Calculadora de Matrizes

UC Estruturas Matemáticas - 2024/1

Integrantes

Antonio Bruno Figueiredo De Oliveira | RA: 822165499

Caio Vieira De Camargo | RA: 8222241862

Juliana Magiero Benedetti | RA: 822229587

Natália Brediks Miltus Marques | RA: 822226393

Pedro Leonardo Rodrigues Ferreira | RA: 822167374

Ruan Vinicius Luz Dos Santos | RA: 8222244748

Matrizes na Computação

As **matrizes** desempenham um papel *crucial na computação*, sendo fundamentais em diversas áreas e aplicações. Elas são essenciais no processamento de imagens e gráficos, incluindo a renderização de objetos 3D e representações geográficas.

Além disso, as matrizes são amplamente utilizadas em álgebra linear, na representação de grafos e em análise numérica, permitindo a resolução eficiente de problemas complexos e o desenvolvimento de algoritmos avançados.

O projeto: Calculadora de Matrizes

Com base nisso, desenvolvemos uma calculadora de matrizes baseada na web para realizar operações matemáticas de forma eficiente e precisa.

Esta aplicação permite ao usuário realizar adição, subtração, multiplicação, cálculo de determinantes e inversa de matrizes, destacando as estruturas matemáticas e proporcionando uma interface intuitiva e funcional para facilitar o trabalho com matrizes.

CÁLCULO DE MATRIZES

			Selecione a Operação
Adição	0	Subtração	O Multiplicação O Determinante O Inversa
			Quantidades desejadas
			Quantidade de linhas e colunas:
			X

Interface: Inserir elementos

CÁLCULO DE MATRIZES

Resultado:
$$\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$$

Menu

Interface: Avisos

Interface: Avisos

Metodologia

Linguagens

Utilização de HTML, CSS e JavaScript.

Estrutura de Dados

Arrays bidimensionais para representar matrizes.

Flexibilidade de Entrada

Flexibilidade na especificação das dimensões das matrizes pelo usuário.

Implementação das Operações

Operações implementadas com estruturas de repetição.

Operações Realizadas

01

Adição/Subtração

Elemento por elemento

02

Multiplicação

Combinação linear das linhas e colunas

03

Determinante

Utiliza eliminação gaussiana

04

Inversa

Método da matriz adjunta

Adição/Subtração

Na adição e subtração de matrizes, as operações são realizadas elemento por elemento. Isso significa que cada elemento das duas matrizes <u>é somado ou subtraído com seu correspondente</u>, e o resultado é armazenado em uma nova matriz.

Esse processo é feito iterando sobre cada elemento das matrizes envolvidas.

```
152 function realizarOperacao(matrizA, matrizB,
    operacao) {
        const resultado = [];
         for (let i = 0; i < matrizA.length; i++) {</pre>
             const row = [];
             for (let j = 0; j < matrizA[0].length; j++</pre>
                 if (operacao === 'soma') {
                     row.push(matrizA[i][j] + matrizB[i
    ][j]);
                 } else if (operacao === 'subtracao') .
                     row.push(matrizA[i][j] - matrizB[i
    ][j]);
                 } else if (operacao ===
     'multiplicacao') {
                     let sum = 0;
                     for (let k = 0; k < matrixA[0].
    length: k++) {
                         sum += matrizA[i][k] * matrizB
    [k][j];
                     row.push(sum);
             resultado.push(row);
         return resultado:
173 }
    function exibirResultado(resultado) {
         const divResultado = document.getElementBvId(
      resultado'):
```

Multiplicação

Na multiplicação de matrizes, cada elemento da matriz resultante é obtido multiplicando e somando os produtos dos elementos das linhas da primeira matriz pelas colunas da segunda matriz.

Esse processo é realizado utilizando **loops** para percorrer os elementos das matrizes e realizar os cálculos necessários.

```
152 function realizarOperacao(matrizA, matrizB,
    operacao) {
        const resultado = [];
        for (let i = 0; i < matrizA.length; i++) {</pre>
             const row = [];
            for (let j = 0; j < matrizA[0].length; j++</pre>
                 if (operacao === 'soma') {
                     row.push(matrizA[i][j] + matrizB[i
    ][j]);
                } else if (operacao === 'subtracao') {
                     row.push(matrizA[i][j] - matrizB[i
    ][j]);
                } else if (operacao ===
     'multiplicacao') {
                     let sum = 0;
                     for (let k = 0; k < matrizA[0].
    length: k++) {
                         sum += matrizA[i][k] * matrizB
    [k][j];
                     row.push(sum);
             resultado.push(row);
         return resultado:
173 }
    function exibirResultado(resultado) {
         const divResultado = document.getElementBvId(
      resultado'):
```


Determinante

O determinante de uma matriz pode ser várias calculado de maneiras. dependendo do tamanho da matriz. A aplicação utiliza o método da eliminação **Gauss**, onde a de função "calcularDeterminante" converte a matriz em uma matriz triangular superior e calcula o determinante como o produto dos elementos da diagonal principal. Se um pivô for zero, realiza-se a troca de linhas.

