

(ONFIZ1-0401) Elemi lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Űrfizikai és Űrtechnikai Osztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttk.pte.hu

2024. november 28.

Folyó ügyek

- December 5-én írja a második zárthelyit a csoportom
- Egy korábbi zhpéldasor, illetve egy gyakorló példasor megtalálható a Teamsen és a Moodle-on.

Ismétlés - Lineáris transzformációk I

Definíció: Legyenek V_1 és V_2 lineáris vektorterek. A $\varphi:V_1\to V_2$ függvényt lineáris leképezésnek nevezzük, ha

additív :
$$\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{a}) + \varphi(\mathbf{b})$$

és homogén : $\varphi(\lambda \mathbf{a}) = \lambda \varphi(\mathbf{a})$,

ahol $\mathbf{a}, \mathbf{b} \in V_1$ és $\lambda \in \mathbb{R}$.

- ► <u>Tétel:</u> (Mátrixreprezentáció) A $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ leképezés akkor és csak akkor lineáris, ha $\exists A \in \mathcal{M}_{m \times n}$ úgy, hogy $\varphi(\mathbf{x}) = A \cdot \mathbf{x}$, ahol $\mathbf{x} \in \mathbb{R}^n$.
- Definíció: Legyen V vektortér. A $\varphi:V\to V$ lineáris leképezéseket lineáris transzformációnak nevezzük. A V-n ható összes lineáris transzformációk halmazát \mathcal{T}_V -vel jelöljük.
- **D**efiníció: Lineáris formának nevezzük az $f:V\to\mathbb{R}$ alakú lineáris leképezéseket.

Ismétlés - Lineáris transzformációk II

Definíció: Azt mondjuk, hogy az $L:V\times V\to\mathbb{R}$ leképezés bilineáris forma, ha mindkét változójában lineáris, azaz

$$L(\mathbf{x} + \mathbf{y}, \mathbf{z}) = L(\mathbf{x}, \mathbf{z}) + L(\mathbf{y}, \mathbf{z})$$

$$L(\lambda \mathbf{x}, \mathbf{y}) = \lambda L(\mathbf{x}, \mathbf{y})$$

$$L(\mathbf{x}, \mathbf{y} + \mathbf{z}) = L(\mathbf{x}, \mathbf{y}) + L(\mathbf{x}, \mathbf{z})$$

$$L(\mathbf{x}, \lambda \mathbf{y}) = \lambda L(\mathbf{x}, \mathbf{y}),$$

ahol $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ és $\lambda \in \mathbb{R}$.

▶ <u>Tétel:</u> Az $L: V \times V \to \mathbb{R}$ leképezés akkor és csak akkor bilineáris forma, ha (egy adott bázisra vonatkozóan) egyértelműen léteznek olyan $\alpha_{ik} \in \mathbb{R}$ számok, hogy $L(x,y) = \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{ik} x_i y_k$.

Ismétlés - Lineáris transzformációk III

- ▶ Tekintsük most \mathbb{R}^n kanonikus bázisát, az $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ vektorrendszert. Látható, hogy ekkor $\alpha_{ik} = L(\mathbf{e}_i, \mathbf{e}_k)$. Az $A = (\alpha_{ik})_{n \times n}$ mátrixot az L bilineáris forma (kanonikus bázisra vonatkozó) mátrixának nevezzük.
- **Definíció**: Az L bilineáris forma szimmetrikus, ha $L(\mathbf{x}, \mathbf{y}) = L(\mathbf{y}, \mathbf{x})$, ahol $\mathbf{x}, \mathbf{y} \in V$.
- Definíció: Legyen L egy szimmetrikus bilineáris forma a V vektortéren. Ekkor a Q(x) = L(x,x) függvényt kvadratikus formának nevezzük.
- ▶ <u>Definíció:</u> Azt mondjuk, hogy a Q kvadratikus forma pozitív definit, ha $\forall \mathbf{x} \neq \mathbf{0}$ esetén $Q(\mathbf{x}) > 0$.
 - Megjegyzés: Q pozitív szemidefinit, ha $\forall \mathbf{x} \neq \mathbf{0}$ esetén $Q(\mathbf{x}) \geq 0$ és $\exists \mathbf{y} \neq \mathbf{0}$, hogy $Q(\mathbf{y}) = 0$. A negatív definit és negatív szemidefinit fogalmak hasonlóan vezethetők be.

