Zadanie nr 3 - Splot, filtracja i korelacja sygnałów

Cyfrowe Przetwarzanie Sygnałów

Paweł Purgat, 203975

Bartłomiej Ciach, 203860

11.05.2018

1 Cel zadania

Celem ćwiczenia było zapoznanie się oraz prezentacja operacji splotu, filtracji i korelacji sygnałów. Na podstawie korelacji został zasymulowany korelacyjny czujnik odległości.

2 Wstęp teoretyczny

W zadaniu zostały zaimplementowane operacje splotu, korelacji oraz filtracji sygnału. Wszystkie potrzebne wzory zostały zaczerpnięte z instrukcji do zadania[1]. Na podstawie tejże instrukcji został również zasymulowany korelacyjny czujnik odległości.

3 Eksperymenty i wyniki

W celu ilustracji wykonania zadania został wykonany szereg eksperymentów.

3.1 Eksperyment nr 1

Filtracja sygnału filtrem dolnoprzepustowym.

3.1.1 Założenia

Sygnał złożony z dwóch sygnałów o różnych częstotliwościach po filtracji filtrem dolnoprzepustowym powinien posiadać jedynie składowe o częstotliwości mniejszej od częstotliwości odcięcia filtru.

3.1.2 Przebieg

Wygenerowany został sygnał złożony z dwóch sygnałów sinusoidalnych o częstotliwościach 440 Hz i 3 kHz. Następnie sygnał został poddany operacji filtracji filtrem dolnoprzepustowym o częstotliwości odcięcia 500 Hz przy użyciu dwóch funkcji okien: okna prostokątnego oraz okna Hanninga.

3.1.3 Rezultat

Na rysunkach 1 i 2 przedstawione zostały wyniki filtracji filtrem dolnoprzepustowym przy zastosowaniu różnych funkcji okien. Kolorem niebieskim zaznaczony został sygnał oryginalny, a kolorem czerwonym sygnał odfiltrowany.

Rysunek 1: Filtr dolnoprzepustowy, okno prostokątne, rząd filtru: 45.

Rysunek 2: Filtr dolnoprzepustowy, okno Hanninga, rząd filtru: 20.

3.1.4 Spostrzeżenia

• Dla niskich wartości rzędu filtru sygnał odfiltrowany zawiera ślady składowych odfiltrowanych.

- Na krańcach okresu trwania sygnału odfiltrowanego można zauważyć zniekształcenia. Są one tym większe, im większy jest rząd filtru.
- Wspomniane zniekształcenia, zmniejszając okres trwania sygnału, zmieniają nieznacznie częstotliwość sygnału, przez co w zależności od odległości od środkowej próbki sygnał odfiltrowany nie pokrywa się z oryginalnym.
- Aby wyeliminować wpływ zniekształceń na odfiltrowany sygnał, można "obcinać" próbki zniekształcone, co "rozciągnęłoby" sygnał, przez co pokrywałby się ze składową sygnału oryginalnego.
- Zastosowanie okna Hanninga pozwala na zastosowanie niższego rzędu filtru przy zachowaniu efektywności filtru, tym samym minimalizując zniekształcenia, co prowadzi do otrzymania sygnału lepiej odwzorowującego oryginał.

3.2 Eksperyment nr 2

Filtracja sygnału filtrem górnoprzepustowym.

3.2.1 Założenia

Sygnał złożony z dwóch sygnałów o różnych częstotliwościach po filtracji filtrem górnoprzepustowym powinien posiadać jedynie składowe o częstotliwości większej od częstotliwości odcięcia filtru.

3.2.2 Przebieg

Wygenerowany został sygnał złożony z dwóch sygnałów sinusoidalnych o częstotliwościach 440 Hz i 3 kHz. Następnie sygnał został poddany operacji filtracji filtrem górnoprzepustowym o częstotliwości odcięcia 2 kHz przy użyciu dwóch funkcji okien: okna prostokątnego oraz okna Hanninga.

3.2.3 Rezultat

Rysunek 3: Filtr górnoprzepustowy, okno prostokątne, rząd filtru: 27.

Na rysunkach 3 i 4 przedstawione zostały wyniki filtracji filtrem górnoprzepustowym przy zastosowaniu różnych funkcji okien. Kolorem niebieskim zaznaczony został sygnał oryginalny, a kolorem czerwonym sygnał odfiltrowany.

Rysunek 4: Filtr górnoprzepustowy, okno Hanninga, rząd filtru: 5.

