K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

Numerical 1: Find voltage across 35 Ω resistance. Solve analytically using mesh analysis

Figure 1: Circuit 1

Solution:

Applying KVL to mesh 1:

$$100 - (16 + 35)I_1 + 35I_2 = 0$$

$$100 - 51I_1 + 35I_2 = 0$$

$$51I_1 - 35I_2 = 100$$
(1)

Applying KVL to mesh 2:

$$35I_1 - (35 + 15 + 12)I_2 + 12I_3 + 15I_4 = 0$$

 $35I_1 - 62I_2 + 12I_3 + 15I_4 = 0$ (2)

Applying KVL to mesh 3:

$$12I_2 - (12 + 20 + 10)I_3 + 10I_4 = 0$$

$$12I_2 - 42I_3 + 10I_4 = 0$$
(3)

Applying KVL to mesh 4:

$$15I_2 + 10\overline{I_3} - (15 + 10 + 30)I_4 = 0$$

$$15I_2 + 10I_3 - 55I_4 = 0$$
(4)

Solving equation (1), (2), (3) and (4) simultaneously, we get

$$\begin{split} I_1 &= 3.6138\mathrm{A} \\ I_2 &= 2.4086\mathrm{A} \\ I_3 &= 0.8828\mathrm{A} \\ I_4 &= 0.8174\mathrm{A} \\ V_{AB} &= (3.6138 - 2.4086) \times 35 \\ V_{AB} &= 42.182\mathrm{V} \end{split}$$

Figure 2: Circuit Schematic

(Operating Point	
V(n001):	17.6564	voltage
V(n003):	18.3103	voltage
V(a):	42.1792	voltage
V(n002):	100	voltage
I(R7):	-3.6138	device current
I(R6):	-1.59126	device current
I(R5):	-0.0653941	device current
I(R4):	-0.817426	device current
I(R3):	1.20512	device current
I(R2):	1.52586	device current
I(R1):	0.88282	device current
I(V1):	-3.6138	device current

Figure 3: Simulated Results

Parameters	Theoretical Values	Simulated Values
V_{AB}	42.182V	42.1792V

Table 1: Numerical 1

Numerical 2: Find equivalent resistance at terminals

- a) a b
- b) c d

Figure 4: Circuit 2

Solution:

$$a) a - b$$

Figure 5: Equivalent circuit for a - b section

$$R_{AB} = 50 + \frac{100 \times 400}{100 + 400}$$

$$= 50 + \frac{4 \times 10^4}{500}$$

$$= 50 + \frac{400}{5}$$

$$= 50 + 80$$

$$\therefore R_{AB} = 130 \Omega$$

$$b) c - d$$

Figure 6: Equivalent circuit for c – d section

$$R_{CD} = 60 + \frac{100 \times 400}{100 + 400}$$

$$= 60 + \frac{4 \times 10^4}{500}$$

$$= 60 + \frac{400}{5}$$

$$= 60 + 80$$

$$\therefore R_{CD} = 140 \Omega$$

Figure 7: Circuit Schematic

Figure 8: Simulated Results

Parameters	Theoretical Values	Simulated Values
R_{AB}	130 Ω	$130.0052~\Omega$
R_{CD}	140 Ω	140.0168 Ω

Table 2: Numerical 2

Numerical 3: Find current in 2Ω resistor by using Thevenin's Theorem.

Figure 9: Circuit 3

Solution:

1) Calculation of V_{TH} :-

Figure 10: Circuit for V_{TH}

Applying KVL to mesh 1:

$$-6I_{1} - 3I_{1} - 4.5 = 0$$

$$-9I_{1} = 4.5$$

$$I_{1} = \frac{-4.5}{9}$$

$$I_{1} = -0.5A$$
(1)

Applying KVL to mesh 2:

$$-6I_2 -3I_2 + 4.5 = 0$$

$$9I_2 = 4.5$$

$$I_2 = \frac{4.5}{9}$$

$$I_2 = 0.5A$$
(2)

Applying KVL to mesh 3:

$$V_{TH} = 6I_1 + 3I_2$$

= $6 \times (-0.5) + 3 \times 0.5$ From (1) and (2)
= -1.5 V

2) Calculation of R_{TH} :-

Figure 11: Circuit for R_{TH}

From the above circuit 3Ω and 6Ω are parallel with each other in loop ADC

and ABC
$$\therefore R_{TH} = \frac{3 \times 6}{3+6} + \frac{3 \times 6}{3+6}$$

$$= \frac{6}{3} + \frac{6}{3}$$

$$= 2+2$$

$$\therefore R_{TH} = 4\Omega$$

3) Calculation of load current :-

Figure 12: Thevenin's equivalent circuit

Applying KVL to mesh 1:

$$-6I_L - 1.5 = 0$$

$$-6I_L - 1.5 = 0$$

 $\therefore I_L = -0.25A$

SIMULATED RESULTS:

