Tableaux des dérivées et primitives et quelques formules en prime

Fonction	Domaine de dérivabilité	Dérivée		
ln(x)	R+,*	$\frac{1}{r}$		
e^x	\mathbb{R}	$\frac{x}{e^x}$		
$\frac{1}{x}$	R *	$-\frac{1}{x^2}$		
\sqrt{x}	$\mathbb{R}^{+,*}$	$\frac{1}{2\sqrt{x}}$ $\alpha x^{\alpha-1}$		
$x^{\alpha}, \alpha \in \mathbb{R}$	$\mathbb{R}^{+,*}$	$\alpha x^{\alpha-1}$		
$\cos(x)$	\mathbb{R}	$-\sin(x)$		
$\sin(x)$	\mathbb{R}	$\cos(x)$		
$\tan(x)$	$] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$		
arccos(x)] - 1; 1[$\frac{-1}{\sqrt{1-x^2}}$		
$\arcsin(x)$] - 1; 1[$\frac{1}{\sqrt{1-x^2}}$		
$\arctan(x)$	\mathbb{R}	$\frac{1}{1+x^2}$		

Opération	Dérivée		
f+g	f'+g'		
$f \cdot g$	$f' \cdot g + f \cdot g'$		
\underline{f}	$f' \cdot g - f \cdot g'$		
g	g^2		
$g \circ f$	$f' \times g' \circ f$		
1	u'		
$\frac{\overline{u}}{u}$	$-\frac{1}{u^2}$		
u^n	$\frac{-\frac{u^2}{u^2}}{nu'u^{n-1}}$		
/24	u'		
\sqrt{u}	$\frac{\overline{2\sqrt{u}}}{u'e^u}$		
e^u	$u'e^u$		
1 ()	u'		
$\ln(u)$	\overline{u}		
$\sin(u)$	$u'\cos(u)$		
$\cos(u)$	$-u'\sin(u)$		

Fonction	Intervalle d'intégration	Primitive		
	Intervalie a integration			
$(x-a)^n, n \in \mathbb{N}, a \in \mathbb{R}$	\mathbb{R}	$\frac{1}{n+1}(x-a)^{n+1}$		
$\frac{1}{x-a}, a \in \mathbb{R}$	$]-\infty;a[$ OU $]a;+\infty[$	$\ln(x-a)$		
$\frac{\frac{1}{x-a}, a \in \mathbb{R}}{\frac{1}{(x-a)^n}, a \in \mathbb{R}, n \ge 2}$	$]-\infty;a[$ OU $]a;+\infty[$	$-\frac{1}{(n-1)(x-a)^{n-1}}$		
$\cos(ax), a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{1}{a}\sin(ax)$		
$\sin(ax), a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$-\frac{1}{a}\cos(ax)$		
$\tan(x)$	$]k\pi - \frac{\pi}{2}; k\pi + \frac{\pi}{2}[, k \in \mathbb{Z}]$	$-\ln(\cos(x))$		
$\ln(x)$	$\mathbb{R}^{+,*}$	$x \ln(x) - x$		
$e^{ax}, a \in \mathbb{R} \backslash \{0\}$	\mathbb{R}	$\frac{1}{a}e^{ax}$		
$(x-a)^{\alpha}, a \in \mathbb{R}, \alpha \in \mathbb{R} \setminus \{-1\}$	$]a;+\infty[$	$\frac{1}{\alpha+1}(x-a)^{\alpha+1}$		
$a^x, a > 0$	\mathbb{R}	$\frac{1}{\ln(a)}a^x$		
$\frac{1}{x^2+1}$	\mathbb{R}	$\arctan(x)$		
$\sqrt{x-a}, a \in \mathbb{R}$	$]a;+\infty[$	$\frac{2}{3}(x-a)^{3/2}$		
$\frac{1}{\sqrt{x-a}}, a \in \mathbb{R}$	$]a;+\infty[$	$2\sqrt{x-a}$		
$\frac{1}{\sqrt{1-x^2}}$] - 1; 1[$\arcsin(x)$		

