

Gráficos, Figuras e Tabelas

Eduardo Ogasawara eduardo.ogasawara@cefet-rj.br https://eic.cefet-rj.br/~eogasawara

Objetivo e importância da visualização de dados

Objetivo:

- Apresentar diretrizes para o uso eficaz de gráficos, figuras e tabelas na comunicação de dados
- Ajudar na escolha do formato mais adequado para representar informações de forma clara e objetiva
- Por que a visualização de dados é essencial?
 - Facilita a interpretação → Ajuda a identificar padrões e tendências rapidamente
 - Melhora a comunicação → Dados complexos são mais compreensíveis quando bem visualizados
 - Evita ambiguidades → Uma boa escolha de gráficos e tabelas reduz interpretações erradas
 - Auxilia na tomada de decisão → Informações bem apresentadas tornam decisões mais assertivas

WWW.PHDCOMICS.COM

Importância dos gráficos

- Os gráficos são, geralmente, a melhor forma de apresentar resultados numéricos
- Quando usar gráficos?
 - Para destacar padrões e tendências nos dados
 - Para comparações entre categorias
 - Para facilitar a interpretação de grandes volumes de informações
- Quando evitar gráficos?
 - Quando for necessário exibir valores exatos (prefira tabelas)
 - Quando a relação entre os dados for muito complexa para um gráfico simples
- Exemplo:
 - Se um estudo mostra tempos de execução de algoritmos, um gráfico de barras pode ser útil para comparação geral, mas uma tabela pode ser melhor para apresentar valores exatos

Boas práticas nos gráficos

- Escolha o tipo de gráfico adequado
 - Barras → Comparações
 - Linhas → Séries temporais
 - Pizza → Evitar para muitas categorias
- Use rótulos e legendas claras
 - Nomeie eixos e elementos do gráfico
- Defina escalas apropriadas
 - Evite cortes ou distorções
- Mantenha um design limpo
 - Elimine 3D, sombras e elementos desnecessários
- Garanta acessibilidade
 - Use paletas acessíveis (ex.: ColorBrewer)
- Evite sobrecarga de informações
 - Divida dados complexos em gráficos menores

Erros comuns em gráficos e como evitá-los

- Eixo Y mal dimensionado → Pode distorcer interpretações
 - Use escalas apropriadas
- Excesso de ornamentos e efeitos visuais → Polui a leitura
 - Mantenha o design simples
- Cores mal escolhidas → Confusão entre categorias
 - Use paletas acessíveis e evite combinações problemáticas
- X Uso excessivo de gráficos de pizza → Dificulta comparações.
 - Prefira gráficos de barras
 - Exemplo:
 - Um gráfico de barras com diferentes escalas para cada categoria pode distorcer comparações entre os valores
 - Usar uma escala uniforme corrige o problema

Exemplos de gráficos: bons vs. ruins

- ruins: cores indistinguíveis, eixo Y cortado, legenda confusa
- bons: cores corretas, escala bem definida, rótulos claros

Escolhendo as cores certas para seus gráficos

Tipos de Paletas de Cores

- Categórica (Qualitativa): Para categorias distintas (ex.: países, tipos de frutas).
- Sequencial: Para valores ordenados (ex.: temperatura).
- → Divergente: Para dados centrados em um ponto médio (ex.: saldo positivo/negativo).

X Erros Comuns

- Muito contraste sem necessidade.
- Cores muito parecidas em gráficos categóricos.
- Não considerar acessibilidade para daltônicos.

Boas Práticas

- Evite vermelho e verde juntos.
- Use rótulos para reforçar o significado das cores.
- Utilize ferramentas como ColorBrewer para escolha de paletas.

Escolhendo o gráfico adequado para seus dados

- Gráfico de Barras → Comparação entre categorias
- Gráfico de Linhas → Análise temporal de séries de dados
- Gráfico de Pizza → Uso restrito para proporções, preferencialmente com poucas categorias
- Barras Empilhadas → Para composição dentro de um total
- II Barras Agrupadas → Comparação de subgrupos dentro de categorias
- Dicas Gerais:
 - ✓ Use cores distintas para melhorar a legibilidade
 - ✓ Para mais de 5 categorias, prefira barras empilhadas em vez de gráfico de pizza

Figuras em 3D: quando usar e quando evitar

- Quando usar?
 - Apenas para representar objetos espaciais interativos
- X Quando evitar?
 - Para gráficos comuns → Pode ocultar informações importantes
 - Quando a interpretação dos dados for prejudicada
- Alternativa:
 - Use um heatmap para representar dados complexos em 2D

Figure 1 | Space-filling model of the DNA backbone. Depth cues enable us to perceive two-dimensional images as three-dimensional objects.

