NOI练习赛 d646d58aa3d9c7b7b03a97885d5d5e8d

中文题目名称	找不到	二进制通信	木乃伊危机
英文题目名称	zbd	binc	mummy
输入文件名	zbd.in	binc.in	mummy.in
输出文件名	zbd.out	binc.out	mummy.out
每个测试点时限	1.5s	1s	1s
测试点数目	20	10	20
每个测试点分值	5	10	5
内存限制	256MB	256MB	256MB
是否有部分分	否	否	否
题目类型	传统	传统	传统

1 找不到

1.1 题目描述

我精心设计了一个迷阵,这个迷阵是一个 $n \times n$ 的0/1方阵A。你需要找一个 $m \times m$ 的方阵B,使得B在A中没有出现过。

注意,如果方阵B通过旋转,翻转等方式得到了方阵B',而B'在A中出现过,则也视为B在A中出现过。详见样例。

如果有多种方案,你要使得m最小。如果有多个最小的方案,那么输出字典序最小的方阵。方阵的字典序大小,定义为把它"压扁"后得到的字符串的字典序大小。例如,方阵 $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ 被压扁之后成为了字符串0101。

1.2 输入格式

输入文件为zbd.in。 第一行一个整数n。 接下来n行,表示方阵A。

1.3 输出格式

输出文件为zbd.out。 第一行输出你得到的m。 接下来m行,表示方阵B。

1.4 样例输入

3

110

100

100

1.5 样例输出

2

01

10

1.6 样例解释

答案不是 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 的原因是:它可以通过旋转或翻转得到 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$,从而在A中出现。

1.7 数据规模与约定

除样例外,对于所有的数据,保证方阵A中的元素是随机生成的,(i,j)位置上的元素是1的概率为 ij/n^2 。

编号	n	编号	n
1	1	11	250
2	2	12	300
3	3	13	400
4	25	14	600
5	50	15	700
6	75	16	800
7	100	17	850
8	125	18	900
9	150	19	950
10	200	20	1000

2 二进制通信

2.1 题目描述

请注意接下来本题当中所有的数都是二进制数。请注意接下来本题当中所有的数都是二进制数。请注意接下来本题当中所有的数都是二进制数。

你要发送n个整数($0 \le n < 10\ 0000\ 0000$),每个整数有 $100\ 0000$ 位。 这些数的顺序可以被打乱,只要把这些数都发过去就可以了。比如原来 是[1,10,11],你可以把它改成[10,11,1]发过去也无所谓。

你决定设计一个发送格式。首先你决定用1001个位把n发送出去(因为1001个位刚好可以表达0到1 1111 1111的整数,以后我们就称这种发送方式为"发送一个a位数")。接下来你将依次发送n个数。

第*i*个数有10种发送方式:

- 方式0: 先发送一个0表明这是方式0, 然后发送一个100 0000位数表示这个数。这样第*i*个数就发送完毕了。
- 方式1: 先发送一个1表明这是方式1, 然后发送一个1001位数x (你需要保证1 $\leq x < i$), 然后再发送一个110位数y, 然后再发送y个110位数y, 然后再发送y个110位数y, 然后再发送y个10位数y, 然后再发送y个10位数y, 数分 x_1, x_2, \dots, x_n 。表示第x个数有y个位不相同,这些位分别是第 x_1, x_2, \dots, x_n 。这样第x个数就发送完毕了。

例如,我们想发送[10,11,1]。注意到n=11,所以首先将n发送出去,也就是发送0 0000 0011。

接下来我们发送11这个数。用方式0发送的代价太高,选择方式1,令 $x=1,y=1,a_1=0$ 即可。因为这个数11和第x=1个数只有y=1位不同,即第 $a_1=0$ 位。所以我们发送1 0 0000 0001 00 0001 00 0000。

接下来发送1。比如我们可以发送1000000010000001000001。

现在给出n和n个数,请求出最小需要发送多少位才能将这些数传输过去?

2.2 输入格式

输入文件为binc.in。

第一行为一个正整数n。如果它不足1001位则会在前面加上前导零补足。

接下来*n*行,每行为一个要发送的数,用前导零补足至了100 0000位。 注意要发送的数的顺序无关紧要。

2.3 输出格式

输出文件为binc.out。

只输出一个整数,表示最小发送的位数。这个数不要有前导零,除非答案是0。

2.4 样例输入

000000011

2.5 样例输出

1110110

2.6 样例解释

样例中n = 11,要发送的n个数是[1, 10, 11]。

首先我们把顺序调整成[10,11,1]。

然后按照题目描述中的方法发送即可,共需要发送1110110位。不存在 更优的方案。

2.7 数据规模与约定

对于20%的数据, 0 < n < 10。

对于40%的数据,0 < n < 100。

对于60%的数据,0 < n < 1000。

对于80%的数据,0 < n < 10000000。

对于100%的数据, $0 \le n < 10\ 0000\ 0000$,所有要发送的数都是随机生成的。

3 木乃伊危机

3.1 题目描述

在NOI 2106上的一次游览中,你碰到了一个埃及古墓。

不幸的是,你打开了坟墓之后,才发现这是一个坏主意:突然之间,原本空无一物的沙漠上已经爬满了暴躁的木乃伊。(如果你也沉睡几千年而突然被惊醒,你也会变得如此暴躁的。)

面对这一大堆疯狂的木乃伊,你唯一的机会就是试图在他们抓到你之前逃跑。问题是:假如你与木乃伊永不疲倦,那么经过多长时间你会被木

乃伊抓到?

我们把沙漠看成一个正方形的网格,你与木乃伊轮流移动。轮到你时,你可以移动到相邻的8个格子之一,或者站着不动。轮到木乃伊时,每个木乃伊会移动到其相邻的8个格子之一,使得他与你的欧几里得距离尽量小(假设你与木乃伊都站在格子的中心位置)。允许多个木乃伊同时占据同一个格子。

在每个单位时间内, 你先做出移动, 然后木乃伊做出移动。如果你与任何一个木乃伊站在同一位置, 你会被抓住。当然, 你试图尽量长时间避免被抓住。经过多少单位时间你会被抓住呢?

下图描述了你被4个木乃伊追逐的例子。H代表你的初始位置,而M代表木乃伊的初始位置。以你的初始位置为原点,则经过4个单位时间后,你被初始位置为(3,4)的木乃伊抓住。

3.2 输入格式

输入文件为mummy.in。

输入文件包含若干组数据。每组数据的第一行为一个数 $n(0 \le n \le 10^5)$,表示沙漠中木乃伊的个数。接下来n行,每行两个整数xy,表示初始时在(x,y)有一个木乃伊。x,y的绝对值均不超过 10^6 。你的初始位置是(0,0),保证一开始这里没有木乃伊。

输入文件以一行-1结束。

3.3 输出格式

输出文件为mummy.out。

对于每组测试数据,输出一行,包括它的编号和被抓住经过的最长时间(即你做出决策的次数);或输出"never",如果你有办法永远不被抓住。

请以样例输出的格式输出数据。

3.4 样例输入

4

-3 5

3 4

-6 -2

1 -5

1

0 - 1

-1

3.5 样例输出

Case 1: 4

Case 2: never

3.6 数据规模与约定

对于20%的数据, $n \le 100$;

对于50%的数据, $n \le 1000$;

对于100%的数据, $n \le 10^5$;

对于所有数据,每个输入文件只有1组数据,但是依然以-1结尾,并且你仍然需要输出"Case 1:"。