

מבוא למערכות לומדות (236756)

סמסטר חורף תשפ"ג – 14 במרץ 2023

מרצה: ד"ר יונתן בלינקוב

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** שלוש שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט בלבד.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - הוכחות והפרכות צריכות להיות פורמליות.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- ס בשאלות רב-ברירה הקיפו את התשובות בבירור. סימונים לא ברורים יביאו לפסילת התשובה.
 - לא יתקבלו ערעורים בנושא. 🏻 o
- במבחן 14 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

בהצלחה!

חלק א' – שאלות פתוחות [82 נק']

שאלה 1: השפעה של דוגמה יחידה על פעולת מסווגים [24 נק']

 $\mathbf{x}_i \in \mathbb{R}^2, y_i \in \{-1,1\}$ מתקיים i=1,...,m נתון סֵט אימון עם $\underline{m \geq 10}$ דוגמאות דו-ממדיות ותיוגים בינאריים, משמע לכל

- **בשלב הראשון**: לומדים מסווג על סט האימון המקורי ומחשבים את הסיווגים על כל הדוגמאות.
 - **בשלב השני**: •
 - סירים דוגמת אימון <u>אחת</u> שרירותית כלשהי. 🏻 o
- . מאמנים מסווג <u>חדש</u> על סט האימון המעודכן, ומחשבים בעזרתו את הסיווג על כל הדוגמאות <u>הנותרות.</u>

עבור כל אלגוריתם למידה, סמנו האם הסיווגים שהמסווג <u>החדש</u> יחזה על דוגמאות האימון <u>הנותרות</u> זהים <u>בהכרח</u> לאלה של המסווג <u>המקורי</u> על דוגמאות אלה.

הסבירו בקצרה את תשובותיכם (2-4 משפטים בכל סעיף).

הניחו שאין צעדים אקראיים או שגיאות נומריות בריצת האלגוריתמים (בעיות קמורות מתכנסות לפתרון האנליטי במדויק).

<u>ארית.</u>	יג. Soft-SVM ליניארי לא הומוגני עם 10^{-1} בהנחה שהדאטה המקורי פריד ליניי λ	K
תרות זהים בהכרח? כן /לא	הסיווגים על דוגמאות האימון הנוו	
0G 	Murgin -lorge Norm Post IN20 all 11 most.	
	احظ داله ١٥١١ع ١١٥٠٠ (شر ١١٥٠ وع.	
	Norm! mugh inend mismons for	
<u></u>	אריניארי לא הומוגני עם $0 \stackrel{\lambda}{\leftarrow} \lambda$ בהנחה שהדאטה המקורי פריד ליניאריו Soft-SVM .:	ב
	הסיווגים על דוגמאות האימון הנור	
وان عد درام هما	הסבר: השולה בתוך ליאותה ולק מבת מבת שו	
	20 culy 120 girl war war	

(נק'<u>] 26</u> Generative models שאלה 2

היא [a,b], היא הענק' הצפיפות של התפלגות עU[a,b], אחידה ורציפה על הקטע הסגור

$$f(z) = \frac{1}{b-a} \mathbb{I}[a \le z \le b] = \begin{cases} \frac{1}{b-a}, & a \le z \le b \\ 0, & \text{otherwise} \end{cases}$$

א. S נק'] **מתרגיל בית:** נתון משתנה אקראי $X \sim U[0,\theta]$ עבור $S \sim U[0,\theta]$ לא ידוע. $S = \{x_1,\dots,x_m\} \subset \mathbb{R}_{\geq 0}$ שנדגמו מהמשתנה האקראי באופן .i.i.d. נתון מדגם אקראי $S = \{x_1,\dots,x_m\} \subset \mathbb{R}_{\geq 0}$ שמוגדר בתור שמשערך ה- $\widehat{\theta}_{\mathrm{MLE}} = \max_{i \in [m]} x_i$ הוכיחו שמשערך ה- $\widehat{\theta}_{\mathrm{MLE}} = \max_{i \in [m]} x_i$ הוכיחו שמשערך ה- $\widehat{\theta}_{\mathrm{MLE}} = \max_{i \in [m]} x_i$ הוכיחו שמשערך ה-

