Universidade Federal do Paraná

Loirto Alves dos Santos Luiz Henrique Pires de Camargo

Vírus de computador

Uma abordagem do código polimórfico

Monografia apresentada junto ao curso de Ciência da Computação, do Departamento de Informática, do Setor de Ciências Exatas, como requisito parcial para a obtenção do título de Bacharel.

Orientador: Prof. Dr. Bruno Müller Junior

Agradecimentos

- A Deus
- $\bullet\,$ A nosso esforço e dedicação que, apesar de serem poucos, nos valeram muito.
- Aos professores pela paciência e dedicação

Resumo

Este trabalho tem por finalidade realizar um estudo sobre alguns algoritmos e técnicas de polimorfismo utilizadas para criar vírus de computador e o quanto elas tornam difícil - e algumas vezes até mesmo impossível - a detecção do código malicioso.

Palavras-chave: Vírus, Vírus de computador, Vírus polimórfico, polimorfismo.

Abstract

This paper aims to conduct a study of some algorithms and techniques used to create polymorphic computer viruses and how they make it difficult - and sometimes even impossible - to detect the malicious code.

Keywords: Virus, Computer Virus, Polymorphic virus, Polymorphism.

Sumário

$\mathbf{A}_{:}$	grade	ecimentos	iii
\mathbf{R}	\mathbf{esum}	o	iv
\mathbf{A}	bstra	$\operatorname{\mathbf{ct}}$	v
Sı	ımár	io	vi
1	Intr	odução	1
2	Rev	isão bibliográfica	2
	2.1	Antivírus	2
	2.2	História	2
	2.3	Antivirus e SO	2
		2.3.1 DOS	3
		2.3.2 Windows	3
		2.3.3 Linux	3
	2.4	Técnicas de detecção	4
		2.4.1 Virus de pendrive	4
		2.4.2 Virus de macro	4
		2.4.3 Virus Polimórficos	5

3	Des	crição	conceitual do trabalho	6	
4	Detalhes do trabalho				
5	Con	clusão		8	
Re	eferê	ncias E	Bibliográficas	9	
\mathbf{A}	Esti	rutura	de Arquivos PE e ELF	16	
	A.1	Arquiv	70 PE	16	
		A.1.1	Estrutura de arquivo PE.	16	
		A.1.2	PE - Cabeçalho	17	
		A.1.3	Tabela de Seções	17	
		A.1.4	Páginas de imagem	18	
		A.1.5	Importação	18	
		A.1.6	Exportação	18	
		A.1.7	Correção	19	
		A.1.8	Recursos	19	
		A.1.9	Debug	19	
	A.2	Arquiv	vo ELF	19	
		A.2.1	A estrutura do arquivo ELF	20	

	4		
I			
Capítula			
Capítulo			

Introdução

Nossa vida moderna é extremamente dependente de computadores: desktops, notebooks, netbooks, PDA, celulares, satélites, veículos, microondas, televisores, gps, bancos, energia elétrica, comunicações ..., enfim, uma gama enorme de exemplos poderiam ser citados. Dentro deste contexto, os virus de computador (e suas variações) são uma ameaça real à qual todos - direta ou indiretamente - estamos expostos.

Revisão bibliográfica

2.1 Antivírus

Os antivirus são softwares criados para analisar, detectar, eliminar e impedir os virus informáticos ou ao menos diminuir a intensidade do ataque. Foram criados pela necessidade de que os virus impediam a utilização do sistema. Os virus atuais são mais poderosos, e ainda existem outros não tão fortes que são utilizados como piada ou somente para incomodar, se espalhar pelos computadores sem fazer mal à máquina e sim à paciência do usuário.

2.2 História

O primeiro antivirus foi criado em 1988 por Denny Yanuar Ramdhani. Era uma vacina ao virus Brain, um virus de boot, além de remover o virus imunizava o sistema contra uma nova infecção. A forma de desinfectar era remover as entradas do virus no pc e já bloqueava ests fraquezas para impedir um novo ataque. Ainda em 1988 um virus foi projetado para infectar com a "ajuda"da BBS, nisto John McAfee, desenvolveu o VirusScan, primeira vacina para o virus.

2.3 Antivirus e SO

Por enquanto existe uma dependência dos virus para com os sistemas operacionais, pois afetam o modo em que o executável interage com o sistema, e pedidos especiais são

2.3. Antivirus e SO 3

feitos pelo próprio SO e cada qual o faz de forma diferente, ou seja um virus que funciona em windows nunca funcionaria em linux, só se fossem chamadas suas APIs, como feito pelo wine no sistema linux, e mesmo assim não teria todo o potencial de infecção, já que é preparado para a estrutura do sistema para o qual foi projetado.

