Chicago Reg	onal Office	!	01	4-22818
3140 Finley				
Downers G	rove, IL 60	515		Clayto
630.795.32i				GROUP SERV
Fax 630.79! www.clayto				031.600
· · · · · · · · · · · · · · · · · · ·	iigi picciii			Si Pi M
DATE		1 7001		Clayto 031400 SiPim SK
DATE: _	Decembe	er 1, 2004		
ro:	Ms. Tam	my Smith		
_	Illinois I	EPA		TDANSMITTAL LETTE
	Site Rem	ediation Prog	ram	TRANSMITTAL LETTE
_	1021 No	rth Grand Ave	enue East	
_	P.O. Box			
_		ld, Illinois 62	794	Project No: _15-04183.00-006
_				
RE:	SI/RO R			Attention: Ms. Tammy Smith
_		als Corp.		
_		Elston Avenue		
_	Chicago,	, Illinois 6062	22	
[] Fo	or Approval or Review or Your File	[] As Re	tevisions [equested [
[] Fo	r Review	[] As Re	equested [] Mail [] Priority [] 2-Day Economy
[] Fo	or Review or Your File	[] As Re	equested [Mail [] Priority [] 2-Day Economy] Courier {X} Standard [] 3-Day Express Sat Description
[] Fo	or Review or Your File	[] As Re	equested [Mail [] Priority [] 2-Day Economy] Courier {X} Standard [] 3-Day Express Sat Description
[] Fo	or Review or Your File	[] As Re	equested [Mail [] Priority [] 2-Day Economy] Courier {X} Standard [] 3-Day Express Sat Description
[] Fo	or Review or Your File	[] As Re	equested [Mail [] Priority [] 2-Day Economy] Courier {X} Standard [] 3-Day Express Sat Description
[] Fo	or Review or Your File	[] As Re	equested [Mail [] Priority [] 2-Day Economy] Courier {X} Standard [] 3-Day Express Sat Description
Item (Copies 3	Date 11/29/04	SI/RO Repo	Mail [] Priority [] 2-Day Economy] Courier [X] Standard [] 3-Day Express Sat Description Ort for SiPi Metals, 1720 N. Elston, Chicago, IL
Item (Copies 3	Date 11/29/04	equested [Mail [] Priority [] 2-Day Economy] Courier [X] Standard [] 3-Day Express Sat Description Ort for SiPi Metals, 1720 N. Elston, Chicago, IL
Item (Copies 3	Date 11/29/04	SI/RO Repo	Mail [] Priority [] 2-Day Economy Courier [X] Standard [] 3-Day Express San Description ort for SiPi Metals, 1720 N. Elston, Chicago, IL ORIGINAL 795-3204.
Item (Copies 3	Date 11/29/04	SI/RO Repo	Mail [] Priority [] 2-Day Economy] Courier [X] Standard [] 3-Day Express Sar Description ort for SiPi Metals, 1720 N. Elston, Chicago, IL 795-3204. RELFA DEC ()
Item (Copies 3	Date 11/29/04	SI/RO Repo	Description The standard [] 2-Day Economy [] 3-Day Express Sandard
Item (1	Copies 3	Date 11/29/04	SI/RO Repo	Description ort for SiPi Metals, 1720 N. Elston, Chicago, IL ORIGINAL ORI

IEPA/BOL

printed 01/27/2011 8:20AM by Richard.Jordan p. 2/383.

Comprehensive Site Investigation and Remedial Objectives Report

SiPi Metals Corporation 1720 North Elston Avenue Chicago, Illinois

Prepared for:
SiPi Metals Corporation
Chicago, Illinois

Clayton Project No. 15-04183.00-004 November 29, 2004

RELEASANE

DEC A 3 2004

CLAYTON GROUP SERVICES, INC. IND 3140 Finley Road Downers Grove, Illinois 60515

630.795.3200

ORIGINAL

Received

DEC 0 2 2004

IEPA/BOL

Section	<u>1</u>	<u>Page</u>
Ехесич	tive Summary	vi
1.0	INTRODUCTION	1-1
1.1	REPORT ORGANIZATION	
1.2	PURPOSE	
1.3	SCOPE OF WORK	1-1
2.0	COMPREHENSIVE SITE INVESTIGATION REPORT	2-1
2.1	SITE CHARACTERIZATION	2-1
2.1.1	Site Location and Description	2-1
2.1.2	Site History	2-2
2.1.3	Surrounding Land Use	2-2
2.1.4	Physiography and Topography	
2.1.5	Geology and Hydrogeology	2-3
2.1.6	Potential Migration Pathways and Exposure Routes	2-5
2.1.7	Current and Future Planned Property Use	2-6
2.2	PREVIOUS ENVIRONMENTAL REPORTS	
2.2.1	Phase I ESAs	
2.3	CLAYTON'S PHASE II ASSESSMENT	2-10
2.3.1	Geoprobe Borings	2-11
2.3.1.1	Soil Sample Collection	2-11
2.3.1.2	2 Groundwater Grab Sample Collection	2-12
2.3.2	Monitoring Wells	2-13
2.3.2.1		
2.3.2.2		
2.4	DISCUSSION OF ANALYTICAL RESULTS	2-15
2.4.1	Soil and Groundwater Grab Sample Analytical Results	
2.4.1.	Former Plating Solution Process Area (REC #1)	2-16
2.4.1.2	9,000-Gallon Abandoned Heating Oil UST (REC #2)	2-17
2.4.1.3	3 Historic Foundry/Unknown Fill Material (REC #3 & REC #4)	2-17
2.4.1.4	4 Potential Transformer Release (REC #5)	2-20
2.4.1.	· 1	
2.4.1.6	6 Potential Oil Release from Compressors (REC #7)	2-22
2.4.1.	7 Potential Hydraulic Oil Release-Pouring Conveyor (REC #8)	2-23
2.4.1.	8 Abandoned 2,000-Gallon Gasoline UST (REC #9)	2-24
2.4.1.9	2,000-Gallon Gasoline UST-Removed (REC #10)	2-25
2.4.1.	10 Former Bulk Oil Storage (REC #11)	2-25
2.4.1.	II Former Slag Pile (REC #12)	2-26

(Continued)

