Biometría

Estimación de parámetros

Estimación

- Las poblaciones son descriptas mediante sus parámetros
 - Para variables cuantitativas, las poblaciones son descriptas mediante μ y σ .
 - Para variables cualitativas, las poblaciones son descriptas mediante p.
- Si los valores de los parámetros son desconocidos, podemos estimarlos en base a muestras y esperamos que sean una buena aproximación al valor exacto

Definiciones

 estimación puntual: se calcula un valor simple a partir de la muestra a fin de estimar el parámetro

estimación por intervalo de confianza: se calculan dos números para crear un rango de valores que se espera contenga al parámetro con una cierta probabilidad o nivel de confianza

$$P(LI < \theta < LS) = 1 - \alpha$$

¿Qué tan buena es la estimación?

Error muestral

- es la distancia entre el estimador puntual y el verdadero valor del parámetro
- Es el error que surge por estudiar a una parte de la población
- Posee las mismas unidades que la variable en estudio
- Su magnitud es desconocida y por lo tanto imposible de calcular con certeza
- Se sabe que disminuye cuando aumenta el tamaño de la muestra
- Si la muestra está diseñada de forma probabilística es posible controlar su magnitud y dar una estimación del mismo
- Pero para eso es necesario conocer la distribución de probabilidades (distribución muestral) del estimador

¿Qué son los errores no muestrales?

- Otros errores ajenos al muestreo: no respuesta, codificación, encuestador, encuestado, lógicos, de concepción, etc.
- No disminuyen cuando el tamaño de la muestra aumenta
- muy pero muy difíciles de medir!!!

¿Qué tan buena es la estimación?

Nivel de confianza

- es la probabilidad de que el intervalo contenga al parámetro
- □ Se lo simboliza como 1- α
- Lo fija el investigador. Valores típicos de $1-\alpha=0,90$; **0,95**; 0,99
- a es la probabilidad de error (no contener al parámetro) y se la denomina también riesgo
 Intervalos de confianza para la media
- Es el porcentaje de intervalos que se espera contengan al parámetro (para ese tamaño de muestra)

¿Cómo calcular el error muestral en la estimación de µ (siendo σ conocido)?

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$P(z_{\alpha/2} < Z < z_{1-\alpha/2}) = 1 - \alpha$$

$$P(z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < z_{1-\alpha/2}) = 1 - \alpha$$

$$P(z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < z_{1-\alpha/2}) = 1 - \alpha$$

$$P(z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < z_{1-\alpha/2}) = 1 - \alpha$$

¿Entre qué valores esperaría que se encuentre µ? Intervalo de confianza para µ

$$P(z_{\alpha/2} \, \sigma / \sqrt{n} < \overline{x} - \mu < z_{1-\alpha/2} \, \sigma / \sqrt{n}) = 1 - \alpha$$

$$P(\bar{x} + z_{\alpha/2} \sigma / \sqrt{n}) < \mu < \bar{x} + z_{1-\alpha/2} \sigma / \sqrt{n}) = 1 - \alpha$$
LS

$$P(LI < \mu < LS) = 1 - \alpha$$

$$\bar{x} \pm z_{\alpha/2} \sigma / \sqrt{n}$$

$$\bar{x} \pm EM$$

¿Cómo mejorar la estimación?

TABLA 4

Para disminuir el error muestral (mayor precisión):

- □ Tamaño de la muestra
- □ Nivel de confianza
- Desvío estándar

Nivel de confianza	Z _{1-α/2}
0.90	1.645
0.95	1.96
0.99	2.576

$P(LI < \mu < LS) = 1 - \epsilon$
$\overline{x} \pm z_{\alpha/2} \sigma / \sqrt{n}$
$\bar{x} \pm EM$

¿De qué depende el tamaño de una muestra?

- De los recursos y del presupuesto: \$\$\$\$.
- Del tipo de población en estudio.
- De la variable a estudiar (cuali o cuantitativa).
- Del grado de homogeneidad de ésta en la población.
- Del diseño muestral empleado.

¿Qué se necesita para determinar el tamaño de una muestra para un promedio?

