Non Linear Programming

NLPP

Introduction

An optimization problem in which either the object function or some or all constraints are non linear is called non linear programming problem.

Examples for NLPP

(i) Optimise
$$z = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 3x_2x_3 + 100$$

subject to $x_1 + x_2 + x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

Here, the object function is non-linear

(ii) Optimise,
$$z = 3x_1 + 4x_2 + 7x_3$$

subject to $x_1^2 + 2x_2^2 \ge 20$
 $3x_1 + x_2 + 2x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$.

Here, although the object function is linear, one of the constraints is non-linear.

(iii) Optimise,
$$z = x_1^2 + x_2^2 - 3x_1 x_2$$

subject to $x_1^2 + x_1 x_2 + 2x_3 = 35$
 $x_1, x_2 \ge 0$

Here, both the object function as well as the constraints are non-linear.

Maxima and Minima for one variable

If y = f(x) is differentiable function of real variable x upto second order then f'(x) = 0 gives the stationary values of x. Suppose f'(x) = 0, for $x = x_0$.

Now, x_0 is a stationary point, and if $f''(x_0) > 0$ then x_0 is a **minima**, if $f''(x_0) < 0$ then x_0 is a **maxima**, if $f''(x_0)' = 0$, no conclusion can be drawn about the nature of f(x) at x_0 . It is called the point of **inflexion**.

Maxima and Minima for two variables

If z = f(x, y) is a function of two variables x and y such that the second order partial derivatives exist then the stationary points are given by $f_x(x, y) = 0$ and $f_y(x, y) = 0$

- (i) If $f_{xx}f_{yy} f_{xy}^2 > 0$, then $X_O(x_0, y_0)$ is stationary point and
- $X_O(x_0, y_0)$ is maxima if $f_{xx} < 0$ at (x_0, y_0)
- $X_O(x_0, y_0)$ is minima if $f_{xx} > 0$ at (x_0, y_0)
- (ii) If $f_{xx}f_{yy} f_{xy}^2 < 0$, then $X_O(x_0, y_0)$ is saddle point
- (iii) $If f_{xx} f_{yy} f_{xy}^2 = 0$, then no definite conclusion can be drawn about the nature of f(x,y) at (x_0,y_0)

Types of Non linear programming problems

- 1. Quadratic programming problems with no constraints (Using Hassian matrix)
- 2. Quadratic programming problems of 2 or 3 variables with 1 linear equality constraints using Lagrange's Multiplier method.
- 3. . Quadratic programming problems of 2 or 3 variables with 1 linear inequality constraints using Kuhn-Tucker conditions

In Quadratic programming problems object function looks like

$$z = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + \dots + c_1x_1 + \dots + c_nx_n$$

where $x_1, \dots x_n$ are decision variables

1.Quadratic programming problems with no constraints (Using Hassian matrix)

Hassian matrix

If $f(x_1, ... x_n)$ is a quadratic function of variables $x_1, ... x_n$ and if all 2^{nd} order partial derivatives of $f(x_1, ... x_n)$ exist, then the matrix of 2^{nd} order partial derivatives defined as given below is called Hassian matrix (H).

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

- 1. If all the principal minor determinants of Hassian Matrix at X_O are positive, X_O is minima.
- 2. If the principal minor determinants $D_1, D_3, ...$ are negative and $D_2, D_4, ...$ are positive, X_0 is maxima.
- 3. If H is indefinite at X_O , X_O is a saddle point ie. no maxima no minima.

Ex 1- Find the maximum or minimum of the function $z = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$

We have $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$

The stationary points are given by

$$\frac{\partial f}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} = 0, \frac{\partial f}{\partial x_3} = 0 \Rightarrow 2x_1 - 4 = 0; 2x_2 - 8 = 0; 2x_3 - 12 = 0$$

Thus $X_0 = (2,4,6)$ is stationary point.

