× (

WHAT IS CLAIMED IS:

1	1. In a communications configuration wherein a device receives a signal over
2	a communication channel while simultaneously transmitting a training signal
3	thereover, a method of enhancing performance of a receiver thereof, the method
4	comprising:
5	selecting a training subset of less than all signal elements based on those of the
6	signal elements employed in one or more recent data transmissions;
7	transmitting, during a training interval, substantially only the signal elements
8	of the training subset.
1	2. A method as in claim 1,
2	retrieving stored prior connection information to identify the employed signal
3	elements.
1	3. A method as in claim 1,
2	storing a encoding of employed signal elements for use in subsequent training
3	subset selections.
1	4. A method as in claim 1,
2	wherein the signal elements include tones in accordance with a discrete
3	multitone (DMT) modulation scheme.
1	5. A method as in claim 1,
2	wherein the device includes a digital subscriber line transceiver.
1	6. A method as in claim 5,
2	wherein the digital subscriber line transceiver is a central office end
3	transceiver.
1	7. A method as in claim 5,
2	wherein the digital subscriber line transceiver is a remote terminal end
3	transceiver.

1	8. A method as in claim 5,
2	wherein the communications configuration is an asymmetric digital subscriber
3	line configuration.
1	9. A method as in claim 1,
2	wherein the communications channel includes a digital subscriber loop.
1	10. A method as in claim 1,
2	wherein the training subset selection is performed as a function of plural sets
3	of prior connection information.
1	11. A method as in claim 1,
2	wherein the training subset selection is performed using a design function to
3	accommodate changing impairments of the communications channel.
1	12. A method as in claim 1,
2	wherein the receive signal includes a received training signal.
1	13. In a communications configuration wherein a device transmits a signal
2	over a communication channel, a method of reducing crosstalk into a second
3	communication channel, the method comprising:
4	selecting a training subset of less than all signal elements based on those of the
5	signal elements employed in one or more recent data transmissions;
6	transmitting, during a training interval, substantially only the signal elements
7	of the training subset.
1	14. A method as in claim 13, wherein signaling for the first and second
2	communications channel is at least partially conveyed by proximate wire pairs.
1	15. In a bi-directional communications configuration wherein opposing
2	direction training signals are simultaneously transmitted via a bi-directional
3	communications channel, a method of improving receiver performance comprising:

4	substantially limiting, based on prior connection information, a subset of tones
5	transmitted as part of one of the training signals to those of the tones
6	likely to be employed for same direction data transmission.
1	16. A method as in claim 15, further comprising:
2	storing an encoding of employed tones for use in a subsequent performance of
3	the tone subset limiting.
1	17. A method as in claim 15,
2	wherein the tones likely to be employed are calculated as a function of one or
3	more encodings of tones previously employed for data transmission via
4	the bi-directional communications channel.
1	18. A method as in claim 15,
2	wherein the limited subset of tones likely to be employed for same direction
3	data transmission is a function of tones employed in one or more of the
4	prior connections.
1	19. A method as in claim 15,
2	wherein the limited subset of tones likely to be employed for same direction
3	data transmission is a function of both tones and bit allocations
4	employed in one or more of the prior connections.
1	20. A method as in claim 15,
2	wherein the bi-directional communications channel is organized a plural
3	subchannels thereof.
1	21. A method as in claim 15,
2	wherein the tone subset limiting is performed using a design function to
3	accommodate changing impairments of the bi-directional
4	communications channel.
1	22. A method of operating a digital subscriber line transceiver unit, the
2	method comprising:

٠ (

3	selecting a subset of less than all available tones for inclusion in a training
4	signal, the selection based on stored prior connection information; and
5	during a portion of a training interval, transmitting the training signal via a
6	digital subscriber loop, the training signal consisting essentially of the
7	subset of tones, such that simultaneous reception by the transceiver
8	unit during the portion of the training interval is substantially
9	unaffected by local echo contributions of tones unlikely to be
10	employed during data transmission.
1	23. A method as in claim 22, further comprising:
2	storing an encoding of tones employed during data transmission for use in
3	subsequent performance of the subset selection.
1	24. A method as in claim 22,
2	wherein the stored prior connection information includes encodings of tone
3	sets employed in plural prior data transmissions via the digital
4	subscriber loop.
1	25. A method as in claim 22,
2	wherein the subset selection is performed based on tone sets employed in
3	plural prior connections via the digital subscriber loop.
1	26. A method as in claim 22,
2	wherein the subset selection is performed based on tone sets employed and bit
3	allocation results for at least one prior connection via the digital
4	subscriber loop.
1	27. A method as in claim 22,
2	wherein the subset selection is performed using a design function to
3	accommodate changing impairments of the digital subscriber loop.
1	28. A communications device comprising:
2	a transceiver unit adapted for simultaneously receiving a signal and
3	transmitting a training signal via a communications channel;

