同调代数

G.Li

目录

第一章	导出函子	5
1.1	上链和正合性	5
1.2	映射锥和映射柱	7
1.3	链同伦	10
1.4	内射消解和投射消解	10
1.5	一个例子: 超上同调	10
第二章	Tor函子和Ext函子	13
2.1	自由链复形和万有系数定理	13
	2.1.1 自由链复形	13
	2.1.2 万有系数定理	14
2.2	链复形中的乘法对象	15
2.3	一个例子:	15
2.4	双复形和全复形	15
2.5	Kunneth谱序列	18
第三章	谱序列	19
第三章	谱序列 滤子和正合对	
		19
3.1	滤子和正合对	19 21
3.1 3.2	滤子和正合对	19 21 23
3.1 3.2 3.3	滤子和正合对	19 21 23 25
3.1 3.2 3.3 3.4	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解	19 21 23 25
3.1 3.2 3.3 3.4 3.5	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解 Grothendieck谱序列	19 21 23 25 26 27
3.1 3.2 3.3 3.4 3.5 第四章	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解 Grothendieck谱序列	19 21 23 25 26 27
3.1 3.2 3.3 3.4 3.5 第四章 4.1	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解 Grothendieck谱序列 与出范畴 范畴的局部化	19 21 23 25 26 27 27 30
3.1 3.2 3.3 3.4 3.5 第四章 4.1 4.2	滤子和正合对 收敛性 — 全复形的上同调 — Cartan-Eilenberg预解 — Grothendieck谱序列 — 导出范畴 范畴的局部化 同伦范畴与导出范畴 —	19 21 23 25 26 27 30 32
3.1 3.2 3.3 3.4 3.5 第四章 4.1 4.2	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解 Grothendieck谱序列 导出范畴 范畴的局部化 同伦范畴与导出范畴 三角范畴	19 21 23 25 26 27 30 32 34
3.1 3.2 3.3 3.4 3.5 第四章 4.1 4.2	滤子和正合对 收敛性 全复形的上同调 Cartan-Eilenberg预解 Grothendieck谱序列 导出范畴 范畴的局部化 同伦范畴与导出范畴 三角范畴 4.3.1 同伦范畴	19 21 23 25 26 27 27 30 32 34 34

4	目	录
4.5	例子	37
第五章	层及其上同调	39
5.1	层的基本理论	39
	5.1.1 预层与层的基本性质	39
	5.1.2 层化	44
	5.1.3 底空间变换	47
	5.1.4 层范畴及其中的正合性	48
5.2	Čech上同调	49
附录 Α	Abel范畴	51
A.1	Abel范畴	51
	A.1.1 Abel范畴的加性	52
	A.1.2 态射的分解	53
	A.1.3 正合性	60
	A.1.4 Abel范畴中对象的元素和态射	61
	A.1.5 Abel范畴中的特殊对象	63
A.2	Abel范畴间函子	64
	A.2.1 Serre subcategory	64
A.3	嵌入定理	64

第一章 导出函子

1.1 上链和正合性

定义. 给定加性范畴A中的一族对象及态射

$$X^{\bullet}: \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1} \xrightarrow{d^{n+1}} \cdots$$

满足 $d^n \circ d^{n-1} = 0$ 对任意n都成立,则称 $(X^{\bullet}, d^{\bullet})$ 是 \mathcal{A} 中的一个**上链**(cochain).

对偶地,我们也有加性范畴A中的链(chain)的概念.我们记

例1.1. 给定代数R,若M是R模,且P•和I•分别是M的投射消解和内射消解,则如下三个横向的序列是R – **Mod**中的一个上链

且他们有相同的上同调.

例1.2. 设 $(X^{\bullet}, d^{\bullet})$ 是A中的一个上链,定义上链 $\tau^{\leq 0}(X^{\bullet}, d^{\bullet})$ 为

$$\cdots \xrightarrow{d^{-2}} X^{-1} \xrightarrow{d^{-1}} \operatorname{Ker} d^0 \xrightarrow{0} 0 \to \cdots$$

那么我们可以证明,

$$H^{n}(\tau^{\leq 0}(X^{\bullet})) = \begin{cases} H^{n}(X^{\bullet}) & n \leq 0\\ 0 & n > 0 \end{cases},$$

类似地我们也有构造 $\tau_{>0}(X^{\bullet}, d^{\bullet})$,

$$\cdots \to 0 \to X^0/\text{Im } d^1 \xrightarrow{\bar{d^0}} X^1 \xrightarrow{d^1} X^2 \to \cdots$$

第一章 导出函子

定理1.1. 设

$$0 \to X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to 0$$

是Abel范畴A中上链的正合列,那么存在上同调的长正合列

$$\cdots \to H^n(X^{\bullet}) \to H^n(Y^{\bullet}) \to H^n(Z^{\bullet}) \to H^{n+1}(X^{\bullet}) \to \cdots$$

Proof. 我们将长正合序列具体写出来

于是存在如下交换图,且横向序列由蛇形引理都是正合的:

其中 \bar{d}_X^n : coker $d_X^{n-1} \to \ker d_X^{n+1}$ 是下图

由 $d_X^n:X^n\to X^{n+1}$ 诱导的coker $d_X^{n-1}\dashrightarrow$ ker d_X^{n+1} (在R模的情形就是选取一个代表元素 X^n /im $d_X^{n-1}\cong$ coker d_X^n , 然后用 d_X^n 将代表元映到ker d_X^{n+1} 中).再次根据蛇形引理,有长正合序列

$$\ker \bar{d}_X^n \to \ker \bar{d}_Y^n \to \ker \bar{d}_Z^n \to \operatorname{coker} \bar{d}_X^n \to \operatorname{coker} \bar{d}_Y^n \to \operatorname{coker} \bar{d}_Z^n.$$

但是,

$$\ker \bar{d}_X^n \cong \frac{\ker d_X^n}{\operatorname{im} d_X^{n-1}} = H^n(X^{\bullet})$$

且.

$$\operatorname{coker} \bar{d}_X^n \cong \frac{\ker d_X^{n+1}}{\operatorname{im} d_X^n} = H^{n+1}(X^{\bullet}),$$

这样就得到了希望的长正合序列.

1.2 映射锥和映射柱 7

在蛇形引理的证明中,态射 $\ker \bar{d}_Z^n \to \operatorname{coker} \bar{d}_X^n$ 是困难的,并且在长正合序列中它对应了阶数提升的态射 $H^n(Z^{\bullet}) \to H^{n+1}(X^{\bullet})$.这里有必要将整个态射详细清楚地描述出来.

练习1.1 (Hopf迹定理). 设 V^{\bullet} , W^{\bullet} 是域k上有界($\exists N>0$ 使得当|n|>N时 $V^n=0$)上链,且对任意n, V^n 和 W^n 都是有限维k向量空间, $f:V^{\bullet}\to W^{\bullet}$ 是链同态, $f_*:H^n(V^{\bullet})\to H^n(W^{\bullet})$ 是诱导的上同调群同态.求证

$$\sum_{n\in\mathbb{Z}} (-1)^n \operatorname{Tr} f^n = \sum_{n\in\mathbb{Z}} (-1)^n \operatorname{Tr} f^n_*.$$

1.2 映射锥和映射柱

给定Abel范畴 \mathcal{A} ,且设 $X^{\bullet} = (X^n, d_X^n) \in \mathrm{Com}^{\bullet}(\mathcal{A})$ 是 \mathcal{A} 中对象组成的复形,那么我们可以定义一个新的复形 $X[n]^{\bullet}$,满足 $(X[n])^i = X^{n+i}$, $d_{X[n]}^i = (-1)^n d_X^{n+i} : (X[n])^i \to (X[n])^{i+1}$.若 $f: X^{\bullet} \to Y^{\bullet}$ 是一个链同态,则我们有诱导的链同态 $f[n]: X[n]^{\bullet} \to Y[n]^{\bullet}$,满足 $f[n]^i = f^{n+i}: (X[n])^i \to (Y[n])^i$.

我们称[1]为平移函子(translation by 1 functor),它是拓扑中 $-\times$ [0,1]的类比.之后这个函子将给出了???? 上的一个三角结构(triangulated structure).

定义. 给定Abel范畴 \mathcal{A} 的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$,那么f的映射锥(mapping cone)是 \mathcal{A} 中对象组成的一个链Cone $(f)^{\bullet}$ 满足

$$\operatorname{Cone}(f)^i := X[1]^i \oplus Y^i$$

和

$$d_{\operatorname{Cone}(f)}^{i} := \begin{pmatrix} d_{X[1]}^{i} & 0 \\ f[1]^{i} & d_{Y}^{i} \end{pmatrix} : \xrightarrow{X^{n-1}} \xrightarrow{X^{n-2}} X^{n-2} \\ & & \oplus \\ & & Y^{n} \xrightarrow{} Y^{n-1},$$

类似地我们可以定义f的映射柱(mapping cylinder),它是 \mathcal{A} 中对象组成的一个链 $\mathrm{Cyl}(f)^{\bullet} := X^{\bullet} \oplus X[1]^{\bullet} \oplus Y^{\bullet}$,其中

$$d_{\mathrm{Cyl}(f)}^i := egin{pmatrix} d_X^i & -\mathrm{id}_{X[1]} & 0 \\ 0 & d_{X[1]}^i & 0 \\ 0 & f[1]^i & d_Y^i \end{pmatrix}.$$

这样微分映射的定义很明显是合理的,它们都是上链:

$$d_{\operatorname{Cone}(f)}^{i+1} \circ d_{\operatorname{Cone}(f)}^{i} = \begin{pmatrix} d_{X[1]}^{i+1} & 0 \\ f[1]^{i+1} & d_{Y}^{i+1} \end{pmatrix} \begin{pmatrix} d_{X[1]}^{i} & 0 \\ f[1]^{i} & d_{Y}^{i} \end{pmatrix} = \begin{pmatrix} d_{X[1]}^{i+1} \circ d_{X[1]}^{i} & 0 \\ f[1]^{i+1} \circ d_{X[1]}^{i} + d_{Y}^{i+1} \circ f[1]^{i} & d_{Y}^{i+1} \circ d_{X[1]}^{i} \end{pmatrix} = 0,$$

且

$$d_{\mathrm{Cyl}(f)}^{i+1} \circ d_{\mathrm{Cyl}(f)}^{i} = \begin{pmatrix} d_X^{i+1} & -\mathrm{id}_{X[1]} & 0\\ 0 & d_{X[1]}^{i+1} & 0\\ 0 & f[1]^{i+1} & d_Y^{i+1} \end{pmatrix} \begin{pmatrix} d_X^{i} & -\mathrm{id}_{X[1]} & 0\\ 0 & d_{X[1]}^{i} & 0\\ 0 & f[1]^{i} & d_Y^{i} \end{pmatrix}$$

例1.3. 设 X^{\bullet} , Y^{\bullet} 是单对象上链, $f: X^{\bullet} \to Y^{\bullet}$ 是链映射,那么由定义

$$Cone(f) = \cdots \to 0 \to X^0 \xrightarrow{f} Y^0 \to 0 \to \cdots,$$

其中 Y^0 所在的位置是0阶位置,且有 $H^0 = \operatorname{coker} f, H^{-1} = \ker f.$

引理1.1. Abel范畴A的一个链同态 $f:X^{\bullet}\to Y^{\bullet}$ 诱导了同构 $f^*:H^*(X^{\bullet})\to H^*(Y^{\bullet})$ 当且仅当 $H^*(\mathrm{Cone}(f))=0$.

Proof. 如下短正合列

$$0 \to Y^{\bullet} \xrightarrow{i} \operatorname{Cone}(f) \xrightarrow{p} X[1]^{\bullet} \to 0$$

(其中i是嵌入p是投影)诱导了上同调群的长正合列

$$\cdots \to H^n(\operatorname{Cone}(f)) \to H^n(X[1]) \to H^{n+1}(Y) \to H^{n+1}(\operatorname{Cone}(f)) \to \cdots$$

于是 $H^n(X[1]) = H^{n+1}(X) \cong H^{n+1}(X)$ 当且仅当 $H^n(\operatorname{Cone}(f)) = 0$ 对所有n成立,于是只要说明诱导长正合序列的连接态射是由f诱导的即可.考虑??????

命题1.2. 设 Abel 范畴 A的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$ 满足 $Cone(f) \simeq 0$,那么 f 是链同伦等价.

Proof. $\diamondsuit i: Y^{\bullet} \to \operatorname{Cone}(f)$ 是嵌入 $p: \operatorname{Cone}(f) \to X[1]^{\bullet}$ 是投影.

首先, $i \simeq 0$ 当且仅当f有右同伦逆,即存在链映射 $g: Y^{\bullet} \to X^{\bullet}$ 使得 $fg \simeq \mathrm{id}_{Y^{\bullet}}$.一方面,若 $i \simeq 0$,那么存在 $h: Y^{\bullet} \to \mathrm{Cone}(f)[-1]$ 满足

$$d_{\operatorname{Cone}(f)}^{n-1} \circ h^n + h^{n+1} \circ d_Y^n = i,$$

接照直和分解 $Cone(f) := X[1]^{\bullet} \oplus Y^{\bullet}$,存在 $s: Y^{\bullet} \to Y[-1]^{\bullet}$ 和 $g: Y^{\bullet} \to X^{\bullet}$ 满足h = s + g,于是上式可以写为

$$\begin{pmatrix} d_{X[1]}^{n-1} & 0 \\ f[1]^{n-1} & d_Y^{n-1} \end{pmatrix} \begin{pmatrix} g^n \\ s^n \end{pmatrix} + \begin{pmatrix} g^{n+1} \\ s^{n+1} \end{pmatrix} d_Y^n = \begin{pmatrix} 0 \\ \mathrm{id}_Y \end{pmatrix}.$$

这意味着 $q: Y^{\bullet} \to X^{\bullet}$ 是链映射,且

$$f[1]^{n-1} \circ g^n + d_Y^{n-1} \circ s^n + s^{n+1} \circ d_Y^n = \mathrm{id}_Y,$$

即g是右同伦逆.另一方面,f有右同伦逆,记为链映射 $g: Y^{\bullet} \to X^{\bullet}$ 和 $s: Y^{\bullet} \to Y[-1]^{\bullet}$,那么之前证明中的矩阵等式成立,于是找到了h:=s+g满足 $d^{n-1}_{\operatorname{Cone}(f)} \circ h^n + h^{n+1} \circ d^n_Y = i$,即 $i \simeq 0$.

再来, $p \simeq 0$ 当且仅当f有左同伦逆,即存在链映射 $h: Y^{\bullet} \to X^{\bullet}$ 使得 $hf \simeq id_{Y^{\bullet}}$.

最后,我们回到命题的证明来. $Cone(f) \simeq 0$ 意味着 $id_{Cone(f)} \simeq 0$,于是 $i = id_{Cone(f)} \circ i \simeq 0 \circ i = 0$ 并且 $p = p \circ id_{Cone(f)} \simeq p \circ 0 = 0$,于是根据前面的讨论,f同时有左右同伦逆,因此f是同伦等价.

1.2 映射锥和映射柱 9

定理1.3. 任给定Abel范畴A的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$,都存在如下 $Com^{\bullet}(A)$ 的正合列:

$$0 \longrightarrow Y^{\bullet} \stackrel{\overline{\pi}}{\longrightarrow} \operatorname{Cone}(f) \stackrel{\pi}{\longrightarrow} X^{\bullet}[1] \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow_{\operatorname{id}}$$

$$0 \longrightarrow X^{\bullet} \stackrel{\overline{f}}{\longrightarrow} \operatorname{Cyl}(f) \stackrel{\pi}{\longrightarrow} \operatorname{Cone}(f) \longrightarrow 0$$

$$\downarrow^{\operatorname{id}} \qquad \downarrow^{\beta}$$

$$X^{\bullet} \stackrel{f}{\longrightarrow} Y^{\bullet}$$

推论1.3.1.

定义. 给定Abel范畴A,称 $Com^{\bullet}(A)$ 中的图

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} X^{\bullet}[1]$$

为其中的一个三角(triangle),三角间的态射(morphism)是如下交换图

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} X^{\bullet}[1]$$

$$\downarrow^{u} \qquad \downarrow^{v} \qquad \downarrow^{w} \qquad \downarrow^{u[1]}$$

$$K^{\bullet} \xrightarrow{i} L^{\bullet} \xrightarrow{j} M^{\bullet} \xrightarrow{k} K^{\bullet}[1]$$

给定三角, 若存在f使得三角同构于

$$X^{\bullet} \xrightarrow{f} \operatorname{Cyl}(f) \xrightarrow{\pi} \operatorname{Cone}(f) \xrightarrow{\delta} X^{\bullet}[1]$$

则称它是特异三角(distinguished triangle).

如上定义给出的是

其中业

命题1.4. $\operatorname{Com}^{\bullet}(A)$ 中的任意短正合序列 $0 \to X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \to 0$ 都拟同构于某个特异三角.

Proof. 考虑如下交换图

$$0 \longrightarrow X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} 0$$

$$\downarrow^{u} \qquad \downarrow^{v} \qquad \downarrow^{w}$$

$$0 \longrightarrow X^{\bullet} \xrightarrow{f} \operatorname{Cyl}(f) \xrightarrow{\pi} \operatorname{Cone}(f) \longrightarrow 0$$

练习1.2. 设 $(X^{\bullet} \oplus Y^{\bullet}, d = \frac{f}{l} \quad g)$ 是上链复形, Y^{\bullet} 可缩且 $h: Y^{\bullet} \to Y^{\bullet}[1]$ 是链同伦,求证

$$(X^{\bullet}, f - ghl) \hookrightarrow (X^{\bullet} \oplus Y^{\bullet}, d)$$

是拟同构.

