

Sadržaj

1.	Uvo	d	3
2.	Coq		4
	2.1.	Što je Coq?	4
	2.2.	Programiranje u Coqu	6
	2.3.	Hijerarhija tipova	9
	2.4.	Propozicije i tipovi, dokazi i termi	11
	2.5.	Ograničenja tipskog sustava	12
3.	Log	ika prvog reda s induktivnim definicijama	15
	3.1.	Sintaksa	16
	3.2.	Semantika	24
	3.3.	Standardni modeli	26
4.	Siste	em sekvenata s induktivnim definicijama	31
	4.1.	Strukturalna pravila	33
	4.2.	Propozicijska pravila	34
	4.3.	Pravila za kvantifikatore	35
	4.4.	Pravilo indukcije	36
	4.5.	Produkcijsko pravilo	39
	4.6.	Dokaz i teorem	40
	4.7.	Adekvatnost	42
5.	Cikl	ički dokazi	44
	5.1.	Primjer: lijene liste	44
	5.2.	Primier: $CLKID^{\omega}$	46

6. Zaključak	4
Literatura	5
Sažetak	5
Abstract	5

1. Uvod

2. Coq

U ovom poglavlju dajemo pregled visoke razine programskog sustava Coqa. Prvo ćemo objasniti što je uopće Coq, u kojem je kontekstu nastao, i od kojih komponenti se sastoji. Zatim ćemo dati kratak pregled programiranja u Coqu, nakon čega ćemo se baviti naprednijim konceptima i spomenuti neka ograničenja. Za širi opseg gradiva, čitatelja upućujemo na knjige Coq'Art [1], Software Foundations [2, 3, 4] i Certified Programming with Dependent Types [5] te na službenu dokumentaciju [6].

2.1. Što je Coq?

Alat za dokazivanje Coq¹, punog naziva *The Coq Proof Assistant*, programski je sustav pomoću kojeg korisnici mogu dokazivati matematičke tvrdnje, a može se koristiti i kao funkcijski programski jezik sa zavisnim tipovima. Alat se temelji na λ -računu i teoriji tipova, a prva je inačica implementirana 1984. godine [6] Ovaj rad koristi inačicu 8.18 iz rujna 2023. godine.

Program Coq može se pokrenuti u interaktivnom ili u skupnom načinu rada. Interaktivni način rada pokreće se naredbom coqtop, a korisniku omogućuje rad u ljusci sličnoj ljuskama bash i python. Interaktivna ljuska (također poznata pod imenom *toplevel*) služi unosu definicija te iskazivanju i dokazivanju tvrdnji. Skupni način rada pokreće se naredbom coqc, a korisniku omogućuje semantičku provjeru i prevođenje izvornih datoteka u strojno čitljive formate. Kod formaliziranja i dokazivanja, korisnik će najčešće koristiti interaktivni način rada, po mogućnosti kroz neku od dostupnih razvojnih okolina.²

¹https://coq.inria.fr/

²Autor rada koristio je paket *Proof General* za uređivač teksta *Emacs*. Druge često korištene okoline su *VsCoq* i *CoqIDE*.

Kao programski jezik, Coq se sastoji od više podjezika različitih namjena, od kojih spominjemo *Vernacular*, *Gallinu* i *Ltac*.

Vernacular ("govorni jezik") je jezik naredbi kojima korisnik komunicira sa sustavom (i u interaktivnom i u skupnom načinu rada); svaka Coq skripta (datoteka s nastavkom .v) je niz naredbi. Neke od najčešće korištenih naredbi su Check, Definition, Inductive, Fixpoint i Lemma. Pomoću naredbi za iskazivanje tvrdnji, kao što je Lemma, Coq ulazi u način dokazivanja (*proof mode*).

Gallina je Coqov strogo statički tipiziran specifikacijski jezik. Dokazi svih tvrdnji predstavljeni su interno kao programi u Gallini. Kako se glavnina programiranja u Coqu svodi upravo na programiranje u Gallini, posvećujemo joj idući odjeljak.

Ltac je Coqov netipizirani jezik za definiciju i korištenje taktika. Taktike su pomoćne naredbe kojima se u načinu dokazivanja konstruira dokaz. Može se reći da je Ltac jezik za metaprogramiranje Galline. Primjeri taktika su intros, destruct, apply i rewrite.

Pogledajmo ilustrativan primjer.

```
Lemma example_lemma: 1 + 1 = 2.
Proof.
cbn. reflexivity.
Qed.
```

Ključne riječi Lemma, Proof i Qed dio su Vernaculara, izraz example_lemma: 1+1=2 dio je Galline, a pomoćne naredbe cbn i reflexivity dio su Ltaca.

Jezgra je programskog sustava Coq algoritam za provjeru tipova (*type checking*) — svaka tvrdnja koja se dokazuje iskazana je tipovima. Ostatak sustava u načelu služi za knjigovodstvo i poboljšanje korisničkog iskustva.³ Nužno je da jezgra sustava bude relativno mala kako bismo se mogli uvjeriti u njenu točnost. U suprotnom, možemo li biti sigurni da su naše dokazane tvrdnje doista istinite?

Prve inačice Coqa implementirale su samo račun konstrukcija [7] — proširenje λ računa polimorfnim i zavisnim tipovima te tipskim konstruktorima. Kasnije je dodana
podrška za induktivno i koinduktivno definirane tipove [8, 9], a danas se može reći da
Coq implementira polimorfni kumulativni račun induktivnih konstrukcija [10]. Coq se,
osim kao dokazivač teorema, može koristiti i za programiranje sa zavisnim tipovima. U

³I jezgra i ostatak sustava implementirani su u OCamlu.

toj sferi konkuriraju jezici Agda⁴, Idris⁵ i Lean⁶. Coq se između njih ističe po usmjerenosti prema dokazivanju, posebno po korištenju taktika (jezik Ltac) i nepredikativnoj sorti Prop (o kojoj će kasnije biti riječi). Još jedna prednost Coqa je mehanizam *ekstrakcije* pomoću kojeg korisnik može proizvoljnu funkciju prevesti u jezik niže razine apstrakcije.⁷ Mehanizam ekstrakcije nije dokazano točan, no poželjno je da izvorne funkcije budu ekvivalentne ekstrahiranima pa se radi na verifikaciji ekstrakcije [10].

2.2. Programiranje u Coqu

Gallina je funkcijski programski jezik, što znači da su funkcije prvoklasni objekti — one mogu biti argumenti i povratne vrijednosti drugih funkcija. Dodatno, iteracija se ostvaruje rekurzijom te ne postoje tradicionalne varijable, već se koriste nepromjenjiva (*immutable*) imena. Za uvod u funkcijsko programiranje, čitatelja upućujemo na knjigu *Programming in Haskell* [11]. Primjeri koje ćemo vidjeti u ostatku ovog odjeljka oslanjanju se na tipove i funkcije definirane u Coqovoj standardnoj knjižnici.⁸

Gallina je strogo statički tipiziran jezik, što znači da se svakom termu prilikom prevođenja dodjeljuje tip⁹. Naredbom Check možemo provjeriti tip nekog terma ili doznati da se termu ne može dodijeliti tip. Dalje u radu pod "term" mislimo na dobro formirane terme, odnosno na one kojima se može dodijeliti tip. Kažemo da je term *stanovnik* tipa koji mu je dodijeljen. Za tip kažemo da je *nastanjen*, odnosno *nenastanjen*, ako postoji, odnosno ne postoji, stanovnik tog tipa. Kako su u Coqu i tipovi termi, radi razumljivosti i zvučnosti umjesto "tip tipa" kažemo "sorta tipa".

Kao i u ostalim jezicima, kod programiranja u Coqu korisnik se oslanja na dostupne primitivne izraze, od kojih su najvažniji:

- forall za konstrukciju funkcijskih tipova i zavisnih produkata,
- match za rad sa stanovnicima induktivnih tipova te
- fun, fix i cofix za definiciju funkcija. Naredbom Inductive definira se *induktivni* tip te se automatski za njega generiraju

⁴https://wiki.portal.chalmers.se/agda/

⁵https://www.idris-lang.org/

⁶https://lean-lang.org/

⁷Trenutno su podržani Haskell, OCaml i Scheme.

⁸https://coq.inria.fr/library/

⁹Tipovi su kolekcije objekata na kojima je moguće provoditi srodne operacije.

principi indukcije i rekurzije.

```
Inductive nat : Set :=

| 0 : nat
| S : nat -> nat.
```

Ovim kodom definirali smo tri terma:

- nat (tip prirodnih brojeva) je term sorte Set,
- 0 (broj nula) je term tipa nat i
- S (funkcija sljedbenika) je term tipa nat→nat.

Za term nat kažemo da je konstruktor tipa (*type constructor*), a za terme 0 i S kažemo da su konstruktori objekata (*object constructors*).

Jedna od osnovnih naredbi za imenovanje novih terma je naredba Definition.

```
Definition negb (b : bool) : bool :=

match b with

| false => true
| true => false
end.
```

U gornjem kodu definirana je funkcija negb čiji se argument b tipa bool destrukturira te se vraća njegova negacija, također tipa bool. Važno je napomenuti da izrazi koji počinju s match t, gdje je t stanovnik tipa T, moraju imati po jednu granu za svaki konstruktor tipa T.¹⁰ U ovom su primjeru konstante false i true jedini konstruktori tipa *bool*. Funkcija negb je tipa bool→bool.

```
Definition mult_zero_r : Prop := forall (n : nat), n * 0 = 0.
```

Ovdje je definirana propozicija (tip) imena mult_zero_r kao tvrdnja univerzalno kvantificirana po prirodnim brojevima.

Rekurzija nad induktivnim tipovima može se ostvariti naredbom Fixpoint, koja u pozadini koristi naredbu Definition te izraz fix.

¹⁰U tandemu s uvjetom strukturalne rekurzije, ovime je osigurana totalnost svake funkcije.

```
Fixpoint plus (n m : nat) {struct n} : nat :=
    (* Definition plus := fix plus (n m : nat) {struct n} := *)
match n with
    | O => m
    | S n' => S (plus n' m)
end.
```

U ovom primjeru definirana je funkcija plus koja prima dva argumenta tipa nat. Funkcija je rekurzivna s obzirom na prvi argument što je vidljivo iz oznake {struct n}. Napominjemo da su induktivni tipovi dobro utemeljeni, to jest svaki term induktivnog tipa je konačan.

Osim induktivnih, u Coqu postoje i koinduktivni tipovi, koji nisu dobro utemeljeni, zbog čega za njih nije moguće definirati principe indukcije i rekurzije. Umjesto rekurzije, koinduktivni tipovi koriste se u korekurzivnim funkcijama. Standardan primjer koinduktivnog tipa je beskonačna lista.

```
Set Primitive Projections.
CoInductive Stream (A : Type) := Cons {
   hd : A;
   tl : Stream A;
}.
```

Ovime smo definirali familiju tipova Stream indeksiranu tipskom varijablom A. Svaki Stream ima glavu i rep koji je također Stream.

Stanovnici koinduktivnih tipova konstruiraju se korekurzivnim funkcijama naredbom CoFixpoint, koja u pozadini koristi naredbu Definition te izraz cofix.

```
CoFixpoint from (n : nat) : Stream nat := Cons _ n (from <math>(S n)).

(* Definition from := cofix from (n : nat) := Cons _ n (from <math>(S n)) *)
```

Ovime je definirana funkcija from koja za ulazni argument n vraća niz prirodnih brojeva od n na dalje.

Razlika induktivnih i koinduktivnih tipova može se sumirati epigramom:

"Induktivni tipovi su domene rekurzivnih funkcija, koinduktivni tipovi su kodomene korekurzivnih funkcija".

Time se želi reći da se termi induktivnih tipova destrukturiraju u rekurzivnim funkcijama, dok se termi koinduktivnih tipova konstruiraju u korekurzivnim funkcijama.

2.3. Hijerarhija tipova

U usporedbi s tradicionalnim programskim jezicima, Coqov tipski sustav je ekspresivniji jer dopušta tipove koji mogu ovisiti o termima. Takvi tipovi se u Coqu konstruiraju izrazom oblika forall. Primjer jednog takvog tipa je "lista duljine n", gdje je n neki prirodan broj. Njegovi su stanovnici n-torke, a on ovisi o stanovniku drugog tipa (u ovom slučaju, o n tipa nat).

