Educação Profissional Paulista

Técnico em Ciência de Dados

Estruturas de controle: condições

Aula 1

[DADOS]ANO1C3B2S9A1

Objetivo da aula

Explorar e apresentar, com o apoio de fluxogramas e pseudocódigos, os conceitos importantes de estruturas de controle condicionais.

Competências da Unidade (técnicas e socioemocionais)

- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências;
- Compreender e dominar técnicas de manipulação de dados e extrair, transformar e carregar conjuntos de dados de diferentes fontes;
- Garantir a qualidade e a integridade dos dados;
- Criar e compreender visualizações gráficas.

Recursos didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Acesso ao laboratório de informática e/ou à internet.

Duração da aula

50 minutos.

Recapitulação de algoritmos e lógica de programação

Definição:

Algoritmos são conjuntos de passos organizados, semelhantes a receitas, que guiam a resolução de problemas de forma eficiente.

Usabilidade

Fundamentais na computação, algoritmos são "mapas" lógicos que possibilitam desde cálculos simples até inovações avançadas, como reconhecimento de voz.

Importância

São a base de todos os *softwares*, permitindo a automação de tarefas e o desenvolvimento de soluções complexas.

Recapitulação de algoritmos e lógica de programação

Qual é a importância de fluxogramas e de pseudocódigos?

- ✓ Otimizam o desenvolvimento;
- ✓ Proporcionam compreensão visual e lógica do processo;
- ✓ Facilitam a identificação de melhorias;
- ✓ Aceleram a transição para a implementação prática, independente da linguagem de programação ou do software usado para implementação.

Recapitulação de estrutura sequencial

O que é uma estrutura sequencial?

A estrutura sequencial é a forma mais simples de controle de fluxo em programação.

Consiste em uma sequência linear de instruções em que uma ação ocorre após a outra, de maneira ordenada.

Essa estrutura é fundamental para executar tarefas passo a passo, uma após a outra, sem desvios condicionais.

Recapitulação de estrutura sequencial

Fluxogramas

A estrutura sequencial dos fluxogramas é facilmente visualizada graças às setas de fluxo.

Pseudocódigos

Facilitam o entendimento de estruturas sequenciais em programas, seguindo uma leitura linha a linha, da esquerda para a direita e de cima para baixo.

Recapitulação de pseudocódigos

Exemplo visto anteriormente: troca de lâmpada

Recapitulação de fluxogramas

Exemplo – Troca de Lâmpadas

Fonte: FORBELLONE; EBERSPÄCHER, 2022. Elaborado especialmente para o curso.

Estruturas condicionais

As estruturas condicionais são construções fundamentais em programação que permitem que um programa tome decisões com base em condições específicas.

Elas introduzem ramificações no fluxo de execução, adaptando o comportamento do programa conforme as circunstâncias.

Onde estão presentes?

Nas diversas linguagens de programação de formas ligeiramente diferentes, mas com o mesmo funcionamento básico.

Estruturas condicionais

Pontos de importância:

- Adaptação dinâmica: permite que programas se adaptem a diferentes cenários.
- Eficiência: controla o fluxo de execução, economizando recursos ao evitar a execução desnecessária de instruções.
- Tomada de decisão lógicas: reflete a lógica do mundo real em códigos, tornando os programas mais intuitivos e inteligentes.
- Flexibilidade e escalabilidade do código: contribuem para a criação de códigos que são mais flexíveis e escaláveis, permitindo que os programas se adaptem e cresçam com as necessidades dos usuários e do mercado.

Estruturas condicionais - SE/ENTÃO

A estrutura condicional **SE (IF)** é uma ferramenta fundamental na programação, permitindo que um programa tome decisões com base em condições específicas. Ela **avalia se uma expressão é verdadeira e executa um bloco de código associado quando essa condição é atendida**.

A expressão ENTÃO é executada apenas se a condição do SE for verdadeira; caso seja falsa, essa parte do código é ignorada e o algoritmo segue a estrutura sequencial.

Estruturas condicionais - SE/ENTÃO

Como utilizar?

SE (condição), ENTÃO

Bloco de código a ser executado se a condição for verdadeira

FIM_SE

Tome nota

- Não deixar claro o que acontece quando a condição é falsa em situações em que se necessita dessa condição.
- Não aninhar excessivamente SEs, o que pode tornar o código difícil de entender.

