

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

FW

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/007,118	11/09/2001	Scott J. Daly	TAL/7146.126	5937
7590	11/15/2005		EXAMINER	
Timothy A. Long Chernoff, Vilhauer, McClung & Stenzel, LLP 1600 ODS Tower 601 S.W. Second Avenue Portland, OR 97204-3157			NELSON, ALECIA DIANE	
			ART UNIT	PAPER NUMBER
			2675	
DATE MAILED: 11/15/2005				

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/007,118	DALY, SCOTT J.
	Examiner	Art Unit
	Alecia D. Nelson	2675

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 29 August 2005.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,3,4,6-9,13,14,19,21,23,24 and 26-35 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1, 3, 4, 6-9, 13, 14, 19, 21, 23, 24, 26-35 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____.
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____.	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____.

DETAILED ACTION

Claim Rejections - 35 USC § 112

1. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

2. **Claims 1, 3, 4, 6-9, 13, 14, 19, 21, 23, 24, 26-35** are rejected under 35

U.S.C. 112, first paragraph, as failing to comply with the written description requirement.

The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. With respects to **claims 1, 19, and 21**, the claim now recites that the method of illuminating a backlit display comprises the different regions of the light source being spatially displaced at said location simultaneously provide different non-zero luminance. There was no description found in the specification or any drawings provided at the time the application that supports the newly claimed subject matter of the independent claims. **Claims 3, 4, 6-9, 13, 14, 23, 24, 26-35** are rejected for being dependent on a rejected base claim.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. **Claims 1, 19, and 21** are rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. (U.S. Patent Application Publication No. 2003/0107538 and Zhang et al. (U.S. Patent No. 5,461,397).

As pertaining to **claims 1, 19, and 21**, Asao et al. teaches the method of illuminating a backlit display (80) by varying a luminance of a light source (101) (see paragraph 17) illuminating a plurality of displayed pixels in response to a plurality of pixel values dependent on the content of an image to be displayed on the display (see paragraph 73) and varying the transmittance of a light valve (liquid crystal material) of the display in a non-binary manner (see paragraphs 103). Also it is taught by Asao et al. that the liquid crystal device is illuminated with the light source at different luminance levels wherein the light source has different non-zero luminance (see paragraph 73). With reference to Figure 15, it can be seen that backlight is located partially beneath the pixel layer.

While Asao et al. teaches that the backlight is capable of being operated at varied intensities wherein the backlight is completely lit for each of the intensities, there fails to be specific disclosure that the backlight is spatially varied.

Zhang et al. teaches that the backlight is capable of being operated at varied intensities in teaching that the liquid crystal display device comprising a backlight device (32), which contains N subsections of independently controllable color light pulse generation elements and a backlight driver (108) (see column 6, lines 50-56). The

channels of the backlight unit (32) are substantially parallel to rows (152) of pixels, where the channels are grouped into N independent subsections. Each channel will overlap at least one corresponding row of pixels in the LCD front unit (34) when viewed from the user's perspective so that light emitted by a channel will supply light to its corresponding rows of pixel. Each of the N subsections can produce one or more of red, green, or blue color light pulses used to supply light to the front end unit (34) for displaying images (see column 7, lines 28-41).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention to allow spatially varying the luminance of the backlight illuminating a plurality of displayed pixels wherein the backlight is placed under the pixel layer as taught by Zhang et al, in a device that allows for varying the transmittance wherein the backlight is lit simultaneously for each intensity similar to that which is taught by Asao et al. in order to provide a LCD device wherein the backlight intensity is controlled in response to the pixel intensity thereby lowering the usage of the backlight intensity, which in turns enables efficient power savings and produces better color of the displayed image.

5. **Claims 3, 4, 6, 7, 13, 14, 23, 26-29, and 30-32** are rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. in view of Zhang et al. as applied to **claims 1, 19, and 21** above, and further in view of Fuller (U.S. Patent Application Publication No. (2002/0171617)).

While Asao et al. and Zhang et al. teach the limitations of **claims 1, 19, and 21** as explained above, there fails to be teachings of the limitations pertaining to **claims 3, 4, 6, 7, 13, 14, 21, 23, and 24.**

As pertaining to **claims 3 and 7**, while Fuller fails to specifically teach the nonlinear relationship between the luminance of the pixel and the luminance of the light source it is taught that the luminance of the pixel and the light source are determined independently of one another. The transmitted video signal controls the active element (pixel) by controlling the alignment of the liquid crystal molecules of the cell and as a result the transmittance of the liquid crystal element of the cell. The video signal controls the proportion of the received backlight signal that the cell internally transmit to its color filter element.(see paragraphs 34, 38, 41, and 44).

