Uniwersytet Wrocławski Wydział Fizyki i Astronomii Fizyka komputerowa

PRACA MAGISTERSKA

Tytuł polski

Tytuł angielski

Autor:

RAFAŁ SKRZYPIEC

Promotor:

dr hab. Krzysztof Graczyk

Wrocław, 2018

Streszczenie

Tekst streszczenia

Abstract

Tekst streszczenia

Co poprawić z obecnego tekstu według priorytetu:

- 4.4 porownanie wynikow
- Twierdzeneie Cybenki
 - bardziej dokładnie i logicznie przeprowadzić dowód twierdzenia?
 - opisać wizualne przedstawienie twierdzenia i stworzyć rysunki z polskimi podpisami
- tekst o sigmoidzie też do ponownego przejrzenia
- bias variance
- zakonczenie
- spis treści tak aby zmieścił się na jednej stronie

Spis treści

			Ş	Sti	ona
1	Wst	5ęp			7
2	Siec	ci Neuronowe			9
	2.1	Historia sieci - perceptron, biologia			9
	2.2	Funkcje aktywacji, dlaczego sigmoidy			9
		2.2.1 Interpretacja probabilistyczna sigmoidy			11
	2.3	Opis algorytmu uczenia prostej sieci			13
	2.4	Uniwersalne twierdzenie aproksymacyjne (Twierdzenie Cybenki)			15
		2.4.1 Dowód matematyczny			15
		2.4.2 Przedstawienie wizualne działania			17
	2.5	Problem Bias - Variance			17
3	Met	todologia analizy			19
	3.1	Fizyka zjawiska			19
	3.2	Keras			27
	3.3	Generowanie sztucznych danych			29
	3.4	Walidacja krzyżowa			31
	3.5	Wczesne zatrzymanie			32
	3.6	Ilość neuronów			34
	3.7	Algorytm uczący			35
4	$\mathbf{W}\mathbf{y}_{1}$	niki analizy			41
	4.1	Analiza nr 1			41
	4.2	Analiza nr 2			47
	4.3	Analiza nr 3			52
	4.4	Porównanie rezultatów			56
5	Zak	ończenie			57

6 SPIS TREŚCI

Rozdział 1

Wstęp

Proton to trwała cząsteczka subatomowa o dodatnim ładunku elektrycznym o wartości +e i masie spoczynkowej około 938 MeV [37], nieznacznie mniejszej od masy neutronu. Według teorii modelu standardowego jest fermionem o spinie 1/2, składa się z dwóch kwarków górnych i jednego kwarka dolnego związanych ze sobą dzięki oddziaływaniom silnym, których pośrednikiem są gluony. Mimo, że jest to jeden z podstawowych składników materii i jądro atomowe każdego pierwiastka zawiera jeden lub więcej protonów, nie wszystkie jego właściwości są dobrze poznane. Zrozumienie ich stanowi istotny problem fizyki cząstek elementarnych.

Funkcje postaci protonu opisują przestrzenny rozkład ładunku elektrycznego we wnętrzu protonu, są zatem dobrym dostarczycielem informacji o jego wewnętrznej strukturze i jednym z kluczowych składników, które mogą pomóc ją poznać i zrozumieć. Funkcje postaci protonu mierzone poprzez wykorzystanie pomiarów eksperymentalnych rozpraszania elektronów na protonach. Wyróżniamy elektryczną G_{E_p} i magnetyczną G_{M_p} funkcje postaci, które dla niewielkich wartości przekazu czteropędu mogą być utożsamiane z transformatami Fouriera gęstości ładunku elektrycznego i prądu magnetyzacji wewnątrz protonu.

Znajomość funkcji postaci pozwala na oszacowanie promienia protonu czyli jednej z ciągle wątpliwie poznanych właśności cząstki. Wielkość tę można zmierzyć poprzez opisane powyżej rozpraszanie elektron-proton lub spektroskopię atomową obserwując niewielkie przesunięcia w spektrum wodoru spowodowane fizycznym rozmiarem protonu. Rezultaty otrzymane na skutek badania spektroskopii atomu wodoru składającego się z protonu i elektronu są spójne z pomiarami rozpraszania i dają wynik z niepewnością rzędu 0.6% [15]. Komitet Danych dla Nauki i Techniki (CODATA) uwzględniając pomiary z obu metod rekomenduje wartość [37] $R_E = 0.8775(51)$ fm. Okazuje się, że do badania rozmiaru protonu można wykorzystać również miony, które są około 200-krotnie cięższe od elektronów. Eskperymenty obserwacji przesunięcia Lamba 2S-2P w spektrum wodoru mionowego zostały opublikowane w 2010 roku [40]. Wykorzystana do obliczeń metoda daje wyniki obarczone 10 razy mniejszą niepewnością niż wcześniej [15]. Ostatnie publikacje [6] wskazują na wartość $R_E = 0.84087(39)$ fm. To wartość aż o 4% mniejsza od rekomendowanej przez CODATA. Takie rozbieżności wskazują na poważne braki w dotychczasowej teorii co równocześnie wzbudza zainteresowanie tą dziedziną fizyki.

Celem tej pracy magisterskiej jest zbudowanie modelu statystycznego, który wykorzystując pomiary eksperymentalne rozpraszania elektron-proton da w wyniku przewidywanie elektrycznej i magnetycznej funkcji postaci. Przedstawione analizy zaprezentują wykorzystują trzy modele, które w różny sposób starają się rozwiązać to zadanie. Pierwszy z nich do nauki wykorzystuje tylko pomiary całkowitych przekrójów czynnych w zależności od kwadratu przekazu czteropędu Q^2 oraz czynnika kinematycznego ϵ i estymuje całkowity przekrój czynny. Następnie operacje różniczkowania pozwalaja na separacje funkcji postaci. Drugi z modelów wykorzystuje dodatkowo pomiary stosunków funkcji postaci, jego wynikiem są explicite elektrtyczna i magnetyczna funkcja postaci. Trzeci model oprócz szacowania funkcji postaci przewiduje wartość poprawki dwufotonowej.

Zainspirowany poprzednimi badaniami [2], [26] wykorzystano do tego celu popularny typ sztucznych sieci neuronowych - perceptron wielowarstwowy. Sieci neuronowe są przykładem systemów uczących się, i znalazły szerokie zastosowanie w problemach klasyfikacyjnych oraz regresyjnych. Swoją popularność zawdzięczają biologicznym analogiom, ich konstrukcja inspirowana jest budową znajdujących się w mózgu struktur stworzonych przez neurony - komórkę nerwową, która na podstawie sygnałów wejściowych wyznacza wartość wysyłanego przez nią sygnału wyjściowego [47]. Tak zdefiniowane bardzo ogólnie neurony możemy łączyć w rozbudowane struktury tworząc sieć neuronową. Połączone w dowolny sposób komórki tworzą graf, w którym każda krawędź ma przypisaną liczbę nazywaną wagą. Jej wartość świadczy o istotności połączenia i jest ustalana jest podczasa nauki modelu. Uczenie modelu wymaga przygotowania odpowiedniego zestawu danych, który składa się ze zmiennych objaśniających czyli danych wejściowych oraz zmiennej objaśnianej czyli oczekiwanej wartości wyjściowej. Następnie uczący algorytm propagacji wstecznej modyfikuje wagi łączące neurony tak aby zminimalizować wartość błędu pomiędzy oczekiwanymi wartościami wyjściowymi oraz wynikiem modelu.

Praca magisterska została podzielona na pięć rozdziałów, następny zawiera wprowadzenie do tematyki sieci neuronowych, przedstawiona jest w nim ich historia, struktura i sposób działania. Następnie zaprezentowano wizualne działanie twierdzenia mówiące, że sieć neuronowa może realizować aproksymację z dowolnie małym błędem oraz problem osiągnięcia kompromisu pomiędzy obciążeniem i wariancją modelu. Rozdział 3 zaczyna się od opisu fizyki rozpraszania elektron-proton wraz z metodą separacji Rosenblutha [48] oraz pomiarem polaryzacji protonu [1]. Kolejne sekcje wprowadzenie do metodologii budowy i nauki modelu sieci neuronowych wraz z omówieniem wykorzystanych algorytmów m.in. generowania sztucznych danych, wczesnego zatrzymania nauki modelu oraz walidacji krzyżowej . W rozdziale 4 zostaną przedstawione wyniki trzech analiz wynikające z wykorzystania różnych technik modelowania oraz rodzajów pomiarów eksperymentalnych. Uzyskane wyniki zostaną porównane z rezultatami przedstawionymi w pracy [26]. Praca kończy się podsumowaniem w rozdziale 5.

Rozdział 2

Sieci Neuronowe

2.1 Historia sieci - perceptron, biologia

2.2 Funkcje aktywacji, dlaczego sigmoidy

Funckja aktywacji to funkcja, która działa na każdy neuron w sieci neuronowej, jako argument przyjmuje sumę iloczynów wartości neuronów z warstwy poprzedzającej i odpowiadających im wag. Każda z warstw sieci neuronowej może mieć zdefiniowaną inną funckję aktywacji.

Perceptron, który był inspiracją powstania sieci neuronowcyh został skonstruowany jako uproszczony model biologicznego neuronu. W neurobiologii, neuron jest komórką, która odbiera, przetwarza i przesyła informacje wykorzystując elektryczne i chemiczne sygnały. Neurony połączone są ze sobą przez synapsy, jeden neuron może otrzymywać informacje od wielu komórek nerwowych. Jeśli suma sygnałów elektrycznych z wejściowych synaps przekroczy pewien próg, wtedy neuron transmituje dalej sygnał elektryczny. Perceptron naśladował ten mechanizm stosując przedstawioną w lewym górnym rogu na Rys. 2.1 funckję Heaviside'a jako funkcję aktywacji. Funkcja przyjmuję wartość jeden jeśli suma wartości wejściowych jest większa od zera, w innym przypadku funkcja przyjmuje wartość zero i neuron nie propaguje sygnału. Perceptron jest najprostszym przykładem sieci neuronowej.

Wyniki badań przeprowadzonych przez [publikacja, publikacja] pokazały, że wśród pożądanych cech funkcji aktywacji znajdują się atrybuty, których funkcja Heaviside'a nie posiada, z tego powodu nie jest w praktyce często stosowana.

Koniecznym wymaganiem jest nieliniowość stosowanej funkcji, jest to cecha, która pozwala sieci neuronowej odwzorować nieliniowe zależności [LeCun, Cybenko?, Hornik]. Jedynym wyjątkiem od reguły jest stosowanie w problemach regresyjnych funkcji tożsamościowej w ostatniej warstwie wyjściowej. Dobrze gdy funkcja posiada ciągłą pochodną, pozwala to na stosowanie metod optymizacji opartych o obliczanie gradientu. Tu wyjątkiem jest stosowana poprawiona jednostka liniowa (ReLU), również przedstawiona na Rys. 2.1. Zakładając, że w zerze jej gradient równy jest zero możemy skorzystać z jej wielu zalet. Wśród nich wymienia się dokładniejsze odwzorowanie obserwowanego w neurobiologii zjawiska – tylko neurony, które otrzymały odpowiednio silny sygnał są aktywowane. Brak podatności na przeuczenie, podczas inicjalizacji sieci losowymi wagami, tylko około 50% ukrytych neuronów jest aktywowanych. Brak problemu znikającego gradientu uniemożliwiającego uczenie, w porównaniu do sigmoidy, u której wysyca się on w obu kierunkach. Jest to również funkcja często wykorzystywana w

metodach głębokiego uczenia. W warstwach splotowych sieci która służy do rozpoznawania obrazów wykorzystamy ReLU poszukując atrybutów, które nie zmieniają się podczas jej użycia.

Rysunek 2.1: Kilka przykładów często stosowanych funkcji aktywacji.

Funkcje sigmoidalne

Częstym wyborem funkcji aktywacji są funkcje sigmiodalne. Jest to grupa monotonicznie rosnących funkcji, których zbiór wartości jest ograniczony przez asymptoty o skończonych wartościach, do których wartość funkcji dąży w $\pm \infty$ [lecun98]. Jednym z najczęściej wykorzystywanych przykładów funkcji sigmoidalnych jest sigmoida zdefiniowana równaniem

$$\sigma(x) = \frac{1}{1 + e^{-x}}. (2.1)$$

Sigmoida jest różniczkowalna w każdym punkcie co pozwala używać podczas procesu uczenia metod optymizacji wykorzysujących gradient. Ponadto pochodna względem argumentu x

wyraża się prostą relacją

$$\frac{d}{dx}\sigma(x) = \sigma(x)\left(1 - \sigma(x)\right). \tag{2.2}$$

Rysunek 2.2: Przykład funkcji sigmoidalnej - sigmoida, $\sigma(x) = \frac{1}{1+e^{-x}}$

Innym przykładem często wykorzystywanej w sztucznych sieciach neuronowych funkcji sigmoidalnej jest tangens hyperboliczny (prawy dolny róg Rys. 2.1). Wzór tej funkcji możemy wyrazić korzystając z definicji sigmoidy

$$tgh(x) = 2\sigma(2x) - 1 \tag{2.3}$$

Jedną z zalet tej funkcji jest symetryczność względem początku układu współrzędnych.

2.2.1 Interpretacja probabilistyczna sigmoidy

Zastosowanie sigmoidy jako funkcji aktywacji naturalnie wynika z postaci prawdopodobieństwa a posteriori w Bayesowskim podejściu do problemu klasyfikacji dwóch klas. Rozważmy sztuczną sieć neuronową z jedną warstwą ukrytą oraz funkcję dyskryminacyjną $y(\mathbf{x})$ taką, że wektor \mathbf{x} jest przypisany do klasy C_1 jeśli $y(\mathbf{x}) > 0$ i do klasy C_2 jeśli $y(\mathbf{x}) < 0$.

W najprostszej, liniowej formie funkcja może być zapisana jako:

$$y(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x} + b_0. \tag{2.4}$$

Wektor \mathbf{w} , to d-wymiarowy wektor wag, natomiast parametr b_0 to bias. Rozważmy funkcję $g(\cdot)$ nazywaną dalej funkcją aktywacji, która jako argument przyjmuje jako argument sumę z równania (2.5):

$$y = g\left(\mathbf{w}^\mathsf{T}\mathbf{x} + b_0\right) \tag{2.5}$$

Rysunek 2.3: Reprezentacja funkcji dyskryminacyjnej y(x) w postaci diagramu sieci neuronowej, mającej n wejść, parametr bias i jedno wyjście.

Załóżmy, że funkcja rozkładu prawdopodobieństwa danych pod warunkiem klasy C_k zadane jest przez wielowymiarowy rozkład normalny z równymi macierzami kowariancji $\Sigma_1 = \Sigma_2 = \Sigma$

$$p(x|C_k) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu_k)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu_k)\right].$$
 (2.6)

Prawdopodobieństwo a posteriori klasy C_1 można zapisać używając twierdzenia Bayesa:

$$p(C_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|C_{1})p(C_{1})}{p(\mathbf{x}|C_{1})p(C_{1}) + p(\mathbf{x}|C_{2})p(C_{2})}$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_{2})p(C_{2})}{p(\mathbf{x}|C_{1})p(C_{1})}}$$

$$= \frac{1}{1 + \exp(-a)},$$
(2.7)

gdzie

$$a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$
$$= (\mu_1 - \mu_2)^{\mathsf{T}} \Sigma^{-1} \mathbf{x} - \frac{1}{2} \mu_1^{\mathsf{T}} \mu_1 + \frac{1}{2} \mu_2^{\mathsf{T}} \Sigma^{-1} \mu_2 + \ln \frac{p(C_1)}{p(C_2)}, \tag{2.8}$$

pamiętając o tym, że macierz kowariancji jest symetryczna otrzymujemy

$$\mathbf{x} = \Sigma^{-1} \left(\mu_1 - \mu_2 \right) \tag{2.9a}$$

$$b_0 = -\frac{1}{2}\mu_1^\mathsf{T}\mu_1 + \frac{1}{2}\mu_2^\mathsf{T}\Sigma^{-1}\mu_2 + \ln\frac{p(C_1)}{p(C_2)}$$
(2.9b)

Zatem widzimy, że użycie funkcji aktywacji w postaci sigmoidy pozwala nie tylko dokonać decyzji klasyfikacji ale również interpretować wynik funkcji dyskryminacyjnej jako prawdopodobieństwa a posteriori.

