

Kryptography for Dummies

Michael Wacenovsky (2016)

How does ECDSA work?

Elliptic curves are sets of tuples (x,y), with x and y related by a cubic equation. For ECDSA $x,y \in GF(p)$, with a large prime p.

A special binary operation \oplus imposes a group property onto the set of tuples:

In particular:

- With A, B \in EC A \oplus B = C \in EC
- There is a neutral Element $\emptyset \in EC$
- For each $A \in EC$ there is an inverse Element A^{-1} , so that $A \oplus A^{-1} = \emptyset$
- The scalar multiple is defined as the sum of k A's: kA = A ⊕ A ⊕...⊕ A

It is possible to find a cyclic subgroup EC(G;n) of group order n, whose elements are scalar multiples of a single generating point G: X = kG, k < n; $nG = \emptyset$.

Cryptographic operations are executed within this subgroup. The order of the subgroup EC(G;n) is typically equal or of the same order of the original group, which is about p.

Similar to the discrete logarithm problem, for big group order n it is practically infeasable to calculate k back from a known kG. This is the hearth of ECDSA.

How does ECDSA work?

----- signing process

d < n ... private key

$$Q = dG \dots public key (x, y)$$

she chooses $k < n \dots$ random number

$$kG = (x_1, y_1)$$
 $r = x_1 \mod n$

hash from message: e

 $s = k^{-1} (e \oplus dr) \mod n$

signature = (r,s)

---- verification process

he knows that: $k = s^{-1}$ (e \oplus dr) mod n

$$kG = (s^{-1} e \mod n \oplus s^{-1} dr \mod n)G =$$

=
$$(s^{-1} e \mod n) G \oplus (s^{-1} dr \mod n) G$$

=
$$(s^{-1} e mod n) G \oplus (s^{-1} r mod n) Q := (x_2, y_2)$$

 $r == x_2 \mod n$??

Bob can now calculate kG although he doesn't know k at all !!!

GF(q) ...q prime

G... generator of sub group with prime order n < q

How does ECC Diffie-Hellman work?

