Szczegółowy opis zajęć (KARTA PRZEDMIOTU)

Nazwa zajęć: Analiza matematyczna II

Kod zajęć: AM2

Przynależność do grupy zajęć: Analiza matematyczna

Rodzaj zajęć: ogólny

obowiązkowy

Kierunek studiów: matematyka

Poziom studiów: studia pierwszego stopnia Profil studiów: ogólnoakademicki Forma studiów: stacjonarne

Specjalność (specjalizacja): nie dotyczy

Rok studiów: I Semestr studiów: II

Formy prowadzenia zajęć, wraz z liczbą godzin dydaktycznych:

wykłady -60 h; ćwiczenia -60 h.

Język/i, w którym/ch prowadzone są zajęcia: polski Liczba punktów ECTS (zgodnie z programem studiów): 10

- 1. Założenia przedmiotu: Rozwinięcie wiedzy i umiejętności nabytych w ramach analizy matematycznej I. Poszerzenie zakresu umiejętności opisu prostych zjawisk fizycznych w języku analizy matematycznej, wykorzystanie aparatu analizy matematycznej (głównie rachunku całkowego w zakresie całki Riemanna) do rozwiązywania różnorodnych problemów (geometrycznych, fizykalnych i technicznych), a także stworzenie podstaw ścisłego, logicznego i abstrakcyjnego rozumowania.
- 2. Odniesienie kierunkowych efektów uczenia się do form prowadzenia zajęć oraz sposobów weryfikacji i oceny efektów uczenia się osiągniętych przez studenta:

symbol	zakładane efekty uczenia się student, który zaliczył zajęcia:	formy prowadzenia zajęć	sposoby weryfikacji i oceny efektu uczenia się
Wiedza: zna i	rozumie		
K1A_ W02	Podstawowe twierdzenia i fakty z rachunku całkowego oraz analizy matematycznej objęte programem II semestru studiów, ponadto przykłady i kontrprzykłady ilustrujące pojęcia z podanego zakresu wiedzy	Egzamin, wykład	Egzamin pisemny
Umiejętności:	potrafi		
K1A_ U12	całkować funkcje jednej zmiennej przez części i przez podstawienie	Wykład, ćwiczenia	Kolokwium pisemne
K1A,_U11	posługiwać się definicją i własnościami całki w sensie Riemanna funkcji jednej zmiennej rzeczywistej, stosować całki w zagadnieniach geometrycznych i fizycznych	Wykład, ćwiczenia	Kolokwium pisemne
K1A_U08	posługiwać się w różnych kontekstach pojęciem zbieżności i granicy, jak również na prostym i średnim poziomie trudności obliczać granice ciągów i funkcji, badać zbieżność bezwzględną i warunkową szeregów	Wykład, ćwiczenia	Egzamin pisemny
K1A_ U21	rozpoznać i określić najważniejsze własności topologiczne podzbiorów przestrzeni euklidesowej i przestrzeni metrycznych	Wykład, ćwiczenia	Egzamin pisemny
K1A_U31	mówić o zagadnieniach matematycznych zrozumiałym, potocznym językiem	Wykład, ćwiczenia	Ćwiczenia tablicowe, dyskusja na zajęciach

3. Treści programowe zapewniające uzyskanie efektów uczenia się (zgodnie z programem studiów):

Całka nieoznaczona, całkowanie przez części i przez podstawienie, całkowanie funkcji wymiernych, trygonometrycznych i niektórych funkcji niewymiernych. Całka oznaczona Riemanna, podstawowe twierdzenie rachunku całkowego, zastosowania geometryczne całki oznaczonej. Całka niewłaściwa. Ciągi i szeregi funkcyjne. Przestrzenie metryczne: pojęcie metryki, przykłady przestrzeni metrycznych, zbieżność ciągu w przestrzeni metrycznej, punkt skupienia, zbiory otwarte i domknięte, zbiory zwarte i spójne, przestrzenie metryczne zupełne, granica i ciągłość funkcji.

