$$\frac{1}{C(x)} = \frac{C(x)}{x} = \frac{60,000}{x} + 300 = \frac{60,000}{x} + 300$$

$$\frac{1}{C(x)} = \frac{60,000}{x} + 300 = \frac{60,000}{x} + 300$$

B)
$$\overline{C}(x) = -60000 \times^{-2} = -\frac{60,000}{\times^2}$$

 $\overline{C}(500) = -\frac{60,000}{500^2} = -0.24$

At a production level of 500 units, the average cost per unit is decreasing bozy per unit

Selected Solution 9,7

(c)
$$R(x) = p \times = 200 \times -\frac{1}{30} \times^2$$

(E) Skip
(F) Break even at
$$\chi = 600$$
 and $\chi = 3600$ Profit at $600 < \chi < 3600$

[1]]

(G)
$$P(x) = R(x) - C(x) = 200 x - \frac{1}{30}x^2 - 72000 - 60x$$

= $140 x - \frac{1}{30}x^2 - 72000$

$$(T) P'(1500) = 140 - 100 = 40$$
 Profit increasing \$40/unit $P'(3000) = 140 - 200 = -60$ Profit decreasing \$60/unit