บทที่ 3

วิธีการดำเนินงาน

ในบทนี้ผู้จัดทำได้อธิบายเกี่ยวกับวิธีการดำเนินงานในการจัดทำโครงงานปริญญา นิพนธ์ โดยได้กล่าวถึง การศึกษาและรวบรวมข้อมูล การศึกษารายละเอียดและทฤษฎีที่เกี่ยวข้อง การวิเคราะห์และออกแบบระบบ จนกระทั้งการพัฒนาระบบ การทดสอบ แก้ไข และปรับปรุง ระบบ

3.1 ขั้นตอนการดำเนินงาน

- 3.1.1 ศึกษารายละเอียดและรวบรวมข้อมูล
- 3.1.2 วิเคราะห์ระบบ
- 3.1.3 ออกแบบโครงสร้างของระบบ
- 3.1.4 พัฒนาระบบและจัดทำเอกสาร
- 3.1.5 ทดสอบ แก้ใจ และปรับปรุงระบบ
- 3.1.6 สรุปผลการวิจัย

ระบบตรวจจับหมวกนิรภัย หลักการทำงานของระบบนั้น ระบบจะถ่ายภาพวีดีโอ แล้ว นำภาพถ่ายวีดีโอในขณะนั้นมาตรวจสอบหาค่าความกลม แล้วระบบก็จะแสดงผลของการ ตรวจสอบให้ผู้ใช้ได้ทราบ และเห็นตำแหน่งของหมวกนิรภัย จากรูปที่ 3.1 จะแสดงแผนภาพ แนวความคิดของโครงงาน โดยเริ่มนำภาพเข้า แล้วระบบก็ทำการประมวลผลภาพ เมื่อได้ผลลัพธ์ เรียบร้อยแล้ว ก็จะเอาผลลัพธ์ที่ได้ไปใช้ในการคอบคุมประตูได้ โดยถ้าตรวจไม่พบหมวกนิรภัย ประตูจะเปิดออก แต่ถ้าตรวจพบหมวกนิรภัยประตูก็จะปิด

รูปที่ 3.1 แผนภาพแนวความคิดของโครงงาน

3.2 แผนการดำเนินงาน

ตารางที่ 3.1 แผนการดำเนินงาน

วิธีการ	พ.ศ. 2555																										
ดำเนินงาน	ນີ້.ຍ.			ก.ค.			ส.ค.				ก.ย.			ต.ค			พ.ย.			ช.ค							
1.ศึกษา																											
รายละเอียดและ	•					→																					
รวบรวมข้อมูล																											
2.วิเคราะห์ระบบ					,	+				→																	
3.ออกแบบ																											
โครงสร้างของ									•			→															
ระบบ																											
4.พัฒนาระบบ																											
และจัดทำ											+													-	•		
เอกสาร																											
5.ทคสอบ แก้ไข																											
และปรับปรุง																			-					-			
ระบบ																											
6.สรุป																											
ผลการวิจัย]			

3.3 การรวบรวมข้อมูล

การเก็บรวบรวมข้อมูลสำหรับนำมาวิเคราะห์ระบบตรวจจับหมวกนิรภัยนั้น ผู้พัฒนาได้ ทำการเก็บข้อมูลมา 3 ประเภทหลักคือ ข้อมูลงานวิจัยที่เกี่ยวกับการตรวจจับหมวกนิรภัย ข้อมูล หมวกนิรภัยประเภทต่างๆ และข้อมูลจากการถ่ายภาพที่ใช้เป็นข้อมูลนำเข้าในการทดลองระบบ

3.3.1 ข้อมูลงานวิจัยที่เกี่ยวกับการตรวจจับหมวกนิรภัย

ข้อมูลที่ได้จากงานวิจัยเป็นข้อมูลที่สำคัญที่ทำให้ผู้พัฒนาเล็งเห็นแนวทางในการพัฒนา ระบบ สิ่งที่ผู้พัฒนาได้รับจากการศึกษางานวิจัยต่างๆ นั้น คือ แนวคิดในการพัฒนาระบบตรวจจับ หมวกนิรภัย เทคนิคและทฤษฎีต่างๆ ที่ใช้ รวมไปถึงข้อจำกัด และข้อผิดพลาดต่างๆ โดยในแต่ละ งานวิจัยก็จะมีการใช้เทคนิคที่แตกต่างกันไป ทางผู้พัฒนาจึงได้ทำการคัดเลือกวิธีการที่จะทำให้ ระบบตรวจจับหมวกนิรภัยนี้มีประสิทธิภาพมากที่สุด

