India

National Olympiad

1998

- In a circle C_1 with centre O, let AB be a chord that is not a diameter. Let M be the midpoint of this chord AB. Take a point T on the circle C_2 with OM as diameter. Let the tangent to C_2 at T meet C_1 at P. Show that $PA^2 + PB^2 = 4 \cdot PT^2$.
- 2 Let a and b be two positive rational numbers such that $\sqrt[3]{a} + \sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ themselves are rational numbers.
- 3 Let p, q, r, s be four integers such that s is not divisible by 5. If there is an integer a such that $pa^3 + qa^2 + ra + s$ is divisible be 5, prove that there is an integer b such that $sb^3 + rb^2 + qb + p$ is also divisible by 5.
- 4 Suppose ABCD is a cyclic quadrilateral inscribed in a circle of radius one unit. If $AB \cdot BC \cdot CD \cdot DA \geq 4$, prove that ABCD is a square.
- $\boxed{5}$ Suppose a, b, c are three rela numbers such that the quadratic equation

$$x^{2} - (a+b+c)x + (ab+bc+ca) = 0$$

has roots of the form $\alpha + i\beta$ where $\alpha > 0$ and $\beta \neq 0$ are real numbers. Show that (i) The numbers a, b, c are all positive. (ii) The numbers $\sqrt{a}, \sqrt{b}, \sqrt{c}$ form the sides of a triangle.

6 It is desired to choose n integers from the collection of 2n integers, namely, $0, 0, 1, 1, 2, 2, \ldots, n-1, n-1$ such that the average of these n chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer n and find this minimum value for each n.