Tema 1, 1 noiembrie 2019

Termen de predare: 8 noiembrie 2019, 12:00-14:00 în C210

- Tema poate fi rezolvată în echipe de câte doi studenți.
- Pentru soluții redactate în LaTeX se oferă un bonus de 1 punct.
- Soluțiile identice sau copiate conduc la anularea punctajelor.
- Soluţiile trebuie să conţină numele celui/celor care au redactat-o şi vor fi transmise pe hârtie, nu prin e-mail.
- Nu rescrieți enunțurile! Nu este nevoie de mai mult de 1-2 pagini pentru fiecare dintre probleme.
- ORICE SOLUȚIE COPIATĂ A UNEIA DINTRE PROBLEMELE DE MAI JOS VA FI PENALIZATĂ CU 2 PUNCTE.
- 1. Se consideră rețeaua stradală a unui oraș care este conexă din orice intersecție se poate ajunge în orice altă intersecție (pe toate străzile se poate circula în ambele sensuri).
 - (a) Primăria orașului dorește să transforme fiecare stradă într-un sens unic așa încât rețeaua stradală să rămână conexă din orice intersecție să se poată ajunge în orice altă intersecție. Arătați că acest lucru e posibil dacă și numai dacă prin blocarea oricărei străzi rețeaua stradală nu se deconectează.
- (b) Descrieți un algoritm care să întreprindă o astfel de transformare dacă este posibilă. Care este complexitatea sa timp?

$$(2+2=4 \text{ puncte})$$

- **2.** Fie G = (V, E) un graf conex și $u, v \in V$ două noduri distincte ale lui G. O submulțime de noduri X se numește uv-separatoare minimală dacă u și v se află în componente conexe diferite ale lui G X, dar pentru orice $X' \subsetneq X$, u și v sunt în aceeași componentă a lui G X'.
 - (a) Dovediți că $X \subseteq V$ este muțime uv-separatoare minimală dacă și numai dacă u și v se află în componente diferite ale lui G X, iar orice nod din X are vecini în ambele aceste componente.
 - (b) Dacă X_1 şi X_2 sunt două mulțimi uv-separatoare minimale din G astfel încât X_1 intersectează cel puțin două componente din $G X_2$, atunci X_1 intersectează componentele lui $G X_2$ care conțin pe u și v.

$$(2+2=4 \text{ puncte})$$

3. Fie G = (V, E) un graf cu n noduri și m muchii. Considerăm următorul algoritm: $G' \leftarrow G$; while $(\exists u \in V(G')$ a. î. $d_{G'}(u) < m/n)$ do

$$G' \leftarrow G' - u;$$

return $G';$

- (a) Determinați complexitatea timp a unei implementări eficiente a acestui algoritm.
- (b) Arătați că graful returnat, G', este nenul (are și noduri, dar și muchii).
- (c) Arătați că orice graf conține un drum de lungime cel puțin m/n.

$$(2+1+1=4 \text{ puncte})$$

- **4.** Fie G=(V,E) un digraf, $a:E\to\mathbb{R}_+$ o funcție de cost pe arcele sale și $x_0\in V$ un nod din care toate celelate noduri ale lui G sunt accesibile. Un **SP-arbore** pentru tripleta (G,a,x_0) este un arbore cu rădăcină al lui G, T=(V,E'), așa încât costul (cu aceeași funcție a) drumului de la x_0 la u în T este costul minim al unui drum de la x_0 la u în G, pentru orice $u\in V$.
 - (a) Arătați că un astfel de SP-arbore există întotdeauna.
 - (b) Descrieți un algoritm care să determine un SP-arbore.

