Sistemas de Informação Gerencial

Aula 4

Prof. Luciano Frontino de Medeiros

Organização da Aula

Aula 4

- Banco de dados
- Sistemas de Gerenciamento de BD
- Data Warehousee Data Mining

Sistemas de Informação Gerencial

Banco de dados

Banco de Dados

"Um banco de dados é uma coleção de dados persistentes utilizada pelos sistemas de aplicação de uma empresa".

(Date)

• (...) um grupo lógico de arquivos relacionados entre si, armazenando dados e associações entre eles, para evitar uma variedade de problemas associados a um ambiente tradicional de arquivos

(Turban)

de elementos de dados relacionados logicamente".

"Um conjunto integrado

(O'Brien)

Princípios de BD

- Redundância
- Inconsistência
- Integração

Redundância

 O armazenamento dos dados de determinada empresa, ao longo de suas atividades, pode tender à redundância

- Setores que dependem de informações comuns podem fazer a guarda dos mesmos dados simultaneamente
- A falta de cuidado na análise do sistema de informações pode incorrer em custos de armazenamento

Inconsistência

- Dados armazenados referentes a uma situação que pode sofrer alterações ao longo do tempo necessita de atualização
- Dados desatualizados podem gerar inconsistência de representação
- A redundância pode também acarretar inconsistência, (...)

- (...) pois dados guardados em locais diferentes podem sofrer alterações diferenciadas com o tempo
- Inconsistência pode gerar tomada de decisões defasadas ou errôneas

Integração

 Dados existentes em um BD geralmente são compartilhados por várias pessoas ou setores em uma empresa

A necessidade de se haver integração é o de estabelecer procedimentos para o acesso em vários níveis e a atualização dos dados de forma a manter a "imagem" do mundo real única e evitando ruídos na comunicação entre setores

Armazenamento e Consulta em um BD

 A melhor maneira de se visualizar um registro de uma tabela em um banco de dados é através de uma lista ou relação

Listas - Registros

 Numa lista, os dados referentes a certo contexto serão colocados em colunas, um abaixo do outro, e as colunas dos dados de diferentes naturezas são colocadas uma ao lado da outra

Tabela

- Uma tabela possui um nome ou identificador próprio
- Um banco de dados de certo sistema pode ser constituído de várias tabelas

Tabela - Representação

 Representação apenas com atributos

Estoque

Código

Nome

Quantidade

Custo

Armazenamento Físico

0	0	Q	1	Р	a	r	a	f	ñ	S	Ö.	0	0	3	E8					
Q	Q	Q	Q	5.	Q	Q	Q	2	С	h	a.	٧	e.	d	e.	F	e.	n	d	a
Q	Q	Q	20	Q	Q	Q	4	32	Q	Q	Q	3	Р	r	<u>e</u>	g	Q			
Q	Q	I	D0	Q	Q	Q	Q	2												

 Cada letra, número ou símbolo é um byte

"Fila de Bytes"

 O tamanho total em bytes do registro é de 28 (dois campos numéricos inteiros de 4 bytes, um campo string de 15 bytes e um campo moeda de 5 bytes)

Conversão de Formatos

É importante verificar
 que os valores inteiros
 são convertidos na
 representação
 hexadecimal para depois
 serem armazenados

Exemplo

- 1000 → 3E8
- Inteiros de 4 bytes:00 00 03 E8

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F

Sistema Sistema

Armazenamento Físico

1	Q	Q	Q	1	50	61	72	61	66	75	73	6E	20	20	20	20	20	20	20	Q	Q	3	E8
	Q	Q	0	Q	5.	0	Q	0	2.	43	68	61	76	65	20	64	65	20	46	65	6E	64	61
	20	Q	Q	Q	14	Q	Q	Q	4.	32	Q	Q	Q	3	50	72	65	67	6E	20	20	20	20
	20	20	20	20	20	20	Q	0	I	D0	Q	Q	Q	0	2.								

