FORM 4 ENTRANCE EXAMS 2024

NAME	ADM. NO	CLASS
233/3	Candidate's Signature	
CHEMISTRY		
Paper 3	Index Number	•••••
PRACTICAL		
Time: 2 ¹ / ₄ hours		

Kenya Certificate of Secondary Education
233/3
CHEMISTRY
Paper 3
PRACTICAL
Time: 2¹/₄ hours

Instructions to Candidates

- a) Write your name and ADMISSION numbers in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided above.
- c) Answer **ALL** the questions in the spaces provided in the question paper.
- d) Mathematical tables and silent electronic calculators may be used.
- e) All working **MUST** be clearly shown where necessary.
- f) Candidates should check the question paper to ascertain that **all** pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	20	
2	10	

3	10	
TOTAL SCORE	40	

This paper consists of 7 printed pages.

- 1. (20 marks) You are provided with:
 - > Solution **P**, hydrochloric acid
 - ➤ Solution **Q**, containing 8.8g per litre of sodium hydroxide.
 - > 0.6g of an impure carbonate, solid **B**

You are required to determine the:

- a) Concentration of solution **P** in moles per litre.
- b) Percentage purity of the carbonate, solid **B**.

Procedure I

Fill the burette with sodium hydroxide, solution \mathbf{Q} . Pipette 25.0cm³ of hydrochloric acid, solution \mathbf{P} into a conical flask. Add 2 – 3 drops of methyl orange indicator and titrate. (The colour of the indicator changes from pink to yellow). Record your results in table 1 below. Repeat the titration two more times and complete the table.

Table I

1 abic 1	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution Q used (cm ³)			

(4 marks)

a) What is the average volume of solution \mathbf{Q} used?

(1 mark)

- b) Determine the:
 - (i) Concentration of solution \mathbf{Q} in moles per litre. (Na = 23.0; O = 16.0, H = 1.0) (1 mark)

(ii) Concentration of solution **P** in mole per litre

(2 marks)

Procedure II

Using a 100ml measuring cylinder, measure out 100cm³ of solution **P** into a 250cm³ beaker.

Add all of solid **B** into the beaker containing solution **P**. Swirl the mixture and allow the reaction to proceed for about 4 minutes.

Label the solution obtained here as solution **K**.

Fill the burette with sodium hydroxide, solution \mathbf{Q} . Pipette 25.0cm³ of solution \mathbf{K} into a conical flask. Add 2- 3 drops of methyl orange indicator and titrate. Record your results in table II below. Repeat the titration two more times and complete the table.

Table II

1 4010 11			
	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution Q (cm ³)			

(4 marks)

c) What is the average volume of solution **Q** used?

(1 mark)

- d) Calculate the:
 - i. Moles of hydrochloric acid in 25.0cm³ of solution **K**.

(1 mark)

ii. Moles of hydrochloric acid in 100cm³ of solution **K**.

(1 mark)

	iii.	Moles of hydrochloric acid in 100cm ³ of the original hydrochloric	c acid solution P . (1 mark)
	iv.	Moles of hydrochloric acid that were used up in the reaction with s	olid B . (1 mark)
	v.	Moles of the carbonate that reacted with hydrochloric acid.	(1 mark)
e)	Give	en that the relative formula mass of the carbonate is 72, calculate the:	
	i.	Mass of the carbonate that reacted.	(1 mark)
	ii.	Percentage purity of the carbonate, solid B .	(1 mark)
		rks) You are provided with solid M . Carry out the tests below rations and inferences in the spaces provided.	and record your
	a)	Place all of solid M in a boiling tube and add about 10cm ³ distilled volume of the distilled volume	vater and shake.
	20	https://sabin-elibrary.co.ke/	

	(½mark)	(½ mark)
b) Div	vide the solution into five portions of To the first portion, add aqueous so	about 2cm³ each. dium hydroxide dropwise until in excess.
	Observations	Inferences
	(1mark)	(1mark)
ii.		s ammonia dropwise until in excess.
	Observations	Inferences
	(1mark)	(1mark)
iii.	Dip a glass rod in the third porti identify the colour of the flame prod	on and heat it on a burnsen burner flame
	Observations	Inferences
	(½mark)	(½mark)
iv.	To the fouth portion,add about 1cm	n ³ of lead (II) nitrate solution.
	Observations	Inferences

https://sabin-elibrary.co.ke/

2024

(1mark)	(1mark)

v. To the fifth portion, add about 1cm³ of dilute sodium hydroxide followed by a small piece of aluminium foil. Warm the mixture gently and carefully. Test any gas produced using blue and red litmus papers.

