

REMARKS

The specification has been amended to include the priority data, to include sequence identifier numbers where amino acid and/or nucleotide sequences appear in Table 1, and to enter the substitute Sequence Listing. The claims have been amended to cancel claims 1-22 of the PCT application and to add new claims 23-52. No new matter is added by this amendment. The filing fees have been calculated after amendment of the claims by the preliminary amendment.

Should any additional fees under 37 C.F.R. §§ 1.16 to 1.21 be required, the Commissioner is hereby authorized to deduct said fees from Fulbright & Jaworski Deposit Account No. 50-1212/SONN:087US.

Respectfully submitted,

Mark B. Wilson
Reg. No. 37,259
Attorney for Applicant

(Customer No. 32425)
FULBRIGHT & JAWORSKI L.L.P.
600 Congress Avenue, Suite 2400
Austin, Texas 78701
512.536.3035 (voice)
512.536.4598 (fax)

Date: February 13, 2006

10/568156

JAP20 Rec'd PCT/PTO 13 FEB 2006

APPENDIX A

Table 1 - List of Primers

APPENDIX B

IAP20 Rec'd PCT/PTO 13 FEB 2006
SEQUENCE LISTING

<110> RODRIGUEZ-FRANCO, MARTA
JOST, WOLFGANG
WEISE, ANDREAS
GORR, GILBERT

<120> MOSS EXPRESSING PROMOTING REGIONS

<130> SONN:087US

<140> UNKNOWN

<141> 2006-02-13

<150> PCT/EP2004/008580

<151> 2004-07-30

<150> EP 03450184.1

<151> 2003-08-11

<160> 103

<170> PatentIn Ver. 2.1

<210> 1

<211> 1533

<212> DNA

<213> Physcomitrella patens

<400> 1

tagcataaga taaagatgtt ctctacctaa tttatTTTta ttatcacta ataactcata 60
 tcaatctaaa atatataaaat gcctttaaca atagaagaat atgattcaac aaacccaaatt 120
 ctatcattaa aaatatatct aagatttagat atgataaaaa tagataataa tattaataaa 180
 tcattttaag gttgtaatgc aactataata atttttaata ttataacttt ttagttttt 240
 aaaataaaaaa taaaatgtt aaatattata aaataattat actttatata ttatgatca 300
 agtttagtaca ttgatacatt taaaagtccaa aataatttaa tgataccac ttgcaaaaaa 360
 ttaatattta ttaaaatatt ttaaaaagtt aagagcaaga aaaatttattc taaatagaat 420
 tcataccatg gtattataaa gatacaaaga atcaatgtgt atttatttat ttacataca 480
 ttacttgcaa tatatggttt atactacaaa tgactatata ttgaagatac taaccacaaa 540
 aataaaaatc cagcactaga taattctaaa aacatgaaat acaataaaac attacattac 600
 tagcttatat ggttactaaa tatttttaaa ttatacaaat aaaaataaaa aataaaacaa 660
 aaaaatccctt tagtacaag aaataaaaata aaataaaaaa attataattt accaattccct 720
 aaaacattaa tatttaaggg atattcatat gacaataaag ataattttt tcatggaaacc 780
 ttgatttattt tatcttttaa aggtggatt tttaaaattt ttaatggta cttaaaatat 840
 tgtatttata tagagaaaat cctccaaaaa aattctctca caaggaaata gaattcctca 900
 agttttctc ttgactaaat tgaccaacca ccaaacaacc cacgtcatcc atccatccaa 960
 cccccacaca acccaattgt ttctccattt tagacatcga caaatgaaaa tcatccgatg 1020
 acgtatacac ttcatcctct ggtccctcca ggggccatg agccacatcc cgaccgccta 1080
 tttcagatcc gacggcacag ggtgacagag cagcggtctc agaccacgccc atttggaaact 1140
 cgccagccct gccccagcta acagttcaa agctgcccgc cataaccgg tcctcccagg 1200
 gcccgttagat cgtccatcct acgggagcac atataatact gcccctagtgc cctaattccga 1260
 tgggaacggg gagtccttta tctctctcgaa aagcgactc attcgccagt gtgcgcac 1320
 cccgtgtccc aaggcaccgg gcccagactct cgcacatcggt ctacccacac tcaccccccac 1380
 tcacccctgtg tttctctgc ccccttcgct ctcttcgtgt gtgtgtgtt tttcacggtc 1440
 gattggcggag ttgcgaagga gggcaagggt gctgtggtgc agcatcagct ggtagtaagt 1500
 cagtcagggt tcgggtcgcg gtagttggac aag 1533

<210> 2

<211> 1539

<212> DNA

<213> Physcomitrella patens

<400> 2

atgtatttcg gagcgatttc gtgtgctgtt ggtgtcttt gggttggaaagg gatttaaacca 60
ggagagtctg ttgggtggct tagggtaatt cgggtggagcc tggaaagatata tgctacgtct 120
tgaaaatacca tcttgcattca gtgcgcattt cttgcggaaa cattgatagt tgtagcggga 180
tatgggtctg ttatgggtt tatttgagca tatgtttcgt gacatctgtt ttgctgtt 240
ggcttgcattt actggtagtgc ttgttggtag acatttctc ctagcattac tataccattt ccatcttattc ccaatggcgc tatacgatcc 300
ctgggataca tttaacccat atttgttagtc tatacgatgcg catatttaat gtcaattttt aactgtccga ctatctcaaa aacctataca 360
aaaaatgaaa tgtacacaca gaatattttt ttatcaatct cattgacata cctcattgaa atactcccta ttgaaatact acataattttt 420
cattgtcaat attgccaaca ttcaaccatg agaagctgtt tatttttct ttatactgca 480
ttactctttt aatgcaattt caccatttctt catgagagca gctgtatcta ctccccgtat 540
caatattact actaacttctt caggaatagt actcgatatg ttgcgtcggt tcagttacgc 600
aattataaag tccatcggtt aaaccataat cgtcacaact ggatatctga tgccagaattt 660
tcagcaaattt ttatgtccga tccgaccatg tcaatgcaga agaggaatat aactatcttag 720
aggttggtca caatctttt cattacagtgc cagccaaagt tctgcaacga agatacattc 780
gcaacttgca tgcaagggtga agacacatattt cctggggaaag aaaatcaaca aatcgatattt cgcggctaga tcctcagttc gttgttaata 840
gtacttccatg tgcaagtata gtctgcggaa ttctgcatca aatagccatg acaaagattt 1020
aaatttgggtt acatgacgag gatttcgacg atatatcgca gtcctcgatc tacagttca 1080
agcggttacag taaacgagac gaagtgcctt cacaagaaca gaattaaccc gatcgatcg 1140
aagaatctac tcagcagtga gagcgagagc tgcggatcgatc gatcgatcg 1200
aagtgcctta tactgaatgtt agaagcctgt tgcggatcgatc gatcgatcg 1260
ataccgacat gttacatatc tccactgaag ctttttatca ctttttatca gatcgatcg 1320
aagcacaacg cgtataccaa ttatataac acatcgatcg 1380
tttataacaac caacacgcca tactcaagat gatcgatcg 1440
gagcaggca gatcgatcg 1500
gatcgatcg 1539

<210> 3

<211> 1197

<212> DNA

<213> Physcomitrella patens

<400> 3

tccttagtgc agaaggcgcg ggacgtgagt gagctctgaa gataagcttc caatttgcca 60
ctgcaagtgt aacctgctcc atcgggcgcg agtccgttagg gatcatgaac acctcatttc 120
acttggcggtt atgtcactct agcggcattt aagcaatcca tgccctcaga atgagtcgcg 180
gggggcagtg aacgaactag ttaagaaaatc cagtaatgac ggcaccacat cggcagatcc 240
agatccattt cagattatcc tttcagccg gaccgaataa accatgccta aataaccacc 300
ggaatgtgtc ctgtgcgggat ctgattgttt tccaaagaaaa cactaactaa ttatatccag 360
acagtgggat gtatgcgggtt atccgtgaag ccagatatga gatctctgtaa aacactgagg 420
aagatgtctt acatggcggc acggaaaaca cgaagaaaaag ccgaggagaa ggtattgaaa 480
gctgagcata gccattggct ggtgaggaaa gggcatgcaa caactcatcg aaagcggagt 540
aaactttgaa atccccgtagg ctcatgcga tgttctaaat tcttagcctc gacgacgatt 600
tcaaggctgtt attcgaagct tccgagcggg gctccggAAC tgcacttca gtcgactttg 660
aaatgtgaag cgactttgtt cacttgtgac acagcaattc aactccacaa tataaaaaaaa 720
tcgcgaaaca aaaaaaaaaaa aaaaaaaaaatc tactttactc gtcgatgttc cactcgaaga 780
caaacagctt taaagcggtt acctgtggta gagatagatt tcggcgaagg aattcaaatc 840
cagcaaccct cccactcgta ccgcagaccc ttagttgaa cggttctgtt gctgtttgcg 900
gtgagttcaa aactcgactg acctctctga aaccaaaaatc ttaccttgag ctgcccggaga 960
atctccgaac gttcgatata agatccaacg gtctcaagaa attctccctc gaggaacacc 1020
tatgcccagg ggcagggggtt tcctttatct ttctccctc gccgcaatcc atttcattgt 1080
gcttgcagga ctgtcatccc tccccctgtt gccagtggta tccggaggtt cccgcgcacac 1140
cttctgggtc cggactaag gtctgtgtt cttctgtga ggtagagcac actgaag 1197

<210> 4

<211> 1012

```

<212> DNA
<213> Physcomitrella patens

<400> 4
atgcgaccccg aaggatgagt acacgcgtt tggtttacg ttactgactt ttagctcctc 60
cattcacact gcagggccctg gttactgtt gaaagcacgg ttataccctc cgtaaactga 120
acattctgtt tcagcgcgtc gtgtcttagt tgccttgg ttcaactttt agtttgaag 180
caagtcgttg tatagatgat acttagcaca tatagttgt gtcgatttg tttaaattca 240
gcattccgct gcctgaattt cagtaaatac cttgtccaaac ttgcgtgc aa tataaattgg 300
cttcagttatc cagtcttgc ttaactccctc attgcaatct tgggtggcggt ctgggtgcgcc 360
tcgtccactt tcaacgatgtt cctcgtcagc ttgtttgaac acttcctt tcctactgag 420
tatggcggtt gcctctttt ccaagctctg ttgatgttgg tcctacctt tcaaaaacatc 480
acccacagag atttgacgac aatcgtaatt ttaatccgat tggatgggg ttcctgtcata 540
gtcaatatat taacgccccat cctctcaactt accaacgtct gttaccaact ggacaataat 600
gcattcacaa ccaaagtgc aattttgtat gagttggaaa tatcgaaaca gttagtgc ca 660
gtaattcacg caaatagttt tgcattggaa actttttt aactttctgt tgcattcaatca 720
tcgtgcgtt acaatttagaa atgtggcaga cagttgcatt tgatgtatca actgcgttgg 780
tagtaacact tggtaaaact gtaagataga catgccaact ttctgggt gttatgtcaat 840
tgtttatatc ttccgttggaa atggtaaat tcaaatgaaa gtgggtggga gaatttgat 900
cattgtatgtt ggaatagttt attgcaatca gtgagtcctt ttttcagggt agctaataatt 960
ccttactgtat tatccattgtt ccaccagggtt ggcttggaa atqcgtaaq tt 1012

