Association Rules Mining

Topics

- Basic concepts of Association Rules
- Rule strength measures
- Basic Algorithms
 - Apriori Algorithm
 - FP-Growth Algorithm
 - Other Approaches
 - Interestingness Measures
 - Sequential Pattern Mining
- Summary

Association rule mining

- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Clothes and Milk!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to new drug?
 - Can we automatically recommend next web document?

Applications

- Basket data analysis, Cross-marketing, Rack arrangement, Sale campaign analysis
- DNA sequence analysis
- Web log (click stream) analysis

Association rule mining

- Frequent pattern
 - A pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal et al. in 1993 in the context of frequent itemsets and association rule mining
- An important data mining model studied extensively

Association rule mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction
- Initially used for Market Basket Analysis to find how items purchased by customers are related

Bread \rightarrow Milk [Sup = 5%, Conf = 100%]

The model: Data

- Transaction t: a set of items, and $t \subseteq I$
- Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$

Transaction data: Supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, biscuit, salt, yogurt}
...
tn: {biscuit, bread, milk}
```

Concepts:

- An item: an item/article in a basket
- !: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset. A set of transactions

Transaction data: a set of documents

Text document data set, each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

Web page data set

Session1: PageA.html, PageB.html, PageC.html

Session2: PageC.html, PageD.html, PageE.html

Session3: PageA.html, PageC.html, PageD.html

The model: Rules

- A transaction t contains X, a set of items (itemset) in I, if $X \subseteq t$
- An association rule is an implication of the form:
 - $X \rightarrow Y$, where X, $Y \subset I$, and $X \cap Y = \emptyset$
- An itemset is a set of items
 - □ E.g., X = {milk, bread, cereal} is an itemset
- A k-itemset is an itemset with k items
 - □ E.g., {milk, bread} is a 2-itemset {milk, bread, cereal} is a 3-itemset

Rule Strength Measures

- An association rule is a pattern that states when X occurs, Y occurs with certain probability
 - Support
 - Confidence

Support and Confidence

Support

□ The rule holds with support sup in T (the transaction data set having n transactions) if sup% of transactions contain X ∪ Y

$$\sup = \frac{\operatorname{Sup} = \operatorname{Pr}(X \cup Y)}{n}$$
$$\sup = \frac{(X \cup Y).count}{n}$$

- Relative Support
- The frequency count of an itemset X U Y, denoted by (XUY).count, in a data set T is the number of transactions
 - Count/Absolute Support

Rule strength measures

Confidence

- The rule holds in T with confidence conf if % of transactions that contain X also contain Y.
- $oldsymbol{\square}$ conf = Pr(Y | X)

$$confidence = \frac{(X \cup Y).count}{X.count}$$

Goal and key features

 Goal: Find all rules that satisfy the userspecified minimum support (minsup) and minimum confidence (minconf)

Key Features

- Completeness: find all rules
- Compute the support and confidence for each rule

13

- Prune rules that fail the minsup and minconf thresholds
- Mining with data on hard disk (not in memory)

An example

- t1: Bread, Biscuit, Milk
- t2: Bread, Cheese
- t3: Cheese, Boots
- t4: Bread, Biscuit, Cheese
- t5: Bread, Biscuit, Clothes, Cheese, Milk
- t6: Biscuit, Clothes, Milk
- t7: Biscuit, Milk, Clothes

- Transaction data
- Assume:

minsup = 30% minconf = 80%

- An example frequent itemset. {Biscuit, Clothes, Milk} [sup = 3/7]
- Association rules from the itemset:

Clothes
$$\rightarrow$$
 Milk, Biscuit [sup = 3/7, conf = 3/3]

.. ..

Clothes, Biscuit \rightarrow Milk, [sup = 3/7, conf = 3/3]

Assumption

- A simplistic view of shopping baskets transactions
 - Some important information not considered e.g.
 - The quantity of each item purchased
 - The price paid
- Assume all data are categorical
 - Examples:
 - Item Purchased or not ?
 - ID numbers, eye color {brown, black, etc.}, zip codes