Spomenuli smo da su i tipovi termi te im se može dodijeliti sorta. Postoji li najveća sorta, odnosno postoji li tip Type čiji su stanovnici svi tipovi? Prisjetimo se, svaki term ima svoj tip. Kada bi takav Type postojao, tada bi vrijedilo Type: Type, što može dovesti do paradoksa samoreferenciranja. Takav dokazivač teorema bio bi inkonzistentan te bismo njime mogli dokazati kontradikciju, čime dokazivač efektivno gubi svoju svrhu. Umjesto jedne "velike" sorte Type, u Coqu postoji rastući niz sorti Type_n za sve prirodne brojeve n, takav da vrijedi Type_n: Type_m kad god vrijedi n < m. Ilustracija ove **kumulativne hijerarhije tipova** prikazana je na slici 2.1. Dvije najvažnije sorte u Coqu su Set i Prop.

Naziv Set sinonim je za sortu Type₀, a njene stanovnike zovemo **malim tipovima**. Primjerice, tipovi nat i bool su mali tipovi. Dodatno, tipovi funkcija koje primaju i vraćaju male tipove su također mali tipovi. Također su i produkti, sume, liste i stabla malih tipova ponovo mali tipovi. Intuitivno se može reći da su mali oni tipovi s čijim se stanovnicima može efektivno računati. Stanovnike malih tipova nazivamo **programima**.

Stanovnici sorte Prop su **propozicije** (izjave). Za razliku od programa, s propozicijama ne možemo efektivno računati, ali ih možemo dokazivati. Stanovnici propozicija su njihovi **dokazi**.

Za dokazivače teorema, poželjna je mogućnost definicije predikata (propozicija) nad proizvoljnim tipovima. Zbog toga u Coqu prilikom definicije terma sorte Propmožemo

¹¹U naivnoj logici to je Epimenidov paradoks ("Ova je rečenica lažna."), u naivnoj teoriji skupova to je Russellov paradoks, u naivnoj teoriji tipova to je Girardov paradoks.

Slika 2.1. Kumulativna hijerarhija tipova

kvantificirati po proizvoljno velikim tipovima, što uključuje i sortu Prop. Tako je ovdje not predikat nad sortom Prop.

```
Definition not (P : Prop) := forall (Q : Prop), P -> Q.
```

Valja primijetiti da kod definicije predikata not kvantificiramo po Prop, no za svaku propoziciju P je term not P također tipa Prop, pa domena funkcije not P uključuje sam term not P. Ovaj stil kvantifikacije omogućuje nam definiciju proizvoljnih propozicija i propozicijskih veznika. Kažemo da je sorta Prop **nepredikativna**. S druge strane, sorta Set je **predikativna**, to jest *ne dopušta* kvantifikaciju po Set i ostalim proizvoljno velikim tipovima. Kada bi sorta Prop bila predikativna, uopće ne bismo mogli definirati predikat not.

2.4. Propozicije i tipovi, dokazi i termi

U decimalnom zapisu broja π , barem jedna znamenka pojavljuje se beskonačno mnogo puta. Doista, kada bi se svaka znamenka pojavljivala samo konačno mnogo puta, broj π bio bi racionalan. Međutim, nije jasno koja znamenka ima to svojstvo. Možda ih ima više. Štoviše, vjerujemo da su sve znamenke takve. Da bismo odgovorili na to pitanje, morali bismo prebrojiti sve znamenke broja π , što nije moguće u konačno mnogo koraka.

Sličnim pitanjima bavili su se logičari dvadesetog stoljeća. *Klasični* logičari bi gornju tvrdnju smjesta prihvatili, dok bi *konstruktivisti* tražili konkretnu znamenku. Između ostalog, ovakva razmatranja rezultirala su fundamentalnim uvidom u povezanost programiranja i dokazivanja. Naime, želimo li dokazati konjunkciju, dovoljno je zasebno dokazati njene konjunkte. S druge strane, želimo li konstruirati par objekata, dovoljno je zapakirati prvi i drugi objekt u konstruktor para. Na sličan način, želimo li dokazati implikaciju, dovoljno je pretpostaviti njen antecedent te pomoću njega dokazati konzekvens. Ako pak želimo konstruirati funkciju, smijemo uzeti njen argument i pomoću njega konstruirati povratnu vrijednost. Dodatno, nemoguće je dokazati laž, a istina trivijalno vrijedi. S druge strane, ako induktivni tip nema konstruktore, onda je nenastanjen jer nije moguće definirati vrijednost tog tipa. Ako pak tip ima barem jedan konstruktor bez argumenata, tada postoje i njegovi stanovnici. Kroz ove primjere vidimo fenomen **Curry–Howardove korespondencije**, koju možemo sažeti epigramom:

"Propozicije su tipovi, dokazi su programi."

Time se dokazivanje svodi na programiranje. Pogledi na dvije strane ovog novčića mogu se vidjeti u tablici 2.1.

Za bolju ilustraciju, prikazujemo princip matematičke indukcije u Coqu. Prisjetimo se, za proizvoljni predikat P na prirodnim brojevima, princip matematičke indukcije glasi:

$$P(0) \land \forall n, P(n) \rightarrow P(n+1) \rightarrow \forall n, P(n).$$

Tvrdnju dokazujemo analizom broja n. Ako je n=0, tvrdnja slijedi iz *baze* indukcije. Ako je pak n=n'+1 za neki n', tada rekurzivno konstruiramo dokaz za P(n'), a konačna tvrdnja slijedi primjenom *koraka* indukcije na rekurzivno konstruirani dokaz.

Dokazivanje	Programiranje
propozicija	tip
dokaz	program
laž	prazan tip
istina	nastanjen tip
konjunkcija	produktni tip
disjunkcija	zbrojni tip
implikacija	funkcijski tip
univerzalna kvantifikacija	zavisni produkt
egzistencijalna kvantifikacija	zavisna suma

Tablica 2.1. Sličnosti dokazivanja i programiranja

Za term nat_ind kažemo da je dokazni term (*proof term*) za tvrdnju matematičke indukcije. Princip matematičke indukcije je samo poseban slučaj **principa indukcije**, koji Coq automatski generira za svaki induktivno definiran tip pri njegovoj definiciji.

2.5. Ograničenja tipskog sustava

Kao što smo već vidjeli, Coqov tipski sustav je izražajniji od tipskih sustava uobičajenih programskih jezika. Međutim, kako bi se sačuvala poželjna svojstva algoritma provjere tipova, ipak se tipski sustav mora ograničiti.

Uvjet pozitivnosti odnosi se na definiciju induktivnih i koinduktivnih tipova. Ovo ograničenje zabranjuje *negativne* pojave tipa kojeg definiramo u argumentima njegovih konstruktora.

```
Inductive Lam :=

| LamVar (n : nat)
| LamApp (M N : Lam)
| LamAbs (M : Lam -> Lam).
```

Pokretanje primjera iznad rezultira greškom Non strictly positive occurrence of "Lam" in "(Lam -> Lam) -> Lam" — drugim riječima, tip Lam se javlja negativno u konstruktoru LamAbs, odnosno kao argument funkcije koja je parametar konstruktora. Ovaj uvjet štiti korisnika od inkonzistentnosti, a za točnu definiciju pozitivnosti čitatelja upućujemo na dokumentaciju. Uz uvjet pozitivnosti za induktivne tipove vezan je **uvjet strukturalne rekurzije**. Ovim uvjetom osigurava se totalnost rekurzivno definirane funkcije tako da se argument po kojem je funkcija rekurzivna strukturalno smanjuje u svakom koraku rekurzije (funkcija se poziva samo na pravom podtermu originalnog argumenta).

Uvjet produktivnosti odnosi se na definiciju korekurzivnih funkcija, a dualan je uvjetu strukturalne rekurzije. Ovaj uvjet također štiti korisnika od inkonzistentnosti, a glasi: svaki korekurzivni poziv smije se pojaviti samo kao izravni argument konstruktora koinduktivnog tipa čiji element definiramo (poziv funkcije mora stvoriti pravi nadterm originalnog poziva).¹³ Zbog tog uvjeta, iduća definicija nije moguća.

```
Set Primitive Projections.
CoInductive NatStream := {
    nat_hd : nat;
    nat_tl : NatStream;
}.
CoFixpoint foo : NatStream := foo.
```

Greška koju sustav javlja glasi Unguarded recursive call in "foo", što znači da se korekurzivni poziv foo *ne* javlja kao izravni argument konstruktora. S druge strane, definicija

```
coFixpoint bar : NatStream := {| nat_hd := 0; nat_tl := bar |}.
je sasvim legalna.
```

Posljednje ograničenje koje spominjemo vezano je uz irelevantnost dokaza (*proof irrelevance*). Naime, mnogi teoremi mogu se dokazati na više načina, ali pojedini dokaz (dakle, postupak kojim smo od pretpostavki došli do konkluzije) *nije bitan*. Matemati-

 $^{^{12}} https://coq.inria.fr/doc/v8.18/refman/language/core/inductive.html \#well-formed-inductive-definitions$

¹³https://coq.inria.fr/doc/v8.18/refman/language/core/coinductive.html#corecursive-functions-cofix

čarima su bitni samo iskaz teorema i činjenica da se teorem *može dokazati*. Sam postupak dokazivanja smatra se "implementacijskim detaljem". Upravo zato analiza dokaza ima smisla samo kada se dokazuje, ali ne i kada se programira. U našoj terminologiji to znači da se *pattern matching* nad dokazima smije provoditi samo kod definiranja terma sorte Prop. U suprotnom, mogli bismo definirati programe koji ovise o *konkretnom dokazu*, umjesto o iskazanom teoremu. **Ograničenje eliminacije propozicije** nastalo je radi omogućavanja ekstrakcije — svi termi sorte Prop se "brišu" prilikom prevođenja iz Coqovog tipskog sustava u tipske sustave niže razine apstrakcije. Kada ovog ograničenja ne bi bilo, ekstrakcija u jednostavnije jezike naprosto ne bi bila moguća, jer bi prilikom ekstrakcije bilo nužno zadržati i sve dokaze uz svu kompleksnost njihovih tipova.

Logika prvog reda s induktivnim definicijama

U ovom poglavlju predstavljamo glavne rezultate diplomskog rada: formalizaciju logike prvog reda s induktivnim definicijama FOL_{ID} te dokaznog sustava LKID, koje je prvi uveo Brotherston [12]. Definicije, leme i dokazi u ovom poglavlju preuzete su iz Brotherstonove disertacije [13]. Za općeniti uvod u logiku čitatelja upućujemo na knjigu $Matematička\ logika\ [14]$.

Prvo ćemo definirati sintaksu i semantiku logike FOL_{ID} , nakon čega ćemo definirati njene standardne modele. Zatim ćemo prikazati dokazni sustav LKID te konačno dokazati dio adekvatnosti sustava LKID s obzirom na standardnu semantiku, što je ujedno i glavni rezultat ovog diplomskog rada. **Misao:** Ovo ću preformulirati ako uspijem dokazati zadnje pravilo.

Svaka definicija i lema u ovom poglavlju bit će popraćena svojom formalizacijom u Coqu. Jedan je od ciljeva diplomskog rada prikazati primjene Coqa u matematici, zbog čega leme nećemo dokazivati "na papiru", već se dokaz svake leme može pronaći u repozitoriju rada. ¹ Zainteresiranom čitatelju predlažemo interaktivni prolazak kroz dokaze lema.

Prije no što krenemo na formalizaciju, valja prokomentirati odnos matematičkog i Coqovog vokabulara što se tiče riječi "skup". U matematici pojam "skup" može imati dva značenja; prvo se odnosi na skupove kao *domene diskursa*, dok se drugo odnosi na skupove kao *predikate*, odnosno podskupove domene diskursa. Primjerice, skup prirodnih brojeva \mathbb{N} je domena diskursa kada je riječ o svim prirodnim brojevima te zbog toga pišemo $n \in \mathbb{N}$ umjesto $\mathbb{N}(n)$. S druge strane, skup svih parnih prirodnih brojeva E je

¹https://github.com/mihohren/diploma-thesis

podskup skupa \mathbb{N} , a može se interpretirati kao predikat parnosti na prirodnim brojevima te možemo pisati E(n) umjesto $n \in E$. U Coqu se skupovi kao domene diskursa formaliziraju tipovima sorte Set^2 , dok se skupovi kao predikati formaliziraju funkcijama iz domene diskursa u sortu Prop. Na primjer, tip prirodnih brojeva nat je sorte Set, a predikat Nat . Even je tipa $\operatorname{nat} \to \operatorname{Prop}$.

