Assume for the sake of contradiction that Palindrome is regular. Then the pumping lemma must hold for a certain pumping length l. Let $x = 0^l 10^l \in \text{Palindrome}$, then $|x| = 2l + 1 \leq l$. By the pumping lemma we can now decompose this string into substrings u, v, w with x = uvw such that

$$v \neq \epsilon$$
, $|uv| \leq l$, $uv^k w \in \text{Palindrome}$ for all $k \geq 0$.

Because $uvw = 0^l 10^l$, the substring uv can not include any 1s since it can't be long enough to reach the single 1, which is at l+1. So we conclude $v=0^i$ for some $i \ge 1$ (not ≥ 0 because $i \ne \epsilon$). By the above conditions we can "pump up" uvw by repeating v an arbitrary amount of times k. Let k=2, then

$$uv^2w = 0^{l+i}10^l$$

must also be in Palindrome. It clearly isn't since $0^{l+k} \neq 0^l$ or rather $l+k \neq l$ because k=2.