 - Height in {tall, medium, short}

Many mining algorithms

- A large number of them!!
- Use of different strategies and data structures
- Resulting sets of rules are all the same
- Computational efficiencies and memory requirements may be different

The Apriori algorithm

- The best known algorithm
- Two steps:
 - Find all itemsets that have minimum support (frequent itemsets, also called large itemsets)
 - Use frequent itemsets to generate rules
- E.g., a frequent itemset
 {Biscuit, Clothes, Milk} [sup = 3/7]
 and one rule from the frequent itemset
 Clothes → Milk, Biscuit [sup = 3/7, conf = 3/3]

Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is ≥ minsup
- Key idea
 - The apriori property (downward closure property)
 - Any subsets of a frequent itemset are also frequent itemsets

If {juice, glass, nuts} is frequent, so is {juice, glass}
i.e., every transaction having
{juice, glass, nuts}
also contains {juice, glass}

The Algorithm

- Iterative algo. (also called level-wise search): Find all 1-item frequent itemsets; then all 2-item frequent itemsets, and so on
 - In each iteration k, only consider itemsets that contain some k-1 frequent itemset
- Find frequent itemsets of size 1: F₁
- For k=2
 - C_k = candidates of size k: those itemsets of size k that could be frequent, given F_{k-1}
 - \neg F_k = those itemsets that are actually frequent, $F_k \subseteq C_k$ (need to scan the database once)

Database T

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

 $Sup_{min} = 2$

$$Sup_{min} = 2$$

Database T

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

Database TDB

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

 $1^{\text{st}} \xrightarrow{\text{scan}}$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

L	Itemset	sup
	{A}	2
	{B}	3
	{C}	3
	{E}	3

 $Sup_{min} = 2$

Database TDB

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 C_2

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Item	iset
{A,	B}
{A,	C}
{A,	E}
{B,	C}
{B,	E}
{C,	E}

 C_2

 $Sup_{min} = 2$

Database TDB

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

C_2	Itemset	sup
_	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 $Sup_{min} = 2$

Database TDB

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

 C_1 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Database TDB

TidItems10A, C, D20B, C, E30A, B, C, E40B, E

 $Sup_{min} = 2$

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

,	Itemset	sup
L ₂	{A, C}	2
	{B, C}	2
	{B, E}	3
1	{C, E}	2

Itemset
(3 {B, C, E}

C_2	Itemset	sup
_	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

TidItems10A, C, D20B, C, E30A, B, C, E40B, E

 $Sup_{min} = 2$

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

C₃ | Itemset | {B, C, E}

3rd scan

2nd scan

←

sup

2

Itemset

{B, C, E}

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

The Apriori Algorithm

 C_k : Candidate itemset of size k F_k : frequent itemset of size k Algorithm Apriori(7) $C_1 \leftarrow \text{init-pass}(T);$ $F_1 \leftarrow \{f \mid f \in C1, f.count/n \ge minsup\};$ // n: no. of transactions in T for $(k = 2; F_{k-1} \neq \emptyset; k++)$ do $C_k \leftarrow \text{candidate-gen}(F_{k-1});$ **for** each transaction $t \in T$ **do for** each candidate $c \in C_k$ **do** if c is contained in tthen c.count++; end end $F_k \leftarrow \{c \in C_k \mid c.count/n \geq minsup\}$ end return $F \leftarrow U_k F_k$;

Apriori candidate generation

- Function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets
- It has two steps
 - \Box *join* step: Generate all possible candidate itemsets C_k of length k
 - \neg *prune* step: Remove those candidates in C_k that cannot be frequent

Implementation of Apriori

- Example of Candidate-generation
 - \Box L_3 ={abc, abd, acd, ace, bcd}
 - □ Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - \Box $C_{\Delta} = \{abcd\}$

Assignment example

- **1. 2-Itemset=**{{A, C}, {B, C}, {B, E}, {C, E}}
- 3-itemset ?

- **2. 2-Itemset=**{{I1,I2}, {I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, {I2,I5}}}
- 3-itemset ?

Candidate-gen function

