LINEAR ALGEBRA

POWERED BY MAPHYCS

Contents

Part 1. ベクトル空間1. アーベル群, 左 K 加群2. ベクトル空間3. 線型結合と生成する部分ベクトル空間4. 和空間5. 直積ベクトル空間6. 直和	2 2 2 6 8 10
Part 2. 線形写像 7. 線形写像 8. 像と核 9. 同型写像 10. 商ベクトル空間 11. 準同型定理	12 12 12 13 13
Part 3. 基底と次元12. 基底と次元に関する諸性質13. 部分ベクトル空間と次元・補空間14. 線形写像と次元15. 線形写像の行列表示16. 有限次元ベクトル空間	14 15 15 15 15 16
Part 4.計量ベクトル空間17.ノルムと各不等式18.距離19.完備性とヒルベルト空間20.正規直交系21.グラム・シュミットの直交化法22.直交行列	16 16 17 17 18 18
Part 5. 行列式 23. 置換 24. 行列式	19 19 19
Part 6. 固有値・固有ベクトル・対角化	19
Part 7. エルミート行列・ユニタリー行列	19
Part 8. 線形常微分方程式 References	19 20

Date: January 20, 2018.

Part 1. ベクトル空間

1. アーベル群, 左 K 加群

Def. 1.1. アーベル群 [abelian group]

集合 A が演算 * について以下の性質を持つとき, A を演算 * についてアーベル 群 [abelian group] または可換群 [commutative group] であるという.

(1) 交換律

$$a, b \in A \Rightarrow a * b = b * a$$

(2) 結合律

$$a, b, c \in A \Rightarrow (a * b) * c = a * (b * c)$$

(3) 単位元の存在

$$\exists 1 \in A, \forall a \in A, a * 1 = a$$

(4) 逆元の存在

$$\exists -a \in A, a * (-a) = 1$$

Def. 1.2. 左 *K* 加群

集合Mがアーベル加群で,Kを環として以下の性質を満たすとき,Mは左K加 群 [left K-module] という.

(1) 分配法則

$$\lambda \in K \land x, y \in M \Rightarrow \lambda(x+y) = \lambda x + \lambda y$$

 $\lambda \in K \land x \in M \Rightarrow (\lambda + \mu)x = \lambda x + \mu x$

(2) 結合律

$$\lambda,\mu\in K\wedge x\in M\Rightarrow (\lambda\mu)x=\lambda(\mu x)$$

(3) Kの単位元との関係

$$x \in M \Rightarrow 1_K x = x$$

ただし 1_K は K の乗法単位元.

2. ベクトル空間

Def. 2.1. ベクトルの公理

Kを体とする. 集合 V について,

$$x, y \in V \Rightarrow x + y \in V$$

$$\lambda \in K \land x \in V \Rightarrow \lambda x \in V$$

が成り立ち, 左 K 加群であるような集合 V を体 K 上のベクトル空間 [vector space] という. ベクトル空間 V の元をベクトル [vector] といい. 体 K の元をスカラー [scalar] という.

ベクトル・スカラーの順の積は定義されない.

Prop. 2.1. ベクトル空間の加群としての性質

 $x \in V \succeq \cup \subset$

- (1) V の零元 0_V は唯一つ存在する.
- (2) x の加法の逆元 $-x \in V$ がただ一つ存在する.
- (3) -(-x) = x.

Prf. 1. (1) 0,0' が共に V の零元だと仮定する. 仮定と零元の定義から,

$$0 = 0 + 0' = 0'$$

$$\therefore 0 = 0'$$
.

(2) $y, y' \in V$ を共に $x \in V$ の逆元と仮定する. 仮定と逆元の性質, 結合法則から,

$$y = y + 0_V = y + (x + y') = (y + x) + y' = 0_V + y' = y'$$

 $\therefore y = y'.$

(3) -(-x) は -x の逆元である. また,

$$x + (-x) = 0_V$$

だから, x も -x の逆元である. 從って逆元の一意性から,

$$-(-x) = x$$
.

Def. 2.2. 3 つ以上のベクトルの和 結合律より, x, y, z \in V とすると

$$(x+y) + z = x + (y+z)$$

だから,これらをまとめて

(2.1) x + y + z

と書く. 同様に3つ以上のベクトルの和も演算の順序に関わらず

$$(2.2) x_1 + x_2 + \cdots + x_n$$

と書く. また, これを省略して

$$(2.3) \qquad \sum_{i=1}^{n} x_i$$

と書く.

Prop. 2.2. ベクトル空間の左 K 加群としての性質 $\lambda \in K, x \in V$ として

$$(2.4) 0_K x = \lambda 0_V = 0_V$$

(2.5)
$$\lambda x = 0_V \Rightarrow \lambda = 0_K \lor x = 0_V$$

(2.6)
$$\lambda(-x) = (-\lambda)x = -\lambda x$$

$$(2.7) (-\lambda)(-x) = \lambda x$$

$$(2.8) \qquad (-1_K)x = -x$$

Prf. 2. (1)

$$0_K x = (0_K + 0_K)x = 0_K x + 0_K x$$

両辺に $-0_K x \in V$ を加えて,

$$\therefore 0_K x = 0_V.$$

また.

$$\lambda 0_V = \lambda (0_V + 0_V) = \lambda 0_V + \lambda 0_V$$
$$\lambda 0_V = 0_V$$
$$\therefore 0_K x = \lambda 0_V = 0_V.$$

