Plane Sweep Algorithm

Aritra Banik¹

Assistant Professor
National Institute of Science Education and Research

¹Slide ideas borrowed from Marc van Kreveld and Subhash Suri

Intersection Detection

- Determine pairs of intersecting objects?
 - Collision detection in robotics and motion planning.
 - Visibility, occlusion, rendering in graphics.
 - Map overlay in GISs: e.g. road networks on county maps.

- Let's first look at the easiest version of the problem:
- Given a set of of n line segments in the plane, find all intersection points efficiently
- Naive algorithm?

- Let's first look at the easiest version of the problem:
- Given a set of of n line segments in the plane, find all intersection points efficiently
- Naive algorithm? Check all pairs. $O(n^2)$.

Algorithm 1 FindIntersections(*S*)

Input: A set *S* of line segments in the plane.

Output: The set of intersection points among the segments in S.

- 1: **for** each pair of line segments $e_i, e_j \in S$ **do**
- 2: **if** e_i and e_j intersect **then**
- 3: report their intersection point
- 4: end if
- 5: end for

Algorithm 2 FindIntersections(*S*)

Input: A set *S* of line segments in the plane.

Output: The set of intersection points among the segments in S.

- 1: **for** each pair of line segments $e_i, e_i \in S$ **do**
- 2: **if** e_i and e_i intersect **then**
- 3: report their intersection point
- 4: end if
- 5: end for
 - Question: Why can we say that this algorithm is optimal?

• The asymptotic running time of an algorithm is always input-sensitive (depends on n)

• The asymptotic running time of an algorithm is always input-sensitive (depends on n)

- The asymptotic running time of an algorithm is always input-sensitive (depends on n)
- We may also want the running time to be output-sensitive: if the output is large, it is fine to spend a lot of time, but if the output is small, we want a fast algorithm

- The asymptotic running time of an algorithm is always input-sensitive (depends on n)
- We may also want the running time to be output-sensitive: if the output is large, it is fine to spend a lot of time, but if the output is small, we want a fast algorithm
- If there are k intersections, then ideal will be $O(n \log n + k)$ time.

- The asymptotic running time of an algorithm is always input-sensitive (depends on n)
- We may also want the running time to be output-sensitive: if the output is large, it is fine to spend a lot of time, but if the output is small, we want a fast algorithm
- If there are k intersections, then ideal will be $O(n \log n + k)$ time.
- We will describe a O((n+k)logn) solution. Also introduce a new technique : PLANE SWEEP.

• Given a set of intervals on the real line, find all overlapping pairs.

- Given a set of intervals on the real line, find all overlapping pairs.
- Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves

- Given a set of intervals on the real line, find all overlapping pairs.
- Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves
- The sweep line stops and the algorithm computes at certain positions: EVENTS/ EVENT POINTS

- Given a set of intervals on the real line, find all overlapping pairs.
- Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves
- The sweep line stops and the algorithm computes at certain positions: EVENTS/ EVENT POINTS
- The algorithm stores the relevant situation at the current position of the sweep line: STATUS

- Given a set of intervals on the real line, find all overlapping pairs.
- Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves
- The sweep line stops and the algorithm computes at certain positions: EVENTS/ EVENT POINTS
- The algorithm stores the relevant situation at the current position of the sweep line: STATUS
- The algorithm knows everything it needs to know before the sweep line, and found all intersection pairs.

 \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree ${\cal T}$

- \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree ${\cal T}$
 - Left endpoint of s_i : for each s_j in \mathcal{T} , report the pair (s_i, s_j) . Then insert s_i in \mathcal{T}
 - Right endpoint of s_i : delete s_i from $\mathcal T$

- \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree $\mathcal T$
 - Left endpoint of s_i : for each s_j in \mathcal{T} , report the pair (s_i, s_j) . Then insert s_i in \mathcal{T}
 - ullet Right endpoint of s_i : delete s_i from ${\mathcal T}$
- There will be 2*n* many event points.

- \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree $\mathcal T$
 - Left endpoint of s_i : for each s_j in \mathcal{T} , report the pair (s_i, s_j) . Then insert s_i in \mathcal{T}
 - Right endpoint of s_i : delete s_i from $\mathcal T$
- There will be 2n many event points.
- At each event point we do two operations
 - Insert/Delete
 - Report intersection

- \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree $\mathcal T$
 - Left endpoint of s_i : for each s_j in \mathcal{T} , report the pair (s_i, s_j) . Then insert s_i in \mathcal{T}
 - Right endpoint of s_i : delete s_i from \mathcal{T}
- There will be 2n many event points.
- At each event point we do two operations
 - Insert/Delete
 - Report intersection
- Total time = Total insert delete time + Total time to report intersection

- \bullet Sort the endpoints and handle them from left to right; maintain currently intersected intervals in a balanced search tree ${\cal T}$
 - Left endpoint of s_i : for each s_j in \mathcal{T} , report the pair (s_i, s_j) . Then insert s_i in \mathcal{T}
 - Right endpoint of s_i : delete s_i from $\mathcal T$
- There will be 2n many event points.
- At each event point we do two operations
 - Insert/Delete
 - Report intersection
- Total time = Total insert delete time + Total time to report intersection
- $2n * \log n + k$

Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves

• Question: What are the event points?

