Stress Orientation Rotation of the 2018 Mw 7.5 Palu Earthquake

Focal Mechanisms Data

Before 2018 Mw7.5 Palu

76 events May 1977 – Sep 2018

After 2018 Mw7.5 Palu

17 events Sep 2018 – Nov 2021

Stress Inversion Result

Before 2018 Mw7.5 Palu

After 2018 Mw7.5 Palu

	σ1 Azimuth	σ1 Plunge	σ2 Azimuth	σ2 Plunge	σ3 Azimuth	σ3 Plunge	SHmax
Before	112.2 ± 5.7	13.0 ± 12.6	141.2 ± 75.5	75.7 ± 12.1	22.8 ± 5.7	6.3 ± 6.0	112.5 ± 5.5
After	97.1 ± 20.6	42.5 ± 39.7	98.8 ± 45.1	45.5 ± 39.1	3.4 ± 11.0	9.1 <u>+</u> 9.0	89.3 ± 14.5
Δ	-15.1	29.5	-42.4	-30.2	-19.4	2.8	-23.2

Stress Drop Ratio $\left(\frac{\Delta \tau}{\tau}\right)$ Calculation

To calculate the stress drop ratio, we use equation (4) in Hardebeck 2001

$$\Delta\theta = \tan^{-1}\left(\frac{1 - \frac{\Delta\tau}{\tau}\sin 2\theta - \sqrt{\left(\frac{\Delta\tau}{\tau}\right)^2 + 1 - 2\frac{\Delta\tau}{\tau}\sin 2\theta}}{\frac{\Delta\tau}{\tau}\cos 2\theta}\right) \qquad \qquad \frac{\Delta\tau}{\tau} = -\frac{\sin(2\Delta\theta)}{\cos(2\theta + 2\Delta\theta)}$$

Calculation of θ and $\Delta\theta$

21,874 HARDEBECK AND HAUKSSON: CRUSTAL STRESS FIELD IN CALIFORNIA

> Nodal plane 2018 Mw 7.5 Palu 348 · 57 · -15 87 · 77 · -146

$$\theta = 168 - 113.51 = 54.48$$
 $\theta_a = 168 - 97.16 = 70.84$
 $\Delta \theta = 70.84 - 54.48 = 16.36$

Fault | Before | After | $\theta + \Delta \theta$ | θ | $\Delta \theta$

Hardebeck & Hauksson 2001 say that θ and $\Delta\theta$ are calculated on the $\sigma 1 - \sigma 3$ plane. Since the mechanism of the 2018 Mw7.5 Palu earthquake is strike-slip, the $\sigma 1 - \sigma 3$ plane is horizontal, so the angle used is SHmax with respect to the strike of fault.

Model Stress Drop 2018 Mw 7.5 Palu by SHmax

$$\theta_b = 55.5 \pm 5.5 (50.0 - 61.0)$$

$$\Delta\theta = 19.1 \pm 15.1 (4.0 - 34.2)$$

$$\frac{\Delta \tau}{\tau} = 0.72 \pm 0.31 \, (0.31 - 0.92)$$