

25775-czaza1.ST25 SEQUENCE LISTING

<110> Vogel et al., Tikva

<120> FIBRIN BINDING DOMAIN POLYPEPTIDES AND USES AND METHODS OF PRODUCING SAME

<130> 25775-CZ-AZ-A

<140> US 09/492,971

<141> 2000-01-27

<160> 38

<170> PatentIn version 3.1

<210> 1

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Probe directed to Human Fibronectin

<400> 1 ctgtttaagc a

11

<210> 2

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223>	Synthetic Flobe directed to name introduction	
<400> gacaaat	2 :tcg tctag	15
<210>	3	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> tgagaaq	3 gtgt tttgatcatg ctgctgggac ttcctatgtg g	41
<210>	4	
<211>	43	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400>	4 caga taggaagtcc cagcagcatg atcaaaacac ttc	43
·		
<210>	5	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> tcggag	5 aaac gtgggagaag ccctaccaag gctggatgat ggtag Page 2	45

<210>	6			
<211>	45			
<212>	DNA	4		
<213>	Artificial Sequence			
<220>				•
<223>	Synthetic Probe directed to Huma	an Fibronectin		
<400> acaatc	6 tacc atcatccagc cttggtaggg cttctc	ccac gtttc		45
<210>	7	ø		
<211>	45			-
<212>	DNA			
<213>	Artificial Sequence			
<220>		10		
<223>	Synthetic Probe directed to Huma	an Fibronectin	· ·	
<400> attgta	7 cttg cctgggagaa ggcagcggac gcatca	acttg cactt		45
<210>	8			
<211>	44			
<212>	DNA			
<213>	Artificial Sequence	. •		
<220>				
<223>	Synthetic Probe directed to Hum	an Fibronectir	·	_
<400> ctagaa	8 actgc aagtgatgcg teegetgeet tetee	caggc aagt		44
<210>	9	•		
<211>	38			

Page 3

<212>	DNA		
<213>	Artificial Sequence	•	
		•	
<220>			
<223>	Synthetic Probe directed to Human Fibronectin		
<400> cctccts	9 gttt ctccgtaagt gatcctgtaa tatctcac		38
<210>	10	•	
<211>	33	e.	
<212>	DNA		
<213>	Artificial Sequence		
		•	
<220>			
<223>	Synthetic Probe directed to Human Fibronectin		-
<400> gaatca	10 agac ctgttttctg tcttcctcta aga		33
<210>	11		÷
<211>	40		
<212>	DNA		
<213>	Artificial Sequence		
<220>	· ·		
<223>	Synthetic Probe directed to Human Fibronectin	,	
<400> ccaggt	11 ccct cggaacatca gaaactgttg attgttggcc		40
<210>	12		
<211>	36		
<212>	DNA		
<213>	Artificial Sequence		

<220>		
<223>	Synthetic Probe directed to Human. Fibronectin	
<400> aattct	12 gtga cacagtggcc atagggaggc tggggg	36
<210>	13	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> catgac	13 ccct tcattggttg tgcagatttc ctcgtgggca gc	42
<210>	14	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> ctgttt	14 caata agca	14
<210>	15	
<211>	2327	
<212>	PRT	
<213>	Homo Sapiens	
<400>	15	
Ser Ly	ys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Page 5	

15

Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln

Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys

Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu

Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val

Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr

Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg

Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg 120 115

Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn 130

Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp 150 145

His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro

Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser 180

Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr

Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg

Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp

Lys	Cys	Glu	Arg	His	Thr	Ser	Val	Gln	Thr	Thr	Ser	Ser	Gly	Ser	Gly
-	-		_	245				•	250					255	

Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His Pro 260 265 270

Gln Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val Tyr 275 280 285

Ser Val Gly Met Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met Leu 290 295 300

Cys Thr Cys Leu Gly Asn Gly Val Ser Cys Gln Glu Thr Ala Val Thr 305 310 315 320

Gln Thr Tyr Gly Gly Asn Leu Asn Gly Glu Pro Cys Val Leu Pro Phe 325 330 335

Thr Tyr Asn Gly Arg Thr Phe Tyr Ser Cys Thr Thr Glu Gly Arg Gln 340 345 350

Asp Gly His Leu Trp Cys Ser Thr Thr Ser Asn Tyr Glu Gln Asp Gln 355 360 365

Lys Tyr Ser Phe Cys Thr Asp His Thr Val Leu Val Gln Thr Gln Gly 370 375 380

Gly Asn Ser Asn Gly Ala Leu Cys His Phe Pro Phe Leu Tyr Asn Asn 385 390 395 400

His Asn Tyr Thr Asp Cys Thr Ser Glu Gly Arg Arg Asp Asn Met Lys 405 410 415

Trp Cys Gly Thr Thr Gln Asn Tyr Asp Ala Asp Gln Lys Phe Gly Phe 420 425 430

Cys Pro Met Ala Ala His Glu Glu Ile Cys Thr Thr Asn Glu Gly Val 435 440 445

Met Tyr Arg Ile Gly Asp Gln Trp Asp Lys Gln His Asp Met Gly His 450 460

Met Met Arg Cys Thr Cys Val Gly Asn Gly Arg Gly Glu Trp Thr Cys 465 470 475 480

- 11eAlaTyrSerGlnLeuArgAspGlnCysIleValAspAspIleThrTyrAsnValAsnAspThrPheHisLysArgHisGluGluGlyHisMetLeuAsnCysThrCysPheGlyGlnGlyArgGlyArgTrpLysCysAspProValAspGlnCysGlnAspSerGluThrGlyThrPheTyrGlnIleGlyAspSerTyrGlyLysTyrValHisGlyValArgTyrGlnCysTyrCysTyrGlyArgGlyIleGlyGluTrpHisCysGlnProLeuGlnThrTyrSerTyrGlyGlyGluTrpHisCysGlnProLeuGlnThr
- Tyr Pro Ser Ser Gly Pro Val Glu Val Phe Ile Thr Glu Thr Pro

