

La dimension de Vapnik-Chervonenkis

Gilles Richard

Retour sur PAC!

Si C fini et il existe A... alors

- C PAC apprenable... et meme plus car...
- borne sur le nombre d'exemples en |C|

Si C infini...

- exemples: C = {les rectangles} ;-)
- pas de borne generale sur le nb d'exemples

Pb: trouver une autre borne;-)

Idee:

- ds le cas des rectangles, 4nbres suffisent!
- remplacer log(|C|) par similaire

LA VC-dimension

- C une classe de parties de X (individus)
- $A \subseteq X$, A fini (nos exemples!)

```
Def1: tr(C,A) = tr_C(A) = \{c \cap A \mid c \text{ in } C\} \subseteq 2^A
```

Def2: C pulverise A ssi $tr(C, A) = 2^A$

Def3: VC-dim(C) = argmax{|A| | C pulverise A}

Ex.:

- Intervalles sur la droite reelle (2)
- Demi-plans dans le plan (3)
- Rectangles //axes: 4 (5: on choisit une classe differente pour le pt qui se trouve a l'int. du rect. defini par les 4 autres)
- Polygones a d cotes: 2d +1 (TBD)

Quelques petites proprietes

- c_a = {x in R| sign(sin(ax))≥ 0}:
 concept de R
- $C = \{c_a \mid a \text{ in } R\}$ (C infini ici)
- VC-dim(C) = ∞
- $|tr(C,A)| \leq 2^{|m|}$ ou |A|=m
- VC-dim(C) mesure la « puissance d'expression » de C

Prop. 1: Si C finie alors VC-dim(C) $\leq \log_2(|C|)$

Preuve: le A max est tq : $2^{|A|} \le |C|$;-)

Un beau resultat!

Prop. 2: VC-dim(C) infinie → NON PAC apprenable

Preuve: (1989)

- Idee de la preuve: par l'absurde et on suppose C PAC.
- m nbre d'ex. necessaires pour PAC apprendre avec ϵ =0.1 et δ =0.1
- On sait que moyenne erreur <=0.19 (vu avant) et
- On sait qu'il existe S pulverisable de cardinal 2m car VC-dim infinie ;-): on considere ce S comme notre TS
- On considere P uniforme sur TS et 0 ailleurs
- On construit ensuite un concept c tq $P(c(x_i) = 0) = \frac{1}{2}$
- Alors l'erreur moyenne est $\frac{1}{4} > 0.19$: contradiction **CQFD**

Et la reciproque?? Si-dim finie ????

La fonction de croissance Π_c

Notons $\Pi_{C}(m) = \max\{ |tr(C,A)| | |A| = m \}$

- 1. Mesure la "complexite/puissance" de C
- 2. $\Pi_c(m) = 2^{|m|}$ ssi C pulverise un ensemble de card m
- 3. VC-dim(C) = max {d | $\Pi_c(d) = 2^{|d|}$ }
- 4. VC-dim(C) infinie ssi \forall m, Π_{C} (m) = $2^{|m|}$
- 5. Croissance exponentielle attendue en fonction de m! et pourtant...

Prop. 3: Si VC-dim(C)=d alors $\Pi_c(m) \leq \Phi_d(m)$

Preuve: (lemme de Sauer – discontinuite ds la fonction de croissance)

- Notons $\Phi_d(m)$ le nbre de parties de moins de d elts ds un ens. a m elements.
- $\Phi_d(m) = \Phi_d(m-1) + \Phi_{d-1}(m-1)$ (explain!)
- D'ou $\Pi_c(m) \leq \Phi_d(m)$ par double induction sur m et d (c'est lourd!)

Prop. 4: $m \le d$ alors $\Phi_d(m) = 2^{|m|} \sin O(m^d)$

Preuve:

• (m \leq d: oui) Si d < m, on multiplie par (d/m)^d Φ_d (m) et on fait rentrer dans la somme car d/m \leq 1: en allant jusqu'a m au lieu de d = dlpt en serie de (1+x)^m ou x = d/m qui est inferieur a e^x

A quoi ca sert?