(2)

$$(2.9) \lambda x = 0_V$$

を仮定する. $\lambda = 0_K$ のとき,

$$\lambda=0_K\vee x=0_V.$$

 $\lambda \neq 0_K$ のとき, eq. (2.9) の両辺に右から λ^{-1} をかけると,

$$x = 0_V$$

$$\therefore \lambda = 0_K \vee x = 0_V.$$

以上より,

$$\lambda x = 0_V \Rightarrow \lambda = 0_K \lor x = 0_V.$$

(3)

$$\lambda x + \lambda(-x) = \lambda(x + (-x)) = \lambda 0_V = 0_V$$
$$\therefore \lambda(-x) = -\lambda x.$$

また,

$$\lambda x + (-\lambda)x = (\lambda + (-\lambda))x = 0_K x = 0_V$$
$$\therefore (-\lambda)x = -\lambda x.$$

以上より,

$$\lambda(-x) = (-\lambda)x = -\lambda x.$$

(4)

$$(-\lambda)(-x) + (-\lambda x) = (-\lambda)(-x) + (-\lambda)x = (-\lambda)(-x + x) = -\lambda 0_V = 0_V.$$

逆元の一意性から

$$(-\lambda)(-x)=\lambda x.$$

(5)

$$(-1_K)x = -1_K x.$$

ベクトルの公理から

$$1_K x = x$$
.

$$\therefore (-1_K)x = -x.$$

Def. 2.3. 部分ベクトル空間 [linear subspace]

V の部分集合 W が K 上のベクトル空間となるとき, W を V の部分ベクトル空間 [vector subspace] という.

Prop. 2.3. W が V の部分ベクトル空間であることの必要十分条件.

$$W$$
 が V の部分ベクトル空間 \Leftrightarrow
$$\begin{cases} W \subset V \\ x,y \in W \Rightarrow x+y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W \end{cases}$$

 $Prf. 3. (\Rightarrow)W は V の部分ベクトル空間であると仮定する. 定義より$

$$\begin{cases} W \subset V \\ x, y \in W \Rightarrow x + y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W \end{cases}$$

よって ⇒ は示せた.

 (\Leftarrow)

$$\begin{cases} W \subset V \\ x, y \in W \Rightarrow x + y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W \end{cases}$$

を仮定すると,

$$\begin{cases} x, y \in W \Rightarrow x + y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W \end{cases}$$

であり、任意の $x \in W$ は $x \in V$ でもあるから W の任意の元に関して交換律、結合律が 成り立つ. 零元は $0_W = 0_K x = 0_V \in W$, 逆元は $-x = (-1_K)x$ で定まるので, W は加法 に関してアーベル群である. また, $\lambda, \mu \in K \land x, y \in W$ として, $x, y \in V$ だから, W は左 K 加群の定義を満たす. 從って W は K 上のベクトル空間かつ $W \subset V$ なので V の部 分ベクトル空間である.

Prop. 2.4. *W* が *V* の部分ベクトル空間であることの必要十分条件.

$$W$$
 が V の部分ベクトル空間 \Leftrightarrow
$$\begin{cases} W \subset V \\ \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ 0_V \in W \end{cases}$$

$$Prf. \ 4. \ \text{Proposition } 2.3 \ \dot{\mathcal{D}}^{1} \ \dot{\mathcal{D}},$$

$$\begin{cases} x, y \in W \Rightarrow x + y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W. \end{cases} \Leftrightarrow \begin{cases} \lambda_{1}, \lambda_{2} \in K \land x_{1}, x_{2} \in W \Rightarrow \lambda_{1}x_{1} + \lambda_{2}x_{2} \in W. \\ 0 \in W \end{cases}$$

を示せばよい.

 (\Rightarrow)

$$\lambda_1, \lambda_2 \in K \land x_1, x_2 \in W$$

を仮定すると.

$$\lambda_1 x_1, \lambda_2 x_2 \in W$$
$$\lambda_1 x_1 + \lambda_2 x_2 \in W$$

 $\therefore \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W.$

また, W はベクトル空間なので, $O_W \in W$ である. $x, -x \in W$ について $x, -x \in V$ だか ら、ベクトルの公理から

$$0_W = x + (-x) = 0_V$$
.

從って

$$\begin{cases} \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ 0_V \in W \end{cases}$$

が成り立つので⇒ は示せた.

 (\Leftarrow)

$$\begin{cases} \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ 0_V \in W \end{cases}$$

を仮定する. $x, y \in W$ とすると, 仮定から

$$1_K x + 1_K y \in W$$

$$x + y \in W$$

 $\therefore x, y \in W \Rightarrow x + y \in W.$

また、 $\lambda \in K, x \in W$ とすると、仮定から、

$$\lambda x + 0_K 0_V \in W$$

$$\lambda x \in W$$

 $\therefore \lambda \in K \land x \in W \Rightarrow \lambda x \in W$

以上より、

$$\begin{cases} x, y \in W \Rightarrow x + y \in W \\ \lambda \in K \land x \in W \Rightarrow \lambda x \in W \end{cases}$$

從って ← も示せた.

Prop. 2.5. W が V の部分ベクトル空間であることの必要十分条件

$$W$$
 が V の部分ベクトル空間 \Leftrightarrow
$$\begin{cases} W \subset V \\ \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ W \neq \emptyset \end{cases}$$

Prf. 5. Proposition 2.4 より,

$$\begin{cases} \lambda_{1}, \lambda_{2} \in K \land x_{1}, x_{2} \in W \Rightarrow \lambda_{1}x_{1} + \lambda_{2}x_{2} \in W \\ 0_{V} \in W \end{cases} \Leftrightarrow \begin{cases} \lambda_{1}, \lambda_{2} \in K \land x_{1}, x_{2} \in W \Rightarrow \lambda_{1}x_{1} + \lambda_{2}x_{2} \in W \\ W \neq \emptyset \end{cases}$$

を示せばよい.

