SBML Model Report

Model name: "Singh2006_IL6_Signal_Transduction"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Harish Dharuri¹ and Vijayalakshmi Chelliah² at August 31st 2007 at 3:36 p.m. and last time modified at October tenth 2014 at 11:06 a.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	68
events	0	constraints	0
reactions	72	function definitions	0
global parameters	105	unit definitions	1
rules	0	initial assignments	0

Model Notes

The model reproduces Fig 2, Fig3A and Fig 3B of the paper. The ODE for x1(gp180) and x3 (gp 130) is wrong and the authors have communicated to the curator that the species ought to have a constant value. There are a few other differences from the paper and these were made in

¹California Institute of Technology, hdharuri@cds.caltechedu

 $^{^2}$ EMBL-EBI, viji@ebi.ac.uk

consultation with the authors. Model was successfully tested on MathSBML.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nano mole

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol nucleus	•		3 3	1 1	litre litre	1	cytosol

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of one litre.

Name cytosol

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cytosol (cytosol).

Name nucleus

4 Species

This model contains 68 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x1	gp80	cytosol	$\operatorname{nmol} \cdot l^{-1}$	Ø	$ \overline{\checkmark} $
x2	IL6-gp80	cytosol	$nmol \cdot l^{-1}$		
x6	IL6-gp80-gp130-JAK	cytosol	$nmol \cdot l^{-1}$	\Box	\Box
x5	gp130-JAK	cytosol	$nmol \cdot l^{-1}$	\Box	\Box
x7	(IL6-gp80-gp130-JAK)2	cytosol	$nmol \cdot l^{-1}$		
x8	(IL6-gp80-gp130-JAK)_ast2	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
x16	(IL6-gp80-gp130-JAK)ast2-JAK	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	\Box
x15	SHP2	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	\Box
x9	STAT3C	cytosol	$nmol \cdot l^{-1}$	\Box	\Box
x11	(IL6-gp80-gp130-JAK)ast2-STAT3C	cytosol	$nmol \cdot l^{-1}$	\Box	\Box
x10	STAT3Cast	cytosol	$nmol \cdot l^{-1}$		
x12	(IL6-gp80-gp130-JAK)ast2-STAT3Cast	cytosol	$nmol \cdot l^{-1}$		
x29	SOCS3	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x30	(IL6-gp80-gp130-JAK)ast2-SOCS3	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
x39	(IL6-gp80-gp130-JAK)ast2-SHP2ast	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
x46	SHP2ast	cytosol	$nmol \cdot l^{-1}$		\Box
x40	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2	cytosol	$nmol \cdot l^{-1}$		
x45	SHP2ast-Grb2	cytosol	$nmol \cdot l^{-1}$	\Box	
x41	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	\Box
x44	SHP2ast-Grb2-SOS	cytosol	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x18	PP1-STAT3Cast	cytosol	$nmol \cdot l^{-1}$	\Box	\Box
x17	PP1	cytosol	$nmol \cdot l^{-1}$		\Box
x14	STAT3C-STAT3Cast	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x22	STAT3N	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		\Box
x32	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3-SHP2	cytosol	$\operatorname{nmol} \cdot l^{-1}$		
x13	STAT3Cast-STAT3Cast	cytosol	$nmol \cdot l^{-1}$		
x20	STAT3Nast-STAT3Nast	nucleus	$nmol \cdot l^{-1}$		
x21	STAT3Nast	nucleus	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x23	PP2	nucleus	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x27	PP2-STAT3Nast-STAT3Nast	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		
x24	STAT3N-STAT3Nast	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		
x25	Mrna-SOCS3N	nucleus	$nmol \cdot l^{-1}$	\Box	
x34	Grb2	cytosol	$nmol \cdot l^{-1}$		
x36	Ras-GDP	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x42	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GDP	cytosol	$nmol \cdot l^{-1}$		
x37	Ras-GTP	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x47	Raf	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
x48	Raf-Ras-GTP	cytosol	$nmol \cdot l^{-1}$		
x52	Rafast-Phosp1	cytosol	$nmol \cdot l^{-1}$		
x51	Rafast	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x50	Phosp1	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x53	MEK	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
x54	MEK-Rafast	cytosol	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
x55	MEK-P	cytosol	$nmol \cdot l^{-1}$		
x60	MEK-P-Phosp2	cytosol	$nmol \cdot l^{-1}$		

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	x59	Phosp2	cytosol	$nmol \cdot l^{-1}$		
	x57	MEK-PP	cytosol	$nmol \cdot l^{-1}$		
	x61	ERK	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
	x62	ERK-MEK-PP	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
	x63	ERK-P	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
	x65	ERK-PP	cytosol	$nmol \cdot l^{-1}$		
	x68	ERK-P-Phosp3	cytosol	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
	x35	SOS	cytosol	$nmol \cdot l^{-1}$		
Pro	x28	PP2-STAT3Nast	nucleus	$nmol \cdot l^{-1}$		
duced	x31	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3	cytosol	$nmol \cdot l^{-1}$		
by	x56	MEK-P-Rafast	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
Produced by SBML2PTEX	x43	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GTP	cytosol	$nmol \cdot l^{-1}$		
Ä	x3	gp130	cytosol	$nmol \cdot l^{-1}$		
\sim	x58	MEK-PP-Phosp2	cytosol	$nmol \cdot l^{-1}$		
	x4	JAK	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
	x26	Mrna-SOCS3C	nucleus	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
	x49	Ras-GTPast	cytosol	$nmol \cdot l^{-1}$		
	x33	(IL6-gp80-gp130-JAK)ast2-STAT3C-SHP2	cytosol	$nmol \cdot l^{-1}$		
	x64	ERK-P-MEK-PP	cytosol	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
	x19	PP1-STAT3Cast-STAT3Cast	cytosol	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
	x38	Grb2-SOS	cytosol	$nmol \cdot l^{-1}$		
	x66	Phosp3	cytosol	$\operatorname{nmol} \cdot 1^{-1}$		
	x67	ERK-PP-Phosp3	cytosol	$nmol \cdot l^{-1}$		

5 Parameters

This model contains 105 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO		Unit	Constant
IL6			0.380		Ø
kf0			0.100		$ \mathbf{Z} $
kr0			0.050		\overline{Z}
kf1			0.100		$\overline{\mathbf{Z}}$
kr1			0.050		$\overline{\mathbf{Z}}$
kf2			0.020		$ \overline{\checkmark} $
kr2			0.020		\square
kf3			0.040		\checkmark
kr3			0.200		\checkmark
k4			0.005		\checkmark
k10			0.003		
kf5			0.008		
kr5			0.800		
k6			0.400		
kf7			0.005		
kr7			0.500		
kf9			0.001		
kr9			0.200		
kf21			0.020		
kr21			0.100		
kf37			0.300		
kr37			$9 \cdot 10^{-4}$		
kf39			0.300		$\mathbf{Z}_{\underline{\cdot}}$
kr39			$9 \cdot 10^{-4}$		$\mathbf{Z}_{\underline{\cdot}}$
kf32			0.100		$\mathbf{Z}_{\underline{\mathbf{z}}}$
kr32		2.4	$45 \cdot 10^{-4}$		$\mathbf{Z}_{\underline{\cdot}}$
k12			0.003		$\mathbf{Z}_{\underline{}}$
kf13			$2 \cdot 10^{-7}$		$\mathbf{Z}_{\underline{\mathbf{C}}}$
kr13			0.200		$ \mathbf{Z} $
k17			0.050		\square
kf8			0.020		
kr8			0.100		
kf11			0.001		
kr11			0.200		I
k14			0.005		$\mathbf{Z}_{\mathbf{z}}$
Vm		2	1.700		
Km		3	40.000		\mathbf{Z}

