

Universidad de Magallanes Facultad de Ingeniería Departamento de Ingeniería en Computación Diseño de Algoritmos – Sistema de Asignación de Recursos (Scheduling)

José Canumán Chacón 22/04/2025 / 17/05/2025

Información General

Valor: 30 % de la calificación final del curso

Modalidad: Grupos de 2-3 estudiantes **Lenguaje:** C (estándar C11 o C99)

1 DESCRIPCIÓN DEL PROYECTO

En este proyecto, los estudiantes diseñarán e implementarán un sistema inteligente de scheduling para optimizar la logística de una empresa de distribución. El sistema recibirá como entrada datos sobre entregas pendientes (ubicaciones, ventanas de tiempo, prioridades) y recursos disponibles (vehículos, capacidades, horarios), y deberá generar como salida un plan de asignación óptimo que minimice costos y maximice el servicio al cliente. El desafío central consiste en desarrollar algoritmos eficientes que asignen entregas a una flota de vehículos heterogénea, considerando múltiples restricciones operativas. Los estudiantes deberán analizar, implementar y comparar diferentes estrategias voraces (greedy), evaluando su eficacia en términos de tiempo computacional, calidad de solución y adaptabilidad a escenarios dinámicos típicos de la distribución urbana moderna.

2 OBJETIVOS DE APRENDIZAJE

- Comprender y aplicar algoritmos voraces (Greedy) en problemas de scheduling
- Desarrollar habilidades para modelar problemas de optimización con múltiples restricciones
- Implementar diferentes heurísticas y comparar su efectividad
- Analizar la complejidad temporal y espacial de las soluciones implementadas
- Evaluar trade-offs entre calidad de la solución y tiempo de ejecución
- Aplicar estructuras de datos eficientes para problemas de asignación de recursos

3 REQUISITOS TÉCNICOS

3.1 MODELO DEL PROBLEMA

Implementar las siguientes estructuras:

1. Tareas (Entregas)

- ID único
- Ubicación de origen y destino (coordenadas)
- Ventana de tiempo para entrega (inicio y fin)
- Duración estimada del servicio

- Prioridad (1-5)
- Tipo de vehículo requerido
- Volumen y peso de la carga

2. Recursos (Conductores/Vehículos)

- ID único
- Tipo de vehículo
- Capacidad (volumen y peso)
- Horario de disponibilidad
- Ubicación inicial
- Especialización (si aplica)

3. Sistema de Asignación

- Interfaz para cargar datos desde archivos
- Implementación de múltiples estrategias de scheduling
- Mecanismos para evaluar y comparar soluciones
- Visualización de resultados

3.2 ALGORITMOS DE SCHEDULING

Implementar al menos tres de las siguientes estrategias greedy:

1. Earliest Deadline First (EDF)

- Priorizar entregas con fecha límite más temprana
- Implementación con cola de prioridad

2. Shortest Processing Time (SPT)

- Priorizar entregas con menor tiempo de servicio
- Análisis de variantes (ponderadas y no ponderadas)

3. Priority-Based Scheduling

- Priorizar por importancia del cliente/pedido
- Implementar función de prioridad personalizable

4. Nearest Neighbor

- Asignar entregas basadas en proximidad geográfica
- Implementar cálculo eficiente de distancias

5. Minimum Slack Time

- Priorizar tareas con menor margen temporal
- Análisis de robustez ante retrasos

3.3 MEJORAS Y OPTIMIZACIONES

Implementar al menos dos de las siguientes mejoras:

1. Detección de Conflictos

- Identificar y resolver conflictos de tiempo/recursos
- Implementar estrategias de resolución automática

2. Balanceo de Carga

- Distribuir equitativamente el trabajo entre conductores
- Minimizar tiempos muertos y maximizar utilización

3. Refinamiento Local

- Mejorar solución inicial mediante intercambios locales
- Implementar algoritmo 2-opt o similar

4. Restricciones Adicionales

- Manejar descansos obligatorios para conductores
- Considerar zonas de tráfico o restricciones horarias

4 APLICACIÓN PRÁCTICA: SISTEMA DE OPTIMIZACIÓN LOGÍSTICA

Desarrollar un sistema completo con las siguientes funcionalidades:

1. Gestión de Datos

- Cargar/guardar datos de tareas y recursos desde archivos
- Soporte para diferentes formatos (CSV, JSON)
- Validación de datos de entrada

2. Planificación de Rutas

- Generar asignaciones óptimas según la estrategia seleccionada
- Considerar todas las restricciones del problema
- Detectar y manejar casos sin solución factible

3. Análisis de Escenarios

- Simular diferentes condiciones operativas
- Evaluar respuesta a retrasos o cancelaciones
- Comparar rendimiento de distintas estrategias

4. Métricas y Evaluación

- Calcular métricas clave:
 - Número de entregas completadas
 - Tiempo total de espera

- Distancia total recorrida
- Satisfacción del cliente (basada en prioridades)
- Utilización de recursos
- Tiempo de ejecución del algoritmo