 (\Rightarrow)

$$\begin{cases} \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ 0_V \in W \end{cases}$$

を仮定する. $0_V \in W$ から $W \neq \emptyset$ なので \Rightarrow は示せた.

 (\Leftarrow)

$$\begin{cases} \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1 x_1 + \lambda_2 x_2 \in W \\ W \neq \emptyset \end{cases}$$

を仮定する. $W \neq \emptyset$ なので $x \in W$ となる x が存在する. 仮定より、

$$0_K x + 0_K x = 0_V \in W.$$

從って ← も示せた.

3. 線型結合と生成する部分ベクトル空間

Cor. 3.1. ベクトルの線形結合もベクトル

(3.1)
$$\lambda_1, \lambda_2, \dots, \lambda_n \in K \land x_1, x_2, \dots, x_n \in V \Rightarrow \sum_i \lambda_i x_i \in V$$

Def. 3.1. 線形結合

$$\lambda_1, \ldots, \lambda_n \in K \land x_1, \ldots, x_n \in W \succeq \bigcup \subset$$

$$(3.2) x = \sum_{i} \lambda_i x_i$$

を $x_1, ..., x_n$ の線形結合 [linear combination] という.

Def. 3.2. 生成する部分ベクトル空間 $S \subset V$ の線形結合の集合

(3.3)
$$\mathcal{L}(S) := \left\{ \sum_{i=1}^{n} \lambda_i a_i \middle| n \in \mathbb{N}, \lambda_i \in K, a_i \in S \right\}$$

を S の生成する部分ベクトル空間 [spanned set] といい, S を $\mathcal{L}(S)$ の生成系 [generating set] という.

Prop. 3.1. 諸定理

- (1) $W_a(a \in A): V$ の部分ベクトル空間 $\Rightarrow \bigcap_{a \in A} W_a: V$ の部分ベクトル空間
- (2) $S \subset V$ として $\mathcal{L}(S)$ は V の部分ベクトル空間
- (3) $\mathcal{L}(S)$ は S を含む最小の部分ベクトル空間
- Prf. 6. (1) W_a は V の部分集合と仮定する. $W := \bigcap_{a \in A} W_a : V$ とおく. Proposition 2.4 から,

$$W \subset V$$
.

$$0_V \in W_a$$

$$0_V \in W$$
.

$$\forall a \in A, x_1, x_2 \in W_a$$

$$\forall a \in A, \lambda_1 x_1 + \lambda_2 x_2 \in W_a$$

$$\lambda_1 x_1 + \lambda_2 x_2 \in W$$

 $\therefore \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W \Rightarrow \lambda_1, \lambda_2 \in K \land x_1, x_2 \in W$

從って, Proposition 2.4 から W は V の部分ベクトル空間だから示せた. (2) $S \subset V \land W := \mathcal{L}(S)$ とする. $x \in W$ は

$$x = \sum_{i=1}^{n} \lambda_i a_i, \lambda_i \in K, a_i \in S$$

で表されるから Corollary 3.1 より $x \in V$ なので $W \subset V$. また, $y \in W$ とすると

$$y = \sum_{i=1}^{m} \mu_i a_i', \mu_i \in K, a_i' \in W$$

で表される. $\lambda, \mu \in K$ とすると,

$$\lambda x + \mu y = \lambda \lambda_1 a_1 + \dots + \lambda \lambda_n a_n + \mu \mu_1 a'_1 + \dots + \mu \mu_n a'_n.$$

 $\mathcal{L}(S)$ の定義より $\lambda x + \mu y \in W$ だから

$$x,y\in W\wedge\lambda,\mu\in K\Rightarrow\lambda x+\mu y\in W$$

また,

$$0_V = \sum_{i=1}^n 0_K a_i \in W$$

以上より Proposition 2.4 から W は部分ベクトル空間.

(3) W を V の部分ベクトル空間として,

$$S \subset W \Rightarrow \mathcal{L}(S) \subset W$$

を示せばよい. $S \subset W$ を仮定する. $x \in \mathcal{L}(S)$ とすると,

$$x = \sum_{i=1}^{n} \lambda_i a_i, \lambda_i \in K, a_i \in S$$

と表せる. Corollary 3.1 より, $x \in W$ だから

$$\mathcal{L}(S) \subset W$$

$$\therefore S \subset W \Rightarrow \mathcal{L}(S) \subset W.$$

Prop. 3.2. 張る部分空間と列基本変形

 $\dot{oldsymbol{\pounds}}$ 生成する部分空間の生成系 $S=\{a_1,\ldots,a_n\}$ に列基本変形を施しても $\mathcal{L}(S)$ は

(3.4)
$$\begin{cases} \mathcal{L}(a_{1}, \dots, a_{k}, \dots, a_{n}) = \mathcal{L}(a_{1}, \dots, \lambda a_{k}, \dots, a_{n}), \lambda \in K/\{0_{K}\} \\ \mathcal{L}(a_{1}, \dots, a_{k}, \dots, a_{l}, \dots, a_{n}) = \mathcal{L}(a_{1}, \dots, a_{k} + \lambda a_{l}, \dots, a_{l}, \dots, a_{n}), \lambda \in K \\ \mathcal{L}(a_{1}, \dots, a_{k}, \dots, a_{l}, \dots, a_{n}) = \mathcal{L}(a_{1}, \dots, a_{l}, \dots, a_{k}, \dots, a_{n}) \end{cases}$$

4. 和空間

Def. 4.1. 和空間 [sum space]

 W_1, W_2 を V の部分ベクトル空間として次のような集合

$$(4.1) {x_1 + x_2 | x_1 \in W_1, x_2 \in W_2}$$

を W_1, W_2 の和空間 [sum space] といい, $W_1 + W_2$ で表す.

