

V1.6

Overview

CH579 is an ARM core 32-bit microcontroller integrated with BLE wireless communication. The chip integrates rich peripheral resources such as Bluetooth low energy BLE communication module, Ethernet controller and transceiver, full-speed USB host and device controller and transceiver, segment LCD driver module, ADC, touch button detection module, RTC and so on.

Features

ı	Core:	I	Universal Serial Bus USB:
_	32-bit ARM Cortex-M0 core	_	Built-in USB controller and DMA, support 64-byte data packets,
_	The highest 40MHz system frequency, the lowest 32KHz frequency	_	integrated USB 2.0 full-speed transceiver PHY, no peripherals,
		_	support full/low-speed Host host and Device device mode, support
'	257K bytes of non-volatile storage FlashROM:	_	USB type-C master-slave/current detection
-	250KB user application storage area CodeFlash	ı	Real-time clock RTC: Support timing and trigger two modes
-	2KB user non-volatile data storage area DataFlash		
-	4KB system boot program storage area BootLoader		Segment LCD: Support 96 dots (24×4) LCD panel
-	1KB system non-volatile configuration information storage area InfoFlash	I	Analog-to-digital conversion ADC:
-	Support ICP, ISP and IAP, support OTA wireless upgrade	-	12-bit analog-to-digital converter, supporting differential and single-ended input
I	32K bytes of volatile data storage SRAM:	-	14 external analog signal channels and 2 internal signals
-	16KB RAM with main power supply only 16K	I	Touch key detection module TouchKey: 14 channels
-	14KB dual power supply sleep-maintaining memory area RAM 14K	I	Timer Timer and pulse width modulation PWM:
-	2KB dual power supply sleep-maintaining memory area RAM2K	_	4 groups of 26-bit timers, 16MHz main frequency timing up to 4.2S, 4
I	Power management and low power consumption:	_	channels of capture/sampling, support rising edge/falling edge/double edge
_	Support 3.3V and 2.5V power supply, range 2.1V ∼3.6V	_	4 channels of 26-bit PWM output, 8 channels of 8-bit PWM output
_	Built-in DC-DC conversion, 0dBm transmission power current		
_	6mA Idle mode Idle: 1.2mA	'	Asynchronous serial port UART:
-	Pause mode Halt: 420uA	-	4 independent UARTs, compatible with 16C550, built-in 8-level FIFO
-	Sleep mode: 0.6uA ∼2.0uA multiple gears	-	23-bit counter, the highest communication baud rate can reach 5Mbps
-	Shutdown in power-off mode: 0.2uA ~1.3uA multiple gears	-	UART0 supports Modem and hardware automatic flow control
-	Battery voltage low-voltage monitoring	-	UART0 supports automatic matching of slave address during multi-machine communication
1	Security features: AES-128 encryption and decryption, chip unique ID	I	Serial peripheral interface SPI:
•	Security reactives. ALS-128 encryption and decryption, crip unique 10	-	2 groups of independent SPI, built-in FIFO
I	Bluetooth Low Energy BLE:	-	SCK serial clock frequency can reach half of the system frequency
-	Integrated 2.4GHz RF transceiver and baseband and link control	-	SPI0 supports Master and Slave modes, and supports DMA
-	single-ended RF interface, no external inductor is required, simplifying board	-l ę vel	design LEB dot matrix screen interface: Support 1/2/4 data lines
-	Receiving sensitivity -93dBm, programmable +3dBm transmit power		
-	BLE complies with Bluetooth Low Energy 4.2 specification. The	ı	clock: Built-in 32MHz and 32KHz clock, built-in PLL
-	wireless communication distance is about 100 meters at 0dBm	ı	8-bit passive parallel port
-	transmission power. Various shapes and sizes of PCB on-board antennas are	availa	
-	Provide optimized protocol stack and application layer API, support networki	l ng	Temperature sensor TS
I	Ethernet Ethernet:	I	General-purpose input and output port GPIO:
-	Built-in MAC controller, support frame filtering, support DMA integrated	-	40 GPIOs, 4 of which support 5V signal input, 32

- interrupt inputs, 32 wake-up inputs

Package form: QFN48_5X5, QFN28_4X4

- 10 Mbps transceiver PHY, built-in 50Ω matching resistor, communication

- distance of 200 meters, support auto-negotiation, support energy saving

Chapter 1 Pin Information

1.1 Pinout

Figure 1-1 CH579M (QFN48_5X5) and CH579F (QFN28_4X4) package pin arrangement

1.2 Pin description

	<u> </u>					-
QFN48	QFN28	Pin	Pin multir	plexing function		1
Pin No. P	in No. Na	<u>me</u>	Type f	rst	Function description	,
0	0	GND	power sur	pply -	Common ground terminal, voltage 0V reference point.	1
1	3	VDCID	power sup	pply -	The power input of the internal digital circuit LDO regulator requires an external decoupling capacitor 2.2uF is recommended when DC-DC is enabled, and not less than 0.1uF when not enabled. The	r.
2	4	VSW	power sup	pply -	internal DC-DC switch output, when enabling DC-DC, it must be connected to the pin in series with 22uH or 33uH inductance connected to VDCIDV/hen DC-DC is not enabled, VDCID can be connected d	l rectly.
3	5	VIO33	power sur	upply VBAT	I/O and DC-DC or battery power input should be close to the pin to connect an external decoupling capacitor. When DC-DC is enabled, 2.2uF is recommended, and when DC-DC is not enabled, it is reco	mmended not to be less t
4	no	PA7	I/O/A	TXD2 /PWM5 /AIN11	PA7: General purpose bidirectional digital I/0 pin. TXD2: UART2 serial data output. PWM5: Pulse width modulation output channel 5. AIN11: ADC analog signal input channel 11.	
5	6	PA8	I/O/A	RXD1 /AINT12	PA8: General purpose bidirectional digital I/0 pin. RXD1: UART1 serial data input. AIN12: ADC analog signal input channel 12.	
6	7	PA9	I/O/A	TXD1 /AINT13	PA9: General purpose bidirectional digital I/0 pin. TXD1: UART1 serial data output. AIN13: ADC analog signal input channel 13.	
7	no	PB9	I/O	TXD1_ /SLVW	PB9: General purpose bidirectional digital I/0 pin. TXD1_: TXD1 pin mapping of UART1.	

						SIVM/ Paging parallel port units control signal in a third law
RXD1_FRXD1 pin mapping of UART1. SURP Passaw parallel port read control signal input, acrow at low level.						SLVW: Passive parallel port write control signal input, active low.
9 no PB17 I/O TCK 10 no PB16 I/O TCK 10 no PB16 I/O TCK 10 strial data import section displat I/D print to serve at low level. 11 8 PB15 I/O/A ERH /SVT / MISO. 11 8 PB15 I/O/A ERH /SVT / MISO. 11 8 PB15 I/O/A ERH /SVT / MISO. 11 PB14 I/O/A ERH /SVT / MISO. 12 PB14 I/O/A / SVT / MISO. 13 10 PB13 I/O/A / SVT / SV	0		DDO	1.0	RXD1_	
9	8	no	PB8	1/0	/SLVR	
10						SLVR: Passive parallel port read control signal input, active at low level.
10	9	no	PB17	I/O	TCK	PB17: General purpose bidirectional digital I/0 pin.
10						TCK: Serial clock input of the two-wire emulation debug interface.
11	10	no	PB16	I/O	TIO	PB16: General purpose bidirectional digital I/0 pin.
11						TIO: Serial data input and output of two-wire simulation debugging interface, built-in pull-up.
12 9				I/O/A	ER+	PB15: General purpose bidirectional digital I/0 pin.
12 9 PB14 1/O/A FI Final Policy PB15 1/O/A FI PB16 1/O/A PB17 1/O/A PB17 1/O/A PB18 1/O/A PB18 1/O/A PB18 1/O/A PB19 1/O/A	11	8	PB15			ER+: Ethernet receives RX+ signal.
12 9						MISO_: MISO pin mapping of SPIO.
12 9					ER-	PB14: General purpose bidirectional digital I/0 pin.
MOSI_MOSI_D mapping of SPIO_PWM10: Pulse width modulation output channel 10.	12	9	PB14			ER-: Ethernet receives RX- signal.
Pulse width modulation output channel 10. PB13 I/O/A FT+ /SCK0 PB13 I/O/A SVT /SCK0 TF+ SCK0, SCK pin mapping of SPI0. PB12: General purpose bidirectional digital I/O pin. ET-: Ethernet sends TX+ signal. SCK0_: SCK pin mapping of SPI0. PB12: General purpose bidirectional digital I/O pin. ET-: Ethernet sends TX- signal. SCK_0_: SCK pin mapping of SPI0. PB12: General purpose bidirectional digital I/O pin. ET-: Ethernet sends TX- signal. SCK_0_: SCK pin mapping of SPI0. PB12: General purpose bidirectional digital I/O pin. UD+: D+ data line of USB bus. TMR2_: Timer 2 TMR2 pin mapping. PB10: General purpose bidirectional digital I/O pin. UD-: D-data line of USB bus. TMR1_: TMR1 pin mapping of stimer 1. PB7: General purpose bidirectional digital I/O pin. UD-: D-data line of USB bus. TMR1.: TMR1 pin mapping of stimer 1. PB7: General purpose bidirectional digital I/O pin. TXDO: UARTO serial data output. PB6: General purpose bidirectional digital I/O pin. STS: MODEM output signal of UARTO, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. RXDO: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. RXDO: UARTO serial data input. PB6: General purpose bidirectional digital I/O pin. RXDO: UARTO serial data input. PB7: General purpose bidirectional digital I/O pin. RXDO: UARTO serial data input. PB8: General purpose bidirectional digital I/O pin. RXDO: UARTO serial data input. PB8: General purpose bidirectional digital I/O pin. SCM: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. SCR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 6. PB1: General purpose bidirectional digital I/O pin. SCR: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB2: General purpose bidirectional digital I/O pin. SCR: MODEM input signal of UARTO, clear to sen				/5VT	_	MOSI_: MOSI pin mapping of SPI0. PWM10:
13 10 PB13 I/O/A FET+ /SCKO ET+ ET+: Ethernet sends TX+ signal. 14 11 PB12 I/O/A ET- /SCS_ SCK pin mapping of SPI0. PB12: 15 12 PB11 I/O/A UD+ /TMR2 TMR2. Timer 2 TMR2 pin mapping of SPI0. PB11: General purpose bidirectional digital I/O pin. 16 13 PB10 I/O/A UD- /TMR1 UD+: D+ data line of USB bus. 17 14 PB7 I/O TXD0 General purpose bidirectional digital I/O pin. 18 no PB6 I/O RTS RTS RTS General purpose bidirectional digital I/O pin. 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. 20 15 PB4 I/O RXD0 RXD0 General purpose bidirectional digital I/O pin. 20 15 PB4 I/O RXD0 PRXD0 General purpose bidirectional digital I/O pin. 20 RXD0: UARTO serial data output. 20 PB3 General purpose bidirectional digital I/O pin. 20 RXD0: UARTO serial data input. 20 PB3 I/O PB3 I/O PB3 I/O PB3 General purpose bidirectional digital I/O pin. 20 RXD0: UARTO serial data input. 20 RXD0: UARTO serial data input. 20 PB3 General purpose bidirectional digital I/O pin. 20 RXD0: UARTO serial data input. 20 RXD0: UARTO, ceruest to send. PB4: General purpose bidirectional digital I/O pin. 20 RXD0: UARTO, ceruest to send. PWM9: Pulse width modulation output channel 9. 21 PB3: General purpose bidirectional digital I/O pin. 22 General purpose bidirectional digital I/O pin. 23 General purpose bidirectional digital I/O pin. 24 PB5: General purpose bidirectional digital I/O pin. 25 General purpose bidirectional digital I/O pin. 26 General purpose bidirectional digital I/O pin. 27 CTS General purpose bidirectional digital I/O pin. 28 MODEM input signal of UARTO, dear to send. PWM7: Pulse width modulation output channel 7. 28 MODEM input signal of UARTO, dear to send. PWM6: Pulse width modulation output channel 6.						Pulse width modulation output channel 10.
13				I/O/A	FT+	PB13: General purpose bidirectional digital I/0 pin.
14	13	10	PB13			ET+: Ethernet sends TX+ signal.
14 11 PB12 I/O/A FT- /SCS_ SCS_pin mapping of SP10. PB11: General purpose bidirectional digital I/O pin. UD+: D-data line of USB bus. TMR2_TIME1_TMR1_ TMR2_ Timer 2 TMR2 pin mapping. PB10: General purpose bidirectional digital I/O pin. UD+: D-data line of USB bus. TMR2_TIME1_TMR1 pin mapping. PB10: General purpose bidirectional digital I/O pin. UD+: D-data line of USB bus. TMR1_TMR1_ TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/O pin. TXD0: UART0 serial data output. 18 no PB6 I/O RTS PB6: General purpose bidirectional digital I/O pin. TXD0: UART0 serial data output. 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. TXD0: UART0 serial data output. 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UART0, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UART0, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. 10 PB1 I/O PB2 I/O RSR /PWM7 11 PB1: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UART0, carrier detection. PWM8: Pulse width modulation output channel 9. 22 PB2: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 9. 23 PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 8. 24 PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 6. 25 16 PB23 I/O PB23 I/O SCST# PB23: General purpose bidirectional digital I/O pin.				751.	756.10_	SCK0_: SCK pin mapping of SPI0. PB12:
14 11 PB12 /5VT /SCS_ ET:: Ethernet sends TX- signal. SCS_: SCS_ pin mapping of SP10. PB11: General purpose bidirectional digital I/0 pin. UD-: D-data line of USB bus. TMR2_: Timer 2 TMR2 pin mapping. PB10: General purpose bidirectional digital I/0 pin. UD:: D-data line of USB bus. TMR1_: TMR1 pin mapping of SP10. PB1: General purpose bidirectional digital I/0 pin. UD:: D-data line of USB bus. TMR1_: TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data output. PB6: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data output. PB6: General purpose bidirectional digital I/0 pin. TXD0: UART0. Serial data input. DTR: MODEM output signal of UART0, the data terminal is ready. PB4: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data input. PB1: General purpose bidirectional digital I/0 pin. TXD0: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. PB1: General purpose bidirectional digital I/0 pin. TXD0: UART0 serial data device is ready. PWM7: Pulse width modulation output channel 7. PB1: General purpose bidirectional digital I/0 pin. TXD0: UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. PB1: General purpose bidirectional digital I/0 pin. TXD0: MODEM input signal of UART0, the data device is ready. PWM6: Pulse width modulation output channel 7. PB1: General purpose bidirectional digital I/0 pin. TXD0: UART0, chear detection digital I/0 pin				I/O/A	FT-	General purpose bidirectional digital I/0 pin.
15 12 PB11 I/O/A UD+ /TMR2_ TMR2_ TIME 2 TMR2 pin mapping of SPI0. PB11: General purpose bidirectional digital I/O pin. UD+: D+ data line of USB bus. TMR2_ TIME 2 TMR2 pin mapping. PB10: General purpose bidirectional digital I/O pin. UD-: D-data line of USB bus. TMR2_ TMR1_ TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. 18 no PB6 I/O RTS General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. 20 15 PB3 I/O DCD /PWM9 Width modulation output channel 9. 20 PB3 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. 20 PB3 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. 20 PB3 I/O PB3 I/O PB3 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. 21 PB3 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. 22 General purpose bidirectional digital I/O pin. PB3 General purpose bidirectional digital I/O pin. PB3 General purpose bidirectional digital I/O pin. PB3 General purpose bidirectional digital I/O pin. 22 General purpose bidirectional digital I/O pin. PB3 General purpose bidirectional digital I/O pin. CTS MODEM input signal of UARTO, clear to send. PWM6: Pulse widt	14	11	PB12			ET-: Ethernet sends TX- signal.
15 12 PB11 I/O/A /TMR2_				,341	7565_	SCS_: SCS pin mapping of SPI0. PB11: General
15 12 PB11 I/O/A /TMR2_ IMR2_ Timer 2 TMR2 pin mapping. PB10: General purpose bidirectional digital I/O pin. UD: D-data line of USB bus. TMR1_ TMR1_ DD-data line of USB bus. TMR1_ TMR1_ DD-data line of USB bus. UD: D-data line of USB bus. UD: D-data line of USB bus. TMR1_ TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. 18 no PB6 I/O RTS PB6: General purpose bidirectional digital I/O pin. RTS: MODEM output signal of UARTO, request to send. PB5: 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RX MODEM input signal of UARTO, inging indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, the data device is ready. PWM6: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.					IID+	purpose bidirectional digital I/0 pin.
TMR2; Timer 2 TMR2 pin mapping, PB10: TMR2 in mapping, PB10: UD- D-data line of USB bus. TMR1_ TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/O pin. UD-: D-data line of USB bus. TMR1_ TMR1 pin mapping of timer 1. PB7: General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. PB6: General purpose bidirectional digital I/O pin. RTS: MODEM output signal of UARTO, request to send. PB5: General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: DCD	15	12	PB11	I/O/A		UD+: D+ data line of USB bus.
16 13 PB10 I/O/A /TMR1_ TMR1_TMR1 pin mapping of timer 1. PB7: 17 14 PB7 I/O TXD0 General purpose bidirectional digital I/O pin. TXD0: UARTO serial data output. 18 no PB6 I/O RTS PB6: General purpose bidirectional digital I/O pin. RTS: MODEM output signal of UARTO, request to send. PB5: 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. RTS: MODEM output signal of UARTO, request to send. PB5: 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: 20 15 PB4 I/O RXD0 RXD0 RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. Twenty threeNo PB0 I/O CTS /PWM6 PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. TS: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. TS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.					/ I WINZ_	TMR2_: Timer 2 TMR2 pin mapping. PB10:
16 13 PB10 I/O/A /TMR1_ UD: D-data line of USB bus. TMR1_: TMR1 pin mapping of timer 1. PB7: 17					IID-	General purpose bidirectional digital I/0 pin.
TMR1_: TMR1 pin mapping of timer 1. PB7: 17	16	13	PB10	I/O/A		UD-: D-data line of USB bus.
TXD0: UART0 serial data output. TXD0: UART0 serial data output. TXD0: UART0 serial data output. TXD0: UART0, request to send. PB5: TYO DTR TR: MODEM output signal of UART0, request to send. PB5: General purpose bidirectional digital I/0 pin. DTR: MODEM output signal of UART0, the data terminal is ready. PB4: TYO RXD0 TYP: MODEM output signal of UART0, the data terminal is ready. PB4: General purpose bidirectional digital I/0 pin. RXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. TYPE: General purpose bidirectional digital I/0 pin. RI: MODEM input signal of UART0, ringing indicator. PWM8: Pulse width modulation output channel 8. TYPE: General purpose bidirectional digital I/0 pin. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. TYPE: General purpose bidirectional digital I/0 pin. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. TYPE: General purpose bidirectional digital I/0 pin.					711411111	TMR1_: TMR1 pin mapping of timer 1. PB7:
TXD0: UART0 serial data output. PB6: General purpose bidirectional digital I/0 pin. RTS: MODEM output signal of UART0, request to send. PB5: General purpose bidirectional digital I/0 pin. DTR: MODEM output signal of UART0, the data terminal is ready. PB4: DTR: MODEM output signal of UART0, the data terminal is ready. PB4: DTR: MODEM output signal of UART0, the data terminal is ready. PB4: General purpose bidirectional digital I/0 pin. RXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. RXD0: UART0 serial data input. PB3: General purpose bidirectional digital I/0 pin. DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/0 pin. RI: MODEM input signal of UART0, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/0 pin. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/0 pin. CTS: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/0 pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6. PB0: General purpose bidirectional digital I/0 pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6.	17	14	PR7	I/O	TXD0	General purpose bidirectional digital I/0 pin.
18 no PB6 I/O RTS RTS: MODEM output signal of UART0, request to send. PB5: 19 no PB5 I/O DTR DTR: MODEM output signal of UART0, the data terminal is ready. PB4: 20 15 PB4 I/O RXD0 RXD0: UART0 serial data input. Eventy one no PB3 I/O PWM9 Twenty two no PB2 I/O RI Eventy two no PB1 I/O DSR Eventy threeno PB1 I/O PB1 I/O DSR Eventy one no PB1 I/O PB1 I/O PB1 I/O PB1: General purpose bidirectional digital I/O pin. RXD0: UART0 serial data input. DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RX: MODEM input signal of UART0, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6.	. ,			1, 0	17.00	TXD0: UART0 serial data output.
RTS: MODEM output signal of UARTO, request to send. PB5: 19 no PB5 I/O DTR General purpose bidirectional digital I/O pin. DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RI MODEM input signal of UARTO, carrier detection. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS /PWM6 RST# PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.	18	no	PB6	I/O	RTS	PB6: General purpose bidirectional digital I/0 pin.
19 no PB5 I/O DTR DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: 20 15 PB4 I/O RXD0 RXD0: UARTO serial data input. Eventy one no PB3 I/O DCD PWM9 DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. RI PWM8 Pulse width modulation output channel 9. PB1: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR PWM7 DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS PWM6 CTS PWM6 CTS PWM6 PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.		110	. 50	1, 0	1(15	RTS: MODEM output signal of UART0, request to send. PB5:
DTR: MODEM output signal of UARTO, the data terminal is ready. PB4: 20 15 PB4 I/O RXD0 General purpose bidirectional digital I/O pin. RXD0: UARTO serial data input. PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. RST# PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.	19	no	PR5	I/O	DTR	General purpose bidirectional digital I/0 pin.
20 15 PB4 I/O RXD0 RXD0: UART0 serial data input. RXD0: UART0 serial data input.	13	110	1 03	1/0	DIK	DTR: MODEM output signal of UART0, the data terminal is ready. PB4:
twenty one no PB3 I/O DCD /PWM9 PB3: General purpose bidirectional digital I/O pin. DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. RI /PWM8 PB2: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. CTS /PWM6 CTS: MODEM input signal of UARTO, carrier detection. PWM9: Pulse bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.	20	15	PR4	I/O	RXD0	General purpose bidirectional digital I/0 pin.
twenty two no PB3 I/O PWM9 DCD: MODEM input signal of UARTO, carrier detection. PWM9: Pulse width modulation output channel 9. PB2: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. TWM PB1: General purpose bidirectional digital I/O pin. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. TWM PB0: General purpose bidirectional digital I/O pin. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB2: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.		13	1 57	17 0	1000	RXD0: UART0 serial data input.
twenty one no PB3 I/O /PWM9 /PWM9 DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse width modulation output channel 9. RI /PWM8 /PWM8 Pulse width modulation output signal of UART0, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR /PWM7 DSR: MODEM input signal of UART0, ringing indicator. PWM8: Pulse width modulation output channel 8. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. CTS /PWM6 PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/O pin.					חכח	PB3: General purpose bidirectional digital I/0 pin.
width modulation output channel 9. RI /PWM8 RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/O pin. DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. Twenty four NO PB0 I/O CTS /PWM6 PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6.	twenty	ne NO	PB3	I/O		DCD: MODEM input signal of UART0, carrier detection. PWM9: Pulse
twenty two no PB2 I/O RI /PWM8 RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. The provided HTML representation of the pulse width modulation output channel 8. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation ou					77 001013	width modulation output channel 9.
twenty two no PB2 I/O /PWM8 RI: MODEM input signal of UARTO, ringing indicator. PWM8: Pulse width modulation output channel 8. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation output channel 7. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation of the pulse width modulation output channel 6. The provided HTML representation output channel 6. The pulse width modulation output channel 6. The provided HTML representation output channel 6. The pulse width modulation output channel 6. The provided HTML representation output channel 6. The pulse width modulation output channel 6. The provided HTML representation output channel 6. The pulse width modulation output channel 7. The pulse width modulation output channel 8. The pulse width modulation output					DΙ	PB2: General purpose bidirectional digital I/0 pin.
Pulse width modulation output channel 8. PB1: General purpose bidirectional digital I/0 pin. DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. Twenty four NO PB0 I/O CTS /PWM6 PB0: General purpose bidirectional digital I/0 pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6. PB23: General purpose bidirectional digital I/0 pin. CTS: MODEM input signal of UART0, clear to send. PWM6: Pulse width modulation output channel 6.	twenty t	wo no	PB2	I/O		RI: MODEM input signal of UARTO, ringing indicator. PWM8:
twenty threeNO PB1 I/O DSR /PWM7 DSR: MODEM input signal of UARTO, the data device is ready. PWM7: Pulse width modulation output channel 7. The street of t					/ I VVIVIO	Pulse width modulation output channel 8.
twenty threeNO PB1 I/O /PWM7 DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse width modulation output channel 7. The proof of the proof o					DSB	PB1: General purpose bidirectional digital I/0 pin.
width modulation output channel 7. PB0: General purpose bidirectional digital I/O pin. CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin.	twenty t	hree NO	PB1	I/O		DSR: MODEM input signal of UART0, the data device is ready. PWM7: Pulse
twenty four NO PBO I/O CTS /PWM6 CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. 25 16 PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin.					/ F: VV IVI /	width modulation output channel 7.
twenty four NO PBO I/O /PWM6 CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse width modulation output channel 6. 25 16 PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin.					CTS	PB0: General purpose bidirectional digital I/0 pin.
width modulation output channel 6. PB23 I/O RST# PB23: General purpose bidirectional digital I/O pin.	twenty f	our no	PB0	I/O		CTS: MODEM input signal of UARTO, clear to send. PWM6: Pulse
25 16 PB23 I/O					/ F. AAIAIQ	width modulation output channel 6.
/TXD2_ RST#: External reset input, active low, built-in pull-up resistor.	25	16	DESS	1/0	RST#	PB23: General purpose bidirectional digital I/0 pin.
		10	F DZ3	1/0	/TXD2_ RS	#: External reset input, active low, built-in pull-up resistor.

