Integrantes:
Diego Paz Oliveira Morais

Sergio Augusto de Araújo

Ary Paulo Wiese Neto

Pedro Henrique Sousa dos Santos

Gabriel Brito de França

Estimador de Emissões de CO2 de Data Centers no Brasil

Cenários para o Brasil e Países Vizinhos

Computação e Clima: Avaliando o Impacto dos Data Centers no Perfil de Emissões do Brasil

2. Objetivo geral

Desenvolver um estimador exploratório (aplicação simples) que calcule emissões operacionais de CO₂ associadas ao consumo elétrico de data centers e aplicar o estimador a cenários do Brasil (e, quando útil, comparativamente a países vizinhos), com análise de sensibilidade e recomendações de mitigação.

3. Objetivos específicos

- 1. Revisar literatura recente sobre consumo energético dos data centers e crescimento previsto devido à IA.
- 2. Construir um modelo/algoritmo simples: Emissões (kg CO_2) = Consumo (kWh) × Fator de Emissão (kg CO_2 /kWh).
- 3. Reunir fatores de emissão e dados de matriz elétrica para o Brasil (e fontes equivalentes para Argentina / Chile / Peru).
- 4. Rodar cenários (presente, projeção IEA até 2030, matriz mais limpa / mais fóssil) e comparar resultados.
- 5. Discutir limitações e propor medidas de mitigação/boas práticas para data centers no Brasil.

4. Justificativa

- A eletrificação e o aumento do processamento (especialmente IA) projetam forte aumento do consumo de data centers globalmente a IEA projeta que o consumo de eletricidade pode mais que dobrar até 2030 (≈945 TWh no cenário base).
- O Brasil tem uma matriz elétrica comparativamente limpa (alta participação de renováveis), o que reduz a intensidade carbônica por kWh — ainda assim, períodos de seca ou ativação de térmicas fósseis podem aumentar a intensidade.
- Há incertezas importantes (definição de fronteiras das emissões, eficiência dos data centers, contabilização de emissões incorporadas), e a literatura recente chama atenção para variações metodológicas significativas.

5. Metodologia

- Escopo: Emissões operacionais associadas ao consumo elétrico (Escopo 2). Fórmula central: Emissões de CO₂(kg) = Consumo em kWh × Fator de Emissao em kg de CO2/kWh
- Variáveis de entrada: Localização, Consumo estimado, Período de análise e Cenário da matriz elétrica.
- Base de dados: MCTI/SIRENE, EPE (BEN), IEA (Energy & AI).

6. Análise proposta (Brasil e vizinhança)

- Cenário Base Brasil (2024/2025): calcular emissões para um data center hipotético usando fator médio do SIN.
- Cenário Projeção (2030 segundo IEA): aplicar crescimento de consumo com escalonamento local.
- Comparação com vizinhança: Argentina, Chile e Peru, utilizando fator de emissão nacional.
- Discussão de mitigação: uso de renováveis, PUE, resfriamento eficiente e reutilização de calor.

7. Limitações

- O modelo calcula apenas emissões operacionais (escopo 2), excluindo emissões incorporadas (desmatamento, atividade industrial etc).
- Fatores de emissão variam sazonalmente e são simplificados por médias anuais.
- Dados reais de consumo granular de data centers são escassos, sendo usados valores estimados.

8. Referências principais

- IEA Energy and AI: Energy demand from AI (2024/2025)
 - Masanet, E., et al. Recalibrating global data center energy-use estimates. Science, 2020.
 - MCTI / SIRENE Fatores de emissão da geração elétrica no Brasil.
 - EPE Balanço Energético Nacional (BEN), 2024.
 - Freitag, C. et al. The climate impact of ICT, 2023.
 - Patterson, D. et al. Carbon footprint of Machine Learning, 2023.

9. Sugestões práticas para a apresentação

- Começar com comparativo visual da intensidade carbônica entre Brasil e vizinhos.
 - Mostrar 1-3 cenários (presente, 2030 e matriz mais limpa).
 - Finalizar com recomendações de mitigação (uso de PPA, eficiência, localização estratégica, transparência).

Forma de Implementação

Python

- As fórmulas gerais vão ser feitas usando os conhecimentos aprendidos na disciplina
 - EX: Emissões (kg CO₂) = Consumo (kWh) × Fator de Emissão (kg CO₂/kWh).
 - emissoes = consumo * fator_de_emissao
- Para análise de séries temporais em Python, vamos usar uma biblioteca para manipulação e análise de dados.
 - EX: Pandas, Darts, Sktime, etc...
- Para plotar os gráficos das séries temporais em Python vamos usar uma biblioteca para visualização.
 - EX: Matplotlib, Seaborn, etc...