

Chapítulo 6 Memoria Externa

Disco Magnetico

- Un disco es un plato circular construido de material no magnético, llamado sustrato, recubierto con un material magnetizable
 - Tradicionalmente el sustrato ha sido un material de aluminio o aleación de aluminio.
 - Recientemente se han introducido sustratos de vidrio.
- Beneficios del sustrato de vidrio:
 - Mejora de la uniformidad de la superficie de la película magnética para aumentar la fiabilidad del disco
 - Una reducción significativa en los defectos generales de la superficie para ayudar a reducir los errores de lectura y escritura
 - Capacidad para soportar "alturas de vuelo" más bajas.
 - Mejor rigidez para reducir la dinámica del disco.
 - Mayor capacidad para resistir golpes y daños.

Los datos se graban y luego se recuperan del disco a través de una bobina conductora llamada cabeza

- En muchos sistemas hay dos cabezas, una cabeza de lectura y una cabeza de escritura
- Durante una operación de lectura o escritura, el cabezal permanece estacionario mientras el plato gira debajo de él

Los impulsos eléctricos se envían al cabezal de escritura y los patrones magnéticos resultantes se registran en la superficie de abajo, con diferentes patrones para corrientes positivas y negativas.

Una corriente eléctrica en el cable induce un campo magnético a través de la brecha, que a su vez magnetiza una pequeña área del medio de grabación

El mecanismo de escritura explota el hecho de que la electricidad que fluye a través de una bobina produce un campo magnético

El cabezal de escritura está hecho de un material fácilmente magnetizable y tiene la forma de una dona rectangular con un espacio a lo largo de un lado y algunas vueltas de cable conductor en el lado opuesto.

La inversión de la dirección de la corriente invierte la dirección de la magnetización en el medio de grabación

Mecanismos de lectura y escritura magnética

Figure 6.1 Inductive Write/Magnetoresistive Read Head

- Los datos son transferidos desde y hacia el disco en sectores
- Tamaño típico: 512 bytes

Figure 6.2 Disk Data Layout

(a) Constant angular velocity

(b) Multiple zone recording

Un bit cercano al centro pasa por un punto fijo (cabezal de lectura-escritura) más lento que un bit en el exterior: Se puede alterar la densidad o dividir en zonas con sectores de similar densidad.

Figure 6.3 Comparison of Disk Layout Methods

Ubicar las posiciones del sector dentro de una pista.

- Debe haber algún punto de inicio en la pista y una forma de identificar el inicio y el final de cada sector.
 - Datos de control grabados en el disco, no accesibles para el usuario.

Figure 6.4 Winchester Disk Format (Seagate ST506)

ID: Identificador unico del sector. SYNCH: patron de bits, indica inicio de campo.

Características físicas de los sistemas de disco

Fixed head (one per track)

Movable head (one per surface)

Disk Portability

Nonremovable disk

Removable disk

Sides

Single sided Double sided

Platters

Single platter

Multiple platter

Head Mechanism

Contact (floppy)

Fixed gap

Aerodynamic gap (Winchester)

Caracteristicas

Disco de cabeza fija

- Un cabezal de lectura y escritura por pista
- Las cabezas están montadas en un brazo fijo que se extiende a través de todas las pistas
- Disco de cabeza móvil
 - Una cabeza de lecturaescritura
 - La cabeza está montada en un brazo.
 - El brazo puede ser extendido o retraído.

■ Disco no extraíble

■ Montado permanentemente en la unidad de disco.

■ Disco extraíble

- Se puede quitar y reemplazar con otro disco.
- Ventajas:
 - Cantidades ilimitadas de datos disponibles con un número limitado de sistemas de disco
 - Un disco puede ser movido de un sistema de computadora a otro
- Los disquetes y los cartuchos ZIP son ejemplos de discos extraíbles

■ Disco de doble cara

 El recubrimiento magnetizable se aplica en ambos lados del plato.

- La cabeza debe generar o detectar un campo electromagnético de magnitud suficiente para escribir y leer correctamente
- Cuanto más estrecha sea la cabeza, más cerca debe estar la superficie del plato para funcionar
 - Una cabeza más estrecha significa pistas más estrechas y, por lo tanto, una mayor densidad de datos
- Cuanto más cerca esté la cabeza del disco, mayor será el riesgo de error por impurezas o imperfecciones.

