Problemas del Tema 2

- 1.- Considera el hiperboloide de una hoja $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}.$
 - (a) Comprueba que es una superficie regular.
 - (b) Prueba que $H = \left\{ G_{L\theta} \begin{pmatrix} \cosh t \\ 0 \\ \sinh t \end{pmatrix} : L \equiv Oz, \theta, t \in \mathbb{R}, G_{L\theta} \text{ giro alrededor de } L \text{ con ángulo } \theta \right\},$ es decir, que H se obtiene aplicando todos los giros de eje L a la rama de la hipérbola $x^2 z^2 = 1, y = 0, x > 0$ (por eso se llama hiperboloide).
 - (c) Prueba que $\bar{\mathbf{x}}(u,v) = (\cosh u \cos v, \cosh u \sin, \sinh u), (u,v) \in \mathbb{R} \times]0, 2\pi[$, es una parametrización local. Describe $\bar{\mathbf{x}}(\mathbb{R} \times]0, 2\pi[$)
- 2.- Sea el hiperboloide de dos hojas $\widetilde{H}=\left\{(x,y,z)\in\mathbb{R}^3\ :\ x^2+y^2-z^2=-1\right\}.$
 - (a) Comprueba que es una superficie regular con dos componentes conexas.
 - (b) Prueba que la componente conexa de \widetilde{H} que contiene a (0,0,1), \widetilde{H}_+ , cumple

$$\widetilde{H}_{+} = \left\{ G_{L\theta} \begin{pmatrix} \operatorname{senh} t \\ 0 \\ \cosh t \end{pmatrix} : L \equiv Oz, \theta, t \in \mathbb{R}, G_{L\theta} \text{ giro alrededor de } L \text{ con ángulo } \theta \right\}, \text{ es decir,}$$

que \widetilde{H} se obtiene aplicando todos los giros de eje L a rama de la hipérbola $x^2 - z^2 = -1$, y = 0, z > 0 (por eso se llama hiperboloide) ¿Qué podemos decir de la componente conexa de \widetilde{H} que contiene a (0,0,-1)?

- (c) Prueba que $\bar{\mathbf{x}}(u,v) = (\operatorname{senh} u \cos v, \operatorname{senh} u \operatorname{sen}, \cosh u), (u,v) \in \mathbb{R}_+ \times]0, 2\pi[$, es una parametrización local. Describe $\bar{\mathbf{x}}(\mathbb{R}_+ \times]0, 2\pi[$)
- 3.- Considera

$$E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + y^2 + z^2 = 1\},$$
 (elipsoide),

$$C = \left\{ (x,y,z) \in \mathbb{R}^3 \ : \ x^2 + y^2 = 1 \right\}, \quad \text{(cilindro sobre } x^2 + y^2 = 1 \text{ en el plano } z = 0 \text{)}.$$

$$\widetilde{C} = \{(x, y, z) \in \mathbb{R}^3 : y = x^3\},$$
 (cilindro sobre $y = x^3$ en el plano $z = 0$).

Comprueba que $E,\,C$ y \widetilde{C} son superficies regulares del espacio euclídeo.

4.- Considera

$$T = \{(x, y, z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}, \text{ (toro)},$$

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x - 1)^2 + y^2 - z^2 = 0, z > 0\},$$
 (cono superior menos el vértice).

Comprueba que T y V son superficies regulares del espacio euclídeo.

- **5.-** Prueba que $S = \{(x, y, z) \in \mathbb{R}^3 : x^4 = x^2 y^2\}$ no es una superficie regular.
- **6.-** Sea S una superficie regular y $\bar{\mathbf{x}}: U \subset \mathbb{R}^2 \longrightarrow S$ una parametrización local suya. Si $f: U \longrightarrow \mathbb{R}$ es una función diferenciable, prueba que $f \circ \bar{\mathbf{x}}^{-1}: \bar{\mathbf{x}}(U) \longrightarrow \mathbb{R}$ es diferenciable. ¿Es toda función diferenciable de $\bar{\mathbf{x}}(U)$ en \mathbb{R} de este tipo?
- 7.- Si S es una superficie regular, demuestra que para cada $p \in S$ existe un entorno abierto V de p en \mathbb{R}^3 y una función diferenciable $F: V \to \mathbb{R}$ de manera que $V \cap S = F^{-1}(a)$, siendo a un valor regular de F.
- 8.- Considera $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \cosh^2 z = 0\}$, (catenoide). Se pide:
 - (a) Comprueba que es una superficie regular.
 - (b) Prueba que $C = \left\{ G_{L\theta} \begin{pmatrix} \cosh z \\ 0 \\ z \end{pmatrix} : L \equiv Oz, \theta, z \in \mathbb{R}, G_{L\theta}$ giro alrededor de L con ángulo $\theta \right\}$, es decir, que C se obtiene aplicando todos los giros de eje L a la catenaria $x = \cosh z, y = 0$ (por eso se llama catenoide).
 - (c) Encuentra un difeomorfismo no trivial de C en si mismo.
 - (d) Demuestra que C es difeomorfa al hiperboloide $H=\left\{(x,y,z)\in\mathbb{R}^3\ :\ x^2+y^2-z^2=1\right\}$
 - (e) Halla la ecuación implícita, respecto a la base usual de \mathbb{R}^3 , de cualquier plano tangente T_pC , $p=(x,y,z)\in C$. Para $p_0=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)\in C$ encuentra una parametrización local $\bar{\mathbf{x}}:U\to C$ de manera que $p_0=\bar{\mathbf{x}}(u_0,v_0)\in\bar{\mathbf{x}}(U)$. Calcula las coordenadas en la base $B_{(u_0,v_0)}^{\bar{\mathbf{x}}}=\left(\frac{\partial \bar{\mathbf{x}}}{\partial u}(u_0,v_0),\frac{\partial \bar{\mathbf{x}}}{\partial v}(u_0,v_0)\right)$ de $w=(1,-1,1)\in T_{p_0}C$.
- 9.- Considera $S = \{(x, y, z) \in \mathbb{R}^3 : x \operatorname{sen} z = y \cos z\}$ (helicoide). Se pide:
 - (a) Comprueba que es una superficie regular.
 - (b) Prueba que $\bar{\mathbf{x}}(u,v) = (v\cos u, v\sin u, u), (u,v) \in \mathbb{R}^2$, es una parametrización global de S.
 - (c) Considera la hélice $\alpha(u) = (\cos u, \sin u, u)$ y comprueba que el helicoide S consiste en todos los puntos de las rectas de \mathbb{R}^3 determinadas por los puntos $\alpha(u)$ y (0, 0, u).
 - (d) Para cada $\theta \in \mathbb{R}$, consideramos $F_{\theta} : \mathbb{R}^{3} \to \mathbb{R}^{3}$ dada por $F_{\theta} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = G_{L\theta} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \theta \end{pmatrix}$. Comprueba que F_{θ} induce un difeomorfismo de S en si misma.
 - (e) Halla la ecuación implícita, respecto a la base usual de \mathbb{R}^3 , de cualquier plano tangente $T_pS,\ p=(x,y,z)\in S$. Para $p_0=(1,1,\frac{\pi}{4})\in S$, con respecto a la parametrización global $\bar{\mathbf{x}}$ anterior. Calcula las coordenadas en la base $B^{\bar{\mathbf{x}}}_{(\frac{\pi}{4},\sqrt{2})}$ de $w=(2,0,-1)\in T_{p_0}S$.
- 10.- Considera una superficie regular S. Sea $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}$ una forma lineal. Prueba que la restricción f de φ^2 a S es diferenciable. ¿Quién es f cuando $\varphi(x) = \langle x, v \rangle$ para un $v \in \mathbb{R}^3$, |v| = 1, fijo?

