Math 535 - General Topology Fall 2012 Homework 6 Solutions

Problem 1. Let \mathbb{F} be the field \mathbb{R} or \mathbb{C} of real or complex numbers. Let $n \geq 1$ and denote by $\mathbb{F}[x_1, x_2, \dots, x_n]$ the set of all polynomials in n variables with coefficients in \mathbb{F} .

A subset $C \subseteq \mathbb{F}^n$ of *n*-dimensional space will be called **Zariski closed** if it is the zero locus of some polynomials:

$$C = V(S) := \{ x \in \mathbb{F}^n \mid f(x) = 0 \text{ for all } f \in S \}$$

for some $S \subseteq \mathbb{F}[x_1, \dots, x_n]$.

Note: The zero locus V(S) is sometimes called the *algebraic variety* associated to S, hence the letter V.

For example, in \mathbb{R}^2 , the subset $V(x_1^2 + x_2^2 - 9) \subset \mathbb{R}^2$ is the circle of radius 3 centered at the origin, which is therefore a Zariski closed subset.

By convention, let's say S is not allowed to be empty, though you will show in part (a) that it doesn't matter.

a. Show that the notion of "Zariski closed" subset does define a topology on \mathbb{F}^n , sometimes called the **Zariski topology**.

Solution. The entire space \mathbb{F}^n is Zariski-closed:

$$\mathbb{F}^n = V(0).$$

Note: This is why we might as well allow S to be empty: $V(\emptyset) = \mathbb{F}^n = V(0)$.

The empty subset $\emptyset \subset \mathbb{F}^n$ is Zariski-closed:

$$\emptyset = V(1).$$

Since Zariski-closed subsets are defined as (arbitrary) intersections

$$V(S) = \bigcap_{f \in S} V(f)$$

of basic closed set V(f), it suffices to check that a finite union of basic closed sets is an intersection of basic closed sets. For any polynomials f and g, we have

$$V(f) \cup V(g) = \{x \in \mathbb{F}^n \mid f(x) = 0 \text{ or } g(x) = 0\}$$
$$= \{x \in \mathbb{F}^n \mid f(x)g(x) = 0\}$$
$$= V(fg). \quad \Box$$

b. Show that the Zariski topology is *strictly* coarser (i.e. smaller) and the usual metric topology on \mathbb{F}^n .

Solution. Any polynomial function $f: \mathbb{F}^n \to \mathbb{F}$ is metrically continuous, therefore its zero set $V(f) = f^{-1}(\{0\})$ is metrically closed. This prove $\mathcal{T}_{Zar} \leq \mathcal{T}_{met}$.

To show that the inequality is strict, consider the subset

$$C := \{ x \in \mathbb{F}^n \mid x_n \ge 0 \}$$

(or the real part $\text{Re}(x_n) \geq 0$ in case $\mathbb{F} = \mathbb{C}$). Then C is metrically closed. However, C is not Zariski-closed. To prove this, let V(f) be a Zariski-closed subset containing C, so that f vanishes on C.

For any fixed $a_1, \ldots a_{n-1} \in \mathbb{F}$, the polynomial

$$f(a_1,\ldots,a_{n-1},x_n)$$

in one variable x_n vanishes for infinitely many values of x_n , thus is the zero polynomial. Since the a_i were arbitrary, this implies f=0 and thus $V(f)=\mathbb{F}^n$. Therefore the Zariski closure of C is $\overline{C}=\mathbb{F}^n\neq C$.

c. Show that the Zariski topology on \mathbb{F}^n is T_1 .

Solution. For any $a \in \mathbb{F}^n$, the singleton $\{a\}$ is the Zariski-closed set

$$\{a\} = V(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n). \quad \Box$$

d. Show that the Zariski topology on \mathbb{F}^n is not T_2 , i.e. not Hausdorff.

Solution. It suffices to show that any two basic open subsets have a non-empty intersection. Equivalently, any two basic closed subsets have a union which is not all of \mathbb{F}^n .

For any (non-zero) polynomials f and g, we have $V(f) \cup V(g) = V(fg)$. Since fg is not the zero polynomial, there is a point $a \in \mathbb{F}^n$ satisfying $(fg)(a) \neq 0$, so that $a \notin V(fg)$.

e. In the one-dimensional case n=1, show that the Zariski topology on $\mathbb F$ is the cofinite topology.

Solution. $(\mathcal{T}_{cof} \leq \mathcal{T}_{Zar})$ Since the Zariski topology is T_1 , every finite subset of \mathbb{F}^n is Zariski-closed.

 $(\mathcal{T}_{\operatorname{Zar}} \leq \mathcal{T}_{\operatorname{cof}})$ Let $C \subset \mathbb{F}$ be Zariski-closed. If C is not all of \mathbb{F} , then $C \subseteq V(f)$ for non-zero polynomial f. But a non-zero polynomial $f(x_1)$ in one variable has (at most) finitely many zeroes, so that V(f) is finite, as is C.

Problem 2. Two points x and y in a topological space X are **topologically distinguishable** if there is an open subset $U \subset X$ that contains one of the points but not the other. A space X is T_0 if any distinct points are topologically distinguishable.

Two points x and y are **topologically indistinguisable** if they are not topologically distinguishable, which amounts to x and y having exactly the same neighborhoods. One readily checks that topological indistinguishability is an equivalence relation on X, which we will denote by $x \sim y$.

The **Kolmogorov quotient** of X is the quotient $KQ(X) := X/\sim$, where topologically indistinguisable points become identified. In particular, X is T_0 if and only if X is homeomorphic to its Kolmogorov quotient.

- a. Show that the Kolmogorov quotient satisfies the following universal property.
 - 1. The natural map $\pi: X \to KQ(X)$ is continuous.
 - 2. KQ(X) is a T_0 space.
 - 3. For any T_0 space Y and continuous map $f: X \to Y$, there is a unique continuous map $\overline{f}: KQ(X) \to Y$ satisfying $f = \overline{f} \circ \pi$, i.e. making the diagram

commute.

In other words, KQ(X) is the "closest T_0 space which X maps into".

Solution.

- 1. $\pi: X \to KQ(X)$ is continuous, since it is the canonical projection to the quotient space.
- 2. Let $a, b \in KQ(X)$ be distinct points. Pick representatives $x, y \in X$ of a and b respectively. Since a and b are distinct, x and y are topologically distinguishable. Let $U \subset X$ be an open subset that distinguishes x and y, say WLOG $x \in U$ and $y \notin U$.
 - By definition of \sim , U is a union of equivalence classes (i.e. $z \in U$ implies that any $z' \sim z$ is also in U), which is saying $\pi^{-1}\pi(U) = U$. Therefore $\pi(U)$ is open in KQ(X) and contains $\pi(x) = a$. However $\pi(U)$ does not contain b, since every $u \in U$ is distinguishable from y, so that $\pi(u) \neq \pi(y) = b$.
- 3. By the universal property of the quotient topology, if suffices to show that such a map $f: X \to Y$ is constant on equivalence classes, i.e. $x \sim x'$ implies f(x) = f(x').
 - Assuming $f(x) \neq f(x')$, there is an open $U \subset Y$ that distinguishes f(x) and f(x') since Y is T_0 . Let's say WLOG $f(x) \in U$ and $f(x') \notin U$. Then $f^{-1}(U) \subset X$ is an open that distinguishes x and x', as $x \in f^{-1}(U)$ and $x' \notin f^{-1}(U)$. We conclude $x \not\sim x'$.

b. Show that X is regular if and only if its Kolmogorov quotient KQ(X) is T_3 .

Solution.

Lemma. T_0 and regular implies T_3 .

(⇒) Note that KQ(X) is automatically T_0 . By the lemma, it suffices to show that KQ(X) is regular. Let $C \subset KQ(X)$ be closed, and $a \notin C$. Then the preimages $\pi^{-1}(a)$ and $\pi^{-1}(C)$ are disjoint subsets of X, and $\pi^{-1}(C)$ is closed. Pick any representative $x \in \pi^{-1}(a)$. Since X is regular, there are open subsets $U, V \subset X$ satisfying $x \in U$, $\pi^{-1}(C) \subseteq V$, and $U \cap V = \emptyset$.

By the argument in part (a), $\pi(U)$ and $\pi(V)$ are open in KQ(X) and contain a and C respectively (since π is surjective). Moreover, $\pi(U)$ and $\pi(V)$ are disjoint. Indeed, U and V are disjoint and open, so that any points $u \in U$ and $v \in V$ are distinguishable, i.e. $\pi(u) \neq \pi(v)$.

(\Leftarrow) Let $C \subset X$ be closed and $x \notin C$. Because open subsets of X are unions of equivalence classes, the same holds for closed subsets. Therefore $\pi(C) \subset KQ(X)$ is closed and disjoint from the point $\pi(x)$.

Since KQ(X) is regular, there are open subsets $U, V \subset KQ(X)$ satisfying $\pi(x) \in U$, $\pi(C) \subseteq V$, and $U \cap V = \emptyset$. Therefore $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are open in X, contain x and C respectively, and are disjoint.

Problem 3. Let (X, d) be a metric space.

a. Let $S \subseteq X$ be a non-empty subset and consider the function $f_S \colon X \to \mathbb{R}$ defined by

$$f_S(x) = d(x, S).$$

Show that f_S is Lipschitz continuous with Lipschitz constant 1, i.e.

$$|f_S(x) - f_S(y)| \le d(x, y)$$
 for all $x, y \in X$.

In particular, f_S is continuous.

Solution. For every $x, y \in X$ and $s \in S$, we have

$$d(x,s) \le d(x,y) + d(y,s)$$

and taking the infimum over $s \in S$ yields

$$d(x,S) \le d(x,y) + d(y,S)$$

which can be rewritten as

$$d(x,S) - d(y,S) \le d(x,y).$$

Interchanging the role of x and y, we also obtain

$$d(y,S) - d(x,S) \le d(x,y)$$

and therefore

$$|f_S(x) - f_S(y)| = |d(x, S) - d(y, S)| \le d(x, y).$$

b. Show that closed subsets of X can be **precisely** separated by functions, i.e. for any $A, B \subset X$ disjoint closed subsets of X, there is a continuous function $f: X \to [0, 1]$ satisfying

$$\begin{cases} f(a) = 0 & \text{for all } a \in A \\ f(b) = 1 & \text{for all } b \in B \\ f(x) \in (0, 1) & \text{for all } x \notin A \cup B. \end{cases}$$

First assume A and B are non-empty. Then treat the case $B = \emptyset$ separately.

Hint: Recall the equivalence d(x, S) = 0 if and only if $x \in \overline{S}$.

Solution. When A and B are non-empty. Then the functions $f_A, f_B \colon X \to \mathbb{R}$ are well-defined and continuous. Consider the function $f \colon X \to \mathbb{R}$ defined by

$$f(x) = \frac{f_A(x)}{f_A(x) + f_B(x)}.$$

This function satisfies the desired properties.

• f is well-defined since the denominator is strictly positive on X:

$$f_A(x) + f_B(x) = 0 \Leftrightarrow f_A(x) = 0 \text{ and } f_B(x) = 0$$

 $\Leftrightarrow x \in \overline{A} = A \text{ and } x \in \overline{B} = B$
 $\Leftrightarrow x \in A \cap B = \emptyset.$

- f is continuous, since the sum $f_A + f_B$ is continuous, so that the quotient $f = \frac{f_A}{f_A + f_B}$ is continuous on X.
- f takes values in [0,1], by the inequalities $0 \le f_A(x) \le f_A(x) + f_B(x)$ for all $x \in X$.
- f satisfies:

$$f(x) = 0 \Leftrightarrow \frac{f_A(x)}{f_A(x) + f_B(x)} = 0$$
$$\Leftrightarrow f_A(x) = 0$$
$$\Leftrightarrow x \in \overline{A} = A.$$

• f satisfies:

$$f(x) = 1 \Leftrightarrow \frac{f_A(x)}{f_A(x) + f_B(x)} = 1$$
$$\Leftrightarrow f_A(x) = f_A(x) + f_B(x)$$
$$\Leftrightarrow f_B(x) = 0$$
$$\Leftrightarrow x \in \overline{B} = B.$$

When $B = \emptyset$ is empty. Then replace f_B by the constant function 1:

$$f(x) = \frac{f_A(x)}{1 + f_A(x)}.$$

As in the previous case, the denominator $1 + f_A(x)$ is strictly positive on X, f is continuous, takes values in [0, 1], and vanishes precisely on A. It remains it check:

$$f(x) = 1 \Leftrightarrow \frac{f_A(x)}{1 + f_A(x)} = 1$$
$$\Leftrightarrow f_A(x) = 1 + f_A(x)$$
$$\Leftrightarrow x \in \emptyset = B. \quad \Box$$

Remark. A space is called **perfectly normal** if its closed subsets can be precisely separated by functions. A space is called T_6 if it is T_1 and perfectly normal. We have just shown that every metric space is T_6 .

Problem 4. In this problem, we will show that a countable product of metrizable spaces is metrizable.

a. Let (X,d) be a metric space. Consider the function $\rho: X \times X \to \mathbb{R}$ defined by

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Show that ρ is a metric on X.

Solution. Write $\rho = h \circ d$ where $h \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is the rescaling function defined by

$$h(t) = \frac{t}{1+t}.$$

We check the three properties of a metric.

1. Positivity:

$$\rho(x,y) = h\left(d(x,y)\right) \ge 0 \text{ for all } x,y \in X$$

since $h(t) \ge 0$ for all $t \ge 0$.

$$\rho(x,y) = 0 \Leftrightarrow h(d(x,y)) = 0$$
$$\Leftrightarrow d(x,y) = 0$$
$$\Leftrightarrow x = y$$

where we used the property $h(t) = 0 \Leftrightarrow t = 0$.

2. Symmetry:

$$\rho(y, x) = h(d(y, x))$$
$$= h(d(x, y))$$
$$= \rho(x, y).$$

3. Triangle inequality: First note that h satisfies the "sublinearity" condition

$$h(s+t) \le h(s) + h(t)$$

for all $s, t \geq 0$. Indeed, we have:

$$h(s) + h(t) = \frac{s}{1+s} + \frac{t}{1+t}$$

$$= \frac{s(1+t) + t(1+s)}{(1+s)(1+t)}$$

$$= \frac{s+t+2st}{1+s+t+st}$$

$$\geq \frac{s+t+st}{1+s+t+st}$$

$$\geq \frac{s+t+\frac{s+t}{1+s+t}st}{1+s+t+st}$$

$$= \frac{(s+t)(1+s+t) + (s+t)st}{(1+s+t+st)(1+s+t)}$$

$$= \frac{(s+t)(1+s+t+st)}{(1+s+t+st)(1+s+t)}$$

$$= \frac{s+t}{1+s+t}$$

$$= h(s+t).$$

Thus the triangle inequality for d

$$d(x,y) \le d(x,z) + d(z,y)$$

along with the fact that h is non-decreasing implies

$$\rho(x,y) = h(d(x,y))$$

$$\leq h(d(x,z) + d(z,y))$$

$$\leq h(d(x,z)) + h(d(z,y))$$

$$= \rho(x,z) + \rho(z,y). \quad \Box$$

b. Show that the metric ρ from part (a) induces the same topology on X as the original metric d.

Solution. Given h(0) = 0, continuity of h at 0 means that for any $\epsilon > 0$, there is a $\delta > 0$ guaranteeing $h(t) < \epsilon$ whenever $t < \delta$. Substituting t = d(x, y), we obtain $\rho(x, y) < \epsilon$ whenever $d(x, y) < \delta$, i.e.

$$B^d_{\delta}(x) \subseteq B^{\rho}_{\epsilon}(x)$$

where the superscript denotes which metric is being used. This proves that every ρ -open is d-open.

Since h is continuous and strictly increasing, it is a homeomorphism of a (small) neighborhood of 0 onto a (small) neighborhood of h(0) = 0. The local inverse h^{-1} satisfies $h^{-1}(0) = 0$ and is continuous at 0, therefore the argument above applies again.

For any $\epsilon > 0$, there is a $\delta > 0$ guaranteeing $h^{-1}(s) < \epsilon$ whenever $s < \delta$. Substituting $s = \rho(x, y)$, we obtain $d(x, y) < \epsilon$ whenever $\rho(x, y) < \delta$, i.e.

$$B^{\rho}_{\delta}(x) \subseteq B^{d}_{\epsilon}(x)$$

so that every d-open is ρ -open.

Remark. We could also have used the formula $\rho(x,y) = \min\{d(x,y),1\}$. The goal was just to find a metric ρ which is topologically equivalent to d and is bounded.

[c.] Let $\{(X_i, d_i)\}_{i \in \mathbb{N}}$ be a countable family of metric spaces, where each metric d_i is bounded by 1, i.e.

$$d_i(x_i, y_i) \le 1$$
 for all $x_i, y_i \in X_i$.

Write $X := \prod_{i \in \mathbb{N}} X_i$ and consider the function $d : X \times X \to \mathbb{R}$ defined by

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i).$$

Show that d is a metric on X. (First check that d is a well-defined function.)

Solution. For any $x, y \in X$, the series defining d(x, y) has only non-negative terms and is bounded:

$$\sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i) \le \sum_{i=1}^{\infty} \frac{1}{2^i} = 1$$

hence the series converges, so that d(x, y) is well-defined.

We check the three properties of a metric.

1. Positivity:

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i) \ge \sum_{i=1}^{\infty} \frac{1}{2^i} (0) = 0$$

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i) = 0$$

$$\Leftrightarrow \frac{1}{2^i} d_i(x_i, y_i) = 0 \text{ for all } i \in \mathbb{N}$$

$$\Leftrightarrow d_i(x_i, y_i) = 0 \text{ for all } i \in \mathbb{N}$$

$$\Leftrightarrow x_i = y_i \text{ for all } i \in \mathbb{N}$$

$$\Leftrightarrow x = y.$$

2. Symmetry:

$$d(y,x) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(y_i, x_i)$$
$$= \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i)$$
$$= d(x, y).$$

3. Triangle inequality: For any $x, y, z \in X$, we have

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, y_i)$$

$$\leq \sum_{i=1}^{\infty} \frac{1}{2^i} (d_i(x_i, z_i) + d_i(z_i, y_i))$$

$$= \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(x_i, z_i) + \sum_{i=1}^{\infty} \frac{1}{2^i} d_i(z_i, y_i)$$

$$= d(x, z) + d(z, y). \quad \Box$$

d. Show that the metric d from part (c) induces the product topology on $X = \prod_{i \in \mathbb{N}} X_i$.

Solution. $(\mathcal{T}_{\text{met}} \leq \mathcal{T}_{\text{prod}})$ Let $\epsilon > 0$ and consider the open ball $B_{\epsilon}(x)$ centered at a point $x \in X$. We want to find an open "large box" $U = \prod_{i \in \mathbb{N}} U_i$ inside $B_{\epsilon}(x)$.

Let $N \in \mathbb{N}$ be large enough to guarantee the inequality

$$\sum_{i=N+1}^{\infty} \frac{1}{2^i} < \frac{\epsilon}{2}.$$

For the indices $1 \leq i \leq N$, take the radii $\epsilon_i := \frac{\epsilon}{2}$ and consider the open "large box" $U = \prod_{i \in \mathbb{N}} U_i$ defined by

$$U_i := \begin{cases} B_{\epsilon_i}(x_i) & \text{if } i \le N \\ X_i & \text{if } i > N. \end{cases}$$

Note that U is indeed open in the product topology, since $U_i \subseteq X_i$ is open for all $i \in \mathbb{N}$ and $U_i \neq X_i$ for finitely many indices i.

For any point $y \in U$, its distance to x is

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^{i}} d_{i}(x_{i}, y_{i})$$

$$= \sum_{i=1}^{N} \frac{1}{2^{i}} d_{i}(x_{i}, y_{i}) + \sum_{i=N+1}^{\infty} \frac{1}{2^{i}} d_{i}(x_{i}, y_{i})$$

$$\leq \sum_{i=1}^{N} \frac{1}{2^{i}} d_{i}(x_{i}, y_{i}) + \sum_{i=N+1}^{\infty} \frac{1}{2^{i}} (1)$$

$$< \sum_{i=1}^{N} \frac{1}{2^{i}} d_{i}(x_{i}, y_{i}) + \frac{\epsilon}{2}$$

$$< \sum_{i=1}^{N} \frac{1}{2^{i}} \epsilon_{i} + \frac{\epsilon}{2}$$

$$= \sum_{i=1}^{N} \frac{1}{2^{i}} \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \frac{\epsilon}{2} \sum_{i=1}^{N} \frac{1}{2^{i}} + \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

which proves the inclusion $U \subseteq B_{\epsilon}(x)$.

 $(\mathcal{T}_{\text{prod}} \leq \mathcal{T}_{\text{met}})$ Let $U = \prod_{i \in \mathbb{N}} U_i$ be an open "large box" and $x \in U$. We want to find an open ball around x satisfying $B_{\epsilon}(x) \subseteq U$.

By definition of large box, there is an index $N \in \mathbb{N}$ satisfying $U_i = X_i$ for all i > N. For the indices $1 \leq i \leq N$, we have $x_i \in U_i$ and $U_i \subseteq X_i$ is open, so that there is a radius $\epsilon_i > 0$ satisfying $x_i \in B_{\epsilon_i}(x_i) \subseteq U_i$.

Take the radius $\epsilon = \frac{1}{2^N} \min\{\epsilon_1, \dots, \epsilon_N\}$ and consider the open ball $B_{\epsilon}(x)$. We claim $B_{\epsilon}(x) \subseteq U$. Let $y \in B_{\epsilon}(x)$. For indices $1 \le i \le N$, the point y satisfies

$$\frac{1}{2^{i}} d_{i}(x_{i}, y_{i}) \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}} d_{j}(x_{j}, y_{j})$$

$$= d(x, y)$$

$$< \epsilon$$

$$\leq \frac{1}{2^{N}} \epsilon_{i}$$

$$\leq \frac{1}{2^{i}} \epsilon_{i}$$

or equivalently $d_i(x_i, y_i) < \epsilon_i$, which implies $y_i \in B_{\epsilon_i}(x_i) \subseteq U_i$.

For the remaining indices i > N, there is no constraint on y_i , namely $y_i \in U_i = X_i$ automatically. This proves $y \in \prod_{i \in \mathbb{N}} U_i = U$ and therefore the inclusion $B_{\epsilon}(x) \subseteq U$.