Chapitre 15

Polynômes orthogonaux

Pour n,m entiers naturels, on note $\delta_{n,m}$ le symbole de Kronecker défini par $\delta_{n,n} = 1$ et $\delta_{n,m} = 0$ pour $n \neq m$.

 $\mathbb{R}[X]$ est l'algèbre des polynômes à coefficients réels. Pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est le sous-espace vectoriel de $\mathbb{R}[X]$ formé des polynômes de degré au plus égal à navec la convention que le polynôme nul est de degré $-\infty$. Un polynôme $P \in \mathbb{R}[X]$ est identifié à la fonction polynomiale $P: x \in \mathbb{R} \mapsto P(x) \in \mathbb{R}$ qu'il définit.

Un polynôme est dit unitaire s'il est non nul de coefficient dominant égal à 1. $(X^n)_{n\in\mathbb{N}}$ est la base canonique de l'espace vectoriel $\mathbb{R}[X]$ et pour $n\in\mathbb{N}$, la famille $\left(\check{X}^{k}\right) _{0\leq k\leq n}$ est la base canonique de $\mathbb{R}_{n}\left[X\right] .$

Pour $\mathbb{K} = \overline{\mathbb{R}}$ ou $\mathbb{K} = \mathbb{C}$, $\mathcal{M}_n(\mathbb{K})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} .

Polynômes orthogonaux associés à une forme 15.1linéaire définie positive sur $\mathbb{R}[X]$

Étant donnée une forme linéaire φ sur $\mathbb{R}[X]$, on lui associe la suite $(\mu_n)_{n\in\mathbb{N}}$ des moments définie par $\mu_n = \varphi(X^n)$ pour tout $n \in \mathbb{N}$, la suite $(H_n)_{n \in \mathbb{N}}$ des matrices de Hankel et la suite $(D_n)_{n\in\mathbb{N}}$ des déterminants de Hankel respectivement définies par:

$$H_n = \begin{pmatrix} \mu_0 & \mu_1 & \cdots & \mu_n \\ \mu_1 & \mu_2 & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_n & \mu_{n+1} & \cdots & \mu_{2n} \end{pmatrix} \text{ et } D_n = \det(H_n)$$

pour tout $n \in \mathbb{N}$. On associe également à φ la forme bilinéaire symétrique $\langle \cdot | \cdot \rangle$ définie sur $\mathbb{R}[X]$ par $\langle P \mid Q \rangle = \varphi(PQ)$.

Une forme linéaire φ sur $\mathbb{R}\left[X\right]$ est uniquement déterminée par la suite de ses

moments puisque pour tout $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$, on a $\varphi(P) = \sum_{k=0}^{n} a_k \mu_k$.

On se donne un intervalle ouvert I = |a, b| avec $-\infty \le a < b \le +\infty$.

Définition 15.1. On dit qu'une forme linéaire φ sur $\mathbb{R}[X]$ est définie positive sur I, si pour tout $P \in \mathbb{R}[X] \setminus \{0\}$ tel que $P(x) \geq 0$ pour tout $x \in I$, on $a \varphi(P) > 0$.

Si φ est une forme linéaire sur $\mathbb{R}[X]$ définie positive sur I, elle est alors définie positive sur tout intervalle ouvert J qui contient I. En effet, si $P \in \mathbb{R}[X] \setminus \{0\}$ est tel que $P(x) \geq 0$ pour tout $x \in J$, on a alors en particulier $P(x) \geq 0$ pour tout $x \in I$ et $\varphi(P) > 0$.

Pour φ définie positive sur I, on a par linéarité $\varphi(Q) \geq \varphi(P)$ pour tous polynômes P,Q tels que $Q(x) \geq P(x)$ pour tout $x \in I$ et en conséquence, $|\varphi(P)| \leq \varphi(|P|)$ pour tout $P \in \mathbb{R}[X]$ (résulte de $-|P| \leq P \leq |P|$ qui implique $-\varphi(|P|) \leq \varphi(P) \leq \varphi(|P|)$).

Exemples 15.1

- 1. Soient $(x_k)_{k\in\mathbb{N}}$ une suite bornée strictement croissante d'éléments de I et $(\alpha_k)_{k\in\mathbb{N}}$ une suite de réels strictement positifs telle que $\alpha = \sum_{k=0}^{+\infty} \alpha_k < +\infty$. La forme linéaire φ définie sur $\mathbb{R}[X]$ par $\varphi(P) = \sum_{k=0}^{+\infty} \alpha_k P(x_k)$ pour tout $P \in \mathbb{R}[X]$ est définie positive sur I (exercice 15.1).
- 2. Pour tout réel strictement positif a, la forme linéaire φ définie sur $\mathbb{R}[X]$ par $\varphi(P) = \sum_{k=0}^{+\infty} \frac{a^k}{k!} P(k)$ pour tout $P \in \mathbb{R}[X]$ est définie positive sur \mathbb{R} (exercice 15.2).
- 3. Soit $\pi: I \to \mathbb{R}^+$ une fonction continue par morceaux non identiquement nulle telle que $\int_a^b |t|^n \pi(t) dt < +\infty$ pour tout $n \in \mathbb{N}$ (une fonction poids). La forme linéaire φ définie sur $\mathbb{R}[X]$ par $\varphi(P) = \int_a^b P(t) \pi(t) dt$ est définie positive sur I (voir le paragraphe 15.2).

Lemme 15.1 Un polynôme $P \in \mathbb{R}[X]$ est à valeurs positives sur \mathbb{R} (i. e. $P(x) \geq 0$ pour tout $x \in \mathbb{R}$) si, et seulement si, il existe deux polynômes A, B dans $\mathbb{R}[X]$ tels que $P = A^2 + B^2$.

Preuve. La condition suffisante est évidente. Réciproquement soit $P \in \mathbb{R}[X]$ à valeurs positives sur \mathbb{R} . Si P est constant égal à α_0 , on a alors $\alpha_0 \geq 0$ et $P = A^2 + B^2$ avec $A = \sqrt{\alpha_0}$, B = 0. Si P est de degré $n \geq 1$, son coefficient dominant α_n est alors strictement positif et dans $\mathbb{C}[X]$, on a la décomposition en facteurs irréductibles :

$$\frac{1}{\alpha_n}P = \prod_{k=1}^r (X - x_k)^{\alpha_k} \prod_{k=r+1}^{r+s} (X - z_k)^{\beta_k} (X - \overline{z_k})^{\beta_k}$$

où r, s sont deux entiers naturels, les x_k sont réels deux à deux distincts et les z_k complexes non réels deux à deux distincts (le cas r = 0 donne un produit égal à 1

et correspond au cas où P n'a pas de racines réelles et s=0 correspond au cas où toutes les racines de P sont réelles). Si l'une des multiplicité α_k est impaire de la forme $2p_k+1$, on a alors $P=\alpha_n\left(X-x_k\right)^{2p_k+1}Q$ avec $Q\left(x_k\right)\neq 0$, donc Q garde un signe constant dans un voisinage ouvert de x_k et P change de signe dans ce voisinage, ce qui contredit l'hypothèse $P\left(x\right)\geq 0$ pour tout réel x. Les α_k sont donc tous

pairs de la forme
$$2p_k$$
 et $P=R\overline{R}$, où $R=\sqrt{\alpha_n}\prod_{k=1}^r(X-x_k)^{p_k}\prod_{k=r+1}^{r+s}(X-z_k)^{\beta_k}$.

En écrivant R sous la forme R=A+iB avec A,B dans $\mathbb{R}[X]$, on obtient $P=(A+iB)\,(A-iB)=A^2+B^2$.

Théorème 15.1.

Soit φ une forme linéaire sur $\mathbb{R}\left[X\right]$. Les conditions suivantes sont équivalentes :

- 1. φ est définie positive sur \mathbb{R} ;
- 2. $\varphi(P^2) > 0$ pour tout $P \in \mathbb{R}[X] \setminus \{0\}$;
- 3. l'application $(P,Q) \mapsto \langle P \mid Q \rangle = \varphi(PQ)$ définit un produit scalaire sur $\mathbb{R}[X]$;
- 4. pour tout $n \in \mathbb{N}$, la matrice symétrique H_n est définie positive;
- 5. pour tout $n \in \mathbb{N}$, on a $D_n > 0$;
- 6. il existe une unique famille $(P_n)_{n\in\mathbb{N}}$ de polynômes telle que pour tout $n\in\mathbb{N}$, P_n est de degré n de coefficient dominant strictement positif et $\langle P_n \mid P_m \rangle = \delta_{n,m}$ pour tout $(n,m) \in \mathbb{N}^2$.

Preuve. L'application $(P,Q)\mapsto PQ$ étant bilinéaire symétrique, on déduit de la linéarité de φ que l'application $(P,Q)\mapsto \langle P\mid Q\rangle=\varphi(PQ)$ est bilinéaire symétrique. De plus par linéarité de φ , on a $\varphi(0)=0$.

- (1) \Leftrightarrow (2) La condition nécessaire est évidente. La réciproque se déduit du fait que tout $P \in \mathbb{R}[X] \setminus \{0\}$ tel que $P(x) \geq 0$ pour tout réel x s'écrit $P = A^2 + B^2$ avec A, B dans $\mathbb{R}[X]$ non tous deux nuls (donc $\varphi(P) = \varphi(A^2) + \varphi(B^2) > 0$ puisque l'on a $\varphi(A^2) > 0$ ou $\varphi(B^2) > 0$).
- (2) \Leftrightarrow (3) Si $\langle \cdot | \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$, on a alors $\varphi(P^2) = ||P||^2 > 0$ pour tout P dans $\mathbb{R}[X] \setminus \{0\}$. Réciproquement, on suppose cette condition vérifiée. Pour tout $P \in \mathbb{R}[X] \setminus \{0\}$, on a $\langle P | P \rangle = \varphi(P^2) > 0$, donc $\langle \cdot | \cdot \rangle$ est définie positive. En conclusion, $\langle \cdot | \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.
- (3) \Leftrightarrow (4) En remarquant que, pour i,j compris entre 0 et n, le coefficient d'indice (i,j) de la matrice H_n est $\mu_{i+j} = \varphi\left(X^iX^j\right) = \langle X^i \mid X^j \rangle$, on déduit que H_n est la matrice de la forme bilinéaire symétrique $\langle \cdot \mid \cdot \rangle$ dans la base canonique $(X^k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$. Il en résulte que $\langle \cdot \mid \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[X]$ si, et seulement si H_n est définie positive. Dans le cas où $\langle \cdot \mid \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[X]$ pour tout $n \in \mathbb{N}$ et H_n est définie positive. Réciproquement, si toutes les matrices H_n sont définies positive, la forme bilinéaire symétrique $\langle \cdot \mid \cdot \rangle$ est alors un produit scalaire sur tous les $\mathbb{R}_n[X]$, donc sur $\mathbb{R}[X]$.

- $(4) \Leftrightarrow (5)$ Si la matrice symétrique H_n est définie positive, son déterminant D_n est alors strictement positif. Si tous les D_n sont strictement positifs, tous les déterminants principaux D_k de H_n , pour k compris entre 0 et n, sont strictement positifs, ce qui revient à dire que H_n est définie positive.
- $(3) \Rightarrow (6)$ On suppose que $\langle \cdot | \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$. Partant de la base canonique $(X^n)_{n \in \mathbb{N}}$ de $\mathbb{R}[X]$, le théorème de Gram-Schmidt nous dit qu'il existe un unique système orthonormé $(P_n)_{n \in \mathbb{N}}$ dans $\mathbb{R}[X]$ tel que :

$$\forall n \in \mathbb{N}, \begin{cases} \operatorname{Vect} \left\{ P_0, \cdots, P_n \right\} = \operatorname{Vect} \left\{ 1, X, \cdots, X^n \right\} = \mathbb{R}_n \left[X \right] \\ \left\langle P_n \mid X^n \right\rangle > 0 \end{cases}$$

Cette famille de polynômes étant définie par $P_n = \frac{1}{\|Q_n\|}Q_n$, où $Q_0 = 1$

et
$$Q_n = X^n - \sum_{k=0}^{n-1} \langle X^n \mid P_k \rangle P_k$$
 pour tout $n \in \mathbb{N}^*$ (théorème 3.7). Chaque

polynôme P_n est de degré égal à n et de terme dominant strictement positif. Ce système étant étagé en degrés, il forme une base de $\mathbb{R}\left[X\right]$. Réciproquement si $(P_n)_{n\in\mathbb{N}}$ est une telle base orthonormée de $\mathbb{R}\left[X\right]$, les conditions $\deg\left(P_n\right)=n$ pour tout entier naturel n entraı̂nent que l'espace vectoriel engendré par $\{P_0,\cdots,P_n\}$ est égal à l'espace engendré par $\{1,X,\cdots,X^n\}$

engendré par
$$\{P_0, \dots, P_n\}$$
 est égal à l'espace engendré par $\{1, X, \dots, X^n\}$ et avec $P_n = \alpha_n X^n + \sum_{k=0}^{n-1} \lambda_k^{(n)} P_k$, on déduit $\langle P_n \mid X^n \rangle = \frac{1}{\alpha_n} > 0$ si le coef-

ficient dominant de P_n est strictement positif, ce qui assure l'unicité d'une telle base.

(6) \Rightarrow (2) Supposons qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes réels telle que $\deg(P_n)=n$ pour tout $n\in\mathbb{N}$ et $\langle P_n\mid P_m\rangle=\delta_{n,m}$ pour tout $(n,m)\in\mathbb{N}^2$. Une telle suite de polynômes étant étagée en degrés, elle forme une base de $\mathbb{R}\left[X\right]$ et tout polynôme $P\in\mathbb{R}_n\left[X\right]\setminus\{0\}$ s'écrit $P=\sum_{k=0}^n\alpha_kP_k$, les α_k n'étant pas tous nuls, de sorte que :

$$\varphi(P^{2}) = \varphi\left(\sum_{0 \leq i, j \leq n} \alpha_{i} \alpha_{j} P_{i} P_{j}\right) = \sum_{0 \leq i, j \leq n} \alpha_{i} \alpha_{j} \varphi(P_{i} P_{j})$$
$$= \sum_{0 \leq i, j \leq n} \alpha_{i} \alpha_{j} \langle P_{i} \mid P_{j} \rangle = \sum_{i=0}^{n} \alpha_{i}^{2} > 0$$

La famille $(P_n)_{n\in\mathbb{N}}$ du point **6.** est une base orthonormée de $\mathbb{R}[X]$ relativement au produit scalaire défini par φ , chaque sous-famille $(P_k)_{0\leq k\leq n}$, pour $n\in\mathbb{N}$, étant une base orthonormée de $\mathbb{R}_n[X]$.

Avec l'exercice 15.3, on donne une expression des P_n qui utilise les déterminants de Hankel

Si φ est une forme linéaire sur $\mathbb{R}[X]$ définie positive sur un intervalle ouvert I, elle l'est alors sur \mathbb{R} et on dispose ainsi d'une famille $(P_n)_{n\in\mathbb{N}}$ de polynômes orthogonaux (point **6.** du théorème précédent).

 \Box

Pour la suite de ce paragraphe, on se donne une forme linéaire φ sur $\mathbb{R}\left[X\right]$ qui est définie positive sur I (I=]a,b[avec $-\infty \leq a < b \leq +\infty$) et l'espace vectoriel $\mathbb{R}\left[X\right]$ est muni du produit scalaire associé $\langle\cdot\mid\cdot\rangle$, la norme associée étant notée $\|\cdot\|$. ($P_n)_{n\in\mathbb{N}}$ étant la famille de polynômes orthogonaux associée du théorème 15.1, on note pour $n\in\mathbb{N}$, α_n le coefficient dominant du polynôme P_n et pour $n\in\mathbb{N}^*$, β_n le coefficient de X^{n-1} de ce polynôme.

On peut remarquer que pour p,q dans \mathbb{N} on a $\langle X^p \mid X^q \rangle = \varphi(X^{p+q}) = \mu_{p+q}$ et le déterminant de Gram du système $(X^k)_{0 \le k \le n}$ s'écrit :

$$g(1, X, \dots, X^n) = \begin{vmatrix} \mu_0 & \mu_1 & \dots & \mu_n \\ \mu_1 & \mu_2 & \dots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_n & \mu_{n+1} & \dots & \mu_{2n} \end{vmatrix} = D_n$$

(voir le paragraphe 3.6).

De la construction on déduit le résultat suivant qui nous sera souvent utile.

Théorème 15.2.

Pour tout entier naturel non nul n, on a $(\mathbb{R}_{n-1}[X])^{\perp} = \text{Vect}\{P_k \mid k \geq n\}$ (où $(\mathbb{R}_{n-1}[X])^{\perp}$ est l'orthogonal de $\mathbb{R}_{n-1}[X]$ dans $\mathbb{R}[X]$). En particulier un polynôme de degré n est orthogonal à $\mathbb{R}_{n-1}[X]$ si, et seulement si, il est proportionnel à P_n .

Preuve. De $\mathbb{R}_{n-1}[X] = \text{Vect}\{P_0, \cdots, P_{n-1}\}$ et de l'orthogonalité de la base $(P_k)_{k \in \mathbb{N}}$ de $\mathbb{R}[X]$, on déduit que :

$$\forall k > n, \ \forall P \in \mathbb{R}_{n-1}[X], \ \langle P \mid P_k \rangle = 0$$

ce qui équivaut à $(\mathbb{R}_{n-1}[X])^{\perp} = \text{Vect}\{P_k \mid k \geq n\}$.

Les propriétés d'orthogonalité nous permettent d'obtenir des relations de récurrence sur les polynômes orthogonaux.

Théorème 15.3.

La suite $(P_n)_{n\in\mathbb{N}}$ est définie par la relation de récurrence :

$$\forall n \in \mathbb{N}, \ XP_n = b_n P_{n+1} + a_n P_n + b_{n-1} P_{n-1} \tag{15.1}$$

avec les conditions initiales $P_{-1} = 0$ et $P_0 = \frac{1}{\sqrt{\varphi(1)}}$, où $b_{-1} = 0$,

 $b_n = \varphi(XP_nP_{n+1}) = \frac{\alpha_n}{\alpha_{n+1}}$ est strictement positif pour tout $n \in \mathbb{N}$,

$$a_0 = \varphi\left(XP_0^2\right) = \frac{\varphi\left(X\right)}{\varphi\left(1\right)} \ et \ a_n = \varphi\left(XP_n^2\right) = \frac{\beta_n}{\alpha_n} - \frac{\beta_{n+1}}{\alpha_{n+1}} \ pour \ n \in \mathbb{N}^*.$$

Preuve. Le procédé d'orthogonalisation de Gram-Schmidt nous donne :

$$\varphi(1) = ||1||^2 > 0, \ P_0 = \frac{1}{\sqrt{\varphi(1)}}$$

$$Q_1 = X - \langle X \mid P_0 \rangle P_0 = X - \varphi (XP_0^2) = X - a_0$$

avec:

$$\|Q_1\|^2 = \langle Q_1 | X \rangle = \varphi(XQ_1) = \sqrt{\varphi(1)} \|Q_1\| \varphi(XP_0P_1) = \sqrt{\varphi(1)} \|Q_1\| b_0$$

donc $\|Q_1\| = \sqrt{\varphi(1)}b_0$ et en conséquence, $P_1 = \frac{1}{\sqrt{\varphi(1)}}\frac{X - a_0}{b_0} = P_0\frac{X - a_0}{b_0}$, soit $XP_0 = b_0P_1 + a_0P_0 + b_{-1}P_{-1}$ en convenant que $b_{-1} = 0$ et $P_{-1} = 0$. Pour $n \in \mathbb{N}^*$, on a $XP_n \in \mathbb{R}_{n+1}[X] = \text{Vect}\{P_0, \cdots, P_{n+1}\}, \text{ donc } XP_n = \sum_{k=1}^{n+1} \lambda_k P_k$ avec $\lambda_k = \langle XP_n \mid P_k \rangle = \langle P_n \mid XP_k \rangle = 0$ pour k+1 < n (P_n est orthogonal à $\mathbb{R}_{n-1}[X]$). Il reste donc $XP_n = \lambda_{n+1}P_{n+1} + \lambda_nP_n + \lambda_{n-1}P_{n-1}$ avec :

$$\lambda_{n+1} = \langle XP_n \mid P_{n+1} \rangle = \varphi \left(XP_n P_{n+1} \right) = b_n$$
$$\lambda_n = \langle XP_n \mid P_n \rangle = \varphi \left(XP_n^2 \right) = a_n$$
$$\lambda_{n-1} = \langle XP_n \mid P_{n-1} \rangle = \varphi \left(XP_n P_{n-1} \right) = b_{n-1}$$

En identifiant les coefficients de X^{n+1} dans l'égalité (15.1), on obtient $b_n =$ $\frac{\alpha_n}{\alpha_n}$ (rapport des coefficients dominants de P_n et P_{n+1}) et en particulier, le coefficient b_n est strictement positif. De même, en identifiant les coefficients de X^n , on obtient $a_n = \frac{\beta_n}{\alpha_n} - b_n \frac{\beta_{n+1}}{\alpha_n} = \frac{\beta_n}{\alpha_n} - \frac{\beta_{n+1}}{\alpha_{n+1}}$. \Box Dans le cas où les bornes a, b de l'intervalle I sont finis, on a les majorations :

$$\forall n \in \mathbb{N}, \ a \leq a_n \leq b, \ 0 < b_n \leq \max(|a|, |b|)$$

En effet, pour $n \in \mathbb{N}$, on peut écrire que $a = a \|P_n\|^2 = \varphi\left(aP_n^2\right)$ et tenant compte de $aP_n^2\left(x\right) \leq xP_n^2\left(x\right) \leq bP_n^2\left(x\right)$ pour tout $x \in I$, on en déduit que :

$$a = \varphi\left(aP_n^2\right) \le \varphi\left(XP_n^2\right) = a_n \le \varphi\left(bP_n^2\right) = b$$

et en posant $c = \max(|a|, |b|)$, on a en utilisant l'inégalité de Cauchy-Schwarz :

$$0 < b_n = \varphi(XP_nP_{n+1}) = |\varphi(XP_nP_{n+1})| \le \varphi(|XP_nP_{n+1}|)$$

$$\le c\varphi(|P_n||P_{n+1}|) = c\langle |P_n|||P_{n+1}|\rangle \le c||P_n|||P_{n+1}|| = c$$

Le théorème 15.3 admet une réciproque qui peut s'exprimer comme suit.

Théorème 15.4. Favard

Soient $(a_n)_{n\in\mathbb{N}}$ une suite réelle, $(b_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes réels définie par la relation de récurrence :

$$\forall n \in \mathbb{N}, \ XP_n = b_n P_{n+1} + a_n P_n + b_{n-1} P_{n-1} \tag{15.2}$$

avec les conditions initiales $P_{-1} = 0$ et $P_0 = \alpha_0$, où α_0 est un réel strictement positif donné, en convenant que $b_{-1} = 0$. Dans ces conditions, il existe une unique forme linéaire φ sur $\mathbb{R}[X]$ définie positive sur \mathbb{R} telle que $(P_n)_{n\in\mathbb{N}}$ soit la suite de polynôme orthogonaux associée (point **6**. du théorème 15.3).

Preuve. De la relation (15.2) et de la positivité des b_n , on déduit que chaque polynôme P_n est de degré n et de coefficient dominant strictement positif. En effet, on a $P_0=\alpha_0$, avec $\alpha_0>0$, $P_1=\frac{\alpha_0}{b_0}X-a_0\alpha_0$ avec $\frac{\alpha_0}{b_0}>0$ et supposant le résulat acquis jusqu'au rang $n\geq 1$, on en notant α_k le coefficient dominant P_k , pour k compris entre 0 et n:

$$P_{n+1} = \frac{1}{b_n} X P_n - \frac{a_n}{b_n} P_n - \frac{b_{n-1}}{b_b} P_{n-1} = \frac{\alpha_n}{b_n} X^{n+1} + Q_n$$

avec $Q_n \in \mathbb{R}_{n-1}[X]$. Le polynôme P_{n+1} est donc de degré n+1 de coefficient dominant $\alpha_{n+1} = \frac{\alpha_n}{b_n} > 0$. Par récurrence, on vérifie que $\alpha_n = \frac{\alpha_0}{b_{n-1} \cdots b_0}$ pour tout $n \geq 1$ (on a $\alpha_1 = \frac{\alpha_0}{b_0}$ et supposant le résultat acquis pour $n \geq 1$, on a $\alpha_{n+1} = \frac{\alpha_n}{b_n} = \frac{\alpha_0}{b_n b_{n-1} \cdots b_0}$). Il en résulte que $(P_n)_{n \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$, ce qui permet de définir la forme linéaire φ sur $\mathbb{R}[X]$ par $\varphi(P_0) = \frac{1}{\alpha_0}$ et $\varphi(P_n) = 0$ pour tout $n \geq 1$. De la relation (15.2), on déduit que $\varphi(XP_n) = 0$ pour tout $n \geq 2$ et plus généralement, $\varphi(X^kP_n) = 0$ pour tout $k \geq 0$ et tout $n \geq k+1$. En effet, c'est vrai pour k = 0 et supposant le résultat acquis jusqu'au rang $k-1 \geq 0$, on

$$\varphi(X^k P_n) = b_n \varphi(X^{k-1} P_{n+1}) + a_n \varphi(X^{k-1} P_n) + b_{n-1} \varphi(X^{k-1} P_{n-1}) = 0$$

pour tout $n \ge k+1$. Il en résulte que $\varphi\left(P_nP_m\right)=0$ pour tous $n \ne m$. On a aussi pour $n \ge 1$:

$$\varphi(X^{n}P_{n}) = b_{n}\varphi(X^{n-1}P_{n+1}) + a_{n}\varphi(X^{n-1}P_{n}) + b_{n-1}\varphi(X^{n-1}P_{n-1})$$

= $b_{n-1}\varphi(X^{n-1}P_{n-1})$

et par récurrence, $\varphi\left(X^nP_n\right)=\frac{b_{n-1}\cdots b_0}{\alpha_0}=\frac{1}{\alpha_n}>0.$ Il en résulte que :

$$\varphi\left(P_{n}^{2}\right) = \alpha_{n}\varphi\left(X^{n}P_{n}\right) + \varphi\left(Q_{n}P_{n}\right) = \alpha_{n}\varphi\left(X^{n}P_{n}\right) = 1$$

(avec $Q_n \in \mathbb{R}_{n-1}[X]$) pour $n \geq 1$ et $\varphi(P_0^2) = \alpha_0 \varphi(P_0) = 1$. De tout cela, on déduit que φ est définie positive puisque pour tout $P = \sum_{k=0}^{n} \gamma_k P_k \in \mathbb{R}[X]$, on a :

$$\varphi\left(P^{2}\right) = \sum_{0 \leq j,k \leq n} \gamma_{j} \gamma_{k} \varphi\left(P_{j} P_{k}\right) = \sum_{k=0}^{n} \gamma_{k}^{2} \varphi\left(P_{k}^{2}\right) = \sum_{k=0}^{n} \gamma_{k}^{2} \geq 0$$

l'égalité étant réalisée si, et seulement si, tous les γ_k , ce qui équivaut à P=0. La suite $(P_n)_{n\in\mathbb{N}}$ est bien celle définie par le point **6.** du théorème 15.3 par unicité dans le procédé de Gram-Schmit. Par construction, φ est unique.

Le résultat qui suit nous donne des conditions pour que les coefficients a_n soient tous nuls. Ces conditions sont réalisées dans le cas où la forme linéaire φ est définie par une fonction poids paire sur I =]-b, b[(voir le paragraphe 15.2).

Définition 15.2. Une forme linéaire φ sur $\mathbb{R}[X]$ définie positive sur I est dite symétrique si, tous ses moments d'ordre impair μ_{2p+1} pour $p \in \mathbb{N}$, sont nuls.

Théorème 15.5.

Les conditions suivantes sont équivalentes :

- 1. $\mu_{2p+1} = 0$ pour tout $p \in \mathbb{N}$;
- 2. pour tout $n \in \mathbb{N}$, le polynôme P_n est de la parité de n;
- 3. $a_n = 0$ pour tout $n \in \mathbb{N}$.

Preuve.

