

Griffin McCauley, Eric Tria, Theo Thormann, Jake Weinberg

# Hum ETM Capstone Update - 02/13

## A Process of Iteration

- Completed data processing and cleaning of entire 2022 dataset
- Successfully built, trained, and evaluated a baseline sequence classifier model for the most recent period of user engagement
- The model produced an accuracy of ~67% on the testing set, but the model's room for improvement seems capped by the quality and content of the available data
- Given the nature of collection and the way events are triggered, patterns in the sequence proved to be more difficult more the model to discern than expected
- Having discovered this, we were prompted to reevaluate the feature selection process and consider how the model could be adapted

#### **Additional Attributes**

- Since events and their time stamps do not seem robust enough, we began exploring additional features to incorporate
- Want to extract more information on content type, journal origin, article topics, and user identification

#### Relevant features uncovered



Content Type (in Meta)



URL (for articles)



Content ID (for journal)





#### **Count Feasibility EDA**

- The notebooks for this EDA can be found on our GitHub at the link below
- **EDA in Github**
- The following slides will also highlight the major findings as well

#### **Event Meta Table: Content Type**

| META_NAME       |         | META_VALUE                                      |
|-----------------|---------|-------------------------------------------------|
| content_type    | 1068970 | journal_article 1068966                         |
| day             | 2011605 | microsite_home 4                                |
| description     | 1886980 | Name: ID, dtype: int64                          |
| image           | 279918  |                                                 |
| referer         | 2011605 | <ul> <li>Total Events: 10,863,469</li> </ul>    |
| tags            | 642979  | <ul> <li>Journal Articles: 1,068,966</li> </ul> |
| title           | 1886909 | , ,                                             |
| utm_campaign    | 10174   | <ul> <li>Microsite Home: 4</li> </ul>           |
| utm_content     | 10174   |                                                 |
| utm_medium      | 10174   |                                                 |
| utm_source      | 10174   |                                                 |
| utm_term        | 10174   |                                                 |
| Name: ID, dtype | : int64 |                                                 |

#### **Content Table: Content Type**

|   | ТҮРЕ               | <b>EVENTS</b> |
|---|--------------------|---------------|
| 0 | issue              | 125641        |
| 1 | journal_article    | 8012589       |
| 2 | account_management | 179789        |
| 3 | search             | 197223        |
| 4 | None               | 1623851       |
| 5 | in-brief           | 39            |
| 6 | self-serve         | 129483        |
| 7 | cross-ref-citation | 12            |
| 8 | microsite_home     | 594842        |

#### **Event Table: Referer**

|   | REFERER_GROUP  | <b>EVENTS</b> |
|---|----------------|---------------|
| 0 | OTHER          | 4166569       |
| 1 | GOOGLE         | 2933301       |
| 2 | PUBMED         | 1428813       |
| 3 | RUPRESS        | 1355904       |
| 4 | GOOGLE SCHOLAR | 978882        |

#### **Event Table: URL**

|   | URL_TYPE | <b>EVENTS</b> |
|---|----------|---------------|
| 0 | ARTICLE  | 9516546       |
| 1 | OTHER    | 1346923       |

#### **Event Table: Tags**

|    | TAG                      | <b>EVENTS</b> |
|----|--------------------------|---------------|
| 0  | "mice"                   | 2216857       |
| 1  | "t-lymphocytes"          | 996746        |
| 2  | "tissue membrane"        | 698284        |
| 3  | "signal transduction"    | 619142        |
| 4  | "antibodies"             | 585891        |
| 5  | "neoplasms"              | 581571        |
| 6  | "infections"             | 499700        |
| 7  | "genes"                  | 425608        |
| 8  | "hum_immunopathogenesis" | 414480        |
| 9  | "mitochondria"           | 365549        |
| 10 | "actins"                 | 359561        |

#### **Content Keyword Table: Keywords**

|       | KEYWORD             | <b>EVENTS</b> |
|-------|---------------------|---------------|
| 0     | mice                | 2500110       |
| 1     | None                | 2125695       |
| 2     | t-lymphocytes       | 1133698       |
| 3     | tissue membrane     | 768383        |
| 4     | signal transduction | 703489        |
| •••   |                     |               |
| 23662 | cochlear implants   | 1             |
| 23663 | phosphorylases      | 1             |
| 23664 | confidence interval | 1             |
| 23665 | supraoptic nucleus  | 1             |
| 23666 | hum_eleetrophoresis | 1             |

#### **Reconceived Model**

#### **Motivation**

- Had hoped to identify dropout risk based off of most recent engagement cycle
- Since it turns out the data is not rich enough to support this approach, we seek to classify users in a more objective and feature-driven manner
- Can delineate users into two types: subscribed and anonymous based on Set User feature
- By using the previously processed sequence data in conjunction with newly found features, we aspire to predict currently unidentified users who are likely to subscribe and engage more intently

#### **Engagement Through Subscription**

- Based on a user's first X number of events, can we predict whether they are more similar to fulltime subscribers or cyclical binge users
- Adapt current subsequence data to be fed in as just one input to a larger model
- Bring in features such as counts for each of the different journals engaged with, how many cycles they have performed, how many unique articles have been visited, what the primary referers are (e.g. Google, PubMed, etc.), and how similar engagement sequence is to subscribers
- These derived features can then be used as inputs to an MLP classification model
- Offers robust support for adaptation and tuning

### **Next Steps**

- Define the exact derived features we need to pull from the data warehouse
- Clean and organize the newly identified additional data (can now be done more easily in parallel)
- Build a basic MLP architecture to perform classification given our redefined feature space
- Train and tune the model
- Determine if the sponsor would like any additional criteria included to make the transition easier if they hope to adapt the model for Reviewer Recommendation