Solutions to David A.Cox "Galois Theory"

Richard Ganaye

October 12, 2021

5 Chapter 5

5.1 NORMAL AND SEPARABLE EXTENSIONS

Ex. 5.1.1 Show that a splitting field of $x^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(\omega, \sqrt[3]{2}), \omega = e^{2\pi i/3}$.

Proof. The roots of x^3-2 are $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$, $\omega^2\sqrt[3]{2}$. A splitting field of x^3-2 over $\mathbb Q$ is thus $\mathbb Q(\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2})\subset\mathbb C$.

As ω , $\sqrt[3]{2} \in \mathbb{Q}(\omega, \sqrt[3]{2})$, and as $\mathbb{Q}(\omega, \sqrt[3]{2})$ is a field, $\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}$ are elements of $\mathbb{Q}(\omega, \sqrt[3]{2})$. Since $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2})$ is the smallest subfield of \mathbb{C} containing \mathbb{Q} and $\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}$,

$$\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}) \subset \mathbb{Q}(\omega, \sqrt[3]{2}).$$

Moreover $\omega = \omega \sqrt[3]{2}/\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2})$ et $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2})$. As $\mathbb{Q}(\omega, \sqrt[3]{2})$ is the smallest subfield of \mathbb{C} containing these two elements,

$$\mathbb{Q}(\omega, \sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}).$$

These two subfields are identical.

Conclusion: a splitting field of $x^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(\omega, \sqrt[3]{2})$.

Ex. 5.1.2 Prove that $f \in F[x]$ splits completely over F if and only if F is the splitting field of f over F.

Proof. Suppose that $f \in F[x]$ splits completely over F:

$$f = a(x - x_1) \cdots (x - x_n), \ x_i \in F, i = 1, \dots, n.$$

The roots of f are so x_1, \ldots, x_n , with possibly some repetitions. As $x_i \in F$, $i = 1, \ldots, n$, $F(x_1, \ldots, x_n) = F$. By Definition 5.1.1, a splitting field of f over F is $F(x_1, \ldots, x_n)$.

Conversely, suppose that a splitting field of f over F is F. Let x_1, \ldots, x_n the roots of f in this splitting field of f. As this field is F, $x_1, \ldots, x_n \in F$, thus

$$f = a(x - x_1) \cdots (x - x_n), \ x_i \in F, \ i = 1, \dots, n.$$

So f splits completely over F.

Ex. 5.1.3 Prove that an extension $F \subset L$ of degree 2 is a splitting field.

Proof. Suppose that [L:F]=2. Then $F\subsetneq L$, so there exists $\alpha\in L$ such that $\alpha\not\in F$.

As $\alpha \notin F$, $F \subsetneq F(\alpha)$, thus $[F(\alpha):F] > 1$. Since $F(\alpha) \subset L$, $[F(\alpha):F] \leq 2$, hence $[F(\alpha):F] = 2$, so $F(\alpha) = L$. Let f be the minimal polynomial of α over F. Then $\deg(f) = [F(\alpha):F] = 2$, so $f = x^2 + ax + b$, $a,b \in F$.

Since $\alpha \in L$ is a root of $x^2 + ax + b \in F[x] \subset L[x]$, there exists a polynomial $q(x) \in L[x]$ such that $x^2 + ax + b = (x - \alpha)q(x)$, where $\deg(q) = 1$ and q is monic. Therefore there exists $\beta \in L$ such that $q(x) = x - \beta$. So $f = (x - \alpha)(x - \beta)$ splits completely over L, and since $\beta \in L$, $L = F(\alpha) = F(\alpha, \beta)$. L is a splitting field of f.

Conclusion: Every quadratic extension L of a field F is a splitting field (so is a normal extension).

Ex. 5.1.4 Find the splitting field of $x^6 - 1 \in \mathbb{Q}[x]$.

Proof. The set of roots of x^6-1 in $\mathbb C$ is $S=\{1,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5\}$, where $\zeta=e^{2i\pi/6}=e^{i\pi/3}=-\omega^2$. As $\omega^3=1$,

$$S = \{1, -\omega^2, \omega, -1, \omega^2, -\omega\}.$$

the splitting field of x^6-1 over $\mathbb Q$ (included in $\mathbb C$) is so $\mathbb Q(1,-\omega^2,\omega,-1,\omega^2,-\omega)=\mathbb Q(S)$. As $S\subset\mathbb Q(\omega),\,\mathbb Q(S)\subset\mathbb Q(\omega)$. Conversely, $\omega\in S$, thus $\mathbb Q(\omega)\subset\mathbb Q(S)$.

Conclusion: the splitting field of $x^6 - 1$ over \mathbb{Q} is $\mathbb{Q}(\omega)$.

Ex. 5.1.5 We showed in Section 4.1 that $f = x^4 - 10x^2 + 1$ is irreducible over \mathbb{Q} . Show that $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ is the splitting field of f over \mathbb{Q} .

Proof. Recall the computing of Exercise 4.1.8(b):

$$f = (x - \sqrt{2} - \sqrt{3})(x + \sqrt{2} - \sqrt{3})(x - \sqrt{2} + \sqrt{3})(x + \sqrt{2} + \sqrt{3})$$

$$= [(x - \sqrt{3})^2 - 2][(x + \sqrt{3})^2 - 2]$$

$$= (x^2 - 2\sqrt{3}x + 1)(x^2 - 2\sqrt{3}x + 1)$$

$$= (x^2 + 1)^2 - (2\sqrt{3}x)^2$$

$$= x^4 - 10x^2 + 1$$

The splitting field of f over \mathbb{Q} is thus

$$K = \mathbb{Q}(\sqrt{2} + \sqrt{3}, \sqrt{2} - \sqrt{3}, -\sqrt{2} + \sqrt{3}, -\sqrt{2} + \sqrt{3}).$$
 As $\sqrt{2} + \sqrt{3}, \sqrt{2} - \sqrt{3}, -\sqrt{2} + \sqrt{3}, -\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, then
$$K \subset \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

Moreover,

$$\begin{split} &\sqrt{2} = \frac{1}{2} \left[(\sqrt{2} + \sqrt{3}) - (-\sqrt{2} + \sqrt{3}) \right] \in K, \\ &\sqrt{3} = \frac{1}{2} \left[(\sqrt{2} + \sqrt{3}) - (\sqrt{2} - \sqrt{3}) \right] \in K, \end{split}$$

thus

$$\mathbb{Q}(\sqrt{2},\sqrt{3})\subset K.$$

So $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Moreover, the Example 4.3.9 shows that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

(Or a direct proof is given in section 4.2, since $\sqrt{2} = \frac{1}{2}(\alpha^3 - 9\alpha)$, where $\alpha = \sqrt{2} + \sqrt{3}$, and $\sqrt{3} = \alpha - \sqrt{2}$, so $\sqrt{2}$, $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$.)

Conclusion: the splitting field of $x^4 - 10x^2 + 1$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Ex. 5.1.6 Let $f \in \mathbb{Q}[x]$ be the minimal polynomial of $\alpha = \sqrt{2 + \sqrt{2}}$

- (a) Show that $f = x^4 4x^2 + 2$. Thus $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$.
- (b) Show that $\mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q} .

Proof. (a) Let $\alpha = \sqrt{2 + \sqrt{2}}$.

Then
$$\alpha^2 = 2 + \sqrt{2}$$
, $\alpha^2 - 2 = \sqrt{2}$, $(\alpha^2 - 2)^2 - 2 = 0$, $\alpha^4 - 4\alpha^2 + 2 = 0$.

So α is a root of

$$f = x^4 - 4x^2 + 2$$
.

The computing of the roots in \mathbb{C} of f gives (cf Ex. 4.3.2):

$$\begin{split} f(\beta) &= 0 \iff (\beta^2 - 2)^2 = 2 \\ &\iff \beta^2 = 2 + \varepsilon \sqrt{2}, \ \varepsilon \in \{-1, 1\} \\ &\iff \beta = \varepsilon' \sqrt{2 + \varepsilon \sqrt{2}}, \ \varepsilon, \varepsilon' \in \{-1, 1\} \\ &\iff \beta \in \left\{ \sqrt{2 + \sqrt{2}}, -\sqrt{2 + \sqrt{2}}, \sqrt{2 - \sqrt{2}}, -\sqrt{2 - \sqrt{2}} \right\}. \end{split}$$

Thus

$$f = \left(x - \sqrt{2 + \sqrt{2}}\right) \left(x + \sqrt{2 + \sqrt{2}}\right) \left(x - \sqrt{2 - \sqrt{2}}\right) \left(x + \sqrt{2 - \sqrt{2}}\right). \tag{1}$$

We show that f is irreducible over \mathbb{Q} . The Schönemann-Eisenstein Criterion, with p=2 applies to the polynomial $f=x^4-4x^2+2=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$ $(2 \nmid a_4=1,2 \mid a_3=0,2 \mid a_2=-4,2 \mid a_1=0,2 \mid a_0=2,2^2 \nmid a_0=2)$. f is so irreducible over \mathbb{Q} .

Consequently, f of degree 4, is the minimal polynomial of $\alpha = \sqrt{2 + \sqrt{2}}$ over \mathbb{Q} , so,

$$\left\lceil \mathbb{Q}\left(\sqrt{2+\sqrt{2}}\right):\mathbb{Q}\right\rceil = 4.$$

(b) The splitting field of f over \mathbb{Q} is

$$K=\mathbb{Q}\left(\sqrt{2+\sqrt{2}},-\sqrt{2+\sqrt{2}},\sqrt{2-\sqrt{2}},-\sqrt{2-\sqrt{2}}\right)=\mathbb{Q}\left(\sqrt{2+\sqrt{2}},\sqrt{2-\sqrt{2}}\right).$$

Let
$$\alpha = \sqrt{2 + \sqrt{2}}, \gamma = \sqrt{2 - \sqrt{2}}$$
. Then $K = \mathbb{Q}(\alpha, \gamma)$.

