Alan Brantley me 104 | winter '21

Power and Efficiency Calculations

Electrical power, P_{elec}

$$P_{elec}=iV_{app-lift}=4.40A(6V)=26.39W$$

These values were measured during the lift test. *i* was calculated using the average of the readable currents during lifting.

Table 2

V_{app}	Ġ _{m-20:1} (rad/s)	T _{load} (Nm)
3	47.125	0.00909
•		
3.5	66.775	0.0106
4	74.613	0.0122
4.5	78.538	0.0139
5	90.325	0.0155
5.5	94.250	0.0172
6	96.825	0.0190

System efficiency, η_{sys} :

$$\eta_{sys}=rac{P_{out}}{P_{in}}=rac{P_{GB}}{P_{elec}}=rac{5.595W}{26.39W}pprox0.21$$

Where $P_{GB} = Fd/t_{lift}$ and P_{elec} is calculated above.

Motor efficiency, η_{motor} :

$$egin{aligned} P_{mech} &= (rac{k}{R} \cdot V_{app} - T_{fric}) \dot{ heta_m} - rac{k^2}{R} \dot{ heta_m^2} \ &= 4.89W \end{aligned}$$

$$\eta_{motor} = rac{P_{mech}}{P_{elec}} = rac{4.89W}{26.39W} pprox 0.19$$

Where P_{mech} is calculated at 6V and the velocity is calculated from data gathered during the speed test (table 2) and converted with 20:1 GR.

Transmission efficiency, η_{trans} :

$$\eta_{trans} = rac{T_{out} \cdot heta_{out}}{T_{motor} \cdot heta_{motor}} = rac{F \cdot r_c \cdot heta_{out}}{k \cdot i \cdot heta_{motor}} = rac{8.896N \cdot 0.011m \cdot 96.825 rac{rad}{s}}{0.002797 rac{Nm}{A} \cdot 4.4A \cdot 96.825 rac{rad}{s} \cdot 20} pprox 0.398$$