

Part 1: Introduction to Data Acquisition (DAQ) - Input

How do you get
data into
(and out of)
a computer?

Data Acquisition (DAQ)

So the property of the control of th

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

What is the temperature outside?

How do you get that **value** into a computer?

Utility

Without DAQ, then we would all be theoretical neuroscientists.

Data Acquisition (DAQ)

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

Utility

Anything is measurable...and everyone should no how to do this.

Sensor (voltage transducer)

Computers can only measure voltage. Therefore, any real-world quantity must be converted into a voltage before it can be measured and digitized.

Definition

LDR, **Thermistor**, Photodiode, etc.

Camera, E-phys System

Microphone, Keyboard, Touchscreen

Ohm's Law

A linear relationship between Voltage, Current and Resistance exists for "Ohmic" circuit elements. This

Definition

V = IR Ohm's Law

- **V** Voltage: Force pushing electrons (Volts)
- **I** Current: Number of electrons/second (Amps)
- **R** Resistance: Ease to electron flow (Ohms)

Ohm

Utility

This linear relationship between passive circuit elements will solve the majority of electronics dilemmas.

Voltage Divider

Two resistors will proportionally attenuate a voltage as current flows from a source to ground. This relationship can be used to create an intermediate voltage dependent on a variable resistor.

Definition

Utility

This circuit is everywhere in modern circuits. A sensor can be constructed by simply making one of the resistors dependent on a "real world" quantity. (pressure, temperature, light, rotation...sweat...anything!)

Analog to Digital Converter (ADC)

ADC ____

An integrated circuit that converts analog values to binary (digital) representation. They come in many flavours, speeds and bit depths.

Definition

An ADC converts analog voltage to a binary representation.

(Relevant Characteristics)

- **How fast?** (Sample Rate, Hz)
- **Resolution?** (#bits per sample)
- Range (of input voltage)

Utility

ADCs are everywhere. In your digital cameras, smartphone, and GPS. Everything a computer knows about the "real-world" goes through an ADC. There are many types, with many different features (speeds, resolution, noise, channels...).

Digital Input

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

Voltage Comparator

The simplest ADC: *1-bit*

Utility

The "simplest" computer input. o or 1.

Analog Input: Flash ADC

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

Utility

An easy to understand, but not often used version of an ADC. Very, very fast...but low bit depth.

Analog Input: Successive Approximation ADC

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

Slow(er) High Bit Depth Small

Successive Approximation ADC

Utility

Much more common form of ADC.

Communication Protocol

A standard procedure for transferring binary information between digital devices,

Definition

Serial Port (USART/USART - RS-232)

A standard procedure for transferring binary information between digital devices,

Definition

System Memory (RAM)

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

Utility

You can only "work" with data in System memory. This is where you can start doing analysis...roting data to other devices for control of storage. This is when your data is IN the computer.

Data Display/Storage

This is technically data "output"...but just for completeness.

Definition

Data Acquisition (DAQ)

The process of measuring a real-word value via voltage conversion, digitization, and transfer to system memory. (for subsequent processing and storage).

Definition

This is how computers know about the world.

Microcontroller Worksheet

DAQ and Control with a simple microcontroller.

Definition

Part 2: Introduction to Actuation – Output

How do you get
data into
(and out of)
a computer?

DAQ and ACT CAJAL-BNS 2015

Control (with a binary computer)

Conversely to acquisition, computers can only output voltages.

Definition

If you want to...

"Play a tone"

"Make something move"

"Turn on a light"

"Open a valve"

"Show a movie"

... etc.

Control (with a binary computer)

Conversely to acquisition, computers can only output voltages.

Definition

Digital Output

Conversely to acquisition, computers can only output voltages.

Definition

TTL: Transistor-Transistor Logic

Conversely to acquisition, computers can only output voltages.

Definition

0 to +5 Volts

Digital Output

Conversely to acquisition, computers can only output voltages.

Definition

Can you start ("jump") your car with a USB port?

Electrical Load

An element in a circuit that consumes power. The more power consumed, the "heavier" the load.

Definition

Digital Output (Heavy Loads: > 100 mA)

Conversely to acquisition, computers can only output voltages.

Definition

- "Make something move"
- "Turn on the room lights"
- "Drive a high power laser"
- ...

Transistor (MOSFET) Switch

PN-Junction, Gate, Holes, Doping, and more!

Definition

MOSEFT: Photo and Schematic of IRF510

The Silicon Transistor

PN-Junction, Gate, Holes, Doping, and more!

Definition

Transistor: Switching Inductive Loads

Current caused by induction can cause negative current flow (backwards), which can damage

Definition

Protection Diode

Diode: Picture and Schematic (with polarity)

Analog Output

Conversely to acquisition, computers can only output voltages.

Definition

Digital-to-Analog Converter (DAC)

Conversely to acquisition, computers can only output voltages.

Definition

Note: The Arduino Uno has no DACs.

Utility

Computer

Pulse-Width Modulation (PWM)

Pesudo-Analog Output. Duty-cycle approximates an analog value.

Definition

Vehicle Project

Autonomous Braitenberg vehicles that follow (or avoid) light.

Definition