Notion de ε -reseau S pour c in C (c target concept):

- $\Delta_{\epsilon}(c)$: ensemble des erreurs $r=c\Delta c'$ tq $P(r) \geq \epsilon$
- r de $\Delta_{\epsilon}(c)$, il y a un elt de S dedans
 - un petit exemple C= les intervalles de [0,1]
 - S= $k\epsilon$ avec $1 \le k \le \frac{1}{\epsilon}$ (ie le plus petit entier $\ge 1/\epsilon$

Soit TS \(\epsilon\)-reseau , soit A algo. polynomial capable de retourner h consistant avec c sur TS

alors erreur(h) $\leq \varepsilon$ (i.e. c Δ h n'est pas dans Δ_{ε} (c))

Notons que pour TS de taille m

p(TS \cap r = \emptyset) \leq (1- ε)^m donc p(il existe r...) \leq $|\Delta_{\varepsilon}(c)|$ (1- ε)

Petite idee de la preuve...

- Event A = "TS n'est pas un ε-reseau "
- But: borner mieux la proba de A :P((μ(e) ≥ ε))<P(A)
- Chercher autre event B tq $Pr(A) \le k Pr(B)$
- Intuitivement augmenter m = |TS| ;-)))
- On ajoute TS' de taille m a TS
- B_r ="TS n'est pas un ϵ -reseau \wedge TS' touche r au moins ϵ m/2 fois (ou r fixe non touche par TS)
- B = U B_r pour les r non touches par TS
- Of course $P(B) \leq P(A)$ car $B \rightarrow A!$
- Mais le plus beau est: $P(A) \le 2P(B)$ pour m =

On y est ... presque

- La notion de trace reapparait ;-)))
- $P(B) \le | tr_{\Delta\epsilon(c)} (TS \cup TS') | P(B_r)$ $\le | tr_c (TS \cup TS') | 2^{-\epsilon m/2} \le \Phi_d(2m)$ $2^{-\epsilon m/2}$
 - \leq (2em/d)^d 2- ϵ m/2 (via le lemme de Sauer)
- Donc P(A) = P(μ (e) ≥ ε) ≤ 2 (2em/d)^d 2^{-εm/2}

• $P(\mu(e) \ge \varepsilon) \le \delta$... la meme chanson!

Et le resultat final

- Prop.3 : C tq VC-dim(C))=d finie Si m \geq c₀(1/ ϵ log 1/ δ + d/ ϵ log(1/ ϵ)) alors tt algo A rendant h consistant avec c est PAC.
- Prop.4: au moins Ω(VC-dim(C)/ε)
 exemples pour PAC apprendre la classe C
 avec erreur ≤ ε

Preuve: on construit un TS de taille d pulverise par C, etc...

Conclusion: borne inferieure sur le nbre d'exemples (difficulte statistique!)

V. Vapnik & A. Chervonenkis?

- Education: Russie (Ouzbekistan)
- Now: Prof. London (Royal Holloway)
- Statistical learning theory SVM
- Chervonenkis... bureau d'en face;-)

Conclusion

- VC-dim: tres importante
- Si finie, strategie de consistance OK
- Relation risque empirique/risque vrai
- Principe de minimisation du risque empirique (ou structurel) (ERM principle)

MAIS

- SVM VC-dim tres large ;-)
- Neural networks idem...
- ILP... infinie ;-)))
 autre concept necessaire... probably ;-)

Induction versus Transduction

- Cadre general (Faire un schema)
 - Observations (x1,y1),...(xm,ym)
 - Nouveau cas a predire (x,?)
- Induction: 2 etapes (offline)
 particulier ->general ->particulier
 - ex.: SVM, neural networks, Bayesian network
- Transduction: 1 etape (online)
 particulier → particulier
 - ex.: k-nn, analogical transduction

Limite de PAC...

Plus d'hypothese h… donc

- Erreur : encore un sens
- Confiance δ : pas si clair
- PAC ... pas si interessant

Autre modele?

- Gamerman et Vogt (2000)
- On garde ε on jette δ

Cas de la classification

- Notion de conformite/non conformite
- Notion de predicteur conforme