$$(2+1=3 \text{ puncte})$$

Tema 2, 15 noiembrie 2019

Termen de predare: 22 noiembrie 2019, 10:00-11:00 în C210

- Tema poate fi rezolvată în echipe de câte doi studenți.
- Pentru soluții redactate în LaTeX se oferă un bonus de 1 punct.
- Soluțiile identice sau copiate conduc la anularea punctajelor.
- Soluţiile trebuie să conţină numele celui/celor care au redactat-o şi vor fi transmise pe hârtie, nu prin e-mail.
- Nu rescrieți enunțurile! Nu este nevoie de mai mult de 1-2 pagini pentru fiecare dintre probleme.
- ORICE SOLUȚIE COPIATĂ A UNEIA DINTRE PROBLEMELE DE MAI JOS VA FI PENALIZATĂ CU 2 PUNCTE.
- **1.** Fie G = (V, E) un graf conex şi $c : E \to \mathbb{R}$ o funcţie de cost pe muchiile sale. Adevărat sau fals? (Justificaţi răspunsurile!)
 - (a) Orice muchie de cost minim din G este conţinută într-un anume arbore parțial de cost c minim din G.
 - (b) Dacă G are un circuit, C, a cărui muchie de cost minim este unică pe C, atunci acea muchie este conținută în orice arbore parțial de cost c minim din G.
 - (c) Dacă o muchie este conținută într-un arbore parțial de cost c minim din G, atunci acea muchie este de cost minim într-o anumită tăietură a lui G.

$$(1+1+1=3 \text{ puncte})$$

- **2.** Fie G = (V, E) un graf conex şi $c : E \to \mathbb{R}$ o funcţie de cost pe muchiile sale. Fie T^* un arbore parţial de cost c minim al lui G. Spunem că un subgraf conex H al lui G este c-extensibil dacă $T_H^* = [E(H) \cap E(T^*)]_G$ este un arbore.
 - (a) Arătați că dacă H este c-extensibil, atunci T_H^* este un arbore parțial de cost c minim al lui H.
 - (b) Fie H un subgraf c-extensibil al lui G și G_H graful obținut din G prin contractarea una câte una a tuturor muchiilor lui H și menținerea muchiilor multiple formate noi formate, i. e.,

$$V(G_H) = (V \setminus V(H)) \cup \{x_H\}, E(G_H) = \{uv \in E : u, v \notin V(H)\} \cup \{ux_H : uv \in E, u \notin V(H) \ni v\},$$
 unde $c(ux_H) = c(uv)$.

Arătați că asamblând un arbore parțial de cost minim al lui H (T_H^*) cu un arbore parțial de cost minim al lui G_H obținem un arbore parțial de cost minim al lui G.

$$(1+2=3 \text{ puncte})$$

3. Fie G = (S, T; E) un graf bipartit. Arătați că următoarele afirmații sunt echivalente:

- (i) G nu este nul şi $G \{x, y\}$ are un **cuplaj perfect**¹, $\forall x \in S, \forall y \in T$.
- (ii) G este conex și orice muchie a lui G aparține unui cuplaj perfect.

(iii) G nu este nul,
$$|S| = |T|$$
 şi $\emptyset \neq A \subsetneq S$, $|N_G(A)| > |A|$. (1+1+1 = 3 puncte)

4. Fie G=(V,E) un graf p-regulat bipartit. Considerăm următorul algoritm: for $(e \in E)$ do $a(e) \leftarrow 1$; $E^+ \leftarrow \{e \in E : a(e) > 0\}$; while $(G^+ = (V, E^+))$ conține un circuit C) do fie $C = M_1 \cup M_2$, unde M_1 și M_2 sunt cuplaje cu $a(M_1) \geqslant a(M_2)$; // pentru orice $F \subseteq E$, $a(F) = \sum_{e \in F} a(e)$; for $(e \in E(C))$ do if $(e \in M_1)$ then a(e) + +; else a(e) - -; $E^+ \leftarrow \{e \in E : a(e) > 0\}$; return E^+ ; Fie $f(E^+) = \sum_{e \in E^+} a^2(e)$. Arătați că

- (a) după fiecare iterație while $f(E^+)$ este un număr întreg care crește cu cel puțin |C| față de valoarea anterioară;
- (b) după fiecare iterație **while**, pentru orice nod $u \in V$, $\sum_{uv \in F^+} a(uv) = p$;
- (c) cât timp există muchii e cu 0 < a(e) < p, algoritmul continuă; la final a(e) = p, $\forall e \in E^+$ și în E^+ se găsesc muchiile unui cuplaj perfect al lui G;
- (d) numărul de iterații **while** este finit, la final $f(E^+) = np^2/2 = pm$, iar suma lungimilor tuturor circuitelor procesate este cel mult pm;
- (e) un circuit poate fi găsit în complexitatea timp $\mathcal{O}(|C|)$ folosind o parcurgere dfs;
- (f) complexitate timp a algoritmului în ansamblu este $\mathcal{O}(pm)$.

$$(1+1+1+1+1+1=6)$$
 puncte

 $^{^{1}}$ Un **cuplaj perfect** este un cuplaj care saturează toate nodurile lui G.

