Docket No.: 449122056100

CERTIFICATE OF HAND DELIVERY

I hereby certify that this correspondence is being hand filed with the United States Patent and Trademark Office in Washington, D.C. on June 23, 2003.

Geraldine Maddox

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of:

Frederic GALTIER

Serial No.: NEW APPLCIATION

For: METHOD AND DEVICE

FOR DETERMINING...

Examiner: Not Yet Assigned

Group Art Unit: Not Yet Assigned

SUBMISSION OF CERTIFIED FOREIGN PRIORITY DOCUMENT

Commissioner for Patents 2011 South Clark Place Room 1B03, Crystal Plaza 2 Arlington, Virginia 22202

Sir:

Under the provisions of 35 USC 119, Applicant hereby claims the benefit of the filing of German patent application No. 102 28 147.5, filed June 24, 2002.

The certified priority document is attached to perfect Applicant's claim for priority.

It is respectfully requested that the receipt of the certified copy attached hereto be acknowledged in this application.

In the event that the transmittal letter is separated from this document and the Patent and Trademark Office determines that an extension and/or other relief is required, applicant petitions for any required relief including extensions of time and authorize the

and the second of the contract

Commissioner to charge the cost of such petitions and/or other fees due in connection with the filing of this document to **Deposit Account No. 03-1952** referencing **449122056100**.

Dated: June 23, 2003

Respectfully submitted,

Kevin R. Spivak Registration No. 43,148

Morrison & Foerster LLP 1650 Tysons Boulevard, Suite 300 McLean, Virginia 22102 Telephone: (703) 760-7762 Facsimile: (703) 760-7777

		. 5
		7
w.	and the second of the second	
t.	to the control of the	
pop	the transfer of the second control of the second se	
t e		
:		*;
 • •		
		2
		ş
	en de la companya de La companya de la co	6.0

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 28 147.5

Anmeldetag:

24. Juni 2002

Anmelder/Inhaber:

Siemens Aktiengesellschaft,

München/DE

Bezeichnung:

Verfahren und Vorrichtung zum Bestimmen

der Start-Winkelposition einer Brennkraftma-

schine

IPC:

F 02 D 41/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 30. Mai 2003

Deutsches Patent- und Markenamt

Der Präsident

In Auftrag

Beschreibung

Verfahren und Vorrichtung zum Bestimmen der Start-Winkelposition einer Brennkraftmaschine

5

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bestimmen der Winkelposition einer Hubkolben-Brennkraft-maschine, deren Betrieb von einem elektronischen Betriebssteuergerät geregelt wird.

10

15

Eine wichtige Voraussetzung für eine ordnungsgemäße Regelung des Betriebs einer derartigen Brennkraftmaschine ist ihre Synchronisation. Zu diesem Zweck werden üblicherweise die Drehwinkel der Kurbelwelle und der Nockenwelle mit Hilfe eines Kurbelwellen-Sensors mit zugeordnetem gezahntem Geberrad und eines Nockenwellen-Sensors mit zugeordnetem Geberrad überwacht, um hieraus die Winkelposition der Brennkraftmaschine zu bestimmen. Diesbezüglich sei beispielsweise auf die GB 2,065,310, EP 0 310 823, WO 89 04 426 und US 4,766,359 verwiesen.

25

20

In diesem Zusammenhang wurden große Anstrengungen unternommen, um die Anlasszeit, die zum Starten der Brennkraftmaschine erforderlich ist, zu minimieren. Ein zu diesem Zweck verwendbares Konzept ist ein speziell gestaltetes Nockenwellen-Geberrad ("Schnellstart-Nockenwelle"), die mit mehreren asymmetrisch gestalteten Zahnrändern versehen ist. Die Verwendung eines speziell gestalteten Nockenwellen-Geberrades ist jedoch aufwändig und kostspielig.

