"Poker"

Vortrag von Daniel Schreiber

Seminar "Knowledge Engineering und Lernen in Spielen", SS04, Prof. Fürnkranz

"How long does it take to learn poker, Dad?"

"All your life, son."

David Spanier, "Total Poker" (1977)

Übersicht

- Texas Hold'em Regeln
- Spielbaum
- Pokerprogramme
 - Selby
 - Poki
 - PsOpti

Regeln Texas Hold'em

- Zwei Karten verdeckt ("Hole Cards")
- 1. Wettrunde
- Drei Karten offen in die Mitte ("Flop")
- 2. Wettrunde
- Eine Karte offen in die Mitte ("Turn")
- 3. Wettrunde
- Eine Karte offen in die Mitte ("River")
- 4. Wettrunde
- Showdown

Wettrunde I

- passen ("fold"), mitgehen ("call" / "check"), erhöhen ("bet" / "raise")
- fold: Keine Zahlung, Spieler scheidet aus
- call: Spieler zahlt den geforderten Einsatz
- raise: Spieler zahlt den geforderten Einsatz und erhöht. Die anderen Spieler sind wieder gefordert.

Wettrunde II

- Eigene Wette darf nicht erhöht werden
- Maximal 3 x "raise" pro Runde
- Einsatzhöhe festgelegt
 - z.B.: 10\$ Runde 1 2, \$20 Runde 3 4
- Am Ende einer Runde haben alle Spieler den gleichen Betrag im "Pot" oder gepasst

Rangfolge

Showdown

- Haben alle Spieler außer einem gepasst, kassiert der den Pot
- Beste "Hand" aus den "Hole Cards" und den "Board Cards" gewinnt den Pot

Spielbaum

insgesamt 10¹⁸ Knoten

Computer Poker

- Spielbaum zu groß für vollständige Suche
- Vereinfachung nötig
- pseudo-Optimale Strategie gesucht
- 3 Beispiele:
 - Pre-Flop Texas Hold'em
 - Poki
 - PsOpti

Pre Flop Hold'em

- Keine Wetten nach dem Flop
- EV = Pot * P(strongest hand)
- Maximierung mit Simplex Algorithmus


```
| A K Q J T 9 8 7 6 5 4 3 2
| A | R3 R2 R2 R2 R2 R1 R1 R1 R1 R1 R1 R1 R1 R1
| K | R2 *1 CR1 CR1 CR1 R1 R1 R1 R1 R1 R1 R1 R1 R1
| Q | CR1 CR1 R2 R1 R1
| J | R2 *2 R1 R2 R1 R1
| T | *3 R1 R1 R1 R1 R2 R1 R1 R1 R1 R1 R1 R1 C C
| 9 | R1 R1 R1 R1 R1 R2 R1 R1 R1 R1 R1 R1 C C
```

Poki

- Action selector: Pokerwissen
- Opponent Modeler: Neuronales Netz, Bayessches Lernen

Action Selector

- Eingabe: "Effective hand strenght"
 ≈ P(ich habe die besten Karten)
- Sitzposition, gemachte Wetten ...
- Verarbeitung mit Experten Regeln
- Ausgabe: (P("fold"), P("call"), P("raise"))
- unflexibel, "unschön" ABER spielt gut

Simulator

- Kein Expertenwissen ⇒ Spielbaum-Suche
- Keine Breitensuche ⇒ Monte-Carlo Simulation
- "schöner" ABER spielt schlechter

Opponent Model

- Was macht der Gegner?
 - Wie Schach, ABER: Spieltheoretisch optimaler Zug nicht immer profitabelster Zug
- In welcher Position ist das Spiel?
 - Information Set hat mehr als ein Element!
 Anders als Schach.

Was macht der Gegner?

