ציטוט מחוזר מפמ"ר תשס"ו 1: (שיניתי רק את צורת הכתיב)

בשאלות בגיאומטריה (שאלון 2005) יש לנמק כל שלב בפתרון על ידי כתיבת המשפט

הגיאומטרי המתאים. משפטים ידועים ניתנים לציטוט על ידי ציון שמם. את כל יתר המשפטים יש לנסח במדויק.

:המשפטים שאותם ניתן לרשום על ידי ציון שמם הם

- 1. משפט פיתגורס,
 - 2. משפט תאלס,
- 3. משפט חוצה הזווית,
- 4. ארבעה משפטי החפיפה: צ.ז.צ., ז.צ.ז., צ.צ.צ., צלע צלע והזווית מול הצלע הגדולה (ורק משפטים אלה),
 - 5. משפטי הדמיון,
 - 6. זווית בין משיק ומיתר,
 - 7. משפט תאלס המורחב, והמשפט ההפוך למשפט תאלס.

ועוד מהחוזר: גיאומטריה אוקלידית

חפיפת משולשים (4 משפטים). משפטים והוכחות: תכונות של משולשים, מרובעים, האנך

האמצעי וחוצה זווית כמקומות גיאומטריים, תכונות המעגל. משפט פיתגורס.

דמיון: פרופורציה בין קטעים.

המשפט: שלושה ישרים מקבילים החותכים זווית יוצרים קטעים פרופורציוניים (ללא הוכחה מלאה)

חלוקת קטע ביחס נתון, חלוקה פנימית וחלוקה חיצונית.

משפט חוצה הזווית. (זווית פנימית וזווית חיצונית).

דמיון מצולעים (הגדרה).

שלושת משפטי הדמיון של משולשים (לא תידרשנה הוכחות המשפטים).

היחס במשולשים דומים בין היקפים, תיכונים, חוצי זווית, גבהים ורדיוסי מעגלים חוסמים ומעגלים חסומים. היחס בין שטחי משולשים דומים.

היחס בין היקפים והיחס בין שטחים במצולעים דומים (לא תידרש הוכחה)

קטעים פרופורציוניים במשולש ישר זווית. משפטים: הגובה ליתר מחלק את המשולש לשני משולשים הדומים לו. הגובה ליתר הוא ממוצע גיאומטרי של היטלי הניצבים על היתר. הניצב הוא ממוצע גיאומטרי של היתר והיטל הניצב על היתר.

קטעים פרופורציוניים במעגל. מיתרים נחתכים במעגל. חותך ומשיק מנקודה חיצונית, שני חותכים היוצאים מנקודה חיצונית למעגל.

הערה: שאלות בגיאומטריה אוקלידית יש להוכיח בשיטות של גיאומטריה אוקלידית בלבד.

רגינה צ'ולסקי

המשפטים המותרים שאותם לא ניתן לרשום על ידי ציון שמם הם:

כתיב מתמטי	שרטוט	ניסוח המשפט	מס'
$\alpha + \beta = 180^{0}$	β α C	הסכום של שתי זוויות צמודות הוא 180 ⁰	1
$\alpha = \beta$	A Α Β Ο C	כל שתי זוויות קדקודיות בעלי קדקוד משותף שוות זו לזו	2
$a \parallel b \Leftarrow \alpha = \beta$	a B) b	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם קיים זוג אחד של זוויות מתאימות שוות זו לזו אז הישרים מקבילים	3
$\alpha = \beta \Leftarrow a \mid\mid b$	β b	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם שני הישרים מקבילים אז כל שתי זוויות מתאימות שוות זו לזו.	4
$a \parallel b \Longleftarrow \alpha = \beta$	c a a	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם קיים זוג אחד של זוויות מתחלפות שוות זו לזו אז הישרים מקבילים	5
$\alpha = \beta \Leftarrow a \parallel b$	α	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם שני הישרים מקבילים אז כל שתי זוויות מתחלפות שוות זו לזו.	6
$a \parallel b \Leftarrow \alpha + \beta = 180^{0}$	α a b	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם קיים זוג אחד של זוויות חד צדדיות פנימיות שסכומן שווה ל-180 ⁰ אז הישרים מקבילים	7
$\alpha + \beta = 180^0 \Leftarrow a \parallel b$	α α α	נתונים שני ישרים הנחתכים על ידי ישר שלישי. אם סכום זוויות חד צדדיות פנימיות שווה ל-180 ⁰	8

