Context Constrained Computation via a linear-like lambda calculus

Bob Atkey¹ James Wood¹

 $^{1} {\sf University}$ of Strathclyde

SPLS, October 2018

Constrain how variables are used

- Constrain how variables are used
- ▶ Derive more free theorems about constrained programs

- Constrain how variables are used
- ▶ Derive more free theorems about constrained programs
- ► Generalise the "how many" of linear typing

- Constrain how variables are used
- Derive more free theorems about constrained programs
- Generalise the "how many" of linear typing
 - At what security level? information flow

- Constrain how variables are used
- Derive more free theorems about constrained programs
- Generalise the "how many" of linear typing
 - At what security level? information flow
 - ► How far away? sensitivity analysis

- Constrain how variables are used
- Derive more free theorems about constrained programs
- Generalise the "how many" of linear typing
 - At what security level? information flow
 - ► How far away? sensitivity analysis
 - ► In which direction? monotonicity

- Constrain how variables are used
- Derive more free theorems about constrained programs
- Generalise the "how many" of linear typing
 - At what security level? information flow
 - ► How far away? sensitivity analysis
 - In which direction? monotonicity
- ► Formalised in Agda the free theorems of the object language are available to Agda programs

► Have:

- ► Have:
 - ► A linearly used type KEY

- ► Have:
 - ► A linearly used type KEY
 - ▶ An operation $compareAndSwap : KEY \otimes KEY \multimap KEY \otimes KEY$

- ► Have:
 - ► A linearly used type KEY
 - ▶ An operation $compareAndSwap : KEY \otimes KEY \multimap KEY \otimes KEY$
- ▶ Programmer writes *sort* : List KEY → List KEY

- ► Have:
 - ► A linearly used type KEY
 - ► An operation compareAndSwap : KEY ⊗ KEY → KEY ⊗ KEY
- ▶ Programmer writes *sort* : List KEY → List KEY

Free theorem

sort is a permutation

► Have:

- ► Have:
 - ightharpoonup A type of integers $\mathbb Z$

- ► Have:
 - ightharpoonup A type of integers \mathbb{Z}
 - $ightharpoonup + : \mathbb{Z} \otimes \mathbb{Z} \multimap \mathbb{Z}$

- ► Have:
 - ightharpoonup A type of integers \mathbb{Z}
 - $ightharpoonup + : \mathbb{Z} \otimes \mathbb{Z} \multimap \mathbb{Z}$
 - $\qquad \qquad \text{neg}:!_{\downarrow}\mathbb{Z} \multimap \mathbb{Z}$

- ► Have:
 - ightharpoonup A type of integers \mathbb{Z}
 - $ightharpoonup + : \mathbb{Z} \otimes \mathbb{Z} \multimap \mathbb{Z}$
 - ▶ $neg : !_{\downarrow} \mathbb{Z} \multimap \mathbb{Z}$
 - ightharpoonup zero : $!_0\mathbb{Z} \multimap \mathbb{Z}$

- ► Have:
 - ightharpoonup A type of integers \mathbb{Z}
 - $ightharpoonup + : \mathbb{Z} \otimes \mathbb{Z} \multimap \mathbb{Z}$
 - ▶ $neg: !_{\downarrow} \mathbb{Z} \multimap \mathbb{Z}$
 - ightharpoonup zero : $!_0\mathbb{Z} \multimap \mathbb{Z}$
 - **...**
- ▶ Programmer writes a function $f : \mathbb{Z} \multimap \mathbb{Z}$

- ► Have:
 - ightharpoonup A type of integers \mathbb{Z}
 - $ightharpoonup + : \mathbb{Z} \otimes \mathbb{Z} \multimap \mathbb{Z}$
 - ▶ $neg: !_{\perp} \mathbb{Z} \multimap \mathbb{Z}$
 - ightharpoonup zero : $!_0\mathbb{Z} \multimap \mathbb{Z}$
 - **.**...
- ▶ Programmer writes a function $f: \mathbb{Z} \multimap \mathbb{Z}$

Free theorem

f is monotonic

► Relational parametricity argument

- ► Relational parametricity argument
- $\blacktriangleright \ \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$

- ► Relational parametricity argument
- $\blacktriangleright \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$

- ► Relational parametricity argument
- $\blacktriangleright \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$

