T.E. (Comp.) (Semester - V) (RC) Examination, May/June 2012 DATABASE MANAGEMENT SYSTEMS

Duration: 3 Hours Total Marks: 100

Instruction : Attempt 5 questions, at least 1 from each Moodule.

			,,		
			MODULE - 1		
	1.	a)	Discuss in detail the advantages of a database management system over fill systems.	e 8	į
		b)	How is a weak entity different from a strong entity? How is it represented in ER diagram? Illustrate with an example.	an 5	i
		c)	Explain the concepts of total participation and partial participation with respet to relationships in database management systems.	ect 4	
		d)	What is meant by a recursive relationship type ? Give an example.	3	
	2.	a)	What do you understand by degree of a relationship type? Give an example each of a binary and ternary relationship type.	6	ij
		b)	Differentiate between specialization and generalization with an example.	5	
		c)	Describe the three schema architecture. Why do we need mappings between schema levels? How do different schema definition languages support this		
			architecture ? MODULE – 2 MODULE – 2	9	
	3.	a)	Give a TRC expression for the relational algebraic operation of :	3	
			i) Selection o condition (P)		
			ii) The projection of relation P on the attribute X.		
		b)	Explain the distinctions among primary key, candidate key, super key. Give one example each.	5	
		c)	Consider the following relational schema:		
			Pieces (code, Name)		
	2		Provider (code, Name)		
			Provides (Piece Code, Provider Code, Price)		
				P.T.O.	

		Write SQL statements for the following.	
	1)	Obtain the names of providers who supply a piece with code = '001'.	3
	2)	Obtain the names of pieces provided by provider with code = 'HAL'.	3
	3)	Add an entry to the database to indicate that 'skellingtom suppliers' (code = 'TNBC') will provide sprockets (code = '002') for 7 cents each.	2
	4)	Increase the price of all pieces by 2 cents.	2
	5)	Update the database to reflect that 'Susan Calvin Corp' (Code = 'RBT') will not supply bolts.	2
4.	a)	What are nested queries ? Explain with examples.	5
	b)	How does SQL allow implementation of the entity and referential integrity constraint? Illustrate with suitable example.	7
	c)	What is meant by closure of a set of functional dependencies?	4
	d)	What is union compatibility? Why do the UNION, INTERSECTION and DIFFERENCE operations require that the relations on which they are applied be union compatible.	4
		MODULE -3	
5.	a)	Why do we need to normalize tables ? Explain.	5
	b)	Consider the following relation.	8
		CAR_SALE (car #, Date_sold, Salesman #, Commission %, Discount_Amt)	
		Assume that a car may be sold by multiple salesmen and hence { car # , salesman #} is the primary key. Suppose the following dependencies hold:	1
		Date_sold → Discount_Amt	
		Salesman # → Commission %	
		Is this relation in 1 NF, 2 NF or 3 NF? Why or why not? How could you successively normalize it upto 3 NF?	
	c)	Why should null values in a relation be avoided as far as possible? Discuss the	7

	6.	a)	What is a query evaluation plan ? Explain.	6
		b)	What are the measures of cost of a query.	4
		c)	What is external sorting? Explain with an example the external sort merge algorithm.	10
			MODULE-4	
	7.	a)	With the help of an example explain ACID properties of a transaction.	8
		b)	Differentiate between exclusive lock and shared lock.	6
		c)	Discuss the wait-die and wound-wait protocols for deadlock prevention.	6
	8.	a)	Explain: i) Binary locks	=6)
			ii) Read/write locks.	
		b)	Discuss Basic Timestamp algorithm. Explain with procedures how it implements write and read operations.	6
		c)	What is two phase locking? How does it guarantee serializability? Discuss any two variations of two phase locking.	8