Claim Amendments

- 1. (currently amended) A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8 x 8 pixel blocks $\frac{B_{ij}}{X_i}$ comprising:
- (a) forming a discrete cosine transform (DCT) of each block $B_{ij}-\underline{X}_i$ of the image frame to produce a matrix of blocks of transform coefficients $D_{ij}-\underline{Y}_i$;
- (b) calculating a visual importance, \pm_{ij} - \underline{I}_i , for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;
 - (c) forming a global quantization matrix Q by one of
 - (i) selecting a standard JPEG quantization table and
 - (ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient $Q_{ij}-Q[m,n]$ is inversely proportional to the aggregate visual importance in the image of the corresponding DCT basis vector; and
- (d) selecting calculating linear scaling factors S_{ij} - S_i defining bounds over which the image is to be variably quantized;

- (e) quantizing the transform coefficients, D_{ijmn} , by an equivalent of dividing them by a factor $S_{min}*Q$, where S_{min} is a user-selected minimum scaling factor, and approximating variable quantization of the transform coefficients, $Y_i[m,n]$, using the local quantization table S_i Q while actually producing coefficients $T_i[m,n]$ that have been quantized using global quantization table S_{min} Q; and
- (f) entropy encoding quantized coefficients $\frac{T_{ijmn}}{T_i[m,n]}$ and global quantization table S_{min} Q to create a JPEG Part 1 image file.
- 2.(currently amended) A method according to claim 1, wherein step (e) includes rounding $D_{ijmn}/(S_{min}*Q)$ $Y_i[m,n]/(S_{min}Q[m,n])$ to the nearest integer to form quantized DCT transformed coefficients T_{ijmn} $T_i[m,n]$;
- (f) setting $T_{ijmn} T_{i}[m,n] = 0$ if $round(D_{ijmn}/(Q_{mn}*S_{ij}))$ $round(Y_{i}[m,n]/(S_{i}Q[m,n])) = 0;$ and

- 3.(currently amended) A method according to claim 1, including calculating a linear scaling factor S_{ij} \underline{S}_i equal to \underline{I}_{ij} $\underline{I}_i * (S_{max} S_{min}) + S_{min}$ where S_{min} and S_{max} are user specified to define bounds over which the image will be variably quantized.
- 4.(currently amended) The method according to claim 1, where \pm_{ij} \underline{I}_i is determined by discrete edge detection and summation of transform coefficients.
- The method according to claim 1, wherein \underline{I}_{ij} \underline{I}_i is determined by creating a 24 x 24 matrix of image pixels of DCT coefficients centered on a block $\underline{B}_{ij}-\underline{X}_i$, where I and \underline{j} =1, 2, $\underline{\&}$,8, convolving said 24 x 24 matrix with an edge tracing kernel to produce a convolved matrix, summing center 10 x 10 matrix values of said convolved matrix to produce a summed value, and normalizing said summed value to produce a visual importance, \underline{I}_{ij} \underline{I}_i .
- 6. (currently amended) The method according to claim 1, wherein said global quantization matrix Q is formed by calculating an 8 x 8 matrix A by calculating matrix elements A_{max} A[m,n] of said A according to the formula

$$A_{mn} = I_{ij} \cdot (B_{ij})_{mn},$$

$$A[m,n] = \sum_{all \ i} I_i \cdot Y_i[m,n]$$

calculating elements \mathbf{Q}_{mn} of said Q according to the formula

 $Q_{mn} - max(A_{mn})_{mn}$

Q[m,n] = max(entries of A)/A[m,n]

and scaling values of Q_{mn} coefficients of Q by a constant factor \underline{s} for all values of (m,n) except (0,0) in order to minimize an error between Q and a standard JPEG quantization matrix.