4. Opis sposobu wyznaczania punktów ECTS:

Forma aktywności	Liczba godzin / punktów ECTS
Liczba godzin zajęć, niezależnie od formy ich prowadzenia	120/6
Praca własna studenta – przygotowanie do zajęć	40/1
Praca własna studenta - przygotowanie do kolokwiów	40/1
Praca własna studenta – przygotowanie do egzaminu, udział w egzaminie	40/2
Udział w konsultacjach, dodatkowe terminy kolokwiów	10/0
Suma godzin	250
Liczba punktów ECTS przypisana do zajęć	10

- 5. Wskaźniki sumaryczne:
- liczba godzin zajęć oraz liczba punktów ECTS na zajęciach z bezpośrednim udziałem nauczycieli akademickich lub innych osób prowadzących zajęcia i studentów: 120 h / 10 ECTS
- liczba godzin zajęć oraz liczba punktów ECTS na zajęciach związanych z prowadzoną w Politechnice Śląskiej działalnością naukową w dyscyplinie lub dyscyplinach, do których przyporządkowany jest kierunek studiów w przypadku studiów o profilu ogólnoakademickim: 120 h / 10 ECTS
- liczba godzin zajęć oraz liczba punktów ECTS na zajęciach kształtujących umiejętności praktyczne w przypadku studiów o profilu praktycznym:
- liczba godzin zajęć prowadzonych przez nauczycieli akademickich zatrudnionych w Politechnice Śląskiej jako podstawowym miejscu pracy: 120 h
- 6. Osoby prowadzące poszczególne formy zajęć (imię, nazwisko, stopień naukowy lub stopień w zakresie sztuki, tytuł profesora, służbowy adres e-mail):

dr hab. inż. Roman Wituła prof. PŚ, roman.witula@polsl.pl – wykłady i ćwiczenia,

dr inż. Marcin Adam, marcin.adam@polsl.pl - ćwiczenia

- 7. Szczegółowy opis form prowadzenia zajęć:
- 1) wykłady:
 - szczegółowe treści programowe:
 - całka nieoznaczona; podstawowe metody obliczania całek: całkowanie przez części i przez podstawienie, całkowanie funkcji wymiernych, trygonometrycznych i wybranych funkcji niewymiernych; całka oznaczona Riemanna, definicja i podstawowe własności, warunki konieczne i dostateczne całkowalności, wybrane klasy funkcji całkowalnych w sensie Riemanna, zasadnicze twierdzenie rachunku całkowego, związek całki Riemanna z funkcją pierwotną, zastosowania geometryczne całki Riemanna, wybrane zastosowania w fizyce; całka niewłaściwa w sensie Riemanna; rodzaje, zbieżność: bezwzględna i warunkowa, podstawowe kryteria zbieżności, związki ze zbieżnością szeregów liczbowych (wybrane kryteria całkowe); ciągi i szeregi funkcyjne, pojęcie zbieżności i jednostajnej zbieżności ciągów i szeregów funkcyjnych, podstawowe kryteria zbieżności i jednostajnej zbieżności ciągów i szeregów funkcyjnych, szeregi potęgowe, podstawowe pojęcia i własności; przestrzenie metryczne: pojęcie metryki, przykłady przestrzeni metrycznych , zbieżność ciągu elementów w danej przestrzeni metrycznej, punkty skupienia ciągów, pojęcia zbiorów otwartych, domkniętych, zwartych i spójnych, przestrzenie metryczne zupełne, pojęcie funkcji ciągłej w przestrzeniach metrycznych;
 - stosowane metody kształcenia, w tym metody i techniki kształcenia na odległość:

metoda podająca, dyskusja dydaktyczna;

- forma i kryteria zaliczenia, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:
 - wszystkie osoby dopuszczone są do egzaminu; osoby, które w czasie semestru nie zaliczyły kolokwiów (jednego lub więcej) na egzaminie rozwiązują dodatkowe zadania związane z brakującymi efektami kształcenia;
- organizacja zajęć oraz zasady udziału w zajęciach, ze wskazaniem czy obecność studenta na zajęciach jest obowiązkowa,
 - ćwiczenia są obowiązkowe (dopuszcza się możliwość dwóch nieobecności nieusprawiedliwionych), udział w wykładach nie jest obowiązkowy, ale jest bardzo wskazany.

