§ 3. A doubly periodic class of inhomogeneous PDE-equations.

Put

$$\square = \{0 \le x \le \pi\} \times \{0 \le s \le 2\pi\}$$

We shall consider doubly periodic functions g(x,s) on \square , i.e.

$$g(\pi, s) = g(0, s)$$
 : $g(x, 0) = g(x, 2\pi)$

For each non-negative integer k we denote by $C^k(\square)$ the space of k-times doubly periodic continuously differentiable functions, and if $g \in C^k(\square)$ we set

$$||g||_{(k)}^2 = \sum_{j,\nu} \int_{\square} \left| \frac{\partial^{j+\nu} g}{\partial x^j \partial s^{\nu}} (x,s) \right|^2 dx ds$$

with the double sum extended pairs $j + \nu \leq k$. The completion of $C^k(\square)$ with respect to this norm gives a complex Hilbert space $\mathcal{H}^{(k)}$. Sobolev's inequality entails that a function $g \in \mathcal{H}^{(2)}$ is automatically continuous and doubly periodic on the closed square. More generally, if $k \geq 3$ each $g \in \mathcal{H}^{(k)}$ has continuous and doubly periodic derivatives up to order k-2. Next, consider a first order PDE-operator

$$(1.1) P = \partial_s - a(x,s)\partial_x - b(x,s)$$

where a and b are real-valued doubly periodic C^{∞} -functions. It is clear that P maps $\mathcal{H}^{(k)}$ into $\mathcal{H}^{(k+1)}$ for every $k \geq 2$. Keeping $k \geq 2$ fixed we set

(1.2)
$$\mathcal{D}_k(P) = \{ g \in \mathcal{H}^{(k)} : P(g) \in \mathcal{H}^{(k)} \}$$

Since $C^{\infty}(\square)$ is dense in $\mathcal{H}^{(k)}$ this yields a densely defined operator

(1.3)
$$\mathcal{T}_k \colon \mathcal{D}_k(P) \to \mathcal{H}^{(k)}$$

Thus, \mathcal{T}_k is a notation for the restriction of P to $\mathcal{D}_k(P)$. Next, in $\mathcal{H}^{(k)} \times \mathcal{H}^{(k)}$ we get the graph

$$\Gamma(\mathcal{T}_k) = \{ (g, P(g) \colon g \in \mathcal{D}_k(P) \}$$

Since P is a differential operator we know from general results that this is a closed subspace. Set

$$(1.4) \gamma_k = \{ (g, P(g) \colon g \in C^{\infty}(\square) \}$$

This is a subspace of Γ_k and let $\overline{\gamma}_k$ be its closure taken in $\mathcal{H}^{(k)} \times \mathcal{H}^{(k)}$. Since Γ_k is closed we have

$$\overline{\gamma}_k \subset \Gamma_k$$

Let T_k be the densely defined linear operator whose graph is $\overline{\gamma}_k$. The construction gives the inclusion

$$(1.5) \mathcal{D}(T_k) \subset \mathcal{D}(\mathcal{T}_k)$$

which in general can be strict. Let E be the identity operator on $\mathcal{H}^{(k)}$. With these notations we shall prove:

A. Theorem. For each integer $k \ge 2$ there exists a positive real number $\rho(k)$ such that the map

$$T_k - \lambda \cdot E \colon \mathcal{H}^{(k)} \to \mathcal{H}^{(k)}$$

is bijective for every $\lambda > \rho(k)$.

