Лекции 13-14.

Параметрически заданные функции и их дифференцирование. Уравнение касательной к параметризованной кривой

Определение. Пусть заданы функции

$$x = \varphi(t), y = \psi(t), t \in (\alpha, \beta). \tag{1}$$

Предположим, что функция $x = \varphi(t)$ на интервале (α, β) имеет обратную функцию $t = \varphi^{-1}(x)$. Тогда определена новая функция $y = \psi(\varphi^{-1}(x))$, называемая функцией, заданной параметрически соотношениями (1).

Теорема. Верна формула

$$y'_{x} = \frac{\psi'(t)}{\varphi'(t)}$$
, или $y'_{x} = \frac{y'(t)}{x'(t)}$. (2)

Доказательство. По теоремам о дифференцировании сложной функции и о дифференцировании обратной функции

$$y' = \psi'\left(\varphi^{-1}\left(x\right)\right)\left(\varphi^{-1}\left(x\right)\right)' = \frac{\psi'\left(\varphi^{-1}\left(x\right)\right)}{\varphi'\left(t\right)} = \frac{\psi'\left(t\right)}{\varphi'\left(t\right)}.$$

Пример.

- 1) Найти y'_x , если $x = \cos t$, $y = \sin t$, $t \in (0, \pi/2)$.
- 2) Найти y'_x , если $x = e^t \cos t$, $y = e^t \sin t$, $t \in (0, \pi/2)$.

Уравнения (1) задают на плоскости xy кривую L. Предположим, что эта кривая имеет касательную в точке $M_0(x_0,y_0), x_0=\varphi(t_0), y_0=\psi(t_0)$. Пусть $M_1(x_1,y_1), x_0=\varphi(t_1), y_0=\psi(t_1)$ — другая точка кривой L. Запишем уравнения секущей, проходящей через точки $M(x_0,y_0)$ и $M(x_1,y_1)$:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}, \quad \frac{x - \varphi(t_0)}{\varphi(t_1) - \varphi(t_0)} = \frac{y - \psi(t_0)}{\psi(t_1) - \psi(t_0)}.$$

Поделим знаменатели на $(t_1 - t_0)$:

$$\frac{x - \varphi(t_0)}{(\varphi(t_1) - \varphi(t_0))/(t_1 - t_0)} = \frac{y - \psi(t_0)}{(\psi(t_1) - \psi(t_0))/(t_1 - t_0)}.$$

Переходя к пределу при $t_1 \to t_0$, получим уравнение касательной к кривой в точке $M\left(x_0,y_0\right)$ при условии, что $\varphi'(t_0) \neq 0$, $\psi'(t_0) \neq 0$ одновременно:

$$\frac{x - \varphi(t_0)}{\varphi'(t_0)} = \frac{y - \psi(t_0)}{\psi'(t_0)}.$$
(3)

Дифференцирование функций, заданных неявно

Определение. Говорят, что функция $y = f(x), x \in (a,b)$, неявно задана уравнением F(x,y) = 0, если F(x,f(x)) = 0 для всех $x \in (a,b)$.

Для вычисления производной неявной функции, заданной уравнением F(x,y)=0, следует продифференцировать это уравнение по x (рассматривая левую часть как сложную функцию x), а затем полученное уравнение разрешить относительно y_x' .

Пример. Уравнение $x^2 + y^2 = 1$ неявно определяет на интервале (-1; 1) две функции $y_1 = \sqrt{1-x^2}$, $y_2 = -\sqrt{1-x^2}$. Найти их производные, не используя явных выражений.

Пусть y = y(x) любая из этих функций. Тогда, дифференцируя по x тождество $x^2 + y^2(x) = 1$, получим: $2x + 2y \cdot y' = 0$. Отсюда $y'(x) = -\frac{x}{y(x)}$, т.е.

$$y_1'(x) = -\frac{x}{\sqrt{1-x^2}}, \ y_2'(x) = \frac{x}{\sqrt{1-x^2}}.$$

Определение дифференцируемой (в точке) функции. Необходимое и достаточное условие дифференцируемости функции. Дифференциал первого порядка

Предположим, что функция y = f(x) определена в некоторой окрестности точки x_0 .

Определение. Функция y = f(x) называется дифференцируемой в точке x_0 , если ее приращение в этой точке может быть представлено в виде

$$\Delta y = A\Delta x + \alpha \left(\Delta x\right) \Delta x,\tag{1}$$

где $A = A(x_0)$, $\alpha(x_0, \Delta x) \to 0$, $\Delta x \to 0$. Величина $A\Delta x$

называется дифференциалом функции в точке x_0 , соответствующим приращению аргумента Δx , и обозначается символом dy.

Теорема. Для того чтобы функция y = f(x) была дифференцируемой в точке x_0 , необходимо и достаточно, чтобы существовала производная $f'(x_0)$, при этом справедливо равенство $A = f'(x_0)$.