2.3.1 DOS

No sistema DOS o anti-virus não funciona em "tempo real", somente como scanner, normalmente era colocado no boot do sistema para varrer o sistema em busca de novas infecções, e outras verificações somente se chamado pelo usuário. Sendo infectado no meio de uma tarefa o virus já se propagou e danificou diversas areas e somente será percebido na nova execução do antivirus.

2.3.2 Windows

Já no windows o antivírus protege as principais formas de ataque, para este sistema. continua a utilizar o scanner, como no DOS. Ganhou a função de monitoramento, com diversas ferramentas para encontrar padrões de virus. A cada executável aberto há esta verificação, o que compromete o desempenho do computador. A cada periodo pré-determinado há uma varredura sobre os arquivos do sistema para verificar arquivos infectados, remove o virus e tenta manter a integridade do arquivo. Se encontra um padrão de infecção mas ainda não existe "vacina" para remoção diversos sistemas de proteção utilizam a ferramenta de "quarentena", ou seja mantém o arquivo infectado em um espaço que não pode ser "alcançado" pelo usuário até que possa restaurar o arquivo, ou ao menos conheça o virus.

2.3.3 Linux

Não são muito populares neste sistema. Por enquanto não há uma grande preocupação, nem pela parte de usuários e nem pela parte de desenvolvedores. O que existe hoje são alguns sistemas que detectam virus para windows pelo linux, para fazer uma manutenção do sistema. E mesmo assim não são tão "potentes" quanto os de windows, não há muita preocupação em desenvolve-los.

2.4 Técnicas de detecção

São diversas as técnicas de detecção dentre elas: Heuristica: Que significa descobrir. Estuda o comportamento, estrutura e caracteristicas para analisar se é perigoso ao sistema ou inofensivo. Emulação: Abre o arquivo em uma virtualização do sistema, e analisa os efeitos sobre o sistema. Arquivo monitorado: Mantém um arquivo no sistema e o monitora, se ele modificar alguma caracteristica é porque o sistema foi infectado. E então o antivirus toma as precauções necessárias. Assinatura do virus: Com um trecho de código do virus tem-se sua assinatura, quando tenta detectar o virus busca-as para analisar se já não existe dentro do banco de dados do antivirus. Temos o falso positivo, o antivirus com base no comportamente do arquivo o considera infectado, o que dificulta para usuários comuns identificarem as anomalias e utilizar com segurança o sistema.

2.4.1 Virus de pendrive

No sistema operacional windows eles se utilizam do arquivo autorun.inf para se autoexecutar e infectar a máquina. sua limpeza é simples, existem alguns antivirus que alteram o conteudo do autorun e tiram a permissão de gravação do arquivo, e alguns usuários criam um diretorio com onome autorun.inf e isso impede de criar o tal arquivo. os virus em si funcionam de forma interessante, temos por exemplo o conficker q apos infectar o pc ele passa a infectar td pendrive q nel for utilizado, assim como enquanto conectado a internet ele baixa diversos outros virus e com isso acaba com o sistema e arquivos do usuario. sua prevenção é simples e sua remoção é complicada. ou seja se todos fossem informados de como o virus funciona a prevenção seria óbvia e este tipo de virus seria obsoleto.

2.4.2 Virus de macro

Os virus de macro são utilizados dentro de, aparentemente, inofensiveis arquivos estilo "office" são scripts executados automaticamente para facilitar a visualização dos arquivos e fazer eles executarem o que teriam de executar, os criadores de virus aproveitam que macros tem poder de execução e infectam os arquivos colocando dentre a macro código malicioso que o usuário previamente nem notará, e após execução do arquivo já estará infectado e infectará outros. A maior praga disso esta nas apresentações de slides, como foi muito difundido por e-mails para passar imagens com animações. O virus se instala dentro destes arquivos e o usuário desconhece que por trás de tudo que está visualizando um virus acabou de se instalar em sua máquina.