Prop. 4.1. 生成する部分空間と和空間 W_1, W_2 を V の部分ベクトル空間とすると $\mathcal{L}(W_1 \cup W_2) = W_1 + W_2$

Prf. 7. $x \in \mathcal{L}(W_1 \cup W_2)$ とすると,

$$x = \sum_{i=1}^{n} \lambda_i a_i, \lambda_i \in K, a_i \in W_1 \cup W_2.$$

$$a_i \in W_1 \cup W_2 \Leftrightarrow a_i \in W_1 \lor a_i \in W_2$$

$$\therefore x = \underbrace{\sum_{i=1}^{k} \lambda_{p(i)} a_{p(i)}}_{W_1} + \underbrace{\sum_{i=1}^{l} \lambda_{q(i)} a_{q(i)}}_{W_2}$$

となるから

$$x \in W_1 + W_2$$

$$\therefore \mathcal{L}(S) \subset W_1 + W_2$$

$$x = x_1 + x_2, x_1 \in W_1, x_2 \in W_2$$

 $x_1, x_2 \in W_1 \cup W_2$ だから,

$$x = x_1 + x_2 \in \mathcal{L}(W_1 \cup W_2).$$

從って

$$W_1 + W_2 \subset \mathcal{L}(W_1 \cup W_2).$$

以上より

$$\mathcal{L}(W_1 \cup W_2) = W_1 + W_2.$$

Prop. 4.2. 3 つ以上の部分ベクトル空間の和空間 W_1, W_2, W_3 をそれぞれ V の部分ベクトル空間とすると結合法則 (4.2) $(W_1+W_2)+W_3=W_1+(W_2+W_3)$

以上よりが成り立つ.

Prf. 8.

$$x \in (W_1 + W_2) + W_3$$

を仮定する. 定義より,

$$x = x_{12} + x_3 \land x_{12} \in W_1 + W_2 \land x_3 \in W_3$$
$$x = x_1 + x_2 + x_3 \land x_1 \in W_1 \land x_2 \in W_2 \land x_3 \in W_3.$$

逆に

$$x = x_1 + x_2 + x_3 \land x_1 \in W_1 \land x_2 \in W_2 \land x_3 \in W_3$$
.

を仮定すると, $x \in (W_1 + W_2) + W_3$. 從って

$$x \in (W_1 + W_2) + W_3 \Leftrightarrow x = x_1 + x_2 + x_3 \land x_1 \in W_1 \land x_2 \in W_2 \land x_3 \in W_3.$$

同様に

 $x \in W_1 + (W_2 + W_3) \Leftrightarrow x = x_1 + x_2 + x_3 \land x_1 \in W_1 \land x_2 \in W_2 \land x_3 \in W_3.$ すなわち

$$x \in (W_1 + W_2) + W_3 \Leftrightarrow x \in W_1 + (W_2 + W_3)$$

 $\therefore (W_1 + W_2) + W_3 = W_1 + (W_2 + W_3)$

Def. 4.2. 3 つ以上の部分ベクトル空間の和空間 W_1, W_2, W_3 を V の部分ベクトル空間とすると

$$(W_1 + W_2) + W_3 = W_1 + (W_2 + W_3)$$

が成り立つのでこれらをまとめて

$$(4.3) W_1 + W_2 + W_3$$

で表す. 同様に3つ以上の部分ベクトル空間の和集合を

$$(4.4) W_1 + W_2 + \cdots + W_n$$

で表す.

Prop. 4.3. 3 つ以上の部分ベクトル空間の和空間 W_1, W_2, \ldots, W_n をそれぞれ V の部分ベクトル空間とすると,

(4.5)
$$W_1 + W_2 + \dots + W_n = \left\{ x \middle| x = \sum_{i=1}^n x_i \land x_i \in W_i \right\}$$

Prf. 9. 数学的帰納法による. n=2 のときは和空間の定義から明らか. n=k のとき W_1,\ldots,W_k を V の部分ベクトル空間として

$$W_1 + W_2 + \dots + W_k = \left\{ x \middle| x = \sum_{i=1}^k x_i \land x_i \in W_i \right\}$$

П

が成り立つと仮定すると, n=k+1 のとき, W_1, \ldots, W_{k+1} を V の部分ベクトル空間として $x \in W_1 + W_2 + \cdots + W_{k+1}$ とすると

$$x = x_1 + x_2 + \cdots + x_k + x_{k+1}$$
.

從って

$$x \in \left\{ x \middle| x = \sum_{i=1}^{k+1} x_i \land x_i \in W_i \right\}$$

逆に $, x \in \{x | x = \sum_{i=1}^{k+1} x_i \wedge x_i \in W_i\}$ を仮定すると

$$x \in (W_1 + \dots + W_k) + W_{k+1}$$

だから,

$$x \in W_1 + W_2 + \dots + W_{k+1} \Leftrightarrow x \in \left\{ x \middle| x = \sum_{i=1}^{k+1} x_i \land x_i \in W_i \right\}$$

$$\therefore W_1 + W_2 + \dots + W_{k+1} = \left\{ x \middle| x = \sum_{i=1}^{k+1} x_i \land x_i \in W_i \right\}$$

5. 直積ベクトル空間

Def. 5.1. 直積ベクトル空間

体 K 上の部分ベクトル空間 W_1, W_2 の直積集合

(5.1)
$$W_1 \times W_2 = \{\langle x_1, x_2 \rangle | x_1 \in W_1 \land x_2 \in W_2 \}$$

これに和とスカラー倍を以下のように定義したものを直積ベクトル空間という.

$$(5.2) \qquad \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle = \langle x_1 + y_1, x_2 + y_2 \rangle$$

(5.3)
$$\lambda \langle x_1, x_2 \rangle = \langle \lambda x_1, \lambda x_2 \rangle$$

Cor. 5.1. 直積ベクトル空間はベクトル空間

6. 直和

Def. 6.1. 直和 [direct sum]

ベクトル空間 V の部分ベクトル空間 $W_1, ..., W_n$ に対して V の任意の元 x が

(6.1)
$$x = x_1 + \dots + x_n (x_1 \in W_1, \dots, x_n \in W_n)$$

と一意的に表されるとき V を $W_1, ..., W_n$ の直和 [direct sum] といい,

$$(6.2) V = W_1 \oplus \cdots \oplus W_n$$

または

$$(6.3) V = \bigoplus_{i=1}^{n} W_i$$

で表す.

