SECTION 1 (Maximum Marks: 18)

- This section contains SIX (06) guestions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks -1 In all other cases.

Q.1 A football of radius R is kept on a hole of radius r(r < R) made on a plank kept horizontally. One end of the plank is now lifted so that it gets tilted making an angle θ from the horizontal as shown in the figure below. The maximum value of θ so that the football does not start rolling down the plank satisfies (figure is schematic and not drawn to scale)

- (A) $\sin\theta = \frac{r}{R}$ (B) $\tan\theta = \frac{r}{R}$
- (C) $\sin\theta = \frac{r}{2R}$
- (D) $\cos\theta = \frac{r}{2R}$

0.2 A light disc made of aluminium (a nonmagnetic material) is kept horizontally and is free to rotate about its axis as shown in the figure. A strong magnet is held vertically at a point above the disc away from its axis. On revolving the magnet about the axis of the disc, the disc will (figure is schematic and not drawn to scale)

- (A) rotate in the direction opposite to the direction of magnet's motion
- (B) rotate in the same direction as the direction of magnet's motion
- (C) not rotate and its temperature will remain unchanged
- (D) not rotate but its temperature will slowly rise

Q.3 A small roller of diameter 20 cm has an axle of diameter 10 cm (see figure below on the left). It is on a horizontal floor and a meter scale is positioned horizontally on its axle with one edge of the scale on top of the axle (see figure on the right). The scale is now pushed slowly on the axle so that it moves without slipping on the axle, and the roller starts rolling without slipping. After the roller has moved 50 cm, the position of the scale will look like (figures are schematic and not drawn to scale)

(C)
$$x = 0 \quad x = 25 \text{ cm}$$
 $x = 0 \quad x = 100 \text{ cm}$

Q.4 A circular coil of radius R and N turns has negligible resistance. As shown in the schematic figure, its two ends are connected to two wires and it is hanging by those wires with its plane being vertical. The wires are connected to a capacitor with charge Q through a switch. The coil is in a horizontal uniform magnetic field B_0 parallel to the plane of the coil. When the switch is closed, the capacitor gets discharged through the coil in a very short time. By the time the capacitor is discharged fully, magnitude of the angular momentum gained by the coil will be (assume that the discharge time is so short that the coil has hardly rotated during this time)

- (A) $\frac{\pi}{2}NQB_{o}R^{2}$ (B) $\pi NQB_{o}R^{2}$ (C) $2\pi NQB_{o}R^{2}$ (D) $4\pi NQB_{o}R^{2}$

Q.5 A parallel beam of light strikes a piece of transparent glass having cross section as shown in the figure below. Correct shape of the emergent wavefront will be (figures are schematic and not drawn to scale)

Q.6 An open-ended U-tube of uniform cross-sectional area contains water (density 10^3kg m^{-3}). Initially the water level stands at 0.29 m from the bottom in each arm. Kerosene oil (a water-immiscible liquid) of density 800 kg m^{-3} is added to the left arm until its length is 0.1 m, as shown in the schematic figure below. The ratio $\left(\frac{h_1}{h_2}\right)$ of the heights of the liquid in the two arms is

- $(A)\frac{15}{14}$
- (B) $\frac{35}{33}$
- (C) $\frac{7}{6}$
- (D) $\frac{5}{4}$

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are

correct;

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

Q.7 A particle of mass m moves in circular orbits with potential energy V(r) = Fr, where F is a positive constant and r is its distance from the origin. Its energies are calculated using the Bohr model. If the radius of the particle's orbit is denoted by R and its speed and energy are denoted by V and E, respectively, then for the nth orbit (here P is the Planck's constant)

(A) $R \propto n^{1/3}$ and $v \propto n^{2/3}$

(B) $R \propto n^{2/3}$ and $v \propto n^{1/3}$

(C) $E = \frac{3}{2} \left(\frac{n^2 h^2 F^2}{4\pi^2 m} \right)^{1/3}$

(D) $E = 2 \left(\frac{n^2 h^2 F^2}{4\pi^2 m} \right)^{1/3}$

Q.8 The filament of a light bulb has surface area 64 mm². The filament can be considered as a black body at temperature 2500 K emitting radiation like a point source when viewed from far. At night the light bulb is observed from a distance of 100 m. Assume the pupil of the eyes of the observer to be circular with radius 3 mm. Then

