Week 3 Function Scope and Recursion

What are the outputs of the code snippets in Part 1 and 2?

Part 1 Variable Scope

Code	Output
<pre>x = 0 def foo_printx(): print(x) foo_printx() print(x)</pre>	
<pre>x = 0 y = 999 def foo_printx(y): print(y) foo_printx(x) print(x)</pre>	
<pre>x = 0 def foo_printx(): x = 999 print(x) foo_printx() print(x)</pre>	

Part 2 Nested Functions

Code	Output
<pre>x = 1 y = 2 def foo(y): def bar(x): return x+y return bar(y) print(foo(x))</pre>	
<pre>x = 1 y = 2 def foo(x): def bar(x): return x+y return bar(y) print(foo(x))</pre>	

Part 3 Recursion

Previously, we have shown that we can create a customized burger. Here are the ingredient prices for your convenience:

Ingredient	Price
'B' stands for a piece of bun	\$0.5
'C' stands for cheese	\$0.8
'P' stands for patty	\$1.5
'V' stands for veggies	\$0.7
'O' stands for onions	\$0.4
'M' stands for mushroom	\$0.9

Your task was to write a function burgerPrice(burger) that takes in a string representing a burger and returns the price of the burger. Your task now is to write the same function burgerPrice(burger) using recursion.

Part 4 Recursion vs Iteration

- A. Sum: Given a positive number n, the sum of all of its digits is obtained by adding the digits one by one. For example, the sum of 52634 is 5 + 2 + 6 + 3 + 4 = 20. Write one **recursive** and one **iterative** version of function sum(n) which returns the sum of all the digits in n. You may assume that n > 0.
- B. Factorial: Given a positive number n, the value of factorial of n (written as n!) is defined as $n! = n \times (n-1)!$. Additionally, the value of 0! is 1. Write one **recursive** and one **iterative** version of function fact(n) which computes the value of n!.

Part 5 Recursion vs Iteration (cont.)

- A. Final Sum: Given a positive number n, the final sum is obtained by repeatedly computing the sum of all the digits of n, until the final sum is a single digit. For example, sum(52634) = 20, which is not a single digit. We then continue with sum(20) = 2 which is now a single digit. Therefore, $final_sum(52634) = 2$. Write one *recursive* and one *iterative* version of the function $final_sum(n)$ which computes the final sum of n.
- B. Euler Constant: The value of e^x can be approximated using the formula $e^x = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Write one *recursive* and one *iterative* version of function find_e(x, n) to find the approximation of e^x up to n+1 steps, i.e. the last term in the summation is $\frac{x^n}{n!}$.