

資料結構(Data Structures)

Course 1: Algorithm and Time Complexity

授課教師:陳士杰 國立聯合大學 資訊管理學系

- 🧶 本章重點
 - Market Algorithm Def. (5個性質)
 - Data Type and ADT (Abstract Data Type)
 - Program Complexity
 - Space complexity (空間複雜度)
 - Time complexity (時間複雜度)
 - Ο, Ω, θ

- 演算法: <u>能夠利用電腦解決問題的歩驟</u>。
- 🧶 通常在針對某一問題開發程式時,都會經過下列過程:

Step 1: 明確定義問題

Step 2: <u>設計演算法,並估計其執行時間與所使用之記憶體空間</u> 大小

Step 3: 撰寫程式, 並加以測試

- Example: 設計一程式以計算大學入學考試中,某一單科分數之高標
 - **明確定義:**計算所有考生在該科中**前25%成績**之平均。
 - ≌ 演算法:

Step 1: 將所有考生該科成績排序 (由高至低)

Step 2: 將排名在前面1/4的成績資料相加後, 再除以1/4的人數

■ 撰寫程式:...

- ◆ Def: 完成特定功能之有限個指令之集合。同時, 需滿足下列5個特性:
 - Input (輸入): 外界至少提供≥0個輸入
 - 型 Output (輸出): Algorithm至少產生≥1個輸出結果
 - Definiteness (明確): 每個指令必須是Clear and Unambiguous
 - Finiteness (有限性): Algorithm在執行有限個步驟後, 必定終止
 - **Effectiveness** (有效性): 用紙跟筆即可追蹤Algorithm中執行的過程及結果

- ◆ 其中, Program不一定會滿足特性4, 但是Algorithm一定會滿足該特性!!
 - Ex: 軍事防衞系統、提款機系統、作業系統
 - 這就是Program與Algorithm不同之處

- 常用的演算法表示工具有哪些?
 - 只要是能夠闡述問題解決步驟的工具皆可!!
 - 按照歩驟次序,逐一以人類口語條列之
 - 流程圖 (Flowchart)
 - 虚擬碼 (Pseducode)
 - 程式 (Program)
- 🥯 虛擬碼是目前設計演算法最常使用的工具。
 - 虚擬碼在陳述解題歩驟時,是採用介於人類口語與程式語法之間的表達方式
 - 可以表示得很口語. 也可以表示得很程式。通常建議介於兩者之間
 - 好處:
 - 在陳述問題的解題歩驟時,能同時具有簡便性與邏輯性
 - 容易轉換成程式指令

🌳 問題: 循序搜尋

Example 1.2

The following is an example of a problem:

Determine whether the number x is in the list S of n numbers. The answer is yes if x is in S and no if it is not.

🤷 範例:

Example 1.4

An instance of the problem in Example 1.2 is

$$S = [10, 7, 11, 5, 13, 8], n = 6,$$
 and $x = 5$

The solution to this instance is, "yes, x is in S."

● 條列式的歩驟

- 1. 輸入資料矩陣S[]和欲搜尋值x。
- 2. 從資料矩陣S[]中的第一項開始搜尋。
- 3. 如果欲搜尋的資料x不等於目前資料矩陣中的某項資料,則搜尋下 一項資料。
- 4. 如果欲搜尋值x與資料矩陣中的某項資料相同,則表示搜尋到資料,此時回傳'yes'。
- 5. 如果資料全都搜尋過且未能搜尋到欲搜尋值,表示未能搜尋到資料,此時回傳 'not found'。

● 流程圖

● 程式敘述

```
void segsearch(int n,
                 const keytype S [ ],
                 keytype x,
                 index & location)
     location = 1:
     while (location \leftarrow n && S[location] != x)
       location ++;
     if (location > n)
        location=0;
```


▶ 演算法:

```
Input:正整數 n, 矩陣 S[1...n], 要搜尋的值 x
Output:如果x存在於矩陣S中,則回傳yes;否則回傳not found
string seqsearch(int n, const S[], keytype x)
location = 1;
while (當尚未從矩陣S中找到所要的值, 或是尚未將矩陣從頭到尾走完一趟)
     location++;
if (location>=n)
  回傳 'not found';
else
  回傳 'yes';
};
```


