

مبانی رایانش نرم

شبکههای عصبی: مقدمه. شبکه مککلاچ-پیتز و شبکه هب

هادی ویسی

h.veisi@ut.ac.ir

دانشگاه تهران – دانشکده علوم و فنون نوین

- ۰ شبکه عصبی چیست؟
- شبکههای عصبی طبیعی
- کاربردهای شبکههای عصبی مصنوعی
 - ناریخچه شبکههای عصبی مصنوعی
 - تعاریف
 - شبکه مککلاچ -پیتز
 - ساختار، الگوريتم، كاربرد، مثال
 - ۰ شبکه هب
 - الگوريتم، كاربردها و مثال
 - جداسازی خطی

- یادگیری (تشخیص چهره)
 - ذخيرهسازي اطلاعات
 - تصمیم گیری
 - پیشبینی
 - محاسبه
 - ...

شبکه مصبی؟

- مغز = شبکهای بسیار بزرگ از عصبها (نرونها)
 - ۵۰۰۰۰۰۰۰۱ نرون
 - ۱۰،۰۰۰ اتصال برای هر نرون
- شبکه عصبی مصنوعی = شبیهسازی شبکه عصبی طبیعی

شبکه مصبی طبیعی . . .

- عنصر پردازشگر تشکیلدهنده یک شبکه عصبی مصنوعی
 - نرون (Neuron) = عصب طبیعی (سلول مغزی)
 - صه جزء تشکیل دهنده یک نرون طبیعی
 - دندریتها(Dendrite): دریافت سیگنال از سایر نرونها
- سوما (Soma) = بدنهٔ سلول: سیگنالهای ورودی به سلول را جمع میبندد
 - آکسون (Axon): ارسال سیگنال به نرون(های) دیگر

درس: مبانی رایانش نرم- شبکههای عصبی (مقدمه ، شبکه مککلاچ-پیتز و شبکه هب)

شبکه مصبی طبیعی . . .

مملكرد نرون طبيعي

- دریافت سیگنال از سایر نرونها توسط دندریتها
- عبور سیگنالها با یک فرآیند شیمیایی از فاصلهٔ سیناپسی (Synaptic Gap)
- عمل شیمیایی انتقال دهنده، سیگنال ورودی را تغییر میدهند (تضعیف/تقویت سیگنال)
 - سوما سیگنالهای ورودی به سلول را جمع میبندد
- زمانی که یک سلول به اندازه کافی ورودی دریافت نماید، برانگیخته می شود و سیگنالی را از آکسون خود به سلولهای دیگر می فرستد.
 - انتقال سیگنال از یک نرون خاص نتیجهٔ غلظتهای مختلف یونها در اطراف پوشش آکسون نرون («مادهٔ سفید» مغز) میباشد.
 - ٥ يونها = پتاسيم، سديم و کلريد
 - سیگنالها به صورت ضربههای الکتریکی هستند

شبکه مصبی طبیعی . . .

• خلاصه ویژگیها و خصوصیات نرونهای طبیعی

- جزء پردازشگر (نرون) سیگنالهای فراوانی را دریافت میکند.
- سیگنالهای ورودی ممکن است با یک وزن در سیناپس سلول دریافت کننده، تغییر کند.
 - جزء پردازشگر ورودیهای وزندار را جمع میبندد.
 - نرون در شرایط مناسب (ورودی کافی)، یک سیگنال را به عنوان خروجی انتقال میدهد.
 - خروجی یک نرون ممکن است به بسیاری از نرونهای دیگر (شاخههای آکسون) برود.
 - پردازش اطلاعات به صورت محلی صورت می گیرد.
 - مفهوم حافظه در اجزای مختلف سلول توزیع میشود:
 - o حافظهٔ بلند مدت در سیناپسها یا وزنهای نرون قرار می گیرد.
 - o حافظهٔ کوتاه مدت با سیگنالهای فرستاده شده توسط نرونها مطابقت دارد.
 - توانایی سیناپس می تواند با آزمایش و کسب تجربه تغییر کند.
 - انتقال دهندههای عصبی برای سیناپسها می توانند تحریک کننده (Excitatory) یا بازدارنده (Inhibitory) باشند.

شبکه مصبی مصنوعی . . .

o شبکهٔ عصبی مصنوعی [Artificial Neural Network]

- یک سیستم پردازش اطلاعات با ویژگیهای مشترکی با شبکههای عصبی طبیعی
 - تعمیم یافتهٔ مدلهای ریاضی تشخیص انسان بر اساس زیستشناسی عصبی

• فرضيات پايهٔ شبكهٔ عصبی مصنوعی

- پردازش اطلاعات در اجزای سادهای با تعداد فراوان، به نام نرونها صورت می گیرد.
- سیگنالها در بین نرونهای شبکه از طریق پیوندها یا اتصالات (Connections) آنها منتقل میشوند.
 - هر پیوند، وزن (Weight) مربوط به خود را دارد که در شبکههای عصبی رایج در سیگنالهای انتقال یافته از آن پیوند ضرب میشود.
- هر نرون یک تابع فعالسازی (Activation Function) را بر روی ورودیهای خود اعمال می کند تا سیگنال خروجی خود را تولید نماید.

