

LP8758-B0

SNVSA06B-MARCH 2015-REVISED MAY 2016

LP8758-B0 Four-Phase DC-DC Step-Down Converter

Features

- High-Efficiency Step-Down Four-Phase DC-DC Converter Cores:
 - Maximum Output Current 16 A
 - Auto PWM-PFM and Forced-PWM Operations
 - Auto Phase Adding/Shedding and Force Multi-**Phase Operations**
 - Remote Differential Feedback Voltage Sensing
 - Programmable Output Voltage Slew-Rate from 30 mV/ μ s to 0.5 mV/ μ s
 - V_{OUT} Range = 0.5 V to 3.36 V with DVS
- Programmable Start-up and Shutdown Delays with Enable Signal
- I²C-Compatible Interface which Supports Standard (100 kHz), Fast (400 kHz), Fast+ (1 MHz), and High-Speed (3.4 MHz) Modes
- Interrupt Function with Programmable Masking
- Load Current Measurement
- Output Short-Circuit and Overload Protection
- Spread-Spectrum Mode and Phase Interleaving for EMI Reduction
- Overtemperature Warning and Protection
- Undervoltage Lockout (UVLO)

Applications

- Smart Phones, eBooks and Tablets
- **Gaming Devices**

Simplified Schematic

3 Description

The LP8758 is designed to meet the power management requirements of the latest application processors in mobile phones and similar portable applications. The device contains four step-down DC-DC converter cores, which are bundled together in a single 4-phase buck converter. The device is controlled by an I²C-compatible serial interface.

The automatic PWM-PFM (AUTO mode) operation, together with the automatic phase adding/shedding, maximizes efficiency over a wide output-current range. The LP8758 supports remote differential voltage sensing to compensate IR drop between the regulator output and the point-of-load, thus improving the accuracy of the output voltage.

The LP8758 supports programmable start-up and shutdown delays synchronized to Enable signal.

protection features include short-circuit protection, current limits, input supply UVLO, and temperature warning and shutdown functions. Several error flags are provided for status information of the device. In addition, the LP8758 device supports load current measurement without the addition of external current sense resistors. During start-up and voltage change, the device controls the output slew rate to minimize output voltage overshoot and the inrush current.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LP8758-B0	DSBGA (35)	2.88 mm × 2.13 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Efficiency vs Output Current $(V_{IN} = 3.7 \text{ V})$

Table of Contents

1	Features 1		8.4 Device Functional Modes	24
2	Applications 1		8.5 Programming	25
3	Description 1		8.6 Register Maps	29
4	Simplified Schematic 1	9	Application and Implementation	40
5	Revision History2		9.1 Application Information	40
6	Pin Configuration and Functions		9.2 Typical Application	40
7	Specifications	10	Power Supply Recommendations	47
•	7.1 Absolute Maximum Ratings 5	11	Layout	48
	7.2 ESD Ratings		11.1 Layout Guidelines	48
	7.3 Recommended Operating Conditions		11.2 Layout Example	49
	7.4 Thermal Information	12	Device and Documentation Support	<u>50</u>
	7.5 Electrical Characteristics 6		12.1 Device Support	
	7.6 I ² C Serial Bus Timing Parameter		12.2 Documentation Support	50
	7.7 Switching Characteristics		12.3 Community Resources	
	7.8 Typical Characteristics		12.4 Trademarks	50
8	Detailed Description		12.5 Electrostatic Discharge Caution	50
O	8.1 Overview		12.6 Glossary	50
	8.2 Functional Block Diagram 14	13	Mechanical, Packaging, and Orderable Information	50
	8.3 Feature Description			30

5 Revision History

Changes from Revision A (May 2015) to Revision B	Page
Changed "700 μs" to "1.2 ms"	1
Changes from Original (March 2015) to Revision A	Page
first WEB release	
Added Community Resources section	

6 Pin Configuration and Functions

Pin Functions

	PIN	TYPE	DESCRIPTION
NUMBER	NAME	ITPE	DESCRIPTION
A1, B1	VIN_B1	Р	Input for Buck 1. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
A2, B2	SW_B1	Α	Buck 1 switch node.
A3, B3, C3	PGND_B01	G	Power Ground for Buck 0 and Buck 1.
A4, B4	SW_B0	Α	Buck 0 switch node.
A5, B5	VIN_B0	Р	Input for Buck 0. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
C1	SGND	G	Substrate Ground.
C2	FB_B1	Α	Output ground feedback (negative) for Buck 0.
C4	FB_B0	Α	Output voltage feedback (positive) for Buck 0.
C5	EN1	D/I	Programmable Enable signal for Buck regulator. Can be also configured to switch between two output voltage levels.
D1	AGND	G	Ground.
D2	nINT	D/O	Open-drain interrupt output. Active LOW.
D3	EN2	D/I	Programmable Enable signal for Buck regulator. Can be also configured to switch between two output voltage levels.
D4	NRST	D/I	Reset signal for the device.
D5	SDA	D/I/O	Serial interface data input and output for system access. Connect a pull-up resistor.
E1	VANA	Р	Supply voltage for Analog and Digital blocks. VANA pin must be connected to same voltage as VIN_Bx pins.
E2	FB_B3	Α	Output voltage feedback (positive) for Buck 3 - Connect to ground in 4-phase configuration.
E4	FB_B2	Α	Output voltage feedback (positive) for Buck 2 Connect to ground in 4-phase configuration.
E5	SCL	D/I	Serial interface clock input for system access. Connect a pull-up resistor.
F1, G1	VIN_B3	Р	Input for Buck 3. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
F2, G2	SW_B3	Α	Buck 3 switch node.
E3, F3, G3	PGND_B23	G	Power Ground for Buck 2 and Buck 3.
F4, G4	SW_B2	Α	Buck 2 switch node.
F5, G5	VIN_B2	Р	Input for Buck 2. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
A: Analog Pin	, D: Digital Pin, G	: Ground	Pin, P: Power Pin, I: Input Pin, O: Output Pin

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT
INPUT VOLTAGE		-		
VIN_Bx, VANA	Voltage on power connections	-0.3	6	V
SW_Bx	Voltage on buck switch nodes	-0.3	(VIN_Bx + 0.3 V) with 6 V max	V
FB_Bx	Voltage on buck voltage sense nodes	-0.3	(VANA + 0.3 V) with 6 V max	V
NRST	Voltage on NRST input	-0.3	3.6	V
ENx, SDA, SCL, nINT	Voltage on logic pins (input or output pins)	-0.3	3.6	
CURRENT				
VIN_Bx, SW_Bx, PGND_Bx	Current on power pins (average current over 100k hour lifetime, T_J = 125°C)		0.62	A/pin
TEMPERATURE				
Junction temperature,	T _{J-MAX}	-40	150	°C
Storage temperature,	T_{stg}	-65	150	°C
Maximum lead temper	rature (soldering, 10 sec.) (3)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

	-		VALUE	UNIT
V _(ESD)	Flectrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
INPUT VOLTAGE				
VIN_Bx, VANA	Voltage on power connections	2.5	5.5	V
NRST	Voltage on NRST	1.65	1.95	V
ENx, SDA, SCL, nINT	Voltage on logic pins (input or output pins)	0	1.95	V
TEMPERATURE		•	•	
Junction temperature, T _J		-40	125	°C
Ambient temperature, T _A		-40	85	°C

⁽²⁾ All voltage values are with respect to network ground.

⁽³⁾ For detailed soldering specifications and information, refer to AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009).

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

		LP8758	
	THERMAL METRIC ⁽¹⁾	YFF (DSBGA)	UNIT
		35 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	56.1	°C/W
R _{0JCtop}	Junction-to-case (top) thermal resistance	0.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	8.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	8.4	°C/W
R _{θJCbot}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$, specified $V_{\text{(VANA)}}, V_{\text{IN}}$, $V_{\text{(NRST)}}, V_{\text{OUT}}$ and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{\text{(VANA)}} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted. (1)(2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EXTERNAL	COMPONENTS					
C _{IN}	Input filtering capacitance	Connected from VIN_Bx to PGND_Bx	1.9	10		μF
C _{OUT}	Output filtering capacitance, local	Capacitance per phase	10	22		μF
C _{OUT-TOTAL}	Output capacitance, total (local and remote)	Total output capacitance, 4-phase configuration	40		200	μF
ESR _C	Input and output capacitor ESR	[1-10] MHz		2	10	mΩ
	la diveta a	landratan and the indicator	0.3	3 or 0.47		μH
L	Inductor	Inductance of the inductor	-30%		30%	
DCRL	Inductor DCR	TOKO, DFE252010F-R33M		16		mΩ
BUCK REGU	JLATOR					
V _{IN}	Input voltage range	Voltage between VIN_Bx and ground pins. VANA must be connected to the same supply as VIN_Bx.	2.5	3.7	5.5	V
		Programmable voltage range	0.5	1	3.36	V
.,	Q	Step size, 0.5 V ≤ V _{OUT} < 0.73 V		10	3.36	
V _{OUT}	Output voltage	Step size, 0.73 V ≤ V _{OUT} < 1.4 V		5		mV
		Step size, 1.4 V ≤ V _{OUT} ≤ 3.36 V		20		
		Output current, 4-phase configuration			12 ⁽³⁾	
l _{OUT}	Output current	Output current, 4-phase configuration, V _{IN} > 3 V, V _{OUT} < 2 V			16 ⁽³⁾	Α
	Dropout voltage	$V_{IN} - V_{OUT}$	0.7			V
	DC output voltage accuracy, includes voltage reference,	Forced PWM mode, 0.8 V \leq V _{OUT} \leq 1.2 V, 2.5 V \leq V _{IN} \leq 4.5 V, T _J = 25°C, 0 \leq I _{OUT} \leq I _{OUT} (max)	-1%		1.5%	
	DC load and line regulations, process and temperature	PFM mode, the average output voltage level is increased by max. 20 mV	min (–2%, –15 mV)		nax (2%, 5 mV) 20 mV	

⁽¹⁾ All voltage values are with respect to network ground.

