



# **Robot Perception**

Multi-View Geometry

Dr. Chen Feng

ROB-GY 6203, Fall 2022





### **Overview**

- \* Hands-on: AprilTag & camera calibration
- + Epipolar geometry
- ++ Fundamental matrix
- + Essential matrix
- + Planar Homography
- + PnP problem
- ++ Hand-eye calibration
- \*: know how to code
- ++: know how to derive
- +: know the concept



### References

- HZ2003:
  - Section 9.1, 9.2, 9.3, 9.5, 9.6, 11.1, 11.2, 11.7
- Co2017:
  - Section 14.2, 11.2.3
- Sz2022:
  - Section 11.3, 11.2, 12.1
- FP2011:
  - Section 7.1, 8.1.2
- Radu Horaud, Fadi Dornaika. Hand-eye Calibration. International Journal of Robotics Research, SAGE Publications, 1995, 14 (3), pp.195–210.





### **Two-view Geometry**





## **Epipolar Geometry**

- Independent of scene structure
- Only depends on the cameras' internal parameters and relative pose









## **Epipolar Geometry**

• From a point x on one image, epipolar geometry allows us to find on the other image a corresponding line I' that MUST contain the corresponding point x', without knowing where x' is





## Fundamental Matrix: the Algebra of Epipolar Geometry

**Result 9.3.** The fundamental matrix satisfies the condition that for any pair of corresponding points  $\mathbf{x} \leftrightarrow \mathbf{x}'$  in the two images

$$\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0.$$

[LonguetHiggins-81] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. *Nature*, 293:133–135, September 1981.



### Fundamental Matrix: the Algebra of Epipolar Geometry



**Result 9.3.** The fundamental matrix satisfies the condition that for any pair of corresponding points  $\mathbf{x} \leftrightarrow \mathbf{x}'$  in the two images

$$\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0.$$







Geometrically, F represents a mapping from the 2-dimensional projective plane  $\mathbb{P}^2$ 

of the first image to the pencil of epipolar lines through the epipole e'. Thus, it represents a mapping from a 2-dimensional onto a 1-dimensional projective space, and

hence must have rank 2.

### **Properties of Fundamental Matrix**



- F is a rank 2 homogeneous matrix with 7 degrees of freedom.
- Point correspondence: If x and x' are corresponding image points, then  $\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0$ .

#### • Epipolar lines:

- $\diamond$   $\mathbf{l'} = \mathbf{F}\mathbf{x}$  is the epipolar line corresponding to  $\mathbf{x}$ .
- $\diamond 1 = F^T x'$  is the epipolar line corresponding to x'.

#### • Epipoles:

- $\diamond$  Fe = 0.
- $\diamond F^{\mathsf{T}} \mathbf{e}' = \mathbf{0}.$

#### • Computation from camera matrices P, P':

- $\diamond$  General cameras,  $F = [e']_{\times} P'P^+$ , where  $P^+$  is the pseudo-inverse of P, and e' = P'C, with PC = 0.
- $\diamond$  Canonical cameras,  $P = [I \mid \mathbf{0}], P' = [M \mid \mathbf{m}],$  $F = [\mathbf{e}']_{\times}M = M^{-T}[\mathbf{e}]_{\times}, \text{ where } \mathbf{e}' = \mathbf{m} \text{ and } \mathbf{e} = M^{-1}\mathbf{m}.$



### **Projective Ambiguity of Fundamental Matrix**





**Result 9.8.** If H is a  $4 \times 4$  matrix representing a projective transformation of 3-space, then the fundamental matrices corresponding to the pairs of camera matrices (P, P') and (PH, P'H) are the same.



