المادة: رياضيات – لغة فرنسية الشهادة: المتوسطة نموذج رقم: 2 / 2019 المددة: ساعتان

لهيئة الأكاديمية المشتركة قسم: الرياضيات

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (3 points)

Dans le tableau suivant, une seule réponse proposée de chaque question est correcte.

Ecrire le numéro de chaque question et donner, avec justification, la réponse correspondante.

Nº	Questions	Réponses		
	Questions	A	В	C
1)	Si $a = 3\sqrt{3} + 2\sqrt{7}$ alors $\frac{1}{a} =$	$2\sqrt{7} - 3\sqrt{3}$	$3\sqrt{3}-2\sqrt{7}$	$-3\sqrt{3}-2\sqrt{7}$
2)	x et y sont deux nombres réels tels que x > y > 0. Si B = $\frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x^2 - xy}}{\sqrt{x^2 - y^2}}$ alors la forme simple de B est	y√x	$x\sqrt{y}$	1
3)	Les deux nombres positifs a et b représentent la longueur et la largeur du rectangle dont la longueur de la diagonale est égale à 5. Si l'aire du rectangle est 12, alors (a + b) ² =	5	25	49
4)	Dans une classe, il y a 15 garçons et 10 filles. 40% des garçons et 20% des filles participent à une activité. Le pourcentage des élèves qui participent à cette activité est	60%	50%	32%

II- (3 points)

On donne A(x) = $\frac{x^2}{9} - \frac{2x}{3} + 1 - (3 - x)^2$.

1) Développer
$$\left(\frac{x}{3} - 1\right)^2$$
 et montrer que $A(x) = \frac{-8(x-3)^2}{9}$

2) Soit
$$F(x) = \frac{A(x)}{\frac{x^2}{9} - 1}$$

- **a.** Pour quelles valeurs de x, l'expression F(x) n'est pas définie ?
- **b.** Simplifier F(x).

III- (3 points)

Jad et Mazen achètent des téléphones de type A et de type B.

Le tableau suivant indique la quantité achetée de chaque type et la somme payée en LL.

	Nombre de téléphones de type A	Nombre de téléphone de type B	Montant total payé en LL
Jad	3	2	3 000 000
Mazen	2	3	3 250 000

- 1) Vérifier que le prix d'un téléphone de type A est 500 000 LL et celui de type B est 750 000 LL.
- 2) Lors du mois des soldes, le prix du téléphone de type A subit une réduction de 20%, et celui de type B une réduction de 30%. Lynne a acheté 7 téléphones et elle a payé 3 300 000 LL. Trouver le nombre de téléphones de chaque type acheté par Lynne.

IV- (5,5 points)

Dans un repère orthonormé d'axes x'0x et y'0y, on donne les points A(-2;0) et B(0;4) et la droite

(D) d'équation $y = -\frac{4}{3}x + 4$.

La droite (D) coupe x'Ox en un point C.

- 1) a. Calculer les coordonnées du point C.
 - **b.** Vérifier, par le calcul, que B est un point de (D).
- 2) Soit H le projeté orthogonal de C sur (AB).
 - a. Montrer que le triangle ABC est isocèle de sommet C.
 - **b.** Vérifier que les coordonnées du point H sont(-1; 2).
- 3) (CH) coupe y'Oy en un point L.
 - a. Écrire une équation de la droite (CH).
 - b. Calculer les coordonnées du point L.

4)

- a. Montrer que les deux triangles OLC et HBC sont semblables et écrire leur rapport de similitude.
- **b.** Déduire la longueur du segment [CL].
- 5) Calculer tan OĈL, en déduire la mesure arrondie au degré près, de l'angle ABC.

Dans la figure ci-contre, on a :

- (C) est le cercle de centre O et de rayon 4
- [AB] est un diamètre de (C)
- (T) est la tangente à (C) en A
- D est un point de (T) tel que AD = 6
- (T') est la tangente à (C) en B
- E est un point de (T'), tel que BE = 2
- [DE] coupe [AB] en F.

- 2) Montrer que $\frac{FB}{FA} = \frac{1}{3}$
- 3) Vérifier que FB = 2.
- 4) Montrer que $\widehat{AFD} = 45^{\circ}$.
- 5) Soit H un point de la droite (T') tel que OBH est un triangle rectangle isocèle.

Les deux segments [OH] et [DF] se coupent en un point I.

Montrer que $0\hat{I}F = 90^{\circ}$.

- **6) a.** Montrer que les quatres points O, I, B et E appartiennent à un même cercle (C') dont on déterminera un diamètre.
 - **b.** Calculer le rayon du cercle (C').
- 7) Soit M le symétrique de B par rapport à H.
 - **a.** Vérifier que $OM = 4\sqrt{5}$.
 - b. Montrer que la droite (OM) est tangente au cercle (C').

