Supervised Learning - Foundations Project: ReCell

Problem Statement

Business Context

Buying and selling used phones and tablets used to be something that happened on a handful of online marketplace sites. But the used and refurbished device market has grown considerably over the past decade, and a new IDC (International Data Corporation) forecast predicts that the used phone market would be worth \$52.7bn by 2023 with a compound annual growth rate (CAGR) of 13.6% from 2018 to 2023. This growth can be attributed to an uptick in demand for used phones and tablets that offer considerable savings compared with new models.

Refurbished and used devices continue to provide cost-effective alternatives to both consumers and businesses that are looking to save money when purchasing one. There are plenty of other benefits associated with the used device market. Used and refurbished devices can be sold with warranties and can also be insured with proof of purchase. Third-party vendors/platforms, such as Verizon, Amazon, etc., provide attractive offers to customers for refurbished devices. Maximizing the longevity of devices through second-hand trade also reduces their environmental impact and helps in recycling and reducing waste. The impact of the COVID-19 outbreak may further boost this segment as consumers cut back on discretionary spending and buy phones and tablets only for immediate needs.

Objective

The rising potential of this comparatively under-the-radar market fuels the need for an ML-based solution to develop a dynamic pricing strategy for used and refurbished devices. ReCell, a startup aiming to tap the potential in this market, has hired you as a data scientist. They want you to analyze the data provided and build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it.

Data Description

The data contains the different attributes of used/refurbished phones and tablets. The data was collected in the year 2021. The detailed data dictionary is given below.

- brand_name: Name of manufacturing brand
- os: OS on which the device runs
- screen size: Size of the screen in cm
- 4g: Whether 4G is available or not
- 5g: Whether 5G is available or not

- main_camera_mp: Resolution of the rear camera in megapixels
- selfie_camera_mp: Resolution of the front camera in megapixels
- int_memory: Amount of internal memory (ROM) in GB
- ram: Amount of RAM in GB
- battery: Energy capacity of the device battery in mAh
- weight: Weight of the device in grams
- release_year: Year when the device model was released
- days_used: Number of days the used/refurbished device has been used
- normalized_new_price: Normalized price of a new device of the same model in euros
- normalized used price: Normalized price of the used/refurbished device in euros

Importing necessary libraries

```
In [89]:
         # Libraries to help with reading and manipulating data
         import numpy as np
         import pandas as pd
         import datetime as dt
         # Libraries to help with data visualization
         import matplotlib.pyplot as plt
         import seaborn as sns
         # split the data into train and test
         from sklearn.model_selection import train_test_split
         # to build linear regression model
         import statsmodels.api as sm
         # to check model performance
         from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
         # to compute VIF
         from statsmodels.stats.outliers_influence import variance_inflation_factor
         # to check normalcy
         import pylab
         import scipy.stats as stats
         # to check homoscedasticity
         import statsmodels.stats.api as sms
         from statsmodels.compat import lzip
In [2]: # Set standard styling; writer has slight vision deficiency
         # Paper context selected for readability in turned in .html format, but was originally
         custom_palette = sns.color_palette('colorblind')
         sns.set(style='whitegrid', context='paper', palette= custom_palette)
         sns.set(rc={'grid.color': 'gray', 'grid.alpha': 0.5})
```

sns.palplot(custom_palette)

Loading the dataset

Data Overview

Shape

```
In [7]: # check the shape of the data
df.shape
Out[7]: (3454, 15)
In [8]: df.duplicated().sum()
Out[8]: 0
```

There are 3454 rows of data, with 15 starting columns. There are no duplicate rows, so for now that will reamin our shape!

First few rows and data types

```
In [9]: # check the first 5 rows of the data
df.head()
```

Out[9]:		brand_name	os	screen_size	4g	5g	main_camera_mp	selfie_camera_mp	int_memory	ram
	0	Honor	Android	14.50	yes	no	13.0	5.0	64.0	3.0
	1	Honor	Android	17.30	yes	yes	13.0	16.0	128.0	8.0
	2	Honor	Android	16.69	yes	yes	13.0	8.0	128.0	8.0
	3	Honor	Android	25.50	yes	yes	13.0	8.0	64.0	6.0
	4	Honor	Android	15.32	yes	no	13.0	8.0	64.0	3.0
4										•
Τη [10]·	#	check colum	n tunes	and number	of	valu	٥ς			

In [10]: # cneck column types and number of values df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 3454 entries, 0 to 3453 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	brand_name	3454 non-null	object
1	os	3454 non-null	object
2	screen_size	3454 non-null	float64
3	4g	3454 non-null	object
4	5g	3454 non-null	object
5	main_camera_mp	3275 non-null	float64
6	selfie_camera_mp	3452 non-null	float64
7	int_memory	3450 non-null	float64
8	ram	3450 non-null	float64
9	battery	3448 non-null	float64
10	weight	3447 non-null	float64
11	release_year	3454 non-null	int64
12	days_used	3454 non-null	int64
13	normalized_used_price	3454 non-null	float64
14	normalized_new_price	3454 non-null	float64
dtype	es: float64(9), int64(2)), object(4)	

memory usage: 404.9+ KB

- All data types are as expected
- There are some missing values that will need treatment
- The 4g and 5g columns appear to be yes/no objects, but can check the unique values during EDA
- At this time, all columns appear relavent and worth including in the initial model.
- Release year is a numeric value but the feature that is more intuitive is how many years ago it was released. Lets go ahead and update that feature.

Early feature engineering - years_since_release

```
In [11]: # Early Feature Engineering - release year to years since release
         # create a copy of data so that any edits from here will not change the original uploa
         df1 = df.copy()
         # To make more robust, defining a current year variable instead of hard coding "2023"
```

Out[12]:

```
current_year = dt.datetime.now().year
         # create new feature
         df1['years_since_release'] = current_year - df1['release_year']
         # remove old feture
         df1.drop(columns=['release_year'], inplace = True)
         # rearrange column order. This is purely convenience -
         # it puts the used price on the bottom of some later key visualizations for less scrol
         column_order_temp = list(df1.columns)
         column_order_temp[12], column_order_temp[14] = column_order_temp[14], column_order_tem
         df1 = df1[column_order_temp]
         # check new dataframe info
         df1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3454 entries, 0 to 3453
         Data columns (total 15 columns):
              Column
                                      Non-Null Count Dtype
          0
              brand_name
                                      3454 non-null
                                                      object
          1
                                      3454 non-null
                                                      object
              OS
          2
                                      3454 non-null
              screen_size
                                                      float64
          3
                                      3454 non-null
              4g
                                                      object
          4
                                      3454 non-null
                                                      object
              5g
          5
              main camera mp
                                      3275 non-null
                                                      float64
                                                      float64
              selfie_camera_mp
                                      3452 non-null
          7
              int_memory
                                      3450 non-null
                                                      float64
          8
                                      3450 non-null
                                                      float64
              ram
          9
              battery
                                      3448 non-null
                                                      float64
          10 weight
                                      3447 non-null
                                                      float64
                                                      int64
          11 days_used
                                      3454 non-null
          12 years_since_release
                                      3454 non-null
                                                       int64
          13 normalized_new_price
                                      3454 non-null
                                                      float64
          14 normalized used price 3454 non-null
                                                      float64
         dtypes: float64(9), int64(2), object(4)
         memory usage: 404.9+ KB
         # check the first 5 rows of the new dataframe
In [12]:
         df1.head()
                                               5g main_camera_mp selfie_camera_mp int_memory ram
            brand_name
                            os screen_size
                                           4g
         0
                                                                               5.0
                 Honor Android
                                     14.50 yes
                                                              13.0
                                                                                         64.0
                                                                                               3.0
         1
                 Honor Android
                                                              13.0
                                                                              16.0
                                                                                         128.0
                                     17.30 yes yes
                                                                                               0.8
         2
                                                              13.0
                 Honor Android
                                     16.69 yes yes
                                                                               8.0
                                                                                         128.0
                                                                                               8.0
         3
                 Honor Android
                                     25.50 yes yes
                                                              13.0
                                                                               8.0
                                                                                         64.0
                                                                                               6.0
         4
                                     15.32 yes
                                                              13.0
                                                                               8.0
                                                                                         64.0
                                                                                               3.0
                 Honor Android
```

Basic Statistical Summary

In [13]:	<pre>df1.describe(include="all").T</pre>									
Out[13]:		count	unique	top	freq	mean	std	min	25%	
	brand_name	3454	34	Others	502	NaN	NaN	NaN	NaN	
	os	3454	4	Android	3214	NaN	NaN	NaN	NaN	
	screen_size	3454.0	NaN	NaN	NaN	13.713115	3.80528	5.08	12.7	
	4 g	3454	2	yes	2335	NaN	NaN	NaN	NaN	
	5g	3454	2	no	3302	NaN	NaN	NaN	NaN	
	main_camera_mp	3275.0	NaN	NaN	NaN	9.460208	4.815461	0.08	5.0	
	selfie_camera_mp	3452.0	NaN	NaN	NaN	6.554229	6.970372	0.0	2.0	
	int_memory	3450.0	NaN	NaN	NaN	54.573099	84.972371	0.01	16.0	
	ram	3450.0	NaN	NaN	NaN	4.036122	1.365105	0.02	4.0	
	battery	3448.0	NaN	NaN	NaN	3133.402697	1299.682844	500.0	2100.0	
	weight	3447.0	NaN	NaN	NaN	182.751871	88.413228	69.0	142.0	
	days_used	3454.0	NaN	NaN	NaN	674.869716	248.580166	91.0	533.5	
	years_since_release	3454.0	NaN	NaN	NaN	8.034742	2.298455	4.0	6.0	
	normalized_new_price	3454.0	NaN	NaN	NaN	5.233107	0.683637	2.901422	4.790342	5
	normalized_used_price	3454.0	NaN	NaN	NaN	4.364712	0.588914	1.536867	4.033931	4
4										•

- No extraoridnay values in this chart
- The normalized columns do appear to be normally distributed, while most other have a shift.
- The phones that have near 0GB of RAM, near 0BG of ROM, and near 0MP on the two main cameras may be outliers. However, the phones do go back to 2013.

First look at missing values

```
In [14]: df1.isnull().sum()
```

```
0
         brand_name
Out[14]:
                                    0
         OS
         screen_size
                                    0
         4g
                                    0
         5g
                                 179
         main_camera_mp
                                    2
         selfie_camera_mp
         int_memory
                                    4
         ram
         battery
         weight
         days_used
         years_since_release
         normalized_new_price
         normalized_used_price
         dtype: int64
```

Observation:

This initial look shows that:

- One variable, main_camera_mp is missing in 179 of the 3454 data points.
- There are several variables with only a handful of missing values: selfie_camera_mp, int_memory, ram, battery, weight.
- Will come back to these after EDA we will impute, remove, or otherwise treat based on EDA discoveries.