3.1. Sintaksa

Kao i u svakom izlaganju logike, na početku je potrebno definirati sintaksu.

Definicija 1. *Signatura prvog reda s induktivnim predikatima* (kratko: *signatura*), u oznaci Σ , je skup simbola od kojih razlikujemo *funkcijske*, *obične predikatne* i *induktivne predikatne* simbole. *Mjesnost* simbola reprezentiramo funkcijom iz odgovarajućeg skupa simbola u skup \mathbb{N} , a označujemo ju s |f| za funkcijske, odnosno s |P| za predikatne simbole.

```
Structure signature := {
FuncS : Set;
fun_ar : FuncS -> nat;
PredS : Set;
pred_ar : PredS -> nat;
IndPredS : Set;
indpred_ar : IndPredS -> nat
}.
```

Primjer 1. Funkcijski simboli Peanove aritmetike su redom simbol nule o (mjesnosti 0), simbol sljedbenika s (mjesnosti 1) te simboli zbroja + i umnoška \cdot (mjesnosti 2).

²Ili tipovima sorte Type kada nam trebaju veliki tipovi, najčešće kao posljedica parametrizacije općenitih tipova.

Simbol jednakosti = (mjesnosti 2) je jedini običan predikatni simbol Peanove aritmetike.

```
Inductive Pred__PA := PA_eq.
Definition pred_ar__PA (s : Pred__PA) : nat :=
match s with
| PA_eq => 2
end.
```

Definiramo induktivne predikatne simbole *Nat*, *Even* i *Odd* mjesnosti 1 koje ćemo interpretirati redom kao predikate "biti prirodan", "biti paran" te "biti neparan".

Konačno, proširena Peanova signatura, s oznakom Σ_{PA} , je signatura za Peanovu aritmetiku prvog reda s prethodno definiranim induktivnim predikatnim simbolima.

U ostatku poglavlja promatramo jednu proizvoljnu, ali fiksiranu signaturu Σ . Fiksiranje nekog proizvoljnog objekta je česta pojava u matematici, prvenstveno zato što finksirane argumente ne trebamo spominjati eksplicitno u kasnijim definicijama i iskazima. Coq omogućuje fiksiranje naredbom Context, pod uvjetom da se korisnik nalazi u okolini Section. Većina definicija i lema u ovom radu su napisane upravo unutar takvih okolina.

Definicija 2. *Varijabla* je prirodan broj. *Skup svih terma* konstruiramo rekurzivno na način:

- 1. svaka varijabla je term;
- 2. ako je f funkcijski simbol mjesnosti n te su $t_1, ..., t_n$ termi⁴, onda je $f(t_1, ..., t_n)$ također term.

³https://coq.inria.fr/doc/v8.18/refman/language/core/sections.html

⁴Primijetimo, broj terma ovisi o mjesnosti funkcijskog simbola. U Coqovoj implementaciji ovog "konstruktora" možemo vidjeti da je on zavisnog tipa.

⁵Ili općenitije, vezivanju varijabli.

⁶https://github.com/uds-psl/autosubst2

funkcija supstitucija i pomoćnih lema.

Princip indukcije za term potrebno je ručno definirati. Naime, induktivni tip term je *ugniježđen* po konstruktoru TFunc zato što se javlja omotan oko drugog induktivnog tipa⁷ kao argument. Za ugniježđene induktivne tipove, Coq generira neprikladne principe indukcije jer ne zna kako izraziti tvrdnju "predikat vrijedi za sve ugniježđene elemente."

```
Lemma term_ind

forall P : term Σ -> Prop,

(forall v, P (var_term v)) ->

(forall f args, (forall st, V.In st args -> P st) ->

P (TFunc f args)) ->

forall t : term Σ, P t.
```

Definicija 3. *Skup svih varijabli terma t*, s oznakom TV(t), konstruiramo rekurzivno na način:

- 1. $TV(v) := \{v\}$ za varijablu v i
- 2. $TV(f(t_1,...,t_n)) := \bigcup_{1 \le i \le n} TV(t_i)$ za n-mjesni funkcijski simbol f i terme $t_1,...,t_n$.

```
Inductive TV : term -> var -> Prop :=
| TVVar : forall v, TV (var_term v) v
| TVFunc : forall f args v st, V.In st args ->
TV st v -> TV (TFunc f args) v.
```

Definicija 4. *Skup svih formula* konstruiramo rekurzivno na način:

- 1. ako je Q (obični ili induktivni) predikatni simbol mjesnosti n te su t_1, \ldots, t_n termi, onda je $Q(t_1, \ldots, t_n)$ atomarna formula;
- 2. ako je φ formula, onda su $\neg \varphi$ i $\forall \varphi$ također formule;
- 3. ako su φ i ψ formule, onda je $\varphi \to \psi$ također formula.

Ostale veznike definiramo kao sintaksne pokrate.

⁷Ovdje vec.

```
Definition FAnd (\phi \ \psi : formula) : formula := FNeg (FImp \ \phi \ (FNeg \ \psi)).
Definition FOr (\phi \ \psi : formula) : formula := FImp (FNeg \ \phi) \ \psi.
Definition FExist (\phi : formula) : formula := FNeg (FAll (FNeg \ \phi)).
```

Primjer 2. U proširenoj Peanovoj signaturi, svojstvo "svaki prirodan broj je paran ili neparan" možemo izraziti formulom $\forall x, Nat(x) \rightarrow Even(x) \lor Odd(x)$.

```
Definition every_nat_is_even_or_odd : formula Σ__PA :=
FAll

(FImp
(FIndPred PA_Nat [var_term 0])
(FOr
(FOr
(FIndPred PA_Even [var_term 0]))
(FIndPred PA_Odd [var_term 0]))).
```

Ovdje vidimo učinak de Bruijnovog indeksiranja na zapis formula; umjesto eksplicitnog navođenja varijable x kod kvantifikacije, implicitno kvantificiramo po varijabli 0.

Definicija 5. *Skup slobodnih varijabli formule* φ , s oznakom $FV(\varphi)$, konstruiramo rekurzivno na način:

```
1. FV(P(u_1, ..., u_n)) := \bigcup_{1 \le i \le n} TV(u_i),

2. FV(\neg \varphi) := FV(\varphi),

3. FV(\varphi \to \psi) := FV(\varphi) \cup FV(\psi),
```

4. $FV(\forall \varphi) := \{ v \mid v+1 \in FV(\varphi) \}.$

```
Inductive FV : formula -> var -> Prop :=

| FV_Pred : forall R args v st,
| V.In st args -> TV st v -> FV (FPred R args) v

| FV_IndPred : forall R args v st,
| V.In st args -> TV st v -> FV (FIndPred R args) v

| FV_Imp_l : forall F G v, FV F v -> FV (FImp F G) v

| FV_Imp_r : forall F G v, FV G v -> FV (FImp F G) v

| FV_Neg : forall F v, FV F v -> FV (FNeg F) v

| FV_All : forall F v, FV F (S v) -> FV (FAll F) v.
```

Definicija 6. *Supstitucija* je svaka funkcija iz skupa \mathbb{N} u skup svih terma. Supstituciju σ možemo promatrati kao niz terma t_0, t_1, t_2, \ldots Tada je *pomaknuta supstitucija*, s oznakom $t \cdot \sigma$, supstitucija koja odgovara nizu t, t_0, t_1, t_2, \ldots , za neki term t.

Domena supstitucije može se rekurzivno proširiti na skup svih terma i skup svih formula.

```
Fixpoint subst_term (σ : var -> term) (t : term) : term :=

match t with

| var_term v => σ v
| TFunc f args => TFunc f (V.map (subst_term σ) args)
end.

Fixpoint subst_formula

(σ : var -> term Σ) (φ : formula )
: formula :=

match φ return formula with
| FPred P args => FPred P (V.map (subst_term σ) args)
| FIndPred P args => FIndPred P (V.map (subst_term σ) args)
| FNeg ψ => FNeg (subst_formula σ ψ)
| FImp ψ ξ => FImp (subst_formula σ ψ) (subst_formula σ ξ)
| FAll ψ => FAll (subst_formula (up_term_term σ) ψ)
end.
```

Ovdje funkcija up_term_term brine da supstitucija σ mijenja samo one varijable koje nisu vezane. Pišemo $\varphi[\sigma]$ za primjenu supstitucije σ na formulu φ . Često korištene supstitucije formula su supstitucija varijable x termom t u formuli φ , s oznakom $\varphi[t/x]$, te supstitucija svake varijable n u formuli φ varijablom n+1, s oznakom φ^{\uparrow} . Iste notacije koristimo i za supstitucije na termima, listama terma i listama formula.

Konačno, potrebno je definirati sintaksu za indukciju. U Coqu su definicije induktivnih propozicija proizvoljne do na ograničenje pozitivnosti, no radi jednostavnosti u FOL_{ID} su moguće samo induktivne definicije s atomarnim formulama, a pišemo ih u stilu prirodne dedukcije:

$$\frac{Q_1\mathbf{u}_1...Q_n\mathbf{u}_n \qquad P_1\mathbf{v}_1...P_m\mathbf{v}_m}{P\mathbf{t}}$$

Ovdje su Q_1, \ldots, Q_n obični predikatni simboli, P_1, \ldots, P_m i P su induktivni predikatni simboli, a podebljani znakovi predstavljaju n-torke terma, gdje je n mjesnost odgovarajućeg predikata.

Definicija 7. Produkcija je uređena četvorka

- 1. liste parova običnih predikatnih simbola i *n*-torki terma odgovarajućih duljina,
- 2. liste parova induktivnih predikatnih simbola i *n*-torki terma odgovarajućih duljina,
- 3. induktivnog predikatnog simbola *P* mjesnosti *m* i
- 4. *m*-torke terma.

Prvi i drugi član četvorke zovemo *premisama*, a treći i četvrti *konkluzijom*. U ostatku rada odabiremo neki podskup skupa svih produkcija koji zovemo *skupom induktivnih definicija*, a označavamo s Φ .

```
Definition IndDefSet := production -> Prop.
```

U idućim primjerima definiramo produkcije za induktivne predikatne simbole u proširenoj Peanovoj signaturi.

Primjer 3. Za broj kažemo da je prirodan ako je 0 ili je sljedbenik nekog prirodnog broja.

$$\frac{1}{Nat(o)}$$
 (PA_prod_N_zero)

```
Definition PA_prod_N_zero : @production Σ__PA.
refine (mkProd nil nil PA_Nat _).
refine [TFunc PA_zero []].
Defined.
```

$$\frac{Nat(x)}{Nat(s(x))} (PA_prod_N_succ)$$

```
Definition PA_prod_N_succ : @production Σ__PA.

refine (mkProd nil _ PA_Nat _).

refine (cons _ nil). exists PA_Nat; refine [var_term 0].

refine [TFunc PA_succ [var_term 0]].

Defined.
```

Napomena. U primjeru 3 vidimo alternativni način definiranja u Coqu. Korisnik umjesto definiranja Gallininih terma ulazi u način dokazivanja te naredbom refine postepeno konstruira ("profinjuje") rezultatni term, ostavljajući "rupe" _ koje će popuniti kasnijim primjenama naredbe refine. Konačni rezultat možemo vidjeti naredbom Print.

Print PA_prod_N_succ.

