Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 6 "Singular Value Decomposition"

по дисциплине Практическая линейная алгебра

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

1 Сжатие изображений.

Одно из самых наглядных применений сингулярного разложения.

1.1 Выбор изображения и подготовка.

Для выполнения работы веберем изображение какого-нибудь покемона, например *Ивизавра*. Далее преобразуем *Ивизавра* к отттенкам серого.

Рис. 1. Исходное изображение.

Листинг 1. Код для преобразования изображения к оттенкам серого

```
from PIL import Image
import matplotlib.image as mpimg
import numpy as np

img = Image.open('red_eye.png')
black_and_white = img.convert('L')
black_and_white.save('bw_red.png')
```


Рис. 2. Ивизавр в оттенках серого.

Далее представим изображение в виде матрицы:

Листинг 2. Получение изображения в виде матрицы

```
matrix_image = mpimg.imread('bw_red.png')
```

1.2 SVD-разложение полученной матрицы

Функция для выполнения SVD-разложения матрицы на языке Python:

Листинг 3. SVD-разложение матрицы

Дальше, найдем "укороченные "SVD-разложения этой матрицы, оставив только k первых (наибольших) сингулярных чисел и соотвествующих им векторов.

Листинг 4. Фрагмент кода для нахождения "укороченных "SVD-разложений и отрисовки результата

```
k = [20000, 4500, 1000, 250, 100, 50, 20, 10, 5, 1]
2
  for i in k:
3
      cut = np.dot(np.dot(U[:, :i], s[:i, :i]), W[:i, :])
5
      fig , axs = plt.subplots(1, 2)
6
7
      axs[0].imshow(matrix image).set cmap('grey')
8
      axs[1].imshow(cut).set cmap('grey')
9
      axs [0]. axis ('off')
10
      axs[1].axis('off')
11
      axs[0].set_title('Original')
12
      axs[1].set_title('After compression, k=' + str(i))
13
14
      plt.show()
15
```

Результаты выполнения программы представлены ниже.

Puc. 3. Сэсатие: a) k = 20000, b) k = 4500.

Оригинал

После сжатия, k=1000

Оригинал

После сжатия, k=250

b)

a)

Puc. 4. Coxamue: a) k = 1000, b) k = 250.

Оригинал

После сжатия, k=100

Оригинал

После сжатия, k=50

b)

a)

Puc. 5. Cəcamue: a) k = 100, b) k = 50.

Puc. 6. Cəcamue: a) k = 20, b) k = 10.

Puc. 7. Сэнсатие: a) k = 5, b) k = 1.

Заметно, что уже при $k \geq 5$ становится возможным различить черты Ивизавра, а при $k \geq 50$ сжатое изображение становится практически неотличимым от оригинала.

Далее проанализируем, сколько памяти мы сэкономили, вычислим "вес"исходного изображения и сжатого. Результаты представлены в таблице 1.

 Габлица 1 -	- Сравнит	ельные	результаты	работы	программ	Ы

k	Различим ли Ивизавр?	Вес оригинала	Вес сжатого	% сжатия
$2 \cdot 10^{4}$	да, как оригинал	451725	451725	0.00
4500	да, как оригинал	451725	451725	0.00
10^{3}	да, как оригинал	451725	451725	0.00
250	да, как оригинал	451725	237750	47.37
100	да, как оригинал	451725	95100	78.95
50	да	451725	47550	89.47
20	да, отдаленно	451725	19020	95.79
10	да, отдаленно	451725	9510	97.89
5	нет	451725	4755	98.95
1	нет, совсем	451725	951	99.79

1.3 Анализ результатов и вывод

Заметим, что при степени сжатия примерно на 90% изображение все еще остается различимым . В частности, при $k \geq 5$ становится возможным различить черты Ивизавра, а при $k \geq 50$ сжатое изображение становится практически неотличимым от оригинала.

Таким образом, можно сделать вывод о том, что применение SVD-разложения является довольно эффективным инструментом сжатия изображений с минимальными потерями качества результата.