The proof requires several steps and is not finished until § 3.x. First we shall study the adjoint operator T_k^* and establish the following:

A.1 Proposition. One has the equality $\mathcal{D}(T_k^*) = \mathcal{D}_k(P)$ and there exists a bounded self-adjoint operator B_k on $\mathcal{H}^{(k)}$ such that

$$T_k^* = -\mathcal{T}_k + B_k$$

Proof Keeping $k \geq 2$ fixed we set $\mathcal{H} = \mathcal{H}^{(k)}$. For each pair g, f in \mathcal{H} their inner product is defined by

$$\langle f,g\rangle = \sum \int_{\square} \frac{\partial^{j+\nu} f}{\partial x^j \partial s^{\nu}}(x,s) \cdot \overline{\frac{\partial^{j+\nu} g}{\partial x^j \partial s^{\nu}}}(x,s) \, dx ds$$

where the sum is taken when $j + \nu \leq k$. Introduce the differential operator

$$\Gamma = \sum_{j+\nu \le k} (-1)^{j+\nu} \cdot \partial_x^{2j} \cdot \partial_s^{2\nu}$$

Partial integration gives

(i)
$$\langle f, g \rangle = \int_{\square} f \cdot \Gamma(\bar{g}) \, dx ds = \int_{\square} \Gamma(f) \cdot \bar{g} \, dx ds : f, g \in C^{\infty}$$

Now we consider the operator $P = \partial_s - a \cdot \partial_x - b$ and get

(ii)
$$\langle P(f), g \rangle = \int_{\square} P(f) \cdot \Gamma(\bar{g}) \, dx ds$$

Partial integration identifies (ii) with

(iii)
$$-\int_{\square} f \cdot (\partial_s - \partial_x(a) - a \cdot \partial_x - b) \circ \Gamma(\bar{g}) \, dx ds$$

In (iii) appears the composed differential operator

$$\partial_s - \partial_x(a) - a \cdot \partial_x - b) \circ \Gamma$$

In the ring of differential operators with C^{∞} -coefficients this differential operator can be written in the form

$$\Gamma \circ (\partial_s - a \cdot \partial_x - b) + Q(x, s, \partial_x, \partial_s)$$

where Q is a differential of order $\leq 2k$ with coefficients in $C^{\infty}(\square)$. Now (ii-iii) give

(iv)
$$\langle Pf, g \rangle = -\langle f, Pg \rangle + \int_{\square} f \cdot Q(\bar{g}) \, dx ds$$

The operator B_k . With Q as above we have a bilinear form which sends a pair f, g in $C^{\infty}(\square)$ to

(v)
$$\int_{\square} f \cdot Q(\bar{g}) \, dx ds$$

Partial integration and the Cauchy-Schwarz inequality give a constant C which depends on Q only such that the absolute value of (v) is majorized by $C_Q \cdot ||f||_k \cdot ||g||_k$. It follows that there exists a bounded linear operator B_k on \mathcal{H} such that

(vi)
$$\langle f, B_k(g) \rangle = \int_{\square} f \cdot Q(\bar{g}) \, dx ds$$

Sublemma. The operator B_k is self-adjoint

Proof. From the above we have

(1)
$$\langle Pf, g \rangle = -\langle f, Pg \rangle + \langle f, B_k(g) \rangle$$

Keeping f in $C^{\infty}(\square)$ we notice that $\langle f, B_k(g) \rangle$ is defined for every $g \in \mathcal{H}$. From this the reader can check that (1) remains valid when g belongs to $\mathcal{D}(\mathcal{T}_k)$ which means that

(2)
$$\langle Pf, g \rangle = -\langle f, \mathcal{T}_k g \rangle + \langle f, B_k(g) \rangle : f \in C^{\infty}(\square)$$

Moreover, when both f and g belong to $C^{\infty}(\square)$ we can reverse their positions in (1) which gives

(3)
$$\langle Pg, f \rangle = -\langle g, Pf \rangle + \langle g, B_k(f) \rangle$$

Since a and b are real-valued it is clear that

$$\langle Pg, f \rangle = -\langle f, Pg \rangle$$

It follows that

(5)
$$\langle f, B_k(g) = \langle g, B_k(f) : f, g \in C^{\infty}(\square)$$

Since this hold for all pairs of C^{∞} -functions and B_k is a bounded linear operator on \mathcal{H} the density of $C^{\infty}(\square)$ entails that B_k is a bounded self-adjoint operator on \mathcal{H} .

