WHAT IS CLAIMED IS:

I	1. A telecommunications device for processing data, wherein the device
2	includes a plurality of data processors, the device comprising:
3	a plurality of control processors, each control processor configured to manage
4	data routing paths for routing data between data processors in the plurality of data processors;
5	and
6	a plurality of logical nodes, wherein each logical node includes one or more
7	data processors in the telecommunications device and is associated with a control processor
8	in the plurality of control processor, wherein a logical node routes data using the one or more
9	data processors included in the logical node according to the data routing paths for routing
10	data associated with each logical data processor.
1	2. The device of claim 1, further comprising a power source configured to
2	power the plurality of logical nodes.
-	power the planarity of logical nodes.
1	3. The device of claim 1, further comprising a plurality of physical slots,
2	wherein each of the plurality of data processors are coupled to a physical slot in the plurality
3	of physical slots.
1	4. The device of claim 3, wherein a data path from a first physical slot
2	location to a second physical slot location in the device is mapped to a third physical slot
3	location to a fourth physical slot location.
1	5. The device of claim 1, wherein each control processor and its
2	associated logical node is configured to transfer data for a separate entity.
1	6. A telecommunications shelf including a plurality of slots configured to
2	connect to data processors, the shelf comprising:
3	a first logical shelf including a first set of one or more data processors,
4	wherein each data processor in the first set is connected to a first set of one or more slots in
5	the plurality of slots; and
6	a second logical shelf including a second set of one or more data processors,
7	wherein each data processor in the second set is connected to a second set of one or more
8	slots in the plurality of slots,

9	wherein the first logical shelf is associated with a first entity that transfers data
10	using the first set of one or more data processors and second logical shelf is associated with a
11	second entity that transfers data using the second set of one or more data processors.
1	7. The telecommunications shelf of claim 6, further comprising:
2	a first control processor associated with the first logical shelf; and
3	a second control processor associated with the second logical shelf.
1	8. The telecommunications shelf of claim 7, wherein the first control
2	processor is configured to manage data routing paths for the first entity and the second
3	control processor is configured to manage data routing paths for the second entity.
1	9. The telecommunications shelf of claim 6, wherein the first control
2	processor is configured to map data routing paths based on a location of the first set of slots
3	in the telecommunications shelf.
1	10. The telecommunications shelf of claim 6, wherein the second control
2	processor is configured to map data routing paths based on a location of the second set of
3	slots in the telecommunications shelf.
1	11. The telecommunications shelf of claim 6, further comprising a power
2	source configured to provide power to the first and second set of one or more data planes in
3	the first and second logical shelves.
1	12. A method for routing data using a telecommunications device that
2	includes a plurality of data processors, the method comprising:
3	configuring a first set of one or more data processors in the plurality of data
4	processors for a first logical node in the telecommunications device;
5	configuring a second set of one or more data processors in the plurality of data
6	processors for a second logical node in the telecommunications device;
7	receiving data associated with a first entity;
8	routing the data using the one or more data processors in the first logical node;
9	receiving data associated with a second entity; and
10	routing the data using the one or more data processors in the second logical
11	node.

1	13. The method of claim 12, wherein receiving data associated with the
2	first entity comprises receiving data for a first routing data path from a first location to a
3	second location in the telecommunications device, and further comprising:
4	determining a third and fourth location in the telecommunications device in
5	which to route the received data,
6	wherein routing the data comprises routing the data from a data processor in
7	the third location to a data processor in the fourth location, the third and fourth data
8	processors included in the first set of data processors.
1	14. The method of claim 13, wherein receiving data associated with the
2	,
	second entity comprises receiving data for a second routing data path from a fifth location to
3	a sixth location in the telecommunications device, and further comprising:
4	determining a seventh and eighth location in the telecommunications device in
5	which to route the received data,
6	wherein routing the data comprises routing the data from a data processor in
7	the seventh location to a data processor in the eight location, the seventh and eighth data
8	processors included in the second set of data processors.
1	15. The method of claim 12, further comprising:
2	configuring a first control processor associated with the first logical node; and
3	configuring a second control processor associated with the second logical
4	node.
1	16. The method of claim 15, wherein the first control processor manages
2	data routing paths for the first entity and the second control processor manages data routing
3	paths for the second entity.
5	pand for the second entity.