2 بكالوريا Institut Excel

تصحيح موضوع مادة الرياضيات ، شعبة العلوم التجريبية ، الإمتحان الوطنى دورة يونيو 2009 تقديم: ذ. الوظيفى

التمرين الأول:

(1:1;0) الدينا : (1:0)

 $\overrightarrow{OD}(0;1;-1)$ 9

 $\overrightarrow{OC} \wedge \overrightarrow{OD} = \begin{vmatrix} -1 & 0 & | \vec{i} - \begin{vmatrix} 2 & 0 & | \vec{j} + \begin{vmatrix} 2 & -1 & | \vec{k} = \vec{i} + 2\vec{j} + 2\vec{k} \end{vmatrix}$ إِذْنَ :

 $\overrightarrow{OC} \wedge \overrightarrow{OD} = \overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}$: ومنه

نبين أن : x+2y+2z=0 معادلة ديكارتية للمستوى (OCD):

. (ocd) نعلم أن : $\overrightarrow{oc} \wedge \overrightarrow{od}$ متجهة منظمية على المستوى

x+2y+2z+d=0: كتب على شكل و (OCD) بكتب على شكل

d=0: أي أن $0+2\times 0+2\times 0+d=0$ فإن $d=0+2\times 0+2\times 0+d=0$ أي أن $d=0+2\times 0+2\times 0+d=0$

(OCD) وبالتالي : x+2y+2z=0 معادلة ديكارتية للمستوى

 $M \in (S) \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$: لدينا (2

[AB] هي الفلكة التي أحد أقطارها (S)

 $\Omega(2;4;4)$ وبالتالي :مركز الفلكة هو منتصف القطعة AB أي AB أي $\Omega(2;4;4)$ أي القلكة وبالتالي $\Omega(2;4;4)$

 $R = \frac{\sqrt{(6+2)^2 + (6-2)^2 + (-8)^2}}{2} = 6$ وشبعاع الفلكة هو

 $d(\Omega;(OCD)) = \frac{|2+2\times4+2\times4|}{\sqrt{1^2+2^2+2^2}} = \frac{18}{3} = 6$ (OCD) هي Ω عن المستوى (OCD) هي (3

 $d(\Omega;(OCD))=6$ بما أن $d(\Omega;(OCD))=6$ وشعاع الفلكة ياوس العدد

(S) مماس للفلكة ماس (OCD) فإن المستوى

 $\overrightarrow{OA} \wedge \overrightarrow{OB} = 0$: قدم قص

لدينا : (-2,2,8)

 $\overrightarrow{OB}(6;6;0)$ 9

 $\overrightarrow{OA}.\overrightarrow{OB} = (-2) \times 6 + 2 \times 6 + 8 \times 0 = 0$! إذن

 $O \in (S)$: استنتاج : لدينا : $\overrightarrow{OA} \wedge \overrightarrow{OB} = 0$

. $O \in (OCD)$: ولدينا

(OCD) و (S) بين أن (S) و (OCD)

. (S) و المستوى (OCD) و المستوى الفلكة (OCD) وحيث أن المستوى (OCD) مماس الفلكة (S)

(S) و (OCD) ومنه O هى نقطة تماس

=يونيو 2009 =

تقديم: ذ الوظيفي

1)نكتب على الشكل المثلثي كلا من العددين a و 1:

$$|a| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$$
 هو a

$$a = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = 2\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
: لدينا

معيار العدد B هو: 1

$$b = 1 \times \left(-\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 1 \times \left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right)$$
: لدينا

$$b==1\times\left(\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\right)$$
 ومنه: $a=2\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$:

z'=b أن ينبين أن 2.

$$M' = R(M) \Leftrightarrow z' = e^{i\frac{5\pi}{6}} (z - z_0) + z_0$$
$$\Leftrightarrow z' = \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) z$$
$$\Leftrightarrow z' = bz$$

$$z'=bz$$

لدينا:

$$bz_{A} = \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)(2 - 2i) = \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)(2 - 2i) = -\sqrt{3} + i\sqrt{3} + i + 1 = z_{C}$$