Tema 3, 20 decembrie 2019

Termen de predare: 10 ianuarie 2020, 12:00-14:00 în C210

- Tema poate fi rezolvată în echipe de câte doi studenți.
- Pentru soluții redactate în LaTeX se oferă un bonus de 1 punct.
- Soluțiile identice sau copiate conduc la anularea punctajelor.
- Soluţiile trebuie să conţină numele celui/celor care au redactat-o şi vor fi transmise pe hârtie, nu prin e-mail.
- Nu rescrieți enunțurile! Nu este nevoie de mai mult de 1-2 pagini pentru fiecare dintre probleme.
- ORICE SOLUȚIE COPIATĂ A UNEIA DINTRE PROBLEMELE DE MAI JOS VA FI PENALIZATĂ CU 2 PUNCTE.
- 1. Fie G = (V, E) un digraf, $c : E \to \mathbb{R}_+$ şi $X, Y \subseteq V$ două submulțimi disjuncte de noduri din G. Avem două funcții $\sigma : X \to \mathbb{R}_+$ (oferta) şi $\theta : Y \to \mathbb{R}_+$ (cererea). R = (G, X, Y, c) este o **e-rețea**; o funcție $x : E \to \mathbb{R}$ este un **e-flux fezabil** în **e-rețeaua** R = (G, X, Y, c) dacă

$$0 \leqslant x_{ij} \leqslant c_{ij}, \forall ij \in E,$$

$$\sum_{j} x_{ij} = \sum_{j} x_{ji}, \forall i \in V \setminus (X \cup Y),$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} \leqslant \sigma_{i}, \forall i \in X$$

$$\sum_{j} x_{ji} - \sum_{j} x_{ij} \geqslant \theta_{i}, \forall i \in Y$$

Presupunem că cererea totală este cel mult egală cu oferta totală, i. e., $\sigma = \sum_{i \in X} \sigma_i \geqslant \sum_{j \in Y} \theta_j = \theta$.

Arătați că există un e-flux fezabil în R dacă și numai dacă pentru orice $S,T\subseteq V$ astfel ca $S\cup T=V$ și $S\cap T=\varnothing$, avem

$$\sum_{i \in S, j \in T} c_{ij} \geqslant \sum_{j \in Y \cap T} \theta_j - \sum_{i \in X \cap T} \sigma_i.$$

(4 puncte)

2. La Departamentul de Informatică există p studenți ($S = \{S_1, S_2, \ldots, S_p\}$) care doresc să absolve cu o diplomă de licență și k profesori ($P = \{P_1, P_2, \ldots, P_k\}$). Lucrările de licență ale studenților sunt evaluate de echipe formate din câte r profesori.

Pentru subiectul unei lucrări de licență un profesor poate specializat sau nu; se cunoaște mulțimea, $\mathcal{P}_i \subsetneq \mathcal{P} \ (\mathcal{P}_i \neq \varnothing)$, a profesorilor competenți în a judeca lucrarea de licență a studentului S_i , pentru orice i. Fiecare profesor P_l poate participa în cel mult n_l astfel de echipe de evaluare.

Fiecare student trebuie să-și prezinte lucrarea unei echipe de $r \leq k$ profesori, $a \leq r$ fiind specializați în proiectul respectiv, iar (r-a) nu.

- (a) Descrieți un model cu o rețea de transport pentru a organiza ca mai sus echipele de evaluare formate din profesori (fiecare profesor trebuie asignat unei mulțimi de lucrări de licență).
- (b) Caracterizați existența unei soluții pentru această problemă în termenii existenței unui anumit flux maxim în rețeaua de mai sus. (Caracterizarea trebuie demonstrată!)
- (c) Care este complexitatea timp necesară pentru a decide dacă există soluții?

$$(1+1+1=3 \text{ puncte})$$

3. Considerăm următoarea problemă de decizie:

3AN

Instanță: G = (V, E) un graf cu $\Delta(G) \leq 3$ și $k \in \mathbb{N}^*$.

Întrebare: Există $U \subseteq V$, $|U| \le k$ a. î. $\{u, v\} \cap U \ne \emptyset$, $\forall uv \in E$?

Considerăm și o instanță a problemei **3SAT**: $X = \{x_1, x_2, \dots, x_n\}$ o mulțime de variabile booleene, $C = C_1 \wedge C_2 \dots \wedge C_m$ o mulțime de clauze disjunctive peste X, fiecare clauză având exact trei literali: $C_j = v_{j_1} \vee v_{j_2} \vee v_{j_3}, \forall j = \overline{1, m}$.

