Tableau périodique des éléments

Tableau de Mendeleïev

1 2.20 1s H Hydrogène 1.00784–1.00811																2 1s He Hélium 4.002602(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z	$egin{array}{cccc} \chi & \chi & \mathrm{sc} \ \mathbf{S}\mathbf{y} & & & & & \\ \mathrm{Nom} & & & & & & \\ \mathrm{Nom} & & & & & & \\ \mathrm{pas} & & & & & & \end{array}$	Sy : symbole Nom : nom de	ativité he électronique							5 2.04 2p B Bore 10.806-10.821	6 2.55 2p C Carbone 12.0096–12.0116	7 3.04 2p N Azote 14.00643- 14.00728	8 3.44 2p O Oxygène 15.99903- 15.99977	9 3.98 2p F Fluor 18.998403163(6)	10 2p Ne Néon 20.1797(6)
11 0.93 3s 12 1.31 3s Na Ng Sodium 22.98976928(2) Magnésium 24.304-24.307											13 1.61 3 <i>p</i> Al Aluminium 26.9815385(7)	14 1.90 3 <i>p</i> Si Silicium 28.084–28.086	15 2.19 3 <i>p</i> P Phosphore 30.973761998(5)	16 2.58 3p Soufre 32.059–32.076	17 3.16 3 <i>p</i> Cl Chlore 35.446-35.457	18 3p Ar Argon 39.948(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 1.36 3 <i>d</i> 22 Sc Scandium 44.955908(5)	1.54 3 <i>d</i> Ti Titane 47.867(1)	23 1.63 3 <i>d</i> V Vanadium 50.9415(1)	24 1.66 3 <i>d*</i> Cr Chrome 51.9961(6)	25 1.55 3 <i>d</i> Mn Mn Manganèse 54.938044(3)	26 1.83 3 <i>d</i> Fe Fer 55.845(2)	27 1.88 3 <i>d</i> Co Cobalt 58.933194(4)	28 1.91 3 <i>d</i> Ni Nickel 58.6934(4)	29 1.90 3 <i>d</i> * Cu Cuivre 63.546(3)	30 1.65 3 <i>d</i> 2n Zinc 65.38(2)	31 1.81 4p Ga Gallium 69.723(1)	32 2.01 4 <i>p</i> Ge Germanium 72.630(8)	33 2.18 4p As Arsenic 74.921595(6)	34 2.55 4 <i>p</i> Se Sélénium 78.971(8)	35 2.96 4 <i>p</i> Br Brome 79.901–79.907	36 3.00 4p Kr Kr Krypton 83.798(2)
Rb	Y	1.33 4d Zr Zr Zirconium 91.224(2)	1.6 4 <i>d*</i> Nb Niobium 92.90637(2)	42 2.16 4 <i>d*</i> Mo Molybdène 95.95(1)	43 1.9 4 <i>d</i> Tc Technétium (98)	44 2.2 4 <i>d*</i> Ru Ruthénium 101.07(2)	45 2.28 4 <i>d*</i> Rh Rhodium 102.90550(2)	46 2.20 4 <i>d*</i> Pd Palladium 106.42(1)	47 1.93 4 <i>d*</i> Ag Argent 107.8682(2)	48 1.69 4 <i>d</i> Cd Cadmium 112.414(4)	49 1.78 5 <i>p</i> In Indium 114.818(1)	50 1.96 5 <i>p</i> Sn Étain 118.710(7)	$\begin{array}{c} 51 & 2.05 & 5\rho \\ \textbf{Sb} \\ \text{Antimoine} \\ 121.760(1) \end{array}$	${f Te} \ {f Te} \ {f Tellure} \ {f 127.60(3)}$	$\begin{array}{ccc} 53 & 2.66 & 5\rho \\ & I \\ & Iode \\ 126.90447(3) \end{array}$	54 2.60 5p Xe Xénon 131.293(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* Lanthanides	72 1.3 5 <i>d</i> H Hafnium 178.49(2)	$ \begin{array}{ccc} & 1.5 & 5d \\ & \mathbf{Ta} \\ & \text{Tantale} \\ & 180.94788(2) \end{array} $	74 2.36 5 <i>d</i> W Tungstène 183.84(1)	75 1.9 5 <i>d</i> Re Rhénium 186.207(1)	76 2.2 5 <i>d</i> Os Osmium 190.23(3)	77 2.20 5 <i>d</i> Ir Iridium 192.217(3)	78 2.28 5 <i>d*</i> Pt Platine 195.084(9)	79 2.54 5 <i>d*</i> Au Or 196.966569(5)	80 2.00 5 <i>d</i> Hg Mercure 200.592(3)	81 1.62 6p Tl Thallium 204.382–204.385	82 1.87 6 <i>p</i> Pb Plomb 207.2(1)	83 2.02 6p Bi Bismuth 208.98040(1)	${ m Po} \ { m Polonium} \ { m (209)}$	85 2.2 6p At Astate (210)	86 2.2 6p Rn Radon (222)