(1) \Leftrightarrow (2) Supposons que $\mu_{2p+1} = 0$ pour tout $p \in \mathbb{N}$. Pour tout $P \in \mathbb{R}[X]$, en désignant par Q le polynôme défini par Q(X) = P(-X), on a :

$$\varphi(Q) = \varphi\left(\sum_{k=0}^{n} \gamma_k (-1)^k X^k\right) = \sum_{k=0}^{n} \gamma_k (-1)^k \mu_k = \sum_{0 \le 2j \le n} \gamma_{2j} \mu_{2j} = \varphi(P)$$

Notant $Q_n(X) = (-1)^n P_n(-X)$ pour tout $n \in \mathbb{N}$, on définit un polynôme de degré n de coefficient dominant strictement positif et pour tous n, m dans \mathbb{N} , on a :

$$\langle Q_n \mid Q_m \rangle = \varphi \left(Q_n Q_m \right) = (-1)^{n+m} \varphi \left(P_n P_m \right) = (-1)^{n+m} \delta_{n,m} = \delta_{n,m}$$

c'est-à-dire que la suite $(Q_n)_{n\in\mathbb{N}}$ satisfait les conditions du théorème de Gram-Schmidt, ce qui nous donne les égalités $(-1)^n P_n(-X) = P_n(X)$ pour tout $n\in\mathbb{N}$ par unicité, ce qui signifie que P_n est de la parité de n. Réciproquement si chaque P_n est de la parité de n, on a alors pour tout $p\in\mathbb{N}$:

$$\alpha_{2p+1}\mu_{2p+1} = \varphi\left(\alpha_{2p+1}X^{2p+1}\right) = \varphi\left(P_{2p+1} - \sum_{k=0}^{p-1}\gamma_{2k+1}X^{2k+1}\right)$$
$$= -\sum_{k=0}^{p-1}\gamma_{2k+1}\varphi\left(X^{2k+1}\right) = -\sum_{k=0}^{p-1}\gamma_{2k+1}\mu_{2k+1}$$

 $(\varphi(P_{2p+1}) = \langle P_{2p+1} | 1 \rangle = 0$ et P_{2p+1} qui est impaire ne contient que des puissances impaires). Tenant compte de $\mu_1 = \varphi(X) = \frac{1}{\alpha_1} \varphi(P_1) = 0$, on en déduit par récurrence sur $p \geq 0$ que tous les μ_{2p+1} sont nuls.

 $(2) \Leftrightarrow (3)$ Si chaque P_n est de la parité de n, on a alors :

$$(-1)^{n+1} X P_n (X) = -X P_n (-X)$$

$$= b_n P_{n+1} (-X) + a_n P_n (-X) + b_{n-1} P_{n-1} (-X)$$

$$= (-1)^{n+1} (b_n P_{n+1} (X) - a_n P_n (X) + b_{n-1} P_{n-1} (X))$$

soit:

$$b_n P_{n+1}(X) - a_n P_n(X) + b_{n-1} P_{n-1}(X) = X P_n(X)$$

= $b_n P_{n+1}(X) + a_n P_n(X) + b_{n-1} P_{n-1}(X)$

et en conséquence $2a_nP_n=0$, ce qui impose $a_n=0$. Réciproquement, supposons tous les a_n nuls. Le polynôme $P_0=\frac{1}{\sqrt{\varphi\left(1\right)}}$ est pair et $P_1=\frac{1}{b_0\sqrt{\varphi\left(1\right)}}X$ est impair. Supposant le résultat acquis jusqu'au rang $n\geq 0$, on a :

$$b_{n}P_{n+1}(-X) = -XP_{n}(-X) - b_{n-1}P_{n-1}(-X)$$

$$= (-1)^{n+1} XP_{n}(X) - b_{n-1}(-1)^{n+1} P_{n-1}(X)$$

$$= (-1)^{n+1} b_{n}P_{n+1}(X)$$

soit
$$P_{n+1}(-X) = (-1)^{n+1} P_{n+1}(X)$$
.

Les polynômes orthogonaux P_n peuvent aussi s'exprimer comme polynômes caractéristiques de matrices associée à la relation de récurrence (15.1). Précisément, en définissant la suite de matrices tridiagonales $(A_n)_{n\in\mathbb{N}^*}$ par $A_1=(a_0)$ et :

$$A_{n} = \begin{pmatrix} a_{0} & b_{0} & 0 & \cdots & 0 \\ b_{0} & a_{1} & b_{1} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-3} & a_{n-2} & b_{n-2} \\ 0 & \cdots & 0 & b_{n-2} & a_{n-1} \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R})$$

pour tout $n \geq 2$, où $a_n = \varphi\left(XP_n^2\right)$, $b_n = \varphi\left(XP_nP_{n+1}\right)$ et en désignant par $\chi_n\left(X\right) = \det\left(XI_n - A_n\right)$ le polynôme caractéristique de la matrice A_n , on vérifie que $\chi_n = \frac{1}{\alpha_n}P_n$ (exercices 15.4 et 15.6). De ce résultat, on déduit le polynôme P_n admet n racines réelles simples, ce qui peut aussi se montrer en utilisant l'orthogonalité des P_n avec la précision supplémentaire que ces racines sont toutes dans l'intervalle I.

Théorème 15.6.

Pour tout $n \in \mathbb{N}^*$, le polynôme P_n admet n racines réelles simples dans l'intervalle I.

Preuve. Soit $n \in \mathbb{N}^*$. Si le polynôme P_n garde un signe constant sur I, on a alors $\langle P_n \mid P_0 \rangle = \varphi(P_n) \neq 0$, ce qui contredit l'orthogonalité de P_n et P_0 pour $n \geq 1$. Il existe donc au moins une racine de P_n dans I. Si $x_1 \in I$ est une racine de P_n de multiplicité $p \geq 2$, on peut alors écrire $P_n(X) = (X - x_1)^2 Q_{n-2}(X)$ avec $Q_{n-2} \in \mathbb{R}_{n-2}[X] \setminus \{0\}$, ce qui entraîne que :

$$0 = \langle P_n \mid Q_{n-2} \rangle = \varphi \left((X - x_1)^2 Q_{n-2}^2 \right) > 0$$

П

soit une impossibilité. Toutes les racines de P_n dans I sont donc simples. Notons $x_1,...,x_p$ ces racines. Si p < n, on peut alors écrire $P_n\left(X\right) = \prod_{k=1}^p \left(X - x_k\right) Q_{n-p}\left(X\right)$ avec $Q_{n-p} \in \mathbb{R}_{n-p}\left[X\right] \setminus \{0\}$ de signe constant sur I et on a :

$$0 = \left\langle P_n \mid \prod_{k=1}^p (x - x_k) \right\rangle = \varphi \left(\prod_{k=1}^p (X - x_k)^2 Q_{n-p} \right) \neq 0$$

soit encore une impossibilité. On a donc p=n, c'est-à-dire que toutes les racines de P_n sont dans I.

Pour tout $n \in \mathbb{N}^*$, on note $x_{1,n} < x_{2,n} < \cdots < x_{n,n}$ les n racines réelles du polynôme P_n dans I.

Dans le cas où φ est symétrique, chaque polynôme P_n est de la parité de n et on a $x_{n-k+1,n} = -x_{k,n}$ pour tout k compris entre 1 et n.

De la relation de récurrence (15.1) on déduit la relation de Darboux-Christoffel suivante.

Théorème 15.7. Darboux-Christoffel

Pour tout $n \in \mathbb{N}$, on a l'égalité :

$$(X - Y) \sum_{k=0}^{n} P_k(X) P_k(Y) = b_n (P_{n+1}(X) P_n(Y) - P_n(X) P_{n+1}(Y))$$
(15.3)

 $dans \mathbb{R}[X,Y]$.

Preuve. Pour tout entier naturel k, on a :

$$XP_{k}(X) = b_{k}P_{k+1}(X) + a_{k}P_{k}(X) + b_{k-1}P_{k-1}(X)$$

Multipliant les deux membres de cette égalité par $P_k(Y)$, il vient :

$$XP_{k}(X) P_{k}(Y) = b_{k} P_{k+1}(X) P_{k}(Y) + a_{k} P_{k}(X) P_{k}(Y) + b_{k-1} P_{k-1}(X) P_{k}(Y)$$

Ce qui peut aussi s'écrire en permutant les rôles de X et Y :

$$YP_{k}(Y)P_{k}(X) = b_{k}P_{k+1}(Y)P_{k}(X) + a_{k}P_{k}(Y)P_{k}(X) + b_{k-1}P_{k-1}(Y)P_{k}(X)$$

Faisant la différence des deux égalités obtenues, on obtient :

$$(X - Y) P_k(X) P_k(Y) = b_k(P_{k+1}(X) P_k(Y) - P_k(X) P_{k+1}(Y)) - b_{k-1}(P_k(X) P_{k-1}(Y) - P_{k-1}(X) P_k(Y))$$

puis la somme pour k allant de 0 à n donne :

$$(X - Y) \sum_{k=0}^{n} P_k(X) P_k(Y) = b_n (P_{n+1}(X) P_n(Y) - P_n(X) P_{n+1}(Y))$$
$$- b_{-1} (P_0(X) P_{-1}(Y) - P_{-1}(X) P_0(Y))$$
$$= b_n (P_{n+1}(X) P_n(Y) - P_n(X) P_{n+1}(Y))$$

De cette relation, on peut déduire que pour tout entier $n \in \mathbb{N}^*$, les racines du polynôme P_{n+1} séparent celles de P_n .

Lemme 15.2 Pour tout entier naturel n et pour tout réel x, on a :

$$P_n(x) P'_{n+1}(x) - P'_n(x) P_{n+1}(x) = \frac{1}{b_n} \sum_{k=0}^{n} P_k^2(x) > 0$$

Preuve. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ fixés, on désigne par φ_n la fonction définie sur \mathbb{R} par $\varphi_n(y) = P_{n+1}(x) P_n(y) - P_n(x) P_{n+1}(y)$. On a $\varphi_n(x) = 0$ et la formule de Darboux-Christoffel nous dit que $\frac{\varphi_n(y) - \varphi_n(x)}{x - y} = \frac{1}{b_n} \sum_{k=0}^n P_k(x) P_k(y)$ pour $y \neq x$, ce qui entraı̂ne en faisant tendre y vers x:

$$\frac{1}{b_n} \sum_{k=0}^{n} P_k^2(x) = -\varphi'_n(x) = -P_{n+1}(x) P'_n(x) + P_n(x) P'_{n+1}(x)$$

ce qui équivaut à l'égalité polynomiale $P_n P'_{n+1} - P'_n P_{n+1} = \frac{1}{b_n} \sum_{k=0}^n P_k^2$, ce dernier polynôme étant à valeurs strictement positives.

Théorème 15.8.

Pour tout entier naturel non nul n et tout entier k compris entre 1 et n, on a $x_{k,n+1} < x_{k,n} < x_{k+1,n+1}$, ce qui signifie qu'entre deux racines consécutives de P_{n+1} il y a une unique racine de P_n .

Preuve. Le polynôme P_{n+1} ayant n+1 racines réelles simples, on déduit du théorème des accroissements finis que P'_{n+1} a n racines réelles $\xi_{1,n+1} < \cdots < \xi_{n,n+1}$ avec $x_{k,n+1} < \xi_{k,n+1} < x_{k+1,n+1}$ pour tout k compris entre 1 et n. Il en résulte que :

$$\forall k \in \{1, \dots, n\}, P'_{n+1}(x_{k,n+1}) P'_{n+1}(x_{k+1,n+1}) < 0$$

En effet ces produits ne sont jamais nuls puisque $\xi_{k,n+1}$ est l'unique racine de P'_{n+1} dans $[x_{k,n+1},x_{k+1,n+1}]$ et si un tel produit est positif avec $P'_{n+1}(x_{k,n+1}) > 0$ par exemple, on a alors $P'_{n+1}(x) > 0$ pour tout $x \in [x_{k,n+1},x_{k+1,n+1}] \setminus \{\xi_{k,n+1}\}$ et P_{n+1} est croissante sur $[x_{k,n+1},x_{k+1,n+1}]$, ce qui entraîne :

$$0 = P_{n+1}(x_{k,n+1}) \le P_{n+1}(\xi_{k,n+1}) \le P_{n+1}(x_{k+1,n+1}) = 0$$

et $P_{n+1}\left(\xi_{k,n+1}\right)=0$, ce qui est impossible. Avec :

$$P_{n}(x) P'_{n+1}(x) - P'_{n}(x) P_{n+1}(x) = \frac{1}{b_{n}} \sum_{k=0}^{n} P_{k}^{2}(x) > 0$$

on déduit que si x est racine de P_{n+1} , on a alors $P_n(x)P'_{n+1}(x) > 0$ et $P_n(x)$ est de même signe que $P'_{n+1}(x)$. Il en résulte que $P_n(x_{k,n+1})P_n(x_{k+1,n+1}) < 0$ pour tout $k \in \{1, \dots, n\}$ et le théorème des valeurs intermédiaires nous dit que P_n a une racine dans $]x_{k,n+1}, x_{k+1,n+1}[$. On obtient ainsi n racines distinctes de P_n , c'est-à-dire toutes ses racines.

П

Corollaire 15.1. Pour tout $k \in \mathbb{N}^*$, la suite $(x_{k,n})_{n \geq k}$ est décroissante et la suite $(x_{n-k+1,n})_{n \geq k}$ est croissante. En particulier, pour a et b finis, les suites $(x_{1,n})_{n \in \mathbb{N}^*}$, $(x_{n,n})_{n \in \mathbb{N}^*}$ sont convergentes $(x_{1,n})_{n \in \mathbb{N}^*}$ est la plus petite racine de P_n dans a_n le a_n la plus grande).

Preuve. De $x_{k,n+1} < x_{k,n}$ pour tout $n \ge k$, on déduit que $(x_{k,n})_{n \ge k}$ est décroissante et de $x_{n-k+1,n} < x_{n+1-k+1,n+1}$, on déduit que $(x_{n-k+1,n})_{n \ge k}$ est croissante. Pour a, b finis, ces suites sont majorées, donc convergentes.

En cas de convergence, l'intervalle $]\alpha,\beta[$, où $\alpha=\lim_{n\to+\infty}x_{1,n},\ \beta=\lim_{n\to+\infty}x_{n,n}$ est un « bon » intervalle d'étude des polynômes orthogonaux.

Pour $n \in \mathbb{N}^*$, les racines de P_n peuvent être utilisées pour donner une expression de $\varphi(P)$ pour $P \in \mathbb{R}_{2n-1}[X]$. Cela nous conduira aux formules de quadrature de Gauss dans le cas où φ est définie par une fonction poids.

Théorème 15.9.

Pour $n \in \mathbb{N}^*$, il existe des réels $\xi_{k,n}$ et $\lambda_{k,n}$ $(1 \le k \le n)$ tels que :

$$\forall P \in \mathbb{R}_{2n-1} [X], \ \varphi(P) = \sum_{k=1}^{n} \lambda_{k,n} P(\xi_{k,n})$$
 (15.4)

si, et seulement si, les réels $\xi_{k,n}$ $(1 \le k \le n)$ sont les racines $x_{k,n}$ du polynôme P_n .

Preuve. Supposons qu'il existe des réels $\xi_{k,n}$ et $\lambda_{k,n}$ $(1 \leq k \leq n)$ tels que la condition (15.4) soit vérifiée. En notant $\omega_n(X) = \prod_{k=1}^n (X - \xi_{k,n})$, on a pour tout polynôme $Q \in \mathbb{R}_{n-1}[X]$, $\omega_n Q \in \mathbb{R}_{2n-1}[X]$ et :

$$\langle \omega_n | Q \rangle = \varphi (\omega_n Q) = \sum_{k=1}^n \lambda_{k,n} \omega_n (\xi_{k,n}) Q (\xi_{k,n}) = 0$$

donc $\omega_n \in (\mathbb{R}_{n-1}[X])^{\perp}$. Ce polynôme, de degré n, est donc proportionnel à P_n (théorème 15.2) et les $\xi_{k,n}$ $(1 \le k \le n)$ sont les racines de P_n .

Réciproquement, supposons que les $\xi_{k,n}$ $(1 \le k \le n)$ soient les racines $x_{k,n}$ de P_n . Par division euclidienne, tout polynôme $P \in \mathbb{R}_{2n-1}[X]$ s'écrit sous la forme $P = QP_n + R$ avec Q, R dans $\mathbb{R}_{n-1}[X]$ et on a :

$$\varphi(P) = \varphi(QP_n) + \varphi(R) = \langle P_n \mid Q \rangle + \varphi(R) = \varphi(R)$$

puisque $P_n \in (\mathbb{R}_{n-1}[X])^{\perp}$. En remarquant que $P(x_{k,n}) = R(x_{k,n})$ pour tout k compris entre 1 et n, on déduit qu'il nous suffit de montrer que (15.4) est vérifié sur $\mathbb{R}_{n-1}[X]$, ce qui équivaut à prouver l'existence de coefficients $\lambda_{k,n}$ $(1 \le k \le n)$ solutions du système linéaire de n équations à n inconnues :

$$\sum_{i=1}^{n} (x_{i,n})^{k-1} \lambda_{i,n} = \varphi(X^{k-1}) = \mu_{k-1} \ (1 \le k \le n)$$

Le déterminant de ce système étant $\prod_{1 \leq j < i \leq n} (x_{i,n} - x_{j,n}) \neq 0$ (déterminant de Van-

dermonde), on est assuré de l'existence et de l'unicité d'une solution $(\lambda_{k,n})_{1\leq k\leq n}$. \Box

Les coefficients $\lambda_{k,n}$ $(1 \le k \le n)$ définis par le théorème précédent sont appelés coefficients de Christoffel associés à la forme linéaire définie positive φ .

En notant, pour $n \in \mathbb{N}^*$, $(L_{k,n})_{1 \le k \le n}$ la base de Lagrange de $\mathbb{R}_{n-1}[X]$ définie par :

$$\forall k \in \{1, \dots, n\}, \begin{cases} L_{k,n} \in \mathbb{R}_{n-1}[X] \\ L_{k,n}(x_{j,n}) = \delta_{k,j} \end{cases} (1 \le j \le n)$$

ce qui revient à dire que $L_{k,n}\left(X\right) = \prod_{\substack{j=1\\j\neq k}}^{n} \frac{X-x_{j,n}}{x_{k,n}-x_{j,n}}$, on a :

$$\varphi(L_{k,n}) = \sum_{j=1}^{n} \lambda_{j,n} L_{k,n}(x_{j,n}) = \lambda_{k,n}$$

Prenant $P = L_{k,n}^2 \in \mathbb{R}_{2n-2}[X]$, on constate que les coefficients $\lambda_{k,n}$ sont tous strictement positifs. En effet, on a :

$$0 < \varphi(L_{k,n}^{2}) = \sum_{j=1}^{n} \lambda_{j,n} L_{k,n}^{2}(x_{j,n}) = \lambda_{k,n}$$

Le résultat qui suit nous donne une formule explicite pour les coefficients de Christoffel.

Lemme 15.3 Pour tout $n \in \mathbb{N}^*$ et tout k compris entre 1 et n, on a:

$$\lambda_{k,n} = \frac{1}{b_{n-1}} \frac{1}{P_n'\left(x_{k,n}\right) P_{n-1}\left(x_{k,n}\right)}$$

Preuve. Pour k compris entre 1 et n, on a :

$$L_{k,n}(X) = \prod_{\substack{j=1\\j\neq k}}^{n} \frac{X - x_{j,n}}{x_{k,n} - x_{j,n}} = \frac{1}{P'_{n}(x_{k,n})} \frac{P_{n}(X)}{X - x_{k,n}}$$

et $\lambda_{k,n}=arphi\left(L_{k,n}\right)=rac{1}{P_{n}'\left(x_{k,n}\right)}arphi\left(rac{P_{n}\left(X\right)}{X-x_{k,n}}
ight)$. En utilisant l'identité de Darboux-Christoffel (théorème 15.7), on a :

$$(X - x_{k,n}) \sum_{i=0}^{n} P_i(X) P_i(x_{k,n}) = -b_n P_n(X) P_{n+1}(x_{k,n})$$

ce qui donne $\frac{P_{n}\left(X\right)}{X-x_{k,n}}=-\frac{1}{b_{n}P_{n+1}\left(x_{k,n}\right)}\underset{i=0}{\overset{n}{\sum}}P_{i}\left(x_{k,n}\right)P_{i}\left(X\right)\text{ et :}$

$$\lambda_{k,n} = -\frac{1}{b_n P_{n+1}(x_{k,n}) P'_n(x_{k,n})} \sum_{i=0}^{n} P_i(x_{k,n}) \langle P_i | 1 \rangle$$

Tenant compte de l'orthogonalité de la famille $(P_i)_{0 \le i \le n}$, on en déduit que :

$$\lambda_{k,n} = -\frac{1}{b_n} \frac{1}{P_{n+1}(x_{k,n}) P_n'(x_{k,n})} P_0(x_{k,n}) \langle P_0 | 1 \rangle = -\frac{1}{b_n} \frac{1}{P_{n+1}(x_{k,n}) P_n'(x_{k,n})}$$

D'autre part, en utilisant la relation de récurrence (15.1), on a :

$$b_n P_{n+1}(x_{k,n}) + b_{n-1} P_{n-1}(x_{k,n}) = 0$$

$$b_{n}P_{n+1}\left(x_{k,n}\right) + b_{n-1}P_{n-1}\left(x_{k,n}\right) = 0$$
soit $b_{n} = -b_{n-1}\frac{P_{n-1}\left(x_{k,n}\right)}{P_{n+1}\left(x_{k,n}\right)}$ et $\lambda_{k,n} = \frac{1}{b_{n-1}}\frac{1}{P'_{n}\left(x_{k,n}\right)P_{n-1}\left(x_{k,n}\right)}$.

Pour φ est symétrique, on a pour k compriseentre 1 et $n, x_{n-k+1,n} = -x_{k,n}$ et :

$$\lambda_{n-k+1,n} = \frac{1}{b_{n-1}} \frac{1}{P_n'\left(-x_{n,k}\right) P_{n-1}\left(-x_{n,k}\right)} = \frac{1}{b_{n-1}} \frac{1}{P_n'\left(x_{n,k}\right) P_{n-1}\left(x_{n,k}\right)} = \lambda_{k,n}$$

puisque
$$P'_n(-x) = (-1)^{n-1} P'_n(x)$$
 et $P_{n-1}(-x) = (-1)^{n-1} P_{n-1}(x)$.

Polynômes orthogonaux associés à une fonc-15.2 tion poids

On rappelle qu'une fonction $f: I \to \mathbb{R}$, où I = [a, b] est un intervalle ouvert avec $-\infty \le a < b \le +\infty$ est continue par morceaux, si elle est continue ou s'il existe une subdivision $a < a_1 < \cdots < a_p < b$ de I telle que f soit continue sur chacun des intervalles $]a, a_1[,]a_k, a_{k+1}[(1 \le k \le p-1),]a_p, b[$ et admette des limites à droite et à gauche en chacun des points a_k $(1 \le k \le p)$.

On se donne un intervalle ouvert I=]a,b[avec $-\infty \leq a < b \leq +\infty,$ une fonction continue par morceaux $\pi:I\to\mathbb{R}^+$ non identiquement nulle telle que $\int_a^b |t|^n \pi\left(t\right) dt < +\infty \text{ pour tout } n \in \mathbb{N} \text{ (fonction poids) et on associe à cette fonction poids, la forme linéaire } \varphi \text{ définie sur } \mathbb{R}\left[X\right] \text{ par :}$

$$\forall P \in \mathbb{R}[X], \ \varphi(P) = \int_{a}^{b} P(t) \pi(t) dt$$

On note $a_1 < \cdots < a_p$ les éventuels points de discontinuités dans l'intervalle $|a_0, a_{p+1}| = |a, b|$ de la fonction π .

De la condition $\int_{0}^{b} |t|^{n} \pi(t) dt < +\infty$ pour tout $n \in \mathbb{N}$, on déduit que pour tout polynôme P, l'intégrale $\int_{0}^{b} P(t) \pi(t) dt$ est absolument convergente, ce qui justifie la définition de φ . De la linéarité de l'intégrale, on déduit que φ est une forme linéaire. Pour $P \in \mathbb{R}[X]$ tel que $P(t) \geq 0$ pour tout $t \in I$, l'égalité :

$$\varphi\left(P\right) = \sum_{k=0}^{p} \int_{a_{k}}^{a_{k+1}} P\left(t\right) \pi\left(t\right) dt = 0$$

avec $P\pi$ continue positive sur chaque intervalle ouvert $I_k=]a_k,a_{k+1}[$ équivaut à $P\left(t\right)\pi\left(t\right)=0$ pour tout $t\in I_{k}.$ Comme π est continue sur chaque intervalle I_{k} et

positive non identiquement nulle, il existe un indice k et un intervalle $[\alpha, \beta] \subset I_k$ avec $\alpha < \beta$ tel que $\pi(t) > 0$ pour tout $t \in [\alpha, \beta]$ et de l'égalité $P(t)\pi(t) = 0$ sur $[\alpha, \beta]$, on déduit que P(t) = 0 pour tout $t \in [\alpha, \beta]$, ce qui implique que P a une infinité de racines et revient à dire que P=0. La forme linéaire φ est donc définie positive sur I et on peut lui associer une unique famille $(P_n)_{n\in\mathbb{N}}$ de polynômes orthogonaux relativement au produit scalaire $(P,Q) \mapsto \int_{0}^{b} P(t) Q(t) \pi(t) dt$ sur $\mathbb{R}[X]$ telle que pour tout $n \in \mathbb{N}$, P_n est de degré n, de coefficient dominant strictement positif et $||P_n||^2 = \varphi(P_n^2) = 1$ (théorème 15.1).

La suite des moments associés à la fonction poids π sur l'intervalle I est la suite $(\mu_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ \mu_n = \int_a^b t^n \pi(t) \, dt$$

Exemple 15.1 Pour $\pi=1$ sur l'intervalle]0,1[, on a $\mu_n=\int_0^1 t^n dt=\frac{1}{n+1}$ et les déterminants de Hankel sont donnés par $D_n=\frac{\left(\prod\limits_{j=0}^n j!\right)^3}{\prod\limits_{j=0}^n (n+j)!}$ (exemple 3.3).

Cette suite $(P_n)_{n\in\mathbb{N}}$ est aussi définie par $P_{-1}=0,\ P_0=\frac{1}{\sqrt{\int_a^b\pi(t)\,dt}}$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ XP_n = b_n P_{n+1} + a_n P_n + b_{n-1} P_{n-1}$$

où $b_{-1}=0$ et $b_{n}=\int_{a}^{b}tP_{n}\left(t\right) P_{n+1}\left(t\right) \pi\left(t\right) dt=\frac{\alpha_{n}}{\alpha_{n+1}}$ est strictement positif pour tout $n \in \mathbb{N}$, $a_0 = \frac{\int_a^b t\pi(t) dt}{\int_a^b \pi(t) dt}$ et $a_n = \int_a^b t P_n^2(t) \pi(t) dt = \frac{\beta_n}{\alpha_n} - \frac{\beta_{n+1}}{\alpha_{n+1}}$ pour tout $n \in \mathbb{N}^*$, en notant α_n le coefficient dominant de P_n et β_n le coefficient de X^{n-1} dans P_n .

Dans le cas où la fonction poids π est paire sur]a,b[=]-b,b[, la forme linéaire φ est symétrique, chaque polynôme P_n est de la parité de n et tous les coefficients a_n sont nuls.

Pour $n \in \mathbb{N}^*$, le polynôme P_n admet n racines réelles simples $x_{1,n} < \cdots < x_{n,n}$ dans l'intervalle]a, b[et le théorème 15.9 s'exprime comme suit où les coefficients :

$$\lambda_{k,n} = \int_{a}^{b} L_{k,n}(t) \pi(t) dt = \frac{1}{b_{n-1}} \frac{1}{P'_{n}(x_{k,n}) P_{n-1}(x_{k,n})}$$

sont strictement positifs pour $n \in \mathbb{N}^*$:

$$\forall P \in \mathbb{R}_{2n-1} [X], \int_{a}^{b} P(t) \pi(t) dt = \sum_{k=1}^{n} \lambda_{k,n} P(x_{k,n})$$

Ces formules conduisent aux formules de quadrature de Gauss, pour les fonctions $f:I\to\mathbb{R}$ telles que $\int_a^b f\left(t\right)\pi\left(t\right)dt$ soit convergente :

$$\int_{a}^{b} f(t) \pi(t) dt \simeq \sum_{k=1}^{n} \lambda_{k,n} f(x_{k,n})$$

15.3 Polynômes orthogonaux classiques, formules de Rodrigues

Nous allons décrire une méthode de construction de polynômes orthogonaux associés à des fonctions poids particulières, comme vecteurs propres d'un opérateur différentiel de Sturm-Liouville.