Therefore it would have been obvious to allow for a nonlinear relationship between the pixel and the light source as suggest by and carried out in the device of Fuller in order to provide a system wherein the backlight control signal and the video signal are determined for a given frame to be displayed by the display arrangement. This allows for modulating and more precisely lowering the backlight signal, through the modulation of the backlight control signal (see paragraph 18). By allowing usage of that which is taught by Fuller to be carried out in a device having light source of varying luminance similar to that which is taught by Asao et al. and Zhang et al. a picture display having better color when producing images to be displayed can be produced.

As pertaining to **claim 4**, Fuller teaches wherein the step of determining a luminance of a pixel from an intensity value comprises the step of filtering an intensity value for a plurality of pixels (see paragraph 71). **Claim 4** is dependent on **claim 1** and is rejected on the same basis and what is stated above.

As pertaining to **claim 6**, Fuller teaches the step of sampling a filtered intensity value at a spatial coordinate (each active cell) to the light source (see paragraphs 37-39). **Claim 6** is dependent on **claims 1 and 4** and is rejected on the same basis and what is stated above.

As pertaining to **claim 13**, Fuller teaches the step of varying a luminance of a plurality of light sources illuminating a plurality of displayed pixels substantially comprising a frame in a sequence of video frame (paragraphs: 13-19).

Therefore it would have been obvious to one having ordinary skill in the art to allow varying the luminance of the light source as taught by Fuller to be carried out in a device having light source of varying luminance similar to that which is taught by Asao et al. and Zhang et al. in order to provide a picture display having better color when producing images to be displayed.

As pertaining to **claim 14**, Fuller teaches a frame in sequence of video frames comprises the step of varying said luminance of said light sources for less than all

frames of said sequence (paragraphs: 58-63 figs. 5-6). **Claim 14** is dependent on **claims 1 and 13** and is rejected on the same basis and what is stated above.

As pertaining to **claim 23**, Fuller teaches that the backlight (124) may be comprised of an arrangement of red, green, and blue LEDs (see paragraph 34).

As pertaining to **claim 26**, Asao et al. teaches attenuating the luminance of the light source for a subset of frames of the sequence, the subset including less than all of the frames of the sequence, in teaching that the backlight is lit for a first sub-field (subset of frames), wherein the subset includes less than all of the frames of the sequence (see paragraph 73).

As pertaining to **claims 27-29**, Fuller teaches spatially varying the luminance is based upon low pass filtered pixel values (see paragraph 39).

As pertaining to **claims 30-32**, none of the above references teaches reducing luminance of a portion of the light source elements based upon a dark local spatial area of the pixel data.

However the examiner takes Official Notice in that it would have been obvious to one having ordinary skill in the art at the time of the invention to allow for reducing a portion of the light source elements based upon a dark local spatial area, just as it would be obvious to increase a portion of the light source element at the dark local

spatial area. In doing so, the display is capable of providing a uniform brightness to the viewer.

6. **Claims 33-35** are rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. in view of Zhang et al. as applied to **claims 1, 19, and 21** above, and further in view of Herman (U.S. Patent Application Publication No. 5,394,195).

While teaching all that is required as explained above, neither Asao et al. nor Zhang et al. teaches that non-linear modification of the pixel values in a manner that simulates a CRT display.

Herman teaches non-linear modification of pixel values in a CRT display thereby providing local brightness level in each region of an image frame (see abstract, column 1, lines 48-53).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention to allow for the non-linearity modification similar to that which is taught by Herman, to be used in a device similar to that which is taught by Asao et al. and Zhang et al. in order to thereby improving the overall contrast of the display device.

7. **Claim 24** is rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. in view of Zhang et al. and Fuller as applied to **claim 21** above, and further in view of Sakaguchi et al. (U.S. Patent No. 6,448,951).

As pertaining to **claim 24**, while Asao et al. and Zhang et al. teach the usage of a light source, and Fuller teaches that the light source includes a plurality of light emitting

diodes, there fails to be discussion of each of the LEDs being associated with a different pixel.

Sakaguchi et al. teaches in Figures 8-10 that the light emitting diodes are associated with a different pixel.

Therefore it would have been obvious to one having ordinary skill in the art to allow the usage of the independently controlled backlight sections including a plurality of LEDs associated with a different pixel, as taught by Sakaguchi, in a device similar to that which is taught by Asao et al., Zhang et al. and Fuller in order to thereby provide an image with improved color.

