f(x) dx$?

Proposição (Fórmula de Barrow): Se $f:[a,b]\to\mathbb{R}$ é contínua em [a,b] e se $F:[a,b]\to\mathbb{R}$ é uma primitiva de f então

$$\int_a^b f(x) \, dx = F(b) - F(a) \; .$$

Notação:
$$F(b) - F(a) = F(x) \Big|_a^b = \Big[F(x) \Big]_a^b$$

Exemplos:

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Fórmulas de integração por partes e mudança de variável

Fórmula de integração por partes no integral definido:

$$\int_{a}^{b} f'(x) g(x) dx = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

Fórmula de mudança de variável no integral definido: Sejam f uma função contínua em I e $\varphi: J \to \mathbb{R}$ uma função diferenciável tal que $\varphi(J) \subseteq I$ e φ' é contínua em J. Sejam $a,b \in I$ e $c,d \in J$ tais que $\varphi(c)=a$ e $\varphi(d)=b$. Então

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(\varphi(t)) \varphi'(t) dt.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II

Exercício

Exercício: Sejam a>0 e $f:[-a,a]\to\mathbb{R}$ uma função contínua.

Mostre que:

- ① se f é par, então $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$;
- ② se f é impar, então $\int_{-a}^{a} f(x) dx = 0$.

Aplicação do integral de Riemann ao cálculo de áreas

Proposição: Sejam a < b e f uma função contínua em [a, b]. Se f for não negativa em [a, b], isto é,

$$\forall x \in [a, b] \ f(x) \ge 0,$$

então a área da região limitada do plano delimitada pelo gráfico de f, pelo eixo das abcissas e pelas retas de equações x=a e x=b é dada por

$$\int_{a}^{b} f(x)dx.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 26 / 28

Aplicação do integral de Riemann ao cálculo de áreas

Corolário: Seja f uma função contínua em [a,b] tal que

$$\forall x \in [a, b] \ f(x) \le 0.$$

A área da região limitada do plano delimitada pelo gráfico de f, pelo eixo das abcissas e pelas retas de equações x = a e x = b é dada por

$$-\int_{a}^{b} f(x)dx.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II 27 / 28

Aplicação do integral de Riemann ao cálculo de áreas

Corolário: Sejam f e g duas funções contínuas em [a,b] tais que

$$\forall x \in [a, b] \ g(x) \le f(x).$$

A área da região limitada do plano delimitada superiormente pelo gráfico de f, inferiormente pelo gráfico de g, à direita pela reta de equação x=b e à esquerda pela reta de equação x=a é dada por

$$\int_{a}^{b} (f(x) - g(x)) dx.$$

UA 2024/2025 Cálculo I-C Slides 2 - Parte II