Computational Linguistics

Lecture 2

Dr. Dina Khattab

dina.khattab@cis.asu.edu.eg

Models for getting Knowledge of Language

We tackle the problem of defining languages by considering how we could recognise them.

Models for getting Knowledge of Language

- 1. State Machines
 - Finite State Automata (FSA) and Regular Expressions (Regex)
- 2. Formal Rule System
 - Context Free Grammar (CFG)
 - Backus-Naur Form (BNF)
- 3. Logic
 - Predicate Calculus
 - Semantic Networks
- 4. Probability Theory

Representations for languages

- We will discuss the two principal methods for defining languages: the generator and the recognizer
- In particular we will focus on a particular class of generators (grammars) and of recognizers (automata)
- Regular languages are the simplest formal languages:
 - Their generators are the regular expressions
 - Their recognizers are the finite state automata

Concepts and Notations

Set: An unordered collection of unique elements

```
S_1 = \{ a, b, c \} S_2 = \{ 0, 1, ..., 19 \} empty set: \emptyset membership: x \in S union: S_1 \cup S_2 = \{ a, b, c, 0, 1, ..., 19 \} universe of discourse: U subset: S_1 \subset U complement: if U = \{ a, b, ..., z \}, then S_1' = \{ d, e, ..., z \} = U - S_1
```

- Alphabet: A finite set of symbols
 - Examples:
 - $\Sigma_1 = \{ a, b \}$ $\Sigma_2 = \{ Spring, Summer, Autumn, Winter \}$
- String/word: A sequence of zero or more symbols from an alphabet
 - The empty string: **E**

Concepts and Notations

- Language: A set of strings over an alphabet
 - Also known as a formal language; may not bear any resemblance to a natural language, but could model a subset of one.
 - The language comprising **all** strings over an alphabet Σ is written as: Σ^*
- ➤ Graph: A set of nodes (or vertices), some or all of which may be connected by edges.
 - An example:

− A directed graph example:

Finite State Automata (FSA)

Finite State Automata

Language Recognition Problem:

Whether a word belonging to language?

i.e. given a language description and a string, is there an algorithm which will answer yes or no correctly?

Finite State Automata

- A finite state automaton is an abstract model of a simple machine (or computer) i.e. a computational device to solve the language recognition problem
- The machine can be in a finite number of states. It receives symbols as input, and the result of receiving a particular input in a particular state moves the machine to a specified new state.
- Certain states are finishing states, and if the machine is in one of those states when the input ends, it has ended successfully (or has accepted the input).

FSA: Formal Definition

A <u>Finite State Automaton</u> (FSA) is a 5-tuple (Q, I, F, T, E) where:

 $Q = \underline{\text{states}}$ a finite set;

 $I = \underline{initial \ states}$ a nonempty subset of Q;

 $F = \underline{\text{final states}}$ a subset of Q;

T = an alphabet;

 $E = \underline{edges}$ a subset of $Q \times T \rightarrow Q$.

FSA can be represented by a labelled, directed graph

set of nodes (some final/initial) +
 directed arcs (arrows) between nodes +
 each arc has a label from the alphabet.

Example: formal definition of A_1

$$Q = \{1, 2, 3\}$$

 $I = \{1\}$
 $F = \{3\}$

$$T = \{a, b\}$$

 $E = \{ (1,a,2), (1,b,3), (2,b,3), (3,a,2), (3,b,3) \}$

What does it mean to accept a string/language?

If the FSA is in a final (or accepting) state after all input symbols have been consumed, then the string is accepted (or recognized), otherwise it is rejected

e.x. String: abb

Give other Examples!

The language accepted by A_1 is the set of strings of a's and b's which end in b, and in which no two a's are adjacent

Finite-state Automata

- An FSA defines a regular language over an alphabet Σ :
 - \emptyset is a regular language: \longrightarrow \bigcirc
 - Any symbol from Σ is a regular language:

$$\Sigma = \{ a, b, c \}$$
 q_0 q_1

• Two concatenated regular languages is a regular language:

$$\Sigma = \{ a, b, c \}$$

FSA Example

Consider the following FSA

 $T: \{0, 1\}$

 $Q: \{s1, s2\}$

I: s1

F: s2

E:

	0	1
S1	S 1	S2
S2	S2	S 1

FSA Example

FSA Example

Determine which string is accepted and which is rejected:

- >01101
- >011011
- >00000
- >11111
- **>**10101010

FSA Exercise

Consider the following FSA

 $T: \{a, b, c\}$

 $Q: \{s1, s2, s3\}$

I: s1

F: s2, s3

E:

	a	b	c
S 1	S 1	S2	S2
S2	S 1	S2	S3
S 3	S 3	S 1	S2

17

FSA Exercise

- **>**abb
- **>**abba
- **bcbccc**
- **>**caaabbc

FSA Exercise

