ECEn/CS 224 ALU Homework Solutions

Background

In the LC-3 there is an ALU which performs the functions PASS, ADD, AND, NOT. The last three should be self-explanatory. The PASS function simply passes the first input through to the output. Assuming inputs A and B as well as control signals C1 and C0, the behavior of the ALU is outlined in the table below.

Control		Function Select	Function
C1	C0		
0	0	PASS	Out = A
0	1	ADD	Out = A + B
1	0	AND	$Out = A \bullet B$
1	1	NOT	Out = A'

One way to build an ALU is to build a bit-slice. That is, you build one bit worth of ALU first. Then, you combine n of those together to make an ALU that works on n-bit values. Further, a good way to design such an ALU is to simply implement each function independently (AND, ADD, NOT, PASS) and then combine their outputs together using a 4:1 MUX.

Problems

1. Begin by drawing the schematic of the full adder as described in section 8.6 of the text.

Last updated: 11/4/2006

2. Now incorporate your single bit adder into a single bit ALU. This ALU contains a 4-to-1 mux with inputs of **A**, **A**+**B** (addition), **A AND B**, and **NOT A**. Draw the Logic Diagram for this single bit ALU. The inputs should include **A**, **B**, **Cin**, and **C[1:0]** (control). The outputs should include **Out** and **Cout**.

3. Now draw a symbol for this 1-bit ALU and show how you would combine 4 of them into a 4-bit ALU.

Last updated: 11/4/2006