<u>Section</u>		<u>Page</u>
2.4.1.12	Brick-Lined Storm Sewer (REC #13)	2-26
2.4.1.13	Former 10,000-Gallon Heating Oil UST (REC #14)	
2.4.1,14	Former Flue Dust Loading Area (REC #15)	
2.4.1.15	Railroad Tracks (REC #16)	
2.4.1.16	Potential Solvent Usage (REC #17)	
2.4.1.17	Potential Hydraulic Oil Release-Besly Building (REC #18)	
2.4.1.18	Former Locomotive Warehouse (REC #19)	
2.4.1.19	Unknown Fill Material (REC #20)	
2.4.1.20	Potential Hydraulic Oil Release-Howard Medical Building	
	(REC #21)	2-30
2.4.1.21	Downgradient Property Boundary (Not Identified as a REC)	2-30
2.4.1.22	Upgradient Property Boundary (Not Identified as a REC)	2-31
2.4.2	Monitoring Well Analytical Results	
2.4.3	Other Results	2-32
2.5 E	NDANGERMENT ASSESSMENT	2-32
2.5.1	AOC I: Former Foundry Operations / Fill Material	
	(Former REC #3 and #4)	2-32
2.5.1.1	Contaminants of Concern	
2.5.1.2	Contaminated Media	2-33
2.5.1.3	Extent of Compounds of Concern	2-35
2.5.1.3.1	Soil PNA Impacts	2-35
2.5.1.3.2	Soil Metals Impacts	2-35
2.5.2	AOC II: Potential Transformer Release (Former REC #5)	2-36
2.5.2.1	Contaminants of Concern	2-36
2.5.2.2	Contaminated Media	2-36
2.5.2.3	Extent of Compounds of Concern	2-37
2.5.2.3.1	Soil PNA Impacts	2-37
2,5.2.3.2	Soil PCB Impacts	2-37
2.5.2.3.3	Soil VOC Impacts	2-37
2.5.3	AOC III: Abandoned 2,000-Gallon UST (Former REC #9)	
2.5.3.1	Contaminants of Concern	2-38
2,5.3.2	Contaminated Media	
2.5.3.3	Extent of Compounds of Concern	2-38
2.5.3.3.1	Soil BTEX Impacts	2-38
2.5.4	AOC IV: Fill Material at the Forsyth Building (Former REC #20).	2-39
2.5.4.1	Contaminants of Concern	
2.5.4.2	Contaminated Media	

(Continued)

Section	<u>l</u>	Page
2.5.4.3	Extent of Compounds of Concern	2-39
2.5.4.3		
2.5.4.3		
2.5.4.3		
2.5.5	AOC V: Former Bulk Oil Storage (Former REC #11)	
2.5.5.1		
2.5.5.2		
2.5.5.3		
2.5.5.3		
2.5.5.3	.2 Soil PNA Impacts	2-41
2.5.6	Comparison of Investigation Analytical Results with Tier 1 SROs	2-4 2
2.5.6.1	VOCs	2-42
2.5.6.2	PNAs	2-43
2.5.6.3	PCBs	2-43
2.5.6.4	Metals	2-43
2.5.7	Exposure Routes	
2.5.8	Contaminant Fate and Transport	
2.5.9	Physical Features Affecting Contaminant Transport and Exposure Risk	2-46
3.0	REMEDIAL OBJECTIVES	3-1
3.1	EVALUATION OF THE SOIL INGESTION EXPOSURE ROUTE	3-1
3.2	EVALUATION OF THE SOIL INHALATION EXPOSURE ROUTE	
3.3	EVALUATION OF THE GROUNDWATER INGESTION EXPOSURE	
	ROUTE	3-3
4.0	<u>CONCLUSIONS</u>	. 4- 1
5.0	REFERENCES	5-1

(Continued)

Figures

- Site Location Map
 Site Features Map
 Soil Boring/Well Locations Map
 Cross Section Reference Map
 Cross Section A-A'
 Cross Section B-B'
 Groundwater Flow Map
- 6 AOC Locations Map
- 6A AOC I Historic Foundry Operations / Historic Fill Material
- 6B AOC II Potential Transformer Release
- 6C AOC III Abandoned 2,000-Gallon Gasoline UST
- 6D AOC IV Forsyth Building Fill Material
- 6E AOC V Former Heating Oil AST

Tables

- 1 Soil/Groundwater Grab Sampling
- 2A Soil Analytical Data VOCs, SVOCs, PCBs, and TPH
- 2B Soil Analytical Data Total and TCLP Metals
- 3 Groundwater Grab Sample Analytical Data
- 4 Groundwater Analytical Data

Appendices

- A Site Remediation Program Forms (DRM-2)
- B Photo Log
- C Well Search Map and Well Logs
- D Boring Logs
- E September 24, 2004 Letter from the Illinois EPA
- F Laboratory Analytical Results
- G Hydraulic Conductivity Results

EXECUTIVE SUMMARY

Clayton Group Services, Inc. prepared this Site Investigation/Remediation Objectives Report (SI/RO) on behalf of SiPi Metals Corporation (SiPi) to document the investigative activities conducted at the SiPi property (subject property) located at 1720 North Elston Avenue, Chicago, Illinois and to obtain approval of the remediation objectives. The approved remediation objectives will be used in developing the Remedial Action Work Plan to address the impacted soils related to the Areas of Concern (AOCs) identified during the site investigation.

The Site Investigation was based on the results of Clayton's August 2004 Phase I Environmental Assessment. The Site Investigation was conducted in two stages: The Stage 1 Investigation consisted of an initial investigation of soil and groundwater; and the Stage 2 Investigation consisted of further delineation of the impacted soils identified during the Stage 1 Investigation. In total, the Site Investigation consisted of the following: 61 soil borings; collection and analyses of 104 soil samples; installation, development, and sampling of six groundwater monitoring wells; collection of nine groundwater grab samples; surveying and water level measurements of the six groundwater monitoring wells; and slug test evaluation of four of the groundwater monitoring wells.

Based on the data collected during the Site Investigation, the following conclusions were identified:

1. In general, the geology beneath the subject property consists of sandy fill and/or topsoil underlain by silty clay. The topsoil and/or fill ranges in thickness from 1.5 to 9.0 feet. Groundwater was encountered at the interface between the fill material and the native silty clay. Based on water level elevations in the groundwater monitoring wells, the general groundwater flow direction is to the east/northeast.

- 2. During Clayton's previous Phase I ESA activities, 21 recognized environmental concerns (RECs) were identified at the subject property.
- 3. Based on the results of the Phase II investigations, no further investigation is warranted at the following RECs:
 - a) REC 1: The northeast section of the main building was formerly used to process metals out of spent acidic plating solutions.
 - b) REC 10: A gasoline underground storage tank (UST) and dispensing pump formerly located at the west end of the southern wall of the main building was removed without documentation in 1990.
 - c) REC 14: Two 10,000-gallon fuel oil USTs installed in 1974 and removed in 1990 without documentation, were present in the area north of the Taylor Baghouse.
 - d) REC 17: The former operations may have included the use of paints and solvents at the 1660 Besly Building.
 - e) REC 18: Two hydraulic freight elevator systems are located at the 1660 Besly Building.
 - f) REC 19: A "locomotive warehouse" was situated on this property in a 1914 Sanborn Fire Insurance Map.
- 4. RECs 2, 6, 7, 8, 12, 13, 15, and 16 had soil and/or groundwater constituents above TACO Tier 1 SROs, however based on the constituents detected, the individual RECs have been combined into the AOCs.
- 5. Based on the data collected during the extensive assessment activities at the subject property, the RECs (where residual chemical compounds were detected) were consolidated into the following five AOCs (AOC I through V):
 - a) AOC I Former Foundry Operations/Fill Material (Former REC #3 & 4): Polynuclear aromatic compound (PNA) constituents, total lead, and total arsenic assumed to be associated with the historic fill material were detected at concentrations above Tiered Approach to Corrective Action Objectives (TACO) Tier 1 ingestion exposure route soil remediation objectives (SROs). In addition, total characteristic leaching procedure (TCLP) lead was detected above toxicity characteristic hazardous waste levels in two separate areas. These two separate areas will be addressed in the Remedial Action Plan (RAP) to be prepared for this property.

