1

Assignment 6

Shivangi Parashar AI20MTECH14012

Abstract—This document explains the concept of affline transformation of equations when the origin is moved to the point

Download all latex-tikz codes from

https://github.com/shivangi-975/EE5609-

Matrix_Theory/blob/master/Assignment6/ Assignment6.tex

1 Problem

To what point must origin be shifted so that

$$\mathbf{x}^{T} \begin{pmatrix} 2 & \frac{-3}{2} \\ \frac{-3}{2} & 4 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 10 & -19 \end{pmatrix} \mathbf{x} + 23 = 0 \qquad (1.0.1)$$

is transformed to

$$\mathbf{x}^T \begin{pmatrix} 2 & \frac{-3}{2} \\ \frac{-3}{2} & 4 \end{pmatrix} \mathbf{x} = 1 \tag{1.0.2}$$

2 Solution

Given,

$$\mathbf{x}^{T} \begin{pmatrix} 2 & \frac{-3}{2} \\ \frac{-3}{2} & 4 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 10 & -19 \end{pmatrix} \mathbf{x} + 23 = 0$$
 (2.0.1)

The general second degree equation can be expressed as follows,

$$\mathbf{x}^{\mathbf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathbf{T}}\mathbf{x} + f = 0 \tag{2.0.2}$$

From the given second degree equation we get,

$$\mathbf{V} = \begin{pmatrix} 2 & \frac{-3}{2} \\ \frac{-3}{2} & 4 \end{pmatrix} \tag{2.0.3}$$

$$\mathbf{u} = \begin{pmatrix} 5 \\ \frac{-19}{2} \end{pmatrix} \tag{2.0.4}$$

$$f = 23$$
 (2.0.5)

Origin which is moved to the point is given by c The above equation (2.0.2) can be modified as

$$(\mathbf{x} + \mathbf{c})^T \mathbf{V} (\mathbf{x} + \mathbf{c}) + 2\mathbf{u}^T (\mathbf{x} + \mathbf{c}) + 23 = 0$$
 (2.0.6)

From equation (2.0.6) consider,

$$\implies (\mathbf{x} + \mathbf{c})^T \mathbf{V} (\mathbf{x} + \mathbf{c}) \tag{2.0.7}$$

$$\implies \mathbf{x}^T \mathbf{V} \mathbf{x} + \mathbf{c}^T \mathbf{V} \mathbf{x} + \mathbf{x}^T \mathbf{V} \mathbf{c} + \mathbf{c}^T \mathbf{V} \mathbf{c}$$
 (2.0.8)

we know that

$$\mathbf{x}^T \mathbf{V} \mathbf{c} = \mathbf{c}^T \mathbf{V} \mathbf{x} \tag{2.0.9}$$

Substituting equation (2.0.9) in equation (2.0.8)

$$\implies \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{c}^T \mathbf{V} \mathbf{x} + \mathbf{c}^T \mathbf{V} \mathbf{c} \tag{2.0.10}$$

Equation (2.0.6) is modified as

$$\implies \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{c}^T \mathbf{V} \mathbf{x} + \mathbf{c}^T \mathbf{V} \mathbf{c} + 2\mathbf{u}^T \mathbf{x} 2\mathbf{u}^T \mathbf{c} + 23 = 0$$
(2.0.11)

Equating (2.0.6) and (1.0.2):

$$\implies \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{c}^T \mathbf{V} \mathbf{x} + \mathbf{c}^T \mathbf{V} \mathbf{c} + 2\mathbf{u}^T \mathbf{x} 2\mathbf{u}^T \mathbf{c} + 23 = \mathbf{x}^T \mathbf{V} \mathbf{x} - 1$$
(2.0.12)

From above equation (2.0.12) we have,

$$2\mathbf{c}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} = 0 \tag{2.0.13}$$

and

$$2\mathbf{u}^T\mathbf{x} + \mathbf{v}^T\mathbf{c} = -22 \tag{2.0.14}$$

From (2.0.13)

$$\mathbf{c}^T \mathbf{V} \mathbf{x} = -\mathbf{u}^T \mathbf{x} \tag{2.0.15}$$

$$\mathbf{c}^T \mathbf{V} = -\mathbf{u}^T \tag{2.0.16}$$

$$\mathbf{c}^T = -\mathbf{V}^{-1}\mathbf{u}^T \tag{2.0.17}$$

Adjoining V with identity matrix to compute inverse:

$$\begin{pmatrix} 2 & \frac{-3}{2} & 1 & 0 \\ \frac{-3}{2} & 4 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{2}R_1} \begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ \frac{-3}{2} & 4 & 0 & 1 \end{pmatrix} (2.0.18)$$

$$\begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ \frac{-3}{2} & 4 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{3}{2}R_1} \begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ 0 & \frac{23}{8} & \frac{3}{4} & 1 \end{pmatrix} (2.0.19)$$

$$\begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ 0 & \frac{23}{8} & \frac{3}{4} & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{8}{23}R_2} \begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{6}{23} & \frac{8}{23} \end{pmatrix} \quad (2.0.20)$$

$$\begin{pmatrix} 1 & \frac{-3}{4} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{6}{23} & \frac{8}{23} \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + \frac{3}{4}R_2} \begin{pmatrix} 1 & 0 & \frac{16}{23} & \frac{6}{23} \\ 0 & 1 & \frac{6}{23} & \frac{8}{23} \end{pmatrix}$$
(2.0.21)

$$\mathbf{V}^{-1} = \begin{pmatrix} \frac{16}{23} & \frac{6}{23} \\ \frac{6}{23} & \frac{8}{23} \end{pmatrix} \tag{2.0.22}$$

From (2.0.17)

$$\mathbf{c}^T = \begin{pmatrix} \frac{-16}{23} & \frac{-6}{23} \\ \frac{-6}{23} & \frac{-8}{23} \end{pmatrix} \begin{pmatrix} 5 \\ \frac{-19}{2} \end{pmatrix}$$
 (2.0.23)

From above we have:

$$\mathbf{c}^T = \begin{pmatrix} -1\\2 \end{pmatrix} \tag{2.0.24}$$

Hence,

$$\mathbf{c} = \begin{pmatrix} -1 & 2 \end{pmatrix} \tag{2.0.25}$$

From (1.0.1) and (1.0.2) when the origin is moved to the point $c(-1 \ 2)$ V doesn't change

$$det(\mathbf{V}) = 5.75$$
 (2.0.26)

Since det(V) > 0 the given equation represents the ellipse. The below plot 1 verifies the given ellipse

Fig. 1: Ellipse when origin is shifted