

A LITTLE IS ENOUGH: CIRCUMVENTING DEFENSES FOR DISTRIBUTED LEARNING

Moran Baruch, Gilad Baruch, Yoav Goldberg Bar Ilan University, Israel

ATTACKING DISTRIBUTED LEARNING

STATISTICS BASED DEFENSES

- Assumptions:
 - The different chunks are assumed to be i.i.d
 - Any attack will require large changes
 - The variance between correct workers is low

Using statistics to discard "outliers"

DEFENSE EXAMPLE — TRIMMED MEAN

- Working on each dimension separately
- Finds the median and aggregate only values close to it

m Corrupted Workers

ATTACK MOTIVATION

- > There are correct workers with extreme values
 - > Use those workers as "supporters" for the change we want to apply
- > Apply small changes, on each dimension, that will prevent robust statistics

OUR ATTACK

- \triangleright Use $\phi(z)$ to find maximal allowed change z^{max} that will not be detected
 - Units of standard deviation
- We show that the standard deviation between correct workers are big enough to allow:
- Prevention of convergence
- Backdooring the model

EXPERIMENTAL RESULTS

Convergence Prevention:

- Our attack was able to reduce the accuracy using the same attack configuration
 - 30-50% degradation for models trained on CIFAR10 and CIFAR100
 - 8-18% degradation for the model trained on MNIST

Backdooring

- The backdoor was introduced correctly in all models
 - Less than 7% degradation in accuracy on benign inputs for MNIST and CIFAR10
 - Up to 20% degradation in accuracy on benign inputs for CIFAR100

STOP BY OUR POSTER!

