Comparison between different Arc Consistency Algorithms

Suppose, you are given an integer number N, a set of domains D and a set of constraints C you need to compare the performance/run time of different Arc Consistency Algorithms (AC-1) to AC-4 according to the following way,

- 1. Initially take N as 5.
- 2. Generate a random graph of N nodes.
- 3. Select a constraint from *C* for each arc in the graph.
- 4. Run different Arc Consistency Algorithms (AC-1) to AC-4 to determine whether is it possible to assign a value to each node i $(1 \le i \le N)$ under its corresponding domain, D_i such that the arc constraints satisfied.
- 5. Save the run time of each algorithm.
- 6. Follow step-2 to step-5, 20 times and take the average run time.
- 7. Increment N by 5 and follow step-2 to step-6 until N is greater than 50.
- 8. Plot a graph using the number of nodes in X- axis and average run time for each algorithm in Y axis to show the comparison.

Constraints:

- Number of nodes, $N (5 \le N \le 50)$.
- For each node i $(1 \le i \le N)$, domain, D_i $(1 \le D_i \le 200)$.
- Suppose, x_i is assigned to node i $(1 \le i \le N)$. Set of constraints, C for any two adjacent node i and j $(1 \le i, j \le N)$ and $i \ne j$:
 - $\circ x_i \neq x_j$
 - $\circ \quad x_i = x_i$
 - $\circ \ \ \mathsf{lf} \ (i < j) \,, \ x_i < x_j$
 - $\circ \ \ \mathsf{lf} \ (i < j) \,, \ x_i > x_j$
 - \circ x_i and x_j are coprime
 - \circ x_i and x_j are not coprime
 - $\circ (x_i + x_j)$ is even
 - \circ $(x_i + x_j)$ is odd