- b) AOC II Potential Transformer Release (Former REC #5):

 PNA constituents and polychlorinated biphenyls (PCBs) assumed to be associated with the historic transformer release were at concentrations above TACO Tier 1 ingestion exposure route SROs. PCBs concentrations did not exceed hazardous levels. In addition, in this same area, vinyl chloride was detected in one soil at a concentration above the TACO Tier 1 ingestion exposure route SRO. The potential source of the vinyl chloride is not known.
- c) AOC III Abandoned 2,000-gallon Gasoline UST (Former REC#9): Benzene was detected in the southeast portion of the subject property above the TACO Tier 1 soil inhalation exposure route.
- d) AOC IV Fill Material at the Forsyth Building (Former REC #20); PNA constituents and total lead were detected at concentrations above TACO Tier 1 ingestion exposure route SROs.
- e) AOC V Former Bulk Oil Storage (Former REC #11): PNA constituents were detected at concentrations above TACO Tier 1 ingestion exposure route SROs. As requested by the Illinois Environmental Protection Agency (Illinois EPA), total petroleum hydrocarbon (TPH) samples were collected during the Stage 2 Investigation. TPH was detected at a concentration above the soil attenuation capacity of 2,000 mg/kg. This area will be addressed in the Remedial Action Work Plan to be prepared for this property.
- 6. The total petroleum hydrocarbon and the sum of the concentrations of constituents detected in samples collected during site investigation activities was not above the minimum soil attenuation capacity of 2,000 mg/kg, except soil boring B-50 located in the northern parking area.
- 7. No constituent was detected above toxicity characteristic hazardous levels except toxicity characteristic leaching procedure (TCLP) lead found in the fill material on the east and west sides of the middle section of the subject property building.
- 8. The groundwater results of water samples collected from both permanent groundwater monitoring wells and groundwater grab samples indicated no evidence of dissolved phase contaminants have been identified in the water contained in the fill material. Based on this data, it does not appear these compounds will ever leach into water beneath the subject property. Therefore, the migration to groundwater pathway will be excluded in the Remedial Action Work Plan.
- 9. The subject property meets the criteria for Class II Groundwater.

- 10. The areas containing constituents above the ingestion and/or inhalation SROs will be covered with an engineered barrier. This engineered barrier will be used to exclude the ingestion and inhalation pathways at the subject property. Further discussion on the engineered barrier will be presented in the Remedial Action Work Plan.
- 11. Based on the information presented in this report, Clayton requests approval for the soil remediation objectives based on the most stringent inhalation or ingestion exposure route TACO Tier 1 SROs for the following compounds:

	Compound	Remediation Objective
a)	Benzene	1,600 (μg/kg)
b)	Vinyl Chloride	1,100 (μg/kg)
c)	Benzo(a)anthracene	8,000 (μg/kg)
d)	Benzo(b)fluoranthene	8,000 (μg/kg)
e)	Benzo(k)fluoranthene	78,000 (μg/kg)
f)	Benzo(a)pyrene	800 (μg/kg)
g)	Indeno(1,2,3-cd)pyrene	8,000 (μg/kg)
h)	Dibenz(a,h)anthracene	800 (μg/kg)
i)	Naphthalene	1,800 (µg/kg)
j)	Arsenic	61 (mg/kg)
k)	Lead	400 (mg/kg)

Clayton, on behalf of SiPi Metals, respectfully requests that the Illinois EPA Site Remediation Program (SRP) approve of the SROs in this report.

1.0 INTRODUCTION

SiPi Metals Corporation (SiPi) retained Clayton Group Services, Inc. to prepare this submittal to the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program (SRP) for the SiPi property at 1720 North Elston Avenue in Chicago, Cook County, Illinois (subject property) to present the results of the Comprehensive Investigation of the subject property and to obtain Illinois EPA approval of remediation objectives. A site location map is provided as Figure 1.

1.1 REPORT ORGANIZATION

This report has been prepared in accordance with the guidelines of the Illinois EPA SRP (35 Illinois Administrative Code [IAC] 740) and is a compilation of two SRP Reports: the Comprehensive Site Investigation (SI) Report (Section 2.0) and the Remedial Objectives (RO) Report (Section 3.0). Following these report sections are Conclusions (Section 4.0) and References (Section 5.0).

1.2 PURPOSE

The purpose of the SI portion of this report is to identify all recognized environmental conditions (RECs) and related contaminants of concern at the subject property. The purpose of the RO portion of this report is to establish the remediation objectives for the identified contaminants of concerns.

1.3 SCOPE OF WORK

The scope of work at the subject property consisted of the following: (1) a Phase I Environmental Site Assessment (ESA) prepared by Clayton; (2) a Phase II Environmental Site Investigation by Clayton to assess subsurface conditions in the vicinity of the RECs

identified in the Phase I ESA; (3) development of remediation objectives (SROs) based on investigation data; and (4) preparation and submittal of the required SI and RO reports to the Illinois EPA SRP.

Clayton's investigation activities, including the preparation of this report, were performed under the direction of Mr. John Rohr, P.E., Senior Project Engineer for Clayton. All work performed by Clayton was completed in accordance with the Illinois Environmental Protection Act, 35 IAC 740 and 742, and generally accepted engineering practices. The completed SRP Form DRM-2, including the P. E. Certification, is provided in Appendix A.

2.0 <u>COMPREHENSIVE SITE INVESTIGATION REPORT</u>

The SI Report consists of the site characterization (Section 2.1), a review of previous environmental reports (Section 2.2), the results of Clayton's Phase II assessment (Section 2.3), a discussion of analytical results (Section 2.4), and an endangerment assessment (Section 2.5). The Phase II ESA was designed to determine the nature, concentration, direction, rate of movement, extent of contaminants of concern, and significant physical features of the subject property. A photographic log of subject property activities is provided in Appendix B.

2.1 SITE CHARACTERIZATION

2.1.1 Site Location and Description

The subject property is used for brass and bronze smelting and metals refining, and is located on approximately 6.5 acres in an industrial setting in Chicago. The subject property is currently developed with seven buildings constructed at various times, dating from at least 1910. SiPi Metals has conducted similar smelting and metal recovery operations on the property since the 1930s. The planned short-term use for the subject property is continued operation as a smelter and metals refinery; long-term plans are to potentially demolish the buildings prior to sale of the property. The Howard Medical Company Building at 1690 North Elston is not currently owned by SiPi Metals but is being considered for purchase. The Howard Medical building will be added to the subject property as part of seeking a comprehensive NFR letter when the property has been acquired. This property contains an additional approximate ½ acre of land. A site features map is provided in Figure 2.

2.1.2 Site History

The following history of the subject property was obtained from the Phase I ESA for the subject property (prepared by Clayton on August 9, 2004). In 1910, the property was in industrial use with a foundry, a Portland cement manufacturing facility, and a brewery. The property subsequently contained uses including a bulk fuel oil transfer station, a cement warehouse, a railroad yard, a locomotive house, piano and cabinet manufacturing, and a small portion originally in residential use. SiPi Metals was founded in 1905 producing bronze and brass alloys. Precious metals refining began onsite in 1969.

2.1.3 Surrounding Land Use

The area surrounding the subject property generally consists of industrial properties. The uses and features of adjoining properties are described below.

North: CMSP&P Railroad tracks, beyond which are industrial buildings.

East: North Elston Avenue with two large vacant industrial buildings beyond.

South: Large industrial buildings adjoin the Besly and Forsyth buildings.

West: The CMSP&P railroad tracks, beyond which is the I-90/94 (Edens)

expressway.

Figure 2 illustrates the surrounding land use.