	ī		T	r		Ī
				/PWM11	TXD2_: TXD2 pin mapping of UART2. PWM11:	
					Pulse width modulation output channel 11.	
26	17	PB22	I/O	RXD2_	PB22: General purpose bidirectional digital I/0 pin.	
20	17	1 022	1/0	TOODZ_	RXD2_: RXD2 pin mapping of UART2. PB21:	
27	no	PB21	I/O	TXD3_	General purpose bidirectional digital I/0 pin.	
2,	110	1 021	1/0	17,05_	TXD3_: TXD3 pin mapping of UART3. PB20:	
28	no	PB20	I/O	RXD3_	General purpose bidirectional digital I/0 pin.	
	110	1 020	1/0	KND3_	RXD3_: RXD3 pin mapping of UART3. PB19:	
29	no	PB19	I/O	TMDO	General purpose bidirectional digital I/0 pin.	
29	no	PDIS	1/0	TMR0_	TMR0_: TMR0 pin mapping of Timer 0. PB18:	
20	no	DD10	I/O	TMD2	General purpose bidirectional digital I/0 pin.	
30	no	PB18	1/0	TMR3_	TMR3_: Timer 3 TMR3 pin mapping.	
31	18	<u>X32MO</u>	<u>I/A</u>	-	The inverted output terminal of the high frequency oscillator HSE is connected to one end of a	
32	19	<u>X32MI</u>	A	-	32MHz crystal. The input end of the high frequency oscillator HSE is connected to the other end of a	
22	22	·			32MHz crystal. The power node of the internal analog circuit needs to be close to the pin and an exte	rnal decoupling cap
33	20	VINTA	power sup	ply -	2.2uF (1uF can be selected when DC-DC is not used, which saves power but reduces BLE sensitivity). I	
34	twenty o	ne ANT	Α	-	signal input and output, it is recommended to connect the antenna directly.	
					The power input of the internal analog circuit LDO regulator requires an external decoupling capacit	or.
35	twenty t	woVDCIA	power sup	ply -	It is recommended not to be less than 0.1uF, and it is recommended to connect directly to the VDCIE	
					PA4: General purpose bidirectional digital I/O pin.	
				RXD3	RXD3: UART3 serial data input.	
36	twenty t	hree PA4	I/O/A	/LEDC	LEDC: LED screen interface serial clock output.	
20	tivelity t			/UCC1	UCC1: USB type-C bidirectional configuration	
				/AIN0	channel 1. AINO: ADC analog signal input channel 0.	
					PA5: General purpose bidirectional digital I/O pin.	
				TXD3	TXD3: UART3 serial data output.	
37	twenty f	our PA5	I/O/A	/UCC2	UCC2: USB type-C bidirectional configuration	
				/AIN1	channel 2. AIN1: ADC analog signal input channel 1.	
					PA6: General purpose bidirectional digital I/O pin.	
				RXD2	RXD2: UART2 serial data input.	
38	no	PA6	I/O/A	/PWM4	PWM4: Pulse width modulation output channel 4.	
				/AIN10	AIN10: ADC analog signal input channel 10.	
					·	
				SCK1	PA0: General purpose bidirectional digital I/O pin. SCK1: SPI1 serial clock output	
				/SLVA	SCK1: SPI1 serial clock output.	
39	no	PA0	I/O/A	/SLVA /LED0	SLVA: Passive parallel port address input, high level selection command and status port,	
				/LEDU /AIN9	Low level selects the data port.	
				/AIIN9	LEDO: LED screen interface serial data output 0.	
			1		AIN9: ADC analog signal input channel 9.	
				MOSI1	PA1: General purpose bidirectional digital I/O pin. MOSIA: SDIA covial data output	
40		D 4 4	1/0/4	/SLVS	MOSI1: SPI1 serial data output.	
40	no	PA1	I/O/A	/LED1	SLVS: Passive parallel port chip select control input, active at low level.	
				/AIN8	LED1: LED screen interface serial data output 1.	
			1		AIN8: ADC analog signal input channel 8.	
				TMR3	PA2: General purpose bidirectional digital I/O pin.	
4.4		D 4 0		/MISO1	TMR3: Capture input 3 and PWM output channel 3 of timer 3. MISO:	
41	no	PA2	I/O/A	/LED2	SPI1 serial data input, multiplexed for output in 2-wire mode.	
				/AIN7	LED2: LED screen interface serial data output 2.	
		B : 0		T1 15 6	AIN7: ADC analog signal input channel 7.	
42	no	PA3	<u>I/O/A</u>	TMR0	PA3: General purpose bidirectional digital I/0 pin.	

	1			1		1
				/SLVI	TMR0: Capture input 0 and PWM output channel 0 of timer 0. SLVI:	
				/LED3	Passive parallel port interrupt request output, active at low level.	
				/AIN6	LED3: LED screen interface serial data output 3.	
					AIN6: ADC analog signal input channel 6.	
				MISO	PA15: General purpose bidirectional digital I/0 pin.	
43	25	PA15	1/0/4/		MISO: SPI0 serial data pin, master input/slave output.	
43	25	PAIS	I/O/A /	_	RXD0_: RXD0 pin mapping of UART0.	
				/AIN5	AIN5: ADC analog signal input channel 5.	
				MOCT	PA14: General purpose bidirectional digital I/0 pin.	
				MOSI	MOSI: SPI0 serial data pin, master output/slave input.	
44	26	PA14	I/O/A	/TXD0_	TXD0_: TXD0 pin mapping of UART0. UBUS:	
				/UBUS	USB type-C bus voltage detection input.	
				/AIN4	AIN4: ADC analog signal input channel 4.	
				CCIVO	PA13: General purpose bidirectional digital I/0 pin.	
45	27	PA13	I/O/A	SCK0	SCK0: SPI0 serial clock pin, master output/slave input.	
				/AIN3	AIN3: ADC analog signal input channel 3.	
				5.55	PA12: General purpose bidirectional digital I/0 pin.	
46	28	PA12	I/O/A	SCS	SCS: Chip select input in SPI0 slave mode, active at low level.	
				/AIN2	AIN2: ADC analog signal input channel 2.	
					PA11: General purpose bidirectional digital I/0 pin.	
47	1	PA11	I/O/A	X32KO	X32KO: The inverted output terminal of the low frequency oscillator, which is connected to one end of	f a 32KHz crystal.
				/TMR2	TMR2: Capture input 2 and PWM output channel 2 of timer 2. PA10:	
				Vaakt	General purpose bidirectional digital I/0 pin.	
48	2	PA10	I/O/A	X32KI	X32KI: The input terminal of the low frequency oscillator, which is connected to the other end of the	32KHz crystal.
				/TMR1	TMR1: Capture input 1 and PWM output channel 1 of timer 1.	

Duplex for segment LCD <u>Driven</u> Pin description

	<u> </u>				
Pin name	Types of	Reuse function	Function description		
PA0 ∼PA3	Α	сомо ∼сомз	To drive each common terminal of the segment LCD, select part or all according to the needs.		
PB0 ∼PB23	А	SEG0 ∼SEG23	To drive each segment of the segment LCD, select part or all according to the needs. There are 6 bits RB_PIN_SEG*_IE in the R16_PIN_ANALOG_IE register. Each bit controls 4 segment pins at the same time. When this bit is 0, 4 pins are used for digital input or other non-LCD functions. When this bit is 1, 4 pins are used For LCD segment drive.		

Note:

(1), pin type:

I=TTL/CMOS level Schmitt input;

O=CMOS level tri-state output;

A=Analog signal input or output;

5VT=Support 5V signal voltage input.

(2) The multiplexing functions and mappings of pins are arranged in the table from high to bottom according to their priority, and the GPIO function is the lowest priority.

Chapter 2 System Structure and Memory

2.1 System structure

The following figure shows the block diagram of CH579 chip system structure.

Figure 2-1 CH579 internal structure block diagram

2.2 Memory map

The addressing space of CH579 mainly includes several different areas such as CODE area/FlashROM, DATA area/SRAM, peripherals, etc., as shown in the figure below for details.

Figure 2-2 Memory map

2.3 Memory Map

The address range of each memory map area is shown in the following table:

Table 2-1 Memory Map Area Address

Address range	use	description
0x00000000-0x0007FFFF	On-chip CODE area, non-volatile memory	257KB, FlashROM
0x00080000-0x1FFFFFF	Keep	-
0x20000000-0x20007FFF	On-chip DATA area, volatile memory	32KB, SRAM
0x20008000-0x3FFFFFF	Keep	-
0x40000000-0x4000FFFF	Various peripherals	Multiple peripheral modules
0x40010000-0xDFFFFFF	Keep	-
0xE0000000-0xE000FFFF	PPB	Internal peripheral bus area
0xE0010000-0xFFFFFFF	Keep	-

2.3.1 On-chip CODE area mapping table

Table 2-2 CODE area address

Address range	use	description
0x00000000-0x0003E7FF	User application storage area CodeFlash	250KB
0x0003E800-0x0003EFFF	User non-volatile data storage area DataFlash	2KB
0x0003F000-0x0003FFFF	System boot program storage area BootLoader	4KB
0x00040000-0x000403FF	System non-volatile configuration information storage area InfoFlash	1KB
0x00040400-0x0007FFFF	Кеер	-

The configuration information of address 0x00040010 can be set by the user through the tool.

Table 2-3 User-level non-volatile configuration information description

Bit address	name	use	<u>Defaults</u>
Bit 2 to bit 0	RESERVED	Keep	000b
Bit 3	CFG_RESET_EN	RST# External manual reset input pin enable	0
Bit 4	CFG_DEBUG_EN	Two-wire simulation debugging interface enable	1
Bit 5	RESERVED	Кеер	0
Bit 6	CFG_BOOT_EN	BootLoader enable	1
Bit 7	CFG_ROM_READ	Code and data protection mode in FlashROM: 0-Prohibit the programmer to read out, the program is confidential; 1-Allo	1 w to read out
Bit 27 to bit 8	RESERVED	Keep	<u>OFFFFh</u>
Bit 31 to bit 28	VALID_SIG	Configuration information valid flag, fixed value	0101b

2.3.2 On-chip DATA area mapping table

Table 2-4 DATA area address

Address range	use	description			
0x20000000-0x20003FFF	RAM 16K with main power supply only	16KB			
0x20004000-0x200077FF	Main + auxiliary dual power supply, independently maintainable storage area RAM1	4к 14КВ			
0x20007800-0x20007FFF	Main + auxiliary dual power supply, independently maintainable storage area RAM2	к 2KB			

2.3.3 Peripheral address allocation

CH579 mainly contains the following peripherals. Each peripheral occupies a certain address space. The actual access address of the peripheral register is: Base

Address + offset address. In the subsequent chapters, the address of the register is described in detail. The following table is the allocation table of the base address of each peripheral.

Table 2-5 Peripheral base address allocation table

Peripheral number	Peripheral name	Peripheral base address
1	SYS (PMU/RTC/GPIO, etc.)	0x4000 1000
2	AUX (ADC/TKEY/PLL, etc.)	0x4000 1400
3	FlashROM-Control	0x4000 1800
4	TMR0	0x4000 2000
5	TMR1	0x4000 2400
6	TMR2	0x4000 2800
7	TMR3	0x4000 2C00
8	UART0	0x4000 3000
9	UART1	0x4000 3400

10	UART2	0x4000 3800
11	UART3	0x4000 3C00
12	SPI0	0x4000 4000
13	SPI1	0x4000 4400
14	PWMx (PWM4 ∼PWM11)	0x4000 5000
15	LCD	0x4000 6000
16	led	0x4000 6400
17	USB	0x4000 8000
18	ETH	0x4000 9000
19	Radio:BLF	0x4000 C000
19	Kauio:BLE	0x4000 D000

The following table is the explanation of "Access" in the register description in the subsequent chapters:

Table 2-6 Description of access attributes

abbreviation	description
RF	Read-only and the read value is a fixed value, not affected by reset.
RO	Read only.
WO	Write only, the read value is 0 or invalid.
RZ	Read only, automatically cleared to 0 after reading.
WZ	Clear to 0 when written.
RW	Read and write.
RW1	Readable, write 1 to clear 0.
WA	In write-only and safety-only mode, the read value is 0 or invalid.
RWA	Readable, only writable in safe mode.

The following table explains the abbreviations used in the subsequent chapters:

Table 2-7 Noun abbreviation description

abbreviation	description
HSE	External high-frequency crystal oscillator clock source (32MHz recommended)
HSI	Internal high-frequency RC clock oscillator source (32MHz after factory
LSE	calibration) External low-frequency crystal oscillator clock source (32KHz recommended)
LSI	Internal low-frequency RC clock oscillator source (32KHz after calibration when the application
CK32M	software is running) High-frequency clock source (default 32MHz)
CK32K	Low frequency clock source (default 32KHz)
Fpll	PLL output clock (default frequency is 480MHz)
HCLK	System main frequency clock
Fsys	System main frequency clock frequency
Tsys	System main frequency clock cycle (1/Fsys)
RAM2K	2KB SRAM with the highest address
RAM14K	14KB SRAM with the next highest address
0x	The data beginning with it represents a hexadecimal number
Н	The data ending with it represents a hexadecimal number
В	The data ending with it represents a binary number

Chapter 3 Interrupts

3.1 Interrupt controller

The system supports up to 20 groups of interrupt signal sources, and each interrupt request has an independent trigger and mask control bit, as well as a dedicated status bit.

3.2 System tick SysTick calibration value

When the system tick clock is set to 32MHz and the system tick calibration value is fixed at 32000, a 1mS time base will be generated.

3.3 Interrupt and exception vector

The following table lists the vector table of the chip system $% \left\{ \mathbf{r}_{1}^{\mathbf{r}}\right\} =\mathbf{r}_{2}^{\mathbf{r}}$

Table 3-1 Interrupt vector table

			T	able 3-1 Interrupt vector table	
position	priority level	priority Types of	name	Description	address
	-	-	-	Keep	0x0000_0000
<u>-15</u>	-3	<u>fixed</u>	Reset	Reset	0x0000_0004
<u>-14</u>	- 2	<u>fixed</u>	NMI	Non-maskable interrupt	0x0000_0008
<u>-13</u>	- 1	<u>fixed</u>	Hard fault	All types of failures	0x0000_000C
	-	-	-	Keep	-
-5	0	Can be set	SVCall	System service call via SWI instruction	0x0000_002C
	-	-	-	Keep	-
- 2	1	Can be set	PendSV	Suspend system services	0x0000_0038
- 1	2	Can be set	SysTick	System tick timer	0x0000_003C
0	3	Can be set	TMR0	TMR0 timer 0 interrupt	0x0000_0040
1	4	Can be set	GPIO	GPIO general I/O interrupt	0x0000_0044
2	5	Can be set	SLAVE	Passive parallel interrupt	0x0000_0048
3	6	Can be set	SPI0	SPI0 interrupt	0x0000_004C
4	7	Can be set	BLEL	LLE interrupt of wireless module	0x0000_0050
5	8	Can be set	BLEB	BB interrupt of wireless module	0x0000_0054
6	9	Can be set	USB	USB interrupt	0x0000_0058
7	10	Can be set	ETH	Ethernet interrupt	0x0000_005C
8	11	Can be set	TMR1	TMR1 Timer 1 interrupt	0x0000_0060
9	12	Can be set	TMR2	TMR2 Timer 2 interrupt	0x0000_0064
10	13	Can be set	UART0	UARTO asynchronous serial port 0 interrupt	0x0000_0068
11	14	Can be set	UART1	UART1 Asynchronous serial port 1 interrupt	0x0000_006C
12	15	Can be set	RTC	RTC real-time clock interrupt	0x0000_0070
13	16	Can be set	ADC	ADC interrupt	0x0000_0074
14	17	Can be set	SPI1	SPI1 interrupt	0x0000_0078
15	18	Can be set	led	LED screen control interrupted	0x0000_007C
16	19	Can be set	TMR3	TMR3 timer 3 interrupt	0x0000_0080
17	20	Can be set	UART2	UART2 Asynchronous serial port 2 interrupt	0x0000_0084
18	twenty	n <u>€an be set</u>	UART3	UART3 Asynchronous serial port 3 interrupt	0x0000_0088
19	twenty t	w <u>©an be set</u>	WDOG_BAT	Watchdog timer interrupt / low battery interrupt	0x0000_008C

Chapter 4 System Control

4.1 Reset control

The system supports 6 types of reset, including power-on reset RPOR (real power on reset), external manual reset MR (manual reset), internal software reset SR (software reset), and watch-dog timeout reset WTR (watch-dog time reset). -out reset), global reset GRWSM (global reset by waking under shutdown mode) caused by wake-up in power-down mode, local reset by waking LRW (local reset by waking) caused by regular wake-up.

