REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM (INTERNET OF THINGS)

In fulfillment of project in IBM-NALAYATHIRAN 2022

SUBMITTED BY

TEAM ID: PNT2022TMID12734

AKAASH K L

AMUDHA VARDHHNI C M

UMDA M

DHAKSHINA VYSHAK M

BACHELOR OF ENGINEERING in ELECTRONICS AND COMMUNICATION ENGINEERING

PROJECT GUIDES:

Industry Mentor : BharadwajFaculty Mentor : A. KannammalFaculty Evaluator : T. Kesavamurthy

PSG College of Technology,
Avinashi Rd, Peelamedu, Coimbatore,
Tamil Nadu 641004

INDEX

1.INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2.LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3.IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- **3.3 Proposed Solution**
- 3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

- **4.1 Functional requirement**
- **4.2 Non-Functional requirements**

5.PROJECT DESIGN

- **5.1 Data Flow Diagrams**
- **5.2 Solution & Technical Architecture**
- **5.3 User Stories**

6.PROJECT PLANNING & SCHEDULING

- **6.1 Sprint Planning & Estimation**
- **6.2 Sprint Delivery Schedule**

7.CODING & SOLUTIONING

- 7.1 Node Red service associated with IBM Cloud
- 7.2 MIT App service Receive data from IBM cloud

8.TESTING

- **8.1 Test Cases**
- **8.2** User Acceptance Testing

9.RESULTS

9.1 Performance Metrics

10.ADVANTAGES & DISADVANTAGES

- 11.CONCLUSION
- 12.FUTURE SCOPE
- 13. APPENDIX
 - 13.1 Source Code
 - 13.2 GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview:

River water which is used as drinking water is a very precious commodity for all human beings. The system consists of several sensors which are used for measuring physical and chemical parameters of water. The parameters such as temperature, pH, and dissolved oxygen of the water can be measured. Using this system, a person can detect pollutants from a water body from anywhere in the world Current water quality monitoring system is a manual system with a monotonous process and is very time- consuming This paper proposes a sensor based water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a micro-controller for processing the system, communication system for inter and intra node communication and several sensors Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology Data collected at the IBM cloud Server and verify them to trigger the actions to be performed.

1.2 Purpose:

Water quality refers to chemical, physical biological and radio logical characteristics of water. It is a measure of the condition of water relative to the necessities of one or more bio-tic species and or to any human need or purposes. Water quality monitoring is defined as a sampling and analysis of the water in lake, stream, ocean and river and conditions of the water body. Smart water quality monitoring is a process of real-time monitoring and the analysis of water to identify changes in parameters based on the physical, chemical and biological characteristics. Monitoring water quality is clearly important: in our seas, our rivers, on the surface and in our ports, for both companies and the public. It enables us to assess how they are changing, analyze trends and to inform plans and strategies that improve water quality and ensures that water meets its designated use.

There are several indicators determining water quality. These include dissolved oxygen, turbidity, bio indicators, nitrates, pH scale and water temperature. Monitoring water quality helps to identify specific pollutants, a certain chemical, and the source of the pollution. There are many sources of water pollution: wastewater from sewage seeping into the water supply; agricultural practices (e.g., the use of pesticides and fertilizer); oil pollution, river and marine dumping, port, shipping and industrial activity. Monitoring water quality and a water quality assessment regularlyprovides a source of data identify immediate issues – and their source.

- Identifying trends, short and long-term, in water quality.
- Data collected over a period of time will show trends, for example identifying increasing concentrations of nitrogen pollution in a river or an inland waterway. The total data will then help to identify key water quality parameters.
- Environmental planning methods: water pollution prevention and management.
- Collecting, interpreting and using data is essential for the development of a sound and effective water quality strategy. The absence of real-time data will however hamper the development of strategies and limit the impact on pollution control. Using digital systems and programs for data collection andmanagement is a solution to this challenge.

Monitoring water quality is a global issue and concern: on land and at sea. Within the European Union, the European Green Deal sets out goals for restoring biological biodiversity and reducing water pollution, as well as publishing various directives to ensure standards of water quality. Individual nation states, for example France, have also clear regulatory frameworks requiring the effective monitoring of water quality. In the United States, the Environmental Protection Agency (EPA) enforces regulations to address water pollution in each state. Across the world, countries increasingly understand the importance of effective water quality monitoring parameters and methods.

