## STEP MATHEMATICS 2 2021 Mark Scheme

(i)

 $cos(3a + a) \equiv cos 3a cos a - sin 3a sin a$ **M1**  $cos(3a - a) \equiv cos 3a cos a + sin 3a sin a$  $\cos 4a + \cos 2a \equiv 2\cos 3a\cos a$  $\cos a \cos 3a \equiv \frac{1}{2}(\cos 4a + \cos 2a) \quad \mathbf{AG}$ **A1**  $\sin(3a + a) \equiv \sin 3a \cos a + \cos 3a \sin a$  $\sin(3a - a) \equiv \sin 3a \cos a - \cos 3a \sin a$  $\sin 4a - \sin 2a \equiv 2 \cos 3a \sin a$  $\sin a \cos 3a \equiv \frac{1}{2} (\sin 4a - \sin 2a)$ **B1**  $2\cos 2x (2\cos x \cos 3x) = 1$  $2\cos 2x(\cos 4x + \cos 2x) = 1$ **M1**  $2\cos 2x (2\cos^2 2x + \cos 2x - 1) = 1$ **M1**  $4\cos^3 2x + 2\cos^2 2x - 2\cos 2x - 1 = 0$  $(2\cos^2 2x - 1)(2\cos 2x + 1) = 0$ **M1** 

Either  $\cos^2 2x = \frac{1}{2}$ :

$$2x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

$$x = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$$
A1

**A1** 

Or  $\cos 2x = -\frac{1}{2}$ :

$$2x = \frac{2\pi}{3}, \frac{4\pi}{3}$$

$$x = \frac{\pi}{3}, \frac{2\pi}{3}$$
A1

Therefore:

$$x = \frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{2\pi}{3}, \frac{7\pi}{8}$$

**M1** 

**A1** 

**B1** 

$$\tan x = \tan 2x \tan 3x \tan 4x$$
 M1

 $\sin x \cos 2x \cos 3x \cos 4x = \cos x \sin 2x \sin 3x \sin 4x$ 

$$(2\sin x \cos 3x)\cos 2x \cos 4x = (2\cos x \sin 3x)\sin 2x \sin 4x$$

 $(\sin 4x - \sin 2x)\cos 2x\cos 4x = (\sin 4x + \sin 2x)\sin 2x\sin 4x$ 

$$\sin 4x (\cos 2x \cos 4x - \sin 2x \sin 4x) = \sin 2x (\cos 2x \cos 4x + \sin 2x \sin 4x)$$
$$\sin 4x \cos 6x = \sin 2x \cos 2x$$

$$n 4x \cos 6x = \sin 2x \cos 2x 
\sin 4x \cos 6x = \frac{1}{2} \sin 4x$$
M1
M1
M1

$$\sin 4x (2\cos 6x - 1) = 0$$

Therefore  $\cos 6x = \frac{1}{2} \text{ or } \sin 4x = 0$ . AG

 $\cos 6x = \frac{1}{2}$ :

$$6x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}$$
$$x = \frac{\pi}{18}, \frac{5\pi}{18}, \frac{7\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}$$

 $\sin 4x = 0$ :

$$4x = 0, \pi, 2\pi, 3\pi, 4\pi$$
$$x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$$

tan x is undefined at  $x = \frac{\pi}{2}$ 

 $\tan x$  is undefined at  $x=\frac{\pi}{2}$   $\tan 2x$  is undefined at  $x=\frac{\pi}{4}$ ,  $\frac{3\pi}{4}$ 

So these are not solutions of the equation.

$$x = 0, \frac{\pi}{18}, \frac{5\pi}{18}, \frac{7\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}, \pi$$

(i) 
$$3pq - p^3 = 3(a+b)(a^2+b^2) - (a+b)^3$$
 M1 
$$= 2a^3 + 2b^3$$
 
$$= 2r \quad AG$$
 A1

(ii) 
$$2x^2 - 2px + (p^2 - q) = 0$$

The roots of the equation a and b satisfy:

$$a + b = p$$

$$2ab = p^{2} - q$$

$$a^{2} + b^{2} = (a + b)^{2} - 2ab$$

$$= p^{2} - (p^{2} - q) = q$$

$$a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$$

$$= p^{3} - \frac{3}{2}(p^{2} - q)p$$

$$= \frac{1}{2}(3pq - p^{3}) = r$$
B1

**M1** 

**E1** 

**B1** 

M1

So the three equations hold.

