1.3 — Preferences

ECON 306 • Microeconomic Analysis • Fall 2020 Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF20
- microF20.classes.ryansafner.com

Outline

Preferences

Indifference Curves

Marginal Rate of Substitution

<u>Utility</u>

Marginal Utility

Preferences

Which bundles are **preferred** over others?

Example: Between two bundles of (x, y):

$$a = (4, 12) \text{ or } b = (6, 12)$$

• We will allow three possible answers:

• We will allow three possible answers:

1. a > b: (Strictly) prefer a over b

• We will allow three possible answers:

1. a > b: (Strictly) prefer a over b

2. a < b: (Strictly) prefer b over a

• We will allow three possible answers:

1. a > b: (Strictly) prefer a over b

2. a < b: (Strictly) prefer b over a

3. $a \sim b$: Indifferent between a and b

• We will allow three possible answers:

1. a > b: (Strictly) prefer a over b

2. a < b: (Strictly) prefer b over a

3. $a \sim b$: Indifferent between a and b

• *Preferences* are a list of all such comparisons between all bundles

See appendix in today's class page for more.

Indifference Curves

Mapping Preferences Graphically I

- For each bundle, we now have 3 pieces of information:
 - \circ amount of x
 - \circ amount of y
 - preference compared to other bundles
- How to represent this information graphically?

Mapping Preferences Graphically II

- Cartographers have the answer for us
- On a map, contour lines link areas of equal height
- We will use "indifference curves" to link bundles of equal preference

Mapping Preferences Graphically III

3-D "Mount Utility"

2-D Indifference Curve Contours

Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

• Apt. A has 1 friend nearby and is $1,200 ft^2$

Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

- Apt. A has 1 friend nearby and is $1,200 ft^2$
 - \circ Apartments that are larger and/or have more friends > A

Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

- Apt. A has 1 friend nearby and is $1,200 ft^2$
 - \circ Apartments that are larger and/or have more friends $\succ A$
 - \circ Apartments that are smaller and/or have fewer friends $\prec A$

Example:

- Apt. A has 1 friend nearby and is $1,200 ft^2$
- Apt. *B* has *more* friends but *less* ft^2

Example:

- Apt. A has 1 friend nearby and is $1,200 ft^2$
- Apt. *B* has *more* friends but *less* ft^2
- Apt. C has still more friends but $less ft^2$

Example:

- Apt. A has 1 friend nearby and is $1,200 ft^2$
- Apt. *B* has *more* friends but *less* ft^2
- Apt. C has still more friends but $less ft^2$

 Indifferent between all apartments on the same curve

- Indifferent between all apartments on the same curve
- Apts above curve are preferred over apts on curve

$$\circ D > A \sim B \sim C$$

• On a higher curve

- Indifferent between all apartments on the same curve
- Apts above curve are preferred over apts on curve

$$\circ D > A \sim B \sim C$$

- On a higher curve
- Apts below curve are less preferred than apts on curve

$$\circ E \prec A \sim B \sim C$$

On a lower curve

Curves Never Cross!

- Indifference curves can never cross:
 - preferences are transitive
 - \circ If I prefer A > B, and B > C, I must prefer A > C

Curves Never Cross!

- Indifference curves can never cross: preferences are transitive
 - \circ If I prefer A > B, and B > C, I must prefer A > C
- Suppose two curves crossed:
 - $\circ A \sim B$
 - $\circ B \sim C$
 - \circ But C > B!
 - Doesn't make sense (not transitive)!

Marginal Rate of Substitution

Marginal Rate of Substitution I

• If I take away one friend nearby, how many more ft^2 would you need to keep you satisfied?

Marginal Rate of Substitution I

- If I take away one friend nearby, how many more ft^2 would you need to keep you satisfied?
- Marginal Rate of Substitution (MRS): rate at which you trade off one good for more of the other and remain *indifferent*
- Think of this as the relative value you place on x:

"I am willing to give up (MRS) units of y to consume 1 more unit of x and stay satisfied."