Prop. 6.1. V が W_1, W_2 の直和であることの必要十分条件

$$(6.4) V = W_1 \oplus W_2 \Leftrightarrow \begin{cases} V = W_1 + W_2 \\ W_1 \cap W_2 = \{0_V\} \end{cases}$$

Prf. 10. (⇒) V をベクトル空間, W_1, W_2 をその部分ベクトル空間として $V = W_1 \oplus W_2$ を仮定する. $x \in V$ とすると,

$$x = x_1 + x_2, x_1 \in W_1, x_2 \in W_2$$

と一意的に表されるので.

$$x \in W_1 + W_2$$

$$\therefore x \in V \Rightarrow x \in W_1 + W_2$$

また, V はベクトル空間だから

$$x \in W_1 + W_2 \Rightarrow x \in V$$

從って

$$V = W_1 + W_2$$

また, $x \in W_1 \land x \in W_2$ を仮定すると,

$$x = x_1 + 0_V = 0_V + x_2, x_1 \in W_1, x_2 \in W_2$$

と書ける. 直和の定義から x の $x=x_1+x_2$ の形の表示の仕方は一意なので $x_1=0_V, x_2=0_V$. 從って

$$x \in W_1 \cap W_2 \Rightarrow x = 0_V$$

$$W_1 \cap W_2 = \{0_V\}.$$

よって ⇒ は示せた.

 (\Leftarrow)

$$\begin{cases} V = W_1 + W_2 \\ W_1 \cap W_2 = \{0_V\} \end{cases}$$

を仮定する. $x \in V$ とすると, 仮定より

$$x = x_1 + x_2, x_1 \in W_1, x_2 \in W_2$$

と書ける.

$$x = x_1' + x_2', x_1' \in W_1, x_2' \in W_2$$

とすると

$$0_V = (x_1 - x_1') + (x_2 - x_2')$$

$$x_1 - x_1' = x_2' - x_2$$

 $x_1 - x_1' \in W_1 \land x_2' - x_2 \in W_2$ だから

$$x_1 - x_1' = x_2' - x_2 \in W_1 \cap W_2.$$

仮定より

$$x_1 - x_1' = x_2' - x_2 = 0_V.$$

從って

$$x_1 = x_1', x_2' = x_2$$

だから任意の $x \in V$ は $x = x_1 + x_2, x_1 \in W_1, x_2 \in W_2$ と一意的に表されるので

$$V = W_1 \oplus W_2$$
.

よって ← も示せた.

Prop. 6.2. 直和の結合法則

 W_1, W_2, W_3 を V の部分ベクトル空間として

$$(6.5) (W_1 \oplus W_2) \oplus W_3 = W_1 \oplus (W_2 \oplus W_3)$$

 $Prf. 11. x \in (W_1 \oplus W_2) \oplus W_3$ とする. 直和の定義から

$$x = x_{12} + x_3, x_{12} \in W_1 \oplus W_2, x_3 \in W_3$$

と一意的に表せる. x_{12} も $x_{12}=x_1+x_2, x_1\in W_1, x_2\in W_2$ と一意的に表せるので結局 x は

$$x = x_1 + x_2 + x_3, x_1 \in W_1, x_2 \in W_2, x_3 \in W_3$$

と一意的に表される.

Prop. 6.3. V が $W_1, \dots W_n$ の直和であることの必要十分条件 (6.6)

$$V = \bigoplus_{i=1}^{n} W_i \Leftrightarrow \begin{cases} V = W_1 + \dots + W_n \\ \forall i = 1, \dots, n; (W_1 + \dots + W_{i-1} + W_{i+1} + \dots + W_n) \cap W_i = \{0\} \end{cases}$$

Prf. 12.

Part 2. 線形写像

7. 線形写像

Def. 7.1. 線形写像

体 K 上のベクトル空間 V, W についての写像 $f:V\to W$ が次の性質を同時に満たすとき, f は線形写像である.

- (1) $f(x + y) = f(x) + f(y)(x, y \in V)$
- (2) $f(\lambda x) = \lambda f(x) (\lambda \in K, x \in V)$

Prop. 7.1. 線形写像 $f: V \to W$ について次が成り立つ.

$$\begin{cases} f(0_V) = 0_W \\ f\left(\sum_{i=1}^{n} \lambda_i x_i\right) = \sum_{i=1}^{n} \lambda_i f(x_i) \end{cases}$$

Prop. 7.2. 次が成り立つ

- (1) 恒等写像 $1_V: V \to V$ は線形写像.
- (2) $f: V_1 \to V_2, g: V_2 \to V_3$ が線形写像ならば、合成写像 $g \circ f: V_1 \to V_3$ も線形写像.

8. 像と核

Prop. 8.1. 線形写像 $f: V \to W$ について次が成立する.

- (1) V' を V の部分ベクトル空間とすると, f(V') は部分ベクトル空間
- (2) W' を W の部分ベクトル空間とすると, $f^{-1}(W')$ は部分ベクトル空間.

