Topic 5 Questions

- 1. What energy changes occur when chemical bonds are formed and broken?
 - A. Energy is absorbed when bonds are formed and when they are broken.
 - B. Energy is released when bonds are formed and when they are broken.
 - C. Energy is absorbed when bonds are formed and released when they are broken.
 - D. Energy is released when bonds are formed and absorbed when they are broken.
- 2. The temperature of a 2.0 g sample of aluminium increases from 25°C to 30°C. How many joules of heat energy were added? (Specific heat of Al = $0.90 \text{ J g}^{-1}\text{K}^{-1}$)
 - A. 0.36
 - B. 2.3
 - C. 9.0
 - D. 11
- **3.** Using the equations below:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -390 \text{ kJ}$
 $Mn(s) + O_2(g) \rightarrow MnO_2(s)$ $\Delta H = -520 \text{ kJ}$

what is ΔH (in kJ) for the following reaction?

$$MnO_2(s) + C(s) \rightarrow Mn(s) + CO_2(g)$$

- A. 910
- B. 130
- C. -130
- D. -910
- **4.** Which statements about exothermic reactions are correct?
 - I. They have negative ΔH values.
 - II. The products have a lower enthalpy than the reactants.
 - III. The products are more energetically stable than the reactants.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- **5.** A sample of a metal is heated. Which of the following are needed to calculate the heat absorbed by the sample?
 - I. The mass of the sample
 - II. The density of the sample
 - III. The specific heat capacity of the sample
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 6. The average bond enthalpies for O—O and O==O are 146 and 496 kJ mol⁻¹ respectively. What is the enthalpy change, in kJ, for the reaction below?

$$H - O - O - H(g) \rightarrow H - O - H(g) + \frac{1}{2}O = O(g)$$

A. -102

B. + 102

C. +350

- D. +394
- 7. When the solids $Ba(OH)_2$ and NH_4SCN are mixed, a solution is produced and the temperature drops.

$$Ba(OH)_2(s) + 2NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2NH_3(g) + 2H_2O(l)$$

Which statement about the energetics of this reaction is correct?

- A. The reaction is endothermic and ΔH is negative.
- B. The reaction is endothermic and ΔH is positive.
- C. The reaction is exothermic and ΔH is negative.
- D. The reaction is exothermic and ΔH is positive.
- **8.** Using the equations below

$$Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s)\Delta H^{\bullet} = -156 \text{ kJ}$$

$$2Cu(s) + \frac{1}{2}O_2(g) \rightarrow Cu_2O(s)\Delta H^{\bullet} = -170 \text{ kJ}$$

what is the value of ΔH^{\bullet} (in kJ) for the following reaction?

$$2CuO(s) \to Cu_2O(s) + \, \tfrac{1}{2}\,O_2(g)$$

A. 142

B. 15

C. -15

D. -142

9. Which of the quantities in the enthalpy level diagram below is (are) affected by the use of a catalyst?

- I only A.
- В. III only
- C. I and II only
- D. II and III only
- 10. Consider the following equations.

$$Mg(s) + \frac{1}{2} O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{e} = -602 \text{ kJ}$
 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$ $\Delta H^{e} = -242 \text{ kJ}$

$$H_2(g) + \frac{1}{2} O_2(g) \to H_2O(g)$$
 $\Delta H^{\bullet} = -242 \text{ k.}$

What is the ΔH° value (in kJ) for the following reaction?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

11. For which of the following is the sign of the enthalpy change different from the other three?

A.
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

B.
$$Na(g) \rightarrow Na^{+}(g) + e^{-}$$

C.
$$CO_2(s) \rightarrow CO_2(g)$$

D.
$$2Cl(g) \rightarrow Cl_2(g)$$

12. Separate solutions of HCl(aq) and H₂SO₄(aq) of the same concentration and same volume were completely neutralized by NaOH(aq). X kJ and Y kJ of heat were evolved respectively. Which statement is correct?

A.
$$X = Y$$

B.
$$Y = 2X$$

C.
$$X = 2Y$$

D.
$$Y = 3X$$

13.	Which statements	are correct for a	n endothermic	reaction?

- I. The system absorbs heat.
- II. The enthalpy change is positive.
- III. The bond enthalpy total for the reactants is greater than for the products.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 14. The mass m (in g) of a substance of specific heat capacity c (in J g⁻¹ K⁻¹) increases by t°C. What is the heat change in J?
 - A. mct
 - B. mc(t + 273)
 - C. $\frac{mct}{1000}$
 - D. $\frac{mc(t+273)}{1000}$
- **15.** The average bond enthalpy for the C—H bond is 412 kJ mol⁻¹. Which process has an enthalpy change closest to this value?
 - A. $CH_4(g) \rightarrow C(s) + 2H_2(g)$
 - B. $CH_4(g) \rightarrow C(g) + 2H_2(g)$
 - C. $CH_4(g) \rightarrow C(s) + 4H(g)$
 - D. $CH_4(g) \rightarrow CH_3(g) + H(g)$
- 16. The following equation shows the formation of magnesium oxide from magnesium metal.