Figure 2 | Three-dimensional representation of abstract data. (a) Data occlusion and interference of visual encodings with depth cues can be problematic in three-dimensional space. (b) The same data as in a plotted as a two-dimensional heat map.

Diagramas: tipos e aplicações

- O que são diagramas?
 - São representações visuais de processos, arquiteturas e relações
- Tipos:
 - Diagramas de Processo → Fluxo de atividades
 - Diagramas de Arquitetura → Redes, sistemas distribuídos
 - Diagramas de Estruturas de Dados → Árvores, listas encadeadas
 - Diagramas de Relacionamentos → Diagramas de classes, ER
- Boas Práticas:
 - Não misture diferentes propósitos no mesmo diagrama
 - Evite sobrecarregar com detalhes desnecessários
 - Explique todos os elementos no texto

Boas práticas para diagramas de arquitetura

- Fonte legível → Evite fontes pequenas ou muito estilizadas
- Linhas organizadas → Evite cruzamentos e sobreposições
- Abstração adequado → Apenas o nível de informação necessário ao público-alvo
- Uso correto das setas → Algumas conexões precisam ser bidirecionais

Boas práticas em Diagramas de Processo

- Use símbolos padronizados:
 - retângulos → atividades, losangos → decisões, elipses → início/fim
- Fluxo lógico: Esquerda → direita ou de cima → baixo
- Evite excesso de elementos: mantenha a simplicidade
- Destaque pontos de decisão: use perguntas binárias claras (pag. aprovado?)
- Rótulos claros: nomeie atividades e decisões de forma objetiva
- Minimize cruzamentos de setas: organize os elementos para evitar confusão

Cores com moderação: Use apenas para destacar o essencial

Boas práticas no uso das setas em diagramas

- Evite cruzamentos: Posicione os elementos para que o fluxo seja claro
- Espaçamento adequado: Não sobreponha setas ao texto
- Siga um fluxo natural: Esquerda para direita, ou cima para baixo, conforme a lógica do diagrama
- Destaque as setas importantes: Use espessura ou estilo diferente apenas quando necessário
- Padronize o estilo das setas: Evite misturar formatos ou direções desnecessariamente

Tabelas: Quando Usar e Quando Evitar

- Quando usar tabelas?
 - Para apresentar valores exatos e facilitar consultas detalhadas
 - Quando há poucas categorias ou métricas
 - Quando os dados precisam ser apresentados de forma estruturada
 - Para comparações entre múltiplas variáveis onde números e texto são necessários
- Quando evitar tabelas?
 - Se há grande volume de dados numéricos
 - Quando o objetivo é destacar padrões → Prefira gráficos
 - Se a tabela precisa de cálculos mentais para interpretação
 - Se houver muitas colunas, tornando a leitura confusa

Boas Práticas na apresentação de tabelas

- Evite poluição visual → Remova linhas desnecessárias
- Unidades de medida visíveis → Evite confusão ao interpretar os valores
- Cabeçalhos claros e descritivos
- Alinhamento adequado → Números à direita, texto à esquerda

STATISTICS	SMALL	LARGE
Characters	18,621	1,231,109
Words	2,060	173,145
After stopping	1,200	98,234
Index size	1.31 Kb	109.0 Kb

	Collection	
	Small	Large
File size (Kb)	18.2	1,202.3
Index size (Kb)	1.3	109.0
Number of words	2,060	173,145
After stopping	1,200	98,234

Legendas: clareza e precisão na apresentação de dados

- Explicam elementos em tabelas, gráficos e figuras
- Evitam interpretações erradas
- Melhoram acessibilidade
- Exemplo de Legenda Ruim:
 - "Gráfico de vendas por região."
- Exemplo de Legenda Boa:
 - "Evolução das vendas mensais por região (2023), em milhares de reais. Azul (Sudeste), Verde (Sul), Vermelho (Nordeste), Amarelo (Centro-Oeste), Roxo (Norte)."

Referências

[1] D. G. Perovano, Manual de metodologia da pesquisa científica. Editora Intersaberes, 2016.
[2] A. L. Cervo, P. A. Bervian, e R. da Silva, Metodologia Científica. Pearson Universidades, 2006.
[3] R. Wazlawick, 2017, Metodologia de Pesquisa para Ciência da Computação. Elsevier Brasil.
[4] J. Zobel, 2015, Writing for Computer Science. Springer.