2.1.4 Physiography and Topography

A review of the United States Geological Survey (USGS) Chicago Loop Quadrangle, Illinois 7.5 minute series topographic map indicates the subject property is located in the Southwest ¼ of Section 32 Township 40 North, Range 14 East in the east central section of the City of Chicago, Cook County, Illinois. The subject property is located approximately 590 feet above mean sea level. Topographic relief in the area and

surrounding the subject property decreases in a general easterly direction toward the North Branch of the Chicago River. The subject property is located in the Chicago Lake Plain subdivision of the Great Lakes Section of the Central Lowland Province Physiographic Region of Illinois, according to Summary of the Geology of the Chicago Area (Willman 1971), published by the Illinois State Geological Survey (ISGS).

2.1.5 Geology and Hydrogeology

According to Summary of the Geology of the Chicago Area, the subject property is located in the Carmi Member of the Equality Formation. The deposits are largely deepwater sediments found on flat areas of lake basins. The deposits are predominantly silt with beds of fine sand and clay. The depth to bedrock immediately below the subject property is unknown. The unconsolidated sediments of the area are underlain by dolomite bedrock belonging to the Silurian Niagaran Formation.

The subject property is located in an area designated "E" on the ISGS circular *Potential* for Contamination of Shallow Aquifers in Illinois Plate I (Berg et al., 1984). "E" soils are identified as uniform, relatively impermeable silty or clayey till at least 50 feet thick with no evidence of interbedded sand and gravel. The soil borings discussed below Clayton supports that the subject property is within the "E" area.

Freedom of Information (FOIA) requests were submitted to the Illinois State Water Survey (ISWS), ISGS, the Illinois EPA Department of Public Water Supply, the Illinois Department of Public Health (IDPH), Cook County Department of Public Health, and the Chicago Department of Water Management to obtain information regarding wells and public water supply near the subject property. According to information received from the IDPH, the Cook County Department of Public Health, and the Chicago Department of Water Management, no information was found regarding the subject property and the surrounding property. The Illinois EPA Department of Public Water Supply indicated the

subject property is outside a 2,500 feet radius from a community water supply. Well log information received from the ISGS indicated 4 wells are located within 1,000 feet of the subject property boundaries. The closest well is approximately 600 feet from the northwest property boundary. The well is a monitoring well and is not used for potable reasons. As of the date of this report, Clayton has not received copies of logs from the ISWS. An updated well location map with the ISWS well logs will be included in the Remedial Action Plan (RAP). A map showing the approximate locations of wells within 1,000 feet; copies of the well information/boring logs; and the responses to the Freedom of Information Act (FOIA) requests are included in Appendix C.

Clayton advanced 61 soil borings on the subject property to depths up to 16 feet below ground surface (bgs). At most locations, the subject property is underlain by fill materials that range in thickness from 1 to 10 feet bgs. The location of the soil borings is depicted in Figure 3. Fill materials generally include sand, gravel, brick, concrete, building debris, and silty clays. Native subsurface deposits below fill materials generally consist of brown and gray silty clays extending to the bottom of all of the borings. Cross-sections depicting site subsurface features, including geologic conditions and sampling locations, are provided in Figures 4A, 4B, and 4C.

Water was encountered in most soil borings, but the water was confined to the fill materials. This water likely represents surface water infiltration of the fill material and not a groundwater table. A description of the subject property geology is provided on the boring logs in Appendix D. Figure 5 shows the relative groundwater elevations and groundwater flow direction based on the water levels collected from the monitoring wells at the subject property.

Based on the local geology in the vicinity of the subject property, the area is underlain by Class II Groundwater. The Class II Groundwater designation is based on the following:

- Groundwater is located in the fill material at depth of 2 to 5 feet bgs.
- The subject property is not located within a minimum setback zone of a well that serves as a potable water supply well.
- The subject property is underlain by at least 50 feet of silty clay/clayey silt glacial till (i.e., "E" designated) based on the Berg Map. Borings drilled at the subject property support information presented on the Berg Map.
- Based on borings drilled at the subject property, the area is not underlain by sandstone 10 feet or more in thickness, or fractured carbonate 15 feet or more in thickness.
- In addition, the City of Chicago has entered into a Memorandum of Understanding (MOU) with the Illinois EPA that prohibits the use of groundwater within the city limits. This MOU excludes the groundwater ingestion exposure route.

Based on hydraulic conductivity obtained during slug testing on the monitoring wells at the subject property, the fill material containing groundwater has a hydraulic conductivity of 6.26×10^{-3} cm/sec to 1.65×10^{-4} cm/sec. Since the groundwater at the subject property is generally contained in the fill material at the subject property, and in all cases is less than 10 feet bgs, the groundwater meets the definition of Class II groundwater as defined by Illinois Administrative Code (IAC) 620.

The nearest body of surface water in the vicinity of the subject property is the North Branch of the Chicago River (approximately 1,500 feet northeast).

2.1.6 Potential Migration Pathways and Exposure Routes

The potential migration pathways, based on the subject property characterization, consist of vapor migration along subsurface utilities, leaching of contaminants from soil into groundwater, and groundwater transport. The potential exposure routes, based on the subject property characterization, consist of ingestion of soil and inhalation of vapors.

Based on groundwater sampling information collected at the subject property, no evidence of dissolved phase contaminants have been identified in the water contained in the fill material. The fill material, which contains residual chemical compounds, has been in contact with the water within the fill material for a relatively long time period, in most cases more that 80 years. Based on the groundwater results of water samples collected from both permanent groundwater monitoring wells and groundwater grab samples, none of the compounds detected in the soil/fill samples have leached into the groundwater. Based on this data, it does not appear that these compounds will ever leach into water beneath the subject property. Therefore, the migration to groundwater pathway has been excluded. The source of drinking water for the City of Chicago is municipal water obtained from Lake Michigan. In addition, the City of Chicago has an ordinance that prohibits groundwater use, and a MOU with the Illinois EPA stating groundwater within the city limits cannot be used for consumption.

2.1.7 Current and Future Planned Property Use

The subject property is currently operating as a smelter and metals refinery. The planned short-term use for the subject property is continued operation as a smelter and metals refinery; long-term plans potentially include demolition of the existing structures and commercial redevelopment of the subject property.

2.2 PREVIOUS ENVIRONMENTAL REPORTS

2.2.1 Phase I ESAs

Clayton's Phase I ESA report dated August 9, 2004 incorporated all of the previous Phase I ESAs performed at the subject property. These previous assessments consisted of the following reports: Warzyn Engineering Inc., December 1989; Carlson, Knight, Kudrna, Inc.(CKK), May 21, 1990; Montgomery Watson Americas, Inc., June 1995;

STS Consultants, Inc., April 10, 2003, James FitzGerald Associates, May 24, 1996. All of the information presented was taken into consideration in preparation of the conclusions and identification of potential RECs in Clayton's Phase I ESA report.

Based on information contained in Clayton's Phase I ESA, the following RECs were identified:

Main Building 1720 Elston, North Section

1. An area in the northeast corner of the building was formerly used to process metals out of spent acidic plating solutions (a process now occurring at the south end of the building – refer to REC #9). The area was reportedly bermed and sealed for containment but has never been evaluated.