	T		
$\alpha + \beta + \gamma = 180^{0}$	C γ β B	סכום זוויות במשולש שווה ל-180 ⁰	9
$\alpha + \gamma = \delta$	C^{γ} $\beta \delta$ β	זווית חיצונית למשולש שווה לסכום שתי הזוויות הפנימיות שאינן צמודות לה.	10
$\gamma = \beta \Leftarrow AB = AC$	C Y B B	זוויות הבסיס במשולש שווה-שוקיים שוות זו לזו.	11
$AB = AC \Leftarrow \gamma = \beta$	A α β B	אם במשולש שתי זוויות שוות זו לזו אז המשולש הוא שווה-שוקיים.	12
$\alpha + \beta + \gamma + \delta = 360^{0}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	סכום הזוויות הפנימיות במרובע שווה ל- 360°	13
		סכום הזוויות הפנימיות במצולע קמור בעל n צלעות הוא $(n-2)$	14
		מספר האלכסונים במצולע בעל n צלעות $\frac{n(n-3)}{2}$ הוא:	15
$AB = DE, \angle B = \angle E, CB = FE$ $\downarrow \downarrow$ $\Delta ABC \cong \Delta DEC$	B C D E	משפט חפיפה ראשון (צלע, זווית, צלע): אם שתי צלעות וזווית הכלואה ביניהן במשולש אחד שוות בהתאמה לשתי צלעות וזווית הכלואה ביניהן במשולש שני אז המשולשים חופפים.	16
$\angle A = \angle D$, $AB = DE$, $\angle B = \angle E$ $\downarrow \downarrow$ $\Delta ABC \cong \Delta DEC$	B C D E F	משפט חפיפה שני (זווית, צלע, זווית): אם צלע ושתי הזווית שלידה במשולש אחד שוות בהתאמה לצלע ושתי הזווית שלידה במשולש שני אז המשולשים חופפים.	17

	1		
	A	משפט חפיפה שלישי (צלע, צלע, צלע): אם שלוש הצלעות במשולש אחד שוות	
BC=EF, $AB=DE$, $AC=DF$		אם שלוש הצלעות במשולש אווו שוווו בהתאמה לשלוש הצלעות במשולש שני אז	
₩	B <u> </u>		18
$\triangle ABC \cong \triangle DEC$	/ × ×	המשולשים חופפים.	
	E <u> </u>		
$\angle B = \angle E$, $AB = DE$,	A	משפט חפיפה רביעי (צלע, צלע, זווית):	
AC=DF, AB <ac< td=""><td>/ × -</td><td>אם שתי צלעות והזוית שמול הצלע</td><td></td></ac<>	/ × -	אם שתי צלעות והזוית שמול הצלע	
\downarrow	B C D	הגדולה מבין השתיים במשולש אחד שוות	19
$\Delta ABC \cong \Delta DEC$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	בהתאמה ל שתי צלעות והזוית שמול הצלע	19
		הגדולה מבין השתיים במשולש שני אז	
	E 2	המשולשים חופפים.	
	Å	זוויות הבסיס במשולש שווה-שוקיים שוות	
AB = BC	/\	זו לזו.	
\downarrow			20
∡B = ∡C			20
	c △ △ AB		
AB = BC	A	במשולש שווה-שוקיים חוצה זווית הראש	
\downarrow	$\frac{1}{2}$	התיכון לבסיס והגובה לבסיס מתלכדים.	
$\angle A_1 = \angle A_2 \leftrightarrow AD \perp BC$		·	21
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
BD=DC	C 		
	Ą	אם שתי זוויות המשולש שוות זו לזו אז	
∡B = ∡C		המשולש הוא שווה שוקיים.	
\downarrow		·	22
AB = BC			
	C △ B		
	A	אם במשולש חוצה זווית מתלכד עם הגובה	
$\angle A_1 = \angle A_2$, AD \perp BC	1 2	לצלע שמול הזווית אז המשולש הוא שווה	
\downarrow	$\langle \rangle$	שוקיים.	23
AB = BC			
	C D B		
	A	אם במשולש תיכון לצלע מתלכד עם גובה	
$DB = DC, AD \perp BC$	$\sqrt{\underline{1}}$	לאותה הצלע אז המשולש הוא שווה	
\downarrow		שוקיים.	24
AB = BC			
	C 		
	A	אם במשולש חוצה זווית מתלכד עם	
$\angle A_1 = \angle A_2$, BD = DC	$\sqrt{\underline{1}}$	התיכון לצלע שמול הזווית אז המשולש	
↓ ↓		הוא שווה שוקיים.	25
AB = BC		,	
	C B		
	A	האלכסון הראשי בדלתון חוצה את זוויות	
		.הראש	
AB = AD, CB = CD	/ _ / _ /		
↓	D B		26
$\angle A_1 = \angle A_2$			
	\bigvee		
	С		