3.3.2 ข้อมูลหมวกนิรภัยประเภทต่างๆ

ข้อมูลหมวกนิรภัยเป็นข้อมูลที่ผู้พัฒนาได้นำมาใช้ในการวิเคราะห์ และกำหนดขอบเขต ของโครงงาน ซึ่งข้อมูลหมวกนิรภัยที่กล่าวถึงนี้คือคุณลักษณะโดยทั่วไปของหมวกนิรภัย เช่น ลักษณะของหมวกนิรภัย รูปทรง สี และพื้นผิวของหมวกนิรภัย สำหรับลักษณะหมวกนิรภัยที่ระบบ สามารถตรวจจับได้แสดงดังรูปที่ 3.2 คือ หมวกนิรภัยแบบปิดเต็มหน้าแสดงในรูป(ก) และหมวก นิรภัยแบบเต็มใบแสดงในรูป(ข)

(ก)หมวกนิรภัยแบบปิดเต็มหน้า

(ข)หมวกนิรภัยแบบเต็มใบ

รูปที่ 3.2 ตัวอย่างภาพหมวกนิรภัย

3.3.3 ข้อมูลจากการถ่ายภาพที่ใช้เป็นข้อมูลนำเข้า

ข้อมูลนำเข้าถือเป็นข้อมูลที่มีความสำคัญอย่างมากในการใช้วิเคราะห์และออกแบบ ระบบ ไปจนถึงการทดสอบระบบ โดยผู้พัฒนาได้ทำการเก็บข้อมูลนำเข้าระบบในรูปแบบของไฟล์ ภาพวีดีโอ ที่ถ่ายด้วยกล้องเว็บแคม ซึ่งได้ทำการเก็บข้อมูลบริเวณหน้าประตูทางเข้าอาคาร ลักษณะ ภาพจะเป็นการถ่ายในมุมก้ม โดยติดตั้งกล้องสูงจากพื้น 2.3 เมตร และปรับกล้องให้ก้มลงไปยังพื้น ดังแสดงในรูปที่ 3.3

รูปที่ 3.3 ตัวอย่างภาพข้อมูลนำเข้า

3.4 การออกแบบระบบ

สำหรับการออกแบบระบบ ผู้พัฒนาได้แบ่งการออกแบบออกเป็น 2 ส่วนคือ การ ออกแบบโครงสร้างระบบ และการออกแบบส่วนประสานกับผู้ใช้

3.4.1 การออกแบบโครงสร้างระบบ

รูปที่ 3.4 ผังงานแสดงขั้นตอนการทำงานของระบบ

โครงสร้างของระบบที่ผู้พัฒนาออกแบบนั้น จะประกอบไปด้วยการทำงาน 3 ส่วนหลัก คือ ส่วนการแยกวัตถุออกจากภาพพื้นหลัง ส่วนการหาค่าความกลมของวัตถุ และส่วนการ ตรวจสอบขนาดของวัตถุ ซึ่งการทำงานแต่ละขั้นตอนของโปรแกรมสามารถอธิบายโดยละอียคได้ ดังนี้

3.4.1.1 ขั้นตอนการแยกวัตถุออกจากภาพพื้นหลัง

ขั้นตอนนี้จะเป็นการแยกวัตถุต่างๆ ออกจากพื้นหลัง โดยจะมีการกำหนดภาพพื้น หลังเอาไว้ก่อน จากนั้นก็นำภาพที่ต้องการตรวจสอบมาลบกับภาพพื้นหลังที่กำหนดไว้ก่อนแล้ว ซึ่งสมการที่ใช้ แสดงได้ดังนี้

$$O = I - B \tag{3.1}$$

เมื่อ

= วัตถุ

= ภาพของเฟรมหนึ่งๆ

= ภาพพื้นหลัง

ภาพที่ได้ออกมานั้นก็จะพบแต่วัตถุที่ปรากฏเข้ามาในภาพเท่านั้น และจะทำให้ พื้นหลังเป็นสีดำ ซึ่งขั้นตอนการแยกวัตถุออกจากภาพพื้นหลังนั้นแสดงดังรูปที่ 3.5 โดย (ก)คือภาพ ้พื้นหลัง (ข)คือภาพที่ต้องการตรวจสอบ (ค)คือภาพที่ได้จากการลบพื้นหลังออก (ง)คือนำที่ลบพื้น หลังออกแล้วมาแปลงเป็นสีเทา (จ)คือแปลงภาพเป็นสีขาว-คำ และ (ฉ)คือภาพที่ทำการเพิ่มและลบ จุดภาพที่ขนาดเล็กเรียบร้อยแล้ว เมื่อทำขั้นตอนนี้เสร็จแล้วจากนั้นก็จะส่งข้อมูลไปยังขั้นตอนการ หาค่าความกลมของวัตถุ

