

POSSESSION OF MOBILE IN EXAMINATION IS A UFM PRACTICE

Name of Student Enrolment No Department		
BENNETT UNIVERSITY, GREATER NOIDA Supplementary Examination, August 2018		
COURSE NAME: DISCRETE MATHEMATICAL STRUCTURES		
COURSE CREDIT: 4.0 MAX. MARKS: 100		
Note:		
• All qu	uestions are mandatory	
Q.1	If set X and set Y are defined as: $X = \{1,2,3\}$ and $Y = \{2,4,5\}$. Find	(10)
	(a) $X \cap Y$ (b) $X \cup Y$ (c) $X-Y$ (d) $X \oplus Y$	
Q.2	Let set X be defined as: $X = \{1,2,3,4,5\}$. A relation R from X to X is defined as: xRy iff x+y>8. Find R. Is R reflexive?	(10)
	OR	, ,
	Let f: R \rightarrow R be a function defined as f(x) = 3x+4 and g: R \rightarrow R be another function defined as g(x) = x+2. Find (g o f) ⁻¹	
Q.3	If there are 5 boxes to keep books, find the minimum number of books required to be sure that there are 2 books in atleast 1 box.	(10)
Q.4	In how many ways can 3 diamonds and 2 clubs be selected from a pack of cards?	(10)
Q.5	In how many ways can 3 different history books, 4 different math books and 2 different English books be arranged on a bookshelf so that books of the same subjects are always together?	(10)
Q.6	Use Principe of Mathematical Induction to prove that $1+2+2^2++2^n=2^{n+1}-1$.	(10)
Q.7	Find the smallest number that satisfies all three of the following using Chinese Remainder Theorem:	(10)
	$x \equiv 2 \pmod{3}$ $x \equiv 4 \pmod{5}$ $x \equiv 5 \pmod{7}$	

Q.8 Consider the graph shown below. Draw the minimum spanning tree using Kruskal's (10) method:

Q.9 Consider the graphs given below:

Which of these is a regular graph and which one is a complete graph? Justify.

- Q.10 Explain any **two** of the following terms with suitable example and diagram (if any): (10)
 - (a) Graph coloring
 - (b) Algebraic system 'Subgroup'
 - (c) Hash function
 - (d) Depth First Search