	T	1	
AB = AD, CB=CD ↓ ED = EB	D E B	האלכסון הראשי בדלתון חוצה את האלכסון המשנה.	27
AB = AD, CB=CD ↓↓ AC ⊥ BD	D B	האלכסון הראשי בדלתון מאונך לאלכסון המשנה.	28
α < δ, β<δ	C A α B B	זווית חיצונית למשולש גדולה מכל אחת משתי הזוויות הפנימיות שאינן צמודות לה.	29
$AB > AC$ $\downarrow \downarrow$ $\gamma > \beta$	α C γ β B	אם במשולש צלע אחת גדולה מצלע השנייה, אז הזווית שמול הצלע הגדולה יותר גדולה מהזווית שמול הצלע הקטנה.	30
γ > β ↓ AB > AC	A α C β B	אם במשולש זווית אחת גדולה מזווית שנייה, אז הצלע שמול הזווית הגדולה יותר גדולה מהצלע שמול הזווית הקטנה.	31
AB < BC + AC AC < AB + BC BC < AB + AC	C B	סכום כל שתי צלעות במשולש גדול מהצלע השלישית.	32
$ \angle A_1 = \angle A_2, \ \angle B_1 = \angle B_2 $ $ \downarrow \downarrow $ $ \angle C_1 = \angle C_2 $	C D 2 B	שלושת חוצי הזוויות הפנימיות במשולש נפגשים בנקודה אחת.	33
AF = FB, AE = CE ↓↓ CD = BD	C H D H B	שלושת תיכונים במשולש נפגשים בנקודה אחת.	34
AD ⊥ BC, BE ⊥ AC ↓↓ CF ⊥ AB	- AF	שלושת גבוהים במשולש נפגשים בנקודה אחת.	35

$MD \perp BC$, $BD = BC$, $ME \perp AC$, $AE=EC$ $\downarrow \downarrow$ $MF \perp AB$, $AF=BF$		שלושת האנכים האמצעיים במשולש נפגשים בנקודה אחת.	36
$\angle ABC = 90^{\circ}$, $\angle BAC = 30^{\circ}$ ↓ $AC = 2 \cdot BC$	-A 30 3 C	במשולש ישר זווית שזוויותיו הן 30° ו-60° הניצב שמול הזווית של 30° שווה למחצית היתר.	37
$\angle ABC = 90^{\circ}, AC = 2 \cdot BC$ $\downarrow \downarrow$ $\angle BAC = 30^{\circ}$	-A 2a	אם במשולש ישר זווית אחד מהניצבים שווה למחצית היתר אז הזווית שמול הניצב שווה ל-°30.	38
\angle ABC = 90 ⁰ , AD = CD ↓ BD=AD=CD	-A D C	התיכון ליתר במשולש ישר זווית שווה למחצית היתר.	39
BD=AD=CD ↓↓ ∠ABC = 90 ⁰	-A D C	אם במשולש התיכון לאחת מהצלעות שווה למחצית הצלע שאותה הוא חוצה אז המשולש הוא ישר זווית.	40
$\angle ABC = 90^{\circ}, \angle ADB = 90^{\circ}$ $\downarrow \downarrow$ $\angle DAB = \angle DBC,$ $\angle DBA = \angle DCB$	-A C	במשולש ישר זווית הגובה ליתר מחלק את המשולש לשני משולשים שזוויותיהם שוות בהתאמה לזוויות המשולש המקורי.	41
מקבילית ABCD \Downarrow $\measuredangle A = \measuredangle C, \ \measuredangle B = \measuredangle D$	B C C	כל שתי זוויות נגדיות במקבילית שוות זו לזו.	42
מקבילית ABCD ↓ AB = CD, CB = AD	- B	כל שתי צלעות נגדיות במקבילית שוות זו לזו.	43

