数学 4 A 期末試験問題

亀谷 幸生 ・ 栗原 将人

2017 年度 春学期

回答欄には、答だけでなく、計算の過程も (回答欄のスペースの範囲内で) 書くこと。

- $\widehat{\ \ \ }(1)$ 行列 A の階数 $\operatorname{rank} A$ を求めなさい。
- (2) \mathbf{R}^{4} の線形部分空間 $\{\mathbf{x} \mid A\mathbf{x} = \mathbf{0}\}$ の基底と次元を求めなさい。
- (3) $\mathbf{R}^{\mathbf{4}}$ の線形部分空間 $\{A\mathbf{x} \mid \mathbf{x} \in \mathbf{R}^{\mathbf{4}}\}$ の基底と次元を求めなさい。
- **2.** k を $k \neq \pm 1$ をみたす実数とする。 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 を n 次元ベクトルとする。 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 が 1 次独立のとき、 $\mathbf{a}_1 + k\mathbf{a}_2$, $\mathbf{a}_2 + k\mathbf{a}_1$, \mathbf{a}_3 も 1 次独立であることを証明しなさい。
- **3.** 2 次行列 A の固有多項式は重解 λ を持つとする。2 次ベクトル \mathbf{p}_2 は $\mathbf{p}_2 \neq \mathbf{0}$ であり、また λ に対する固有ベクトルではないとする。 $\mathbf{p}_1 = (A \lambda I)\mathbf{p}_2$ とおく (I は単位行列)。 \mathbf{p}_1 , \mathbf{p}_2 は一次独立であることを証明しなさい。

[裏に続く]

P, + (>1 -A) P=0,

- **4. (1)** 座標平面における、直線 $y = \sqrt{3} x$ に関する対称変換に対応する 行列 A を求めなさい (答だけでよい)。
- (2) (1) で求めた行列 A を対角化しなさい。すなわち、 $P^{-1}AP$ が対角行列となるような P とそのときの $P^{-1}AP$ を求めなさい。

5.

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$$

とおくとき、正の整数 n に対して A^n を求めなさい。 - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

- **6.(1)** 2 次行列 A で $A \neq O$, $A \neq I$ であり、 $A^2 = A$ となるものを一つ 与えなさい (答だけでよい)。ここに O は零行列、I は単位行列である。
- (2) ハミルトン・ケイリーの定理を必要なら用いて、(1) の性質をみたす 行列 A は対角化できることを証明しなさい。
- 7. $\mathbf{a}_1,...,\mathbf{a}_n$ および $\mathbf{b}_1,...,\mathbf{b}_n$ を共に \mathbf{R}^n の基底であるとする。このとき、

$$(\mathbf{a}_1...\mathbf{a}_n) = (\mathbf{b}_1...\mathbf{b}_n)P$$

をみたす n 次行列 P が存在することを証明しなさい。さらに、P が正則行列であることを証明しなさい。

以上

 $\chi = 25.$

2