Main Building 1720 Elston, Middle Section

- 2. A 9,000-gallon heating oil underground storage tank (UST) is situated near the center of the middle building. The tank reportedly consists of a railroad tank car. This tank was suspected to have been leaking. It was removed from service and filled with pea gravel in approximately 1980. This UST had underground lines present that directed fuel oil to the Taylor Baghouse. The lines were also suspected to have been leaking.
- 3. Historic foundry operations were conducted in this portion of the building. It is possible there is metal slag and/or residual metal dust onsite because of this operation.
- 4. Middle section of main building was brought up to dock height with unknown fill reported to contain cinders. Perched water under this part of the building is reported to have come from leaky quench tank pits and machine pits, and may contain metals. A machine pit under the pouring conveyor equipment was reported to be leaking wash water from cooling the ingots to the subsurface as well. In addition, a one-ton electric induction furnace has a deep-water pit and associated deeper trough (~20 to 25 feet deep). This system would have manufactured an alloy with up to 10% chromium content. The trough was reported to have been leaking prior to its removal from service.
- 5. SiPi personnel reported that, approximately 15 years ago, there had been a transformer explosion in the group of four ComEd transformers located on the western roof of the middle section of the building. Oils were reported to have run

- down the gutters and into the storm drains to the subsurface storm sewer system. It is not known if the oil released contained polychlorinated biphenyls (PCBs).
- 6. A scrap metal briquetter is located in the northwest portion of this building section. The equipment contains 1,200 gallons of hydraulic oil and is located over a pit to recycle the dripped or over-sprayed oils. The integrity of this pit is unknown.
- 7. A room containing two rotary screw air compressors is present in the south end of this section of the building. One of these units was placed in a recessed pan, and both displayed significant oil staining of the surrounding concrete.
- 8. Two hydraulic units serve the pouring conveyor located along the east wall of the building. Oily staining was noted in the area, and blackened bricks were observed on the exterior of the building in this area.

Main Building 1720 Elston, South Section

- 9. A former 2,000-gallon gasoline UST is present underneath the southern portion of the main building in the liquids storage room of the cyanide area. The UST was reported to have been removed from service and filled with pea gravel in 1981.
- 10. A gasoline UST was formerly located at the west end of the southern wall of the main building. A dispensing pump for this UST was located at the southern end of the western wall on a concrete pad that is still present. This UST was removed in 1990 at the time the two 10,000-gallon fuel oil USTs (see REC #15) were removed. No closure documentation was available for review.

North Side of Property

11. Formerly two heating oil above ground storage tanks (ASTs) operated as part of a bulk fuel oil transfer station. The oil pump house was situated west of the ASTs and was reportedly used to control transfer of oil from railcars to the ASTs. The original tanks were situated along the northeastern property boundary. The tanks were subsequently relocated to the north central portion of the property and were secured within concrete containment (walls and floor). The ASTs were decommissioned in 1973 and cut in half; the shells are currently used for storage sheds along the western property line.

West Side of Property

12. A slag pile was reported to have formerly been present along the western wall of the Taylor baghouse. The slag was removed prior to paving of this area circa 1974.

- 13. A brick-lined storm sewer (installed circa early-1900s) runs the length of the west side of the property. This sewer collects storm water from the subject property only. This water is subsequently pumped to an onsite concrete-lined settling reservoir where sediment that contains residual concentrations of metals is recycled at the facility. It is possible the sewer and/or the soils/fill material surrounding this sewer contain residual metals concentrations.
- 14. Two 10,000-gallon fuel oil USTs were present in the area north of the Taylor Baghouse Building, currently occupied by a propane AST. These tanks were installed in 1974 and reportedly removed in 1990. There is no record of a release from these two tanks; however, an underground pipeline connected these two tanks to the building to the east. It is reported the pipeline is still present. No closure documentation was provided to Clayton for review.
- 15. The area north of the Wheelabrator Baghouse was formerly used to load flue dust from the smelter into rail cars.
- 16. Current and former railroad tracks are present within easements on the western portions of the subject property that have been present since at least 1914.

Besly Building - 1660 N. Besly Court

- 17. The former operations in this building reportedly included the use of paints and solvents.
- 18. The building contains two freight elevator systems. One system has been disassembled and the piston is still in place, but the shaft could not be observed for evidence of staining or leaks. The other elevator is still in use and displayed oily staining around the system's hydraulic reservoir, as well as a significant quantity of dark liquid in the base of the elevator shaft.
- 19. A "locomotive warehouse" was situated on this property in a 1914 Sanborn Fire Insurance Map. It is not known if this warehouse was used to store locomotives or used to conduct maintenance activities.

Forsyth Building - 1672 North Elston Avenue

20. This building was constructed on top of several feet of fill material to raise the truck doors to dock height. The fill beneath the building is of unknown origin.

Howard Medical Building - 1690 North Elston Avenue

21. A hydraulic freight elevator is present in the building. The hydraulic reservoir in the basement was observed to have stained concrete on the floor, which may have been moisture or could have been spilled oils.

A copy of Clayton's Phase I ESA was previously submitted to the Illinois EPA SRP.

2.3 CLAYTON'S PHASE II ASSESSMENT

Clayton conducted an initial Phase II Investigation (Stage 1) for the subject property in August 2004. The Stage 1 investigation was performed to assess whether the RECs identified in the Phase I ESA have impacted the subject property. The Stage 1 investigation included the following activities: installing soil borings for collection of soil and groundwater grab samples; installing monitoring wells for groundwater sample collection and groundwater flow information; and conducting hydraulic conductivity testing of the monitoring wells.

After determining the RECs that needed further delineation, Clayton and SiPi met with Illinois EPA SRP representatives to discuss the next portion of the Phase II investigation. In September 2004, Clayton conducted the second stage of the Phase II Investigation (Stage 2). The investigation, which included soil and groundwater grab samples from soil borings, was conducted to delineate impacts discovered during the first stage of the Phase II ESA at the subject property and to address any additional issues the Illinois EPA had identified. The Illinois EPA issued a letter on September 24, 2004, which summarized the discussion at the September 14, 2004 meeting. A copy of this letter is included in Appendix E.

The Phase II assessment work performed by Clayton (for both the Stage 1 and Stage 2 portions of the investigation) is described in detail in the following sections. A summary

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001/11/29/2004/MEM/JMF

of the number of soil samples and groundwater grab samples, along with the analyses is presented in Table 1.

2.3.1 Geoprobe® Borings

From August 9 through August 13, 2004, Clayton advanced 21 soil borings (B-1 through B-10, B-12, B-13, B-15, B-16, B-18 through B-20, and B-22 through B-25) on the subject property using a hydraulic push method during Stage 1 of the Phase II investigation. On September 28 through September 30, 2004, 34 soil borings (B-29 through B-62) were advanced during the implementation of the second stage of the Phase II investigation. Hydraulics was used to advance a 4-foot-long sampling tube fitted with disposable acetate liners in the soil. Upon completion, the soil borings were backfilled to ground surface using bentonite. Soil boring locations are presented in Figure 3. A summary of the number of soil samples and groundwater grab samples, along with the analyses, is presented in Table 1.

All drilling and sampling equipment was decontaminated, prior to and after each boring and between each sampling interval, using a detergent and distilled water wash followed by a distilled water rinse. All investigation-derived waste was containerized and secured in labeled 55-gallon drums.