(Take Stefan-Boltzmann constant = $5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$, Wien's displacement constant = $2.90 \times 10^{-3} \text{ m-K}$, Planck's constant = $6.63 \times 10^{-34} \text{ Js}$, speed of light in vacuum = $3.00 \times 10^{8} \text{ ms}^{-1}$)

- (A) power radiated by the filament is in the range 642 W to 645 W
- (B) radiated power entering into one eye of the observer is in the range 3.15×10^{-8} W to 3.25×10^{-8} W
- (C) the wavelength corresponding to the maximum intensity of light is 1160 nm
- (D) taking the average wavelength of emitted radiation to be 1740 nm, the total number of photons entering per second into one eye of the observer is in the range 2.75×10^{11} to 2.85×10^{11}

JEE (Advanced) 2020

Q.9 Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity X as follows: [position] = $[X^{\alpha}]$; [speed] = $[X^{\beta}]$; [acceleration] = $[X^{\alpha}]$; [linear momentum] = $[X^{\alpha}]$; [force] = $[X^{\alpha}]$. Then

(A)
$$\alpha + p = 2\beta$$

(B)
$$p + q - r = \beta$$

(C)
$$p - q + r = \alpha$$

(D)
$$p + q + r = \beta$$

Q.10 A uniform electric field, $\vec{E} = -400\sqrt{3}\hat{y}$ NC⁻¹ is applied in a region. A charged particle of mass m carrying positive charge q is projected in this region with an initial speed of $2\sqrt{10} \times 10^6$ ms⁻¹. This particle is aimed to hit a target T, which is 5 m away from its entry point into the field as shown schematically in the figure. Take $\frac{q}{m} = 10^{10}$ Ckg⁻¹. Then

- (A) the particle will hit T if projected at an angle 45° from the horizontal
- (B) the particle will hit T if projected either at an angle 30° or 60° from the horizontal
- (C) time taken by the particle to hit T could be $\sqrt{\frac{5}{6}}$ μs as well as $\sqrt{\frac{5}{2}}$ μs
- (D) time taken by the particle to hit T is $\sqrt{\frac{5}{3}} \mu s$

Q.11 Shown in the figure is a semicircular metallic strip that has thickness t and resistivity ρ . Its inner radius is R_1 and outer radius is R_2 . If a voltage V_0 is applied between its two ends, a current I flows in it. In addition, it is observed that a transverse voltage ΔV develops between its inner and outer surfaces due to purely kinetic effects of moving electrons (ignore any role of the magnetic field due to the current). Then (figure is schematic and not drawn to scale)

(A)
$$I = \frac{V_0 t}{\pi \rho} \ln \left(\frac{R_2}{R_1}\right)$$

- (B) the outer surface is at a higher voltage than the inner surface
- (C) the outer surface is at a lower voltage than the inner surface
- (D) $\Delta V \propto I^2$

Q.12 As shown schematically in the figure, two vessels contain water solutions (at temperature T) of potassium permanganate (KMnO₄) of different concentrations n_1 and n_2 ($n_1 > n_2$) molecules per unit volume with $\Delta n = (n_1 - n_2) \ll n_1$. When they are connected by a tube of small length l and cross-sectional area S, KMnO₄ starts to diffuse from the left to the right vessel through the tube. Consider the collection of molecules to behave as dilute ideal gases and the difference in their partial pressure in the two vessels causing the diffusion. The speed v of the molecules is limited by the viscous force $-\beta v$ on each molecule, where β is a constant. Neglecting all terms of the order $(\Delta n)^2$, which of the following is/are correct? (k_B is the Boltzmann constant)

- (A) the force causing the molecules to move across the tube is Δnk_BTS
- (B) force balance implies $n_1 \beta v l = \Delta n k_B T$
- (C) total number of molecules going across the tube per sec is $\left(\frac{\Delta n}{l}\right)\left(\frac{k_BT}{\beta}\right)S$
- (D) rate of molecules getting transferred through the tube does not change with time

SECTION 3 (Maximum Marks: 24)

This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.

- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered;

Zero Marks : 0 In all other cases.

