Fuel Consumption Prediction Models

Using Machine Learning and Mathematical Methods

Presented by Tejas Vilas Kondhalkar & Bulbul Kumari

University of Delhi – ECE Department Guide: Dr. Juhi Jain

Ship Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods

The goal of this research is to enhance the accuracy of ship fuel consumption predictions using machine learning (ML) and mathematical modeling. The framework incorporates both white-box (physics-based) and black-box (ML-based) models to provide reliable predictions while ensuring interpretability and robustness.

Project Objective

Predict fuel consumption of ships

Accurate estimation to optimise fuel use and costs

Compare machine learning and mathematical methods

Evaluate efficiency, accuracy, and interpretability

Reduce fuel expenses & CO₂ emissions

Contribute to sustainable shipping practices

Project Overview

Purpose

Predict ship fuel efficiency and CO₂ emissions using machine learning.

Dataset

ship_fuel_efficiency.csv with 1,440 entries and 10 features.(From Kaggle)

Methods

White Box and Black Box - Random Forest and XGBoost models.

Analysis Workflow

Data Loading & Inspection

Load dataset and examine basic statistics.

Data Cleaning (Kwon Method)

Remove outliers using Z-scores.

Feature Engineering

Create new variables to improve model performance.

Model Training & Evaluation

Train models and assess their accuracy.

Data Preprocessing Steps

- 1 Outlier Removal

 Applied Z-score method with threshold |z| > 3
- Handling Missing ValuesImputation or removal to ensure data quality
- Feature Engineering
 Calculated speed, displacement, power, and draft
- 4 Encoding & Scaling

 MinMaxScaler used; data split 80% train, 20% test

DATA PREPPROCESSING DATA COLLECTION DATA TRANSOPORATION DATA CLEANING DELDUCTION DATA FILLITATION INGIA CHITETITISMITTON

Data Loading & Initial Inspection

Dataset used: Kaggle - Ship Fuel Consumption and CO2 Emissions Analysis

```
df = pd.read_csv('ship_fuel_efficiency.csv')
print(df.info())
print(df.describe())
```

- We load the dataset using Pandas and examine data types, non-null counts, and summary statistics.
- There are 10 columns in the dataset namely ship_id, ship_type, route_id, month, distance, fuel_type, fuel_consumption, CO2_emissions, weather_conditions, engine_efficiency.
- Key Features:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1440 entries, 0 to 1439
Data columns (total 10 columns):
                         Non-Null Count Dtype
     Column
     ship id
                        1440 non-null
                                         object
     ship type
                                        object
                         1440 non-null
     route id
                                         object
                         1440 non-null
     month
                         1440 non-null
                                         object
                         1440 non-null
                                         float64
     distance
     fuel_type
                        1440 non-null
                                         object
    fuel consumption
                                         float64
                        1440 non-null
    CO2 emissions
                         1440 non-null
                                        float64
     weather_conditions 1440 non-null
                                         object
     engine efficiency
                        1440 non-null
                                         float64
dtypes: float64(4), object(6)
memory usage: 112.6+ KB
None
          distance fuel consumption CO2 emissions engine efficiency
count 1440.000000
                                        1440.000000
                                                           1440.000000
                         1440.000000
        151.753354
                                                             82.582924
                         4844.246535
                                       13365.454882
mean
std
        108.472230
                         4892.352813
                                       13567.650118
                                                              7.158289
         20.080000
                          237.880000
                                         615.680000
                                                             70.010000
min
25%
        79.002500
                                        4991.485000
                                                             76.255000
                         1837.962500
50%
        123.465000
                         3060.880000
                                        8423.255000
                                                             82.775000
75%
        180.780000
                         4870.675000
                                       13447.120000
                                                             88.862500
        498.550000
                        24648.520000
                                       71871.210000
                                                             94.980000
max
```

The output reveals our dataset structure and initial statistical properties.

Data Cleaning (Kwon Method)

Calculate Z-scores

Standardize numeric values to identify outliers.

Apply Threshold

Remove rows with absolute Z-scores > 3.

Verify Results

Dataset reduced from 1,440 to 1,399 rows.