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$
 $\Delta H^{\theta} = -1204kJ$

Which statement is correct for this reaction?

- A. 1204 kJ of energy are released for every mol of magnesium reacted.
- B. 602 kJ of energy are absorbed for every mol of magnesium oxide formed.
- C. 602 kJ of energy are released for every mol of oxygen gas reacted.
- D. 1204 kJ of energy are released for every two mol of magnesium oxide formed.

(

The following equations show the oxidation of carbon and carbon monoxide to carbon dioxide. 17.

$$C(s) +O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\Theta} = -x \text{ kJ mol}^{-1}$

$$\Delta H^{\Theta} = -x \text{ kJ mol}^{-1}$$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\Theta} = -y \text{ kJ mol}^{-1}$

$$\Delta H^{\Theta} = -y \text{ kJ mol}^{-1}$$

What is the enthalpy change, in kJ mol $^{-1}$, for the oxidation of carbon to carbon monoxide?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

A.
$$x + y$$

B.
$$-x-y$$

C.
$$y-x$$

D.
$$x-y$$

- A simple calorimeter was used to determine the enthalpy of combustion of ethanol. The 18. experimental value obtained was -920 kJ mol⁻¹. The Data Booklet value is -1371 kJ mol⁻¹. Which of the following best explains the difference between the two values?
 - incomplete combustion of the fuel A.
 - В. heat loss to the surroundings
 - C. poor ventilation in the laboratory
 - D. inaccurate temperature measurements
- 19. For the reaction

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

the bond enthalpies (in kJ mol⁻¹) are

Н–Н	x
O=O	у
О–Н	Z

Which calculation will give the value, in kJ mol⁻¹, of ΔH^{Θ} for the reaction?

A.
$$2x + y - 2z$$

B.
$$4z-2x-y$$

$$C. 2x + y - 4z$$

D.
$$2z-2x-y$$

- 20. Which statement about bond enthalpies is correct?
 - Bond enthalpies have positive values for strong bonds and negative values for weak A. bonds.
 - B. Bond enthalpy values are greater for ionic bonds than for covalent bonds.
 - C. Bond breaking is endothermic and bond making is exothermic.
 - The carbon–carbon bond enthalpy values are the same in ethane and ethene. D.

21. An equation for a reaction in which hydrogen is formed is

$$CH_4 + H_2O \rightarrow 3H_2 + CO$$
 $\Delta H^{\Theta} = +210 \text{ kJ}$

Which energy change occurs when 1 mol of hydrogen is formed in this reaction?

- A. 70 kJ of energy are absorbed from the surroundings.
- B. 70 kJ of energy are released to the surroundings.
- C. 210 kJ of energy are absorbed from the surroundings.
- D. 210 kJ of energy are released to the surroundings.
- **22.** The equations and enthalpy changes for two reactions used in the manufacture of sulfuric acid are:

$$S(s) O_2(g) \rightarrow SO_2(g)$$
 $\Delta H^{\Theta} = -300 \text{ kJ}$

$$2SO_2(g) + O_2(g) \to 2SO_3(g)$$
 $\Delta H^{\Theta} = -200 \text{ kJ}$

What is the enthalpy change, in kJ, for the reaction below?

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

- A. -100
- B. -400
- C. -500
- D. -800
- 23. Approximate values of the average bond enthalpies, in kJ mol⁻¹, of three substances are:

Н–Н	430
F–F	155
H–F	565

What is the enthalpy change, in kJ, for this reaction?

$$2HF \rightarrow H_2 + F_2$$

- A. +545
- B. +20
- C. –20
- D. -545

24. The standard enthalpy change of formation values of two oxides of phosphorus are:

$$P_4(s) + 3O_2(g) \rightarrow P_4O_6(s)$$

$$\Delta H^{\Theta}_{f} = -1600 \text{ kJ mol}^{-1}$$

$$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$$
 $\Delta H^{\Theta}_{f} = -3000 \text{ kJ mol}^{-1}$

$$\Delta H^{\Theta}_{f} = -3000 \text{ kJ mol}^{-1}$$

What is the enthalpy change, in kJ mol⁻¹, for the reaction below?