585

Ser Gln Pro Asn Ser His Pro Ile Gln Trp Asn Ala Pro Gln Pro Ser 595 600 605

580

- His Ile Ser Lys Tyr Ile Leu Arg Trp Arg Pro Lys Asn Ser Val Gly 610 615 620
- Arg Trp Lys Glu Ala Thr Ile Pro Gly His Leu Asn Ser Tyr Thr Ile 625 630 635 640
- Lys Gly Leu Lys Pro Gly Val Val Tyr Glu Gly Gln Leu Ile Ser Ile 645 650 655
- Gln Gln Tyr Gly His Gln Glu Val Thr Arg Phe Asp Phe Thr Thr 660 665 670
- Ser Thr Ser Thr Pro Val Thr Ser Asn Thr Val Thr Gly Glu Thr Thr 675 680 685
- Pro Phe Ser Pro Leu Val Ala Thr Ser Glu Ser Val Thr Glu Ile Thr 690 700
- Ala Ser Ser Phe Val Val Ser Trp Val Ser Ala Ser Asp Thr Val Ser 705 710 715 720
 Page 8

- Gly Phe Arg Val Glu Tyr Glu Leu Ser Glu Glu Gly Asp Glu Pro Gln
 725 730 735
- Tyr Leu Asp Leu Pro Ser Thr Ala Thr Ser Val Asn Ile Pro Asp Leu
 740 745 750
- Leu Pro Gly Arg Lys Tyr Ile Val Asn Val Tyr Gln Ile Ser Glu Asp
 755 760 765
- Gly Glu Gln Ser Leu Ile Leu Ser Thr Ser Gln Thr Thr Ala Pro Asp 770 775 780
- Ala Pro Pro Asp Pro Thr Val Asp Gln Val Asp Asp Thr Ser Ile Val 785 790 795 800
- Val Arg Trp Ser Arg Pro Gln Ala Pro Ile Thr Gly Tyr Arg Ile Val 805 810 815
- Tyr Ser Pro Ser Val Glu Gly Ser Ser Thr Glu Leu Asn Leu Pro Glu 820 825 830
- Thr Ala Asn Ser Val Thr Leu Ser Asp Leu Gln Pro Gly Val Gln Tyr 835 840 845
- Asn Ile Thr Ile Tyr Ala Val Glu Glu Asn Gln Glu Ser Thr Pro Val 850 855 860
- Val Ile Gln Gln Glu Thr Thr Gly Thr Pro Arg Ser Asp Thr Val Pro 865 870 875 880
- Ser Pro Arg Asp Leu Gln Phe Val Glu Val Thr Asp Val Lys Val Thr 885 890 895
- Ile Met Trp Thr Pro Pro Glu Ser Ala Val Thr Gly Tyr Arg Val Asp 900 905 910
- Val Ile Pro Val Asn Leu Pro Gly Glu His Gly Gln Arg Leu Pro Ile 915 920 925
- Ser Arg Asn Thr Phe Ala Glu Val Thr Gly Leu Ser Pro Gly Val Thr 930 935 940
- Tyr Tyr Phe Lys Val Phe Ala Val Ser His Gly Arg Glu Ser Lys Pro Page 9

Leu Thr Ala Gln Gln Thr Thr Lys Leu Asp Ala Pro Thr Asn Leu Gln 970 🕟

Phe Val Asn Glu Thr Asp Ser Thr Val Leu Val Arg Trp Thr Pro Pro

Arg Ala Gln Ile Thr Gly Tyr Arg Leu Thr Val Gly Leu Thr Arg Arg

Gly Gln Pro Arg Gln Tyr Asn Val Gly Pro Ser Val Ser Lys Tyr

Pro Leu Arg Asn Leu Gln Pro Ala Ser Glu Tyr Thr Val Ser Leu

Val Ala Ile Lys Gly Asn Gln Glu Ser Pro Lys Ala Thr Gly Val

Phe Thr Thr Leu Gln Pro Gly Ser Ser Ile Pro Pro Tyr Asn Thr

Glu Val Thr Glu Thr Thr Ile Val Ile Thr Trp Thr Pro Ala Pro

Arg Ile Gly Phe Lys Leu Gly Val Arg Pro Ser Gln Gly Gly Glu

Ala Pro Arg Glu Val Thr Ser Asp Ser Gly Ser Ile Val Val Ser

Gly Leu Thr Pro Gly Val Glu Tyr Val Tyr Thr Ile Gln Val Leu

Arg Asp Gly Gln Glu Arg Asp Ala Pro Ile Val Asn Lys Val Val

Thr Pro Leu Ser Pro Pro Thr Asn Leu His Leu Glu Ala Asn Pro

Asp Thr Gly Val Leu Thr Val Ser Trp Glu Arg Ser Thr Thr Pro

Asp	Ile	Thr	Gly	Tyr	Arg	Ile	Thr	Thr	Thr	Pro	Thr	Asn	Gly	Gln
	1175		-	-	_	1180	•				1185			

