Decision variables:

x, $f x_2 = number of dairy cown f laying hers,$

respectively.

x3, x4 and x5 = acreage of paddy crop, bajoa crop + jowar coop, respectively

26 and 27 = extra man-hours utilized in Sept - May and June - Aug, respectively.

The LP model:

Maximixe (net annual cash income)

Z = 3,500 x, + 200x2 + 1,200x3 + 800x4 + 850 x5 + 2x6 + 3x4

Subject to:

100a, + 0.6a, + 40a, +20a, +25a, +26 (3,500

(Man-houx for Sept-May)

50x, + 0.4x, + 50x, + 35x, + 40x, + 27 (4,000

(Man-houx for June- Aug)

1.52, + 23 + 24 + 25 < 100

(Land availability)

2, < 32 (accommodation restriction for dairy cows)

8/2 \langle 4,000 (accommodation restriction for laying hers)

N, , 92, 92, 94, 95, 96, 94), 0 (nonnegativity constraint)

(a) Let the unit profit of product A be
$$C_1$$
.

$$\frac{1}{C_2} = 3 - (5 C_1) (\frac{1}{5}) = 3 - (1 + \frac{7C_1}{5})$$

$$\frac{1}{C_4} = 0 - (5 C_1) (\frac{2}{5}) = -(2 - \frac{C_1}{5})$$

$$\frac{1}{C_5} = 0 - (5 C_1) (\frac{-1}{5}) = -(-1 + \frac{3C_1}{5})$$

In order that the current solution remains optimal,

$$3 - \left(1 + \frac{7C_1}{5}\right) \leqslant 0 \Rightarrow 2 - \frac{7C_1}{5} \leqslant 0 \Rightarrow C_1 \gg \frac{10}{7}$$

$$-\left(2 - \frac{C_1}{5}\right) \leqslant 0 \Rightarrow -2 + \frac{C_1}{5} \leqslant 0 \Rightarrow C_1 \leqslant 10$$

$$-\left(-1 + \frac{3C_1}{5}\right) \leqslant 0 \Rightarrow 1 - \frac{3C_1}{5} \leqslant 0 \Rightarrow C_1 \gg \frac{5}{3}$$

$$-\left(-\frac{1}{5}\right) \leqslant 0 \Rightarrow 1 - \frac{3C_1}{5} \leqslant 0 \Rightarrow C_1 \gg \frac{5}{3}$$

When C, = 12

								7
	Ci	12	3	5	0	0	Const	M.R
Cp	Basis	X,	X ₂	X3	Xu	X ₅	-	
5	X ₃	0	1/5	1	(2/5)	-1/5	6/5	3 ←
12	X,	1	7/5	0	-1/5		27/5	~
7	Row	0	-74/5	0	2/5	- 31/5		
0	X4	0	1/2	5/2	11	-1/2	3	
12	Xı	1	3/2	1/2	0	1/2	6	
	Day	0	-15	-1	0	-6	Z=72	
	Row	- ,	Optimal	Valu	12 0 0	bj. [f"=	72	
			1					

(b) Let
$$b_1$$
 denote the man-hour availability.
For the current basis to remain optimal,
$$B^{-1}b \geqslant 0 \Rightarrow \begin{bmatrix} 2/5 & -1/5 \\ -1/5 & 3/5 \end{bmatrix} \begin{bmatrix} b_1 \\ 12 \end{bmatrix} \geqslant 0$$

$$\Rightarrow \begin{bmatrix} 2b_1/5 - 12/5 \\ -b_1/5 + 36/5 \end{bmatrix} \gg 0$$

$$\Rightarrow 2b_1/5 \gg 12/5 \Rightarrow b_1 \gg 6$$

$$\Rightarrow f - b_1/5 \gg -36/5 \Rightarrow b_1 \leqslant 36$$

$$\text{Thus, the current basis remains optimal}$$

$$\text{as long as } 6 \leqslant C_1 \leqslant 36$$

$$1f b_1 = 40, \quad RHS = B^{-1}b = \begin{bmatrix} 2/5 - 1/5 \\ -1/5 & 3/5 \end{bmatrix} \begin{bmatrix} 40 \\ 12 \end{bmatrix} = \begin{bmatrix} 68/5 \\ -4/5 \end{bmatrix}$$

$$\text{Thus, the final table becomes primal infeasible.}$$

					Marian Santana		
0	Ci	4	3	5	0	Ó	Const
CB	Basio	X	X ₂	X ₃	X4	X5	(0)-
5	X3	0	1/5	1	2/5	-1/5	68/5
4	X,	1	7/5	0	-1/5	3/5	-4/5
- 	Row	0	- 18/5	0	- 6/5	-7/5	Z = 324/5
5	X ₃	2	3	1	d	1	12
0	X4	-5	-7	0	1	-3	4
Ē	Row	-6	-12	0	0	-5	Z=60
					1 1 '	-	1