1.3 链同伦

另一方面,我们希望从拓扑的角度解释这样称呼他们的原因,设 $f:X\to Y$ 是拓扑空间的连续函数,那么f的映射柱是拓扑空间 $(X\times I)\coprod_f Y$,其中粘合依赖于 $f:X\times\{1\}\to Y$,它在同伦的定义中起到了重要的作用.回顾拓扑中映射f,g的一个同伦是一个连续映射 $H:X\times I\to Y$,满足 $H|_{X\times\{0\}}=f$ 且 $H|_{X\times\{1\}}=g$,用交换图表示即为

$$X \xrightarrow{i} X \times I \xleftarrow{j} X$$

$$\downarrow H \qquad g$$

其中 $i:X\to X\times I, x\mapsto (x,0)$ 且 $j:X\to X\times I, x\mapsto (x,1)$.用到拓扑空间中余积是不交并的事实,上图又可以表示为

$$X \coprod X \xrightarrow{i \coprod j} X \times I$$

$$\downarrow_{H}$$

$$Y,$$

注意到 $X\times I$ 恰是 $\mathrm{id}_X:X\to X$ 的映射柱,因而映射同伦的存在性恰由映射柱描述.这样的事情同样发生在 $\mathrm{Com}^ullet(\mathcal{A})$ 中,一个上链映射的同伦 $s:f\simeq g$ 可以给出一个 $\mathrm{Com}^ullet(\mathcal{A})$ 的交换图

习题-将给出验证.

1.4 内射消解和投射消解

1.5 一个例子: 超上同调

我们考虑这样的问题:设 \mathcal{F} 是拓扑空间X上的层

$$\mathscr{F}: \mathbf{Open}(X)^{\circ} \to \mathcal{B},$$

1.5 一个例子: 超上同调 11

其中 \mathcal{B} 是Abel范畴,此时 \mathscr{F} 是以 \mathscr{B} 中对象为对象的层.那么可以求X关于层 \mathscr{F} 的上同调

$$H^i(\mathscr{F},X),$$

它是 \mathcal{B} 中的对象.特别地,当 \mathcal{B} 是某个给定Abel范畴 \mathcal{A} 的上链复形范畴时,每个上同调都是一个 \mathcal{A} 的上链复形,此时还可以求上链复形 $H^i(\mathcal{F},X)$ 的上同调

命题1.5. 设 \mathscr{F} •是拓扑空间X上的层上链复形,f• : \mathscr{F} • $\rightarrow \mathscr{G}$ •是injective的拟同构.则对于任意的内射复形 \mathscr{F} •和复形的态射g• : \mathscr{F} • $\rightarrow \mathscr{F}$ •,存在态射 \tilde{g} • : \mathscr{G} • $\rightarrow \mathscr{F}$ •使得

$$g^{\bullet} = \tilde{g}^{\bullet} \circ f^{\bullet}.$$

命题**1.6.** 设 $f:C^{\bullet}\to D^{\bullet}$ 是链映射, $C^{\bullet}\to I^{\bullet,\bullet}$ 和 $D^{\bullet}\to J^{\bullet,\bullet}$ 是两个Cardan-Eilenburg消解,那么存在链映射 $\tilde{f}^{\bullet,\bullet}:I^{\bullet,\bullet}\to J^{\bullet,\bullet}$ 是 f^{\bullet} 上的映射.

给定一个n维复流形X,那么可以定义其上的 \mathbb{C} 向量空间层的复形

$$0 \to \mathscr{O}_X \to \Omega^1_X \xrightarrow{\partial} \Omega^2_X \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^n_X \to 0,$$

其中 Ω_X^q 是X上的全纯q形式,那么如上复形是常层 \mathbb{C} 的消解.

12 第一章 导出函子

第二章 Tor函子和Ext函子

2.1 自由链复形和万有系数定理

2.1.1 自由链复形

定义. 设 M^{\bullet} 是R模上链复形,若对每一个 $n \in \mathbb{Z}$, M^n 都是自由R模,则称 M^{\bullet} 是自由链复形(free cochain complex).

引理2.1. 设 $(M^{\bullet}, d^{\bullet})$ 是自由R模链复形,且 $H^n(M^{\bullet}) = 0$ 对任意n成立,则 $M^{\bullet} \simeq 0$.

Proof. 令 $Z^n := \text{Ker } d^n, B^n := \text{Im } d^{n-1}$,那么对所有的整数n我们有短正合序列

$$0 \to Z^n \hookrightarrow M^n \xrightarrow{d^n} B^{n+1} \to 0.$$

由于自由对象的子对象是自由的,因而 B^{n+1} 是自由R模,根据自由R模的提升性质(自由R模都是投射的),存在 $h^{n+1}:B^{n+1}\to M^n$ 使得下图交换:

$$B^{n+1}$$

$$h^{n+1} \qquad \qquad \parallel$$

$$0 \longrightarrow Z^n \longrightarrow M^n \xrightarrow{d^n} B^{n+1} \longrightarrow 0.$$

因此 $M^n = Z^n \oplus h^{n+1}(B^{n+1})$.由于 $H^n(M^{\bullet}) = 0$, $Z^n = B^n$,于是复形可以重写为

$$\cdots \to Z^{n-1} \oplus h^n Z^n \xrightarrow{d^{n-1}} Z^n \oplus h^{n+1} Z^{n+1} \xrightarrow{d^n} Z^{n+1} \oplus h^{n+2} Z^{n+2} \to \cdots,$$

满足 $d^n|_{Z^n}=0, d^n|_{h^{n+1}Z^{n+1}}=\mathrm{id}$,于是

$$\cdots \longrightarrow Z^{n-1} \oplus h^n Z^n \longrightarrow Z^n \oplus h^{n+1} Z^{n+1} \xrightarrow{d^n} Z^{n+1} \oplus h^{n+2} Z^{n+2} \longrightarrow \cdots$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\cdots \longrightarrow Z^{n-1} \oplus h^n Z^n \longrightarrow Z^n \oplus h^{n+1} Z^{n+1} \xrightarrow{d^n} Z^{n+1} \oplus h^{n+2} Z^{n+2} \longrightarrow \cdots$$

给出了链同伦 $id \simeq 0$.

作为推论,考虑自由R模链复形的态射 $f:M^{\bullet}\to N^{\bullet}$ 诱导了同构 $f^*:H^*(M^{\bullet})\to H^*(N^{\bullet})$,那么 $H^n(\mathrm{Cone}(f))=0$ 对任意n成立.但是, $\mathrm{Cone}(f)$ 也是自由R模链复形,由刚刚的引理 $\mathrm{Cone}(f)\simeq 0$,于是根据命题1.2,f是链同伦.这样我们证明了

命题2.1. 若自由R模链复形的态射 $f: M^{\bullet} \to N^{\bullet}$ 诱导了同构 $f^*: H^*(M^{\bullet}) \to H^*(N^{\bullet})$,那么f是链同伦.

事实上,我们还可以证明更强的结论:如果上同调群的同构 $H^*(M^{\bullet}) \cong H^*(N^{\bullet})$ 并不是由特定的态射诱导的话,给定的自由R模链复形 M^{\bullet}, N^{\bullet} 依旧依旧是同伦等价的,即:

定理2.2. 若 $(M^{\bullet}, d_{M}^{\bullet}), (N^{\bullet}, d_{N}^{\bullet})$ 是自由R模链复形,那么 $M^{\bullet} \simeq M^{\bullet}$ 当且仅当 $H^{n}(M^{\bullet}) = H^{n}(N^{\bullet})$ 对任意n成立.

为了证明定理2.2,我们需要建立由上同调群映射到链复形态射的提升,即

命题2.3. 给定R模链复形 M^{\bullet}, N^{\bullet} 且 M^{\bullet} 是自由链复形,则对于任意上同调群的同态 $\varphi^*: H^*(M^{\bullet}) \to H^*(N^{\bullet})$ 都可以找到链复形态射 $f: M^{\bullet} \to N^{\bullet}$,使得 $f^* = \varphi^*$.

Proof. \Box

此时定理2.2已经完成了证明.更进一步地,我们还有

命题2.4. 给定R模自由链复形 M^{\bullet}, N^{\bullet} ,若 $H^*(M^{\bullet}), H^*(N^{\bullet})$ 也都是自由的,且态射 $f, g: M^{\bullet} \to N^{\bullet}$ 诱导相同的同态 $f^*, g^*: H^*(M^{\bullet}) \to H^*(N^{\bullet})$,那么 $f \simeq g$.

Proof. 令 $Z_M^n:=\operatorname{Ker} d_M^n, B_M^n:=\operatorname{Im} d_M^{n-1}, Z_N^n:=\operatorname{Ker} d_N^n, B_N^n:=\operatorname{Im} d_N^{n-1},$ 那么我们有

2.1.2 万有系数定理

定理2.5. 若 M_{\bullet} 是R模的自由链复形,那么存在自然的长正合序列

$$0 \to H_n(M_{\bullet}) \otimes_R N \to H_n(M_{\bullet}; N) \to \operatorname{Tor}(H_{n-1}(M_{\bullet}), N) \to$$

且若R是主理想整环,那么对偶地,

Proof.

2.2 链复形中的乘法对象

2.3 一个例子:

我们感兴趣的是一类特殊图的极限,被称为Abel群组成的塔(tower of abelian groups),其中指标集I是偏序集

$$\cdots \rightarrow 2 \rightarrow 1 \rightarrow 0$$
,

用Ab中的对象表示就是

$$\cdots \rightarrow A_2 \rightarrow A_1 \rightarrow A_0$$
,

或者更形式地,这样一个对象就是函子

$$A: \mathbb{N}^{\circ} \to \mathbf{Ab}$$
.

它的极限 $\lim_{\leftarrow} A_n$

定义. 设一个Abel群塔 $\{A_n\}_{n\in\mathbb{N}}$ 若满足对任意 $m\geq 0$,都存在 $n\geq m$ 使得 $i\geq n$ 时,映射

$$A_i \to A_m$$

的像对所有的i都相同,则称 $\{A_n\}_{n\in\mathbb{N}}$ 满足Mittag-Leffler条件.

定理2.6. 若 Abel 群塔 $\{A_n\}_{n\in\mathbb{N}}$ 满足 Mittag-Leffler条件,那么

$$\lim_{\leftarrow}^{1} A_n = 0.$$

2.4 双复形和全复形

定义. 分次模/分次对象

定义. 设M,N是分次R模,若R模态射 $f:M\to N$ 满足存在整数d,使得对任意 $n\in\mathbb{Z}$ 都有 $f:M_n\to N_{n+k}$,则称f是阶数为k的分次映射(graded map of degree k).

定义. 一个双分次模(bigraded module)是一族有两个指标的R模

$$M := \{M^{p,q}\}_{(p,q)\in\mathbb{Z}\times\mathbb{Z}},$$

一般我们记为 $M^{\bullet \bullet}$.若M,N是双分次模,一族映射

$$f = \{f^{p,q}: M^{p,q} \to N^{p+k,q+l}\}_{(p,q) \in \mathbb{Z} \times \mathbb{Z}}$$

若都是R模映射,则称f是阶数为(k,l)的双分次映射.

接下来我们都用上同调的序号记号.

定义. 设M是双分次R模, d_I,d_{II} 是两个阶数分别为(1,0)和(0,1)的双分次微分映射(即 $d_I^{p,q} \circ d_I^{p,q} = 0$, $d_{II}^{p,q+1} \circ d_{II}^{p,q} = 0$).若映射满足

$$d_{I}^{p,q+1} \circ d_{II}^{p,q} + d_{II}^{p+1,q} \circ d_{I}^{p,q} = 0,$$

则称 (M, d_I, d_{II}) 是一个双复形(bicomplex).

例2.1. 设M是双分次R模, d_I , δ 是两个阶数分别为(1,0)和(0,1)的双分次微分映射,使得M是一个交换图(注意这和双复形差了一个符号!),那么我们可以通过符号变换构造一个双复形.令 $d_{II}^{p,q}=(-1)^p\delta^{p,q}$,那么

$$d_{I}^{p,q+1} \circ d_{II}^{p,q} + d_{II}^{p+1,q} \circ d_{I}^{p,q} =$$

2.4 双复形和全复形 17

定义. 设M是双分次R模,那么

$$\operatorname{Tot}(M)^n := \bigoplus_{p+q=n} M^{p,q}$$

和 $D^n: \operatorname{Tot}(M)^n \to \operatorname{Tot}(M)^{n+1}$,

$$D^{n} := \sum_{p+q=n} (d_{I}^{p,q} + d_{II}^{p,q})$$

称为M的全复形(total complex).

引理2.2. 若M是双复形,则(Tot(M),D)是复形.

很多时候,我们关心的上同调问题是某个双复形的全复形的上同调群,而谱序列就是一种计算全复形上 同调群的某种技巧.

例2.2. 设M是双分次R模, (M,d_I,d_{II}) 是一个双复形,那么我们可以定义双复形的转置 M^T : 这意味着

$$\operatorname{Tot}(M) = \operatorname{Tot}(M^T).$$

定义. 给定R模复形 M^{\bullet} 和 N^{\bullet} ,那么它们的张量积(tensor product)($M \otimes N$) $^{\bullet}$ 满足

$$(M\otimes N)^n:=\bigoplus_{i+j=n}M^i\otimes_R N^j,$$

微分映射由

$$d^{n}: (M \otimes N)^{n} \to (M \otimes N)^{n+1}$$
$$x \otimes y \mapsto d_{M}^{n}(x) \otimes y + (-1)^{\deg x} x \otimes d_{N}^{n}(y)$$

扩张给出.

如下命题说明这样的定义是自然的:

命题2.8. 给定R模复形 M^{\bullet} 和 N^{\bullet} ,记 $M^{\bullet}\otimes N^{\bullet}$ 是双复形此处有图

$$\operatorname{Tot}(M^{\bullet} \otimes N^{\bullet}) \simeq (M \otimes N)^{\bullet}.$$

2.5 Kunneth谱序列

第三章 谱序列

同调代数关心了许多基本的问题,比如给定R模M的子模K同态 $f: K \to N$,

3.1 滤子和正合对

定义. 设 \mathcal{A} 是Abel范畴,X是 \mathcal{A} 中的对象,则X的一个递降滤子(descending filtration)是一族X的子对象 $\{F^nX\}_{n\in\mathbb{Z}}$ 满足

$$0 \subseteq \dots \subseteq F^{n+1}X \subseteq F^nX \subseteq \dots X.$$

定义. 设A是Abel范畴,D, E是A中的双分次对象,f, g, h是双分次映射,若

是正合的,那么称(D, E, f, g, h)是正合对(exact couple).

定理3.1. 每一个Abel范畴A中的上链X•的滤子 F^pX •都给出一个正合对

$$D \xrightarrow{f (-1,1)} D$$

$$h (1,0) \qquad E,$$

$$E,$$

其中映射的度在图中已经标出.

Proof. 我们有复形的短正合列

$$0 \to F^{p+1} X^{\bullet} \xrightarrow{i^{p+1}} F^p X^{\bullet} \xrightarrow{\pi^p} F^p X^{\bullet} / F^{p+1} X^{\bullet} \to 0,$$

20 第三章 谱序列

这诱导了上同调群的长正合序列

$$\cdots \to H^n(F^{p+1}X^{\bullet}) \xrightarrow{H^n(i^{p+1})} H^n(F^pX^{\bullet}) \xrightarrow{H^n(\pi^p)} H^n(F^pX^{\bullet}/F^{p+1}X^{\bullet}) \to$$

$$\xrightarrow{\delta^n} H^{n+1}(F^{p+1}X^{\bullet}) \xrightarrow{H^{n+1}(i^{p+1})} H^{n+1}(F^pX^{\bullet}) \xrightarrow{H^{n+1}(\pi^p)} H^{n+1}(F^pX^{\bullet}/F^{p+1}X^{\bullet}) \to \cdots.$$

我们取n = p + q, $f = H^{\bullet}(i^{p+1}), g = H^{\bullet}(\pi^p), h = \delta^{\bullet}$, 并且

$$\begin{split} D &= \{D^{p,q} := H^{p+q}(F^pX^\bullet)\} \\ E &= \{E^{p,q} := H^{p+q}(F^pX^\bullet/F^{p+1}X^\bullet)\} \end{split}$$

代入到长正合序列中即为

$$\cdots \to D^{p+1,q-1} \xrightarrow{f^{p+1,q-1}} D^{p,q} \xrightarrow{g^{p,q}} E^{p,q} \xrightarrow{h^{p,q}} D^{p+1,q} \to \cdots$$

定义. 设A是Abel范畴,X是A中的双分次对象,d是双分次映射满足 $d \circ d = 0$,则称(X,d)是微分双分次对象(differential bigraded object).

若(X,d)是微分双分次对象,d的阶数为(k,l),那么定义(X,d)的上同调为

$$H(X,d)^{p,q} := \frac{\ker d^{p,q}}{\operatorname{im} d^{p-k,q-l}}.$$

3.2 收敛性 21

定理3.2. $\Xi(D, E, f, g, h)$ 是Abel范畴A上的一个正合对,那么 $d := h \circ g : E \to E$ 给出A上的一个微分双分次对象(E, d),且存在一个新的正合对 $(D_2, E_2, f_2, g_2, h_2)$

$$D_2 \xrightarrow{f_2} D_2$$

$$E_2,$$

满足 $E_2 = H(E,d)$, 称为导出对(derived couple).

