Quanvolutional Neural Network (QuanNN): Complete Architecture Guide

Hybrid Quantum-Classical Deep Learning

1 Architecture Overview

2 Step-by-Step Process

2.1 Step 1: Patch Extraction

Given input image $\mathbf{I} \in \mathbb{R}^{H \times W \times C}$ where H = W = 32, C = 3:

$$\mathbf{I}_{gray} = 0.299R + 0.587G + 0.114B \to \mathbb{R}^{32 \times 32 \times 1}$$
 (1)

Extract patches with size $p \times p = 2 \times 2$ and stride s = 2:

$$N_{patches} = \left(\frac{H-p}{s} + 1\right) \times \left(\frac{W-p}{s} + 1\right) = 16 \times 16 = 256 \tag{2}$$

Each patch: $\mathbf{u}_x = [u_1, u_2, u_3, u_4]$ where $u_i \in [0, 255]$

2.2 Step 2: Quantum Encoding

For each patch, normalize pixel values:

$$\theta_i = \frac{u_i}{255} \times 2\pi, \quad i \in \{1, 2, 3, 4\}$$
 (3)

Initialize quantum state and apply encoding:

$$|\psi_{enc}\rangle = \bigotimes_{i=1}^{4} RX(\theta_i)|0\rangle = RX(\theta_1) \otimes RX(\theta_2) \otimes RX(\theta_3) \otimes RX(\theta_4)|0000\rangle$$
(4)

where
$$RX(\theta) = e^{-i\theta X/2} = \begin{pmatrix} \cos(\theta/2) & -i\sin(\theta/2) \\ -i\sin(\theta/2) & \cos(\theta/2) \end{pmatrix}$$

2.3 Step 3: Variational Quantum Circuit (VQC)

Apply parametric quantum circuit with L layers:

$$|\psi_{out}\rangle = U_L(\phi_L) \cdots U_2(\phi_2) U_1(\phi_1) |\psi_{enc}\rangle \tag{5}$$

Each layer U_{ℓ} consists of:

- Entanglement: $CNOT_{i,i+1}$ for $i \in \{0,1,2\}$
- Rotation: $RY(\phi_i^{\ell})$ and $RZ(\psi_i^{\ell})$ on each qubit

2.4 Step 4: Measurement and Aggregation

Measure each qubit in Pauli-Z basis:

$$m_i = \langle \psi_{out} | Z_i | \psi_{out} \rangle, \quad i \in \{0, 1, 2, 3\}$$
 (6)

Aggregate measurements to single feature value:

$$f_x = \mathcal{A}([m_0, m_1, m_2, m_3]) = \frac{1}{4} \sum_{i=0}^{3} m_i$$
 (7)

Complete Quanvolutional Filter:

$$f_x = \mathcal{Q}(\mathbf{u}_x, e, q, d) \in \mathbb{R}$$
(8)

2.5 Step 5: Feature Map Construction

Apply N different quanvolutional filters (each with different parameters):

$$\mathcal{F} = \begin{bmatrix} f_1^{(1)} & f_2^{(1)} & \cdots & f_{16}^{(1)} \\ f_{17}^{(1)} & f_{18}^{(1)} & \cdots & f_{32}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ f_{241}^{(1)} & f_{242}^{(1)} & \cdots & f_{256}^{(1)} \end{bmatrix}_{16 \times 16}$$
 for filter 1 (9)

Stack all filters: $\mathcal{F}_{total} \in \mathbb{R}^{16 \times 16 \times N}$

2.6 Step 6: Classical Post-Processing

Flatten feature map:

$$\mathbf{v} = \text{Flatten}(\mathcal{F}_{total}) \in \mathbb{R}^{256N}$$
 (10)

Fully connected layers:

$$\mathbf{h}_1 = \text{ReLU}(\mathbf{W}_1 \mathbf{v} + \mathbf{b}_1) \in \mathbb{R}^{n_1} \tag{11}$$

$$\mathbf{h}_2 = \text{ReLU}(\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2) \in \mathbb{R}^{n_2} \tag{12}$$

$$\mathbf{z} = \mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3 \in \mathbb{R}^{n_{classes}} \tag{13}$$

Aggregate $f_x = 0.3$

Output probabilities:

 $q_0: |0\rangle$ -

$$P(y = c|\mathbf{I}) = \text{Softmax}(\mathbf{z})_c = \frac{e^{z_c}}{\sum_{j=1}^{n_{classes}} e^{z_j}}$$
(14)

 $RZ(\psi_0^2)$

 $\langle Z_0 \rangle$

3 Complete Quantum Circuit Diagram with Explanations

Data Encoding Layer 1 Parametric Layer 2More Rotatio Measurements $Pixel \rightarrow Angle CNOT Gate arnable gates CNOT Gate info$

