${\tt COMPASS_TEMPEST_SGW_2025:~Well~Test}$

Stephanie J. Wilson

2025-02-11

Contents

0.1	Read in first data file and assess standard curves	1
0.2	Now calculate the CH4 & CO2 concentrations in ppm $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	4
0.3	Check the Check Standards	5
0.4	Dilution correct samples	5
0.5	If samples are water calculate gas in water	6
0.6	Write out processed data & slopes	7
##Set	m t~Up	

0.1 Read in first data file and assess standard curves

##		Machine		User	Run_	Date S	ample.	_Year	Sampl	Le_Month S	Samp	ple_Day
##	1	Shimadzu G	С В. В1	akley	2025	0922		NA		<na></na>		NA
##	2	Shimadzu G	С В. В1	akley	2025	0922		NA		<na></na>		NA
##	3	Shimadzu G	С В. В1	akley	2025	0922		NA		<na></na>		NA
##	4	Shimadzu G	C B. B1	akley	2025	0922		NA		<na></na>		NA
##	5	Shimadzu G	C B. B1	akley	2025	0922		NA		<na></na>		NA
##	6	Shimadzu G	C B. B1	akley	2025	0922		NA		<na></na>		NA
##		Event_Stam	o Sampl	e_Time	Tim	e_Zone	${\tt G}_{\tt W}$	Sampl	Le_ID	Sample_Ty	тре	${\tt Conc_CO2}$
##	1	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th>La</th><th>abAir</th><th>Lab a</th><th>air</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>	La	abAir	Lab a	air	NA
##	2	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th>B</th><th>Lank1</th><th>Bla</th><th>nk</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>	B	Lank1	Bla	nk	NA
##	3	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th>B</th><th>Lank2</th><th>Bla</th><th>ank</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>	B	Lank2	Bla	ank	NA
##	4	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th></th><th>${\tt Oppm}$</th><th>Standa</th><th>ard</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>		${\tt Oppm}$	Standa	ard	NA
##	5	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th>2.</th><th>.5ppm</th><th>Standa</th><th>ard</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>	2.	.5ppm	Standa	ard	NA
##	6	<na:< th=""><th>></th><th>NA</th><th>1</th><th><na></na></th><th><na></na></th><th></th><th>5ppm</th><th>Standa</th><th>ard</th><th>NA</th></na:<>	>	NA	1	<na></na>	<na></na>		5ppm	Standa	ard	NA
##		Conc_CH4 C	onc_N2O	CO2_#	rea	CH4_Ar	ea Di	lution	n_Fact	cor		
##	1	NA	NA		NA	12	77			NA		
##	2	NA	NA		NA	1	64			NA		
##	3	NA	NA		NA	1	66			NA		
##	4	0.0	NA		NA	1	72			NA		
##	5	2.5	NA		NA	26	72			NA		
##	6	5.0	NA		NA	57	16			NA		

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

CH4 LOW Std Curve


```
##
## Call:
## lm(formula = stds_ch4_low$CH4_Area ~ stds_ch4_low$Conc_CH4)
##
## Residuals:
##
              2
                     3
                           4
                                   5
   337.1 -224.4 -241.9 -327.9 712.0 -255.0
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          -165.1
                                  258.6 -0.639
                                                       0.558
## stds_ch4_low$Conc_CH4
                         1224.6
                                      11.1 110.319 4.05e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 474.9 on 4 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted \bar{R}-squared: 0.9996
## F-statistic: 1.217e+04 on 1 and 4 DF, p-value: 4.049e-08
## 'geom_smooth()' using formula = 'y ~ x'
```

CH4 HIGH Std Curve


```
##
## Call:
## lm(formula = stds_ch4$CH4_Area ~ stds_ch4$Conc_CH4)
## Residuals:
##
     Min
             1Q Median
## -27445 -14156 -13201 -6134
                               98453
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                                           1.204
                                                    0.256
                    13820.463 11476.617
## (Intercept)
## stds_ch4$Conc_CH4 1209.769
                                   3.529 342.782
                                                   <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35680 on 10 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 1.175e+05 on 1 and 10 DF, p-value: < 2.2e-16
##
    Χ
               Curve
                                  Slope Intercept Run_Date
                            R2
## 1 1 Slope_CH4_low 0.9996407 633.0314 -320.6965
                                                     202404
## 2 2 Slope_CH4_high 0.9993443 601.5512 14817.1191
                                                     202404
           Slope_CO2 0.9999907 168.3200 10075.2183
                                                     202404
## 4 4 Slope_CH4_low 0.9996407 633.0314 -320.6965
                                                     202404
## 5 5 Slope_CH4_high 0.9993443 601.5512 14817.1191
                                                     202404
## 6 6
           Slope_CO2 0.9999907 168.3200 10075.2183
                                                     202404
```


0.2 Now calculate the CH4 & CO2 concentrations in ppm

```
#head(raw)
#pull out methane standards
Samples <- raw %>%
 filter(!str_detect(Sample_Type, "STD_CH4")) %>%
 filter(!str_detect(Sample_Type, "STD_CO2")) %>%
 filter(!str_detect(Sample_Type, "Blank")) %>%
 filter(!str_detect(Sample_Type, "Chk_STD")) %>%
  filter(!str_detect(Sample_Type, "CHKSTD")) %>%
  filter(!str_detect(Sample_Type, "NA"))
#head(Samples)
#Now flag any areas that are above the 100ppm area for CH4
Samples$CH4_Curve <- ifelse(Samples$CH4_Area >71000, "High", "Low")
#head(Samples)
#Calculate CH4 concentrations in ppm
Samples$CH4_Conc_ppm <- ifelse(Samples$CH4_Area >71000, (Samples$CH4_Area-Slope_CH4_high$Intercept)/Slo
#Calculate CO2 concentrations in ppm
\#Samples CO2\_Conc\_ppm <- ((Samples CO2\_Area-Slope\_CO2 Intercept)/Slope\_CO2 Slope)
```

```
#head(Samples)
#######make flags for any dilutions needed
#highest CH4 standard = 10000
#highest CO2 standard = 50000
Samples$CH4_Flag <- ifelse(Samples$CH4_Conc_ppm >10000, "Needs Dilution", "Within Range")
#Samples$CO2_Flag <- ifelse(Samples$CO2_Conc_ppm >50000, "Needs Dilution", "Within Range")
#head(Samples)
```

Check the Check Standards 0.3

Check Stds: CH4

CH4_diff_flag

0.4Dilution correct samples

```
#multiply the concentration by the dilution factor
Samples$CH4_Conc_ppm_dilcorr <- (Samples$CH4_Conc_ppm * Samples$Dilution_Factor)
\#Samples \$CO2\_Conc\_ppm\_dilcorr <- (Samples \$CO2\_Conc\_ppm * Samples \$Dilution\_Factor)
#check results
#head(Samples)
```


0.5 If samples are water calculate gas in water

Warning: Removed 15 rows containing missing values or values outside the scale range
('geom_bar()').

0.6 Write out processed data & slopes

```
#check results
#head(Samples)
#pull out what we need
\#Samples1 \leftarrow Samples[,c(1:3,6:17,21:24)]
#head(Samples1)
Samples1 <- Samples %>%
  filter(str_detect(Sample_ID, "Shakey"))
final_data <- Samples1 %>%
  #select(Project, Plot, grid, sample_name, Vial_ID, date, ) %>%
    Project = "COMPASS", # new column with same value on every row
    Experiment = "TEMPEST: Well Test",
    Sample_Date = "2025-09-04",
    Sample_Time = c("14:00", "14:00", "14:00"),
   Replicate = c("A", "B", "C")#,
                             # new column with notes about the run
    #Run_notes = run_notes
  )
#this needs altered to match the tempest metadata and clean up
```

```
final_data <- final_data %>%
 rename(
   sample_name = Sample_ID,
   CH4_ppm = CH4_Conc_ppm_dilcorr ,
   CH4_uM = CH4_Conc_umol,
    # add more rename pairs as needed
 ) %>%
  select(
   Project, Experiment, Sample_Date, Sample_Time, Replicate, sample_name,
   CH4_ppm, CH4_uM, CH4_Flag #, tdn_mqL, tdn_uM, tdn_flag, Analysis_runtime,
   #Run notes
    # list columns in the order you want them
  )
head(final_data)
    Project
                    Experiment Sample_Date Sample_Time Replicate sample_name
## 1 COMPASS TEMPEST: Well Test 2025-09-04
                                                 14:00
                                                               Α
                                                                     Shakey A
## 2 COMPASS TEMPEST: Well Test 2025-09-04
                                                 14:00
                                                               В
                                                                     Shakey B
## 3 COMPASS TEMPEST: Well Test 2025-09-04
                                                 14:00
                                                               С
                                                                    Shakey_C
      CH4_ppm CH4_uM
                           CH4_Flag
## 1 1060.6322 43.35094 Within Range
## 2 858.7977 35.10141 Within Range
## 3 1060.6586 43.35202 Within Range
ch4_shakeys <- ggplot(data = final_data, aes(x = sample_name, y = CH4_ppm)) +
       geom_bar(stat = 'identity') +
        #scale_fill_manual(values=c("darkgrey", "darkblue"))+
        #scale_fill_gradient2(low='red', mid='white', high='blue', space='Lab') +
       theme_classic() + labs(x= " ", y="CH4 (ppm)", title="TMP Aquifer Well") +
       theme(legend.position="none")
ch4_shakeys
```


write.csv(final_data, "Processed Data/TMP_20250904_FW_WellTest_GHG_Processed.csv")

#end