### **Normalized Coordinate and Essential Matrix**

$$\mathbf{x} = P\mathbf{X}$$
 
$$P = \mathtt{K}[\mathtt{R} \mid \mathbf{t}]$$
 Normalized coordinate  $\hat{\mathbf{x}} = \mathtt{K}^{-1}\mathbf{x} = [\mathtt{R} \mid \mathbf{t}]\mathbf{X}$  
$$\hat{\mathbf{x}}'^\mathsf{T} E \hat{\mathbf{x}} = 0$$

**Result 9.17.** A  $3 \times 3$  matrix is an essential matrix if and only if two of its singular values are equal, and the third is zero.

$$\mathtt{E} = \mathtt{K}'^\mathsf{T} \mathtt{F} \mathtt{K} \qquad \boxed{\mathtt{E} = [\mathbf{t}]_{ imes} \mathtt{R}}$$



### **Extracting Relative Camera Pose from E-matrix**



**Result 9.19.** For a given essential matrix  $E = U \operatorname{diag}(1, 1, 0) V^T$ , and first camera matrix  $P = [I \mid 0]$ , there are four possible choices for the second camera matrix P', namely

$$P' = [UWV^T \mid +\mathbf{u}_3] \text{ or } [UWV^T \mid -\mathbf{u}_3] \text{ or } [UW^TV^T \mid +\mathbf{u}_3] \text{ or } [UW^TV^T \mid -\mathbf{u}_3].$$













(d)



### **Estimating F-matrix**



• Find multiple  $X \leftrightarrow X'$  correspondences ( $\geq 7$ ) between two images

$$\mathbf{x}'^{\mathsf{T}} \mathbf{F} \mathbf{x} = 0$$

$$x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0$$

$$\mathbf{A} \mathbf{f} = \begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

Enforce rank-2 constraint by SVD



### **Normalized 8-point Algorithm**

#### Objective

Given  $n \geq 8$  image point correspondences  $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$ , determine the fundamental matrix F such that  $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$ .

### Algorithm

- (i) **Normalization:** Transform the image coordinates according to  $\hat{\mathbf{x}}_i = T\mathbf{x}_i$  and  $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$ , where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix  $\hat{\mathbf{F}}'$  corresponding to the matches  $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$  by
  - (a) **Linear solution:** Determine  $\hat{F}$  from the singular vector corresponding to the smallest singular value of  $\hat{A}$ , where  $\hat{A}$  is composed from the matches  $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$  as defined in (11.3).
  - (b) Constraint enforcement: Replace  $\hat{\mathbf{F}}$  by  $\hat{\mathbf{F}}'$  such that  $\det \hat{\mathbf{F}}' = 0$  using the SVD (see section 11.1.1).
- (iii) **Denormalization:** Set  $F = T'^T \hat{F}' T$ . Matrix F is the fundamental matrix corresponding to the original data  $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ .





### **Special Case of F-matrix Computation**



- Special cases of motion
  - Simplify the computation of F-matrix
- Pure Translation:  $F = [e']_{\times}$ 
  - the epipole can be estimated from the image motion of two points









## The Fundamental Matrix Song – Daniel Wedge







## **Planar Homography**







### **Planar Homography**

- Any point X on the plane
  - Plane equation:  $n^TX + d = 0$
  - Homogeneous coordinate:  $(X, -n^TX/d)$
- Image on camera 1
  - $x_1 = KX$
- Image on camera 2

• 
$$x_2 = K'[RX - tn^TX/d]$$

Relate two images by H

• 
$$x_2 = Hx_1 = HKX = K'[RX - tn^TX/d]$$

- Above equation holds for any X
  - $H = K'[R tn^T/d]K^{-1}$
  - $K'^{-1}HK = R \frac{tn^T}{d} = R t'n^T$
  - Decompose  $K'^{-1}HK$  to retrieve R, t', and n



Malis, Ezio, and Manuel Vargas. "Deeper understanding of the homography decomposition for vision-based control." (2007).





### Perspective-n-point (PnP) Problem

· A calibrated camera is an angular sensor

 $\bullet \ \widehat{x}_i = K^{-1} x_i / \left\| K^{-1} x_i \right\|$ 

 Visual angles between any pair of image points must be the same as the angle between corresponding 3D points

• 
$$\angle x_i c x_j \equiv \angle p_i c p_j$$

- 3 pair of 2D-3D correspondences leads to 4 possible solutions
  - P3P problem
- Useful for estimating object pose
  - [R, t]