- **11.-** Prueba que la superficie $S_1 = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}$, (paraboloide elíptico), es difeomorfa con la superficie $S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}$ (paraboloide hiperbólico).
- 12.- Dado $v=(2,3,0)\in T_{(0,0,1)}\mathbb{S}^2$, calcula las coordenadas de v en la base de $T_{(0,0,1)}\mathbb{S}^2$ canónicamente obtenida a partir de la parametrización local $\bar{\mathbf{x}}:D\subset\mathbb{R}^2\longrightarrow\mathbb{S}^2$, donde D es el disco abierto de centro el origen y radio 1 de \mathbb{R}^2 , dada por $\bar{\mathbf{x}}(u,v)=(u,v,\sqrt{1-u^2-v^2})$ (nótese que identificando, como es usual, el plano z=0 con \mathbb{R}^2 , $\bar{\mathbf{x}}$ es la inversa de la restricción a $\mathbb{S}^2_{3+}=\{(x,y,z)\in\mathbb{S}^2:z>0\}$ de la proyección de \mathbb{R}^3 sobre el plano z=0).
- **13.-** Construye un difeomorfismo entre la superficie $V=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2-z^2=0,\ z>0\}$ y el abierto $C_1=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1,\ z>0\}$ del cilindro.
- **14.-** Si \mathbb{S}^2 es la esfera de centro (0,0,0) y radio 1, comprueba que la aplicación ea $F: \mathbb{S}^2 \longrightarrow \mathbb{S}^2$ dada por F(x,y,z)=(x,y,-z) es un difeomorfismo de \mathbb{S}^2 . Interprétalo geométricamente. Calcula $(dF)_{(0,0,1)}$ y $(dF)_{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\right)}$.
- **15.-** Considera el cilindro $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$. Prueba que la aplicación $F : \mathbb{R}^2 \longrightarrow C$ definida por $F(u, v) = (\cos u, \sin u, v)$ es diferenciable, sobreyectiva y cumple que su diferencial es biyectiva en todo punto, pero F no es inyectiva.
- **16.-** Sean S y \tilde{S} superficies regulares, S compacta y \tilde{S} conexa. Supongamos que $F: S \longrightarrow \tilde{S}$ es una aplicación diferenciable inyectiva con $(dF)_p$ biyectiva para todo $p \in S$. Prueba que F es un difeomorfismo.
- 17.- Sea $\mathbb{S}^2_1(0,0,1)$ la esfera de centro (0,0,1) y radio 1. Considera la función altura $h_v: \mathbb{S}^2_1(0,0,1) \longrightarrow \mathbb{R}, h_v(x) = \langle x,v \rangle$, donde v = (0,0,1). Calcula $(dh_v)_x$ en todo $x \in \mathbb{S}^2_1(0,0,1)$. Prueba que $(dh_v)_x = 0$ si y sólo si o bien x = (0,0,2), o bien x = (0,0,0). Interprétalo geométricamente.
- 18.- Sea \mathbb{S}^2 la esfera de centro el origen y radio 1. Para $x_0 \notin \mathbb{S}^2$ considera la función "cuadrado de la distancia a x_0 " $f_{x_0}(x) = |x x_0|^2$. Calcula $(df_{x_0})_x$ en todo $x \in \mathbb{S}^2$. Prueba que $(df_{x_0})_x = 0$ si y sólo si $x x_0$ es ortogonal a $T_x(\mathbb{S}^2)$. Interprétalo geométricamente.
- 19.- Sean S y \tilde{S} superficies regulares, S conexa, y sea $F: S \longrightarrow \tilde{S}$ una aplicación diferenciable. Supongamos que $dF_p = 0$ para todo $p \in S$. Prueba entonces que F es constante.