Assignment 2

Problem Statement-

Perform the following operations using Python on the Air quality data sets

a. Data cleaning b. Data transformation c. Data integration d. Error correcting e. Data model building

Importing python libraries

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
```

Loading a CSV file into a dataframe

```
In [2]:
         A = pd.read_csv(r"C:\Users\HP\Downloads\airquality_dataset.csv")
         A.head()
            Unnamed: 0 Ozone Solar.R Wind Temp
Out[2]:
                                                     Month Day Humidity
         0
                      1
                           41.0
                                  190.0
                                          7.4
                                                          5
                                                  67
                                                                1
                                                                       High
                           36.0
                                  118.0
                                          8.0
                                                  72
                                                                       High
         2
                      3
                           12.0
                                  149.0
                                          12.6
                                                  74
                                                          5
                                                                3
                                                                       Low
         3
                           18.0
                                  313.0
                                          11.5
                                                  62
                                                                       NaN
         4
                      5
                          NaN
                                                          5
                                  NaN
                                          14.3
                                                  56
                                                                5
                                                                       High
In [3]:
         A. shape
         (153, 8)
Out[3]:
```

Checking for null values in each column

```
In [4]:
         A.isnull().sum()
        Unnamed: 0
                        0
Out[4]:
         0zone
                        37
         Solar.R
                        7
                        2
        Wind
         Temp
        Month
         Day
        Humidity
         dtype: int64
```

A] Data Cleaning

Removing unwanted column from dataset:

<pre>In [5]: df=A.drop("Unnamed: 0", axis=1) df</pre>	
---	--

Out[5]:		Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
	0	41.0	190.0	7.4	67	5	1	High
	1	36.0	118.0	8.0	72	5	2	High
	2	12.0	149.0	12.6	74	5	3	Low
	3	18.0	313.0	11.5	62	5	4	NaN
	4	NaN	NaN	14.3	56	5	5	High
	•••							
	148	30.0	193.0	6.9	70	9	26	Low
	149	NaN	145.0	13.2	77	9	27	Low
	150	14.0	191.0	14.3	75	9	28	High
	151	18.0	131.0	8.0	76	9	29	Medium
	152	20.0	223.0	11.5	68	9	30	Low

153 rows × 7 columns

Replacing numerical null values

```
In [6]: df["Ozone"] = df["Ozone"].fillna(df["Ozone"].mean())

df["Solar.R"] = df["Solar.R"].fillna(df["Solar.R"].mean())

df["Wind"] = df["Wind"].fillna(df["Wind"].mean())
```

Replacing categorical null values

```
In [7]: df["Humidity"] = df["Humidity"].fillna(df["Humidity"].mode()[0])
df
```

	0	41.00000	190.000000	7.4	67	5	1	High	
	1	36.00000	118.000000	8.0	72	5	2	High	
	2	12.00000	149.000000	12.6	74	5	3	Low	
	3	18.00000	313.000000	11.5	62	5	4	High	
	4	42.12931	185.931507	14.3	56	5	5	High	
	•••								
	148	30.00000	193.000000	6.9	70	9	26	Low	
	149	42.12931	145.000000	13.2	77	9	27	Low	
	150	14.00000	191.000000	14.3	75	9	28	High	
	151	18.00000	131.000000	8.0	76	9	29	Medium	
	152	20.00000	223.000000	11.5	68	9	30	Low	
	153 r	153 rows × 7 columns							
In [8]:	df.i	isnull().	sum()						
Out[8]:	0====		0 0 0 0 0 0						
In [9]:	df.c	dtypes							
Out[9]:	Ozor Sola Wind	ar.R	float64 float64 float64						

Solar.R Wind Temp Month Day Humidity

B] Data Transformation

int64

int64

int64

Out[7]: Ozone

Temp

Day

Month

Humidity object dtype: object

Using Label Encoding for "Humidity" column

```
In [10]: from sklearn.preprocessing import LabelEncoder
    label_en = LabelEncoder()
    df["Humidity"] = label_en.fit_transform(df["Humidity"])
    df["Humidity"].unique()
```

Out[10]: array([0, 1, 2])

In [11]:

df

Out[11]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.00000	190.000000	7.4	67	5	1	0
1	36.00000	118.000000	8.0	72	5	2	0
2	12.00000	149.000000	12.6	74	5	3	1
3	18.00000	313.000000	11.5	62	5	4	0
4	42.12931	185.931507	14.3	56	5	5	0
•••							
148	30.00000	193.000000	6.9	70	9	26	1
149	42.12931	145.000000	13.2	77	9	27	1
150	14.00000	191.000000	14.3	75	9	28	0
151	18.00000	131.000000	8.0	76	9	29	2
152	20.00000	223.000000	11.5	68	9	30	1

153 rows × 7 columns

In [12]: df.dtypes

Out[12]:

Ozone float64
Solar.R float64
Wind float64
Temp int64
Month int64
Day int64
Humidity int32

dtype: object

C] Data Integration

Row wise subset:

In [13]: #subset1

subset1=df.iloc[[3,5,6,7,23,43,12],:]

subset1

