Spider monkey optimization for traveling salesman problem

Antoni Zajko, Dawid Płudowski, Franciszek Szczepaniak, Kamil Kisiel, Maciej Szpetmański

Warsaw University of Technology

2023

Reprezentacja rozwiązania

- Rozwiązanie jest reprezentowane jako permutacja wierzchołków grafu.
- Permutacja swap sequence (SS) może być reprezentowana jako lista transpozycji - swap operation (SO)
- $\triangleright SS = (SO_1, SO_2, \dots, SO_k)$

Operatory

$$SS_1 + SS_2 = (SO_1^1, SO_2^1, \dots, SO_{k_1}^1) + (SO_1^2, SO_2^2, \dots, SO_{k_2}^2)$$

= $(SO_1^1, SO_2^1, \dots, SO_{k_1}^1, SO_1^2, SO_2^2, \dots, SO_{k_2}^2)$

Operatory

$$SS_1 - SS_2 = (SO_1, SO_2, \dots SO_k)$$

Gdzie:

$$SS_2 + (SO_1, SO_2, \dots SO_k) = SS_1$$

Operatory

$$U(0,1)SS_1 = U(0,1)(SO_1, SO_2, \dots SO_k)$$

= $(SO_{i_1}, SO_{i_2}, \dots SO_{i_s})$

Gdzie:

$$s \sim \textit{U}([1,k])$$
 $\emph{i}_1, \emph{i}_2, \ldots, \emph{i}_s$ — losowe indeksy z $[k], \emph{i}_1 < \emph{i}_2 < \cdots < \emph{i}_s$

Algorytm SM wysokopoziomowo

Inicjalizacja:

Zainicjalizuj populację małp Znajdź globalnego lidera populacji Utwórz grupę małp g_1 składającą się z całej populacji. Ustaw globalnego lidera grupy na lokalnego lidera.

Algorytm:

Dopóki kryterium stopu nie zostanie spełnione:

Faza lokalnego lidera

Faza globalnego lidera

Faza uczenia lokalnego lidera

Faza uczenia globalnego lidera

Faza decyzji lokalnego lidera

Faza decyzji globalnego lidera

Algorytm SM wysokopoziomowo

Hiperparametry algorytmu:

- ► G_{max} dozwolona maksymalna liczba grup
- p perturbation rate
- LC_{max} local leader limit
- ► GC_{max} global lider limit
- N rozmiar populacji

Algorytm SM wysokopoziomowo

Oznaczenia:

- f funkcja kosztu, która mapuje małpę reprezentującą cykl Hamiltona na jego koszt
- LL_g lokalny lider grupy g
- LC_g licznik lokalnego lidera grupy g
- ► GL globalny lider całej populacji
- ▶ GC licznik globalnego lidera
- ▶ G_c ilość grup

Faza lokalnego lidera

```
Dla każdej grupy małp g:
Dla każdej małpy m w grupie g:
Jeżeli U(0,1) \geqslant p:
m_r = \text{losowa małpa z } g
m_{new} = m + U(0,1)(LL_g - m) + U(0,1)(m_r - m)
Jeżeli f(m_{new}) \leqslant f(m) to:
m = m_{new}
```

Faza globalnego lidera

```
Dla każdej grupy małp g:

Dla każdej małpy m w grupie g:

p_m = 0.9 * \frac{f(GL)}{f(m)} + 0.1

Jeżeli U(0,1) \leqslant p_m to:

m_r = \text{losowa małpa z populacji}

m_{new} = m + U(0,1)(GL - m) + U(0,1)(m_r - m)

Jeżeli f(m_{new}) \leqslant f(m) to:

m = m_{new}
```

Faza uczenia lokalnego lidera

```
Dla każdej grupy małp g: LL_{g,new}= małpa w grupie posiadająca najmniejszą wartość f Jeżeli f(LL_{g,new})< f(LL_g) to: LL_g=LL_{g,new} LC_g=0 W przeciwnym przypadku: LC_g=LC_g+1
```

Faza uczenia globalnego lidera

```
GL_{new} = Lokalny lider o najmniejszym f Jeżeli f(GL_{new}) < f(GL):
GL = GL_{new}
GC = 0
W przeciwnym wypadku:
GC = GC + 1
```

Faza decyzji lokalnego lidera

```
Dla każdej grupy małp g:

Jeżeli LC_g > LC_{max}:

LC_g = 0

Dla każdej małpy m w g:

Jeżeli U(0,1) \geqslant p:

m = \text{losowe rozwiązanie}

W przeciwnym wypadku:

m = m + U(0,1)(GL - m) + U(0,1)(LL_g - m)
```

Faza decyzji globalnego lidera

```
Jeżeli GC > GC_{max}:

GC = 0

Jeżeli G_c < G_{max}:

Podziel losową grupę małp na 2 grupy

G_c = G_c + 1

W przeciwnym wypadku:

Złącz wszystkie grupy w jedną grupę

G_c = 1
```

Zalety

- Jeden z najlepszych algorytmów rojowych do tego problemu
- Możliwe duże zrównoleglenie przetwarzania grup
- Szybko osiąga relatywnie dobre rozwiązania
- Stabilny

Wady

- Wypada kiepsko przy innych algorytmach optymalizacyjnych
- Wymaga relatywnie dużo osobników do dobrej eksploracji przestrzeni
- Wolna zbieżność do optimum globalnego
- Wpada w minima lokalne

Bibliografia

 M.A.H. Akhand and Safial Islam Ayon and S.A. Shahriyar and N. Siddique and H. Adeli (2020) Discrete Spider Monkey Optimization for Travelling Salesman Problem, Applied Soft Computing.