Inner Product Spaces

Sriram Vadlamani

February 10, 2020

Contents

1	Introduction	3
	1.1 A bilinear Form	3
2	Inner product	3
	2.1 Symmetry	
	2.2 Positive definite	3
3	Theorems	3
	3.1 Cauchy-Schwartz and Minkowski Theorems	3
4	Orthogonality	4
	4.1 Pythagorean Theorem	4
	4.2 The orthogonal of a subspace	4
5	Orthonormal sets	5
6	Gram-Schmidt Theorem	5
7	Theorem of orthogonal supplementary	5
8	Orthogonal Projections	5
9	Distance to a subspace	6
10	Extra remarks	6

1 Introduction

1.1 A bilinear Form

let E be an R-vs and $\theta: E \times E \to R$, we say, θ is a bilinear form if: $\forall (u, v, w) \in E^2$ and $\forall a \in R$,

- $\theta(u+v,w) = \theta(u,v) + \theta(u,w)$
- $\theta(au, v) = a\theta(u, v)$

Proposition 1

let E be an R-vs of finite dimension 'n'. We have $B=(e_1,e_2,\,\dots\,,\,e_n)$ the basis of E.

 $\theta: E \times E \to R$ a bilinear form.

Then $\forall (x,y) \in E^2, \theta(x,y) = X^t \cdot M \cdot Y$

Where M is the matrix of the bilinear form defined as:

 $M = \theta(e_i, e_i)$

And X and Y are the coordinates of 'x' and 'y'.

2 Inner product

A space (E, θ) is said to be an inner product space iff

- The bilinear form is 'symmetric'
- The form is positive definite.

2.1 Symmetry

A bilinear form is symmetric iff $\forall (x,y) \in E^2$ $\theta(x,y) = \theta(y,x)$

2.2 Positive definite

A bilinear form is said to be positive definite iff $\forall x \in E, \theta(x, x) \geq 0$, and $\forall x \in E, \theta(x, x) = 0 \Longrightarrow x = 0$

3 Theorems

3.1 Cauchy-Schwartz and Minkowski Theorems

Cauchy-Schwartz: Let E be an R-vs and $\theta: E \to R$ a positive definite and symmetric bilinear form, then

$$\forall (x,y) \in E^2 \mid \theta(x,y) \mid \leq \sqrt{\theta(x,x)} \times \sqrt{\theta(y,y)}$$

Minkowski's: Let (E, θ) be an inner product space on R, then: $\forall (x,y) \in E^2, \ \sqrt{\theta(x+y,x+y)} \leq \sqrt{\theta(x,x)} + \sqrt{\theta(y,y)}$

4 Orthogonality

We call $N: E \to R$ a norm $\forall (x,y) \in E^2$ and $\forall \lambda \in R$ we have:

- $N(x) \geq 0$
- $N(\lambda \cdot x) = \lambda \cdot N(x)$
- $N(x) = 0 \iff x = 0$
- $N(x+y) \le N(x) + N(y)$

and we say that 'N' is a norm. In geometry, this is what we call a triangular inequality.

Proposition 2 The norm for any vector $x \in E$ is $\sqrt{\theta(x,x)}$.

4.1 Pythagorean Theorem

for (E, θ) an inner product space, and $\forall (x, y) \in E^2$ such that $\langle x, y \rangle = 0$, we have:

$$||x + y||^2 = ||x||^2 + ||y||^2$$

4.2 The orthogonal of a subspace

For (E,θ) an inner product space, A^{\perp} is defined as: $\{\forall x\in E, \forall y\in A, < x,y>=0\}$ where $A\subset E$

Some important remarks are:

- $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$
- $A^{\perp} = span(A)^{\perp}$
- $A \cap A^{\perp} \subset \{0\}$

5 Orthonormal sets

Definition

Let (E, <, >) be an inner product space on R and $X = \{x_1, x_2, ...x_n\} \subset E$. And $B = \{e_1, e_2, ...e_n\}$ a basis of E. we say that X is an orthonormal set in E if:

 $\langle x_i, x_j \rangle = \delta_{ij}$ and

 $\langle e_i, e_j \rangle \geq \delta_{ij}$

 $\delta_{ij} = 1 \text{ if } i = j$

 $\delta_{ij} = 0 \text{ if } i \neq j$

Proposition 7: Any orthogonal set / family of vectors of non-zero vectors from an inner product space is linearly independent.

6 Gram-Schmidt Theorem

Let (E, <, >) be a eucledian space and $B = \{e_1, e_2, ..., e_n\}$ a basis of E. Then there exists an orthogonal basis $O = \{f_1, f_2, ... f_n\}$ from E. such that $\forall k \in [1, n], f_k \in span(B)$.

7 Theorem of orthogonal supplementary

Let (E,<,>) be a eucledian space and 'F' a sub-vector space of E, then: $E=F\oplus F^\perp$

Corollary: $F^{\perp \perp} = F$, only in a eucledian space, i.e, Finite dimension.

8 Orthogonal Projections

Definition

Let (E, <, >) be a eucledian space and F a sub-vector space of E. We call orthogonal projector on 'F' and we denote P_F the projector on F parallel to F^{\perp} i.e., $P_F \in L(E)$ such that:

 $P_F^2 = P_F$, and Im(F) = F and $ker(F) = F^{\perp}$

Proposition: $\forall x \in E$

$$P_F(x) = \sum_{i=1}^{n} \langle x, e_i \rangle \cdot e_i$$

9 Distance to a subspace

Proposition: Let F be a sub-vector space of a eucledian space (E, <, >). Then, the map:

 $y \Rightarrow \|x - y\| \ \forall x \in E$ reaches it's minimum value at $P_F(x)$. We call distance of x to F and denote d(x, F) the real number: $\|x - P_F(x)\|$.

10 Extra remarks

- If F is of finite dimension, then $E=F\oplus F^{\perp}$
- if E is finite, $F^{\perp\perp}=F,$ but if it's not, then $F\subset F^{\perp\perp}$