Imagine a horizontal line passing over the plane from top to bottom, solving the problem as it moves

- Question: What are the event points?
- Maintain vertical order of segments intersecting the sweep line;

 \bullet Insert $\ell_1,$ add the end point of ℓ_1 to the event queue

- Insert ℓ_1 , add the end point of ℓ_1 to the event queue
- \bullet Insert ℓ_2 , Current order ℓ_1,ℓ_2

- Insert ℓ_1 , add the end point of ℓ_1 to the event queue
- Insert ℓ_2 , Current order ℓ_1,ℓ_2
- Insert ℓ_3 , Current order ℓ_1, ℓ_3, ℓ_2 ,
 - Check whether ℓ_3 intersects with ℓ_1 or ℓ_2 .
 - Insert intersection point of ℓ_2 and ℓ_3 into the event queue.

- Insert ℓ_1 , add the end point of ℓ_1 to the event queue
- Insert ℓ_2 , Current order ℓ_1,ℓ_2
- Insert ℓ_3 , Current order ℓ_1, ℓ_3, ℓ_2 ,
 - Check whether ℓ_3 intersects with ℓ_1 or ℓ_2 .
 - Insert intersection point of ℓ_2 and ℓ_3 into the event queue.
- Current order ℓ_1, ℓ_2, ℓ_3 , insert intersection point of ℓ_3, ℓ_2 to the event queue.

- Insert ℓ_1 , add the end point of ℓ_1 to the event queue
- Insert ℓ_2 , Current order ℓ_1,ℓ_2
- Insert ℓ_3 , Current order ℓ_1, ℓ_3, ℓ_2 ,
 - Check whether ℓ_3 intersects with ℓ_1 or ℓ_2 .
 - Insert intersection point of ℓ_2 and ℓ_3 into the event queue.
- Current order ℓ_1, ℓ_2, ℓ_3 , insert intersection point of ℓ_3, ℓ_2 to the event queue.

. . . and so on . . .

Events

When do the events happen? When the sweep line is at

- a left endpoint of a line segment
- a right endpoint of a line segment
- an intersection point of a line segment

- We use a balanced binary search tree with the line segments in the leaves as the status structure.
- Search and insert.

- We use a balanced binary search tree with the line segments in the leaves as the status structure.
- Search and insert.
- Should we find out intersection of ℓ_6

- We use a balanced binary search tree with the line segments in the leaves as the status structure.
- Search and insert.
- \bullet Should we find out intersection of ℓ_6
- At the time of insert ℓ_6 is adjacent to ℓ_4 and ℓ_3 .

- We use a balanced binary search tree with the line segments in the leaves as the status structure.
- Search and insert.
- Should we find out intersection of ℓ_6
- At the time of insert ℓ_6 is adjacent to ℓ_4 and ℓ_3 .
- Check whether ℓ_6 intersects with ℓ_4 and l_3 or not, if intersects, insert the intersection points in the event queue.

A left endpoint of a line segment

- We use a balanced binary search tree with the line segments in the leaves as the status structure.
- Search and insert.
- Should we find out intersection of ℓ_6
- At the time of insert ℓ_6 is adjacent to ℓ_4 and ℓ_3 .
- Check whether ℓ_6 intersects with ℓ_4 and l_3 or not, if intersects, insert the intersection points in the event queue.

A right endpoint of a line segment

 Sweep line reaches right endpoint of a line segment: delete the line segment

A right endpoint of a line segment

- Sweep line reaches right endpoint of a line segment: delete the line segment
- After deletion of ℓ_6 , ℓ_3 and ℓ_4 becomes adjacent.
- If ℓ_3 and ℓ_4 intersects insert the intersection point into the event queue.

Sweep line reaches an intersection point

Sweep line reaches an intersection point of ℓ_i and ℓ_j

• Exchange ℓ_i and ℓ_j in the order list.

Sweep line reaches an intersection point

Sweep line reaches an intersection point of ℓ_i and ℓ_i

- Exchange ℓ_i and ℓ_j in the order list.
- If ℓ_i and its new left neighbor intersects, then insert this intersection point in the event queue
- If ℓ_j and its new left neighbor intersects, then insert this intersection point in the event queue.

