Лекиия 6. СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

- 1. Интегрируемость непрерывных и монотонных функций.
- 2. Основные свойства определенного интеграла.
- 3. Интегральная теорема о среднем.

1. Интегрируемость непрерывных и монотонных функций.

Теорема 1. Если функция f(x) непрерывна на отрезке [a;b], то она интегрируема на этом отрезке, т.е. существует интеграл $\int_{a}^{b} f(x)d(x)$.

ightharpoonup Ограниченность f(x) на отрезке [a;b] следует из теоремы Вейерштрасса.

По теореме Кантора эта функция равномерно непрерывна на отрезке [a;b]. Значит, для любого $\varepsilon>0$ найдется такое $\delta>0$, что для любых x и x', принадлежащих отрезку [a;b], из неравенства $|x-x'|<\delta$ следует неравенство $|f(x)-f(x')|<\varepsilon$.

Возьмем такое разбиение τ_n отрезка $\left[a;b\right]$ на частичные отрезки $\left[x_{k-1};x_k\right], \quad k=1,2,...,n$, чтобы $\lambda<\delta$. Тогда $\forall x,x'\in\left[x_{k-1};x_k\right]$ из неравенства $\left|x-x'\right|<\delta$ выполняется неравенство

$$|f(x)-f(x')| < \frac{\varepsilon}{b-a}$$
.

Отсюда следует, что $\left|M_k - m_k\right| < \frac{\mathcal{E}}{b-a}$.

С учетом этого

$$0 \le S_n - S_n = \sum_{k=1}^n (M_k - m_k) \Delta x_k < \sum_{k=1}^n \frac{\varepsilon}{b - a} \Delta x_k = \frac{\varepsilon}{b - a} \sum_{k=1}^n \Delta x_k = \frac{\varepsilon}{b - a} \cdot (b - a) = \varepsilon.$$

Значит,
$$\lim_{\lambda \to 0} \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = 0$$
 и $f(x) \in \mathbb{R}_{[a;b]}$

Следствие 1. Если функция f(x) ограничена на отрезке [a;b] и непрерывна на нем всюду, кроме конечного числа точек разрыва первого рода, то она интегрируема на этом отрезке.

Теорема 2. Функция f(x), монотонная на отрезке [a;b], то интегрируема на этом отрезке.

ightharpoonup Ограниченность f(x) на отрезке [a;b] следует из свойств непрерывных функций.

Пусть f(x) возрастает на отрезке [a;b], т.е. f(a) < f(x) < f(b). Пусть $\varepsilon > 0$. Возьмем такое разбиение τ_n отрезка [a;b] на частичные отрезки $[x_{k-1};x_k]$, k=1,2,...,n, чтобы

$$\lambda < \frac{\varepsilon}{f(b) - f(a)}$$
.

В силу монотонности f(x) имеем

$$\Delta x_k = \left| x_k - x_{k-1} \right| < \frac{\varepsilon}{f(b) - f(a)} \quad \text{if } M_k - m_k = f(x_k) - f(x_{k-1}).$$

Тогда

$$S_{n} - s_{n} = \sum_{k=1}^{n} (M_{k} - m_{k}) \Delta x_{k} < \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1})) \frac{\varepsilon}{f(b) - f(a)} =$$

$$= \frac{\varepsilon}{f(b) - f(a)} \cdot (f(x_{1}) - f(x_{0}) + f(x_{2}) - f(x_{1}) + \dots + f(x_{n}) - f(x_{n-1})) =$$

$$= \frac{\varepsilon}{f(b) - f(a)} \cdot (f(x_{n}) - f(x_{0})) = \varepsilon.$$

Следовательно, $\lim_{\lambda \to 0} \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = 0$. В силу критерия Дарбу $f(x) \in \mathbb{R}_{[a:b]}$

2. Основные свойства определенного интеграла.

Определенный интеграл обладает следующими свойствами.

1. Если нижний и верхний пределы интегрирования равны (a = b), то интеграл равен нулю:

$$\int_{a}^{b} f(x)dx = 0.$$

Это свойство следует из определения интеграла.

- **2.** Ecnu f(x) = 1, $mo \int_{a}^{b} dx = b a$.
- ▶ Действительно, так как f(x)=1, то

$$\int_{a}^{b} dx = \lim_{\lambda \to 0} \sum_{k=1}^{n} 1 \cdot \Delta x_{k} = \sum_{k=1}^{n} \Delta x_{k} = b - a. \blacktriangleleft$$

3. При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

▶ Данное утверждение следует из того, что в случае b < a все числа $\Delta x_k = x_k - x_{k-1}$ в разбиении $\tau_n = \big\{ a = x_0 > x_1 > ... > x_n = b \, \big\}$ будут отрицательными (при a < b все $\Delta x_k > 0$). \blacktriangleleft

Интеграл $\int f(x)dx$ был определен для случая a < b. Если a > b, свойство 3 рассматривается как дополнение к определению определенного Его интеграла. можно интерпретировать следующим образом: определенные $\int f(x)dx$ и $\int f(x)dx$ являются пределами интегральных сумм, различающихся лишь знаком.

