

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB) FACULTY OF SCIENCE & TECHNOLOGY

DIGITAL LOGIC AND CIRCUITS LAB

Summer 2022-2023

Section: F Group Number: 02

EXPERIMENT NO. 7

NAME OF THE EXPERIMENT

Implementation of Asynchronous and Synchronous counters using flip-flops

Supervised By

SHAHRIYAR MASUD RIZVI

Faculty of Engineering, AIUB

Submitted By:

Name of the Student	ID Number
1. NOKIBUL ARFIN SIAM	21-44793-1
2. AHNAF AHMED	20-42173-1
3. SAIFUL ISLAM	20-42585-1
4. MAHADI HASAN	19-39711-1
5. SHEIKH FAHIM FUAD	21-44721-1

Introduction:

The purpose of this experiment is to learn about the counters and their characteristic against interval pulses using flip-flops. Also, we will learn two types of counters Asynchronous and Synchronous counters using the J-K flip flop. If the flip-flops do not receive the same clock signal, then that counter is called as Asynchronous counter. The output of system clock is applied as clock signal only to first flip-flop. The remaining flip-flops receive the clock signal from output of its previous stage flip-flop. If all the flip-flops receive the same clock signal, then that counter is called as Synchronous counter.

Theory and Methodology:

<u>Asynchronous Counter:</u> In a three-bit asynchronous counter, the external counter is connected to the clock input of the first flip-flop (FF0) only. By getting the Q output of FF0, then FF1 will be triggered. Because of the propagation delay through the flip-flop, the transition between the input clock pulse and the transition of the Q output of FF0 can never occur at the same time.

Figure-2: 3-bit Asynchronous Counter

Synchronous Counter: In a three-bit synchronous counter, the clock inputs of all the flip-flops are connected with each other. By this, all the flip-flops change their state parallelly. The advantage of this counter is that there is no cumulative time delay because all flip-flops are triggered in parallel.

Figure-3: 3-bit Synchronous Counter

Apparatus:

- IC 74LS76 (JK Flip Flop)
- IC 7408 (AND Gate)
- LED Lamps or Display
- Trainer Board
- Oscilloscope
- Connecting Wires

Hardware implementation

Asynchronous Counter:

Synchronous Counter:

Simulation

3- bit synchronous up counter:

3- bit asynchronous up counter:

4-bit Asynchronous Up Counter:

4-bit Synchronous Up Counter:

3-bit Asynchronous down counter

Results: The Simulation results matched the hardware implementation.

Discussion:

The experiment involved two parts: Asynchronous and Synchronous counters using a trainer board and JK Flip Flop IC. Initially, the Asynchronous counter used an external clock for the first flip-flop and cascaded outputs for subsequent ones, making it slower but simple. In contrast, the Synchronous counter employed a universal clock, allowing simultaneous flip-flop operation for higher speed, albeit with a more complex circuit. Designing and implementing 3-bit versions of both counters provided valuable insights into their processes and circuits.

Reference:

1. Thomas L. Floyd, "Digital Fundamentals," available Edition, Prentice Hall International Inc.