Security Proofs for Module-LWE PAKE Protocol

Artifact Appendix

May 6, 2025

1 Correctness of Key Exchange

Theorem 1. (Correctness)

Let $A \in \mathbb{Z}_q^{k \times k}[x]/(x^n+1)$ be a public matrix sampled uniformly at random. Let $\mathbf{s}_A, \mathbf{s}_B \in (\mathbb{Z}_q^n)^k$ be secret vectors and $\mathbf{e}_A, \mathbf{e}_B$ be noise vectors with small coefficients. Suppose the reconciliation function $\text{Rec}: \mathbb{Z}_q^n \to \{0,1\}^n$ is used with proper thresholds. Then the derived keys $\mathsf{K}_A = \mathsf{H}(\mathsf{Rec}(\langle \mathbf{s}_A, B_B \rangle))$ and $\mathsf{K}_B = \mathsf{H}(\mathsf{Rec}(\langle \mathbf{s}_B, B_A \rangle))$ are equal with overwhelming probability:

$$\Pr[\mathsf{K}_A = \mathsf{K}_B] \ge 1 - \epsilon$$
,

for negligible ϵ , assuming **bounded noise magnitude** and correct reconciliation.

Proof Sketch.

Let Alice and Bob independently compute:

- Alice samples \mathbf{s}_A , \mathbf{e}_A and computes $B_A = A \cdot \mathbf{s}_A + \mathbf{e}_A$.
- Bob samples \mathbf{s}_B , \mathbf{e}_B and computes $B_B = A \cdot \mathbf{s}_B + \mathbf{e}_B$.

To derive the shared key:

$$u_A = \langle \mathbf{s}_A, B_B \rangle = \langle \mathbf{s}_A, A \cdot \mathbf{s}_B + \mathbf{e}_B \rangle$$
$$= \langle \mathbf{s}_A, A \cdot \mathbf{s}_B \rangle + \langle \mathbf{s}_A, \mathbf{e}_B \rangle$$
$$u_B = \langle \mathbf{s}_B, B_A \rangle = \langle \mathbf{s}_B, A \cdot \mathbf{s}_A + \mathbf{e}_A \rangle$$
$$= \langle \mathbf{s}_B, A \cdot \mathbf{s}_A \rangle + \langle \mathbf{s}_B, \mathbf{e}_A \rangle$$

Though u_A and u_B differ due to independent noise terms, their difference is small:

$$|u_A - u_B| \le ||\langle \mathbf{s}_A, \mathbf{e}_B \rangle - \langle \mathbf{s}_B, \mathbf{e}_A \rangle||.$$

The reconciliation function Rec is designed to handle such bounded errors. Hence, both parties derive the same bitstring b:

$$Rec(u_A) = Rec(u_B) \Rightarrow H(\mathbf{b}) = K.$$

Thus, the PAKE protocol is **correct** with high probability.