Gimme Some Credit!

Armando Rangel Mariam Dayoub Sander Iwase Solano Jacon

Roadmap

- 1. Who We Are & Project's Goals
- 2. Dataset
- 3. Data Visualization
- 4. The Model
- 5. Final Product
- 6. Conclusions & Recommendations

1. Who We Are & Project's Goals

- We are a group of data scientists hired by a small US bank
 - Covid-19 pandemic
 - Digitalization trend
 - Efficiency (costs), productivity (workload) & client satisfaction (response time)
 - Machine learning algorithm
 - Diversify loan portfolio

2. Dataset: Original

- The dataset has information about loan requests made to the bank, available in the website https://www.kaggle.com/vineeth1999/loanapplication
- The dataset comprises 17 features and 1 target for 60,804 loan requests

Loan, TD Current, Loan, Amount Term Credit.Score Years.in.current.job Home. Ownership Annual.Income Purpose Monthly.Debt Years.of.Credit.History Months.since.last.delinquent Number.of.Open.Accounts Number.of.Credit.Problems Current.Credit.Balance Maximum.Open.Credit Bankruptcies Tax.Liens Loan.Status

2. Dataset: Data Cleaning & Removal of Outliers

- Annual Income and Credit Score: deleted rows with NA
- Current Loan Amount: deleted lines with 99999999
- Home Ownership: substituted 'HaveMortgage' for 'Home Mortgage'
- Years in Current Job: in the case of NA, conservatively filled the gaps with 'less than 1 year'
- Bankruptcies and <u>Tax Liens</u>: substituted NA for 0

CATEGORY	SCORE		
Excellent (30% of People)	750 - 850		
Good (13% of People)	700 - 749		
Fair (18% of People)	650 - 699		
Poor (34% of People)	550 - 649		
BAD (16% of People)	350 - 549		

- Credit Score: for very high values (e.g., 7,500), it was assumed that those were typos and the values were divided by 10
- Outliers removed: Annual income > \$4,000,000
 (1 row) and Loan vs. Income > 1 (1 row)

2. Dataset: Encoding & Feature Engineering

Feature	Encoding / Feature Engineering		
Number of open accounts	Buckets: < 10, 11-20 and > 20 → Label encoder (0, 1, 2)		
Number of credit problems	Buckets: 0, 1 or more than 1 → Label encoder (0, 1, 2)		
Years of credit history	Buckets: (0-10], (10, 20], (20, 30] and > 30 → Label encoder (0, 1, 2, 3)		
Credit score*	Buckets: below average (< 703), average (703 a 729) and good (> 729) → Label encoder (0, 1, 2)		
Years in the current job	Strings (e.g., '1 year') converted to int. If 'less than 1 year', then, 0. If, '10+ years', then 10		
Tax liens	If 0, then 0. If > = 1, then 1		

^{*} The average credit score of US consumers is 703. Source: https://www.cnbc.com/select/average-fico-score-hits-record-high-703/#:~:text=The%20average%20FICO%20score%20in,credit%20(670%20to%20739)

2. Dataset: Encoding & Feature Engineering (cont.)

Feature	Encoding / Feature Engineering		
Purpose of the loan	Debt consolidation, home improvement, business loan, buy a car, medical bills, buy a home, and other → One Hot Encoder		
Bankruptcies	If client has ever gone bankrupt, then 1. Else, 0		
Any delinquency in the past 3 years?	If yes, then 1. Else, 0		
Term	Short-term = 0 and long-term = 1		
Loan vs. Income	Current loan amount / Annual income		
Credit minus loan	Take the difference between current credit balance and current loan amount. If it is greater than 0, then 1. Else, 0		
Leverage	(Monthly debt x 12) / Annual income		

2. Dataset: Final

- The final dataset was comprised of 41,171 samples
- The target is unbalanced with 29,980 loans approved (1) and 11,191 loans rejected (0)

