DM-Lab: Heterogeneous Ensemble for Feature Drifts in Data Streams

Jan Kohlhase, Sebastian Döhler, Noah Wöhler

Gottfried Wilhelm Leibniz Universität Hannover {
jan.kohlhase, sebastian.doehler, woehler} @stud.uni-hannover.de

February 28, 2020

Introduction I

- Modern real-life applications produce massive amounts of data e.g. online stores, stock markets
- Needs to be processed to gain information from it
- Underlying concept of the data changes over time

Data stream classification requirements

- Real-time
- Efficient
- Deal with high-dimensional continuously arriving data

Introduction II

- ▶ The patterns discovered in data can change over time.
- Commonly referred to as concept drift
- Two different kinds of changes:
 - Gradual drift
 - Sudden drift

Overview of the algorithm

Method

Three main building blocks

- Selection of relevant features and detection of concept drifts
- Choice of multiple classifiers to create a heterogeneous ensemble
- Optimal weighting and retention of the best classifiers used in the ensemble

Method: Feature Selection

- ▶ Apply any feature selector → Subspace of critical features
- Compare feature subspaces at consecutive points in time
 - ightharpoonup Subspaces differ ightharpoonup Feature drift ightharpoonup Train new classifier (best performing type)
 - ▶ Subspace remained constant \rightarrow No sudden drift (likely gradual) \rightarrow Partially fit online classifiers on new chunk

Feature selector in HEFT: Fast Correlation-Based Filter (FCBF)

- ► Simple, fast, effective
- Selects features that correlate strongly with the class label
- ► Leaves out redundant features that correlate strongly with each other

Method: Ensemble

- Combine several weak learners' predictions to form a strong classifier
- ► Easy, efficient method to improve classification results
- ▶ (few) classifiers of different types → heterogeneous

Initial ensemble: one of each base learner (Online Naive Bayes, CVFDT)

- ► Ensemble not full → train and add new classifier of best-performing type
- ightharpoonup Ensemble full ightharpoonup remove outdated, i.e. worst-performing classifier first

Method: Optimal Weighting

- Each classifier in the ensemble has an associated weight
- Weights are updated on each classification iteration according to
 - Accuracy of the classifier
 - Accumulated error from its creation time
- ▶ Apply online bagging for updating individual classifiers → Reduce variance of the ensemble
- ▶ Final prediction is a weighted sum of all classifiers' predictions

Comparison with the state of the art

Positive:

- 1. Faster training time due to feature selection
- Adapts to both types of drifts by replacing outdated classifiers for sudden drifts and partially fitting the learners for gradual drifts.
- Diversity in the classification, because of the heterogeneity of the ensemble

Negative:

- 1. Longer training time when the ensemble is big
- 2. The method converges to a homogeneous ensemble when training long enough

Implementation

Implementation with the machine learning framework scikit-multiflow

- Based on the Average Weighted Ensemble (AWE)
- Feature selection with Fast Correlation-Based Filter (FCBF) and Conditional Mutual Information (CMIM)
- Ensemble learning with feature drift detection
- Ensemble classification with aggregated error

Experimental aim

Test the influence of different parts of the proposed algorithm regarding runtime and classification accuracy

- Base learners
- Feature selection method
- Ensemble construction

Experiments: Datasets

Datasets used for the evaluation of the HEFT method. All experiments were conducted on 25,000 samples and with a batch size of 1,000 samples.

