Class-Balanced Loss Based on Effective Number of Samples

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, Serge Belongie CVPR 2019

2020.08.05 윤주열

Introduction

• Long tailed distributions in real world datasets harms performance for weakly represented classes.

Related Work

 Resampling Undersampling Samples of majority class Original dataset Oversampling Copies of the minority class

Original dataset

Related Work

Cost-sensitive re-weighting (Class-balanced loss)

CROSSENTROPYLOSS

$$egin{aligned} ext{loss}(x, class) &= -\textit{weight}[class] \log \left(rac{\exp(x[class])}{\sum_{j} \exp(x[j])}
ight) \end{aligned}$$

Commonly used weights: Inverse frequency, Square rooted inverse frequency ("smoothed")

Focal Loss

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t).$$

Method

• Intuition: Given a training set, we can count the "effective number" of samples the set has.

Figure 2. Giving the set of all possible data with volume N and the set of previously sampled data, a new sample with volume 1 has the probability of p being overlapped with previous data and the probability of 1-p not being overlapped.

Definition 1 (Effective Number). The *effective number* of samples is the expected volume of samples.

Proposition 1 (Effective Number). $E_n = (1-\beta^n)/(1-\beta)$, where $\beta = (N-1)/N$.

$$p = E_{n-1}/N$$

$$E_n = pE_{n-1} + (1-p)(E_{n-1}+1) = 1 + \frac{N-1}{N}E_{n-1}. (1)$$

Assume $E_{n-1} = (1 - \beta^{n-1})/(1 - \beta)$ holds, then

$$E_n = 1 + \beta \frac{1 - \beta^{n-1}}{1 - \beta} = \frac{1 - \beta + \beta - \beta^n}{1 - \beta} = \frac{1 - \beta^n}{1 - \beta}. (2)$$

$$N = \lim_{n \to \infty} E_n = 1/(1 - \beta).$$

Method

Class-Balanced Loss
 use the effective number to give weights to different classes.
 applicable to different types of loss.

$$E_{n_i} = (1 - \beta_i^{n_i})/(1 - \beta_i)$$
, where $\beta_i = (N_i - 1)/N_i$
 $\alpha_i \propto 1/E_{n_i}$ $\sum_{i=1}^{C} \alpha_i = C$

$$CB(\mathbf{p}, y) = \frac{1}{E_{n_y}} \mathcal{L}(\mathbf{p}, y) = \frac{1 - \beta}{1 - \beta^{n_y}} \mathcal{L}(\mathbf{p}, y), \quad (6)$$

- Tested with three kinds of loss (Softmax Loss, Sigmoid CrossEntropy, Focal Loss)
- Tested with CIFAR, iNaturalist, ImageNet datasets.

Dataset Name	# Classes	Imbalance
Long-Tailed CIFAR-10	10	10.00 - 200.00
Long-Tailed CIFAR-100	100	10.00 - 200.00
iNaturalist 2017	5,089	435.44
iNaturalist 2018	8,142	500.00
ILSVRC 2012	1,000	1.78

Table 1. Datasets that are used to evaluate the effectiveness of class-balanced loss. We created 5 long-tailed versions of both CIFAR-10 and CIFAR-100 with imbalance factors of 10, 20, 50, 100 and 200 respectively.

Figure 4. Number of training samples per class in artificially created long-tailed CIFAR-100 datasets with different imbalance factors.

Test results for CIFAR dataset with different imbalance severity.

Dataset Name	Long-Tailed CIFAR-10					Long-Tailed CIFAR-100						
Imbalance	200	100	50	20	10	1	200	100	50	20	10	1
Softmax	34.32	29.64	25.19	17.77	13.61	6.61	65.16	61.68	56.15	48.86	44.29	29.07
Sigmoid	34.51	29.55	23.84	16.40	12.97	6.36	64.39	61.22	55.85	48.57	44.73	28.39
Focal ($\gamma = 0.5$)	36.00	29.77	23.28	17.11	13.19	6.75	65.00	61.31	55.88	48.90	44.30	28.55
Focal ($\gamma = 1.0$)	34.71	29.62	23.29	17.24	13.34	6.60	64.38	61.59	55.68	48.05	44.22	28.85
Focal ($\gamma = 2.0$)	35.12	30.41	23.48	16.77	13.68	6.61	65.25	61.61	56.30	48.98	45.00	28.52
Class-Balanced	31.11	25.43	20.73	15.64	12.51	6.36*	63.77	60.40	54.68	47.41	42.01	28.39*
Loss Type	SM	Focal	Focal	SM	SGM	SGM	Focal	Focal	SGM	Focal	Focal	SGM
eta	0.9999	0.9999	0.9999	0.9999	0.9999	_	0.9	0.9	0.99	0.99	0.999	_
γ	-	1.0	2.0	-	-	-	1.0	1.0	-	0.5	0.5	_

Table 2. Classification error rate of ResNet-32 trained with different loss functions on long-tailed CIFAR-10 and CIFAR-100. We show best results of class-balanced loss with best hyperparameters (SM represents Softmax and SGM represents Sigmoid) chosen via cross-validation. Class-balanced loss is able to achieve significant performance gains. * denotes the case when each class has same number of samples, class-balanced term is always 1 therefore it reduces to the original loss function.

Test results for CIFAR dataset with different imbalance severity.

Figure 5. Classification error rate when trained with and without the class-balanced term. On CIFAR-10, class-balanced loss yields consistent improvement across different β and the larger the β is, the larger the improvement is. On CIFAR-100, $\beta=0.99$ or $\beta=0.999$ improves the original loss, whereas a larger β hurts the performance.

• Test results for large-scale datasets.

					iNatura	list 2017	iNatura	list 2018	ILSVRC 2012	
Network	Loss	β	γ	Input Size	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
ResNet-50	Softmax	-	-	224×224	45.38	22.67	42.86	21.31	23.92	7.03
ResNet-101	Softmax	_	-	224×224	42.57	20.42	39.47	18.86	22.65	6.47
ResNet-152	Softmax	_	-	224×224	41.42	19.47	38.61	18.07	21.68	5.92
ResNet-50	CB Focal	0.999	0.5	224×224	41.92	20.92	38.88	18.97	22.71	6.72
ResNet-101	CB Focal	0.999	0.5	224×224	39.06	18.96	36.12	17.18	21.57	5.91
ResNet-152	CB Focal	0.999	0.5	224×224	38.06	18.42	35.21	16.34	20.87	5.61
ResNet-50	CB Focal	0.999	0.5	320×320	38.16	18.28	35.84	16.85	21.99	6.27
ResNet-101	CB Focal	0.999	0.5	320×320	34.96	15.90	32.02	14.27	20.25	5.34
ResNet-152	CB Focal	0.999	0.5	320×320	33.73	14.96	30.95	13.54	19.72	4.97

Table 3. Classification error rate on large-scale datasets trained with different loss functions. The proposed class-balanced term combined with focal loss (CB Focal) is able to outperform softmax cross-entropy by a large margin.