(ก) ภาพพื้นหลัง

(ข) ภาพที่ต้องการตรวจสอบ

(ค) ภาพที่ได้เมื่อลบพื้นหลัง

(ง) แปลงภาพเป็นสีเทา

(จ) แปลงภาพเป็นสีขาว-ดำ

(ฉ) เพิ่มและลบจุดภาพ

รูปที่ 3.5 แสดงขั้นตอนการแยกวัตถุออกจากภาพพื้นหลัง

3.4.1.2 ขั้นตอนการหาค่าความกลมของวัตถุ

เมื่อแยกวัตถุออกจากพื้นหลังได้แล้ว ในขั้นตอนนี้จะเป็นการหาว่าวัตถุมีลักษณะ ค่อนข้างกลมหรือไม่ โดยจะใช้วิธีการคำนวณหาค่าความกลมของวัตถุแต่ละชิ้น สมการที่ใช้ แสดง ได้ดังนี้

$$C = \frac{4\pi \times (\pi r^2)}{(2\pi r)^2} \tag{3.2}$$

โดย

C = ความกลม

r = รัศมี หรือระยะทางจากจุดศูนย์กลางไปยังจุด x, y

ถ้าหากวัตถุชิ้นนั้นมีลักษณะเป็นวงกลมเลย ค่าความกลมจะเท่ากับ 1 แต่สำหรับ หมวกนิรภัยแล้วไม่ได้เป็นวงกลม เพียงแต่มีลักษณะค่อนข้างกลม ค่าความกลมที่ใช้ก็จะอยู่ในช่วง 0.4 – 1 เนื่องจากผู้พัฒนาได้ทำการทดสอบหาค่าความกลมจากหลายๆ ภาพแล้ว ค่าส่วนใหญ่ที่ได้ นั้นอยู่ในช่วง 0.4 – 1 คังรูปที่ 3.6 ซึ่งแสดงผลลัพธ์ของขั้นตอนการหาค่าความกลมของวัตถุ โดย (ก)เป็นภาพที่มีค่าความกลม 0.45 (ข)เป็นภาพที่มีค่าความกลม 0.85 และเมื่อระบบหาค่าความกลม ของวัตถุทุกชิ้นแล้ว หลังจากนั้นระบบก็จะสนใจเฉพาะวัตถุที่มีค่าความกลมที่อยู่ในช่วงที่กำหนด เท่านั้น

(ข) มีค่าความกลม 0.85

รูปที่ 3.6 แสดงผลลัพธ์ของขั้นตอนการหาค่าความกลมของวัตถุ

3.4.1.3 ขั้นตอนการตรวจสอบขนาดของวัตถุ

เมื่อได้วัตถุที่มีลักษณะค่อนข้างกลมแล้ว ในขั้นตอนนี้จะทำการตรวจสอบขนาด ของวัตถุชิ้นนั้นๆ ว่า มีขนาดเท่าใด โดยการหาขนาดของวัตถุนั้น จะใช้การนับจุดภาพที่เป็นสีขาว ซึ่งวิธีการนี้ก็จะสามารถทำให้ทราบขนาดของวัตถุได้ ดังรูปที่ 3.7 ซึ่งแสดงผลลัพธ์ของขั้นตอนการ ตรวจสอบขนาดของวัตถุ โดยขนาดของวัตถุที่ใช้จะอยู่ในช่วง 37000 – 65000 ถ้าวัตถุนั้นมีขนาดอยู่ ในช่วงที่กำหนดไว้ แสดงว่า วัตถุชิ้นนั้นก็กือหมวกนิรภัย

