Assignment 2 Roots of Equations

 $f(x) = 4\sqrt{13}$ $\times -4\sqrt{13}$

1. Use Bisection method to find the root of $\sqrt[4]{13}$ in the interval of 1.5 and 2.0

1.1 show your work for 4 iterations

×4- V13 70

Rearrange the given equation to

$$x^4 - \left(\sqrt[4]{13}\right)^4 = 0 \tag{1}$$

$$x^4 - 13 = 0$$
 (2)

From equation (2), we can apply Bisection method to approximate its root as follow

$$X_L = 1.5, X_R = 2.0, \mathcal{E}_S = 0.000001$$

Iteration	X _L	X _R	X _M	f(X _M)	f(X _R)	$f(X_M)^* f(X_R)$	3
1	1.5000000	2.000000	1.750000	-3.621094	3.000000	-10.863282	0.500000
2	1.750000	2.000000	1.875000	-0.640381	3.000000	-1.921143	0.333333
3	1.875000	2.000000	1.937500	1.091812	3.000000	3.275436	0.142857
4	1.875000	1.937500	1.906250	0.204423	1.091812	0.223191	0.066667
5	1.890625	1.906250	1.898438	-0.010702	0.204423	-0.002188	0.016393
20	1.898828	1.898829	1.898829	0.000002	0.000002	0.000000	0.000001

1.2 write a program to iteratively find the answer till there is no changes in

the answer for six significant figures

// Node.js (JavaScript)

// Bisection Method

var xl, xr, xm, f_xr, f_xl, f_xm, esp, approx_err, true_err, i;

var error, prev_xm, exact_sol = $13^{**}(1/4)$;

// equation: $x^4 - 13 = 0$ esp = 0.0000001; xl = 1.5; xr = 2.0; xm = (xl+xr)/2;

(Math, powcxr, 4) 3)4-13;

```
Sketches of Solutions
f = xr = Cxr^{**}(4)^{-1}
 i = 0;
console.log('iteration ' + i + ': xr = ' + xr + ', xl = ' + xl + ', xm = ' + xm);
                                                                  f - YM = CXMAAY) - 13
f xr = (xr^{**}4) - 13;
f_xr = (xr^{**4}) - 13;
f_xm = (xm^{**4}) - 13;
f_xm = (xm^{**4}
                                                                                                                   (t(f-xr*f-xm co) x |= xmg
else xr=xmg
(=1)
console.log('tre error = ' + true_err);
prev xm = xm;
if(f xr*f xm < 0) xl = xm;
else xr = xm;
i = 1;
 do { // determine f(x)
          xm = (xl+xr)/2;
          f xr = (xr**4) - 13;
         f xm = (xm^{**}4) - 13;
         true err = 100*Math.abs(exact sol -xm)/exact sol);
          approx err = 100*Math.abs((xm - prev xm)/xm);
          if(f xr*f xm < 0) xl = xm;
          else xr = xm;
         error = prev xm - xm;
         prev xm = xm;
          console.log('iteration' + i + ': xr = ' + xr + ', xl = ' + xl + ', xm = ' + xm);
         console.log('true err = ' + true err);
          console.log('approx err = ' + approx err);
          i++;
 } while(Math.abs(error) > esp);
```

2. Use False-Position method to find the value of $\frac{1}{43}$ in the interval of 0.02 and

0.03

X=1 43

2.1 show your work for 4 iterations

Rearrange the given equation to

$$\frac{1}{x} - 43 = 0$$

X-1 (1)

From equation (1), we can apply False position method to approximate its root as follow

$$X_L = 0.02, X_R = 0.03, \, \epsilon_S = 0.000001\%$$

Iteration	X _L	X_R	f(X _R)	X ₁	f(X ₁)	$f(X_1)^* f(X_R)$	€(%)
1	0.020000	0.030000	-9.666667	0.024200	-1.677686	16.217632	23.966942
2	0.020000	0.024200	-1.677686	0.023388	-0.243031	0.407730	3.471866
3	0.020000	0.023388	-0.243031	0.023274	-0.033600	0.008166	0.489817
4	0.020000	0.023274	-0.033600	0.023258	-0.004042	0.000136	0.068794
5	0.020000	0.023258	-0.004042	0.023256	-0.000344	0.000001	0.008600
6	0.020000	0.023256	-0.000344	0.023256	-0.000344	0.000000	0.000000

