

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

02

02

Programa de: GEOMETRÍA MODERNA Clave MAT-1840 Créditos: 03

Cátedra: Matemática Moderna (AB) Horas/Semana

Preparado por: Cátedra Matemática Moderna Horas Teóricas
Fecha: Abril 2013 Horas Practicas

Actualizado por: Semanas 16

Fecha: Abril 2013 Nivel **Grado**

DESCRIPCIÓN DE LA ASIGNATURA:

 La Geometría Moderna en su estructura holística desarrolla los siguientes aspectos: La geometría Euclídea sus axiomas y la idea de sistema deductivo, El problema del V postulado. Análisis, El problema de las geometrías no Euclídeas, Geometría Afín y Proyectiva, Transformaciones Euclídeas, La Geometría Fractal

JUSTIFICACIÓN:

 La Geometría Moderna está diseñada para contribuir a formar profesionales con la capacidad de observar, conceptualizar, deducir, y sintetizar con carácter científico la esencia de los objetos que estudia, de modo que a través de la teoría axiomática –geométrica, servir de armazón para el desarrollo de los procesos que permiten formular las demostraciones matemáticas basadas en axiomas y reglas

OBJETIVOS:

Desarrollar la capacidad para construir de manera lógica los conocimientos propios de la geometría, las
relaciones entre sus partes y las demás asignaturas, con el nivel y rigor matemático de modo que se
puedan conceptualizar las experiencias con la profundidad y alcance adecuados y aplicarlas a los
objetos y procesos propios de la geometría, tomar decisiones y dar respuesta a diversas situaciones, de
manera competente y eficaz.

METODOLOGÍA:

• El docente presentará los conceptos fundamentales, en un lenguaje geométrico- lógico, para introducir los estudiantes en el manejo conceptual y formal de los contenidos de la asignatura. Promoverá la investigación y la participación activa de los estudiantes, haciendo uso de, trabajos y prácticas dirigidos. Valorará en estos el manejo del lenguaje simbólico formal y la socialización en un ambiente de trabajo armónico, con niveles técnicos y científicos acorde con la misión y visión de nuestra universidad.

• COMPETENCIAS A DESARROLLAR EN LA ASIGNATURA:

 Pensamiento geométrico, lógico, simbólico y abstracto, identificación de las partes de problemas básicos y los procedimientos para su solución; organización, claridad ,exactitud, creatividad, trabajo individual y en equipo

• RECURSOS:

Recursos del aula. Libros de consulta, Software y WEB recomendados en la bibliografía

BIBLIOGRAFÍA:

 Geometría Superior M.N. Efimov, Ed Mir Moscú Shively, L."Introducción a la geometría moderna", México: Cecsa, 1972 Geometría Moderna E.R. Moise, F. Downs Ed. Reading Mass Geometría elemental desde un punto de vista avanzado E.R. Moise Ed. Cecsa

Software: Maple, Octave, Winplot, Graph, Scientific Workplace, Geogebra 4.0

Facultad de Ciencias

Escuela de Matemáticas

Año de la Consolidación de la Calidad
en la Gestión Universitaria

Programa de: GEOMETRÍA MODERNA Clave MAT-1840 Créditos: 03

No. 1 Fundamentos de la geometría Euclídea. Los axiomas y el sistema deductivo

No. Horas Teóricas **04 OBJETIVOS**: Establecer el origen de la geometría, la idea intuitiva de infinito, y la

Prácticas **04** estructura de los "Elementos" de Euclides

CONTENIDOS:

1.1. El origen del estudio de la geometría

1.2. El infinito; Consecuencias geométricas

1.3. Estructura de los "Elementos". Paralogismos

No. 2 El problema del V postulado. Análisis

No. Horas Teóricas 04 OBJETIVOS: Identificar el problema del V postulado y sus consecuencias

Prácticas 04

CONTENIDOS:

2.1. Lógica de la demostración

2.2. Las Paralelas

2.3. Teoremas de existencia y unicidad

No. 3 El problema de las geometrías no Euclídeas

No. Horas Teóricas **04 OBJETIVOS:** Describir el surgimiento de otras geometrías, y su utilidad

Prácticas **04**

CONTENIDOS:

3.1. Las geometrías no Euclídeas

3.2. Las geometrías Riemannianas

No. 4 La geometría de Euclides - Hilbert.

No. Horas

Teóricas

OBJETIVOS: Analizar los sistemas axiomáticos de Hilbert, y sus consecuencias

Prácticas **04** geométricas

CONTENIDOS:

4.1. Los axiomas

4.2. Teoremas fundamentales

4.3. El teorema de Pitágoras

No. 5 Transformaciones geométricas

No. Horas Teóricas **04 OBJETIVOS:** Describir y analizar las transformaciones y sus clases

Prácticas 04

CONTENIDOS:

5.1. Fundamentos generales

5.2. Idea de transformaciones geométricas, clases

5.3. El programa de "Erlangen" y la clasificación de las geometrías

5.4. Ideas topológicas fundamentales de las transformaciones

Uníversidad Autónoma de Santo Bomingo

Primada de América Fundada el 28 de octubre de 1538

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Clave MAT-1840

Créditos: 03

Programa de: GEOMETRÍA MODERNA

No. 6 Geometría Afín y proyectiva

No. Horas

Teóricas

OBJETIVOS: Describir el plano afín, el plano proyectivo y sus propiedades

Prácticas **04**

CONTENIDOS:

6.1. Nociones

6.2. El plano Afín

6.3. El plano proyectivo, Invariantes proyectivos

6.4. Analítica proyectiva plana

No. 7 Transformaciones Euclídeas

No. Horas Teóricas **04 OBJETIVOS:** Analizar las diferentes transformaciones Euclídeas

Prácticas **04**

CONTENIDOS:

7.1. Conceptos

7.2. Geometría de reflexiones y simetrías

7.3. Geometría de traslaciones

7.4. Geometría de rotaciones

7.5. Reflexiones con deslizamientos

7.6. Geometría de las transformaciones de semejanza

7.7. Teselaciones

No. 8 La Geometría Fractal

No. Horas Teóricas **04 OBJETIVOS:** Describir la geometría fractal y sus ideas generales

Prácticas **04**

CONTENIDOS:

8.1. Principios de la Geometría Fractal

8.2. Definiciones e ideas generales

8.3. Presentación de Fractales importantes

8.4. Dimensiones Fractales

8.5. Relación con la teoría de conjuntos