Estruturas condicionais - SE/ENTÃO

Observações finais:

- 1. Clareza: mantenha a condição simples e de fácil entendimento.
- 2. Indentação: use uma indentação consistente para melhor legibilidade.

Tome nota

A estrutura condicional SE é poderosa para controlar o fluxo de um programa, permitindo que ele tome decisões rápidas, simples e dinâmicas com base em condições específicas.

Estruturas condicionais - SE/ENTÃO

Enunciado 1: você foi designado para criar um sistema de votação muito simples em pseudocódigo e em fluxograma.

O sistema deve permitir que uma pessoa vote apenas se tiver 18 anos ou mais. Crie um pseudocódigo para esta situação.

Requisitos:

- Solicite à pessoa que informe sua idade.
- Verifique se a idade é maior ou igual a 18.
- Se a idade atender aos requisitos, permita que a pessoa vote.

Estruturas condicionais - SE/ENTÃO

Solução em pseudocódigo:

- 1. Início
- 2. Leia IDADE
- 3. SE (IDADE maior que 18), ENTÃO a. Escreva "Você está autorizado a votar"
- 4. Fim_SE
- 5. Fim

Estruturas condicionais - SE/ENTÃO

Solução em Fluxograma

Estruturas condicionais - SE/ENTÃO

Enunciado 2: desenvolva um pseudocódigo para verificar se um número fornecido pelo usuário é par.

Siga as instruções abaixo:

Requisitos:

- Solicite ao usuário que insira um número inteiro.
- Use uma estrutura de decisão IF para determinar se o número é par ou ímpar.
- Se o número for par, exiba uma mensagem informando que é par.

Estruturas condicionais - SE/ENTÃO

Solução em pseudocódigo:

- 1. Início
- 2. LEIA número
- 3. SE número dividido por dois resta zero ENTAO
- 4. ESCREVA "O número é par."
- 5. FIM_SE
- 6. Fim

Estruturas condicionais - SE/ENTÃO

Enunciado 3: desenvolva um pseudocódigo para verificar se um número fornecido pelo usuário é positivo.

O programa deve seguir os seguintes requisitos:

Requisitos:

- Solicite ao usuário que insira um número.
- Utilize uma estrutura de decisão IF para verificar se o número é positivo.
- Se o número for positivo, exiba uma mensagem informando que é positivo.

Estruturas condicionais - SE/ENTÃO

Solução em pseudocódigo:

- 1. Início
- 2. LEIA número
- 3. SE número > 0 ENTAO
- 4. ESCREVA "O número é positivo."
- 5. FIM_SE
- 6. Fim

Qual é a principal diferença entre fluxogramas e pseudocódigos?

Fluxogramas são linguagens de programação; pseudocódigos são representações gráficas.

Fluxogramas representam, graficamente, o fluxo do algoritmo; pseudocódigos são uma forma de programação visual.

Fluxogramas usam símbolos específicos; pseudocódigos são textos sem formatação.

Fluxogramas e pseudocódigos são termos intercambiáveis.

Qual é a principal diferença entre fluxogramas e pseudocódigos?

Fluxogramas são linguagens de programação; pseudocódigos são representações gráficas.

Fluxogramas representam, graficamente, o fluxo do algoritmo; pseudocódigos são uma forma de programação visual.

Fluxogramas usam símbolos específicos; pseudocódigos são textos sem formatação.

Fluxogramas e pseudocódigos são termos intercambiáveis.

FEEDBACK GERAL DA ATIVIDADE

A resposta correta destaca a distinção fundamental: fluxogramas são representações gráficas, enquanto pseudocódigos são formas textuais para expressar algoritmos.

Como a estrutura sequencial é representada em um fluxograma?

Por meio de setas que conectam blocos de decisão.

Utilizando um losango para cada etapa do algoritmo.

Por meio de retângulos conectados linearmente.

Por meio de símbolos de loop.

Como a estrutura sequencial é representada em um fluxograma?

Por meio de setas que conectam blocos de decisão.

Utilizando um losango para cada etapa do algoritmo.

Por meio de retângulos conectados linearmente.

Por meio de símbolos de loop.

FEEDBACK GERAL DA ATIVIDADE

Em um fluxograma, a estrutura sequencial é representada por retângulos, que indicam uma sequência linear de ações. Setas, geralmente, conectam símbolos. Losangos são utilizados para decisões e símbolos de *loop*, para repetições.

Qual é a função da estrutura sequencial em pseudocódigos?