Clasificación de los discos

Cabezas winchester

- Conjuntos de unidades selladas casi libres de contaminantes
- Diseñado para operar más cerca de la superficie del disco, lo que permite una mayor densidad de datos
- Es una lámina aerodinámica que descansa ligeramente sobre la superficie del disco cuando el disco está inmóvil.
 - La presión de aire generada por un disco giratorio es suficiente para hacer que la lámina se eleve sobre la superficie

Figure 6.5 Timing of a Disk I/O Transfer

+ Parámetros de rendimiento del disco

- En funcionamiento, el disco gira a una velocidad constante
- Para leer o escribir, el cabezal debe colocarse en la pista deseada y al comienzo del sector deseado en la pista
 - mover la cabeza o seleccionar electrónicamente una cabeza
 - Luego el controlador espera hasta que el sector apropiado gire para alinearse con la cabeza
- Tiempo de búsqueda
 - Tiempo que toma posicionar la cabeza en la pista (cabeza móvil)
- Retardo rotacional (latencia rotacional)
 - Tiempo que tarda el inicio del sector en llegar a la cabeza.
- Tiempo de acceso
 - La suma del tiempo de búsqueda y el retardo de rotación.
 - El tiempo que se tarda en ponerse en posición para leer o escribir
- Tiempo de transferencia
 - Una vez que la cabeza está en posición, la operación de lectura o escritura se realiza a medida que el sector se mueve debajo de la cabeza
 - Esta es la parte de transferencia de datos de la operación

Parámetros típicos de la unidad de disco duro

100	Characteristics	Seagate Enterprise	Seagate Barracuda XT	Seagate Cheetah NS	Seagate Laptop HDD
10.00	Application	Enterprise	Desktop	Network attached storage, application servers	Laptop
	Capacity	6 TB	3 TB	600 GB	2 TB
***************************************	Average seek time	4.16 ms	N/A	3.9 ms read 4.2 ms write	13 ms
	Spindle speed	7200 rpm	7200 rpm	10, 075 rpm	5400 rpm
	Average latency	4.16 ms	4.16 ms	2.98	5.6 ms
	Maximum sustained transfer rate	216 MB/s	149 MB/s	97 MB/s	300 MB/s
(Light	Bytes per sector	512/4096	512	512	4096
25 14	Tracks per cylinder (number of platter surfaces)	8	10	8	4

Cache

Capacity

1 TE - 4 TE

	WD Blue	WD Green	WD Black	WD Red	WD Purple
	Solid performance and reliability for everyday computing.	Cool, quiet operation with massive capacity.	Maximum performance for power computing.	Designed and tested for RAID environments.	Built for personal, home office or small business surveillance systems using up to 32 cameras.
Designed For	Desktop	Desktop	Desktop	Desktop RAID	Surveillance

RAID

Redundant Array of Independent Disks

- Consta de 7 niveles
- Los niveles no implican una relación jerárquica, pero designan diferentes arquitecturas de diseño que comparten tres características comunes:
 - 1) Conjunto de unidades de disco físico vistas por el sistema operativo como una sola unidad lógica
 - Los datos se distribuyen a través de las unidades físicas de una matriz en un esquema conocido como striping
 - 3) La capacidad de disco redundante se utiliza para almacenar información de paridad, lo que garantiza la capacidad de recuperación de datos en caso de una falla de disco

Tabla 6.3 Niveles RAID

(atomory Lavel Lagerintian		Disks Required Data Availability		Large I/O Data Transfer Capacity	Small I/O Request Rate		
Striping	0	Nonredundant	N	Lower than single disk	Very high	Very high for both read and write	
Mirroring	1	Mirrored	2N	Higher than RAID 2, 3, 4, or 5; lower than RAID 6	Higher than single disk for read; similar to single disk for write	Up to twice that of a single disk for read; similar to single disk for write	
Parallel access	2	Redundant via Hamming code	N+ m	Much higher than single disk; comparable to RAID 3, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk	
Taraner access	3	Bit-interleaved parity	N+1	Much higher than single disk; comparable to RAID 2, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk	
	4 Block-interleaved	Block-interleaved parity	N +1	Much higher than single disk; comparable to RAID 2, 3, or 5	Similar to RAID 0 for read; significantly lower than single disk for write	Similar to RAID 0 for read; significantly lower than single disk for write	
Independent access	5	Block-interleaved distributed parity	N +1	Much higher than single disk; comparable to RAID 2, 3, or 4	Similar to RAID 0 for read; lower than single disk for write	Similar to RAID 0 for read; generally lower than single disk for write	
	6	Block-interleaved dual distributed parity	N+2	Highest of all listed alternatives	Similar to RAID 0 for read; lower than RAID 5 for write	Similar to RAID 0 for read; significantly lower than RAID 5 for write	