⁽²⁾ Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified, but do represent the most likely norm.

⁽³⁾ The maximum output current is also limited by the junction temperature and maximum average current over lifetime. The power dissipation inside the die increases the junction temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient temperature. The maximum average current/pin over lifetime is described in Absolute Maximum Ratings.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$, specified $\text{V}_{(\text{VANA})}$, V_{IN} , $\text{V}_{(\text{NRST})}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $\text{T}_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $\text{V}_{(\text{VANA})} = \text{V}_{\text{IN}} = 3.7$ V and $\text{V}_{\text{OUT}} = 1$ V unless otherwise noted. (1)(2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Ripple, 4-phase	PWM mode, L = 0.33 µH		10		m\/
	configuration	PFM mode, $L = 0.33 \mu H$		10		mV _{p-p}
DC _{LNR}	DC line regulation	$I_{OUT} = I_{OUT(max)}$		±0.05		%/V
DC_{LDR}	DC load regulation in PWM mode	I _{OUT} from 0 to I _{OUT(max)}		0.3%		
		I_{OUT} = 1 A to 8 A, T_R = 400 ns, PWM mode, C_{OUT} = 100 μ F, L = 0.33 μ H		-45		mV
	Undershoot for transient load step response, 4-phase configuration	$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 4.5 \text{ V}$, $0.8 \text{ V} \le \text{V}_{\text{OUT}} \le 1.2 \text{ V}$, $I_{\text{OUT}} = 0.1 \text{ A}$ to 4.1 A , $T_{\text{R}} = 100 \text{ ns}$, AUTO mode, $C_{\text{OUT}} = 100 \mu\text{F}$, $L = 0.33 \mu\text{H}$		-35		mV
TLDSR TLNSR ILIM NEG RDS(ON) HS FET RDS(ON) LS FET IPHM-PWM IPWM-PFM IADD ISHED		$\begin{array}{l} 3 \text{ V} \leq \text{V}_{\text{IN}} \leq 4.5 \text{ V}, \ 0.8 \text{ V} \leq \text{V}_{\text{OUT}} \leq 1.2 \text{ V}, \\ \text{I}_{\text{OUT}} \text{ from 1 A to 12 A, T}_{\text{R}} = 1000 \text{ ns}, \\ \text{C}_{\text{OUT}} = 100 \text{ \muF}, \text{ L} = 0.33 \text{ \muH} \end{array}$		-45		mV
		I_{OUT} = 8 A to 1 A, T_F = 400 ns, PWM mode, C_{OUT} = 100 μ F, L = 0.33 μ H		45		mV
	Overshoot for transient load step response, 4-phase configuration	$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 4.5 \text{ V}, 0.8 \text{ V} \le \text{V}_{\text{OUT}} \le 1.2 \\ \text{V}, \text{I}_{\text{OUT}} = 4.1 \text{ A to 0.1 A, T}_{\text{F}} = 100 \text{ ns,} \\ \text{AUTO mode, C}_{\text{OUT}} = 100 \mu\text{F, L} = 0.33 \\ \mu\text{H}$		25		mV
		$3 \text{ V} \le \text{V}_{\text{IN}} \le 4.5 \text{ V}, 0.8 \text{ V} \le \text{V}_{\text{OUT}} \le 1.2 \text{ V}, \\ \text{I}_{\text{OUT}} \text{ from 12 A to 1 A, T}_{\text{F}} = 1000 \text{ ns}, \\ \text{C}_{\text{OUT}} = 100 \text{ \muF}, \text{L} = 0.33 \text{ \muH}$		50		mV
T _{LNSR}	Transient line response	V_{IN} stepping 2.5 V \leftrightarrow 3 V, $T_R = T_F = 10$ μs , $I_{OUT} = I_{OUT(max)}$		±20		mV
	Forward current limit (peak	Programmable range	1.5		5	Α
		Step size		0.5		A
'LIM FWD	for every switching cycle)	Accuracy, 3 V \leq V _{IN} \leq 5.5 V, I _{LIM} = 5 A	-5%	7.5%	20%	
LIM FWD LIM NEG RDS(ON) HS ET RDS(ON) LS ET		Accuracy, 2.5 V \leq V _{IN} $<$ 3 V, I _{LIM} $=$ 5 A	-20%	7.5%	20%	
I _{LIM NEG}	Negative current limit		1.6	2	2.4	Α
	On-resistance, high-side FET	Each phase, between VIN_Bx and SW_Bx pins (I = 1 A)		40	90	$m\Omega$
	On-resistance, low-side FET	Each phase, between SW_Bx and PGND_Bx pins (I = 1 A)		33	50	mΩ
	Current balancing	Current mismatch between phases, I_{OUT} > 1000 mA / phase, 0.8 V \leq V _{OUT} \leq 1.2 V			10%	
	Overshoot during start-up	V _{OUT} = 1 V, Slew rate = 10 mV/μs			50	mV
I _{PFM-PWM}	PFM-to-PWM transition - current threshold ⁽⁴⁾			600		mA
I _{PWM-PFM}	PWM-to-PFM transition - current threshold ⁽⁴⁾			240		mA
		From 1-phase to 2-phase		1000		
I _{ADD}	Phase-adding level	From 2-phase to 3-phase		2000		mA
		From 1-phase to 2-phase 1000				
		From 2-phase to 1-phase		750		
I _{SHED}	Phase-shedding level	From 3-phase to 2-phase		1500		mA
- :==	-	From 4-phase to 3-phase		2300		
	Output pulldown resistance	Regulator disabled	150	250	350	Ω

⁽⁴⁾ The final PFM-to-PWM and PWM-to-PFM transition current varies slightly and is dependant on the output voltage, input voltage, and the magnitude of inductor's ripple current.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$, specified $V_{(\text{VANA})}$, V_{IN} , $V_{(\text{NRST})}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{(\text{VANA})} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Powergood threshold for interrupt	Rising ramp voltage, enable or voltage change	-23	-17	-10	.,
	BUCKx_INT(BUCKx_SC_IN T), difference from final voltage	Falling ramp, voltage change	10	17	23	mV
	Powergood threshold for status signal BUCKx_STAT(BUCKx_PG_STAT)	During operation, status signal is forced to '0' during voltage change	-23	-17	-10	mV
PROTECTIO	N FEATURES					
		Temperature rising, CONFIG(TDIE_WARN_LEVEL) = 0		125		
	Thermal warning	Temperature rising, CONFIG(TDIE_WARN_LEVEL) = 1		105		°C
		Hysteresis		15		
	Thermal shutdown	Temperature rising		150		°C
	memai shuldown	Hysteresis		15		C
\/ANIA	VANA undervoltage lockout	Voltage falling	2.3	2.4	2.5	V
VANA _{UVLO}	VAINA undervoltage lockout	Hysteresis		50		mV
LOAD CURF	RENT MEASUREMENT					
	Current measurement range	Maximum code		20.46		Α
	Resolution	LSB		20		mA
	Measurement accuracy	I _{OUT} ≥ 2 A		<10%		
CURRENT C	CONSUMPTION					
	Shutdown current consumption	V _(NRST) = 0 V		1		μΑ
	Standby current consumption, regulator disabled	V _(NRST) = 1.8 V		6		μΑ
	Active current consumption during PFM operation	V _(NRST) = 1.8 V, I _{OUT} = 0 mA, not switching		71		μA
	Active current consumption during PWM operation	V _(NRST) = 1.8 V, I _{OUT} = 0 mA		18		mA

Product Folder Links: LP8758-B0

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$, specified $V_{(VANA)}$, V_{IN} , $V_{(NRST)}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{(VANA)} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted.(1)(2)

noteu.						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL I	INPUT SIGNALS NRST, ENx, SCL	., SDA				
V_{IL}	Input low level				0.4	V
V _{IH}	Input high level		1.2			V
V _{HYS}	Hysteresis of Schmitt trigger inputs (SCL, SDA)		10	80	160	mV
	ENx pulldown resistance	ENx_PD = 1		500		kΩ
	NRST pulldown resistance	Always present	800	1200	1700	kΩ
DIGITAL (OUTPUT SIGNALS nINT, SDA					
V _{OL}	Output low level	I _{SOURCE} = 2 mA			0.4	V
R _P	External pullup resistor for nINT	To VIO Supply		10		kΩ
ALL DIGI	TAL INPUTS		•		*	
I _{LEAK}	Input current	All logic inputs over pin voltage range	-1		1	μΑ

7.6 I²C Serial Bus Timing Parameter

See⁽¹⁾ and Figure 1.

			MIN N	IAX	UNIT	
		Standard mode		100	kHz	
		Fast mode		400	kHz	
f_{SCL}	Serial clock frequency	Fast mode +		1	MHz	
		High-speed mode, C _b = 100 pF		3.4	MHz	
		High-speed mode, C _b = 400 pF		1.7	MHz	
		Standard mode	4.7			
		Fast mode	1.3		μs	
t _{LOW}	SCL low time	Fast mode +	0.5			
		High-speed mode, C _b = 100 pF	160	160		
		High-speed mode, C _b = 400 pF	320		ns	
		Standard mode	4			
		Fast mode	0.6			
t _{HIGH}	SCL high time	Fast mode +	0.26			
		High-speed mode, $C_b = 100 \text{ pF}$ 60			ns	
		High-speed mode, C _b = 400 pF	120	20		
		Standard mode	250			
	Data astur tima	Fast mode	100			
t _{SU;DAT}	Data setup time	Fast mode +	50		ns	
		High-speed mode	10			
		Standard mode	0 3	3.45		
		Fast mode	0	0.9	μs	
HD;DAT	Data hold time	Fast mode +	0			
		High-speed mode, C _b = 100 pF	0	70		
		High-speed mode, C _b = 400 pF	0	150	ns	

Product Folder Links: LP8758-B0

(1) C_b refers to the capacitance of one bus line. C_b is expressed in pF units.