Def. 8.1. 像と核

線形写像 $f: V \rightarrow W$ について

(1) f の値域

(8.1)
$$Im f := \{ f(x) | x \in V \}$$

を f の像空間 [image] という.

(2) f の解空間

(8.2)
$$\operatorname{Ker} f := \{x | f(x) = 0\}$$

を f の核 [kernel] という.

9. 同型写像

Def. 9.1. 同型写像線形写像 $f: V \to W$ に対して,

$$(9.1) (f \circ g = 1_V : V \to V$$

$$\begin{cases} f \circ g = 1_V : V \to V \\ g \circ f = 1_W : W \to W \end{cases}$$

を満たす線形写像 $g:W\to V$ が存在するとき, f を同型写像といい,

$$(9.3) f: V \approx W$$

と表す.

Prop. 9.1. 線形写像 $f: V \to W$ について次は同値

- (1) f は同型写像.
- (2) f は全単射でその逆写像 f^{-1} も全単射.
- (3) f は全単射.
- (1) 線形写像 $f: V \to W$ が単射であることの必要十分条件は $\operatorname{Ker} f =$ Prop. 9.2. **{0}** となることである.
 - (2) 線形写像 $f:V\to W$ が同型写像となることの必要十分条件は $\operatorname{Ker} f=$ $\{0\} \wedge \operatorname{Im} f = W \$ となることである.
- Prop. 9.3. (1) $1_V: V \to V$ は同型写像.
 - (2) $f: V \to W$ が同型写像なら、その逆写像 $f^{-1}: W \to V$ も同型写像.

Def. 9.2. 同型なベクトル空間

2 つのベクトル空間 V, W に対して同型写像 $f: V \approx W$ が存在するとき, $V \succeq W$ は同型であるといい、この関係を

$$(9.4) V \approx W$$

と表す.

Prop. 9.4. 同型関係は同値関係.

10. 商ベクトル空間

Def. 10.1. W を V の部分ベクトル空間とする. $x, y \in V$ に対して,

$$(10.1) y - x \in W$$

が成り立つとき,

(10.2) $x \equiv y \mod W$

と定義する.

Lem. 10.1.

$$(10.3) x \equiv y \mod W$$

という関係は V の同値関係である.

Lem. 10.2. (1)

(10.4)
$$x \equiv x' \mod W \land y \equiv y' \mod W \Rightarrow x + y \equiv x' + y' \mod W$$

(10.5)
$$\lambda \in K \land x \equiv x' \mod W \Rightarrow \lambda x \equiv \lambda x' \mod W$$

11. 準同型定理

Part 3. 基底と次元

Def. 11.1. 線形関係

 $a_1, \ldots, a_n \in V$ に対して,

$$(11.1) c_1 a_1 + \dots + c_n a_n = 0$$

を線形関係という.

$$(11.2) c_1 = \cdots = c_n = 0$$

のときを自明な線形関係という. それ以外のとき, つまり

$$(11.3) \exists i, c_i \neq 0$$

のときを非自明な線形関係という.

Def. 11.2. 線形独立·線形従属

ベクトルの組 a_1, \ldots, a_n の線形関係

$$(11.4) c_1 a_1 + \dots + c_n a_n = 0$$

に関して、非自明な線形関係が存在しないとき、 a_1, \ldots, a_n は線形独立であるといい、非自明な線形関係が存在するとき、 a_1, \ldots, a_n は線形従属であるという.

Def. 11.3. 有限次元と無限次元

ベクトル空間 V の n 個の元の組 a_1, \ldots, a_n で線形独立なものが存在し、任意の n+1 個の元の組が線形従属のとき、V は有限次元ベクトル空間でその次元は n であるといい.

$$\dim V = n$$

と書く. また任意の自然数 n に対し線形独立な組 a_1, \ldots, a_n が存在するとき, V は 無限次元ベクトル空間で, このことを

$$\dim V = \infty$$

で表す.

Def. 11.4. 基底

 $\mathcal{B}=b_1,\ldots,b_n$ に対し, $V=\mathcal{L}(\mathcal{B})$ かつ b_1,\ldots,b_n が線形独立のとき \mathcal{B} を V の基底という.

Prop. 11.1. $\mathcal{B} = \{b_1, \dots, b_n\}$ が V の基底になることの必要十分条件 $\mathcal{B} = \{b_1, \dots, b_n\}$ が V の基底となるための必要十分条件は V の任意の元が

(11.7)
$$x = \sum_{i=1}^{n} \lambda_i b_i, \lambda_i \in K$$

の形に一意的に表されることである. すなわち

(11.8)
$$\begin{cases} x \in V \Rightarrow \exists \lambda_1, \dots, \lambda_n \in K, x = \sum_{i=1}^n \lambda_i b_i \\ \sum_{i=1}^n \lambda_i b_i = \sum_{i=1}^n \lambda_i' b_i \Rightarrow \lambda_i = \lambda_i' \end{cases}$$

Def. 11.5. 座標

 $\mathcal{B} = \{b_1, \dots, b_n\}$ が V の基底であるとき, V の元 x は線型結合

(11.10)
$$x = \sum_{i=1}^{n} \lambda_i b_i, \lambda_i \in K$$

で一意的に表せる. この係数の組 ${}^t[\lambda_1,\ldots,\lambda_n]\in K^n$ を x の $\mathcal B$ に関する座標 [coor-

Cor. 11.1. V の元を基底 \mathcal{B} に関する座標に対応させる写像

$$(11.11) \phi: x \mapsto^t [\lambda_1, \dots, \lambda_n]$$

は同型写像である.

12. 基底と次元に関する諸性質

13. 部分ベクトル空間と次元・補空間

14. 線形写像と次元

15. 線形写像の行列表示

Det. 15.1. 行列
$$T_n = \{1, \dots, n\} \ \text{として写像} \ a : T_n \times T_m \to K \ \text{を縦と横に並べたもの}$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$

を行列 [matrix] といい, a_{ij} をその行列の要素 [element] という.

V,W を有限次元ベクトル空間とする. $\mathcal{A} = \{a_1, \ldots, a_n\}, \mathcal{B} = \{b_1, \ldots, b_m\}$ をそれぞ れV,Wの基底とし, $f:V\to W$ を線形写像とする. Vの任意の元xは

$$(15.2) x = \sum_{i=1}^{n} \lambda^{i} a_{i}, \mu_{i} \in K$$

で表される. また, $f(a_i) \in W$ は

(15.3)
$$f(a_j) = \sum_{i=1}^{m} a_{iaj} b_i, a_{ij} \in K$$

で表される. 從って f の線形性から

(15.4)
$$f(x) = \sum_{i=1}^{n} \lambda^{j} f(a_{j}) = \sum_{i=1}^{n} \sum_{i=1}^{m} a_{j}^{i} \lambda^{j} b_{i}$$

が成り立つ. $f(x) \in W$ なので

(15.5)
$$f(x) = \sum_{i=1}^{m} \mu_i b_i$$

と表されるので, f(x) の \mathcal{B} における座標は

$$\mu_i = \sum_{j=1}^n a_j^i \lambda^j$$

となる. この a_i^i を縦と横に並べたもの

(15.7)
$$A := \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$

を f の表現行列という.

Def. 15.2. 行列の積 有限次元ベクトル空間から

16. 有限次元ベクトル空間

Part 4. 計量ベクトル空間

Def. 16.1. 内積空間

体 $K(=\mathbb{C},\mathbb{R})$ 上の線形空間 \mathcal{H} に次の性質を満たす二項演算 $(,)_{\mathcal{H}}:\mathcal{H}^2\to K,$ すなわち内積 [inner product] が定義されているとき, これを体 K 上の内積空間 [inner product space] または前ヒルベルト空間 [pre-Hilbert space] という.

正值性

(16.1)
$$\psi \in \mathcal{H} \Rightarrow (\psi, \psi)_{\mathcal{H}} > 0$$

正定值性

(16.2)
$$\psi \in \mathcal{H} \wedge (\psi, \psi)_{\mathcal{H}} = 0 \Rightarrow \psi = 0$$

線形性

$$(16.3) \psi, \phi_1, \phi_2 \in \mathcal{H} \land \alpha, \beta \in K \Rightarrow (\psi, \alpha\phi_1 + \beta\phi_2)_{\mathcal{H}} = \alpha(\psi, \phi_1) + \beta(\psi, \phi_2)$$

対称性

(16.4)
$$\psi, \phi \in \mathcal{H} \Rightarrow (\psi, \phi)_{\mathcal{H}} = (\phi, \psi)_{\mathcal{H}}^*$$

17. ノルムと各不等式

Def. 17.1. ノルム [norm]

体 K 上の内積空間 \mathcal{H} の元 $\psi \in \mathcal{H}$ に対して

をノルムという.

Prop. 17.1. シュワルツの不等式

内積空間の2元 $\psi, \phi \in \mathcal{H}$ に関し、

(17.2)
$$\|\psi\| \|\phi\| \| \ge |(\psi, \phi)|$$

が成り立つ.

Prf. 13. $\psi, \phi \in \mathcal{H} \land t \in \mathbb{R} \succeq \bigcup \mathcal{T}$

$$\|\psi + t\phi\|^2 \ge 0$$

$$(\psi + t\phi, \psi + t\phi) = \|\psi\|^2 + 2t\text{Re}((\psi, \phi)) + t^2\|\phi\|^2 \ge 0$$

この等式が任意のtで成り立つための必要十分条件は、右辺のtに関する二次関数の 判別式を D として

$$\frac{D}{4} = \left\{ \frac{(\psi, \phi) + (\phi, \psi)}{2} \right\}^2 - \|\psi\|^2 \|\phi\|^2 \le 0$$

$$\therefore \|\psi\| \|\phi\| \ge |(\psi, \phi)|.$$

Prop. 17.2. 三角不等式 体 K 上の内積空間 $\mathcal H$ の 2 つのベクトル $\psi,\phi\in\mathcal H$ に関して次が成り立つ.

(17.3)
$$\|\psi + \phi\| \le \|\psi\| + \|\phi\|$$

これは三角不等式と呼ばれる.

Prf. 14. $\psi, \phi \in \mathcal{H}$ について,

$$(\|\psi\| + \|\phi\|)^2 - \|\psi + \phi\|^2$$

$$= \|\psi\|^2 + 2\|\psi\| \|\phi\| + \|\phi\|^2 - \|\psi\|^2 - 2\operatorname{Re}((\psi, \phi)) - \|\phi\|^2$$

$$= 2(\|\psi\| \|\phi\| - \operatorname{Re}((\psi, \phi))).$$

と書ける.

$$Re((\psi, \phi)) \le |(\psi, \phi)| \le ||\psi|| ||\phi||$$

だから,

$$(\|\psi\| + \|\phi\|)^2 - \|\psi + \phi\|^2 \ge 0$$

$$\therefore \|\psi + \phi\| \le \|\psi\| + \|\phi\|.$$

18. 距離

Def. 18.1. 距離関数

ベクトル $\psi, \phi \in \mathcal{H}$ の距離を

(18.1)
$$d(\psi, \phi) := \|\psi - \phi\|$$

19. 完備性とヒルベルト空間

Def. 19.1. 点列と極限

自然数の集合 \mathbb{N} から内積空間 \mathcal{H} への写像 $\psi: n \mapsto \psi_n$ を点列といい、

$$\{\psi\}_{n=1}^{\infty}$$

で表す.

$$\lim_{n \to \infty} (\psi_n, \psi) = 0$$

を満たすとき, ψ_n は ψ に収束するといい,

$$(19.3) \psi_n \to \psi$$

と書く. この ψ を点列の極限 [limit] という. 収束する点列を収束列 [convergent sequence] という.