```

```
<210> 5
<211> 1386
<212> DNA
<213> Physcomitrella patens

<400> 5
ccgtgggact tagttgtctt cacttcatta gaaaaatctgt ttgagcctct ttccattcca 60
atcttctcgaa caaaaatagg ttttcagtg actcataact tatttgtcgtt tgcaaaattc 120
ccactaatcc gaaatgtatg gtgtgatcac cgagcttta aatttattgt gtttgggcag 180
tctacgaaaa atccagacgt ggagccttcg aggaacacagt tgttcgcgca ccgctacttc 240
tgaacttcac aacgcccgcgt ctatgtcgct ctaactcaga ggctataaca caagtttagcg 300
atgtccatcc ctcttagtctt catatttgc acatttaggag gaggcacacg ctggtcgaga 360
tgcccggttga actcttccag attgtacca tcaatgcact cgttagacaga tccaaaagtc 420
attccacatt atccaacatt aaggatccc caactgacca accaagagca ggtgctatga 480
gttggacttg ttatttccaa aatgagcgtc gactacatat gcccaggcag aaggatatgc 540
cgaggtatct gggggggcag gcatgtgttt tgtgttaaagt acccccggg taagaacttt 600
taagcggcgg cactggattc agaaaacagtg gacagatata tccattgcca atgtattgtat 660
tggctggcga agaactgtt caaaccacga ccagccgtag gggcgtaaaa tttgaatcca 720
ctgtttaaat ttcaaatttca aaacctcgac ggagtttctt ttagctttc agatggcgc 780
agaacggtta gggaaactgtc ccgtccccc aatttgaatt taaaaaataa atcaaaacgc 840
tagagcttcg attagtatgg gctttttca ctcttctgtc caattctttt tggtttttac 900
ctcatgcaag gcggtcggct aaagtgactt acaggggagga atattactga gagcaagagt 960
tttaccacgt tggtaggatct ggagaaaatcc aacgatgcta ggcctacgca acgagtgtga 1020
ttcaacgcca gctataatct cattcgtgcc gtcgatcccc ccatccaacg ggcgcagacgc 1080
tttgcgtggg aatttgtacct tgcctacgt tggaaatttga ctggcagctc ttgagctgga 1140
atttacttgt ctgcctgaga aagttgaagc gtaagatgtt cgatccaacg atgggcagaa 1200
agtgttcgtg ggcagggaaacc aaagccctag ggcgggctcc tccttttatac tatctctgt 1260
gcatatctct tctcagtggtt cccccaggga cgtcttc tctccttttgc ttcagcgtct 1320
cagtgctcgaa gggacgggtt gccgtcttttgc ttttttcgtt ctcgtttagt atcatcccta 1380
gcgaag 1386
```

```
<210> 6
<211> 997
<212> DNA
<213> Physcomitrella patens
```

ttgtgacctc tcctctcggt atcattacgt agcacgctac gaacaggaca ttctgtttca 60
 gcgtctaggg tcttcattc agcattaga accaaatcat tgtatacat tcacccagca 120
 taccaagtag ctattgattt gttgtagtt cagcatgctg ctgtctgatc cgaagattat 180
 ttgttaattga ctgttatatt tgagcattc tttcaatca ttttgtgtgg gtttgaattt 240
 taatttagcag gcactgagtt ccgtgaccgg aaaagaattt tctgagaata gccaggttag 300
 ttgcttcctc ttttgctgtc gggatattt cttccgaaat atgggttatac cagcgctcta 360
 tccgcttctg ctctgtgta tttgaacatg aatgcattt atattcttcc aacatccata 420
 taactaatgc atacttcata agaaagcaga ccgtcacggta taatgggaga aacatttcc 480
 agtcatctcc gtgtccacat ttctctcaca cgctaaccat gtttagtaaac cgcaaggact 540
 gttattaagc aatgaatatg tctgaaaatc gtatgtgatc ttttgtcaaa gtgtcatagt 600
 acccgtcattc gcccattgt gcactgctgt cagatccgca gtaaataccc gctaacgaaa 660
 ggaagagaaa gatgagagaa gatgagattt tttccggag agaatcagac gcagtcata 720
 gtgatactat tcgacggacc taacctcgat cgtaaaaatgc aagaatttaa cgaggcata 780
 aaatcagctt aaaacctccc cgcacgtta acgttaaccat ggctgtgcta aacatccacc 840
 aagagagggaa acacccgaca tgaacaactc ttctgaacta cacgtgaagc agagatttag 900
 gcgaaaagaa agccacagat cgctgctct caagtggta atttattttc ctttggaaaca 960
 aaaatggagg tttggaggcc aagcagcaat ttgcatac 997

<210> 7
 <211> 624
 <212> DNA
 <213> *Physcomitrella patens*

<400> 7
 ctgcagtgca gtagacgaca aaatggaaagg atgcgaccag ggtatgaacgg gaagagttatc 60
 attaatgcga gacccttggaa gttgaaggcc acgagtggaa cagcgatgcc gagaaaaattt 120
 tgaaaatcgc tcatcccaga caaaatatct gtggggccagc cagggttcc cagccagctg 180
 ctctgcccgtg ccagccgttag atctgctcat ccgacggcca ctgcggccca ttctggactt 240
 gtaccctccg gcatttggaa agtgcagcc tttccctgac gaacattca cctcggctgc 300
 cccggaggcc aggagcgtca gatgggagat ctgacggccgg ggcggaggag agacctgaaac 360
 cggcggggcag gggaaacgtatc tcggtgtttt ttcttctggc tgaggcgtcc atcccctta 420
 cctccgctgt gtgttcaaa ggccgatatac tgccgttccc ttgcggaccg agctctgtcc 480
 cgctcgctta ttctctccc accgagcttc cgagggttggg cattccacc cttccttctc 540
 ttctctctc ttctctgtt cttcttctctt gttgtctgca gatttaggtct ttttgtcttt 600
 cgagcttcgc acagcttgcg caag 624

<210> 8
 <211> 1146
 <212> DNA
 <213> *Physcomitrella patens*

<400> 8
 ggcgcgggtt ggctggaaga agagtcgaga agcgatgtgc ggcagcggca gcagcaggag 60
 gggcaggccag tcagggtcgac cacgtcgatggggacttt ggcgggttggc 120
 tggggatcag aagcgaggaa taaatataatg aagattacgc gccgcggaaag gacgcgtatgg 180
 ccaacgggtt ggagggtttt acgtgtacag tatgagactg acactgacgt 240
 tgatcctcgat cgaaccaccg gggctagccg tagtagatag ttggagcggag agttcggggag 300
 cgttgcgtcg gataagctcc ggcgttgc cccagggtgc aaccgttagtt gcatgggggt 360
 ggtggggggaa ttgaaattgg aaccggactt ggagttgaga agttcgggtt gttttggag 420
 gcagttgaaa gacgtttta agaagttga gctgttggaa atacattgtt accctgagct 480
 taagcgtgt gtagtggcga tttgtttaat tttctgtattt ctgtatgtt gttgtgtcgaa 540
 ggcgtgtcg gtcgtgtttt gttgttgc gttggcggtt tggccgtgc ttttcggaaatg 600
 atttactggc ttatggatc cttggatcc gttggacttgc gacgggtggat gttttagtgc 660
 cttgtgtgaa caaggcgggc atgcagatga tggctcgatc ataaagacag ggtcatgtcg 720
 ggtattgccc agatgaaatgtt ctctttgtt gatgcccata cggaaaatgg aagttggtag 780
 agtcgcacgt tcagggtcgatgggttgc tggagtttgc cttggaaaga gagagtttag 840
 ggtgtcctgg atgtatgtcc cggagggtgtt gttgaatcga tttgtgtcgaa agtagacatg 900
 agcaccgatg tttgtgacaccg gaatgggttag tttgtgtcaa tttactgtga gctgtttgt 960
 tgaggcagac attccaaggg gatgggtttt cgggtttgtc ttttaaggct ggcgcctgcc 1020

tagcctcctt tgtccttcag cgcatgtttg ctttgtacgt ttgcgttggg attgttagta 1080
ttggctcgga tggaaatttt atcggttcta tcggcagcaa ctaagtgcgt cttgtcattc 1140
ccatgg 1146

```
<210> 9
<211> 2973
<212> DNA
<213> Physcomitrella patens
```

```
<210> 10
<211> 1128
<212> DNA
<213> Physcomitrella patens
```

<400> 10
agcagtgcga cacatctttt gctttttca gcacgtctct tagctcggt tattgaactt 60
cgattgctaa cgtttggtggc caccgaatta ggcctgtctag cgttagatcaa ttagagggtcc 120
atgttgcaga aagctttgt ttgtaaaaat agctgatatc tggacgcata cgactggctg 180
atataattca gtgcattca cattattgt taacagggtcc aggggtgttt gtagagtcgg 240
acagcatttc tcgtcgaaat gttggcgccg ttttgtgaaa tgaaagggtga ttatgggtaa 300
aatgcataaca tagtcctgtt gactatggct gagtggataa gatatatttc catcacaggt 360
tagatttcct gcgagggtgt aactgtgacg taaaatcaca gagtgcgtcg tcttagccct 420
agcccccgaa tcatccttta cgatggatgc atgttcggat gttataattt gatttttttt 480
tttttcgtt gtttacggat ttttgcaccag tttaccattt gttgtttcag ttgtgtatgg 540
ttggttctgc gtagataagt ttgagtttag tatatttcgt gagacgtcct acgccactgg 600
atatgtatcg ctgaaggcaga atactgagta ttgttaattgt atgttccaga cgtttcagta 660
gttagtgaca gtggaatgaa gcaacttggg ttttctttc tatggtcttg ccaatcggtt 720
ccgtcgcgag attgagcgta cctgtcaag ttgtgttatt ggtgagctca atgtgcttgt 780
gattggtcaa tttccatata taagtgaagc gccattttca aggagacaag gagctctatt 840
ctaggcattc accagtccctc ggctccaggg gcactcggtt gatgagggtca agtctcattg 900
ctagagtcgg ttgggtgacca ctctgagggtg gctcattact tgggatataat tccatggcga 960
ggtttgggtt tgcgtctat cgacgaagcg gctagaactc tgggaatcta attatttgt 1020
ctaattccgtt gcaggacgat cagccgtgaa acagataacct atattnaag aatgtttatt 1080
cttgggtgccc atgtgtttgt tattgaagaa taatcttcgg tgacgggtg 1128

```
<210> 11
<211> 3035
<212> DNA
<213> Physcomitrella patens
```