Quelques formules de trigonométrie vraiment utiles. a,b et x sont des réels (quelconques) :

$$\cos^2(x) + \sin^2(x) = 1, \quad \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \quad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b),$$
$$\cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x), \quad \cos^2(x) = \frac{1 + \cos(2x)}{2},$$
$$\sin(2x) = 2\sin(x)\cos(x), \quad \sin^2(x) = \frac{1 - \cos(2x)}{2}.$$

Fonctions usuelles : logarithme et exponentielle, fonction puissance, fonctions circulaires et leurs réciproques

<u>Définition</u> 1 (Logarithme). On définit $\ln :]0, +\infty[\to \mathbb{R}$ comme <u>la</u> primitive de $x \mapsto \frac{1}{x}$ qui s'annule en 1.

1. In est continue et strictement croissante sur $]0, +\infty[$.

2.
$$\forall x, y \in]0, +\infty[, \ln(x \cdot y) = \ln(x) + \ln(y).$$

3.
$$\forall x > 0, \ln(\frac{1}{x}) = -\ln(x)$$
.

Propriété 1.

4.
$$\forall x, y \in]0, +\infty[, \ln(\frac{x}{y}) = \ln(x) - \ln(y).$$

5.
$$\forall n \in \mathbb{N}, \forall x > 0, \ln(x^n) = n \ln(x)$$
.

6.
$$\lim_{x \to 0^+} \ln(x) = -\infty$$
 et $\lim_{x \to +\infty} \ln(x) = +\infty$

<u>Définition</u> 2 (Exponentielle). On définit $exp: \mathbb{R} \to]0, +\infty[$ comme $\underline{\mathbf{la}}$ solution de l'équation différentielle y'=y de condition initiale y(0)=1.

On note $\exp(x) = e^x$.

1. exp est continue et strictement croissante sur \mathbb{R} .

2.
$$\forall x, y \in \mathbb{R}, e^{x+y} = e^x \cdot e^y$$
.

3.
$$\forall x \in \mathbb{R}, e^{-x} = 1/e^x$$
.

Propriété 2.

4.
$$\forall x, y \in \mathbb{R}, e^{x-y} = \frac{e^x}{e^y}$$
.

5.
$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, e^{nx} = (e^x)^n$$
.

6.
$$\lim_{x \to -\infty} e^x = 0$$
 et $\lim_{x \to +\infty} e^x = +\infty$.

Propriété 3. On a $\forall x \in \mathbb{R}$, $\ln(e^x) = x$ et $\forall x > 0$, $e^{\ln(x)} = x$.

<u>Définition</u> 3 (Fonction puissance). Soit $a \in \mathbb{R}$. On définit la fonction puissance sur $]0, +\infty[$ par $p_a(x) := e^{a \ln(x)}$. On note $x^a := e^{a \ln(x)}$.

Exemples:

$$\ln(x^2) = 2\ln(x), \quad e^{2x+y} = e^{2x} \cdot e^y, \quad 2^x = e^{x\ln(2)}, \quad \sqrt{x} = x^{\frac{1}{2}} = e^{\frac{1}{2}\ln(x)}, \quad \sqrt[3]{x} = x^{\frac{1}{3}} = e^{\frac{1}{3}\ln(x)}.$$

Croissances comparées : Pour tous $\alpha > 0, \beta > 0$,

$$\lim_{x\to +\infty} \frac{(\ln x)^\alpha}{x^\beta} = 0 \quad \text{et} \quad \lim_{x\to 0^+} x^\beta |\ln x|^\alpha = 0$$

$$\lim_{x\to +\infty}\frac{e^{\alpha x}}{x^{\beta}}=+\infty\quad \text{et}\quad \lim_{x\to -\infty}|x|^{\beta}e^{\alpha x}=0$$

Autrement dit, l'exponentielle impose toujours sa limite en $\pm \infty$ aux fonctions puissances, et celles-ci imposent toujours leur limites en 0^+ ou $+\infty$ au logarithme.

