Evaluation of Azimuthal Shear, Divergence Shear, and Velocity Gradient Products Derived from WSR-88D Base Velocity Data to Assess QLCS Severity

T.J.Turnage
NWS Grand Rapids, MI
thomas.turnage@noaa.gov

Acknowledgements
Thea Sandmael, Kiel Ortega, Brandon Smith
CIMMS / NSSL

The Challenge

Traditional radar storm interrogation utilizes "Base" Velocity Data

- Radial Velocity (V)
- Storm Relative Radial Velocity (SRV)

Key features must be "manually" identified

- Rotation cyclonic azimuthal shear; V increasing with azimuth
 - Seen as a V "Couplet"
- Low Altitude Radial Convergence V decreasing with range
- Mid Altitude Radial Convergence (MARC) same as above
- High Altitude (Storm Top) Radial Divergence V increasing with range

Conceptual Models

Rankine Vortex Model ...

- Radial Velocity Properties
- Azimuthal Shear Properties
- Azimuthal Shear Couplets

Radial Convergence Model ...

- Divergence Properties
- Divergence Shear Properties

Velocity Gradient ...

Interpreting Imbalanced Flow

Radial Velocity (v)

Rotation inferred from couplet

Inbound (-v)
Outbound (+v)

Azimuthal Shear (and GR2Analyst NROT)

Gaussian Smoothing

 $\frac{\partial v}{\partial x}$ (Cartesian equivalent)

Azimuthal Shear (Gaussian Smoothed)

Radial Velocity Inbound Surge

Azimuthal Shear Inbound Surge

Azimuthal Shear Inbound Surge

Direction to radar

(Not that it matters!)

Azimuthal Shear Inbound Surge

Nashville 03/03/2020

Derived Velocity Products for QLCS Interrogation Azimuthal Shear (AzShear) Takeaways

Max Azshear located between Max v_{in} and Max v_{out}

Zero Azshear found at Max v_{in} & Max v_{out} radii

Negative Azshear ring just beyond Max v_{in} & Max v_{out} radii

Azshear couplets are seen with Wind surges (RFDs, Bow echoes)

Convergence

Also Using Rankine Vortex Model

$$r = \sqrt{x^2 + y^2}$$

$$r \le R_{max} \rightarrow conv \propto r$$
 $r > R_{max} \rightarrow conv \propto r$
 $1/r$

Rankine
Radial Convergence

Rankine
Convergence + Rotation

Azimuthal Shear Contribution to Velocity Gradient

Radar Location

Divergence Shear Contribution to Velocity Gradient

Radar Location

Velocity Gradient Ring from AzShear/DivShear Couplets

08 Jun 2008 - 20:51:24 UTC KDTX 0.5 Degrees DivShear **AzShear** Velocity Gradient 0.015 43.0 43.0 0.01 42.5 42.5 42.5 -0.01 -0.01 -84.0 -83.5 -84.0 -83.5 -84.0 -83.5 Reflectivity Velocity Velocity 43.0 43.0 43.0 20 P 42.5 42.5 42.5 -100 -84.0 -83.5 -84.0 -83.5 -84.0 -83.5

Looking Ahead

single radar AzShear in AWIPS?

MARCs and storm top divergence

DivShear / Velocity Grad in 3D

New algorithms combining other moments

Thank You!

(and let me know if want me to run a case for you)

T.J.Turnage
NWS Grand Rapids, MI
thomas.turnage@noaa.gov