Controlar o fluxo de execução do programa.

Permitir a repetição de um bloco de código.

Representar decisões condicionais.

Executar instruções em uma ordem específica.

Qual é a função da estrutura sequencial em pseudocódigos?

Controlar o fluxo de execução do programa.

Permitir a repetição de um bloco de código.

Representar decisões condicionais.

Executar instruções em uma ordem específica.

FEEDBACK GERAL DA ATIVIDADE

A estrutura sequencial em pseudocódigos é projetada para garantir a execução ordenada de instruções. O controle do fluxo e decisões condicionais é associado a estruturas condicionais. Estruturas de repetição lidam com repetição de blocos de código.

Hoje desenvolvemos:

- O entendimento sobre a importância da estrutura sequencial na execução organizada de instruções, garantindo a ordem correta das ações no código, sem desvios condicionais;
- O conhecimento do SE (IF) como crucial para a tomada de decisões programáticas, permitindo a execução de códigos com base em condições definidas;

A compreensão de que é fundamental evitar muitos SEs aninhados para manter a clareza do código, facilitando a compreensão e a manutenção.

Saiba mais

Que tal aprofundar o conhecimento no âmbito da lógica de programação e dos algoritmos? Acesse o curso a seguir para conhecer mais:

PORTUGAL, D. Pensamento computacional. Alura, 27 jul. 2020. Disponível em:

https://cursos.alura.com.br/pensamentocomputacional-daniel-portugal-1595849179036-p57267. Acesso em: 20 fev. 2024.

Referências da aula

Identidade visual: Imagens © Getty Images

FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. *Lógica de programação*: a construção de algoritmos e estruturas de dados. São Paulo: Pearson; Porto Alegre: Bookman, 2022.

Educação Profissional Paulista

Técnico em Ciência de Dados

S9 - Aula 1 - Quiz

Condições de conclusão	
Ver	

Qual é a principal diferença entre fluxogramas e pseudocódigos?
O Fluxogramas são linguagens de programação; pseudocódigos são representações gráficas
O Fluxogramas e pseudocódigos são termos intercambiáveis
O Fluxogramas representam, graficamente, o fluxo do algoritmo; pseudocódigos são uma forma de programação visu
O Fluxogramas usam símbolos específicos; pseudocódigos são textos sem formatação
Como a estrutura sequencial é representada em um fluxograma?
O Utilizando um losango para cada etapa do algoritmo
O Por meio de retângulos conectados linearmente
O Por meio de símbolos de loop
O Por meio de setas que conectam blocos de decisão
Qual é a função da estrutura sequencial em pseudocódigos?
O Permitir a repetição de um bloco de código
O Executar instruções em uma ordem específica
O Controlar o fluxo de execução do programa
O Representar decisões condicionais

Última atualização: 10 de março de 2025, segunda-feira às 13:57

Disciplina

Lógica, Algoritmo e Operação de Planilhas Eletrônicas 2º Bimestre

Curso

Técnico em Ciência de Dados

Ano letivo

2025

Educação Profissional Paulista

Técnico em Ciência de Dados

Introdução à lógica de programação e algoritmos

Aula 2

[DADOS]ANO1C3B2S9A2

Objetivo da aula

Apresentar mais informações sobre portas lógicas e ensinar expressões booleanas.

Competências da Unidade (técnicas e socioemocionais)

- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências;
- Compreender e dominar técnicas de manipulação de dados;
- Extrair, transformar e carregar conjuntos de dados de diferentes fontes, garantindo a qualidade e a integridade dos dados;
- Criar e compreender visualizações gráficas.

Recursos didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Acesso ao laboratório de informática e/ou à internet.

Duração da aula

50 minutos.

Estruturas condicionais - SE/ENTÃO/SENÃO

O que é?

A estrutura condicional **SE** e **SENÃO** (IF e ELSE) é uma construçãochave na programação, permitindo que um programa tome decisões com base em condições específicas.

Ela avalia se uma expressão é verdadeira e executa um bloco de código associado quando essa condição é atendida; caso contrário, executa outro bloco de código.

Tome nota

Além do SE e do SENÃO, podemos usar **SE SENÃO** para adicionar condições extras, tornando apenas o "SENÃO" uma estrutura independente.

Estruturas condicionais - SE/ENTÃO/SENÃO

Como utilizar?