30

35

Eine andere Möglichkeit zum Bestimmen der Start-Winkelposition der Brennkraftmaschine macht sich die Tatsache zunutze, dass eine Brennkraftmaschine nach dem Abschalten im ausgekuppelten Zustand immer in bestimmten diskreten Winkelpositionen stehen bleibt. Diese Tatsache wird in Verbindung mit den Signalen herkömmlicher Kurbelwellen- und Nockenwel-

15

25

30

35

len-Sensoren dazu verwendet, die Start-Winkelposition der Brennkraftmaschine bei einem neuen Start derselben abzuschätzen. Allerdings ist die Genauigkeit dieser Methode beschränkt, da sich hiermit ein mehr oder weniger großer Winkelpositionsbereich und nicht eine präzise Winkelposition der Brennkraftmaschine bestimmen lässt. Außerdem sind Fehler bei der Bestimmung der Start-Winkelposition unvermeidlich, wenn die Brennkraftmaschine nach ihrer Abschaltung im eingekuppelten Zustand gedreht wird, wie dies beispielsweise beim Parken des zugehörigen Kraftfahrzeuges an einer Steigung der Fall sein kann.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Bestimmen der Winkelposition einer Hubkolben-Brennkraftmaschine anzugeben, mit dem sich die Winkelposition der Brennkraftmaschine nach dem Abschalten und bei einem erneuten Start mit hoher Genauigkeit und in möglichst einfacher Weise bestimmen lässt.

Diese Aufgabe wird durch das Verfahren und die Vorrichtung gemäß den Patentansprüchen 1 und 5 gelöst.

Die vorliegende Erfindung macht sich die Tatsache zunutze, dass in neuerer Zeit Sensoren entwickelt wurden, die eine statische Erfassung der Zähne und/oder Lücken eines Geberrades ermöglichen, d.h., dass sie im Gegensatz zu den herkömmlichen Kurbelwellen- und Nockenwellen-Sensoren ein zuverlässiges Signal auch bei extrem kleinen Drehgeschwindigkeiten und sogar im Stillstand liefern. So sind beispielsweise auf dem Hall-Effekt beruhende Sensoren (Hall-IC) bekannt, die den Höhenunterschied zwischen Zahn und Lücke eines gezahnten Geberrades auch bei stillstehendem Geberrad erfassen können. Geeignet sind auch Sensoren, die auf andere veränderliche Eigenschaften des Geberrades wie kleinste Bewegungen, Vorbeilauf eines Zahnrandes, usw. ansprechen. Entscheidend ist le-

diglich, dass die erfindungsgemäß eingesetzten Sensoren auch extrem langsame Drehbewegungen bzw. Änderungen der Winkelposition des Kurbelwellen-Geberrades erfassen können, um die am Sensor vorbeilaufenden Zähne bzw. Lücken des Geberrades einzeln zählen zu können.

Zweckmäßigerweise wird das elektronische Betriebssteuergerät so betrieben, dass es die den Kurbelwellen-Sensor passierenden Zähne oder Lücken auch bei abgeschalteter Brennkraftmaschine zählt. Auf diese Weise wird sichergestellt, dass eine präzise Bestimmung der Start-Winkelposition der Brennkraftmaschine auch dann möglich ist, wenn die Brennkraftmaschine beispielsweise nach dem Abschalten im eingekuppelten Zustand bewegt wird.

15

10

5

Eine Möglichkeit für einen derartigen Betrieb des elektronischen Betriebssteuergerätes besteht darin, dass ein der Auswertung der Signale des Kurbelwellen-Sensors dienender Teil des elektrischen Betriebssteuergerätes ständig in Betrieb gehalten wird, also ständig in einem Art Überwachungsmodus bleibt, selbst wenn sich das Betriebssteuergerät in der Nachlaufphase oder Abschaltphase befindet. Dies lässt sich bei gängigen elektronischen Betriebssteuergeräten problemlos verwirklichen.