٥ تابع معمولاً غيرخطي است

- هستند x3 و x2 ها یا سیگنالهای خروجی نرونهای ورودی به ترتیب x1 و x3 هستند
 - ورودی شبکه به نرون Y، حاصل جمع وزن دار سیگنالهای ورودی و وزنهاست:

$$y_{in} = w_{i}x_{1} + w_{2}x_{2} + w_{3}x_{3} = \sum_{i} w_{i}x_{i}$$

فعالسازی نرون Y با اعمال تابع فعالسازی f روی ورودی آن به دست می آید lacktriangle

$$y = f(y_i)$$

$$f(x) = \frac{1}{1 + \exp(-x)}$$

o تابع سیگموید (Sigmoid)

شبکه مصبی مصنوعی . . .

و یک شبکه عصبی مصنوعی

• سه لایه: ورودی، مخفی و خروجی

• دو دسته وزن: wها و vها

• در یک شبکه یک نرون می تواند ورودی های مختلفی را از چند نرون دریافت کند

شبکه مصبی مصنوعی

ویژگیهای مشخص کننده یک شبکهٔ عصبی مصنوعی

- ساختار یا معماری شبکه (Architecture): الگوی پیوندهای بین نرونهای مختلف
- الگوریتم آموزش یا یادگیری (Training or Learning Algorithm): روش تعیین وزنهای روی پیوندهای شبکه
 - تابع فعالسازی شبکه (Activation Function) که هر نرون روی ورودیهای خود اعمال می کند

شباهت شبکههای عصبی طبیعی و مصنوعی . . .

شبکه عصبی مصنوعی	شبکه عصبی طبیعی
اتصالات بين نرونها	دندریت
وزنهای شبکه	تغییر سیگنال ورودی هنگام عبور از فاصله سیناپسی
جمع وزندار سیگنالهای ورودی و وزن در نرون	جمع بستن سیگنالهای ورودی در سوما
تابع فعالسازی	برانگیخته شدن سلول و ارسال سیگنال از آکسون

شباهت شبکههای مصبی طبیعی و مصنوعی

ویژگیهای مهم مشترک

- تحمل پذیری در برابر خطا (Fault Tolerance)
- o از بین رفتن تعداد زیادی از نرونهای طبیعی در طول زمان اما یادگیری ادامه مییابد
 - تعمیمپذیری (Generalization) و مقاوم بودن در برابر نویز
 - o تشخیص سیگنالهای و رودی که با سیگنال قبلاً مشاهده شده تا حدودی متفاوت است
 - 🔾 تشخیص چهره ، تشخیص دستخط و ...

• پردازشهای موازی با تعداد زیادی از واحدهای پردازشگر

کارپردهای شبکههای عصبی مصنوعی . . .

۰ پزشکی

- ذخیرهسازی حجم زیادی از اطلاعات پزشکی
 - o ورودی مجموعهای از علائم یک بیماری خاص
- خروجی: پیدا کردن «بهترین» تشخیص و نحوه درمان آن با استفاده از الگوی ذخیره شدهٔ متناسب با علائم آن بیماری
 - ٥ شبكة عصبى حافظة خودانجمنى

• تولید گفتار (خواندن متن)

- تبدیل متن به گفتار برای خواندن متن
 - o سیستم NETtalk
- o ورودی: حروف متن (هر حرف به همراه سه حرف قبل و بعد از آن)
 - خروجی: صدای مربوط به آن حرف
 - ٥ شبكهٔ عصبي چندلايه

کاربردهای شبکههای عصبی مصنوعی . . .

و پردازش سیگنال

- حذف نویز در سیگنال صدا (مکالمه تلفن)
- ه حذف نویز به صورت وفقی Adaptive Noise Cancellation (ANC)
 - ٥ شبكة عصبي آدالاين
 - حذف انعكاس صدا (اكو)

٥ كنترل

- کنترل دمای اتاق
- مسیر حرکت ضد موشک
- دنده عقب رفتن کامیون
- o شبکه پسانتشار بازگشتی

کاربردهای شبکههای عصبی مصنوعی . . .

• بازشناسی خودکار دستخط

ه شبکههای پسانتشار چندلایه

• بازشناسی نویسههای نوری (Optical Character Recognition: OCR)

o شبکه Neocognitron

کارپردهای شبکههای عصبی مصنوعی . . .

- بازشناسی الکو (تشخیص الگو)
- (Automatic Speech Recognition: ASR) بازشناسی خودکار گفتار
 - o شبکههای چندلایه با اتصالات باز گشتی
 - ٥ نگاشت خودسازمانده کوهونن

(Face Recognition) بازشناسی چهره

کارپردهای شبکههای عصبی مصنوعی . . .