- ► Relational parametricity argument
- $\blacktriangleright \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$
- $\blacktriangleright \ \forall \mathbf{w}. \ \forall (\gamma, \gamma') \in \llbracket \Gamma \rrbracket^R \ \mathbf{w}. \ (\llbracket t \rrbracket \ \gamma, \llbracket t \rrbracket \ \gamma') \in \llbracket S \rrbracket^R \ \mathbf{w}$

- ► Relational parametricity argument
- $\blacktriangleright \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$
- $\blacktriangleright \ \forall w. \ \forall (\gamma, \gamma') \in \llbracket \Gamma \rrbracket^R \ w. \ (\llbracket t \rrbracket \ \gamma, \llbracket t \rrbracket \ \gamma') \in \llbracket S \rrbracket^R \ w$

▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π

- ▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ▶ typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$

- ▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ▶ typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ightharpoonup Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t : \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$

- ▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ▶ typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ▶ Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t : \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$
 - ► Synthesis: et : $(\Gamma \vdash e \in S)$

- ▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ▶ typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ▶ Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t : \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$
 - ▶ Synthesis: et : $(\Gamma \vdash e \in S)$
 - ► Checking: $st : (\Gamma \vdash S \ni s)$

- ▶ Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ightharpoonup typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ▶ Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t: \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$
 - ▶ Synthesis: et : $(\Gamma \vdash e \in S)$
 - ► Checking: $st : (\Gamma \vdash S \ni s)$
 - ► Either: $tt:(\Gamma \vdash t:S)$

- Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - typing contexts $\Gamma = x : S, \dots, y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ▶ Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t: \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$
 - ▶ Synthesis: et : $(\Gamma \vdash e \in S)$
 - ▶ Checking: $st : (\Gamma \vdash S \ni s)$
 - ► Either: tt : ($\Gamma \vdash t$: S)
 - ▶ Resourcing: $tr : (\Delta \vdash tt)$

- Partially ordered semiring: $(R, \leq, 0, +, 1, \cdot)$, general elements ρ, π
- Contexts
 - Scopes m, n (natural numbers)
 - ▶ typing contexts $\Gamma = x : S, ..., y : T$
 - resourcing contexts $\Delta = x^{\pi}, \dots, y^{\rho}$
- Bidirectional layered typing
 - ▶ Well scoped terms e: Term n syn and s: Term n chk
 - $ightharpoonup t : \operatorname{Term} n d \operatorname{ranges} \operatorname{over} e \operatorname{and} s.$
 - ▶ Synthesis: et : $(\Gamma \vdash e \in S)$
 - ▶ Checking: $st : (\Gamma \vdash S \ni s)$
 - ► Either: tt : ($\Gamma \vdash t$: S)
 - ▶ Resourcing: $tr : (\Delta \vdash tt)$
 - Abbreviations $\Delta^{\Gamma} \vdash e \in S$, $\Delta^{\Gamma} \vdash S \ni s$, etc.

Products

With Tensor A & B $A \otimes B$

Products

With Tensor A & B $A \otimes B$

 $swap_{\&}: A \& B \multimap B \& A$ $swap_{\otimes}: A \otimes B \multimap B \otimes A$

Products

With Tensor A & B $A \otimes B$

 $swap_{\&}: A \& B \multimap B \& A$ $swap_{\otimes}: A \otimes B \multimap B \otimes A$

 $choose: A \& A \multimap \mathrm{Bool} \multimap A$

Products

With Tensor
$$A \& B$$
 $A \otimes B$

 $swap_{\&}: A \& B \multimap B \& A$

 $swap_{\otimes}:A\otimes B\multimap B\otimes A$

choose : A & A → Bool → A

 $curry: (A \multimap B \multimap C) \multimap (A \otimes B \multimap C)$

Negative type

Negative type

$$\frac{\Delta^{\Gamma} \vdash S_0 \ni s_0}{\Delta^{\Gamma} \vdash S_0 \& S_1 \ni (s_0, s_1)_{\&}}$$

Negative type

$$\frac{ \begin{array}{ccc} \text{Introduction} \\ \underline{\Delta^{\Gamma} \vdash S_0 \ni s_0} & \underline{\Delta^{\Gamma} \vdash S_1 \ni s_1} \\ \underline{\Delta^{\Gamma} \vdash S_0 \& S_1 \ni (s_0, s_1)_{\&}} \end{array}$$

