1/8

SEQUENCE LISTING

- <110> ASAHI KASEI KABUSHIKI KAISHA TAKAHASHI, Tsuneo ONO, Mitsuharu ISHIMARU, Hiroshi KANNO, Kimiyoshi TAKAHASHI, Chiaki
- <120> Novel receptor protein and method for the diagnosis of an inflammatory disease by using the same
- <130> 99-1043
- <150> JP 10-249752
- <151> 1998-09-03
- <150> JP 11-070800
- <151> 1999-03-16
- <150> PCT/JP99/04801
- <151> 1999-09-03
- <160> 12
- <210> 1
- <211> 1014
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> CDS
- ⟨222⟩ (1)...(1011)
- **<400>** 1
- atg ggg aac gat tot gtc agc tac gag tat ggg gat tac agc gac ctc

 Met Gly Asn Asp Ser Val Ser Tyr Glu Tyr Gly Asp Tyr Ser Asp Leu

 1 5 10 15
- tcg gac cgc cct gtg gac tgc ctg gat ggc gcc tgc ctg gcc atc gac 96
- Ser Asp Arg Pro Val Asp Cys Leu Asp Gly Ala Cys Leu Ala Ile Asp 20 25 30
- ccg ctg cgc gtg gcc ccg ctc cca ctg tat gcc gcc atc ttc ctg gtg

 Pro Leu Arg Val Ala Pro Leu Pro Leu Tyr Ala Ala Ile Phe Leu Val
- 35 40 45 ggg gtg ccg ggc aat gcc atg gtg gcc tgg gtg gct ggg aag gtg gcc 192
- Gly Val Pro Gly Asn Ala Met Val Ala Trp Val Ala Gly Lys Val Ala 50 55 60

			gţg													240
	Arg	Arg	Val	Gly		Thr	Trp	Leu	Leu		Leu	Ala	Val	Ala	Asp	
65	_ 4	.	4 4		70	_ 4 _				75		• • • •			80	900
_	_	_	tgt	_		_					-			-	-	288
Leu	Leu	Cys	Cys	Leu 85	ser	Leu	PTO	116	90	Ala	vai	PTO	116	95	Arg	
			igg													336
Gly	Gly	His	Trp 100	Pro	Tyr	Gly	Ala	Val 105	Gly	Cys	Arg	Ala	Leu 110	Pro	Ser	
atc	atc	ctg	ctg	acc	atg	tat	gcc	agc	gtc	ctg	ctc	ctg	gca	gc t	ctc	384
Ile	Ile	Leu 115	Leu	Thr	Met	Tyr	Ala 120	Ser	Val	Leu	Leu	Leu 125	Ala	Ala	Leu	
agt	gcc	gac	ctc	tgc	t t c	ctg	gc t	ctc	ggg	cct	gcc	tgg	tgg	t c t	acg	432
Ser	Ala 130	Asp	Leu	Cys	Phe	Leu 135	Ala	Leu	Gly	Pro	Ala 140	Trp	Trp	Ser	Thr	
gtt	cag	cgg	gcg	tgc	ggg	gtg	cag	gtg	gcc	tgt	ggg	gca	gcc	tgg	aca	480
·Val	Gln	Arg	Ala	Cys	Gly	Val	Gln	Val	Ala	Cys	Gly	Ala	Ala	Trp	Thr	
145					150					155					160	
			ctg													528
Leu	Ala	Leu	Leu	Leu 165	Thr	Val	Pro.	Ser	Ala 170	Ile	Tyr	Arg	Arg	Leu 175	His	
			t t c													576
Gln	Glu	His	Phe 180	Pro	Ala	Arg	Leu	GIn 185	Cys	Val	Val	Asp	Tyr 190	Gly	Gly	
tcc	tcc	agc	acc	gag	aat	gcg	gţg	ac t	gcc	atc	cgg	ttt	ctt	ttt	ggc	624
Ser	Ser	Ser 195	Thr	Glu	Asn	Ala.	Val 200	Thr	Ala	Ile	Arg	Phe 205	Leu	Phe	Gly	
			ccc													672
Phe	Leu 210	Gly	Pro	Leu	Val	Ala 215	Val	Ala	Ser	Cys	His 220	Ser	Ala	Leu	Leu	
			gcc													720
	Trp	Ala	Ala	Arg		Cys	Arg	Pro	Leu		Thr	Ala	Пe	Val		
225					230					235					240	
			gtc													768
			Val	245					250					255		
			gcc													816
Thr	Val	Ala	Ala 260	Pro	Asn	Ser	Ala	Leu 265	Leu	Ala	Arg	Ala	Leu 270	Arg	Ala	
			atc													864
Glu	Pro	Leu 275	Ile	Val	Gly	Leu	Ala 280	Leu	Ala	His	Ser	Cys 285	Leu	Asn	Pro	
atg	ctc	ttc	ctg	tat	t t t	ggg	agg	gct	caa	ctc	cgc	cgg	t c a	ctg	cca	912
Met	Leu 290	Phe	Leu	Tyr	Phe	Gly 295	Arg	Ala	Gln	Leu	Arg 300	Arg	Ser	Leu	Pro	
gct		tgt	cac	t gg	gcc	cig	agg	gag	tcc	cag	ggc	cag	gac	gaa	agt	960
			His													