Next follows a crucial step towards the proof of Proposition A.1.

Sulemma 2. One has the equality $\mathcal{D}(T_k^*) = \mathcal{D}_k(P)$. Moreover one has the equality of operators

$$(*) T_k^* = -\mathcal{T}_k(g) + B_k$$

Proof. The density of $C^{\infty}(\square)$ in \mathcal{H} entails that a function $g \in \mathcal{H}$ belongs to $\mathcal{D}(T_k^*)$ if and only if there exists a constant C such that

$$(1) |\langle Pf, g \rangle| \le C \cdot ||f|| : f \in C^{\infty}(\square)$$

Since B_k is a bounded operator, the equation (3) from the proof of Sublemma 1 gives the inclusion

(2)
$$\mathcal{D}_k(P) \subset \mathcal{D}(T_k^*)$$

To prove the opposite inclusion we use that the Γ-operator is elliptic. If $g \in \mathcal{D}(T_k^*)$ we have from (i) in § 1.1:

$$\langle Pf, g \rangle = \langle f, T_k^* g \rangle = \int \Gamma(f) \cdot \overline{T_k^*(g)} \, dx ds \quad : f \in C^{\infty}(\square)$$

Similarly

$$\langle f, B_k(g) \rangle = \int \Gamma(f) \cdot \overline{B_k(g)} \, dx ds$$

Treating $\mathcal{T}_k(g)$ as a distribution the equation (3) for the proof of the Sublemma entails that the elliptic operator Γ annihilates $\mathcal{T}_k^*(g) - \mathcal{T}_k(g) + B_k(g)$. Since both $\mathcal{T}_k^*(g)$ and $B_k(g)$ belong to \mathcal{H} this implies by the general result in § xx that $\mathcal{T}_k(g)$ belongs to \mathcal{H} which proves Sublemma 1 and at the same time the requested operator equation

$$T_k^* = -\mathcal{T}_k(g) + B_k$$

and the proof of Sublemma 2 is finished.

§ 2. An inequality.

Let $f \in C^{\infty}(\square)$ and λ is a positive real number. Then

$$||\mathcal{T}_k(f) - \frac{1}{2}B_k(f) - \lambda \cdot f||^2 =$$

$$||\mathcal{T}_k(f) - \frac{1}{2}B_k(f)||^2 + \lambda^2 \cdot ||f||^2 - \lambda \left(\langle \mathcal{T}_k(f) - \frac{1}{2}B_k(f), f \rangle + \langle f, \mathcal{T}_k(f) - \frac{1}{2}B_k(f) \rangle \right)$$

The last term is λ times

(i)
$$\langle \mathcal{T}_k(f), f \rangle + \langle f, \mathcal{T}_k(f) \rangle - \langle f, B_k f \rangle$$

where we used that B_k is symmetric. Now $T_k = \mathcal{T}_k$ holds on $C^{\infty}(\square)$ and the definition of adjoint operators give

(ii)
$$\langle \mathcal{T}_k(f), f \rangle = \langle f, T_k^* \rangle$$

Then (*) in Sublemma 2 implies that (i) is zero and hence we have proved

(iii)
$$||T_k(f) - \frac{1}{2}B_k(f) - \lambda \cdot f||^2 = \lambda^2 \cdot ||f||^2 + ||T_k(f) - \frac{1}{2}B_k(f)||^2 \ge \lambda^2 \cdot ||f||^2$$

From (iii) and the triangle inequality for norms we obtain

(iv)
$$||T_k(f) - \lambda \cdot f|| \ge \lambda \cdot ||f|| - \frac{1}{2}||B_k(f)||$$