kf34 6.000 Ø kf60 0.060 Ø kf60 0.500 Ø kr60 0.0005 Ø kf15 0.001 Ø kr15 0.200 Ø kf61 0.200 Ø kr61 2.10-7 Ø k16 0.005 Ø k18a 0.010 Ø k18b 400.000 Ø k19 0.001 Ø k22 5.10-4 Ø k20 0.010 Ø k23 5.10-4 Ø k23 5.10-4 Ø k738 0.010 Ø k738 0.050 Ø k735 0.002 Ø k743 0.002 Ø k724 0.010 Ø k724 0.050 Ø k725 0.010 Ø k726 1.300 Ø k731 0.021 Ø k727 0.500 Ø k728	Id	Name	SBO	Value	Unit	Constant
kr34 0.060 \frac{	kf34			6.000		
kr60 0.500 ✓ kr60 0.005 ✓ kr15 0.001 ✓ kr61 0.200 ✓ kr61 2.10-7 ✓ k16 0.005 ✓ k18a 0.010 ✓ k19 0.001 ✓ k22 5.10-4 ✓ k20 0.010 ✓ k23 5.10-4 ✓ k738 0.010 ✓ k738 0.055 ✓ k735 0.002 ✓ k724 0.005 ✓ k725 0.0010 ✓ k726 0.010 ✓ k727 0.021 ✓ k728 0.001 ✓ k727 10-4 ✓ k728 0.001 ✓ k728 0.000 ✓ k741 0.043 ✓ k728 0.001 ✓ k733 0.021 ✓ k730 0.008 ✓ k731	kr34			0.060		
kr60 0.005 \$\frac{1}{2}\$ kr15 0.001 \$\frac{1}{2}\$ kr61 0.200 \$\frac{1}{2}\$ kr61 2.10-7 \$\frac{1}{2}\$ kl6 0.005 \$\frac{1}{2}\$ kl8a 0.010 \$\frac{1}{2}\$ kl8b 40.000 \$\frac{1}{2}\$ kl19 0.001 \$\frac{1}{2}\$ k20 0.010 \$\frac{1}{2}\$ k23 5.10-4 \$\frac{1}{2}\$ k23 5.10-4 \$\frac{1}{2}\$ kf38 0.010 \$\frac{1}{2}\$ kf38 0.010 \$\frac{1}{2}\$ kf38 0.050 \$\frac{1}{2}\$ kf35 0.002 \$\frac{1}{2}\$ kf24 0.005 \$\frac{1}{2}\$ kf24 0.010 \$\frac{1}{2}\$ kf25 0.010 \$\frac{1}{2}\$ kf26 0.010 \$\frac{1}{2}\$ kf26 0.015 \$\frac{1}{2}\$ kf27 0.500 \$\frac{1}{2}\$ kf28 0.001 \$\frac{1}{2}\$ kf28 0.000 \$\frac{1}{2}\$ <td>kf60</td> <td></td> <td></td> <td>0.500</td> <td></td> <td></td>	kf60			0.500		
kr115 0.001 Image: square process of the content o	kr60			0.005		
kr15 0.200 Image: contract of the	kf15			0.001		
kf61 0.200 ✓ kr61 2.10-7 ✓ k16 0.005 ✓ k18a 0.010 ✓ k18b 400.000 ✓ k19 0.001 ✓ k22 5.10-4 ✓ k20 0.010 ✓ k23 5.10-4 ✓ k738 0.010 ✓ k738 0.550 ✓ k735 0.002 ✓ k735 0.005 ✓ k724 0.010 ✓ k725 0.010 ✓ k725 0.021 ✓ k740 0.064 ✓ k726 1.300 ✓ k727 1.300 ✓ k727 10-4 ✓ k728 0.001 ✓ k728 0.001 ✓ k728 0.005 ✓ k731 0.043 ✓ k728 0.000 ✓ k733 0.000 ✓ k733	kr15			0.200		
kr61 2 · 10 · 7 k16 0.005 k18a 0.010 k18b 400.000 k19 0.001 k22 5 · 10 · 4 k20 0.010 k23 5 · 10 · 4 kf38 0.010 kr38 0.550 kf35 0.002 kr35 0.005 kf24 0.010 kr25 0.010 kr25 0.021 kf40 0.030 kr40 0.064 kr26 1.300 kr31 0.023 kr31 0.023 kr27 0.500 kr28 0.001 kr28 0.005 kr41 0.030 kr33 0.300 kr34 0.001 kr30 0.008 kr30 0.400 k43 1.000	kf61			0.200		
k16 0.005 ✓ k18b 400.000 ✓ k19 0.001 ✓ k20 0.010 ✓ k23 5·10-4 ✓ k738 0.010 ✓ k735 0.002 ✓ k735 0.005 ✓ k724 0.010 ✓ k725 0.010 ✓ k725 0.021 ✓ k740 0.030 ✓ k726 0.015 ✓ k727 1.300 ✓ k727 10-4 ✓ k728 0.001 ✓ k728 0.005 ✓ k741 0.043 ✓ k733 0.021 ✓ k733 0.021 ✓ k730 0.400 ✓ k730 0.400 ✓ k729 1.000 ✓	kr61			$2 \cdot 10^{-7}$		
k18a 0.010 k18b 400.000 k19 0.001 k22 5·10-4 k20 0.010 k23 5·10-4 kf38 0.010 kr38 0.550 kf355 0.002 kr35 0.005 kf24 0.010 kr25 0.010 kr25 0.021 kr40 0.030 kr40 0.064 kr26 1.300 kr31 0.023 kr31 0.023 kr31 0.023 kr31 0.003 kr27 10-4 kr28 0.001 kr28 0.005 kr41 0.030 kr41 0.043 kr33 0.300 kr33 0.021 kr30 0.008 kr30 0.400 kr30 0.400 kr30 0.400	k16			0.005		
k18b 400.000 k19 0.001 k22 5·10 ⁻⁴ k20 0.010 k23 5·10 ⁻⁴ kf38 0.010 kr38 0.550 kr35 0.002 kr35 0.005 kf24 0.010 kr25 0.010 kr25 0.021 kr40 0.030 kr41 0.064 kr26 1.300 kr31 0.023 kr31 0.023 kr31 0.023 kr31 0.003 kr27 10 ⁻⁴ kr28 0.001 kr28 0.005 kr41 0.043 kr33 0.300 kr30 0.008 kr30 0.400 kr30 0.400 kr30 1.000	k18a			0.010		
k19 0.001 k22 5·10 ⁻⁴ k20 0.010 k23 5·10 ⁻⁴ kf38 0.010 kr38 0.550 kf35 0.002 kr35 0.005 kf24 0.010 kr24 0.550 kf25 0.010 kr25 0.021 kf40 0.030 kr40 0.064 kf26 1.300 kr31 0.023 kr31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr28 0.001 kr28 0.005 kf41 0.043 kr33 0.300 kr30 0.008 kr30 0.400 kr30 0.400 kr43 1.000 kr529 1.000	k18b			400.000		
k22 5·10 ⁻⁴ ✓ k20 0.010 ✓ k23 5·10 ⁻⁴ ✓ kf38 0.010 ✓ kf38 0.550 ✓ kf35 0.002 ✓ kr35 0.005 ✓ kf24 0.010 ✓ kr24 0.550 ✓ kf25 0.010 ✓ kr25 0.021 ✓ kf40 0.030 ✓ kr40 0.064 ✓ kf26 0.015 ✓ kr26 1.300 ✓ kf31 0.023 ✓ kr31 2.2·10 ⁻⁴ ✓ kf27 0.500 ✓ kr28 0.001 ✓ kr28 0.005 ✓ kf41 0.043 ✓ kr33 0.021 ✓ kf30 0.008 ✓ kr30 0.400 ✓ k43 1.000 ✓ kf29 1.000	k19			0.001		
k20 0.010 k23 5 · 10 ⁻⁴ kf38 0.010 kr38 0.550 kf35 0.002 kr35 0.005 kf24 0.010 kr24 0.550 kf25 0.010 kr25 0.021 kf40 0.030 kr40 0.064 kf26 1.300 kr27 0.023 kr31 0.023 kr31 2.2 · 10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.043 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	k22			$5 \cdot 10^{-4}$		
k23 5 · 10 ⁻⁴ ✓ kf38 0.010 ✓ kr38 0.550 ✓ kf35 0.002 ✓ kr35 0.005 ✓ kf24 0.010 ✓ kr24 0.550 ✓ kf25 0.010 ✓ kr25 0.021 ✓ kf40 0.030 ✓ kr40 0.064 ✓ kf26 0.015 ✓ kr26 1.300 ✓ kf31 0.023 ✓ kr31 2.2 · 10 ⁻⁴ ✓ kf27 0.500 ✓ kr27 10 ⁻⁴ ✓ kf28 0.001 ✓ kr28 0.005 ✓ kf41 0.030 ✓ kr33 0.300 ✓ kr33 0.021 ✓ kr30 0.400 ✓ kr43 1.000 ✓ kf29 1.000	k20			0.010		
kf38 0.010 kr38 0.550 kf35 0.002 kr35 0.005 kf24 0.010 kr24 0.550 kf25 0.010 kr25 0.021 kf40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kr28 0.001 kr28 0.005 kf41 0.030 kr33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	k23			$5 \cdot 10^{-4}$		
kr38 0.550 Ø kf35 0.002 Ø kr35 0.005 Ø kf24 0.010 Ø kr24 0.550 Ø kf25 0.010 Ø kr25 0.021 Ø kf40 0.030 Ø kr44 0.064 Ø kf26 0.015 Ø kr26 1.300 Ø kf31 0.023 Ø kr31 2.2·10 ⁻⁴ Ø kf27 0.500 Ø kr27 10 ⁻⁴ Ø kf28 0.001 Ø kr28 0.005 Ø kf41 0.030 Ø kr33 0.021 Ø kf30 0.008 Ø kr30 0.400 Ø kf29 1.000 Ø	kf38			0.010		
kf35 0.002 7 kf24 0.010 7 kr24 0.550 7 kf25 0.010 7 kr25 0.021 7 kf40 0.030 7 kr40 0.064 7 kf26 0.015 7 kr26 1.300 7 kf31 0.023 7 kr31 2.2·10 ⁻⁴ 7 kf27 0.500 7 kr27 10 ⁻⁴ 7 kf28 0.001 7 kr28 0.005 7 kf41 0.030 7 kr33 0.300 7 kr33 0.021 7 kf30 0.400 7 kf39 0.400 7 kf29 1.000 7	kr38			0.550		
kr35 0.005 kf24 0.010 kr24 0.550 kf25 0.010 kr25 0.021 kf40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf35			0.002		
kf24 0.010 kr25 0.010 kr40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 kf33 1.000 kf39 1.000	kr35			0.005		
kr24 0.550 kr25 0.010 kr40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kr33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf24			0.010		
kf25 0.010 kr40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr24			0.550		
kr25 0.021 \$\frac{1}{2}\$ kr40 0.030 \$\frac{1}{2}\$ kr26 0.015 \$\frac{1}{2}\$ kr31 0.023 \$\frac{1}{2}\$ kr31 2.2 \cdot 10^{-4} \$\frac{1}{2}\$ kf27 0.500 \$\frac{1}{2}\$ kr27 10^{-4} \$\frac{1}{2}\$ kf28 0.001 \$\frac{1}{2}\$ kr28 0.005 \$\frac{1}{2}\$ kf41 0.030 \$\frac{1}{2}\$ kr41 0.043 \$\frac{1}{2}\$ kr33 0.021 \$\frac{1}{2}\$ kf30 0.008 \$\frac{1}{2}\$ kr30 0.400 \$\frac{1}{2}\$ kf29 1.000 \$\frac{1}{2}\$	kf25			0.010		
kf40 0.030 kr40 0.064 kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2 · 10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kr33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr25			0.021		
kr40 0.064 \$\neq\$ kf26 0.015 \$\neq\$ kr26 1.300 \$\neq\$ kf31 0.023 \$\neq\$ kr31 2.2 \cdot 10^{-4} \$\neq\$ kf27 0.500 \$\neq\$ kr27 10^{-4} \$\neq\$ kf28 0.001 \$\neq\$ kr28 0.005 \$\neq\$ kf41 0.030 \$\neq\$ kr41 0.043 \$\neq\$ kr33 0.300 \$\neq\$ kr33 0.021 \$\neq\$ kf30 0.008 \$\neq\$ kr30 0.400 \$\neq\$ k43 1.000 \$\neq\$ kf29 1.000 \$\neq\$	kf40			0.030		
kf26 0.015 kr26 1.300 kf31 0.023 kr31 2.2 · 10 - 4 kf27 0.500 kr27 10 - 4 kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kr33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr40			0.064		
kr26 1.300 kf31 0.023 kr31 2.2·10 ⁻⁴ kf27 0.500 kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf26			0.015		
kf31 0.023 kr31 2.2 · 10^-4 kf27 0.500 kr27 10^-4 kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr26			1.300		
kr31 2.2 · 10^{-4} kf27 0.500 kr27 10^{-4} kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf31					
kr27 10^{-4} kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr31					
kr27 10 ⁻⁴ kf28 0.001 kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf27					
kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr27					
kr28 0.005 kf41 0.030 kr41 0.043 kf33 0.300 kr34 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf28					
kf41 0.030 kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr28			0.005		
kr41 0.043 kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf41					
kf33 0.300 kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr41					
kr33 0.021 kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kf33					
kf30 0.008 kr30 0.400 k43 1.000 kf29 1.000	kr33					
kr30 0.400 k43 1.000 kf29 1.000	kf30					
k43 1.000	kr30					
kf29 1.000 ☑	k43					
	kf29					
	kr29			$7 \cdot 10^{-4}$		

