Anomalias Cromossômicas e Síndromes Genéticas

Fontes de DNA para análise Cromossômica

- 1. Sangue
- 2. Medula Óssea
- 3. Fragmento de Pele
- 4. Líquido Amniótico
- 5. Tumores
- 6. Saliva, unhas, cabelo

Bandas G

CHROMOSOME 7

Montagem do cariótipo

Citogenética Molecular

II. SKY (Spectral Karyotyping)

CITOGENÉTICA

Estudo dos cromossomos, sua estrutura e herança, aplicado à prática da genética médica.

Mecanismos responsáveis por *fenótipo anormal*:

- falta (deleção) ou excesso (duplicação) de material cromossômico;
- Perda de um ou mais genes em um ponto de quebra seguido ou não de rearranjo das partes quebradas;
- Posição inadequada de um gene no cromossomo.

Alterações cromossômicas resultam em:

- Atraso no desenvolvimento (andar, falar, reconhecer pessoas, etc...
- Atraso no desenvolvimento mental
- Face dismórfica
- Malformações de órgãos e anatômia
- Baixa Estatura
- Deficiência Mental
- Genitália Ambígua
- Outros

Sinais de problemas relacionados a herança genética

- -Natimortos e Óbito neonatal
- -Infertilidade ou Abortos Recorrentes
- -Neoplasia (cariótipo de tecidos)
- -Histórico Familiar Positivo
- -Gestação em mulher com idade elevada (>35anos)

Tipos de Anomalias Cromossômicas

 Numéricas: quando ocorre mudança no número de cromossomos nas células;

 Estruturais: quando há mudança na forma dos cromossomos

Causas das Anomalias Cromossômicas

- -Agentes infecciosos deletérios à formação dos orgãos fetais como os vírus da rubéola, da imunodeficiência humana (HIV), o vírus Zika, o citomegalovírus; o Treponema pallidum e o Toxoplasma gondii.
- -O uso de drogas lícitas e ilícitas, de medicações teratogênicas e endocrinopatias maternas também são causas de anomalias.
- A Radiação

Estima-se que 15 a 25% das anomalias ocorram devido às alterações genéticas, 8 a 12% são causadas por fatores ambientais e 20 a 25% envolvem genes e fatores ambientais (herança multifatorial).

Porém, a grande maioria (40 a 60%) das anomalias ainda é de origem desconhecida.

Existe correção para as Anomalias Cromossômicas?

Ainda que as anomalias cromossômicas e genéticas não possam ser corrigidas, alguns defeitos congênitos podem às vezes ser prevenidos.

Por exemplo: uso do folato (ácido fólico) para prevenir defeitos do tubo neural ou triar os pais para saber se são portadores de certas anomalias genéticas, vacinas e não usar medicamentos durante a gestação sem indicação médica ou drogas;

Um embrião concebido por meio de fertilização in vitro também pode ser examinado quanto à presença de uma anomalia genética antes de ser transferido para o útero da mulher para garantir a viabilidade.

Anomalias cromossômicas numéricas

Aneuploidias

Alteração numérica de cromossomos.

O indivíduo possui cromossomos a mais ou a menos no cariótipo.

- Trissomias;
- Monossomias;
- Tetrassomias.

Poliploidias: Variações naturais ou provocadas no número de cromossomos das células, onde um ou mais conjuntos cromossômicos são adicionados às células.

MODIFICAÇÕES CROMOSSÔMICAS NUMÉRICAS (ANEUPLOIDIAS)

- Trissomias completas (3 cópias de um cromossomo)
- Monossomias (um cromossomo apenas)
- Triploidia (3 conjuntos de cromossomos; 3n)
- Tetraploidia (4 conjuntos de cromossomos; 4n)

ANEUPLOIDIA - Monossomia X

Síndrome de Turner (Cariótipo 45,X)

Mosaicismo Cromossômico

Mosaico é uma falha genética que ocorre durante o desenvolvimento do embrião, que passa a ter diferentes linhagens celulares.

O indivíduo mosaico tem dois materiais genéticos distintos: um formado pela união dos gametas do pai e da mãe, e o outro que aparece devido à mutação genética.

Geralmente a mutação ocorre em uma célula do embrião, envolvendo a perda ou a duplicação de um cromossomo, assim a pessoa terá em seu organismo dois conjuntos de cromossomos.

