Si considerino i seguenti dati:

Player	n_i	s_i	pi_i
Baines	415	118	0.289
Barfield	476	117	0.256
Biggio	555	153	0.287
Bonds	519	156	0.297

di p=4 giocatori di baseball, dove n_i e s_i indicano rispettivamente il numero di volte a battuta e il numero di battute valide, mentre π_i indica la vera media battuta (calcolata su tutta la carriera di ciascun giocatore).

Sia Z_i la variabile aleatoria Binomiale $(n_i,\pi_i)/n_i$, e si supponga che Z_1,\ldots,Z_p siano indipendenti.

Si consideri valida la seguente approssimazione

$$X_i = \sqrt{n_i} \arcsin(2Z_i - 1) \approx N(\mu_i, 1)$$

dove $\mu_i = \sqrt{n_i} \arcsin(2\pi_i - 1)$.

- 1. Sia $\hat{\pi}^{\text{MLE}}$ la stima di massima verosimiglianza per $\pi = (\pi_1, \dots, \pi_p)$. Riportare il valore della stima per Barfield.
- 2. Sia $\hat{\pi}^{JS}$ la stima secondo James-Stein per π . Riportare il valore della stima per Barfield.
- 3. Sia $\hat{\pi}^*$ la stima secondo l'oracolo per π (si supponga che l'oracolo conosca il vero valore di $\|\mu\|^2$). Riportare il valore della stima per Barfield.