• تجارت

- ارزیابی میزان خطرپذیری وامدهی
- o ورودی: سالهای اشتغال متقاضی، تعداد افراد تحت تکفل، در آمد فعلی و ویژگیهای خود وام (مثل مبلغ، نرخ سود و ...)
 - o خروجی: پاسخ «قبول» یا «رد» برای دادن وام

وپیشبینی

- مصرف برق کشور در سه ماه آینده
 - وضعیت آب و هوا
 - سود سهام

۰ دهه ۴۰ – اولین شبکههای عصبی مصنوعی

- ۱۹۴۳ معرفی نرون مککلاچ -پیتز (اولین شبکه عصبی مصنوعی)
 - o توسط وارن مککلاچ و والتر پیتز در ۱۹٤۳ و توسعه در ۱۹٤۲
 - ۱۹۴۹ شبکه هب
 - o توسط دونالد هب، یکی از روانشناسان دانشگاه McGill
- ٥ ایده: اگر دو نرون به طور همزمان فعال شوند، استحکام اتصال بین آنها باید افزایش یابد
 - ٥ اولين قانون يادگيري

۰ دهه ۵۰ – پرسپترون

- معرفی توسط فرانک روزنبلات در سال ۱۹۵۸ و بهبود در ۱۳۵۹ و ۱۳۶۲
 - شبکه لایه با الهام از شبکیه چشم
- قانون یادگیری قوی تر از قانون هب، مبتنی بر روشی تکرار شونده برای تنظیم وزن

• دهه ۶۰ – گسترش پرسپترون + آدالاین

• ۱۹۶۰ – شبکه آدالاین

- o آدالاین (ADAptive LInear NEuron) = نرون خطی وفقی (ADAptive LInear NEuron) یا سیستم خطی وفقی (ADAptive LINEar System)
 - توسط برنارد ویدرو و دانشجوی وی مارسیان (تد) هاف
- ه ارائه یک قانون یادگیری با نام قانون ویدرو –هاف (Widrow-Hoff Rule) یا میانگین مربعات کمینه (Delta Rule) و یا قانون دلتا (LMS) و یا قانون دلتا ($\rm LMS$)
 - o شباهت زیاد قانون یادگیری دلتا (مهندسی) با قانون پرسپترون (روانشناسی)
- تقاوت: در پرسپترون برای هر واحدی که پاسخ نادرست دارد ، وزنهاي اتصال آن واحد تنظيم مي شود ، اما قانون دلتا وزنها را طوری تنظيم مي کند تا اختلاف بين خروجي شبکه و خروجي مطلوب کمينه کند
 - مادالاین: شکل توسعه یافته و چندلایهٔ آدالاین
 - o قانون دلتا منجر به افزایش قابلیت تعمیم میشود
 - o قانون دلتا مبنای قانون پسانتشار (Backpropagation) برای یادگیری شبکههای چندلایه است

• ۱۹۶۹ – تشریح کامل پرسپترون توسط مینسکی و پاپرت

۰ دههٔ ۷۰ سالهای خاموش

- عدم موفقیت پرسپترونهای یک لایه در حل مسائل سادهای (مانند تابع XOR)
 - عدم وجود روشی کلی برای آموزش شبکههای چندلایه
- ۱۹۷۲ اولین کار کوهونن از دانشگاه هلسینکی، روی شبکههای عصبی حافظهٔ پیوندی
- ۱۹۷۷ تحقیقات آندرسن از دانشگاه براون در زمینهٔ شبکههایی عصبی حافظهٔ انجمنی و Brain-State-in-a-Box)

۰ دهه ۸۰ شکوفایی شبکههای عصبی ۰۰۰

- الگوریتم پسانتشار خطا برای آموزش شبکههای چندلایه
 - o توسط پارکر در سال ۱۹۸۵ و لوکان در سال ۱۹۸۶

• شبكههای هایفیلد

- o توسط هاپفیلد برندهٔ جایزهٔ نوبل در رشتهٔ فیزیک و عضو مؤسسهٔ فن آوری کالیفرنیا
 - m AT&Tبه همراه ديويد تانك ، محقق m O
 - o شبکهٔ عصبی با وزنهای ثبات و فعالسازی وفقی (جزو شبکههای حافظهٔ انجمنی)
 - o حل مسائل ارضای محدودیت مانند «مسئلهٔ فروشندهٔ دوره گرد»

• نگاشتهای خودسازمانده کوهونن (SOM)

- توسط کوهونن از دانشگاه هلسینکی
- o استفاده در بازشناسی گفتار کلمات فنلاندی و ژاپنی ، حل «مسئلهٔ فروشندهٔ دوره گرد» و آهنگسازی

۰ دهه ۸۰ شکوفایی شبکههای عصبی ۰۰۰

- شبکههای نظریهٔ نوسان وفقی (ART)
 - o توسط کارپنز و با همکاری گراسبرگ
- نظریهای برای شبکههای عصبی خودسازمانده

Neocognitron شبکه

- o توسط فو کوشیما و همکارانش در آزمایشگاههای NHK در تو کیو
 - o شبکهٔ عصبی خاص منظوره برای بازشناسی نویسهها
- ο بهبود یافته شبکهٔ خودسازمانده قدیمی تر با نام (۱۹۲۵) (۱۹۷۵

