A Calculus-First, Step-by-Step Lecture on the Mayer–Vietoris Sequence for Ω^1 on S^2

Your Name

July 17, 2025

Abstract

We develop the Mayer–Vietoris argument for de Rham 1-forms on the unit sphere S^2 using only first-year calculus (single-variable and double integrals) and basic vector calculus. In particular:

- Review of antiderivatives: $\int \sin t \, dt$, $\int \cos t \, dt$.
- Gradient theorem (line integral around the unit circle equals 2π).
- Surface integral of curl via iterated integrals (value 27/4).
- Detailed Mayer–Vietoris: gluing local antiderivatives on overlapping hemispheres using two FTC steps in ϕ and θ .

1 1. Fundamental Theorem of Calculus (FTC) Revisited

Let F(t) be differentiable with continuous derivative on [a, b]. The FTC states:

$$\int_a^b F'(t) dt = F(b) - F(a).$$

Thus any continuous f(t) admits an antiderivative F(t) with F'(t) = f(t), giving

$$\int f(t) dt = F(t) + C.$$

Examples

1. $f(t) = \sin t$. Since $\frac{d}{dt}(-\cos t) = \sin t$, we have by FTC

$$\int_a^b \sin t \, dt = [-\cos t]_a^b = -\cos b + \cos a,$$

and thus

$$\int \sin t \, dt = -\cos t + C, \quad d(-\cos t) = \sin t \, dt.$$

2. $f(t) = \cos t$. Since $\frac{d}{dt}(\sin t) = \cos t$, we have

$$\int_{a}^{b} \cos t \, dt = [\sin t]_{a}^{b} = \sin b - \sin a,$$

SO

$$\int \cos t \, dt = \sin t + C, \quad d(\sin t) = \cos t \, dt.$$

2 2. Line Integrals and the Gradient Theorem

Given a vector field $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ and a parameterized curve $C: \mathbf{r}(t) = (x(t),y(t)),$ $t \in [\alpha,\beta]$, the line integral is

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^\beta \left(P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right) dt.$$

If $\mathbf{F} = \nabla F$ is a gradient field, then

$$\int_{C} \nabla F \cdot d\mathbf{r} = F(\mathbf{r}(\beta)) - F(\mathbf{r}(\alpha)).$$

Example: Circulation around the Unit Circle

Let C be the unit circle parameterized by

$$\mathbf{r}(t) = (\cos t, \sin t), \quad t \in [0, 2\pi],$$

and consider the field

$$\mathbf{F}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

On C, we have

$$x'(t) = -\sin t$$
, $y'(t) = \cos t$, $P = -\sin t$, $Q = \cos t$.

Hence the integrand simplifies to

$$P x' + Q y' = (-\sin t)(-\sin t) + (\cos t)(\cos t) = \sin^2 t + \cos^2 t = 1.$$

By the FTC,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} 1 \, dt = 2\pi.$$

This demonstrates that **F** is closed but not exact on $\mathbb{R}^2 \setminus \{0\}$.

3 3. Surface Integral of Curl (Stokes' Theorem)

Stokes' theorem states

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r}.$$

We compute the left side directly by iterated integrals.

Example: Constant Curl on a Square

Let S be the unit square in the z=0 plane, $(u,v) \in [0,1]^2$, and suppose

$$(\nabla \times \mathbf{F}) \cdot \mathbf{n} = 27 \, u \, v, \quad \mathbf{n} = (0, 0, 1),$$

so dS = du dv. Then

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{0}^{1} \int_{0}^{1} 27 \, u \, v \, du \, dv.$$

Compute step by step using FTC:

$$\int_0^1 u \, du = \left[\frac{u^2}{2} \right]_0^1 = \frac{1}{2},$$
$$\int_0^1 v \, dv = \frac{1}{2}.$$

Thus

$$27 \times \frac{1}{2} \times \frac{1}{2} = \frac{27}{4}.$$

4 4. Mayer–Vietoris for Ω^1 on S^2

Cover S^2 by two open hemispheres:

$$U = \{(x, y, z) \in S^2 : z > 0\}, \quad V = \{(x, y, z) \in S^2 : z < 0\}.$$

Their overlap $U \cap V$ contains the equator S^1 .

The de Rham complex begins

$$0 \longrightarrow \Omega^0(S^2) \xrightarrow{d} \Omega^1(S^2) \xrightarrow{d} \Omega^2(S^2) \longrightarrow \cdots.$$

Restriction gives a short exact sequence in degree 1:

$$0 \longrightarrow \Omega^1(S^2) \xrightarrow{r_1} \Omega^1(U) \oplus \Omega^1(V) \xrightarrow{s_1} \Omega^1(U \cap V) \longrightarrow 0.$$

Exactness at $\Omega^1(U) \oplus \Omega^1(V)$ means

$$\operatorname{Im}(r_1) = \ker(s_1) \iff (\beta_U, \beta_V) \text{ glue to a global } \alpha \iff \beta_U|_{U \cap V} = \beta_V|_{U \cap V}.$$

Step-by-Step Gluing via FTC

1. Spherical Coordinates. On each hemisphere use coordinates (ϕ, θ) :

$$x = \sin \phi \cos \theta$$
, $y = \sin \phi \sin \theta$, $z = \cos \phi$,

with $\phi \in (0, \pi), \theta \in [0, 2\pi)$.

2. Local Potential on U (FTC in ϕ). Write

$$\beta_{IJ} = P_{IJ}(\phi, \theta) d\phi + Q_{IJ}(\phi, \theta) d\theta.$$

For fixed θ , define

$$F_U(\phi, \theta) = \int_{\phi_0}^{\phi} P_U(s, \theta) ds.$$

By FTC, $\partial_{\phi}F_U = P_U$, so

$$dF_U = P_U d\phi + \frac{\partial F_U}{\partial \theta} d\theta.$$

3. Overlap and Difference. Similarly define $F_V(\phi,\theta)$ on V. On $U \cap V$, $\beta_U = \beta_V$ implies

$$F_U - F_V = H(\theta)$$

for some function H of θ alone.

4. FTC in θ Forces H Constant. Differentiate:

$$H'(\theta) = \partial_{\theta} F_U - \partial_{\theta} F_V = Q_U - Q_V = 0$$

so H is constant. By adding this constant to F_V , we achieve $F_U = F_V$ on the overlap.

5. Gluing to a Global Potential. Define

$$F(p) = \begin{cases} F_U(p), & p \in U, \\ F_V(p), & p \in V, \end{cases}$$

which is smooth and satisfies $dF|_U = \beta_U$, $dF|_V = \beta_V$. Hence $(\beta_U, \beta_V) \in \text{Im}(r_1)$.

This completes the Mayer–Vietoris gluing using only two one-dimensional FTC applications, fully accessible to first-year calculus students.