Negative type

$$rac{\Delta^{\mathsf{\Gamma}} dash S_0
ightarrow s_0}{\Delta^{\mathsf{\Gamma}} dash S_0
ightarrow S_1
ightarrow s_1} \Delta^{\mathsf{\Gamma}} \mathcal{S}_0 \& S_1
ightarrow S_1
ightarrow s_2
ightarrow s_3
ightarrow s_4
ightarrow s_5
ightarrow s_5
ightarrow s_6
ightarrow s_7
ightarrow s$$

$$\frac{\Delta^{\Gamma} \vdash e \in S_0 \& S_1 \qquad i \in \{0, 1\}}{\Delta^{\Gamma} \vdash \mathsf{proj}_i \ e \in S_i}$$

Negative type

$$rac{\Delta^{\Gamma} dash S_0
ightarrow s_0}{\Delta^{\Gamma} dash S_0 \& S_1
ightarrow (s_0, s_1)_{\&}}$$

$$\frac{\Delta^{\Gamma} \vdash e \in S_0 \& S_1 \qquad i \in \{0,1\}}{\Delta^{\Gamma} \vdash \mathsf{proj}_i \ e \in S_i}$$

Positive type

$\begin{array}{c} \text{Introduction} \\ {\Delta_0}^{\mathsf{\Gamma}} \vdash \mathcal{S}_0 \ni s_0 \qquad {\Delta_1}^{\mathsf{\Gamma}} \vdash \mathcal{S}_1 \ni s_1 \\ \Delta \leq \Delta_0 + \Delta_1 \end{array}$

$$\Delta^{\Gamma} \vdash S_0 \otimes S_1 \ni (s_0, s_1)_{\otimes}$$

$$\frac{\mathsf{Introduction}}{\Delta_0^{\mathsf{\Gamma}} \vdash S_0 \ni s_0} \quad \Delta_1^{\mathsf{\Gamma}} \vdash S_1 \ni s_1 \\ \frac{\Delta \le \Delta_0 + \Delta_1}{\Delta^{\mathsf{\Gamma}} \vdash S_0 \otimes S_1 \ni (s_0, s_1)_{\otimes}}$$

$$\begin{array}{c|c} \text{Introduction} \\ \Delta_0^{\mathsf{\Gamma}} \vdash S_0 \ni s_0 & \Delta_1^{\mathsf{\Gamma}} \vdash S_1 \ni s_1 \\ \hline \Delta \leq \Delta_0 + \Delta_1 \\ \hline \Delta^{\mathsf{\Gamma}} \vdash S_0 \otimes S_1 \ni (s_0, s_1)_{\otimes} \end{array}$$

$$\frac{\mathsf{Introduction}}{\Delta_0^{\mathsf{\Gamma}} \vdash S_0 \ni s_0} \quad \Delta_1^{\mathsf{\Gamma}} \vdash S_1 \ni s_1 \\ \frac{\Delta \le \Delta_0 + \Delta_1}{\Delta^{\mathsf{\Gamma}} \vdash S_0 \otimes S_1 \ni (s_0, s_1)_{\otimes}}$$

Positive type

Introduction

$$egin{aligned} \Delta_0^{\,\Gamma} dash S_0 & \Delta_1^{\,\Gamma} dash S_1
otin S_1
otin S_2
otin S_2
otin S_3
otin S_4
otin S_4
otin S_5
otin S_5
otin S_6
otin S_7
oti S_7
otin S_7
otin S_7
otin S_7
otin S_7
otin S_7
otin S_7$$

$$\Delta_{e}^{\Gamma} \vdash e \in S_{0} \otimes S_{1}$$

$$\Delta_{s}^{\Gamma}, x \stackrel{1}{:} S_{0}, y \stackrel{1}{:} S_{1} \vdash s \in T$$

$$\Delta \leq \Delta_{e} + \Delta_{s}$$

$$\vdash lot (x, y)_{s} = e \text{ in } s : T \in S$$

$$\Delta^{\Gamma} \vdash \text{let } (x,y)_{\otimes} = e \text{ in } s : T \in T$$

Positive type

Introduction

$$\Delta_{e}^{\Gamma} \vdash e \in S_{0} \otimes S_{1}$$

$$\Delta_{s}^{\Gamma}, x \stackrel{1}{:} S_{0}, y \stackrel{1}{:} S_{1} \vdash s \in T$$

$$\Delta \leq \Delta_{e} + \Delta_{s}$$

$$\Delta^{\Gamma} \vdash \text{let } (x,y)_{\otimes} = e \text{ in } s : T \in T$$

