Assignment 1

MA3.101: Linear Algebra

Spring 2021

Answers

- 1. The properties to be checked are: (i) V forms an abelian group (V1-5), (ii) F forms a field (F1-11) (iii) V is closed under scalar multiplication, both distributive laws are followed, scalar multiplication is associative and the unit scalar is the identity of scalar multiplication (V6-10).
- (a) $V = \mathbb{R}, F = \mathbb{N}$: V does not form a valid vector space over F. This is because \mathbb{N} is *not* a field; in general, elements do not have additive or multiplicative inverses $(\forall x \in \mathbb{N}, -x \notin \mathbb{N} \text{ and } \frac{1}{x} \notin \mathbb{N}, \text{ in general})$.
- (b) $V = \mathbb{Q}, F = \mathbb{R}$: V does not form a valid vector space over F. This is because \mathbb{Q} is *not* closed under scalar multiplication with \mathbb{R} (one example is $1 \in \mathbb{Q}, \sqrt{2} \in \mathbb{R}$, but $\sqrt{2} \cdot 1 \notin \mathbb{Q}$).
- (c) $V = \mathbb{R}, F = \mathbb{Q}$: V forms a valid vector space over F. The proof is as follows:
 - \mathbb{R} forms an abelian group. This follows from the fact that the real numbers are closed, associative and commutative under addition. 1 is the identity element. The inverse of $x \in \mathbb{R}$ is $-x \in \mathbb{R}$.
- $\mathbb Q$ forms a field. This follows from the fact the rational numbers are closed, associative and commutative under multiplication and addition. The multiplicative and additive identities are 1 and 0 respectively (1 is the scalar unit). All nonzero elements $x \in \mathbb Q$, $x \neq 0$ have a multiplicative inverse $\frac{1}{x} \in \mathbb Q$ and all elements $x \in \mathbb Q$ have an additive inverse $-x \in \mathbb Q$. Further, multiplication distributes over addition in $\mathbb Q$.
- Since $\mathbb{Q} \subseteq \mathbb{R}$, the closure, distributivity and associativity of scalar multiplication follow from the corresponding properties of \mathbb{R} . Further, the scalar unit 1 is the identity in \mathbb{R} as well.
- (d) $V = \mathbb{R}, F = \mathbb{C}$: V does not form a valid vector space over F. This is because \mathbb{R} is *not* closed under scalar multiplication with \mathbb{C} (one example if $1 \in \mathbb{R}, i \in \mathbb{C}$, but $i \cdot 1 \notin \mathbb{R}$).
- 2. **XOR** is defined as:
 - $0 \oplus 0 = 0$
 - $0 \oplus 1 = 1$
 - $1 \oplus 0 = 1$

$$1 \oplus 1 = 0$$
,
and **AND** is defined as:
 $0 \cdot 0 = 0$
 $0 \cdot 1 = 0$

$$1 \cdot 0 = 0$$

$$1 \cdot 0 = 0$$
 $1 \cdot 1 = 1$

$$1 \cdot 1 = 1.$$

- $F = \{0,1\}$ forms an abelian group under **XOR**. Clearly, **XOR** is closed as well as commutative. When we note that it is equivalent to $+_2$, we can conclude that it is associative, since modular addition is always associative. The identity is 0 and the inverse of either element is itself. Hence, F forms an abelian group under XOR.
- $F \{0\}$ is nothing but the singleton set $\{1\}$. This set is a group under multiplication, whose only element is the identity. Since commutativity is not contradicted, we can say that it is an abelian group as well. Hence the nonzero elements of F form an abelian group under **AND**.
- The distributivity can be proved as follows:

 $\forall x, y \in F, 0 \cdot (x \oplus y) = 0$, from the property of fields that $\forall a \in F, 0 \cdot a = 0$. But $0 \cdot x \oplus 0 \cdot y = 0 \oplus 0 = 0$, from the same property.

