ρ -correlated signal yields $\approx \rho$ -Sharpe pnl

Sparsh Sah

We have passive-asset return

$$r = s + \varepsilon$$
.

the sum of an ex-ante observable plus an unpredictable, independent white noise component. $s \sim \mathcal{N}(0, \sigma := \rho)$, and $\varepsilon \sim \mathcal{N}(0, \sigma := \sqrt{1 - \rho^2})$. Notice that $\sigma^2(r \mid s) = 1 - \rho^2$, whereas $\sigma^2(r) = \rho^2 + 1 - \rho^2 = 1$, so that the fraction of r's variance explained by s (AKA " R^2 ") is ρ^2 , hence indeed $Corr(r, s) = \rho$.

Suppose we take active leverage (proptional to) s. Our active pnl

$$\pi := sr = s(s + \varepsilon) = s^2 + s\varepsilon.$$

Note s is equivalent to ρZ where Z is a standard Normal random variable, so that s^2 is equivalent to $\rho^2 Z^2$. Hence, $s^2 \sim \rho^2 \chi_1^2$. Abusing notation a bit, $\mathbb{E}[\chi_k^2] = k$, so that our (unconditional) expected pnl is

$$\boxed{\mathbb{E}[\pi] = \rho^2}.$$

Keep in mind (i) that $s^2 \sim \rho^2 \chi_1^2$, (ii) that $\sigma^2(cx) = c^2 \sigma^2(x)$, (iii) that $\varepsilon \perp s$, and (iv) that the variance of the product of independent zero-mean random variables is simply the product of their variances. Then, the (unconditional) variance of our pnl is—letting $\sigma^2(x)$ denote variance and $\sigma^2(x,y)$ denote covariance—

$$\begin{split} \sigma^2(\pi) &= \sigma^2(s^2 + s\varepsilon) = \sigma^2(s^2) + \sigma^2(s\varepsilon) + \sigma^2(s^2, \, s\varepsilon) \\ &= (\rho^2)^2(2) + \sigma^2(s)\sigma^2(\varepsilon) + \mathbb{E}[s^2s\varepsilon] - \mathbb{E}[s^2]\mathbb{E}[s\varepsilon] \\ &= 2\rho^4 + \rho^2(1-\rho^2) + \mathbb{E}[s^3\varepsilon] - \mathbb{E}[s^2]\mathbb{E}[s]\mathbb{E}[\varepsilon] \\ &= 2\rho^2\rho^2 + \rho^2 - \rho^2\rho^2 + \mathbb{E}[s^3] \cdot 0 - \mathbb{E}[s^2]\mathbb{E}[s] \cdot 0 \\ &= 2\rho^2\rho^2 + \rho^2 - \rho^2\rho^2 = \rho^2 + 2\rho^2\rho^2 - \rho^2\rho^2 = \rho^2 + \rho^2\rho^2 = \rho^2(1+\rho^2), \end{split}$$

so that

$$\sigma(\pi) = \rho \sqrt{1 + \rho^2} \,.$$

Thus,

Sharpe(
$$\pi$$
) = $\frac{\rho^2}{\rho\sqrt{1+\rho^2}} = \frac{\rho}{\sqrt{1+\rho^2}}$,
 $\approx \frac{\rho}{\sqrt{1+0}} = [\rho]$.

which for ρ small

COMMENTARY

Notice that for $\rho=1$, we get active Sharpe exactly $\frac{1}{\sqrt{2}}$. Why, when in this case we can predict r perfectly? Well, we will take some unconditional active volatility simply because, unconditionally, s is itself a random variable. This leads to a counterintuitive result: If $\rho=1$, you ought to take active leverage (proportional to) not s, but rather the *reciprocal* of s. If you do so, your active pnl will be $\pi=1$ with certainty, and your active Sharpe will be infinite.

In other words, suppose we observe at time t=0 a timeseries of all future signals $S:=(s_1,\ldots,s_T)$. The setting is the same, except that this has become a repeated experiment with independent timesteps i.e. $r_j \perp r_i \mid S$. We want to maximize our active Sharpe as measured ex-post at time t=T+1. This T-period single-asset problem is isomorphic to a single-period T-asset problem. We should allocate active risk (proportional to) ex-ante passive Sharpe, which in this case (because every r_t has the same conditional volatility given S) means taking active leverage (proportional to) S.

BUT: If $\rho=1$ i.e. each $r_t=s_t+0$, you should take active leverage (proportional to) 1/S! Then, your active pnl will be $\pi_t=1$ every day, and your ex-post active Sharpe is guaranteed to be infinite. So: If your signal is imperfectly predictive of r (i.e. $0<\rho<1$), you ought to listen to it; But if your signal is perfectly predictive of r (i.e. $\rho=1$), you ought to listen to the *inverse* of it! This "paradox" is resolved if you notice that when $\rho=1$, ex-ante passive Sharpe of every r_t becomes infinite: Each r_t has ER s_t , but no volatility. So, the logic of allocating "proportional to passive Sharpe" breaks down.