Tres elementos importantes:

- 1. Error muestral o margen de error deseado.
- 2. Nivel de Confianza o de Riesgo, y el valor del fractil de la distribución asociada a alguno de ellos.
- 3. Una magnitud de la dispersión o del grado de heterogeneidad de la variable a estudiar.

$$EM = z_{\alpha/2} \sigma / \sqrt{n} \qquad \Longrightarrow \qquad n = \left(\frac{z_{\alpha/2} \sigma}{EM}\right)^2$$

Supuestos

Para que las estimaciones sean confiables se debe cumplir:

- Muestreo aleatorio probabilístico
- Muestreo con reposición o bien n/N < 0.05</p>
- La variable x debe tener distribución normal; en caso contrario, el tamaño de la muestra debe ser lo suficientemente grande (n≥30)
- El desvío estándar poblacional σ debe ser conocido

Intervalos de confianza: un ejemplo

Rev Col Cienc Pec Vol. 19:1, 2006

Indicadores bioquímicos sanguíneos en ganado de lidia mantenido en pastoreo en la cordillera central colombiana

David Jordán', MVZ; Néstor A Villa', MVZ, MSe; Miguel Gutiérrez', MVZ, MSe; Ángela B Gallego', MVZ; Gustavo A Ochoa', MVZ; Alejandro Ceballos', MVZ, MSe
'Grupo: Salud Productiva en Bovinos, Porcinos y Equinos. Universidad de Caldas, A.A. 275. Manizales, Colombia.
'Ganaderia "Ernesto Gutiérrez", Edificio El Castillo Of. 703, Manizales, Colombia.
aleceballos@ucaldas.edu.co

Tabla 2. Valor promedio, desviación estándar (DE), rango, intervalo de confianza (IC) y coeficiente de variación (CV) para las variables séricas analizadas en bovinos de lidia (Grupo 1, n=39) mantenidos en pastoreo en la cordillera central colombiana.

Variable	±DE	Rango	IC (95%)	CV%
Glucosa (mmol/L)	6.4±2.1	3.8 - 14.7	5.5 - 7.0	33
Colesterol (mmol/L)	2.9±0.5	1.6 - 4.4	2.7 - 3.0	18
B-OHB (mmol/L)	0.15±0.08	0.02 - 0.33	0.12 - 0.18	53
TAG (mmol/L)	0.31±0.11	0.06 - 0.68	0.27 - 0.35	38
Proteinas totales (g/L)	89±14	55 - 128	82 - 91	17
Albúmina (g/L)	31±4	26 - 44	30 - 33	14
Globulinas (g/L)	55±13	28 - 84	51 - 59	23
Relación A/G	0.6±0.2	0.4 - 1.2	0.5 - 0.7	29
Urea (mmol/L)	6.9±1.5	5.2 - 10.3	6.2 - 7.3	21

Glucosa: IC_{95} : 5.5-7.0 mmol/L

- 1. El 95% de los ejemplares tiene entre 5.5-7.0 mmol/L.
- 2. La glucosa promedio de los 39 ejemplares se encuentra entre 5.5-7.0 mmol/L
- 3. El promedio de la especie se encuentra entre 5.5-7.0 mmol/L.

Estimación de un promedio con desvío poblacional desconocido

- Es la situación más habitual
- El hecho de desconocer el valor paramétrico de σ tiene un costo: se debe utilizar la distribución t de Student, que posee mayor dispersión que la normal estándar

Intervalo de confianza para μ cuando el desvío poblacional σ es desconocido

Con σ conocido

$$P(\bar{x} + z_{\alpha/2} \sigma / \sqrt{n} < \mu < \bar{x} + z_{1-\alpha/2} \sigma / \sqrt{n}) = 1 - \alpha$$

Con σ desconocido

$$P(\bar{x} + t_{n-1,\alpha/2} s / \sqrt{n} < \mu < \bar{x} + t_{n-1,1-\alpha/2} s / \sqrt{n}) = 1 - \alpha$$
LS

$$P(LI < \mu < LS) = 1 - \alpha$$

$$\bar{x} \pm t_{n-1,\alpha/2} s / \sqrt{n}$$

$$\bar{x} \pm EM$$
TABLA 4

¿Cómo mejorar la estimación?

Para disminuir el error muestral (mayor precisión):

- □ Tamaño de la muestra
- □ Nivel de confianza
- Desvío estándar

$$EM = t_{n-1,\alpha/2} S / \sqrt{n} \implies n = \left[\frac{t_{n-1,\alpha/2} S}{EM} \right]^2$$

Como el *n* está a ambos lados de la ecuación, se debe utilizar un **método iterativo** para calcular el tamaño muestral

Supuestos

Para que las estimaciones sean confiables se debe cumplir:

- Muestreo aleatorio probabilístico
- Muestreo con reposición o bien n/N < 0.05</p>
- La variable x debe tener distribución normal; en caso contrario, el tamaño de la muestra debe ser lo suficientemente grande (n≥30)

Prevalencia de la diabetes mellitus no dependiente de la insulina en Lejona (Vizcaya)

