CS 3313 Foundations of Computing:

Examples of use of CFL Pumping Lemma

http://gw-cs3313-2021.github.io

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length \geq n

There exists z = uvwxy such that:

- 1. $|vwx| \leq n$.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

- You cannot fix the value of n
- vwx can fall anywhere in the string as long as it satisfies $|vwx| \le n$
 - => have to consider all cases for vwx

L_1 : { $a^i \mid i$ is a prime number}

- Intuition: We need to run some kind of algorithm that has to remember which primes have been checked with i.
- Application of pumping lemma similar to proof that this language is not regular – and we only have one case for splitting the string into uvwxy
- Assume it is CFL and let n be the constant of the lemma
- Pick $z = a^p$ where p is the smallest prime larger than n
- z = uvwxy
 - All the substrings consist entirely of a's
 - Let $v = a^j$ and $x = a^k$ (v consists of j a's and x consists of k a's)
 - Remaining string *uwy* consists of p (j+k) a's.
- From lemma, $1 \le j + k \le n$

L_1 : { $a^i \mid i$ is a prime number}

- From lemma, uv^iwx^iy is in L₁ for all $i \ge 0$
 - Similar to how we proved it is not regular, we pick an i so that the resulting number of a's are not prime.
- Pick i = p+1
- $uv^i w x^i v = a^{p-(j+k)} a^{(p+1)(j+k)} = a^{(p-(j+k)+(p+1)(j+k))}$
- m = (p (j+k) + (p+1)(j+k) = p + p(j+k) = p (1+j+k).
- Since $(j+k) \ge 1$, $(1+j+k) \ge 2$
- Therefore m=p(1+j+k) is not a prime
 - Since it has two factors, both greater than 1.

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$ }

- This language does not place restrictions on the pattern
 - We can have a's after b's etc.
 - $n_a(w)$ = number of a's in the string w, etc.
- Intuition: we need to keep track of number of b's and c's, and then multiply the two...multiplication using repeated addition implies we need to store two variables $(n_b(w))$ and $n_c(w)$: likely not context free
- Assume context free, let n be the constant of the lemma
- We need to pick values for $n_a(w)$, $n_b(w)$, $n_c(w)$ which will make it easy to prove the $n_a(w)$ in pumped string cannot be the product of $n_b(w)$ and $n_c(w)$
- Additionally, pick a pattern that makes it easier to determine the different cases of vwx

$$L_2$$
: { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Let n be the constant and pick $z = a^m b^n c^n$ where $m = n^2$
 - why pick this as z?
 - We want to construct an instance of $n_b(w) * n_c(w)$ which will make it easier to contradict: if we pick perfect squares then we know that the next perfect square after n^2 is $(n+1)^2$ which is (2n+1) more than n^2
 - Lemma states, $|vwx| \le n$ and $|vx| \ge 1$
- Next: look at the possible cases for where vwx could be
 - We need to find a contradiction for each of these cases

aa....aabb.....bbcc....cc

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Let's look at the possible cases for where vwx could be
 - We need to find a contradiction for each of these cases

Observation:

vx in cases 1,2,3 consist of one type of symbol/terminal vx in cases 4,5 consists of two types of symbols

L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Cases 1,2,3 are similar...Let's show how to derive contradiction for one of these
 - The other two are similar
- How about cases 4,5 ?
- From the definition of the language L_2 can we have a's after b's etc. ?
 - So what happens if v or x contains two types of symbols (ex: a's and b's) and we pump the string twice? Can we get a contradiction just because a's occur after b's?

To complete the proof: for each case, find value of i, such that $z' = uv^i wx^i y$ cannot be in L_2

Answer: Setting up Case 1 L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Case 1: vx consists entirely of a's => $v = a^j x = a^k$
- From Lemma: $(j+k) \ge 1$ and $(j+k) \le n$
- Consider $z' = uv^2wx^2y = a^{n2+(j+k)}b^nc^n$
 - How do you get a contradiction?
- Therefore z' it is not in the language
- For Cases 2,3: ?

