Quantum Computing - Assignment 1

Kishlaya Jaiswal

September 11, 2020

Exercise 1

Proof. Observe that

$$\||\psi\rangle\|^2 = \langle \psi|\psi\rangle = (|\psi\rangle)^{\dagger}(|\psi\rangle)$$

U is unitary that is $U^{\dagger}U = I$, and hence

$$\|U|\psi\rangle\|^2 = (U|\psi\rangle)^{\dagger}(U|\psi\rangle) = \langle\psi|U^{\dagger}U|\psi\rangle = \langle\psi|I|\psi\rangle = \langle\psi|\psi\rangle = \||\psi\rangle\|^2$$

Since
$$||.|| \ge 0 \implies ||U|\psi\rangle|| = |||\psi\rangle||$$

Exercise 2

Proof.

$$\begin{split} \left[X,Z\right]\left|0\right\rangle &= \left(XZ - ZX\right)\left|0\right\rangle = X\left|0\right\rangle - Z\left|1\right\rangle = \left|1\right\rangle + \left|1\right\rangle = 2\left|1\right\rangle \\ \left[X,Z\right]\left|1\right\rangle &= \left(XZ - ZX\right)\left|1\right\rangle = -X\left|1\right\rangle - Z\left|0\right\rangle = -\left|0\right\rangle - \left|0\right\rangle = -2\left|0\right\rangle \end{split}$$

Hence
$$[X, Z] = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$

Exercise 3

Proof.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \implies X^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X \text{ and } X^{\dagger}X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \implies Y^{\dagger} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = Y \text{ and } Y^{\dagger}Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \implies Z^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z \text{ and } Z^{\dagger}Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

Thus Pauli matrices are Hermitian and Unitary. And,

$$\begin{split} X \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} &= \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, X \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} = - \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} \\ Y \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} &= \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix}, Y \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} = - \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} \\ Z \begin{pmatrix} 1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, Z \begin{pmatrix} 0 \\ 1 \end{pmatrix} = - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

Thus the eigenvalues are of Pauli matrices are ± 1 .

Exercise 4

Proof.

$$\begin{aligned} HXH \left| 0 \right\rangle &= HX \left| + \right\rangle = H \left| + \right\rangle = \left| 0 \right\rangle \\ HXH \left| 1 \right\rangle &= HX \left| - \right\rangle = H(-\left| - \right\rangle) = -\left| 1 \right\rangle \end{aligned}$$

And hence HXH = Z

$$HZH |0\rangle = HZ |+\rangle = H |-\rangle = |1\rangle$$

 $HZH |1\rangle = HZ |-\rangle = H |+\rangle = |0\rangle$

And hence HZH = X

Exercise 5

Proof. From the above exercise 3, we know that $|+\rangle$ is an eigenvector of X with eigenvalue 1 and $|-\rangle$ is an eigenvector of X with eigenvalue -1, that is $X = |+\rangle \langle +|-|-\rangle \langle -|$

Hence $\{|+\rangle \langle +|, |-\rangle \langle -|\}$ is an eigenbasis for X and so $|+\rangle \langle +|$ and $|-\rangle \langle -|$ are the measurement operators corresponding to a measurement of X observable.

Exercise 6

Proof. First we check that $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|++\rangle + |--\rangle)$ indeed.

$$\begin{split} |++\rangle + |--\rangle &= \frac{1}{2}(|0\rangle + |1\rangle)(|0\rangle + |1\rangle) + \frac{1}{2}(|0\rangle - |1\rangle)(|0\rangle - |1\rangle) \\ &= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle + |00\rangle - |01\rangle - |10\rangle + |11\rangle) = |00\rangle + |11\rangle \end{split}$$

So it suffices to show that $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ is an entangled state.

Suppose not and so it can be written as $|\psi\rangle\otimes|\phi\rangle$ where $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ and $|\phi\rangle=\gamma\,|0\rangle+\delta\,|1\rangle$. Then $|\psi\rangle\otimes|\phi\rangle=\alpha\gamma\,|00\rangle+\alpha\delta\,|01\rangle+\beta\gamma\,|10\rangle+\beta\delta\,|11\rangle=\frac{1}{\sqrt{2}}\big(\,|00\rangle+|11\rangle\,\big)$

Since $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ is a linearly independent set in \mathbb{C}^4 , we get $\alpha\delta = \beta\gamma = 0$ and $\alpha\gamma = \beta\delta \neq 0$ whose solution doesn't exist. Hence $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ is an entangled state.

Exercise 7

Proof. We start with $|\psi\rangle = |00\rangle$ state.

Applying $H \otimes I$ to $|\psi\rangle$, we get $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle)$

Applying controlled-NOT gate (where first qubit is the control and second qubit is target) to this, we finally get $|\phi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ as required.