```
In [3]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
```

In [4]: df=pd.read_csv(r"C:\Users\rubin\Downloads\Advertising.csv")
df

8.7 18.4

Out[4]:		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
	195	38.2	3.7	13.8	7.6
	196	94.2	4.9	8.1	14.0
	197	177.0	9.3	6.4	14.8
	198	283.6	42.0	66.2	25.5

200 rows × 4 columns

8.6

199 232.1

In [5]: df.head(15)

71	11	-		- 1	
U	ľ	L	ı ɔ	- 1	
			_	ы	

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
5	8.7	48.9	75.0	7.2
6	57.5	32.8	23.5	11.8
7	120.2	19.6	11.6	13.2
8	8.6	2.1	1.0	4.8
9	199.8	2.6	21.2	15.6
10	66.1	5.8	24.2	12.6
11	214.7	24.0	4.0	17.4
12	23.8	35.1	65.9	9.2
13	97.5	7.6	7.2	13.7
14	204.1	32.9	46.0	19.0

In [6]: df.tail()

Out[6]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	Radio	200 non-null	float64
2	Newspaper	200 non-null	float64
3	Sales	200 non-null	float64

dtypes: float64(4) memory usage: 6.4 KB

```
In [8]: plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True)
```

Out[8]: <Axes: >

Ridge and Lasso Regression

```
In [9]:
    from sklearn.linear_model import Lasso,Ridge
```

```
In [10]: df.drop(columns=["Radio","Newspaper"],inplace=True)
    sns.pairplot(df)
    df.sales=np.log(df.Sales)
```

C:\Users\rubin\AppData\Local\Temp\ipykernel_22748\1465564857.py:3: UserWarnin
g: Pandas doesn't allow columns to be created via a new attribute name - see
https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access
(https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access)
df.sales=np.log(df.Sales)


```
In [11]: features = df.columns[0:2]
    target = df.columns[-1]
    #X and y values
    X = df[features].values
    y = df[target].values
    #splot
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randout print("The dimension of X_train is {}".format(X_train.shape))
    print("The dimension of X_test is {}".format(X_test.shape))
    #Scale features
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

The dimension of X_{train} is (140, 2) The dimension of X_{test} is (60, 2)

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [13]: #Ridge Regression Model
    ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(X_train, y_train)
    test_score_ridge = ridgeReg.score(X_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9900167746680466 The test score for ridge model is 0.9888279083610404

```
In [14]: plt.figure(figsize=(10,10))
   plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markers
   #plt.plot(rr100.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color
   plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,
   plt.xticks(rotation=90)
   plt.legend()
   plt.title("comparison plot of Ridge,Lasso and Linear regression model")
   plt.show()
```

comparison plot of Ridge, Lasso and Linear regression model


```
In [15]: print("\nLasso Model: \n")
    lasso = Lasso(alpha = 10)
    lasso.fit(X_train,y_train)
    train_score_ls =lasso.score(X_train,y_train)
    test_score_ls =lasso.score(X_test,y_test)
    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0
The test score for ls model is -0.0064111102763571015

In [16]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "ba

Out[16]: <Axes: >


```
In [17]: from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).
#score
print(lasso_cv.score(X_train, y_train))
print(lasso_cv.score(X_test, y_test))
```

0.9999999677147366

0.9999999641980227

```
In [18]: plt.figure(figsize=(10,10))
   plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markers
   plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,col
   plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,
   plt.xticks(rotation=90)
   plt.legend()
   plt.title("comparison plot of Ridge,Lasso and Linear regression model")
   plt.show()
```

comparison plot of Ridge, Lasso and Linear regression model

