Supporting Information

Gifford et al. 10.1073/pnas.0807873105

Fig. 51. pSIVgml insertion sites. Ten distinct pSIVgml insertions identified in the low coverage *M. murinus* genome. The ten insertions shown included two distinct full-length insertions (i.e., insertions encoding internal regions), along with nine solo LTRs (one of which was identified at the same locus as a full-length insertion). The IDs of sequences from WGS sequence assembly and trace archives are shown in boxes to the right (those that begin 'scaffold' are from WGS data, all others are from trace archive data). Sequences used to create the WGS contigs (1, 2, and 3) illustrated in Fig. 1 are indicated. Distinct insertions were identified through comparison of genomic DNA and target site duplication (TSD) sequences flanking viral insertions. For each of the insertions shown, at least 30 bp of unambiguously distinct genomic flanking sequence was present. TSD sequences—5-bp stretches of DNA flanking viral insertions that are generated during integration—are shown for each insertion. Where no flanking sequences were available, sequences that could be assembled into contigs were conservatively assumed to belong to the same pSIVgml insertion. At locus (1) both a solo LTR and full-length version of pSIVgml were identified, indicating that solo LTR formation had occurred on one chromosome, but not the other. The divergence between the solo LTR and the 3' LTR of the full-length insertion at this locus was 1.69%.

^{1.} Leitner T, et al., eds (2005) HIV Sequence Compendium 2005 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico).

Fig. S2. pSIVgml consensus sequence. Locations of the proteins encoded by the *gag*, *pol* and *env* genes were determined via homology to the HIV-1 reference sequence HXB2 (1), and by searches against the pFAM database (2). Tat, Rev, and Vif were identified by genomic location, and by the identification of the conserved 'SQV' motif in Vif and a predicted NLS in Rev (3). Also shown is a putative ORF extending into the 3' LTR. Putative promoter and polyadenylation signals are indicated in bold type. All lentiviruses have PBS sequences specific for tRNALys; however, pSIVgml is unique amongst primate lentiviruses in utilizing tRNALys1,2 rather than tRNALys3. Two regions of nucleic acid secondary structure, TAR and the RRE, are highlighted in dark gray. Black lines adjacent to the corresponding nucleotide sequences indicate the PBS and PPT sequences.

- 2. Finn RD, et al. (2006) Pfam: Clans, web tools and services. Nucleic Acids Res 34:D247–D251.
- 3. Pollard VW, Malim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532.

Fig. S2. continued.

Fig. S2. continued.

Fig. S2. continued.

GGGGACATGGCAGATGGATGTTACCCACTGGGAAGGACATAAACTGTTAGTAGCAGTTGAGACTGCTTCTGGGTTAACAT 4160

Fig. S2. continued.

GCTCTATTTTCGTATGTTAATGCTTCTATCAATATTTCTCACCCTTAGAGGAAGAGGTTGATCCATGGGATAGCTCTTTG 5200

Fig. S2. continued.

Fig. S2. continued.

Key

MA

RRE

matrix

CA capsid NC nucleocapsid PR protease RT reverse transcriptase IN integrase SU surface domain TM transmembrane domain LTR long terminal repeat PBS primer binding site PPT polypurine tract NLS nuclear localisation signal TAR transactivation response element

rev-responsive element

Fig. S2. continued.

Fig. S3. Putative RNA secondary structure motifs in pSIVgml. Secondary structures were predicted using the MFOLD thermodynamic folding algorithm (4), and assessed by comparison to well-characterized examples in other lentiviruses; (*Left*) the putative TAR (transactivation responsive region) downstream of the viral promoter is a consistently predicted two-finger structure similar to the TAR found in HIV-2 (5); (*Right*) the putative RRE (Rev responsive element) contains a consistently predicted three-finger structure. The precise boundaries of the RRE are uncertain.

- 4. Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In RNA Biochemistry and Biotechnology, eds Barciszewski J, Clark BFC (Kluwer Academic Publishers, Dordrecht), pp 11–43.
- 5. Rabson AB, Graves BJ (1997) Retrovirus gene expression: Transcription and RNA processing. In Retroviruses, eds Coffin JM, Hughes SH, Varmus HE (CSHL Press, New York), p 226.

Table S1. Complete and low coverage genome sequence data screened

Species	Common name	Release files	Stage*	Geographic range
Complete genome assemblies	;			
Homo sapiens	human	NCBI build 36 version 2 (2006)	Complete	Worldwide
Pan troglodytes	chimpanzee	NCBI build 2 version 1 (2006)	Complete	Africa
Macaca mulatta	rhesus monkey	NCBI build 2 version 1 (2006)	Complete	Asia
Low coverage genome assem	blies			
Microcebus murinus	grey mouse lemur	EMBL Broad Institute Release 1	30% coverage	Madagascar
Trace archive raw sequence fi	les			
Aotus nancymaae	Ma's night monkey	001–002	613023	South America
Ateles geoffroyi	spider monkey	001	28627	South America
Callicebus moloch	dusky titi	001–002	624987	South America
Saimiri sciureus	squirrel monkey	001	1740	South America
Callithrix jacchus	common marmoset	001–058	28216241	South America
Eulemur macaco	black lemur	001	3967	Madagascar
Lemur catta	ring-tailed lemur	001	92444	Madagascar
Microcebus murinus	grey mouse lemur	001–017	8339325	Madagascar
Gorilla gorilla	gorilla	001–008	4119727	Africa
Papio anubis	olive baboon	001–003	1001661	Africa
Papio cynocephalus	yellow baboon	001–002	625576	Africa
Colobus guereza	guereza	001–002	630384	Africa
Cercopithecus aethiops	vervet monkey	001	179976	Africa
Otolemur garnettii	galago	001–018	8859530	Africa
Pongo pygmaeus	orang utan	001–025	12157107	South East Asia
Nomascus leucogenys	white-cheeked gibbon	001–009	4499952	South East Asia
Hylobates concolor	black gibbon	001	2282	South East Asia
Tarsius syrichta	tarsier	001–029	14116211	South East Asia

^{*}For trace archive genome data, the number of sequence reads screened is shown. Sequences reads are typically ≈800 bp in length.