0 Opracowanie cz 1 z 4

Zagadnienia

Love kiss

- 1. Przewodnictwo elektryczne przewodników, półprzewodników i dielektryków. Wyjaśnić charakter przewodnictwa elektrycznego w dielektrykach.
- 2. Udowodnić, że rezystywność jest stałą materiałową.
- 3. Rezystancja skrośna, rezystancja powierzchniowa, rezystywność skrośna, rezystywność powierzchniowa. Definicje, jednostki, metody pomiarów.
- 4. Porównać i przedyskutować pomiar rezystancji skrośnej i powierzchniowej w układach dwu- i trójelektrodowym. Rola pierścienia ochronnego w badaniach rezystancji.
- 5. Przedstawić i objaśnić zależność prądu płynącego przez dielektryk od czasu.
- 6. Wpływ czynników zewnętrznych na wyniki pomiarów rezystancji.
- 7. Przenikalność elektryczna względna: definicja. Istota pomiaru pojemności kondensatora z dielektrykiem w układzie 2-elektrodowym i 3-elektrodowym. Przeanalizować wpływ konfiguracji elektrod na pomiar pojemności.
- 8. Mechanizmy polaryzacji dielektryków. Przedstawić zależność przenikalności elektrycznej względnej od częstotliwości i temperatury. Uzasadnić przebiegi charakterystyk.
- 9. Układy zastępcze dielektryku stratnego. Wyprowadzić zależność na $tg(\delta)$. Charakterystyki $tg(\delta) = f(freq)$.
- 10. Straty energii w dielektryku. Rodzaje strat, zależność od częstotliwości i temperatury. Straty w dielektrykach polarnych i niepolarnych. Straty w dielektrykach rzeczywistych.
- 11. Wpływ sposobu nakładania elektrod na pomiar pojemności. Przedstaw zasadę pomiaru C i $tg(\delta)$ metodą mostkową.
- 12. Wytrzymałość elektryczna. Wpływ czynników zewnętrznych. Sześciofluorek siarki, właściwości, zastosowania.
- 13. Co to jest elektret, metody wytwarzania, charakterystyczne parametry, zastosowania.
- 14. Właściwości magnetyczne ciał stałych. Krzywa magnesowania, przedstawić graficznie charakterystyczne punkty. Materiały magnetycznie miękkie i twarde, porównać. Przykłady.
- 15. Zjawisko Halla. Podać warunki jakie należy spełnić, aby to zjawisko wystąpiło. Jakie parametry materiałowe można wyznaczyć znając stałą Halla?
- 16. Właściwości mechaniczne ciał stałych i analiza cieplna materiałów.

Wojcieszak

- 1. Opisz budową i zasadę działania SEM.
- 2. Opisz artefakty występujące w SEM i skomentuj z czym związane jest ich występowanie.
- 3. Scharakteryzuj mody TOPO i COMPO w SEM (do czego służą, jaki jest ich algorytm, jak można rozróżnić obrazy zarejestrowane w tych modach).
- 4. scharakteryzuj sygnał EWR w SEM (w odpowiedzi uwzględnij charakterystykę współczynnika wstecznego rozpraszania).
- 5. Opisz i zilustruj efekty wykorzystywane do obrazowania topografii w SEM.
- 6. Jakie wymagania powinna spełniać próbka lub w jaki sposób można ją przygotować, aby mogła być obrazowana przy użyciu SEM.
- 7. Opisz budowę i zasadę działania TEM.
- 8. W jaki sposób należy przygotować próbkę na potrzeby TEM (opisz preparatykę np. z użyciem FIB).
- 9. Jakie informacje można uzyskać za pomocą TEM odpowiedź odnieś do modów: BFTEM, HRTEM, SAED.
- 10. Opisz budowę i zasadę działania STM (w odpowiedzi zawrzyj informację o modach i rodzaju próbek jakie można badać).
- 11. Opisz budowę i zasadę działania AFM.
- 12. Scharakteryzuj mody pracy AFM i napisz do jakich badań służą (zwłaszcza jakich próbek).
- 13. Jakie artefakty mogą się pojawić na obrazach AFM i z czym ich obecność będzie związana.
- 14. Na czym polega metoda OBIC i do charakteryzacji jakich materiałów jest ona stosowana.
- 15. Metoda transmisji światła na czym polega oraz jakie parametry można wyznaczyć na podstawie zmierzonych charakterystyk.

16. W jaki sposób można określić zwilżalność powierzchni nanomateriałów cienkowarstwowych.

Opracowanie

Love kiss

Przewodnictwo elektryczne przewodników, półprzewodników i dielektryków. Wyjaśnić charakter przewodnictwa elektrycznego w dielektrykach.