$$P_4O_6(s) + 2O_2(g) \rightarrow P_4O_{10}(s)$$

- +4600A.
- В. +1400
- C. -1400
- -4600D.
- 25. Which statement is correct for an endothermic reaction?
 - The products are more stable than the reactants and ΔH is positive. A.
 - The products are less stable than the reactants and ΔH is negative. B.
 - C. The reactants are more stable than the products and ΔH is positive.
 - D. The reactants are less stable than the products and ΔH is negative.
- 26. Which statement is correct about the reaction shown?

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ}$

- 196 kJ of energy are released for every mole of SO₂(g) reacted. A.
- В. 196 kJ of energy are absorbed for every mole of SO₂(g) reacted.
- 98 kJ of energy are released for every mole of $SO_2(g)$ reacted. C.
- 98 kJ of energy are absorbed for every mole of SO₂(g) reacted. D.
- 27. Which statements are correct for all exothermic reactions?
 - I. The enthalpy of the products is less than the enthalpy of the reactants.
 - II. The sign of ΔH is negative.
 - III. The reaction is rapid at room temperature.
 - I and II only A.
 - I and III only В.
 - C. II and III only
 - I, II and III D.

28. Consider the specific heat capacity of the following metals.

Metal	Specific heat capacity / J kg ⁻¹ K ⁻¹
Cu	385
Ag	234
Au	130
Pt	134

Which metal will show the greatest temperature increase if 50 J of heat is supplied to a 0.001 kg sample of each metal at the same initial temperature?

- A. Cu
- B. Ag
- C. Au
- D. Pt
- **29.** Consider the following reactions.

$$S(s) + 1\frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -395 \text{ kJ mol}^{-1}$

$$SO_2(s) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

What is the ΔH^{Θ} value (in kJ mol⁻¹) for the following reaction?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

- A. –297
- B. +297
- C. -493
- D. +493
- **30.** Which statement is correct for an endothermic reaction?
 - A. Bonds in the products are stronger than the bonds in the reactants.
 - B. Bonds in the reactants are stronger than the bonds in the products.
 - C. The enthalpy of the products is less than that of the reactants.
 - D. The reaction is spontaneous at low temperatures but becomes non-spontaneous at high temperatures.

31. According to the enthalpy level diagram below, what is the sign for ΔH and what term is used to refer to the reaction?

reaction progress

	ΔH	reaction
A.	positive	endothermic
B.	negative	exothermic
C.	positive	exothermic
D.	negative	endothermic

32. When 40 joules of heat are added to a sample of solid H_2O at -16.0°C the temperature increases to -8.0°C. What is the mass of the solid H_2O sample?

[Specific heat capacity of
$$H_2O(s) = 2.0 \text{ J g}^{-1}\text{K}^{-1}$$
]

- A. 2.5 g
- B. 5.0 g
- C. 10 g
- D. 160 g
- **33.** The ΔH^{Θ} values for the formation of two oxides of nitrogen are given below.

$$\frac{1}{2}$$
 N₂(g) + O₂(g) \rightarrow NO₂(g) $\Delta H^{\Theta} = -57 \text{ kJ mol}^{-1}$

$$N_2(g) + 2O_2(g) \to N_2O_4(g)$$
 $\Delta H^{\Theta} = +9 \text{ kJ mol}^{-1}$

Use these values to calculate ΔH^{Θ} for the following reaction (in kJ):

$$2\mathrm{NO_2}(\mathrm{g}) \to \mathrm{N_2O_4}(\mathrm{g})$$

- A. -105
- B. -48
- C. +66
- D. +123

- 34. How much energy, in joules, is required to increase the temperature of 2.0 g of aluminium from 25 to 30°C? (Specific heat of Al = 0.90 J $g^{-1} K^{-1}$).
 - 0.36 A.
 - B. 4.5
 - C. 9.0
 - D. 54
- 35. Which combination is correct for a chemical reaction that absorbs heat from the surroundings?

	Type of reaction	ΔH at constant pressure
A.	Exothermic	Positive
B.	Exothermic	Negative
C.	Endothermic	Positive
D.	Endothermic	Negative

Using the equations below: **36.**

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\bullet} = -394 \text{ kJ mol}^{-1}$

$$\Delta H^{\circ} = -394 \text{ kJ mol}^{-1}$$

$$Mn(s) + O_2(g) \rightarrow MnO_2(s)$$
 $\Delta H^{\bullet} = -520 \text{ kJ mol}^{-1}$

$$\Delta H^{\circ} = -520 \text{ kJ mol}^{-1}$$

What is ΔH , in kJ, for the following reaction?

$$MnO_2(s) + C(s) \rightarrow Mn(s) + CO_2(g)$$

- A. 914
- B. 126
- C. -126
- D. -914

37.