The registers R8_GLOB_RESET_KEEP and RB_ROM_CODE_OFS are only reset when RPOR and GRWSM are reset, and are not affected by other reset forms.

For the timing parameters and reset characteristic parameters in the following figure, please refer to the timing parameter table in Section 20.5.

4.1.1 Power-on reset RPOR

When the power is turned on, the chip will generate a power-on reset and delay to wait for the power supply to stabilize. The following figure shows the power-on reset process.

Figure 4-1 Power-on reset

4.1.2 External manual reset MR

The external manual reset is triggered by the low level applied to the RST# pin externally, when the duration of the reset low level is greater than the minimum reset pulse width When the temperature is low (Trst), the system is triggered to reset.

Figure 4-2 External reset

4.1.3 Internal software reset SR

Internal software reset is used to reset itself without external intervention. Set the global reset configuration register (R8_RST_WDOG_CTRL)

If the bit RB_SOFTWARE_RESET is 1, the software reset can be realized. This bit will be automatically cleared to 0.

4.1.4 Watchdog timeout reset WTR

The watchdog function is based on an 8-bit up counter with a counting clock cycle of 131072/Fsys. When the watchdog timeout reset function is enabled, the entire system will be reset once this counter overflows.

4.1.5 Reset GRWSM after waking up from power-down mode

Once the system enters the power-down mode (see the power management chapter for details), the system will execute the wake-up operation in an orderly manner under the activation will be a constant of the system will perform a global reset. The effect of this reset is similar to a power-on reset.

4.1.6 Reset LRW caused by regular wake-up operation

If the system is awakened from sleep mode, a reset will be generated after the relevant power supply is ready. This reset is a partial reset.

Perform selective reset of the registers that are powered down in sleep mode as needed.

In sleep mode, the registers of each functional module are divided into three categories:

The first is the key register belonging to the functional module that requires data retention (such as configuration/mode, etc.), which is relayed by the auxiliary power supply du

Continuous power supply, no data loss, sleep and wake-up have no effect on its data;

The second type is the regenerable register (such as counter, FIFO, etc.) belonging to the functional module that needs data retention, and the power is turned off during sleep.

After waking up, the data is a random number (such as FIFO storage unit) or reset (such as FIFO counter)

The third type is a register belonging to a functional module that does not require data retention. The power is off during sleep, and the data is a random number after wakeup FIFO storage unit) or reset (such as FIFO counter, configuration/mode register) .

LRW is used for the latter two registers to be reset.

4.2 Secure access

The attribute of some registers in the system is "RWA" or "WA", indicating that the current register is a safe access register and can be read directly But writing needs to enter the secure access mode.

Write R8_SAFE_ACCESS_SIG register 0x57 first; then write R8_SAFE_ACCESS_SIG register 0xA8;

Then you can enter the safe access mode. At this time, you can operate the register with the attribute of "RWA/WA", and then about 16 system clock cycles (Tsys)

Are in the safe mode, one or more safety registers can be rewritten within the validity period, and the security will be automatically terminated after the validity period is exceeded. Full mode. Or you can write 0x00 to the R8_SAFE_ACCESS_SIG register in advance to terminate the safety mode early.

4.3 Register description

Table 4-1 System control related register list

name	address	description	Reset value
R8_SAFE_ACCESS_SIG	0x40001040	Security Access Flag Register	0x00
R8_CHIP_ID	0x40001041	Chip ID register	0x79
R8_SAFE_ACCESS_ID	0x40001042	Secure access ID register	0x04
R8_WDOG_COUNT	0x40001043	Watchdog counter register	0x00
R8_RESET_STATUS	0x40001044	Reset status register	0x01
R8_GLOB_CFG_INFO	0x40001045	Global configuration information status register	0xEX
R8_RST_WDOG_CTRL	0x40001046	Watchdog and reset configuration register	0x00
R8_GLOB_RESET_KEEP	0x40001047	Reset holding register	0x00
R8_CFG_FLASH	0x4000104A	FlashROM configuration register	0x0X
R32_FLASH_DATA	0x40001800	FlashROM data register	0xXXXXXXX
R32_FLASH_ADDR	0x40001804	FlashROM address register	0xXXXXXXX
R8_FLASH_COMMAND	0x40001808	FlashROM command register	0x00
R8_FLASH_PROTECT	0x40001809	FlashROM protection control register	0x00
R16_FLASH_STATUS	0x4000180A	FlashROM status register	0x0X00

 $\label{eq:access_mark} \mbox{An} \underline{\mbox{Full access mark}} \mbox{ Remember} \underline{\mbox{Register (R8_SAFE_ACCES}} \mbox{ S}\underline{\mbox{SIG)}}$

Bit	name	access	description	Reset value
[7:0]	R8_SAFE_ACCESS_SIG	wo	Security access flag register. Some registers (access attribute is RWA) are protected registers Memory, you must enter the secure access mode to proceed Write operation. Write 0x57 to this register first, then write Enter 0xA8 to enter the secure access mode, and The time limit is about 16 main clock cycles (Tsys), if more than Automatic protection. You can write any other value to force straig Then exit the safe access mode and return to the protected state.	00h
7	Reserved	R0	Reserved.	0
[6:4]	RB_SAFE_ACC_TIMER	RO	Current security access time count.	000b
3	RB_SAFE_ACC_ACT	RO	Current security access mode status: 1: Writable in unlocked/safe access mode; 0: Locked, RWA attribute register cannot be rewritten.	0
2	Reserved	R0	Reserved.	0
[1:0]	RB_SAFE_ACC_MODE	RO	Current security access mode status: 11: Safe mode, can write attribute RWA register; Other: non-safe mode.	00b

Chip ID register (R8_CHIP_ID)

Bit	name	access	description	Reset value
[7:0] R8_	CHIP_ID	RF	The fixed value is 79h, which is used to identify the chip.	79h

Security access ID Register (R8_SAFE_ACCESS_ID)

Bit	name	access	description	Reset value
[7:0] R8_	SAFE_ACCESS_ID	RF	The fixed value is 04h.	04h

Look <u>Door dog count</u> Device <u>Register (R8_WDOG_COUNT)</u>

Bit	name	access	description	Reset value
[7:0] R8_	WDOG_COUNT	RW	Watchdog counter with preset initial value, always automatic Increment, can cycle from 0xFF to 0x00 and then continue. Counting period = 131072/Fsys.	00h

complex_Bit status Save_(R8_RESET_STATUS)

Bit	name	access	description	Reset value
[7:5]	Reserved	R0	Reserved.	000b
4	RB_ROM_CODE_OFS	RWA	Select the beginning of the user program code in FlashROM Offset address, this value is not affected by MR, SR or WTR, and can be cleared only when RPOR and GRWSM are valid: 0: 0x000000; 1: 0x008000 (skip the first 32KB in ROM).	0
3	Reserved	R0	Reserved.	0
[2:0]	RB_RESET_FLAG	RO	Last reset status: 000: Software reset SR (RB_WDOG_RST_EN=0 When the software reset can produce this state, otherwise it can be But this state is not generated);	001b e reset

	001: Power-on reset RPOR;	
	010: Watchdog timeout reset WTR;	
	011: External manual reset MR;	
	101: Reset GRWSM when waking up from power-down mode;	
	100/110/111: wake up reset LRW, and the previous	
	The last reset was SR/WTR/MR.	

all $\underline{\text{Bureau Configuration Letter}} \text{ interest } \underline{\text{Status register (R8_GLOB_C}} \text{ F} \underline{\text{G_INFO}} \text{)}$

Bit	name	access	description	Reset value
[7:6] Res	erved	R0	Reserved.	11b
5	RB_BOOT_LOADER	RO	Bootloader status: 1: Currently in the Bootloader state; 0: Currently in the user program state.	1/0
4	RB_CFG_DEBUG_EN	RO	Two-wire simulation debugging interface enable state: 1: It can be simulated and debugged, and FlashROM can be read; 0: Prohibit simulation debugging.	0
3	RB_CFG_BOOT_EN	RO	BootLoader enable state of the system boot program: 1: Enabled; 0: Not enabled.	1
2	RB_CFG_RESET_EN	RO	RST# External manual reset input enable state: 1: Enabled; 0: Not enabled.	0
1	Reserved	RO	Reserved.	0
0	RB_CFG_ROM_READ	RO	FlashROM code and data area protection status: 1: Readable by external programmer; 0: Protection, inaccessible from outside, and the program is confidence.	O lential.

 ${\sf Look}\,\underline{\sf Door}\,\mathsf{dog}\,\mathsf{and}\,\mathsf{complex}\,\mathsf{Bit}\,\underline{\sf Configuration}\,\mathsf{register}\,(\mathsf{R8_RST_WD}\,\mathsf{O}\,\underline{\mathsf{G_CTRL}}\,)$

Bit	name	access	description	Reset value
[7:5]	Reserved	RO	Reserved.	000b
4	RB_WDOG_INT_FLAG	RW1	Watchdog timer interrupt flag: 1: A watchdog count overflow has occurred, that is, it is detected R8_WDOG_COUNT increments from 0xFF to 0x00; 0: The watchdog count has not overflowed. Write 1 to the flag and clear it to 0, or reload the watchdog counter value (R8_WDOG_COUNT) and clear it to 0, or execute Line _SEV() is cleared to 0.	0
3	Reserved	RO	Reserved.	0
2	RB_WDOG_INT_EN	RWA	Watchdog timer interrupt enable bit: 1: Enable, an interrupt will be generated after the watchdog count 0: Disable the watchdog timer interrupt.	overflow G ;
1	RB_WDOG_RST_EN	RWA	Watchdog timeout reset enable bit: 1: Enable, the system resets after the watchdog count overflows; 0: Only as a watchdog timer. Note: After this bit is set to 1, the software reset operation will not RB_RESET_FLAG status.	O affect
0	RB_SOFTWARE_RESET	WA/ WZ	System software reset control, it will be cleared automatically afte 1: Perform system software reset; 0: Idle, no action.	reset:

Bit	name	access	description	Reset value
[7:0]	R8_GLOB_RESET_KEEP	RW	Reset the holding register, the value of this register is not subject Reset, software reset, watchdog reset or normal Impact of wake-up reset.	to manual 00h

FlashROM configuration Register (R8_CFG_FLASH)

Bit	name	access	description	Reset value
7	RB FLASH BUSY EN	RWA	Busy enable bit during FlashROM burst access:	
,	KD_FLASH_BUST_EN	IVVA	1: There is waiting (recommended); 0: No waiting.	U
[6:4]	Reserved	RO	Reserved.	d000
12.01	DD CEC FLACIL V	DVVV	FlashROM configuration data, must keep the original when writing	VOOA!
[3:0]	RB_CFG_FLASH_X	RWA	The value does not change.	XXXXb

FlashROM data Register (R32_FLASH_DAT A)

Bit	name	<u>access</u>	description	Reset value
[31:0] R3	_FLASH_DATA	RW	FlashROM data register.	XXXXXXXXh

FlashROM address Register (R32_FLASH_ADD R)

Bit	name	access	description	Reset value
[31:0] R32	2_FLASH_ADDR	RW	FlashROM address register.	<u>XXXXXXXXh</u>

FlashROM command Register (R8_FLASH_COMM AND)

Bit	name	access	description	Reset value
[7:0]	R8_FLASH_COMMAND	WO	0x9A: FlashROM programming operation command; 0xA6: FlashROM sector erase operation command.	00h

FlashROM protection $\underline{\text{Control register}}$ (R8_FLASH_PROTEC T)

Bit	name	access	description	Reset value
[7:6]	RB_ROM_WE_MUST_10	WO	Must write 10b, otherwise it cannot be written.	10b
<u>[5:4]</u>	Reserved	RO	Reserved.	00b
3	RB_ROM_CODE_WE	RW	Erase/program enable bit of CodeFlash in FlashROM program storage area: 1: Allow erasing/programming; 0: Erase and write protection.	0
2	RB_ROM_DATA_WE	RW	The erase/program enable bit of FlashROM data storage area DataFlash: 1: Allow erasing/programming; 0: Erase and write protection.	0
[1:0]	Reserved	RO	Reserved.	00b

FlashROM status Register (R16_FLASH_STA TUS)

Bit	name	access	description	Reset value
[15:11]	Reserved	RO	Reserved.	00000b
[10:9]	Reserved	RO	Reserved.	01b
8	RB_ROM_READ_FREE	RO	FlashROM code and data area protection status: 1: Readable by external programmer; 0: Protection, inaccessible from outside, and the program is confident.	O ential.
7	Reserved	RO	Reserved.	0
6	RB_ROM_ADDR_OK	RO	FlashROM erase/program operation address valid flag,	0

			It can be confirmed before and after the operation: 1: The address is valid; 0: The address is invalid.	
[5:2]	Reserved	RO	Reserved.	0000b
1	RB_ROM_CMD_ERR	RO	FlashROM command response error:	0
!	KB_KOW_CWD_EKK	NO	1: Unknown command; 0: The command is accepted.	0
0	DR DOM CMD TOUT	RO	FlashROM operation result:	0
	RB_ROM_CMD_TOUT	NO	1: Timeout; 0: Success.	J

4.4 Flash-ROM operation steps

- 1. Erase Flash-ROM and change all data bits in the target sector to 1:
- (1) Set the R8_FLASH_PROTECT register, turn on the erase/program enable RB_ROM_DATA_WE or RB_ROM_CODE_WE bit, corresponding to DataFlash or CodeFlash, InfoFlash requires both RB_ROM_DATA_WE and RB_ROM_CODE_WE to be turned on;
 - (2) , Set the address register R32_FLASH_ADDR, write a 32-bit address, the lower 8 bits are invalid, erase the whole block of 512 bytes at a time; (3) Set the command register R8_FLASH_COMMAND, write 0A6H, execute the sector erase operation, the MCU will automatically Suspension of operation;
- (4) After the operation is completed, the program resumes operation. At this time, query the status register R16_FLASH_STATUS to view the operation status; If you want to erase multiple sectors, cycle (2) ~ (4) steps;
- (5) Set the R8_FLASH_PROTECT register again and turn off the erase/program enable control bit (RB_ROM_DATA_WE=0 or RB_ROM_CODE_WE=0) .
 - 2. Write to Flash-ROM and change some data bits in the target word from 1 to 0 (the bit data cannot be changed from 0 to 1):
- (1) Set the R8_FLASH_PROTECT register, turn on the erase/program enable RB_ROM_DATA_WE or RB_ROM_CODE_WE bit, corresponding to DataFlash or CodeFlash, InfoFlash requires both RB_ROM_DATA_WE and RB_ROM_CODE_WE to be turned on;
 - (2) Set the address register R32_FLASH_ADDR, and write a 32-bit address, which requires 4-byte alignment; (3) Set the data register R32_FLASH_DATA to the 4-byte data to be written;
- (4) Set the command register R8_FLASH_COMMAND, write 09AH, execute programming/write operation, and the MCU will automatically suspend operation during the operation;
- (5) After the operation is completed, the program resumes operation. At this time, check the status register R16_FLASH_STATUS to view the operation status; If you want to write multiple data, cycle (2) \sim (4) steps;
- (5) Set the R8_FLASH_PROTECT register again and turn off the erase/program enable control bit (RB_ROM_DATA_WE=0 or RB_ROM_CODE_WE=0) .

3. Read Flash-ROM:

Read the code or data of the target address through the pointer to the program memory space.

4.5 Chip unique ID number

Each chip has a unique ID number when it leaves the factory, that is, the chip identification number. The ID data and its checksum total 8 bytes, which are stored in the read-only area inside the chip. For specific operations, please refer to the example program.

Chapter 5 Power Control

5.1 Power Management

CH579 has a built-in power management unit PMU. The system power is input from VIO33, and through the built-in multiple LDO voltage regulators, the system's FlashROM, system's digital circuits (including core, USB, Ethernet, LED, etc.) and system's analog circuits (including high-frequency oscillator, PLL, ADC and RF transceiver, etc.) provide the required power.

The power supply during normal operation is divided into two ways: direct power supply and DC-DC conversion. In addition to normal operation, CH579 provides 4 low power consumption modes: idle mode, suspend mode, sleep mode, and power-down mode.

You can choose to enable DC-DC to increase the power consumption utilization rate. The working current will usually drop to about 60% of the direct mode.

DC-DC is not enabled by default after power-on, but a through power supply is provided, and its voltage ripple is small. In order to reduce the system function during normal opera

In order to reduce the power consumption of the system during sleep, you can choose to turn off the main LDO of the system and switch to the ultra-low power ULP-LDO built in the Provide auxiliary power. When the system enters sleep or power-down mode, in addition to the regular power supply units such as power management and RTC registers, the The 2KB and 14KB high SRAM, core and all peripherals can choose whether to maintain power supply, and LSE/LSI can choose whether to turn on.