• ماشین بولتزمن

- o تغییر وزنها یا فعالسازی براساس تابع تراکم احتمال
- o استفاده از ایدههای کلاسیک شبیه سازی سردشدن تدریجی (Simulated Annealing)و تئوری تصمیم گیری بیز (Bayesian Decision Theory)

۰ دهه ۸۰ شکوفایی شبکههای عصبی ۰۰۰

- مطالعات ریاضیاتی و زیستشناختی
- o گراسبرگ (مدیر مرکز سیستمهای وفقی در دانشگاه بوستون)

• پیادهسازی سختافزاری

- های عصبی محاسباتی کامپیوترها و ساخت m VLSIبرای شبکههای عصبی m o
 - ٥ ایجاد شرکتهای مبتنی بر شبکه عصبی

تاریخچه شبکههای مصبی مصنوعی

۰ دهه ۹۰ – دهه کاربرد

- به کار گیری شبکههای عصبی در کاربردهای مختلف
 - توسعه شبکه توابع پایه شعاعی (RBF)
 - ماشین بردار پشتیبان (SVM)

۰ ۲۰۰۰ به بعد

(Deep Learning) يادگيري عميق

شبکه های مصبی مصنوعی: مفاهیم/تماریف . . .

🔾 ساختارهای رایج

- ساختاریا معماری: آرایش نرونها در لایهها و الگوهای ارتباط داخل و بین لایهها
- شبکههای پیشخور (Feedforward) –سیگنالها در یک جهت و از سمت واحدهای ورودی به سمت واحدهای خروجی (به سمت جلو) میروند

H. Veisi (h.veisi@ut.ac.ir)

شبکه های مصبی مصنوعی: مفاهیم/تماریف . . .

مساختارهای رایج

- شبکهٔ بازگشتی (Recurrent)، مسیرهای بستهٔ سیگنال از یک واحد به خودش وجود دارد
 - شبکهٔ رقابتی: واحدهای آن کاملاً به هم مرتبطاند

درس: مبانی رایانش نرم- شبکههای عصبی (مقدمه ، شبکه مککلاچ-پیتز و شبکه هب)

پیوند الگو - طبقهبندی الگو

o بازشناسى الگو (Pattern Recognition)

- پیوند الگو (Pattern Association)
- o پیوند دادن الگوی ورودی با یک الگوی خروجی
- ۰ ورودی: تصویر چهره یک فرد خروجی: مشخصات و خصوصیات وی
- دستهبندی یا طبقهبندی الگو (Pattern Classification)
- ٥ حالت ساده (دو دسته): هر الگوی ورودی (یک بردار) عضو یک دسته است یا نه
 - ه حالت کلی (n) دسته): هر الگو (n) دارد ورودی)، به یکی از (n) دسته تعلق دارد

شبکههای عصبی مصنوعی: مفاهیم/تعاریف . . .

تنظیم وزنها . . .

• آموزش: تعیین مقادیر وزنهای شبکه

• آموزش با نظارت (Supervised Learning)

- o به ازای هر بردار ورودی، یک بردار هدف یا خروجی معادل در دسترس است
- o طبقهبندی الگوها: بردار ورودی به دسته خاصی تعلق دارد (خروجی: «بله» یا «خیر»)
 - پیوند الگو: خروجی یک الگو
- o حافظهٔ انجمنی (Associative Memory): شبکهای که برای پیوند مجموعهای از بردارهای ورودی با مجموعهای از بردارهای خروجی مطابق با آن آموزش داده میشود
 - o حافظهٔ خود انجمنی (Autoassociative Memory): بردار خروجی با بردار ورودی یکسان است
 - o حافظهٔ دیگرانجمنی (Hetroassociative Memory): بردار خروجی متفاوت از بردار ورودی است
 - ه شبکههای پرسپترون چندلایه، شبکههای حافظهٔ انجمنی پیشخور و بازگشتی، یادگیری چندیسازی برداری (LVQ) و انتشار متقابل (LVQ)

شبکههای مصبی مصنوعی: مفاهیم/تماریف . . .

نظیم وزنها ㅇ

- آموزش بدون نظارت (Unsupervised Learning)
- o بردارهای ورودی مشابه (دارای بیشترین شباهت) به هم را در یک دسته گروهبندی میکنند
 - o خوشهبندی (Clustering) بردارهای ورودی
 - نگاشتهای خودسازمانده کوهونن و نظریهٔ نوسان وفقی

- شبکههای با وزن ثابت
- o نیازی به فر آیند آموزش تکراری ندارند
 - o حل مسائل بہینهسازی با محدودیت
- ٥ ماشین بولتزمن (بدون یادگیری) و شبکهٔ هاپفلید پیوسته

شبکه های مصبی مصنوعی: مفاهیم/تعاریف . . .

• توابع فعالسازی متداول . . .

- (Identity Function) تابع همانی
 - ٥ برای واحدهای ورودی

f(x)

- تابع پلهای دودویی (Step Function)
- o تابع آستانه (Threshold Function) یا تابع هویساید (Threshold Function) تابع
 - o خروجی = سیگنال دودویی (۱ یا ۰) یا دوقطبی (Bipolar) (۱ یا ۱-)

شبکههای مصبی مصنوعی: مفاهیم/تماریف . . .

