Física Quântica II

Exame 25/01/2023

Por favor, não se esqueça de incluir o seu **nome**, **número de aluno** e de assinalar o **número do exercício**, em cada folha que utilize. Os exercícios devem ser resolvidos a caneta azul ou preta e é permitido utilizar uma calculadora gráfica com a memória limpa (ou seja, não são permitidos formulários que não os dispensados abaixo). Por favor, explicite bem o seu raciocínio e numere as folhas que utilizar para apresentar a sua resolução dos exercícios.

Por favor, preste atenção às informações dadas nas páginas 3 e 4.

Exercício 1: Adição de dois momentos angulares

Suponha que um momento angular orbital caracterizado por l=2 é adicionado a um spin, caracterizado por s=1/2.

- a) Com base na teoria de adição de momentos angulares da Mecânica Quântica, justifique porque há dois valores possíveis para o número quântico j, $j_{\text{max}} = 5/2$ e $j_{\text{min}} = 3/2$, que caracteriza os multipletos de momento angular total, $\hat{\boldsymbol{J}} = \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}$. Enumere os estados $|j m_j, 21/2\rangle$ de cada multipleto. (2 valores)
- b) Explique a razão da igualdade

$$|j_{\text{max}} m_i = j_{\text{max}}, 21/2\rangle = |l = 2m_l = 2s = 1/2m_s = 1/2\rangle$$
.

(1 valor)

c) Utilizando operadores escada (ver o formulário), mostre que

$$|j_{\text{max}} m_j = j_{\text{max}} - 1, 21/2\rangle = \frac{1}{\sqrt{5}} \cdot (2 | l = 2 m_l = 1 s = 1/2 m_s = 1/2 \rangle + |l = 2 m_l = 2 s = 1/2 m_s = -1/2 \rangle.$$

(2 valores)

d) Justifique a igualdade

$$|j_{\min} m_j = j_{\min}, 21/2\rangle = \frac{1}{\sqrt{5}} \cdot (|l = 2 m_l = 1 s = 1/2 m_s = 1/2\rangle - 2 |l = 2 m_l = 2 s = 1/2 m_s = -1/2\rangle).$$

(1 valor)

Exercício 2: Teoria de perturbações independentes do tempo

Considere um oscilador harmónico bi-dimensional isotrópico, cuja dinâmica é descrita por um Hamiltoniano $\hat{H}_0 = \hbar \omega_0 (\hat{a}_x^{\dagger} \hat{a}_x + \hat{a}_y^{\dagger} \hat{a}_y + 1)$, em que as expressões para os operadores de destruição e de criação são dadas no formulário.

Considere a perturbação $\hat{H}_1 = -\frac{\epsilon}{m}\hat{p}_x\hat{p}_y$, em que ϵ é uma constante adimensional com $\epsilon \ll 1$.

- a) Mostre que a correcção de energia $E^1_{0,0}$ ao estado fundamental do sistema, $|0,0\rangle$, que é não degenerado, devida a esta perturbação, é igual a zero em primeira ordem da teoria de perturbações. (2 valores)
- b) Utilizando a fórmula para a correção de segunda ordem à energia do estado fundamental (ver formulário), calcule o valor dessa correção. (2 valores)
- c) Os primeiros estados excitados deste sistema são degenerados. Enumere-os e calcule a correção à sua energia devida a esta perturbação em teoria de perturbações de primeira ordem para níveis degenerados.

Note que é pedida apenas a correção de energia de primeira ordem. (2 valores)

Exercício 3: Teoria de perturbações dependentes do tempo

Um oscilador harmónico em uma dimensão, de carga -e, cuja dinâmica é caracterizada pelo Hamiltoniano $\hat{H}_0 = \hbar \omega_0 (\hat{a}_x^\dagger \hat{a}_x + 1/2)$, interage com um campo elétrico constante. Tal perturbação pode ser representada (aparte um termo irrelevante dependente do tempo) na chamada velocity gauge, como $\hat{H}_1(t) = -\frac{e\mathcal{E}t}{m}\hat{p}_x$, em que \mathcal{E} é a magnitude do campo elétrico.

No instante inicial, t=0, o oscilador encontra-se no seu primeiro estado excitado, momento a partir do qual a perturbação é aplicada. Calcule a probabilidade de transição para o estado fundamental do sistema não perturbado a t=T (ver formulário). (3 valores)

Pista: Para resolver corretamente o exercício, comece por identificar o estado inicial e final do sistema e as respetivas energias de cada um.