Pour ce faire, on se donne un intervalle I=]a,b[avec $-\infty \leq a < b \leq +\infty$, deux polynômes $A(X)=a_0+a_1X+a_2X^2, \ B(X)=b_0+b_1X$, le polynôme A étant tel que A(x)>0 pour tout $x\in I$ et on leur associe l'opérateur différentiel de Sturm-Liouville \mathcal{L}_0 défini sur l'espace $\mathcal{C}^\infty(I,\mathbb{R})$ des fonctions indéfiniment dérivables de I dans \mathbb{R} par :

$$\forall f \in \mathcal{C}^{\infty}(I, \mathbb{R}), \ \mathcal{L}_{0}(f) = Af'' + Bf'$$

Lemme 15.4 Il existe une fonction indéfiniment dérivable $\pi: I \to \mathbb{R}^{+,*}$ telle que $(A\pi)' = B\pi$ et pour tout $f \in \mathcal{C}^{\infty}(I,\mathbb{R})$, on a $\mathcal{L}_0(f) = \frac{1}{\pi}(\pi A f')'$.

Preuve. Il s'agit de résoudre l'équation différentielle $y' = \left(\frac{B-A'}{A}\right)y$ sur I. Les solutions de cette équation différentielles sont les fonctions y définies sur I par $y(x) = \alpha \exp\left(\int \frac{B(x)-A'(x)}{A(x)}dx\right) = \frac{\alpha}{A(x)} \exp\left(\int \frac{B(x)}{A(x)}dx\right)$, où $\alpha \in \mathbb{R}$ (comme A est à valeurs strictement positives sur I, on a $\int \frac{-A'(x)}{A(x)}dx = \ln\left(\frac{1}{A}\right)$, donc $\exp\left(-\int \frac{A'(x)}{A(x)}dx\right) = \frac{1}{A}$). Prenant $\alpha > 0$, on obtient une fonction de classe \mathcal{C}^{∞} de I dans $\mathbb{R}^{+,*}$. Il en résulte que, pour tout $f \in \mathcal{C}^{\infty}(I,\mathbb{R})$, on a :

$$\pi \mathcal{L}_0(f) = \pi A f'' + \pi B f' = \pi A f'' + (\pi A)' f' = (\pi A f')'$$

Du lemme précédent, on déduit que pour toutes fonctions f, g dans $\mathcal{C}^{\infty}(I, \mathbb{R})$, on a $\mathcal{L}_{0}(fg) = \mathcal{L}_{0}(f) g + 2Af'g' + \mathcal{L}_{0}(g) f$. En effet, on a :

$$\pi \mathcal{L}_{0}(fg) = (\pi A (fg)')' = ((\pi A f') g + (\pi A g') f)' = (\pi A f')' g + 2\pi A f' g' + (\pi A g')' f$$
$$= \pi \mathcal{L}_{0}(f) g + 2\pi A f' g' + \pi \mathcal{L}_{0}(g) f$$

donc
$$\mathcal{L}_0(fg) = \mathcal{L}_0(f)g + 2Af'g' + \mathcal{L}_0(g)f$$
.

Pour la suite de ce paragraphe, on se fixe une telle fonction π et on suppose qu'elle vérifie de plus les conditions suivantes :

$$--\lim_{\substack{x \to a \\ x > a}} A\left(x\right)\pi\left(x\right) = \lim_{\substack{x \to b \\ x < b}} A\left(x\right)\pi\left(x\right) = 0 \, ;$$

— pour tout
$$n \in \mathbb{N}$$
, on a $\int_{a}^{b} |t|^{n} \pi(t) dt < +\infty$.

La deuxième condition nous dit que π est une fonction poids et que l'application $(P,Q)\mapsto \langle P\mid Q\rangle = \int_a^b P\left(t\right)Q\left(t\right)\pi\left(t\right)dt$ définit un produit scalaire sur $\mathbb{R}\left[X\right]$.

Dans ce qui suit, on s'intéresse à la restriction \mathcal{L} de l'opérateur \mathcal{L}_0 à $\mathbb{R}[X]$ (il est clair que cette restriction est un endomorphisme de $\mathbb{R}[X]$).

Lemme 15.5 Pour tout
$$n \in \mathbb{N}$$
, on $a \lim_{\substack{x \to a \\ x > a}} x^n A\left(x\right) \pi\left(x\right) = \lim_{\substack{x \to b \\ x < b}} x^n A\left(x\right) \pi\left(x\right) = 0.$

Preuve. Pour a fini, on a $\lim_{\substack{x\to a\\x>a}}x^nA\left(x\right)\pi\left(x\right)=a^n\lim_{\substack{x\to a\\x>a}}A\left(x\right)\pi\left(x\right)=0.$ On a le même résultat pour b fini. Dans le cas où $b=+\infty$, en se fixant c dans $]a,+\infty[$, l'intégrale $\int_{c}^{+\infty}\mathcal{L}\left(X^{n+1}\right)\pi\left(t\right)dt$ est convergente et on a :

$$\int_{c}^{+\infty} \mathcal{L}\left(X^{n+1}\right) \pi\left(t\right) dt = (n+1) \int_{c}^{+\infty} \left(\pi\left(t\right) A\left(t\right) t^{n}\right)' dt$$
$$= (n+1) \lim_{x \to +\infty} \left[t^{n} A\left(t\right) \pi\left(t\right)\right]_{c}^{x}$$

donc $\lim_{x\to +\infty} x^n A(x) \pi(x)$ existe. Comme de plus, l'intégrale $\int_c^{+\infty} t^n A(t) \pi(t) dt$ est convergente, cette limite est forcément nulle. On procède de même, dans le cas où $a=-\infty$.

On déduit du lemme précédent que, pour tout $R \in \mathbb{R}[X]$, on a :

$$\lim_{\substack{x \to a \\ x > a}} R\left(x\right) A\left(x\right) \pi\left(x\right) = \lim_{\substack{x \to b \\ x < b}} R\left(x\right) A\left(x\right) \pi\left(x\right) = 0$$

Lemme 15.6 Le noyau de \mathcal{L} est le sous-espace de $\mathbb{R}[X]$ formé des polynômes constants.

Preuve. Si $P \in \mathbb{R}[X]$ est tel que $\mathcal{L}(P) = \frac{1}{\pi} (\pi A P')' = 0$, la fonction $\pi A P'$ est alors constante sur I et comme $\lim_{\substack{x \to a \\ x > a}} P'(x) A(x) \pi(x) = 0$, cette constante est nécessairement nulle, donc P' = 0 (puisque $\pi A > 0$ sur I), ce qui signifie que P est un polynôme constant. Réciproquement, il est clair que les polynômes constants sont dans $\ker(\mathcal{L})$. Le noyau de \mathcal{L} est donc de dimension 1 engendré par le polynôme constant égal à 1.

Lemme 15.7 L'opérateur \mathcal{L} est symétrique pour le produit scalaire défini sur $\mathbb{R}[X]$ par la fonction poids π , ce qui signifie que :

$$\forall (P,Q) \in (\mathbb{R}[X])^2, \langle \mathcal{L}(P) \mid Q \rangle = \langle P \mid \mathcal{L}(Q) \rangle$$

Preuve. Pour toutes fonctions polynomiales P et Q, une intégration par parties nous donne :

$$\langle \mathcal{L}(P) \mid Q \rangle = \int_{a}^{b} (\pi(t) A(t) P'(t))'(t) Q(t) dt = -\int_{a}^{b} A(t) P'(t) Q'(t) \pi(t) dx$$

L'expression obtenue étant une fonction symétrique de (P,Q), on en déduit que $\langle \mathcal{L}(P) \mid Q \rangle = \langle \mathcal{L}(Q) \mid P \rangle = \langle P \mid \mathcal{L}(Q) \rangle$.

L'opérateur \mathcal{L} laissant stable chaque sous-espace $\mathbb{R}_n[X]$ pour $n \in \mathbb{N}$, sa restriction à chacun de ces espace définit un endomorphisme \mathcal{L}_n de $\mathbb{R}_n[X]$. La matrice de \mathcal{L}_n dans la base canonique $(X^k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$ étant triangulaire supérieure de termes diagonaux $\lambda_k = k \left((k-1) \, a_2 + b_1 \right)$ où k est compris entre 0 et n, on déduit que ces réels λ_k sont les valeurs propres de l'endomorphisme \mathcal{L}_n . L'endomorphisme \mathcal{L} de $\mathbb{R}[X]$ a donc pour valeurs propres les réels $\lambda_n = n \left((n-1) \, a_2 + b_1 \right)$, où n décrit \mathbb{N} . Chaque espace propre ker $(\mathcal{L} - \lambda_n Id)$ est formé des solutions polynomiales sur I de l'équation différentielle linéaire d'ordre 2, $y'' = \frac{\lambda}{A} y + -\frac{B}{A} y'$ et on sait que l'ensemble des solutions de cette équation différentielle est un espace vectoriel réel de dimension 2. Le noyau $\ker(\mathcal{L} - \lambda_n Id)$ est donc de dimension 1 ou 2.

Lemme 15.8 L'opérateur \mathcal{L} est diagonalisable si, et seulement si, $na_2 + b_1 \neq 0$ pour tout entier naturel n. Dans ce cas, pour tout $n \in \mathbb{N}$, l'espace propre associé à la valeur propre λ_n est de dimension égale à 1 engendré par un polynôme L_n de degré égal à n et la famille $(L_n)_{n\in\mathbb{N}}$ est une base orthogonale de $\mathbb{R}[X]$ pour le produit scalaire défini par la fonction poids π sur I.

Preuve. S'il existe $n \in \mathbb{N}$ tel que $na_2 + b_1 = 0$, on a alors $\lambda_{n+1} = 0$, donc 0 est valeur propre de multiplicité au moins égale à 2 de \mathcal{L}_{n+1} et cet endomorphisme n'est pas diagonalisable car l'espace propre ker (\mathcal{L}) est de dimension 1.

L'égalité $\lambda_p = \lambda_q$ équivaut à $(p-q) ((p+q-1) a_2 + b_1) = 0$. En supposant que $na_2 + b_1$ est non nul pour tout entier naturel n, l'égalité précédente équivaut à p=q. Donc pour tout $n \in \mathbb{N}$, l'endomorphisme \mathcal{L}_n a $n+1=\dim\left(\mathbb{R}_n\left[X\right]\right)$ valeurs propres distinctes et en conséquence il est diagonalisable, chaque espace propre étant de dimension égale à 1. Si, pour k compris entre 0 et n, L_k est un vecteur propre non nul de \mathcal{L}_n associé à la valeur propre λ_k , c'est aussi un vecteur propre de l'endomorphisme \mathcal{L}_k de $\mathbb{R}_k\left[X\right]$ associé à λ_k (\mathcal{L}_k est la restriction à $\mathbb{R}_k\left[X\right]$ de \mathcal{L}_n et les espaces propres sont de dimension 1), ce qui implique que $L_k \in \mathbb{R}_k\left[X\right]$. Tenant compte du fait que $(L_j)_{0 \le j \le k}$ est une base de $\mathbb{R}_k\left[X\right]$, on déduit que L_k est nécessairement de degré k.

Pour $n \neq m$ sont N, on a $\lambda_n \neq \lambda_m$ et :

$$\lambda_{n} \langle L_{n} \mid L_{m} \rangle = \langle \mathcal{L} (L_{n}) \mid L_{m} \rangle = \langle L_{n} \mid \mathcal{L} (L_{m}) \rangle = \lambda_{m} \langle L_{n} \mid L_{m} \rangle$$

 $\operatorname{donc} \langle L_n \mid L_m \rangle = 0.$

Pour ce qui suit, on suppose que $na_2 + b_1 \neq 0$ pour tout $n \in \mathbb{N}$ (ce qui implique en particulier que $b_1 \neq 0$, soit que B est non constant) et $(L_n)_{n \in \mathbb{N}}$ est une base orthogonale de $\mathbb{R}[X]$ telle que deg $(L_n) = n$ et $\mathcal{L}(L_n) = \lambda_n L_n$ pour tout $n \in \mathbb{N}$.

En désignant par $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes orthogonaux du théorème 15.1, on a donc $P_n = \frac{\varepsilon_n}{\|L_n\|} L_n$ pour tout $n \in \mathbb{N}$, où $\varepsilon_n \in \{-1,1\}$ est le signe du coefficient dominant de L_n (unicité du point **6.** de ce théorème).

Du lemme précédent, on déduit que pour tout polynôme P de degré $n \in \mathbb{N}^*$, le polynôme $\mathcal{L}(P)$ est aussi de degré n. En effet, dans la base $(L_k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$, on a $P = \sum_{k=0}^n \alpha_k L_k$ avec $\alpha_n \ne 0$ et $\mathcal{L}(P) = \sum_{k=0}^n \alpha_k \lambda_k L_k$ avec $\alpha_n \lambda_n \ne 0$, chaque L_k étant de degré k, donc $\mathcal{L}(P)$ est de degré n. On peut aussi écrire dans la base canonique de $\mathbb{R}_n[X]$ que $P = \sum_{k=0}^n \alpha_k X^k$ avec $\alpha_n \ne 0$, ce qui donne :

$$\mathcal{L}(P) = n\alpha_n ((n-1) a_2 + b_1) X^n + \sum_{k=0}^{n-1} \beta_k X^k$$

avec $n\alpha_n((n-1)a_2+b_1)\neq 0$ pour $n\geq 1$. Pour P constant, on a $\mathcal{L}(P)=0$.

Lemme 15.9 Pour tout polynôme R de degré $r \ge 0$ et tout $n \in \mathbb{N}$, la fonction $Q_n = \frac{1}{\pi} (\pi R A^n)^{(n)}$ est polynomiale de degré n + r.

Preuve. On note, pour tout $n \in \mathbb{N}$, $\varphi_n = \pi R A^n$. La fonction π étant de classe \mathcal{C}^{∞} sur I, il en est de même de φ_n . Pour n=0, on a $\varphi_0 = \pi R$ et $Q_0 = R$. Pour n=1, on a en désignant par S une primitive de R, $Q_1 = \frac{1}{\pi} (\pi R A)' = \frac{1}{\pi} (\pi A S')' = \mathcal{L}(S)$ qui est bien polynomiale de degré r+1. Supposant le résultat acquis pour $n \geq 1$, on a :

$$Q_{n+1} = \frac{1}{\pi} \left((R(\pi A) A^n)' \right)^{(n)} = \frac{1}{\pi} \left(R'(\pi A) A^n + R(\pi A)' A^n + nR(\pi A) A' A^{n-1} \right)^{(n)}$$

$$= \frac{1}{\pi} \left(R'(\pi A) A^n + R\pi B A^n + nR\pi A' A^n \right)^{(n)}$$

$$= \frac{1}{\pi} \left(\pi (R'A + RB + nRA') A^n \right)^{(n)} = \frac{1}{\pi} (\pi S A^n)^{(n)}$$

le polynôme $S=R'A+RB+nRA'\in\mathbb{R}_{r+1}\left[X\right]$ étant de degré r+1 (en notant $\alpha_r\neq 0$ le coefficient dominant de R, celui de S est $((r+2n)\,a_2+b_1)\,\alpha_r\neq 0)$, donc Q_{n+1} est polynomiale de degré n+r+1.

Lemme 15.10 En notant, pour tout $n \in \mathbb{N}$, $\varphi_n = \pi A^n$, on a :

$$A\varphi_{n}^{(n+2)} + (2A' - B)\varphi_{n}^{(n+1)} = (n+1)(b_1 + (n-2)a_2)\varphi_{n}^{(n)}$$

Preuve. Pour $n \in \mathbb{N}^*$, on a :

$$\varphi'_n = (\pi'A + n\pi A') A^{n-1} = (\pi B - \pi A' + n\pi A') A^{n-1}$$
$$= \pi (B + (n-1) A') A^{n-1} = \pi B_1 A^{n-1}$$

où $B_1 = B + (n-1) A'$ est un polynôme de degré égal à 1 (le coefficient de X est $b_1 + (n-1) a_2 \neq 0$), ce qui nous donne $A\varphi'_n = \pi A^n B_1 = \varphi_n B_1$. Dérivant n+1 fois cette relation, la formule de dérivation de Leibniz nous donne :

$$A\varphi_n^{(n+2)} + (n+1)A'\varphi_n^{(n+1)} + \frac{n(n+1)}{2}A''\varphi_n^{(n)} = B_1\varphi_n^{(n+1)} + (n+1)B'_1\varphi_n^{(n)}$$

soit
$$A\varphi_n^{(n+2)} + ((n+1)A' - B_1)\varphi_n^{(n+1)} = (n+1)\left(B_1' - \frac{n}{2}A''\right)\varphi_n^{(n)}$$
 avec :
$$(n+1)A' - B_1 = 2A' - B \text{ et } B_1' - \frac{n}{2}A'' = B' + \left(\frac{n}{2} - 1\right)A'' = b_1 + (n-2)a_2$$

On a donc $A\varphi_n^{(n+2)} + (2A' - B) \varphi_n^{(n+1)} = (n+1) (b_1 + (n-2) a_2) \varphi_n^{(n)}$. Pour n = 0, on a $\varphi_0 = \pi$, $A\varphi_0' = \pi A' = (B - A') \pi = \varphi_0 (B - A')$ et en dérivant :

$$A\varphi_0'' + A'\varphi_0' = \varphi_0' (B - A') + \varphi_0 (B' - A'')$$

soit
$$A\varphi_0'' + (2A' - B)\varphi_0' = \varphi_0(b_1 - 2a_2)$$
.

Théorème 15.10. Formules de Rodrigues

Pour tout entier naturel n, il existe une constante non nulle γ_n telle que $P_n = \frac{\gamma_n}{\pi} (\pi A^n)^{(n)}$ ($(P_n)_{n \in \mathbb{N}}$ étant la suite de polynômes orthogonaux du théorème 15.1).

Preuve. Le lemme 15.9 nous dit que chaque fonction $Q_n = \frac{1}{\pi} \varphi_n^{(n)}$, où $\varphi_n = \pi A^n$, est polynomiale de degré n. Il nous suffit alors de montrer que polynôme Q_n est vecteur propre de \mathcal{L} pour la valeur propre λ_n . De $\pi Q_n = \varphi_n^{(n)}$, on déduit que $\pi' Q_n + \pi Q'_n = \varphi_n^{(n+1)}$, donc :

$$\pi A Q'_n = A \varphi_n^{(n+1)} - \pi' A Q_n = A \varphi_n^{(n+1)} - (B - A') \pi Q_n = A \varphi_n^{(n+1)} - (B - A') \varphi_n^{(n)}$$
 et :

$$\pi \mathcal{L}(Q_n) = (\pi A Q_n')' = A \varphi_n^{(n+2)} + (2A' - B) \varphi_n^{(n+1)} - (B' - A'') \varphi_n^{(n)}$$

$$= ((n+1) (b_1 + (n-2) a_2) - (b_1 - 2a_2)) \varphi_n^{(n)}$$

$$= n ((n-1) a_2 + b_1) \pi Q_n = \lambda_n \pi Q_n$$

soit $\mathcal{L}(Q_n) = \lambda_n Q_n$. L'espace propre associé à λ_n étant de dimension 1 et Q_n non nul, il en résulte qu'il existe $\gamma_n \in \mathbb{R}^*$ tel que $Q_n = \gamma_n L_n$.

Le théorème précédent peut aussi se montrer en vérifiant que la suite de polynômes $(Q_n)_{n\in\mathbb{N}}=\left(\frac{1}{\pi}\left(\pi A^n\right)^{(n)}\right)_{n\in\mathbb{N}}$ est orthogonale, chaque polynôme Q_n étant de degré n. Pour ce faire, on utilise les lemmes suivants.

Lemme 15.11 Pour tout $n \in \mathbb{N}^*$ et tout entier k compris entre 0 et n-1, il existe un polynôme R_k tel que $(\pi A^n)^{(k)} = \pi A^{n-k} R_k$.

Preuve. Pour k=0, on a $(\pi A^n)^{(0)}=\pi A^n$. Supposant le résultat acquis pour $0\leq k-1\leq n-2$, on a :

$$(\pi A^{n})^{(k)} = ((\pi A) A^{n-k} R_{k-1})'$$

$$= (\pi A)' A^{n-k} R_{k-1} + \pi A (A^{n-k} R'_{k-1} + (n-k) A' A^{n-k-1} R_{k-1})$$

$$= \pi A^{n-k} (BR_{k-1} + (AR'_{k-1} + (n-k) A' R_{k-1})) = \pi A^{n-k} R_{k}$$

Lemme 15.12 Pour tout $n \in \mathbb{N}^*$ et tout $P \in \mathbb{R}[X]$, on a :

$$\langle Q_n \mid P \rangle = (-1)^n \int_a^b P^{(n)}(t) A^n(t) \pi(t) dt$$

Preuve. Pour $n \in \mathbb{N}^*$, on a en utilisant le théorème d'intégration par parties itérée :

$$\langle Q_n \mid P \rangle = \int_a^b (\pi A^n)^{(n)} (t) P(t) dt$$

$$= \left[\sum_{k=1}^n (-1)^{k+1} (\pi A^n)^{(n-k)} P^{(k-1)} \right]_a^b + (-1)^n \int_a^b \pi(t) A^n(t) P^{(n)}(t) dt$$

$$= \left[\sum_{k=1}^n (-1)^{k+1} \pi A^k R_{n-k} P^{(k-1)} \right]_a^b + (-1)^n \int_a^b P^{(n)}(t) A^n(t) \pi(t) dt$$

$$= (-1)^n \int_a^b P^{(n)}(t) A^n(t) \pi(t) dt$$

puisque $\lim_{\substack{t \to a \\ t > a}} R\left(t\right) A\left(t\right) \pi\left(t\right) = \lim_{\substack{t \to b \\ t < b}} R\left(t\right) A\left(t\right) \pi\left(t\right) = 0$ pour tout $R \in \mathbb{R}\left[X\right]$.

Du lemme précédent, on déduit que $\langle Q_n \mid P \rangle = 0$ pour tout $P \in \mathbb{R}_{n-1}[X]$, donc Q_n est orthogonal à $\mathbb{R}_{n-1}[X]$ et étant de degré n, il est colinéaire à P_n (théorème 15.2).

Ce lemme nous permet également de calculer $||Q_n||$ pour tout $n \in \mathbb{N}$. Pour n = 0, on $Q_0 = 1$ et $||Q_0||^2 = \int_a^b \pi(x) dx$. Pour $n \in \mathbb{N}^*$, on a :

$$||Q_n||^2 = \langle Q_n | Q_n \rangle = (-1)^n \int_a^b Q_n^{(n)}(t) A^n(t) \pi(t) dt$$
$$= (-1)^n n! \alpha_n \int_a^b A^n(t) \pi(t) dt$$

où α_n est le coefficient dominant de Q_n .

En définitive, on a les expressions suivantes des polynômes orthogonaux associés à une fonction poids vérifiant les conditions de ce paragraphe : $P_n = \frac{\varepsilon_n}{\|Q_n\|} Q_n$, où

 $\varepsilon_n \in \{-1,1\}$ est le signe du coefficient dominant de $Q_n = \frac{(\pi A^n)^{(n)}}{\pi}$.

Exemples 15.2

Polynômes de Jacobi. Ils correspondent au choix de $(A, B) = (1 - X^2, b_0 + b_1 X)$ sur I =]-1, 1[. De la décomposition en éléments simples :

$$\frac{B(x)}{A(x)} = \frac{b_0 + b_1 x}{1 - x^2} = \frac{1}{2} \left(\frac{b_0 + b_1}{1 - x} + \frac{b_0 - b_1}{1 + x} \right)$$

on déduit que :

$$\int \frac{B(x)}{A(x)} dx = \frac{1}{2} \left(-(b_0 + b_1) \ln(1 - x) + (b_0 - b_1) \ln(1 + x) \right)$$
$$= \ln\left((1 - x)^{-\frac{b_0 + b_1}{2}} (1 + x)^{\frac{b_0 - b_1}{2}} \right)$$

ce qui nous donne pour solutions de l'équation différentielle (Ay)'=By sur I, les fonctions de la forme :

$$y(x) = \frac{\alpha}{A(x)} \exp\left(\int \frac{B(x)}{A(x)} dx\right) = \alpha (1-x)^{-\frac{b_0+b_1}{2}-1} (1+x)^{\frac{b_0-b_1}{2}-1}$$

Le choix de $\alpha=1$ donne la fonction π définie sur I par $\pi(x)=(1-x)^a\,(1+x)^b$, où $a=-\frac{b_0+b_1}{2}-1$ et $b=\frac{b_0-b_1}{2}-1$ sont deux réels. Cette fonction est intégrable sur]-1,1[si, et seulement si, a>-1 et b>-1, ce qui équivaut à $b_0+b_1<0$ et $b_0>b_1$. Sous ces hypothèses, on a:

$$\lim_{x \to +1} A(x) \pi(x) = \lim_{x \to +1} (1-x)^{a+1} (1+x)^{b+1} = 0$$

et pour tout $n \in \mathbb{N}$:

$$na_2 + b_1 = b_1 - n = -a - b - 2 - n < -n \le 0$$

$$\int_{-1}^{1} |t|^{n} \pi(t) dt \le 2 \int_{0}^{1} (1-t)^{a} (1+t)^{b} dt < +\infty$$

Les conditions imposées à la fonction π sont donc satisfaites pour a > -1 et b > -1. L'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = (1 - X^2) P'' + (b - a - (a + b + 2) X) P'$$

et ses valeurs propres sont les $\lambda_n = -n (n+a+b+1)$ pour $n \in \mathbb{N}$. Les vecteurs propres correspondants sont les polynômes de Jacobi définis sur I par $Q_n(x) = \frac{1}{(1-x)^a (1+x)^b} \left((1-x)^{n+a} (1+x)^{n+b} \right)^{(n)}$. Chaque Q_n est la solution polynomiale (à une constante multiplicative près) de l'équation différentielle $(1-x^2)$ y"+(b-a-(a+b+2)x) y'+n(n+a+b+1) y = 0. Pour $n \in \mathbb{N}^*$, le coefficient dominant de Q_n est $\alpha_n = (-1)^n \frac{\Gamma(a+b+2n+1)}{\Gamma(a+b+n+1)}$ et sa norme est donnée par :

$$\|Q_n\|^2 = \frac{n!2^{2n+a+b+1}}{2n+a+b+1} \frac{\Gamma(a+n+1)\Gamma(b+n+1)}{\Gamma(a+b+n+1)}$$

(exercice 15.11)

Polynômes ultrasphériques. Les polynômes de Jacobi correspondants au cas où a=b>-1, soit à $B\left(X\right)=-2\left(1+a\right)X$, sont les polynômes ultrasphériques définis sur $I=\left]-1,1\right[$ par $Q_{n}\left(x\right)=\frac{1}{\left(1-x^{2}\right)^{a}}\left(\left(1-x^{2}\right)^{n+a}\right)^{(n)}$. Ils

sont orthogonaux pour le produit scalaire associé à la fonction poids π définie sur I par $\pi(x) = (1-x^2)^a$. L'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = (1 - X^2) P'' - 2(1 + a) X P'$$

et ses valeurs propres sont les $\lambda_n = -n(n+1+2a)$ où $n \in \mathbb{N}$. Chaque polynôme Q_n est la solution polynomiale (à une constante multiplicative près) de $(1-x^2)$ y"-2(1+a) xy'+n(n+1+2a) y = 0. La fonction poids π étant paire sur]-1,1[, chaque polynôme Q_n est de la parité de n. Pour $n \in \mathbb{N}^*$, son coefficient dominant est $\alpha_n = (-1)^n \frac{\Gamma(2(a+n)+1)}{\Gamma(2a+n+1)}$ et sa norme est

$$\|Q_n\| = \frac{2^{n+a}\sqrt{n!}\sqrt{2}}{\sqrt{2(n+a)+1}} \frac{\Gamma(a+n+1)}{\sqrt{\Gamma(2a+n+1)}}. Pour n = 0, on a Q_0 = 1 et$$

 $\|Q_0\|=2^a\sqrt{2}rac{\Gamma\left(a+1
ight)}{\sqrt{\Gamma\left(2\left(a+1
ight)
ight)}}.$ Les polynômes ultrasphériques normalisés sont

donc définis par
$$P_0 = \frac{1}{2^a \sqrt{2}} \frac{\sqrt{\Gamma(2(a+1))}}{\Gamma(a+1)}$$
 et :

$$P_{n}(x) = \frac{(-1)^{n} \sqrt{2(n+a)+1}}{2^{n+a} \sqrt{n!} \sqrt{2}} \frac{\sqrt{\Gamma(2a+n+1)}}{\Gamma(a+n+1)} (1-x^{2})^{-a} ((1-x^{2})^{n+a})^{(n)}$$

Ces polynômes sont aussi définis par la relation de récurrence (15.1) où :

$$b_n = \frac{\sqrt{(n+1)(2a+n+1)}}{\sqrt{(2(a+n)+1)(2(n+a)+3)}}$$

 $et \ a_n = 0, \ soit :$

$$XP_{n} = \frac{\sqrt{(n+1)(2a+n+1)}}{\sqrt{(2(a+n)+1)(2(n+a)+3)}}P_{n+1} + \frac{\sqrt{n(2a+n)}}{\sqrt{(2(a+n)-1)(2(n+a)+1)}}P_{n-1}$$

$$avec \ les \ conditions \ P_{-1} = 0, \ P_{0} = \frac{1}{2^{a}\sqrt{2}}\frac{\sqrt{\Gamma(2(a+1))}}{\Gamma(a+1)}.$$

Polynômes de Legendre. Les polynômes ultrasphériques correspondants au cas où a=0 sont les polynômes de Legendre définis sur l'intervalle I=]-1,1[par $Q_n\left(x\right)=\left(\left(1-x^2\right)^n\right)^{(n)}$. Ils sont orthogonaux pour le produit scalaire associé à la fonction poids $\pi=1$. L'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = (1 - X^2) P'' - 2XP'$$

et ses valeurs propres sont les $\lambda_n = -n (n+1)$ où $n \in \mathbb{N}$. Chaque polynôme Q_n est la solution polynomiale (à une constante multiplicative près) de $(1-x^2)$ y''-2xy'+n (n+1) y=0. Pour $n \in \mathbb{N}$, son coefficient dominant est $\alpha_n = (-1)^n \frac{(2n)!}{n!}$ et sa norme est $\|Q_n\| = \frac{2^n n! \sqrt{2}}{\sqrt{2n+1}}$, d'où l'expression des polynômes de Legendre normalisés pour $n \in \mathbb{N}$:

$$P_n(X) = \frac{(-1)^n}{2^n n!} \sqrt{\frac{2n+1}{2}} \left(\left(1 - X^2\right)^n \right)^{(n)} = \frac{1}{2^n n!} \sqrt{\frac{2n+1}{2}} \left(\left(X^2 - 1\right)^n \right)^{(n)}$$

Ces polynômes sont aussi définis par la relation de récurrence :

$$\frac{n+1}{\sqrt{(2n+1)(2n+3)}}P_{n+1} + \frac{n}{\sqrt{(2n-1)(2n+1)}}P_{n-1} = XP_n \ (n \ge 0) \ (15.5)$$

avec les conditions initiales $P_{-1} = 0$, $P_0 = \frac{1}{\sqrt{2}}$.

