

=> d his ful

(FILE 'HOME' ENTERED AT 15:38:27 ON 13 DEC 2004)

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, BABS, BIOBUSINESS, BIOCOMMERCE, BIOENG, BIOSIS, BIOTECHNO, CANCERLIT, CAPLUS, CBNB, CEN, CIN, CONFSCI, DDFB, DDFU, DGENE, DIogenes, DISSABS, DRUGB, DRUGMONOG2, DRUGU, EMBAL, EMBASE, ESBIOBASE, FEDRIP, IFIPAT, IMSDRUGNEWS, .' ENTERED AT 15:38:51 ON 13 DEC 2004

SEA ZINC (5A) (ANTIOXID? OR ANTIINFLAMM? OR ANTI INFLAMM? OR CE

16 FILE ADISCTI
1 FILE ADISNEWS
18 FILE BABS
23 FILE BIOBUSINESS
3 FILE BIOCOMMERCE
8 FILE BIOENG
1397 FILE BIOSIS
139 FILE BIOTECHNO
183 FILE CANCERLIT
2948 FILE CAPLUS
17 FILE CBNB
7 FILE CIN
42 FILE CONFSCI
32 FILE DDFB
64 FILE DDFU
600 FILE DGENE
17 FILE DIogenes
76 FILE DISSABS
32 FILE DRUGB
86 FILE DRUGU
16 FILE EMBAL
901 FILE EMBASE
397 FILE ESBIOBASE
31 FILE FEDRIP
183 FILE IFIPAT
1 FILE IMSDRUGNEWS
3 FILE IMSPRODUCT
1 FILE IMSRESEARCH
34 FILE INVESTEXT
35 FILE IPA
71 FILE JICST-EPLUS
5 FILE KOSMET
235 FILE LIFESCI
849 FILE MEDLINE
12 FILE NUTRACEUT
459 FILE PASCAL
3 FILE PHAR
2 FILE PHARMAML
14 FILE PHIN
347 FILE PROMT
4 FILE PROUSDDR
8 FILE RDISCLOSURE
976 FILE SCISEARCH
791 FILE TOXCENTER
2834 FILE USPATFULL
230 FILE USPAT2
7 FILE ABI-INFORM
6 FILE AQUALINE
13 FILE AQUASCI
34 FILE ENERGY
2 FILE ENVIROENG
126 FILE FROSTI

7 FILE HEALSAFE
2 FILE HSDB
8 FILE INIS
25 FILE MSDS-CCOHS
32 FILE MSDS-OHS
22 FILE NIOSHTIC
159 FILE NLDB
11 FILE NTIS
10 FILE POLLUAB
4 FILE WATER
L1 QUE ZINC (5A) (ANTIOXID? OR ANTIINFLAMM? OR ANTI INFLAMM? OR
CELL? STIMUL? OR GROWTH PROMOT? OR IMMUN?)

SEA L1 AND (CARNOSIN OR CARNOSINE OR ACETYLCARNOSIN OR ACETYLCA

6 FILE BIOSIS
1 FILE BIOTECHNO
9 FILE CAPLUS
3 FILE DDFU
3 FILE DRUGU
2 FILE EMBASE
1 FILE IFIPAT
1 FILE JICST-EPLUS
1 FILE LIFESCI
3 FILE MEDLINE
1 FILE NUTRACEUT
1 FILE PASCAL
1 FILE PROMT
3 FILE SCISEARCH
2 FILE TOXCENTER
5 FILE USPATFULL
1 FILE ENERGY
1 FILE NLDB

L2 QUE L1 AND (CARNOSIN OR CARNOSINE OR ACETYLCARNOSIN OR
ACETYLCARNOSINE)

