

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

院系	计算机学院	班 级	<u> 计科 (2) 班</u>	组长	郑梓霖
学号	<u>21307077</u>				
学生	凌国明				

跨交换机实现 VLAN

【实验内容】跨交换机实现 VLAN

【实验目的】理解跨交换机之间 VLAN 的特点。使在同一 VLAN 内的计算机系统能 跨交换机进行互相通信,而在不同 VLAN 的计算机系统不能相互通信。

【实验设备】2台交换机,3台计算机

【实验拓扑图】

一、 连接网线,进行测试

实验开始时,用 netsh 命令将 PC1、PC2、PC3 的网卡分别配置如下 IP、掩码:

PC1 192.168.10.10 255.255.255.0

PC2 192.168.10.20 255.255.255.0

PC3 192.168.10.30 255.255.255.0

验证 3 台主机是否可以两两互相 ping 通:

10 ping 20 和 30

C:\Windows\system32\cmd.exe 172. 16. 0. 1 C:\Users\D502>ping 192.168.10.30 正在 Ping 192.168.10.30 具有 32 字节的数据: 来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128 192.168.10.30 的 Ping 统计信息: 数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失), 往返行程的估计时间(以毫秒为单位): 最短 = Oms, 最长 = Oms, 平均 = Oms C:\Users\D502>ping 192.168.10.20 正在 Ping 192.168.10.20 具有 32 字节的数据: 来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128 192.168.10.20 的 Ping 统计信息: 数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失), 往返行程的估计时间(以毫秒为单位): 最短 = Oms, 最长 = Oms, 平均 = Oms C:\Users\D502>ipconfig ₩indows IP 配置 以太网适配器 实验网: 连接特定的 DNS 后缀 本地链接 IPv6 地址. IPv4 地址.... fe80::3712:8c06:409:571f%14 : 192. 168. 10. 10 网掩码 认网关. 255, 255, 255, 0

20 ping 10 和 30

```
C:\Windows\system32>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms, 最长 = 0ms, 平均 = 0ms

C:\Windows\system32>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
```

30 ping 10 和 20

```
C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.10 的回复: 字节=32 时间=1ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

```
正在 Ping 192.168.10.20 具有 32 字节的数据:
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128

192.168.10.20 的 Ping 统计信息:
数据包: 已发送 = 4. 已接收 = 4, 丢失 = 0 (0% 丢失),
生运行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```


二、 在交换机 A 上创建 VLAN 10,并将端口 0/5

172.16.2.5 - SecureCRT 文件(F) 编辑(E) 查看(V) 选项(O) 传输(T) 脚本(S) 工具(L) 帮助(H) 172.16.2.5 2-S5750-1> 2-85750-1> 2-85750-1> 2-S5750-1>enable 14 Password: 2-S5750-1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. 2-S5750-1(config)#vlan 10 2-S5750-1(config-vlan)#name sales 2-S5750-1 (config-vlan)#exit 2-S5750-1(config)#interface gigabitethernet 0/5 2-S5750-1(config-if-GigabitEthernet 0/5)#switchport access vlan 10 2-S5750-1(config-if-GigabitEthernet 0/5)#

在交换机 A 上通过命令 show vlan id 10, 查看段都 0/5 是否已划分到 VLAN

C:\Windows\system32\cmd.exe

```
C:\Windows\system32>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间=11ms TTL=128

192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4、已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 11ms,平均 = 2ms

C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

20 ping 不通 10, 但能 ping 通 30

```
C:\Windows\system32>ping 192.168.10.20

正在 Ping 192.168.10.20 具有 32 字节的数据:
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<4ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
和自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128

192.168.10.20 的 Ping 统计信息:
数据包:已发送 = 4.已接收 = 4,丢失 = 0 (0% 丢失),往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 4ms,平均 = 1ms

C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:请求超时。请求超时。请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),
```

30 ping 不通 10, 但能 ping 通 20

三、 在交换机 A 上创建 VLAN 20,并将端口 0/15 划分到 VLAN 20 中

在交换机 A 上通过命令 show vlan id 20 验证是否已创建 VLAN 20, 查看端口 0/15 是否已经划分到 VLAN 20 中。

C:\Windows\system32\cmd.exe