Primjer 4. Za broj kažemo da je paran ako je 0 ili je sljedbenik nekog neparnog broja.

$$\overline{Even(o)}$$
 (PA_prod_E_zero)

```
Definition PA_prod_E_zero : @production Σ__PA.
refine (mkProd nil nil PA_Even _).
refine [ TFunc PA_zero []].
Defined.
```

$$\frac{Odd(x)}{Even(s(x))} (PA_prod_E_succ)$$

```
Definition PA_prod_E_succ : @production Σ__PA.
refine (mkProd nil _ PA_Even _).
- refine (cons _ nil). exists PA_Odd; refine [var_term 0].
- refine [TFunc PA_succ [var_term 0]].
Defined.
```

Za broj kažemo da je neparan ako je sljedbenik nekog parnog broja.

$$\frac{Even(x)}{Odd(s(x))} (PA_prod_0_succ)$$

```
Definition PA_prod_O_succ : @production Σ__PA.
refine (mkProd nil _ PA_Odd _).
- refine (cons _ nil). exists PA_Even; refine [var_term 0].
- refine [TFunc PA_succ [var_term 0]].
Defined.
```

Skup prethodnih pet produkcija nazivamo skupom induktivnih definicija za proširenu Peanovu signaturu, s oznakom Φ_{PA} .

```
Inductive Φ__PA : @production Σ__PA -> Prop :=

| ID_N_zero : Φ__PA PA_prod_N_zero
| ID_N_succ : Φ__PA PA_prod_N_succ
| ID_E_zero : Φ__PA PA_prod_E_zero
| ID_E_succ : Φ__PA PA_prod_E_succ
| ID_O_succ : Φ__PA PA_prod_O_succ.
```

3.2. Semantika

Definicija 8. *Struktura prvog reda* (kratko: *struktura*) je uređena četvorka skupa M koji nazivamo *nosačem* te interpretacijā funkcijskih, običnih predikatnih i induktivnih predikatnih simbola. Funkcijski simboli mjesnosti n interpretiraju se kao n-mjesne funkcije, a predikatni simboli mjesnosti n kao n-mjesne relacije na nosaču. Koristit ćemo ime nosača kao sinonim za čitavu strukturu, a interpretacije označavati s f^M odnosno P^M .

```
Structure structure := {
   domain :> Set;
   interpF (f : FuncS Σ) : vec domain (fun_ar f) -> domain;
   interpP (P : PredS Σ) : vec domain (pred_ar P) -> Prop;
   interpIP (P : IndPredS Σ) : vec domain (indpred_ar P) -> Prop;
}
```

Primjer 5. Prije no što možemo definirati strukturu za Peanovu aritmetiku s induktivnim predikatima, odnosno strukturu za signaturu Σ_{PA} i skup induktivnih definicija Φ_{PA} , potrebno je definirati odgovarajuće interpretacije induktivnih predikatnih simbola u Coqu, u skladu s primjerima 3 i 4.

Ovdje su predikati EVEN i ODD definirani mehanizmom simultane rekurzije.

Konačno možemo definirati strukturu M_{PA} s nosačem \mathbb{N} te uobičajenom interpretacijom funkcijskih i običnih predikatnih simbola. Induktivne predikatne simbole Nat, Even i

Odd interpretiramo redom Coqovim predikatima NAT, EVEN i ODD.

```
Definition M_PA: @structure \Sigma_PA.
     refine (Build_structure nat _ _ _).
2
     - intros f; destruct f.
       + intros. exact 0.
       + intros n. exact (S (V.hd n)).
       + intros xy. exact (V.hd xy + V.hd (V.tl xy)).
       + intros xy. exact (V.hd xy * V.hd (V.tl xy)).
     - intros P args; destruct P.
       exact (V.hd args = V.hd (V.tl args)).
     - intros P args; destruct P.
10
       + exact (NAT (V.hd args)).
11
       + exact (EVEN (V.hd args)).
12
       + exact (ODD (V.hd args)).
13
   Defined.
```

Napomena. U primjeru 5 koristimo taktiku exact koja je specijalizacija taktike refine, a koristimo ju u zadnjem koraku konstrukcije terma. Nadalje, taktika intros x služi uvođenju imena x u kontekst, a u našem je slučaju ekvivalentna taktici refine (fun x => _). Konačno, taktika destruct služi analizi po slučajevima, a u pozadini koristi match izraze. Kako su interpretacije funkcijskih simbola funkcije koje primaju vektore, koristimo Coqove funkcije V.hd i V.tl za dohvaćanje glave, odnosno repa vektora.

Definicija 9. Neka je M proizvoljna struktura. *Okolina* ρ za M je proizvoljna funkcija iz skupa varijabli (prirodnih brojeva) u nosač strukture.

```
Definition env := var -> M.
```

Okolina se može interpretirati kao niz d_0, d_1, d_2, \ldots Tada je *pomaknuta okolina*, s oznakom $d \cdot \rho$, niz d, d_0, d_1, d_2, \ldots za neki $d \in M$. Proširenje domene okoline ρ na skup svih terma zovemo *evaluacijom*.

```
Fixpoint eval (\rho : env) (t : term \Sigma) : M :=

match t with

var_term x => \rho x

TFunc f args => interpF f (V.map (eval \rho) args)

end.
```

Pišemo t^{ρ} za evaluaciju terma t u okolini ρ . Istu notaciju koristimo i za evaluaciju n-torki terma.

Definicija 10. Neka je M proizvoljna struktura te ρ okolina za M. Istinitost formule φ u

okolini ρ , s oznakom $\rho \models \varphi$, definiramo rekurzivno na način:

- 1. ako je P (obični ili induktivni) predikatni simbol mjesnosti n te su $u_1, ..., u_n$ termi, onda vrijedi $\rho \models P(u_1, ..., u_n)$ ako i samo ako vrijedi $P^M(u_1^{\rho}, ..., u_n^{\rho})$,
- 2. vrijedi $\rho \vDash \neg \varphi$ ako i samo ako ne vrijedi $\rho \vDash \varphi$ (što još pišemo $\rho \nvDash \varphi$),
- 3. vrijedi $\rho \vDash \varphi \rightarrow \psi$ ako i samo ako vrijedi $\rho \nvDash \varphi$ ili $\rho \vDash \psi$,
- 4. vrijedi $\rho \models \forall \varphi$ ako i samo ako za sve $d \in M$ vrijedi $d \cdot \rho \models \varphi$.

```
Fixpoint Sat (\rho : env M) (F : formula \Sigma) : Prop :=

match F with

| FPred P args => interpP P (V.map (eval \rho) args)

| FIndPred P args => interpIP P (V.map (eval \rho) args)

| FNeg G => ~ Sat \rho G

| FImp F G => Sat \rho F -> Sat \rho G

| FAll G => forall d, Sat (d .: \rho) G

end.
```

Primjer 6. Formula $\forall x, Nat(x) \rightarrow Even(x) \lor Odd(x)$ je istinita u strukturi M_{PA} bez obzira na njenu okolinu.

```
Lemma every_nat_is_even_or_odd_Sat :
forall (ρ : env M__PA), ρ ⊨ every_nat_is_even_or_odd.
```

Lema 1. Neka su φ , σ , M i ρ redom proizvoljna formula, supstitucija, struktura i okolina za M. Tada vrijedi $\rho \models \varphi[\sigma]$ ako i samo ako vrijedi $(t \mapsto t^{\rho}) \circ \sigma \models \varphi$.

```
Lemma strong_form_subst_sanity2 : forall (\phi : formula \Sigma) (\sigma : var \rightarrow term \Sigma)

(M : structure \Sigma) (\rho : env M),

\rho \models (subst\_formula \sigma \phi) <-> (\sigma >> eval <math>\rho) \models \phi.
```

Kompoziciju supstitucije σ i evaluacije $t\mapsto t^\rho$ možemo nazvati semantičkom supstitucijom jer prvo provodi sintaksnu supstituciju σ nakon čega provodi evaluaciju. Tada možemo neformalno reći da sintaksna i semantička supstitucija komutiraju pod relacijom istinitosti.

3.3. Standardni modeli

Želimo ograničiti semantička razmatranja na samo one strukture koje "imaju smisla" za induktivne predikate. Prisjetimo se, predikatni simbol P mjesnosti n interpretira se na strukturi M podskupom skupa M^n . Indukciju smatramo dokazivanjem u razinama

pa ima smisla promatrati *razine interpretacije* induktivnog predikata, gdje je nulta razina prazan skup, a svaku iduću razinu konstruiramo pomoću produkcija induktivnog skupa definicija i prethodnih razina. Tako je prva razina onaj podskup kojeg možemo dobiti najviše jednom "primjenom produkcija", druga je razina onaj podskup kojeg možemo dobiti pomoću najviše dviju primjena produkcija, i tako dalje. Na taj se način, korak po korak, gradi *smislena* interpretacija induktivnih predikata. Napominjemo da se zbog mogućih međuovisnosti induktivnih predikata razine interpretacije definiraju simultano. Ovaj odjeljak posvećujemo formalizaciji ovih pojmova.

Definicija 11. Neka je M proizvoljna struktura te neka je pr proizvoljna produkcija induktivnog skupa definicija Φ, primjerice:

$$\frac{Q_1\mathbf{u}_1...Q_n\mathbf{u}_n P_1\mathbf{v}_1...P_m\mathbf{v}_m}{P\mathbf{t}}.$$

Neka je f proizvoljna interpretacija induktivnih predikatnih simbola. Tada definiramo $\varphi_{pr}(f)$ kao skup svih |P|-torki **d** elemenata nosača M za koje postoji okolina ρ za M takva da:

```
    za sve i ∈ {1,...,n} vrijedi u<sub>i</sub><sup>ρ</sup> ∈ Q<sub>i</sub><sup>M</sup>,
    za sve j ∈ {1,...,m} vrijedi v<sub>j</sub><sup>ρ</sup> ∈ f(P<sub>j</sub>) i
    d = t<sup>ρ</sup>.
```

Operator φ_{pr} je formalizacija ideje primjene produkcije. Nadalje, potrebno je definirati operator koji će uzeti u obzir *sve* produkcije koje se odnose na P. Definiramo $\varphi_P(f)$ kao uniju svih $\varphi_{pr'}(f)$ gdje je pr' produkcija u kojoj se P javlja u konkluziji.

```
Definition \phi_P

(P : IndPredS \Sigma)

(args : forall P : IndPredS \Sigma, vec D (indpred_ar P) -> Prop)

: vec D (indpred_ar P) -> Prop.

refine (fun ds => _).

refine (@ex production (fun pr => _)).

refine (@ex (P = indcons pr /\ \Phi pr) (fun '(conj Heq H\Phi) => _)).

rewrite Heq in ds.

exact (\phi_Pr pr args ds).

Defined.
```

Konačno, definiramo operator skupa definicija φ_{Φ} kao preslikavanje koje svakom induktivnom predikatnom simbolu P pridružuje skup $\varphi_{P}(f)$.

```
Definition \phi_{\Phi}
(args : forall P : IndPredS \Sigma, vec D (indpred_ar P) -> Prop)
: forall P : IndPredS \Sigma, vec D (indpred_ar P) -> Prop :=
fun P => \phi_{P} P args.
```

Operator φ_{Φ} omogućuje simultanu primjenu produkcija.

Napomena. Kako je funkcija f bila uvedena na samom početku prethodne definicije, u stvari definicija operatora φ_{Φ} glasi $\varphi_{\Phi}(f)(P) := \varphi_{P}(f)$.

Primjer 7. Ilustrirajmo operator φ_{Φ} na strukturi M_{PA} i skupu induktivnih definicija Φ_{PA} . Prisjetimo se, u proširenoj Peanovoj signaturi imamo tri induktivna predikatna simbola; Nat, Even i Odd, i svi su oni jednomjesni. Dakle, domena i kodomena operatora φ_{Φ} u ovom primjeru je skup $\mathcal{P}(\mathbb{N})^3$, gdje prva, druga i treća projekcija odgovaraju redom interpretacijama predikata Nat, Even i Odd. Nadalje, vrijedi:

```
\varphi_{\Phi_{PA},M_{PA}}(N,E,O) = (\{0\} \cup \{n+1 \mid n \in N\}, \{0\} \cup \{o+1 \mid o \in O\}, \{e+1 \mid e \in E\}).
```

Prema notaciji u prethodnoj napomeni, funkcija f je ovdje preslikavanje

$$(Nat \mapsto N, Even \mapsto E, Odd \mapsto O)$$

koje možemo reprezentirati uređenom trojkom (N, E, O). Indeksiranje induktivnim pre-

dikatnim simbolom odgovara prethodno navedenim projekcijama pa vrijedi:

$$\varphi_{\Phi_{PA},M_{PA}}(N,E,O)(Nat) = \{0\} \cup \{n+1 \mid n \in N\}.$$

Propozicija 1. Operator φ_{Φ} je monoton.

```
Proposition \phi_{-}\Phi_{-}monotone :
  forall (f g : forall P, vec D (indpred_ar P) -> Prop),
     (forall P v, f P v \rightarrow g P v) \rightarrow
     (forall P v, \phi_{\Phi} f P v \rightarrow \phi_{\Phi} g P v).
```

Definicija 12. Neka je M proizvoljna struktura. Definiramo aproksimaciju skupa induktivnih definicija Φ razine $\alpha \in \mathbb{N}$, s oznakom φ_{Φ}^{α} , rekurzivno na način:

```
1. \varphi_{\Phi}^0(P) := \emptyset i
```

2. $\varphi_{\Phi}^{\alpha+1}:=\varphi_{\Phi}(\varphi_{\Phi}^{\alpha})$. Neformalno možemo reći da operator φ_{Φ} poboljšava aproksimaciju prethodne razine.

```
Fixpoint \varphi_{-}\Phi_{-}n P (\alpha : nat) (v : vec M (indpred_ar P)) : Prop :=
   match \alpha with
   | 0 => False
   \mid S \alpha => @\phi_{\Phi} \Sigma M \Phi (fun P => \phi_{\Phi}n P \alpha) P v
   end.
```

Tada je *aproksimant* induktivnog predikatnog simbola P razine α upravo $\varphi_{\Phi}^{\alpha}(P)$.

```
Definition approximant_of (P : IndPredS \Sigma)
1
      : nat -> vec M (indpred_ar P) -> Prop :=
2
      \phi_\Phi_n P.
```

Napomena. Brotherston je definirao aproksimaciju razine α za pojedini induktivni predikatni simbol kao uniju poboljšanih aproksimacija svih nižih razina. Takva je definicija ekvivalentna našoj.