תשובה:

	שובה:

 $\mathcal{X}=\{-1,+1\}$ בסעיף הבא מרחב הדוגמאות הוא $\mathcal{X}=\mathbb{R}^2_{\geq 0}$ (הרביע החיובי) מרחב הדוגמאות הוא בינארי. $\{(\mathbf{x}_1,y_1),...,(\mathbf{x}_m,y_m)\}\subset (\mathcal{X}\times\mathcal{Y})$ נרצה ללמוד מסווג בינארי.

תהליך הלמידה:

- .Naïve Bayes (NB) נניח את הנחת.i.
- $J \in \{1,2\}, k \in \{-1,+1\}$ כאשר, ($X[j]|Y=k) \sim U[0,\theta_k[j]]$, משמע, Uniform NB נמדל את בעיות הסיווג בעזרת. ii.

$$. \hat{\theta}_{-1} = \begin{bmatrix} \max_{i:y_i = -1} x_i[1] \\ \max_{i:y_i = -1} x_i[2] \end{bmatrix} - \mathbf{i} \ \hat{\theta}_{+1} = \begin{bmatrix} \max_{i:y_i = +1} x_i[1] \\ \max_{i:y_i = +1} x_i[2] \end{bmatrix}$$
משמע, MLE משמע, הפרמטרים בעזרת. נשערך את ארבעת הפרמטרים בעזרת.

 $\hat{y}(\mathbf{x}) = \operatorname{argmax}_{\mathbf{v} \in \{-1, +1\}} \Pr(\mathbf{x}; y)$ בהמשך לכל ההנחות לעיל, נבנה כלל החלטה הסתברותי. iv

כעת נתונים שלושה מדגמי אימון, כל אחד מהתפלגות שונה ומכיל 100 דוגמאות חיוביות ו-100 שליליות. המדגמים מופיעים בתרשימים הבאים (הדוגמאות מִכֹּל תיוג מופיעות בנפרד ביחד עם ההיסטוגרמות השוליות המתאימות). לכל מדגם (בנפרד), מבצעים את תהליך הלמידה המתואר לעיל.

ג. [15 נק'] לכל מדגם, ענו על השאלות ביחס לתהליך הלמידה שלו. התשובות אמורות להיות ברורות מהגרפים.

לא / כן NB מתקיימת? מהנחת NB האם נראה שהנחת בזמן הבחינה הובהר שהכוונה להנחת NB על ההתפלגות (בזמן הבחינה הוגיע המדגם באופן (i.i.d.)

איך תסווג הנק' (0,0)? לא ניתן לדעת -1 / +1 (0,0)

האם דיוק האימון יהיה מעל 70%? **כן / לא**

(נק'<u>] 32] Multi-Layer Perceptron (MLP) and VC dimension שאלה</u>

קראו היטב את הנתונים הבאים.

 $\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{-1, +1\}$ בשאלה זו מרחב הנתונים הוא

. ופלט בינארי וחיד. ReLU עם שכבה חבויה אחת ברוחב אוויב היפר-פרמטר), אקטיבציות MLP עם שכבה חבויה אחת ברוחב $p\in\mathbb{N}$

בכל הרשתות במחלקה, המשקלים של השכבה השנייה קבועים להיות 1 וללא bias.

(bias-הוא רכיבי ה-bias). אי-שליליים (אילוץ זה לא כולל את רכיבי ה-bias). נאמר שאוסף פרמטרים θ

נתאר את הפונקציה המתקבלת בצורה $F_\Theta\colon\mathbb{R}^2\to\{-1,+1\}$ בצורה ובצורה פורמלית:

$$F_{\Theta}(\mathbf{x}) = \operatorname{sgn}\left(\sum_{t=1}^{p} \operatorname{ReLU}(\mathbf{w}_{t}^{\top}\mathbf{x} + b_{t})\right),$$
 where:
$$\Theta = \left(\mathbf{w}_{1}, \dots, \mathbf{w}_{p}, b_{1}, \dots, b_{p}\right),$$

$$\mathbf{w}_{1}, \dots, \mathbf{w}_{p} \in \mathbb{R}^{2}_{\geq 0},$$

$$b_{1}, \dots, b_{p} \in \mathbb{R}.$$

וכמו כן,

$$\operatorname{ReLU}(z) = \left\{ egin{array}{ll} 0, & z \leq 0 \\ z, & z > 0 \end{array} \right.$$
 תזכורת:

$$\operatorname{sgn}(z) = \begin{cases} -1, \ z \le 0 \\ +1, \ z > 0 \end{cases}$$

(כך שלא מתקבל אפס לשום קלט)

 $\mathbf{x}_i[1] \geq \mathbf{x}_i[1] \wedge \mathbf{x}_i[2] \geq \mathbf{x}_i[2]$ אם ורק אם $\mathbf{x}_i \succcurlyeq \mathbf{x}_i$ נסמן. נסמן $\mathbf{x}_i, \mathbf{x}_i \in \mathbb{R}^2$ יהיו שני קלטים

 $F_{\Theta}(\mathbf{x}_i) \geq F_{\Theta}(\mathbf{x}_i)$ אזי $\mathbf{x}_i \geqslant \mathbf{x}_j$ אזי $\mathbf{x}_i \geqslant \mathbf{x}_j$ אזי פולכל p ולכל רוחב p ולכל רוחב פרשתות שהגדרנו, לכל רוחב

Fo
$$(x_i) = sgn\left(\sum_{k=1}^{n} Relu(\omega_k^T x_i + b_k)\right) \otimes sgn\left(\sum_{k=1}^{n} Relu(\omega_k^T x_i + b_k)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} Relu(\omega_k^T x_i + b_k)\right) \otimes sgn\left(\sum_{k=1}^{n} Relu(\omega_k^T x_i + b_k)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i)\right)$$

$$(x_i) = sgn\left(\sum_{k=1}^{n} \lambda_i \otimes \lambda_i^T x_i + sgn(\sum_{k=1}^{n}$$

$$S = \left\{ \left(\underbrace{(0,1)}_{\mathbf{x}_1}, \underbrace{+1}_{\mathcal{V}_1} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{+1}_{\mathcal{V}_2} \right), \left(\underbrace{(0,0)}_{\mathbf{x}_2}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,1)}_{\mathbf{x}_4}, \underbrace{-1}_{\mathcal{V}_4} \right) \right\}$$
 :XOR dataset ב. $S = \left\{ \left(\underbrace{(0,1)}_{\mathbf{x}_1}, \underbrace{+1}_{\mathcal{V}_2} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{+1}_{\mathcal{V}_2} \right), \left(\underbrace{(0,0)}_{\mathbf{x}_2}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_4}, \underbrace{-1}_{\mathcal{V}_4} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_3}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{-1}_{\mathcal{V}_3} \right), \left(\underbrace{(1,0)}_{\mathbf{x}_3}, \underbrace{-1}_{\mathbf{x}_3} \right),$

. (כדאי להיעזר בסעיף הקודם). $F_{\Theta}\in\mathcal{H}$ ע"י ע"י אימון אפס על $F_{\Theta}\in\mathcal{H}$ (כדאי להיעזר בסעיף הקודם). בבהרה: כל הסעיפים עוסקים ב-capacity של המחלקה ולא במציאת דרכי אימון יעילות.

Fo(x): 9:

(a)
$$F_0(x): 9:$$

(b) $F_0(x): 9:$

(c) $F_0(x): 9:$

(d) $F_0(x): 9:$

(e) $F_0(x): 9:$

(f) $F_0(x): 9:$

(g) $F_0(x): 9:$

(h) $F_0(x):$

p=1 ברוחב (\mathcal{H} ברוחב (מתוך בסעיף בסעיף בסעיף ביה נבנה רשת (מתוך ביה ב

 $\|\mathbf{x}_i\|_2 = 1$ יהיו $\|\mathbf{x}_i\|_2 = 1$ קלטים $\|\mathbf{x}_i\|_2 = 1$ שונים ומנורמלים ברביע החיובי (משמע $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2_{\geq 0}$ וגם $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2_{\geq 0}$ וגם $\mathbf{x}_2 = F_{\Theta}(\mathbf{x}_1) = F_{\Theta}(\mathbf{x}_2) = F_{\Theta}(\mathbf{x}_2) = F_{\Theta}(\mathbf{x}_3) = \dots = F_{\Theta}(\mathbf{x}_n) = -1$ הראו שקיימת השמה חוקית ($\mathbf{x}_1 = \mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x}_3 =$

. משמע, הציעו השמה כזאת (שתלויה ב- $\mathbf{x}_1,\dots,\mathbf{x}_n$) והוכיחו שהיא מקיימת את הנדרש

 $\mathbf{u}^{\mathsf{T}}\mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \angle(\mathbf{u}, \mathbf{v})$ ניתן להיעזר בזהות האלגברית:

.(נדרשות בסעיף הקודם p=1 בלבד) בהמשך ניתן להיעזר בסעיף הקודם גם מבלי לפתור אותו

... ($\mathcal{H}_p \subset \mathcal{H}$ משמע, מתקיים $p \in \mathbb{N}$ שהן ברוחב שהן הרשתות מחלקת החלקת מחלקת מחלקת מחלקת מרוחב ($\mathcal{H}_p \subset \mathcal{H}$

 $p \geq 2$ מבין האפשרויות הבאות, בחרו את החסם התחתון ההדוק ביותר שתוכלו להוכיח עבור

- (i) $VCdim(\mathcal{H}_p) \ge 2$
- (ii) $VCdim(\mathcal{H}_p) \ge \ln p$
- (iii) $VCdim(\mathcal{H}_p) \geq p$

הוכיחו את החסם התחתון שבחרתם.

	192h 200 y /p	הוכחה: <u>ת הי</u>
F6(x1)=?/	Pelu(_) >0 < b+ =-maxcox(xelx) W+= Xe : 4+=+1 pic: (E[P])	
	Polu(a):0 <= b1=0 W1=03 Je=-1 N	
	1.0(x ⁴):0	

<u>חלק ב' – שאלות רב-ברירה [18 נק']</u>

בשאלות הבאות סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

א. לפניכם סט אימון דו-ממדי עם 4 מחלקות ו-3 דוגמאות מכל מחלקה (התיוג כתוב מעל/מתחת הדוגמאות).

1.10?

. הבאים, סמנו את $\underline{\vec{c}}$ אלה שצפויים להגיע לדיוק אימון של 100% על הדאטה לעיל multiclass מבין מודלי ה

- וחוזה את התיוג של השכן הקרוב ביותר לפי מרחק אוקלידי, דוג' לא נחשבת שכנה של עצמה). 1-nearest-neighbor 🔌
 - עץ החלטה בעומק מירבי 3 (הפרדיקציה של כל עלה נקבעת לפי רוב דוגמאות האימון שבתוכו). b
 - עץ בעומק 1) כמודל בסיס. one-vs-one עם one-vs-one מודל (עץ בעומק 1
 - עץ בעומק 1) כמודל בסיס. decision stump עם one-vs-all מודל $ot \lambda$

ב. נגדיר אלגוריתם Random Forest פשוט:

Random Forest(*S*, *k*, max_depth, min_samples_split**):**

For i=1 to k:

 $S' = \text{Sample } \sqrt{d} \text{ features out of the original } d \text{ features in } S \text{ (keeping all samples)}$

 $h_i = ID3(S', max_depth, min_samples_split, criterion="entropy")$

Return $H(x) = \frac{1}{k} \sum_{i=1}^{k} h_i(x)$

(H) של המסווג הכולל שנלמד שילו מבין הבחירות האלגוריתמיות הבאות צפויות להפחית את ה-Variance של המסווג הכולל שנלמד

סמנו את $\frac{cd}{cd}$ התשובות הנכונות (השאלה אינה עוסקת במקרי קצה אלא במקרה הסביג)

- (מספר העצים ביער).k הגדלת.a
- max_depth (העומק המירבי המותר). 🔥
- min_samples_split מספר הדוגמאות המינימלי הנדרש לפיצול של צומת). c

min-max נירמול מקדים של הדאטה בשיטת

standardization (Z-score) נירמול מקדים של הדאטה בשיטת 🎉

(יש שאלה נוספת בעמוד הבא)

ב' חורף תשפ"ג (2023)	לומדות – מועד	למערכות	מבוא
----------------------	---------------	---------	------

נתונה פונקציית מיפוי כלשהי $\mathbf{Q}: \mathbb{R}^d \to \mathbb{R}^d \cap \mathbf{Q}$. על $\in [m]: y_i \mathbf{Q}^T \boldsymbol{\phi}(\mathbf{x}_i) \ge c$ סה מקיימים $\mathbf{Q}: \mathbf{Q}: \mathbf{Q}$ האף $\mathbf{Q}: \mathbf{Q}: $		ים בינאריים (± 1).	ן מדגם \mathbb{R}^d ו ותיוגי $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ ותיוגי	ג. נתו
$(argmin \left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ פנגדיר בעיית אופטימיזציה בעזרת hinge loss על $(argmin \left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ אם נמצא מינימום לוקאלי $(argmin \left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ היא בהכרח אפס? סמנו את התשובה הנכונה. Ave Ave $(argmin \left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ היא בהכרח אפס? $(argmin \left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ היא בפני חסר גורם רגולריזציה.			$oldsymbol{\phi}: \mathbb{R}^d o \mathbb{R}^{10}$ נה פונקציית מיפוי כלשהי $oldsymbol{\phi}$	נתו
ומדקוחות $\left(\frac{1}{m}\sum_i \max\{0,\ 1-y_i\mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_i)\}\right)$ פנגדיר בעיית אופטימיזציה בעזרת hinge loss על \mathbb{R}^2 אם נמצא מינימום לוקאלי \mathbb{R}^2 של הבעיה, האם שגיאת ה-0-1 של \mathbb{R}^2 (על S , לאחר המיפוי ϕ) היא בהכרח אפס? סמנו את התשובה הנכונה. Ave Ave $C: C: C$. ∀ .	$i \in [m]: y_i \widehat{\mathbf{w}}^{T} \boldsymbol{\phi}(\mathbf{x}_i)$	$c>0$) אוקבוע $\widehat{m{w}}\in\mathbb{R}^{10}$ המקיימים '	נתו
סמנו את התשובה הנכונה.	.argmin $\left(\frac{1}{m}\sum_{i} \max\{0, 1 - y_{i}\mathbf{w}^{T}\boldsymbol{\phi}(\mathbf{x}_{i})\}\right)$	1		
אס פונקציה ϕ ליניארית. c . c	?לאחר המיפוי ϕ) היא בהכרח אפס	, S של $\overline{\mathbf{w}}$ (על $^{\circ}$,	נמצא מינימום לוקאלי $\overline{\mathbf{w}}$ של הבעיה, האם שגיאת	אם
ק. כן. כן. ליניארית. ϕ ליניארית. c .c		1	נו את התשובה הנכונה.	סמ
.c רק אם הפונקציה ϕ לא ליניארית. $c=1$.d .d .c = 1 .c .d .c .c .c .c .e .c .e .c .e .c .e .e .f		AVG	בן.	.a
c=1 רק אם .d .c .c .c .e .c .e .c .e .f	•		רק אם הפונקציה ϕ ליניארית.	.b
$c \geq 1$ רק אם .e .e .f אם $c \geq 1$ f			רק אם הפונקציה ϕ לא ליניארית.	.c
f. לא, כי חסר גורם רגולריזציה.			.c=1 רק אם	.d
			$.c \geq 1$ רק אם	.e
מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):			לא, כי חסר גורם רגולריזציה.	.f

נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):		

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

_