I²C Serial Bus Timing Parameter (continued)

See⁽¹⁾ and Figure 1.

			MIN	MAX	UNIT	
		Standard mode	4.7			
	Setup time for a start or	Fast mode	0.6		μs	
SU;STA	a repeated start condition	Fast mode +	0.26			
		High-speed mode	160		ns	
		Standard mode	4			
	Hold time for a start or a	Fast mode	0.6		μs	
HD;STA	repeated start condition	Fast mode +	0.26			
		High-speed mode	160		ns	
		Standard mode	4.7			
BUF	Bus free time between a stop and start condition	Fast mode	1.3		μs	
	Stop and Start condition	Fast mode +	0.5			
		Standard mode	4			
	Setup time for a stop	Fast mode	0.6		μs	
SU;STO	condition	Fast mode +	0.26			
		High-speed mode	160		ns	
		Standard mode		1000		
		Fast mode	20+0.1 C _b	300		
rDA	Rise time of SDA signal	Fast mode +		120	ns	
		High-speed mode, C _b = 100 pF	10	80		
		High-speed mode, C _b = 400 pF	20	160		
		Standard mode		250		
fDA		Fast mode	20+0.1 C _b	250		
	Fall time of SDA signal	Fast mode +	20+0.1 C _b	120	ns	
		High-speed mode, C _b = 100 pF	10	80		
		High-speed mode, C _b = 400 pF	20	160		
		Standard mode		1000	ns	
		Fast mode	20+0.1 C _b	300		
·CL	Rise time of SCL signal	Fast mode +		120		
		High-speed Mode, C _b = 100 pF	10	40		
		High-speed Mode, C _b = 400 pF	20	80		
		Standard mode		1000		
	Rise time of SCL signal	Fast mode	20+0.1 C _b	300		
rCL1	after a repeated start condition and after an	Fast mode +		120	ns	
	acknowledge bit	High-speed mode, C _b = 100 pF	10	80		
	-	High-speed mode, C _b = 400 pF	20	160		
		Standard mode		300		
		Fast mode	20+0.1 C _b	300		
CL	Fall time of a SCL signal	Fast mode +	20+0.1 C _b	120	ns	
	-	High-speed mode, C _b = 100 pF	10	40		
		High-speed mode, C _b = 400 pF	20	80		
b	Capacitive load for each bus line (SCL and SDA)			400	pF	
	Pulse width of spike	Fast mode, fast mode +		50		
SP	suppressed in SCL and SDA lines (spikes that are less than the indicated width are suppressed)			10	ns	

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

7.7 Switching Characteristics

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$, specified $V_{\text{(VANA)}}$, V_{IN} , $V_{\text{(NRST)}}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{\text{(VANA)}} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
$f_{\sf SW}$	Switching frequency, PWM mode		2.7	3	3.3	MHz	
	Maximum switching	V _{OUT} ≥ 0.6 V	2.7	3	3.3		
f_{SW-MAX}	frequency, PWM mode Automatically limited to smaller of f_{SW} and f_{SW-MAX}	V _{OUT} < 0.6 V	1.8	2	2.2	MHz	
	Regulator start-up time (soft start)	From ENx to V_{OUT} = 0.225 V (slew-rate control begins), C_{OUT_TOTAL} = 88 μF , no load		90		μs	
		SLEW_RATEx[2:0] = 000, V _{OUT} ≥ 0.5 V	-15%	30	15%		
		SLEW_RATEx[2:0] = 001, V _{OUT} ≥ 0.5 V	-15%	15	15%		
		SLEW_RATEx[2:0] = 010, V _{OUT} ≥ 0.5 V	-15%	10	15%		
	Output valtage class rate (2)	SLEW_RATEx[2:0] = 011, V _{OUT} ≥ 0.5 V	-15%	7.5	15%	m)//a	
	Output voltage slew-rate (2)	SLEW_RATEx[2:0] = 100, V _{OUT} ≥ 0.5 V	-15%	3.8	15%	mV/µs	
		SLEW_RATEx[2:0] = 101, V _{OUT} ≥ 0.5 V	-15%	1.9	15%		
		SLEW_RATEx[2:0] = 110, V _{OUT} ≥ 0.5 V	-15%	0.94	15%		
		SLEW_RATEx[2:0] = 111, V _{OUT} ≥ 0.5 V	-15%	0.47	15%		
	Load current measurement time	PFM mode (automatically changing to PWM mode for the measurement)		50		μs	
	unc	PWM mode		4		I	

Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified, but do represent the most likely norm.

The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.

Figure 1. I²C Timing

Copyright © 2015-2016, Texas Instruments Incorporated

TEXAS INSTRUMENTS

7.8 Typical Characteristics

Unless otherwise specified: $T_A = 25$ °C, $V_{IN} = 3.7$ V, $f_{SW} = 3$ MHz.

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The LP8758 is a high-efficiency, high-performance power supply device with four step-down DC-DC converter cores. The cores are configured for a single 4-phase configuration. The device delivers 0.5-V to 3.36-V regulated voltage rail from 2.5-V to 5.5-V battery or supply voltage to portable devices such as cell phones, tablets, and PDAs.

There are two modes of operation for the converter, depending on the output current required: pulse-width modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load currents of approximately 400 mA or higher. When operating in PWM mode the phases are automatically added/shedded based on the load current level. Lighter output current loads will cause the converter to automatically switch into PFM mode for reduced current consumption and a longer battery life when forced PWM mode is disabled. The forced multi-phase mode can be enabled for highest transient performance.

Additional features include soft-start, undervoltage lockout, overload protection, thermal warning, and thermal shutdown.

8.1.1 Buck Information

The LP8758 has four integrated high-efficiency buck converter cores. The cores are designed for flexibility; most of the functions are programmable, thus giving a possibility to optimize the regulator operation for each application.

8.1.1.1 Operating Modes

- OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor.
- PWM: Converter operates in buck configuration with fixed switching frequency.
- PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current
 is discontinuous.

8.1.1.2 Features

- Output voltage
- Forced PWM operation
- Forced multi-phase operation (forces also the PWM operation)
- Switch current limit
- Output voltage slew rate
- Enable and disable delays

8.1.1.3 Programmability

The following parameters can be programmed via registers:

- DVS support with programmable slew-rate
- · Automatic mode control based on the loading
- Synchronous rectification
- Current mode loop with PI compensator
- · Optional spread spectrum technique to reduce EMI
- Soft start
- Power good flag with maskable interrupt
- Phase control for optimized EMI
- Average output current sensing (for PFM entry, phase shedding/adding, and load current measurement)
- Current balancing between the phases of the converter
- Differential voltage sensing from point of the load
- Dynamic phase shedding/adding, each output being phase shifted

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Multi-Phase DC-DC Converters

8.3.1.1 Overview

A multi-phase synchronous buck converter offers several advantages over a single power stage converter. For application processor power delivery, lower ripple on the input and output currents and faster transient response to load steps are the most significant advantages. Also, since the load current is evenly shared among multiple channels, the heat generated is greatly reduced for each channel due to the fact that power loss is proportional to square of current. Physical size of the output inductor shrinks significantly due to this heat reduction. A block diagram of a single core is shown in Figure 7.

Interleaving switching action of the converters and channels in a four-phase configuration is illustrated in Figure 8.

Figure 7. Detailed Block Diagram Showing One Core

Figure 8. PWM Timings and Inductor Current Waveforms in 4-phase Configuration (1)

8.3.1.2 Multi-Phase Operation and Phase Adding/Shedding

Under heavy load conditions, the 4-phase converter switches each channel 90° apart. As a result, the 4-phase converter has an effective ripple frequency four times greater than the switching frequency of any one phase. However, the parallel operation decreases the efficiency at light load conditions. In order to overcome this operational inefficiency, the LP8758 can change the number of active phases to optimize efficiency for the variations of the load. This is called phase adding/shedding. The concept is illustrated below in Figure 9.

The converter can be forced to multi-phase operation by the BUCK0_CTRL1.BUCK0_FPWM_MP bit. If the regulator operates in forced multi-phase mode the forced PWM operation is automatically used. If the multi-phase operation is not forced, the number of phases are added and shedded automatically to follow the required output current.

(1) Graph is not in scale and is for illustrative purposes only.

BEST EFFICIENCY OBTAINED WITH

Figure 9. Multi-Phase Buck Converter Efficiency vs Number of Phases -All Converters in PWM Mode (2)

8.3.1.3 Transition Between PWM and PFM Modes

Normal PWM mode operation with phase-adding or phase-shedding optimizes efficiency at mid-to-full load at the expense of light-load efficiency. The LP8758 converter operates in PWM mode at load current of about 400 mA or higher. At lighter load current levels the device automatically switches into PFM mode for reduced current consumption when Forced PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is achieved over a wide output-load current range.

8.3.1.4 Multi-Phase Switcher Configurations

In the multi-phase configuration the control of the multi-phase regulator settings is done using the control registers of the master buck. The following slave registers are ignored:

- BUCKx_CTRL1
- BUCKx_CTRL2, except ILIMx[2:0] bits
- interrupt bits related to the slave buck, except BUCKx_ILIM_INT

Graph is not in scale and is for illustrative purposes only. (2)

8.3.1.5 Buck Converter Load Current Measurement

Buck load current can be monitored via I²C registers. The monitored buck converter is selected with the SEL_I_LOAD_LOAD_CURRENT_BUCK_SELECT[1:0] register bits. A write to this selection register starts a current measurement sequence. The measurement sequence is typically 50 µs long. The LP8758 device can be configured to give out an interrupt INT_TOP.I_LOAD_READY after the load current measurement sequence is finished. Load current measurement interrupt can be masked with TOP_MASK.I_LOAD_READY_MASK bit. The measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8] the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the measurement is 20.46 A. The measured current is the total value of the master and slave phases.