Figure 5-1 Power system

5.2 Register description

Table 5-1 List of registers related to power management

tuble 5 + 2.50 or registers related to power management				
name	address	description	Reset value	
R16_SLP_CLK_OFF	0x4000100C	Sleep clock control register	0x0000	
R8_SLP_CLK_OFF0	0x4000100C	Sleep clock control register 0	0x00	
R8_SLP_CLK_OFF1	0x4000100D	Sleep clock control register 1	0x00	
R8_SLP_WAKE_CTRL	0x4000100E	Wake-up event configuration register	0x20	
R8_SLP_POWER_CTRL	0x4000100F	Peripheral sleep power control register	0x08	

R16_POWER_PLAN	0x40001020	Sleep Power Management Register	0x01DF
R8_AUX_POWER_ADJ	0x40001022	Auxiliary power adjustment control register	0xXX
R8_BAT_DET_CTRL	0x40001024	Battery voltage detection control register	0x00
R8_BAT_DET_CFG	0x40001025	Battery voltage detection configuration register	0x01
R8_BAT_STATUS	0x40001026	Battery status register	0x00

sleep_Sleep_clock Control register 0 (R8_SLP_CLK_OFF0)

Bit	name	access	description	Reset value
7	RB_SLP_CLK_UART3	RWA	Serial port 3 clock source: 1: Closed; 0: Turn on.	0
6	RB_SLP_CLK_UART2	RWA	Serial port 2 clock source: 1: Closed; 0: Turn on.	0
5	RB_SLP_CLK_UART1	RWA	Clock source of serial port 1: 1: Closed; 0: Turn on.	0
4	RB_SLP_CLK_UART0	RWA	Clock source of serial port 0: 1: Closed; 0: Turn on.	0
3	RB_SLP_CLK_TMR3	RWA	Timer 3 clock source: 1: Closed; 0: Turn on.	0
2	RB_SLP_CLK_TMR2	RWA	Timer 2 clock source: 1: Closed; 0: Turn on.	0
1	RB_SLP_CLK_TMR1	RWA	Timer 1 clock source: 1: Closed; 0: Turn on.	0
0	RB_SLP_CLK_TMR0	RWA	Timer 0 clock source: 1: Closed; 0: Turn on.	0

sleep <u>Sleep clock</u> Control register 1 (R8_SLP_CLK_OFF1)

Bit	name	access	description	Reset value
7	RB_SLP_CLK_BLE	RWA	BLE controller clock source: 1: Closed; 0: Turn on.	0
6	RB_SLP_CLK_LED	RWA	LED controller clock source: 1: Closed; 0: Turn on.	0
5	RB_SLP_CLK_ETH	RWA	ETH controller clock source: 1: Closed; 0: Turn on.	0
4	RB_SLP_CLK_USB	RWA	USB controller clock source: 1: Closed; 0: Turn on.	0
3	RB_SLP_CLK_LCD	RWA	LCD controller clock source: 1: Closed; 0: Turn on.	0
2	RB_SLP_CLK_PWMX	RWA	PWMx clock source: 1: Closed; 0: Turn on.	0
1	RB_SLP_CLK_SPI1	RWA	SPI1 clock source: 1: Closed; 0: Turn on.	0
0	RB_SLP_CLK_SPI0	RWA	SPI0 clock source: 1: Closed; 0: Turn on.	0

$\mathsf{Call}\,\underline{\mathsf{Wake}\,\mathsf{up}\,\mathsf{event}}\,\mathsf{Set}\,\underline{\mathsf{Register}\,(\mathsf{R8_SLP_WAKE_C}\,\mathsf{TRL})}$

Bit	name	access	description	Reset value
[7:6]	Reserved	RO	Reserved.	00b
5	RB_SLP_BAT_WAKE	RWA	Enable battery low-voltage event to wake up the system:	1

			1: enable; 0: Closed.	
4	RB_SLP_GPIO_WAKE	RWA	Enable GPIO event to wake up the system: 1: enable; 0: Closed.	0
3	RB_SLP_RTC_WAKE	RWA	Enable RTC event to wake up the system: 1: enable; 0: Closed.	0
2	Reserved	RO	Reserved.	0
1	RB_SLP_ETH_WAKE	RWA	Enable Ethernet event to wake up the system: 1: enable; 0: Closed.	0
0	RB_SLP_USB_WAKE	RWA	Enable USB event to wake up the system: 1: enable; 0: Closed.	0

outer <u>Set sleep</u> source <u>Control register (R8_SLP_PO</u> W<u>ER_CTR</u> L)

Bit	name	access	description	Reset value
[7:6]	Reserved	RO	Reserved.	00b
5	RB_SLP_CLK_RAM2K	RWA	SRAM clock control of RAM2K: 1: Close; 0: Turn on.	0
4	RB_SLP_CLK_RAMX	RWA	Clock control of main SRAM (RAM16K+RAM14K): 1: Closed; 0: Turn on.	0
3	RB_SLP_ROM_PWR_DN	RWA	In suspend mode, FlashROM power-down enable: 1: Make the ROM enter the disabled state in the pause mode; 0: Keep ROM in standby state in suspend mode.	1
2	Reserved	RO	Reserved.	0
1	RB_SLP_ETH_PWR_DN	RWA	Ethernet transceiver ETH PHY power-down enable: 1: power-down/disable; 0: keep power supply.	0
0	Reserved	RO	Reserved.	0

sleep <u>Sleep power management</u> send <u>Register (R16_POWER_PLA</u> N)

Bit	name	access	description	Reset value
15	RB_PWR_PLAN_EN	RWA/ WZ	· · · · · · · · · · · · · · · · · · ·	
[14:11]	RB_PWR_MUST_0010	RWA	Reserved, 0010b must be written.	0000b
10	RB_PWR_DCDC_PRE	RWA	DC-DC bias circuit enable (immediate effect): 1: enable; 0: Prohibited.	0
9	RB_PWR_DCDC_EN	RWA	DC-DC enable bit (effective immediately): 1: DC-DC is enabled, the pass-through power is off; 0: DC-DC forbidden, the direct power is turned on.	0
8	RB_PWR_LDO_EN	RWA	RWA Internal LDO control (sleep planning): 1: Turn on LDO; 0: Plan to turn off LDO, which is more economical.	
7	RB_PWR_SYS_EN	RWA	System power control (sleep planning): 1. Provide system power (at VSW pin):	
6	Reserved	RWA	Reserved, 0 must be written.	1
5	Reserved	RO	Reserved.	0
4	RB_PWR_RAM14K	RWA	SRAM power supply for RAM14K (sleep planning): 1: Dual power supply; 0: No auxiliary power supply.	1

2	RB PWR EXTEND	RWA	USB and RF configuration power supply (sleep planning)	1
S KD_PWK_EXTEND		IVVA	1: Dual power supply; 0: No auxiliary power supply.	I
2	RB PWR CORE	RWA	Power supply for the core and basic peripherals (sleep planning):	1
	KD_FWK_COKL	11.007	1: Dual power supply; 0: No auxiliary power supply.	Į.
1	RB PWR RAM2K	RWA	SRAM power supply for RAM2K (sleep planning):	1
'	KD_PWK_KAWIZK	IVVA	1: Dual power supply; 0: No auxiliary power supply.	I
0	Reserved	RO	Reserved.	1

Except for RB_PWR_DCDC_PRE and RB_PWR_DCDC_EN, this register is preset for sleep planning, and its power configuration takes effect after entering the low-power sleep mode and power-down mode.

 $auxiliary\underline{Power\ adjustment}\ whole\underline{Control\ register\ (R8_AUX_PO\ W\ \underline{ER_ADJ\ })}$

Bit	name	access	description	Reset value
[7:6]	Reserved	RO	Reserved.	00b
<u>[5:3]</u>	Reserved	RWA	Reserved, the original value must be kept unchanged when writi	ng. 1XXb
[2:0]	RB_ULPLDO_ADJ	RWA	Auxiliary power output voltage regulation of ultra-low power LD Value (the value is for reference only, it is not recommended to r 000: 0.908V; 001: 0.931V; 010: 0.954V; 011: 0.977V; 100: 1.000V; 101: 1.023V; 110: 1.046V; 111: 1.069V.	

 ${\sf Electricity} \, \underline{\sf Cell} \, {\sf voltage} \, \underline{\sf check} \, \underline{\sf Measurement} \, \underline{\sf Control} \, \underline{\sf register} \, (\underline{\sf R8_BAT_DE} \, \underline{\sf T_CTRL})$

Bit	name	access	description	Reset value
[7:4]	Reserved	RO	Reserved.	0000b
3	RB_BAT_LOW_IE	RWA	Battery low voltage interrupt enable: 1: enable; 0: Closed.	0
2	RB_BAT_LOWER_IE	RWA	Battery ultra-low voltage interrupt enable: 1: enable; 0: Closed.	0
1	Reserved	RO	Reserved.	0
0	RB_BAT_DET_EN	RWA	Battery voltage detection function is enabled: 1: Enable low voltage detection and enable reference voltage at the Module, current 210uA in sleep mode; 0: Closed.	e same time O

Note: If the battery voltage reaches the ultra-low voltage detection threshold, and RB_BAT_LOWER_IE and RB_BAT_LOW_IE are both enabled (only one of them is enabled under normal circumsta而bes) an NMI non-maskable interrupt will be generated, which is equivalent to increasing the interrupt priority.

 ${\sf Electricity} \underline{\sf Cell} \ voltage \ check \ {\sf Measurement} \underline{\sf Configuration} \ register \ ({\sf R8_BAT_DE} \ {\sf T_CFG})$

Bit	name	access	description	Reset value
[7:2]	Reserved	RO	Reserved.	000000b
[1:0]	RB_BAT_LOW_VTH	RWA	Set the detection threshold of low voltage and ultra-low voltage: (Ultra-low voltage reference threshold, low voltage reference threshold: 00: 1.97V , 2.25V; 01: 2.05V , 2.33V; 10: 2.13V , 2.41V; 11: 2.21V , 2.49V.	shold) 01b

Electricity Pool status Register (R8_BAT_STATUS)

Bit name	<u>access</u>	description	Reset value
----------	---------------	-------------	-------------

[7:2]	Reserved	RO	Reserved.	<u>000000b</u>
1	RB_BAT_STAT_LOW	RO	RO The battery voltage is in a low voltage state: 1: Lower than the low voltage threshold; 0: No.	
0	RB_BAT_STAT_LOWER	RO	The battery voltage is in an ultra-low voltage state:	

5.3 Low power mode

After the system is reset, the microcontroller is in normal operation. When the MCU does not need to run, you can select the appropriate low-power mode

To save power consumption. The user needs to select an appropriate low power consumption based on the lowest power consumption, fastest startup time, and available wake-up events. Power consumption mode.

The chip provides the following 4 main low-power modes:

l Idle mode (Idle)

All peripherals maintain normal power supply, the core stops running, and the clock system runs. After a wake-up event is detected, it can be awakened immediately.

Pause Mode (Halt)

On the basis of the idle mode, the clock system is stopped, and the FlashROM can be put into shutdown mode to further reduce power consumption. detected After a wake-up event, the clock runs first, and then the core runs.

I Sleep mode (Sleep):

The main LDO is turned off, and the ultra-low power ULP-LDO maintains the power supply of the PMU, core and basic peripherals. The LSE or LSI can choose whether to turn on, and the RAM2K, RAM14K, USB and RF configurations can choose whether to maintain power. After a wake-up event is detected, first the main LDO is turned on, then the clock runs, and finally the core is woken up, the program continues to run, and can be reset to a higher frequency if necessary.

Power-off mode (Shutdown):

On the basis of sleep mode, the kernel and basic peripherals, USB and RF configuration are turned off, LSE or LSI can choose whether to turn on, RAM2K, RAM14K can choose whether to maintain power supply. After a wake-up event is detected, the PMU will perform a GRWSM reset, and the software can distinguish it from RPOR based on the reset flag RB_RESET_FLAG and optional RAM retention data.

The following table details the characteristics and wake-up ways of several low-power modes:

Table 5-2 Low power consumption mode

mode	feature	Entry conditions	Wake up event	Power consumpt
Idle mode Idle	The peripherals are powered normally, the kernel stops ru When the clock system is running, but the peripherals can The clock control bit selects to turn off the clock of each pe	b ៩b æwake-up condition and exe		1.15mA ~ 1.5mA
Pause mode Halt	The peripherals are powered normally, the kernel stops ru Clock system stop (PLL/HSE/HSI stop) . Ex You can choose FlashROM standby or disable.			420uA ~ 470uA
Sleep mode Sleep	The main LDO is turned off, and the ultra-low power ULP-LDO maintains the power supply of the PMU, core and LSE or LSI can choose whether to turn on, RAM2K, RAM14K, USB and RF configuration can choose whether to maintain power supply.	Set the core control bit SCR basic peripherals set POWER_PLAN, After setting the wake-up condition, eWFI() orWFE().	Or BAT.	0.6uA ∼ -up 2.0uA
	The ultra-low power LDO maintains the power supply of the whether to turn on LSE or LSI in power-off mo 2K, RAM14K can choose whether to maintain the se	de, set POWER_PLAN,	Or BAT.	

The following table describes the detailed configuration of several low-power modes:

Table 5-3 Low Power consumption mode details Configuration example

Planning configuratio SYS_EN	RAM2K RAM14K	CK32K	CORE	EXTEND pow	er consumption (for reference only)
Maintain the data area of the power	r supply data area of the pov	ver supply system LSE/LSI ch	noose one M0 core a	nd USB and PN	IU and RTC registers

Function of	VSW	2KB	<u>14KB</u>	RTC wake up	Basic peripherals	RF configuration	n often power supply, about 0.2u
	0	0	0	0	0	0	0.2uA
Power down mode	. 0	1	0	0	0	0	0.5uA
Common configur	ation 0	0	0	1	0	0	0.5uA ∼0.6uA
	0	1	0	1	0	0	0.8uA ∼0.9uA
	0	1	0	0	1	0	0.6uA
	0	1	0	1	1	0	0.9uA ∼1.0uA
Sleep mode	0	0	1	0	1	0	1.1uA
Common configur	0	0	1	1	1	0	1.4uA ∼1.5uA
	0	1	1	1	1	1	1.8uA ∼2.0uA

5.4 DC-DC operation steps

Enable the DC-DC power mode (before enabling the external hardware circuit to confirm the inductance and capacitance required for DC-DC) (1), enter the safe access mode: register R8_SAFE_ACCESS_SIG first write 0x57, then write 0xA8; (2) 、 Open the DC-DC bias circuit: set the RB_PWR_DCDC_PRE of the register R16_POWER_PLAN to 1; (3) The delay is at least 10uS;

(4) Enter the safe access mode again: register R8_SAFE_ACCESS_SIG first write 0x57, and then write 0xA8; (5) Turn on the DC-DC power supply: set the RB_PWR_DCDC_EN of the register R16_POWER_PLAN to 1 to enable DC-DC.

Turn off DC-DC and switch to direct power supply mode

(1) Enter the safe access mode: Register R8_SAFE_ACCESS_SIG first write 0x57, and then write 0xA8; (2) Clear the RB_PWR_DCDC_EN and RB_PWR_DCDC_PRE control bits of the register R16_POWER_PLAN.

Chapter 6 System Clock and RTC

6.1 Introduction to System Clock

The following different clock sources can be selected to drive the system clock HCLK (Fsys)

- HSE or HSI original clock CK32M.
- Frequency division of HSE or HSI.
- Internal PLL (default 480MHz) frequency division.
- LSE or LSI original clock CK32K.

Any clock source can be started or shut down independently, thereby optimizing system power consumption.

6.1.1 Clock structure

Figure 6-1 Clock tree block diagram

The above figure is the internal clock tree structure of the system. The RTC and LCD functions use the 32KHz clock source CK32K, so the low-frequency clock must be turned on to use these functions; the data transmission of USB and Ethernet depends on the clock source generated after PLL frequency division; Other peripheral drive clocks and digital control logic are driven by the system clock or sub-frequency division.

6.2 Introduction to RTC

The real-time clock (RTC) is an independent timer that contains a set of counters that count continuously. Under the corresponding software configuration, you can mention Provide simple calendar function. Modifying the counter value can reset the current time and date.

The RTC register is always supplied with power as the PMU. After the system is reset or wakes up from the low-power mode, the RTC setting and time remain unchanged.

6.2.1 Main features

I Two modes can be configured:

- Timing mode: The software can select a fixed cycle time (timing) to generate interrupt notifications.
- Trigger mode: match a target alarm time preset by the software to generate an interrupt notification.

I Three groups of 16-bit counters provide CK32K primitive cycle, 2-second cycle, and 1-day cycle counting.

6.3 Register description

Table 6-1 Clock and oscillator control related register list

name	address	description	Reset value
R16_CLK_SYS_CFG	0x40001008	System clock configuration register	0x05
R8_HFCK_PWR_CTRL	0x4000100A	High frequency clock module power control register	0x0C
R16_INT32K_TUNE	0x4000102C	Internal 32KHz clock calibration register	0x0200
R8_XT32K_TUNE	0x4000102E	External 32KHz clock resonance control register	0xC3
R8_CK32K_CONFIG	0x4000102F	32KHz oscillator configuration register	0xX2
R8_INT32M_CALIB	0x4000104C	Internal 32MHz clock calibration register	0xXX
R8_XT32M_TUNE	0x4000104E	External 32MHz clock resonance control register	0x31
R16_OSC_CAL_CNT	0x40001050	Oscillator frequency calibration count value register	0xXXXX
R8_OSC_CAL_CTRL	0x40001052	Oscillator frequency calibration control register	0x02
R8_PLL_CONFIG	0x4000104B	PLL configuration register	0xx0
R8_RTC_FLAG_CTRL	0x40001030	RTC flag and control register	0x30
R8_RTC_MODE_CTRL	0x40001031	RTC mode configuration register	0x02
R32_RTC_TRIG	0x40001034	RTC trigger value register	0x00000000
R16_RTC_CNT_32K	0x40001038	RTC is based on 32768Hz count value register	0xXXXXXXX
R16_RTC_CNT_2S	0x4000103A	RTC count value register with 2S as the unit	0xXXXXXXX
R32_RTC_CNT_DAY	0x4000103C	RTC count value register in days	0x0000XXXX

 $system \underline{System\ clock\ configuration}\ send\ \underline{Register\ (R16\ CLK\ SYS\ C}\ FG)$

Bit	name	access	description	Reset value
15	RB_XO_DI	RO	The sampling value of the input state of the X32MO pin.	0
[14:10]	Reserved	RO	Reserved.	<u>00000b</u>
9	RB_CLK_OSC32M_XT	RWA	CK32M (32MHz) clock source selection bit: 1: External 32MHz oscillator; 0: Internal 32MHz oscillator.	0
8	Reserved	RO	Reserved.	0
[7:6]	RB_CLK_SYS_MOD	RWA	HCLK system clock source mode selection: 00: CK32M (default 32MHz) for frequency division;	00b

			01: PLL (default 480MHz) for frequency division; 10: CK32M (default 32MHz) as HCLK; 11: CK32K (default 32KHz) is used as HCLK.	
5	Reserved	RO	Reserved.	0
[4:0]	RB_CLK_PLL_DIV	RWA	HCLK output clock frequency division coefficient, the minimum val Represents the maximum value of 32, writing 1 will turn off HCLK.	

Calculation:

Fck32m = RB_CLK_OSC32M_XT? XT_32MHz: RC_32MHz;

Fck32k = RB_CLK_OSC32K_XT? XT_32KHz: RC_32KHz; Fpll =

Fck32m * 15 = 480MHz;

Fsys = RB_CLK_SYS_MOD[1]? (RB_CLK_SYS_MOD[0]? Fck32k: Fck32m):

((RB_CLK_SYS_MOD[0]? Fpll: Fck32m) / RB_CLK_PLL_DIV);

Power-on default value Fsys = Fck32m / RB_CLK_PLL_DIV = 32MHz / 5 = 6.4MHz; Fsys

range: 32KHz, 1MHz \sim 16MHz, 32MHz, 15MHz \sim 44MHz

high Frequency clock mode Piece Power control register (R8_HF C K_PWR_ CTRL)

Bit	name	access	description	Reset value
[7:6]	Reserved	<u>RWA</u>	Reserved, 00 must be written.	00b
5	Reserved	RO	Reserved.	0
4	RB_CLK_PLL_PON	RWA	PLL power control bit: 1: Power on; 0: Power down.	0
3	RB_CLK_INT32M_PON	RWA	Internal 32MHz oscillator power control bit: 1: Power on; 0: Power down.	1
2	RB_CLK_XT32M_PON	RWA	External 32MHz oscillator power control bit: 1: Power on; 0: Power down.	1
<u>[1:0]</u>	Reserved	RO	Reserved.	00b

Internal 32KHz clock Calibration register (R16_INT 3 2K_TUN E)

Bit	name	access	description	Reset value
[15:10]	Reserved	RO	Reserved.	000000b
[9:0]	RB_INT32K_TUNE	<u>RWA</u>	Internal RC 32KHz clock frequency calibration value.	<u>100000000b</u>

External 32KHz clock Resonance control register (R8_ X T32K_T UNE)

Bit	name	access	description	Reset value
[7:4]	RB_XT32K_C_LOAD	RWA	Choose the built-in load that matches the external 32KHz crystal Capacitance (may affect RTC clock accuracy): 0000: The built-in load capacity is 2pF; other: Capacity = RB_XT32K_C_LOAD + 12pF, 0001b ~1111b correspond to about 13pF~27pF respectively. Choose according to the crystal parameters used.	1100b
[3:2]	Reserved	RO	Reserved.	00b
[1:0]	RB_XT32K_I_TUNE	RWA	External 32KHz oscillator bias current selection: 00: 70% rated current; 01: rated current; 10: 140% of rated current; 11: 200% of rated current.	11b

32KHz oscillator with Set register (R8_CK32K_CONFIG)

Bit name <u>access</u> description	Reset value
------------------------------------	-------------

7	RB_32K_CLK_PIN	RO	32KHz clock pin status (asynchronous signal).	X
[6:3]	Reserved	RO	Reserved.	0000b
2	RB_CLK_OSC32K_XT	RWA	CK32K (32KHz) clock source selection bit: 1: External 32KHz oscillator; 0: Internal 32KHz oscillator.	0
1	RB_CLK_INT32K_PON	RWA	Internal 32KHz oscillator power control bit: 1: Power on; 0: Power down.	1
0	RB_CLK_XT32K_PON	RWA	External 32KHz oscillator power control bit: 1: Power on; 0: Power down.	0

At internal 32MHz Clock calibration register (R8_INT3 2 M_CALI B)

Bit	name	access	description	Reset value
[7:0]	R8_INT32M_CALIB	<u>RWA</u>	Internal RC 32MHz clock frequency calibration value.	XXXXXXXXb

External 32MHz clock Resonance control register (R8_ X T32M_T UNE)

