Message Passing Interface MPI

Dalle lezioni di Calcolo Parallelo del Prof. A. Murli

Topologie MPI

Le topologie

Esempi di topologie

L'utilizzo di una topologia per la progettazione di un algoritmo in ambiente MIMD è spesso legata alla geometria "intrinseca" del problema in esame.

Definizione: topologia

Una topologia è la geometria "virtuale" in cui si immaginano disposti i processi.

La topologia "virtuale" in cui sono disposti i processori può non avere alcun nesso con la disposizione "reale" dei processori!

Topologie MPI


```
#include <stdio.h>
#include "mpi.h"
/* Scopo: definizione di una topologia
          a griglia bidimensionale nproc=row*col */
main(int argc, char **argv)
{ int menum, nproc, row, col;
  int dim,*ndim,reorder,*period,*coordinate;
  MPI Comm comm grid;
  MPI Init(&argc, &argv);
 MPI Comm rank (MPI COMM WORLD, &menum);
  MPI Comm size(MPI COMM WORLD, &nproc);
/* Numero di righe della griglia di processo */
  if (menum == 0)
      printf("Numero di righe della griglia");
      scanf("%d",&row); }
/* Spedizione di row da parte di 0 a tutti i processi */
  MPI Bcast(&row,1,MPI INT,0,MPI COMM WORLD);
/* Definizione del numero di colonne della griglia */
  col = nproc/row;
/* Numero di dimensioni della griglia */
  dim = 2:
  coordinate = (int*)calloc(dim,sizeof(int));
```

Esempio: creazione di una griglia bidimensionale

```
/* vettore contenente le lunghezze di ciascuna dimensione*/
 ndim = (int*)calloc(dim,sizeof(int));
 ndim[0] = row;
 ndim[1] = col;
/* vettore contenente la periodicità delle dimensioni */
 period = (int*)calloc(dim, sizeof(int));
 period[0] = period[1] = 0;
 reorder = 0;
/* Definizione della griglia bidimensionale */
 MPI Cart create (MPI COMM WORLD, dim, ndim, period, reorder,
                  &comm grid);
 MPI Comm rank(comm grid, &menum grid);
/* Definizione delle coordinate di ciascun processo
  nella griglia bidimensionale */
 MPI Cart coords(comm grid, menum, dim, coordinate);
/* Stampa delle coordinate */
 printf("Processore %d coordinate nella griglia
        (%d,%d) \n", menum, *coordinate, *(coordinate+1));
 MPI Finalize();
 return 0; }
```


MPI_Cart_create(MPI_COMM_WORLD,dim,ndim,period, reorder,&comm_grid);

• Ogni processo dell'ambiente MPI_COMM_WORLD definisce la griglia denominata comm_grid , di dimensione 2 (dim) e non periodica lungo le due componenti (period[i]=0, i=0,1). Il numero di righe e di colonne della griglia sono memorizzati rispettivamente nella prima e nella seconda componente del vettore ndim. I processi non sono riordinati secondo un particolare schema (reorder=0).

9

```
MPI Cart create (MPI Comm comm old, int dim,
                 int *ndim, int *period,
                 int reorder,
                MPI Comm *new comm);
```

- Operazione collettiva che restituisce un nuovo communicator new comm in cui i processi sono organizzati in una griglia di dimensioni dim.
- · L'i-esima dimensione ha lunghezza ndim[i].
- · Se period[i]=1, la i-esima dimensione della griglia è periodica; non lo è se period[i]=0.

```
MPI Cart create (MPI Comm comm old, int dim,
                    int *ndim, int *period,
                    int reorder,
                    MPI Comm *new comm);
            communicator di input
comm old
            numero di dimensioni della griglia
dim
            vettore di dimensione dim contenente
*ndim
            le lunghezze di ciascuna dimensione
            vettore di dimensione dim contenente la
*period
            periodicità di ciascuna dimensione
            permesso di riordinare i menum (1=si; 0=no)
reorder
*new comm communicator di output associato alla griglia
```

Esempio: creazione di una griglia bidimensionale

```
/* vettore contenente le lunghezze di ciascuna dimensione*/
 ndim = (int*)calloc(dim,sizeof(int));
 ndim[0] = row;
 ndim[1] = col;
/* vettore contenente la periodicità delle dimensioni */
 period = (int*)calloc(dim,sizeof(int));
 period[0] = period[1] = 0;
 reorder = 0;
/* Definizione della griglia bidimensionale */
 MPI Cart Create (MPI COMM WORLD, dim, ndim, period, reorder,
                  &comm grid);
 MPI Comm rank (comm grid, &menum grid);
/* Definizione delle coordinate di ciascun processo
  nella griglia bidimensionale */
 MPI Cart coords(comm grid,menum,dim,coordinate);
/* Stampa delle coordinate */
 printf("Processore %d coordinate nella griglia
        (%d,%d) \n", menum, *coordinate, *(coordinate+1));
 MPI Finalize();
  return 0; }
```


 Ogni processo menum calcola le proprie 2 (dim) coordinate (coordinate, i=0,1) nell'ambiente comm_grid.

- Operazione collettiva che restituisce a ciascun processo di comm_grid con identificativo menum_grid, le sue coordinate all'interno della griglia predefinita.
- coordinate è un vettore di dimensione dim, i cui elementi rappresentano le coordinate del processo all'interno della griglia.

Fine Esercitazione