Genome assembly post-processing

Nadège Guiglielmoni

Read pre-processing

Adapter trimming

especially when PCR amplification is involved: Lima

Read filtering

to select the longest/highest quality reads: Filtlong

Read correction

self correction: long reads only

<u>hybrid correction:</u> long reads & short reads

Assembly post-processing

Polishing

reduce errors using high-accuracy reads: HyPo, Pilon, Hapo-G

Haplotig purging

remove uncollapsed haplotypes: purge_dups, Purge Haplotigs

Scaffolding

increase contiguity

using long reads: LINKS

using Hi-C: YaHS, instaGRAAL

Gap filling

find missing sequences: TGS-GapCloser

Goal: obtain a collapsed assembly, where each set of chromosomes is represented by a single sequence

≠ phasing: sequencing data from multiple individuals, limited sequencing data...

Adineta vaga

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Expected haploid size 102 Mb

Haplotype 1

ATTACCAGTCTCAATGGATGGCTACTCTTTGACGATAGCT

ATTACCAGTCTCAAAGGCTGCTAGTGTTTGACGATAGCT

Assembly process

Assembly output

HaploMerger2

HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly

Shengfeng Huang*, Mingjing Kang and Anlong Xu

Identifying and removing haplotypic duplication in primary genome assemblies

purge_dups

Dengfeng Guan^{1,2}, Shane A. McCarthy © ², Jonathan Wood³, Kerstin Howe © ³, Yadong Wang^{1,*} and Richard Durbin © ^{2,3,*}

Purge Haplotigs

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies

Michael J. Roach 6, Simon A. Schmidt and Anthony R. Borneman

PacBio assemblies

Plectus sambesii

Flye PacBio HiFi

Assembly size 269 Mb

Contig # 263

N50 3.2 Mb

N90 0.8 Mb

BUSCO score (Metazoa)

Complete 82.3%

Duplicated 73.2%

Nanopore

Assembly size 145 Mb Contig # 161

N50 11.8 Mb N90 3.7 Mb

BUSCO score (Metazoa)

Complete 79.9% Duplicated 1.9%

PacBio HiFi

Assembly size 144 Mb Contig # 159

N50 11.8 Mb

N90 3.6 Mb

BUSCO score (Metazoa)

Complete 79.9% Duplicated 2.0%

Plectus sambesii

PECAT Nanopore

Assembly size 313 Mb

Contig # 191

N50 11.0 Mb

N90 2.0 Mb

BUSCO score (Metazoa)

Complete 82.7%

Duplicated 73.5%

Nanopore

Assembly size 216 Mb Contig # 126

N50 11.1 Mb N90 1.7 Mb

BUSCO score (Metazoa)

Complete 81.3% Duplicated 3.2%

PacBio HiFi

Assembly size 140 Mb

Contig # 83 N50 17.9 Mb

N90 2.8 Mb

BUSCO score (Metazoa)

Complete 81.2% Duplicated 2.4%

Scaffolding approaches

Scaffolding: grouping and orienting contigs to build chromosome-level scaffolds

- Long reads
- Genetic maps
- Optical maps
- Linked reads
- ► Hi-C

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

Per base sequence content

Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. Flot et al., 2015

High-throughput genome scaffolding from in vivo DNA interaction frequency

dnaTri

Noam Kaplan ☑ & Job Dekker ☑

Lachesis

Chromosome-scale scaffolding of *de novo* genome assemblies based on chromatin interactions

Joshua N Burton ⊡, Andrew Adey, Rupali P Patwardhan, Ruolan Qiu, Jacob O Kitzman & Jay Shendure

High-quality genome (re)assembly using chromosomal contact data

GRAAL

Hervé Marie-Nelly ☑, Martial Marbouty, Axel Cournac, Jean-François Flot, Gianni Liti, Dante Poggi Parodi, Sylvie Syan, Nancy Guillén, Antoine Margeot, Christophe Zimmer ☑ & Romain Koszul ☑

De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds

3D-DNA

Olga Dudchenko^{1,2,3,4}, Sanjit S. Batra^{1,2,3,*}, Arina D. Omer^{1,2,3,*}, Sarah K. Nyquist^{1,3}, <a> Marie Hoeger^{1,3}, Neva C. Durand¹...

SALSA2

Integrating Hi-C links with assembly graphs for chromosome-scale assembly

Jay Ghurye, Arang Rhie, Brian P. Walenz, Anthony Schmitt, Siddarth Selvaraj, Mihai Pop, Adam M. Phillippy ☑, Sergey Koren ☑

instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder

instaGRAAL

Lyam Baudry, Nadège Guiglielmoni, Hervé Marie-Nelly, Alexandre Cormier, Martial Marbouty, Komlan Avia, Yann Loe Mie, Olivier Godfroy, Lieven Sterck, J. Mark Cock, Christophe Zimmer, Susana M. Coelho

& Romain Koszul

And in 2021

EndHiC: assemble large contigs into chromosomal-level scaffolds using the Hi-C links from contig ends

Sen Wang, Hengchao Wang, Fan Jiang, Anqi Wang, Hangwei Liu, Hanbo Zhao, Boyuan Yang, Dong Xu, Yan Zhang, Wei Fan

Efficient iterative Hi-C scaffolder based on N-best neighbors

Dengfeng Guan^{1,2,4}, Shane A. McCarthy^{2,3}, Zemin Ning³, Guohua Wang^{1*}, Yadong Wang^{1*} and Richard Durbin^{2,3*}

YaHS: yet another Hi-C scaffolding tool

Chenxi Zhou¹, Shane A. McCarthy^{1, 2}, Richard Durbin^{1, 2}

www.dnazoo.org

Adineta vaga (rotifer)

6 scaffolds

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Hi-C contact map of Adineta vaga

PacBio HiFi Flye instaGRAAL Size 314 Mb
12 chromosomes
19.8 - 35.1 Mb

Hi-C

Panagrolaimus sp. PS1579 (triploid)

PacBio HiFi Flye instaGRAAL Size 314 Mb
12 chromosomes
19.8 - 35.1 Mb

Hi-C

Panagrolaimus sp. PS1579 (triploid)

"What coverage should I get?"

→ Arima recommends 200 millions pairs per Gb

Species	Size	# fragments	# Hi-C pairs	Hi-C mapping
Adineta vaga	101 Mb	30	55 millions	83%
Astrangia poculata	455 Mb	2995	723 millions	67%
Flaccisagitta enflata	929 Mb	6612	489 millions	37%
Mercenaria mercenaria	1.86 Gb	5118	455 millions	55%

And then...

- Gap filling: TGS-GapCloser...
- Polishing: using high-accuracy reads, HyPo, Racon...

Gap filling & Polishing

	Scaffolds	After TGS-Gapcloser	After HyPo
Flaccisagitta enflata	9,239	3,694	1,476
Norana najaformis	860	748	632
Lucinoma borealis	24,786	5,093	2,135

ASSEMBLY

reads

ATTTGTACG GTACGGACA GGACATAGTA

contig

ATTTGTACGGACATAGTA