Positive type

Introduction

$$egin{aligned} \Delta_0^{\,\Gamma} dash S_0 & \Delta_1^{\,\Gamma} dash S_1
ightarrow s_1 \ \Delta & \leq \Delta_0 + \Delta_1 \ \Delta^{\,\Gamma} dash S_0 \otimes S_1
ightarrow s_1
ightarrow s_2 \ egin{aligned} \Delta_0^{\,\Gamma} dash S_0 \otimes S_1
ightarrow s_2 \ egin{aligned} S_0 & S_1 \ egin{aligned} S_0 \ egin{aligned} S_0 & S_1 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned}$$

$$\Delta_{e}^{\Gamma} \vdash e \in S_{0} \otimes S_{1}$$

$$\Delta_{s}^{\Gamma}, x \stackrel{1}{:} S_{0}, y \stackrel{1}{:} S_{1} \vdash s \in T$$

$$\Delta \leq \Delta_{e} + \Delta_{s}$$

$$\Delta^{\Gamma} \vdash \text{let } (x,y)_{\otimes} = e \text{ in } s : T \in T$$

Positive type

Introduction

$$egin{aligned} \Delta_0^{\,\Gamma} dash S_0 & {\Delta_1}^{\,\Gamma} dash S_1
ightharpoons s_1 \ \Delta & \leq \Delta_0 + \Delta_1 \ \hline \Delta^{\,\Gamma} dash S_0 \otimes S_1
ightharpoons s_1
ightharpoons s_1
ightharpoons s_2
ightharpoons s_3
ightharpoons s_4
ightharpoons s_4
ightharpoons s_5
ightharpoons s_4
ightharpoons s_5
ightharpoons s_6
ightharpoons s_7
ightharpoons s_$$

$$\Delta_e^{\Gamma} \vdash e \in S_0 \otimes S_1$$

$$\Delta_s^{\Gamma}, x \stackrel{!}{:} S_0, y \stackrel{!}{:} S_1 \vdash s \in T$$

$$\Delta \leq \Delta_e + \Delta_s$$

$$\Delta^{\Gamma} \vdash \text{let } (x, y)_{\otimes} = e \text{ in } s : T \in T$$

Positive type

Introduction

$$egin{aligned} \Delta_0^{\,\Gamma} dash S_0 & \Delta_1^{\,\Gamma} dash S_1
ightarrow s_1 \ \Delta & \leq \Delta_0 + \Delta_1 \ \Delta^{\,\Gamma} dash S_0 \otimes S_1
ightarrow s_1
ightarrow s_2 \ egin{aligned} \Delta_0^{\,\Gamma} dash S_0 \otimes S_1
ightarrow s_2 \ egin{aligned} S_0 & S_1 \ egin{aligned} S_0 \ egin{aligned} S_0 & S_1 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned} S_0 \ egin{aligned}$$

$$\Delta_e^{\Gamma} \vdash e \in S_0 \otimes S_1$$

$$\Delta_s^{\Gamma}, x \stackrel{1}{:} S_0, y \stackrel{1}{:} S_1 \vdash s \in T$$

$$\Delta \leq \Delta_e + \Delta_s$$

$$\Delta^{\Gamma} \vdash \text{let } (x, y)_{\otimes} = e \text{ in } s : T \in T$$

Introduction

$$\frac{\Delta_s^{\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

$\begin{array}{ll} \text{Introduction} \\ \Delta_s^{\ \Gamma} \vdash S \ni s & \Delta \le \rho \cdot \Delta_s \end{array}$

$$\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s$$

$$\frac{\mathsf{Introduction}}{\Delta_s \ulcorner \vdash S \ni s} \qquad \frac{\Delta \le \rho \cdot \Delta_s}{\Delta \ulcorner \vdash !_{\rho} S \ni \mathsf{bang} \, s}$$

Introduction

$$\frac{\Delta_s^{\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

$$\frac{\Delta_e^{\;\Gamma} \vdash e \in !_\rho S \qquad \Delta_s^{\;\Gamma}, x \stackrel{\rho}{:} S \vdash T \ni s \qquad \Delta \leq \Delta_e + \Delta_s}{\Delta^{\Gamma} \vdash \mathrm{let} \; \mathsf{bang} \, x = e \; \mathrm{in} \; s : T \in T}$$