(iii) 
$$a+b=s-c\ (=p) \\ a^2+b^2=t-c^2\ (=q) \\ a^3+b^3=u-c^3\ (=r)$$
 M1

By part (i):

$$3(s-c)(t-c^2) - (s-c)^3 = 2(u-c^3)$$
 
$$3st - 3ct - 3c^2s + 3c^3 - s^3 + 3cs^2 - 3c^2s + c^3 = 2u - 2c^3$$
 M1 
$$6c^3 - 6sc^2 + 3(s^2 - t)c + 3st - s^3 - 2u = 0$$
 A1

Therefore *c* is a root of the equation

$$6x^3 - 6sx^2 + 3(s^2 - t)x + 3st - s^3 - 2u = 0$$
 **E1**

The other roots are a and b.

The constant term is  $-6 \times$  the product of the roots:

$$-6abc = 3st - s^3 - 2u$$
  
 $s^3 - 3st + 2u = 6v$  **AG**

(iv) By (iii) a, b and c are the roots of

$$6x^3 - 18x^2 + 24x - 12 = 0$$
 A1  
 $6(x-1)(x^2 - 2x + 2) = 0$  M1  
 $1, 1+i, 1-i$  A1

$$1 + (1+i) + (1-i) = 3$$

$$1^{2} + (1+i)^{2} + (1-i)^{2} = 1 + (1+2i-1) + (1-2i-1) = 1$$

$$1^{3} + (1+i)^{3} + (1-i)^{3} = 1 + (-2+2i) + (-2-2i) = -3$$

$$1(1+i)(1-i) = 2$$
B1

(i) From the 
$$1^{st}$$
 eqn:  $\lfloor x \rfloor = 4$  and  $\{y\} = 0.9$  B1
From the  $2^{nd}$  eqn:  $\{x\} = 0.6$  and  $\lfloor y \rfloor = -2$  B1
Clear use of  $x = \lfloor x \rfloor + \{x\}$  etc. M1
Solution is  $x = 4.6$ ,  $y = -1.1$  A1

NB for candidates scoring none of the above marks, allow a B1 for adding both eqns. to obtain  $x + y = 3.5$ 

(ii)  $\bigcirc x + \bigcirc x = 0$  M1
 $\Rightarrow y + \{y\} - \lfloor y \rfloor + z + \lfloor z \rfloor - \{z\} = 6.4$ 
 $\Rightarrow 2\{y\} + 2\lfloor z \rfloor = 6.4$  M1
 $\Rightarrow \{y\} + \lfloor z \rfloor = 3.2$  AG or  $\{x\} + \lfloor y \rfloor = 2.1$  or  $[x] + \{z\} = 1.8$  A1
Similar attempts at  $\bigcirc x + \bigcirc x = 0$   $\Rightarrow \{x\} + \lfloor y \rfloor = 2.1$  M1
and  $\bigcirc x + \bigcirc x = 0$   $\Rightarrow \{x\} + \lfloor y \rfloor = 2.1$  M1
The remaining two 2-variable eqns. correct A1
 $\Rightarrow \{y\} = 0.2$  and  $\lfloor z \rfloor = 3$  B1
Also (respectively)  $\{x\} = 0.1$  and  $\lfloor y \rfloor = 2$  and  $\lfloor x \rfloor = 1$  and  $\{z\} = 0.8$  Solution is  $x = 1.1$ ,  $y = 2.2$ ,  $z = 3.8$  A1

(iii) From  $\bigcirc x + \bigcirc x = 0$ , we now get  $2\{y\} + \lfloor z \rfloor = 3.2$  B1
From  $\bigcirc x + \bigcirc x = 0$ , we now get  $2\{y\} + \lfloor z \rfloor = 3.2$  B1
From  $\bigcirc x + \bigcirc x = 0$ , we now get  $2\{y\} + \lfloor z \rfloor = 3.2$  B1
From  $2 + \bigcirc x = 0$ , we now get  $2\{y\} + \lfloor z \rfloor = 3.2$  B1
From  $2 + \bigcirc x = 0$ , we now get  $2\{y\} + \lfloor z \rfloor = 3.2$  B1
From  $2 + \bigcirc x = 0$ , we now get  $2\{x\} + 2\lfloor y \rfloor = 2.1$  B1