Exploratory Data Analysis (EDA)

Custom Functions for EDA / Visualization

```
def histogram_boxplot(data, feature, figsize=(15, 10), kde=False, bins=None):
In [15]:
             Boxplot and histogram combined
             data: dataframe
             feature: dataframe column
             figsize: size of figure (default (15,10))
             kde: whether to show the density curve (default False)
             bins: number of bins for histogram (default None)
             # creating the 2 subplots
             f2, (ax_box2, ax_hist2) = plt.subplots(
                 nrows=2, # Number of rows of the subplot grid= 2
                 sharex=True, # x-axis will be shared among all subplots
                 gridspec_kw={"height_ratios": (0.25, 0.75), "hspace": 0.05, "top": 0.95},
                 figsize=figsize,
             #create a title
             f2.suptitle("Histogram and Boxplot for " + feature, fontsize=16)
             # boxplot will be created and a square will indicate the mean value of the column
             sns.boxplot(
```

```
data=data, x=feature, ax=ax_box2, showmeans=True,
    meanprops={"marker":"s", "markersize" : 8, "markerfacecolor": custom_palette[1
    medianprops = {'linewidth':4},
    color = custom_palette[2]
#remove duplicate x label
ax_box2.set_xlabel("")
#create histogram, with consideration of bins
sns.histplot(
    data=data, x=feature, kde=kde, ax=ax_hist2, bins=bins, alpha = 0.7
) if bins is not None else sns.histplot(
    data=data, x=feature, kde=kde, ax=ax_hist2, alpha = 0.7
# add mean and median to histogram
ax_hist2.axvline(
    data[feature].mean(), color = 'black', linestyle= '-', linewidth = 8
) # a pseudo border for the mean line
ax_hist2.axvline(
    data[feature].mean(), color = custom_palette[1], linestyle= '-', linewidth = 5
ax_hist2.axvline(
    data[feature].median(), color = 'black', linestyle= '-', linewidth = 5, label
# Add a Legend
ax_hist2.legend(loc='upper right')
```

Targeted EDA Questions

1. What does the distribution of normalized used device prices look like?

```
In [16]: ### histogram and boxplot showing target variable - used prices
histogram_boxplot(df1, "normalized_used_price", kde = True)
```

Histogram and Boxplot for normalized_used_price

The used prices are normalized, as the name of the variable implies. The Mean, Median, and Mode are all around the same value of ~4.4. There are many outliers less than the Q1 value, with values between 1.53 and 4.03. The middle 50% of the data is in a very narrow space relative to the actual range of the data.

2. What percentage of the used device market is dominated by Android devices?

```
In [17]: df1['os'].value_counts(1)

Out[17]: Android     0.930515
     Others     0.039664
     Windows     0.019398
     iOS      0.010423
     Name: os, dtype: float64
```

Android is 93% of the Market. Which is suprising to me as an Android user myself - the emote reactions between iOS and Android at time of writing still dont work perfectly and generate duplicate messages. This tells me not to trust my own intuition about this market data - I am not a SME and my experience is not standard.

3. The amount of RAM is important for the smooth functioning of a device. How does the amount of RAM vary with the brand?

```
# Look at the stats summary of the RAM grouped by Brand Name first, then we can visual
mean_ram_by_brand = df1.groupby(by = ['brand_name'])['ram'].mean().sort_values()
print(mean_ram_by_brand.describe(), end='\n\n')
print(mean_ram_by_brand)
```

```
count
         34.000000
mean
          3.962049
std
          0.787467
min
          1.613636
25%
          3.790803
50%
          4.000000
75%
          4.198341
          6.363636
max
Name: ram, dtype: float64
brand_name
Celkon
              1.613636
Nokia
              2.420294
Infinix
              2.600000
Lava
              3.277778
Karbonn
              3.353448
Alcatel
              3.407025
Micromax
              3.679487
Spice
              3.750000
Others
              3.777888
BlackBerry
              3.829545
Lenovo
              3.885965
Acer
              3.901961
Gionee
              3.933036
LG
              3.936567
Motorola
              3.943396
Coolpad
              3.954545
HTC
              4.000000
Panasonic
              4.000000
              4.000000
Apple
XOLO
              4.000000
Microsoft
              4.000000
ZTE
              4.023214
Asus
              4.049180
Sony
              4.069767
              4.195122
Realme
              4.199413
Samsung
Meizu
              4.451613
Google
              4.533333
Xiaomi
              4.583333
Honor
              4.603448
Huawei
              4.655378
Vivo
              4.756410
              4.961240
0ppo
OnePlus
              6.363636
Name: ram, dtype: float64
```

- There are 34 brands in this data set, with a mean RAM of 3.96 and a range of 4.75.
- This means the devices with the highest RAM have almost 4 times as much RAM as the devices with the least RAM.
- The standard deviation of 0.78 and the closeness of the mean and Q2 value propose the distribution of average RAMs is somewhat normally distributed, lets take a look.

```
In [19]: ### histogram and boxplot to show distribution of average RAMs across all brands
mean_ram_df = mean_ram_by_brand.reset_index()
histogram_boxplot(mean_ram_df, 'ram')
```

Histogram and Boxplot for ram

I would certainly want to ask the SME at this point for guidance on how to treat these outliers. The OnePlus devices with a mean of 6.36 are so far ahead of the group - possibly a niche company? Same with the bottom three brands; Celkon, Nokia, and Infinix. I said earlier that I didnt want to trust my experience with devices, but it is an Internet joke that Nokia devices live forever. I wonder if these three brands also have an older mean age.

```
In [20]: # Quick look at years since release by brand
mean_year_by_brand = df1.groupby(by = ['brand_name'])['years_since_release'].mean().sc
print(mean_year_by_brand)
```

```
brand_name
Spice
             11.0
Celkon
             11.0
Karbonn
            11.0
XOLO
             10.0
Micromax
             10.0
            10.0
Acer
Lava
            9.0
Microsoft
            9.0
             9.0
Gionee
             9.0
Alcatel
              9.0
Others
HTC
             9.0
             9.0
BlackBerry
              9.0
Sony
Asus
             9.0
Panasonic
            8.0
Lenovo
              8.0
Samsung
              8.0
             8.0
ZTE
LG
              8.0
             8.0
Coolpad
Nokia
             8.0
Apple
             7.0
Huawei
             7.0
Meizu
             7.0
Motorola
             7.0
Орро
             7.0
Xiaomi
             6.0
Vivo
             6.0
Google
             6.0
OnePlus
              6.0
Honor
              6.0
Realme
              5.0
Infinix
              4.0
```

Name: years_since_release, dtype: float64

- Reaffirming that my intution/lived experience with cell phones is not helpful here.
- The Infinix brand has the most average releases, Nokia is in the middle and Celkon are the oldest.
- Thus the three Brands with average RAMs below the average are not because of the age of those devices.
- Lets looks a a box plot with the brand names next

```
In [21]: # Box plots show the outliers by brand the best
    # Brands are sorted from lowest mean RAM to highest mean RAM
    plt.figure(figsize=(15, 5))
    sns.boxplot(df1, x="brand_name", y="ram", order=mean_ram_by_brand.index)
    plt.xticks(rotation=90)
    plt.show()
```


- The brand-mean and brand-median are both ~ 4 GB of RAM.
- This visualization suggests that brand behavior of device production with respect to RAM is highly variable. The number of outliers and collapsed boxes suggests that most brands intentionally produce a high variety of devices.
- The exceptions to this are the companies who tend to produce devices with similar RAM profiles. These are easily spotted by the size of their tails or presence of no outliers.
 - Celkon, Nokia, and Infinix focus on devices with less than brand-average RAM
 - Realme, Google, Honor all have a window of RAM near the brand-mean and no outliers.
 - OnePlus makes stunnigly above-average RAM devices.

4. A large battery often increases a device's weight, making it feel uncomfortable in the hands. How does the weight vary for phones and tablets offering large batteries (more than 4500 mAh)?

```
#new dataframe
In [22]:
          df big batteries = df1[df1['battery'] > 4500]
          df_big_batteries['weight'].describe()
                   341.000000
          count
Out[22]:
          mean
                   332.275660
          std
                   155.501832
          min
                   118.000000
          25%
                   198.000000
          50%
                   300.000000
          75%
                   467.000000
          max
                   855.000000
          Name: weight, dtype: float64
          histogram_boxplot(df_big_batteries, 'weight', kde = True)
In [23]:
```


In [24]: histogram_boxplot(df1, 'weight', kde = True)

Histogram and Boxplot for weight

These two graphs compare the distribution of ALL device weights, and the distribution of devices weights whose batteries are greater than 4500.

What we see here is that the mode and general shapes of the distributions stay the same - but shited to the right. These large battery devices make up the just right of the curve data of the original distribution. The general shape of this distribution of the big_battery phones is the same; long right tail with a somehwat significant multi-modal distribution, and a mean greater than the median. The big_battery devices are more cetnralized, thus have less identified outliers. Though they are the outliers of the originial data set.