Bit	name	<u>access</u>	description	Reset value
7	Reserved	RO	Reserved.	0
[6:4]	RB_XT32M_C_LOAD	RWA	Select the built-in load that matches the external 32MHz crystal Capacitance (may affect wireless communication): $ \text{Capacity} = \text{RB_XT32M_C_LOAD} * 2 + 10 \text{pF}, 000b \sim 111 \\ \text{correspond to about } 10 \text{pF} \sim 24 \text{pF respectively}. $ According to the crystal parameters used, it is commonly used as	
[3:2]	Reserved	RO	Reserved.	00b
[1:0]	RB_XT32M_I_BIAS	RWA	External 32MHz oscillator bias current selection: 00: 75% rated current; 01: rated current; 10: 125% rated current; 11: 150% rated current.	01b

Vibrate Oscillator frequency calibration quasi-Count value register (R16 O S C CAL CNT)

Bit	name	access	description	Reset value
[15:12]	Reserved	RO	Reserved.	0000b
[11:0]	DR OSC CAL CNT	RO	For 5 CK32K cycles, the count value based on the main	XXXh
[11.0]	1:0] RB_OSC_CAL_CNT		frequency of the system is used to calibrate the frequency of the ii	

Vibrate Oscillator frequency calibration quasi-Control register (R8 OSC CAL CTR L)

Bit	name	access	description	Reset value
[7:2]	Reserved	RO	Reserved.	000000b
1	RB_OSC_CNT_HALT	RO	Oscillator frequency calibration counter counting status bit: 1: Counting is paused; 0: Counting is in progress.	1
0	RB_OSC_CNT_EN	RWA	Oscillator frequency calibration counter enable bit: 1: Enable counting; 0: Counting is prohibited.	0

PLL Configuration hosting (R8_PLL_CONFIG)

Bit	name	access	description	Reset value
7	DD DIT TOCKED	RO	PLL lock status:	X
/	RB_PLL_LOCKED	RO	1: Locking; 0: Currently not locked.	۸
[6:2]	Reserved	RO	Reserved.	00000b
[1:0]	RB_PLL_CFG_DAT	RWA	PLL configuration parameters.	00b

 ${\hbox{RTC}} \ \underline{\hbox{Sign and control}} \ {\hbox{system}} \ \underline{\hbox{Register}} \ (\hbox{R8_RTC_FLAG_CTRL})$

Bit	name	access	description	Reset value
7	RB_RTC_TRIG_FLAG	RO	RTC trigger mode activation flag.	0
6	RB_RTC_TMR_FLAG	RO	RTC timer mode activation flag.	0
5	RB_RTC_TRIG_CLR	RW	When the trigger mode is disabled, this bit is fixed at 1. When the trigger mode is enabled, write 1 to clear the trigger mode. The live flag RB_RTC_TRIG_FLAG is automatically cleared to 0.	le activat i on
4	RB_RTC_TMR_CLR	When the timer mode is disabled, this bit is fixed at 1. RW When the timer mode is enabled, write 1 to clear the timer mod The live flag RB_RTC_TMR_FLAG is automatically cleared to 0.		activation1
[3:0]	Reserved	RO	Reserved.	0000b

RTC Mode configuration send Register (R8_RTC_MODE_CT RL)

Bit	name	access	description	Reset value
7	RB_RTC_LOAD_HI	RWA	Writing 1 will load the high word of the RTC counter, and will automatically clear it to 0 after loading. Load R32_RTC_TRIG (actually only the lower 14 bits) into R32_RTC_CNT_DAY.	0
6	RB_RTC_LOAD_LO	RWA	Writing 1 will load the low word of the RTC counter, and will automatically clear it to 0 after loading. Load the high 16 bits of R32_RTC_TRIG to R16_RTC_CNT_2S; load R32_RTC_TRIG The lower 16 bits are loaded into R16_RTC_CNT_32K.	0
5	RB_RTC_TRIG_EN	RWA	RTC trigger mode enable bit: 1: enable; 0: Disabled.	0
4	RB_RTC_TMR_EN	RWA	RTC timing mode enable bit: 1: enable; 0: Disabled.	0
3	RB_RTC_IGNORE_B0	RWA	Ignore the lowest bit of the comparison match value in trigger model: Ignore the lowest bit; 0: Compare the lowest bit.	de: O
[2:0]	RB_RTC_TMR_MODE	RWA	RTC timing mode fixed period (timing) selection: 000: 0.125S; 001: 0.25S; 010: 0.5S; 011: 1S; 100: 2S; 101: 4S; 110: 8S; 111: 16S.	010b

RTC Trigger value send Register (R32_RTC_TRIG)

	Trigger value some register (NSE-NTE-TIES)			
Bit	name	access	description	Reset value
			The preset matching value in RTC trigger mode, its high	
			The 16 bits and the lower 16 bits are matched with	
[31:0]	R32_RTC_TRIG	RWA	R16_RTC_CNT_2S and R16_RTC_CNT_32K respectively.	0000h
			Cooperate with RB_RTC_LOAD_LO and RB_RTC_LOAD_HI to	
			update the current value of the RTC counter.	

Note: The preset matching value is not directly written into the target time. It involves simple calculations. Please refer to the following instructions.

RTC is based on the 32768Hz count value register (R16 $_$ RTC $_$ CN T $_$ 32K)

İ	Bit	name	access	description	Reset value
	[15:0]	R16_RTC_CNT_32K	RO	The RTC is based on the 32768Hz count value register.	XXXXh

Bit	name	access	description	Reset value
[15:0]	R16_RTC_CNT_2S	RO	RTC is the current count value in 2S units.	XXXXh

RTC $\underline{\mathsf{Take}}$ the sky as a single $\underline{\mathsf{Bit}}$ $\underline{\mathsf{Count}}$ value register (R32_RTC_CN $\underline{\mathsf{T}}$ _DAY)

Bit	name	access	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:14]	Reserved	RO	Reserved.	00b
[13:0]	R32_RTC_CNT_DAY	RO	The current count value of RTC in days. X	XXXXXXXXXXXXXb

6.4 Function description and configuration

6.4.1 RTC counter initialization

- (1) Set the value of R32_RTC_TRIG register and set RB_RTC_LOAD_HI to load the value of R32_RTC_TRIG register to R32_RTC_CNT_DAY register;
- (2) Set the value of R32_RTC_TRIG register and set RB_RTC_LOAD_LO to load the high and low 16-bit values of R32_RTC_TRIG register to R16_RTC_CNT_2S register and R16_RTC_CNT_32K register respectively.

6.4.2 Switch RTC clock source to LSE crystal oscillator

(1) Confirm that the GPIO pins where X32KI and X32KO are located are not set as outputs, and there are no pull-up and pull-down resistors, only crystals; (2)

Configure the R8_CK32K_CONFIG register, set RB_CLK_XT32K_PON to 1, and turn on the external 32KHz crystal oscillator; (3) It is recommended to set

RB_XT32K_I_TUNE to the maximum first, and wait for the crystal oscillator to stabilize (about hundreds of mS) before changing to the rated current; (4) Configure the

R8_CK32K_CONFIG register and set RB_CLK_OSC32K_XT to 1, requiring the clock source to switch to the crystal oscillator; (5) Wait for at least half a 32KHz clock cycle, usually 16uS, to complete the switching of the clock source.

6.4.3 RTC timing function

- (1) Configure the R8_RTC_MODE_CTRL register, set RB_RTC_TMR_MODE to select the appropriate timing period, set RB_RTC_TMR_EN to 1, and turn on the RTC timing function;
- (2) After the timing period is reached, the RTC timing activation flag RB_RTC_TMR_FLAG and interrupt will be generated. Check the R8_RTC_FLAG_CTRL register and set the RB_RTC_TMR_CLR to clear the flag.

6.4.4 RTC trigger function

(1). Set the target matching value in the R32_RTC_TRIG register, calculation and operation steps:

Add the interval time DelayTime (unit S) to the current time R32_RTC_CNT_32K (high 16 bits R16_RTC_CNT_2S and low 16 bits R16_RTC_CNT_32K) to calculate the target time value, T32 = R32_RTC_CNT_32K + DelayTime * 32768,

If (T32 & 0xFFFF)! = 0, then T32 = T32 + 0x10000, write T32 into the

R32_RTC_TRIG register to complete the matching value setting;

- (2) Configure the R8_RTC_MODE_CTRL register, set RB_RTC_TRIG_EN to 1, and turn on the RTC trigger function;
- (3) When the current RTC count values R16_RTC_CNT_2S and R16_RTC_CNT_32K match the preset high and low 16 bits of R32_RTC_TRIG respectively, the RTC trigger activation flag RB_RTC_TRIG_FLAG and interrupt are generated, and RB_RTC_TRIG_CLR can be cleared. (4) If the RTC has been time-calibrated, it can support the target absolute time trigger, which is calculated by the target year/month/day/hour/minute/second/millisecond Get the target time value T32, the other steps are the same as above. For details, refer to the evaluation board example program.

6.4.5 Use HSE to calibrate internal 32K clock LSI

Reference evaluation board example program

Chapter 7 General I/O and Multiplex Functions

7.1 Introduction to GPIO

The chip provides 2 groups of GPIO ports PA and PB, a total of 40 general-purpose input and output pins, some pins have interrupt, multiplexing and mapping functions.

Each GPIO port has a 32-bit direction configuration register R32_Px_DIR, a 32-bit pin input register R32_Px_PIN, a 32-bit data output register R32_Px_OUT, a 32-bit data reset register R32_Px_CLR, a 32-bit pull-up resistor configuration register R32_Px_PU, a 32-bit pull-down resistance/drive capability configuration register R32_Px_PD_DRV.

In the PA port, the PA[0] ~PA[15] bits are valid, corresponding to the 16 GPIO pins on the chip; in the PB port, the PB[0] ~PB[23] bits are valid, corresponding to the 24 GPIO pins on the chip; Among them, 32 I/O pins PA[0] ~PA[15], PB[0] ~PB[15] have interrupt function and can realize sleep wake-up function.

Each I/O port bit can be freely programmed, but the I/O port register must be accessed in 8-bit, 16-bit or 32-bit words. If the multiplexing function of the pin is not enabled, it will be used as a general-purpose I/O port by default.

The following figure is a block diagram of the internal structure of GPIO:

Figure 7-1 Block diagram of I/O internal structure

7.2 External interrupt/wake-up

The 32 I/O pins of the chip PA[0] ~PA[15], PB[0] ~PB[15]) have interrupt function and can realize sleep wakeup. In order to use external interrupts, the port bits must be configured in input mode. And provide 4 trigger modes: high level, low level, rising Edge, falling edge.

The wake-up function needs to turn on the interrupt enable R16_Px_INT_EN of the port bit, and turn on the GPIO wake-up control bit RB_SLP_GPIO_WAKE in the register R8_SLP_WAKE_CTRL.

7.3 Multiplexing and remapping of GPIO

7.3.1 Multiplexing function

Some I/O pins have multiplexing functions. After power-on, all I/O pins are general-purpose I/O functions by default. After each functional module is enabled, the corresponding original GPIO pins are configured to the corresponding functions of their respective functional modules. Pin.

If a pin is multiplexed with multiple functions, and multiple functions are turned on, please refer to section 1.2 for the priority order of multiplexing functions.

The order of functions in the "Alternative Function" list of the pin description

For example: PA0 pin is multiplexed with SCK1/SLVA/LED0, the clock function of SPI1 has priority, and the LED screen interface serial data output 0 has the lowest function. In this way, among multiple multiplexed functions, the unused pins with the lowest function priority can be enabled with relatively higher priority. Multiplexing functions.

The following table lists some of the GPIO configurations used for the function pins of the peripheral modules.

Table 7-1 Timer x

TMR0/1/2/3 pins	Function configuration	GPIO configuration
TMDy	Input capture channel x	Input (floating input/pull-up input/pull-down input)
TMRx	Output PWM channel x	Push-pull output

Table 7-2 UARTx

UART0/1/2/3 pins	Function configuration	GPIO configuration
TXDx	Serial port send x	Push-pull output
RXDx	Serial port x	Pull up input (recommended) or floating input
RTS, DTR	MODEM signal output or RS485 control	Push-pull output
CTS, DSR, RI, DCD	MODEM signal input	Pull up input (recommended) or floating input

Table 7-3 SPIx

SPI0/1 pins	Function configuration	GPIO configuration
SCKx	Master mode clock output	Push-pull output
SCIX	Slave mode clock input	Input (floating input/pull-up input/pull-down input)
	Full duplex mode-main mode	Push-pull output
MOCT	Full duplex mode-slave mode	Input (floating input/pull-up input/pull-down input)
MOSIx	Half-duplex mode-main mode	Not used, can be used as general I/O
	Half-duplex mode-slave mode	Not used, can be used as general I/O
	Full duplex mode-main mode	Input (floating input/pull-up input/pull-down input)
		Input (pull-up is recommended, automatically cut to push-pull output after chip selection)
MISOx	Full duplex mode-slave mode	Or push-pull output (forbidden to be used in bus connection mode)
	Half-duplex mode-main mode	Input or push-pull output, manual switching
	Half-duplex mode-slave mode	Input (pull-up is recommended, automatically cut to push-pull output after chip selection)
SCS	Main mode chip select output	Push-pull output (other pins can be used instead)
3C3	Input from mode chip select	Pull up input (recommended) or floating input

Table 7-4 ADC

ADC sampling channel pin	Function configuration	GPIO configuration
AINx	Analog-to-digital conversion input channel	Floating input

Table 7-5 USB

USB signal pin	Function configuration	GPIO configuration
USB_DM	Connect to internal USB transceiver	Floating input
USB_DP	Connect to internal USB transceiver	Floating input

Ethernet signal pin	Function configuration	GPIO configuration	
ET+/ET-	Connect to internal Ethernet transceiver	Floating input	
ER+/ER-	Connect to internal Ethernet transceiver	Floating input	

7.3.2 Function pin remapping

In order to optimize the utilization of peripheral functions at the same time, you can set the R16_PIN_ALTERNATE function pin to remap the register. The device remaps some functional pins to other pins.

Table 7-7 Multiplexed function remapping pins

Peripheral function pins	Default GPIO pin	GPIO pin to be remapped
SPI0	PA[12]/PA[13]/PA[14]/PA[15]	PB[12]/PB[13]/PB[14]/PB[15]
RXD3/TXD3	PA[4]/PA[5]	PB[20]/PB[21]
RXD2/TXD2	PA[6]/PA[7]	PB[22]/PB[23]
RXD1/TXD1	PA[8]/PA[9]	PB[8]/PB[9]
RXD0/TXD0	PB[4]/PB[7]	PA[15]/PA[14]
TMR3/PWM3/CAP3	PA[2]	PB[18]
TMR2/PWM2/CAP2	PA[11]	PB[11]
TMR1/PWM1/CAP1	PA[10]	PB[10]
TMR0/PWM0/CAP0	PA[3]	PB[19]

7.4 Register description

Table 7-8 List of GPIO related registers

name	address	description	Reset value
R16_PIN_ALTERNATE	0x40001018	Function pin remapping register	0x0000
R16_PIN_ANALOG_IE	0x4000101A	Peripheral analog pin configuration register	0x0000
R16_PA_INT_EN	0x40001090	PA port interrupt enable register	0x0000
R16_PB_INT_EN	0x40001092	PB port interrupt enable register	0x0000
R16_PA_INT_MODE	0x40001094	PA port interrupt mode configuration register	0x0000
R16_PB_INT_MODE	0x40001096	PB port interrupt mode configuration register	0x0000
R16_PA_INT_IF	0x4000109C	PA port interrupt flag register	0x0000
R16_PB_INT_IF	0x4000109E	PB port interrupt flag register	0x0000
R32_PA_DIR	0x400010A0	PA port direction configuration register	0x00000000
R32_PA_PIN	0x400010A4	PA port pin input register	0x0000XXXX
R32_PA_OUT	0x400010A8	PA port data output register	0x00000000
R32_PA_CLR	0x400010AC	PA port data reset register	0x00000000
R32_PA_PU	0x400010B0	PA port pull-up resistor configuration register	0x00000000
R32_PA_PD_DRV	0x400010B4	PA port pull-down/drive configuration register	0x00000000
R32_PB_DIR	0x400010C0	PB port direction configuration register	0x00000000
R32_PB_PIN	0x400010C4	PB port pin input register	0x00XXXXXX
R32_PB_OUT	0x400010C8	PB port data output register	0x00000000
R32_PB_CLR	0x400010CC	PB port data reset register	0x00000000
R32_PB_PU	0x400010D0	PB port pull-up resistor configuration register	0x00000000
R32_PB_PD_DRV	0x400010D4	PB port pull-down/drive configuration register	0x00000000

Work <u>Capable of pin remapping</u> Shoot <u>Register (R16_PIN_ALT</u> E <u>RNATE)</u>

Bit	name	<u>access</u>	description	Reset value
			·	

[15:12]	Reserved	RO	Reserved.	0000b
[11:9]	Reserved	RO	Reserved.	000b
8	RB_PIN_SPI0	RW	SPI0 function pin mapping selection bit: 1: SCK0_/SCS_/MOSI_/MISO_ is mapped to PB[12]/PB[13]/PB[14]/PB[15]; 0: SCK0/SCS/MOSI/MISO is mapped to PA[12]/PA[13]/PA[14]/PA[15].	0
7	RB_PIN_UART3	RW	UART3 function pin mapping selection bit: 1: RXD3_/TXD3_ is mapped to PB[20]/PB[21]; 0: RXD3/TXD3 is mapped to PA[4]/PA[5].	0
6	RB_PIN_UART2	RW	UART2 function pin mapping selection bit: 1: RXD2_/TXD2_ is mapped to PB[22]/PB[23]; 0: RXD2/TXD2 is mapped to PA[6]/PA[7].	0
5	RB_PIN_UART1	RW	UART1 function pin mapping selection bit: 1: RXD1_/TXD1_ is mapped to PB[8]/PB[9]; 0: RXD1/TXD1 is mapped to PA[8]/PA[9].	0
4	RB_PIN_UART0	RW	UARTO function pin mapping selection bit: 1: RXD0_/TXD0_ is mapped to PA[15]/PA[14]; 0: RXD0/TXD0 is mapped to PB[4]/PB[7].	0
3	RB_PIN_TMR3	RW	TMR3 function pin mapping selection bit: 1: TMR3_/PWM3_/CAP3_ is mapped to PB[18]; 0: TMR3/PWM3/CAP3 is mapped to PA[2].	0
2	RB_PIN_TMR2	RW	TMR2 function pin mapping selection bit: 1: TMR2_/PWM2_/CAP2_ is mapped to PB[11]; 0: TMR2/PWM2/CAP2 is mapped to PA[11].	0
1	RB_PIN_TMR1	RW	TMR1 function pin mapping selection bit: 1: TMR1_/PWM1_/CAP1_ is mapped to PB[10]; 0: TMR1/PWM1/CAP1 is mapped to PA[10].	0
0	RB_PIN_TMR0	RW	TMR0 function pin mapping selection bit: 1: TMR0_/PWM0_/CAP0_ is mapped to PB[19]; 0: TMR0/PWM0/CAP0 is mapped to PA[3].	0

outer <u>Set analog pin</u> Match <u>Set the register (R16_PIN_A</u> N_ALOG_I E)

Bit	name	access	description	Reset value
15	RB_PIN_ADC4_5_IE	RW	ADC/TKEY 4/5 channel pin digital input disabled: 1: Turn off PA14-15 digital input to save power consumption; 0: Turn on digital input.	0
14	RB_PIN_ADC2_3_IE	RW	ADC/TKEY 2/3 channel pin digital input disabled: 1: Turn off PA12-13 digital input to save power consumption; 0: Turn on digital input.	0
13	RB_PIN_XT32K_IE	RW	32KHz crystal oscillator LSE pin digital input is disabled: 1: Turn off PA10-11 digital input to save power consumption; 0: Turn on digital input.	0
12	RB_PIN_ADC12_13_IE	RW	ADC/TKEY 12/13 channel pin digital input disabled: 1: Turn off PA8-9 digital input to save power consumption; 0: Turn on digital input.	0
11	RB_PIN_ADC10_11_IE	RW	ADC/TKEY 10/11 channel pin digital input disabled: 1: Turn off PA6-7 digital input to save power consumption; 0: Turn on digital input.	0

I	Ī			
			ADC/TKEY 0/1 channel pin digital input disabled:	
10	RB_PIN_ADC0_1_IE	RW	1: Turn off PA4-5 digital input to save power consumption;	0
			0: Turn on digital input.	
			ADC/TKEY 7/6 channel pin digital input disabled:	
9	RB_PIN_ADC6_7_IE	RW	1: Turn off PA2-3 digital input to save power consumption;	0
			0: Turn on digital input.	
			ADC/TKEY 9/8 channel pin digital input disabled:	
8	RB_PIN_ADC8_9_IE	RW	1: Turn off PA0-1 digital input to save power consumption;	0
			0: Turn on digital input.	
			USB pin enable:	
7	RB_PIN_USB_IE	RW	1: PB10-11 is the USB communication pin; 0:	0
			PB10-11 is not used for USB communication.	
			ETH pin enable:	
			1: PB12-15 is the ETH communication pin. If the LCD is	
6	RB_PIN_ETH_IE	RW	not enabled at all, you can set RB_PIN_SEG12_15_IE	0
			Set to 1 to turn off the digital input, which can save power consum	ption;
			0: PB12-15 is not used for ETH communication.	
			LCD 20-23 segment pin enable/digital input disable:	
5	RB_PIN_SEG20_23_IE	RW	1: PB20-23 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
			LCD 16-19 segment pin enable/digital input disable:	
4	RB_PIN_SEG16_19_IE	RW	1: PB16-19 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
			LCD 12-15 segment pin enable/digital input disable:	
3	RB_PIN_SEG12_15_IE	RW	1: PB12-15 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
			LCD 8-11 segment pin enable/digital input disable:	
2	RB_PIN_SEG8_11_IE	RW	1: PB8-11 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
			LCD 4-7 segment pin enable/digital input disable:	
1	RB_PIN_SEG4_7_IE	RW	1: PB4-7 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
			LCD 0-3 segment pin enable/digital input disable:	
0	RB_PIN_SEG0_3_IE	RW	1: PB0-3 is segment drive, close the digital input;	0
			0: Turn on the digital input and turn off the LCD segment drive.	
	l .	I.	2 2 2 are arguer impacanta turn on the EED segment unive.	