SE (condição) ENTÃO

Bloco de código a ser executado se a condição for verdadeira

SENÃO SE (condição 2) ENTÃO

Bloco de código a ser executado se a condição 2 for verdadeira e a condição 1, falsa

SENÃO

Bloco de código a ser executado se todas as condições forem falsas

FIM_SE

Evite:

- aninhar excessivamente SEs e ELSEs, pois isso pode tornar o código difícil de entender;
- não fornecer um bloco de código para o SENÃO, tornando o comportamento inesperado;
- utilizar lógicas de decisão como SE e SENÃO, em vez de lógicas de repetição, equivocadamente.

Estruturas condicionais - SE/ENTÃO/SENÃO

Observações finais:

- Clareza: torne as condições e os blocos de código claros e fáceis de entender.
- Indentação: use uma indentação consistente para melhor legibilidade.
- Blocos de código: garanta que as ações no bloco SE e SENÃO façam sentido para a lógica do programa.

A estrutura condicional SE e SENÃO é poderosa para controlar o fluxo de um programa, permitindo que ele tome decisões dinâmicas com base duas condições específicas.

Estruturas condicionais - SE/ENTÃO/SENÃO

Vamos repetir os enunciados e evoluir a solução com o SENÃO?

Você foi designado para criar um sistema de **votação** muito simples em pseudocódigo e fluxograma. O sistema deve permitir que uma pessoa vote apenas se tiver **18 anos** ou **mais**. Crie um pseudocódigo para esta situação.

Requisitos:

- Solicite à pessoa que informe a idade dela.
- Verifique se a idade é maior ou igual a 18.
- Se a idade atender aos requisitos, permita que a pessoa vote.
- Caso contrário, informe que a pessoa não está autorizada a votar devido à idade.

Estruturas condicionais - SE/ENTÃO/SENÃO

Solução:

- 1. Início
- 2. LEIA idade
- 3. SE idade >= 18 ENTAO
- 4. ESCREVA "Você está autorizado a votar."
- 5. SENAO
- 6. ESCREVA "Você não está autorizado a votar devido à idade."
- 7. FIM_SE
- 8. Fim

Estruturas condicionais - SE/ENTÃO/SENÃO

Exemplo elementar em fluxograma:

Estruturas condicionais - SE/ENTÃO/SENÃO

Desenvolva um pseudocódigo para verificar se um número fornecido pelo usuário é **par** ou **ímpar**. Siga as instruções abaixo:

Requisitos:

- Solicite ao usuário que insira um número inteiro.
- Use uma estrutura de decisão IF para determinar se o número é par ou ímpar.
- Se o número for par, exiba uma mensagem informando que é par.
- Caso contrário, ou seja, se o número for ímpar, exiba uma mensagem informando que é ímpar.

Estruturas condicionais - SE/ENTÃO/SENÃO

Solução:

- 1. Início
- 2. LEIA número
- 3. SE número dividido por dois resta zero ENTAO
- 4. ESCREVA "O número é par."
- 5. SENAO
- 6. ESCREVA "O número é ímpar."
- 7. FIM_SE
- 8. Fim

Estruturas condicionais - ESCOLHA/CASO

A estrutura condicional **ESCOLHA CASO** (ou SWITCH CASE, em inglês) é uma construção utilizada em programação para realizar **seleções múltiplas** com base no **valor de uma expressão**.

Ela oferece uma alternativa mais eficiente e legível em comparação com encadeamentos de estruturas condicionais SE-SENÃO.

Avaliação da expressão: uma expressão é avaliada e seu valor é comparado com diferentes casos possíveis.

Seleção do bloco correspondente: o bloco de código associado ao caso que corresponde ao valor da expressão é executado.

Break: após a execução do bloco correspondente, o controle é transferido para fora da estrutura ESCOLHA CASO com o *break*. Caso seja omitido, o programa executa a próxima condição dentro da ESCOLHA CASO, ou seja, o próximo CASO.

Estruturas condicionais - ESCOLHA/CASO

```
Como utilizar?
  ESCOLHA valor de referência:
   CASO valorl:
     # Bloco de código para valor1
     BREAK
   CASO valor2:
     # Bloco de código para valor2
     BREAK
    PADRAO:
     # Bloco de código padrão (opcional)
  FIM_ESCOLHA
```


Estruturas condicionais - ESCOLHA/CASO

Dicas:

- É interessante fornecer a instrução "BREAK" ao final de cada "CASO".
 Isso porque existem ocorrências em que a estrutura executa os blocos subsequentes.
- É interessante incluir o bloco "PADRÃO", pois assim se mantém um controle maior de erros das lógicas aplicadas nos blocos de "CASO".

