Sprawozdanie Wprowadzenie do Sztucznej Inteligencji Labolatoria 2

Kamil Matejuk 14.11.2021r

Metodyka testów

Efekty treningu sieci zostaną przetestowane na 3 zbiorach danych:

- zbiór testowy MNIST (10000 elementów) oznaczony ZT1
- zbiór testowy stworzony przeze mnie (30 elementów) oznaczony ZT2
- zbiór testowy stworzony przez osobę trzecią (30 elementów) oznaczony ZT3

Zbiór MNIST został przygotowany w postaci odpowiedniej dla sieci neuronowej, natomiast zbiory ZT2 i ZT3 muszą zostać odpowiednio zmienione. W wersji podstawowej, dla każdego obrazu został zwiększony kontrast, następnie zmieniono RGB na skalę szarości, oraz zmapowano wartości pixeli na 0 lub 1. Finalnie obrazy zostały zeskalowane do rozmiaru 28×28 . Dodatkowo, dla każdego ze zbiorów ZT2 i ZT3 został stworzony dodatkowy zbiór (odpowiednio $ZT2_PREPROCESSED$ i $ZT3_PREPROCESSED$), który dokładniej przystosował zdjęcia na potrzeby sieci. Z każdego zdjęcia została wycięta część zawierająca cyfrę, następne zeskalowana do 20px, oraz wstawiona w obraz 28×28 .

Wybór parametrów

Początkowe parametry do wyboru struktury sieci to:

- $batch_size = 8$
- epochs = 10
- optimizer = adam
- loss = Sparse Categorical Crossentropy

Każda sieć przyjmuje input rozmiaru (28 x 28). Ostatnią warstwą zawsze jest *Dense*, która łączy sie z każdym elementem poprzedniej warstwy i tworzy wektor 10-elementowy na wyjściu (1 element odpowiada jednej kategorii). Poniżej będę testował warstwy ukryte po środku:

Struktura wewnętrzna sieci	ZT1	ZT2	ZT2_PRE	ZT3	ZT3_PRE	
Flatten() Dense(64)	0.114	4.506	2.872	4.021	4.158	loss
	97%	27%	63%	27%	53%	accuracy
Flatten() Dense(128)	0.101	6.919	3.429	7.162	4.882	loss
	98%	27%	60%	17%	57%	accuracy
Flatten() Dense(256)	0.126	6.971	4.221	6.654	5.564	loss
	98%	27%	60%	23%	63%	accuracy
Flatten() Dense(196) Dense(49)	0.096	6.387	4.806	4.954	2.724	loss
	98%	23%	67%	30%	70%	accuracy
Flatten() Dense(392) Dense(98) Dense(24)	0.122	4.364	2.442	4.223	2.817	loss
	98%	30%	53%	33%	67%	accuracy
Conv2D(32) MaxPool2D() Flatten()	0.061	5.642	3.361	5.955	3.196	loss
	99%	27%	67%	23%	63%	accuracy
Conv2D(32) MaxPool2D()	0.051	8.359	1.831	8.374	2.769	loss
Conv2D(32) MaxPool2D() Flatten()	99%	13%	80%	30%	63%	accuracy
Conv2D(32) MaxPool2D()	0.079	6.099	1.682	5.271	2.703	loss
Conv2D(32) MaxPool2D() Conv2D(32) MaxPool2D() Flatten()	99%	30%	80%	40%	70%	accuracy

Najbardziej optymalne wyniki zwraca sieć złożona z trzech zestawów (Conv2D + MaxPool2D).

Wnioski

Dla danych ze zbioru MNIST, które są identycznie przygotowane jak dane na których sieć była uczona, w stosunkowo krótkim czasie da się osiągnąć wskaźnik prawidłowej rozpoznawalności powyżej 99%. Dla danych stworzonych przez osoby trzecie, bardzo ważne jest jak najdokładniejsze przygotowanie tych danych. Przy minimalnym przygotowaniu (ZT2 i ZT3) sieć wskazuje poprawne wyniki w około $30\%\pm3\%$. Natomiast dane preprocesowane podobnie do danych MNIST ($ZT2_PREPROCESSED$ i $ZT3_PREPROCESSED$) potrafiły uzyskać około $65\%\pm10\%$.