Minimizing NFA's and Regular Expressions

Gregor Gramlich and Georg Schnitger Institute of Computer Science Johann Wolfgang Goethe-Universität Frankfurt

February 2005

Minimization Problems

Problems of **exactly** determining the minimum size of an equivalent NFA or regular expression for a given NFA, regular expression or DFA.

Regular Expression \rightarrow Regular Expression

 $NFA \rightarrow NFA$

are PSPACE-complete. (Meyer and Stockmeyer, 1972)

Also known to be PSPACE-complete

DFA \rightarrow NFA. (Jiang and Ravikumar, 1993)

Approximation Problems

Are efficient and tight **approximations** of small NFAs and Regular Expressions possible . . .

... when given an NFA or regular expression?

... when given a DFA?

Results

can only have an efficient approximation with factor $\mu = o(n)$ for input size n, if P = PSPACE.

Every efficient approximation algorithm for the problems

DFA → Regular Expression

 $\mathsf{DFA} \to \mathsf{NFA}$

must have an approximation factor of at least $\frac{n}{\operatorname{poly}(\log n)}$ for given DFAs with n states, if strong pseudo-random functions exist in NC^1 . (The size of an NFA is the number of transitions.)

Sublinear Approximation is PSPACE-hard

The transformation used to prove PSPACE-hardness of the non-universality problem $L(R) \neq \Sigma^*$ can be made gap introducing.

Theorem 1. For given NFA or regular expression with n states, transitions or symbols respectively, it is impossible to efficiently approximate the size of a minimal equivalent NFA or regular expression within an approximation factor of o(n), if $P \neq \mathsf{PSPACE}$.

This is true for regular expressions and NFAs over an alphabet with at least two symbols.

The unary case ($|\Sigma| = 1$) has to be treated differently.

Unary NFA and Regular Expression Minimization

Given a unary NFA or a unary regular expression of size n, it is impossible to efficiently **approximate the minimal size** of an equivalent NFA or regular expression within a factor of $\frac{\sqrt{n}}{\ln n}$, if $P \neq NP$. (Gramlich, 2003)

If we require the **construction** of an approximately minimal regular expression or NFA, we can exclude even higher approximation factors.

Theorem 2. Given an arbitrary $\delta > 0$ and a unary NFA or a unary regular expression of size n, it is impossible to efficiently **construct** an equivalent NFA or regular expression within approximation factor $n^{1-\delta}$, if $P \neq NP$.

Minimal NFAs and Regular Expressions for Given DFAs

The problem

DFA \rightarrow NFA

is PSPACE-complete, but the transformation in the proof (Jiang and Ravikumar, 1993) is not gap introducing.

Strong Pseudo-Random Functions

There is an NC^1 function ensemble f_m , such that for any randomized algorithm A

$$|\operatorname{prob}[A(f_m) = 1] - \operatorname{prob}[A(r_m) = 1]| < \frac{1}{3},$$

provided A runs in time $2^{O(m)} = \text{poly}(2^m)$ and factorization is sufficiently hard. (f_m pseudo-random, r_m truly random m-bit function)

A has access to the full truth table of f_m , resp. r_m .

We call such a function ensemble a strong pseudo-random ensemble.

If strong pseudo-random functions in the sense of Razborov & Rudich exist, then strong pseudo-random functions in our sense exist.

Inapproximability and Pseudo-Random Functions

- Functional $G_m: B_m \to \mathbb{N}$, measures the complexity of a function.
- Idea: $G_m(f) = \text{size of a minimal regular expression for } L(f) = \{x | f(x) = 1\}.$
- $G = (G_m)_m$ separates a function class \mathcal{C} from random functions with thresholds $t_1(\cdot)$ and $t_2(\cdot)$, if

$$\forall f \in \mathcal{C} \cap B_m : G_m(f) < t_1(m), \text{ and}$$
$$|\{r \in B_m \mid G_m(r) \le t_2(m)\}| = o(|B_m|).$$

If C contains a strong pseudo-random ensemble, then no approximation algorithm for G with

running time $2^{O(m)}$ can have an approximation factor smaller than $\frac{t_2(m)}{t_1(m)}$.

 B_m

 $G_m(r) > t_2(m)$

 $G_m(f) < t_1(\overline{m})$

Formulae of Logarithmic Depth

There is a strong pseudo-random ensemble C_1 in NC^1 with formula-depth $c \cdot \log m$ and formula-length m^c for input size m and some constant c.

Formula: Complete binary tree, leaves are positive or negative literals. (Negations are pushed into the leaves.)

The length ℓ of a formula is the number of leaves. The depth d of a formula is the depth of the tree.

$$\ell=2^d$$
.

Regular Expressions for Short Formulae

- \bullet Goal: Express a formula f of small depth by a short regular expression.
- Problem: Regular expressions are too weak.
- Solution: Repeat inputs. Instead of expressing $L(f)=\{x|f(x)=1\}$, express $L_k(f):=\{x^k|f(x)=1\}$.