(C)

Н

В

Е

(T')

D

Α

(T)

المادة: رياضيات _ لغة فرنسية الشهادة: المتوسطة الصف التاسع نموذج رقم: 2 / 2019 المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح

	Question I	Note
1	$\frac{1}{(3\sqrt{3}+2\sqrt{7})} = 2\sqrt{7} - 3\sqrt{3} \text{ donc la réponse est (A)}$	0,75
2	$\frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x(x-y)}}{\sqrt{(x-y)(x+y)}} = \frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x+y}} = 1. \text{ Donc la réponse est (C)}$	
3	$(a + b)^2 = a^2 + 2ab + b^2 = 5^2 + 2(12) = 25 + 24 = 49$. Donc la réponse est (C)	0,75
4	C'est $\frac{8}{25}$ = 32% donc la réponse est (C)	0,75
	Question II	
1	$\left(\frac{x}{3} - 1\right)^2 = \frac{x^2}{9} - \frac{2}{3}x + 1$	0,5
1	$A(x) = \left(\frac{x}{3} - 1\right)^2 - (3 - x)^2 = \frac{1}{9}(x - 3)^2 - (x - 3)^2 = -\frac{8}{9}(x - 3)^2.$	1
2.a	$F(x)$ n'est pas définie si $x^2 - 9 = 0$ donc $x = 3$ ou $x = -3$.	0,5
2.b	$F(x) = \frac{-8(x-3)}{x+3} .$	1
	Question III	
1	$3(500\ 000) + 2(750\ 000) = 3\ 000\ 000\ \text{et}\ 2(500\ 000) + 3(750\ 000) = 3\ 250\ 000$	1
2	Réduction 20% sur le prix de téléphones de type A donc le nouveau prix sera 400 000 LL Réduction 30% sur le prix de téléphones de type B donc le nouveau prix sera 525 000 LL Soient m le nombre de téléphones de type A et n le nombre de téléphones de type B. On considère le système suivant : $ \begin{cases} 400000m + 525000n = 3300000 \\ m + n = 7 \end{cases} $	2
	alors m = 3 « type A » et n = 4 « type B » Question IV	
1.a	$y_C = 0$, alors, $0 = -\frac{4}{3}x + 4$ donc C(3; 0).	Note 0,25
1.b	B est un point de (D) lorsque les coordonnées du point B vérifient l'équation de (D) c.à.d.	0,25
2.a	CA = CB = 5, alors ABC est un triangle isocèle en C.	0,5
2.b	ABC est un triangle isocèle de sommet principal C, donc [CH] est une médiatrice et H est le milieu de [AB], donc $x_H = \frac{x_A + x_B}{2} = -1$ et $y_H = \frac{y_A + y_B}{2} = 2$, par suite H(-1; 2).	1
3.a	L'équation de la droite (CH) est : $y = -\frac{1}{2}x + \frac{3}{2}$.	0,5
3.b	La droite (CH) coupe l'axe y'Oy en L donc $y_L = -\frac{1}{2}x_L + \frac{3}{2} = \frac{3}{2}$ donc L(0; $\frac{3}{2}$).	0,5
4.a	Les deux triangles OLC et CBH sont semblables : $0\hat{C}L = H\hat{C}B : [CH) \text{ est une bissectrice de l'angle } A\hat{C}B \text{ dans le triangle isocèle } ABC.$ $C\hat{O}L = C\hat{H}B = 90^{\circ}.$ Le rapport de similitude est : $\frac{OLC}{HBC} \left \frac{OL}{HB} = \frac{OC}{HC} = \frac{CL}{BC} \right $	1

4.b	D'après le rapport de similitude : $CL = \frac{OC \times BC}{HC} = \frac{3 \times 5}{2\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{2}$	0,5	
5	tan $0\hat{C}L = \frac{CL}{0C} = \frac{\frac{3}{2}}{3} = \frac{1}{2}$ donc $0\hat{C}L \approx 27^{\circ}$ ABC est un triangle isocèle de sommet principal C donc : $2 0\hat{C}L + 2 A\hat{B}C = 180^{\circ}$, Ce qui donne $A\hat{B}C = 63^{\circ}$.		
	Question V	Note	
1	A (C) (T')	0,5	
2	D'après le théorème de Thalès : $\frac{FB}{FA} = \frac{FE}{FD} = \frac{BE}{AD} = \frac{2}{6} = \frac{1}{3}$		
3	FB + FA = 8 puisque FA = 3FB alors, 4FB = 8 donc FB = 2	0,5	
4	ADF est un triangle rectangle isocèle en A car $AD = AF = 6$.	0,5	
4	$D\widehat{A}F = 90^{\circ}$ (La droite (T) est tangente au cercle (C) en A), alors $A\widehat{F}D = 45^{\circ}$.	0,5	
5	OBH est un triangle rectangle isocèle donc $H\widehat{O}B = 45^{\circ}$. ADF est un triangle rectangle isocèle (partie 4) donc $A\widehat{F}D = 45^{\circ}$. Dans le triangle OFI: $0\widehat{I}F = 180^{\circ} - (0\widehat{F}I + I\widehat{O}F) = 180^{\circ} - (A\widehat{F}D + H\widehat{O}B) = 90^{\circ}$.		
6.a	$0\hat{I}E = 90^{\circ}$ et $0\hat{R}E = 90^{\circ}$ donc 0 . L. B. et E. appartiennent au même cercle (C') de diamètre		
6.b	OBE est un triangle rectangle en B donc d'après le théorème de Pythagore : $OE^2 = OB^2 + BE^2 = 4^2 + 2^2 = 20$, $OE = 2\sqrt{5}$ donc le rayon est $\sqrt{5}$	0,5	
7.a	OMB est un triangle rectangle en B (la droite (T') est tangente au cercle (C) en B), d'après le		
7.b	$OM^2 + OE^2 = (4\sqrt{5})^2 + (2\sqrt{5})^2 = 80 + 20 = 100$ et $ME^2 = 10^2 = 100$ D'après la réciproque du théorème de Pythagore OME est un triangle rectangle en O Donc $E\widehat{O}M = 90^\circ$ avec [OE] est un diamètre du cercle (C'), donc la droite (OM) est tangente à (C') en O.	0,5	