2.3 Opis algorytmu uczenia prostej sieci

Dane

Zbiór danych treningowych zawiera m jednowymiarowych próbek zadanych przez wektory $X \in \mathbb{R}^{1 \times m}$ i odpowiadające im wyniki $Y \in \mathbb{R}^{1 \times m}$.

Parametry

Sieć ma dwie warstwy: 1) ukryta, zawierająca L neuronów i 2) wyjściowa, składająca się z 1 neuronu. Warstwy są zdefiniowane przez:

- 1. parametry wartstwy ukrytej, które odwzorowują 1-wymiarowe wektory wejściowe w aktywacje L neuronów: macierz wag $W^h \in \mathbb{R}^{L \times 1}$ i wektor parametru bias $b^h \in \mathbb{R}^{L \times 1}$,
- 2. parametry wartstwy wyjściowe, które odwzorowują L-wymiarowy wektor aktywacji neuronów ukrytych w jeden neuron wartstwy wyjściowej: macierz wag $W^o \in 1 \times L$ i wektor bias $b^o \in \mathbb{R}^{1 \times 1}$.

Propagacja sygnału

Wejście każdego neuronu w warstwie ukrytej jest iloczynem danych wejściowych i odpowiadającej im wagi plus parametr bias. Na przykład dla *i*-tego przykładu danych wejściowych, w *l*-tym neuronie mamy

$$a_I^{h(i)} = W_I^h x^{(i)} + b_I^h (2.10)$$

Funkcją aktywacyjną neuronów jest sigmoida $\sigma(a) = \frac{1}{1+e^{-a}}$, jako argument przyjmuje ona wejście neuronów:

$$h_{l}^{h(i)} = \sigma(a_{l}^{h(i)}) \tag{2.11}$$

Neuron warstwy wyjściowej zawiera sumę iloczynów aktywacji neuronów i odpowiadających im wag plus parametr bias. Dla *i*-tego przykładu mamy

$$a^{o(i)} = \sum_{l} W^{o}_{l} h^{h(i)}_{l} + b^{o}$$

$$= \sum_{l} W^{o}_{l} \sigma(a^{h(i)}_{l}) + b^{o}$$

$$= \sum_{l} W^{o}_{l} \sigma(W^{h}_{l} x^{(i)} + b^{h}_{l}) + b^{o}$$
(2.12)

Jako funkcja straty zostanie wykorzystany błąd średniokwadratowy

$$J^{(i)}(\Theta) = \frac{1}{2} \left(y^{(i)} - a^{o(i)} \right)^2$$

$$J(\Theta) = \frac{1}{m} \sum_{i=1}^m J^{(i)}(\Theta) = \frac{1}{2m} \sum_{i=1}^m \left(y^{(i)} - a^{o(i)} \right)^2.$$
(2.13)

Propagacja wsteczna

Użycie reguły łańcuchowej umożliwia obliczenie gradientu funkcji straty względem parametrów sieci neuronowej.

Na początku policzmy gradient względem wyniku wartstwy wyjściowej.

$$\frac{\partial J}{\partial a^{o(i)}} = \frac{1}{m} \left(y^{(i)} - a^{o(i)} \right), \tag{2.14}$$

następnie policzmy gradient wyjścia neuronów ukrytych:

$$\frac{\partial J}{\partial h^{h_l^{(i)}}} = \frac{\partial J}{\partial a^{o(i)}} \frac{\partial a^{o(i)}}{\partial h^{h_l^{(i)}}} = \frac{\partial J}{\partial a^{o(i)}} W^o{}_l, \tag{2.15}$$

co umożliwia obliczenie gradientu względem wejścia neruonów ukrytych:

$$\frac{\partial J}{\partial a_l^{h(i)}} = \frac{\partial J}{\partial h_l^{h(i)}} \frac{\partial h_l^{h(i)}}{\partial a_l^{h(i)}} = \frac{\partial J}{\partial h_l^{h(i)}} h_l^{h(i)} (1 - h_l^{h(i)})$$
(2.16)

gdzie została wykorzystana relacja

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x)).$$

Ostatecznie możemy policzyć gradienty względem parametrów sieci, np. dla warstwy wejściowej:

$$\frac{\partial J}{\partial W^{o}_{l}} = \sum_{i} \frac{\partial J}{\partial a^{o(i)}} \frac{\partial a^{o(i)}}{\partial W^{o}_{l}} = \sum_{i} \frac{\partial J}{\partial a^{o(i)}} h^{h(i)}_{l}, \tag{2.17}$$

$$\frac{\partial J}{\partial b^o} = \sum_{i} \frac{\partial J}{\partial a^{o(i)}} \frac{\partial a^{o(i)}}{\partial b^o} = \sum_{i} \frac{\partial J}{\partial a^{o(i)}}.$$
 (2.18)

2.4 Uniwersalne twierdzenie aproksymacyjne (Twierdzenie Cybenki)

2.4.1 Dowód matematyczny

Według uniwersalnego twierdzenia aproksymacyjnego jednokierunkowa sieć neuronowa z jedną warstwą ukrytą i skończoną ale wystarczająco dużą liczbą neuronów, może przybliżyć z dowolną dokładnością każdą funkcję.

W 1989 roku Cybenko [cytowanie] udowodnił uniwersalne twierdzenie aproksymacyjne dla jednokierunkowej sieci neuronowej z sigmoidalną funkcją aktywacji. Jeszcze w tym samym roku, po pracy Cybenki ukazała się praca Hornika, Stinchcombe'a and White'a, którzy udowodnili prawdziwość powyższego twierdzenia dla dowolnej funkcji aktywacji.

Funkcje sigmoidalne to rodzina funkcji szeroko stosowanych w jednokierunkowych sieciach neuronowych, szczególnie tych stworzonych do celów regresji. W tej części zaprezentuję dowód uniwersalnego twierdzenia aproksymacyjnego podany przez Cybenkę w 1989 roku, następnie zademonstruję dowód wizualny posługując się sigmoidą jako funkcją aktywacji.

Niech I_n oznacza n-wymiarową jednostkową kostkę , $[0,1]^n$. $C(I_n)$ to przestrzeń ciągłych funkjci na I_n . Dodatkowo, niech $M(I_n)$ oznacza przestrzeń skończonych, regularnych miar borelowskich na n-wymiarowej kostce jednostkowej I_n .

Definicja 2.4.1. Miara μ jest regularna jeśli dla każdego mierzelnego zbioru A, $\mu(A)$ równa się supremum miar zamkniętych podzbiorów A i infimum otwartych nadzbiorów A. [Probability measures on metric spaces K.R. Parthasarathy]

Definicja 2.4.2. Funkcja $\sigma: \mathbb{R} \to \mathbb{R}$ jest funkcją sigmoidalną jeśli

$$\sigma(x) \to \begin{cases} 1 & \text{as} \quad x \to +\infty \\ 0 & \text{as} \quad x \to -\infty \end{cases}$$

Definicja 2.4.3. Funkcja σ jest funkcją dyskryminaczyjną jeśli dla miary $\mu \in M(I_n)$ zachodzi

$$\int_{I_n} \sigma\left(w^\mathsf{T} x + b_0\right) d\mu(x) = 0 \tag{2.19}$$

dla każdego $w \in \mathbb{R}$ i $b_0 \in \mathbb{R}$ co implikuje, że $\mu = 0$.

Twierdzenie 2.4.1. Każda ograniczona, mierzalna funkcja sigmoidalna σ jest funkcją dyskryminacyjną. W szczególności każda ciągła funkcja sigmoidalna jest dyskryminacyjna. [cytowanie Cybenko]

Dowód uniwesalnego twierdzenia aproksymacyjnego przy wykorzystaniu funkcji sigmoidalnych wymaga wprowadzenia kilku przydatnych definicji i twierdzeń. Pierwsze z nich to twierdzenie Hahna-Banacha, które formułuje możliwość rozszerzenia każdego ograniczonego funkcjonału liniowego z podprzestrzeni unormowanej na całą podprzestrzeń, przy zachowaniu jego właściwości.

Twierdzenie 2.4.2 (Twierdzenie Hahna-Banacha). Niech X to rzeczywista przestrzeń wektorowa, p to funkcja rzeczywista zdefiniowana na X spełniająca

$$p(\alpha x + (1 - \alpha)y) \le \alpha p(x) + (1 - \alpha)p(y) \quad \forall \alpha \in [0, 1], x, y \in X$$

Przypuśmy, że λ to funkcjonał liniowy zdefiniowany na zbiorze $Y \subset X$, który spełnia

$$\lambda(x) \leqslant p(x) \quad \forall x \in Y.$$

Wtedy istnieje funkcjonał liniowy Λ zdefiniowany na X spełniający

$$\Lambda(x) \leqslant p(x) \quad \forall x \in X,$$

tak, $\dot{z}e$

$$\Lambda(x) = \lambda(x) \quad \forall x \in Y.$$

Reed & Simon (1980), Methods of Modern Mathematical Physics. Functional Analysis

Definicja 2.4.4. Przestrzeń $\mathcal{L}(\mathcal{H}, \mathbb{C})$ nazywana jest przestrzenią dualną przestrzeni Hilberta \mathcal{H} i oznaczamy ją przez \mathcal{H}^* . Elementy \mathcal{H}^* nazywane są ciągłymi funkcjonałami liniowymi.

Reed & Simon (1980), Methods of Modern Mathematical Physics. Functional Analysis

Twierdzenie Riesza opisuje przestrzeń \mathcal{H}^* .

Twierdzenie 2.4.3 (Twierdzenie Riesza (znaleźć polskie źródło)). Dla każdego $T \in \mathcal{H}^*$, istnieje unikalne $y_T \in \mathcal{H}$ takie, że

$$T(x) = \langle y_T, x \rangle \quad \forall x \in \mathcal{H}$$

Ponadto

$$||y_T||_{\mathcal{H}} = ||T||_{\mathcal{H}^*}$$

Reed & Simon (1980), Methods of Modern Mathematical Physics. Functional Analysis

Twierdzenie 2.4.4. Niech σ będzie ciągłą funkcją dyskryminacyjną, wtedy skończona suma

$$G(x) = \sum_{i=1}^{N} w_i^o \sigma\left(w_i^{h^{\mathsf{T}}} x + b_i^h\right)$$
(2.20)

jest gęsta w $C(I_n)$. Innymi słowy, dla danej funkcji $f \in C(I_n)$ i $\epsilon > 0$, istnieje suma G(x) mająca powyższą postać, dla której

$$|G(x) - f(x)| < \epsilon \qquad \forall x \in I_n$$

Dowód. Niech $S \subset C(I_n)$ będzie zbiorem funkcji w postaci G(x) lub w innych słowach - zbiorem sieci neuronowych. Z pewnością S jest podprzestrzenią liniową $C(I_n)$. Jeśli S jest gęsty, domknięcie S jest całą przestrzenią $C(I_n)$.

Przyjmijmy, że domknięcie S nie jest całą przestrzenią $C(I_n)$. Wtedy domknięcie S-S' jest domkniętą podprzestrzenią $C(I_n)$. Przez twierdzenie Hahna-Banacha, istnieje ograniczony funkcjonał liniowy na $C(I_n)$, nazwijmy go L, z własnością, że $L \neq 0$ ale L(S') = L(S) = 0.

Przez twierdzenie Riesza, ograniczony funkcjonał liniowy L ma postać

$$L(h) = \int_{I_n} h(x)d\mu(x)$$

dla $\mu \in M(I_n)$, dla każdego $h \in C(I_n)$. W szczególności, odkąd $\sigma(w^{\mathsf{T}}x+b) \in S'$ dla każdego w i b, musi zachodzić

$$\int_{L_{-}} \sigma\left(w^{\mathsf{T}}x + b\right) d\mu(x) = 0$$

Jednakże, założyliśmy, że σ jest funkcją dyskryminacyjną, ten warunek implikuje, że $\mu=0$ co jest sprzeczne z naszym założeniem. Stąd, podprzestrzeń S jest gęsta w $C(I_n)$.

Pokazuje to, że suma

$$G(x) = \sum_{i=1}^{N} w_i^o \sigma \left(w_i^{h^{\mathsf{T}}} x + b_i^h \right)$$

jest gesta w $C(I_n)$ pod warunkiem, że σ jest ciągła i dyskryminacyjna.

Z twierdzenia wynika, że każda sieć neuronowa o wystarczająco dużej liczbie neuronów w jednej warstwie ukrytej i sigmoidalną funkcją aktywacyjną może z dowolną dokładnością przybliżyć przebieg każdej funkcji.

2.4.2 Przedstawienie wizualne działania

2.5 Problem Bias - Variance

Rozdział 3

Metodologia analizy

3.1 Fizyka zjawiska

W roku Ernest Rutherford wraz ze swoimi studentami Hansem Geigerem i Ernestem Marsdenem badali rozpraszanie cząstek naładowanych na cienkich foliach różnych pierwiastków. Do eksperymentu wykorzystano cząstki α emitowane przez naturalne pierwiastki radioaktywne. Cząstka α to jądro podstawowego izotopu helu składające się z dwóch protonów i dwóch neutronów. Czastka wysyłana jest przy rozpadzie niestabilnych jąder z prędkością $10^{7}\frac{\text{m}}{\text{s}}$ i może przelecieć kilka centymetrów w powietrzu lub około 0,1 mm w ciele stałym zanim zostanie zatrzymana z powodu zderzeń. Masa cząstek α jest około 7300 razy większa od masy elektronu. Atomy folii można sobie wyobrazić jako upakowane dość blisko siebie kule. Ponieważ są neutralne, poza atomami właściwie nie ma oddziaływania z cząstkami α . Wewnątrz atomu cząstki mogą oddziaływać zarówno z dodatnim jak i z ujemnym ładunkiem. Ponieważ ujemny ładunek jest związany z elektronami, które są o cztery rzędy wielkości lżejsze od cząstek α możemy zaniedbać całkowicie oddziaływanie z elektronami. Oddziaływanie z ładunkiem dodatnim zależy w istotny sposób od rozkładu tego ładunku w atomie. Wyniki były zaskakujące jeśli przyjąć za słuszny model Thompsona z jednorodnym rozkładem masy i ładunku. Podczas eksperymentu zaobserwowano rozpraszanie pod dużymi katami, dla niektórych cząstek pod katem prawie 180°. Oczekiwania związane z eksperymentem były oparte o obliczenia w ramach klasycznej elektrodynamiki. Dawały się jednak wyjaśnić w ramach tej samej teorii klasycznej jeśli założyć, że cały ładunek dodatni i (prawie) cała masa atomy skupione są w bardzo małym obszarze rzędu 10^{-14} m w środku atomu. Eksperyment potwierdzał więc hipotezę, że atom posiada jadro, bardzo gestą, bardzo małą strukturę niosącą cały dodatni ładunek atomu i prawie całą (99,95%) jego masę.

