Real Variables Test

wongx565

October 2018

1.) Suppose (x_n) is a bounded sequence of real numbers such that $x_k \leq x_{k+1}$ for each $k \in \mathbb{N}$. Prove that (x_n) converges in \mathbb{R}

Proof. We shall define the nonempty set of all x_n 's as,

$$X = \{ n \in \mathbb{N} | x_n \}.$$

 (x_n) is bounded so X is bounded thus there exists a least upper bound l on X. For any $\epsilon > 0$ there exists an element $x_N \in X$ such that $X_N > l - \epsilon$ by the definition of l.u.b.. Then for any n > N, $x_n \ge x_N$ because x_n is an increasing sequence. This gives us the inequality,

$$l \ge x_n > l - \epsilon$$
,

for all n > N. Then $|x_n - l| < \epsilon$ for all n > N. This proves that (x_n) converges to l.

2.) Suppose (x_n) is a sequence of real numbers such that $(x_{2k}), (x_{2k+1})$ and (x_{3k}) are all convergent subsequences. Prove that (x_n) converges.

Proof. Since $(x_{2k}), (x_{2k+1})$ and (x_{3k}) converge, they are all Cauchy sequences. Thus for (x_k) there exists an $N_1 \in \mathbb{N}$ such that for all $even\ n, m > N_1$,

$$|x_n - x_m| < \frac{\epsilon}{3}.\tag{1}$$

Similarly for (x_{2k+1}) , there exists an $N_2 \in \mathbb{N}$ such that for all odd $n, m > N_2$,

$$|x_n - x_m| < \frac{\epsilon}{3}. (2)$$

As well as for (x_{3k}) , there exists an $N_3 \in \mathbb{N}$ such that for all $n, m > N_3$ that are divisible by 3,

$$|x_n - x_m| < \frac{\epsilon}{3}. (3)$$

Now we take $N = \max(N_1, N_2, N_3)$ for any j, k > N, we have 4 different cases for the j, k and we shall prove in each that case the requirement for Cauchy sequence holds. The first two cases are when j and k have the same parity, the next two cases are when j and k have distinct parity.

Case 1: Let j be even and k be even, then by Equation 1 we know that

$$|x_k - x_j| < \frac{\epsilon}{3} < \epsilon.$$

Thus when j and k are even (x_n) follows the Cauchy requirements.

Case 2: Let j be odd and k be odd, then by Equation 2 we know that

$$|x_k - x_j| < \frac{\epsilon}{3} < \epsilon.$$

Thus when j and k are odd (x_n) follows the Cauchy requirements.

Case 3: Let j be odd and k be even. Then 3j is odd and 3k is even and both 3j and 3k are divisible by 3. We can rewrite the Cauchy condition as follows,

$$|x_k - x_i| = |x_k - x_{3k} + x_{3k} - x_{3i} + x_{3i} - x_i|.$$

Using the Triangle Inequality we get

$$|x_k - x_j| \le |x_k - x_{3k}| + |x_{3k} - x_{3j}| + |x_{3j} - x_j|.$$

Then by Equation 1, $|x_k - x_{3k}| < \frac{\epsilon}{3}$, by Equation 3, $|x_{3k} - x_{3j}| < \frac{\epsilon}{3}$ and by Equation 2, $|x_{3j} - x_j| < \frac{\epsilon}{3}$. Synthesizing this information we get,

$$|x_k - x_j| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus when j is odd and k is even, (x_n) follows the Cauchy requirements.

Case 4: Let j be even and k be odd. Then 3j is even and 3k is odd and both 3j and 3k are divisible by 3. We can rewrite the Cauchy condition as follows,

$$|x_k - x_j| = |x_k - x_{3k} + x_{3k} - x_{3j} + x_{3j} - x_j|.$$

Using the Triangle Inequality we get,

$$|x_k - x_j| \le |x_k - x_{3k}| + |x_{3k} - x_{3j}| + |x_{3j} - x_j|.$$

Then by Equation 2, $|x_k - x_{3k}| < \frac{\epsilon}{3}$, by Equation 3, $|x_{3k} - x_{3j}| < \frac{\epsilon}{3}$ and by Equation 1, $|x_{3j} - x_j| < \frac{\epsilon}{3}$. Synthesizing these results returns,

$$|x_k - x_j| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus when j is even and k is odd, (x_n) follows the Cauchy requirements.

Therefore since $|x_j - x_k| < \epsilon$ in each case, (x_n) is a Cauchy sequence. Since \mathbb{R} is complete, every Cauchy sequence converges thus (x_n) also converges.