Answer: Cases 1,2,3 L_2 : { $w \mid w \{a,b,c\}^*$, and $n_a(w) = n_b(w)^*n_c(w)$

- Case 1: vx consists entirely of a's => $v = a^j x = a^k$
- From Lemma: $(j+k) \ge 1$ and $(j+k) \le n$
- Consider $z' = uv^2wx^2y = a^{n2+(j+k)}b^nc^n$
 - Since $(j+k) \ge 1$, $n^2+(j+k) > n^2$ therefore $n_a(z') <> n_b(z') * n_b(z')$
- Therefore z' it is not in the language
- For Cases 2,3: set i=2 and we get $n_a(z')=n^2$ and $n_b(z')*n_b(z')=n(n+j+k)$
 - Since (j+k)>0, $n(n+j+k)=n^2+n(j+k)>n^2$
 - *i.e.*, $n_a(z') <> n_b(z') * n_b(z')$

Answer: Setting up Cases 4,5 $L_2 = \{ w \mid w \{a,b,c\}^*, \text{ and } n_a(w) = n_b(w)^* n_c(w) \}$

- Cases 4,5 are a bit more complicated than in earlier examples such as $a^nb^nc^n$ or $a^nb^mc^nd^m$..
- if either v or x consist of two different symbols then uv^2wx^2y will have a's after b's etc....but this is allowed in this language!!
 - We take a more general approach now....
 - Note that these cases can be simplified if use closure properties before applying the pumping lemma
- Case 4: vx consists of j a's and k b's we don't care about the exact pattern
- Case 5: vx consists of j b's and k c's we don't care about the exact pattern
- From conditions of the lemma, (j+k) > 0 and $(j+k) \le n$
- Consider Case 4 Case 5 will be similar.
 - Pick i=2, and consider the string $z' = uv^2wx^2y$

Answer: Cases 4,5 $L_{3=} \{ w \mid w \{a,b,c\}^*, \text{ and } n_a(w) = n_b(w)^*n_c(w) \}$

- Case 4: vx consists of j a's and k b's we don't care about the exact pattern
- From conditions of the lemma, (j+k) > 0 and $(j+k) \le n$
- Therefore, $z' = uv^2wx^2y$ will have
 - $n_a(z') = (n^2 + j)$ (number of a's)
 - $n_b(z') = (n + k)$
 - $n_c(z') = n$
- Question: is $(n^2 + j) = n(n+k)$?
 - If $n^2 + j = n^2 + nk$ then j = nk
 - If k=0 then j=0 contradiction since (j+k)>0
 - If k>0 then $j=nk \ge n$ and thus (j+k)>n contradiction since $(j+k) \le n$

Exercise:

$$L_{3} = \{x w w^{R} y \mid x=y, x,y \in \{0,1\}^{*}, w \in \{a,b\}^{*}\}$$

- Intuition: While recognizing ww^R can be done using a stack, recognizing x=y implies a stack storage is not sufficient
 - This property is like the language ww see book for proof that it is not context free.
- Application of pumping lemma now requires carefully choosing the string so we can simplify the proof and focus in on what seems to be the non-context free property of x=y.
- Assume it is CFL and let *n* be the constant of the lemma

$$L_4$$
: { $x w w^R y | x=y, x,y \in \{0,1\}^*, w \in \{a,b\}^*$ }

• **Hint**: what is the smallest string that w can be? What does a string z look like with this smallest "value" for w?

Next: write out this string and consider the different cases.

Answer:

$$L_3$$
: { $x w w^R y | x=y, x,y \in \{0,1\}^*, w \in \{a,b\}^*$ }

- Cute trick: since $w \in \{a,b\}$ *, we can pick $w = \lambda$ (empty string) and thus pick $z = 0^n 1^n 0^n 1^n$!!!!!
- To prove that there is an i, such that uv^iwx^iy is not in L_3 for all cases of vwx, we can use the proof that shows $L=\{ww\}$ is not context free.

