# Introduction to Applied Statistics STAT 5005

Lecture 6: Inferences about More Than Two Population Central Values (Chapter 8) / Multiple Comparisons (Chapter 9)

Jingyu Sun

Fall 2021

ANOVA for a Completely Randomized Design

Checking ANOVA Assumptions

Multiple Comparisons (Chapter 9)

ANOVA for a Completely Randomized Design

- ► In Lecture 5, we presented a method for testing the equality of two population means
- ► We wish to extend this method to test the equality of more than two population means

# Example

- We wish to compare the mean hourly wage for farm laborers from three different classifications (union-documented, nonunion-documented, nonunion-undocumented)
- ► Independent random samples of farm laborers would be selected from each of the three classifications
- ► How do we determine the size of difference in the sample means necessary for us to state with some degree of certainty that the population means are different?
- ► The statistical procedure called **Analysis of Variance** (ANOVA) will provide us with the answer to this question

► Table 8.1: Data set 1

| Sample 1 | Sample 2 | Sample 3 |
|----------|----------|----------|
| 5.90     | 5.51     | 5.01     |
| 5.92     | 5.50     | 5.00     |
| 5.91     | 5.50     | 4.99     |
| 5.89     | 5.49     | 4.98     |
| 5.88     | 5.50     | 5.02     |
|          |          |          |

#### ► Table 8.2: Data set 2

| Sample 1 | Sample 2 | Sample 3 |
|----------|----------|----------|
| 5.90     | 6.31     | 4.52     |
| 4.42     | 3.54     | 6.93     |
| 7.51     | 4.73     | 4.48     |
| 7.89     | 7.20     | 5.55     |
| 3.78     | 5.72     | 3.52     |

- ▶ Sample means for both data sets:  $\bar{y}_{1\bullet}=5.90, \bar{y}_{2\bullet}=5.50, \bar{y}_{3\bullet}=5.00$
- ▶ Draw the corresponding dot diagrams for both data sets
- ▶ Which data set presents sufficient evidence to indicate differences among the three population means?

# Dot Diagrams



# Completely Randomized Design

- The experimental setting in which a random sample of observations is taken from each of t different populations is called a completely randomized design
- Example: College students from five regions of the United States (northeast, southeast, midwest, southwest, and west-were) interviewed to determine their attitudes toward industrial pollution
- ▶ Each student selected was asked a set of questions related to the impact on economic development of proposed federal restrictions on air and water pollution. A total score reflecting each student's responses was then produced.
- ▶ 250 students are randomly selected in each of the five regions
- ► We want to know if there are significant differences among the mean scores for the five regions

|                                               |                              | 1                              | Population | 1                              |                                |
|-----------------------------------------------|------------------------------|--------------------------------|------------|--------------------------------|--------------------------------|
|                                               | I                            | II                             | Ш          | IV                             | V                              |
| Sample mean<br>Sample variance<br>Sample size | $\overline{y}_1$ $s_1^2$ 250 | $\frac{\overline{y}_2}{s_2^2}$ |            | $\frac{\overline{y}_4}{s_4^2}$ | $\frac{\overline{y}_5}{s_5^2}$ |

- ► The analysis of variance (ANOVA) procedures are developed under the following conditions:
- 1. Each of the five populations has a normal distribution
- 2. The variances of the five populations are equal:

$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \sigma^2$$

- 3. The five sets of measurements are independent random samples from their respective populations
- ▶ What would be an estimate for the variance between samples?
- What would be a sensible estimate for the common variance  $\sigma_2^2$ ?