2.2 write a program provided that the error is lesser than 0.000001%

```
// Node.js (JavaScript)

// False-Position Method

var xl, xr, x1, f_xr, f_xl, f_x1, esp, approx_err, true_err, i;

var error, prev_x1, exact_sol = 1/43;

// equation: (1/x) - 43 = 0

esp = 0.0000001;

xl = 0.02;

xr = 0.03;

f_xr = (1/xr) - 43;

f_xl = (1/xl) - 43;

x1 = (xl*f_xr - xr*f_xl)/(f_xr-f_xl);
```

```
f \times 1 = (1/x1) - 43;
i = 0;
console.log('iteration ' + i + ': xr = ' + xr + ', xl = ' + xl + ', x1 = ' + x1);
true err = 100*Math.abs((exact sol - x1)/exact sol);
console.log('tre error = ' + true err);
prev_x1 = x1;
if(f_xr^*f_x1 < 0) xl = x1;
else xr = x1;
i = 1;
do { // determine f(x)
   f xr = (1/xr) - 43;
   f xl = (1/xl) - 43;
   x1 = (xl*f_xr - xr*f_xl)/(f_xr-f_xl);
   f x1 = (1/x1) - 43;
   true_err = 100*Math.abs((exact_sol - x1)/exact_sol);
   approx err = 100*Math.abs((x1 - prev x1)/x1);
   if(f \times r^*f \times 1 < 0) xl = x1;
   else xr = x1;
   prev x1 = x1;
   console.log('iteration ' + i + ': xr = ' + xr + ', xl = ' + xl + ', x1 = ' + x1);
   console.log('true_err = ' + true_err);
   console.log('approx err = ' + approx err);
   i++;
} while(approx_err > esp);
```

3. Use ONE-POINT ITERATION method to find the value of $\frac{1}{2}$ with an initial guess of 0.00

3.1 show your work for 4 iterations

Rearrange the given equation to

$$x - \frac{1}{2} = 0$$

$$x = x^2 + \frac{1}{4}$$

Then rewrite equation (2) into iterative form

$$x_{i+1} = x_i^2 + \frac{1}{4}$$

From equation (3), we can apply One-point iteration method to approximate its root as follow

Initial guess; X = 0.00, $\mathcal{E}_S = 0.000001\%$

Iteration	Xi	X_{i+1}	ε _a (%)
1	0.000000	0.250000	N/A
2	0.250000	0.312500	20.000000
3	0.312500	0.347656	10.112360
4	0.347656	0.370865	6.257972
5	0.370865	0.387541	4.303001
•••	•••	•••	•••
11538	0.499913	0.499913	0.000001

X - 2X + 17 - 2X + 17 - X + 1 - X + 1 - X + 1

Note that the convergence of the solution depends on how we formulate the equation. If we formulate as $x - \frac{1}{2} = 0$, the solution will be diverge since there is no term related to x on the right-hand side of the equation.

Iteration	X_i	X_{i+1}	ε _t (%)	ε _a (%)
1	0.000000	-0.500000	200%	N/A
2	-0.500000	-1.000000	300%	50.000000%
3	-1.000000	-1.500000	400%	33.333333%
4	-1.500000	-2.000000	500%	25.000000%
5	-2.000000	-2.500000	600%	20.000000%
•••	•••			
350	-174.500000	-175.000000	35100%	0.285714%

3.2 write a program with error lesser than 0.000001%

// Node.js (JavaScript)

```
// One-Point Iteration Method
var x, new x, i = 0;
var approx err, eps;
// equation new x = x^2 + 1/4
eps = 0.000001;
// initial guess : x = 0
x = 0.00;
new x = x^{**}2 + (1/4);
approx_err = 100*Math.abs((new_x - x)/new_x);
console.log('iteration' + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i + i
do {
         i++;
         x = new x;
        new_x = x^{**}2 + (1/4);
         approx_err = 100*Math.abs((new_x - x)/new_x);
         console.log('iteration ' + i + ': x i = ' + x + ', x i+1 = ' + new x + ', approx err = ' +
 approx err);
} while(approx_err > eps);
```