No standard for pseudocode

- 可以寫得很像文字敘述
- 也可以寫得很像程式語句

Algorithm Efficiency (演算法效能)

- 一個Algorithm的效能好壞,通常有兩個評估因子:
 - Space (空間): Space Complexity 空間複雜度
 - Time (時間): Time Complexity 時間複雜度
- ◆ 不論是衡量空間還是時間的複雜度,通常我們均假設演算 法欲處理的資料量n→∞。這是因為:
 - 🔹 無法猜測出系統實際所面對的問題有多複雜
 - 當假設n→∞,則有一些非預期的不確定因素可以忽略。

Def:

- 🗷 用來衡量演算法在執行時,可能所需花費的時間
- 為衡量演算法優劣的重要依據
- 参 <u>分析方法</u>:統計Algorithm(或Program)中, 指令執行次數的總合, 做為該Algorithm (或Program)的時間函數。
 - 時間函數 T(n):表示當輸入資料量為n時,演算法中所有指令所需的 實際執行次數。
 - 暫不考慮指令本身的複雜與否。

不可執行!! · · · 就系統執行的角度而言,變數宣告只是在Compile時,於M.M.中建立一個空間,但不會產生相對應的執行碼!!除非在宣告的同時有指派一個初始值,指派的動作就會有相對應的執行碼定生以供程式執行時使用。


```
每行指令的執行次數

float rsum(float list[], int n)

{
    if (n>0)
    {
        return rsum(list, n-1)+ list[n-1];
    }
    return list[0];
}
```

遞迴運算!!'.'本題是針對list[]中 的所有值做累加的計算, 即: list[n]+ list[n-1]+ ...+list[0]。


```
每行指令的執行次數
                                程式
                 Void add(int a[][max_size],
                         int b[][max_size],
                          int c[][max_size],
                          int n, int m)
                                     ·此for迴圈的判斷式本身會
                                       執 行n+1次, 而此迴圈的程
                 for (i=0; i<n; i++)
                                       式主體會執行n次。
                                        此for迴圈的判斷式本身會
                 for (j=0; j < m; j++)
                                        執行m+1次, 而此迴圈的程
                                        式主體會執行m次。
                                        然而,此for迴圈是在"n"
                   c[i][j] = a[i][j] + b[i][j];
                                        這個迴圈的程式主體內,所
                                        以,此for迴圈的判斷式總共
                                        會執行(m+1)×n次
```


- 由上述例子可知,如果一個演算法是線性的(Linear,即:此演算法沒有迴圈或是遞迴),則此演算法的時間函數即為該演算法中的指令個數。
- 然而,若一個演算法有迴圈或是遞迴,則這些具重覆執行 特性的語法將會主宰演算法的時間函數。
 - 幫 focuses on 迴圈與遞迴.

Ex:

$$i = 1$$
 $loop (i \le n)$

$$application code$$
 $i = i+1$
end $loop$

$$i = 1$$

$$loop (i < n)$$

$$application code$$

$$i = i \times 2$$

$$end loop$$

$$\times T(n) = \log_2 n$$

$$i = 1$$
 $loop (i \le n)$

2 $j = 1$
 $loop (j \le n)$

application code
 $j = j \times 2$
end loop
 $i = i + 1$
end loop

$$\Rightarrow \mathbf{0} \ \mathbf{T}(\mathbf{n}_1) = \mathbf{n}$$

$$\Rightarrow \mathbf{0} \ \mathbf{T}(\mathbf{n}_2) = \log_2 \mathbf{n}$$

$$\therefore \mathbf{T}(\mathbf{n}) = \mathbf{T}(\mathbf{n}_1) \times \mathbf{T}(\mathbf{n}_2)$$

$$= \mathbf{n} \log_2 \mathbf{n}$$

$$T(n) = 1+2+3+4+...+n$$

= $n(n+1)/2$
 $\Rightarrow \mathbf{0} \ T(n_1) = n$
 $\Rightarrow \mathbf{2} \ T(n_2) = T(n)/T(n_1)$
= $(n+1)/2$

Asymptotic Notation (漸近式表示)

● 現今已較少直接使用指令的實際執行次數 (即:時間函數) 來衡量演算法的執行效率, 而是採用不同的等級 (Order) 劃分, 來對演算法所需的執行時間做分級的工作。此理念即為漸近式表示 (Asymptotic Notation)。

