Mechanics of Materials Formula and Data Sheet

Some Engineering Material Properties:

Property	Steel	Aluminum	Brass	
Young's Modulus, E	210 GPa (30 psi x 106)	70 GPa (10 psi x 10 ⁶)	105 GPa (15 psi x 10 ⁶)	
Shear Modulus, G	81 GPa (11.6 psi x 10 ⁶)	26 GPa (3.7 psi x 10 ⁶)	39 GPa (5.6 psi x 10 ⁶)	
Poisson's Ratio, v	0.30	0.33	0.35	
Thermal Expansion, a	ermal Expansion, a 11x10 ⁻⁶ /°C (6x10 ⁻⁶ °/F)		20x10-6 /°C (11x10-6 °/F)	
Density, p	Density, p 7850 kg/m³ (0.28 lb/in³)		8410 kg/m³ (0.30 lb/in³)	
Yield stress, σ_{Y}	Yield stress, $\sigma_{\rm Y}$ 250 MPa (36 x 10 ³ psi)		210 MPa (30 x 10 ³ psi)	

Moments of Area for Common Shapes:

Shape	Cross-section A	$\mathbf{I_x}$	I _y	$\mathbf{J} = \mathbf{I}_{\mathbf{x}} + \mathbf{I}_{\mathbf{y}}$	
solid circle	п с2	π c ⁴ / 4	$\pi c^4 / 4$	п с4 / 2	
thin-wall circle	2 π t c	πtc³	πtc³	$2 \pitc^3$	
solid rectangle	b h	b h³ / 12	h b³ / 12	b h (b ² + h ²) / 12	

Elastic relationships:

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{z}}{E} + \alpha \Delta T \qquad \gamma = \frac{\tau}{G} \qquad G = \frac{E}{2(1+\nu)} \qquad K = \frac{E}{3(1-2\nu)}$$

Failure Criteria: (for principal stresses $\sigma_1 \ge \sigma_2 \ge \sigma_3$)

Tresca: $\sigma_1 - \sigma_3 = \sigma_Y$ **Mises**: $(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2\sigma_Y^2$ **Mohr**: $\sigma_1/\sigma_{UT} - \sigma_3/\sigma_{UC} = 1$

Thin-Walled Pressure Vessels:

Shaft Torsion:

Beam Bending:

Parallel Axis Theorem:

$$\frac{\tau}{r} \,=\, \frac{T}{J} \,=\, \frac{G\, \phi}{L} \qquad \qquad \frac{\sigma}{-Y} \,=\, \frac{M}{I} \,=\, \frac{E}{R} \qquad \qquad I(d) \,=\, I_0 \,+\, A\, d^2$$

Power Transmission:

$$P = \frac{2\pi \, f \, J \, \tau_{max}}{c} \text{ watts (metric units)} \qquad P = \frac{15.87 \times 10^{-6} \, rpm \, J \, \tau_{max}}{c} \text{ h.p. (lb.in units)}$$

Beam Formulas:

$$V = \frac{dM}{dx} \qquad w = \frac{dV}{dx} \qquad \frac{d^2y}{dx^2} = \frac{M}{EI} \qquad q = \frac{VA\overline{y}}{I} = \frac{VQ}{I} \text{ where } Q = \int y dA$$

$$\langle x - a \rangle = (x - a) \text{ if } x - a \rangle 0, \qquad = 0 \text{ if } x - a \leq 0$$

Copyright: Dr. G.S. Schajer

Some Typical I-Beams:

			Flange		Web		Axis <i>X-X</i>		,	xis Y-Y	
	Area A, mm ²	Depth d, mm	Width b _f , mm	Thick- ness t _f , mm	Thick- ness t _w , mm	I _x 10 ⁶ mm ⁴	S_x 10^3 mm^3	r _x mm	<i>I</i> _y 10 ⁶ mm ⁴	S _y 10 ³ mm ³	r _y mm
$S150 \times 25.7$ 18.6	3260	152	90.7	9.12	11.8	10.9	143	57.9	0.953	21.0	17.1
	2360	152	84.6	9.12	5.89	9.16	120	62.2	0.749	17.7	17.8
$S130 \times 15$	1890	127	76.2	8.28	5.44	5.12	80.3	52.1	0.495	13.0	16.2
$S100 \times 14.1$ 11.5	1800	102	71.1	7.44	8.28	2.81	55.4	39.6	0.369	10.4	14.3
	1460	102	67.6	7.44	4.90	2.52	49.7	41.7	0.311	9.21	14.6
$875 \times 11.2 \\ 8.5$	1420	76.2	63.8	6.60	8.86	1.21	31.8	29.2	0.241	7.55	13.0
	1070	76.2	59.2	6.60	4.32	1.04	27.4	31.2	0.186	6.28	13.2

Use sign convention "in the kitchen, the <u>clock is above</u> and the <u>counter is below</u>" for the shear stresses. Then, rotations in the Mohr's circle have the same direction and double the rotation angle of the physical stresses. For Mohr's circle of strain, use ϵ and $\gamma/2$ in place of σ and τ .

Column Buckling:

$$P_{CR} = \frac{\pi^2 \; EI}{L_e^2} = \frac{\pi^2 \; EA}{(L_e \, / \, r)^2} \qquad \text{where:} \quad L_e = L \; (pinned-pinned) \qquad L_e = 2 \; L \; (free-fixed) \\ L_e = 0.7 \; L \; (pinned-fixed) \qquad L_e = 0.5 \; L \; (sliding-fixed)$$

Eccentric load :
$$y_{max} = e \left(sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{CR}}} \right) - 1 \right)$$
 Initial curvature : $y_{max} = \frac{a P}{P_{CR} - P}$

$$I = A \ r^2 \qquad \text{For "short" steel columns (Johnson):} \qquad \frac{L_e}{r} \ < \ \sqrt{\frac{2\pi^2 E}{\sigma_Y}} \qquad \qquad \sigma_{CR} \ = \ \sigma_Y \ - \ \left(\frac{\sigma_Y^{\ 2}}{4\pi^2 E}\right) \!\! \left(\frac{L_e}{r}\right)^2$$

Strain Energy:

rod:
$$U = \int \frac{P^2}{2EA} dx$$
 beam: $U = \int \frac{M^2}{2EI} dx$ shaft: $U = \int \frac{T^2}{2GJ} dx$

Castigliano's Theorem:

$$\delta_{_{j}} \ = \ \frac{\partial U}{\partial P_{_{j}}} \hspace{1cm} \theta_{_{j}} \ = \ \frac{\partial U}{\partial M_{_{j}}} \hspace{1cm} \text{rod}: \hspace{1cm} \delta_{_{j}} \ = \ \int \frac{P}{EA} \ \frac{\partial P}{\partial P_{_{j}}} \ dx \hspace{1cm} \text{beam}: \hspace{1cm} \delta_{_{j}} \ = \ \int \frac{M}{EI} \ \frac{\partial M}{\partial P_{_{j}}} \ dx$$

Copyright: Dr. G.S. Schajer