8.3.1.6 Spread-Spectrum Mode

Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add EMI-filters and shields to the boards. The LP8758's register selectable spread-spectrum mode minimizes the need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency varies randomly by ±5% (depending on selected switching frequency) about the center frequency, reducing the EMI emissions radiated by the converter and associated passive components and PCB traces (see Figure 10). This feature is enabled with the CONFIG.EN_SPREAD_SPEC bit, and it affects all the buck cores.

Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread spectrum architecture of the LP8758 spreads that energy over a large bandwidth.

Figure 10. Spread-Spectrum Modulation

8.3.2 Power-Up

The power-up sequence for the LP8758 is as follows:

- VANA (and VIN_Bx) reach min recommended levels (V_(VANA) > VANA_{UVLO}).
- NRST is set to high level. This initiates power-on-reset (POR), OTP reading and enables the system I/O interface. The I²C host allows at least 1.2 ms before writing or reading data to the LP8758.
- Device enters STANDBY mode.
- The host can change the default register setting by I²C if needed.
- The regulator can be enabled/disabled by ENx pin(s) and by I²C interface.

8.3.3 Regulator Control

8.3.3.1 Enabling and Disabling Regulator

The regulator can be enabled when the device is in STANDBY state. There are two ways for enable and disable the regulator:

- Using BUCK0_CTRL1.EN_BUCK0 register bit (BUCK0_CTRL1.EN_PIN_CTRL0 register bit is '0').
- Using EN1/2 control pins (BUCK0_CTRL1.EN_BUCK0 register bit is '1' AND BUCK0 CTRL1.EN PIN CTRL0 register bit is '1').

If the EN1/2 control pins are used for enable and disable then the delay from the control signal rising edge to startup is set by BUCK0_DELAY.BUCK0_STARTUP_DELAY[3:0] bits and the delay from control signal falling edge to shutdown is set by BUCK0_DELAY.BUCK0_SHUTDOWN_DELAY[3:0] bits. The delays are valid only for EN1/2 signal and not for control with BUCK0_CTRL1.EN_BUCK0 bit.

The control of the regulator (with 0 ms delays) is shown in Table 1. The multi-phase regulator is controlled with registers of the master phase.

					_			
CONTROL METHOD	ROW	EN_BUCKx0	BUCK0_CTRL1 EN_PIN_CTRL0	BUCK0_CTRL1 EN_PIN_SELECT0	BUCK0_CTRL1 EN_ROOF_FLOOR0	EN1 PIN	EN2 PIN	BUCK0 OUTPUT VOLTAGE
Enable/disable	1	0	Don't Care	Don't Care	Don't Care	Don't Care	Don't Care	Disabled
control with EN_BUCK0 bit	2	1	0	Don't Care	Don't Care	Don't Care	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Enable/disable control with EN1 pin	3	1	1	0	0	Low	Don't Care	Disabled
	4	1	1	0	0	High	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Enable/disable	5	1	1	1	0	Don't Care	Low	Disabled
control with EN2 pin	6	1	1	1	0	Don't Care	High	BUCK0_VOUT.BUCK0_VSET[7:0]
Roof/floor control with EN1	7	1	1	0	1	Low	Don't Care	BUCK0_FLOOR_VOUT.BUCK0_F LOOR_VSET[7:0]
pin	8	1	1	0	1	High	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Roof/floor control with EN2	9	1	1	1	1	Don't Care	Low	BUCK0_FLOOR_VOUT.BUCK0_F LOOR_VSET[7:0]
pin	10	1	1	1	1	Don't Care	High	BUCK0_VOUT.BUCK0_VSET[7:0]

Table 1. Regulator Control

The following configuration allows the enable/disable control using ENx pin:

- BUCK0 CTRL1.EN BUCK0 = 1
- BUCK0_CTRL1.EN_PIN_CTRL0 = 1
- BUCK0_CTRL1.EN_ROOF_FLOOR0 = 0
- BUCK0 VOUT.BUCK0 VSET[7:0] = Required voltage when ENx is high
- The enable pin for control is selected with BUCK0_CTRL1.EN_PIN_SELECT0

When the ENx pin is low, Table 1 row 3 (or 5) is valid, and the regulator is disabled. By setting ENx pin high, Table 1 row 4 (or 6) is valid, and the regulator is enabled with required voltage.

If the regulator is enabled all the time, and the ENx pin controls selection between two voltage level, the following configuration is used:

- BUCK0_CTRL1.EN_BUCK0 = 1
- BUCK0 CTRL1.EN PIN CTRL0 = 1
- BUCK0_CTRL1.EN_ROOF_FLOOR0 = 1
- BUCK0_VOUT.BUCK0_VSET[7:0] = Required voltage when ENx is high
- The enable pin for control is selected with BUCK0_CTRL1.EN_PIN_SELECT0

When the ENx pin is low, Table 1 row 7(or 9) is valid, and the regulator is enabled with a voltage defined by BUCK0_FLOOR_VOUT.BUCK0_FLOOR_VSET[7:0] bits. Setting the ENx pin high, Table 1 row 8 (or 10) is valid, and the regulator is enabled with a voltage defined by BUCK0_VOUT.BUCK0_VSET[7:0] bits.

If the regulator is controlled by I²C writings, the BUCK0_CTRL1.EN_PIN_CTRL0 bit is set to 0. The enable/disable is controlled by the BUCK0_CTRL1.EN_BUCK0 bit, and when the regulator is enabled, the output voltage is defined by the BUCK0_VOUT.BUCK0_VSET[7:0] bits. The Table 1 rows 1 and 2 are valid for I²C controlled operation (ENx pins are ignored).

The regulator is enabled by the ENx pin or by I²C writing as shown in Figure 11. The soft-start circuit limits the inrush current during start-up. Output voltage increase rate is around 30 mV/µsec during soft-start. When the output voltage rises to approximately 0.3 V, the output voltage becomes slew-rate controlled. If there is a short circuit at the output, and the output voltage does not increase above a 0.35-V level in 1 ms, the regulator is disabled, and interrupt is set. When the output voltage reaches the powergood threshold level the INT_BUCK_0_1.BUCK0_PG_INT interrupt flag is set. The powergood interrupt flag can be masked using BUCK_0_1_MASK.BUCK0_PG_MASK bit.

The ENx input pins have integrated pull-down resistors. The pull-down resistors are enabled by default and host can disable those with CONFIG.ENx_PD bits.

Figure 11. Regulator Enable and Disable

8.3.3.2 Changing Output Voltage

The regulator's output voltage can be changed by the ENx pin (voltage levels defined by the BUCK0_VOUT and BUCK0 FLOOR VOUT registers) or by writing to the BUCK0 VOUT and BUCK0 FLOOR VOUT registers. The change is always slew-rate controlled, and the slew-rate is defined BUCKx CTRL2.SLEW RATE[2:0] bits. During voltage change the Forced PWM mode is used automatically. If the multi-phase operation is forced by the BUCK0_CTRL1. BUCK0_FPWM MP bit, the regulator operates in multi-phase mode (four phases active). If the multi-phase operation is not forced, the number of phases are added and shedded automatically to follow the required slew rate. When the programmed output voltage is achieved, the mode becomes the one defined by load current, and the BUCKO CTRL1.BUCKO FPWM and BUCK0_CTRL1.BUCK0_FPWM_MP bits.

Figure 12. Regulator Output Voltage Change

8.3.4 Device Reset Scenarios

There are three reset methods implemented on the LP8758:

- Software reset with RESET.SW_RESET register bit
- · Reset from low logic level of NRST signal
- Undervoltage lockout (UVLO) reset from VANA supply

An SW reset occurs when RESET.SW_RESET bit is written '1'. The bit is automatically cleared after writing. This event disables the regulator immediately, resets all the register bits to the default values and OTP bits are loaded (see Figure 14). I²C interface is not reset during software reset.

If VANA supply voltage falls below UVLO threshold level or NRST signal is set low, then the regulator is disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage is above UVLO threshold level and NRST signal rises above threshold level an internal power-on reset (POR) occurs. OTP bits are loaded to the registers, and a start-up is initiated according to the register settings.

8.3.5 Diagnosis and Protection Features

The LP8758 is capable of providing three levels of protection features:

- · Warnings for diagnosis which sets interrupt;
- Protection events which are disabling the regulator; and
- Faults which are causing the device to shutdown.

When the device detects warning/protection condition(s), the LP8758 sets the flag bits indicating what protection or warning conditions have occurred, and the nINT pin will be pulled low. nINT will be released again after a clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.

When a fault is detected, it is indicated by a INT_TOP.RESET_REG interrupt flag after next start-up.