Now B_k has a finite operator norm and if $\lambda \geq ||B_k||$ we see that

(v)
$$||T_k(f) - \lambda \cdot f|| \ge \frac{\lambda}{2} \cdot ||f||$$

Finally, since $C^{\infty}(\square)$ is dense in $\mathcal{D}(T_k)$ it is clear that (v) gives

2.1 Proposition. One has the inequality

$$||T_k(f) - \lambda \cdot f|| \ge \frac{\lambda}{2} \cdot ||f|| : f \in \mathcal{D}(T_k)$$

§ 3. Proof of Theorem A

Suppose we have found some $\lambda^* \geq \frac{1}{2} \cdot ||B||$ such that $T_k - \lambda$ has a dense range in \mathcal{H} for every $\lambda \geq \lambda^*$. If this is so we fix $\lambda \geq \lambda^*$ and take some $g \in \mathcal{H}$. The hypothesis gives a sequence $\{f_n \in \mathcal{D}(T_k)\}$ such that

$$\lim_{n \to \infty} ||T_k(f_n) - \lambda \cdot f_n - g|| = 0$$

In particular $\{T_k(f_n) - \lambda \cdot f_n\}$ is a Cauchy sequence in \mathcal{H} and (1.5.x) implies that $\{f_n\}$ is a Cauchy sequence in the Hilbert space \mathcal{H} and hence converges to a limit f_* . Since the operator T_k is closed we conclude that $f_* \in \mathcal{D}(T_k)$ and we get the equality

$$T_k(f_*) - \lambda \cdot f_* = g$$

Since $g \in \mathcal{H}$ was arbitrary theorem Theorem A follows.

3.1 Density of the range. There remains to find λ^* as above. By the construction of adjoint operators, the range of $T_k - \lambda \cdot E$ fails to be dense if and ony if $T_k^* - \lambda$ has a non-zero kernel. Set

$$\tau = \min_{f} ||B(f)|| \quad : \quad M = \frac{1}{2} \cdot \max_{(x,s) \in \square} |\partial_x(a)(x,s)|$$

With these two positive constants we prove:

3.2 Proposition For each $\lambda > M + \tau$ it follows that $T_k^*(f) - \lambda \cdot E$ is injective.

Proof. Let $\lambda > M + \tau$ and suppose that

$$(*) T_k^*(f) - \lambda \cdot f = 0$$

for some $f \in \mathcal{D}(T_k^*)$ which is not identically zero. Since T_k^* sends real-valued functions into real-valued functions we can assume that f is real-valued and normalised so that

(i)
$$\int_{\Box} f^2(x,s) \, dx ds = 1$$

From (i) and Proposition \S XX we have

(ii)
$$\mathcal{T}_k(f) + \lambda \cdot f - B_k(f) = 0$$

Let us consider the function

$$V(s) = \int_0^{\pi} f^2(x, s) dx$$

The s-derivative of V(s) becomes:

(iii)
$$\frac{1}{2} \cdot V'(s) = \int_0^{\pi} f \cdot \frac{\partial f}{\partial s} dx$$

By (ii) we have

$$\frac{\partial f}{\partial s} - a(x)\frac{\partial f}{\partial x} - b \cdot f = B_k(f) - \lambda \cdot f$$

Hence the right hand side in (iii) becomes

(iv)
$$-\lambda \cdot V(s) + \int_0^{\pi} f(x,s) \cdot B_k(f)(x,s) dx + \int_0^{\pi} a(x,s) \cdot f(x,s) \cdot \frac{\partial f}{\partial x}(x,s) dx$$

By partial integration the last term is equal to

(v)
$$-\frac{1}{2} \int_0^{\pi} \partial_x(a)(x,s) \cdot f^2(x,s) \, dx$$

and with M as in (3.1.1) it is majorized by $M \cdot V(s)$. From the above we get the inequality

(vi)
$$\frac{1}{2} \cdot V'(s) \le (M - \lambda) \cdot V(s) + \int_0^{\pi} f(x, s) \cdot B(f)(x, s) dx$$