4	a training signal generator coupled to the transceiver unit and selective for a
5	subset of less than all signal elements for inclusion in the training
6	signal based on stored prior connection information.
1	29. A communications device as in claim 28,
2	a data store coupled to the training signal generator to supply the stored prior
3	connection information.
1	30. A communications device as in claim 28,
2	wherein the signal elements include tones in accordance with a discrete
3	multitone (DMT) modulation scheme.
1	31. A communications device as in claim 28, embodied as a digital subscriber
2	line transceiver.
1	32. A communications device as in claim 31, wherein the digital subscriber
2	line transceiver is one of:
3	a central office end transceiver; and
4	a remote terminal end transceiver.
1	33. A method as in claim 1,
2	wherein the communications channel includes a digital subscriber loop.
1	34. A communications device as in claim 28,
2	wherein the subset selection by the training signal generator is performed as a
3	function of plural sets of the stored prior connection information.
1	35. A communications device as in claim 28,
2	wherein the subset selection by the training signal generator is performed
3	using a gain function to accommodate changing impairments of the
4	communications channel.
1	36. A communications device as in claim 28,
2	wherein the received signal includes a received training signal.

1	37. A digital subscriber line transceiver unit comprising:
2	a prior connection information store; and
3	a training signal generator coupled to the prior connection information store
4	and selective for a subset of less than all available tones for inclusion
5	in a training signal based on prior connection information stored
6	therein,
7	wherein, when transmitted by the digital subscriber line transceiver unit, the
8	training signal consists essentially of the subset of tones, such that
9	simultaneous reception by the digital subscriber line transceiver unit is
10	substantially unaffected by local echo contributions of tones unlikely
11	to be employed during data transmission.
1	38. A digital subscriber line transceiver unit as in claim 37,
2	wherein the stored prior connection information includes encodings of tone
3	sets employed in plural prior data transmissions.
1	39. A digital subscriber line transceiver unit as in claim 37,
2	wherein the subset selection is performed based on tone sets employed in
3	plural prior connections.
1	40. A digital subscriber line transceiver unit as in claim 37,
2	wherein the subset selection is performed based on tone sets employed and bit
3	allocation results for at least one prior connection.
1	41. A digital subscriber line transceiver unit as in claim 37,
2	wherein the subset selection is performed using a gain function to
3	accommodate changing impairments of a digital subscriber loop.
1	42. A digital subscriber line transceiver unit comprising:
2	a prior connection information store; and
3	a training signal generator coupled to the prior connection information store
4	and selective for a subset of less than all available tones for inclusion

3	in a training signal based on prior connection information stored
6	therein,
7	wherein, when transmitted by the digital subscriber line transceiver unit over a
8	first communication channel, the training signal consists essentially of
9	the subset of tones, such that a second communication channel is
10	substantially unaffected by crosstalk from tones unlikely to be
11	employed during data transmission.
1	43. A digital subscriber line transceiver unit as in claim 42, wherein the first
2	and second communication channels are conveyed over respective proximate wire
3	pairs.
1	44. A computer program product encoded in at least one computer readable
2	medium and comprising,
3	a first functional sequence executable to select a subset of less than all
4	available tones for inclusion in a training signal, the selection based on
5	stored prior connection information,
6	wherein, when transmitted by a transceiver unit via a communication channel,
7	the training signal consists essentially of the subset of tones, such that
8	simultaneous reception by the transceiver unit during a training
9	interval is substantially unaffected by local echo contributions of tones
10	unlikely to be employed during data transmission.
1	45. A computer program product as in claim 44, further comprising:
2	a second functional sequence executable to store an encoding of tones
3	employed during data transmission for use in subsequent execution of
4	the first functional sequence.
1	46. A computer program product as in claim 44,
2	wherein the at least one computer readable medium is selected from the set of
3	a disk, tape or other magnetic, optical, or electronic storage medium
4	and a network, wireline, wireless or other communications medium.
1	47. An apparatus comprising:

2	a transceiver; and
3	means for selecting, based on prior connection information, a subset of signal
4	elements for inclusion in a training transmission.
1	48. An apparatus as in claim 47, further comprising:
2	means for storing the prior connection information.