Source: Computer Graphics by Donald Hearn and M. Pauline Baker

Proporties of Circles:-

A circle is defined as the set of points that are all at a given distance or from a center position (x, y).

Plotting wing direct methods :-

O fythagorean theorem in Cartenan Coordinates as

$$(x - x_c)^2 + (y - y_c)^2 = x^2$$

 $y = y_c \pm \sqrt{x^2 - (x_c - x_c)^2}$ — ()

Plotting using this equation with $(x_c, y_c) = (0, 0)$

- -> 5 pacing between the plotted pixels is not uniform.
- -> (ouriderable computation at each step.
- -> campling x by fixing y?
- Delating boundary points wing polar coordinates to and O.

$$x = x_c + r \cos \theta \qquad -0$$

$$y = y_c + r \sin \theta$$

Equation 0 -> multiplications & square root calculations

Egnation 3 -> square root & rignom etric calculations.

Midpoint Uscle Myorithm/

Bresenham's Circle Algorithm: -

Sampling at unit intervals and determine the closest pivel position to the specified circle path at Cach step.

$$f_{ancle}^{(x,y)} = x^2 + y^2 - x^2$$

$$f_{ancle}^{(x,y)} = \begin{cases} \langle 0, & \text{if } (x,y) \text{ is inverte wirde boundary.} \\ = 0, & \text{if } (x,y) \text{ is on the wirde boundary.} \\ \geq 0, & \text{if } (x,y) \text{ is outside wirde boundary.} \end{cases}$$

Which pixel?

(NK+1, yK) or (NK+1, yK-1)

De cirion Parameter?

Circle function finde (x,y) evaluated at the mid point between the two pixels.

$$P_{K} = fande(x_{K}+1) y_{K}-1/2$$

$$= (x_{K}+1)^{2} + (y_{K}-1/2)^{2} - s^{2}$$

Algonothm:

1. Input radius or and circle center (rcyc), and obtain the first point on the circumference of a circle centered on the origin as

2. Calculate the initial value of the decision parameter as $\rho_0 = \frac{5}{4} - r$

3. At each no position, starting at k=0, perform the following test:-

> If Px<9, the next point along

the circle centered on (0,0) is (m_{k+1}, y_k) , and

PK+1 = PK+22KH+1

-> Otherwise, the next point along
the circle centered on (0,0) is

(xK+1,yK) and

 $p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$ where $2x_{k+1} = 2x_k + 2$ and $2y_{k+1} = 2y_k - 2$

- 4. Determine symmetry points in the other seven octants.
- S. More each calculated pixel position (n,y)
 onto the circular path centered on (nc,yc)
 and plot the coordinate values:

n= n+ nc, y=y+yc

6. Repert steps 3 through 5 until nzy.

Example: - x = 10, for first quadrant, $p_0 = 1-r = -9$

Origin (0,0) is the center

hitial point is (20, y0) = (0, 10)

and initial incremental terms for alerbethy

decimen parameters are

K	PK	(XK+1, YK+1)	2x _{kti}	Zykti
0	-9	(1, 10)	2	20
Ī	-6	(2, 10)	4	20
2	-1	(3,10)	6	20
3	6	(4,9)	8	18
Ÿ	-3	(5,9)	10	18
5	8	(6,8)	12	16
6	5	(4,7)	14	14

Properties of Ellipses:

$$\left(\frac{n-n_c}{x_n}\right)^2 + \left(\frac{y-y_c}{y_0}\right)^2 = 1 \qquad -0$$

$$u = u_c + k_x \cos \theta \qquad --- 2$$

$$y = y_c + x_y \sin \theta$$