Exercício 4: Dinâmica de um spin 1/2

Um spin 1/2, que se encontra no estado próprio de $\hat{\sigma}_z$ com valor próprio igual a+1, penetra, a t=0, numa região em que existe um campo magnético segundo y, de tal modo que o Hamiltoniano que descreve a sua dinâmica é dado por $\hat{H}_0 = -\frac{\hbar\omega_0}{2}\hat{\sigma}_y$.

a) Mostre que o estado do sistema para t > 0, é descrito pela função de onda

$$|\Psi_t\rangle = \cos(\omega_0 t/2) |+\rangle - \sin(\omega_0 t/2) |-\rangle,$$
 (1)

onde expressamos a dita função de onda na base dos estados próprios de $\hat{\sigma}_z$, $|\pm\rangle$. (2 valores)

Pista: Comece por escrever o estado inicial como uma sobreposição dos estados próprios do Hamiltoniano.

b) Se o spin viajar em linha reta com velocidade constante v, qual deve ser a dimensão mínima da região em que está aplicado o campo magnético acima de modo a que, quando abandonar essa região, se encontra no estado próprio de $\hat{\sigma}_x$, $|+, \hat{x}\rangle$? (1 valor)

Pista: Note que um estado quântico está sempre definido a menos de um factor de fase.

Exercício 5: Anti-simetria da função de onda de um sistema atómico com dois fermiões

Considere um estado excitado do átomo 4_2 He, onde o primeiro eletrão ocupa o nível 2s, sendo a projeção do seu spin ao longo do eixo z igual para $-\hbar/2$ e o segundo eletrão ocupa o nível 3s, sendo a projeção do seu spin ao longo do eixo z também igual a $-\hbar/2$.

Escreva a função de onda com a simetria apropriada dos dois eletrões no espaço de posição e de spin. Qual é a densidade de probabilidade de encontrar ambos os eletrões na mesma localização espacial? Considere as funções de onda espaciais de cada eletrão como sendo dadas por $\varphi_{2s}(\boldsymbol{r}_1)$, $\varphi_{3s}(\boldsymbol{r}_2)$. (2 valores)

Pista: Escreva a função de onda no espaço real e de spin dos dois eletrões como produto das funções espaciais e de spin de cada eletrão e aplique o operador de anti-simetrização $\hat{A} = \frac{1}{\sqrt{2}}(1-\hat{P}_{12})$ a essa função de onda (o fator de normalização já está corretamente incluído), em que \hat{P}_{12} é o operador de troca das coordenadas espaciais r_1, r_2 , e de spin σ_1, σ_2 , dos eletrões.

Exercício 6*: Manipulação de um spin recorrendo a dois campos magnéticos distintos

Se um spin 1/2 se encontra, a t=0, no estado próprio de $\hat{\sigma}_z$ com valor próprio igual a +1, não é possível, aplicando um campo magnético constante ao longo de x, ou de z, fazê-lo evoluir de modo a que se encontre, num instante T>0, no estado próprio de $\hat{\sigma}_x$, $|+,\hat{x}\rangle$. Mas, se a dinâmica do sistema for determinada à vez pelos Hamiltonianos $\hat{H}=-\frac{\hbar\omega_0}{2}\hat{\sigma}_x$ e $\hat{H}'=-\frac{\hbar\omega_0}{2}\hat{\sigma}_z$, é possível obter esse estado.

Descreva um protocolo válido para conseguir isso. Deve determinar se o sistema está sujeito primeiro a \hat{H} ou a \hat{H}' , e deve calcular o tempo T total necessário para obter $|+,\hat{x}\rangle$, e ainda os tempos parciais T_1 e T_2 (com $T=T_1+T_2$), em que a dinâmica do spin é descrita pelo primeiro ou pelo segundo Hamiltoniano. (2 valores extra)

Pista: As pistas são as mesmas que lhe foram dadas para resolver as duas alíneas do exercício 4.

Informações: A nota máxima do exame são 20 valores. Qualquer pessoa com nota superior a essa verá a sua classificação reduzida à nota máxima, o exercício extra 6 comporta alguma dificuldade suplementar e tem por objetivo permitir aos alunos melhorarem as suas classificações.

Formulário:

Exercício 1:

A ação dos operadores escada do momento angular orbital nos auto-estados de $\hat{\boldsymbol{L}}^2$ e \hat{L}_z é dada por

$$\hat{L}_{\pm} | l m \rangle = \hbar \sqrt{l(l+1) - m(m\pm 1)} | l m \pm 1 \rangle,$$
 (2)

sendo que equações análogas são válidas para os operadores \hat{J}_{\pm} e \hat{S}_{\pm} e respetivos auto-estados.

