UPPSALA UNIVERSITET Matematiska institutionen Vera Koponen DUGGA **Logik och bevisteknik** 2017-04-12

Skrivtid: 14 - 17. $Tillåtna\ hjälpmedel:$ Bara pennor, radergummi, linjal och papper (det sistnämnda tillhandahålles).

Uppgift n examinerar kursmål n (för $n \in \{1, ..., 8\}$).

- 1. Förklara
 - (a) vad en satslogisk signatur är, och
 - (b) givet en satslogisk signatur σ , hur formler i $LP(\sigma)$ är uppbyggda.
- **2.** (a) Låt σ vara en satslogisk signatur. Förklara vad en σ -struktur är. (Ett annat ord för σ -struktur är sannings(värdes)tilldelning för σ .)
- **3.** Beskriv bevis/härlednings-reglerna i naturlig deduktion med följande namn. Eller annorlunda uttryckt, givet en eller flera härledningar, förklara hur en ny bildas med hjälp av reglerna nedan:
 - (a) ∧-introduktion.
 - (b) \vee -elimination.
 - (c) ¬-introduktion.
- 4. Gör härledningar i naturlig deduktion som visar att följande slutledningar/sekventer är korrekta, där A och B betecknar påståenden. Börja med (a) och använd dess härledning i (b).
 - (a) $\{A \land \neg B, A \to B\} \vdash \neg A$.
 - (b) $\{A \to B\} \vdash (A \land \neg B) \to \neg A$.
- 5. Låt σ vara en satslogisk signatur och låt $\varphi, \psi \in LP(\sigma)$. Förklara vad som menas om man säger att
 - (a) φ är satisfierbar.
 - (b) φ är en tautologi.
 - (c) φ är ekvivalent med ψ .

Fortsätter på nästa sida

- **6.** Låt $\sigma = \{p, q, r\}$. Vilka av följande påståenden stämmer? Motivera svaret med en sanningsvärdestabell eller lämplig σ -struktur.
 - (a) $p \to (\neg r \to \neg (q \lor \neg p))$ är en tautologi.
 - (b) $((\neg p \land q) \land \neg r) \lor \neg q$ och $q \to \neg (p \lor \neg (q \land \neg r))$ är ekvivalenta.
 - (c) $\{q \to \neg r, r \to \neg p, q\} \models_{\sigma} r \lor p.$ (Dvs. $r \lor p$ är en konsekvens av $\{q \to \neg r, r \to \neg p, q\}.$)
- 7. Låt $\sigma = \{p, q, r\}$. Beskriv en formel i disjunktiv normalform som är ekvivalent med

$$(p \leftrightarrow \neg r) \to \neg (p \to q)$$

och visa hur du har kommit fram till din disjunktiva normalform.

- 8. Låt σ vara en satslogisk signatur, vilken som helst, och låt $\varphi, \psi, \chi \in LP(\sigma)$. Vilka av följande slutledningar/sekventer är korrekta? Svaren måste motiveras. Sundhets- och fullständighetssatsen för satslogiken får användas i motiveringen. Vi antar att φ, ψ och χ kan anta båda sanningsvärdena obeorende av varandra.
 - (a) $\{(\varphi \wedge \psi) \to \neg \chi, \ \varphi \leftrightarrow \neg \psi, \ \psi\} \vdash_{\sigma} \chi \to \neg \varphi.$
 - (b) $\{\varphi \to (\chi \land \neg \psi), \ \chi \lor \psi\} \vdash_{\sigma} \neg \varphi$.

 $Lycka\ till!$