Package 'TabularManifest'

March 20, 2014

Title Tabular Manifest		
Description Assists the manipulation and exploration of wide datasets with tabular configuration files		
Date 2014-03-20		
Version 0.1-15		
License LGPL		
LazyData TRUE		
VignetteBuilder knitr		
Maintainer Will Beasley <wibeasley@hotmail.com></wibeasley@hotmail.com>		
<pre>URL http://melinae.com/</pre>		
Depends R(>= 3.0.0),stats		
Imports ggplot2,grid,mgcv,plyr,scales		
Suggests datasets, devtools, knitr, RColorBrewer, testit, testthat		
R topics documented: tabularmanifest-package		
calculate_bins		
calculate_rounding_digits		
histogram_continuous		
scatter_model_continuous_x_binary_y_logit		
scatter_model_discrete_x_binary_y_logit		
Index 1		

tabularmanifest-package

Tabular Manifest

Description

Our consulting company, Melinae, frequently assists clients with large datasets consisting of many variables of varying quality. Before we can develop sophisticated statistical models to provide our client with insight and a competitive advantage, we first learn the characteristics of their existing datasets. This package provides tools that assist our initial exploration of real-world datasets. Although these tools are not a substitute of thoughtful inspection in our later analyses, these make the exploration more time efficient. These tools allow us to more quickly start developing innovative solutions and delivering results.

The idea behind this package is that *configuring* metadata is quicker and more robust than *coding* the same repetitive code. [We need to write more as the package takes shape.]

Thanks, the Melinae Analytics Team

Note

Our company has benefited from many tools developed by the community, and we'd like to contribute back. Suggestions, criticisms, and code contributions are welcome. If any developer is interested in trying a direction that suits them better, we'll be happy to explain the package's internals and help you fork your own version. We have some starting material described in the ./documentation_for_developers/ directory. The repository is currently hosted at our GitHub server.

If your organization is interested in the consulting services of Melinae, please contact Steve Soloway at [what material belongs here]?

[Is there anything else someone would like to include?]

#TODO: this line needs to be adapated when we move to GitHub. For those interested in use the development version of 'tabularmanifest', run

devtools::install_git(repo="Melinae/TabularManifest")

Author(s)

William Howard Beasley

Chad Scherrer

Steve Soloway

Maintainer: Will Beasley <wibeasley@hotmail.com>

References

[Do any article or book references make sense? Maybe reproducible research?]

calculate_bins 3

Examples

```
create_manifest_explore_univariate(datasets::InsectSprays, write_to_disk=FALSE)
if( require(grDevices) ) {
  histogram_continuous(ds_observed=beaver1, variable_name="temp", bin_width=.1)
  histogram_discrete(ds_observed=infert, variable_name="age")
}
```

calculate_bins

Internal function for creating default bins for dataset variables.

Description

An internal function (ie, that's not currently exposed/exported outside the package) for creating default bins for dataset variables.

Usage

```
calculate_bins(ds_observed, bin_count_suggestion = 30L)
```

Arguments

```
ds_observed The data.frame with columns to calculate bins.
bin_count_suggestion
An integer or numeric value for the suggested number of bins for each vari-
```

Value

Returns a list, with two elements. Each element is an array with as many values as columns in ds_observed.

- 1. bin_width The variable name (in ds_observed).
- 2. bin_start The variable's class. (eg, numeric, Date, factor)

Examples

```
#tabularmanifest:::calculate_bins(ds_observed=datasets::freeny)
#tabularmanifest:::calculate_bins(ds_observed=datasets::InsectSprays)
```

4 construct_graph

```
calculate_rounding_digits
```

Internal function for calculating rounding digits for dataset variables

Description

An internal function (ie, that's not currently exposed/exported outside the package) for creating default bins for dataset variables.

Usage

```
calculate_rounding_digits(ds_observed)
```

Arguments

ds_observed The data.frame with columns to calculate bins.

Value

Returns a numeric vector, indicating how many rounding digits *might* be appropriate. Each element is an array with as many values as columns in ds_observed.

Examples

```
tabularmanifest:::calculate_rounding_digits(ds_observed=freeny)
tabularmanifest:::calculate_rounding_digits(ds_observed=InsectSprays)
tabularmanifest:::calculate_rounding_digits(ds_observed=beaver1)
```

construct_graph

Construct a graph or list of graphs

Description

Construct a graph or list of graphs, whose characteristics are determined by a configuration file.

Usage

```
construct_graph_univariate(variable_name, ds_metadata, ds_observed)
```

Arguments

variable_name The name of the single variable to graph.

ds_metadata The data.frame containing the metadata. See create_manifest_explore_univariate.

ds_observed The data.frame containing the data to be graphed.