Table 2. Summary of Interrupt Signals

EVENT	RESULT	INTERRUPT REGISTER AND BIT	INTERRUPT MASK	STATUS BIT	RECOVERY / INTERRUPT CLEAR
Current limit triggered (20 µs debounce)	No effect	INT_TOP.INT_BUCKx = 1 INT_BUCKx.BUCKx_ILIM_I NT = 1	BUCKx_MASK.BUCKx_ILI M_MASK	BUCKx_STAT.BUCKx_IL IM_STAT	Write 1 to INT_BUCKx.BUCKx_ILI M_INT bit Interrupt is not cleared if current limit is active
Short circuit (V _{OUT} < 0.35 V at 1 ms after enable) or Overload (V _{OUT} decreasing below 0.35V during operation, 1 ms debounce)	Regulator disable	INT_TOP.INT_BUCK0 = 1 INT_BUCK_0_1.BUCK0_SC _INT = 1	N/A	N/A	Write 1 to INT_BUCK_0_1.BUCK0_ SC_INT bit
Thermal Warning	No effect	INT_TOP.TDIE_WARN = 1	TOP_MASK.TDIE_WARN _MASK	TOP_STAT.TDIE_WARN _STAT	Write 1 to INT_TOP.TDIE_WARN bit Interrupt is not cleared if temperature is above thermal warning level
Thermal Shutdown	Regulator disabled	INT_TOP.TDIE_SD = 1	N/A	TOP_STAT.TDIE_SD_S TAT	Write 1 to INT_TOP.TDIE_SD bit Interrupt is not cleared if temperature is above thermal shutdown level
Powergood, output voltage reaches the programmed value	No effect	INT_TOP.INT_BUCK0 = 1 INT_BUCK_0_1.BUCK0_PG _INT = 1	BUCK_0_1_MASK.BUCK0 _PG_MASK	BUCK_0_1_STAT.BUCK 0_PG_STAT	Write 1 to INT_BUCK_0_1.BUCK0_ PG_INT bit
Load current measurement ready	No effect	INT_TOP.I_LOAD_READY = 1	TOP_MASK.I_LOAD_REA DY_MASK	N/A	Write 1 to INT_TOP.I_LOAD_REA DY bit
Start-up (NRST rising edge)	Device ready for operation, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit
Glitch on supply voltage and UVLO triggered (VANA falling and rising)	Immediate shutdown followed by powerup, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit
Software requested reset	Immediate shutdown followed by powerup, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit

8.3.5.1 Warnings for Diagnosis (Interrupt)

8.3.5.1.1 Output Current Limit

The buck regulators have programmable output peak current limits. The limits are individually programmed for all buck regulators with BUCKx_CTRL2.ILIMx[2:0] bits. The current limit settings of master and slave regulators used for the same output voltage rail must be identical. If the load current is increased so that the current limit is triggered, the regulator continues to regulate to the limit current level (current peak regulation). The voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20 µs, the LP8758 device sets the INT_BUCKx_BUCKx_ILIM_INT bit and pulls the nINT pin low. The host processor can read BUCKx_STAT.BUCKx_ILIM_STAT bits to see if the regulator is still in peak current regulation mode.

If the load is so high that the output voltage decreases below a 350-mV level, the LP8758 device disables the regulator and sets the INT_BUCK_0_1.BUCK_0_SC_INT bit. In addition the BUCK_0_1_STAT.BUCK_0_STAT bit is set to 0. The interrupt is cleared when the host processor writes 1 to INT_BUCK_0_1.BUCK_0_SC_INT bit. The overload situation is shown in Figure 13.

Figure 13. Overload Situation

8.3.5.1.2 Thermal Warning

The LP8758 device includes protection feature against over-temperature by setting an interrupt for host processor. The threshold level of the thermal warning is selected with CONFIG.TDIE WARN LEVEL bit.

If the LP8758 device temperature increases above thermal warning level the device sets INT_TOP.TDIE_WARN bit and pulls nINT pin low. The status of the thermal warning can be read from TOP_STAT.TDIE_WARN_STAT bit and the interrupt is cleared by writing 1 to INT_TOP.TDIE_WARN bit.

8.3.5.2 Protection (Regulator Disable)

If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal shutdown, or undervoltage lockout), the output power FETs are set to high-impedance mode, and the output pull-down resistor is enabled (if enabled with BUCKx_CTRL1.EN_RDISx bits). The turn-off time of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated pulldown resistor.

8.3.5.2.1 Short-Circuit and Overload Protection

A short-circuit protection feature allows the LP8758 to protect itself and external components against short circuit at the output or against overload during start-up. The fault threshold is 350 mV, and the protection is triggered, and the regulator disabled, if the output voltage is below the threshold level 1 ms after the regulator is enabled.

In a similar way the overload situation is protected during normal operation. If the regulator's feedback-pin voltage falls below 0.35 V, and remains below the threshold level for 1 ms, the regulator is disabled.

In the short-circuit and overload situations the INT_BUCK_0_1.BUCK0_SC_INT and the INT_TOP.INT_BUCK0 bits are set to 1, the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0 and the nINT signal is pulled low. The host processor clears the interrupt by writing 1 to the INT_BUCK_0_1.BUCK0_SC_INT bit. Upon clearing the interrupt the regulator makes a new start-up attempt if the enable register bits and/or ENx control signal is valid.

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

8.3.5.2.2 Thermal Shutdown

The LP8758 has an overtemperature protection function that operates to protect itself from short-term misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulator is disabled, the INT_TOP.TDIE_SD bit is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT will be cleared by writing 1 to the INT_TOP.TDIE_SD bit. If the temperature is above thermal shutdown level the interrupt is not cleared. The host can read the status of the thermal shutdown from the TOP_STAT.TDIE_SD_STAT bit. Regulator cannot be enabled as long as the junction temperature is above thermal shutdown level or the thermal shutdown interrupt is pending.

8.3.5.3 Fault (Power Down)

8.3.5.3.1 Undervoltage Lockout

When the input voltage falls below VANA_{UVLO} at the VANA pin, the buck converters are disabled immediately, and the output capacitor is discharged using the pulldown resistor and the LP8758 device enters SHUTDOWN. When VANA voltage is above UVLO threshold level and NRST signal is high, the device powers up to STANDBY state.

If the reset interrupt is unmasked by default (TOP_MASK.RESET_REG_MASK = 0) the INT_TOP.RESET_REG interrupt indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by writing 1 to the INT_TOP.RESET_REG bit. If the host processor reads the INT_TOP.RESET_REG flag after detecting an nINT low signal, it knows that the input supply voltage has been below UVLO level (or the host has requested reset), and the registers are reset to default values.

8.3.6 Digital Signal Filtering

The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter. This results as an accuracy of one clock period for the debounce window.

	<u>~</u>			
EVENT	SIGNAL / SUPPLY	RISING EDGE LENGTH	FALLING EDGE LENGTH	
Enable/Disable/Voltage Select for BUCK0	EN1	3μs ⁽¹⁾	3μs ⁽¹⁾	
Enable/Disable/Voltage Select for BUCK0	EN2	3μs ⁽¹⁾	3μs ⁽¹⁾	
VANA undervoltage lockout	dervoltage lockout VANA		Immediate	
Thermal warning	TDIE_WARN	20 μs	20 μs	
Thermal shutdown	TDIE_SD	20 μs	20 μs	
Current limit	VOUTx_ILIM	20 μs	20 μs	
Overload	FB_B0 - FB_B1, FB_B2 - FB_F3	1 ms	1 ms	
Powergood	FB_B0 - FB_B1, FB_B2 - FB_F3	20 μs	20 μs	

Table 3. Digital Signal Filtering

 $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$

8.4 Device Functional Modes

8.4.1 Modes of Operation

SHUTDOWN: The V_(NRST) voltage is below threshold level. All switch, reference, control and bias circuitry of the LP8758 device are turned off.

WAIT-ON: The V_(NRST) voltage is above threshold level. The reference and bias circuitry are enabled. The regulator of the LP8758 device is turned off.

READ OTP: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. The regulator is disabled and the reference and bias circuitry of the LP8758 are enabled. The OTP bits are loaded to registers.

STANDBY: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. The regulator is disabled and the reference, control and bias circuitry of the LP8758 are enabled. All registers can be read or written by the host processor via the system serial interface. The regulator can be enabled if needed.

ACTIVE: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. At least one regulated DC-DC converter is enabled. All registers can be read or written by the host processor via the system serial interface.

The operating modes and transitions between the modes are shown in Figure 14.

Device Functional Modes (continued)

Figure 14. Device Operation Modes

8.5 Programming

8.5.1 I²C-Compatible Interface

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the devices connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere on the line and remain HIGH even when the bus is idle. The LP8758 supports standard mode (100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).

8.5.1.1 Data Validity

The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state of the data line can only be changed when clock signal is LOW.

Product Folder Links: LP8758-B0

Programming (continued)

Figure 15. Data Validity Diagram

8.5.1.2 Start and Stop Conditions

The LP8758 is controlled via an I²C-compatible interface. START and STOP conditions classify the beginning and end of the I²C session. A START condition is defined as SDA transitions from HIGH to LOW while SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I²C master always generates the START and STOP conditions.

Figure 16. Start and Stop Sequences

The I^2C bus is considered busy after a START condition and free after a STOP condition. During data transmission the I^2C master can generate repeated START conditions. A START and a repeated START condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 17 shows the SDA and SCL signal timing for the I^2C -Compatible Bus. See the I^2C -Compatible Bus. See the I^2C -Compatible Bus.

Figure 17. I²C-Compatible Timing

8.5.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8758 pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8758 generates an acknowledge after each byte has been received.

Programming (continued)

There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

NOTE

If the NRST signal is low during I²C communication the LP8758 device does not drive SDA line. The ACK signal and data transfer to the master is disabled at that time.

After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a "0" indicates a WRITE and a "1" indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

Figure 18. Write Cycle (w = write; SDA = '0'), id = Device Address = 60Hex for LP8758

When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.

Figure 19. Read Cycle (r = read; SDA = '1'), id = Device Address = 60Hex for LP8758

8.5.1.4 PC-Compatible Chip Address

The device address for the LP8758 is 0x60. After the START condition, the I^2C master sends the 7-bit address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address selects the register address to which the data will be written. The third byte contains the data for the selected register.

Here device address is 110 0000Bin = 60Hex.

Figure 20. Device Address

Programming (continued)

8.5.1.5 Auto Increment Feature

The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-bit word is sent to the LP8758, the internal address index counter will be incremented by one and the next register will be written. Table 4 below shows writing sequence to two consecutive registers. Note that the auto-increment feature does not work for read.