Lema 2. Za svaki prirodni broj α i induktivni predikatni simbol P vrijedi

$$\varphi_{\Phi}^{\alpha}(P) = \bigcup_{\beta < \alpha} \varphi_{\Phi}(\varphi_{\Phi}^{\beta}(P)).$$

```
Lemma approximant_characterization : forall \alpha P v,
             \phi_{\Phi}n P \alpha v <-> exists \beta,
2
                                     \beta < \alpha /\ @\phi_{\Phi} \Sigma M \Phi (fun P => \phi_{\Phi} n P \beta) P v.
```

Primjer 8. Za svaki prirodni broj α , a u skladu s primjerom 7, aproksimant razine α induktivnog predikatnog simbola Nat je skup svih prirodnih brojeva strogo manjih od α , odnosno vrijedi:

$$\varphi_{\Phi_{PA},M_{PA}}^{\alpha}(Nat) = \{0,1,\ldots,\alpha-1\}.$$

```
Lemma approximants_of_PA_Nat : forall \alpha n,  
@approximant_of \Sigma_PA M_PA \Phi_PA PA_Nat \alpha ([n])  
<-> n < \alpha.
```

Definicija 13. *Aproksimacija razine* ω , s oznakom φ_{Φ}^{ω} , je (za svaki pojedini predikatni simbol) unija aproksimacija razina manjih od ω .

```
Definition \phi_-\Phi_-\omega P v := exists \alpha, \phi_-\Phi_-n P \alpha v.
```

Primjer 9. Aproksimant razine ω induktivnog predikatnog simbola Nat je cijeli skup prirodnih brojeva \mathbb{N} .

```
Lemma NAT_\phi_-\Phi_-\omega: forall (n : nat), @\phi_-\Phi_-\omega \Sigma_-PA M__PA \Phi_-PA PA_Nat [n].
```

Lema 3. Aproksimacija razine ω je najmanji skup sa svojstvom $\varphi_{\Phi}(\varphi_{\Phi}^{\omega}) \subseteq \varphi_{\Phi}^{\omega}$.

```
Lemma \omega_{prefixed}: forall P v, @\phi_{\Phi} \Sigma \ M \ \Phi \ \phi_{\Phi} \omega \ P \ v \ -> \ \phi_{\Phi} \omega \ P \ v.

Lemma \omega_{prefixed}: forall args,

(forall P v, @\phi_{\Phi} \Sigma \ M \ \Phi \ args \ P \ v \ -> \ args \ P \ v) \ -> 

forall P v, \phi_{\Phi} \omega \ P \ v \ -> \ args \ P \ v.
```

Definicija 14. Kažemo da je struktura M standardni model za Φ ako interpretira svaki induktivni predikatni simbol njegovim aproksimantom razine ω .

```
Definition standard_model (\Sigma : \text{signature}) \ (\Phi : \ @IndDefSet \ \Sigma) \ (M : \text{structure } \Sigma) : \ Prop := \\ forall \ (P : IndPredS \ \Sigma) \ ts, \ interpIP \ P \ ts <-> \ @\phi_\Phi_\omega \ \Sigma \ M \ \Phi \ P \ ts.
```

Prema lemi 3, standardni model je najmanja struktura koja ima smisla za zadani skup induktivnih definicija.

Propozicija 2. Struktura M_{PA} je standardni model za skup induktivnih definicija Φ_{PA} .

```
Lemma standard_model__PA : @standard_model Σ__PA Φ__PA M__PA.
```

4. Sistem sekvenata s induktivnim definicijama

Cilj je ovog odjeljka definirati dokazni sustav LKID za logiku FOL_{ID} . Ovaj dokazni sustav temelji se na Gentzenovu računu sekvenata, a proširen je lijevim i desnim pravilima za induktivne predikate. Prije no što definiramo LKID, potrebno je definirati pojam sekvente i međusobne zavisnosti induktivnih predikata.

Definicija 15. Neka su Γ i Δ proizvoljne liste formula. Tada je *sekventa* uređeni par (Γ, Δ) , a označavamo ju s $\Gamma \vdash \Delta$.

```
Inductive sequent : Set :=  | \text{ mkSeq } (\Gamma \Delta : \text{list } (\text{formula } \Sigma)).
```

Sekventom $\Gamma \vdash \Delta$ konceptualno tvrdimo da istinitost *svake* tvrdnje u Γ povlači istinitost *neke* tvrdnje u Δ . Kažemo da je sekventa $\Gamma \vdash \Delta$ *dokaziva*, ili da Γ *izvodi* Δ , ako u sustavu *LKID* postoji *dokaz* za $\Gamma \vdash \Delta$. Neformalno možemo reći da je dokaz sekvente $\Gamma \vdash \Delta$ konačno stablo u kojem je sekventa $\Gamma \vdash \Delta$ korijen te svaki čvor stabla slijedi iz svoje djece u skladu s pravilima izvoda sustava *LKID*. Kasnije ćemo precizirati pojam dokaza.

Definicija 16. Neka su P_i i P_j proizvoljni induktivni predikatni simboli. Kažemo da je simbol P_i u relaciji Prem sa simbolom P_j ako postoji produkcija u skupu induktivnih definicija Φ takva da se simbol P_i javlja u njenoj konkluziji te se simbol P_j javlja u njenim premisama.

```
Definition Prem (Pi Pj : IndPredS \Sigma) :=

exists pr, \Phi pr /\

indcons pr = Pi /\
exists ts, List.In (Pj; ts) (indpreds pr).
```

Definicija 17. Definiramo relaciju *Prem** kao refleksivno i tranzitivno zatvorenje relacije *Prem* na skupu induktivnih predikatnih simbola.

```
Definition Prem_star := clos_refl_trans (IndPredS \Sigma) Prem.
```

Za induktivne predikatne simbole P i Q kažemo da su međusobno zavisni ako vrijedi $Prem^*(P,Q)$ i $Prem^*(Q,P)$.

```
Definition mutually_dependent (P Q : IndPredS \Sigma) := Prem_star P Q /\ Prem_star Q P.
```

Za međusobno zavisne induktivne predikatne simbole kažemo još da su definirani simultanom rekurzijom. Simultana rekurzija se koristi za formalnu definiciju međusobno zavisnih induktivnih predikata i u mnogo složenijim sustavima od FOL_{ID} ; primjerice, Coqovi predikati EVEN i ODD iz primjera 5 definirani su simultanom rekurzijom.

Primjer 10. U skupu induktivnih definicija Φ_{PA} , induktivni predikatni simboli *Even* i *Odd* su međusobno zavisni.

```
Example mut_dep_E_O :

@mutually_dependent Σ__PA Φ__PA PA_Even PA_Odd.
```

S druge strane, induktivni predikatni simboli *Nat* i *Even nisu* međusobno zavisni.

```
Example not_mut_dep_N_E :  
^{\sim} @mutually_dependent \Sigma_{-}PA \Phi_{-}PA PA_Nat PA_Even.
```

Lema 4. Međusobna zavisnost je relacija ekvivalencije na skupu induktivnih predikatnih simbola.

```
Lemma mutually_dependent_equiv : Equivalence mutually_dependent.
```

Sustav *LKID* sastoji se od četiri vrste pravila izvoda: strukturalna, propozicijska, pravila za kvantifikatore i pravila za induktivne predikate. Navest ćemo ih tim redom, a definirati kroz više blokova Coqova koda. Napominjemo da se sustav *LKID* razlikuje od Gentzenova sustava *LK* na nekoliko mjesta, a zbog implementacijskih detalja te zbog induktivnih definicija. Za neko pravilo izvoda kažemo da je *dopustivo* ako nije u definiciji sustava *LKID*, ali je iz originalnih pravila izvedivo.

```
Inductive LKID : sequent -> Prop := (* nastavlja se *)
```

4.1. Strukturalna pravila

Strukturalna su pravila prikazana na slici 4.1., a služe baratanju strukturom sekvente. Iako je sekventa implementirana kao par listi formula, te liste se ponašaju kao skupovi u strukturalnim pravilima jer za sadržanost jedne liste u drugoj koristimo Coqov predikat incl koji se oslanja na predikat In. Posljedično, pravilo slabljenja Wk povlači pravila permutacije i kontrakcije.

$$\frac{\Gamma \cap \Delta \neq \emptyset}{\Gamma \vdash \Delta} (Ax)$$

$$\frac{\Gamma' \vdash \Delta' \qquad \Gamma' \subseteq \Gamma \qquad \Delta' \subseteq \Delta}{\Gamma \subseteq \Delta} (Wk)$$

$$\frac{\Gamma \vdash \varphi, \Delta \qquad \varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} (Cut)$$

$$\frac{\Gamma \vdash \Delta}{\Gamma[\sigma] \vdash \Delta[\sigma]} (Subst)$$

Slika 4.1. Strukturalna pravila sustava *LKID*.

```
(* Structural rules. *)
      | Ax : forall \Gamma \Delta \phi, In \phi \Gamma -> In \phi \Delta -> LKID (\Gamma \vdash \Delta)
      | Wk : forall \Gamma' \Delta' \Gamma \Delta,
             \Gamma' \subseteq \Gamma \rightarrow
              \Delta' \subseteq \Delta \longrightarrow
              LKID (\Gamma' \vdash \Delta') \rightarrow
              LKID (\Gamma \vdash \Delta)
       | Cut : forall \Gamma \Delta \varphi,
              LKID (\Gamma \vdash \phi :: \Delta) \rightarrow
10
              LKID (\phi :: \Gamma \vdash \Delta) \rightarrow
11
              LKID (\Gamma \vdash \Delta)
12
       | Subst : forall \Gamma \Delta,
13
              LKID (\Gamma \vdash \Delta) \rightarrow
14
              forall \sigma, LKID (map (subst_formula \sigma) \Gamma \vdash map (subst_formula \sigma) \Delta)
```

Primjer 11. Prošireno pravilo aksioma je dopustivo.

$$\overline{\varphi,\Gamma \vdash \varphi,\Delta}$$
 (AxExtended)

```
Lemma AxExtended : forall \Gamma \Delta \phi, LKID (\phi :: \Gamma \vdash \phi :: \Delta).
```

Nadalje, pravilo permutacije je dopustivo.

$$\frac{\Gamma' \vdash \Delta' \qquad \Gamma' \sim \Gamma \qquad \Delta' \sim \Delta}{\Gamma \vdash \Delta} (Perm)$$

Ovdje znakom ~ označujemo relaciju permutacije na listama.

```
Lemma Perm : forall \Gamma' \Delta' \Gamma \Delta, 
 Permutation \Gamma' \Gamma -> 
 Permutation \Delta' \Delta -> 
 LKID (\Gamma' \vdash \Delta') -> 
 LKID (\Gamma \vdash \Delta).
```

Konačno, lijeva i desna pravila kontrakcije su dopustiva.

$$\frac{\varphi, \varphi, \Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta} (ContrL)$$
$$\frac{\Gamma \vdash \varphi, \varphi, \Delta}{\Gamma \vdash \varphi, \Delta} (ContrR)$$

```
Lemma ContrL : forall \Gamma \Delta \phi, 
 LKID (\phi :: \phi :: \Gamma \vdash \Delta) -> LKID (\phi :: \Gamma \vdash \Delta). 
 Lemma ContrR : forall \Gamma \Delta \phi, 
 LKID (\Gamma \vdash \phi :: \phi :: \Delta) -> LKID (\Gamma \vdash \phi :: \Delta).
```

4.2. Propozicijska pravila

Propozicijska su pravila prikazana na slici 4.2., a služe rasuđivanju s implikacijama i negacijama. Ova su pravila identična u sustavima *LK* i *LKID*.

$$\frac{\Gamma \vdash \varphi, \Delta}{\neg \varphi, \Gamma \vdash \Delta} (NegL)$$

$$\frac{\varphi, \Gamma \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta} (NegR)$$

$$\frac{\Gamma \vdash \varphi, \Delta}{\varphi \rightarrow \psi, \Gamma \vdash \Delta} (ImpL)$$

$$\frac{\varphi, \Gamma \vdash \psi, \Delta}{\Gamma \vdash \varphi \rightarrow \psi, \Delta} (ImpR)$$

Slika 4.2. Propozicijska pravila sustava *LKID*.

