Discrete-Time Fourier Transform, Sampling Theorem, and Reconstruction

Definition

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

$$c_{k} = \sum_{k=-\infty}^{\infty} c_{k} e^{j2\pi k F_{0}t}$$
 $c_{k} = \frac{1}{T_{p}} \int_{T_{p}} x(t) e^{-j2\pi k F_{0}t} dt$

Period:

$$T_p = \frac{1}{F_0}$$

❖For real signal,

$$c_{-k} = c_k^*$$

Example: Full, half – wave recifiers

To get aperiodic signal from periodic signal:

$$x(t) = \lim_{T_{p} \to \infty} x_{p}(t)$$
 $x_{p}(t) = \sum_{k=-\infty}^{\infty} c_{k} e^{j2\pi k F_{0}t}$ $F_{0} = \frac{1}{T_{p}}$

Conversely, we can model a periodic as follows:

$$x_p(t) = \tilde{x}(t) = x(t + kT_p)$$

Questions:

- 1. How do they different in their spectral components?
- 2. Are their spectra similar? How are they different?

Impulse train

$$\delta_{p}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{p})$$

FS expansion

$$c_k = \frac{1}{T_p} \int_{-T_p/2}^{T_p/2} \delta(t) e^{-jk\Omega_0 t} dt = \frac{1}{T_p}$$

$$= \rangle \quad \delta_{p}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_{p}) = \frac{1}{T_{p}} \sum_{k=-\infty}^{\infty} e^{jk\Omega_{0}t}$$

(Refer to p.8 in ch2_1_1.)

$$\bullet \mathsf{FT} : \quad \delta_{p}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{p}) \longleftrightarrow \Omega_{0} \sum_{n=-\infty}^{\infty} \delta(\Omega - n\Omega_{0})$$

$$\begin{array}{c|c} \bullet \bullet \bullet & \uparrow & \uparrow & \bullet \bullet \bullet \\ \hline O & \Omega_0 & & \\ \end{array}$$

$$\Omega = 2\pi F_0 \ , \quad F_0 = \frac{1}{T_p}$$

Impulse train

$$\delta_p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_p) \longleftrightarrow \Omega_0 \sum_{n=-\infty}^{\infty} \delta(\Omega - n\Omega_0) \qquad \Omega_0 = 2\pi F_0 , \quad F_0 = \frac{1}{T_p}$$

CTFT vs. CTFS

Consider the periodic signal,

$$f_{p}(t) = \sum_{n=-\infty}^{\infty} f(t - nT_{p}) = f(t) * \left\{ \sum_{n=-\infty}^{\infty} \delta(t - nT_{p}) \right\} = f(t) * \delta_{p}(t)$$

Then,

$$\begin{split} F_{p}(\Omega) &= F(\Omega) \cdot \Omega_{0} \sum_{n=-\infty}^{\infty} \delta(\Omega - n\Omega_{0}) = \Omega_{0} \sum_{n=-\infty}^{\infty} F(n\Omega_{0}) \delta(\Omega - n\Omega_{0}) \\ f_{p}(t) &= \frac{\Omega_{0}}{2\pi} \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} F(n\Omega_{0}) \delta(\Omega - n\Omega_{0}) e^{i\Omega t} d\Omega \end{split}$$

$$\Rightarrow f_{p}(t) = \sum_{n=-\infty}^{\infty} f(t - nT_{p}) = \frac{1}{T_{p}} \sum_{n=-\infty}^{\infty} F(n\Omega_{0}) e^{jn\Omega_{0}t}$$

$$f_{p}(t) = \sum_{n=-\infty}^{\infty} c_{n} e^{jn\Omega_{0}t}$$

$$c_{n} = \frac{1}{T_{p}} F(n\Omega_{0})$$

A signal and its repeated version have spectra with the same shape.

Spectral outline is preserved!!

$$c_{k} = \frac{1}{T_{p}} X(k\Omega_{0})$$

More specifically, the spectrum of $x_p(t) = x(t+kT_p)$ is sampled version of X(F).

The sampling rate is $F_0 = 1/T_p$.

Repetition in Time Domain results in Sampling in freq. domain.

