Microcontroller

19. MCS-51 Family uC Hardware and Software

MCS-51 Family uC Hardware

Dr.Tuncay UZUN

Other 8051 Features

- only 1 On chip oscillator (external crystal)
- 6 interrupt sources (2 external, 3 internal, Reset)
- 64K external code (program) memory (only read) PSEN
- 64K external data memory (can be read and write) by RD,WR
- Code memory is selectable by EA (internal or external)
- We may have External memory as data and code

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

_

Embedded System

ENVIRONMENT

MAIN SYSTEM

Embedded System

- · What is Embedded System?
 - An embedded system is closely integrated with the main system
 - It may not interact directly with the environment
 - For example A microcomputer in a car ignition control
 - ❖ An embedded product uses a microprocessor or microcontroller to do one task only
 - There is only one application software that is typically burned into ROM

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Examples of Embedded Systems

- Keyboard
- Printer
- video game player
- MP3 music players
- Embedded memories to keep configuration information
- Mobile phone units
- Domestic (home) appliances
- · Data switches
- Automotive controls

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Three criteria in Choosing a Microcontroller

- meeting the computing needs of the task efficiently and cost effectively
 - speed, the amount of ROM and RAM, the number of I/O ports and timers, size, packaging, power consumption
 - easy to upgrade
 - cost per unit
- availability of software development tools
 - assemblers, debuggers, C compilers, emulator, simulator, technical support
- wide availability and reliable sources of the microcontrollers

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Comparison of the 8051 Family Members

- ROM type
 - 8031 no ROM
 - 80xx mask ROM
 - 87xx EPROM
 - 89xx Flash EEPROM
- 89xx
 - 8951
 - 8952
 - 8953
 - 8955
 - 898252
 - 891051
 - 892051
- Example (AT89C51,AT89LV51,AT89S51)
 - AT= ATMEL(Manufacture)
 - C = CMOS technology
 - LV= Low Power(3.0v)

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Comparison of the 8051 Family Members

89XX	ROM	RAM	Timer	Int Source	IO pin	Other
8951	4k	128	2	6	32	-
8952	8k	256	3	8	32	-
8953	12k	256	3	9	32	WD
8955	20k	256	3	8	32	WD
898252	8k	256	3	9	32	ISP
891051	1k	64	1	3	16	AC
892051	2k	128	2	6	16	AC

WD: Watch Dog Timer AC: Analog Comparator ISP: In System Programable

Dr.Tuncay UZUN

IMPORTANT PINS (I/O Ports)

- One of the most useful features of the 8051 is that it contains four I/O ports (P0 - P3)
- Port 0 pins 32-39 P0 P0.0 P0.7
 - 8-bit R/W General Purpose I/O
 - Or acts as a multiplexed low byte address and data bus for external memory design
- - Only 8-bit R/W General Purpose I/O
- Port 2 pins 21-28 P2 P2.0 P2.7
 - 8-bit R/W General Purpose I/O
 - Or high byte of the address bus for external memory design
- Port 3 pins 10-17 P3 P3.0 P3.7
 - General Purpose I/O
 - if not using any of the internal peripherals (timers) or external interrupts.
- Each port can be used as input or output (bi-direction)

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

12

Port 3 Alternate Functions

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

IMPORTANT PINS

- PSEN (out): Program Store Enable, the read signal for external program memory (active low).
- ALE (out): Address Latch Enable, to latch address outputs at Port0 and Port2
- EA (in): External Access Enable, active low to access external program memory locations 0 to 4K
- RXD,TXD: UART pins for serial I/O on Port 3
- XTAL1 & XTAL2: Crystal inputs for internal oscillator.

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

15

Machine cycle

Find the machine cycle for:

- (a) XTAL = 11.0592 MHz
- (b) XTAL = 12 MHz.
- (c) XTAL = 16 MHz.

Solution:

- (a) 11.0592 MHz / 12 = 921.6 kHz;
- machine cycle = 1 / 921.6 kHz = 1.085 μs
- (b) 12 MHz / 12 = 1 MHz;
- machine cycle = 1 / 1 MHz = 1 μ s
- (b) 16 MHz / 12 = 1.333 MHz;
- machine cycle = 1 / 1.333 MHz = 0.75 μs

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Register Reset Value PC 0000 ACC 0000 B 0000 PSW 0000
ACC 0000 B 0000
В 0000
PSW 0000
SP 0007
DPTR 0000
RAM are all zero