2.4.3 Virus Polimórficos

Ainda não existe uma forma eficaz para se detectar este tipo de virus, eles não tem um padrão a ser identificado. O que se faz é criar um arquivo de vitima e este fica sempre sendo monitorado, mas o bom virus polimorfico já está residente em memória e faz o sistema "ver"o arquivo como inalterado e com isso não há mais nada a ser feito. seria uma limpeza manual, sem o auxilio de outra maquina seria inviavel, enquanto o virus se infecta o usuario tentaria localiza-lo e deleta-lo uma guerra perdida.

Descrição conceitual do trabalho

Detalhes do trabalho

Conclusão

Referências Bibliográficas

- [1] K. W. Bowyer, K. Chang e P. Flynn. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding **101**, 1, 1–15 (2006).
- [2] W. Zhao, R. Chellappa, P. J. Phillips e A. Rosenfeld. Face recognition: A literature survey. ACM Computing Surveys **35**, 4, 399–458 (2003).
- [3] R.-L. Hsu, M. A. Mottaleb e A. K. Jain. Face Detection in Color Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5, 696–706 (2002).
- [4] M. Turk e A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 1, 71–86 (1991).
- [5] P. Viola e M. J. Jones. Robust Real-Time Face Detection. International Journal of Computer Vision 57, 2, 137–154 (2004).
- [6] M.-H. Yang, D. J. Kriegman e N. Ahuja. Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1, 34–58 (2002).
- [7] K. I. Chang, K. W. Bowyer e P. J. Flynn. Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10, 1695–1700 (2006).
- [8] X. Lu e A. K. Jain. Multimodal Facial Feature Extraction for Automatic 3D Face Recognition. Technical Report, Department of Computer Science, Michigan State University (2005).
- [9] Y. Wang, J. Liu e X. Tang. Robust 3D Face Recognition by Local Shape Difference Boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 10, 1858–1870 (2010).

- [10] X. Lu e A. K. Jain. Automatic Feature Extraction for Multiview 3D Face Recognition. Em Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, páginas 585–590 (2006).
- [11] M. Pamplona Segundo, L. Silva, O. R. P. Bellon e C. C. Queirolo. Automatic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40, 5, 1319–1330 (2010).
- [12] F. Tsalakanidou, S. Malassiotis e M. G. Strintzis. Face localization and authentication using color and depth images. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2, 152–168 (2005).
- [13] A. Colombo, C. Cusano e R. Schettini. 3D face detection using curvature analysis. Pattern Recognition **39**, 3, 444–455 (2006).
- [14] T. Faltemier, K. W. Bowyer e P. J. Flynn. Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition. Em *Proc. of the IEEE International Conference on Biometrics: Theory, Applications, and Systems*, páginas 1–6 (2007).
- [15] I. Kakadiaris, G. Passalis, G. Toderici, M. Murtuza, Y. Lu, N. Karampatziakis e T. Theoharis. Three-Dimensional Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 4, 640–649 (2007).
- [16] A. Mian, M. Bennamoun e R. Owens. An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 11, 1927–1943 (2007).
- [17] R. Lienhart e J. Maydt. An extended set of Haar-like features for rapid object detection. Em Proceedings of the International Conference on Image Processing, volume 1, páginas 900–903 (2002).
- [18] J. Fischer, D. Seitz e A. Verl. Face Detection using 3-D Time-of-Flight and Colour Cameras. Em Proceedings of the 41st International Symposium on Robotics and 6th German Conference on Robotics (2010).
- [19] M. Böhme, M. Haker, K. Riemer, T. Martinetz e E. Barth. Face Detection Using a Time-of-Flight Camera. Lecture Notes in Computer Science 5742, 167–176 (2009).
- [20] Y. Freund e R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Em *Proceedings of the Second European Conference* on Computational Learning Theory, páginas 23–37 (1995).