4. Постоянный множитель можно выносить за знак определенного интеграла:

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx \quad \forall c \in \mathbf{R} .$$

▶ Действительно.

$$\int_{a}^{b} cf(x)dx = \lim_{\lambda \to 0} \sum_{k=1}^{n} cf(\xi_k) \Delta x_k = c \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k = c \int_{a}^{b} f(x) dx. \blacktriangleleft$$

5. Определенный интеграл от алгебраической суммы конечного числа интегрируемых на [a;b] функций $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ равен алгебраической сумме определенных интегралов от слагаемых:

$$\int_{a}^{b} (f_{1}(x) \pm f_{2}(x) \pm ... \pm f_{n}(x)) dx =$$

$$= \int_{a}^{b} f_{1}(x) dx \pm \int_{a}^{b} f_{2}(x) dx \pm ... \pm \int_{a}^{b} f_{n}(x) dx$$

Доказательство этого свойства аналогично приведенному выше.

Замечание. Совокупность свойств 4 и 5 называются свойством линейности: если $f_1(x)$ и $f_2(x)$ интегрируемы на [a;b], то любая их линейная комбинация $c_1f_1(x)+c_2f_2(x)$, c_1 , $c_2 \in \mathbf{R}$, также интегрируема на [a;b]:

$$\int_{a}^{b} (c_{1}f_{1}(x) \pm c_{2}f_{2}(x))dx = c_{1}\int_{a}^{b} f_{1}(x)dx \pm c_{2}\int_{a}^{b} f_{2}(x)dx.$$

6 (аддитивность определенного интеграла). Если существуют интегралы $\int\limits_{a}^{c} f(x) dx$ и $\int\limits_{c}^{b} f(x) dx$, то существует

также интеграл $\int_{a}^{b} f(x)dx$ и для любых чисел a , b , c

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

▶Действительно, предел интегральной суммы не зависит от способа разбиения отрезка [a;b] на частичные отрезки и от выбора ξ_k . Это позволяет при составлении интегральной суммы включить точку c в число точек разбиения. Пусть $c = x_m$, т.е.

$$[a;b] = [a;c] \cup [c;b] = ([a;x_1] \cup [x_1;x_2] \cup ... \cup [x_{m-1};x_m]) \cup ([x_m;x_{m+1}] \cup ... \cup [x_{n-1};b]).$$

Тогда
$$\sum_{k=1}^n f(\xi_k) \Delta x_k = \sum_{k=1}^m f(\xi_k) \Delta x_k + \sum_{k=m}^n f(\xi_k) \Delta x_k$$
 .

Переходя к пределу при $\lambda = \max_{1 < i < n} \Delta x_i \to 0$, имеем

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx. \blacktriangleleft$$

Геометрический смысл свойства 6 состоит в том, что площадь криволинейной трапеции с основанием [a;b] равна сумме площадей криволинейных трапеций с основаниями [a;c] и [c;b] (рис.1.)

7 (интегрирование неравенств). *Если* $f(x) \ge 0 \quad \forall x \in [a;b]$, $mo \int_{a}^{b} f(x) dx \ge 0$, a < b.

▶ Действительно, так как $f(\xi_k) \ge 0$ и $\Delta x_k \ge 0$, то интегральная сумма $\sum_{k=1}^n f(\xi_k) \Delta x_k \ge 0$. Переходя к пределу в последнем равенстве, имеем

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k = \int_{0}^{b} f(x) dx \ge 0. \blacktriangleleft$$

8 (монотонность определенного интеграла). *Если*

интегрируемые функции f(x) и $\varphi(x)$ удовлетворяют неравенству $f(x) \ge \varphi(x) \ \forall x \in [a;b],$ то

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} \varphi(x)dx , \ a < b .$$

▶ Действительно, так как $f(x) - \varphi(x) \ge 0$ $\forall x \in [a;b]$, то, согласно свойствам 5 и 7, имеем

$$\int_{a}^{b} (f(x) - \varphi(x)) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} \varphi(x) dx \ge 0.$$

Следовательно
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} \varphi(x)dx$$
.

На рис.2. дана **геометрическая** интерпретация свойства 8. Так как $f(x) \ge \varphi(x)$, то площадь криволинейной трапеции aA_2B_2b не меньше площади криволинейной трапеции aA_1B_1b .

Замечание. Так как $-|f(x)| \le f(x) \le |f(x)| \quad \forall x \in [a;b]$, то

$$-\int_{a}^{b} |f(x)| dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} |f(x)| dx.$$

Отсюда
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} f(x) dx$$

3. Интегральная теорема о среднем.