```
Function candidate-gen(F_{k-1})
    C_k \leftarrow \emptyset;
    forall f_1, f_2 \in F_{k-1}
            with f_1 = \{i_1, \ldots, i_{k-2}, i_{k-1}\}
            and f_2 = \{i_1, \ldots, i_{k-2}, i'_{k-1}\}
            and i_{k-1} < i'_{k-1} do
        c \leftarrow \{i_1, \ldots, i_{k-1}, i'_{k-1}\};
                                                             // join f_1 and f_2
        C_{k} \leftarrow C_{k} \cup \{c\};
        for each (k-1)-subset s of c do
            if (s \notin F_{k-1}) then
                delete c from C_k;
                                                             // prune
        end
    end
    return C_k;
```

Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - □ Let *B* = X *A*
 - \square A \rightarrow B is an association rule if
 - Confidence(A → B) ≥ minconf, support(A → B) = support(A∪B) = support(X) confidence(A → B) = support(A ∪ B) / support(A)

Generating Rules: an example

- Suppose {2,3,4} is frequent, with sup=50%
 - Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with sup=50%, 50%, 75%, 75%, 75%, 75% respectively
 - These generate these association rules:
 - $= 2.3 \rightarrow 4$ confidence=100%
 - $= 2,4 \rightarrow 3$ confidence=100%
 - $3,4 \rightarrow 2$ confidence=67%
 - $2 \rightarrow 3,4$ confidence=67%
 - $= 3 \rightarrow 2.4$ confidence=67%
 - $= 4 \rightarrow 2,3$ confidence=67%
 - All rules have support = 50%

Generating Rules: summary

- To recap, in order to obtain A → B, we need to have support(A ∪ B) and support(A)
- All the required information for confidence computation has already been recorded in itemset generation
 - No need to see the data T any more
- This step is not as time-consuming as frequent itemsets generation

Assignment Exercise: 1

A database has five transactions.

Let min sup = 60% and min con f = 80%.

TID items bought

T100 {M, O, N, K, E, Y}

T200 {D, O, N, K, E, Y}

T300 (M, A, K, E)

T400 (M, U, C, K, Y)

T500 {C, O, O, K, I, E}

Find all frequent itemsets using Apriori.

Apriori Algorithm

Seems to be very expensive

- Breadth-first (Level-wise) search
- If, K = the size of the largest itemset then makes at most K passes over data
- Very simple and fast
 - Under some conditions, all rules can be found in linear time
- Scale up to large data sets

Apriori Algorithm

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - Example:
 - □ 10⁴ frequent 1-itemsets, generate more than 10⁷ candidate 2-itemsets
 - □ To discover a frequent pattern of size 100, such as {a₁, ...,a₁₀₀}
 - Generated candidates $2^{100} 1 = (Approx.) 10^{30}$
 - Tedious workload of support counting for candidates

Apriori Algorithm

- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Mining Frequent Patterns without Candidate Generation ???

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- The FPGrowth Approach given by J. Han, J. Pei, and Y. Yin, SIGMOD' 00
 - Depth-first search
 - Avoid explicit candidate generation

FPGrowth Approach

- Compress a large database into a compact,
 <u>Frequent-Pattern tree</u> (<u>FP-tree</u>) structure
 - Highly condensed, but complete for frequent pattern mining
 - Avoid costly database scans
- An efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones calls conditional databases
 - Avoid candidate generation: sub-database mining only!

Example

<u>TID</u>	Items bought	
100	$\{f, a, c, d, g, i, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	min_support = 3
300	$\{b, f, h, j, o, w\}$	- 11
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	

Step 1: Scan DB once, find frequent 1-itemset (single item pattern)

<u>TID</u>	Items bought	
100	$\{f, a, c, d, g, i, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	min_support = 3
300	$\{b, f, h, j, o, w\}$	mm_support = 3
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, \bar{l}, p, m, n\}$	

Header Table			
<u>Item</u>	frequency		
$\int f$	4		
c	4		
a	3		
b	3		
m	3		
p	3		

Step 2: Sort frequent items in frequency descending order, f-list

<u>TID</u>	Items bought	(ordered) frequent items	
100	${f, a, c, d, g, i, m, p}$	$\{f, c, a, m, p\}$	min_support = 3
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	muu_support – s
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

neader lable			
<u>Item</u>	frequency		
f	4		
c	4		
a	3		
b	3		
m	3		
p	3		

Hooder Toble

$$F$$
-list = f-c-a-b-m-p

Step 3: Scan DB again, construct FP-tree

_			
<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_support = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	${a, f, c, e, l, p, m, n}$	$\{f, c, a, m, p\}$	[]
		Header Table	
To fa	acilitate the	Item frequency head	\underline{d} $f:I$
tree	traversal, an	$\int f$ 4 -	-1'-
	header table	c 4 -	-> <i>c:1</i>
		$a \qquad 3$	
	uilt with a	b 3	a:1
chai	in of node-	m = 3	

F-list = f-c-a-b-m-p $\sqrt{}$

DoCSE, SVNIT

links

Step 3: Cont...

<u>TID</u>	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	${a, f, c, e, l, p, m, n}$

To facilitate the tree traversal, an item header table is built with a chain of nodelinks

Step 3: Cont...

<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	_
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	${a, f, c, e, \bar{l}, p, m, n}$	$\{f, c, a, m, p\}$	

 To facilitate the tree traversal, an item header table is built with a chain of nodelinks

FPGrowth Example

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

MinSup=2

FPGrowth Assignment-2

Prepare the FP-Tree

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

Step 4: Mining of FP-Tree: Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - □ F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **...**
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

From Conditional Pattern-bases to

Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base
 - having support count greater than the min support

Conditional FP-Tree: Including items having support count greater than the min support

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3) f:

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two parts

DoCSE, SVNIT

 $a_2:n_2$

The FP-Growth Mining Method

Idea: Frequent pattern growth

Recursively grow frequent patterns by pattern and database partition

Method

- For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
- Repeat the process on each newly created conditional FPtree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FP-Growth Algorithm

- The FP-tree is constructed in the following steps:
 - (a) Scan the transaction database D once. Collect F, the set of frequent items, and their support counts. Sort F in support count descending order as L, the list of frequent items.
 - (b) Create the root of an FP-tree, and label it as "null," For each transaction Trans in D do the following. Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be [p|P], where p is the first element and P is the remaining list. Call Insert_tree([p|P], T), which is performed as follows. If T has a child N such that N.item-name = p.item-name, then increment N's count by I; else create a new node N, and let its count be 1, its parent link be linked to T, and its node-link to the nodes with the same item-name via the node-link structure. If P is nonempty, call Insert_tree(P, N) recursively.

FP-Growth Algorithm Cont...

The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows.