• 3 Schichten mit 19, 4 und 3 Neuronen

#	type	description		
1	Real	Immediate Pot Odds		
2	Real	Bet Ratio: bets/(bets+calls)		
3	Real	Pot Ratio: amount_in / pot_size		
4	Boolean	Committed in this Round		
5	Boolean	Bets-To-Call == 0		
6	Boolean	Bets-To-Call == 1		
7	Boolean	Bets-To-Call >= 2		
8	Boolean	Stage == FLOP		
9	Boolean	Stage == TURN		
10	Boolean	Stage == RIVER		
11	Boolean	Last-Bets-To-Call > 0		
12	Boolean	Last-Action == BET/RAISE		
13	Real	(#players Dealt-In) / 10		
14	Real	(# Active Players) / 10		
15	Real	(# Unacted Players) /10		
16	Boolean	Flush Possible		
17	Boolean	Ace on Board		
18	Boolean	King on Board		
19	Real	(#AKQ on Board) / (# Board Cards)		

Backpropagation

Rein:
$$e_i^{(n+1)} = \sum_j y_j^{(n)} w_{ij}^{(n+1)}$$

Raus:
$$y_i^{(n+1)} = f(e_i^{(n+1)})$$

Feed Forward

$$\delta_{i}^{(n_{\text{max}})} = f'(e_{i}^{(n_{\text{max}})})(y^{(n_{\text{max}})}_{i} - z_{i})$$

$$\delta_{j}^{(n)} = f'(e_{j}^{(n)}) \sum_{i} \delta_{i}^{(n+1)} w_{ij}^{(n+1)}$$

$$w_{ij}^{(n)} = w_{ij}^{(n)} + \alpha \delta_{i}^{(n)} y_{j}^{(n-1)}$$

Backpropagation

Resultate

Predictor	Bots	Humans	σ
Statistics I	60.94%	66.76%	0.023
Statistics II	63.94%	69.04%	0.115
Expert Formula	67.87%	55.98%	0.061
Neural Network I	64.67%	79.34%	0.086
Neural Network II	73.49%	79.91%	0.054
Meta-Predictor	75.11%	80.49%	0.023

Wo ist das Spiel?

- Wahrscheinlichkeit für Gegnerkarten
- Aktionen ⇒ Änderung der W'keiten

Vorher: A♣K♥= 0.4 Opponent Model

 $P(\{fold, call, raise\}) = \{0, 0.3, 0.7\}$

Beobachtet: "call"

Nachher: A♣K♥ = 0.4 * 0.3 = 0.12

Resultate

- Mittelmäßig bei 10 Spieler Hold'em
- Schwach bei 2 Spieler Poker
- Ausprobieren:

PsOpti

- 2 Spieler Poker
- Spielbaumreduktion $10^{18} \Rightarrow 2 \times 10^{7}$
- Techniken
 - Wettrunden kürzen
 - Wettrunden streichen
 - "bucketing"

Wettrunden kürzen

- Normal: 19 mögl. Sequenzen pro Runde
- bet call, bet raise fold …
- 9 davon gehen in die nächste Runde
- Reduziert: 7 von 15 in die n\u00e4chste Runde
- Sequenzen mit 3 raise werden gestrichen
- Rechtfertigung: Experimente

Wettrunden streichen

- Letzte Wettrunde streichen
- Kaum Auswirkung auf pre-Flop Spiel
- vgl. Selby
- Erste Wettrunde streichen
- Informationen in post-Flop Modell hinüber nehmen ABER nicht alle
- Wettsequenz JA, Kartenverteilung nur als Wahrscheinlichkeit

Post-Flop Modelle

Bucketing

- Idee: K♥A♥ ~ K♣A♣ Äquivalenzklassen
- Mit 3 Wettrunden nur 6 "Buckets"
- Glücksknoten überführen von einem in den anderen Bucket

Lösung mit Linearem Programm

Resultate

Gegen Profi nicht "untergegangen"

Fehlt: Opponent Modelling

Links / Literatur

• Selby:

www.archduke.demon.co.uk/simplex/art

PsOpti / Poki:

www.cs.ualberta.ca/~games/poker www.cs.ualberta.ca/~darse/Papers/AIJ02.pdf www.cs.ualberta.ca/~darse/Papers/IJCAI03.pdf www.cs.ualberta.ca/~darse/Papers/ICAI00.pdf

 Online Poker: games.cs.ualberta.ca/webgames/poker/downloads/PokiPoker.zip