CQF 2009 Module 3.1

Live Lecture: March 4, 2009 Lecturer: Paul Wilmott

The Black-Scholes Model

In this lecture:

- The assumptions that go into the Black-Scholes model
- Foundations of options theory: delta hedging and no arbitrage
- The Black-Scholes partial differential equation
- The Black-Scholes formulae for calls, puts and simple digitals
- The meaning and importance of the 'greeks,' delta, gamma, theta, vega, and rho
- American options and early exercise
- The relationship between option values and expectations

By the end of this lecture, you will be able to:

- Derive the Black-Scholes partial differential equation
- Quote formulae for simple contracts
- Understand the meaning of the common greeks
- Interpret the early-exercise feature mathematically and graphically

Introduction	3
What determines the value of an option?	4
The Black-Scholes assumptions	6
A very special portfolio	8
Elimination of risk: delta hedging	11
No arbitrage	13
The Black-Scholes equation	
Observations: The BS equation is a linear parabolic PDE	16
Replication	17
Final conditions	18
Options on dividend-paying equities	19
Currency options	
Commodity options	22
Solving the equation and the greeks	23
Derivation of the formulae for calls, puts, and simple digitals	24
The Dirac delta function	35
Observations	38
Formula for a call	40
Call Option Value – box	47
Formula for a put	48
Put Option Value – box	52
Formula for a binary call	53
Binary Call Option Value - box	54
Formula for a Binary Put and box	56

Delta	58
Dynamic hedging and rehedging	60
Deltas of common contracts	61
Gamma	63
Gammas of common contracts – box	66
Theta	68
Thetas of common contracts - box	
Vega	71
Vegas of common contracts – box	
Rho	74
Rhos of common contracts	
Sensitivity to dividend for common contracts	76
Early exercise and American options	77
High contact or smooth-pasting condition	81
Bermudan options	84
The relationship between option prices and expectations	85
Example 1	87
Example 2	88
Example 3	89
Backward Kolmogorov and Black-Scholes	90
Options as expectations	92
Summary	93

Takeaways:

- Using tools from stochastic calculus, we can build up an option pricing model from our lognormal asset price random walk model
- There are some 'simple' formulae for the prices of simple contracts
- The greeks are important measures of the sensitivities of the option value to variables and parameters
- American options must always have a value greater than the payoff
- Option values can be interpreted in terms of expectations