

Unsupervised Learning: Dimension Reduction

Prof. Seungchul Lee Industrial AI Lab.

Dimension Reduction

- Motivation:
 - Can we describe high-dimensional data in a "simpler" way?
- → Dimension reduction without losing too much information
- → Find a low-dimensional, yet useful representation of the data

Dimension Reduction

- Why dimensionality reduction?
 - insights into the low-dimensional structures in the data (visualization)
 - Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization
 - Speeding up learning algorithms
 - Most algorithms scale badly with increasing data dimensionality
 - Less storage requirements (data compression)
 - Note: Dimensionality reduction is different from feature selection
 - ... although the goals are kind of the same
 - Dimensionality reduction is more like "feature extraction"
 - Constructing a small set of new features from the original features

Highly Correlated Data

- How?
 - idea: highly correlated data contains redundant features

high redundancy

- Each example x has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x_2 for each example
- Each 2-dimensional example x now becomes 1-dimensional $x = \{x_1\}$
- Are we losing much information by throwing away x_2 ?

• No. Most of the data spread is along x_1 (very little variance along x_2)

- Each example x has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x_2 for each example
- Each 2-dimensional example x now becomes 1-dimensional $x = \{x_1\}$
- Are we losing much information by throwing away x_2 ?

• Yes, the data has substantial variance along both features (i.e., both axes)

- Now consider a change of axes
- Each example x has 2 features $\{u_1, u_2\}$
- Consider ignoring the feature u_2 for each example
- Each 2-dimensional example x now become 1-dimensional $x = \{u_1\}$

• No. Most of the data spread is along u_1 (very little variance along u_2)

- Data \rightarrow projection onto unit vector \hat{u}_1
 - PCA is used when we want projections capturing maximum variance directions
 - Principal Components (PC): directions u_1 of maximum variability in the data
 - Roughly speaking, PCA does a change of axes that can represent the data in a succinct manner

- HOW?
 - 1. Maximize variance (most separable)
 - 2. Minimize the sum-of-squares (minimum squared error)

PCA Algorithm: Pre-processing

Given data

$$x^{(i)} = egin{bmatrix} x_1^{(i)} \ dots \ x_n^{(i)} \end{bmatrix}, \qquad X = egin{bmatrix} \cdots & (x^{(1)})^T & \cdots \ \cdots & (x^{(2)})^T & \cdots \ dots \ dots \ \ddots & (x^{(m)})^T & \cdots \end{bmatrix}$$

- Shifting (zero mean) and rescaling (unit variance)
 - 1. Shift to zero mean

$$egin{aligned} \mu &= rac{1}{m} \sum_{i=1}^m x^{(i)} \ x^{(i)} \leftarrow x^{(i)} - \mu \quad ext{(zero mean)} \end{aligned}$$

2. [optional] Rescaling (unit variance)

$$egin{aligned} \sigma_j^2 &= rac{1}{m-1} \sum_{i=1} m \Big(x_j^{(i)} \Big)^2 \ x_j^{(i)} &\leftarrow rac{x_j^{(i)}}{\sigma_i} \end{aligned}$$

PCA Algorithm: Maximize Variance

- Find unit vector u such that maximizes variance of projections
 - Note: $m \approx m 1$ for big data

variance of projected data
$$= \frac{1}{m} \sum_{i=1}^{m} \left(u^T x^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^{m} \left(x^{(i)^T} u \right)^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(x^{(i)^T} u \right)^T \left(x^{(i)^T} u \right) = \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)^T} u$$

$$= u^T \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T} \right) u$$

$$= u^T S u \qquad (S = \frac{1}{m} X^T X : \text{sample covariance matrix})$$

Maximize Variance

• In an optimization form

$$egin{array}{ll} ext{maximize} & u^T S u \ ext{subject to} & u^T u = 1 \end{array}$$

$$u^T S u = u^T \lambda u = \lambda u^T u = \lambda$$
 (Eigen analysis : $S u = \lambda u$)

- \implies pick the largest eigenvalue λ_1 of covariance matrix S
- $\implies u = u_1$ is the $\lambda_1's$ corresponding eigenvector
- $\implies u_1$ is the first principal component (direction of highest variance in the data)