3/8

•	Val	Asp			aaa Lys 325												1008
	Val	tag															1014
		0> 2 1> 33 2> PE									•	•					
	<213	3> Ho	omo s	sapie	ens	٠											
	<400															_	
	Met 1	Gly	Asn	Asp	Ser 5	Val	Ser	Tyr	Glu	Tyr 10	Gly	Asp	Tyr	Ser	Asp 15	Leu	
	Ser	Asp	Arg	Pro 20	Val	Asp	Cys	Leu	Asp 25	Gly	Ala	Cys	Leu	Ala 30	Ile	Asp	
	Pro.	Leu			Ala	Pro	Leu			Tyr	Ala	Ala	Ile 45		Leu	Val	
	Gly	Val 50	35 Pro	Gly	Asn	Ala	Met 55	Val	Ala	Trp	Val	Ala 60		Lys	Val	Ala	
	Arg 65	Arg	Arg	Val	Gly	Ala 70	Thr	Trp	Leu	Leu	His 75	Leu	Ala	Val	Ala	Asp 80	
		Leu	Cys	Cys	Leu 85		Leu	Pro	Ile	Leu 90		Val	Pro	Ile	Ala 95		
	Gly	Gly	His	Trp 100	Pro	Tyr	Gly	Ala	Val		Cys	Arg	Ala	Leu 110		Ser	
	Ile	Ile	Leu 115		Thr	Met	Tyr	Ala 120		Val	Leu	Leu	Leu 125		Ala	Leu	•
	Ser			Leu	Cys	Phe			Leu	Gly	Pro			Trp	Ser	Thr	
	Val	130 Gln	Arg	Ala	Cys	Gly	135 Val	Gln	Val	Ala	Cys	140 Gly	Ala	Ala	Trp	Thr	
	145					150					155					160	
	Leu	Ala	Leu	Leu	Leu 165	Thr	Val	Pro	Ser	Ala 170	Ile	Tyr	Arg	Arg	Leu 175	His	
	Gln	Glu	His	Phe 180	Pro	Ala	Arg	Leu	GIn 185	Cys	Val	Val	Asp	Tyr 190	Gly	Gly	
	Ser	Ser	Ser 195	Thr	Glu	Asn	Ala	Val 200	Thr	Ala	Ile	Arg	Phe 205	Leu	Phe	Gly	
	Phe	Leu 210		Pro	Leu	Val	Ala 215		Ala	Ser	Cys	His 220		Ala	Leu	Leu	
	Cys		Ala	Ala	Arg	Arg		Arg	Pro	Leu	Gly		Ala	Ile	Val	Val	•
	225	DI -	D1 -	V 1	0	230	A 1 .	D	т	TT ! -	235	Ι	C1-	T	W = 1	240	
	Gly'	rne	rne	val	Cys 245	ırp	Ala	rro	ıyr	H1S 250	Leu	Leu	ыу	Leu	Val 255	Leu	
	Thr	Val	Ala	Ala	Pro	Asn	Ser	Ala	Leu	Leu	Ala	Arg	Ala	Leu	Arg	Ala	

```
260
                                 265
                                                      270
Glu Pro Leu Ile Val Gly Leu Ala Leu Ala His Ser Cys Leu Asn Pro
                             280
                                                  285
Met Leu Phe Leu Tyr Phe Gly Arg Ala Gln Leu Arg Arg Ser Leu Pro
                         295
                                             300
Ala Ala Cys His Trp Ala Leu Arg Glu Ser Gln Gly Gln Asp Glu Ser
                    310
                                         315
                                                              320
Val Asp Ser Lys Lys Ser Thr Ser His Asp Leu Val Ser Glu Met Glu
                325
                                     330
                                                          335
Val
```