## **Hand-eye Calibration**









## **Hand-eye Calibration**

- For any static point P in the calibration frame
  - $B_1 X^{-1} A_1 P = B_2 X^{-1} A_2 P, \forall P$ 
    - $B_2^{-1}B_1X^{-1} = X^{-1}A_2A_1^{-1}$
    - $XB_1^{-1}B_2 = A_1A_2^{-1}X$
- AX = XB
  - $A = A_1 A_2^{-1}$
  - $B = B_1^{-1}B_2$
- Solve X by observing multiple (A,B)

$$\begin{cases}
A_{12}X &= XB_{12} \\
\vdots & \vdots \\
A_{i-1} {}_{i}X &= XB_{i-1} {}_{i} \\
\vdots & \vdots \\
A_{n-1} {}_{n}X &= XB_{n-1} {}_{n}
\end{cases}$$







### Solve AX=XB

• 
$$A = \begin{bmatrix} R_A & t_A \\ 0 & 1 \end{bmatrix}$$
, and so on for B and X

$$\bullet \begin{bmatrix} R_A & t_A \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_X & t_X \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_X & t_X \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_B & t_B \\ 0 & 1 \end{bmatrix}$$

• 
$$R_A R_X = R_X R_B$$

• 
$$R_A t_X + t_A = R_X t_B + t_X \Rightarrow (R_A - I)t_X = R_X t_B - t_A$$

Solve rotation first!





### Solve $R_A R_X = R_X R_B$



- Let  $n_B$  be  $R_B$ 's rotation axis
  - $n_B = R_B n_B$
- Multiply both sides by  $R_X$ 
  - $R_X n_B = R_X R_B n_B$
  - $= R_A R_X n_B$
- Consider  $R_A$ 's rotation axis:  $n_A = R_A n_A$
- So  $R_X n_B$  turns out to be  $R_A$ 's rotation axis
  - $n_A = R_X n_B$
- $R_X$  can be solved with multiple ( $\geq 2$ ) pairs of (A, B)!
  - Polar decomposition on a covariance matrix  $N_A N_B^T$
  - Orthogonal Procrustes problem





 $A: 3 \times n, B: 3 \times n, \Omega: 3 \times 3$ 

 $\langle \mathbf{A}, \mathbf{B} 
angle_{ ext{F}} = \sum_{i,j} \overline{A_{ij}} B_{ij} \ , = ext{tr} \left( \mathbf{A}^T \mathbf{B} 
ight)$ 

## **Orthogonal Procrustes Problem**



$$R = rg \min_{\Omega} \|\Omega A - B\|_F \quad ext{subject to} \quad \Omega^T \Omega = I,$$

$$= \arg\min_{\Omega} \langle \Omega A - B, \Omega A - B \rangle$$

$$=rg\min_{\Omega}\|\Omega A\|_F^2+\|B\|_F^2-2\langle\Omega A,B
angle$$

$$=rg\min_{\Omega}\|A\|_F^2+\|B\|_F^2-2\langle\Omega A,B
angle$$

$$=rg\max_{\Omega}\langle\Omega,BA^T
angle$$

$$=rg\max_{\Omega}\langle\Omega,U\Sigma V^T
angle$$

$$= \arg\max_{\Omega} \langle U^T \Omega V, \Sigma \rangle$$

$$=rg\max_{\Omega}\langle S,\Sigma
angle \quad ext{where }S=U^T\Omega V$$

More generally, the trace is invariant under cyclic permutations, i.e.,

$$\operatorname{tr}(ABCD) = \operatorname{tr}(BCDA) = \operatorname{tr}(CDAB) = \operatorname{tr}(DABC).$$

$$S^* = I$$

$$R = UV^T$$





### **Next Week**

- + Feature detection
  - Harris/FAST/DoG
- + Feature description & matching
  - SIFT/SURF
- ++ Linear & total least square
- \* RANSAC
  - Intuitions behind RANSAC
  - How RANSAC works
  - Why minimal solution is important
  - More example problems
  - **Variations**
- \*: know how to code
- ++: know how to derive
- +: know the concept



### **References for Next Week**

- HZ2003:
  - Section 4.7, 4.8, 11.6
- Corke 2011:
  - Section 14.2.3
- Sz2022:
  - Section 7.1, 7.2, 8.1.4
- DeTone, D., Malisiewicz, T. and Rabinovich, A., 2018. Superpoint: Self-supervised interest point detection and description. In CVPR workshops (pp. 224-236).
- Sarlin, P.E., DeTone, D., Malisiewicz, T. and Rabinovich, A., 2020. Superglue: Learning feature matching with graph neural networks. In *CVPR* (pp. 4938-4947).