DES PREUVES SANS MOT AUX PREUVES SANS DOUTE

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/visual-proof/polynomial-analytic-principles.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Et suivirent les fonctions séparablement analytiques	2
2.	Que dire des si utiles fonctions analytiques de plusieurs variables?	3

Date: 16 Juillet 2019 - 29 Mars 2025.

1. ET SUIVIRENT LES FONCTIONS SÉPARABLEMENT ANALYTIQUES

Que faire si nous avons des formules trigonométriques impliquant deux variables, ou plus? Par exemple, pour $(\alpha; \beta) \in (\mathbb{R}_+^*)^2$ tel que $0 < \alpha + \beta < \frac{\pi}{2}$, le dessin suivant nous donne $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ et $\sin(\alpha + \beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta$.

Le fait 3 ci-dessous, qui généralise le fait ??, implique la validité des formules trigonométriques précédentes sur \mathbb{C}^2 tout entier en choisissant $f_1(\alpha;\beta) = \cos(\alpha+\beta) - \cos\alpha\cos\beta + \sin\alpha\sin\beta$ et $f_2(\alpha;\beta) = \sin(\alpha+\beta) - \cos\alpha\sin\beta - \sin\alpha\cos\beta$. Nous voilà sauvés!

Définition 1. Soit $n \in \mathbb{N}^*$. Pour $f: \mathbb{C}^n \to \mathbb{C}$ et $k \in [1; n]$, la « k^e restriction » de f est définie par $f_k: z \in \mathbb{C} \mapsto f(z_1; \ldots; z_{k-1}; z; z_{k+1}; \ldots; z_n) \in \mathbb{C}$.

Définition 2. Soit $n \in \mathbb{N}^*$. Une fonction $f : \mathbb{C}^n \to \mathbb{C}$ sera dite « séparablement analytique » $sur \mathbb{C}^n$, $si \forall k \in [1; n]$, la k^e restriction de f est analytique $sur \mathbb{C}$.

Fait 3. Soient $n \in \mathbb{N}^*$ et $f : \mathbb{C}^n \to \mathbb{C}$ une fonction séparablement analytique. Si f s'annule sur un ouvert non vide Ω , alors f s'annule sur \mathbb{C}^n .

Démonstration. Raisonnons par récurrence sur $n \in \mathbb{N}^*$ pour démontrer la validité de la propriété $\mathcal{P}(n)$ définie par « Pour toute fonction séparablement analytique $f: \mathbb{C}^n \to \mathbb{C}$, si f s'annule sur un ouvert non vide Ω , alors f s'annule sur \mathbb{C}^n . ».

- Cas de base. $\mathcal{P}(1)$ découle directement du fait ??.
- **Hérédité.** Supposons $\mathcal{P}(n)$ valide pour un naturel n quelconque. Soit f une fonction séparablement analytique à (n+1) variables vérifiant les conditions de la propriété $\mathcal{P}(n+1)$. Notons Ω l'ouvert non vide sur lequel f est nulle. Quitte à réduire Ω , on peut supposer que $\Omega = \prod_{k=1}^{n+1} \mathcal{D}(\alpha_k; r[$ avec r > 0 et les α_k des complexes fixés.
 - (1) Pour $\omega \in \mathcal{D}(\alpha_{n+1}; r[$ fixé, posons $f_{\omega}: (z_1; ...; z_n) \in \mathbb{C}^n \mapsto f(z_1; ...; z_n; \omega) \in \mathbb{C}$. Comme f_{ω} vérifie les conditions de la propriété $\mathcal{P}(n)$, par hypothèse de récurrence, $\forall (z_1; ...; z_n) \in \mathbb{C}^n, f_{\omega}(z_1; ...; z_n) = 0$, soit $f(z_1; ...; z_n; \omega) = 0$.
 - (2) Pour z_1 , ..., z_n des complexes quelconques, posons $\ell(z) = f(z_1; ...; z_n; z)$. Le point précédent montre que ℓ vérifie $\mathcal{P}(1)$, donc, d'après le cas de base, $\forall z \in \mathbb{C}$, $\ell(z) = 0$, soit $f(z_1; ...; z_n; z) = 0$.
 - (3) Finalement, $\forall (z_1; ...; z_n; z) \in \mathbb{C}^{n+1}$, $f(z_1; ...; z_n; z) = 0$. Autrement dit, nous avons déduit la validité de $\mathcal{P}(n+1)$ à partir de celle de $\mathcal{P}(n)$.
- Conclusion. Par récurrence, $\mathcal{P}(n)$ est vraie pour tout naturel non nul n.

^{1.} L'ouvert d'annulation est l'intérieur d'un triangle.

^{2.} Avec des abus de notations évidents.

2. Que dire des si utiles fonctions analytiques de plusieurs variables?

Malheureusement, le fait 3 échoue dans la tentative de généralisation à $\left(\mathbb{C} - \frac{\pi}{2}\mathbb{Z}\right)^3$ de l'identité $\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1$, celle-ci s'obtenant sans effort comme ci-dessous sous les contraintes géométriques $(\alpha; \beta; \gamma) \in \left(\mathbb{R}_+^*\right)^3$ et $0 < \alpha + \beta + \gamma < \frac{\pi}{2}$.

Que faire si nous avons des formules trigonométriques impliquant deux variables, ou plus? Par exemple, pour $(\alpha; \beta) \in (\mathbb{R}_+^*)^2$ tel que $0 < \alpha + \beta < \frac{\pi}{2}$, le dessin suivant nous donne $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ et $\sin(\alpha + \beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta$.