Q.13 Put a uniform meter scale horizontally on your extended index fingers with the left one at 0.00 cm and the right one at 90.00 cm. When you attempt to move both the fingers slowly towards the center, initially only the left finger slips with respect to the scale and the right finger does not. After some distance, the left finger stops and the right one starts slipping. Then the right finger stops at a distance x_R from the center (50.00 cm) of the scale and the left one starts slipping again. This happens because of the difference in the frictional forces on the two fingers. If the coefficients of static and dynamic friction between the fingers and the scale are 0.40 and 0.32, respectively, the value of x_R (in cm) is ______.

Q.14 When water is filled carefully in a glass, one can fill it to a height *h* above the rim of the glass due to the surface tension of water. To calculate *h* just before water starts flowing, model the shape of the water above the rim as a disc of thickness *h* having semicircular edges, as shown schematically in the figure. When the pressure of water at the bottom of this disc exceeds what can be withstood due to the surface tension, the water surface breaks near the rim and water starts flowing from there. If the density of water, its surface tension and the acceleration due to gravity are 10³ kg m⁻³, 0.07 Nm⁻¹ and 10 ms⁻², respectively, the value of *h* (in mm) is _______.

JEE (Advanced) 2020

Q.15 One end of a spring of negligible unstretched length and spring constant k is fixed at the origin (0,0). A point particle of mass m carrying a positive charge q is attached at its other end. The entire system is kept on a smooth horizontal surface. When a point dipole \vec{p} pointing towards the charge q is fixed at the origin, the spring gets stretched to a length l and attains a new equilibrium position (see figure below). If the point mass is now displaced slightly by $\Delta l \ll l$ from its equilibrium position and released, it is found to oscillate at frequency $\frac{1}{\delta} \sqrt{\frac{k}{m}}$. The value of δ is ______.

- Q.16 Consider one mole of helium gas enclosed in a container at initial pressure P_1 and volume V_1 . It expands isothermally to volume $4V_1$. After this, the gas expands adiabatically and its volume becomes $32V_1$. The work done by the gas during isothermal and adiabatic expansion processes are W_{iso} and W_{adia} , respectively. If the ratio $\frac{W_{iso}}{W_{adia}} = f \ln 2$, then f is ______.
- Q.17 A stationary tuning fork is in resonance with an air column in a pipe. If the tuning fork is moved with a speed of 2 ms⁻¹ in front of the open end of the pipe and parallel to it, the length of the pipe should be changed for the resonance to occur with the moving tuning fork. If the speed of sound in air is 320 ms⁻¹, the smallest value of the percentage change required in the length of the pipe is

Q.18 A circular disc of radius R carries surface charge density $\sigma(r) = \sigma_0 \left(1 - \frac{r}{R}\right)$, where σ_0 is a constant and r is the distance from the center of the disc. Electric flux through a large spherical surface that encloses the charged disc completely is ϕ_0 . Electric flux through another spherical surface of radius $\frac{R}{4}$ and concentric with the disc is ϕ . Then the ratio $\frac{\phi_0}{\phi}$ is _____.

END OF THE QUESTION PAPER

SECTION 1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct integer is entered;

Zero Marks : 0 If the question is unanswered;

Negative Marks : -1 In all other cases.

Q.1 A large square container with thin transparent vertical walls and filled with water $\left(\text{refractive index } \frac{4}{3}\right)$ is kept on a horizontal table. A student holds a thin straight wire vertically inside the water 12 cm from one of its corners, as shown schematically in the figure. Looking at the wire from this corner, another student sees two images of the wire, located symmetrically on each side of the line of sight as shown. The separation (in cm) between these images is ______.

Q.2 A train with cross-sectional area S_t is moving with speed v_t inside a long tunnel of cross-sectional area S_0 ($S_0 = 4S_t$). Assume that almost all the air (density ρ) in front of the train flows back between its sides and the walls of the tunnel. Also, the air flow with respect to the train is steady and laminar. Take the ambient pressure and that inside the train to be p_0 . If the pressure in the region between the sides of the train and the tunnel walls is p, then $p_0 - p = \frac{7}{2N}\rho v_t^2$. The value of N is ______.

