MX801

+3.3V ~ +5.0V Low Power Ringing SLIC

概述: MX801/QCX601/QCX701系列采用模块化结构,在单个模块上集成了DC/DC变换器、铃流发生器、极性反转开关、恒流馈电电路、二/四线变换电路等用户接口系统需要的所有功能,使小用户话音系统的设计变得极为简单,大大节省了整个系统的设计时间,用户只需要提供+3.3V至+5V 直流电源,即可实现小用户话音系统所必需的恒流馈电、振铃、二/四线变换等功能;同时可以大幅度降低系统体积,降低成本。

特点:

- +3.1V至+5V宽操作电压
- 内部DC/DC 变换器
- 内部铃流功能,产生铃流电压高达135Vp-p
- 极性反转及来电识别(Caller ID)之On-Hook 传输
- 2/4 线转换
- 恒流馈电
- 摘挂机检测
- 具有低功耗设置引脚,使待机更省电
- 可与市场上常见的语音编译码组件(CODEC)作连结
- 小体积包装(MX801→61mm * 12mm * 12mm QCX601/QCX701→48.4mm * 19.2mm * 15mm)

应用:

- 网络电话 (VoIP) 及网关 (Gateway) 应用
- 移动电话计费器(GSM Gateway)
- 语音数据专线(VoDSL)
- 缆线调制解调器(Cable Modem)
- 整合存取装置(IAD)
- 无线区域回路(WLL)
- 公共电话内建无线手机模块(GSM Payphone)
- 无线公话用户接口
- 无线接入用户终端(FWT)
- 集群移动通讯系统(FCT)
- 机顶盒话音接口
- 其它短距离之电话语音通讯产品(Other Telephone products)

产品选型

型号	工作电	环路电流	电源电流	电源电流	铃流电压	*电源电流	封装(直
	压(V)	(Load=300R)	(摘机时)	(振铃时)	(Vp-p)	(挂机时)	插14PIN)
MX801-A	3. 1~5. 5	24~31mA	230~330mA	190~210mA	120~140	35mA	SIL
MX801-B	3. 1 ~ 5. 5	20~25mA	180~220mA	190~210mA	110~140	35mA	SIL

^{*.} 用占空比脉冲控制PD引脚还可以让挂机时电源电流平均值保持在10mA左右

注:对于以上参数、规格等,我公司可根据客户的需求来定制,欢迎合作!

功能原理框图

1. 引脚说明

引脚号	名 称	说 明
1	RING	连接电话线R端
2	TIP	连接电话线T端
3	F/R	反极驱动输入及25HZ方波基准输入端
4	RM	振铃电压设置模式, 只在振铃期间设为高, 其它模式时须设为低
5	SHK	摘机检测(输出), 摘机时输出高电平
6	NC	空脚
7	NC	空脚
8	NC	空脚
9	Vin	话音信号输入端
10	Vout	话音信号输出端
11	NC	空脚
12	GND	地
13	VCC	正电源输入端
14	PD	SLIC模块工作驱动,外接一个二极管至微处理器,可设置低功耗或正常模式; 不用时悬空即可,悬空时即为正常工作模式。

2. 电气特性

2.1. 极限工作参数

	参数	符号	最小值	最大值	单位
1	电源电压	V _{cc}	-0.3	7.0	V
2	极限功耗, Off Hook @ 25°C	P _{SLIC}		1.2	W
3	Storage Temperatur	T _s	-40	+100	°c
4	Duty Cycle for RM(H)			33	%

2.2. 推荐工作参数

版本	参数	符号	最小值	典型值	最大值	单位
Α	电源电压	V _{CC}	3.1		5.5	V
В	电源电压	V _{CC}	3.3		5.5	V
	工作温度	T _{OP}	0	25	70	°С

