▼ 作业5: 机器学习-分类算法-逻辑回归

要求:

- 在Python Jupyter中回答,需运行出结果。
- 网页-打印-另存为pdf, 命名: 作业5-班级-学号后两位-姓名.pdf
- 按时上传职教云, 过期不补。

◆ 任务一:逻辑回归可视化:是否录取模型(分类)

数据: data/ex2data1.txt字段1: exam1,科目1成绩字段2: exam2,科目2成绩

• 字段3: Admitted, 是否被录取, 1被录取, 0未录取。

In [19]: 🔻 # 导入必要的包

1. 数据加载

In [20]: ▼ # 数据加载

Out[20]:

	Exam 1	Exam 2	Admitted
0	34.623660	78.024693	0
1	30.286711	43.894998	0
2	35.847409	72.902198	0
3	60.182599	86.308552	1
4	79.032736	75.344376	1

In [21]: ▼ # 查看数据基本信息

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- ----0 Exam 1 100 non-null float64
1 Exam 2 100 non-null float64
2 Admitted 100 non-null int64

dtypes: float64(2), int64(1)

memory usage: 2.5 KB

In [22]: v # 查看目标字段的数据分布

Out[22]: 1 60 0 40

Name: Admitted, dtype: int64

In [23]: ▼ # 数据可视化: 通过的用绿色o表示,未通过用红色x表示,观察数据

Out[23]: Text(0, 0.5, 'Exam2-score')

▼ 2. 数据集拆分

In [28]: # 生成特征矩阵X,目标变量y

In [29]: ▼ # 拆分训练集和测试集,分别为0.8, 0.2, 随机种子666

Out[29]: ((80, 2), (20, 2), (80,), (20,))

■ 3. 数据处理(这里数据两个字段,范围接近,可以不做标准化)

4. 构建模型

```
In [31]: v # 构建逻辑回归模型

# 用训练数据 训练模型

# 输出模型参数
print('逻辑回归的参数w和b分别是: ', )
```

逻辑回归的参数w和b分别是: [[0.22756937 0.19779402]] [-25.85537181]

▼ 5. 模型评估

数据集上的混淆矩阵:

[[34 6] [3 57]]

数据集上的分类报告:

	precision	recall	f1-score	support
0	0.92	0.85	0.88	40
1	0.90	0.95	0.93	60
accuracy			0.91	100
macro avg	0.91	0.90	0.90	100
weighted avg	0.91	0.91	0.91	100

In [34]: ▼ # 在测试集上的效果

print('训练集上的混淆矩阵: \n',) print('\n训练集上的分类报告: \n',)

训练集上的混淆矩阵:

[[7 2] [0 11]]

训练集上的分类报告:

	precision	recall	f1-score	support
Θ	1.00	0.78	0.88	9
1	0.85	1.00	0.92	11
accuracy			0.90	20
macro avg	0.92	0.89	0.90	20
weighted avg	0.92	0.90	0.90	20

▼ 6. 模型可视化 (选做)

画出模型的边界线,以及训练集和测试集的数据。 边界线: w1x1+w2x2+b = 0, x2 = - (w1x1+b) /w2 对照上面的训练集和测试集的分类报告,找到对应关系。

In [38]: ▼ # 画出模型的分界线,以及训练集和测试集的数据

Out[38]: Text(0, 0.5, 'Exam2-score')

In []:	
In []:	