	Diabéticos (grupo DM)	
	Varones	Mujeres
Número de individuos	15	16
Edad (años)	61,0 ± 11,8	61,7 ± 13,1°
Talla (cm)	164,5 ± 6,3	151,6 ± 7,1°
Peso (kg)	75,8 ± 14,8	67,2 ± 9,9°
IMC (kg/m²)	27,9 ± 4,5	29,1 ± 3,7°
PAS (mmHg)	148,6 ± 24	158,7 ± 29°
PAD (mmHg)	82 ± 10,6	87,5 ± 14,4°
Antecedentes familiares (%)	18,8	23,5°

Estimar con una confianza del 95% la presión arterial sistólica de diabéticos

Estimación de una proporción Un ejemplo

Las aves parásitas de cría como el tordo renegrido, *Molothrus bonaerensis*, depositan sus huevos en nidos de otras especies que proveen la totalidad del cuidado parental. Se llevó a cabo un estudio en la prov. de Mendoza durante el mes de octubre a fin de estimar la incidencia de parasitismo en el zorzal chalchalero, *Turdus amaurochalinus*. Se visitaron 108 nidos, observándose 72 parasitados.

- Población
- Muestra
- Tipo de muestreo
- Individuo
- Parámetro
- Estimador

Distribución muestral de \hat{p}

Si de una población con cierta proporción de éxitos p se extraen infinitas muestras aleatorias de tamaño n y a cada una de ellas se le calcula la **proporción muestral** \hat{p} , se demuestra que esta se comporta según una distribución **normal** siempre y cuando se cumplan las condiciones de aproximación de la distribución binomial a la normal, es decir:

$$n > 30$$
, $pn > 5$ y $qn > 5$

Distribución muestral de \hat{p}

- 1. La media de \hat{p} es: p
- 2. El desvío estándar (ES) de \hat{p} es: $\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$
- 3. Si el tamaño de la muestra es lo suficientemente grande, pn>5 y qn>5, la distribución de \hat{p} es **normal**

Por lo tanto es posible calcular probabilidades utilizando:

$$z = \frac{\hat{p} - p}{\sqrt{pq/n}}$$

Intervalo de confianza para p

Para μ con σ conocido

$$P(\bar{x} + z_{\alpha/2} \sigma / \sqrt{n} < \mu < \bar{x} + z_{1-\alpha/2} \sigma / \sqrt{n}) = 1 - \alpha$$

Para p

$$P(\hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}\hat{q}}{n}}
$$P(LI
$$\hat{p} \pm z_{1-\alpha/2}\sqrt{\frac{\hat{p}\hat{q}}{n}} \qquad \hat{p} \pm EM$$$$$$

Prevalencia de hipertensión arterial y factores asociados en la población rural marginada

Jesus Fernando Guerrero-Romero, M.C.,(1) Martha Rodríguez-Morán M.C., M. en C.(1)

salud pública de méxico / vol.40, no.4, julio-agosto de 1998

Objetivo. Determinar la prevalencia y los factores asociados a la hipertensión arterial sistémica (HAS) en la población rural marginada de Durango, México. Material y métodos. Se realizó un estudio transversal comparativo en 627 comunidades rurales, de las que aproximadamente 90% tiene. 250 o menos habitantes. Se determinaron las cifras de presion arterially las variables sociodemográficas. Resultados. Se estudiaron 5 802 sujetos, es decir, 4 452 mujeres (76.7%) y 1 350 hombres (23.3%). Se identifico HAS en 1 271 individuos (21.9%; IC95% 20.8-23.0), de los cuales 1 011 eran mujeres (22.71%; IC95% 21.5-23.9), y 260, hombres (19.26%; IC95% 17.2-21.4). Del total de la población blanco, 3 018

¿Cómo mejorar la estimación?

Para disminuir el error muestral (mayor precisión):

- □ Tamaño de la muestra
- □ Nivel de confianza

$$EM = z_{1-\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}} \qquad \Longrightarrow \qquad n = \frac{z_{1-\alpha/2} \hat{p}\hat{q}}{EM^2}$$

Si no existe muestreo previo, se asume p = 0.5

р	q	pxq	_
0,9	0,1	0,09	
0,8	0,2	0,16	
0,7	0,3	0,21	
0,6	0,4	0,24	
0,5	0,5	0,25	
0,4	0,6	0,24	
0,3	0,7	0,21	
0,2	0,8	0,16	_
0,1	0,9	0,09	24
•	·	•	_

Supuestos

Para que las estimaciones sean confiables se debe cumplir:

- Muestreo aleatorio probabilístico
- Muestreo con reposición o bien n/N < 0.05</p>
- Para que sea válida la aproximación a la **normal** el tamaño de la muestra debe ser lo suficientemente grande ($n \ge 30$), pn > 5 y qn > 5

