II. Functional dependencies

D(studentIdnr, studentName, login, branchName, programName, courseCode, courseName, credits, departmentName, capacity, classification, grade, position)

a)

- 1) studentIdnr -> studentName //the students name
- 2) studentIdnr -> login //the students login name
- 3) studentIdnr -> programName //students id should tell you which program that student belongs to
- 4) studentIdnr -> branchName //students id should tell you which branch that student belongs to
- 5) studentIdnr courseCode -> position //the students position in a waiting list for a course (if in a waiting list for that course)
- 6) studentIdnr courseCode -> grade //the students grade for a course (if they have taken that course)
- 7) courseCode -> courseName //each course has a name
- 8) courseCode -> credits //each course gives a certain number of credits
- 9) courseCode -> capacity //if the course has a limited capacity
- 10) courseCode -> departmentName //each course is given by 1 department

//read the Domain Description in task 0 to find the remaining FDs - fråga under handledning

- 11) login -> studentIdnr //each student login is also unique
- 12) courseCode position -> studentIdnr

b)

Schema of the FDs above using **BCNF normalization** by hand:

BCNF Normalisation algorithm

_	_						_
		nor	mal	170	rol	latior	η P·
	ı.	HUUI	HIIAI			ıatıvı	1111

This FD is referred to as a BCNF-violation

Find a non-trivial FD X \rightarrow y such that X⁺ \neq R (X is not a superkey)

If there is no such FD you are done, R is already in BCNF

Otherwise decompose R into R₁(X⁺) and R₂(X \cup (R - X⁺)) and normalize them

Note: R is replaced by R₁ and R₂ (so R is not present in the final schema)

R1 (studentIdnr, login, studentName, programName, branchName)

R2 (studentIdnr, <u>courseCode</u>, courseName, credits, departmentName, capacity, classification, grade, position) **X BCNF VIOLATION**

- **R2_1** (courseCode, courseName, credits, capacity, departmentName) ✓
- R2_2 (studentIdnr, courseCode, classification, grade, position) X BCNF VIOLATION
- R2_2_1 (studentIdnr, courseCode, grade, position) ✓
- R2_2_2 (studentIdnr,courseCode,classification) ✔

Result

- R1 (studentIdnr, login, studentName, programName, branchName)
- R2_1 (courseCode, courseName, credits, capacity, departmentName) ✔
- **R2_2_1** (<u>studentIdnr</u>, <u>courseCode</u>, grade, position) **✓**
- R2_2_2 (<u>studentIdnr</u>, <u>courseCode</u>, <u>classification</u>) ✔

c)

MVD

Course classifications seems like a natural use of MVDs.

Relation **R2_2_2** can be further normalized using **4NF** normalization

R2_2_2 (studentIdnr,courseCode,classification) X 4NF VIOLATION

MVD: courseCode ->-> classification

Result

R2_2_2_1 (courseCode, classification)

R2_2_2_2 (courseCode, studentIdnr)