2.LITERATURE SURVEY

2.1 Existing Problem:

Due to population growth, urbanization, and climatic change, competition for water resources is expected to increase, with a particular impact on agriculture, river water. Water will be suitableness to potable water monitoring compound spillage identification done rivers, remote estimation for swimming pools. It holds self- sufficient hubs that unite with the cloud to ongoing water control. The River water needed to be treated before it is used in agriculture fields, hence the parameters affecting the quality of river-water need to be analyzed and to be used for water treatment purpose.

2.2 References:

1) IoT-based System for Real-time Water Pollution Monitoring of Rivers

Mohammad Ariful Islam Khan; Mohammad Akidul Hoque; Sabbir Ahmed

IEEE September 2021

The research proposes a system to remotely monitor the water quality of a river so that the authorities can gather better insights about the condition of that particular river and predict the critical future phenomena. Consequently, they will be able to take auspicious steps in order to protect the rivers and save the environment. The proposed framework can observe the real-time value of pH, conductivity, turbidity, temperature and flow of the water by utilizing various sensors. Furthermore, through our device, effective predictions about imminent floods can be made. Thus, authorities can commence early warning for floods and ensure prompt evacuation. Thus, our technique can significantly minimize the casualties caused by this disaster. In this context, real-time feeds are obtained through Internet of Things (IoT). For wireless data transmission Message Queuing Telemetry Transport (MQTT) is used.

2) Design and Implementation of Real Time Approach for The Monitoring of Water Ouality Parameters

Siti Aishah Binti Makhtar; Norhafizah Binti Burham; Anees Bt Abdul Aziz IEEE - June 2022

Access to safe drinking water is essential to nurturing human life on earth. Pollutedair and unsanitary water can cause health problems. Unhygienic water can cause stomach and health-related problems. A specific range of water quality parameters, mainly temperature, pH, total dissolved solids (TDS) and turbidity, can degrade the growth of this bacteria. This presented paperwork is to develop a smart water quality monitoring system using four sensors and an IoT platform to help determine water quality. It is to analyse the parameters of water samples such as tap water, co way water, river water, pond water, and lake water whether these water samples are

in the threshold range for drinking or not. The device is initially used to measure pH, turbidity, total dissolved solids (TDS) and temperature, and then sent the information to the microcontroller Arduino Uno.

3) An IoT Based Smart Water Quality Monitoring System using Cloud

Ajith Jerom B.; R. Manimegalai; R. Manimegalai

IEEE – April 2020

Other sources of pollution include agricultural runoff and unregulated small scale industry that results in polluting, most of the rivers, lakes and surface water in India. In this paper, An IoT Based Smart Water Quality Monitoring System using Cloud and Deep Learningis proposed to monitor the quality of the water in water-bodies. In conventional systems, the monitoring process involves the manual collection of sample water from various regions, followed by laboratory testing and analysis. This process is ineffective, as this process is arduous and time-consuming and it does not provide real-time results. The quality of water should be monitored continuously, to ensure the safe supply of water fromany water bodies and water resources. Hence, the design and development of a low-cost system for real-time monitoring of water quality using the Internet of Things (IoT) is essential. Monitoring water quality in water bodies using Internet of Things (IoT) helps in combating environmental issues and improving the health and living standards of all living things.

4) IoT Based Real-time River Water Quality Monitoring System

Mohammad Salah UddinChowdury, Talha BinEmran

Science Direct – 2018

This paper proposes a sensor-based water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a microcontroller for processing thesystem, communication system for inter and intra node communication and several sensors. Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology.

