Cryptography 3/23

Reagan Shirk March 23, 2020

AES

- Four steps:
 - Add key
 - S-box transformation
 - ???
 - Mix Column
- A type of symmetric key cipher
 - This means that you have your plaintext that gets encrypted, then you send the ciphertext over
 - You have the encryption key when the plaintext is encrypted and a decryption key when the ciphertext gets decrypted
 - Called symmetric key cipher because you can derive one from the other very easily
 - To use a symmetric key cipher, we need shared secrets
 - * Secret = kev
 - Doesn't work without sharing the key
 - You need key exchanging
 - * Assumption is that the communication channel is insecure
 - * Diffie-Hellman came up with an idea to allow us to exchange keys without a secure channel

Diffie-Hellman

- $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$

 - -p is large, $> 2^{1000}$ -g is a generator in \mathbb{F}_p^*
 - * q has a large order
 - * if g is a generator, it'll have an order of p-1, but sometimes it isn't very necessary, you can have g with order $\frac{p-1}{2}$. If p is large, then $\frac{p-1}{2}$ will also be large
- We are assuming a passive attack. The steps for encryption are:
 - Find a random x such that $0 < x < \operatorname{ord}(q)$
 - Compute $X = q^x \mod p$
- The steps for decryption are:
 - Find any random y such that $0 < y < \operatorname{ord}(g)$
 - Compute $Y = g^y \mod p$
- Discrete logarithm:
 - If $X = q^x \mod p$, from X compute x
 - $-x \rightarrow X$ is a one way function. Why?
 - * Going from $x \to X$ is a really easy problem, but going from $X \to x$ is very hard
 - One way functions are very important in cryptography
 - * One direction takes a second, other directon takes millions of years
 - Back to the steps above, for encryption it is needed to camculate $K = Y^x \mod p$
 - * How do we know p? p is public information- everyone knows p
 - * How do we know Y? it gets sent to us from the person doing decryption (Alice and Bob for those who pay a decent amount of attention, Alice is doing the encryption and Bob is doing the decryption)

- Decryption needs to compute $K' = X^y \mod p$ Theorem: K = K'
- - * We want to prove that they are equal, and that this can be true while still having a secure

Proof

$$Y^x \bmod p = (g^y)^x \bmod p$$
$$= g^{xy} \bmod p$$
$$X^y \bmod p = (g^x)^y \bmod p$$
$$= g^{xy} \bmod p$$