For clear evidence that the second possibility exists M1
namely:  $2\{y\} + \lfloor z \rfloor = 3.2 \Rightarrow \{y\} = 0.6$  and  $\lfloor z \rfloor = 2$  A1
and  $2\{x\} + 2\lfloor y \rfloor = 2.1 \Rightarrow \{x\} = 0.1$  and  $2\{y\} = 1$  A1
NB  $2\{x\} = 1$  and  $2\{x\} = 0.8$  follows as before

4

(i) 
$$\frac{dy}{dx} = xe^x + e^x$$
 M1

Since  $e^x > 0$  for all x, the only stationary point is when x = -1 Coordinates of stationary point are  $(-1, -\frac{1}{e})$ 

Sketch showing:

$$y \to \infty$$
 as  $x \to \infty$  and  $y \to 0^-$  as  $x \to -\infty$  G1  
Curve passing through  $(0,0)$  with stationary point at  $(-1, -\frac{1}{e})$  indicated.

Sketch showing reflection of the correct portion of the graph in the line y=x. G1 domain  $\left[-\frac{1}{e},\infty\right)$  and range  $\left[-1,\infty\right)$ 

(iii)

(a) 
$$e^{-x} = 5x$$
  
 $xe^x = \frac{1}{5}$   
 $f(x) = \frac{1}{5}$   
Since  $f(x) > 0$  there is only one solution A1

$$x = g\left(\frac{1}{5}\right)$$

(b)  $2x \ln x + 1 = 0$ Let  $u = \ln x$ :

Let 
$$u=\ln x$$
: 
$$ue^u=-\frac{1}{2}$$
 M1 The minimum value of  $f(x)$  is  $-\frac{1}{e}$  and  $-\frac{1}{2}<-\frac{1}{e'}$  so there are no solutions.

(c) 
$$3x \ln x + 1 = 0$$
  
Let  $u = \ln x$ :

$$ue^u = -\frac{1}{3}$$
 M1

$$-\frac{1}{e} < -\frac{1}{3} < 0$$
 so there are two solutions for  $u$  and the greater of the two will be when  $u = g\left(-\frac{1}{3}\right)$ .

$$x = e^{g\left(-\frac{1}{3}\right)}$$
 is the larger value.

(d)  $x = 3 \ln x$ Let  $u = \ln x$ :

$$ue^{-u} = \frac{1}{3}$$
 M1

 $(-u)e^{-u}=-\frac{1}{3}$ , so (as in (c))  $g\left(-\frac{1}{3}\right)$  is the greater of the two possible values for -u. M1

Therefore 
$$x=e^{-g\left(-\frac{1}{3}\right)}$$
 is the smaller value.

(iv) 
$$x \ln x = \ln 10$$
  
Let  $u = \ln x$ :

$$ue^u = \ln 10 \hspace{1cm} \mathbf{M1}$$
 
$$u = g(\ln 10)$$

$$x = e^{g(\ln 10)}$$

(i) 
$$\frac{dy}{dx} = (x - a)\frac{du}{dx} + u$$
 A1

$$(x-a)\left((x-a)\frac{du}{dx}+u\right)=(x-a)u-x$$

$$(x-a)^{2} \frac{du}{dx} = -x$$

$$u = \int \frac{-x}{(x-a)^{2}} dx = \int \frac{-(x-a)-a}{(x-a)^{2}} dx$$

$$u = -\ln|x-a| + \frac{a}{x-a} + c$$

$$y = -(x-a)\ln|x-a| + a + c(x-a)$$
A1

$$u = -\ln|x - a| + \frac{a}{x - a} + c$$

A1 (ft) (ii)

The gradient of the line through (1,t) and (t,f(t)) is  $\frac{f(t)-t}{t-1}=f'(t)$  Applying the result from (i), with a=1 or solving the d.e. directly: (a) **M1** 

$$f(x) = -(x-1)\ln|x-1| + 1 + c(x-1)$$
 B1 (ft)

$$f(0) = 0$$
, so  $c = 1$ 

$$y = -(x - 1)\ln|x - 1| + x$$

$$\frac{dy}{dx} = -\ln|x - 1|$$
 M1

$$-\ln|x-1|=0$$
 when  $x=0$  only (since  $x<1$ ) and  $y=0$ 

As 
$$x \to 1^-$$
,  $y \to 1^-$  and  $\frac{dy}{dx} \to \infty$ .