Wyniki eksperymentów rozproszeniowych charakteryzujemy przy pomocy różniczkowego przekroju czynnego. Żeby wprowadzić to pojęcie ustalmy układ współrzędnych w ten sposób, że centrum potencjału rozpraszającego znajduje się w początku układu, a oś OZ skierowana jest wzdłuż padającej wiązki cząstek. Różniczkowy przekrój czynny $\frac{d\sigma}{d\Omega}(\theta,\varphi)$ definiujemy przy pomocy ilorazu:

$$\frac{d\sigma}{d\Omega}(\theta,\varphi) = \frac{\begin{array}{c} \text{liczba cząstek rozproszonych w jednostce} \\ \text{czasu w kąt bryłowy } d\Omega \text{ wokół kierunku } (\theta,\varphi) \\ \text{strumień cząstek wiązki padającej } \times d\Omega \end{array}}. \tag{3.1}$$

Strumień cząstek wiązki padającej to liczba cząstek przechodzących w jednostce czasu

przez jednostkę powierzchni prostopadłą do osi OZ, w obszarze $z\ll 0$, a więc tam gdzie cząstki wiązki nie oddziałują jeszcze z centrum rozpraszającym. Wielkość ta ma wymiar $\left[\frac{1}{\mathrm{m}^2\mathrm{s}}\right]$, zatem różniczkowy przekrój czynny ma wymiar pola powierzchni. Często stosowaną jednostką, w której wyraża się przekroje czynne jest 1 barn = 10^{-28} m². Definicję różniczkowego przekroju czynnego można interpretować następująco: liczba cząstek rozproszonych w jednostce czasu w kąt bryłowy $d\Omega$ jest równa liczbie cząstek pochłoniętych przez tarczę o powierzchni $\frac{d\sigma}{d\Omega}\left(\theta,\varphi\right)d\Omega$ umieszczoną prostopadle do kierunku propagacji wiązki padającej. Całkując po kątach otrzymujemy całkowity przekrój czynny:

$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega} (\theta, \varphi) = \int_0^{\pi} \sin \theta d\theta \int_0^{2\pi} d\varphi \frac{d\sigma}{d\Omega} (\theta, \varphi). \tag{3.2}$$

W definicji przekroju czynnego występuje tylko liczba cząstek rozproszonych. Dla kątów $\theta>0$ możemy przyjąć, że detektor mierzący liczbę cząstek rozproszonych jest na tyle daleko od centrum rozpraszającego, że jest już poza wiązką padającą, która ma wymiar poprzeczny większy od rozmiarów obszaru z potencjałem istotnie różnym od zera, ale jednak skończony. Im mniejszy kąt θ tym trudniej oddzielić cząstki rozproszone od nierozproszonych. Dla małych kątów można mówić o różniczkowym przekroju czynnym tylko w sensie ekstrapolacji z obszaru $\theta>0$. Pojęcie różniczkowego i całkowitego przekroju czynnego nie jest ograniczone do rozpraszania elastycznego, stosuje się je także do opisu rozpraszania nieelastycznego. Zakładając rozpraszanie cząstki α w polu siły centralej $\sim \frac{1}{r^2}$, wykorzystując zasadę zachowania momentu pędu oraz energii mechanicznej otrzymujemy wzór na różniczkowy przekrój czynny, którym posługiwał się Rutherford [4]

$$\frac{d\sigma}{d\Omega}(\theta) = \left(\frac{e^2}{8\pi\epsilon_0 E_\alpha}\right)^2 \frac{1}{4\sin^4\frac{\theta}{2}}.$$
(3.3)

Z racji skali cząstek, które biorą udział w tym doświadczeniu, zagadnienie należy jednak rozpatrywać z punktu widzenia mechaniki kwantowej. Szukając stanów stacjonarnych hamiltonianu

$$\hat{H} = \frac{\hat{p}^2}{2\mu} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r},\tag{3.4}$$

przy wykorzystujaniu przybliżenia Borna, czyli jednej z metod przybliżonego rozwiązywania równania na stacjonarne stany rozproszeniowe, otrzymujemy wzór Rutherforda [30] na różniczkowy przekrój czynny na rozpraszanie na potencjale kulombowskim $-\frac{\alpha}{r}=-\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}$:

$$\frac{d\sigma}{d\Omega}(\theta) = \left(\frac{\alpha}{2E_{\alpha}}\right)^{2} \frac{1}{4\sin^{4}\frac{\theta}{2}} = \left(\frac{e^{2}}{8\pi\epsilon_{0}E_{\alpha}}\right)^{2} \frac{1}{4\sin^{4}\frac{\theta}{2}}$$
(3.5)

W granicy $\theta \to 0$ różniczkowy przekrój czynny staje się nieskończony. Całka po kątach jest rozbieżna i całkowity przekrój czynny jest nieskończony. Źródłem tych nieskończoności jest długozasięgowy charakter potencjału kulombowskiego, w sytuacjach fizycznych nie spotykamy czystego potencjału kulombowskiego, jest on zwykle mniej lub bardziej skutecznie ekranowany. To, że wynik otrzymany w ramach mechaniki kwantowej jest taki sam jak w mechanice klasycznej miało zasadniczy wpływ na rozwój mechaniki kwantowej. To dzięki temu zbiegowi okoliczności wnioski Rutherforda dotyczące budowy atomu wyciągnięte na podstawie wzorów klasycznych okazały się słuszne, a pytanie o stabilność układu składającego się z dodatnio

naładowanego jądra i krążących wokół niego elektronów stało się podstawowym problemem teoretycznym dla ówczesnych fizyków.

Okazuje się, że badanie rozpraszania cząstek mikroskopowych to jeden z najlepszych eksperymentalnych sposobów poznania ich struktury oraz oddziaływań pomiędzy nimi. W trakcie zderzeń może ulec zmianie struktura wewnętrzna cząstek, a nawet ich rodzaj i liczba. Dzieje się tak gdy energia zderzenia jest dostatecznie wysoka. Takie zdarzenia nazywamy nieelastycznymi, w elastycznych procesach rozpraszania liczba cząstek się nie zmienia i wewnętrzne stopnie swobody nie ulegają wzbudzeniu, można więc zaniedbać strukturę wewnętrzną cząstek.

Wraz z budową akceleratorów cząstek oraz rozwojem aparatury eksperymentalnej dokonał się ogromny postęp w poznaniu budowy podstawowych składników materii. Możliwość produkcji wiązki elektronów o wysokiej enegii i dużym natężeniu spowodowały, że od lat 60 XX wieku, rozpraszanie elektronów i protonów stało się skuteczną metodą badania struktury protonu. Rozpraszanie elektronu na protonie polega na wymianie wirtualnego fotonu między naładowanymi elektrycznie elektronem i protonem. Wynik rozpraszania $e^-p \to e^-p$ jest ściśle zależny od długości fali $\lambda = hc/E$ wymienionego podczas oddziaływania fotonu, więskza energia pozwala spojrzeć bardziej wgłąb struktury cząstki.

- Dla bardzo małej energii elektronu, $\lambda \gg r_p$, gdzie r_p jest promieniem protonu, rozpraszanie jest równoważne rozpraszaniu na punktowej cząstce.
- Dla małej energii elektornu, $\lambda \sim r_p$, rozpraszanie jest równoważne rozpraszaniu na naładowanej cząstce niepunktowej.
- Dla dużej energii elektronu, $\lambda < r_p$, długość fali jest wystarczająco mała aby dostrzec strukturę protonu, źródłem rozpraszania są kwarki.
- Dla bardzo dużych energii elektornu, $\lambda \ll r_p$, źródłem rozpraszania jest morze kwarkowogluonowe

Metoda Rosenblutha

Rysunek 3.1: Prosty schemat rozpraszania elastycznego elektronu o energii początkowej E_0 i energii kończowej E' na jądrze atomu wodoru, θ to kat rozpraszania.

Energia rozproszonego elektronu E' jest mniejsza niż energia początkowa E_0 o wartość energii przekazanej protonowi o masie M i wynosi:

$$E' = \frac{E_0}{1 + \frac{2E_0}{M}\sin^2\frac{\theta}{2}} \tag{3.6}$$

Zdefiniujmy $Q^2 \equiv -q^2$, q to przekaz czteropędu.

$$Q^{2} \equiv -q^{2} = -(p^{\mu} - p'^{\mu})^{2} = 2M (E_{0} - E')$$

$$= 4E_{0}E' \sin^{2}\frac{\theta}{2}$$
(3.7)

Otrzymana formuła Rutherforda z równania 3.5 dobrze sprawdza się przy opisie rozpraszania nierelatywistycznych elektronów. Przekrój czynny szybkich elektronów $p_e = E_e$ wymaga uwzględnienia dodatkowych czynników. Są nimi: efekty relatywistycznye, odrzut protonu oraz oddziaływanie spin-spin. Zmodyfikowany przekrój czynny opisywany jest przez formułę Motta [4]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \times 4\frac{E'}{E} \left(\cos^{2}\frac{\theta}{2} + \frac{Q^{2}}{2M^{2}}\sin^{2}\frac{\theta}{2}\right)
= \frac{\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}} \frac{E'}{E} \left(\cos^{2}\frac{\theta}{2} + \frac{Q^{2}}{2M^{2}}\sin^{2}\frac{\theta}{2}\right).$$
(3.8)

Powyższe równanie bierze jednak pod uwagę oddziaływania elektronu z protonem traktując proton jako obiekt punktowy, przy dostacznie wysokiej energii eletronu proton ujawnia swoje fizyczne wymiary oraz strukturę wewnętrzną. Ich skutkiem jest rozkład ładunku elektrycznego i momentu magnetycznego protonu.

Struktura protonu opisywana jest więc przez dwie funkcje postaci, elektryczną G_{E_p} i magnetyczną G_{M_p} które są transformatami Fouriera, odpowiednio rozkładu ładunku elektrycznego i rozkładu momentu magnetycznego protonu. Funkcje postaci protonu opisują przestrzenny rozkład ładunku elektrycznego we wnętrzu protonu, są zatem dobrym dostarczycielem informacji o jego wewnętrznej strukturze i jednym z kluczowych składników, które mogą pomóc ją poznać i zrozumieć. W granicy nierelatywistycznej definiowane są w następujący sposób [15]:

$$G(Q^2) = \int d^3 \vec{r} \, \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}},\tag{3.9}$$

całkując po całej objętości protonu. Zmodyfikowane równanie 3.8 nosi nazwę przekroju czynnego Rosenblutha [56]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{R} = \frac{\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}} \frac{E'}{E} \left(\frac{G_{E_{p}}^{2} + \tau G_{M_{p}}^{2}}{1 + \tau}\cos^{2}\frac{\theta}{2} + 2\tau G_{M_{p}}^{2}\sin^{2}\frac{\theta}{2}\right)$$

$$= \frac{\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}} \frac{E'}{E}\cos^{2}\frac{\theta}{2} \times \left[G_{E_{p}}^{2} + \frac{\tau}{\epsilon}G_{M_{p}}^{2}\right] \frac{1}{(1 + \tau)}$$

$$= \left(\frac{d\sigma}{d\Omega}\right)_{0} \times \left[G_{E_{p}}^{2} + \frac{\tau}{\epsilon}G_{M_{p}}^{2}\right] \frac{1}{(1 + \tau)},$$
(3.10)

gdzie ϵ jest czynnikiem kinematycznym i także polaryzacją wirtualnego fotonu

$$\epsilon = \left[1 + 2(1+\tau)\operatorname{tg}^2\left(\frac{\theta}{2}\right)\right]^{-1},$$

ponadto

$$\tau = \frac{Q^2}{4M^2}.$$

Funkcje G_{E_p} , G_{M_p} są zależne tylko od przekazu czteropędu Q^2 i spełniają poniższe warunki brzegowe:

$$G_{E_p} = G_{E_p}(Q^2)$$
 $G_{E_p}(0) = 1$
 $G_{M_p} = G_{M_p}(Q^2)$ $G_{M_p}(0) = \mu_p$,

gdzie μ_p to moment magnetyczny protonu. Wartości tych istotnych funkcji są wyznaczane eksperymentalnie. Teoretycznie podczas rozpraszania elektron z protonem wymieniają między sobą nieskończoną ilość fotonów, w pierwszym przybliżeniu można założyć, że pośrednikiem oddziaływania jest tylko jeden foton. Zmierzony w laboratorium całkowity przekrój czynny rozpraszania można w przybliżeniu jednofotonowym wyrazić formułą [2]:

$$\sigma_R(\epsilon, Q^2) \equiv \epsilon (1+\tau) \frac{\sigma(\epsilon, Q^2)}{\sigma_0(\epsilon, Q^2)}$$

$$= \tau G_{M_p}^2(Q^2) + \epsilon G_{E_p}^2(Q^2). \tag{3.11}$$

Metoda Rosenblutha to pierwsza poznana technika pozwalająca na otrzymanie wartości funkcji G_E i G_M dla protonu. Wymaga ona pomiarów przekroju czynnego rozpraszania elektron-proton podczas wielu eksperymentów, dla różnych parametrów θ i Q^2 . Zmianę tych parametrów można otrzymać poprzez korygowanie energii wiązki oraz kąta rozpraszania elektronu w tak dużym zakresie, jak to jest wykonalne eksperymentalnie. Metoda separacji Rosenblutha pozwala zapisać zredukowany przekrój czynny jako kombinację liniową funkcji postaci G_{E_p} oraz G_{M_p} [39].

Pomiar polaryzacji protonu

Kolejna metody oparte są na pomiarach polaryzacji odbitego protonu podczas rozpraszania spolaryzowanych elektronów lub na pomiarach asymetrii rozpraszania, pozwalają one określić wzajemny stosunek elektrycznego oraz magnetycznego czynnika postaci

$$\mathcal{R}\left(Q^{2}\right) \equiv \mu_{p} \frac{G_{E_{p}}\left(Q^{2}\right)}{G_{M_{n}}\left(Q^{2}\right)},$$

gdzie $\mu_p = 2,793$ to moment magnetyczny protonu. W przybliżeniu jednofotonowym, otrzymujemy tylko dwa niezerowe składniki wektora polaryzacji, poprzeczny P_t oraz podłużny P_l . Stosunek czynników postaci możemy otrzymać bezpośrednio ze stosunku składowych polaryzacji, otrzymujemy [39]:

$$\mathcal{R}\left(Q^{2}\right) \equiv -\mu_{p} \frac{P_{t}}{P_{l}} \frac{E + E'}{2M} \operatorname{tg}^{2}\left(\frac{\theta}{2}\right)$$

gdzie P_t i P_t to podłużny i poprzeczny składnik wektora polaryzacji odrzuconego protonu. E oraz E' to poczatkowa i końcowa energia elektronu, θ to kąt rozpraszanai elektronu i M to masa protonu. Schemat procesu pokazany został na rysunku 3.2 Współczynnik $\mathcal{R}(Q^2)$ może

także zostać wyznaczony na podstawie pomiaru asymetrii podczas sprężystego rozpraszania elektron-proton [2, 39]

$$\frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = -2\mu_{p}\sqrt{\tau(1+\tau)}\operatorname{tg}\left(\frac{\theta}{2}\right) \frac{\mathcal{R}\sin\theta^{*}\cos\phi^{*} + \mu_{p}\sqrt{\tau\left[1+(1+\tau)\operatorname{tg}^{2}\left(\frac{\theta}{2}\right)\right]}\cos\theta^{*}}{\mathcal{R}^{2} + \mu_{p}\tau/\epsilon},$$

gdzie σ_+ i σ_- to przekroje czynne dla dodatniej i ujemnej skrętności, θ^* i ϕ^* to kąty polarny i azymutalny polaryzacji protonu względem wektora przekazu pędu \vec{q} i płaszczyzny rozpraszania.

Rysunek 3.2: Schemat rozpraszania spolaryzowanego podłużnie elektronu na protonie w przyybliżeniu jednofotonowym.

Poprawka dwufotonowa

Jak zaznaczono w [7], najnowsze pomiary przekrojów czynnych wskazują, że do uzyskania całkowitej zgodność z danymi pomiarów transferu polaryzacji niezbędne jest uwzględnienie dodatkowych poprawek do równania 3.11. Po za klasycznymi poprawkami radiacyjnymi należy rozważyć poprawkę dwufotonową, która może zostać zapisana jako dodatkowy składnik równania.

Rysunek 3.3: Diagram dwufotonowy dla elastycznego rozpraszania elektron-proton.

Diagram Feynmana dla tego zjawisku został przedstawiony na rysunku 3.3. Obliczenie poprawki jest trudne i zależne od modelu, wiedząc jednak, że amplituda rozpraszania musi spełniać ogólne zasady symetrii możemy założyć, że

$$\sigma_R \to \sigma_R + \delta_{TPE} \left(Q^2, \epsilon \right)$$
 (3.13)

Wpływ poprawki dwufotonowej zostanie uwzględniony w jednej z przedstawionej poniżej analiz.