Def. 19.2. コーシー列 [Cauchy sequence]

 \mathcal{H} の点列 $\{\psi_n\}_{n=1}^{\infty}$ のうち,

(19.4)
$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n, m > N \Rightarrow d(\psi_n, \psi_m) < \varepsilon$$

を満たすような点列をコーシー列あるいは基本列 [fundamental sequence] という.

Def. 19.3. ヒルベルト空間 [Hilbert space]

内積空間 \mathcal{H} の任意のコーシー列が収束するとき, \mathcal{H} はヒルベルト空間という.

20. 正規直交系

Def. 20.1. クロネッカーのデルタ [Kronecker delta]

次式で定義される写像 $\delta_{ij}: \mathbb{N}^2 \to \{0,1\}$ をクロネッカーのデルタ [Kronecker delta] という.

(20.1)
$$\delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

Def. 20.2. 正規直交系 [orthonormal system]

内積空間 \mathcal{H} のベクトルの集合 $\mathcal{B} = \{b_1, \ldots, b_n\}$ において,

$$\langle b_i, b_j \rangle = \delta_{ij}$$

が成り立つとき \mathcal{B} を正規直交系 [orthonormal system] という. ここで δ_{ij} はクロネッカーのデルタである.

21. グラム・シュミットの直交化法

Thm. 21.1. グラム・シュミットの直交化法 [Gram-Schmidt orthonormalization] 線形独立な系 $\mathcal{B} = \{b_1, \ldots, b_n\}$ が内積空間 \mathcal{H} の基底のとき,

(21.1)
$$u_i := b_i - \frac{\langle b_j, u_1 \rangle}{\langle u_i, u_1 \rangle} b_1 - \dots - \frac{\langle b_j, u_{i-1} \rangle}{\langle u_i, u_{i-1} \rangle} b_{i-1}$$

とすれば,

(21.2)
$$u_i \neq 0_{\mathcal{H}}, \langle u_i, u_j \rangle = ||u_i||^2 \delta_{ij}$$

が成り立ち, $\mathcal{U} = \{u_1, \ldots, u_n\}$ に対し

(21.3)
$$\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{U})$$

が成り立つ. すなわち \boldsymbol{u} もまた \boldsymbol{V} の基底である. また \boldsymbol{u} を

$$(21.4) e_i := \frac{u_i}{\|u_i\|}$$

直交化すれば,正規直交基底 $\mathcal{E} = \{e_1, \ldots, e_n\}$ が得られる.

Prf. 15.

22. 直交行列

Def. 22.1. 直交行列

次の等式を満たすような行列 T を直交行列という.

$$(22.1) T^t T = {}^t T T = I$$

Part 5. 行列式

23. 置換

Def. 23.1. 置換 [permutation]

 $X = \{1, \ldots, n\}$ から X への全単射

 $(23.1) \sigma: X \to X$

を n 次の置換 [permutation] といい,

(23.2)
$$\sigma = \begin{pmatrix} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{pmatrix}$$

と書く.

24. 行列式

Def. 24.1. 行列式

Part 6. 固有値・固有ベクトル・対角化

Def. 24.2. 固有値・固有ベクトル A を行列, x をベクトルとして

$$(24.1) Ax = \lambda x, \lambda \in K$$

となるとき, λ を固有値 [eigenvalue], x を固有ベクトル [eigenvector] という.

Part 7. エルミート行列・ユニタリー行列

Def. 24.3. 複素転置行列

複素行列 A に対しその複素転置行列を

$$(24.2) A^{\dagger} := \bar{A}^*$$

で表す.

Def. 24.4. エルミート行列

正方行列 A が

$$(24.3) A = A^{\dagger}$$

を満たすとき A をエルミート行列 [Hermitian matrix] という.

Prop. 24.1. エルミート行列の固有値は実数.

$$(24.4) Ax = \lambda x \Rightarrow \lambda \in \mathbb{R}$$

Def. 24.5. ユニタリー行列

正方行列 U が

$$(24.5) U^{\dagger}U = {}^{\dagger}UU = I$$

を満たすとき U をユニタリー行列 [unitary matrix] という.

Part 8. 線形常微分方程式

Def. 24.6. 斉次微分方程式

(24.6)
$$\frac{d^n f}{dx^n} + \dots + \frac{df}{dx} = 0$$

の形の微分方程式を斉次微分方程式という.

Def. 24.7. 非斉次微分方程式

(24.7)
$$\frac{d^n f}{dx^n} + \dots + \frac{df}{dx} = b(x)$$

の形の微分方程式を非斉次微分方程式という.

REFERENCES

- [1] 白岩謙一. 基礎課程 線形代数入門. 初版, サイエンス社, 1976, 244p.
- [2] 斎藤正彦. 基礎数学 1 線形代数入門. 初版, 東京大学出版会, 1966, 274p. [3] 新井朝雄. ヒルベルト空間と量子力学. 改訂増補版, 共立出版株式会社, 2014, 338p.
- [4] 慶應義塾大学数理科学科. 数学 2·数学 4. 第 2 版, 学術図書出版社, 2016, 264p.