```
Ping 192.168.10.20 具有 32 字节的数据:
  求超时。
求超时。
求超时。
   え超时。
  求超时。
192.168.10.20 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\Users\D502>ping 192.168.10.30
正在 Ping 192.168.10.30 具有 32 字节的数据:
  聚趕时。
   大超时。
求超时。
  求超时。
192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\Users\D502>ipconfig
Windows IP 配置
以太网适配器 实验网:
   连接特定的 DNS 后缀
本地链接 IPv6 地址.
IPv4 地址
                                        : fe80::3712:8c06:409:571f%14
: 192.168.10.10
: 255.255.255.0
```



```
C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),

C:\Windows\system32>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
```

20 ping 不通 10 和 30

```
C:\\Vindows\system32\ping 192.168.10.20
正在 Ping 192.168.10.20 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.20 的 Ping 统计信息:
数据包:已发送 = 4, 已接收 = 0, 丢失 = 4 (100% 丢失),

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4, 已接收 = 0, 丢失 = 4 (100% 丢失),

C:\\Vindows\system32\ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
```

30 ping 不通 10 和 20

三台机子两两 ping 不通

四、 将交换机 A 和交换机 B 相连的端口(假设为端口 0/24) 定义为 Tag VLAN 模式

验证测试:端口 0/24 已被设置为 trunk 模式

Interface	Switchport				-	VLAN lists	
GigabitEthernet 0/24	enabled	TRUNK	1	1	Disabled	ALL	4

```
C:\Users\D502>ping 192.168.10.20
正在 Ping 192.168.10.20 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.20 的 Ping 统计信息:
____数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\Users\D502>ping 192.168.10.30
正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\Users\D502>ipconfig
Windows IP 配置
以太网适配器 实验网:
   连接特定的 DNS 后缀
本地链接 IPv6 地址.
IPv4 地址 . . . . . .
                                            : fe80::3712:8c06:409:571f%14
                                             192. 168. 10. 10
      网掩码
                                             255. 255. 255. 0
```



```
C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),

C:\Windows\system32>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
```

20 ping 不通 10 和 30

```
C:\Windows\system32>ping 192.168.10.20
正在 Ping 192.168.10.20 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
192.168.10.20 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
C:\Windows\system32>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

30 ping 不通 10 和 20

三台机子两两 ping 不通

五、 在交换机 B 上创建 VLAN 20, 并将端口 0/5 划分到 VLAN 20 中。

11-5750-2> 11-5750-2>enable 14

Password:

11-5750-2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

11-5750-2(config)#vlan 20

11-5750-2(config-vlan)#name technical

11-5750-2(config-vlan)#exit

11-5750-2(config)#interface gigabitethernet0/5

11-5750-2(config-if-GigabitEthernet 0/5)#switchport access vlan 20

验证已在交换机 B 上创建 VLAN 20, 查看端口 0/5 的划分


```
C:\Windows\system32>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),

C:\Windows\system32>ping 192.168.10.30
正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
```

20 ping 不通 10 和 30

```
C:\Windows\system32>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),

C:\Windows\system32>ping 192.168.10.20
正在 Ping 192.168.10.20 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.20 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

30 ping 不通 10 和 20

三台机子两两 ping 不通

六、 将交换机 B 与交换机 A 相连的端口(假设为端口 0/24) 定义为 Tag VLAN

11-5750-2(config-if-GigabitEthernet 0/5)#exit

11-5750-2(config)#interface gigabitethernet 0/24

11-5750-2(config-if-GigabitEthernet 0/24)#switchport mode trunk

11-5750-2(config-if-GigabitEthernet 0/24)#

七、 验证 PC2 与 PC3 能相互通信,但 PC1 与 PC3 不能相互通信

```
C:\Windows\system32\ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间=1ms TTL=128

192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms

正在 Ping 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
```

2与3可以相互通信

■ 选择 C:\Windows\system32\cmd.exe

```
C:\Users\D502>ping 192.168.10.30 ■
正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
192.168.10.30 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

1和3可以相互通信

能否监测到 PC1、PC2、PC3 的 ICMP 包?