Promień protonu

Zgodnie z równianiem (3.9), funkcje postaci w granicy nierelatywistycznej definiowane są w następujący sposób:

$$G(Q^2) = \int d^3 \vec{r} \, \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}},$$

Ponadto rozwinięcie w szereg dla niewielkich Q^2 daje:

$$G(Q^2) = 1 - \frac{1}{6} \langle r^2 \rangle Q^2 + \dots,$$
 (3.14)

gdzie $\langle r^2 \rangle$ to kwadrat średniej kwadratowej promienia protonu. Dokładne oszacowanie przebiegów funkcji postaci G_{E_p} i G_{M_p} jest niezwykle ważne, poniważ ich znajomość może posłużyć do oszacowania promienia protonu, który wyraża się poniższym wzorem:

$$r_{E,M}^2 \equiv \langle r_{E,M}^2 \rangle = -6 \frac{dG_{E,M}}{dQ^2} \Big|_{Q^2=0}$$
 (3.15)

Wielkość tę można zmierzyć poprzez opisane powyżej rozpraszanie elektron-proton lub spektroskopię atomową obserwując niewielkie przesunięcia w spektrum wodoru spowodowane fizycznym rozmiarem protonu. Rezultaty otrzymane na skutek badania spektroskopii atomu wodoru składającego się z protonu i elektronu są spójne z pomiarami rozpraszania i dają wynik z niepewnością rzędu 0.6% [15]. Jedne z najdokładniejszych pomiarów rozpraszania zostały opublikowane w [12], natomiast wartość promienia protonu została oszacowana na

$$R_E = 0.879(8) \text{ fm.}$$
 (3.16)

Komitet Danych dla Nauki i Techniki (CODATA) uwzględniając dodatkowo pomiary spektroskopowe rekomenduje wartość [37]

$$R_E = 0.8775(51) \text{ fm.}$$
 (3.17)

Okazuje się, że do badania rozmiaru protonu można wykorzystać również miony. Dysponujemy wtedy jedną metodą, która daje rezultaty obarczone bardzo niewielką niepewnością. Pierwsze wyniki zostały opublikowane w 2010 roku [40] i zawierały promień protonu zmierzony przez obserwacje przesunięcia Lamba 2S-2P w spektrum wodoru mionowego. Mion, z powodu masy około 200-krotnie większej od elektronu orbituje znacznie bliżej protonu niż elektron i rozmiar protonu ma znacznie większy wpływ na jego poziomy energetyczne. Pozwala to na

pomiar promienia protonu z niepewnością 10 razy mniejszą niż przy wynikach otrzymanych z eksperymentów z wykorzystaniem elektronów [15]. Obecne rezultaty wskazują na wartość [6]

$$R_E = 0.84087(39) \text{ fm.}$$
 (3.18)

To wartość o 4% mniejsza od rekomendowanej przez CODATA (3.17), będąca rozbieżnością na poziomie 7σ . Wartości stałych fizycznych bardzo często znacząco zmieniały swoją wartość wraz z zmianą techniki pomiaru i wzrostem czułości urządzeń pomiarowych. Rysunek 3.4 przedstawia ewolucje wartości średniego czasu życia neutronu oraz masy mezonu eta w czasie. Możemy zauważyć, że w obu tych przykładach najnowsza wartość nie znajduje się nawet w obszarze niepewności pomiarowej początkowych wskazań.

Rysunek 3.4: Przykłady zmian szacowanych wielkości fizycznych w czasie. Na wykresie po lewej stronie średni czas życia swobodnego neutronu, po prawej stronie masa mezonu eta [11]

Pomiary doświadczalne

Podczas analizy wykorzystano dane otrzymane na skutek pomiarów dwóch opisanych powyżej wielkości fizycznych. Pierwszy zestaw danych to 24 niezależne zbiory danych, opublikowane w pracach [29, 9, 3, 34, 25, 10, 42, 13, 8, 33, 51, 57, 5, 14, 55, 38, 52, 53, 45, 20, 16], które zawierają pomiary przekrojów czynnych σ_R wraz z niepewnością pomiarową $\Delta\sigma_R$ w zależności od czynnika kinematycznego ϵ oraz kwadratu przekazanego czteropędu Q^2 . Ponadto w jednej z analiz zostanie wykorzystany powyższy zbiór danych z wartościami przekrojów czynnych σ_R zmodyfikowanych o poprawkę wynikającą z wymiany dwóch fotonów podczas rozpraszania. Rozmiar danych to razem 426 punktów pomiarowcyh.

Drugi zestaw tworzą zbiory opublikowane w pracach [36, 32, 19, 41, 23, 24, 43, 27, 35, 31, 46, 17], które zawierają stosunek elektrycznej i magnetycznej funkcji postaci \mathcal{R} wydobyty z tzw. pomiarów transferu polaryzacji w zależności od Q^2 . Kolejna kolumna zawiera informacje nt. niepewności pomiarowej $\Delta \mathcal{R}$. Drugi zbiór to 68 punktów pomiarowych.

Dodatkowo każdy z 24 zbiorów danych zawierających pomiary całkowitego przekroju czynnego ma określoną niepewność systematyczną $\Delta \eta$ wynikającą z rozbieżności pomiędzy pomia-

3.2. KERAS 27

rami całkowitych przekrojów czynnych i pomiarami podłużnej i poprzecznej składowej polaryzacji protonów dającymi w rezultacie stosunki funkcji postaci protonu.

3.2 Keras

Modele sieci neuronowych opisywane w tej pracy zostały zaprogramowane przy użyciu biblioteki Keras. Keras jest interfejsem API wysokiego poziomu służącym do tworzenia i szkolenia modeli głębokiego uczenia. Początkowo Keras został opracowany dla naukowców, którzy mogli dzięki niemu dokonywać szybkich eksperymentów i symulacji. Jednak na skutek tego, że jest rozpowszechniany pod licencją MIT (może być za darmo wykorzystywany w projektach komercyjnych) zdobył dużą popularność. Dziś ma on kilka set tysięcy użytkowników, od nauczycieli akademickich po inżynierów oprogramowania pracujących zarówno w start-upach jak i dużych firmach, i hobbystów. Jego zalety są wykorzystywane między innymi w wiodących ośrodkach naukowych takich jak Europejska Organizacja Badań Jądrowych CERN i setkach firm, z których największe to Google, Netflix, Uber, Yelp, Opera Software [22]. Ponadto jego zalety zostały docenione przez analityków całego świata, którzy chętnie wykorzystują jego możliwości w konkursach Kaggle. Jest to platforma internetowa, która organizuje konkursy na najlepsze modele służące do przewidywania i opisywania zbiorów danych przesyłanych przez firmy i użytkowników, wiele z rywalizacji zostało wygranych przez modele zbudowane przy użyciu wspomnianego interfejsu API. Do największych zalet Keras należą:

- posiada przyjazny użytkownikowi interfejs, który ułatwia szybkie prototypowanie modeli sieci neuronowych
- prosty i spójny interfejs zoptymalizowany pod katem typowych przepadków użycia
- zapewnia przejrzyste informacje zwrotne dotyczące błędów użytkownika
- obsługuje dowolne architektury sieciowe: modele z wieloma wejściami lub wieloma wyściami
- posiada wbudowane wsparcie dla splotowych sieci neuronowych oraz rekurencyjnych sieci neuronowych
- pozwala na bezproblemowe działanie tego samego kodu na CPU oraz GPU

Keras jest biblioteką, o której można powiedzieć, że zapewnia cegiełki służące do zbudowania modelu głębokiego uczenia natomiast w minimalnym stopniu pozwala użytkownikom na ingerencję w ich strukturę. W zamian wykorzystuje wyspecjalizowaną i dobrze zoptymalizowaną bibliotekę wyspecjalizowaną w operacjach na tensorach. Szczególnie szybko wykonują się obliczenia numeryczne typowe dla algorytmów uczenia maszynowego takich jak mnożenie macierzy i obliczanie gradientu. Można wybierać wśród trzech istniejących implementacji, każda z nich ma otwarte źródło. Pierwsza z nich wykorzystuje Tensorflow opracowany i rozwijany przez Google'a, druga korzysta z Theano opracowanego i rozwijanamego przez LISA Lab w Uniwersytecie Montrealskim, ostatnia i najmniej popularna wykorzystuje CNTK opracowane i rozwijane przez Microsoft. W przyszłości prawdopodobnie pojawi się więcej możliwości wyboru, między innymi niedawno powstały, zdobywający coraz większą popularność projekt Torch finansowany przez Facebooka. Obecnie najczęściej wykorzystywany jest TensorFlow, został on także wykorzystany w tej pracy.

Proces budowy oraz treningu modelu sieci neuronowej jest bardzo prosty i wymaga wykonania następujących kroków

- 1. Zdefiniuj swoje dane treningowe: dane wejściowe i dane wyjściowe
- 2. Zdefiniuj warstwy swojej sieci neuronowej, które przekształcają dane wyjściowe w wyjście
- 3. Skonfiguruj proces uczenia poprzez wybranie funkcji straty, algorytmu szukającego minimum funkcji straty
- 4. Przeprowadź odpowiednia do wytrenowania sieci ilość iteracji

Ponizszy przykład prezentuje jak proste jest zbudowanie i wytrenowanie bardzo podstawowego, wymagającego minimum zaangażowania przykładu sieci neuronowej przy użyciu biblioteki Keras.

```
#Zaimportuj wymagane pliki
from keras import models
from keras import layers
#Zainicjalizuj model
model = models.Sequential()
#Dodaj pierwszą warstwę
model.add(layers.Dense(units = 10, activation = 'sigmoid',
   input_shape = 2))
#Dodaj druga warstwe
model.add(layers.Dense(units = 5, activation = 'tanh'))
#Dodaj warstwę wyjsciową
model.add(layers.Dense(units = 1))
#Skompiluj model
model.compile(optimizer = 'rmsprop', loss='mse')
#Trenuj model
model.fit(inputs = X, outputs = Y, epochs = 100)
```

Zdefiniowana powyżej sieć składa się z dwóch warstw ukrytych o odpowiednio 10 i 5 neuronach. Funkcją aktywacji w pierwszej warstwie jest sigmoida, dane wejściowe zawierają dwie cechy, które posłużą do zbudowania modelu, druga warstwa wykorzystuje tangens hiperboliczny jako funkcję aktywacji. Wynikiem sieci jest zgodnie z definicją warstwy wyjściowej jednowymiarowy wektor. Model podczas nauki minimalizuje błąd średniokwadratowy, wykorzystuje do tego algorytm rmsprop, trenownanie modelu skończy się po 100 pełnych iteracjach zbioru danych.

```
\#X\_new - nowe dane \#Stw\acute{o}rz predykcje
```

Y_new = model.predict(X_new)

Mając gotowy model i zapewniając nowe dane wejściowe możemy z łatwością wygenerować przewidywania sieci używając funkcji predict.

3.3 Generowanie sztucznych danych

Każdy pomiar eksperymentalny obarczony jest niepewnością wyniku. Niedokładność pomiaru pochodzi nie tylko z niedoskonałości aparatury i zmysłów obserwatora, ale jest nieodłączną cechą takiej operacji. W przypadku analizowanych poniżej danych mamy doczynienia z niepewnościami pomiarów oraz z błędami systematycznymi wynikającymi z rozbieżności pomiędzy pomiarami całkowitych przekrojów czynnych i pomiarami podłużnej i poprzecznej składowej polaryzacji protonów dającymi w rezultacie stosunki funkcji postaci protonu. Na pierwszy zestaw analizowanych danych składa 426 pomiarów przekrojów czynnych σ , każdy punkt pomiarowy oprócz zmiennej objaśnianej zawiera przypisaną do niej niepewność pomiaru $\Delta \sigma$. Następne dwie kolumny to zmiennej objaśniające Q^2 oraz ϵ . Bazując na idei zaproponowanej w [21], wykorzystując niepewność pomiaru oraz błędzie systematycznym możemy wygenerować następne zestawy danych, które będą zawierały wartości przekrojów czynnych z zakresów, w których były możliwe do zmierzenia dla zadanych wartości Q^2 i ε . Następnie każda z replik posłuży do treningu osobnej sieci neuronowej, co pozwoli otrzymać rozkład funkcji $\sigma^{(net)}(Q^2,\varepsilon)$. W [21] pokazano, że tak otrzymana przestrzeń funkcyjna zapewnia nieobciążoną estymację wszystkich pomiarów doświadczalnych przy równoczesnym otrzymaniu gładkiej interpolacji.

Do opisania przykładu zastosuję dane wykorzystane do treningu pierwszego modelu statystycznego, natomiast należy pamiętać, że wszystkie zbiory danych posiadające wyznaczoną niepewność pomiaru mogą posłużyć do powtórzenia poniżej procedury. Zakładając, że pomiary eksperymentalne $\sigma^{(exp)}$ są wartościami zmiennej losowej o rozkładzie normalnym $\mathcal{N}\left(\sigma^{(exp)}, \Delta\sigma_i^{(exp)}\right)$ możemy wygenerować kolejne pomiary korzystając z poniższego równania:

$$\sigma_{a,i}^{(art)(k)} = \sigma_i^{(exp)} + \mathcal{N}\left(0, \Delta\sigma_i^{(exp)}\right)^{(k)}, \tag{3.19}$$

gdzie $\sigma_i^{(exp)}$ to kolejny pomiar eksperymentalny a k to kolejny wygenerowany zestaw danych. Korzystając z opisanej wyżej metody kluczowy jest wybór optymalnej wartości liczby replik N_{rep} tak aby rozkład wygenerowanych danych zawierał charakterystyki zgodne z danymi eksperymantalnymi. Aby dokonać wyboru odpowiedniej wartości N_{rep} porównano wartości średnie oraz odchylenie standardowe próbek po wygenerowaniu sztucznych danych. Rysunek 3.5 przedstawia dwa wykresy punktowe powyższych wartości dla 10, 100 oraz 1000 replik. Szczególny wpływ ilości wygenerowanych danych widoczny jest w części przedstawiającej porównanie odchyleń standardowych. Większa liczba klonów powoduje, że charakterystyki rozkładów wygenerowanych oraz eksperymentalnych danych są bardziej zgodne, co na wykresach prezentuje się jako ułożenie punktów wzdłuż prostej y=x. Wartość średnia oraz odchylenie

standardowe sztucznych danych zostały zdefiniowane w równaniach 3.20a oraz 3.20b.

$$\left\langle \sigma_{a,i}^{(art)} \right\rangle_{rep} = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \sigma_{a,i}^{(art)(k)} ,$$
 (3.20a)

$$\left\langle \Delta \sigma_{a,i}^{(art)} \right\rangle_{rep} = \sqrt{\left\langle \sigma_{a,i}^{(art)2} \right\rangle_{rep} - \left\langle \sigma_{a,i}^{(art)} \right\rangle_{rep}^{2}} .$$
 (3.20b)

Aby wskazać jak bardzo wygenerowane dane różnią się od danych eksperymentalnych zdefi-

Rysunek 3.5: $\langle \sigma_{a,i}^{(art)} \rangle$ vs. $\sigma_i^{(exp)}$ po lewej oraz $\langle \Delta \sigma_{a,i}^{(art)} \rangle$ vs. $\Delta \sigma_i^{(exp)}$ po prawej dla $N_{rep} = 10$ (czerwony), 100 (zielony), 1000 (niebieski).

niowano średnią wariancję oraz średni błąd względny dla wszystkich punktów pomiarowych $(N_{dat}=426)$:

$$\left\langle V\left[\left\langle \sigma_{a,i}^{(art)}\right\rangle_{rep}\right]\right\rangle_{dat} = \frac{1}{N_{dat}} \sum_{i=1}^{N_{dat}} \left(\left\langle \sigma_{a,i}^{(art)}\right\rangle_{rep} - \sigma_{i}^{(exp)}\right)^{2} , \qquad (3.21a)$$

$$\left\langle PE\left[\left\langle \sigma_{a,i}^{(art)}\right\rangle_{rep}\right]\right\rangle_{dat} = \frac{1}{N_{dat}} \sum_{i=1}^{N_{dat}} \left| \frac{\left\langle \sigma_{a,i}^{(art)}\right\rangle_{rep} - \sigma_{i}^{(exp)}}{\sigma_{i}^{(exp)}} \right| . \tag{3.21b}$$

Analogicznie możemy zdefiniować $\left\langle V\left[\left\langle \Delta\sigma_{a,i}^{(art)}\right\rangle_{rep}\right]\right\rangle_{dat}$ oraz $\left\langle PE\left[\left\langle \Delta\sigma_{a,i}^{(art)}\right\rangle_{rep}\right]\right\rangle_{dat}$. Tabela 3.1 przedstawiona różnice między zbiorami danych dla 10, 100 oraz 1000 replik