Note that $\alpha \gamma = \sqrt{4-2} = \sqrt{2}$

Moreover $\alpha^2 = 2 + \sqrt{2}$, $\gamma^2 = 2 - \sqrt{2}$, thus $\alpha^2 - \gamma^2 = 2\sqrt{2} = 2\alpha\gamma$.

$$\alpha^2 - \frac{2}{\alpha^2} = 2\alpha\gamma.$$

So

$$\gamma = \frac{1}{2} \left(\alpha - \frac{2}{\alpha^3} \right) \in \mathbb{Q}(\alpha).$$

Consequently $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha, \gamma)$ is the splitting field of f over \mathbb{Q} . The splitting field of $x^4 - 4x^2 + 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{2 + \sqrt{2}})$, of degree 4 over \mathbb{Q} .

Note: With Sage, we obtain $\gamma = \frac{1}{2} \left(\alpha - \frac{2}{\alpha^3} \right) = \alpha^3 - 3\alpha$, and the factorization

$$x^{4} - 4x^{2} + 2 = (x - \alpha)(x + \alpha)(x - \alpha^{3} + 3\alpha)(x + \alpha^{3} - 3\alpha).$$

Ex. 5.1.7 Let $f = x^3 - x + 1 \in \mathbb{F}_3[x]$.

- (a) Show that f is irreducible over \mathbb{F}_3 .
- (b) Let L be the splitting field of f over \mathbb{F}_3 . Prove that $[L:\mathbb{F}_3]=3$.
- (c) Explain why L is a field with 27 elements.

Proof. (a) Let $f = x^3 - x + 1 \in \mathbb{F}_3[x]$.

As $\deg(f) = 3$, to prove the irreducibility of f, it is sufficient to show that f has no root in \mathbb{F}_3 . This is the case, since every element α of \mathbb{F}_3 is a root of $x^3 - x$ (little Fermat's theorem), so $\alpha^3 - \alpha + 1 = 1 \neq 0$: f(0) = f(1) = f(2) = 1.

 $f = x^3 - x + 1$ is irreducible over \mathbb{F}_3 .

(b) Let L the splitting of f over \mathbb{F}_3 , and α a root of f in L. As the characteristic of \mathbb{F}_3 is 3,

$$f(x+1) = (x+1)^3 - (x+1) + 1$$
$$= (x^3 + 1) - (x+1) + 1$$
$$= x^3 - x + 1$$
$$= f(x)$$

Consequently, α , $\alpha + 1$, $\alpha + 2$ are the distinct roots of f, since 0, 1, 2 are distinct in \mathbb{F}_3 :

$$f(x) = (x - \alpha)(x - \alpha - 1)(x - \alpha - 2).$$

As $\alpha + 1, \alpha + 2 \in \mathbb{F}_3(\alpha)$,

$$L = \mathbb{F}_3(\alpha, \alpha + 1, \alpha + 2) = \mathbb{F}_3(\alpha).$$

 $f = x^3 - x + 1$ being the minimal polynomial of α , $[\mathbb{F}_3(\alpha) : \mathbb{F}_3] = \deg(f) = 3$.

In conclusion, $L = \mathbb{F}_3(\alpha)$ is the splitting field of $x^3 - x + 1$ over \mathbb{F}_3 . Its degree is 3 over \mathbb{F}_3 . As a vector space over \mathbb{F}_3 , its dimension is 3, so $L \simeq \mathbb{F}_3^3$, so its cardinality is $3^3 = 27$.

Ex. 5.1.8 Let n be a positive integer. Then the polynomial $f = x^n - 2$ is irreducible over \mathbb{Q} by the Schönemann-Eisenstein Criterion for the prime 2.

- (a) Determine the splitting field L of f over \mathbb{Q} .
- (b) Show that $[L:\mathbb{Q}] = n(n-1)$ when n is prime.

Proof. (a) The set of the roots of $x^n - 2 \in \mathbb{Q}[x]$ is $S = \{\zeta^k \sqrt[n]{2}, k = 0, \dots, n-1\}$, where $\zeta = e^{2i\pi/n}$: the splitting field L of $x^n - 2$ over \mathbb{Q} is so $\mathbb{Q}(S)$.

As
$$\zeta = \zeta \sqrt[n]{2} / \sqrt[n]{2} \in \mathbb{Q}(S)$$
, $L = \mathbb{Q}(\zeta, \sqrt[n]{2})$.

(b) Suppose that n is prime.

As $f = x^n - 2$ is irreducible over \mathbb{Q} , f is the minimal polynomial of $\sqrt[n]{2}$ over \mathbb{Q} , so $[\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = \deg(f) = n$.

As n is prime, $1 + x + \cdots + x^{n-1}$ is irreducible over \mathbb{Q} , thus $[\mathbb{Q}(\zeta) : \mathbb{Q}] = n - 1$.

From the Tower Theorem,

$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt[n]{2})][\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = n [L:\mathbb{Q}(\sqrt[n]{2})]$$
$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\zeta)][Q(\zeta):\mathbb{Q}] = (n-1)[L:\mathbb{Q}(\zeta)]$$
(2)

Thus $n \mid [L : \mathbb{Q}]$ and $n - 1 \mid [L : \mathbb{Q}]$.

As n, n-1 are relatively prime,

$$n(n-1) \mid [L:\mathbb{Q}]. \tag{3}$$

Moreover, the minimal polynomial p of $\sqrt[n]{2}$ over $\mathbb{Q}(\zeta)$ divides $x^n - 2 \in \mathbb{Q}[x] \subset \mathbb{Q}(\zeta)[x]$, thus $[L:\mathbb{Q}(\zeta)] = \deg(p) \leq n$. By (2), $[L:\mathbb{Q}] \leq n(n-1)$, and by (3) $n(n-1) \mid [L:\mathbb{Q}]$, thus

$$[L:\mathbb{Q}] = n(n-1).$$

Ex. 5.1.9 Let $f \in F[x]$ have degree n > 0, and let L be the splitting field of f over F.

- (a) Suppose that [L:F] = n!. Prove that f is irreducible over F.
- (b) Show that the converse of part (a) is false.

Proof. (a) Let $f \in F[x]$, $\deg(f) = n > 0$, and L be the splitting field of f over F.

Suppose that f is reducible over F. We show then that [L:F] < n!.

In this case, f = gh, where $1 \le k = \deg(g) \le n - 1$ (then $\deg(h) = n - k$).

The roots $\alpha_1, \dots, \alpha_k$ of g, and the roots $\beta_1, \dots, \beta_{n-k}$ of h, are the roots of f. They are thus in L, and

$$L = F(\alpha_1, \cdots, \alpha_k, \beta_1, \cdots, \beta_{n-k}).$$

Let $K = F(\alpha_1, \dots, \alpha_k)$. This is the splitting field of g over F. Theorem 5.1.5 shows that $[K : F] \leq k!$.

As $L = K(\beta_1, \dots, \beta_{n-k})$ is the splitting field of h over K, the same theorem shows that $[L:K] \leq (n-k)!$.

Hence

$$[L:F] = [L:K] [K:F] \le k!(n-k)!.$$

If $1 \le k \le n - 1$,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \prod_{i=0}^{k-1} \frac{n-i}{k-i} > 1,$$

thus, for the same values of k,

$$k!(n-k)! < n!.$$

Consequently [L:F] < n!. In particular $[L:F] \neq n!$. The contraposition gives thus

 $[L:F] = n! \Rightarrow f$ is irreducible over F.

(b) We give a counterexample of the converse: by Exercise 5, $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ is the splitting field of the irreducible polynomial $f = x^4 - 10x^2 + 1$, but

$$[L:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}):\mathbb{Q}] = 4 \neq 4! = 24.$$

Ex. 5.1.10 Let $F \subset L$ be the splitting field of $f \in F[x]$, and let K be a field such that $F \subset K \subset L$. Prove that $K \subset L$ is the splitting field of some polynomial in K[x].

Proof. If $F \subset K \subset L$, and if L is the splitting field of f over K, then L is the splitting field of the same polynomial f over K.

Indeed, L contains the roots $\alpha_1, \ldots, \alpha_n$ of f, and $L = F(\alpha_1, \ldots, \alpha_n)$. Moreover $f = c(x - \alpha_1) \cdots (x - \alpha_n), c \in F$.

 $F \subset K \subset L$ and $\alpha_1, \ldots, \alpha_n \in L$, thus $K(\alpha_1, \ldots, \alpha_n) \subset L = F(\alpha_1, \ldots, \alpha_n) \subset K(\alpha_1, \ldots, \alpha_n)$. Consequently, $L = K(\alpha_1, \ldots, \alpha_n)$, and f splits completely over the extension $K \subset L$ since $c \in F \subset K$. The conditions (a), (b) of definition 5.1.1 are filled: L is the splitting field of f over K.

Note: therefore, if $F \subset K \subset L$, and if $F \subset L$ is a normal extension, so is $K \subset L$. \square

Ex. 5.1.11 Suppose that $f \in F[x]$ is irreducible of degree n > 0, and let L be the splitting field of f over F.

- (a) Prove that $n \mid [L:F]$.
- (b) Give an example to show that n = [L : F] can occur in part (a).

Proof. (a) Let $\alpha \in L$ a root of f. Then $F \subset F(\alpha) \subset L$, thus

$$[L:F] = [L:F(\alpha)] [F(\alpha):F].$$

As f is the minimal polynomial of α , $[F(\alpha):F]=\deg(f)=n$, thus $n\mid [L:F]$.

(b) In Exercise 6, we have seen that $f = x^4 - 4x^2 + 2$, of degree n = 4, has for splitting field $L = \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, of degree 4 over \mathbb{Q} . Here $[L : \mathbb{Q}] = 4 = \deg(f)$, the equality in relation (a) is so a possibility.

Ex. 5.1.12 In the situation of Theorem 5.1.6, explain why $[L_1:F_1]=[L_2:F_2]$.

Proof. $\overline{\varphi}: L_1 \to L_2$ is a field isomorphism, whose restriction to F_1 (and co-restriction to F_2) is the field isomorphism $\varphi: F_1 \mapsto F_2$.

