

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Fredag 21. desember 2012 kl. 9.00 – 13.00.

Oppgavesettet er på seks sider totalt, der fire vedlegg finnes på side 5 og 6. Tillatte hjelpemidler: lommekalkulator. Alle oppgaver skal besvares, men i *oppgave4d besvares kun "ENTEN" eller "ELLER" oppgaven*. Sensurfrist 21. januar 2013 (3 uker + 10 dager). Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (3p + 3p + 4p + 2p + 4p + 3p; totalt 20p)

Vi har en 50 mL vannprøve som inneholder 0,08 M løst kalisum (Ca²⁺). Denne skal titreres mot en 0,1 M standard EDTA-løsning. Titreringen utføres i en ammoniumbufferløsning med pH 10.

- a) Sett opp utrykk for titrefeilen (T) og den relative titrerfeilen (T%).
- b) Beregn den teoretiske gjenværende Ca²⁺ konsentrasjonen ved ekvivalenspunktet.
- c) Beregn titrerfeilen i prosent for denne titreringen hvis man antar at gjenværende kalsiumkonsentrasjon er i området $1*10^{-5}$ til $1*10^{-8}$ M. Kommenter svaret.
- d) Vi tenker oss at vi har to prøver der hardhet i vannprøvene (sum magnesium og kalsium) skal bestemmes med komplekstitrering med EDTA. Bruk informasjonen gitt i **vedlegg 1** og **vedlegg 2** til å gjøre en vurdering av hvilke metaller som spesielt vil kunne være potensielle interferenser i de to individuelle titreringene (forutsett at alle elementene som er tilstede er i oppløst form).
- e) Beskriv kort det teoretiske prinsippet for en alternativ metode som kan benyttes for kvantitativ bestemmelse av magnesium og kalsium for løsningene gitt i **vedlegg 1**, og diskuter denne metoden mot komplekstitreringen med hensyn på følsomhet og mulige feilkilder.
- f) Hardheten i vannprøven fra bekk 2 i **vedlegg 1** ble ved EDTA titrering funnet å være 275 ppm CaCO₃, mens en matematisk beregning basert på sum magnesium og kalsium fra konsentrasjoner funnet ved den instrumentelle metoden i **vedlegg 1** gav en hardhet på 255 ppm CaCO₃. Gi mulige forklaringer på denne forskjellen som vi observerer i hardheten funnet ved de to metodene.

$$\begin{array}{ll} DATA \; (H_4X = EDTA) \\ HX^{3^-} = H^+ + X^{4^-} & K_1 = 5,5 \, * \, 10^{-11} \\ Ca^{2^+} + X^{4^-} = CaX^{2^-} & K_{Ca} = 4,5 \, * \, 10^{10} \end{array}$$

Oppgave 2. (4p + 6p + 3p + 7p; totalt 20p)

- a) Gjør rede for de generelle prinsippene for fellingsgravimetri og elektrogravimetri som analytisk metoder.
- b) Gjør rede for ulike typer av medfelling i fellingsgravimetri, og forklar hvordan disse kan påvirke resultatet og hvordan man kan gå frem for å få et bedre resultat. Vurder deretter generelle feilkilder i fellingsgravimetri mot generelle feilkilder i elektrogravimetri.
- c) Beskriv kort fremgangsmåte for elektrogravimetrisk bestemmelse av kobber (Cu²⁺) i en kobbernitratløsning med antatt konsentrasjon i området 0,01M.
- d) Beskriv kort teoretiske prinsipp for to alternativ metoder som kan benyttes for bestemmelse av kobber i tilsvarende løsning som i c), og diskuter metodene mot hverandre med hensyn på følsomhet og mulige feilkilder.

Oppgave 3. (3p + 4p; totalt 7p)

- a) Utvalg av resultater for analyse av jernkonsentrasjon i en prøve er gitt i **vedlegg 3**. Gjør en t-test og vurder om verdien 0,6691 er en mulig "outlier" ved konfidensintervall 95% (kritisk |t| verdi er 2,09) . Beregn gjennomsnittskonsentrasjonen, medianverdien, og standardavviket for datasettet både med og uten verdien 0,6691 inkludert. Hva er den relative feilen når du får oppgitt at sann verdi er 0,3500 mg/L?
- b) I forbindelse med risikovurdering av eksperimentell aktivitet benyttes sikkerhetsdatablad for kjemikaliene. Hva menes R- og S-setninger i denne sammenhengen? Du skal utføre en klassisk redokstitrering der det blant annet inngår bruk av fast kobbersulfat med følgende faresetninger;

Faresetninger

H302 Farlig ved svelging.

H315 Irriterer huden.

H319 Gir alvorlig øyeirritasjon.

H410 Meget giftig, med langtidsvirkning, for liv i vann.

Skisser generelt hvordan du vil gå frem for å risikovurdere bruken av kobbersulfat i et slikt forsøk der du også inkluderer å angi to mulige R- og S-setninger for kobbersulfat og beskriver hvordan du kan minimere risikoen i et slikt forsøk.

Oppgave 4. (3p + 2p + 3p + 5p; 13p)

I **vedlegg 4** er det gitt en oversikt over noen utvalgte metaller i elvevann fra Raubekken på Løkken i Sør-Trøndelag. Vannprøven ble tatt i en 500 ml prøveflaske. Fra denne prøven ble det så tatt ut to prøver;

- en ufiltrert prøve; denne prøven ble tatt ved at 10 ml prøve ble tatt ut med sprøyte og overført til et prøverør og tilsatt 4 dråper konsentrert HNO₃. Etter 4 timer ble prøven så filtrert over i et nytt tilsvarende rør gjennom et 0,45µm filter beregnet for vannprøver.
- en filtrert prøve; denne prøven ble tatt ved at 10 ml prøven ble filtrert umiddelbart gjennom et $0.45 \mu m$ filter til et 10 ml prøverør og tilsatt 4 dråper konsentrert HNO₃.