Table 4. Auto-Increment Example

Master Action	Start	Device Address = 60H	Write		Register Address		Data		Data		Stop
LP8758 Action				ACK		ACK		ACK		ACK	

8.6 Register Maps

8.6.1 Register Descriptions

The LP8758 is controlled by a set of registers through the system serial interface port. The device registers, their addresses and their abbreviations are listed in Table 5. A more detailed description is given in sections DEV_REV to I_LOAD_1.

Table 5. Summary of LP8758 Control Registers

Addr	Register	Read / Write	D7	D6	D5	D4	D3	D2	D1	D0
0x00	DEV_REV	R	DEVICE	_ID[1:0]	ALL_LA	YER[1:0]		METAL_L	AYER[3:0]	
0x01	OTP_REV	R				OTP_	ID[7:0]			
0x02	BUCK0_ CTRL1	R/W	EN_BUCK0	EN_PIN_ CTRL0	EN_PIN_ SELECT0	EN_ROOF _FLOOR0	EN_RDIS0	Reserved	BUCK0_ FPWM	BUCK0 _FPWM _MP
0x03	BUCK0_ CTRL2	R/W	Rese	Reserved ILIM0[2:0] SLEW_RATE0[2:						0]
0x05	BUCK1_ CTRL2	R/W	Rese	Reserved ILIM1[2:0] Reserved						
0x07	BUCK2_ CTRL2	R/W	Rese	erved		ILIM2[2:0]			Reserved	
0x09	BUCK3_ CTRL2	R/W	Rese	erved		ILIM3[2:0]			Reserved	
0x0A	BUCK0_ VOUT	R/W				BUCK0_\	/SET[7:0]			
0x0B	BUCK0_ FLOOR_ VOUT	R/W				BUCK0_FLO	OR_VSET[7:0]			
0x12	BUCK0_ DELAY	R/W	BU	BUCK0_SHUTDOWN_DELAY[3:0] BUCK0_STARTUP_DELAY[3:0])]
0x16	RESET	R/W		Reserved					SW_ RESET	
0x17	CONFIG	R/W		Reserved				EN2_PD	EN1_PD	EN_ SPREAD _SPEC
0x18	INT_TOP	R/W	INT_ BUCK3	INT_ BUCK2	INT_ BUCK1	INT_ BUCK0	TDIE_SD	TDIE_ WARN	RESET_ REG	I_LOAD_ READY
0x19	INT_BUCK_ 0_1	R/W		Reserved		BUCK1_ ILIM_INT	Reserved	BUCK0_ PG_INT	BUCK0_ SC_INT	BUCK0_ ILIM_INT
0x1A	INT_BUCK_ 2_3	R/W		Reserved		BUCK3_ ILIM_INT		Reserved		BUCK2_ ILIM_INT
0x1B	TOP_ STAT	R		Rese	erved		TDIE_SD _STAT	TDIE_ WARN_ STAT	Rese	erved
0x1C	BUCK_0_1_ STAT	R		Reserved		BUCK1_ ILIM_ STAT	BUCK0_ STAT	BUCK0_ PG_STAT	Reserved	BUCK0_ ILIM_ STAT
0x1D	BUCK_2_3_ STAT	R		Reserved		BUCK3_ ILIM_STAT		Reserved		BUCK2_ ILIM_STAT
0x1E	TOP_ MASK	R/W			Reserved			TDIE_WAR N_MASK	RESET_ REG_MASK	I_LOAD_ READY_ MASK
0x1F	BUCK_0_1_ MASK	R/W		Reserved		BUCK1_ ILIM_ MASK	Reserved	BUCK0_ PG_MASK	Reserved	BUCK0_ ILIM_ MASK
0x20	BUCK_2_3_ MASK	R/W		Reserved		BUCK3_ ILIM_ MASK		Reserved		BUCK2_ ILIM_ MASK
0x21	SEL_I_ LOAD	R/W	Reserved LOAD_CU BUCK_SEL							
0x22	I_LOAD_2	R/W	Reserved BUCK_LOAD 9:							
0x23	I_LOAD_1	R/W				BUCK_LOAD_	CURRENT[7:0]		

Copyright © 2015–2016, Texas Instruments Incorporated

8.6.1.1 DEV_REV

Address: 0x00

D7	D6	D5	D4	D3	D2	D1	D0
DEVICE	_ID[1:0]	ALL_LA	/ER[1:0]		METAL_L	AYER[3:0]	

Bits	Field	Туре	Default	Description
7:6	DEVICE_ID[1:0]	R	00	Device specific ID code.
5:4	ALL_LAYER[1:0]	R	00	Shows the all layer version of the device: 00 - First all layer version 01 - Second all layer version 10 - Third all layer version 11 - Fourth all layer version
3:0	METAL_LAYER [3:0]	R	0001	Shows the metal layer version of the device: 0000 - All layer version 0001 - First metal layer spin 1111 - 15 th metal layer spin

8.6.1.2 OTP_REV

Address: 0x01

D7	D6	D5	D4	D3	D2	D1	D0
			OTP_	ID[7:0]			

Bits	Field	Туре	Default	Description
7:0	OTP_ID[7:0]	R	1011 0000	Identification Code of the OTP EPROM Version.

8.6.1.3 BUCK0_CTRL1

Address: 0x02

D7	D6	D5	D4	D3	D2	D1	D0
EN_BUCK0	EN_PIN_ CTRL0	EN_PIN_ SELECTO	EN_ROOF_ FLOOR0	EN_RDIS0	Reserved	BUCK0_FPWM	BUCK0_FPWM MP

Bits	Field	Туре	Default	Description			
7	EN_BUCK0	R/W	1	Enable BUCK0 regulator: 0 - BUCK0 regulator is disabled 1 - BUCK0 regulator is enabled.			
6	EN_PIN_CTRL0	R/W	1	Enable EN1/2 pin control for BUCK0: 0 - only EN_BUCK0 bit controls BUCK0 1 - EN_BUCK0 bit AND EN1/2 pin control BUCK0.			
5	EN_PIN_SELECT0	R/W	0	Select which ENx pin controls BUCK0 if EN_PIN_CTRL0 = 1: 0 - EN1 pin 1 - EN2 pin.			
4	EN_ROOF_ FLOOR0	R/W	0	Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL0 = 1: 0 - Enable/Disable (1/0) control 1 - Roof/Floor (1/0) control.			
3	EN_RDIS0	R/W	1	Enable output discharge resistor when BUCK0 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.			
2	Reserved	R/W	0				
1	BUCK0_FPWM	R/W	0	Forces the BUCK0 regulator to operate in PWM mode: 0 - Automatic transitions between PFM and PWM modes (AUTO mode). 1 - Forced to PWM operation.			
0	BUCKO_FPWM _MP	R/W	0	Forces the BUCK0 regulator to operate always in multi-phase and forced PWM operation mode: 0 - Automatic phase adding and shedding. 1 - Forced to multi-phase operation, 2 phases in the 2-phase configuration, 3 phases in the 3-phase configuration and 4 phases in the 4-phase configuration.			

8.6.1.4 BUCK0_CTRL2

Address: 0x03

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		ILIM0[2:0]			SLEW_RATE0[2:0]]

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM0[2:0]	R/W	111	Sets the switch current limit of BUCK0. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 111 - 5.0 A (Default)
2:0	SLEW_RATE0[2:0]	R/W	010	Sets the output voltage slew rate for BUCK0 regulator (rising and falling edges): 000 - 30 mV/µs 001 - 15 mV/µs 010 - 10 mV/µs (Default) 011 - 7.5 mV/µs 100 - 3.8 mV/µs 101 - 1.9 mV/µs 111 - 0.94 mV/µs 111 - 0.47 mV/µs

8.6.1.5 BUCK1_CTRL2

Address: 0x05

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		ILIM1[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM1[2:0]	R/W	111	Sets the switch current limit of BUCK1. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.6 BUCK2_CTRL2

Address: 0x07

D7 D6	D5	D4	D3	D2	D1	D0
Reserved		ILIM2[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM2[2:0]	R/W	111	Sets the switch current limit of BUCK2. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.7 BUCK3_CTRL2

Address: 0x09

D7	D6	D5	D4	D3	D2	D1	D0
Rese	rved		ILIM3[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM3[2:0]	R/W	111	Sets the switch current limit of BUCK3. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.8 BUCK0_VOUT

Address: 0x0A

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK0_	VSET[7:0]			

Bits	Field	Туре	Default	Description
7:0	BUCK0_VSET[7:0]	R/W	0110 0001	Sets the output voltage of BUCK0 regulator 0.5 V - 0.73 V, 10 mV steps 0000 0000 - 0.5V 0001 0111 - 0.73 V 0.73 V - 1.4 V, 5 mV steps 0001 1000 - 0.735 V 1001 1101 - 1.4 V 1.4 V - 3.36 V, 20 mV steps 1001 1110 - 1.42 V 1111 1111 - 3.36 V

8.6.1.9 BUCK0_FLOOR_VOUT

Address: 0x0B

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK0_	_FLOOR			
			_VSE	T[7:0]			

Bits	Field	Туре	Default	Description
7:0	BUCK0_FLOOR _VSET[7:0]	R/W	0000 0000	Sets the output voltage of BUCK0 regulator when Floor state is used 0.5 V - 0.73 V, 10 mV steps 0000 0000 - 0.5V 0001 0111 - 0.73 V 0.73 V - 1.4 V, 5 mV steps 0001 1000 - 0.735 V 1001 1101 - 1.4 V 1.4 V - 3.36 V, 20 mV steps 1001 1111 - 1.42 V 1111 1111 - 3.36 V

8.6.1.10 BUCKO_DELAY

Address: 0x12

D7	D6	D5	D4	D3	D2	D1	D0
	BUCK0_SHUTD(OWN_DELAY[3:0]			BUCK0_START	UP_DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	BUCK0_ SHUTDOWN_ DELAY[3:0]	R/W	0000	Shutdown delay of BUCK0 from falling edge of ENx signal: 0000 - 0 ms 0001 - 1 ms 1111 - 15 ms
3:0	BUCK0_ STARTUP_ DELAY[3:0]	R/W	0000	Start-up delay of BUCK0 from rising edge of ENx signal: 0000 - 0 ms 0001 - 1 ms 1111 - 15 ms

8.6.1.11 RESET

Address: 0x16

 D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

 Reserved
 SW_RESET

Bits	Field	Туре	Default	Description
7:1	Reserved	R/W	000 0000	
0	SW_RESET	R/W	0	Software commanded reset. When written to 1, the registers will be reset to default values, OTP memory is read, and the I ² C interface is reset. The bit is automatically cleared.