Figure 13: Circuit Schematic for V_{TH}

🍠 * D:\Manoj\Manoj internship workspace\week3\Assig 🗙		
Operating Point		
V(a):	1.5	voltage
V(x):	-1.5	voltage
V(c):	-3	voltage
I(R4):	-0.5	device current
I(R3):	-0.5	device current
I(R2):	0.5	device current
I(R1):	0.5	device current
I(V1):	-1	device_current

Figure 14: Simulated Results for V_{TH}

RXY = RTH = V1/I(V1) = 10/2.5 = 40 hms

Figure 15: Circuit Schematic for R_{TH}

Operating Point		
V(c):	5	voltage
V(x):	10	voltage
I(R4):	0.833333	device current
I(R3):	0.833333	device current
I(R2):	1.66667	device current
I(R1):	1.66667	device current
I(V1):	-2.5	device current

Figure 16: Simulated Results for R_{TH}

Figure 17: Circuit Schematic for I_L

Figure 18: Simulated Results for I_L

Parameters	Theoretical Values	Simulated Values
V_{TH}	-1.5V	-1.5V
R_{TH}	4Ω	4Ω
I_L	-0.25A	-0.25A

Table 3: Numerical 3

Numerical 4: Find current in 5Ω resistor by using Thevenin's Theorem.

Figure 19: Circuit 4

Solution:

1) Calculation of V_{TH} :-

Figure 20: Circuit for V_{TH}

4A current source is in uncommon branch

$$I_1 = 4A$$

Applying KVL to mesh 2:

$$V_{TH} = 10 \times I_1 + 10 \times 0$$

 $\therefore V_{TH} = 40 \text{V}$

$$V_{TH} = 40 \text{ V}$$

2) Calculation of R_{TH} :-

Figure 21: Circuit for R_{TH}

 R_1 and R_2 are series with each other

$$\therefore R_{TH} = 10 + 10$$
$$R_{TH} = 20\Omega$$

3) Calculation of load current :-

Figure 22: Thevenin's equivalent circuit

Applying KVL to mesh 1:

$$40 -20I_{L} -5I_{L} = 0$$

$$40 -25I_{L} = 0$$

$$I_{L} = \frac{40}{25}$$

$$\therefore I_{L} = 1.6A$$

Figure 23: Circuit Schematic for V_{TH}

* D:\Manoj\Manoj internship workspace\week3\Assig X			
	Operating Point		
V(n001): V(th): I(I1): I(R3): I(R1):	40 40 4 0 4	voltage voltage device_current device_current device_current	

Figure 24: Simulated Results for V_{TH}

Figure 25: Circuit Schematic and Simulated Results for R_{TH}

Figure 26: Circuit Schematic and Simulated Results for I_L

Parameters	Theoretical Values	Simulated Values
V_{TH}	40V	40V
R_{TH}	20Ω	20Ω
I_L	1.6A	1.6A

Table 4: Numerical 4

Numerical 5: For the circuit shown in figure 27, find the value of R_L for the maximum power transfer and also find maximum power P_{Max}

Figure 27: Circuit 5

Solution:

1) Calculation of V_{TH} :-

Figure 28: Circuit for V_{TH}

6A current source is in common branch By applying KCL to node C, we get

$$I_1 + 6 = I_2$$

 $-I_1 + I_2 = 6$ (1)

Applying KVL to supermesh:

$$10 - 5I_1 - 2I_2 = 0$$

 $5I_1 + 2I_2 = 10$ (2)

Solving equation (1) and (2) simultaneously $I_1 = -0.2857 \mathrm{A}$ and $I_2 = 5.7142 \mathrm{A}$

∴
$$V_{TH} = 2I_2$$

= 2 × 5.7142
= 11.4284V

2) Calculation of R_{TH} :-

Figure 29: Circuit for R_{TH}

 R_1 and R_2 resistor are parallel with each other and series with R_3 and R_4 $\therefore R_{TH} = \frac{5 \times 2}{5 + 2} + 3 + 4$

$$\therefore R_{TH} = \frac{5 \times 2}{5 + 2} + 3 + 4$$

$$R_{TH} = \frac{10}{7} + 3 + 4$$

$$R_{TH} = 1.4285 + 3 + 4$$

$$\therefore R_{TH} = 8.4285\Omega$$

3) Calculation of load current:-

Figure 30: Thevenin's equivalent circuit

For Maximum Power:

$$R_L = R_{TH} = 8.4285\Omega$$

By Maximum Power Transfer Theorem

$$P_{Max} = \frac{V_{TH}^2}{4R_{TH}}$$

$$= \frac{(11.4284)^2}{4 \times 8.4285}$$

$$= \frac{130.6083}{33.714}$$

$$P_{Max} = 3.8740W$$

Figure 31: Circuit Schematic for V_{TH}

Figure 32: Circuit Schematic and Simulated Results for R_{TH}

Figure 33: Circuit Schematic for P_{Max}

Parameters	Theoretical Values	Simulated Values
V_{TH}	11.4284V	11.4286V
R_{TH}	8.4285Ω	8.4285Ω
P_{Max}	3.8740W	3.8741W

Table 5: Numerical 5