Now to check maxima or minima, find values of all 2^{nd} order partial derivatives of $f(x_1, x_2, x_3)$ at the point $X_0 = (2,4,6)$ and Hassian Matrix

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

the principal minor determinants are

$$D_1 = |2| = 2, D_2 = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4, D_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8,$$

Since all the principal minor determinants of Hassian Matrix at $X_O = (2,4,6)$ are positive, $X_O = (2,4,6)$ is minima.

$$z_{min} = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$$

= $2^2 + 4^2 + 6^2 - 4 * 2 - 8 * 4 - 12 * 6 + 100 = 44$

Ex 2- Find the maximum or minimum of the function

$$z = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$$

$$X_O = (1/2, 2/3, 4/3)$$
 $H = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$ $D_1 = -2, D_2 = 4, D_3 = -6,$

Since the principal minor determinants D_1 , D_2 , D_3 are alternately negative and positive, X_O is maxima.

$$z_{max} = 19/12$$

EXERCISE

1. Find the relative maximum or minimum of the function

$$z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$$

[Ans.:
$$x_1 = 3$$
, $x_2 = 5$, $x_3 = 7$. $z_{Min} = 20$]

2. Find the relative maximum or minimum of the function

$$z = x_1^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_3 + 100$$
 [Ans.: $x_1 = 4$, $x_2 = 5$, $x_3 = 6$. $z_{\text{Max}} = 23$]

2.Quadratic programming problems of 2 or 3 variables with 1 linear equality constraints (using Lagrange's Multiplier method).

A general non-linear programming problem in which the object function is non-linear but the constraints are linear and in the form of equalities, takes the following form.

where, $f(x_1, x_2, \ldots, x_n)$ is a non-linear function and $g_1(x_1, x_2, \ldots, x_n)$, $g_2(x_1, x_2, \ldots, x_n)$, $g_n(x_1, x_2, \ldots, x_n)$ are linear functions and m < n.

The problem of this type is solved by forming what is called Lagrangian Function with Lagrange's multiplier λ .

We first express the constraints with r.h.s. equal to zero and denote it by h.

The problem then becomes

Optimize
$$z = f(x_1, x_2,, x_n)$$

subject to $h(x_1, x_2,, x_n) = g(x_1, x_2,, x_n) - b = 0$
 $x_1, x_2,, x_n \ge 0$.

Now, we construct a new function called Lagrangian Function using the multiplier called the Lagrangian multiplier as

$$L(x_1, x_2, ..., x_n, \lambda) = f(x_1, x_2, ..., x_n) - \lambda h(x_1, x_2, ..., x_n)$$
(1)

The necessary conditions for maxima or minima subject to the constraint $h(x_1, x_2,, x_n) = 0$

$$\frac{\partial L}{\partial x_1} = 0, \quad \frac{\partial L}{\partial x_2} = 0, \dots, \quad \frac{\partial L}{\partial x_n} = 0, \quad \frac{\partial L}{\partial \lambda} = 0$$
(2)

Now, from (1), we get,

$$\frac{\partial L}{\partial x_1} = \frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} \; ; \; \frac{\partial L}{\partial x_2} = \frac{\partial f}{\partial x_2} - \lambda \frac{\partial h}{\partial x_2} \dots$$
$$\frac{\partial L}{\partial x_n} = \frac{\partial f}{\partial x_n} - \lambda \frac{\partial h}{\partial x_n} \; ; \; \frac{\partial L}{\partial \lambda} = -\lambda h$$

Using (2), we get the following (n + 1) necessary conditions.

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0 \; ; \; \frac{\partial f}{\partial x_2} - \lambda \frac{\partial h}{\partial x_2} = 0 \dots$$
$$\frac{\partial f}{\partial x_n} - \lambda \frac{\partial h}{\partial x_n} = 0 \; ; \; h(x_1, x_2, \dots, x_n) = 0$$

Solving these (n + 1) equations we can find $x_1, x_2 x_n$ and λ . Thus, the point of maxima or minima can be obtained.

To determine whether the point obtained above is a maxima or a minima, we find the value of the following determinant of order (n + 1) at X_0 .

$$\Delta_{n+1} = \begin{bmatrix} 0 & \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \dots & \frac{\partial h}{\partial x_n} \\ \frac{\partial h}{\partial x_1} & \frac{\partial^2 f}{\partial x_1^2} - \lambda \frac{\partial^2 h}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_n} \\ \frac{\partial h}{\partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} - \lambda \frac{\partial^2 h}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} - \lambda \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \frac{\partial h}{\partial x_n} & \frac{\partial^2 f}{\partial x_n \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_n^2} \end{bmatrix}$$

If the signs of the principal minors Δ_3 , Δ_4 , Δ_5 , ... are alternately positive and negative *i.e.* $\Delta_3 > 0$, $\Delta_4 < 0$, $\Delta_5 > 0$ etc. then the points X_0 is a maxima.

