Scalable Online First-Order Monitoring

<u>Joshua Schneider</u> David Basin Frederik Brix Srđan Krstić Dmitriy Traytel

Department of Computer Science

The Goal

Scalable online monitoring in the face of **high-velocity** event streams

The Goal

Scalable online monitoring in the face of **high-velocity** event streams

 $\overline{\text{velocity}} = \text{event rate} = \frac{\text{\#events}}{\text{time}}$

The Goal

Scalable online monitoring in the face of **high-velocity** event streams

$$velocity = event \ rate = \frac{\textit{\#events}}{\textit{time}}$$

▲ throughput

- ▲ number of processors
- peak latency
 - memory used per processor

vnrus

■ Reuse existing monitoring algorithm (MonPoly)

- Reuse existing monitoring algorithm (MonPoly)
- Split event stream into slices

- **Reuse** existing monitoring algorithm (MonPoly)
- Split event stream into slices

- Reuse existing monitoring algorithm (MonPoly)
- Split event stream into slices

Prior Work: Offline Slicing (Basin et al. 2016)

"A report must be published only if it has been approved in the past seven days."

 $publish(r) \rightarrow \phi_{[0,7d)} approve(r)$

$$publish(r) \rightarrow \blacklozenge_{[0,7d)} approve(r)$$

Data Slicer

Data Slicer

$$publish(r) \rightarrow \blacklozenge_{[0,7d)} approve(r)$$

Data Slicer

$$publish(r) \rightarrow \blacklozenge_{[0,7d)} approve(r)$$

Problem 1: Too Much Data Duplication

"IDs of published reports must increase over time."

$$(\blacklozenge publish(x)) \land publish(y) \rightarrow x \leq y$$

Problem 1: Too Much Data Duplication

"IDs of published reports must increase over time."

$$(\blacklozenge publish(x)) \land publish(y) \rightarrow x \leq y$$

Problem 1: Too Much Data Duplication

"IDs of published reports must increase over time."

$$(\blacklozenge publish(x)) \land publish(y) \rightarrow x \leq y$$

Completeness: all violations are detected Soundness: all detected violations are true

Problem 1: Too Much Data Duplication

"IDs of published reports must increase over time."

$$(\blacklozenge publish(x)) \land publish(y) \rightarrow x \leq y$$

Problem 1: Too Much Data Duplication

"IDs of published reports must increase over time."

$$(\blacklozenge publish(x)) \land publish(y) \rightarrow x \leq y$$

Problem 2: How to Slice?

Complex formulas:

```
delete(u, db1, dt) \land dt \not\approx unknown \rightarrow 
(\blacklozenge_{[0,1s)} \diamondsuit_{[0,30h)} \exists u'. delete(u', db2, dt)) \lor 
((\diamondsuit_{[0,1s)} \blacklozenge_{[0,30h)} \exists u'. insert(u', db1, dt)) \land 
(\blacksquare_{[0,30h)} \square_{[0,30h)} \neg \exists u'. insert(u', db2, dt)))
```

Problem 2: How to Slice?

Complex formulas:

```
\begin{split} & \text{delete}(\boldsymbol{u}, \text{db1}, \boldsymbol{dt}) \land \boldsymbol{dt} \not\approx \text{unknown} \rightarrow \\ & \left( \blacklozenge_{[0,1s)} \lozenge_{[0,30h)} \exists u'. \text{delete}(u', \text{db2}, \boldsymbol{dt}) \right) \lor \\ & \left( \left( \lozenge_{[0,1s)} \blacklozenge_{[0,30h)} \exists u'. \text{insert}(u', \text{db1}, \boldsymbol{dt}) \right) \land \\ & \left( \blacksquare_{[0,30h)} \square_{[0,30h)} \neg \exists u'. \text{insert}(u', \text{db2}, \boldsymbol{dt}) \right) \end{split}
```

Many possible choices:

Problem 2: How to Slice?

