Análisis de Sistemas Dinámicos Introducción 2023-I

Ing. Carlos E. Cotrino B.M Sc. Ing. Alexander Caicedo D. PhD.

Contenido

- 1. Objetivo de la asignatura
- 2. Resultados de aprendizaje
- 3. Ubicación en el plan de estudios
- 4. Contenido del curso
- 5. Metodología
- 6. Evaluación

Descripción

En este curso de Sistemas Dinámicos se plantean modelos matemáticos de sistemas continuos y discretos, así como las herramientas para linealización, análisis, solución y simulación de sistemas empleando MATLAB® y SIMULINK®.

Los sistemas que se estudian son eléctricos, mecánicos, electromecánicos, hidráulicos, térmicos y biológicos; lineales y no lineales.

También se plantea un procedimiento básico para estimación de parámetros.

- Seleccionar y aplicar métodos para modelar y solucionar sistemas físicos de diferente naturaleza (NUCLEAR A-D y G) (CDIO 2.3.1-2.3.2 y 3.2.5)
- Establecer las condiciones básicas para desarrollar modelos matemáticos de sistemas reales y sus analogías (NUCLEAR E y G). (CDIO 2.3.1 - 2.3.4)
- Entender las propiedades de sistemas dinámicos realimentados (NUCLEAR F) (CDIO 2.3.1 2.3.2).
- Construir modelos lineales en variables de estado para sistemas no lineales (NUCLEAR C) (CDIO 2.3.1-2.3.2).

Ubicación en el Plan de Estudios

Programa

Ingeniería Mecatrónica

Ingeniería Electrónica

Ingeniería Mecánica

Ingeniería Biomédica

Cuarto

Semestre

Cuarto

Semestre

Quinto

Semestre

Sexto Semestre

Áreas del Conocimiento

Electrónica

Circuitos digitales y analógicos

Mecánica y diseño

Modelo y control de sistemas biológicos

Ubicación en el Plan de Estudios

Programa

Ingeniería Mecatrónica

Ingeniería Electrónica

Ingeniería Mecánica

Ingeniería Biomédica

Cuarto

Semestre

Cuarto

Semestre

Quinto

Semestre

Sexto Semestre

Prerrequisitos

Matemáticas II

Interacciones y Ondas

Fluido y termodinámica

Ecuaciones Diferenciales Asignaturas Cursados

Circuitos eléctricos

Circuitos analógicos

Contenido del Curso

Modelos de sistemas empleando variables de estado.

Análisis de sistemas continuos y discretos.

Linealización de elementos y de sistemas.

Soluciones numéricas y simulación.

Modelos de sistemas eléctricos, mecánicos, electromecánicos, hidráulicos, térmicos y biológicos.

Metodología

Trabajo Individual

Trabajo en Clase

Trabajo en Casa

- Preparación del tema
- Revisión de notas de clase

- Clase magistral activa
- Talleres
- Prácticas

- Tareas-Talleres
- Elaboración de informes

Material disponible en Bright Space

Presentaciones

Notas de clase

CAPITULO 1. REPRESENTACIONES DE SISTEMAS

OBJETIVOS

- Utilizar datos, indicios e información para formular las ecuaciones de un sistema (CDIO 2.1.1.1)
- Identificar suposiciones y fuentes de error (CDIO 2.1.1.2)
- Describir las abstracciones necesarias para definir y modelar un sistema. (CDIO 2.3.2.1)
- Identificar las interfaces esendales entre los elementos del sistema (CDIO 2.3.2.3)
- Identificar sistemas propios según una disciplina y sistemas con interacción entre áreas (CDIO 2.3.2.4).

Talleres

PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE INGENIERIA DEPARTAMENTO DE ELECTRONICA 031584 ANÁLISIS SISTEMAS DINAMICOS

TALLER 1. VARIABLES DE ESTADO SISTEMAS CONTINUOS Y DISCRETOS

OBJETIVOS

- Utilizar datos, indicios e información para formular las ecuaciones de un sistema (CDIO 2.1.1.1)
- 2. Identificar suposiciones y fuentes de error (CDIO 2.1.1.2)
- Describir las abstracciones necesarias para definir y modelar un sistema. (CDIO 2.3.2.1)
- 4. Identificar las interfaces esenciales entre los elementos del sistema (CDIO 2.3.2.3)

Componente	Fecha	Porcentaje
Primer Parcial	Semana 06 y 07	25 %
Segundo Parcial	Semana 11 y 12	25%
Examen Final	Semana 17	25%
Proyectos, talleres y experimentos	Todo el semestre	25%

Los quices serán incluidos como parte de la nota de los parciales

Horarios

Asignatura de 4 Créditos implica 192 Horas de trabajo semestrales divididas así:

64 Horas de clase presenciales (4 h/semana)

32 Horas de trabajo práctico (2h/semana)

96 Horas de trabajo fuera del aula de clase (6 h/semana)

Contacto

Nombre: Carlos E. Cotrino B. M Sc

Correo: cotrino.carlos@javeriana.edu.co

Monitores:

Correo:

Entregas de talleres e informes por BS

Curso 2862: Miércoles y Jueves 9-11 AM- Monitoria - Laboratorio

Martes 9-11

Curso 2928: Miércoles y Viernes 11-1. Monitoria Lunes 4-6 PM