

SIMULATION-BASED PROBLEM SOLVING IN TRANSPORT DOMAIN WITH THE USE OF HIGH PERFORMANCE COMPUTING AND BIGDATA

S.V. Ivanov, <u>Konstantin V. Knyazkov</u>, A. V. Dukhanov, V. Karbovski, A.A. Bezgodov, A.V. Boukhanovsky

E-SCIENCE RESEARCH INSTITUTE

GENERAL RESEARCH DIRECTIONS

- Global Systems Science
- Urgent Computing
- Multiscale Computational Models
- Multidisciplinary Applications
- Hybrid models

WIDE RANGE OF DOMAINS

- Computational Infrastructures for e-Science
- Hydrometeorology
- Traffic simulation
- Epidemiology
- Sociodynamics
- ...

MULTISCALE MODELING OF AN URBAN ENVIRONMENT

Development of a complex approach for city-scale modeling and simulation with the use of modern computational technologies for solving of diversity of research problems

Complex Approach to Urban Mobility Modeling and Simulation

Data Sources

- Map, GIS
- Society data
- Models (multiscale)
 - Macro: population
 - Meso: traffics
 - Micro: pedestrians

Problems

- Forecasting
- Scenarios: what-if, evacuation
- DSS evaluation

Infrastructure

- Computing: Clouds, HPC
- Data: BigData
- Visualization

DATA SOURCES

GIS (e.g. OpenStreetMap)

- 1. Extract buildings [1]
- 2. Extract a road graph [1]
- 3. Bind buildings to nodes in the road graph [2]
- 4. Extract or generate bus stops
- Bind buildings to bus stops (for passengers modeling)

Population data

- Number of people living in building (FMS) [3]
- Statistical data on people daily activities [4]

Social media

TRAVEL DEMAND MODELING

- Macro-model of the society (splitted into strata) on the level of municipalities
 - Is used for modeling of cityscale processes
- Macro-model implementing the 4 classical steps: trip generation, trip distribution, mode choice (driver, bus passenger), route assignment.
 - Agents are generated according to results of this model

TRAFFIC DYNAMICS SIMULATION

- The model can be integrated with visualization software in order to observe and steer simulation
- Supports distributed simulation.
 Parallelization is done by decomposition of map into zones

- Agent-Based Model using:
 - Intelligent Driver Model (IDM)
 - Crosses passage
 - Complex agent's behavior
- Simulation result: traffic flow on edges of road graph

PEDESTRIAN MOBILITY MODELS

- Agent-Based Simulation in spatial environments:
 - urban environment [1] [3]
 - complex transport hub [2]
 - city-scale virtual society
- Movement models: social-force model, RVO2
- Capability to connect with visualization software

25/09/2014

Saint-Petersburg

SIMULATION OF PEDESTRIAN MOBILITY IN THE PULKOVO AIRPORT

ОБЩИЙ

слои

EXAMPLES OF PROBLEMS

PUBLIC TRANSPORT OPTIMIZATION

- Two optimization problems based on forecasted roads' load
 - Dynamical optimization of bus routes between their stops (avoiding traffic jams)
 - Optimization of buses timetable

Optimization objectives

- minimization of waiting
- passengers number minimization of bus waiting time
- accordance to time-table
- **Evolutionary Computation Approach**
 - Distributed genetic algorithm

FORECAST-BASED PUBLIC TRANSPORT OPTIMIZATION IN HIGH-PERFORMANCE CLOUD ENVIRONMENT

SIMULATION-BASED EXPERIMENTATION

- «What-If» experiments
- Change map (close the road) in time of model
- Increase district's population and investigate changes in traffic flow
- Evacuation scenarios

VEHICULAR EVACUATION

Model changes

 Behavioral Model (population notification, different DSS, agent perception)

 Coupling with geosimulation models (e.g. flooding) [2]

Simulation-based researches:

- 1. Efficiency of DSS. Influence of count of drivers guided by DSS on the total evacuation time [1]
- 2. Evaluate the influence of driver trust to the system on the evacuation process (ignoring notification,)
- Evaluation of different personal Decision-Support Systems in flood
 [2]

CLOUD APPLICATIONS VIRTUAL ENVIRONMENT (CLAVIRE)

- CLAVIRE is the domainindependent platform for abstract composite application execution in form of workflows
- CLAVIRE can be transformed into domain-specific Problem Solving Environments by filling with
 - Resources: various computational resources are supported (PC, clusters, Grids, JaaS)
 - Software: models, utilities
 - Composite applications
- Other features
 - Uses formal expert knowledge about platform components Interactive workflows

 - BigData storage with implementation of MapReduce

CLAVIRE http://clavire.com/

Package «cnm_vis» run

CONCLUSIONS

- Computational infrastructure of the CLAVIRE platform allows us to integrate different transport models into one system and use them within the HPC environment
- Intention is to create fully-functional problem solving environment in domain of virtual cities simulation