(c) RAID 2 (redundancy through Hamming code)

Figure 6.6 RAID Levels (page 1 of 2)

(g) RAID 6 (dual redundancy)

Figure 6.6 RAID Levels (page 2 of 2)

Figure 6.7 Data Mapping for a RAID Level 0 Array

Level	Advantages	Disadvantages	Applications
0	I/O performance is greatly improved by spreading the I/O load across many channels and drives No parity calculation overhead is involved Very simple design Easy to implement	The failure of just one drive will result in all data in an array being lost	Video production and Editing Image editing Pre-press applications Any application requiring high bandwidth
1	100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy to the replacement disk Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures Simplest RAID storage subsystem design	Highest disk overhead of all RAID types (100%) - inefficient	Accounting Payroll Financial Any application requiring very high availability
2	Extremely high data transfer rates possible The higher the data transfer rate required, the better the ratio of data disks to ECC disks Relatively simple controller design compared to RAID levels 3,4 & 5	Very high ratio of ECC disks to data disks with smaller word sizes - inefficient Entry level cost very high - requires very high transfer rate requirement to justify	No commercial implementations exist / not commercially viable

Tabla 6.4 Comparacion RAID (pag 1 de 2)

3	Very high read data transfer rate Very high write data transfer rate Disk failure has an insignificant impact on throughput Low ratio of ECC (parity) disks to data disks means high efficiency	Transaction rate equal to that of a single disk drive at best (if spindles are synchronized) Controller design is fairly complex	Video production and live streaming Image editing Video editing Prepress applications Any application requiring high throughput	
4	Very high Read data transaction rate Low ratio of ECC (parity) disks to data disks means high efficiency	Quite complex controller design Worst write transaction rate and Write aggregate transfer rate Difficult and inefficient data rebuild in the event of disk failure	No commercial implementations exist / not commercially viable	
5	Highest Read data transaction rate Low ratio of ECC (parity) disks to data disks means high efficiency Good aggregate transfer rate	Most complex controller design Difficult to rebuild in the event of a disk failure (as compared to RAID level 1)	File and application servers Database servers Web, e-mail, and news servers Intranet servers Most versatile RAID level	
6	Provides for an extremely high data fault tolerance and can sustain multiple simultaneous drive failures	More complex controller design Controller overhead to compute parity addresses is extremely high	Perfect solution for mission critical applications	

Tabla 6.4

Comparacion

RAID

(pag 2 de 2)

SSD en comparación con HDD

- Los SSD tienen las siguientes ventajas sobre los HDD:
 - Operaciones de entrada / salida de alto rendimiento por segundo (IOPS)
 - Durabilidad
 - Una vida más larga
 - Menor consumo de energía
 - Capacidades de funcionamiento más silenciosas y frescas.
 - Menores tiempos de acceso y tasas de latencia

Tabla 6.5 Comparación de unidades de estado sólido y unidades de disco

	NAND Flash Drives	Seagate Laptop Internal HDD
File copy/write speed	200—550 Mbps	50—120 Mbps
Power draw/battery life	Less power draw, averages 2–3 watts, resulting in 30+ minute battery boost	More power draw, averages 6–7 watts and therefore uses more battery
Storage capacity	Typically not larger than 512 GB for notebook size drives; 1 TB max for desktops	Typically around 500 GB and 2 TB maximum for notebook size drives; 4 TB max for desktops
Cost	Approx. \$0.50 per GB for a 1-TB drive	Approx \$0.15 per GB for a 4- TB drive

Figure 6.8 Solid State Drive Architecture

⁺ Cuestiones prácticas

Hay dos problemas prácticos propios de las unidades de estado sólido que no se enfrentan a las unidades de disco duro :

- El rendimiento de SDD tiene una tendencia a disminuir a medida que se usa el dispositivo
 - El bloque completo debe leerse de la memoria flash y colocarse en un búfer de RAM
 - Antes de poder volver a escribir el bloque en la memoria flash, se debe borrar todo el bloque de memoria flash.
 - Todo el bloque del búfer se vuelve a escribir en la memoria flash.