Det ble benyttet samme type sprøyter, filter og prøverør for prøvene, og du kan se bort fra kontaminering fra disse enhetene.

- a) Forklar hva som kan være hensikten med å foreta prøvetaking på måten angitt over, og hva som kan være en mulig tolkning av informasjonen om konsentrasjonene for de ufiltrerte og filtrerte prøver gitt i **vedlegg 4**
- b) Definer kort de to uttrykkene "elektrolabil fraksjon" og "biotilgjengelig fraksjon".
- c) Fra et metodisk perspektiv forklar hva er viktig å ta hensyn til når man skal foreta kjemisk specieringsanalyser på oppløst fase i en prøve?

ENTEN

d) Det skal utføres en spektrofotometrisk bestemmelse av et løst metall i en ukjent vannprøve. Metallet er antatt å foreligge i området 20 - 50 ppm. Beskriv generelt hvordan du vil gå frem for å kunne gjøre en kvantifisering av den ukjente prøven. Hvilken teoretisk sammenheng er det mellom konsentrasjon og signal?

ELLER

d) Det skal utføres en potensiometrisk bestemmelse av pH i området 2 - 4. Beskriv generelt hvordan du vil kalibrere elektroden før analyse. Hvilken teoretisk sammenheng er det mellom konsentrasjon og signal?

Oppgave 5. (10p) Kryss av for riktig eller uriktig påstand

	Riktig	Galt
I voltammetri måler vi mengde stoff ved hjelp av et apparat som kan måle spenning som funksjon av strøm.		
Voltammetri et en analytisk metode som spesielt egner seg godt til å bestemme tungmetaller, som f. eks bly, kadmium, kobber, og kvikksølv		
Voltammetri et en analytisk metode som spesielt egner seg godt til å bestemme gasser som N ₂ , CO ₂ , H ₂ osv		
En av de vanligste arbeidselektrodene i voltammetri / polarografi er flytende kvikksølv som dryppes fra et kapillær.		
pH-glasselektroden viser ofte for høy pH (altså mer basiskt) en riktig i sterkt basiskt miljø		
Den indre løsningen i en pH-elektrode er oftest 0,1 M NaOH		
Man kan finne endepunkt i syrebasetitreringer ved å måle pH under titrering		
I et tradisjonelt system for pH-måling inneholder to referanseelektroder -en intern i pHelektroden og en ekstern som det måles mot.		
KSCN er en primær standard		
Hardhet i vann defineres som totalt kalsium- og magnesiuminnhold og kan bestemmes ved EDTA titrering.		

<u>Vedlegg 1</u>
Oversikt over konsentrasjoner av ulike elementer i filtrerte vannprøver fra avrenningsbekk til Moelva i Lillesand (bekk 1) og Stordalsbekken (bekk 2) i Lillesand funnet ved instrumentell analyse.

	Be	Cd	Hg	Pb	Mg	Al	Cl	Ca
	μg/L							
Bekk 1	0,022	0,040	0,001	0,026	2330	92	13647	17645
Bekk 2	2,851	1,614	0,002	1,034	20602	13591	24771	67787
	Mn	Fe	Со	Ni	Cu	Zn	Sr	Ba
	μg/L							
Bekk 1	313	5194	4	6	1	12	58	26
Bekk 2	1474	427	81	211	29	269	177	16

Vedlegg 2 Dannelseskonstanter for ulike metall-EDTA komplekser

Be ²⁺	Cd ²⁺	Hg ²⁺	Р	b ²⁺	Mg	2+	Al ³⁺		Ca ²⁺	Mn ²⁺
5,0*10 ⁹	3,2*10 ¹⁶	3,2*10 ²¹	1,0	1,0*10 ¹⁸		,2*10 ⁸ 2,5*10		0 ¹⁶ 4,5*10 ¹⁰		7,9*10 ¹³
Fe ²⁺	Co ²⁺	Ni ²⁻	+	Cı	ı ²⁺		Zn ²⁺		Sr ²⁺	Ba ²⁺
2,0*10 ¹⁴	2,8*10 ¹	2,5*1	018	6,0*	10 ¹⁸	3,2	2*10 ¹⁶	5,	2*10 ⁸	7,6*10 ⁷

Mn³⁺ 1,6*10²⁵ Fe³⁺ 1,3*10²⁵

Vedlegg 3
Resultater for analyse av jernkonsentrasjon (n=20)

	Kons.
	mg/L
Parallell 1	0,3366
Parallell 2	0,3355
Parallell 3	0,3377
Parallell 4	0,3456
Parallell 5	0,3366
Parallell 6	0,3311
Parallell 7	0,3401
Parallell 8	0,3399
Parallell 9	0,3384
Parallell 10	0,3339
Parallell 11	0,6691
Parallell 12	0,3364
Parallell 13	0,3298
Parallell 14	0,3287
Parallell 15	0,3350
Parallell 16	0,3365
Parallell 17	0,3334
Parallell 18	0,3339
Parallell 19	0,3412
Parallell 20	0,3333

Vedlegg 4 Konsentrasjoner av utvalgte metaller i filtrert og ufiltrerte prøver av elvevann fra Raubekken, Løkken i Sør-Trøndelag

	Cr	Mn	Fe	Co	Ni	Cu	Zn
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Ufiltrert	1,3	49,3	1501,5	8,0	3,1	226,9	277,0
Filtrert	0,3	10,2	108,6	1,3	1,7	25,4	63,7