```
# Applying Kwon Cleaning Method with numeric conversion

def kwon_cleaning_method(df, threshold=3):
    df_numeric = df.select_dtypes(include=[np.number]) # Select only numeric columns
    z_scores = (df_numeric - df_numeric.mean()) / df_numeric.std() # Compute Z-scores
    cleaned_df = df[(z_scores.abs() <= threshold).all(axis=1)]
    return cleaned_df

df = kwon_cleaning_method(df)</pre>
```

Drop NaN values

df = df.dropna()

Feature Engineering

Speed Calculation

df['speed'] = df['distance'] / 10

Distance divided by a constant (hypothetical time).

Displacement Derivation

df['displacement'] =
df['CO2_emissions'] * 0.1

Derived from CO₂ emissions.

Power Computation

df['power'] = df['engine_efficiency'] * df['fuel_consumption']

Engine efficiency multiplied by fuel consumption.

	engine_efficiency	speed	displacement	power	draft	
0	92.14	13.226	1062.576	348268.0078	53.12880	
1	92.98	12.852	1277.973	414824.6912	63.89865	
2	87.61	6.730	535.301	163631.8253	26.76505	
3	87.42	7.168	650.652	209240.6442	32.53260	
4	85.61	13.432	1161.703	365314.1359	58.08515	
1435	75.88	6.384	485.228	123976.5380	24.26140	
1436	78.00	6.143	357.113	98551.4400	17.85565	
1437	79.67	19.309	1226.713	371392.0621	61.33565	
1438	92.87	16.650	1229.771	399155.2600	61.48855	
1439	90.82	12.766	1064.190	322402.8262	53.20950	

Machine Learning Models Employed

White Box R

Baseline model; interpretable results

Random Forest

Ensemble technique; handles complex nonlinearities

XGBoost

Boosting model; highest accuracy and robustness

Mathematical Model: White Box Formula

This model standardises input parameters to estimate fuel usage.

Highly interpretable and helpful for initial analysis.

Train-Test Split & Scaling

Split Data

80% training, 20% testing

Prepare for Modeling

Data ready for algorithms

Normalize Features

MinMaxScaler to range [0,1]

Verify Distribution

Examine target variable

Model Training

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - y_i^{\hat{}}| \in [0, +\infty)$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_i)^2 \in [0, +\infty)$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i)^2} \in [0, +\infty)$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_i}{y_i} \right| \in [0, +\infty)$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - y_{i})^{2}} \in [0, 1]$$

Performance Metrics

1 MAE

Mean Absolute Error; average of absolute differences

2 ____ MSE

Mean Squared Error; average squared differences

3 RMSE

Root Mean Squared Error; square root of MSE

 \mathbb{R}^2

Coefficient of Determination; variance explained by model

```
# Evaluating the models
def evaluate_model(y_test, y_pred, model_name):
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, y_pred)
    print(f'\nModel: {model name}')
    print(f'MAE: {mae}')
    print(f'MSE: {mse}')
    print(f'RMSE: {rmse}')
    print(f'R^2 Score: {r2}')
evaluate_model(y_test, y_pred_whitebox, "Fuel Consumption Formula (White-box)")
evaluate_model(y_test, y_pred_rf, "Random Forest (Black-box)")
evaluate_model(y_test, y_pred_xgb, "XGBoost (Black-box)")
```

Model Performance Summary

Model	MAE	MSE	RMSE	R ²
White BOX	4576.28	38214004.79	6181.74	-1.21
Random Forest	181.71	73171.67	270.50	0.9955
XGBoost	117.80	76177.09	276.00	0.9957

XGBoost outperforms all models in every key metric.

Key Visualizations

The continuation was all feature relationships, and all includes and arranging the state of the

On Thans

Visual Data Analysis

Histogram

Shows fuel consumption distribution

Boxplot

Comparison across various ship types

Heatmap

Correlations between features and target

Scatter Plots

Feature-wise relationships with fuel consumption

Machine Learning Model Conclusions

ML models clearly outperformed traditional mathematical approaches.

XGBoost emerged as the top-performing algorithm.

Results have strong real-world and environmental relevance.

Modifications Overview

New Datas et

Utilized recent, comprehensive data for accuracy

Formula Adjustments

Enhanced Kwon's formula for improved predictive power

Feature Engineering

Introduced additional variables to strengthen models

Advanced Visualizations

Implemented dynamic graphs for interpretation

Key Learnings

ML Application

Practical insight into deploying ML models

Data Engineering

Critical data cleaning and feature creation

Visualization Skills

Effective model communication through graphs

Algorithm Expertise

Hands-on experience with RF and XGBoost

Future Directions

1

Time-Series Forecasting

2

CO2 Emission Prediction

3

Real-Time Data Integration

4

Deep Learning (LSTM)

5

App and Dashboard

Enhanced data accessibility and user interaction

Thank You

Acknowledgments

Grateful for teamwork and support