Sketch showing:

Curve approaching (1,1) with a vertical tangent at that point. G1 (ft)

Minimum point at (0,0). G1 (ft)

 $y \to \infty$  as  $x \to -\infty$ G1 (ft)



(b) 
$$f(2) = 2$$
, so  $c = 1$ 

$$y = -(x - 1) \ln|x - 1| + x$$

$$\frac{dy}{dx} = -\ln|x - 1|$$

$$-\ln|x - 1| = 0 \text{ when } x = 2 \text{ only (since } x > 1) \text{ and } y = 2.$$

$$-\ln|x-1| = 0$$
 when  $x = 2$  only (since  $x > 1$ ) and  $y = 2$ .

As 
$$x \to 1^+$$
,  $y \to 1^+$  and  $\frac{dy}{dx} \to \infty$ .

Sketch showing:

The curve crossing the *x*-axis for some x>2 and  $y\to -\infty$  as  $x\to \infty$ G1 (ft)



(i) The shortest distance from 
$$O$$
 to the line  $AB$  is  $(R+w)\cos\alpha$  B1 Since  $\frac{1}{3}\pi \le \alpha \le \frac{1}{2}\pi$ ,  $0 \le \cos\alpha \le \frac{1}{2}$ . M1 Since  $w < R$ ,  $(R+w)\cos\alpha < \frac{1}{2}(R+R) = R$ , so the midpoint of the line  $AB$  lies inside the smaller circle.

(ii) 
$$(R+d)^2 = (R+w)^2 + d^2 - 2d(R+w)\cos(\pi - \alpha)$$
 **M1**

$$R^2 + 2Rd + d^2 = R^2 + 2Rw + w^2 + d^2 + 2d(R + w)\cos\alpha$$
 
$$d = \frac{w(2R + w)}{2(R - (R + w)\cos\alpha)}$$
 M1

**A1** 

(b) 
$$\frac{\angle O'AO = \alpha - \theta}{\frac{\sin(\alpha - \theta)}{d}} = \frac{\sin(\pi - \alpha)}{\frac{R + d}{R + d}}$$
 M1 
$$\sin(\alpha - \theta) = \frac{d \sin \alpha}{R + d}$$
 A1

(iii) 
$$\frac{d}{R} = \frac{\left(\frac{w}{R}\right)\left(2 + \frac{w}{R}\right)}{2\left(1 - \left(1 + \frac{w}{R}\right)\cos\alpha\right)} \approx \frac{1}{1 - \cos\alpha} \times \frac{w}{R}$$
 A1

 $1-\cos\alpha>\frac{1}{2}$  and  $\frac{w}{p}$  is much less than 1, so  $\frac{d}{p}$  is much less than 1. **E1** 

$$\sin(\alpha - \theta) = \frac{\left(\frac{d}{R}\right)\sin\alpha}{1 + \left(\frac{d}{R}\right)} < \frac{d}{R}$$
 M1

 $\sin(\alpha - \theta)$  is much less than 1 and so  $(\alpha - \theta)$  is a small angle. **M1** Therefore  $\sin(\alpha - \theta) \approx \alpha - \theta$ , so  $\alpha - \theta$  is much less than 1. **E1** 

The longer length is  $(R + w) \times 2\alpha$ (iv)