<210> 3 <211> 1287 <212> DNA <213> Homo sapiens

<400> 3

```
60
ccigigigcc acgigcigga caaaictiaa ciccicaagg acicccaaaa ccagagacac
caggagectg aatggggaac gattetgtea getaegagta tggggattae agegaeetet
                                                                  120
cggaccgccc tgtggactgc ctggatggcg cctgcctggc catcgacccg ctgcgcgtgg
                                                                  180
ccccgctccc actgtatgcc gccatcttcc tggtgggggt gccgggcaat gccatggtgg 240
cctgggtggc tgggaaggtg gcccgccgga gggtgggtgc cacctggttg ctccacctgg 300
ccgtggcgga tttgctgtgc tgtttgtctc tgcccatcct ggcagtgccc attgcccgtg
                                                                  360
                                                                  420
gaggccactg gccgtatggt gcagtgggct gtcgggcgct gccctccatc atcctgctga
ccatgiatge cagegiests cicetggeas cicteagise egaceteige iteciggeie
                                                                   480
                                                                  540
tegggeetge etggtggtet aeggtteage gggegtgegg ggtgeaggtg geetgtgggg
cagcciggac aciggcciig cigcicaccg igccciccgc caictaccgc cggcigcacc
                                                                   600
aggagcacti cccagcccgg cigcagigig iggiggacta cggcggcicc iccagcaccg
                                                                  660
agaatgcggt gactgccatc cggtttcttt ttggcttcct ggggcccctg gtggccgtgg
                                                                  720
ccagctgcca cagtgccctc ctgtgctggg cagcccgacg ctgccggccg ctgggcacag
                                                                  780
ccallgiggi ggggiiilli gicigciggg caccciacca ccigciggg ciggigcica
                                                                  840
ctgtggcggc cccgaactcc gcactcctgg ccagggccct gcgggctgaa cccctcatcg 900
tgggccttgc cctcgctcac agctgcctca atcccatgct cttcctgtat tttgggaggg
cicaacteeg eeggteactg ceagetgeet gteactggge eetgagggag teecagggee 1020
aggacgaaag igiggacagc aagaaaicca ccagccaiga cciggicicg gagaiggagg 1080
tgtaggctgg agagacatig tgggtgtgta icticitate teatiteaca agaetggett 1140
caggcatage tggatecagg ageteaatga tgtetteatt ttatteette etteatteaa 1200
cagatateca teatgeacti getatgigea aggeetitti aggeactaga gatatageag 1260
tgaccaaaac agacacaaat cctgccc
                                                                  1287
```