```
procedure FP_growth(Tree, α)
       if Tree contains a single path P then
(1)
          for each combination (denoted as \beta) of the nodes in the path P
(2)
              generate pattern \beta \cup \alpha with support_count = minimum support count of nodes in \beta;
(3)
       else for each ai in the header of Tree {
(4)
(5)
          generate pattern \beta = a_i \cup \alpha with support_count = a_i_support_count;
          construct β's conditional pattern base and then β's conditional FP_tree Tree<sub>8</sub>;
(6)
(7)
          if Tree_8 \neq \emptyset then
              call FP_growth(Tree<sub>β</sub>, β); }
(8)
```

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database

FP-Growth vs. Apriori: Scalability With the Support Threshold

FP-Growth Approach

- Divide-and-conquer
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Performance is Faster than Apriori
 - Use compact data structure
 - No candidate generation, no candidate test
 - Eliminate repeated database scans
 - Basic operation is counting and FP-Tree building
- Problem:
 - When the database is large, sometimes unrealistic to construct a main memory based FP-Tree

Data Format

- Apriori and FP-Growth
 - TID: itemset }
 - TID: Transaction ID
 - Itemset: set of items bought in transaction TID
 - Horizontal Data Format
- Alternative way
 - { Item: TID_set }
 - Item: item name
 - TID_set: set of transaction identifiers containing the item
 - Vertical Data Format

Data Format

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	E
1	1	2	2	1
4	2	3	4	1 3 6
5	5	4	2 4 5 9	6
6	7	2 3 4 8 9	9	
4 5 6 7 8 9	1 2 5 7 8 10	9		
8	10			
9				

TID-list

Mining by Exploring Vertical Data Format

- ECLAT (Equivalence CLASS Transformation)
- Developed by Zaki

- Deriving frequent patterns based on vertical intersections
 - \neg t(X) = t(Y): X and Y always happen together
 - $\neg t(X) \subset t(Y)$: transaction having X always has Y
- To count itemset AB
 - Intersect TID-list of itemA with TID-list of itemB

- Transform the horizontally formatted data to the vertical format by scanning the data set once
- Support count of an itemset
 - The length of the TID_set of the itemset

 Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

Α		В		AB
1		1		1
4		2		5
5	\	5	\rightarrow	7
6		7		8
7		8		
8		10		
9				

- 3 traversal approaches:
 - top-down, bottom-up and hybrid

- Starting with k=1, the Frequent k-itemsets can be used to construct the candidate (k+1) itemsets based on the Apriori property
 - Done by intersection of the TID_sets of the frequent kitemsets to compute the TID_sets of the corresponding (k+1) itemsets
- This process repeats, with k incremented by 1 each time, until no frequent itemsets or no candidate itemsets can be found

ECLAT Algorithm Summary

- Intersection is more efficient
- Pipelined counting for frequent itemsets
- Advantage
 - Less number of database scan
 - Very fast support counting
 - No need to scan the database to find the support of (k+1) itemsets (for k>=1)
 - Because the TID_set of each k-itemset carries the complete information required for counting each support

Disadvantage

- Intermediate tid-lists may become too large for memory
- Long computation time for intersecting the long set

Performance improvement Idea

- Using diffset to accelerate mining [CHARM Algorithm]
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}

Problem of Frequent Item sets

 A long pattern contains a combinatorial number of sub-patterns