2.3.1.1 Soil Sample Collection

Soil samples were initially scanned for organic vapors upon retrieval using a Photovac® photoionization detector (PID) equipped with a 10.6 electron volt (eV) probe. The PID, calibrated to an isobutylene standard, measures total concentrations of organic vapors. The PID cannot identify or quantify specific constituents. Discreet soil sampling was performed continuously from ground surface to the completion depth of each boring. Soil samples collected were typically split into two portions; one portion was placed in a

sealed plastic bag for headspace analysis with the PID and geologic classification, and the other portion was placed into clean laboratory-provided containers for potential laboratory-chemical analysis. The first sample was used to gauge the degree of soil impact if present in the upper portion. The second sample, if groundwater was not encountered, was placed on hold (e.g., not tested) at the laboratory in the event the first sample still contained residual contaminates above the acceptable levels. A Clayton geologist used the Unified Soil Classification System to describe and classify the soil samples. The soil sample descriptions and the field screening results were recorded on boring logs (Appendix D).

The soil samples were analyzed for the constituents presented in Table 1. The soil samples were submitted for analysis to First Environmental Laboratories (First Environmental) located in Naperville, Illinois. United States Environmental Protection Agency (USEPA) SW-846 Method 5035/8260B was used for volatile organic compounds (VOCs); benzene, toluene, ethylbenzene, xylenes (BTEX); and methyl tertiary-butyl ether (MTBE). Method 8270C was used for polynuclear aromatics (PNAs) and semi-volatile organic compounds (SVOCs). Modified Method Modified 8015B was used for total petroleum hydrocarbons (TPH). Method 8015B was used for all target, total, and total characteristic leaching procedure (TCLP) metals except cyanide and mercury. Method 7470A was used for mercury analysis. Method 9014 was used for total cyanide, and Method 8082 was used for polychlorinated biphenyls (PCBs).

2.3.1.2 Groundwater Grab Sample Collection

The purpose of the groundwater grab samples was to facilitate collection of groundwater samples from beneath the building from areas where installation of permanent monitoring wells would be difficult or impractical due to the ongoing operations at the facility.

Groundwater samples were collected from five soil borings (B-2, B-3, B-6, B-8, and B-22) during the initial Phase II investigation. Groundwater samples were collected by

placing a temporary 1-inch-diameter screen and riser in the borehole and retrieving the water using a low-flow peristaltic pump. The water was directly pumped into laboratory-provided containers. The first water sample was collected for VOC analysis using preserved sample vials that were filled with as little agitation as possible. Other sample bottles were filled and preserved as specified by the laboratory. Metals samples were filtered using a 0.45-micron in-line filter prior to being collected in a laboratory-provided bottle. Sample containers were labeled and placed in an iced cooler pending laboratory analysis.

Based on results of the groundwater grab samples collected during the first stage of the investigation, groundwater samples were collected from two additional soil borings (B-29 and B-30) during the second stage of the Phase II investigation. Groundwater was collected from a one-inch temporary well using a peristaltic pump. Two samples were collected at each location. One sample was directly collected in a specified laboratory container. The second sample was field-filtered with a 0.45-micron in-line filter prior to being collected in a laboratory-provided container. Sample containers were labeled and placed in an iced cooler pending laboratory analysis.

Groundwater grab samples were collected from the soil borings for the constituents associated with the RECs presented in Table 1. The groundwater samples were submitted to First Environmental for VOC, PNA, BTEX, and/or total metal analysis depending on the constituents of concern for each REC.

2.3.2 Monitoring Wells

2,3.2.1 Installation and Surveying

From August 9 through August 11, 2004, Clayton advanced six soil borings (B-11, B-14, B-17, B-21, B-27, and B-28) using a Diedrich D-120 drill rig. These soil borings were

advanced using a continuous flight hollow stem augers. Soil samples were collected using a standard 2-inch split barrel sampler driven by a 140-pound hammer. These borings were completed as 2-inch-diameter polyvinyl chloride (PVC) monitoring wells and located in the following areas:

- Monitoring Well MW-1 (B-27) was completed on the western side of the subject property to assess the upgradient property boundary.
- Monitoring Well MW-5 (B-28) was installed on the east side of the subject property to access the downgradient property boundary.
- Monitoring Well MW-2 (B-14) was installed in the north central portion of the subject property near the brick lined sewer.
- Monitoring Well MW-4 (B-17) was installed on the south central portion of the property near the former flue dust loading area.
- Monitoring Wells MW-3 (B-11) and MW-6 (B-21) were completed as monitoring wells in the north and south portions of the subject property, respectively.

The monitoring well locations are presented in Figure 3.

On August 19, 2004, Clayton surveyed the monitoring wells and collected an initial round of groundwater levels. Groundwater was encountered at depths ranging from 2.58 to 11.26 feet bgs. Based on the top of casing elevations and groundwater levels, groundwater flow direction is towards the east/northeast toward the North Branch of the Chicago River. Groundwater flow was determined using the elevations from monitoring wells MW-1, MW-3, and MW-5. Anomalous groundwater elevations, due to the presence of underground utilities and building footings, were collected from monitoring wells MW-2, MW-4, and MW-6. Therefore, the groundwater elevation data collected from monitoring wells MW-2, MW-4, and MW-6 were not included in the determination of groundwater flow. Groundwater elevations and flow direction are presented in Figure 5.

2.3.2.2 Development and Groundwater Sampling

Prior to sample collection, each well was developed by removing ten borehole volumes and obtaining stable water quality parameters, or by bailing the well dry twice using a disposable bailer. The wells were developed to restore the natural permeability of the formation adjacent to the borehole; remove clay, silty and other fines from the filter pack and well screen so that water samples will not be abnormally turbid or contain undue suspended matter; and remove contaminants from the well, filter pack, and formation material introduced during drilling. The newly constructed wells were allowed to stabilize for a minimum of 48 to 72 hours before sampling was performed.

The wells were sampled using a low-flow technique using an adjustable peristaltic pump at a low setting to minimize sediment in the groundwater samples. The wells were purged with minimal drawdown until water quality parameters stabilized. Samples were then collected for total metals and PNAs. The peristaltic pump was adjusted to a high setting, and three well volumes were then removed until water quality parameters had stabilized and/or (as in the case of MW-3) the well was bailed dry using a disposable bailer prior to sample collection. The VOC samples were then collected using a disposable bailer and collected in preserved sample vials. Sample containers were labeled and placed in an iced cooler. The samples were submitted to First Environmental for laboratory analysis.

2.4 DISCUSSION OF ANALYTICAL RESULTS

2.4.1 Soil and Groundwater Grab Sample Analytical Results

Under the Tiered Approach to Corrective Action Objectives (TACO) approach, the compounds detected in soil are evaluated based upon the risk presented by their concentration levels. For soil, the risks presented are: (1) vapors from contaminated soils

may be inhaled; (2) contaminated soil may be ingested; or (3) soil contaminants may migrate to groundwater and be ingested through drinking the water. Different soil remediation objectives (SROs) apply to each of the "exposure routes," which is the phrase used in TACO to describe the different ways contamination presents risks. Soil sample results were compared to the Illinois EPA's TACO Tier 1 Commercial/Industrial SROs and (for the leachable metals only) characteristic toxicity hazardous waste thresholds from 40 CFR Part 261.24. For each metal, the hazardous waste threshold is higher than the Tier 1 Commercial/Industrial SROs; thus, TCLP data that is below the SROs is also below hazardous waste thresholds. Groundwater results from samples collected from the groundwater monitoring wells and groundwater grab sample results were compared to TACO Tier 1 Class II groundwater remediation objectives (GROs). TPH values were compared to the soil attenuation capacity default values specified in Illinois EPA's TACO Section 742.215.

