SMART WATER MANAGEMENT

PHASE 1
Problem definition and design thinking

Project Definition

Objective:

 The project aims to promote water conservation by implementing IoT sensors for real-time water consumption monitoring in public places.

Key Goals:

- Monitor water usage in real-time.
- Raise public awareness about water conservation.
- Enable sustainable resource management.
- Scope: Public places such as parks and gardens.

Intro To Smart water Management

- •Smart water management combines advanced technologies with traditional water management strategies to optimize resource usage and minimize water wastage.
- By leveraging IoT, water systems can be monitored and managed in real-time, enabling proactive decision-making for sustainable water management.
- •Smart water management relies on sensors and Internet of Things (IoT, devices strategically placed throughout water infrastructure. These sensors collect real-time data on water quality, quantity, pressure, and usage patterns.

Challenges

- Despite the benefits, implementing smart water management systems requires overcoming certain challenges.
- Common obstacles include high upfront costs, complex data integration, cybersecurity concerns, and resistance to adopting new technologies.
- Overcoming these challenges is crucial for successful implementation and long-term sustainability.

Design Thinking

Project Objectives:

- •Real-time Monitoring: Develop a system to continuously monitor waterconsumption.
- •Public Awareness: Create a platform to share consumption data with the public.
- •Water Conservation: Implement alerts and notifications for excessive water use.
- •Resource Management: Analyze data to identify trends and optimize water usage.

IoT Sensor Design:

Sensor Selection:

•Choose appropriate IoT sensors for water consumption measurement.

Deployment Strategy:

•Determine sensor placement in public areas.

Data Accuracy:

•Ensure sensors provide accurate consumption data.

Power Management:

•Plan for sensor power supply and energy-efficient operation.

Real-Time Data Platform:

Development:

Create a data-sharing platform for public access.

User Interface:

•Design a user-friendly mobile app to display real-time data.

Data Presentation:

•Visualize consumption data in a comprehensible manner.

User Engagement:

•Include features for user feedback and reporting.

Project Execution Plan

- Conduct a thorough site survey to identify suitable locations for sensor deployment.
- Procure and install IoT sensors according to the deployment plan.
- Develop the mobile app and data-sharing platform with real-time data display and user interaction features.
- Implement data transmission and processing mechanisms. Conduct user testing and gather feedback for refinement.
- Launch the IoT water consumption monitoring system in public places.
- Continuously monitor and maintain the system, addressing any issues promptly