3.) Find an example of a continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence $(x_n)\subseteq(0,1)$ such that $(f(x_n))$ is not a convergent sequence.

Proof. First we will show that the sequence $(x_n) = \frac{1}{n}$, starting at n = 2, is a Cauchy sequence. For any $\epsilon > 0$, let $N = \frac{2}{\epsilon}$ then for any n, m > N, we have

$$|x_n - x_m| = \left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| = \frac{1}{n} + \frac{1}{m} < \frac{2}{N} = \epsilon.$$

Thus x_n is a Cauchy sequence. However in (0,1) x_n does not converge, since $0 \notin (0,1)$. Next we define a function $f:(0,1) \to \mathbb{R}$ as f(x) = 1/x. It is clear that f is continuous. Then the sequence

$$f(x_n) = \frac{1}{x_n} = n,$$

does not converge in \mathbb{R} . It diverges to infinity. Therefore the continuous function f and Cauchy sequence x_n , starting at n=2, is such an example.

4.) A rational point in \mathbb{R}^2 is an ordered pair (p,q) with both p and q in \mathbb{Q} . Prove that there exists a circle in the plane \mathbb{R}^2 that contains no rational points.

Proof. A circle has the equation $(x-a)^2 + (y-b)^2 = r^2$. Where r is the radius of the circle, (a,b) is the center of the circle and x and y are all the points that lie on the circle. We shall set the center of the circle to the origin or (0,0), this gives us the formula,

$$x^2 + y^2 = r^2.$$

Now let r be an irrational number whose square is also irrational $(\pi, \sqrt[3]{2}, \cdots)$. Then every point on the circle is not a rational point. We can prove this by contradiction, assume there exists a rational point (x_1, y_1) with $x_1, y_1 \in \mathbb{Q}$ on the circle. Thus $x_1 = \frac{p_1}{q_1}$ and $y_1 = \frac{p_2}{q_2}$ for some $p_1, p_2, q_1, q_2 \in \mathbb{Z}$ with $q_1, q_2 \neq 0$. Our circle equation becomes

$$\begin{split} \left(\frac{p_1}{q_1}\right)^2 + \left(\frac{p_2}{q_2}\right)^2 &= r^2, \\ \frac{p_1^2}{q_1^2} + \frac{p_1^2}{q_1^2} &= r^2, \\ \frac{p_1^2 q_2^2}{q_1^2 q_2^2} + \frac{p_2^2 q_1^2}{q_1^2 q_2^2} &= r^2, \\ \frac{p_1^2 q_2^2 + p_2^2 q_1^2}{q_1^2 q_2^2} &= r^2. \end{split}$$

Since $p_1^2q_2^2+p_2^2q_1^2,q_1^2q_2^2\in\mathbb{Z}$ and $q_1^2q_2^2\neq 0$, the left hand side is rational, however we have chosen r so that, r^2 , the right side is irrational this is a contradiction. Thus there does not exist a rational point on this circle.

5.) Suppose A and B are sets and $f:A\to B$ and $g:B\to A$ are both surjective. Prove that there exists a bijection $\phi:A\to B$.

Proof. Since f is onto, for each $b_1 \in B$ there's at least one $a_1 \in A$ such that $f(a_1) = b_1$. Then we can define a nonempty set for each $b \in B$ called K_b as

$$K_b = \{ a \in A | f(a) = b \}.$$

From this we shall define a function $\phi_f: B \to A$ that maps b to one and only one element from every K_b . Then if $x, y \in B$ and $x \neq y$ we know $\phi_f(x) \neq \phi_f(y)$ since $\phi_f(x)$ and $\phi_f(y)$ can't belong to the same K_b . Thus ϕ_f is injective. We can define a similar function with g, first since g is onto, for each $g \in A$, there's at least one $g \in B$ such that $g(g_2) = g_2$. Then we can define a nonempty set for $g \in A$ called $g \in A$ as,

$$J_a = \{ b \in B | g(b) = a \}.$$

From this set we can define a function $\phi_g: A \to B$ that maps a to one and only one element from its corresponding J_a . Then if $x,y \in A$ and $x \neq y$, we know $\phi_g(x) \neq \phi_g(y)$ since $\phi_g(x)$ and $\phi_g(y)$ can't belong to the same J_a . Thus ϕ_g is injective. Then by the Schroeder-Bernstein Theorem we have shown an injection from AB and from $B \to A$ thus there exists a bijection $\phi: A \to B$.