Exercício 2:

Os operadores de destruição e criação do oscilador harmónico bidimensional são dados por $\hat{a}_x = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{x} + i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_x\right), \; \hat{a}_x^\dagger = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{x} - i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_x\right), \; \hat{a}_y = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{y} + i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_y\right), \; \hat{a}_y^\dagger = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{y} - i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_y\right).$

Aqui \hat{x} , \hat{p}_x , \hat{y} e \hat{p}_y são os operadores de posição e momento nas direções cartesianas de x e y. Dadas as relações de comutação entre estes operadores, resulta que $[\hat{a}_x, \hat{a}_x^{\dagger}] = \hat{1}$ e $[\hat{a}_y, \hat{a}_y^{\dagger}] = \hat{1}$, sendo que os restantes comutadores que envolvem operadores de criação e destruição são nulos.

Os estados próprios do Hamiltoniano \hat{H}_0 são os estados próprios dos operadores de ocupação, $\hat{n}_x = \hat{a}_x^{\dagger} \hat{a}_x$, $\hat{n}_y = \hat{a}_y^{\dagger} \hat{a}_y$, $|n_x, n_y\rangle$, sendo que os valores próprios destes operadores são dados por $n_x = 0, 1, 2, 3, \ldots$ e $n_y = 0, 1, 2, 3, \ldots$

Recorde que
$$\hat{a}_x | n_x, n_y \rangle = \sqrt{n_x} | n_x - 1, n_y \rangle$$
, $\hat{a}_x^\dagger | n_x, n_y \rangle = \sqrt{n_x + 1} | n_x + 1, n_y \rangle$, $\hat{a}_y | n_x, n_y \rangle = \sqrt{n_y} | n_x, n_y - 1 \rangle$, $\hat{a}_y^\dagger | n_x, n_y \rangle = \sqrt{n_y + 1} | n_x, n_y + 1 \rangle$.

A fórmula para a correção de segunda ordem à energia do estado fundamental é dada por $E_{0,0}^2 = \sum_{n_x \neq 0 \ v_{n_y} \neq 0} \frac{|\langle n_x, n_y | \hat{H}_1 | 0, 0 \rangle|^2}{E_{0,0} - E_{n_x,n_y}}$. Note que o somatório é sobre todos os valores de n_x e n_y tais que pelo menos um deles é diferente de zero. Evidentemente, estão presentes no resultado final apenas aqueles pares de valores (n_x, n_y) para os quais o elemento de matriz $\langle n_x, n_y | \hat{H}_1 | 0, 0 \rangle$ é distinto de zero.

Exercício 3:

Veja as informações relativas ao exercício 2 para as definições dos operadores relevantes, \hat{a}_x e \hat{a}_x^{\dagger} . Recordo-lhe que para um oscilador a uma dimensão, os estados próprios de \hat{H}_0 são os estados próprios do operador de ocupação, $\hat{n}_x = \hat{a}_x^{\dagger} \hat{a}_x$, sendo que os valores próprios deste operador são dados por $n_x = 0, 1, 2, 3, \ldots$

Recorde ainda que
$$\hat{a}_x | n_x \rangle = \sqrt{n_x} | n_x - 1 \rangle$$
, $\hat{a}_x^{\dagger} | n_x \rangle = \sqrt{n_x + 1} | n_x + 1 \rangle$.

A amplitude de transição de um auto-estado inicial $|n\rangle$ do Hamiltoniano \hat{H}_0 para um auto-estado final $|m\rangle$ é, de acordo com a teoria de perturbações dependentes do tempo, dada, em primeira ordem na perturbação $\hat{H}_1(t)$, por

$$\gamma_{n\to m}^{1}(t) = -\frac{i}{\hbar} \int_{t_0}^{t} du \, \langle m | \, \hat{H}_1(u) \, | n \rangle \, e^{-i\omega_{nm}(u-t_0)} \,, \tag{3}$$

em que $\omega_{nm}=\frac{E_n-E_m}{\hbar}$ e t_0 é o momento em que a perturbação é aplicada.

Os seguintes integrais poderão ser-lhe úteis

$$\int_0^x dv \, v \cos v = x \sin x + \cos x - 1.$$

$$\int_0^x dv \, v \sin v = \sin x - x \cos x.$$

Exercício 4:

As matrizes de Pauli são definidas como

$$\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{4}$$

Em termos dos auto-estados de $\hat{\sigma}_z$, $|\pm\rangle$, os auto-estados de $\hat{\sigma}_x$ são dados por $|+,\hat{\mathbf{x}}\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)$ e $|-,\hat{\mathbf{x}}\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)$. Os auto-estados de $\hat{\sigma}_y$ são dados por $|+,\hat{\mathbf{y}}\rangle=\frac{1}{\sqrt{2}}(|+\rangle+i|-\rangle)$ e $|-,\hat{\mathbf{y}}\rangle=\frac{1}{\sqrt{2}}(|+\rangle-i|-\rangle)$.

Exercício 6: Veja a lista de fórmulas necessárias para resolver o exercício 4.