# Notation Needed for the ANOVA of a Completely Randomized Design

### Suppose there are t different populations

- $ightharpoonup y_{ij}$ : The jth sample observation selected from population i
- $lackbox{$>$}$   $n_i$ : The number of sample observations selected from population i
- $ightharpoonup n_T$ : The total sample size  $n_T = \sum_{i=1}^t n_i$
- ▶  $\bar{y}_{i\bullet}$ : The average of the  $n_i$  sample observations drawn from population i,  $\bar{y}_{i\bullet} = \sum_{j=1}^{n_i} y_{ij}/n_i$
- ▶  $\bar{y}_{\bullet \bullet}$ : The average of all sample observations, also called **overall** mean,  $\bar{y}_{\bullet \bullet} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} y_{ij}/n_T$
- Example: Give the values of  $t, n_i, n_T, \bar{y}_{i\bullet}$  for the pollution perception survey

# Sums of Squares

Let  $s_T^2$  be the sample variance of the  $n_T$ . The **total sum of** squares (TSS) of the measurements about the overall mean is

$$TSS = \sum_{i=1}^{t} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_{\bullet \bullet})^2 = (n_T - 1)s_T^2$$

▶ A measure of the within-sample variability is given by the within-sample sum of squares (SSW), also called error sum of squares

$$SSW = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\bullet})^2 = \sum_{i=1}^{t} (n_i - 1)s_i^2$$

▶ A measure of the between-sample variability is given by the between-sample sum of squares (SSB), also called treatment sum of squares

$$SSB = \sum_{i=1}^{t} n_i (\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet})^2$$

# Partition and Mean Squares

▶ It is possible to partition the total sum of squares as follows:

$$TSS = SSW + SSB$$

An estimate of the common variance is the mean square within samples, also called mean square error is

$$s_W^2 = \frac{SSW}{n_T - t}$$

► An estimate of the variance between samples is the **mean** square between samples, also called treatment mean square is

$$s_B^2 = \frac{SSB}{t-1}$$

# Hypothesis Testing for ANOVA

▶ An analysis of variance for a completely randomized design with t populations has the following null and alternative hypotheses:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_t$$
  $H_a:$  at least one of the  $\mu_i$ 's differs from the rest

- ▶ The test statistic is  $F = s_B^2/s_W^2$
- ▶ For a fixed level of significance  $\alpha$ , reject  $H_0$  if  $F > F_\alpha$  for an F distribution with  $df_1 = t-1$  and  $df_2 = n_T t$  degrees of freedom

## **ANOVA Table**

#### We summarize the results of a study in an ANOVA table

| Source          | Deg. of Freedom | Sum of Sq. | Mean Sq.      | F             |
|-----------------|-----------------|------------|---------------|---------------|
| Between samples | t-1             | SSB        | SSB/(t-1)     | $s_B^2/s_W^2$ |
| Within samples  | $n_T - t$       | SSW        | $SSW/(n_T-t)$ | <i>D</i>      |
| Total           | $n_T - 1$       | TSS        |               |               |

# Example

An educator wishes to conduct a study to find out whether the difficulty levels of different majors are the same. For such a study, a random sample of major grade point averages (GPA) of 11 graduating seniors at a large university is selected for each of the four majors mathematics, English, education, and biology.

- ▶ Mathematics: sample mean 2.90, sample variance 0.188
- English: sample mean 3.34, sample variance 0.148
- Education: sample mean 3.36, sample variance 0.229
- ▶ Biology: sample mean 3.02, sample variance 0.157

Test, at the 5% level of significance, whether the data contain sufficient evidence to conclude that there are differences among the average major GPAs of these four majors

# Example

The National Transportation Safety Board (NTSB) wants to examine the safety of compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the car types. The data provided below give the pressure applied to the driver's head during a crash test for each type of car.

| Compact | Midsize | Full-size |
|---------|---------|-----------|
| 643     | 469     | 484       |
| 655     | 427     | 456       |
| 702     | 525     | 402       |
| 573     |         | 512       |

Test, at the 1% level of significance, whether the data contain sufficient evidence to conclude that there are differences among the mean pressures for the three car classifications

# Performing ANOVA using R

## Residuals 8 19970 2496

## ---

```
# Download the file "cars.csv" and load data into R
df.car <- read.csv("cars.csv")
df.car$carsize <- as.factor(df.car$carsize) # convert to factor
fit <- aov(pressure ~ carsize , data=df.car)
summary(fit)
## Df Sum Sq Mean Sq F value Pr(>F)
```

## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

## carsize 2 78482 39241 15.72 0.00169 \*\*

# The Model for Observations in a Completely Randomized Design

#### We will impose the following conditions:

- The samples are independent random samples. Results from one sample in no way affect the measurements observed in another sample
- 2. Each sample is selected from a normal population
- 3. The mean and variance for population i are, respectively,  $\mu_i$  and  $\sigma_i^2$   $(i=1,\ldots,t)$ . The t variances are equal  $\sigma_1^2=\ldots=\sigma_t^2=\sigma^2$

A model (equation) that encompasses these three assumptions is

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$

where

- $\blacktriangleright \mu$  is called the **overall mean**
- $ightharpoonup au_i$  is the **effect** due to population i
- $ightharpoonup \epsilon_{ij}$ 's are the **error terms**

Note that here error does not mean mistake!

► The null hypothesis for a one-way analysis of variance is that

 $H_0: \mu_1 = \ldots = \mu_t$ Using our model, this would be equivalent to the null

hypothesis is  $H_0: \tau_1 = \ldots = \tau_t = 0$ 

 $\blacktriangleright$  The corresponding alternative hypothesis is  $H_a$ : at least one of

the  $\tau_i$ 's differs from 0

Checking ANOVA Assumptions

# Checking ANOVA Assumptions

► In ANOVA, our inferences are based on the assumptions that the data follow the model

$$y_{ij} = \mu + \tau_i + \epsilon_{ij} ,$$

#### where

- ightharpoonup the  $\tau_i$ 's are fixed but unknown
- the  $\epsilon_{ij}$ 's are (1) independent and (2) normally distributed with (3) constant variance
- ► Accuracy of inference depends on assumptions being true
- Assuming that (1) is true, we need to check Assumptions (2) and (3) on the  $\epsilon_{ij}$ 's
- Our assessments of assumptions about the errors are based on residuals  $r_{ij}=y_{ij}-\bar{y}_{i\bullet}$

# Assessing Nonnormality

- ► The normal quantile-quantile plot, or **normal Q-Q plot**, is a graphical procedure for assessing normality
- The theoretical p-th percentile of any distribution is the value such that p% of the measurements fall below the value
- ▶ The sample p-th percentile of any data set is the value such that p% of the measurements fall below the value
- If the data follow a normal distribution, then a plot of the theoretical percentiles of the normal distribution versus the observed sample percentiles should be approximately linear
- ► Since we are concerned about the normality of the error terms, we create a normal probability plot of the residuals

# Example

- ▶ 60 participants are selected to taste 3 cheeses
- Using a CRD, the participants are divided into 3 groups at random
- ▶ They are asked to give a rating on a scale of 1 to 10
- To view the dataset, download the file cheese.csv in your working directory and type

```
df.cheese <- read.csv("cheese.csv")
df.cheese$type <- as.factor(df.cheese$type)</pre>
```

Run ANOVA:

rsd <- fit\$residuals

fit <- aov(rating ~ type, data = df.cheese)</pre>

▶ To obtain the residuals  $r_{ij} = y_{ij} - \bar{y}_{i\bullet}$ , type



[1] 12 5

```
qqPlot(rsd[df.cheese$type == "B"],
    ylab="Sample quantiles for cheese B")
```



24 32 4 12

```
qqPlot(rsd[df.cheese$type == "C"],
    ylab="Sample quantiles for cheese C")
```



42 50 2 10

# Examples of Nonnormal Residuals



# Assessing Nonconstant Variance

- We will look for nonconstant variance that occurs when the responses within a treatment group all have the same variance  $\sigma_i^2$ , but the variances differ between groups
- We assess nonconstant variance by making a plot of the residuals  $r_{ij}$  against the fitted values  $\bar{y}_{i\bullet}$
- ► If the variance is constant, the vertical spread in the stripes will be about the same

# Cheese Example

### plot(fit, 1)



## Examples of Nonconstant Variance

- Nonconstant variance is revealed as a pattern in the spread of the residuals
- ► The most common deviations from constant variance are those where the residual variation depends on the mean



