Final Project – Multivariate Statistical Methods

Chi Nguyen, Huong Nguyen, Phuong Dao

05/18/2022

Part I: MANOVA techniques

1. About the Dataset

The heart disease data set is collected from four databases: Cleveland, Hungary, Switzerland, and the VA Long Beach data, publicly available at https://archive.ics.uci.edu/ml/datasets/heart+disease. The dataset dates from 1988 and contains 76 attributes. All the fields are related to heart conditions and can be used to determine whether a patient has heart disease. However, because of the project's scope, we decided not to keep the original data and instead transformed it to meet the project's scope and objectives. The data used in this project is compiled from three data sets: Cleveland, Hungary, and Switzerland, and include six variables:

- Sex
- dataset: Data source
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- chol: serum cholestoral in mg/dl
- oldpeak: ST depression induced by exercise relative to rest
- thalch: maximum heart rate achieved

2. Data Summary

Values
342
7
2
5
3
2
114
171
57
57

3. Multivariate hypothesis testing

Objective

The objective of multivariate hypothesis testing in this section is to see if there is a significant difference between males and females in heart health indicators (regardless of locations).

Applying technique

Assumption: Two samples of males and females are independent and $\Sigma_1 = \Sigma_2 = \Sigma$

Test hypothesis:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

where μ_1 is the mean vector of Male and μ_2 is the mean vector of Female.

According to **Figure 1** in appendix, we have:

$$\bar{x_1} = (131.05\ 169.62\ 1.00\ 150.36)$$

$$\bar{x_2} = (133.34\ 171.69\ 0.68\ 147.29)$$

$$T^2 = \frac{n_1 n_2}{n_1 + n_2} (\bar{y}_1 - \bar{y}_2)' S_{pl}^{-1} (\bar{y}_1 - \bar{y}_2) = 13.26$$

Meanwhile, we know that p = 4 (trestbps, chol, oldpeak, thalch), n_1 (number of Male observations) = 171, n_2 (number of Female observations) = 171, $T_{.05}^2(4,340) < T_{.05}^2(4,200) = 9.817 < 13.26$.

Therefore, we reject H_0 and conclude that the heart health indicators of males and females are significantly different.

4. Multivariate analysis of variance

Objective

The aim of multivariate analysis of variance in this section is to examine if there is a significant difference in heart health indicators between three data sources: Cleveland, Hungary and Switzerland.

Applying technique

Assumptions: 1. The samples are selected independently from 3 populations; 2. The samples are (approximately) Normal; 3. The 3 population variances are equal

Hypothesis test:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

 H_1 : At least one inequality in 3 data sources

(where μ_1 is the mean vector of Cleveland, μ_2 is the mean vector of Hungary and μ_3 is the mean vector of Switzerland)

We have
$$k = 3$$
, $p = 4$, $n = 114$. Therefore, $v_H = 3 - 1 = 2$, $v_E = 3(114 - 1) = 339$, $s = min(p, v_H) = 2$, $m = 0.5(|2 - 4| - 1) = 0.5$, $0.5(339 - 4 - 1) = 167$

After running MANOVA test, the result for each test can be found in **Appendix - Figure 2**. In details:

- For Wilks test:
 - $-\Lambda = 0.17.$
 - Meanwhile, $\Lambda_{0.05}(4,2,339) > \Lambda_{0.05}(4,2,320) = 0.952 > \Lambda = 0.17$. Thus, we reject H_0 .
- For Pillai's trace test:
 - $-V^{(s)}=0.84.$
 - Meanwhile, $V_{0.05}^{(s)}(2,0.5,167) < V_{0.05}^{(s)}(2,0.25) = 0.218 < 0.84$. Thus, we reject H_0 .
- For Hotelling-Lawley Trace test:

-
$$U^{(s)} = 4.67$$
. Thus, $\frac{v_E}{v_H} \times U^{(s)} = \frac{339}{2} \times 4.67 = 791.57$

- Meanwhile, $U_{0.05}^{(s)}(2,4,2+339-4) = U_{0.05}^{(s)}(2,4,337) < U_{0.05}^{(s)}(2,4,200) = 3.974 < 791.57$. Thus, we reject H_0 .
- For Roy's Greatest Root test:

$$- \qquad \theta = \frac{4.66}{1 + 4.66} = 0.82.$$

- Meanwhile,
$$\theta_{0.05}(2,0.5,167) < \theta_{0.05}(2,0,120) = 0.043 < 0.82$$
. Thus, we reject H_0 .

