

Music Recommender System

Group Member:

徐博揚 藍子軒 陳應中 呂函庭

Teacher:

丁德天 老師

Contents of our Research

1.研究背景與動機

2.研究方法與流程

3.結果探討

4.未來展望

Background & + Motivation

在資訊發達的現代,想找音樂只需要輸入關鍵字, 便能從輕易地完成閱聽人的需求,然而在有些時候 使用者可能想要找到符合他喜好之新的歌曲,音樂 推薦系統便能滿足此需求。本專題透過,以下的資 料向閱聽人推薦符合他們喜好的音樂作品。

1.歌曲長度

2.作詞作曲者

3.使用者年齡

4.註冊日期

5.軟體介面使用習慣

Data Description

資料集取自Kaggle上 WSDM-KKBOX的音樂推薦 挑戰賽[,]內容分成:

train.csv test.csv sample_submission.csv song.csv members.csv song_extra_info.csv train.csv: KKBOX提供的訓練集[,]用戶每聽一 首歌會記錄成一筆資料記在其中[。] (User Based)

song.csv: 記錄歌曲相關資訊的資料集,內容包含歌曲長度、歌曲語言、歌手、歌曲風格等資訊。(Item Based)

members.csv: 記錄KKBOX用戶相關資訊的 資料集,內容包含性別、年齡、居住城市、註 冊時間等資訊。(User Based)

song_extra_info.csv: 記錄歌曲相關的額外資訊,提供歌曲名稱及isrc國際標準錄音代碼。(Item Based)

Flow Chart

Method

01 Histogram

02 Leaf_wise

03 GOSS

04 EFB

Histogram

直方圖算法基本思想:

走訪數據時,根據離散化後的值作 為索引直方圖中累積統計量,最後 根據直方圖的離散值,尋找最優分 割點。

舉例來說:[0,0.3)—>0 [0.3,0.7)—->1 就是將某個居間的數據映射到離散的數據值。

LEAF-WISE

Leaf-Wise的主要思想為,

尋找分裂增益最大的 子節點作為分裂點

優點在於分裂次數相同的情況下

- 1.有更好的精確度
- 2.降低更多誤差

當樣本過小時會產生過擬合(Overfitting)的問題

必須設置最大樹深(max_depth)以防止這個問題

GOSS是一個樣本的採樣算法,其主要思想為:

GOSS

Algorithm 2: Gradient-based One-Side Sampling

保留梯度較大的數據

若直接將所有梯度較小的數 據都丟棄,勢必會影響數據 的總體分布

作法:

保留絕對值最大的a個數據

在梯度值較小的數據中,選取b個,並乘以 (1-a)/b的常數

Input: *I*: training data, *d*: iterations **Input**: a: sampling ratio of large gradient data **Input**: b: sampling ratio of small gradient data **Input**: *loss*: loss function, *L*: weak learner models $\leftarrow \{\}$, fact $\leftarrow \frac{1-a}{b}$ $topN \leftarrow a \times len(I)$, $randN \leftarrow b \times len(I)$ for i = 1 to d do $preds \leftarrow models.predict(I)$ $g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}$ $sorted \leftarrow GetSortedIndices(abs(g))$ $topSet \leftarrow sorted[1:topN]$ $randSet \leftarrow RandomPick(sorted[topN:len(I)],$ randN) $usedSet \leftarrow topSet + randSet$ $w[randSet] \times = fact \triangleright Assign weight fact to the$ small gradient data. newModel \leftarrow L(I[usedSet], -g[usedSet],w[usedSet]) models.append(newModel)

高維數據通常是稀疏矩陣具有非常 多的0值,因而造成兩個問題!

- 1.記憶體不足
- 2.時間複雜度上的負擔

EFB的作用就是將互斥特徵綁在一起形成一個特徵,達到降維,以解決稀疏矩陣造成的問題

New Feature

1.
msno_id 重複次數 msnocnt
song_id songcnt

train中target等於1的值

歌曲被重複收聽率

歌曲被播放次數

New Feature

3.

註冊時間

registration_init_time

註冊到期

expiration_date

日期格式

註冊時間 相減 註冊到期

註冊天數

registration_days

Songcnt的長條圖以及四分位數

下四分位數	70
中四分位數	467
上四分位數	1893
IQR	1823

Descriptive statistics

下四分位數	286
中四分位數	510
上四分位數	838
IQR	552

msnocnt的長條圖以及四分位數

Descriptive statistics

	city	target
0	A	0
1	A	1
2	A	1
3	В	0
4	В	1
5	C	1

	city	target
0	0.6667	0
1	0.6667	1
2	0.6667	1
3	0.5	0
4	0.5	1
5	1	1

類別資料平均範例示意圖

Classification Model

1. Df_train_0(gbdt): 保留完整無缺失的資料的資料集,並 且特徵欄位多了性別(gender)、年齡(bd)與作詞者(lyricist), 使用lightgbm,基礎學習模型選擇傳統梯度提升決策樹。

2. Df_train_0(goss): 無缺失值的資料集,並且特徵欄位多了性別(gender)、年齡(bd)與作詞者(lyricist),使用 lightgbm,基礎學習模型選擇使用Gradient-based One-Side Sampling的梯度提升決策樹。

3. Df_train_0(LR): 無缺失值的資料集,並且特徵欄位多了性別(gender)、年齡(bd)與作詞者(lyricist),使用Logistic Regression演算法作分析。

Classification Model

1. Df_train_full(gbdt): 使用了全部資料的資料集,使用lightgbm,基礎學習模型選擇傳統梯度提升決策樹。

2. Df_train_full(goss): 使用了全部資料的資料集,基礎學習模型選擇使用Gradient-based One-Side Sampling的梯度提升決策樹。

3. Df_train_full(LR): 使用了全部資料的資料集,使用Logistic Regression演算法作分析。

Parameter

Design

- 1. learning_rate:指定一個數值為學習率
- 2. num_rounds:指定一個數值為迭代次數
- 3. max_depth:最大樹深
- 4. num_leaves:代表一棵樹上葉節點數目
- 5. min_data_in_leaf:一個葉節點包含的最少樣本數量
- 6. bagging_fraction:每次迭代選擇樣本數量百分比
- 7. bagging_freq:每幾次迭代次數執行bagging
- 8. feature_fraction:每次迭代選擇特徵數量百分比

1					
0	無缺失資料集		完整資料集		
	(DF_TRAIN_0	0).₽	(DF_TRAIN_	(DF_TRAIN_FULL).	
初始參數	goss ₽	gbdt₽	goss.₽	gbdt₽	
LEE	0.1	0.1	0.1₽	0.1₽	
MAX_DEPTH ₽	21₽	21₽	19₊	19₊	
NUM_LEAVES ₽	100₽	100₽	100₽	100₽	
NUM_ROUNDS ₽	1000 ₽	1000 ₽	1000 ₽	1000 ₽	
MIN_DATA_IN_LEAF	50₽	50₽	50₽	50₽	
BAGGING_FRACTION	2	0.8₽	· ·	0.8₽	
BAGGING_FREQ.	2	2.₽	· ·	2.₽	
FEATURE_FRACTION -	0.8	0.8₽	0.8₽	0.8₽	

0	無缺失資料集		完整資料集		
最佳參數	(DF_TRAIN_0	(DF_TRAIN_0).		(DF_TRAIN_FULL)₽	
以上沙安	goss₽	gbdt	goss₽	gbdt.	
LEARISM	0.1₽	0.1₽	0.1₽	0.1₽	
MAX_DEPTH.	24₽	26₽	32₽	29₽	
NUM_LEAVES.	450₽	477.	533₽	9045.	
NUM_ROUNDS -	262₽	999₊	985.	301₽	
MIN_DATA_IN_LEAF	160₽	45.	70₽	22₽	
BAGGING_FRACTION -	2	1.0₽	· ·	1.0₽	
BAGGING_FREQ.	2	45₽	\$	40₽	
FEATURE_FRACTION.	1.0	1.0	1.0	0.8	