Tabela 3.1 przedstawiona różnice między zbiorami danych dla 10, 100 oraz 1000 replik danych. Wariancja wartości sredniej zachowuje się zgodnie z przewidywaniami wynikającymi z teorii Monte Carlo i jest proporcjonalna do $1/N_{rep}$. Podobnie jest w przypadku wariancji odchylenia standardowego, które powinno maleć wraz ze wzrostem N_{rep} proporcjonalnie do $1/\sqrt{N_{rep}}$ [21]. Aby osiągnąć ponad 99% zgodność w wartości średniej oraz około 99% zgodność w niepewności pomiarowej należy wygenerować około 1000 replik danych. Ponadto, każdy

N_{rep}	10	100	1000
$\left\langle V\left[\left\langle \sigma_{a,i}^{(art)}\right\rangle _{rep}\right]\right angle _{dat}$	3.6×10^{-3}	4.3×10^{-4}	4.0×10^{-5}
$\left\langle PE\left[\left\langle \sigma_{a,i}^{(art)}\right\rangle _{rep}\right]\right angle _{dat}$	0.60%	0.20%	0.06%
$\left\langle V\left[\left\langle \Delta\sigma_{a,i}^{(art)}\right\rangle _{rep}\right]\right\rangle _{dat}$	1.5×10^{-3}	9.4×10^{-5}	1.4×10^{-5}
$\left\langle PE\left[\left\langle \Delta\sigma_{a,i}^{(art)}\right\rangle _{rep}\right]\right angle _{dat}$	19.4%	5.8%	1.7%

Tabela 3.1: Porównanie pomiędzy danymi eksperymentalnymi i danymi sztucznie wygenerowanymi

z 14 niezależnych zbiorów danych ma określoną procentową niepewność systematyczną $\Delta \eta$, która powinna zostać uwzględniona podczas następnego etapu generowania replik danych. Dla każdego z 14 zbiorów losowana jest jedna wartość $\mathcal{N}\left(0,\Delta\eta\right)$ i ostatecznie generowane punkty przyjmują postać

$$\sigma_i^{(art)(k)} = \sigma_{a,i}^{(art)(k)} \times \left(1 + \mathcal{N}\left(0, \Delta \eta\right)^{(k)}\right)$$

$$= \left(\sigma_i^{(exp)} + \mathcal{N}\left(0, \Delta \sigma_i^{(exp)}\right)^{(k)}\right) \times \left(1 + \mathcal{N}\left(0, \Delta \eta\right)^{(k)}\right). \tag{3.22}$$

Przedstawiona w dalszej części pracy analiza opiera się na aż trzech różnych zbiorach danych. Oprócz powyższego zbioru dysponujemy zależnością przekroju czynnego od Q^2 i ϵ zmodyfikowaną o poprawkę dwufotonową oraz stosunkiem funkcji postaci w zależności od Q^2 . Do tych zbiorów danych zostały zastosowane analogiczne kroki służące wygenerowaniu sztucznych danych.

3.4 Walidacja krzyżowa

Algorytm wykorzystywany podczas nauki modelu ma za zadnianie znalezienie takich parametrów, które sprawiają, że model odwzorowuje dane wykorzystane do nauki w sposób jak najlepszy z możliwych. Jeśli do walidacji modelu wykorzystamy inną, niezależną próbkę danych pochodzącą z tego samego zbioru co podzbiór uczący, zazwyczaj okaże się, że model nie działa aż tak dobrze jak przy użyciu zbioru uczącego. Rozmiar tej różnicy zwiększa się, szczególnie wtedy gdy wielkość zbioru treningowego jest niewielka, lub gdy liczba parametrów modelu jest bardzo duża. Walidacja krzyżowa to metoda statystyczna, która ma za zadanie zminimalizować tę różnicę przez co pomaga ocenić i zwiększyć trafność przewidywań modelu predykcyjnego.

W najprostszym przykładzie walidacji krzyżowej zbiór danych dzieli się na dwa podzbiory: uczący i walidacyjny. Podczas gdy zbiór uczący służy do nauki modelu, zbiór walidacyjny wykorzystuje się aby mierzyć błąd modelu na nieznanym zbiorze danych.

W algorytmie k-krotnej walidacji krzyżowej zbiór danych jest losowo dzielony na k równych wielkością podzbiorów. Jeden z k podzbiorów jest przeznaczany na zbiór walidacyjny, pozostałe k-1 podzbiorów służą jako dane teningowe. Powyżej opisana procedura jest powtarzana k razy, a każdy k podzbiorów dokładnie raz zostaje wykorzystany jako zbiór testowy. Następnie k wyników modelu jest uśrednianych dając w rezultacie jeden wynik. Rysunek 3.6 przedstawia sposób działania 10-krotnej walidacji krzyżowej.

Rysunek 3.6: Przykład 10-krotnej walidacji krzyżowej, kolor niebieski oznacza podzbiór testowy, pozostała część zbioru to podzbiór treningowy. Wynik końcowy jest średnią z wyników wszystkich iteracji. Rysunek przetłumaczony na język polski z [44].

Cytując [28]: "(...) istnieje pewien kompromis między obciążeniem a wariancją, związany z wyborem parametru k w k-krotnej walidacji krzyżowej. Zazwyczaj stosuje się wartości z przedziału od 5 do 10, ponieważ pokazano empirycznie, że w takim wypadku otrzymujemy przewidywania, które nie cierpią nadmiernie ani z powodu dużego obciążenia ani dużej wariancji." Podczas treningu modelu wybierano więc takie k z zakresu [5,10], dla którego liczba próbek w zbiorze danych jest całkowicie podzielna przez k co zapewnia równy rozmiar wszystkich zbiorów treningowych i walidacyjnych.

3.5 Wczesne zatrzymanie

Algorytmy uczenia maszynowego dopasowują parametry modelu na podstawie danych treningowych o skończonym rozmiarze. Podczas procesu szkolenia model jest oceniany na podstawie tego, jak dobrze przewiduje obserwacje zawarte w tym zbiorze. Jednak celem uczenia maszy-

nowego jest stworzenie modelu, który ma zdolność do przewidywania uprzednio niewidzianych obserwacji. Nadmierne dopasowanie to zjawisko pojawiające się wtedy gdy model za bardzo dopasowuje się do danych w zbiorze uczącym co powoduje zmniejszenie wartości błędu na tym zbiorze lecz równocześnie jest przyczyną wzrostu błędu na zbiorze testowym. Nadmierne dopasowanie modelu to problem, który może się pojawiać gdy model zawiera więcej parametrów niż wymagałaby tego natura modelowanego zjawiska. Sieć neuronowa to struktura skłonna do przeuczania. Podczas gdy obserwowany błąd obliczany w oparciu o dane treningowe spada, w pewnym momencie wartość błędu dla zbioru walidacyjnego zaczyna wzrastać. Rysunek 3.7 przedstawia często zamieszczane w literaturze, wyidealizowane krzywe zmiany wartości funkcji straty w czasie, dla zbiorów treningowego i walidacyjnego. Najlepszy model predykcyjny miałby parametry, które odpowiadają momentowi globalnego minimum dla zbioru walidacyjnego.

Rysunek 3.7: Wyidealizowane przykłady krzywych przedstawiających zmianę wartości funkcji straty na zbiorach treningowym i walidacyjnym, podczas nauki modelu

W dziedzinie uczenia maszynowego, metoda wczesnego zatrzymania to forma regularyzacji, która pozwala uniknąć problemu przeuczenia, zatrzymując naukę modelu gdy wartość funkcji straty na zbiorze walidacyjnym zaczyna wzrastać. Rzeczywisty przebieg wartości funkcji straty ma wiele lokalnych minimów, dlatego na podstawie obserwacji krzywych uczenia dokonano wyboru kryteriów zatrzymania nauki modelu. Niech $\Theta_{wa}(t)$ to wartość funkcji straty na zbiorze walidacyjnym po t epokach, $\Theta_{min}(t)$ to dotychczasowe minimum funkcji straty na zbiorze walidacyjnym po t epokach, definiowane jako:

$$\Theta_{min}(t) \equiv \min_{t' < t} \Theta_{wa}(t')$$

Niech $\Theta_{sr}(t)$ będzię średnią wartością funkcji straty dla zbioru walidacyjnego z ostatnich 10 epok.

$$\Theta_{sr}(t) \equiv \frac{1}{10} \sum_{i=0}^{10} \Theta_{wa}(t-i)$$

Oraz zdefiniujmy pomocniczy parametr GL(t)

$$GL(t) \equiv \frac{\Theta_{sr}(t)}{\Theta_{min}} - 1$$

Podczas nauki przedstawionych modeli statystycznych oprócz wykorzystania metody wczesnego zatrzymania została ustalona minimalna wymagana liczba epok. Z powodu startu algorytmu uczącego z losowymi parametrami, szczególnie w pierwszych iteracjach nauki funkcja błędu może być poddana dużym fluktuacjom. Po przekroczeniu minimalnej liczby epok do wczesnego zatrzymania wystarczyło spełnienie jednego z dwóch obowiązujących warunków:

- $\Theta_{min}(t) = \Theta_{min}(t + 200)$ dla wszystkich $t \in [t, t + 200]$, brak zmniejszenia minimalnej wartości funkcji straty dla zbioru walidacyjnego przez 200 epok
- \bullet GL(t) > 2, względny wzrost średniej wartości funkcji straty przez ostatnie 10 epok względem osiągniętego minimum jest większy niż 200%

Po skończeniu nauki, wybierany jest model, który ma najmniejszą wartość funkcji straty na zbiorze testowym.

3.6 Ilość neuronów

Architektura sieci neuronowej, tzn. ilość warstw ukrytych oraz ilość neuronów w warstwach ukrytych jest zdeterminowana przez wymiar danych wejściowych, rodzaj rozwiązywanego problemu (klasyfikacja czy regresja) oraz relację między zmiennymi objaśniającymi i zmienną objaśnianą.

Uogólniony model liniowy przydatny w szerokim zakresie zastosowań, nie potrzebuję żadnej warstwy ukrytej. Bywa szczególnie przydatny gdy zbiór zawiera mało danych lub są one obarczone dużą niedokładnością. Nawet w przypadku gdy relacja między zmiennymi jest lekko nieliniowa, użycie prostego modelu li niowego może skutkować lepszym uogólnieniem problemu niż skomplikowany model będacy wrażliwy na każdy szum znajdujący się w danych. Zgodnie z uniwersalnym twierdzeniem aproksymacyjnym jedna warstwa ukryta z wystarczająco duża liczba neuronów wystarcza aby z dowolna dokładnościa dowolna ciagła funkcje [cybenko]. Jeśli zmienna objaśniająca jest jednowymiarowa, wydaje się, że nie odniesiemy żadnej korzyści z skonstruowania sieci neuronowej o więcej niż jednej warstwie ukrytej. Sprawy komplikują się jednak gdy zmienna wejściowa jest dwu lub więcej wymiarowa. Dwuwarstowa sieć neuronowa zachowuje właściwości jednowarstwowej sieci neuronowej oraz osiąga zdolność nauki każdego problemu klasyfikacyjnego [1995 Bishop 123], ponadto wielowarstwowa sieć neuronowa z dwoma warstwami może skutkować dokładniejszymi wynikami wykorzystując mniejsza ilość parametrów niż jednowarstwowa sieć [Chester (1990)]. Na tej podstawie, do rozwiązania problemu regresji gdzie wejściem jest para liczb (ε, Q^2) postanowiłem wybrać sieć neuronowa z dwoma warstwami ukrytymi.

Aby znaleźć odpowiednią liczbę neuronów w dwóch warstwach ukrytych, stworzyłem siatkę $[2, 3, 4, 5] \times [2, 3, 4, 5]$ neuronów i sprawdziłem, która konfiguracja daje najmniejszy błąd

II warstwa	2	3	ig 4	5
2	14	18	22	26
3	19	24	29	34
4	24	30	36	42
<u> </u>	20	36	43	50

Tabela 3.2: Liczba parametrów sieci neuonowej z dwoma warstwami ukrytymi w zależności od liczby neuronów w warstwach

zbioru walidacyjnego. Dane zostały podzielone na zbiór treningowy i testowy w stosunku 2:1. Dla każdej konfiguracji wytrenowano 50 sieci i sprawdzono jak wygląda statystyka błędu. Tabela 3.2 zawiera porównanie liczby parametrów sieci neuronowej w zależności od liczby neuronów w warstwach ukrytych. Do eksperymentów wybrano konfiguracje charakteryzujące się rozsądną w porównaniu do rozmiaru danych wejsciowych liczbą parametrów. Rysunek 3.8 przedstawia rozkłady minimalnej wartości funkcji straty uzyskanej na danych walidacyjnych uzyskanej z 50 treningów sieci dla każdej konfiguracji ilości neuronów. Wykres pudełkowy to forma graficznej prezentacji rozkładu, która pozwala w łatwy sposób ukazać położenie, rozproszenie oraz kształt empirycznego rozkładu badanej cechy statystycznej. Konfiguracja 3 × 5 charakteryzuje się najniższą medianą wartości funkcji straty oraz małą liczbą wartości odstających. Ta obserwacja pozwoliła zdecydować, że liczby neuronów będą wynosiły 3 i 5 w odpowiednio pierwszej i drugiej warstwie ukrytej, co za tym idzie sieć będzie miała 36 parametrów.

3.7 Algorytm uczący

Bardzo istotnym elementem tworzonego modelu jest wybór algorytmu poszukującego minimum funkcji straty oznaczonej na potrzeby tego paragrafu jako $J(\theta)$. Na podstawie jego wyników aktualizowane będą parametry tworzonej sieci neuronowej. Bardzo pomocną koncepcją pozwalającą zrozumieć istotę trudności problemu jest powierzchnia błędu. "Każda z N wag i wartości progowych sieci (tzn. wszystkie wolne parametry modelu) traktowana jest jako jeden z wymiarów przestrzeni. W ten sposób każdy stan sieci, wyznaczony przez aktualne wartości jej N parametrów może być traktowany jako punkt na N-wymiarowej hiperpłaszczyźnie. N + 1 wymiarem (zaznaczanym jako wysokość ponad wspomniana wyżej hiperpowierzchnia) jest błąd, jaki popełnia sieć. Dla każdego możliwego zestawu wag i progów może więc zostać narysowany punkt w przestrzeni N+1-wymiarowej, w taki sposób, że stan sieci wynikający z aktualnego zestawu jej parametrów lokuje ten punkt na wspomnianej wyżej N-wymiarowej hiperpłaszczyźnie zaś wartość błędu, jaki popełnia sieć dla tych właśnie wartości parametrów stanowi wysokość umieszczenia punktu ponad tą płaszczyzną. Gdybyśmy opisaną procedurę powtórzyli dla wszystkich możliwych wartości kombinacji wag i progów sieci, wówczas otrzymalibyśmy "chmurę" punktów rozciągających się ponad wszystkimi punktami N-wymiarowej hiperpłaszczyzny parametrów sieci, tworzaca właśnie rozważana powierzchnie błedu. Celem uczenia sieci jest znalezienie na tej wielowymiarowej powierzchni punktu o najmniejszej wysokości, czyli ustalenie takiego zestawu wag i progów, który odpowiada najmniejszej wartości błędu. Przy stosowaniu modeli liniowych z funkcją błędu opartą na sumie kwadratów po-

Rysunek 3.8: Wykresy pudełkowe przedstawiające rozkład wartości funkcji straty w zależności od ilości neuronów w pierwszej i drugiej warstwie ukrytej

wierzchnia błędu ma kształt paraboloidy (funkcji kwadratowej), ma więc kształt kielicha o gładkich powierzchniach bocznych i o jednym wyraźnym minimum. Z tego powodu wyznaczenie w tym przypadku wartości minimalnej nie stwarza większych problemów."[54]

Jeżeli dysponujemy niewielkim zbiorem danych treningowych, do znalezienia optimum funkcji doskonale sprawdzą się metody quasi-Newtonowskie. Ich zaletą jest bardzo szybka zbieżność, niestety obliczenie hesjanu funkcji wielu zmiennych charakteryzuje się dużą złożonością pamięciową $O(n^2)$ i jeszcze większą złożonością obliczeniową $O(n^3)$. Z tego powodu możliwość ich zastosowania ogranicza się do niewielu przypadków. Najbardziej znane algorytmy quasi-Newtonowskie to m.in: LM-BFGS, Levenberg-Marquardt. Dysponując dużym zbiorem danych należy wybrać inny algorytm. Po za losowym poszukiwaniem parametrów, najłatwiejszym z nich i bardzo intuicyjnym jest metoda gradientu prostego ($gradient\ descent$). Parametry θ aktualizowane są w następujący sposób:

$$\theta^{k+1} = \theta^k - \alpha \nabla J(\theta^k) \tag{3.23}$$

gdzie α to wybrany odpowiednio parametr szybkości uczenia ($learning\ rate$) odpowiedzialny za stopień zmiany parametrów w kolejnych iteracjach. Jeśli θ^0 znajduje się odpowiednio blisko minimum funkcji, i parametr α jest wystarczcająco niewielki, algorytm osiąga liniową zbieżność [18]. W ogólności metoda gradientu prostego gwarantuje zbieżność do globalnego minimum w przypadku funkcji błędu o wypukłej powierzchni i do lokalnego minimum dla funkcji błędu o powierzchni nie wypukłej. Algorytm jednak jest bardzo wolny, co jest jego największą słabością. Ze względu na częstość aktualizacji wag, metodę gradientu prostego możemy podzielić na $batch\ gradient\ descent$ oraz $astic\ gradient\ descent$. W pierwszym przypadku wagi

są dostosowywane po przetworzeniu pełnego zbioru danych, w metodzie stochastycznej zbióru uczący dzielony jest na podzbiory a wagi aktualizowane są po przetworzeniu każdego z podzbiorów. Druga metoda jest szczególnie użyteczna dla dużych zbiorów danych. Spodziewamy się, że dla dobrze przygotowanych danych kierunek podążania wartości wag będzie podobny jeśli policzymy gradient zarówno dla 10% jak i dla 100% zbioru treningowego.