- 2) opis pozostałych form prowadzenia zajęć:
 - tematyka ćwiczeń jest bezpośrednio powiązana z treściami programowymi realizowanymi podczas wykładów; omawiane są różne metody obliczeniowe, właściwe dla danego typu problemów, rozważane są różnorodne interpretacje stawianych problematów, również te sięgające fizyki i techniki, nawiązań geometrycznych, a nawet numerycznych, bez wątpienia pozwala to na głębsze zrozumienie omawianych zagadnień i stanowi inspirację do samodzielnej pracy studentów nad problemami polecanymi do potencjalnego przemyślenia.
- 8. Opis sposobu ustalania oceny końcowej (zasady i kryteria przyznawania oceny, a także sposób obliczania oceny w przypadku zajęć, w skład których wchodzi więcej niż jedna forma prowadzenia zajęć, z uwzględnieniem wszystkich form prowadzenia zajęć oraz wszystkich terminów egzaminów i zaliczeń, w tym także poprawkowych):
 - W czasie semestru odbywają się trzy kolokwia dwugodzinne, każde po 25 punktów odpowiadające efektom K1A_U07 do K1A_U012. Zaliczenie są poszczególne typy zadań-efektów (każde co najmniej na 50%). Zadania można poprawiać na kolejnych terminach egzaminów do skutku, punkty z zadań nie sumują się bierzemy największą wartość. Dodatkowe 10 punktów trzeba zdobyć z części teoretycznej 5 zadań (każde na co najmniej 50% punktów). Można zdobyć też 15 punktów w ramach aktywności na ćwiczeniach, konsultacjach grupowych i na wykładzie (twórcza dyskusja).
 - 2) Studenci, którzy wykazali się szczególną aktywnością mogą przystąpić do dodatkowego terminu egzaminu uzgodnionego indywidualnie. Istnieje wówczas możliwość zdobycia brakujących punktów w trybie twórczej i żarliwej dyskusji (z zapisaniem efektów tej pracy na kartkach).
 - 3) Student może poprawić oceny-ilości punktów na kolejnych terminach egzaminów.
 - 4) Ocenę wystawia się według następujących reguł:
 - wszystkie zadania-efekty muszą być zaliczone na co najmniej 50%, gwarantuje to co najmniej ocenę: dostateczny,
 - jeśli suma wszystkich zdobytych punktów jest równa co najmniej 56 i nie przekracza 70, to mamy ocenę: dostateczny plus,
 - jeśli suma wszystkich zdobytych punktów jest równa co najmniej 71 i nie przekracza 80, to mamy ocenę: dobry,
 - jeśli suma wszystkich zdobytych punktów jest równa co najmniej 81 i nie przekracza 90, to mamy ocenę: dobry plus,
 - jeśli suma wszystkich zdobytych punktów jest równa co najmniej 91, to mamy ocenę: bardzo dobry.
- 9. Sposób i tryb uzupełniania zaległości powstałych wskutek:
 - nieobecności studenta na zajęciach,

proponuje się udział w konsultacjach, zaliczenie kolokwiów w dodatkowym terminie (ale uzgodnionym dla całej grupy)

 różnic w programach studiów osób przenoszących się z innego kierunku studiów, z innej uczelni albo wznawiających studia na Politechnice Śląskiej,

proponuje się udział w konsultacjach , zaliczenie efektów-zadań w formie dodatkowych kartkówek, udział w egzaminach.

10. Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności zajęć:

Umiejętności nabyte na zajęciach z przedmiotu Analiza Matematyczna I plus tytułem uzupełnienia wiedza praktyczna z zakresu poszerzonego programu szkoły średniej.

- 11. Zalecana literatura oraz pomoce naukowe:
 - 1) R. Rudnicki, Wykłady z analizy matematycznej, PWN, Warszawa 2002,
 - 2) G. M. Fichtenholz, Rachunek różniczkowy i całkowy, tom II,
 - 3) B. P. Demidowicz, Zbiór zadań z analizy matematycznej, (zalecana wersja angielska),
 - 4) G. N. Berman, Zbiór zadań z analizy matematycznej, (zalecana wersja angielska),
 - 5) J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej,
 - 6) W. Krysicki, L. Włodarski, Analiza matematyczna, tom I i II,
 - 7) M. Gewert, Zbiór zadań z analizy matematycznej, część I, Wyd. Politechniki Wrocławskiej, Wrocław 1992,
 - 8) Materiały dostarczone przez wykładowcę.
- 12. Opis kompetencji prowadzących zajęcia:

Doktor habilitowany nauk matematycznych – wrzesień 2014,

Specjalność: analiza matematyczna.

13. I	lnne	info	orma	cje:
-------	------	------	------	------