Sistemi e Reti Patriche Robert

EVOLUZIONE ETHERNET (IEEE 802.3)

Cavo coassiale (coax)

ll cavo coassiale ha rappresentato la base storica delle prime reti Ethernet, prima di essere gradualmente sostituito da soluzioni più flessibili e performanti come il twisted pair e la fibra ottica.

Esistono due varianti principali:

- **Thick (10Base5)**: spesso, permette la trasmissione di un segnale elettrico che copre su una distanza maggiore rispetto al Thin, fino a 500 metri.
- **Thin (10Base2)**: versione più sottile e flessibile, meno costoso e più facile da installare, copre una distanza minore rispetto allo Thick, fino a 200 metri. Più adatto per reti più piccole (meno host).

Le reti con il cavo caox potevano avere fino a sue segmenti (cavi) e venivano connessi tramite dei ripetitori (l'HUB è un ripetitore a più porte).

Dopo i repetitori sono arrivati i Bridge, dispositivi di rete che collegano due o più segmenti LAN. Operano al livello 2 del modello OSI (Data Link)

I cavi avevano due connettori:

 Vampiro: un perno metallico penetra la guaina esterna del cavo coassiale e si collega direttamente al conduttore centrale.

• **Giunzione a T**: connessione che consente di derivare un ramo da un cavo principale, formando una struttura a forma di "T".

Sistemi e Reti Patriche Robert

Come è stato creato il protocollo Ethernet?

"H1 = Host 1"

Utilizza la tecnica CSMA/CD, ha un mezzo condiviso dove per parlare ogni host verificare che il canale sia libero.

Il protocollo funziona con i seguenti passaggi:

- **Ascolto del canale**: il dispositivo verifica se il mezzo è libero.
- **Trasmissione**: se il canale è libero, inizia a trasmettere.
- **Monitoraggio**: durante la trasmissione, il dispositivo continua a monitorare il canale.
- Collisione: se rileva una collisione, invia un jam signal per notificare agli altri dispositivi.
- **Backoff**: attende un tempo casuale prima di ritentare. (algoritmo)

La tecnica non impedisce le collisioni a causa della tempistica del frame.

Ogni Host che sta trasmettendo un frame ascolta anche il canale → trasmette e ascolta.

Se chi trasmette ascolta un frame diverso significa che è evvenuta una collisione, mentre se chi trasmette ascolta lo stesso frame significa che è andato tutto a buon fine.

Solo gli Host che usano il canale sono in grado di accorgersi che è avvenuta una collisione. Se un host se ne accorge si interrompe e invia un segnale particolare chiamato jam.

Algoritmo di backoff:

51,2m/s * r

 $r = random (0, 2^{k} + 1)$

k = minim(n, 10)