מקבילית ABCD $\label{eq:ABCD} \begin{tabular}{l} & A & A & A & A \\ & & & & & & \\ & & & &$	B 180 °-α α C A 180 °-α D	סכום כל שתי זוויות סמוכות במקבילית שווה ל-180°.	44
מקבילית ABCD ↓ AM = CM, BM = DM	A D C	האלכסונים במקבילית חוצים זה את זה.	45
AB = CD, AB CD ↓ ABCD מקבילית	A D C	אם שתי צלעות נגדיות במרובע שוות זו לזו ומקבילות זו לזו אז המרובע הוא מקבילית.	46
$\measuredangle A = \measuredangle C, \ \measuredangle B = \measuredangle D$ \Downarrow ABCD	A D C	אם במרובע כל שתי זוויות נגדיות שוות זו לזו אז המרובע הוא מקבילית.	47
AB = CD, CB = AD ↓ ABCD מקבילית	B	אם במרובע כל שתי צלעות נגדיות שוות זו לזו אז המרובע הוא מקבילית.	48
AM = CM, BM = DM ↓ ABCD מקבילית	A D C	אם במרובע אלכסונים חוצים זה את זה אז המרובע הוא מקבילית.	49
$A + \angle C = \angle B + \angle D = 180^0$ $\downarrow \qquad \qquad \qquad \downarrow$ $ABCD$	B 180 °-α α C A 180 °-α D	אם במרובע סכום כל שתי זוויות סמוכות שווה ל-180° אז המרובע הוא מקבילית.	50
$\angle A = \angle B = \angle C = \angle D = 90^0$ $\downarrow \downarrow$ ABCD	- A B	כל אחת מזוויות המלבן היא בת °90.	51
מלבן ABCD ↓ AB = CD, CB = AD	- A B	כל שתי צלעות נגדיות במלבן שוות זו לזו.	52
מלבן ABCD ↓ AM = MC, BM = MD	- A B	האלכסונים במלבן חוצים זה את זה ושווים זה לזה.	53

$ABCD$ – מקבילית, $\angle D = 90^0$ \downarrow $ABCD$	- A B	אם במקבילית יש זווית ישרה אז המקבילית היא מלבן.	54
ABCD – מקבילית, AC=BD ↓ ABCD מלבן	- A B	אם במקבילית אלכסונים שווים זה לזה אז המקבילית היא מלבן.	55
מעוין – ABCD ↓ AB = BC = CD = DA	A C	כל צלעות המעוין שוות זו לזו.	56
מעוין – ABCD $\downarrow \downarrow$ $\angle A = \angle C, \angle B = \angle D$	A C	כל שתי זוויות הנגדיות במעוין שוות זו לזו.	57
מעוין – ABCD $\downarrow \\ $	A α α α C 180°-α	סכום כל שתי זוויות סמוכות במעוין שווה ל-°180.	58
מעוין ABCD ↓ AM = MC, BM = MD	A	האלכסונים במעוין חוצים זה את זה.	59
מעוין-ABCD $\downarrow \\ $	- B 2 1 C	האלכסונים במעוין חוצים את זוויות המעוין.	60
מעוין-ABCD ↓ AC⊥BD	- B C	האלכסונים במעוין מאונכים זה לזה.	61
AB = BC = CD = DA ↓↓ ABCD – מעוין	- B C	אם במרובע כל צלעותיו שוות זו לזו אז המרובע הוא מעוין.	62

	В	1	1
$AB=BC$, מקבילית-ABCD \downarrow $ABCD$ $ABCD$	A D D	אם במקבילית יש שתי צלעות סמוכות שוות זו לזו אז המקבילית היא מעוין.	63
$ ext{AC} \perp ext{BD}$, מקבילית-ABCD $\qquad \qquad \downarrow \qquad \qquad - ext{ABCD}$	A D D	אם במקבילית האלכסונים מאונכים זה לזה אז המקבילית היא מעוין.	64
מקבילית -ABCD מקבילית $\measuredangle A_1 = \measuredangle A_2, \ \measuredangle B_1 = \measuredangle B_2,$ $\measuredangle C_1 = \measuredangle C_2, \ \measuredangle D_1 = \measuredangle D_2$ $\Downarrow \ ABCD$	A 2 1 1 2 C	אם במקבילית האלכסונים חוצים את זוויות המקבילית אז המקבילית היא מעוין.	65
ריבוע ABCD $\downarrow \\ $	A B C	כל אחת מזוויות הריבוע היא בת 90°.	66
ריבוע ABCD ↓ AB = BC = CD = DA	A B C C	כל צלעות הריבוע שוות זו לזו.	67
ריבוע ABCD	A B C	האלכסונים בריבוע חוצים זה את זה.	68
ריבוע ABCD ↓ AC = BD	A B C	האלכסונים בריבוע שווים זה לזה.	69
ריבוע ABCD ↓ AC⊥BD	A C C	האלכסונים בריבוע מאונכים זה לזה.	70
ריבוע ABCD $ \downarrow \hspace{-0.5cm} \downarrow \hspace$	A 21 21 B C C	האלכסונים בריבוע חוצים את זוויות הריבוע.	71
AB = BC = CD = DA,	A B B C C	אם במרובע כל הצלעות שוות ויש זווית ישרה אז הוא ריבוע.	72