Note: If the pin is used for analog functions (ADC/TouchKey/ETH), it is recommended to turn off the digital input function of this pin, that is, set the digital The input is disabled, which can reduce power consumption and help reduce interference.

PA Port interrupt Make Capability register (R16_PA_INT_ EN)

Bit	name	access	description	Reset value
			PA pin interrupt enable bit:	
[15:0]	R16_PA_INT_EN	RW	1: Enable the corresponding interrupt;	0000h
			0: Disable the corresponding interrupt.	

PB Port interrupt Make Function register (R16_PB_INT_ EN)

Bit	name	access	description	Reset value
[15:0]	R16_PB_INT_EN	RW	PB pin interrupt enable bit: 1: Enable the corresponding interrupt; 0: Disable the corresponding interrupt.	0000h

PA Port interrupt mold Configuration register (R16_PA_INT_MO DE)

Bit	name	access	description	Reset value
[15:0]	R16_PA_INT_MODE	RW	PA pin interrupt mode selection bit: 1: Edge trigger; 0: Level trigger.	0000h

PB Port interrupt mold Configuration register (R16_PB_INT_MO DE)

Bi	it	name	access	description	Reset value	
[15:0	าา	R16 PB INT MODE	RW	PB pin interrupt mode selection bit:	0000h	
[13.0	5]	KTO_I D_INT_MODE	1000	1: Edge trigger; 0: Level trigger.	000011	

PA Port interrupt Mark Log register (R16_PA_INT_ IF)

Bit	name	access	description	Reset value
Γ15:01	[15:0] R16 PA INT IF	RW1	PA pin interrupt flag bit, write 1 to clear: 1: there	0000h
[13.0]	KIO_FA_INI_II	12001	is an interrupt; 0: No interruption.	000011

PB Port interrupt Mark Log register (R16_PB_INT_IF)

Bit	name	<u>access</u>	description	Reset value
[15:0]	R16 PB INT IF	16 PB INT IF RW1	PB pin interrupt flag bit, write 1 to clear: 1: there	0000h
[13.0]	KIO_FD_INI_IF	IXVVI	is an interrupt; 0: No interruption.	000011

PA Port direction Match Set register (R32_PA_DIR)

Bit	name	access	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_DIR_1	RW	Current input and output direction configuration of PA pin:	00h
[7.0]	DO DA DID O	RW	1: The pin is in output mode;	00h
[7:0]	R8_PA_DIR_0	KVV	0: The pin is in input mode.	UUII

PA Port pin lose Into the register (R32_PA_PIN)

Bit	name	<u>access</u>	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_PIN_1	RO	PA pin current level state (only in R32_PA_DIR When the corresponding bit is 0, the bit value is valid):	XXh
[7:0]	R8_PA_PIN_0	RO	1: Pin input high level; 0: Pin input low level.	XXh

PA Port data lose Out register (R32_PA_OUT)

Bit	name	access	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_OUT_1	RW	When the corresponding bit of the direction register R32_PA_DIR is 1: Control the PA pin output level status: 1: output high level; 0: output low level.	00h
[7:0]	R8_PA_OUT_0	RW	When the corresponding bit of the direction register R32_PA_DIR is 0: Control the PA pin interrupt polarity selection: 1: High level/rising edge; 0: Low level/falling edge.	00h

PA port data reset register (R32_PA_CLR)

Bit	name	access	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_CLR_1	WZ	PA data register reset control:	00h
[7:0]	R8_PA_CLR_0	WZ	1: R32_PA_OUT corresponding bit data is cleared to 0; O: No effect.	00h

PA <u>Port pull up</u> Electricity <u>Resistance configuration register (R32_PA_</u>PU)

Bit	name	access	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_PU_1	RW	PA pin pull-up resistor enable control:	00h
[7:0]	R8_PA_PU_0	RW	1: Enable the pull-up resistor; 0: Disable the pull-up resistor.	00h

PA Port pull down/ drive Dynamic configuration register (R32_PA_PD_DR V)

Bit	name	<u>access</u>	description	Reset value
[31:16]	Reserved	RO	Reserved.	0000h
[15:8]	R8_PA_PD_DRV_1	RW	When the corresponding bit of the direction register R32_PA_DIR is 0: PA pin pull-down resistor enable control: 1: Enable the pull-down resistor; 0: Turn off the pull-down resistor.	00h
[7:0]	R8_PA_PD_DRV_0	RW	When the corresponding bit of the direction register R32_PA_DIR is 1: PA pin current drive capability selection: 1: 20mA level; 0: 5mA level.	00h

PB Port direction Match Set register (R32_PB_DIR)

Bit	name	access	description	Reset value
[31:24]	Reserved	RO	Reserved.	00h
[23:16]	R8_PB_DIR_2	RW	PB pin current input and output direction configuration:	00h
[15:8]	R8_PB_DIR_1	RW	1: The pin is in output mode;	00h
[7:0]	R8_PB_DIR_0	RW	0: The pin is in input mode.	00h

PB Port pin lose Into the register (R32_PB_PIN)

Bit	name	access	description	Reset value
[31:24]	Reserved	RO	Reserved.	00h
[23:16]	R8_PB_PIN_2	RO	PB pin current level state (only in R32_PB_DIR	XXh
[15:8]	R8_PB_PIN_1	RO	When the corresponding bit is 0, the bit value is valid):	XXh
[7:0]	DO DD DIN O	RO	1: Pin input high level;	XXh
[7:0]	R8_PB_PIN_0	RO	0: Pin input low level.	AA11

PB Port data lose Out register (R32_PB_OUT)

Bit	name	access	description	Reset value
[31:24]	Reserved	RO	Reserved.	00h
[23:16]	R8_PB_OUT_2	RW	When the corresponding bit of the direction register R32_PB_DIR is 1: Control the output level status of the PB pin: 1: output high level; 0: output low level.	00h
[15:8]	R8_PB_OUT_1	RW	When the corresponding bit of the direction register R32_PB_DIR is 1: Control the output level status of the PB pin: 1: output high level; 0: output low level.	00h
[7:0]	R8_PB_OUT_0	RW	When the corresponding bit of the direction register R32_PB_DIR i	_{s 0:} 00h

	Control PB pin interrupt polarity selection:	
	1: High level/rising edge; 0: Low level/falling edge.	

PB Port data complex Bit register (R32_PB_CLR)

Bit	name	access	description	Reset value
[31:24]	Reserved	RO	Reserved.	00h
[23:16]	R8_PB_CLR_2	WZ	PB data register reset control:	00h
[15:8]	R8_PB_CLR_1	WZ	1: R32_PB_OUT corresponding bit data is cleared to 0;	00h
[7:0]	R8_PB_CLR_0	WZ	0: No effect.	00h

PB Port pull up Electricity Resistance configuration register (R32_PB_PU)

Bit	name	access	description	Reset value
[31:24]	Reserved	RO	Reserved.	00h
[23:16]	R8_PB_PU_2	RW		00h
[15:8]	R8_PB_PU_1	RW	PB pin pull-up resistor enable control:	00h
[7:0]	R8_PB_PU_0	RW	1: Enable the pull-up resistor; 0: Disable the pull-up resistor.	00h

PB Port pull down/ drive Dynamic configuration register (R32_PB_PD_DR_V)

one Bynamic Companies (132-15-15-54 V)					
	Bit	name	access	description	Reset value
	[31:24]	Reserved	RO	Reserved.	00h
	[23:16]	R8_PB_PD_DRV_2	RW	When the corresponding bit of the direction register R32_PB_DIR is 0: PB pin pull-down resistor enable control:	00h
	[15:8]	R8_PB_PD_DRV_1	RW	1: Enable the pull-down resistor; 0: Turn off the pull-down resistor When the corresponding bit of the direction register R32_PB_DIR	00h
	[7:0]	R8_PB_PD_DRV_0	RW	is 1: PB pin current drive capability selection: 1: 20mA level; 0: 5mA level.	00h

7.5 GPIO pin mode configuration

Each GPIO can be configured into 5 modes, as shown in the table below:

Table 7-9 Port configuration table

mode	R32_Px_DIR	R32_Px_PU	R32_Px_PD_DRV
Floating input/high impedance input/analog input	0	0	0
Input with pull-up resistor	0	1	0
Input with pull-down resistor	0	0	1
Push-pull output, driving capability 5mA level	1	X	0
Push-pull output, drive capability 20mA level	1	X	1

Chapter 8 General Timer TMRx

8.1 Introduction to TMRx

The chip provides 4 26-bit timers, TMR0, TMR1, TMR2 and TMR3, the longest timing time is 2^26 clock cycles. It is suitable for many occasions, including measuring the pulse length of the input signal (input capture) or generating the output waveform (PWM) , And TMR1 And TMR2 supports DMA function. Each timer is completely independent and can operate simultaneously.

8.1.1 Main features

I Four 26-bit timers, each timer has a maximum timing time of 2^26 clock cycles.

- I Support timer interrupts, among which TMR1 and TMR2 support DMA and interrupts.
- I Support the capture function to measure the length or period of the input pulse.
- $I \ The \ capture \ function \ can \ be \ set \ as \ level \ change \ capture \ and \ high \ or \ low \ level \ hold \ time \ capture \ function.$
- I Supports 26-bit PWM function, which can dynamically adjust the PWM duty cycle setting.

8.2 Register description

Table 8-1 TMR0 related register list

Table 6-1 Hinto related register list				
name	address	description	Reset value	
R8_TMR0_CTRL_MOD	0x40002000	Mode setting register	0x02	
R8_TMR0_INTER_EN	0x40002002	Interrupt enable register	0x00	
R8_TMR0_INT_FLAG	0x40002006	Interrupt flag register	0x00	
R8_TMR0_FIFO_COUNT	0x40002007	FIFO count register	0x0X	
R32_TMR0_COUNT	0x40002008	Current count value register	0x0XXXXXXX	
R32_TMR0_CNT_END	0x4000200C	Counting end value setting register	0x0XXXXXXX	
R32_TMR0_FIFO	0x40002010	FIFO register	0x0XXXXXXX	

Table 8-2 TMR1 related register list

name	address	description	Reset value
R8_TMR1_CTRL_MOD	0x40002400	Mode setting register	0x02
R8_TMR1_CTRL_DMA	0x40002401	DMA control register	0x00
R8_TMR1_INTER_EN	0x40002402	Interrupt enable register	0x00
R8_TMR1_INT_FLAG	0x40002406	Interrupt flag register	0x00
R8_TMR1_FIFO_COUNT	0x40002407	FIFO count register	0x0X
R32_TMR1_COUNT	0x40002408	Current count value register	0x0XXXXXXX
R32_TMR1_CNT_END	0x4000240C	Counting end value register	0x0XXXXXXX
R32_TMR1_FIFO	0x40002410	FIFO register	0x0XXXXXXX
R16_TMR1_DMA_NOW	0x40002414	DMA current buffer address	0x0000XXXX
R16_TMR1_DMA_BEG	0x40002418	DMA start buffer address	0x0000XXXX
R16_TMR1_DMA_END	0x4000241C	DMA end buffer address	0x0000XXXX

Table 8-3 TMR2 related register list

name address		description	Reset value	
R8_TMR2_CTRL_MOD	0x40002800	Mode setting register	0x02	
R8_TMR2_CTRL_DMA	0x40002801	DMA control register	0x00	
R8_TMR2_INTER_EN	0x40002802	Interrupt enable register	0x00	
R8_TMR2_INT_FLAG	0x40002806	Interrupt flag register	0x00	

R8_TMR2_FIFO_COUNT	0x40002807	FIFO count register	0x0X
R32_TMR2_COUNT	0x40002808	Current count value register	0x0XXXXXXX
R32_TMR2_CNT_END	0x4000280C	Counting end value register	0x0XXXXXXX
R32_TMR2_FIFO	0x40002810	FIFO register	0x0XXXXXXX
R16_TMR2_DMA_NOW	0x40002814	DMA current buffer address	0x0000XXXX
R16_TMR2_DMA_BEG	0x40002818	DMA start buffer address	0x0000XXXX
R16_TMR2_DMA_END	0x4000281C	DMA end buffer address	0x0000XXXX

Table 8-4 TMR3 related register list

name	address	description	Reset value
R8_TMR3_CTRL_MOD	0x40002C00	Mode setting register	0x02
R8_TMR3_INTER_EN	0x40002C02	Interrupt enable register	0x00
R8_TMR3_INT_FLAG	0x40002C06	Interrupt flag register	0x00
R8_TMR3_FIFO_COUNT	0x40002C07	FIFO count register	0x0X
R32_TMR3_COUNT	0x40002C08	Current count value register	0x0XXXXXXX
R32_TMR3_CNT_END	0x40002C0C	Counting end value setting register	0x0XXXXXXX
R32_TMR3_FIFO	0x40002C10	FIFO register	0x0XXXXXXX

mold Style setting Save (R8_TMRx_CTRL_MOD) (x=0/1 /2/3)

Bit	ing Save (R8_TMRx_CTRL_MOD name	access	description	Reset value
[7:6]	RB_TMR_CAP_EDGE	RW	In the capture mode, select the capture trigger mode: 00: do not trigger; 01: Capture the time between any edge changes; 10: Capture the time between the falling edge and the falling edge. 11: Capture the time between rising edge and rising edge. In the counting mode, select the counting edge: 00: no sampling count; 01: Sampling to any edge count; 10: Count from sampling to falling edge; 11: Sampling to rising edge count.	
[7:6]	RB_TMR_PWM_REPEAT	RW	In PWM mode, select the data repetition method: 00: Repeat 1 time; 01: Repeat 4 times; 10: Repeat 8 times; 11: Repeat 16 times.	00b
5	Reserved	RO	Reserved.	0
4	RB_TMR_CAP_COUNT	RW	RB_TMR_MODE_IN=1 Input mode sub-mode: 1: Counting mode; 0: Capture mode.	0
4	RB_TMR_OUT_POLAR	RW	In PWM mode, the output polarity setting bit: 1: The default high level, low level is valid; 0: Default low level, high level valid.	0
3	RB_TMR_OUT_EN	RW	Timer output enable bit: 1: Output enable; 0: Output disable.	0
2	RB_TMR_COUNT_EN	RW	Timer counting enable bit: 1: Enable counting; 0: Stop counting.	0
1	RB_TMR_ALL_CLEAR	RW	Clear the timer's FIFO/counter/interrupt flag: 1: Forced clearing and clearing; 0: Uncleared.	1
0	RB_TMR_MODE_IN	RW	Timer mode setting bit: 1: Input mode (capture mode or counting mode); 0: Timing mode or PWM mode.	0

in_Disable enable Save_(R8_TMRx_INTER_EN) (x=0/1_/2/3)

Bit	name	access	description	Reset value
[7:5]	Reserved	RO	Reserved.	000b
4	RB_TMR_IE_FIFO_OV	RW	FIFO overflow (capture mode FIFO full or PWM mode FIFO empty) interrupt enable bit: 1: Enable interrupt; 0: Disable interrupts.	0
3	RB_TMR_IE_DMA_END	RW	DMA end interrupt enable bit (only supported by TMR1/2): 1: enable interrupt; 0: Disable interrupts.	0
2	RB_TMR_IE_FIFO_HF	RW	FIFO used more than half (capture mode FIFO>=4 or PWM Mode FIFO<4) Interrupt enable bit: 1: Enable interrupt; 0: Disable interrupts.	0
1	RB_TMR_IE_DATA_ACT	RW	Data activation (capture mode means each time a new data is capt According to the data, the PWM mode index value trigger causes t End) Interrupt enable bit: 1: Enable interrupt; 0: Disable interrupts.	
0	RB_TMR_IE_CYC_END	RW	End of period (capture mode refers to timeout, PWM mode And timing mode refers to the end of the period) interrupt enable 1: Enable interrupt; 0: Disable interrupts.	bit: 0

in Broken sign post Save (R8_TMRx_INT_FLAG) (x=0/1 /2/3)

Bit	name	access	description	Reset value
[7:5]	Reserved	RO	Reserved.	000b
4	RB_TMR_IF_FIFO_OV	RW1	FIFO overflow (capture mode FIFO full or PWM mode FIFO empty) flag bit, write 1 to clear: 1: overflow; 0: No overflow.	0
3	RB_TMR_IF_DMA_END	RW1	DMA complete flag bit, write 1 to clear: 1: Completed; 0: Not completed.	0
2	RB_TMR_IF_FIFO_HF	RW1	FIFO used more than half (capture mode FIFO>=4 or PWM Mode FIFO<4) Flag bit, write 1 to clear: 1: FIFO has been used more than half; 0: FIFO is not more than half used.	0
1	RB_TMR_IF_DATA_ACT	RW1	Data activation (capture mode means each time a new data is cap According to the data, the PWM mode index value trigger causes t End) flag bit, write 1 to clear: 1: Data generated/used; 0: Not generated/unused.	
0	RB_TMR_IF_CYC_END	RW1	End of period (capture mode refers to timeout, PWM mode And timing mode refers to the end of the period, counting mode r Number overflow) flag bit, write 1 to clear: 1: Timeout/period end; 0: Not timeout/not ended.	efers to the counte

FIFO count register (R8_TMRx_FIFO_COUN_T) (x=0/1/2/3)

Bit	name	access	description	Reset value
[7:0]	R8_TMRx_FIFO_COUNT	RO	The data count in the FIFO, the maximum value is 8.	0x0X

when Previous count send Register (R32_TMRx_COUNT) (x=0/1_/2/3)

Bit	name	access	description	Reset value
[31:0] R32	_TMRx_COUNT	RO	The current count value of the counter.	0XXXXXXXh

 $meter\underline{\,\,\,}Set\,the\,final\,value\,of\,the\,number\,\, Set\underline{\,\,\,}Register\,(R32_TMRx_CNT_\,END)\,(x=0/1/2/3)$

Bit	name	access	description	Reset value
[31:0] R3	2_TMRx_CNT_END	RW	In timer mode, the number of clocks in a timing cycle; In PWM mode, the total number of clocks per PWM cycle; In capture mode, the number of capture timeout clocks. Only the lower 26 bits are valid, the maximum value is 67108863. In the counting mode, the final value of the count va Note: Write operations to this register will be automatically clear. The value in the R32_TMRx_COUNT register.	,

FIFO register (R32_TMRx_FIFO) (x=0/1/2/3)

Bit	name	access	description	Reset value
[31:0] R3	2_TMRx_FIFO	RO/ WO	FIFO data register, only the lower 26 bits are valid.	0XXXXXXXh

DMA Control post Save (R8_TMRx_CTRL_DMA) (x=1/2) (Only supported by TMR1/2)

''	WA CONTROL DOSE SAVE TWO TIMENT CITED DIVINA (X-172) (CITIS Supported by TWIN 172)				
	Bit	name	<u>access</u>	description	Reset value
	[7:3]	Reserved	RO	Reserved.	00000b
	2	RB_TMR_DMA_LOOP	RW	DMA address cycle function enable bit: 1: Enable address loop; 0: Disable address loop. If the DMA address loop is enabled, when the DMA address increases to the end address set, it will automatically loop to Set the first address.	0
	1	Reserved	RO	Reserved.	0
	0	RB_TMR_DMA_ENABLE	RW	DMA function enable bit: 1: Enable DMA; 0: Disable DMA.	0

$DMA\ \underline{Current\ delay}\ Rush\underline{\ Area\ address\ (R16_TMRx_DMA_N\ OW)\ (x=1/2)}$

Bit	name	access	description	Reset value
[15:0] R1	6_TMRx_DMA_NOW	RO	The current address of the DMA data buffer. Can be used to calculate the number of conversions, calculation magnetic conditions of the conversions of the DMA_NOW-TMR_DMA_BEG)/4.	etho X XXXh

 $DMA \underline{Start slow} \ Rush \underline{Area} \ address \ (R16_TMRx_DMA_B \ EG) \ (x=1/2)$

Bit	name	access	description	Reset value
[15:0] R1	6_TMRx_DMA_BEG	RW	DMA data buffer start address, only the lower 15 bits are valid, and the address must be aligned with 4 bytes.	XXXXh

DMA End slow Rush Area address (R16_TMRx_DMA_E ND) (x=1/2)

Bit	name	access	description	Reset value
[15:0] R1	6_TMRx_DMA_END	RW	DMA data buffer end address (not included) , Only low	XXXXh
			15 bits are valid, and the address must be aligned with 4 bytes.	