Marginal Rate of Substitution II

Marginal Rate of Substitution II

• MRS = slope of the indifference curve

$$MRS_{x,y} = -\frac{\Delta y}{\Delta x} = \frac{rise}{run}$$

- Amount of y given up for 1 more x
- Note: slope (MRS) changes along the curve!

MRS vs. Budget Constraint Slope

- Budget constraint (slope) measured the market's tradeoff between x and y based on market prices
- MRS measures your personal evaluation of x vs. y based on your preferences
- **Foreshadowing**: what if they are different? Are you truly optimizing?

Utility

So Where are the Numbers?

- Long ago (1890s), utility considered a real, measurable, cardinal scale[†]
- Utility thought to be lurking in people's brains
 - Could be understood from first principles: calories, water, warmth, etc

• Obvious problems

[†] "Neuroeconomics" & cognitive scientists are re-attempting a scientific approach to measure utility

Utility Functions?

- More plausibly infer people's preferences from their actions!
 - "Actions speak louder than words"
- Principle of Revealed Preference: if a person chooses x over y, and both are affordable, then they must prefer $x \geq y$
- Flawless? Of course not. But extremely useful approximation!
 - People tend not to leave money on the table

Utility Functions!

- A utility function $u(\cdot)^{\dagger}$ represents preference relations (\succ, \prec, \sim)
- Assign utility numbers to bundles, such that, for any bundles a and b:

$$a > b \iff u(a) > u(b)$$

[†] The \cdot is a placeholder for whatever goods we are considering (e.g. x, y, burritos, lattes, etc)

Utility Functions, Pural I

Example: Imagine three alternative bundles of (x, y):

$$a = (1, 2)$$

 $b = (2, 2)$
 $c = (4, 3)$

• Let $u(\cdot)$ assign each bundle a utility level:

$$u(\cdot)$$

$$u(a) = 1$$

$$u(b) = 2$$

$$u(c) = 3$$

• Does this mean that bundle c is 3 times the utility of a?

Utility Functions, Pural II

Example: Imagine three alternative bundles of (x, y):

$$a = (1, 2)$$

 $b = (2, 2)$

$$c = (4, 3)$$

• Now consider $u(\cdot)$ and a 2^{nd} function $v(\cdot)$:

$u(\cdot)$	$v(\cdot)$
u(a) = 1	v(a) = 3
u(b) = 2	v(b) = 5
u(c) = 3	v(c) = 7

Utility Functions, Pural III

- Utility numbers have an ordinal meaning only, not cardinal
- Both are valid utility functions:[†]

$$\circ u(c) > u(b) > u(a)$$

$$\circ v(c) > v(b) > v(a)$$

- \circ because c > b > a
- Only the <u>ranking</u> of utility numbers matters!

[†] See the Mathematical Appendix in <u>Today's Class Page</u> for why.

Utility Functions and Indifference Curves I

- Two tools to represent preferences: indifference curves and utility functions
- Indifference curve: all equally preferred bundles
 ⇔ same utility level
- Each indifference curve represents one level (or contour) of utility surface (function)

Utility Functions and Indifference Curves II

3-D Utility Function:
$$u(x, y) = \sqrt{xy}$$

Marginal Utility

- Recall: marginal rate of substitution $MRS_{x,y}$ is slope of the indifference curve
 - \circ Amount of y given up for 1 more x
- How to calculate MRS?
 - Recall it changes (not a straight line)!
 - We can calculate it using something from the **utility function**