Wyobraźmy sobie, że poszukiwanie minimum powierzchni błędu to przemierzanie przestrzeni pełnej dolin, pagórków, wąwozów. W kolejnych iteracjach przeskakujemy między tymi obszarami, w pewnym momencie może się zdarzyć, że gradient zaniknie lub będzie bardzo słaby a nasze poszukiwania zatrzymają się nie osiągając wystarczającego minimum. Idea pędu inspirowana zjawiskami fizycznymi to nadanie gradientowi krótkotrwałej pamięci. Posługując się kolejną analogią, popchnięta w dół piłka nabierając prędkości zwiększa swój pęd. To samo dzieje się z parametrami sieci, wartość pędu wzrasta dla wymiarów, których gradienty wskazują te same kierunki i zmniejsza modyfikacje wartości dla wymiarów, w których gradienty zmieniają kierunki. W rezultacje otrzymujemy szybszą zbieżność i mniejsze oscylacje.

$$v^{k+1} = \beta v^k + \nabla J(\theta^k) \tag{3.24}$$

$$\theta^{k+1} = \theta^k - \alpha v^{k+1} \tag{3.25}$$

Zmiana jest niewielka, gdy $\beta = 0$, otrzymujemy zwykłą metodę gradientu prostego, zazwyczaj jednak ustala się wartość parametru β , zwanego pędem na około 0.9 [50].

Porównanie efektywności przedstawionych wyżej algorytmów znajduje się na rysunku 3.9, w zaprezentowanym przykładzie metoda gradientu prostego potrzebuje około 10 razy więcej iteracji od modyfikacji z pędem aby dotrzeć do minimum zaprezentowanej funkcji. Jest to przykład świadczący o tym jak duży wpływ na szybkość działania algorytmu wywiera ta niewieka modyfikacja.

Wykorzystany podczas treningu modelu algorytm korzysta jednak z jeszcze z jednej modyfikacji. Nie chcielibyśmy aby piłka spuszczona w dół ślepo podążała za zboczem widząc, że za niedługo mocno się ono podniesie. Przyspieszenie Nesterova (NAG) jest sposobem na uwzględnienie podczas obliczania gradientu przybliżonej przyszłej pozycji parametrów sieci. Algorytm opisują równania 3.26, 3.27 [49].

$$v^{k+1} = \beta v^k + \nabla J(\theta^k - \beta v^k)$$
(3.26)

$$\theta^{k+1} = \theta^k - \alpha v^{k+1} \tag{3.27}$$

Niezywkle istotnym parametrem algorytmu jest α , jego niezmienność wraz z postępem iteracji powoduje bardzo niską efektywność algorytmu. Ze względu na metodę zmiany tego parametru, który może być indywidualnie ustalany dla każdej wagi powstało wiele szeroko wykorzystywanych algorytmów. Do najpopularniejszych należą między innymi Adam, Nadam, Adagrad, A

W swoim algorytmie postanowiłem dokonywać zmiany parametru α wraz ze wzrostem iteracji. Ponadto szybkość uczenia zależna jest od wybranego parametru λ decydującego o tym z jaką szybkością maleje.

$$\alpha(i) = \alpha_0 \times \frac{1}{1 + \lambda \times i} \tag{3.28}$$

Rysunek 3.9: Funkcja $f(x,y)=(1.5-x+xy)^2+(2.25-x+xy^2)^2+(2.625-x+xy^3)^2$, osiąga minimum równe 0, w punkcie (3,0.5) oznaczonym czarną gwiazdą. Grafika przedstawia porównanie działania metody gradientu prostego oraz jego modyfikacji poprzez dodanie pędu. Przyjmując, że punkt początkowy to (2,1), $\alpha=0.001$ i $\beta=0.9$, możemy prześledzić trajektorie algorytmów przez pierwsze 500 iteracji działania.

Rysunek 3.10 przedstawia porównanie przykładowych krzywych zmian wartości funkcji straty w czasie dla różnych wartości α i λ . Na ich podstawie widać jak duży wpływ wnosi parametr α w proces nauki modelu. Zbyt duża szybkość uczenia powoduje bardzo duże oscylacje krzywej funkcji straty, za mała wartość α bardzo mocno spowalnia proces nauki. Pewien kompromis przynosi wybranie odpowiednio dużej początkowej wartości szybkości uczenia, co przynosi szybkie przejście algorytmu w obszar minimum i następnie zmniejszenie go do wartości potrafiącej efektywnie dalej poszukiwać optimum. Zadowalający przebieg mają krzywe o parametrach $\alpha=0.005,\,\lambda=0.001,\,$ które przedstawiają porządany, eksponencjalny kształt o niewielkiej oscylacji. Na podstawie powyższej analizy to właśnie te hiperparametry zostały wykorzystane w modelu, dodatkowo parametr pędu β został ustalony na wartość 0.9

Rysunek 3.10: Porównanie przykładowych krzywych zmiany wartości funkcji straty w czasie dla zbiorów treningowego (kolor pomarańczowy) i walidacyjnego (kolor niebieski) ze względu na parametry α (learning rate) oraz λ (decay)

Rozdział 4

Wyniki analizy

4.1 Analiza nr 1

Celem pierwszej analizy jest modelowanie elektrycznego i magnetycznego czynnika postaci przy wykorzystaniu wyłącznie danych przekrojów czynnych rozpraszania elektron-proton.

Dane wejściowe i funkcja straty

Na zbiór analizowanych danych składa się 24 niezależnych zbiorów danych z eksperymentów, w których dokonywano rozpraszania elektron-proton, razem daje to 426 punktów pomiarowych. Zestaw danych składa się z 4 kolumn, które zawierają kolejno zmienną objaśnianą σ - przekrój czynny, niepewność pomiaru zmiennej objaśnianej $\Delta \sigma$ oraz dwie zmienne objaśniające Q^2 - kwadrat przekazanego czteropędu i czynnik kinematyczny ϵ . Ponadto, każdy z niezależnych zbiorów ma określoną niepewność systematyczną $\Delta \eta$. Dodatkowo do każdego ze zbiorów dodano sztuczny punkt pomiarowy, który korzysta z założenia, że $\sigma\left(Q^2=0~{\rm GeV}^2,\,\epsilon=1\right)=1$, niepewność pomiarowa punktu wynosi $\Delta \sigma=0.01$, zwiększa to liczbę wszystkich punktów pomiarowych do 450. Funkcja straty to z definicji funkcja przyporządkowująca nieujemną wielkość kary poprzez porównanie zmiennej objaśnianej do wyliczonego estymatora. W przedstawionym modelu, wykorzystana została zmodyfikowana postać funkcji chi-kwadrat, która bierze pod uwagę zarówno nipewność pomiarową oraz systematyczną

$$\chi^2 = \frac{1}{n}\chi_\sigma^2 \tag{4.1}$$

$$\chi_{\sigma}^{2} = \sum_{k=1}^{N_{\sigma}} \left[\sum_{i=1}^{n_{k}} \left(\frac{\eta_{k} \sigma_{ki}^{th} - \sigma_{ki}^{ex}}{\Delta \sigma_{ki}} \right)^{2} + \left(\frac{\eta_{k} - 1}{\Delta \eta_{k}} \right)^{2} \right], \tag{4.2}$$

gdzie N_{σ} to liczba zbiorów danych z niezależnych eksperymentów, n_k to liczba punktów w k-tym zbiorze danych, $n = \sum_{k=1}^{N_{\sigma}} n_k$ to liczba wszystkich punktów pomiarowych, η_k to parametr normalizacyjny dla k-tego zbioru danych, $\Delta \eta_k$ to błąd systematyczny. σ_{ki}^{ex} to wartość eksperymentalna przekroju czynnego i-tego pomiaru z k-tego zbioru danych, zmierzona dla określonych par Q_{ki}^2 , ϵ_{ki} . $\Delta \sigma_{ki}^{ex}$ oznacza odpowiadającą niepewność pomiaru, σ_{ki}^{th} to przewidywanie modelu statystycznego. η_k , $k = 1, 2, \ldots, N_{\sigma}$ to parametry normalizacyjne. Ich wartości

Kategoria	Parametr	Wartość
Generowanie danych	N_{rep}	500
k-krotna walidacja krzyżowa	k	5
Algorytm uczący	$\alpha \ (learning \ rate)$	0,003
	$\lambda \ (decay)$	$0,\!0005$
	$\beta \; (p ed)$	0,9
Sieć neuronowa	Liczba warstw	2
	Ilość neuronów	(3,5)

Tabela 4.1: Hiperparametry modelu

są aktualizowane podczas każdej itereacji nauki modelu [26], powinny one spełniać warunek

$$\frac{\partial \chi_{\sigma}^2}{\partial \eta_k} = 0, \ k = 1, \dots, N_{\sigma}, \tag{4.3}$$

co można zapisać jako

$$\eta_k = \frac{\sum_{i=1}^{n_k} \frac{\sigma_{ki}^{th} \sigma_{ki}^{ex}}{(\Delta \sigma_{ki})^2} + \frac{1}{(\Delta \eta_k)^2}}{\sum_{i=1}^{n_k} \frac{(\sigma_{ki}^{th})^2}{(\Delta \sigma_{ki})^2} + \frac{1}{(\Delta \eta_k)^2}}.$$
(4.4)

Parametry i nauka sieci

Sieć neuronowa o dwóch wartstwach ukrytych i hiparametrach przedstawionych w Tabeli 4.1 daje w rezultacie wartość σ w zależności od zmiennych Q^2 oraz ϵ . Podczas treningu elementy ze zbioru parametrów η_k dążą do wartości bliskich 1. Rysunek 4.2 przedstawia ewolucje parametrów η_k wraz z nauką sieci dla każdego z 24 niezależnych zbiorów danych. Łącznie zostało wytrenowanych 2500 $(N_{rep} \times k)$ modeli. Przykładowy przebieg wartości funkcji straty dla zbioru treningowego i walidacyjnego został przedstawiony na Rysunku 4.3, możemy zauważyć, że około 1100 epoki funkcja straty osiąga minimum, zgodnie z opisanymi wcześniej zasadami wczesnego zatrzymania model kończy naukę po następnych 200 epokach.

Wyniki

Wyniki wytrenowanych modeli tworzą statystykę, której najważniejszymi parametrami są średnia przedstawiana jako wynik analizy, oraz odchylenie standardowe, które wyznacza zakres bardzo prawdopodobnych wyników, na wykresie przedstawiany jako zacieniowany obszar. Rysunek 4.5 przedstawia zależność przekroju czynnego $\sigma\left(\epsilon\right)$, dla kilku ustalonych wartości Q^2 . Otrzymane funkcje mają przebieg liniowy o bardzo podobnym współczynniku kierunkowym a błąd modelu 1σ znacznie wzrasta wraz ze wzrostem Q^2 . Zależność przekroju czynnego $\sigma\left(Q^2\right)$ przy ustalonym parametrze ϵ znajduje się na rysnku 4.5. Możemy zauważyć, że im niższa wartość ϵ tym mniejszy przekrój czynny dla $Q^2=0$, następnie krzywe mają bardzo podobny przebieg, niezależnie od ustalonego parametru ϵ zbiegają do tej samej maksymalnej wartości σ wraz ze wzrostem Q^2 . Ponadto, wraz ze wzrostem Q^2 rośnie niepewność otrzymanego wyniku, dla $Q^2=10~{\rm GeV}^2$ obszar błędu modelu 1σ wynosi aż ± 1 . Po zbadaniu podstawowych zależności estymowanej funkcji od kwadratu przekazu czteropędu oraz czynnika kinematycznego

4.1. ANALIZA NR 1 43

Rysunek 4.1: Schemat sieci neuronowej zastosowanej w pierwszej analizie, która składa się z: i) warstwy wejściowej z dwoma neuronami, ii) dwóch warstw ukrytych z odpowiednio trzema i pięcioma neuronami, iii) warstwy wyjściowej z jednym neuronem. Linie zakończone strzałką oznaczają wagi odpowiadające każdej z par neuronów

Rysunek 4.2: Ewolucja parametrów η_k podczas jednego z treningów modelu. W ciągu kolejnych epok, wartości parametrów ustalane na podstawie równania 4.4 zbiegają do wartości bliskich 1.

Rysunek 4.3: Zmiana wartości funkcji straty podczas nauki modelu. Wartość funkcji obliczana na podstawie zbioru treningowego oznaczona jest kolorem niebieskim, dla zbioru walidacyjnego - pomarańczowym.

Rysunek 4.4: Zależność przekroju czynnego σ od czynnika kinematycznego ϵ przy ustalonym przekazie czteropędu Q^2 . Linia ciągła wyznacza średnią wartość po wszystkich wytrenowanych sieciach. Kolor szary wyznacza obszar niepewności 1σ .

4.1. ANALIZA NR 1

Rysunek 4.5: Zależność przekroju czynnego σ od przekazu czteropędu Q^2 przy ustalonym czynniku kinematycznym ϵ . Linia ciągła wyznacza średnią wartość po wszystkich wytrenowanych sieciach. Kolor szary wyznacza obszar niepewności 1σ .

wyznaczono elektryczny i magnetyczny funkcji postaci. Wiemy, że

$$\sigma_R(\epsilon, Q^2) = \tau G_{M_p}^2(Q^2) + \epsilon G_{E_p}^2(Q^2),$$
(4.5)

obliczając pochodną po parametrze ϵ otrzymamy kwadrat elektrycznej funkcji postaci protonu, wiec

$$G_{E_p}(Q^2) = \sqrt{\frac{\partial \sigma_R(\epsilon, Q^2)}{\partial \epsilon}}.$$
 (4.6)

Następnie magnetyczna funkcja postaci protonu wyraża się wzorem

$$G_{M_p}(Q^2) = \sqrt{\frac{\sigma_R(\epsilon, Q^2) - \epsilon \frac{\partial \sigma_R(\epsilon, Q^2)}{\partial \epsilon}}{\tau}}$$
(4.7)

Należy pamiętać, że pochodna $\frac{\partial \sigma_R(\epsilon,Q^2)}{\partial \epsilon}$ musi zostać wyznaczona dla ustalonej wartości czynnika kinematycznego ϵ . Ponieważ przyjmuje on wartość z przedziału [0,1], pochodną wyznaczano dla ϵ będących 11 pierwszymi wyrazami ciągu arytmetycznego o przepisie: $\epsilon_n = (n-1) \times 0.1$. Powtarzając te procedurę dla każdego wytrenowanego modelu otrzymujemy 2500×11 wyników, ich średnia tworzy wynik modelu. Wykresy 4.6 przedstawiają obliczone w ten sposób funkcje postaci protonu. Opisane działanie jest przyczyną niepewności otrzymanego wyniku, która ma dwa źródła. Pierwsze z nich to błąd pochodnej, czyli rozbieżność wyników w zależności od wybranego parametru ϵ podczas liczenia pochodnej. Drugie z nich spowodowane jest liczbą wytrenowanych modeli, z których każdy przyjmuje nieco inne dane wejściowe, tworzy to

dużą statystykę wyników pochodzących ze wszystkich nauczonych modeli. Otrzymane funkcje postaci zostały porównane z przewidywaniami z publikacji [2] i ich graficzne przedstawienie znajduje się na rysunku 4.6. Wartość funkcji $G_{E_p}\left(Q^2=0~{\rm GeV}^2\right)$ powinna wynosić 1, mimo że wynik modelu jest niedoszacowany to wartość 1 znajduje się w obszarze niewielkiego błędu. Niestety wraz ze wzrostem Q^2 wzrasta rozbieżność między porównywanymi funkcjami, dla $Q^2\simeq 2.0~{\rm GeV}^2$ obserwujemy nienaturalną zmianę wypukłości funkcji, której się niespodziewamy, i która nie występuje w wyniku z [2]. Jest to jedyny obszar, w którym porównywana funkcja znajduje się po za obszarem niepewności modelu 2σ . Przebieg magnetycznej funkcji postaci G_{M_p} charakteryzuje się bardzo dużą niepewnością w rejonach niskiej wartości Q^2 , mimo to średni wynik jest bliski pożądanej wartości bliskiej 1. Powyżej wartości $Q^2\simeq 0.2~{\rm GeV}^2$ niepewność pomiaru znacznie się zmniejsza, porównywany rezultat znajduje się na granicy niepewności 2σ różniąc się od wyniku modelu o stałą wartość około 0.05, modele zaczynają się znacznie różnić dopiero dla wartości Q^2 przekraczajączych 10 ${\rm GeV}^2$. Całkowity rezultat należy jednak ocenic pozytywnie, porównywana funkcja rzadko znajduje się po za obszarem niepewności modelu 2σ .