• توابع فعالسازی متداول

o استفاده در شبکههای عصبی پسانتشار (نیاز به مشتق گیری)

 \circ دامنة 0 تا 1 ، مقادیر مطلوب خروجی یا دودویی است و یا بین 0 و 1 است

o سیگموید دوقطبی- شبیه به تابع تانژانت هیپربولیک (Hyperbolic Tangent Function)

0 دامنة 1- تا 1

$$g(x) = 2f(x) - 1 = \frac{2}{1 + \exp(-\sigma x)} - 1 = \frac{1 - \exp(-\sigma x)}{1 + \exp(-\sigma x)}$$

$$g'(x) = \frac{\sigma}{2} [1 + g(x)][1 - g(x)]$$

شبکههای مصبی مصنوعی: مفاهیم/تعاریف . . .

• بایاس . . .

• در ورودی شبکه عصبی، علاوه بر ورودیهای موردنظر، یک ورودی ثابت با مقدار ۱ نیز داشته باشیم.

$$y_{in} = 1 \times b + w_{1}x_{1} + w_{2}x_{2} = b + \sum_{i} w_{i}x_{i}$$

واحدهای ورودی

• تابع فعالسازی برای شبکه دارای بایاس به صورت زیر است:

$$f(y_in) = \begin{cases} 1 & if \quad y_in \ge 0 \\ -1 & if \quad y_in < 0 \end{cases}$$

شبکه های مصبی مصنوعی: مفاهیم/تعاریف . . .

o حالتی که بایاس نباشد ولی آستانهٔ ثابت غیر صفر باشد

$$f(y_in) = \begin{cases} 1 & \text{if } y_in \ge \theta \\ -1 & \text{if } y_in < \theta \end{cases}$$

$$w_1 x_1 + w_2 x_2 \ge \theta$$

$$y_{in} = w_{1}x_{1} + w_{2}x_{2}$$

شبکه معاکلات - پیتنی...

- نرون مککلاچ -پیتز = اولین نرون مصنوعی
 ویژگیها
 - تابع فعالسازی دودویی است
- o در هر مرحلهٔ زمانی، نرون یا برانگیخته میشود (فعالسازی ۱) و یا برانگیخته نمیشود (فعالسازی ۰)
 - نرونهای مککلاچ—پیتز از طریق اتصالات مستقیم و وزندار به هم متصل میشوند
- وزن مثبت روی اتصال = مسیر اتصال تحریکی، در غیر این صورت مسیر بازدارنده است. در غیر این صورت مسیر بازدارنده است. در تمام اتصالات تحریکی به یک نرون خاص، وزنهای یکسان دارند
- هر نرون دارای سطح آستانهٔ ثابتی است اگر ورودی شبکه به آن نرون، بزرگ تر از مقدار آستانه باشد، نرون برانگیخته میشود
 - سطح آستانه هر نرون طوری تعیین می گردد که بازدارندگی آن کامل باشد درودی بازدارندهٔ غیرصفر مانع از برانگیخته شدن نرون می شود.
 - عبور یک سیگنال از یک مسیر اتصال، به اندازه یک واحد زمانی طول می کشد

شبکه مککلاچ-پیتز...

○ مثال (نرون مککلاچ-پیتز)

- اتصال از X1 به Y و اتصال از X2 به Y، تحریکی هستند X
- اتصالات تحریکی وزنهای مثبت یکسانی دارند، چون به یک واحد وارد میشوند
 - همچنین اتصال X3 به ۲،بازدارنده (منفی) است
 - یک واحد زمانی طول می کشد تا سیگنال از واحدهای X به واحد Y برسند
 - مقدار آستانه برای واحد Y برابر با Υ است. چرا؟
 - o این مقدار به این واحد امکان میدهد که گاهی اوقات برانگیخته شود،
- o اگر سیگنال غیرصفری در اتصال بازدارنده دریافت شود، از برانگیخته شدن واحد Yجلو گیری می کند

شبکه مککلاچ-پیتن ساختار . . .

- تمام وزنهای تحریکی که به هر واحد وارد میشوند باید یکسان باشد
- بازدارندگی کامل = هر ورودی بازدارندهٔ غیرصفر مانع از برانگیخته شدن نرون؟

$$\theta > nw - p$$

شبکه مکالاج-پیتن الگوریتم . . .

