# Théorie des groupes

## 1 Théorèmes

## 1.1 Groupes quotients

## Théorème.

Tout groupe cyclique fini est isomorphe à  $\mathbf{Z}/n\mathbf{Z}$ Tout groupe cyclique infini est isomorphe à  $\mathbf{Z}$ 

Théorème (Lagrange).

Soit G un groupe fini

 $H \le G$ 

 $|G| = |H| \times [G:H]$ 

## Corollaire.

Soit G un groupe fini

 $x \in G$ 

L'ordre de x divise le cardinal de G

## Corollaire.

Tout groupe d'ordre p premier est cyclique donc isomorphe à  $\mathbf{Z}/p\mathbf{Z}$ 

Théorème (Premier théorème d'isomorphisme).

Soit G,H deux groupes

 $\varphi{:}G\!\!\to\!\! H\ un\ morphisme$ 

Alors:  $G/Ker(\varphi)\cong Im(\varphi)$ 

Théorème (Deuxième théorème d'isomorphisme).

Soit G un groupe

 $A,B \leq G$ 

On suppose que  $A \leq NG(B)$ 

Alors  $AB \leq G$ ,  $B \triangleleft AB$ ,  $A \cap B \triangleleft A$ ,  $AB/B \cong A/A \cap B$ 

Théorème (Troisième théorème d'isomorphisme).

 $Soit\ G\ un\ groupe$ 

 $H, K \triangleleft G \ et \ H \leq K$ 

Alors  $K/H \triangleleft G/H$  et  $(G/H)/(K/H) \cong G/K$ 

## Remarque.

A chaque fois qu'il y a dans la conclusion A/B, c'est qu'il y a aussi  $A \triangleleft B$  pour que A/B soit bien un groupe

Résumé des théorèmes d'isomorphismes:

1er  $\varphi: G \to H$  un morphisme  $G/\ker(\varphi) \cong \operatorname{im}(\varphi)$ 

2eme K, $H \le G$ ,  $H \le NG(K) H/(K \cap H) \cong HK/K$ 

3eme K, $H \triangleleft G, K \leq H G/H \cong (G/K)/(H/K)$ 

## 1.2 Actions de groupes

## Definition.

Soit G un groupe

X un ensemble

Une action à gauche de G sur X, noté  $G \cap X$  est une application  $G \times X \to X$  qui satisfait :

 $i) \ \forall x \in X, e \cdot x = x$ 

ii) 
$$\forall x \in X, g_1, g_2 \in G, g_1(g_2 \cdot x) = (g_1g_2) \cdot x$$
  
Tout élément  $g$  de  $G$  définit une application  $\sigma_g : X \to X$   
 $x \to g \cdot x$ 

## Proposition.

Soit  $G \curvearrowright X$  une action

- i)  $\forall g \in G, \sigma_g$  est une permutation de X
- ii)  $g \to \sigma_g$  est un morphisme de G dans  $S_X$
- iii) Si  $\phi: G \to S_X$  est un morphisme, on peut définir une action  $G \curvearrowright X: g \cdot x = \phi(g)(x)$

Une action  $G \cap X$  est donc la même chose qu'un morphisme  $G \to S_X$ 

## Proposition.

Soit  $G \curvearrowright X$  une action

i) Le noyau de l'action est le noyau du morphisme associé :

 $\{g \in G/\forall x \in X, g \cdot x = x\}$ 

ii) Soit  $x \in X$ 

Le stabilisateur de x, noté  $G_x$  est :

 $G_x = \{g \in G/g \cdot x = x\}$  iii) L'action est dite fidèle si son noyau est triviale, donc si le morphisme  $\phi$  associé est injectif. On a de plus :

 $Ker(\phi) = \cap_{x \in X} G_x$ 

## Proposition.

Soit  $G \curvearrowright X$  une action

On définit sur X la relation  $x \sim x'$  ssi  $\exists g \in G/g \cdot x' = x$ 

 $\sim$  est une relation d'équivalence sur X

 $\forall x \in X, [x]_{\sim} = G \cdot x = g \cdot x/g \in G \ et \ |G \cdot x| = [G : G_x]$ 

 $G \cdot x$  est appelée l'orbite de x

On dit que l'action est transitive lorsqu'il n'y a qu'une seule orbite

## Definition.

Soit  $G \curvearrowright X$  une action

 $Y \subset X$ 

 $Y \ est \ dite \ G$ -invariante lorsque  $\forall g \in G, \forall y \in Y, g \cdot y \in Y$ 

## 1.2.1 Action par multiplication à gauche

## Definition.

Soit G un groupe

 $G \cap G : g \cdot g' = gg'$ 

## Proposition.

 $Soit\ G\ un\ groupe$ 

 $H \leq G$ 

On pose X = G/H et on définit  $G \cap X : g \cdot xH = gxH$ 

- i) L'action est transitive
- $ii)\ Le\ stabilisateur\ de\ H\ est\ H$
- iii) Le noyau de l'action est  $\cap_{g \in G} gHg^{-1}$