- La memoria flash se vuelve inutilizable después de un cierto número de escrituras
 - Técnicas para prolongar la vida:
 - Poner fin al flash con un caché para retrasar y agrupar las operaciones de escritura.
 - Uso de algoritmos de nivelación de desgaste que distribuyen de manera uniforme escrituras entre bloques de celdas
 - Técnicas de gestión de bloqueos erróneos.
 - La mayoría de los dispositivos flash estiman sus propias vidas útiles para que los sistemas puedan anticipar fallas y tomar medidas preventivas

CD

Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses 12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM

Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard system uses 12-cm disks and can hold more than 650 Mbytes.

CD-R

CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW

CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD

Digital Versatile Disk. A technology for producing digitized, compressed representation of video information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R

DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided disks can be used.

DVD-RW

DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times. Only one-sided disks can be used.

Blu-Ray DVD

High definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm (blue-violet) laser. A single layer on a single side can store 25 Gbytes.

Tabla 6.6 Discos Ópticos

Figure 6.9 CD Operation

Figure 6.10 CD-ROM Block Format

(b) DVD-ROM, double-sided, dual-layer - Capacity 17 GB

Figure 6.11 CD-ROM and DVD-ROM

Figure 6.12 Optical Memory Characteristics

+ Cinta magnética

- Los sistemas de cinta utilizan las mismas técnicas de lectura y grabación que los sistemas de disco
- El medio es una cinta de poliéster flexible recubierta con material magnetizable.
- El recubrimiento puede consistir en partículas de metal puro en aglomerantes especiales o películas de metal enchapadas al vapor.
- Los datos en la cinta se estructuran como una serie de pistas paralelas que se ejecutan a lo largo
- Grabación en serie
 - Los datos se presentan como una secuencia de bits a lo largo de cada pista
- Los datos se leen y escriben en bloques contiguos llamados regir tros físicos
- Los bloques en la cinta están separados por espacios que se co espacios entre registros

(b) Block layout for system that reads/writes four tracks simultaneously

Figure 6.13 Typical Magnetic Tape Features

Tabla 6.7 unidades de cinta linear tape-open (LTO)

	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6	LTO-7	LTO-8
Release date	2000	2003	2005	2007	2010	TBA	TBA	TBA
Compressed capacity	200 GB	400 GB	800 GB	1600 GB	3.2 TB	8 TB	16 TB	32 TB
Compressed transfer rate (MB/s)	40 MB/s	80 MB/s	160 MB/s	240 MB/s	280 MB/s	525 MB/s	788 MB/s	1.18 GB/s
Linear density (bits/mm)	4880	7398	9638	13250	15142			
Tape tracks	384	512	704	896	1280			
Tape length	609 m	609 m	680 m	820 m	846 m			
Tape width (cm)	1.27	1.27	1.27	1.27	1.27			
Write elements	8	8	16	16	16			
WORM?	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Encryption Capable?	No	No	No	Yes	Yes	Yes	Yes	Yes
Partitioning?	No	No	No	No	Yes	Yes	Yes	Yes

⁺ Resumen

Capítulo 6

- Disco magnético
 - Mecanismos de lectura y escritura magnéticos.
 - Organización y formateo de los datos.
 - Características físicas
 - Parámetros de rendimiento del disco
- Discos de estado sólido
 - SSD en comparación con HDD
 - Organización SSD
 - Cuestiones prácticas
- Cinta magnética

Memoria externa

■ RAID

- RAID level 0
- RAID level 1
- RAID level 2
- RAID level 3
- RAID level 4
- RAID level 5
- RAID level 6
- Memoria optica
 - Disco compacto
 - Disco versátil digital
 - Discos ópticos de alta definición.

08/07/2019