87 0.7 7s 88 0.9 7s Fr Ra Francium Radium (223)	**	$ \begin{array}{ccc} & 6d \\ & \mathbf{Rf} \\ & \text{Rutherfordiur} \\ & (261) \\ \end{array} $	$ \begin{array}{c} \mathbf{Db} \\ \mathbf{Db} \\ \mathbf{Dubnium} \\ \mathbf{C}(268) \end{array} $	$\begin{array}{c} 106 & 6d \\ \mathbf{Sg} \\ \mathbf{Seaborgium} \\ \text{(269)} \end{array}$	$ \begin{array}{c} \text{Bh} \\ \text{Bohrium} \\ \text{(270)} \end{array} $	108 6 <i>d</i> Hs Hassium (269)	$\begin{array}{c} 109 & \textit{6d} \\ \hline \textbf{Mt} \\ \text{Meitnérium} \\ \text{\tiny (278)} \end{array}$	Ds	$\begin{array}{c} 111 & 6d \\ \mathbf{Rg} \\ \text{Roentgenium} \\ \text{\tiny (282)} \end{array}$	Cn	$\begin{array}{c} 113 & 7\rho \\ \hline Nh \\ \text{Nihonium} \\ \text{(286)} \end{array}$	114 7p Fl Flérovium (289)	Mc	${\displaystyle \mathop{\mathbf{Lv}}_{{\scriptstyle{\begin{array}{c} \text{Livermorium} \\ (293) \end{array}}}}^{116}}$	${\displaystyle \mathop{\mathbf{Ts}}_{\substack{117 \\ \text{Tennesse} \\ (294)}}} {\displaystyle \mathop{\mathbf{Ts}}_{}}$	\mathbf{Og} Oganesson (294)
	*	${f La}_{138.90547(7)}^{1.1}$	58 1.12 4 <i>f*</i> Ce Cérium 140.116(1)	59 1.13 4f	60 1.14 4f Nd Néodyme 144.242(3)	61 1.13 4f Pm Prométhium (145)	62 1.17 4f Sm Samarium 150.36(2)	63 1.2 4f Eu Europium 151.964(1)	64 1.2 4 <i>f</i> * Gd Gadolinium 157.25(3)	65 1.1 4 <i>f</i> Tb Terbium 158.92535(2)	66 1.22 4f Dy Dysprosium 162.500(1)	67 1.23 4 <i>f</i> Ho Holmium 164.93033(2)	68 1.24 4f Er Erbium 167.259(3)	69 1.25 4f Tm Thulium 168.93422(2)	70 1.1 4 <i>f</i> Yb Ytterbium 173.045(10)	71 1.27 4f Lu Lutécium 174.9668(1)
	**	39 1.1 6 <i>d*</i> 9 Ac Actinium (227)	Th	91 1.5 5 <i>f*</i> Pa Protactinium 231.03588(2)	92 1.38 5 <i>f</i> * U Uranium 238.02891(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94 1.28 5 <i>f</i> Pu Plutonium (244)	95 1.13 5 <i>f</i>	96 1.28 5 f* Cm Curium (247)	$\begin{array}{ccc} 97 & 1.3 & 5f \\ \mathbf{Bk} & \\ \mathrm{Berk\'elium} \\ \mathrm{_{(247)}} \end{array}$	Cf	99 1.3 5 <i>f</i> Es Einsteinium (252)	100 1.3 5 <i>f</i> Fm Fermium (257)	${f Md}$ Mendélévium ${}^{(258)}$	102 1.3 5 <i>f</i> No Nobélium (259)	103 1.3 5 <i>f</i> Lr Lawrencium (266)

Les poids atomiques standards sont issus de la Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Une astérisque (*) apposée à une sous-couche électronique indique une exception (au principe d'Aufbau) dans la configuration des électrons à l'état fondamental.