Przewodnictwo elektryczne- ruch ładunków elektrycznych w materiale pod wpływem pola elektrycznego

Nośniki ładunku są w stałym losowym ruchu. Po wprowadzeniu materiału w pole elektryczne, ruch staję się uporządkowany i rozpoczyna się przepływ prądu - prądu przewodnictwa, w dielektrykach zwanym prądem upływu (skrośnym lub powierzchniowym).

W przewodnikach nośnikami ładunku są uwolnione od jąder elektrony w paśmie przewodnictwa.

W półprzewodnikach i dielektrykach pomiędzy pasmem walencyjnym a pasmem przewodnictwa występuje istotna przerwa wzbroniona. Energia elektronów, potrzebna do przejścia elektronu do pasma przewodnictwa zależy od temperatury. W temperaturze pokojowej nie może występować przewodnictwo elektronowe w półprzewodnikach i dielektrykach.

W dielektryku w zasadzie nie ma swobodnych elektronów. Przewodzenie jest więc zawsze związane z ruchem jonów - **charakter przewodnictwa jest jonowy**. Przewodnictwo jest zależne od:

- liczby jonów w jednostce objętości
- ich ruchliwości
- struktury materiału

wielkości te z kolei są zależne od warunków zewnętrznych:

- natężenie pola elektrycznego
- czynników dysocjujących
- czasu działania pola elektrycznego
- liczby i rodzaju zanieczyszczeń

Ogólnie możemy powiedzieć, że przewodnictwo rzeczywistych izolatorów wiąże się z przewodnictwem typu jonowego, zawartością zanieczyszczeń oraz z nieregularnościami struktury krystalicznej.

Udowodnić, że rezystywność jest stałą materiałową.

Współczynniki materiałowe - liczby charakteryzujące materiał niezależnie od wielkości i kształtu próbki. Rezystywność jest właściwością odniesioną do jednostkowych wymiarów materiału więc nie zależy od jego wielkości.

Bardziej en.funky dowód:

Rezystywność, z racji bycia odwrotnością konduktywności, zależy wyłącznie od koncentracji nośników ładunków, wartości ładunków oraz ruchliwości nośników. Wszystkie te wartości nie zależą od wielkości czy kształtu próbki, a więc odwrotność ich iloczynu również od nich nie zależy. $\rho=\frac{1}{\sum n_i q_i u_i}$. Zaniedbano obecność prądu polaryzacyjnego.

Rezystancja skrośna, rezystancja powierzchniowa, rezystywność skrośna, rezystywność powierzchniowa. Definicje, jednostki, metody pomiarów.

- Rezystancja skrośna R_{ν} stosunek napięcia stałego doprowadzonego do próbki za pomocą elektrod do ustalonej wartości natężenia prądu płynącego między elektrodami na wskroś próbki bez uwzględnienia prądów powierzchniowych. Wyrażana jest w Omach $[\Omega]$
- Rezystancja powierzchniowa R_s -stosunek napięcia stałego doprowadzonego do próbki za pomocą elektrod do natężenia prądu płynącego między elektrodami na powierzchni próbki bez uwzględnienia prądów skrośnych. Wyrażana jest w Omach $[\Omega]$
- Rezystywność skrośna ρ_{ν} [brzydka definicja] rezystancja skrośna odniesiona do wymiarów jednostkowych; [$rac{1}{2}$ stosunek natężenia sta $rac{1}{2}$ pola elektrycznego do gęstości ustalonego prądu p $rac{1}{2}$ ynącego

- między elektrodami na wskroś próbki bez uwzględnienia gęstości prądów powierzchniowych. Wyrażana jest w omach razy metr $\frac{V/m}{A/m^2}=\Omega m$
- Rezystywność powierzchniowa ρ_s [brzydka definicja] rezystancja powierzchniowa odniesiona do wymiarów jednostkowych; [ładna definicja] iloraz natężenia stałego pola elektrycznego i gęstości liniowego prądu w wierzchniej warstwie materiału, $\rho_s = \frac{\rho_v}{d}, \rho_s = R_s \cdot \frac{b}{l}$, gdzie l długość, b szerokość przewodnika, d grubość warstwy powierzchniowej. Wyrażana jest w Omach $[\Omega]$.

Rezystancje się mierzy, a rezystywności wyznacza

Metody pomiaru rezystancji:

- 1. techniczne
- 2. mostkowe
- 3. porównawcze
- 4. ładowania kondensatora
- 5. elektrometryczne

Metody szczegółowo opisane w Podstawach inżynierii materiałowej - laboratorium

Porównać i przedyskutować pomiar rezystancji skrośnej i powierzchniowej w układach dwu- i trójelektrodowym. Rola pierścienia ochronnego w badaniach rezystancji.

