Analysis of beam-beam instability including longitudinal impedance

Chuntao Lin

Institute of Advanced Science Facilities (IASF), Shenzhen, China

Acknowledgements: K.Ohmi, Y.Zhang, D.Zhou

Beam-beam simulation with ZL

Beam-beam simulation with ZL

Simulation results¹ w/ and w/o ZL for CEPC-Z

- 1. The shift of stable tune area
- 2. The squeeze of stable tune area
- 3. The decrease in growth rate

Coherent synchrotron tune shift downwardSynchrotron tune spread

¹Y.Zhan et al., PRAB 23, 104402 (2020).

Beam-beam induced cross wake force

Evaluation of cross-wake force and cross-wake function

The "cross-wake force" has been introduced to explain the coherent beam-beam instability with a large Piwinski angle without ZL.

$$\Delta p_x^{(-)}(z) = -\int_{-\infty}^{\infty} w_x^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) \cdot x^{(+)} \left(z'\right) dz' \quad \text{(dipole)}$$

$$+ \int_{-\infty}^{\infty} w_x^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) dz' \cdot x^{(-)}(z) \quad \text{(quadrupole)}$$

where $W_x^{(-)}(z)$ is cross-wake function induced by beam-beam interaction.

¹K.Ohmi et al., Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle, PRL (2017).

Transverse single bunch instability method

$$\Delta p_{x}^{(-)}(z) = -\int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) \cdot x^{(+)} \left(z'\right) dz' \quad \text{(dipole)}$$

$$+ \int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) dz' \cdot x^{(-)}(z) \quad \text{(quadrupole)}$$

Beam-beam force is quite localized:

- Conventional transverse mode coupling instability (TMCI) theory for continuous wake force is not suitable².
- It requires localized treatment for the wake force³⁴⁵.

²A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators , New York, 1993.

³F. Ruggiero, Transverse mode coupling instability due to localized structure, Part. Accel. 20, 45 (1986).

⁴K.Ohmi et al., Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle, PRL (2017).

⁵K. Nami et al. PhysRevAccelBeams.21.031002.

Longitudinal beam dynamics

The distortion of longitudinal dynamics can come from other perturbation sources.

Beam-beam instability with ZL

In the following, we study the beam-beam instability including the effects of longitudinal impedance.

The main ideas of the method are:

- discretizing longitudinal action⁶ J in longitudinal action-angle phase space (J, ϕ),
- transverse instability analysis method for localized wake⁷

Combining the two ideas to develop a transverse mode-coupling analysis method (action discretization method) which includes the effects of longitudinal impedance.

⁶K. Oide and K. Yokoya, KEK Report No. 90-10, 1990..

⁷K. Nami et al. PhysRevAccelBeams.21.031002.

Action discretization method

 $\alpha = 0$, normalized coordinates (x, p_x)

Consider the horizontal dipole amplitude x, p_x , in longitudinal phase, truncate I at $\pm I_{max}$,

in ic El_{max}, pha

Amplitude – dependent tune

$$x(J, \phi) = \sum_{l=-l_{max}}^{l_{max}} x_l(J)e^{il\phi}, \quad p_x(J, \phi) = \sum_{l=-l_{max}}^{l_{max}} p_l(J)e^{il\phi}$$

In the arc section, for electron bunch

$$\begin{pmatrix} x_{l}^{(-)}(J) \\ p_{l}^{(-)}(J) \end{pmatrix} = e^{-2\pi i l \nu_{s}^{(-)}(J)} \begin{pmatrix} \cos \mu_{x}^{(-)} & \sin \mu_{x}^{(-)} \\ -\sin \mu_{x}^{(-)} & \cos \mu_{x}^{(-)} \end{pmatrix} \begin{pmatrix} x_{l}^{(-)}(J) \\ p_{l}^{(-)}(J) \end{pmatrix} \equiv M_{\beta}^{(-)} \begin{pmatrix} x_{l}(J) \\ p_{l}(J) \end{pmatrix}$$

The ideal of action discretization is that we discretize J at $J_1, J_2, ..., J_{n_J}$

$$\begin{pmatrix} x_{l}^{(-)}(J_{i}) \\ p_{l}^{(-)}(J_{i}) \end{pmatrix} = e^{-2\pi i l \nu_{s}^{(-)}(J_{i})} \begin{pmatrix} \cos \mu_{x}^{(-)} & \sin \mu_{x}^{(-)} \\ -\sin \mu_{x}^{(-)} & \cos \mu_{x}^{(-)} \end{pmatrix} \begin{pmatrix} x_{l}^{(-)}(J_{i}) \\ p_{l}^{(-)}(J_{i}) \end{pmatrix} \equiv M_{\beta}^{(-)} \begin{pmatrix} x_{l}^{(-)}(J_{i}) \\ p_{l}^{(-)}(J_{i}) \end{pmatrix}$$