Sweep line reaches an intersection point

Sweep line reaches an intersection point of ℓ_i and ℓ_i

- Exchange ℓ_i and ℓ_j in the order list.
- If \(\ell_i \) and its new left neighbor intersects, then insert this intersection point in the event queue
- If ℓ_j and its new left neighbor intersects, then insert this intersection point in the event queue.
- Report the intersection point.

Finding events

- Before the sweep algorithm starts, we know all upper endpoint events and all lower endpoint events
- But: How do we know intersection point events??? (those we were trying to find . . .)
- Observe: Two line segments can only intersect if they are horizontal neighbors

• At each event constant many updates

- At each event constant many updates
- Since both the event queue and T are balanced binary search trees, handling an event takes only $O(\log n)$ time.

- At each event constant many updates
- Since both the event queue and T are balanced binary search trees, handling an event takes only $O(\log n)$ time.
- Total no of events are O(n+k).
- The algorithm takes $O(n \log n + k \log n)$ time If k = O(n), then this is $O(n \log n)$

- At each event constant many updates
- Since both the event queue and T are balanced binary search trees, handling an event takes only $O(\log n)$ time.
- Total no of events are O(n+k).
- The algorithm takes $O(n \log n + k \log n)$ time If k = O(n), then this is $O(n \log n)$
- Note that if k is really large, the brute force $O(n^2)$ time algorithm is more efficient

 Given a layout in which objects are orthogonal polygons with sides parallel to the axises. The task is to the area covered by all the objects.

- Given a layout in which objects are orthogonal polygons with sides parallel to the axises. The task is to the area covered by all the objects.
- PLANE SWEEP: Keep track of the area that being sweeped.

- Given a layout in which objects are orthogonal polygons with sides parallel to the axises. The task is to the area covered by all the objects.
- PLANE SWEEP: Keep track of the area that being sweeped.
- EVENT POINTS: Left and right end point of the rectangeles.
- What is the area between any two sweep lines?

- Given a layout in which objects are orthogonal polygons with sides parallel to the axises. The task is to the area covered by all the objects.
- PLANE SWEEP: Keep track of the area that being sweeped.
- EVENT POINTS: Left and right end point of the rectangeles.
- What is the area between any two sweep lines?
- $\delta x \times y$ where y is the length of the intersection of the the rectangels with the sweep line.

- Intersection of the the rectangels with the sweep line is a set of intervals.
- Thus the problem at hand becomes to maintain the intercepts.
 The y can change only at
 - The beginning of a rectangle.
 - The end of the rectangle.

• Naïve Method:

- Naïve Method:
- At each event point find out y by a sweepline method.
- Complexity $O(2n \cdot n \log n) = O(n^2 \log n)$

- Naïve Method:
- At each event point find out y by a sweepline method.
- Complexity $O(2n \cdot n \log n) = O(n^2 \log n)$
- How to maintain sum of the union of the intervals with respect to insertion and deletion.

- Sort the end points of the intervals.
- This will create a set of elementary intervals.

- Sort the end points of the intervals.
- This will create a set of elementary intervals.

- Sort the end points of the intervals.
- This will create a set of elementary intervals.
- Depending on which intervals are ACTIVE, a set of elementary intervals will be ACTIVE.

 We maintain a special data structure called the INTERVAL-TREE

- We maintain a special data structure called the INTERVAL-TREE
- It is a balanced binary tree of the **ELEMENTORY** INTERVALS.

- We maintain a special data structure called the INTERVAL-TREE
- It is a balanced binary tree of the **ELEMENTORY INTERVALS**.
- Each node represents an interval.

• How an interval is stored in the tree?

- How an interval is stored in the tree?
- Start with the root and find a split node.

- How an interval is stored in the tree?
- Start with the root and find a split node.

• Claim: Each interval is stored in $O(\log n)$ nodes.

- Claim: Each interval is stored in $O(\log n)$ nodes.
- At each level there can be at most two node representing the interval.
- All of them have to be consecutive.

- Claim: Each interval is stored in $O(\log n)$ nodes.
- At each level there can be at most two node representing the interval.
- All of them have to be consecutive.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- Each interval can be inserted and deleted in $O(\log n)$ time.
- At each node we maintain the length of the active elementary intervals.

- $O(\log n)$ insert each takes $O(\log n)$ time.
- In time $O(\log^2 n)$ we can perform the updates.

- $O(\log n)$ insert each takes $O(\log n)$ time.
- In time $O(\log^2 n)$ we can perform the updates.
- Can be done in time $O(\log n)$ Homework

• In time $O(n \log^2 n)$ we can find out the area of the union of n rectangles.

