Домашнее задание №8

Артем Викторов гр. 9492 November 23, 2023

1 Система

Уравнение: $\dot{x} = ax^2 - 2(a+1)x + 3a - 1 = f$ Состояния равновесия: $x_{1,2} = \frac{a+1\pm\sqrt{-2\,a^2+3\,a+1}}{a}$

Производная: $\dot{f} = 2ax - 2a - 2$

Бифуркационные значения: $a = \frac{3 \pm \sqrt{17}}{4}$

Предполагается, что a не равна нулю.

На рисунке 1 можно увидеть бифуркационную диаграмму:

Figure 1: Бифуркационная диаграмма системы 1

Можно видеть, что при значении параметра $a: \frac{3-\sqrt{17}}{4} < a < \frac{3+\sqrt{17}}{4}$ существуют сразу два состояния равновесия, в случае если параметр вне этого диапазона, состояний равновесия не существует впринципе. Когда параметр a расположен на границах этого диапазона, то состояния равновесия сливаются в одно. Так же оранжевым отмечено устойчивое состояние равновесия, синим неустойчивое.

2 Система

Уравнение: $\dot{x} = 2a - 2 \cdot 3^x a + 9^x (a - 1) + 2 = f$

Производная: $\dot{f} = 9^x \cdot \log(9) \cdot (a-1) - 2 \cdot 3^x \cdot a \cdot \log(3)$

Производная. $j = s - \log(s)$ (с. z = 1)

Бифуркационные значения: $a = \left[\sqrt{2}, -\sqrt{2}, -1, 1\right]$ Состояния равновесия: $x_{1,2} = \frac{\log\left(\frac{a \pm \sqrt{2-a^2}}{a-1}\right)}{\log(3)}$

На рисунке 2 можно увидеть бифуркационную диаграмму данной системы.

Figure 2: Бифуркационная диаграмма системы 2

Единственное состояние равновесия система имеет при значении параметра |a| < 1, при этом оно является устойчивым. При значении параметра $1<|a|<\sqrt{2}$ система имеет два состояния равновесия, как показано на рисунке 2. При значении параметра $|a|>\sqrt{2}$ система не имеет состояний равновесия