# Fixing Problems

When our assessments indicate that our data do not meet our assumptions, we must

- either modify the data so that they do meet the assumptions,
- or modify our methods so that the assumptions are less important

# Accommodating Nonnormality and Nonconstant Variance

Nonnormality, particularly asymmetry, and nonconstant error variances can sometimes be lessened by transforming the response to a different scale (e.g. a square root, logarithm, or other transformation to a certain power)

Multiple Comparisons (Chapter 9)

#### Contrasts

- Assume we have 6 treatments
- An ANOVA procedure indicates whether to reject the null hypothesis that all the 6 treatment groups have the same mean response
- ▶ But rejection of the null hypothesis does not tell us which treatments are different or in what ways they differ
- ► For example, does  $\mu_1$  differ from  $\mu_2$  or  $\mu_3$ ? Does  $\mu_3$  differ from the average of  $\mu_2$ ,  $\mu_4$ , and  $\mu_5$ ?
- ► Contrasts have been developed to answer questions such as these

- ▶ Consider a completely randomized design where we wish to make comparisons among the t population means  $\mu_1, \ldots, \mu_t$
- ► Formally, a contrast is a **linear combination** of treatment means

$$C = \sum_{i=1}^{t} a_i \mu_i$$

where the coefficients  $a_i$  add to 0

- Example 1: Write a contrast to compare the mean for population 1 and the mean for population 2
- Example 2: Write a contrast to compare the mean for population 1 to the average of the means for populations 2 and 3
- Rescaling contrasts provides the same information
- ▶ We often write the contrasts with all the  $a_i$ 's as integer values

- Note (prove) that  $C = \sum_{i=1}^t a_i \tau_i$  where the  $\tau_i$  is the effect due to population i
- An estimate of C, designated by  $\hat{C}$ , is formed by replacing the  $\mu_i$ 's in C with their corresponding sample means  $\bar{y}_{i\bullet}$

$$\hat{C} = \sum_{i=1}^{t} a_i \bar{y}_{i\bullet}$$

#### Several kinds of contrasts

- ► The most common contrasts are pairwise comparisons, where we contrast the mean response in one treatment with the mean response in a second treatment
- How many pairwise contrasts are there for t treatments?

#### Several kinds of contrasts

- ► The most common contrasts are pairwise comparisons, where we contrast the mean response in one treatment with the mean response in a second treatment
- ▶ How many pairwise contrasts are there for *t* treatments?
- ► A second classic example of contrasts occurs in an experiment with a control and two or more new treatments
- Suppose that treatment 1 is a control, and treatments 2 and 3 are new treatments. On average, do the new treatments have the same response as the control? Propose a relevant contrast.

## **Orthogonal Contrasts**

▶ Two contrasts C and C' with respective lists of coefficients  $(a_1, \ldots, a_t)$  and  $(a'_1, \ldots, a'_t)$  are said to be orthogonal if

$$\sum_{i=1}^{t} a_i a_i' / n_i = 0$$

- Consider a completely randomized design for comparing 4 populations means, with sample sizes  $n_1=5,\ n_2=4,\ n_3=6,$  and  $n_4=5.$  Are the following contrasts orthogonal?  $C=\mu_1-\mu_3$  and  $C'=\mu_1+\mu_2+\mu_3-3\mu_4$
- Reconsider the question if the sample sizes were all equal

- ► If two contrasts are orthogonal, then one contrast conveys no information about the other contrast
- ► The random error of one contrast is not correlated with the random error of an orthogonal contrast
- ▶ If there are t treatments, you can find a set of t-1 contrasts that are pairwise orthogonal
- ightharpoonup The sum of squares for a contrast C is

$$SS_C = \frac{\hat{C}^2}{\sum_{i=1}^t \frac{a_i^2}{n_i}}$$

It indicates the amount of variation in the treatment means that can be explained by that particular contrast lackbox Orthogonal contrasts partition the between-groups sum of squares: If  $\hat{C}_1,\ldots,\hat{C}_{t-1}$  are a full set of pairwise orthogonal contrasts, then

$$SSB = \sum_{i=1}^{t-1} SS_{C_i}$$

▶ Thus, we can take the t-1 degrees of freedom associated with the treatment sum of squares that describe any differences among the treatment means and break them into t-1 independent explanations of how the treatment means may differ