 $[L_1:F_1]<\infty$. Let (f_1,\ldots,f_d) a basis of L_1 over F_1 . We show that $(\overline{\varphi}(f_1),\ldots,\overline{\varphi}(f_d))$ is a basis of L_2 over F_2 .

• If $\sum_{i=1}^d b_i \overline{\varphi}(f_i) = 0$, where $b_i \in F_2$, then, since $\varphi : F_1 \to F_2$ is surjective, $b_i = \varphi(a_i), \ a_i \in F_1, \ i = 1, \dots d$.

As the restriction of $\overline{\varphi}$ to F_1 is φ , $b_i = \varphi(a_i) = \overline{\varphi}(a_i)$. $\overline{\varphi}$ being a ring homomorphism,

$$0 = \sum_{i=1}^{d} b_i \overline{\varphi}(f_i) = \sum_{i=1}^{d} \overline{\varphi}(a_i) \overline{\varphi}(f_i) = \overline{\varphi}\left(\sum_{i=0}^{d} a_i f_i\right).$$

As the kernel of $\overline{\varphi}$ is 0, $\sum_{i=0}^{d} a_i f_i = 0$, where the family $(f_i)_{0 \le i \le d}$ is free, thus $a_1 = \cdots = a_d = 0$, and since $b_i = \varphi(a_i)$, $b_1 = \cdots = b_d = 0$. So the family $(\overline{\varphi}(f_i))_{1 \le i \le d}$ is free.

• Let y be any element in L_2 . As $\overline{\varphi}$ is surjective, there exists $x \in L_1$ such that $y = \overline{\varphi}(x)$. (f_1, \dots, f_d) being a basis, there exists $(a_0, \dots, a_d) \in F_1^d$ such that $x = \sum_{i=0}^d a_i f_i$. Then

$$y = \overline{\varphi}(x) = \sum_{i=0}^{d} \overline{\varphi}(a_i)\overline{\varphi}(f_i) = \sum_{i=0}^{d} \varphi(a_i)\overline{\varphi}(f_i) = \sum_{i=0}^{d} b_i\overline{\varphi}(f_i),$$

where $b_i = \varphi(a_i) \in F_2$. Consequently $(\overline{\varphi}(f_i))_{1 \leq i \leq d}$ is a basis of L_2/F_2 , and so

$$[L_2:F_2]=d=[L_1:F_1].$$

Ex. 5.1.13 Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Use Proposition 5.1.8 to prove that there is an isomorphism $\sigma: L \simeq L$ such that $\sigma(\sqrt{2}) = \sqrt{2}$ and $\sigma(\sqrt{3}) = -\sqrt{3}$.

Proof. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset L = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

 $f=x^2-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$. Indeed, $\deg(f)=2$, and f has no root in $\mathbb{Q}(\sqrt{2})$, otherwise $\sqrt{3}=a+b\sqrt{2},\ a,b\in\mathbb{Q}$. But then $3=a^2+2b^2+2ab\sqrt{2}$. If $ab\neq 0$, then $\sqrt{2}=(3-a^2-2b^2)/(2ab)\in\mathbb{Q}$, which is false, thus ab=0. If b=0, then $\sqrt{3}\in\mathbb{Q}$, and if $a=0,\ \sqrt{3/2}\in\mathbb{Q}$: the two cases are impossible. Consequently $f=x^2-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$.

(This gives an alternative proof of $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$.)

As $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $x^2 - 3$ over $\mathbb{Q}(\sqrt{2})$, by Proposition 5.1.8 there exists a field isomorphism $\sigma: L \to L$ which is the identity on $\mathbb{Q}(\sqrt{2})$ and which takes $\sqrt{3}$ to $-\sqrt{3}$. As σ is the identity on $\mathbb{Q}(\sqrt{2})$, we have also $\sigma(\sqrt{2}) = \sqrt{2}$.

5.2 NORMAL EXTENSIONS

Ex. 5.2.1 Prove that $\mathbb{Q}(\sqrt[4]{2})$ is not the splitting field of any polynomial in $\mathbb{Q}[x]$.

Proof. This is equivalent to show that $\mathbb{Q}(\sqrt[4]{2})$ is not a normal extension of \mathbb{Q} .

 $x^4 - 2$ is an irreducible polynomial over $\mathbb Q$ by Schönemann-Eisenstein Criterion with p = 2.

The roots of the minimal polynomial of $\sqrt[4]{2}$ over \mathbb{Q} are $\sqrt[4]{2}$, $i\sqrt[4]{2}$, $-i\sqrt[4]{2}$.

As the root $i\sqrt[4]{2}$ is a non real complex, it is not in $\mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$. So $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{2})$ is not a normal extension, thus $\mathbb{Q}(\sqrt[4]{2})$ is not the splitting field of any polynomial in $\mathbb{Q}[x]$. \square

Ex. 5.2.2 Prove that an algebraic extension $F \subset L$ is normal if and only if for every $\alpha \in L$, the minimal polynomial of α over F splits completely over L.

Proof. Let $F \subset L$ a normal extension. Let $\alpha \in L$. Its minimal polynomial $f \in F[x]$ is irreducible, thus this polynomial splits completely over F by definition of a normal extension.

Conversely, suppose that every $\alpha \in L$ is such that its minimal polynomial splits completely over F.

Let $g \in F[x]$ any irreducible polynomial, and α a root of g in L. Then g is the minimal polynomial of α over L. So g splits completely over L by hypothesis. Hence every irreducible polynomial g which has a root in L splits completely over L. So the extension $F \subset L$ is normal.

Ex. 5.2.3 Determine wether the following extensions are normal. Justify your answers.

- (a) $\mathbb{Q} \subset \mathbb{Q}(\zeta_n)$, where $\zeta_n = e^{2\pi i/n}$.
- (b) $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
- (c) $F = \mathbb{F}_3(t) \subset F(\alpha)$, where t is a variable and α is a root of $x^3 t$ in a splitting field.

Proof. (a) As $\mathbb{Q}(\zeta_n)$ contient ζ_n^k pour tout $k \in \mathbb{Z}$,

$$\mathbb{Q}(\zeta_n) = \mathbb{Q}(1, \zeta_n, \zeta_n^2, \cdots, \zeta_n^{n-1}).$$

 $\mathbb{Q}(1,\zeta_n,\zeta_n^2,\cdots,\zeta_n^{n-1})=\mathbb{Q}(\zeta_n)$ is the splitting field of x^n-1 over \mathbb{Q} .

Conclusion: $\mathbb{Q} \subset \mathbb{Q}(\zeta_n)$ is a normal extension.

- (b) The minimal polynomial of $\sqrt[3]{2} \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = L$ over \mathbb{Q} is $f = x^3 2$. The roots of f are $\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}$. But $\omega\sqrt[3]{2} \notin \mathbb{R}$, and $L \subset \mathbb{R}$, thus $\omega\sqrt[3]{2} \notin L$. So $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ is not a normal extension.
- (c) By Exercise 4.2.9, the polynomial $f = x^3 t$ is irreducible over $\mathbb{F}_3(t)$. Let α a root of f in the spitting field L of $x^3 t$ over F.

As the characteristic of F is 3, $f = x^3 - t = (x - \alpha)^3$, where $\alpha \in L$. The splitting field of f over F is so $F(\alpha)$, thus $F \subset F(\alpha)$ is a normal extension.

Ex. 5.2.4 Give an example of a normal extension of \mathbb{Q} that is not finite.

Proof. $\overline{\mathbb{Q}}$ is by definition the set of all complex algebraic numbers over \mathbb{Q} . Theorem 4.4.10 shows that $\overline{\mathbb{Q}}$ is an algebraically closed field. If $f \in \mathbb{Q}[x]$ is an irreducible polynomial over \mathbb{Q} , a fortiori $f \in \overline{\mathbb{Q}}[x]$, and by definition of an algebraically closed field, f splits completely over $\overline{\mathbb{Q}}$. Thus $\mathbb{Q} \subset \overline{\mathbb{Q}}$ is a normal extension. In Exercise 4.4.1, we showed that $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$. This extension is so an example of a normal extension of \mathbb{Q} that is not finite.

5.3 SEPARABLE EXTENSION

Ex. 5.3.1 *Prove* (5.6) :

$$(ag + bh)' = ag' + bh'$$
$$(gh)' = g'h + gh'$$

where $f, g \in F[x], a, b \in F$.

Proof. Write

$$g = \sum_{i=0}^{n} a_i x^i, \qquad h = \sum_{i=0}^{m} b_j x^j \in F[x].$$
 (4)

(We suppose $a_i = 0$ if i > m or i < 0, $b_j = 0$ if j > m or j < 0.)