Synthetic:

- ▶ LED 24 features, 10 classes: seven-segment display classification
- ► SEA *3 features, 10 classes*: sum of 2 relevant features compared to a threshold

Real World:

- ► KDD *41 features, 23 classes*: network connection type classification
- ▶ WEATHER 8 features, 2 classes: rain prediction

Experimental setup: Different base learners

Different base learners tested with HEFT

- Online Naive Bayes (NB)
- Extremly Fast Decision Tree (HATT)
- Multilayer Perceptron (MLP)
- Proposed setup: NB & HATT

Comparison with other ensemble methods provided by the scikit-multiflow framework

- Average Weighted Ensemble (AWE)
- Additive Expert Ensemble (AEE)
- ▶ Baseline: AWE

Experimental results: Different base learners

Experimental results on synthetic and real-world datasets

	HEFT		AWE(NB)		AEE(NB)	
	Acc	Time[s]	Acc	Time[s]	Acc	Time[s]
LED SEA	0.733 ¹ 0.825 ²	99.2 ¹ 44.2 ²	0.729 0.830	463.5 <u>31.3</u>	0.733 0.881	579.3 42.3
KDD weather	0.843 ³ 0.737 ⁴	636.2 ³ 173.3 ⁴	0.742 0.738	152.4 20.1	0.995 0.694	596.9 27.2

¹ Base learners: NB, MLP; non-random choice; CMIM feature selection

² Base learners: NB, MLP; non-random choice; CMIM feature selection

³ Base learners: NB, HATT; non-random choice; FCBF feature selection

⁴ Base learners: NB, HATT, MLP; non-random choice; CMIM feature selection

Experimental setup: Different feature selectors

Different feature selection methods tested with HEFT

- ► Fast Correlation Based Filter (FCBF)
- Conditional Mutual Information (CMIM)
- Proposed setup: FCBF

Experimental results: Different feature selectors

Experimental results for different feature selection methods

	F	CBF	CMIM		
	Acc	Time[s]	Acc	Time[s]	
LED	0.583	217.0	0.721	3092.7	
SEA	0.660	152.9	0.716	204.1	
KDD	0.843 0.687	676.3	0.630	71.2	
weather		<u>23.2</u>	0.714	136.1	

Experimental setup: Different ensemble creation methods

Different ensemble construction methods tested with HEFT

- Best performing base learner (best)
- Randomly chosen base learner (random)
- Proposed setup: best

Experimental results: Different ensemble creation methods

Experimental results for different ensemble construction methods

	star	ndard	random		
	Acc	Time[s]	Acc	Time[s]	
LED	0.624	1578.7	0.680 0.662	1731.0	
SEA	0.714	152.1		205.0	
KDD	0.736 0.696	343.2	0.736	404.3	
weather		71.8	0.705	87.4	

Conclusion

- Mean accuracy of our implementation close to other state-of-the-art stream ensemble learning algorithms
- Runtime is significantly worse
- Reproduction of the authors' gains was not possible on every dataset
- Random method for ensemble creation has a positive impact on real-world dataset (accuracy), negative impact on artificial datasets
- However, it reduces the chance of converging to a homogeneous ensemble
- CMIM performs well on numeric feature datasets (accuracy) but tends to select all features
- FCBF better on nominal feature datasets and much faster to compute, because it selects fewer features

Timetable

	2019		2020	
	November	December	January	February
Research				
Implementation				
Feature Selection				
Classifiers				
Classillers				
Evaluation				
_/4/4441011				
Presentation				

GitHub

- ► Page: https://kohlhasej.github.io/heftstream
- Code: https://github.com/KohlhaseJ/heftstream

References

Hai-Long Nguyen, Yew-Kwong Woon, Wee-Keong Ng, Li Wan (2012) Heterogeneous ensemble for feature drifts in data streams $Pacific-Asia\ conference\ on\ knowledge\ discovery\ and\ data\ mining,\ 1-12.$

[Jacob Montiel, 2018] Jacob Montiel, Jesse Read, Albert Bifet, Talel Abdessalem (2018)

Scikit-Multiflow: A Multi-output Streaming Framework Journal of Machine Learning Research, Vol 19, no 72, 1 – 5

[François Fleuret, 2004] François Fleuret (2004)

Fast binary feature selection with conditional mutual information Journal of $Machine\ Learning\ Research,\ Vol\ 5,\ 1531-1555$