3.2.4 Spostrzeżenia

- W przypadku filtru górnoprzepustowego, rząd filtru ma ogromny wpływ na efektywność filtru.
- W przeciwieństwie do filtru dolnoprzepustowego, zależność nie jest liniowa dla dwóch sąsiednich wartości rzędu filtru sygnał wynikowy jest skrajnie różny, dobór odpowiedniego współczynnika odbywał się metodą prób i błędów.
- Powstawanie zniekształceń przebiega identycznie, jak w przypadku filtru dolnoprzepustowego.
- Zastosowanie okna Hanninga pozwala na zastosowanie niższego rzędu filtru, a co za tym idzie minimalizację zniekształceń.

3.3 Eksperyment nr 3

Eksperyment nr 3 polegał na zasymulowaniu i demonstracji działania korelacyjnego czujnika odległości.

3.3.1 Założenia

W tej części ćwiczenia należało zasymulować fizyczny obiekt poruszający się z określoną prędkością. W stronę obiektu wysyłany jest określony sygnał, który odbiwszy się od wspomnianego obiektu, wraca do czujnika i tam jest odczytywany. Na podstawie korelacji obu sygnałów liczone jest ich przesunięcie względem siebiei na jego podstawie obliczana odległość obiektu od czujnika.

3.3.2 Przebieg

Symulowany obiekt zaczyna swoją podróż z miejsca, w którym znajduje się czujnik (jego odległość od czujnika wynosi 0). Co określony czas, obiekt oddala się od czujnika o odległość zależną od swojej prędkości, jednocześnie próbkowane są sygnał wysłany oraz sygnał odbity. Następnie liczona jest korelacja tych dwóch sygnałów. Odległość obiektu od czujnika jest wyliczana w następujący sposób: wyznaczany jest numer maksymalnej próbki z lewej połowy wykresu korelacji oraz obliczana jest jego odległość od środkowej próbki, następnie mnożymy tę odległość przez okres próbkowania (otrzymując przesunięcie obu wykresów względem siebie w czasie), następnie mnożymy przez prędkość rozchodzenia się sygnału w ośrodku (aby otrzymać całkowitą drogę przebytą przez sygnał). Z racji tego, że sygnał, odbijając się od obiektu, pokonuje dwa razy większą drogę, gdyż musi wrócić do czujnika, otrzymaną drogę musimy podzielić na dwa, otrzymując odległość obiektu od czujnika.

3.3.3 Rezultat

Czujnik odległości raportuje faktyczną odległość obiektu od czujnika z określoną dokładnością. Dokładność ta jest zależna od prędkości rozchodzenia się sygnału w danym ośrodku oraz częstotliwości próbkowania. Jest ona równa drodze, jaką sygnał przebędzie w czasie okresu próbkowania podzielonej przez 2 (z racji tego, że droga przebyta przez sygnał jest dwukrotnością odległości obiektu).

3.3.4 Spostrzeżenia

- Wzór opisujący korelację w instrukcji do zadania[1] zawiera błąd.
- Czujnik korelacyjny mierzy odległość z określoną dokładnością zależną od prędkości sygnału w ośrodku i częstotliwości próbkowania.
- Jeżeli dobierzemy sygnał o zbyt krótkim okresie, po przebyciu określonej odległości czujnik zacznie liczyć odległość od zera (gdy sygnał

Rysunek 5: Wykresy sygnałów wysłanego i odbitego oraz ich korelacji.

odbity będzie przesunięty o czas większy od jego okresu).

4 Wnioski

- Użyta w zadaniu metoda filtrów SOI generuje zakłócenia na krańcach sygnału odfiltrowanego. Aby wyeliminować tę niedogodność można "obcinać" krańcowe próbki, które są zniekształcone.
- Funkcja okna pozwala zwiększyć efektywność filtru, zmniejszając rząd filtru wymagany do poprawnej filtracji, tym samym minimalizując zniekształcenia.
- Operacja korelacji jest bardzo podobna do operacji splotu. Co więcej, można zrealizować korelację w oparciu o splot. Korelacja dwóch sygnałów jest tym samym, co splot sygnału pierwszego i odwróconego w czasie sygnału drugiego.
- Korelacyjny czujnik odległości jest stosunkowo dokładny. Jest to wynikiem dużej prędkości sygnału, jednak wymaga dużej częstotliwości próbkowania.
- Aby wydłużyć zasięg czujnika należy dobrać sygnał o odpowiednio długim okresie (dla sygnałów złożonych z okresami względnie pierwszymi

będzie do iloczyn wszystkich okresów).

5 Bibliografia

1. Instrukcja do zadania 3: Splot, filtracja i korelacja sygnałów, WIKAMP