- 7. (currently amended) A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8 x 8 pixel blocks B_{ij} X_i where i, j are integers covering all of the blocks in the image frame, comprising:
- (a) forming a discrete cosine transform (DCT) of each block B_{ij} \underline{X}_i of the image frame to produce a matrix of blocks of transform coefficients D_{ij} \underline{Y}_i ;
- (b) calculating a visual importance, $\pm_{ij}-\underline{I}_i$, for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;
 - (c) forming a global quantization matrix Q by one of
 - (i) selecting a standard JPEG quantization table and
 - (ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient

 $Q_{ij}-Q[m,n]$ is inversely proportional to the aggregate visual importance, I_{ij} , to the image of a the corresponding DCT basis vector; and

- (d) selecting a linear scaling factor $S_{ij}-\underline{S}_i$ defining bounds over which the image is to be variably quantized wherein $S_{ij}-\underline{S}_i=\underline{I}_{ij}-\underline{I}_i\left(S_{max}-S_{min}\right)+S_{min}$, where S_{max} and S_{min} are user selected;
- (e) quantizing the transform coefficients, $D_{ij} Y_i[m,n]$, to produce quantized blocks $T_{ijmn} T_i[m,n]$ as follows:
- $(i) \quad T_{ijmn} = \frac{round(D_{ijmn}/(S_{min}*Q_{mn}))}{T_i[m,n] = \frac{round(Y_i[m,n]/(S_{min}Q[m,n]))}{T_i[m,n]}}, \text{ where round denotes rounding to the nearest integer;}$
- (ii) setting $T_{ijmn} T_i[m,n] = 0$ if $\frac{T_{ijmn}}{T_i[m,n]} = 0$; and $\frac{T_{ijmn}}{T_i[m,n]} = 0$; and
- $(iii) \, \text{setting} \, \, T_{ijmn} \, = \, \frac{\text{sign}(D_{ijmn}) + 1) 1}{T_i[m,n] = } \, \frac{T_i[m,n] 1}{S_{ijmn}} \,$
- (f) entropy encoding quantized coefficients $\underline{T_{ijmn}}$ $\underline{T_{i}[m,n]}$ and global quantization matrix S_{min} Q, to create a JPEG Part 1 image file.

- 8. (currently amended) A method of JPEG compression of a colour image represented by channels Y for greyscale data, and U and V each for colour, comprising:
- (a) shrinking subsampling the colour channels U and V by a an integer fraction of their size;
- (\underline{ba}) forming a discrete cosine transform (DCT) $\underline{\theta_{ij}}$ $\underline{Y_i}$ for each block $\underline{\theta_{ij}} \underline{X_i}$ of each of channels Y, U and V;
- (<u>c</u>b) calculating a visual importance, $\mathbf{I}_{ij} \mathbf{I}_i$, for each Y channel block of each image and setting $\mathbf{I}_{ij} \ \underline{\mathbf{I}}_i = \max\{-\mathbf{I}_{ij} \ \underline{\mathbf{I}}_i \ \text{values} \}$ for corresponding Y channel blocks for blocks in the U and V channels;
- (de) forming a global quantization matrix Q for the Y channel block and one for channels U and V combined such that a magnitude of each quantization matrix coefficient Q_{ij} —Q[m,n] is inversely proportional to an the aggregate visual importance in the image of a the corresponding DCT basis vector; and
- (\underline{ed}) approximating variable quantization of the transform coefficients, $Y_i[m,n]$, using the local quantization table S_i Q while actually producing coefficients $T_i[m,n]$ that have been quantized using global quantization table S_{min} Q, where Q is the global quantization table for the associated channel being quantized; and quantizing the transform coefficients for

each of the Y, U and V channels by dividing them by a factor S_{ij} Q', where S_{ij} is a linear scaling factor for each of channels Y, U and V and Q' is the quantization table for the associated channel being quantized; and