Id	Name	SBO	Value	Unit	Constant
kf42			0.072		Ø
kr42			0.200		$\overline{\mathbf{Z}}$
kf44			0.011		$\overline{\mathbf{Z}}$
kr44			0.002		$\overline{\mathbf{Z}}$
k45			3.500		$\overline{\mathbf{Z}}$
kf46			0.011		$\overline{\mathbf{Z}}$
kr46			0.002		$\overline{\mathbf{Z}}$
k51			0.058		$\overline{\mathbf{Z}}$
k49			0.058		$\overline{\mathbf{Z}}$
kf50			$2.5\cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kr50			0.500		$\overline{\mathbf{Z}}$
k47			2.900		$\overline{\mathbf{Z}}$
kf48			0.014		$\overline{\mathbf{Z}}$
kr48			0.800		$\overline{\mathbf{Z}}$
kf52			$1.1\cdot 10^{-4}$		$\overline{\mathbf{Z}}$
kr52			0.033		$\overline{\mathbf{Z}}$
k53			16.000		$\overline{\mathbf{Z}}$
kr54			0.033		$\overline{\mathbf{Z}}$
kf54			$1.1\cdot 10^{-4}$		$\overline{\mathbf{Z}}$
k55			6.700		$\overline{\mathbf{Z}}$
k59			0.300		$ \overline{\mathbf{Z}} $
k57			0.270		$\overline{\mathbf{Z}}$
kf58			0.005		$\overline{\mathbf{Z}}$
kr58			0.500		$\overline{\mathbf{Z}}$
kf56			0.014		$\overline{\mathbf{Z}}$
kr56			0.600		$\overline{\mathbf{Z}}$

6 Reactions

This model contains 72 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	R1	IL6-gp80 complex formation	$\emptyset \xrightarrow{x1} x2$	
2	R2	IL6-gp80 complex dissociation	$x2 \longrightarrow \emptyset$	
3	R3	IL6-gp80-gp130-JAK dissociation	$x6 \longrightarrow x5 + x2$	
4	R5	gp130-JAK complex formation	$x4 \xrightarrow{x3} x5$	
5	R7	IL6-gp80-gp130-JAK dimerization	$2 \times 6 \longrightarrow \times 7$	
6	R8	IL6-gp80-gp130-JAK dimer dissociation	$x7 \longrightarrow 2x6$	
7	R9	IL6-gp80-gp130-JAK dimer phosphorylation	$x7 \longrightarrow x8$	
8	R10	IL6-gp80-gp130-JAK dimer-SHP2 dissociation	$x16 \longrightarrow x15 + x7$	
9	R11	IL6-gp80-gp130-JAK -STAT3C complex formation	$x9 + x8 \longrightarrow x11$	
10	R12	IL6-gp80-gp130-JAK -STAT3C dissociation	$x11 \longrightarrow x10 + x8$	
11	R13	IL6-gp80-gp130-JAK-STAT3Cast complex formation	$x10 + x8 \Longrightarrow x12$	
12	R14	IL6-gp80-gp130-JAK -SHP2 complex formation	$x15 + x8 \Longrightarrow x16$	
13	R15	IL6-gp80-gp130-JAK -SOCS3 complex formation	$x29 + x8 \Longrightarrow x30$	
14	R16	IL6-gp80-gp130-JAK -SHP2 dimer dissociation	$x39 \Longrightarrow x46 + x8$	
15	R16a	IL6-gp80-gp130-JAK SHP2 Grb2 dissociation	$x40 \Longrightarrow x45 + x8$	

N₀	Id	Name	Reaction Equation	SBO
16	R17	IL6-gp80-gp130-JAK-SHP2-Grb2-SOS dis-	x41 ⇒ x44 + x8	
		sociation		
17	R18	PP1-STAT3Cast dissociation	$x18 \longrightarrow x17 + x9$	
18	R19	STAT3C dimerization	$x10 + x9 \Longrightarrow x14$	
19	R20	STAT3N transport	$x22 \longrightarrow x9$	
20	R21	IL6-gp80-gp130-JAK-SOCS2-STAT3C com-	$x30 + x9 \Longrightarrow x31$	
		plex formation		
21	R22	IL6-gp80-gp130-JAK-STAT3C-SOCS3-	$x32 \longrightarrow x29 + x15 + x9 + x7$	
		SHP2 dissociation		
22	R23	STAT3C dimerization	$x10 \Longrightarrow 0.5 x13$	
23	R24	IL6-gp80-gp130-JAK STAT3Cast complex	$x17 + x10 \Longrightarrow x18$	
		formation		
24	R25	PP1-STAT3C dimer complex formation	$x17 + x13 \Longrightarrow x19$	
25	R26	STAT3C dimer phosphorylation	$x13 \longrightarrow x20$	
26	R27	PP1-STAT3C dimer dissociation	$x19 \longrightarrow x17 + x14$	
27	R28	Complex formation	$x31 + x15 \longrightarrow x32$	
28	R29	SHP2 dephosphorylation	$x46 \longrightarrow x15$	
29	R30	IL6-gp80-gp130-JAK-SHP2 phosphorylation	$x16 \Longrightarrow x39$	
30	R31	STAT3N dimer dissociation	$x20 \rightleftharpoons 2x21$	
31	R32	PP2-STAT3N dimer complex formation	$x23 + x20 \Longrightarrow x27$	
32	R33	PP2-STAT3N complex formation	$x23 + x21 \Longrightarrow x28$	
33	R34	STAT3N dimer dissociation	$x24 \Longrightarrow x22 + x21$	
34	R35	PP2-STAT3N dissociation	$x28 \longrightarrow x23 + x22$	
35	R36	PP2-STAT3N dimer dissociation	$x27 \longrightarrow x24 + x23$	
36	R37	SOCS3N transcription	$\emptyset \xrightarrow{x20} x25$	
37	R38	SOCS3 mRNA translocation	$x25 \longrightarrow x26$	
38	R39	SOCS3 mRNA degradation	$x26 \longrightarrow \emptyset$	
39	R40	SOCS3 translation	$\emptyset \xrightarrow{x26} x29$	

12	N₀	Id	Name	Reaction Equation	SBO
	40	R41	SOCS3 degradation	$x29 \longrightarrow \emptyset$	
	41	R42	Complex dissociation	$x32 \longrightarrow x33 + x29$	
	42	R43	SHP2-Grb2 complex formation	$x46 + x34 \Longrightarrow x45$	
	43	R44	Grb2-SOS dissociation	$x38 \Longrightarrow x35 + x34$	
	44	R45	Complex formation	$x39 + x34 \Longrightarrow x40$	
	45	R46	Complex formation	$x40 + x35 \Longrightarrow x41$	
	46	R47	SHP2Grb2-SOS complex formation	$x45 + x35 \Longrightarrow x44$	
	47	R48	Complex formation	$x41 + x36 \Longrightarrow x42$	
	48	R49	Complex dissociation	$x43 \Longrightarrow x41 + x36$	
	49	R50	Complex dissociation	$x42 \Longrightarrow x41 + x37$	
Produced by SBML2 ST EX	50	R51	Ras-GTP-Raf complex formation	$x47 + x37 \Longrightarrow x48$	
duc	51	R52	Complex formation	$x39 + x38 \Longrightarrow x41$	
ed	52	R53	SHP2-Grb2-SOS dissociation	$x44 \Longrightarrow x46 + x38$	
by	53	R54	Complex formation	$x49 + x41 \Longrightarrow x43$	
8	54	R55	Raf-Phosp1 dissociation	$x52 \longrightarrow x47 + x50$	
\leq	55	R56	Raf-Ras-GTP dissociation	$x48 \Longrightarrow x51 + x49$	
Ä	56	R57	Raf-Phosp1 complex formation	$x51 + x50 \Longrightarrow x52$	
\mathbb{Z}	57	R58	MEK-Raf complex formation	$x53 + x51 \Longrightarrow x54$	
	58	R59	MEK-Raf complex dissociation	$x54 \longrightarrow x55 + x51$	
	59	R60	MEK-P-Raf complex formation	$x55 + x51 \Longrightarrow x56$	
	60	R61	MEK-P-Phosp2 dissociation	$x60 \longrightarrow x59 + x53$	
	61	R62	MEK-PP-Phosp2 dissociation	$x58 \longrightarrow x59 + x55$	
	62	R63	MEK-P-Phosp2 complex formation	$x59 + x55 \Longrightarrow x60$	
	63	R64	MEK-P-Raf complex dissociation	$x56 \longrightarrow x51 + x57$	
	64	R65	MEK-PP-Phosp2 complex formation	$x59 + x57 \Longrightarrow x58$	
	65	R66	ERK-MEK-PP complex formation	$x61 + x57 \Longrightarrow x62$	
	66	R67	ERK-MEK-PP complex dissociation	$x62 \longrightarrow x63 + x57$	
	67	R68	ERK-P-MEK-PP complex dissociation	$x64 \Longrightarrow x63 + x57$	
	68	R69	ERK-PP formation	$x64 \longrightarrow x65 + x57$	

N⁰	Id	Name	Reaction Equation	SBO
69	R70	ERK-P-Phosp3 complex dissociation	$x68 \longrightarrow x66 + x61$	
70	R71	ERK-PP-Phosp3 dissociation	$x67 \longrightarrow x66 + x63$	
71	R72	ERK-P-Phosp3 formation	$x66 + x63 \Longrightarrow x68$	
72	R73	ERK-PP-Phosp3 formation	$x66 + x65 \Longrightarrow x67$	

6.1 Reaction R1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name IL6-gp80 complex formation

Reaction equation

$$\emptyset \xrightarrow{x1} x2 \tag{1}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
x1	gp80	

Product

Table 7: Properties of each product.

Id	Name	SBO
x2	IL6-gp80	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cytosol}) \cdot \text{kf0} \cdot [\text{x1}] \cdot \text{IL6}$$
 (2)

6.2 Reaction R2

This is an irreversible reaction of one reactant forming no product.