P\$5

25

20

Eine andere Möglichkeit, die Zähne bzw. Lücken des Geberrades auch bei abgeschalteter Brennkraftmaschine zu zählen, besteht darin, dass bei abgeschalteter Brennkraftmaschine in herkömmlicher Weise das gesamte Betriebssteuergerät abgeschaltet wird, dass das Betriebssteuergerät jedoch eine Alarmeinrichtung enthält, die den der Auswertung der Signale des Kurbelwellen-Sensors dienenden Teil des elektronischen Betriebssteuergerätes aktiviert, wenn der Kurbelwellen-Sensor anzeigt, dass eine Drehbewegung der Kurbelwelle stattfindet.

35

Gemäß der vorliegenden Erfindung werden somit Drehbewegungen der Kurbelwelle unabhängig vom Betriebszustand der Brenn-

kraftmaschine und des elektronischen Betriebssteuergerätes ständig überwacht und erfasst, was eine sehr präzise Bestimmung der Winkelposition der Brennkraftmaschine bei einem erneuten Start ermöglicht.

5

10

15

20

25

Die präzise erkannte Start-Winkelposition der Brennkraftmaschine kann dann beispielsweise für eine Verbesserung und Beschleunigung der Anlassphase der Brennkraftmaschine verwendet werden. Insbesondere erlaubt die Erfindung eine bessere und schnellere Synchronisation der Brennkraftmaschine, was beispielsweise für eine gezieltere Kraftstoffeinspritzung beim Start, zum Erfassen einer Winkelverstellung der Nockenwelle, usw. eingesetzt werden kann. Eine präzise Synchronisation bereits beim Start der Brennkraftmaschine erlaubt eine beträchtliche Verbesserung in der Funktionsweise des Betriebssteuergerätes, im Betriebsverhalten des zugehörigen Kraftfahrzeuges, in der Verringerung von Schadstoffemissionen und des Kraftstoffverbrauchs, usw. (Bekanntlich wird der Hauptteil der Schadstoffemissionen in der ersten Minute des Betriebs der Brennkraftmaschine erzeugt).

Ein weiterer Vorteil der Erfindung besteht darin, dass ein gesonderter Nockenwellen-Sensor zum Bestimmen der Start-Winkelposition der Brennkraftmaschine nicht unbedingt erforderlich ist. Falls dennoch ein Nockenwellen-Sensor verwendet wird, reichen im allgemeinen einfache Geberrad-Konstruktionen aus, was zu einer Verringerung der Herstellungskosten beiträgt.

Ţ

- Weitere Einzelheiten der Erfindung werden in der folgenden Beispielsbeschreibung in Verbindung mit den beigefügten Zeichnungen erläutert, in denen
- Fig. 1 eine schematische, teilweise geschnittene Ansicht 35 eines Teils einer Brennkraftmaschine ist und
 - Fig. 2a das Signal CRK eines Kurbelwellen-Sensors und das

Signal CAM eines Nockenwellen-Sensors zeigt und

Fig. 2b eine vergrößerte Darstellung des Signals CRK ist.

- Die Brennkraftmaschine gemäß Fig. 1, die beispielsweise als Vierzylinder-Ottomotor mit Benzineinspritzung ausgebildet ist, ist mit einem elektronischen Betriebssteuergerät 1 (ECU) ausgestattet, das die Zündung, Kraftstoffeinspritzung und andere Vorgänge der Brennkraftmaschine regelt. Wie angedeutet, ist dem Zylinder 7 ein Einlassventil 6, ein Auslassventil, eine Zündkerze und ein Einspritzventil 2 zugeordnet.
- Die Kurbelwelle 8 ist mit einem Geberrad 10 drehfest verbunden, das an seinem Umfang Zähne 11 hat, welche durch Lücken 12 getrennt sind. Dem Geberrad 10 ist ein Kurbelwellen-Sensor 4 zugeordnet. Ferner ist der Nockenwelle 5, die die Einlassventile 6 steuert und mit der halben Drehzahl der Kurbelwelle 8 dreht, ein Nockenwellen-Sensor 9 zugeordnet. Es sei allerdings angemerkt, dass der Nockenwellen-Sensor 9 für das erfindungsgemäße Verfahren nicht unbedingt erforderlich ist.

