This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

- 1. A device for reducing sloshing of fuel in a fuel tank of a motor vehicle, having at least one slosh-inhibiting element, characterized in that the slosh-inhibiting element is designed as a component which is to be manufactured separately from the fuel tank and can be fitted through an installation opening of the fuel tank.
- 2. The device as defined in claim 1, characterized in that the slosh-inhibiting element can be moved from an installation position of small dimensions into an operational position of large dimensions in relation to the installation position.
- 3. The device as defined in claim 1 or 2, characterized in that the slosh-inhibiting element is fastened to a flange closing the installation opening of the fuel tank.
- 4. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting element and the wall of the fuel tank have latching means which correspond to one another.
- 5. The device as defined in claim 1 characterized in that the slosh-inhibiting element has a stabilizing part and/or a fastening part for the securing of at least one slosh-inhibiting part.
- 6. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting part is manufactured from a material having a shape memory.

- 7. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting element is prestressed into the installation position.
- 8. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting part is manufactured from an elastic material.
- 9. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting element is designed such that it can be rolled up.
- 10. The device as defined in claim 1 or 2 characterized in that the slosh-inhibiting part is mounted pivotably on the fastening part.
- 11. The device as defined in claim 5 characterized in that the fastening part has a guide element for moving the slosh-inhibiting part from the installation position into the operational position.
- 12. The device as defined in claim 1 or 2 characterized by a spring element for prestressing the slosh-inhibiting element against the bottom of the fuel tank.
- 13. The device as defined in claim 5 characterized in that the fastening part is adjusted telescopically by a spring element.

- 14. The device as defined in claim 5, characterized by a plurality of slosh-inhibiting parts which are arranged one above another at a designated distance from one another.
- 15. The device as defined in claim 5, characterized in that the slosh-inhibiting part is designed as a band of wide design corresponding to the height of the fuel tank with recesses arranged therein.