- [21] L. Yin, X. Wei, Y. Sun, J. Wang e M. J. Rosato. A 3D Facial Expression Database For Facial Behavior Research. Em Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, páginas 211–216 (2006).
- [22] H. Tang e T. S. Huang. 3D facial expression recognition based on properties of line segments connecting facial feature points. Em 8th IEEE International Conference on Automatic Face and Gesture Recognition, páginas 1–6 (2008).
- [23] H. Ghorayeb, B. Steux e C. Laurgeau. Boosted Algorithms for Visual Object Detection on Graphics Processing Units. Em Computer Vision ACCV 2006, volume 3852 de Lecture Notes in Computer Science, páginas 254–263 (2006).
- [24] X. Lu e A. K. Jain. Automatic Feature Extraction for Multiview 3D Face Recognition. Em Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, páginas 585–590 (2006).
- [25] H. Tang e T. S. Huang. 3D facial expression recognition based on automatically selected features. Em *IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops*, páginas 23–28 (2008).
- [26] I. Mpiperis, S. Malassiotis e M. G. Strintzis. Bilinear Models for 3-D Face and Facial Expression Recognition. IEEE Transactions on Information Forensics and Security 3, 3, 498–511 (2008).
- [27] O. R. P. Bellon e L. Silva. New improvements to range image segmentation by edge detection. IEEE Signal Processing Letters 9, 2, 43–45 (2002).
- [28] O. R. P. Bellon, L. Silva e C. C. Queirolo. 3D face matching using the Surface Interpenetration Measure. Em Lecture Notes in Computer Science, volume 3617, páginas 1051–1058 (Springer-Verlag, 2005).
- [29] P. F. U. Gotardo, O. R. P. Bellon, K. L. Boyer e L. Silva. Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34, 6, 2303–2316 (2004).
- [30] B. Gökberk, H. Dutagaci, A. Ulas, L. Akarun e B. Sankur. Representation Plurality and Fusion for 3-D Face Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38, 1, 155–173 (2008).

- [31] S. Berreti, A. Del Bimbo, P. Pala e F. J. S. Mata. Geodesic distances for 3D-3D and 2D-3D face recognition. Em Proc. of the IEEE International Conference on Multimedia and Expo, páginas 1515–1518 (2007).
- [32] P. J. Besl. Surface in Range Images Understanding (Springer-Verlag, 1988).
- [33] P. J. Besl e R. Jain. Segmentation through variable-order surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 167–192 (1988).
- [34] P. J. Besl e H. D. Mckay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2, 239–256 (1992).
- [35] A. M. Bronstein, M. M. Bronstein e R. Kimmel. Three-Dimensional Face Recognition. International Journal of Computer Vision 64, 1, 5–30 (2005).
- [36] J. Y. Cartoux, J. T. Lapreste e M. Richetin. Face authentication or recognition by profile extraction from range images. Em Proc. of the IEEE Computer Society Workshop on Interpretation of 3D Scenes, páginas 194–199 (1989).
- [37] K. I. Chang, K. W. Bowyer e P. J. Flynn. Adaptive Rigid Multi-region Selection for Handling Expression Variation in 3D Face Recognition. Em Proc. of the IEEE Workshop FRGC (2005).
- [38] K. I. Chang, K. W. Bowyer e P. J. Flynn. Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10, 1695–1700 (2006).
- [39] K. I. Chang, K. W. Bowyer e P. J. Flynn. Effects on facial expression in 3D face recognition. Em Proc. of the SPIE - Biometric Technology for Human Identification, volume 5779, páginas 132–143 (2005).
- [40] C. S. Chua e R. Jarvis. Point Signatures: A New Representation for 3D Object Recognition. International Journal of Computer Vision 25, 1, 63–85 (1997).
- [41] D. Colbry, G. Stockman e A. K. Jain. Detection of Anchor Points for 3D Face Verication. Em Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, página 118 (2005).
- [42] T. Faltemier, K. W. Bowyer e P. J. Flynn. Rotated Profile Signatures for robust 3D feature detection. Em *Proc. of the 8th IEEE International Conference on Automatic Face and Gesture Recognition*, páginas 1–7 (2008).

- [43] P. F. Felzenszwalb e D. P. Huttenlocher. Distance Transforms of Sampled Functions. Technical Report, Cornell Computing and Information Science (2004).
- [44] R. C. Gonzalez e R. E. Woods. Digital Image Processing (Addison-Wesley, 1992).
- [45] C. Hesher, A. Srivastava e G. Erlebacher. Principal component analysis of range images for facial recognition. Em Proc. of the International Conference on Imaging Science, Systems and Technology (2002).
- [46] A. K. Jain e R. C. Dubes. Algorithms for clustering data (Prentice-Hall, 1988).
- [47] S. Kirkpatrick, C. D. Gelatt e M. P. Vecchi. Optimization by Simulated Annealing. Science 220, 4598, 671–680 (1983).
- [48] J. Kittler, M. Hatef, R. P. W. Duin e J. Matas. On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence **20**, 3, 226–239 (1998).
- [49] X. Lu, A. K. Jain e D. Colbry. Matching 2.5D Face Scans to 3D Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1, 31–43 (2006).
- [50] J. Macqueen. Some methods for classification and analysis of multivariate observations. Em *Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, páginas 281–297 (1967).
- [51] A. B. Moreno, A. Sánchez, J. F. Vélez e F. J. Díaz. Face recognition using 3d surfaceextracted descriptor. Em Proc. of the Irish Machine Vision and Image Processing (2003).
- [52] G. Pan, Y. Wu e Z. Wu. Investigating Profile Extracted from Range Data for 3D Face Recognition. Em Proc. of the IEEE International Conference on Systems, Man and Cybernetics, páginas 1396–1399 (2003).
- [53] C. C. Queirolo, L. Silva, O. R. P. Bellon e M. Pamplona Segundo. 3D Face Recognition using Simulated Annealing and the Surface Interpenetration Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence (forthcoming papers) (2009).
- [54] M. Romero-Huertas e N. Pears. 3D Facial Landmark Localisation by Matching Simple Descriptors. Em Proc. of the 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, páginas 1–6 (2008).

