ANSWERS TO SEMESTER ONE EXAMINATION JUNE 2008 (JANUARY 2008 INTAKE)

	1 1		2 <i>n</i>
1	3r+2 $3r+5$;	$\overline{5(3n+5)}$
_	- 1 - 2	2	

- $2 \quad 8u^4 9u^3 73u^2 295u + 1017$
- **3** a_n is divisible by 19.

5

4 When k=-1, the solution is : x=-s; y=0; z=s, $s\in\Re$

When k=1, the solution is : x=-s-t; y=t; z=s, $s,t\in\Re$

When $k \neq -1, 1$, the solution is : x = 0; y = 0; z = 0

(a) $\begin{pmatrix} -7 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$ OR $\begin{pmatrix} \frac{-11}{13} \\ 0 \\ \frac{-5}{3} \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$ OR $\begin{pmatrix} 0 \\ \frac{-11}{2} \\ \frac{-7}{2} \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$; (a) $\frac{2\sqrt{483}}{7}$

- 6 (i) $2 + \frac{1}{x-4} \frac{9}{x+4}$
 - (ii) Asymptotes : y = 2 , x = -4 and x = 4 .
 - (iii) Minimum Point $\left(8,\frac{3}{2}\right)$; Maximum Point $\left(2,0\right)$.

The curve crosses the axes at points : $\left(0,\frac{-1}{2}\right)$ and $\left(2,0\right)$.