- Gln Gly Asn Ser Leu Glu Glu Val Val His Ala Asp Gln Ser Ser 1190 1195 1200
- Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr Asn Val Ser 1205 1210 1215
- Val Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile Ser Asp 1220 1225 1230
- Thr Ile Ile Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe Thr 1235 1240 1245
- Asn Ile Gly Pro Asp Thr Met Arg Val Thr Trp Ala Pro Pro Pro 1250 1260
- Ser Ile Asp Leu Thr Asn Phe Leu Val Arg Tyr Ser Pro Val Lys 1265 1270 1275
- Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser Pro Ser Asp Asn 1280 1285 1290
- Ala Val Val Leu Thr Asn Leu Leu Pro Gly Thr Glu Tyr Val Val 1295 1300 1305
- Ser Val Ser Ser Val Tyr Glu Gln His Glu Ser Thr Pro Leu Arg 1310 1315 1320
- Gly Arg Gln Lys Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe 1325 1330 1335
- Ser Asp Ile Thr Ala Asn Ser Phe Thr Val His Trp Ile Ala Pro 1340 1345 1350
- Arg Ala Thr Ile Thr Gly Tyr Arg Ile Arg His His Pro Glu His 1355 1360 1365
- Phe Ser Gly Arg Pro Arg Glu Asp Arg Val Pro His Ser Arg Asn 1370 1375 1380
- Ser Ile Thr Leu Thr Asn Leu Thr Pro Gly Thr Glu Tyr Val Val 1385 1390 1395

Ser	Ile 1400	Val	Ala	Leu	Asn	Gly 1405	Arg	Glu	Glu	Ser	Pro 1410	Leu	Leu	Ile
Gly	Gln 1415	Gln	Ser	Thr	Val	Ser 1420		Val	Pro		Asp 1425	Leu	Glu	Val
Val	Ala 1430	Ala	Thr	Pro	Thr	Ser 1435		Leu			Trp 1440	Asp	Ala	Pro
Ala	Val 1445	Thr	Vaĺ	Arg	Tyr	Tyr 1450	Arg	Ile	Thr	Tyr	Gly 1455	Glu	Thr	Gly
Gly	Asn 1460		Pro	Val	Gln	Glu 1465		Thr	Val	Pro	Gly 1470	Ser	Lys	Ser
	Ala 1475		Ile	Ser	Gly	Leu 1480		Pro	Gly	Val	Asp 1485	Tyr	Thr	Ile
Thr	Val 1490		Ala	Val	Thr	Gly 1495	Arg	Gly	Asp	Ser	Pro 1500	Ala	Ser	Ser
Lys	Pro 1505		Ser	Ile	Asn	Tyr 1510		Thr	Glu	Ile	Asp 1515		Pro	Ser
Gln	Met 1520		Val	Thr	Asp	Val 1525		Asp	Asn	Ser	Ile 1530	Ser	Val	Lys
Trp	Leu 1535		Ser	Ser	Ser	Pro 1540		Thr	Gly °	Tyr	Arg 1545	Val	Thr	Thr
Thr	Pro 1550		Asn	Gly	Pro	Gly 1555		Thr	Lys	Thr	Lys 1560	Thr	Ala	Gly
Pro	Asp 1565		Thr	Glu	Met	Thr 1570		Glu	Gly	Leu	Gln 1575	Pro	Thr	Val
Glu	Туг 1580		Val	Ser	Val	Tyr 1585		Gln	Asn	Pro	Ser 1590		Glu	Ser
Gln	Pro 1595		Val	Gln	Thr	Ala 1600		Thr	Asn	Ile	Asp 1605	Arg	Pro	Lys
Gly	Leu 1610		Phe	Thr	Asp	Val 1615		Val		Ser ge 12	1620		Ile	Ala

	Trp	Glu 1625	Ser	Pro	Gln	Gly	Gln 1630	Val	Ser	Arg	Tyr	Arg 1635	Val	Thr	Tyr
	Ser	Ser 1640	Pro	Glu	Asp	Gly	Ile 1645	His	Glu	Leu	Phe	Pro 1650	Ala	Pro	Asp
	Gly	Glu 1655	Glu	Asp		Ala	Glu 1660	Leu	Gln	Gly	Leu	Arg 1665	Pro	Gly	Ser
•	Glu	Tyr 1670	Thr	Val	Ser	Val	Val 1675	Ala	Leu	His	Asp	Asp 1680	Met	Glu	Ser
	Gln	Pro 1685	Leu	Ile	Gly	Thr	Gln 1690		Thr	Ala	Ile	Pro 1695	Ala	Pro	Thr
	Asp	Leu 1700	Lys	Phe	Thr	Gln	Val 1705		Pro	Thr	Ser	Leu 1710	Ser	Ala	Gln
	Trp	Thr 1715		Pro	Asn	Val	Gln 1720		Thr	Gly	Tyr	Arg 1725	Val	Arg	Val
	Thr	Pro 1730	Lys	Glu	Lys	Thr	Gly 1735	Pro	Met	Lyŝ	Glu	Ile 1740	Asn	Leu	Ala
	Pro	Asp 1745	Ser	Ser	Ser	Val	Val 1750		Ser	Gly		Met 1755	Val	Ala	Thr
	Lys	Tyr 1760	Glu	Val	Ser	Val	Tyr 1765	Ala	Leu	Lys	Asp	Thr 1770	Leu	Thr	Ser