Observations	Inferences
(1mark)	(1mark)

- **3.** (10marks)You are provided with solid **W**. Carry out the tests below and record your observations and inferences in the spaces provided.
 - a) Place about one third of solid **W** on a **metallic** spatula and burn it using a Bunsen burner.

Observations		Inferences	
(1mark)		(1mark)

- b) Place the remaining solid **W** into a boiling tube. Add 10cm³ of distilled water and shake well. Use 2cm³ portions of the mixture for each of the following reactions.
 - (i) To the first portion, add 2 drops of acidified potassium manganate (VII) and shake well.

Observations		Inferences	_
2024	https://sabin-elibr	ary.co.ke/	

	(1m	nark)		(1mark)
(ii)	To the second portion, add three	e dro	ps of bromine water	
	Observations		Inferences	
				_
	(1m	nark)		(1mark)
(;;;)				(Tillark)
(iii)	To the third portion put univers	ai iiic ا		
	Observations		Inferences	
	(1,	0 mlr)		(1 m a r l r)
	(111)	nark)		(1mark)
(iv)	To the fourth portion add a little	e soli	d Y , sodium hydrogen carbonate.	
	Observations		Inferences	
	(½r	nark)		(½mark)
(v)	To the fifth portion add about 2	cm³ c	of ethanol and warm the mixture.	
	Observations		Inferences	
2024	https://sabin	-elibı	ary.co.ke/	

FORM 4 ENTRANCE EXAMS 2023

233/3 **CHEMISTRY PRACTICAL** MARKING SCHEME

Kenya Certificate of Secondary Education

2. Table I

	I	II	III	
Final burette reading	23.9	24.0	24.1	
Initial burette reading	0.0	0.0	0.0	
Volume of solution Q used (cm ³)	23.9	24.0	24.1	

d) What is the average volume of solution \mathbf{Q} used? 23.9 + 24.0 + 24.1

$$\frac{23.9 + 24.0 + 24.1}{3} = 24.0 cm^3$$

- e) Determine the:
 - Concentration of solution \mathbf{Q} in moles per litre. (Na = 23.0; O = 16.0, H = 1.0)

$$\frac{8.8}{40}=0.22M$$

Concentration of solution **P** in mole per litre (iv) (2marks)

$$\frac{\frac{M_1V_1}{M_2V_2} = \frac{1}{1}}{\frac{M_1 \times 25}{0.22 \times 24}} = \frac{1}{1}$$

$$M_1 = \frac{0.22 \times 24}{25}$$

$$= 0.2112M$$

Table II

	I	II	III
Final burette reading	12.4	12.5	12.6
Initial burette reading	0.0	0.0	0.0
Volume of solution Q (cm ³)	12.4	12.5	12.6

f) What is the average volume of solution **Q** used?

1) What is the average vol
$$\frac{12.4 + 12.5 + 12.6}{3} = 12.5 cm^3$$

e) Calculate the:

vi. Moles of hydrochloric acid in 25.0cm³ of solution **K**.

(1mark)

Moles of HCl in $25cm^3$ of A = moles of NaOH in $12.5cm^3$ of I 0.22×12.5

1000

= 0.00275 moles

vii. Moles of hydrochloric acid in 100cm³ of solution **K**.

(1mark)

 0.00275×100

25

= 0.011 moles

Moles of hydrochloric acid in 100cm³ of the original hydrochloric acid solution viii.

(1mark)

 0.2112×100

1000

= 0.02112 moles

Moles of hydrochloric acid that were used up in the reaction with solid B. ix. (1mark)

 $Ans \ a(iii) - a(ii)$

= 0.02112 - 0.011

= 0.01012 moles

Moles of the carbonate that reacted with hydrochloric acid.