8.3 Function description and configuration

8.3.1 Timing and counting functions

Each timer of the chip supports the longest timing time 2^26 clock cycles, and executes the incremental counting mode. If the system clock week If the period is 32MHz, the longest timing time is: 31.25nS* 2^26 =2S. Each timer has an independent interrupt.

The timing function operation steps are as follows:

(1) Set RB_TMR_ALL_CLEAR, clear R32_TMRx_COUNT and interrupt flags, etc.; (2) Set the register R32_TMRx_CNT_END to the time value that needs timing;

The specific calculation method is: Time = Tsys * R32_TMRx_CNT_END;

- $(3), clear\ RB_TMR_ALL_CLEAR, clear\ RB_TMR_MODE_IN\ corresponding\ to\ the\ timing\ mode;$
- (4), optional steps, set the R8_TMRx_INTER_EN register, set RB_TMR_IE_CYC_END to turn on the timer period interrupt;
- (5), set the RB_TMR_COUNT_EN of the R8_TMRx_CTRL_MOD register to start the timer count;
- (6) When the count reaches R32_TMRx_COUNT equal to R32_TMRx_CNT_END, the timing is completed. At this time, the RB_TMR_IF_CYC_END of R8_TMRx_INT_FLAG will be set to 1, which can be cleared by writing 1.

The operation steps of the counting function are as follows:

- (1) Set the direction of the I/O pin corresponding to the count as input;
- (2) Set the final value of counting overflow in R32_TMRx_CNT_END;
- (3) Configure R8_TMRx_CTRL_MOD, set RB_TMR_MODE_IN and RB_TMR_CAP_COUNT corresponding to the counting mode, clear the RB_TMR_ALL_CLEAR bit, select the sampling edge mode through RB_TMR_CAP_EDGE, set the RB_TMR_COUNT_EN function of R8_TMRx_CTRL_MOD to 1, enable;
- (4), optional steps, if you need to enable interrupts, set the corresponding interrupt enable register bit;
- (5) R32_TMRx_COUNT stores the current count value. Every time the count reaches the final count value, RB_TMR_IE_CYC_END will be set to 1 and R32_TMRx_COUNT will be cleared to 0. If the interrupt is turned on, a hardware interrupt will be triggered.

8.3.2 PWM function

Each timer of the chip has PWM function. Among them, the PWM function of TMR1 and TMR2 supports DMA data loading. The default output polarity of PWM can be set to high level or low level. The number of repeated output of the same data can be selected as 1, 4, 8 or 16 times. This repeat function combined with DMA can be used to imitate the effect of DAC. The shortest time unit of PWM output effective level is 1 system clock, and the duty ratio of PWM can be dynamically modified to imitate special waveforms.

The PWM operation steps are as follows:

- (1) Set RB_TMR_ALL_CLEAR, clear and clear R32_TMRx_FIFO and interrupt flags, etc.;
- (2) Set the PWM total period register R32_TMRx_CNT_END, the value should not be less than the value in the R32_TMRx_FIFO register; (3) Configure R8_TMRx_CTRL_MOD, clear RB_TMR_ALL_CLEAR, clear RB_TMR_MODE_IN corresponding to the PWM mode, and select the output polarity through RB_TMR_OUT_POLAR according to your needs. RB_TMR_PWM_REPEAT selects the number of repetitions of the same data;
- (4) Set the data register R32_TMRx_FIFO, the minimum value is 0, corresponding to the duty cycle 0%, the maximum value is the same as R32_TMR_CNT_END, corresponding to the duty cycle 100%, the duty cycle calculation: R32_TMRx_FIFO/R32_TMRx_CNT_END. TMR1 and TMR2 can load continuous dynamic data through DMA, combined with the repeated output times of the same data, can imitate special waveforms;
- (5) Configure R8_TMRx_CTRL_MOD, set RB_TMR_COUNT_EN to start counting and RB_TMR_OUT_EN to allow PWM output; (6) Set the corresponding I/O pin of PWM as output;
- (7), optional steps, if you need to enable interrupts, set the corresponding interrupt enable register bit;
- (8) After a PWM cycle is completed, if the interrupt is turned on, the hardware interrupt will be triggered when RB_TMR_IF_DATA_ACT or RB_TMR_IF_CYC_END is set;
- (9). Updating the data in R32_TMRx_FIFO can dynamically change the duty cycle of PWM. It is recommended to load it through DMA.

For example: set the RB_TMR_OUT_POLAR bit to 0, R32_TMRx_FIFO to 6, R32_TMRx_CNT_END to 18, the basic timing diagram of PWM generation is shown below, and its duty cycle is: R32_TMRx_FIFO / R32_TMRx_CNT_END = 1/3

Figure 8-1 PWM output timing diagram

If RB_TMR_PWM_REPEAT is set to 00, it means that the above process is repeated once, 01 means repeated 4 times, 10 means repeated 8 times, and 11 means repeated 16 times. After repeating, load the next data in FIFO to continue.

8.3.3 Capture function

Each timer of the chip has a capture function, and the capture functions of TMR1 and TMR2 support DMA data storage. The capture mode can select any edge trigger start to any edge trigger end, rising edge trigger start to rising edge trigger end, falling edge trigger on

There are three modes from start to falling edge trigger end. The following is the description table of capture trigger mode:

Capture mode selection bit RB_TMR_CATCH_EDGE

00 Don't catch

01 Edge trigger Edge to edge

10 Falling edge to falling edge

11 Rising edge to rising edge

Table 8-5 Description of capture trigger mode

There are 2 trigger states in edge trigger mode, which can capture high level width or low level width. The most significant bit (bit 25) of the valid data in the data register R32_TMRx_FIFO is 1 to indicate that the captured is high, and 0 indicates that the captured is low. If the bit 25 of multiple groups of data is 1 (or 0)

The means that the width of the high (or low) level exceeds the timeout value, and it needs to be combined and accumulated.

In the falling edge to falling edge and rising edge to rising edge trigger mode, an input change cycle can be captured. Data register

The most significant bit (bit 25) of the valid data of R32_TMRx_FIFO is 0, which means normal sampling to one cycle, and 1 means that the input change cycle exceeds the timeout value R32_TMRx_CNT_END, and the latter group of data must be added to accumulate a single input change cycle.

The specific instructions are shown in the figure below:

Figure 8-2 Count the capture period with the system clock

As shown in the figure above, sampling once in each clock cycle:

When RB_TMR_CATCH_EDGE=01b, it is set to edge-triggered sampling, and the sampling time width is 3, 3, and 10; when RB_TMR_CATCH_EDGE=10b, it is set to falling edge to falling edge sampling, and the sampling time width is 13; For 11b, set the rising edge to rising edge sampling, and the sampling time width is 6.

Capture mode operation steps:

- (1) Set RB_TMR_ALL_CLEAR, clear and clear R32_TMRx_FIFO and interrupt flags, etc.; (2) Set the direction of the corresponding I/O pin to capture as input;
- (3) Set a reasonable capture timeout time in R32_TMRx_CNT_END, which can be used to generate a timeout interrupt when the input signal does not change for a long time, or it can generate timeout data after the input signal does not change overtime (bit 25 of the data is 1, The lower 25 bits can be accumulated backwards)

 (4) Configure R8_TMRx_CTRL_MOD, set RB_TMR_MODE_IN corresponding to the capture mode, select the edge mode of capture through RB_TMR_CAP_EDGE, set RB_TMR_COUNT_EN of R8_TMRx_CTRL_MOD to 1, enable counting;
- (5), optional steps, if you need to enable interrupts, set the corresponding interrupt enable register bit;
- (6) If you need to save the captured data in DMA mode, you need to set the register R16_TMRx_DMA_BEG to the first address of the buffer for storing the captured data, and set the register R16_TMRx_DMA_END to the end address (not included) of the buffer for storing the captured data, and set RB_TMR_DMA_ENABLE of R8_TMRx_CTRL_DMA is 1 to enable the DMA function; (7) Clear
- RB_TMR_ALL_CLEAR of R8_TMRx_CTRL_MOD to zero to start the capture function;
- (8) Every time data is captured, RB_TMR_IF_DATA_ACT will be set to 1, if the interrupt is turned on, a hardware interrupt will be triggered. The captured data is stored in R32_TMRx_FIFO by default. If DMA is turned on, the captured data will be automatically stored in the DMA setting. In the data buffer.

Chapter 9 Universal Asynchronous Receiver Transmitter UART

9.1 Introduction to UART

The chip provides 4 sets of full-duplex asynchronous serial ports, UART0/1/2/3. Supports full-duplex and half-duplex serial communication. UART0 provides the sending status pin for switching RS485, and supports MODEM modem signals CTS, DSR, RI, DCD, DTR, RTS.

9.1.1 Main features

- Compatible with 16C550 asynchronous serial port and enhanced.
- Supports 5, 6, 7 or 8 data bits and 1 or 2 stop bits. Support odd, even,
- l no check, blank 0, mark 1 and other check methods. Programmable
- l communication baud rate, up to 5Mbps baud rate.
- Built-in 8-byte FIFO first-in first-out buffer, supports 4 FIFO trigger levels.
- UARTO supports MODEM modem signals CTS, DSR, RI, DCD, DTR, RTS.
- UARTO supports hardware flow control signals CTS and RTS automatic handshake and automatic transmission rate control, compatible with
- TL16C550C. Support serial frame error detection, support Break line interval detection.
- Supports full-duplex and half-duplex serial communication, UART0 provides a sending status pin for switching RS485.

9.2 Register description

Table 9-1 List of UART0 related registers

name	address	description	Reset value
R8_UART0_MCR	0x40003000	Modem MODEM control register	0x00
R8_UART0_IER	0x40003001	Interrupt enable register	0x00
R8_UART0_FCR	0x40003002	FIFO control register	0x00
R8_UART0_LCR	0x40003003	Line control register	0x00
R8_UART0_IIR	0x40003004	Interrupt recognition register	0x01
R8_UART0_LSR	0x40003005	Line status register	0x60
R8_UART0_MSR	0x40003006	Modem status register	0xX0
R8_UART0_RBR	0x40003008	Receive buffer register	0xXX
R8_UART0_THR	0x40003008	Transmit holding register	0xXX
R8_UART0_RFC	0x4000300A	Receive FIFO count register	0x00
R8_UART0_TFC	0x4000300B	Transmit FIFO count register	0x00
R16_UART0_DL	0x4000300C	Baud rate divisor latch	0xXX
R8_UART0_DIV	0x4000300E	Prescaler Divisor Register	0xXX
R8_UART0_ADR	0x4000300F	Slave address register	0xFF

Table 9-2 UART1 related register list

name	address	description	Reset value
R8_UART1_MCR	0x40003400	Modem MODEM control register	0x00
R8_UART1_IER	0x40003401	Interrupt enable register	0x00
R8_UART1_FCR	0x40003402	FIFO control register	0x00
R8_UART1_LCR	0x40003403	Line control register	0x00
R8_UART1_IIR	0x40003404	Interrupt recognition register	0x01
R8_UART1_LSR	0x40003405	Line status register	0x60
R8_UART1_RBR	0x40003408	Receive buffer register	0xXX
R8_UART1_THR	0x40003408	Transmit holding register	0xXX

R8_UART1_RFC	0x4000340A	Receive FIFO count register	0x00
R8_UART1_TFC	0x4000340B	Transmit FIFO count register	0x00
R16_UART1_DL	0x4000340C	Baud rate divisor latch	0xXX
R8_UART1_DIV	0x4000340E	Prescaler Divisor Register	0xXX

Table 9-3 UART2 related register list

name	address	description	Reset value
R8_UART2_MCR	0x40003800	Modem MODEM control register	0x00
R8_UART2_IER	0x40003801	Interrupt enable register	0x00
R8_UART2_FCR	0x40003802	FIFO control register	0x00
R8_UART2_LCR	0x40003803	Line control register	0x00
R8_UART2_IIR	0x40003804	Interrupt recognition register	0x01
R8_UART2_LSR	0x40003805	Line status register	0x60
R8_UART2_RBR	0x40003808	Receive buffer register	0xXX
R8_UART2_THR	0x40003808	Transmit holding register	0xXX
R8_UART2_RFC	0x4000380A	Receive FIFO count register	0x00
R8_UART2_TFC	0x4000380B	Transmit FIFO count register	0x00
R16_UART2_DL	0x4000380C	Baud rate divisor latch	0xXX
R8_UART2_DIV	0x4000380E	Prescaler Divisor Register	0xXX

Table 9-4 UART3 related register list

name	address	description	Reset value
R8_UART3_MCR	0x40003C00	Modem MODEM control register	0x00
R8_UART3_IER	0x40003C01	Interrupt enable register	0x00
R8_UART3_FCR	0x40003C02	FIFO control register	0x00
R8_UART3_LCR	0x40003C03	Line control register	0x00
R8_UART3_IIR	0x40003C04	Interrupt recognition register	0x01
R8_UART3_LSR	0x40003C05	Line status register	0x60
R8_UART3_RBR	0x40003C08	Receive buffer register	0xXX
R8_UART3_THR	0x40003C08	Transmit holding register	0xXX
R8_UART3_RFC	0x40003C0A	Receive FIFO count register	0x00
R8_UART3_TFC	0x40003C0B	Transmit FIFO count register	0x00
R16_UART3_DL	0x40003C0C	Baud rate divisor latch	0xXX
R8_UART3_DIV	0x40003C0E	Prescaler Divisor Register	0xXX

Tune Modem MODEM control register (R8_UAR Tx_MCR) (X=0/1/2/3)

Bit	name	access	description	Reset value
7	RB_MCR_HALF	RW	Half-duplex transceiver mode control (only supported by UART0): 1: Enter half-duplex transceiver mode, send priority, no When sending, it is receiving; 0: Disable half-duplex mode.	0
6	RB_MCR_TNOW	RW	DTR pin output is sending status enable (only UARTO support): 1: Output the sending indication status to DTR Pin, can be used to control the RS485 transceiver switch; 0: DTR pin is normal function.	0
5	RB_MCR_AU_FLOW_EN	RW	CTS and RTS hardware automatic flow control enable (only supported by UART0)	0