Examples

```
#ds_observed <- beaver1
ds_observed <- InsectSprays
ds_manifest <- tabularmanifest::create_manifest_explore_univariate(ds_observed, write_to_disk=FALSE)
construct_graph_univariate(variable_name="count", ds_manifest, InsectSprays)
construct_graph_list_univariate(ds_manifest=ds_manifest, ds_observed=ds_observed)</pre>
```

create_manifest_explore_univariate

Create a manifest for exploratoring univariate patterns.

Description

This function creates a meta-dataset (from the data.frame passed as a parameter) and optionally saves the meta-dataset as a CSV. The meta-dataset specifies how the variables should be plotted.

Usage

```
create_manifest_explore_univariate(
    ds_observed,
    write_to_disk = TRUE,
    path_out = getwd(),
    overwrite_file = FALSE,
    default_class_graph = c(
      numeric = "histogram_continuous",
      integer = "histogram_continuous",
      factor = "histogram_discrete",
      character = "histogram_discrete",
      notMatched = "histogram_generic"
    ),
    default_format = c(
      numeric = "scales::comma",
      notMatched = "scales::comma"
    ),
    bin_count_suggestion = 30L
)
```

Arguments

ds_observed The data.frame to create metadata for.

write_to_disk Indicates if the meta-dataset should be saved as a CSV.

path_out The file path to save the meta-dataset.

overwrite_file Indicates if the CSV of the meta-dataset should be overwritten if a file already exists at the location.

default_format A character array indicating which formatting function should be displayed on the axis of the univariate graph.

6 histogram_continuous

```
default_class_graph
```

A character array indicating which graph should be used with variables of a certain class.

bin_count_suggestion

An integer value of the number of roughly the number bins desired for a histogram.

Value

Returns a data. frame where each row in the metadata represents a column in ds_observed. The metadata contains the following columns

- 1. variable_name The variable name (in ds_observed). character.
- 2. remark A blank field that allows theuser to enter notes in the CSV for later reference.
- 3. class The variable's class (eg, numeric, Date, factor). character.
- 4. should_graph A boolean value indicating if the variable should be graphed. logical.
- 5. graph_function The name of the function used to graph the variable. character.
- 6. x_label_format The name of the function used to format the *x*-axis. character.
- 7. bin_width The uniform width of the bins. numeric.
- 8. bin_start The location of the left boundary of the first bin. numeric.

Examples

```
create_manifest_explore_univariate(datasets::InsectSprays, write_to_disk=FALSE)
#Careful, the first column is a `ts` class.
create_manifest_explore_univariate(datasets::freeny, write_to_disk=FALSE)
```

histogram_continuous Generate a Histogram for a numeric or integer variable.

Description

Generate a histogram for a numeric or integer variable. This graph is intended to quickly provide the researcher with a quick, yet thorough representation of the continuous variable. The additional annotations may not be desired for publication-quality plots.

Usage

```
histogram_continuous(ds_observed, variable_name, bin_width = NULL,
  main_title = variable_name, x_title = paste0(variable_name,
  " (each bin is ", scales::comma(bin_width), " units wide)"),
  y_title = "Frequency", rounded_digits = 0L)
```

histogram_discrete 7

Arguments

ds_observed	The data.frame with the variable to graph.
variable_name	The name of the variable to graph. character.
bin_width	The width of the histogram bins. If NULL, the ggplot2 default is used. numeric.
main_title	The desired title on top of the graph. Defaults to variable_name. If no title is desired, pass a value of NULL. character.
x_title	The desired title on the <i>x</i> -axis. Defaults to the variable_name and the bin_width. If no axis title is desired, pass a value of NULL. character.
y_title	The desired title on the <i>y</i> -axis. Defaults to "Frequency". If no axis title is desired, pass a value of NULL. character.
rounded_digits	The number of decimals to show for the mean and median annotations. character.

Value

Returns a histogram as a ggplot2 object.

Examples

```
library(datasets)
#Don't run graphs on a headless machine without any the basic graphics packages installed.
if( require(grDevices) ) {
   histogram_continuous(ds_observed=beaver1, variable_name="temp", bin_width=.1)
}
```

histogram_discrete

Generate a Histogram for a character or factor variable.

Description

Generate a histogram for a character or factor variable. This graph is intended to quickly provide the researcher with a quick, yet thorough representation of the continuous variable. The additional annotations may not be desired for publication-quality plots.

Usage

```
histogram_discrete(ds_observed, variable_name,
  levels_to_exclude = character(0), main_title = variable_name,
  x_title = NULL, y_title = "Number of Included Records",
  text_size_percentage = 6, bin_width = 1L)
```

Arguments

```
ds_observed The data.frame with the variable to graph.

variable_name The name of the variable to graph. character.

levels_to_exclude

An array of of the levels to be excluded from the histogram. Pass an empty variable (ie, character(0)) if all levels are desired; this is the default. character.

main_title The desired title on top of the graph. Defaults to variable_name. If no title is desired, pass a value of NULL. character.
```

x_title
The desired title on the *x*-axis. Defaults to the number of included records. If no axis title is desired, pass a value of NULL. character.

y_title
The desired title on the *y*-axis. Defaults to "Frequency". If no axis title is desired, pass a value of NULL. character.

text_size_percentage
The size of the percentage values on top of the bars. character.

bin_width
(This parameter is included for compatibility with other graphing functions. It

should always be 1 for discrete and boolean variables.)