PC1 与 PC3 不能通信, 所以监测不到 ICMP 包:

1 0.000000	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
2 5.759067	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
3 6.769878	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
47.783422	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
5 8.576889	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
6 8.798402	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
7 15.697462	RuijieNe_15:59:f0	LLDP_Multicast	LLDP	386 MA/58:69:6c:15:59:f0 MA/58:69:6c:15:59:f0 121 SysN=2-S5
8 17.116353	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
9 17.132054	00:88:99:00:14:57	Broadcast	ARP	42 Who has 192.168.10.30? Tell 192.168.10.10
10 25.657130	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
11 34.212368	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
12 42.738086	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
13 45.696920	RuijieNe_15:59:f0	LLDP_Multicast	LLDP	386 MA/58:69:6c:15:59:f0 MA/58:69:6c:15:59:f0 121 SysN=2-5
14 51.306099	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
15 59.831107	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
16 68.397824	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
17 75.697361	RuijieNe_15:59:f0	LLDP_Multicast	LLDP	386 MA/58:69:6c:15:59:f0 MA/58:69:6c:15:59:f0 121 SysN=2-S5
18 76.971654	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
19 78.129039	00:88:99:00:14:57	Broadcast	ARP	42 Who has 192.168.10.30? Tell 192.168.10.10
20 85.508965	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
21 94.051105	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
22 102.626943	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
23 105 697976	RuijieNe_15:59:f0	LLDP_Multicast	LLDP	386 MA/58:69:6c:15:59:f0 MA/58:69:6c:15:59:f0 121 SysN=2-55
24 111.165873	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
25 119.702968	192.168.10.10	192.168.10.255	UDP	1482 53505 → 1689 Len=1440
26 125.769334	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
27 126.780815	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1
28 127.795523	192.168.10.10	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1

PC2 与 PC3 能够相互通信,能监测到 ICMP 包:

	1 0.000000	192.168.10.20	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	2 0.833154	192.168.10.30	192.168.10.20	ICMP	78 Echo (ping) request id=0x0001, seq=104/26624, ttl=128 (reply in 3)
	3 0.833273	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=104/26624, ttl=128 (request in 2)
	4 1.838487	192.168.10.30	192.168.10.20	ICMP	78 Echo (ping) request id=0x0001, seq=105/26880, ttl=128 (reply in 5)
	5 1.838615	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=105/26880, ttl=128 (request in 4)
	6 2.848982	192.168.10.30	192.168.10.20	ICMP	78 Echo (ping) request id=0x0001, seq=106/27136, ttl=128 (reply in 7)
	7 2.849083	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=106/27136, ttl=128 (request in 6)
+	8 3.013689	192.168.10.20	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	9 3.292662	192.168.10.30	192.168.10.255	UDP	1486 63855 → 1689 Len=1440
	10 3.862390	192.168.10.30	192.168.10.20	ICMP	78 Echo (ping) request id=0x0001, seq=107/27392, ttl=128 (reply in 11)
	11 3.862461	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=107/27392, ttl=128 (request in 10)
	12 5.379402	00:88:99:00:0b:a7	Shenzhen_0e:ce:82	ARP	64 Who has 192.168.10.20? Tell 192.168.10.30
	13 5.379420	Shenzhen_0e:ce:82	00:88:99:00:0b:a7	ARP	42 192.168.10.20 is at 44:33:4c:0e:ce:82
	14 6.023683	192.168.10.20	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	15 7.299839	RuijieNe_15:59:f0	LLDP_Multicast	LLDP	395 MA/58:69:6c:15:59:f0 MA/58:69:6c:15:59:f0 121 SysN=2-S5750-1 SysD=Ruijie La
	16 7.331766	192.168.10.20	192.168.10.255	UDP	1482 62881 → 1689 Len=1440
	17 8.850170	192.168.10.30	192.168.10.20	TCP	70 51454 → 7680 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM

能否捕获到 Trunk 链路上的 VLAN ID? 请讨论原因

无法检测到 Trunk 链路上的 VLAN ID 的原因是:

只有当数据通过 Trunk 传输时,才会包含 VLAN 标签,但是 PC3 连接的是交换机上的 ACCESS 接口, 当 ACCESS 接口接收到带有 VLAN 标签的数据包时,会将该标签信息丢弃。

查看交换机的地址表。清除地址表,适当更改、增加网线接口,然后观察与分析

Password: 11-5750-2#show mac-address-table							
Vlan	MAC Address	Type	Interface				
1	5869.6c15.59f0	DYNAMIC	GigabitEthernet 0/24				
20	0088.9900.0ba7	DYNAMIC	GigabitEthernet 0/5				
20	_ 4433. 4c0e. ce82	DYNAMIC	GigabitEthernet 0/24				

判断实验是否达到预期目标

达到,只有当两台计算机系统处于同一VLAN时才能跨交换机通信,否则不行。