All four MANOVA tests reject H_0 , which means the heart health conditions are significantly different between the three data sources.

Powerful test:

• We have $\frac{\lambda_1}{\sum \lambda_i} = 99.65\%$. Therefore, λ_1 is dominant, and μ_1, μ_2, μ_3 lie in one dimension. In that case, $\theta \ge U^{(s)} \ge \Lambda \ge V^{(s)}$, or in other words, Wilk's Test is the most powerful test. Details can be found in **Appendix – Figure 3**.

Part II: Discriminant Analysis and Classification

1. About the Dataset

Dataset used is the same data in part 1.

2. Discriminant Analysis

Objective

In the discriminant analysis for several groups, we are concerned with finding linear combinations of variables that best separate the three groups of multivariate observations (Cleveland, Hungary, and Switzerland).

Applying technique

The eigenvalues of $E^{-1}H$ are $\lambda_1=4.6573$ and $\lambda_2=0.0161$. (Appendix – Figure 4)

According to **Appendix – Figure 5**, the corresponding eigenvectors, which are also the vectors of the discriminant function coefficients are:

$$a_1 = (-0.0007, 0.0175, 0.0377, 0.1081)$$

$$a_2 = (0.0477, -0.0007, 0.2091, -0.0032)$$

The first eigenvalue accounts for a substantial proportion of the total $\lambda_1/(\lambda_1 + \lambda_2) = 0.99$.

Thus, the mean vectors lie largely in one dimension, and one discriminant function suffices to describe most of the separation among the three groups.

The standardized discriminant function coefficients are:

$$a_1^* = (-0.0145\ 0.9969\ 0.0397\ 0.1081\)$$

 $a_2^* = (0.9319\ -0.0386\ 0.2200\ -0.0744\)$

 $\lambda_1/(\lambda_1 + \lambda_2) = 0.99$, we concentrate on a_1^* . From a_1^* (**Appendix – Figure 6**), the second and fourth variables contribute most to separate the groups.

To test the significance of two discriminant functions, we use the test statistics:

$$\Lambda_1 = \left(\frac{1}{1 + 4.6573}\right) \left(\frac{1}{1 + 0.0161}\right) = 0.17,$$

$$\Lambda_2 = \left(\frac{1}{1 + 0.0161}\right) = 0.984$$

As k=3, p=4, N-k=342-3=339. The critical value for Λ_1 is $\Lambda_{0.05,4,2,339}>\Lambda_{0.05,4,2,320}=0.952>\Lambda_1$ and for Λ_2 is $\Lambda_{0.05,3,1,338}<\Lambda_{0.05,3,1,440}=0.982<\Lambda_2$.

We reject H_0 for Λ_1 , while fail to reject H_0 for Λ_2 .

Therefore, the first discriminant function is significant, but the second discriminant function is not. The two procedures agree as to the number of important discriminant function.

Also, from the plot (**Appendix - Figure 10**), the discriminant function separates groups 1 and 2 from group 3, but the second is ineffective in separating group 1 from group 2.

3. Classification Analysis

Objective

In this section, we examine the allocation of observations to groups, which is predict aspect of discriminant analysis.

Applying technique

Based on **Appendix – Figure 7**, the linear classification functions are:

$$L_1(y) = -53.29 + 0.34y_1 + 0.074y_2 - 0.083y_3 + 0.293y_4$$

$$L_2(y) = -57.59 + 0.35y_1 + 0.083y_2 - 0.0003y_3 + 0.294y_4$$

$$L_3(y) = -42.54 + 0.352y_1 - 0.0007y_2 - 0.208y_3 + 0.272y_4$$

We note that y_1 and y_4 have essentially the same coefficients in all three function and hence do not contribute to classification of y.