8.6.1.12 CONFIG

Address: 0x17

D7	D6	D5	D4	D3	D2	D1	D0	
	Rese	erved		TDIE_WARN_ LEVEL	EN2_PD	EN1_PD	EN_SPREAD _SPEC	

Bits	Field	Туре	Default	Description
7:4	Reserved	R/W	0000	
3	TDIE_WARN_ LEVEL	R/W	0	Thermal warning threshold level. 0 - 125°C 1 - 105°C.
2	EN2_PD	R/W	1	Selects the pull down resistor on the EN2 input pin. 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
1	EN1_PD	R/W	1	Selects the pull down resistor on the EN1 input pin. 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
0	EN_SPREAD _SPEC	R/W	0	Enable spread spectrum feature: 0 - Disabled 1 - Enabled

8.6.1.13 INT_TOP

Address: 0x18

D7	D6	D5	D4	D3	D2	D1	D0
INT_BUCK3	INT_BUCK2	INT_BUCK1	INT_BUCK0	TDIE_SD	TDIE_WARN	RESET_REG	I_LOAD_ READY

Bits	Field	Туре	Default	Description
7	INT_BUCK3	R	0	Interrupt indicating that output BUCK3 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK3 register. This bit is cleared automatically when INT_BUCK3 register is cleared to 0x00.
6	INT_BUCK2	R	0	Interrupt indicating that output BUCK2 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK2 register. This bit is cleared automatically when INT_BUCK2 register is cleared to 0x00.
5	INT_BUCK1	R	0	Interrupt indicating that output BUCK1 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK1 register. This bit is cleared automatically when INT_BUCK1 register is cleared to 0x00.
4	INT_BUCK0	R	0	Interrupt indicating that output BUCK0 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK0 register. This bit is cleared automatically when INT_BUCK0 register is cleared to 0x00.
3	TDIE_SD	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal shutdown level. The regulator has been disabled if it was enabled. The regulator cannot be enabled if this bit is active. The actual status of the thermal warning is indicated by TOP_STAT.TDIE_SD_STAT bit. Write 1 to clear interrupt.

Bits	Field	Туре	Default	Description
2	TDIE_WARN	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal warning level. The actual status of the thermal warning is indicated by TOP_STAT.TDIE_WARN_STAT bit. Write 1 to clear interrupt.
1	RESET_REG	R/W	0	Latched status bit indicating that either startup (NRST rising edge) has done, VANA supply voltage has been below undervoltage threshold level or the host has requested a reset (RESET.SW_RESET). The regulator has been disabled, and registers are reset to default values and the normal startup procedure is done. Write 1 to clear interrupt.
0	I_LOAD_READY	R/W	0	Latched status bit indicating that the load current measurement result is available in I_LOAD_1 and I_LOAD_2 registers. Write 1 to clear interrupt.

8.6.1.14 INT_BUCK_0_1

Address: 0x19

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved			Reserved	BUCK0_PG	BUCK0_SC	BUCK0_ILIM
			_INT		_INT	_INT	_INT

Bits	Field	Type	Default	Description
7:5	Reserved	R/W	000	
4	BUCK1_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.
3	Reserved	R/W	0	
2	BUCK0_PG_INT	R/W	0	Latched status bit indicating that BUCK0 output voltage has reached powergood threshold level. Write 1 to clear.
1	BUCK0_SC_INT	R/W	0	Latched status bit indicating that the BUCK0 output voltage has fallen below 0.35V level during operation or BUCK0 output didn't reach 0.35 V level in 1 ms from enable. Write 1 to clear.
0	BUCK0_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.

8.6.1.15 INT_BUCK_2_3

Address: 0x1A

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK3_ILIM INT		Reserved		BUCK2_ILIM _INT

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK3_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.
3:1	Reserved	R/W	000	
0	BUCK2_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.

8.6.1.16 TOP_STAT

Address: 0x1B

D7	D6	D5	D4	D3	D2	D1	D0
	Res	erved		TDIE_SD STAT	TDIE_WARN _STAT	Res	erved

Bits	Field	Туре	Default	Description
7:4	Reserved	R	0000	
3	TDIE_SD_STAT	R	0	Status bit indicating the status of thermal shutdown: 0 - Die temperature below thermal shutdown level 1 - Die temperature above thermal shutdown level.
2	TDIE_WARN _STAT	R	0	Status bit indicating the status of thermal warning: 0 - Die temperature below thermal warning level 1 - Die temperature above thermal warning level.
1:0	Reserved	R	00	

8.6.1.17 BUCK_0_1_STAT

Address: 0x1C

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK1_ILIM	BUCK0_STAT	BUCK0_PG	Reserved	BUCK0_ILIM
			_STAT		_STAT		_STAT

Bits	Field	Туре	Default	Description
7:5	Reserved	R	000	
4	BUCK1_ILIM _STAT	R	0	Status bit indicating BUCK1 current limit status (raw status) 0 - BUCK1 output current is below current limit level 1 - BUCK1 output current limit is active.
3	BUCK0_STAT	R	0	Status bit indicating the enable/disable status of BUCK0: 0 - BUCK0 regulator is disabled 1 - BUCK0 regulator is enabled.
2	BUCK0_PG_STAT	R	0	Status bit indicating BUCK0 output voltage validity (raw status) 0 - BUCK0 output is above powergood threshold level 1 - BUCK0 output is below powergood threshold level.
1	Reserved	R	0	
0	BUCK0_ILIM _STAT	R	0	Status bit indicating BUCK0 current limit status (raw status) 0 - BUCK0 output current is below current limit level 1 - BUCK0 output current limit is active.

8.6.1.18 BUCK_2_3_STAT

Address: 0x1D

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK3_ILIM _STAT		Reserved		BUCK2_ILIM _STAT

Bits	Field	Туре	Default	Description
7:5	Reserved	R	000	
4	BUCK3_ILIM _STAT	R	0	Status bit indicating BUCK3 current limit status (raw status) 0 - BUCK3 output current is below current limit level 1 - BUCK3 output current limit is active.
3:1	Reserved	R	000	
0	BUCK2_ILIM _STAT	R	0	Status bit indicating BUCK2 current limit status (raw status) 0 - BUCK2 output current is below current limit level 1 - BUCK2 output current limit is active.

8.6.1.19 TOP_MASK

Address: 0x1E

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved			TDIE_WARN	RESET_REG	I_LOAD_
					_MASK	_MASK	READY MASK

Bits	Field	Туре	Default	Description
7:3	Reserved	R/W	0 0000	
2	TDIE_WARN _MASK	R/W	0	Masking for thermal warning interrupt INT_TOP.TDIE_WARN: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect TOP_STAT.TDIE_WARN_STAT status bit.
1	RESET_REG _MASK	R/W	1	Masking for register reset interrupt INT_TOP.RESET_REG: 0 - Interrupt generated 1 - Interrupt not generated.
0	I_LOAD_ READY_MASK	R/W	0	Masking for load current measurement ready interrupt INT_TOP.I_LOAD_READY. 0 - Interrupt generated 1 - Interrupt not generated.

8.6.1.20 BUCK_0_1_MASK

Address: 0x1F

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK1_ILIM _MASK	Reserved	BUCK0_PG _MASK	Reserved	BUCK0_ILIM _MASK

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK1_ILIM _MASK	R/W	1	Masking for BUCK1 current limit detection interrupt INT_BUCK_0_1.BUCK1_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.
3	Reserved	R/W	0	
2	BUCK0_PG_MASK	R/W	0	Masking for BUCK0 power good interrupt INT_BUCK_0_1.BUCK0_PG_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_PG_STAT status bit.
1	Reserved	R	0	
0	BUCK0_ILIM _MASK	R/W	0	Masking for BUCK0 current limit detection interrupt INT_BUCK_0_1.BUCK0_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.

8.6.1.21 BUCK_2_3_MASK

Address: 0x20

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK3_ILIM _MASK		Reserved		BUCK2_ILIM _MASK

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK3_ILIM _MASK	R/W	1	Masking for BUCK3 current limit detection interrupt INT_BUCK_2_3.BUCK3_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_2_3_STAT.BUCK3_ILIM_STAT status bit.
3:1	Reserved	R/W	000	
0	BUCK2_ILIM _MASK	R/W	1	Masking for BUCK2 current limit detection interrupt INT_BUCK_2_3.BUCK2_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_2_3_STAT.BUCK1_ILIM_STAT status bit.

8.6.1.22 SEL_I_LOAD

Address: 0x21

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved					LOAD_CURI	RENT_BUCK
						_SELE	CT[1:0]

Bits	Field	Туре	Default	Description
7:2	Reserved	R/W	00 0000	
1:0	LOAD_CURRENT_ BUCK_SELECT [1:0]	R/W	00	Start the current measurement on the selected regulator: 00 - BUCK0 01 - BUCK1 10 - BUCK2 11 - BUCK3 The measurement is started when register is written. If the selected buck is master, the measurement result is a sum current of master and slave bucks. If the selected buck is slave, the measurement result is a current of the selected slave bucks.