Name IL6-gp80 complex dissociation

Reaction equation

$$x2 \longrightarrow \emptyset$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
x2	IL6-gp80	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cytosol}) \cdot \text{kr}0 \cdot [\text{x}2] \tag{4}$$

6.3 Reaction R3

This is an irreversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK dissociation

Reaction equation

$$x6 \longrightarrow x5 + x2$$
 (5)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
х6	IL6-gp80-gp130-JAK	

Products

Table 10: Properties of each product.

Id	Name	SBO
х5	gp130-JAK	
x2	IL6-gp80	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cytosol}) \cdot (\text{kr2} \cdot [\text{x6}] - \text{kf2} \cdot [\text{x2}] \cdot [\text{x5}])$$
(6)

6.4 Reaction R5

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name gp130-JAK complex formation

Reaction equation

$$x4 \xrightarrow{x3} x5 \tag{7}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
x4	JAK	

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
хЗ	gp130	

Product

Table 13: Properties of each product.

Id	Name	SBO
x5	gp130-JAK	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{cytosol}\right) \cdot \left(\text{kf1} \cdot [\text{x3}] \cdot [\text{x4}] - \text{kr1} \cdot [\text{x5}]\right) \tag{8}$$

6.5 Reaction R7

This is an irreversible reaction of one reactant forming one product.

Name IL6-gp80-gp130-JAK dimerization

Reaction equation

$$2x6 \longrightarrow x7$$
 (9)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
x6	IL6-gp80-gp130-JAK	

Product

Table 15: Properties of each product

	Name	SBO
x7	(IL6-gp80-gp130-JAK)2	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cytosol}) \cdot \text{kf3} \cdot [\text{x6}]^2$$
 (10)

6.6 Reaction R8

This is an irreversible reaction of one reactant forming one product.

Name IL6-gp80-gp130-JAK dimer dissociation

Reaction equation

$$x7 \longrightarrow 2x6$$
 (11)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
x7	(IL6-gp80-gp130-JAK)2	

Table 17: Properties of each product.

10010	Treperies of each p	
Id	Name	SBO
х6	IL6-gp80-gp130-JAK	<u>. </u>

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cytosol}) \cdot \text{kr}3 \cdot [\text{x}7]$$
 (12)

6.7 Reaction R9

This is an irreversible reaction of one reactant forming one product.

Name IL6-gp80-gp130-JAK dimer phosphorylation

Reaction equation

$$x7 \longrightarrow x8$$
 (13)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
x7	(IL6-gp80-gp130-JAK)2	

Product

Table 19: Properties of each product.

Id	Name	SBO
x8	(IL6-gp80-gp130-JAK)_ast2	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cytosol}) \cdot \text{k4} \cdot [\text{x7}] \tag{14}$$

6.8 Reaction R10

This is an irreversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK dimer-SHP2 dissociation

Reaction equation

$$x16 \longrightarrow x15 + x7 \tag{15}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
x16	(IL6-gp80-gp130-JAK)ast2-JAK	

Products

Table 21: Properties of each product.

Id	Name	SBO
x15 x7	SHP2 (IL6-gp80-gp130-JAK)2	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{cytosol}) \cdot \text{k10} \cdot [\text{x16}] \tag{16}$$

6.9 Reaction R11

This is an irreversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK -STAT3C complex formation

Reaction equation

$$x9 + x8 \longrightarrow x11 \tag{17}$$

Reactants

Table 22: Properties of each reactant.

	P	
Id	Name	SBO
	STAT3C	
x8	(IL6-gp80-gp130-JAK)_ast2	

Table 23: Properties of each product.

Id	Name	SBO
x11	(IL6-gp80-gp130-JAK)ast2-STAT3C	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol(cytosol) \cdot (kf5 \cdot [x8] \cdot [x9] - kr5 \cdot [x11])$$

$$(18)$$

6.10 Reaction R12

This is an irreversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK -STAT3C dissociation

Reaction equation

$$x11 \longrightarrow x10 + x8 \tag{19}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
x11	(IL6-gp80-gp130-JAK)ast2-STAT3C	

Products

Table 25: Properties of each product

	rable 23. Froperties of each product.		
Id	Name	SBO	
×10	STAT3Cast		

Id	Name	SBO
x8	(IL6-gp80-gp130-JAK)_ast2	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{cytosol}) \cdot \text{k6} \cdot [\text{x11}] \tag{20}$$

6.11 Reaction R13

This is a reversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK-STAT3Cast complex formation

Reaction equation

$$x10 + x8 \Longrightarrow x12$$
 (21)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
x10	STAT3Cast	
x8	$(IL6-gp80-gp130-JAK)_ast2$	

Product

Table 27: Properties of each product.

Id	Name	SBO
x12	(IL6-gp80-gp130-JAK)ast2-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{cytosol}) \cdot (\text{kf7} \cdot [\text{x8}] \cdot [\text{x10}] - \text{kr7} \cdot [\text{x12}])$$
(22)

6.12 Reaction R14

This is a reversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK -SHP2 complex formation

Reaction equation

$$x15 + x8 \Longrightarrow x16 \tag{23}$$

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
x15	SHP2	
x8	$(IL6-gp80-gp130-JAK)_ast2$	

Product

Table 29: Properties of each product.

Id	Name	SBO	
x16	(IL6-gp80-gp130-JAK)ast2-JAK		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cytosol}) \cdot (\text{kf9} \cdot [\text{x8}] \cdot [\text{x15}] - \text{kr9} \cdot [\text{x16}])$$
(24)

6.13 Reaction R15

This is a reversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK -SOCS3 complex formation

Reaction equation

$$x29 + x8 \rightleftharpoons x30 \tag{25}$$

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
x29	SOCS3	

Id	Name	SBO
x8	(IL6-gp80-gp130-JAK)_ast2	

Table 31: Properties of each product.

	1 1	
Id	Name	SBO
x30	(IL6-gp80-gp130-JAK)ast2-SOCS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{cytosol}) \cdot (\text{kf21} \cdot [\text{x29}] \cdot [\text{x8}] - \text{kr21} \cdot [\text{x30}])$$
(26)

6.14 Reaction R16

This is a reversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK -SHP2 dimer dissociation

Reaction equation

$$x39 \Longrightarrow x46 + x8 \tag{27}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
x39	(IL6-gp80-gp130-JAK)ast2-SHP2ast	

Products

Table 33: Properties of each product.

Id	Name	SBO
x46	SHP2ast	
8x	(IL6-gp80-gp130-JAK)_ast2	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{cytosol}) \cdot (\text{kf37} \cdot [\text{x39}] - \text{kr37} \cdot [\text{x8}] \cdot [\text{x46}])$$
 (28)

6.15 Reaction R16a

This is a reversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK SHP2 Grb2 dissociation

Reaction equation

$$x40 \rightleftharpoons x45 + x8 \tag{29}$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
x40	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2	

Products

Table 35: Properties of each product.

Id	Name	SBO
x45	SHP2ast-Grb2	
x8	(IL6-gp80-gp130-JAK)_ast2	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{cytosol}) \cdot (\text{kf39} \cdot [\text{x40}] - \text{kr39} \cdot [\text{x45}] \cdot [\text{x8}]) \tag{30}$$

6.16 Reaction R17

This is a reversible reaction of one reactant forming two products.

Name IL6-gp80-gp130-JAK-SHP2-Grb2-SOS dissociation

Reaction equation

$$x41 \rightleftharpoons x44 + x8 \tag{31}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
x41	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2	

Products

Table 37: Properties of each product.

Id	Name	SBO
x44 x8	SHP2ast-Grb2-SOS (IL6-gp80-gp130-JAK)_ast2	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cytosol}) \cdot (\text{kf32} \cdot [\text{x41}] - \text{kr32} \cdot [\text{x44}] \cdot [\text{x8}])$$
 (32)

6.17 Reaction R18

This is an irreversible reaction of one reactant forming two products.

Name PP1-STAT3Cast dissociation

Reaction equation

$$x18 \longrightarrow x17 + x9 \tag{33}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
x18	PP1-STAT3Cast	

Table 39: Properties of each product.

Id	Name	SBO
x17	PP1	
x9	STAT3C	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{cytosol}) \cdot \text{k}12 \cdot [\text{x}18] \tag{34}$$

6.18 Reaction R19

This is a reversible reaction of two reactants forming one product.

Name STAT3C dimerization

Reaction equation

$$x10 + x9 \Longrightarrow x14 \tag{35}$$

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
x10	STAT3Cast	
x9	STAT3C	

Product

Table 41: Properties of each product.

Id	Name	SBO
x14	STAT3C-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}(\text{cytosol}) \cdot (\text{kf13} \cdot [\text{x9}] \cdot [\text{x10}] - \text{kr13} \cdot [\text{x14}])$$
(36)

6.19 Reaction R20

This is an irreversible reaction of one reactant forming one product.

Name STAT3N transport

Reaction equation

$$x22 \longrightarrow x9$$
 (37)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
x22	STAT3N	

Product

Table 43: Properties of each product.

Id	Name	SBO
x9	STAT3C	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{nucleus}) \cdot \text{k17} \cdot [\text{x22}] \tag{38}$$

6.20 Reaction R21

This is a reversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK-SOCS2-STAT3C complex formation

Reaction equation

$$x30 + x9 \Longrightarrow x31 \tag{39}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
x30 x9	(IL6-gp80-gp130-JAK)ast2-SOCS3 STAT3C	

Table 45: Properties of each product.

Id	Name	SBO
x31	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{cytosol}) \cdot (\text{kf5} \cdot [\text{x9}] \cdot [\text{x30}] - \text{kr5} \cdot [\text{x31}]) \tag{40}$$

6.21 Reaction R22

This is an irreversible reaction of one reactant forming four products.

Name IL6-gp80-gp130-JAK-STAT3C-SOCS3-SHP2 dissociation

Reaction equation

$$x32 \longrightarrow x29 + x15 + x9 + x7 \tag{41}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
x32	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3-SHP2	

Products

Table 47: Properties of each product.

	•	
Id	Name	SBO
x29	SOCS3	

Id	Name	SBO
x15	SHP2	
x9	STAT3C	
x7	(IL6-gp80-gp130-JAK)2	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{cytosol}) \cdot \text{k10} \cdot [\text{x32}] \tag{42}$$

6.22 Reaction R23

This is a reversible reaction of one reactant forming one product.

