Data Mining Prof. Dawn Woodard School of ORIE Cornell University

Outline

1 Reading

2 Estimating a Probability Density

3 Handling Continuous Predictors in Naive Bayes

Reading

The reading for density estimation is Hastie, Tibshirani, and Friedman Section 6.6 (2nd edition; latest printing at: http://statweb.stanford.edu/~tibs/ElemStatLearn/)
Note: this reading uses slightly different notation than we use in class, but you should be able to follow it.

- Say we have iid observations $X_i \stackrel{\text{iid}}{\sim} f$ for i = 1, ..., n of a continuous random variable, from some unknown probability density function f defined on \mathbb{R} . Call the observed values $x_1, ..., x_n$.
- How would we estimate the pdf f?
- This problem is called density estimation.
- It is a type of unsupervised learning. Why?

Uses:

■ Predicting the distribution of a new observation X^*

Let $\phi_{\mu,\sigma^2}(z)$ be the normal density with mean μ and standard deviation σ (so that, e.g., $\phi_{0,1}(z)$ is the standard normal density):

$$\phi_{\mu,\sigma^2}(z) =$$

■ Kernel density estimation: for some fixed value of σ , estimate $f(\cdot)$ to be

$$\hat{f}(z) = \frac{1}{n} \sum_{i=1}^{n} \phi_{x_i, \sigma^2}(z) \quad \forall z \in \mathbb{R}$$

i.e.:

 σ is called the "bandwidth", and for now think of it as being a value that we have to specify.

Sketch \hat{f} when $\sigma = 1$ and the observations are $x_1 = -2.2$, $x_2 = -1.2$, $x_3 = 3.0$, and $x_4 = 5.1$:

Idea: create a smooth function that is high in locations close to many observations, and low in locations that are not close to many observations

Here is a density estimate of systolic blood pressure for individuals with coronary heart disease (HTF text):

Density Estimation in p > 1 **dimensions**

- Kernel density estimation generalizes naturally to the case where X_i has dimension $p \ge 1$.
- Still have $X_i \stackrel{\text{iid}}{\sim} f$; now $f(\cdot)$ is an unknown positive function in p dimensions that we want to estimate
- Still want to take an average over the data of some smooth function in p dimensions that is highest at x_i and symmetric about x_i. A natural choice is:

Density Estimation in p > 1 **dimensions**

So the estimate of f is

$$\hat{f}(z) = \frac{1}{n} \sum_{i=1}^{n} \phi_{p,x_i,\sigma^2}(z) \qquad z \in \mathbb{R}^p.$$

Warning: kernel density estimation does not scale well with p, in the sense that

In practice it's only effective for very small p; most commonly used for $p \le 3$.

Example: say you have the following observations $\{x_i : i = 1, ..., n\}$ in p = 2 dimensions.

Here is the density estimate, both a contour plot and a 3D plot:

- So far we only know how to handle categorical predictors in naive Bayes.
- We estimate the marginal dist'n Pr(Y = y) and the conditional distribution $Pr(X_k | Y = y)$ for each predictor k and value y.
- For a continuous predictor we still do this, but instead of estimating the probability $Pr(X_k = x_k | Y = y)$ for each possible value x_k (this is now 0), we estimate **the probability density of** X_k , **conditional on** Y = y for each y.

- Let i = 1, ..., n index the training samples $(x_{i1}, ..., x_{ip}, y_i)$.
- For some fixed value of σ , estimate the (one-dimensional) conditional density of X_k by the kernel density estimate

$$f_{X_k|Y=y}(z) =$$

where
$$n_y \triangleq \sum_{i=1}^n \mathbf{1}_{\{y_i=y\}}$$
.

To do prediction with mixed continuous & discrete predictors, use the formula (same derivation as before)

$$Pr(Y = y | X_1 = x_1, ..., X_k = x_k) =$$

where $f_{X_k|Y=y}(x_k)$ is the conditional density estimate if X_k is continuous, and the estimated conditional probability $\Pr(X_k = x_k|Y = y)$ if X_k is discrete.

Example: Predicting Coronary Heart Disease (CHD: Yes / No) based on the systolic blood pressure.

Train N.B.: Estimate the marginal dist'n Pr(Y = Yes), Pr(Y = No) and the conditional densities $f_{X_1|Y=Yes}(z)$ and $f_{X_1|Y=No}(z)$ (figure from HTF):

N.B. prediction formula for CHD example:

$$Pr(Y = Yes | X_1 = x_1) =$$

Plotting $Pr(Y = Yes | X_1 = x_1)$ as a function of x_1 (figure from HTF):

Does systolic blood pressure alone provide very certain prediction of heart disease status?

Continuous Predictors in Graphical Models

How to add an edge between two continuous predictors X_j and X_k , to relax the conditional independence assumption (creating a graphical model)? Estimate the conditional density of (X_j, X_k) given Y = y for each y:

$$f_{X_j,X_k|Y=y}(w,z) = \frac{1}{n_y} \sum_{i=1}^n \phi_{2,(x_{ij},x_{ik}),\sigma^2}(w,z) \mathbf{1}_{\{y_i=y\}} \qquad w,z \in \mathbb{R}$$

Then the predicted probability that Y = y for a new observation, where the predictors can be mixed continuous & discrete, is (by same calculation as before)