High-Performance Computing Project: Comparing CPU and GPU Performance for Object Detection

Avdhesh Gaur

December 16, 2024

Contents

1	Introduction	3		
2	System Specifications 2.1 Hardware			
3	Performance Analysis 3.1 Results Overview			
4	GPU Code Explanation 4.1 Memory Management	4 4 4 5		
5	Pros and Cons of CPU and GPU	5		
6	s and Cons of CPU and GPU 5 1re Work 5			
7	Conclusion	6		

1 Introduction

The objective of this project is to compare the performance of CPU and GPU for object detection tasks using different computational approaches. Specifically, we evaluate:

- A Haar Cascade-based object detection system running entirely on the CPU.
- A YOLOv5-based deep learning model optimized for GPU execution.

The focus is on measuring processing time, memory usage, and hardware utilization for videos of varying resolutions and evaluating their accuracy.

2 System Specifications

2.1 Hardware

• Operating System: Windows 11 Home

• CPU: Intel Core i7 (8 Cores, 3.6 GHz)

• GPU: NVIDIA GeForce RTX 4060, 8 GB GDDR6

• **RAM**: 16 GB DDR5

• Storage: 1 TB PCI-e NVMe SSD

2.2 Software

• Python Version: 3.10.12

• PyTorch Version: 2.5.1+cu124

• OpenCV Version: 4.10.0

• psutil Version: 5.9.0

• OS (Testing): Ubuntu 22.04.5 LTS

3 Performance Analysis

3.1 Results Overview

Table 1: Performance Metrics for CPU and GPU Object Detection

Approach	Frames	Process	Avg	CPU Mem	GPU Mem	GPU Util
		Time (s)	Time/Frame	eDiff (MB)	Diff (MB)	(%)
			(s)			
CPU (Large)	1800	518.73	0.2882	1008.77	N/A	N/A
CPU (Small)	500	5.10	0.0102	99.48	N/A	N/A
GPU (Small)	496	20.77	0.0419	306.14	-344.00	97.29
GPU (Large)	1792	74.44	0.0415	792.48	-344.00	99.11

3.2 Accuracy: Haar vs YOLO

Haar Cascade Limitations:

• In high-resolution videos (3840x2160), Haar cascades failed to detect cars accurately. The algorithm produced false positives and struggled with smaller objects due to its fixed-scale scanning and reliance on grayscale features.

YOLO Advantages:

• YOLOv5, executed on the GPU, consistently detected cars across varying scales, achieving high accuracy even in high-resolution videos.

4 GPU Code Explanation

4.1 Memory Management

```
torch.cuda.empty_cache() # Free unused GPU memory
gc.collect() # Trigger garbage collection for CPU memory
```

Listing 1: GPU Memory Management

4.2 Batch Processing for Inference

```
def detect_objects_batch(frames):
    frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for
        frame in frames]
    with torch.no_grad():
        results = model(frames_rgb)
        torch.cuda.synchronize()
    return results.pandas().xyxy
```

Listing 2: Batch Inference Using GPU

4.3 Real-Time Single Frame Processing

```
def detect_objects_single(frame):
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    with torch.no_grad():
        result = model([frame_rgb]) # Single frame inference
        torch.cuda.synchronize()
    return result.pandas().xyxy
```

Listing 3: Real-Time Single Frame Inference

5 Pros and Cons of CPU and GPU

CPU:

• Pros:

- Low memory usage for small tasks.
- No need for additional hardware setup.
- Suitable for lightweight applications.

• Cons:

- Inefficient for large workloads.
- Slower sequential processing.
- Accuracy is poor for complex datasets.

GPU:

• Pros:

- High speed with parallel processing.
- Efficient for real-time and large-scale tasks.
- Handles high-resolution videos and complex backgrounds.

• Cons:

- Requires expensive hardware setup.
- Memory overhead for small tasks.
- Additional software dependencies.

6 Future Work

- Optimize CPU code with multi-threading and parallel processing.
- Deploy YOLOv5 models on edge devices like NVIDIA Jetson.
- Use lightweight models (e.g., YOLOv5s) for reduced GPU memory consumption.

7 Conclusion

This comparison shows that YOLOv5 on GPUs significantly outperforms Haar cascades on CPUs in both speed and accuracy. For high-resolution videos, GPU utilization reached an average of 99.11% for large workloads and 97.29% for smaller workloads, demonstrating its capability for real-time applications.