OpenStack Commands Cheat Sheet

Published March 13, 2014 • Updated November 5, 2016

documentation openstack cheat sheet

I have found most of the OpenStack commands to be fairly intuitive. However, there are some commands that do not follow a standard syntax, and there are far too many commands and command line switches to remember. In addition, Google searching for specific commands can be time consuming.

This post will be an ever growing list of OpenStack commands I have used across the various OpenStack Projects.

Monitor OpenStack Service Logs

Here are some quick and dirty way to watch the necessary logs on the OpenStack Controller and Compute nodes.

Ubuntu

Controller logs:

```
tail -f
/var/log/{ceilometer,cinder,glance,keystone,mysql,neutron,nova,openvswitch,rabbitmq}/*.log
/var/log/syslog
```

Compute logs:

tail -f /var/log/{ceilometer,neutron,nova,openvswitch}/*.log /var/log/syslog

CentOS/RHEL

Controller logs:

```
tail -f
/var/log/{ceilometer,cinder,glance,keystone,mysql,neutron,nova,openvswitch,rabbitmq}/*.log
/var/log/messages
```

Compute logs:

```
tail -f /var/log/{ceilometer,neutron,nova,openvswitch}/*.log /var/log/messages
```

Keystone

See Status of Keystone Services

keystone service-list

List All Keystone Endpoints

keystone endpoint-list

Glance

List Current Glance Images

glance image-list

Upload Images to Glance

glance image-create --name <IMAGE-NAME> --is-public <true OR false> --container-format
<CONTAINER-FORMAT> --disk-format <DISK-FORMAT> --copy-from <URI>

Example 1: Upload the cirros-0.3.2-x86_64 OpenStack cloud image:

glance image-create --name cirros-0.3.2-x86_64 --is-public true --container-format bare --disk-format qcow2 --copy-from http://download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img

Example 2: Upload the **ubuntu-server-12.04** OpenStack cloud image:

glance image-create --name ubuntu-server-12.04 --is-public true --container-format bare --disk-format qcow2 --copy-from http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-disk1.img

Nova

See Status of Nova Services

nova service-list

List Current Nova Instances

nova list

Boot an Instance

Boot an instance assigned to a particular Neutron Network:

```
nova boot <INSTANCE-NAME> --image <GLANCE-IMAGE-ID> --flavor <FLAVOR-ID> --security-groups
<SEC-GROUP-1,SEC-GROUP-2> --key-name <SSH-KEY-NAME> --nic net-id=<NET-ID> --availability-
zone <AVAILABILITY-ZONE-NAME>
```

Boot an instance assigned to a particular Neutron Port:

```
nova boot <INSTANCE-NAME> --image <GLANCE-IMAGE-ID> --flavor <FLAVOR-ID> --security-groups
<SEC-GROUP-1,SEC-GROUP-2> --key-name <SSH-KEY-NAME> --nic port-id=<PORT-ID> --availability-
zone <AVAILABILITY-ZONE-NAME>
```

Create a Flavor

```
nova flavor-create <FLAVOR-NAME> <FLAVOR-ID> <RAM-IN-MB> <ROOT-DISK-IN-GB> <VCPU>
```

For example, create a new flavor called **m1.custom** with an ID of **6**, **512 MB** of RAM, **5 GB** of root disk space, and **1** vCPU:

```
nova flavor-create m1.custom 6 512 5 1
```

Create Nova Security Group

This command is only used if you are using **nova-network**.

```
nova secgroup-create <NAME> <DESCRIPTION>
```

Add Rules to Nova Security Group

These command is only used if you are using **nova-network**.

```
nova secgroup-add-rule <NAME> <PROTOCOL> <BEGINNING-PORT> <ENDING-PORT> <SOURCE-SUBNET>
```

Example 1: Add a rule to the **default** Nova Security Group to allow SSH access to instances:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

Example 2: Add a rule to the **default** Nova Security Group Rule to allow ICMP communication to instances:

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

Apply Nova Security Group to Instance

This command is only used if you are using **nova-network**.

nova add-secgroup <NOVA-ID> <SECURITY-GROUP-ID>

Create Nova Floating IP Pool

These command is only used if you are using **nova-network**.

nova-manage floating create <SUBNET-NAME> <NAME-OF-POOL>

Create Nova Key SSH Pair

nova keypair-add --pub_key <SSH-PUBLIC-KEY-FILE-NAME> <NAME-OF-KEY>

Create Host Aggregate With Availability Zone

nova aggregate-create < HOST-AGG-NAME> < AVAIL-ZONE-NAME>

Add Compute Host to Host Aggregate

nova aggregate-add-host <HOST-AGG-ID> <COMPUTE-HOST-NAME>

Live Migrate an Instance

If your compute hosts use shared storage:

nova live-migration <INSTANCE-ID> <COMPUTE-HOST-ID>

If your compute hosts do *not* use shared storage:

```
nova live-migration --block-migrate <INSTANCE-ID> <COMPUTE-HOST-ID>
```

Attach Cinder Volume to Instance

Before running this command, you will need to have already created the particular Cinder Volume.

```
nova volume-attach <INSTANCE-ID> <CINDER-VOLUME-ID> <DEVICE (use auto)>
```

Create and Boot an Instance from a Cinder Volume

Before running this command, you will need to have already created the particular Cinder Volume from a Glance Image.

```
nova boot --flavor <FLAVOR-ID> --block_device_mapping vda=<CINDER-VOLUME-ID>:::0 <INSTANCE-
NAME>
```

Create and Boot an Instance from a Cinder Volume Snapshot

Before running this command, you will have to have already created the particular Cinder Volume Snapshot:

```
nova boot --flavor <FLAVOR-ID> --block_device_mapping vda=<CINDER-SNAPSHOT-ID>:snap::0
<INSTANCE-NAME>
```

Reset the State of an Instance

If an instance gets stuck in a **delete** state, the instance state can be reset and then deleted:

```
nova reset-state <INSTANCE-ID>
nova delete <INSTANCE-ID>
```

You can also use the active command line switch to force an instance back into an active state:

```
nova reset-state --active <INSTANCE-ID>
```

Get Direct URL to Instance Console Using novnc

```
nova get-vnc-console <INSTANCE-ID> novnc
```

Get Direct URL to Instance Console Using xvpvnc

```
nova get-vnc-console <INSTANCE-ID> xvpvnc
```

Set OpenStack Project Nova Quota

The following command will set an unlimited quota for a particular OpenStack Project:

```
nova quota-update --instances -1 --cores -1 --ram -1 --floating-ips -1 --fixed-ips -1 --
metadata-items -1 --injected-files -1 --injected-file-content-bytes -1 --injected-file-
path-bytes -1 --key-pairs -1 --security-groups -1 --security-group-rules -1 --server-groups
-1 --server-group-members -1 <PROJECT ID>
```

Cinder

See Status of Cinder Services

cinder service-list

List Current Cinder Volumes

cinder list

Create Cinder Volume

cinder create --display-name <CINDER-IMAGE-DISPLAY-NAME> <SIZE-IN-GB>

Create Cinder Volume from Glance Image

cinder create --image-id <GLANCE-IMAGE-ID> --display-name <CINDER-IMAGE-DISPLAY-NAME>
<SIZE-IN-GB>

Create Snapshot of Cinder Volume

```
cinder snapshot-create --display-name <SNAPSHOT-DISPLAY-NAME> <CINDER-VOLUME-ID>
```

If the Cinder Volume is not available, i.e. it is currently attached to an instance, you must pass the force flag:

cinder snapshot-create --display-name <SNAPSHOT-DISPLAY-NAME> <CINDER-VOLUME-ID> --force
True

Neutron

See Status of Neutron Services

neutron agent-list

List Current Neutron Networks

neutron net-list

List Current Neutron Subnets

neutron subnet-list

Rename Neutron Network

neutron net-update <CURRENT-NET-NAME> --name <NEW-NET-NAME>

Rename Neutron Subnet

neutron subnet-update <CURRENT-SUBNET-NAME> --name <NEW-SUBNET-NAME>

Create Neutron Security Group

neutron security-group-create <SEC-GROUP-NAME>

Add Rules to Neutron Security Group

neutron security-group-rule-create --direction <ingress OR egress> --ethertype <IPv4 or IPv6> --protocol <PROTOCOL> --port-range-min <PORT-NUMBER> --port-range-max <PORT-NUMBER> <SEC-GROUP-NAME>

Example 1: Add a rule to the **default** Neutron Security Group to allow SSH access to instances:

neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol tcp --port-range-min 22 --port-range-max 22 default

Example 2: Add a rule to the **default** Neutron Security Group to allow ICMP communication to instances:

neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol icmp default

Create a Neutron Tenant Network

```
neutron net-create <NET-NAME>
neutron subnet-create --name <SUBNET-NAME> <NET-NAME> <SUBNET-CIDR>
```

Create a Neutron Provider Network

neutron net-create <NET-NAME> --provider:physical_network=<LABEL-PHYSICAL-INTERFACE> -provider:network_type=<flat or vlan> --shared --router:external=True

neutron subnet-create --name <SUBNET-NAME> <NET-NAME> <SUBNET-CIDR> --gateway <GATEWAY-IP>
--allocation-pool start=<STARTING-IP>,end=<ENDING-IP> --dns-nameservers list=true <DNS-1
DNS-2>

Create a Neutron Router

neutron router-create <ROUTER-NAME>

Set Default Gateway on a Neutron Router

neutron router-gateway-set <ROUTER-NAME> <NET-NAME>

Attach a Tenant Network to a Neutron Router

neutron router-interface-add <ROUTER-NAME> <SUBNET-NAME>

Create a Neutron Floating IP Pool

If you need N number of floating IP addresses, run this command N number of times:

neutron floatingip-create <NET-NAME>

Assign a Neutron Floating IP Address to an Instances

neutron floatingip-associate <FLOATING-IP-ID> <NEUTRON-PORT-ID>

Create a Neutron Port with a Fixed IP Address

neutron port-create <NET-NAME> --fixed-ip ip_address=<IP-ADDRESS>

Set OpenStack Project Neutron Quota

The following command will allow an unlimited number of Neutron Ports to be created within a particular OpenStack Project:

neutron quota-update --tenant-id=<PROJECT ID> --port -1