8. Pruebas de hipótesis

Ricardo Salinas

2024-08-23

Resuelve el problema "Enlatados". Muestra tu procedimiento siguiendo los 4 pasos de las pruebas de hipótesis Elabora un gráfico que muestre la regla de decisión y el punto donde queda el estadístico de prueba. Concluye en el contexto del problema.

#Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Muestra tu procedimiento siguiendo los 4 pasos de las pruebas de hipótesis #Hipotesis

```
H_0: \mu = 11.7 H_1: \mu \neq 11.7
```

Como se distribuye \bar{X}

X se distribuye como una normal n < 30 No conocemos sigma

```
e = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2,
10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)

#Regla de Decision

#Nivel de confianza es de 0.98
    #Nivel de significancia es de 0.02

#Necesitamos encontrar a cuantas desviaciones estandar esta lejos el valor frontera
n = 21
alfa = 0.02
```

```
tf = qt(alfa/2, n-1)
cat("tf = ", tf)
## tf = -2.527977
```

-Regla de decision

Rechazo H_0 si:

 $|t_e| > 2.53$ valor p < 0.02

-Analisis del resultado t_e : Numero de desviaciones al que \bar{x} se encuentra lejos de $\mu=11.7$ Valor p: Probabilidad de obtener lo que obtuve en la muestra o un valor mas extremo

```
#Estadistico de prueba

xb = mean(e)
s = sd(e)
miu = 11.7

te = (xb-miu)/(s/sqrt(n))

cat("te = ", te)
## te = -2.068884

valorp = pt(te, n-1)
cat("\nValor p = ", valorp)
##
## Valor p = 0.02586495
```

-Conclusion Comparar: Regla de decisions vs Analisis del resultado

Entonces:

 $|t_e|$: 2.07 < 2.53 -> No RH0 valor p = 0.05 > 0.02 -> no RH0

En el contexto: Las latas tiene el peso requerido

```
# Elabora un gráfico que muestre la regla de decisión y el punto donde queda
el estadístico de prueba.
t.test(e, mu=11.7, alternative="two.sided", conf.level = 0.98)

##
## One Sample t-test
##
## data: e
## t = -2.0689, df = 20, p-value = 0.05173
## alternative hypothesis: true mean is not equal to 11.7
## 98 percent confidence interval:
## 11.22388 11.74755
```

```
## sample estimates:
## mean of x
## 11.48571

sigma = sqrt((n-1)/(n-3))

x = seq(-4, 4, length = 100)
y = dt(x,df = n - 1)
plot(x, y, type = "l", col = "blue", xlab = "t", ylab = "Densidad",main = "Región de rechazo (distribución t de Student, gl=n-1)")
abline(v=tf,col="red",lty=5)
abline(v=0,col="red",lty=5)
abline(h=0)
points(miu,0,col="blue",pch=19)
points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl=n-

La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es

mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

```
Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23
```

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

```
f = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18,
12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23)

n = length(f)
s = 4
miu = 15
df = n - 1
xb = mean(f)

#Nivel de confianza es de 0.93
#Nivel de significancia es de 0.07
#Hipotesis
```

```
H_0: \mu = 15 H_1: \mu \neq 15
```

Como se distribuye \bar{X}

X se distribuye como una normal No conocemos sigma

```
alfa = 0.07
tf1 = qnorm(1 - alfa/2)
cat("tf = ", tf1)
## tf = 1.811911
```

-Regla de decision

Rechazo H_0 si:

```
|t_e| > 1.87 valor p < 0.07
```

-Analisis del resultado t_e : Numero de desviaciones al que \bar{x} se encuentra lejos de $\mu=15$ Valor p: Probabilidad de obtener lo que obtuve en la muestra o un valor mas extremo

```
#Estadistico de prueba

te = (xb-miu)/(s/sqrt(n))
cat("te = ", te)

## te = 2.95804
```

```
valor_p = (1 - pnorm(abs(te)))
cat("\nValor p =", valor_p)

##
## Valor p = 0.00154801
```

-Conclusion Comparar: Regla de decisions vs Analisis del resultado

Entonces:

 $|t_e|$: 2.96 < 1.87 -> No RH0 valor p = 0.0015 > 0.07 -> no RH0

```
# Elabora un gráfico que muestre la regla de decisión y el punto donde queda
el estadístico de prueba.
t.test(f, miu=15, alternative="two.sided", conf.level = 0.93)
##
## One Sample t-test
##
## data: f
## t = 22.197, df = 34, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 93 percent confidence interval:
## 15.56721 18.43279
## sample estimates:
## mean of x
##
          17
sigma = sqrt((n-1)/(n-3))
x \leftarrow seq(-4, 4, length = 100)
y \leftarrow dnorm(x)
plot(x, y, type = "l", col = "blue", xlab = "z", ylab = "Densidad", main =
"Región de rechazo (distribución normal estándar)")
abline(v = c(-tf, tf), col = "red", lty = 5) # Lineas de valor critico
abline(v = te, col = "green", lty = 1) # Linea del estadístico de
prueba
abline(h = 0)
points(te, 0, col = "green", pch = 19, cex = 1.1)
points(miu, 0, col = "blue", pch = 19)
```

Región de rechazo (distribución normal estándar

¿Está justificada la tarifa adicional? Los tiempos llegan a ser mas altos que 15 minutos, por lo cual se demuestra que es buena opcion tener una tarifa adicional.