 $\forall x,y \in F, 1 \cdot (x \oplus y) = x \oplus y$, since 1 is the multiplicative identity. But $1 \cdot x \oplus 1 \cdot y = x \oplus y$, for the same reason.

The above equations prove the dsitributivity of multiplication over addition in F.

Hence, F is a field under the operations of **XOR** and **AND**.

- 3. A set $A \subseteq V$ is a subspace of V if $\forall x, y \in A, \forall a, b \in F, ax + by \in A, i.e.$, it is closed under linear combination.
- (a) A is not a subspace of V.

Suppose X and Y are both invertible $n \times n$ matrices, i.e., $X, Y \in A$. Then, aX + bY is not necessarily invertible for all $a, b \in F$. One counterexample is if $X = I_n$ and $Y = -I_n$; then $1 \cdot X + 1 \cdot Y = I^n - I^n = 0_n$, the null matrix, which is not invertible.

(b) A is not a subspace of V.

Suppose X and Y are both non-invertible $n \times n$ matrices, i.e., $X, Y \in A$. Then, aX + bY is not necessarily non-invertible for all $a, b \in F$. One

counterexample is if
$$X = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $Y = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$, both

of which are clearly singular and therefore non-invertible. However,

$$1\cdot X+1\cdot Y=X+Y=\begin{bmatrix}1&3&3\\4&4&4\\3&3&1\end{bmatrix}, \text{ which has a determinant of 16 and is therefore invertible.}$$

(c) A is a subspace of V.

Suppose that X and Y are both such that XB = BX and YB = BY. Then, for arbitrary $a, b \in F$,

 $(aX+bY)\cdot B=aXB+bYB$ (distributivity of matrix multiplication over addition) = aBX+bBY (by assumption). This is equal to B(aX)+B(bY) (proved below), and by distributivity of matrix multiplication over addition, to $B\cdot (aX+bY)$. Hence $aX+bY\in A$, and A is indeed a subspace.

We need to prove that aPQ = P(aQ) for any $a \in F$ and $P, Q \in V$. We know that

$$[PQ]_{ij} = (\sum_{k=1}^{k=n} p_{ik} q_{kj}).$$

Hence,

$$[aPQ]_{ij} = a \cdot (\sum_{k=1}^{k=n} p_{ik} q_{kj}) = (\sum_{k=1}^{k=n} a p_{ik} q_{kj}) = (\sum_{k=1}^{k=n} p_{ik} (a q_{kj})) = [P(aQ)]_{ij}.$$

Therefore, aPQ = P(aQ).

(d) A is not a subspace of V.

Suppose that X and Y are idempotent, i.e., $X,Y \in A$. Then, aX + bY is not necessarily idempotent for all $a,b \in F$. One counter example is if $X = Y = I_n$. Then, $1 \cdot X + 1 \cdot Y = I_n + I_n = 2I_n$. But $(2I_n)^2 = 4I_n \neq 2I_n$, which means aX + bY is not idempotent.

4. (a) Let this set be C. C is a subspace of V.

Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are two continuous functions, *i.e.*, $f, g \in C$. Then, consider the function af + bg for arbitrary $a, b \in \mathbb{R}$ (assuming \mathbb{R} is the scalar field). For all $c \in \mathbb{R}$,

$$\lim_{x\to c}(af+bg)=\lim_{x\to c}af+\lim_{x\to c}bg=a\lim_{x\to c}f+b\lim_{x\to c}g=af(c)+bg(c)=(af+bg)(c),$$

by the properties of limits. Therefore, af + bg is also continuous and belongs to C; hence C is indeed a subspace.

(b) Let this set by S. S is not a subspace of V. One counterexample is if f(x) = x, the identity function, and g(x) = 1, the constant function with value 1. Then $1 \cdot f(x) + 1 \cdot g(x) = x + 1$. But, in general, $(x+1)^2 \neq x + 1$. Hence S is not a subspace.

