Indian Institute of Technology Kharagpur Department of Mathematics MA11003 - Advanced Calculus Problem Sheet - 2 Autumn 2020

1. a) Find the value of a for which the limit

$$\lim_{x \to 0} \frac{\sin(ax) - \sin x - x}{x^3}$$

is finite and evaluate the limit.

b) Find the values of a and b such that

$$\lim_{x \to 0} \frac{\cos(ax) - b}{2x^2} = -1.$$

2. Use Taylor's theorem to prove that

a)
$$x - \frac{x^2}{2} < \log(1+x) < x \text{ for } x > 0.$$

b)
$$\cos x \ge 1 - \frac{x^2}{2}$$
 for $-\pi < x < \pi$.

c)
$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$$
 for $x > 0$.

3. Let $c \in \mathbb{R}$ and a real function f be such that f'' is continuous on some neighbourhood of c. Prove that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

4. Let $a \in \mathbb{R}$ and a real function f defined on some neighbourhood N(a) of a such that f'' is continuous at a and $f''(a) \neq 0$. Prove that $\lim_{h \to 0} \theta = \frac{1}{2}$, where θ is given by $f(a+h) = f(a) + hf'(a+\theta h)$ $(0 < \theta < 1)$.

5. Each of the series in the following is the value of the Taylor series at x = 0 of a function f(x) at a particular point. What function and what point? What is the sum of the series?

a)
$$\pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \dots$$

b)
$$\frac{2}{3} - \frac{4}{18} + \frac{8}{81} - \dots$$

c)
$$\frac{1}{\sqrt{3}} - \frac{1}{9\sqrt{3}} + \frac{1}{45\sqrt{3}} - \dots$$

6. Using Taylor series expansion, evaluate

a)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

b)
$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$$

1

$$c) \lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x}$$

$$d$$
) $\frac{\cosh x - \cos x}{x \sin x}$

7. If f is continuous at x_0 , and there are constants a_0 and a_1 such that

$$\lim_{x \to x_0} \frac{f(x) - a_0 - a_1(x - x_0)}{x - x_0},$$

then prove that $a_0 = f(x_0)$, f is differentiable at x_0 , and $f'(x_0) = a_1$.

- 8. Find the Maclaurin's infinite series expansion for
 - $a) e^x, x \in \mathbb{R}$
 - b) $\log(1+x), x \in (-1,1]$
 - c) $e^x \cos x$, $x \in \mathbb{R}$
- 9. Obtain the fourth degree Taylor's polynomial approximation to $f(x) = e^{2x}$ about x = 0. Find the maximum error when $0 \le x \le 0.5$.
- 10. Using Taylor's series find the approximate value of a) $\sqrt{1.5}$ and b) cos 31°.
- 11. Obtain the Maclaurin's series expansion of $f(x) = \sin(m\sin^{-1}x)$, where m is a constant.
- 12. For the Taylor's polynomial approximation of degree less than or equal to n about the point x=0 for the function e^x , determine the value of n such that the error satisfies $|R_n(x)| \leq 0.005$, when $-1 \leq x \leq 1$.
- 13. Can the function f(x) defined by $f(x) = \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0 be expanded by Maclaurin's theorem?
- 14. Find the Taylor's series expansion of $\sin^2 x$ upto five terms with Lagrange's form of remainder.
- 15. Find the Maclaurin's series expansion of $\tan^{-1} x$ upto four terms with Lagrange's form of remainder.
