

• Dissociation Relations:

$$N_A \leftrightarrow N_A^- + \text{hole}$$

 $N_D \leftrightarrow N_D^+ + \text{electron}$

Establishment of Equilibrium

- Holes diffuse from p to n
 - > Negatively charged acceptor ions uncovered near M.J
- Electrons diffuse from n to p
 - > Positively charged donor ions uncovered near MJ
- Establishment of a charge dipole around MJ
 - ➤ Generation of an electric field & around MJ
 - \triangleright Creation of built-in potential V_0

- Ecreates drift components of carriers
 - ➤ Holes pushed back to p
 - > Electrons pushed back to n
- When these two motions (*drift and diffusion*) completely *balance out*
 - > Equilibrium is reached
- Under this condition, the *net fluxes* of *both electrons and holes* across MJ are *zero*
 - > No net current flows through the device

Diode Under Bias

Forward Bias: p-side positive w.r.t. n-side

Reverse Bias: n-side positive w.r.t. p-side

Symbol and current-voltage convention

Voltage and Current Conventions:

V_D: 0 (Equilibrium), Positive (Forward Bias), Negative (Reverse Bias)
I_D: p to n (Positive), n to p (Negative)

- Forward Bias $(V_D positive)$:
 - > p positive w.r.t. n
 - ➤ Depletion region width ✓
 - ➤ Electric field across MJ ↓
 - Barrier height $(V_0 V_D) \checkmark$
 - ➤ Injection of holes from p to n and electrons from n to p ?? (thermionic emission)
 - Diffusion component ↑↑ while drift current remains more or less same
 - > Net current from p to n (can be large)
 - Known as *forward current* (I_D *positive*)

- Reverse Bias (V_D negative):
 - > p negative w.r.t. n
 - > Depletion region width ?
 - > Electric field across MJ ?
 - Barrier height $(V_0 + |V_D|)$?
 - ➤ Injection of holes from p to n and electrons from n to $p \checkmark \checkmark$ (known as carrier extraction)
 - Diffusion component ↓↓ while drift current remains more or less same
 - > Net current from n to p (miniscule!)
 - Known as reverse current $(I_D negative)$

More on Forward & Reverse Currents

- Injection of carriers: Inj $\propto \exp[-BH/V_T]$
 - > BH: Barrier Height
 - $ightharpoonup V_T (= kT/q)$: *Thermal Voltage* [26 mV at room temperature (300 K)]
- Under equilibrium:
 - $ightharpoonup Inj \propto exp(-V_0/V_T)$
 - \triangleright Exactly balanced by the opposing drift component \Rightarrow net current = 0