Rys. 1.10. Pomiar rezystancji w układach dwu- i trójelektrodowym: a – rezystancji skrośnej, b – rezystancji powierzchniowej

Rys. 6.1.2. Schemat układu do pomiaru rezystancji powierzchniowej w układzie trójelektrodowym. Elektrody: 1 – pomiarowa, 2 – napięciowa, 3 – ochronna

Rys. 5.1.2. Schemat układu do pomiaru rezystywności skrośnej w układzie trójelektrodowym. Elektrody: 1 – pomiarowa, 2 – ochronna, 3 – napięciowa

Gdy rezystancję skrośną mierzy się w układzie dwuelektrodowym, wtedy prąd powierzchniowy zafałszowuje wyniki pomiarów, gdyż zmierzony prąd jest sumą prądów skrośnego I_v i powierzchniowego I_s Zastosowanie elektrody ochronnej połączonej z masą źródła napięcia U powoduje, że prąd powierzchniowy I_s teoretycznie nie płynie przez miernik prądu. Natomiast między elektrodami pomiarową i napięciową płynie tylko prąd skrośny I_v

W przypadku, gdy rezystancję powierzchniową mierzy się w układzie dwuelektrodowym, prąd skrośny I_v zafałszowuje wyniki pomiarów, gdyż prąd mierzony przez pikoamperomierz jest sumą prądu powierzchniowego I_s i skrośnego I_v . Zastosowanie układu trójelektrodowego, w którym elektroda ochronna jest połączona z masą źródła napięcia U, powoduje, że prąd skrośny I_v teoretycznie nie płynie przez miernik prądu. Natomiast między elektrodami pomiarową i 2 napięciową płynie tylko prąd powierzchniowy I_s .

Zadaniem pierścienia jest więc wyeliminowanie prądu powierzchniowego przy pomiarze rezystancji skrośnej i prądu skrośnego przy pomiarze rezystancji powierzchniowej.

Przedstawić i objaśnić zależność prądu płynącego przez dielektryk od czasu.

Rys. 1.3. Zależność prądu płynącego przez dielektryk od czasu

Całkowity prąd I(t) płynący przez dielektryk jest sumą dwóch składowych: składowej stałej I_0 , związanej z przewodnictwem elektrycznym, oraz składowej przejściowej I_T , związanej z efektami polaryzacyjnymi. Po czasie τ_1 prąd przejściowy jest praktycznie równy zeru i $I(t)=I_0$.

Wpływ czynników zewnętrznych na wyniki pomiarów rezystancji.

Na wynik pomiarów rezystancji wpływ mają następujące czynniki zewnętrzne:

- napięcie pomiarowe
- temperatura
- czas
- wilgotność

Napięcie pomiarowe

Prawo Ohma jest dobrze spełnione przez metale, gorzej dla półprzewodników i dielektryków. Powyżej pewnego krytycznego/granicznego napięcia U_{kr}/U_{gr} charakterystyka odbiega od liniowości.

W przypadku dielektryków o nieliniowości **tak naprawdę nie świadczy napięcie** tylko natężenie pola elektrycznego. Charakterystyka jest linowa kiedy pole jest jednorodne. Pole jest jednorodne jeżeli dla różnych napięć pomiarowych rezystancja jest taka sama.

Temperatura - skonsultować z kimś

Zależność rezystywności skrośnej kwarcu od temperatur

- A kwarc bezpostaciowy
- B krystaliczny prostopadle do głównej osi kryst.
- C krystaliczny równolegle do głównej osi kryst.

Czas

Dla czasów długich: stała, po długim czasie spada (starzenie)

Dla czasów krótkich: rośnie w pierwszych 60s (prąd polaryzacyjny), potem stała

Wilgotność

Wpływ wilgotności zależy od rodzaju dielektryka i szczególnie uwidacznia się na powierzchniach materiałów hydrofilowych, tworzących błonę wodną.

rodzaj materiału	rezystancja skrośna	rezystancja powierzchniowa

rodzaj materiału	rezystancja skrośna	rezystancja powierzchniowa
higroskopijne	spada wraz ze wzrostem wilgotności	spada wraz ze wzrostem wilgotności
jonowe i dipolowe	jest stała	spada wraz ze wzrostem wilgotności
neutralne	jest stałą	jest stała

Spadki nie sią liniowe

Przenikalność elektryczna względna: definicja. Istota pomiaru pojemności kondensatora z dielektrykiem w układzie 2-elektrodowym i 3-elektrodowym. Przeanalizować wpływ konfiguracji elektrod na pomiar pojemności.

Przenikalność elektryczna względna ε_r jest to stosunek pojemności C_x kondensatora, w którym przestrzeń pomiędzy okładkami i wokół elektrod jest całkowicie zapełniona badanym materiałem (dielektrykiem), do pojemności elektrod C_0 , rozmieszczonych w ten sam sposób w próżni. $\varepsilon_r = \frac{C_x}{C_0}$.

