Experiment-1 Boost converter Design document

CONTENTS

S.No	Title	Page No.
1.	SYSTEM UNDER CONSIDERATION	3
2.	KEY BOOST CONVERTER WAVEFORMS	3
3.	SELECTION OF MOSFET	4
4.	SELECTION OF DIODE	6
5.	DESIGN OF INDUCTOR	7
6.	DESIGN OF OUTPUT CAPACITOR	9
7.	TOTAL LOSS AND EFFICIECNY CALCULATION	
	AT RATED LOAD	10
	REFERENCES	10

1. SYSTEM UNDER CONSIDERATION:

Let us consider a system:

 $V_{in} = 20$ to 28.8V (2 Lead acid battery of 12V in series), Rated $V_{in} = 24V$

V_{out} = 48V (DC bus), Rated Power = 200 W, and switching frequency (fs) =50 kHz.

Design the system for the worst-case condition considering the above-mentioned criteria such that the inductor current ripple (p-p) $i.e.\Delta I_{L(p-p)}$ and capacitor voltage ripple (p-p) $i.e.\Delta V_{Cp-p)}$ should not exceed 30% and 2% respectively for full load condition and find out upto what load the converter will operate in CCM. Consider the non-idealities like $R_{ds_{ON}}$, R_L , V_D and ESR of Capacitance etc.

2. KEY BOOST CONVERTER WAVEFORMS:

3. SELECTION OF MOSFET:

Blocking voltage of mosfet and diode (V_{dd}) = load voltage (V_o) = 48V

Safety factor to be considered = 2 (due to voltage spikes due to parasitic inductance and reverse recovery of diode)

Voltage rating of MOSFET $(V_{br}) = 100 \text{V}$

Also Maximum current through switch = inductor current = 200W/20V = 10A.

• CONDUCTION LOSS:

Without considering inductor ripple.

RMS switch current $(I_{srms}) = I_{in}\sqrt{D} = 7.635 \text{A} (10\sqrt{0.583})$

IRF540NLPbF is the mosfet chosen for the boost converter.

Blocking voltage of mosfet = 100V

Maximum Drain current at 125°C = 17.5A (From fig 9).

 R_{ds} of MOSFET at 125°C = 2.25*44m Ω = 99m Ω

Maximum conduction Loss in the switch = $I_{srms}^2 R_{ds} = 5.77$ W

• SWITCHING LOSS:

Since for low power and low voltage system, Power Schottky diode is selected which has negligible reverse recovery loss during its turn-off.

From fig. 5 of IRF540NLPbF datasheet

$$C_{gd}$$
 at $V_{dd}(50V)$ $C_{gd1} = 40pF$

$$C_{gd}$$
 at $I_{ds}*Rd_{ds}(0.99V)$ $C_{gd2} = 500pF$

Gate Threshold voltage $V_{gth} = 4V$

From fig. 3 of IRF540NLPbF datasheet

At
$$175^{\circ}$$
C V_{g1} = 4V i_{d1} = 12A; V_{g2} = 6V i_{d2} = 60

$$V_{th} = \frac{V_{g1}\sqrt{i_{d2}}-V_{g2}\sqrt{i_{d1}}}{\sqrt{i_{d2}}-\sqrt{i_{d1}}} = 2.382V; k = \frac{i_{d1}}{(V_{g1}-V_{th})^2} = 4.584$$

$$V_{GS,miller} = V_{th} + \sqrt{\frac{I_{load}}{k}} = 2.382 + \sqrt{\frac{10}{4.584}} = 3.859$$

$$V_{adj} = (125 - 175) * \left(-0.007 \frac{{}^{\circ}C}{V}\right) = +0.35V; (From class notes)$$

$$V_{plateau} = 3.859 + 0.35 = 4.21V$$

Gate drive voltage $(V_{dr}) = 15$ V; Gate resistance $R_q = 10\Omega$

Current rise time of the switch $(t_r) = 35$ ns (from datasheet).