8.6.1.23 I_LOAD_2

Address: 0x22

D7	D6	D5	D4	D3	D2	D1	D0
		Rese	erved			BUCK LOAD	CURRENT[9:8]

Bits	Field	Туре	Default	Description
7:2	Reserved	R	00 0000	
1:0	BUCK_LOAD_ CURRENT[9:8]	R	00	This register describes 3 MSB bits of the average load current on selected regulator with a resolution of 20 mA per LSB and max 20 A current.

8.6.1.24 I_LOAD_1

Address: 0x23

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK_LOAD_	CURRENT[7:0]			

www.ti.com

Bits	Field	Туре	Default	Description
7:0	BUCK_LOAD_ CURRENT[7:0]	R	0000 0000	This register describes 8 LSB bits of the average load current on selected regulator with a resolution of 10 mA per LSB and max 20 A current.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LP8758 is a multi-phase step-down converter with four switcher cores bundled together.

9.2 Typical Application

4-Phase configuration

Figure 21. LP8758 Typical Application Circuit

9.2.1 Design Requirements

Table 6. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	2.5 V to 5.5 V
Output voltage	1.1 V
Converter operation mode	Auto mode (PWM-PFM)
Maximum load current	16 A
Inductor current limit	5 A

9.2.2 Detailed Design Procedure

The performance of the LP8758 device depends greatly on the care taken in designing the printed circuit board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended, while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling capacitors must be connected close to the device and between the power and ground pins to support high peak currents being drawn from system power rail during turn-on of the switching MOSFETs. Keep input and output traces as short as possible, because trace inductance, resistance, and capacitance can easily become the performance limiting items. The separate power pins VIN_Bx are not connected together internally. The VIN_Bx power connections shall be connected together outside the package using power plane construction.

9.2.2.1 Application Components

9.2.2.1.1 Inductor Selection

DC bias current characteristics of inductors must be considered. Different manufacturers follow different saturation current rating specifications, so attention must be given to details. DC bias curves should be requested from them as part of the inductor selection process. Minimum effective value of inductance to ensure good performance is 0.22 μ H at 4-A bias current over the inductor's operating temperature range. The inductor's DC resistance should be less than 0.05 Ω for good efficiency at high current condition. The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching frequency usually gives better efficiency at light load to middle load. See Table 7. Shielded inductors are preferred as they radiate less noise.

MANUFACTURER PART NUMBER **DIMENSIONS L×W×H VALUE** DCR (mΩ) (mm) 16 (typ), 21 (max) TOKO DFE252010F-R33M 0.33 µH $2.5 \times 2.0 \times 1.0$ **TDK** VLS252010HBX-R33M 0.33 µH $2.5 \times 2.0 \times 1.0$ 25 (typ), 31 (max) **TDK** VLS252010HBX-R47M $0.47 \mu H$ $2.5 \times 2.0 \times 1.0$ 29 (typ), 35 (max) **TDK** TFM2016GHM-0R47M $0.47 \, \mu H$ $2.0 \times 1.6 \times 1.0$ 46 (max) TOKO DFE322512C R47 0.47 µH $3.2 \times 2.5 \times 1.2$ 21 (typ), 31 (max)

Table 7. Recommended Inductors

9.2.2.1.2 Input Capacitor Selection

A ceramic input capacitor of 10 μ F, 6.3 V is sufficient for most applications. Place the power input capacitor as close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating may be used to improve input voltage filtering. Use X7R or X5R types, do not use Y5V or F. DC bias characteristics of ceramic capacitors must be considered when selecting case sizes like 0402. Minimum effective input capacitance to ensure good performance is 1.9 μ F per buck input at maximum input voltage DC bias including tolerances and over ambient temp range, assuming that there are at least 22 μ F of additional capacitance common for all the power input pins on the system power rail. See Table 8.

The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance (ESR) provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient ripple current rating.

The VANA input is used to supply analog and digital circuits in the device. See recommended components from Table 9 for VANA input supply filtering.

Table 8. Recommended Power Input Capacitors (X5R Dielectric)

MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L×W×H (mm)	VOLTAGE RATING
Murata	GRM188R60J106ME47	10 μF (20%)	0603	$1.6 \times 0.8 \times 0.8$	6.3 V

Table 9. Recommended VANA Supply Filtering Components

MANUFACTURER	PART NUMBER	PART NUMBER VALUE CASE SIZE		DIMENSIONS L×W×H (mm)	VOLTAGE RATING
Samsung	CL03A104KP3NNNC	100 nF (10%)	0201	$0.6 \times 0.3 \times 0.3$	10 V
Murata	GRM033R61A104KE84	100 nF (10%)	0201	$0.6 \times 0.3 \times 0.3$	6.3 V

9.2.2.1.3 Output Capacitor Selection

Use ceramic capacitors, X7R or X5R types; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias curves should be requested from them as part of the capacitor selection process. The output filter capacitor smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and ESL to perform these functions. Minimum effective output capacitance to ensure good performance is 10 μ F per phase at the output voltage DC bias including tolerances and over ambient temp range.

The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its R_{ESR}. The R_{ESR} is frequency dependent (as well as temperature dependent); make sure the value used for selection process is at the switching frequency of the part. See Table 10.

A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as decreases the PFM switching frequency. For most 4-phase applications 4 x 22 μ F 0603 capacitors for C_{OUT} are suitable. A point-of-load (POL) capacitance C_{POL} can be added with remove feedback as shown in Figure 21. Although a converter's loop compensation can be programmed to adapt to virtually several hundreds of microfarads C_{OUT}, it is preferable for C_{OUT} to be < 200 μ F (4-phase configuration). Choosing higher than that is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage ramp, especially for very large (> 100 μ F) output capacitors. For large output capacitors, the output voltage might be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be longer. At shutdown, if the output capacitor is discharged by the internal discharge resistor, more time is required to settle V_{OUT} down as a consequence of the increased time constant.

Table 10. Recommended Output Capacitors (X5R Dielectric)

MANUFACTURER	PART NUMBER	PART NUMBER VALUE CASE SIZE		DIMENSIONS L×W×H (mm)	VOLTAGE RATING
Samsung	CL10A226MP8NUNE	22 µF (20%)	0603	$1.6 \times 0.8 \times 0.8$	10 V
Murata	GRM188R60J226MEA0	22 µF (20%)	0603	1.6 × 0.8 × 0.8	6.3 V

Product Folder Links: *LP8758-B0*

Copyright © 2015-2016, Texas Instruments Incorporated

9.2.3 Application Curves

Unless otherwise specified: $V_{IN}=3.7~V,~V_{OUT}=1~V,~V_{(NRST)}=1.8~V,~T_{A}=25~^{\circ}C,~f_{SW}=3~MHz,~L=330~nH$ (TOKO DFE252010F-R33M), $C_{POL}=22~\mu F.$ Measurements done with connections in Figure 21.

Copyright © 2015–2016, Texas Instruments Incorporated

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Submit Documentation Feedback

Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

10 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply should be well-regulated and able to withstand maximum input current and maintain stable voltage without voltage drop even at load transition condition. The resistance of the input supply rail should be low enough that the input current transient does not cause too high drop in the LP8758 supply voltage that can cause false UVLO fault triggering. If the input supply is located more than a few inches from the LP8758 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

11 Layout

11.1 Layout Guidelines

The high frequency and large switching currents of the LP8758 make the choice of layout important. Good power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and generation and can cause a good design to perform with less-than-expected results. With a range of output currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general PCB design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and current regulation across its intended operating voltage and current range.

- 1. Place C_{IN} as close to the VIN_Bx pin and the PGND_Bxx pin as possible. Route the V_{IN} trace wide and thick to avoid IR drops. The trace between the input capacitor's positive node and LP8758's VIN_Bx pin(s) as well as the trace between the input capacitor's negative node and power PGND_Bxx pin(s) must be kept as short as possible. The input capacitance provides a low-impedance voltage source for the switching converter. The inductance of the connection is the most important parameter of a local decoupling capacitor parasitic inductance on these traces must be kept as tiny as possible for proper device operation.
- 2. The output filter, consisting of L_x and C_{OUTx} , converts the switching signal at SW_Bx to the noiseless output voltage. Place the output filter as close to the device as possible, keeping the switch node small, for best EMI behavior. Route the traces between the LP8758's output capacitors and the load's input capacitors direct and wide to avoid losses due to the IR drop.
- 3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling capacitor as close to the VANA pin as possible. VANA must be connected to the same power node as VIN_Bx pins.
- 4. If the processor load supports remote voltage sensing, connect the LP8758's feedback pins FB_Bx to the respective sense pins on the processor. The sense lines are susceptible to noise. They must be kept away from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I²C. Avoid both capacitive as well as inductive coupling by keeping the sense lines short, direct and close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible. TI recommends running the signal as a differential pair.
- 5. Route PGND_Bxx, VIN_Bx and SW_Bx on thick layers. They must not surround inner signal layers which are not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.

Due to the small package of this converter and the overall small solution size, the thermal performance of the PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures. Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB designs with vias to different planes. This results in reduced junction-to-ambient ($R_{\theta JA}$) and junction-to-board ($R_{\theta JB}$) thermal resistances, thereby reducing the device junction temperature, T_J . Performing a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design process is strongly recommended, using a thermal modeling analysis software.

11.2 Layout Example

- O Via to GND plane
- $\, \circ \,$ Via to V_{IN} plane

Figure 49. LP8758 Board Layout

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:

AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009)

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-May-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LP8758A1B0YFFR	ACTIVE	DSBGA	YFF	35	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	8758A1B0	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-May-2016

PACKAGE MATERIALS INFORMATION

www.ti.com 10-May-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP8758A1B0YFFR	DSBGA	YFF	35	3000	180.0	8.4	2.28	3.03	0.74	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 10-May-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LP8758A1B0YFFR	DSBGA	YFF	35	3000	182.0	182.0	20.0	

YFF (R-XBGA-N35)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.