For a formula f of depth $c \cdot \log m$ for $f \in B_m$, there is a regular expression R_f of length $O(m^{2c+1})$, such that if we promise to repeat inputs, then $L(R_f) = L_{m^c}(f_m)$:

$$L(R_{\mathbf{f}}) \cap \{x^* | x \in \{0, 1\}^m\} = \{x^{m^c} | f_m(x) = 1\} = L_{m^c}(f_m).$$

Assigning Regular Expression $R_{\mathbf{f}}$ to \mathbf{f}

- If $\mathbf{f} = x_i$, then $R_{\mathbf{f}} := (0+1)^{i-1} \ 1 \ (0+1)^{m-i}$.
- If $\mathbf{f} = \overline{x_i}$, then $R_{\mathbf{f}} := (0+1)^{i-1} \ 0 \ (0+1)^{m-i}$.
- If $\mathbf{f} = \mathbf{f}_1 \wedge \mathbf{f}_2$, then $R_{\mathbf{f}} := R_{\mathbf{f}_1} \circ R_{\mathbf{f}_2}$.
- If $\mathbf{f} = \mathbf{f}_1 \vee \mathbf{f}_2$, then $R_{\mathbf{f}} := R_{\mathbf{f}_1} \circ (0+1)^{m \cdot \ell(\mathbf{f}_2)} + (0+1)^{m \cdot \ell(\mathbf{f}_1)} \circ R_{\mathbf{f}_2}$.

 $L_{m^c}(f_m) = L(R_{\mathbf{f}}) \cap \{x^* | x \in \{0,1\}^m\}$ holds. But how to check, whether the promise of repeated inputs is kept?

The complement $L_{m^c}(f_m) = \overline{L(R_{\mathbf{f}})} \cup \overline{\{x^*|x \in \{0,1\}^m\}}$ is easy to check and has a regular expression of length $O(m^{2c+1})$.

Approximation complexity for DFA \rightarrow Regular Expression I

- Let $G_m(f_m)$ be the size of a smallest regular expression for $\overline{L_{m^c}(f_m)}$.
- Thus

$$G_m(f_m) \le t_1(m) = O(m^{2c+1})$$

holds for functions with formula depth $c \cdot \log m$.

• There are only $o(|B_m|)$ different regular expressions of length at most $2^m/40$. So

$$G_m(r_m) > t_2(m) = 2^m/40$$

holds for the vast majority of functions $r_m \in B_m$.

• Every efficient approximation algorithm for G_m must have an approximation factor of at least $\frac{t_2(m)}{t_1(m)} = \frac{2^m}{\operatorname{poly}(m)}$.

The input for G_m is a truth table, but where is the DFA?

Approximation complexity for DFA → Regular Expression II

Approximation of $G_m(f_m)$ better than $\frac{2^m}{\text{poly}(m)}$ is hard, so approximation of DFA \to Regular Expression is hard!

DFA
$$D_{f_m}$$
 accepts $\overline{L_{m^c}(f_m)}=\overline{\{x^{m^c}|f_m(x)=1\}}$ with "only"

$$n = m^c \cdot 2^m = 2^{O(m)}$$

states.

Approximation complexity for DFA → Regular Expression III

Factor $\mu < \frac{2^m}{\text{poly}(m)}$ is excluded, where m is the number of input bits of f_m .

Translate from m to DFA size $n = 2^{O(m)}$.

Theorem 3. Any efficient approximation algorithm for the DFA \rightarrow Regular Expression (NFA, states) problem must have an approximation factor $\mu \geq \frac{n}{\operatorname{poly}(\log n)} \left(\frac{\sqrt{n}}{\operatorname{poly}(\log n)} \right)$ for a given DFA of size n.

Conclusions

• The problems

can only have an efficient approximation with factor $\mu = o(n)$ for input size n, if $P = \mathsf{PSPACE}$.

• In the unary case, for any $\delta > 0$, **constructive** approximation algorithms, which output a small equivalent regular expression or NFA, can only have an efficient approximation with factor $\mu < n^{1-\delta}$, if P = NP.

Conclusions Continued

• Every efficient approximation algorithm for

DFA
$$\rightarrow$$
 Regular Expression
DFA \rightarrow NFA

must have an approximation factor $\mu \ge \frac{n}{\operatorname{poly}(\log n)}$, resp. $(\mu \ge \frac{\sqrt{n}}{\operatorname{poly}(\log n)})$ for given DFAs with n states, if strong pseudo-random functions exist in NC^1 .

• Every efficient approximation algorithm for the minimum consistent DFA problem must have an approximation factor of at least $\frac{n}{\text{poly}(\log n)}$ for n given examples, if strong pseudo-random functions exist in DSPACE($\log n$).

Open Problems

- Are cryptographic assumptions required or are weaker assumptions like $P \neq NP$ sufficient to show inapproximability for DFA \rightarrow NFA / R.E.?
- How hard is Truth Table \rightarrow NFA approximation (minimal NFA for $\{x|f(x)=1\}$)?
- What is the approximation complexity of the Unary DFA → NFA problem?

No NP-hardness results known, but exact minimization is not in P, unless $NP \subseteq \text{DTIME}(n^{O(\log n)})$. (Jiang, McDowell and Ravikumar, 1991)

The cyclic case can be approximated within $1 + \ln n$. (Gramlich, 2003)