If all the principal minors Δ_3 , Δ_4 , Δ_5 , Δ_{n+1} are **negative** *i.e.* $\Delta_3 < 0$, $\Delta_4 < 0$, etc. then the point X_0 is a minima.

Note

• If z is function of 2 variables, we get only one determinant of third order Δ_3 .

If Δ_3 is positive, X_O is maxima.

If Δ_3 is negative, X_O is minima. $\Delta_3 = \begin{bmatrix} 0 & \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} \\ \frac{\partial h}{\partial x_1} & \frac{\partial^2 f}{\partial x_1^2} - \lambda \frac{\partial^2 h}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_2} \\ \frac{\partial h}{\partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} - \lambda \frac{\partial^2 h}{\partial x_2^2} \end{bmatrix}$

• If z is function of 3 variables, we get determinant of fourth order Δ_4 . If Δ_3 and Δ_4 both are negative, X_0 is minima.

If Δ_3 is positive but Δ_4 is negative, X_O is maxima.

$$\Delta_{4} = \begin{vmatrix} 0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} & \frac{\partial h}{\partial x_{3}} \\ \frac{\partial h}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{3}} \\ \frac{\partial h}{\partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{3}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{3}} \\ \frac{\partial h}{\partial x_{3}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{3}} - \lambda \frac{\partial^$$

NLPP with 2 variables with 1 linear equality constraints Ex1- Using method of Lagranges Multipliers, solve the NLPP Optimize $z=4x_1+8x_2-{x_1}^2-{x_2}^2$ subject to $x_1+x_2=4$, $x_1,x_2\geq 0$

Sol.: We have the Lagrangian function $L(x_1, x_2, \lambda) = (4x_1 + 8x_2 - x_1^2 - x_2^2) - \lambda(x_1 + x_2 - 4)$ We, now, obtain the following partial derivatives $\frac{\partial L}{\partial x_1} = 4 - 2x_1 - \lambda, \ \frac{\partial L}{\partial x_2} = 8 - 2x_2 - \lambda, \ \frac{\partial L}{\partial \lambda} = -(x_1 + x_2 - 4)$ Solving the equations $\frac{\partial L}{\partial x_1} = 0$, $\frac{\partial L}{\partial x_2} = 0$, $\frac{\partial L}{\partial \lambda} = 0$, we get \therefore 4-2 x_1 - λ =0, 8-2 x_2 - λ =0, x_1 + x_2 =4 Adding the first two, we get $12-2(x_1+x_2)-2\lambda=0$ $12-8=2\lambda \qquad \lambda=2.$ Hence, from the first equation, we get $4-2x_1-2=0$: $2x_1=2$: $x_1=1$ And from the second equation, we get $8 - 2x_2 - 2 = 0$: $2x_2 = 6$ $x_2 = 3$. Hence, X_0 is (1, 3). Now, $h(x_1, x_2) = x_1 + x_2 - 4 = 0$ $\therefore \frac{\partial h}{\partial x_i} = 1, \frac{\partial h}{\partial x_0} = 1 \text{ and all other partial derivatives are zero.}$ And $f(x_1, x_2) = 4x_1 + 8x_2 - x_1^2 - x_2^2$ $\therefore \frac{\partial f}{\partial x_1} = 4 - 2x_1, \quad \frac{\partial^2 f}{\partial x_1 x_2} = 0, \quad \frac{\partial^2 f}{\partial x_2^2} = -2,$ $\frac{\partial f}{\partial x_2} = 8 - 2x_2, \quad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 0, \quad \frac{\partial^2 f}{\partial x_2^2} = -2.$

$$\Delta_{3} = \begin{vmatrix} 0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} \\ \frac{\partial h}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} \\ \frac{\partial h}{\partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2}^{2}} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -1 \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} = 2 + 2 = 4$$

Since Δ_3 is positive, X_O is maxima.

$$x_1 = 1$$
, $x_2 = 3$, $z_{max} = 18$

EXERCISE

Optimise
$$z = 3x_1^2 + x_2^2 + 2x_1x_2 + 6x_1 + 2x_2$$

subject to $2x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$.

[Ans. :
$$x_1 = 1$$
, $x_2 = 2$, $z_{Min} = 28$]

2. Optimise
$$z = 2x_1 + 6x_2 - x_1^2 - x_2^2 + 14$$

subject to $x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$.