Bloco PADRÃO:

O bloco PADRÃO funciona como o SENÃO, ou seja, é outra condição que pode ser usada como medida de segurança do programa caso algo não funcione corretamente e as opções não sejam atendidas.

Estruturas condicionais - ESCOLHA/CASO

Observações finais:

- Clareza: torna o código mais legível em comparação com uma série de estruturas SE-SENÃO.
- **Eficiência**: o ESCOLHA CASO é especialmente útil quando há várias opções a serem comparadas.
- O uso do PADRÃO: o bloco PADRÃO é opcional e é executado quando nenhum caso corresponde à expressão.
- Flexibilidade de casos: permite o tratamento de múltiplas condições de forma mais clara e estruturada que múltiplos IF-ELSE.

Estruturas condicionais - ESCOLHA/CASO

Desenvolva um pseudocódigo para verificar se um número fornecido pelo usuário é positivo ou negativo. O programa deve seguir os seguintes requisitos:

REQUISITOS:

- Solicite ao usuário que insira um número.
- Utilize uma estrutura de decisão IF para verificar se o número é positivo ou negativo.
- Se o número for positivo, exiba uma mensagem informando que é positivo.
- Caso contrário, ou seja, se o número for negativo, exiba uma mensagem informando que é negativo.
- Considere a situação em que o número pode ser zero e inclua uma mensagem para essa condição.

Estruturas condicionais

Solução com SE e SENÃO:

- 1. Início
- 2. LEIA número
- 3. SE número > 0 ENTAO
- 4. ESCREVA "O número é positivo."
- 5. SENAO SE número < 0 ENTAO
- 6. ESCREVA "O número é negativo."
- 7. SENAO
- 8. ESCREVA "O número é zero."
- 9. FIM_SE
- 10. Fim

Solução com ESCOLHA CASO:

- 1. Início
- 2. LEIA número
- 3. ESCOLHA (Verdadeiro)
- 4. CASO (número > 0):
- 5. ESCREVA "O número é positivo."
- 6. Break
- 7. CASO (número < 0):
- 8. ESCREVA "O número é negativo."
- 9. Break
- 10. padrao:
- 11. ESCREVA "O número é zero."
- 12. BREAK
- 13. FIM_ESCOLHA
- 14. Fim

Vamos fazer uma **atividade**

Planejando atividades de lazer

Um indivíduo está planejando suas atividades de lazer e deseja escolher a partir de seus interesses. Crie um pseudocódigo para ajudá-lo a tomar essa decisão de forma simples. Confira, ao lado, os requisitos.

Em seguida envie sua atividade pelo AVA.

- O indivíduo deve informar seu tipo de preferência: "Esportes" ou "Artes".
- 2 Se a preferência for "Esportes", o sistema deve sugerir "Praticar esportes".
- 3 Se a preferência for "Artes", o sistema deve sugerir "Explorar museus".
- 4 Antes de apresentar a sugestão, o sistema deve verificar se o indivíduo tem uma assinatura ativa.
- Se a assinatura estiver **ativa**, o sistema deve **aplicar** um **desconto de 20%** na atividade sugerida.
- Se a assinatura **não** estiver ativa, o sistema deve **sugerir** que o indivíduo a **adquira** para obter descontos.

Hoje desenvolvemos:

Conhecimento sobre as **estruturas** condicionais SE e SENÃO (IF *and* ELSE);

2 Aplicação do **SENÃO** para evitar comportamentos inesperados;

3 Aplicação da estrutura condicional ESCOLHA CASO (SWITCH CASE).

Saiba mais

Quer apreender mais sobre o tema que estudamos hoje? Veja um curso que ensina a trabalhar estruturas condicionais com linguagem diferenciada:

ALURA. JavaScript e HTML: desenvolva um jogo e pratique lógica de programação. Disponível em: https://cursos.alura.com.br/course/logica-programacao-javascript-html. Acesso em: 20 fev. 2024.

Referências da aula

Identidade visual: Imagens © Getty Images

FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. *Lógica de programação*: a construção de algoritmos e estruturas de dados. São Paulo: Pearson; Porto Alegre: Bookman, 2022.