Polynômes de Tchebychev de première espèce. Les polynômes ultrasphériques correspondants au cas où $a=-\frac{1}{2}$ sont les polynômes de Tchebychev de première espèce définis sur I=]-1,1[par $Q_n\left(x\right)=\sqrt{1-x^2}\left(\left(1-x^2\right)^{n-\frac{1}{2}}\right)^{(n)}$. Ils sont orthogonaux pour le produit scalaire associé à la fonction poids π définie sur I par $\pi\left(x\right)=\frac{1}{\sqrt{1-x^2}}$. L'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = (1 - X^2)P'' - XP'$$

et ses valeurs propres sont les $\lambda_n = -n^2$ où $n \in \mathbb{N}$. Chaque polynôme Q_n est la solution polynomiale sur I (à une constante multiplicative près) de l'équation différentielle $(1-x^2)$ y" $-xy'+n^2y=0$. Si y est solution de cette équation différentielle, la fonction z définie sur $]0,\pi[$ par $z(t)=y(\cos(t))$ est telle que $z'(t)=-\sin(t)$ y' $(\cos(t))$ et :

$$z''(t) = -\cos(t) y'(\cos(t)) + \sin^{2}(t) y''(\cos(t))$$

= $-\cos(t) y'(\cos(t)) + (1 - \cos^{2}(t)) y''(\cos(t)) = -n^{2} y(\cos(t))$
= $-n^{2} z(t)$

ce qui donne $z(t) = \alpha_n \cos(nt) + \beta_n \sin(nt)$, où α_n et β_n sont deux constantes réelles. L'application $t \mapsto \cos(t)$ réalisant un C^{∞} -difféomorphisme de $]0, \pi[$ sur]-1, 1[, on déduit que $Q_n(x) = \alpha_n \cos(n \arccos(x)) + \beta_n \sin(n \arccos(x))$. Comme la fonction poids π est paire, Q_n est de la parité de n. En particulier, Q_n est impaire pour n = 2p + 1, donc:

$$0 = Q_{2p+1}(0) = \alpha_{2p+1} \cos\left((2p+1)\frac{\pi}{2}\right) + \beta_{2p+1} \sin\left((2p+1)\frac{\pi}{2}\right)$$
$$= \beta_{2p+1}(-1)^p$$

soit $\beta_{2p+1} = 0$. Pour $n = 2p \ge 2$, Q_n est paire, donc Q'_n est impaire avec

$$Q_n'\left(x\right) = \frac{n\left(\alpha_n \sin\left(n \arccos\left(x\right)\right) - \beta_n \cos\left(n \arccos\left(x\right)\right)\right)}{\sqrt{1 - x^2}}$$

ce qui nous donne :

$$0 = Q'_{2p}(0) = 2p\left(\alpha_{2p}\sin\left(2p\frac{\pi}{2}\right) - \beta_{2p}\cos\left(2p\frac{\pi}{2}\right)\right) = \beta_{2p}\left(-1\right)^{p+1}$$

soit $\beta_{2p} = 0$. En définitive, on a $Q_n(x) = \alpha_n \cos(n \arccos(x))$ pour tout $n \in \mathbb{N}$. Prenant $\alpha_n = 1$, on a :

$$\|Q_n\|^2 = \int_{-1}^1 \frac{\cos^2(n\arccos(x))}{\sqrt{1-x^2}} dx = \int_0^\pi \cos^2(nt) dt = \begin{cases} \pi \ pour \ n = 0 \\ \frac{\pi}{2} \ pour \ n \ge 1 \end{cases}$$

ce qui nous donne l'expression suivante des polynômes de Tchebychev normalisés :

$$\forall n \in \mathbb{N}^*, \ \forall x \in]-1,1[,\ P_n\left(x\right) = \frac{Q_n\left(x\right)}{\|Q_n\|} = \sqrt{\frac{2}{\pi}}\cos\left(n\arccos\left(x\right)\right)$$

et $P_0 = \frac{Q_0}{\|Q_0\|} = \frac{1}{\sqrt{\pi}}$. La relation de récurrence :

$$\cos((n+1)t) + \cos((n-1)t) = 2\cos(t)\cos(nt)$$

nous donne la relation $Q_{n+1} + Q_{n-1} = 2XQ_n$ de laquelle on déduit que le coefficient dominant de Q_n est 2^{n-1} pour $n \in \mathbb{N}^*$. Les polynômes P_n vérifient la même relation de récurrence avec $P_{-1} = 0$ et $P_0 = \frac{1}{\sqrt{\pi}}$.

Polynômes de Laguerre. Ils correspondent au choix de $(A, B) = (X, b_0 + b_1 X)$ sur $I = \mathbb{R}^{+,*}$. Les solutions de l'équation différentielle (Ay)' = By sur I, sont les fonctions de la forme :

$$y\left(x\right) = \frac{\alpha}{A\left(x\right)} \exp\left(\int \frac{B\left(x\right)}{A\left(x\right)} dx\right) = \frac{\alpha}{x} \exp\left(b_0 \ln\left(x\right) + b_1 x\right) = \alpha x^{b_0 - 1} e^{b_1 x}$$

Chosissant $\alpha = 1$, cela donne la fonction π définie sur I par $\pi(x) = x^a e^{b_1 x}$, où $a = b_0 - 1$ et b_1 sont deux réels. Cette fonction est intégrable sur $\mathbb{R}^{+,*}$ si, et seulement si, a > -1 et $b_1 < 0$. Sous ces hypothèses, on a:

$$\lim_{x \to 0^{+}} A(x) \pi(x) = \lim_{x \to 0^{+}} x^{a+1} e^{b_{1}x} = 0$$

$$\lim_{x \to +\infty} A(x) \pi(x) = \lim_{x \to +\infty} x^{a+1} e^{b_1 x} = 0$$

et pour tout $n \in \mathbb{N}$:

$$na_2 + b_1 = b_1 0 < 0$$

$$\int_{0}^{+\infty}\left|t\right|^{n}\pi\left(t\right)dt=\int_{0}^{+\infty}t^{n+a}e^{b_{1}t}dt<+\infty$$

Les conditions imposées à la fonction π sont donc satisfaites pour a > -1 et $b_1 < 0$. Prenant $b_1 = -1$, l'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = XP'' + (a+1-X)P'$$

et ses valeurs propres sont les $\lambda_n = -n$ pour $n \in \mathbb{N}$. Les vecteurs propres correspondants sont les polynômes de Laguerre définis sur l'intervalle I par $Q_n(x) = x^{-\alpha}e^x(x^{\alpha+n}e^{-x})^{(n)}$. Chaque polynôme Q_n est la solution polynomiale (à une constante multiplicative près) de l'équation différentielle $xy'' + (\alpha + 1 - x)y' + ny = 0$. La formule de dérivation de Leibniz nous donne pour tout $x \in \mathbb{R}^{+,*}$:

$$Q_n(x) = (-1)^n x^n + \sum_{k=1}^n (-1)^{n-k} \binom{n}{k} \prod_{i=0}^{k-1} (n+\alpha-i) x^{n-k}$$

donc le coefficient dominant de Q_n est $(-1)^n$ et sa norme est donnée par :

$$\|Q_n\|^2 = (-1)^n n! \alpha_n \int_0^{+\infty} x^{n+\alpha} e^{-x} dx = n! \Gamma(n+\alpha+1)$$

d'où l'expression des polynômes de Laguerre normalisés :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^{+,*}, \ P_n(x) = \frac{\left(-1\right)^n}{\sqrt{n!\Gamma(n+\alpha+1)}} x^{-\alpha} e^x \left(x^{\alpha+n} e^{-x}\right)^{(n)}$$

Pour $n \ge 1$ les coefficients de X^n et X^{n-1} dans P_n sont donnés par :

$$\alpha_n = \frac{1}{\sqrt{n!\Gamma(n+\alpha+1)}} \text{ et } \beta_n = \frac{-n(n+\alpha)}{\sqrt{n!\Gamma(n+\alpha+1)}} = -n(n+\alpha)\alpha_n$$

ce qui nous donne les coefficients $a_n = 2n+1+\alpha$ et $b_n = \sqrt{(n+1)(n+1+\alpha)}$ pour la relation de récurrence (15.1), soit $P_{-1} = 0$, $P_0 = \frac{1}{\sqrt{\Gamma(\alpha+1)}}$ et :

$$\sqrt{(n+1)(n+1+\alpha)}P_{n+1} + (2n+1+\alpha)P_n + \sqrt{n(n+\alpha)}P_{n-1} = XP_n \ (n \ge 0)$$

Polynômes d'Hermite. Ils correspondent au choix de (A, B) = (1, -2X) sur $I = \mathbb{R}$. L'opérateur différentiel associé est défini par :

$$\forall P \in \mathbb{R}[X], \ \mathcal{L}(P) = P'' - 2XP'$$

et ses valeurs propres sont les $\lambda_n=-2n$ pour $n\in\mathbb{N}$. La fonction poids correspondante est solution sur \mathbb{R} de l'équation différentielle y'=-2xy, c'est donc la fonction π définie sur \mathbb{R} par $\pi(x)=e^{-x^2}$ à une constante multiplicative près. Les vecteurs propres correspondants sont les polynômes d'Hermite définis par $H_n(x)=e^{x^2}\left(e^{-x^2}\right)^{(n)}$ pour tout $x\in\mathbb{R}$. Chaque polynôme H_n est la solution polynomiale (à une constante multiplicative près) de l'équation différentielle y''-2xy'+2ny=0. En utilisant la relation $H'_{n-1}(x)=2xH_{n-1}(x)+H_n(x)$, on déduit que les coefficients dominant de ces polynômes vérifient la relation $\alpha_n=-2\alpha_{n-1}$ pour $n\geq 1$ avec $\alpha_0=1$, ce qui donne $\alpha_n=(-1)^n 2^n$. La norme de H_n , pour $n\in\mathbb{N}$, est donnée par :

$$\|Q_n\|^2 = (-1)^n \alpha_n n! \int_{-\infty}^{+\infty} e^{-x^2} dx = 2^n n! \sqrt{\pi}$$

d'où l'expression des polynômes d'Hermite normalisés :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ P_n(x) = \frac{(-1)^n}{\pi^{\frac{1}{4}} \sqrt{2^n n!}} e^{x^2} \left(e^{-x^2}\right)^{(n)}$$

La fonction poids π étant paire sur \mathbb{R} , chaque polynôme P_n est de la parité de n. Ces polynômes sont aussi définis par la relation de récurrence (15.1)

où
$$b_n = \sqrt{\frac{n+1}{2}}$$
 et $a_n = 0$, soit $P_{-1} = 0$, $P_0 = \frac{1}{\pi^{\frac{1}{4}}}$ et :

$$\sqrt{n+1}P_{n+1} + \sqrt{n}P_{n-1} = \sqrt{2}XP_n \ (n \ge 0)$$

15.4 Les polynômes de Legendre

Dans ce paragraphe nous étudions plus en détails la suite des polynômes de Legendre sur]-1,1[. Ces polynômes ont été définis au paragraphe précédent par $P_n\left(x\right) = \frac{1}{2^n n!} \sqrt{\frac{2n+1}{2}} \left(\left(x^2-1\right)^n\right)^{(n)} \text{ pour } n \in \mathbb{N} \text{ et } x \in]-1,1[\text{ . En utilisant la formule de Leibniz, on a :}$

$$\left(\left(x^2 - 1 \right)^n \right)^{(n)} = \left(\left(x - 1 \right)^n \left(x + 1 \right)^n \right)^{(n)} = \sum_{k=0}^n \binom{n}{k} \frac{n! \left(x - 1 \right)^{n-k}}{(n-k)!} \frac{n! \left(x + 1 \right)^k}{k!}$$
$$= n! \sum_{k=0}^n \binom{n}{k}^2 \left(x - 1 \right)^{n-k} \left(x + 1 \right)^k$$

et l'évaluation en 1 nous donne $P_n\left(1\right)=\frac{1}{2^n n!}\sqrt{\frac{2n+1}{2}}n!2^n=\sqrt{\frac{2n+1}{2}}.$

Pour ce paragraphe, il sera commode d'utiliser la condition de normalisation $L_n(1) = 1$, ce qui nous conduit à utiliser les polynômes de Legendre définis par :

$$\forall n \in \mathbb{N}, \ L_n(x) = \sqrt{\frac{2}{2n+1}} P_n(x) = \frac{1}{2^n n!} \left((x^2 - 1)^n \right)^{(n)}$$

La famille $(L_n)_{n\in\mathbb{N}}$ est une base orthogonale de \mathcal{P} avec $||L_n|| = \sqrt{\frac{2}{2n+1}}$ pour tout $n\in\mathbb{N}$.

Chaque polynôme L_n étant de parité de n, on a $L_n(-1) = (-1)^n$. Cette condition de parité nous dit aussi que $L_{2p+1}(0) = 0$ pour tout $p \in \mathbb{N}$.

Pour n = 0 on a $L_0 = 1$ et pour $n \ge 1$, on a :

$$L_n(x) = \frac{1}{2^n n!} \left(\sum_{k=0}^n \binom{n}{k} (-1)^{n-k} x^{2k} \right)^{(n)} = \frac{1}{2^n n!} \sum_{\frac{n}{2} \le k \le n} \binom{n}{k} \frac{(-1)^{n-k} (2k)!}{(2k-n)!} x^{2k-n}$$
$$= \frac{1}{2^n} \sum_{\frac{n}{2} \le k \le n} (-1)^{n-k} \binom{n}{k} \binom{2k}{n} x^{2k-n}$$

Cette expression nous permet de retrouver le coefficient dominant de L_n , soit $\alpha_n = \frac{1}{2^n} \binom{2n}{n}$. On en déduit aussi que $L_{2p}(0) = \frac{(-1)^p}{2^{2p}} \binom{2p}{p}$ pour tout $p \in \mathbb{N}$.

Des relations de récurrence vérifiées par les polynômes P_n , on déduit le résultat suivant, en posant $L_{-1} = 0$.

Théorème 15.11.

Pour tout $n \in \mathbb{N}$, on a:

$$(n+1) L_{n+1}(X) + nL_{n-1}(X) = (2n+1) X L_n(X)$$
(15.6)

$$n(n+1)(L_{n+1}(X) - L_{n-1}(X)) = (2n+1)(X^2 - 1)L'_n(X)$$
 (15.7)

$$\frac{X - Y}{n + 1} \sum_{k=0}^{n} (2k + 1) L_k(X) L_k(Y) = L_{n+1}(X) L_n(Y) - L_n(X) L_{n+1}(Y)$$

(formule de Darboux-Christoffel).

Preuve. La relation (15.5) devient pour $n \in \mathbb{N}^*$:

$$\frac{n+1}{\sqrt{2n+1}}L_{n+1}(X) + \frac{n}{\sqrt{2n+1}}L_{n-1}(X) = \sqrt{2n+1}XL_n(X)$$

c'est-à-dire (15.6). Cette relation étant encore valable pour n=0 en posant $L_{-1}=0$ (on a $L_0=1$ et $L_1(X)=X$).

Pour
$$n \in \mathbb{N}^*$$
, on a $(X^2 - 1)$ $L'_n \in \mathbb{R}_{n+1}[X]$, donc $(X^2 - 1)$ $L'_n = \sum_{k=0}^{n+1} \gamma_k L_k$ avec

$$\gamma_n \|L_n\|^2 = \int_{-1}^1 (x^2 - 1) L'_n(x) L_n(x) dx = 0$$
 par imparité et :

$$\gamma_{k} \|L_{k}\|^{2} = \langle (x^{2} - 1) L'_{n} | L_{k} \rangle = \int_{-1}^{1} (x^{2} - 1) L_{k}(x) L'_{n}(x) dx$$

$$= [(x^{2} - 1) L_{k}(x) L_{n}(x)]_{-1}^{1} - \int_{-1}^{1} ((x^{2} - 1) L'_{k}(x) + 2xL_{k}(x)) L_{n}(x) dx$$

$$= -\langle L_{n} | (x^{2} - 1) L'_{k} + 2xL_{k} \rangle = 0$$

pour k+1 < n. Il reste donc $\left(X^2-1\right)L'_n = \gamma_{n+1}L_{n+1} + \gamma_{n-1}L_{n-1}$. L'évaluation en 1 donne $\gamma_{n-1} = -\gamma_{n+1}$ et l'identification des coefficients de X^{n+1} nous donne $\gamma_{n+1} = \frac{n\alpha_n}{\alpha_{n+1}} = n\frac{n+1}{2n+1}$. On a donc la relation de récurrence :

$$(2n+1)(X^2-1)L'_n = n(n+1)(L_{n+1}-L_{n-1})$$

cette relation étant encore valable pour n=0.

La relation de Darboux-Christoffel devient :

$$(X - Y) \sum_{k=0}^{n} \frac{2k+1}{2} L_k(X) L_k(Y)$$

$$= \frac{n+1}{\sqrt{4(n+1)^2 - 1}} \sqrt{\frac{2n+1}{2}} \sqrt{\frac{2n+3}{2}} (L_{n+1}(X) L_n(Y) - L_n(X) L_{n+1}(Y))$$

soit

$$(X - Y) \sum_{k=0}^{n} (2k + 1) L_k(X) L_k(Y) = (n + 1) (L_{n+1}(X) L_n(Y) - L_n(X) L_{n+1}(Y))$$

Les polynômes de Legendre peuvent s'exprimer par des formules intégrales qui seront intéressantes pour obtenir certaines propriétés de ces polynômes.

Pour $(x,r) \in [-1,1] \times \mathbb{R}^{+,*}$, on note $\gamma_{x,r}$ le lacet défini par $\gamma_{x,r}(t) = x + re^{it}$ pour tout $t \in [0,2\pi]$ (cercle de centre x et de rayon r).

П

Théorème 15.12. Formules intégrales de Schläffi et de Laplace

Pour tout entier naturel n et tout $(x,r) \in [-1,1] \times \mathbb{R}^{+,*}$, on a :

$$L_{n}(x) = \frac{1}{2i\pi} \int_{\gamma_{x,r}} \frac{(z^{2} - 1)^{n}}{(z - x)^{n+1}} \frac{dz}{2^{n}}$$

(formule intégrale de Schläffi) et :

$$L_n(x) = \frac{1}{2\pi} \int_0^{2\pi} \left(x + i\sqrt{1 - x^2} \sin(t) \right)^n dt$$
$$= \frac{1}{\pi} \int_0^{\pi} \left(x + i\sqrt{1 - x^2} \cos(t) \right)^n dt$$

(formule intégrale de Laplace).

Preuve. Pour toute fonction f holomorphe sur un voisinage du disque fermé $\overline{D}(x,r)$ de centre x et de rayon r, on a pour tout nombre complexe z_0 dans le disque ouvert D(x,r) et tout entier naturel n, $\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2i\pi} \int_{\gamma_{r,x}} \frac{f(z)}{(z-z_0)^{n+1}} dz$ (formule de Cauchy), ce qui nous donne pour $f(z) = (1-z^2)^n$ et $z_0 = x$:

$$2^{n}L_{n}(x) = \frac{f^{(n)}(x)}{n!} = \frac{1}{2i\pi} \int_{\gamma_{r,x}} \frac{(z^{2} - 1)^{n}}{(z - x)^{n+1}} dz = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\left(\left(x + re^{it}\right)^{2} - 1\right)^{n}}{\left(re^{it}\right)^{n+1}} re^{it} dt$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left(2x + re^{it} - \frac{1 - x^{2}}{re^{it}}\right)^{n} dt$$

Pour $x \in]-1,1[$ et $r = \sqrt{1-x^2},$ cela donne :

$$L_n(x) = \frac{1}{2\pi} \int_0^{2\pi} \left(2x + \sqrt{1 - x^2} e^{it} - \sqrt{1 - x^2} e^{-it} \right)^n \frac{dt}{2^n}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \left(x + i\sqrt{1 - x^2} \sin(t) \right)^n dt$$

Le changement de variable $t=\theta+\frac{\pi}{2}$ nous donne compte tenu de la 2π -périodicité de la fonction intégrée :

$$L_{n}(x) = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{3\frac{\pi}{2}} \left(x + i\sqrt{1 - x^{2}}\cos(\theta) \right)^{n} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(x + i\sqrt{1 - x^{2}}\cos(\theta) \right)^{n} d\theta$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \left(x + i\sqrt{1 - x^{2}}\cos(\theta) \right)^{n} d\theta$$

Comme $L_n(x)$ est réel, on a aussi par conjugaison complexe :

$$L_n(x) = \frac{1}{\pi} \int_0^{\pi} \left(x - i\sqrt{1 - x^2} \cos(\theta) \right)^n d\theta$$

La fonction $\varphi: (\theta, x) \mapsto \left(x + i\sqrt{1 - x^2}\cos(\theta)\right)^n$ étant continue sur $[0, \pi] \times [-1, 1]$ et l'intégration se faisant sur un segment, la fonction $x \mapsto \int_0^\pi \varphi(x, \theta) \, d\theta$ est continue sur [-1, 1] comme L_n , il s'en suit que l'égalité précédente est encore valable pour $x = \pm 1$ par continuité.

Le théorème précédent peut aussi se montrer sans référence aux fonctions holomorphes (exercice 15.13).

En utilisant la formule intégrale de Laplace, on retrouve que pour tout $n \in \mathbb{N}$, on a $L_n(\pm 1) = (\pm 1)^n$.

Cette formule nous permet également de calculer $\|L_n\|_{\infty} = \sup_{x \in [-1,1]} |L_n(x)|$. Pour ce faire, on remarque que pour tout $(t,x) \in [0,\pi] \times [-1,1]$:

$$\left| x + i\sqrt{1 - x^2}\cos(t) \right|^2 = x^2 + (1 - x^2)\cos^2(t) \le x^2 + 1 - x^2 = 1$$

ce qui nous donne $\left|L_{n}\left(x\right)\right|\leq1=L_{n}\left(1\right)$ et en conséquence, $\left\|L_{n}\right\|_{\infty}=1.$

Corollaire 15.2. Pour tout $n \in \mathbb{N}$ et tout $x \in]-1,1[$, on a :

$$|L_n(x)| \le \frac{\sqrt{\pi}}{\sqrt{2n(1-x^2)}}$$

Preuve. Pour tout $n \in \mathbb{N}$ et tout $x \in]-1,1[$, on a :

$$|L_n(x)| \le \frac{1}{\pi} \int_0^{\pi} \left| x + i\sqrt{1 - x^2} \cos(t) \right|^n dt = \frac{1}{\pi} I_n(x)$$

et le changement de variable $t\mapsto \pi-t$ dans l'intégrale sur $\left[\frac{\pi}{2},\pi\right]$ nous donne :

$$I_{n}(x) = \int_{0}^{\frac{\pi}{2}} \left| x + i\sqrt{1 - x^{2}} \cos(t) \right|^{n} dt + \int_{\frac{\pi}{2}}^{\pi} \left| x + i\sqrt{1 - x^{2}} \cos(t) \right|^{n} dt$$
$$= 2 \int_{0}^{\frac{\pi}{2}} \left| x + i\sqrt{1 - x^{2}} \cos(t) \right|^{n} dt$$

Pour $(x,t) \in [-1,1] \times \left[0, \frac{\pi}{2}\right]$, on a $\left|x + i\sqrt{1 - x^2}\cos(t)\right|^2 = x^2 + (1 - x^2)\cos^2(t)$ avec $\cos^2(t) = 1 - \sin^2(t)$ et $\sin(t) \ge \frac{2}{\pi}t$, ce qui nous donne :

$$\left| x + i\sqrt{1 - x^2}\cos(t) \right|^2 \le x^2 + (1 - x^2)\left(1 - \frac{4}{\pi^2}t^2\right) = 1 - \frac{4}{\pi^2}\left(1 - x^2\right)t^2$$

puis en utilisant l'inégalité de convexité $1-y < e^{-y}$ pour $y \geq 0,$ on en déduit que :

$$\left| x + i\sqrt{1 - x^2}\cos(t) \right|^2 \le e^{-\frac{4}{\pi^2}(1 - x^2)t^2}$$

Il en résulte que $I_n(x) \leq 2\int_0^{\frac{\pi}{2}} e^{-\frac{2n}{\pi^2}(1-x^2)t^2} dt$ et en effectuant le changement de variable $\theta = \frac{\sqrt{2n(1-x^2)}}{\pi}t$, on obtient :

$$I_n(x) \le 2 \frac{\pi}{\sqrt{2n(1-x^2)}} \int_0^{+\infty} e^{-\theta^2} d\theta = \frac{\pi\sqrt{\pi}}{\sqrt{2n(1-x^2)}}$$

et en conséquence, $|L_n(x)| \leq \frac{\sqrt{\pi}}{\sqrt{2n(1-x^2)}}$.