ومنه :النقطة C هي صورة النقطة A بالدوران C

 $\arg c \equiv \arg b + \arg a \left[2\pi \right]$: نبین ان

c = ba: إذن . R النقطة A بالدوران C هي صورة النقطة

$$\arg b \equiv \frac{5\pi}{6} \left[2\pi \right]$$
 و $\arg a \equiv -\frac{\pi}{4} \left[2\pi \right]$: لاينا

$$\arg c \equiv \frac{5\pi}{6} - \frac{\pi}{4} \quad [2\pi] : \psi$$

$$\arg c \equiv \frac{7\pi}{12} \quad [2\pi]$$
 وبالتالي:

_____يونيو 2009 _____

التمرين الثالث "

3B; 4N; 5R

ليكن Ω كون الإمكانيات.

السحب يتم تانيا إذن كل سحبة عبارة عن تأليفة لثلاثة عناصر من بين 12

$$card\Omega = C_{12}^3 = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220$$
: وبالتالي:

بما أن الكرات لا يمكن التمييز بينها باللمس فإن الإحتمال منتظم . (لدينا فرضية تساوي الإحتمال).

احتمال الحدث A : الحصول على B كرات من نفس اللون يعني سكب وكرات بيضاء أو وكرات سوداء أو B كرات $Card(A) = C_5^3 + C_4^3 + C_3^3 = 15$

$$p(A) = \frac{cardA}{card\Omega} = \frac{15}{220} = \frac{3}{44}$$
: هو : احتمال الحدث A

احتمال الحدث B: الحصول على 3 كرات مختلفة اللون مثنى مثنى يعني سحب كرة من كل لون .

$$card(B) = C_5^1.C_4^1.C_3^1 = 60$$
 وبالتالي

$$p(B) = \frac{cardB}{card\Omega} = \frac{60}{220} = \frac{3}{11}$$
: هو : احتمال الحدث A

$$p(B) = \frac{3}{11}$$
 e $p(A) = \frac{3}{44}$:

2) أ. عندما نسحب 3 كرات تانيا من الكيس فإن عدد الألوان التي يمكن سحبها هو 1: او 2 أو 3.

ومنه القيم الممكنة التي يمكن للمتغير العشوائي X أن يأخذها هي: 1 و 2 و 3.

2 ب

: (X=1) Larall learning.

الحدث (X=1) هو الحصول على لون واحد أي أن للكرات الثلاث المسحوبة نفس اللون.

الحدث (X=1) هو الحدث (X=1) الوارد في السؤال

.
$$p(X=1)=p(A)=\frac{3}{44}$$
 : إذن

: (X=3) Larally learning : (X=3)

الحدث : (X=3) هو الحصول على 3 ألوان أي سحب كرة من كل لون

.
$$p(X=3)=p(B)=\frac{3}{11}$$
 : وبالتالي (1 الوارد في السؤال B (الوارد في السؤال B (الوارد في الحدث (3 الحدث (3 الوارد في السؤال B (الوارد في السؤال B (الوارد في السؤال B (الوارد في الحدث (3 الوارد في السؤال B (الوارد في ال

: (X=2) لحدث احتمال الحدث.

الحدث (X=2) هو الحصول على لونين مختلفين بالضبط.

ومنه قانون احتمال X هو:

\boldsymbol{x}_{i}	1	2	3
$p(X=x_i)$	3	1	3
	44	5	11

.
$$E(X) = \left(1 \times \frac{3}{44}\right) + \left(2 \times \frac{1}{5}\right) + \left(3 \times \frac{3}{11}\right) =$$
 الأمل الرياضي للمتغير العشوائي X هو:

_____يونيو 2009 ====

التمرين الرابع:

1.أ. توحيد المقام ..