Терема 3 (о среднем). Пусть 1) функции f(x) и g(x) интегрируемы на отрезке [a;b], 2) для любого $x \in [a;b]$ справедливо неравенство $m \le f(x) \le M$, 3) функция g(x) не меняет знак на [a;b]. Тогда существует такое число μ , $m \le \mu \le M$, что

$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

► По условию $m \le f(x) \le M \quad \forall x \in [a;b]$

Умножим неравенство на g(x).

Если $g(x) \ge 0$, получим $mg(x) \le f(x)g(x) \le Mg(x)$. Если $g(x) \le 0$, получим $Mg(x) \le f(x)g(x) \le mg(x)$. Интегрируя эти неравенства, имеем

$$m\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M\int_{a}^{b} g(x)dx$$

или
$$M \int_a^b g(x)dx \le \int_a^b f(x)g(x)dx \le M \int_a^b g(x)dx$$
.

В случае, когда $\int_a^b g(x)dx = 0$, то $\int_a^b f(x)g(x)dx = 0$ и теорема доказана.

В случае, когда $\int_a^b g(x)dx \neq 0$, то при $g(x) \geq 0$ имеем $\int_a^b g(x)dx > 0$, а при $g(x) \leq 0$ имеем $\int_a^b g(x)dx < 0$.

Разделим обе части двойных неравенств на $\int_{a}^{b} g(x) dx$. В обоих случаях получим одно и то неравенство

$$m \le \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \le M$$

Полагая

$$\mu = \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx}$$

получим
$$\int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$
.

Следствие 1. Если m и M – соответственно наименьшее u наибольшее значения функции f(x), непрерывной на [a;b], то

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a) \quad \forall x \in [a;b].$$

▶ По условию $m \le f(x) \le M$ $\forall x \in [a;b]$. Применяя свойство 8 к этим неравенствам, имеем

$$m\int_{a}^{b} dx \leq \int_{a}^{b} f(x) dx \leq M \int_{a}^{b} dx.$$

Согласно свойству 2, $\int_{a}^{b} dx = b - a$, следовательно,

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

На рисунке 3 дана **геометрическая** интерпретация следствия 1 в случае, когда $f(x) \ge 0 \quad \forall x \in [a;b]$. Площадь прямоугольника aA_1B_1b равна m(b-a), площадь прямоугольника aA_2B_2b — M(b-a). Из неравенства $m(b-a) \le \int\limits_a^b f(x)dx \le M(b-a)$ следует, что площадь криволинейной трапеции aABb не меньше площади первого прямоугольника и не больше площади второго.

Рис.3.

Следствие 2. Если функция f(x) непрерывна на отрезке [a;b], то существует такая точка $\xi \in [a;b]$, что

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

► Известно, что непрерывная функция f(x) на отрезке [a;b] достигает своего наименьшего m и наибольшего M значений, т.е. $m \le f(x) \le M$ $\forall x \in [a;b]$. Из данного неравенства на основании следствия 1 имеем

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

Разделив все члены двойного неравенства на b-a>0 , получим

$$m \le \frac{\int_{a}^{b} f(x)dx}{b-a} \le M.$$

$$\int_{a}^{b} f(x)dx$$

Другими словами, число $\lambda = \frac{a}{b-a}$ находится между наименьшим и наибольшим значениями функции f(x). Поскольку непрерывная на отрезке [a;b] функция f(x) принимает все промежуточные значения, лежащие между m и M , в том числе и значение λ , то существует $\xi \in [a;b]$, такое, что $f(\xi) = \lambda$.

$$\int_{b}^{b} f(x)dx$$
Значит, $f(\xi) = \frac{a}{b-a}$. Отсюда
$$\int_{a}^{b} f(x)dx = f(\xi)(b-a). \blacktriangleleft$$

Число $f(\xi)$, называется интегральным средним значением функции f(x) на отрезке [a;b].

Геометрически данное следствие означает, что, определенный интеграл от непрерывной функции равен

произведению значения подынтегральной функции в некоторой промежуточной точке ξ отрезка интегрирования [a;b] и длины b-a этого отрезка.

На рисунке 4 дана геометрическая интерпретация следствия 2 в случае, когда f(x)>0 $\forall x\in [a;b]$. Так как значение $f(\xi)(b-a)$ численно равно площади прямоугольника с основанием b-a и высотой $f(\xi)$, то теорема о среднем утверждает, что существует прямоугольник, равновеликий криволинейной трапеции aABb.

Вопросы для самоконтроля

- 1. Сформулируйте и докажите теорему об интегрируемости непрерывной на отрезке [a;b] функции.
- 2. Является монотонная на отрезке [a;b] функция интегрируемой?
 - 3. Перечислите основные свойства определенного интеграла.
 - 4. В чем заключается смысл теоремы о среднем?