#### Example

- Researchers conducted a study on the effectiveness of various agents to control weeds in crops. The study consisted of a control (no agent), two biological agents (Bio1 and Bio2), and two chemical agents (Chm1 and Chm2)
- ► Thirty 1-acre plots of land were planted with hay. Six plots were randomly assigned to receive one of the five treatments
- The hay was harvested and the total yield in tons per acre was recorded

| Agent                           | 1     | 2     | 3     | 4     | 5     |
|---------------------------------|-------|-------|-------|-------|-------|
| Type $\bar{y}_{i\bullet}$ $s_i$ | None  | Bio1  | Bio2  | Chm1  | Chm2  |
|                                 | 1.175 | 1.293 | 1.328 | 1.415 | 1.500 |
|                                 | .1204 | .1269 | .1196 | .1249 | .1265 |

▶ Q1: Compute the ANOVA table. Is there any significant difference in the mean efficacy of the five agents? Use the p-value approach at 1% level of significance.

| Source    | df | SS    | MS    | F    | p-value |
|-----------|----|-------|-------|------|---------|
| Treatment | 4  | .3648 | .0912 | 5.96 | .0016   |
| Error     | 25 | .3825 | .0153 |      |         |
| Total     | 29 | .7472 |       |      |         |
|           |    |       |       |      |         |

▶ Q2: Determine four orthogonal contrasts and verify that the four contrasts are pairwise orthogonal.

```
sample mean \leftarrow c(1.175, 1.293, 1.328, 1.415, 1.500)
sample sd < c(.1204, .1269, .1196, .1249, .1265)
ss_trt <- 6*sum((sample_mean-mean(sample_mean))**2)</pre>
w_{ctrl_agents} \leftarrow c(4,-1,-1,-1,-1)
w_bio_chem < c(0,1,1,-1,-1)
w_bio1_bio2 <- c(0,1,-1,0,0)
w_{chem1\_chem2} < c(0,0,0,1,-1)
C ctrl agents <- sample mean <- w ctrl agents
C bio chem <- sample mean <- www bio chem
C bio1 bio2 <- sample mean * w bio1 bio2
C chem1 chem2 <- sample mean %*% w chem1 chem2
#ss ctrl agents <- (6*C ctrl agents**2)
#/sum(w ctrl agents**2)
ss_ctrl_agents <- 0.2097
ss bio chem <- .1297
ss_bio1_bio2 <- .0037
ss chem1 chem2 <-.0217
```

#### Confidence Intervals for Contrasts

▶ A  $100(1-\alpha)$ % confidence interval for a contrast  $C = \sum_{i=1}^{t} a_i \mu_i$  is

$$\hat{C} \pm t_{\alpha/2} \sqrt{s_W^2} \sqrt{\sum_{i=1}^t \frac{a_i^2}{n_i}}$$

where  $t_{\alpha/2}$  is the value of of a t-distribution with  $n_T-t$  degrees of freedom with right-tail area  $\alpha/2$ 

# Hypothesis Testing for Contrasts

Suppose that we want to test of the null hypothesis:  $H_0: C = \sum_{i=1}^g a_i \mu_i = \delta$  (often,  $\delta = 0$ ). We can do a t-test by computing the test statistic

$$t = \frac{\hat{C} - \delta}{\sqrt{s_W^2} \sqrt{\sum_{i=1}^t \frac{a_i^2}{n_i}}}$$

▶ Under  $H_0$ , this statistic follows a t-distribution with  $n_T - t$  degrees of freedom

#### Example

- ▶ Is there a significant difference between the control treatment and the four active agents for weed control with respect to their effect on average hay production?
- $\blacktriangleright$  Test each of the four contrasts for significance. Use a level of significance  $\alpha=0.05$