On en déduit que, pour tout $\delta \in]0,1[$, on $\sup_{x \in [-\delta,\delta]} |L_n(x)| \le \frac{\sqrt{\pi}}{\sqrt{2n(1-\delta^2)}}$, ce qui entraı̂ne la convergence uniforme de $(L_n)_{n \in \mathbb{N}}$ vers 0 sur $[-\delta,\delta]$. Ce résultat peut aussi se montrer en utilisant le théorème de convergence do-

Ce résultat peut aussi se montrer en utilisant le théorème de convergence dominée. Pour cela, on écrit que $L_n\left(x\right)=\frac{1}{\pi}\int_0^\pi f_n\left(x,t\right)dt$ pour $n\in\mathbb{N}$ et $x\in\left[-1,1\right]$, où $f_n\left(x,t\right)=\left(x+i\sqrt{1-x^2}\cos\left(t\right)\right)^n$. Pour $(t,x)\in\left[0,\pi\right]\times\left[-\delta,\delta\right]$, on a :

$$\left| x + i\sqrt{1 - x^2}\cos(t) \right|^2 = x^2 + (1 - x^2)\cos^2(t) = x^2\sin^2(t) + \cos^2(t)$$

$$< \delta^2\sin^2(t) + \cos^2(t) = q^2(t)$$

donc $|L_n(x)| \leq \varepsilon_n = \frac{1}{\pi} \int_0^{\pi} g^n(t) dt$ avec $\lim_{n \to +\infty} g^n(t) = 0$ pour tout $t \in]0, \pi[$ (puisque $0 < g^2(t) < \sin^2(t) + \cos^2(t)) = 1$) et $0 \leq g(t)^n \leq 1$ pour $n \in \mathbb{N}$ et $t \in [0, \pi]$. On déduit alors du théorème de convergence dominée que $\lim_{n \to +\infty} \varepsilon_n = 0$, ce qui nous assure la convergence uniforme de $(L_n)_{n \in \mathbb{N}}$ vers 0 sur $[-\delta, \delta]$.

Les polynômes de Legendre L_n peuvent aussi être définis en utilisant une fonction génératrice.

Lemme 15.13 Pour tout réel α , on a :

$$\int_{0}^{\pi} \frac{dt}{1 - i\alpha \cos(t)} = 2 \int_{0}^{\frac{\pi}{2}} \frac{dt}{1 + \alpha^{2} \cos^{2}(t)} = \frac{\pi}{\sqrt{\alpha^{2} + 1}}$$

Preuve. Pour α réel, on a $1 + \alpha^2 \cos^2(t) \neq 0$ et $1 - i\alpha \cos(t) \neq 0$ pour tout $t \in [0, \pi]$, donc les deux intégrale sont bien définies. Le changement de variable $t = \pi - \theta$ nous donne :

$$I(\alpha) = \int_0^{\pi} \frac{dt}{1 - i\alpha \cos(t)} = \int_0^{\frac{\pi}{2}} \frac{dt}{1 - i\alpha \cos(t)} + \int_{\frac{\pi}{2}}^{\pi} \frac{dt}{1 - i\alpha \cos(t)}$$
$$= \int_0^{\frac{\pi}{2}} \frac{dt}{1 - i\alpha \cos(t)} + \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + i\alpha \cos(t)} = 2 \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \alpha^2 \cos^2(t)}$$

puis effectuant le changement de variable $x=\tan{(t)}$ (invariance de $\frac{dt}{1+\alpha^2\cos^2{(t)}}$ par $t\mapsto\pi+t$), on obtient :

$$\begin{split} I\left(\alpha\right) &= 2 \int_{0}^{+\infty} \frac{dx}{\alpha^2 + 1 + x^2} = \frac{2}{\alpha^2 + 1} \int_{0}^{+\infty} \frac{dx}{1 + \frac{x^2}{\alpha^2 + 1}} \\ &= \frac{2}{\sqrt{\alpha^2 + 1}} \int_{0}^{+\infty} \frac{dt}{1 + t^2} = \frac{\pi}{\sqrt{\alpha^2 + 1}} \end{split}$$

Théorème 15.13.

Pour tout $(x, y) \in [-1, 1] \times]-1, 1[, on a :$

$$\frac{1}{\sqrt{y^2 - 2xy + 1}} = \sum_{n=0}^{+\infty} L_n(x) y^n \text{ et } \frac{1}{y^2 - 2xy + 1} = \sum_{n=0}^{+\infty} T_n(x) y^n$$

$$où T_0(x) = 1 \text{ et } T_n(x) = 2^n \prod_{k=1}^n \left(x - \cos\left(\frac{k\pi}{n+1}\right) \right) \text{ pour tout } n \in \mathbb{N}^*$$

Preuve. Notant $\varphi(x,t) = x + i\sqrt{1-x^2}\cos(t)$, on a pour $(t,x) \in [0,\pi[\times]-1,1[:$

$$|\varphi(x,t)|^2 = x^2 + (1-x^2)\cos^2(t) < x^2 + (1-x^2) = 1$$

ce qui nous donne pour tout $y \in]-1,1[$:

$$f(t, x, y) = \sum_{n=0}^{+\infty} \left(x + i\sqrt{1 - x^2} \cos(t) \right)^n y^n = \frac{1}{1 - xy - iy\sqrt{1 - x^2} \cos(t)}$$

D'autre part, en notant $f_n(t, x, y) = (x + i\sqrt{1 - x^2}\cos(t))^n y^n$ pour (t, x, y) dans $]0, \pi[\times]-1, 1[^2]$, on dispose d'une fonction continue telle que :

$$\sum_{n=0}^{+\infty} \int_{0}^{\pi} \left| f_{n}\left(t, x, y\right) \right| dt \le \pi \sum_{n=0}^{+\infty} \left| y \right|^{n} < +\infty$$

ce qui nous permet d'écrire que :

$$\int_{0}^{\pi} f(t, x, y) dt = \sum_{n=0}^{+\infty} \int_{0}^{\pi} \left(x + i\sqrt{1 - x^{2}} \cos(t) \right)^{n} y^{n} dt = \pi \sum_{n=0}^{+\infty} L_{n}(x) y^{n}$$

avec 1 - xy > 0 et:

$$\int_{0}^{\pi} f(t, x, y) dt = \int_{0}^{\pi} \frac{dt}{1 - xy - iy\sqrt{1 - x^{2}}\cos(t)} = \frac{1}{1 - xy} I\left(\frac{y\sqrt{1 - x^{2}}}{1 - xy}\right)$$
$$= \frac{1}{1 - xy} \frac{\pi}{\sqrt{\frac{y^{2}(1 - x^{2})}{(1 - xy)^{2}} + 1}} = \frac{\pi}{\sqrt{y^{2} - 2xy + 1}}$$

ce qui nous donne $\frac{1}{\sqrt{y^2 - 2xy + 1}} = \sum_{n=0}^{+\infty} L_n(x) y^n$, cette formule étant encore valable pour $x = \pm 1$ (puisque $L_n(\pm 1) = (\pm 1)^n$).

Pour x fixé dans [-1,1], on a le produit de Cauchy des séries entières :

$$\frac{1}{y^2 - 2xy + 1} = \left(\sum_{n=0}^{+\infty} L_n(x) y^n\right)^2 = \sum_{n=0}^{+\infty} T_n(x) y^n$$
 (15.8)

pour $y \in]-1,1[$, avec $T_n(x) = \sum_{k=0}^n L_k(x) L_{n-k}(x) \in \mathcal{P}_n$ pour tout $n \in \mathbb{N}$. Le

coefficient de x^n dans T_n étant $\frac{1}{2^n}\sum_{k=0}^n \binom{2k}{k}\binom{2(n-k)}{n-k} \in \mathbb{R}^{+,*}$, ce polynôme est de degré n. Chaque L_k étant de la parité de k, le polynôme T_n est de la parité de n

La relation (15.8) s'écrit $(y^2 - 2xy + 1) \sum_{n=0}^{+\infty} T_n(x) y^n = 1$, soit :

$$\sum_{n=0}^{+\infty} T_n(x) y^{n+2} - 2x \sum_{n=0}^{+\infty} T_n(x) y^{n+1} + \sum_{n=0}^{+\infty} T_n(x) y^n = 1$$

ce qui peut s'écrire :

$$\sum_{n=1}^{+\infty} T_{n-1}(x) y^{n+1} - 2x \sum_{n=0}^{+\infty} T_n(x) y^{n+1} + \sum_{n=-1}^{+\infty} T_{n+1}(x) y^{n+1} = 1$$

ou encore :

$$\sum_{n=1}^{+\infty} \left(T_{n-1}(x) - 2xT_n(x) + T_{n+1}(x) \right) y^{n+1} + T_0(x) + \left(T_1(x) - 2xT_0(x) \right) y = 1$$

Par unicité du développement en série entière, on en déduit que les polynômes T_n sont définis par la relation de récurrence :

$$\left\{ \begin{array}{l} T_{0}\left(x\right)=1,\; T_{1}\left(x\right)=2xT_{0}\left(x\right)=2x\\ T_{n+1}\left(x\right)=2xT_{n}\left(x\right)-T_{n-1}\left(x\right)\; (n\in\mathbb{N}^{*}) \end{array} \right.$$

On en déduit que le coefficient dominant de T_n est 2^n , ce qui nous donne en prime l'égalité $\sum_{k=0}^{n} {2k \choose k} {2(n-k) \choose n-k} = 2^{2n}$.

On a $\sin(\theta) T_0(\cos(\theta)) = \sin(\theta)$, $\sin(\theta) T_1(\cos(\theta)) = \sin(2\theta)$ et par récurrence, on vérifie que $\sin(\theta) T_n(\cos(\theta)) = \sin((n+1)\theta)$. C'est vrai pour $n \in \{0,1\}$ et supposant le résultat acquis jusqu'au rang $n \geq 1$, on a :

$$\sin(\theta) T_{n+1}(\cos(\theta)) = 2\cos(\theta)\sin((n+1)\theta) - \sin(n\theta)$$

$$= 2\cos(\theta)(\sin(n\theta)\cos(\theta) + \cos(n\theta)\sin(\theta)) - \sin(n\theta)$$

$$= (2\cos^{2}(\theta) - 1)\sin(n\theta) + \cos(n\theta)\sin(2\theta)$$

$$= \cos(2\theta)\sin(n\theta) + \cos(n\theta)\sin(2\theta) = \sin((n+2)\theta)$$

Pour $n \in \mathbb{N}^*$ et $1 \le k \le n$, on a $\sin\left(\frac{k\pi}{n+1}\right) T_n\left(\cos\left(\frac{k\pi}{n+1}\right)\right) = \sin\left(k\pi\right) = 0$, donc $\frac{k\pi}{n+1}$ est une racine de T_n , ce qui nous donne n racines distinctes de ce polynôme de degré n et en conséquence, $T_n\left(x\right) = 2^n \prod_{k=1}^n \left(x - \cos\left(\frac{k\pi}{n+1}\right)\right)$. \square

Corollaire 15.3. En désignant pour tout $n \in \mathbb{N}^*$, par $x_n = \max_{1 \le k \le n} x_{n,k}$ la plus grande des racines de L_n , on a $\cos\left(\frac{\pi}{n+1}\right) < x_n < 1$ et en conséquence, $\lim_{n \to +\infty} x_n = 1$.

Preuve. Pour tout $x \ge x_n$, on a $L_k(x) > 0$ pour k comprisentre 0 et n-1 (car $x_n > x_k$ et $L_0 = 1$) et $L_n(x) \ge 0$, donc $T_n(x) = \sum_{k=0}^n L_k(x) L_{n-k}(x) > 0$. Il en résulte que $y_n < x_n$ (si $y_n \ge x_n$, on a alors $0 = T_n(y_n) > 0$, ce qui est impossible). On a donc $y_n = \cos\left(\frac{\pi}{n+1}\right) < x_n < 1$ et faisant tendre n vers l'infini, on en déduit que $\lim_{n \to +\infty} x_n = 1$.

La convergence de la suite $(x_n)_{n\in\mathbb{N}^*}$ peut aussi se montrer en vérifiant que cette suite est croissante (corollaire 15.1 ou exercice 15.12).

15.5 Développement en série de polynômes orthogonaux

On se donne un intervalle ouvert I=]a,b[avec $-\infty \leq a < b \leq +\infty,$ une fonction continue $\pi:I\to\mathbb{R}^{+,*}$ et $(P_n)_{n\in\mathbb{N}}$ est une base orthonormée de $\mathbb{R}[X]$ relativement à cette fonction poids π sur I avec, pour tout entier naturel n, $P_n(x)=\sum_{k=0}^n \alpha_k^{(n)} x^k,$ le coefficient dominant $\alpha_n^{(n)}$ étant strictement positif.

On désigne par \mathcal{E} l'ensemble des fonctions continues par morceaux de I dans \mathbb{R} telles que $\int_a^b f^2(x) \, \pi(x) \, dx < +\infty$ et qu'en tout point $\alpha \in I$ où f est discontinue on ait $f(\alpha) = \frac{f(\alpha^-) + f(\alpha^+)}{2}$, où $f(\alpha^-)$ et $f(\alpha^+)$ désignent respectivement les limites à gauche et à droite de f en α . Cet ensemble \mathcal{E} contient l'ensemble de toutes les fonctions polynomiales réelles.

Théorème 15.14.

L'ensemble \mathcal{E} est un \mathbb{R} -espace vectoriel et l'application $\langle \cdot | \cdot \rangle$ définie sur \mathcal{E}^2 par $\langle f | g \rangle = \int_a^b f(x) g(x) \pi(x) dx$ définit un produit scalaire sur \mathcal{E} .

Preuve. On vérifie tout d'abord que \mathcal{E} est un sous-espace vectoriel de l'espace des fonctions continues par morceaux de I dans \mathbb{R} . De l'inégalité $|fg| \leq \frac{1}{2} \left(f^2 + g^2\right)$, on déduit que pour tous f,g dans \mathcal{E} , on a $\int_a^b |f\left(x\right)| \, |g\left(x\right)| \, \pi\left(x\right) \, dx < +\infty$ et il en résulte que $\int_a^b \left(f\left(x\right) + \lambda g\left(x\right)\right)^2 \pi\left(x\right) \, dx < +\infty$ pour tout réel λ , ce qui signifie que $f + \lambda g$ est dans \mathcal{E} .

Des propriétés de l'intégrale sur un segment, on déduit que l'application $\langle \cdot | \cdot \rangle$ est bilinéaire, symétrique et positive sur \mathcal{E} . Si $f \in \mathcal{E}$ est telle que $\langle f | f \rangle = 0$, en notant $a_1 < \cdots < a_p$ ses éventuels points de discontinuités dans $]a_0, a_{p+1}[=]a, b[$, on a :

$$0 = \int_{a}^{b} (f(x))^{2} \pi(x) dx = \sum_{k=0}^{p} \int_{a_{k}}^{a_{k+1}} (f(x))^{2} \pi(x) dx$$

donc $\int_{a_k}^{a_{k+1}} (f(x))^2 \pi(x) dx = 0$ pour tout k comprisentre 0 et p et f est nulle sur chaque intervalle $I_k =]a_k, a_{k+1}[$ puisque f^2 est continue positive sur I_k . On a alors $f\left(a_k^{\pm}\right) = \lim_{x \to a_k^{\pm}} f(x) = 0$ et en conséquence, $f\left(a_k\right) = \frac{f\left(a_k^{-}\right) + f\left(a_k^{+}\right)}{2} = 0$. La fonction f est donc nulle sur I. En définitive, l'application $\langle \cdot \mid \cdot \rangle$ est définie et c'est un produit scalaire sur \mathcal{E} .

Muni de ce produit scalaire, l'espace préhilbertien $\mathcal E$ n'est pas un espace de Hilbert (exercice 15.15).

Définition 15.3. Soit f une fonction dans \mathcal{E} . La suite de ses coefficients de Fourier relativement à la famille orthonormée $(P_n)_{n\in\mathbb{N}}$ est la suite $(c_n(f))_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ c_n(f) = \langle f \mid P_n \rangle = \int_a^b f(t) P_n(t) \pi(t) dt$$

Pour tout $f \in \mathcal{E}$ et pour tout $n \in \mathbb{N}$ on note $S_n(f) = \sum_{k=0}^n c_k(f) P_k$ la $n^{\grave{e}me}$ somme partielle de la série de Fourier de f relativement à la famille orthonormée $(P_n)_{n \in \mathbb{N}}$.

Pour les exemples classiques des polynômes orthogonaux de Legendre, Tchebychev, Laguerre ou Hermite la série correspondante est appelée série de Fourier-Legendre, Fourier-Tchebychev, Fourier-Laguerre ou Fourier-Hermite.

Pour toute fonction $f \in \mathcal{E}$, $S_n(f)$ est la meilleure approximation (ou la projection orthogonale) de f dans \mathcal{P}_n , c'est-à-dire que $||f - S_n(f)|| = \inf_{P \in \mathcal{P}} ||f - P||$ et

on a l'inégalité de Bessel, $\sum_{n=0}^{+\infty} (c_n(f))^2 \le ||f||^2$ qui implique que $\lim_{n\to+\infty} c_n(f) = 0$ (théorèmes 3.8, 3.11 et 3.12).

Les opérateurs $S_n: \mathcal{E} \to \mathcal{P}_n$ sont des opérateurs à noyau comme les opérateurs de Fourier trigonométriques.

Théorème 15.15.

Pour toute fonction $f \in \mathcal{E}$ et pour tout entier $n \in \mathbb{N}$ on a :

$$\forall x \in \left]a, b\right[, S_n(f)(x) = \int_a^b K_n(t, x) f(t) \pi(t) dt$$

où la fonction K_n est continue sur \mathbb{R}^2 définie par :

$$K_{n}(t,x) = \sum_{k=0}^{n} P_{k}(t) P_{k}(x)$$

$$= \begin{cases} b_{n} \frac{P_{n+1}(t) P_{n}(x) - P_{n}(t) P_{n+1}(x)}{t - x} & \text{si } t \neq x \\ b_{n} \left(P_{n}(x) P'_{n+1}(x) - P'_{n}(x) P_{n+1}(x) \right) & \text{si } t = x \end{cases}$$

avec
$$b_n = \frac{\alpha_n^{(n)}}{\alpha_{n+1}^{(n+1)}}.$$

Preuve. La fonction K_n qui est polynomiale, est indéfiniment dérivable sur \mathbb{R}^2 . Pour tout $x \in]a, b[$, on a :

$$S_{n}(f)(x) = \sum_{k=0}^{n} c_{k}(f) P_{k}(x) = \int_{a}^{b} \left(\sum_{k=0}^{n} P_{k}(t) P_{k}(x) \right) f(t) \pi(t) dt$$
$$= \int_{a}^{b} K_{n}(t, x) f(t) \pi(t) dt$$

En utilisant la formule de Darboux-Christoffel (théorème 15.7), on a pour $x \neq t$:

$$K_{n}(t,x) = b_{n} \frac{P_{n+1}(t) P_{n}(x) - P_{n}(t) P_{n+1}(x)}{t - x}$$

$$= b_{n} \left(\frac{P_{n+1}(t) - P_{n+1}(x)}{t - x} P_{n}(x) - \frac{P_{n}(t) - P_{n}(x)}{t - x} P_{n+1}(x) \right)$$

et en faisant tendre t vers x on obtient :

$$K_{n}(x,x) = b_{n} \left(P'_{n+1}(x) P_{n}(x) - P'_{n}(x) P_{n+1}(x) \right)$$

Corollaire 15.4. Pour tout $n \in \mathbb{N}$ et tout $x \in]a,b[$, on $a \int_a^b K_n(t,x) \pi(t) dt = 1.$

Preuve. Pour f = 1 on a $c_k(1) = \langle 1 | P_k \rangle = 0$ pour $k \geq 1$, de sorte que :

$$S_n(1) = c_0(1) P_0 = \langle 1 | P_0 \rangle P_0 = \langle P_0 | P_0 \rangle = 1$$

et
$$\int_{a}^{b} K_n(t,x) \pi(t) dt = 1$$

Dans le cas où l'intervalle I est borné (i. e. a et b sont finis) on déduit du théorème de Weierstrass (exercice 2.8) que l'égalité de Parseval est vérifiée pour toute fonction $f \in \mathcal{E}$ qui est continue à droite en a et à gauche en b, ce qui équivaut à la convergence en moyenne quadratique de la série de Fourier $\sum c_n(f) P_n$ vers f

Dans le cas où I est borné, on note \mathcal{E}' le sous-espace vectoriel de \mathcal{E} constitué des fonctions continues par morceaux sur le segment $\overline{I} = [a, b]$.

Lemme 15.14 Pour I borné, l'espace vectoriel $C^0([a,b],\mathbb{R})$ des fonctions continues de [a,b] dans \mathbb{R} est dense dans $(\mathcal{E}',\|\cdot\|)$.

Preuve. On note $a_0 = a$, $a_{p+1} = b$ et $a < a_1 < \cdots < a_p < b$ les points de discontinuités de $f \in \mathcal{E}'$. Pour tout réel δ strictement positif tel que $[a_k - \delta, a_k + \delta] \subset I$, on note f_{δ} la fonction définie sur [a, b] par :

$$f_{\delta}\left(x\right) = \begin{cases} f\left(x\right) & \text{si } x \notin \bigcup_{k=1}^{p} \left[a_{k} - \delta, a_{k} + \delta\right] \\ f\left(a_{k} - \delta\right) \frac{a_{k} + \delta - x}{2\delta} + f\left(a_{k} + \delta\right) \frac{x - \left(a_{k} - \delta\right)}{2\delta} & \text{si } x \in \left[a_{k} - \delta, a_{k} + \delta\right] \end{cases}$$

Cette fonction est continue sur [a,b] (sur $[a_k-\delta,a_k+\delta]$ elle est affine et coïncide avec f en $a_k-\delta$ et $a_k+\delta$) et on a :

$$||f - f_{\delta}||^{2} = \sum_{k=1}^{p} \int_{a_{k} - \delta}^{a_{k} + \delta} (f(t) - f_{\delta}(t))^{2} \pi(t) dt$$

En notant M la borne supérieure de f sur [a,b] et M' celle de π sur $[a_1 - \delta, a_p + \delta]$, on a $|f_\delta(x)| \leq M$ pour tout $x \in [a,b]$ et :

$$||f - f_{\delta}||^{2} \le 4M^{2} \sum_{k=1}^{p} \int_{a_{k} - \delta}^{a_{k} + \delta} \pi(t) dt \le (8pM^{2}M') \delta$$

Pour tout réel ε strictement positif, on peut choisir $\delta > 0$ tel que $(8pM^2M')$ $\delta < \varepsilon^2$ et la fonction f_{δ} dans $\mathcal{C}^0([a,b],\mathbb{R})$ est telle que $||f-f_{\delta}|| < \varepsilon$. Ce qui prouve la densité de $\mathcal{C}^0([a,b],\mathbb{R})$ dans $(\mathcal{E}',||\cdot||)$.

Théorème 15.16.

Pour I borné, la famille orthonormée $(P_n)_{n\in\mathbb{N}}$ est totale dans $(\mathcal{E}', \langle \cdot | \cdot \rangle)$.

Preuve. Soient $f \in \mathcal{E}'$, $\varepsilon > 0$ et $g \in \mathcal{C}^0\left([a,b],\mathbb{R}\right)$ telle que $\|f-g\| < \varepsilon$. Le théorème de Weierstrass nous dit qu'il existe une fonction polynomiale P telle que $\|g-P\|_{\infty} < \varepsilon$, donc $\|g-P\|^2 \leq \|g-P\|_{\infty}^2 \int_a^b \pi\left(t\right) dt < \varepsilon^2 \|1\|^2$ et en conséquence, $\|f-P\| \leq \|f-g\| + \|g-P\| < (1+\|1\|) \varepsilon$, ce qui prouve la densité de $\mathcal{P} = \operatorname{Vect}\left\{P_n \mid n \in \mathbb{N}\right\}$ dans $(\mathcal{E}', \|\cdot\|)$, c'est-à-dire que la famille $(P_n)_{n \in \mathbb{N}}$ est totale dans $(\mathcal{E}', \langle\cdot|\cdot\rangle)$.

Du théorème 3.13, on déduit alors le résultat suivant.

Corollaire 15.5. Dans le cas où I est borné, on a pour toute fonction f dans \mathcal{E}' , $f = \sum_{n=0}^{+\infty} c_n(f) P_n$ dans $(\mathcal{E}', \|\cdot\|)$ (convergence en moyenne quadratique de la série de Fourier) et $\|f\|^2 = \int_a^b f^2(t) \pi(t) dt = \sum_{n=0}^{+\infty} (c_n(f))^2$ (égalité de Parseval).

L'identité de Parseval nous dit aussi qu'une fonction $f \in \mathcal{E}'$ est uniquement déterminée par ses coefficients de Fourier.

Dans ce qui suit on suppose I borné et pour $f \in \mathcal{E}$, on s'intéresse à la convergence simple ou uniforme de la série de fonctions $\sum c_n(f) P_n$.

Théorème 15.17.

Dans le cas où l'intervalle I est borné, si $x \in]a,b[$ est tel que la suite $(P_n(x))_{n\in\mathbb{N}}$ soit bornée et $f \in \mathcal{E}$ admet une dérivée à droite et à gauche en $+\infty$

$$x$$
, on a alors $f(x) = \sum_{n=0}^{+\infty} c_n(f) P_n(x)$.

Preuve. Du théorème 15.15 et du corollaire 15.4, on déduit que pour tout $n \in \mathbb{N}$ et tout $x \in [a, b[$, on a :

$$S_n(f)(x) - f(x) = \int_a^b K_n(t, x) (f(t) - f(x)) \pi(t) dt$$
 (15.9)

avec $K_n(t,x)(f(t)-f(x))=0$ pour t=x et:

$$K_n(t, x) (f(t) - f(x)) = b_n(P_n(x) P_{n+1}(t) - P_{n+1}(x) P_n(t)) \frac{f(t) - f(x)}{t - x}$$

pour $t \in]a, b[\setminus \{x\}]$. Dans le cas où f est dérivable à droite et gauche en x, la fonction φ_x définie sur]a, b[par :

$$\varphi_x(t) = \begin{cases} \frac{f(t) - f(x)}{t - x} & \text{si } t \neq x \\ \frac{f'_g(x) + f'_d(x)}{2} & \text{si } t = x \end{cases}$$

est un élément de \mathcal{E} (comme $f \in \mathcal{E}$, la fonction φ_x est continue sur]a,b[privé de x et des éventuels points de discontinuité de f et en tous ces points, φ_x admet des limites à droite et à gauche puisque $f \in \mathcal{E}$ et f est dérivable à droite et gauche en x). On a donc :

$$S_{n}(f)(x) - f(x)$$

$$= b_{n} \left(P_{n}(x) \int_{a}^{b} \varphi_{x}(t) P_{n+1}(t) \pi(t) dt - P_{n+1}(x) \int_{a}^{b} \varphi_{x}(t) P_{n}(t) \pi(t) dt \right)$$

$$= b_{n} \left(P_{n}(x) c_{n+1}(\varphi_{x}) - P_{n+1}(x) c_{n}(\varphi_{x}) \right)$$

avec $0 < b_n \le c = \max(|a|,|b|)$ pour $n \in \mathbb{N}$ (voir le paragraphe 15.2), ce qui nous donne la majoration :

$$|S_n(f)(x) - f(x)| \le c(|P_n(x)| |c_{n+1}(\varphi_x)| + |P_{n+1}(x)| |c_n(\varphi_x)|)$$

avec $\lim_{n\to+\infty}c_{n}\left(\varphi_{x}\right)=0$. Dans le cas où la suite $\left(P_{n}\left(x\right)\right)_{n\in\mathbb{N}}$ est bornée, on en

déduit que
$$\lim_{n\to+\infty} S_n(f)(x) = f(x)$$
, ce qui signifie que $f(x) = \sum_{n=0}^{+\infty} c_n(f) P_n(x)$.