[Ans. :
$$x_1 = 1$$
, $x_2 = 3$, $z_{\text{Max}} = 24$]

NLPP with 3 variables with 1 linear equality constraints

Ex 1- Using method of Lagranges Multipliers, solve the NLPP

Optimize
$$z = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 260$$
 subject to $x_1 + x_2 + x_3 = 11$, $x_1, x_2, x_3 \ge 0$

Sol.: We have the Lagrangian function

$$L(x_1, x_2, x_3, \lambda) = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 260 - \lambda(x_1 + x_2 + x_3 - 11)$$

We, now, obtain the following partial derivatives.

$$\frac{\partial L}{\partial x_1} \approx 4x_1 - 24 - \lambda, \quad \frac{\partial L}{\partial x_2} = 4x_2 - 8 - \lambda,$$

$$\frac{\partial L}{\partial x_3} = 4x_3 - 12 - \lambda, \quad \frac{\partial L}{\partial \lambda} = x_1 + x_2 + x_3 - 11$$

Solving the equations, $\frac{\partial L}{\partial x_1} = 0$, $\frac{\partial L}{\partial x_2} = 0$, $\frac{\partial L}{\partial x_3} = 0$, $\frac{\partial L}{\partial \lambda} = 0$, we get

$$4x_1 - 24 - \lambda = 0, \ 4x_2 - 8 - \lambda = 0,$$

$$4x_3 - 12 - \lambda = 0, \ x_1 + x_2 + x_3 - 11 = 0$$

Adding the first three equations, we get,

$$4(x_1 + x_2 + x_3) - 44 - 3\lambda = 0.$$
 But $x_1 + x_2 + x_3 = 11$

$$\therefore 44-44-3\lambda=0 \qquad \therefore \lambda=0.$$

Hence,
$$4x_1 = 24$$
 $\therefore x_1 = 6$; $4x_2 = 8$ $\therefore x_2 = 2$.

$$\therefore$$
 4 $x_4 = 12$ \therefore $x_3 = 3;$ \therefore $x_0 \text{ is (6, 2, 3)}.$

$$\Delta_{4} = \begin{bmatrix} 0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} & \frac{\partial h}{\partial x_{3}} \\ \frac{\partial h}{\partial x_{1}} & \frac{\partial^{2} L}{\partial x_{1}^{2}} - \lambda \frac{\partial^{2} L}{\partial x_{1}^{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{3}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{3}} \\ \frac{\partial h}{\partial x_{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2}^{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{3}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{3}} \\ \frac{\partial h}{\partial x_{3}} & \frac{\partial^{2} L}{\partial x_{3} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{3} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{3}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{3}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{3}^{2}} \end{bmatrix}$$

where $f = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 260$ and $h = x_1 + x_2 + x_3 - 11$.

Now,
$$\Delta_4 = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 4 & 0 & 0 \\ 1 & 0 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{vmatrix}$$

By $C_2 - C_4$, $C_3 - C_4$

$$= \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 4 & 0 & 0 \\ 1 & 0 & 4 & 0 \\ 4 & -4 & -4 & 4 \end{vmatrix} = - \begin{vmatrix} 1 & 4 & 0 \\ 1 & 0 & 4 \\ 1 & -4 & -4 \end{vmatrix} = - [(16) - 4(-8)] = -48$$

Now, taking the first three rows and the first three columns from Δ_4 ,

$$\Delta_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 0 & 4 \end{vmatrix} = -1(4) + 1(-4) = -8$$

Since, Δ_3 , Δ_4 are both negative, $X_0 = (6, 2, 3)$ is the minima.

$$x_1 = 6, x_2 = 2, x_3 = 3$$

and
$$z_{\text{Min}} = 2(36) + 2(4) + 2(9) - 1244 - 16 - 36 + 260 = 162$$
.