To evaluate the performance of a classification procedure to predict group membership, we use the probability of misclassifications, known as the error rate. The proportion of misclassifications resulting from re-substitution is called the apparent error rate.

As we have a large sample, we prefer to use the holdout method for estimating the error rate. The classification table is shown in Appendix – **Figure 8a and 8b**.

The error rate is equal (39 + 1 + 56)/342 = 0.28

Besides, using the k-nearest neighbor method of estimating the error rate with k = 5, we have the classification table as in Appendix – **Figure 9a and 9b**.

For each point y_{ij} , i = 1,2, ; j = 1,2,...,114, we find the five nearest neighbors classify the point accordingly.

Part III: Principal Component Analysis

1. About the Dataset

The state crime dataset has information on the crime rates and totals across the United States for a wide range of years from 1960 to 2019. The data is available at https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s/2019/crime-in-the-u.s/2019/downloads/download-printable-files. Because the original dataset is large, we took random sample of only 350 observations.

2. Data summary

Items	Values
Number of rows	350
Number of columns	19
Column Type Frequency	
Categorical	0
Numeric	19

There are no categorical variables, and 19 variables measure the total numbers of crimes, including burglaries, larcenies, murder, rapes, etc., and number of reported offenses per 100,000.

3. Principal Component Analysis

Objective

Principal component analysis is concerned with explaining the variance-covariance structure of a set of variables through a few linear combinations of these variables. In the sense that p components produce the total system variability, often much of this variability can be accounted for by a small number of k of principal components. Our goal is to seek to find PCs such that as much information in the k components as there is in the original p variables. Once we find such optimal PCs, we can replace the initial p variables consisting of n observations by k principal components.

Applying technique

- The measurements of the variables on the dataset are measured on scales with widely different ranges such as variable X_1 is the population of the state, variable X_{11} to variable X_{19} records the total number of crimes committed. Also, the units of the measurement are not commensurate, for example, variable X_2 to variable X_{10} measure the rate of crime per 100000 population which its unit is very different from the rest of the variables. Thus, we decided to derive the PCs from the correlation matrix. (We could not insert the picture of correlation and covariance due to the large results. Therefore, we attached a pdf file of PCA, which includes correlation and covariance results).
- From the outputs, we can see that if using the **Covariance matrix** (**Appendix Figure 11a**), the first principal component will explain 99.98% of total sample covariance. That is not surprising because the variance of the population variable completely dominates the first principal component determined from the covariance matrix. However, the percent of variance explained by using **Correlation matrix** (**Appendix Figure 11b**) is 0.5164, 0.2376, 0.1036, 0.0536, 0.0379, 0.0168, 0.0135, 0.0077, 0.0058, 0.0035, 0.0012, 0.0011, 0.0006, 0.0003, 0.0002, 0.0001, 0.0001. We can see that the first three principal components, collectively explain 85.77% of the total sample variance. In addition, looking at the scree plot (**Appendix Figure 12**) we also see that three principal components should be the optimal numbers of PCs to retain. Consequently,

sample variation is summarized very well by three principal components and a reduction in the data from 350 observations on 19 variables to 350 observations on three principal components.

- From **Appendix Figure 13**, given the foregoing component coefficients, the first principal component appears to be essentially a similarly weighted sum of the entire total number of crimes including murder, assaults, rape, robbery, burglary, larceny, and lightly weighted by the sum of the rate of crime per 100,000 population.
- However, the second principal component is determined most heavily by the sum of rates violent in all, then by rate violent assaults, rate crime murder, rate violent robbery, rate property all, rate property larceny in order, then rate violent rape, rate property burglary, rate violent motor, and lightly weighted by the difference of the total number of crimes variables and population variables which are essentially contributed to determining the principal 1.
- The third principal component is weighted most heavily by the sum of rate violent motor, rate of property burglary, then the difference with rate property all, rate property larceny, rate violent rape, then the sum of total property motor, rate violent assault. It is lightly weighted by the difference in the total amount of violence except the total crime in property motor.