5. Visualización de Resultados

- Mostrar cronograma de asignaciones
- Generar informes comparativos
- Exportar resultados para análisis posterior

5 CONJUNTO DE DATOS DE EJEMPLO

El sistema deberá ser probado con el siguiente conjunto de datos de ejemplo:

```
# entregas.csv
id,origen_x,origen_y,destino_x,destino_y,inicio,fin,duracion,prioridad,tipo_vehiculo,volumen,peso
E001,10.5,20.3,15.2,25.4,09:00,12:00,30,3,1,2.5,10
E002,12.1,18.7,15.2,25.4,08:30,11:30,25,4,2,1.8,8
E003,9.8,22.5,30.1,10.5,10:00,14:00,45,2,1,3.2,15
E004,5.6,15.3,12.1,18.7,08:00,10:30,20,5,3,1.0,5
...

# vehiculos.csv
id,tipo,capacidad_volumen,capacidad_peso,hora_inicio,hora_fin,pos_x,pos_y,especialidad
V001,1,10,50,08:00,18:00,0,0,0
V002,2,8,40,09:00,17:00,5,5,1
V003,1,10,50,07:00,15:00,2,3,0
V004,3,5,25,10:00,20:00,8,2,2
...
```

5.1 DESCRIPCIÓN DE LOS CAMPOS

5.1.1. Archivo de Entregas (entregas.csv)

- id: Identificador único de la entrega (formato: E seguido de tres dígitos)
- **origen_x**, **origen_y**: Coordenadas cartesianas del punto de recogida (en km desde un punto de referencia)
- **destino_x**, **destino_y**: Coordenadas cartesianas del punto de entrega (en km desde un punto de referencia)
- inicio: Hora de inicio de la ventana de tiempo para realizar la entrega (formato 24h)
- fin: Hora límite para completar la entrega (formato 24h)
- duracion: Tiempo estimado para completar el servicio de entrega (en minutos)
- **prioridad:** Nivel de importancia de la entrega (escala 1-5, donde 5 es la máxima prioridad)
- **tipo_vehiculo:** Tipo de vehículo requerido para la entrega (1=pequeño, 2=mediano, 3=grande)

- **volumen:** Volumen de la mercancía a transportar (en metros cúbicos)
- **peso:** Peso de la mercancía a transportar (en kilogramos)

5.1.2. Archivo de Vehículos (vehiculos.csv)

- id: Identificador único del vehículo (formato: V seguido de tres dígitos)
- **tipo:** Categoría del vehículo (1=pequeño, 2=mediano, 3=grande)
- capacidad_volumen: Volumen máximo que puede transportar el vehículo (en metros cúbicos)
- capacidad_peso: Peso máximo que puede transportar el vehículo (en kilogramos)
- hora_inicio: Hora en que el conductor comienza su jornada laboral (formato 24h)
- hora_fin: Hora en que el conductor termina su jornada laboral (formato 24h)
- **pos_x, pos_y:** Coordenadas cartesianas de la ubicación inicial del vehículo (en km desde un punto de referencia)
- **especialidad:** Habilidad específica del conductor (0=ninguna, 1=manejo de materiales frágiles, 2=manejo de materiales peligrosos, 3=entregas expresas)

5.1.3. Consideraciones Adicionales

- La distancia entre dos puntos debe calcularse utilizando la fórmula euclidiana.
- El tiempo de viaje entre dos puntos se puede estimar considerando una velocidad promedio de 50 km/h.
- Para realizar una entrega, un vehículo debe:
 - Ser del tipo requerido o superior
 - Tener capacidad suficiente (volumen y peso)
 - Estar disponible durante la ventana de tiempo
 - Tener la especialidad requerida (si aplica)
- El formato de tiempo es HH:MM en sistema de 24 horas.

6 ENTREGABLES

- 1. **Código fuente:** Archivos .c y .h bien organizados y comentados
- 2. Makefile: Para compilar el proyecto
- 3. Conjuntos de Datos: Archivos con datos de prueba
- 4. **Informe técnico:** Documento PDF (8-10 páginas) que incluya:
 - Descripción de la implementación
 - Análisis teórico de la complejidad de los algoritmos

- Resultados experimentales con comparativas
- Discusión de resultados y conclusiones
- 5. **Presentación:** Exposición de 10-15 minutos del trabajo realizado

7 EVALUACIÓN

La evaluación del proyecto se realizará considerando tres componentes principales:

- 1. Evaluación del profesor (70 %): Basada en la rúbrica detallada a continuación.
- 2. **Evaluación del informe técnico (20 %):** Se dará especial importancia a la calidad, profundidad y rigurosidad del informe técnico.
- 3. **Evaluación entre pares (10 %):** Cada miembro del equipo evaluará la contribución de sus compañeros según criterios de participación, responsabilidad y calidad del trabajo.