- [55] M. Pamplona Segundo, C. C. Queirolo, O. R. P. Bellon e L. Silva. Automatic 3D facial segmentation and landmark detection. Proc. of the 14th International Conference on Image Analysis and Processing páginas 431–436 (2007).
- [56] L. G. Shapiro e G. C. Stockman. Computer Vision (Prentice-Hall, 2001).
- [57] L. Silva, O. R. P. Bellon e K. L. Boyer. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 5, 762–776 (2005).
- [58] K. Sobottka e I. Pitas. A novel method for automatic face segmentation, facial feature extraction and tracking. Signal Processing-Image Communication 12, 3, 263–281 (1998).
- [59] P. Torr e A. Zisserman. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000).
- [60] T.-H. Yu e Y.-S. Moon. A Novel Genetic Algorithm for 3D Facial Landmark Localization. Em Proc. of the 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, páginas 1–6 (2008).
- [61] J. L. Hennessy e D. A. Patterson. Computer Architecture: A Quantitative Approach (Morgan Kaufmann, 2007).
- [62] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. Spring Joint Computer Conf. páginas 483–485 (1967).
- [63] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Transactions on Computers C-28, 690–691 (1979).
- [64] K. Fatahalian e M. Houston. A Closer Look at GPUs. Em Communications of the ACM, volume 51, páginas 50–57 (2008).
- [65] T. Braunl e S. Feyrer. Parallel Image Processing (Springer, 2001).
- [66] M. Flynn. Very high-speed computing systems. Proceedings of the IEEE 54, 12, 1901 – 1909 (1966). doi: 10.1109/PROC.1966.5273.
- [67] M. Pamplona Segundo, O. R. P. Bellon e L. Silva. Real-Time Scale-Invariant Face Detection on Range Images. IEEE International Conference on System, Man, and Cybernetics (Aceito) (2011).

Appendices

Estrutura de Arquivos PE e ELF

A.1 Arquivo PE

 ${\cal O}$ formato de arquivo PE (Portable Executable Format File) é o último utilizado para plataforma Microsoft.

A.1.1 Estrutura de arquivo PE.

DOS 2 - Cabeçalho EXE compatível	
Não utilizado	
OEM - Identificador	Seção DOS 2.0 (para compatibilidade
OEM - Info	com DOS somente)
Offset para cabeçalho PE	
DOS 2.0 Stub Program & Reloc. Table	
Não utilizado	
PE - Cabeçalho	Palavras limitadas a 8 bytes
Tabela de seções	
Image Pages	
· Info de Importação	
· Info de Exportação	
· Info de correção	
· Info de recursos	
· Info de debug	

A.1. Arquivo PE

A.1.2 PE - Cabeçalho

Temos no cabeçalho uma estrutura dividida em campos com palavras de 4 bytes, enfatizamos alguns deles abaixo:

Tipo de CPU: o campo informa qual o tipo de CPU para a qual o executavel foi projetado.

Número de Seções: o campo informa o número de entradas na tabela de seções.

Marca de Tempo/Data: Armazena a data de criação ou modificação do arquivo.

Flags: Bits para informar qual o tipo de arquivo ou quando há erros em sua estrutura.

LMAJOR/LMINOR: maior e menor versao do linkador para o executável.

Seção de alinhamento: O valor de alinhamento das seções. Deve ser múltiplo de 2 dentre 512 e 256M. O valor padrão é 64K.

OS MAJOR/MINOR = Versões limitantes (maior e menor) do sistema operacional.

Tamanho da Imagem: Tamanho virtual da imagem, contando todos os cabeçalhos. E o tamanho total deve ser multiplo da seção de alinhamento.

Tamanho do Cabeçalho: Tamanho total do cabeçalho. O tamanho combinado de cabeçalho do DOS, cabeçalho do PE e a tabela de seções.

FILE CHECKSUM: Checksum do arquivo em si, é setado como 0 pelo linkador.

Flags de DLL: Indica qual o tipo de leitura que deve ser feita, processos de inicialização e terminação de leitura e de threads.

Tamanho reservado da pilha: tamanho de pilha reservado ao programa, o valor real é o valor efetivo, se o valor reservado não tiver no sistema ele será paginado.

Tamanho efetivo da pilha: tamanho efetivo.

Tamanho Reservado da HEAP: Tamanho reservado a HEAP.

Tamanho efetivo da HEAP: Valor efetivo para a HEAP.

A.1.3 Tabela de Seções

O número de entradas da tabela de seções e dado pelo campo de número de seções que está no cabeçalho. A entradas se iniciam em 1. Segue imediatamente o cabeçalho do PE. A ordem de dados e memória é selecionado pelo ligador. Os endereços virtuais

A.1. Arquivo PE

para s seções são confirmados pelo ligador de forma crescente e adjacente, e devem sem multiplos da Seção de alinhamento, que também é fornecida no cabeçalho do PE. Abaixo alguns de uma seção nesta tabela, divididos em palavras de 8 bytes:

Nome da Seção: Campo com 8 bytes nulos para representar o nome da seção em ASCII.

Tamanho virtual: O tamanho virtual é o alocado quando a seção é lida.

Tamanho físico: O tamanho de dados inicializado no arquivo para a seção. É multiplo do campo de alinhamento do arquivo do cabeçalho do PE e deve ser menor ou igual ao tamanho virtual.

Offset físico: Offset para apritar a primeira página da seção. É relativo ao inicio do arquivo executavel.

Flags da seção: Flags para sinalizar se a seção é de código, se está inicializada ou não, se deve ser armazezada, compartilhada, paginável, de leitura ou para escrita.

A.1.4 Páginas de imagem

A página de imagens contém todos os dados inicializados e todas as seções. As seções são ordenadas pelo endereço virtual reservado a elas. o Offset que aponta para a primeira página é especificado na tabela de seções como visto na subseção acima. Cada seção inicia com um multiplo da seção de alinhamento.

A.1.5 Importação

A informação de importação inicia com uma tabela de diretórios de importação que descreve a parte principal da informação de importação. A tabela de diretórios de importação contém informação de endereços que são utilizados nas referencias de correção para pontos de entrada com uma DLL. A tabela de diretórios de importação consiste de um vetor de entradas de diretórios, uma entrada para cada referencia a DLL. A última entrada é nula o que indica o fim da tabela de diretórios.

A.1.6 Exportação

A informação de exportação inicia com a tablela de diretórios de exportação que descreve a parte principal da informação de exportação. A tabela de diretórios de exportação

A.2. Arquivo ELF

19

contém informação de endereços que são utilizados nas referencias de correção para os pontos de entrada desta imagem.

A.1.7 Correção

A tabela de correção contém todas as entradas de correção da imagem. O tamanho total de dados de correção no cabeçalho é o número de bytes na tabela de correção. A tabela de correção é dividida em blocos de correção. Cada bloco representa as correções para um página de 4K bytes. Correções que são resolvidados pelo ligador necessitam ser processadas pelo carregador, a menos que a imagem não possa ser carregada na Base de imagens especificada no cabeçalho do PE.

A.1.8 Recursos

Recursos são indexados por uma arvore binária ordenada. O design como um todo pode chegar a 2^{31} nivéis, entretanto, NT utiliza somente 3 niveis: o mais alto com o tipo, no subsequente nome, depois a lingua.

A.1.9 Debug

A informação de debug é definido por um debugador que não é controlado pelo PE ou pelo ligador. Somente é definido pelo PE os dados da tabela de diretório de debug.

A.2 Arquivo ELF

Explicação

A.2.1 A estrutura do arquivo ELF

Arquivo Realocável

Cabeçalho ELF
Tabela do cabeçalho do programa (opcional)
seção 1
seção 2
seção n
Tabela de cabeçalho de seção

Arquivo Carregável

Cabeçalho ELF
Tabela do cabeçalho do programa
Segmento 1
Segmento 2
Tabela de cabeçalho de seção(opcional)