Cálculo da matriz determinante

```
for (let i = 0; i < n; i++) {
       let factor = copy[i][i];
      if (factor === 0) {
          for (let j = i + 1; j < n; j++) {
              if (copy[j][i] !== 0) {
                   [copy[i], copy[j]] = [copy[j],
copy[i]];
                  factor = copy[i][i];
                  det *= -1;
          if (factor === 0) {
               return 0;
       det *= factor:
       for (let j = i; j < n; j++) {
           copy[i][j] /= factor;
       for (let j = i + 1; j < n; j++) {
           factor = copy[j][i];
           for (let k = i; k < n; k++) {</pre>
              copy[j][k] -= factor * copy[i][k];
   return det;
```


Inversa

A função "calcularInversa" utiliza o método de **eliminação gaussiana** para encontrar a **inversa** de uma matriz. Esse método transforma a matriz original em uma **matriz identidade** e realiza as mesmas operações na matriz identidade correspondente para obter a **inversa**.

$$\begin{pmatrix} a_{11} & a_{12} & a_{23} & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\ a_{32} & a_{34} & a_{23} & 0 & 0 & 1 \end{pmatrix}$$

```
224 function calcularInversa(matriz) {
     // Função para calcular a inversa de uma matriz
         const n = matriz.length;
         let identity = [];
228
         for (let i = 0; i < n; i++) {
             identity[i] = [];
             for (let j = 0; j < n; j++) {
                 identity[i][j] = (i === j) ? 1 : 0;
         for (let i = 0; i < n; i++) {
236
             let factor = matriz[i][i];
             if (factor === 0) {
                 for (let j = i + 1; j < n; j++) {
                    if (matriz[j][i] !== 0) {
                         [matriz[i], matriz[j]] = [
     matriz[i], matriz[i]];
                         [identity[i], identity[j]] = [
     identity[j], identity[i]];
                         factor = matriz[i][i];
                if (factor === 0) {
                    alert('Matriz não tem inversa')
                    throw new Error(
     'Matriz não tem inversa');
252
             for (let j = 0; j < n; j++) {
                 matriz[i][j] /= factor;
                 identity[i][j] /= factor;
```


Cálculo da matriz inversa

Vídeo do funcionamento da Calculadora


```
public class Main {
  public static void main(String[] args) {
    System.out.println("Obrigada!");
  }
}
```

```
var resultado = [];
        switch (operacao) {
            case 'soma':
                resultado = realizarOperacao(matrizA,
    matrizB, operacao)
            case 'multiplicacao':
                resultado = realizarOperacao(matrizA,
    matrizB, operacao)
            case 'subtracao':
                resultado = realizarOperacao(matrizA,
    matrizB, operacao)
            case 'determinante':
                resultado = calcularDeterminante(
    matrizA);
            case 'inversa':
                resultado = calcularInversa(matrizA)
                alert('operacao inválida');
        return exibirResultado(resultado);
130 }
```


Identificando o cálculo selecionado e **calculando**

```
4 function criarField() {
     const calculoSelecionado = document.
  querySelector('input[name="operacao"]:checked').
  value
     const linhas = parseInt(document.
  getElementById('qtdLin').value);
     const colunas = parseInt(document.
  getElementById('qtdCol').value);
    if (isNaN(linhas) || isNaN(colunas)) {
        return alert(
  "Preencha os campos em branco")
     document.getElementById("Matrizes").innerHTML
  = `<fieldset>
     <legend>Matrizes</legend>
     [
     <div id="matrizA"></div>
     |
     <h1 id="operador"></h1>
     [
     <div id="matrizB"></div>
     ]
     </fieldset>`
     if (calculoSelecionado == "determinante" ||
 calculoSelecionado == "inversa") {
        excluirSecoes(
  '#Matrizes > fieldset > p:nth-child(6)')
        excluirSecoes(
  '#Matrizes > fieldset > p:nth-child(7)')
        excluirSecoes('matrizB')
```

Criação do campo para inserir as matrizes

```
37 function criarMatriz(id) {
       const linhas = parseInt(document.
   getElementById('gtdLin').value);
       const colunas = parseInt(document.
   getElementById('qtdCol').value);
       const operacao = document.querySelector(
    'input[name="operacao"]:checked').value;
       const divMatriz = document.getElementById(id);
       if (isNaN(linhas) || isNaN(colunas)) {
       if (divMatriz == '') {
           divMatriz.innerHTML = '':
       for (let i = 0; i < linhas; i++) {</pre>
           for (let j = 0; j < colunas; j++) {
               const input = document.createElement(
    'input');
               input.type = 'number';
               input.setAttribute('class',
    'campoForms');
               console.log(input)
               divMatriz.appendChild(input);
           divMatriz.appendChild(document.
   createElement('br'));
```

```
const sinal = document.getElementById(
"operador")
    switch (operacao) {
        case 'soma':
            sinal.innerHTML = '+':
        case 'subtracao':
            sinal.innerHTML = '-';
        case 'multiplicacao':
            sinal.innerHTML = 'x';
        case 'inversa':
            sinal.innerHTML = ' '
        case 'determinante':
            sinal.innerHTML = ' '
            alert('erro no simbolo da operação')
    document.getElementById("button").innerHTML
= `<button onclick="calcularMatrizes(${operacao}
)">Calcular</button>`;
    document.getElementById("next").innerHTML = "'
   document.getElementById("next").innerHTML =
'<button onclick="reload()">Menu</button>'
    document.guerySelector(
'#matrizA > input:nth-child(1)').focus()
```

Criando as matrizes

