九州大学大学院数理学府 平成17年度修士課程入学試験 数学専門科目問題(数学コース)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 以下 N は自然数の全体 , ℝ は実数の全体 , ℂ は複素数の全体を表す .
- [1] 5文字 $\{1,2,3,4,5\}$ 上の置換全体からなる5次対称群 S_5 を考える.
 - (1) 任意の群 G に対してその中心を $Z(G) = \{z \in G | xz = zx, \forall x \in G\}$ と定義する . Z(G) は G の正規部分群であることを示せ .
 - (2) S_5 の中心 $Z(S_5)$ を求めよ.
 - (3) S_5 の位数 2 の元の個数を求めよ.
 - (4) S_5 の位数 3 の元の個数を求めよ.また,位数 3 の部分群の個数を求めよ.
 - (5) S_5 の位数 6 の部分群の個数を求めよ.
- [2] X を有限集合とし,A を X から実数体 $\mathbb R$ への写像全体のなす集合とする.
 - (1) $f,g \in A$ に対して $f+g,fg \in A$ を

$$(f+g)(x) = f(x) + g(x),$$

$$(fg)(x) = f(x)g(x)$$

で定義すると, A は単位元をもつ可換環になることを示せ.

(2) $y \in X$ に対し, $\chi_y \in A$ を

$$\chi_y(x) = \begin{cases} 1, & x = y, \\ 0, & x \neq y \end{cases}$$

で定義される写像とする. $\mathfrak a$ を,A 自身とは一致しない A のイデアルとする.このとき, $f(z) \neq 0$ を満たす $f \in \mathfrak a$ と $z \in X$ が存在するならば, $\chi_z \in \mathfrak a$ となることを示せ.

(3) A の任意の極大イデアルは,ある $z \in X$ によって

$$\{f \in A \mid f(z) = 0\}$$

と表されることを示せ.

- [3] 以下では \mathbb{F}_3 を 3 元体とし , そのある代数閉包を $\overline{\mathbb{F}}_3$ とする .
 - (1) 3元体 F₃ 上のモニックな 2 次既約多項式をすべて求めよ.
 - (2) (1) で求めた多項式の内の一つを選び,その $\overline{\mathbb{F}}_3$ における根を α とする.このとき, $\frac{1}{2\alpha+1}$ を α の整式として表せ.
 - (3) $\overline{\mathbb{F}}_3$ の 0 以外の元がつくる乗法群を $\overline{\mathbb{F}}_3^{\times}$ とする . (1) で求めた多項式の根が $\overline{\mathbb{F}}_3^{\times}$ の中で生成する部分群の位数をそれぞれ求めよ .
- $oxed{4}$ 閉区間[0,1]をIと表す.正方形I imes Iに対して,関係

$$(0,t) \sim (1,t)$$
 $(\forall t \in I),$
 $(s,0) \sim (s,1)$ $(\forall s \in I)$

で生成される同値関係 \sim を考え, $X=(I\times I)/\sim$ をその同値関係による商空間(等化空間)とする(すなわち,正方形の対辺 $\{0\}\times I$ と $\{1\}\times I$, $I\times\{0\}$ と $I\times\{1\}$ を,それぞれ向きを合わせて同一視して得られる商空間を X とする.)

- (1) X はコンパクトであることを示せ.
- (2) $S^1=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2=1\}$ を単位円周としたとき , 積空間 $T^2=S^1\times S^1$ はハウスドルフであることを示せ .
- (3) 写像 $f:I\times I\to T^2$ を ,

$$f(s,t) = ((\cos 2\pi s, \sin 2\pi s), (\cos 2\pi t, \sin 2\pi t))$$

で定める.このとき,連続写像 $F:X\to T^2$ で, $f=F\circ\pi$ となるものが一意的に存在することを示せ.ここで, $\pi:I\times I\to X$ は自然な射影(商写像,等化写像)である.

- (4) $F: X \rightarrow T^2$ は同相写像となることを示せ.
- (5) $I \times I$ に対して,関係

$$(0,t) \sim' (1,1-t)$$
 $(\forall t \in I),$
 $(s,0) \sim' (1-s,1)$ $(\forall s \in I)$

によって生成される同値関係 \sim' を新たに考え, $Y=(I\times I)/\sim'$ を商空間とする.X と Y は同相となるかを理由と共に答えよ.

[5] 与えられた正の定数 a, b (a > b > 0) に対して,写像

$$p: D = (-\pi, \pi) \times (-\pi, \pi) \longrightarrow \mathbb{R}^3$$

を

$$p(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u)$$

によって定めると , p は 3 次元ユークリッド空間内の曲面のパラメータ表示を与えている .

- (1) p の単位法線ベクトルを求めよ.
- (2) p のガウス曲率 K を u, v の式で表せ.
- (3) p の像を図示し,ガウス曲率が負となる部分を指摘せよ.
- (4) 曲面 $\tilde{p}(\tilde{u},\tilde{v})$ の第一基本形式 ds^2 が

$$ds^2 = \widetilde{E}(d\widetilde{u}^2 + d\widetilde{v}^2), \qquad \widetilde{E} = \widetilde{E}(\widetilde{u}, \widetilde{v})$$

と表されているとき , パラメータ (\tilde{u},\tilde{v}) を等温パラメータという . 最初に与えられた曲面 p のパラメータを等温パラメータに変換せよ .

[6] 実定数 k に対して , 3 次元ユークリッド空間 \mathbb{R}^3 の部分集合 M_k を

$$M_k = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = k\}$$

と定義する.