Value

Returns a histogram as a ggplot2 object.

Examples

```
library(datasets)
#Don't run graphs on a headless machine without any the basic graphics packages installed.
if( require(grDevices) ) {
   histogram_discrete(ds_observed=infert, variable_name="education")
   histogram_discrete(ds_observed=infert, variable_name="age")
}
```

```
scatter_model_continuous_x_binary_y_logit
```

Internal function for examining a logit performance

Description

Internal function for examining a logit performance

Usage

```
scatter_model_continuous_x_binary_y_logit(ds_plot, x_name, y_name = "y",
  yhat_name = "yhat", residual_name = "residual", alpha_point = 0.05,
  alpha_se_band = 0.15, x_label_format = scales::comma,
  color_smooth_observed = "#1b9e77", color_smooth_predicted = "#d95f02",
  color_smooth_residual = "#7570b3", vertical_limits = c(-0.05, 1.05),
  jitter_observed = ggplot2::position_jitter(w = 0, h = 0.2),
  jitter_predicted = ggplot2::position_jitter(w = 0, h = 0),
  seed_value = NA_real_)
```

Arguments

ds_plot The data. frame of observed and predicted values to plot.

x_name The name of the predictor character.

y_name The name of the observed response character.

yhat_name The name of the predicted response character.

residual_name The name of the model residual. character.

alpha_point The transparency of each plotted point. A numeric value from 0 to 1.

```
alpha_se_band The transparency of the standard error bands. A numeric value from 0 to 1.
x_label_format The name of the function used to format the x-axis. character.
color_smooth_observed
                  The plotted color of the observed values' GAM trend. character.
color_smooth_predicted
                  The plotted color of the predicted's GAM trend. character.
color_smooth_residual
                  The plotted color of the residual's GAM trend. character.
vertical_limits
                  The plotted limits of the response variable. A two-element numeric array.
jitter_observed
                  A function dictating how the observed values are jittered.
jitter_predicted
                  A function dictating how the predicted values are jittered.
                  The value of the RNG seed, which affects jittering. No seed is set if a value of
seed_value
                  NA is passed. numeric.
```

Description

Internal function for examining a logit performance

Usage

```
scatter_model_discrete_x_binary_y_logit(ds_plot, x_name, y_name = "y",
  yhat_name = "yhat", residual_name = "residual", alpha_point = 0.05,
  alpha_se_band = 0.15, x_label_format = scales::comma,
  color_smooth_observed = "#1b9e77", color_smooth_predicted = "#d95f02",
  color_smooth_residual = "#7570b3", color_group_count = "tomato",
  vertical_limits = c(-0.05, 1.05),
  jitter_observed = ggplot2::position_jitter(w = 0.35, h = 0.2),
  jitter_predicted = ggplot2::position_jitter(w = 0.35, h = 0),
  seed_value = NA_real_)
```

Arguments

ds_plot	The data.frame of observed and predicted values to plot.
x_name	The name of the predictor character.
y_name	The name of the observed response character.
yhat_name	The name of the predicted response character.
residual_name	The name of the model residual. character.
alpha_point	The transparency of each plotted point. A numeric value from 0 to 1.
alpha_se_band	The transparency of the standard error bands. A numeric value from $0\ \mathrm{to}\ 1.$
x_label_format	The name of the function used to format the <i>x</i> -axis. character.

color_smooth_observed

The plotted color of the observed values' GAM trend. character.

color_smooth_predicted

The plotted color of the predicted's GAM trend. character.

color_smooth_residual

The plotted color of the residual's GAM trend. character.

color_group_count

The color indicating how many cases belong to each level. character.

vertical_limits

The plotted limits of the response variable. A two-element numeric array.

jitter_observed

A function dictating how the observed values are jittered.

jitter_predicted

A function dictating how the predicted values are jittered.

seed_value The value of the RNG seed, which affects jittering. No seed is set if a value of NA is passed. numeric.

Index

```
*Topic explore
    create_manifest_explore_univariate,
        5
*Topic package
    tabularmanifest-package, 2
calculate_bins, 3
calculate_rounding_digits, 4
class, 3, 6
construct_graph, 4
construct\_graph\_list\_univariate
        (construct_graph), 4
{\tt construct\_graph\_univariate}
        (construct_graph), 4
create_manifest_explore_univariate, 4,
        5
histogram_continuous, 6
histogram_discrete, 7
scatter_model_continuous_x_binary_y_logit,
scatter_model_discrete_x_binary_y_logit,
tabularmanifest
        (tabularmanifest-package), 2
tabularmanifest-package, 2
```