Classic Computer Science Algorithms

Stijn Lievens Pieter-Jan Maenhaut Koen Mertens Lieven Smits AJ 2021–2022

Opleiding

Leerlijnen

	De student kan kwaliteitsvolle IT-oplossingen efficiënt en autonoom ontwerpen, ontwikkelen, documenteren en testen, rekening houdend met nieuwe ontwikkelingen en toepassingsdomeinen. #ontwerpen #ontwikkelen #documenteren #testen
Install, maintain & secure	De student kan complexe IT-oplossingen efficiënt en autonoom installeren, configureren, beveiligen, onderhouden en aanpassen zodat ze blijven beantwoorden aan de veranderende behoeften. #installeren #configureren #beveiligen #onderhouden #aanpassen
Store & manage	De student kan complexe verzamelde informatie analyseren en verwerken tot de meest geschikte gestructureerde databases die hij/zij met het oog op performantie efficiënt beheert en gebruikt. #databases #beheren #technologisch #performantie
Analyse & advise	De student kan complexe IT-behoeften en vragen kritisch analyseren, gestructureerd weergeven en adequaat advi- seren over een oplossing op maat van de organisatie en de impact ervan. #requirements #functioneleanalyse #businessanalyse #BPM #changemanagement
Capture, model & predict	De student kan probleemoplossend redeneren door data te capteren, analyseren, visualiseren en interpreteren om te komen tot inzichten en geschikte modellen ter ondersteuning van het beleid van de organisatie. #B RA HOT #mochineleraning
Communicate	De student kan adequaat communiceren in een nationale en internationale professionele context. #communiceren
Research	De student kan bestaande en innovatieve (IT-)oplossingen op een methodologisch correcte manier kritisch onderzoeken, evalueren en (her)ontwerpen of optimaliseren. #onderzoeken
Grow	De student kan vanuit een deontologisch en maatschappelijk referentiekader en kritische (zelf)reflectie de eigen professionele groei autonoom en actief opbouwen en beheren. #levenslangleren #duurzaamheid #MaatschappelijkReferentiekader #reflecteren
	protessionele groei autonoom en acter oppouwer en benefen. #levensiongleren #duurzoomheid #MaatschappelijkReferentiekader #reflecteren De student kan autonoom een complexe IT-opdracht projectnatig aanpakken en aansturen en kan daarbij een gepast projectplan ontwerpen, uitvoeren en kritisch opvolgen. #projectwerk #autonoom
	De student kan binnen een intra- en interdisciplinair team samenwerken en (mede)verantwoordelijkheid opnemen voor het behalen van kwaliteitsvolle collectieve resultaten. #teamwork #collectiveOwnership

Capture, Model & Predict

Inhoud

- 1. Zoeken en sorteren
- 2. Gelinkte lijsten
- 3. Hashtabellen
- 4. Bomen
- 5. Graafalgoritmes
- 6. Zoekalgoritmes
- 7. Zoeken met een Tegenstander
- 8. Machinaal Leren
- 9. Complexiteitstheorie

Omvang en belang

- 5 studiepunten
- Totale studietijd: 125,00 uren
- 48,00 contacturen voor de reguliere studenten
- Elke twee weken 6u theorie en 2u oefeningensessie op Dodona met Python
- Zelfstudie Python a.d.h.v online tutorial

Leerresultaten

- De student kan complexe IT-oplossingen efficiënt en autonoom installeren, configureren, beveiligen, onderhouden en aanpassen zodat ze blijven beantwoorden aan de veranderende behoeften.
- De student kan probleemoplossend redeneren door data te capteren, analyseren, visualiseren en interpreteren om te komen tot inzichten en geschikte modellen ter ondersteuning van het beleid van de organisatie.

Doelstellingen

- Kan een gepast algoritme en gepaste datastructuur kiezen.
- Kan de tijds- en ruimte complexiteit van eenvoudige iteratieve en recursieve algoritmen bepalen.
- Kan vraagstukken modelleren m.b.v. een graaf.
- Kent enkele basisalgoritmen op grafen en kan het gepaste algoritme kiezen om een vraagstuk op te lossen.
- Kent verschillende strategieën om een zoekprobleem op te lossen en hun eigenschappen.
- Heeft intuïtief inzicht in de verschillende complexiteitsklassen.
- Kan het onderscheid tussen de drie grote types van machinaal leren toelichten.
- Kan uitleggen wanneer welk type van machinaal leren van toepassing is en dit toepassen.
- Kan de werking van een eenvoudig algoritme voor clustering toelichten.
- Kan eenvoudige algoritmes implementeren in Python

Evaluatie

- 70% Schriftelijk gesloten boek examen zowel in eerste als tweede zittijd. Gebruik van zakrekenmachine is toegelaten
- 10% Permanente evaluatie in eerste zittijd: Python oefeningen op Dodona
 - Tegen midden november >= 80% van de oefeningen correct ingediend:
 2 punten (op 2)
 - Tegen midden november >= 50% van de oefeningen correct ingediend:
 1 punt (op 2)
- Oefeningen examen: Python-vragen op PC: 20% in eerste zittijd, 30% in tweede zittijd
- Focus op begrijpen en kunnen toepassen van de leerstof

Studiematerialen

- Cursus in pdf formaat (Chamilo)
- Slides in pdf formaat (Chamilo)
- Python oefeningen op Dodona platform.
 - o Ga naar dodona.ugent.be, meld je aan en schrijf je in voor de HOGENT cursus "Classic Computer Science Algorithms (2021–2022)".
- (Onder voorbehoud) Examenvoorbeeld in pdf formaat (Chamilo)
- Filmpjes met de lessen (Chamilo)
- ullet Aankondigingen via Chamilo! \Longrightarrow officieel communicatiekanaal
- Online Python tutorial (details: zie Chamilo)