 Letras e símbolos também são convertidos (ASCII)

Consulta dos Dados

- Antes das linguagens de consulta, os próprios sistemas deveriam ser programados com a forma de consulta dos dados
- Exigia conhecimento de programação

Exemplo

Consultando o Conteúdo

Linguagem SQL

Standard Query Language

 As metodologias utilizadas atualmente em softwares de BD permitem que tal esforço seja bem economizado Desde que fornecidas as interfaces adequadas, o processo inteiro de uma listagem ou consulta (no inglês, query) pode ser obtido com apenas uma declaração SQL simples Podemos assim enviar o seguinte comando, para uma interface de um SGBD (desde que a estrutura da tabela, o modelo lógico, esteja criada):

SELECT * FROM PRODUTO;

 O processo inteiro de uma listagem ou consulta (no inglês, query) pode ser obtido com apenas uma declaração SQL simples:

SELECT * FROM PRODUTO;

Resultado da Consulta

 O resultado da consulta já sai em um formato padrão:

CÓDIGO	NOME	QUANTIDADE	CUSTO
1	Parafuso	1000	0,05
2	Chave de	20	4,50
	Fenda		
3	Prego	2000	0,02

Sistemas de Informação Gerencial

 Sistemas de Gerenciamento de Banco de Dados

SGBD

- Responsável por todas as tarefas pertinentes ao armazenamento, recuperação, segurança e gerenciamento dos dados
- Existem vários SGBD's no mercado (ORACLE, SQL Server, MySQL, etc.)
- Um SI sempre é desenvolvido de forma conjunta com um SGBD

SGBDs e Internet

 Com o advento da internet, os SI romperam a barreira das redes locais e internas às empresas para disponibilizarem informações de forma global na web Qualquer cliente de uma empresa pode acessar a página da mesma e comprar produtos remotamente, em qualquer parte do mundo

Os SGBD's foram
 então adaptados para
 contemplarem esta
 possibilidade de conexão
 de bancos de dados com
 sistemas na web

SGBDs e *Cloud* ("Nuvem")

 A operação dos SI, seja em redes intranet ou mesmo extranet ou internet, ficou facilitada para os usuários e permitindo grande economia em função da diminuição da redundância

Sistemas de Informação Gerencial

Data Warehouse e Data Mining

Data Warehouse

 São um conjunto de dados granulares integrados, armazenando e gerenciando os dados em um certo período de tempo que podem ser resumidos ou agregados para a criação de novas formas de dados

Grandes Repositórios

 A partir da formação de um DW, oferecendo uma grande quantidade de dados, fica possível por parte da empresa (...) (...) a busca de certas informações referentes a **padrões** nos dados que se repitam num certo período de tempo

Busca em Dados Massivos

 Por exemplo, pode ser constatado num sistema de CRM um padrão de comportamento de certo grupo de clientes, numa faixa etária bem definida

Busca em *Big Data*

- (...) que compram determinado produto em um período específico de tempo
- Isto pode ser útil para que a empresa defina políticas de marketing direcionadas para esse grupo de clientes

Data Mining

 A mineração de dados constitui-se então de diferentes técnicas que podem ser aplicadas a um conjunto de dados para a extração de padrões

Mineração de Dados

 Pode possibilitar às empresas a identificação de boas oportunidades de negócios, a partir dos dados armazenados em seus SGBD's e outras fontes complementares de dados

Referências de Apoio

- LAUDON, K; LAUDON, J.
 Sistemas de Informação
 Gerenciais. 9. ed. São Paulo:
 Pearson Prentice Hall, 2010.
- MEDEIROS, L. F. Banco de Dados: Princípios e Prática. Curitiba: Ibpex, 2007.
- O´BRIEN, J. A. Sistemas de informação e as decisões gerenciais na era da internet.

 Tradução do Cid Knipol Moroira

Tradução de Cid Knipel Moreira. São Paulo: Saraiva, 2002.

 TURBAN, E.; RAINER JUNIOR, R.
 K.; POTTER, R. E. Administração de tecnologia da informação.
 Rio de Janeiro: Campus, 2005.