Thus, the optimal solution is $X_3 = 12$, $X_4 = 4$ and $X_5 = 60$

(c) Shadow poices of the resources are the simplex multiplies of the final table,

$$X = C_{10}B^{-1}$$

$$= (5 4) (2/5 - 1/5) = (6/5, 7/5)$$

$$= (5 4) (-1/5 3/5) = (6/5, 7/5)$$
The shadow price of man-how is 6/5

and that of raw materials is 7/5

and that of raw materials is 7/5

$$= (6/5 7/5)(1/3)$$

$$= (6/5 7/5)(1/3)$$

$$= (6/5 7/5)(1/3)$$
Thus, the change is beneficial.

$$- (6/5 7/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (6/5 7/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)(1/3)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) = (-1/5 3/5)$$
Thus, the change is beneficial.

$$- (1/5 3/5)(1/3) =$$

The new product-miz is
$$X_3 = 15/8$$
, $X_6 = 27/8$ and $Z = 237/8$

6 X6 5/8 7/8 0 -1/8 3/8 1 27/8

TROW -3/8 - 33/8 0 -9/8 - 13/8 0 7 = 237/8

(e) If the supervision constraint

 $X_1 + X_2 + X_3 \le 6$ is added to the oxiginal problem, the wavent solution is no longer optimal, as 27/5 + 0 + 6/5 = 33/5 > 6.: We introduce the constraint

 $X_1 + X_2 + X_3 + X_6 = 6$ in the final table where X_6 is a slack variable.

	(:)	1,	3	5	0	0	0	Const	50 all
Cp	Basio	4 X ₁	X ₂	X ₃	X4	X5	-		1 .
5	X ₃	0	1/5	1	2/5	100		6/5	fearible
4	XI	1	7/5	D	-1/5	$\frac{3}{5}$	0	27/5	infea
0	X6	1	1	1	0	0	1	6	3
T	Row	0	- 18/5	0	- 6/	5 -7/	5 0	Z = 138/5	Prind
5	X ₃	0	17.		2/	1000		6/5 27/5	1
4	X ₁	1	7	15 0	-	15 3	5 0	,	
0	X ₆	0	-,	3/5 (1/5)1	-3/5	+
7	Row	0	-	18/5	0 -	6/5 -	750	7= 138/5	
5	X ₃	0		1/2	1	1/2 0	1-1/2	3/2	
4	Xı	1	!	/2	0 -	1/2 0	3/2	9/2	
0	X5	0	3/	/2 () 1/		-5/2	3/2	
Ē	Row	0	-3	Lord a	0 -1	12 0	190	Z=51/2	
5	thus,	the	nec	o op	timal	v -	utron 3/2	4 Z=	51/2

Q) Revised Simplex Method

Converting the problem to standard form:

$$Max \quad \mathcal{Z} = 2X_1 + X_2$$

5. T.
$$3X_1 + 4X_2 + X_3 = 6$$

 $6X_1 + X_2 + X_4 = 3$

$$X_1, X_2, X_3, X_4 > 0$$
 $(X_3 \nmid X_4 + 5 \mid ack \quad variables)$

$$P_{1} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} \qquad P_{2} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad P_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad P_{4} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad b = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

Basis	B-1	Comt	Var lö enlir	Pivot Col	M.R	$\bar{c} = 2 - (0.0)/3$
- X ₃	1 0	6	Χ.	3	6/3=2	C= 1-(00)(4)
X4	0 1	3		6 +	3/6 2	$P_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix} =$
X ₃	1 -1/2	9/2	X .	(1/2)	9/7	X= (02) (1-)
Xı	0 1/6	1/2	^2	1/6	3	$C_2 = 1 - (0 \frac{1}{3})$
X2	2/7 -1/7	9/7				$C_4 = 0 - (0 \%)$
Χı	-1/21 4/21	2/4				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Thus, the optimal solution is
$$X_1 = \frac{2}{7}, \quad X_2 = \frac{9}{7}$$

$$X_{max} = 2x\frac{2}{7} + 1x\frac{9}{7} = \frac{13}{7}$$