2.3. 直流电性能参数

	版本	参数	符号	最小 值	典型 值	最大 值	单位	测试条件	
1	A B	电源电流(挂机状态) @ 3.1V~5.0V	l vpwr		35	40	mA	CLI bias resistor not fitted	
2		挂机电压	V _{ab}		48		V		
3	A,B	电源电流(振铃状态) @ 5.0V @ 3.3V	 RINGING		190 200	210 220	mA mA	R _{LOOP} = 0R Load = 1 REN	
4	А	电源电流(摘机状态) @ 5.0V @ 3.3V	I ACTIVE		230 300	290 330	mA mA	Load = 300R~600R	
4	В	电源电流(摘机状态) @ 5.0V @ 3.3V	 ACTIVE		180 200	210 240	mA mA	Load = 300R~600R	
5		电源电流(低功耗状态)	I PD		7 5		mA mA	@ 5.0V @ 3.3V	
6		唤醒时间			50		ms	Logic outputs not valid during wake-up period	
7	А	馈电电流 @ 5.0V @ 3.3V	I LOOP		30 26		mA mA	Load = 300R	
7	В	馈电电流 @ 5.0V @ 3.3V	I LOOP		25 21		mA mA	Load = 300R	
8		摘机检测@5.0V 低电平输出 高电平输出	V _{OL} V _{OH}	4.5		0.5	V V	100uA max output (with 10k	
9		摘机检测 @3.3V 低电平输出 高电平输出	V OL V	2.8		0.5	V V	internal pull-up resistor)	
10		控制输入, F/R, RM 低电平输入	V _{IL} V _{IH}	3.5		0.5	V V	@ 5.0V	
		高电平输入	V _{IL} V _{IH}	2.0		0.5	V V	@ 3.3V	

11	控制输入, F/R, RM 低电平输入电流 高电平输入电流	I IL I	-0.5 -0.5	0.5 0.5	mA mA	
12	控制输入, PD 低电平输入 高电平输入	V _{IL} V _{IH} V _{IL} V _{IH}	2.0	0.5	V V V	@ 5.0V @ 3.3V
13	控制输入, PD 低电平输入电流 高电平输入电流	I IL I	-0.5 -0.5	0.5 0.5	mA mA	

2.4. 交流电性能参数

	版本	参数	符号	最小值	典型 值	最大 值	単位	测试条件
1		SHK 检测时间			5		ms	No Ringing
2		交流阻抗			600		ohm	
3		Vin 输入阻抗			60		kohm	
4		Vout 输出阻抗				10	ohm	
5		铃流驱动能力 (40Vrms时)			3		phone	
6	A,B	铃流电压 @ 5.0V @ 3.3V			135 130		Vp-p	Load = 1 REN @ 25Hz
7		2-4线增益		-0.75	0	0.75	dB	Off-Hook
8		4-2线增益		-0.75	0	0.75	dB	Off-Hook
9		两线频率特性		-0.5		0.5	dB	Over frequency range 300 to 3400 Hz
10		过负载失真@2 Wire and Vout	OD		0.5 5	1	% %	@+3dBm, 1kHz @+6dBm, 1kHz
11		空闲线路躁声	N _C		5	18	dBrnC	@2 Wire & Vout
12		两线回损	RL	16 18			dB	300 - 500 Hz 500Hz - 3400Hz
13		四线回损	THL	12 21 16			dB dB dB	300-500Hz 500-2500Hz 2500-3400Hz
14		Vout 负载			10		kohm	Coupling capacitor = 100nF
15		两线反极设置时间				50	ms	To within +20% 0f set I

3. 应用接线图

D1: SMAJ64A,BZT03C75,P6KE75A.....SMAJ100A,BZT03C120,P6KE120Aor similar

R1 = External DC bias resistor (required for CLI) typically 20K to 39K

设计注意事项:

- 1. 保护电路有多种方案,图中方案仅供参考,但若不接保护电路,则在用电环境恶劣、雷电等情况下整个模块有不良率增高的风险。2. C6,C7为EMI抑制电容,对EMI有帮助,在有些比较差的开关电源或设备中,对抑制噪声有很好作用。3. 对于R1电阻,如果只接电话机,可以不接,但如果是外接交换机等设备,则必须接上。4. TVS管 D1取值范围应以不低于75V及不高于140V为妥。5. 根据实际情况,模块工作电源VCC应与音频或其它部分的电源进行隔离。6. 因用户的设备终端铃流负载不一致,有多有少,SLIC模块能根据负载大小,保持一定的铃流驱动能力,所以提供给模块工作的电流应有余地,电流以不小于500mA为妥。

4. 功能控制

请参阅以下时序图

4.1 摘挂机检测

SHK为摘机检测输出引脚. 摘机时输出高电平, 否则为低, 建议在检测此脚电平时, 软件须做防抖动处 理,时间在60ms以上。

4.2 振铃操作

4.2 反极操作

深圳市诠诚兴科技有限公司

向F/R端子发送相反电平,则可实现TIP、RING两线的反极操作.

当F/R = 1时,电话线为正极性驱动,即TIP线为高、RING线为低;

当F/R = 0时, 电话线为反极性驱动, 即TIP线为低、RING线为高;

5. 外形尺寸:

www.szpoe.com