(a) Write $N = \max(n, m)$: then

$$g = \sum_{i=0}^{N} a_i x^i, \qquad h = \sum_{i=0}^{N} b_i x^i.$$

$$g' = \sum_{i=1}^{N} i a_i x^{i-1}, \qquad h' = \sum_{i=1}^{N} i b_i x^{i-1}.$$

If $a, b \in F$, then

$$ag' + bh' = \sum_{i=1}^{N} i(aa_i + bb_i)x^{i-1}.$$

9

Moreover

$$ag + bh = \sum_{i=0}^{N} (aa_i + bb_i)x^i,$$
$$(ag + bh)' = \sum_{i=1}^{N} i(aa_i + bb_i)x^{i-1},$$

thus

$$(ag + bh)' = ag' + bh'.$$

(b) By (4), the definition of the product of two polynomials gives

$$gh = \sum_{k=0}^{m+n} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) x^k.$$

Thus

$$(gh)' = \sum_{k=1}^{m+n} k \left(\sum_{i=0}^{k} a_i b_{k-i} \right) x^{k-1} = \sum_{k=0}^{m+n-1} (k+1) \left(\sum_{i=0}^{k+1} a_i b_{k+1-i} \right) x^k.$$

As

$$g' = \sum_{i=1}^{n} i a_i x^{i-1} = \sum_{i=0}^{n-1} (i+1) a_{i+1} x^i,$$
$$h' = \sum_{j=1}^{m} j b_j x^{j-1} = \sum_{j=0}^{m-1} (j+1) b_{j+1} x^j,$$

we obtain

$$g'h = \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k} (i+1)a_{i+1}b_{k-i} \right) x^k$$
$$= \sum_{k=0}^{m+n-1} \left(\sum_{i=1}^{k+1} ia_ib_{k+1-i} \right) x^k$$
$$= \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k+1} ia_ib_{k+1-i} \right) x^k,$$

and also

$$gh' = \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k} (k+1-i)a_i b_{k+1-i} \right) x^k$$
$$= \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k+1} (k+1-i)a_i b_{k+1-i} \right) x^k.$$

Thus

$$g'h + gh' = \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k+1} i a_i b_{k+1-i} + \sum_{i=0}^{k+1} (k+1-i) a_i b_{k+1-i} \right) x^k$$

$$= \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k} (i+k+1-i) a_i b_{k+1-i} \right) x^k$$

$$= \sum_{k=0}^{m+n-1} (k+1) \left(\sum_{i=0}^{k+1} a_i b_{k+1-i} \right) x^k$$

$$= (gh)'.$$

We have proved the equations 5.6:

$$(ag + bh)' = ag' + bh',$$

$$(gh)' = g'h + gh'.$$

Ex. 5.3.2 Let F have characteristic p, and suppose that $\alpha, \beta \in F$. Lemma 5.3.10 shows that $(\alpha + \beta)^p = \alpha^p + \beta^p$.

- (a) Prove that $(\alpha \beta)^p = \alpha^p \beta^p$ if $\alpha, \beta \in F$.
- (b) Prove that $(\alpha + \beta)^{p^e} = \alpha^{p^e} + \beta^{p^e}$ for all $e \ge 0$.

Proof. (a) Let F have characteristic $p, p \neq 0$. Then p is prime. Let $\alpha, \beta \in F$. If p is an odd prime,

$$(\alpha - \beta)^p = \alpha + (-\beta)^p = \alpha^p + (-1)^p \beta^p = \alpha^p - \beta^p.$$

In the remaining case p = 2, then 1 = -1, thus

$$(\alpha - \beta)^p = (\alpha + \beta)^p = \alpha^p + \beta^p = \alpha^p - \beta^p.$$

(b) Let $H: F \to F, x \mapsto x^p$ the Frobenius homomorphism of F. By induction, we show that $H^n(x) = x^{p^n}$ for all $x \in F$:

$$H^0(x) = x = x^{p^0}$$
, et

$$H^n(x) = x^{p^n} \Rightarrow H^{n+1}(x) = H(H^n(x)) = (x^{p^n})^p = x^{p \cdot p^n} = x^{p^{n+1}}.$$

If $e \in \mathbb{N}$, as H^e , power of a homomorphism, is a homomorphism, so

$$H^e(\alpha + \beta) = H^e(\alpha) + H^e(\beta),$$

namely

$$(\alpha + \beta)^{p^e} = \alpha^{p^e} + \beta^{p^e}.$$

Ex. 5.3.3 Let F be a field of characteristic p. The nth roots of unity are defined to be the roots of $x^n - 1$ in the splitting field $F \subset L$ of $x^n - 1$.

- (a) If $p \nmid n$, show that there are n distinct nth roots of unity in L.
- (b) Show that there is only one pth root of unity, namely $1 \in F$.

Proof. (a) Here $n \geq 1$.

As $f = x^n - 1$, then $f' = nx^{n-1}$.

If $p \nmid n$, then $n \neq 0$ in the field F of characteristic p, thus n is a unit in F[x]. $x(nx^{n-1}) - n(x^n - 1) = n = xf' - nf$ is a Bézout's relation between f and f', which proves that $f \land f' = 1$. So f is a separable polynomial, and the n roots of f in its splitting field, which are the nth roots of unity, are distinct.

(b) If the characteristic of F is p, by Exercise 2,

$$x^p - 1 = (x - 1)^p$$
.

The only pth root of unity is thus 1.

Ex. 5.3.4 Let $f \in \mathbb{Z}[x]$ be monic and nonconstant and have discriminant $\Delta(f)$. Then let $f_p \in \mathbb{F}_p[x]$ be obtained from f by reducing modulo p. Prove that $\Delta(f_p) \in \mathbb{F}_p$ is the congurence class of $\Delta(f)$.

Proof. Write $\Delta = \Delta(\sigma_1, \dots, \sigma_n) \in F(\sigma_1, \dots, \sigma_n) \subset F(x_1, \dots, x_n)$ the discriminant. Let $f = x^n + a_1 x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ be a monic nonconstant polynomial. In the section 2.4, $\Delta(f)$ is defined by

$$\Delta(f) = \Delta(-a_1, \dots, (-1)^i a_i, \dots, (-1)^n a_n).$$

obtained by applying to $\Delta(\sigma_1, \dots, \sigma_n)$ the evaluation homomorphism defined by $\sigma_i \mapsto (-1)^i a_i$, which sends $\tilde{f} = x^n - \sigma_1 x^{n-1} + \dots + (-1)^n \sigma_n$ on f, and $\Delta \operatorname{sur} \Delta(f)$.

Write f_p the reduction of f modulo p:

 $f_p = x^{n} + \overline{a}_1 x^{n-1} + \dots + \overline{a}_0$, where we write $\overline{k} = [k]_p$ the class of $k \in \mathbb{Z}$ modulo p. By definition,

$$\Delta(f_p) = \Delta(-\overline{a}_1, \cdots, (-1)^i \overline{a}_i, \cdots, (-1)^n \overline{a}_n).$$

 Δ is a polynomial with coefficients in \mathbb{Z} of $\sigma_1, \dots, \sigma_n$, thus $\Delta(-\overline{a}_1, \dots, (-1)^i \overline{a}_i, \dots, (-1)^n \overline{a}_n)$ is the reduction modulo p of $\Delta(-a_1, \dots, (-1)^i a_i, \dots, (-1)^n a_n)$, so $\Delta(f_p)$ is the reduction modulo p of $\Delta(f)$:

$$\Delta(f_p) = [\Delta(f)]_p.$$

Ex. 5.3.5 For $f = x^7 + x + 1$, find all primes for which f_p is not separable, and compute $gcd(f_p, f'_p)$ as in (5.14).

Proof. The following Sage instructions give the wanted factorisation of the discriminant of f:

```
P.<x> = PolynomialRing(QQ)
 f = x^7 + x + 1
 g = diff(f(x),x)
 d = f.resultant(g);d
                                      870199
f.discriminant()
                                     -870199
 d.factor()
                                   11 \cdot 239 \cdot 331
P.<x> = PolynomialRing(GF(11))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
                                      x + 3
factor(f)
                     (x+3)^2 \cdot (x^5+5x^4+5x^3+2x^2+9x+5)
P.<x> = PolynomialRing(GF(239))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
                                      x + 41
factor(f)
                 (x+41)^2 \cdot (x^5+157x^4+24x^3+122x^2+81x+30)
P.<x> = PolynomialRing(GF(331))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
                                     x + 277
factor(f)
              (x + 277)^2 \cdot (x^2 + 188x + 203) \cdot (x^3 + 251x^2 + 84x + 80).
   So
```

 $\gcd(f_p, f_p') = \begin{cases} x+3, & p = 11, \\ x+41, & p = 239, \\ x+277, & p = 331, \\ 1 & \text{otherwise.} \end{cases}$

Ex. 5.3.6 Use part (a) of Theorem 5.3.15 to show that the splitting field of a separable polynomial gives a separable extension.

Proof. Let $F \subset L$ the splitting field of a separable polynomial $f \in F[x]$: $L = F(\alpha_1, \ldots, \alpha_n)$, where $\alpha_1, \ldots, \alpha_n$ are the roots of f, and

$$f = c(x - \alpha_1) \cdots (x - \alpha_n).$$

Let f_i be the minimal polynomial of α_i over F. Then f_i divides f, thus $f_i \in F[x]$ is a separable polynomial, since the unicity of the decomposition in irreducible factors in L[x] shows that the only irreducible factors of f_i in L[x] are associate to $x - \alpha_j$. Consequently the α_i are separable for all i, $1 \le i \le n$. Part (a) of Theorem 5.3.15 shows then that $F \subset L$ is a separable extension.

Ex. 5.3.7 Suppose that F is a field of characteristic p. The goal of this exercise is to prove Proposition 5.3.16. To begin the proof, let $f \in F[x]$ be irreducible.

- (a) Assume that f' is not identically zero. Then use the argument of Lemma 5.3.5 to show that f is separable.
- (b) Now assume that f' is identically zero. Show that there is a polynomial $g_1 \in F[x]$ such that $f(x) = g_1(x^p)$.
- (c) Show that the polynomial of part (b) is irreducible.
- (d) Now apply parts (a)-(c) to g_1 repeatedly until you get a separable polynomial g, and conclude that $f(x) = g(x^{p^e})$ where $e \ge 0$ and $g \in F[x]$ is irreducible and separable.

Proof. Soit F un corps de caractéristique p, et $f \in F[x]$ irréductible sur F, de degré $n \ge 1$.

(a) We suppose first that $f' \neq 0$.

Let $d = f \wedge f'$. Then d divides f (and d is monic), and f is irreducible over F, thus d = 1 or $d = \lambda f, \lambda \in F^*$. If $d = \lambda f$, then $f = \lambda^{-1}d$ divides f'. As $f' \neq 0$, f' = qf implies that $\deg(f) = n \leq \deg(f') \leq n - 1$: this is a contradiction.

Thus $d = f \wedge f' = 1$, and then Proposition 5.3.2 shows that f is separable.

(b) Suppose now that f'=0, where $f=\sum_{i=0}^n a_i x^i$. Then $0=f'=\sum_{i=1}^n i a_i x^{i-1}$, and consequently $ia_i=0,\ i=1,\cdots,n$. If $p\nmid i,a_i=0$, thus

$$f = \sum_{0 \le i \le n, \ p|i} a_i x^i = \sum_{k=0}^{\lfloor n/p \rfloor} a_{kp} x^{kp}.$$

If we write $g_1 = \sum_{k=0}^{\lfloor n/p \rfloor} a_{kp} x^k$, then $f = g_1(x^p)$.

