Лабораторная работа №2.1.2 Определение C_p/C_v методом адиабатического расширения

Рожков А. В. Преподаватель Яворский В. А.

8 мая 2024 г.

Цель работы: определение отношения C_p/C_v углекислого газа по измерения давления в стеклянном сосуде. Измерения производятся сначала после адиабатического расширения газа а затем после нагревания сосуда и газа до комнатной температуры.

В работе используются: стеклянный сосуд; U-образный водяной манометр $\sigma_h=0.2$ см. вод.ст.; газгольдер с углекислым газом; секундомер $\sigma_t=0.3$ с.

1 Экспериментальная установка

Используемая для опытов экспериментальная установка состоит из стеклянного сосуда A (объёмом около 20 л), снабженного краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Рис. 1.

Избыточное давление создаётся с помощью резиновой груши, соединённой с сосудом трубкой с краном K_1 .

В начале опыта в стеклянном сосуде A находится исследуемый газ при комнатной температуре T_1 и давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будут понижаться. Это уменьшение температуры приближённо можно считать адиабатическим.

Для адиабатического процесса можно записать следующее уравнение:

$$\left(\frac{P_1}{P_2}\right)^{\gamma-1} = \left(\frac{T_1}{T_2}\right)^{\gamma},\tag{1}$$

где индексом "1"обозначено состояние после повышения давления в сосуде и выравнивания температуры с комнатной, а индексом "2"— сразу после открытия крана и выравнивания давления с атмосферным.

После того, как кран К вновь отсоединит сосуд от атмосферы, происходит медленное изохорическое нагревание газа со скоростью, определяемой теплопроводностью стеклянных стенок сосуда.

Рис. 1: Установка для определения C_p/C_v методом адиабатического расширения газа

Вместе с ростом температуры растёт и давление газа. З время порядка Δt_T (время установления температуры) система достигает равновесия, и установившаяся температура газа T_3 становится равной комнатной температуре T_1 .

Тогда используя закон Гей-Люссака для изохорического процесса и уравнение (1) найдём γ :

$$\gamma = \frac{\ln(P_1/P_0)}{\ln(P_1/P_3)}. (2)$$

С учётом того, что $P_i = P_0 + \rho g h_i$ и пренебрегая членами второго порядка малости получим из (2):

$$\gamma \approx \frac{h_1}{h_1 - h_2}.\tag{3}$$

2 Ход работы

2.1 Проверка герметичности установки и определение времени установления равновесия

Открываем кран между баллоном и газгольдером с углекислым газом. Увеличение давления в сосуде сопровождается повышением температуры. По манометру давление составляет 10.7 мм.вод.ст.. После закрытия крана давление начинает падать в связи с охлаждением углекислого газа от стенок сосуда. Зависимость давления от времени представлено на графике 2 и в таблице 1.

t, c	h_1 , см.вод.ст.
0.0	10.7
5.0	10.5
5.8	10.3
6.8	10.1
7.8	9.9
8.9	9.7
17.7	9.5
35.0	9.3

Таблица 1: Зависимость давления от времени

Рис. 2: График зависимости давления от времени

Давление установилось через 35 секунд. Наблюдали ещё 55 секунд, показания не менялись. Для следующих измерений возьмём время установления равновесия $\Delta t_T \sim 70$ с.

2.2 Измерение показателя адиабаты для разных времён открытия крана

После наполнения баллона ждём время Δt_T . Фиксируем давление h_1 и открываем кран с атмосферой на $\Delta t_p \sim 0.5$ с (это время достигается быстрым поворотом крана на 180^o). Затем снова ждём время Δt_T и фиксируем h_2 . Проведём серию из 10 измерений. Результаты в таблице 2.

Приборная погрешность показателя адиабаты по формуле:

$$\sigma_{\gamma}^{ ext{приб}} = \sigma_h rac{\gamma}{h_1 - h_2} \sqrt{\left(rac{h_2}{h_1}
ight)^2 + 1}$$

h_1 , см.вод.ст.	h_2 , см.вод.ст.	γ
9.3	2.0	(1.27 ± 0.04)
9.3	2.0	(1.27 ± 0.04)
9.5	2.2	(1.30 ± 0.04)
9.5	2.2	(1.30 ± 0.04)
9.3	2.0	(1.27 ± 0.04)
9.5	2.2	(1.30 ± 0.04)
9.5	2.4	(1.34 ± 0.04)
9.5	2.2	(1.30 ± 0.04)
9.3	2.2	(1.31 ± 0.04)
9.5	2.4	(1.34 ± 0.04)
	Среднее:	(1.30 ± 0.04)

Таблица 2: Показатель адиабаты для $\Delta t_p \sim 0.5~\mathrm{c}$

Далее аналогично проведём по 2 измерения для различных времён открытия крана.

h_1 , см.вод.ст.	h_2 , см.вод.ст.	γ
9.5	2.2	(1.30 ± 0.04)
9.5	2.4	(1.34 ± 0.04)
	Среднее:	(1.32 ± 0.04)

h_1 , см.вод.ст.	h_2 , см.вод.ст.	γ
9.5	2.2	(1.30 ± 0.04)
9.3	2.0	(1.27 ± 0.04)
	Среднее:	(1.29 ± 0.04)

Таблица 3: Показатель адиабаты для $\Delta t_p \sim 2$ с

Таблица 4: Показатель адиабаты для $\Delta t_p \sim 4$ с

h_1 , см.вод.ст.	h_2 , см.вод.ст.	γ
9.1	1.8	(1.25 ± 0.03)
9.5	2.0	(1.27 ± 0.03)
	Среднее:	(1.26 ± 0.04)

ľ		Среднее:	(1.24 ± 0.03)
	9.1	1.8	(1.25 ± 0.03)
	9.5	1.8	(1.23 ± 0.03)
	n_1 , см.вод.ст.	n_2 , см.вод.ст.	γ

Таблица 5: Показатель адиабаты для $\Delta t_p \sim 6$ с

Таблица 6: Показатель адиабаты для $\Delta t_p \sim 8~\mathrm{c}$

h_1 , см.вод.ст.	h_2 , см.вод.ст.	γ
9.3	1.8	(1.24 ± 0.03)
9.3	1.6	(1.21 ± 0.03)
	Среднее:	(1.22 ± 0.04)

Таблица 7: Показатель адиабаты для $\Delta t_p \sim 10~\mathrm{c}$

2.3 Получение окончательного результата экстраполяцией зависимости γ от Δt_p к значению $\Delta t_p=0$

Построим график $\gamma(\Delta t_p)$ и по нему при помощи МНК определим значение γ углекислого газа. Полная погрешность результата по формуле:

$$\sigma_{\gamma_{\text{MTOF}}} = \sqrt{\sigma_{\gamma}^2 + \left(\Delta t_p \sigma_k\right)^2 + \left(k \sigma_{\Delta t_p}\right)^2 + \sigma_k^{\text{CJIYQ}^2}}$$

Рис. 3: График зависимости γ от Δt_p

Итого:

$$\gamma_{\text{mtof}} = (1.32 \pm 0.04)$$

Табличное значение показателя адиабаты для углекислого газа составляет 1.30.

3 Вывод

Определили отношение C_p/C_v углекислого газа по измерению давления в стеклянном сосуде. Результат совпал с табличным значением в пределах погрешности. Значит метод экстраполяции зависимости к нулевому времени истечения газа оправдан, так как полученное значение при наибольшем времени открытия крана (10 c) составило 1.22 ± 0.04 , что существенно отличается от табличного значения.