รูปที่ 3.7 แสดงผลลัพธ์ของขั้นตอนการตรวจสอบขนาดของวัตถุ

รูปที่ 3.9 แสดงผลลัพธ์การตรวจจับหมวกนิรภัย

3.4.2 การออกแบบส่วนประสานกับผู้ใช้

รูปที่ 3.10 แสดงหน้าจอของระบบตรวจจับหมวกนิรภัยแบบ Real-time

ส่วนประสานกับผู้ใช้ของระบบตรวจจับหมวกนิรภัยสามารถอธิบายแต่ละส่วนได้ดังนี้

- หมายเลข 1 เป็นส่วนที่ใช้สำหรับเลือกรูปแบบของระบบ
- หมายเลข 2 เป็นส่วนที่ใช้สำหรับเลือกกล้องที่ต้องการจะติดต่อ
- หมายเลข 3 เป็นปุ่มที่ใช้สำหรับการติดต่อกับกล้อง และเปิดกล้องขึ้นมา
- หมายเลข 4 เป็นปุ่มที่ใช้สำหรับเริ่มการประมวณผล
- หมายเลข 5 เป็นปุ่มที่ใช้สำหรับหยุดการทำงานทั้งหมดของระบบ
- หมายเลง 6 เป็นส่วนที่ไว้แสดงข้อความ ซึ่งถ้าพบหมวกนิรภัยข้อความก็จะ แสดงจำนวนของหมวกนิรภัยที่พบออกมา และถ้าไม่พบหมวกนิรภัยข้อความก็จะแสดงว่าไม่พบ หมวกนิรภัย
 - หมายเลข 7 เป็นหน้าจอแสดงภาพที่ยังไม่ผ่านการประมวลผล
 - หมายเลข 8 เป็นหน้าจอแสดงภาพที่ประมวลผลเรียบร้อยแล้ว
 - หมายเลข 9 เป็นปุ่มที่ใช้แสดงข้อมูลเกี่ยวกับผู้จัดทำ
 - หมายเลข 10 เป็นปุ่มออกจากระบบ

รูปที่ 3.11 แสดงหน้าจอของระบบตรวจจับหมวกนิรภัยแบบใช้ไฟล์วีดีโอ

ส่วนประสานกับผู้ใช้ของระบบตรวจจับหมวกนิรภัยสามารถอธิบายแต่ละส่วนได้ดังนี้

- หมายเลข 1 เป็นส่วนที่ใช้สำหรับเลือกรูปแบบของระบบ
- หมายเลข 2 เป็นปุ่มที่ใช้สำหรับเรียกไฟล์วีดีโอ
- หมายเลข 3 เป็นปุ่มที่ใช้สำหรับเริ่มการประมวณผล
- หมายเลข 4 เป็นปุ่มที่ใช้สำหรับหยุดการทำงานของระบบ
- หมายเลง 5 เป็นส่วนที่ไว้แสดงข้อความ ซึ่งถ้าพบหมวกนิรภัยข้อความก็จะ แสดงจำนวนของหมวกนิรภัยที่พบออกมา และถ้าไม่พบหมวกนิรภัยข้อความก็จะแสดงว่าไม่พบหมวกนิรภัย
 - หมายเลข 6 เป็นหน้าจอแสดงภาพที่ยังไม่ผ่านการประมวลผล
 - หมายเลข 7 เป็นหน้าจอแสดงภาพที่ประมวลผลเรียบร้อยแล้ว
 - หมายเลข 8 เป็นปุ่มที่ใช้แสดงข้อมูลเกี่ยวกับผู้จัดทำ
 - หมายเลข 9 เป็นปุ่มออกจากระบบ

รูปที่ 3.12 แสดงหน้าผลลัพธ์ของระบบตรวจจับหมวกนิรภัยแบบใช้ไฟล์วีดีโอ

รูปที่ 3.13 แสดงหน้าจอของระบบตรวจจับหมวกนิรภัยแบบ Real-time เมื่อติดต่อกับกล้อง

รูปที่ 3.14 แสดงหน้าผลลัพธ์ของระบบตรวจจับหมวกนิรภัยแบบ Real-time

การแสดงผลลัพธ์ของระบบเมื่อประมวลผลเรียบร้อยแล้ว ซึ่งจะแสดงในด้านซ้ายของ หน้าจอ ถ้าหากภาพที่นำมาประมวลผลนั้นมีหมวกนิรภัยอยู่ ผลลัพธ์ที่ได้ก็คือ จะมีกรอบสี่เหลี่ยมสี เขียวแสดงตรงบริเวณที่เป็นหมวกนิรภัย และจะมีข้อความแสดงจำนวนหนวกนิรภัยที่พบให้ผู้ใช้ได้ ทราบด้วย ดังรูปที่ 3.14