Name STAT3C dimerization

Reaction equation

$$x10 \rightleftharpoons 0.5x13 \tag{43}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
x10	STAT3Cast	

Product

Table 49: Properties of each product

Tuoi	e 151 Fraperties of each pro	
Id	Name	SBO
x13	STAT3Cast-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{cytosol}) \cdot \left(2 \cdot \text{kf8} \cdot [\text{x}10]^2 - 2 \cdot \text{kr8} \cdot [\text{x}13]\right) \tag{44}$$

6.23 Reaction R24

This is a reversible reaction of two reactants forming one product.

Name IL6-gp80-gp130-JAK STAT3Cast complex formation

Reaction equation

$$x17 + x10 \Longrightarrow x18 \tag{45}$$

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
x17	PP1	
x10	STAT3Cast	

Product

Table 51: Properties of each product.

Id	Name	SBO
x18	PP1-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{cytosol}) \cdot (\text{kf11} \cdot [\text{x10}] \cdot [\text{x17}] - \text{kr11} \cdot [\text{x18}])$$
 (46)

6.24 Reaction R25

This is a reversible reaction of two reactants forming one product.

Name PP1-STAT3C dimer complex formation

Reaction equation

$$x17 + x13 \Longrightarrow x19 \tag{47}$$

Reactants

Table 52: Properties of each reactant.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
x17 x13	PP1 STAT3Cast-STAT3Cas	t

Table 53: Properties of each product.

Id	Name	SBO
x19	PP1-STAT3Cast-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{cytosol}) \cdot (\text{kf11} \cdot [\text{x13}] \cdot [\text{x17}] - \text{kr11} \cdot [\text{x19}])$$
 (48)

6.25 Reaction R26

This is an irreversible reaction of one reactant forming one product.

Name STAT3C dimer phosphorylation

Reaction equation

$$x13 \longrightarrow x20$$
 (49)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
x13	STAT3Cast-STAT3Cast	

Product

Table 55: Properties of each product.

Id	Name	SBO
x20	STAT3Nast-STAT3Nast	

Id	Name	SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cytosol}) \cdot \text{k}14 \cdot [\text{x}13] \tag{50}$$

6.26 Reaction R27

This is an irreversible reaction of one reactant forming two products.

Name PP1-STAT3C dimer dissociation

Reaction equation

$$x19 \longrightarrow x17 + x14 \tag{51}$$

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
x19	PP1-STAT3Cast-STAT3Cast	

Products

Table 57: Properties of each product.

Id	Name	SBO
x17	PP1	
x14	STAT3C-STAT3Cast	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{cytosol}) \cdot \text{k12} \cdot [\text{x19}] \tag{52}$$

6.27 Reaction R28

This is an irreversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x31 + x15 \longrightarrow x32 \tag{53}$$

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3 SHP2	

Product

Table 59: Properties of each product.

Id	Name	SBO
x32	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3-SHP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{cytosol}) \cdot (\text{kf9} \cdot [\text{x15}] \cdot [\text{x31}] - \text{kr9} \cdot [\text{x32}])$$

$$(54)$$

6.28 Reaction R29

This is an irreversible reaction of one reactant forming one product.

Name SHP2 dephosphorylation

Reaction equation

$$x46 \longrightarrow x15 \tag{55}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
x46	SHP2ast	

Table 61: Properties of each product.

Id	Name	SBO
x15	SHP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \frac{\text{vol}(\text{cytosol}) \cdot \text{Vm} \cdot [\text{x46}]}{\text{Km} + [\text{x46}]}$$
(56)

6.29 Reaction R30

This is a reversible reaction of one reactant forming one product.

Name IL6-gp80-gp130-JAK-SHP2 phosphorylation

Reaction equation

$$x16 \rightleftharpoons x39$$
 (57)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
x16	(IL6-gp80-gp130-JAK)ast2-JAK	

Product

Table 63: Properties of each product.

Id	Name	SBO
x39	(IL6-gp80-gp130-JAK)ast2-SHP2ast	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{cytosol}) \cdot (\text{kf34} \cdot [\text{x16}] - \text{kr34} \cdot [\text{x39}])$$
(58)

6.30 Reaction R31

This is a reversible reaction of one reactant forming one product.

Name STAT3N dimer dissociation

Reaction equation

$$x20 \rightleftharpoons 2x21$$
 (59)

Reactant

Table 64: Properties of each reactant.

Tuble of the repetites of each reactant.		
Id	Name	SBO
x20	STAT3Nast-STAT3Nast	

Product

Table 65: Properties of each product.

Id	Name	SBO
x21	STAT3Nast	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol}\left(\text{nucleus}\right) \cdot \left(\text{kr8} \cdot [\text{x20}] - \text{kf8} \cdot [\text{x21}]^2\right) \tag{60}$$

6.31 Reaction R32

This is a reversible reaction of two reactants forming one product.

Name PP2-STAT3N dimer complex formation

Reaction equation

$$x23 + x20 \Longrightarrow x27 \tag{61}$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
1120	PP2 STAT3Nast-STAT3Nast	

Table 67: Properties of each product.

Id	Name	SBO
x27	PP2-STAT3Nast-STAT3Nast	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{nucleus}) \cdot (\text{kf15} \cdot [\text{x23}] \cdot [\text{x20}] - \text{kr15} \cdot [\text{x27}])$$
 (62)

6.32 Reaction R33

This is a reversible reaction of two reactants forming one product.

Name PP2-STAT3N complex formation

Reaction equation

$$x23 + x21 \Longrightarrow x28 \tag{63}$$

Reactants

Table 68: Properties of each reactant.

Id	Name	SBO
x23	PP2	
x21	STAT3Nast	

Product

Table 69: Properties of each product.

Id	Name	SBO
x28	PP2-STAT3Nast	

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{nucleus}) \cdot (\text{kf15} \cdot [\text{x23}] \cdot [\text{x21}] - \text{kr15} \cdot [\text{x28}])$$
 (64)

6.33 Reaction R34

This is a reversible reaction of one reactant forming two products.

Name STAT3N dimer dissociation

Reaction equation

$$x24 \Longrightarrow x22 + x21 \tag{65}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
x24	STAT3N-STAT3Nast	

Products

Table 71: Properties of each product.

Id	Name	SBO
x22	STAT3N	
x21	STAT3Nast	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{nucleus}) \cdot (\text{kr}13 \cdot [\text{x}24] - \text{kf}13 \cdot [\text{x}21] \cdot [\text{x}22])$$
 (66)

6.34 Reaction R35

This is an irreversible reaction of one reactant forming two products.

Name PP2-STAT3N dissociation

Reaction equation

$$x28 \longrightarrow x23 + x22 \tag{67}$$

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
x28	PP2-STAT3Nast	

Products

Table 73: Properties of each product.

Id	Name	SBO
x23	PP2	
x22	STAT3N	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{nucleus}) \cdot \text{k16} \cdot [\text{x28}] \tag{68}$$

6.35 Reaction R36

This is an irreversible reaction of one reactant forming two products.

Name PP2-STAT3N dimer dissociation

Reaction equation

$$x27 \longrightarrow x24 + x23 \tag{69}$$

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
x27	PP2-STAT3Nast-STAT3Nast	

Products

Table 75: Properties of each product.

	1 1	
Id	Name	SBO
	STAT3N-STAT3Nast PP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{nucleus}) \cdot \text{k16} \cdot [\text{x27}] \tag{70}$$

6.36 Reaction R37

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name SOCS3N transcription

Reaction equation

$$\emptyset \xrightarrow{x20} x25 \tag{71}$$

Modifier

Table 76: Properties of each modifier.

	ror repercies or each inc	
Id	Name	SBO
x20	STAT3Nast-STAT3Nast	

Product

Table 77: Properties of each product.

Id	Name	SBO
x25	Mrna-SOCS3N	

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{nucleus}) \cdot \frac{k18a \cdot [x20]}{k18b + [x20]}$$
 (72)

6.37 Reaction R38

This is an irreversible reaction of one reactant forming one product.

Name SOCS3 mRNA translocation

Reaction equation

$$x25 \longrightarrow x26 \tag{73}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
x25	Mrna-SOCS3N	

Product

Table 79: Properties of each product.

Id	Name	SBO
x26	Mrna-SOCS3C	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}(\text{nucleus}) \cdot \text{k}19 \cdot [\text{x}25] \tag{74}$$

6.38 Reaction R39

This is an irreversible reaction of one reactant forming no product.

Name SOCS3 mRNA degradation

Reaction equation

$$x26 \longrightarrow \emptyset \tag{75}$$

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
x26	Mrna-SOCS3C	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}(\text{nucleus}) \cdot \text{k22} \cdot [\text{x26}] \tag{76}$$

6.39 Reaction R40

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name SOCS3 translation

Reaction equation

$$\emptyset \xrightarrow{x26} x29 \tag{77}$$

Modifier

Table 81: Properties of each modifier.

Id	Name	SBO
x26	Mrna-SOCS3C	

Product

Table 82: Properties of each product.

Id	Name	SBO
x29	SOCS3	

Derived unit contains undeclared units

$$v_{39} = \text{vol}\left(\text{nucleus}\right) \cdot \text{k20} \cdot [\text{x26}] \tag{78}$$

6.40 Reaction R41

This is an irreversible reaction of one reactant forming no product.

Name SOCS3 degradation

Reaction equation

$$x29 \longrightarrow \emptyset \tag{79}$$

Reactant

Table 83: Properties of each reactant.

Id	Name	SBO
x29	SOCS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{cytosol}) \cdot \text{k23} \cdot [\text{x29}] \tag{80}$$

6.41 Reaction R42

This is an irreversible reaction of one reactant forming two products.

Name Complex dissociation

Reaction equation

$$x32 \longrightarrow x33 + x29 \tag{81}$$

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
x32	(IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3-SHP2	

Products

Table 85: Properties of each product.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-STAT3C-SHP2 SOCS3	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}(\text{cytosol}) \cdot \text{k23} \cdot [\text{x32}] \tag{82}$$

6.42 Reaction R43

This is a reversible reaction of two reactants forming one product.

Name SHP2-Grb2 complex formation

Reaction equation

$$x46 + x34 \Longrightarrow x45 \tag{83}$$

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
x46	SHP2ast	
x34	Grb2	

Product

Table 87: Properties of each product.

