PD-93906D

IRFP2907

AUTOMOTIVE MOSFET

HEXFET® Power MOSFET

Typical Applications

- Integrated Starter Alternator
- 42 Volts Automotive Electrical Systems

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	209©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	148©	A
I _{DM}	Pulsed Drain Current ①	840	
P _D @T _C = 25°C	Power Dissipation	470	W
	Linear Derating Factor	3.1	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	1970	mJ
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy⑦		mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case		0.32	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
Reia	Junction-to-Ambient		40	

IRFP2907

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.085		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.6	4.5	mΩ	V _{GS} = 10V, I _D = 125A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9fs	Forward Transconductance	130			S	V _{DS} = 25V, I _D = 125A
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 75V, V_{GS} = 0V$
	<u> </u>			250	ľ	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA -	$V_{GS} = 20V$
1655	Gate-to-Source Reverse Leakage			-200	ША	$V_{GS} = -20V$
Qg	Total Gate Charge		410	620		I _D = 125A
Q _{gs}	Gate-to-Source Charge		92	140	nC	$V_{DS} = 60V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		140	210		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		23			$V_{DD} = 38V$
t _r	Rise Time		190			$I_D = 125A$
t _{d(off)}	Turn-Off Delay Time		130		ns	$R_G = 1.2\Omega$
t _f	Fall Time		130			V _{GS} = 10V ④
L _D	Internal Drain Inductance		5.0			Between lead,
-0	internal Brain inductance		3.0		nH	6mm (0.25in.)
	Internal Source Inductance		13		''''	from package
L _S	internal Source Inductance		13			and center of die contact
C _{iss}	Input Capacitance		13000			$V_{GS} = 0V$
Coss	Output Capacitance		2100		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		500			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		9780]	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		1360			$V_{GS} = 0V, V_{DS} = 60V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		2320			$V_{GS} = 0V$, $V_{DS} = 0V$ to $60V$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			2000		MOSFET symbol		
	(Body Diode)		2096		209® A	showing the		
I _{SM}	Pulsed Source Current	040	0.40	040	040		^	integral reverse
	(Body Diode) ①		— — 840			p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 125A$, $V_{GS} = 0V$ ④		
t _{rr}	Reverse Recovery Time		140	210	ns	T _J = 25°C, I _F = 125A		
Q _{rr}	Reverse RecoveryCharge		880	1320	nC	di/dt = 100A/μs ④		
t _{on}	Forward Turn-On Time	Intr	insic tu	irn-on ti	me is ne	gligible (turn-on is dominated by L _S +L _D)		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $$\label{eq:starting} \begin{split} \textcircled{2} \quad & \text{Starting T}_J = 25^{\circ}\text{C}, \ L = 0.25\text{mH} \\ & \text{R}_G = 25\Omega, \ I_{AS} = 125\text{A}. \ \text{(See Figure 12)}. \end{split}$$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A.
- Dimited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRFP2907

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP2907

International **TOR** Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. $P_{D \text{ (ave)}}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av}) = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ } [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

IRFP2907 International Rectifier

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** $\ensuremath{\text{V}_{\text{GS}}}$ = 5.0V for Logic Level and 3V Drive Devices

Fig 17. For N-channel HEXFET® power MOSFETs

International **TOR** Rectifier

IRFP2907

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTE	.2
1.	DIMENSIONING AND TOLERANCING AS PER ASME Y14,5M 1994.
2.	DIMENSIONS ARE SHOWN IN INCHES.
∠3\	CONTOUR OF SLOT OPTIONAL.
A	DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
4	THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS DI & E1.
	LEAD FINISH UNCONTROLLED IN L1.
Δλ	## TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMFTER OF 154 INCH

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC

		DIMEN	ISIONS							
SYMBOL	INC	HE5	MILLIMETERS		MILLIME TERS		MILLIMETERS		1 1	
Ī	MIN.	MAX.	MIN.	MAX.	NOTES					
A	.183	.209	4.65	5,31	\Box					
A1	.087	.102	2,21	2,59	1 1					
A2	.059	.098	1,50	2,49	1 1					
b	.039	.055	0.99	1,40	1 1					
ь1	.039	.053	0.99	1.35	1 1	LEAD ASSIGNMENTS				
ь2	.065	.094	1,65	2.39	I I					
b3	.065	.092	1,65	2.34	1 1	HEXFET				
b4	.102	.135	2.59	3.43	1 1	I LIVE L				
b5	,102	.133	2,59	3.38	1 1	1 GATE				
c	.015	.035	0.38	0,89	1 1	2 DRAIN				
c1	.015	.033	0.38	0.84	1 1	3 SOURCE				
D	.776	.815	19.71	20.70	4	4, - DRAIN				
D1	.515	-	13.08	-	5					
D2	.020	.053	0.51	1.35	1 1					
E	.602	.625	15.29	15.87	4	IGBTs, CoPACK				
E1	,530	- 1	13.46	-	1 1	1 - GATE				
E2	.178	.216	4.52	5,49	1 1	2 COLLECTOR				
e	.215	BSC	5,46	BSC	1 1	3 EMITTER				
øk	.0	10	0,	25	1 1	4 COLLECTOR				
L	.559	.634	14,20	16,10	1 1	4, 0000001011				
L1	,146	.169	3,71	4.29	1 1					
øP	,140	.144	3,56	3.66	1 1	DIODES				
øP1	-	.291	-	7,39	1 1					
Q	.209	.224	5,31	5,69	I I	 ANODE/OPEN 				
s	.217	BSC	5,51	BSC]					
						1 ANODE/OF 2 CATHODE 3 ANODE				

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive[Q101] market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 08/2011