Proof. 首先我们验证微分.按照定义, $d \circ d = (h \circ g) \circ (h \circ g) = h \circ (g \circ h) \circ g = h \circ 0 \circ g = 0$. 按照条件定义 $E_2 = H(E,d)$,定义

$$D_2 := \operatorname{Im} f$$
,

且 $f_2 := f|_{D_2} = f \circ \iota$,其中 $\iota : D_2 \to D$ 是嵌入.

推论3.2.1. 每一个Abel范畴A中的上链X•的滤子 F^pX •都给出一族正合对

$$D_r \xrightarrow{f_r (1,-1)} D_r$$

$$h_r (-1,2) \qquad \swarrow g_r (1-r,r-1)$$

$$E_r,$$

且满足

- 1. 双分次映射 f_r, g_r, h_r 的度分别为(1, -1), (1-r, r-1)和(-1, 2).
- 2. 微分 d_r 的度为(), 它由 $hf_{-r+1}g$ 诱导.

定义. 设A是Abel范畴,A上的谱序列 $(E_r,d_r)_{r>1}$ 是一族A中的对象和态射的全体 $E=(E_r^{p,q},d_r^{p,q})$,满足

- 1. 态射 $d_r^{p,q}:E_r^{p,q}\to E_r^{p+r,q-r+1}$ 定义在第r页,且是微分映射,即 $d_r^{p+r,q-r+1}\circ d_r^{p,q}=0.$
- 2. 有同构

$$H^{p,q}(E_r):=\frac{\operatorname{Ker} d_r^{p,q}}{\operatorname{Im} d_r^{p+r,q-r+1}}\cong E_{r+1}^{p,q}.$$

3.2 收敛性

定义. 设A是Abel范畴,X是A的对象,Y是X的子对象,Z是Y的子对象,则Y/Z称为X的一个子商(subquotient).

22 第三章 谱序列

 $若(E_r,d_r)_{r\geq 1}$ 是谱序列,那么 $E_2=H(E_2,d_2)$ 是 E_1 的子商: $E_2:=Z_2/B_2$.同理我们知道 E_3 是 E_2 的子商,且

$$B_1 \subseteq B_2 \subseteq \cdots \cap B_r \subseteq \cdots \subseteq Z_r \subseteq Z_2 \subseteq Z_1 \subseteq E_1.$$

定义. 给定谱序列 $(E_r, d_r)_{r \geq 1}$,定义 $Z_{\infty} := \bigcap_{r \geq 1} Z_r$, $B_{\infty} := \bigcup_{r \geq 1} B_r$,则谱序列的极限项(limit term)为

$$E^{p,q}_{\infty} := \frac{Z^{p,q}_{\infty}}{B^{p,q}_{\infty}}.$$

借用MacLane的描述, Z^r 是出现到第r页的对象, B^r 是被第r页限制的对象,而 Z^{∞} 和 B^{∞} 是一直出现和最终被限制的对象。

引理3.1. 设 $(E_r, d_r)_{r>1}$ 是谱序列,那么

- 1. $E_{r+1} = E_r$ 当且仅当 $Z_{r+1} = Z_r, B_{r+1} = B_r$.
- 2. 若存在s使得对任意 $r \geq s$ 都有 $E_{r+1} = E_r$,则 $E_{\infty} = E_s$.

考虑 \mathcal{A} 中上链 X^{\bullet} 的一个滤子 $F^{p}X^{\bullet}$,于是我们有单同态 $i^{p}: F^{p}X^{\bullet} \to X^{\bullet}$,这诱导了 $H^{n}(i^{p}): H^{n}(F^{p}X^{\bullet}) \to H^{n}(X^{\bullet})$.由于 $F^{p}X^{\bullet} \subseteq F^{p-1}X^{\bullet}$,我们有 $\operatorname{Im} H^{n}(i^{p}) \subseteq \operatorname{Im} H^{n}(i^{p-1}) \subseteq H^{n}(X^{\bullet})$,这意味着

$$\Phi^p H^n(X^{\bullet}) := \operatorname{Im} H^n(i^p)$$

是 $H^n(X^{\bullet})$ 的一个滤子,称为 F^pX^{\bullet} 的诱导滤子(derived filtration).

定义. 设 X^{\bullet} 是Abel范 畴A上 的 上 链, $F^{p}X^{\bullet}$ 是 上 链 的 滤 子.若 $\forall n \in \mathbb{Z}$ 都 能 找 到 整 数l(n)和u(n)使 得 $F^{u(n)}X^{n} = 0$ 且 $F^{l(n)}X^{n} = X^{n}$,则称滤子 $F^{p}X^{\bullet}$ 是有界的(bounded).

定义. 给定Abel范畴中的谱序列 $(E_r, d_r)_{r>1}$,若存在分次对象 H^n 和 H^n 的有界滤子 $\Phi^p H^n$ 满足

$$E^{p,q}_\infty\cong\frac{\Phi^pH^n}{\Phi^{p+1}H^n},$$

则称谱序列 $(E_r, d_r)_{r>1}$ 收敛到 $(converges\ to)H^n$,记为

$$E_2^{p,q} \Rightarrow_p H^n$$
.

3.3 全复形的上同调 23

定理3.3. Abel范畴A中的上链X ullet 的滤子 F^pX ullet 给出的谱序列 $(E_r,d_r)_{r>1}$ 都满足

- 1. 对任意给定的p,q都存在r使得 $E_r^{p,q}=E_{\infty}^{p,q}$.
- 2. $E_2^{p,q} \Rightarrow_p H^n(X^{\bullet})$.

Proof.

命题3.4. 设 $X^{\bullet \bullet}$ 是三象限双复形,且设 $^IE_r^{p,q},^{II}E_r^{p,q}$ 是 $Tot(X^{\bullet \bullet})$ 的第一滤子和第二滤子所诱导的谱序列,那么

- 1. 第一滤子和第二滤子都是有界的.
- 2. 对任意p,q都存在页数r=r(p,q)使得 $^{I}E_{\infty}^{p,q}=^{I}E_{r}^{p,q},^{II}E_{r}^{p,q}=^{II}E_{\infty}^{p,q}.$
- $3. \ ^IE_2^{p,q} \Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet})) \, \mathbb{L}^{II}E_2^{p,q} \Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet})).$

虽然这个结果看上去很不错,但不论是符号上还是实际计算上这些都并不能够帮助我们.

3.3 全复形的上同调

定义. 设M是双分次R模, (M,d_I,d_{II}) 是一个双复形, 那么称

$$({}^{I}F^{p}\mathrm{Tot}(M))^{n}:=\bigoplus_{i\geq p}M^{i,n-i}=\cdots\oplus M^{p+2,q-2}\oplus M^{p+1,q-1}\oplus M^{p,q}$$

为Tot(M)的第一滤子(the first filtration),称

$$(^{II}F^p\mathrm{Tot}(M))^n := \bigoplus_{j\geq p} M^{n-j,j} = \cdots \oplus M^{p-2,q+2} \oplus M^{p-1,q+1} \oplus M^{p,q}$$

为Tot(M)的第二滤子(the second filtration).

定义. 给定Abel范畴A中的三象限双复形 $X^{\bullet \bullet}$,称 $H_I^p(H_{II}^q(X^{\bullet \bullet}))$ 为 $X^{\bullet \bullet}$ 的第一上同调(the first iterated cohomology),称 $H_{II}^p(H_I^q(X^{\bullet \bullet}))$ 为 $X^{\bullet \bullet}$ 的第二上同调(the second iterated cohomology).

第三章 谱序列

定理3.5. 给定Abel范畴A中的三象限双复形 $X^{\bullet \bullet}$,则

1. ${}^{I}E_{1}^{p,q} = H_{II}^{q}(X^{p,\bullet}).$

2. ${}^{I}E_{2}^{p,q} = H_{I}^{p}(H_{II}^{q}(X^{\bullet \bullet})) \Rightarrow_{p} H^{n}(\operatorname{Tot}(X^{\bullet \bullet})).$

对偶地,我们同样有

定理3.6. 给定Abel范畴A中的三象限双复形 $X^{\bullet \bullet}$,则

- 1. $^{II}E_1^{p,q} = H_I^q(X^{\bullet,p}).$
- 2. $^{II}E_2^{p,q} = H_{II}^p(H_I^q(X^{\bullet \bullet})) \Rightarrow_p H^n(\operatorname{Tot}(X^{\bullet \bullet})).$

例3.1. 给定R模范畴中的交换图

$$P \xrightarrow{g} Q$$

$$h \uparrow \qquad k \uparrow$$

$$M \xrightarrow{f} N,$$

做适当的变换我们得到一个三象限双复形 $X^{\bullet \bullet}$,我们考虑N, P都是Q的子模的特殊情形,来计算该双复形的全复形

$$0 \to M \xrightarrow{()} P \oplus N \xrightarrow{g+k} Q$$

的上同调.

定义. 设 $(E_r, d_r)_{r\geq 1}$ 是Abel范畴中的谱序列,若 $E_2^{p,q}=0$ 对所有非零的q都成立,则称 E_r 落在p轴上(collapses on the p-axis).

命题3.7. 设 $(E_r,d_r)_{r\geq 1}$ 三象限谱序列,且 $E_2^{p,q}\Rightarrow_p H^n(X^{ullet})$,若称 E_r 落在任意轴上,则

- 1. $E_2^{p,q} = E_{\infty}^{p,q}$ 对任意p,q成立.
- 2. 若 E_r 落在p轴上,则 $H^n(X^{ullet})=E_2^{n,0}$;若 E_r 落在q轴上,则 $H^n(X^{ullet})=E_2^{0,n}$.

定理3.8. 给定Abel范畴A中的三象限谱序列 $(E_r,d_r)_{r\geq 1}$,且 $E_2^{p,q}\Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet}))$,则

- 1. 对任意n都存在满同态 $E_2^{n,0} \to E_\infty^{0,n}$ 和单同态 $E_2^{0,n} \to E_\infty^{n,0}$.
- 2. 对任意n都存在满同态 $E_{\infty}^{n,0} \to H^n(\mathrm{Tot}(X^{\bullet \bullet}))$ 和单同态 $E_{\infty}^{0,n} \to H^n(\mathrm{Tot}(X^{\bullet \bullet})).$
- 3. 存在正合序列

$$0 \to E_2^{1,0} \to H^1(\mathrm{Tot}(X^{\bullet \bullet})) \to E_2^{0,1} \xrightarrow{d_2} E_2^{2,0} \to H^2(\mathrm{Tot}(X^{\bullet \bullet}))$$

3.4 Cartan-Eilenberg预解

定义. 设 X^{\bullet} 是Abel范畴A上的上链,那么称

$$0 \to Z^n \to X^n \xrightarrow{d^n} B^{n+1} \to 0$$
$$0 \to B^n \hookrightarrow Z^n \to H^n \to 0$$

为 X^{\bullet} 的基本短正合列(fundamental exact sequence).若上链复形 X^{\bullet} 的基本短正合列都分裂,则称 X^{\bullet} 分裂(split).

定义. 设 X^{\bullet} 是Abel范畴A上的上链,如果

$$0 \to X^{\bullet} \to I^{0,\bullet} \to I^{1,\bullet} \to \cdots$$

是整合列且对每个p以下每个整合列都是A中的内射预解

$$0 \to X^p \to I^{0,p} \to I^{1,p} \to \cdots$$
$$0 \to Z^p(X^{\bullet}) \to Z^{0,p} \to Z^{1,p} \to \cdots$$
$$0 \to B^p(X^{\bullet}) \to B^{0,p} \to B^{1,p} \to \cdots$$
$$0 \to H^p(X^{\bullet}) \to H^{0,p} \to H^{1,p} \to \cdots$$

则称这是X•的一个Cartan-Eilenberg内射预解(Cartan-Eilenberg injective resolution).

定理3.9. 若Abel范畴A中包含有足够多的内射对象,则 $Com^{\bullet}(A)$ 中的每个上链复形都有Cartan-Eilenberg内射预解.

26 第三章 谱序列

3.5 Grothendieck谱序列

定义. 设 \mathcal{A} 是Abel范畴,且含有足够多的内射对象,X是 \mathcal{A} 的对象, $F:\mathcal{A} \Rightarrow \mathbf{Ab}$ 是加性函子.若 $R^pF(X) = 0$ 对于任意 $p \geq 1$ 都成立,则称X是右F零调的(right F-acyclic).

定理3.10 (Grothendieck谱序列). 设 $F: A \Rightarrow \mathcal{B}, G: A \Rightarrow \mathcal{C} \not\in A$ 起码范畴间的协变加性函子,且 \mathcal{B} 中包含足够多的内射对象,F将A中的内射对象映为 \mathcal{B} 中的右G零调对象.那么对任意A中的对象X,存在第一象限的收敛谱序列

$$E_2^{p,q} := (R^p G \circ R^q F)(X) \Rightarrow R^{p+q}(G \circ F)(X).$$

Proof. 选取X在A中的一个内射预解

$$0 \to X \to J^1 \to J^2 \to \cdots$$

于是我们得到8中的一个

第四章 导出范畴

在之前非常多的情形中,当求得一个上链后,我们只关心它的上同调,对于上同调相同而各项和微分可能不同的上链并不做区别.形式上说,上链之间的同构过分严格,拟同构才是合适的进行分类的等价关系.但是在范畴

$$Com^{\bullet}(\mathcal{A})$$

中,若态射f*是拟同构,它很难是同构,这就导致了很多问题,比如函子 $Hom_{\mathbb{Z}}(M,-)$ 并不将拟同构映成拟同构.本章我们要建立形式化的语言,用同构的方式处理拟同构,也给导出函子建立更一般的框架.

4.1 范畴的局部化

定理4.1. 设C是一个范畴,U是其中的一族态射,则存在同构下唯一的范畴 $C[U^{-1}]$ 和函子 $Q: C \to C[U^{-1}]$,使得U中所有的态射都被Q映到 $C[U^{-1}]$ 中的同构,且满足如下泛性质:对任意范畴D和任意函子 $F: C \to D$,若F将U中所有的态射映到D中的同构,则有唯一的分解

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{Q} \mathcal{C}[U^{-1}] \\ & & \downarrow^{\tilde{F}} \\ \mathcal{D}. \end{array}$$

我们称范畴 $C[U^{-1}]$ 为的C局部化(localization).

练习4.1. 定义范畴 \mathcal{D} 满足ob $\mathcal{D} = \operatorname{ob} \mathbf{Ab}$, $\operatorname{hom}_{\mathcal{D}}(A,B) := \operatorname{Hom}_{\mathbb{Z}}(A \otimes \mathbb{Q}, B \otimes \mathbb{Q})$.求证函子

$$\iota: \mathbf{Ab} \to \mathcal{D}$$

$$M \mapsto M$$

$$(f: M \to N) \mapsto (f \otimes \mathrm{id}_{\mathbb{Q}}: M \otimes \mathbb{Q}, N \otimes \mathbb{Q})$$

是局部化.

这里需要注意,因为范畴中的一族态射U可以取得非常不理想,因此局部化之后的范畴可能并非再是局部小的.但这里我们忽略这样的问题,我们假定(虽然并不真实,但相较于主要问题,范畴本身的问题需要在其他的地方讨论)我们还是得到想要的范畴.

28 第四章 导出范畴

定义. 设U是范畴C中的一族态射,满足如下条件:

1. 对任意C中的对象A, $id_A \in U$, 且U关于态射的复合封闭,

2. (扩张条件)对任意 \mathcal{C} 中的态射 $f:A\to B$ 和U中的态射 $u:C\to B$,存在 \mathcal{C} 中的态射 $g:D\to C$ 和U中的态射 $v:D\to A$ 使得

$$D \xrightarrow{g} C$$

$$\downarrow u$$

$$A \xrightarrow{f} B.$$

对偶地,对任意 \mathcal{C} 中的态射 $f: B \to A$ 和U中的态射 $u: B \to C$,存在 \mathcal{C} 中的态射 $g: C \to D$ 和U中的态射 $v: A \to D$ 使得

$$D \xleftarrow{g} C$$

$$v \uparrow \qquad \uparrow u$$

$$A \xleftarrow{f} B.$$

3. 对任意 \mathcal{C} 中的态射 $f,g:A \Rightarrow B$,存在 $u \in U$ 使得uf = ug当且仅当存在 $v \in U$ 使得fv = gv,

则称这一族态射U是局部的(localizing).

练习4.2. 设A是Abel范畴,B是A的满子范畴,且B对求子对象和商对象封闭.求证

$$U := \{ f : X \to Y \mid \ker f, \operatorname{coker} f \in \mathcal{B} \}$$

是局部态射族.

我们大费周章地考虑对求逆态射的限制条件,重要的是当态射族U满足这些条件时,局部化范畴中的态射时非常容易描述的:

引理4.1. 设U是范畴C中的一族局部态射,那么 $C[U^{-1}]$ 可以被如下地描述: $C[U^{-1}]$ 的对象同于C中的对象, $A \to B$ 的态射可以被描述为如下的图的等价类:

其中, $u\in U$, $f:D\to B$ 是任意 \mathcal{C} 中的态射,记为 $\frac{f}{u}$ 或者 fu^{-1} .且 $\frac{f}{u}$ 等价于 $\frac{g}{v}$ 当且仅当存在 $\frac{h}{w}$ 使得如下图交换

4.1 范畴的局部化 29

其中图中 $u,v,uw\in U$ (但w可能不在U中),恒等态射是 $\mathrm{id}_A=\frac{\mathrm{id}_A}{\mathrm{id}_A}$.最后,根据定义中的扩张条件, $\frac{f}{u}:A\to B$ 与 $\frac{g}{v}:B\to C$ 的复合是

Proof. 我们首先验证如上定义了一个等价关系.自反性是考虑下图

对称性是已知

其中 $vh = uw \in U$, 于是

给出了等价关系.接下来是传递性,给定

接下来我们要验证态射的复合不依赖于代表元的选取.