- Arg Pro Ala Gln Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro 1775 1780 1785
- Pro Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr 1790 1795 1800
- Ile Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val 1805 1810 1815
- Asp Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile 1820 1825 1830
- Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Page 13

									-					
Thr	Asp 1850		Lys	Ile	Tyr	Leu 1855	Tyr	Thr	Leu	Asn	Asp 1860	Asn	Ala	Arg
Ser	Ser 1865	Pro	Val	Val		Asp 1870	Ala	Ser	Thr	Ala	Ile 1875	Asp	Ala	Pro
Ser	Asn 1880	Leu	Arg	Phe	Leu	Ala 1885	Thr	Thr	Pro	Asn	Ser 1890	Leu	Leu	Val
Ser	Trp 1895	Gln	Pro	Pro	Arg	Ala 1900		Ile	Thr	Gly	Tyr 1905	Ile	Ile	Lys
Tyr	Glu 1910		Pro	Gly	Ser	Pro 1915		Arg	Glu	Val	Val 1920	Pro	Arg	Pro
Arg	Pro 1925	Gly	Val	Thr	Glu	Ala 1930	Thr	Ile	Thr	Gly	Leu 1935	Glu	Pro	Gly
	Glu 1940	Tyr	Thr	Ile	Tyr	Val 1945	Ile	Ala	Leu	Lys	Asn 1950	Asn	Gln	Lys
Ser	Glu 1955		Leu	Ile	Gly	Arg 1960		Lys	Thr	Asp	Glu 1965		Pro	Gln
Leu	Val 1970		Leu	Pro	His	Pro 1975	Asn	Leu	His	Gly	Pro 1980	Glu	Ile	Leu
Asp	Val 1985	Pro	Ser	Thr	Val	Gln 1990	Lys	Thr	Pro	Phe	Val 1995	Thr	His	Pro
Gly	Tyr 2000	Asp	Thr	Gly	Asn	Gly 2005	Ile	Gln	Leu		Gly 2010		Ser	Gly
Gln	Gln 2015		Ser	Val	Gly	Gln 2020		Met	Ile	Phe	Glu 2025		His	Gly
Phe	Arg 2030	_	Thr	Thr	Pro	Pro 2035		Thr	Ala	Thr	Pro 2040		Arg	His
Arg	Pro 2045		Pro	Tyr	Pro	Pro 2050		Val	Gly	Gln	Glu 2055		Leu	Ser

Gln	Thr	Thr	Ile	Ser	Trp	Ala	Pro	Phe	Gln	Asp	Thr	Ser	Glu	Tyr
	2060					2065					2070			

- Ile Ile Ser Cys His Pro Val Gly Thr Asp Glu Glu Pro Leu Gln 2075 2080 2085
- Phe Arg Val Pro Gly Thr Ser Thr Ser Ala Thr Leu Thr Gly Leu 2090 2095 2100
- Thr Arg Gly Ala Thr Tyr Asn Ile Ile Val Glu Ala Leu Lys Asp 2105 2110 2115
- Gln Gln Arg His Lys Val Arg Glu Glu Val Val Thr Val Gly Asn 2120 2125 2130
- Ser Val Asn Glu Gly Leu Asn Gln Pro Thr Asp Asp Ser Cys Phe 2135 2140 2145
- Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly Asp Glu Trp Glu 2150 2160
- Arg Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln Cys Leu Gly 2165 2170 2175
- Phe Gly Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp Cys His 2180 2185 2190
- Asp Asn Gly Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg Gln 2195 2200 2205
- Gly Glu Asn Gly Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly 2210 2215 2220
- Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys Tyr Asp 2225 2230 2235
- Asp Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr 2240 2245 2250
- Leu Gly Ala Ile Cys Ser Cys Thr Cys Phe Gly Gly Gln Arg Gly 2255 2260 2265
- Trp Arg Cys Asp Asn Cys Arg Arg Pro Gly Gly Glu Pro Ser Pro 2270 2280

Glu Gly Thr Thr Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr 2285 2290 2295