Exemples 15.3

1. Polynômes de Tchébychev. On se place sur]-1,1[avec la fonction poids π définie par $\pi(x) = \frac{1}{\sqrt{1-x^2}}$. Les polynômes P_n sont définis par $P_0(x) = \frac{1}{\sqrt{\pi}}$ et :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [-1, 1], \ P_n(x) = \sqrt{\frac{2}{\pi}} \cos(n \arccos(x))$$

et les coefficients b_n sont donnés par $b_{-1}=0, b_0=\frac{1}{\sqrt{2}}$ et $b_n=\frac{1}{2}$ pour $n\geq 1$.

Pour tout $x \in [-1,1]$ et tout entier naturel n on a la majoration $|P_n(x)| \le \sqrt{\frac{2}{\pi}}$. On déduit alors que pour $f \in \mathcal{E}$ et $x \in]-1,1[$ où f admet une dérivée à droite et à gauche, on a:

$$f(x) = \frac{c_0(f)}{\sqrt{\pi}} + \sqrt{\frac{2}{\pi}} \sum_{n=1}^{+\infty} c_n(f) \cos(n \arccos(x))$$

avec
$$c_0(f) = \frac{1}{\sqrt{\pi}} \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2}} dt$$
 et :

$$\forall n \in \mathbb{N}^*, \ c_n(f) = \sqrt{\frac{2}{\pi}} \int_{-1}^{1} \frac{f(t)\cos(n\arccos(t))}{\sqrt{1-t^2}} dt$$

En posant $x = \cos(\theta)$ avec θ dans $[0, \pi]$, on obtient:

$$f\left(\cos\left(\theta\right)\right) = \frac{a_0\left(f\right)}{2} + \sum_{n=1}^{+\infty} a_n\left(f\right)\cos\left(n\theta\right)$$

avec:

$$\forall n \geq 0, \ a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\cos(\theta)) \cos(n\theta) d\theta$$

On retrouve ainsi le développement en série de Fourier trigonométrique de la fonction paire $\theta \mapsto f(\cos(\theta))$.

2. Polynômes de Legendre. On se place sur]-1,1[avec la fonction poids $\pi=1.$ Les polynômes P_n sont définis par :

$$\forall n \in \mathbb{N}, \ P_n(x) = \frac{1}{2^{n} n!} \sqrt{\frac{2n+1}{2}} \left((x^2 - 1)^n \right)^{(n)}$$

Pour tout $x \in]-1,1[$ et tout $n \in \mathbb{N}^*$, on a la majoration $|P_n(x)| \leq \frac{\sqrt{\pi}}{\sqrt{1-x^2}}$ (corollaire 15.2). On déduit alors que pour toute fonction $f \in \mathcal{E}$ et $x \in]-1,1[$ où f admet une dérivée à droite et à gauche, on a $f(x) = \sum_{n=0}^{+\infty} c_n(f) P_n(x)$, où $c_n(f) = \frac{1}{2^n n!} \sqrt{\frac{2n+1}{2}} \int_{-1}^{1} f(t) \left(\left(t^2 - 1 \right)^n \right)^{(n)} dt$.

Théorème 15.18.

Si l'intervalle I est borné et si pour tout x dans I la suite $(P_n(x))_{n\in\mathbb{N}}$ est bornée, alors pour toute fonction $f\in\mathcal{E}$ vérifiant une condition de Hölder de constante $\lambda\in\mathbb{R}^+$ et d'exposant $\alpha\in\left]\frac{1}{2},1\right]$ sur I, on a :

$$\forall x \in]a,b[, f(x) = \sum_{n=0}^{+\infty} c_n(f) P_n(x)$$

Preuve. On a:

$$\forall (t, x) \in I^2, |f(t) - f(x)| \le \lambda |t - x|^{\alpha}.$$

En utilisant les notations de la démonstration du théorème précédent, on a pour $n \in \mathbb{N}, x \in]a,b[$ et $t \in [x-\eta,x+\eta]$:

$$|K_n(t,x)(f(t)-f(x))| \le \lambda b_n \frac{|P_{n+1}(t)P_n(x)-P_n(t)P_{n+1}(x)|}{|t-x|^{1-\alpha}},$$

ce qui donne :

$$\left| \int_{x-\eta}^{x+\eta} K_n(t,x) (f(t) - f(x)) \pi(t) dt \right|$$

$$\leq \lambda c M_x \left(\int_{x-\eta}^{x+\eta} |P_{n+1}(t)| \frac{\pi(t) dt}{|t-x|^{1-\alpha}} + \int_{x-\eta}^{x+\eta} |P_n(t)| \frac{\pi(t) dt}{|t-x|^{1-\alpha}} \right),$$

les intégrales du membre de droite de cette inégalité étant convergents du fait que $1-\alpha<1$. En utilisant l'inégalité de Cauchy-Schwarz, on a :

$$\int_{x-\eta}^{x+\eta}\left|P_{n}\left(t\right)\right|\frac{\pi\left(t\right)dt}{\left|t-x\right|^{1-\alpha}}\leq\sqrt{\int_{x-\eta}^{x+\eta}\left|P_{n}^{2}\left(t\right)\right|\pi\left(t\right)dt}\sqrt{\int_{x-\eta}^{x+\eta}\frac{\pi\left(t\right)dt}{\left|t-x\right|^{2\left(1-\alpha\right)}}}$$

(la dernière intégrale étant convergente du fait que $2(1-\alpha) < 1$ si $\alpha \in \left[\frac{1}{2},1\right]$), puis avec :

$$\int_{x-\eta}^{x+\eta} |P_n^2(t)| \, \pi(t) \, dt \le \int_a^b |P_n^2(t)| \, \pi(t) \, dt = ||P_n||^2 = 1$$

on obtient:

$$\int_{x-\eta}^{x+\eta} |P_n(t)| \frac{\pi(t) dt}{|t-x|^{1-\alpha}} \le \sqrt{\int_{x-\eta}^{x+\eta} \frac{\pi(t) dt}{|t-x|^{2(1-\alpha)}}}$$

avec $\lim_{\eta \to 0} \int_{x-\eta}^{x+\eta} \frac{\pi\left(t\right)dt}{\left|t-x\right|^{2(1-\alpha)}} = 0$ pour $\alpha \in \left]\frac{1}{2},1\right]$. Pour tout réel $\varepsilon > 0$ on peut donc choisir, à x fixé dans $\left[a,b\right[$, un réel $\eta > 0$ assez petit de sorte que :

$$\forall n \in \mathbb{N}, \ \int_{x-\eta}^{x+\eta} |P_n(t)| \frac{\pi(t) dt}{|t-x|^{1-\alpha}} < \varepsilon$$

On en déduit alors que la suite $(S_n(f)(x))_{n\in\mathbb{N}}$ converge vers f(x).

15.6 Exercices

Exercice 15.1. Soient I=]a,b[avec $-\infty \le a < b \le +\infty,$ $(x_k)_{k \in \mathbb{N}}$ une suite bornée et strictement croissante d'éléments de I et $(\alpha_k)_{k \in \mathbb{N}}$ une suite de réels strictement positifs telle que $\alpha=\sum_{k=0}^{+\infty}\alpha_k<+\infty$. Montrer que la forme linéaire φ définie sur $\mathbb{R}[X]$ par $\varphi(P)=\sum_{k=0}^{+\infty}\alpha_k P(x_k)$ pour tout $P \in \mathbb{R}[X]$ est définie positive sur I.

Solution. La suite $(x_k)_{k\in\mathbb{N}}$ étant bornée, il existe un réel R>0 tel que $|x_k|\leq R$ pour tout $k\in\mathbb{N}$ et pour tout $P\in\mathbb{R}[X]$, on a :

$$\sum_{k=0}^{+\infty} \left| \alpha_k P\left(x_k \right) \right| \le \sup_{x \in [-R,R]} \left| P\left(x \right) \right| \sum_{k=0}^{+\infty} \alpha_k < +\infty$$

ce qui justifie la définition de φ . Il est clair que φ est une forme linéaire. Pour

$$P \in \mathbb{R}[X]$$
 tel que $P(x) \ge 0$ pour tout $x \in I$, l'égalité $\varphi(P) = \sum_{k=0}^{+\infty} \alpha_k P(x_k) = 0$

équivaut à $P(x_k)=0$ pour tout $k\in\mathbb{N}$ (on a $\alpha_kP(x_k)=0$ avec $\alpha_k>0$), donc P a une infinité de racines $((x_k)_{k\in\mathbb{N}}$ est strictement croissante), ce qui équivaut à dire que P=0. On a donc $\varphi(P)>0$ pour tout $P\in\mathbb{R}[X]\setminus\{0\}$ tel que $P(x)\geq 0$, ce qui signifie que φ est définie positive sur I.

Exercice 15.2. Montrer que pour tout réel strictement positif a, la forme linéaire φ définie sur $\mathbb{R}[X]$ par $\varphi(P) = \sum_{k=0}^{+\infty} \frac{a^k}{k!} P(k)$ pour tout $P \in \mathbb{R}[X]$ est définie positive sur \mathbb{R} .

Solution. Pour tout $P \in \mathbb{R}[X] \setminus \{0\}$, il existe un entier $k_0 \in \mathbb{N}$ tel que $P(k) \neq 0$ pour tout $k \geq k_0$ et avec $\lim_{\substack{k \to +\infty \\ k \geq k_0}} \frac{|a|}{k+1} \frac{|P(k+1)|}{|P(k)|} = 0$, on déduit que la série

numérique $\sum \frac{a^k}{k!} P(k)$ est absolument convergente, ce qui justifie la définition de φ . Il est clair que φ est une forme linéaire et pour $P \in \mathbb{R}[X]$ tel que $P(x) \geq 0$ pour tout $x \in \mathbb{R}$, l'égalité $\varphi(P) = 0$ équivaut à P(k) = 0 pour tout $k \in \mathbb{N}$ et revient à dire que P = 0. On a donc $\varphi(P) > 0$ pour tout $P \in \mathbb{R}[X] \setminus \{0\}$ tel que $P(x) \geq 0$, ce qui signifie que φ est définie positive sur \mathbb{R} .

Exercice 15.3. Soient φ une forme linéaire définie positive sur $\mathbb{R}[X]$, $(\mu_n)_{n\in\mathbb{N}}$ la suite des moments et $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes orthogonaux associés (théorème 15.1). On désigne par $(R_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par $R_0(X) = 1$ et :

$$R_{n}(X) = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ 1 & X & \cdots & X^{n} \end{vmatrix}$$

pour $n \geq 1$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, R_n est un polynôme de degré n orthogonal à $\mathbb{R}_{n-1}[X]$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, on a $P_n = \frac{1}{\sqrt{D_{n-1}D_n}}R_n$ et que le coefficient dominant de P_n est $\alpha_n = \sqrt{\frac{D_{n-1}}{D_n}}$.
- 3. Soit $P = \sum_{k=0}^{n} \gamma_k X^k$ dans $\mathbb{R}_n[X]$. Montrer que $\langle P_n \mid P \rangle = \frac{\gamma_n}{\alpha_n}$.
- 4. Montrer que pour tout polynôme $P \in \mathbb{R}[X]$ unitaire et de degré n, on a $||P|| \geq \frac{1}{\alpha_n}$, l'égalité étant réalisée si, et seulement si, $P = \frac{1}{\alpha_n} P_n$.

Solution. La matrice
$$\begin{pmatrix} \mu_0 & \mu_1 & \cdots & \mu_n \\ \mu_1 & \mu_2 & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_n & \cdots & \mu_{2n-1} \\ 1 & X & \cdots & X^n \end{pmatrix} \text{ est un élément de } \mathcal{M}_{n+1}\left(\mathbb{R}\left(X\right)\right),$$
où $\mathbb{R}\left(X\right)$ est le corre des fractions rationnelles à coefficients dans \mathbb{R} . Cette re

où $\mathbb{R}(X)$ est le corps des fractions rationnelles à coefficients dans \mathbb{R} . Cette remarque justifie les calculs matriciels qui suivent.

1. Pour $n \in \mathbb{N}^*$, en développant le déterminant suivant la dernière ligne il apparaît que R_n est un polynôme de la forme :

$$R_{n}(X) = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ 1 & X & \cdots & X^{n} \end{vmatrix} = D_{n-1}X^{n} + \sum_{k=0}^{n-1} r_{k}X^{k}$$

avec $D_{n-1} > 0$ puisque φ est définie positive, c'est donc un polynôme de degré n de coefficient dominant strictement positif. Pour $0 \le k \le n-1$, on a :

$$R_{n}(X) X^{k} = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ X^{k} & X^{k+1} & \cdots & X^{k+n} \end{vmatrix}$$

et le développement de ce déterminant suivant la dernière ligne donne :

$$\varphi\left(R_{n}X^{k}\right) = \varphi\left(\sum_{j=0}^{n} s_{j}X^{k+j}\right) = \sum_{j=0}^{n} s_{j}\varphi\left(X^{k+j}\right) = \sum_{j=0}^{n} s_{j}\mu_{k+j}$$

$$= \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ \mu_{k} & \mu_{k+1} & \cdots & \mu_{k+n} \end{vmatrix} = 0$$

car la dernière ligne est égale à la ligne numéro k. Il en résulte que R_n est orthogonal à $\mathbb{R}_{n-1}[X]$.

2. Chaque polynôme R_n étant de degré n, on en déduit que la famille $(R_n)_{n\in\mathbb{N}}$ est une base orthogonale de $\mathbb{R}[X]$. Le calcul précédent pour $k=n\in\mathbb{N}^*$ nous donne :

$$\varphi(R_{n}X^{n}) = \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ \mu_{n} & \mu_{n+1} & \cdots & \mu_{2n} \end{vmatrix} = D_{n}$$

donc:

$$||R_n||^2 = \left\langle R_n \mid D_{n-1}X^n + \sum_{k=0}^{n-1} r_k X^k \right\rangle = D_{n-1} \left\langle R_n \mid X^n \right\rangle = D_{n-1} D_n$$

Pour n=0, on a $\|R_0\|^2=\varphi(1)=\mu_0=D_0$. En conclusion, en notant $D_{-1}=1$, la famille $\left(\frac{1}{\sqrt{D_{n-1}D_n}}R_n\right)_{n\in\mathbb{N}}$ est orthonormée, chaque polynôme

 $\frac{1}{\sqrt{D_{n-1}D_n}}R_n \text{ étant de degré } n \text{ à coefficient dominant strictement positif, c'est donc la famille } (P_n)_{n\in\mathbb{N}} \text{ par unicité dans le théorème de Gram-Schmidt. On a donc en définitive, } P_n = \frac{1}{\sqrt{D_{n-1}D_n}}R_n \text{ et le coefficient dominant de } P_n \text{ est } \alpha_n = \frac{D_{n-1}}{\sqrt{D_{n-1}D_n}} = \sqrt{\frac{D_{n-1}}{D_n}} \text{ pour tout } n \in \mathbb{N}.$

3. Pour tout $P = \sum_{k=0}^{n} \gamma_k X^k \in \mathbb{R}_n [X]$, on a :

$$\langle P_n \mid P \rangle = \sum_{k=0}^{n} \gamma_k \langle P_n \mid X^k \rangle = \gamma_n \langle P_n \mid X^n \rangle = \frac{\gamma_n}{\sqrt{D_{n-1}D_n}} \langle R_n \mid X^n \rangle$$
$$= \frac{\gamma_n D_n}{\sqrt{D_{n-1}D_n}} = \gamma_n \sqrt{\frac{D_n}{D_{n-1}}} = \frac{\gamma_n}{\alpha_n}$$

4. Pour n=0, on a $P=1=\frac{1}{\alpha_0}P_0$ et il n'y a rien à prouver. Pour $n\geq 1$, un polynôme unitaire de degré n s'écrit $P=\sum_{k=0}^n \nu_k P_k$ avec $\nu_n=\frac{1}{\alpha_n}>0$ et on a :

$$||P||^2 = \sum_{k=0}^n \nu_k^2 \ge \nu_n^2 = \frac{1}{\alpha_n^2}$$

l'égalité étant réalisée si, et seulement si, tous les ν_k pour k compris entre 0 et n-1 sont nuls, ce qui équivaut à $P=\nu_n P_n=\frac{1}{\alpha_n}P_n.$

Exercice 15.4. Soient $(a_n)_{n\in\mathbb{N}}$ une suite réelle, $(b_n)_{n\in\mathbb{N}}$ une suite de réels non nuls et $(A_n)_{n\in\mathbb{N}^*}$ la suite de matrices réelles tridiagonales définie

réels non nuls et
$$(A_n)_{n\in\mathbb{N}^*}$$
 la suite de matrices réelles tridiagonales défine
$$par A_1 = (a_0) \text{ et } A_n = \begin{pmatrix} a_0 & b_0 & 0 & \cdots & 0 \\ b_0 & a_1 & b_1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-3} & a_{n-2} & b_{n-2} \\ 0 & \cdots & 0 & b_{n-2} & a_{n-1} \end{pmatrix} pour n \ge 2.$$
1. Montrer que pour $n \in \mathbb{N}^*$ la matrice A , est de rang supérieur que

- 1. Montrer que, pour $n \in \mathbb{N}^*$, la matrice A_n est de rang supérieur ou égal à n-1.
- 2. Montrer que, pour $n \in \mathbb{N}^*$, la matrice A_n est diagonalisable avec toutes ses valeurs propres réelles et simples.
- 3. Pour $n \in \mathbb{N}^*$, on note $\chi_n(X) = \det(XI_n A_n)$ le polynôme caractéristique de A_n . En notant $\chi_{-1} = 0$ et $\chi_0 = 1$, montrer que la suite $(\chi_n)_{n \in \mathbb{N}}$

est définie par la relation de récurrence :

$$X\chi_n = \chi_{n+1} + a_{n\chi n} + b_{n-1}^2 \chi_{n-1}$$

4. Montrer que si tous les a_n sont nuls, chaque polynôme χ_n , pour $n \in \mathbb{N}^*$, est alors de la parité de n et pour toute valeur propre λ de A_n , on a $|\lambda| \leq 2 \max_{0 \leq k \leq n-2} |b_k|$ pour $n \geq 2$.

Solution.

1. Pour n = 1, $A_1 = (a_0)$ est de rang 0 (si $a_0 = 0$) ou 1 (si $a_0 \neq 0$). Pour $n \geq 2$, on a:

$$\delta_{n-1} = \begin{vmatrix} b_0 & a_1 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-3} & a_{n-2} \\ 0 & \cdots & 0 & b_{n-2} \end{vmatrix} = \prod_{k=0}^{n-2} b_k \neq 0$$

donc rang $(A_n) \ge n - 1$.

- 2. Pour n=1, c'est clair. Pour $n\geq 2$, la matrice symétrique réelle A_n a toutes ses valeurs propres réelles et est diagonalisable. Pour toute valeur propre $\lambda\in\mathbb{R}$, la matrice $A_n-\lambda I_n$ est de rang supérieur ou égal à n-1 (on remplace a_n par $a_n-\lambda$ dans la question précédente) et de déterminant nul, donc ce rang vaut n-1, ce qui revient à dire que l'espace propre $\ker(A_n-\lambda I_n)$ est de dimension 1. Il en résulte que toutes les valeurs propres de A_n sont simples $(A_n$ étant diagonalisable, la dimension de $\ker(A_n-\lambda A_n)$ est égale à la multiplicité de la valeur propre λ).
- 3. Pour n = 1, on a $\chi_1(X) = X a_0$. Pour $n \ge 1$, le développement de $\chi_{n+1}(X)$ suivant la dernière colonne nous donne :

$$\chi_{n+1}(X) = (X - a_n) \chi_n(X) - b_{n-1}^2 \chi_{n-1}(X)$$

4. Le polynôme $\chi_0=1$ est pair et le polynôme $\chi_1=X$ est impair. Supposant le résultat acquis jusqu'au rang $n\geq 0$, on a :

$$\chi_{n+1}(-X) = (-X - a_n) \chi_n(-X) - b_{n-1}^2 \chi_{n-1}(-X)$$
$$= (-1)^{n+1} X \chi_n(X) - b_{n-1}^2 (-1)^{n+1} \chi_{n-1}(X)$$
$$= (-1)^{n+1} \chi_{n+1}(X)$$

Si pour $n \geq 2$, λ est valeur propre de A_n , le théorème de Gerschgörin-Hadamard (voir [22]) nous dit alors qu'il existe un indice k compris entre 0 et n-2 tel que $|\lambda| \leq 2 \, |b_k| \leq 2 \, \max_{0 \leq k \leq n-2} |b_k|$.

Exercice 15.5. On désigne par $(T_n)_{n\in\mathbb{N}}$ et $(U_n)_{n\in\mathbb{N}}$ les suites de fonctions définies sur]-1,1[par :

$$T_n(x) = \cos(n \arccos(x))$$
 et $U_n(x) = \frac{1}{n+1} T'_{n+1}(x)$

- 1. Montrer que chaque fonction T_n et chaque fonction U_n est polynomiale de degré n, de la parité de n, en précisant le coefficient dominant de chacun de ces polynômes.
 - Les T_n sont les polynômes de Tchebychev de première espèce et les U_n les polynômes de Tchebychev de deuxième espèce.
- 2. Calculer, pour $n \in \mathbb{N}^*$, les racines de T_n et celles de U_n .
- 3. En reprenant les notations de l'exercice 15.4, on suppose que tous les a_n sont nuls et que tous les b_n valent $\frac{1}{2}$. Calculer les valeurs propres de A_n pour $n \in \mathbb{N}^*$ et en déduire une expression de son polynôme caractéristique χ_n .

Solution.

1. Pour tout $x \in [-1,1]$, on a $T_0(x) = 1$, $T_1(x) = x$ et en écrivant tout réel x dans [-1,1] sous la forme $x = \cos(\theta)$ avec $\theta \in [0,\pi]$, on a pour $n \ge 2$:

$$\begin{cases} T_{n+1}(x) = \cos((n+1)\theta) = \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta) \\ T_{n-1}(x) = \cos((n-1)\theta) = \cos(n\theta)\cos(\theta) + \sin(n\theta)\sin(\theta) \end{cases}$$

- et $T_{n+1}\left(x\right)+T_{n-1}\left(x\right)=2xT_{n}\left(x\right)$, ce qui permet de montrer que, pour tout $n\in\mathbb{N}$, la fonction T_{n} est polynomiale de degré n avec pour coefficient dominant 1 si n=0 et 2^{n-1} si $n\geq 1$ (récurrence immédiate). Il en résulte que chaque fonction $U_{n}=\frac{1}{n+1}T'_{n+1}$ est polynomiale de degré n de coefficient dominant 2^{n} . Pour tout $x\in [-1,1]$, on a $\arccos\left(-x\right)=\pi-\arccos\left(x\right)$, ce qui nous donne $T_{n}\left(-x\right)=\left(-1\right)^{n}T_{n}\left(x\right)$ et l'égalité $T_{n}\left(-X\right)=\left(-1\right)^{n}T_{n}\left(X\right)$ dans $\mathbb{R}\left[X\right]$ (polynômes qui coïncident sur une infinité de valeurs). Le polynôme T_{n} est donc de la parité de n, ainsi que U_{n} par dérivation.
- 2. Avec les notations précédentes, on a $T_n\left(x\right)=0$ avec $x\in[-1,1]$ si, et seulement si, $\cos\left(n\theta\right)=0$ avec $\theta\in[0,\pi]$, ce qui équivaut à $n\theta=(2k+1)\frac{\pi}{2}$ avec k compris entre 0 et n-1. Cela nous donne les n racines distinctes $\cos\left((2k+1)\frac{\pi}{2n}\right)$ (la fonction cos est strictement décroissante sur $[0,\pi]$) et en conséquence, on les a toutes. En écrivant que $U_n\left(x\right)=\frac{\sin\left((n+1)\arccos\left(x\right)\right)}{\sqrt{1-x^2}}=\frac{\sin\left((n+1)\theta\right)}{\sin\left(\theta\right)}$ pour $x\in[-1,1[$, on a $U_n\left(x\right)=0$ si, et seulement si, $\sin\left((n+1)\theta\right)=0$ avec $\theta\in[0,\pi[$, ce qui équivaut à $(n+1)\theta=k\pi$ avec k compris entre 1 et n. Cela nous donne les n racines distinctes $\cos\left(\frac{k\pi}{n+1}\right)$ et en conséquence, on les a toutes.

3. On note $x_{1,n} < x_{2,n} < \cdots < x_{n,n}$ les valeurs propres de A_n . Pour n = 1, on a

$$\chi_1(X) = X \text{ et } x_{1,1} = 0. \text{ Pour } n \ge 2, \text{ on a } A_n = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \text{ et }$$

le théorème de Gerschgörin-Hadamard nous dit que toutes les valeurs propres de $2A_n$ sont dans [-2,2]. Une telle valeur propre peut donc s'écrire $\lambda=2\cos{(\theta)}$ avec $\theta\in[0,\pi]$. Si $V=(v_k)_{1\leq k\leq n}$ est un vecteur propre non nul associé ses composantes sont alors solutions de l'équation de récurrence :

$$v_{k-1} - \lambda v_k + v_{k+1} = 0 \ (1 \le k \le n)$$

avec les conditions aux limites $v_0=0$ et $v_{n+1}=0$. Le polynôme caractéristique de cette récurrence est $P\left(r\right)=r^2-2\cos\left(\theta\right)r+1=\left(r-e^{i\theta}\right)\left(r-e^{-i\theta}\right)$, ce qui nous donne :

$$v_k = c_1 e^{ik\theta} + c_2 e^{-ik\theta} \ (0 \le k \le n+1)$$

De $v_0=0$, on déduit que $c_2=-c_1$ et de $v_{n+1}=0$ avec $(c_1,c_2)\neq (0,0)$, on déduit que $\sin\left(\left(n+1\right)\theta\right)=0$, soit $\theta=\frac{j\pi}{n+1}$ avec $1\leq j\leq n$. Les valeurs propres de A_n sont donc les $x_{n-k,n}=\cos\left(\frac{k\pi}{n+1}\right)$ $(1\leq k\leq n)$. L'espace propre associé à $x_{n-k,n}$ est la droite engendrée par le vecteur $V^{(k)}$ de composantes :

$$V_j^{(k)} = \sin\left(j\frac{k\pi}{n+1}\right) \ (1 \le k, j \le n)$$

Le polynôme unitaire χ_n ayant le même degré et les mêmes racines que U_n , on a $\chi_n = \frac{1}{2^n} U_n$, soit $\chi_n(x) = \frac{\sin\left((n+1)\arccos\left(x\right)\right)}{2^n \sqrt{1-x^2}}$ pour $x \in]-1,1[$.

Exercice 15.6. Soient $n \in \mathbb{N}^*$ et $A_n \in \mathcal{M}_n(\mathbb{R})$ définie par $A_1 = (a_0)$ et :

$$A_{n} = \begin{pmatrix} a_{0} & b_{0} & 0 & \cdots & 0 \\ b_{0} & a_{1} & b_{1} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & b_{n-3} & a_{n-2} & b_{n-2} \\ 0 & \cdots & 0 & b_{n-2} & a_{n-1} \end{pmatrix}$$

pour $n \geq 2$, où $a_n = \varphi\left(XP_n^2\right)$ et $b_n = \varphi\left(XP_nP_{n+1}\right)$, en reprenant les notations du théorème 15.3.

- 1. Montrer que le polynôme $\frac{1}{\alpha_n}P_n$ est le polynôme caractéristique de A_n .
- 2. En déduire que P_n admet n racines réelles simples.

3. Pour $x \in \mathbb{R}$, $v_n(x)$ est le vecteur de \mathbb{R}^n défini par $v_1(x) = (P_0(x)) = (1)$ et $v_n(x) = (P_k(x))_{0 \le k \le n-1}$ pour $n \ge 2$. En calculant $A_n v_n(x)$, retrouver le fait que les racines de P_n sont les valeurs propres de A_n .

Solution.

