Serac C CVD Coating

High Performance with a Well-Established Reputation

Chemical vapor deposition (CVD) supplies various high-purity raw materials in gas form to objects that have been heated to high temperature (900°C to 1050°C), causing a chemical reaction and forming an ultra-hard ceramic surface coating with adhesion in the range of 2,000 HV to 4,000 HV. The formation of a layer with outstanding wear-resistance and galling resistance substantially increase the life spans of treated parts.

Serac C is an exceptionally high-performance CVD coating comprising a single or multiple layers of TiC, TiCN, or TiN applied with state-of-the-art low-pressure equipment. Serac C uses advanced film quality control technology, vacuum heat treatment technology, and pre-coating precision machining technology combined with comprehensive expertise.

 "EPMA analysis of three-layer Serac

 Cross section structure of three-layer Serac

Comparison of Serac C Hardness and Physical Properties

Comparison of the Hardness of Different Film Types

A single layer of TiC can also be applied in the same manner as multiple layers of Serac C.

Features of Serac C

1

Ultra-high wear resistance

Select ultra-hard ceramic (TiC, TiCN, or TiN) with a hardness of 2,000 HV to 4,000 HV according to the use to obtain optimal wear and galling resistance.

2

High adhesion

The standard three-layer coating comprises a base of dispersed TiC, which has the highest hardness, with a continuous TiCN-TiN coating applied to form a duplex graident coating with outstanding adhesion properties, separation resistance, and galling resistance.

3

High and uniform quality

By using a low-pressure method and high-purity gas, the coating quality has excellent uniformity, density, and cleanliness, and as a result of optimal design of the gas linear speed, coating coverage is good with a uniform coating even in fine holes.

4

Integrated production system ensures high quality

Integrated production from selection of the base material to precision machining, coatings, and vacuum heat treatment and comprehensive technologies ensure the highest levels of quality.

Examples of Serac C Uses

Hot & cold work dies	Punches and dies for press molding Piercing punches and dies Drawing dies Trimming dies, etc.	Carbide cutting tools	Drills Milling cutters, etc.	
		Machine component	Rolls Screws Tablet molding components, wear-resistant components, etc.	
Hot work dies	Cast pins, core pins, etc. for die	Cutting blades	Shear blades Slitters, etc.	

Basic Reactions of Different Coatings

Coating	Reaction Example		
TiC	TiCl ₄ (g)+CH ₄ (g) $\frac{H_2}{950-1050^{\circ}C}$ TiC(s)+4HCl(g)		
TiN	$TiCl_4 (g)+1/2N_2 (g) \xrightarrow{H_2} TiN(s)+4HCl(g)$		
TiCN	TiCl ₄ (g)+CH ₄ (g)+1/2N ₂ (g) H ₂ TiCN(s)+4HCl(g)		

Examples of the Effects of Serac C

Component	Machining details	Machined material	Die material	Comparison of effects			pcs or units
				Treatment	Results	Serac C	Results
Auto parts	Drawing die	SPHC(t2.0)	SKD11	VC	25,000	TiC-TiCN-TiN	100,000
Bolts	Trimming die	SCr440	SKH51	TiC	98,000	TiC-TiCN-TiN	210,000
Auto parts	Blanking die	APEC(t1.6)	DC53	N/A	2,000	TiC-TiCN-TiN	28,000
Household appliance parts	Deep drawing	SPC(t1.2)	DC53	TiC	150,000	TiC-TiCN-TiN	800,000

Physical Properties of Ti-Alloy Coatings

Туре	Carbide	Carbonitride	Nitride	
Physical property	TiC	TiCN	TiN	
Color	Clear gray	Bright red	Gold	
Hardness (HV)	3000-4000	2600-3200	1900-2400	
Melting point (°C)	3160	3050	2950	
Density (g/cm3)	4.92	5.18	5.43	
Coefficient of thermal expansion (200°C- 400°C)/°C	7.8×10-6	8.1×10 ⁻⁶	8.3×10 ⁻⁶	
Electrical resistant (Ω at 20°C)	85	50	22	
Coefficient of elasticity (N/mm2)	43.93×10 ⁴	34.53×10 ⁴	25.10×10 ⁴	
Proper coating thickness (µm)	4–8	6–10	4–8	
Trend of major properties Hardness Chemical stability High—Low—				