Fourier coefficients of a rectangular pulse train

$$c_0 = \frac{1}{T_p} \int_{-T_p/2}^{T_p/2} x(t) dt = \frac{1}{T_p} \int_{-\tau/2}^{\tau/2} A dt = \frac{A\tau}{T_p}$$

$$\begin{split} c_k &= \frac{1}{T_p} \int_{-\tau/2}^{\tau/2} A e^{-j2\pi k F_0 t} dt = \frac{A}{T_p} \frac{1}{-j2\pi k F_0} e^{-j2\pi k F_0 t} \Big|_{-\tau/2}^{\tau/2} \\ &= \frac{A}{T_p} \frac{e^{j\pi k F_0 \tau} - \bar{e}^{j\pi k F_0 \tau}}{+j2\pi k F_0} = A \frac{\tau}{T_p} \frac{\sin{(\pi k F_0 \tau)}}{\pi k F_0 \tau} = A \frac{\tau}{T_p} sinc(k F_0 \tau) \end{split}$$

FT of a rectangular function

$$c_{k} = \frac{1}{T_{p}} \int_{-\tau/2}^{\tau/2} A e^{-j2\pi i k F_{0} t} dt = A \frac{\tau}{T_{p}} \frac{\sin \pi k F_{0} \tau}{\pi k F_{0} \tau}, \quad k = \pm 1, \pm 2, \dots$$

Relation with CTFT?

$$Arect(\frac{t}{\tau}) \leftrightarrow A\tau \sin c(F\tau)$$
 $F = kF_0 = k\frac{1}{T_p}$ $A\tau \rightarrow \frac{A\tau}{T_p} \implies c_k$

EEE4175: Introduction to DSP

$$c_{k} = \frac{1}{T_{p}} \int_{-\tau/2}^{\tau/2} A e^{-j2\pi i k F_{0} t} dt = A \frac{\tau}{T_{p}} \frac{\sin \pi k F_{0} \tau}{\pi k F_{0} \tau}, \quad k = \pm 1, \pm 2, \dots$$

Relation with CTFT?

$$Arect(\frac{t}{\tau}) \leftrightarrow A\tau \sin c(F\tau)$$
 $F = kF_0 = k\frac{1}{T_p}$ $A\tau \rightarrow \frac{A\tau}{T_p} \implies c_k$

EEE4175: Introduction to DSP

Time-domain Aliasing

❖ When a periodic signal is obtained from an aperiodic signal,

$$f_{p}(t) = \sum_{n=-\infty}^{\infty} f(t - nT_{p}) = f(t) * \left\{ \sum_{n=-\infty}^{\infty} \delta(t - nT_{p}) \right\} = f(t) * \delta_{p}(t)$$

Waveform distortion due to time-domain aliasing

Lower frequency resolution as T gets smaller

EEE4175: Introduction to DSP

Definition

$$X(\Theta) = F\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Theta n}$$
 (Θ : Digital angular frequency)

Uniform convergence condition: A sufficient condition

$$\lim_{N\to\infty}|X(\omega)-X_N(\omega)|=0 \ \text{ for all } \omega \quad \text{: Error tends toward zero.}$$
 where $X_N(\omega)=\sum_{n=-N}^N x(n)e^{-j\,\omega n}$

- Uniform convergence is guaranteed if $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$
- **❖** Weaker condition: Mean square convergence condition

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty \qquad \Rightarrow \lim_{N\to\infty} \int_{-\pi}^{\pi} \left| X(\Theta) - \sum_{n=-N}^{N} x[n] e^{-j\Theta n} \right|^2 d\Theta = 0$$

• $X(\Theta) = X(\Theta + 2\pi)$: Periodic function with a period of 2π

Inverse DT (Discrete-Time) Fourier transform

$$x(n) = \frac{1}{2\pi} \int_{2\pi} X(\Theta) e^{j\Theta n} d\Theta$$

$$\int_{\Theta_0}^{\Theta_0 + 2\pi} X(\Theta) e^{j\Theta n} d\Theta = \int_{\Theta_0}^{\Theta_0 + 2\pi} \sum_{n = -\infty}^{\infty} x(n) e^{-j\Theta(n - m)} d\Theta$$

$$\Rightarrow \sum_{n = -\infty}^{\infty} x(n) \int_{\Theta_0}^{\Theta_0 + 2\pi} e^{-j\Theta(n - m)} d\Theta = 2\pi x(m)$$

$$\int_{\Theta_0}^{\Theta_0 + 2\pi} e^{-j\Theta(n - m)} d\Theta = \begin{cases} 2\pi, & n = m \\ 0, & n \neq m \end{cases}$$

$$x(\underline{m}) = \frac{1}{2\pi} \int_{2\pi} X(\Theta) e^{j\Theta n} d\Theta$$

Note:

$$\delta(n) \leftrightarrow 1 \Leftrightarrow x(n) = \frac{1}{2\pi} \int_{2\pi} e^{j\Theta n} d\Theta = \delta(n)$$