Mosaicismo Cromossômico

- Presença de dois ou mais conjuntos cromossômicos;
- Causa: não separação (não disjunção) nas divisões mitóticas após a formação do zigoto;
- Ex: cariótipo 47, XY,+21/46,XY

Mosaicismo Cromossômico

A pessoa portadora de mosaicismo poderá desenvolver células normais e células que contém a mutação genética, em proporções variáveis.

Quando a mutação <u>afeta somente as células reprodutivas (óvulos</u> <u>e espermatozoides)</u>, trata-se de mosaicismo de linhagem germinativa que poderão ser herdadas.

O mosaicismo somático ocorre quando a mutação afeta outras células do corpo humano. <u>Neste caso poderá ou não haver problemas para o organismo.</u>

Aneuploidia por Não-disjunção

Anomalias Cromossômicas

- Anomalias Numéricas: são mudanças no número de cromossomos nas células do indivíduo, conforme sua espécie. Ex.: Humanos (2n=46); Elefante (2n=92), peixe-boimarinho (2n=48), galinha (2n=38), Centeio (2n=14), batata doce (2n=90).
- Anomalias estruturais: são mudanças na forma ou estrutura dos cromossomos. Pode haver quebra seguidas de perda ou translocações de partes dos cromossomos ou o cromossomo formar anel.

Síndrome de Down

Em 95% dos casos de Síndrome de Down o cariótipo revela que TODAS as células estudadas têm a **Trissomia Simples do cromossomo 21**, ou seja **3 cromossomos 21 por célula** ao invés de 2 (normal).

Em 2% a 3% dos cariótipos de pessoas com Síndrome de Down podemos encontrar uma mistura de células: uma porcentagem das células com a trissomia do 21 e uma outra porcentagem sem a Trissomia. A isto chamamos de MOSAICO.

Síndrome de Down (trissomia do 21)

Síndrome de Down

Síndrome de Down - Fenótipo

- Epicanto;
- Manchas de Brushfield na íris;
- Orelhas pequenas, baixa implantação, sobredobramento de ramo horizontal de hélix;
- Perda de audição;
- Defeitos cardíacos estruturais em cerca de 40% dos casos;

Síndrome de Down

Síndrome de Down (trissomia do 21)

Incidência +/- 1/700 RN;

- Baixa estatura relativa;
- Deficiência mental; Hipotonia;
- Microcefalia, braquicefalia
- Perfil facial achatado;
- Cabelos finos;
- Fendas palpebrais oblíquas para cima;
- Boca permanentemente aberta;
 Língua protrusa, grande e fissurada;

Síndrome de Down - Fenótipo

A 5mm nuchal skin fold

- Pés largos e curtos;
- Braquidactilia;
- Aumento da distância entre 1° e 2 artelhos;
- Excesso de pele na nuca;
- Os homens em sua maioria são inférteis (hipogonadismo);

Síndrome de Down (trissomia do 21)

Síndrome de Edwards = Tri 18

Síndrome de Edwards (Trissomia do 18)

- · Incidência de +/- 1/8.000 RN;
- Baixo peso ao nascimento;
- Crises de cianose;
- Deficiência mental grave;
- Tremores e convulsões na 1^a semana de vida;
- Hipertonia;
- Dolicocefalia;
- Orelhas malformadas;

Síndrome de Edwards (Trissomia do 18)

Síndrome de Edwards - Fenótipo

Síndrome de Edwards (Trissomia do 18)

- Quirodáctilos com posição característica;
- Hipoplasia das unhas;
- Pés em mata-borrão;
- Dorsiflexão do 1° artelho;
- Várias malformações congênitas;
- Defeitos cardíacos congênitos (septo ventricular);
- Anomalias renais.

Síndrome de Patau = Tri 13

Síndrome de Patau (Trissomia do 13)

- Incidência de cerca de 1/12.000 RN;
- Baixo peso ao nascimento;
- Convulsões e crises de apnéia;
- Microcefalia;
- Fontanelas amplas;
- Microftalmia; Hipotelorismo
- · Lábio leporino;
- Fenda palatina;

Síndrome de Patau – Trissomia do 13

47,XY,+13

Síndrome de Patau - Fenótipo

Síndrome de Patau (Trissomia do 13)

- Falhas circunscritas do couro cabeludo;
- Polidactilia;
- Alterações renais;
- Alterações cardíacas.