Primjer 12. Desno pravilo za konjunkciju je dopustivo.

$$\frac{\Gamma \vdash \varphi, \Delta \qquad \Gamma \vdash \psi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta} (AndR)$$

```
Lemma AndR : forall \Gamma \Delta \phi \psi, 
 LKID (\Gamma \vdash \phi :: \Delta) -> LKID (\Gamma \vdash \psi :: \Delta) -> 
 LKID (\Gamma \vdash FAnd \phi \psi :: \Delta).
```

Lijevo pravilo za disjunkciju je dopustivo.

$$\frac{\varphi, \Gamma \vdash \Delta \qquad \psi, \Gamma \vdash \Delta}{\varphi \lor \psi, \Gamma \vdash \Delta} (OrL)$$

```
Lemma OrL : forall \Gamma \Delta \phi \psi, 
 LKID (\phi :: \Gamma \vdash \Delta) -> LKID (FOr \phi \psi :: \Gamma \vdash \Delta).
```

4.3. Pravila za kvantifikatore

Pravila za kvantifikatore prikazana su na slici 4.3., a odnose se na univerzalnu kvantifikaciju. Ova se pravila razlikuju od analognih u sustavu LK zbog korištenja de Bruijnovih indeksa kod kvantifikacije. U lijevom pravilu koristimo supstituciju $t \cdot \sigma_{id}$ u formuli φ , gdje je σ_{id} supstitucija identiteta, kako bismo iskazali da se term t javlja na mjestu neke varijable x. Za desno pravilo, primijetimo da se varijabla 0 ne javlja u listama formula Γ^{\uparrow} i Δ^{\uparrow} zbog pomicanja. Kako implicitno kvantificiramo po varijabli 0, a ona se javlja (eventualno) samo u formuli φ , smijemo univerzalno kvantificirati formulu φ .

$$\frac{\varphi[t \cdot \sigma_{id}], \Gamma \vdash \Delta}{\forall \varphi, \Gamma \vdash \Delta} (AllL)$$
$$\frac{\Gamma^{\uparrow} \vdash \varphi, \Delta^{\uparrow}}{\Gamma \vdash \forall \varphi, \Delta} (AllR)$$

Slika 4.3. Pravila za kvantifikatore sustava *LKID*.

Primjer 13. Lijevo pravilo za egzistencijalnu kvantifikaciju je dopustivo.

$$\frac{\varphi, \Gamma^{\uparrow} \vdash \Delta^{\uparrow}}{\exists \varphi, \Gamma \vdash \Delta} (ExistL)$$

Preostaje nam definicija pravila za induktivne predikatne simbole, gdje ćemo prvo definirati lijevo pravilo koje nazivamo *pravilo indukcije*, a zatim ćemo definirati desno pravilo koje nazivamo *produkcijsko pravilo*.

4.4. Pravilo indukcije

Neka je P_j proizvoljni induktivan predikatni simbol za koji definiramo pravilo indukcije. Svakom induktivnom predikatnom simbolu P_i dodjeljujemo proizvoljnu $|P_i|$ -torku induktivnih varijabli \mathbf{z}_i te proizvoljnu induktivnu hipotezu G_i takvu da vrijedi $G_i = P_i(\mathbf{z}_i)$ ako P_i i P_j nisu međusobno zavisni. Sada pravilo indukcije za induktivan predikatni simbol P_j glasi:

$$\frac{\textit{male premise} \quad G_j[\mathbf{u}/\mathbf{z}_i], \Gamma \vdash \Delta}{P_j\mathbf{u}, \Gamma \vdash \Delta} (IndP_j)$$

gdje sekventu $G_i[\mathbf{u}/\mathbf{z}_i]$, $\Gamma \vdash \Delta$ zovemo *velikom premisom*, a za svaku produkciju u skupu

induktivnih definicija Φ u čijoj se konkluziji javlja induktivni predikatni simbol P_i koji je međusobno zavisan sa simbolom P_j , primjerice:

$$\frac{Q_1\mathbf{u}_1\dots Q_n\mathbf{u}_n \quad P_{i_1}\mathbf{v}_{i_1}\dots P_{i_m}\mathbf{v}_{i_m}}{P_i\mathbf{t}},$$

postoji mala premisa oblika:

$$Q_1\mathbf{u}_1^{\uparrow k}, \dots, Q_n\mathbf{u}_n^{\uparrow k}, G_{i_1}[\mathbf{v}_{i_1}^{\uparrow k}/\mathbf{z}_{i_1}], \dots, G_{i_m}[\mathbf{v}_{i_m}^{\uparrow k}/\mathbf{z}_{i_m}], \Gamma \vdash G_i[\mathbf{t}^{\uparrow k}/\mathbf{z}_i], \Delta$$

gdje je k neki prirodan broj koji se ne javlja u listama formula Γ i Δ te formuli P_j **u**, a s $^{\uparrow k}$ označavamo supstituciju koja svaku varijablu n mijenja varijablom n+k.

```
(* Induction rules. *)
31
    | IndL : forall \Gamma \Delta
32
                 (Pj : IndPredS \Sigma) (u : vec \_ (indpred_ar Pj))
33
                 (z_i : forall P, vec var (indpred_ar P))
                 (z_i_nodup : forall P, VecNoDup (z_i P))
35
                 (G_i : IndPredS \Sigma \rightarrow formula \Sigma)
36
                 (HG2 : forall Pi, ~mutually_dependent Pi Pj ->
37
                                G_i Pi = FIndPred
38
                                             Ρi
39
                                             (V.map var_term (z_i Pi))),
        let max\Gamma := max\_fold (map some\_var\_not\_in\_formula \Gamma) in
41
        let max\Delta := max\_fold (map some\_var\_not\_in\_formula \Delta) in
        let maxP := some_var_not_in_formula (FIndPred Pj u) in
         let shift_factor := max maxP (max max\Gamma max\Delta) in
44
        let Fj := subst_formula
45
                       (finite_subst (z_i Pj) u)
46
                       (G_i Pj) in
        let minor_premises :=
           (forall pr (HΦ:Φ pr) (Hdep: mutually_dependent (indcons pr) Pj),
49
               let Qs := shift_formulas_by
50
                              shift_factor
51
                              (FPreds_from_preds (preds pr)) in
52
               let Gs := map (fun '(P; args) =>
53
                                    let shifted_args :=
                                      V.map
55
                                         (shift_term_by shift_factor)
56
                                         args in
57
                                    let \sigma :=
58
                                      finite_subst
59
                                         (z_i P)
60
                                         (shifted_args) in
                                    let G := G_i P in
62
                                    subst_formula σ G)
63
                              (indpreds pr) in
64
               let Pi := indcons pr in
65
               let ty := V.map
                              (shift_term_by shift_factor)
67
                              (indargs pr) in
               let Fi := subst_formula
                              (finite_subst (z_i Pi) ty)
70
                              (G_i Pi) in
71
               LKID (Qs ++ Gs ++ \Gamma \vdash Fi :: \Delta))
72
         in
73
        minor_premises ->
74
        LKID (Fj :: \Gamma \vdash \Delta) ->
        LKID (FIndPred Pj u :: \Gamma \vdash \Delta)
```

Ilustrirajmo pravilo indukcije primjerima u Peanovoj aritmetici. Kako se pravila za induktivne predikate sustava LKID odnose na proizvoljan skup induktivnih definicija Φ , označimo s $LKID_{PA}$ sustav koji se odnosi na skup induktivnih defincija Φ_{PA} .

Primjer 14. Pravilo indukcije induktivnog predikatnog simbola Nat u sustavu $LKID_{PA}$ glasi:

$$\frac{\Gamma \vdash G(o), \Delta \qquad G(x), \Gamma \vdash G(s(x)), \Delta \qquad G(t), \Gamma \vdash \Delta}{Nat(t), \Gamma \vdash \Delta} (IndNat)$$

gdje je G induktivna hipoteza vezana uz induktivni predikatni simbol Nat, a x je varijabla koja se ne javlja u Γ , Δ ili Nat(t).

Primjer 15. Pravilo indukcije induktivnog predikatnog simbola Even u sustavu $LKID_{PA}$ glasi:

$$\frac{\Gamma \vdash G_E(o), \Delta \quad \Gamma, G_E(x) \vdash G_O(s(x)), \Delta \quad \Gamma, G_O(x) \vdash G_E(s(x)), \Delta \quad \quad \Gamma, G_E(t) \vdash \Delta}{\Gamma, Even(t) \vdash \Delta} IndEven$$

gdje su G_E i G_O induktivne hipoteze vezane uz induktivne predikatne simbole Even i Odd, a x je varijabla koja se ne javlja u Γ , Δ ili Even(t).

4.5. Produkcijsko pravilo

Neka je pr proizvoljna produkcija za koju definiramo produkcijsko pravilo. Možemo pretpostaviti da je pr idućeg oblika:

$$\frac{Q_1\mathbf{u}_1...Q_n\mathbf{u}_n \qquad P_1\mathbf{v}_1...P_m\mathbf{v}_m}{P\mathbf{t}}.$$

Produkcijsko pravilo za produkciju *pr* glasi:

$$\frac{\Gamma \vdash Q_1 \mathbf{u}_1[\sigma], \Delta \dots \Gamma \vdash Q_n \mathbf{u}_n[\sigma] \quad \Gamma \vdash P_1 \mathbf{v}_1[\sigma], \Delta \dots \Gamma \vdash P_m \mathbf{v}_m[\sigma]}{\Gamma \vdash P\mathbf{t}[\sigma]} (prProd)$$

```
IndR : forall \Gamma \Delta pr \sigma,
58
          Φ pr ->
59
          (forall Q us,
               In (Q; us) (preds pr) ->
               LKID (\Gamma \vdash (FPred Q (V.map (subst_term \sigma) us) :: \Delta))) \rightarrow
62
          (forall P ts,
63
               In (P; ts) (indpreds pr) ->
64
               LKID (\Gamma \vdash (FIndPred\ P\ (V.map\ (subst\_term\ \sigma)\ ts)\ ::\ \Delta))) ->
65
          LKID (\Gamma \vdash FIndPred
66
                      (indcons pr)
                      (V.map (subst_term σ) (indargs pr))
                      :: Δ).
69
```

Primjer 16. Produkcijsko pravilo za produkciju PA_prod_E_succ glasi:

$$\frac{\Gamma \vdash Odd(x)[\sigma], \Delta}{\Gamma \vdash Even(s(x))[\sigma], \Delta}$$

gdje je x proizvoljna varijabla, a σ proizvoljna supstitucija. Supstitucijom σ kažemo da u produkcijama imena varijabli nisu bitna, već samo njihov redoslijed.

Konstruktorima IndL te IndR smo dovršili definiciju tipa LKID. Ističemo suptilnu razliku između pravila za induktivne predikate; lijevo pravilo se definira za pojedini *induktivni predikatni simbol*, dok se desno pravilo definira za pojedinu *produkciju*.

4.6. Dokaz i teorem

Prikazali smo sva pravila izvoda sustava LKID te konačno možemo definirati dokaz. Za proizvoljnu sekventu $\Gamma \vdash \Delta$, njen **dokaz** je stanovnik tipa LKID ($\Gamma \vdash \Delta$). Za formulu φ kažemo da je **teorem** sustava LKID te pišemo $\vdash \varphi$ ako postoji dokaz sekvente () $\vdash (\varphi)$. Neformalni pojam konačnog stabla formaliziran je induktivnim tipom LKID, dok njegovi konstruktori formaliziraju odgovarajuća pravila izvoda.

Primjer 17. *Zakon isključenja trećeg* je dokaziv u sustavu *LKID*.

Lemma LKID_XM : forall
$$\varphi$$
, LKID ([] \vdash [FOr φ (FNeg φ)]).
$$\frac{\overline{\varphi \vdash \varphi}(Ax)}{\overline{\vdash \neg \varphi, \varphi}(NegR)} \frac{\overline{\vdash \neg \varphi, \varphi}(NegR)}{\overline{\vdash \varphi, \neg \varphi}(OrR)}$$

Primjer 18. *Princip eksplozije* je dokaziv u sustavu *LKID*.

Lemma LKID_EXPLOSION : forall
$$\varphi$$
 Δ , LKID ([FAnd φ (FNeg φ)] \vdash Δ).
$$\frac{\overline{\varphi \vdash \varphi, \Delta}}{\varphi \vdash \varphi, \Delta} \frac{(Ax)}{(NegL)} \frac{(NegL)}{\varphi, \neg \varphi \vdash \Delta} \frac{(Perm)}{(AndL)}$$

Primjer 19. Formula $\forall x, Even(x) \rightarrow Even(ssx)$ je dokaziva u sustavu $LKID_{PA}$.

```
Definition Even_succ_succ_Even : formula Σ__PA :=

FAll

(FImp

(FIndPred PA_Even [var_term 0])

(FIndPred PA_Even [TFunc PA_succ

[TFunc PA_succ

[var_term 0]]])).
```

Neformalni dokaz prikazujemo idućim stablom, a radi preglednosti pišemo Et umjesto Even(t) te Ot umjesto Odd(t).

$$\frac{Ex \vdash Ex, Essx}{Ex \vdash Osx, Essx} \xrightarrow{(PA_prod_0_succProd)} \frac{Ex, Osx \vdash Osx}{Ex, Osx \vdash Essx} \xrightarrow{(PA_prod_E_succProd)} \frac{Ex \vdash Essx}{(Cut)}$$

$$\frac{Ex \vdash Essx}{\vdash Ex \to Essx} \xrightarrow{(ImpR)} \xrightarrow{(Ax)} \xrightarrow{(Cut)} \xrightarrow{(Cut)}$$

```
Lemma provable_Even_succ_succ_Even :

©LKID _ Φ__PA ([] ⊢ [Even_succ_succ_Even]).
```

Primjer 20. Formula $\forall x, Nat(x) \rightarrow Even(x) \lor Odd(x)$ je dokaziva u sustavu $LKID_{PA}$. Neformalni dokaz prikazujemo idućim stablom, a radi preglednosti pišemo Nt, Et i Ot redom umjesto Nat(t), Even(t) i Odd(t).

$$\frac{\frac{Ey \vdash Ey}{Ey \vdash Osy}(Ax)}{\frac{Ey \vdash Ey}{\vdash Eo \lor Osy}(OrR_2)} \frac{\frac{Oy \vdash Oy}{Oy \vdash Esy}(3)}{Oy \vdash Esy \lor Osy} \frac{(OrR_1)}{Oy \vdash Esy \lor Osy} \frac{Ey \vdash Esy \lor Osy}{Oy \vdash Esy \lor Osy} \frac{(OrR_1)}{Oy \vdash Esy \lor Osy} \frac{Ey \lor Oy \vdash Esy \lor Osy}{Oy \vdash Esy \lor Osy} \frac{(OrL)}{Oy \vdash Esy \lor Osy} \frac{Ex \lor Ox \vdash Ex \lor Ox}{Oy \vdash Esy \lor Osy} \frac{(OrL)}{Oy \vdash Esy \lor Osy} \frac{(OrL)}{Oy \vdash Esy \lor Osy} \frac{Ex \lor Ox}{Oy \vdash Esy \lor Osy} \frac{(OrL)}{Oy \vdash Esy \lor Osy} \frac{Ex \lor Ox}{Oy \vdash Esy \lor Osy} \frac{(OrL)}{Oy \vdash Oy} \frac{(OrL)}{Oy} \frac{(OrL)}{Oy} \frac{(OrL)}{Oy} \frac{(OrL)}{Oy} \frac{(OrL)}{Oy} \frac{(OrL)}{Oy} \frac{(OrL$$

Ovdje je induktivna hipoteza formula $Ex \lor Ox$. Valja primijetiti da smo u dokazu koristili i produkcijska pravila za produkcije:

- (1) PA_prod_E_zero,
- (2) PA_prod_O_succ i

(3) PA_prod_E_succ.

```
Lemma provable_every_nat_is_even_or_odd :

©LKID Σ__PA Φ__PA ([] ⊢ [every_nat_is_even_or_odd]).
```

4.7. Adekvatnost

Za dokazivače teorema nužno je da dokazivost formule povlači njenu istinitost — u 2. poglavlju objasnili smo zašto. Ovo svojstvo dokaznosg sustava naziva se *adekvatnost*, a ovdje ćemo ju prikazati na primjeru sustava *LKID*. Za istinitost ćemo promatrati samo strukture koje su standardni modeli jer u takvima interpretacije induktivnih predikatnih simbola imaju smisla.

Definicija 18. Kažemo da je sekventa $\Gamma \vdash \Delta$ *istinita* i pišemo $\Gamma \vDash \Delta$ ako i samo ako za svaki standardni model M i njegovu okolinu ρ vrijedi:

$$(\forall \varphi, \varphi \in \Gamma \to \rho \vDash \varphi) \to \exists \psi, \psi \in \Delta \land \rho \vDash \psi,$$

odnosno istinitost svake formule u Γ povlači istinitost neke formule u Δ , u skladu s intuitivnim shvaćanjem sekventi.

```
Definition Sat_sequent (s : sequent) : Prop := let '(\Gamma \vdash \Delta) := s in forall (M : structure \Sigma), standard_model \Sigma \not = M -> forall (\rho : env M), (forall \varphi, In \varphi \Gamma -> \rho \models \varphi) -> exists \psi, In \psi \Delta / \setminus \rho \models \psi.
```

Kažemo da vrijedi *lokalna adekvatnost* za pravilo izvoda ako istinitost premisa (a posebno i sekvenata u premisama) povlači istinitost konkluzije (odnosno sekvente u konkluziji). Lokalna adekvatnost kaže da se istinitost čuva kod primjena pravila zaključivanja.

Primjer 21. Za pravilo Ax vrijedi lokalna adekvatnost, to jest ako u listama formula Γ i Δ postoji neka zajednička formula φ , onda vrijedi $\Gamma \Vdash \Delta$. Tada je *svjedok istinitosti* u Δ upravo formula φ .

```
Lemma LS_Ax : forall \Gamma \Delta \phi, In \phi \Gamma -> In \phi \Delta -> \Gamma \models \Delta.
```

Ako za sva pravila izvoda vrijedi lokalna adekvatnost, indukcijom po strukturi dokaza slijedi i (globalna) adekvatnost. Glavni cilj ovog poglavlja bio je dokazati lokalne adekvatnosti svih pravila sustava LKID. Cilj nije postignut samo za pravilo indukcije.

Teorem 1. Za pravila izvoda sustava LKID osim IndL vrijedi lokalna adekvatnost. Nadalje, ako je sekventa $\Gamma \vdash \Delta$ dokaziva bez primjene pravila IndL, onda je ona istinita.

Misao: Ako ne uspijem dokazati lokalnu adekvatnost za IndL, onda ću ostaviti ovaj tekst.

5. Ciklički dokazi

Svaki Coqov dokaz koji smo do sada prikazali je konačan term. Svi formalni dokazi u sustavu *LKID* (uključujući primjere 19 i 20) su konačni. Ovakve dokaze jednim imenom nazivamo *dobro utemeljenim dokazima* jer su sve "grane" njihovih dokaznih stabala konačne. Međutim, možemo promatrati i *neutemeljene dokaze* kod kojih postoje beskonačne grane. Već smo u odjeljku 2.2. spomenuli neutemeljene, odnosno koinduktivne tipove. Neutemeljeni dokaz je tada "beskonačan" dokaz neke koinduktivno definirane tvrdnje. U ovom ćemo kratkom poglavlju ilustrirati neutemeljene dokaze te cikličke dokaze koji su posebna vrsta neutemeljenih.

5.1. Primjer: lijene liste

Definirajmo za početak *lijene liste*, to jest liste koje mogu biti konačne, a mogu biti i beskonačne. Zbog potencijalne beskonačnosti koristimo koinduktivnu definiciju tipa.

```
CoInductive LList (A : Type) :=

LNil : LList A

LCons : A -> LList A -> LList A.
```

Kažemo da je lijena lista beskonačna ako je njen rep opet beskonačna lijena lista.

```
CoInductive Infinite {A} : LList A -> Prop :=
| Infinite_LCons : forall a l, Infinite l -> Infinite (LCons a l).
```

Ovdje konstruktor Infinite_LCons možemo shvatiti kao pravilo izvoda. Pokušajmo dokazati da je intuitivno beskonačna lista i formalno beskonačna. Definiramo funkciju from analogno istoimenoj funkciji iz odjeljka 2.2.

```
CoFixpoint from (n : nat) : LList nat := LCons n (from <math>(S n)).
```

Intuitivno je jasno da je za svaki n lijena lista from n beskonačna pa želimo dokazati

tvrdnju forall n, Infinite (from n).

Prije glavnog dokaza, pogledajmo konkretan primjer na tvrdnji Infinite (from 0). Po definiciji funkcije from, dovoljno je dokazati tvrdnju Infinite (LCons 0 (from 1)), a primjenom pravila Infinite_LCons dolazimo do tvrdnje Infinite (from 1). Opet je po definiciji funkcije from dovoljno dokazati tvrdnju Infinite (LCons 1 (from 2)), a ponovnom primjenom pravila Infinite_LCons dolazimo do tvrdnje Infinite (from 2). Ilustrirajmo ovaj postupak dokaznim stablom.

Sada je jasno da ćemo dokazati originalnu tvrdnju tek nakon beskonačno mnogo primjena pravila Infinite_LCons. Ipak, lakše je dokazati tvrdnju forall n, Infinite (from n). Nakon introdukcije varijable n, odmatanja konstante from n i primjene pravila Infinite_LCons dolazimo do tvrdnje Infinite (from (S n)).

Između tvrdnji Infinite (from n) i Infinite (from (S n)) "skinut" je prvi član beskonačne liste te je napravljen *napredak* u dokazu. Bez napretka nema smisla ponavljati prethodni postupak beskonačno mnogo puta jer se tvrdnja ne mijenja. Uz napredak u dokazivanju ima smisla pozivati se na *tvrdnju koja se dokazuje* te takve dokaze nazivamo *cikličkima*. Dokaz tvrdnje forall n, Infinite (from n) jedan je primjer cikličkog dokaza, gdje je simbolom * označeno cikličko "pozivanje" dokaza. U Coqu, napredak je osiguran uvjetom produktivnosti kojeg smo spomenuli u odjeljku 2.5.

Pažljiv čitatelj će primijetiti da ista argumentacija vrijedi i za tvrdnju Finite (from n), gdje je predikat Finite definiran na idući način.

```
Inductive Finite {A} : LList A -> Prop :=
| Finite_LNil : Finite LNil
| Finite_LCons : forall a 1, Finite 1 -> Finite (LCons a 1).
```

Međutim, beskonačne liste po definiciji nisu konačne. Zašto ipak gornji dokazi *ne* prolaze za predikat Finite? Riječ je o načinu definicije; predikat Infinite definiran je koinduktivno te njegovi stanovnici *nisu* dobro utemeljeni, dok je predikat Finite definiran induktivno, a njegovi stanovnici *jesu* dobro utemeljeni. Štoviše, kada bismo predikat Finite definirali koinduktivno, on bi postao trivijalan, to jest vrijedio bi za proizvoljnu lijenu listu.

5.2. Primjer: $CLKID^{\omega}$

Brotherston je formalizirao ideju cikličkih dokaza u dokaznom sustavu $CLKID^{\omega}$, podsustavu dokaznog sustava $LKID^{\omega}$, koji pak je proširenje sustava LKID potencijalno beskonačnim dokaznim stablima. Dokazni sustav $CLKID^{\omega}$ ograničen je u odnosu na sustav $LKID^{\omega}$ tako što svako (potencijalno beskonačno) dokazno stablo smije imati *najviše konačno mnogo* različitih podstabala te svaka beskonačna grana tog stabla mora imati beskonačno mnogo "napredaka". Dokazni sustav $CLKID^{\omega}$ prikazati ćemo neformalno.