VOCs, PNAs, SVOCs, TPH, total and TCLP metals, and PCBs were detected in soil samples collected at the subject property. The soil analytical results are summarized in Table 2. The groundwater grab sample analytical results are summarized in Table 3. The analytical laboratory reports are provided in Appendix F.

2.4.1.1 Former Plating Solution Process Area (REC #1)

Total and TCLP metals were detected in soil boring B-1A (2 to 4 feet) in the former plating solution process area. However, no total metal or TCLP metal constituents were detected at concentrations above TACO Tier 1 SROs.

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

2.4.1.2 9,000-Gallon Abandoned Heating Oil UST (REC #2)

No constituent was detected in either soil sample collected from soil boring B-2, located near the 9,000-gallon heating oil UST, except benzo(a)anthracene. However, benzo(a)anthracene was detected at concentrations below TACO Tier 1 SROs. PNAs were detected in groundwater grab samples GW-2. The concentrations of benzo[a]anthracene, benzo[b]fluoranthene, and benzo[k]fluoranthene identified at GW-2 were above their respective Class II GROs.

Soil boring B-29 was advanced east-northeast of the 9,000-gallon heating oil UST during Stage 2 of the Phase II investigation to verify the presence of PNA compounds in the groundwater in the vicinity of GW-2. Two groundwater grab samples were collected for PNAs. One sample was directly collected in a specified laboratory container. The second sample was field- and laboratory-filtered to remove any sediment. The results of the groundwater grab sample collected at B-29 indicated PNAs were detected only in the unfiltered sample collected (GW-29U). However, no PNA was detected above TACO Tier 1 GROs in either the unfiltered and filtered sample. Therefore, Clayton concluded that residual PNAs have not migrated into the shallow water contained in the fill material beneath the existing facility. Because no contaminants of concern were detected above TACO Tier 1 SROs and because residual PNAs have not migrated into shallow groundwater, no further investigation is warranted.

2.4.1.3 Historic Foundry/Unknown Fill Material (REC #3 & REC #4)

PNAs, total metals, and TCLP metals were detected in soil samples B-3A, B-5A, B-6A, and B-7A located in the historic foundry and fill material location. Naphthalene was detected above Tier 1 inhalation SROs in soil samples B-6A and B-7A.

Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were detected at concentrations

above the TACO Tier 1 ingestion exposure route SROs in B-7A. Additionally, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were also detected above TACO Tier 1 migration to groundwater ingestion exposure route SROs.

Total arsenic concentrations above ingestion SROs was detected in soil sample B-5A (4 to 6 feet). Total lead was detected at concentrations well above TACO Tier 1 ingestion exposure route SROs in soil samples B-5A (4 to 6 feet), B-6A (2 feet), and B-7A (1 to 2 feet). TCLP barium was detected at concentrations above groundwater ingestion SROs in B-7A (1 to 2 feet). TCLP lead was detected at concentrations above TACO Tier 1 groundwater ingestion SROs in soil borings B-5A (4 to 6 feet), B-6A (2 feet), and B-7A (1 to 2 feet). Additionally, TCLP lead concentration in soil boring B-7A (1 to 2 feet) was detected at 21.8 milligrams per liter (mg/L), which is above the toxicity characteristic hazardous waste threshold (5.0 mg/L).

Total metals and PNAs were detected in groundwater grab sample GW-3 collected from soil boring B-3. Total lead was also detected at concentrations above TACO Class II GROs in groundwater grab sample GW-3. However, no PNA constituent was detected above TACO Tier 1 Class II GROs. During the second stage of the Phase II investigation, groundwater grab sample GW-30 was collected downgradient of B-3. Two samples were collected for total lead. One sample was directly collected in a specified laboratory container. The second sample was field- and laboratory-filtered to remove any sediment. Results of the analysis indicated that the unfiltered sample GW-30U contained concentrations of total lead above the TACO Tier 1 Class II GRO. The filtered sample GW-30F did not have concentrations of total lead above laboratory detection. Therefore, Clayton concluded that residual lead concentrations have not migrated into the shallow water contained in the fill material beneath the existing facility.

During Stage 2 of the Phase II investigation, soil samples B-36 and B-37 located near B-5 were collected to determine horizontal delineation of total lead, TCLP lead, and total arsenic above TACO Tier 1 SROs. Soil samples from B-38 at 9 feet bgs were collected to determine the vertical extent of arsenic and lead contamination and address the additional analysis requested by the Illinois EPA. The results of Stage 2 of the Phase II investigation indicated no metals constituent was detected in any of the soil samples except B-37/5'. Total lead was detected at a concentration above the TACO Tier 1 ingestion exposure route SRO in soil sample B-37/5'.

Soil samples B-39, B-40, and B-41 were collected to determine horizontal delineation of the total lead and naphthalene near soil sample B-6. B-42 was collected to determine the vertical extent of lead and naphthalene contamination and to address the additional analysis requested by the Illinois EPA. Naphthalene was detected above laboratory detection limits in soil samples collected from B-40 and B-41. However, no naphthalene concentration exceeded the TACO Tier 1 SROs. Metals were detected in the soil sample collected from B-42/9'; however, no metal constituent was detected at concentrations above TACO Tier 1 SROs. Total lead was detected at concentrations above the TACO Tier 1 ingestion exposure route SRO in B-39/2', B-40/2', and B-41/2'.

During the second stage of the Phase II investigation, soil samples B-29, B-43, B-44, and B-45 were collected to determine horizontal delineation of the TCLP lead above hazardous levels and/or PNAs near soil sample B-7. B-46 was collected to determine the vertical extent of lead and PNA contamination and to address the additional analysis requested by the Illinois EPA. No PNA constituent was detected at concentrations above TACO Tier 1 SROs except benzo(a)pyrene in the soil sample collected from B-43. Benzo(a)pyrene was detected above the TACO Tier 1 ingestion exposure route SRO in soil sample B-43/2'. No total metals constituent was detected above TACO Tier 1 SROs except total lead in the sample collected from soil boring B-45. Total lead concentrations exceeded the TACO Tier 1 ingestion exposure route SROs. TCLP lead was detected in

soil sample B-44/1.5' at a concentration above the TACO Tier 1 migration to groundwater SRO but below the toxicity characteristic hazardous waste threshold.

2.4.1.4 Potential Transformer Release (REC #5)

VOCs, PNAs, total and TCLP metals, and PCBs were detected in the soil sample B-4 located near the location of a potential transformer release. All PNAs were detected at concentrations below TACO Tier 1 SROs except benzo(a)anthracene, which was detected in soil boring B-4B (3 feet) at concentrations above ingestion SROs.

Total arsenic was detected at a concentration above TACO Tier 1 ingestion SROs in soil sample B-4B (3 feet). Total lead was detected at concentrations above TACO Tier 1 ingestion SROs in soil samples B-4A (1.5 feet) and B-4B (3 feet). Additionally, TCLP lead was detected in these soil samples at concentrations above the toxicity characteristic hazardous waste threshold.

PCBs (arochlor 1254) were detected at a concentration of 3.44 mg/kg above TACO Tier 1 ingestion SRO of 1.0 milligrams per kilogram (mg/kg) in soil sample B-4B (3 feet). It should be noted the detected concentration of PCBs is well below the hazardous waste threshold of PCBs, which is 50 mg/kg.