His Gln Arg Thr Asn Thr Asn Val Asn Cys Pro Ile Glu Cys Phe 2300 2305 2310

Met Pro Leu Asp Val Gln Ala Asp Arg Glu Asp Ser Arg Glu 2315 2320 2325

<210> 16

<211> 7705

<212> DNA

<213> Homo Sapiens

100 30			,			
<400> 16 gaagagcaag	aggcaggctc	agcaaatggt	tcagcccçag	tccccggtgg	ctgtcagtca	60
aagcaagccc	ggttgttatg	acaatggaaa	acactatcag	ataaatcaac	agtgggagcg	120
gacctaccta	ggtaatgtgt	tggtttgtac	ttgttatgga	ggaagccgag	gttttaactg	180
cgaaagtaaa	cctgaagctg	aagagacttg	ctttgacaag	tacactggga	acacttaccg	240
agtgggtgac	acttatgagc	gtcctaaaga	ctccatgatc	tgggactgta	cctgcatcgg	300
ggctgggcga	gggagaataa	gctgtaccat	cgcaaaccgc	tgccatgaag	ggggtcagtc	360
ctacaagatt	ggtgacacct	ggaggagacc	acatgagact	ggtggttaca	tgttagagtg	420
tgtgtgtctt	ggtaatggaa	aaggagaatg	gacctgcaag	cccatagctg	agaagtgttt	480
tgatcatgct	gctgggactc	cctatgtggt	cggagaaacg	tgggagaagc	cctaccaagg	540
ctggatgatg	gtagattgta	cttgcctggg	agaaggcagc	ggacgcatca	cttgcacttc	600
tagaaataga	tgcaacgatc	aggacacaag	gacatcctat	agaatttgag	acacctggag	660
caagaaggat	aatcgaggaa	acctgctcca	gtgcatctgc	acaggcaacg	gccgaggaga	720
gtggaagtgt	gagaggcaca	cctctgtgca	gaccacatcg	agcggatctg	gccccttcac	780
cgatgttcgt	gcagctgttt	accaaccgca	gcctcacccc	cagcctcctc	cctatggcca	840
ctgtgtcaca	gacagtggtg	tggtctactc	tgtggggatg	cagtggttga	agacacaagg	900
aaataagcaa	atgctttgca	cgtgcctggg	caacggagtc	agctgccaag	agacagctgt	960
aacccagact	tacggtggca	acttaaatgg	agagccatgt	gtcttaccat	tcacctacaa	1020
tggcaggacg	ttctactcct	gcaccacgga	agggcgacag Page		tttggtgcag	1080

cacaacttcg	aattatgagc	aggaccagaa	atactctttc	tgcacagacc	acactgtttt	1140
ggttcagact	caaggaggaa	attccaatgg	tgccttgtgc	cacttcccct	tcctatacaa	1200
caaccacaat	tacactgatt	gcacttctga	gggcagaaga	gacaacatga	agtggtgtgg	1260
gaccacacag	aactatgatg	ccgaccagaa	gtttgggttc	tgccccatgg	ctgcccacga	1320
ggaaatctgc	acaaccaatg	aaggggtcat	gtaccgcatt	ggagatcagt	gggataagca	1380
gcatgacatg	ggtcacatga	tgaggtgcac	gtgtgttggg	aatggtcgtg	gggaatggac	1440
atgcattgcc	tactcgcaac	ttcgagatca	gtgcattgtt	gatgacatca	cttacaatgt	1500
gaacgacaca	ttccacaagc	gtcatgaaga	ggggcacatg	ctgaactgta	catgcttcgg	1560
tcagggtcgg	ggcaggtgga	agtgtgatcc	cgtcgaccaa	tgccaggatt	cagagactgg	1620
gacgttttat	caaattggag	attcatggga	gaagtatgtg	catggtgtca	gataccagtg	1680
ctactgctat	ggccgtggca	ttggggagtg	gcattgccaa	cctttacaga	cctatccaag	1740
ctcaagtggt	cctgtcgaag	tatttatcac	tgagactccg	agtcagccca	actcccaccc	1800
catccagtgg	aatgcaccac	agccatctca	catttccaag	tacattctca	ggtggagacc	1860
taaaaattct	gtaggccgtt	ggaaggaagc	taccatacca	ggccacttaa	actcctacac	1920
catcaaaggc	ctgaagcctg	gtgtggtata	cgagggccag	ctcatcagca	tccagcagta	1980
cggccaccaa	gaagtgactc	gctttgactt	caccaccacc	agcaccagca	cacctgtgac	2040
cagcaacacc	gtgacaggag	agacgactcc	cttttctcct	cttgtggcca	cttctgaatc	2100
tgtgaccgaa	atcacagcca	gtagctttgt	ggtctcctgg	gtctcagctt	ccgacaccgt	2160
gtcgggattc	cgggtggaat	atgagctgag	tgaggaggga	gatgagccac	agtacctgga	2220
tcttccaagc	acagccactt	ctgtgaacat	ccctgacctg	cttcctggcc	gaaaatacat	2280
tgtaaatgtc	tatcagatat	ctgaggatgg	ggagcagagt	ttgatcctgt	ctacttcaca	2340
aacaacagcg	cctgatgccc	ctcctgaccc	gactgtggac	caagttgatg	acacctcaat	2400
tgttgttcgc	tggagcagac	cccaggctcc	catcacaggg	tacagaatag	tctattcgcc	2460
atcagtagaa	ggtagcagca	cagaactcaa	ccttcctgaa	actgcaaact	ccgtcaccct	2520
cagtgacttg	caacctggtg	ttcagtataa	catcactatc	tatgctgtgg	aagaaaatca	2580
agaaagtaca	cctgttgtca	ttcaacaaga	aaggactggc	accccacgct	cagatacagt	2640
gccctctccc	agggacctgc	agtttgtgga	agtgacagac	gtgaaggtca	ccatcatgtg	2700
gacaccgcct	gagagtgcag	tgaccggcta	ccgtgtggat	gtgatccccg	tcaacctgcc	2760
tggcgagcac	gggcagaggc	tgcccatcag	caggaacacc	tttgcagaag	tcaccgggct	2820
				,		