<400> 11
cgagatcggt ctgttaagccc tgtatttggc atggaatatc ttttaacaaa gaagatccat 60
cttttagttt ctcataatgt tgaacaacgt acttaaggat ttagaaagtg tgtttcgttg 120
cttctcttgt tagaatggcg ttatgagcct gtgctgtgtt cttctttta gctggatgaa 180
ctgtacaatg ttccacaact gtagcctagt tgatcggtca tatttgcgtc atgactcccc 240
gcaagttgat gtgtttttt cttgttttg aatcccttca acctgtattt ggtggctcg 300
acagtaactg ctacgatata cgtcagtctt tagtaagtaa tatgttccctt tttctctcgc 360
ctcacgtatg tcatatttcc tgagatagtt ttttaatttt cgctctgtgg tttctttag 420
tcctttcact gcgtgccgct atcacagctt ggtcatagag gaggccacat ttccagcgg 480
ccaacttgag gttacagcat ggactgagga cgggcttgc atgggagtc gtcacaaagt 540
ctacaagcac attcaaggag tgcaatttca tcctgagagc atccgaactc aaaacggat 600
gcagatcgtc ggaaactttc ttaagatTTT agatagaaaag gagacggctg acaagaagg 660
gttgaaacac aaattttgga gagtgttga gtgatgagtg atactggat ctttttttat 720
gggaaagatt gccagcagca gtaagcttgc ttttgttaga ttccctctcc tacagcgtgt 780
acccctcga atatgcactc aagcaagcct agaggttgc gctatagatt tctcggtaag 840
acagggtatt attgaggcat ttttgcgtc tccagatgga gctactacca caagtatcta 900
tccttattttt atctttaact tcgatggatt tgccatgatc actgaggtac gtcgaagttg 960
tgattggact ttagtgatc acttccagag cgagctatca aactggtgcc tagaggagca 1020
acgcaaggag tgctgaatta ttctaatgtat ctcatttagc ctaagtttc cgtcaacat 1080
agtgtatgtt ttaagttcat ctgcgttagt aaacatctca aagaaggta accattaaat 1140
tattgcaggg gttgtgatga ctttatttaa tagttgacct cttaattga gaacgcgttg 1200
ctctccctttt gtatagttt aatcatatca aagctctatt tggctctgtt accttaagcc 1260
ttgtgttaagg catttaaata atcttccca cgattaaagat ggtagttatg tcgcccgttg 1320
caacttccaa gatgtcctaa tgctatagtt ctcattcaca actcaggagg tttgttgttt 1380
tatgttttg aaagtgcgaa aggaaattgt ttactttcg ctttgcgtct gtgtatTTT 1440
gaatagtagacc ttaacttctt acacaatggt gtctaatttgc ttattctgt gtatcacgag 1500
cgttaatcgg ttggacgtc ggaccctttt aaccatctc aattgcttct gttctaatcc 1560

acgcgttcca cgaatggcag gtcaaatacc gattattgcc cgactcta atcgacagtc 1620
actgagacta ataacgggg accacccatct tgcgtttatct tggtacgttc tcgttatccc aaaatctgtt 1680
taatggcaat cccttctgc accacggcga actcatgatg attcttacatcg agtcctgctc 1740
accacaactta tcacaagacc ctacggatct aactatgatg accaaaagct tgttctacgc 1800
atgcatgagt cccttcgttt gggagatccc agaattctta ggaactcaca cgttgtccat 1860
aaattttaac caccgggcaa cataggatgt tgacatgttag tcacaaaattt agaaaaaccg 1920
acttcaaaag gtggcccacg tagacaaaac aactcgaacg cagaaatccca ggcgaccgg 1980
gaaattggaa cattcacaac aaagcgagaa gaggttcaaa aaaaccgcag agtaaaccc 2040
atgcgcaga ggggaatggg agatccacgg aaaaacaaag agtgccccgg gcaagggcat aactcagaaa gggagccact ggtacaaatg gagctaacag atccgggctc aaaatctctt cattctccat tctcgcacta ttctccctcaa caaccctacg gttttcgtgc gagcttattt ttgttgccct atactttgt ttgcttattt tttatctcaa gtgcacatgt tctcgcacg agacctgagc accgaggcgt tcgtaaaggta gttgtgttca gagctagatc cagagttaa tgatagaggg gctttcgtg aagcggcccg cgttctccct tatcttcagc ttggataacgg tgcgattcag gctgtatatt ctcacttaat ccgaaaagcta atgggctgtt ccgcgttccg gtttcgactc gtcttaccga gttggatcac ttacagtctg acctaaatag taacagtctt ttgatgtgca gagtatttct tctcc

```
<210> 12
<211> 1221
<212> DNA
<213> Physcomitrella patens
```

<400> 12
gcttagtgcac acctgtctcc tgaaaatgcta tcacacccttg tcaggggggg ttatggagtt 60
tattttagt agctaaggcag ctcgaagagg ccagtggagactgattttt cagggggttgc 120
aaggaaatgg ttactcgagt aaagagccag cgctgtcgag accttcttgg tgcaattcca 180
tctttgaaag tatgcacatcac aagtttagatt cgtggctttt gagcttgc tcattatttt 240
gcctaccatt tatgtttttt tggattttagc atccgcggcg ttaagtttt tgtttaaca 300
ttctttcttg taggttcgga tagaatgttg gggacatttt atgcttgaag agcgtcttgc 360
actgtccggac tptaatgcaa tgcttgcga cctcagcctg gcctgcaata cttgtatatt 420
cgtgaaaaca atcatagcga ctctgtgtt ttcttcccat gtcatcact ggctctcgaa 480
cttgcgaa tacatctgat gggcacgcgt gcagaagccg ttctttaacc tcgatggat 540
ggatttagtac gatttgcgtt catttaaacat tatttgcata cctgtattttt cttctgttcg 600
gaaatttgtg tagcttgcata ttttatggta tggtagga aatcagctt ggtgagaaat 660
ttgtttcata acgacacaaat ggaatgatga attaaatgt tgccagacca atatcgatg 720
tgtcaatctg attcctcaat gcagatatgg ttgtggagcg tctgtgtac ctcctgttt 780
taaccggcgt atctgaacca actcgaacgt agtttggaaa atgcactaaa tgatgcata 840
tcaatcggtc aagtcatatt aaacacgcgg ttttggaaagg tagcagggtg atataatata 900
aacatgtata tcgcaaaggc ccattccatcga cattggatgg tgctaattaa gatctaata 960
accgttccctg gcaatgtatc tatcaagcaa actgaagaca caatgaatcg ttgaggtgtat 1020
gtagaaacac aaaacgatct tttatgtgc cagagtggc ctcatcgatg 1080
tacactgtata ggactcaact ttgatatttt ttgaagattc ttatgcctga ataaggta 1140
tggaaatcata gttcttgc tcatggctt acttgattaa gatttggggta tttggaaacct 1200
ttgttaaggag gcaatgaattt c 1221

```
<210> 13
<211> 3060
<212> DNA
<213> Physcomitrella patens
```

```
<220>
<221> modified_base
<222> (849)..(3060)
<223> n = a, c, g or t/u

<400> 13
agactctact aattgacaag tatgtgacta caaaaaggcca caagactctc tctgcactat 60
aactataagg ctcatatttt ttgtccatgt agcttgata tatatatata tatatatata 120
tgtatattta aatcaaataa ttttattca aaaacaaaat acaataaaaa accaaaaaat 180
atttaaaaaa taaataaaaa attattaata ctttatgaa gctattattc aaatttattt 240
ttaatttcta attaagatt tattatTTT tcttaaattt attaaacttt ggaatttattt 300
tttaaaataa ataacaataa aataattt agtgttttta ttgataagta aaattaagag 360
ctaaatttgg atcattatta caaagttata atacttaaat atttatttag atatatttaa 420
atttaaattaa tatttttat taagttata atatataat atacacatat tatgaaattt 480
tttaaaagaa gtagtagac tttaaataat ttttaccat gtttaattc tagtacaatg 540
tatttaaattt atcttattaa gttatggaaa agaagttagt aggttattaa atgttttgg 600
agattgttg taaaggttt atgataatct tgatgataa gggtgttag catatgttat 660
tttgcttaat taaaaaaaaat tacatcttgc tacatttaaa tttaaaaaat acatactata 720
cacatatctg tatttagatt gctttacaa ttttatattt tttgtttttt gcatatttca 780
aagaaagccc agcatgtgt taataattt tataaccctt agaaattaat aatatttaag 840
taaataatnc ttatttataa ataaattact gtttggttt taatncaaga attaaaaaga 900
cccaattgtt tattccaaag taatagtgc ncattaataa aaatccttca aaaatgaaac 960
taaacaaacc aatgcatttc aaatgaaaag gagaagaatg atcttacata gacanccaca 1020
aggagggaca tgacaacttta attagactat ggggttagga acatcaacca ttccctacta 1080
ccaaaaaaagc ttacatgatt taaaataaca caatatttct tttttttttt gtgcatttt 1140
gaggatatcc atctatctg atttggaca atgtttact gcccaaattt caataagaac 1200
cattcacata ttgttgcata catttgatac actctacatt catgtctaga gtatagggac 1260
ttgggtttaa gatttagggt tcagattagg gtttgcaggg ttacagttaa aagtttaggt 1320
taaagatttta gatggagtct tggttcagag agaaaaaaagg atttgggtt aagttttat 1380
gaaagagaat catgccccaa acaagtagcg ggactgctga atgcctttt caatgaatga 1440
aaatttataca acgtccgtca atatgtacaa gaccatcaca taatggcccc cctgaccaca 1500
atttgaaaaa cacacacttc ctgcctggaa ccagtaatac aagtcatgtt aggggagaga 1560
gagagagggc gagagagctg tagtgcgtt taataaggc ctcgcagatt cagtgtacg 1620
tcgtatggat acaccgtatc acttctgtt tacaggttac taaataactac tcgacacggg 1680
gcggggccat ctgcggAACG cgccggggcc atgtcccagg gccttaggccc cgccatattt 1740
ctctcgcca cccgggccta cgcaacttt cccttctcac tttcccagct cacgtctct 1800
gttcaacgca caacaacgcg tagccgagac ggggttggag cacaaggatca cccagccgg 1860
cccgaccctgt gcccgtctgg cgcctatctc tctccgcctc tggggccgtt tcgctctgt 1920
ccttgtgtgc tctgtctggc cttcacccgc gtttcatgtc ttcttcgacc gagagctct 1980
tagtccgtc ttgttccacca ctgcccggc actccgaccc cttgcataact ctcttctgcg 2040
gtgcctgtt cttccccatct cctgcacatgg tggccctgtt tggtttttt taaaggtcag 2100
tccctctatc acgtcagtgt ttgcatttc cgtgaagtgc tcagggtttt ttttgcgtcg 2160
aactgtcgggt ggagatgtgc ttttgcgtt gtttgcgtt ttttgcgttgc agcgatgggt 2220
ggtttcttgg aggaggaggg agagtctt ttttgcgtt ttttgcgttgc tgctcgggc 2280
gcgaatgtgg gtttatggta ncgcacaggc tggccgttgc gatatgtgtg tagaaccctg 2340
tgccgagcga tcatacataat agtagttct cgtttcggag gggctgggt tgcgttgc 2400
aacgcagagt cgtagttttt agagttccag acgcgcacatcg cgcagctgtt gtgagatgt 2460
gcttctcggt gtgttttagtc aagggttgcg ttttccgttgc tggatcatg tttacgtccg 2520
tcctttaaggc tggatcttctt gttcttaca gaacttgc ttttgcgttgc ttttgcgtt 2580
ccagtttggc tctgaagacg acaagcctt ttttgcgttgc aatagtaaga agaggaattt 2640
aatctgaagg ctgttttttgcgtt acagtagttt gtcgttgc ttttgcgttgc ttttgcgtt 2700
tttcgttgcgtt cttctactaa ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgtt 2760
catgcctgtc agtgcggaaac agcgggttgc acctacaatc atatggat ttttgcgttgc 2820
gtcgatgtt aacttgcgtt ctttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgtt 2880
aactgcctgtc atagcaccgtc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgtt 2940
gtgtatcca catggctaca gtcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3000
taacctatgt cttccttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgtt 3060
```