Rysunek 4.6: Elektryczna (a) i magnetyczna (b) funkcja postaci. Linia ciągła przedstawia średnią ze wszystkich modeli, zacieniowane regiony wyznaczają obszary 1σ powstałe z dwóch różnych przyczyn. Jasnoszary obszar opisany jako błąd modelu to odchylenie standardowe opisujące rozkład wyników wszystkich wytrenowanych modeli. Ciemnoszary obszar wyznacza odchylenie standardowe opisujące rozkład wyników powstałych na skutek obliczeń pochodnej dla różnych wartości ϵ z zakresu [0,1]. Przerywana linia to wyniki przedstawione w [2].

4.2. ANALIZA NR 2

4.2 Analiza nr 2

Dane wejściowe i funkcja straty

Dane wejściowe w następnej analizie to 450 punktów pomiarowych analizowanych w pierwszej analizie powiększone o zbiór 68 pomiarów stosunku funkcji postaci G_{E_p}/G_{M_p} wraz z niepewnością pomiarową w zależności od kwadratu przekazu czteropędu Q^2 . Ponieważ znamy jeden z więzów stosunku funkcji postaci, do zbioru dodany został 69 i 70 punkt: $\mathcal{R}\left(Q^2=0~\text{GeV}^2\right)=1$, $\Delta\mathcal{R}=0,001$. Razem otrzymujemy 520 pomiarów co sugeruje wybranie parametru k-krotnej walidacji jako k=5. Wykorzystana podczas nauki drugiego modelu funkcja straty χ^2 (4.8) jest modyfikacją funkcji wykorzystanej w pierwszej analizie. Do użytej wcześniej funkcji błędu dodany został składnik (4.9) uwzględniający błąd estymacji stosunku $\mathcal{R}=G_{E_p}/G_{M_p}$ oraz składniki dbające o zachowanie więzów $G_{E_p}\left(Q^2=0~\text{GeV}^2\right)=1$, $G_{M_p}\left(Q^2=0~\text{GeV}^2\right)=1$ -równanie (4.10).

$$\chi^2 = \frac{1}{n} \left[\chi_\sigma^2 + \chi_{PT}^2 + \chi_{G_M}^2 + \chi_{G_E}^2 \right], \tag{4.8}$$

$$\chi_{PT}^2 = \sum_{i=1}^{n_k^{PT}} \left(\frac{\mathcal{R}_i^{th} - \mathcal{R}_i^{ex}}{\Delta \mathcal{R}_i} \right)^2, \tag{4.9}$$

$$\chi_G^2 = \left(\frac{G^{th} - 1}{\Delta G}\right)^2,\tag{4.10}$$

gdzie n_k^{PT} to liczba pomiarów stosunków funkcji postaci, \mathcal{R}_i^{ex} to i-ty pomiar zmierzony dla odpowiadającej wartości Q_i^2 , z niepewnością pomiaru $\Delta \mathcal{R}_i$ i \mathcal{R}_i^{th} to estymowana przez model wartość. $\chi_G^2 = \chi_{G_{E_p}}^2$ lub $\chi_{G_{M_p}}^2$, natomiast $G^{th} = G_{E_p}^{\ \ th} \left(Q^2 = 0 \text{ GeV}^2\right)$ lub $G_{M_p}^{\ \ th} \left(Q^2 = 0 \text{ GeV}^2\right)$ oraz $\Delta G = 0,001$.

Parametry i nauka sieci

Wynikiem działania sieci neuronowej o dwóch wartstwach ukrytych i hiparametrach przedstawionych w Tabeli 4.2 są funkcje postaci G_{Mp} oraz G_{Ep} w zależności od zmiennej Q^2 . Rysunek 4.7 przedstawia schemat wykorzystanej sieci. Podczas treningu elementy ze zbioru parametrów η_k aktualizowane są podczas każdej epoki zgodnie z wzorem 4.4 i ponownie dążą do wartości bliskich 1, przykładowe wartości będące wynikiem nauki modelu znajdują się w Tabeli 4.3. Łącznie zostało wytrenowanych 2500 $(N_{rep} \times k)$ modeli. Dane wejściowe służące do treningu sieci zostały znormalizowane, wykorzystano do tego standaryzację polegającą na wyzerowaniu średniej oraz skalowaniu dającym w rezultacie jednostkową wariancję zgodnie ze wzorem 4.11

$$x' = \frac{x - \bar{x}}{\sigma},\tag{4.11}$$

gdzie \bar{x} to średnia cechy x, a σ to odchylenie standardowe cechy x. Wartości początkowe wag odpowiadających poszczególnym parom neuronów zostały zainicjalizowane przy użyciu rozkładu jednostajnego z przedziału [-0,6;0,6]. Zbyt duże lub zbyt niskie wagi skutkują znalezieniem się na płaskich krańcach sigmoidy. Prowadzi to do niewielkiego gradientu co skutecznie spowolnia lub nawet uniemożliwia trening sieci.

Rysunek 4.7: Schemat sieci neuronowej zastosowanej w drugiej analizie, która składa się z: i) warstwy wejściowej z dwoma neuronami, ii) dwóch warstw ukrytych z odpowiednio trzema i pięcioma neuronami, iii) warstwy wyjściowej z dwoma neuronami. Q^2 Linie zakończone strzałką oznaczają wagę odpowiadającą każdej z par neuronów

Tabela 4.2: Hiperparametry modelu podczas drugiej analizy

Kategoria	Parametr	Wartość
Generowanie danych	N_{rep}	500
k-krotna walidacja krzyżowa	k	5
Algorytm uczący	$\alpha \ (learning \ rate)$	0,02
	$\lambda \ (decay)$	$0,\!001$
	$\beta \; (p e d)$	0,9
Sieć neuronowa	Liczba warstw	2
	Ilość neuronów	(3,5)

4.2. ANALIZA NR 2

Tabela 4.3: Przykładowe końcowe wyniki parametrów η_k podczas nauki modelu w drugiej analizie

L.p Zbiór danaych	$\Delta\eta_k [\%]$	η_k
1 And94_000.dat	1,77	1,014
2 And94_100.dat	2,70	1,018
3 Arn86_1500.dat	3,00	1,017
4 Bar66_1700.dat	2,50	0,981
5 Bar73_200.dat	2,10	0,971
6 Bar73_300.dat	2,10	0,998
7 Bar73_400.dat	2,10	0,980
8 Ber71_700.dat	4,00	0,947
9 Bor74_1900.dat	2,00	0,971
10 Chr03_500.dat	1,50	0,959
11 Dut03_1400.dat	1,90	0,989
12 Goi70_1800.dat	3,80	0,936
	1,60	0,965
14 Kir73_1100.dat	4,00	1,050
15 Lit67_600.dat	4,00	0,941
16 Mur74_2200.dat	4,60	1,016
17 Nic99_1300.dat	1,90	1,025
18 Pri71_900.dat	1,90	1,009
19 Qat05_2300.dat	$3,\!00$	0,981
20 Sil93_1000.dat	3,00	0,997
21 Sim80_2100.dat	0,50	1,017
22 Sim81_2000.dat	0,50	0,997
23 Ste75_800.dat	2,40	0,983
24 Wal94_1200.dat	1,90	0,964

Wyniki

Wyniki nauczonych modeli tworzą statystykę, której najważniejszymi parametrami są średnia przedstawiana jako wynik modelu, oraz odchylenie standardowe, które wyznacza zakres bardzo prawdopodobnych wyników, na wykresie przedstawiany jako zacieniowany obszar. Rysunek 4.8 przedstawia wykresy otrzymanych funkcji postaci protonu. Lewa część obrazka przedstawia magnetyczną funkcję postaci protonu w zależności od kwadratu przekazu czteropędu $G_{M_p}\left(Q^2\right)$, prawa część rysunku przedstawia przebieg elektrycznej funkcji postaci $G_{E_p}\left(Q^2\right)$. Otrzymane wyniki są znacznie bliższe przebiegom funkcji z publikacji [2] i prawie całkowicie mieszczą się w zaznaczonych ciemnym kolorem obszarach $\pm 2\sigma$. Wariancja magnetycznej funkcji postaci jest w przybliżeniu stały na całej długości przedstawionego przebiegu funkcji i wynosi około 0.015, odchylenie standardowe dla elektrycznej funkcji postaci w pobliżu $Q^2 \rightarrow 0$ jest bardzo niewielkie i znacznie wzrasta wraz z Q^2 osiągając wysoką wartość 0.1. Może to być spowodowane mniejszą ilością pomiarów doświadczalnych dla dużych wartości Q^2 . Najbardziej zauważalna różnica pomiędzy funkcjami występuje dla wartości $Q^2 \simeq 0.15~{\rm GeV}^2$,

Rysunek 4.8: Magnetyczna i elektryczna funkcja postaci. Linia ciągła oznacza średnią ze wszystkich modeli, zacienione pola wyznaczają obszary 1σ (jasny) oraz 2σ (ciemny). Linia przerywana przedstawia wyniki z publikacji [2].

wynik modelu zarówno dla G_{M_p} jak i dla G_{E_p} jest przeszacowany względem przerywanej krzywej. Porównywana elektryczna funkcja postaci w tym obszarze nieznacznie wychodzi po za pokazany obszar niepewności modelu. Dodatkowym źródłem danych służącym do nauki sieci neuronowej w stosunku do poprzedniego modelu były dane zawierające eksperymentalne pomiary stosunków elektrycznej i magnetycznej funkcji postaci w zależności do kwadratu przekazu czteropędu. Rysunek 4.9 przedstawia wspomniane powyżej pomiary wraz z zaznaczoną ich niepewnością. Ponadto przerywaną linią zaznaczono dopasowanie liniowe, które dobrze opisuje

4.2. ANALIZA NR 2 51

relację pomiędzy funkcjami postaci oraz wynik modelu wraz z odchyleniami standardowymi. Iloraz $\mu G_{E_p}/G_{M_p}$ szczególnie dobrze opisywany jest przez model dla niewielkich wartości Q^2 i cechuje się w tym obszarze bardzo niewieką niepewnością. Wraz ze wzrostem Q^2 rezultat modelu jest coraz mniej liniowy, G_{E_p} staje się przeszacowane, a odchylenie standardowe znacznie wzrasta. Większość pomiarów doświadczalnych pozostaje jednak w obszarze niepewności -2σ .

Rysunek 4.9: Pomiary stosunku elektrycznej i magnetycznej funkcji postaci wraz z dopasowaniem liniowym oraz dopasowaniem modelu statystycznego. Linia ciągła oznacza średni wynik ze wszystkich wytrenowanych modeli, zacienione pola wyznaczają obszary 1σ oraz 2σ .

4.3 Analiza nr 3

Dane wejściowe i funkcja straty

Wykorzystane podczas analizy dane składają sie z dwóch zestawów. Pierwszy to 450 punktów pomiarowych przekrojów czynnych, których wartości zostały zmodyfikowane o poprawkę dwufotonową. Struktura danych wejściowych jest analogiczna do tych wykorzystywanych w powyższych analizach - cztery kolumny zawierają zmienną objaśnianą σ , niepewność pomiaru przekroju czynnego $\Delta \sigma$ i dwie zmienne objaśniające Q^2 oraz ϵ . Drugi zestaw to 70 pomiarów doświadczalnych stosunków funkcji postaci G_{E_p}/G_{M_p} wraz z niepewnością pomiarową w zależności od kwadratu czteropędu Q^2 . Razem otrzymujemy 520 pomiarów co ponownie sugeruje wybranie parametru k-krotnej walidacji jako k=5. Zastosowana podczas nauki trzeciego modelu funkcja straty χ^2 (4.13) składa się się z tych samych składników co funkcja wykorzystana podczas drugiej analizy (4.8), jednak do całkowitego przekroju czynnego należy dodać poprawkę zależną od kwadratu przekazu czteropędu Q^2 i czynnika kinematycznego ϵ jak przedstawiono w równaniu 4.12.

$$\sigma_R(\epsilon, Q^2) = \tau G_{M_p}^2(Q^2) + \epsilon G_{E_p}^2(Q^2) + \Delta C_{2\gamma}(Q^2, \epsilon),$$
(4.12)

$$\chi^2 = \frac{1}{n} \left[\chi_\sigma^2 + \chi_{PT}^2 + \chi_{G_M}^2 + \chi_{G_E}^2 \right]. \tag{4.13}$$

Parametry i nauka sieci

Podczas ostatniej analizy na szczególną uwagę zasługuję struktura sieci neuronowej przedstawiona na rysunku 4.10. Wynikiem działania sieci są funkcje postaci G_{M_p} oraz G_{E_p} w zależności od Q^2 oraz poprawka $\Delta C_{2\gamma}$ zależna od Q^2 i ϵ , takie wymagania wymuszają przerwanie połączeń między niektórymi neuronami. Sieć składa się z warstwy wejściowej, dwóch warstw ukrytych oraz warstwy wyjściowej, wejściowa składa się z dwóch neuronów (Q^2,ϵ) . Pierwsza warstwa ukryta zawiera trzy neurony połączone wyłącznie z Q^2 oraz jeden połączony wyłącznie z ϵ (3-1). Druga warstwa ukryta to pięć neuronów, ponownie trzy z nich połączone są z neuronami łączącymi się wyłącznie z kwadratem przekazu czteropędu, pozostałe dwa połączone są z neuronem z poprzedniej warstwy połączonym z czynnikiem kinematycznym (3-2). Ostatnia warstwa wyjściowa składa się z trzech neuronów, dwie funkcje postaci otrzymują sygnał pochądzący z trzech neuronów przekazujących sygnał zależny od wartości Q^2 natomiast poprawka $\Delta C_{2\gamma}$ połączona jest ze wszystkimi neuronami w poprzedniej warstwie, zatem jej wartości są zależne zarówno od Q^2 i ϵ .

Tabela 4.4 przedstawia wykorzystane hiperparametry sieci neuronowej. Normalizacja danych oraz inicjalizacja wag zostały wykonane identycznie jak w poprzednich analizach.