5. Bigger screens are desirable for entertainment purposes as they offer a better viewing experience. How many phones and tablets are available across different brands with a screen size larger than 6 inches?

```
In [25]: # new datafrome;
df_screen_inches = df1.copy()

# Convert screen size from cm to inches (1 cm = 0.393701 inches)
df_screen_inches['screen_size'] = df1['screen_size'] * 0.393701

#count
df_screen_inches[df_screen_inches['screen_size'] > 6]['brand_name'].value_counts()
```

```
Huawei
                        157
Out[25]:
          Samsung
                        131
          Others
                        118
          Vivo
                         82
          Oppo
                         78
          Lenovo
                         76
          Honor
                         72
          Xiaomi
                         69
          LG
                         63
          Asus
                         51
                         43
          Motorola
          Realme
                         41
          Alcatel
                         34
          ZTE
                         25
          Apple
                         24
          Sony
                         23
          Meizu
                         21
          Acer
                         20
          Nokia
                         19
          OnePlus
                         16
          HTC
                         14
          Micromax
                         11
          Infinix
                         10
          Gionee
                          8
                          7
          Google
          XOLO
                          4
                          3
          Panasonic
          Coolpad
                          3
                          2
          Karbonn
          Spice
                          2
                          1
          Microsoft
```

Name: brand_name, dtype: int64

6. A lot of devices nowadays offer great selfie cameras, allowing us to capture our favorite moments with loved ones. What is the distribution of devices offering greater than 8MP selfie cameras across brands?

```
In [26]: #start with the counts
selfie_devices_counts = df1[df1['selfie_camera_mp'] >8]['brand_name'].value_counts()
selfie_devices_counts
```

```
87
          Huawei
Out[26]:
          Vivo
                         78
          Ogg0
                         75
          Xiaomi
                         63
          Samsung
                         57
          Honor
                         41
          Others
                          34
          LG
                         32
          Motorola
                         26
          Meizu
                         24
          HTC
                         20
          ZTE
                         20
          Realme
                         18
          OnePlus
                         18
          Lenovo
                         14
          Sony
                         14
          Nokia
                         10
          Asus
                           6
          Infinix
                           4
          Gionee
                           4
          Coolpad
                           3
                           2
          BlackBerry
          Micromax
                           2
                           2
          Panasonic
          Acer
                           1
```

Name: brand_name, dtype: int64

```
In [27]: # Box plot here, sorted by count of devices with 8mp+ selfie cameras
         plt.figure(figsize=(15, 5))
         sns.boxplot(df1[df1['selfie_camera_mp'] >8], x="brand_name", y="selfie_camera_mp", orc
         plt.xticks(rotation=90)
         plt.show()
```


7. Which attributes are highly correlated with the normalized price of a used device?

```
#list of numerical colums
In [28]:
         num_cols = df1.select_dtypes(include = np.number).columns.tolist()
         #heatmap to show correlations
         plt.figure(figsize = (12,7))
         sns.heatmap(df1[num_cols].corr(), annot = True, vmin = -1, vmax = 1, fmt=".2f", cmap='
         plt.show()
```


- used_price has positive correlations with the following features, in increasing level of correlation:
 - RAM (0.52)
 - Main camera mp (0.59)
 - Screen size, Selfie camera mp, and Battery (0.61)
 - New price (0.83)
- And it has negative correlations with the following featrues, in increasing level of correlation:
 - days used (-0.36)
 - years_since_release (-0.51)

Non-Question Based EDA

Below is a small collection of EDA that is either specifically referenced later or was instrumental in my understanding for model building. Additional EDA can be found here for reference as needed: appendix section.

```
In [29]: #Are there any observations in the categorical data that are functionally representing
#Create dataframe of just objects columns
df1_objs = df1.select_dtypes(exclude=['int', 'float'])
#Print each unique observation in every category, with the percent of the category it
for col in df1_objs.columns:
    cat_percents = df1_objs[col].value_counts(normalize = True) *100
    print(cat_percents, "\n")
```

Others	14.533874
Samsung	9.872611
Huawei	7.266937
LG	5.819340
Lenovo	4.950782
ZTE	4.053272
Xiaomi	3.821656
Орро	3.734800
Asus	3.532137
Alcatel	3.503185
Micromax	3.387377
Vivo	3.387377
Honor	3.358425
HTC	3.184713
Nokia	3.068906
Motorola	3.068906
Sony	2.489867
Meizu	1.795020
Gionee	1.621309
Acer	1.476549
XOL0	1.418645
Panasonic	1.360741
Realme	1.187030
Apple	1.129126
Lava	1.042270
Celkon	0.955414
Spice	0.868558
Karbonn	0.839606
Coolpad	0.636943
BlackBerry	0.636943
Microsoft	0.636943
OnePlus	0.636943
Google	0.434279
Infinix	0.289519

Name: brand_name, dtype: float64

Android 93.051534 Others 3.966416 Windows 1.939780 iOS 1.042270 Name: os, dtype: float64

yes 67.602779 no 32.397221

Name: 4g, dtype: float64

no 95.599305 yes 4.400695

Name: 5g, dtype: float64

- There are a lot brands in this data set, which will make a lot of dummy variables. The question set above showed that brand behaviors do result in different performances in the numerical variables, so the brand names will stay for now.
 - Others is the largest brand category, reprsenting 14.5% of the total data
 - Followed by Samsung, Huawei, and LG each individually above 5% of the total data

- There are 9 brands that each are less than 1% of the total data. However, what this data set doesnt really include is the volume or inventory by brand. Just because, for example, Google only has their Pixel line of 15-18 phones, doesnt necessarily mean they represent less than 1% of the used device sales.
- The os , 4g , and 5g categorical variables all have reasonable values.
 - The top operating system is Android by far with 93% of the dataset
 - ~67% of the phones have 4g connectivity
 - While only 4.4% of phones have 5g connectivity. The last phones in the data set are 3 years old as of writing, so this particular categorical variable will likely catch up with 4g when the data catches up with 2023 and beyond.

- used_price has positive correlations with the following features, in increasing level of correlation:
 - RAM (0.52)
 - Main camera mp (0.59)
 - Screen size, Selfie camera mp, and Battery (0.61)
 - New price (0.83)

- screen_size, battery, and weight form a trio, likely indicating that larger screen sizes tend to require more battery power and increased battery capacity tends to increase device weight.
- The positive correlation between days_used and years_since_release is to be expected. As the number of years since a device's release increases, the number of days it has been used also tends to increase.
- selfie_camera_mp and years_since_release exhibit a high negative correlation. This suggests that selfie cameras have improved the most rapidly of all the features in the last 10 years.

In [31]: #Histograms of all numeric data to get feel for distributions and spot any values that
 df1[num_cols].hist(figsize = (12,9), layout = (3,4), bins = 20)
 plt.tight_layout()
 plt.show()

- First want to draw attention to the y-axis scales.
 - ram and internal memory both have a high frequency value, representing the majority of the data. This implies that they values to not change much when other features change.
 - weight and main camera mp also have a clear higher frequency group, representing about half the data set.

- The only features showing a normal distribution are the new price and the used price, with screen size a possible thrid feature but not nearly as clean as the price features.
- The days used feature has two buckets of values; phones used less than 550 days, and phones used more than 150 days. Something interesting happens to the cell phone usage from around the age of ~18 months
- If I had access to a SME I would check in on some of these features with 0 values. Are there phones from 2013+ without these components?
 - main_camera_mp & selfie_camera_mp these correlate with eachother, and price.
 Outliers would have a large effect, so likely replace with medians?
 - int_memory lets pull the statistics for this. If they are mostly 0s this feature then replacing with median will likely replace with a 0.
 - ram could replace with mean grouped by brand

For now, choosing to leave these as they are since I can't be sure the 0 values are not valid data points for the model to consider - but may return to this after checking the model's performance.

```
In [32]: #pairplot the numerical columns to visualize
sns.pairplot(df1[num_cols], diag_kind='kde', corner = True)
#this was really why I rearranged the columns earlier, makes this easier to read for m
```

Out[32]: <seaborn.axisgrid.PairGrid at 0x7ee63bf08c40>

- There does not seem to be any linear relationships between used_price and the other than new_price.
- screen_size has some slight linearity with weight and battery
- weight and battery also have some linearity. My guess is that these three will show up again later in the multicollinearity work.
- There generally does not seem to be much linearity in this dataset outside of that, and several assumptions of classical linear regression seem to be violated. We will test that soon.

Data Preprocessing

Missing Value Treatment

We saw earlier that the features with missing values were:

- selfie_camera_mp
- int_memory
- ram
- battery
- weight
- and largest group of missing: main_camera_mp.

Additionally, we saw 0-values in positions that probably are not likely. Barring a SME to consult, we chose to leave those values as they were until we could test the model performance.

Lets work through these one by one. First:

selfie_camera_mp

```
# Selfie Camera missing values
In [33]:
          df1[df1['selfie_camera_mp'].isna()]
Out[33]:
                brand name
                                 os screen_size 4g 5g main_camera_mp selfie_camera_mp int_memory ra
          1080
                     Google Android
                                                                   12.2
                                                                                                64.0
                                          15.32 yes no
                                                                                    NaN
          1081
                     Google Android
                                                                   12.2
                                                                                    NaN
                                                                                                64.0
                                          12.83 yes no
```

A quick search shows that these are probably the Pixel 3 and 3 XL, since Google only has one main line of cell phones, and those were the two released in 2018. They both had 8 mp selfie cameras. Source

```
In [34]: #replace the two selfie camera NaN with the value 8
df1['selfie_camera_mp'].fillna(8, inplace= True)
```

int_memory

We know from EDA that int_memory is a interger variable that is highly skewed and with a stong mode. It correlates best with main camera mp. All of the belwo are Nokia phones. Thus, we will impute with the median value to limit the effect of outliers on this variable.

```
df1[df1['int_memory'].isna()]
In [35]:
Out[35]:
                  brand_name
                                                            main_camera_mp selfie_camera_mp
                                       screen_size
                                                   4g
                                                        5g
                                                                                                 int_memory
                                                                                                              rar
                                   OS
            117
                        Nokia Others
                                              5.18
                                                                          0.3
                                                                                            0.0
                                                                                                              0.0
                                                                                                        NaN
                                                   yes
                                                        no
           2035
                        Nokia Others
                                              5.18
                                                                          5.0
                                                                                            0.0
                                                                                                        NaN
                                                                                                              0.0
                                                   no
                                                        no
           2064
                        Nokia Others
                                              5.18
                                                                          0.3
                                                                                            0.0
                                                                                                        NaN
                                                                                                              0.0
                                                    no
                                                        no
           2092
                        Nokia Others
                                              7.62
                                                                          5.0
                                                                                            0.0
                                                                                                        NaN
                                                                                                             0.0
                                                    no
                                                        no
```

RAM

We know from EDA that RAM is functionally a integer variable with a stong mode. RAM correlates strongest with the two price features. All of the below data points are again Nokia phones. We will chose the median for Nokia Phones for these missing values.

In [37]:	df1[df1['ram'].isna()]									
Out[37]:		brand_name	os	screen_size	4g	5g	main_camera_mp	selfie_camera_mp	int_memory	rar
	114	Nokia	Others	5.18	no	no	0.3	0.0	0.06	Nal
	335	Nokia	Others	5.18	no	no	0.3	0.0	0.10	Nal
	2059	Nokia	Others	5.18	no	no	0.3	0.0	0.06	Nal
	2090	Nokia	Others	7.62	no	no	5.0	0.0	0.06	Nal
4										
In [38]:	#replace four ram NaN with median of the ram of Nokia phones									

```
In [38]: #replace four ram NaN with median of the ram of Nokia phones
df1["ram"] = df1["ram"].fillna(
          value=df1[df1['brand_name'] == 'Nokia'].groupby(["brand_name"])['ram'].transform(')
)
```

battery

We know from EDA that battery is a lightly skewed continuous variable with strong positive correlations with screen size and weight. We will chose the median battery capacity.

```
In [39]:
           df1[df1['battery'].isna()]
Out[39]:
                 brand name
                                    os screen_size
                                                       5g main_camera_mp selfie_camera_mp int_memory |
                                                    4g
           1829
                               Android
                                                                        13.0
                                                                                           5.0
                                                                                                     16.00
                       Meizu
                                             12.83 yes
                                                       no
           1831
                                                                        20.7
                       Meizu
                               Android
                                             12.83 yes
                                                                                           5.0
                                                                                                      16.00
                                                       no
           1832
                                                                        20.7
                                                                                           2.0
                                                                                                     16.00
                       Meizu
                               Android
                                             13.61 yes
                                                       no
           1962
                    Microsoft Windows
                                             25.55
                                                                         5.0
                                                                                           3.5
                                                                                                     32.00
                                                    no
                                                        no
           2058
                       Nokia
                                Others
                                              5.18
                                                                         0.3
                                                                                           0.0
                                                                                                       0.06
                                                    no
                                                        no
           2059
                       Nokia
                                Others
                                                                         0.3
                                                                                           0.0
                                                                                                       0.06
                                              5.18
                                                    no
                                                        no
           #replace battery NaN with median of the batteries
In [40]:
```

df1['battery'] = df1['battery'].fillna(

```
value = df1['battery'].median()
)
```

weight

We know from EDA that weight is a highly skewed continuous variable with a strong mode. It positively correlates strongly with battery capacity and screen size. We will again chose the median weight.

```
df1[df1['weight'].isna()]
In [41]:
Out[41]:
                 brand_name
                                    os screen_size
                                                     4g
                                                         5g main_camera_mp selfie_camera_mp
                                                                                                 int_memory
           3002
                        XOLO
                                Android
                                              12.70
                                                    yes
                                                         no
                                                                          13.0
                                                                                             5.0
                                                                                                         32.0
           3003
                        XOLO
                                Android
                                                                           8.0
                                                                                             5.0
                                                                                                         16.0
                                              12.83
                                                    yes
                                                         no
           3004
                                                                                                         32.0
                        XOLO
                                Android
                                              12.70
                                                                           8.0
                                                                                             2.0
                                                     no
                                                         no
           3005
                        XOLO
                                Android
                                              10.29
                                                                           5.0
                                                                                             0.3
                                                                                                         32.0
                                                     no
                                                         no
           3006
                        XOLO
                               Android
                                              12.70
                                                                           5.0
                                                                                             0.3
                                                                                                         16.0
                                                     no
                                                         no
           3007
                        XOLO Windows
                                              12.70
                                                                           8.0
                                                                                             2.0
                                                                                                         32.0
                                                     no
                                                         nο
           3008
                                                                                                         32.0
                        XOLO
                               Android
                                              12.70
                                                                           8.0
                                                                                             5.0
                                                     no
                                                        no
           #replace battery NaN with median of the batteries
In [42]:
```

```
In [42]: #replace battery NaN with median of the batteries

df1['weight'] = df1['weight'].fillna(
    value=df1[df1['brand_name'] == 'XOLO'].groupby(["brand_name"])['weight'].transform
)
```

main_camera_mp

Finally the largest missing group. We know from EDA that main camera mp is decently scewed and strongly positively correlates with the price variables. The price variables are continuous such that many class values only have single data point membership, so grouping on them as is will not help. Instead we will group_by the selfie camera mp as those two features share a correlation of 0.43

```
In [43]: df1[df1['main_camera_mp'].isna()]
```

Out[43]:		brand_name	os	screen_size	4g	5g	main_camera_mp	selfie_camera_mp	int_memory	ra
	59	Infinix	Android	17.32	yes	no	NaN	8.0	32.0	
	60	Infinix	Android	15.39	yes	no	NaN	8.0	64.0	
	61	Infinix	Android	15.39	yes	no	NaN	8.0	32.0	
	62	Infinix	Android	15.39	yes	no	NaN	16.0	32.0	
	63	Infinix	Android	15.29	yes	no	NaN	16.0	32.0	
	•••									
	3411	Realme	Android	15.34	yes	no	NaN	16.0	64.0	
	3412	Realme	Android	15.32	yes	no	NaN	16.0	64.0	
	3413	Realme	Android	15.32	yes	no	NaN	25.0	64.0	
	3448	Asus	Android	16.74	yes	no	NaN	24.0	128.0	
	3449	Asus	Android	15.34	yes	no	NaN	8.0	64.0	

179 rows × 15 columns

```
In [44]:
          # replace main_camra_mp NaN with median of the main camera mps
          df1['main_camera_mp'] = df1['main_camera_mp'].fillna(
              value=df1.groupby('selfie_camera_mp')['main_camera_mp'].transform('median')
          # Last Check
          df1.isnull().sum()
         brand_name
                                   0
Out[44]:
                                   0
                                   0
          screen_size
                                   0
         4g
                                   0
          5g
         main_camera_mp
                                   0
          selfie_camera_mp
                                   0
                                   0
          int_memory
          ram
                                   0
          battery
                                   0
         weight
                                   0
                                   0
          days_used
         years_since_release
                                   0
          normalized_new_price
                                   0
          normalized_used_price
          dtype: int64
```

No additional NaN values appear at this time.

Outlier Detection and Treatment

We already know there are going to be a fair number of outliers from our EDA work. The question is if any of the outliers need treatment.

```
# outlier detection using boxplot
In [45]:
           num_cols = df1.select_dtypes(include=np.number).columns.tolist()
           plt.figure(figsize=(15, 10))
           for i, variable in enumerate(num_cols):
                 plt.subplot(3, 4, i + 1)
                 sns.boxplot(data=df1, x=variable)
                plt.tight_layout(pad=2)
           plt.show()
                        20
                                        0
                                                                    0
                                                                                                       400 600
                    screen_size
                                              main_camera_mp
                                                                         selfie_camera_mp
                                                                                                       int_memory
           0.0
                2.5
                    5.0
                         7.5
                             10.0
                                          2000
                                               4000 6000
                                                        8000 10000
                                                                                                      400
                                                                                                          600
                                                                                                              800
                      ram
                                                 batterv
                                                                             weiaht
                                                                                                        days_used
                 years_since_release
                                            normalized_new_price
                                                                        normalized used price
```

• I have no reason to reject the outliers at this time. Technical specs have a wide variety, particulary over 10 years of development. However if the performance data for the model is unsatisfactory, this is one place I will return to see what can be optimized.

Prepare data for modeling

Order we will take here:

- 1. Create Independent and Dependent Variables
- 2. Add Constant to Dependent Variable
- 3. Create Dummy Variables
- 4. Split Data

```
In [46]: # create new dataframes for variables
X = df1.drop(['normalized_used_price'], axis=1)
y = df1['normalized_used_price']
```

Out[48]:		const	screen_size	main_camera_mp	selfie_camera_mp	int_memory	ram	battery	weight	days_u
	0	1.0	14.50	13.0	5.0	64.0	3.0	3020.0	146.0	•
	1	1.0	17.30	13.0	16.0	128.0	8.0	4300.0	213.0	:
	2	1.0	16.69	13.0	8.0	128.0	8.0	4200.0	213.0	
	3	1.0	25.50	13.0	8.0	64.0	6.0	7250.0	480.0	:
	4	1.0	15.32	13.0	8.0	64.0	3.0	5000.0	185.0	,

5 rows × 49 columns

Model Building - Linear Regression

```
In [51]: olsmodel = sm.OLS(y_train, X_train).fit()
print(olsmodel.summary())
```

OLS Regression Results

Dep. Variable: r	normalized_used_price				0.845 0.841		
Method:	Least :		F-statistic:		268.2		
Date:	Fri, 12 Jan 2024 Prob (F-statistic				.00		
Time:	20:00:13 Log-Likelihood:			•	121.93		
No. Observations:		2417	_			5.9	
Df Residuals:		2368	BIC:		13	7.9	
Df Model:		48					
Covariance Type:		nrobust 					
====						======	
975]	coef	std err	t	P> t	[0.025	0.	
 const	1.3814	0.075	18.497	0.000	1.235		
1.528	1.3814	0.072	10.497	0.000	1.233		
screen_size	0.0245	0.003	7.195	0.000	0.018		
0.031	0.0243	0.005	, ,,,,,,,	0.000	0.010		
main_camera_mp 0.024	0.0206	0.002	13.675	0.000	0.018		
selfie_camera_mp 0.016	0.0135	0.001	12.042	0.000	0.011		
int_memory 0.000	0.0001	6.98e-05	1.678	0.094	-1.98e-05		
ram	0.0237	0.005	4.604	0.000	0.014		
0.034	4 504 05	= 00 04			2 42 25	2 52	
battery e-06	-1.691e-05	7.28e-06	-2.321	0.020	-3.12e-05	-2.62	
weight 0.001	0.0010	0.000	7.445	0.000	0.001		
days_used 0.000	4.221e-05	3.09e-05	1.367	0.172	-1.84e-05		
years_since_release 0.014	-0.0232	0.005	-5.090	0.000	-0.032	-	
normalized_new_price	0.4306	0.012	35.006	0.000	0.407		
brand_name_Alcatel 0.109	0.0154	0.048	0.324	0.746	-0.078		
brand_name_Apple 0.284	-0.0051	0.147	-0.035	0.972	-0.294		
brand_name_Asus 0.110	0.0157	0.048	0.327	0.744	-0.078		
<pre>brand_name_BlackBerr 0.084</pre>	ry -0.0540	0.076	-0.768	0.442	-0.192		
brand_name_Celkon 0.083	-0.0468	0.066	-0.706	0.480	-0.177		
<pre>brand_name_Coolpad 0.165</pre>	0.0216	0.073	0.296	0.767	-0.121		
<pre>brand_name_Gionee 0.159</pre>	0.0453	0.058	0.785	0.433	-0.068		
brand_name_Google 0.135	-0.0313	0.085	-0.369	0.712	-0.197		
brand_name_HTC 0.082	-0.0125	0.048	-0.259	0.796	-0.107		
brand_name_Honor 0.129	0.0323	0.049	0.657	0.511	-0.064		
brand_name_Huawei	-0.0019	0.045	-0.042	0.967	-0.089		