Fie k_i numărul de apariții ale lui x_i (ca literal pozitiv sau negativ) în \mathcal{C} (indexăm aceste apariții: prima, a doua etc). Definim următoarele grafuri și mulțimi de muchii disjuncte:

- (1) un circuit de lungime $2k_i$, $G_i = (V_i, E_i)$, pentru fiecare variabilă booleană x_i , unde $V_i = \{a_{i,1}, f_{i,1}, a_{i,2}, f_{i,2}, \dots, a_{i,k_i}, f_{i,k_i}\}$ and $E_i = \{a_{i,h}f_{i,h}, f_{i,h}a_{i,h+1} : 1 \leq h \leq k_i\}$ (notație modulo $2k_i$);
- (2) un graf $H_j = (W_j, E(H_j)) \cong K_3$, pentru fiecare clauză C_j , unde $W_j = \{w_{j,1}, w_{j,2}, w_{j,3}\}$;
- (3) $A = \{a_{i,l}w_{j,k} : \text{dacă } v_{j_k} = x_i \text{ este a } l\text{-a apariție a lui } x_i \text{ în } C_j\};$
- (4) $F = \{f_{i,l}w_{j,k} : \operatorname{dac} v_{j_k} = \overline{x}_i \text{ este a } l\text{-a apariţie a lui } x_i \text{ în } C_j\};$

La final definim graful G = (V, E):

$$V = \left(\bigcup_{i=1}^{n} V_i\right) \cup \left(\bigcup_{j=1}^{m} W_j\right), E = \left(\bigcup_{i=1}^{n} E_i\right) \cup \left(\bigcup_{j=1}^{m} E(H_j)\right) \cup A \cup F.$$

Dovediți că **3SAT** se poate reduce în timp polinomial la **3AN** (cu instanța G de mai sus și k=5m) arătând că

- (a) există doar două mulțimi de noduri de cardinal minim care acoperă muchiile lui G_i , cardinalul acestora fiind k_i , anume: $\{a_{i,1}, a_{i,2}, \dots, a_{i,k_i}\}$ and $\{f_{i,1}, f_{i,2}, \dots, f_{i,k_i}\}$.
- (b) Dacă U acoperă muchiile lui G și |U| = 5m, atunci
 - (b1) $|U \cap W_j| \geqslant 2, \forall j = \overline{1, m};$

(b2)
$$\left| U \cap \left(\bigcup_{i=1}^{n} V_i \right) \right| \geqslant 3m;$$

- (b3) $|U \cap W_i| = 2, \forall j = \overline{1, m} \text{ si } |U \cap V_i| = k_i, \forall i = \overline{1, n}.$
- (b4) următoarea funcție de adevăr satisface toate clauzele din C: pentru orice $i, t(x_i) = true$ dacă și numai dacă $U \cap V_i = \{a_{i,1}, a_{i,2}, \dots, a_{i,k_i}\}.$
- (c) Presupunem că $t: X \to \{true, false\}$ este o funcție de adevăr care satisface toate clauzele din C. Construim U astfel:

- pentru fiecare variabilă booleană x_i cu $t(x_i) = true$ adăugăm la U mulțimea $\{a_{i,1}, a_{i,2}, \dots, a_{i,k_i}\}$;
- pentru fiecare variabilă booleană x_i cu $t(x_i) = false$ adăugăm la U mulțimea $\{f_{i,1}, f_{i,2}, \dots, f_{i,k_i}\}$;
- pentru fiecare clauză C_j adăugăm la U toate nodurile din W_j mai puțin unul care corespunde unui literal adevărat în C_j .

Arătați că U are proprietatea cerută și că |U| = 5m.

$$(1 + (1 + 1 + 1 + 1) + 1 = 6$$
puncte)

4.

- (a) Arătați că orice graf G are o $\chi(G)$ -colorare în care cel puțin una din clasele de colorare este o mulțime stabilă maximală.
- (b) Fie G = (V, E) un graf și $x, y \in V$ două noduri neadiacente $(xy \notin E)$. Arătați că

$$\chi(G) = \min \{ \chi(G + xy), \chi(G|xy) \},\$$

unde G|xy este rezultatul operației de contracție a perechii (x,y) în G.

$$(1+1=2 \text{ puncte})$$