1: Enable CTS and RTS hardware automatic flow control; 0: Disable CTS and RTS hardware automatic flow control; 0: Disable CTS and RTS hardware automatic flow control; 1: flow control mode, if this bit is 1, then only CTS pin input is detected as valid (active low) When the serial port continues to send the next data, otherwise temporarily Stop serial port transmission. When this bit is 1, the CTS input status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low), Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer you own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop; 1: Enable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 2: Disable the test mode of the internal loop. 3: RB_MCR_LOOP RW The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to DTS, OUT1 internally, DTR internally returns to DSR, OUT1 internally returnsQUTI2 RB_MCR_INT_OE RB_MCR_OUT2 RB_MCR_OUT2 RB_MCR_OUT3 RB_MCR_OUT5 RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 0 1: Set high; 0: Set low. RTS signal output level control/only supported by UARTO): 1: Set high; 0: CRTS signal output is valid (low level); 0 0: RTS signal output tis valid (low level); 1: DTR signal output tis pin level (default).		Ī	I		
flow control mode, if this bit is 1, then only CTS pin input is detected as valid (active low) When the serial port continues to send the next data, otherwise temporarily Stop serial port transmission. When this bit is 1, the CTS input status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low), Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty, foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, Enable the test mode of the internal loop; 11: Enable the test mode of the internal loop. 12: Enable the test mode of the internal loop. 13: Enable the test mode of the internal loop. 14: Enable the test mode of the internal loop. 15: Enable the test mode of the internal loop. 16: In the test mode of the internal loop, all pairs of the serial port 17: The external output pins are all in an invalid state, and TXD return 18: Back to RXD, RTS returns to CTS internally, DTR 18: Internally returns to DSR, OUT1 internally returns CALFI, 2 19: Return to DCD internally. 20: RB_MCR_OUT2 21: RB_MCR_INT_OE 22: RB_MCR_INT_OE 23: RB_MCR_OUT1 24: RB_MCR_OUT1 25: Set low. 26: RB_MCR_OUT1 26: RW UARTO, no actual output pin is connected: 27: Set high; 28: O: Set low. 28: RB_MCR_DTR 29: CRESS signal output level control of the other party. 20: CRESS signal output to pin good feel by UARTO): 21: RTS signal output level control (Only supported by UARTO): 21: DTR signal output level control (Only supported by UARTO): 28: CRESS signal output level control (Only supported by UARTO): 29: CRESS signal output level control (Only supported by UARTO): 20: CRESS signal output level control (Only supported by UARTO): 20: CRESS				1: Enable CTS and RTS hardware automatic flow control; 0:	
CTS pin input is detected as valid (active low) When the serial port continues to send the next data, otherwise temporarily Stop serial port transmission. When this bit is 1, the CTS input status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low). Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 2: The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns DALT[.2 Return to DCD internally. 3: RB_MCR_OUT2 RB_MCR_INT_OE 4: The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. 4: RB_MCR_OUT1 5: Set high; 6: Set low. 6: RTS signal output level control only supported by UARTO): 1: Set high; 7: Created and output pins is connected: 1: Set high; 1: Set high; 1: Created and output pins level (default) DTR signal output level control (only supported by UARTO): 1: RTS signal output level control (only supported by UARTO): 1: DTR signal output level control (only supported by UARTO): 1: DTR signal output level (offoult); 1: DTR signal output is valid (low level);				Disable CTS and RTS hardware automatic flow control. In	
When the serial port continues to send the next data, otherwise temporarily Stop serial port transmission. When this bit is 1, the CTS input status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low). Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop. 0: Disable the test mode of the internal loop. 1: Enable the test mode of the internal loop. The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns DART, 2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. 0 RB_MCR_OUT1 RW UARTO, no actual output pin is connected: 0 1: Set high; 0: Set Iow. RTS signal output level control by supported by UARTO): 1: RTS signal output level control (only supported by UARTO): 0: RTS signal output level control (only supported by UARTO): 0: RTS signal output level (default) DTR signal output level (only supported by UARTO): 1: DTR signal output level (only supported by UARTO): 1: DTR signal output is valid (low level); 0 RW 1: DTR signal output is valid (low level); 0				flow control mode, if this bit is 1, then only	
Stop serial port transmission. When this bit is 1, the CTS input status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low). Until the number of bytes received reaches the FIFO The serial port will automatically validate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop; 0. Disable the test mode of the internal loop. In the test mod				CTS pin input is detected as valid (active low)	
status change will not generate MODEM status interrupt. Such as If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low). Until the number of bytes received reaches the IFFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop; O: Disable the test mode of the internal loop. In the external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns CALNIZ Return to DCD internally. RB_MCR_OUT2 RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pins is connected: 1: Set high; 0: Set low. RTS signal output level control only supported by UARTO): 1: RTS signal output high level (default) DTR signal output high level (default) DTR signal output high level (default) TR STR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0 RB_MCR_DTR				When the serial port continues to send the next data, otherwise te	mporarily
If this bit is 1 and RTS is 1, then when the receive FIFO is empty, the serial port will automatically validate the RTS pin (active low), Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QUET. REMERCAUT2 REMERCAUT2 REMERCAUT3 REMERCAUT4 REMERCAUT5 REMERCAUT5 REMERCAUT6 REMERCAUT7 REMERC				Stop serial port transmission. When this bit is 1, the CTS input	
empty, the serial port will automatically validate the RTS pin (active low), Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop. O: Disable the test mode of the internal loop. In the test mode of the internal loop. In the test mode of the internal loop, alpris of the serial port. The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to DSR, OUT1 internally, DTR internally returns to DSR, OUT1 internally returns QUET_2 Return to DCD internally. RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO): 1: REB_MCR_OUT1 RW UARTO, no actual output pin is connected: 0 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO): 1: RTS signal output level control (only supported by UARTO): 0: RTS signal output level (default) DTR signal output level); 0 ORB_MCR_DTR RW 1: DTR signal output is valid (low level);				status change will not generate MODEM status interrupt. Such as	
(active low), Until the number of bytes received reaches the FIFO The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop, 0: Disable the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns OALRT2 Return to DCD internally. The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO): 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO): 1: RTS signal output high level (default) DTR signal output high level (default); 0 RRM Signal output is valid (low level); 0				If this bit is 1 and RTS is 1, then when the receive FIFO is	
The serial port will automatically invalidate the RTS pin when the trigger point is And it can be effective again when the receive FIFO is empty, foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QALRIZ Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 0 1: Set high; 0: Set low. RTS signal output level control(Only supported by UARTO): 1: RTS signal output tis valid (low level); 0 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				empty, the serial port will automatically validate the RTS pin	
And it can be effective again when the receive FIFO is empty. foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party. and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 1: All the test mode of the internal loop. 1: The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR 1: Internally returns to DSR, OUT1 internally returns QUET, 2 Return to DCD internally. 3: RB_MCR_OUT2 RB_MCR_INT_OE 4: Allow request; 0: Prohibit. 5: Allow request; 0: Prohibit. 6: User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 1: Set high; 1: RTS signal output level control(only supported by UARTO): 1: RTS signal output lievel control(only supported by UARTO): 1: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 1: DTR signal output is valid (low level); 0 1: DTR signal output is valid (low level);				(active low), Until the number of bytes received reaches the	FIFO
foot. Using hardware automatic flow control, you can transfer your own CTS The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port O The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QLRT,2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 0 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO): 1: RTS signal output level control (only supported by UARTO): 0: RTS signal output level (default) DTR signal output level (default) TR signal output level (ontrol (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				The serial port will automatically invalidate the RTS pin when the t	rigger point is
The pin is connected to the RTS pin of the other party, and the The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QART,2 Return to DCD internally. RB_MCR_INT_OE RW RB_MCR_INT_OE RW				And it can be effective again when the receive FIFO is empty.	
The RTS pin is sent to the CTS pin of the other party. Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 1: Enable the test mode of the internal loop. 1: In the test mode of the internal loop. 2: Disable the test mode of the internal loop. 2: In the test mode of the internal loop, all pairs of the serial port the external output pins are all in an invalid state, and TXD returns back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QukT_2 2: Return to DCD internally. The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 1: Set high; 1: Set low. RTS signal output level control(Only supported by UARTO): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0: O				foot. Using hardware automatic flow control, you can transfer you	r own CTS
Enable the test mode of the internal loop (only for UARTO hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. In the internal loop. In the test mode of the internal loop. In the inte				The pin is connected to the RTS pin of the other party, and the	
hold): 1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns DLRT, 2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO); no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO); 1: RTS signal output high level (default) DTR signal output level (ontrol (Only supported by UARTO); 0: RTS signal output level control (Only supported by UARTO); 1: DTR signal output is valid (low level); 0 0				The RTS pin is sent to the CTS pin of the other party.	
1: Enable the test mode of the internal loop; 0: Disable the test mode of the internal loop. 1: In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns DAURT,2 Return to DCD internally. 3 RB_MCR_OUT2 RB_MCR_INT_OE 4 RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 0				Enable the test mode of the internal loop (only for UART0	
4 RB_MCR_LOOP RW In the test mode of the internal loop. In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns OLLT, 2 Return to DCD internally. RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(Only supported by UARTO): 1: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RW 1: DTR signal output is valid (low level); 0				hold):	
RB_MCR_LOOP RW In the test mode of the internal loop, all pairs of the serial port The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns QUET, 2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(only supported by UARTO): 1: RB_MCR_RTS RW 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RW 1: DTR signal output is valid (low level); 0				1: Enable the test mode of the internal loop;	
The external output pins are all in an invalid state, and TXD returns Back to RXD, RTS returns to CTS internally, DTR internally returns to DSR, OUT1 internally returns RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level controlOnly supported by UARTO): 1: RB_MCR_RTS RW RTS signal output lievel controlOnly supported by UARTO): 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 1: DTR signal output is valid (low level); 0				0: Disable the test mode of the internal loop.	
Back to RXD, RTS returns to CTS internally, DTR internally returns QLRT,2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UART0), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control/Only supported by UART0): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UART0): ORDON RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0 0	4	RB_MCR_LOOP	RW	In the test mode of the internal loop, all pairs of the serial port	0
internally returns to DSR, OUT1 internally return QLRT,2 Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(Only supported by UARTO): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0				The external output pins are all in an invalid state, and TXD return	5
Return to DCD internally. RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(Only supported by UARTO): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 0				Back to RXD, RTS returns to CTS internally, DTR	
RB_MCR_OUT2 RB_MCR_INT_OE RW The interrupt request output control bit of the serial port: 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UART0), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(only supported by UART0): 1: RB_MCR_RTS RW 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UART0): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0				internally returns to DSR, OUT1 internally return \OddRT,2	
RW 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RES signal output level control(Only supported by UARTO): 1: RES signal output is valid (low level); 0 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0				Return to DCD internally.	
RB_MCR_INT_OE 1: Allow request; 0: Prohibit. User-defined MODEM control bit (only supported by UARTO), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level control(Only supported by UARTO): 1: RB_MCR_RTS RW 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0	2	RB_MCR_OUT2	D\A/	The interrupt request output control bit of the serial port:	0
2 RB_MCR_OUT1 RW UART0), no actual output pin is connected: 1: Set high; 0: Set low. RTS signal output level contro(Only supported by UART0): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UART0): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0	٥	RB_MCR_INT_OE	IVV	1: Allow request; 0: Prohibit.	U
1: Set high; 0: Set low. RTS signal output level contro(Only supported by UARTO): 1: RB_MCR_RTS RW 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0				User-defined MODEM control bit (only supported by	
RTS signal output level contro(Only supported by UARTO): 1: RTS signal output is valid (low level); 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0	2	RB_MCR_OUT1	RW	UART0), no actual output pin is connected:	0
1 RB_MCR_RTS RW 1: RTS signal output is valid (low level); 0 0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0				1: Set high; 0: Set low.	
0: RTS signal output high level (default) DTR signal output level control (Only supported by UARTO): 1: DTR signal output is valid (low level); 0	1 RB_M			RTS signal output level contro(Only supported by UARTO):	
DTR signal output level control (Only supported by UART0): RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0		RB_MCR_RTS	RW	1: RTS signal output is valid (low level);	0
0 RB_MCR_DTR RW 1: DTR signal output is valid (low level); 0				0: RTS signal output high level (default)	
				DTR signal output level control (Only supported by UART0):	_
0: DTR signal output high level (default) .	0	RB_MCR_DTR	RW	1: DTR signal output is valid (low level);	0

in_Disable enable Save_Device (R8_UARTx_IER) (x= 0 /1/2/3)

Bit	name	access	description	Reset value
7	RB_IER_RESET	WZ	The serial port software resets the control bit and is automatically 1: The software resets the serial port; 0: Normal operation.	cleared: 0
6	RB_IER_TXD_EN	RW	Serial port TXD pin output enable bit: 1: Enable pin output; 0: Disable pin output.	0
5	RB_IER_RTS_EN	RW	RTS pin output enable bit (only supported by UARTO). 1: Enable pin output; 0: Disable pin output.	0
4	RB_IER_DTR_EN	RW	DTR pin output enable bit (only supported by UART0) 1: Enable pin output; 0: Disable pin output.	0
3	RB_IER_MODEM_CHG	RW	Modem input status change interrupt enable bit (Only supported by UARTO): 1: Enable interrupt; 0: Disable interrupts.	0

2 RB_IER_LINE_STAT		RW	Receive line status interrupt enable bit:	0
		IXVV	1: Enable interrupt; 0: Disable interrupts.	0
1	1 00 100 110 6407		Send holding register empty interrupt enable bit:	0
	RB_IER_THR_EMPTY	RW	1: Enable interrupt; 0: Disable interrupts.	
0	0		Receive data interrupt enable bit:	0
0	RB_IER_RECV_RDY	RW	1: Enable interrupt; 0: Disable interrupts.	U

FIFO control register <u>Device (R8_UARTx_FCR) (x=0/1/2/3)</u>

Bit	name	access	description	Reset value
[7:6]	RB_FCR_FIFO_TRIG	RW	Receive FIFO interrupt and hardware flow control trigger Point selection: 00: 1 byte; 01: 2 bytes; 10: 4 bytes; 11: 7 bytes. Used to set the interrupt and hardware flow control of the receive The trigger point of the system, for example: 10 corresponds to 4 bytes, that is, when 4 bytes are received, the available data will be Interrupt, and automatically invalid when hardware flow control is RTS pin.	e generated.
[5:3]	Reserved	RO	Reserved.	000b
2	RB_FCR_TX_FIFO_CLR	WZ	Send FIFO data clear enable bit, automatically cleared: 1: Clear the data in the transmit FIFO (excluding TSR); 0: Do not clear the data in the transmit FIFO.	0
1	RB_FCR_RX_FIFO_CLR	WZ	Receiving FIFO data clear enable bit, automatically cleared: 1: Clear the data in the receive FIFO (excluding RSR); 0: Do not clear the data in the receive FIFO.	0
0	RB_FCR_FIFO_EN	RW	FIFO enable bit: 1: Enable 8-byte FIFO; 0: Disable FIFO. After FIFO is disabled, it is 16C450 compatible mode, which is equivalent to only one byte of FIFO (RECV_TG1=0, RECV_TG0=0, FIFO EN=1), it is recommended to enable.	0

line Route control Save Device (R8_UARTx_LCR) (x= 0 /1/2/3)

Bit	name	access	description	Reset value
7	RB_LCR_DLAB RB_LCR_GP_BIT	RW	Serial port common bits, user-defined.	0
6	RB_LCR_BREAK_EN	RW	Force generation of BREAK line interval enable bit: 1: Forced generation; 0: Not generated.	0
[5:4]	RB_LCR_PAR_MOD	RW	Parity bit format selection: 00: odd parity; 10: Mark bit (MARK, set to 1); 11: Space bit (SPACE, cleared to 0). Only valid when the RB_LCR_PAR_EN bit is 1.	00b
3	RB_LCR_PAR_EN	RW	Parity bit enable bit: 1: Allow parity to be generated when sending and parity checking Check position 0: No parity bit.	when receiving
2	RB_LCR_STOP_BIT	RW	Stop bit format setting bit: 0: One stop bit; 1: Two stop bits.	0

[1:0] RB_L	_CR_WORD_SZ	RW	Serial port data length selection: 00: 5 data bits; 01: 6 data bits; 10: 7 data bits; 11: 8 data bits.	00b
------------	-------------	----	---	-----

in Break identification Save Device (R8_UARTx_IIR) (x= 0/1/2/3)

Bit	name	access	description	Reset value
[7:6]	RB_IIR_FIFO_ID	RO	Serial port FIFO enable status bit: 11: FIFO is enabled; 00: FIFO is not enabled.	00b
[5:4]	Reserved	R0	Reserved.	00b
[3:0]	RB_IIR_INT_MASK	RO	Interrupt flag: If the RB_IIR_NO_INT bit is 0, it means that an interrupt is generated, and it needs to be read and judged Source off. Please refer to Table 9-5 for details.	0000b
0	RB_IIR_NO_INT	RO	Serial port no interruption flag: 1: No interruption; 0: There is an interrupt.	1

The meaning of each bit of RB_IIR_NO_INT and RB_IIR_INT_MASK of interrupt recognition register R8_UARTx_IIR and RB_IIR_INT_MASK is shown in the following table:

Table 9-5 The meaning of RB_IIR_INT_MASK in the IIR register

	IR mail <u>R</u> D2 IID			priority <u>level</u>	Type of interrupt	Interrupt source	Clear interrupt
0	0	0	1	<u>no</u> No	nterrupt is generated	No interruption	
1	1	1	0	0 bu	s address match	The 1 data received is the serial bus address, and the read IIR matches the preset slave value or the broadcast address. Or d (Only supported by UARTO)	
0	1	1	0	1	Receive line status	OVER_ERR, PAR_ERR, FRAM_ERR, BREAK_ERR Read	LSR
0	1	0	0	2	Receive data available	The number of bytes received reaches the trigger point of the FIFO.	Read RBR
1	1	0	0	2	Receive data timeout	The next data has not been received for more than 4 data times.	Read RBR
0	0	1	0	3	THR register empty	Send holding register empty, or read IIR RB_IER_THR_EMPTY from 0 to 1 to trigger.	Or write THR
0	0	0	0	4	MODEM input change	s \triangle CTS, \triangle DSR, \triangle RI, \triangle DCD are set to 1 to trigger. Rea	MSR

line Route status Save (R8_UARTx_LSR) (x= 0 /1/2/3)

Bit	name	access	description	Reset value
7	RB_LSR_ERR_RX_FIFO	RO	Receive FIFO error flag: 1: There is at least one PAR_ERR, FRAM_ERR or BREAK_ERR error in the receive FIFO; 0: There is no error in the receive FIFO.	0
6	RB_LSR_TX_ALL_EMP	RO	Transmit holding register THR and transmit shift register TSR empty flag: 1: Both are empty; 0: Both are not completely empty	1
5	RB_LSR_TX_FIFO_EMP	RO	Send FIFO empty flag: 1: Transmit FIFO is empty; 0: Transmit FIFO is not	1
4	RB_LSR_BREAK_ERR	RZ	empty. BREAK Line gap detection flag: 1: BREAK detected; 0: BREAK not detected.	0
3	RB_LSR_FRAME_ERR	RZ	Data frame error flag: 1: Indicates the data being read from the receive FIFO There is a framing error, and a valid stop bit is missing; 0: There is no error in the currently read data frame.	0
2	RB_LSR_PAR_ERR	RZ	Receive data parity error flag:	0

			1: Indicates the data being read from the receive FIFO	
			There is a parity error;	
			0: The parity of the currently read data is correct.	
1	DD 1 CD 0 VED EDD	RZ	Receive FIFO buffer overflow flag:	0
'	RB_LSR_OVER_ERR		1: Overflow; 0; no overflow.	
			There are received data flag bits in the receive FIFO:	
0	RB_LSR_DATA_RDY	RO	1: There is data in FIFO; 0: No data.	0
			After reading all the data in the FIFO, This bit is automatically c	leared to 0.

Tune Modem MODEM status register (R8_UAR_T0_MSR_) (Only supported by UART0)

Bit	name	access	description	<u>Reset value</u>
			DCD pin status bit:	
7	RB_MSR_DCD	RO	1: DCD pin is valid (low level);	Х
			0: DCD pin is invalid (high level).	
			RI pin status bit:	
6	RB_MSR_RI	RO	1: RI pin is active (low level);	Χ
			0: RI pin is invalid (high level) .	
			DSR pin status bit:	
5	RB_MSR_DSR	RO	1: DSR pin is valid (low level);	Χ
			0: DSR pin is invalid (high level).	
			CTS pin status bit:	
4	RB_MSR_CTS	RO	1: CTS pin is valid (low level);	Χ
			0: CTS pin is invalid (high level).	
3	DD MCD DCD CHC	RZ	DCD pin input status change flag:	0
3	RB_MSR_DCD_CHG	KΖ	1: There has been a change; 0: No change.	U
2	DD MCD DI CHC	RZ	RI pin input status change flag:	0
	RB_MSR_RI_CHG	KZ.	1: There has been a change; 0: No change.	U
1	DD MCD DCD CUC	D.7	DSR pin input status change flag:	0
	RB_MSR_DSR_CHG	RZ	1: There has been a change; 0: No change.	U
0	DD MCD CTC CUC	D.7	CTS pin input status change flag:	0
0	RB_MSR_CTS_CHG	RZ	1: There has been a change; 0: No change.	0

Pick up Receive buffer Save Device (R8_UARTx_RBR) (x= 0 /1/2/3)

Bit	name	access	description	Reset value
[7:0]	R8_UARTx_RBR	RO	Data receiving buffer register. If the DATA_RDY bit of the LSR is 1, the received data can be read from this register; If FIFO_EN is 1, the data received from the serial port shift register RSR is first stored in the receive FIFO, and then read through this register.	XXh

hair Send and keep sent Save (R8_UARTx_THR) (x= 0 /1/2/3)

۵.	Send and keep sent Save (No_OANTA_TTIN(X= 0717213)					
	Bit	name	access	description	Reset value	
	[7:0]	R8_UARTx_THR	WO	Send holding register. Including transmit FIFO, used to write data ready to be sent Data; if FIFO_EN is 1, the written data is first stored in the transmit FIFO, and then through the transmit Send the shift register TSR to output one by one.	XXh	

Receive FIFO meter Number register (R8_UARTx_RFC) (X=0/ 1/2/3)

В	it	name	access	description	Reset value
[7:0)]	R8_UARTx_RFC	RO	The data count in the current receive FIFO.	00h

Transmit FIFO meter Number register (R8_UARTx_TFC) (X=0/1/2/3)

Bit	name	access	description	Reset value
[7:0]	R8_UARTx_TFC	RO	The data count in the current transmit FIFO.	00h

wave Special rate divisor lock Register (R16_UARTx_DL) (x =0/1/2 /3)

Bit	name	<u>access</u>	description	Reset value
[15:0] R1	6_UARTx_DL	RW	The 16-bit divisor is used to calculate the baud rate. Formula: Divisor = internal reference clock of serial port Fuart / 16 / required communication baud rate. Example: If the internal reference clock Fuart of the serial port is 1.8432MHz, the required baud rate is 9600bps, then Divisor=1843200/16/9600=12.	XXXXh

Foresee <u>Divider</u> send <u>Register</u> (R8_UARTx_DIV) (x =0/1/2 /3)

Bit	name	access	description	Reset value
[7:0]	R8_UARTx_DIV	RW	Used to calculate the internal reference clock of the serial port, the effective. Formula: Divisor = Fsys * 2 / The internal reference clock of the serial port, the maximum value is 127.	lower 7 bits XXh

From Machine address Save (R8_UARTO_ADR) (only UARTO stand by)

Bit	name	access	description	Reset value
[7:0]	R8_UART0_ADR	RW	Serial port 0 slave address in multi-machine communication: FFh: not used; Other: slave address.	0FFh

R8_UARTO_ADR presets the address when this machine is used as a slave, which is used to automatically compare the received address during multi-machine communication and p When the address matches or when the broadcast address 0FFH is received, an interrupt is generated, and subsequent data packets are allowed to be received at the same time. Not until Receive any data, stop receiving any data after starting to send data or rewriting R8_UARTO_ADR register, until the next address

Reception is allowed when it matches again or the broadcast address is received.

When R8_UARTO_ADR is 0FFH or RB_LCR_PAR_EN=0, the automatic bus address comparison function is disabled. When R8_UARTO_ADR is not 0FFH and RB_LCR_PAR_EN=1, the automatic bus address comparison function is enabled, and the following parameters should be configured:

RB_LCR_WORD_SZ is 11b to select 8 data bits. For the case where the address byte is MARK (that is, the bit of the data byte) 9 is 0), RB_LCR_PAR_MOD should be set to 10b, for the case where the address byte is SPACE (that is, bit 9 of the data byte is 1)

, RB_LCR_PAR_MOD should be set to 11b.

9.3 Function description and configuration

UART0/1/2/3 output pins are all 3.3V LVCMOS level. The pins in asynchronous serial port mode include: data transmission pins and MODEM communication signal pins (only UART0 supportine data transmission pins include: TXD pin and RXD pin, both of which are high by default; MODEM The contact signal pins include: CTS pin, DSR pin, RI pin, DCD pin, DTR pin, RTS pin, all of which are high by default. All these MODEM contact signals can be used as general-purpose I/O pins, which are controlled by the application program and their purpose is defined.

Each of the 4 groups of UARTs has independent transceiver buffers and 8-byte FIFOs, and supports simplex, half-duplex, or full-duplex asynchronous serial communication. Serial data includes 1 low-level start bit, 5, 6, 7 or 8 data bits, 0 or 1 additional check bit or flag bit,