

An OWL Ontology for the Common Statistical Production Architecture (CSPA)

Antoine Dreyer, Franck Cotton, Guillaume Duffès INSEE, Paris, France

The big picture

- Back in 2010, a group of NSI directors
 - Formed a high-level group (HLG-MOS) under the auspices of the UNECE (UN Economic Commission for Europe)
 - Developed a strategic paper for official statistics
 - Threats
 - internal: sclerosis on stove-pipe organizations
 - external: demand growing and diversifying, data deluge, new competitors
 - Vision
 - create conditions for innovation
 - standard-based collaboration
 - process industrialization (across domains)

The big picture

- Launched the CSPA initiative

The CSPA value proposition

- Facilitate modernization in statistical organizations
- Apply a consistent enterprise architecture approach within and across statistical organizations
- Enable international collaboration initiatives for building common solutions and services
- Foster alignment on industry standards

What is CSPA?

- A reference architecture for the statistical industry
- Aiming to develop services so they can be shared and reused
- Focused on statistical production
- Based on TOGAF

What is in CSPA?

- Business architecture principles
- Information architecture framework (introducing LIM) and principles
- Governance
- Architectural guidelines (SOA)
- Specification of statistical services
 - How to document a service (including templates)
 - Link to GSBPM and information models
 - Service lifecycle and associated role

CSPA services: levels of description

CSPA: roles and tools

So what does it all have to do with Semstats?

- Since 2010 (and before), a group of semantic web enthusiasts works to promote SW in official statistics
 - Following the examples of DataCube, DCAT...
 - Concentrating on models, business standards, metadata

Why?

- Harmonize specifications formats (currently Word or PDF documents, some UML models)
- Improve formalization and consistency within and across models
- Publish, activate and link models and metadata

The big picture (revamped)

Semantizing CSPA

Building the CSPA ontology

- Approach followed
 - Read the specification!
 - Studied existing examples
- Identified three main semantic axes
 - Level of service description
 - Description properties (grouped by topics)
 - Added: distinction function/package (~granularity)
- Other aspect: roles in service lifecycle

Building the CSPA ontology

8 Topics

- Identification: name, version
- Business function: what the service is for
- Documentation: e.g. how to use the service
- Provenance: who designed, built, implemented the service
- Interface: how to invoke the service
- Dependencies: what is needed to invoke the service (OS, DBMS, statistical software...)
- Inputs and outputs

Building the CSPA ontology

- 3 levels of documentation, 8 topics, 2 granularity categories (package/function)...
- ...but not every combination makes sense
 - Business function: conceptual level
 - Inputs and outputs only for functions, but take different forms at each level
- Some refinements
 - Dependencies can be linked to an Interface at implementation level

Ontology overview

Granularity categories

- Topics
 - One class for each topic, daughter of PropertyTopic
 - Then link documentation properties to topics
 - Exception: identication properties linked directly

Ontology overview

Levels of description

- Properties to link categories to levels of description
- Properties to link topics to levels of description at the appropriate depth in the hierarchy

Ontology overview

Roles and service lifecycle

Use of other ontologies

- The CSPA service business function topic is linked to the GSBPM SubProcess class
- The input and output classes at service definition level are linked to the GSIM object class
- Classes and properties from FOAF, PROV, DCTerms and ORG are used directly

Evaluation

- Work in progress
- We were able to "reengineer" existing CSPA service documentation
- We will use the ontology on services currently under development
- The ontology was used to build a prototype of a CSPA service editor

Conclusion & future work

Conclusion

- First try at representing main parts of CSPA semantics as OWL
- Method used is domain-specific, but can be adapted in other contexts
- Part of a general effort for promoting semantic web approach for statistical standards

Next steps

- Further work on provenance aspects
- Continue CSPA service editor development
- Present the ontology and editor to the CSPA implementation group and the HLG

Thank you

Questions?