最后我们验证这样构造的范畴具有相应的泛性质,因而这个范畴是我们希望的局部化.首先,存在自然的 局部化函子

$$Q: \mathcal{C} \to \mathcal{C}[U^{-1}]$$

$$A \mapsto A$$

$$(f: A \to B) \mapsto \frac{f}{\mathrm{id}_A},$$

第四章 导出范畴

这样对于任意的 $F: \mathcal{C} \to \mathcal{D}$, 若F将U中所有的态射映到 \mathcal{D} 中的同构, 可以定义

$$\begin{split} \bar{F}: \mathcal{C}[U^{-1}] &\to \mathcal{D} \\ A &\mapsto F(A) \\ \frac{f}{u} &\mapsto F(f)F(u)^{-1}, \end{split}$$

(这里的顺序是重要的:)

30

练习4.3. 验证证明中给出的Q是函子.

定理4.2. 设U是加性范畴C中的一族局部态射,那么 $C[U^{-1}]$ 也是加性范畴.

但是,我们希望研究的情形非常不幸地不满足这些局部的条件:对于Abel范畴A的上链复形范畴 $Com^{\bullet}(A)$,拟同构不是局部的(习题???).下一节我们将用合适的方式处理这个问题,使得我们这节建立的理论起到作用.结束之前,我们引入如下命题,在之后考虑有界复形时它会给我们理想的结果.

命题4.3. 设U是范畴C中的一族局部态射,D是C的满子范畴,如果 $U_D := U \cap \text{mor } D$ 是D的局部态射,且如下的条件满足一条

1. 对任意U中的态射 $u: C \to D$,若 $D \in \text{ob } \mathcal{D}$,则一定存在 $B \in \text{ob } \mathcal{D}$ 和态射 $f: B \to C$ 使得 $u \circ f \in U$,

那么 $\mathcal{D}[U_{\mathcal{D}}^{-1}] \hookrightarrow \mathcal{C}[U^{-1}]$ 是一个满忠实的嵌入.

4.2 同伦范畴与导出范畴

引理4.2. 设 \mathcal{A} 是Abel范畴, $D(\mathcal{A}) := \mathrm{Com}^{\bullet}(\mathcal{A})[Qiso^{-1}]$,且设 $Q : \mathrm{Com}^{\bullet}(\mathcal{A}) \to D(\mathcal{A})$ 是局部化函子.求证 若 $f : X^{\bullet} \to X^{\bullet}$ 链同伦与id $_X$,那么在 $D(\mathcal{A})$ 中 $Q(f) = \mathrm{id}_X$.

Proof. 我们先假定如下事实:

定义. 给定Abel范畴A,定义A的同伦范畴(homotopy category)K(A)如下:

- 1. ob $K(\mathcal{A}) = \text{ob Com}^{\bullet}(\mathcal{A})$,
- 2. 对任意 $X^{\bullet}, Y^{\bullet} \in \text{ob Com}^{\bullet}(\mathcal{A})$, $\text{hom}_{K(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) := \text{hom}_{\text{Com}^{\bullet}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) / \simeq$.

定理4.4. 对 Abel 范畴 A, * = +, -, b, •, 那 么

 $1. f \in \operatorname{Hom}_{D^*(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ 是同构当且仅当它可以被图

表示, 且图中的两个态射都是拟同构.

- $2. f \in \operatorname{Hom}_{K^*(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ 且Q(f) = 0,那么 $f^n : H^n(X^{\bullet}) \to H^n(Y^{\bullet}) = 0$ 对任意 $n \in \mathbb{Z}$ 成立.
- 3. 嵌入函子 $[0]: A \rightarrow D^*(A)$ 是满忠实的,即存在集合的同构

$$\operatorname{Hom}_{\mathcal{A}}(X,Y) \cong \operatorname{Hom}_{D^*(\mathcal{A})}(X[0],Y[0]).$$

命题4.5. 若 X^{\bullet} 是Abel范畴A上的零调复形, I^{\bullet} 是内射复形,那么

$$\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet}) = 0.$$

$$\operatorname{Hom}_{K(\mathcal{A})}(Y^{\bullet}, I^{\bullet}) \to \operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet})$$

是同构.

推论4.6.1.

$$\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet}) \to \operatorname{Hom}_{D(\mathcal{A})}(X^{\bullet}, I^{\bullet})$$

是同构.

定义.

$$\operatorname{Ext}_{\mathcal{A}}^{i}(X,Y) :=$$

32 第四章 导出范畴

定理4.7.

4.3 三角范畴

定义. 给定加性范畴D, 如果在D上存在如下信息

- 1. 加性自同构 $T: \mathcal{D} \to \mathcal{D}$,它被称为平移函子(translation functor),通常对于对象 $X \in \mathcal{D}$,记X[1] := T(X),
- 2. 一族被称为特异三角(distingushed triangle)的图

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

和特异三角间的态射

满足以下公理:

- TR 1. (a) $X \xrightarrow{\mathrm{id}_X} X \xrightarrow{0} 0 \xrightarrow{0} X[1]$ 是特异三角;
 - (b) 任意同构于特异三角的图都是特异三角(特异三角在同构下封闭);
 - (c) 任意态射 $X \xrightarrow{u} Y$ 都可以扩张为一个特异三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$.
- TR 2. 若 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 是特异三角,那么 $Y \xrightarrow{v} Z \xrightarrow{w} X[1] \xrightarrow{-u[1]} Y[1]$ 也是特异三角.
- TR 3. 给定两个特异三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 和 $A \xrightarrow{j} B \xrightarrow{k} C \xrightarrow{l} X[1]$,若存在 $f: X \to A$ 和 $g: Y \to B$ 使得 $g \circ u = j \circ f$,那么存在(不要求唯一)的态射 $h: Z \to C$ 构成特异三角间的态射

4.3 三角范畴 33

则称 \mathcal{D} 是一个三角范畴(triangulated category).若只有前三条公理成立,则称 \mathcal{D} 是预三角范畴(pretriangulated categories).

练习4.4. 若 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 是 \mathcal{D} 中的特异三角,求证 $v \circ u, w \circ v, (-u[1]) \circ w$ 都是零态射. 练习4.5. 若

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h} \qquad \downarrow^{f[1]}$$

$$A \xrightarrow{j} B \xrightarrow{k} C \xrightarrow{l} A[1],$$

是特异三角间的态射,且f,g都是同构,求证h也是同构。

定义. 给定(预)三角范畴 \mathcal{D}, \mathcal{E} ,若函子 $F: \mathcal{D} \to \mathcal{E}$ 和自然态射 $\eta: F(-[1]) \Rightarrow F(-)[1]$ 满足对任意 \mathcal{D} 中的特异三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1],$$

都能得到€中的特异三角

$$F(X) \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z) \xrightarrow{\eta_X \circ F(w)} F(X)[1],$$

则称函子F是正合的(exact)或三角的(triangulated).

定义,给定(预)三角范畴 \mathcal{D} 和Abel范畴 \mathcal{A} ,若加性协变函子 \mathcal{H} 将特异三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

映为4中的正合序列

$$H(X) \xrightarrow{H(u)} H(Y) \xrightarrow{H(v)} H(Z) \xrightarrow{H(w)} H(X[1]),$$

则称函子H是上同调的(cohomological).若加性反变函子 $H: \mathcal{D}^{\circ} \to \mathcal{A}$ 对应的函子 $H^{\circ}: \mathcal{D} \to \mathcal{A}^{\circ}$ 是上同调的,则称H是反变同调的.

通常对于上同调函子,记 $H^n(X) := H(X[n])$,于是 $H^0(X) := H(X)$.于是,TR2说明给定一个特异三角就可以得到一个 \mathcal{A} 中的长正合序列.

定义. 给定三角范畴 \mathcal{D} 和Abel范畴 \mathcal{A} ,若函子 $G: \mathcal{A} \to \mathcal{D}$ 满足对任意 \mathcal{A} 中的短正合序列

$$0 \to X \to Y \to Z \to 0$$

34 第四章 导出范畴

都存在自然的同构 $\delta_{X\to Y\to Z}$ 使得

$$X \to Y \to Z \xrightarrow{\delta_{X \to Y \to Z}} X[1]$$

是 \mathcal{D} 中的特异三角,则称G是 δ 函子(δ -functor).自然性意味着短正合序列的态射

给出特异三角的态射

$$\begin{array}{cccc} X & \longrightarrow Y & \longrightarrow Z^{\delta_{X \to Y \to Z}} X[1] \\ \downarrow & & \downarrow & & \downarrow \\ A & \longrightarrow B & \longrightarrow C^{\delta_{A \to B \to C}} A[1]. \end{array}$$

4.3.1 同伦范畴

4.3.2 导出范畴

命题4.8. 对Abel范畴A, $Com^*(A)$ 中的短正合列

$$0 \to X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to 0$$

诱导了 $D^*(A)$ 中的特异三角.

4.3.3 生成元

定义. 给定三角范畴 \mathcal{D} 和对象E,若 \mathcal{D} 中包含E的最小的saturated满三角子范畴是 \mathcal{D} ,或者换句话说 $\langle E \rangle = \mathcal{D}$,则称E是典型生成元(classical generator).

定义. 给定三角范畴 \mathcal{D} 和对象E,

- 1. 若存在正整数n使得 $\langle E \rangle_n = \mathcal{D}$,则称E是强生成元(strong generator).
- 2. 若Hom(E, X[n]) = 0对任意整数n都成立意味着 $X \cong 0$,则称E是弱生成元(weak generator).

4.4 导出函子

给定Abel范畴间的函子 $F: \mathcal{A} \to \mathcal{B}$,它自然诱导了函子 $\mathrm{Com}^{\bullet}(F): \mathrm{Com}^{\bullet}(\mathcal{A}) \to \mathrm{Com}^{\bullet}(\mathcal{B})$ 和 $K(F): K(\mathcal{A}) \to K(\mathcal{B})$.由于F与平移函子交换,诱导的函子保持范畴上面的三角结构.自然地我们会希望F诱导了导

4.4 导出函子 35

出范畴上的正合函子.在函子 $F: \mathcal{A} \to \mathcal{B}$ 本身是正合函子时,这是没问题的(命题4.9),但一般情形K(F)不将拟同构映为拟同构.不过退一步,当F是左正合或右正合时,在适当的情形我们可以找到相应的构造使得有对应诱导的函子.

在先前的章节中我们讨论过这个论题,这里我们用导出范畴的角度来定义导出函子,具体来说,给定一个Abel范畴的左(对应的,右)正合函子 $F: \mathcal{A} \to \mathcal{B}$,在一定的情况下存在一个扩张函子 $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ (对应的, $LF: D^-(\mathcal{A}) \to D^-(\mathcal{B})$),称为F的右导出函子(right derived functor).

命题4.9. 设Abel范畴间的函子 $F: A \rightarrow B$ 是正合的,那么

- 1. $K^*(F)$ 将拟同构映到拟同构,因此它诱导了函子 $D^*(F): D^*(A) \to D^*(B)$,
- 2. D*(F)是正合函子, 即它将特异三角映到特异三角.

定义. 设A是Abel范畴, $\mathcal{R} \subset Ob A$ 是一族对象,对给定的左(右)正合函子 $F: A \to \mathcal{B}$ 满足

- 1. F将 $K^+(\mathcal{R})$ ($K^-(\mathcal{R})$)中的零调序列映到零调序列,
- 2. A中的任意对象都是R中对象的子对象(商对象),

则称 \mathcal{R} 是适应于F的对象族(adapted to F).

例4.1. 给定R模M,对函子 $M \otimes_R -$,所有的平坦R模就是适应于该函子的一族对象.

定理4.10. 设 \mathcal{R} 是Abel范畴A中适应于左正合函子 $F:A\to\mathcal{B}$ 的对象,令 $U_{\mathcal{R}}$ 为 $K^+(\mathcal{R})$ 中的拟同构,那么 $U_{\mathcal{R}}$ 在 $K^+(\mathcal{R})$ 中是局部的,且自然的函子

$$K^+(\mathcal{R})[U_{\mathcal{R}}^{-1}] \to D^+(\mathcal{A})$$

是范畴的等价.

给定一个左正合函子 $F: \mathcal{A} \to \mathcal{B}$,我们回顾一下经典意义下导出函子的构造,以 $\mathrm{Hom}_{\mathbb{Z}}(M,-)$ 为例:这是一个左正合函子,为了求得它的右导出函子 $\mathrm{Ext}^n_{\mathbb{Z}}(M,-)$,首先取给定的 $\mathrm{Abel}\mathbb{H}^N$ 的内射消解 I^{ullet}

再用 I^{\bullet} 代替 $Hom_{\mathbb{Z}}(M,-)$ 中原本的N,得到上链

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^0) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^1) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^2) \longrightarrow \cdots$$

36 第四章 导出范畴

它在 $D^+(\mathbf{Ab})$ 中的像即是导出函子的像.这相当于选取一个范畴的同构(后面会说明如同经典情况的构造,不依赖于这个同构的选取)

$$P: D^+(\mathcal{A}) \to K^+(\mathcal{R})[U_{\mathcal{R}}^{-1}],$$

然后

$$R\operatorname{Hom}_{\mathbb{Z}}(M,-) := \operatorname{Hom}_{\mathbb{Z}}(M,P(-))$$

就是要找的导出函子.

定义. 对于左正合函子 $F: A \to B$,存在如下的图

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$D^{+}(\mathcal{A})$$

若有函子 $RF: D^+(A) \to D^+(A)$ 和自然态射 $\eta: Q_B \circ K^+(F) \Rightarrow RF \circ Q_A$

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$\downarrow \eta$$

$$D^{+}(\mathcal{A})$$

使得任意函子 $G: D^+(A) \to D^+(A)$ 和自然态射 $\xi: Q_B \circ K^+(F) \Rightarrow RF \circ Q_A$

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$\downarrow^{\xi} \qquad \qquad \downarrow^{G}$$

$$D^{+}(\mathcal{A})$$

都存在唯一的自然变换 δ :

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$Q_{\mathcal{A}} \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

则称RF是F的右导出函子(right derived functor).

以上定义的交换图说明,一个左正合函子的右导出函子是对应图的左Kan扩张.根据Kan扩张的唯一性,导出函子若存在则一定唯一,这个事实对下面定理的证明非常关键.

定理4.11. 假设左正合函子 $F: A \to B$ 有适应于F的对象族R. 那么RF存在且同构下唯一.

4.5 例子

给定环R和 $M \in \mathbf{Mod} - R$,函子

$$M \otimes_R -: R - \mathbf{Mod} \to \mathbf{Ab}$$

是右正合的,

定义. 给定环R和 $M^{\bullet} \in \text{Com}^{\bullet}(\mathbf{Mod} - R), N^{\bullet} \in \text{Com}^{\bullet}(R - \mathbf{Mod}),$ 定义 $M^{\bullet} \otimes N^{\bullet}$ 是一个 \mathbf{Ab} 上的双复形

$$M^{\bullet} \otimes N^{\bullet} = (M^{i} \otimes_{R} N^{j}, d_{I}^{i,j} = d_{M}^{i} \otimes_{R} \operatorname{id}_{N^{j}} : M^{i} \otimes_{R} N^{j} \to M^{i+1} \otimes_{R} N^{j}$$
$$d_{II}^{i,j} = (-1)^{i} \operatorname{id}_{M^{i}} \otimes_{R} d_{N}^{j} : M^{i} \otimes_{R} N^{j} \to M^{i} \otimes_{R} N^{j+1})_{(i,j) \in \mathbb{Z} \times \mathbb{Z}},$$

如下图

$$\begin{array}{ccc} M^i \otimes_R N^{j+1} & \xrightarrow{d_I^{i+1,j}} M^{i+1} \otimes_R N^{j+1} \\ & & \downarrow \\ d_{II}^{i,j} & & \uparrow d_{I}^{i,j+1} \\ M^i \otimes_R N^j & \xrightarrow{d_I^{i,j}} M^{i+1} \otimes_R N^j. \end{array}$$

注意到

$$(d_I^{i,j+1} \circ d_{II}^{i,j} + d_{II}^{i+1,j} \circ d_I^{i,j})(m \otimes n)$$

$$= (-1)^i (d_M^i \otimes_R \operatorname{id}_{N^{j+1}}) \circ (\operatorname{id}_{M^i} \otimes_R d_N^j)(m \otimes n) + (-1)^{i+1} (\operatorname{id}_{M^i} \otimes_R d_N^{j+1}) \circ (d_M^i \otimes_R \operatorname{id}_{N^j})(m \otimes n)$$

$$= (-1)^i ((d_M^i \otimes_R d_N^j)(m \otimes n) - (d_M^i \otimes_R d_N^j)(m \otimes n))$$

$$= 0,$$

因此 M^{\bullet} ⊗ N^{\bullet} 是双复形.

38 第四章 导出范畴

第五章 层及其上同调

5.1 层的基本理论

在几何中,我们经常遇到从局部性质到整体性质的过渡,例如我们在讲光滑函数时对光滑性的定义是局部的,但光滑性可以是整体的性质,任意一个流形都是局部可定向的,但一个流形并不一定是整体可定向的.在从局部到整体的过渡中,我们通常使用的方法是局部坐标,当局部坐标满足一定性质时我们可以找到更大的坐标,这个更大的坐标限制到小的坐标上与原来小的坐标有相同的性质.如果将这样的过程抽象出来就是层的构造.