🏓 主要原因:

for i=1 to n do a=(b+c)/d+e;	for i=1 to n do x1=b+c; x2=x1/d; a=x2+e;
\Rightarrow T(n)=n	⇒T(n)=3n

- 盟 指令有的簡單, 有的複雜。如:
 - 浮點數運算比整數運算難
 - 除法和加法運算的複雜性不同

- Asymptotic Notation共有三種表示方法:
 - **Big-O (O)**
 - lacktriangledown Omega (Ω)
 - **Theta** (θ)

- 某演算法時間函數的上限 (Upper bound)
 - 📱 即:演算法在執行時所花費的時間成長, 最差的情況不會超過它
- 通常, 一個時間函數的Big-O notation 能夠由以下兩個步驟所導出:
 - In each term, set the coefficient of the term to 1.
 - **Keep the largest term** in the function and discard the others.
- 🧶 例如,有以下兩個不同的時間函數f(n):
 - If f(n) = 3n+2, 則 f(n) = O(n).
 - If $f(n) = 5n^2 + 3n + 2$, 則 $f(n) = O(n^2)$.

Definition:

If f(n) = O(g(n)) if and only if 存在兩正數c和 n_o , 使得 $f(n) \le c \times g(n)$, for all $n \ge n_o$.

- n:輸入資料量大小。
- f(n):在理想狀況下,程式在電腦中的 指令實際執行次數。
- g(n):執行時間的成長率。

● Definition競明:

- 写 只要n大到某一個程度 (n_0) ,就保証時間函數 f(n) 的數值一定小於等於 g(n) 函數。
- □ 亦即:在最壞 (worst case) 的情況下, 該演算法的時間函數f(n)之成 長最多會到達g(n), 而不會超過它!!

以定義來說明範例

- $oldsymbol{0}$ f(n) = 3n+2, 則 f(n) = O(n).
 - If f(n) = O(n) if and only if 存在兩正數 $c = __n$ 和 $n_o = ___$,使得 $f(n) \le c \times g(n)$,for all $n \ge n_o$.
 - 先決定c的値, 鎖定f(n)中的最大項之値(即: 3n), c只要**比該項的** 常數值大1即可!!再由c去推n。。
 - $3n+2 \le 4n \Rightarrow n \ge 2_o$
- f(n) = $5n^2+3n+2$, 則 f(n) = $O(n^2)$.
 - If $f(n) = O(n^2)$ if and only if 存在兩正數 $c = __ n_o = __$, 使得 $f(n) \le c \times g(n)$, for all $n \ge n_o$.
 - 先決定c的値, 鎖定f(n)中的最大項之値(即: 5n²), c只要**比該項的** 常數值大1即可!!再由c去推n。。
 - $5n^2+3n+2 \le 6n^2 \Rightarrow 3n+2 \le n^2 \Rightarrow 取 n_0 = 4_0$

Theorem: If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.

Proof:

$$\begin{split} f(n) &= \sum_{i=0}^m a_i \times n^i \leq \sum_{i=0}^m |a_i| \times n^i \\ &\quad \text{最大項} \\ f(n) \leq (|a_0| \times n^{0+} |a_1| \times n^{1+} ... + |a_{m-1}| \times n^{m-1} + |a_m| \times n^m) \\ &= n^m (|a_0| \times n^{-m} + |a_1| \times n^{1-m} + ... + |a_{m-1}| \times n^{-1} + |a_m| \times 1) \\ &= n^m \sum_{i=0}^m |a_i| \times n^{i-m} \\ &\leq n^m \sum_{i=0}^m |a_i| \times 1 = n^m \sum_{i=0}^m |a_i| \,, \quad \text{for } n \geq 1 \end{split}$$
 存在兩正數c $= \sum_{i=0}^m |a_i| \,$ 和 $n_o = 1$,使得 $f(n) \leq c \times g(n)$,for all $n \geq n_o$.