- (c) Let this set be D. D is not a subspace of V. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are two functions such that f(3) f(-5) = g(3) g(-5), *i.e.*, $f, g \in C$. Then, consider the function af + bg for a = 2, b = 3. $(2f + 3g)(3) (2f + 3g)(-5) = 2\{f(3) f(-5)\} + 3\{g(3) g(-5)\} = 2 + 3 = 5 \neq 1$, which means $(2f + 3g) \notin D$. Therefore D is not a subspace.
- 5. We know that V is a vector space. Suppose S₂ ⊆ V and S₂ is linearly independent. We will assume S₁ ⊆ S₂ is linearly dependent and derive a contradiction.
 If S₁ is linearly dependent, there are vectors v₁, v₂, · · · , v_k ∈ S₁ which have a linear combination equal to 0. But since S₁ ⊆ S₂, all of v₁, v₂, · · · , v_k belong to S₂ as well. This means that there are vectors in S₂ which have a linear combination equal to 0. This contradicts the assumption that S₂ is linearly independent. Hence, S₁ must also be linearly independent, QED.
- 6. In order to show that Z forms a vector space over F, we need to prove that (i) Z forms an abelian group (V1-5), (ii) F is a field (F1-11) and (iii) Z is closed under scalar multiplication, both distributive laws are followed, scalar multiplication is associative and the unit scalar is the identity of scalar multiplication (V6-10).
- (i) Since V and W are vector spaces over F, they are also abelian groups. Hence, we can prove the various axioms for Z to be an abelian group as follows:
- Closure Let $(v_1, w_1), (v_2, w_2) \in Z$. Then, $v_1 + v_2 \in V$ by closure of V, and $w_1 + w_2 \in W$ by closure of W. Hence, $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) \in Z$. Therefore Z is also closed.
- Associativity Let $(v_1, w_1), (v_2, w_2), (v_3, w_3) \in Z$. Then, $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$, by associativity of V, and $(w_1 + w_2) + w_3 = w_1 + (w_2 + w_3)$, by associativity of W. Then, $((v_1, w_1) + (v_2, w_2)) + (v_3, w_3) = (v_1 + v_2, w_1 + w_2) + (v_3 + w_3) = ((v_1 + v_2) + v_3), (w_1 + w_2) + w_3) = (v_1 + (v_2 + v_3), w_1 + (w_2 + w_3))$, by the associativity of V and W. Now, this is equal to $(v_1, w_1) + (v_2 + v_3, w_2 + w_3) = (v_1, v_2) + ((v_2, w_2) + (v_3, w_3))$; hence Z is also associative.
- Commutativity Let $(v_1, w_1), (v_2, w_2) \in Z$. Then, $v_1 + v_2 = v_2 + v_1$ by commutativity of V, and $w_1 + w_2 = w_2 + w_1$ by commutativity of W. Hence, $(v_1, w_1) + (v_2 + w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2 + w_1)$, by the commutativity of V and W. This is equal to $(v_2, w_2) + (v_1, w_1)$. Therefore Z is also commutative.
- Existence of Identity Let $e_V \in V$ and $e_W \in W$ be the identities of V and

W. Then $e_Z = (e_V, e_W) \in Z$ is the identity of Z, since $(v, w) + (e_V, e_W) = (e_V, e_W) + (v, w) = (v + e_V, w + e_W) = (v, w)$. Therefore Z also has an identity element.

- Existence of Inverse Let $v \in V$ and $w \in W$ be arbitrary elements of V and W. Then, if $-v \in V$ and $-w \in W$ are their respective inverses, the inverse of $(v, w) \in Z$ is $(-v, -w) \in Z$.
 - This is because $(v, w) + (-v, -w) = (v + (-v), w + (-w)) = (e_V, e_W) = e_Z$. Therefore all elements of Z have inverses.

