

Jurusan Teknologi Informasi Politeknik Negeri Malang **Mata Kuliah Data Warehouse Kuis 1**

Nama : Satria Rakhmadani

Nomor Urut : 28

1. Tuliskan perbandingan star schema dan snowflake schema pada tabel berikut:

	Star Schema	Snowflake Schema
Normalisasi	Tidak dinormaliasi, karena tabel dimensi langsung terhubung ke tabel fakta memecahkan sub-dimensi	Ternormalisasi, karena abel dimensi dipecah menjadi beberapa sub-tabel dimensi
Kompleksitas desain/skema	Sederhana karena hanya ada satu layer dimensi (dimensi langsung terhubung ke fakta).	Lebih kompleks karena dimensi bisa bercabang menjadi sub-dimensi.
Kompleksitas query	Lebih sederhana untuk query karena join langsung antara tabel fakta dan tabel dimensi.	Lebih kompleks karena memerlukan join tambahan pada sub-dimensi.
Performa query	Cepat dalam eksekusi query karena join lebih sedikit.	Cenderung lebih lambat dibanding Star Schema, jika banyak join ke sub-dimensi.
Storage	Biasanya membutuhkan lebih banyak storage karena data dimensi terduplikasi	Lebih hemat storage karena data dimensi dipecah dan dinormalisasi (mengurangi redundansi).
Integritas data	Karena denormalisasi, potensi inkonsistensi data dimensi lebih besar jika tidak dikelola dengan baik.	Integritas data lebih terjaga karena normalisasi, duplikasi data lebih minim.
Maintenance (pengisian data dengan proses ETL dari OLTP)	Lebih mudah dalam proses ETL karena struktur dimensi lebih simpel.	Lebih rumit karena harus mengisi banyak tabel sub- dimensi (butuh logika ETL lebih kompleks).

Star Schema:

- Terdiri dari satu tabel fakta di tengah dan beberapa tabel dimensi di sekelilingnya.
- Desain sederhana dan mudah dipahami, performa query lebih cepat karena join yang lebih sedikit
- Namun, karena denormalisasi, data dimensi bisa jadi lebih besar dan berpotensi duplikasi.

Snowflake Schema:

- Merupakan perluasan Star Schema dengan memecahkan tabel dimensi menjadi beberapa tabel sub-dimensi (normalisasi lebih tinggi).
- Mengurangi duplikasi data (lebih hemat storage) dan meningkatkan integritas data.
- Akan tetapi, query menjadi lebih kompleks (banyak join) dan proses ETL yang lebih rumit.

Gambar berikut menunjukkan skema OLTP database dari sebuah sistem informasi ekspedisi.
Buatlah data warehouse dalam star schema yang digunakan sebagai dasar analisis performa ekspedisi.

Jawaban

Tabel Fakta dengan Judul Fact Pengiriman

FactPengirimanID → Primary Key (PK) untuk tabel fakta	
TanggalPengirimanID → (FK ke DimDate): Tanggal barang dikirim	
TanggalSampaiTujuanID → (FK ke DimDate): Tanggal estimasi sampai	
TanggalSampaiAktualID → (FK ke DimDate): Tanggal barang benar-benar sampai	
LokasiAsalID → (FK ke DimLokasi): Lokasi asal (kecamatan, kota, provinsi)	
LokasiTujuanID → (FK ke DimLokasi): Lokasi tujuan (kecamatan, kota, provinsi)	
KurirID→ (FK ke DimKurir): Informasi kurir (nama, tipe kendaraan)	
StatusPengirimanID → (FK ke DimStatusPengiriman): Status pengiriman	
StatusPembayaranID → (FK ke DimStatusPembayaran): Status pembayaran	
TipePembayaranID→ (FK ke DimTipePembayaran): Metode pembayaran	

Untuk Tabel Dimensi lainnya terdapat 6 tabel dimensi.

DimDate

Kolom	
DateID (PK)	

Tanggal
Bulan
Tahun
DimLokasi
Kolom
LokasiID (P

Kecamatan

Kota

DimKurir

Provinsi

Kolom
KurirID (PK)
Nama
TipeKendaraan

DimStatusPengiriman

Kolom
StatusPengirimanID (PK)
Nama

Dim Status Pembayaran

Kolom
StatusPembayaranID (PK)
Nama

DimTipePembayaran

Kolom
TipePembayaranID (PK)
Nama