1. En notant χ_n le polynôme caractéristique de A_n , on a vu avec l'exercice 15.4 que la suite $(\chi_n)_{n\in\mathbb{N}}$ est définie par la relation de récurrence :

$$X\chi_n = \chi_{n+1} + a_n\chi_n + b_{n-1}^2\chi_{n-1}$$

pour $n \geq 1$ avec les conditions initiales $\chi_0 = 1$ et $\chi_1 = X - a_0$. De la récurrence vérifiée par les P_n , on déduit que la suite $(Q_n)_{n \in \mathbb{N}} = \left(\frac{1}{\alpha_n} P_n\right)_{n \in \mathbb{N}}$ vérifie la relation :

$$XQ_n = \frac{1}{\alpha_n} X P_n = \frac{b_n}{\alpha_n} P_{n+1} + \frac{a_n}{\alpha_n} P_n + \frac{b_{n-1}}{\alpha_n} P_{n-1}$$

$$= \frac{1}{\alpha_{n+1}} P_{n+1} + \frac{a_n}{\alpha_n} P_n + \frac{b_{n-1}^2}{\alpha_{n-1}} P_{n-1} = Q_{n+1} + a_n Q_n + b_{n-1}^2 Q_{n-1}$$

pour $n \ge 1$ (on a $b_n = \frac{\alpha_n}{\alpha_{n+1}}$ et $b_{n-1} = \frac{\alpha_{n-1}}{\alpha_n}$) avec les conditions initiales $Q_0 = 1 = \chi_0$ et $Q_1 = \frac{1}{\alpha_1} \frac{X - a_0}{b_0} = X - a_0 = \chi_1$. Il en résulte que $\frac{1}{\alpha_n} P_n = \chi_n$.

- 2. La matrice symétrique A_n ayant n valeurs propres réelles simples pour $n \ge 1$ (exercice 15.4), on en déduit que P_n admet n racines réelles simples.
- 3. Pour n=1, on a $A_1v_1(x)=a_0$. Pour $n\geq 2$, les composantes du vecteur $w=A_nv_n(x)$ sont données par :

$$\left\{ \begin{array}{l} w_{0}=a_{0}P_{0}\left(x\right)+b_{0}P_{1}\left(x\right)=xP_{0}\left(x\right)\\ w_{k}=b_{k-1}P_{k-1}\left(x\right)+a_{k}P_{k}\left(x\right)+b_{k}P_{k+1}\left(x\right)=xP_{k}\left(x\right)\,\left(1\leq k\leq n-2\right)\\ w_{n-1}=b_{n-2}P_{n-2}\left(x\right)+a_{n-1}P_{n-1}\left(x\right)=xP_{n-1}\left(x\right)-b_{n-1}P_{n}\left(x\right) \end{array} \right.$$

ce qui signifie que $A_nv_n(x) = xv_n(x) - b_{n-1}P_n(x)e_n$ en notant $(e_k)_{1 \leq k \leq n}$ la base canonique de \mathbb{R}^n . Pour n=1, a_0 est racine de P_1 et valeur propre de A_1 . Pour $n \geq 2$, si x est racine de P_n , on a alors $A_nv_n(x) = xv_n(x)$, ce qui signifie que x est valeur propre de A_n et $v_n(x)$ est un vecteur propre non nul associé (on a $P_0(x) \neq 0$).

Exercice 15.7. Soit $\pi:]a,b[\to \mathbb{R}^+$ une fonction continue par morceaux non identiquement nulle. Justifier l'équivalence des assertions :

1.
$$\int_{a}^{b} P^{2}(x) \pi(x) dx < +\infty$$
 pour toute fonction polynomiale P ;

2.
$$\int_{a}^{b} |x|^{n} \pi(x) dx < +\infty \text{ pour tout } n \in \mathbb{N}.$$

Solution. La deuxième assertion entraı̂ne par linéarité et positivité de l'intégrale que $\int_a^b |P\left(x\right)| \, \pi\left(x\right) \, dx < +\infty$ pour toute fonction polynomiale P et en particulier, on aura $\int_a^b P^2\left(x\right) \pi\left(x\right) \, dx < +\infty$. Réciproquement, si la première assertion est vérifiée, on a alors $\int_a^b x^{2n} \pi\left(x\right) \, dx < +\infty$ pour tout $n \in \mathbb{N}$ et avec $|x|^{2n+1} \le \frac{x^{4n} + x^2}{2}$, on déduit que $\int_a^b |x|^{2n+1} \, \pi\left(x\right) \, dx < +\infty$.

Exercice 15.8. Pour cet exercice, I =]-1,1[et \mathcal{L}_0 est l'opérateur de Legendre défini sur $\mathcal{C}^{\infty}(I,\mathbb{R})$ par :

$$\forall f \in \mathcal{C}^{\infty}(I, \mathbb{R}), \ \mathcal{L}_{0}(f) = (1 - X^{2}) f'' - 2f'$$

On note \mathcal{L} la restriction de l'opérateur \mathcal{L}_0 à $\mathbb{R}[X]$. Sauf pour la question $\mathbf{6d}$, les polynômes de Legendre, ne sont pas supposés connus.

- 1. Déterminer le noyau de \mathcal{L}_0 , puis celui de \mathcal{L} .
- 2. Montrer que tout réel λ est valeur propre de \mathcal{L}_0 en précisant la dimension de l'espace propre associé.
- 3. En utilisant des développements en série entière, donner une base de chaque espace propre $\ker (\mathcal{L}_0 \lambda Id)$.
- 4. Montrer que $\lambda \in \mathbb{R}$ est valeur propre de \mathcal{L} si, et seulement si, c'est un entier négatif de la forme $\lambda_n = -n(n+1)$ avec $n \in \mathbb{N}$. Dans ce cas, montrer que chaque espace propre $\ker (\mathcal{L} \lambda_n Id)$ est de dimension 1 engendré par un polynôme P_n de degré n.
- 5. En désignant par φ la fonction définie sur $\mathbb{R}^2 \setminus \{(x,x) \mid x \in \mathbb{R}\}$ par $\varphi(x,t) = \frac{1}{x-t}$, montrer que :

$$\frac{\partial}{\partial x}\left(\left(1-x^2\right)\frac{\partial\varphi}{\partial x}\left(x,t\right)\right) = \frac{\partial}{\partial t}\left(\left(1-t^2\right)\frac{\partial\varphi}{\partial t}\left(x,t\right)\right)$$

- 6. Pour tout $n \in \mathbb{N}$, on note $\lambda_n = -n(n+1)$ et on désigne par Q_n la fonction définie sur $\mathbb{R} \setminus [-1,1]$ par $Q_n(x) = \int_{-1}^1 \frac{P_n(t)}{x-t} dt$, où P_n est un polynôme de degré n générateur de $\ker (\mathcal{L} \lambda_n Id)$.
 - (a) Montrer que la fonction Q_n est indéfiniment dérivable et solution $sur \mathbb{R} \setminus [-1,1]$ de l'équation différentielle :

$$(1 - x^2) y'' - 2xy' + n(n+1) y = 0$$

(b) Montrer que l'on a $Q_n(x) = P_n(x) \ln\left(\frac{x+1}{x-1}\right) - R_{n-1}(x)$ pour tout $x \in \mathbb{R} \setminus [-1,1]$, où $R_{-1} = 0$ et, pour $n \ge 1$, R_{n-1} est un polynôme de degré égal à n-1.

- (c) Montrer que P_n et Q_n sont deux solutions linéairement indépendantes sur $]-\infty, -1[$ [resp. sur $]1, +\infty[$] de l'équation différentielle $(1-x^2)y''-2xy'+n(n+1)y=0.$
- (d) Sachant que les P_n sont des polynômes orthogonaux de Legendre, montrer que $Q_n\left(x\right) = \frac{1}{P_n\left(x\right)} \int_{-1}^1 \frac{P_n^2\left(t\right)}{x-t} dt$ pour tout $x \in \mathbb{R} \setminus [-1,1]$.

Solution.

- 1. Pour tout $f \in \mathcal{C}^{\infty}(I, \mathbb{R})$, on a $\mathcal{L}_0(f) = (1 x^2) f'' 2x f' = ((1 x^2) f')'$, donc $f \in \ker(\mathcal{L}_0)$ si, et seulement si, il existe $\alpha \in \mathbb{R}$ tel que $(1 x^2) f'(x) = \alpha$ pour tout $x \in I$, ce qui nous donne $f'(x) = \frac{\alpha}{1 x^2} = \frac{\alpha}{2} \left(\frac{1}{1 + x} + \frac{1}{1 x}\right)$, soit $f(x) = \frac{\alpha}{2} \ln \left(\frac{1 + x}{1 x}\right) + \beta$, où β est une constante réelle. Donc $\ker(\mathcal{L}_0)$ est l'espace vectoriel de dimension 2 engendré par les fonctions f_0 et g_0 définies sur I par $f_0(x) = \ln \left(\frac{1 + x}{1 x}\right)$ et $g_0(x) = 1$. La fonction f_0 n'étant pas polynomiale (puisque $\lim_{x \to 1^-} f_0(x) = +\infty$), $\ker(\mathcal{L})$ est de dimension 1 engendré par g_0 , soit l'espace des polynômes constant.
- 2. Pour tout réel λ , l'ensemble $\ker (\mathcal{L}_0 \lambda Id)$ est l'ensemble des solutions sur I de l'équation différentielle linéaire d'ordre 2, $y'' = \frac{2x}{1-x^2}y' + \frac{\lambda}{1-x^2}y$, c'est donc un espace vectoriel de dimension 2 (théorème de Cauchy-Lipschitz linéaire). Une base de ce noyau est donnée par les solutions f_{λ} et g_{λ} vérifiant les conditions initiales $(f_{\lambda}(0), f'_{\lambda}(0)) = (1, 0)$ et $(g_{\lambda}(0), g'_{\lambda}(0)) = (1, 0)$ (le théorème de Cauchy-Lipschitz linéaire nous dit que l'application $y \mapsto (y(0), y'(0))$ réalise un isomorphisme de $\ker (\mathcal{L}_0 \lambda Id)$ sur \mathbb{R}^2).
- 3. Pour déterminer une base de $\ker (\mathcal{L}_0 \lambda Id)$, on cherche les solutions développables en série entières sur I de notre équation différentielle (le corollaire 14.6 nous dit qu'il existe une unique solution développable en série entière sur I vérifiant les conditions initiales $y(0) = y_0$ et $y'(0) = y_1$). Si $y: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est une telle solution développable en série entières sur I, l'équation différentielle $(1-x^2)y''(x) 2xy'(x) \lambda y(x) = 0$ est équivalente à :

$$\sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2} - \sum_{n=2}^{+\infty} n(n-1) a_n x^n - 2 \sum_{n=1}^{+\infty} n a_n x^n - \lambda \sum_{n=0}^{+\infty} a_n x^n = 0$$

soit à :

$$\sum_{n=0}^{+\infty} ((n+1)(n+2)a_{n+2} - (n(n+1) + \lambda)a_n)x^n = 0$$

ce qui est encore équivalent à $a_{n+2}=\frac{n\left(n+1\right)+\lambda}{\left(n+1\right)\left(n+2\right)}a_n$ pour tout $n\in\mathbb{N}$. Les conditions $a_0=y\left(0\right)=1,\ a_1=y'\left(0\right)=0$ nous donnent $a_{2p+1}=0$ et :

$$a_{2p} = \frac{(2p-2)(2p-1) + \lambda}{(2p-1)(2p)} \frac{(2p-4)(2p-3) + \lambda}{(2p-3)(2p-2)} \cdots \frac{2 \cdot 3 + \lambda}{3 \cdot 4} \frac{\lambda}{2}$$
$$= \frac{1}{(2p)!} \prod_{k=0}^{p-1} (2k(2k+1) + \lambda)$$

pour tout $p \in \mathbb{N}$ et les conditions $a_0 = y(0) = 0$, $a_1 = y'(0) = 1$ nous donnent $a_{2p} = 0$ et :

$$\begin{split} a_{2p+1} &= \frac{\left(2p-1\right)\left(2p\right) + \lambda}{\left(2p\right)\left(2p+1\right)} \frac{\left(2p-3\right)\left(2p-2\right) + \lambda}{\left(2p-2\right)\left(2p-1\right)} \cdots \frac{3 \cdot 4 + \lambda}{4 \cdot 5} \frac{1 \cdot 2 + \lambda}{2 \cdot 3} \\ &= \frac{1}{\left(2p+1\right)!} \prod_{k=1}^{p} \left(2k\left(2k-1\right) + \lambda\right) \end{split}$$

pour tout $p \in \mathbb{N}$. En notant :

$$\beta_{p} = \frac{1}{(2p)!} \prod_{k=0}^{p-1} \left(2k \left(2k+1 \right) + \lambda \right), \ \gamma_{p} = \frac{1}{(2p+1)!} \prod_{k=1}^{p} \left(2k \left(2k-1 \right) + \lambda \right),$$

les séries entières $\sum \beta_p x^{2p}$ et $\sum \gamma_p x^{2p+1}$ ont un rayon de convergence égal à 1 puisque :

$$\lim_{p \to +\infty} \frac{\beta_{p+1}}{\beta_p} = \lim_{p \to +\infty} \frac{2p(2p+1) + \lambda}{2(2p+1)(p+1)} = 1$$

$$\lim_{p \to +\infty} \frac{\gamma_{p+1}}{\gamma_p} = \lim_{p \to +\infty} \frac{2(2p+1)(p+1) + \lambda}{2(p+1)(2p+3)} = 1$$

En conclusion, les fonctions f_{λ} et g_{λ} définies sur I par $f_{\lambda}(x) = \sum_{n=0}^{+\infty} \beta_{n} x^{2n}$ et

 $g_{\lambda}\left(x\right)=\sum_{p=0}^{+\infty}\gamma_{p}x^{2p+1}$ sont bien solutions de notre équation différentielle et nous donnent une base de l'espace des solutions.

4. Si λ n'est pas de la forme $\lambda_n = -n (n+1)$ avec $n \in \mathbb{N}$, les coefficients β_p et γ_p sont tous non nuls et le polynôme nul est la seule solution polynomiale de l'équation différentielle $\mathcal{L}_0(y) = \lambda y$. En effet, si P est une solution polynomiale, on a alors pour tout $x \in I$:

$$P(x) = \sum_{k=0}^{n} a_k x^k = \alpha f_{\lambda}(x) + \beta g_{\lambda}(x) = \sum_{p=0}^{+\infty} \alpha \beta_p x^{2p} + \sum_{p=0}^{+\infty} \beta \gamma_p x^{2p+1}$$

ce qui implique que $\alpha\beta_p=\beta\gamma_p=0$ pour p assez grand par unicité du développement en série entière, ce qui impose que $\alpha=\beta=0$ puisque les β_p et γ_p sont tous non nuls. Si $\lambda=-n\,(n+1)$ avec $n=2q\in\mathbb{N}$ pair [resp. $n=2q+1\in\mathbb{N}$

impair], on a alors $\beta_p = 0$ pour tout $p \geq q+1$, $\beta_q \neq 0$ et $\gamma_p \neq 0$ pour tout $p \in \mathbb{N}$ [resp. $\gamma_p = 0$ pour tout $p \geq q+1$, $\gamma_q \neq 0$ et $\beta_p \neq 0$ pour tout $p \in \mathbb{N}$] (l'égalité $\lambda = -n \, (n+1) = -k \, (k+1)$ équivaut à l = n car la fonction $x \mapsto x \, (x+1)$ est strictement croissante sur \mathbb{R}^+), ce qui signifie que f_{λ} [resp. g_{λ}] est polynomiale de degré n et g_{λ} [resp. f_{λ}] non polynomiale (ses coefficients dans le développement en série entière sont tous non nuls). Il en résulte que $\ker (\mathcal{L} - \lambda_n Id)$ est de dimension 1 engendré par $P_n = f_{\lambda}$ [resp. par $P_n = g_{\lambda}$].

5. On a
$$\frac{\partial \varphi}{\partial x}(x,t) = -\frac{1}{(x-t)^2} = -\frac{\partial \varphi}{\partial t}(x,t)$$
, $\frac{\partial^2 \varphi}{\partial x^2}(x,t) = \frac{2}{(x-t)^3} = \frac{\partial^2 \varphi}{\partial t^2}(x,t)$ et:
$$\frac{\partial}{\partial x}\left(\left(1-x^2\right)\frac{\partial \varphi}{\partial x}(x,t)\right) = \frac{2x}{(x-t)^2} + \frac{2\left(1-x^2\right)}{(x-t)^3} = \frac{2(1-xt)}{(x-t)^3}$$

$$\frac{\partial}{\partial t}\left(\left(1-t^2\right)\frac{\partial \varphi}{\partial t}(x,t)\right) = -\frac{2t}{(x-t)^2} + \frac{2\left(1-t^2\right)}{(x-t)^3} = \frac{2(1-xt)}{(x-t)^3}$$

6.

(a) La fonction $(x,t) \mapsto \frac{P_n(t)}{x-t}$ est de classe \mathcal{C}^{∞} sur $]-\infty, -1[\times [-1,1]]$ [resp. sur $]1, +\infty[\times [-1,1]]$ et l'intégration se fait sur un segment, donc Q_n est de classe \mathcal{C}^{∞} sur $]-\infty, -1[$ [resp. sur $]1, +\infty[]$, ses dérivées s'obtenant par dérivation sous le signe d'intégration. Il en résulte que, pour tout x dans $]-\infty, -1[$ [resp. tout x dans $]1, +\infty[]$, on a :

$$\begin{split} \left(1-x^2\right)Q_n''\left(x\right) - 2xQ_n'\left(x\right) &= \left(\left(1-x^2\right)Q_n'\left(x\right)\right)' \\ &= \left(\int_{-1}^1 P_n\left(t\right)\left(1-x^2\right)\frac{\partial \varphi}{\partial x}\left(x,t\right)dt\right)' \\ &= \int_{-1}^1 P_n\left(t\right)\frac{\partial}{\partial x}\left(\left(1-x^2\right)\frac{\partial \varphi}{\partial x}\left(x,t\right)\right)dt \\ &= \int_{-1}^1 P_n\left(t\right)\frac{\partial}{\partial t}\left(\left(1-t^2\right)\frac{\partial \varphi}{\partial t}\left(x,t\right)\right)dt \end{split}$$

ce qui nous donne en effectuant deux intégrations par parties :

$$(1 - x^{2}) Q_{n}^{"}(x) - 2xQ_{n}^{'}(x) = -\int_{-1}^{1} P_{n}^{'}(t) (1 - t^{2}) \frac{\partial \varphi}{\partial t}(x, t) dt$$
$$= \int_{-1}^{1} \left(P_{n}^{'}(t) (1 - t^{2}) \right)^{'} \varphi(x, t) dt$$
$$= \lambda_{n} \int_{-1}^{1} P_{n}(t) \varphi(x, t) dt = \lambda_{n} Q_{n}(x)$$

(b) Pour n = 0, on a $P_0(x) = \alpha_0$, où $\alpha_0 \in \mathbb{R}^*$ et, pour $x \in]-\infty, -1[$ [resp. $x \in]1, +\infty[]$:

$$Q_0(x) = -\alpha_0 \int_{-1}^{1} \frac{dt}{t - x} = -\alpha_0 \ln \left(\frac{1 - x}{-1 - x} \right) = \alpha_0 \ln \left(\frac{x + 1}{x - 1} \right)$$

[resp. $Q_0(x) = \alpha_0 \int_{-1}^1 \frac{dt}{x-t} = -\alpha_0 \ln\left(\frac{x-1}{x+1}\right) = \alpha_0 \ln\left(\frac{x+1}{x-1}\right)$]. Pour $n \ge 1$ et $x \in]-\infty, -1[$ [resp. $x \in]1, +\infty[]$, on a :

$$Q_{n}(x) = P_{n}(x) \int_{-1}^{1} \frac{dt}{x - t} - \int_{-1}^{1} \frac{P_{n}(x) - P_{n}(t)}{x - t} dt$$
$$= P_{n}(x) \ln\left(\frac{x + 1}{x - 1}\right) - \int_{-1}^{1} \frac{P_{n}(x) - P_{n}(t)}{x - t} dt$$

avec:

$$\frac{P_n(x) - P_n(t)}{x - t} = \sum_{k=1}^{n} \alpha_k \frac{x^k - t^k}{x - t} = \sum_{k=1}^{n} \alpha_k \sum_{j=0}^{k-1} x^j t^{k-1-j}$$

ce qui nous donne :

$$\int_{-1}^{1} \frac{P_n(x) - P_n(t)}{x - t} dt = \sum_{k=1}^{n} \alpha_k \sum_{j=0}^{k-1} x^j \int_{-1}^{1} t^{k-1-j} dt = R_{n-1}(x)$$

où R_{n-1} est un polynôme de degré égal à n-1 (le coefficient de x^{n-1} est $2\alpha_n \neq 0$). On a donc $Q_n\left(x\right) = P_n\left(x\right) \ln\left(\frac{x+1}{x-1}\right) - R_{n-1}\left(x\right)$.

(c) La fonction polynomiale P_n qui est solution sur I de l'équation différentielle $\left(1-x^2\right)y''-2xy'+n\left(n+1\right)y=0$ l'est aussi sur $\mathbb R$ puisqu'un polynôme est nul si, et seulement si, il est nul sur un intervalle non réduit à un point. La fonction $x\mapsto \ln\left(\frac{x+1}{x-1}\right)$ étant non rationnelle sur $]-\infty,-1[$ [resp. sur $]1,+\infty[]$ (si $\ln\left(\frac{x+1}{x-1}\right)=\frac{P\left(x\right)}{Q\left(x\right)}$ avec P et Q polynomiales de degrés respectectifs p et q, on a alors $\ln\left(\frac{x+1}{x-1}\right)\underset{x\to\pm\infty}{\sim}\alpha x^{p-q}$ avec $\alpha\neq 0$, ce qui est incompatible avec $\lim_{x\to\pm\infty}\ln\left(\frac{x+1}{x-1}\right)=0$), on en déduit que P_n et Q_n sont linéairement indépendantes. En définitive, les solutions sur $]-\infty,-1[$ [resp. sur $]1,+\infty[]$ de notre équation différentielle sont les fonctions définies par :

$$f(x) = \alpha P_n(x) + \beta \left(P_n(x) \ln \left(\frac{x+1}{x-1} \right) - R_{n-1}(x) \right)$$

où R_{n-1} est un polynôme de degré égal à n-1 $(R_{-1}=0)$ et α,β deux constantes réelles.

(d) Pour x fixé dans $\mathbb{R}\setminus[-1,1]$, la fonction $t\in]-1,1[\mapsto \frac{P_n\left(x\right)-P_n\left(t\right)}{x-t}$ est polynomiale de degré n-1, donc $\int_{-1}^1 \frac{P_n\left(x\right)-P_n\left(t\right)}{x-t} P_n\left(t\right) dt = 0$, ce qui nous donne $\int_{-1}^1 \frac{P_n^2\left(t\right)}{x-t} dt = P_n\left(x\right) \int_{-1}^1 \frac{P_n\left(t\right)}{x-t} dt$ et $Q_n\left(x\right) = \frac{1}{P_n\left(x\right)} \int_{-1}^1 \frac{P_n^2\left(t\right)}{x-t} dt$.

Exercice 15.9. On s'intéresse ici, pour $n \in \mathbb{N}^*$ fixé à l'équation différentielle $(1-x^2)$ y" -2xy'+n (n+1) y = 0 sur l'intervalle I=]-1,1[. En désignant par L_n le n-ième polynôme de Legendre normalisé par la condition $L_n(1)=1$ (voir le paragraphe 15.4), on sait que L_n est une solution polynomiale sur I de cette équation différentielle. On se donne une deuxième solution f et on note $w=L_nf'-L'_nf$ le wronskien correspondant. On note $x_{n,1}<\cdots< x_{n,n}$ les n racines de L_n dans I.

- 1. Montrer qu'il existe une constante réelle α telle que $w\left(x\right)=\frac{\alpha}{1-x^2}$ pour tout $x\in I$. Que peut-on dire pour $\alpha=0$?
- 2. Montrer qu'il existe deux constantes réelles α et β telles que :

$$f(x) = \alpha \left(\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) - \sum_{k=1}^{n} \frac{b_k}{x - x_{n,k}}\right) L_n(x) + \beta L_n(x)$$

pour tout $x \in I$, où $b_k = \frac{1}{\left(1 - x_{n,k}^2\right) \left(L'_n\left(x_{n,k}\right)\right)^2}$ pour k compris entre

Solution. On note $\lambda_n = -n(n+1)$.

1. Du système d'équations :

$$\begin{cases} (1-x^2) f'' - 2xf' = \lambda_n f \\ (1-x^2) L''_n - 2xL'_n = \lambda_n L_n \end{cases}$$

sur I, on déduit que $(1-x^2)$ $(f''L_n - L''_n f) - 2x$ $(f'L_n - L'_n f) = 0$, soit que $(1-x^2)$ w' - 2xw = 0 ou encore $((1-x^2)$ w)' = 0, ce qui donne $w(x) = \frac{\alpha}{1-x^2}$ pour tout $x \in I$, où $\alpha = w_n(0) \in \mathbb{R}$. Si $\alpha = 0$, on a alors w(x) = 0 pour tout $x \in I$ et pour $\xi \in I$ tel que $L_n(\xi) \neq 0$, la fonction $y = f - \frac{f(\xi)}{L_n(\xi)}L_n$ est solution de l'équation différentielle $(1-x^2)$ y'' - 2xy' + n(n+1) y = 0 avec les condition initiales $y(\xi) = 0$ et $y'(\xi) = \frac{L_n(\xi) f'(\xi) - L'_n(\xi) f(\xi)}{P_n(\xi)} = \frac{w(\xi)}{P_n(\xi)}$

 $\frac{w\left(\xi\right)}{P_{n}\left(\xi\right)}=0$, ce qui revient à dire que y=0, soit que les fonctions f et L_{n} sont linéairement dépendantes. Réciproquement, pour f et L_{n} liées, on a $\alpha=0$. De manière générale, il est bien connu que le wronskien d'un système fondamental de solutions d'une équation différentielle linéaire d'ordre n ne s'annule jamais.

2. L'égalité $w(x) = \frac{\alpha}{1-x^2}$ sur I s'écrit aussi $\left(\frac{f}{L_n}\right)'(x) = \frac{\alpha}{(1-x^2)L_n^2(x)}$ pour tout $x \in I \setminus \{x_{n,1}, \dots, x_{n,n}\}$. En utilisant la décomposition en éléments simples :

$$\frac{1}{(1-x^2)L_n^2(x)} = \frac{a}{1-x} + \frac{b}{1+x} + \sum_{k=1}^n \frac{a_k}{x - x_{n,k}} + \sum_{k=1}^n \frac{b_k}{(x - x_{n,k})^2}$$

où
$$a = \lim_{x \to 1} \frac{1}{(1+x)L_n^2(x)} = \frac{1}{2}, b = \lim_{x \to -1} \frac{1}{(1-x)L_n^2(x)} = \frac{1}{2}$$
:
$$b_k = \lim_{x \to x_{n,k}} \frac{(x-x_{n,k})^2}{(1-x^2)L_n^2(x)} = \frac{1}{\left(1-x_{n,k}^2\right)\left(L_n'(x_{n,k})\right)^2}$$

et, en notant $L_n(x) = (x - x_{n,k}) Q(x)$:

$$a_{k} = \left(\frac{(x - x_{n,k})^{2}}{(1 - x^{2}) L_{n}^{2}(x)}\right)'_{|x = x_{n,k}} = \left(\frac{1}{(1 - x^{2}) Q^{2}(x)}\right)'_{|x = x_{n,k}}$$
$$= -2\frac{\left(1 - x_{n,k}^{2}\right) Q'(x_{n,k}) - x_{n,k} Q(x_{n,k})}{\left(1 - x_{n,k}^{2}\right)^{2} Q^{3}(x_{n,k})}$$

L'équation $(1-x^2)L_n''(x) - 2xL_n'(x) = \lambda_n L_n(x)$ évaluée en $x_{n,k}$ nous donne $(1-x_{n,k}^2)L_n''(x_{n,k}) - 2x_{n,k}L_n'(x_{n,k}) = 0$ avec les égalités $L_n'(x_{n,k}) = Q'(x_{n,k})$ et $L_n''(x_{n,k}) = 2Q'(x_{n,k})$, ce qui aboutit à $a_k = 0$. On a donc :

$$\left(\frac{f}{L_n}\right)'(x) = \alpha \left(\frac{1}{2}\left(\frac{1}{1-x} + \frac{1}{1+x}\right) + \sum_{k=1}^n \frac{b_k}{(x-x_{n,k})^2}\right)$$

ce qui nous donne $\frac{f\left(x\right)}{L_{n}\left(x\right)}=\alpha\left(\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)-\sum_{k=1}^{n}\frac{b_{k}}{x-x_{n,k}}\right)+\beta,\text{ soit }:$

$$f(x) = \alpha \left(\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) - \sum_{k=1}^{n} \frac{b_k}{x - x_{n,k}}\right) L_n(x) + \beta L_n(x)$$

sur $I \setminus \{x_{n,1}, \dots, x_{n,n}\}$. Par continuité, ce résultat est en fait valable sur I.