(c) If g_1 was reducible,

$$g_1 = uv, \ g_1, g_2 \in F[x], 1 \le \deg(u), 1 \le \deg(v).$$

But then $f = g_1(x^p) = u(x^p)v(x^p)$, where $\deg(u(x^p)) = p \deg(u) \ge 1$, $\deg(v(x^p)) \ge 1$, and so f would be reducible, which contradicts the hypothesis on f.

(d) If $g'_1 \neq 0$, part (a) shows that g_1 is separable, and then the wanted conclusion is obtained with e = 1. Otherwise the arguments of parts (b) and (c) shows that there exits an irreducible polynomial $g_2 \in F[x]$ such that $g_1 = g_2(x^p)$, so $f = g_2(x^{p^2})$, and so on. While $g'_i \neq 0$, we can build a sequence g_1, \dots, g_k such that $g_i = g_{i+1}(x^p)$, where g_i irreducible over F.

This sequence is necessarily finite, since $\deg(g_{i+1}) = \deg(g_i)/p < \deg(g_i)$.

Thus there exists an integer $e \ge 1$ such that $f = g_1(x^p), g_1 = g_2(x^p), \dots, g_{e-1} = g_e(x^p)$, and $g'_e \ne 0$, and so $g = g_e$ is separable.

If we take the induction hypothesis $f = g_k(x^{p^k})$, for k < e, (verified for k = 1) then $f = g_{k+1}((x^{p^k})^p) = g_{k+1}(x^{p \cdot p^k}) = g_{k+1}(x^{p^{k+1}})$.

Hence $f = g_e(x^{p^e}) = g(x^{p^e})$.

Conclusion: if F is a field of characteristic p, and if $f \in F[x]$ is irreducible over F, then there exists an integer $e \ge 1$ and an irreducible separable polynomial $g \in k[x]$ such that $f = g(x^{p^e})$.

Ex. 5.3.8 Let F = k(t, u) and $f = (x^2 - t)(x^3 - u)$ be as in Example 5.3.17. Then the splitting field of f contains elements α, β such that $\alpha^2 = t$ and $\beta^3 = u$.

- (a) Prove that $x^2 t$ is the minimal polynomial of α over F. Also show that $x^2 t$ is separable.
- (b) Similarly, prove that $x^3 u$ is the minimal polynomial of β over F, and show that $x^3 u$ is not separable.

Proof. Here k is a field of characteristic 3.

Let F = k(t, u), where t, u are two variables, $f = (x^2 - t)(x^3 - u)$, and α, β in a splitting field L of f such that $\alpha^2 = t, \beta^3 = u$.

(a) The Exercise 4.2.9, applied to the field k(u), shows that $x^2 - t$ has no root in F = k(t, u) = k(u)(t), so it is irreducible over F. So $x^2 - t$ is the minimal polynomial of α over F.

In L, $x^2 - u = (x - \alpha)(x + \alpha)$, and $\alpha \neq -\alpha$, otherwise $2\alpha = 0$, with $2 = -1 \neq 0$ in k, and $\alpha \neq 0$ since $\alpha^2 = t \neq 0$.

Thus the minimal polynomial $x^2-u\in F[x]$ of α over F is separable, so α is separable.

(b) Similarly, $x^3 - u$ has no root in F = k(t, u) = k(t)(u), and its degree is 3, thus it is irreducible over F: $x^3 - u$ is the minimal polynomial of β over F.

As the characteristic is 3, $x^3 - u = (x - \beta)^3$, so this polynomial is not separable : β is not separable.

So $F \subset L$ is not a separable extension, and is not a purely inseparable extension. \square

Ex. 5.3.9 Let F be a field of characteristic p, and consider $f = x^p - a \in F[x]$. We will assume that f has no roots in F, so that f is irreducible by Proposition 4.2.6. Let α be a root of f in some extension of F.

- (a) Argue as in Example 5.3.11 that $F(\alpha)$ is the splitting field of f and that $[F(\alpha):F]=p$.
- (b) Let $\beta \in F(\alpha) \setminus F$. Use Lemma 5.3.10 to show that $\beta^p \in F$.
- (c) Use parts (a) and (b) to show that the minimal polynomial of β over F is $x^p \beta^p$.
- (d) Conclude that $F \subset F(\alpha)$ is purely inseparable.
- *Proof.* (a) As the characteristic is p, $f = x^p a = (x \alpha)^p$ has only one root α . The splitting field of f over F is so $F(\alpha)$, and f being the minimal polynomial of α over F, $[F(\alpha):F] = \deg(f) = p$.
 - (b) Let $\beta \in F(\alpha) \setminus F$. As α is algebraic over F, $F(\alpha) = F[\alpha]$: there exists so a polynomial $p = \sum_{i=0}^d a_i x^i \in F[x]$ such that

$$\beta = p(\alpha) = \sum_{i=0}^{d} a_i \alpha^i.$$

Then (by Lemma 5.3.10),

$$\beta^p = \sum_{i=0}^d a_i^p \alpha^{ip} = \sum_{i=0}^d a_i^p a^i \in F.$$

- (c) Write $b = \beta^p \in F$. Then β is a root of $x^p b \in F[x]$. As $x^p - b = (x - \beta)^p$, with $\beta \notin F$, $x^p - b$ has no root in F: by Proposition 4.2.6 $x^p - b$ is irreducible over F. Thus $x^p - b = x^p - \beta^p$ is so the minimal polynomial of β over F.
- (d) Every element $\beta \in F(\alpha) \setminus F$ has so a inseparable minimal polynomial, thus every $\beta \in F(\alpha) \setminus F$ is inseparable. By definition, the extension $F \subset F(\alpha)$ is purely inseparable.

Ex. 5.3.10 Suppose that F has characteristic p and $F \subset L$ is a finite extension.

- (a) Use Proposition 5.3.16 to prove that $F \subset L$ is purely inseparable if and only if the minimal polynomial of every $\alpha \in L$ is of the form $x^{p^e} a$ for some $e \geq 0$ and $a \in F$.
- (b) Now suppose that $F \subset L$ is purely inseparable. Prove that [L:F] is a power of p. Proof. Suppose that F has characteristic p and $F \subset L$ is a finite extension.
 - (a) Suppose that the extension F ⊂ L is purely inseparable. Let α any element in L. α is algebraic over F since [L:F] < ∞.
 If α ∈ F, the minimal polynomial of α over F is x − α = x^{p0} − a, where a = α ∈ F.
 Suppose now that α ∉ F. By definition of a purely inseparable extension, the minimal polynomial f of α over F is not separable.

By Proposition 5.3.16 (see Ex. 7),

$$f = g(x^{p^e}), \ g \in F[x], e \ge 1,$$

where g is a separable irreducible polynomial.

If $\deg(g) > 1$, then g has the root $\beta = \alpha^{p^e} \in L$, and $\beta \notin F$, otherwise g would be divisible by $x - \beta$ and would so be reducible over F. As g is irreducible, the minimal polynomial of β over F is g, which is separable. Thus β is separable, and $\beta \notin F$, in contradiction with the hypothesis " $F \subset L$ is purely inseparable". Hence $\deg(g) = 1$. As f is monic, g is also monic, thus g = x - a, $g \in F$, and $g \in F$.

So the minimal polynomial over F of every $\alpha \in L$ is of the form $x^{p^e} - a, \ a \in F, e \ge 0$.

• Conversely, suppose that the minimal polynomial over F of every $\alpha \in L$ is of the form $f = x^{p^e} - a, a \in F, e \ge 0$.

If $\alpha \in L \setminus F$, then $e \ge 1$, otherwise $\alpha = a \in F$.

Consequently, $f' = p^e x^{p^e - 1} = 0$, since $p \mid p^e, e \ge 1$. So $f \land f' = f \ne 1$, thus f is not separable. No element of $L \setminus F$ is separable, so the extension $F \subset L$ is purely inseparable.

Conclusion: $F \subset L$ is purely inseparable if and only if the minimal polynomial of every $\alpha \in L$ is of the form $x^{p^e} - a$ for some $e \geq 0$ and $a \in F$.

(b) **Lemma.** If $F \subset L$ is a finite purely inseparable extension, and if $F \subset K \subset L$, then $K \subset L$ is purely inseparable.

Proof (of Lemma). Let $\beta \in L \setminus K$, and $f \in F[x]$ the minimal polynomial of β over F, and $f_K \in K[x]$ the minimal polynomial of β over K. As $f \in F[x] \subset K[x]$ and $f(\beta) = 0$, f_K divides f.

By part (a), f is of the form $f = x^{p^e} - a, a \in F, e \ge 1$. As $f = x^{p^e} - a = x^{p^e} - \beta^{p^e} = (x - \beta)^{p^e}, x - \beta$ is the only monic irreducible factor of f. Since $f_K \mid f$, $f_K = (x - \beta)^k, k \ge 1$. As $\beta \notin K, k \ge 2$, thus β is not separable over K, and this is true for every $\beta \in L \setminus K$, so $K \subset L$ is a purely inseparable extension. \square .

Suppose now that $F \subset L$ is a purely inseparable extension. As $F \subset L$ is finite, there exists $\alpha_1, \ldots, \alpha_n \in L$ such that $L = F(\alpha_1, \ldots, \alpha_n)$. Let $F_0 = F$ and $F_i = F(\alpha_1, \ldots, \alpha_i)$, $1 \le i \le n$

Reasoning by induction, suppose that $[F_i : F]$ is a power of p. This is true for i = 0 since $[F_0 : F] = [F : F] = 1 = p^0$.