		_ , _	· ·		
<pre>0.085 brand_name_Infinix</pre>	0.0618	0.093	0.662	0.508	-0.121
0.245					
brand_name_Karbonn	0.0945	0.067	1.407	0.160	-0.037
0.226					
brand_name_LG 0.076	-0.0128	0.045	-0.283	0.777	-0.102
brand_name_Lava	0.0251	0.062	0.402	0.688	-0.097
0.147	0.0231	0.002	0.402	0.000	0.037
brand_name_Lenovo	0.0458	0.045	1.013	0.311	-0.043
0.135					
brand_name_Meizu	-0.0123	0.056	-0.219	0.827	-0.122
0.098 brand_name_Micromax	-0.0339	0.048	-0.707	0.479	-0.128
0.060	0.0333	0.0.0	0.707	0.175	0.120
brand_name_Microsoft	0.0957	0.088	1.082	0.279	-0.078
0.269					
brand_name_Motorola	-0.0098	0.050	-0.198	0.843	-0.107
0.088 brand_name_Nokia	0.0705	0.052	1.361	0.174	-0.031
0.172	0.0703	0.032	1.301	0.174	0.031
brand_name_OnePlus	0.0700	0.077	0.904	0.366	-0.082
0.222					
<pre>brand_name_Oppo 0.109</pre>	0.0150	0.048	0.314	0.753	-0.079
brand_name_Others	-0.0076	0.042	-0.181	0.856	-0.090
0.075	0.0070	0.0.2	0.101	0.050	0.030
brand_name_Panasonic	0.0540	0.056	0.967	0.334	-0.056
0.164					
<pre>brand_name_Realme 0.154</pre>	0.0334	0.062	0.542	0.588	-0.087
brand_name_Samsung	-0.0312	0.043	-0.722	0.471	-0.116
0.054	0100==		017 ==	•••	0.1=0
brand_name_Sony	-0.0605	0.051	-1.198	0.231	-0.160
0.039	0.0450	0.063	0 227	0.043	0.430
<pre>brand_name_Spice 0.109</pre>	-0.0150	0.063	-0.237	0.813	-0.139
brand_name_Vivo	-0.0140	0.048	-0.290	0.772	-0.109
0.081					
brand_name_XOLO	0.0153	0.055	0.279	0.780	-0.092
0.123	0 0075	0 040	1 016	0.000	0.007
<pre>brand_name_Xiaomi 0.182</pre>	0.0875	0.048	1.816	0.069	-0.007
brand_name_ZTE	-0.0050	0.047	-0.105	0.916	-0.098
0.088					
os_Others	-0.0483	0.033	-1.471	0.141	-0.113
0.016 os_Windows	-0.0201	0.045	-0.445	0 657	0 100
0.069	-0.0201	0.045	-0.445	0.657	-0.109
os_iOS	-0.0640	0.147	-0.437	0.662	-0.351
0.223					
4g_yes	0.0540	0.016	3.400	0.001	0.023
0.085 5g_yes	-0.0707	0.032	-2.243	0.025	-0.132
0.009	0.0/0/	0.032	2.2+3	0.023	0.102
			========	=======	=======
Omnibus:	223.62		n-Watson:		1.909
Prob(Omnibus):	0.00		e-Bera (JB):		420.797
Skew: Kurtosis:	-0.62 4.62	,	•		4.22e-92 1.78e+05

4.624

Cond. No.

Kurtosis:

1.78e+05

._____

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.78e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Initial Regression Result Interpretation

- 1. **Adjusted. R-squared**: It reflects the fit of the model.
 - Adjusted R-squared values generally range from 0 to 1, where a higher value generally indicates a better fit, assuming certain conditions are met.
 - In our case, the value for adj. R-squared is 0.842, which is a great starting point.
- 1. *const* coefficient: It is the Y-intercept.
 - It means that if all the predictor variable coefficients are zero, then the expected output (i.e., Y) would be equal to the *const* coefficient.
 - In our case, the value for const coefficient is **1.3582**
- 1. **Coefficient of a predictor variable**: It represents the change in the output Y due to a change in the predictor variable (everything else held constant).
 - In our case, the coefficient of normalized new price is **0.4307** which is quite large, but if you are the person selling or trading in your used device you might not think so.

Model Performance Check

Running a performance check no, prior to multicollinearity, gives us a comparison starting point gor our main metrics. The metrics we will be using to judge the model today are;

- RMSE
- MAE
- \bullet R^2
- Adjusted R^2
- MAPE this will be interesting as several of our features are equal to 0, there are many
 extreme values and thus outliers in the data set. We will need to be careful with this metric,
 particularly early.

```
In [52]: # We need a few custom functions to find the state metrics
# Then we will summarize those metrics in a chart

# function to compute adjusted R-squared
def adj_r2_score(predictors, targets, predictions):
    r2 = r2_score(targets, predictions)
    n = predictors.shape[0]
    k = predictors.shape[1]
    return 1 - ((1 - r2) * (n - 1) / (n - k - 1))
```

```
# function to compute MAPE
def mape_score(targets, predictions):
    return np.mean(np.abs(targets - predictions) / targets) * 100
# function to compute different metrics to check performance of a regression model
def model_performance_regression(model, predictors, target):
    Function to compute different metrics to check regression model performance
   model: regressor
   predictors: independent variables
   target: dependent variable
    # predicting using the independent variables
   pred = model.predict(predictors)
    r2 = r2_score(target, pred) # to compute R-squared
    adjr2 = adj_r2_score(predictors, target, pred) # to compute adjusted R-squared
    rmse = np.sqrt(mean_squared_error(target, pred)) # to compute RMSE
    mae = mean_absolute_error(target, pred) # to compute MAE
    mape = mape_score(target, pred) # to compute MAPE
    # creating a dataframe of metrics
    df_perf = pd.DataFrame(
        {
            "RMSE": rmse,
            "MAE": mae,
            "R-squared": r2,
            "Adj. R-squared": adjr2,
            "MAPE": mape,
        },
        index=[0],
    return df_perf
```

We can compare these metrics for our Training and Test performance data. The inside the custom function **model_performance_regression**, it calculates the predictions using the model and the independent variable. These predictions are then compared to the actual target data to test performance.

```
In [53]: # checking model performance on train set (seen 70% data)
print("Training Performance\n")
olsmodel_train_perf = model_performance_regression(olsmodel, X_train, y_train)
print(olsmodel_train_perf, "\n\n")

# checking model performance on test set (seen 30% data)
print("Test Performance\n")
olsmodel_test_perf = model_performance_regression(olsmodel, X_test, y_test)
print(olsmodel_test_perf)
```

Training Performance

```
RMSE MAE R-squared Adj. R-squared MAPE 0 0.230067 0.180513 0.844638 0.841422 4.331739

Test Performance

RMSE MAE R-squared Adj. R-squared MAPE 0 0.238749 0.185047 0.841962 0.834117 4.509903
```

- The train and test values for all metrics are comprable this is evidence that our model is not overfitting to the train data set.
- The training R^2 is 0.841, so the model is also not underfitting.
- MAE suggests that the model can currently predict the normalized used cost of a device with a mean error of 0.18 on the test data
- The MAPE of 4.5 on the rest data means that we are able to predict the cost of a used device within 4.5%

Multicollinearity

This fucntion will produce a chart of VIFs for each feature.

```
In [54]: def checking_vif(predictors):
    vif = pd.DataFrame()
    vif["feature"] = predictors.columns

# calculating VIF for each feature
    vif["VIF"] = [
         variance_inflation_factor(predictors.values, i)
         for i in range(len(predictors.columns))
    ]
    return vif

In [55]: vif_df = checking_vif(X_train).sort_values(by = "VIF")
    vif_df
```

Out[55]:

	feature	VIF
22	brand_name_Infinix	1.287613
18	brand_name_Google	1.321784
4	int_memory	1.364595
32	brand_name_OnePlus	1.437127
16	brand_name_Coolpad	1.467947
23	brand_name_Karbonn	1.573730
45	os_Windows	1.595359
14	brand_name_BlackBerry	1.633748
39	brand_name_Spice	1.688904
25	brand_name_Lava	1.712289
15	brand_name_Celkon	1.775033
48	5g_yes	1.812955
44	os_Others	1.855966
29	brand_name_Microsoft	1.869450
36	brand_name_Realme	1.946486
17	brand_name_Gionee	1.951267
35	brand_name_Panasonic	2.106401
41	brand_name_XOLO	2.138134
27	brand_name_Meizu	2.179506
5	ram	2.256876
2	main_camera_mp	2.301882
47	4g_yes	2.466277
8	days_used	2.660219
3	selfie_camera_mp	2.809386
38	brand_name_Sony	2.942954
10	normalized_new_price	3.133184
30	brand_name_Motorola	3.273871
13	brand_name_Asus	3.331892
20	brand_name_Honor	3.340503
28	brand_name_Micromax	3.363600
11	brand_name_Alcatel	3.405706
19	brand_name_HTC	3.410113
31	brand_name_Nokia	3.472893
40	brand_name_Vivo	3.650779

	feature	VIF
42	brand_name_Xiaomi	3.719750
43	brand_name_ZTE	3.797320
33	brand_name_Oppo	3.971141
6	battery	4.082852
26	brand_name_Lenovo	4.558770
24	brand_name_LG	4.849897
9	years_since_release	4.905339
21	brand_name_Huawei	5.983851
7	weight	6.400694
37	brand_name_Samsung	7.539937
1	screen_size	7.673096
34	brand_name_Others	9.710730
46	os_iOS	11.782043
12	brand_name_Apple	13.055131
0	const	249.500215

To remove multicollinearity

- 1. Drop every column one by one that has a VIF score greater than 5. However, the dummy variables can be ignores.
- 2. Look at the adjusted R-squared and RMSE of all these models.
- 3. Drop the variable that makes the least change in adjusted R-squared.
- 4. Check the VIF scores again.
- 5. Continue till you get all VIF scores under 5.

