Understanding Dark Matter using Galactic Rotation Curves

Bachelor Thesis Project

Ву:

Ashwani Rajan (150121008)

Under the guidance of:

Dr. Sovan Chakraborty Dr. Sayan Chakrabarti

Department Of Physics. IIT Guwahati

Historical Background: Dark Matter and Galaxies

- 1932, J. H. Oort.
 - Analysed the vertical motion of all known stars near the Galactic plane.
 - Potential by the known stars not sufficient to keep the stars bound to Galactic disk.
- 1933 : Fritz Zwicky
 - Coma cluster contained far more mass than the luminous matter visible to account for velocity dispersion.
- 1939 : H. W. Babcock
 - The total mass-to-light ratio increases in the outer regions of M31.
- Evidences include gravitational lensing of distant galaxies and Galactic Rotation curves to name a few.

Galactic Rotation Curves

- The rotation curve is a plot of the orbital rotation speed of visible stars or gas versus their radial distance.
- Condition for stability: $Centrifugal\ acceleration = gravitational\ pull.$

$$v = \sqrt{\frac{GM(r)}{r}}$$

Galactic Rotation Curves

- At regions near the center of the Galaxy.
- Velocity(v) $\alpha \sqrt{r}$
- As we move outwards, velocity is expected to decrease such that:

$$Velocity(v) \quad \alpha \quad \frac{1}{\sqrt{r}}$$

Figure 1: Expected galactic rotation curve

Galactic Rotation Curves

- Flat rotation curve observed, differing from expected rotation curves.
- This implies mass is increasing linearly with radius.
- Possible Solution: Large extending halos of dark matter.

Figure 2: Measured rotation curve of NGC6503 with best fit and contributions from halo, disk and gas (Begeman et al, 1991)

Self-consistent Isothermal Model of Dark Matter Halo

- Weakly Interacting Massive Particles(WIMPs) used in our analysis.
 - Mass ≈ few GeV to a few TeV.
 - Weak interactions: Difficult to detect.
- DM halo: single component isothermal, Maxwellian velocity distribution

$$f(\mathbf{x}, \mathbf{v})d^{3}\mathbf{v} = 4\pi\rho(\mathbf{x}) \left[\frac{3}{2\pi < v^{2}} \right]^{\frac{3}{2}} \exp\left[-\frac{3v^{2}}{2 < v^{2}} \right] dv$$
Here, $v = |\mathbf{v}|$,
$$\rho(\mathbf{x}) = \text{density distribution of DM,}$$

$$< v^{2} > \frac{1}{2} = \text{velocity dispersion.}$$

Self-consistent Isothermal Model of Dark Matter Halo

- Standard halo Model
 - Isothermal non-truncating sphere model of the DM halo.
 - Value of the DM velocity dispersion:

$$< v^2 >^{\frac{1}{2}} = \sqrt{\left(\frac{3}{2}\right)} v_{c,\infty}.$$

- Approximating $v_{c,\infty} \approx v_{c,\odot} = 220 km s^{-1}$, we can calculate:

$$< v^2 > \frac{1}{2} \approx 270 \text{ kms}^{-1}.$$

- Local value of the DM density:

$$\rho_{DM,\odot} = 0.3 \frac{GeV}{cm}$$

Density Distributions.

Dark Matter Halo

- DM Density at any point x is given by: $\rho_{IS}(x) = \rho_0 \exp\left(-\frac{\phi(x)}{\sigma^2}\right)$
- $\phi(x)$ = gravitational potential.
- σ^2 is a measure of velocity dispersion given by $< v^2 > = 3\sigma^2$
- ρ_0 = $\rho_{DM,\odot}$

Visible matter

– Density distribution (ρ_{vis}) = spheroidal bulge (ρ_s) + axisymmetric disk (ρ_d)

$$\rho_{s}(r) = \rho_{s}(0) \left(1 + \frac{r^{2}}{a^{2}} \right)^{-\frac{3}{2}}$$

$$\rho_{d}(r) = \frac{\sum_{k=0}^{\infty} e^{-\frac{R - R_{0}}{R_{d}}} e^{-\frac{|z|}{h}}}{2h}$$

$$R^2 + z^2 = r^2$$

– Total Density of visible matter at any point is given by: $\phi_{vis}(x) = \phi_d(x) + \phi_s(x)$

Numerical Solution to generate Rotation Curves

• Poisson Equations for both density distributions as follows:

$$\nabla^2 \phi_{DM}(x) = 4\pi G \rho_{DM}(x)$$

$$\nabla^2 \phi_{vis}(x) = 4\pi G \rho_{vis}(x)$$

 $\phi_{DM}(x)$ = DM component gravitational potential,

 $\phi_{vis}(x)$ = the gravitational potential of visible matter.

- 4th order Runge-kutta method used to iteratively calculate the values of $\phi_{DM}(x)$.
- $\phi_{vis}(x)$ analytically calculated using the Poisson equation.

$$V_c(R)$$
 can be calculated as:

$$V_c(R) = R \frac{\delta}{\delta r} [\phi_{vis}(R, z = 0) + \phi_{DM}(R, z = 0)]$$

z = distance normal to equitorial plane, R = Galactocentric distance

Results

Figure 3: Numerically generated rotation curve of the Milky Way and its components.

Results

Figure 4(a): Rotation curve of the Milky Way with contributions from the central bulge, stellar disk + interstellar gas and dark matter halo.(Sofue et al, 2012)

Figure 4(b): Numerically generated rotation curve of the Milky Way and its components.

Conclusion and Future Aspects

- Generated the galactic rotation curves given the density distribution of all the components of the galaxy using numerical methods.
- The isothermal sphere mass linearly increases with its radius r and tends to ∞ as $r \to \infty$. Not a realistic Dark Matter halo of finite physical size. Hence we plan to include a truncation to the model.
- All pieces of evidence in favour of dark matter infer dark matter's presence uniquely through its gravitational influence. No conclusive evidence for dark matter's non-gravitational interactions.
- An alternative explanation to the dark matter by Extended Theories of Gravity.

Thank You

Backup

Figure 5: The density profiles of the lowered (truncated) isothermal dark matter halo described by the King model DF(Soumini et al)

Figure 6: The density profiles of the non-truncated isothermal dark matter halo generated numerically