By the above properties (V1-5), Z is an abelian group under addition.

- (ii) We know that F is a field, since V and W form vector spaces over it.
- (iii) We can prove that Z has the relevant properties from the corresponding properties of V and W, as follows:
 - Closure under scalar multiplication V and W are both closed under scalar multiplication, i.e., $\forall c \in F, v \in V, w \in W$, we have $cv \in V, cw \in W$. Hence, if $(v, w) \in Z$, then $c(v, w) = (cv, cw) \in Z$ as well, for all $c \in F$. Therefore Z is also closed under scalar multiplication.
 - **Distributive laws** We know the distributive laws hold in V and W. Let $(v_1, w_1), (v_2, w_2) \in Z$, and $c_1, c_2 \in F$.

Then $c_1 \cdot ((v_1, w_1) + (v_2, w_2)) = c_1(v_1 + v_2, w_1 + w_2) = (c_1 \cdot (v_1 + v_2), c_1 \cdot (w_1 + w_2)) = (c_1v_1 + c_1v_2, c_1w_1 + c_1w_2)$, by the first distributive law in V and W.

This is equal to $(c_1v_1, c_1w_1) + (c_1v_2, c_1w_2) = c_1(v_1, w_1) + c_1(v_2, w_2)$. This proves the first distributive law.

Also, $(c_1+c_2)\cdot(v_1,w_1) = ((c_1+c_2)\cdot v_1, (c_1+c_2)\cdot w_1) = (c_1v_1+c_2v_1, c_1w_1+c_2w_1)$, by the second distributive law in V and W.

This is equal to $(c_1v_1, c_1w_1) + (c_2v_1, c_2w_1) = c_1(v_1, w_1) + c_2(v_1, w_1)$. This proves the second distributive law.

- Associativity of scalar multiplication We know that scalar multiplication is associative in V and W. Let $c_1, c_2 \in F$, and $(v, w) \in F$; then we know that $(c_1c_2)v = c_1(c_2v)$ and $(c_1c_2)w = c_1(c_2w)$.
 - Then $(c_1c_2)(v,w) = ((c_1c_2)v,(c_1c_2)w) = (c_1(c_2v),c_1(c_2w))$, from the associativity of scalar multiplication in V and W.
 - This is equal to $c_1(c_2v, c_2w) = c_1(c_2(v, w))$. Therefore scalar multiplication is associative in Z.
- Unit scalar is identity Let $e \in F$ be the unit scalar. We know it is the identity of scalar multiplication in V and W. If $(v, w) \in Z$, then e(v, w) = (ev, ew) = (v, w), which proves that e is the identity of scalar multiplication in Z as well.

From the above properties, we can conclude that Z also forms a vector

space over the field F with the given operations, QED.

- 7. Let $B = \{u, v, w\}$. If B is a basis for V, then it is a linearly independent set and L(B) = V. We will prove these properties for $C = \{u+v+w, v+w, w\}$ also.
- (i) C is linearly independent. To prove this, let us assume the contrary, *i.e.*, C is linearly dependent. This means that there exist scalars c_i , not all zero, such that $c_1(u+v+w)+c_2(v+w)+c_3(w)=0$. Rearranging, we see that $(c_1)u+(c_1+c_2)v+(c_1+c_2+c_3)w=0$. Since the c_i are not all zero, the coefficients in this equation are not all zero either, which means that B is linearly dependent. This is a contradiction; hence C is indeed linearly independent.
- (ii) L(C) = V. Given an arbitrary vector $a \in V$, we know $a \in L(B)$, *i.e.*, it is possible to write it as $a = c_1u + c_2v + c_3w$. From this equation, we obtain $a = c_1(u + v + w) + (c_2 c_1)(v + w) + (c_3 c_2)w$. This means that $a \in L(C)$. Thus we conclude that $V = L(B) \subseteq L(C)$. However, by closure of vector addition, $L(C) \subseteq V$. This implies that L(C) = V. From the above properties, we see that C is also a basis of V, QED.
- 8. We can prove this by contradiction. Let us assume that f and g are linearly dependent, *i.e.* there exists some $c_1, c_2 \in \mathbb{R}$, not both 0, such that $c_1 f + c_2 g = 0$.

