```
a. 3 \times 2 \times 2 \times 3 \times 4 = 144 \longrightarrow 2^{144} nanoseconds b. 4 \times 3 \times 3 \times 4 \times 5 = 720 nanoseconds c. (2^3 - 1)(2^2 - 1)(2^2 - 1)(2^3 - 1)(2^4 - 1) 7 \times 3 \times 3 \times 7 \times 15 = 6615 nanoseconds
```

Problem 2

```
Point: [2, 2, 3, '+'] a) 0.743 b) 0 c) 0.257 d) 0.066

Point: [3, 3, 2, '+'] a) 0.928 b) 0 c) 0.072 d) 0.005

Point: [1, 2, 3, '+'] a) 0.186 b) 0 c) 0.814 d) 0.663

Point: [1, 4, 1, '+'] a) -0.557 b) 1 c) 1.557 d) 2.425

Point: [4, 4, 4, '+'] a) 3.343 b) 0 c) 0 d) 0

Point: [2, 2, 2, '+'] a) 0.0 b) 1 c) 1.0 d) 1.0

Point: [3, 3, 1, '-'] a) -0.186 b) 1 c) 1.186 d) 1.406

Point: [1, 1, '-'] a) 1.671 b) 0 c) 0 d) 0

Point: [3, 3, 2, '-'] a) -0.928 b) 1 c) 1.928 d) 3.719

Point: [0, 4, 2, '-'] a) 0.371 b) 0 c) 0.629 d) 0.395

Point: [4, 0, 0, '-'] a) 1.114 b) 0 c) 0 d) 0

Point: [0, 0, 3, '-'] a) 1.114 b) 0 c) 0 d) 0
```

1	0.1	0.114	0.114	0.14
2	0.2	0.2	0.2	0.2
3	0.3	0.286	0.286	0.26
4	0	0.029	0.029	0.08
5	0.4	0.371	0.371	0.32

As the number of the pseudo counts increases, the probabilities of the 4 classes grows closer to the overall average which would have been 1/5

- $\begin{array}{lll} \textbf{a.} & 4 \ge 4 \ge 3 \ge 3 = 144 \longrightarrow 2^{144} \text{ conjunctive hypotheses} \\ \textbf{b.} & (\text{Budget=[Low,High], Genre=Drama, Director=Great}) \end{array}$
- (Genre = drama)
- (Budget=Low, Genre=Drama, Famous Actors=No, Director=Great)

Problem 5

	p	weight	impurity	Feature impurity
Budget = low	1/3	6/16	0.918	
Budget = medium	3/5	5/16	0.971	0.873
Budget = high	4/5	5/16	0.722	
Genre = Documentary	2/5	5/16	0.971	
Genre = Drama	5/6	3/8	0.65	0.85
Genre = Comedy	2/5	5/16	0.971	
FamousActor = Yes	5/8	1/2	0.954	0.977
FamourActor = No	1/2	1/2	1	
Director = Great	5/7	7/16	0.863	0.935
Director = Unknown	4/9	9/16	0.991	

This means that our root node will be the "Genre" feature

$\operatorname{Genre=Documentary}$						
	р	weight	impurity	Feature impurity		
Budget = low	0	2/5	0			
Budget = medium	2/3	3/5	0.918	0.55		
Budget = high	0	0	N/A			
FamousActor = Yes	1/3	3/5	0.918	0.95		
FamourActor = No	1/2	2/5	1			
Director = Great	0	1/5	0	0.8		
Director = Unknown	1/2	4/5	1			

Next node will be Budget

$\operatorname{Genre}=\operatorname{Comedy}$						
	p	weight	impurity	Feature impurity		
Budget = low	1/2	2/5	1			
Budget = medium	0	1/5	0	0.8		
Budget = high	1/2	2/5	1			
FamousActor = Yes	1	1/5	0	0.649		
FamourActor = No	1/4	4/5	0.811			
Director = Great	2/3	3/5	0.918	0.589		
Director = Unknown	0	2/5	0			

Next node will be director

$\operatorname{Genre}=\operatorname{Drama}$						
	p	weight	impurity	Feature impurity		
Budget = low	1/2	2/6	1			
Budget = medium	1	1/6	0	0.333		
Budget = high	1	3/6	0			
FamousActor = Yes	3/4	4/6	0.811	0.541		
FamourActor = No	1	2/6	0			
Director = Great	1	1/2	0	0.459		
Director = Unknown	2/3	1/2	0.918			

Next node will be budget

Genre=Documentary and Budget=Low						
p weight impurity Feature impurity						
FamousActor = Yes	0	1	0	0		
FamourActor = No	0	0	N/A			
Director = Great	0	1/2	0	0		
Director = Unknown	0	1/2	0			

next node is FamousActor

Genre=Documentary and Budget=Medium						
p weight impurity Feature impurit						
FamousActor = Yes	1	1/3	0	0.667		
FamourActor = No	1/2	2/3	1			
Director = Great	0	0	N/A	0.918		
Director = Unknown	2/3	1	0.918			

next node is FamousActor

Genre=Comedy and Director=Great							
p weight impurity Feature impurity							
Budget = Low	1	1/3	0				
Budget = Medium	0	1/3	N/A	0			
Budget = High	1	1/3	0				

Since budget's impurity value is 0 then we default to that as the next node. Same case for Director=unknown

Genre=Drama and Budget=Low						
	р	weight	impurity	Feature impurity		
FamousActors = Yes	0	1/2	N/A	0.5		
FamousActors = No	1	1/2	1			
Director = Great	1	1/2	1			
Director = Unknown	0	1/2	N/A	0.5		

Next node is FamousActors

Training Data

Labelled Yes: 1 2 3 4 5 6 7 9 10 111 12 13 14 15 16

Labelled No: 8 Error Rate: 15/16

Test Data 1

Labelled Yes: 5 6 9 11 12 13 14 15 17 18 19

Labelled No: 1 2 3 4 7 8 10 16 20

Error Rate: 9/20

Test Data 2

Labelled Yes: 1 3 4 5 6 8 9 11 12 14 16 17 19 20

Labelled No: 2 7 10 13 15 18

Error Rate: 6/20

Test Data 3

Labelled Yes: 1 3 4 5 6 8 9 11 12 13 14 15 16

Labelled No: 2 7 10 13 15

Error Rate: 5/20

For my program I took the following steps

- 1. Sort the training data into 3 seperate arrays, 1 per class
- **2.** Find the centroids of each of the classes
- **3.** Create a normalized vector between two centroids and find the "d" value by inputting a midpoint
- **4.** Once the equations are created I check for each point for what side of the plane it is on.
- **5.** Checking with the 01 discriminant function if the value is positive then it chooses class 0 and compares with the 20 discriminant function to choose between class 2 and 0.
- **6.** Step 5 is repeated for each point.

Performance

Test 1 accuracy: 9 Errors out of 75 points
Test 2 accuracy: 33 Errors out of 300 points

CodaLab Performance

Accuracy: 0.93 Precision: 0.89 F measure: 0.89 Recall: 0.89 F1 Score: 0.89