#### Which Error Rate is Controlled?

- An experimenter wishes to compare t population (treatment) means using m contrasts.
- lacktriangle Each of the m contrasts can be tested using the t-test we introduced in the previous section
- Suppose each of the contrasts is tested with the same value of  $\alpha$ , which we will denote as  $\alpha_I$ , called the **individual** comparisons Type I error rate
- The probability of falsely rejecting at least one of the m null hypotheses is called the **experimentwise or familywise** Type I error rate (abbrev. FWER) and denoted by  $\alpha_E$
- ▶ If the m tests are independent, what is the value of  $\alpha_E$ ?

► In practice, the tests will not be independent, but the following upper bound exists for the experimentwise error rate

$$\alpha_E \leq 1 - (1 - \alpha_I)^m$$

| <i>m</i> , Number of | $oldsymbol{lpha_I}$ Probability of a<br>Type I Error<br>on an Individual Test |      |      |  |  |
|----------------------|-------------------------------------------------------------------------------|------|------|--|--|
| Contrasts            | .10                                                                           | .05  | .01  |  |  |
| 1                    | .100                                                                          | .050 | .010 |  |  |
| 2                    | .190                                                                          | .097 | .020 |  |  |
| 3                    | .271                                                                          | .143 | .030 |  |  |
| 4                    | .344                                                                          | .185 | .039 |  |  |
| 5                    | .410                                                                          | .226 | .049 |  |  |
|                      |                                                                               |      |      |  |  |
|                      |                                                                               |      |      |  |  |
| •                    |                                                                               |      |      |  |  |
| 10                   | .651                                                                          | .401 | .096 |  |  |

What value of  $\alpha_I$  must we use on 8 tests to achieve an experimentwise error rate of  $\alpha_E=0.05$ ?

# Different Approaches To Control Type I Errors

- ▶ We will present several techniques to control the FWER
- ➤ There is a trade-off between Type I error and Type II error (type II error describes the error that occurs when one fails to reject a null hypothesis that is actually false.)
- ▶ As we go to more and more stringent Type I error rates, we become more confident in the rejections that we do make, but it also becomes more difficult to make rejections

## The Bonferroni Technique

▶ When each of the m tests have the same individual error rates  $\alpha_I$ , the **Bonferroni inequality** yields, for the experimentwise error rate  $\alpha_E$  that

$$\alpha_E \leq m\alpha_I$$

If we wanted to guarantee that the chance of a Type I error was at most  $\alpha$ , we could select

$$\alpha_I = \frac{\alpha}{m}$$

 This procedure may be very conservative with respect to the experimentwise error rate, and hence an inflated probability of Type II error may result

## Pairwise Comparisons

- A pairwise comparison is a contrast that examines the difference between two treatment means  $\bar{y}_{i\bullet} \bar{y}_{j\bullet}$
- ► Fisher's Least Significant Difference and Tukey's procedures have been developed for pairwise comparisons among *t* population means

# Fisher's Least Significant Difference Procedure

- 1. Perform an analysis of variance to test  $H_0: \mu_1 = \mu_2 = \ldots = \mu_t$  against the alternative hypothesis that at least one of the means differs from the rest
- 2. If there is insufficient evidence to reject  $H_0$ , proceed no further
- 3. If  $H_0$  is rejected, define the least significant difference (LSD) to be the observed difference between two sample means necessary to declare the corresponding population means different. For a specified level of significance  $\alpha$ , the least significant difference for comparing  $\mu_i$  to  $\mu_j$  is

$$LSD_{ij} = t_{\alpha/2} \sqrt{s_W^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

where  $t_{\alpha/2}$  is the value of a t-distribution with  $n_T-t$  degrees of freedom  $\alpha/2$  with right-tail area  $\alpha/2$ 

4. Then compare all pairs of sample means. If  $|\bar{y}_{i\bullet} - \bar{y}_{j\bullet}| \geq LSD_{ij}$  declare the corresponding population means  $\mu_i$  and  $\mu_j$  different

- ► The Fisher's LSD test is basically a set of individual two-sample t-tests
- If you choose to use the Fisher's LSD test, you'll need to account for multiple comparisons when you interpret the data, comparisons
- since the computations themselves do not correct for multiple ▶ The only difference between a set of two-sample t-tests and the Fisher's LSD test, is that t tests compute the pooled sample standard deviation from only the two groups being compared,

while the Fisher's LSD test computes the pooled sample

standard deviation from all the groups

- ▶ In the weed agent example, test the following comparisons using the Fisher's LSD procedure at level 0.05:
- 1. Control vs Biological 1
- 2. Chemical 1 vs Chemical 2

## The Studentized Range

▶ The **Studentized range** for a pair of treatment means is

$$\frac{\text{largest } \bar{y}_{i\bullet} - \text{smallest } \bar{y}_{i\bullet}}{\sqrt{s_W^2/n}}$$

assuming that all  $n_i$ 's are the same and equal to some given n

- If all the treatments have the same mean  $(H_0)$ , then the Studentized range statistic follows a **Studentized range** distribution
- lacktriangle Large Studentized values of the Studentized range are less likely under  $H_0$

## Tukey's Procedure

lacktriangle Two population means  $\mu_i$  and  $\mu_j$  are declared different if

$$|\bar{y}_{i\bullet} - \bar{y}_{j\bullet}| \ge \frac{q_{\alpha}(t, n_T - t)}{\sqrt{2}} \sqrt{s_W^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

where  $q_{\alpha}(t,n_T-t)$  is the upper-tail value of area  $\alpha$  of the Studentized range distribution with t and  $n_T-t$  degrees of freedom

► Example: R command for the 5% quantile of the Studentized distribution with 5 and 20 degrees of freedom

qtukey
$$(0.95, 5, 20) = 4.2318567$$

- lacktriangle This procedure controls the FWER at level lpha
- Tukey's procedure is more conservative than Fisher's LSD

- ▶ In the weed agent example, test the following comparisons using the Tukey's procedure at level 0.05:
- Control vs Biological 1

2. Chemical 1 vs Chemical 2

#### The Scheffé Method

- ▶ It is tempting to analyze only those comparisons that appear to be interesting *after* seeing the sample data. This practice has sometimes been called **data dredging** or **data snooping**
- ➤ The Scheffé method (1954) is a multiple comparisons technique for all possible contrasts
- Should be used if you have not planned contrasts in advance
- Appropriate for assessing contrasts suggested by the data (data snooping)
- Most conservative (least powerful) of all tests

- Suppose that we are testing the null hypothesis  $H_0: C = \sum_{i=1}^t a_i \mu_i = 0$  against a two-sided alternative
- ▶ Test statistic:  $|\hat{C}| = |\sum_{i=1}^t a_i \bar{y}_{i\bullet}|$
- Compute

$$S = \sqrt{s_W^2 \sum_{i=1}^t \frac{a_i^2}{n_i} \sqrt{(t-1)F_\alpha}}$$

where  $F_{\alpha}$  is the upper-tail value of area  $\alpha$  of an F-distribution with t-1 and  $n_T-t$  degrees

▶ For a specified level  $\alpha$ , reject  $H_0$  if

$$|\hat{C}| > S$$

ightharpoonup This procedure controls the FWER at level lpha

- ▶ In the weed agent example, use Scheffé's method to determine which if any of the four contrasts are significantly different from zero

-0.294,  $\hat{C}_{\text{bio1 vs bio2}} = -0.035$ ,  $\hat{C}_{\text{chem1 vs chem2}} = -0.085$ 

#### Procedure Usage Summary

- Use Bonferroni technique when only interested in a small number of planned contrasts (or pairwise comparisons)
- Use Tukey's procedure when only interested in all (or most) pairwise comparisons of means
- ► Use Scheffé's method when doing anything that could be considered data snooping i.e. for any unplanned contrasts
- Always keep in mind trade-off between Type I error and power