Формула курса

Итог = Округление(0.5 * Д3 + 0.3 * ПР + 0.2 * K)

Пример задачи

- Сеть ресторанов
- Хотим открыть еще один
- Несколько вариантов размещения
- Какой из вариантов принесет максимальную прибыль?

* см. kaggle.com, TFI Restaurant Revenue Prediction

Обозначения

- *x* объект, sample для чего хотим делать предсказания
 - Конкретное расположение ресторана
- Х пространство всех возможных объектов
 - Все возможные расположения ресторанов
- y ответ, целевая переменная, target что предсказываем
 - Прибыль в течение первого года работы
- У пространство ответов все возможные значения ответа
 - Все вещественные числа

Обучающая выборка

- Мы ничего не понимаем в экономике
- Зато имеем много объектов с известными ответами
- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- ℓ размер выборки

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Про демографию:
 - Средний возраст жителей ближайших кварталов
 - Динамика количества жителей
- Про недвижимость:
 - Средняя стоимость квадратного метра жилья поблизости
 - Количество школ, банков, магазинов, заправок
 - Расстояние до ближайшего конкурента
- Про дороги:
 - Среднее количество машин, проезжающих мимо за день

Алгоритм

- a(x) алгоритм, модель функция, предсказывающая ответ для любого объекта
- Отображает 🛚 в 🖺
- Линейная модель: $a(x) = w_0 + w_1 x_1 + \dots + w_d x_d$
- Например:

$$a(x) = 1.000.000 + 100.000 * (расстояние до конкурента) $-100.000 * (расстояние до метро)$$$

Функция потерь

- Не все алгоритмы полезны
- a(x) = 0 не принесет никакой выгоды
- Функция потерь мера корректности ответа алгоритма
- Предсказали \$10000 прибыли, на самом деле \$5000 хорошо или плохо?
- Квадратичное отклонение: $(a(x) y)^2$

Функционал ошибки

- Функционал ошибки, метрика качества мера качества работы алгоритма на выборке
- Среднеквадратичная ошибка (Mean Squared Error, MSE):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

• Чем меньше, тем лучше

Функционал ошибки

- Должен соответствовать бизнес-требованиям
- Одна из самых важных составляющих анализа данных

Пример специализированной функции потерь

Обучение алгоритма

- Есть обучающая выборка и функционал качества
- ullet Семейство алгоритмов ${\mathcal A}$
 - Из чего выбираем алгоритм
 - Пример: все линейные модели
 - $\mathcal{A} = \{ w_1 x^1 + \dots + w_d x^d \mid w_1, \dots, w_d \in \mathbb{R} \}$
- Обучение: поиск оптимального алгоритма с точки зрения функционала качества

Машинное обучение

• Не все задачи имеют такую формулировку!

- Обучение без учителя
- Обучение с подкреплением
- И т.д.

Машинное обучение

Обучающая выборка:

Площадь	Цена
50	250
60	340
10	20
90	800

Возможные признаки:

- площадь
- площадь²
- площадь³
- sin(площадь)
- √площадь
- и так далее

Возможные модели:

- *w*₁ * площадь
- $w_1 * площадь^2$
- $w_1 * площадь + w_2 * площадь^2$
- и так далее

Вид модели — работа эксперта либо полный перебор.

Выбор весов w_1 , w_2 — автоматический процесс (на основе данных)

Модель a(x) = 5 * площадь

Модель $a(x) = 0.1 * площадь^2$

Площадь	Прогноз	Цена	$(a-y)^2$
50	250	250	0
60	300	340	1600
10	50	20	900
90	450	800	122500

Площадь	Прогноз	Цена	$(a-y)^2$
50	250	250	0
60	360	340	400
10	10	20	100
90	810	800	100

MSE: 31 250

RMSE: 176,78

MSE: 150

RMSE: 12,25

Признаков может быть больше:

- Площадь
- Год постройки
- Наличие бассейна
- Число комнат
- Удалённость от центра
- Рейтинг полицейского участка
- И так далее

Возможные модели:

- Линейная: $w_1 * площадь + w_2 * год + w_3 * бассейн + w_4 * комнаты + w_5 * удалённость + <math>w_6 * полиция$
- Решающие деревья
- Нейронные сети
- Метод k ближайших соседей
- И так далее

Что нужно знать

- 1. Как сформулировать задачу?
- 2. Какие признаки использовать?
- 3. Откуда взять обучающую выборку?
- 4. Как подготовить обучающую выборке?
- 5. Как выбрать метрику качества?
- 6. Как обучить алгоритм?
- 7. Как оценить качество алгоритма?
- 8. Как потом внедрить алгоритм и поддерживать его?

Типы ответов

Регрессия

- Вещественные ответы: $\mathbb{Y} = \mathbb{R}$
- (вещественные числа числа с любой дробной частью)
- Пример: предсказание роста по весу

Классификация

- Конечное число ответов: $|\mathbb{Y}| < \infty$
- Бинарная классификация: $\mathbb{Y} = \{-1, +1\}$

Классификация

• Многоклассовая классификация: $\mathbb{Y} = \{1, 2, ..., K\}$

Классификация

- Классификация с пересекающимися классами: $\mathbb{Y} = \{0,1\}^K$
 - (multi-label classification)
- Ответ набор из К нулей и единиц
- i-й элемент ответа принадлежит ли объект i-му классу

- Какие темы присутствуют в статье?
- (математика, биология, экономика)

Ранжирование

- Набор документов d_1 , ... , d_n
- Запрос q
- Задача: отсортировать документы по релевантности запросу
- a(q,d) оценка релевантности

Ранжирование

Яндекс

картинки с котиками — 5 млн ответов

Найти

Поиск

funcats.by > pictures/ ▼

Картинки с кошками. Прикольные коты. 777 **изображений**. ... 32 **изображения**. Кошки Стамбула. 41 **изображение**. Веселые котята.

