Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής ΠΜΣ «Ερευνητικές Κατευθύνσεις στην Πληροφορική» Παράλληλη και Κατανεμημένη Υπολογιστική Επεξεργασία 2019-20

Ανάλυση Work-Span

(και οι περιπτώσεις των λειτουργιών map και reduce)

http://mixstef.github.io/courses/pms-parcomp/

Μ. Στεφανιδάκης

- Η παράλληλη εκτέλεση γίνεται με την ολοκλήρωση tasks
 - Ακολουθώντας τη ροή των αλληλεξαρτήσεων των δεδομένων
 - Ένας κατευθυνόμενος μη κυκλικός γράφος (DAG)

- Τ είναι ο χρόνος σειριακής εκτέλεσης (work)
 - Μια οποιαδήποτε έγκυρη σειριοποίηση της δουλειάς που πρέπει να γίνει

- Τ_∞ είναι ο χρόνος σε ένα ιδανικά παράλληλο σύστημα (span)
 - Διαθέσιμα άπειρα επεξεργαστικά στοιχεία
 - Η καλύτερη περίπτωση παραλληλίας
 - Το όριο είναι το κρίσιμο μονοπάτι tasks (critical path)

• $T_{_{
m P}}$ είναι ο χρόνος σε σύστημα με ${
m P}$ επεξεργαστικά στοιχεία $_{_{T}}$

$$T_{P} \ge \frac{T_{l}}{P}$$
 $T_{P} \ge T_{\infty}$

$$T_{p} \le (T_{1} - T_{\infty}) / P + T_{\infty}$$
 (Brent's Lemma)

• Ασυμπτωτικά

$$T_{P} = O(T_{I}/P + T_{\infty})$$

$$T_{p} = O(T_{I}/P + T_{\infty})$$

- Το Τ_∞ εμποδίζει την επεκτασιμότητα
- Η αύξηση του Τ₁ επιβαρύνει την απόδοση
- Συνεπώς η σχεδίαση των παράλληλων αλγορίθμων θα πρέπει να αποσκοπεί στην μείωση του Τ (span)
 - Αποφεύγοντας την υπέρμετρη αύξηση του Τ₁ (work), εκτός κι αν αυτό μειώνει δραστικά το span

Η λειτουργία map ξανά

- Εφαρμογή μιας συνάρτησης σε κάθε στοιχείο μιας ακολουθίας δεδομένων
 - Work = O(n)
 - Span = O(1) (αν η f έχει σταθερό κόστος)

Η λειτουργία reduce

• Συνδυάζει όλα τα στοιχεία μιας συλλογής (collection) σε ένα μοναδικό στοιχείο μέσω τελεστή *f*

Παραλληλοποίηση της reduce

- Δεν είναι πάντα δυνατή
 - Θα πρέπει ο τελεστής f να είναι προσεταιριστικός
 - $\text{`Otav}(((x1\circ x2)\circ x3)\circ x4=(x1\circ x2)\circ (x3\circ x4)$

Reduce: Work και Span

- Στην ιδανική περίπτωση
 - Work = O(n) όσο και η σειριακή εκδοχή
 - Span = O(logn)

Βιβλιογραφία

• Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming: Patterns for Efficient Computation (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.