CSCI-581 Homework 5 Programming Viterbi's Algorithm

We would like to avoid the problem of *underflow*, so we are going to do all calculations in *log* space. Since *logs* of probabilities are negative numbers, and we wish to use positive numbers for convenience, we will modify the Viterbi's algorithm slightly: instead of finding the maximum of $P(e_{1:i}, X_0, X_1, X_2, ..., X_i)$, we'll find the minimum of $-log_2P(e_{1:i}, X_0, X_1, X_2, ..., X_i)$ (negative log of P).

Experiment. Given the starting transition and sensory probabilities for an example of flipping a coin when three kinds of coins are used, namely, balanced B, loaded with higher probabilities of Heads L and loaded with higher probabilities of Tails M; find the most likely sequence of states that had generated the given sequence of observations.

Assume that $P(X_0 = x) = 1/3$ for $x = B, L, M. -\log_2(P(X_0 = x)) = 1.58496$. Given sequence of observations: **HHHTHTTTH**

Negative logs of transition probabilities:

	X _{i-1} =B	X _{i-1} =L	X _{i-1} =M
$-log(P(B_i X_{i-1}))$	1.15200	0.94342	2.00000
$-log(P(L_i X_{i-1}))$	1.51457	1.73697	2.94342
$-log(P(M_i X_{i-1}))$	2.32193	2.47393	0.68966

Negative logs of sensory probabilities:

	$-log(P(H_i X_i))$	$-log(P(T_i X_i))$
X _i =B	1	1
X _i =L	0.23447	2.73697
X _i =M	3.32193	0.15200

Assignment:

- (1) Implement the Viterbi's algorithm for this experiment. Write functions that will fill in Probabilities table and Backtracking table. Write a recursive function that would collect the most likely sequence of states using Backtracking table.
- (2) Given the actual sequence of states and the sequence of states calculated with the Viterbi's algorithm, calculate the Accuracy of the algorithm. Accuracy = correctly predicted states / length of the state sequence. The length of state sequence is one longer than the length of the given sequence of observations.

Input:

Line 1: integer N and M and L; N is total values for states, M is total values for observations, L is the length of sequence of observations.

Line 2: Total of N initial probabilities P(X0) (double).

Next N lines: N x N matrix T of transition probabilities (double). B is 0, L is 1, M is 2. Note that T[i][j] is P(State i at time t | State j at time t-1), i.e. the sum of probabilities in a column is equal to 1.

Next N lines: N x M matrix O of observation probabilities (double). Each row corresponds to a state. O[i][j] is P(observation j | state i).

Next line: L values of observations (in rage 0, 1, ..., M-1) (In our example, Head is 0, Tail is 1).

Next line: (L + 1) values of actual states that generated the given sequence of observations (in range 0, 1, ..., N-1).

Output:

Line 1: N double values, the last column's entries of Probability table; one value for each state, with precision of 12 decimal digits after the decimal point, in format:

<double><space>...<double><space><endl>

Line 2: total of (L + 1) states, the sequence of most likely states that generated the given sequence of observations, in format: <state><space>...<state><space><endl>

Line 3: Accuracy (expressed using percentage with two decimal points) in format: <Accuracy><endl>

Example:

Input Sample:

3 2 4 0.3333334 0.3333333 0.3333333 0.45 0.52 0.25 0.35 0.3 0.13 0.2 0.18 0.62 0.5 0.5 0.85 0.15 0.1 0.9 0 0 1 1

Probability table:

01010

```
1.584962212182 3.528379116624 5.277417110283 7.220834014725 9.372837108170 1.584962644991 3.334000638649 5.277417543091 9.528955877279 11.472372781721 1.584962644991 5.596550619266 9.129859921869 7.751348298615 8.593011271448
```

Backtracking table:

```
0 1 1 1 0
1 0 0 0 0
2 2 1 0 2
```

Output Sample:

```
9.372837108170 11.472372781721 8.593011271448 0 1 0 2 2 60.00
```

Submission: submit *main.cpp* to HW5 on turnin.