Model Comparison

₽	precission.	recall.	F1-score	Training Accuray	Testing ₽ Accuray ₽
Df_train_0(goss)	0.74 ₽	0.72 ₽	0.73 ₽	0.748	0.715
Df_train_0(gbdt)₽	0.75 ₽	0.73 ₽	0.74 ₽	0.850₽	0.726 ₽
Df_train_0(LR)₽	0.70 ₽	0.75 ₽	0.72 ₽	0.692 ₽	0.692 ₽
Df train full(goss)	0.71 ₽	0.72 ₽	0.71 ₽	0.772 ₽	0.707 ₽
Df train full(gbdt)	0.74 ₽	0.74 ₽	0.74 ₽	0.895 ₽	0.741
Df_train_full(LR)。	0.70 ₽	0.71 ₽	0.70 ₽	0.698₽	0.699 ₽

Our Prospect

Conclusion

	過擬合 的問題	預測 能力
LightGBM	()0	
羅吉斯回歸		000

	預測能力	花費 時間
DF_train _0	()0)	(°°)
DF_train _full		000

Limitation &

1. 以使用者依賴程度或以歌曲為目標進行預測。

Prospect

2. 利用此研究的分析結果進行反向分析,取得推薦資料建立更有效的客戶特徵。

1. Kaggle資料集

https://www.kaggle.com/c/kkbox-music-recommendation-challenge/data

2. XGBoost與LightGBM演算法

https://moread.cc/2544500.html

3. 機器學習與XGBoost

https://moread.cc/2544500.html

4.深度學習

https://medium.com/@baubibi/速記ai課程-深度學習入門-一-68e27912ce30

5. XGBoost

https://medium.com/jameslearningnote/資料分析-機器學習-第5-2講-kaggle機器學習競賽神器xgboost介紹-1c8f55cffcc

Reference

6. 特徵工程

https://ithelp.ithome.com.tw/users/20111826/ironman/173

7. lightgbm使用

http://www.huaxiaozhuan.com/%E5%B7%A5%E5%85%B7 /lightgbm/chapters/lightgbm_usage.html

Reference

8. LightGBM調參筆記

https://www.twblogs.net/a/5be215942b717720b51cce01

9. LightGBM+gridsearchcv调参

https://zhuanlan.zhihu.com/p/76206257

10. 基於大數據個性化音樂推薦算法分析(附代碼github地址)

https://www.twblogs.net/a/5ee6b192f96db16fcf62f881

Reference

11.決策樹的進化(ID3、C4.5、CART、GBDT、RF、DART、lambdaMART、XGBoost、lightGBM)

https://www.itread01.com/content/1545255739.html

12.資料探勘-分類器的ROC曲線及相關指標(ROC、AUC、ACC)詳解

https://www.itread01.com/content/1547058444.html

13.商品类别推荐系统:LightGBM模型

https://blog.csdn.net/wong2016/article/details/89288531

14. KKBOX 歌曲推薦系統

https://wenwender.wordpress.com/2019/04/03/kkbox-%E6%AD%8C%E6%9B%B2%E6%8E%A8%E8%96%A6 %E7%B3%BB%E7%B5%B1/

15. WSDM CUP 2018 Call-for-Participants Music Recommendation & Churn Prediction

http://www.wsdm-conference.org/2018/call-forparticipants.html

Reference

16. lightgbm調參+gridsearchcv

https://yunglinchang.blogspot.com/2018/12/lightgbm-gridsearchcv-feat-categorical.html

17. LightGBM explained 系列 histogram-based algorithm是什麼?

https://yunglinchang.blogspot.com/2019/05/lgb-histogram-based-algor.html

18. LightGBM explained 系列 Exclusive Feature Bundling

https://yunglinchang.blogspot.com/2019/07/lightgbmefb.html

19. LightGBM explained 系列 Gradient-based One-Side Sampling(GOSS)是甚麼?

https://yunglinchang.blogspot.com/2019/07/lightgbm-goss.html

20. XGboost模型

https://yuancl.github.io/2019/05/17/ml/XGboost%E6%A8% A1%E5%9E%8B/

THANKS