Homework №11

Author: David Oniani

Instructor: Tommy Occhipinti

November 13, 2018

- 87. To prove that a relation is an equivalence relation, we must show that the relation is reflexive, symmetric, and transitive.
 - I. Showing that \sim is reflexive.

 $x \sim x = x + 2x = 3x$ Thus, \sim is reflexive.

II. Showing that \sim is symmetric.

Suppose that $x \sim y$, then x + 2y = 3k where $k \in \mathbb{Z}$. Then, if we solve the equation for x, we get x = 3k - 2y. Now, consider y + 2x. Let's substitute x with 3k - 2y. We get, $y + 6k - 4y = 6k - 3y = 3 \times (2k - y)$. Hence, if x + 2y is divisible by 3, then y + 2x is also divisible by 3 and the relation is symmetric.

III. Showing that \sim is transitive.

Suppose that $x \sim y$ and $y \sim z$. Then x+2y=3k where $k \in \mathbb{Z}$ and y+2z=3l where $l \in \mathbb{Z}$. Consider the relation on the variables x and z. The relation is $x \sim z = x+2z$. Now, from the first equation, let's substitute x and from the second one, substitute z. We get that x=3k-2y and $z=\frac{3l-y}{2}$. Finally, we get: $x+2z=3k-2y+2\times\frac{3l-y}{2}=3k-2y+3l-y=3k+3l-3y=3\times(k+l-1)$ and $3\times(k+l-1)$ is clearly a multiple of 3. Hence, we got that \sim is transitive.

Now, we proved that the relation \sim is reflexive, symmetric, and transitive and thus, the relation \sim is the equivalence relation. \square

- 88. (a) $\Xi(S)$ is a relation on $\mathcal{P}(S)$ such that it takes the powerset of S
 - (b) It is not symmetric. Let A =
 - (c)
 - (d)

Bookwork

4.2

 $2. \in, \notin, \subset, =, \mathcal{P}$

- 4. (a) It is not. Consider tuples (a,b) and (b,a). For the relation R to be transitive, since $(a,b) \in R$ and $(b,a) \in R$, it must be the case that $(a,a) \in R$. However, $(a,a) \notin R$. Thus, the relation is not transitive. \square
 - (b) i. It is. Suppose that $x-y=q_1$ and $y-z=q_2$ where $q_1,q_2\in\mathbb{Q}$. Let's then sum those two equations up, and we get $x-y+y-z=q_1+q_2$ and finally $x-z=q_1+q_2$. Hence, we got that x-z is a sum of two rational numbers and thus is rational itself. Therefore, the relation R is transitive. \square
 - ii. It is not. Consider $x=\sqrt{2},\ y=1,$ and $z=\sqrt{2}+1.$ Then $x-y=\sqrt{2}-1$ thus is irrational and $y-z=1-(\sqrt{2}+1)=-\sqrt{2}$ hence, is also irrational. However, $x-z=\sqrt{2}-(\sqrt{2}+1)=\sqrt{2}-\sqrt{2}-1=-1$ which is rational. Therefore, the relation R is not transitive. \square
 - iii. It is not. Consider x=1, y=2, and z=4. Then |x-y|=1 and |y-z|=2. However, |x-z|=3>2. Hence, the relation R is not transitive. \square
- 12. (a) It is reflexive. Suppose that $x \in R \cap S$. Then $x \in R$ and $x \in S$. Since R and S are reflexive, $(x, x) \in R$ and $(x, x) \in S$. Therefore, $(x, x) \in R \cap S$. \square
 - (b) It is reflexive. Suppose that $x \in R \cup S$. Then, without a loss of generality, let $x \in S$. Now, since S is reflexive, $(x, x) \in S$ and thus, $(x, x) \in R \cup S$. \square
 - (e) It is transitive. Suppose that $(x,y), (y,z) \in R \cap S$. Then $(x,y), (y,z) \in R$ and $(x,y), (y,z) \in S$. Since R,S are transitive, $(x,z) \in R$ and $(x,z) \in S$. Finally, $(x,z) \in R \cap S$ and $R \cap S$ is transitive. \square
 - (f) It is transitive. Suppose that $(x,y), (y,z) \in R \cup S$. Then, without a loss of generality, $(x,y), (y,z) \in R$. Since R is transitive, $(x,z) \in R$ and $(x,z) \in R \cup S$. Therefore, $R \cup S$ is transitive. \square

4.4

- 1. (a) Yes, it is an equivalence relation since it satisfies all the criteria: reflexive, transitive, symmetric.
 - 1. It is reflexive, since $(a, a), (b, b), (c, c) \in R$.
 - 2. It is transitive. $(a, a), (a, c) \in R$ and $(a, c) \in R$; $(c, a), (a, a) \in R$ and $(c, a) \in R$; $(c, c), (c, a) \in R$ and $(c, a) \in R$; $(a, c), (c, c) \in R$ and $(a, c) \in R$.
 - 3. It is symmetric. $(a,a) \in R$ and $(a,a) \in R$; $(b,b) \in R$ and $(b,b) \in R$; $(c,c) \in R$ and $(c,c) \in R$; $(a,c) \in R$ and $(c,a) \in R$; $(c,a) \in R$ and $(a,c) \in R$.
 - (b) No, it is not since $(b, a), (a, c) \in R$ but $(b, c) \notin R$ (it is not transitive).
- 3. It is not. For a relation to be the equivalence relation, it must be reflexive, transitive, symmetric. It is not transitive since if we have three lines x, y, z in the euclidean space and if $x \perp y$ and $y \perp z$, then $y \not\perp z$ (because $y \parallel z$). As a side note, it is not reflexive either since the line cannot be perpendicular to itself.

9 (a)