Id	Name	SBO
x45	SHP2ast-Grb2	

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{cytosol}) \cdot (\text{kf38} \cdot [\text{x34}] \cdot [\text{x46}] - \text{kr38} \cdot [\text{x45}])$$
(84)

6.43 Reaction R44

This is a reversible reaction of one reactant forming two products.

Name Grb2-SOS dissociation

Reaction equation

$$x38 \rightleftharpoons x35 + x34 \tag{85}$$

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
x38	Grb2-SOS	

Products

Table 89: Properties of each product.

Id	Name	SBO
x35	SOS	
x34	Grb2	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol}(\text{cytosol}) \cdot (\text{kf35} \cdot [\text{x38}] - \text{kr35} \cdot [\text{x34}] \cdot [\text{x35}])$$
 (86)

6.44 Reaction R45

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x39 + x34 \rightleftharpoons x40 \tag{87}$$

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2ast Grb2	

Product

Table 91: Properties of each product.

Id	Name	SBO
x40	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol}(\text{cytosol}) \cdot (\text{kf24} \cdot [\text{x39}] \cdot [\text{x34}] - \text{kr24} \cdot [\text{x40}])$$
 (88)

6.45 Reaction R46

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x40 + x35 \Longrightarrow x41 \tag{89}$$

Reactants

Table 92: Properties of each reactant.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2 SOS	

Product

Table 93: Properties of each product.

Id	Name	SBO
x41	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}(\text{cytosol}) \cdot (\text{kf25} \cdot [\text{x35}] \cdot [\text{x40}] - \text{kr25} \cdot [\text{x41}])$$
 (90)

6.46 Reaction R47

This is a reversible reaction of two reactants forming one product.

Name SHP2Grb2-SOS complex formation

Reaction equation

$$x45 + x35 \rightleftharpoons x44 \tag{91}$$

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
x45	SHP2ast-Grb2	
x35	SOS	

Product

Table 95: Properties of each product.

Id	Name	SBO
x44	SHP2ast-Grb2-SOS	

Derived unit contains undeclared units

$$v_{46} = \text{vol}(\text{cytosol}) \cdot (\text{kf40} \cdot [\text{x35}] \cdot [\text{x45}] - \text{kr40} \cdot [\text{x44}]) \tag{92}$$

6.47 Reaction R48

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x41 + x36 \Longrightarrow x42 \tag{93}$$

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2 Ras-GDP	

Product

Table 97: Properties of each product.

		*	•	
Id	Name			SBO
x42	(IL6-gp80-gp130-JAK)	ast2-SHP2ast-C	Grb2-SOS-Ras-GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{vol}(\text{cytosol}) \cdot (\text{kf26} \cdot [\text{x36}] \cdot [\text{x41}] - \text{kr26} \cdot [\text{x42}]) \tag{94}$$

6.48 Reaction R49

This is a reversible reaction of one reactant forming two products.

Name Complex dissociation

Reaction equation

$$x43 \rightleftharpoons x41 + x36 \tag{95}$$

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
x43	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GTP	

Products

Table 99: Properties of each product.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2 Ras-GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol}(\text{cytosol}) \cdot (\text{kf31} \cdot [\text{x43}] - \text{kr31} \cdot [\text{x36}] \cdot [\text{x41}])$$
 (96)

6.49 Reaction R50

This is a reversible reaction of one reactant forming two products.

Name Complex dissociation

Reaction equation

$$x42 \rightleftharpoons x41 + x37 \tag{97}$$

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
x42	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GDP	

Products

Table 101: Properties of each product.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2 Ras-GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \text{vol}(\text{cytosol}) \cdot (\text{kf27} \cdot [\text{x42}] - \text{kr27} \cdot [\text{x37}] \cdot [\text{x41}])$$
 (98)

6.50 Reaction R51

This is a reversible reaction of two reactants forming one product.

Name Ras-GTP-Raf complex formation

Reaction equation

$$x47 + x37 \rightleftharpoons x48 \tag{99}$$

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
x47	Raf	
x37	Ras-GTP	

Product

Table 103: Properties of each product.

Id	Name	SBO
x48	Raf-Ras-GTP	

Derived unit contains undeclared units

$$v_{50} = \text{vol}(\text{cytosol}) \cdot (\text{kf28} \cdot [\text{x37}] \cdot [\text{x47}] - \text{kr28} \cdot [\text{x48}])$$
 (100)

6.51 Reaction R52

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x39 + x38 \rightleftharpoons x41 \tag{101}$$

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
	(IL6-gp80-gp130-JAK)ast2-SHP2ast Grb2-SOS	

Product

Table 105: Properties of each product.

	1 1	
Id	Name	SBO
x41	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol}(\text{cytosol}) \cdot (\text{kf41} \cdot [\text{x38}] \cdot [\text{x39}] - \text{kr41} \cdot [\text{x41}])$$
 (102)

6.52 Reaction R53

This is a reversible reaction of one reactant forming two products.

Name SHP2-Grb2-SOS dissociation

Reaction equation

$$x44 \rightleftharpoons x46 + x38 \tag{103}$$

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
x44	SHP2ast-Grb2-SOS	

Products

Table 107: Properties of each product.

Id	Name	SBO
x46 x38	SHP2ast Grb2-SOS	
	0102-303	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{vol}(\text{cytosol}) \cdot (\text{kf33} \cdot [\text{x44}] - \text{kr33} \cdot [\text{x38}] \cdot [\text{x46}])$$
 (104)

6.53 Reaction R54

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$x49 + x41 \rightleftharpoons x43 \tag{105}$$

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
	Ras-GTPast	
X41	(IL6-gp80-gp130-JAK)ast2-SHP2-Grb2	

Product

Table 109: Properties of each product.

Id	Name	SBO
x43	(IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol}(\text{cytosol}) \cdot (\text{kf30} \cdot [\text{x49}] \cdot [\text{x41}] - \text{kr30} \cdot [\text{x43}])$$
 (106)

6.54 Reaction R55

This is an irreversible reaction of one reactant forming two products.

Name Raf-Phosp1 dissociation

Reaction equation

$$x52 \longrightarrow x47 + x50 \tag{107}$$

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
x52	Rafast-Phosp1	

Products

Table 111: Properties of each product.

Id	Name	SBO
x47	Raf	

Id	Name	SBO
x50	Phosp1	

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{cytosol}) \cdot \text{k43} \cdot [\text{x52}] \tag{108}$$

6.55 Reaction R56

This is a reversible reaction of one reactant forming two products.

Name Raf-Ras-GTP dissociation

Reaction equation

$$x48 \rightleftharpoons x51 + x49 \tag{109}$$

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
x48	Raf-Ras-GTP	

Products

Table 113: Properties of each product.

Id Name	SBO
x51 Rafast x49 Ras-GTPast	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{cytosol}) \cdot (\text{kf29} \cdot [\text{x48}] - \text{kr29} \cdot [\text{x49}] \cdot [\text{x51}])$$
 (110)

6.56 Reaction R57

This is a reversible reaction of two reactants forming one product.

Name Raf-Phosp1 complex formation

Reaction equation

$$x51 + x50 \Longrightarrow x52 \tag{111}$$

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
x51 x50	Rafast Phosp1	

Product

Table 115: Properties of each product.

Id	Name	SBO
x52	Rafast-Phosp1	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{cytosol}) \cdot (\text{kf42} \cdot [\text{x50}] \cdot [\text{x51}] - \text{kr42} \cdot [\text{x52}])$$
 (112)

6.57 Reaction R58

This is a reversible reaction of two reactants forming one product.

Name MEK-Raf complex formation

Reaction equation

$$x53 + x51 \Longrightarrow x54 \tag{113}$$

Reactants

Table 116: Properties of each reactant.

Id	Name	SBO
x53	MEK	

Id	Name	SBO
x51	Rafast	

Product

Table 117: Properties of each product.

Id	Name	SBO
x54	MEK-Rafast	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{vol}(\text{cytosol}) \cdot (\text{kf44} \cdot [\text{x51}] \cdot [\text{x53}] - \text{kr44} \cdot [\text{x54}])$$
 (114)

6.58 Reaction R59

This is an irreversible reaction of one reactant forming two products.

Name MEK-Raf complex dissociation

Reaction equation

$$x54 \longrightarrow x55 + x51 \tag{115}$$

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
x54	MEK-Rafast	

Products

Table 119: Properties of each product.

Id	Name	SBO
x55 x51	MEK-P Rafast	

Derived unit contains undeclared units

$$v_{58} = \text{vol}(\text{cytosol}) \cdot \text{k45} \cdot [\text{x54}] \tag{116}$$

6.59 Reaction R60

This is a reversible reaction of two reactants forming one product.

Name MEK-P-Raf complex formation

Reaction equation

$$x55 + x51 \Longrightarrow x56 \tag{117}$$

Reactants

Table 120: Properties of each reactant.

Id	Name	SBO
	MEK-P Rafast	

Product

Table 121: Properties of each product.

Id	Name	SBO
x56	MEK-P-Rafast	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}(\text{cytosol}) \cdot (\text{kf46} \cdot [\text{x55}] \cdot [\text{x51}] - \text{kr46} \cdot [\text{x56}])$$
 (118)

6.60 Reaction R61

This is an irreversible reaction of one reactant forming two products.

Name MEK-P-Phosp2 dissociation

Reaction equation

$$x60 \longrightarrow x59 + x53 \tag{119}$$

Reactant

Table 122: Properties of each reactant.

Id	Name	SBO
x60	MEK-P-Phosp2	

Products

Table 123: Properties of each product.

Id	Name	SBO
x59 x53	Phosp2 MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(\text{cytosol}) \cdot \text{k51} \cdot [\text{x60}] \tag{120}$$

6.61 Reaction R62

This is an irreversible reaction of one reactant forming two products.

Name MEK-PP-Phosp2 dissociation

Reaction equation

$$x58 \longrightarrow x59 + x55 \tag{121}$$

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
x58	MEK-PP-Phosp2	

Products

Table 125: Properties of each product.

Id	Name	SBO
x59 x55	Phosp2 MEK-P	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \text{vol}(\text{cytosol}) \cdot \text{k49} \cdot [\text{x58}] \tag{122}$$

6.62 Reaction R63

This is a reversible reaction of two reactants forming one product.

Name MEK-P-Phosp2 complex formation

Reaction equation

$$x59 + x55 \rightleftharpoons x60 \tag{123}$$

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
x59	- 1100P=	
x55	MEK-P	

Product

Table 127: Properties of each product.