ب.نبین أن: I=1-3ln2:

لدينا:

$$I = \int_{-2}^{-1} \frac{x}{x+3} dx = \int_{-2}^{-1} 1 - \frac{3}{x+3} dx =$$

$$= \int_{-2}^{-1} 1 dx - \int_{-2}^{-1} \frac{3}{x+3} dx = \left[x \right]_{-2}^{-1} - 3 \int_{-2}^{-1} \frac{(x+3)!}{x+3} dx = 1 - 3 \left[\ln|x+3| \right]_{-2}^{-1}$$

$$= 1 - 3 (\ln 2 - \ln 1) = 1 - 3 (\ln 2 - 0)$$

$I = 1 - 3 \ln 2$ ومنه

J=-I:بین أن

$$\begin{cases} u'(x) = \frac{2}{2x+6} = \frac{1}{x+3} \\ v(x) = x \end{cases} \quad \text{(i.i.)} \quad \begin{cases} u(x) = \ln(2x+6) \\ v'(x) = 1 \end{cases}$$

$$\ln 4 = 2 \ln 2$$
 لأن $J = \left[x \ln (2x+6) \right]_{-2}^{-1} - \int_{-2}^{-1} \frac{x}{x+3} dx = -\ln 4 + 2 \ln 2 - \int_{-2}^{-1} \frac{x}{x+3} dx = -I$ وبالتالي:

$$J=-I:$$

$f(x) = 2\ln(e^x - 2\sqrt{e^x} + 2)$: مسألة

R نكل
$$e^x - 2\sqrt{e^x} + 2 = (\sqrt{e^x} - 1)^2 + 1$$
: نتحقق أن : 1 + 1

د R من x کیکن

$$e^x - 2\sqrt{e^x} + 2 = \left[\left(\sqrt{e^x}\right)^2 - 2\sqrt{e^x} + 1\right] + 1 = \left(\sqrt{e^x} - 1\right)^2 + 1$$
لدينا

. R نکل
$$e^{x} - 2\sqrt{e^{x}} + 2 = (\sqrt{e^{x}} - 1)^{2} + 1$$
 ومنه $+1$

 $e^x-2\sqrt{e^x}+2>0$ و $e^x\geq 0$ و $x\in R$: تكون الدالة f معرفة إذا كان

 \mathbf{R} وحيث أن \mathbf{x} لكل \mathbf{x} لكل $\mathbf{e}^x \succ \mathbf{0}$ و $\left(\sqrt{\mathbf{e}^x} - 1\right)^2 + 1 \succ 0$ وحيث أن

 \mathbf{R} من \mathbf{x} لكل $\mathbf{e}^x - 2\sqrt{\mathbf{e}^x} + 2 > 0$ و $\mathbf{e}^x \geq 0$:

ومنه الدالة f معرفة على R.

، ليكن x من R.

 $e^x - 2\sqrt{e^x} + 2 > 0$: لدينا

 $\frac{e^x - 2\sqrt{e^x} + 2}{e^x} > 0$: إذن

. R من
$$x$$
 لكل $1-rac{2}{\sqrt{e^x}}+rac{2}{e^x}>0$ وبالتالي وبالتالي

$$\lim_{x\to +\infty} e^x = +\infty$$
 لاینا: $\lim_{x\to +\infty} \left(\sqrt{e^x} - 1\right)^2 + 1 = +\infty$ الدینا: (2

.
$$\lim_{X\to +\infty} \ln X = +\infty \lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} 2\ln\left(\left(\sqrt{e^x} - 1\right)^2 + 1\right) = +\infty$$
: ويما أن

2 بكالوريا Institut Excel

_____ونيو 2009 ====

$\lim_{x \to -\infty} f(x) = \ln 4$: نبین أن

. $\lim_{x\to -\infty} f(x) = 2\ln 2 = \ln 4$: إذن . $\lim_{x\to -\infty} e^x = 0$

 $(-\infty)$ هندسيا : المستقيم الذي معادلته $y=\ln 4$ مقارب مواز لمحور الأفاصيل جوار

$$f'(x) = 2 \times \frac{2 \times \left(\sqrt{e^x} - 1\right)\left(\sqrt{e^x} - 1\right)}{\left(\sqrt{e^x} - 1\right)^2 + 1} = 2 \frac{2 \times \frac{e^x}{2\sqrt{e^x}}\left(\sqrt{e^x} - 1\right)}{\left(\sqrt{e^x} - 1\right)^2 + 1} = \frac{2\sqrt{e^x}\left(\sqrt{e^x} - 1\right)}{\left(\sqrt{e^x} - 1\right)^2 + 1} : \mathbf{R} \text{ i.3}$$

