	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	/	1

Session 9. Mart Matrix Multiplication

228,1,8

$$\begin{bmatrix} 2 & 3 & 3 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ 1 & 1 & 2 \end{bmatrix}$$

知件来法

$$u_1 = 2x_1 + 3x_2 + 3x_3$$

$$u_2 = 2x_1 + 4x_2 + 5x_3$$

$$u_3 = x_1 + x_2 + 2x_3$$

width = hight

Readingsi

mxn matrix A, (a;i)

i-jentry, i now, j column aij

row-vectors: Ixn

column - vectors: 0 mx/

Memo No.		
Data	1	

Мо	Tu	We	Th	Fr	Sa	Su

four basic operations which produce new matrices from old.

1. Scalar Multiplication: cA=(caij)

2. Matrix addition: A+B=(a;j+bil), A and B must have same wideth and hight

3: transposition: man A > nxm A or A'

AT = (aj;)

Example:

$$\vec{A} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}, \vec{B} = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$$

$$\vec{A} + \vec{B} = \begin{pmatrix} 3 & 2 & 4 \\ -2 & 2 & 4 \end{pmatrix}, \vec{A}^{T} = \begin{pmatrix} 3 & 1 & 2 \\ -3 & 1 & 2 \end{pmatrix}$$

4. Matrix multiplication:
$$\vec{A} \cdot \vec{B} = \vec{C}$$

$$|Cu| = \vec{\Sigma} \cdot \alpha_{ik} b_{ki}|$$

 $Q_j = \sum_{k=1}^{n} \alpha_{ik} b_{kj}$

 \overrightarrow{A} 's columns same as \overrightarrow{B} 's rows. $c_{ij} = \alpha_i \cdot b_j$

$$C_{ij} - C_{i} \cdot P_{j}$$

Ex. (2.1-1)(4) = (-2+4-2) = (0) $\begin{pmatrix} 1\\ 2 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 5\\ 8 & 10 \end{pmatrix}$

	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	1	1

The second secon	
Lows and	tom pointles
DUV	proportions

$$\vec{A} \cdot \vec{I} = \vec{A} \cdot \vec{I} \cdot \vec{A} = \vec{A} (3x3)$$

Ex:
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$
, the second alumn

$$(100) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = (1 & 2 & 3)$$