By the preceding Lemma, L is purely inseparable over F_i . By part (a) applied to F_i , we know that the minimal polynomial f_{i+1} of α_{i+1} over F_i is of the form $f = x^{p^e} - a, a \in F_i, e \geq 0$. Thus $[F_{i+1} : F_i] = [F_i(\alpha_{i+1}) : F_i] = \deg(f_{i+1}) = p^e$. Consequently, $[F_{i+1} : F] = [F_{i+1} : F_i][F_i : F]$ is a power of p, which conclude the induction.

Finally, $[L:F] = [F(\alpha_1, \dots, \alpha_n):F]$ is a power of p.

Ex. 5.3.11 Let $f \in F[x]$ be nonconstant. We say that f is squarefree if f is not divisible by the square of a non constant polynomial in F[x].

- (a) Prove that f is squarefree if and only if f is a product of irreducible polynomials, no two of which are multiples of each other.
- (b) Assume that F has characteristic 0. Prove that f is separable if and only if f is squarefree.

Proof. (a) Suppose that f is squarefree.

Let $f = f_1 \cdots f_r$ a decomposition of f in irreducible factors in k[x].

If two irreducible factors $f_i, f_j, i \neq j$ in this decomposition are associate (i.e. $f_i \mid f_j, f_j \mid f_i$), then $f_j = \lambda f_i, \lambda \in F^*$. Then f_i^2 divides $f_i f_j$ which divides f, and f is not squarefree.

Conversely, suppose that f is not squarefree. Then f is divisible by a square factor g^2 , where g is a nonconstant polynomial. Let f_1 an irreducible factor of g. The unicity of the decomposition in irreducible factors shows that any decomposition in irreducible factors contains two factors g_1, g_2 associate to f_1 , so $g_1 \mid g_2, g_2 \mid g_1$.

Conclusion: f is squarefree if and only if f is product of irreducible factors, no two of which are associate.

(b) Assume that F has characteristic 0.

Proposition 5.3.7(c) shows that f is separable if and only if f is product of irreducible factors, no two of which are associate.

By part (a), this is equivalent to f is squarefree.

Note: this equivalence remains true in a finite field.

Counterexample in $F = \mathbb{F}_3(t)$: the polynomial $f = x^3 - t \in \mathbb{F}_3(t)[x]$ is irreducible over F, so is squarefree, but if α is a root of f in a splitting field L, $x^3 - t = x - \alpha^3 = (x - \alpha)^3$ is not separable. This is due to the fact that "squarefree" is a notion which depends of the field: f is squarefree over F, not over L.

Ex. 5.3.12 Prove that $f \in F[x]$ is separable if and only if f is nonconstant and f and f' have no common roots in any extension of F.

Proof. By Proposition 5.3.2(c), $f \in F[x]$ is separable if and only if f is nonconstant and $f \wedge f' = 1$.

If f, f' have a common root α in an extension L of F, then $x - \alpha$ divides f dans L[x], and also f', so divides their gcd in L[x], and so $gcd(f, f') \neq 1$ (we know that the gcd is the same in F[x] and in L[x]).

We have proved that if $f \wedge f' = 1$, then f, f' have no common root in any extension of F.

Conversely, if $f \wedge f' \neq 1$, then f, f' have a common nonconstant factor $g \in F[x]$. Let L an extension of F such that g has a root $\alpha \in F$. Then $\alpha \in L$ is a root of f and f'.

Conclusion: $f \in F[x]$ is separable if and only if f is nonconstant and f and f' have no common roots in any extension of F.

Ex. 5.3.13 Let F have characteristic p, and let $F \subset L$ be a finite extension with $p \nmid [L:F]$. Prove that $F \subset L$ is separable.

Proof. Let $\alpha \in L$, and f its minimal polynomial over F. Then $F \subset F(\alpha) \subset L$, thus $[F(\alpha):F]=\deg(f)$ divides [L:F]. Consequently $p \nmid \deg(f)$. By Lemma 5.3.6, this implies that f is separable. Hence every $\alpha \in L$ is separable over F. The extension $F \subset L$ is so separable.

Ex. 5.3.14 Let $F \subset K \subset L$ be field extensions, and assume that L is separable over F. Prove that $F \subset K$ and $K \subset L$ are separable extensions.

Proof. By hypothesis, $F \subset K \subset L$, and L is separable over F.

- Every element of L is separable over F. A fortiori every element of K is separable over F, thus $F \subset K$ is separable.
- Let α any element of L. As α is separable over F, the minimal polynomial $f \in F[x]$ of α over F is separable, thus f has only simple roots in a splitting field R of f over L. The minimal polynomial f_K of α over K divides f (since $f(\alpha) = 0$ and $f \in F[x] \subset K[x]$). As $f_K \mid f$, the order of multiplicity of a root of f_K is at most the order of multiplicity of this root in f, thus all the roots of f_K in the splitting field R are simple, thus α is separable over K. Therefore the extension $K \subset L$ is separable.

Ex. 5.3.15 Let f be the polynomial considered in Example 5.3.9. Use Maple or Mathematica to factor f and to verify that the product of the distinct irreducible factors of f is the polynomial given in (5.10).

Proof. Sage instructions:

$$f = x^11-x^10+2*x^8-4*x^7+3*x^5-3*x^4+x^3+3*x^2-x-1; f$$

$$x^{11} - x^{10} + 2x^8 - 4x^7 + 3x^5 - 3x^4 + x^3 + 3x^2 - x - 1$$

f1 = f.derivative(); f1

$$11x^{10} - 10x^9 + 16x^7 - 28x^6 + 15x^4 - 12x^3 + 3x^2 + 6x - 1$$

d = gcd(f,f1); d

$$x^6 - x^5 + x^3 - 2x^2 + 1$$

p = (f/d).simplify_rational(); p

$$x^5 + x^2 - x - 1$$

v = p.factor(); v

$$(x^3 + x + 1)(x + 1)(x - 1)$$

w = d.factor(); w

$$(x^3 + x + 1)(x + 1)(x - 1)^2$$

s = f.factor(); s

$$(x^3 + x + 1)^2 (x + 1)^2 (x - 1)^3$$

s.expand()

$$x^{11} - x^{10} + 2x^8 - 4x^7 + 3x^5 - 3x^4 + x^3 + 3x^2 - x - 1$$

Ex. 5.3.16 Let F have characteristic p and consider $f = x^p - x + a \in F[x]$.

- (a) Show that f is separable.
- (b) Let α be a root of f in some extension of F. Show that $\alpha + 1$ is also a root.
- (c) Use part (b) to show that f splits completely over $F(\alpha)$.
- (d) Use part (a) of Theorem 5.3.15 to show that $F \subset F(\alpha)$ is separable and normal.

Proof. Let F have characteristic p and consider $f = x^p - x + a \in F[x]$.

- (a) f' = -1, thus $f \wedge f' = 1$, so f is separable.
- (b) Let α be a root of f in some extension L of F. Then $f(\alpha) = \alpha^p \alpha + a = 0$, thus

$$f(\alpha + 1) = (\alpha + 1)^{p} - (\alpha + 1) + a$$

= $\alpha^{p} + 1 - \alpha - 1 + a$
= 0.

 $\alpha + 1 \in L$ is also a root of f.

(c) So $\alpha, \alpha+1, \ldots, \alpha+p-1$ are roots of f. These roots are distinct since $0, 1, \ldots, p-1$ are the p distinct elements of the prime subfield of F, isomorphic to \mathbb{F}_p , and identified with \mathbb{F}_p .

Thus f is divisible by $(x - \alpha) \cdots (x - \alpha - p + 1)$, of degree $p = \deg(f)$. As both polynomials are monic,

$$f = (x - \alpha)(x - \alpha - 1) \cdots (x - \alpha - p + 1). \tag{5}$$

(d) \bullet $F(\alpha)$ contains F and thus contains also \mathbb{F}_p . So $F(\alpha)$ contains $\alpha, \alpha+1, \ldots, \alpha+p-1$, thus $F(\alpha) = F(\alpha, \alpha+1, \ldots, \alpha+p-1)$.

 $F(\alpha)$ is so the splitting field of f by (5). $F \subset F(\alpha)$ is a normal extension.

• The minimal polynomial g of α over F divides f, which has only simple roots, thus g has only simple roots. So α is separable over F. By Theorem 5.3.15(a), $F \subset F(\alpha)$ is a separable extension.

Ex. 5.3.17 Let β be a root of a polynomial f.

- (a) Assume that $f(x) = (x \beta)^m h(x)$ for some polynomial h(x), and let $f^{(m)}$ denote the mth derivative of f. Prove that $f^{(m)}(\beta) = m!h(\beta)$.
- (b) Assume that we are in characteristic 0. Prove that β has multiplicity m as a root of f if and only if $f(\beta) = f'(\beta) = \cdots = f^{(m-1)}(\beta) = 0$ and $f^{(m)}(\beta) \neq 0$.

(c) Assume that we are in characteristic p. How big does p need to be relative to m in order for the equivalence of part (b) to be still valid?

(a)

$$f(x) = (x - \beta)^m h(x)$$

$$f'(x) = m(x - \beta)^{m-1} h(x) + (x - \beta)^m H'(x)$$

$$= (x - \beta)^{m-1} [mh(x) + (x - \beta)h'(x)]$$

Thus $f'(x) = (x-\beta)^{m-1}h_1(x)$, where $h_1(x) = mh(x) + (x-\beta)h'(x)$, $h_1(\beta) = mh(\beta)$. By induction, suppose that there exists $h_k \in F[x]$, for k < m, such that

$$f^{(k)}(x) = (x - \beta)^{m-k} h_k(x)$$
 and $h_k(\beta) = \frac{m!}{(m-k)!} h(\beta)$.

Then

$$f^{(k+1)}(x) = (m-k)(x-\beta)^{m-k-1}h_k(x) + (x-\beta)^{m-k}h'_k(x)$$
$$= (x-\beta)^{m-k-1}[(m-k)h_k(x) + (x-\beta)h'_k(x)]$$
$$= (x-\beta)^{m-k-1}h_{k+1}(x)$$

where $h_{k+1}(x) = (m-k)h_k(x) + (x-\beta)h'_k(x)$, thus

$$h_{k+1}(\beta) = (m-k)h_k(\beta) = (m-k)\frac{m!}{(m-k)!}h(\beta) = \frac{m!}{(m-k-1)!}h(\beta),$$

and the induction is done. The property is so true up to rank k=m, so

$$f^{(m)}(x) = h_m(x), \qquad f^{(m)}(\beta) = h_m(\beta) = m!h(\beta).$$

Conclusion: if $f(x) = (x - \beta)^m h(x)$, then $f^{(m)}(\beta) = m! h(\beta)$.