- 1 -elektroda pomiarowa,
- 2 -elektroda ochronna,
- 3 -elektroda wysokonapięciowa,

Układ trójelektrodowy stosuje się przede wszystkim do pomiarów metodami mostkowymi przy częstotliwościach do 100kHz. Zastosowanie elektrody ochronnej obniża wpływ pojemności brzegowej i wyklucza wpływ pojemności powierzchniowej.

Efektywność pierścienia ochronnego jest tym większa:

- im mniejsza jest szczelina między elektrodą pomiarową i ochronną
- im mniejsza jest różnica potencjałów między elektrodą pomiarową i ochronną
- im mniejsza jest grubość badanej próbki

$$arepsilon_r = rac{C_x}{C_0}$$

Układ dwuelektrodowy stosuje się przy częstotliwościach większych niż 10kHz, kiedy zastosowane metody pomiarowe uniemożliwiają przyłączenie elektrod ochronnych, a upływność powierzchniową można pominąć. Podczas obliczania przenikalności elektrycznej trzeba uwzględnić pojemność brzegową C_b oraz pojemność rozproszoną C_r wyznaczonych ze wzorów empirycznych.

$$arepsilon_r = rac{C_x - C_b - C_r}{C_0}$$

Mechanizmy polaryzacji dielektryków. Przedstawić zależność przenikalności elektrycznej względnej od częstotliwości i temperatury. Uzasadnić przebiegi charakterystyk.

Rys. 4.11-1. Mechanizmy polaryzacji elektrycznej

Rys. 4.15-1. Zależność ε_w oleju syntetycznego od temperatury

Rys. 4.15-2. Zależność składowych względnej przenikalności elektrycznej od częstotliwości

- 11. Układy zastępcze dielektryku stratnego. Wyprowadzić zależność na $tg(\delta)$. Charakterystyki $tg(\delta)=f(freq)$.
- 12. Straty energii w dielektryku. Rodzaje strat, zależność od częstotliwości i temperatury. Straty w dielektrykach polarnych i niepolarnych. Straty w dielektrykach rzeczywistych.

- 13. Wpływ sposobu nakładania elektrod na pomiar pojemności. Przedstaw zasadę pomiaru C i $tg(\delta)$ metodą mostkową.
- 14. Wytrzymałość elektryczna. Wpływ czynników zewnętrznych. Sześciofluorek siarki, właściwości, zastosowania.
- 15. Co to jest elektret, metody wytwarzania, charakterystyczne parametry, zastosowania.
- 16. Właściwości magnetyczne ciał stałych. Krzywa magnesowania, przedstawić graficznie charakterystyczne punkty. Materiały magnetycznie miękkie i twarde, porównać. Przykłady.
- 17. Zjawisko Halla. Podać warunki jakie należy spełnić, aby to zjawisko wystąpiło. Jakie parametry materiałowe można wyznaczyć znając stałą Halla?
- 18. Właściwości mechaniczne ciał stałych i analiza cieplna materiałów.

Wojcieszak

- 1. Opisz budową i zasadę działania SEM.
- 2. Opisz artefakty występujące w SEM i skomentuj z czym związane jest ich występowanie.
- 3. Scharakteryzuj mody TOPO i COMPO w SEM (do czego służą, jaki jest ich algorytm, jak można rozróżnić obrazy zarejestrowane w tych modach).
- 4. scharakteryzuj sygnał EWR w SEM (w odpowiedzi uwzględnij charakterystykę współczynnika wstecznego rozpraszania).
- 5. Opisz i zilustruj efekty wykorzystywane do obrazowania topografii w SEM.
- 6. Jakie wymagania powinna spełniać próbka lub w jaki sposób można ją przygotować, aby mogła być obrazowana przy użyciu SEM.
- 7. Opisz budowę i zasadę działania TEM.
- 8. W jaki sposób należy przygotować próbkę na potrzeby TEM (opisz preparatykę np. z użyciem FIB).
- 9. Jakie informacje można uzyskać za pomocą TEM odpowiedź odnieś do modów: BFTEM, HRTEM, SAED.
- 10. Opisz budowę i zasadę działania STM (w odpowiedzi zawrzyj informację o modach i rodzaju próbek jakie można badać).
- 11. Opisz budowę i zasadę działania AFM.
- 12. Scharakteryzuj mody pracy AFM i napisz do jakich badań służą (zwłaszcza jakich próbek).
- 13. Jakie artefakty mogą się pojawić na obrazach AFM i z czym ich obecność będzie związana.
- 14. Na czym polega metoda OBIC i do charakteryzacji jakich materiałów jest ona stosowana.
- 15. Metoda transmisji światła na czym polega oraz jakie parametry można wyznaczyć na podstawie zmierzonych charakterystyk.
- 16. W jaki sposób można określić zwilżalność powierzchni nanomateriałów cienkowarstwowych.