(1mark)

$$CO_{3^{2}-(aq)} + 2H^{+}_{(aq)}$$
 \longrightarrow $CO_{2(g)} + H_{2}O_{(1)}$

 0.01012×1

 $\frac{1}{2} = 0.00506 moles$

f) Given that the relative formula mass of the carbonate is 72, calculate the:

Mass of the carbonate that reacted. iii.

(1mark)

 $\frac{0.00506 \times 72}{4} = 0.36432g$

Percentage purity of the carbonate, solid **B**. iv.

(1mark)

Percentage purity = $\frac{0.36432}{0.6} \times 100$

3. (10marks)

c) Place all of solid M in a boiling tube and add about 10cm³ distilled water and shake.

Observations

Inferences

• Colourless solution (½mk)

• Cu^{2+} , Fe^{2+} , Fe^{3+} absent $(\frac{1}{2}mk)$

- d) Divide the solution into five portions of about 2cm³ each.
 - To the first portion, add aqueous sodium hydroxide dropwise until in excess.

Observations

Inferences

- White ppt (½mk) insoluble in excess ½mk
- Ca^{2+} , Mg^{2+} , Ba^{2+} present
- All three/any two correct ions given 1 mk.
- Only one correct ion given ½ mk.
- To the second portion, add aqueous ammonia dropwise until in excess. vii.

Observations

Inferences

- White ppt (½mk) insoluble in excess ½mk
- Mg²⁺, Ba²⁺present
- All two correct ions given 1 mk.
- Only one correct ion given ½ mk.
- Dip a glass rod in the third portion and heat it on a burnsen burner flame, viii. identify the colour of the flame produced.

Observations

Inferences

• Green flame (½mk)

 Ba^{2+} present (½mk)

To the fourth portion, and about 1cm³ of lead (II) nitrate solution. ix.

Observations

Inferences

- No white ppt 1mk **NOTE**
- Accept "No ppt"/"colourless solution retained"/ "No observable change" for½mk but accept CORRECT inference and credit accordingly
- REJECT Colourless solution formed/No colour change / No white substance / No reaction / No observation
- SO_4^{2-} , CO_3^{2-} , SO_3^{2-} absent
- All 3 ions given 2mks
- 2 ions given 1mk
- 1 ion given ½ mk

NOTE:

- Where there is a contradictory ion mark out of 1½ mks and penalise ½ mk for EACH contradictory ion given to a maximum of 1½ mks.
- Accept correct ion(s) written in words To the fifth portion, add about 1cm small piece of aluminium foil. Warr for ½mk gas produced using blue and red litmus papers.

Observations

Χ.

Inferences

Colourless gas (½mk) the turns red litmus blue and blue litmus remains blue (1/2mk)

 NO_3 present (1mk)

4. (10marks)

Observations

c) Place about one third of solid W on a metallic spatula and burn it using a Bunsen burner.

• Solid melts and burns with a

$C = C / -C \equiv C - present (1mk)$

Inferences

vellow(½mk)/ luminous and sooty(½mk)/

NOTE

Accept either of the following given in words in place of the above structures for FULL credit.

- d) Place the remaining solid W into a boiling tube. Add 10cm^3 of distilled water and shake well. Use 2cm^3 portions of the mixture for each of the following reactions.
 - (vi) To the first portion, add 2 drops of acidified potassium manganate (VII) and shake well.

Observations

Inferences

 Acidified potassium manganate (VII) solution is decolourised OR Purple colour of acidified potassium manganate (VII) changes to colourless OR purple colour of acidified KMnO₄solution turns colourless. $C = C / -C \equiv C - (\frac{1}{2}mk), R - OH(\frac{1}{2}mk)$ present

<u>NOTE</u>

In absence of the above structures, accept the CORRECT inference given in words for FULL credit as "unsaturated organic compound and alcohol / alkanol present".