- وزن ثابت و مقدار آستانه مشخص برای تابع فعالسازی
 - جهت تعریف توابع منطقی ساده

o مثال: تابع AND

• خروجی «درست» است اگر هر دو مقدار ورودی «درست» باشند

x_1	x_2	\rightarrow	y
1	1		1
1	0		0
0	1		0
0	0		0

شبکه مککلاچ-پیتن الگوریتم...

oR مثال: تابع oR •

• خروجی «درست» است اگر هر یک از مقادیر ورودی «درست» باشد

x_1	x_2	\rightarrow	У
1	1		1
1	0		1
0	1		1
0	0		0

o مثال: تابع AND NOT

• خروجی «درست» است اگر مقدار ورودی اول «درست» و مقدار ورودی دوم «نادرست»

باشد

x_1	x_2	\rightarrow	y
1	1		0
1	0		1
0	1		0
0	0		0

شبکه میکلاچ-پیتز، کاربرد

XOR تابع

• خروجی «درست» است اگر فقط یکی از مقادیر ورودی «درست» باشد

$$x_{1} \text{ XOR } x_{2} \leftrightarrow (x_{1} \text{ ANDNOT } x_{2}) \text{OR}(x_{2} \text{ ANDNOT } x_{1})$$

$$x_{1} \text{ XOR } x_{2} \leftrightarrow (x_{1} \text{ ANDNOT } x_{2}) \text{OR}(x_{2} \text{ ANDNOT } x_{1})$$

$$x_{1} \text{ ANDNOT } x_{2} \rightarrow y$$

$$x_{1} \text{ 1} \qquad 0$$

$$0 \quad 1 \quad 1$$

$$0 \quad 0 \quad 0$$

• استفاده از یک شبکهٔ دولایه

OR الية اول شامل دو عملگر OR
 OR لاية دوم عملگر

- اولین (و سادهترین) قانون یادگیری برای شبکهٔ عصبی
 - ایده اصلی یادگیری هب
- یادگیری با تغییر استحکامات سیناپسهای نرونها (وزنهای شبکههای عصبی) است
- اگر دو نرون متصل به هم به طور همزمان «فعال» باشند، وزن بین آنها باید افزایش یابد
 - هب دربارهٔ نرونهایی که به طور همزمان برانگیخته نمیشوند، چیزی نمی گوید
 - o یادگیری قویتر = اگر دو نرون به طور همزمان «غیرفعال» باشند، وزنها افزایش یابد

• شبکهٔ هب یک لایه است

• بهروز شدن (Update) وزنها

o برای داده دودویی، اگر ورودی یا خروجی (یا هر دو) «غیرفعال» باشند، یادگیری صورت نمیگیرد

شبکه هب، انگوریتم . . .

- $w_i = 0 \quad (i = 1, ..., n)$ مرحله \cdot به تمام وزنها مقدار اولیه صفر بدهید
- مرحله ۱ برای هر بردار آموزش ورودی و خروجی هدف، s:t، مراحل ۲ تا ۴ را انجام بده
 - $x_i = s_i$ (i = 1,...,n) مرحله ۲ فعالسازیهای واحدهای ورودی را تعیین کن \bullet
 - y=t مرحله Ψ برای واحد خروجی فعالسازی را تعیین کن
 - مرحله ۴- وزنها و بایاس را بهروز کن

$$w_{i}(new) = w_{i}(old) + x_{i}y$$
 $(i = 1,...,n)$
 $b(new) = b(old) + y$

$$\mathbf{w}(new) = \mathbf{w}(old) + \mathbf{x}.y$$
 \Rightarrow $\mathbf{w}(new) = \mathbf{w}(old) + \Delta \mathbf{w}$

دادههای آموزشی فقط یک بار به شبکه نشان داده شده و آموزش به اتمام میرسد

$$(x_1 \quad x_2 \quad 1)$$

INPUT

TARGET

تابع AND با ورودیها و هدفهای دودویی . . .

تغییر وزن
$$\Delta w_1 = x_1 t$$
 , $\Delta w_2 = x_2 t$, $\Delta b = 1.t = t$

$$\mathbf{w}(new) = \mathbf{w}(old) + \Delta \mathbf{w}$$

$$x_1 = 1$$
, $x_2 = 1$, $b = 1$, $t = 1$

• برای ورودی اول

TARGET WEIGHT CHANGES WEIGHTS INPUT

$$(x_1 \quad x_2 \quad 1) \qquad t \qquad (\Delta w_1 \quad \Delta w_2 \quad \Delta b) \qquad (w_1 \quad w_2 \quad b)$$

$$(\Delta w_1 \quad \Delta w_2 \quad \Delta b)$$

$$w_1$$
 w_2 b

$$(0 \ 0 \ 0)$$

$$(1 \quad 1 \quad 1) \qquad 1 \qquad (1 \quad 1 \quad 1)$$

$$1$$
 1

$$(1 \quad 1 \quad 1)$$

$$x_2 = -x_1 - 1$$

شعهٔ هد کاربرد . . .

• تابع AND با ورودیها و هدفهای دودویی

• برای دومین، سومین و چهارمین ورودی

WEIGHTS INPUT TARGET WEIGHTCHANGES

$$(x_1 \ x_2 \ 1) \ t \ (\Delta w_1 \ \Delta w_2 \ b) \ (w_1 \ w_2 \ b)$$

$$(1 \quad 0 \quad 1) \qquad 0 \qquad (0 \quad 0 \quad 0)$$

$$(0 \quad 0 \quad 1) \qquad 0 \qquad (0 \quad 0 \quad 0)$$

$$(w_1 \quad w_2 \quad b)$$

$$(1 \quad 1 \quad 1)$$

$$(1 \quad 1 \quad 1)$$

$$(1 \quad 1 \quad 1$$

یادگیری رخ نمیدهد وزنها تغيير نمىكند

الگوهایی با مقدار هدف صفر یا «غيرفعال»

استفاده از نمایش دودویی

$$x_2 = -x_1 - 1$$

نادرست

شبکهٔ هب، کاربرد . . .