Educação Profissional Paulista

Técnico em Ciência de Dados

S9 - Aula 2 - Registro

Planejando atividades de lazer

Um indivíduo está planejando suas atividades de lazer e deseja escolher a partir de seus interesses. Crie um pseudocódigo para ajudá-lo a tomar essa decisão de forma simples. Confira, a seguir, os requisitos:

Requisitos:

- 1. O indivíduo deve informar seu tipo de preferência: "Esportes" ou "Artes".
- 2. Se a preferência for "Esportes", o sistema deve sugerir "Praticar esportes".
- 3. Se a preferência for "Artes", o sistema deve sugerir "Explorar museus".
- 4. Antes de apresentar a sugestão, o sistema deve verificar se o indivíduo tem uma assinatura ativa.
- 5. Se a assinatura estiver ativa, o sistema deve aplicar um desconto de 20% na atividade sugerida.
- **6.** Se a assinatura **não** estiver ativa, o sistema deve **sugerir** que o indivíduo a **adquira** para obter descontos.

Orientações de entrega: Envie sua atividade pelo AVA.

Condições de conclusão

Fazer um envio

Resumo das Avaliações

Turmas separadas: 293566972 | 2ª SERIE BT MANHA ANUAL | 99 | JOAO CRUZ PROF

Oculto para estudantes	Não
Participantes	43
Enviado	0
Precisa ser avaliado	0

Disciplina

Lógica, Algoritmo e Operação de Planilhas Eletrônicas 2º Bimestre

Curso

Técnico em Ciência de Dados

Ano letivo

2025

🕇 Retornar ao Sumário

Educação Profissional Paulista

Técnico em Ciência de Dados

Introdução à lógica de programação e algoritmos

Aula 3

[DADOS]ANO1C3B2S9A3

Objetivo da aula

Exercitar profundamente a lógica básica.

Competências da Unidade (técnicas e socioemocionais)

- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências;
- Compreender e dominar técnicas de manipulação de dados;
- Extrair, transformar e carregar conjuntos de dados de diferentes fontes, garantindo a qualidade e a integridade dos dados;
- Criar e compreender visualizações gráficas.

Recursos didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Acesso ao laboratório de informática e/ou à internet.

Duração da aula

50 minutos.

Vamos fazer uma **atividade**

Escolha das atividades extracurriculares

Um professor deseja criar um sistema simples para ajudar os alunos a escolher atividades extracurriculares com base nos interesses dos alunos, conforme requisitos indicados ao lado.

Crie um pseudocódigo e um fluxograma para esse sistema.

- (40 minutos
- മ്മ Em grupos

- O indivíduo deve informar seu tipo de preferência: "Esportes" ou "Artes".
- Se o interesse for "Esportes", o sistema deve apresentar opções como "Futebol" e "Natação".
- Se o interesse for "Artes", o sistema deve apresentar opções como "Dança" e "Pintura".
- 4 Após a escolha da atividade, o sistema deve **verificar** se o aluno é **maior** de 12 anos.
- Se o aluno for **maior de 12 anos**, o sistema deve sugerir que **ele se inscreva** na atividade escolhida.
- Se o aluno for **menor de 12 anos**, o sistema deve sugerir que os **pais** sejam consultados antes da inscrição.

Hoje desenvolvemos:

O conhecimento aprofundado e o exercício com aplicação das **estruturas condicionais SE e SENÃO** (IF and ELSE);

A visualização e a aplicação prática do SENÃO para evitar comportamentos inesperados;

3 A aplicação da estrutura condicional **ESCOLHA CASO** (ou SWITCH CASE) e a compreensão de que ela oferece uma alternativa mais eficiente e legível em comparação com encadeamentos de estruturas condicionais SE-SENÃO.

Saiba mais

Assista ao vídeo indicado abaixo para aprofundar seus conhecimentos sobre estruturas condicionais:

CURSO EM VÍDEO. Estruturas condicionais 1 - curso de algoritmos #07 - Gustavo Guanabara. Disponível em:

https://www.youtube.com/watch?v=_g05aHdBAEY&pp=ygUXZXN0cnV0dXJhcyBjb25kaWNpb25haXM%3D. Acesso em: 20 fev. 2024.

Referências da aula

Identidade visual: Imagens © Getty Images

FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. *Lógica de programação*: a construção de algoritmos e estruturas de dados. São Paulo: Pearson; Porto Alegre: Bookman, 2022.

Educação Profissional Paulista

Técnico em Ciência de Dados