The diagram shows the distribution of energy for the molecules in a sample of gas at a given temperature, T_1 .

(a) In the diagram E_a represents the *activation energy* for a reaction. Define this term.

(b) On the diagram above draw another curve to show the energy distribution for the same gas at a higher temperature. Label the curve T_2 .

(2)

(1)

(c) With reference to your diagram, state and explain what happens to the rate of a reaction when the temperature is increased.

(2) (Total 5 marks)

38. (a) Define the term *average bond enthalpy*, illustrating your answer with an equation for methane, CH₄.

(b) The equation for the reaction between methane and chlorine is

$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

Use the values from Table 10 of the Data Booklet to calculate the enthalpy change for this reaction.

$$414(4) + 340 = 247$$

 $414(3) + 344 + 431 = 247$
 $24 = 247 - 249 = -99 kT mol^{-1}$

(3)

(d) Identify the **major** source of error in the experimental procedure described above. Explain how it could be minimized.

Uncontrolled heat dissipation to surroundings. Minimized by mixing the solutions for a controlled amount of strakes.

Using a lid to close the system.

(2)

(e) The experiment was repeated but with an HCl concentration of 0.510 mol dm⁻³ instead of 0.500 mol dm⁻³. State and explain what the temperature change would be.

Laner temperature change because the reaction etergy is used by more reactants. 3.5°C; no change; to Historian ting reactant so extra HCL is in excess and goes unused. (Total 10 marks)

40. The data below is from an experiment used to measure the enthalpy change for the combustion of 1 mole of sucrose (common table sugar), $C_{12}H_{22}O_{11}(s)$. The time-temperature data was taken from a data-logging software programme.

Mass of sample of sucrose, m = 0.4385 g

Heat capacity of the system, $C_{\text{system}} = 10.114 \text{ kJ K}^{-1}$

(a) Calculate ΔT , for the water, surrounding the chamber in the calorimeter.

0.63°C

			•••••	•••••				
(i)	(i) Calculate the enthalpy change for the combustion of 1 mole of sucrose.							
(ii	i)	Using Table 12 of the Data Booklet, calculate the percent	ntage experiment	al error				
		based on the data used in this experiment.						
	xplo a l a l	pothesis is suggested that TNT, 2-methyl-1,3,5-trinitroberosive because it has: large enthalpy of combustion high reaction rate large volume of gas generated upon combustion	nzene, is a power	ful				
•	xplo a l a l a l	large enthalpy of combustion high reaction rate						
•	xplo a l a l a l	large enthalpy of combustion high reaction rate large volume of gas generated upon combustion						
•	xplo a l a l a l	large enthalpy of combustion high reaction rate large volume of gas generated upon combustion your answer in part (c)(i) and the following data to evalua	te this hypothesis Relative rate of	s: Enthalpy o				

14

(3) (Total 7 marks)

41.	(a)	Define the term average bond enthalpy.	
			(2)
	<i>a</i> >		(2)
	(b)	Use the information from Table 10 of the Data Booklet to calculate the enthalpy change for the complete combustion of but-1-ene, according to the following equation.	
		$C_4H_8(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O(g)$	
		$C_4H_8(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O(g)$	
			(3)
		(Total 5	marks)
42.	Give	en the following data:	
		$C(s) + F_2(g) \rightarrow CF_4(g); \Delta H_1 = -680 \text{ kJ mol}^{-1}$	
		$F_2(g) \to 2F(g); \Delta H_2 = +158 \text{ kJ mol}^{-1}$	
		$C(s) \rightarrow C(g); \Delta H_3 = +715 \text{ kJ mol}^{-1}$	
		1	
	calcu	ulate the average bond enthalpy (in kJ mol ⁻¹) for the C—F bond.	
	•••••		

(Total 4 marks)

43. Two reactions occurring in the manufacture of sulfuric acid are shown below:

reaction I
$$S(s) +O_2(g) \rightarrow SO_2(g)$$

$$\Delta H^{\Theta} = -297 \text{ kJ}$$

reaction II
$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$
 $\Delta H^{\Theta} = -92 \text{ kJ}$

$$\Delta H^{\Theta} = -92 \text{ kJ}$$

State the name of the term ΔH^{Θ} . State, with a reason, whether reaction I would be (i) accompanied by a decrease or increase in temperature.