Let's define a function that will help us do this.

```
In [56]: def treating_multicollinearity(predictors, target, high_vif_columns):
    """
    Checking the effect of dropping the columns showing high multicollinearity
    on model performance (adj. R-squared and RMSE)

predictors: independent variables
    target: dependent variable
    high_vif_columns: columns having high VIF
    """

# empty lists to store adj. R-squared and RMSE values
    adj_r2 = []
    rmse = []

# build ols models by dropping one of the high VIF columns at a time
# store the adjusted R-squared and RMSE in the lists defined previously
    for cols in high_vif_columns:
```

```
In [57]: # Since the very beginning, the high correlation between battery, screen size, and wei
#lets start with those as they are the highest non - dummy VIF values
col_list = ['screen_size', 'weight', 'battery']
res = treating_multicollinearity(X_train, y_train, col_list)
res
```

Out [57]: col Adj. R-squared after_dropping col RMSE after dropping col

0	battery	0.841196	0.232650
1	screen_size	0.838092	0.234913
2	weight	0.837847	0.235090

The original adjusted R^2 wass 0.841. The smallest drop in R^2 was for the battery feature. This one will be removed first. Then we will check VIF again:

```
In [58]:
col_to_drop = "battery"
X_train2 = X_train.loc[:, ~X_train.columns.str.startswith(col_to_drop)]
X_test2 = X_test.loc[:, ~X_test.columns.str.startswith(col_to_drop)]

# Check VIF now
vif = checking_vif(X_train2)
print("VIF after dropping ", col_to_drop)
vif.sort_values(by = "VIF")
```

VIF after dropping battery

Out[58]:

	feature	VIF
21	brand_name_Infinix	1.279237
17	brand_name_Google	1.321437
4	int_memory	1.364594
31	brand_name_OnePlus	1.437122
15	brand_name_Coolpad	1.467752
22	brand_name_Karbonn	1.572098
44	os_Windows	1.593486
13	brand_name_BlackBerry	1.633610
38	brand_name_Spice	1.688748
24	brand_name_Lava	1.712280
14	brand_name_Celkon	1.773537
47	5g_yes	1.812602
43	os_Others	1.848024
28	brand_name_Microsoft	1.869345
35	brand_name_Realme	1.939327
16	brand_name_Gionee	1.939603
34	brand_name_Panasonic	2.106374
40	brand_name_XOLO	2.137841
26	brand_name_Meizu	2.179345
5	ram	2.256738
2	main_camera_mp	2.279383
46	4g_yes	2.434749
7	days_used	2.659405
3	selfie_camera_mp	2.807978
37	brand_name_Sony	2.941446
9	normalized_new_price	3.118989
29	brand_name_Motorola	3.273572
12	brand_name_Asus	3.330590
19	brand_name_Honor	3.340290
27	brand_name_Micromax	3.363010
10	brand_name_Alcatel	3.401027
18	brand_name_HTC	3.409155
30	brand_name_Nokia	3.470357
39	brand_name_Vivo	3.649537

	feature	VIF
41	brand_name_Xiaomi	3.706349
42	brand_name_ZTE	3.797315
32	brand_name_Oppo	3.970779
25	brand_name_Lenovo	4.552290
8	years_since_release	4.759563
23	brand_name_LG	4.847958
6	weight	5.767609
20	brand_name_Huawei	5.982128
1	screen_size	7.225586
36	brand_name_Samsung	7.537389
33	brand_name_Others	9.710713
45	os_iOS	11.771080
11	brand_name_Apple	13.048774
0	const	249.176046

Still have screen_size and weight VIF values greater than 5, so we will keep going:

```
In [59]: col_list = ['screen_size', 'weight']
    res = treating_multicollinearity(X_train, y_train, col_list)
    res
```

Out[59]: col Adj. R-squared after_dropping col RMSE after dropping col

0	screen_size	0.838092	0.234913
1	weight	0.837847	0.235090

The original adjusted \mathbb{R}^2 wass 0.841. The smallest drop in \mathbb{R}^2 was for the screen_size feature. This one will be our 2nd removed variable. Then we will check VIF again:

```
In [60]:
    col_to_drop = "screen_size"
    X_train3 = X_train2.loc[:, ~X_train2.columns.str.startswith(col_to_drop)]
    X_test3 = X_test2.loc[:, ~X_test2.columns.str.startswith(col_to_drop)]

# Check VIF now
    vif = checking_vif(X_train3)
    print("VIF after dropping ", col_to_drop)
    vif
```

VIF after dropping screen_size

Out[60]:

	feature	VIF
0	const	215.009771
1	main_camera_mp	2.270808
2	selfie_camera_mp	2.803120
3	int_memory	1.362429
4	ram	2.256720
5	weight	1.366582
6	days_used	2.645792
7	years_since_release	4.491322
8	normalized_new_price	3.061021
9	brand_name_Alcatel	3.401010
10	brand_name_Apple	12.977666
11	brand_name_Asus	3.326216
12	brand_name_BlackBerry	1.632320
13	brand_name_Celkon	1.772977
14	brand_name_Coolpad	1.467318
15	brand_name_Gionee	1.933948
16	brand_name_Google	1.319297
17	brand_name_HTC	3.396478
18	brand_name_Honor	3.339774
19	brand_name_Huawei	5.980170
20	brand_name_Infinix	1.279234
21	brand_name_Karbonn	1.572074
22	brand_name_LG	4.832443
23	brand_name_Lava	1.711954
24	brand_name_Lenovo	4.549408
25	brand_name_Meizu	2.176385
26	brand_name_Micromax	3.358649
27	brand_name_Microsoft	1.867442
28	brand_name_Motorola	3.261685
29	brand_name_Nokia	3.450731
30	brand_name_OnePlus	1.437095
31	brand_name_Oppo	3.965431
32	brand_name_Others	9.648248
33	brand_name_Panasonic	2.105542

	feature	VIF
34	brand_name_Realme	1.938129
35	brand_name_Samsung	7.523065
36	brand_name_Sony	2.933767
37	brand_name_Spice	1.683307
38	brand_name_Vivo	3.649127
39	brand_name_XOLO	2.137716
40	brand_name_Xiaomi	3.703978
41	brand_name_ZTE	3.788114
42	os_Others	1.620630
43	os_Windows	1.593485
44	os_iOS	11.640619
45	4g_yes	2.434455
46	5g_yes	1.807984

The VIF for weight dropped drammatically to 1.366. This means that our model only needs to look at weight, the screen_size and battery capacity were too multicollinear.

The only remaining VIF points greater than 5 are dummy variables. The years_since_release VIF is equal to 4.49 which is close to the traditional cut of of a VIF value of 5. We can come back to this if necessary.

```
In [61]: olsmodel3 = sm.OLS(y_train, X_train3).fit()
print(olsmodel3.summary())
```

OLS Regression Results

Dep. Variable:		d_price			0.	=== 841 838
Method:	Least		F-statistic		273.0	
Date:			Prob (F-stat		0.00	
Time:			Log-Likelih	•	95.	
No. Observations:	_		AIC:		-97	
Df Residuals:		2370				4.9
Df Model:		46				
Covariance Type:	no	nrobust				
=======================================	=========	=======	-=======	========	========	======
	coef	std er	r t	P> t	[0.025	0.
975]						
	4 544	0.074			4 407	
const	1.5641	0.076	22.326	0.000	1.427	
1.701 main_camera_mp	0.0209	0.002	13.812	0.000	0.018	
0.024 selfie_camera_mp	0.0138	0.001	12.160	0.000	0.012	
0.016 int_memory	9.798e-05	7.05e-0	1.390	0.165	-4.03e-05	
0.000	277200 03					
ram	0.0237	0.005	4.558	0.000	0.013	
0.034 weight	0.0017	6.24e-05	26.523	0.000	0.002	
0.002						0.04
days_used e-05	2.836e-05	3.11e-05	0.911	0.362	-3.27e-05	8.94
years_since_release 0.020	-0.0287	0.004	1 -6.504	0.000	-0.037	-
<pre>normalized_new_price 0.464</pre>	e 0.4402	0.012	35.822	0.000	0.416	
<pre>brand_name_Alcatel 0.113</pre>	0.0188	0.048	0.391	0.696	-0.076	
<pre>brand_name_Apple 0.352</pre>	0.0616	0.148	0.415	0.678	-0.229	
brand_name_Asus 0.097	0.0016	0.048	0.033	0.974	-0.093	
brand_name_BlackBer 0.070	ry -0.0690	0.071	L -0.972	0.331	-0.208	
brand_name_Celkon 0.081	-0.0504	0.067	7 -0.752	0.452	-0.182	
brand_name_Coolpad	0.0149	0.074	0.203	0.839	-0.130	
0.159 brand_name_Gionee	0.0137	0.058	0.236	0.814	-0.100	
0.128 brand_name_Google	-0.0577	0.085	-0.675	0.499	-0.225	
0.110 brand_name_HTC	-0.0307	0.049	-0.631	0.528	-0.126	
0.065 brand_name_Honor	0.0356	0.056	0.716	0.474	-0.062	
0.133 brand_name_Huawei	-0.0091	0.045	-0.203	0.839	-0.097	
0.079 brand_name_Infinix	0.0433	0.094	0.461	0.645	-0.141	
0.228 brand_name_Karbonn	0.1013	0.068	3 1.494	0.135	-0.032	

brand_name_LG -0.0325 0.046 -0.710 0.478 -0.122	
0.057	
brand_name_Lava 0.0195 0.063 0.309 0.757 -0.104	
0.143	
brand_name_Lenovo 0.0341 0.046 0.747 0.455 -0.055	
0.124	
brand_name_Meizu -0.0275 0.057 -0.486 0.627 -0.139	
0.084 brand_name_Micromax -0.0471 0.048 -0.975 0.330 -0.142	
0.048	
brand_name_Microsoft 0.0779 0.089 0.873 0.383 -0.097	
0.253	
brand_name_Motorola -0.0314 0.050 -0.627 0.531 -0.130	
0.067	
brand_name_Nokia 0.0472 0.052 0.903 0.367 -0.055	
0.150	
brand_name_OnePlus 0.0674 0.078 0.861 0.389 -0.086	
0.221	
brand_name_Oppo 0.0020 0.048 0.041 0.968 -0.093	
0.097	
brand_name_Others -0.0306 0.042 -0.721 0.471 -0.114	
0.053 brand_name_Panasonic 0.0460 0.056 0.814 0.416 -0.065	
0.157	
brand_name_Realme 0.0143 0.062 0.230 0.818 -0.108	
0.136	
brand_name_Samsung -0.0459 0.044 -1.052 0.293 -0.132	
0.040	
brand_name_Sony -0.0755 0.051 -1.481 0.139 -0.175	
0.024	
brand_name_Spice -0.0410 0.064 -0.642 0.521 -0.166	
0.084	
brand_name_Vivo -0.0196 0.049 -0.401 0.689 -0.116	
0.076	
brand_name_XOLO 0.0110 0.055 0.198 0.843 -0.098 0.120	
brand_name_Xiaomi 0.0724 0.049 1.492 0.136 -0.023	
0.168	
brand_name_ZTE -0.0208 0.048 -0.435 0.664 -0.115	
0.073	
os_Others -0.1318 0.031 -4.253 0.000 -0.193	
0.071	
os_Windows -0.0166 0.046 -0.364 0.716 -0.106	
0.073	
os_iOS -0.1591 0.147 -1.081 0.280 -0.448	
0.130	
4g_yes 0.0510 0.016 3.200 0.001 0.020	
0.082	
5g_yes -0.0805 0.032 -2.533 0.011 -0.143	
0.018	
Omnibus: 235.226 Durbin-Watson: 1.906	
Prob(Omnibus): 0.000 Jarque-Bera (JB): 441.109	
Skew: -0.649 Prob(JB): 1.64e-96	
Kurtosis: 4.642 Cond. No. 3.82e+04	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

ified.

[2] The condition number is large, 3.82e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
# checking model performance on train set (seen 70% data)
In [62]:
         print("Training Performance - Model 1\n")
         olsmodel_train_perf = model_performance_regression(olsmodel, X_train, y_train)
         print(olsmodel train perf, "\n\n")
         # checking model performance on test set (seen 30% data)
         print("Test Performance- Model 1\n")
         olsmodel test_perf = model_performance_regression(olsmodel, X_test, y_test)
         print(olsmodel_test_perf, "\n\n")
         # checking model performance on train set (seen 70% data)
         print("Training Performance- Model 3\n")
         olsmodel_train_perf = model_performance_regression(olsmodel3, X_train3, y_train)
         print(olsmodel_train_perf, "\n\n")
         # checking model performance on test set (seen 30% data)
         print("Test Performance - Model 3\n")
         olsmodel_test_perf = model_performance_regression(olsmodel3, X_test3, y_test)
         print(olsmodel_test_perf)
         Training Performance - Model 1
                RMSE
                           MAE R-squared Adj. R-squared
                                                              MAPE
         0 0.230067 0.180513
                                0.844638
                                                0.841422 4.331739
         Test Performance- Model 1
                           MAE R-squared Adj. R-squared
                                0.841962
                                                0.834117 4.509903
         0 0.238749 0.185047
         Training Performance- Model 3
                RMSE
                           MAE R-squared Adj. R-squared
                                                              MAPE
         0 0.232586 0.181761 0.841218
                                                0.838068 4.370381
         Test Performance - Model 3
               RMSF
                          MAE R-squared Adj. R-squared
                                                             MAPE
         0 0.24301 0.188755
                                 0.83627
                                                0.82849 4.605767
```

Based on this data - Model 1 (all data) is actually stronger in predictive accuracy than Model 3 (remvoe two multicollinear points). However, we are not done quite yet, we will look at p-values next. The benefit of Model 3 is that it is less complex and thus easier to interpret. It is possible that Model 1 was slightly overfit, and now Model 3 is slightly underfit. Further, the drop in these performance measurements, while noticible, are actually still quite small.

We shall carry on in the process with knowledge of the trade off between performance and complexity.

Analysis of high p-value variables - Independence of Features

Next, a similar iterative process to drop variables with high p-values. A "high" p-value is defined as greater that 0.05, a chosen significant level. The null hypothese is that each independent feature is not significant. Thus, a p-value greater that 0.05 confirms thathypothese - the feature is not significant and can be removed.

This iterates similarly in concept to how we approached the VIF values for multicolinearity - we will remove one variable at a time and recalculate the model to see the effect on other p-values. This repeates until all features have p-values less than 0.05, until all independent features are significant.

However, two big changes: we can now remove dummy variables without concern and we can write a while loop to step through the interation for us. The below function will produce a list of features that are selected as significant. We then fit a new model to just those features.

```
In [63]: # initial list of columns
         predictors = X_train3.copy()
         cols = predictors.columns.tolist()
         # setting an initial max p-value
         max_p_value = 1
         while len(cols) > 0:
             # defining the train set
             X_train_aux = predictors[cols]
             # fitting the model
             model = sm.OLS(y_train, X_train_aux).fit()
             # getting the p-values and the maximum p-value
             p_values = model.pvalues
             max_p_value = max(p_values)
             # name of the variable with maximum p-value
             feature with p max = p values.idxmax()
             if max_p_value > 0.05:
                 cols.remove(feature_with_p_max)
             else:
                 break
         selected_features = cols
         print(selected_features)
```

['const', 'main_camera_mp', 'selfie_camera_mp', 'ram', 'weight', 'years_since_releas
e', 'normalized_new_price', 'brand_name_Karbonn', 'brand_name_Samsung', 'brand_name_S
ony', 'brand_name_Xiaomi', 'os_Others', 'os_iOS', '4g_yes', '5g_yes']

We not take that to make Model #4:

```
In [64]: # Select only the features selected as significant from data set 3:
    X_train4 = X_train3[selected_features]
    X_test4 = X_test3[selected_features]
```

```
# and create Model #4
olsmodel4 = sm.OLS(y_train, X_train4).fit()
print(olsmodel4.summary())
```

OLS Regression Results

=======================================	========		=========			==
Dep. Variable:	normalized_us	normalized_used_price		R-squared:		
Model: OLS		Adj. R-squared: 0.83				
Method:		Squares	F-statistic:		894	
Date:	Fr1, 12	Jan 2024	Prob (F-statis	•		00
Time:		20:00:17	Log-Likelihood	1:	79.7	
No. Observations:		2417	AIC:		-129	
<pre>Df Residuals: Df Model:</pre>		2402 14	BIC:		-42.	63
Covariance Type:		nonrobust 		.======		.=====
===						
	coef	std err	t	P> t	[0.025	0.9
75]						
 const	1.5776	0.052	30.217	0.000	1.475	1.
680	1.3776	0.032	30.217	0.000	1.4/3	т.
main_camera_mp	0.0209	0.001	14.620	0.000	0.018	0.
024						
selfie_camera_mp	0.0139	0.001	12.921	0.000	0.012	0.
016						
ram	0.0218	0.005	4.382	0.000	0.012	0.
032						
weight	0.0017	6.01e-05	27.655	0.000	0.002	0.
002						
years_since_releas 022	e -0.0285	0.003	-8.393	0.000	-0.035	-0.
<pre>normalized_new_pri 463</pre>	ce 0.4414	0.011	39.298	0.000	0.419	0.
brand_name_Karbonn 223	0.1157	0.055	2.113	0.035	0.008	0.
brand_name_Samsung	-0.0372	0.016	-2.255	0.024	-0.070	-0.
005						
brand_name_Sony	-0.0663	0.030	-2.173	0.030	-0.126	-0.
006	0 0000	0 026	2 1/12	0 002	0 020	0
<pre>brand_name_Xiaomi 131</pre>	0.0808	0.026	3.143	0.002	0.030	0.
os_Others	-0.1265	0.027	-4.636	0.000	-0.180	-0.
073 os_iOS	-0.0888	0.045	-1.967	0.049	-0.177	-0.
000	-0.0888	0.043	-1.507	0.049	-0.1//	-0.
4g_yes	0.0507	0.015	3.359	0.001	0.021	0.
080	0.0307	0.013	3.333	0.001	0.021	•
5g_yes	-0.0663	0.031	-2.160	0.031	-0.126	-0.
006						
=======================================	=========			:======		
Omnibus:	24		rbin-Watson:		1.900	
Prob(Omnibus):			rque-Bera (JB):		489.073	
Skew:	-		ob(JB):		6.30e-107	
Kurtosis:			nd. No. 		2.42e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Check the performance;

```
In [65]:
         # checking model performance on train set (seen 70% data)
         print("Training Performance - Model 1\n")
         olsmodel_train_perf = model_performance_regression(olsmodel, X_train, y_train)
         print(olsmodel train perf, "\n\n")
         # checking model performance on test set (seen 30% data)
         print("Test Performance- Model 1\n")
         olsmodel_test_perf = model_performance_regression(olsmodel, X_test, y_test)
         print(olsmodel_test_perf, "\n\n")
         # checking model performance on train set (seen 70% data)
         print("Training Performance- Model 4\n")
         olsmodel_train_perf = model_performance_regression(olsmodel4, X_train4, y_train)
         print(olsmodel_train_perf, "\n\n")
         # checking model performance on test set (seen 30% data)
         print("Test Performance - Model 4\n")
         olsmodel_test_perf = model_performance_regression(olsmodel4, X_test4, y_test)
         print(olsmodel_test_perf)
         Training Performance - Model 1
                          MAE R-squared Adj. R-squared
                RMSF
                                                              MAPF
         0 0.230067 0.180513
                               0.844638
                                                0.841422 4.331739
         Test Performance- Model 1
                           MAE R-squared Adj. R-squared
                RMSE
                                                              MAPF
         0 0.238749 0.185047
                               0.841962
                                                0.834117 4.509903
         Training Performance- Model 4
                RMSF
                           MAE R-squared Adj. R-squared
                                                             MAPF
         0 0.234118 0.182771
                                0.839119
                                                0.838114 4.39565
         Test Performance - Model 4
                           MAE R-squared Adj. R-squared
                                                             MAPE
                RMSF
         0 0.241513 0.186707
                                0.838281
                                                0.835905 4.55824
```

Analysis of Performance Metrics

Once again we see that Model 1 slighlty outperforms Model 4. However, Model 4 is significantly less complex and the drop in performance is not significant. Model 4 is still performing very well. Here is a more detailed look at what each of these Performance Metrics actually mean;

• **RMSE** is a measure of minimization of prediction errors. Said another way, a lower RMSE means that a model is minimizing errors. Our target variable is normalized (which we will prove shortly) with a minimum of 1.5 and a maximum of 6.2. The RMSE of 0.24 on that scale

is about a 6% error swing. Thus the margins of the buisness model must keep that in mind for risk calculations.

- **MAE** is similar, it is the absoulte error. A smaler MAE means that the predictions are closer to the "true" values. MAE is 0.19, which again on our target variable range is about a 4% error.
- MAPE takes the MAE and instead considers the percent error, as already discussed!
- Adjusted R^2 and R^2 work together to comment on complexity. Adjusted R^2 penalizes models with to omuch complexity because of the inclusion of the number of predictors (features) included in the model. When it decreases, it means that variables removed did indeed have some explanatory power. In this case the decrease is very small. It is also worth noting that the two variables removed by multicollinearity; screen_size and battery had more variability than weight, a feature whose values had a strong modal tendency. This means that removing weight would have a greater effect on the model, but we did lose some nuance with the removal of the more variable features of the trio.

Checking Linear Regression Assumptions

We will be checking the following Linear Regression assumptions:

- 1. Linearity of variables
- 2. Independence of error terms
- 3. Normality of error terms
- 4. No Heteroscedasticity

Linearity and Independence

We will plot the fitted values vs the residuals for model 4. We are hoping to see no pattern in the data - showing that the residuals are independent and the model is linear.

