

DISCRETE MATHEMATICS IN COMPUTER SCIENCE

HSIEN-CHIH CHANG MARCH 2, 2022

ADMINISTRIVIA

- Final exam
 - Mar 13 (Sun) 8—11AM
 - LSC 100 (this room)
- SAS/Conflict/COVID
 - Come talk to me

- Closed-book written exam
- Scope: Module C on counting
- One-page two-sided cheatsheet
 - Must be hand-written

DISCRETE PROBABILITY

TWO CHILDREN PROBLEM

THREE PRISONER'S PROBLEM

MONTY HALL PROBLEM

MONTY HALL PROBLEM

PROBABILITY JARGON

- -Sample space S: set of outcomes
- Event E: subset of S
- **Probability Pr:** $S \rightarrow R$
 - $-Pr[\omega] \ge 0$ for every outcome ω
 - $\mathbf{\Sigma}_{\omega \in S} \Pr[\omega] = 1$
- $-\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$

$$S = \left\{ \begin{array}{l} (A, A, B), (A, A, C), (A, B, C), (A, C, B), (B, A, C), (B, B, A), \\ (B, B, C), (B, C, A), (C, A, B), (C, B, A), (C, C, A), (C, C, B) \end{array} \right\}$$

MONTY HALL PROBLEM

MONTY HALL PROBLEM

MONTY HALL PROBLEM

THE BIRTHDAY PARADOX

ANTHROPIC PRINCIPLE AND DOOMSDAY ARGUMENT

HUMANS HAVE AMAZINGLY BAD INTUITION ABOUT PROBABILITY.

NEXT TIME.

RANDOM VARIABLE AND EXPECTATION. ALMOST THERE!