<210> 14
<211> 4124

<212> DNA

<213> Physcomitrella patens

<400> 14

atgtccatg tgcaactacta aacattttc agcacactcc cttccccggg atttagctct 60
tgctgttag aactctcggt gcaagtatca gtgattgcag actttgactg gtgagcacag 120
attcaacaga ggtttatttc gcagatgact atggtttgtt aaaaatagcag atatctggc 180
tcaattctaa cggctggat atgtcagttc ctataaactt aactgtttgt agctctagat 240
cggtgtggta aagtccggta ccaattcttgc tccctttcg tattaaataa agggtattt 300
attcatata tcgtctttc cttttgtcat cacatctcta tcctgtcat atcatgggt 360
tattctcagt cgtaatggtc ttcaagttt aatgtatggct ttgatgtatgc gcacctgggt 420
gtgtctctgg gcgtcatggg cttcacatga gctcggtt cagatcacgt ccagcctcac 480
acaattaact aggcatgctt tccatttctt tctgacgtt aatgacaggct ctgacaacaa 540
tgcctggcac ttcctgacgt gggaccggc gattgggtgcc gaagtcgagc aaaattctaa 600
cctccacaac tggtatcgta aatattcttag cctcttcctt agaacagtgc cggtcgatct 660
cgaattaccc cgtaatagtc gtcaggcatg tatgtatgtt taaaataact ccatgcggct 720
aaattatttt taaaatattt tctttggatt tgaatgaat ttctacctt ttttacttta 780
agttacgagc tgcgattcca actaatgaag ttttacatac taatcagaag aatgtcggtt 840
tttgaatattt acaggatattt ttttttgaag aattaaatgt ttttgcgtt tttttttat 900
atcaaatttag ttttgaatgtt ttcgtcggtt catttttttt atcttggat gaatttgcgtt 960
tatgtgacgt gtatggaaag atacaatctt catgttagtgc agtacaagac aattacacct 1020
cttatgtttt tggatcattt gtacatagtc tacgttagtgc taaggtcatc gtgtgtgagt 1080
atagtatata tcattacatac atttgaatgtt cagtaatgtt tagttatgtt accatcgacc 1140
agttatcacc gatgttgctg agaagcaatg tgaatcttag gaaacgagtg atatttgaac 1200
tggatattaa ttcatccgtt atctataaac agacatgctc tactagcggtt aaaacataag 1260
ctacagcaca aaatgatcta aaaaaatgtc atcaatcatac agctgtgtt aatacatccc 1320
atgaatatac acagttatgag tttgggtgtt tttttttttt tttttttttt tttttttttt 1380
gaaatgtgtt ttactgaattt cacatgcattt tttttttttt tttttttttt tttttttttt 1440
ctgtactctt ttaatgaaac atataataga tttttttttt tttttttttt tttttttttt 1500
gccttggat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1560
aaagaaaaaaat tcacaactca gcttcgctg tttttttttt tttttttttt tttttttttt tttttttttt 1620
tcaggcagcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
ggctacagga ggtgtgcact gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1740
tggctcacac ccaacgttgc tactccatcg cacagacagt tttttttttt tttttttttt tttttttttt 1800
gctgagaagcg tcactctcggt gctgtctcac gttttttttt tttttttttt tttttttttt tttttttttt 1860
agtcgttttc gagtttgcgtt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
ttttgtatgtt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
gatgaggagc taaaaccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2040
agtacaatatac aataatagatg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
ctgtcatcgat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
atagtatctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
ggacctctcc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
ggtaactgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
gacgcccctgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400
gctgtggcgat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
tggcttggat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2520
tatttttata tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2580
aaattttctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2640
tatcttaattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2700
ttttcttaaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2760
tgacacgatg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2820
tttatttttattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2880
tattctgtatg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2940
cttacaaaaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3000
actttttgcgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3060
tactatattt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3120
tttaagatag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3180
agggaggctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3240
acttttagctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3300
gatcaagagc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3360
cttcgcagggtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3420

actttccgg	t	tttgacgga	cacaaaatac	agtcgaagg	actaatactc	aataacttgg	3480				
ttctgtatgg	t	tagctataa	gggttgggt	ttatgat	ttt	acagggtgtc	tgcc	tactct	3540		
cgcaacccta	c	ccagtatgga	ttggattt	ta	tcgtgc	tcaa	aatgtt	ctaa	atgagg	3600	
attgcacat	cat	gaactggagt	gctt	gaaaca	tttgc	tttgc	tttgc	tttgc	tttgc	3660	
tagtttattt	tgaa	acatag	gcgt	cattag	acaat	ccaca	tttag	at	acag	3720	
tcttaccata	tatt	catttc	aaagagg	ttc	aacag	acatc	gtaat	gcaaa	gttctgt	3780	
ttttctctt	g	acttcaacgg	gaga	aatatct	attctt	aaat	gagat	at	ttt	ctgtgg	3840
ggtattcaag	tat	gaatgt	tgta	actatg	attt	actt	gcat	tttgc	tttgc	3900	
gctcttgact	gagg	gttct	tctgg	atc	tttgc	tttgc	tttgc	tttgc	tttgc	3960	
tcgttccagt	ggg	agg	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	4020	
gatgcttgc	t	tcgtt	tattt	ttttc	cata	atgt	tttgc	tttgc	tttgc	4080	
catata	gt	atgt	caaa	atgtt	gtcc	atgt	tttgc	tttgc	tttgc	4124	

<210> 15
<211> 3053
<212> DNA
<213> *Physcomitrella patens*

<400> 15
ttgttgaatc atgttaattt ccaatggta ttaatgacca tcataattgtt cctggatgc 60
atggaaaag taatgttca ctaaataaaa gttgatccac caaatattgt tgcataatgtca 120
tatcgacaaa tagattcaa ataaataaa attaaaattt aaaaatgtata aacattggca 180
tgaaaatgt attaatttta aacaattcaa aacttataca attattttaa atacatttgt 240
caccgggtt aaggagacag actgacagaa ttggatttgc gcaatcagta gcactgcaca 300
aataaatttta acatgaaaaac attatgattt ctaatactct gtttgc

ctgagttgac tacatgtAAC aatggcatgc aaactgattt cgtgcacttc atacttgtat 2520
 tcagttcgTT gtagagtccg ggatatatgt taggtagaat aaagaatctt atctctcgGC 2580
 attcaataa aaatttcatc cttttGAAT gcacccTGTt tgaaaggTCG ccccatGCC 2640
 acggTTgact gagaacaatg tctgcgcATC agttaCTgtat ggtcgCACCT gttgtcACTA 2700
 atttgagtGA ttaaggTTtC ctaccGGCTt tttctttCC actgatttag tttattCTtC 2760
 atcaagtttA caaatATTGc tctgtatAtC acgTTTTG ttAGTCTtG atgtAAAtCAT 2820
 attacTGGG tttattatCT agtgaACTat gactgatAtG ctggcgcATA ttctcctACT 2880
 taatttgacc ttattAGAAG atgttCGtAC ttagAGtAcc ttttacttAA tgtaACTgAA 2940
 tctatcattG ctTcGTtCt taatcgtGtC aaaaaAttTA actcattCTC tcgttaACTA 3000
 atgttttGA gcacTTGcAc tggTTTGAA ctccTGTAGG atcatttCTAA aaa 3053