Part IV: Appendix

1. MANOVA techniques

Figure 1: Multivariate hypothesis testing

Figure 2: . Multivariate analysis of variance

	H = Type III SSCP E = Error S		itaset		
	S=2 M=0	.5 N=167			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.17395943	117.40	8	672	<.0001
Pillai's Trace	0.83910320	60.90	8	674	<.0001
Hotelling-Lawley Trace	4.67337661	195.93	8	477.68	<.0001
Roy's Greatest Root	4.65725335	392.37	4	337	<.0001
NOTE: F Sta	tistic for Roy's Gre	eatest Root i	s an upper be	ound.	

Figure 3: Eigenvalues

	Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for dataset E = Error SSCP Matrix								
			Characteristic Vector V'EV=1						
Characteristic	Root	Percent	trestbps	chol	oldpeak	thalch			
4.657	25335	99.65	-0.00004031	0.00095369	0.00204844	0.00025258			
0.016	12325	0.35	0.00259167	-0.00003688	0.01136113	-0.00017374			
0.000	00000	0.00	0.00022677	-0.00007298	0.00394680	0.00232205			
0.000	00000	0.00	-0.00111353	-0.00004991	0.05120756	0.00000000			

2. Discriminant Analysis and Classification

Figure 4: The eigenvalues of $E^{-1}H$

	Canonical	Adjusted	**	Squared Canonical	Eigenvalues of Inv(E) ³ = CanRsq/(1-CanRsq			[Test of H0: The car	nonical correlations in t	he current row	and all that fol	low are zero
	Correlation	relation		Correlation	Eigenvalue	Difference	Proportion	Cumulative	Likelihood Ratio	Approximate F Value	Num DF	Den DF	Pr>F
1	0.907323	0.906414	0.009572	0.823236	4.65 <mark>73</mark>	4.6411	0.9965	0.9965	0.17395943	117.40	8	672	<.0001
2	0.125966	0.103316	0.053294	0.015867	0.0161		0.0035	1.0000	0.98413258	1.81	3	337	0.1449

Figure 5: Raw Canonical Coefficients

Raw Canonical Coefficients					
Variable	Can1	Can2			
trestbps	0007421791	0.0477176892			
chol	0.0175593474	0006791016			
oldpeak	0.0377157324	0.2091805439			
thalch	0.0046504090	0031988202			

Figure 6: Standardized Canonical Coefficients

Pooled Within-Class Standardized Canonica Coefficients				
Variable	Can1	Can2		
trestbps	0144941614	0.9318880893		
chol	0.9968322074	0385521342		
oldpeak	0.0396663583	0.2199991848		
thalch	0.1081487713	0743909776		

Figure 7: Linear Discriminant Functions

Linear Discriminant Function for dataset							
Variable	1	2	3				
Constant	-53.29165	-57.59368	-42.54049				
trestbps	0.34047	0.35482	0.35219				
chol	0.07487	0.08316	-0.0006949				
oldpeak	-0.08317	-0.0003974	-0.20779				
thalch	0.29285	0.29412	0.27230				

Figure 8a & 8b: Classification table and error rate

Actual Group	Number of	Predicted Group				
	Observations	1	2	3		
1	114	74	39	1		
2	114	56	58	0		
3	114	0	0	114		

Number of Observations and Percent Classified into dataset						
From dataset	1	2	3	Total		
	74	39	1	114		
1	64.91	34.21	0.88	100.00		
2	56	58	0	114		
2	49.12	50.88	0.00	100.00		
3	0	0	114	114		
3	0.00	0.00	100.00	100.00		
T-4-1	130	97	115	342		
Total	38.01	28.36	33.63	100.00		
Priors	0.33333	0.33333	0.33333			

Error Count Estimates for dataset							
	1	2	3	Total			
Rate	0.3509	0.4912	0.0000	0.2807			
Priors	0.3333	0.3333	0.3333				

Figure 9a & 9b: Classification table and error rate using the k-nearest neighbor method with k=5