The shorter length is  $(R + d) \times 2\theta$ 

$$S = 2\alpha(R+w) - 2\theta(R+d)$$

$$S = 2(R+d+w-d)\alpha - 2(R+d)\theta$$

$$S = 2(R+d)(\alpha-\theta) + 2(w-d)\alpha$$
B1

$$\alpha - \theta \approx \frac{w \sin \alpha}{R(1 - \cos \alpha)}$$

$$d - w \approx \frac{\cos \alpha}{(1 - \cos \alpha)} \times \frac{w}{R}$$
M1

So  $S \approx 2(R + d) \frac{w \sin \alpha}{R(1 - \cos \alpha)} - 2\left(\frac{\cos \alpha}{(1 - \cos \alpha)} \times \frac{w}{R}\right) \alpha$ 
As a fraction of the longer path length:

$$\frac{S}{2\alpha(R+w)} = \frac{R+d}{R+w} \times \frac{\alpha-\theta}{\alpha} + \frac{w-d}{R+w} \approx \frac{\sin\alpha}{\alpha(1-\cos\alpha)} \frac{w}{R} - \frac{\cos\alpha}{(1-\cos\alpha)} \frac{w}{R}$$

$$S \approx \left(\frac{\sin\alpha - \alpha\cos\alpha}{\alpha(1-\cos\alpha)}\right) \frac{w}{R} \quad AG$$

**A1** 

Which represents a rotation through 120° or 240°

(i) 
$$\frac{d}{dt}(t^n(1-t)^n) = nt^{n-1}(1-t)^n - nt^n(1-t)^{n-1}$$
 
$$\frac{d^2}{dt^2}(t^n(1-t)^n) = n(n-1)t^{n-2}(1-t)^n - n^2t^{n-1}(1-t)^{n-1}$$
 
$$-n^2t^{n-1}(1-t)^{n-1} + n(n-1)t^n(1-t)^{n-2}$$
 
$$= nt^{n-2}(1-t)^{n-2}[(n-1)(1-t)^2 - 2nt(1-t) + (n-1)t^2]$$
 
$$= nt^{n-2}(1-t)^{n-2}[(4n-2)t^2 - (4n-2)t + (n-1)]$$
 
$$= nt^{n-2}(1-t)^{n-2}[(n-1) - 2(2n-1)t(1-t)] \quad AG$$
 A1

(ii) Integrating by parts:

$$u = t^{n} (1 - t)^{n}, \frac{dv}{dx} = \frac{e^{t}}{n!}$$

$$\frac{du}{dx} = nt^{n-1} (1 - t)^{n-1} (1 - 2t), v = \frac{e^{t}}{n!}$$

$$T_{n} = \left[ t^{n} (1 - t)^{n} \frac{e^{t}}{n!} \right]_{0}^{1} - \int_{0}^{1} nt^{n-1} (1 - t)^{n-1} (1 - 2t) \frac{e^{t}}{n!} dt$$

$$= -\int_{0}^{1} nt^{n-1} (1 - t)^{n-1} (1 - 2t) \frac{e^{t}}{n!} dt$$
M1

Integrating by parts:

Integrating by parts: 
$$u = nt^{n-1}(1-t)^{n-1}(1-2t), \frac{dv}{dx} = \frac{e^t}{n!}$$
 
$$\frac{du}{dx} = nt^{n-2}(1-t)^{n-2}[(n-1)-2(2n-1)t(1-t)], v = \frac{e^t}{n!}$$
 
$$T_n = -\left[nt^{n-1}(1-t)^{n-1}\frac{e^t}{n!}\right]_0^1$$
 
$$+ \int_0^1 nt^{n-2}(1-t)^{n-2}[(n-1)-2(2n-1)t(1-t)]\frac{e^t}{n!}dt \qquad \mathbf{M1}$$
 
$$= \int_0^1 nt^{n-2}(1-t)^{n-2}[(n-1)-2(2n-1)t(1-t)]\frac{e^t}{n!}dt$$
 
$$= \int_0^1 t^{n-2}(1-t)^{n-2}\frac{e^t}{(n-2)!} - 2(2n-1)t^{n-1}(1-t)^{n-1}\frac{e^t}{(n-1)!}dt \qquad \mathbf{M1}$$
 
$$T_n = T_{n-2} - 2(2n-1)T_{n-1} \quad for \ n \geq 2 \quad \mathbf{AG} \qquad \mathbf{A1}$$

(iii) 
$$T_0 = \int_0^1 e^t \, dt = e - 1$$
 
$$T_1 = \int_0^1 t(1 - t)e^t \, dt$$
 
$$= \int_0^1 te^t - t^2 e^t \, dt$$
 
$$\int_0^1 te^t dt = [te^t]_0^1 - \int_0^1 e^t \, dt = 1$$
 
$$\int_0^1 t^2 e^t dt = [t^2 e^t]_0^1 - 2 \int_0^1 te^t \, dt = e - 2$$
 
$$T_1 = 1 - (e - 2) = 3 - e$$
 A1

 $T_0$  and  $T_1$  are both of the given form.