Fonctions circulaires réciproques

On suppose connues les fonctions *sinus* et *cosinus*. On rappelle que la fonction *tangente* est définie sur $]-\frac{\pi}{2};\frac{\pi}{2}[$ par $\tan(x)=\frac{\sin(x)}{\cos(x)}.$

Valeurs spéciales des fonctions trigonométriques

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Formules de trigonométrie

$$\cos^{2}(x) + \sin^{2}(x) = 1 \qquad \tan(x) = \frac{\sin(x)}{\cos(x)}$$
$$\cos(x + 2\pi) = \cos(x) \qquad \sin(x + 2\pi) = \sin(x) \qquad \tan(x + \pi) = \tan(x)$$
$$\cos(2x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x) \qquad \sin(2x) = 2\sin(x)\cos(x)$$

<u>Définition</u> 4 (Arcsinus). Sinus est une bijection de $[-\frac{\pi}{2}; \frac{\pi}{2}]$ sur [-1; 1]. On appelle *arcsinus* sa réciproque.

$$\forall x \in [-1; 1], \forall \theta \in [-\frac{\pi}{2}; \frac{\pi}{2}], \quad x = \sin(\theta) \Leftrightarrow \arcsin(x) = \theta.$$

<u>Définition</u> 5 (Arccosinus). Cosinus est une bijection de $[0; \pi]$ sur [-1; 1]. On appelle *arccosinus* sa réciproque.

$$\forall x \in [-1; 1], \forall \theta \in [0; \pi], \quad x = \cos(\theta) \Leftrightarrow \arccos(x) = \theta.$$

<u>Définition</u> 6 (Arctangente). Tangente est une bijection de $]-\frac{\pi}{2};\frac{\pi}{2}[$ sur \mathbb{R} . On appelle *arctangente* sa réciproque.

$$\forall x \in \mathbb{R}, \forall \theta \in]-\frac{\pi}{2}; \frac{\pi}{2}[, \quad x = \tan(\theta) \Leftrightarrow \arctan(x) = \theta.$$

Arcsinus

Arccosinus

Arctangente

1. $\forall x \in [-1; 1], \sin(\arcsin(x)) = x$.

Propriété 4.

2.
$$\forall x \in [-1; 1], \cos(\arccos(x)) = x$$
.

3.
$$\forall x \in \mathbb{R}, \tan(\arctan(x)) = x$$
.

1.
$$\forall \theta \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(\theta)) = \theta.$$

Propriété 5.

2.
$$\forall \theta \in [0; \pi], \arccos(\cos(\theta)) = \theta$$
.

3.
$$\forall \theta \in]-\frac{\pi}{2}; \frac{\pi}{2}[, \arctan(\tan(\theta)) = \theta.$$

Ici x appartient au domaine de définition de la fonction réciproque.

 \bigstar Attention, ici θ ne parcourt pas tout l'ensemble de définition des fonctions sinus, cosinus ou tangente!

Exemples:

1.
$$\arcsin(\sin(\frac{17\pi}{5})) = \arcsin(\sin(\frac{20\pi}{5} - \frac{3\pi}{5})) = \arcsin(\sin(-\frac{3\pi}{5})) = -\frac{3\pi}{5}$$
.

2.
$$\arccos(\cos(\frac{17\pi}{5})) = \arccos(\cos(\frac{20\pi}{5} - \frac{3\pi}{5})) = \arccos(\cos(-\frac{3\pi}{5})) = \arccos(\cos(\frac{3\pi}{5})) = \frac{3\pi}{5}$$
.

3.
$$\arctan(\tan(\frac{17\pi}{5})) = \arctan(\tan(-\frac{3\pi}{5})) = -\frac{3\pi}{5}$$
.

Dérivées : Les fonctions arcsinus et arccosinus sont (infiniment) dérivables sur]-1;1[et arctangente est (infiniment) dérivable sur \mathbb{R} . Leurs dérivées sont données par

3

Propriété 6.

1.
$$\forall x \in]-1;1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}]$$

2.
$$\forall x \in]-1;1[, \boxed{\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}}]$$

3.
$$\forall x \in \mathbb{R}, \overline{\arctan'(x) = \frac{1}{1+x^2}}$$