```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing, svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

Out[2]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1	lounge	51	882	25000	1	44.907242	8.611560
	1	2	рор	51	1186	32500	1	45.666359	12.241890
	2	3	sport	74	4658	142228	1	45.503300	11.417840
	3	4	lounge	51	2739	160000	1	40.633171	17.634609
	4	5	pop	73	3074	106880	1	41.903221	12.495650
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
	1535	1536	pop	51	2223	60457	1	45.481541	9.413480
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
	1537	1538	рор	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

```
In [5]: dt=dt[['engine_power','price']]
    dt.columns=['Engine','Pric']
```

In [6]: dt.head(10)

\sim		_	Г <i>с</i> '	т.
()	111	ГΙ	l h	
$\mathbf{\circ}$	u	_		

In [8]: sns.lmplot(x='Engine',y='Pric',data=dt,order=2,ci=None)

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1d7f5f418d0>

In [10]: dt.describe()

Out[10]:

	Engine	Pric
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77.000000	11100.000000

In [11]: | dt.fillna(method='ffill')

Out[11]:

	Engine	Pric
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

1538 rows × 2 columns

```
In [12]: x=np.array(dt['Engine']).reshape(-1,1)
y=np.array(dt['Pric']).reshape(-1,1)
```

In [13]: dt.dropna(inplace=True)

C:\Users\91903\AppData\Local\Temp\ipykernel_12044\735218168.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

dt.dropna(inplace=True)

```
In [14]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.09528364801504663

```
In [15]: y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [16]: dt500=dt[:][:500]
sns.lmplot(x="Engine",y="Pric",data=dt500,order=1,ci=None)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x1d7d1d47460>


```
In [17]: dt500.fillna(method='ffill',inplace=True)
    X=np.array(dt500['Engine']).reshape(-1,1)
    y=np.array(dt500['Pric']).reshape(-1,1)
    dt500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print("Regression:",reg.score(X_test,y_test))
    y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color="b")
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.08361221541270236


```
In [18]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.08361221541270236

#conclusion: Linear regression is not fit for the model

In []: