Energie thermique des mers

Professeur encadrant: REBII Ahmed

Plam

- I) Schéma de la conversion de l'énergie thermique des mers en électricité(OTEC)
- II) Profil de la température des mers en fonction de la profondeur
- III) Les améliorations du cycle de Rankine
- IV) Les fluides et les échangeurs utilisés
- V) OTEC en Tunisie

I) Schéma de la conversion de l'énergie thermique des mers en électricité(OTEC)

Profil de la température des mers en fonction de la profondeur

Les améliorations du cycle de Rankine

Le cycle le plus utilisé pour la production d'électricité est celui de Rankine il est composé de 4 étapes :

- 1) Échauffement isobare
- 2) Détente adiabatique réversible
- 3) Liquéfaction isobare
- 4) Compression adiabatique réversible

L'efficacité d'un cycle est défini par :

Dans notre cas:

$$\eta$$
= 2%

Cycle de Rankine à deux étages

Nombre d'étages	1	2	3	4
Énergie électrique brute générée	17287	22960	24827	25554
Énergie consommée	5355	6786	7485	8157
Énergie nette disponible	11932	16174	17342	17397

Les fluides et les échangeurs utilisés

1) CHOIX DU FLUIDE 2) INTERFACE D'ÉCHANGE

Choix du fluide

```
import sqlite3
maconnexion=sqlite3.connect("mabase.db")
moncurseur=maconnexion.cursor()
moncurseur.execute("""create table if not exists fluides
(nomflu text primary key,
p30 integer not null, h30 float not null,
p25 integer not null, h25 float not null,
p10 integer not null, h10 float not null,
LC50dose integer not null, duration integer not null,
GWP integer not null, ODP integer not null,
Flam text)""")
flu=[]
for k in range (5):
    nomflu=input("nom du fluide")
    p30=int(input("pression de vapeur saturante à 30°C"))
    h30=float(input("enthalpie de changement d'état à 30°C"))
    p25=int(input("pression de vapeur saturante à 25°C"))
    h25=float(input("enthalpie de changement d'état à 25°C"))
    p10=int(input("pression de vapeur saturante à 10°C"))
    h10=float(input("enthalpie de changement d'état à 10°C"))
    LC50=int(input("dose léthale"))
    duration=int(input("durée d'exposition"))
    GWP=int(input("potentiel du gaz à effet de serre"))
    ODP=int(input("dégradation de l'ozone"))
    Flam=input("inflammabilité")
    flu.append((nomflu,p30,h30,p25,h25,p10,h10,LC50,duration,GWP,ODP,Flam))
moncurseur.executemany(""" insert into fluides values(?,?,?,?,?,?,?,?,?,?,?,?,?)""",flu)
```

nomflu	p30	h30	p25	h25	p10	h10	LC50dose	duration	GWP	ODP	Flar
Filtre	Filtre	Filtre	Filtre	Filtre							
R32	1928	260	1690	271	1107	299	520	4	550	0	inflamma
R125	1568	105	1378	110	909	125	800	4	3400	0	non inflar
R134A	771	173	665	178	415	191	500	4	1300	0	non inflar
R143A	1435	153	1262	160	837	177	1080	1	4300	0	extremen
R410A	1883	248	1652	240	1085	7	520	4	2000	0	non inflar

En implémentant la commande : Select nomflu from fluides where Flam='non inflammable' And GWP< 2000

On retrouve que le fluide à utiliser est le R134 :tetrafluorpéthane

Interface d'échange

métal

eau chaude(surface)/eau froide (profondeur)

Le choix du métal utilisé dans les échangeurs dépend de :

- -Capacité thermique massique
- -Coût
- -Corrosion par l'eau de mer

OTEC en Tunisie