```
• e.g., \{a_1, ..., a_{100}\} contains

= \binom{1}{100} + \binom{1}{100} + ... + \binom{1}{100} \binom{1}{00}

= 2^{100} - 1

= 1.27*10^{30} sub-patterns!
```

Solution

Mine closed patterns and max-patterns instead

Closed Patterns

- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
- It is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns - Example

Transaction Database

```
1: {a,d,e}

2: {b,c,d}

3: {a,c,e}

4: {a,c,d,e}

5: {a,e}

6: {a,c,d}

7: {b,c}

8: {a,c,d,e}

9: {b,c,e}

10: {a,d,e}
```

Frequent Item Set

1 item	2 items	3 items	
{b}: 3 {c}: 7 {d}: 6	$\{a,c\}$: 4 $\{a,d\}$: 5 $\{a,e\}$: 6 $\{b,c\}$: 3 $\{c,d\}$: 4 $\{c,e\}$: 4 $\{d,e\}$: 4	$\{a, c, d\}$: 3 $\{a, c, e\}$: 3 $\{a, d, e\}$: 4	

- {b} is a subset of {b,c} both have a support of 3
- {d,e} is a subset of {a,d,e} both have a support of 4

All frequent item sets are Closed except {b} and {d, e}

Max-Patterns

 An itemset X is a max-pattern (maximal) if X is frequent and there exists no frequent super-pattern Y
 X

Max-Patterns - Example

Transaction Database

1: {a,d,e} 2: {b,c,d} 3: {a,c,e} 4: {a,c,d,e} 5: {a,e} 6: {a,c,d} 7: {b,c} 8: {a,c,d,e} 9: {b,c,e} 10: {a,d,e}

Frequent Item Set

1 item	2 items	3 items	
{b}: 3 {c}: 7 {d}: 6	$\{a,c\}$: 4 $\{a,d\}$: 5 $\{a,e\}$: 6 $\{b,c\}$: 3 $\{c,d\}$: 4 $\{c,e\}$: 4 $\{d,e\}$: 4	$\{a, c, d\}$: 3 $\{a, c, e\}$: 3 $\{a, d, e\}$: 4	

The maximal item sets are {b,c} {a,c,d} {a,c,e} {a,d,e}

Every frequent itemset is a subset of at least one of these sets

Closed Patterns and Max-Patterns

- Exercise:
- DB = {<a₁, ..., a₁₀₀>, < a₁, ..., a₅₀>}

 □ Min_sup = 1.
- What is the set of closed itemset?
 - \Box <a₁, ..., a₁₀₀>: 1
 - $a < a_1, ..., a_{50} > 2$
- What is the set of max-pattern?
 - \Box <a₁, ..., a₁₀₀>: 1

Mine the Closed and Max-Patterns

TID	Items	
1	ABC	
2	ABCD	
3	BCE	
4	ACDE	
5	DE	

Minimum support = 2