Lan Chabus Targe	
Loan.Status	int64
Credit.Minus.Loan	int64
Years.current_job_enc	int64
Tax.Liens.Enc	int64
Leverage	float64
Bankruptcies.enc	int64
Years.since.last.delinquent	int64
Loan.vs.Income	float64
Term.Encoded	float64
Number.of.Open.Accounts.Labeled	int64
Number.of.Credit.Problems.Labeled	int64
Credit.Score.Labeled	int64
Year.Credit.History.Labeled	int64
H.O.Home Mortgage	float64
H.O.Own Home	float64
H.O.Rent	float64
Purp.Business Loan	float64
Purp.Buy House	float64
Purp.Buy a Car	float64
Purp.Debt Consolidation	float64
Purp.Home Improvements	float64
Purp.Medical Bills	float64
Purp.Other	float64

3. Data Visualization

3. Data Visualization (cont.)

4. The Model: Background & Performance Metrics

- Target variable: 0 (loan rejected) or 1 (loan approved) → Classification models
- Applied SMOTE technique to the training set
- Performance metrics

Metric	Formula	Chosen because		
✓ Precision	$rac{TP}{TP+FP}$	We want to be right to with a high degree of confidence in our predictions in order to automate the human decision-making process		
F1 $2rac{precision imes recall}{precision+recall}$		It is a metric that is appropriate to unbalanced datasets with different costs of false negatives and false positives		

4. Models Tests and Their Performance Metrics

With feature selection and grid search for hyperparameter tuning

Model	Precision_weighted	F1_weighted	
AdaBoost Classifier	0.64	0.61	
KNN Classifier	0.66	0.35	
Linear SVM	0.66	0.62	
Logistic	0.67	0.62	
Neural network	0.66	0.57	
Random Forest Classifier	0.65	0.64	
SGD Classifier	0.62	0.12	
XGBoost	0.64	0.63	

- Random Forest Classifier was chosen: Simple and explainable
- ROC-AUC curve: Random Forest is better than a simple random model

4. The Model: Correlation Matrix & Feature Selection

Multicollinearity is not an issue

Feature importance ranking

4. The Model: Random Forest Classifier

Precision(1): out of 100 loan requests approved by the model, it was actually correct about 76

Precision(0): out of 100 loan requests that were **rejected** by the model, it was correct about 35 → BIASES

RANDOM FOR	EST	W/ FEATURE S	SELECTION	& GRID SEA	RCH - CLASSI	FICATION REPORT
		precision	recall	f1-score	support	
	0	0.35	0.40	0.37	3373	
	1	0.76	0.72	0.74	8980	
accura	су			0.63	12353	
macro a	vg	0.55	0.56	0.55	12353	
weighted a	vg	0.65	0.63	0.64	12353	

Recall(1): the model correctly identified 72% of all loans that were **approved**

Recall(0): the model correctly identified 40% of all loans that were rejected

4. Looking for Thresholds for Automation

Customers value digitalization more than branch banking

4. Test: 53% of Loan Requests Were Automated

- 53% of loan requests were automated, using thresholds
- The other 47% of requests required human intervention
- 40% of loan requests were automatized and classified correctly

5. Final Product: The Website

https://gimmecredit-solano.herokuapp.com

Now, let's do a few demos

6. Conclusions & Recommendations

- The model allowed for the automation of 53% of loan requests, correctly classifying 75% of the automated requests
- For requests in which the model has lower precision rates, its output would be used as an input for the human intervention
 - Given that human interactions involve biases, the goal in these cases is to focus on the decisionmaking process so that similar requests have similar decisions made by different humans
- To improve the model's precision rates, data for new loan requests will be collected and fed into the model for continuous computations
- The loan request form for new loans should be filled online in order to improve the data collection process (e.g., avoiding typos in credit score)
- We propose redesigning the loan request form to include additional information, such as the client's zip code, marital status, income of co-signers, gender, etc. in an attempt to capture some biases

Thank you very much

Give us some credit, if you liked it...

