

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2019-2020

Examen de la session principale

Matière: Thermodynamique pour l'Ingénieur Documents Autorisés: NON

Classes: 1TA Enseignant: S.KORDOGHLI & D. LOUNISSI

Durée : 1h30 **Nombre de pages :** 3 pages **Date :** 02/07/2020

N.B: L'épreuve comporte trois pages, deux pour l'énoncé et 1 page pour l'annexe1.

Exercice 1: (10 points)

Une turbine à vapeur sert à produire de l'électricité à partir de la détente de la vapeur d'eau sur ses pales comme indiqué sur la figure 1. La vapeur d'eau entre dans la turbine à 30 bars et 400 °C avec une vitesse de 80 m/s. à la sortie, la vapeur d'eau sort à une pression de 4 bars et 150 m/s.

Figure 1

Les propriétés thermodynamiques de la vapeur d'eau sont fournies dans l'annexe 1 de la page3 de ce document.

- 1) Appliquer le premier principe de la thermodynamique à ce système en supposant que la turbine est adiabatique. (On négligera la variation de l'énergie potentielle).
- 2) Déterminer, en supposant que la transformation est **isentropique**, le travail délivré par la turbine $W_{turbine}$ en kJ/kg.

Exercice 2 (10 points) : Resurchauffeur d'une centrale nucléaire

Soit un resurchauffeur faisant partie de l'équipement d'une centrale nucléaire (figure 2). Cet appareil sert à chauffer et évaporer l'eau de la centrale à partir d'une température de 90°C (point 3) jusqu'à la température de 390°C (point 4) en transférant la chaleur cédé par le dioxyde de carbone CO₂ provenant du réacteur nucléaire à l'eau destinée au turbo-groupe.

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2019-2020

Figure 2

On suppose que:

- Le resurchauffeur est parfaitement calorifugé (adiabatique)
- Les variations des énergies cinétiques et potentielles sont négligeables
- Le régime est permanent
- Le dioxyde de carbone CO₂ est assimilé à un gaz parfait

On donne:

- Le débit massique du dioxyde de carbone : $\dot{m}_{CO2} = 8900 \ kg/s$
- La capacité calorifique du dioxyde de carbone $C_{p CO2} = 1.0811 \text{ kJ/(K.kg)}$
- Les états thermodynamiques du CO₂:

Points	P [bar]	T [°C]	s [kJ/K.kg]
1	25.5	400	5.031
2	25.0	220	4.700

- Les états thermodynamiques du H₂O:

Points	P [bar]	T [°C]	h [kJ/kg]	s [kJ/K.kg]
3	35	90	379.6	1.1900
4	33	390	3204.6	6.8408

- 1) Déterminer, en utilisant la deuxième loi de Joule, la variation d'enthalpie en kJ/kg du CO₂ entre les deux points 1 et 2.
- 2) En déduire la puissance \dot{P}_{CO2} délivrée par le CO₂ en MW.
- 3) En appliquant le premier principe de la thermodynamique au resurchauffeur **adiabatique**, déterminer le débit de l'eau qui circule entre les points 3 et 4 : \dot{m}_{H20}

Bon travail

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2019-2020

Annexe 1 : Propriétés thermodynamiques de la vapeur d'eau surchauffée

Tableau 1: P = 30 bars

Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Phase
350,00	30,000	11,043	3116,1	6,7449	Gas
360,00	30,000	10,828	3139,5	6,7823	Gas
370,00	30,000	10,623	3162,8	6,8187	Gas
380,00	30,000	10,428	3185,9	6,8544	Gas
390,00	30,000	10,241	3208,8	6,8892	Gas
400,00	30,000	10,062	3231,7	6,9234	Gas
410,00	30,000	9,8911	3254,4	6,9570	Gas
420,00	30,000	9,7265	3277,1	6,9900	Gas

Tableau 2: P = 4 bars

Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Phase
145,00	4,0000	2,1540	2741,3	6,9033	Gas
146,00	4,0000	2,1479	2743,6	6,9088	Gas
147,00	4,0000	2,1417	2745,9	6,9143	Gas
148,00	4,0000	2,1357	2748,2	6,9197	Gas
149,00	4,0000	2,1296	2750,5	6,9252	Gas
150,00	4,0000	2,1237	2752,8	6,9306	Gas
151,00	4,0000	2,1177	2755,1	6,9359	Gas
152,00	4,0000	2,1119	2757,3	6,9413	Gas
153,00	4,0000	2,1060	2759,6	6,9466	Gas
154,00	4,0000	2,1003	2761,8	6,9518	Gas
155,00	4,0000	2,0945	2764,1	6,9571	Gas
156,00	4,0000	2,0888	2766,3	6,9623	Gas
157,00	4,0000	2,0831	2768,5	6,9675	Gas
158,00	4,0000	2,0775	2770,8	6,9726	Gas
159,00	4,0000	2,0720	2773,0	6,9778	Gas
160,00	4,0000	2,0664	2775,2	6,9829	Gas