Title

Student: Chao-Hsien Chih Professor: Chao-Chung Peng

Intelligent Embedded Control Lab (IEC-Lab)
Department of Aeronautics and Astronautics
National Cheng Kung University
Tainan, Taiwan

November 26, 2024

Outline

1. Review of Prior Studies and Literature

Outline

1. Review of Prior Studies and Literature

Review of Prior Studies and Literature

The Coaxial Rotor UAV

• 123

The Swashplateless MAV

• 123

The Vectored-Thrust Coaxial UAV

• 123

Review of Prior Studies and Literature

LM-based Optimal Algorithm

Algorithm 1 LM-based Optimal Control Allocation Algorithm

given an initial value $\mathbf{u}^{(0)},\,\lambda^{(0)}=1000,\,\epsilon=10^{-5}.$ repeat

- 1. Determine a Jacobian matrix $\mathbf{J}_{\mathbf{r}}^{(k)}$.
- 2. Update the damping parameter $\lambda^{(k)}$.
- 3. Update the LM step.

$$\mathbf{d}^{(k)} = -\left(\mathbf{J}_{\mathbf{r}}^{(k)T}\mathbf{J}_{\mathbf{r}}^{(k)} + \lambda^{(k)}\mathbf{I}_{\mathbf{4}}\right)^{-1}\mathbf{J}_{\mathbf{r}}^{(k)T}\mathbf{r}(\mathbf{u}^{(k)}).$$

4. Update the control variables.

$$\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + \mathbf{d}^{(k)}.$$

$$k \leftarrow k + 1$$
.

until $\|\mathbf{r}\| < \epsilon$ is satisfied, $\mathbf{u}^* = \mathbf{u}^{(k+1)}$.

• In the first iteration step, the initial value ${\bf u}^{(0)}$ will be set to zero. After, the initial value is set to the solved result of the previous step.

LM-based Optimal Algorithm

• The condition number $\mathcal C$ of the matrix $\left(\mathbf J_{\mathbf r}^{(k)T}\mathbf J_{\mathbf r}^{(k)} + \lambda \mathbf I_3\right)$ is calculated, and adjust λ adaptively:

$$\lambda = \begin{cases} 1000, & \mathcal{C} \ge 10^5 \\ 0.001, & \mathcal{C} < 10^5 \end{cases}$$
 (1)

• When the reduction of the cost function is rapid, a smaller value can be applied to accelerate the speed of converting. On the other hand, if the matrix $\left(\mathbf{J}_{\mathbf{r}}^{(k)T}\mathbf{J}_{\mathbf{r}}^{(k)} + \lambda \mathbf{I}_{3}\right)$ is ill-condition to introduce the numerical errors, the larger value is used to converge with the small gradient step.