AC = BD, AC ⊥ BD, AM = BM, CM=MD	A B C C	אם במרובע האלכסונים שווים זה לזה, חוצים זה את זה ומאונכים זה לזה אז המרובע הוא ריבוע.	73
$AC = BD, \ \measuredangle A_1 = \ \measuredangle A_2,$ $AM = BM, \ CM = MD$ $\downarrow \downarrow$ $ABCD$	A 21 M C C	אם במרובע האלכסונים חוצים זה את זה, שווים זה לזה ואחד מהאלכסונים חוצה זווית המרובע אז הוא ריבוע.	74
מקבילית -ABCD, AC = BD, AC ⊥ BD ↓ ABCD	A B C	אם במקבילית האלכסונים שווים ומאונכים זה לזה אז היא ריבוע.	75
מעוין -ABCD, AC = BD ↓ ABCD-ריבוע	A H B	אם במעוין האלכסונים שווים זה לזה אז הוא ריבוע.	76
מעוין -ABCD, ∠D = 90 ⁰ ↓ -ABCD ריבוע	A B B C	אם במעוין יש זווית ישרה אז הוא ריבוע.	77
ABCD, AC⊥BD מלבן. ↓ ABCD-ריבוע	A B C	אם במלבן האלכסונים מאונכים זה לזה אז הוא ריבוע.	78
ABCD, AB=AD מלבן. ↓ ABCD-ריבוע	A B B C C	אם במלבן יש שתי צלעות סמוכות שוות זו לזו אז הוא ריבוע.	79
מלכן -ABCD, \measuredangle A $_1$ = \measuredangle A $_2$ \Downarrow -ABCD -C'בוע	A 21 B	אם במלבן אחד מהאלכסונים חוצה זווית המלבן אז הוא ריבוע.	80
$AB=CD$ טרפז, $ABCD$ \Downarrow $\measuredangle A=\measuredangle D, \ \measuredangle B=\measuredangle C$	- B C	כל שתי זוויות בסיס בטרפז שווה שוקיים שוות זו לזו.	81
טרפז ABCD $\downarrow \downarrow \\ \measuredangle A + \measuredangle B = \measuredangle D + \measuredangle C = 180^0$	- B _α β C A 180°-α 180°-β D	סכום שתי זוויות ליד כל שוק בטרפז שווה ל-°180.	82

	T		
AB=CD טרפּז, ABCD ↓ AC = BD	A D	האלכסונים בטרפז שווה שוקיים שווים זה לזה.	83
$AB=CD$ טרפז, ABCD \downarrow $\measuredangle A + \measuredangle C = \measuredangle B + \measuredangle D = 180^0$	- B C C 180°-α 180 α D	סכום כל שתי זוויות נגדיות בטרפז שווה שוקיים שווה ל-°180.	84
עA = עD , טרפז, ABCD ↓ AB=CD	A A A A A A A A A A A A A A A A A A A	אם בטרפז זוויות שליד אחד הבסיסים שוות זו לזו אז הוא טרפז שווה שוקיים.	85
AC=BD טרפז, ABCD	- B C	אם בטרפז האלכסונים שווים זה לזה אז הוא שווה שוקיים.	86
AE=EC , AD=BD U ED=0.5BC, ED BC	C B B	קטע אמצעים במשולש המחבר אמצעי שתי צלעות מקביל לצלע השלישית ושווה למחציתה.	87
AE=EC , ED BC ↓↓ AD=BD	C B B	קטע היוצא מאמצע צלע אחת ומקביל לצלע השנייה הוא קטע אמצעים במשולש.	88
ED=0.5BC, ED BC ↓ AE=EC , AD=BD	C Za B	קטע המחבר שתי צלעות המשולש שמקביל לצלע השלישית ושווה למחציתה הוא קטע אמצעים במשולש.	89
AE=BE, טרפז, ABCD CF=FD	B C F	קטע אמצעים בטרפז מקביל לבסיסיה ושווה למחצית סכומם.	90
AE=BE, טרפז, ABCD BC AD EF U	B C F	קטע היוצא מאמצע שוק אחת בטרפז ומקביל לבסיסים הוא קטע אמצעים בטרפז.	91
AE=EC, ,AF=FB CD=BD ↓ BM=2ME, ,AM=2MD CM=2MF	C HII D HII B	נקודת מפגש התיכונים במשולש מחלקת כל תיכון ביחס 2:1 החל מקדקוד המשולש.	92

