Sprawozdanie z ćwiczenia laboratoryjnego IX Graf

Bartłomiej Ankowski

03.06.2015

Spis treści

1	Wstęp	1
2	Realizacja	1
3	Złożoność obliczeniowa	2
	3.1 Algorytm BFS	2
	3.2 Algorytm DFS	2
4	Wyniki Pomiarów	2
5	Wnioski	3

1 Wstęp

Celem zadania było zamodelowanie i zaimplementowanie Grafu. W następnym kroku należało zaimplenetować algorytmy przeszukiwania grafu wszerz(BFS) i w gląb(DFS). Za ich pomocą została wyszukana dana ścieżka w grafie, dla różnych rozmiarów struktury.

2 Realizacja

W przypadku tej realizacji, graf został zamodelowany jako macierz sąsiedztw. Ta dwuwymiarowa tablia zawiera dane na temat połączeń między wierzchołkami. Macierz jest rozmiaru V(G) na V(G). Wyraz i-tego wierwsza i j-tej kolumny, zawiera wartość będąca liczbą krawędzi jaka łączy dane wierzchołki. Rozwiązanie to pozwala na reprezentacje grafów, zawierającego krawędzie wielokrotne i pętle własne. Do niewątpliwych wad takiego rozwiązania należy wysoka złożoność pamięciowa $O(n^2)$, oraz fakt, że czas potrzebny do przejrzenia zbioru krawędzi jest proporcjonalny do kwadratu liczby wierzchołków(złożoność wynosi $O(n^2)$ zamiast proporcjonalnie do ilości krawędzi.

3 Złożoność obliczeniowa

3.1 Algorytm BFS

Ze względu na konstrukcje algorytmu i fakt przechodzenia grafu od korzenia i polegającego na odwiedzeniu wszystkich osiągalnych z niego wierzchołków. Wynikiem tego algorytmu jest drzewo przesukiwań, zawierające wszystkie wierzchołki osiągalne z s. Do każdego z tych wierzchołków prowdzi dokładnie jedna ścieżnka, która jest jednocześnie najkrótszą ścieżką w grafie wejściowym. Zatem złożoność obliczeniowa wynosi O(V+E), gdzie V-liczba wierzchołków i E- liczba krawędzi.

3.2 Algorytm DFS

Ze względu na konstrukcje algorytmu i faktu, że wymagane jest badanie wszytskich krawędzi wychodzących z danego wierzchołka,
a następnie powrót do wierzchołka,
z którego dany wierzchołek został odwiedzony. Złozoność obliczeniowa tego algorytmu zależy proporcjonalnie do V- liczby wierzchołków i E-liczby krawędzi, czyli wynosi O(V+E). Przy czy znalezienie danej ścieżki wymaga przerwanie wcześniej pracy algorytmu, zatem złożonośc będzie nieco niższa.

4 Wyniki Pomiarów

Test polegał na 10 krotnym znalezieniu ścięzki, zaczynając od pierwszego wierzchołka i kończąc na numerze wierzchołka, równego ilości wierzchołków w danym grafie.

V	Е	DFS[ms]	BFS[ms]
50	96	0,0113	0,021
100	196	0,0388	0,0624
500	996	0,626	1,2503
1000	1996	2,410	4,8271
5000	9996	57,3153	115,354
10000	19996	226,973	462,813
20000	39996	909,921	1826,7

Tablica 1: Wyniki pomiarów

Rysunek 1: Wykres zależności czasu wyszukania ścieżki w grafie od jego ilości wierzchołków

5 Wnioski

- Ze względu na generowania grafu na podstawie pewnego scehmatu, można stwierdzić, że w wynikach pomiarów występuje determinizm. Zatem można udowodnić teoretyczną złożoność obliczeniową na podstawie powyższych wyników testów. Oba zaimplementowane algorytmy posiadają prawidłową złożoność obliczeniową, która jest proporcjonalna do ilośći wierzchołków i krawędzi.
- W wynikach pomiarów wyróznia się zaleznośc, taka że BFS działa dwukrotnie szybciej od DFS, jednak nie należy przykładać do tego więk-

szej wagi, ponieważ ze względu na mechanizm tych algorytmów będa uzyskiwana różne proporcje w zależności od wygenerowanego grafu i szukanej ścieżki.