If  $T_{n-2}$  and  $T_{n-1}$  are both of the given form, then by part (ii):

$$a_n = a_{n-2} - 2(2n-1)a_{n-1}$$
  
 $b_n = b_{n-2} - 2(2n-1)b_{n-1}$ 

 $b_n=b_{n-2}-2(2n-1)b_{n-1}$  If  $a_{n-2},a_{n-1},b_{n-2}$  and  $b_{n-1}$  are all integers, so  $a_n$  and  $b_n$  will also be integers. **E1** 

(iv) For 
$$0 \le t \le 1$$
: 
$$0 \le t^n (1-t)^n \le 1$$
 M1 
$$0 \le e^t \le e$$
 M1 
$$0 \le \frac{t^n (1-t)^n}{n!} e^t \le \frac{e}{n!}$$
 and equality can only occur at t=0 or t=1, so  $T_n > 0$  and is less than the area of a rectangle with width 1 and height  $\frac{e}{n!}$ .

$$0 < T_n < \frac{e}{n!}$$
 E1

**A1** 

**B1** 

Therefore  $a_n + b_n e \to 0$  as  $n \to \infty$ Therefore  $-\frac{a_n}{b_n} \to e$  as  $n \to \infty$ **E1**  (i)

The forces acting on the particle at *P* are: (a)

$$W=Mg$$
 (directed downwards) M1  $T_1=m_1g$  (directed towards  $Q$ ) A1  $T_2=m_2g$  (directed towards  $R$ )

$$Mg < m_1g + m_2g$$

$$M < m_1 + m_2$$

$$T_1^2 = T_2^2 + W^2 - 2T_2W\cos\theta_2$$
 Since  $\theta_2$  is acute  $\cos\theta_2 > 0$ , so 
$$T_1^2 < T_2^2 + W^2$$
 
$$M^2g^2 > m_1^2g^2 - m_2^2g^2$$
 E1 
$$\sqrt{m_1^2 - m_2^2} < M$$

$$M^2g^2 > m_1^2g^2 - m_2^2g^2$$
 E1  $\sqrt{m_1^2 - m_2^2} < M$ 

 $\mathit{QS} = \mathit{PS} \tan \theta_1 \text{ and } \mathit{SR} = \mathit{PS} \tan \theta_2$ (b) If S divides QR in the ratio r: 1, then QS = rSR

$$r = \frac{\tan \theta_1}{\tan \theta_2}$$
 M1

dM1

By the sine rule:

$$\frac{\sin\theta_2}{m_1g} = \frac{\sin\theta_1}{m_2g}$$
 M1

By the cosine rule:

$$\cos\theta_1 = \frac{T_1^2 + W^2 - T_2^2}{2T_1W} = \frac{m_1^2 + M^2 - m_2^2}{2m_1M}$$
 M1

Similarly:

$$\cos\theta_2 = \frac{m_2^2 + M^2 - m_1^2}{2m_2M} \hspace{1cm} \textbf{M1}$$

Therefore:

$$\begin{split} r &= \frac{\sin\theta_1}{\sin\theta_2} \times \frac{\cos\theta_2}{\cos\theta_1} \\ &= \frac{m_2}{m_1} \times \frac{\frac{m_2^2 + M^2 - m_1^2}{2m_2M}}{\frac{m_1^2 + M^2 - m_2^2}{2m_1M}} = \frac{m_2^2 + M^2 - m_1^2}{m_1^2 + M^2 - m_2^2} \quad \textit{AG} \end{split}$$

From the triangle of forces, the angle between  $T_1$  and  $T_2$  must be  $90^\circ$  (Pythagoras) (ii) Therefore  $\theta_1 + \theta_2 = 90^{\circ}$ **B1** 

