13 February 2025 10:19

A Binomial Tree B_k is an ordered tree defined recursively, where k represents the order of the binomial tree.

- $oldsymbol{arphi}$ If the binomial tree is of order 0 (B_0), it consists of a single node.
- In general, a binomial tree of order k (B_k) consists of two binomial trees of order k-1 , where one is linked as the **left subtree** of the other.

A binomial heap is a collection of binomial trees that satisfies the following binomial heap properties:

- No two binomial trees in the collection have the same order.
- 3. Every binomial tree in the heap must follow the min-heap property, i.e., the value of a child node is greater than parent node.

To perform the union of two binomial heaps, we have to consider the below cases -

Case 1: If degree[x] is not equal to degree[next x], then move pointer ahead.

Case 2: if degree[x] = degree[next x] = degree[sibling(next x)] then,

Move the pointer ahead.

Case 3: If degree[x] = degree[next x] but not equal to degree[sibling[next x]]

and key[x] < key[next x] then remove [next x] from root and attached to x.

Case 4: If degree[x] = degree[next x] but not equal to degree[sibling[next x]]

and key[x] > key[next x] then remove x from root and attached to [next x].

 $deg(x)=0 \quad dg(Y)=0 \quad deg(Z)=1. \quad 0=0 \neq 1$ $leg(x)=12 \quad leg(y)=18 \quad leg(x) < leg(y). \quad \times - left=Y.$

 $J = J \neq 2$ kvy(x) = 7 kvy(y) = 3 kvy(x) > kvy(Y) $Y \longrightarrow lyf + = X$

2=2+4 key(x) < key(y) 3 4 1 Binomial heap Buchet Sort - Imp B-tru delettan