• تابع AND با ورودیهای دودویی و مقادیر هدف دوقطبی

INPUT	TARGET									رودي	• اولین ور
$(x_1 \ x_2 \ 1)$	t	INPU ⁻	г .	TARGET	WEIGH	нт сн	ANGES	WEI			
(1 1 1)	1	(x_1, x_2, \dots, x_n)			(Δw_1)			(w_1)		_	
(1 1 1)	I	$(x_1 x_2)$	1)	ι	(Δw_1)	ΔW_2	ΔU)	. 1	2		v - v = 1
(1 0 1)	-1							(0	0	0)	$x_2 = -x_1 - 1$
(0 1 1)	-1	(1 1	1)	1	(1	1	1)	(1	1	1)	
$(0 \ 0 \ 1)$	–1										

• ارائه دومین، سومین و چهارمین

INPUT TARGET WEIGHTCHANGES WEIGHTS

INPUT TARGET

$$(x_1 \quad x_2 \quad 1)$$

- $(1 \quad 1 \quad 1)$
- (1 -1 1) $(-1 \ 1 \ 1)$
- $(-1 \ -1 \ 1)$

- تابع AND برای ورودیها و هدفهای دوقطبی ...
 - اولین ورودی

INPUT TARGET WEIGHT CHANGES WEIGHTS

$$(x_1 \quad x_2 \quad 1) \qquad t$$

$$t \qquad (\Delta w_1 \quad \Delta w_2 \quad \Delta b)$$

$$(w_1 \quad w_2 \quad b)$$

$$(1 \quad 1 \quad 1) \qquad 1 \qquad (1 \quad 1 \quad 1) \qquad (1 \quad 1 \quad 1)$$

$$x_2 = -x_1 - 1$$

TARGET WEIGHT CHANGES WEIGHTS **INPUT**

$$(x_1 \ x_2 \ 1)$$

$$(x_1 \quad x_2 \quad 1) \qquad t \qquad (\Delta w_1 \quad \Delta w_2 \quad \Delta b) \qquad (w_1 \quad w_2 \quad b)$$

$$(w_1 \ w_2 \ b)$$

$$(1 \quad 1 \quad 1)$$

$$x_2$$

$$(1 -1 1)$$

$$-1$$
)

$$(1 -1 1)$$
 -1 $(-1 1 -1)$ $(0 2 0)$

$x_{2} = 0$

پاسخ درست برای کا دو نمونه آموزش

شعه مد، کاربرد . . .

• تابع AND برای ورودیها و هدفهای دوقطبی

INPUT TARGET WEIGHT CHANGES WEIGHTS

$$(x_1 \ x_2 \ 1)$$

$$(\Delta w_1 \quad \Delta w_2)$$

$$(x_1 \quad x_2 \quad 1) \qquad t \qquad (\Delta w_1 \quad \Delta w_2 \quad \Delta b) \qquad (w_1 \quad w_2 \quad b)$$

(0 2

$$(-1 \quad 1 \quad 1) \qquad -1 \qquad (1 \quad -1 \quad -1) \qquad (1 \quad 1 \quad -1)$$

$$-1$$
 -1)

$$(1 1 -1)$$

$x_2 = -x_1 + 1$

INPUT TARGET WEIGHT CHANGES WEIGHTS

$$(x_1 \ x_2 \ 1)$$

$$t \qquad (\Delta w_1 \ \Delta w_2 \ \Delta b)$$

$$(w_1 \quad w_2 \quad b)$$

$$(1 1 -1)$$

$$(-1 \quad -1 \quad 1)$$
 $\qquad -1$ $\qquad (1 \quad 1 \quad -1)$ $\qquad (2 \quad 2 \quad -2)$

• چهارمین ورودی

• سومین ورودی

$$(1 \quad 1 \quad -1) \qquad x_2 = -x_1 + 1$$

شبکهٔ هب، نمایش دادهها

- شبكل نمایش دادهها میتواند مسئله قابلحل را به مسئلهای غیرقابلحل
 تبدیل کند
 - در قانون هب بسیار موثر است
- برای برخی الگوها منجر به جواب درست نمیشود، ممکن است برای نمایش متفاوتی از همان الگوها یاسخ درستی را نتیجه دهد

نمایش دوقطبی بهتر از نمایش دودویی است

- افزایش قابلیت تعمیم شبکه
- امکان تمایز دادههای گمشده (Missing Data) از دادههای آشتباه (Mistaken Data)
 - o مقادیر گمشده = «٠»
 - o اشتباهات = قرینه مقدا*ر ورودی از ۱* + به ۱ –، یا برعکس

شبکه هب، مثال . . .

• بازشناسی نویسه (کاراکتر) – الگوهای ورودی دوبعدی . . .