	Α	T	
ינקודת מפגש של אנכים -O EO, DO, FO אמצעיים ↓ מרכז המעגל החוסם-O	C HI B HI B	נקודת מפגש האנכים האמצעיים לצלעות המשולש הוא מרכז המעגל החוסם את המשולש.	93
פקודת מפגש של חוצי -M AM, BM, CM זוויות ↓ מרכז המעגל החסום	- A B	נקודת מפגש חוצי הזוויות במשולש הוא מרכז המעגל החסום במשולש.	94
AB=CD ↓ ∡AOB = ∠COD	C A B	על מיתרים שווים במעגל נשענות זוויות מרכזיות שוות זו לזו.	95
∡AOB = ∡COD ↓↓ AB=CD	C A B	במעגל זוויות מרכזיות שוות נשענות על מיתרים שווים.	96
OM ⊥ AB ↓ AM = MB	BMA	אנך ממרכז המעגל למיתר במעגל חוצה את המיתר.	97
$OM \perp AB$ $\downarrow \downarrow$ $\measuredangle AOM = \measuredangle BOM$	BMA	אנך ממרכז המעגל למיתר במעגל חוצה את הזווית המרכזית הנשענת על המיתר.	98
$ \begin{array}{c} OM \perp AB \\ \downarrow \\ \widehat{AM} = \widehat{BM} \end{array} $	B	אנך ממרכז המעגל למיתר במעגל חוצה את הקשת המתאימה למיתר.	99
AB = CD, OE ⊥ AB, OF ⊥ CD ↓ OE = EF	C A A B B	מיתרים שווים במעגל נמצאים במרחקים שווים ממרכז המעגל.	100
OE = EF, OE ⊥ AB, OF ⊥ CD ↓↓ AB = CD	C A B	מיתרים במעגל הנמצאים במרחקים שווים מהמרכז שווים זה לזה.	101

T			
∠AOB = 2∠ACB	C O B	זווית מרכזית במעגל גדולה פי 2 מכל זווית היקפית הנשענת על אותה הקשת.	102
∡ACB = ∡ADB	C O B	כל הזוויות ההיקפיות במעגל הנשענות על אותה קשת שוות זו לזו.	103
∡AOB = ∡COD ↓ AB=CD	C A B	זוויות היקפיות שוות במעגל נשענות על מיתרים שווים.	104
∡ACB = ∡ADB	C O B	כל הזוויות ההיקפיות במעגל הנשענות על אותו מיתר מאותו הצד שוות זו לזו.	105
$\measuredangle ABC = 90^0$ \Downarrow -AC	A O B	זווית היקפית בת °90 נשענת על הקוטר.	106
קוטר המעגל-AC \Downarrow $\angle ABC = 90^0$	A	זווית היקפית הנשענת על הקוטר היא זווית ישרה.	107
$\alpha = \beta + \gamma$		זווית פנימית במעגל שווה לסכום שתי הזוויות ההיקפיות הנשענות על הקשתות הכלואות בין שוקי הזווית ובין המשכיהן.	108
$\alpha = \gamma - \beta$	7	זווית חיצונית למעגל שווה להפרש שבין שתי הזוויות ההיקפיות הנשענות על הקשתות הכלואות בין שוקי הזווית.	109
O משיק למעגל-c בנקודה ↓ OA⊥c	- O A	משיק למעגל מאונך לרדיוס הנפגש איתו בנקודת ההשקה.	110

