

Fahrzeugmechatronik II (Übung): Grundlagen

Andreas Hartmann, M. Sc.

Prof. Dr.-Ing. Steffen Müller | Fachgebiet Kraftfahrzeuge | Fakultät Verkehrs- und Maschinensystem

Organisatorisch

Andreas Hartmann, M. Sc.

Geb. TIB13, Raum 346A

Email: andreas.hartmann@campus.tu-berlin.de (vorläufig)

Tel.: -72990

Sprechstunde:

Termin per Email oder telefonisch

- Zeitplan
- Konzept der Übung
- Gruppen

Transponierte Matrizen

• Sei A eine n x m Matrix mit $A = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$, gilt für die Transponierte dieser Matrix:

$$\mathbf{A}^T = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{nm} \end{bmatrix} \quad \mathbf{A}^T \text{ ist dabei eine m x n Matrix}$$

- Um eine Matrix zu transponieren, müssen die Zeilen und Spalten vertauscht werden.
- Es gelten folgende Beziehungen:

$$\mathbf{A}^{T} + \mathbf{B}^{T} = (\mathbf{A} + \mathbf{B})^{T}$$
$$(\mathbf{A}^{T})^{T} = \mathbf{A}$$
$$(\mathbf{A} \cdot \mathbf{B})^{T} = \mathbf{B}^{T} \cdot \mathbf{A}^{T}$$

• Gilt : $A^T = A$ \longrightarrow A ist eine symmetrische Matrix

Adjungierte Matrizen

• Es gilt für die Adjungierte einer Matrix A:

$$A^* = \overline{(A^T)} = (\overline{A})^T$$

- Um die Adjungierte einer Matrix A zu berechnen, muss die Matrix A transponiert und anschließend konjugiert werden.
- Es gelten folgende Beziehungen:

$$A^* + B^* = (A + B)^*$$
$$(A^*)^* = A$$
$$(A \cdot B)^* = B^* \cdot A^*$$

- Gilt : $A^* = A \longrightarrow A$ ist eine hermitesche Matrix
- Ist A eine reelle Matrix, dann ist die zu A adjungierte Matrix die Transponierte von A $A^* = A^T$
- Eigenschaften einer symm. bzw. hermiteschen Matrix:
 - 1. Diagonalisierbar
 - 2. Determinante, Eigenwerte und Hauptdiagonale der Matrix sind reell

Inverse einer Matrix

Es gilt für die Inverse einer Matrix A:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A),$$

adj(A) = Adjunkte der Matrix A (nicht mit Adjungierte verwechseln!)

= Transponierte der Kofaktormatrix \widetilde{A} . \rightarrow adj $(A) = \widetilde{A}^T$

Kofaktormatrix:

 $\widetilde{A} = (-1)^{i+j} \cdot M_{ij}$, M_{ij} ist der Wert der Unterdeterminanten von A, die durch Streichen der i-ten Zeile und der j-ten Spalte entstehen.

Einfacher Fall (2 x 2 Matrix)

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}; \qquad A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

Es gelten folgende Beziehungen: (A und B seien dabei reguläre Matrizen)

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
$$A^{-1} \cdot A = I$$

Matrixexponentialfunktion

Ausgangspunkt:

$$e^{\lambda t} = 1 + \lambda t + \frac{\lambda^2}{2!}t^2 + \cdots$$

Analog wird eingeführt:

$$e^{At} = I + At + \frac{A^2}{2!}t^2 + \cdots$$

Ableitung:

$$\frac{d}{dt}(e^{At}) = A + \frac{A^2}{1!}t + \frac{A^3}{2!}t^2 + \dots = A \cdot e^{At}$$

Es gelten folgende Beziehungen:

$$(e^{At})^{-1} = e^{-At}$$

$$e^{At} \cdot e^{-At} = e^{A(t-t)} = e^{0} = I$$

Normen von Vektoren und Matrizen

- > p-Norm
 - Die p-Norm eines reellen oder komplexen Vektors $x=[x_1,\dots,x_n]$ ist definiert durch $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$
 - 1-Norm (p = 1): sog. Summennorm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• 2-Norm (p = 2): sog. Euklidische Norm

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{\sum_{i=1}^n |x_i|^2}$$

• ∞ -Norm ($p = \infty$): sog. Maximumsnorm

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Rang einer Matrix

➤ **Definition:** Der Rang einer Matrix ist die <u>maximale</u> Anzahl der linear <u>unabhängigen</u> Spalten- bzw. Zeilenvektoren einer Matrix.

Eigenschaften:

• rang(A) = rang(A^T)

• Für eine n x m Matrix A gilt: $0 \le \text{rang}(A) \le \min\{n, m\}$

Gilt rang(A) = min{n, m}
 A hat vollen Rang

• Gilt $det(A) \neq 0$ A hat vollen Rang

Rang Ermittlung

- Untersuchung linearer Unabhängigkeit der Spalten- bzw. Zeilenvektoren, oder
- Gauß-Algorithmus: Matrix so umformen, dass alle Elemente unterhalb (bzw. oberhalb) der Hauptdiagonale null sind. Der Rang ist dabei die <u>Anzahl</u> der Zeilenvektoren, die <u>ungleich</u> null sind.

Eigenwerte und -vektoren

Definition: Ein Skalar λ heißt Eigenwert einer quadratischen reellen oder komplexen Matrix A, wenn es einen Vektor v (v ≠ 0) gibt, so dass die Gleichung

$$Av = \lambda v$$

erfüllt ist. Der Vektor v heißt Eigenvektor zum Eigenwert λ .

Das charakteristische Polynom:

$$P(\lambda) = det(\mathbf{A} - \lambda \mathbf{I})$$

➤ Berechnung der Eigenwerte: Die Eigenwerte werden durch die Lösung des charakteristischen Polynoms berechnet:

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Berechnung der Eigenvektoren: Die Eigenvektoren lassen sich durch die Lösung folgender Gleichung

$$(A - \lambda I) \cdot v = 0$$

bestimmen.

Lösung einer Differentialgleichung (DGL) 1. Ordnung

- Gegeben ist ein einfacher RL-Kreis, der das Übertragungsverhalten von Eingangsspannung nach Spulenstrom beschreibt:
 - Bestimmen Sie die zugehörige Differentialgleichung. Wie lautet die entsprechende allgemeine homogene und partikuläre Lösung? Wie bezeichnet man ein solches Übertragungsverhalten in der Signalverarbeitung?
 - Zeigen Sie, dass ein solches Übertragungsverhalten auch für ein Einmasse-Dämpfer-System gültig ist (Übung ⁽²⁾)

Vielen Dank für Ihre Aufmerksamkeit!