```
In [66]: # let us create a dataframe with actual, fitted and residual values
df_pred = pd.DataFrame()

df_pred["Actual Values"] = y_train # actual values
df_pred["Fitted Values"] = olsmodel4.fittedvalues # predicted values
df_pred["Residuals"] = olsmodel4.resid # residuals
df_pred.head()
```

Out[66]:		Actual Values	Fitted Values	Residuals
	3026	4.087488	3.867212	0.220276
	1525	4.448399	4.600978	-0.152578
	1128	4.315353	4.286047	0.029306
	3003	4.282068	4.195229	0.086839
	2907	4.456438	4.489618	-0.033180

```
In [67]: # let's plot the fitted values vs residuals

sns.residplot(
    data=df_pred, x="Fitted Values", y="Residuals")

plt.xlabel("Fitted Values")

plt.ylabel("Residuals")

plt.title("Fitted vs Residual plot")

plt.show()
```


The scatter plot shows the distribution of residuals (errors) vs fitted values (predicted values).

If there exist any pattern in this plot, we consider it as signs of non-linearity in the data and a pattern means that the model doesn't capture non-linear effects.

We see no real pattern in the plot above it - it is generally ovoid but there isnt a clear curve or funnel. But we will also test the homoscedasticity of the model in a moment to help build the

case for the strengths or limitations of the model. For now, the assumptions of linearity and independence are mediocre-ly satisfied. This is likely due to the large number of zeros in our data set - which could be fixed with some time with a SME or it could be a reality of this market.

Test for Normality

An assumption of this model is that the residuals are normally distributed - this allows appropriate sized and stability in confidence intervals. In order to rest the assumption, we will look at three indicators of normality; a Histogram, a Q-Q plot, and a Shapiro-Wilk test.

We already know there are unusual data points in the data set, so this discussion will be how crucial further discussions of those unusual data points will be.

```
In [68]: sns.histplot(data=df_pred, x="Residuals", kde=True)
  plt.title("Normality of residuals")
  plt.show()
```


Its more bell shaped than I expected! There are moredata points on the left of the data, but the data is nearly symmetric about residuals = 0.0.

```
In [69]: # Q-Q plot
    stats.probplot(df_pred["Residuals"], dist="norm", plot=pylab)
    plt.show()
```


The tails on this data is pretty rough - evidence that a quality SME is worth the investement.

```
In [70]: # Shapiro-Wilk test
    stats.shapiro(df_pred["Residuals"])
Out[70]: ShapiroResult(statistic=0.9674226641654968, pvalue=5.645825118302675e-23)
```

The p-value is significantly less than 0.05, thus the residuals are NOT normal as per the Shapiro - Wilk test. Generally speaking we can say that the assumption is once again only mediocre-ly satisfied, and further data prep work will increase the normalcy of the residuals.

Test for Homoscedasticity

Whereas the previous section worked with the assumption that the magnitude of the residuals were normally distrubuted, homoscedasticity looks at the distribution of the residuals across the regression line itself. The presence of outliers, a known issue in this data, reduces homoscedasticity.

The goldfeldquant test has a null hypothese that the residuals are homoscedastic, so we are looking for p-value greater than 0.05.

```
In [71]: name = ["F statistic", "p-value"]
  test = sms.het_goldfeldquandt(df_pred["Residuals"], X_train4)
  lzip(name, test)
```

```
Out[71]: [('F statistic', 1.0088616644571273), ('p-value', 0.43944597704581817)]
```

This assumption is satisfied! This is confidence building that the outliers in the data, especially as the represent specific phone models, are not harming the model. That isnt to say that the model wouldnt be improved by their treatment, however.

Summary

The assumptions of linear regression have been, at least at a very low level, satisfied. Improvement of the data preparation, particularly in working with outliers and the presence of 0-values, would improve these metrics.

Final Model

Lets print the final model one more time and look at some sample predictions.

```
In [72]: # create new "final" independent variables
X_train_final = X_train4.copy()
X_test_final = X_test4.copy()

# this is equvalent to Model #4
olsmodel_final = sm.OLS(y_train, X_train_final).fit()
print(olsmodel_final.summary())
```

OLS Regression Results

=======================================	========	=======		=======		==	
Dep. Variable:	normalized_us	ed_price	R-squared:		0.8	39	
Model:		OLS	Adj. R-squared	Adj. R-squared:		0.838	
Method:	Least	Squares	F-statistic:		894.9		
Date:	Fri, 12	Jan 2024	Prob (F-statis	tic):	0.	00	
Time:		20:00:18	Log-Likelihood	l :	79.7	41	
No. Observations:		2417	AIC:		-129	.5	
Df Residuals:		2402	BIC:		-42.	63	
Df Model:		14					
Covariance Type:	ne	onrobust					
=======================================	========	=======	=========	=======	========	=====	
===							
	coef	std err	t	P> t	[0.025	0.9	
75]							
const	1.5776	0.052	30.217	0.000	1.475	1.	
680							
main_camera_mp	0.0209	0.001	14.620	0.000	0.018	0.	
024							
selfie_camera_mp	0.0139	0.001	12.921	0.000	0.012	0.	
016							
ram	0.0218	0.005	4.382	0.000	0.012	0.	
032							
weight	0.0017	6.01e-05	27.655	0.000	0.002	0.	
002							
years_since_release 022	-0.0285	0.003	-8.393	0.000	-0.035	-0.	
normalized_new_pric	e 0.4414	0.011	39.298	0.000	0.419	0.	
463							
brand_name_Karbonn	0.1157	0.055	2.113	0.035	0.008	0.	
223							
brand_name_Samsung	-0.0372	0.016	-2.255	0.024	-0.070	-0.	
005							
brand_name_Sony	-0.0663	0.030	-2.173	0.030	-0.126	-0.	
006							
brand_name_Xiaomi	0.0808	0.026	3.143	0.002	0.030	0.	
131							
os_Others	-0.1265	0.027	-4.636	0.000	-0.180	-0.	
073							
os_iOS	-0.0888	0.045	-1.967	0.049	-0.177	-0.	
000							
4g_yes	0.0507	0.015	3.359	0.001	0.021	0.	
080							
5g_yes	-0.0663	0.031	-2.160	0.031	-0.126	-0.	
006							
=======================================				=======	========		
Omnibus:	24	7.525 Dui	rbin-Watson:		1.900		
Prob(Omnibus):	(0.000 Jai	rque-Bera (JB):		489.073		
Skew:	-(0.659 Pro	ob(JB):		6.30e-107		
Kurtosis:	•	4.765 Coi	nd. No.		2.42e+03		
===========	=========	========		=======	========		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [73]: # predictions on the test set
pred = olsmodel_final.predict(X_test_final)

df_pred_test = pd.DataFrame({"Actual": y_test, "Predicted": pred})
df_pred_test.sample(10, random_state=1)
```

Out[73]:		Actual	Predicted
	1995	4.566741	4.384396
	2341	3.696103	4.003929
	1913	3.592093	3.644629
	688	4.306495	4.103986
	650	4.522115	5.112641
	2291	4.259294	4.398014
	40	4.997685	5.459388
	1884	3.875359	4.052498
	2538	4.206631	4.036213
	45	5.380450	5.228828

I would say this falls pretty firmly in the "good, not great" category!

Final Model Perofmance Metrics: Train vs Test Training Performance

RMSE MAE R-squared Adj. R-squared MAPE 0 0.234118 0.182771 0.839119 0.838114 4.39565

Test Performance

```
RMSE MAE R-squared Adj. R-squared MAPE 0 0.241513 0.186707 0.838281 0.835905 4.55824
```

These values did not shift much though the process.

• The model is able to explain ~84% of the variation in the data.

- The train and test RMSE and MAE are low (relative to the scale of the target variable) and comporable. The model is not overfitting.
- The MAPE on the test set suggests we can predict within 4.6% of the normalized used prices.
- Hence, we propose this model as a great starting tool for the buisness discussions to follow

Actionable Insights and Recommendations

Next steps in Data Analysis and Modeling Work

- 1. Connecting with a subject matter expert to weigh in on the outliers, missing value treatment would be very helpful. For example, the outlier of the 1TB internal memory phone, while not common, is certainly an available devide in America. Should those outliers continue to stay?
- 2. Also, based ont he Business Recommendations made below, other data cleaning work could be done. For example, if the company decides to only focus on used phones from the last 4 years, we can create a new model that focuses on those parameters.
- 3. Update the dataset through at least 2022 and add a few more features to the data set:
 - Based on the days used data, many people sell their devices at the 18 month mark.
 Thus the data set should be updated to include phones released 18 months ago.
 - Inventory of available used devices of that model instead of each row of data being a unique build; each row of the data set is an actual phone that was available and its selling price. This would be a huge data set, and the model straignthens with more data.
 - Market specific categoricals; for example India is accelerating its 5g access presently, so
 the 5g phones will likely go up in demand now that the technology is support. More
 4g phones will be available for resale as users upgrade.

Buisness Recommendation Based on Current model

- 1. I suggest as a buisness model to try to focus on keeping inventory of used devices that have non-zero values for the following features:
 - main camera mega pixles
 - selfie camera mega pixels
 - internal memory
 - RAM
- 2. Consider focusing the buisness model, taking into consideration sourcing, technical support, repairs, resale strategy, regional partners, partnerships with connection providers, e-commerce vs brick and morter etc. Here are some focuses of devices that, when the categories are more limited may straighthen the model:

- Consider focuses only on a few key brands. Our model suggests that Karbonn and Xiaomi might be good choices. However other buisness factors like repair costs, inventory, regional availabilty etc become relevant.
- selfie camera mega pixels consider only devices above the Q1 value of this data set
- internal memory consider only devices above the Q1 value of this data set
- RAM consider only devices in the 4 GB+ range
- Market specific choices: not all phones brands or individual technologies are available worldwide.

Appendix: Detailed Exploratory Data Analysis (EDA)

In [75]: # create an array for bins values to better compare the two visualizations for prices
start at the minumum for the used price and maximum of the new price, with 0.25 step
bins_prices = np.arange(df1['normalized_used_price'].min(),df1['normalized_new_price']

In [76]: histogram_boxplot(df1, "normalized_new_price", bins = bins_prices)

In [77]: histogram_boxplot(df1, "normalized_used_price", bins = bins_prices)

Histogram and Boxplot for normalized_used_price

Observations: The used prices are visually slightly more normalized, and has more outliers less than the Q1 value. The new prices are such that the median and mean are less than the mode; the histogram is normalized but not purely symetrical.

In [78]: histogram_boxplot(df1, 'ram')

In [79]: histogram_boxplot(df1, 'int_memory')

4

6 ram

10

12

0

Histogram and Boxplot for int_memory

In [80]: histogram_boxplot(df1, 'main_camera_mp')

In [81]: histogram_boxplot(df1, 'screen_size')

Histogram and Boxplot for screen_size

In [82]: histogram_boxplot(df1, 'selfie_camera_mp')

Histogram and Boxplot for selfie_camera_mp