Id	Name	SBO
x60	MEK-P-Phosp2	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{vol}(\text{cytosol}) \cdot (\text{kf50} \cdot [\text{x55}] \cdot [\text{x59}] - \text{kr50} \cdot [\text{x60}])$$
 (124)

6.63 Reaction R64

This is an irreversible reaction of one reactant forming two products.

Name MEK-P-Raf complex dissociation

Reaction equation

$$x56 \longrightarrow x51 + x57 \tag{125}$$

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
x56	MEK-P-Rafast	

Products

Table 129: Properties of each product.

Id	Name	SBO
x51	Rafast	
x57	MEK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{vol}(\text{cytosol}) \cdot \text{k47} \cdot [\text{x56}] \tag{126}$$

6.64 Reaction R65

This is a reversible reaction of two reactants forming one product.

Name MEK-PP-Phosp2 complex formation

Reaction equation

$$x59 + x57 \Longrightarrow x58 \tag{127}$$

Reactants

Table 130: Properties of each reactant.

Id	Name	SBO
x59 x57	Phosp2 MEK-PP	

Product

Table 131: Properties of each product.

Id	Name	SBO
x58	MEK-PP-Phosp2	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = \text{vol}(\text{cytosol}) \cdot (\text{kf48} \cdot [\text{x57}] \cdot [\text{x59}] - \text{kr48} \cdot [\text{x58}])$$
 (128)

6.65 Reaction R66

This is a reversible reaction of two reactants forming one product.

Name ERK-MEK-PP complex formation

Reaction equation

$$x61 + x57 \rightleftharpoons x62 \tag{129}$$

Reactants

Table 132: Properties of each reactant.

Id	Name	SBO
x61	ERK	
x57	MEK-PP	

Product

Table 133: Properties of each product.

Id	Name	SBO
x62	ERK-MEK-PP	

Derived unit contains undeclared units

$$v_{65} = \text{vol}(\text{cytosol}) \cdot (\text{kf52} \cdot [\text{x57}] \cdot [\text{x61}] - \text{kr52} \cdot [\text{x62}])$$
 (130)

6.66 Reaction R67

This is an irreversible reaction of one reactant forming two products.

Name ERK-MEK-PP complex dissociation

Reaction equation

$$x62 \longrightarrow x63 + x57 \tag{131}$$

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
x62	ERK-MEK-PP	_

Products

Table 135: Properties of each product.

Id	Name	SBO
x63	ERK-P	
x57	MEK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{vol}(\text{cytosol}) \cdot \text{k53} \cdot [\text{x62}] \tag{132}$$

6.67 Reaction R68

This is a reversible reaction of one reactant forming two products.

Name ERK-P-MEK-PP complex dissociation

Reaction equation

$$x64 \rightleftharpoons x63 + x57 \tag{133}$$

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
x64	ERK-P-MEK-PP	_

Products

Table 137: Properties of each product.

Id	Name	SBO
x63	ERK-P	
x57	MEK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{vol}(\text{cytosol}) \cdot (\text{kr}54 \cdot [\text{x}64] - \text{kf}54 \cdot [\text{x}57] \cdot [\text{x}63])$$
 (134)

6.68 Reaction R69

This is an irreversible reaction of one reactant forming two products.

Name ERK-PP formation

Reaction equation

$$x64 \longrightarrow x65 + x57 \tag{135}$$

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
x64	ERK-P-MEK-PP	

Products

Table 139: Properties of each product.

Id	Name	SBO
x65	ERK-PP	
x57	MEK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \text{vol}(\text{cytosol}) \cdot \text{k55} \cdot [\text{x64}] \tag{136}$$

6.69 Reaction R70

This is an irreversible reaction of one reactant forming two products.

Name ERK-P-Phosp3 complex dissociation

Reaction equation

$$x68 \longrightarrow x66 + x61 \tag{137}$$

Reactant

Table 140: Properties of each reactant.

Id	Name	SBO
x68	ERK-P-Phosp3	

Products

Table 141: Properties of each product.

Id	Name	SBO
x66	Phosp3	

Id	Name	SBO
x61	ERK	

Derived unit contains undeclared units

$$v_{69} = \text{vol}(\text{cytosol}) \cdot \text{k59} \cdot [\text{x68}] \tag{138}$$

6.70 Reaction R71

This is an irreversible reaction of one reactant forming two products.

Name ERK-PP-Phosp3 dissociation

Reaction equation

$$x67 \longrightarrow x66 + x63 \tag{139}$$

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
x67	ERK-PP-Phosp3	-

Products

Table 143: Properties of each product.

Id	Name	SBO
x66	Phosp3	
x63	ERK-P	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{vol}(\text{cytosol}) \cdot \text{k57} \cdot [\text{x67}] \tag{140}$$

6.71 Reaction R72

This is a reversible reaction of two reactants forming one product.

Name ERK-P-Phosp3 formation

Reaction equation

$$x66 + x63 \rightleftharpoons x68$$
 (141)

Reactants

Table 144: Properties of each reactant.

Id	Name	SBO
x66 x63	Phosp3 ERK-P	

Product

Table 145: Properties of each product.

Id	Name	SBO
x68	ERK-P-Phosp3	

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = \text{vol}(\text{cytosol}) \cdot (\text{kf58} \cdot [\text{x63}] \cdot [\text{x66}] - \text{kr58} \cdot [\text{x68}])$$
 (142)

6.72 Reaction R73

This is a reversible reaction of two reactants forming one product.

Name ERK-PP-Phosp3 formation

Reaction equation

$$x66 + x65 \rightleftharpoons x67 \tag{143}$$

Reactants

Table 146: Properties of each reactant.

Id	Name	SBO
x66	Phosp3	

Id	Name	SBO
x65	ERK-PP	

Product

Table 147: Properties of each product.

Id	Name	SBO
x67	ERK-PP-Phosp3	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{vol}(\text{cytosol}) \cdot (\text{kf56} \cdot [\text{x65}] \cdot [\text{x66}] - \text{kr56} \cdot [\text{x67}])$$
(144)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species x1

Name gp80

Initial concentration 8 nmol·l⁻¹

This species takes part in one reaction (as a modifier in R1), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\mathbf{1} = 0\tag{145}$$

7.2 Species x2

Name IL6-gp80

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R2 and as a product in R1, R3).

$$\frac{\mathrm{d}}{\mathrm{d}t}x2 = |v_1| + |v_3| - |v_2| \tag{146}$$

7.3 Species x6

Name IL6-gp80-gp130-JAK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R3, R7 and as a product in R8).

$$\frac{\mathrm{d}}{\mathrm{d}t}x6 = 2 v_6 - v_3 - 2 v_5 \tag{147}$$

7.4 Species x5

Name gp130-JAK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in R3, R5).

$$\frac{\mathrm{d}}{\mathrm{d}t}x5 = v_3 + v_4 \tag{148}$$

7.5 Species x7

Name (IL6-gp80-gp130-JAK)2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R8, R9 and as a product in R7, R10, R22).

$$\frac{\mathrm{d}}{\mathrm{d}t}x7 = |v_5| + |v_8| + |v_{21}| - |v_6| - |v_7| \tag{149}$$

7.6 Species x8

Name (IL6-gp80-gp130-JAK)_ast2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R11, R13, R14, R15 and as a product in R9, R12, R16, R16a, R17).

$$\frac{d}{dt}x8 = v_7 + v_{10} + v_{14} + v_{15} + v_{16} - v_9 - v_{11} - v_{12} - v_{13}$$
 (150)

7.7 Species x16

Name (IL6-gp80-gp130-JAK)ast2-JAK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R10, R30 and as a product in R14).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 16 = |v_{12}| - |v_8| - |v_{29}| \tag{151}$$

7.8 Species x15

Name SHP2

Initial concentration $100 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R14, R28 and as a product in R10, R22, R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}x15 = v_8 + v_{21} + v_{28} - v_{12} - v_{27} \tag{152}$$

7.9 Species x9

Name STAT3C

Initial concentration 1000 nmol·1⁻¹

This species takes part in six reactions (as a reactant in R11, R19, R21 and as a product in R18, R20, R22).

$$\frac{d}{dt}x9 = |v_{17}| + |v_{19}| + |v_{21}| - |v_{9}| - |v_{18}| - |v_{20}|$$
(153)

7.10 Species x11

Name (IL6-gp80-gp130-JAK)ast2-STAT3C

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R12 and as a product in R11).

$$\frac{d}{dt}x11 = v_9 - v_{10} \tag{154}$$

7.11 Species x10

Name STAT3Cast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R13, R19, R23, R24 and as a product in R12).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 10 = |v_{10}| - |v_{11}| - |v_{18}| - |v_{22}| - |v_{23}| \tag{155}$$

7.12 Species x12

Name (IL6-gp80-gp130-JAK)ast2-STAT3Cast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}12 = v_{11} \tag{156}$$

7.13 Species x29

Name SOCS3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R15, R41 and as a product in R22, R40, R42).

$$\frac{\mathrm{d}}{\mathrm{d}t}x29 = |v_{21}| + |v_{39}| + |v_{41}| - |v_{13}| - |v_{40}| \tag{157}$$

7.14 Species x30

Name (IL6-gp80-gp130-JAK)ast2-SOCS3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R21 and as a product in R15).

$$\frac{\mathrm{d}}{\mathrm{d}t}x30 = |v_{13}| - |v_{20}| \tag{158}$$

7.15 Species x39

Name (IL6-gp80-gp130-JAK)ast2-SHP2ast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R16, R45, R52 and as a product in R30).

$$\frac{\mathrm{d}}{\mathrm{d}t}x39 = |v_{29}| - |v_{14}| - |v_{44}| - |v_{51}| \tag{159}$$

7.16 Species x46

Name SHP2ast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R29, R43 and as a product in R16, R53).

$$\frac{\mathrm{d}}{\mathrm{d}t}x46 = |v_{14}| + |v_{52}| - |v_{28}| - |v_{42}| \tag{160}$$

7.17 Species x40

Name (IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R16a, R46 and as a product in R45).

$$\frac{d}{dt}x40 = v_{44} - v_{15} - v_{45} \tag{161}$$

7.18 Species x45

Name SHP2ast-Grb2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R47 and as a product in R16a, R43).

$$\frac{\mathrm{d}}{\mathrm{d}t}x45 = |v_{15}| + |v_{42}| - |v_{46}| \tag{162}$$

7.19 Species x41

Name (IL6-gp80-gp130-JAK)ast2-SHP2-Grb2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R17, R48, R54 and as a product in R46, R49, R50, R52).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 41 = |v_{45}| + |v_{48}| + |v_{49}| + |v_{51}| - |v_{16}| - |v_{47}| - |v_{53}| \tag{163}$$