5.1.1 预层与层的基本性质

定义. 设X是一个拓扑空间.对X的每个开集U,我们赋予其一个Abel群 $\mathscr{F}(U)$,并且对任意满足 $V \subseteq U$ 的开集U,V,存在映射 $\rho_V^U:\mathscr{F}(U)\to\mathscr{F}(V)$,满足如下条件:

- (i) $\mathscr{F}(\emptyset) = 0$;
- (ii) $\rho_U^U = \mathrm{id}_{\mathscr{F}(U)}$;
- (iii) 对所有满足 $W \subseteq V \subseteq U$ 的开集 $U, V, W, \rho_W^V \circ \rho_V^U = \rho_W^U$;

这样的在拓扑空间X上的结构 \mathscr{F} 我们称为**预层**(presheaf), $\mathscr{F}(U)$ 中的元素称为开集U的**截面**(section),映 射 $\rho_V^U:\mathscr{F}(U)\to\mathscr{F}(V)$ 称为**限制映射**(restriction map).

例5.1. 设X是一个复流形, *M*是如下定义的**亚纯函数**层(sheaf of meromorphic functions)

$$\mathcal{M}(U) := \{ f : U \to \mathbb{C} \mid f \not\in \mathbb{Z} \},$$

且对于任意 $f \in \mathcal{M}(U)$ 和开集 $V \subseteq U$,定义 $\rho_V^U(f)$ 是f在V上的限制,则 \mathcal{M} 是X上的预层.

在上面的例子中,预层 \mathcal{M} 的限制同态确实是函数的限制——但通常而言,限制同态可以是任意的映射.对于元素 $s \in \mathcal{F}(U)$,我们也用通常的限制记号: $s|_{V} := \rho_{V}^{U}(s)$,然而这一般与真正函数的限制很不同.

注意到任意的拓扑空间X可以自然地成为一个范畴 $\mathbf{Open}(X)$,这样每个预层都是一个反变函子 $\mathbf{Open}(X)$ \Rightarrow \mathbf{Ab} ,可以想到的是,我们并不需要将函子的值域限定为 \mathbf{Ab} ,其他任意合理的范畴都可以得到有用的预层.当值域范畴为 \mathbf{Ab} 、 \mathbf{Ring} 、 $R-\mathbf{Mod}$ 时,我们分别称 \mathcal{P} 为X上的 \mathbf{Ab} el群预层、环预层和R模预层.

这种对于预层的理解还有其他的好处——我们可以非常容易地定义预层之间的**态射**(morphism)——一个预层的态射就是函子间的自然变换.如果我们显式地将预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$ 的定义写出来,即是对任意X中的开集 $V \subseteq U$,我们有如下交换图

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)
\downarrow^{\theta_V^U} \qquad \qquad \downarrow^{\theta_V^U}
\mathcal{F}(V) \xrightarrow{\varphi_V} \mathcal{G}(V),$$

其中 ρ_V^U , θ_V^U 分别是预层 \mathcal{F} 和 \mathcal{F} 的限制映射.这样对于拓扑空间X,我们得到了一个范畴 $\mathbf{PShAb}(X)$,其对象是X上的Abel群预层,态射是预层的态射.

例5.2. 设X是任意的拓扑空间,M是任意的Abel群,对开集U定义 $M_X(U)=M$ 对于满足 $V\subseteq U$ 的开集,限制映射都是恒等映射,则 M_X 是一个预层,称为常预层(constant sheaf).如果N也是一个Abel群, $\varphi:M\to N$ 是群同态,则我们自然地有预层的映射

$$\varphi_X: M_X \to N_X$$
,

定义为

$$(\varphi_X)_U := \varphi : M_X(U) \to N_X(U).$$

例5.3.

例5.4.

预层的结构中蕴含了空间上"函数"的很多局部信息,对于一个预层我们有专门的结构刻画这样的信息:

定义. 设多是拓扑空间X上的预层,那么称

$$\mathscr{F}_x := \lim_{x \in U} \mathscr{F}(U)$$

为 \mathcal{F} 在点x处的茎(stalk),其中U取遍所有包含点x的开集,正向系中的态射由限制态射给定.

根据正极限的定义,对于任意包含x的开集U,存在自然的态射 $\rho_x^U: \mathcal{F}(U) \to \mathcal{F}_x$ 使得与正向系相容,即对于满足 $V \subseteq U$ 的开集,

$$\begin{array}{c|c} \mathscr{F}(U) & & \\ \rho_V^U & & & \\ \mathscr{F}(V) & \xrightarrow{\rho_x^V} \mathscr{F}_x. \end{array}$$

为简化记号,通常对于截面 $s \in \mathcal{F}(U)$,我们记 $s_x := \rho_x^U(s)$.同样地,余极限的函子性告诉我们,对于任意X中的点x,若 $\varphi: \mathcal{F} \to \mathcal{G}$ 是预层间的态射,那么有诱导的点x处茎的态射

$$\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$$

使得对任意开集U有如下交换图

5.1 层的基本理论 41

$$\begin{array}{ccc} \mathscr{F}(U) & \stackrel{\varphi_U}{\longrightarrow} \mathscr{G}(U) \\ (\rho_{\mathscr{F}})_x^U \Big| & & & \downarrow (\rho_{\mathscr{G}})_x^U \\ \mathscr{F}_x & \stackrel{\varphi_x}{\longrightarrow} \mathscr{G}_x, \end{array}$$

因此, 我们有 $\varphi_x(s_x) = \varphi_U(s)_x$.

练习5.1. 证明我们有如下的显式构造:

$$\mathscr{F}_x \cong \left(\prod_{x \in U} \mathscr{F}(U)\right) / \sim,$$

其中,若 $s \in \mathcal{F}(U)$, $t \in \mathcal{F}(V)$ 的等价关系 $s \sim t$ 定义为存在包含于 $U \cap V$ 的x的邻域W使得 $s|_{W} = t|_{W}$.

例5.5. 设M是给定的Abel群, $x \in X$ 是拓扑空间中的一个点,定义预层M(x)满足

$$M(x)(U) := \begin{cases} M & x \in U \\ 0 & x \notin U, \end{cases}$$

限制态射要么是恒等映射要么是零映射.如果我们计算M(x)在点y的茎,

但是,预层并不是我们所希望的定义在拓扑空间上的代数结构.多数情况下我们希望的是从局部的信息中可以得到足够的整体信息,并且整体能够得到的信息一定程度上完全由局部信息得到,于是我们有下面的定义:

定义. 设 \mathcal{F} 是拓扑空间X上的预层,如果 \mathcal{F} 满足如下条件:

- (i) (局部性(locality))若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖, $s,t\in \mathscr{F}(U)$ 满足对于任意 $i\in I$ 都有 $s|_{U_i}=t_{U_i}$ 成立,则 $s=t\in \mathscr{F}(U)$;
- (ii) (粘合条件(gluing))若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖,一族元素 $s_i \in \mathscr{F}(U_i)$ 满足 $s_i|_{U_i\cap U_j} = s_i|_{U_i\cap U_i}$,那么存在 $s\in \mathscr{F}(U)$ 使得 $s|_{U_i} = s_i$ 成立;

则称 \mathcal{F} 为X上的层(sheaf).

定义的合理性告诉我们并不是所有的预层都是层,对于某些拓扑空间X,常预层就不是层.但是,某些定义的预层本身就是层,如下例.最重要的是层的行为形态非常类似于全体可定义的函数,因此函数的全体必然是层.

例5.6. 例5.1中的构造是一个层,更一般地,如果X是拓扑空间, \mathscr{P} 是定义在X上满足某些性质(诸如连续、全纯、光滑等等)的函数预层,且限制映射就是函数的限制,那么这个预层是层.

例5.7. 若 \mathcal{F} 是拓扑空间X上的预层,U是开集,那么我们可以定义 \mathcal{F} 在U上的限制,记为 $\mathcal{F}|_{U}$,它是U上的层,对任意U中的开集V,定义

$$\mathscr{F}|_{U}(V) = \mathscr{F}(U \cap V) = \mathscr{F}(V),$$

且对应 $W \subseteq V$ 的限制同态 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 定义为限制同态 $\mathscr{F}(V) \to \mathscr{F}(W)$.明显的事实是, $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 是预层,并且如果 \mathscr{F} 是层则 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 也是层.

更抽象一些地,我们可以用范畴的语言描述层公理: 若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖,那么层公理等价于下图

$$\mathscr{F}(U) \xrightarrow{p} \prod_{i \in I} \mathscr{F}(U_i) \rightrightarrows \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j),$$

是一个等值子(equalizer),其中第一个态射由 $\rho_{U_i}^U = \mathscr{F}(U_i \hookrightarrow U)$ 诱导, $f,g: \prod_{i \in I} \mathscr{F}(U_i) \rightrightarrows \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j)$ 分别由 $\rho_{U_i \cap U_j}^{U_i} \circ \pi_i: \prod_{i \in I} \mathscr{F}(U_i) \to \mathscr{F}(U_i \cap U_j)$ 和 $\rho_{U_i \cap U_j}^{U_j} \circ \pi_j: \prod_{i \in I} \mathscr{F}(U_j) \to \mathscr{F}(U_i \cap U_j)$ 诱导. 练习5.2. 证明上述等价性.

Proof. 根据范畴中乘积对象的泛性质, p, f, g的映射完全由 $\pi_i \circ p, \pi_{i,j} \circ f, \pi_{i,j} \circ g$ 决定.

假设 \mathcal{F} 是层,且我们能找到集合间的映射 $q:A\to\prod_{i\in I}\mathcal{F}(U_i)$ 使得 $f\circ q=g\circ q$,于是对任意A中的元素 $a,\ \pi_{i,j}\circ f\circ q(a)=\pi_{i,j}\circ g\circ q(a)$,这意味着对于 U_i ,我们能找到 $\mathcal{F}(U_i)$ 中的元素 $\pi_i\circ q(a)$ 使得

$$\rho_{U_{i} \cap U_{j}}^{U_{i}}(\pi_{i} \circ q(a)) = \pi_{i,j} \circ f \circ q(a) = \pi_{i,j} \circ g \circ q(a) = \rho_{U_{i} \cap U_{j}}^{U_{j}}(\pi_{i} \circ q(a)),$$

故由层的定义,存在唯一的元素 $\tilde{q}(a) \in \mathcal{F}(U)$ 使得

$$\rho_{U_i}^U(\tilde{q}(a)) = \pi_i \circ q(a),$$

即存在唯一的集合间的映射 $\tilde{q}: A \to \mathcal{F}(U)$ 满足 $q = p \circ \tilde{q}$,故 $\mathcal{F}(U)$ 是等值子.

反过来,设 $\mathcal{F}(U)$ 是f,g的等值子,若在每个 $i \in I$, $\mathcal{F}(U_i)$ 中都有元素 s_i 满足 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$,根据乘积结构的泛性质,这意味着在 $\prod_{i \in I} \mathcal{F}(U_i)$ 中存在元素 $\{s_i\}_{i \in I}$ 满足

$$\pi_{i,j} \circ f(\{s_i\}_{i \in I}) = s_i|_{U_i \cap U_i} = s_i|_{U_i \cap U_i} = \pi_{i,j} \circ g(\{s_i\}_{i \in I}),$$

故 $f(\{s_i\}_{i\in I})=g(\{s_i\}_{i\in I})$.根据集合范畴中等值子的构造,存在唯一的 $s\in \mathcal{F}(U)$ 使得 $p(s)=\{s_i\}_{i\in I}$,因此

$$s|_{U_i} = \pi_i \circ p(s) = s_i,$$

ℱ是层.

层之间的态射与预层之间态射的定义相同,即对于层 \mathscr{F} , \mathscr{G} , \mathscr{G} : \mathscr{F} $\to \mathscr{G}$ 是层态射当且仅当 φ 是预层的态射.这意味着我们可以定义范畴 $\mathbf{ShAb}(X)$,且它是 $\mathbf{PShAb}(X)$ 的满子范畴.在之后的内容我们会看到,当我们选取的范畴 \mathcal{A} 是Abel范畴时, $\mathbf{PSh}\mathcal{A}(X)$ 也是一个Abel范畴.

局部性可以用茎的语言来描述:

命题5.1. 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是拓扑空间X上层的态射,那么 φ 是同构当且仅当对于任意 $x \in X$,诱导的 $\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$ 都是同构.

对层这种构造的一种理解方式是说,它是弯曲空间上满足一定性质的"函数"的全体,不同性质的选取 决定了层结构的不同.

练习5.3. 设 \mathcal{F} 和 \mathcal{G} 是X上的两个预层,验证 $U \mapsto \mathrm{hom}_{\mathbf{PShAb}(X)}(\mathcal{F}|_{U},\mathcal{G}|_{U})$ 有自然的预层结构,且若 \mathcal{F} 和 \mathcal{G} 还是X上的层,则预层 $U \mapsto \mathrm{hom}_{\mathbf{PShAb}(X)}(\mathcal{F}|_{U},\mathcal{G}|_{U})$ 是层,记为 \mathcal{H} om $(\mathcal{F},\mathcal{G})$,称作 \mathcal{F} 到 \mathcal{G} 的局部态射层(sheaf of local morphisms of \mathcal{F} into \mathcal{G}).

5.1 层的基本理论 43

练习5.4. 设罗是拓扑空间X上的一个预层,则下面的构造给出一个拓扑空间,其中底集 $\bar{\mathscr{F}} = \coprod_{x \in X} \mathscr{F}_x = \{(x,s_x) \mid x \in X, s_x \in \mathscr{F}_x\}$ 是所有茎的不交并,并对任意给定X中的开集U和 $s \in \mathscr{F}(U)$ 给定如下一组拓扑基

$$(U,s) := \{(x,s_x) \mid x \in U\}.$$

求证:

- (i) 存在自然的连续映射 $\pi: \bar{\mathscr{F}} \to X$,将点 (x, s_x) 映到x.并且,对任意的开集U和 $s \in \mathscr{F}(U)$,存在 π 在U上的 截面(section) $\sigma: U \to \bar{\mathscr{F}}$ (截面是指连续函数 σ 使得 $\pi \circ \sigma$ 是U上的恒等函数).记对应 \mathscr{F} 的U上所有截面为 $\Gamma(U, \mathscr{F})$.
- (ii) 反之,若 \mathcal{F} 还是层,求证任意U上的截面 σ 都是如上述方式构造的.
- (iii) 由上证明若 \mathscr{F} 是层,则 $\pi: \overline{\mathscr{F}} \to X$ 的连续函数截面层同构于 \mathscr{F} .
- (iv) 若 \mathcal{G} 也是拓扑空间X上的一个预层, $\varphi: \mathcal{F} \to \mathcal{G}$ 是预层的态射,证明 φ 诱导了 $\bar{\mathcal{F}} \to \bar{\mathcal{G}}$ 的连续映射.

空间*逐*称为预层*多*的平展空间(étale space).这实际上是Serre最初给的层的定义,我们用的是更现代的观点来看,但习题说明了两者是完全相同的.

Solution. (i) 根据定义, π 显然是连续的.定义 $\sigma: x \mapsto (x, s_x)$,注意到 $\sigma^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} \sigma^{-1}(A_i)$,因而为证明 σ 是连续的只需要证明对任意的X中的开集V, $\sigma^{-1}((V, t))$ 也是开集即可.但是若t = s则 $\sigma^{-1}((V, t)) = \sigma^{-1}((V, t)) = V \cap U$,若 $t \neq s$ 则 $\sigma^{-1}((V, t)) = \emptyset$.故得证.

(ii) 设 $\sigma: U \to \bar{\mathscr{F}}$ 是U上的截面,于是对于任意的 $x \in U$,存在 $s \in \mathscr{F}(U)$ 使得 $\sigma(x) = (x, s_x)$.若x, y是U中的两个点, $\sigma(x) = (x, s_x)$ 且 $\sigma(y) = (y, t_y)$.根据芽的定义,我们可以找到x, y的邻域V, W使得 $s \in \mathscr{F}(V), t \in \mathscr{F}(W)$.考虑开集

$$(V,s) = \{(z,s_z) \mid z \in V\}$$

和

$$(W,t) = \{(z,t_z) \mid t \in W\},\$$

根据 σ 的连续性, $\tilde{V}:=\sigma^{-1}((V,s))$ 和 $\tilde{W}:=\sigma^{-1}((W,t))$ 都是U中的非空开集,分别包含x和y.对于任意 $z\in \tilde{V}\cap \tilde{W}$,由 σ 的映射性 $(z,s_z)=\sigma(z)=(z,t_z)$,故存在z的一个邻域 $O\subseteq \tilde{V}\cap \tilde{W}$ 使得 $s|_O=t|_O$.但是z是任取的,故 $s|_{\tilde{V}\cap \tilde{W}}=t|_{\tilde{V}\cap \tilde{W}}$.这样我们就得到了U的一个开覆盖,且在开集重合的部分截面是相容的.根据层公理,存在唯一的 $r\in \mathscr{F}(U)$ 使得 $\sigma(x)=(x,r_x)$.

(iii) 记 \mathscr{F}' 为 $\pi: \bar{\mathscr{F}} \to X$ 的截面层.定义

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是我们需要验证对任意的开集U, θ_U 是群同构,且对任意满足 $V \subseteq U$ 的开集U,V都有图

$$\mathcal{F}(U) \xrightarrow{\theta_U} \mathcal{F}'(U)
\downarrow_{V}
\mathcal{F}(V) \xrightarrow{\theta_V} \mathcal{F}'(V),$$

交换,其中 $|_{V}$ 是U上函数在V的限制.