• Marginal utility: change in utility from a marginal increase in consumption

• Marginal utility: change in utility from a marginal increase in consumption

Marginal utility of
$$x$$
: $MU_x = \frac{\Delta u(x,y)}{\Delta x}$

• Marginal utility: change in utility from a marginal increase in consumption

Marginal utility of
$$x$$
: $MU_x = \frac{\Delta u(x,y)}{\Delta x}$

Marginal utility of y:
$$MU_y = \frac{\Delta u(x,y)}{\Delta y}$$

• Marginal utility: change in utility from a marginal increase in consumption

• Math (calculus): "marginal" means "derivative with respect to"

$$MU_x = \frac{\partial u(x, y)}{\partial x}$$

• I will always derive marginal utility functions for you

MRS and Marginal Utility: Example

Example: For an example utility function

$$u(x, y) = x^2 + y^3$$

• Marginal utility of x: $MU_x = 2x$

• Marginal utility of y: $MU_v = 3y^2$

• Again, I will always derive marginal utility functions for you

MRS Equation and Marginal Utility

Relationship between MU and MRS:

$$\underbrace{\frac{\Delta y}{\Delta x}}_{MRS} = -\frac{MU_x}{MU_y}$$

• See proof in today's class notes

"I am willing to give up $\left(\frac{MU_x}{MU_y}\right)$ units of y to consume 1 more unit of x and stay satisfied."

Important Insights About Value

"I am willing to give up $\left(\frac{MU_x}{MU_y}\right)$ units of y to consume 1 more unit of x and stay satisfied."

- We can't measure MU's, but we can measure $MRS_{x,y}$ and infer the ${\bf ratio}$ of MU's!
 - Example: if $MRS_{x,y} = 5$, a unit of good x gives 5 times the marginal utility of good y at the margin

Important Insights About Value

- Value is **subjective**
 - Each of us has our own preferences that determine our ends or objectives
 - Choice is forward looking: a comparison of your expectations about opportunities
- Preferences are not comparable across individuals
 - Only individuals know what they give up at the moment of choice

Important Insights About Value

- Value inherently comes from the fact that we must make tradeoffs
 - Making one choice means having to give up pursuing others!
 - The choice we pursue at the moment must be worth the sacrifice of others! (i.e. highest marginal utility)

Diminishing Marginal Utility

The Law of Diminishing Marginal Utility:

each marginal unit of a good consumed tends to provide less marginal utility than the previous unit, all else equal

- As you consume more *x*:
 - $\circ \downarrow MU_{x}$
 - $\downarrow MRS_{x,y}$: willing to give up *fewer* units of y for x

Special Case: Substitutes

Example: Consider 1-Liter bottles of coke and 2-Liter bottles of coke

- Always willing to substitute between Two
 1-L bottles for One 2-L bottle
- Perfect substitutes: goods that can be substituted at same fixed rate and yield same utility
- $MRS_{1L,2L} = -0.5$ (a constant!)

Special Case: Complements

Example: Consider hot dogs and hot dog buns

- Always consume together in fixed proportions (in this case, 1 for 1)
- Perfect complements: goods that can be consumed together in same fixed proportion and yield same utility
- $MRS_{H,B} = ?$

Cobb-Douglas Utility Functions

 A very common functional form in economics is Cobb-Douglas

$$u(x, y) = x^a y^b$$

- Extremely useful, you will see it often!
 - Lots of nice, useful properties (we'll see later)
 - See the appendix in <u>today's class</u>
 <u>page</u>

Practice

Example: Suppose you can consume apples (a) and broccoli (b), and earn utility according to:

$$u(a,b) = 2ab$$

$$MU_a = 2b$$

$$MU_b = 2a$$

- 1. Put a on the horizontal axis and b on the vertical axis. Write an equation for $MRS_{a,b}$.
- 2. Would you prefer a bundle of (1, 4) or (2, 2)?
- 3. Suppose you are currently consuming 1 apple and 4 broccoli. a. How many units of broccoli are you willing to give up to eat 1 more apple and remain indifferent? b. How much *more* utility would you get if you were to eat 1 more apple?
- 4. Repeat question 3, but for when you are consuming 2 of each good.