Картинки

Видео

🧏 Уморные котики (57 фото) » Бяки.нет | Картинки

Карты

byaki.net > **Картинки** > 14026-umornye-kotiki-57... ▼

Бяки нет! . NET. Уморные **котики** (57 **фото**). 223. Коментариев:9Автор:4ertonok Просмотров:161 395 **Картинки**28-10-2008, 00:03.

Маркет

Ешё

lolkot.ru ▼

Смешные картинки для новых приколов! Сделать свой прикол очень просто. ... Котик верит в чудеса. Он в носке подарок ищет...

🕷 Красивые картинки и фото кошек, котят и котов

foto-zverey.ru > Кошки ▼

Фото и **картинки** кошек и котят потрясающей красоты и нежности. Здесь мы собрали такие **изображения**, которые всегда вызывают море положительных эмоций...

₽ Обои для рабочего стола Котята | картинки на стол Котята

7fon.ru > Чёрные обои и картинки > Обои котята ▼

Картинки Котята с 1 по 15. **Обои** для рабочего стола Котята. ... Скачать **Картинки** Котята на рабочий стол бесплатно.

Кластеризация

- ¥ отсутствует
- Нужно найти группы похожих объектов
- Сколько таких групп?
- Как измерить качество?

• Пример: сегментация пользователей мобильного оператора

- Выбираем алгоритм с лучшим качеством на обучающей выборке
- Как он будет вести себя на новых данных?
- Смог ли он выразить y через x?

- Зеленый истинная зависимость
- Красный прогноз алгоритма
- Синий выборка
- Линейный алгоритм

- Без признаков
- Константный алгоритм

- Без признаков
- Константный алгоритм

Недообучение

• 1 признак

• x

- 1 признак
- χ

Недообучение

Обобщающая способность

- 3 признака
- x, x^2 , x^3

Обобщающая способность

- 9 признаков
- $x, x^2, x^3, x^4, ..., x^9$

Переобучение (overfitting)

Обобщающая способность

- Недообучение плохое качество на обучении и на новых данных
- Переобучение хорошее качество на обучении, плохое на новых данных

• Переобучение — алгоритм запоминает ответы, а не находит закономерности

Как выявить переобучение?

- Хороший алгоритм хорошее качество на обучении
- Переобученный алгоритм хорошее качество на обучении
- По обучающей выборке очень сложно выявить переобучение

Как выявить переобучение?

- Отложенная выборка данные, на которых не обучались
- Кросс-валидация
- Меры сложности модели

Задачи анализа данных

Медицинская диагностика

- Объект пациент в определенный момент времени
- Ответ диагноз
- Классификация с пересекающимися классами

Медицинская диагностика — признаки

- Бинарные: пол, головная боль, слабость, и т.д.
- Порядковые: тяжесть состояния, желтушность, и т.д.
- Вещественные: возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата, и т.д.

Медицинская диагностика — особенности

- Много пропусков в данных (missing data)
- Недостаточный объем данных
- Алгоритм должен быть интерпретируемым
- Нужна оценка вероятности для каждого заболевания

Кредитный скоринг

- Объект заявка на выдачу кредита банком
- Ответ вернет ли клиент кредит
- Бинарная классификация

Кредитный скоринг — признаки

- Бинарные: пол, наличие телефона, и т.д.
- Категориальные: место жительства, профессия, семейный статус, работодатель, и т.д.
- Порядковые: образование, должность, и т.д.
- Вещественные: возраст, зарплата, стаж работы, доход семьи, сумма кредита, и т.д.

Кредитный скоринг — особенности

• Нужно оценивать вероятность дефолта

Биоинформатика и медицина

- Поиск связей между ДНК и заболеваниями (23andme и другие)
- Таргетные лекарства
- Анализ медицинских снимков

Рекомендательные системы

- Полки рекомендаций на Amazon генерируют 35% от всех покупок
- Рекомендации на основе машинного обучения и анализа больших объёмов данных

Зачем это нужно?

Искусственный интеллект

фильм где астронавту протыкают скафандр

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

Марсианин

The Martian, 2015 (16+)

Марсианская миссия «Арес-3» в процессе работы была вынуждена экстренно покинуть планету из-за надвигающейся песчаной бури. Инженер и биолог Марк Уотни получил повреждение скафандра во время песчаной бури. Сотрудники миссии, посчитав его погибшим,... Читать дальше

Сильный ИИ

через 20-100 лет

Специализированный ИИ

уже сейчас

Как можно заниматься анализом данных?

Data scientist

- Работа с данными
- Знание инструментов и методов
- Опыт решения задач

• Менеджер

- Понимание, как работает машинное обучение
- Понимание узких мест, оценивание сроков

• Заказчик

- Метрики качества
- Требования к данным
- Ограничения современных подходов