对于 $\mathscr{S}'(U)$ 中的截面 σ, τ , $\sigma + \tau$ 的定义是 $\sigma + \tau : x \mapsto (x, s_x + t_x)$,其中 $\sigma(x) = (x, s_x)$, $\tau(x) = (x, t_x)$.于是,同态性由正极限的性质保证,再根据前一部分 θ_U 是同构,其中,层公理的局部性对应 θ 的单射性,在局部性的存在下粘合条件等价于满射(充分性由前一部分证明,必要性考虑到截面本质上是映射,是自动满足粘合条件的).任取 $x \in V$ 和 $s \in \mathscr{S}(U)$,正极限保证 $s_x = (s|_V)_x$,这即是图的交换性.

(iv) 定义

$$\bar{\varphi}: \bar{\mathscr{F}} \to \bar{\mathscr{G}}$$

$$(x, s_x) \mapsto (x, \varphi_x(s_x)),$$

于是我们只要证明函数是连续的即可.对 $\overline{\mathcal{G}}$ 的任意X中的开集U,若t是 $\mathcal{G}(U)$ 中的截面,则对于(U,t)中的任意 点 (x,t_x) ,若它在 $\overline{\varphi}$ 的像中,则存在 $(x,s_x) \in \mathcal{F}_x$ 使得 $\varphi_x(s_x) = t_x$.这意味着,存在x的邻域W使得 $\varphi_W(s)|_{W\cap U} = t|_{W\cap U}$.于是,开集基中的元素 $(W\cap U,s|_{W\cap U})$ 包含于 $\overline{\varphi}$ 的原像中,故

$$\varphi^{-1}((U,t)) = \coprod_{W \not = U + \text{ of } \mathcal{F}(W) \text{ if } \mathcal{L}\varphi_W(s) = t|_W} (W,s),$$

按照定义这是一个开集.

练习5.5. 设 $\varphi_i: \mathscr{F} \to \mathscr{G}$ 是拓扑空间X上层的态射,i=1,2,且对于任意 $x\in X$,都有 $(\varphi_1)_x=(\varphi_2)_x$,证明 $\varphi_1=\varphi_2$.

5.1.2 层化

对于一个预层 \mathcal{F} 和X中的开集U,我们可以定义

$$\tilde{\mathscr{F}}(U) := \{s: U \to \coprod_{x \in U} \mathscr{F}_x \mid s$$
满足公理(i)和(ii)}

其中

- (i) 对每个U中的点x, $s(x) \in \mathcal{F}_x$;
- (ii) 对每个U中的点x, 都存在开邻域 $V \subseteq U$ 和截面 $t \in \mathcal{F}(V)$ 使得对于所有的 $y \in V$ 都有 $s(y) = t_y$.

对于 \mathscr{F} 中的任意截面 $s \in \mathscr{F}(U)$,我们都可以定义一个映射 $\tilde{s}: U \to \coprod_{x \in U} \mathscr{F}_x, y \mapsto s_y$.显然 $\tilde{s} \in \tilde{\mathscr{F}}(U)$,因此我们定义了一个预层的态射 $\zeta: \mathscr{F} \to \tilde{\mathscr{F}}$.

命题5.2. 若预层 \mathscr{F} 是层,则 $(:\mathscr{F} \to \widetilde{\mathscr{F}}$ 是层的同构.

如果尽可能具体地解释层化,这个构造就是把原本没有的截面加到层的对象当中去,进而形成我们需要的足够多的粘合信息,而我们是局部来完成这个扩充的.刚刚我们介绍的层化事实上就是用一个点的局部信息(茎)去构造相应的函数,可以说层公理所描述的本质信息就是一定类型的函数.我们对于层化的定义满足如下的泛性质和函子性:

5.1 层的基本理论 45

命题5.3 (函子性). 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层的态射,那么存在层态射 $\tilde{\varphi}: \tilde{\mathscr{F}} \to \tilde{\mathscr{G}}$ 使得下面的图交换:

$$\begin{array}{ccc} \mathscr{F} & \stackrel{\varphi}{\longrightarrow} \mathscr{G} \\ \zeta_{\mathscr{F}} & & & \downarrow \zeta_{\mathscr{G}} \\ \tilde{\mathscr{F}} & \stackrel{\tilde{\varphi}}{\longrightarrow} \tilde{\mathscr{G}}. \end{array}$$

Proof. 对任意X中的开集U,考虑点 $x \in U$ 和截面 $s \in \tilde{\mathscr{F}}(U)$,我们定义

$$\tilde{\varphi}_U(s)(x) := \varphi_x(s(x)).$$

我们需要验证定义是层的态射,并验证图的交换性.

推论5.3.1 (泛性质). 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层的态射, 若 \mathscr{G} 是层, 则存在Abel群的同构

$$\hom_{\mathbf{PShAb}(X)}(\mathscr{F},\mathscr{G}) \cong \hom_{\mathbf{ShAb}(X)}(\tilde{\mathscr{F}},\mathscr{G}).$$

事实上,我们并不需要拓扑空间X中所有开集U所对应的对象 $\mathscr{F}(U)$,如果给定X的一组基 \mathscr{B} 中所有所有开集U对应的对象 $\mathscr{F}(U)$,并且这些对象满足层公理,那么我们存在唯一的X上的层:

定理5.4 (\mathcal{B} -层). 设 \mathcal{B} 是拓扑空间X的一组开集基,对于每个 $U,V\in\mathcal{B}$,存在Abel群 $\mathcal{F}(U)$ 和限制同态 $\rho_{V}^{U}:\mathcal{F}(U)\to\mathcal{F}(V)$ 满足预层公理和层公理,那么称 \mathcal{F} 是一个 \mathcal{B} -层(\mathcal{B} -sheaf).于是

- 1. 任意 3- 层都可以唯一地扩张为一个 X上的 Abel 群层.
- 2. 给定X上的两个 \mathcal{B} -层 \mathcal{F} 和 \mathcal{G} , 且对每个 \mathcal{B} 中的开集U都有群态射

$$\varphi_U: \mathscr{F}(U) \to \mathscr{G}(U)$$

与 \mathcal{B} -层的限制态射相容,那么存在唯一的层态射 $\varphi: \mathcal{F} \to \mathcal{G}$ 是 \mathcal{B} -层的扩张.

Proof. 对任意X中的开集V, 定义

其中逆向系中的态射由限制态射给定.我们需要证明: (i)该定义与原定义相容; (ii)若 $V \subseteq W$,则存在 ρ_V^W : $\mathscr{F}(W) \to \mathscr{F}(V)$ 与原有的限制函数相容,且新构造的限制函数间也相容; (iii)如此定义的预层构成一个层.

(i)由极限的定义即可得到,因为若 $V \in \mathcal{B}$,V就是被V包含的 \mathcal{B} 中开集在嵌入映射下的终对象,因此 $\mathcal{F}(V)$ 是始对象.(ii)可以由极限的函子性推得.这样我们只要验证这是一个层即可,等价地,我们证明对任意的开覆盖,是一个等值子.

46 第五章 层及其上同调

推论5.4.1 (层的粘合原理). 设U是拓扑空间X的开覆盖.若对任意U中的开集U, \mathcal{F}_U 都是U上的层, 并且

$$\varphi_{U,V}:\mathscr{F}_U|_{U\cap V}\to\mathscr{F}_V|_{U\cap V}$$

都是同构, 在 $U \cap V \cap W$ 上满足

$$\varphi_{V,W} \circ \varphi_{U,V} = \varphi_{U,W},$$

则存在唯一的X上的层 \mathcal{F} 使得有层的同构 $\psi:\mathcal{F}|_{U}\to\mathcal{F}_{U}$ 且满足如下相容性:对任意 $U,V\in\mathcal{U}$

$$\varphi_{U,V} \circ \psi_U|_{U \cap V} = \psi_V|_{U \cap V} : \mathscr{F}|_{U \cap V} \to \mathscr{F}_V|_{U \cap V}.$$

Proof. 我们将验证如下论断: (i) 被U中的开集包含的所有的开集构成X的一组拓扑基 \mathcal{B} ; (ii) 所给出的粘合条件自然地给出了一个 \mathcal{B} -层,于是根据定理5.4存在性和唯一性都得证.

(i) 这是一个单纯的拓扑问题,我们略过证明.(ii) 对任意 \mathcal{B} 中的开集W,我们可以找到 $U \in \mathcal{U}$ 使得 $W \subseteq U$,于是定义

$$\mathscr{F}(W) := \mathscr{F}_U(W),$$

且若 $W_1 \subseteq W_2 \subseteq U$,那么限制态射 $\rho_{W_1}^{W_2}: \mathscr{F}(W_2) \to \mathscr{F}(W_1)$ 定义为层 $\mathscr{F}_U \downarrow W_1$ 到 W_2 的限制.这样定义首先出现的问题是,我们对于 $U \in \mathcal{U}$ 的选取可能不是唯一的,因而,首先验证定义是合理的.

假设对于W,存在不同的

由于原本的 \mathcal{F}_U 是U上的层,根据例5.7,我们这样的定义也是层,于是根据之前的定理,这个层存在且同构下唯一.

事实上,粘合后的层 \mathscr{F} 是容易描述的:对任意的开集W, $\mathscr{F}(W)$ 是所有 $\{s_U\}_{U\in\mathcal{U}}$ 的全体,其中 $s_U\in\mathscr{F}_U(W\cap U)$ 且满足 $\varphi_{U,V}(s_U)$ 在 $U\cap V\cap W$ 上等于 $\varphi_{V,U}(s_V)$.

引入层化后我们其实有了对于层更进一步的认识——层完全由每点上的茎完全决定,而决定的方式就是寻找连续的截面(习题5.6).在英语中,sheaf一词的含义是"a bundle of stalks",即一捆稻谷,我们想象练习5.6. 设*乎*是拓扑空间*X*上的预层.证明平展空间*至*的截面层*至*′同构于*至*的层化.

Proof. 在习题5.4中我们定义了预层的态射

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是只要证明 \mathscr{S} '的泛性质就能够说明同构.设 $\varphi:\mathscr{F}\to\mathscr{G}$ 是预层到层的态射,于是根据习题5.4我们有连续映射 $\bar{\varphi}:\bar{\mathscr{F}}\to\bar{\mathscr{G}}$,进而对于任意的截面 $s:U\to\bar{\mathscr{F}}$, $\bar{\varphi}\circ s$ 也是U上的截面,这样我们定义了

$$\varphi': \mathscr{F}' \to \mathscr{G}' \cong \mathscr{G}$$

$$\varphi'_U: \mathscr{F}'(U) \to \mathscr{G}'(U)$$

$$s \mapsto \bar{\varphi} \circ s.$$

5.1 层的基本理论 47

 φ'_U 是群同态由由 φ 的预层的态射性保证,而它显然与两个层的限制态射相容,于是我们得到了层的态射. 再证明唯一性.假设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层到层的态射,层态射 $\tilde{\varphi}: \mathscr{F}' \to \mathscr{G}$ 满足

任取 $\sigma \in \mathscr{F}'(U)$,即截面 $\sigma : U \to \mathscr{F}$,对任意 $x \in U$,若 $\sigma(x) = (x, s_x)$,那么任取 σ_x 的代表元 τ ,于是存在 $W \subseteq U$ 使得 $\sigma|_W = \tau|_W$,因此 $\tau(x) = (x, s_x)$,于是可以定义 $\eta_x : (\mathscr{F}')_x \to \mathscr{F}_x$, $\sigma_x \mapsto s_x$.根据截面加法的定义,这显然是一个群态射.一方面,我们显然有 $\eta_x \circ \theta_x = \mathrm{id}_{\mathscr{F}_x}$.另一方面,仍然假定 $\sigma(x) = (x, s_x)$,那么由连续性 $V = \sigma^{-1}((U, s))$ 是U中的非空开集,这意味着对任意 $y \in V$, $\sigma(y) = (y, s_y)$,于是 $\sigma|_V = \theta(s)|_V$, $\theta_x(s_x) = \sigma_x$.因此, $\theta_x \circ \eta_x = \mathrm{id}_{(\mathscr{F}')_x}$.再根据习题5.5, $\tilde{\varphi}$ 是唯一确定的.

5.1.3 底空间变换

这一节我们考虑这样的问题,

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 \mathscr{F} 是X上的预层,则如下定义的

$$f_*\mathscr{F}: \mathbf{Open}(Y)
ightrightarrows \mathbf{Ab}$$

$$U \mapsto f_*\mathscr{F}(U) := \mathscr{F}(f^{-1}(U))$$

是一个预层, 称为预层多的推出(pushfroward).

对于Y中的开集 $V \subseteq U$,我们定义限制同态 $f_*\mathscr{F}(U) \to f_*\mathscr{F}(V)$ 是 $\mathscr{F}(f^{-1}(U))$ 到 $\mathscr{F}(f^{-1}(V))$ 的限制同态,即若 $s \in f_*\mathscr{F}(U)$,则

$$s|_{V} = (s \in \mathscr{F}(f^{-1}(U)))|_{f^{-1}(V)}.$$

引理5.1. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 $\mathscr{F} \in X$ 上的层,则推出 $f_* \mathscr{F} \in Y$ 上的层.

Proof. 任取Y中的开集V,设 $\mathcal{V} = \{V_i\}_{i\in I}$ 是V的开覆盖,那么 $\mathcal{U} = \{U_i := f^{-1}(V_i)\}_{i\in I}$ 是 $\mathcal{U} := f^{-1}(V)$ 的开覆盖.于是,若给定 $s_i \in f_*\mathscr{F}(V_i) = \mathscr{F}(U_i)$,满足 $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$,于是 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$.由 \mathscr{F} 是层得知存在唯一的 $s \in \mathscr{F}(U)$ 使得 $s|_{U_i} = s_i$.按照层推出的定义,这个s就是 $f_*\mathscr{F}(V)$ 中要找的唯一的元素,故 $f_*\mathscr{F}$ 是层. \square

如果我们还有一个X上的预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$,则对于任意的Y中的开集U,同态映射 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 和限制映射 $\rho_{\varphi^{-1}(V)}^{\varphi^{-1}(U)}$ 相容,于是 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 自然地可以看作 $\varphi_{\varphi^{-1}(U)}: f_*\mathscr{F}(U) \to f_*\mathscr{G}(U)$,这样我们说明了 $f_*\varphi$ 是预层态势 $f_*\mathscr{F} \to f_*\mathscr{G}$.如果还有 $\psi: \mathscr{G} \to \mathscr{H}$,那么很明显地有 $f_*(\psi \circ \varphi) = f_*\psi \circ f_*\varphi$.于是 f_* 是一个函子**PShAb** $(X) \rightrightarrows$ **PShAb**(Y).

练习5.7. 设 $f: X \to Y$ 和 $q: Y \to Z$ 是两个连续映射,那么

$$(q \circ f)_* = q_* \circ f_*$$
.

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 \mathcal{G} 是Y上的预层,则如下定义的

$$\begin{split} f_P\mathscr{G}:\mathbf{Open}(X) &\rightrightarrows \mathbf{Ab} \\ V \mapsto f_P\mathscr{G}(U) := \varinjlim_{\substack{V \in \mathbf{Open}(Y) \\ f(U) \subseteq V}} \mathscr{G}(V) \end{split}$$

是一个预层, 称为预层级的拉回(pullback).

引理5.2. 设X和Y是拓扑空间, $f: X \to Y$ 是连续映射, 那么下面的同构关于 \mathcal{G} 和 \mathcal{G} 是自然的:

$$\hom_{\mathbf{PShAb}(X)}(f_P\mathscr{G},\mathscr{F})\cong \hom_{\mathbf{PShAb}(Y)}(\mathscr{G},f_*\mathscr{F}).$$

Proof. 我们首先证明同构.设 $\varphi \in \text{hom}_{\mathbf{PShAb}(X)}(f_P \mathcal{G}, \mathcal{F})$,于是任意给定X中的开集,按照极限的定义, $\varphi_U : f_P \mathcal{G}(U) \to \mathcal{F}(U)$ 完全由一族相容的态射

 φ_V :

其中V取遍所有包含f(U)的开集.

与推出不同的是,即使 \mathcal{G} 是Y上的层, $f_P\mathcal{G}$ 也可能并不是一个层,但作为预层,层的拉回也有很好的函子性质.我们称 $f_P^{-1}\mathcal{G}$ 的层化为 \mathcal{G} 的**逆象层**(inverse sheaf),记为 $f^{-1}\mathcal{G}$.

定义. 设X是拓扑空间, \mathcal{F} 是X上的层

5.1.4 层范畴及其中的正合性

设 φ : \mathscr{F} → \mathscr{G} 是空间X上预层的态射,

练习5.8 (层的零扩张). 设X是拓扑空间,Z是X的闭集, $i:Z\to X$ 是嵌入映射.令U:=X-Z是Z在X中的补集, $j:U\to X$ 是嵌入映射.

1. 设 \mathcal{F} 是Z上的层,证明

$$(i_* \mathscr{F})_x = \begin{cases} \mathscr{F}_x & x \in Z \\ 0 & x \notin Z. \end{cases}$$

于是我们称 i_* \mathscr{F} 是 \mathscr{F} 在 X 上的零扩张.证明若 X 上的层 \mathscr{F} 对所有 $x \notin Z$ 满足 $\mathscr{F}_x = 0$,那么层的同态

$$\rho^X_Z:(i_*\mathscr{F})|_Z\to\mathscr{F}$$

是同构,并且由此推导出对任意Z上的层 \mathcal{G} ,存在唯一的X上的层 \mathcal{G} 满足对所有 $x \in Z$ 满足 $\mathcal{G}_x = \mathcal{G}_x$,对 所有 $x \notin Z$ 满足 $\mathcal{G}_x = 0$.

