My title*

My subtitle if needed

Chris Yong Hong Sen

November 21, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

Overview paragraph

Estimand paragraph The estimand would be how much time is spent on exercise for each individual.

Results paragraph

Why it matters paragraph

Telegraphing paragraph: The remainder of this paper is structured as follows. Section 2....

2 Data

2.1 Overview of dataset

The dataset chosen is obtained from Canadian Community Health Survey Annual component 2017-2018. Our data (Toronto Shelter & Support Services 2024).... Following Alexander (2023), we consider...

Overview text

^{*}Code and data are available at: https://github.com/Monoji77/Alcohol_Use_Ontario.

2.2 Measurement

Some paragraphs about how we go from a phenomena in the world to an entry in the dataset.

2.3 Outcome variables

Add graphs, tables and text. Use sub-sub-headings for each outcome variable or update the subheading to be singular.

Some of our data is of penguins (Figure 1), from Horst, Hill, and Gorman (2020).

Figure 1: Bills of penguins

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

2.4 Predictor variables

Add graphs, tables and text.

Use sub-sub-headings for each outcome variable and feel free to combine a few into one if they go together naturally.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained aloft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$y_i|\mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 1.

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

Please don't use these as sub-heading labels - change them to be what your point actually is.

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Table 1: Explanatory models of flight time based on wing width and wing length

	Final model
(Intercept)	7.322
	(0.149)
num_alc_drank_12m	0.038
	(0.006)
age	-0.088
	(0.016)
sex	-0.230
	(0.021)
illicit_drug_use	-0.152
	(0.027)
$highest_educational_attainment$	-0.267
	(0.054)
$smoked_hundred_cigarettes$	-0.128
	(0.022)
$health_region_35953$	-0.232
	(0.051)
$health_region_35970$	-0.178
	(0.048)
$age \times highest_educational_attainment$	0.021
	(0.006)
Num.Obs.	11 941
R2	0.040
R2 Adj.	0.039
AIC	36756.2
BIC	36837.4
Log.Lik.	-18367.090
RMSE	1.13

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In **?@fig-ppcheckandposteriorvsprior-1** we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

Examining how the model fits, and is affected by, the data

B.2 Diagnostics

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

Checking the convergence of the MCMC algorithm

References

- Alexander, Rohan. 2023. Telling Stories with Data. Chapman; Hall/CRC. https://tellingstorieswithdata.com/.
- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "rstanarm: Bayesian applied regression modeling via Stan." https://mc-stan.org/rstanarm/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. palmerpenguins: Palmer Archipelago (Antarctica) penguin data. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Toronto Shelter & Support Services. 2024. Deaths of Shelter Residents. https://open.toronto.ca/dataset/deaths-of-shelter-residents/.