## Théorème (Théorème de Cayley).

Tout groupe est isomorphe à un sous-groupe du groupe symétrique

Si |G| = n, alors G est isomorphe à un sous-groupe de  $S_n$ 

## 1.2.2 Action par conjugaison

## Definition.

Soit G un groupe

 $G \curvearrowright G : g \cdot h = ghg^{-1}$ 

## Definition.

Deux éléments de G sont conjugués s'ils sont dans la même orbite par cette action Les orbites s'appellent des classes de conjugaisons

## Proposition.

Soit  $x \in G$  $C_G(x) = G_x$ 

## Proposition.

 $G \curvearrowright \mathcal{P}(G) : g \cdot S = gSg^{-1}$ 

 $N_G(x) = \{g \in G, gS = Sg\}$ 

 $N_G(\{x\}) = C_G(x)$ 

Le nombre de conjugués d'une partie  $S \subset G$  est  $[G:N_G(S)]$ 

Si  $x \in G$ , le cardinal de la classe de conjugaison de x est  $[G: C_G(x)]$ 

## Proposition.

Soit G un groupe fini

 $g_1,...,g_r$  les représentantes de classes de conjugaisons qui ne sont pas dans le centre  $|G| = |Z(G)| + \sum_{i=0}^{r} [G:C_G(g_i)]$ 

### Théorème.

Soit p une nombre premier

G un groupe de cardinal  $p^n, n \in \mathbf{N}^*$ 

Alors Z(G) est non trivial

## Corollaire.

Soit p un nombre premier

G un groupe de cardinal  $p^2$ 

Alors G est abélien et  $G \cong \mathbf{Z}/p^2\mathbf{Z}$  ou  $G \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$ 

# 2 Groupes usuels

## 2.1 Groupe $(\mathbb{Z}/n\mathbb{Z},+)$

 $\mathbf{Z}/n\mathbf{Z} = \{ \bar{x} : x \in [0,n-1] \}$ 

Groupe abélien, cyclique engendré par  $\bar{x}$  avec  $x \land n=1$ 



## 2.2 Groupe symétrique

**Definition.** Le groupe symétrique  $(S_n, o)$  est le groupe des permutations de [1, n]

## Definition.

On appelle support de  $\sigma$  l'ensemble des points non fixes de  $\sigma$ : supp $(\sigma) = \{n \in [1, n]/\sigma(n) \neq n\}$ 

#### Remarque.

 $x \in supp(\sigma) \Rightarrow \sigma(x) \in supp(\sigma)$ 

#### Lemme.

Soit  $\sigma, \tau \in S_n$  Si  $supp(\sigma) \cap supp(\tau) = \emptyset$ ,  $alors : \sigma\tau = \tau\sigma$ 

## Lemme.

L'ordre d'un k-cycle est de k

#### Théorème.

Toute permutation est décomposable en produit de cycles à supports disjoints

#### Proposition.

Tout cycle est décomposable en produit de transpositions

## Proposition.

$$S_n = \langle \{(ii+1)/i \in [1, n-1]\} \rangle$$
  
$$S_n = \langle (12...n), (12) \rangle$$

## Definition.

Soit  $\sigma \in S_n$ 

On dit que i, j est une inversion pour  $\sigma$  lorsque  $i \prec j$  et  $\sigma(i) \succ \sigma(j)$ On note  $N(\sigma)$  le nombre d'inversions pour  $\sigma$ 

## Definition.

La signature d'une permutation 
$$\sigma \in S_n$$
, noté  $\epsilon(\sigma)$  est :  $\epsilon(\sigma) = (-1)^{N(\sigma)}$ 

## Proposition.

$$\epsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

## Proposition.

 $\epsilon$  est un morphisme surjectif  $\epsilon((a_1,...,a_k))=(-1)^{k+1}$ 

## Definition.

Une permutation de signature 1 est dite paire Une permutation de signature -1 est dite impaire

#### 2.3 Groupe diédral

Le groupe diédral  $D_{2n}, n \geq 3$  est le groupe de symetrie du n-gone regulier

$$D_{2n} \le S_n$$

On définit sur [1,n] la relation binaire  $R_n$  définit par :  $iR_n$ j ssi |j-i|=1 ou i=1 et j=n ou i=n et j=1

$$D_{2n} = \{ \sigma \in S_n / \forall i, j \in [1, n], iR_n j \Leftrightarrow \sigma(i)R_n \sigma(j) \}$$

$$\mathbf{r} = (1 \ 2 \ \dots \ \mathbf{n}) \text{ est la rotation d'angle } \frac{2\pi}{n} \text{ s est la réfléxion par rapport à la droite qui passe par 1}$$

$$\mathbf{s} = \begin{cases} (2n)(3n-1)...(\frac{n}{2}\frac{n}{2}+1)si \ n \ est \ pair \\ (2n)(3n-1)...(\frac{n+1}{2}\frac{n+3}{2})si \ n \ est \ impair \end{cases} \text{ ord}(\mathbf{r}) = \mathbf{n} \text{ et ord}(\mathbf{s}) = 2 |D_{2n}| = 2netD_{2n} = \{e, r, r^2, ..., r^{n-1}, s, rs, r^n = 1, r^n =$$