The same procedures are for positron bunch,

$$\begin{pmatrix} x_l^{(+)}(J_i) \\ p_l^{(+)}(J_i) \end{pmatrix} = M_{\beta}^{(+)} \begin{pmatrix} x_l^{(+)}(J_i) \\ p_l^{(+)}(J_i) \end{pmatrix}$$

We basically transform the dipole moment vector $(x_l^{(-)}(J_i), p_l^{(-)}(J_i), x_l^{(+)}(J_i), p_l^{(+)}(J_i))$, and finally we have the transfer matrix for the arc section,

$$M_eta = \left(egin{array}{cc} M_eta^{(-)} & 0 \ 0 & M_eta^{(+)} \end{array}
ight)$$

Consider the transformation in longitudinal action-angle phase space (J, ϕ)

$$J\equiv rac{1}{2\pi}\oint \delta dz \quad oldsymbol{arphi}$$
 is the conjugate of J

Discretize and sample J

⁸C.Lin, K.Ohmi, and Y.Zhang, PhysRevAccelBeams.25.011001 (2022).

Action discretization method

At IP, the discretization of momentum change

$$\Delta p_{l}^{(\pm)}(J) = -\frac{\beta_{x}^{(\pm)}}{2\pi} \sum_{l'} \int dJ' W_{ll'}^{(\pm)} \left(J, J'\right) \underline{\psi_{l'}^{(\mp)}} \left(J'\right) x_{l'}^{(\mp)} \left(J'\right)$$
 Longitudinal phase space distribution, by tracking or Haissinski solution. Assume the microwave

can be expressed as,

solution. Assume the microwave instability do not happen.

$$\Delta p_{l}^{(\pm)}\left(J_{i}
ight) = -rac{eta_{x}^{(\pm)}}{2\pi}\sum_{l'}\sum_{i'}\Delta J_{i'}\,W_{ll'}^{(\pm)}\left(J_{i},J_{i'}
ight)\psi^{(\mp)}\left(J_{i'}
ight)x_{l'}^{(\mp)}\left(J_{i'}
ight)\equiveta_{x}^{(\pm)}M_{lil'i'}^{(\pm)}x_{l'}^{(\mp)}\left(J_{i'}
ight)$$

or more consise form, for electron and positron bunch the momentum change is,

$$M_W = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & eta_x^{(-)} M_{lil'i'}^{(-)} & 0 \ 0 & 0 & 1 & 0 \ eta_x^{(+)} M_{lil'i'}^{(+)} & 0 & 0 & 1 \end{array}
ight)$$

The dimension of the matrix M_{β} , M_W is $(2 \times 2 \times (2I_{\text{max}} + 1) \times n_J)^2$.

Finally, the stability of the colliding beams is determined by the eigenvalues $\lambda' s$ of the revolution matrix $M_{\beta}M_{W}$.

Asymmetric collision

Parameters		HER	LER
Circumference	L(m)	3016.315	
Crossing angle	$\theta_c(mrad)$	0.0415×2	
Beam energy	E(GeV)	7	4
Synchrotron tune	$ u_{s}$	0.0272	0.0221
eta at IP	$eta_{\!\scriptscriptstyle X}^*(m)$	0.06	0.08
Horizontal emmitance	$\epsilon_{\scriptscriptstyle X}({\it nm})$	4.6	4.0
Longitudinal emmitance	$\epsilon_{z}(\mu$ m $)$	3.182	3.642
Longitudinal eta	$\beta_z(m)$	8.00	6.43
Single bunch population	$N_0(10^{10})$	6.275	5.9

SuperKEKB main parameters and longitudinal wake function. [Courtesy of D.Zhou,KEK]

Synchrotron tune spread for HER/LER

FFT based on particle tracking with longitudinal wake

Based on Haissinski solution with longitudinal wake

20

25

15

Growth rate v.s. horizontal tune

- Same tune between LER/HER.
- w/o and w/ ZL
- Only consider the dipole term

There is no stable horizontal tune near 0.5. At large v_x , there could have stable region.

$$\Delta \rho_{x}^{(-)}(z) = -\int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) \cdot x^{(+)} \left(z'\right) dz' \quad \text{(dipole)}$$

$$+ \int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) dz' \cdot x^{(-)}(z) \quad \text{(quadrupole)}$$

The growth rate is reduced. But the stable tuen area is squeezed, and there is no stable region in this case. We see a decline tendency in the growth rate as the $v_{\rm x}$ increases.