(b) Let $f \in F[x]$, where the characteristic of F is 0. The multiplicity of β in f, written $\operatorname{ord}_f(\beta)$, is defined by

$$\operatorname{ord}_f(\beta) = m \iff (x - \beta)^m \mid f, \ (x - \beta)^{m+1} \nmid f.$$

• Suppose that $\operatorname{ord}_f(\beta) = m$. Then $f(x) = (x - \beta)^m h(x), h \in F[x]$, and $h(\beta) \neq 0$, otherwise $(x - \beta) \mid h$, and so $(x - \beta)^{m+1} \mid f$.

By part (a), for all integer $k, 0 \le k \le m-1$, $f^{(k)}(x) = (x-\beta)^{m-k} h_k(x)$, $h_k \in F[x]$, thus $f(\beta) = f'(\beta) = \cdots = f^{(m-1)}(\beta) = 0$.

Moreover, $f^{(m)}(\beta) = m!h(\beta) \neq 0$, since $h(\beta) \neq 0$, and since the characteristic is 0, so $m! \neq 0$ in F.

We have proved $f(\beta) = f'(\beta) = \dots = f^{(m-1)}(\beta) = 0, f^{(m)}(\beta) \neq 0.$

• Conversely, suppose that

$$f(\beta) = f'(\beta) = \dots = f^{(m-1)}(\beta) = 0, f^{(m)}(\beta) \neq 0.$$

As $f(\beta) = 0$, $x - \beta$ divides f. We take as induction hypothesis, for k < m, that $(x - \beta)^k \mid f(x)$.

Then $f(x) = (x - \beta)^k h_k(x)$, and part (a) shows that $f^{(k)}(\beta) = k! h_k(\beta) = 0$, since k < m. As the characteristic of F is 0, $k! \neq 0$, thus $h_k(\beta) = 0$, therefore $(x - \beta) \mid h_k(x), \text{ so } (x - \beta)^{k+1} \mid f.$

This induction proves that $(x - \beta)^m \mid f(x)$.

Using again part (a), $f(x) = (x - \beta)^m h(x)$, gives $h(\beta) = \frac{f^{(m)}}{m!} \neq 0$, thus $(x - \beta) \nmid 1$ $h_k(x)$, so $(x-\beta)^{m+1} \nmid f(x)$. Consequently ord $f(\beta) = m$.

Conclusion: if the characteristic of f is 0,

$$\operatorname{ord}_f(\beta) = m \iff f(\beta) = f'(\beta) = \dots = f^{(m-1)}(\beta) = 0, f^{(m)}(\beta) \neq 0.$$

(c) If the characteristic of F is p, the preceding argumentation remains valid if $m! \neq 0$ in F. In this case, $k! \neq 0$ for all k = 0, 1, ..., m.

Moreover $m! \neq 0$ is equivalent to p > m.

So we can state:

if the characteristic of F is p, and if m < p,

$$\operatorname{ord}_{f}(\beta) = m \iff f(\beta) = f'(\beta) = \dots = f^{(m-1)}(\beta) = 0, f^{(m)}(\beta) \neq 0.$$

5.4 THEOREM OF THE PRIMITIVE ELEMENT

Use the hints given in the text to prove that (5.18) has coefficients in F.

Proof. s(x) is defined in (5.18) by

$$s(x) = \prod_{j=1}^{m} f(x - \lambda \gamma_j).$$

Let
$$g = \prod_{j=1}^{m} f(x - \lambda x_j) \in F[x_1, \dots, x_m][x].$$

Let $g = \prod_{j=1}^m f(x - \lambda x_j) \in F[x_1, \dots, x_m][x]$. If $u = u(x_1, \dots, x_m) \in F[x_1, \dots, x_m]$, and $\sigma \in S_m$, we define $\sigma \cdot u = u(x_{\sigma(1)}, \dots, x_{\sigma(m)})$.

If
$$v = u(x_1, \ldots, x_m, x) \in F[x_1, \ldots, x_m][x]$$
, where $v = \sum_{i=0}^d p_i x^i, p_i \in F[x_1, \ldots, x_m]$, we write $\sigma \cdot v = \sum_{i=0}^d (\sigma \cdot p_i) x^i$.

Then $\sigma \cdot (\tau \cdot v) = (\sigma \tau) \cdot v$, and $\sigma \cdot (vw) = (\sigma \cdot v)(\sigma \cdot w)$, for all $\sigma, \tau \in S_n, v, w \in S_n$ $F[x_1,\ldots,x_m][x].$

For every permutation $\sigma \in S_n$,

$$\sigma \cdot g = \sigma \cdot \prod_{j=1}^{m} f(x - \lambda x_j)$$

$$= \prod_{j=1}^{m} \sigma \cdot f(x - \lambda x_j)$$

$$= \prod_{j=1}^{m} f(x - \lambda x_{\sigma(j)})$$

$$= \prod_{j=1}^{m} f(x - \lambda x_j)$$

$$= a.$$

As $g = \sum_{i=0}^{d} p_i(x_1, \dots, x_m) x^i$ (d = lm), and $g = \sigma \cdot g = \sum_{i=0}^{d} \sigma \cdot p_i(x_1, \dots, x_m) x^i$, every coefficient $p_i(x_1, \dots, x_m) \in F[x_1, \dots, x_m]$ is a symmetric polynomial.

The evaluation homomorphism φ defined by $x_1 \mapsto \gamma_1, \dots, x_m \mapsto \gamma_m$, where $\gamma_1, \dots, \gamma_m$ are the roots of $g \in F[x]$ sends the coefficients of g on the coefficients of g. Corollary 2.2.5 show that $p_i(\gamma_1, \dots, \gamma_m) \in F$, $i = 0, \dots d$, thus

$$s(x) = \sum_{i=0}^{d} p_i(\gamma_1, \dots, \gamma_m) x^i \in F[x].$$

Ex. 5.4.2 Let F be a finite field, and let $F \subset L$ be a finite extension. We claim that there is $\alpha \in L$ such that $L = F(\alpha)$ and α is separable over F.

- (a) Show that L is a finite field.
- (b) The set $L^* = L \setminus \{0\}$ is a finite group under multiplication and hence is cyclic by Proposition A.5.3. Let $\alpha \in L^*$ be a generator. Prove that $L = F(\alpha)$.
- (c) Let m = |L| 1. Show that α^i is a root of $x^m 1$ for all $0 \le i \le m 1$, and conclude that

$$x^{m} - 1 = (x - 1)(x - \alpha)(x - \alpha^{2}) \cdots (x - \alpha^{m-1}).$$

(d) Use part (c) to show that α is separable over F.

Proof. Let F a finite field, and $F \subset L$ a finite extension.

- (a) As $n = [L : F] < \infty$, there exists a basis (l_1, \dots, l_n) of L over F, thus every element $\alpha \in L$ is of the form $\alpha = \gamma_1 l_1 + \dots + \gamma_n l_n$, with a unique $(\gamma_1, \dots, \gamma_n) \in F^n$. Therefore L is isomorphic to F^n as vector space, thus $|L| = |F|^n < \infty$. L is so a finite field.
- (b) L^* being the finite multiplicative group of a field is cyclic (Proposition A.5.3), with a generator $\alpha \in L$:

$$L^* = \{1, \alpha, \alpha^2, \cdots, \alpha^{m-1}\}.$$

Every γ in L^* is so of the form $\gamma = \alpha^k, k \in \mathbb{N}$, thus $L^* \subset F(\alpha)$, and $0 \in F[\alpha]$, so $L \subset F(\alpha)$. Moreover $F \subset L$, and $\alpha \in L$, thus $F(\alpha) \subset L$.

$$L = F(\alpha)$$
.

(c) As (L^*, \times) is a group of cardinality m = |L| - 1, Lagrange's Theorem shows that every $\gamma \in L^* = \{1, \alpha, \alpha^2, \cdots, \alpha^{m-1}\}$ satisfies $\gamma^m = 1$, and so is a root of $x^m - 1$. Since the order of α is m, $\alpha^i \neq \alpha^j$ if $0 \leq i < j \leq m-1$, thus the polynomial $p = (x-1)(x-\alpha)\cdots(x-\alpha^{m-1})$ divides $x^m - 1$. The degree of the quotient is 0, so this quotient is a constant $c \in F^*$. Since p and $x^m - 1$ are monic, c = 1.

$$x^{m} - 1 = (x - 1)(x - \alpha) \cdots (x - \alpha^{m-1}).$$

(d) The minimal polynomial f of α over F divides $x^m - 1$, which is separable by part (c). Thus f is also separable. Therefore α is separable, and $L = F(\alpha)$: the Theorem of the Primitive Element is proved in the case of a finite extension of a finite field.

Ex. 5.4.3 In the equation $\alpha = t_1\alpha_1 + \cdots + t_n\alpha_n$ in part (b) of Corollary 5.4.2, show that we can assume that $t_1, \dots, t_n \in \mathbb{Z}$.

Proof. Here we suppose that F has characteristic 0. So F has \mathbb{Q} as subfield, and \mathbb{Z} as subring.

