$\psi(x,t+\epsilon) = (\chi(x,x')\psi(x',t)\lambda(x'))$ "Nací sin saber y he tenido solo un poco de tiempo para cambiar eso aquí y allá." -Richard P. Feynman

PDG I Anteproyecto

Jhoan Delgado

Motivación y antecedentes

del problema

Marco teório

Formulación de objetivos

Estado del

Metodología

Cronogram

Referencias

Estrategias de Secure Learning para detección de Android Malware

Jhoan Steven Delgado Villarreal

Tutores: Christian Urcuqui, Msc.¹, Javier Díaz, Ph.D.², Andrés Navarro, Ph.D.³

Universidad Icesi

Ingeniería de sistemas, facultad de Ingeniería

29 de noviembre de 2018

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Formulación

NA..... 1. C.1.

Formulación de objetivos

Estado del

Metodología

D . C

Pregunta...

Cuota de mercado en Android

PDG I Anteproyecto

Motivación y antecedentes

Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd quarter 2018 [Statista]

Android

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

.. .

Formulación

Estado del

Metodologí

Metodologi

Referencias

Sistema operativo para dispositivos móviles

- Código abierto (Open Source) basado en el kérnel de Linux
- Arquitectura de 5 componentes

Android

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

del problema

Formulació

Formulación de objetivos

Estado del arte

Metodologí

- Sistema operativo para dispositivos móviles
- Código abierto (Open Source) basado en el kérnel de Linux
- Arquitectura de 5 componentes

Android

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

del problema

Farmenta etc

Formulación de objetivos

Estado de arte

Metodologí

- Sistema operativo para dispositivos móviles
- Código abierto (Open Source) basado en el kérnel de Linux
- Arquitectura de 5 componentes

Apps

PDG I Anteproyecto

Motivación y antecedentes

Number of available applications in the Google Play Store from December 2009 to September 2018 [Statista]

izt Malware

PDG I Anteproyecto

Delgado

Motivación y antecedentes

Formulación del problema

Marco teórico

Formulación de objetivos

Estado de arte

Metodologia

Poforoncias

PDG I Anteproyecto

Delgado

Motivación y antecedentes

N4------

Formulación de objetivos

Estado de arte

Metodologí

- Software malicioso que busca perjudicar a los usuarios.
- Obtiene información sensible de los usuarios.
- Los hackers lo desarrollan principalmente con ánimo de lucro o activismo político.
- Primer troyano para Android en 2010.

PDG I Anteproyecto

Deigado

Motivación y antecedentes

Manne

Formulación de objetivos

Estado de arte

Metodologí

- Software malicioso que busca perjudicar a los usuarios.
- Obtiene información sensible de los usuarios.
- Los hackers lo desarrollan principalmente con ánimo de lucro o activismo político.
- Primer troyano para Android en 2010.

PDG I Anteproyecto

Delgado

Motivación y antecedentes

aci problema

Formulación de objetivos

Estado de arte

Metodologí

- Software malicioso que busca perjudicar a los usuarios.
- Obtiene información sensible de los usuarios.
- Los hackers lo desarrollan principalmente con ánimo de lucro o activismo político.
- Primer troyano para Android en 2010.

PDG I Anteproyecto

Deigado

Motivación y antecedentes

aci problema

Formulación de objetivos

Estado de arte

Metodologi

- Software malicioso que busca perjudicar a los usuarios.
- Obtiene información sensible de los usuarios.
- Los hackers lo desarrollan principalmente con ánimo de lucro o activismo político.
- Primer troyano para Android en 2010.