Q.3 Two large circular discs separated by a distance of 0.01 m are connected to a battery via a switch as shown in the figure. Charged oil drops of density 900 kg m⁻³ are released through a tiny hole at the center of the top disc. Once some oil drops achieve terminal velocity, the switch is closed to apply a voltage of 200 V across the discs. As a result, an oil drop of radius 8×10^{-7} m stops moving vertically and floats between the discs. The number of electrons present in this oil drop is ______. (neglect the buoyancy force, take acceleration due to gravity = 10 ms⁻² and charge on an electron (e) = 1.6×10^{-19} C)

Q.4 A hot air balloon is carrying some passengers, and a few sandbags of mass 1 kg each so that its total mass is 480 kg. Its effective volume giving the balloon its buoyancy is V. The balloon is floating at an equilibrium height of 100 m. When N number of sandbags are thrown out, the balloon rises to a new equilibrium height close to 150 m with its volume V remaining unchanged. If the variation of

the density of air with height h from the ground is $\rho(h) = \rho_0 e^{-\frac{h}{h_0}}$, where $\rho_0 = 1.25 \text{ kg m}^{-3}$ and $h_0 = 6000 \text{ m}$, the value of N is _____.

Q.5 A point charge q of mass m is suspended vertically by a string of length l. A point dipole of dipole moment \vec{p} is now brought towards q from infinity so that the charge moves away. The final equilibrium position of the system including the direction of the dipole, the angles and distances is shown in the figure below. If the work done in bringing the dipole to this position is $N \times (mgh)$, where g is the acceleration due to gravity, then the value of N is ________. (Note that for three coplanar forces keeping a point mass in equilibrium, $\frac{F}{\sin\theta}$ is the same for all forces, where F is any one of the forces and θ is the angle between the other two forces)

Q.6 A thermally isolated cylindrical closed vessel of height 8 m is kept vertically. It is divided into two equal parts by a diathermic (perfect thermal conductor) frictionless partition of mass 8.3 kg. Thus the partition is held initially at a distance of 4 m from the top, as shown in the schematic figure below. Each of the two parts of the vessel contains 0.1 mole of an ideal gas at temperature 300 K. The partition is now released and moves without any gas leaking from one part of the vessel to the other. When equilibrium is reached, the distance of the partition from the top (in m) will be _____ (take the acceleration due to gravity = 10 ms⁻² and the universal gas constant = 8.3 J mol⁻¹K⁻¹).

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are

correct;

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

Q.7 A beaker of radius r is filled with water (refractive index $\frac{4}{3}$) up to a height H as shown in the figure on the left. The beaker is kept on a horizontal table rotating with angular speed ω . This makes the water surface curved so that the difference in the height of water level at the center and at the circumference of the beaker is h ($h \ll H$, $h \ll r$), as shown in the figure on the right. Take this surface to be approximately spherical with a radius of curvature R. Which of the following is/are correct? (g is the acceleration due to gravity)

$$(A) R = \frac{h^2 + r^2}{2h}$$

(B)
$$R = \frac{3r^2}{2h}$$

- (C) Apparent depth of the bottom of the beaker is close to $\frac{3H}{2} \left(1 + \frac{\omega^2 H}{2g} \right)^{-1}$
- (D) Apparent depth of the bottom of the beaker is close to $\frac{3H}{4} \left(1 + \frac{\omega^2 H}{4g} \right)^{-1}$

Q.8 A student skates up a ramp that makes an angle 30° with the horizontal. He/she starts (as shown in the figure) at the bottom of the ramp with speed v_0 and wants to turn around over a semicircular path xyz of radius R during which he/she reaches a maximum height h (at point y) from the ground as shown in the figure. Assume that the energy loss is negligible and the force required for this turn at the highest point is provided by his/her weight only. Then (g is the acceleration due to gravity)

(A)
$$v_0^2 - 2gh = \frac{1}{2}gR$$

(B)
$$v_0^2 - 2gh = \frac{\sqrt{3}}{2}gR$$

- (C) the centripetal force required at points x and z is zero
- (D) the centripetal force required is maximum at points x and z

Q.9 A rod of mass m and length L, pivoted at one of its ends, is hanging vertically. A bullet of the same mass moving at speed v strikes the rod horizontally at a distance x from its pivoted end and gets embedded in it. The combined system now rotates with angular speed ω about the pivot. The maximum angular speed ω_M is achieved for $x = x_M$. Then