(3)

At room temperature sulfur trioxide, SO₃, is a solid. Deduce, with a reason, whether the (ii) ΔH^{Θ} value would be more negative or less negative if SO₃(s) instead of SO₃(g) were formed in reaction II.

(2)

(iii) Deduce the ΔH^{Θ} value of this reaction:

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

(1) (Total 6 marks)

44. (i) Define the term average bond enthalpy.

(3)

Explain why Br₂ is not suitable as an example to illustrate the term average bond (ii) enthalpy.

(1)

Using values from Table 10 of the Data Booklet, calculate the enthalpy change for the following reaction:

$$CH_4(g) + Br_2(g) \rightarrow CH_3Br(g) + HBr(g)$$

(3)

(iv) Sketch an enthalpy level diagram for the reaction in part (iii).

(2)

Without carrying out a calculation, suggest, with a reason, how the enthalpy change for (v) the following reaction compares with that of the reaction in part (iii):

$$CH_3Br(g) + Br_2(g) \rightarrow CH_2Br_2(g) + HBr(g)$$

(2)

(Total 11 marks)

		$C_4H_8 +$	$6O_2 \rightarrow 4$	$4CO_2 + 4$	H_2O				
(a)	Use the data below to ca	lculate th	ne value o	of ΔH^{Θ} for	or the cor	nbustion	of but-1	-ene.	
	Bond	С-С	С=С	С–Н	O=O	С=О	О–Н		
	Average bond enthalpy / kJ mol-	348	612	412	496	743	463		
(b)	State and explain whether	er the rea	ction abo	ove is end	lothermic	or exotl	nermic.		
	ulate the enthalpy change,	ΔH_4 for	the react		lothermic	or exotl	nermic.	(T	'otal 4
, ,		ΔH_4 for	the react			e or exotl	nermic.		`otal 4
Calc	ulate the enthalpy change,	ΔH_4 for $\frac{1}{2}$ O ₂ \rightarrow 0	the react	ion		or exotl	nermic.		`otal 4
Calc	ulate the enthalpy change, $C + 2H_2 +$	ΔH_4 for $\frac{1}{2}$ $O_2 \rightarrow 0$ wing info	the reacti	Δ <i>I</i>	H_4 $\Delta H_1 =$		mol ⁻¹		'otal 4

17

(Total 4 marks)

		$CH_3OH(g) + NH_3(g) \rightarrow CH_3NH_2(g) + H_2O(g)$	
	(a)	Define the term average bond enthalpy.	
			(2)
	(b)	Use information from Table 10 of the Data Booklet to calculate the enthalpy change for this reaction.	
		(Total	(4) 6 marks)
48.	(a)	Define the term average bond enthalpy.	
			(2)
	(b)	Use the information from Table 10 in the Data Booklet to calculate the enthalpy change for the complete combustion of but-1-ene according to the following equation	
		$C_4H_8(g) \rightarrow 4CO_2(g) + 4H_2O(g)$	
			(3)

Methylamine can be manufactured by the following reaction.

47.

	(c)	Predict, giving a reason, how the enthalpy change for the complete combustion of but-2-ene would compare with that of but-1-ene based on average bond enthalpies.	
			(1)
	(d)	The enthalpy level diagram for a certain reaction is shown below.	(1)
		Enthalpy $ \begin{array}{c} \hline \\ H_{\rm R} \\ \text{enthalpy of} \\ \text{reactants} \\ \hline \\ H_{\rm P} \\ \text{enthalpy of} \\ \text{products} \\ \end{array} $	
		Time	
		State and explain the relative stabilities of the reactants and products.	
			(2)
		(Total 8 m	(2) arks)
49.	The 1	eaction between ethene and hydrogen gas is exothermic.	
	(i)	Write an equation for this reaction.	(1)
	(ii)	Deduce the relative stabilities and energies of the reactants and products.	(2)
	(iii)	Explain, by referring to the bonds in the molecules, why the reaction is exothermic.	(2)
50.	(i)	Define the term average bond enthalpy. (Total 5 m	(2)
	(ii)	The equation for the reaction of ethyne and hydrogen is:	
		$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$	
		Use information from Table 10 of the Data Booklet to calculate the change in enthalpy for the reaction.	
	/***		(2)
	(iii)	State and explain the trend in the bond enthalpies of the C–Cl, C–Br and C–I bonds. (Total 6 m	(2) arks)