

Replacing External Configuration Service with Chord Peer-to-Peer Protocol

Cloud Data Bases WS2021-22

Group 13 - Final Project

Authors:

David Silva Krisela Skenderi Lukas Bernwald

Motivation

ECS - single point of failure of the database.

- Server Join
- Failure Detection (Heartbeat) and Recovery
- Metadata Update
- Replication
- Handoff

Why Chord?

- Decentralized, scalable Peer-to-Peer system
- Load-Balancing: Based on Consistent Hashing
- **Efficient Lookups**: O(log(n)) lookup complexity
- Low maintenance: Only a few nodes are affected on server join/departure
- Easy adaptation from the previous system

Chord overview - structure

 i^{th} entry corrsponds to successor(n)+

node identifier

$2^{i-1} \mod 2^m$

m = number of bits in key/node identifier

FINGER TABLE OF N14

N14 + 1	N21
N14 + 2	N21
N14 + 4	N21
N14 + 8	N43
N14 + 16	N43
N14 + 32	N47
N14 + 64	N81
N14 + 128	N59

predecessor successors

Chord overview - server join

ТΙΠ

Maintaining the ring - server join

Maintaining the ring - server departure

Maintaining the ring - stabilization

• **p** has joined between **n** and **s**

Maintaining the ring - "fix fingers"

FINGER TABLE OF N14

N14 + 1	N21	
N14 + 2	N21	
N14 + 4	N21	
N14 + 8	N32	
N14 + 16	N32	
N14 + 32	N51	← N48
N14 + 64	N81	

Client GET - lookup

Client GET - execute

FINGER TABLE OF N47 N47 + 1 N51 N47 + 2 N51 N47 + 4 N51 N47 + 8 N61 N47 + 16 N68 N47 + 32 N81 N47 + 64 N21

Client PUT - lookup

FINGER TABLE OF N14

N14 + 32	N47
N14 + 16	N32
N14 + 8	N32
N14 + 4	N21
N14 + 2	N21
N14 + 1	N21

FINGER TABLE OF N47

N47 + 1	N51
N47 + 2	N51
N47 + 4	N51
N47 + 8	N61
N47+ 16	N68
N47 + 32	N81

Client PUT - execute

FINGER TABLE OF N14

N14 + 1	N21
N14 + 2	N21
N14 + 4	N21
N14 + 8	N32
N14 + 16	N32
N14 + 32	N47

FINGER TABLE OF N47

N47 + 1	N51
N47 + 2	N51
N47 + 4	N51
N47 + 8	N61
N47+ 16	N68
N47 + 32	N81

Client PUT - replication

Server join - replication and handoff

- Replication factor 2
- Server 38 joins
- Handoff keys in range (21,38)
- Replicate to new node
- Delete stale replication data

Server departure - replication and handoff

- Replication factor 2
- Server 47 leaves
- Handoff from [pred_{47,} 47] to 51
- Update replication

Failure detection - check predecessor

Experimental evaluation - overview

- Tool schedules timed events
 - Starts clients and servers
- Clients put, get and delete
- Dataset: Enron email
- 2 Experiments with ECS and Chord
 - LFU cache (500 size)
 - B-Tree minimum degree = 200
- Measure throughput and latency

Experiment 1 - Behavior comparison

- $3 \rightarrow 6$ servers
- Replication factor = 1
- $0 \rightarrow 20$ clients

Experiment 1 - Behavior comparison

Request latency (in ms)

ECS				Chord	
GET	PUT	DEL	GET	PUT	DEL
272.2	329.9	359.8	30.7	266.3	268.8

Experiment 2 - Replication performance

6 Servers (same settings), 20 Clients, variable replication factor

Experiment 2 - Replication performance

Request latency (in ms)

	ECS		Chord			
Repl. factor	GET	PUT	DEL	GET	PUT	DEL
0	133.3	159.4	167.9	143.8	166.2	174.8
1	205.9	260.5	275.2	217.4	285.9	281.2
2	326.2	351.8	379.5	332.5	369.2	388.6

Experimental evaluation - remarks

- Network latency and data distribution
- Eventual consistency
- Complexity of lookup operation: O(log(n)) compared to O(1)
- Hardware limitations
- Non-deterministic behavior

Conclusion

- More complex than ECS
 - Increased network communication
 - Eventual consistency
- Performs similarly to potentially better
- No Single Point of Failure
- Potentially higher scalability
- Further research needed

Replacing External Configuration Service with Chord Peer-to-Peer Protocol

Cloud Data Bases WS2021-22

Final Project

Authors:

David Silva Krisela Skenderi Lukas Bernwald Questions?