SUPPORT VECTOR MACHINES, KERNEL TRICK

MACHINE LEARNING 1 UE (INP.33761UF)

Thomas Wedenig
June 05, 2024

Institute of Theoretical Computer Science Graz University of Technology, Austria

TABLE OF CONTENTS

- 1. Support Vector Machines
- 2. Kernel Trick
- 3. SVM Demo
- 4. Assignment 3 Handout

ORGANIZATION

- · No in-person session next week
 - · Appointment is cancelled in TUGonline
- · Recording will be uploaded on TUbe

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES (SVMs)

• Binary Classification: $\mathcal{D} = \{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^N$ with $\mathbf{y}^{(i)} \in \{-1, 1\}$

SUPPORT VECTOR MACHINES (SVMs)

• Binary Classification: $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$ with $y^{(i)} \in \{-1, 1\}$

Support Vector Machine (SVM)

· SVMs are linear models:

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^\mathsf{T} \mathbf{x} + b \ge 0 \\ -1 & \text{else} \end{cases}$$

- · Usually used for classification
 - We will discuss binary classification
 - Multiclass classification is a straightforward extension
 - Can also be used for regression (not discussed)

SUPPORT VECTOR MACHINES (SVMs)

• Binary Classification: $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$ with $y^{(i)} \in \{-1, 1\}$

Support Vector Machine (SVM)

· SVMs are linear models:

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^\mathsf{T} \mathbf{x} + b \ge 0 \\ -1 & \text{else} \end{cases}$$

- · Usually used for classification
 - · We will discuss binary classification
 - Multiclass classification is a straightforward extension
 - Can also be used for regression (not discussed)

• Decision boundary is a hyperplane:

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^\mathsf{T} \mathbf{x} + b = 0 \}$$

· Partitions space into two halfspaces

OTHER LINEAR CLASSIFIERS

• We already know a binary classifier with linear decision boundary 😲

OTHER LINEAR CLASSIFIERS

- · We already know a binary classifier with linear decision boundary 🤔
- · Logistic Regression: $p(y \mid \mathbf{x}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} + \theta_0)$

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } p(y \mid \mathbf{x}) \ge 0.5 \\ -1 & \text{else} \end{cases} = \begin{cases} 1 & \text{if } \boldsymbol{\theta}^\mathsf{T} \mathbf{x} + \theta_0 \ge 0 \\ -1 & \text{else} \end{cases}$$

- However, SVMs are trained differently
- Logistic Regression is trained with maximum likelihood (binary cross-entropy)
 - · Will be discussed next week
- SVMs try to maximize the "classification margin"

· Classification Margin: minimal distance to any training example

OPTIMIZATION OBJECTIVE

· We can achieve this by finding

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$
 s.t. $y^{(i)} \left(\mathbf{w}^{T} \mathbf{x}^{(i)} \right) \ge 1$ for all $i \in \{1, ..., N\}$

- Note: This assumes dataset is linearly separable
- · Convex optimization problem
- · Specialized, efficient optimizers available
- Next assignment: solve a different formulation of this objective with gradient descent

LINEAR SEPARABILITY

- · What if the dataset is **not linearly separable** ?
- We can still fit a linear SVM using the soft-margin extension
 - By introducing **slack** variables

LINEAR SEPARABILITY

- · What if the dataset is **not linearly separable** ?
- · We can still fit a linear SVM using the **soft-margin** extension
 - · By introducing slack variables

· What if the dataset is highly non-linear? 🥹

LINEAR SEPARABILITY (CONT.)

- Non-linear feature transforms $\phi(\mathbf{x})$ to the rescue
- Even if data is **not linearly separable** in the **original space**, it **is** linearly separable in a higher dimensional space with high probability

https://en.wikipedia.org/wiki/File:Kernel_trick_idea.svg

KERNEL TRICK

- Kernel $k: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$
- k is positive definite iff $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$ for some ϕ
- · Implicitly computes similarities in a transformed space

KERNEL TRICK

- Kernel $k: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$
- k is positive definite iff $k(\mathbf{x}^{(i)}, \mathbf{x}^{(i)}) = \phi(\mathbf{x}^{(i)})^{\mathsf{T}} \phi(\mathbf{x}^{(i)})$ for some ϕ
- · Implicitly computes similarities in a transformed space
- Polynomial Kernel corresponds to ϕ computing all polynomials up to degree p:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (1 + \mathbf{x}^{(i)^{\mathsf{T}}} \mathbf{x}^{(j)})^{p}$$

- Gaussian Kernel corresponds to ϕ transforming ${\bf x}$ to an infinite dimensional space:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\gamma \|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|_{2}^{2}\right)$$

• The dual problem to the soft-margin SVM (primal problem) when transforming the input using a feature transform ϕ :

$$\max_{\lambda} \ -\frac{1}{2} \sum_{i,j} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} \phi(\mathbf{x}^{(i)})^{\mathsf{T}} \phi(\mathbf{x}^{(j)}) + \sum_{i} \lambda^{(i)}$$

- Subject to constraints $\sum_i \lambda^{(i)} y^{(i)} = 0$ and $0 \le \lambda^{(i)} \le C$ for all $i \in \{1, \dots, N\}$
- Only depends on pairwise "similarities" $\phi(\mathbf{x}^{(i)})^{\mathsf{T}}\phi(\mathbf{x}^{(j)})$
- Replace with kernel $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)})$

- · We never need to even know ϕ explicitly
- · Classification for a new x:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i} \lambda^{(i)*} y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) - b^*\right)$$

· Now we can fit non-linear decision boundaries 🔒

· i.e., non-linear in the original space

(KERNELIZED) SVM - SUMMARY

Pros 👍

- · Nice thoery
- · Finding the global optimum is guaranteed
- Maximizing margin can avoid overfitting
- Kernelized SVMs can solve non-linear problems

Cons 👎

- Fit time scales at least quadratically in the number of samples
- Not trained with a probabilistic objective
 - No sensible "probabilistic interpretation" of output

SVM DEMO

ASSIGNMENT 3 HANDOUT