Wyniki

Rysunek 4.11 przedstawia wykresy otrzymanych funkcji postaci protonu. Lewa część obrazka przedstawia magnetyczną funkcję postaci protonu w zależności od kwadratu przekazu czteropędu $G_{M_p}(Q^2)$, prawa część rysunku przedstawia przebieg elektrycznej funkcji postaci $G_{E_p}(Q^2)$. Otrzymane wyniki zostały ponownie porównywane są z rezultatami publikacji [2], które całkowicie zawierają się w obszarze $\pm 2\sigma$ otrzymanych wyników. W przypadku magnetycznej funkcji postaci główna różnica to brak przegięcia funkcji będącej wynikiem modelu, w okolicach

4.3. ANALIZA NR 3 53

Rysunek 4.10: Schemat sieci neuronowej zastosowanej w trzeciej analizie, która składa się z: i) warstwy wejściowej z dwoma neuronami, ii) dwóch warstw ukrytych z odpowiednio czterema i pięcioma neuronami, iii) warstwy wyjściowej z trzema neuronami. Linie zakończone strzałką oznaczają wagę odpowiadającą każdej z par neuronów

Tabela 4.4: Hiperparametry modelu

Kategoria	Parametr	Wartość
Generowanie danych	N_{rep}	500
k-krotna walidacja krzyżowa	k	5
Algorytm uczący	$\alpha \ (learning \ rate)$	0,02
	$\lambda (decay)$	$0,\!001$
	$eta \; (p ed)$	0,9
Sieć neuronowa	Liczba warstw	2
	Ilość neuronów	((3-1),(3-2))

 $Q^2 \simeq 0.15~{
m GeV}^2$ oraz późniejsze niedoszacowanie względem porównywanej funkcji, nie przekraczające różnicy 0.02. Elektryczna funkcja postaci również pozbawiona jest pierwszego niewielkiego przecięcia, następnie spadek wartości zaczyna się wcześniej, tzn. dla nieco mniejszej wartości Q^2 , jednak jest on mniej gwałtowny. Odchylenie standardowe magnetycznej funkcji postaci jest w przybliżeniu stałe na całej długości przedstawionego przebiegu funkcji i wynosi około 0.01, wariancja elektrycznej funkcji postaci w pobliżu $Q^2 \to 0$ jest bardzo niewielka i znacznie wzrasta wraz z Q^2 .

Rysunek 4.11: Magnetyczna i elektryczna funkcja postaci. Linia ciągła oznacza średnią ze wszystkich modeli, zacienione pola wyznaczają obszary 1σ (jasny) oraz 2σ (ciemny). Linia przerywana przedstawia wyniki z publikacji [2].

Rysunek 4.12 przedstawia pomiary eksperymentalne stosunku funkcji postaci wraz z zaznaczoną niepewnością pomiarow, przerywaną linią zaznaczono dopasowanie liniowe oraz wynik modelu wraz z odchyleniami standardowymi. Iloraz $\mu G_{E_p}/G_{M_p}$ szczególnie dobrze opisywany jest przez model dla niewielkich wartości Q^2 i cechuje się w tym obszarze bardzo niewieką niepewnością. Wraz ze wzrostem Q^2 maleje gęstość pomiarów, G_{E_p} staje się przeszacowane, a odchylenie standardowe znacznie wzrasta. Większość pomiarów doświadczalnych znajduje się jednak w obszarze niepewności -2σ .

Jednym z wyników sieci nieuwzględnionym podczas wcześniejszych analiz jest poprawka dwufotonowa $\Delta C_{2\gamma}$, rysunek 4.13 przedstawia jej zależność od kwadratu przekazu czteropędu dla ϵ będących 11 pierwszymi wyrazami ciągu arytmetycznego o przepisie: $\epsilon_n = (n-1) \times 0.1$. Dla wartości $Q^2 < 1 \text{ GeV}^2$ poprawka ma niewielką wartość i niewielkie odchylenie standardowe, zatem ma niewielki wpływ na wartość całkowitego przekroju czynnego. Dla $Q^2 > 1 \text{ GeV}^2$ jej średnia wartość zaczyna rosnąć wraz z Q^2 do około 0.3, odchylenie standardowe również gwałtownie wzrasta i osiąga wartość około 0.2.

4.3. ANALIZA NR 3

Rysunek 4.12: Pomiary stosunku elektrycznej i magnetycznej funkcji postaci wraz z dopasowaniem liniowym oraz dopasowaniem modelu statystycznego. Linia ciągła oznacza średni wynik ze wszystkich wytrenowanych modeli, zacienione pola wyznaczają obszary 1σ oraz 2σ .

Rysunek 4.13: Poprawka dwufotonowa w zależności od Q^2 , ciągła linia to wynik modelu, kolory szarne oznaczją odchylenie standardowe 1σ oraz 2σ .

4.4 Porównanie rezultatów

Rysunek 4.14

Rozdział 5

Zakończenie

Bibliografia

- [1] A. I. Akhiezer and M. Rekalo. Polarization effects in the scattering of leptons by hadrons. Sov. J. Part. Nucl., 4:277, 1974. [Fiz. Elem. Chast. Atom. Yadra4,662(1973)].
- [2] W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk. Electromagnetic form factors of the nucleon: New fit and analysis of uncertainties. *Phys. Rev. C*, 79(6):065204, June 2009.
- [3] W. Albrecht, H.-J. Behrend, H. Dorner, W. Flauger, and H. Hultschig. Some Recent Measurements of Proton Form Factors. *Physical Review Letters*, 18:1014–1015, June 1967.
- [4] C. Amsler. Nuclear and Particle Physics. 2053-2563. IOP Publishing, 2015.
- [5] L. Andivahis, P. E. Bosted, A. Lung, L. M. Stuart, J. Alster, and et al. Measurements of the electric and magnetic form factors of the proton from $Q^2=1.75$ to 8.83 $(GeV/c)^2$. *Physical Review D*, 50:5491–5517, Nov. 1994.
- [6] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, and et. al. Proton structure from the measurement of 2s-2p transition frequencies of muonic hydrogen. *Science*, 339(6118):417–420, 2013.
- [7] J. Arrington, W. Melnitchouk, and J. A. Tjon. Global analysis of proton elastic form factor data with two-photon exchange corrections. *Physical Review C*, 76(3):035205, Sept. 2007.
- [8] W. Bartel, F.-W. Büsser, W.-R. Dix, R. Felst, D. Harms, , and et al. Measurement of proton and neutron electromagnetic form factors at squared four-momentum transfers up to 3 (GeV/c) ². Nuclear Physics B, 58:429–475, July 1973.
- [9] W. Bartel, B. Dudelzak, H. Krehbiel, J. M. McElroy, U. Meyer-Berkhout, and et al. Small-Angle Electron-Proton Elastic-Scattering Cross Sections for Squared Momentum Transfers Between 10 and 105 F⁻². Physical Review Letters, 17:608–611, Sept. 1966.
- [10] C. Berger, V. Burkert, G. Knop, B. Langenbeck, and K. Rith. Electromagnetic form factors of the proton at squared four-momentum transfers between 10 and 50 fm ⁻². *Physics Letters B*, 35:87–89, Apr. 1971.
- [11] J. Beringer, J. F. Arguin, R. M. Barnett, K. Copic, O. Dahl, and et.al. Review of particle physics. *Physical Review D*, 86:010001, Jul 2012.

60 BIBLIOGRAFIA

[12] J. C. Bernauer et al. High-precision determination of the electric and magnetic form factors of the proton. *Physical Review Letters*.

- [13] F. Borkowski, P. Peuser, G. G. Simon, V. H. Walther, and R. D. Wendling. Electromagnetic form factors of the proton at low four-momentum transfer. *Nuclear Physics A*, 222:269–275, Apr. 1974.
- [14] F. Borkowski, G. G. Simon, V. H. Walther, and R. D. Wendling. Electromagnetic form factors of the peoton at low four-momentum transfer (II). *Nuclear Physics B*, 93:461–478, July 1975.
- [15] C. E. Carlson. The Proton Radius Puzzle. Prog. Part. Nucl. Phys., 82:59-77, 2015.
- [16] M. E. Christy, A. Ahmidouch, C. S. Armstrong, J. Arrington, R. Asaturyan, and et al. Measurements of electron-proton elastic cross sections for 0.4
 Q² <5.5 (GeV/c)². Physical Review C, 70(1):015206, July 2004.
- [17] C. B. Crawford, A. Sindile, T. Akdogan, R. Alarcon, W. Bertozzi, and et al. Measurement of the Proton's Electric to Magnetic Form Factor Ratio from H→1(e→,e'p). *Physical Review Letters*, 98(5):052301, Feb. 2007.
- [18] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics, 16). Soc for Industrial & Applied Math, 1996.
- [19] S. Dieterich, P. Bartsch, D. Baumann, J. Bermuth, K. Bohinc, and et al. Polarization transfer in the ⁴He(e->,e'p->)³H reaction. *Physics Letters B*, 500:47-52, Feb. 2001.
- [20] D. Dutta, D. van Westrum, D. Abbott, A. Ahmidouch, T. A. Amatuoni, C. Armstrong, J. Arrington, K. A. Assamagan, and et al. Quasielastic (e, e'p) reaction on ¹²C, ⁵⁶Fe, and ¹⁹⁷Au. *Physical Review C*, 68(6):064603, Dec. 2003.
- [21] S. Forte, L. s. Garrido, J. I. Latorre, and A. Piccione. Neural network parametrization of deep-inelastic structure functions. *Journal of High Energy Physics*, 5:062, May 2002.
- [22] C. Francois. Deep Learning with Python. Manning Publications, 2017.
- [23] O. Gayou, K. A. Aniol, T. Averett, F. Benmokhtar, W. Bertozzi, and et al. Measurement of G_{E_p}/G_{M_p} in e->p -> ep-> to $Q^2 = 5.6$ GeV². Physical Review Letters, 88(9):092301, Mar. 2002.
- [24] O. Gayou, K. Wijesooriya, A. Afanasev, M. Amarian, K. Aniol, and et al. Measurements of the elastic electromagnetic form factor ratio $\mu_p G_{Ep}/G_{Mp}$ via polarization transfer. *Physical Review C*, 64(3):038202, Sept. 2001.
- [25] M. Goitein, R. J. Budnitz, L. Carroll, J. R. Chen, J. R. Dunning, and et al. Elastic Electron-Proton Scattering Cross Sections Measured by a Coincidence Technique. *Physical Review D*, 1:2449–2476, May 1970.
- [26] K. M. Graczyk. Two-photon exchange effect studied with neural networks. Phys. Rev. C, 84:034314, Sep 2011.

BIBLIOGRAFIA 61

[27] B. Hu, M. K. Jones, P. E. Ulmer, H. Arenhövel, O. K. Baker, and et al. Polarization transfer in the $H2(e\rightarrow,e'p\rightarrow)n$ reaction up to $Q^2=1.61(GeV/c)^2$. Physical Review C, 73(6):064004, June 2006.

- [28] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated, 2014.
- [29] T. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian. Proton Form Factors from Elastic Electron-Proton Scattering. *Physical Review*, 142:922–931, Feb. 1966.
- [30] Z. Jaskólski. Notatki do wykładu z mechaniki kwantowej. 2016.
- [31] M. K. Jones, A. Aghalaryan, A. Ahmidouch, R. Asaturyan, F. Bloch, and et al. Proton G_E/G_M from beam-target asymmetry. *Physical Review C*, 74(3):035201, Sept. 2006.
- [32] M. K. Jones, K. A. Aniol, F. T. Baker, J. Berthot, P. Y. Bertin, and et al. G_{E_p}/G_{M_p} Ratio by Polarization Transfer in e->p-> ep->. *Physical Review Letters*, 84:1398–1402, Feb. 2000.
- [33] P. N. Kirk, M. Breidenbach, J. I. Friedman, G. C. Hartmann, H. W. Kendall, and et al. Elastic Electron-Proton Scattering at Large Four-Momentum Transfer. *Physical Review D*, 8:63–91, July 1973.
- [34] J. Litt, G. Buschhorn, D. H. Coward, H. Destaebler, L. W. Mo, and et al. Measurement of the ratio of the proton form factors, G _E/G _M, at high momentum transfers and the question of scaling. *Physics Letters B*, 31:40–44, Jan. 1970.
- [35] G. MacLachlan, A. Aghalaryan, A. Ahmidouch, B. D. Anderson, R. Asaturyan, and et al. The ratio of proton electromagnetic form factors via recoil polarimetry at Q=1.13 GeV. *Nuclear Physics A*, 764:261–273, Jan. 2006.
- [36] B. D. Milbrath, J. I. McIntyre, C. S. Armstrong, D. H. Barkhuff, W. Bertozzi, and et al. Erratum: Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron [Phys. Rev. Lett. 80, 452 (1998)]. *Physical Review Letters*, 82:2221, Mar. 1999.
- [37] P. J. Mohr, B. N. Taylor, and D. B. Newell. CODATA recommended values of the fundamental physical constants: 2010. Reviews of Modern Physics, 84:1527–1605, Oct. 2012.
- [38] J. J. Murphy, Y. M. Shin, and D. M. Skopik. Erratum: Proton form factor from 0.15 to 0.79 fm⁻². *Physical Review C*, 10:2111–2111, Nov. 1974.
- [39] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen. Nucleon electromagnetic form factors. *Progress in Particle and Nuclear Physics*, 59:694–764, Oct. 2007.
- [40] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, and et al. The size of the proton. Nature, 466:213–218, July 2010.
- [41] T. Pospischil, P. Bartsch, D. Baumann, R. Böhm, K. Bohinc, and et al. Measurement of G_{Ep}/G_{Mp} via polarization transfer at $Q^2 = 0.4$ GeV $/c^2$. European Physical Journal A, 12:125–127, Sept. 2001.

62 BIBLIOGRAFIA

[42] L. E. Price, J. R. Dunning, M. Goitein, K. Hanson, T. Kirk, and R. Wilson. Backward-Angle Electron-Proton Elastic Scattering and Proton Electromagnetic Form Factors. *Physical Review D*, 4:45–53, July 1971.

- [43] V. Punjabi, C. F. Perdrisat, K. A. Aniol, F. T. Baker, J. Berthot, and et al. Proton elastic form factor ratios to Q²=3.5GeV² by polarization transfer. *Physical Review C*, 71(5):055202, May 2005.
- [44] S. Raschka. Python Machine Learning. Packt Publishing, 2015.
- [45] S. Rock, R. G. Arnold, P. E. Bosted, B. T. Chertok, B. A. Mecking, and et al. Measurement of elastic electron-neutron scattering and inelastic electron-deuteron scattering cross sections at high momentum transfer. *Physical Review D*, 46:24–44, July 1992.
- [46] G. Ron, J. Glister, B. Lee, K. Allada, W. Armstrong, and et al. Measurements of the Proton Elastic-Form-Factor Ratio $\mu_p G_E{}^p/G_M{}^p$ at Low Momentum Transfer. *Physical Review Letters*, 99(20):202002, Nov. 2007.
- [47] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton: (project para). Cornell Aeronautical Laboratory report, 85-460-1.
- [48] M. N. Rosenbluth. High energy elastic scattering of electrons on protons. *Physical Review*, 79:615–619, Aug 1950.
- [49] S. Ruder. An overview of gradient descent optimization algorithms. ArXiv e-prints, Sept. 2016.
- [50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. *Nature*, 323:533–536, Oct. 1986.
- [51] A. F. Sill, R. G. Arnold, P. E. Bosted, C. C. Chang, J. Gomez, and et al. Measurements of elastic electron-proton scattering at large momentum transfer. *Physical Review D*, 48:29–55, July 1993.
- [52] G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther. Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system. *Nuclear Physics A*, 333:381–391, Jan. 1980.
- [53] G. G. Simon, C. Schmitt, and V. H. Walther. Elastic electric and magnetic e-d scattering at low momentum transfer. *Nuclear Physics A*, 364:285–296, July 1981.
- [54] StatSoft. Uczenie perceptronu wielowarstwowego. Internetowy Podręcznik Statystyki, 2011.
- [55] S. Stein, W. B. Atwood, E. D. Bloom, R. L. A. Cottrell, H. Destaebler, and et al. Electron scattering at 4deg with energies of 4.5-20 GeV. *Physical Review D*, 12:1884–1919, Oct. 1975.
- [56] R. Taylor. Deep inelastic scattering: The early years. Nobel Lecture, Dec. 1990.
- [57] R. C. Walker, B. W. Filippone, J. Jourdan, R. Milner, R. McKeown, and et al. Measurements of the proton elastic form factors for $1 < = Q^2 < = 3$ (GeV/c)² at SLAC. *Physical Review D*, 49:5671–5689, June 1994.