gtcccctggg	gtcacctatt	acttcaaagt	25775-czaz ctttgcagtg		gggagagcaa	2880
gcctctgact	gctcaacaga	caaccaaact	ggatgctccc	actaacctcc	agtttgtcaa	2940
tgaaactgat	tctactgtcc	tggtgagatg	gactccacct	cgggcccaga	taacaggata	3000
ccgactgacc	gtgggcctta	cccgaagagg	ccagcccagg	cagtacaatg	tgggtccctc	3060
tgtcttcaag	taccccctga	ggaatctgca	gcctgcatct	gattacaccg	tatccctcgt	3120
ggccataaag	ggcaaccaag	agagccccaa	agccactgga	gtctttacca	cactgcagcc	3180
tgggagctct	attccacctt	acaacaccga	ggtgactgag	accaccatcg	tgatcacatg	3240
gacgcctgct	ccaagaattg	gttttaagct	gggtgtacga	ccaagccagg	gaggagaggc	3300
accacgagaa	gtgacttcag	actcaggaag	catcgttgtg	tccggcttga	ctccaggagt	3360
agaatacgtc	tacaccatcc	aagtcctgag	agatggacag	gaaagagatg	cgccaattgt	3420
aaacaaagtg	gtgacaccat	tgtctccacc	aacaaacttg	catctggagg	caaaccctga	3480
cactggagtg	ctcacagtct	cctgggagag	gagcaccacc	ccagacatta	ctggttatag	3540
aattaccaca	acccctacaa	acggccagca	gggaaattct	ttggaagaag	tggtccatgc	3600
tgatcagagc	tcctgcactt	ttgataacct	gagtcccggc	ctggagtaca	atgtcagtgt	3660
ttacactgtc	aaggatgaca	aggaaagtgt	ccctatctct	gataccatca	tcccagctgt	3720
tectectece	actgacctgc	gattcaccaa	cattggtcca	gacaccatgc	gtgtcacctg	3780
ggctccaccc	ccatccattg	atttaaccaa	cttcctggtg	cgttactcác	ctgtgaaaaa	3840
tgaggaagat	gttgcagagt	tgtcaatttc	tccttcagac	aatgcagtgg	tcttaacaaa	3900
tctcctgcct	ggtacagaat	atgtagtgag	tgtctccagt	gtctacgaac	aacatgagag	3960
cacacctctt	agaggaagac	agaaaacagg	tcttgattcc	ccaactggca	ttgacttttc	4020
tgatattact	gccaactctt	ttactgtgca	ctggattgct	cctcgagcca	ccatcactgg	4080
ctacaggatc	cgccatcatc	ccgagcactt	cagtgggaga	cctcgagaag	atcgggtgcc	4140
ccactctcgg	aattccatca	ccctcaccaa	cctcactcca	ggcacagagt	atgtggtcag	4200
catcgttgct	cttaatggca	gagaggaaag	tcccttattg	attggccaac	aatcaacagt	4260
ttctgatgtt	ccgagggacc	tggaagttgt	tgctgcgacc	cccaccagcc	tactgatcag	4320
ctgggatgct	cctgctgtca	cagtgagata	ttacaggatc	acttacggag	aaacaggagg	4380
aaatagccct	gtccaggagt	tcactgtgcc	tgggagcaag	tctacagcta	ccatcagcgg	4440
ccttaaacct	ggagttgatt	ataccatcac	tgtgtatgct	gtcactggcc	gtggagacag	4500
ccccgcaagc	agcaagccaa	tttccattaa	ttaccgaaca	gaaattgaca	aaccatccca	4560
gatgcaagtg	accgatgttc	aggacaacag	cattagtgtc Page		cttcaagttc	4620