- 11, 1<u>7</u>

12

CRK dargestellt, wie es von einem herkömmlichen KurbelwellenSensor abgegeben wird. Jeder Impuls des Kurbelwellensignals

CRK entspricht einem Zahn des zugehörigen Geberrades, wobei
eine doppelte Zahnlücke nach jeweils 60 Zähnen als Synchronisationsimpuls S für jeweils eine volle Umdrehung der Kurbelwelle 8 dient. Ferner sind in der Darstellung der Fig. 2a die
oberen Totpunkte TDC_x, TDC_{x+1}, usw. der Brennkraftmaschine angedeutet.

Zu Erläuterungszwecken ist in Fig. 2a ein Kurbelwellensignal

Die Fig. 2a zeigt ferner ein Nockenwellensignal CAM, wie es von einem herkömmlichen Nockenwellen-Sensor erzeugt wird. Das Nockenwellensignal CAM hat zwei unterschiedliche Pegel, die zwei aufeinanderfolgenden Umdrehungen der Kurbelwelle zuge- ordnet sind. Das Nockenwellensignal CAM und das Kurbelwellensignal CRK mit den Synchronisationsimpulsen S erlauben somit

während eines normalen Betriebs der Brennkraftmaschine eine Zuordnung der Kurbelwellenstellung im Arbeitsspiel.

Die Signale CRK und CAM herkömmlicher Sensoren erlauben jedoch keine Bestimmung der Start-Winkelposition der Brennkraftmaschine, da bisher in der Praxis verwendete Kurbelwellen- und Nockenwellen-Sensoren bei zu langsamen Drehbewegungen der Kurbelwelle bzw. Nockenwelle kein Signal liefern können. Wie in Fig. 2b durch Rechtecke angedeutet, bleibt eine Brennkraftmaschine nach dem Abschalten üblicherweise in bestimmten Winkelpositionsbereichen B stehen. Diesen Sachverhalt machen sich einige vorbekannte Verfahren zum Bestimmen der Start-Winkelposition bzw. zum Synchronisieren der Brennkraftmaschine zunutze, was allerdings die eingangs geschilderten Nachteile hat.

Erfindungsgemäß wird dagegen ein Kurbelwellen-Sensor 4 verwendet, der eine statische Erfassung der Zähne 11 bzw. Lücken 12 des Geberrades 10 erlaubt, also auch bei sehr kleinen Drehgeschwindigkeiten und selbst im Stillstand der Kurbelwelle 8. Beispielsweise wird als Kurbelwellensensor 4 ein Hall-Sensor verwendet, der den Höhenunterschied zwischen Zahn 11 und Lücke 12 des Geberrades erfasst.

Das Betriebssteuergerät kann dann in Abhängigkeit von diesem 25 Kurbelwellensignal CRK die Zähne 11 bzw. Lücken 12 zählen, die ab einem Synchronisationsimpuls S den Kurbelwellen-Sensor 4 passieren. Um sicherzustellen, dass jede Drehbewegung und auch kleinste Drehbewegungen des Geberrades 10 hierbei berücksichtigt werden, wird der zur Auswertung des Kurbelwel-30 lensignals CRK vorgesehen Teil 13 des Betriebssteuergerätes 1 niemals abgeschaltet, sondern ständig in einem Überwachungsmodus (Watch Guard Mode) gehalten, und zwar selbst dann, wenn die Brennkraftmaschine ausläuft oder anhält bzw. wenn das Betriebssteuergerät 1 sich in der Nachlaufphase (Power Latch) 35 oder Abschaltphase befindet. Die Anzahl der seit dem Synchronisationsimpuls S vorbeigelaufenen Zähne 11 bzw. Lücken 12

wird gespeichert und erlaubt dann eine präzise Bestimmung der Start-Winkelposition der Kurbelwelle bzw. der Brennkraftma-schine.