2. 设 \mathcal{G} 是U上的层,定义X上的层 \mathcal{G} 满足对任意X中的开集V,

$$j_! \mathcal{G}(V) := \begin{cases} \mathcal{G}(V) & V \subseteq U \\ 0 & \text{其他情况.} \end{cases}$$

5.2 ČECH上同调 49

证明

$$(j_! \mathcal{G})_x = \begin{cases} \mathcal{G}_x & x \in U \\ 0 & 其他情况, \end{cases}$$

并且证明j₁g是满足以上条件且限制在U上是g的唯一一个层.

3. 现在假设 罗是 X上的层,证明我们有如下层的正合列:

$$0 \to j_!(\mathscr{F}|_U) \to \mathscr{F} \to i_*(\mathscr{F}|_Z) \to 0.$$

Proof. 1.直接由定义,若 $x \in U$,那么存在x在X中的邻域V使得 $V \cap Z = \emptyset$,此时 $i_*\mathscr{F}(V) = \mathscr{F}(i^{-1}(V)) = \mathscr{F}(\emptyset) = 0$,因此对任意包含x的开集W, $i_*\mathscr{F}(W \cap V) = 0$,即 $(i_*\mathscr{F})_x = 0$.另一方面,若 $x \in Z$,那么

$$(i_*\mathscr{F})_x = \operatorname{colim}_{W \not= 0, 2x \cap \mathbb{T}^{\underline{a}}} (i_*\mathscr{F})(W) = \operatorname{colim}_{W \not= 0, 2x \cap \mathbb{T}^{\underline{a}}} \mathscr{F}(W \cap Z) = \mathscr{F}_x.$$

5.2 Čech上同调

之前的理论中我们建立了层的上同调理论,但我们面临一个相当严重的问题——对于一个给定的层,它的上同调几乎是不可计算的.虽然任意层的内射都是存在的,但构造过于庞大Čech上同调的主要思想是我们考虑拓扑空间中开覆盖所包含的组合信息,

设X是拓扑空间, \mathscr{F} 是X上的层, $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ 是X的一族开覆盖.对任意 $q \geq 0$,我们定义 \mathscr{F} (对于 \mathcal{U})的q群(group of q-cochain of \mathscr{F} (relative to \mathcal{U}))为

$$C^{q}(\mathcal{U},\mathscr{F}) = \prod_{(\lambda_{0},\cdots,\lambda_{q})\in\Lambda^{q+1}} \mathscr{F}(U_{\lambda_{0}}\cap\cdots\cap U_{\lambda_{q}}),$$

进而可以定义上边缘映射

$$d^q: C^q(\mathscr{F}, \mathcal{U}) \to C^{q+1}(\mathscr{F}, \mathcal{U})$$

满足将 $d^q(\{f_{\lambda_0,\dots,\lambda_q}\})$ 的 $(\lambda_0,\dots,\lambda_{q+1})$ 项是

$$\sum_{i=0}^{q} (-1)^{i} f_{\lambda_{0}, \dots, \hat{\lambda_{i}}, \dots, \lambda_{q+1}}.$$

这给出了一个上链,验证如下:

事实上,Čech上链是这样给出的:给定拓扑空间X的开覆盖 $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$,存在 \mathcal{U} 给出的单纯集 $N\mathcal{U}$,其中的映射都是开集的嵌入

引理5.3. 对任意拓扑空间X和X上的层 \mathcal{F} , $U = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$ 是X的一族开覆盖,都有

$$\check{H}^0(\mathscr{F},\mathcal{U})\cong\Gamma(X,\mathscr{F}).$$

П

命题5.5. 若V是拓扑空间X开覆盖U的加细,

附录 A Abel范畴

一定程度上说,我们构造范畴的目的是抽象出原本一些对象之间的行为,用更一般的方式去理解之前的对象和之间的行为.在代数中,模是一类非常友好的对象,我们希望找到足够抽象的一类对象,他们之间的行为类似于模(或者Abel群),这样的范畴就是Abel范畴.

同调代数中绝大多数的研究对象是Abel范畴中的对象,它们具有许多良好的性质,在这一章中我们将列举绝大部分.但是,同调代数的学习并不需要知道每一个这样性质的来源和证明,甚至在很多情形下一个Abel范畴完全可以看成一个R模范畴,虽然这并不准确,但足够对同调代数有正确的理解.这里的建议是大致浏览这一章,知道Abel范畴的定义和一些基本性质,然后进入正式的同调代数的学习,在适当并且需要的时候再去了解和分析Abel范畴中一些性质的证明.

A.1 Abel范畴

这一节我们不区分范畴内对象的同构和相等.

定义. 给定范畴C中的两个单态射 $f_1: A_1 \to B, f_2: A_2 \to B$,若存在 $h: A_1 \leftrightarrows A_2: k$ 使得图

是交换的,则称单态射 $f_1: A_1 \to B, f_2: A_2 \to B$ 是等价的(equivalent).对偶地,给定范畴 \mathcal{C} 中的两个满态射 $g_1: B \to C_1, g_2: B \to C_2$,若存在 $h: C_1 \leftrightarrows C_2: k$ 使得图

是交换的,则称满态射 $f_1:A_1\to B, f_2:A_2\to B$ 是等价的(equivalent).称B的单态射的等价类为B的子对象(subobject),B的满态射的等价类为B的商对象(quotient object)

练习A.1. 求证若 $f_1: A_1 \to B, f_2: A_2 \to B$ 都是单态射,那么满足交换图

的 $h: A_1 \to A_2$ 是单射.

定义. 给定范畴C中的两个态射 $f,g:X\to Y$,若存在对象K和态射 $i:K\to X$ 满足

- 1. $f \circ i = g \circ i$;
- 2. 若对任意满足 $f \circ h = g \circ h$ 态射 $h : Z \to X$ 都存在唯一的分解

$$K \xrightarrow{i} X \xrightarrow{g} Y$$

则称K是f,g的等值子(equalizer).若范畴 \mathcal{C} 存在零对象,那么称f与0的等值子为f的核(kernel),记为 $\ker f$.

A.1.1 Abel范畴的加性

定义. 若范畴A满足

- 1. A中零对象存在;
- 2. 对A中任意两个对象X,Y,它们的和与积都存在;
- 3. 若 $f: X \to Y$ 是A中的态射,则ker f与coker f存在;
- 4. 任意单态射(满足左消去律)都是某个态射的核,任意满态射(满足右消去律)都是某个态射的余核;

则称A是Abel范畴(Abelian category).

- 1. 单态射 $f: X \to Y$ 的核是0,满态射 $g: Y \to Z$ 的余核是0.
- 2. $0 \to X$ 的余核是 $X \xrightarrow{\mathrm{id}_X} X$, $Y \to 0$ 的核是 $Y \xrightarrow{\mathrm{id}_Y} Y$.

Proof. 由于两个部分都有两个互相对偶的命题,因此都只证一部分.

1. $f: X \to Y$ 是单态射,若 $t: T \to X$ 使得 $f \circ t = 0$,那么那么有 $T \to X \to Y = 0 \to X \to Y$,根据消去律t = 0,这意味着 $T \to X$ 有分解 $T \to 0 \to X$.

2. 这是因为对任意
$$k: X \to Z, \ 0 \to X \to Z = 0.$$

给定Abel范畴A中的对象X,Y,记它们的和为X+Y或 $X\oplus Y$ ($X\coprod Y,X\otimes Y$),泛性质诱导的映射分别记为

$$X \xrightarrow{\begin{pmatrix} 1 & 0 \end{pmatrix}} X + Y$$

和

$$Y \xrightarrow{\left(0 \quad 1\right)} X + Y.$$

对应地,记它们的积为 $X \times Y$ 或者 $X \prod Y$,泛性质诱导的态射为

$$X \times Y \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} X$$

和

$$X \times Y \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} Y$$
.

进一步地,若给定了 $f:W\to X,g:W\to Y$,根据泛性质存在 $W\to X\times Y$,这个映射记为 $(f,g):W\to X\times Y$;若给定了 $h:X\to Z,k:Y\to Z$,根据泛性质存在 $X+Y\to Z$,这个映射记为 $\begin{pmatrix}h\\k\end{pmatrix}:X+Y\to Z$.我们举例说明这样的记号使得态射的符合满足矩阵乘法.考虑给定了 $f:W\to X,g:W\to Y$,那么复合

$$W \xrightarrow{\left(f \quad g\right)} X \times Y \xrightarrow{\left(1\atop 0\right)} X$$

用矩阵乘法写出来恰好是 $f:W\to X$,满足泛性质.

A.1.2 态射的分解

按定义, $\ker f$ 给出了X的一个子对象, $\operatorname{coker} f$ 给出了Y的一个商对象.记 $\mathbf{S}X$ 是范畴 \mathcal{C} 中对象X的所有子对象全体, $\mathbf{Q}X$ 是X的所有商对象全体,那么 ker 和 coker 给出了一对映射

$$\ker: \mathbf{Q}X \leftrightarrows \mathbf{S}X : \operatorname{coker},$$

其中ker将一个满态射给出它的核,coker将单态射给出它的余核.

练习A.3. 验证如上所述的映射是良定义的.更一般地,证明ker是单态射,coker是满态射.

Proof. 我们需要验证两方面:单态射的coker是满态射(对偶地满态射的ker是单态射),且ker把等价的满态射映到等价的单态射(对偶地coker把等价的单态射映到等价的满态射).

给定态射 $f: X \to Y$,我们要验证 $Y \to \operatorname{coker}(X \to Y)$ 有右消去律,即对任意的 $k, l: \operatorname{coker}(X \to Y) \rightrightarrows Z$,若 $k \circ \operatorname{coker}(X \to Y) = l \circ \operatorname{coker}(X \to Y)$,那么k = l.考虑 $k - l: \operatorname{coker}(X \to Y) \to Z$,由于 $k \circ \operatorname{coker}(X \to Y) = l \circ \operatorname{coker}(X \to Y)$, $(k - l) \circ \operatorname{coker}(X \to Y) = 0: Y \to \operatorname{coker}(X \to Y) \to Z$,这意味着复合映射 $X \to Y \to Z = 0$,按照coker的定义,存在唯一的态射coker $(X \to Y) \to Z$ 使得 $Y \to \operatorname{coker}(X \to Y) \to Z$ 是0的分解,但如同之前所述,k - l满足分解, $0: \operatorname{coker}(X \to Y) \to Z$ 同样满足分解,因此k - l = 0,即k = l.

假设 $X_1 \to Y$ 和 $X_2 \to Y$ 是等价的单态射,那么存在态射 $i: X_1 \leftrightarrows X_2: j$ 使得

是交换的,根据coker的函子性存在交换图

因此将等价类映到等价类.

命题A.1. ker和coker是Abel范畴A下的互逆映射.

Proof. 给定单态射 $f: X \to Y$,于是它是某个态射 $Y \to Z$ 的核.取 $C = \operatorname{coker} f$,于是存在唯一的态射 $C \to Z$ 使下图交换:

注意到复合 $X \to Y \to C = 0$,于是根据核的泛性质存在 $X \dashrightarrow K$ 使得上图是交换的;同理, $K \to Y \to Z = K \to Y \to C \to Z = 0 \to Z = 0$,存在 $K \dashrightarrow X$ 使得图是交换的,于是据定义 $X \xrightarrow{f} Y$ 与 $K \xrightarrow{k} Y$ 是等价的子对象

注意到, coker 将态射 $f: X \to Y$ 映到 $Y \to C = \operatorname{coker} f$, ker 再将 $Y \to C = \operatorname{coker} f$ 映到 $k: \operatorname{ker}(Y \to C) = K \to Y$,于是 $f: X \to Y$ 等价于 $\operatorname{coker}(\operatorname{ker}(f))$,因此 $\operatorname{coker} \circ \operatorname{ker} = \operatorname{id}_{\mathbf{S}X}$.同理,对偶地可以证明 $\operatorname{ker} \circ \operatorname{coker} = \operatorname{id}_{\mathbf{Q}X}$.

Proof. 设 $C = \operatorname{coker}(X_1 \to Y)$, $K = \ker(Y \to C)$,于是根据命题 X_1 (因此 X_2)与K是等价的. 考虑交换图

于是

$$K \to X_1 \to K \to Y \to C = K \to X_1 \to Y \to C$$

= $K \to Y \to C = 0$,

但根据核的泛性质,存在唯一的 $\mathrm{id}: K \to K$ 使得上图交换,因此 $f \circ g = \mathrm{id}_K$,即 $X_1 \to Y \cong K \to Y$,这就证明了结论.

推论A.1.2. 在 Abel 范畴 A中, $C = \operatorname{coker} f \stackrel{.}{=} \triangle h f : X \rightarrow Y$ 的余核, 那 $A f : X \rightarrow Y$ 是 $Y \rightarrow C$ 的核.

Proof. 根据定义, $\operatorname{coker}(X \to Y) = Y \to C$, 于是根据之前的命题

$$X \to Y \cong \ker(\operatorname{coker}(X \to Y)) = \ker(Y \to C).$$

练习A.4. 证明ker和coker是反序的映射.

练习A.5. 给定Abel范畴中的图

$$W \to X \to Y \to Z$$

且任意相邻的态射的复合为0,求证 $X \to Y$ 诱导了相容的

$$C = \operatorname{coker}(W \to X) \dashrightarrow K = \ker(Y \to Z).$$

Proof. 考虑

由于 $W \to X \to Y = 0$,按定义存在 $C \dashrightarrow Y$ 与图交换,于是 $X \to C \dashrightarrow Y \to Z = 0$,根据 $X \to C$ 是满态射, $C \dashrightarrow Y \to Z = 0$,再由K的泛性质存在 $C \dashrightarrow K$ 与整幅图交换.

定理A.2. 设 $f: X \to Y \neq Abel$ 范畴中的态射,且f同时是单态射和满态射,于是f是同构.

Proof. 由于 $f: X \to Y$ 是满射,0是coker $f.Y \xrightarrow{\mathrm{id}_Y} Y$ 是 $Y \to 0$ 的核,且根据前面的命题, $f: X \to Y$ 也是 $Y \to 0$ 的核,因此根据核的泛性质,

设W, X是Abel范畴A中对象Y的两个子对象,那么称同时为W和X的子对象的Y的子对象的极大子对象为W与X的交(intersection),记为 $W \cap X$.

命题A.3. Abel范畴A中元素Y的任意两个子对象W, X都有交.

Proof. $\diamondsuit Z = \operatorname{coker}(W \to Y)$, $K = \ker(X \to Y \to Z)$, 于是

$$\begin{array}{ccc} K & \longrightarrow X \\ \downarrow & & \downarrow \\ W & \longrightarrow Y & \longrightarrow Z \end{array}$$

中 $K \to X \to Y \to Z = 0$,由前面W是的 $Y \to Z$ 的核,因此存在唯一的 $K \dashrightarrow W$ 使得图是交换的. 接下来只要证明对任意Y的子对象S,若它同时还是X和W的子对象,则它是K的子对象.给定交换图

$$S \xrightarrow{i} X$$

$$\downarrow j \qquad \downarrow$$

$$W \longrightarrow Y,$$

使得 $i: S \to X$ 和 $j: S \to W$ 都是单态射,那么 $S \to X \to Y \to Z = S \to W \to Y \to Z = (S \to W) \circ 0 = 0$,于是存在唯一的态射 $S \to K$ 使得 $S \to K \to X = i$.同时,再根据W是的 $Y \to Z$ 的核,存在唯一的 $j: S \to W$ 使得图交换,但 $S \to K \dashrightarrow W$ 也满足该交换图,因此 $S \to K \dashrightarrow W = j$.这意味着K是W, X的交.

推论A.3.1. 设 $f: Y \to X$ 和 $q: Z \to X$ 是Abel范畴A中的单态射,则存在纤维积 $Y \times_X Z$.

Proof. 由于f,g都是单态射,存在它们的交,记为 $i: K \to X, j: K \to Y$.任取 $W \xrightarrow{h} Y, W \xrightarrow{k} Z$ 满足交换图

$$\begin{array}{ccc} W & \stackrel{h}{\longrightarrow} Y \\ \downarrow & & \downarrow \\ Z & \stackrel{}{\longrightarrow} X \end{array}$$

令 $C = \operatorname{coker}(Z \to X)$,于是 $W \to Y \to X \to C = W \to Z \to X \to C = W \to 0 = 0$,根据前面的证明,K是 $Y \to X \to C$ 的核因此存在唯一的 $W \dashrightarrow K$ 使得图(不包括蓝色部分)

是交换的,并且

$$W \xrightarrow{h} Y \to X \to C = W \dashrightarrow K \to Z \to Y \to C = 0,$$

注意到Z是 $X \to C$ 的核因此有唯一的分解 $W \to Z \to X \to C$,但是 $h: W \to Z$ 和 $W \dashrightarrow K \to Z$ 都满足分解,因此如上的图是交换的.

我们再来证明这样的 $W \dashrightarrow K$ 是唯一的.对于任意满足交换图的态射 $g: W \to K$,它必然是 $W \to Y \to X \to C = 0$ 的分解,因此根据 $K = \ker(Y \to X \to C)$ 分解是唯一的.

命题A.4. 对任意Abel范畴A中的态射 $f: X \to Y$ 和 $g: X \to Y$,它们的等值子存在.