- $(\underline{f}e) \ \ entropy \ \ encoding \ \ quantized \ \ coefficients \ \ \overline{T}_{ijmn}$ $\underline{T}_{i}[m,n] \ \ and \ \ \underline{Q}^{l+S}_{min} \ \ \underline{global \ \ } quantization \ \ table \ \ \underline{S}_{min} \ \ \underline{Q}, \ \ where \ \ \underline{S}_{min} \ \ is \ \ a$ user selected minimum scaling factor for each of channels Y, U, and V, to create a JPEG $\underline{Part \ 1}$ image file for each of channels Y, U and V.
- 9. (currently amended) The method of claim 8 wherein the shrinking subsampling factor is 1/2 2.
- 10. (currently amended) Apparatus for JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8 x 8 pixel blocks $B_{ij} \underline{X}_i$ where I, j are integers covering all of the blocks in the image frame, comprising:
- (a) a discrete cosine transformer (DCT) operative to form the deiscrete discrete cosine transform of each block $B_{ij}-X_i$ of the image frame to produce a matrix of blocks of transform coefficients $D_{ij}-Y_i$;
- (b) a visual importance calculator operative to calculate the visual importance, $\underline{\mathbf{I}}_{ij}-\underline{\mathbf{I}}_i$, for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

- (c) a global quantization matrix calculator operative to calculate the global quantization matrix, Q, by one of
 - (i) selecting a standard JPEG quantization table and
 - (ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient $Q_{ij}-Q[m,n]$ is inversely proportional to the aggregate visual importance in the image of the corresponding DCT basis vector; and
- (d) a linear scaling factor calculator operative to determine a linear scaling factor, $S_{ij}S_i$, defining bounds over which the image is to be variably quantized based on user established values of S_{max} and S_{min} ;
- (e) a variable quantization operative approximating variable quantization of the transform coefficients, $Y_i[m,n]$, using the local quantization table S_i Q while actually producing coefficients $T_i[m,n]$ that have been quantized using global quantization table S_{min} Q, where S_{min} is a user selected minimum scaling factor; and a quantizer operative to divide the transform coefficients, D_{ijmn} , by a value equivalent to dividing them by a factor $S_{min}*Q$, where S_{min} is a user selected minimum scaling factor; and

- (f) an entropy encoder operative to encode the quantized coefficients $T_{ijmn}-T_i[m,n]$ and $Q*S_{min}$ global quantization table S_{min} Q to create a JPEG Part 1 image file.
- 11. (currently amended) Apparatus according to claim 10, wherein said quantizer rounds $\frac{D_{ijmn}}{(S_{min} * Q)} \frac{Y_i[m,n]}{(S_{min} Q[m,n])}$ to the nearest integer to form quantized DCT transformed coefficients $\frac{T_{ijmn}}{T_i[m,n]}$ and
- (f) sets $\mathbb{T}_{ijmn} \ \underline{T_i[m,n]} = 0$ if $\frac{\text{round}(D_{ijmn}/Q_{mn}*S_{ij})}{\text{round}(Y_i[m,n]/(S_i Q[m,n]))} = 0$; and
 - $\begin{array}{ll} \text{(g)} & \text{sets T_{ijmn}-sign-$(D_{ijm})*(2^ceil(lg(abs(D_{ijmn})+1))$} \\ \hline -1) & 1) & \underline{T_i[m,n]} & = \text{sign}(\underline{T_i[m,n]}) & \underline{P(abs(\underline{T_i[m,n]}))} & \text{if} \\ \hline abs(\underline{D_{ijmn}}) & (2^c(ceil(lg(abs(\underline{D_{ijmn}})+1)) & 1) & 1) & \underline{Ernd_i[m,n]} & \text{is} \\ \hline less than or equal to & \underline{abs(\underline{D_{ijmn}}} & \underline{Q_{mn}}\underline{S_{ij}} & * \\ \hline round(\underline{D_{ijmn}}/(\underline{S_{ij}}*\underline{Q_{mn}}))) & \underline{Evq_i[m,n]}; \end{array}$
- 12.(currently amended) Apparatus according to claim 10, wherein said linear scaling factor calculator determines a linear scaling factor $S_{ij}-\underline{S}_i$ equal to $\underline{I}_{ij}-\underline{I}_i$ * $(S_{max}-S_{min})+S_{min}$ where S_{min} and S_{max} are user specified to define bounds over which the image will be variably quantized.