27

 \Rightarrow So, $f(n) = O(n^m)$

● 一般常見演算法的計算時之Order 大小排序如下:

對於較大的資料集合(如:生物資訊議題之資料量),若演算法的複雜度超過O(n log n)時,通常都會很難處理,因為所需執行的步驟太多了。

- 前面所提例子中的f(n) = 3n+2, 其Big-O為 O(n)。然而,
 O(n²), O(n³), 乃至O(2n)也都是3n+2的上限值。
- 同理, f(n) = 5n²+3n+2 的Big-O 為 O(n²), 也可以為O(n³),
 乃至O(2n), 這是因為:
 - If f(n) = O(g(n)) 這個式子只說明了當 $n \ge n_0$ 時, 若 $f(n) \le c \times g(n)$, 則g(n)是f(n)的上限值, 但並不能看出該上限值是多高!!
 - 但是, 為了要使f(n) = O(g(n))這個式子更有意義, g(n)必須要儘量 小。
 - 所以, 3n+2的Big-O應為 O(n), 不說 3n+2 = O(n³)..., 即使這些式子也是對的。

- 某演算法時間函數的下限 (Lower bound)
 - 點 即:演算法在執行時所花費的時間成長,最好的情況也不會低於它
- Definition:
 - $f(n) = \Omega(g(n))$ if and only if 存在兩正數c和 n_o , 使得 $f(n) \ge c \times g(n)$,

for all $n \ge n_o$.

lower bound

● Definition說明:

- 只要n大到某一個程度 (n_0) , 就保証 f(n) 函數的數值一定大於等於 g(n) 函數。
- □ 亦即在最好最好 (best case) 的情況下, 該演算法的時間函數f(n)之成長只能到達g(n), 不會再低於它!!

- f(n) = 3n+2, 則 $f(n) = \Omega(n)$.
 - If $f(n) = \Omega(n)$ if and only if 存在兩正數c = 1 和 $n_o = 1$, 使得 $f(n) \ge 1$ $c \times g(n)$, for all $n \ge n_o$.
 - 點 先決定c的值,鎖定f(n)中的最大項之值(即: 3n), c只要與該項的常數值相同即可!!再由c去推n。。
 - 3n+2≥3n ⇒ 2≥0 (恒真, 故n。可任取!)。
- f(n) = $5n^2 + 3n 2$,則 f(n) = $\Omega(n^2)$.
 - If $f(n) = \Omega(n^2)$ if and only if 存在兩正數c = 1 和 $n_0 = 1$, 使得 $f(n) \ge 1$ $c \times g(n)$, for all $n \ge n_0$.
 - 先決定c的値, 鎖定f(n)中的最大項之値(即: 5n²), c只要與該項的常數值相同即可!!再由c去推n。。
 - $5n^2+3n-2 ≥ 5n^2 \Rightarrow 3n-2 ≥ 0 \Rightarrow 取 n_o = 2/3_o$

- 前面所提例子中的f(n) = 3n+2, 其Omega為 Ω(n), 然而, Ω(1)也是3n+2的下限値; 同理, f(n) = 5n²+3n+2 的Omega 為 Ω(n²), 也可以為Ω(n), 乃至Ω(1). 這是因為:
 - **I** $f(n) = \Omega(g(n))$ 這個式子只說明了當 $n \ge n_0$ 時, 若 $f(n) \ge c \times g(n)$, 則g(n) 是f(n)的下限值, 但並不能看出該下限值是多低!!
 - □ 但是, 為了要使f(n) = Ω(g(n))這個式子更有意義, g(n)必須要儘量大。
 - 所以, 3n+2的Omega應為 $\Omega(n)$, 不說 $3n+2=\Omega(1)...$, 即使這個式子也是對的。

Theta (θ)

- ullet More precise than $oldsymbol{O}$ and $oldsymbol{\Omega}$.
- Definition:

g $f(n) = \theta(g(n))$ if and only if 存在三正數 c_1 , c_2 和 n_o , 使得

$$c_1 \times g(n) \le f(n) \le c_2 \times g(n),$$

for all $n \ge n_o$.

tight bound

● Definition說明:

在夠大的n値時, 如果存在有正的常數 \mathbf{c}_1 與 \mathbf{c}_2 , 來讓 $\mathbf{f}(\mathbf{n})$ 夾於 \mathbf{c}_1 g(n) 與 \mathbf{c}_2 g(n)之間, 則 $\mathbf{f}(\mathbf{n})$ 即屬於 $\theta(\mathbf{g}(\mathbf{n}))$ 之集合。

