Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

DEADLOCK

Deadlock Concept_{1/2}

 Deadlock scenario: A set of processes each holding a resource and waiting to acquire a resource held by another process in the set.

Example 1

System has 2 disk drives D1 and D2, each process (P1 and P2) hold one disk drive and each needs another one.

Example 2

Semaphores A and B, initialized to 1

P1 P2
wait (A); wait(B)
wait (B); wait(A)

System has 2 disk drives D1 and D2 each process (P1 and P2) hold one disk drive and each needs another one.

Deadlock Concept_{2/2}

- Resource types R1, R2, . . ., Rm
 - CPU cycles, memory space, I/O devices
- Each resource type Ri has Wi instances.
 - Any instance of a resource of type Ri will satisfy a request for that resource type.
- Each process utilizes a resource as follows:
 - Request
 - Use
 - Release

Deadlock Characterization

Deadlock can arise if following four conditions hold <u>simultaneously</u>:

- Mutual exclusion
- > Hold and wait
- ➤ No preemption
- > Circular wait

Mutual exclusion

• Only one process at a time can use a resource.

Hold and wait

 A process holding at least one resource, is waiting to acquire additional resources held by other processes.

No preemption

 A resource can be released only voluntarily by the process holding it, after that process has completed its task.

Circular wait

There exists a set {P1, P2, ..., Pn} of waiting processes such that:

- P1 is waiting for a resource that is held by P2,
- > P2 is waiting for a resource that is held by P3, ...,
- ➤ Pn-1 is waiting for a resource that is held by Pn,
- Pn is waiting for a resource that is held by P1.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