<210> 16
 <211> 1879
 <212> DNA
 <213> *Physcomitrella patens*

<400> 16
 atctgtactg cacagTTtA cattttcAG gcttgcattt tgctgggatt gagttcttG 60
 tttgatagaa ctctggacgc aaatgtctt gactgcttag ttgggctggc gaggcacacAG 120
 taagaAGTgg tacatgttgc cgAAactatg gatttGtAA aatgAAacgt atctgggCGc 180
 ataacgaact gcttatataat gtcgctgtct gttaacttCA atctctacat gtccagatcg 240
 atgcggtaga acccgaccat ttttGatcg atgTTGAAC ctTTTtatgt taaataAAAG 300
 gtaccatgtt ttcagcgcAT taatcatatt tattttGtC actatggact tgatgtacac 360
 cggatgttac agctcagttc tacttcACAG ttattcactg acttgcCCTG aaaaAGTcGG 420
 agtgcagatc tcgttGtGtt ttggtaatct ggttggccAG ttcagagct ctatTTTtG 480
 atgaatccAG ttgattggca ctcaatgttt ttTTTtattt ttacttta tcataGtGtC 540
 aaggTTGtCA cgccAGGAAT gctgtgaggc acatttCACC cgtatGAatt tcctcgTTcG 600
 caatAGtGtC aagctcaatt taggttttC tgAGcaAGt gtAgAAactat cgtgtacttC 660
 caccAGattt cagcctctCA gtGtGAGtG ctTcGtCac gttaactAAt tGtGGAAGAt 720
 ttGGAatcat ggttGcatCC cttagtttGA cagaatttCac agtGtGtAGt tgacctctC 780
 atcttggtCC accatAtGtC aacctgttCA agAGGGctGt gctcggttG gtaatcactC 840
 agaAGtttCt tcctacAGAA aacttGttt GtGggcatCA tctacgtGGA agaattGtt 900
 gagcattAAA tcattcaACA ccttcAGGtA catGAAGtG gttGGAAGCA gtGcCttGAA 960
 gagatcCttC acagAAAAGCC tctcaatCt catGAAGtCt gcatctaAct tctttGAAG 1020
 ttGtacacG tGtGggcAGA attGAAGtG gtttGtGtt gttGAAACA actGtAattt 1080
 aataAAatCCC aaacaAGact aaggCCatCt aacGtttCA catGtttAA aaaaattACat 1140
 tgaactttGg gctaccGtAg tttagACAG atGCAatttAA aaaaAAAG aaaaaAAAtGA 1200
 aaagaaaaAA gtcTTGtttG tttagtGtG ctGtttGtA cagtttGtG accttatttA 1260
 gagtGtCAtG tatGcaACat ttGactCACA attataAGtG ttatattttt AAatGAGtCt 1320
 tGttGtCttt tattttattt tGttCtACat tctGtaAtAt taaaacttCt attGAAAACA 1380
 caacAAACat ttaatttCAa gttttcAAA ttatAtAtG catAtttGt atGtAAAttG 1440
 tacaAAAtGt cataAtGCAa attGAAAtAt ttaatGtAAG attAtAGCAt ttaAAACtGtA 1500
 tccAAAAGAt aataAtttG gGcaAAAtAt taaaattAtG atAGacaAAg ttGAGAtGt 1560
 tGtAAtAAAttAtGtGtA agtGctAAAG tAtGtAAAAC aAtttCAtA aAgAAAttGtC 1620
 tGtagCtAt tcaAGAGAAA AAAAtAAAtA cttaCgACTA ttttAAAt gacacaAAAtA 1680
 gtaaAtAAACA AtAtAttGAt gaggAtAtAt AtAtAtAAtC AAAAttAAACC attAGtGAtt 1740
 ttAacCtGc AtAGtAttAA tGtAtGggAC cGcaAGGtAG acACtCtACtCtAtCtGgAtA 1800
 gcacCtCtCA tatacacaAt AAAActtTA cctGtCtAA agtCCAAAGGg AAtttAcAA 1860
 agaaAttCtCt ttaAAAttCt 1879

<210> 17
 <211> 1823
 <212> DNA
 <213> *Funaria hygrometrica*

<400> 17
 ctTcgtGtt gcctcaAGAG tgcctcgCGA agAAAGAAGG ttccAGcaAC aactAGAGAA 60
 tgggtacAGC attcataAAA ctacAGAtAA ttatCttCA aAtAGtAAG aaaaAGAG 120
 gaAGGAATTG AtAAAtAAGC aAGAAAtAA gcaAGcAGC cactcggCtA gacAAAGAG 180

actgcacacg ggtggccaag gaaagcgccg gtcatagggg atatgcggc atggggcac 240
 tgtttccggc agccggaatc gattgcaccc tcgcagtggc tgacgagtca gaaccgggtg 300
 ccaagtggac ccagctcagt cgccggcagg ccgaggtggc accgaagct ggtcaacgtg 360
 gaatggatac gaatgtactg gatacgagat acgaatacga tacagtagag aaagaacgcg 420
 gcgagggtgg cacgaattcg cagacacaac cgagtcggcc tgacaaggcg ccccgccctg 480
 tctgccgccc cttccatcac ccgcgggttc tcattcatcc acggctcctt tttagtgct 540
 ctgcgcgggt cccacccct ctcactggac tcgagatgcc gcgcgcgc gcctgactcc 600
 acctggcccc gcccggcccg ccccgacccg ttccatggca gatgttgatc gccccgtctc 660
 gcagctcctt ttgtgcaccc cggtggctcg tacttggcca ttgttgctgt tgctgttgc 720
 ggtgctctgc tctgtctcg cgaggcactc ttgaggcgat ttttttgta gtagcgcaag 780
 ctcgttgtgg agccgcggcc agtaaatcat cttaggcttag tctgtatcca ctaccctccg 840
 ctgcgatcac ccctgcttcg ttgtgcggctg ctatttctca gggtcgagtg tttctgatg 900
 ttggcgagga ttgagtgttag gagcggggagg gtgttgctgt ttttttgta gctggcgat 960
 gtcgatcttt cgacgcgatc gcatttttctt tttgattgtt ctgttttggaa 1020
 ttttgattgg atatatagat tttgtgtttt gcatgcgtt agaacgttta cacgggcgat 1080
 gcatgagtcc tgggtgcgtt tggaggccac ggatttagta gtttcttgta caaggtggct 1140
 tagatcttgt actacgagat gtttctccat gattgtggtg gcatgactt tgtataactt 1200
 acgtgttagt taatgggtat gattcaatta tcagttggc atgattttgt tacggatccg 1260
 atgatcctgg atccctgtat attcttttc aagttaggtt aattctctgc aagcgcaac 1320
 ggttggctgt ctcattctaa tgggtggcatg atcgcttatt aaattacgtc gactgaattt 1380
 tctccgtctc ctgaattgtt ggagtagcgc ctggaaattt gttagatgga gattttcca 1440
 ttatccggga aattattcta ttaattcttt tagactcact cgctcataac gcatattgaa 1500
 ataaaccaca gatgattgt tgcacttta ttcatttgaa tttgacagaa tacttcccct 1560
 tcctgtttcg gtgaattaaa ttatttcgat atttagaatt taatttataa ttattttac 1620
 acagtacaac gaatgcaaag tggaggagtt gtcaggacaa ctgaatcccct cagttttct 1680
 agtctatatt tctgaagact tccacacaaat atagtagacg ttctgtgcta tcctgactgc 1740
 aagacaaaat ttacgacgca aagtaacatc tccttttta atctgagatc tcttcaaatg 1800
 gttgggcagg tccgtattaa gaa 1823

<210> 18
 <211> 419
 <212> DNA
 <213> Funaria hygrometrica

<400> 18
 aggagtgtta cacatctttt actttttca gcacgcctct tcgctcggtt tattgaacctt 60
 cgattacaaa cttgtgtggg taccgaacta ggcggctag cgtagatcga gtagaggccc 120
 ttgttgccagg aagtttcgat ttgtaaaaat agtgcatac tggacacata cgagtggctg 180
 attggattca gtgacattca cattattgtt taacaggcctt aggggttgcgtt gtagagtcgt 240
 gccccatttc tcgtcggaat gttggcccg tttgtgtga aatgtatggtg attatggta 300
 aaatgcatgc gtagtcgtt tgactatggc tgaatggata agatataattt ccatcatagg 360
 ttagatttca agcggagcgtt gaaactgtgac gctcaatcac agaatgcgtc gtcttagcc 419

<210> 19
 <211> 1333
 <212> DNA
 <213> Funaria hygrometrica

<400> 19
 ggatccgaga ggaaagagag agaagagggg ggcactcatc tagccaggcc cggccggc 60
 ctctgcctcg cctggcgca cccgttctcg tgccatctg tggttctcta tcgctctgt 120
 gcctcgccct gcacccctt ttcccatgt tgctgcttcc tgccctgtgc tgcttggccg 180
 ttctgtgtgc ccctcacctg tacactctcg cagccaaagca ctgcagtggc agttcgccctc 240
 cgcattccct tcgtggccgc gtatcccccc cgtcatctt ttctgtgtgc acagttctt 300
 gaagggttaga gcctctgtcc tgctggcgtt ctgcgtgtgc ttgtgtgtg gccgacgatc 360
 gggtttgggg tgcaaggtcg ctgtgcgcatt cgtttgttt agtattgtat gtcgattact 420
 gtgttgtagg agcagtggct aagctttgtc cgctgatgtg gcacccaacg gcgtcgctca 480
 agtgttaggct ttcttttac acgagcttgg tccgcgttta tggtgttgg atgttactt 540
 ttcccgaaat gacgatatgt tttttttttt ttacaacaag agattttgtg acgtgaactg 600

tagttgtgg	attcgaaaag	tgttgttcc	tcgaaaaat	tggacattac	ttatgcctt	660
tagttgtcac	ggtttgtggc	tttgcatct	tggcgtcat	tagttcattc	cgatgctgaa	720
cattcgctac	catcccaagc	tgaagtgtg	aagttgattt	catatgtca	gtttgctgtg	780
tgcaccagta	tgagtcaaaa	ctgattggat	gtccttcaca	acttcattct	cttcataatctt	840
aagtgcagta	caaataata	ggtacaggac	tcctatattt	tggtgtccg	ccatagttat	900
cgtcttcgt	caaaaattacc	ttattgagag	gactttccct	tgcaaaaggc	tcatcgagac	960
caatctctca	gagtcagata	cctatggcg	cagcagaaat	ctcttagtcaa	tgtttctaag	1020
ctctcctaag	gatttcgtct	ctttcatcag	atgtattcta	tccaactcca	agttcgcaac	1080
aatttcttca	tacatcattt	tcttctgtc	tttctgtct	gatactgcac	cgattcattt	1140
taggatcttta	taatccgtgc	ttgatgtgcg	gatatgtgaa	ttccctgagt	gttcacccca	1200
acgtactcaa	agttgttcta	ctttcagcat	ctttcagcc	atgcggcaga	tgcgatca	1260
tccgaggact	ttaaaattct	gtactgttcc	tttaaaacgc	cttttcgat	tctatgcagg	1320
atcattgtaa	gcg					1333