Now, if either $c_1 = 0$ or $c_2 = 0$, then one of f and g must be identically equal to 0. Both being exponential functions, this is not possible; therefore both c_1 and c_2 are nonzero.

Hence we can write $f(t) = -\frac{c_2}{c_1}g(t)$, i.e., $e^{rt} = ce^{st}$ for some constant $c = -\frac{c_1}{c_2}$.

 e^{st} is always nonzero, so we divide both sides by it to get $e^{(r-s)t} = c$, for all $t \in \mathbb{R}$. Since no exponential function can have a constant value, this is a contradiction; hence f and g are in fact linearly independent, QED.

- 9. The set S does generate \mathbb{R}^3 and is linearly independent. The proof is as follows:
- (i) S generates \mathbb{R}^3 . Consider an arbitrary element $(x,y,z) \in \mathbb{R}^3$. Clearly,

$$(x,y,z)=(\frac{x+y-z}{2})(1,1,0)+(\frac{x-y+z}{2})(1,0,1)+(\frac{-x+y+z}{2})(0,1,1),$$

where all the coefficients are real numbers. This proves that $L(S) = \mathbb{R}^3$.

(ii) S is linearly independent. Assume that $c_1(1,1,0)+c_2(1,0,1)+c_3(0,1,1)=(0,0,0)$ for some $c_1,c_2,c_3 \in \mathbb{R}$. From this, we get the equations

$$c_1 + c_2 = 0,$$

$$c_2 + c_3 = 0,$$

and

$$c_3 + c_1 = 0.$$

The only solution to this system of equation is $c_1 = c_2 = c_3 = 0$, which means that S is in fact linearly independent.

10. Consider the vector space \mathbb{R}^2 over the field \mathbb{R} . Two of its subspaces are the sets $X = \{(x,0)|x\in\mathbb{R}\}$ and $Y = \{(0,y)|y\in\mathbb{R}\}$, *i.e.*, the X and Y axes (proved below). The union of these two subspaces is not a subspace, as it is not closed under vector addition. For example, (0,3)+(4,0)=(4,3) which does not lie on either axis. This proves that the union of two subspaces of a vector space may not be a subspace.

To prove that X is a subspace, it is sufficient to show that $a(x_1,0)+b(x_2,0)\in X$ for all $x_1,x_2,a,b\in\mathbb{R}$, since by the definition of X, $(x_1,0),(x_2,0)\in X$ for all $x_1,x_2\in\mathbb{R}$.

Now, $a(x_1, 0) + b(x_2, 0) = (ax_1, a \cdot 0) + (bx_2, b \cdot 0) = (ax_1 + bx_2, 0)$ since $x \cdot 0 = 0$ for all $x \in \mathbb{R}$. But $(ax_1 + bx_2, 0) \in X$ because $ax_1 + bx_2 \in \mathbb{R}$; hence X is a subspace.

Similarly, to prove that Y is a subspace, it is sufficient to show that $a(0, y_1) + b(0, y_2) \in Y$ for all $y_1, y_2, a, b \in \mathbb{R}$, since by the definition of Y, $(0, y_1), (0, y_2) \in X$ for all $y_1, y_2 \in \mathbb{R}$.

Now, $a(0, y_1) + b(0, y_2) = (a \cdot 0, ay_1) + (b \cdot 0, by_2) = (0, ay_1 + by_2)$ since $y \cdot 0 = 0$ for all $y \in \mathbb{R}$. But $(0, ay_1 + by_2) \in Y$ because $ay_1 + by_2 \in \mathbb{R}$; hence Y is a subspace.