Page 18

ccctgttact	ggttacagag	taaccaccac	tcccaaaaat	ggaccaggac	caacaaaac	4680
taaaactgca	ggtccagatc	aaacagaaat	gactattgaa	ggcttgcagc	ccacagtgga	4740
gtatgtggtt	agtgtctatg	ctcagaatcc	aagcggagag	agtcagcctc	tggttcagac	4800
tgcagtaacc	aacattgatc	gccctaaagg	actggcattc	actgatgtgg	atgtcgattc	4860
catcaaaatt	gcttgggaaa	gcccacaggg	gcaagtttcc	aggtacaggg	tgacctactc	4920
gagccctgag	gatggaatcc	atgagctatt	ccctgcacct	gatggtgaag	aagacactgc	4980
agagctgcaa	ggcctcagac	cgggttctga	gtacacagtc	agtgtggttg	ccttgcacga	5040
tgatatggag	agccagcccc	tgattggaac	ccagtccaca	gctattcctg	caccaactga	5100
cctgaagttc	actcaggtca	cacccacaag	cctgagcgcc	cagtggacac	cacccaatgt	5160
tcagctcact	ggatatcgag	tgcgggtgac	ccccaaggag	aagaccggac	caatgaaaga	5220
aatcaacctt	gctcctgaca	gctcatccgt	ggttgtatca	ggacttatgg	tggccaccaa	5280
atatgaagtg	agtgtctatg	ctcttaagga	cactttgaca	agcagaccag	ctcagggtgt	5340
tgtcaccact	ctggagaatg	tcagcccacc	aagaagggct	cgtgtgacag	atgctactga	5400
gaccaccatc	accattagct	ggagaaccaa	gactgagacg	atcactggct	tccaagttga	5460
tgccgttcca	gccaatggcc	agactccaat	ccagagaacc	atcaagccag	atgtcagaag	5520
ctacaccatc	acaggtttac	aaccaggcac	tgactacaag	atctacctgt	acaccttgaa	5580
tgacaatgct	cggagctccc	ctgtggtcat	cgacgcctcc	actgccattg	atgcaccatc	5640
caacctgcgt	ttcctggcca	ccacacccaa	ttccttgctg	gtatcatggc	agccgccacg	5700
tgccaggatt	accggctaca	tcatcaagta	tgagaagcct	gggtctcctc	ccagagaagt	5760
ggtccctcgg	ccccgccctg	gtgtcacaga	ggctactatt	actggcctgg	aaccgggaac	5820
cgaatataca	atttatgtca	ttgccctgaa	gaataatcag	aagagcgagc	ccctgattgg	5880
aaggaaaaag	acagacgagc	ttccccaact	ggtaaccctt	ccacacccca	atcttcatgg	5940
accagagatc	ttggatgttc	cttccacagt	tcaaaagacc	cctttcgtca	cccaccctgg	6000
gtatgacact	ggaaatggta	ttcagcttcc	tggcacttct	ggtcagcaac	ccagtgttgg	6060
gcaacaaatg	atctttgagg	aacatggttt	taggcggacc	acaccgccca	caacggccac	6120
ccccataagg	cataggccaa	gaccataccc	gccgaatgta	ggacaagaag	ctctctctca	6180
gacaaccatc	tcatgggccc	cattccagga	cacttctgag	tacatcattt	catgtcatcc	6240
tgttggcact	gatgaagaac	ccttacagtt	cagggttcct	ggaacttcta	ccagtgccac	6300
tctgacaggc	ctcaccagag	gtgccaccta	caacatcata	gtggaggcac	tgaaagacca	6360

			25775-czaz	a1.ST25		
gcagaggcat	aaggttcggg	aagaggttgt	taccgtgggc		acgaaggctt	6420
gaaccaacct	acggatgact	cgtgctttga	cccctacaca	gtttcccatt	atgccgttgg	6480
agatgagtgg	gaacgaatgt	ctgaatcagg	ctttaaactg	ttgtgccagt	gcttaggctt	6540
tggaagtggt	catttcagat	gtgattcatc	tagatggtgc	catgacaatg	gtgtgaacta	6600
caagattgga	gagaagtggg	accgtcaggg	agaaaatggc	cagatgatga	gctgcacatg	6660
tcttgggaac	ggaaaaggag	aattcaagtg	tgaccctcat	gaggcaacgt	gttacgatga	6720
tgggaagaca	taccacgtag	gagaacagtg	gcagaaggaa	tatctcggtg	ccatttgctc	6780
ctgcacatgc	tttggaggcc	agcggggctg	gcgctgtgac	aactgccgca	gacctggggg	6840
tgaacccagt	cccgaaggca	ctactggcca	gtcctacaac	cagtattctc	agagatacca	6900
tcagagaaca	aacactaatg	ttaattgccc	aattgagtgc	ttcatgcctt	tagatgtaca	6960
ggctgacaga	gaagattccc	gagagtaaat	catctttcca	atccagagga	acaagcatgt	7020
ctctctgcca	agatccatct	aaactggagt	gatgttagca	gacccagctt	agagttcttc	7080
tttctttctt	aagccctttg	ctctggagga	agttctccag	cttcagctca	actcacagct	7140
tctccaagca	tcaccctggg	agtttcctga	gggttttctc	ataaatgagg	gctgcacatt	7200
gcctgttctg	cttcgaagta	ttcaataccg	ctcagtattt	taaatgaagt	gattctaaga	7260
tttggtttgg	gatcaatagg	aaagcatatg	cagccaacca	agatgcaaat	gttttgaaat	7320
gatatgacca	aaattttaag	taggaaagtc	acccaaacac	ttctgctttc	acttaagtgt	7380
ctggcccgca	atactgtagg	aacaagcatg	atcttgttac	tgtgatattt	taaatatcca	7440
cagtactcac	tttttccaaa	tgatcctagt	aattgcctag	aaatatcttt	ctcttacctg	7500
ttatttatca	atttttccca	gtattttat	acggaaaaaa	ttgtattgaa	aacacttagt	7560
atgcagttga	taagaggaat	ttggtataat	tatggtgggt	gattatttt	tatactgtat	7620
gtgccaaagc	tttactactg	tggaaagaca	actgttttaa	taaaagattt	acattccaca	7680
aaaaaaaaaa	aaaaaaaaa	aaaaa	e e			7705