- - If $f(n) = \theta(n)$ if and only if 存在三正數 $c_1 = ___, c_2 = ___和 n_o = ___,$ 使得 $f(n) \ge c \times g(n)$, for all $n \ge n_o$.
 - 用先前決定 \bigcirc 與 Ω 中c值的方式分別得到 \mathbf{c}_1 與 \mathbf{c}_2 即可!!再由 \mathbf{c}_1 與 \mathbf{c}_2 去推 \mathbf{n}_o 。
 - 3n+2 ≤ 4n (用f(n) ≤ $c_2 \times g(n)$ 來找) \Rightarrow n ≥ 2。

Big-O, Omega與Theta的關係

● 以f(n) = 3n+2 與 f(n) = 5n²+3n+2為例:

※練習範例※

● 試說明下列等式是正確的:

- $5n^2 6n = \theta(n^2)$
- 100n + nlogn + 500 = O(nlogn)
- $33n^3+4n^2 = \Omega(n^2)$

Data Type and Abstract Data Type

- Data Type (資料型態)
 - Def: A data type consists of two parts
 - a set of data
 - the operations that can be performed on the data.
- For example:
 - Integer
 - Data: -∞, ..., -2, -1, 0, 1, ..., ∞ (沒有小數的數值集合)
 - **©** Operations: $+, -, \times, \div, \%, \le, \ge, ==, !=, ++, --, ...$
 - Floating point
 - Data: -∞, ..., -1.9, ..., 0.0, ..., ∞
 - **②** Operations: $+, -, \times, \div, \%, \le, \ge, ==, !=, ...$
 - Character
 - Data: 'A', 'B', ..., 'a', 'b', ...
 - Operations: <, >, ...

♣ ADT (Abstract Data Type; 抽象資料型態)

Def: ADT是一種Data Type, 且要滿足: "The specification (spec.) of data and the spec. of operations" are independent with "the representation of data and the implementation of operations."

- 此定義隱含了兩個意義:
 - Spec.不會和Implementation掷在一起
 - 任何Implementation的改變,都不會影響到該ADT的定義和外界 User對它的使用方式

例:Stack(堆疊)的ADT

Data

Spec.

Spec.

Operations

充

● 空間複雜度(S(P))通常來自於兩方面:

Fixed Space Requirement: C

- Instruction Space (即:程式碼大小)
- 變數 (Simple variables, 如:int, float, ...)
- Constant
- Fixed size structure variables (如: 陣列、紀錄…等,用struct或 class來宣告)
- Variable Space Requirement: SP(I)
 - 参數: 若structure variables是以call by value為主的之參數傳遞方式 (如:陣列…)→要老量
 - 由於Recursive Call所需要的Stack空間

非主要考量

(::C這個値在程式設計完成後就固定了)

土安考重

(∵S(P)會與SP(I)呈 線性關係)

 \Rightarrow S(P) = C + SP(I) [C是固定常數, SP(I)是會變動的變數]

型態種類	資料型態	佔記憶體空間	範圍			
整數型態	int	4 Bytes	-2,147,483,648 ~			
			2,147,483,647			
	short (short int)	2 Bytes	-32,768 ~ 32,767			
	long (long int)	4 Bytes	-2,147,483,648 ~			
			2,147,483,647			
	unsigned (unsigned int)	4 Bytes	0 ~ 4,294,967,295			
	unsigned short	2 Bytes	0 ~ 65,535			
	unsigned long	4 Bytes	0 ~ 4,294,967,295			
浮點數型態	float	4 Bytes	$10^{-38} \sim 10^{38}$			
	(單準確度浮點數)		六位精確度			
	double	8 Bytes	$10^{-308} \sim 10^{308}$			
	(倍準確度浮點數)		十五位精確度			
字元型態	char	1 Byte	-128 ~ 127			
	unsigned char	1 Byte	0 ~ 255			

資料型態前加上 unsigned 表使用無號(無正負號)資料型態 在資料型態一欄如有括號,表示資料型態也可寫成如括號內所示

Simple variables

```
float abc(float a, float b, float c)
{
    return a+b+b*c(a+b-c)/(a+b)+4;
}
```

SP(I) = 0 (': 沒有structure variable, 也沒有Recursive Call)


```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;

    for(i=0; i < n; i++) tempsum += list[i];
    return tempsum;
}</pre>
```