As \mathbb{Z} is infinite, we can find in \mathbb{Z} an integer λ which satisfies (5.16):

$$\beta_r + \lambda \gamma_s \neq \beta_i + \lambda \gamma_i \text{ pour } (r, s) \neq (i, j).$$

The remainder of of the proof is unchanged, and at each step of the induction, we choose such a $\lambda \in \mathbb{Z}$, so the primitive element $\alpha = t_1 \alpha_1 + \cdots + t_n \alpha_n$ satisfies $t_i \in \mathbb{Z}$. \square

Ex. 5.4.4 In the extension $F \subset L$ of example 5.4.4, we have F = k(t, u), where k has characteristic p and L is the splitting field of $(x^p - t)(x^p - u) \in F[x]$. We also have $\alpha, \beta \in L$ satisfying $\alpha^p = y, \beta^p = u$. Prove the following properties of $F \subset L$:

- (a) $L = F(\alpha, \beta)$ and $[L : F] = p^2$.
- (b) $[F(\gamma):F] = p \text{ for all } \gamma \in L \setminus F.$
- (c) $F \subset L$ is purely inseparable.

Proof. (a) As $\alpha, \beta \in L$, and as $F \subset L$, $F(\alpha, \beta) \subset L$.

Since F has characteristic p, $f = (x^p - t)(x^p - u) = (x - \alpha)^p(x - \beta)^p$ has only the roots α, β . The splitting field of f over F is so $F(\alpha, \beta)$.

$$L = F(\alpha, \beta).$$

The polynomial $x^p - u$ has no root in $k(t, u, \alpha) = F(\alpha)$ by Exercise 4.2.9. applied to the field $k(t, \alpha)$. Moreover, p is prime, so Proposition 4.2.6 shows that $h = x^p - u$ is irreducible over $F(\alpha)$. Therefore h is the minimal polynomial of β sur $F(\alpha)$. Consequently,

$$[L:F(\alpha)] = [F(\alpha,\beta):F(\alpha)] = \deg(x^p - u) = p.$$

With the same argument, $x^p - t$ has no root in F(t) and is irreducible. $x^p - t$ is the minimal polynomial of α over F, thus $[F(\alpha):F] = p$.

Finally

$$[L:F] = [L:F(\alpha)][F(\alpha):F] = p^2.$$

(b) Let $\gamma \in L \setminus F$.

We have proved in Example 5.3.4 that the extension $F \subset L$ has no primitive element, thus $F(\gamma) \neq L$:

$$F \subseteq F(\gamma) \subseteq L$$
.

So $d = [F(\gamma) : F]$ divides $p^2 = [L : F]$. Moreover $d \neq 1$, otherwise $F(\gamma) = F, \gamma \in F$, and $d \neq p^2$, otherwise $F(\gamma) = L$, thus

$$[F(\gamma):F]=p$$

.

(c) By part (b), the minimal polynomial g of γ over F has degree p. Moreover $b = \gamma^p \in F$ by Example 5.4.4, so γ is a root of $x^p - b \in F[x]$. Thus $g \mid x^p - b$. As $\deg(g) = \deg(x^p - b)$, and as g and $x^p - b$ are monic, $x^p - b = g$ is the minimal polynomial of γ over F. Since $g = (x - \gamma)^p$, this polynomial is not separable. Consequently every $\gamma \in L \setminus F$ is inseparable, so the extension $F \subset L$ is purely inseparable.

Ex. 5.4.5 Let $F \subset L = F(\alpha, \beta)$ be as in Exercise 4, and consider the intermediate fields $F \subset F(\alpha + \lambda \beta) \subset L$ as λ varies over all elements of F. Suppose that $\lambda \neq \mu$ are two elements of F such that $F(\alpha + \lambda \beta) = F(\alpha + \mu \beta)$.

- (a) Show that $\alpha, \beta \in F(\alpha + \lambda \beta)$.
- (b) Conclude that $F(\alpha + \lambda \beta) = F(\alpha, \beta)$, and explain why this contradicts Example 5.4.4.

It follow that the fields $F(\alpha + \lambda \beta)$, $\lambda \in F$, are all distinct. Since F is infinite, we see that there are infinitely many fields between F and L.

Proof. As in Exercise 4, $F \subset L = F(\alpha, \beta)$. Suppose that $F(\alpha + \lambda \beta) = F(\alpha + \mu \beta), \ \lambda \neq \mu$.

(a) Then

$$\alpha + \mu\beta \in F(\alpha + \lambda\beta),$$

 $\alpha + \lambda\beta \in F(\alpha + \lambda\beta).$

Consequently their difference is also in the subfield $F(\alpha + \lambda \beta)$:

$$(\mu - \lambda)\beta \in F(\alpha + \lambda\beta).$$

As $\mu - \lambda \in F, \mu - \lambda \neq 0$,

$$\beta \in F(\alpha + \lambda \beta).$$

Since $\alpha = (\alpha + \lambda \beta) - \lambda \beta$, with $\alpha + \lambda \beta, \beta \in F(\alpha + \lambda \beta)$, and $\lambda \in F$, then

$$\alpha \in F(\alpha + \lambda \beta).$$

(b) $\alpha + \lambda \beta \in F(\alpha, \beta)$, thus $F(\alpha + \lambda \beta) \subset F(\alpha, \beta)$. Moreover, by part (a), $\alpha, \beta \in F(\alpha + \lambda \beta)$, thus $F(\alpha, \beta) \subset F(\alpha + \lambda \beta)$.

$$F(\alpha, \beta) = F(\alpha + \lambda \beta).$$

But Example 5.4.4 shows that $F(\alpha, \beta)$ has no primitive element : this is a contradiction.

This reductio ad absurdum shows that all the fields $F(\alpha + \lambda \beta)$, where λ varies over all elements of F, are distinct. F being infinite, there exists infinitely many intermediate fields between F and L.

Ex. 5.4.6 Explain why the proof of Theorem 5.4.1 implies that $F(\beta + \lambda \gamma) = F(\beta, \gamma)$ when γ is separable over F, β is algebraic over F, and λ satisfies (5.17).

Proof. The proof of $F(\alpha, \beta) = F(\alpha + \lambda \beta)$ uses only 5.17 (5.16 is used only to prove the separability of $\alpha + \lambda \beta$). The separability of γ (thus of g) is used only to prove that another root of h, which is also a root of g, is one of the $\gamma_j, j \geq 2$. The separability of β is not used, only the algebraic nature of β, γ , to define their minimal polynomials. \square

Ex. 5.4.7 Let $F \subset L = F(\alpha_1, \dots, \alpha_n)$ be a finite extension, and suppose that $\alpha_1, \dots, \alpha_{n-1}$ are separable over F. Prove that $F \subset L$ has a primitive element.

Proof. Let a finite extension $F \subset L = F(\alpha_1, \dots, \alpha_n)$, where $\alpha_1, \dots, \alpha_{n-1}$ are separable over F (but not α_n). The Primitive Element Theorem (5.4.1) shows that $F(\alpha_1, \dots, \alpha_{n-1})$ has a primitive element β separable over F.

The extension $F \subset L = F(\beta, \alpha_n)$ is such that β is algebraic separable over F, and α_n algebraic over F.

If F is infinite, by Exercise 6 this is sufficient to prove the existence of a primitive element of $F \subset L$ (but perhaps not separable).

If F is a finite field, then L also, and it has a primitive element by Exercise 2(b). \Box

Ex. 5.4.8 Use Exercise 7 to find an explicit primitive element for $F = k(t, u) \subset L$, where k has characteristic 3 and L is the splitting field of $(x^2 - t)(x^3 - u)$. Note that this extension is not separable, by Exercise 8 of Section 5.3.

Proof. Here $F = k(t, u) \subset L$, where the characteristic of k is 3, L is the splitting field of $(x^2 - t)(x^3 - u)$, and $\alpha, \beta \in L$ are such that $\alpha^2 = t, \beta^3 = u$.

 α is separable, but not β (cf Exercise 5.3.8).

We know (by Exercice 5.3.8) that

$$f(x) = x^3 - u,$$

$$g(x) = x^2 - t,$$

are the respective minimal polynomials of β and α over F.

The two polynomials

$$g(x) = x^2 - t \in F[x] \subset F(\alpha + \beta)[x]$$
$$f(\alpha + \beta - x) = -x^3 + (\alpha + \beta)^3 - u \in F(\alpha + \beta)[x]$$

vanish at α , since $g(\alpha) = 0$, $f(\beta) = 0$, and they are both in $F(\alpha + \beta)[x]$.

Thus $x - \alpha \mid h(x) = \gcd(g(x), f(\alpha + \beta - x))$.

 $1 \le \deg(h) \le 2$. If $\deg(h) = 2$, as $h \mid g$, we would have $h = g = (x - \alpha)(x + \alpha)$, and then $x + \alpha \mid h \mid f(\alpha + \beta - x)$.

As $f(x) = (x - \beta)^3$, then $f(\alpha + \beta - x) = -(x - \alpha)^3$, which is not divisible by $x + \alpha$, since $-\alpha \neq \alpha$.

Therefore deg(h) = 1, and $h(x) = pgcd(g(x), f(\alpha + \beta - x)) = x - \alpha$.

Thus there exists a Bézout's relation

$$A(x)q(x) + B(x)f(\alpha + \beta - x) = x - \alpha, A, B \in F(\alpha + \beta)[x].$$

This proves that $\alpha \in F(\alpha + \beta)$, thus also $\beta = (\alpha + \beta) - \alpha \in F(\alpha + \beta)$, which implies that $L = F(\alpha, \beta) = F(\alpha + \beta)$: $\alpha + \beta$ is a primitive element of L/F.

We compute explicitly the gcd of the polynomials $f(\alpha + \beta - x), g(x)$: The first Euclidean division of $f(\alpha + \beta - x)$ by g(x) gives

$$-x^{3} + (\alpha + \beta)^{3} - u + x(x^{2} - t) = -tx + (\alpha + \beta)^{3} - u$$
$$= -t\left(x - \frac{(\alpha + \beta)^{3} - u}{t}\right).$$

We must then have

$$\alpha = \frac{(\alpha + \beta)^3 - u}{t} \in F(\alpha + \beta).$$

We compute a direct proof of this equality:

$$\frac{(\alpha+\beta)^3-u}{t}=\frac{\alpha^3+\beta^3-u}{t}=\frac{\alpha^3}{t}=\frac{\alpha^3}{\alpha^2}=\alpha.$$

This equality proves also that $\alpha + \beta$ is a primitive element of $F \subset L$