Econ720 - TA Session 8

Yanran Guo

UNC-Chapel Hill

2020. 10. 09

Why continuous time?

- Some pathological results of discrete-time models disappear when using continuous time. (See 'Introduction to Modern Economic Growth', Acemoglu, Exercise 2.21)
- Continuous-time models have more flexibility in the analysis of dynamics and allow explicit-form solutions in a wider set of circumstances.

Example:

• Objective: maximize lifetime utility

• BC:

Income: labor, capital

Expenditure: consumption, new capital

To solve the model:

- Discrete time:
 Sequential language → Lagrangean
 Dynamic programming → Bellman equation
- Continuous time:
 Optimal control → Hamiltonian (state variable, control variable)
 Dynamic programming → Hamilton-Jacobi-Bellman equation

Discrete time

$$\max \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t.
$$c_t + k_{t+1} = w_t + (1 - \delta + r_t)k_t$$

Continuous time

$$\max \int_{t=0}^{\infty} e^{-\rho t} u(c_t) dt$$

s.t.
$$\dot{k}_t = w_t + (r_t - \delta)k_t - c_t$$

To discount:

- Discrete time: discount factor β , $(\beta = \frac{1}{1+\alpha})$
- Continuous time: discount rate ρ

In discrete time,
$$u(t) = \beta u(t+1) = \frac{1}{1+\rho} u(t+1)$$
. Hence, $\rho = \frac{u(t+1)-u(t)}{u(t)}$

In continuous time, the above equation becomes $\rho = \frac{\frac{d}{dt}u(t)}{u(t)} = \frac{d}{dt}lnu(t)$ Integrating both sides

$$\int_{t}^{t+\Delta} \rho \, ds = \int_{t}^{t+\Delta} \frac{d}{dt} \ln u(s) ds$$

$$\rho \Delta = \ln u(t+\Delta) - \ln u(t) = \ln \frac{u(t+\Delta)}{u(t)}$$

$$e^{\rho\Delta} = \frac{u(t+\Delta)}{u(t)} \Rightarrow u(t) = e^{-\rho\Delta} u(t+\Delta)$$

2. Optimal Control: Hamiltonian

- Read the question carefully, figure out each sector
- State variable, Control variable Only for sectors that have dynamic problem!
- Write down the objective: integral, discount, objective you are trying to maximize
- For each state var., write down a law of motion for that state var.
- Hamiltonian or Current Value Hamiltonian
- Differentiate H w.r.t control var. and set it to be 0 Differentiate H w.r.t state var. and set it to be $-\dot{\mu}_t$ or $-\dot{\mu}_t + \rho \mu_t$ Combine them to get rid of co-state variable, then get EE
- Combine them to get rid of co-state variable, then get EE
- Opening Define the solution to this sector problem

Hamiltonian:

$$H = e^{-\rho t}u(c_t) + \hat{\mu}_t(w_t + (r_t - \delta)k_t - c_t)$$

Differentiate H w.r.t control and set it to 0

$$e^{-\rho t}u'(c_t)-\hat{\mu}_t=0$$

Differentiate H w.r.t state and set it to $-\hat{\mu}_t$

Combine these two equations to substitute out $\hat{\mu}_t$

Current Value Hamiltonian:

$$H = u(c_t) + \mu_t(w_t + (r_t - \delta)k_t - c_t)$$

Differentiate H w.r.t control and set it to 0

$$u'(c_t) - \mu_t = 0$$

Differentiate H w.r.t state and set it to $-\dot{\mu}_t + \rho \mu_t$

Combine these two equations to substitute out μ_t

2. Optimal Control: Hamiltonian

Opening Define the solution:

The solution to our example problem is a set of $\{c_t, k_t, \mu_t\}$ that satisfy

- FOC
- Law of motion for the state (/other constraints)
- Boundary conditions k₀ is given
 TVC

More about TVC

- Finite time
 - With scrap value: $\mu(T) = \phi'(k_T)$
 - Without scrap value: $\mu(T) = 0$
- Infinite time
 - Hamiltonian: $\lim_{t\to\infty} \mu_t k_t = 0$
 - Current value Hamiltonian: $\lim_{t\to\infty} e^{-\rho t} \mu_t k_t = 0$