Le fait 7 ci-dessous, qui généralise le fait ??, implique la validité des formules trigonométriques précédentes sur \mathbb{C}^2 tout entier en faisant les choix ci-après. ⁴ Nous voilà sauvés!

- $f_1(\alpha; \beta) = \cos(\alpha + \beta) \cos\alpha\cos\beta + \sin\alpha\sin\beta$
- $f_2(\alpha; \beta) = \sin(\alpha + \beta) \cos\alpha\sin\beta \sin\alpha\cos\beta$

^{3.} Cette démonstration est très utile pour un cours pré universitaire.

^{4.} L'ouvert d'annulation est l'intérieur d'un triangle.

Définition 4. Soient $n \in \mathbb{N}^*$ et Ω un sous-ensemble de \mathbb{C}^n . Pour $k \in [1; n]$, la « k^e projection » de Ω est l'ensemble $\pi_k(\Omega) = \{\omega \in \mathbb{C} \mid \exists (z_1; \ldots; z_{k-1}; \omega; z_{k+1}; \ldots; z_n) \in \Omega \}$, et la « k^e section » de Ω est l'ensemble $\sigma_{< k}(\Omega) = \{(\omega_1; \ldots; \omega_k) \in \mathbb{C}^k \mid \exists (\omega_1; \ldots; \omega_k; z_{k+1}; \ldots; z_n) \in \Omega \}$.

Définition 5. Soient $n \in \mathbb{N}^*$ et $\Omega \subseteq \mathbb{C}^n$ un ensemble non vide. Pour $f: \Omega \to \mathbb{C}$ et $k \in [1; n]$, $la \ll k^e$ restriction $\gg de \ f$ est définie par $f_k: z \in \pi_k(\Omega) \mapsto f(z_1; \dots; z_{k-1}; z; z_{k+1}; \dots; z_n) \in \mathbb{C}$.

Définition 6. Soient $n \in \mathbb{N}^*$ et $\Omega \subseteq \mathbb{C}^n$ un ouvert non vide. Une fonction $f : \Omega \to \mathbb{C}$ sera dite « séparablement analytique » sur Ω , si $\forall k \in [1; n]$, la k^e restriction de f est analytique sur $\pi_k(\Omega)$ (qui est un ouvert non vide de \mathbb{C}).

Fait 7. Soient $n \in \mathbb{N}^*$, $\Omega \subseteq \mathbb{C}^n$ un ouvert connexe non vide et $f : \Omega \to \mathbb{C}$ une fonction séparablement analytique. Si f s'annule sur un ouvert non vide de Ω , alors f s'annule sur Ω tout entier.

Démonstration. Raisonnons par récurrence sur $n \in \mathbb{N}^*$ pour démontrer la validité de la propriété $\mathcal{P}(n)$ définie par « Pour toute fonction séparablement analytique $f: \Omega \to \mathbb{C}$ sur un ouvert connexe non vide $\Omega \subseteq \mathbb{C}^n$, si f s'annule sur un ouvert non vide de Ω , alors f s'annule sur Ω tout entier. ».

- Cas de base. $\mathcal{P}(1)$ découle directement du fait ??.
- Hérédité. Supposons $\mathcal{P}(n)$ valide pour un naturel n quelconque. Soit f une fonction séparablement analytique à (n+1) variables vérifiant les conditions de la propriété $\mathcal{P}(n+1)$. Notons $V \subseteq \Omega$ l'ouvert non vide sur lequel f est nulle. Quitte à réduire V, on peut supposer que $V = \prod_{k=1}^{n+1} \mathcal{D}(\alpha_k; r[$ avec r > 0 et les α_k des complexes fixés.
 - (1) Pour $\omega \in \mathcal{D}(\alpha_{n+1}; r[\text{ fixé, posons } f_{\omega} : (z_1; ...; z_n) \in \sigma_{\leq n}(\Omega) \mapsto f(z_1; ...; z_n; \omega) \in \mathbb{C}$. Comme f_{ω} vérifie les conditions de la propriété $\mathcal{P}(n)$, par hypothèse de récurrence, $f_{\omega}(z_1; ...; z_n) = 0$, soit $f(z_1; ...; z_n; \omega) = 0$, pour $(z_1; ...; z_n) \in \sigma_{\leq n}(\Omega)$.
 - (2) Pour z_1, \ldots, z_n des complexes quelconques de $\sigma_{\leq n}(\Omega)$, posons $\ell(z) = f(z_1; \ldots; z_n; z)$. Le point précédent montre que ℓ vérifie $\mathcal{P}(1)$, donc, d'après le cas de base, $\ell(z) = 0$, soit $f(z_1; \ldots; z_n; z) = 0$, pour tout complexe $z\Omega \cap \prod_{i=1}^n z_k \times \omega$.
 - (3) Finalement, $f(z_1; ...; z_n; z) = 0$ pour tous complexes $z_1, ..., z_n$ et z. Autrement dit, nous avons déduit la validité de $\mathcal{P}(n+1)$ à partir de celle de $\mathcal{P}(n)$.
- Conclusion. Par récurrence sur $n \in \mathbb{N}^*$, la propriété $\mathcal{P}(n)$ est vraie pour tout naturel non nul n.

^{5.} Avec des abus de notations évidents.