7.20 Species x44

Name SHP2ast-Grb2-SOS

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R53 and as a product in R17, R47).

$$\frac{\mathrm{d}}{\mathrm{d}t}x44 = |v_{16}| + |v_{46}| - |v_{52}| \tag{164}$$

7.21 Species x18

Name PP1-STAT3Cast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R18 and as a product in R24).

$$\frac{\mathrm{d}}{\mathrm{d}t}x18 = |v_{23}| - |v_{17}| \tag{165}$$

7.22 Species x17

Name PP1

Initial concentration $50 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R24, R25 and as a product in R18, R27).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 17 = |v_{17}| + |v_{26}| - |v_{23}| - |v_{24}| \tag{166}$$

7.23 Species x14

Name STAT3C-STAT3Cast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a product in R19, R27).

$$\frac{d}{dt}x14 = v_{18} + v_{26} \tag{167}$$

7.24 Species x22

Name STAT3N

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R20 and as a product in R34, R35).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 22 = |v_{33}| + |v_{34}| - |v_{19}| \tag{168}$$

7.25 Species x32

Name (IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3-SHP2

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R22, R42 and as a product in R28).

$$\frac{\mathrm{d}}{\mathrm{d}t}x32 = |v_{27}| - |v_{21}| - |v_{41}| \tag{169}$$

7.26 Species x13

Name STAT3Cast-STAT3Cast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R25, R26 and as a product in R23).

$$\frac{\mathrm{d}}{\mathrm{d}t}x13 = 0.5 \ v_{22} - |v_{24}| - |v_{25}| \tag{170}$$

7.27 Species x20

Name STAT3Nast-STAT3Nast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R31, R32 and as a product in R26 and as a modifier in R37).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 20 = |v_{25}| - |v_{30}| - |v_{31}| \tag{171}$$

7.28 Species x21

Name STAT3Nast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R33 and as a product in R31, R34).

$$\frac{\mathrm{d}}{\mathrm{d}t}x21 = 2|v_{30}| + |v_{33}| - |v_{32}| \tag{172}$$

7.29 Species x23

Name PP2

Initial concentration $60 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R32, R33 and as a product in R35, R36).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 23 = |v_{34}| + |v_{35}| - |v_{31}| - |v_{32}| \tag{173}$$

7.30 Species x27

Name PP2-STAT3Nast-STAT3Nast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R36 and as a product in R32).

$$\frac{d}{dt}x27 = |v_{31}| - |v_{35}| \tag{174}$$

7.31 Species x24

Name STAT3N-STAT3Nast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R34 and as a product in R36).

$$\frac{d}{dt}x24 = v_{35} - v_{33} \tag{175}$$

7.32 Species x25

Name Mrna-SOCS3N

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R38 and as a product in R37).

$$\frac{d}{dt}x25 = |v_{36}| - |v_{37}| \tag{176}$$

7.33 Species x34

Name Grb2

Initial concentration 85 nmol·1⁻¹

This species takes part in three reactions (as a reactant in R43, R45 and as a product in R44).

$$\frac{\mathrm{d}}{\mathrm{d}t}x34 = |v_{43}| - |v_{42}| - |v_{44}| \tag{177}$$

7.34 Species x36

Name Ras-GDP

Initial concentration $19000 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R48 and as a product in R49).

$$\frac{d}{dt}x36 = |v_{48}| - |v_{47}| \tag{178}$$

7.35 Species x42

Name (IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GDP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R50 and as a product in R48).

$$\frac{d}{dt}x42 = v_{47} - v_{49} \tag{179}$$

7.36 Species x37

Name Ras-GTP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R51 and as a product in R50).

$$\frac{d}{dt}x37 = v_{49} - v_{50} \tag{180}$$

7.37 Species x47

Name Raf

Initial concentration $67 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R51 and as a product in R55).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 47 = |v_{54}| - |v_{50}| \tag{181}$$

7.38 Species x48

Name Raf-Ras-GTP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R56 and as a product in R51).

$$\frac{d}{dt}x48 = |v_{50}| - |v_{55}| \tag{182}$$

7.39 Species x52

Name Rafast-Phosp1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R55 and as a product in R57).

$$\frac{\mathrm{d}}{\mathrm{d}t}x52 = |v_{56}| - |v_{54}| \tag{183}$$

7.40 Species x51

Name Rafast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R57, R58, R60 and as a product in R56, R59, R64).

$$\frac{d}{dt}x51 = v_{55} + v_{58} + v_{63} - v_{56} - v_{57} - v_{59}$$
 (184)

7.41 Species x50

Name Phosp1

Initial concentration $67 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R57 and as a product in R55).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 50 = |v_{54}| - |v_{56}| \tag{185}$$

7.42 Species x53

Name MEK

Initial concentration $41667 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R58 and as a product in R61).

$$\frac{d}{dt}x53 = |v_{60}| - |v_{57}| \tag{186}$$

7.43 Species x54

Name MEK-Rafast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R59 and as a product in R58).

$$\frac{d}{dt}x54 = v_{57} - v_{58} \tag{187}$$

7.44 Species x55

Name MEK-P

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R60, R63 and as a product in R59, R62).

$$\frac{\mathrm{d}}{\mathrm{d}t}x55 = |v_{58}| + |v_{61}| - |v_{59}| - |v_{62}| \tag{188}$$

7.45 Species x60

Name MEK-P-Phosp2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R61 and as a product in R63).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 60 = |v_{62}| - |v_{60}| \tag{189}$$

7.46 Species x59

Name Phosp2

Initial concentration $67 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R63, R65 and as a product in R61, R62).

$$\frac{\mathrm{d}}{\mathrm{d}t}x59 = |v_{60}| + |v_{61}| - |v_{62}| - |v_{64}| \tag{190}$$

7.47 Species x57

Name MEK-PP

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R65, R66 and as a product in R64, R67, R68, R69).

$$\frac{\mathrm{d}}{\mathrm{d}t}x57 = |v_{63}| + |v_{66}| + |v_{67}| + |v_{68}| - |v_{64}| - |v_{65}| \tag{191}$$

7.48 Species x61

Name ERK

Initial concentration $35000 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R66 and as a product in R70).

$$\frac{d}{dt}x61 = v_{69} - v_{65} \tag{192}$$

7.49 Species x62

Name ERK-MEK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R67 and as a product in R66).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 62 = |v_{65}| - |v_{66}| \tag{193}$$

7.50 Species x63

Name ERK-P

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R72 and as a product in R67, R68, R71).

$$\frac{\mathrm{d}}{\mathrm{d}t}x63 = |v_{66}| + |v_{67}| + |v_{70}| - |v_{71}| \tag{194}$$

7.51 Species x65

Name ERK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R73 and as a product in R69).

$$\frac{d}{dt}x65 = v_{68} - v_{72} \tag{195}$$

7.52 Species x68

Name ERK-P-Phosp3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R70 and as a product in R72).

$$\frac{d}{dt}x68 = |v_{71}| - |v_{69}| \tag{196}$$

7.53 Species x35

Name SOS

Initial concentration 34 nmol·1⁻¹

This species takes part in three reactions (as a reactant in R46, R47 and as a product in R44).

$$\frac{\mathrm{d}}{\mathrm{d}t}x35 = v_{43} - v_{45} - v_{46} \tag{197}$$

7.54 Species x28

Name PP2-STAT3Nast

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R35 and as a product in R33).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 28 = |v_{32}| - |v_{34}| \tag{198}$$

7.55 Species x31

Name (IL6-gp80-gp130-JAK)ast2-STAT3C-SOCS3

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R28 and as a product in R21).

$$\frac{d}{dt}x31 = |v_{20}| - |v_{27}| \tag{199}$$

7.56 Species x56

Name MEK-P-Rafast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R64 and as a product in R60).

$$\frac{d}{dt}x56 = |v_{59}| - |v_{63}| \tag{200}$$

7.57 Species x43

Name (IL6-gp80-gp130-JAK)ast2-SHP2ast-Grb2-SOS-Ras-GTP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R49 and as a product in R54).

$$\frac{d}{dt}x43 = v_{53} - v_{48} \tag{201}$$

7.58 Species x3

Name gp130

Initial concentration $0.8 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in R5), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}x3 = 0\tag{202}$$

7.59 Species x58

Name MEK-PP-Phosp2

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R62 and as a product in R65).

$$\frac{\mathrm{d}}{\mathrm{d}t}x58 = |v_{64}| - |v_{61}| \tag{203}$$

7.60 Species x4

Name JAK

Initial concentration $12 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R5).

$$\frac{\mathrm{d}}{\mathrm{d}t}x4 = -v_4 \tag{204}$$

7.61 Species x26

Name Mrna-SOCS3C

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R39 and as a product in R38 and as a modifier in R40).

$$\frac{d}{dt}x26 = |v_{37}| - |v_{38}| \tag{205}$$

7.62 Species x49

Name Ras-GTPast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R54 and as a product in R56).

$$\frac{d}{dt}x49 = v_{55} - v_{53} \tag{206}$$

7.63 Species x33

Name (IL6-gp80-gp130-JAK)ast2-STAT3C-SHP2

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in R42).

$$\frac{\mathrm{d}}{\mathrm{d}t}x33 = v_{41} \tag{207}$$

7.64 Species x64

Name ERK-P-MEK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R68, R69).

$$\frac{d}{dt}x64 = -v_{67} - v_{68} \tag{208}$$

7.65 Species x19

Name PP1-STAT3Cast-STAT3Cast

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R27 and as a product in R25).

$$\frac{d}{dt}x19 = v_{24} - v_{26} \tag{209}$$

7.66 Species x38

Name Grb2-SOS

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R44, R52 and as a product in R53).

$$\frac{\mathrm{d}}{\mathrm{d}t}x38 = |v_{52}| - |v_{43}| - |v_{51}| \tag{210}$$

7.67 Species x66

Name Phosp3

Initial concentration $16667 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R72, R73 and as a product in R70, R71).

$$\frac{\mathrm{d}}{\mathrm{d}t}x66 = |v_{69}| + |v_{70}| - |v_{71}| - |v_{72}| \tag{211}$$

7.68 Species x67

Name ERK-PP-Phosp3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R71 and as a product in R73).

$$\frac{d}{dt}x67 = v_{72} - v_{70} \tag{212}$$

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany