On k-Wise Set-Intersections and k-Wise Hamming-Distances

Vince Grolmusz¹

Department of Computer Science, Eötvös University, Budapest, Pázmány P. stny. 1/C, H-1117
Budapest, Hungary
E-mail: grolmusz@cs.elte.hu

and

Benny Sudakov²

Department of Mathematics, Princeton University, Princeton, New Jersy 08540; and Institute for Advanced Study, Princeton, New Jersy 08540

E-mail: bsudakov@math.princeton.edu

Received March 3, 2001

We prove a version of the Ray-Chaudhuri–Wilson and Frankl–Wilson theorems for k-wise intersections and also generalize a classical code-theoretic result of Delsarte for k-wise Hamming distances. A set of code-words a^1, a^2, \ldots, a^k of length n have k-wise Hamming-distance ℓ , if there are exactly ℓ such coordinates, where not all of their coordinates coincide (alternatively, exactly $n-\ell$ of their coordinates are the same). We show a Delsarte-like upper bound: codes with few k-wise Hamming-distances must contain few code-words. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper, we give bounds on the size of set-systems and codes, satisfying some k-wise intersection-size or Hamming-distance properties. For k=2, these theorems were proven by Ray-Chaudhuri and Wilson [13], Frankl and Wilson [9], and Delsarte [6, 5]. The k>2 case was asked (partially) by Sós [14] and Füredi [10] proved, that for uniform set-systems with small sets, the order of magnitude of the largest set-system satisfying k-wise or just pair-wise intersection constraints are the same (his constant was huge). In [15] Vu considered families of sets with restricted k-wise intersection-size modulo two and obtain tight asymptotic bounds on

¹Supported by Grant OTKA T030059, and the János Bolyai and Farkas Bolyai Fellowships. ²Research supported in part by NSF Grants DMS-0106589, CCR-9987845 and by the State of New Jersey.

the size of such set-systems. Grolmusz [12] studied restricted k-wise set-intersections modulo arbitrary prime and proved a k-wise analog of the Deza-Frankl-Singhi theorem [7]. He also gave direct applications for explicit coloring of k-uniform hypergraphs without large monochromatic sets.

In this short paper, we first strengthen the result of [12], giving at the same time a much shorter proof, and then prove a k-wise version of the Delsartebounds [6, 5] for codes. In the last section, we present a construction which shows that some of our bounds are asymptotically tight.

2. SET SYSTEMS

In this section, we present results on set-systems with restricted k-wise intersections. We begin with the following extension of results from [13].

Theorem 1. Let L be a subset of nonnegative integers of size s. Let $k \ge 2$ be an integer and let \mathcal{H} be a family of subset of n-element set such that $|H_1 \cap \cdots \cap H_k| \in L$ for any collection of k distinct sets from \mathcal{H} . Then

$$|\mathcal{H}| \leq (k-1) \sum_{i=0}^{s} {n \choose i}.$$

If in addition the size of every member of \mathcal{H} belongs to the set $\{k_1, \ldots, k_t\}$ and $k_i > s - t$ for every i, then

$$|\mathcal{H}| \leq (k-1) \sum_{i=s-t+1}^{s} {n \choose i}.$$

This theorem has the following modular version, which generalize the theorem of Frankl and Wilson [9] and strengthen the result from [12]. In case p = 2 a slightly better bound appears in [15].

THEOREM 2. Let p be a prime and L be a subset of $\{0, 1, \ldots, p-1\}$ of size s. Let $k \ge 2$ be an integer and let $\mathscr H$ be a family of subsets of n-element set such that $|H| \pmod{p} \notin L$ for every $H \in \mathscr H$ but $|H_1 \cap \cdots \cap H_k| \pmod{p} \in L$ for any collection of k distinct sets from $\mathscr H$. Then

$$|\mathcal{H}| \leq (k-1) \sum_{i=0}^{s} {n \choose i}.$$

If in addition there exist $t \le s$ integers $k_1, \ldots, k_t \in \{0, 1, \ldots, p-1\}$ so that $k_i > s - t$ for each i and $|H| \pmod{p} \in \{k_1, \ldots, k_t\}$ for every $H \in \mathcal{H}$, then

$$|\mathcal{H}| \leq (k-1) \sum_{i=s-t+1}^{s} {n \choose i}.$$

We start with the proof of Theorem 2 and then we show how to modify it to get Theorem 1. Our proof combines an approach introduced in [1] with some additional ideas.

Proof. Let $L = \{l_1, \ldots, l_s\}$ and let \mathscr{H} be a set system satisfying assertion of the theorem. We repeat the following procedure until \mathscr{H} is empty. At round i if $\mathscr{H} \neq \emptyset$, we choose a maximal collection H_1, \ldots, H_d from \mathscr{H} such that $|\bigcap_{j=1}^{d'} H_j| \pmod{p} \notin L$ for all $1 \leqslant d' \leqslant d$, but for any additional set $H' \in \mathscr{H}$ we have that $|\bigcap_{j=1}^{d} H_j \cap H'| \pmod{p} \in L$. Clearly, by definition such family always exists and $1 \leqslant d \leqslant k-1$. Denote $A_i = H_1$, $B_i = \bigcap_{j=1}^{d} H_j$ and remove all sets H_1, \ldots, H_d from \mathscr{H} . Note that as the result of this process, we obtain at least $m \geqslant |\mathscr{H}|/(k-1)$ pairs of sets A_i, B_i . By definition, $|A_i \cap B_i| = |B_i| \pmod{p} \notin L$ but $|A_r \cap B_i| \pmod{p} \in L$ for any r > i. With each of the sets A_i, B_i , we associate its characteristic vector which we denote a_i, b_i , respectively.

Let **Q** denote the set of rational numbers. For $x, y \in \mathbf{Q}^n$, let $x \cdot y$ denote their standard scalar product. Clearly, $a_r \cdot b_i = |A_r \cap B_i|$. For $i = 1, \dots, m$ let us define the multilinear polynomial f_i in n variables as

$$f_i(x) = \prod_{j=1}^s (x \cdot b_i - l_j),$$

where for each monomial, we reduce the exponent of each occurring variable to 1. Clearly,

$$f_i(a_i) = \prod_{j=1}^s (|A_i \cap B_i| - l_j) = \prod_{j=1}^s (|B_i| - l_j) \neq 0 \pmod{p}$$
 for all $1 \leq i \leq m$,

but

$$f_i(a_r) = \prod_{j=1}^s (|A_r \cap B_i| - l_j) = 0 \pmod{p}$$
 for $1 \le i < r \le m$.

We claim that the polynomials f_1, \ldots, f_m are linearly independent as a functions over \mathbf{F}_p , the finite field of order p. Indeed, assume that $\sum \alpha_i f_i(x) = 0$ is a nontrivial linear relation, where $\alpha_i \in \mathbf{F}_p$. Let i_0 be the largest index such that $\alpha_{i_0} \neq 0$. Substitute a_{i_0} for x in this relation. Clearly, all terms but the one with index i_0 vanish, with the consequence $\alpha_{i_0} = 0$, contradiction. On the other hand, each f_i belongs to the space of multilinear polynomials of degree at most s. The dimension of this space is $\sum_{j=1}^{s} {n \choose j}$, implying the desired bound on m and thus on $|\mathcal{H}|$.

We now extend the idea above to prove the second part of the theorem. This extension uses a technique employed by Blokhuis [4] (see also [1]). For

a subset $I \subseteq \{1, ..., n\} = [n]$ denote by v_I its characteristic vector and by $x_I = \prod_{i \in I} x_i$. In particular, $x_\emptyset = 1$ and it is easy to see that for any $J \subseteq [n]$, $x_I(v_J) = 1$ if and only if $I \subseteq J$ and zero otherwise. In what follows, we use the notation introduced in the first part of the proof.

In addition to polynomials f_i , we define a new set of multilinear polynomials

$$g_I(x) = x_I \cdot \prod_{j=1}^t \left(\sum_{i=1}^n x_i - k_j \right)$$
 for $I \subseteq [n]$.

Here again we reduce the exponent of each occurring variable to 1 to make g_I multilinear. We claim that the functions g_I are linearly independent over \mathbf{F}_p for all $|I| \leqslant s - t$. Denote by $h(x) = \prod_{j=1}^t (\sum_{i=1}^n x_i - k_j)$. Since $k_i > s - t$ for all i, note that $h(v_I) \neq 0$ for all $|I| \leqslant s - t$. Let us arrange all the subsets of $\{1, 2, \ldots, n\}$ in a linear order, denoted by \prec , such that $J \prec I$ implies that $|J| \leqslant |I|$. Clearly if |I|, $|J| \leqslant s - t$ by definition, $g_I(v_J) = x_I(v_J)h(v_J)$ is equal to $h(v_J) \neq 0$ if I = J and zero if $J \prec I$. Now the linear independence of $g_I(x)$ follows easily. Indeed, if $\sum_{|I| \leqslant s - t} \beta_I g_I(x) = 0$ is a nontrivial relation, let I_0 to be a minimal index (with respect to \prec), such that $\beta_{I_0} \neq 0$. By substituting $x = v_{I_0}$, we immediately obtain a contradiction.

To complete the argument, we show that the functions f_i remain linear independent even together with all the functions g_I for $|I| \le s - t$. For a proof of this claim assume that

$$\sum_{i} \alpha_{i} f_{i}(x) + \sum_{|I| \leq s-t} \beta_{I} g_{I}(x) = 0$$

for some α_i , $\beta_I \in \mathbf{F}_p$. Substitute $x = a_i$. All terms in the second sum vanish since $|A_i|$ (mod p) $\in \{k_1, \ldots, k_t\}$ and hence $h(a_i) = 0$. In this case, we can deduce that all $\alpha_i = 0$ as previously. But then we get a relation only among the polynomials g_I and it was already proved that such relation should be trivial.

Therefore, we found $m + \sum_{i=0}^{s-t} \binom{n}{i}$ linearly independent functions, all of which belong to space of multilinear polynomials of degree at most s. As we already mentioned, the dimension of this space is $\sum_{j=1}^{s} \binom{n}{i}$. This implies the desired bound on m and thus on $|\mathcal{H}|$.

An easy modification of above proof establishes Theorem 1.

Proof of Theorem 1 (Sketch). We repeat the following procedure. At step i, if $|H \cap H'| \in L$ for any two distinct sets in \mathscr{H} , then let H_1 be the largest set remaining in \mathscr{H} . Denote $A_i = B_i = H_1$ and remove H_1 from \mathscr{H} . Otherwise there exist a collection H_1, \ldots, H_d from \mathscr{H} such that $|\bigcap_{i=1}^{d'} H_j| \notin L$ for all

 $1 \le d' \le d$, but for any additional set $H' \in \mathcal{H}$ we have that $|\bigcap_{j=1}^d H_j \cap H'| \in L$ and $2 \le d \le k-1$. Denote $A_i = H_1$, $B_i = \bigcap_{j=1}^d H_j$ and remove all sets H_1, \ldots, H_d from \mathcal{H} . By definition, $|A_i \cap B_i| = |B_i|$ but $|A_r \cap B_i| \in L$ and has size strictly smaller than $|B_i|$ for all r > i. With each of the sets A_i, B_i , we associate its characteristic vector which we denote a_i, b_i , respectively.

We will also need a slightly different definition of polynomials f_i . For i = 1, ..., m let us define the multilinear polynomial f_i in n variables as

$$f_i(x) = \prod_{l_j < |B_i|} (x \cdot b_i - l_j).$$

By our construction $f_i(a_i) \neq 0$ but $f_i(a_r) = 0$ for all r > i. Now the rest of the proof is identical with that of Theorem 2 and we omit it here.