Actual Group	Number of	Predicted Group					
	Observations	1	2	3			
1	114	54	60	0			
2	114	50	64	0			
3	114	0	0	114			

Number of		ions and Po o dataset	ercent Clas	sified
From dataset	1	2	3	Total
1	54	60	0	114
1	47.37	52.63	0.00	100.00
2	50	64	0	114
2	43.86	56.14	0.00	100.00
2	0	0	114	114
3	0.00	0.00	100.00	100.00
Total	104	124	114	342
Total	30.41	36.26	33.33	100.00
Priors	0.33333	0.33333	0.33333	

Error Count Estimates for dataset												
	1	2	3	Total								
Rate	0.5263	0.4386	0.0000	0.3216								
Priors	0.3333	0.3333	0.3333									

Figure 10: Plot of 2 Discriminant Functions

```
Plot of Can2*Can1. Symbol is value of dataset.
Can2
  4
                                    2
              3
              3
  3
             3
                                                  1
              3
                                                        2
  2
                                          2
                                                 1
             333
                                    2
                                       1
             3
                                       12
                                                   2 2
             333
                                  21
                                       2
                                             222 2
             33
                                   21
                                               2
  1
                                1 121 2
             333
                                   2 111111
                                                          2
             3
                                                1
              3
                                   21 21 2 21
             333
                                      1
                                           2 2 1
                                 2
                                    1 2111 111
                                                            2
             33
             333
                                 1 1 212 22 22
                                                          1 1
                                                                       2
              33
                                  2 1111 1 1 121112 1
             33
                                    1 21212 1121
             3333
                                  1 1111 2 2 12
                                                                                2
                                                    22
             333
                                     11 1 121 1 2
              33
                                    1122 1111221 2 1
                                1 1221 1212122211
              33
  -1
             333
                               1 2 11 1 1
                                                                            1
              3
                                    11 1
                                          11
                                                     2
                                                               2
              333
                                    221 1 1 12
                                                    2
              3
                                    1
              3
                                      1 11
              33
                                                  1
  -2
             3
              3
                                     1
  -3
                                             2
                   -2
                                           Can1
```

3. Principal Component Analysis

Figure 11a & 11b: Eigenvalues of Covariance and Correlation Matrix

	Eigenva	alues of the Co	variance Matr	ix		Eigenvalues of the Correlation Matrix							
	Eigenvalue	Difference	Proportion	Cumulative			Eigenvalue	Difference	Proportion	Cumulativ			
1	1.14042E15	1.14022E15	0.9998	98 0.9998		1	9.81236807	5.29734640	0.5164	0.516			
2	1.9973E11	1.88772E11	0.0002	1.0000		2	4.51502167	2.54623674	0.2376	0.754			
3	1.09585E10	9777150702	0.0000	00 1.0000		3	1.96878493	0.95044130	0.1036	0.857			
4	1181372145	845897904	0.0000	1.0000		4	1.01834363	0.29828268	0.0536	0.911			
5	335474240	231800233	0.0000	1.0000		5	0.72006095	0.40078675	0.0379	0.949			
6	103674008	83887075.2	0.0000	1.0000		6	0.31927421	0.06275706	0.0168	0.966			
7	19786932.6	15561495.5	0.0000	1.0000		7	0.25651715	0.11098271	0.0135	0.979			
8	4225437.09	1754016.32	0.0000	1.0000		8	0.14553443	0.03555759	0.0077	0.987			
9	2471420.78	2020970.95	0.0000	0.0000 1.0000		9	0.10997684	0.04281158	0.0058	0.992			
10	450449.82	180755.444	0.0000	1.0000	1	0	0.06716526	0.04406513	0.0035	0.996			
11	269694.376	223112.082	0.0000	1.0000	1	1	0.02310013	0.00257193	0.0012	0.997			
12	46582.2941	10030.1953	0.0000	1.0000	1	2	0.02052820	0.00963832	0.0011	0.998			
13	36552.0989	14519.474	0.0000	1.0000	1	3	0.01088988	0.00515807	0.0006	0.999			
14	22032.6249	10871.6798	0.0000	1.0000	1	4	0.00573181	0.00197567	0.0003	0.999			
15	11160.945	8616.22527	0.0000	1.0000	1	5	0.00375614	0.00228810	0.0002	0.999			
16	2544.71975	2353.96032	0.0000	1.0000	1	6	0.00146805	0.00014086	0.0001	0.999			
17	190.759436	190.759436	0.0000	1.0000	1	7	0.00132719	0.00119067	0.0001	1.000			
18	0	0	0.0000	1.0000	_	8	0.00013652	0.00012158	0.0000	1.000			
19	0		0.0000	1.0000	_	9	0.0001494	2.300.2.00	0.0000	1.000			