- 5 Statt den Teil 13 des Betriebssteuergerätes 1 ständig in Betrieb zu halten, kann der Teil 13 zusammen mit dem übrigen Teil des Betriebssteuergerätes 1 in herkömmlicher Weise zuund abgeschaltet werden, wenn dem Teil 13 eine Alarmeinrichtung 14 zugeordnet wird, die den Teil 13 immer dann aktiviert, wenn das Signal CRK anzeigt, dass eine Drehung der Kurbelwelle 8 stattfindet.
- Wie bereits erwähnt, ist für das erfindungsgemäße Verfahren der Nockenwellen-Sensor 9 nicht unbedingt erforderlich. In jedem Fall kann jedoch der Nockenwellen-Sensor 9 eine sehr einfache konstruktive Ausgestaltung haben.

Patentansprüche

- 1. Verfahren zum Bestimmen der Winkelposition einer Hubkolben-Brennkraftmaschine mit einem elektronischen Betriebssteuergerät (1), das Signale von einem Kurbelwellen-Sensor (4) empfängt, der einem mit der Kurbelwelle (8) drehfest verbundenen gezahnten Geberrad (10) zugeordnet und zum statischen Erfassen der Zähne (11) und/oder Lücken (12) des Geberrades (10) geeignet ist,
- 10 bei welchem Verfahren das elektronische Betriebssteuergerät (1) bei jeder Drehbewegung der Kurbelwelle (8), ausgehend von einer Synchronisations-Winkelposition des Geberrades (10), die den Kurbelwellen-Sensor (4) passierenden Zähne (11) oder Lücken (12) des Geberrades (10) laufend zählt und die resultierende Zähnezahl speichert, um hieraus bei einem Start der Brennkraftmaschine die Start-Winkelposition der Brennkraftmaschine zu bestimmen.
 - 2. Verfahren nach Anspruch 1,

25

- dadurch gekennzeichnet, dass das elektronische Betriebssteuergerät (10) so betrieben wird, dass
 es die den Kurbelwellen-Sensor (4) passierenden Zähne (11) oder Lücken (12) auch bei abgeschalteter Brennkraftmaschine
 zählt.
 - 3. Verfahren nach Anspruch 2, dad urch gekennzeichnet, dass ein der Auswertung der Signale des Kurbelwellen-Sensors (4) dienender Teil (13) des Betriebssteuergerätes (1) ständig in Betrieb gehalten wird.
- Verfahren nach Anspruch 2,
 d a d u r c h g e k e n n z e i c h n e t , dass ein der Auswertung der Signale des Kurbelwellen-Sensors (4) dienender
 Teil (13) des Betriebssteuergerätes (1) in den Nachlauf- und Abschaltphasen der Brennkraftmaschine (3) zusammen mit dem übrigen Teil des Betriebssteuergerätes (1) abgeschaltet wird

und in Abhängigkeit von einem Alarmsignal wieder in Betrieb gesetzt wird, wenn der Kurbelwellen-Sensor (4) eine Drehbewegung der Kurbelwelle (8) anzeigt.

5. Vorrichtung zum Durchführen des Verfahrens nach einem der vorhergehenden Ansprüche.

Zusammenfassung

Verfahren und Vorrichtung zum Bestimmen der Start-Winkelposition einer Brennkraftmaschine

Erfindungsgemäß werden die einen Kurbelwellen-Sensor (9) passierenden Zähne bzw. Lücken eines Geberrades (10) laufend, also auch bei abgeschalteter Brennkraftmaschine, gezählt und aus der gespeicherten Zähnezahl die Start-Winkelposition der Brennkraftmaschine bestimmt. Hierzu wird ein Kurbelwellen-Sensor (9) verwendet, der zum statischen Erfassen der Zähne (11) bzw. Lücken (12) des Geberrades geeignet ist.

Figur 1