(OA ⊥ c ↓ C משיק למעגל-C	-	C A A	קצהו הוא משיק	ישר המאונך לרדיוס ב למעגל.	111
	בנקודה A בנקודה CA ו-CB משיקי	B	/c	וצאים מאותה	שני משיקים למעגל הי נקודה שווים זה לזה.	
B- למעגל O בנקודות A ו-B BC=AC		7			112	
משיקים-CB ו-CA ראטיקים CA ו-CB ו-CB ו-CA ראטיקים O למעגל ψ		c	שיקים חוצים את	הקטע המחבר את מרכי שממנה יוצאים שני המ הזווית שבין המשיקים.	113	
O 5	משיק למעגל – AD בנקודה A, מיתר במעגק – AB ↓ BAD = ∡BCA	O _Q A	D	לזווית ההיקפית תאימה למיתר	הזווית בין משיק למית בנקודת ההשקה שווה י הנשענת על הקשת המו הכלואה בין המיתר לב	114
115		קטע המרכזים של שו חוצה את המיתר המי	- A	B	D נקודות חיתוך של B-ו A מעגלים ↓ AB ⊥ CD, CE=E	
116	בזים אם המעגלים ל המשכו אם	נקודת ההשקה של ש נמצאת על קטע המרו משיקים מבחוץ או ע המעגלים משיקים מב		В	נקודת ההשקה של מעגלים A ו-B ↓ C∈AB	С
117		בכל מרובע החסום ב זוויות נגדיות הוא °0		D O • B	מרובע חסום $-AB$ O במעגל \downarrow \downarrow $\angle BAD + \angle BCD =$ $= \angle ABC + \angle ADC =$	
118		אם במרובע יש זוג זו שסכומן 180° אז ניו במעגל.	- (D A A O Θ 180°-β B	∠BAD + ∠BCD = = ∠ABC + ∠ADC = ↓ † לחסום את מרובע O במעגל ABCI	נית
119		במרובע חוסם מעגל צלעות נגדיות שווה י	-	A O B	AB – מרובע חוסם O מעגל ↓ AB+CD=AD+H	

120	אם במרובע סכום זוג אחד של צלעות נגדיות שווה לסכום הזוג השני אז ניתן לחוסם מעגל במרובע.	- A O B	AB+CD=AD+BC ↓ ניתן לחסום במרובע O את המעגל ABCD
121	כל מצולע משוכלל ניתן לחסום במעגל.		
122	בכל מצולע משוכלל ניתן לחסום מעגל.		
123	משפט פיתגורס: בכל משולש ישר זווית סכום שטחי הריבועים הבנויים על הניצבים שווה לשטח הריבוע הבנוי על היתר.	A a B C C	$\angle ABC = 90^{0}$ $\downarrow \downarrow$ $a^{2} + b^{2} = c^{2}$
124	אם במשולש סכום שטחי הריבועים הבנויים על שתי צלעות המשולש שווה לשטח הריבוע הבנוי על הצלע השלישית אז הוא ישר זווית.	A a b C C	$a^{2} + b^{2} = c^{2}$ $\downarrow \downarrow$ $\angle ABC = 90^{0}$
125	משפט תלס: שני ישרים מקבילים החותכים שוקי זווית מקצים עליהן קטעים פרופורציוניים.	C B B C D C E	$BD \parallel CE$ $\downarrow \downarrow$ $\frac{a}{b} = \frac{c}{d}$
126	הרחבה ראשונה של משפט תלס: E -ו D נמצאות בהתאמה על E -ו D ו-ABC במשולש AC -ו AB הצלעות AB ו- AB במשולש AC - אם AB אם AC - או AB - AC - AB - AC - AB - AC - A	L C B	$BD \parallel CE$ $\downarrow \downarrow$ $\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}$
127	הרחבה שנייה של משפט תלס: AC בחתבה BD ו- BD נחתכים בנקודה AC אם AC אז $DE AB$ אז $DE AB$	-B E	$AB \parallel DE$ $\downarrow \downarrow$ $\frac{AC}{CE} = \frac{BC}{CD} = \frac{AB}{DE}$