- SP(I)
 - 有無Stack空間花費 ⇒沒有 (∴沒有Recursive Call)
 - 幫 有structure variable,考量參數傳遞是不是call by value:
 - = 4×n, list[]若為call by value 傳遞 (根據主程式所傳來的數值多寡)
 - = 0 (或一常數), list[]若為call by address 傳遞 (∵主程式只傳陣列的起始位址, 沒有變動空間需求)


```
float rsum(float list[], int n)
{
   if(n!=0) return rsum(list, n-1)+list[n-1];
   return list[0];
}
```

- 假設: int 佔4 bytes, float佔4 bytes, Address佔2 bytes, list[]以<u>call by</u> <u>address</u>傳遞
- SP(I)
 - 有structure variable,但參數傳遞方式不是call by value ⇒∴沒有變動空間 需求
 - 有無Stack空間花費 ⇒有 (∵有Recursive Call)
- 🤎 發生一次遞迴所須的Stack空間為:

```
SP(I)=(參數"list"之起始位址+參數"n")+返回位址 = (2+4)+2 = 8 bytes
```

共有n次Recursive call

∴ SP(I) = 8n bytes.

- 計算某一指令 (ex: x=x+1) 的執行次數或Big-O
- 遞迴演算法的時間函數 (演算法課程)

給程式片段,統計loop內執行次數及Big-O

🥯 例 1:

For
$$i = 1$$
 to n do

For $j = 1$ to i do

 $x = x+1$

end

end

 $\bar{x}x=x+1$ 之執行次數與Big-O.

Sol:

i値	i = 1	i = 2	 i = n
j值	j = 1 to 1	j = 1 to 2	 j = 1 to n
x=x+1	執行1次	執行2次	 執行n次

<mark>⇨</mark>執行次數:

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

 \Rightarrow O(n²)

🧆 例 2:

 $\bar{x}x=x+1$ 之執行次數與Big-O.

Sol:

```
i = n
= n/2 \iff n/2^1
= n/4 \iff n/2^2
= ...
= n/2^k = 1 \implies 2^k = n
```

➡執行次數: log₂n

\Rightarrow O(log₂n)

🥯 例 3:

```
For i = 1 to n do
    For j = 1 to i do
    For k = 1 to j do
        x = x+1;
    end;
    end;
end
```

求x=x+1之執行次數與Big-O.

Sol:

i値	i = 1	i = 2		i = 3		 i = n				
j値	j = 1 to 1	j = 1 to 2		j = 1 to 3		 j = 1 to n				
k値	k = 1 to 1	k = 1 to l	k = 1 to 2	k = 1 to l	k = 1 to 2	k = 1 to 3	 k = l to l	k = 1 to 2		k = l to n
x=x +1	執行1次	執行 1次	執行 2次	執行 1次	執行 2次	執行 3次	 執行 1次	執行 2次		執行 n次

共1次 共3次

共6次

共(1+2+...+n)次 ⇒n(n+1)/2

➡執行次數:

$$\sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{1}{2} \left[\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \right] = \frac{n(n+1)(n+2)}{6}$$

🤏 例 4:

```
For k = 1 to n do

For i = 1 to k do

For j = 1 to k do

if (i \neq j) then x=x+1;

end;

end;
```

求x=x+1之執行次數與Big-O.

(Hint: $k^2 - (i = j的次數)$)

Sol:

⇒執行次數:

$$\sum_{k=1}^{n} (k^2 - k) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(n-1)}{3}$$

 \Rightarrow O(n³)

■常用的數學式子

(1) 等差數列:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

(2) 等比數列:
$$\sum_{i=0}^{n} r^{i} = r^{0} + r^{1} + r^{2} + ... + r^{n} = \frac{r^{n+1} - r^{0}}{r-1}$$

(3)
$$C_m^n = \frac{n!}{m!(n-m)!}, \quad P_m^n = \frac{n!}{m!}$$

(4)
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- ① $\log \log n = \log (\log n)$
- $\log^k n = (\log n)^k$
- 3 $a = b^{\log_b a}$
- \bigcirc log_cab = log_ca+ log_cb
- S log_baⁿ = n log_ba
- 6 log_ba = log_ca/log_cb
- 8 $\log_b(1/a) = \log_b a^{-1} = -\log_b a$
- 9 a logbc = c logba