DTFT Example: Sinc function

$$X(\Theta) = \begin{cases} 1, & |\Theta| \le \Theta_c \\ 0, & \Theta_c < |\Theta| \le \pi \end{cases}$$

$$X(\theta)$$

$$-\theta_{C} \qquad 0 \qquad \theta_{C}$$

$$x(n) = \frac{1}{2\pi} \int_{\theta_c}^{\theta_c} e^{j\Theta n} d\Theta$$

$$= \frac{(e^{j\Theta_c n} - e^{-j\Theta_c n})}{2\pi j n}$$

$$= \frac{\sin \Theta_c n}{n\pi}$$

: not absolute summable

DTFT Example: Truncation

❖ Gibbs phenomenon due to truncation.

$$X_{N}(\Theta) = \sum_{n=-N}^{N} \frac{\sin\Theta_{c}n}{\pi n} e^{-j\Theta n}$$

***** FT of a sinc function exists, but the infinite series does not converge uniformly for all θ

Figure 4.14 Illustration of convergence of the Fourier transform and the Gibbs phenomenon at the point of discontinuity.

Properties

Symmetry properties

Figure 4.29 Summary of symmetry properties for the Fourier transform.

TABLE 4.4 SYMMETRY PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Sequence		DTFT
x(n)		$X(\omega)$
$x^*(n)$		$X^*(-\omega)$
$x^*(-n)$		$X^*(\omega)$
$x_R(n)$		$X_e(\omega) = \frac{1}{2} [X(\omega) + X^*(-\omega)]$
$jx_I(n)$		$X_o(\omega) = \frac{1}{2} [X(\omega) - X^*(-\omega)]$
$x_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$		$X_R(\omega)$
$x_o(n) = \frac{1}{2}[x(n) - x^*(-n)]$		$jX_I(\omega)$
<i>2</i> -	Real Signals	
		$X(\omega) = X^*(-\omega)$
Any real signal		$X_R(\omega) = X_R(-\omega)$
x(n)		$X_I(\omega) = -X_I(-\omega)$
		$ X(\omega) = X(-\omega) $
		$\angle X(\omega) = -\angle X(-\omega)$
$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$		$X_R(\omega)$
(real and even)		(real and even)
$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$		$jX_I(\omega)$
(real and odd)		(imaginary and odd)

Properties

TABLE 4.5 PROPERTIES OF THE FOURIER TRANSFORM FOR DISCRETE-TIME SIGNALS

Property	Time Domain	Frequency Domain
Notation	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_2(\omega)$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution	• •	$X_1(\omega)X_2(\omega)$
Correlation		$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
	x ₁ x ₂ ()	$= X_1(\omega)X_2^*(\omega)$
	•	[if $x_2(n)$ is real]
Wiener-Khintchine	$r_{xx}(l)$	$S_{xx}(\omega)$
theorem		
Frequency shifting	$e^{j\omega_0 n} x(n)$	$X(\omega-\omega_0)$
Modulation	$x(n)\cos\omega_0 n$	$\frac{1}{2}X(\omega+\omega_0)+\frac{1}{2}X(\omega-\omega_0)$
Multiplication	v (v)v (v)	$1 \int_{-\pi}^{\pi} \mathbf{Y}_{r}(t) \mathbf{Y}_{r}(t) = 1 dt$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Differentiation in the frequency domain	nx(n)	$j\frac{dX(\omega)}{d\omega}$
Conjugation	$x^*(n)$	$X^*(-\omega)$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi}$	$X_1(\omega)X_2^*(\omega)d\omega$

Energy density spectrum of aperiodic signals

$$\omega \rightarrow \Theta$$

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2}$$

$$E_{x} = \sum_{n=-\infty}^{\infty} x(n)x^{*}(n) = \sum_{n=-\infty}^{\infty} x(n) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} X^{*}(\omega) e^{-j\omega n} d\omega \right]$$

$$E_{x} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X^{*}(\omega) \left[\sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n} \right] d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^{2} d\omega$$

$$E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

Bandwidth of DT signals

$$\omega \rightarrow \Theta$$

❖ A DT signal is said to be band-limited if

$$X(\omega) = 0$$
 for all $|\omega| \ge \omega_c < \pi$

- ❖ Periodic, repeated spectrum
- **❖ Low-Pass signal.**
 - Symmetric signal → Real spectrum
- Multiplication by a complex exponential
- Shifted spectrumUnsymmetric spectrum
- Complex signal

Figure 4.35 Illustration of the frequency-shifting property of the Fourier transform.