(A)
$$\omega = \frac{3vx}{L^2 + 3x^2}$$

$$(B) \omega = \frac{12vx}{L^2 + 12x^2}$$

(C)
$$x_M = \frac{L}{\sqrt{3}}$$

(D)
$$\omega_M = \frac{v}{2L} \sqrt{3}$$

Q.10 In an X-ray tube, electrons emitted from a filament (cathode) carrying current I hit a target (anode) at a distance d from the cathode. The target is kept at a potential V higher than the cathode resulting in emission of continuous and characteristic X-rays. If the filament current I is decreased to $\frac{I}{2}$, the potential difference V is increased to 2V, and the separation distance d is reduced to $\frac{d}{2}$, then

- (A) the cut-off wavelength will reduce to half, and the wavelengths of the characteristic X-rays will remain the same
- (B) the cut-off wavelength as well as the wavelengths of the characteristic X-rays will remain the same
- (C) the cut-off wavelength will reduce to half, and the intensities of all the X-rays will decrease
- (D) the cut-off wavelength will become two times larger, and the intensity of all the X-rays will decrease

Q.11 Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is α . The spheres are now immersed in a dielectric liquid of density 800 kg m⁻³ and dielectric constant 21. If the angle between the strings remains the same after the immersion, then

- (A) electric force between the spheres remains unchanged
- (B) electric force between the spheres reduces
- (C) mass density of the spheres is 840 kg m^{-3}
- (D) the tension in the strings holding the spheres remains unchanged
- Q.12 Starting at time t = 0 from the origin with speed 1 ms^{-1} , a particle follows a two-dimensional trajectory in the x-y plane so that its coordinates are related by the equation $y = \frac{x^2}{2}$. The x and y components of its acceleration are denoted by a_x and a_y , respectively. Then
 - (A) $a_x = 1 \text{ ms}^{-2}$ implies that when the particle is at the origin, $a_y = 1 \text{ ms}^{-2}$
 - (B) $a_x = 0$ implies $a_y = 1 \text{ ms}^{-2}$ at all times
 - (C) at t = 0, the particle's velocity points in the x-direction
 - (D) $a_x = 0$ implies that at t = 1 s, the angle between the particle's velocity and the x axis is 45°

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If ONLY the correct numerical value is entered;

Zero Marks : 0 In all other cases.

- Q.13 A spherical bubble inside water has radius R. Take the pressure inside the bubble and the water pressure to be p_0 . The bubble now gets compressed radially in an adiabatic manner so that its radius becomes (R a). For $a \ll R$ the magnitude of the work done in the process is given by $(4\pi p_0 R a^2)X$, where X is a constant and $\gamma = C_p/C_V = 41/30$. The value of X is ______.
- Q.14 In the balanced condition, the values of the resistances of the four arms of a Wheatstone bridge are shown in the figure below. The resistance R_3 has temperature coefficient 0.0004 °C⁻¹. If the temperature of R_3 is increased by 100 °C, the voltage developed between S and T will be ______ volt.

- Q.15 Two capacitors with capacitance values $C_1 = 2000 \pm 10 \text{ pF}$ and $C_2 = 3000 \pm 15 \text{ pF}$ are connected in series. The voltage applied across this combination is $V = 5.00 \pm 0.02 \text{ V}$. The percentage error in the calculation of the energy stored in this combination of capacitors is _____.
- Q.16 A cubical solid aluminium (bulk modulus = $-V \frac{dP}{dV} = 70$ GPa) block has an edge length of 1 m on the surface of the earth. It is kept on the floor of a 5 km deep ocean. Taking the average density of water and the acceleration due to gravity to be 10^3 kg m⁻³ and 10 ms⁻², respectively, the change in the edge length of the block in mm is _____.

Q.17 The inductors of two *LR* circuits are placed next to each other, as shown in the figure. The values of the self-inductance of the inductors, resistances, mutual-inductance and applied voltages are specified in the given circuit. After both the switches are closed simultaneously, the total work done by the batteries against the induced *EMF* in the inductors by the time the currents reach their steady state values is _____ mJ.

Q.18 A container with 1 kg of water in it is kept in sunlight, which causes the water to get warmer than the surroundings. The average energy per unit time per unit area received due to the sunlight is 700 Wm^{-2} and it is absorbed by the water over an effective area of 0.05 m^2 . Assuming that the heat loss from the water to the surroundings is governed by Newton's law of cooling, the difference (in °C) in the temperature of water and the surroundings after a long time will be _______. (Ignore effect of the container, and take constant for Newton's law of cooling = 0.001 s^{-1} , Heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$)

END OF THE QUESTION PAPER