FILE 'BIOSIS, CAPLUS, DRUGU, EMBASE, LIFESCI, MEDLINE, SCISEARCH,
TOXCENTER' ENTERED AT 15:52:05 ON 13 DEC 2004

L3 29 SEA L2
L4 16 DUP REM L3 (13 DUPLICATES REMOVED)
D 1- BIB,ABS
D 6 IALL

L4 ANSWER 6 OF 16 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1999:699070 CAPLUS
DOCUMENT NUMBER: 131:327337
ENTRY DATE: Entered STN: 02 Nov 1999
TITLE: Cosmetics containing zinc L-carnosine
INVENTOR(S): Takaya, Masahiro; Nishimura, Yasuhiro
PATENT ASSIGNEE(S): Hamari Yakuhan Kogyo K. K., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
INT. PATENT CLASSIF.:
MAIN: A61K007-42
SECONDARY: A61K007-00; A61K007-48
CLASSIFICATION: 62-4 (Essential Oils and Cosmetics)
Section cross-reference(s): 63
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11302145	A2	19991102	JP 1998-122968	19980416
PRIORITY APPLN. INFO.:			JP 1998-122968	19980416

PATENT CLASSIFICATION CODES:

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
JP 11302145	ICM	A61K007-42
	ICS	A61K007-00; A61K007-48

ABSTRACT:

Cosmetics which block UV light, thereby prevent UV ray-causing inflammation, comprise 0.1-5 % L-carnosine Zn complex. An ointment contained Zn L-***carnosine*** 1, polyoxyethylene oleyl ether 5, and white vaseline/paraffin oil mixture (8:2) 94 parts.

SUPPL. TERM: sunscreen antiinflammatory zinc carnosine
INDEX TERM: Drug delivery systems
(ointments; topical compns. containing UV ray-blocking zinc L-carnosine)
INDEX TERM: Anti-inflammatory agents
Cosmetics
Sunscreens
(topical compns. containing UV ray-blocking zinc L-carnosine)
INDEX TERM: 107667-60-7, Zinc L-carnosine
ROLE: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(topical compns. containing UV ray-blocking zinc L-carnosine)

>=

L4 ANSWER 5 OF 16 DRUGU COPYRIGHT 2004 THE THOMSON CORP on STN
AN 2000-30949 DRUGU P
TI The **antioxidant** properties of **zinc**.
AU Powell S R
CS Univ.Winthrop
LO Mineola, N.Y., USA
SO J.Nutr. (130, No. 5, Suppl., 1447S-1454S, 2000) 4 Fig. 5 Tab. 117 Ref.
CODEN: JONUAI ISSN: 0022-3166
AV Department of Obstetrics-Gynecology, Winthrop University Hospital,
Mineola, NY 11501, U.S.A.
LA English
DT Journal
FA AB; LA; CT
FS Literature
AN 2000-30949 DRUGU P
AB The **antioxidant** properties of **zinc** are reviewed.
Acute and chronic mechanisms of **zinc antioxidantation**
are discussed. Effects of acute and chronic zinc deficiency are
described. Zinc acts by specific mechanisms such as stabilizing
sulfhydryls and antagonizing redox-active transition metals.
Cardioprotective and postischemic injury effects of zinc are tabulated.
The basic mechanism by which **zinc** exerts its
antioxidant properties may be used as intervention not only to
ischemic damage, but also in other forms of oxidative injury. (conference
paper: Workshop on Zinc and Health: Current Status and Future Directions,
Bethesda, Maryland, USA, 1998).
ABEX Chronic exposure of an organism to zinc results in the induction of
another substance that is the ultimate antioxidant. Acute effects involve
2 mechanisms: the protection of protein sulfhydryls; and the reduction in
the formation of OH from H₂O₂ (through antagonism of redox-active
transition metals, such as iron and copper). Chronic zinc deprivation
results in increased sensitivity to oxidative stress. The earliest
reports to demonstrate possible **antioxidant** effects of
zinc on oxidative tissue damage were related to
catecholamine-induced myocardial injury. Zinc has an inhibitory effect
on isoproterenol-induced cardiac oxidative injury (both in-vivo and
in-vitro). Zinc bishistidinate is cardioprotective in several in vitro
and in vivo models of cardiac ischemic injury. Cardioprotective effects
include decreasing catecholamine-induced injury, decreasing reperfusion
arrhythmias and increasing postischemic function. Zinc-**carnosine**
decreases lipid peroxidation and postischemic erosion in the stomach;
zinc-histidinate increases postischemic function of the kidneys;
zinc-aspartate decreases postischemic injury in the intestines;
zinc-protoporphyrin and zinc chloride both decrease infarct size, edema
formation, nuclear damage and neuronal death in the brain; whilst
zinc-deferoxamine increases electroretinography function. (CE/JJS)