Heman Gandhi 2024-10-22

Exercise 1.2.1-a

This follows the exercise_1_2_1 section in Lean, so might be overly detailed. I'm also pretentiously going to use lemmas that correspond to the Lean theorems.

Lemma. First, we show that for $n \in \mathbb{N}$, we know that there is an $x \in \mathbb{N}$ so that 3x = n, 3x + 1 = n, or 3x + 2 = n.

Proof. We proceed by induction, showing that $3 \cdot 0 = 0$, then if the statement holds for n, we proceed by cases and show that for the same x we reached for n, we either have 3x + 1 = n + 1, 3x + 2 = n + 1, or 3(x + 1) = n + 1.

Lemma. If $n \in \mathbb{N}$, then $3 \nmid n$ if and only if for some $x \in \mathbb{N}$, 3x + 1 = n or 3x + 2 = n.

Proof. We can prove the forward direction by the above statement: since 3x = n would contradict the assumption that $3 \nmid n$.

The reverse direction is simplest by contradiction: if we have the x with remainder 1 or 2, we cannot find some y so that 3y = n, since we'd form the equation 3(y - x) = r for r being 1 or 2, which is absurd since 3 cannot divide a non-zero number less than itself.

For the final lemma: we show that

Lemma. For $a, b \in \mathbb{N}$ if $3 \mid ab, 3 \mid a$ or $3 \mid b$.

Proof. We show the contrapositive: assuming $3 \nmid a$ and $3 \nmid b$, we have $3x_a + r_a = a$ and $3x_b + r_b = b$ for $x_a, x_b \in \mathbb{N}$ and $r_a, r_b \in \{1, 2\}$ from the forward direction of the above. We compute ab with the above in all four cases:

- 1. if $r_a, r_b = 1$, then $ab = 9x_ax_b + 3x_a + 3x_b + 1 = 3(3x_ax_b + x_a + x_b) + 1$;
- 2. if $r_a = 1$, $r_b = 2$, then $ab = 9x_ax_b + 6x_a + 3x_b + 1 = 3(3x_ax_b + 2x_a + x_b) + 2$;
- 3. if $r_a = 2$, $r_b = 1$, then $ab = 9x_ax_b + 3x_a + 6x_b + 1 = 3(3x_ax_b + x_a + 2x_b) + 2$;
- 4. if $r_a, r_b = 2$, then $ab = 9x_ax_b + 6x_a + 6x_b + 4 = 3(3x_ax_b + 2x_a + 2x_b + 1) + 1$.

In all the cases, we can express ab = 3y + r for $y \in \mathbb{N}$ and $r \in \{1, 2\}$ and apply the backwards direction of the lemma above to conclude $3 \nmid ab$, showing the contrapositive.

Lemma. $\sqrt{3}$ is irrational.

Proof. For contradiction, let $a, b \in \mathbb{N}$ and $\frac{a^2}{b^2} = 3$. Without loss of generality, we can assume that a and b don't share factors. Rewriting this as $a^2 = 3b^2$, we see that $3 \mid a^2$, so the above gives us that $3 \mid a$. Hence, we write a = 3d, so $a^2 = 9d^2 = 3b^2$, which means that $b^2 = 3d^2$, so $3 \mid b$. This contradicts the assumption that a and b don't share factors. \square

The proof would more-or-less work for $\sqrt{6}$.

Lemma. $\sqrt{6}$ is irrational.

Proof. We follow the above structure of the proof for $\sqrt{3}$: we have that for $n \in \mathbb{N}$, there is an $x \in \mathbb{N}$ and $0 \le r \le 5$ with $r \in \mathbb{N}$. Furthermore, r = 0 if and only if $6 \mid n$. Finally, instead of the prior lemma, we show $6 \mid a^2$ implies $6 \mid a$. If we attempt the contrapositive, we have 5 cases for a = 6x + r, where we rewrite $a^2 = 6(6x^2 + 2rx) + r^2 = 6y + r^2$:

- 1. if r = 1, $r^2 = 1$, so $a^2 = 6y + 1$;
- 2. if r = 2, $r^2 = 4$, so $a^2 = 6y + 4$;
- 3. if r = 3, $r^2 = 9$, so $a^2 = 6(y+1) + 3$;
- 4. if r = 4, $r^2 = 16$, so $a^2 = 6(y+2) + 4$:
- 5. if r = 5, $r^2 = 25$, so $a^2 = 6(y+4) + 1$.

This shows that if $a \nmid 6$, $a^2 \nmid 6$. We can proceed with this, showing that if $a^2 = 6b^2$ and a and b don't share factors, we get $6 \mid a$ and $6 \mid b$.

Exercise 1.2.1-b

The proof of theorem 1.1.1 breaks down at the first supposition that $p^2 = 4q^2$ as p = 2, q = 1 already suffices. Furthermore, $4 \mid 6^2$ but $4 \nmid 6$, so in the next step, we cannot conclude anything from the fact that $4 \mid p^2$.