5) A Development and Implementation of Water Quality Assessment Monitoring (WQAM) System using the Internet of Things (IoT) in WaterEnvironment

Muhammad Farhan Johan, S. Abdullah, A. Zanal Saurabh S. Soman, Hamidreza Zareipour, Om Malik

JEVA - 23 November 2021

This paper presents the development and implementation of Water Quality Assessmentand Monitoring (WQAM) system. The system development used Wi-Fi enabled microcontroller to connect with the IoT environment and store the data in the IoT cloud server. The microcontroller used is Arduino UNO that interacts with three types of sensor probes which are pH, turbidity and temperature probe. All the data measurements is transferred using a Wi-Fi module which is ESP8266. The IoT cloud used to utilize the data frame is Thing Speak. This system was implemented on Bandar Pereda Lake and Deraa Riverin Pulao Pinang with two systems implemented at each location. The sensors were placed on the water surface for more accurate measurements. This system continuously measures the readings of pH, turbidity dan temperature on the lake/river for every 1 hour. Twenty readings were taken for every 1 hour within the first 20 minutes with 1 minute interval and the readings were stored in the IoT cloud server.

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

EMPATHY MAP

3.2 Ideation & Brainstorming:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Brainstorm & Idea Prioritization Template: Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to besolved)	Eutrophication, or the massive development of algae, causes pollution (monitoring and managingthe quality of river water).
2.	Idea / Solution description	Detecting dust particles, monitoring water PH, dissolved oxygen, and temperature, and changing authorities if water quality is poor.
3.	Novelty / Uniqueness	A web application may be used to monitor the quality of river water. The quality parameter will be tracked in real time with standard measurements.
4.	Social Impact / Customer Satisfaction	Localities will not suffer as a result of poor water quality since they will be notified when the waterquality is not good.
5.	Business Model (Revenue Model)	Aeron systems provides water quality monitoring systems for industrial water treatment plants, river bodies, aqua forming, and digital recorders.
6.	Scalability of the Solution	The assessment of real-time readings and continual monitoring helps in the preservation of water quality.

3.4 PROBLEM SOLUTION:

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed solution

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through product mobile UI
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Ph level detection	Ph sensor is used to monitor the water quality and the signals are send to Arduino.
FR-4	Turbidity detection	Turbidity sensor TS-300B measures the turbidity in the water andthe signals are send to Arduino.
FR-5	Ultrasonic generator	Waves generated at regular interval times to clear algae 25% ,50%, 100%

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Efficient to use and has simple monitoring system.
NFR-2	Security	Mobile application is secured with firewall protection
NFR-3	Reliability	Real time sensor output values with future predicted data storage.98% efficient monitoring output. It has assurance for aquaculture safety
NFR-4	Performance	Greater performance and environmentally safe model
NFR-5	Availability	In form of mobile UI 24 x 7 monitoring system
NFR-6	Scalability	Highly Scalable. It is capable to produce a best finaloutput.

5. PROJECT DESIGN

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION AND TECHNICAL ARCHITECTURE:

Summary:

This code pattern explains how to build an IOT based river watermonitoring and controlling system with some predefined values.

Flow

- Feed the data received from the Sensor unit which are placed in the river sides.
- The collected data will be displayed in the Web page to the user.
- Then the collected data is sent to the data base, where the collected data and the predefined data are checked and monitored.
- If any data exceed the predefined data then the control signal will send to the Admin.
- The collected data will be stored in the IBM cloud storage. Later the data will be controlled by the admin via Web UI.

miro

TECHNICAL ARCHITECTURE

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts	HTML, CSS,
		with application e.g.	JavaScript / Angular
		Web UI, Mobile	Js / React Js etc.
		App, Chatbot etc.	
2.	Application Logic-1	Logic for a process	Python
		in the application	
3.	Application Logic-2	Logic for a process	IBM Watson STT
		in the application	service
4.	Application Logic-3	Logic for a process	IBM Watson
		in the application	Assistant
5.	Database	Data Type,	MySQL, NoSQL,
		Configurations etc.	etc.
6.	Cloud Database	Database Service on	IBM DB2, IBM
		Cloud	Cloudant etc.