Figure 12: Scree Plot

Figure 13: Eigenvectors

Eigenvectors																			
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13	Prin14	Prin15	Prin16	Prin17	Prin18	Prin19
x1	0.306334	081695	019617	012993	038300	0.071031	008956	0.453048	044259	0.368398	0.374867	113485	0.383332	0.428486	0.059306	042756	0.228561	0.088626	004699
x2	0.053936	0.363925	287115	0.342575	0.332121	0.042733	042812	0.025376	0.088892	044827	0.107137	0.675005	0.168784	0.060602	194506	0.020998	037545	033894	015341
х3	0.030222	0.185361	0.549582	0.255499	0.402492	0.183940	0.197618	0.082896	566555	093053	095532	095672	0.021261	005646	0.072824	005672	0.042552	0.008103	0.005622
x4	0.052210	0.347879	283156	0.451032	0.238457	0.010418	006251	0.004664	0.323118	0.142991	105605	601439	151782	004366	0.116673	008356	0.008574	0.031302	0.009506
x5	0.028592	0.100156	0.662601	005054	0.099400	269853	115507	0.180800	0.624260	079148	0.104476	0.096052	031992	0.003762	0.045673	0.000377	044855	009710	0.004283
x6	0.086631	0.427748	0.073953	184748	180468	281781	0.026144	0.017867	147259	0.065457	031764	194881	028614	0.059659	764718	000536	0.007638	0.006806	052155
x7	0.080980	0.397375	106699	085211	274689	441159	0.531413	0.093004	100313	079579	0.053933	0.118256	028938	046259	0.465210	011982	0.042712	009298	0.031995
x8	0.038936	0.334348	0.000411	552783	0.127653	0.631475	0.291882	053287	0.267079	018233	021387	021373	0.033734	0.010127	0.023852	0.059147	0.011666	0.003554	0.000990
x9	0.042578	0.262816	0.214313	0.385720	711932	0.404745	177817	140489	0.008748	008801	0.020716	0.071028	0.041387	0.020790	0.067254	006220	005928	000551	0.003541
x10	0.074737	0.386596	028670	339626	0.108721	104627	717194	042887	235148	0.088431	0.010932	006258	0.012549	097935	0.335508	056828	021090	0.003144	0.023349
x11	0.314858	047589	048141	0.020866	0.018529	0.028916	027700	050195	0.021597	358619	0.233095	034208	024100	357510	088469	127455	0.301876	0.635441	0.243768
x12	0.307038	051498	0.082064	0.023068	0.081690	018013	0.100928	428362	066587	0.292291	0.583576	020101	219384	106437	0.007444	0.247931	370907	048295	058394
x13	0.315258	053490	044558	0.021187	0.005907	0.032588	018240	0.020996	0.028806	263153	0.157303	121634	0.175840	374462	049458	181566	0.267612	694261	153819
x14	0.299545	058828	0.132475	000299	0.057765	130969	0.087792	534837	0.098591	0.414301	424715	0.128423	0.236403	0.011936	0.039101	155579	0.330932	0.063575	038121
x15	0.316894	049040	017390	006494	015659	025472	010774	0.014975	0.005923	114128	221300	046342	0.184879	0.104447	025852	0.170359	317832	199134	0.784832
x16	0.315563	050843	037386	001442	030535	016869	0.010919	0.099158	0.018211	190529	242130	086187	0.400442	103303	0.038427	031591	569744	0.233711	479426
x17	0.316030	049507	021775	027212	0.008315	0.079247	0.010009	0.052412	019285	055559	061374	0.111572	511605	0.320110	001088	684410	179736	050990	007465
x18	0.307299	067091	012082	0.012824	068373	0.101537	014834	0.467579	019577	0.356225	295936	0.197387	386188	401057	034374	0.308519	0.062673	0.003293	053007
x19	0.314620	033185	037542	016861	0.013853	043809	108808	131139	005188	416904	113630	005494	233364	0.482112	0.059933	0.512066	0.261274	025652	242234