Voltage fall time 1
$$t_{fu1} = (V_{dd} - I_{ds} * R_{ds}) * R_g * \frac{c_{gd1}}{v_{dr} - v_{plateau}} = 1.74 ns$$

Voltage fall time 1
$$t_{fu2} = (V_{dd} - I_{ds} * R_{ds}) * R_g * \frac{c_{gd2}}{v_{dr} - v_{plateau}} = 21.78 ns$$

Average voltage fall time
$$t_{fu} = \frac{t_{fu1} + t_{fu2}}{2} = 11.76$$
ns

Current fall time of the switch (t_f) = 35ns (from datasheet)

Voltage rise time 1
$$t_{ru1} = (V_{dd} - I_{ds} * R_{ds}) * R_g * \frac{c_{gd1}}{v_{plateau}} = 0.447 ns$$

Voltage rise time 1
$$t_{ru2} = (V_{dd} - I_{ds} * R_{ds}) * R_g * \frac{C_{gd2}}{V_{plateau}} = 5.583 ns$$

Average voltage rise time $t_{ru} = \frac{t_{ru1} + t_{ru2}}{2} = 3.02ns$

Power Schottky diode is selected which has negligible reverse recovery loss during its turnoff.

Switching loss in the switch =
$$V_o f_s((i_{son} * \frac{t_r + t_{fu}}{2}) + (\frac{t_{ru} + t_f}{2} * i_{soff}))$$

= $\frac{1}{2} 48 * 50000 * 10((2 * 35) + 11.76 + 3.02) * 10^{-9} = 1.02W$

Total Loss of the switch $(P_g) = 5.77W + 1.02W = 6.79W$.

MOSFET HEAT SINK DESIGN:

Transient Thermal Impedance Junction-to-Case at 50Khz 0.5 duty cycle (Z_{thc})= 0.7 $^{\circ}$ C/W (From fig 11).

Junction Temperature rise with respect to case = $P_g * Z_{thc} = 6.79 * 0.7 = 4.75^{\circ} rise$.

Let maximum junction temperature T_i be 125°C.

Then, maximum case temperature $T_c = 125 - 4.75 = 120.25$ °C

Let the ambient temperature be 40°C;

Maximum heat sink thermal Impedance (Case to ambient) $(Z_a) = \frac{T_c - T_a}{P_g} = \frac{120.25 - 40}{P_g} = 11.81^{\circ} \frac{c}{W}$ **Selected heat sink thermal Impedance (Case to ambient)= 8°C/W** (1.10" Wide x 12" BGA Heatsink Extrusion 16240 xx8052-65)

Case Temperature rise with respect to ambient with selected heatsink = $P_g * Z_a = 54.32^{\circ}$ rise Junction Temperature $(T_i) = 40^{\circ} + 54.32^{\circ} + 4.75^{\circ}$ C = 99.07°C.

Here junction temperature is well within the operating temperature range of the MOSFET.

4. SELECTION OF DIODE:

Schottky diode STPS20S100C is the diode chosen for this boost converter.

Voltage rating of diode $(V_{br}) = 100V$

RMS diode current
$$(I_{drms}) = I_{in}\sqrt{(1-D)} = 6.458 \text{A} (10\sqrt{0.417}) < 30 \text{A} (rating)$$

Average diode current $(I_{dav}) = I_{in}(1 - D) = 4.17 \text{A} < 20 \text{A} \text{ (rating)}$

• CONDUCTION LOSS:

Forward Voltge of the diode at 10A at 125°C (V_f)= 0.71V.

Conduction Loss of the diode = $V_f * i_d * (1 - D) = 0.71*10*0.417 = 2.96$ W.

• REVERSE LEAKAGE LOSS:

Since Schottky diode is used, the reverse leakage losses are more significant than switching losses.

Reverse leakage current (I_r) at 50V blocking = 0.3mA @ T_i = 125°C. (From fig 6)

Reverse Leakage Loss of the diode = $V_o * I_r * D = 48 * 0.3 * 10^{-3} * 0.583 = 0.0084W$ Total Loss of the diode (P_g) = 2.97W.

• DIODE HEAT SINK DESIGN:

Transient Thermal Impedance Junction-to-Case per diode at 1Khz (Z_{thjc})=2.2° C/W.

Transient Thermal Impedance coupling at 1Khz (Z_{thc}) = 0.3C/W.

Junction Temperature rise with respect to case =
$$P_g/2 * (Z_{thjc} + Z_{thc})$$
 (from datasheet)
= 3.71°C rise

Let maximum junction temperature T_i be 125°C.

Then, maximum case temperature $T_c = 125 - 3.71 = 121.29$ °C

Let the ambient temperature be 40°C.

Maximum heat sink thermal Impedance (Case to ambient)
$$(Z_a) = \frac{T_c - T_a}{P_g} = \frac{121.29 - 40}{P_g} = 27.37^{\circ} \frac{C}{W}$$

Heat sink thermal Impedance (Case to ambient) (Z_a) = 16°C/W (ATS-PCB1008)

Case Temperature rise with respect to ambient= $P_g * Z_a = 2.97 * 21.2 = 47.52^{\circ}$ rise.

Junction Temperature
$$(T_i) = 40^\circ + 62.96^\circ + 3.71^\circ \text{C} = 91.23^\circ \text{C}.$$

Here junction temperature is well within the operating temperature range of the diode.

Total semiconductor Loss = 6.79W + 2.97W = 9.76W

5. DESIGN OF INDUCTOR:

For Boost converter, Inductor current = Input current.

Inductor ripple current has to be 30% at rated load.

Case 1:	Case 1:
$V_{in} = 28.8V$	$V_{in} = 20V$
$I_{in} = \frac{1}{(1-D)} I_o = 6.94A$	$I_{in} = \frac{1}{(1-D)} I_o = 10A$
$\Delta I_l = 0.3 * 6.94 = 2.08A$	$\Delta I_l = 0.3 * 10 = 3A$
$L = \frac{1}{\Delta I_l f_s} V_{in} D = 110.66 \mu H$	$L = \frac{1}{\Delta I_l f_s} V_{in} D = 77.73 \mu H$

Worst case Inductor Value $L = 110.66 \mu H$

For
$$I_L = 10A$$
. $\Delta I_l = \frac{20*0.583}{500000*110.66\mu} = 2.11A$

$$I_{Lrms} = \sqrt{\frac{1}{T}} \left(\int_0^{DT} \left(\frac{\Delta I_L}{DT} t + I_{Lmin} \right)^2 dt + \int_{DT}^T \left(-\frac{\Delta I_L}{(1-D)T} t + I_{Lmax} \right)^2 \right)$$

$$I_{Lrms} = \sqrt{I_{Lmax}^2 (1-D) + I_{Lmin}^2 (D) + \frac{\Delta I_L^2}{3} + \Delta I_L (DI_{Lmin} - (1-D)I_{Lmax})}$$

$$= \sqrt{10.725^2 * 0.417 + 9.275^2 (0.583) + \frac{1.45^2}{3} + 1.45 (0.583 * 9.275 - 0.417 * 10.725)}$$

$$= 10.008A$$

Inductance(L)	110.66μΗ	
$Peak\ Current(I_p)$	11.06A*1.1 = 12.17A(To account for losses)	
Max. average current (I_{avg})	10A	
B_m	$0.2 \text{ wb/}m^2$	
J(initial)	$3A/mm^2$	
K_w (initial)	0.3	

Area Product, $A_c A_w = \frac{L I_p I_{avg}}{K_w B_m J} = 74818.46 mm^4$

Selected core: EE55/28/25 is selected.

Selected core: EE55/55B

A = 55mm + 1.2mm, -0.9mm

B = 27.8mm, +0mm, -0.6mm,

C= 25mm, +0mm,-0.8mm,

D= 17.2mm, +0mm ,-0.5mm,

E = 37.5mm, +1.2mm, -0mm

F = 18.5 mm + 0.8 mm, -0 mm

.
$$Minimum\ A_c = C*D = (25-0.8)*(17.2-0.5) = 404.14mm^2$$

$$A_w = (E - D) * F = (37.5 - 17.2) * 18.5 = 375.55 mm^2,$$

Number of turns: $N = \frac{LI_p}{B_m A_c} = 18.25 \approx 19$

Wire Size: $a_w = \frac{I_{rms}}{I} = \frac{10.008}{3} = 3.34 mm^2$

Chosen wire: SWG 21 *4* 2.

Updated wire size: $a_w^* = 0.5189 * 8 = 4.15 mm^2$ (Even no is chosen due to manufacturing

Thickness of the wire $(t_c) = 0.874 * 4 * 1.05(5\% tolerance) = 3.67mm$

Minimum Window width = 8.35mm

Height of the winding = 0.874*2*19*1.1(10% Tolerance) = 36.53 mm (10% for transposing conductors for all eight strands to have nearly equal length).

Minimum Window height = 18.5 * 2mm = 37mm

Updated current density: $J^* = \frac{I_{rms}}{a^*} = 2.411A/mm^2$

Updated area product: $A_c A_w = 151774mm^4$

Air gap length: $l_g = \frac{N^2 A_c \mu_o}{l} = 1.66 mm \ll \sqrt{A_c}$ (To avoid fringing effect)

Average length of each turn of a conductor = $2 * (C + D + t_c) = 91.74mm$

Average length of inductor coil: $N * t_c = 1.743m$

Coil resistance of inductor: $\frac{33.23*1.743}{1000*8} = 7.24m\Omega$

Updated inductance (L) = $\frac{NB_mA_c}{l_n}$ = 115.18 μH

Conduction Loss in Inductor = $I_{Lrms}^2 * r_l = 0.725W$.

6. DESIGN OF OUTPUT CAPACITOR:

Capacitor voltage ripple has to be 2% at rated load.

Capacitor Ripple Voltage
$$\Delta V_{C(p-p)} = \frac{V_{out}*D_{max}*Ts}{R_{out}*C}$$

Capacitor Ripple Voltage
$$\Delta V_{C(p-p)} = \frac{V_{out}*D_{max}*Ts}{R_{Lmin}*C}$$
Value of Capacitance $C = \frac{V_{out}*D*Ts}{R_{Lmin}*\Delta V_{C(p-p)}} = \frac{48*0.583}{50000*11.52*0.96} = 50.6 \mu F \approx 47$

Rms current of the capacitor
$$I_{crms} = \sqrt{\frac{1}{T} \left(\int_0^{DT} I_o^2 dt + \int_{DT}^T \left(-\frac{\Delta I_L}{(1-D)T} t + I_{Lmax} \right)^2 \right)}$$

$$= \sqrt{I_o^2 D + I_{Lmax}^2 (1-D) + \frac{\Delta I_L^2}{3} (1-D) - \Delta I_L (1-D) I_{Lmax}}$$

$$= \sqrt{4.167^2 * 0.583 + 10.725^2(0.417) + \frac{1.45^2}{3}(0.417) - 1.45 * 0.417 * 10.725}$$

=7.203A

Capacitor Chosen is 3xelectrolytic capacitor type : $(3x\ 100V\ 18\mu F\ 100SXE18M)$ capacitors in parallel, with a ripple current rating of 3A and ESR of $30m\Omega$ each.

Electrolytic capacitors is not chosen because of their low ripple current rating

Power loss in capacitor == $I_{crms}^2 * ESR = 7.203^2 * \frac{30}{3} m\Omega = 0.52W$

7. TOTAL LOSS AND EFFICIECNY CALCULATION AT RATED LOAD:

Total Power Loss = 9.76W + 0.725W + 0.52 = 10.635W

Full load efficiency of Boost converter = $\frac{Output\ Power}{Output\ Power+Losses} * 100\% = \frac{200}{211.005} * 100 = 94.78\%$

REFERENCES

- 1. Dr. Dušan Graovac, Marco Pürschel, and Andreas Kiep, "MOSFET Power Losses Calculation Using the Data-Sheet Parameters", Application Note, V 1.1, July 2006, by infenion
- 2. "Calculation of reverse losses in a power diode, AN4021" Application Note by ST Microelectronics.
- 3. V. Ramanarayanan, "Course Material on Switched Mode Power Conversion", Department of Electrical Engineering Indian Institute of Science Bangalore 560012, second edition 2006.