By (i)(b)

$$r=rac{m_2^2}{m_1^2}$$
 M1

Let d be such that  $QS = m_2^2 d$  and  $SR = m_1^2 d$ . M1 **M1** 

Since triangles PSQ and RSP are similar:

$$\frac{SP}{QS} = \frac{RS}{SP}$$
 M1 
$$PS^2 = m_1^2 m_2^2 d^2$$
 A1

$$PS^2 = m_1^2 m_2^2 d^2$$

Therefore,  $SP = m_1 m_2 d$  and QR=  $(m_1^2 + m_2^2) d$ , so the ratio of QR to SP is:  $M^2: m_1 m_2$ **A1** 

- (i) To remain stationary relative to the train the bead would have to have horizontal acceleration a.
  - There is no horizontal force on the bead at the origin, so this is impossible.
- (ii) When the particle is at the point (x, y):

Let the angle that the tangent to the curve makes with the horizontal be  $\theta$ : The wire is smooth, so gravity will be the only force with a component in the direction of the tangent to the curve.

The acceleration of the particle will be  $\begin{pmatrix} \ddot{x}-a \\ \ddot{y} \end{pmatrix}$ 

Therefore, resolving in the tangential direction: M1

$$m(\ddot{x} - a)cos\theta + m\ddot{y}sin\theta = -mgsin\theta$$
 A1

$$(\ddot{x} - a) + (\ddot{y} + g)tan\theta = 0$$
  
$$\dot{y} = \dot{x}tan\theta$$
 M1

Therefore

$$\dot{x}(\ddot{x}-a) + (\ddot{y}+g)\dot{x}tan\theta = 0$$
 M1

$$\dot{x}(\ddot{x}-a)+(\ddot{y}+g)\dot{y}=0$$

$$\frac{d}{dt} \left( \frac{1}{2} (\dot{x}^2 + \dot{y}^2) - ax + gy \right) = \dot{x} (\ddot{x} - a) + (\ddot{y} + g) \dot{y} = 0$$
 M1

So the expression is constant during the motion.

(iii) Initially,  $\frac{1}{2}(\dot{x}^2 + \dot{y}^2) - ax + gy = 0$  (and throughout the motion since it is constant) M1 At the maximum vertical displacement  $\dot{y} = 0$ .

 $\dot{x}=0$  as well would only be possible at the origin (which is not maximum vertical displacement, therefore  $\dot{x}=0$  and  $x\neq 0$ 

Therefore, ax = gy

and so 
$$g^2y^2 = a^2x^2 = a^2ky$$

Therefore, b satisfies

$$g^2b^2 = a^2kb$$
 
$$b = \frac{a^2k}{g^2}$$
 A1

**A1** 

M1

(iv) The square of the speed relative to the train is

$$\dot{x}^2 + \dot{y}^2 = 2(ax + gy)$$
 M1

$$2\left(ax - \frac{gx^2}{k}\right)$$
 
$$-\frac{2g}{k}\left(x - \frac{ak}{2g}\right)^2 + \frac{a^2k}{2g}$$
 A1

Maximum speed is 
$$a\sqrt{\frac{k}{2a}}$$

When 
$$x = \frac{ak}{2a}$$

(i) 
$$P_2 = \frac{1}{2}$$

 $T_3$  can sit in seat  $S_3$  if  $T_1$  chooses seat  $S_2$ , then  $T_2$  chooses seat  $S_1$ **M1** 

$$P_3 = \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{2}$$

If passenger  $T_1$  sits in seat  $S_k$  (1 < k < n) then passengers  $T_2$  to  $T_{k-1}$  all sit in their (ii) **E1** allocated seats.

The situation just before  $T_k$  arrives is then the same as for a train that did not have **E1** the (k-1) seats that have been taken and for which  $T_k$  had been allocated seat  $S_1$ 

 $T_1$  sits in seat  $S_1$  with probability  $\frac{1}{n}$ , after which all the remaining passengers will get their allocated seats.

$$P(T_1 \text{ sits in } S_1 \cap T_n \text{ sits in } S_n) = \frac{1}{n}$$

For 1 < k < n,  $T_1$  sits in seat  $S_k$  with probability  $\frac{1}{n}$ , so

$$P(T_1 \text{ sits in } S_k \cap T_n \text{ sits in } S_n) = \frac{1}{n} P_{n-k+1}$$
 M1

If  $T_1$  sits in  $\mathcal{S}_n$  then it will not be possible for  $T_n$  to sit in

$$P_n = \frac{1}{n} + \sum_{k=2}^{n-1} \frac{1}{n} P_{n-k+1} = \frac{1}{n} \left( 1 + \sum_{r=2}^{n-1} P_r \right) \quad AG$$
 A1

(iii) 
$$P_n = \frac{1}{2}$$

Case where n=1 is shown in part (i)

Suppose  $P_k = \frac{1}{2}$  for  $1 \le k < n$ :

$$P_n = \frac{1}{n} \left( 1 + (n-2) \times \frac{1}{2} \right) = \frac{1}{2}$$
 M1

**E1** Therefore, by induction  $P_n = \frac{1}{2}$ 

(iv) 
$$Q_2 = \frac{1}{2}$$

For n > 2:

For 1 < k < n - 1:

$$P(T_{n-1} \text{ sits in } S_{n-1} | T_1 \text{ sits in } S_k) = Q_{n-k+1}$$
 M1

(by similar reasoning as in part (ii))

$$P(T_{n-1} \text{ sits in } S_{n-1} | T_1 \text{ sits in } S_1 \text{ or } S_n) = 1$$

Therefore

$$Q_n = \frac{1}{n} \left( 2 + \sum_{k=2}^{n-2} Q_{n-k+1} \right) = \frac{1}{n} \left( 2 + \sum_{r=3}^{n-1} Q_{n-k+1} \right)$$
 A1

Base case:

If n=3, then  $T_2$  sits in seat  $\mathcal{S}_2$  in any case where  $T_1$  does not sit in seat  $\mathcal{S}_2$ **B1** 

Suppose 
$$Q_k = \frac{2}{3}$$
 for some  $3 \le k < n$ :

$$Q_n = \frac{1}{n} \left( 2 + (n-3) \times \frac{2}{3} \right) = \frac{2}{3}$$

Therefore, by induction 
$$Q_n = \frac{2}{3}$$
 for  $n \ge 3$ 

- Player A wins the match on game n with probability  $p_A(1-p_A-p_B)^{n-1}$ (i) **B1** The probability that A wins the match is the sum to infinity of a geometric series with M1  $a = p_A$ ,  $r = 1 - p_A - p_B$ M1  $\frac{p_A}{p_A + p_B}$  AG M1 **A1**
- (ii) The difference between the number of games won by the two players is initially 0 and either increases or decreases by 1 after each game. **E1** Therefore, it can only be an even number (and so the match can only be won) after an even number of games. **E1** Considering pairs of turns at a time **M1** The game is equivalent to that in part (i), with  $p_A=p^2$  and  $p_B=q^2$ , M1 **M1** and  $0 < p_A + p_B < 1$ so the probability that A wins the match is  $\frac{p^2}{p^2+q^2} \quad AG$ **A1**
- (iii) Version 1: The player has to win round 1 for the game to continue (with probability p). **M1** Following that the game is equivalent to that in part (ii), so the probability that the **M1** player wins overall is

$$\frac{p^3}{p^2+q^2}$$
 A1

Version 2:

The only way for the player to win is by winning two rounds in a row, so with **M1** probability

$$p^2$$
 A1  $p^2 - \frac{p^3}{2p^2} = \frac{p^4 + p^2q^2 - p^3}{2p^2}$  M1

$$\begin{split} p^2 - \frac{p^3}{p^2 + q^2} &= \frac{p^4 + p^2 q^2 - p^3}{p^2 + q^2} \\ &= \frac{p^4 + p^2 - 2p^3 + p^4 - p^3}{p^2 + q^2} \\ &= \frac{2p^4 - 3p^3 + p^2}{p^2 + q^2} \\ &= \frac{p^2 (2p - 1)(p - 1)}{p^2 + q^2} \end{split}$$
 M1

If  $1>p>\frac{1}{2}$ ,  $\frac{p^2(2p-1)(p-1)}{p^2+q^2}<0$ , so the player is more likely to win in version 1 (the **E1** 

If 
$$0 ,  $\frac{p^2(2p-1)(p-1)}{p^2+q^2} > 0$ , so the player is more likely to win in version 2 (the bold version) **AG**$$