Introduction

$$\frac{\Delta_s^{\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

$$\frac{\Delta_e^{\ \Gamma} \vdash e \in !_{\rho}S \quad \ \ \Delta_s^{\ \Gamma}, x \stackrel{\rho}{:} S \vdash T \ni s \quad \ \ \Delta \leq \Delta_e + \Delta_s}{\Delta^{\Gamma} \vdash \mathrm{let} \ \mathsf{bang} \ x = e \ \mathrm{in} \ s : T \in T}$$

Introduction

$$\frac{\Delta_s^{\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

Elimination

$$\frac{\Delta_e^{\;\Gamma} \vdash e \in !_\rho S \quad \Delta_s^{\;\Gamma}, x \stackrel{\rho}{:} S \vdash T \ni s \quad \Delta \leq \Delta_e + \Delta_s}{\Delta^{\Gamma} \vdash \mathrm{let} \; \mathrm{bang} \, x = e \; \mathrm{in} \; s : T \in T}$$

Graded comonad

Introduction

$$\frac{\Delta_s^{\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

Elimination

$$\frac{\Delta_e^{\Gamma} \vdash e \in !_{\rho}S \quad \Delta_s^{\Gamma}, x \stackrel{\rho}{:} S \vdash T \ni s \quad \Delta \leq \Delta_e + \Delta_s}{\Delta^{\Gamma} \vdash \text{let bang } x = e \text{ in } s : T \in T}$$

Graded comonad

$$\textit{extract}: !_1A \rightarrow A$$

$$extract = \lambda ba$$
. let bang $a = ba$ in $a : A$

Introduction

$$\frac{\Delta_s^{\;\Gamma} \vdash S \ni s \qquad \Delta \le \rho \cdot \Delta_s}{\Delta^{\;\Gamma} \vdash !_{\rho}S \ni \mathsf{bang}\, s}$$

Elimination

$$\frac{\Delta_{e}^{\Gamma} \vdash e \in !_{\rho}S \quad \Delta_{s}^{\Gamma}, x \stackrel{\rho}{:} S \vdash T \ni s \quad \Delta \leq \Delta_{e} + \Delta_{s}}{\Delta^{\Gamma} \vdash \text{let bang } x = e \text{ in } s : T \in T}$$

Graded comonad

extract :
$$!_1A \rightarrow A$$

extract = λba . let bang $a = ba$ in $a : A$

$$\begin{aligned} &\textit{duplicate}: !_{\pi \cdot \rho} A \rightarrow !_{\pi} !_{\rho} A \\ &\textit{duplicate} = \lambda \textit{ba}. \text{ let } \mathsf{bang} \, \textit{a} = \textit{ba} \text{ in } \mathsf{bang}(\mathsf{bang} \, \underline{\textit{a}}): !_{\pi} !_{\rho} A \end{aligned}$$

Well scoped substitution

$$m \Rightarrow n :\equiv (x \in n) \rightarrow \text{Tm } m \text{ syn}$$

Well scoped substitution

$$m \Rightarrow n :\equiv (x \in n) \rightarrow \text{Tm } m \text{ syn}$$

Typed sub'n refines scoped sub'n $(\sigma : m \Rightarrow n)$

$$\Gamma_m \Rightarrow_{\sigma}^t \Gamma_n :\equiv ((x : T) \in \Gamma_n) \to \Gamma_m \vdash \sigma \ x \in T$$

Well scoped substitution

$$m \Rightarrow n :\equiv (x \in n) \rightarrow \text{Tm } m \text{ syn}$$

Typed sub'n refines scoped sub'n $(\sigma : m \Rightarrow n)$

$$\Gamma_m \Rightarrow_{\sigma}^t \Gamma_n :\equiv ((x : T) \in \Gamma_n) \to \Gamma_m \vdash \sigma \ x \in T$$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$

$$\Delta_{m} \Rightarrow_{\sigma t}^{r} \Delta_{n} :\equiv (\Delta' : n \to RCtx \, m)$$

$$\times \left(\Delta_{m} \le \sum_{x^{\rho} \in \Delta_{n}} \rho \cdot \Delta'_{x} \right)$$

$$\times \left((x^{\rho} \in \Delta_{n}) \to \Delta'_{x} \vdash \sigma t \, x \right)$$

