І. Проверка формулы линзы

Если считать толщину линзы пренебрежимо малой ($\delta o 0$), формула линзы имеет вид

$$\frac{1}{s} + \frac{1}{L-s} = \frac{1}{f} \tag{*}$$

где s – расстояние от источника до центра линзы, L – расстояние от источника до экрана.

- 1. Вычислите фокусные расстояния f непосредственно по формуле (*) для каждой измеренной пары значений $\{s,L\}$. Вычислите среднее значение f и оцените его случайную и систематическую погрешности.
- 2. Преобразуйте формулу линзы (*) так, чтобы она приняла вид линейной зависимости $y(s,L) = ks + b \quad \text{или} \quad y(s,L) = kL + b$ где y некоторая (нелинейная) функция от s и L, а угловой коэффициент k зависит только от f. Постройте график соответствующей зависимости и проведите наилучшую прямую. По ее угловому коэффициенту определите фокусное расстояние. Оцените погрешность результата. Сравните результат с п. 1.

II. Определение фокусного расстояния и оптического интервала по методу Бесселя

Формула Бесселя имеет вид

$$l^2 = L'(L' - 4f), \tag{**}$$

где $l=s_2-s_1$ – смещение линзы при смещении между увеличенным и уменьшенным изображениями, $L'=L-\delta$, δ – оптический интервал для линзы (порядка её толщины). Преобразуем (**) так, чтобы она приняла вид линейной зависимости:

$$L^{2} - l^{2} = (4f + 2\delta)L - 4\delta f - \delta^{2}.$$
 (***)

3. Постройте график зависимости, отложив по осям величины $y=L^2-l^2$ и x=L. Проведите наилучшую прямую y=kx+b и определите её параметры. Решая систему $k=4f+2\delta$, $b=-4\delta f-\delta^2$, найдите фокусное расстояние f и оптический интервал δ .

Замечание. Все прямые следует строить методом хи-квадрат с учётом оценки погрешностей проведённых измерений. Кресты погрешностей на графиках отмечать обязательно.