<210> 20
<211> 3289
<212> DNA
<213> Funaria hygrometrica

<400> 20						
atgcatggca	aaacatcccc	tgtctccat	gatgagaaag	gcgaacctgg	actgcttgat	60
ggtctccca	ggtatctcat	tgtgcttcgg	tagttgtga	cgtcttca	tctgtttctt	120
tcgcttcctc	ttcttcttct	tcttcttctt	ctttctctct	ctctctctct	ctctcccaaa	180
ctttccttct	gtcttccttc	ctcttatttt	cctatgtcaa	tgaagtttag	cacccctttaa	240
aatttttggaa	tgctgttttt	taaatagaag	ggacgggatc	aaaggacgag	tgagtgtcgg	300
ctttgcatt	gcttccgttt	tataacaacc	tattaaggac	gtagatcg	tctgtaaagt	360
catctcttat	agccttttat	agtctttta	agagagaaga	gccaccctcg	agtttcttat	420
agattcggac	aagagatgtg	acgactttag	aagtgtctt	cggaattttt	cttgcataaa	480
tggcggtgca	tttcttgc	tgtcttattt	ttaactgaac	agtatgtacc	attttccgt	540
atagtccttta	ctttataata	tgtcctcttt	tcttcgcct	cacgttcatc	atattcttt	600
atatgtacta	ttaactttcg	ctatctgtt	tctgttagt	ctttcaccgc	gtgcgcstat	660
cacagcttgg	tcatagagga	ggcctcattt	ccagctgacc	aactcgagat	tacagcatgg	720
actgaggacg	ggctgtgtat	gggggttctgt	cacaaagtct	acaagcacat	ccaaggagtg	780
caatttcata	ctgagagcat	ccggactcaa	aatgggatgc	agatcg	tttgcattc	840
aagatttttag	atagaaaaga	ggcggctgac	aaggaaggag	ctgaaatgaa	aattttggag	900
agtgttttag	tgtatgatgt	tactggata	tctttcttgc	tgcaagatttgc	ccagcatttgc	960
tcagcttgc	tttgcatttgc	tcctgacccc	cagcgtataa	ctccttgcgt	atatgccttca	1020
gcaggccttag	atgctgtgc	aataacccttc	tcggtgagac	agggtat	ttgaggat	1080
tttgcacttc	cagatggagc	tactactaca	aatatctatc	cttacatcttac	gtttaactac	1140
gatggatttgc	ccatgtatc	tcaggtacgt	ttaagttgt	attggactt	tagtgcattac	1200
tttcagagcg	agctatcaa	ctggtgcttgc	gaggagcaac	gcaaggat	ctgaaatttttgc	1260
ctaattatct	aattcagctt	aagtttttcg	tcaacttag	tgatatttttgc	agtttcatct	1320
cgttagtggaa	acatctcaa	gaagtacg	attaaattat	tgcaggcgtt	gtgatgcacat	1380
tatttgcata	tttacatctt	aaactgagaa	cgcattgctc	tccttgcata	agttccagtc	1440
atttgcata	tctgttgc	ctctgtact	taagccttgc	tcaaggcatt	taaattccct	1500
cttccacat	aaaaatggta	gttatgtgc	tgggtggaa	tttcaagata	ccataacatt	1560
gtgggttctca	ttcacaaacgc	aggaagtttgc	ttgacctata	ttttgaaag	tggcgagtga	1620
aattgtttac	tcatcactt	atgtgtgtt	ctagatgtc	acttcaattt	tttcctcaac	1680
tgtgcctaat	ttttcatctc	tgtgtgtc	gagcgtatt	tggcttagac	gttggacat	1740
tctaagggtt	cagtaaccag	ttttcattt	ttatattttaa	attcacagcg	cctcaagtaa	1800
tgaaaggaca	aacccgcgtc	attgcgcac	tctaattgt	acggcttca	agacaactaa	1860
cggcagggtca	ctctcttgc	atgttctcg	tgtgtcaaa	cctgtataat	ggcaattcat	1920
ttcgacatca	cgccaaactc	atgtgtgtt	ttaacgtat	ttgctccat	ccttcattt	1980
aaagttatca	ccgacaccct	atgggtttaa	ccatgttattc	tgaaagctt	ctctacgtat	2040
gtatgaatct	gctcatttgc	gtgaatttgc	aacttaaaga	atctcacacg	atgtccat	2100
attttgttac	tggacaacat	atactgttgc	ccacatagat	atgcatttt	agaactgca	2160
aaaagttgt	tcacgaagac	agaacgacta	gaacgcagaa	tacctgcgt	cggtggaaat	2220
ggatcatttgc	cagtaaaagct	agtaaaggat	cgaaatagac	gcagagtaaa	cccgatgcgt	2280
tagaggggaa	tggagatcc	acaggactcg	gagagaaaat	gcaaccctgc	gggtaaaaat	2340
agagaacgcg	aggaggaagg	gtagccagaa	gagtttacc	gggatctaca	gtataagccg	2400

caaaggagc cacgggtact agtgccagct ttgcagcaga gagcgaacgc gagggagcga 2460
 acagatccgg gccccaaatc cccttcttct atctctcaag ccgtccacag ctttcattct 2520
 ccatcctcg actattctcc tcacagcagt tgcatttggt gttctctcca tttcaaccc 2580
 ttcgactttg gtgcaagccc gcttggttatc tatcccaagg tttcacgcac tcccccccttc 2640
 gctgtgtgtt tcgttgcata atttttggct ttagttttta ggtttataca tagtgcacat 2700
 gctctcgcaa aaccgtgccg cttagggga tcgtgggtct gttagacttga gcacagagat 2760
 gcgggtgaac tcttagtggt cgccgctgca tccccagagt agttatgcta cctaaagaag 2820
 cgtgctcgta cggtcgatat gtttagagat ggatatttag acgtgggtgc gtgtcctgcg 2880
 gtcatcagag taggtgaagg gatTTTCTGT aagatctgct tttgtgacgg atctgcaatg 2940
 caggaggtct ggcgtttct ttttcttcag cttaggtgtccc aatgcgtcaa atgcgcaccc 3000
 attgcacaga gtgctttaa ggcggcttca tgaagctccc agttttgtga atcatgttaa 3060
 cttgtccact gatcagaacg ttccggctgg catacgtgaa gcaaatacac atttttctac 3120
 agcatgttcc ttatTTTGT cttcataactc actgcttgcata ttgcgggagg gcctccatgt 3180
 tcgaccacat cttcacacgg ggcttatcat ctgacctaaa tcgcacgtgg cctctgtatt 3240
 gtgtcaatgc cagtaacagt ctTTTGTATC cgcagaacat ttcatctcc 3289

<210> 21
 <211> 937
 <212> DNA
 <213> Marchantia polymorpha

<400> 21
 catatgcgtt cggagttgtg gtcccccgttcc gcccgtatgg ctgttgggtt ctgggtcacag 60
 aggattctt gcttcgttcc ctaatgttgg tggccagggg tggatctgttcc tccctcttacg 120
 cttagttggt acacatacat ctggatcttgg agaggaacac gtgaattttaga gttacatgctg 180
 gtattgcgttcc atctttgttca ggttaacggcc gcccgcaga cctagcggtt gcttcgttcc 240
 gactcaaggaa atctttccctc tcctgttccca tcactggat gagagttgca gtctgtatcc 300
 tggaaatctt ttcatcttggt tgaccatgttca ctctgttccctc tcgttgcgtt ctgggtatgt 360
 ttcgtatgtt atactagcgtt agtcttgcgtt atgttgcacat gcatccatgtt ggcacatctg 420
 ggcgcgtttt gtcgttggca tagccgcctt cttttatctt gatttgccta atgagccca 480
 tttccagacg tggacggcag atccgttca aggttccaaaga gcaaggaaatg ctatgaggcc 540
 gtttgcgttcc tctacatcttgcgtt ctggccgttccaaaagactgc ctgtccgttccact tcaatatctt 600
 taaacattttt gcttccatgtt ttttgcgttcc agaccattttat tatgagttat ttttaccgtt 660
 gtgtgttgcgtt atgtcagccca gtttgcgttcc gtcataatctt gggggtaat gcaacttgtt 720
 ttcgtacggc acgttatcttgcgtt ctggccgttccaaaatccatgtt gtttgcgttccact tcaatatctt 780
 ttcgtccctt ctttgcgttccact ttcgttccacttgcgtt gacatgttca agtgcgttccacttgcgtt 840
 gtttgcgttccacttgcgtt gtttgcgttccacttgcgtt gtttgcgttccacttgcgtt gtttgcgttccacttgcgtt 900
 ttcgttccacttgcgtt gtttgcgttccacttgcgtt gtttgcgttccacttgcgtt gtttgcgttccacttgcgtt 937

<210> 22
 <211> 3025
 <212> DNA
 <213> Marchantia polymorpha

<400> 22
 tcataatgtt aagcgtttttcaataatccaaa gagggtttgtt atatagataa aatttacttt 60
 ctgtatgttcc aagcatcata ttctaaatattt aatcgaaatc aattttttctt gatctttcttcc 120
 ttcttttttcc tttaaattttt aatttcttccatgtt ccgttccatgtt ttatttacgtt ctcccacgg 180
 gagttttttcc cgactataga ttcttaggttataactata ttttccatgtt ccgttccatgtt 240
 ttttttcttcc tttaatgttcc aatgttccatgtt ccgttccatgtt ccgttccatgtt 300
 gaaattcaca gaaaatccca tttttgttccatgtt ccgttccatgtt ccgttccatgtt 360
 atggtcatat acttgggata ttttttttttccatgtt ccgttccatgtt ccgttccatgtt 420
 tgccaaatatac taaagataaag ttatcttggt tgagaagaca tgatataccatgtt ccgttccatgtt 480
 acttatttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 540
 tttttatgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 600
 gtttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 660
 tcataacaat ttctcttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 720
 atcttgcgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 780
 tttttgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt ccgttccatgtt 840

