EE2331 Data Structures and Algorithms

Trees

Trees

- Tree is a non-linear linked data structure
 - Multiple succeeding elements
 - Tree structure is recursively defined, so tree operations often involve recursion and linked list

Outline

- Terminology
- Representation
- Binary Trees
- Implementations with Array and Linked List
- Common Operations of Binary Tree
- Trees Traversal
 - Preorder, inorder, postorder, level order
- Reconstruction of Binary Trees
- Special Binary Trees
 - Binary Search Trees
- Applications
- General Trees and Other tree structures

An Inverted Tree

Tree Example: Restaurant

File System

Can you think of other examples of "tree" structures?

Trees in biology

Definition of trees

- is a tree. It is called an "empty tree"
- If is a node, and another is a node, and a no

When k=0, there is no subtree \rightarrow a single node is a tree.

Tree examples:

Composition of a Tree

- Types of tree node
 - Root node (the top node in a tree)
 - Interior nodes (nodes with at least one child)
 - Leaf nodes (nodes with no children)

Tree Criteria (vs. graph)

- Always a single root node
- A single path from the root to node
- Exercise: which of the following is not a tree?

Property of Trees

- Nodes represent information (data)
- Branches represent links between the nodes
- If the total number of nodes (i.e. **root node**, **interior nodes** and **leaf nodes**) is *n*, how many branches in the tree?
 - Number of branches is ?

Parent, Children & Sibling

- This tree has 13 nodes
- Node A has 3 children
 - Nodes B, C and D
- Node A is the parent of
 - B, C and D
- Node G is the parent of
 - Nodes J, K and L
- Node G is the child of C
- J, K and L are sibling nodes (share the same parent)

Subtrees

■ A tree is composed of several subtrees

Smaller subtrees

■ A subtree can be further broken down into smaller subtrees

Ancestor and Descendant

- A simple path is a sequence of nodes $n_1, n_2, ..., n_k$ such that the nodes are all distinct and there is an edge between each pair of nodes $(n_1, n_2), (n_2, n_3), ..., (n_{k-1}, n_k)$
- The nodes along the simple path from the root to node x are the ancestors of x
- The descendants of a node x are the nodes in the subtrees of x
- Length of a path = no. of edges on the path

Degree

■ The number of subtrees of a node

Depth and Level

The depth of a node is Depth Level the length of the unique root 0 path from root to the node. В The level of a node is G Н defined by its depth plus 1.

Height

The height of a node is the number of edges from the node to the deepest leaf.

The height of a tree is a height of the root.

= the longest path in the tree

In-class Exercise (no submission needed)

- A node having no parent is called Root
- A node having no children is called Leaf
- A node having both parent and children is called _____ Branch
- If a tree has 5 branches, how many nodes does this tree contain? 5+1
- What is the degree of a leaf node?
- Can a node have more than one parent in a tree? _____
- Is there a unique path from root to every node?

Tree Representation

Representation of Trees

- List representation
- Set representation
- Indentation

List Representation (recursive)

■ The tree can be represented by this list

 \blacksquare (A(B(E, F), \bigcirc (G(J, K, L)), \bigcirc (H, I(M))))

Starting from the root A.
A=A(B,C,D). B, C, and D are
not leaf nodes. They are the
roots of subtrees. We need to
recursively represent them
using root(child1, child2, ...,
the last child). Thus,
B=B(E,F)
C=C(G), G=G(J,K,L)
D=D(H,I), I=I(M)

List Representation (recursive)

■ The tree can be represented by this list

 \blacksquare (A(B(E, F), \bigcirc (G(J, K, L)), \square (H, I(M))))

What is the list representation of the following tree?

Set Representation

Indentation Representation

They Are Also Indentation