Ismétlés - Lineáris transzformációk IV

- ▶ <u>Definíció:</u> Az olyan szimmetrikus bilineáris formát, melyből származó kvadratikus forma pozitív definit, belső szorzatnak nevezzük.
 Pl. a R³ térben a skaláris szorzat egy belső szorzat.
- $ightharpoonup A \varphi : \mathbb{R}^n \to \mathbb{R}^m$ lineáris leképezést izomorfizmusnak nevezzük, ha az bijektív is.
- Belátható, hogy két vektortér akkor és csak akkor izomorf egymással, ha dimenziójuk megegyezik:

$$V_1 \cong V_2 \Leftrightarrow \dim V_1 = \dim V_2$$
.

Gram-Schmidt féle ortogonalizáció I

- ▶ <u>Definíció:</u> Egy E vektorteret Euklideszinek nevezünk, ha el van látva egy · belső szorzattal. (Ekkor természetesen norma is van: $\|\mathbf{x}\| = \mathbf{x} \cdot \mathbf{x}$.)
- ▶ <u>Definíció:</u> Egy vektorrendszert ortogonálisnak nevezünk, ha a vektorok páronként merőlegesek egymásra, azaz $\mathbf{v}_i \cdot \mathbf{v}_j = 0$, ahol $(i \neq j)$.
- Definíció: Egy vektorrendszert ortonormáltnak nevezünk, ha páronként merőleges egységvektorokból áll, azaz $\mathbf{v}_i \cdot \mathbf{v}_j = 0$, ahol $(i \neq j)$, $\|\mathbf{v}_i\| = 1$, ahol (i = 1, 2, ..., n).
- ▶ <u>Tétel:</u> Legyen $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ az E Euklideszi tér egy bázisa. Ekkor ± 1 szorzótól eltekintve egyértelműen létezik E-ben olyan $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ ortonormált bázis, melyre

$$\mathcal{L}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k) = \mathcal{L}(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k),$$

ahol k = 1, 2, ..., n.

Gram-Schmidt féle ortogonalizáció II

- Ortogonalizációs eljárás:
 - 1. $\mathbf{e}_{1}^{'} = \mathbf{b}_{1}$ és $\mathbf{e}_{1} = \frac{\mathbf{e}_{1}^{'}}{\|\mathbf{e}_{1}^{'}\|}$.
 - 2. Kiszámítjuk az $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ vektorokat.
 - 3. Végül

$$\mathbf{e}_{k+1}^{'} = \mathbf{b}_{k+1} - (\mathbf{b}_{k+1} \cdot \mathbf{e}_1) \, \mathbf{e}_1 - (\mathbf{b}_{k+1} \cdot \mathbf{e}_2) \, \mathbf{e}_2 - \dots - (\mathbf{b}_{k+1} \cdot \mathbf{e}_k) \, \mathbf{e}_k,$$

továbbá

$$\mathbf{e}_{k+1} = \frac{\mathbf{e}_{k+1}'}{\left\|\mathbf{e}_{k+1}'\right\|}.$$

Sajátérték, sajátvektor I

- Definíció: Legyen V egy vektortér $\mathbb R$ felett. Legyen $\varphi:V\to V$ lineáris leképezés. Ha az $\mathbf a\in V$ nemnulla vektorra és $\lambda\in\mathbb R$ -re $\varphi(a)=\lambda \mathbf a$ teljesül, akkor azt mondjuk, hogy $\mathbf a$ sajátvektora φ -nek és λ az $\mathbf a$ -hoz tartozó sajátértéke φ -nek.
- Definíció: Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$ a λ-hoz tartozó sajátvektorok és a nullvektor halmaza. A L_{λ} alteret alkot, ezért a λ-hoz tartozó sajátaltérnek nevezzük.
- ▶ <u>Definíció:</u> (A sajátértékek meghatározása) Az $A \in \mathcal{M}_{n \times n}$ -e mátrix karakterisztikus polinomja alatt az

fit az
$$f(x) = |A - xE_n| = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}$$

n-edfokú polinomot értjük.

Sajátérték, sajátvektor II

- Definíció: Legyen φ az \mathbb{R}^n -en ható lineáris transzformáció és legyen $A \in \mathcal{M}_{n \times n}$ a φ mátrixa a kanonikus bázisra vonatkozóan. Ekkor φ karakterisztikus polinomja alatt az A mátrix karakterisztikus polinomját értjük.
- Definíció: A $\lambda \in \mathbb{R}$ számot a φ lineáris transzformáció karakterisztikus gyökének nevezzük, ha λ gyöke a φ karakterisztikus polinomjának.
- ightharpoonup Tétel: A λ pontosan akkor sajátértéke φ -nek, ha karakterisztikus gyöke φ -nek.

Vége

Köszönöm a figyelmüket!