tataatgacat gagaaaaata taacttaata tgaaggaagt cttgatatatgc cttgttatcc 900
 ctaggttggg gtaggtcttt ct当地tgcattt cgattattat tactgtgagg aatattcgt 960
 agaatggatt ccttggaaagt gttgtatccc tgaccctctca taattaagca cagattaatc 1020
 ccttcatttgg tggcttatca atcaagtggg ctacgaatga ctctaatttt aagattatc 1080
 ttgttagttgt gtgggtttt agtagttacc aatcttatac ttgaaagaaa atgaaagcaa 1140
 tgattactca tactactcaa tgccaagatc ggaggctaaa tccaatgtat acaagtatac 1200
 aaatttgtaa agagttaaagc tcttcttg ttcatgttagc tttgaggcgt tgtaaaaata 1260
 tggacatttga ttcggatata gaggtgagtt gtgcacaaga gatgaccata cttgggtgtca 1320
 aggtgttagca ttttttcgt attatttata agaaaataat cagggaaagga aaataagtag 1380
 tattcatcct agatataaca tttgtcgaga aatctacgag ataaacattt tttcagacga 1440
 gaacaatttc tcaaattttc agatgcaagg gtacgcattt agcattgcgc tgatattaga 1500
 gctagtctcc tattgcatgt ttgatttcat acatgtacca cccattttt tttactgcgt 1560
 gtgtgaaact ttttttttttgaataa gaagttccgc aattatttca aattattttag agtcttctta 1620
 cataattttt acttatccaa aattcttaag aaccccacaa taaattttagt gatacgttt 1680
 gaatggctca ccagttactg gactgccaca attcgcagca ttggagactt gcccaactca 1740
 accagagaag ggaccacgtc gaacgatcta cctccctccc agtgagtttag tgagtcttcg 1800
 ggtgcgttat ttttttttttgcgttat aatattttca aattattttag aatattttagt 1860
 cgggtacagt aaagttgcca taacaatccg gcaacgaacc acagatccgg gacgatctag 1920
 cgggaagttt aagtccaaagg ctcggggcac atctccctgg tagaattttaga atccatagcc 1980
 agaattctat ctcgaaaccc tttttcgcca gcgttatgtat tataatcaag cgtccccgtt 2040
 aatctgattt ctgtgaaagt tagtttagaa cttcataaccc cagcattatg attataatca 2100
 agtgtctcag ttagtctgtat ttctgttaat gtttagttgt aagttttaggc cttctcgtaa 2160
 tagttcttg cgtataatctt gaaactgttga taatggtaa actctttagt tacgacatatt 2220
 cagttccggg agattaatctt gcttccgcta agctcgagga tgcacacgag taatttttggg 2280
 tcgtttggga ttttataaaa cggacgggaa tatcgctcgc gagttccgag taggagtttag 2340
 gaggaaatgca aaccagcggg ccacgttaaag aggcccacga cagtccagca gcccagctgt 2400
 gagacacaag ggggacgaaa gggaccggcc aggccgacca cctgtatgtca gggggagctg 2460
 gtgcgagcgg cgacggacat ggtatcggtt ttgtttcggt tccagaagcg ggcgaggagg 2520
 gatccgcattt agtgacacag tggggggcaga attgggagaa gatcggtggg gtaattttaga 2580
 gggggagatc ggggtggggc cgagacaggt aaggaacacc gatgtatgtc agggaaaatatt 2640
 gaggaaattcg tgagaatgca acaggccgag agcaactgtgg ggcagaatgg aaggggggcc 2700
 agcgatattt gagcaataaa ataagagccgg gggacattcg aaaagaggcc ccatataaaag 2760
 ccgatcttcc attctgtttt cacagagctc ttctgtcgaaac agagctcttc aaactcgctt 2820
 tgtgtccca gtgtttctgt ctctggatctg ctctgtcggt ctctcggtt gttgttcttg 2880
 tgaccatcac cgccttcagg acgctcacgc ccaacgcgaag aattttcgagt cgaagtaagc 2940
 gacgacgtca atcgcttctgt taacgcgtt gcccggatct tcgagggttc gcgttgcgaag 3000
 ttcttcggac acctccctcg ttaac 3025

<210> 23
 <211> 909
 <212> DNA
 <213> Marchantia polymorpha

<400> 23
 aagcttagca agcagctctc gcagcggatc tgctttctg ctgctccctc tgcttcctcg 60
 tgctacacgg tcttcgtctt cgttccctcc acgttccctc ggcgtctctc caggtactcg 120
 tcgcctcggt ctctttcttc ttccctagttc gtccgttctt cgtaccggaa tagggcgggtc 180
 gcggttctcg tgagggtttt ttccgagcaag gtgcgtgagc aagttcatat cgggtggca 240
 tgcatggggc gAACCTGGTC gggccctttt ccgaggccgc cggagacgtt agtctccaa 300
 ctgttagtac ggtgttctcg aagatcggtc ggtgtctgca tctctccatc tcgatttcgtt 360
 tcgtctgagc tgatccggcc gtcgattttt acgtatgtcgt gtcctcacct acgcaagtt 420
 ggttccgagg attagttttt aagatgtctgt caatgggaag tttagcttctt ggttctgtat 480
 tagtttggac acggtcacat gaatcgtagg gaccggatgtc tcggggcggaa tcttcagcag 540
 tcatttcgggt ttccgttaacg ctggattttt gctggaaaacg ttcatcgatg gattgcggat 600
 accatgaccc aatggatcggt ccagttattt ctctgtggaaat tataacgtt tgatggctgt 660
 ggcctgtgggt aggggtggac acgccccgcag tggctctctcc gaatttggat tcgcacatgg 720
 tcgtatgtgtc ctggccgatcc ggggaatcgaa agtggcaaac cgggtcggtt gactgtcgag 780
 tgtatgccttgc ctgtttgtgc gatgtatgtt ggattttcc tccgatgttt tccaaacgtt 840
 gtcgggattt cagtttttca atctaccaggc ggagcttaatt tcgtttcttgg ctgtcgatct 900
 atcgatcgat 909

<210> 24
 <211> 2146
 <212> DNA
 <213> *Physcomitrella patens*

<400> 24
 atacaagagt tataaatcat atacaatgat tactttcata taattgttga atattatttgt 60
 tacaacctaa gtaacaataa cattcaatta aacattcatt gtggtttca agcatattaa 120
 tcattcttc ttctctaccc tatagtgtat gggaaatttac ccaaactcaa tgtcataactc 180
 caggcaattc agaaaatatag tgagatgaat accaggaata tttattcaca tcgaccctta 240
 tcgcccggca atgccactcc caccgcggaa tgagaaactc cttgaaaaaa caagtcctt 300
 cccagctgcc cgaaaatcgcc cgccctggca gcacggcacg acactgcccc cgtgaatcc 360
 tgacgtggcc tctacgtccg gaaggcggcg ccgttagcga tgtcctccta tgcaagttcc 420
 tcttgccggc gggcagtgtg cccgc当地 caccgtcac cttccacccc aacaagtggc 480
 ccaaattact caggggc当地 ccagcttcga aattttaagc ggtgaccgccc cttctcatac 540
 gtcacgcgtt acttctttt cactcaatcg agtctgttta ttattggccg ctagggaaatt 600
 gcagcttcca actccgc当地 accgcgtca gtacagtggaa gatcttcaag agtgc当地 660
 ccaggaattt gcaacttgct ctttgc当地 tgtaataaaat ggacagagaa gcctagatcc 720
 cgc当地 caca gtgatgggtc acgtatcaat aagcgaagct gcgttggcaa ctatggcaat 780
 tggtttgggtc tcttcgttcc tgc当地 agtggattttt gaaaagaaga gggagatctg atttcttaat 840
 aagtgtc当地 ttgtctgggt agtggattgc gtggggcgtg tcgttagtgc当地 acgc当地 900
 atcaaatttca tgc当地 caaa atttgc当地 acgttgggtc aatttgc当地 aactgc当地 960
 gaaggatttct tctcggtggc cttcaattt gctttagtat gacagaagtt ttgc当地 1020
 actcggc当地 tggaggaggt ggaaggatggg tggatcacca cgc当地 cggagtttgc当地 1080
 gtttactgca gaaaaaaatg gctttagtca catcagaatg atttgc当地 cagtttgc当地 1140
 ttc当地 ccttcaaa gatgttgc当地 catcatgaaa ttgttgggtc aatttgc当地 aactgc当地 1200
 ttttggaaaga atattttaag acgcttgc当地 ttacaaccc ttc当地 ggaaatgcaat ggc当地 ctttgc当地 1260
 ttgaaagggtt ttaatgtttt gtacatcatt actggatatg aaaataccaa taaaatgaaat 1320
 tacaataaaaa tatttttttggaaat tggtttaat aagcatgtaa ataatagacg 1380
 gtggagtaaa gaaaaggtaa taaaaaaaaa agtataatttcttatttgc当地 ctttgc当地 1440
 agtaagaggtt gtccggttgc aagcaataaa aatttgc当地 ttgtcttagata aatttgc当地 1500
 ccaaccata cacaccatttgc当地 ttgtcttaggtt ttcttgc当地 acaattcaat 1560
 gacttagtgc当地 ttacatatttgc当地 cttccaaacc gaagcaaaagc aagggtactc caccatttgc当地 1620
 tatataactca ttgttgc当地 tttaaaccat ctgaaatcac acaaaaaatgt ttttgc当地 1680
 cttc当地 ctttgc当地 atattaatgtt gacgttttgc当地 ttcttgc当地 tttaatgcca cccgttaggtt 1740
 tggacggaaa tggatggatg taaatggaaa gatcgccggc aaaaagacca aatttccatatac 1800
 tactgccc当地 gtccgataaa gacggaaaaca atgc当地 atgc当地 agtggatgtt agc当地 aagggaa 1860
 agtgc当地 acgttgc当地 cgaaggcggc gtttgc当地 atttacttca cccaaaccgc gc当地 agggatatc 1920
 gggcacacgg tc当地 agggtaaaatttgc当地 acgttgc当地 catttgc当地 gtttggcgtg 1980
 ctttgc当地 tataaa gaacactgct cttccgatct aaacctcgga ttgtcgctt ctagataactg 2040
 aatttgc当地 gaccctgc当地 ttgttgc当地 ccgttagggc tgc当地 acgttgc当地 ggatc当地 2100
 gccgttgaat ttagtgc当地 ttgtcgacc agtacgttgc当地 gtaagg 2146

<210> 25
 <211> 524
 <212> DNA
 <213> *Funaria hygrometrica*

<400> 25
 gaatttc当地 cattaacga gaatatgaca gtgggaagag cttccacgtc atccaaactc 60
 aaagtatccg acgttgc当地 tccaaatgtcc agtgc当地 cccttccat cagcttccat accaggccat 120
 ctc当地 cggata aggggtgacag caaggc当地 cggg tattacttgc当地 taagagaagc ggccaaaggcg 180
 gc当地 agccactg tggccactt tgcttgc当地 ctacacttgc当地 cgatttgc当地 gacgagcggc 240
 agc当地 tcgtgtt gacaggcttgc当地 aaccgaccgc tgcttgc当地 ccaggc当地 gagac tagaaaatgt 300
 tacttgc当地 cccacttgc当地 ttcttgc当地 gcatccgaaatg tttcttgc当地 gtttgc当地 360
 gtc当地 aataaa ttgtcgccgc tc当地 gagacttgc当地 ggacactttt gtc当地 accgttgc当地 ttcttgc当地 420
 atttcttgc当地 agagggtgtt gtagtgc当地 ttgttgc当地 ggatc当地 480
 cgtc当地 acgttgc当地 gtttatttgc当地 gggaaatgtt aaacgttgc当地 gaag 524