Exercice 15.10. En désignant par \mathcal{L}_1 l'opérateur de Legendre défini sur $\mathcal{C}^2([-1,1],\mathbb{R})$ par $\mathcal{L}_1(f)=(1-x^2)f''-2xf'$, on note pour tout réel λ , $\mathcal{E}_{\lambda}=\ker(\mathcal{L}_1-\lambda I_d)$. Ici on travaille sur le segment [-1,1] et non sur l'intervalle ouvert]-1,1[.

- 1. Déterminer l'ensemble Σ des réels λ tels que $\mathcal{E}_{\lambda} \neq \{0\}$.
- 2. Montrer que, pour tout $\lambda \in \Sigma$, l'espace \mathcal{E}_{λ} est une droite vectorielle dont on donnera un vecteur directeur.
- 3. Déterminer l'ensemble des solutions de l'équation aux dérivées partielles :

$$\frac{\partial^{2} u}{\partial t^{2}}(t,x) = \left(1 - x^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}(t,x) - 2x \frac{\partial u}{\partial x}(t,x)$$

de la forme u(t,x) = a(t) b(x) avec a de classe C^2 sur \mathbb{R} et b de classe C^2 sur [-1,1].

Solution. Pour cet exercice, les fonctions sont définies sur le segment [-1,1] et par intégration par parties, on vérifie facilement que l'on a $\langle \mathcal{L}(f) \mid g \rangle = \langle f \mid \mathcal{L}(g) \rangle$ pour toutes fonctions f, g dans $\mathcal{C}^2([-1,1], \mathbb{R})$ (on a $\mathcal{L}_1(f) = ((1-x^2)f')'$).

1. On sait déjà que Σ contient $\Sigma' = \{\lambda_n = -n \, (n+1) \mid n \in \mathbb{N}\}$ (exemples 15.2) et il nous reste à vérifier que pour réel $\lambda \in \mathbb{R} \setminus \Sigma'$, on a $\mathcal{E}_{\lambda} = \{0\}$. Pour $f \in \mathcal{E}_{\lambda}$ et $n \in \mathbb{N}$, on a $\lambda \langle f \mid L_n \rangle = \langle \mathcal{L}(f) \mid L_n \rangle = \langle f \mid \mathcal{L}(L_n) \rangle = -n \, (n+1) \, \langle f \mid L_n \rangle$ avec $\lambda \neq -n \, (n+1)$, donc $\langle f \mid L_n \rangle = 0$. Comme $(L_n)_{n \in \mathbb{N}}$ est une base de \mathcal{P} , on en déduit $\langle f \mid Q \rangle = 0$ pour toute fonction polynomiale Q. Par ailleurs, le théorème de Weierstrass nous dit qu'il existe une suite $(Q_n)_{n \in \mathbb{N}}$ de fonctions polynomiales qui converge uniformément vers f sur [-1,1] (f est continue sur ce segment), donc la suite $(fQ_n)_{n \in \mathbb{N}}$ converge uniformément vers f^2 sur [-1,1] (puisque $||fQ_n - f^2||_{\infty} \leq ||f||_{\infty} ||Q_n - f||_{\infty}$) et on a :

$$||f||^2 = \int_{-1}^{1} f^2(x) dx = \lim_{n \to +\infty} \int_{-1}^{1} f(x) Q_n(x) dx = \lim_{n \to +\infty} \langle f | Q_n \rangle = 0$$

ce qui impose la nullité de f.

2. Pour $n \in \mathbb{N}$, l'espace \mathcal{E}_{λ_n} contient L_n et c'est l'ensemble des solutions sur [-1,1] de l'équation différentielle linéaire d'ordre 2 :

$$(1 - x^2) y''(x) - 2xy'(x) + n(n+1) y(x) = 0$$

Le théorème de Cauchy-Lipschitz nous dit que l'ensemble \mathcal{S}_{λ_n} des solution de cette équation différentielle sur l'intervalle ouvert]-1,1[est de dimension 2. On dispose donc d'une base (L_n,f_n) de cet espace. Pour vérifier que l'espace $\mathcal{E}_{\lambda_n} \subset \mathcal{S}_{\lambda_n}$ qui nous intéresse est de dimension 1, il suffit de vérifier que la solution f_n n'est pas dans \mathcal{E}_{λ_n} , c'est-à-dire qu'elle ne peut pas se prolonger en fonction de classe \mathcal{C}^2 sur le segment [-1,1]. Pour ce faire, on utilise le wronskien $w_n = L_n f'_n - L'_n f_n$. Sur]-1,1[, on a :

$$(1-x^2) w'_n - 2xw_n = (1-x^2) (L_n f''_n - L''_n f_n) - 2x (L_n f'_n - L'_n f_n)$$
$$= -n (n+1) (L_n f_n - f_n L_n) = 0$$

soit $((1-x^2)w_n(x))'=0$ et en conséquence, $w_n(x)=\frac{w_n(0)}{1-x^2}$ avec $w_n(0)\neq 0$ (le wronskien d'une base de solution est non nul). Il en résulte alors que :

$$\lim_{|x|\to 1} \left| w_n\left(x\right) \right| = \lim_{|x|\to 1} \left| L_n\left(x\right) f_n'\left(x\right) - f_n\left(x\right) L_n'\left(x\right) \right| = +\infty$$

et f_n n'est pas dans \mathcal{E}_{λ_n} . Donc \mathcal{E}_{λ_n} est de dimension 1 engendré par L_n .

3. Pour u(t,x) = a(t)b(x), notre équation aux dérivées partielles devient :

$$a''(t) b(x) = a(t) ((1 - x^2) b''(x) - 2xb'(x)) = a(t) \mathcal{L}_1(b)(x)$$

Pour u non identiquement nulle, il existe $t_0 \in \mathbb{R}$ tel que $a(t_0) \neq 0$ et b est non identiquement nulle telle que $\mathcal{L}_1(b) = \lambda b$ avec $\lambda = -\frac{a''(t_0)}{a(t_0)}$, il existe donc un entier $n \in \mathbb{N}$ tel que $\lambda = -n(n+1)$ et $b = \alpha L_n$. Pour x = 1 et $t \in [-1, 1]$, on a

 $a''\left(t\right)L_{n}\left(1\right)=-2L'_{n}\left(1\right)a\left(t\right)\text{ avec }L_{n}\left(1\right)=1\text{ et }2L'_{n}\left(1\right)=n\left(n+1\right)\text{ (qui résulte de }\left(1-x^{2}\right)L''_{n}\left(x\right)-2xL'_{n}\left(x\right)=-n\left(n+1\right)L_{n}\left(x\right)\right),\text{ soit }a''\left(t\right)=-n\left(n+1\right)a\left(t\right)$ et $a\left(t\right)=\beta+\gamma t$ pour n=0, $a\left(t\right)=\beta\cos\left(\sqrt{n\left(n+1\right)t}\right)+\gamma\sin\left(\sqrt{n\left(n+1\right)t}\right)$ pour $n\geq1.$ Les solutions sont donc les fonctions de la forme $u\left(t,x\right)=a+bt$ ou $u\left(t,x\right)=\left(a\cos\left(\sqrt{n\left(n+1\right)t}\right)+b\sin\left(\sqrt{n\left(n+1\right)t}\right)\right)L_{n}\left(x\right)$ avec $n\in\mathbb{N}^{*}.$

Exercice 15.11. On rappelle que la fonction Γ est définie sur l'intervalle $\mathbb{R}^{+,*}$ par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. Pour tous réels x, y dans $]-1, +\infty[$ tels que x-y>-1, on note $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}$. On se donne deux réels a>-1 et b>-1.

1. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$\int_{-1}^{1} (1-t)^{n+a} (1+t)^{n+b} dt = \frac{2^{2n+a+b+1}}{(n+b+1)\binom{2n+a+b+1}{a+n}}$$

2. Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{n} \binom{a+n}{k} \binom{b+n}{n-k} = \binom{a+b+2n}{n} \tag{15.10}$$

3. On désigne par $(Q_n)_{n\in\mathbb{N}}$ la suite des polynômes de Jacobi définie sur]-1,1[par :

$$Q_n(x) = \frac{1}{(1-x)^a (1+x)^b} \left((1-x)^{n+a} (1+x)^{n+b} \right)^{(n)}$$

Préciser le coefficient dominant de Q_n .

4. Calculer, pour $n \in \mathbb{N}^*$, $||Q_n||$, où $||\cdot||$ est la norme correspondante au produit scalaire associé à la fonction poids $\pi : x \mapsto (1-x)^a (1+x)^b$ sur]-1,1[.

Solution. Pour $m \le n$ entiers naturels, on a $\Gamma(n+1) = n!$ et $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ est le coefficient binomial usuel.

1. En notant $W_n = \int_{-1}^{1} (1-t)^{n+a} (1+t)^{n+b} dt$ et en effectuant le changement de variable t = 1 - 2x, on a :

$$\begin{split} W_n &= 2^{2n+a+b+1} \int_0^1 x^{n+a} (1-x)^{n+b} dt \\ &= 2^{2n+a+b+1} B (n+a+1,n+b+1) = 2^{2n+a+b+1} \frac{\Gamma(n+a+1) \Gamma(n+b+1)}{\Gamma(2n+a+b+2)} \\ &= \frac{2^{2n+a+b+1}}{(n+b+1) \binom{2n+a+b+1}{a+n}} \end{split}$$

Pour
$$a = b = 0$$
, on a $W_n = \int_{-1}^{1} (1 - t^2)^n dt = 2^{2n+1} \frac{(n!)^2}{(2n+1)!}$.

2. Pour tout réel $\beta > -1$, tout entier $n \in \mathbb{N}^*$ et tout réel $x \in]-1,1[$, on a le développement limité à l'ordre n:

$$(1+x)^{\beta+n} = 1 + \sum_{k=1}^{n} \frac{(\beta+n)(\beta+n-1)\cdots(\beta+n-(k-1))}{k!} x^k + o(x^n)$$

$$= \sum_{k=0}^{n} \frac{\Gamma(\beta+n+1)}{\Gamma(k+1)\Gamma(\beta+n+1-k)} x^k + o(x^n)$$

$$= \sum_{k=0}^{n} {\beta+n \choose k} x^k + o(x^n)$$

ce qui nous donne en prenant $\beta = a + b + n$:

$$(1+x)^{a+b+2n} = \sum_{k=0}^{n} {a+b+2n \choose k} x^k + o(x^n)$$

$$= (1+x)^{a+n} (1+x)^{b+n}$$

$$= \sum_{p=0}^{n} \left(\sum_{k=0}^{p} {a+n \choose k} {b+n \choose p-k} \right) x^p + o(x^n)$$

En identifiant les coefficients de x^n dans ces développements limités, on obtient (15.10).

3. Pour n=0 on a $Q_0=1.$ Pour $n\geq 1,$ en utilisant la formule de Leibniz, on a :

$$\begin{split} &\left((1-x)^{n+a}\left(1+x\right)^{n+b}\right)^{(n)} \\ &= \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k} \Gamma\left(a+n+1\right)}{\Gamma\left(a+n-k+1\right)} \left(1-x\right)^{a+n-k} \frac{\Gamma\left(b+n+1\right)}{\Gamma\left(b+k+1\right)} \left(1+x\right)^{b+k} \\ &= \Gamma\left(a+n+1\right) \Gamma\left(b+n+1\right) \left(1-x\right)^{a} \left(1+x\right)^{b} \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k} \left(1-x\right)^{n-k}}{\Gamma\left(a+n-k+1\right)} \frac{(1+x)^{k}}{\Gamma\left(b+k+1\right)} \\ &= n! \left(1-x\right)^{a} \left(1+x\right)^{b} \sum_{k=0}^{n} \left(-1\right)^{k} \binom{a+n}{k} \binom{b+n}{n-k} \left(1-x\right)^{n-k} \left(1+x\right)^{k} \end{split}$$

ce qui nous donne :

$$Q_n(x) = n! \sum_{k=0}^{n} (-1)^k {\binom{a+n}{k}} {\binom{b+n}{n-k}} (1-x)^{n-k} (1+x)^k$$

et le coefficient dominant de Q_n est donné par :

$$\alpha_n = (-1)^n n! \sum_{k=0}^n \binom{a+n}{k} \binom{b+n}{n-k} = (-1)^n n! \binom{a+b+2n}{n}$$
$$= (-1)^n \frac{\Gamma(a+b+2n+1)}{\Gamma(a+b+n+1)}$$

Pour a = b = 0, on a $\alpha_n = (-1)^n \frac{(2n)!}{n!}$.

4. Sa norme est donnée par

$$\begin{aligned} \|Q_n\|^2 &= n! \frac{\Gamma(a+b+2n+1)}{\Gamma(a+b+n+1)} \int_{-1}^1 (1-x)^a (1+x)^b dx \\ &= n! \frac{\Gamma(a+b+2n+1)}{\Gamma(a+b+n+1)} \frac{2^{2n+a+b+1}}{(n+b+1) \binom{2n+a+b+1}{a+n}} \\ &= \frac{n! 2^{2n+a+b+1}}{(n+b+1)} \frac{\Gamma(a+b+2n+1)}{\Gamma(a+b+n+1)} \frac{\Gamma(a+n+1)\Gamma(b+n+2)}{\Gamma(2n+a+b+2)} \\ &= \frac{n! 2^{2n+a+b+1}}{2n+a+b+1} \frac{\Gamma(a+n+1)\Gamma(b+n+1)}{\Gamma(a+b+n+1)} \end{aligned}$$

Exercice 15.12. En notant pour tout $n \in \mathbb{N}^*$, $x_n = \max_{1 \le k \le n} x_{n,k}$ la plus grande des racines de L_n , où $(L_n)_{n \in \mathbb{N}}$ est la suite des polynômes de Legendre normalisés par la condition $L_n(1) = 1$ (paragraphe 15.4), montrer (sans utiliser le théorème 15.8) que la suite $(x_n)_{n \in \mathbb{N}^*}$ est strictement croissante et en conséquence, convergente (sa limite vaut 1 d'après le corollaire 15.3).

Solution. On vérifie par récurrence que la suite $(x_n)_{n \in \mathbb{N}^*}$ est strictement croissante. On a $L_1(x) = x$, $L_2(x) = \frac{1}{2} (3x^2 - 1)$ et $L_3(x) = \frac{x}{2} (5x^2 - 3)$, donc $x_1 = 0 < x_2 = \frac{1}{\sqrt{3}} < x_3 = \frac{\sqrt{3}}{\sqrt{5}}$. Supposons que $0 < x_1 < \dots < x_{n-1} < x_n$ pour $n \ge 3$. Si $x_{n+1} = x_n$, la relation de récurrence (15.6) nous donne $L_{n-1}(x_n) = 0$ avec $x_n > x_{n-1} = \max_{1 \le k \le n-1} x_{n-1,k}$, ce qui n'est pas possible. Si $x_{n+1} < x_n$, on a alors $\alpha = \max(x_{n-1}, x_{n+1}) < x_n$ et pour tout $x > \alpha$:

$$(2n+1) x L_n(x) = (n+1) L_{n+1}(x) + n L_{n-1}(x) > 0$$

(puisque les coefficients dominants des L_k sont strictement positifs), ce qui est incompatible avec $x_n > \alpha$ et $L_n(x_n) = 0$. On a donc $x_n < x_{n+1}$. La suite $(x_n)_{n \in \mathbb{N}^*}$ est donc croissante majorée par 1 (les x_n sont dans]0,1[) et en conséquence convergente vers un réel $\ell \in]0,1]$.

Exercice 15.13. Soient $n \in \mathbb{N}$, $x \in [-1,1]$ et $r \in \mathbb{R}^{+,*}$.

1. Montrer que, pour tout entier k compris entre 0 et n, on a:

$$\int_{\gamma_{r,x}} \frac{z^{2k}}{(z-x)^{n+1}} dz = 2i\pi \binom{2k}{n} x^{2k-n}$$

2. En déduire que $\int_{\gamma_{x,r}} \frac{\left(z^2-1\right)^n}{\left(z-x\right)^{n+1}} dz = 2i\pi 2^n L_n\left(x\right).$

Solution.

1. Pour tout entier k compris entre 0 et n, on a :

$$\int_{\gamma_{r,x}} \frac{z^{2k}}{(z-x)^{n+1}} dz = \int_0^{2\pi} \frac{\left(x+re^{it}\right)^{2k}}{\left(re^{it}\right)^{n+1}} ire^{it} dt = \frac{i}{r^n} \int_0^{2\pi} \left(x+re^{it}\right)^{2k} e^{-int} dt$$

$$= \frac{i}{r^n} \int_0^{2\pi} \sum_{j=0}^{2k} \binom{2k}{j} x^j r^{2k-j} e^{i(2k-j)t} e^{-int} dt$$

$$= \frac{i}{r^n} \sum_{j=0}^{2k} \binom{2k}{j} x^j r^{2k-j} \int_0^{2\pi} e^{i(2k-j-n)t} dt$$

avec $\int_0^{2\pi} e^{imt} dt = 0$ pour tout entier relatif non nul m. Pour $0 \le k < \frac{n}{2}$, on a 2k - j - n < 0 pour tout $j \ge 0$ et pour $\frac{n}{2} \le k \le n$, il ne reste dans la somme ci-dessus que l'intégrale correspondante à j = 2k - n, ce qui nous donne :

$$\int_{\gamma_{r,x}} \frac{z^{2k}}{(z-x)^{n+1}} dz = \frac{i}{r^n} \binom{2k}{2k-n} x^{2k-n} r^n 2\pi = 2i\pi \binom{2k}{n} x^{2k-n}$$

2. Il en résulte que :

$$\int_{\gamma_{x,r}} \frac{\left(z^2 - 1\right)^n}{\left(z - x\right)^{n+1}} dz = 2i\pi \sum_{\frac{n}{2} \le k \le n} (-1)^{n-k} \binom{2k}{n} \binom{n}{k} x^{2k-n} = 2i\pi 2^n L_n(x)$$

Exercice 15.14. On désigne par $(P_n)_{n\in\mathbb{N}}$ la suite des polynômes de Legendre normalisés sur l'intervalle I=]-1,1[et pour tout entier naturel n, on définit la fonction φ_n par :

$$\forall x \in I, \ \varphi_n(x) = (P_n(x))^2 + \frac{(1-x^2)}{n(n+1)} ((P'_n(x))^2)$$

1. Montrer que
$$\varphi'_n(x) = \frac{2x (P'_n(x))^2}{n(n+1)}$$
.

2. En déduire que
$$\sup_{x \in [-1,1]} |P_n(x)| = \sqrt{\frac{2n+1}{2}}$$
.

Solution.

1. On a pour tout $x \in \mathbb{R}$:

$$\varphi'_{n}(x) = \frac{2P'_{n}(x)}{n(n+1)} \left(n(n+1) P_{n}(x) - xP'_{n}(x) + (1-x^{2}) P''_{n}(x) \right)$$
$$= \frac{2x (P'_{n}(x))^{2}}{n(n+1)}$$

2. On en déduit que $\varphi_n'(x) \geq 0$ sur [0,1] et la fonction φ_n est croissante sur l'intervalle [0,1]. Il en résulte que :

$$\forall x \in [0,1], \ 0 \le (P_n(x))^2 \le \varphi_n(x) \le \varphi_n(1) = (P_n(1))^2$$

et $|P_n\left(x\right)| \leq |P_n\left(1\right)| = \sqrt{\frac{2n+1}{2}}$. Par parité ce résultat est encore valable sur [-1,1]. On peut donc conclure que $\sup_{x \in [-1,1]} |P_n\left(x\right)| = \sqrt{\frac{2n+1}{2}}$.

Exercice 15.15. Soit I = [a, b] un intervalle réel fermé borné avec a < b. Montrer que l'espace vectoriel $C^0(I, \mathbb{R})$ muni de la norme $f \mapsto \|f\| = \sqrt{\int_a^b |f(x)|^2 dx}$ n'est pas complet (ce n'est pas un espace de Hilbert).

Solution. Soit $(f_n)_{n\geq 2}$ la suite de fonctions définies sur I par :

$$f_n(x) = \begin{cases} 1 \text{ si } 0 \le x < \frac{1}{2} \\ n\left(\frac{1}{2} + \frac{1}{n} - x\right) \text{ si } \frac{1}{2} \le x < \frac{1}{2} + \frac{1}{n} \\ 0 \text{ si } \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

(faire une figure). Pour m > n > 0, on a :

$$||f_n - f_m||^2 = (m - n)^2 \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{m}} \left(x - \frac{1}{2} \right)^2 dx + \int_{\frac{1}{2} + \frac{1}{m}}^{\frac{1}{2} + \frac{1}{n}} n^2 \left(\frac{1}{2} + \frac{1}{n} - x \right)^2 dx$$
$$= \frac{1}{3m} \left(1 - \frac{n}{m} \right)^2 + \frac{1}{3n} \left(1 - \frac{n}{m} \right)^3 \le \frac{1}{3} \left(\frac{1}{m} + \frac{1}{n} \right)$$

ce qui entraı̂ne que cette suite est de Cauchy dans $(E, \|\cdot\|)$. D'autre part la suite de fonctions $(f_n)_{n\geq 2}$ converge simplement vers la fonction continue par morceaux

 $f \text{ définie sur } [0,1] \text{ par } f(x)=1 \text{ si } 0 \leq x \leq \frac{1}{2} \text{ et } f(x)=0 \text{ si } \frac{1}{2} < x \leq 1. \text{ Si } (f_n)_{n\geq 2} \text{ converge dans } \left(\mathcal{C}^0\left(I,\mathbb{R}\right),\|\cdot\|\right) \text{ vers une fonction } g, \text{ on peut alors écrire que } \|f-g\| \leq \|f-f_n\| + \|f_n-g\| \text{ avec } \|f-f_n\|^2 = \int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}} n^2 \left(\frac{1}{2}+\frac{1}{n}-x\right)^2 dx = \frac{1}{3n} \text{ et en passant à la limite quand } n \text{ tend vers l'infini on déduit que } \|f-g\|=0. \text{ Par continuité on déduit alors que } f=g \text{ sur } [0,1] \setminus \left\{\frac{1}{2}\right\} \text{ avec } f \text{ discontinue en } \frac{1}{2} \text{ et } g \text{ continue en ce point, ce qui est impossible. On a donc ainsi montré que } \left(\mathcal{C}^0\left(I,\mathbb{R}\right),\|\cdot\|\right) \text{ n'est pas complet.}$

Exercice 15.16. $(L_n)_{n\in\mathbb{N}}$ est la suite des polynômes de Legendre normalisés par les conditions $L_n(1)=1$ (paragraphe 15.4).

1. Montrer que l'on a pour tout $n \in \mathbb{N}^*$:

$$XL'_{n} - L'_{n-1} = nL_{n}$$
$$L'_{n+1} = L'_{n-1} + (2n+1)L_{n} = XL'_{n} + (n+1)L_{n}$$

2. Calculer les coefficients de Fourier-Legendre de la fonction f définie par :

$$\forall x \in [-1, 1], \ f(x) = \begin{cases} 0 \ si \ x \in [-1, \alpha[\\ \frac{1}{2} \ si \ x = \alpha\\ 1 \ si \ x \in [\alpha, 1] \end{cases}$$

où α est un réel strictement compris entre -1 et 1.

3. Étudier la série de Fourier-Legendre correspondante.

Solution.

1. Pour tout $n \in \mathbb{N}^*$, on a $XL'_n - L'_{n-1} \in \mathbb{R}_n[X] = \text{Vect}\{L_0, \dots, L_n\}$, donc $XL'_n - L'_{n-1} = \sum_{k=0}^n \alpha_k L_k \text{ avec}$:

$$\alpha_{k} \|L_{k}\|^{2} = \langle XL'_{n} - L'_{n-1} | L_{k} \rangle = \langle L'_{n} | XL_{k} \rangle - \langle L'_{n-1} | L_{k} \rangle$$

$$= [xL_{n}(x) L_{k}(x)]_{-1}^{1} - \langle L_{n} | (XL_{k})' \rangle - [L_{n-1}(x) L_{k}(x)]_{-1}^{1} + \langle L_{n-1} | L'_{k} \rangle$$

$$= 1 + (-1)^{n+k} - \langle L_{n} | (XL_{k})' \rangle - (1 - (-1)^{n-1+k}) + \langle L_{n-1} | L'_{k} \rangle$$

$$= \langle L_{n-1} | L'_{k} \rangle - \langle L_{n} | (XL_{k})' \rangle$$

$$= \langle L_{n-1} | L'_{k} \rangle - \langle L_{n} | L_{k} \rangle - \langle L_{n} | XL'_{k} \rangle = 0$$

pour $k \leq n-1$ et $XL'_n - L'_{n-1} = \alpha_n L_n$. Les coefficients de X^n dans cette égalité donnent $\alpha_n = n$. La relation (15.7) nous donne par dérivation :

$$n(n+1)(L'_{n+1}-L'_{n-1}) = (2n+1)\mathcal{L}(L_n) = (2n+1)n(n+1)L_n$$

soit
$$L'_{n+1} - L'_{n-1} = (2n+1) L_n$$
. De ces deux égalités, on déduit que :
$$L'_{n+1} = L'_{n-1} + (2n+1) L_n = XL'_n - nL_n + (2n+1) L_n = XL'_n + (n+1) L_n$$

2. Les coefficients de Fourier-Legendre de f sont les $c_n(f) = \int_{\alpha}^{1} P_n(x) dx$. Pour n = 0, on a $c_0(f) = \frac{1-\alpha}{\sqrt{2}}$. Pour $n \ge 1$, l'égalité :

$$P_{n} = \frac{1}{\sqrt{2n+1}} \left(\frac{1}{\sqrt{2n+3}} P'_{n+1} - \frac{1}{\sqrt{2n-1}} P'_{n-1} \right)$$
nous donne $c_{n}(f) = \frac{1}{\sqrt{2n+1}} \left(\frac{P_{n+1}(1) - P_{n+1}(\alpha)}{\sqrt{2n+3}} - \frac{P_{n-1}(1) - P_{n-1}(\alpha)}{\sqrt{2n-1}} \right)$
avec $P_{k}(1) = \sqrt{\frac{2k+1}{2}}$, donc $\frac{1}{\sqrt{2n+3}} P_{n+1}(1) - \frac{1}{\sqrt{2n-1}} P_{n-1}(1) = 0$ et $c_{n}(f) = \frac{1}{\sqrt{2n+1}} \left(\frac{P_{n-1}(\alpha)}{\sqrt{2n-1}} - \frac{P_{n+1}(\alpha)}{\sqrt{2n+3}} \right)$.

3. La fonction f étant lipschitzienne, on a pour tout $x \in]-1,1[$:

$$f(x) = \frac{1 - \alpha}{\sqrt{2}} P_0(x) + \sum_{n=1}^{+\infty} \frac{1}{\sqrt{2n+1}} \left(\frac{P_{n-1}(\alpha)}{\sqrt{2n-1}} - \frac{P_{n+1}(\alpha)}{\sqrt{2n+3}} \right) P_n(x)$$

En utilisant les polynômes $L_k = \frac{\sqrt{2}}{\sqrt{2k+1}} P_k$, cela s'écrit :

$$f(x) = \frac{1-\alpha}{2} + \frac{1}{2} \sum_{n=1}^{+\infty} (L_{n-1}(\alpha) - L_{n+1}(\alpha)) L_n(x)$$

Pour $x = \alpha$, on obtient, $\frac{1-\alpha}{2} + \frac{1}{2} \sum_{n=1}^{+\infty} (L_{n-1}(\alpha) - L_{n+1}(\alpha)) L_n(\alpha) = \frac{1}{2}$, ce qui peut se vérifier directement (somme télescopique).