Ataques a dispositivos móviles año 2017

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

antecedente

Maura taduia

Formulació de objetivo

Estado de arte

Metodología

Referencias

Registrando un número creciente de ataques malware a móviles – 42.7 millones vs. 40 millones en 2016." [SecureList]

KASPERSKY8

PDG I Anteproyecto

Motivación y antecedentes

Features to Detect Android Malware

Christian Camilo Urcuqui López Grupo de investigación i2t Universidad Icesi Cali. Colombia ccurcuqui@icesi.edu.co

Jhoan Steven Delgado Villarreal Universidad Icesi Cali. Colombia

Andres Felipe Perez Belalcazar Universidad Icesi Cali. Colombia ihoan.delgado@correo.icesi.edu.co andres.perez2@correo.icesi.edu.co

Andres Navarro Cadavid Grupo de investigación i2t Unverisidad Icesi Cali, Colombia anavarro@icesi.edu.co

Javier Gustavo Diaz Cely Grupo de investigación i2t Universidad Icesi Cali. Colombia igdiaz@icesi.edu.co

Características de capa de red

PDG I Anteproyecto

Jhoan Delgado

Motivación y antecedentes

Formulación del problema

. Marco teóri

Formulación de obietivos

Estado de arte

Metodologia

Referencias

(R1): Paquetes TCP

• (R2): Paquetes distintos TCP

• (R3): IP externas

• (R4): Volumen de bytes

• (R5) Paquetes UDP

• (R6) Paquetes de la aplicación fuente

(R7) Paquetes de la aplicación remota

• (R8) Bytes de la aplicación origen

(R9) Bytes de la aplicación remota

• (R10) Consultas DNS, número de consultas DNS.

Urcuqui, C., Navarro, A., Osorio, J., & Garcia, M. (2017). Machine Learning Classifiers to Detect Malicious Websites. CEUR Workshop Proceedings. Vol 1950, 14-17

PDG I Anteproyecto

Delgado

Motivación y antecedentes

del problema

iviarco teorico

Formulaciór de objetivos

Estado del arte

Metodología

Referencia

La esencia de Machine Learning:

- Debe existir un patrón.
- No se puede describir con exactiud matemáticamente.
- Tenemos datos.

The Learning Problem - Introduction. Professor Yaser Abu-Mostafa, Caltech.

Entonces...

- Sí es posible entrenar clasificadores de machine learning para la detección de software malicioso en Andorid con tráfico de red
- Existen algunas tendencias en los flujos de información. EJ: Paquetes TCP: 197 (Apps benignas), y 72 (Apps malignas)

PDG I Anteproyecto

Delgado

Motivación y antecedentes

Marco teórico

Formulación de objetivos

Estado del arte

Metodología

La esencia de Machine Learning:

- Debe existir un patrón.
- No se puede describir con exactiud matemáticamente.
- Tenemos datos.

The Learning Problem - Introduction. Professor Yaser Abu-Mostafa, Caltech.

ntonces...

- Sí es posible entrenar clasificadores de machine learning para la detección de software malicioso en Andorid con tráfico de red
- Existen algunas tendencias en los flujos de información. EJ: Paquetes TCP: 197 (Apps benignas), y 72 (Apps malignas)

PDG I Anteproyecto

Deigado

Motivación y antecedentes

Marco teórico

Formulación de obietivos

Estado del arte

Metodología

Referencia

La esencia de Machine Learning:

- Debe existir un patrón.
- No se puede describir con exactiud matemáticamente.
- Tenemos datos.

The Learning Problem - Introduction. Professor Yaser Abu-Mostafa, Caltech.

ntonces...

- Sí es posible entrenar clasificadores de machine learning para la detección de software malicioso en Andorid con tráfico de red
- Existen algunas tendencias en los flujos de información. EJ: Paquetes TCP: 197 (Apps benignas), y 72 (Apps malignas)

PDG I Anteproyecto

Motivación y antecedentes

Maura taéuina

Formulación de objetivos

Estado del arte

Metodologí

Referencias

La esencia de Machine Learning:

- Debe existir un patrón.
- No se puede describir con exactiud matemáticamente.
- Tenemos datos.

The Learning Problem - Introduction. Professor Yaser Abu-Mostafa, Caltech.

Entonces...

- Sí es posible entrenar clasificadores de machine learning para la detección de software malicioso en Andorid con tráfico de red.
- Existen algunas tendencias en los flujos de información. EJ: Paquetes TCP: 197 (Apps benignas), y 72 (Apps malignas)

PDG I Anteproyecto

Deigado

Motivación y antecedentes

Marca taárica

Formulación de objetivos

Estado del arte

Metodologí

Referencias

La esencia de Machine Learning:

- Debe existir un patrón.
- No se puede describir con exactiud matemáticamente.
- Tenemos datos.

The Learning Problem - Introduction. Professor Yaser Abu-Mostafa, Caltech.

Entonces...

- Sí es posible entrenar clasificadores de machine learning para la detección de software malicioso en Andorid con tráfico de red.
- Existen algunas tendencias en los flujos de información. EJ: Paquetes TCP: 197 (Apps benignas), y 72 (Apps malignas)

izt El problema

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Formulación del problema

Marco teório

Formulació de obietivo

Estado de arte

Metodología

D-f----i--

Marco teórico

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Formulación

Marco teórico

Formulación de objetivos

Estado de

Metodologí

. . .

- Inteligencia Artificial (IA)
- Ciberseguridad

Machine Learning

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

Metodologi

Referencias

 (Samuel,1959) Se refiere al termino de Machine Learning como el campo de estudio que le brinda a los computadores la habilidad de aprender sin necesidad de estar explícitamente programados.

 Se realiza el aprendizaje a través de los datos.

Machine Learning

PDG I Anteproyecto

> Jhoan Delgado

antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

Metodologi

D . C

 (Samuel,1959) Se refiere al termino de Machine Learning como el campo de estudio que le brinda a los computadores la habilidad de aprender sin necesidad de estar explícitamente programados.

 Se realiza el aprendizaje a través de los datos.

Aprendizaje supervisado

PDG I Anteproyecto

Marco teórico

• Aprender a partir de un "experto"

Datos de entrenamiento etiquetados con una clase o valor:

$$(x_1, x_2, ..., x_n, y)$$
 (1)

Meta: predecir una clase o valor.

Aprendizaje supervisado

PDG I Anteproyecto

Delgado

antecedentes

Marco teórico

marco teorico

Formulació de objetivo

Estado del arte

Metodologí

Referencias

• Aprender a partir de un "experto"

Datos de entrenamiento etiquetados con una clase o valor:

$$(x_1, x_2, ..., x_n, y)$$
 (1)

donde y es la etiqueta.

Meta: predecir una clase o valor.

Análitica de datos, Prof. Javier Díaz, 2016

Aprendizaje supervisado

PDG I Anteproyecto

Delgado

Motivación y antecedentes

Marco teórico

Formulació de objetivo

Estado de arte

Metodologí

Referencias

Aprender a partir de un "experto"

Datos de entrenamiento etiquetados con una clase o valor:

$$(x_1, x_2, ..., x_n, y)$$
 (1)

donde y es la etiqueta.

• Meta: predecir una clase o valor.

Análitica de datos, Prof. Javier Díaz, 2016

Aprendizaje por refuerzo

PDG I Anteproyecto

Jhoan Delgado

antecedentes

Marco teórico

Formulación de objetivos

Estado del arte

Metodología

- El aprendizaje por refuerzo es el problema de lograr que un agente actúe en el mundo para maximizar sus recompensas.
- Por ejemplo, considere enseñarle a un perro un nuevo truco: no puede decirle qué hacer, pero puede recompensarlo/castigarlo si hace lo correcto/incorrecto

https://www.cs.ubc.ca/ murphyk/Bayes/pomdp.html

Aprendizaje por refuerzo

PDG I Anteproyecto

Jhoan Delgado

antecedentes

Marco teórico

Formulación de objetivos

Estado del arte

Metodologí

- El aprendizaje por refuerzo es el problema de lograr que un agente actúe en el mundo para maximizar sus recompensas.
- Por ejemplo, considere enseñarle a un perro un nuevo truco: no puede decirle qué hacer, pero puede recompensarlo/castigarlo si hace lo correcto/incorrecto

 $https://www.cs.ubc.ca/\ murphyk/Bayes/pomdp.html$

Algoritmos genéticos

PDG I Anteproyecto

> Jhoan Delgado

antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

Metodolog

Peferencia

- (Goldberg, 1989) Define algoritmo genético como algoritmos de búsqueda basados en la selección natural y la genética (Charles Darwin).
- En cada generación, un conjunto de individuos (cadenas) son creados usando bits y partes de los antigüos más ajustados.
- El pionero de estos algoritmos fue el Profesor John Holland

Algoritmos genéticos

PDG I Anteproyecto

> Jhoan Delgado

antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

ivietodologi

- (Goldberg, 1989) Define algoritmo genético como algoritmos de búsqueda basados en la selección natural y la genética (Charles Darwin).
- En cada generación, un conjunto de individuos (cadenas) son creados usando bits y partes de los antigüos más ajustados.
- El pionero de estos algoritmos fue el Profesor John Holland

Algoritmos genéticos

PDG I Anteproyecto

antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

_

- (Goldberg, 1989) Define algoritmo genético como algoritmos de búsqueda basados en la selección natural y la genética (Charles Darwin).
- En cada generación, un conjunto de individuos (cadenas) son creados usando bits y partes de los antigüos más ajustados.
- El pionero de estos algoritmos fue el Profesor John Holland

El problema de aprendizaje

PDG I Anteproyecto

> Jhoan Delgado

Motivación antecedente

Formulación

Marco teórico

Formulació de objetivo

Estado de arte

Metodologí

Deferencie.

Técnicas para el análisis de amenazas

PDG I Anteproyecto

> Jhoan Delgado

Motivación :

Formulación

Marco teórico

Formulación de objetivos

Estado de

Metodologí

. . .

- Análsis estático
- Análisis dinámico

Técnicas para el análisis de amenazas

PDG I Anteproyecto

> Jhoan Delgado

Motivación : antecedente

Formulación

Marco teórico

Formulación de objetivos

Estado de arte

Metodologí

. . .

- Análsis estático
- Análisis dinámico

Análisis estático

PDG I Anteproyecto

> Jhoan Delgado

Motivación : antecedente

Marco teórico

Formulación de objetivos

Estado del arte

Metodologí

Poforoncia

- Técnica que evalúa los comportamientos maliciosos del codigo fuente, datos, o archivos binarios, sin ejecutar directamente la App
- Es posible evitarlo a partir de técnicas de ofuscación

Batyuk, L., Herpich, M., Camtepe, S. A., Raddatz, K., Schmidt, A., & Albayrak, S. Using static analysis fo. automatic assessment and mitigation of unwanted and malicious activities within Android applications. Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on. IEEE, Piscataway. 2011.

Análisis estático

PDG I Anteproyecto

> Jhoan Delgado

Motivación : antecedente

Marco teórico

Formulación de objetivos

Estado del arte

Metodologi

Referencias

- Técnica que evalúa los comportamientos maliciosos del codigo fuente, datos, o archivos binarios, sin ejecutar directamente la App
- Es posible evitarlo a partir de técnicas de ofuscación

Batyuk, L., Herpich, M., Camtepe, S. A., Raddatz, K., Schmidt, A., & Albayrak, S. Using static analysis for automatic assessment and mitigation of unwanted and malicious activities within Android applications. Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on. IEEE, Piscataway. 2011.

Análisis dinámico

PDG I Anteproyecto

Marco teórico

 Estudia el comportamiento del malware en ejecución mediante simulación de gestos.

- Se analizan los procesos en ejecución, la interfaz de
- Existen técnicas que permiten evadirlo. El malware tiene la

Análisis dinámico

PDG I Anteproyecto

> Jhoan Delgado

Motivación : antecedente

Marco teórico

Formulación de obietivos

Estado de arte

Metodologí

Referencias

 Estudia el comportamiento del malware en ejecución mediante simulación de gestos.