Síndrome de Klinefelter 46/47 XX/XY +

- · Incidência de cerca de 1/1.000 RN masc.;
- Estatura geralmente elevada;
- Envergadura maior que a estatura;
- Infertilidade;
- Hipogonadismo hipergonadotrófico;
- Distribuição de gordura e pelos corpóreos femininos;
- Testículos pequenos com azoospermia;
- Cariótipo mais comum: 47,XXY
- Outros cariótipos: 47,XXY/46,XY;48,XXXY; 48,XXYY

Síndrome de Klinefelter

Síndrome de Klinefelter (Cariótipo 47,XXY)

Síndrome de Turner

 Incidência de 1/2.500 a 3.000 de nascidos vivos;

-Sexo feminino.

Síndrome de Turner

A síndrome de Turner é causada por um cromossomo sexual ausente ou incompleto.

Os sintomas incluem baixa estatura, puberdade tardia, infertilidade, malformações cardíacas e certas dificuldades de aprendizagem.

O tratamento envolve terapia hormonal. Um tratamento de fertilidade pode ser necessário para mulheres que desejam engravidar.

Síndrome de Turner – Número de cromossomos varia

- 45,X em 53%
- 45,X/46,XX em 15%
- 46,X,i(Xq) em 10%
- 45,X/46,X,i(Xq) em 8%
- 46,X,Xp- ou Xq- em 6%

Anomalias Cromossômicas Estruturais

Anomalias estruturais são <u>mudanças na forma/estrutura</u> dos cromossomos.

Tipos de Anomalias Cromossômicas Estruturais

- Deleção
- Duplicação
- Inversão
- ▶ Translocação
- Formação em anel
- Isocromossomo
- Cromossomo marcador

Deleções

- Perdas de segmentos cromossômicos:
 - deleção terminal simples quebra, sem reunião das extremidades

Deleções

Deleção Intersticial – dupla quebra do cromossomo, perda de um segmento interno do cromossomo seguida da soldadura da parte perdida em outra posição.

Cri-du-chat
Síndrome do miado de gato
Deleção de 5p

- •Incidência de +/- 1/50.000 RN;
- Baixo peso ao nascimento;
- Hipotonia;
- Choro fraco semelhante ao miado do gato;
- Microcefalia;
- Face arredondada
- Hipertelorismo ocular; Epicanto; Estrabismo;
- Orelhas de displásicas;
- Cardiopatia congênita;
- Prega palmar única.

Cri du chat – Cromossomo 5

Deleção no braço p do cromossomo 5 (5p)

Duplicações

- Repetição de um segmento cromossômico, causando um aumento do número de genes ou outras sequências.
 - maioria resultante de crossing over desigual entre cromátides homólogas durante a meiose, produzindo segmentos adjacentes duplicados ou deletados.

INVERSÕES CROMOSSÔMICAS

- A inversão paracêntrica acontece quando a região invertida não envolve o centrômero.
- A inversão pericêntrica acontece quando a região que sofre a inversão envolve o centrômero.

Inversão paracêntrica herdada em homozigose de 12p e 12q

Cromossomo em Anel

- Geralmente originam-se da quebra de ambos os braços de um cromossomo com subsequente fusão das extremidades e perda de segmento distal
 - ► 1:27.000 nascimentos
 - pode ocorrer em todos os cromossomos, mais comum no 13 e 18
 - pode resultar em monossomia das regiões onde ocorreram as deleções
 - cromossomo marcador representa uma trissomia parcial

Cromossomo em Anel

- ► Geralmente originam-se da quebra de ambos os braços de um cromossomo com a subseqüente fusão das extremidades e perda de segmento distal
 - **▶** 1:27.000 nascimentos
 - pode ocorrer em todos os cromossomos, mais comum no 13 e 18
 - pode resultar em monossomia das regiões onde ocorreram as deleções
 - cromossomo marcador representa uma trissomia parcial

Translocação Recíproca equilibrada

Translocação Robertsoniana

Cromossomos acrocêntricos

Translocação Robertsoniana

Alterações cromossômicas estruturais

Exercícios de fixação

1. Em uma certa espécie de pássaro os machos apresentam conjunto cromossômico 2n = 6, XY. Porém, foi detectado um indivíduo com o cariótipo apresentando um cromossomo a mais, conforme a figura:

Marque a alternativa correta:

A questão refere-se a um caso de:

- a) Monossomia
- b) Trissomia
- c) aneuploidia

Exercícios de fixação:

- 2. Uma mulher com síndrome de Turner apresenta qual conjunto cromossômico?
- 3. A síndrome de Klinfelter acontece por qual motivo?
- 4.Na espécie humana a anomalia conhecida como Síndrome de Down deve-se a existência de:
- > 5. A síndrome de Cri du chat acontece devido a: