Project 2 – Finding the Closest Pair

Qiang Huang
huangq25@mail2.sysu.edu.cn
School of Data and Computer Science
Sun Yat-Sen University

Introduction

- The purpose of the project:
 - Implement an approximation method with random projection to find the closest pair of a set of objects in highdimensional space;
 - -Use Euclidean distance as the distance metric.

Closest Pair Problem

• Given n objects $\{o_1, o_2, ..., o_n\}$ in d-dimensional Euclidean space R^d , the closest pair problem is to find a pair of objects o_i and o_j that minimizes $||o_i - o_j||$.

The closest pair is $\{o_2, o_6\}$

Euclidean Distance

• Given two objects $o_i = (o_{i1}, o_{i2}, ..., o_{id})$ and $o_j = (o_{j1}, o_{j2}, ..., o_{jd})$ from R^d , the Euclidean distance between o_i and o_i is computed as follows:

$$||o_i - o_j|| = \sqrt{\sum_{k=1}^d (o_{ik} - o_{jk})^2}$$

- An Example:
 - Suppose $o_i = (4, 2)$ and $o_j = (1, 6)$, then

$$-\|o_i - o_j\| = \sqrt{(4-1)^2 + (2-6)^2} = \sqrt{3^2 + 4^2} = 5$$

Overview of the Algorithm

- Step 1: Make a random projection to project the n data objects from R^d to m random lines $\{S_1, S_2, ..., S_m\}$;
- Step 2: For each random line S_i , we find the closest pair cp as a candidate; (closest pair in $R^d \rightarrow$ closest pair in 1-Dimension)
- Step 3: We compute the Euclidean distance for the m candidates (each candidate is the closest pair of S_i), and return the closest pair among the m candidates;

Overview of the Algorithm

Algorithm 1: Closest-Pair **Input**: a database D of n data objects $\{o_1, o_2, \dots, o_n\}$ and the number of random projections m. **Output**: the closest pair *cp*. 1 $\{S_1, S_2, \dots, S_m\}$ = Random-Projection(); 2 Let cp be the closest pair, cp = null; 3 Let min be the closest distance, $min = \infty$; **4 for** i = 1 *to* m **do** $\{\delta, cp_i\}$ = Closest-Pair-Line (S_i) ; Compute Euclidean distance dist for the closet pair cp_i found in S_i ; if dist < min then min = dist;

10 return cp;

Random Projection

• Project all n objects onto the m random lines S_1, S_2, \dots, S_m ;

Random Projection

- Generate random projection vectors \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_m
 - Each \vec{a}_i is a d-dimensional vector where each component is drawn from standard Normal distribution N(0,1).
- There is a Box-Muller method to generate a random variable from N(0,1).
 - Suppose U_1 and U_2 are random variable distributed uniformly from (0,1);
 - Two independent random variables X_1 and X_2 from N(0,1) are generated as follows:
 - $\bullet X_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$
 - $\bullet X_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$

Random Projection

Algorithm 2: Random-Projection

```
Input: a database D of n data objects
             \{o_1, o_2, \dots, o_n\} and the number of
             random projections m.
   Output: \{S_1, S_2, \dots, S_m\}.
 1 Generate a set of m random projection vectors
   \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m\};
2 S_i = \emptyset for j \in \{1, 2, ..., m\};
3 for i = 1 to n do
4 | for j = 1 to m do
5 c_{i,j} = i; v_{i,j} = \vec{a}_j \cdot \vec{o}_i; S_j = S_j \cup (c_{i,j}, v_{i,j});
8 return \{S_1, S_2, \dots, S_m\};
```

Closest Pair in 1-Dimension

- 1D problem can be solved in $O(n \log n)$ via sorting (i.e. quick sort).
- We can sort all objects on the line, and find the closest pair with a linear scan.
 - i.e., the closest pair is $\{o_3, o_5\}$ for the random line \vec{a}_1
- However, can we find the closest pair during the sorting?

Yes, use divide-and-conquer!

• Divide:

- Divide all the objects into two sets S_1 and S_2 by a **median** m so that p < q for all $p \in S_1$ and $q \in S_2$;
- Recursively compute the closest pair $\{p_1, p_2\}$ in S_1 and $\{q_1, q_2\}$ in S_2 .

Conquer:

• Let δ be the smallest separation found so far:

$$\delta = \min(|p_2 - p_1|, |q_2 - q_1|)$$

- The closest pair is $\{p_1, p_2\}$, or $\{q_1, q_2\}$, or $\{p_3, q_3\}$.
- In 1-Dimension, p_3 is the rightmost object of S_1 and q_3 is the leftmost object of S_2 (Why?)

```
Algorithm 3: Closest-Pair-Median(S)
   Input: a set S of n data objects on a line
   Output: the samllest separation \delta and the
              closest pair cp
1 if |S| = 1 then
2 return \{\delta = \infty, cp = null\};
3 if |S| = 2 then
   if p_1 > p_2 then swap(p_1, p_2);
   return \{\delta = |p_2 - p_1|, cp = \{p_1, p_2\}\};
6 Let m = median(S);
7 Divide S into S_1 and S_2 at m;
8 \{\delta_1, cp_1\} = Closest-Pair-Median(S_1);
9 \{\delta_2, cp_2\} = Closest-Pair-Median(S_2);
10 \{\delta_{12}, cp_{12}\} is the result across the cut;
11 return \{\delta, cp\} =
   \min(\{\delta_1, cp_1\}, \{\delta_2, cp_2\}, \{\delta_{12}, cp_{12}\});
```

Finding the Median

- We can use the divide-and-conquer to find the median in O(n).
- Given a set of objects S
- Select(*S*, *k*):
 - choose a splitter $a_i \in S$ uniformly at random; (add randomization)
 - Split S into two sub sets S^- and S^+ ; (divide)
 - For all $a_i \in S^-$, $a_i < a_i$;
 - For all $a_i \in S^+$, $a_i > a_i$;
 - If $|S^-| = k 1$ then a_i is the answer; (conquer)
 - Else if $|S^-| \ge k$ then $Select(S^-, k)$;
 - Else Select($S^+, k-1-|S^-|$);

Finding the Median

- An Example:
- Suppose $S = \{4, 1, 7, 3, 5, 2, 6\}$ and k = 6.
- Find a splitter $a_i = 3$, then $S = \{2, 1, 3, 4, 5, 7, 6\}$,
- Since $|S^-| = 2 < k 1 = 5$, consider $S^+ = \{4, 5, 7, 6\}$ and $k = 6 1 |S^-| = 3$
- Find a splitter $a_i = 6$, then $S = \{2, 1, 3, 4, 5, 6, 7\}$,
- Since $|S^-| = 2 = k 1$, a_i is the answer

Finding the Median

- Why the algorithm Select(S, k) is O(n)? (average case, not worst case)
- choose a splitter $a_i \in S$ uniformly at random (add a randomization)
- In each recursion j (Event X_j), we can prune S from $n\left(\frac{3}{4}\right)^{J-1}$ to $n\left(\frac{3}{4}\right)^{J}$ (the best case is $\frac{1}{2}$, here $\frac{3}{4}$ is the average case)
 - i.e., $n: 7 \to 4$ after 1st recursion in the example of the previous slide.
- When j increases, $n\left(\frac{3}{4}\right)^j \to 1$; Finally we can find the k^{th} object.
- Thus, the average time is
- $E[x] = \sum_{j} E[X_{j}] \le \sum_{j} cn(\frac{3}{4})^{j} = cn \sum_{j} (\frac{3}{4})^{j} = O(n)$ (here $\sum_{j} (\frac{3}{4})^{j} = 4$)

- Shall we have to choose median for splitting?
- Actually we can generalize the **median** to a **random pivot**:
 - choose a pivot $p_i \in S$ uniformly at random;
 - Split S into two sub sets S_1 and S_2 ;
 - For all $p_i \in S_1$, $p_i \le p_i$;
 - For all $p_i \in S_2$, $p_i > p_i$;


```
Algorithm 4: Closest-Pair-Pivot(S)
   Input: a set S of n data objects on a line
   Output: the samllest separation \delta and the
              closest pair cp
 1 if |S| = 1 then
 2 | return \{\delta = \infty, cp = null\};
 3 if |S| = 2 then
    if p_1 > p_2 then swap(p_1, p_2);
    return \{\delta = |p_2 - p_1|, cp = \{p_1, p_2\}\};
 6 Choose a pivot p_i \in S uniformly at random;
 7 for each element p_i \in S do
       Put p_i in S_1 if p_i \leq p_i;
    Put p_j in S_2 if p_j > p_i;
10 \{\delta_1, cp_1\} = Closest-Pair-Pivot(S_1);
11 \{\delta_2, cp_2\} = Closest-Pair-Pivot(S_2);
12 \{\delta_{12}, cp_{12}\} is the result across the cut;
13 return \{\delta, cp\} =
   \min(\{\delta_1, cp_1\}, \{\delta_2, cp_2\}, \{\delta_{12}, cp_{12}\});
```

Dataset

- Please download from http://yann.lecun.com/exdb/mnist/
- Use TRAINING SET IMAGE FILE (train-images-idx3-ubyte) as dataset Mnist.ds ($n=60{,}000$ and d=784)
- Each object is an image with pixels 28×28
- Please read the file format on the website and extract the dataset from the train-images-idx3-ubyte.gz

Input Format of the Project

• The input format of the dataset is described as follows:

```
1 object<sub>1,1</sub> object<sub>1,2</sub> ... object<sub>1,d</sub>
2 object<sub>2,1</sub> object<sub>2,2</sub> ... object<sub>2,d</sub>
...
N object<sub>N,1</sub> object<sub>N,2</sub> ... object<sub>N,d</sub>
```

• The 1st element is the object id, the 2nd element to the (d+1)th element are the coordinate of the object itself.

Requirements

• Implementations:

- We limit m=100
- Programming language: C/C++
- implement Algorithm 1 with Algorithm 2&3, and display the running time and the closest pair
- implement Algorithm 1 with Algorithm 2&4, and display the running time and the closest pair
- the running time is defined by the wall clock time of Algorithm 1 to find the closest pair.
- the closest pair can be displayed as the right figure:

Write an experimental report:

- Depict how to develop the two implementations
- Discuss these two implementations with the running time and your analyses.

Submission

- 提交时间: 2016年12月11日 23:59分
- 提交方式: 提交给各方向学委, 学委统一交给TA(张楚涵)
- 提交文件:
 - README
 - **源代码:** 保存在目录 "/src"
 - 数据集: 假设保存在 "/src" (不用提交数据集)
 - Makefile: 如果你使用了多个.h 和.cpp文件,需要写一个makefile来编译,并生成一个可执行的程序 cp。程序必须使用以下命令执行:

./cp -n 60000 -d 784 -f Mnist.ds

- 实验报告(列明小组成员及分工)
- 请注意不要抄袭!
- 所有文件打包成一个.zip文件(不接受.rar)
 - 命名规范:"小组序号_组长学号_组长姓名(拼音)_Project2.zip".
 - i.e., 1_14141414_zhangsan_Project2.zip