	אם שני ישרים מקצים על שוקי זווית	_ / /	
128	אם שני ישורם מקצים על שוקי וודות קטעים פרופורציוניים אז הם מקבילים זה לזה.	A a E b C	$\frac{a}{b} = \frac{c}{d}$ $\downarrow \downarrow$ BD CE
129	חוצה זווית במשולש מחלק את הצלע שמול הזווית לשני קטעים המתייחסים זה לזה כמו היחס שבין שתי הצלעות הכולאות את הזווית.	C D B	$\angle CAD = \angle BAD$ $\downarrow \downarrow$ $\frac{CD}{BD} = \frac{AC}{AB}$
130	קטע המחבר קדקוד במשולש עם הצלע שמולו ומחלק אותה לשני קטעים המתייחסים זה לזה כמו היחס שבין שתי הצלעות האחרות חוצה את הזווית שמול הצלע.	- A B	$\frac{\text{CD}}{\text{BD}} = \frac{\text{AC}}{\text{AB}}$ $\downarrow \downarrow$ $\measuredangle \text{CAD} = \measuredangle \text{BAD}$
131	חוצה זווית חיצונית למשולש (שאיננה צמודה לזווית הראש של משולש שווה שוקיים) מחלק את הצלע שמול הזווית הפנימית הצמודה לה ואת המשכה כך שהיחס בין הקטע המכיל את הצלע והמשכה לבין המשכה של הצלע שווה ליחס שבין הצלע הגדולה הכולאת את הזווית הפנימית לצלע הקטנה הכולאת את הזווית הפנימית.	- A a E D	$\angle BAD = \angle EAD$ $\downarrow \downarrow$ $\frac{CD}{BD} = \frac{AC}{AB}$
132	ישר העובר דרך קדקוד של משולש ומחלק את הצלע שמול הקדקוד חלוקה חיצונית ביחס השווה ליחס שבין שתי הצלעות האחרות, חוצה את הזווית החיצונית שליד הקדקוד.	- E D	$\frac{\text{CD}}{\text{BD}} = \frac{\text{AC}}{\text{AB}}$ $\downarrow \downarrow$ $\measuredangle \text{BAD} = \measuredangle \text{EAD}$
133	משפט דמיון ראשון: אם שתי צלעות במשולש אחד מתייחסות באותו יחס לשתי צלעות מתאימות במשולש שני והזווית שבין הצלעות שווה בהתאמה אז המשולשים דומים.	A B C Ka D Kb F	$\frac{AB}{DE} = \frac{AC}{DF}, $
134	משפט דמיון שני: אם שתי זוויות במשולש אחד שוות בהתאמה לשתי זוויות במשולש שני אז המשולשים דומים.	A D F	∡A=∡D, ∡C=∡F ↓ △ABC ~△DEF
135	משפט דמיון שלישי: אם שלוש הצלעות במשולש אחד מתייחסות באותו יחס לשלוש הצלעות המתאימות במשולש שני אז המשולשים דומים.	A b E kc kc D kb F	$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$ $\downarrow \downarrow$ $\triangle ABC \sim \triangle DEF$

126	חוצי זוויות מתאימות במשולשים דומים מתייחסות זה לזה כמו יחס הדמיון שבין המשולשים.	- B C	∡ABK=∡CBK= = ∡DEG=∡FEG, △ABC ~△DEF
136		ka α α kc	$\frac{BK}{EG} = \frac{AB}{DE}$
137	תיכונים מתאימים במשולשים דומים מתייחסים זה לזה כמו יחס הדמיון שבין המשולשים.	A B C C KC C KA D KD KC F	AK=KD, DG=FG, $\triangle ABC \sim \triangle DEF$ $\downarrow \downarrow$ $\frac{BK}{EG} = \frac{AB}{DE}$
138	גבהים מתאימים במשולשים דומים מתייחסים זה לזה כמו יחס הדמיון שבין המשולשים.	A K D E C KC D G kb F	$BK \perp AC, EG \perp DF,$ $\triangle ABC \sim \triangle DEF$ $\downarrow \downarrow$ $\frac{BK}{EG} = \frac{AB}{DE}$
139	ההיקפים של משולשים דומים מתייחסים זה לזה כמו יחס הדמיון שבין המשולשים.	A B C C KC D Kb F	$\triangle ABC \sim_{\triangle} DEF$ $\downarrow \downarrow$ $\frac{P_{\triangle} ABC}{P_{\triangle} DEF} = \frac{AB}{DE}$
140	שטחים של משולשים דומים מתייחסים זה לזה כמו ריבוע יחס הדמיון שבין המשולשים.	A B C C KC D Kb F	$\triangle ABC \sim \triangle DEF$ $\downarrow \downarrow$ $\frac{S_{\triangle}ABC}{S_{\triangle}DEF} = \left(\frac{AB}{DE}\right)^{2}$
141	שני מיתרים במעגל הנחתכים בתוך המעגל מחלקים זה את זה כך שמכפלת קטעי מיתר אחד שווה למכפלת קטעי המיתר השני.	A D B O C	בקודת חיתוך המיתרים – E O במעגל CD-1 AB ↓ AE · BE = CE · DE
142	אם מנקודה שמחוץ למעגל יוצאים שני חותכים למעגל אז מכפלת חותך אחד בחלקו החיצוני שווה למכפלת החותך השני בחלקו החיצוני ושווה לריבוע המשיק היוצא מאותה הנקודה.	Q B A	AE-1 AC חותכים AE-1 AC למעגל AF ,O למעגל O למעגל ↓ AB · AC = AD · AE = AF ²