8. **Claim 8** is rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. in view of Zhang et al. and Fuller as applied to **claim 1** above, and further in view of Kabel et al. (U.S. Patent No. 6,590,561).

As pertaining to **claim 8**, Asao et al., Zhang et al., and Fuller discloses what has previously been stated above. However fails to disclose that the light source operates at a substantially maximum luminance if the luminance of at least one displayed pixel exceeds a threshold luminance.

As pertaining to **claim 8**, Kabel discloses a method in which a dimming operation occurs in which if it exceeds a threshold it, the light source, will not turn off. The flow chart of fig. 2 follows: The dimming routine begins when the controller 22 senses a request to dim the display module 16 as depicted in step 200 of FIG. 2. For example, an operator wishing to dim an image may press a down arrow or operate a slide bar on the

user interface 24. The controller 22 then determines if the lowest threshold of the backlight 12 or a pre-selected threshold level has been reached as depicted in step 202. The lowest threshold of the back light 12 is pre-selected and may be any percentage of the full brightness of the back light 12. For example, through experimentation, it may be determined that the backlight 12 ceases to emit appreciable light at a power level of 25°/a. This 25°/a level may then be preset as the lowest threshold for the back light 12. If the lowest threshold of the back light 12 has not been reached, the program proceeds to step 204 where the controller 22 dims the back light 12 the amount requested by the user interface 24 to reduce the amount of light passing through the display module 16. The routine then starts over to await further requests to dim the display module 16. If the controller 22 determines that the lowest or pre-selected threshold of the back light 12 has been reached in step 202, the routine proceeds to step 206 where the controller 22 determines whether the lowest threshold of the pixels has been reached. The lowest threshold for the pixels may be pre-selected and may be any percentage of the normal voltage levels for the pixels. For example, it may be determined that the pixels fail to operate properly if their voltage level is reduced by more than 75%. If so, 25% of the pixels' normal operating voltage maybe preset as the lowest threshold for the pixels. If the lowest threshold for the pixels has been reached, the routine ceases dimming the display module 16. If, however, the lowest threshold for the pixels has not been reached in step 206, the routine proceeds to step 208 where the controller 22 proportionally adjusts the voltage level of all active pixels. The user interface 24 and the controller 22 may be configured to reduce the voltage levels delivered to the pixels in discrete steps

or may provide an analog, infinite amount of reduction levels. It would be obvious that if this method can be used for dimming it further can be used to brighten a display.

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to combine the method of Kabel with that of Asao et al., Zhang et al., and Fuller.

The suggestion/motivation for doing so would have been to provide for a display that can operate at full on luminance and intensity when desired and when not. This allows for a user to see, as if, the display is at a better resolution, better contrast etc. (see column 1, line 38-column 2, line14). Again, Kabel operates for dimming the display but it would be obvious that it can operate in the opposite direction and be used for brightening a display. **Claim 8** is dependent on **claims 1** and is rejected on the same basis and what is stated above.

9. **Claim 9** is rejected under 35 U.S.C. 103(a) as being unpatentable over Asao et al. in view of Zhang et al., Fuller, and Kabel as applied to **claim 8** above, and further in view of Lim et al. (hereinafter "Lim"), US 2003/0057253 A1.

As pertaining to **claim 9**, the references disclose what has previously been stated above, however fails to disclose the step of attenuating the light source according to the relationship of said luminance of light source and a mean luminance of pixels.

As pertaining to **claim 9**, Lim discloses the attenuating the light source according to the relationship of said luminance of light source and a mean luminance of pixels (paragraphs: 0024, 0047 and abstract).

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to combine the method of attenuating of Lim with that of Asao et al., Zhang et al., Fuller, and Kabel.

The suggestion/motivation for doing so would have been to provide for better display that will have a different way of illuminating itself. This will allow for higher contrast and resolution and further improve the dynamic range. **Claim 9** is dependent on **claims 1 and 8** and is rejected on the same basis and what is stated above.

Response to Arguments

10. Applicant's arguments with respect to **claims 1, 3, 4, 6-9, 13, 14, 19, 21, 23, 24, 26-35** have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

11. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Alecia D. Nelson whose telephone number is 571-272-7771. The examiner can normally be reached on Monday-Friday 9:30-6:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Sumati Lefkowitz can be reached on 571-272-3638. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

12. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

adn/ADN
November 8, 2005

Sumati Lefkowitz
SUMATI LEFKOWITZ
SUPERVISORY PATENT EXAMINER