Complex formulas:

```
\begin{split} & \text{delete}(\textbf{\textit{u}}, \text{db1}, \textbf{\textit{dt}}) \land \textbf{\textit{dt}} \not\approx \text{unknown} \rightarrow \\ & \left( \blacklozenge_{[0,1s)} \lozenge_{[0,30h)} \exists u'. \text{delete}(u', \text{db2}, \textbf{\textit{dt}}) \right) \lor \\ & \left( \left( \lozenge_{[0,1s)} \blacklozenge_{[0,30h)} \exists u'. \text{insert}(u', \text{db1}, \textbf{\textit{dt}}) \right) \land \\ & \left( \blacksquare_{[0,30h)} \square_{[0,30h)} \neg \exists u'. \text{insert}(u', \text{db2}, \textbf{\textit{dt}}) \right) \right) \end{split}
```

Many possible choices:

Our Solution

$$A(x,y) \wedge (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$

$$B(2,3) \qquad B(2,4) \wedge A(1,2)$$

$$C(1,3)$$

$$A(x,y) \wedge (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$

$$B(2,4) \wedge A(1,2)$$

$$C(1,3)$$

$$x = *$$

$$y = 2$$

$$z = 3$$

$$A(x,y) \land (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$

$$B(2,3) \qquad \qquad B(2,4) \land A(1,2)$$

$$C(1,3) \qquad \qquad C(1,3)$$

$$x = * \qquad x = * \qquad y = 2 \qquad y = 2 \qquad z = 3 \qquad z = 4$$

sound & complete if ■ and ■ are each sent to the same slice

sound & complete if and are each sent to the same slice

A slicing strategy for an MFOTL formula like

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

is sound & complete

A slicing strategy for an MFOTL formula like

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

is sound & complete

if it is sound & complete for the conjunction of all atoms

$$A(x, y) \wedge B(y, z) \wedge C(x, z)$$
.

A slicing strategy for an MFOTL formula like

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

is sound & complete

if it is sound & complete for the conjunction of all atoms

$$A(x, y) \wedge B(y, z) \wedge C(x, z)$$
.

- This problem has been studied by the database community!
- Hypercube algorithm (Afrati and Ullman 2011, and others)

A slicing strategy for an MFOTL formula like

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

is sound & complete

if it is sound & complete for the conjunction of all atoms

$$A(x, y) \wedge B(y, z) \wedge C(x, z)$$
.

- This problem has been studied by the database community!
- Hypercube algorithm (Afrati and Ullman 2011, and others)
- Condition is only sufficient, not necessary

 $A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$ Free variables x, y, zn monitors

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

Free variables x, y, z
 n monitors

Shares n_x , n_y , n_z $n = n_x \cdot n_y \cdot n_z$

$$A(x,y) \land (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$
Free variables x, y, z
 $n \text{ monitors}$

A(23, 57)

Shares n_x , n_y , n_z $n = n_x \cdot n_y \cdot n_z$

$$A(x,y) \land (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$
Free variables x, y, z
 $n \text{ monitors}$
 $X = 23$
 $y = 57$
 $z = *$

Shares n_x , n_y , n_z $n = n_x \cdot n_y \cdot n_z$

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

Free variables x, y, z
 n monitors

$$A(23, 57) \longrightarrow \begin{array}{c} x = 23 \\ y = 57 \\ z = * \end{array}$$

Shares
$$n_x$$
, n_y , n_z
 $n = n_x \cdot n_y \cdot n_z$

Hash functions

$$f_X: D \to \{1, \dots, n_X\}$$

 $f_Y: D \to \{1, \dots, n_Y\}$
 $f_Z: D \to \{1, \dots, n_Z\}$

D: set of data values

$$A(x, y) \land (\blacklozenge B(y, z)) \rightarrow \blacklozenge C(x, z)$$

Free variables x, y, z
 n monitors

$$A(23, 57) \longrightarrow \begin{array}{c} x = 23 \\ y = 57 \\ z = * \end{array}$$

Shares
$$n_x$$
, n_y , n_z
 $n = n_x \cdot n_y \cdot n_z$

Hash functions

 $f_X: D \to \{1, \dots, n_X\}$ $f_Y: D \to \{1, \dots, n_Y\}$ $f_Z: D \to \{1, \dots, n_Z\}$

D: set of data values

$$A(x,y) \land (\blacklozenge B(y,z)) \rightarrow \blacklozenge C(x,z)$$
Free variables x, y, z
 $n \text{ monitors}$
 $X = 23$
 $y = 57$
 $z = *$

Our Current Implementation

Evaluation (1)

"Nokia" data excerpt, insert formula, with fault-tolerance

Evaluation (1)

"Nokia" data excerpt, insert formula, with fault-tolerance

Max. latency [s] – lower is better

Evaluation (2)

Random data, triangle formula, with fault-tolerance & statistics

Future Work & Conclusion

Adapting to Changing Statistics

Adapting to Changing Statistics

Adapting to Changing Statistics

<u>Joshua Schneider</u> David Basin Frederik Brix Srđan Krstić Dmitriy Traytel

