Resolução da lista de exercícios de Sistemas Discretos Aluna: Anna Gabriele Marques de Oliveira

Questão 1:

- c) Frase: Serão introduzidos erros se forem feitas modificações no programa.
 - P: Fazer modificações no programa.
 - Q: Introduzir erros.
- Contrapositiva ($\sim Q \rightarrow \sim P$): Não serão introduzidos erros se não forem feitas modificações no programa.

Recíproca $(Q \to P)$: Serão introduzidos erros se forem feitas modificações no programa.

- d) Frase: Caso haja bom isolamento ou vedação de todas as janelas, haverá economia de energia para aquecimento.
 - P: Bom isolamento ou vedação de todas as janelas.
 - Q: Economia de energia para aquecimento.
- Contrapositiva ($\sim Q \rightarrow \sim P$): Não haverá economia de energia para aquecimento, então não existe bom isolamento ou vedação de todas as janelas.
- Recíproca $(Q \to P)$: Haverá economia de energia para aquecimento, então existe um bom isolamento ou vedação de todas as janelas.

Questão 2:

a) A soma de dois inteiros pares é par.

Temos: $m, n \in \mathbb{Z}$ tal que $m = 2i, i \in \mathbb{Z}$ e $n = 2j, j \in \mathbb{Z}$.

Por absurdo, a soma entre m e n deve ser ímpar, denotado da forma: $2k+1 \mid k \in \mathbb{Z}$.

Assim, temos: m + n = 2i + 2j = 2(i + j)

O que é um absurdo, pois i+j é um número inteiro por ser combinação de inteiros. Tornando assim, 2(i+j) um inteiro par, tal que (i+j) é divisível por 2.

Logo, a soma de dois inteiros pares é par.

b) Se o quadrado de um inteiro é par, então ele também é par.

Podemos denotar essa sentença usando as seguintes proposições:

P: O quadrado de um inteiro é par.

Q: O número é par.

Assim, a contrapositiva ($\sim Q \to \sim P$) dessa sentença será: Se um número é ímpar, então o quadrado desse número é ímpar.

Tomemos k ímpar, tal que $k=2j+1 \mid k,j \in \mathbb{Z}$. Além disso, $k^2=(2j+1)^2$.

 $(2j+1)^2$ é um produto notável da forma: $a^2+2ab+b^2=(a+b)^2$.

Assim,
$$(2j+1)^2 = (2j)^2 + 2 \times (2j) \times 1 + (1)^2 = 4j^2 + 4j + 1 = 2(2j^2 + 2j) + 1$$

Dessa forma, $2j^2 + 2j$ é inteiro, pois é combinação de j. E também, $2(2j^2 + 2j) + 1$ é impar, pois pode ser escrito da forma 2k + 1 tal que $k = 2j^2 + 2j$.

Por contrapositiva, está provado que se o quadrado de um inteiro é par, então ele também é par. \blacksquare

d) A soma de um inteiro com o seu quadrado é par.

Hipótese da demonstração por absurdo: A soma de um inteiro com seu quadrado é ímpar.

Tomemos k, tal que $k \in \mathbb{Z}$. Temos então duas possibilidades, k é impar ou k é par.

Para k ímpar, k pode ser descrito da forma $k=2m+1 \mid k,m \in \mathbb{Z}$. Então, $k^2=(2m+1)^2$.

 $(2m+1)^2$ é um produto notável da forma: $a^2 + 2ab + b^2 = (a+b)^2$.

Assim, $(2m+1)^2 = (2m)^2 + 2 \times (2m) \times 1 + (1)^2 = 4m^2 + 4m + 1$.

A soma de k com seu quadrado será: $k+k^2=2m+1+4m^2+4m+1=4m^2+6m+2=2(2m^2+3m+1)$.

 $2m^2+3m+1$ é inteiro, pois é combinação de m. Além disso, $2(2m^2+3m+1)$ é par.

Para k par, k pode ser descrito da forma $k=2m\mid k,m\in Z$. Então, $k^2=(2m)^2=4m^2$.

A soma de k com seu quadrado será: $k + k^2 = 2m + 4m^2 = 2(m + 2m^2)$.

 $m+2m^2$ é inteiro, pois é combinação de m. Além disso, $2(m+2m^2)$ é par.

O que é um absurdo, porque a nossa hipótese era que 'A soma de um inteiro com seu quadrado é ímpar', e para todas as possibilidades para um número inteiro, provamos que a soma de um inteiro com seu quadrado é par.

e) Se $x^2 + 2x - 3 = 0$, então $x \neq 2$.

Por absurdo, queremos provar: $x^2 + 2x - 3 = 0$, e x = 2

Por Báskara: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Substituindo as variáveis: $x = \frac{-2\pm\sqrt{2^2-4\times1\times(-3)}}{2} = \frac{-2\pm\sqrt{16}}{2} = \frac{-2\pm4}{2}$

Primeira raiz: $x1 = \frac{-2+4}{2} = \frac{-2}{2} = -1$

Segunda raiz: $x^2 = \frac{-2-4}{2} = \frac{-6}{2} = -3$

Pela hipótese x = 2, e 2 \neq -1 \neq -3. Chegamos assim, em uma contradição. Logo, $x^2 + 2x - 3 = 0$, e $x \neq 2$. \blacksquare

2