 $^{\circ}$ یک شبکه هب برای تشخیص الگوی «X» از الگوی « $^{\circ}$

```
• یک مسئلهٔ دسته بندی الگو؟
```

ه دسته «X» =خروجی مورد نظر و الگوی «O» = خروجی «غیر X»

٥ روش ديگر؟

• تبدیل الگوهای «O» و «X» به بردارهای ورودی؟

o مقدار ۱ برای هر «#» و مقدار ۱- برای هر «۰»

o دوبع*دی*؟ پشت سرهم قرار دادن ردیفها

. . .

$1 \ -1 \ -1 \ 1, -1 \ 1 \ -1, -1 \ 1 \ -1, -1 \ 1 \ -1, -1 \ 1 \ -1, 1 \ -1 \ 1$

• ساختار شبکه؟

o تعداد نرونهای ورودی = برابر با تعداد ابعاد بردار الگوها=۲۵

شبکه هب، مثال . . .

- بازشناسی نویسه (کاراکتر) الگوهای ورودی دوبعدی . . .
 - قابلیت تعمیم شبکه
- o تولید پاسخ منطقی شبکه برای الگوهای ورودی شبیه الگوهای آموزش اما نه کاملاً یکسان با آنها
 - دو نوع تغییر در الگوی ورودی
 - ۰ «اشتباهات در دادهها»
 - \circ علامت یك یا چند مؤلفة بردار ورودي قرینه شده و از 1 به 1- 1 ، یا برعكس ، تغییر یافته است.
 - # . . . # . # . 0. . . # . . . # . # .

. # .

. . # . . . # . . .

. . .

- o «دادههای گمشده»
- یك یا چند مؤلفة بردار ورودي به جاي مقدار 1 یا 1- مقدار صفر دارند \circ
- شبکه در برخورد با دادههای گمشده عملکرد بهتری در مقایسه با اشتباهات دارد
 - o در مورد دادههای ورودی، «بهتر است که حدس نزنیم»!!

جداسازی خطی . . .

مسئله دستهبندی ساده با شبکه عصبی

• الگوی ورودی عضو دسته مورد نظر باشد، پاسخ «بله» و اگر ورودی عضو آن دسته نباشد، پاسخ «خیر»

$$y_i = b + \sum_i x_i w_i$$

 $f(y_in) = \begin{cases} 1 & if \quad y_in \ge 0 \\ -1 & if \quad y_in < 0 \end{cases}$

• تابع فعالسازی پلهای

و $y_in>0$ مرز تصمیم گیری (Decision Boundary) مرز بین ناحیه ای که در آن $y_in>0$ ناحیه ای که در آن $y_in<0$ است

$$b + \sum_{i} x_{i} w_{i} = 0$$

o پاسخ این معادله یک خط، یک صفحه و یا یک ابر صفحه است

○ وابسته به تعداد واحدهاي ورودي (ابعاد بردار ورودی)

جداسازی غطی . . .

(Linearly Separable) مسئله خطی تفکیکپذیر

- حل یک مسئله توسط شبکههای یک لایه پس از تنظیم وزنها (و بایاس)
- تمام بردارهای ورودی آموزش که پاسخ صحیح برای آنها ۱+ (عضویت در دسته) است،
 در یک طرف مرز تصمیم گیری و تمام برادرهای ورودی آموزش که پاسخ صحیح برای
 آنها ۱- (عدم عضویت در دسته) است در سمت دیگر مرز تصمیم گیری قرار می گیرند
 - نشان داده شده است که شبکهٔ یک لایه فقط می تواند مسائلی را حل کنند که به صورت خطی تفکیک پذیر باشند
- شبکههای چندلایهای که از توابع فعالسازی خطی استفاده میکنند، از شبکههای یک لایه قوی تر نیستند زیرا ترکیب چند تابع خطی نیز خطی است

$INPUT(x_1, x_2)$ OUTPUT

(1, 1)	+1
(1, -1)	-1
(-1, 1)	-1

-1

(-1, -1)

جداساڑی خطی . . .

o مثال: تابع AND مثال

$$b + w_1 x_1 + w_2 x_2 = 0$$
 مرز تصمیم گیری •

$$b = -1, w_1 = 1, w_2 = 1$$

$$x_2 = -x_1 + 1$$

+	X _T	+
		x,
-		+

$INPUT(x_1, x_2)$	OUTPUT	o مثال: تابع OR
(1, 1)	+1	
(1, -1)	+1	
(-1, 1)	+1	
(-1, -1)	-1	

$$b=1, w_1=1, w_2=1$$
 مرز تصمیم گیری • $x_2=-x_1-1$

• اگر وزن بایاس وجود نداشت، مرز تصمیم گیری باید از مبدأ عبور می کرد

جداسازی خطی

○ مثال: تابع XOR

$INPUT(x_1, x_2)$	OUTPUT
(1, 1)	-1
(1, -1)	+1
(-1, 1)	+1
(-1, -1)	-1

- ۰ حل؟
- فضای دادههای ورودی به صورت خطی جداییپذیر نیست.
 - هیچ خط مستقیم نمی تواند نقاط مثبت و منفی را جدا کند