<210> 4 <211> 1287 <212> DNA <213> Homo sapiens

```
<400> 4
                                                                    60
gggcaggatt tgtgtctgtt ttggtcactg ctatatctct agtgcctaaa aaggccttgc
acatagcaag tgcatgatgg atatctgttg aatgaaggaa ggaataaaat gaagacatca 120
tigageteet ggateeaget atgeetgaag ceagtetigt gaaatgagat aagaagatae
                                                                  180
                                                                   240
acacccacaa igicicicca gcciacacci ccaiciccga gaccaggica iggciggigg
attictigct giccacacti icgicciggc ccigggactc ccicagggcc cagigacagg
                                                                  300
cagciggcag igaccggcgg agiigagccc icccaaaaia caggaagagc aigggaiiga
                                                                   360
                                                                  420
ggcagctgig agcgagggca aggcccacga tgaggggttc agcccgcagg gccctggcca
ggagtgcgga gttcggggcc gccacagtga gcaccagccc cagcaggtgg tagggtgccc 480
agcagacaaa aaaccccacc acaatggctg tgcccagcgg ccggcagcgt cgggctgccc
                                                                  540
agcacaggag ggcactgtgg cagctggcca cggccaccag gggccccagg aagccaaaaa
                                                                  600
gaaaccggat ggcagtcacc gcattctcgg tgctggagga gccgccgtag tccaccacac
                                                                  660
actgcagccg ggctgggaag tgctcctggt gcagccggcg gtagatggcg gagggcacgg
                                                                  720
                                                                  780
tgagcagcaa ggccagtgtc caggctgccc cacaggccac ctgcaccccg cacgccgct
gaaccgtaga ccaccaggca ggcccgagag ccaggaagca gaggtcggca ctgagagctg 840
ccaggagcag gacgctggca tacatggtca gcaggatgat ggagggcagc gcccgacagc
                                                                  900
ccactgcacc atacggccag tggcctccac gggcaatggg cactgccagg atgggcagag 960
acaaacagca cagcaaatcc gccacggcca ggtggagcaa ccaggtggca cccaccctcc 1020
ggcgggccac cticccagcc acccaggcca ccatggcatt gcccggcacc cccaccagga 1080
agatggcggc atacagtggg agcggggcca cgcgcagcgg gtcgatggcc aggcaggcgc 1140
catccaggca giccacaggg cggiccgaga ggicgcigia atccccatac icgiagciga 1200
cagaatcgtt ccccattcag gctcctggtg tctctggttt tgggagtcct tgaggagtta 1260
                                                                  1287
agaittgicc agcacgiggc acacagg
```

```
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> 18
<223> i
<220>
<221> modified base
<222> 22
<223> i
<220>
<221> modified base
<222> 24
\langle 223 \rangle i
```

<220><223> Degenerative PCR primer designed based on the seq of conventional

7-pass transmembrane receptor proteins which are considered to participate in the proliferation of melanoma

```
<400> 5
atettaaget tgaacetnge entngedgae
                                                                      30
<210> 6
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> misc difference
<222> 21
\langle 223 \rangle a, g, c or t
<220>
<221> modified base
<222> 22
<223> i
<220>
<221> modified base
<222> 28
<223> i
<220>
<223> Degenerative PCR primer designed based on the seq of conventional
      7-pass transmembrane receptor proteins which are considered to
      participate in the proliferation of melanoma
<400> 6
cccaacgaat tcrtagatsa nnggrtinav rca
                                                                      33
<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223 Synthetic primer used for constructing the recombinant DNA
      containing C5L2 gene; primer has a seq obtained by adding spacer
      gggg and HindIII site aagett to the 5'-end of a 22-nucleotide
```

seq corresponding to the 1st (a) to 22nd (t) of SEQ ID NO:1

```
<400> 7
                                                                    32
ggggaagett atggggaaeg attetgteag et
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer used for constructing the recombinant DNA
      containing C5L2 gene; primer has a seq obtained by adding spacer
      ggga and SacII site ccgcgg to the 5'-end of a 20-nucleotide
      seq corresponding to the 206th (c) to 225th (a) of SEQ ID NO:4
<400> 8
                                                                    30
gggaccgcgg cacctccatc tccgagacca
<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer used in RT-PCR performed for amplifying
      C5L2 gene
<400> 9
                                                                    26
atcatcctgc tgaccatgta tgccag
<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer used in RT-PCR performed for amplifying
      C5L2 gene
<400> 10
                                                                    25
aaccggatgg cagtcaccgc attct
```

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer used in RT-PCR performed for amplifying G3PDH (glyceraldehyde 3-phosphate dehydrogenase) gene

<400> 11

tgaaggtcgg agtcaacgga tttggt

26

<210> 12

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer used in RT-PCR performed for amplifying G3PDH (glyceraldehyde 3-phosphate dehydrogenase) gene

<400> 12

catgtgggcc atgaggtcca ccac

24.