7.1 EVALUACIÓN ENTRE PARES

La evaluación entre pares se realizará mediante un formulario confidencial donde cada estudiante evaluará a los demás miembros de su equipo en los siguientes aspectos:

- Asistencia y participación en reuniones de trabajo
- Cumplimiento de tareas asignadas
- Calidad de las contribuciones
- Colaboración y disposición para ayudar
- Resolución de problemas

Cada aspecto será calificado en una escala de 1 a 7. Esta evaluación permitirá ajustar la nota individual dentro del trabajo grupal, premiando el compromiso y la calidad de las aportaciones individuales.

8 Consejos y Recursos

- Comience por implementar una representación adecuada del problema antes de desarrollar los algoritmos.
- Desarrolle y pruebe cada algoritmo de forma incremental.
- Utilice conjuntos de datos pequeños para validar la correctitud antes de escalar a conjuntos más grandes.
- Para la implementación de colas de prioridad, considere usar heaps binarios.
- Recursos recomendados:
 - Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press. (Capítulos sobre algoritmos greedy)
 - Brucker, P. (2007). Scheduling Algorithms (5th ed.). Springer.
 - Pinedo, M. L. (2022). Scheduling: Theory, Algorithms, and Systems (6th ed.). Springer.

9 ESCALA DE EVALUACIÓN

Las notas parciales (Nota del Profesor y Nota del Informe Técnico) se calcularán según la siguiente escala, con interpolación lineal entre los puntos de referencia:

Figura 1: Escala de notas con interpolación lineal

9.1 CÁLCULO DE LA NOTA FINAL

La nota final del estudiante se calculará mediante la siguiente fórmula:

Nota Final = Nota del Profesor + Nota del Informe Técnico + Promedio de Notas de Pares

Donde:

- **Nota del Profesor (70 %):** Se obtiene aplicando la escala de evaluación mostrada en la figura al puntaje obtenido en la rúbrica.
- **Nota del Informe Técnico (20 %):** Se obtiene aplicando la misma escala de evaluación al informe técnico entregado.
- **Promedio de Notas de Pares (10 %):** Es el promedio de las evaluaciones realizadas por los compañeros de equipo.

Todas las notas parciales se escalan de 1.0 a 7.0 según la figura anterior antes de aplicar la ponderación final.

10 RÚBRICA DE EVALUACIÓN

Criterio	Excelente	Bueno (75-	Satisfactorio	Insuficiente
	(90-100 %)	89 %)	(60-74 %)	(0-59 %)
Modelado	Modelo	Modelo ade-	Modelo bási-	Modelo in-
(20 %)	completo y	cuado que	co funcional	completo o
	sofisticado	representa las	pero con sim-	con errores
	que captura	principales	plificaciones	conceptuales
	todas las	caracterís-	significativas.	graves.
	compleji-	ticas del		
	dades del	problema.		
	dominio.			
Impl. de	Impl. opti-	Impl. correc-	Impl. fun-	Impl. incom-
Algoritmos	mizada de	ta de al me-	cional de las	pleta o con
(30 %)	múltiples	nos tres es-	0	errores signi-
	estrategias	trategias con		ficativos.
	greedy con	buen análisis.	queridas.	
	análisis pro-			
	fundo.			
Mejoras	-	Impl. efectiva	_	Mejoras no
y Optim.	vadora de	de al menos	,	implemen-
(20 %)	múltiples	dos mejoras	requeridas.	tadas o con
	mejoras con	con análisis		funcionali-
	análisis de	adecuado.		dad limitada.
	impacto deta-			
Sistema	llado.	Ciatama cam	Ciatama fun	Ciatama in
Completo	Sistema robusto e	pleto que	Sistema fun- cional pero	
(20 %)		implementa	1	con funcio-
(20 /0)	_	_	limitaciones o	
	_	de las fun-		limitada.
	funcionalida-		eareries.	minuda.
	des con alta			
	calidad.	1		
Presentación	Exposición	Buena expo-	Exposición	Exposición
(10 %)	clara, com-	sición con	-	desorga-
	pleta y bien	estructura	suficiente.	nizada,
	estructurada.	adecuada.	Conocimien-	incompleta o
	Dominio total	Buen domi-	to general del	con errores
	del tema.	nio del tema.	tema.	graves.

Cuadro 1: Rúbrica de evaluación del proyecto

11 PREGUNTAS FRECUENTES

1. ¿Es necesario implementar todos los algoritmos mencionados?

No, se requiere implementar al menos tres de las estrategias de scheduling mencionadas y al menos dos de las mejoras propuestas.

2. ¿Cómo debemos manejar casos donde no hay solución factible?

Su implementación debe detectar estos casos y proporcionar información sobre las restricciones que no se pueden satisfacer.

3. ¿Es obligatorio usar el formato de datos proporcionado?

El formato proporcionado es una referencia. Pueden modificarlo si lo justifican adecuadamente en su documentación.

4. ¿Se puede usar alguna biblioteca externa para estructuras de datos?

Se permite usar bibliotecas estándar de C para estructuras básicas, pero las implementaciones de los algoritmos de scheduling deben ser desarrolladas por ustedes.