Markov Chain Monte Carlo

Homework

Gibbs Sampling

(i) From Exam 2018

Consider the 2D joint probability distribution (jPDF) defined over the triangular domain:

$$\pi(x,y) = \begin{cases} e^{-y} & 0 \le x \le y \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal distributions of x and y, $\pi(x) = \int \pi(x,y) \, dy$ and $\pi(y) = \int \pi(x,y) \, dx$. Note: Take care to integrate over the correct domain for x and y. You may verify your setup by ensuring that $\iint \pi(x,y) \, dx \, dy = 1$.
- (b) For independent distributions, the joint distribution is the product of the marginals. Test whether $\pi(x, y) = \pi(x)\pi(y)$ and show that x and y are not independent.
- (c) Suppose we decide to sample the jPDF using Metropolis MCMC. From a "current" point (x, y) in the domain, we propose a symmetric move,

$$x' \sim U[x - \delta, x + \delta]$$

$$y' \sim U[y - \delta, y + \delta].$$

Write pseudocode/algorithm to decide whether or not to accept the proposed move. What happens if x' > y'?

- (d) Show that the conditional distributions $\pi(x|y)$ and $\pi(y|x)$ are uniform and exponential, respectively.
- (e) Use direct Monte Carlo algorithms to sample 10000 random numbers from $\pi(x|y=1)$ and $\pi(y|x=1)$. You may use built-in functions, if convenient. Plot normalized histograms for both cases.²
- (f) Starting from (x,y)=(1,2), write a Gibbs sampler to sample 10000 points from the jPDF $\pi(x,y)$. For burn-in, disregard the first 10% of the samples. Produce a scatter plot of the remaining points. Plot histograms of $\pi(x)$ and $\pi(y)$ and compare with the theoretically derived marginals in part (i).

(ii) Radius of Gyration of a Nonuniform Sphere

The density of a sphere Ω of radius R=1 is given by $\rho(r)=R-r$. The radius of gyration R_g is defined by,

$$R_g^2 = \frac{\int_{\Omega} \rho(r) r^2 dA}{\int_{\Omega} \rho(r) dA}$$

¹You don't have to actually perform the simulation.

²Use 30 bins for all histograms requested for this question.

We can use MC to estimate R_g^2 by sampling points (x,y,z) from a uniform distribution on the domain Ω .³

- (a) Find the conditional distributions, $\pi(x|y,z)$, $\pi(y|x,z)$, and $\pi(z|x,y)$.
- (b) Use Gibbs sampling to uniformly sample N = 5000 points inside the sphere.
- (c) Draw traceplots of the sampled x, y, and z coordinates. Find the autocorrelation of the samples. Show the autocorrelation of x, y, z on the same plot.
- (d) Estimate the radius of gyration. Use block-averaging to find the associated uncertainty.

³For a uniform sphere $\rho = \text{constant}$, $R_g^2 = 3/5R^2$. You can use this to test your answers.