 $RX(\theta_3)$ $RY(\phi_3^1)$ $q_3:|0\rangle$ - $RZ(\psi_3^2)$ $\langle Z_3 \rangle$ $m_0 = 0.6$ $m_1 = -0.3$ $q_2: |0\rangle$ - $RX(\theta_2)$ $RY(\phi_2^1)$ $RZ(\psi_2^2)$ $\langle Z_2 \rangle$ $m_2 = 0.8$ $m_3 = 0.1$ $RX(\theta_1)$ $q_1: |0\rangle$ - $RY(\phi_1^1)$ $RZ(\psi_1^2)$ $\langle Z_1 \rangle$

LMaps classical Creates Trainable Correlations more features to classical to quantum entanglement parameters correlations more features to classical ENCODINGENTANGLEROTATE ENTANGLEROTATE MEASURE

 $RY(\phi_0^1)$

3.1 Why These Specific Components?

3.2 Why Layer 1, Layer 2, ...? (Circuit Depth)

Trade-off between expressiveness and noise:

- More layers (deeper circuit):
 - + More expressive (can learn complex functions)
 - + More trainable parameters
 - More quantum gates \rightarrow more noise accumulation (NISQ problem!)
 - Longer circuit execution time

• Fewer layers (shallow circuit):

- + Less affected by quantum noise
- + Faster execution
- Limited expressiveness
- May not capture complex patterns

Typical choice for NISQ: L=2 to 6 layers (balance between power and practicality)

Component	Purpose	Why This Choice?	
RX Encoding	Map classical pixel values to	RX creates superposition.	
	quantum states	Angle θ encodes pixel inten-	
		sity. Alternative: RY, RZ, or	
		amplitude encoding	
CNOT Gates	Create entanglement between	Captures spatial correlations	
	qubits	between adjacent pixels.	
		Without this, qubits work	
		independently (no quantum	
		advantage!)	
RY Rotations	Learnable transformations	Parameters ϕ are trained via	
		optimization. RY chosen for	
		expressibility. Could also use	
		RX or RZ	
RZ Rotations	Additional learnable features	Different rotation axis pro-	
		vides more expressiveness.	
		Allows circuit to learn com-	
		plex patterns	
Pauli-Z Mea-	Extract expectation values	$\langle Z \rangle \in [-1, +1]$ provides con-	
sure		tinuous output. Alternative:	
		measure probabilities $ 0\rangle$ vs	
		$ \hspace{.06cm} 1\rangle$	
Aggregation	Reduce 4 values to 1	Mimics CNN filter: many in-	
		puts \rightarrow one feature. Uses	
		mean, sum, or first value	

3.3 Alternative Circuit Designs Not Shown

1. Why not use Hadamard gates?

- H gates create uniform superposition $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- Not suitable for data encoding (doesn't embed pixel values)
- Could be used for feature mixing, but RX/RY/RZ are more flexible

2. Why not amplitude encoding?

- Amplitude encoding: $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_i |i\rangle$
- Would encode all 4 pixels in amplitudes
- Problem: Requires normalization and complex state preparation
- Angle encoding (RX) is simpler and more robust

3. Why not use more complex entangling patterns?

- Could use: all-to-all CNOT, CZ gates, or custom entanglers
- Trade-off: More entanglement vs. more gate errors
- Linear chain (shown) is most hardware-friendly

4. Why measure in **Z**-basis only?

• Could measure in X-basis: $\langle X \rangle$ or Y-basis: $\langle Y \rangle$

- Z-basis is hardware-native (fastest, most accurate)
- Some designs measure multiple bases for richer features

3.4 Mathematical Detail: What Each Gate Does

$$RX(\theta) = e^{-i\theta X/2} = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \quad \text{(Rotation around X-axis)}$$

$$RY(\phi) = e^{-i\phi Y/2} = \begin{pmatrix} \cos\frac{\phi}{2} & -\sin\frac{\phi}{2} \\ \sin\frac{\phi}{2} & \cos\frac{\phi}{2} \end{pmatrix} \quad \text{(Rotation around Y-axis)}$$

$$RZ(\psi) = e^{-i\psi Z/2} = \begin{pmatrix} e^{-i\psi/2} & 0 \\ 0 & e^{i\psi/2} \end{pmatrix} \quad \text{(Phase rotation)}$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{(Controlled-NOT: flips target if control is } |1\rangle)$$

3.5 Why This Exact Sequence?

Design Philosophy:

- 1. Encode data $(RX) \rightarrow Classical info enters quantum realm$
- 2. Create correlations (CNOT) \rightarrow Qubits "talk" to neighbors
- 3. **Transform** (RY) \rightarrow Learn features via trainable parameters
- 4. Repeat (CNOT + RZ) \rightarrow Deepen the representation
- 5. Extract (Measure) \rightarrow Return to classical world

This mimics classical neural networks: $Input \rightarrow Transform \rightarrow Transform \rightarrow Output$

