[ЦПМ, кружок по математике]

А. Сайгак группа 10-1 [2024-2025] 20 февраля 2025 г.

Шалтай-Болтай

- 1. Точкой Шалтая, соответствующей вершине А треугольника АВС называется вторая точка пересечения окружностей, касающихся BC в точках B и C соответственно и проходящих через A. Обозначим её III_a . Докажите,
 - (a) что U_a лежит на медиане AM_a ,
 - (б) что отражения III_a относительно BC и относительно M_a лежат на описанной окружности,
 - (в) что III_a проекция ортоцентра H на медиану AM_a ,
 - (г) что III_a центр поворотных гомотетий, переводящих высоты BH_b и CH_c друг в друга,
 - (д) что отражение III_q относительно BC дополняет ABC до гармонической четвёрки,
 - (e) что III_a лежит на окружности Аполлония треугольника ABC, соответствующей точке A.
 - (ё) что прямые $HIII_a$, BC, H_bH_c , $AIII_H$, где III_H точка Шалтая треугольника BHC, пересекаются в одной точке.
 - (ж) что четырёхугольник $BM_aH_BIII_H$, пятиугольник $HMIII_aIII_bIII_c$ (где M точка пересечения медиан) и шестиугольник $AH \coprod_{a} \coprod_{b} H_{b} H_{c}$ вписаны.
- **2.** Чевианы BB_1 и CC_1 пересеклись в точке X. Оказалось, что четырёхугольник AB_1C_1X вписан в какую-то окружность. Докажите, что тогда на ней лежит и точка Шалтая.
- **3.** *Точкой Болтая*, соответствующей вершине *A* треугольника *ABC* называется вторая точка пересечения окружностей, касающихся AB и BC в точке A и проходящих через B и C соответственно. Обозначим её E_a . Докажите,
 - (a) что E_a лежит на симедиане AS_a (S_a лежит на описанной окружности),
 - (б) что BCE_aO (где O центр описанной окружности) вписан,
 - (в) что E_a проекция O на AS_a ,
 - (Γ) что E_a центр поворотных гомотетий, переводящих стороны AB и CA друг в друга,
 - (д) что E_a изогонально сопряжена III_a ,
 - (e) что точки O, L (точка Лемуана, пересечение симедиан), E_a, E_b и E лежат на одной окружности. (Ещё на ней лежат точки Брокара, но это доказывать не нужно),
- **4.** Пусть окружность проходящая через B, C и O пересекает стороны AB и AC в точках B_1 и C_1 . Докажите, что точка Шалтая треугольника B_1AC_1 совпадает с точкой Болтая треугольника АВС.
- **5.** Пусть AA_1, CC_1 высоты треугольника ABC, B_0 точка пересечения высоты из вершины B и описанной окружности треугольника ABC. Q — вторая точка пересечения описанных окружностей треугольников ABC и $A_1B_0C_1$. Докажите, что BQ симедиана треугольника АВС.

- **6.** Пусть M и N середины диагоналей AC и BD соответственнро гармонического четырёхугольника, вписанного в окржуность Ω . Прямые AN и DM вторично пересекают Ω в точках X и Y. Докажите, что $XY \parallel AD$.
- 7. Основание AD вписанной в окружность Ω трапеции в два раза больше, чем основание BC. Касательные к Ω в точках A и C пересеклись в точке X. Докажите, что (ABX)касается AC, а (BCX) - AX.
- **8.** Пусть точка M середина катета AB прямоугольного треугольника ABC с прямым углом A. На медиане AN треугольника AMC отмечена точка D, так что углы ACD и BCM равны. Докажите, что угол DBC также равен этим углам.
- **9.** Дан неравностороний треугольник ABC. Точки A_1 , B_1 и C_1 лежат соответственно на прямых BC, AC и AB таким образом, что $\angle AA_1B = \angle BB_1C = \angle CC_1A$. Описанные окружности треугольников AB_1C_1 и A_1BC_1 пересекаются в точке X. Докажите, что точка X лежит на окружности с диаметром HM, где точки H и M соответственно ортоцентр и центроид треугольника АВС.
- **10.** В остроугольном неравнобедренном треугольнике ABC проведены высоты AA_1, BB_1 и CC_1 . Пусть ω — его описанная окружность, точка M — середина стороны BC, P вторая точка пересечения описанной окружности треугольника AB_1C_1 и ω , T — точка пересечения касательных к ω , проведённых в точках B и C, S — точка пересечения AT с ω . Докажите, что P, A_1, S и середина отрезка MT лежат на одной прямой.