Доказательство:

Чеобходимость Пусть функция y = f(x) дифференцируема в точке x. Докажем, что в этой точке существует производная f'(x). Действительно, из дифференцируемости функции y = f(x) в точке x следует, что приращение функции Δy , отвечающее приращению Δx аргумента, можно представить в виде

$$\Delta y = A\Delta x + \alpha(\Delta x)\Delta x,$$

откуда

$$\frac{\Delta y}{\Delta x} = A + \alpha(\Delta x),$$

где величина A для данной точки x постоянна (не зависит от Δx), а $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$. По теореме о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, отсюда следует, что

$$A = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x).$$

Существование производной доказано. Одновременно мы установили, что A = f'(x). Достаточность. Пусть функция f(x) в точке x имеет конечную производную f'(x).

Докажем, что f(x) в этой точке дифференцируема. Действительно, существование производной f'(x) означает, что при $\Delta x \to 0$ существует предел отношения $\frac{\Delta y}{\Delta x}$ и что

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x).$$

Отсюда, в силу теоремы о связи функции, имеющей предел, с ее пределом и бесконечно малой функцией, вытекает, что

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x),$$

где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$, и, значит,

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x. \tag{2}$$

Так как в правой части формулы (2) величина f'(x) не зависит от Δx , а $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$, то равенство (2) доказывает, что функция y = f(x) дифференцируема в точке x.

Это утверждение позволяет называть дифференцируемой всякую функцию, имеющую производную.

Заметим, что $dx = \Delta x$. Получаем формулу для вычисления дифференциала

$$dy = f'(x_0)dx.$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$M_1$$

$$y$$

$$y$$

$$y$$

$$Ax$$

$$A$$

$$A$$

$$x + \Delta x$$

Геометрический смысл дифференциала. Дифференциал $dy(x, \Delta x)$ равен приращению ординаты касательной к графику функции y = f(x) в точке M(x, y) при приращении аргумента, равном Δx .

Теорема (Основные свойства дифференциала). Пусть u(x) и v(x)— дифференцируемые функции в точке x_0 . Тогда

$$1)d(u+v) = du + dv;$$

2)
$$d(u-v) = du - dv$$
;

3)
$$d(uv) = vdu + udv$$
.

4)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}, v \neq 0.$$

Если C = const, то dC = 0 и d(Cu) = Cdu.

Из формулы $\Delta y = A\Delta x + \alpha (\Delta x) \Delta x$ следует, что если $f'(x_0) \neq 0$, то при $\Delta x \to 0$ приращение функции Δy и ее дифференциал dy в фиксированной точке x_0 являются эквивалентными бесконечно малыми, что позволяет записать приближенное равенство:

$$\Delta y \approx dy = f'(x_0) \Delta x$$
 при малых Δx .

Для вычисления приближенного значения функции в точке $x_0 + \Delta x$ применяется формула

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

Пример. Вычислить полное приращение Δy и дифференциал dy функции $y = 3x - x^2$ при $x_0 = 1$ и $\Delta x = 0{,}005$.

Инвариантность формы первого дифференциала. Рассмотрим сложную функцию F(x) = f(g(x)), где f(y) и g(x)— дифференцируемые функции. Тогда dF = F'(x)dx. По теореме о производной сложной функции

$$F'(x) = f'(g(x)) \cdot g'(x), dF = f'(g(x)) \cdot g'(x) dx = f'(y) dy.$$

Дифференциал функции равен ее производной, умноженной на дифференциал аргумента, независимо от того, является этот аргумент независимой переменной или же функцией.

Производные высших порядков. Механический смысл второй производной

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 и имеет производную f'(x) в этой окрестности.

Определение. Второй производной $f''(x_0)$ функции y = f(x) в точке x_0 называется первая производная от функции f'(x) в точке x_0 .

Таким образом, f''(x) = (f'(x))', или на языке пределов

$$f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x},$$

если предел справа существует и конечен.

Механический смысл второй производной. Предположим, что материальная точка M движется вдоль оси x, s(t) - координата точки M в момент времени t . Тогда скорость есть производная от пройденного пути по времени: v = s'(t). Ускорение a = v'(t) = s''(t) есть вторая производная от пройденного пути по времени.

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 и имеет производные до порядка (n-1) в этой окрестности.

Определение. Производной $f^{(n)}(x_0)$ порядка n функции y = f(x) в точке x_0 называется первая производная от функции $f^{(n-1)}(x)$ в точке x_0 .

Таким образом, $f^{(n)}(x) = (f^{(n-1)}(x))'$, или на языке пределов

$$f^{(n)}(x_0) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x}.$$

Верны формулы

$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)},$$

 $(Cu)^{(n)} = Cu^{(n)}, C = \text{const.}$

Примеры.

1)
$$y = e^x$$
, $y^{(n)}(x) = e^x$, $n \in \mathbb{N}$.

Дифференциалы высших порядков. Первый дифференциал dy = f'(x)dx является функцией как x, так и dx. Зафиксируем dx, рассмотрим dy как функцию x и найдем первый дифференциал от dy:

$$d(dy) = d(f'(x)dx) = dx \cdot d(f'(x)) = dx \cdot f''(x)dx = f''(x)(dx)^{2}.$$

Таким образом, второй дифференциал функции y = f(x) вычисляется по формуле

$$d^2y = f''(x)dx^2.$$

Аналогично, дифференциал порядка n функции y = f(x) вычисляется по формуле

$$d^n y = f^{(n)}(x) dx^n.$$

Для производной n—го порядка верна формула

$$f^{(n)}(x) = \frac{d^n y}{dx^n}.$$