<210> 26
 <211> 2088
 <212> DNA
 <213> Physcomitrella patens

<400> 26

```

atgcatgtaa gataattcca attagaatct ataaatttct tattataatt ttttaaaaac 60
aaagtaccaa aatattatta ttttaatatac ctctaagttt aatccatata ttaagtagaa 120
acaattattc taataaataa tgataaaaat tagacatctt gcaataaaaat ttcttttaa 180
aaatagatac ataacatgaa aaatatccc taaatagcta acaccatcaa aacatttgc 240
caaatatgca cttagatg tgcaggaca aaaagaaata tttgcaagat tttggagat 300
ctaaactaat gtttgtcctc tttgcactat gagtaggatt tcttttattt tgtagtga 360
aaagatacat tgcaatttg tttcataataaaaactatac taatgaaata gtgctaaaaa 420
ataacaagat taaaaaaaca taacccttc tacaacctt aatccttcta attagactac 480
ctcaaagttg tgccatTTG cacaAAAacc attcttttaa atctacttta ccctccaatt 540
tccaaatgagc ttcatgtgca tacacaagca tgctttctt ctttcttct tgaagaaaac 600
ttatctgaac aaacgttaat actctacttg ttgatgaaag tggaaactttg accacataca 660
ggcttggta tgcattttgtt atatcttc acagttagtc tggtaatc caaccatgca 720
catagaatataa gaatggggac atgctccag ccactcggtt gtgcagaaaaa cttgacaagc 780
gagattcaag caacggcgac tacgacggcg atcacgcaat acaaagcattt gtttagtatgt 840
gataaaccag agaaagagat cgatgtatgt cacacaaaaa cacacgatc cacaggtatt 900
gtctacggcg ccaccaccaat ccgtcaaaagc taccatctcg tcgaggaaatg atggtattt 960
taaaacttagc aatacaaccg ctgatggaaa caaccgaaag ctatgtcattt ggagagggcg 1020
cacgagttc tggaaatacac agtgagaaga gataaagaaaaaaaataataaataaataa 1080
gtgtgcatca gcaagacatg gccgaaatct aacaactgtc tgcacatgct gtgggggtt 1140
gtatccacgc gctggaggaa gtaactttcc tacatgcaca gaaaaacattt ttcagattag 1200
aaagctttc tgttcttagt aatctcttagt accaagctca gacgtgtacg cgacgaagcc 1260
aatagcagct gggtatgtca gtcactgtt ctgaaagccgc cgggtgtcg attgcgtatgt 1320
atctcagttc ggcgaaggcc tgggtcttgc acatgggaag agggtcttct tgcactcg 1380
aatctctcac agcaactggg cagggttgc tccgaacgtg gaaaacgcag caaccgttgc 1440
tgaaccaag gatggtattt ttctccgaga aaaacgcgtt ggcttatctg gtgttagacga 1500
tccctaatcc ggacatgacc gcccgtgtgc aggtgttggg aaaccacaaat ggcgaagaga 1560
tgcgagagat ggaggagtgc aagaagtagc actgcgaagc tacatgttc atcgagcaat 1620
gaagtctggg ttttctccaa cttccgcattt cacacacttt tctcgacgc atccgtttca 1680
aggtacgcac cggaaaactg acgattctt gcactgggt tcagactctc cggagaggcg 1740
gtgtcatgtt ctgagctttt tttcgataag gtgtgttgc agtccagaat aatggggct 1800
ggattatccct ctggacggct ccgtttctgg tcgaaaaat ttcatccaa aaaaggactt 1860
atctgttgcac tgaaaatgtt taattgttgc gaggattgca tgcagcgcacg tcgtaaagat 1920
agggtgacaa ggacgttcc agagctcagc tcggggcatg ccccgcaact ccctagcata 1980
taaacatacc gggtggattt tgcacccacc aggtcttgc cgggtcccc tgcggccaa 2040
ctgttggctt cattgccctt gcgattcgag tggagaga ttttagca 2088
  
```

<210> 27
 <211> 500
 <212> DNA
 <213> Physcomitrella patens

<400> 27

```

ggAACGAATT tgtcgagctc tctggttctg ggtcggttag cagtagctt gatggtgagg 60
cactgacagt cagtcgctca cacggcaaag tagcctggat gtgcctcgca acgaactctt 120
gaatttgagt atgtgagttc actttgaaca tcccaagaagc aaaagaatgg gtttttcat 180
gtttgaattt tattttgtat agttgtttg agccgcgtt tctatctgtc acttggctt 240
atattctgag ttctccgat acgaatacg aagtccactt gaacatctgt aacggcaga 300
attgcgtcag gtcaatcctc tcagatttt tcgggtgtt tgcgtaaac tagttgatt 360
gttgcattt aagcttggtt gctttcggt agaaagcatg aaacttctat gacgaaaccc 420
ggttgattgtt aatgtaaacta gtttggattt agttgaattt tgtaattgc gttgtatgt 480
acataatgaa agtttcatga 500
  
```

```

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 28
atccaggaga tggcaggcg                                20

<210> 29
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 29
ccgmacgctg tccatrgtgc c                                21

<210> 30
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 30
acattgatgc gtcacatgt c                                21

<210> 31
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 31
ggatggacg agatggagtt cac                                23

<210> 32
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

```

<400> 32
agcacatgca caccatac gcttgcgc attc 34

<210> 33
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 33
gtcgcatag acgacaagac cggggatcca cagc 34

<210> 34
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 34
tcagtgcgt ccgtaatct ctctctctgc ttg 33

<210> 35
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 35
ctgtgttcgg attagactcc ccgttagcctt tgtg 34

<210> 36
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 36
tcgattggcg agttgcaagg agggcaagg 29

<210> 37
<211> 29
<212> DNA
<213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 37		
tgcctgctca tctttagtat ggcgtgttg		29
<210> 38		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 38		
ctgcaagcaa tgcgcactga aacaagatgg		30
<210> 39		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 39		
gacctggaaa cctgcacaat cacgcataaga		30
<210> 40		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 40		
tagcataaga taaagatgtt ctctacc		27
<210> 41		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 41		
ctcaccagcc aatggctatg c		21

<210> 42
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 42
ccgtggact tagttgtctt cacttc

26

<210> 43
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 43
gatcgaaatt gctgcttggc ctccac

26

<210> 44
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 44
tcgaggatgt gtccttagtc gagaa

25

<210> 45
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 45
aacttcacgc attccacaag ccacac

26

<210> 46
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 46	
ttgataactcg agaagtccaa aataatttaa tgatac	36
<210> 47	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 47	
catcttcgct aaggatgatc tacaacgag	29
<210> 48	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 48	
catcttcagt gtgctctacc tcacg	25
<210> 49	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 49	
ctactcgagc acatataata ctgccctagt gcc	33
<210> 50	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 50	
gacagatctc ctttagtcgag aaggcgcgaa acgtg	35
<210> 51	
<211> 29	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 51		
gaccgcgtggg acttagttgt cttaacttc		29
<210> 52		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 52		
gctgctcttc tcgtgattgt ct		22
<210> 53		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 53		
cattcccaacc cttccttctc ttc		23
<210> 54		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 54		
gttttctggc tcttccttgg		20
<210> 55		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 55		
atcgttctcg actcttcttc c		21
<210> 56		

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 56
gttacgctcg caatgcgtac t

<210> 57
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 57
aactttctgc tgtcttggtt gcattg

<210> 58
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 58
gacctgcagg cactcgagct tgtaatcatg gtcatag

<210> 59
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 59
catttcttaa taccgacctg cccaaacca

<210> 60
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 60

21

26

37

28

catggagaag aaatacttgc acatcaaaag	30
<210> 61	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 61	
cattatttaa tacggacctg cacaacaac	29
<210> 62	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 62	
catttttag aatgatccta caggagttc	29
<210> 63	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 63	
agtctggcaa gttcccttcg	20
<210> 64	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 64	
gaagagaagg aagggtggga atg	23
<210> 65	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> Description of Artificial Sequence: Synthetic
Primer

<400> 65
ggaagaagag tcgagaagcg at

22

<210> 66
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 66
catttgtcc aactaccgcg acccgaaccc

30

<210> 67
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 67
aatctcgagt agcataagat aaagatgttc tctacc

36

<210> 68
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 68
ggtaaagctc tcgagtgcag tagacgacaa aatg

34

<210> 69
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 69
catttgctc aagctgtgcg aagctc

26

<210> 70
<211> 31

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 70
atctcgagga tccattcaac ggaggataag t

31

<210> 71
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 71
caactcgaga tcggtctgta agccctgtat ttg

33

<210> 72
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 72
atttctcgag ttgttgaatc atgttaattg ccaatgg

38

<210> 73
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 73
ttactcgaga ctctactaat tgacaaggat g

31

<210> 74
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 74
gtcaagattg gaggttcctt gag

23

```

<210> 75
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 75
tccatctcga gtacctccgc tgtgtgttc aaag                                34

<210> 76
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 76
tgccctcgag ccacatcccg accgcc                                26

<210> 77
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 77
agcacctcga gtactgccct agtgccctaa tc                                32

<210> 78
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 78
catccttaca ggacgtactg g                                21

<210> 79
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

```

Primer

<400> 79
atgcatggca aaacatcccc tg 22

<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 80
catggagatg aaatgttctg 20

<210> 81
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 81
ttaactcgag atacaagagt tataaatcat atac 34

<210> 82
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 82
atatctcgag atgcatgtaa gataattcca attaga 36

<210> 83
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Primer

<400> 83
cattgctaaa atctctccac actcgaatc 29

<210> 84
<211> 33
<212> DNA

```

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 84
atatctgcag tcatgaaact ttcattatgt atc          33

<210> 85
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 85
atatgcggcc gcggaacgaa tttgtcgagc tctct          35

<210> 86
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 86
cttcgtgtt gcctcaagag tg          22

<210> 87
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 87
catttcttaa tacggacctg cc          22

<210> 88
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      Primer

<400> 88
atatctcgag gaattcattt ccattaacga gaatatgac          39

```


<400> 93		
gttaacgaag gaggtgtccg		20
<210> 94		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 94		
aagcttagca agcagctctc gcag		24
<210> 95		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 95		
atcgacgata gactgcaagc c		21
<210> 96		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 96		
aggagtgtta cacatctttt ac		22
<210> 97		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
Primer		
<400> 97		
ggctaagacg acgcattctg tg		22
<210> 98		
<211> 22		
<212> DNA		
<213> Artificial Sequence		

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 98
ggatccgaga ggaaagagag ag 22

<210> 99
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 99
cgcttacaat gatcctgcat ag 22

<210> 100
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 100
tcgttgaaat aatctcgatcc at 22

<210> 101
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 101
cggcacctac aaggcctct cg 22

<210> 102
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 102
tgggacgtat cagggtacgt ct 22

<210> 103
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 103
tatccggagg ttccccgcgac acc

23