## 2.4 Groupe alternée

Le groupe alterné est le groupe des permutations paires, on le note  $A_n$ , on a donc  $A_n$ =Ker $(\epsilon)$  $A_n \triangleleft S_n$  $\operatorname{card}(A_n) = \frac{n!}{2}$ 

#### 3 Exemples de groupes de petits cardinal

#### Groupe de Klein 3.1

C'est un groupe de cardinal 4 caractérisé par le fait que les trois éléments différents du neutre sont d'ordre deux et e produit de deux de ces éléments distincts donne le troisième. On le note V. C'est un groupe abélien et le plus petit groupe non cyclique.

## Table de multiplication du groupe de Klein $V_4$

|   | e | a                                        | b | c |
|---|---|------------------------------------------|---|---|
| e | e | $egin{array}{c} a \\ e \\ c \end{array}$ | b | c |
| a | a | e                                        | c | b |
| b | b | c                                        | e | a |
| c | c | b                                        | a | e |



**3.2** 
$$S_n, n \in \{2, 3, 4\}$$

# 3.2.1 $S_2$

 $Groupe\ commutatif$  $S_2 = \{e, (12)\}$ 



## 3.2.2 $S_3$

Plus petit groupe non abélien

 $S_3 = \{e, (123), (132), (12), (13), (23)\}$  $S_3 = D_6$ , gorupe de symétrie du trianle équilatéral



3.2.3 
$$S_4$$

**3.3**  $D_{2n}, n \in \{3, 4\}$ 

**3.3.1**  $D_6$ 

 $D_6=S_3$ 

#### 3.3.2 $D_8$

Groupe de symétrie du carré

Fourit un exemple montrant que  $K \triangleleft H \triangleleft G$  n'implique pas nécéssairement  $K \triangleleft G$ :  $\{e, (13)(24)\} \triangleleft \{e, (13), (24), (13)(24)\} \triangleleft D_8 \text{ mais } \{e, (13)(24)\} \not \triangleleft D_8$ 

Remarque :  $\{e, (13), (24), (13)(24)\}$  est le groupe de Klein



## **3.4** $Q_8$

Sous-groupe de  $GL_2(\mathbf{C})$ 

Sous-groupe de 
$$GL_2(\mathbb{C})$$
  
 $I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$   
En notant 1 la matrice identité :

$$\langle I, J \rangle = \{\pm 1, \pm I, \pm J, \pm K\}$$

Plus petit groupe dont tous les sous-groupes sont distingués



# Liste des groupes de cardinal 1 à 26

| G  | #  | liste des groupes à isomorphisme près                                                              |
|----|----|----------------------------------------------------------------------------------------------------|
| 4  | 2  | $C_4, D_2 \cong C_2 \times C_2$                                                                    |
| 6  | 2  | $C_6, D_3 \cong \mathfrak{S}_3 \cong C_3 \rtimes C_2$                                              |
| 8  | 5  | $C_8, C_2 \times C_4, C_2 \times C_2 \times C_2, Q_8, D_4 \cong C_4 \rtimes C_2$                   |
| 9  | 2  | $C_9, C_3 \times C_3$                                                                              |
| 10 | 2  | $C_{10}, D_5 \cong C_5 \rtimes C_2$                                                                |
| 12 | 5  | $C_{12}, C_2 \times C_6, D_6 \cong C_6 \rtimes C_2 \cong C_2 \times \mathfrak{S}_3,$               |
|    |    | $\mathfrak{A}_4 \cong (C_2 \times C_2) \rtimes C_3, \ C_3 \rtimes C_4$                             |
| 14 | 2  | $C_{14}, D_7 \cong C_7 \rtimes C_2$                                                                |
| 15 | 1  | $C_{15}$                                                                                           |
| 16 | 14 | •••                                                                                                |
| 18 | 5  | $C_{18}$ , $C_3 \times C_6$ , $D_9$ , $C_3 \times \mathfrak{S}_3$ , $(C_3 \times C_3) \rtimes C_2$ |
| 20 | 5  | $C_{20}, C_2 \times C_{10}, C_5 \rtimes_{\varphi_1} C_4, C_5 \rtimes_{\varphi_2} C_4,$             |
|    |    | $D_{10} \cong C_{10} \rtimes C_2 \cong C_5 \rtimes (C_2 \times C_2)$                               |
| 21 | 2  | $C_{21}, C_7 \rtimes C_3$                                                                          |
| 22 | 2  | $C_{22}, \ D_{11} \cong C_{11} \rtimes C_2$                                                        |
| 24 | 15 | ••••                                                                                               |
| 25 | 2  | $C_{25}, C_5 \times C_5$                                                                           |
| 26 | 2  | $C_{26}, \ D_{13} \cong C_{13} \rtimes C_2$                                                        |

Figure 1: Enter Caption