DS 215: Assignment 2

Full Marks: 100

1. In class, we stated that "if an efficient estimator exists, the maximum likelihood method will produce it". Can you prove that this statement is, in general, true?

15

2. Consider the vector MAP estimator or

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\boldsymbol{x}).$$

Show that this estimator minimizes the Bayes risk for the cost function

$$\mathcal{C}\left(\boldsymbol{\varepsilon}\right) = \left\{ \begin{array}{ll} 1 & \text{when } ||\boldsymbol{\varepsilon}|| > \delta \\ 0 & \text{when } ||\boldsymbol{\varepsilon}|| < \delta \end{array} \right.$$

where $\boldsymbol{\theta}, \hat{\boldsymbol{\theta}} \in \mathbb{R}^p$, $\boldsymbol{\varepsilon} = \boldsymbol{\theta} - \hat{\boldsymbol{\theta}}$, $||\boldsymbol{\varepsilon}||^2 = \sum_{i=1}^p \varepsilon_i^2$, and $\delta \to 0$.

20

3. Consider the signal model:

$$s[n] = \left\{ \begin{array}{ll} A & \text{when } 0 \leq n \leq M-1 \\ -A & \text{when } M \leq n \leq N-1 \end{array} \right.$$

Find the LSE of A and the minimum LS error. Assume that x[n] = s[n] + w[n] for $n = 0, 1, \dots, N-1$ are observed. If now w[n] is WGN with variance σ^2 , find the PDF of the LSE.

20

4. The data x[n] = A + w[n] for $n = 0, 1, \dots, N-1$ are observed. The unknown parameter A is assumed to have a prior PDF:

$$f(A) = \left\{ \begin{array}{ll} \lambda \exp{(-\lambda A)} & \text{when } A \geq 0 \\ 0 & \text{when } A < 0 \end{array} \right.$$

Here $\lambda > 0$, w[n] is WGN with variance σ^2 and is independent of A. Find the MAP estimator of A.

20

5. In fitting a line through experimental data we assume the model

$$x[n] = A + Bn + w[n], \quad -M \le n \le M$$

where w[n] is WGN with variance σ^2 . If we have some prior knowledge of the slope B and intercept A such as

$$\begin{bmatrix} A \\ B \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} A_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{bmatrix} \right),$$

find the MMSE estimator of A and B as well as the minimum Bayesian MSE. Assume that A and B are independent of w[n]. Which parameter will benefit most from the prior knowledge?

25