Primjer 22. Dokazujemo tvrdnju $\forall x, Nat(x) \rightarrow Even(x) \lor Odd(x)$ u sustavu $CLKID^{\omega}$. Koristimo pokrate kao u primjeru 20.

$$\frac{Nx \vdash Ex, Ox (\dagger)}{Ny \vdash Ey, Oy \atop Ny \vdash Oy, Ey} (Subst)}{\frac{Ny \vdash Ey, Oy}{Ny \vdash Oy, Ey}} (Perm)} \\ \frac{PA_prod_E_zeroProd}{Ny \vdash Oy, Osy} (PA_prod_E_succProd)}{\frac{Ny \vdash Esy, Osy}{x = sy, Ny \vdash Ex, Ox}} (EqL) \\ \frac{\frac{Nx \vdash Ex, Ox (\dagger)}{Nx \vdash Ex \lor Ox}}{\frac{Nx \vdash Ex \lor Ox}{\vdash Nx \to Ex \lor Ox}} (ImpR) \\ \frac{PNx \vdash Ex \lor Ox}{PNx \vdash Ex \lor Ox} (AllR)}{\frac{PNx \vdash Ex \lor Ox}{PNx \vdash Ex \lor Ox}} (AllR)$$

Iako zapisan u konačnom stablu, ovaj dokaz je beskonačan. Čitajući dokaz od dna do vrha, primjećujemo nove oznake te nova pravila. Za početak, vidimo da su znakom \dagger označene gornja i donja sekventa $Nx \vdash Ex, Ox$. Gornju sekventu nazivamo pupoljkom (bud), a donju nazivamo pratilcem (companion). Može se reći da su pupoljak i njegov pratilac povezani bridom, tvoreći ciklus u dokaznom stablu — odavde dolazi naziv ciklički dokaz. U stvari se isječak stabla dokaza između pratilca i pupoljka ponavlja ad infinitum pa je dokaz beskonačan. Nadalje, vidimo novo pravilo izvoda Case koje odgovara rastavu po slučajevima, a koristi se umjesto pravila indukcije. Ako se između pupoljka i

njegovog pratilca javlja primjena pravila Case, kažemo da je napravljen napredak. Konačno, vidimo znak jednakosti uz kojeg je vezano lijevo pravilo za jednakost EqL. Znak jednakosti je za potrebe sustava $LKID^{\omega}$ i $CLKID^{\omega}$ (odnosno, Case pravila) ugrađen u definiciju formule.¹

U primjeru 22, pupoljak i njegov pratilac javljaju se u istoj grani dokaza, no to nije nužno. Ovu pojavu možemo vidjeti na dokazu obrata sekvente $Nx \vdash Ex \lor Ox$.

Primjer 23. Dokazujemo sekventu $Ex \lor Ox \vdash Nx$ u sustavu $CLKID^{\omega}$.

$$\frac{\frac{Ox \vdash Nx(\dagger)}{Oy \vdash Ny}(Subst)}{\frac{Ex \vdash Nx(*)}{x = o \vdash Nx}(EqL)} \frac{\frac{Oy \vdash Ny}{Oy \vdash Nsy}(2)}{\frac{Ex \vdash Nx(*)}{x = sy, Oy \vdash Nx}(EqL)} \frac{\frac{Ex \vdash Nx(*)}{Ey \vdash Ny}(Subst)}{\frac{Ey \vdash Ny}{Ey \vdash Nsy}(3)} \frac{EqL}{x = sy, Ey \vdash Nx} \frac{(EqL)}{(Case\ O)} \frac{Ex \vdash Nx(*)}{Ex \lor Ox \vdash Nx} (OrL)$$

Ovdje je znakom \dagger označen par pupoljka i pratilca sekvente $Ox \vdash Nx$, a znakom * je označen par pupoljka i pratilca sekvente $Ex \vdash Nx$. Iako se odgovarajući parovi pupoljaka i pratilaca naizgled javljaju u različitim granama, uz dva "odmatanja" stabla dokaza vidimo da to u stvari nije slučaj.

$$\frac{\frac{Ex \vdash Nx (*)}{Ey \vdash Ny} (Subst)}{\frac{Ey \vdash Ny}{Ey \vdash Nsy} (2)} (Subst) + \frac{\frac{Ox \vdash Nx (\dagger)}{Oy \vdash Ny} (Subst)}{\frac{Oy \vdash Ny}{Oy \vdash Nsy} (2)} (EqL) + \frac{\frac{Ox \vdash Nx (\dagger)}{Oy \vdash Ny} (Subst)}{\frac{Oy \vdash Ny}{Oy \vdash Nsy} (2)} (Case O) + \frac{\frac{Ex \vdash Nx (\dagger)}{Oy \vdash Ny} (Subst)}{\frac{Ey \vdash Ny}{Oy \vdash Nsy} (2)} (Subst) + \frac{\frac{Ex \vdash Nx (\dagger)}{Oy \vdash Ny} (Subst)}{\frac{Ey \vdash Ny}{Ey \vdash Nsy} (2)} (Case E) + \frac{\frac{Ex \vdash Nx (\dagger)}{Oy \vdash Ny} (Subst)}{\frac{Ey \vdash Ny}{Ey \vdash Nsy} (2)} (Case O) + \frac{Ex \vdash Nx (\dagger)}{Ox \vdash Nx (\dagger)} (OrL)$$

Pupoljak sekvente $Ex \vdash Nx$ je zamijenjen isječkom stabla od pratilca sekvente $Ex \vdash Nx$ do pupoljka sekvente $Ox \vdash Nx$, Nadalje, pupoljak sekvene $Ox \vdash Nx$ zamijenjen je isječkom stabla od pratilca sekvente $Ox \vdash Nx$ do pupoljka sekvente $Ex \vdash Nx$. Dokaz ne bi bio moguć bez korištenja produkcijskih pravila za produkcije:

- (1) PA_prod_N_zero i
- (2) PA_prod_N_succ.

Važno je spomenuti da je svojstvo "biti ispravan $CLKID^{\omega}$ dokaz" odlučivo te je na

¹Jednakost se u matematičkoj logici najčešće tretira kao predikatni simbol signature, a ne kao primitivni veznik u formulama.

temelju toga napravljen ciklički dokazivač teorema CYCLIST² [19]. Za naš primjer proširene Peanove signature s produkcijama za induktivne predikatne simbole Nat, Even i Odd, definicije produkcija možemo zapisati u konfiguracijsku datoteka fo. defs na idući način.

```
Nat {
     true => Nat(0) |
     Nat(x) \Rightarrow Nat(s(x))
} ;
Even {
     true => Even(0) |
     Odd(x) \Rightarrow Even(s(x))
};
Odd {
     Even(x) \Rightarrow Odd(s(x))
} ;
Zatim možemo pokrenuti dokazivač naredbom
./fo_prove -D fo.defs -p -S "Nat(x) \mid - Even(x) \setminus Odd(x)"
i dobiti izlaz programa
0: Nat_0(x) \mid - Odd_2(x) \setminus Even_1(x) (Nat L.Unf.) [1 <{(0, 1)}/{}>, 2 <{(0, 1)}/{(0, 0)}>]
  1: Nat_1(0) |- Odd_2(0) \/ Even_1(0) (Even R.Unf.) [3 <{(1, 1)}/{}>]
   3: Nat_1(0) |- T \/ Odd_2(0) (Id)
  2: Nat_1(s(w)) / Nat_0(w) | - Odd_2(s(w)) / Even_1(s(w)) (Even R.Unf.) [4 <{(1, 1), (0, 0)}/{}>]
    4: Nat_1(s(w)) / Nat_0(w) \mid - Odd_4(w) / Odd_2(s(w)) (Odd R.Unf.) [5 <{(1, 1), (0, 0)}/{}>]
     5: Nat_1(s(w)) / Nat_0(w) | - Even_5(w) / Odd_4(w) (Weaken) [6 < {(0, 0)}/{}>]
       6: Nat_0(w) \mid - Odd_2(w) \setminus Even_1(w) (Subst) [7 <{(0, 0)}/{}>]
```

koji predstavlja dokaz sekvente $Nat(x) \vdash Even(x) \lor Odd(x)$. Možemo primijetiti da je ovaj generirani dokaz sličan našem dokazu iz primjera 22.

7: $Nat_0(x) \mid - Odd_2(x) \setminus Even_1(x) (Backl) [0] < pre={(0, 0)}>$

²http://www.cyclist-prover.org/

6. Zaključak

Literatura

- [1] Y. Bertot i P. Castéran, *Interactive theorem proving and program development:* Coq'Art: the Calculus of Inductive Constructions. Springer Science & Business Media, 2013.
- [2] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, i B. Yorgey, *Logical Foundations*, ser. Software Foundations, B. C. Pierce, Ur. Electronic textbook, 2023., sv. 1, version 6.5, http://softwarefoundations.cis.upenn.edu.
- [3] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, A. Tolmach, i B. Yorgey, *Programming Language Foundations*, ser. Software Foundations, B. C. Pierce, Ur. Electronic textbook, 2024., sv. 2, version 6.5, http://softwarefoundations.cis.upenn.edu.
- [4] A. W. Appel, *Verified Functional Algorithms*, ser. Software Foundations, B. C. Pierce, Ur. Electronic textbook, 2023., sv. 3, version 1.5.4, http://softwarefoundations.cis. upenn.edu.
- [5] A. Chlipala, Certified programming with dependent types: a pragmatic introduction to the Coq proof assistant. MIT Press, 2022.
- [6] The Coq Development Team, "The Coq Reference Manual, Release 8.18.0", https://coq.inria.fr/doc/v8.18/refman/, 2023.
- [7] T. Coquand i G. Huet, "The calculus of constructions", INRIA, teh. izv. RR-0530, svibanj 1986. [Mrežno]. Adresa: https://inria.hal.science/inria-00076024

- [8] F. Pfenning i C. Paulin-Mohring, "Inductively Defined Types in the Calculus of Constructions", u Proceedings of the 5th International Conference on Mathematical Foundations of Programming Semantics. Berlin, Heidelberg: Springer-Verlag, 1989., str. 209–228.
- [9] E. Giménez, "Codifying guarded definitions with recursive schemes", u *Types for Proofs and Programs*, P. Dybjer, B. Nordström, i J. Smith, Ur. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995., str. 39–59.
- [10] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, i T. Winterhalter, "Coq Coq correct! verification of type checking and erasure for Coq, in Coq", *Proceedings of the ACM on Programming Languages*, sv. 4, br. POPL, str. 1–28, 2019.
- [11] G. Hutton, *Programming in Haskell*, 2. izd. Cambridge University Press, 2016.
- [12] J. Brotherston, "Cyclic proofs for first-order logic with inductive definitions", u *Automated Reasoning with Analytic Tableaux and Related Methods*, B. Beckert, Ur. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005., str. 78–92.
- [13] ——, "Sequent calculus proof systems for inductive definitions", doktorska disertacija, School of Informatics, University of Edinburgh, 2006.
- [14] M. Vuković, Matematička logika. Element, 2009.
- [15] N. G. de Bruijn, "Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem", *Indagationes Mathematicae (Proceedings)*, sv. 75, br. 5, str. 381–392, 1972.
- [16] B. C. Pierce, Types and Programming Languages. MIT Press, 2002.
- [17] K. Stark, "Mechanising Syntax with Binders in Coq", doktorska disertacija, Saarland University, 2020.
- [18] K. Stark, S. Schäfer, i J. Kaiser, "Autosubst 2: Reasoning with Multi-Sorted de Bruijn Terms and Vector Substitutions", 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, 2019.

[19] J. Brotherston, N. Gorogiannis, i R. L. Petersen, "A Generic Cyclic Theorem Prover", u *Programming Languages and Systems*, R. Jhala i A. Igarashi, Ur. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012., str. 350–367.

Sažetak

Primjene Coq alata za dokazivanje u matematici i računarstvu

Miho Hren

Unesite sažetak na hrvatskom.

Ključne riječ: prva ključna riječ; druga ključna riječ; treća ključna riječ

Abstract

Applications of the Coq Proof Assistant in mathematics and computer science

Miho Hren

Enter the abstract in English.

Keywords: the first keyword; the second keyword; the third keyword