

Introduction to Computer Vision and **Pattern Recognition**

For AIDA eLearning Presentation

PROF. CHANG-WEN CHEN **Spring 2022**

Visual Signal Processing in Human Brain

What is Computer Vision?

- Automatically identifying objects in images or video
- Extracting latent information from visual data
- Technology that interprets light stimuli
- Computers seeing/learning things that the programmers who made them didn't tell them
- Mimicking human perception of sight with computational algorithms
- Train computers to understand the visual world
- The study of understanding the world through visual perception

Computer Vision: A Simulation of Eyes?

- Converting images to more understandable things like distance, edges, directions etc.
- Computers getting information out of images/video
- Giving the computer "eyes" to see and identify as humans would
- Teaching computer to interpret and understand our world through images

Brief History of Computer Vision

Digital image processing

Blocks world, line labeling Generalized cylinders

Pattern recognition

Stereo correspondence Intrinsic images

Optical flow

Structure from motion

Image pyramids

Shape from shading, texture, and focus
Physically-based modeling
Regularization

Markov random fields

Kalman filters
3D range data processing

Projective invariants

Factorization

Physics-based vision

1970

1980

1990

Graph cuts Particle filtering

Energy-based segmentation

Face recognition and detection

Image-based modeling and rendering
Texture synthesis and inpainting

Computational photography

Feature-based recognition Category recognition

Machine learning

Modeling and tracking humans Semantic segmentation SLAM and VIO

Deep learning

Vision and language

2000

. .

2010

2020

Every Picture Tells a Story

- Goal of computer vision is to write computer programs that can interpret images
 - What is it about?
 - What are in the picture?
 - Where are they ?
 - What are the relationships ?
 - What are their spatial dependency?
 - What are the relationships between the object and the scene?

What Do Computers See?

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110	67	31	34	152	213	206	208	221
243	242	123	58	94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	19 6	114	74	208	213	214
232	217	131	116	77	150	69	56	52	201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138	65	63	234	249	241	245
237	236	247	143	59	78	10	94	255	248	247	251
234	237	245	193	55	33	115	144	213	255	253	251
248	245	16 1	128	149	109	138	65	47	156	239	255
190	107	39	102	94	73	114	58	17	7	51	137
23	32	33	148	168	203	179	43	27	17	12	8
17	26	12	160	255	255	109	22	26	19	35	24

Can Computers Match or Beat Human Vision?

Yes but mostly no!

- Humans are much better at "hard" things
- Computers can be better at "easy" things

Human Perception Shortcomings

Sinha and Poggio, Nature, 1996

Visual Illusions

CURRENT STATE OF THE ART

EXAMPLES OF WHAT CURRENT COMPUTER VISION SYSTEMS
CAN DO

3D Maps

Apple Maps

2D Maps

Google Maps

Computational Photography

Portrait mode – Simulating wider aperture

Even Wider Aperture...

How scientists captured the first image of a black hole, 2019

3D Photos

3D Photos on Facebook: Estimate depth from photo to create animation

https://ai.facebook.com/blog/-powered-by-ai-turning-any-2d-photo-into-3d-using-convolutionalneural-nets/

Face Recognition

Who is she?

Vision-based Biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Object Recognition

Google Lens

Download

Special Effects: Shape Capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Sports Applications

Sportvision first down line Nice explanation on www.howstuffworks.com

Application in Games

Microsoft's XBox Kinect

Virtual Reality

Oculus Quest, Beat Saber

Augmented Reality

Microsoft Hololens 2

Sensors in HoloLens2

Augmented Reality

Advanced Robotics

NASA's Mars Curiosity Rover (self portrait) https://en.wikipedia.org/wiki/Curiosity (rover)

Smart Cars

Mobileye

Vision systems currently in high-end BMW, GM, Volvo models
 Slide content courtesy of Amnon Shashua

Applications in Drones

Computer Vision vs Pattern Recognition

Computer Vision	Pattern Recognition
It is the study of how machines can be trained to extract meaningful information from images.	It is used to identify patterns and regularities in data for classification purposes.
It works on the visual data, such as digital images or videos.	The data inputs can be images, texts, videos, or audio files.
The purpose is to train a computer or machine to understand recognizable features in an image.	It is used to extract useful information from given samples, such as speech, images or text.
Applications include automated checkout, driverless car testing, medical diagnostics, crops and livestock monitoring, defect detection, etc.	Applications include computer-aided diagnosis, bioinformatics, data compression, image analysis, signal processing, and so on. DB Difference Between.net

Summary – Take Home Message

- Computer Vision and Pattern Recognition is an active area that has generated tremendous impact in almost every aspect of personal and social life
 - This is a great subject for almost all majors at PolyU
- You just saw examples of current computer vision and pattern recognition systems
 - Many of these are less than 5 years old
- This field is rapidly changing and will continue to impact the society at various scales
 - ◆ Many new applications are expected in the next 5-10 years

THANK YOU!