7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.
9.	External API-2	Purpose of External API used in the application	Aadhar API, etc.
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Application Characteristics:

S. No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Technology of Opensource framework
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Technology used
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Technology used
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Technology used

5.3User Stories:

User Type	Rec t (E	nctional Juiremen pic)	Nun	r Story nber		User S Task	Story /		cceptan riteria	ice	Prio	rity		Release
Customer (Mobile user)	Reg	gistration	USN-1		As a user, I can register for the application by entering my email, password, and confirming my password.		m	can acc ny accou ashboar	ınt /	High			Sprint-1	
USN-2		As a use receive confirma once I h registere applicat	ation e ave ed for	email	I can receive confirmation email		I	High			Sprint-1			
USN-3			er, I conforth	ne access the		e d with		Low			Sprint-2			
USN-4	USN-4 As a for the		a user, I can register the application ough Gmail			•		Sprint	int-1					
Login		USN-5			in by	s a user to the a enterinassword	pplication	n	High		•		Sprin	ıt-1
Dashboard				USN-6		<u> </u>				dasł	nboard	d and	l seai	n to the rch the access e mail.
Customer (We user)	Customer (Web Login UI user)		UI		As a user I Medium need to create an account by providing all the necessary information.				print - 1					
Customer Care Executive	Reg	gistration	UX			As a custon need r for the execut the applica	ner I egister care ive for	l d ar	can regiond acce ne accou	SS	High		1	Sprint - 1
Administrator		Confirm	ation		or	s a custo onfirmati nce regis e web u	omer on mail stered fo	r	High	-			Sprin	t - 1

6. PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING & SCHEDULING:

TITLE	DESCRIPTION	DATE
Literature Survey & Informa on Gathering	Literature survey on the selected project is done by gathering information about related details on technical papers and web browsing.	06 OCTOBER 2022
Empathy Map	Prepared Empathy Map Canvas to combine thoughts and pains, gains of the project with all team members.	08 OCTOBER 2022
Ideation	Brainstorming session is conducted with all team members to list out all the ideas and priori se the top 3 ideas.	09 OCTOBER 2022
Proposed Solution	Prepared the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	28 OCTOBER 2022
Problem Solution Fit	Prepared problem - solution fit document.	30 OCTOBER 2022

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Story Points	Priority	Team Mem bers
Sprint-1	Registration	USN-1	As a user, I can register for the application byentering my email, password, and confirming my password.	2	High	Akaash KL
Sprint-1		USN-2	As a user, I will receive confirmation email onceI have registered for the application	1	High	Amudha Vardhni CM
Sprint-2		USN-3	As a user, I can register for the applicationthrough Facebook	2	Low	Dhakshina Vyshak M
Sprint-1		USN-4	As a user, I can register for the applicationthrough Gmail	2	Medium	Umda M
Sprint-1	Login	USN-5	As a user, I can log into the application byentering email & password	1	High	Amudha Vardhni CM

Project Tracker, Velocity & Burn down Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	06 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	07 Nov 2022

Velocity:

Imagine we have 10-day sprint duration, and the velocity of the team is 20 (points per

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

7.CODING AND SOLUTIONING

7.1 NODE RED SERVICE ASSOCIATED WITH IBM CLOUD:

Node red Dashboard:

7.2 MIT App service Receive data from IBM cloud:

MOBILE APP USING MIT APP INVENTOR

MOBILE APP RECEIVE DATA FROM CLOUD

8. TESTING

8.1 Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	10	0	0	10
Client Application	35	0	0	35
Security	1	0	0	1
Outsource Shipping	2	0	0	2
Exception Reporting	10	0	0	10
Final Report Output	4	0	0	4
Version Control	3	0	0	3

8.2 USER ACCEPTANCE TESTING:

1. Purpose of Document:

The purpose of this document is to briefly explain the test coverage and openissues of the REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEMS project at the time of the release to User AcceptanceTesting (UAT).

2. Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	8	5	4	3	20
Duplicate	2	0	2	0	4
External	3	4	1	2	10
Fixed	10	1	5	14	30
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	1	2	1	4
Totals	23	11	16	21	71

9. RESULT

9.1 PERFORMANCE METRICS:

			**	NFT-I	Risk Assessme	ent			
.No	Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Voluem Changes	Risk Score	Justification
	REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM								
1		New	Low	No Changes	Moderate	3days	>5 to 10%	ORANGE	As we have seen the changes

PERFORMANCE TABLE:

PARAMETER	PERFORMANCE	DESCRIPTION
ADMIN TESTING	95%-100%	THE TESTING DONE
		BEFORE IT IS
		DEPLOYED AS AN APP
CUSTOMER	75-85%	THE CUSTOMER NEED
SATISFACTION		TO BE SATISFIED WITH
		THE MOBILE
		APPLICATION
USER INTERFACE	65-85%	THE APP CAN USED BY
		ANYONE. (EASY OF
		ACCESS)
SEVER RESPONSE	50-75%	URL - response
DATA VALIDATION	60-80%	VALID DATA FROM THE
WITH NO. OF TEST	(15-30	APP
CASE	TESTCASE)	
ERROR	3-5%	REAL-TIME DELAY
		MAY OCCUR

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- The prototype developed for water quality maintenance is very beneficial for safeguarding public health and also adds to the clean environment.
- The automation of this water monitoring, cleaning and control process removes the need of manual labor and thus saves time and money.
- The automation of the system makes the control and monitoring process more efficient and effective. Real time monitoring on mobile phone which is possible through the interface of plc with Arduino and Bluetooth module allows remote controlling of the system.

DISADVANTAGES:

- It is difficult to collect the water samples from all the area of the water body.
- The cost of analysis is very high.
- The lab testing and analysis takes some time and hence the lab results doesnot reflect real time water quality measurement due to delay in measurement.
- The process is time consuming due to slow process of manual data collection from different locations of the water body.
- The method is prone to human errors of various forms.

11. CONCLUSION

Thus, our project is used to Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters.

The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value. By keeping the embedded devices in the environment for monitoring enables self protection (i.e., smart environment) to the environment. To implement this need to deploy the sensor devices in the environment for collecting the data and analysis. By deploying sensor devices in the environment, we can bringthe environment into real life i.e. it can interact with other objects through the network.

Then the collected data and analysis results will be available to the end user through the Wi-Fi.

12. FUTURE SCOPE

We use water detection sensor has unique advantage. It consumes less time to monitor than a manual method for checking polluted levels, and notifies immediately to reduce affected rate of pollution in water. People who are living in rural areas near to the river will be very satisfied with our idea.

It will be useful to monitor water pollution in specific area. So this system prevent people from water pollution. It will be used for farming purpose to check quality water, temperature and PH level. Our Impact of this project is also create a social satisfaction for farmers too. The scalability of this project gives the addition of more different type of sensors. By interfacing the relay we can control the supply of water.

We can also implement as a revenue model. This system could also be implemented in various industrial processes. The system can be modified according to the needs of the user and can be implemented along with lab view to monitor dataon computers.

13. APPENDIX

13.1 SOURCE CODE:

PYTHON CODE TO PUBLISH DATA:

```
Importibmiotf.application
import ibmiotf.device
import time
import random
import sys
from twilio.rest import Client
import keys
Client = Client(keys.account_sid, keys.auth_token)
Organization ID
pnco2k
Device Type
watermonitoringsystem
Device ID
watermonitoringsystemid
Authentication Method
use-token-auth
Authentication Token
y1KKoQTKx?i@jA&q9R
pH = random.randint(1, 14)
turbidity = random.randint(1, 1000)
temperature = random.randint(0, 100)
def myCommandCallback(cmd):
print("Command Received: %s" % cmd.data['command'])
print(cmd)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"authmethod":
authMethod.
"auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
print("caught exception connecting device: %s" % str(e))
sys.exit()
deviceCli.connect()
while True:
pH = random.randint(1, 14)
```

turbidity = random.randint(1, 1000)
temperature = random.randint(0, 100)
data = {'pH': pH, 'turbid': turbidity, 'temp': temperature}
def myOnPublishCallback():
print("Published pH= %s" % pH, "Turbidity:%s" % turbidity,
"Temperature:%s" %
temperature)
success = deviceCli.publishEvent("demo", "json", data, qos=0,
on_publish=myOnPublishCallback)
if not success:
print("Not Connected to ibmiot")
time.sleep(1)
deviceCli.commandCallback = myCommandCallback
deviceCli.disconnect()

OUTPUT:

WEB APP UI using Node Red:

OUTPUT:

MIT Mobile APP:

13.2 GIT-HUB LINK	:		
https://github.co	m/IBM-EPBL/IBM-Projec	et-37278-1660303011	
PROJECT DEMO L	NK:		
1.Final project video li	nk:		
https://youtu.be/	E903yUFYIFE		
https://drive.goo	gle.com/drive/u/1/folders/1	wsJhRn6e5jMHyBeJe	evq581P588m3hiVn