4. Code

Part 1

```
PROC IMPORT DATAFILE='/home/u61416483/Project/data_official_balanced.csv'
    DBMS=CSV
    OUT=WORK.IMPORT
    REPLACE:
    GETNAMES=YES;
PROC IML;
 USE WORK. IMPORT;
  READ ALL VAR {trestbps chol oldpeak thalch} INTO X;
 X1 = X[1:171,];
 X2 = X[172:342,];
 RESET PRINT;
 N1 = NROW(X1);
 N2 = NROW(X2);
 X1BAR = 1/N1*X1`*J(N1,1);
 X2BAR = 1/N2*X2`*J(N2,1);
 S1 = 1/(N1-1)*X1`*(I(N1)-1/N1*J(N1))*X1;
 S2 = 1/(N2-1)*X2`*(I(N2)-1/N2*J(N2))*X2;
 Spl = 1/(N1+N2-2)*((N1-1)*S1+(N2-1)*S2);
T2 = N1*N2/(N1+N2)*(X1BAR-X2BAR)`*INV(Spl)*(X1BAR-X2BAR);
RUN;
```

```
TITLE 'MANOVA';
DATA HEART;
PROC IMPORT DATAFILE='/home/u61416483/Project/data_official_balanced.csv'
    DBMS=CSV
    OUT=HEART
    REPLACE;
    GETNAMES=YES;
PROC GLM;
 CLASS dataset;
 MODEL trestbps chol oldpeak thalch = dataset;
 MANOVA H=dataset/PRINTE PRINTH;
RUN;
Part 2
     /* FINAL PROJECT */
    □ DATA UCIHeartDisease;
       INFILE 'UCIsubsample3.dat';
       INPUT dataset trestbps chol oldpeak thalch;
     RUN;
    □ PROC FORMAT;
       VALUE dataset 1 = 'Cleveland' 2 = 'Hungary' 3 = 'Switzerland';
     RUN;
     TITLE 'FinalProject';
    □ PROC CANDISC OUT=CAND;
       CLASS dataset;
     RUN;
    □ PROC PRINT DATA=CAND;
     RUN:
     TITLE 'FinalProject2';
    □ PROC PLOT DATA=CAND;
       PLOT CAN2*CAN1=dataset;
```

RUN;

```
/* FINAL PROJECT - Classification Analysis */
    □ DATA UCIHeartDisease;
       INFILE 'UCIsubsample3.dat';
       INPUT dataset trestbps chol oldpeak thalch;
    □ PROC discrim data = UCIHeartDisease oustat=ftstat
     method = NORMAL pool = yes list crossvalidate;
     class dataset;
     var trestbps chol oldpeak thalch;
    □proc discrim data = UCIHeartDisease oustat = ftstat
     method = NORMAL pool = NO list crossvalidate;
     class dataset;
     var trestbps chol oldpeak thalch;
    □proc discrim data = UCIHeartDisease oustat = ftstat
     method = npar k=5 pool = yes list crossvalidate;
     class dataset;
     var trestbps chol oldpeak thalch;
Part 3
PROC IMPORT DATAFILE='/home/u61416483/Project/state crime sample.csv'
   DBMS=CSV
   OUT=WORK.IMPORT
   REPLACE;
proc princomp cov;
 var x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19;
proc princomp out = crime component;
```

var x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19;

run;