.
$$e^0=1$$
 لأن $f'(0)=rac{2\sqrt{e^0}\left(\sqrt{e^0}-1
ight)}{\left(\sqrt{e^0}-1
ight)^2+1}=rac{0}{2}=0$: لاينا

$\cdot\cdot \sqrt{e^x}-1$ بندرس إشارة

$$\sqrt{e^x} - 1 \succ 0 \Leftrightarrow \sqrt{e^x} \succ 1$$
 $\sqrt{e^x} - 1 = 0 \Leftrightarrow \sqrt{e^x} = 1$ $\Leftrightarrow e^x \succ 1$ $\Leftrightarrow x \succ 0$ $\Leftrightarrow x = 0$

ومنه : جدول إشارة $\sqrt{e^x} - 1$ هو

x	- ∞	0	+∞
$\sqrt{e^x}-1$	-	0	+

استنتاج

، ليكن x من R.

$$f'(x) = \frac{2\sqrt{e^x}\left(\sqrt{e^x} - 1\right)}{\left(\sqrt{e^x} - 1\right)^2 + 1}$$
: لدينا

و بما أن : f'(x) هي إشارة $2\sqrt{e^x}>0$ و $(\sqrt{e^x}-1)^2+1>0$ هي إشارة f'(x) هي إشارة $[0;+\infty[$ ومنه : f تزايدية على $[0;+\infty[$ وتناقصية على $[0;+\infty[$

4)أ. ليكن x من R ،

$$f(x) = 2\ln\left(e^{x}\left(1 - \frac{2}{\sqrt{e^{x}}} + \frac{2}{e^{x}}\right)\right) = 2\left[\ln e^{x} + \ln\left(1 - \frac{2}{\sqrt{e^{x}}} + \frac{2}{e^{x}}\right)\right] = 2x + 2\ln\left(1 - \frac{2}{\sqrt{e^{x}}} + \frac{2}{e^{x}}\right)$$
 : لدينا

.
$$\lim_{x \to +\infty} e^x = 0$$
 : $\lim_{x \to +\infty} f(x) - 2x = \lim_{x \to +\infty} 2\ln\left(1 - \frac{2}{\sqrt{e^x}} + \frac{2}{e^x}\right) = 0$: ب. لدینا : (4

 $(+\infty)$ ومنه المستقيم (D) الذي معادلته y=2x مقارب مائل لمنحنى الدالة

ر آر لیکن x من R ، (5)أ. لیکن x

$$(\sqrt{e^x} - 1)(\sqrt{e^x} - 2) = (\sqrt{e^x})^2 - 2\sqrt{e^x} - \sqrt{e^x} + 2 = e^x - 3\sqrt{e^x} + 2$$
 : الدينا

. R نم
$$(\sqrt{e^x} - 1)\sqrt{e^x} - 2 = e^x - 3\sqrt{e^x} + 2$$
 : ومنه $(\sqrt{e^x} - 1)\sqrt{e^x} - 2 = e^x - 3\sqrt{e^x} + 2$

تقديم: ذ. الوظيفي

Institut Excel

2 بكالوريا

يونيو 2009 ==========

5) ب. لدينا:

$$\sqrt{e^x} - 2 \succ 0 \Leftrightarrow \sqrt{e^x} \succ 2$$
 $\Leftrightarrow e^x \succ 4$

 $\Leftrightarrow x > \ln 4$

و

$$\sqrt{e^x} - 2 = 0 \Leftrightarrow \sqrt{e^x} = 2$$
$$\Leftrightarrow e^x = 4$$

 $\Leftrightarrow x = \ln 4$

 \cdot ومنه : جدول إشارة $\sqrt{e^x}-1$ هو

\boldsymbol{x}	- ∞	ln4		+
$\sqrt{e^x}-2$	-	0	+	

x	8	0		ln4	+∞
$\sqrt{e^x}-1$	-	ϕ	+		+
$\sqrt{{m e}^x}$ -2	-		-	$\overline{}$	+
$\sqrt{e^x-1}\sqrt{e^x-2}$	+	9	-	9	+

5)ج. ليكن x من [0;ln4]،

$$e^{x} - 3\sqrt{e^{x}} + 2 \le 0$$
: الدينا $(\sqrt{e^{x}} - 1)(\sqrt{e^{x}} - 2) \le 0$: لدينا

$$[0;\ln 4]$$
 من $e^x-2\sqrt{e^x}+2\leq \sqrt{e^x}$ عند وبالتالي:

5.د. لیکن x من [0;ln4]،

$$e^x - 2\sqrt{e^x} + 2 \le \sqrt{e^x}$$
: لاينا

$$\ln(e^x - 2\sqrt{e^x} + 2) \le \ln(e^x)^{\frac{1}{2}}$$
: $\sin(e^x - 2\sqrt{e^x} + 2) \le \ln\sqrt{e^x}$: إذن

$$\ln\left(e^x-2\sqrt{e^x}+2\right) \le \frac{1}{2}\ln\left(e^x\right)$$
 وبالتالي:

$$2\ln\left(e^x-2\sqrt{e^x}+2\right)\leq \ln\left(e^x\right):$$
 ومنه

وبالتالي
$$f(x) \le x$$
 لكل x من $f(x)$

6. إنشاء منحنى f:

. N من $u_{n+1}=fig(u_nig)$ بعتبر المتتالية العددية المعرفة بما يلي $u_0=1=u_0$ و $u_0=1$

. N نبين أن $u \leq u_n \leq \ln 4$ لكل الكل 1

 $u_0 = 1$ لأن $1 \le u_0 \le \ln 4$ لأن n = 0 من أجل .

. N من n ليكن

 $0 \le u_{n+1} \le \ln 4$ نفترض أن $0 \le u_n \le \ln 4$ و لنبين أن

 $0 \le u_n \le \ln 4$: لدينا

 $f(0) \le f(u_n) \le f(\ln 4)$ إذن : $f(0) \le f(u_n) \le f(\ln 4)$ إذن

 $0 \le u_{n+1} \le \ln 4$: وبالتالي

. N من $0 \le u_n \le \ln 4$. ومنه حسب مبدأالترجع

: نبين أن المتتالية (u_n) تناقصية.

ليكن n من N.

 $0 \le u_n \le \ln 4$ و $[0; \ln 4]$ لكل $f(x) \le x$ لدينا

 $u_{n+1}-u_n \leq 0$: أي $f(u_n) \leq u_n$ إذن

. N من $u_{n+1}-u_n \leq 0$ إذن u_{n+1}

ومنه: المتتالية (u_n) تناقصية

: نبین أن (u_n) متقاربة ونحدد نهایتها3

لدينا: (u_n) تناقصية ومصغورة بالعدد u_n

انن: (u_n) متقاربة التكن انهايتها الناب

لدينا:

الدالة f متصلة على المجال $[0;\ln 4] = I$ و I = I و I = I الدالة $u_{n+1} = f(u_n)$ الدالة $u_{n+1} = f(u_n)$ الدالة u_n الدالة

 $I = [0; \ln 4]$ في f(x) = x إذن : $I = [0; \ln 4]$

 $I = [0; \ln 4]$ من \mathbf{x}

لدينا:

$$f(x) = x \Leftrightarrow 2\ln(e^x - 2\sqrt{e^x} + 2) = x$$

$$\Leftrightarrow \ln\left(e^x - 2\sqrt{e^x} + 2\right) = \frac{1}{2}x$$

$$\Leftrightarrow e^x - 2\sqrt{e^x} + 2 = e^{\frac{1}{2}x}$$

$$\Leftrightarrow e^x - 2\sqrt{e^x} + 2 = \sqrt{e^x}$$

$$\Leftrightarrow e^x - 3\sqrt{e^x} + 2 = 0$$

$$\Leftrightarrow \left(\sqrt{e^x} - 1\right)\left(\sqrt{e^x} - 2\right) = 0$$

$$\Leftrightarrow \sqrt{e^x} = 1 \ ou \ \sqrt{e^x} = 2$$

$$\Leftrightarrow e^x = 1 \ ou \ \sqrt{e^x} = 2$$

$$\Leftrightarrow x = 0 \quad ou \ e^x = 4$$

$$\Leftrightarrow x = 0$$
 ou $x = \ln 4$

l=0 فإن المتتالية (u_{x}) تناقصية فإن

ومنه :المتتالية (u_n) متقاربة نحو العدد 1