Proof. 考虑 $X \xrightarrow{\left(1 \quad f\right)} X \times Y$ 和 $X \xrightarrow{\left(1 \quad g\right)} X \times Y$,它们都有左逆因此都是单态射,由前面的命题存在交,记为K,满足交换图

$$K \xrightarrow{i} X$$

$$j \downarrow \qquad \qquad \downarrow \begin{pmatrix} 1 & f \end{pmatrix}$$

$$X \xrightarrow{\begin{pmatrix} 1 & g \end{pmatrix}} X \times Y,$$

其中K是拉回.再次根据左逆的存在性,i=j,于是按定义拉回的泛性质说明K是f,g的等值子.

定理**A.5.** 设 $f: Y \to X$ 和 $g: Z \to X$ 是Abel范畴A中的态射,则存在纤维积 $Y \times_X Z$.

Proof. 考虑

$$\begin{array}{ccc}
Y \times Z & \longrightarrow Y \\
\downarrow & & \downarrow \\
Z & \longrightarrow X.
\end{array}$$

它们的等值子满足相应的泛性质,因此定理成立.

引理A.1. 设如下Abel范畴A中的拉回交换图

$$Z \xrightarrow{l} X$$

$$\downarrow h \qquad \downarrow f$$

$$Y \xrightarrow{g} U,$$

那么h诱导了同构 $\ker l \cong \ker g$,更准确地讲,若(K,k)是l的核,则(K,hk)是g的核. (对偶地推出图诱导了余核的同构,) 由此如果f是满态射那么h是满态射.

Proof. 任取 $w:W\to Y$ 使得 $W\to Y\to U=0$,因此

构成了交换图.由于Z是拉回,因此存在 $W \dashrightarrow Z$ 与整幅图交换,这意味着 $W \dashrightarrow Z \to X = 0$,由于K是 $Z \to X$ 的核,存在唯一的 $W \to K$ 使得 $W \to K \to Z = W \dashrightarrow Z$.这样验证了(K, hk)是g的核的泛性质,因此h诱导了同构.

现在假设f是满态射,那么由于Z是拉回,

$$0 \to Z \xrightarrow{\begin{pmatrix} l & h \end{pmatrix}} X \times Y \xrightarrow{\begin{pmatrix} f \\ g \end{pmatrix}} U$$

是正合的,同时f是满态射意味着对任意 $u,v:U\rightrightarrows V$,若 $u\begin{pmatrix}f\\g\end{pmatrix}=v\begin{pmatrix}f\\g\end{pmatrix}$ 则uf=vf,因此u=v,即 $\begin{pmatrix}f\\g\end{pmatrix}$ 是满态射,所以

$$0 \to Z \xrightarrow{\Big(\begin{matrix} l & h \Big)} X \times Y \xrightarrow{\Big(\begin{matrix} f \\ g \end{matrix}\Big)} U \to 0$$

是短正合序列.这样,交换图

$$Z \xrightarrow{l} X$$

$$\downarrow_h \qquad \downarrow_f$$

$$Y \xrightarrow{g} U,$$

同时是推出,因此上段讨论的对偶说明 $\operatorname{coker} h = \operatorname{coker} f = 0$,即h是满态射.

定义. 给定Abel范畴A中的态射 $f: X \to Y$,称

 $\ker \operatorname{coker} f$

为f的像(image), 记为im f.

命题A.6. Abel范畴A中的态射 $f: X \to Y$ 的像是使得复合

$$X \to \operatorname{im} f \to Y$$

是 $f: X \to Y$ 的最小的Y的子对象.

Proof. 首先我们证明,Y的子对象 $S \hookrightarrow Y$ 使得分解 $X \to S \to Y = X \to Y$ 存在当且仅当 $X \to Y \to \operatorname{coker}(S \hookrightarrow Y) = 0$.一方面,若Y的子对象 $S \hookrightarrow Y$ 使得分解 $X \to S \to Y = X \to Y$ 存在,那么 $X \to Y \to \operatorname{coker}(S \to Y) = X \to S \to Y \to \operatorname{coker}(S \to Y) = X \to 0 = 0$;另一方面,若Y的子对象 $S \hookrightarrow Y$ 使得 $X \to Y \to \operatorname{coker}(S \hookrightarrow Y) = 0$,根据推论??, $Y \to \operatorname{coker}(S \hookrightarrow Y)$ 的核,因此存在 $Y \to S \to Y = X \to Y$.

根据推论??, $\operatorname{coker}(\operatorname{im} f) = \operatorname{coker}(\ker(\operatorname{coker}(X \to Y))) = \operatorname{coker}(X \to Y)$, 因此 $X \to Y \to \ker(\operatorname{im} f) = 0$, 于是存在分解

$$X \to \text{im } f \to Y = X \to Y.$$

若还有另一个分解 $X \to J \to Y = X \to Y$,由前一段的讨论, $X \to Y \to \operatorname{coker}(J \to X) = 0$,因此存在(满)态射 $\operatorname{coker}(X \to Y) = \operatorname{coker}(\operatorname{im} f) \to \operatorname{coker}(J \to X)$,根据 ker 的函子性这对应了唯一的(单)态射 $\operatorname{im} f = \operatorname{ker}(\operatorname{coker}(X \to Y)) \dashrightarrow J = \operatorname{ker}(\operatorname{coker}(J \to X))$,因此是最小的.此外如图

右侧是交换的,因此

$$j \circ \varphi \circ p = i \circ p$$
$$= j \circ q$$

由于j是单态射,这意味着 $\varphi \circ p = q$,即整幅图是交换的.

对偶地,可以的定义态射 $f: X \to Y$ 的余像(coimage)是coker ker f,那么如上命题对偶地说明余像是使得复合 $X \to \operatorname{coim} f \to Y$ 是 $f: X \to Y$ 的最大的X的商对象.

推论A.6.1. 设 $f: X \to Y \neq Abel$ 范畴A中的态射,则

- 1. f是满态射当且仅当 $\operatorname{im} f = Y$, 当且仅当 $\operatorname{coker} f = 0$;
- 2. f是单态射当且仅当 $\ker f = 0$, 当且仅当 $\liminf f = X$.

推论A.6.2. 给定Abel范畴A中的态射 $f: X \to Y, X \to \text{im } f$ 是满态射.

Proof. 假设 $X \to \text{im } f$ 不是满态射,那么im $f \neq Y$,取 $J = \text{ker}(\text{im } f \hookrightarrow Y)$,它是严格小于im f的子对象,于是 $J \hookrightarrow \text{im } f \hookrightarrow Y$ 是子对象,因此存在交换图

这意味着 $X \to Y \to \operatorname{coker}(J \hookrightarrow Y) = X \to Y \to \operatorname{coker}(\operatorname{im} f \hookrightarrow Y) \to \operatorname{coker}(J \hookrightarrow Y) = 0 \to \operatorname{coker}(J \hookrightarrow Y) = 0$,于是 $X \to J \to Y$ 是一个分解.同时, $X \to J \to \operatorname{im} f \to Y = X \to J \to Y = X \to \operatorname{im} f \to Y$,且im $f \to Y$ 是单态射,因此 $X \to J \to \operatorname{im} f = X \to \operatorname{im} f$,即J是使得分解成立的更小的子对象.这与im f是满足分解最小的子对象矛盾,因此 $X \to \operatorname{im} f$ 是满态射.

定理A.7. 设 $f: X \to Y \not\in Abel$ 范畴A中的态射,则存在唯一的分解

$$X \xrightarrow{p} I \xrightarrow{i} Y$$
,

使得 $p: X \to I$ 是满态射, $i: i \to Y$ 是单态射.

此外,如果 $k: K \to X$ 是 $f: X \to Y$ 的核, $c: Y \to C$ 是 $f: X \to Y$ 的余核,则 $k: K \to X$ 也是 $p: X \to I$ 的核, $c: Y \to C$ 也是 $i: I \to Y$ 的余核,且 $i: I \to Y$ 是 $c: Y \to C$ 的核, $p: X \to I$ 是 $k: K \to X$ 的余核.

Proof. 首先我们来证明分解的唯一性.假设我们有两个不同的对象 I, \bar{I} 满足上述分解,于是我们有如下交换图

其中 $i:I\to Y$ 是 $g:Y\to Z$ 的核. 由核的定义,我们有 $g\circ i=0$,进而 $g\circ \bar{i}\circ \bar{p}=g\circ f=g\circ i\circ p=0$.但 \bar{p} 是 满态射说明 \bar{p} 存在右消去,故 $g\circ \bar{i}=0$.再根据核的分解,存在唯一的 $\varphi:\bar{I}\to I$ 使得右边三角形交换,即 $i\circ\varphi=\bar{i}$.故 $i\circ\varphi\circ \bar{p}=\bar{i}\circ \bar{p}=f=i\circ p$.但i是单态射因此存在左消去,于是 $\varphi\circ \bar{p}=p$.这样就证明了 φ 使整个图交换.同样地,我们可以构造 $\psi:I\to \bar{I}$ 使整幅图交换,根据抽象无意义 $\varphi\circ\psi=\mathrm{id}_I$ 且 $\psi\circ\varphi=\mathrm{id}_{\bar{I}}$,故 $I\cong \bar{I}$,唯一性得证.

推论?? 说明了I = im f是满足条件的的一个分解,因此分解是存在的.同时J = coim f也是一个分解,因此根据刚刚证明的分解的唯一性,im $f \cong \text{coim } f$.这意味着剩余的论断是成立的.

练习A.6. 设 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 是Abel范畴 \mathcal{A} 中的态射,求证 $g \circ f = 0$ 当且仅当im f是ker g的子对象.

A.1.3 正合性

定理A.8. 设 $X \xrightarrow{f} Y \xrightarrow{g} Z \not\in Abel$ 范畴A中的态射,则如下描述等价:

- 1. $\operatorname{im}(X \to Y) = \ker(Y \to Z)$;
- 2. $\operatorname{coker}(X \to Y) = \operatorname{coim}(Y \to Z)$;
- 3. $X \to Y \to Z = 0$ $\mathbb{E}\ker(Y \to Z) \to Y \to \operatorname{coker}(X \to Y) = 0$.

Proof. 我们来证明1与3是等价的,这样对偶地可以证明2与3是等价的.

若1是成立的,记 $I:=\operatorname{im}(X\to Y)=\ker(Y\to Z)$,于是根据分解 $X\to Y\to Z=X\to I\to Y\to Z=X\to 0=0$.另一方面, $\ker(Y\to Z)=\operatorname{im}(X\to Y)=\ker(\operatorname{coker}(X\to Y))$,因此直接由定义

$$\ker(Y \to Z) \to Y \to \operatorname{coker}(X \to Y) = \ker(\operatorname{coker}(X \to Y)) \to Y \to \operatorname{coker}(X \to Y) = 0.$$

若3是成立的,记 $I:=\operatorname{im}(X\to Y)=\ker(\operatorname{coker}(X\to Y))$, $\ker(Y\to Z)\to Y\to\operatorname{coker}(X\to Y)=0$ 意味着存在唯一的 $\ker(Y\to Z)\longrightarrow I$ 与已知的态射相容,并且它是单态射,于是 $\ker(Y\to Z)\le I$.同时, $X\to Y\to Z=0$ 蕴含着分解 $X\to\ker(Y\to Z)\to Y\to Z=0$,同时命题A.6说明 $X\to I\to Y$ 是最小的分解,因此存在单态射 $I\to\ker(Y\to Z)$,这样 $\ker(Y\to Z)=I$.

对于满足以上任意条件的态射序列 $X \to Y \to Z$,称该序列在Y处正合(exact).

定理**A.9** (Abel范畴的稳定性). 设 $X \xrightarrow{f} Y \xrightarrow{g} Z \not\in Abel$ 范畴A中的态射,则如下描述等价:

1. $0 \to X \to Y \to Z \to 0$ 是短正合序列;

2. 图

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ 0 & \longrightarrow & Z \end{array}$$

是拉回图:

3. 图

是推出图.

A.1.4 Abel范畴中对象的元素和态射

事实上,我们并不需要完全范畴化地处理Abel范畴,公理所保证的性质使我们可以用类似处理元素的方式处理Abel范畴中的对象.我们将详细地构建这样的技术,于是Abel范畴事实上与**Ab**并没有特别多的区别.

给定Abel范畴 \mathcal{A} 中的对象Y,Y中的对象y是如下等价类(X,h),其中 $X \in \text{ob } \mathcal{A}$, $h: X \to Y$, (X_1,h_1) 等价于 (X_2,h_2) 当且仅当

• 存在 $Z \in \text{ob } A$ 和满态射 $u_1: Z \to X_1, u_2: Z \to X_2$ 满足 $h_1u_1 = h_2u_2$,即有交换图

由引理A.1如上所述的关系是等价关系.一般并没有通常的方法使得集合之间的映射 $\{Y_1$ 中的元素 $\}\to \{Y_2$ 中的元素 $\}$ 对应到A中的态射 $Y_1\to Y_2$,但反过来当给定了态射之后可以构造自然的集合间的映射,并且元素的存在可以帮我们简单地验证正合性:

定理**A.10.** 设 $f: Y_1 \to Y_2$ 是Abel范畴中的态射,y是 Y_1 的元素,有代表元(X,h),求证f给出了集合间的映射

$$f: \{Y_1$$
中的元素 $\} \rightarrow \{Y_2$ 中的元素 $\}$
$$[(X,h)] \mapsto [(X,f \circ h)],$$

并且

- 1. $f: Y_1 \to Y_2$ 是单态射当且仅当 f(y) = 0 意味着 y = 0,
- 2. $f: Y_1 \to Y_2$ 是单态射当且仅当 $f(y_1) = f(y_2)$ 意味着 $y_1 = y_2$,
- $3. f: Y_1 \rightarrow Y_2$ 是满态射当且仅当对任意 Y_2 的元素Z, 存在 Y_1 的元素Y使得 f(y) = Z,
- 4. $f: Y_1 \to Y_2$ 是0态射当且仅当对任意 Y_1 的元素 Y_2 ,f(y) = 0,
- 5. 序列 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 在Y处正合当且仅当 $g \circ f = 0$ 并且对任意的 $y \in Y$,若g(y) = 0则存在 $x \in X$ 使得f(x) = y,

6.

Proof.

引理A.2 (5引理).

定理A.11 (蛇形引理). 给定交换图

那么存在长正合序列

 $\ker f \xrightarrow{a_1} \ker g \xrightarrow{a_2} \ker h \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{b_1} \operatorname{coker} g \xrightarrow{b_2} \operatorname{coker} h$

其中 a_1, a_2 和 b_1, b_2 分别由 α_1, α_2 和 β_1, β_2 诱导,连接态射 δ : ker $h \to \operatorname{coker} f$

$$X_{1} \longrightarrow K \longrightarrow \ker h \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{1} \xrightarrow{\alpha_{1}} Y_{1} \xrightarrow{\alpha_{2}} Z_{1} \longrightarrow 0$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow h$$

$$0 \longrightarrow X_{2} \xrightarrow{\beta_{1}} Y_{2} \xrightarrow{\beta_{2}} Z_{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \operatorname{coker} f \longrightarrow C \longrightarrow Z_{2}$$

练习A.7. 假定对Abel范畴A蛇形引理成立,求证5引理成立.

考虑

A.1.5 Abel范畴中的特殊对象

定义. 设P是Abel范畴 \mathcal{A} 中的对象,满足对任意的满态射 $f:X\to Y$ 和任意态射 $g:P\to Y$,都可以找到 $h:P\to X$ 使得 $g=f\circ h$,

$$X \xrightarrow{k \atop k} Y \longrightarrow 0.$$

练习A.8. 设 $s: P \to P$ 是Abel范畴A中的态射,(P,s)是A/P的投射对象,证明P是A中的投射对象.

Proof. 任取A中的满态射 $q: X \to Y$,

A.2 Abel范畴间函子

定义. 若 \mathcal{C} , \mathcal{D} 加性范畴,协变函子 $F: \mathcal{C} \to \mathcal{D}$ 满足对任意 \mathcal{C} 中的对象X, Y,由F诱导的映射 $\hom_{\mathcal{C}}(X, Y) \to \hom_{\mathcal{D}}(F(X), F(Y))$ 是群同态,则称F是加性函子(additive functor).

定理A.12. 设A, B是Abel范畴, $F: A \to B$ 是加性函子当且仅当F保直和.

命题A.13. Abel范畴间的左正合函子是加性的.

定义. 若范畴间协变函子 $F: \mathcal{C} \to \mathcal{D}$ 满足对任意 \mathcal{C} 中的对象A, B,由F诱导的映射 $\hom_{\mathcal{C}}(A, B) \to \hom_{\mathcal{D}}(F(A), F(B))$ 是单射,则称F是嵌入(embedding).

定理A.14. 设A, B是Abel范畴, $F: A \to B$ 是加性函子, 则下列陈述等价

- 1. F是嵌入.
- 2. F将非交换图映为非交换图.
- 3. F将非正合序列映为非正合序列.

A.2.1 Serre subcategory

A.3 嵌入定理

练习A.9. 设k是域, $k - \mathbf{grMod}$ 是所有 \mathbb{Z} 分次k模组成的范畴,满足

$$\operatorname{Hom}(\bigoplus_{n\in\mathbb{Z}}V_n,\bigoplus_{n\in\mathbb{Z}}W_n):=\bigoplus_{n\in\mathbb{Z}}\operatorname{Hom}(V_n,W_n),$$

A是所有微分态射为0的k微分模组成的范畴, 求证

$$F: k - \mathbf{grMod} \to \mathcal{A}$$

$$\bigoplus_{n \in \mathbb{Z}} V_n \mapsto (\bigoplus_{n \in \mathbb{Z}} V_n[n], d = 0)$$

是范畴的等价.