- Se analizan los procesos en ejecución, la interfaz de usuario, conexiones de red, entre otros.
- Existen técnicas que permiten evadirlo. El malware tiene la capacidad de detectar ambientes sandbox y detener su comportamiento malicioso

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., & Ioannidis, S. Rage against the virtual machine: hindering dynamic analysis of android malware. In Proceedings of the Seventh European Workshop on System Security (p. 5). ACM. April 2014.

Análisis dinámico

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Marco teórico

Formulación de objetivos

Estado de arte

ivietodologia

Referencias

 Estudia el comportamiento del malware en ejecución mediante simulación de gestos.

- Se analizan los procesos en ejecución, la interfaz de usuario, conexiones de red, entre otros.
- Existen técnicas que permiten evadirlo. El malware tiene la capacidad de detectar ambientes sandbox y detener su comportamiento malicioso

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., & Ioannidis, S. Rage against the virtual machine: hindering dynamic analysis of android malware. In Proceedings of the Seventh European Workshop on System Security (p. 5). ACM. April 2014.

Objetivos

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Formulación

Marco teóri

Formulación de objetivos

Estado del

Metodologí

ъ.

Proyectos

PDG I Anteproyecto

Estado del arte

Papers	APK perturbati ons	Network features	Attack framework	Estrategias de aprendizaje seguro
Android HIV: A Study of Repackaging Malware for Evading Machine- Learning Detection	SI	NO	SI	NO
Poster: Towards Adversarial Detection of Mobile Malware	NO	NO	NO	SI
Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection	NO	NO	SI	NO
Estrategias de Secure Learning para detección de Android Malware.	NO	SI	NO	SI

PDG I Anteproyecto

Jhoan Delgado

Motivación y antecedentes

Formulación del problema

Marco teório

Formulación de objetivos

Estado del

Metodología

Cronogram

Referencias

"Minería de datos no es algo que haces solo una vez y luego olvidas, es un proceso continuo"

Data Mining For Dummies(R), John Wiley & Sons, Inc.

izt CRISP-DM

PDG I Anteproyecto

Metodología

PDG I Anteproyecto

Cronograma

		Modo de ↓	Nombre de tarea	Duración →
33 44 55 66 77 8 8 10 11 11 11 11 11 11 11 11 11 11 11 11	1		4 Proyecto Malware	38 días?
	2	-5	▲ Estrategia de aprendizaje seguro	22 días?
	3		Identificar prácticas de aprendizaje seguro	15 días
	4	-	Evaluar prácticas de aprendizaje seguro	7 días
	5		Escribir documento final del Anteproyecto	1 día?
	6	-5	△ Modelo de detección entrenado	30 días?
	7		Implementar el sistema propuesto por Andrés para la captura de tráfico de red de aplicaciones Android	14 días
	8		Generar un conjunto de tráfico de red (Apps Benignas y Maliciosas)	1 día
	9	-5	Crear un dataset para training y testing	7 días
	10	-5	Entrenar distintos algoritmos de ML	1 día?
	11	-5	Evaluar algoritmos	7 días
	12		■ Método de programación para realizar exploit	38 días?
0	13		Analizar distintos tipos de métodos para realizar un exploit en los algoritmos de ML	15 días
	14	-5	Evaluar los métodos	15 días
	15	-5	Seleccionar un método	7 días
	16		Implementar método para realizar exploit del algorimo de ML	1 día?
	17	->	Documento final proyecto	1 día?

Referencias

PDG I Anteproyecto

Jhoan Delgado

Motivación y antecedentes

Formulación

dei problema

Formulación

Estado del

Metodología

Cronograma Referencias •

•

•

•

•

PDG I Anteproyecto

> Jhoan Delgado

Motivación y antecedentes

Formulación

Formulació

Estado de

Metodología

Referencias

¡Muchas gracias! ¿Preguntas?