En resumen:

$$IC_{1-\alpha}: \hat{\theta} \pm EM$$
 $IC_{1-\alpha}: \hat{\theta} \pm P_{1-\alpha/2}ES_{\hat{\theta}}$

$$\overline{x} \pm z \, ES_{\overline{x}}$$
 $\overline{x} \pm t \, ES_{\overline{x}}$ $\hat{p} \pm z \, ES_{\hat{p}}$ $\overline{x} \pm z \, \sigma / \sqrt{n}$ $\overline{x} \pm t \, s / \sqrt{n}$ $\hat{p} \pm z \sqrt{\frac{\hat{p}\hat{q}}{n}}$

□ Todos los EM son proporcionales a √n ⇒ para reducir un IC a la mitad, se debe cuadriplicar el tamaño de la muestra

Estimación de la variabilidad Un ejemplo

Se desea estimar la variabilidad en la concentración de hemoglobina en jugadores de fútbol profesionales. Una muestra aleatoria de 9 jugadores arrojó los siguientes valores (en g/dl):

15.3 16.0 14.4 16.2 16.2 14.9 15.7 15.3 14.6

- Población
- Muestra
- Tipo de muestreo
- Individuo
- Parámetro
- Estimador

Distribución muestral

Si de una población **con distribución normal** se extraen infinitas muestras aleatorias de tamaño n y a cada una de ellas se le calcula la varianza muestral s^2 , se demuestra que el estadístico

$$\frac{(n-1)s^2}{\sigma^2}$$

se comporta según una distribución chi-cuadrado (χ^2) con n -1 grados de libertad

Distribución chi-cuadrado (χ²)

- Es una distribución asimétrica positiva
- □ Solo toma valores positivos, es decir que $\chi^2 \ge 0$

 No se trata de una única curva, sino de infinitas curvas, cada una caracterizada por un parámetro denominado

grados de libertad (GL)

- Los GL dependen del tamaño de la muestra
- A medida que aumentan los GL la distribución tiende a hacerse simétrica

Intervalo de confianza para la varianza σ^2

$$\frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{n-1;\alpha/2}^2}$$
TABLA 5

$$P(LI < \sigma^2 < LS) = 1 - \alpha$$

- Para el desvío estándar se debe aplicar raíz cuadrada
- Observar que los límites del intervalo no son simétricos con respecto al estimador

Supuestos

Para que las estimaciones sean confiables se debe cumplir:

- Muestreo aleatorio probabilístico
- Muestreo con reposición o bien n/N < 0.05
- La variable debe seguir una distribución normal

Conociendo la distribución muestral de un estimador se puede construir un IC para el parámetro

	Estimador	Esperanza	Desvío estándar (error estándar)	Estadístico
12	\overline{X}	μ	σ/\sqrt{n}	$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
16	cv	CV	$\frac{CV}{\sqrt{2n}} \sqrt{1 + 2 \left[\frac{CV}{100} \right]^2}$ $\approx \sqrt{2n}$	$t_{n-1} = \frac{\hat{C}V - CV}{\sqrt{2n}}$
17	gı	γι	$\sqrt{\frac{6n(n-1)}{(n-2)(n+1)(n+3)}}$ $\approx \sqrt{\frac{6}{n}}$	$t_{n-1} = \frac{g_1 - \gamma_1}{\sqrt{\frac{6}{n}}}$ $\sin n > 100$
18	g 2	γ2	$\sqrt{\frac{24n(n-1)^2}{(n-3)(n-2)(n+3)(n+5)}} \approx \sqrt{\frac{24}{n}}$	$t_{n-1} = \frac{g_2 - \gamma_2}{\sqrt{\frac{24}{n}}}$ $\sin > 100$
19	$\overline{X}_1 - \overline{X}_2$	μ_{1} - μ_{2}	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

Estimación por Bootstrap

- Cuando no se conoce la distribución teórica del estimador
- Es el caso de la mediana, de muchos índices en biología que surgen de funciones complejas (diversidad, árboles filogenéticos, etc)
- Solo se cuenta con datos muestrales (n). Consideramos que su distribución constituye una buena aproximación a la distribución real de la variable
- Entonces aproximamos la distribución muestral mediante la simulación de experimentos repetidos sobre nuestros datos muestrales
- Mediante la simulación podemos obtener EE, predecir sesgo e incluso comparar varias formas de estimar el mismo parámetro
- El único requisito es que los datos hayan sido independientemente muestreados de una única distribución

Bootstrap: Procedimiento

- Se extraen muchas muestras con reposición (i.e. 1000) de tamaño n de la muestra original (se "re-muestrea")
- En cada muestra se calcula el estimador de interés
- Con esos valores se construye la distribución muestral
- El estimador por boostrap del parámetro será la media de dicha distribución y su error estándar sería el desvío estándar de la distribución

