Total No. of Questions: 6

Total No. of Printed Pages:2

1-1

Knowledge is Power

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022

EN3ES14 Computer Organization and Architecture
Programme: B.Tech. Branch/Specialisation: CSBS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (M	(ICQs)	should be writt	en in full instea	ad of only a, b	, c or d.		
Q.1	i.	Convert the following binary number to decimal. 01011-					
		(a) 15	(b) 18	(c) 14	(d) 11		
	ii.	A micro-oper	ration is an ele	ementary oper	ation performed on the	1	
		information s	tored in-				
		(a) Registers		(b) RAM			
		(c) Secondary	memory	(d) Cache			
	iii.	In Booth's m	ultiplication al	gorithm wher	e $Q_{n-1}Q_0$ bit is equal to	1	
		00 or 11 then what operation is performed?					
		(a) $A - M$	(b) A +M	(c) Ashr	(d) Shr		
	iv.	When we pe	rform subtract	ion on -7 and	d -5 the answer in 2's	1	
		complement f	form is-				
		(a) 11110	(b) 1110	(c) 1010	(d) 0011		
	v.	The DMA controller has registers.			1		
		(a) 4	(b) 2	(c) 3	(d) 1		
	vi.	The software called-	mechanism tha	at allows a dev	rice to notify the CPU is	1	
		(a) Polling	(b) Interrupt	(c) Driver	(d) Controlling		
	vii.	Which is used	l to speed-up th	e processing?		1	
		(a) Pipeline		(b) Vector processing			
		(c) Both (a) as	nd (b)	(d) None of these			
	viii.	Data hazards	occur when	·		1	
		(a) Greater pe	erformance loss				
		(b) Pipeline changes the order of read/write access to operands					
		(c) Some fund	ctional unit is n	ot fully pipelii	ned		
		(d) Machine s	ize is limited				
					P.T.	O.	

	ix.	Whenever the data is found in the cache memory it is called as-		
		(a) Hit (b) Miss (c) Found (d) True		
	х.	Which of the following is true for a memory hierarchy?	1	
		(a) It tries to bridge the processor memory speed gap.		
		(b) The speed of the memory level closest to the processor has the		
		highest speed.		
		(c) It is based on the principle of locality of reference.		
		(d) All of these		
Q.2	i.	What is RTL? Explain with example.	3	
	ii.	What do you mean by the term addressing modes? List any six	7	
		addressing modes with one example for each.		
OR	iii.	What are the different fields of an instruction? Explain instruction	7	
		cycle with the help of flowchart.		
		•		
Q.3	i.	What is ripple carry adder?	2	
	ii.	Explain Booth's algorithm for multiplication of two fixed point	8	
		numbers. Take two numbers of your choice for explaining the		
		multiplication process.		
OR	iii.	Draw flowchart to explain division algorithm for signed	8	
		magnitude data. What is divide overflow condition?		
Q.4	i.	What is I/O interface in computer architecture?	3	
	ii.	Define interrupt. Explain any six different types of interrupts.	7	
OR	iii.	Explain hardwired implementation of control unit.	7	
Q.5	i.	What is pipelining and what are the advantages of it?	4	
	ii.	What is pipeline hazard? Explain its types.	6	
OR	iii.	What is cache coherence and how is it eliminated?	6	
Q.6		Attempt any two:		
	i.	Write a short note on set-associative mapping for cache memory.	5	
	ii.	Explain contemporary memory hierarchy structure.	5	
	iii.	What is cache memory and why is it important?	5	

Marking Scheme EN3ES14 Computer Organization and Architecture

0.1	:\)11	4
Q.1	i)	Convert the following binary number to decimal. 010)11	1
		(d) 11		
	ii)	A micro-operation is an elementary operation perf	formed on the	1
		information stored in:		
		(a) Registers		
	iii)	In Booth's multiplication algorithm where Q _{n-1} Q ₀ bit	is equal to	1
		00 or 11 then what operation is performed?		
		(c) Ashr		
	iv)	When we perform subtraction on -7 and -5 the a	answer in 2's	1
		complement form is		
		(b) 1110		
	v)	The DMA controller has registers		1
		(c) 3		
	vi)	The software mechanism that allows a device to noti	fy the CPU is	1
		called-		
		(a) Polling		
	vii)	Which is used to speed-up the processing: (c) Both (a) & (b)	1
	viii)	Data hazards occur when		1
		(b) Pipeline changes the order of read/write access to	operands	
	ix)	Whenever the data is found in the cache memory it is	s called as	1
		(a) Hit		
	x)	Which of the following is true for a memory hierarc	hy? (d) All of	1
		these		
Q.2	i.	What is RTL? -1	.5 marks	3
		Explain with example.	1.5 marks	
	ii.	Addressing mode definition -1	mark	7
		6-types with example -1 mark of each (6	marks)	
OR	iii.	What are the different fields of an instruction?	-3 marks	7
		Explain instruction cycle with the help of flowchart.	-4Marks	
Q.3	i.	ripple carry adder definition	-2 marks	2
	ii.	Booth's Algorithm+ Flow chart	-4 marks	8
		Example for explaining the multiplication process	-4 marks	
OR	iii.	Flowchart + Algorithm explanation	-5 marks	8
		Overflow condition	-3 marks	l

Q.4	i.	I/O interface	-3 marks	3	
	ii.	Definition interrupt	-1 mark	7	
		Any six types of interrupts1 mark	of each (6 marks)		
OR	iii.	Hardwired implementation of control unit.			
		Diagram	-3.5 marks		
		Explanation	-3.5 marks		
Q.5	i.	Define pipelining	-1 mark	4	
		Advantages	-3 marks		
	ii.	What is pipeline hazard?	-3 marks	6	
		Explain its types.	-3 marks		
OR	iii.	What is cache coherence?	-3 marks	6	
		How is it eliminated?	-3 marks		
Q.6		Attempt any two:			
	i.	Set-associative mapping for cache memory.		5	
		Diagram	-1 mark		
		Explanation	-4 marks		
	ii.	Contemporary memory hierarchy structure.		5	
		Diagram	-2 marks		
		Explanation	-3 marks		
	iii.	What is cache memory and why is it important?)	5	
		Cache Memory	-3 marks		
		Importance	-2 marks		