```
Out[13]:
               Ozone
                         Solar.R Wind Temp Month Day Humidity
                 18.0 313.000000
                                   11.5
                                                    5
            5
                 28.0
                      185.931507
                                   14.9
                                           66
                                                    5
                                                                    0
                                                          6
                                                    5
                                                         7
            6
                 23.0 299.000000
                                    8.6
                                           65
                                                                    0
            7
                 19.0
                       99.000000
                                   13.8
                                           59
                                                    5
                                                         8
                                                                    1
           23
                 32.0
                       92.000000
                                   12.0
                                           61
                                                    5
                                                         24
                                                                    0
           43
                 23.0 148.000000
                                                                    2
                                    8.0
                                           82
                                                    6
                                                         13
                                                    5
           12
                 11.0 290.000000
                                    9.2
                                           66
                                                         13
                                                                    1
In [14]:
           subset1.shape
           (7, 7)
Out[14]:
           #subset2
In [15]:
           subset2=df.iloc[[45,21,56,87,55,99,78,97,32],:]
           subset2
Out[15]:
                            Solar.R Wind Temp Month Day Humidity
                Ozone
           45 42.12931 322.000000
                                     11.5
                                             79
                                                          15
                                                                      0
                                                      6
           21 11.00000 320.000000
                                     16.6
                                             73
                                                           22
                                                                      1
           56 42.12931 127.000000
                                      8.0
                                             78
                                                      6
                                                           26
                                                                      0
           87 52.00000
                         82.000000
                                     12.0
                                                      7
                                                          27
                                                                      1
                                             86
           55 42.12931 135.000000
                                      8.0
                                             75
                                                      6
                                                           25
                                                                      0
           99 89.00000 229.000000
                                     10.3
                                             90
                                                            8
                                                                      0
           78 61.00000 285.000000
                                      6.3
                                             84
                                                           18
                                                                      2
           97 66.00000 185.931507
                                      4.6
                                             87
                                                                      2
```

```
In [16]: subset2.shape
```

Out[16]: (9, 7)

Merging subsets

42.12931 287.000000

```
In [17]: merge1=pd.concat([subset1,subset2])
    merge1
```

Out[17]:		Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
	3	18.00000	313.000000	11.5	62	5	4	0
	5	28.00000	185.931507	14.9	66	5	6	0
	6	23.00000	299.000000	8.6	65	5	7	0
	7	19.00000	99.000000	13.8	59	5	8	1
	23	32.00000	92.000000	12.0	61	5	24	0
	43	23.00000	148.000000	8.0	82	6	13	2
	12	11.00000	290.000000	9.2	66	5	13	1
	45	42.12931	322.000000	11.5	79	6	15	0
	21	11.00000	320.000000	16.6	73	5	22	1
	56	42.12931	127.000000	8.0	78	6	26	0
	87	52.00000	82.000000	12.0	86	7	27	1
	55	42.12931	135.000000	8.0	75	6	25	0
	99	89.00000	229.000000	10.3	90	8	8	0
	78	61.00000	285.000000	6.3	84	7	18	2
	97	66.00000	185.931507	4.6	87	8	6	2
	32	42.12931	287.000000	9.7	74	6	2	0

In [18]: merge1.shape

Out[18]: (16, 7)

Deriving correlation between Columns

```
In [19]: correlation=df.corr()
    correlation
```

Out[19]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
Ozone	1.000000	0.302970	-0.529389	0.608742	0.149081	-0.011355	0.049965
Solar.R	0.302970	1.000000	-0.059408	0.262569	-0.072904	-0.145621	-0.039790
Wind	-0.529389	-0.059408	1.000000	-0.455128	-0.173857	0.025837	-0.073615
Temp	0.608742	0.262569	-0.455128	1.000000	0.420947	-0.130593	-0.070224
Month	0.149081	-0.072904	-0.173857	0.420947	1.000000	-0.007962	-0.011713
Day	-0.011355	-0.145621	0.025837	-0.130593	-0.007962	1.000000	0.094662
Humidity	0.049965	-0.039790	-0.073615	-0.070224	-0.011713	0.094662	1.000000

```
In [20]: import seaborn as sns
sns.heatmap(correlation, vmin = -1, vmax = 1, annot=True)
```

Out[20]: <AxesSubplot:>

E] Building Data Model

Using linear regression model

Plotting graph

```
In [25]: plt.scatter(xtrain, ytrain, color="green")
   plt.plot(xtrain, linear_reg.predict(xtrain), color="red")
   plt.xlabel("Ozone")
   plt.ylabel("Temp")
   plt.title("Ozone vs Temp")
   plt.show()
```


Calculating metrics

```
In [26]: from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score

MSE = mean_squared_error(ytest,y_predict)
    RMSE = np.sqrt(MSE)
    MAE = mean_absolute_error(ytest,y_predict)
    r2_score = r2_score(ytest,y_predict)

In [27]: print("MSE- ",MSE)
    print("RMSE- ",RMSE)
    print("MAE- ",MAE)
    print("r2_score- ",r2_score)

MSE- 63.06113067789956
    RMSE- 7.941103870237409
    MAE- 6.023553405377359
    r2_score- 0.3362547565152908
```