Outliers

(Copyright)

Iván Valero Canales

```
In [ ]: import pandas as pd
        import yfinance as yf
        import matplotlib.pyplot as plt
        df = yf.download(
            'AAPL',
            start = '2000-01-01',
            end = '2010-12-31',
            progress = False
        df = df.loc[:,['Adj Close']]
        df.rename(columns = {'Adj Close' : 'adj_close'}, inplace = True)
        # calculo los rendimientos simples
        df['rendimiento_simple'] = df.adj_close.pct_change()
        df
        # calculo la media aritmetica (movil) y la desviacion estandar
        df_rolling = df[['rendimiento_simple']].rolling(window = 21).agg(['mean' , 'std'
        df_rolling.columns = df_rolling.columns.droplevel()
        df rolling
        df_rolling['rendimiento_simple'] = df.rendimiento_simple # agregamos et rendimie
        df_rolling['adj_close'] = df.adj_close # agregamos et adj_close
        # tambien podemos usar otro metodo
        # df rolling = df.join(df rolling)
        df rolling
```

Date				
2000-01-03	NaN	NaN	NaN	0.846127
2000-01-04	NaN	NaN	-0.084310	0.774790
2000-01-05	NaN	NaN	0.014633	0.786128
2000-01-06	NaN	NaN	-0.086539	0.718097
2000-01-07	NaN	NaN	0.047369	0.752113
•••				
2010-12-23	0.002274	0.008078	-0.004797	9.784272
2010-12-27	0.001496	0.007040	0.003337	9.816927
2010-12-28	0.001582	0.007040	0.002433	9.840809
2010-12-29	0.001273	0.006982	-0.000553	9.835369

2010-12-30 0.001894 0.005625 -0.005011 9.786084

std rendimiento_simple adj_close

mean

2766 rows × 4 columns

Out[]:

```
In []: # renombramos La media y La desviacion

df_rolling.rename(columns = {'mean' : 'media_movil'} , inplace = True)

df_rolling.rename(columns = {'std' : 'desviacion_estandar'} , inplace = True)

df_rolling
```

$\verb"Out[]: media_movil desviacion_estandar rendimiento_simple adj_close"$

Date				
2000-01-03	NaN	NaN	NaN	0.846127
2000-01-04	NaN	NaN	-0.084310	0.774790
2000-01-05	NaN	NaN	0.014633	0.786128
2000-01-06	NaN	NaN	-0.086539	0.718097
2000-01-07	NaN	NaN	0.047369	0.752113
•••			•••	
2010-12-23	0.002274	0.008078	-0.004797	9.784272
2010-12-27	0.001496	0.007040	0.003337	9.816927
2010-12-28	0.001582	0.007040	0.002433	9.840809
2010-12-29	0.001273	0.006982	-0.000553	9.835369
2010-12-30	0.001894	0.005625	-0.005011	9.786084

2766 rows × 4 columns

```
In [ ]: # definimos el concepto de outlier como un valor que se encuentre fuera de la me
        def identify_outliers(row , n_sigmas = 3):
            x = row['rendimiento_simple']
            mu = row['media_movil']
            sigma = row['desviacion_estandar']
            if (x > mu + 3*sigma) or (x < mu - 3*sigma): # definimos La condicion de out
                return 1
            else:
                return 0
In [ ]: # identificar outliers
        df_rolling['outlier'] = df_rolling.apply(identify_outliers , axis = 1)
        outliers = df_rolling.loc[df_rolling['outlier'] == 1 , ['rendimiento_simple']]
        df_rolling
Out[ ]:
                   media_movil desviacion_estandar rendimiento_simple adj_close outlier
             Date
         2000-01-
                                                                 NaN 0.846127
                                                                                     0
                           NaN
                                              NaN
               03
         2000-01-
                           NaN
                                              NaN
                                                             -0.084310
                                                                       0.774790
                                                                                     0
         2000-01-
                           NaN
                                              NaN
                                                             0.014633 0.786128
                                                                                     0
               05
         2000-01-
                           NaN
                                              NaN
                                                             -0.086539
                                                                       0.718097
                                                                                     0
               06
```

9.816927 27 2010-12-0.001582 0.007040 0 0.002433 9.840809 28 2010-12-0.001273 -0.000553 0 0.006982 9.835369 29 2010-12-0.001894 0.005625 -0.005011 9.786084 0 30

NaN

0.008078

0.007040

0

0

0

0.047369 0.752113

-0.004797 9.784272

0.003337

2766 rows × 5 columns

2000-01-

2010-12-

2010-12-

07

23

NaN

0.002274

0.001496

```
In [ ]: # graficamos los outliers
```

```
fg , ax = plt.subplots(figsize = (10,8))
ax.plot(df_rolling.index , df_rolling.rendimiento_simple , color = 'blue' ,
        label = 'Normal')
ax.scatter(outliers.index , outliers.rendimiento_simple , color = 'red' ,
           label = 'Anomaly')
ax.set_title("Rendimientos de la accion de Apple")
ax.legend(loc='lower right')
plt.show()
```


In []: outliers #fechas en las que han ocurrido dichas anomalias

Date	
2000-09-29	-0.518692
2000-12-06	-0.158089
2001-07-18	-0.171712
2002-06-19	-0.150372
2003-04-11	-0.081420
2003-05-05	0.113492
2004-04-15	0.099850
2004-07-15	0.113254
2004-10-14	0.131573
2004-11-22	0.112017
2005-01-07	0.072811
2005-04-14	-0.092105
2006-04-05	0.098742
2006-07-20	0.118299
2008-01-04	-0.076335
2008-09-29	-0.179195
2010-04-21	0.059814