A Laplacian-based Error Minimization Algorithm for Distance Geometry Problem

Zhenli Sheng szl@lsec.cc.ac.cn

Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science,
Chinese Academy of Sciences

Oct 19, 2014 ORSC, Xuzhou

- Problem introduction
- 2 Laplacian matrix
- 3 Nonlinear dimensionality reduction
- 4 Laplacian eigenmap-based localization algorithm
- **5** Conclusion and Future Work

Problem introduction

the Problem

Distance Geometry Problem (DGP)

For a graph G=(V,E), given a distance matrix D (L and U, respectively) on E and an integer d, find $x_1,x_2,\ldots,x_n\in\mathbb{R}^d$, such that

$$||x_i - x_j|| = d_{ij}, \quad (i, j) \in E.$$
 (1)

or

$$|u_{ij}| \le ||x_i - x_j|| \le |u_{ij}|, \quad (i, j) \in E.$$
 (2)

- ► NP-hard in general
 - polynomial-time solvable instances: K-trilateration graph
- Applications: protein structure determination, sensor network localization, graph drawing, multidimensional scaling, etc

In most instances, distances are local, sparse and noisy.

Solution Methods

- ▶ Matrix Decomposition Method (Blumenthal 1953, Torgerson 1958)
- ► The Embedding Algorithm (Crippen-Havel 1988)
- ► Global Smoothing Algorithm (Moré-Wu 1997)
- ► Geometric Buildup Method (Dong-Wu 2002, Sit-Wu-Yuan 2009, Sheng-Yuan 2014)
- ► SDP Relaxation Method (Biswas-Toh-Ye 2007)
- ► Nearest Euclidean Distance Matrix (Qi-Yuan 2013)
- ► The Branch-and-Prune Algorithm (Liberti-Lavor-Maculan-Mucherino 2014)
- ▶ and so on ...

Models: error functions

The problem is usually modeled as an unconstrained global optimization problem.

Stress function

$$Stress(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} \omega_{ij} (\|x_i - x_j\| - d_{ij})^2$$
 (3)

- ullet ω_{ii} specify the degree of confidence or simply weights to balance all the terms
- lacksquare $\omega_{ii}=1$ raw stress function
- lacksquare $\omega_{ij}=1/d_{ii}^2$: relative errors
- ► Smoothed Stress function

$$SStress(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} \omega_{ij} (\|x_i - x_j\|^2 - d_{ij}^2)^2$$
 (4)

► Absolute Error function

AbsErr
$$(x_1, x_2, ..., x_n) = \sum_{(i,j) \in E} \omega_{ij} |||x_i - x_j||^2 - d_{ij}^2|$$
 (5)

our proposed function

$$f(x_1, x_2, \dots, x_n) = \sum_{(i,j) \in E} \omega_{ij} h(\frac{\|x_i - x_j\|}{d_{ij}}), \quad h(x) = \begin{cases} \frac{1}{2}(x - 1)^2 & x \ge 1\\ x - 1 - \ln(x) & x < 1 \end{cases}$$
(6)

Motivation: a short story

When I was an undergraduate student, I read the papers about Geometric Buildup Method and wrote MATLAB code to implement it, I found that

Error Accumulation is a DEVIL!

I came up with two ideas:

- ► design strategies to prevent error accumulation (linear/nonlinear least square)
- ► divide and conquer (Laplacian matrix)

2 Laplacian matrix

Laplacian matrix

Definition: Laplacian matrix

Given a graph G=(V,E) and the parameter t, the Laplacian matrix L is defined by L=D-W, where

$$\omega_{ij} = \begin{cases} exp(-\|x_i - x_j\|^2/t) & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$
 (7)

and D is a diagonal matrix with

$$D_{ii} = \sum_{j \neq i} \omega_{ij}$$
.

$$L_{ij} = \begin{cases} -\omega_{ij} & i \neq j \\ \sum_{k \neq i} \omega_{ik} & i = j \end{cases}$$
 (8)

- ▶ Note that when $t = \infty$, W degenerates to the adjacency matrix.
- ► Research about Laplacian matrix is called spectral graph theory¹.
- ► Two normalized variations:

$$L_{sym} := D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

$$L_{rw} := D^{-1}L = I - D^{-1}W$$

¹Chung, Fan RK. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

Some properties of Laplacian matrix

For a graph G and its Laplacian matrix L with eigenvalues $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1}$

1. For every vector $f \in \mathbb{R}^n$ we have

$$f^{T}Lf = \frac{1}{2} \sum_{i,i=1}^{n} \omega_{ij} (f_i - f_j)^2$$
 (9)

- 2. L is symmetric and positive-semidefinite.
- **3.** λ_0 is always 0 because every Laplacian matrix has an eigenvector $v_0 = [1, 1, \dots, 1]^T$.
- 4. The number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph.