MCS-51 Family uC Software

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

MCS-51 Assembly Language

MCS-51 Instruction Structure

MOV destination, source ; dest. ← source

6802 uP 8051 uC

LDAA #40H MOV A,#40H LDAA 40H MOV A,40H

STAA 41H MOV 40H,A

LDAA 0,X MOVC A,@A+DPTR

BCS L1 JC L1

JSR 1200H LCALL 1200H

CLC CLR C

Dr.Tuncay UZUN 19. MCS-51 Family uC Hardware and Software

Addressing Modes

Immediate Mode - specify data by its value

MOV A,#0 ;put 0 in the accumulator

;A = 00000000

MOV R4,#11h ; put 11hex in the R4 register

;R4 = 00010001

MOV B, #11 ;put 11 decimal in b register

;B = 00001011

MOV DPTR, #7521h ; put 7521 hex in DPTR

;DPTR = 0111010100100001

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Addressing Modes

Register Addressing – either source or destination is one of CPU register

MOV RO, A

MOV A,R7

ADD A,R4

ADD A,R7

MOV DPTR, #25F5H

MOV R5, DPL

MOV R, DPH

Note: that MOV R4,R7 is incorrect

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

35

Addressing Modes e – specify data by its 8-bit addressing Modes

<u>Direct Mode</u> – specify data by its 8-bit address usually for 30h-7Fh of RAM

MOV A,70h ; copy contents of RAM at 70h to a MOV R0,40h ; copy contents of RAM at 70h to a MOV 56h,A ; put contents of a at 56h to a MOV 0D0h,A ; put contents of a into PSW

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Addressing Modes

Register Indirect – the address of the source or destination is specified in registers

Uses registers R0 or R1 for 8-bit address:

```
MOV PSW,#0 ; use register bank 0 MOV R0,#0x3C MOV @R0,#3 ; memory at 3C gets #3 ; M[3C] \leftarrow 3
```

Uses DPTR register for 16-bit addresses:

```
MOV DPTR, #0x9000 ; DPTR ← 9000h
MOVX A, @DPTR ; A ← M[9000]
```

Note that 9000 is an address in external memory

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Addressing Modes

<u>Register Indexed Mode</u> – source or destination address is the sum of the <u>base address</u> and the accumulator (Index)

Base address can be <u>DPTR</u> or PC

MOV DPTR, #4000h

MOV A, #5

MOV A, @A+DPTR ;a ← M[4005]

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

39

Addressing Modes

Register Indexed Mode continue
Base address can be DPTR or PC

ORG 1000h

1000 MOV A, #5

 $PC \rightarrow 1002 \text{ MOVC A, @A+PC}$;a $\leftarrow M[1008]$

1003 NOP

- Table Lookup
- MOVC only can <u>read</u> <u>internal</u> code memory

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

MCS-51 Instruction Set

- Arithmetic Operation Instructions
- Logic Operation Instructions
- Data Transfer Instructions
- Boolean Variable Manipulation Instructions
- Program Branching Instructions

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

41

Data Transfer Instructions

- MOV dest , source ; dest ← source
- Stack instructions

Exchange instructions

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Acc Register

- A register can be accessed by direct and register mode
- This 3 instruction has same function with different code

0703 E500 mov a,00h 0705 8500E0 mov acc,00h 0708 8500E0 mov 0e0h,00h

Also this 3 instruction

070B E9 mov a,r1 070C 89E0 mov acc,r1 070E 89E0 mov 0e0h,r1

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

12

SFRs Address

B – always direct mode - except in MUL & DIV

0703 8500F0 mov b,00h 0706 8500F0 mov 0f0h,00h

0709 8CF0 mov b,r4 070B 8CF0 mov 0f0h,r4

P0~P3 – are direct address

0704 F580 mov p0,a 0706 F580 mov 80h,a 0708 859080 mov p0,p1

Also other SFRs (pcon, tmod, psw,....)

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

8051 Instruction Format

· immediate addressing

Op code | Immediate data

add a,#3dh ;machine code=243d

· Direct addressing

Op code | Direct address

mov r3,0E8h ;machine code=ABE8

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

8051 Instruction Format

Register addressing

```
Op code | n| n| n|
070D E8
                          ;E8 = 1110 \ 1000
070E E9
                          ;E9 = 1110 1001
           mov a,r1
070F EA
                          ;EA = 1110 \ 1010
           mov a,r2
0710 ED
           mov a,r5
                         ; ED = 1110 1101
0711 EF
           mov a,r7
                          ; Ef = 1110 1111
0712 2F
           add a,r7
         mov r0,a
0713 F8
0714 F9
         mov r1,a
0715 FA
           mov r2,a
0716 FD
           mov r5,a
```

mov r5,a

0717 FD

Dr.Tuncay UZUN

8051 Instruction Format

· Register indirect addressing

```
Op code
             ; i = 0 or 1
mov a, @Ri
070D E7
             mov
                  a,@r1
070D 93
             movc a,@a+dptr
070E 83
             movc a,@a+pc
070F E0
             movx a,@dptr
0710 F0
             movx @dptr,a
0711 F2
             movx @r0,a
0712 E3
             movx a,@r1
```

Dr. Tuncay UZUN 19. MCS-51 Family uC Hardware and Software

Stack

- Stack-oriented data transfer
 - –Only one operand (direct addressing)
 - -SP is other operand register indirect implied
- •Direct addressing mode must be used in PUSH and POP

MOV SP,#0x40 ; Initialize SP

PUSH 0x55; SP \leftarrow SP+1,M[SP] \leftarrow M[55]

 $;M[41] \leftarrow M[55]$

POP B ; B←M[55]

Note: can only specify RAM or SFRs (direct mode) to push or pop. Therefore, to push/pop the accumulator,

must use acc, not a

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

51

Multiply

When multiplying two 8-bit numbers, the size of the maximum product is 16-bits

 $FF \times FF = FE01$ (255 x 255 = 65025)

MUL AB ; BA \leftarrow A * B

Note: B gets the High byte A gets the Low byte

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Division

Integer Division

```
DIV AB ; divide A by B
```

```
A ← Quotient(A/B)
B ← Remainder(A/B)
```

OV - used to indicate a divide by zero condition. C – set to zero

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

53

Decimal Adjust Accum. for Add.

DA A

; decimal adjust a

Used to facilitate BCD addition.

Adds "6" to either high or low nibble after an addition to create a valid BCD number.

Example:

```
mov a,#23h
mov b,#29h
add a,b ; a ← 23h + 29h = 4Ch (wanted 52)
DA a ; a ← a + 6 = 52
```

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Conditional Jump

 These instructions cause a jump to occur only if a condition is true. Otherwise, program execution continues with the next instruction.

- There is no zero flag (z)
- · Content of A checked for zero on time

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

JNZ <rel addr=""> Jum JC <rel addr=""> Jum JNC <rel addr=""> Jum JB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum ABC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></rel></bit></rel></bit></rel></rel></rel>	Description
JNZ <rel addr=""> Jum JC <rel addr=""> Jum JNC <rel addr=""> Jum JB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum ABC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></rel></bit></rel></bit></rel></rel></rel>	
<pre>JC <rel addr=""> Jum JNC <rel addr=""> Jum JB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum JBC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></rel></bit></rel></rel></pre>	o if a = 0
<pre>JNC <rel addr=""> Jum JB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum JBC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></rel></bit></rel></pre>	o if a != 0
<pre>JB <bit>,<rel addr=""> Jum JNB <bit>,<rel addr=""> Jum JBC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></rel></bit></pre>	o if C = 1
<pre>JNB <bit>,<rel addr=""> Jum JBC <bir>,<rel addr=""> Jum &cl</rel></bir></rel></bit></pre>	o if C != 1
JBC // JBC // Jum // &cl	o if bit = 1
&cl	o if bit != 1
	o if bit =1, ear bit
CJNE A, direct, < rel addr > Commem equ	

Example: Conditional Jumps

if (a = 0) is true
 send a 0 to LED
else

send a 1 to LED

jz led_off
Setb P1.6
sjmp skipover

led_off: clr P1.6

mov A, PO

skipover:

Dr. Tuncay UZUN 19. MCS-51 Family uC Hardware and Software

Iterative Loops

```
For A = 0 to 4 do
{...}

clr a
loop: ...

inc a

cjne a, #4,
loop
```

```
For A = 4 to 0 do
{...}

mov R0, #4

loop: ...

djnz R0, loop
```

Call and Return

19. MCS-51 Family uC Hardware and Software

- · Call is similar to a jump, but
 - Call pushes PC on stack before branching

- •Return is also similar to a jump, but
 - Return instruction pops PC from stack to get address to jump to

ret ; PC ← stack

Dr.Tuncay UZUN

Dr.Tuncay UZUN

Interrupt Vectors

Each interrupt has a specific place in code memory where program execution (interrupt service routine) begins.

External Interrupt 0 : 0003h Timer 0 overflow : 000Bh **External Interrupt 1** : 0013h Timer 1 overflow : 001Bh

Serial : 0023h

Timer 2 overflow(8052+): 002bh

Note: that there are only 8 memory locations between

vectors.

Dr.Tuncay UZUN

19. MCS-51 Family uC Hardware and Software

Interrupt Vectors

To avoid overlapping Interrupt Service routines, it is common to put JUMP instructions at the vector address. This is similar to the reset vector.

```
009BH
                     ; at EX7 vector
       ljmp EX7ISR
       cseg at 0x100; at Main program
Main:
                     ; Main program
EX7ISR: ...
                 ; Interrupt service routine
                  ; Can go after main program
                  ; and subroutines.
       reti
```

Dr.Tuncay UZUN