Towards Jamming-Resistant and Competitive Medium Access in the SINR Model

S3 2011

Andrea Richa (ASU)
Christian Scheideler (U of Paderborn)
Stefan Schmid (TU Berlin/T-Labs)
Jin Zhang (ASU)

Motivation

Channel availability hard to model:

- Background noise
- Temporary obstacles
- Mobility
- Co-existing networks
- Jammer

Motivation

Real world:

How to model this???

Our Approach: Adversarial Jamming

Idea: model unpredictable behaviors via

Our Approach: Adversarial Jamming

Idea: model unpredictable behaviors via

Adversarial physical layer jamming

- an adversary listens to the open medium and broadcasts in the same frequency band as the network
 - no special hardware required

 can lead to significant disruption of communication at low cost

Adaptive adversary

- Adaptive: knows protocol and entire history
- The adversary is bounded with respect to energy, i.e., it has a certain budget B for each node v.
- (B, T)-bounded adversary: in any time window of size w ≥ T, the adversary can add ≤ w * B / T to the noise level of each node v.

Signal-to-Interference Ratio

$$\frac{P_{v}(u)}{N + \sum_{w \in S} P_{v}(w) + J} \geq \beta$$

- Move away from any graph model.
- Combined signals from far away nodes can be strong enough to interrupt communications.
- Interference can come from anywhere.

Signal-to-Interference Ratio

- Define N_v as the overall noise level at node v.
- No clear distinctions between "idle" and "busy" anymore. A noise threshold τ_v is used by each node v to distinguish the two cases.
 - \succ "idle", when $N_v < \tau_v$.
 - \succ "busy", when $N_v > \tau_v$.
- τ_v is adjusted in an adaptive fashion, based on the events observed by node v

Wireless communication model

- at each time step, a node may decide to transmit a packet (nodes continuously contend to send packets)
- a node may transmit or sense the channel at any time step (half-duplex)
- when sensing the channel a node v may
 - sense an "idle" channel
 - receive a packet
 - sense a"busy"channel (cannot distinguish between message collisions and adversarial jamming)

SINR is difficult

 Define p as the cumulative transmission probability of all nodes.

- p is large, and τ_v is large:
 - idle? busy?
- p is small, and τ_v is small:
 - idle? busy?

Hard to tell.

Goal: Maximize the Throughput

 Define Throughput as the average number of messages successfully received by individual node in the network per round.

SINR-MAC Protocol

- each node v maintains
 - probability value p_{v} ,
 - noise level threshold τ_v
 - time window threshold T_v
 - counter c_{ν} , and
 - $\gamma = O(1/(\log T + \log \log n))$
- Initially, $T_v = c_v = 1$, $\tau_v = 1$, and $p_v = p_{max}$ (< 1/24).
- synchronized time steps (for ease of explanation)

Basic approach

 a node v adapts p_v based only on steps when an "idle" channel or a successful message transmission are observed, ignoring all other steps (including all the blocked steps when the adversary transmits!)!

time ----

- $N_v < \tau_v$, "idle" steps
- successful transmissions
- $N_v > \tau_v$, "busy" steps

Basic approach

 a node v adapts p_v based only on steps when an "idle" channel or a successful message transmission are observed, ignoring all other steps (including all the blocked steps when the adversary transmits!)!

Basic approach

- a node v adapts τ_v based only on steps when an "idle" channel or a "busy" channel is observed!
 - $-\tau_{v}$ is decreased when channel is "idle".
 - $-\tau_{v}$ is increased when channel is "busy".

time →

- $N_v < \tau_v$, "idle" steps
- successful transmissions
- $N_v > \tau_v$, "busy" steps

Simulation Result

Experiment 1: Throughput evaluation, $p_{max} = 1/24$.

Simulation Result

Experiment 2: Throughput evaluation, $p_{max} = 1/2$.

Related Work

Our jamming model:

- Awerbuch, Richa, Scheideler (PODC 2008):
 MAC protocol for single-hop network
- Richa, Scheideler, Schmid, Zhang (DISC 2010): multi-hop networks
- Richa, Scheideler, Schmid, Zhang (ICDCS 2011): reactive jammer
- Richa, Scheideler, Schmid, Zhang (MOBIHOC 2011): leader election

Questions?