(vii) To the second portion, add three drops of bromine water

Observations

Inferences

 Yellow/ orange bromine is decolourised. (1mk) $C = C / -C \equiv C - present$

(viii) To the third portion put universal indicator paper.

Observations

Inferences

• pH=4(1mk)

- <u>Accept</u> pH = 5 or 6
 <u>Reject</u> pH given as a range
- Weakly acidic (1mk)
 <u>Reject</u>
 Weak acid/weak alone

(ix) To the fourth portion add a little solid **Y**, sodium hydrogen carbonate.

Observations	Inferences
Effervescence / Bubbles of a	R – COOH present (½mk)
colourless gas / fizzing (½mk)	<u>NOTE</u>
	Accept either of the following if given in
NOTE	place of the above structures for
Reject: hissing / fizzling / sizzling /	• carboxylic / alkanoic acid present
"colourless gas" on its own	• solution is acidic
	• H_3O^+ / H^+ present

(x) To the fifth portion add about 2cm³ of ethanol and warm the mixture.

Observations	Inferences
Fruity / Pleasant smell (½mk) <u>Reject</u> : Sweet smell	R-COOH, -COOH present (½mk) (Accept for above in words for ½mk) Ester formed if R-COOH is not mentioned). N/B: Penalize fully for any contradictory functional group.

FORM 4 ENTRANCE EXAMS 2024

233/3 CONFIDENTIAL INFORMATION FOR THE CHEMISTRY TEACHER ONLY

In addition to the fittings and apparatus found in chemistry laboratory, each student will require the following.

- 1. 200cm³ of hydrochloric acid, solution **P**
- 2. 150cm³ of sodium hydroxide, solution **Q**.
- 3. 0.50g of solid **B** weighed accurately.
- 4. About 0.2g of solid Y.
- 5. About 0.5g of solid M.
- 6. About 0.5g of solid **W**.
- 7. Burette 0-50 cm³.
- 8. Pipette 25 cm³.
- 9. One pipette filler
- 10. Means of labeling (one label).
- 11. 100 cm³ measuring cylinder.
- 12. 10ml measuring cylinder

- 13. 250 cm³ beaker.
- 14. Two conical flasks.
- 15. Six dry test-tubes.
- 16. About 1cm by 3cm aluminium foil
- 17. 1 red and 1 blue litmus papers.
- 18. Universal indicator paper
- 19. About 2cm³ ethanol placed in a test tube
- 20. 2 boiling tubes.
- 21. Metallic spatula
- 22. Funnel.
- 23. A test-tube holder.
- 24. Stop clock (wall clock)

BENCH REAGENTS/ ACCESS REAGENTS

- 1. Methyl orange indicator supplied with dropper
- 2. Distilled water in a 500ml wash bottle

- 3. 2M sodium hydroxide supplied with dropper
- 4. 2M aqueous ammonia supplied with dropper
- 5. 0.5M lead (II) nitrate solution supplied with dropper
- 6. Source of heat
- 7. Universal indicator solution supplied with a dropper
- pH chart
- 9. Acidified potassium manganate (VII) supplied with a dropper
- 10. Bromine water supplied with a dropper

NOTES

- 1. Solution **P** is prepared by adding 18.0cm³ (density=1.18g/cm³) of concentrated hydrochloric acid into 600cm³ of distilled water contained in a one litre volumetric flask and diluting to one litre of solution.
- 2. Solution **Q** is prepared by dissolving 8.80g of sodium hydroxide in 600cm³ of distilled water contained in a one litre volumetric flask and diluting to one litre of solution. (0.22M)
- 3. Acidified potassium manganate (VII) is prepared by dissolving 2.0g of potassium manganate (VII) provided in about 100cm³ of 2M sulphuric (VI) acid, adding 800cm³ of distilled water and diluting to one litre of solution. Label this as acidified potassium manganate (VII).
- 4. Bromine water is prepared by adding 2ml of liquid bromine to 100cm³ of distilled water and the mixture stirred well in a fume cupboard.
- 5. Solids:

- lacktriangle B is Na₂CO₃
- lack M is Ba(NO₃)₂
- ♦ W is Maleic acid
- ♦ Y is NaHCO₃