EXERCISE

Using method of Lagranges Multipliers, solve the following NLPP

1. Optimize
$$z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$
 subject to $x_1 + x_2 + x_3 = 10$, $x_1, x_2, x_3 \ge 0$

Ans
$$x_1 = 5$$
, $x_2 = 3$, $x_3 = 2$, $z_{max} = 35$

2. Optimize $z = 3x_1^2 + x_2^2 + x_3^2$ subject to $x_1 + x_2 + x_3 = 2$, $x_1, x_2, x_3 \ge 0$

Ans
$$x_1 = 0.81$$
, $x_2 = 0.35$, $x_3 = 0.28$, $z_{min} = 0.84$

3. Quadratic programming problems of 2 or 3 variables with 1 linear inequality constraints (using Kuhn-Tucker conditions)

Consider the problem $z = f(x_1, ... x_n)$

Subject to $g(x_1, ... x_n) \le b$

$$x_1, ... x_n \ge 0$$

Let
$$h(x_1, ... x_n) = g(x_1, ... x_n) - b \le 0$$

The necessary conditions for maxima are

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0, \dots \frac{\partial f}{\partial x_n} - \lambda \frac{\partial h}{\partial x_n} = 0, \lambda h(x_1, \dots x_n) = 0$$
$$h(x_1, \dots x_n) \le 0 \quad \lambda \ge 0$$

These conditions are called Kuhn-Tucker conditions.

If the problem is of minimisation, then the last condition changes to $\lambda < 0$

Ex 1- Solve the following NLPP Maximise $z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$ subject to $2x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

We rewrite the given problem as

$$f(x_1, x_2) = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

$$h(x_1, x_2) = 2x_1 + x_2 - 5$$

Now Kuhn-Tucker conditions are

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0; \ \lambda h(x_1, x_2) = 0; \ h(x_1, x_2) \le 0; \ \lambda \ge 0$$

We get

$$10 - 4x_1 - 2\lambda = 0 \dots \dots (i)$$

$$4 - 2x_2 - \lambda = 0 \dots \dots (ii)$$

$$\lambda(2x_1 + x_2 - 5) = 0 \dots (iii)$$

$$2x_1 + x_2 - 5 \le 0 \dots (iv)$$

$$x_1, x_2, \lambda \ge 0 \dots \dots \dots (v)$$

From (iii), we get either $\lambda = 0$ or $(2x_1 + x_2 - 5) = 0$

Case 1- If $\lambda = 0$

From (*i*) and (*ii*), we get $x_1 = \frac{5}{2}$ and $x_2 = 2$

But these values do not satisfy equation (iv) so we reject these values.

Case 2- If
$$\lambda \neq 0$$
 so $2x_1 + x_2 - 5 = 0 \dots (vi)$

From (i), (ii) and (vi), we get
$$x_1 = \frac{11}{6}$$
 and $x_2 = \frac{4}{3}$, $\lambda = 4/3$

These values satisfy all necessary conditions. The optimal solution is

$$x_1 = \frac{11}{6}$$
 and $x_2 = \frac{4}{3}$ and $z_{max} = 10 * \frac{11}{6} + 4 * \frac{4}{3} - 2\left(\frac{11}{6}\right)^2 - \left(\frac{4}{3}\right)^2 = \frac{91}{6}$

Ex 2- Solve the following NLPP Maximise $z = 2x_1^2 - 7x_2^2 + 12x_1x_2$

Maximise
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

subject to $2x_1 + 5x_2 \le 98$, $x_1, x_2 \ge 0$

We rewrite the given problem as

$$f(x_1, x_2) = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

$$h(x_1, x_2) = 2x_1 + 5x_2 - 98$$

Now Kuhn-Tucker conditions are

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0 ; \ \lambda h(x_1, x_2) = 0 ; \ h(x_1, x_2) \le 0 ; \ \lambda \ge 0$$

We get

$$4x_1 + 12x_2 - 2\lambda = 0 \dots (i)$$

 $-14x_2 + 12x_1 - 5\lambda = 0 \dots (ii)$
 $\lambda(2x_1 + 5x_2 - 98) = 0 \dots (iii)$
 $2x_1 + x_2 - 98 \le 0 \dots (iv)$
 $x_1, x_2, \lambda \ge 0 \dots (v)$

From (iii), we get either
$$\lambda = 0$$
 or $(2x_1 + 5x_2 - 98) = 0$

•

Case 1- If
$$\lambda = 0$$

From (i) and (ii), we get $x_1 = 0$ and $x_2 = 0$

But these values give z=0 which is not feasible solution so we reject these values.

Case 2- If
$$\lambda \neq 0$$
 so $2x_1 + 5x_2 - 98 = 0 \dots (vi)$

From (i), (ii) and (vi), we get $x_1 = 44$ and $x_2 = 2$, $\lambda = 100$

These values satisfy all necessary conditions. The optimal solution is

$$x_1 = 44$$
 and $x_2 = 2$ and $z_{max} = 4900$

Ex 3- Solve the following NLPP Minimise $z = x_1^3 - 4x_1 - 2x_2$ subject to $x_1 + x_2 \le 1$, $x_1, x_2 \ge 0$

We rewrite the given problem as

$$f(x_1, x_2) = x_1^3 - 4x_1 - 2x_2$$

 $h(x_1, x_2) = x_1 + x_2 - 1$

Now Kuhn-Tucker conditions are

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0; \ \lambda h(x_1, x_2) = 0; \ h(x_1, x_2) \le 0; \ \lambda \le 0$$

We get

$$3x_1^2 - 4 - \lambda = 0 \dots (i)$$

 $-2 - \lambda = 0 \dots (ii)$
 $\lambda(x_1 + x_2 - 1) = 0 \dots (iii)$
 $x_1 + x_2 - 1 \le 0 \dots (iv)$
 $x_1, x_2 \ge 0, \lambda \le 0 \dots (v)$

From (ii), we get $\lambda = -2$ and as $\lambda \neq 0$ from (iii), we get $x_1 + x_2 - 1 \dots (vi)$

•

From (i) and (vi), we get
$$x_1 = \sqrt{\frac{2}{3}}$$
 and $x_2 = 1 - \sqrt{\frac{2}{3}}$

These values satisfy all necessary conditions. The optimal solution is

$$x_1 = \sqrt{\frac{2}{3}}$$
 and $x_2 = 1 - \sqrt{\frac{2}{3}}$ and $z_{min} = -3.093$

EXERCISE Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

```
1. Maximise z = 8x_1 + 10x_2 - x_1^2 - x_2^2

subject to 3x_1 + 2x_2 \le 6

x_1, x_2 \ge 0

[Ans.: x_1 = 17 / 13, x_2 = 46 / 13, z_{\text{Max}} = 411 / 13]

2. Maximise z = 2x_1^2 - 7x_2^2 - 16x_1 + 2x_2 + 12x_1x_2 + 7

subject to 2x_1 + 5x_2 \le 105

x_1, x_2 \ge 0 [Ans.: x_1 = 45, x_2 = 3, z_{\text{Max}} = 4900]
```

3. Minimise
$$z = x_1^2 - 2x_1 - x_2$$

subject to $2x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$.

Ex 4- Solve the following NLPP Maximise $z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$ subject to $x_1 + x_2 \le 2$, $x_1, x_2, x_3 \ge 0$

We rewrite the given problem as

$$f(x_1, x_{2_1}, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$

$$h(x_1, x_2, x_3) = x_1 + x_2 - 2$$

Now Kuhn-Tucker conditions are

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0, \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0; \frac{\partial f}{\partial x_2} \lambda \frac{\partial h}{\partial x_2} = 0; \lambda h(x_1, x_2, x_3) = 0; h(x_1, x_2, x_3) \leq 0; \lambda \geq 0$$

$$-2x_{1} + 4 - \lambda = 0 \dots (i)$$

$$-2x_{2} + 6 - \lambda = 0 \dots (ii)$$

$$x_{3} = 0 \dots (iii)$$

$$\lambda (x_{1} + x_{2} - 2) = 0 \dots (iv)$$

$$x_{1} + x_{2} - 2 \le 0 \dots (v)$$

$$x_{1}, x_{2}, \lambda \ge 0 \dots (vi)$$

From (iv), we get either $\lambda = 0$ or $(x_1 + x_2 - 2) = 0$

•

Case 1- If $\lambda = 0$

From (i), (ii) and (iii), we get $x_1 = 2$, $x_2 = 3$ and $x_3 = 0$

But these values do not satisfy equation (v) so we reject these values.

Case 2- If
$$\lambda \neq 0$$
 so $x_1 + x_2 - 2 = 0 \dots (vii)$

From (i), (ii), (iii) and (vii), we get $x_1 = \frac{1}{2}$ and $x_2 = \frac{3}{2}$, $x_3 = 0$, $\lambda = 3$

These values satisfy all necessary conditions. The optimal solution is

$$x_1 = \frac{1}{2}$$
; $x_2 = \frac{3}{2}$; $x_3 = 0$ and $z_{max} = 17/2$