Minimize the Sum-of-Squared Error

$$\|e^{(i)}\|^2 = \|x^{(i)}\|^2 - (x^{(i)^T}u)^2$$

$$= \|x^{(i)}\|^2 - (x^{(i)^T}u)^T (x^{(i)^T}u)$$

$$= \|x^{(i)}\|^2 - u^T x^{(i)} x^{(i)^T}u$$

$$\begin{split} \frac{1}{m} \sum_{i=1}^{m} \|e^{(i)}\|^2 &= \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2 - \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)^T} u \\ &= \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2 - u^T \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T}\right) u \end{split}$$

Minimize the Sum-of-Squared Error

• In an optimization form

$$\implies$$
 maximize $u^T \left(\frac{1}{m} \sum_{i=1}^m x^{(i)} x^{(i)^T} \right) u = \max \ u^T S u$

 \therefore minimize $error^2 = \text{maximize } variance$

Dimension Reduction Method $(n \rightarrow k)$

- 1. Choose top k (orthonormal) eigenvectors, $U = [u_1, u_2, \cdots, u_k]$
- 2. Project x_i onto span $\{u_1, u_2, \dots, u_k\}$

$$z^{(i)} = egin{bmatrix} u_1^T x^{(i)} \ u_2^T x^{(i)} \ dots \ u_k^T x^{(i)} \end{bmatrix} \; ext{ or } \; z = U^T x$$

• $\chi^{(i)} \rightarrow$ projection onto unit vector $u \Longrightarrow u^T \chi^{(i)}$ = distance from the origin along u

• Data \rightarrow projection onto unit vector u

Pictorial Summary of PCA

PCA Visualization

- Eigenvectors
 - Given basis $\{\hat{x}_1, \hat{x}_2\}$ to transformed basis $\{\hat{u}_1, \hat{u}_2\}$

$$[\hat{u}_1 \; \hat{u}_2] = [\hat{x}_1 \; \hat{x}_2] \left[egin{matrix} c_1 & c_3 \ c_2 & c_4 \end{array}
ight]$$

- Eigenvalues
 - $-\lambda_1,\lambda_2$ indicates variance along the eigenvectors, respectively.
 - The larger eigenvalue is, the more dominant feature (eigenvector) is.

Linear Regression vs. PCA

Linear Regression

Python Codes

Python Codes

```
S = 1/(m-1)*X.T*X
S = np.asmatrix(S)

D, U = np.linalg.eig(S)

idx = np.argsort(-D)
D = D[idx]
U = U[:,idx]

print(D, '\n')
print(U)
```

[3.90595228 0.19884608]

```
h = U[1,0]/U[0,0]
xp = np.arange(-6, 6, 0.1)
yp = h*xp
```


Scikit-learn


```
from sklearn.decomposition import PCA

pca = PCA(n_components = 1)
pca.fit(X)
```

```
u = pca.transform(X)

plt.figure(figsize = (10, 8))
plt.hist(u, 51)
plt.show()
```


PCA Example

- Multiple video camera records of spring and mass system
- Optimal data representation
 - Find the most informative point of view

- source:
 - https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf

Multivariate Time Series

- System order can be inferred from
 - Laws of physics or
 - Data

Measured observations

Multivariate Time Series

$$x^{(i)} = \begin{bmatrix} x \text{ in camera 1} \\ y \text{ in camera 1} \\ x \text{ in camera 2} \\ y \text{ in camera 2} \\ x \text{ in camera 3} \\ y \text{ in camera 3} \end{bmatrix}$$

$$X_{m \times 6} = \begin{bmatrix} \cdots & (x^{(1)})^T & \cdots \\ \cdots & (x^{(2)})^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & (x^{(m)})^T & \cdots \end{bmatrix}$$

 $egin{array}{ll} ext{maximize} & u^T S u \ ext{subject to} & u^T u = 1 \end{array}$

Eigenvalues

```
plt.figure(figsize = (10,8))
plt.stem(np.sqrt(D))
plt.grid(alpha = 0.3)
plt.show()
```


Projection onto Principal Components

```
# relative magnitutes of the principal components
Z = X*U
xp = np.arange(0, m)/24 # 24 frame rate
```


PCA Example

