Indian Institute of Technology Delhi

Department of Mathematics

MAL 513: Real Analysis

MAJOR TEST (2008-09) Semester I

Maximum Marks: 50 Time: 2 Hours

- 1. (a) Let \mathbb{N} be the set of positive integers. Give examples of three different metrics on \mathbb{N} , no two of which are multiples of each other.
 - (b) Which of the following subsets of \mathbb{R}^2 are compact?

$$E = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}, \ F = \{(x,y) \in \mathbb{R}^2 : x \ge 1, 0 \le y \le \frac{1}{x}\}.$$

- (c) Let (X, d) be a metric space. For a fixed $x_0 \in X$, define $f: X \to [0, \infty)$ by $f(x) = d(x, x_0)$. Show that f is continuous. Use this to prove that a connected metric space is uncountable.
- (d) Let (X, d) be a metric space. Let (x_n) and (y_n) be two sequences in X such that (y_n) is a Cauchy sequence and $d(x_n, y_n) \to 0$ as $n \to \infty$. Prove that (x_n) converges to a limit x if and only if (y_n) also converges to x. [2+2+6+5]
- **2.** (a) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that T'(x) = T for all $x \in \mathbb{R}^n$.
 - (b) Show that the function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \cos x$, is not a strict contraction.
 - (c) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be differentiable functions. Using the chain rule for several variables, prove that

$$\nabla (fg) = g\nabla f + f\nabla g.$$

- (d) State the implicit function theorem.
- (e) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by

$$f(x_1, x_2, x_3) = x_1 x_3^2 + e^{x_3} + x_2.$$

Show that f(1,-1,0)=0 and $\frac{\partial f}{\partial x_3}(1,-1,0)\neq 0$. So there exists an open subset U of \mathbb{R}^2 and a differentiable function $g:U\to\mathbb{R}$ such that g(1,-1)=0 and $f(x_1,x_2,g(x_1,x_2))=0$ for all $(x_1,x_2)\in U$. Find $\frac{\partial g}{\partial x_1}(1,-1)$ and $\frac{\partial g}{\partial x_2}(1,-1)$.

[3+3+4+3+3]

- 3. (a) Define outer measure of a subset E of \mathbb{R}^n . Show that the outer measure of a countable subset of \mathbb{R}^n is zero.
 - (b) Let $A \subseteq B \subseteq \mathbb{R}^n$. Show that if B is Lebesgue measurable with measure zero, then A is also Lebesgue measurable with measure zero.
 - (c) Define a measurable function. Let Ω be a measurable subset of \mathbb{R}^n and $f:\Omega\to\mathbb{R}$ be a continuous function. Show that f is measurable.
 - (d) Prove that

$$\int_0^1 (e^x - 1)(\log x + \frac{1}{x}) \ dx = \sum_{n=1}^\infty \frac{n^2 + n + 1}{(n-1)!} \frac{1}{(n^2 + n)^2}$$

(e) State Lebesgue dominated convergence theorem. Use this to prove that

$$\lim_{n \to \infty} \int_{a}^{\infty} \frac{n^{2} x e^{-n^{2} x^{2}}}{1 + x^{2}} dx = 0 \quad \text{for all } a > 0.$$