3. CODES

Let $A = \{0, 1, 2, ..., q - 1\}$. The Hamming-distance of two elements of A^n is the number of coordinates in which they differ. A q-ary code of length n is simply a $C \subset A^n$. The following result is a classical inequality of Delsarte [6, 5]:

THEOREM 3 (Delsarte [5, 6]). Let C be a q-ary code of length n. If the set of Hamming-distances which occur between distinct codewords of C has cardinality s, then

$$|C| \leqslant \sum_{i=0}^{s} (q-1)^{i} \binom{n}{i}.$$

Frankl [8] proved the modular generalization of this result, and it was further strengthened by Babai *et al.* [3].

Our goal here is to give generalizations of this theorem for k-wise Hamming-distances.

DEFINITION 4. Let $a^i \in A^n$, for i = 1, 2, ..., k. Their k-wise Hamming-distance,

$$d_k(a^1, a^2, \ldots, a^k)$$

is ℓ , if there exist exactly ℓ coordinates, in which they are not all equal (Equivalently, their coordinates are all equal on $n - \ell$ positions.)

We prove the following theorems. The first one generalizes Delsarte's original bound [6, 5] to *k*-wise Hamming-distance:

THEOREM 5. Let C be a q-ary code of length n. If the set of k-wise Hamming-distances which occur between k distinct codewords of C has cardinality s, then

$$|C| \le (k-1) \sum_{i=0}^{s} (q-1)^{i} \binom{n}{i}.$$
 (1)

The second result is the modular version of Theorem 5, it is a *k*-wise generalization of the modular upper bound of Frankl [8] and also a result of Babai *et al.* [3]:

THEOREM 6. Let C be a q-ary code of length n, p be a prime and let L be a subset of $\{1, ..., p-1\}$ of size s. If the set of k-wise Hamming-distances which occur between k distinct codewords of C lie in L mod p, then

$$|C| \le (k-1) \sum_{i=0}^{s} (q-1)^{i} \binom{n}{i}.$$

If in addition, there exist $t \le s$ integers $w_1, ..., w_t \in \{0, 1, ..., p-1\}$, so that $w_i > s - t$ for each i and the weight of any member of C is congruent to some element of $\{w_1, ..., w_t\}$ modulo p, then

$$|C| \le (k-1) \sum_{i=s-t+1}^{s} (q-1)^{i} \binom{n}{i}.$$

Two definitions are needed for the proof.

DEFINITION 7. Let a and b be two codewords of length n. Then let $a \sqcap b$ denote a codeword which contains only those coordinates of a and b which are equal. Let $|a \sqcap b|$ denote the length of word $a \sqcap b$.

For example, if $a = 01 \ 134 \ 230$, $b = 12 \ 134 \ 111$, then $a \sqcap b = 134$, and $|a \sqcap b| = 3$.

DEFINITION 8 (Babai *et al.* [3]). For a fixed integer $a \in A$, let $\varepsilon(a, x)$ be the polynomial in one variable with rational coefficients such that for every $b \in A$

$$\varepsilon(a,b) = \begin{cases} 1 & \text{if } b = a, \\ 0 & \text{if } b \neq a. \end{cases}$$

Since k-wise Hamming-distances which occur between k distinct codewords are always nonzero, then the proof of Theorem 5 follows from the

statement of Theorem 6 if we choose a prime p > n. Therefore, we present only the proof of Theorem 6.

Proof. We start with the proof of the second part of the theorem. Our approach combines the ideas from [1, 3].

Let L be the set of k-wise Hamming-distances which occur between the elements of C and let $L' = \{l_1, \ldots, l_s\} = \{(n - l) \pmod{p} | l \in L\}$. Note that since $0 \notin L$ we have $n \pmod{p} \notin L'$. Now repeat the following procedure until C is empty.

At round i if set C is still not empty we choose a maximal subset a^1, \ldots, a^d from C such that $|a^1 \sqcap a^2 \sqcap \cdots \sqcap a^{d'}|$ (mod $p) \notin L'$ for all $1 \leqslant d' \leqslant d$, but for any additional word $a' \in C$ we have that $|a^1 \sqcap a^2 \sqcap \cdots \sqcap a^d \sqcap a'|$ (mod $p) \in L'$. Clearly by definition, such codeword-set always exists and $1 \leqslant d \leqslant k-1$. Next define $c^i = a^1, b^i = a^1 \sqcap a^2 \sqcap \cdots \sqcap a^d$ and let $X_i \subseteq [n]$ be the set of indices of the coordinates in which a^j , $1 \leqslant j \leqslant d$ are all equal. Note that $|c^i \sqcap b^i| = |b^i|$ (mod p) $\notin L'$ but $|c^i \sqcap b^i|$ (mod p) $\in L'$ for any r > i. Finally, remove a^1, \ldots, a^m from C and proceed to the next round.

Let $f_i(x)$ be the following polynomial of n variables x_1, \ldots, x_n :

$$f_i(x) = \prod_{u=1}^s \left(\sum_{j \in X_i} \varepsilon(b_j^i, x_j) - l_u \right),$$

where b_j^i is the value of the coordinate of b^i which corresponds to index $j \in X_i$ and the summation is restricted only to these indices. Note that by our construction, the number of such polynomials is at least m = |C|/(k-1). By definition

$$f_i(c^i) = \prod_{u=1}^s (|c^i \cap b^i| - l_u) = \prod_{u=1}^s (|b^i| - l_u) \neq 0 \pmod{p},$$

but for all r > i.

$$f_i(c^r) = \prod_{u=1}^s (|c^r \sqcap b^i| - l_u) = 0 \pmod{p}.$$

Similar to the proof of Theorem 2, we next define an additional set of polynomials. Let $\delta(x)$ be the polynomial in one variable with rational coefficients such that $\delta(0) = 0$ and $\delta(i) = 1$ for all i = 1, ..., q - 1. Note that for any vector $x \in A^n$, the value of $\sum_{l=1}^n \delta(x_l)$ is equal to the weight of x. For all subsets $I \subset [n]$, $[I] \leq s - t$ and for all vectors $v \in \{1, ..., q - 1\}^I$, we

define a polynomial

$$g_{I,v}(x) = \left(\prod_{i \in I} \varepsilon(x_i, v_i)\right) \prod_{j=1}^t \left(\sum_{l=1}^n \delta(x_l) - w_j\right),\,$$

where v_i are the entries of the vector v. Clearly, the number of such polynomials is equal to $\sum_{i=0}^{s-t} (q-1)^i \binom{n}{i}$, and by definition, the value $g_{I,v}(x)$ is an integer for all $x \in A^n$. In addition for every $x \in A^n$ with weight at most s-t, we have $g_{I,v}(x) \neq 0 \pmod{p}$ if and only if the vector x, restricted to I, equals v.

We claim that the polynomials f_i and $g_{I,v}$ are linearly independent over the rationals. For a proof of this claim assume that

$$\sum \alpha_i f_i(x) + \sum_{|I| \leq s-t} \beta_{I,v} g_{I,v}(x) = 0$$

is a nontrivial relation. Clearly, we can make all α_i and $\beta_{I,v}$ to be integers and in addition, since the above relation is nontrivial we can assume that not all of them are divisible by p. Let i_0 be the largest index such that $\alpha_{i_0} \neq 0 \pmod{p}$. Then, by substituting $x = c^{i_0}$ we obtain a contradiction. Indeed, $f_{i_0}(c^{i_0}) \neq 0 \pmod{p}$ but $f_i(c^{i_0}) = 0 \pmod{p}$ for all $i < i_0$ and also $g_{I,v}(c^{i_0}) = 0 \pmod{p}$, since the weight of c^{i_0} is equal w_j modulo p for some $1 \leq j \leq t$. Next suppose that all $\alpha_i = 0 \pmod{p}$, and let I_0 be the smallest set with the property $\beta_{I_0,v_0} \neq 0 \pmod{p}$ for some $v_0 \in \{1,\ldots,q-1\}^{I_0}$. Let $x_0 \in A^n$ be a vector which is equal to v_0 on the coordinates from I_0 and is zero everywhere else. Since all w_j are greater than the weight of x_0 , by substituting $x = x_0$ into relation we obtain $g_{I_0,v_0}(x_0) \neq 0 \pmod{p}$, but as we explain above, $g_{I,v}(x_0) = 0 \pmod{p}$ for all $|I| \geqslant |I_0|$ and $v \neq v_0$. This contradiction proves the linear independence of f_i and $g_{I,v}$.

Next note that all our computations are over the domain where $x_i(x_i-1)\dots(x_i-q+1)=0$ for each variable $1 \le i \le n$. Thus, we can assume that in polynomials f_i and $g_{I,v}$, every variable x_i has exponent at most q-1. If not, we simply reduce these polynomials modulo $x_i(x_i-1)\dots(x_i-q+1)$ for all i. Also, in addition, every term of f_i and $g_{I,v}$ is the monomial with at most s variables. The space of such polynomials has dimension $\sum_{i=0}^{s} (q-1)^i \binom{n}{i}$ and we have found $m+\sum_{i=0}^{s-t} (q-1)^i \binom{n}{i}$ independent functions in this space. This immediately implies the desired bound on m and hence on |C|.

Finally, we remark that the first part of this theorem follows already from independence of the polynomials f_i . This completes the proof.

4. CONCLUDING REMARKS

(1) It is natural to ask how tight are the results of Theorems 1, 2, 5 and 6. In particular, do we need to have a multiplicative factor (k-1) in all upper bounds? The following construction shows that in Theorem 2 this factor is indeed needed when p is fixed and n tends to infinity.

Let p be a fixed prime, s < p and suppose $2^{t-1} < k - 1 \le 2^t$ for some integer t = o(n). Note that in this example, we do not fix the value of k and it can be as big as $2^{o(n)}$. Let X be an n-element set and let Y_1, \ldots, Y_t be disjoint subsets of X, each of size p. Denote by $Y = X - \bigcup_i Y_i$. By definition $|Y| = n' = n - \lceil \log_2(k-1) \rceil p = (1+o(1))n$. Since the number of subsets of $\{1, \ldots, t\}$ is $2^t \ge k - 1$, let I_1, \ldots, I_{k-1} be any k-1 of these distinct subsets of $\{1, \ldots, t\}$. Finally, the family \mathscr{H} consists of all subsets of X of the form $A \cup (\bigcup_{i \in I_j} Y_i)$ for all subsets A of Y of size s and all $1 \le j \le k - 1$. Clearly, the number of sets in the family \mathscr{H} equals to

$$(k-1)\binom{n'}{s} = (1+o(1))(k-1)\binom{n}{s}$$

and it is easy to see that every set $H \in \mathcal{H}$ has size equal to s modulo p and every collections of k distinct sets from \mathcal{H} satisfies that $|H_1 \cap \cdots \cap H_k| = r \pmod{p}$ for some integer $0 \le r \le s - 1$. Note, that the pairwise intersections of the sets of \mathcal{H} do not satisfy the assumptions of the Frankl-Wilson theorem [9], since their sizes are not separated from the size of the sets itself; however, the k-wise intersection-sizes are already separated from s modulo p.

On the other hand, recently the second author together with Füredi [11] proved that the bound of Theorem 1 is not tight and the factor (k-1) in this bound can be improved for all values of s and $k \ge 3$.

(2) An interesting open question is extension of the results of Theorems 2 and 6 to composite moduli. In this case, the polynomial upper bound is no longer valid in general. In particular for any $k \ge 2$, q = 6 and $L = \{1, ..., 5\}$, there exist a family of subset of n-element set of superpolynomial size which satisfies the assertion of Theorem 2, see [12] for details. On the other hand for the special case of prime power moduli q and s = q - 1, one can still get a polynomial upper bounds.

It is not difficult to see that our proofs of Theorems 2 and 6 together with the tools of Babai *et al.* [3, Theorem 6] and Babai and Frankl [2, Theorem 5.30] give the following two results, whose proof will be left to the reader.

THEOREM 9. Let $k \ge 2$ and r be integers and p^{α} be a prime power. If \mathcal{H} is a family of subset of n-element set such that $|H| = r \pmod{p^{\alpha}}$ for each $H \in \mathcal{H}$

but $|H_1 \cap \cdots \cap H_k| \neq r \pmod{p^{\alpha}}$ for all collections of k distinct sets from \mathcal{H} , then

$$|\mathcal{H}| \leq (k-1) \sum_{i=0}^{p^{\alpha}-1} {n \choose i}.$$

THEOREM 10. Let C be a q-ary code of length n and p^{α} be a prime power. If the set of k-wise Hamming-distances which occur between k distinct codewords of C are never divisible by p^{α} , then

$$|C| \le (k-1) \sum_{i=0}^{p^{\alpha}-1} (q-1)^{i} \binom{n}{i}.$$

(3) It is easy to see that when k = 2, one can deduce Theorem 2 from Theorem 6. But for $k \ge 3$ these two statements do not seem to be related and need different proofs.

ACKNOWLEDGMENT

The first author thanks Attila Sali for the remarks improving this work.

REFERENCES

- N. Alon, L. Babai, and H. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems, J. Combin. Theory Ser. A 58 (1991), 165–180.
- L. Babai and P. Frankl, "Linear Algebra Methods in Combinatorics," Department of Computer Science, University of Chicago, 1992, preliminary version.
- 3. L. Babai, H. Snevily, and R. M. Wilson, A new proof for several inequalities on codes and sets, *J. Combin. Theory Ser. A* **71** (1995), 146–153.
- A. Blokhuis, A new upper bound for the cardinality of 2-distance sets in Euclidean space, in "Convexity and Graph Theory," Jerusalem, 1981, pp. 65–66, North-Holland, Amsterdam, 1984
- P. Delsarte, An algebraic approach to the association schemes of coding theory, *Philips Res. Rep. Suppl.* 10 (1973).
- P. Delsarte, The association schemes of coding theory, in "Combinatorics; Proceedings of the NATO Advanced Study Institute, Breukelen, 1974, Part 1: Theory of Designs, Finite Geometry and Coding Theory," pp. 139–157, Math. Centre Tracts, No. 55, Math. Centrum, Amsterdam, 1974.
- M. Deza, P. Frankl, and N. M. Singhi, On functions of strength t, Combinatorica 3 (1983), 331–339.
- 8. P. Frankl, Orthogonal vectors in the *n*-dimensional cube and codes with missing distances, *Combinatorica* **6** (1986), 279–285.
- 9. P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, *Combinatorica* 1 (1981), 357–368.

- 10. Z. Füredi, On finite set-systems whose every intersection is a kernel of a star, *Discrete Math.* **47** (1983), 129–132.
- 11. Z. Füredi and B. Sudakov, Extremal set-systems with restricted k-wise intersections, in preparation.
- 12. V. Grolmusz, Set-systems with restricted multiple intersections and explicit Ramsey hypergraphs, "Technical Report DIMACS TR 2001-04," DIMACS, January 2001.
- 13. D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 735-744.
- 14. V. T. Sós, Some remarks on the connection of graph theory, finite geometry and block designs, *in* Teorie Combinatorie; Proceedings of the Colloquum held in Rome 1973, pp. 223–233, 1976.
- V. Vu, Extremal set systems with weakly restricted intersections, Combinatorica 19 (1999), 567–587.