

Design: Calculation on the coordinates

Data Preparation

- 1. Extract test data from TA's directory: % tar -xvf ~iclabTA01/Lab02.tar
- 2. The extracted Lab02/ directory contains:
 - a. Practice
 - b. Exercise

Design Description

Please design a circuit that supports three modes on a coordinate:

- (1) Trapezoid rendering.
- (2) Circle and line relationships.
- (3) Area computing.

Trapezoid rendering (Mode 0)

When the "in_valid" is at high level, pattern will send out the four sets of coordinates for the trapezoid in the order of (xul, yu), (xur, yu), (xdl, yd), (xdr, yd). After a period of circuit operations, the "out_valid" will be set to a high level, and the pattern will begin verifying the valid output coordinates (xo, yo) at every negative edge of the clock until "out_valid" is lowered. All valid output coordinates requirements are as follows:

In this design, you are required to output all the coordinates covered by the trapezoid.

The definition of coverage: All areas covered by the lines are counted, even if there is only one point.

The output regulations:

- (1) For the sake of simplifying the design, when a square is covered by the line, you don't need to output all four vertices. Only the bottom-left vertex needs to be outputted.
- (2) The output order is from left to right, from bottom to top.

Here is an example:

Assume you receive four sets of coordinates in order from the pattern as follows:

$$(xul, yu) = (02,0C), (xur, yu) = (09,0C), (xdl, yd) = (00,00), (xdr, yd) = (10,00).$$

The valid output is: (00,00) (00,01) ... (10,00), (00,01) (01,01) ... (0F,01), (00,02) (01,02) ... (0E,02)

$$(00,03)$$
 $(01,02)$... $(0E,03)$, $(00,04)$ $(01,04)$... $(0D,04)$, $(00,05)$ $(01,05)$... $(0D,05)$,

$$(01,06)$$
 $(01,06)$... $(0C,06)$, $(01,07)$ $(02,07)$... $(0B,07)$, $(01,08)$ $(02,08)$... $(0B,08)$,

$$(01,09)$$
 $(02,09)$... $(0A,09)$, $(01,0A)$ $(02,0A)$... $(0A,0A)$, $(01,0B)$ $(02,0B)$... $(09,0B)$,

(02,0C)(03,0C)...(09,0C).

Circle and line relationships (Mode 1) Integration

The relationships between circles and lines can be categorized into three types:

(1) Tangent, (2) Intersecting, (3) non-intersecting

When in valid is at high level, pattern will send out the four sets of coordinates in the **following order**:

First, you will obtain the two points (a1, a2) and (b1, b2) on the line.

Next will be the center of the circle (c1, c2), and finally, a point on the circle (d1, d2).

Please find out the relationships between circle and line:

■ To shorten the synthesis time for everyone, the input coordinates here will be limited to 6 bits.

	Description
Relation	Bestription
{xo, yo} = {00,00}	non-intersecting: (a1,a2) (c1,c2) (d1,d2) (b1,b2)
{xo, yo} = {00,01}	Intersecting: (c1,c2) (d1,d2) (b1,b2)

Area computing (Mode 2)

When in_valid is at high level, pattern will send out the four sets of coordinates in the **following order**:

$$(a1, a2) \Longrightarrow (b1, b2) \Longrightarrow (c1, c2) \Longrightarrow (d1, d2)$$

Please find out the area of the quadrilateral:

System Integration |

Signals name	Direction	Bit Width	Definition
clk	input	1	Clock.
rst_n	input	1	Asynchronous active-low reset.
mode	input	2	Mode 0: Do trapezoid rendering. Mode 1: Derive the relationships between circle and line. Mode 2: Derive the area.
in_valid	input	Multimedia	High when input signals are valid.
xi	input	8	Input of the X coordinate, in two's complement form.
yi	input	8	Input of the Y coordinate, in two's complement form.
out_valid	output	1 EEC	High when output is valid.
хо	output	8	Mode 0: Output of the trapezoid X coordinate, in two's complement form. Mode 1: Set to 0. Mode 2: Area [15:8]
yo	output	8	Mode 0: Output of the trapezoid Y coordinate, in two's complement form. Mode 1: Relationships outcome. Mode 2: Area [7:0]

Specifications

- 1. Top module name: CC (Filename: CC.v)
- 2. It is an asynchronous reset and active-low architecture. If you use synchronous reset (reset after clock starting) in your design, you may fail to reset signals.
- 3. The clock period of the design is fixed to 12ns.
- 4. The next group of inputs will come in $2\sim5$ cycles after your out valid pull down.
- 5. The synthesis result of data type cannot include any LATCH.
- 6. After synthesis, you can check CC. area and CC. timing in the folder "Report".
- 7. The slack in the timing report should be non-negative and the result should be MET.
- 8. The gate level simulation cannot include any timing violation.
- 9. The latency of your design in each pattern should not be larger than 100 cycles. The latency is the clock cycles between the falling edge of the **in valid** and the rising edge of the **out valid**.
- 10. Any words with "error", "latch" or "congratulation" can't be used as variable name.

Block Diagram

1. Grading policy:

RTL and gate-level simulation correctness: 70% Performance (Area * Execution Cycle): 30%

2. Please submit your design through Lab02/09 SUBMIT/01 SUBMIT

- 1st demo deadline: 2023/10/02(Mon.) 12:00:00
- 2nd demo deadline: 2023/10/04(Wed.) 12:00:00
- If uploaded files violate the naming rule, you will get 5 deduct points.

3. Template folders and reference commands:

01 RTL/ (RTL simulation) ./01 run_vcs_rtl 02 SYN/ ./01 run dc shell (Synthesis)

(Check the design if there's latch or not in syn.log) (Check the design's timing in /Report/ CC.timing)

03 GATE / (Gate-level simulation) ./01 run vcs gate

09 SUBMIT/(tar all your design) ./00 tar 09 SUBMIT/(submit files) ./01 submit 09 SUBMIT/(check files) ./02 check

Sample Waveform

Trapezoid rendering:

Input signal:

Output signal:

Circle and line relationships:

Output signal:

Area computing:

Input signal:

Output signal:

Appendix

System Integration I

1. To find out the distance from a point $P(x_0, y_0)$ to line L: ax + by + c = 0, you may need the following equation:

$$d(P,L) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

2. You may use the Surveyor's formula to compute area

The Surveyor's Formula. If the vertices of a simple polygon, listed counterclockwise around the perimeter, are $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})$, the area of the polygon is

$$A = \frac{1}{2} \left\{ \begin{vmatrix} x_0 & x_1 \\ y_0 & y_1 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \cdots + \begin{vmatrix} x_{n-2} & x_{n-1} \\ y_{n-2} & y_{n-1} \end{vmatrix} + \begin{vmatrix} x_{n-1} & x_0 \\ y_{n-1} & y_0 \end{vmatrix} \right\}.$$

Note that each oriented edge of the polygon corresponds to a 2×2 determinant in the surveyor's formula.