Proof of (1):

$$f^{T}LF = f^{T}Df - f^{T}Wf = \sum_{i=1}^{n} d_{ii}f_{i}^{2} - \sum_{i,j=1}^{n} f_{i}f_{j}\omega_{ij}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{ii}f_{i}^{2} - 2\sum_{i,j=1}^{n} f_{i}f_{j}\omega_{ij} + \sum_{j=1}^{n} d_{jj}f_{j}^{2} \right) = \frac{1}{2} \sum_{i,j=1}^{n} \omega_{ij}(f_{i} - f_{j})^{2}$$

3 Nonlinear dimensionality reduction

Nonlinear dimensionality reduction

Dimensionality Reduction Problem

Given a set of n points x_1, \ldots, x_n in \mathbb{R}^l , find a set of points y_1, \ldots, y_n in $\mathbb{R}^m (m \ll l)$ such that y_i "represents" x_i .

Relation to DGP:

- In noisy case, the distances can not be precisely realized in low-dimensional space.
- ► If the distances do not contradict with each other, the points can be precisely realized in high-dimensional space.
- ► a two-dimensional example

Optimal embedding

Problem: Map the weighted graph ${\it G}$ to a line such that the adjacent vertices stay as close as possible.

Let $y = (y_1, y_2, \dots, y_n)^T$ be such a map, so we want to minimize

$$\sum_{(i,j)\in E} (y_i - y_j)^2 \omega_{ij} = y^T L y$$
(10)

Therefore,

$$\min_{y^T D y = 1, y^T D e = 0} y^T L y \tag{11}$$

gives us a reasonable solution.

General case: Embed the graph into m-dimensional Euclidean space.

Let $Y = [y_1 \ y_2 \ \dots \ y_n]^T \in \mathbb{R}^{n \times m}$ that each row gives a coordinate. Similarity we need to minimize

$$\sum_{(i,i)\in E} \|y_i - y_j\|^2 \omega_{ij} = tr(Y^T L Y)$$
 (12)

Courant-Fischer Theorem

Courant-Fischer Theorem

Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ and corresponding eigenvectors v_1, v_2, \ldots, v_n . For $1 \leq k \leq n$, let S_k denote the span of v_1, \ldots, v_k (with $S_0 = \{0\}$), and let S_k^{\perp} denote the orthogonal complement of S_k . Then

$$\lambda_k = \min_{\|x\| = 1, x \in S_{k-1}^{\perp}} x^T A x = \min_{x \in S_{k-1}^{\perp}} \frac{x^T A x}{x^T x}$$

Nonlinear dimensionality reduction algorithm

Nonlinear dimensionality reduction algorithm framework (Belkin-Niyogi, 2002)

- Step 1 Constructing the adjacency graph
 (a) ϵ -neighborhood (b) k-nearest neighbors
- Step 2 Choosing the weights
 - (a) Heat kernel (b) Simple-minded
- **Step 3** Eigenmaps: $x_i \to (f_1(i), \dots, f_m(i))$, where $Lf_i = \lambda_i Df_i$, $0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_{n-1}$.

Grid points example 1

Figure 1: cut off=2, degree: [12,5,10], noise = 20%

Grid points example 2

Figure 2: cutoff=3, degree: [20,10,21.2], noise = 20%

a random example

another random example

Remarks about Laplacian eigenmap

- ► Accurate locations can not be recovered directly.
- ► Useful relative relation can be inferred.
- ► Balanced graph are preferred.

4 Laplacian eigenmap-based localization algorithm

Laplacian eigenmap-based localization algorithm

Laplacian Eigenmap-based Localization Algorithm for DGP

- **Step 1** Construct the Laplacian matrix L and calculate its eigenvalue decomposition $L = VDV^T$ such that the eigenvalues in D are in ascending order.
- **Step 2** Set X0 = V(:, 2: m+1) and scale it to the proper magnitude.
- Step 3 Using X0 as the initial point, apply error function minimization method to further improve the result.

Scaling method

- 1. Construct a new distance matrix \tilde{D} according to X0 and E.
- 2. Calculate

$$ratio = \frac{sum(D)}{sum(\tilde{D})}.$$

3. Set X0 = X0 * ratio.

Random example

Random example

Discussions

- ► Pros
 - very simple and fast
 - relatively robust to the noise
 - good in uniformly generated random instances
- ► Cons
 - sensitive to the parameter *t* and no theoretically-guaranteed good way to choose it
 - terrible in most of real protein instances, except for 1PTQ, 1HOE, 1AX8

possible distributed algorithm

5 Conclusion and Future Work

Conclusion and Future Work

► Conclusion

- Proposed a Laplacian Eigenmap-based algorithm for DGP, which is a totally new idea for solving this NP-hard problem.
- Finished some preliminary numerical experiments to show its efficiency.

► Future Work

- Figure out the problem with protein computation.
- Carefully study the parameters in Laplacian matrix.
- Develop distributed algorithm based Laplacian Eigenmap.

Thank you for your attention!

szl@lsec.cc.ac.cn