Numerical Linear Algebra - Sheet 7

to be handed in until December 6, 2023, 11am.

Problem 1. Let **A** be a real symmetric matrix with eigenvalues λ_j , $1 \leq j \leq n$. Show that for any polynomial $p(t) = \sum_{j=0}^k a_j t^j$, $a_0, \ldots, a_k \in \mathbb{R}$, the matrix

$$p(\mathbf{A}) = \sum_{j=0}^{k} a_j \mathbf{A}^j$$

is also symmetric. Moreover, the eigenvectors of **A** and $p(\mathbf{A})$ are identical, while the eigenvalues of $p(\mathbf{A})$ are equal to $p(\lambda_j)$ for $1 \leq j \leq n$.

Problem 2 (Eigenvalues and eigenvectors of a tensor product operator). For vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$ we define the tensor product as a (block) vector

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} u_1 v & u_2 v & \cdots & u_n v \end{pmatrix}^T \in \mathbb{R}^{nm}$$

Let **A** and **B** be matrices in $\mathbb{R}^{n\times n}$ and $\mathbb{R}^{m\times m}$ respectively. We define their tensor product $\mathbf{A}\otimes\mathbf{B}\in\mathbb{R}^{nm\times nm}$ as

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n1}\mathbf{B} & \cdots & a_{nn}\mathbf{B} \end{pmatrix}.$$

- (a) Show that $(\mathbf{A} \otimes \mathbf{B})(\mathbf{u} \otimes \mathbf{v}) = (\mathbf{A}\mathbf{u}) \otimes (\mathbf{B}\mathbf{v})$.
- (b) Prove that the eigenvectors of the tensor product are the pairwise tensor products of the eigenvectos of the individual matrices. What are the corresponding eigenvalues?

Problem 3. Let \mathbf{L}_d be the discretization of the d-dimensional Laplace operator on the unit square by the five-point stencel with a uniform Dirichlet boundary condition to the mesh size $h = \frac{1}{n+1}$. In 1D it is given in terms of the matrix \mathbf{T}_2 defined in Problem 4 of Sheet 6 by

$$\mathbf{L}_1 = \frac{1}{h^2} \mathbf{T}_2 \in \mathbb{R}^{n \times n}.$$

In 2D it is given by

where $\mathbb{I} \in \mathbb{R}^{n \times n}$ and $\mathbf{D} \in \mathbb{R}^{n \times n}$ are defined as

$$\mathbb{I} = \begin{pmatrix} 1 & & & \\ & \ddots & \\ & & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{D} = \begin{pmatrix} 4 & -1 & & \\ -1 & 4 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 4 & -1 \\ & & & & -1 & 4 \end{pmatrix}.$$

(a) Use the results of Problem 2 to show that L_2 could be expressed as

$$\mathbf{L}_2 = (\mathbf{L}_1 \otimes \mathbb{I}) + (\mathbb{I} \otimes \mathbf{L}_1).$$

(b) List the four smallest eigenvalues of L_2 . What is their multiplicity?

Problem 4 (Programming). Write a program that solves the 2D Laplace problem

$$Ax = b$$

with the Gauss-Seidel iteration, where the system matrix $\mathbf{A} = \mathbf{L}_2 \in \mathbb{R}^{n^2 \times n^2}$ is defined in Problem 3, and the right hand side is given by the constant vector $\mathbf{b} = (1, ..., 1)^T$, by observing the following steps. Try to avoid explicitly forming the system matrix.

- (a) Implement a function vmult that performs the matrix-vector product $\mathbf{A} \cdot \mathbf{v}$ of \mathbf{A} with a given vector \mathbf{v} , and returns a vector \mathbf{w} .
- (b) Write a function gauss_seidel_step that implements a single step of the Gauss-Seidel iteration. As in (a) this function should take a vector \mathbf{v} and return the resulting vector \mathbf{w} .
- (c) Use the null-vector $\mathbf{x}^{(0)} = (0, ..., 0)^T$ as initial guess and test your program with n = 20 and n = 100. Let $\mathbf{b} = (1, ..., 1)^T$. Observe the evolution of the residual in the 2-norm

$$r^{(k)} = \|\mathbf{A} \cdot \mathbf{x}^{(k)} - \mathbf{b}\|_2$$

for 50 steps of the Gauss-Seidel iteration. Plot the obtained result vector after 1, 5, 15, 30, and 50 iterations.

Note: Be careful not to crash your computer when starting your program with n = 100 or more, if you explicitly build the system matrix, because of the possibly high memory usage.