Frequency response of DT systems

❖ (relaxed) LTI system and convolution sum

$$L[e^{j\Theta n}] = H(\Theta)e^{j\Theta n}$$

$$L[\delta(n)] = L\left\{\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{j\Theta n}d\Theta\right\}$$

$$= \frac{1}{2\pi}\int_{-\infty}^{\infty} L[e^{j\Theta n}]d\Theta = \frac{1}{2\pi}\int_{-\infty}^{\infty} H(\Theta)e^{j\Theta n}d\Theta = h(n)$$

$$L[x(n)] = L\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right] = \sum_{k=-\infty}^{\infty} x(k)L[\delta(n-k)]$$

$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k) : convolution sum$$

$$Y(\Theta) = H(\Theta)X(\Theta) \quad S_{yy}(\Theta) = |Y(\Theta)|^2 = |H(\Theta)|^2 S_{xx}(\Theta) = |H(\Theta)|^2 |X(\Theta)|^2$$

Uniform sampling

- ❖ (uniform) Sampling interval:
- ***** Sampling frequency (or rate): $f_s = 1/T$
- ***** Angular sampling frequency: $\omega_s = 2\pi/T$

Sampled signal

$$x(n) = x(t)|_{t=nT} = x(nT)$$

Sampled signal: a CT signal model

$$x(t) \xrightarrow{\uparrow} x_p(t)$$

$$p_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$x_{p}(t) = x(t)p_{T}(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$$

Relationship between CTFT and DTFT

❖ Sampled signal: a CT signal model

$$F\{x_{j}(t)\} = \int_{-\infty}^{\infty} x_{j}(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x_{j}(t)\delta(t-nT)e^{-j\omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x_{j}(t)e^{-j\omega t}\delta(t-nT)dt$$

$$= \sum_{n=-\infty}^{\infty} x(nT)e^{-j\omega nT}$$

$$= \sum_{n=-\infty}^{\infty} x(nT)e^{-j\omega nT}$$

$$\Theta = \omega T$$

$$X(\Theta) = F\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Theta n}$$

Relationship between CTFT and DTFT

Sampled signal: a CT signal model

$$X_{p}(t) = x(t)p_{T}(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$$

$$X_{p}(\omega) = \int_{-\infty}^{\infty} x_{p}(t)e^{-j\omega t}dt = \sum_{n=-\infty}^{\infty} x(nT)e^{-jn\omega T}$$

$$\delta_{p}(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT_{p}) \longleftrightarrow \Omega_{0} \sum_{n=-\infty}^{\infty} \delta(\Omega-n\Omega_{0}) \xrightarrow{\Omega \to \omega}$$

$$X_{p}(\omega) = \frac{1}{2\pi} P_{T}(\omega) * X^{F}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{F}(\lambda) \left[\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega-\lambda-\frac{2\pi k}{T}) \right] d\lambda$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X^{F}(\omega-\frac{2\pi k}{T})$$

$$\sum_{n=-\infty}^{\infty} x(nT)e^{-jn\omega T} = \frac{1}{T} \sum_{n=-\infty}^{\infty} X^{F}(\omega-\frac{2\pi k}{T}) \mid \omega=\theta/T = X(\theta)$$

$$\sum_{n=-\infty} x(nT)e^{-jn\omega T} = -$$

$$X_p(\omega) \leftrightarrow x_p(t)$$
 $X(\omega) \leftrightarrow x(t)$

$$\uparrow$$
 $\chi(n)$

Relationship between CTFT and DTFT

❖ Point-sampled signal when regarded as a DT signal

$$X_p(\omega) =$$

$$\sum_{n=-\infty}^{\infty} x(nT)e^{-jn\omega T} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(\omega - \frac{2\pi k}{T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(\omega - k\omega_s)$$

$$X(\Theta) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X^F(\frac{\Theta - 2\pi k}{T})$$

$$\Theta = \omega T \Rightarrow f = fT = f/f_s$$

$$X(\Theta) = X(\Theta + 2\pi)$$

Sampling in time domain

Repetition in freq. domain

Spectrum of a sampled signal $X^f(\Theta) = X^f(\omega T) = \frac{1}{T} X^F(\omega)$

CTFT spectra for different sampling rates: impulse sampled signal

DTFT spectrum for different sampling rates: Sampled sequence

Condition under which the replicas (repeated spectra) do not overlap

 $\star x(t)$ must be band limited, that is,

$$X(\omega) = 0$$
 for $|\omega| \ge \omega_{m}$
 $f_s \ge 2 \cdot f_m$ or ω_m/π

- ❖ Bandwidth of x(t): ω_m or f_m
- * Nyquist rate (= twice the highest frequency) : $2 \cdot f_m$
- ❖ Aliasing: The phenomenon that happens when

$$X(\Theta) = X(\omega T) = \frac{1}{T}X(\omega)$$
 not hold.

The replicas overlap and $f_{\rm g} \geq 2 \cdot f_{\rm m}$ not hold either.

Can never reconstruct $X(\omega)$ or x(t) from $X(\Theta)$ or x(nT)

Sampling Theorem

A band limited CT signal, with highest frequency f_m , can be uniquely recovered from its samples if the sampling rate satisfies

$$f_s \ge f_{Nyquist} = 2f_m$$
, i.e., 2 · (highest frequency)

$$f_s - f_m \ge f_m$$

Common sampling rule

❖ Practical sampling rate to achieve a necessary bandgap.

$$f_s \geq 2 \cdot f_m + \delta$$
 where $\delta \geq 0$ $\delta \geq 0.1 \cdot (2 \cdot f_m)$

Common sampling rule

- **❖** When Sampling Theorem can't be met
 - → Anti-alising filter is commonly used in front of ADC

Common sampling rule

Oversampling for noise reduction.

Frequency Aliasing

Figure 1.17 Relationship between the continuous-time and discrete-time frequency variables in the case of periodic sampling.

With an ideal DAC

❖ Block diagram

With an ideal DAC

- **\Leftrightarrow** Input bandwidth: f_m
- **❖** Output bandwidth:

$$B = f_s / 2$$

❖ Let's assume we can use an Ideal LPF

$$\begin{split} & x(\mathit{t}) = x_{\mathit{o}}\left(\mathit{t}\right) \; \mathit{if} \quad f_{\mathit{m}} \leq \; B \\ & H(\omega) = \; T \cdot \; \mathit{rect}(\frac{\;\omega\; T}{2\pi}) \quad \mathit{or} \quad H(\mathit{f}) = \; T \cdot \; \mathit{rect}(\mathit{f}/\mathit{f_s}) \end{split}$$

$$X(\omega) = X_{p}(\omega)H(\omega)$$

$$= X_{p}(\omega)T \cdot rect(\frac{\omega T}{2\pi})$$

$$\Rightarrow h(t) = \sin c(\frac{t}{T})$$

Practical approach: With a real DAC

- Note that $\chi_p(t) = \sum_{n=-\infty}^{\infty} \chi(t) \delta(t-nT)$ can't exist in reality.
- ❖ Zero-order Hold (ZOH) using DAC (Digital-to-Analog Converter)

Practical approach: With a real DAC

❖ Zero-order Hold (ZOH) using DAC (Digital-to-Analog Converter)

$$h_{opt}(t) = rect(\frac{t - T/2}{T}) \longleftrightarrow H_{zoh}(\omega) = T \cdot \sin c(\frac{\omega T}{2\pi})e^{-j0.5\omega T}$$

Note: Can you exactly describe the frequency spectrum of the DAC output?

Practical approach: With a real DAC

❖ Zero-order Hold (ZOH) using DAC (Digital-to-Analog Converter)

Practical approach: With a real DAC

❖ Amplitude equalizer

Physical Aspects of Sampling and Reconstruction

❖ Read the text, pp. 62 - pp. 71.

Summary: Transforms for spectral analysis

Relationship between CTFT and DTFT

- *** CTFT**
 - For CT nonperiodic signals
- *** CTFS**
 - For CT periodic signals
- *** DTFT**
 - For DT nonperiodic signals
- **❖ DFT(Discrete Fourier Transform)**
 - For DT periodic signals

Exercise: DTFT

- 1. Determine the minimum sampling frequency.
- 2. Draw spectra of y(t) and y(n) when $f_0 = 3KHz$, $f_S = 10KHz$

- 1. Determine the minimum sampling frequency. $f_s \ge 2KHz$?
- 2. Determine θ_0 , $\underline{f_0}$ and draw spectra of x(n) and y(n)

when 1)
$$f_S = 10KHz$$
, $f_0 = 3KHz$ $\theta_0 = 2\pi f_0/f_S = 2\pi \cdot (\frac{3}{10.}) = 0.6\pi$
2) $f_S = 5KHz$, $f_0 = 3KHz$ $\theta_0 = 2\pi f_0/f_S = 2\pi \cdot (\frac{3}{5}) = 1.2\pi$

$$\begin{array}{ccc}
\cos(\omega_0 t) \\
\downarrow & \chi(t) \\
\chi(t) & \longrightarrow \chi \\
\end{array} \xrightarrow{\hat{y}(n)} \qquad \begin{array}{ccc}
y(n) & = \hat{y}(n)? \\
Yes, & \text{if } \theta_0 = \omega_0/f_S
\end{array}$$

Aliasing occurs

Find minimum sampling rates for the signals with the following spectra

