1 Complex automorphisms are nontrivial

Let $\{T_n\}_{n=1}^{\infty}$ be a random recursive tree and X_n be the number of trees with leaves isomorphic to a (2,2)-star. If we assume that almost surely $\lim_{n\to\infty}\frac{X_n}{n}\to \epsilon_{2,2}$ for some $\epsilon_{2,2}>0$. This means that except for a set of measure 0 exceptions for all $\delta>0$ there exists $N_{\delta}\in\mathbb{N}$ such that for all $n>N_{\delta}$

$$\left|\frac{X_n}{n} - \epsilon\right| < \delta$$

Therefore we can conclude that:

$$|X_n - n\epsilon| < n\delta \tag{1}$$

$$n\epsilon - n\delta < X_n < n\delta + n\epsilon \tag{2}$$

$$n(\epsilon - \delta) < X_n < n(\epsilon + \delta)$$
 (3)

The part of the (complex) automorphism group coming from (2,2)-stars can therefore be estimated as follows. For $n > N_{\delta}$,

$$8^{n(\epsilon - \delta)} < |Aut_{2,2}(t_N)| = 8^{X_n} < 8^{n(\epsilon + \delta)}$$
(4)

$$1 < 8^{(\epsilon - \delta)} < |Aut_{2,2}(t_N)|^{\frac{1}{n}} = 8^{X_n^{\frac{1}{n}}} < 8^{(\epsilon + \delta)}$$
 (5)

Since we can choose our $\delta << \epsilon$ and there exists a Polya urn model which shows that for all m and n there exists an $\epsilon_{n,m}$ such that $\lim_{n\to\infty}\frac{X_n}{n}\to\epsilon_{n,m}$. This disproves Ben's conjecture that almost surely, in the limit as $n\to\infty$:

$$\lim_{n\to\infty} |Aut_{\text{Complex}}(T_n)|^{\frac{1}{n}} \to 1$$

2 Convergence of the Automorphism group

In this section we will prove that $\lim_{n\to\infty} Aut(T_n)$ converges.

Let $\{T_n\}_{n=1}^{\infty}$ be a random recursive tree and X_{ni} be the number of vertices of degree i in T_n .

Theorem 2.1. In the limt as $n \to \infty$, almost surely $\frac{X_{n,i}}{n} \to 2^{-i}$.

Proof. See Janson
$$??$$

In other words, except of r a measure 0 set of exceptions for all $\epsilon>0$ there exists $N\in\mathbb{N}$ such that for all n>N

$$\left|\frac{X_{ni}}{n} - 2^{-i}\right| < \epsilon.$$

We can play the same game as section ?? and write:

$$|X_{ni} - n2^{-i}| < n\epsilon \tag{6}$$

$$n2^{-i} - n\epsilon < X_{ni} < n\epsilon + n2^{-i} \tag{7}$$

$$n(2^{-i} - \epsilon) < X_{ni} < n(\epsilon + 2^{-i}) \tag{8}$$

(9)

For each i case we can choose ϵ to be as small as possible so let each $\epsilon_i = 2^{-i}$

Recall that there exists a geometric decomposition of $Aut(T_n)$ into (p,k)stars corresponding to a direct product decomposition of Aut T_n into subgroups isomorphic to symmetric groups or wreath products of symmetric groups. The stars corresponding to a wreath product $G_1 = S_{m_1} \wr S_{m_2} \wr \cdots \wr S_{m_x}$ contribute $|S_{m_1} \wr S_{m_2} \wr \cdots \wr S_{m_x}| = (\dots (m_1!^{m_2} m_2!)^{m_3} \dots m_{x-1}!)^{m_x} m_x!$ to the automorphism group $Aut(T_n)$. The star corresponding to G_1 is isomorphic to the graph depicted in figure ??. Notice that $|G_1| = \prod_{v \in V} \deg(v)!$. Therefore given some instance, T_n , of random recursive tree $\{T_n\}_{n=1}^{\infty}$, $\operatorname{Aut}(T_n)$ is bounded above by $\prod_{v \in V(T_n)} deg(v)!$, hence Equation 6 gives us the following bound in the limit as $n \to \infty$ almost surely:

$$\operatorname{Aut}(T_n) < \prod_{i=2}^{\infty} (i!)^{X_{ni}}$$

$$< \prod_{i=2}^{\infty} (i!)^{n(\epsilon_i + 2^{-i})} \qquad < \prod_{i=2}^{\infty} (i!)^{n(2^{-i} + 2^{-i})} < \prod_{i=2}^{\infty} (i!)^{n2^{-i+1}}$$
(10)

$$<\prod_{i=2}^{\infty} (i!)^{n(\epsilon_i+2^{-i})} \qquad <\prod_{i=2}^{\infty} (i!)^{n(2^{-i}+2^{-i})} <\prod_{i=2}^{\infty} (i!)^{n2^{-i+1}}$$
 (11)

This implies that $\operatorname{Aut}(T_n^{\frac{1}{n}}<\prod_{i=2}^\infty (i!)^{2^{-i+1}}:=X$. It remains to check that the convergence of X for which we will need the following theorem.

Theorem 2.2. If $b_n \neq 0$ for all n then $\prod_{n=0}^{\infty} b_n$ converges if and only if $\sum_{n=0}^{\infty} Log(b_n) \ converges.$

Proof. See the proof of Theorem 3.8.1 in ??.

Therefore it suffices to prove that $\sum_{n=0}^{\infty} \frac{Log(i!)}{2^{i-1}}$ converges. By Stirling's approximation and the comparison test $\sum_{n=0}^{\infty} \frac{Log(i!)}{2^{i-1}}$ converges.

Remark 1. Assume that in the limit as $n \to \infty$ $\frac{X_n}{n} \to X$ almost surely. This means that apart from a measure zero set of sample of RRTs $\forall \epsilon > 0 \exists N_{\epsilon}$ such that $\forall n > N_{\epsilon} | \frac{X_n}{n} - X | < \epsilon$.

This does not mean that apart from a measure zero set of RRTs that $\lim_{n\to\infty} X_n =$ Xn. On the other hand we can say that given any $\delta > 0$ there exists n' such that $|X_n - X_n| < \delta$ (just take $n' = N_{\delta/N_{\delta}}$).