Set

$$\Phi(s) = \int_0^{\pi} |f(x,s)| \cdot |B(f)(x,s)| dx$$

Since the L^2 -norm of f is one the Cauchy-Schwarz inequality gives

$$\int_{-\pi}^{\pi} \Phi(s) ds \le \sqrt{\int_{\square} |B(f)(x,s)|^2 dx ds} \le ||B(f)||$$

where the last equality follows since the squared integral of B(f) is majorized by its squared norm in \mathcal{H} . When $\lambda > M$ it follows from (v) that

(vi)
$$(\lambda - M) \cdot V(s) + \frac{1}{2} \cdot V'(s) \le \Phi(s)$$

Next, since f is double periodic we have $V(-\pi) = V(\pi)$ so after an integration (vi) gives

(vii)
$$(\lambda - M) \cdot \int_0^{\pi} V(s) \, ds = \int_{-\pi}^{\pi} \Phi(s) \, ds \le ||B(f)||$$

Finally, by the normalisation (i) we have $\int_0 i^{\pi} V(s) ds = 1$ so (vii) entails that we mst have

(viii)
$$\lambda \leq M + ||B(f)||$$

This contradicts the initial inequality and finishes the proof of Proposition 3.2.

A special solution.

Let f(x) be a periodic C^{∞} -function on $[0, \pi]$. Put

$$Q = a(x,s) \cdot \frac{\partial}{\partial x} + b(x,s)$$

Let $\eta(s)$ be a C^{∞} -function of s and m some positive integer If $\lambda > 0$ is a real number, we set

(i)
$$g_{\lambda}(x,s) = \eta(s) \cdot f + \eta(s) \cdot \sum_{j=1}^{j=m} \frac{(s-\pi)^j}{j!} \cdot (Q-\lambda)^j(f) : 0 \le s \le \pi$$

We choose η to be a real-valued C^{∞} -function such that $\eta(s)=0$ when $s\leq 1/4$ and -1 if $s\geq 1/2$. Hence $g_{\lambda}(x,s)=0$ in (i) when $0\leq s\leq 1/4$ and we extend the function to $[-\pi\leq s\leq \pi$ where $g_{\lambda}(x,-s)=g_{\lambda}(x,s)$ if $0\leq s\leq \pi$. So now g_{λ} is π -periodic with respect to s and vanishes when $|s|\leq 1/4$.

Exercise. If $1/2 \le s \le \pi$ we have $\eta(s) = 1$. Use (i) to show that

$$(P+\lambda)(g_{\lambda}) = \frac{\partial g_{\lambda}}{\partial s} - (Q-\lambda)(g_{\lambda}) = \frac{(s-\pi)^m}{m!} \cdot (Q-\lambda)^{m+1}(f)$$

hold when $1/2 \le s \le \pi$. At the same time $g_{\lambda}(s) = 0$ when $0 \le s \le 1/4$. So $(P + \lambda)(g)$ is a function whose derivatives with respect to s vasnish up to order m at s = 0 and $s = \pi$ and is therefore doubly periodic of class C^m in \square . Now Theorem 2.2 applies. For a given $k \ge 2$ we choose a sufficently large m and find h(x,s) so that

$$P(h) + \lambda \cdot h = (P + \lambda)(g_{\lambda})(x, s)$$

where h is s-periodic, i.e.

$$h(x,0) = h(x,\pi)$$

Notice also that $g_{\lambda}(x,0) = 0$ while $g_{\lambda}(x,\pi) = f(x)$. Set

$$g_*(x) = h - g_\lambda$$

Then $P(g_*) + \lambda \cdot g_* = 0$ and

$$g_*(x,0) - g_*(x,\pi) = f(x)$$

Above we started with the C^{∞} -function. Given $k \geq 2$ we can take m sufficiently large during the constructions above so that g_* belongs to $\mathcal{H}^{(k)}(\square)$.