<210> 17

<211> 71

<212> DNA

<213> Artificial Sequence

<223>	25775-czaza1.ST25 Synthetic Probe directed to Human Fibronectin	•
400		
<400> aattca	17 tatg caggcacagc aaatggttca gccccagtcc ccggtggctg tcagtcaaag	60
caagcc	cggt t	71
<210>	18	
<211>	75	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> ataaca	18 acaa ccgggcttgc tttgactgac agccaccggg gactggggct gaaccatttg	60
ctatac	ectgc atatg	75
ccgcgc		
<210>	19	
<211>	71	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> gttatg	19 gacaa tggaaaacac tatcatcaga taaatcaaca gtgggagcgg acctacctag	60
gtaatg	gtgtt g	71
<210>	20	
<211>	56	
<212>	DNA	

<220>

<213> Artificial Sequence

	<223>	Synthetic Probe directed to Human Fibronectin	
	<400> ttaccta	20 aggt aggtccgctc ccactgttga tttatctgat agtgttttcc attgtc 5	6
	<210>	21	
,	<211>	57	
	<212>	DNA	
	<213>	Artificial Sequence	
	*		
	<220>		
	<223>	Synthetic Probe directed to Human Fibronectin	
	<400> gtttgta	21 actt gttatggagg aagccgaggt tttaactgcg aaagtaaacc tgaagct 5	57
	<210>	22	
	<211>	71	
	<212>	DNA	
	<213>	Artificial Sequence	
		,	
	<220>		
	<223>	Synthetic Probe directed to Human Fibronectin	
	<400> tctctt	22 cagc ttcaggttta ctttcgcagt taaaacctcg gcttcctcca taacaagtac	60
	aaacca	acac a	71
	-210-	23	
	<210>	69	
	<212>	DNA	
	<213>		
	<220>	•	
	<223>	Synthetic Probe directed to Human Fibronectin	

<400> gaagaga	23 actt gctttgacaa gtacactggg aacacttacc gagtgggtga cacttatgag	60
cgtccta	aaa	69
<210>	24	
<211>	57	
<212>	DNA	
<213>	Artificial Sequence	•
<220>	*	
<223>	Synthetic Probe directed to Human Fibronectin	
<400>	24 cata agtgtcaccc actcggtaag tgttcccagt gtacttgtca aagcaag	57
gacget	cata agrigidaded actoggitaay tyticocayt gewoodytou uugouug	
<210>	25	
<211>	60	-
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400>	25 ⁻	
gactcc	atga tetgggaetg tacetgeate ggggetggge gagggagaat aagetgtace	60
<210>	26	
<211>	58	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> cttatt	26 ctcc ctcgcccagc cccgatgcag gtacagtccc agatcatgga gtctttag	58

<210>	27	
<211>	71	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> atcgcc	27 aacg ctgccatgaa gggggtcagt cctaccagat tggtgacacc tggaggagac	60
cacatg	agac t	71
<210>	28	
<211>	85	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400>	28	
aaccac	cagt ctcatgtggt ctcctccagg tgtcaccaat ctggtaggac tgaccccctt	60
catggc	agcg tttgcgatgg tacag	85
<210>	29	
<211>	72	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> ggtggt	29 taca tgttagagtg tgtgtgtctt ggtaatggaa aaggagaatg gacctgcaag	60
cccata	gctg ag	72

Page 24

<210>	30	
<211>	69	
<212>	DNA	
<213>	Artificial Sequence	-
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> gatcct	30 cage tatgggettg caggtecatt etecttttee attaccaaga cacacact	60
ctaaca	tgt	69
.010.		
<210>	31	
<211>	51	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> gggctg	31 ggcg agggagaata agctgtacca tcgcaaaccg ctaacagctg a	51
<210>	32	
<211>	51	
<212>	DNA	
<213>	Artificial Sequence	
<220>	· ·	
<223>	Synthetic Probe directed to Human Fibronectin	
<400> agcttc	32 agct gttagcggtt tgcgatggta cagcttattc tccctcgccc a	51
.010.		

<211>	51	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> gggctg	33 ggcg agggagaata agctgtacca tcgcaaaccg ccatatgtaa a	51
<210>	34	
<211>	51	
<212>	DNA	
	Artificial Sequence	
1227		•
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400>	34 taca tatggeggtt tgegatggta cagettatte teeetegeee a	51
<210>	35	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Probe directed to Human Fibronectin	
<400> atggcc	35 gtgg agacagctaa cagctga	27
<210>	36	
<211>	31	

		231/3-020201.0123			
<213>	Artificial Sequence				
		e Postantija			•
<220>				•	
<223>	Synthetic Probe directed	to Human Fibronectin			
<400>	36				
	aget gttagetgte tecaeggeea	a t			31
-210-	37	γ··			
<210>			-		
<211>	13				
<212>	DNA	•	e.		
<213>	Artificial Sequence				
<220>		46			5
<223>	Synthetic Probe directed	to Human Fibronectin			
<400>	37				
ctgtat	acca acc		•		13
<210>	38				
<211>	15				
<212>	DNA				
	Artificial Sequence				
<220>					
	Complement of Duration address 1	An Home Dillege at the			
<223>	Synthetic Probe directed	to Human Fibronectin	· · · · · · · · · · · · · · · · · · ·		
<400>	38 cata tacaa				15