- (1) $k \neq 0$ ならば, M_k は多様体の構造を持つことを示せ.
- (2) k=-1 とし, $U=\{(x,y,z)\in M_{-1}\,|\,z>0\}$ に次のように座標を与える: $\varphi\colon U\ni (x,y,z)\mapsto (x,y)\in \mathbb{R}^2.$

 $\psi: U \ni (x,y,z) \mapsto (u,v) \in D$. ただし $D = \{(u,v) \in \mathbb{R}^2 \mid u^2 + v^2 < 1\}$ で

$$(u,v) = \frac{1}{1+z}(x,y).$$

このとき , 座標変換 $(u,v)\mapsto (x,y)$ を求めよ .

(3) (2) の座標系 (u,v) を用いて U 上のベクトル場

$$X = \frac{\partial}{\partial u}$$

を定義する.このベクトル場を座標系(x,y) から定まる $(\partial/\partial x,\partial/\partial y)$ を用いて表せ.

- [7] p を $0 なる実数とするとき,関数 <math>f(z) = \frac{\mathrm{e}^{pz}}{1 + \mathrm{e}^z}$ を考える.
 - (1) f の複素平面 $\mathbb C$ におけるすべての極の位置,位数および留数を求めよ.
 - (2) 正の数 R に対して, C_1,C_2,C_3,C_4 からなる 下図のような閉曲線を C とするとき,積分 $\oint_C f(z)\ dz$ を求めよ.
 - (3) $R \to \infty$ とすると $\left| \int_{C_2} f(z) \; dz \right| \to 0, \left| \int_{C_4} f(z) \; dz \right| \to 0$ となることを示せ .
 - (4) 実積分 $\int_{-\infty}^{\infty} \frac{\mathrm{e}^{px}}{1 + \mathrm{e}^x} dx$ を求めよ.

[8] 実数全体 $\mathbb R$ で定義された連続関数 $q_1(x),\,q_2(x)$ は , $q_1(x) < q_2(x)$ を満たすものとする . $\varphi_1(x),\,\varphi_2(x)$ はそれぞれ微分方程式

$$\begin{cases} \varphi_1'' + q_1(x)\varphi_1 = 0\\ \varphi_2'' + q_2(x)\varphi_2 = 0 \end{cases}$$

を満たすものとする.ある $\alpha,\beta\in\mathbb{R}$ $(\alpha<\beta)$ に対して $\varphi_1(\alpha)=\varphi_1(\beta)=0$ であり,さらに任意の $x\in(\alpha,\beta)$ について $\varphi_1(x)>0$ であるとする.

- (1) $\varphi_1'(\beta) < 0 < \varphi_1'(\alpha)$ であることを示せ .
- (2) 次の等式

$$\int_{\alpha}^{\beta} (q_2(x) - q_1(x)) \varphi_1(x) \varphi_2(x) dx = \varphi_1'(\beta) \varphi_2(\beta) - \varphi_1'(\alpha) \varphi_2(\alpha)$$

が成り立つことを示せ.

(3) φ_2 は零点を (α,β) 内に持つことを示せ.ここで φ_2 の零点とは ,

 $\varphi_2(x) = 0$ となる x のことである.

(4) 実数全体 $\mathbb R$ で定義された連続関数 q(x) とある $a,b\in\mathbb R$ (a< b) に対して, [a,b] における実数 λ をパラメータとする常微分方程式の境界値問題

$$\begin{cases} -\varphi'' + q(x)\varphi = \lambda\varphi \\ \varphi(a) = \varphi(b) = 0 \end{cases}$$

を考える.二つの パラメータ値 $\lambda_1<\lambda_2$ で $\varphi(x)\not\equiv 0$ である解が存在するとする.このとき λ_1 に対応する解 φ_1 より λ_2 に対応する解 φ_2 の方が多くの零点を (a,b) 内に持つことを示せ.

- [9] (X, \mathcal{M}, μ) を測度空間とする.以下の間に答えるのに,ルベーグ積分論の基本的な定理を用いてもよいが,その際には,どのような定理をどのように用いたかを明確に説明せよ.
 - (1) 可測集合の列 $\{A_n\}_{n=1}^\infty$ が $A_1\supset A_2\supset\cdots\supset A_n\supset\cdots$ を満たすとする.このとき $A=\bigcap_{n=1}^\infty A_n$ とおくと,各 $x\in X$ に対して

$$\chi_{A_n}(x) \to \chi_A(x) \quad (n \to \infty)$$

が成り立つことを示せ.ただし, χ_B は集合 B の定義関数

$$\chi_B(x) = \begin{cases} 1 & (x \in B) \\ 0 & (x \notin B) \end{cases}$$

とする.

- (2) 可測集合の列 $\{E_n\}_{n=1}^\infty$ が $\mu(E_n)<2^{-n}$ $(n=1,2,\dots)$ を満たすとする.このとき $F_k=\bigcup_{n=k}^\infty E_n,\, F=\bigcap_{k=1}^\infty F_k$ とおくと, $\mu(F)=0$ となることを示せ.
- (3) f を X 上の可積分関数とすると,任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して任意の $E\in\mathcal{M}$ に対して

$$\mu(E) < \delta$$
 ならば $\int_{E} |f| \, d\mu < \varepsilon$

が成り立つことを示せ.

(4) f, f_n $(n=1,2,\dots)$ を X 上の可積分関数とし, $\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0$ が 成立しているとする.このとき,任意の $\varepsilon > 0$ に対してある $\delta > 0$ が存在して任意の n と任意の $E \in \mathcal{M}$ に対して

$$\mu(E) < \delta$$
 ならば $\int_E |f_n| \, d\mu < arepsilon$

が成り立つことを示せ.