Well scoped substitution

$$m \Rightarrow n :\equiv (x \in n) \rightarrow \text{Tm } m \text{ syn}$$

Typed sub'n refines scoped sub'n $(\sigma : m \Rightarrow n)$

$$\Gamma_m \Rightarrow_{\sigma}^t \Gamma_n :\equiv ((x : T) \in \Gamma_n) \to \Gamma_m \vdash \sigma \ x \in T$$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$

$$\begin{split} \Delta_m \Rightarrow_{\sigma t}^r \Delta_n &:= \left(\Delta' : \mathrm{Mat}\ R\ (m,n)\right. \\ &\times \left(\Delta_m \leq \Delta' \Delta_n\right) \\ &\times \left(\left(x^\rho \in \Delta_n\right) \to \Delta'_x \vdash \sigma t\ x\right) \end{split}$$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$ $\Delta_m \Rightarrow_{\sigma t}^r \Delta_n :\equiv (\Delta' : \text{Mat } R \ (m, n)$ $\times (\Delta_m \leq \Delta' \Delta_n)$ $\times ((x^{\rho} \in \Delta_n) \to \Delta'_x \vdash \sigma t \ x)$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$

$$\begin{split} \Delta_m \Rightarrow_{\sigma t}^r \Delta_n &:= \left(\Delta' : \mathrm{Mat}\ R\ (m,n) \right. \\ &\times \left(\Delta_m \leq \Delta' \Delta_n\right) \\ &\times \left(\left(x^\rho \in \Delta_n\right) \to \Delta'_x \vdash \sigma t\ x\right) \end{split}$$

Variable rule

$$\frac{\Delta^{\Gamma} \leq \underline{0}, x \stackrel{1}{:} S, \underline{0}}{\Delta^{\Gamma} \vdash x \in S}$$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$

$$\begin{split} \Delta_m \Rightarrow_{\sigma t}^r \Delta_n &:= \left(\Delta' : \mathrm{Mat}\ R\ (m,n)\right. \\ &\times \left(\Delta_m \leq \Delta' \Delta_n\right) \\ &\times \left(\left(x^\rho \in \Delta_n\right) \to \Delta'_x \vdash \sigma t\ x\right) \end{split}$$

Variable rule

$$\frac{\Delta^{\Gamma} \leq \underline{0}, x \stackrel{1}{:} S, \underline{0}}{\Delta^{\Gamma} \vdash x \in S}$$

Identity substitution

 $ightharpoonup \mathrm{id}_{\Delta} :\equiv (\Delta', prf, \mathrm{var}) \quad \mathrm{where} \ \Delta'_{\mathsf{x}} :\equiv \underline{0}, \mathsf{x}^1, \underline{0}$

Resourced sub'n refines typed sub'n $(\sigma t : \Gamma_m \Rightarrow_{\sigma}^t \Gamma_n)$

$$\begin{split} \Delta_m \Rightarrow_{\sigma t}^r \Delta_n &:= \left(\Delta' : \mathrm{Mat} \ R \ (m, n) \right. \\ & \times \left(\Delta_m \leq \Delta' \Delta_n\right) \\ & \times \left(\left(x^\rho \in \Delta_n\right) \to \Delta'_x \vdash \sigma t \ x\right) \end{split}$$

Variable rule

$$\frac{\Delta^{\Gamma} \leq \underline{0}, x \stackrel{1}{:} S, \underline{0}}{\Delta^{\Gamma} \vdash x \in S}$$

Identity substitution

- $ightharpoonup \mathrm{id}_{\Delta} :\equiv (\Delta', prf, \mathrm{var}) \quad \mathrm{where} \ \Delta'_{x} :\equiv \underline{0}, x^{1}, \underline{0}$
- ightharpoonup prf is $\Delta = I\Delta = \Delta'\Delta$

▶ $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket S \rrbracket$ – standard Set semantics

- ▶ $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket S \rrbracket$ standard Set semantics

- ▶ $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket S \rrbracket$ standard Set semantics

 - $\blacktriangleright \ \llbracket !_{\rho}S \rrbracket = \llbracket S \rrbracket$

