Question number	Scheme	Marks	
5 a	$(2+3x)^{-1} = \frac{1}{2} \left(1 + \frac{3}{2}x\right)^{-1}$ so $p = \frac{1}{2}$ and $q = \frac{3}{2}$ oe	B1 B1 (2)	
b	$\left[\left(\frac{1}{2} \right) \left[1 + \left(-1 \right) \left(\frac{3}{2} x \right) + \frac{(-1)(-2)}{2!} \left(\frac{3}{2} x \right)^{2} + \frac{(-1)(-2)(-3)}{3!} \left(\frac{3}{2} x \right)^{3} + \dots \right] $		
	$\frac{1}{2} - \frac{3}{4}x + \frac{9}{8}x^2 - \frac{27}{16}x^3 + \dots$	A1 (3)	
c	$\frac{1}{2} - \frac{3}{4}x + \frac{9}{8}x^2 - \frac{27}{16}x^3 + \frac{1}{2}x - \frac{3}{4}x^2 + \frac{9}{8}x^3 + \dots$	M1	
	$\frac{1}{2} - \frac{1}{4}x + \frac{3}{8}x^2 - \frac{9}{16}x^3$	A1 (2)	
d	$\int_0^{0.5} \left(\frac{1}{2} - \frac{1}{4}x + \frac{3}{8}x^2 - \frac{9}{16}x^3 \right) dx = \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{8}x^3 - \frac{9}{64}x^4$	M1 A1	
	$\frac{1}{2} \left(\frac{1}{2}\right) - \frac{1}{8} \left(\frac{1}{2}\right)^2 + \frac{1}{8} \left(\frac{1}{2}\right)^3 - \frac{9}{64} \left(\frac{1}{2}\right)^4 = 0.2256 \text{ for awrt } 0.2256$	M1 A1 (4)	
Total 11 mark			

Part	Marks	Notes	
(a)	B1	For $p = \frac{1}{2}$ or 2^{-1} or $q = \frac{3}{2}$ For $p = \frac{1}{2}$ or 2^{-1} and $q = \frac{3}{2}$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	B 1	For $n = \frac{1}{2}$ or 2^{-1} and $a = \frac{3}{2}$	
		$\frac{1 \text{ or } p - \frac{1}{2} \text{ or } 2 \text{ and } q - \frac{1}{2}}{2}$	
		NB $\frac{1}{2} \left(1 + \frac{3}{2} x \right)^{-1}$ scores B1 B1	
(b)	M1	For an attempt to expand $(1+qx)^{-1}$ with their value of q up to the term in x^3	
		It is not necessary to see p at this stage.	
		The definition of an attempt is as follows:	
		• The first term must be 1	
		 The first term must be 1 The next term must be correct for their value of q 	
		_	
		• The powers of qx must be correct eg $(qx)^2$	
		• The denominators must be correct	
		Simplification not required.	
		Do not allow missing brackets unless recovered later – this is a general point	
	A1ft	of marking. For at least 3 terms fully correct and unsimplified for their value of <i>q</i> . It is	
	AIIt	not necessary to see p at this point.	
	A1	For all 4 terms correct, all simplified.	
	If there ar	e any other methods used – send this to review please.	
(c)	M1	For multiplying their expansion by $(1+x)$	
		There must be a clear attempt to multiply to get 7 terms, allow up to 2 errors.	
		Ignore terms with powers higher than 3.	
	A1	For all 4 terms correct, ignore terms with powers higher than 3.	
(d)	M1	For a minimally acceptable attempt to integrate an expression with at least 3	
		terms, which must include a term in x^3	
	A 1.64	See general guidance for definition of minimally acceptable attempt.	
	A1ft	For a fully correct integration of their expression (defined as above for the M mark).	
	M1	For substitution of limits into a changed expression, the correct way round –	
	1711	this can be implied if the final answer is correct. We don't need to see 0	
		substituted in.	
	A1	For awrt 0.2256	
		(Note the calculator value is 0.2288461)	