WS #18 - hierarchical clustering

Monday, November 25, 2024

Your Name:						
Names of people you worked with: _						
Name one tradition around this we year?	eek's t	time o	off tha	at you	grew up with.	Will you do it this
Task:						
Consider the distances between the	follov	ving c	bserv	ations	5:	
	A	В	С	D	E	
$\overline{\mathbf{A}}$	0					
В	0.2	0				
\mathbf{C}	0.6	0.5	0			
D	1	0.9	0.4	0		
${ m E}$	0.9	0.8	0.5	0.3	0	

Start with all objects in separate "clusters" (i.e., start with 5 clusters), by merging (complete linkage) one pair of clusters at a time, provide each clustering for k = 5, 4, 3, 2, 1.

Solution:

k = 4: Link A and B to get – (AB), C, D, E

k = 3: Link D and E to get – (AB), C, (DE)

$$d_{(AB)C} = \max(d_{AC}, d_{BC}) = 0.6 \tag{1}$$

$$d_{(AB)D} = \max(d_{AD}, d_{BD}) = 1.0 \tag{2}$$

$$d_{(AB)E} = \max(d_{AE}, d_{BE}) = 0.9 \tag{3}$$

(4)

	AB	С	D	E
$\overline{\mathrm{AB}}$	0			
\mathbf{C}	0.6	0		
D	1.0	0.4	0	
\mathbf{E}	0.9	0.5	0.3	0

Link D and E!

k = 2: Link C with (DE) to get – (AB), (CDE)

$$d_{(AB)C} = 0.6 \tag{5}$$

$$d_{(AB)(DE)} = \max(d_{AD}, d_{BD}, d_{AE}, d_{BE}) = 1.0$$
(6)

$$d_{(DE)C} = \max(d_{CD}, d_{CE}) = 0.5 \tag{7}$$

(8)

Link C with (DE)!

k = 1: Link all to get – (ABCDE)

$$d_{(AB)(CDE)} = d_{AD} = 1 (9)$$