- $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$ standard Set semantics
- $\blacktriangleright \ \llbracket S \rrbracket^R : \mathcal{W} \to \llbracket S \rrbracket \times \llbracket S \rrbracket \to \operatorname{Prop}$
- $\blacktriangleright \ \llbracket \Delta^{\Gamma} \rrbracket^{R} : \mathcal{W} \to \llbracket \Gamma \rrbracket \times \llbracket \Gamma \rrbracket \to \operatorname{Prop}$

- ▶ $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket S \rrbracket$ standard Set semantics
- $\blacktriangleright \ \llbracket S \rrbracket^R : \mathcal{W} \to \llbracket S \rrbracket \times \llbracket S \rrbracket \to \operatorname{Prop}$
- $\blacktriangleright \ \llbracket \Delta^{\Gamma} \rrbracket^{R} : \mathcal{W} \to \llbracket \Gamma \rrbracket \times \llbracket \Gamma \rrbracket \to \operatorname{Prop}$
- ▶ If tt is well resourced, $\forall w. \ \forall (\gamma, \gamma') \in \llbracket \Delta^{\Gamma} \rrbracket^R \ w. \ (\llbracket tt \rrbracket \ \gamma, \llbracket tt \rrbracket \ \gamma') \in \llbracket S \rrbracket^R \ w$

- $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$ standard Set semantics

 - $ightharpoonup [!_{\rho} S] = [S]$

- ▶ If tt is well resourced, $\forall w. \ \forall (\gamma, \gamma') \in \llbracket \Delta^{\Gamma} \rrbracket^{R} \ w. \ (\llbracket tt \rrbracket \ \gamma, \llbracket tt \rrbracket \ \gamma') \in \llbracket S \rrbracket^{R} \ w$
- Consequences:
 - ▶ Worlds are bags of keys, semiring counts usages ⇒ all functions are permutations
 - ▶ Worlds are trivial, semiring tracks polarity
 ⇒ all functions are monotonic

- $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$ standard Set semantics

 - ightharpoonup [startion 1.5] = [startion 1.5]

- ▶ If tt is well resourced, $\forall w. \ \forall (\gamma, \gamma') \in \llbracket \Delta^{\Gamma} \rrbracket^{R} \ w. \ (\llbracket tt \rrbracket \ \gamma, \llbracket tt \rrbracket \ \gamma') \in \llbracket S \rrbracket^{R} \ w$
- Consequences:
 - Worlds are bags of keys, semiring counts usages
 all functions are permutations
 - Worlds are trivial, semiring tracks polarity
 ⇒ all functions are monotonic
 - ▶ Worlds are distances, semiring tracks distances
 ⇒ all functions are non-expansive

- $\llbracket tt \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket S \rrbracket$ standard Set semantics

 - $\blacktriangleright \ \llbracket !_{\rho}S \rrbracket = \llbracket S \rrbracket$
- $\blacktriangleright \ \llbracket \Delta^{\Gamma} \rrbracket^{R} : \mathcal{W} \to \llbracket \Gamma \rrbracket \times \llbracket \Gamma \rrbracket \to \operatorname{Prop}$
- ▶ If tt is well resourced, $\forall w. \ \forall (\gamma, \gamma') \in \llbracket \Delta^{\Gamma} \rrbracket^{R} \ w. \ (\llbracket tt \rrbracket \ \gamma, \llbracket tt \rrbracket \ \gamma') \in \llbracket S \rrbracket^{R} \ w$
- Consequences:
 - Worlds are bags of keys, semiring counts usages
 all functions are permutations
 - Worlds are trivial, semiring tracks polarity
 all functions are monotonic
 - ▶ Worlds are distances, semiring tracks distances
 ⇒ all functions are non-expansive
 - ▶ Worlds are sets of security levels, semiring same
 ⇒ high security data do not interfere with low security data

Conclusion

https://github.com/laMudri/quantitative

Conclusion

- https://github.com/laMudri/quantitative
- Abadi, Banerjee, Heintze 1999 A Core Calculus of Dependency
- ▶ Reed, Pierce 2010 Distance Makes the Types Grow Stronger
- Arntzenius 2018 Type inference for monotonicity

Conclusion

- https://github.com/laMudri/quantitative
- Abadi, Banerjee, Heintze 1999 A Core Calculus of Dependency
- Reed, Pierce 2010 Distance Makes the Types Grow Stronger
- Arntzenius 2018 Type inference for monotonicity
- Staged computation?
- More problems?