4 Algorithm: QuanNN Forward Pass

```
Algorithm 1 QuanNN Forward Pass
Require: Image \mathbf{I} \in \mathbb{R}^{32 \times 32 \times 3}, N quantum filters, n_{qubits} = 4
Ensure: Prediction probabilities \mathbf{P} \in \mathbb{R}^{n_{classes}}
  1: \mathbf{I}_{gray} \leftarrow \text{RGB2Gray}(\mathbf{I})

ightharpoonup 32 	imes 32 	imes 1
  2: \mathcal{P} \leftarrow \text{ExtractPatches}(\mathbf{I}_{gray}, size = 2, stride = 2)
                                                                                                                                                                              ▷ 256 patches
 3: \mathcal{F} \leftarrow \text{zeros}(16, 16, N)
                                                                                                                                                           ▶ Initialize feature map
 4: for k = 1 to N do
                                                                                                                                                                         ▶ For each filter
             for i = 1 to 256 do
                                                                                                                                                                        ▶ For each patch
 5:
                    \mathbf{u}_i \leftarrow \mathcal{P}[i]
                                                                                                                                                      \triangleright Get patch [u_1, u_2, u_3, u_4]
 6:
                    \boldsymbol{\theta} \leftarrow [\theta_1, \theta_2, \theta_3, \theta_4] = \frac{\mathbf{u}_i}{255} \times 2\pi
  7:
                    |\psi\rangle \leftarrow |0000\rangle
  8:
                    for j = 1 to 4 do
                                                                                                                                                                                  ▶ Encoding
 9:
                          |\psi\rangle \leftarrow RX_i(\theta_i)|\psi\rangle
10:
                    end for
11:
                    for \ell = 1 to L do
                                                                                                                                                                              ▶ VQC layers
12:
                          |\psi\rangle \leftarrow U_{\ell}(\boldsymbol{\phi}_{\ell}^{(k)})|\psi\rangle
                                                                                                                                                                    ▶ Parametric gates
13:
                    end for
14:
                    \mathbf{m} \leftarrow [\langle Z_0 \rangle, \langle Z_1 \rangle, \langle Z_2 \rangle, \langle Z_3 \rangle]
15:
                    \mathcal{F}[i,k] \leftarrow \text{mean}(\mathbf{m})
16:
                                                                                                                                                                                 ▶ Aggregate
17:
              end for
18: end for
19: \mathbf{v} \leftarrow \operatorname{Flatten}(\mathcal{F})
                                                                                                                                                                    \triangleright 256N dimensions
20: \mathbf{h}_1 \leftarrow \text{ReLU}(\mathbf{W}_1\mathbf{v} + \mathbf{b}_1)
21: \mathbf{h}_2 \leftarrow \text{ReLU}(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2)
22: \mathbf{z} \leftarrow \mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3
23: \mathbf{P} \leftarrow \operatorname{Softmax}(\mathbf{z})
24: return P
```

5 Key Specifications

Component	Dimension	Type
Input Image	$32 \times 32 \times 3$	Classical
Grayscale Image	$32 \times 32 \times 1$	Classical
Patch Size	2×2	-
Number of Patches	256	-
Qubits per Filter	4	Quantum
Quantum Filters	N (e.g., 8)	Quantum
Feature Map	$16 \times 16 \times N$	Classical
Flattened Vector	256N	Classical
FC Layer 1	$256N \rightarrow 128$	Classical
FC Layer 2	$128 \rightarrow 64$	Classical
Output Layer	$64 \rightarrow n_{classes}$	Classical

6 Computational Complexity

6.1 Quantum Part

- Parameters per filter: $O(n_{qubits} \times L)$ where L is VQC depth
- Circuit executions: $256 \times N$ (sequential on single QPU)
- Total quantum parameters: $\approx 50N$ to 200N

6.2 Classical Part

- FC parameters: $(256N \times 128) + (128 \times 64) + (64 \times n_{classes})$
- For $N=8, n_{classes}=10: \approx 270,000$ parameters
- Dominant cost: Classical layers (most learnable parameters)

7 Training Process

Loss Function:

$$\mathcal{L} = -\frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} \sum_{c=1}^{n_{classes}} y_i^{(c)} \log(P_i^{(c)})$$

$$\tag{15}$$

Optimization: Hybrid quantum-classical optimization

- Quantum parameters ϕ : Updated via parameter-shift rule
- Classical parameters W, b: Updated via backpropagation

8 Quick Reference: FAQ

Q1: Sequential or parallel patch processing?

A: Sequential on single QPU (256 executions). Parallel only in simulation.

Q2: What is the quanvolutional filter output?

A: Single scalar $f_x \in \mathbb{R}$ per patch, aggregated from 4 qubit measurements.

Q3: Why use FC layers after quantum processing?

A: To aggregate local quantum features into global classification decision.

Q4: Can I use more qubits?

A: Yes! Larger patches (e.g., $4 \times 4 = 16$ qubits), but needs more quantum resources.

Q5: What makes it "hybrid"?

A: Quantum feature extraction + Classical aggregation and classification.