Eigentune and growth rate as a function of bunch population. The lines start at $v = v_x + nv_s^+$, and $v = v_x + nv_s^-$. v_s^+/v_s^- are nominal synchrotron tunes for HER/LER.

- $v_x = 0.530$
- Same tune between LER/HER.
- w/ ZL

All parity modes could couple

Bunch population scanning w/ ZL

Eigentune and growth rate as a function of bunch population. The lines start at $v = v_x + nv_s^+$, $v = v_x + nv_s^-$

 v_s^+/v_s^- are synchrotron tunes for HER/LER. Due to the synchrotron tune spread, more modes are coupled, but the value of growth rate is reduced compared to the case without ZL.

Quadrupole (BB shift) effect

- Same tune between LER/HER.
- w/o and w/ ZL
- w/o and w/ quadrupole term (BB shift)

$$\Delta p_{x}^{(-)}(z) = -\int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) \cdot x^{(+)} \left(z'\right) dz' \quad \text{(dipole)}$$

$$+ \int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) dz' \cdot x^{(-)}(z) \quad \text{(quadrupole)}$$

For asymmetric collision, the quadrupole term (BB shift) do not induce distinctive horizontal tune shift especially in case w/ ZL.

Quadrupole effect of different $\Delta v_s = v_s^+ - v_s^-$

As the difference $\Delta v_s = v_s^+ - v_s^-$ increases, the horizontal tune shift becomes less obvious

Width of stability region of different $\Delta v_s = v_s^+ - v_s^-$

As the difference $\Delta v_s = v_s^+ - v_s^-$ increases, the stable area is squeezed. We guess that the same synchrotron tune configuration for the two beam may help increase the stable area.

Symmetric collision

According to the simulation, for example CEPC, the two colliding bunches have a statistical relationship dependent on the horizontal tune.

$$\sigma$$
 mode : $\rho^{(+)}(z)x^{(+)}(z) = \rho^{(-)}(z)x^{(-)}(z)$

$$\pi$$
 mode: $\rho^{(+)}(z)x^{(+)}(z) = -\rho^{(-)}(z)x^{(-)}(z)$

"-" for σ mode "+" for π mode

Two beam problem is reduced to single beam, which is very similar to ordinary transverse wake force

$$\Delta p_{x}^{(-)}(z) = -\int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) \cdot x^{(+)} \left(z'\right) dz' \quad \text{(dipole)}$$

$$+ \int_{-\infty}^{\infty} w_{x}^{(-)} \left(z - z'\right) \rho^{(+)} \left(z'\right) dz' \cdot x^{(-)}(z) \quad \text{(quadrupole)}$$

$$+ \int_{-\infty}^{\infty} W_{x} \left(z - z'\right) \rho(z') dz' \cdot x \left(z\right)$$

$$+ \int_{-\infty}^{\infty} W_{x} \left(z - z'\right) \rho(z') dz' \cdot x \left(z\right)$$

$$= \pm \int_{-\infty}^{\infty} W_{x} \left(z - z'\right) \rho(z') dz' \cdot x \left(z\right)$$

$$+ \int_{-\infty}^{\infty} W_{x} \left(z - z'\right) \rho(z') dz' \cdot x \left(z\right)$$

$$= \pm \int_{-\infty}^{\infty} W_{x} \left(z - z'\right) \rho(z') dz' \cdot x \left(z\right)$$

Conventional treatment for the localized cross wake

For CEPC-Z $v_x=0.546$, the two beam exhibit σ mode,

Conventional TMCI theory³ for this wake force. Wake force is continuously smeared around the ring.

$$\Delta p_{\scriptscriptstyle X}(z) = -\int_{-\infty}^{\infty} W_{\scriptscriptstyle X}\left(z-z'\right)
ho(z') x(z') dz'$$

w/o ZL, longitudinal Gaussian beam

Modes are coupling but no instability occur.

Growth rate and eigentune v.s. bunch population

³A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators , New York, 1993.

Discussion and Summary

A transverse instability analysis method for localized wake is developed to study beam-beam interaction including the effects of longitudinal impedance. This method gives us some physical interpretation of beam-beam interaction under the influence of longitudinal impedance.

However, there are quantitative differences between simulation and this method. The reasons may be:

- Chromaticity and dispersion are not considered in the calculation
- Radiation damping is not considered
- Cross-wake force is a linear force with respect to x. It only consider the linear part of beam-beam force

Thank you for your attention!