Politechnika Białostocka	Data: 17.03.2015r
Wydział Informatyki	
Przedmiot: Modelowanie i analiza systemów	Prowadzący:
informatycznych	dr inż. Walenty Oniszczuk
Sprawozdanie nr: 4	
Temat : Systemy obsługi z kolejką (M/M/c/L)	Ocena:
Autor: Łukasz Świderski	
Studia: stacjonarne, II stopnia, semestr 1	

1. Treść zadania

Dla danych wejściowych obliczyć i przedstawić w formie wykresu

- 1) Prawdopodobieństwo stanów fazowych tylko dla $\lambda = 21$
- 2) Prawdopodobieństwo straty zgłoszenia dla wszystkich λ
- 3) Średnią liczbę zajętych stanowisk obsługi l
- 4) Średnią liczbę zgłoszeń w węźle obsługi n (kolejka +st. Obsługi)
- 5) Średni czas oczekiwania w kolejce w

Dane:

$$c = 4$$

$$\mu = 5$$

$$\lambda = 3,6,...,27$$

$$m = 10$$

2. Część teoretyczna

Prawdopodobieństwo stanów, jeżeli liczba zgłoszeń zawarta jest w przedziale 0 <= i <=c :

$$Q_i = \frac{\lambda_0 \lambda_1 \dots \lambda_{i-1}}{\mu_1 \mu_2 \dots \mu_i} = \frac{\lambda^i}{i! \mu^i}$$

Prawdopodobieństwo stanów, jeżeli liczba zgłoszeń zawarta jest w przedziale c+1 <= i <=c +m:

$$Q_i = \frac{\lambda^i}{c! \, \mu^c c^{i-c} \mu^{1-c}} = \frac{\lambda^i}{c! \, \mu^i c^{i-c}}$$

Prawdopodobieństwo stanów:

$$p_i = p_0 * Q_i$$

$$gdzie$$

$$p_0 = \frac{1}{\sum_{k=0}^{m+c} Q_k}$$

Średnia liczba zajętych stanowisk:

$$\bar{l} = \sum_{k=1}^{c} k p_k + \sum_{k=c+1}^{c+m} c p_k$$

Średnia liczba zgłoszeń w węźle obsługi:

$$\bar{n} = \bar{v} + \bar{l}$$

Średni czas oczekiwania w kolejce:

$$w\bar{v} = \frac{\bar{v}}{\lambda}$$

Prawdopodobieństwo straty zgłoszenia:

$$p_{str} = p_{c+m}$$

3. Rozwiązanie

W celu rozwiązania zadania została utworzona aplikacja w technologii Windows Presentation Foundation, której celem jest przedstawienie wyników w formie tabeli oraz wykresów.

1) Prawdopodobieństwo stanu dla $\lambda = 21$

i	pi
0	0,004749135
1	0,019946365
2	0,041887367
3	0,058642314
4	0,06157443
5	0,064653151
6	0,067885809
7	0,071280099
8	0,074844104
9	0,078586309
10	0,082515625
11	0,086641406
12	0,090973477
13	0,09552215
14	0,100298258

2) Pstr

λ	Pstr
3	0
6	0
9	0
12	0
15	0,007
18	0,036
21	0,1
24	0,183
27	0,264

3) Ī

λ	\overline{l}
3	0,599
6	1,199
9	1,799
12	2,398
15	2,978
18	3,468
21	3,778
24	3,919
27	3,971

4) <u>n</u>

λ	\overline{n}
3	0,624
6	1,627
9	3,549
12	6,191
15	8,347
18	8,648
21	7,334
24	5,874
27	4,948

5) \bar{w}

λ	\overline{W}
3	0,008 0,071 0,194
6	0,071
9	0,194
12	0,316

15	0,357
18	0,287
21	0,169
24	0,081
27	0,036

Zrzuty aplikacji oraz wykresy:

4. Wnioski

Po wykonaniu zadania można stwierdzić, że wraz ze wzrostem parametru λ wzrasta prawdopodobieństwo średniej liczby zajętych stanowisk oraz prawdopodobieństwo straty zgłoszenia. Natomiast średni czas oczekiwania w kolejce jak i średnia liczba zgłoszeń w węźle w pewnym momencie zaczynają spadać.