Practical Aspects of Database Design

Course Course

inancial Data

Introduction to R

Practical Aspects of Database Design L1 - Introduction

Stevens Institute of Technology

Instructor Information

Xingjia Zhang

PhD student working on systemic risk with agent-based model

Desk: Babbio 5th fl, opposite the room 547

Email: xzhang21@stevens.edu

Office Hours: Tuesdays 3:00pm - 5:00pm, or by

appointment.

Course Policies

Your final grade will be determined based on your performance on each of the following items

- ► Assignments (60%)
- ► Final exam (40%)

Grading scale may be adjusted depending on class average

Introduction to the Course

Financial Data

Introduction to the Course

Introduction to Financial Data

Introduction to the Course

itroduction to inancial Data

For R

- For beginner: interactive web tutorial: https://www. datacamp.com/courses/free-introduction-to-r
- Book "The Art of R Programming"
- ▶ Book "Cookbook for R"

For SQL

- For beginner: w3school web tutorial: http://www.w3schools.com/sql/
- ▶ Book "A First Course in Database Systems" (3rd edition) by Ullman and Widom (U/W)

For Data Science

Book "Data Mining: The Textbook" by Charu C. Aggarwal

Introduction to the Course

itroduction to inancial Data

https://www.kaggle.com/competitions

- Tutorial for beginner: https://www.kaggle.com/ kanncaa1/data-sciencetutorial-for-beginners
- Discussion: https://www.kaggle.com/ questions-and-answers?sortBy=top&group=all& page=1&pageSize=20&category=all&kind=all

Introduction to the Course

inancial Data

itroduction to K

Software in FE513

R

download: https://cloud.r-project.org/

Rstudio

```
download: https:
```

//www.rstudio.com/products/rstudio/download2/

PostgreSQL

windows:

```
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows
```

mac:

```
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#macosx
```

Introduction to the Course

Financial Data

Quantitative Data

- Structured, numeric data, such as stock return, ROA ratio, option price, etc.
- Analytical models can be easily applied on quantitative data.

Qualitative Data

- Unstructured, textual data, such as earnings announcement, news, etc.
- ► Categorical data can be easily transferred into numbers.
- More complex qualitative data needs additional procedure.

- Introduction to the Course
- close (for daily): normally we use "adjust close" for modeling stock data in order to avoid the effects from dividend, stock split, etc.. It is the field we used to calculate stock return, variance.
- Financial Data
 Introduction to R

Note: we normally download stock data by TICKER. However, different database may have different symbol for stock.

- Historical option data are not available in Hanlon Lab due to its volume and complexity
- Financial websites and Bloomberg provide option data for current day.

Stock:	GE	Price	34.80		Expires:	1 month
	Call Option				Put Option	
Intrinsic Value	Time Value	Option Price	Strike Price	Intrinsic Value	Time Value	Option Price
4.80	0.20	5.00	30.00	0.00	0.01	0.01
0.00	0.53	0.53	35.00	0.20	0.40	0.60
0.00	0.01	0.01	40.00	5.20	0.80	6.00
		= In the Mon	ey			

Stock:	GE	Price	34.80		Expires:	9 months
Intrinsic Value	Call Option Time Value	Option Price	Strike Price	Intrinsic Value	Put Option Time Value	Option Price
4.80	2.05	6.85	30.00	0.00	1.17	1.17
0.00	3.70	3.70	35.00	0.20	2.62	2.82
0.00	1.75	1.75	40.00	5.20	0.35	5.55
		= In the Money				

Introduction to the Course

Introduction to Financial Data

Financial statements

- Public companies' data are available on SEC.gov.
 Normally in html or txt format.
- Accounting numbers can be found on bloomberg and WRDS
- Some commercial database have private companies' data.

	Example (Balance December	e Sheet	
ASSETS		LIABILITIES	
Current assets		Current liabilities	
Cash	\$ 2,100	Notes payable	\$ 5,000
Petty cash	100	Accounts payable	35,90
Temporary investments	10,000	Wages payable	8.50
Accounts receivable - net	40,500	Interest payable	2.90
Inventory	31.000	Taxes payable	6.10
Supplies	3,800	Warranty liability	1.10
Prepaid insurance	1,500	Unearned revenues	1.50
Total current assets	89,000	Total current liabilities	61,00
nvestments	36,000	Long-term liabilities	
		Notes payable	20,00
Property, plant & equipment		Bonds payable	400,00
Land	5,500	Total long-term liabilities	420.00
Land improvements	6,500		
Buildings	180,000		
Equipment	201,000	Total liabilities	481,00
Less: accum depreciation	(56,000)		
Prop, plant & equip - net	337,000		
ntangible assets		STOCKHOLDERS' EQUITY	
Goodwill	105,000	Common stock	110,00
Trade names	200,000	Retained earnings	220,00
Total intangible assets	305,000	Accum other comprehensive income	9,00
		Less: Treasury stock	(50,00
Other assets	3,000	Total stockholders' equity	289,00
Total assets	\$ 770,000	Total liabilities & stockholders' equity	\$ 770,00

Introduction to the Course

Introduction to Financial Data

Quantitative Data

- Structured, numeric data, such as stock return, ROA ratio, option price, etc.
- Analytical models can be easily applied on quantitative data.

Qualitative Data

- Unstructured, textual data, such as earnings announcement, news, etc.
- Categorical data can be easily transferred into numbers.
- More complex qualitative data needs additional procedure.

News

- News are always public online which requires technique skills to download and clean. Some news website may provide API to download data.
- Thomson Reuters News Analytics(TRNA) database provides sentiment, highlight title and content.

- ▶ Bloomberg: real-time tick data of financial markets
- Thomson Reuters Tick History (TRTH): historical data of financial markets
- ► Thomson Reuters News Analytics (TRNA): PostgreSQL database of finanical news sentiment from Thomson Reuters (score calculated by Thomson Reuters)
- Wharton Research Data Services (WRDS): access to COMPUSTAT,

Detailed information

https://fsc.stevens.edu/hfsc/?q=hfsl-resources/hfsc-databases

Lab account request

https://web.stevens.edu/hfslwiki/images/d/dd/
HFSL_AccessRequestForm_Apr2016.pdf

Introduction to the Course

Introduction to Financial Data

- ► C++ and JAVA are for more advanced use (e.g. option pricing algorithm, complexity optimization).
- MATLAB can be used for data analysis (handles matrix very well), and optimization.
- ▶ VBA is used by some trading support team. It can build plug-ins for Excel which are easy for everyone.
- ► SAS is used to handle large size of data and complicated analysis, especially in traditional companies.
- Other big data techniques (e.g. HADOOP, SCALA) become popular especially in technique companies.
- * Compared with SAS and Matlab, R is free and easy to install & learn;
- * Compared with SPSS, R is more flexible;
- * Python is very similar to R.

4 ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q (^

Introduction to the Course

Financial Data

- Creating, listing and deleting the objects in memory
- Data types
 - There are four main data types: numeric, character, complex7, and logical. Other modes exist but they do not represent data, for instance function or expression.
 - ▶ The length is the number of elements of the object.
- Data type conversion

Conversion to	Function	Rules
numeric	as.numeric	$\mathtt{FALSE} o 0$
		$\texttt{TRUE} \to 1$
		"1", "2", \rightarrow 1, 2,
		$"A", \ldots \rightarrow NA$
logical	as.logical	$0 \rightarrow {\tt FALSE}$
		other numbers \rightarrow TRUE
		"FALSE", "F" \rightarrow FALSE
		"TRUE", "T" $ ightarrow$ TRUE
		other characters \rightarrow NA
character	as.character	$1, 2, \ldots \rightarrow$ "1", "2",
		$\mathtt{FALSE} o \mathtt{"FALSE"}$
		$\texttt{TRUE} \to \texttt{"TRUE"}$

Course Course

Financial Data

Vector	1 dimension	All elements have the same data types
Matrix	2 dimensions	
		Data types:
Array	2 or more	numeric, character
	dimensions	logic, factor
Data frame	2 dimensions	table-like data object allowing different data types for different columns
List	Collection of dat	a objects, each element of a list