During the second stage of the Phase II investigation, soil samples B-32, B-33, B-34, and B-35 were advanced near B-4 to determine horizontal delineation of hazardous level TCLP lead and total arsenic, PNAs, and PCBs above TACO Tier 1 SROs. Soil samples from B-31 were collected to determine the vertical extent of contamination and to address the additional analysis requested by the Illinois EPA.

SVOCs were detected at concentrations above TACO Tier 1 SROs in soil samples B-31/3' and B-34/3'. Benzo(a) pyrene and dibenz(a,h)anthracene were detected at

concentrations above TACO Tier 1 ingestion SROs. Benzo(a)anthracene and carbazole were detected above TACO Tier 1 migration to groundwater exposure route in soil sample B-31/3'. Benzo(a)pyrene was detected at a concentration above the TACO Tier 1 ingestion exposure route SRO in soil sample B-34/3'.

No total metals concentration exceeded the TACO Tier 1 SROs except total lead in the soil sample collected at B-31. Total lead was detected at a concentration above the TACO Tier 1 ingestion exposure route SRO in soil sample B-31/3'. Analytical results indicated soil sample B-32/3' had concentrations of TCLP lead above the TACO Tier 1 migration to groundwater SRO, and B-34/3' had concentrations of TCLP lead above toxicity characteristic hazardous waste limits.

PCBs were detected at concentrations above the TACO Tier 1 ingestion exposure route SRO in soil samples B-31/3' and B32/3'. Due to the presence of PCBs above TACO Tier 1 ingestion SROs in soil sample B-32/3', soil sample B-54 was analyzed for PCBs to determine horizontal delineation to the west of B-4. PCBs were not detected above TACO Tier 1 ingestion exposure route SROs in soil sample B-54/4-6'.

2.4.1.5 Potential Hydraulic Oil Release-Scrap Metal Briquetter (REC #6)

PNAs, total metals, and TCLP metals were detected in soil sample B-5A (4 to 6 feet) located near the potential hydraulic oil release at the scrap metal briquetter. Total arsenic concentrations above ingestion SROs were detected in soil sample B-5A (4 to 6 feet). Total lead was detected at concentrations above TACO Tier 1 ingestion exposure route SROs. TCLP lead was detected at concentrations above TACO Tier 1 groundwater ingestion SROs in soil borings B-5A (4 to 6 feet).

The sample results establish the lack of impact from the potential hydraulic oil release. Accordingly, no further investigation of REC #6 is warranted. The second stage of the

Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4. See Section 2.4.1.3 for further information regarding the results of this investigation.

2.4.1.6 Potential Oil Release from Compressors (REC #7)

PNAs, total metals, and TCLP metals were detected in soil sample B-6A located near the potential oil release from compressors in the middle section of the Main building.

Naphthalene was detected above Tier 1 inhalation SROs in soil samples B-6A.

Total lead was detected at concentrations well above TACO Tier 1 ingestion exposure route SROs in soil samples B-6A (2 feet). TCLP lead was detected at concentrations above TACO Tier 1 groundwater ingestion SROs in soil borings B-6A (2 feet).

Total metals and PNAs were detected in groundwater grab sample GW-6. The concentrations of benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene identified at GW-6 were above their respective Class II GROs. However, no total metal constituent was detected above TACO Tier 1 Class II GROs.

Soil samples B-39, B-40, and B-41 were collected to determine horizontal delineation of the total lead, TCLP lead, and naphthalene near soil sample B-6. B-42 was collected to determine the vertical extent of lead and naphthalene contamination and to address the additional analysis requested by the Illinois EPA. Additionally, a soil sample was submitted from soil boring B-39 for TPH analysis.

Naphthalene was detected above laboratory detection limits in soil samples collected from B-40 and B-41. However, no naphthalene concentration exceeded the TACO Tier 1 SROs. Metals were detected in the soil sample collected from B-42/9'; however, no metal constituent was detected at concentrations above TACO Tier 1 SROs. Total lead

was detected at concentrations above the TACO Tier 1 ingestion exposure route SRO in B-39/2', B-40/2', and B-41/2'. TPH was detected in soil sample B-39/10' at concentrations well below the soil attenuation capacity limit of 2,000 mg/kg for soils under 1 meter. Based on these sample results from the Phase II investigation, this REC is considered fully delineated and no further investigation is necessary. The second stage of the Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4. See Section 2.4.1.3 for further information regarding the results of this investigation.

2.4.1.7 Potential Hydraulic Oil Release-Pouring Conveyor (REC #8)

PNAs, total metals, and TCLP metals were detected in soil sample B-7A located near potential hydraulic oil release from the pouring conveyor in the middle section of the Main building. Naphthalene was detected above Tier 1 inhalation SROs in soil sample B-7A. Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were detected at concentrations above the TACO Tier 1 ingestion exposure route SROs in B-7A. Additionally, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were also detected above TACO Tier 1 migration to groundwater ingestion exposure route SROs.

Total lead was detected at concentrations well above TACO Tier 1 ingestion exposure route SROs in soil sample B-7A (1 to 2 feet). TCLP barium was detected at concentrations above groundwater ingestion SROs. TCLP lead was detected at concentrations above TACO Tier 1 groundwater ingestion SROs in soil borings B-7A (1 to 2 feet). Additionally, TCLP lead concentration in soil boring B-7A (1 to 2 feet) was detected at 21.8 mg/L, which is above the toxicity characteristic hazardous waste threshold (5.0 mg/L).

During the second stage of the Phase II investigation, soil samples B-29, B-43, B-44, and B-45 were collected to determine horizontal delineation of the TCLP lead above hazardous levels and/or PNAs near soil sample B-7. B-46 was collected to determine the vertical extent of lead and PNA contamination and to address the additional analysis requested by the Illinois EPA.

No PNA constituent was detected at concentrations above TACO Tier 1 SROs except benzo(a)pyrene in the soil sample collected from B-43. Benzo(a)pyrene was detected above the TACO Tier 1 ingestion exposure route SRO in soil sample B-43/2'. No total metals constituent was detected above TACO Tier 1 SROs except total lead in the sample collected from soil boring B-45. Total lead concentrations exceeded the TACO Tier 1 ingestion exposure route SROs. TCLP lead was detected in soil sample B-44/1.5' at a concentration above the TACO Tier 1 migration to groundwater SRO but below the toxicity characteristic hazardous waste threshold. Analysis at B-39 indicated TPH was found at concentrations below soil attenuation capacity limits.

Based on these sample results from the Phase II investigation, REC #8 is considered fully delineated and no further investigation is necessary. The second stage of the Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4. See Section 2.4.1.3 for further information regarding the results of this investigation.

2.4.1.8 Abandoned 2,000-Gallon Gasoline UST (REC #9)

BTEX, total and TCLP metals were detected in soil boring B-8 located at the abandoned 2,000-gallon gasoline UST. However, no constituents were detected at concentrations above TACO Tier 1 SROs except benzene. Benzene was detected in soil sample B-8A (2 to 4 feet) at concentrations above the Tier 1 inhalation and groundwater ingestion exposure route.

SI and RQ Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001/11/29/2004/MEM/JMF

Total metals were detected above laboratory limits in groundwater grab sample GW-8. However, no total metal constituent was detected above TACO Tier 1 Class II GROs.

2.4.1.9 2,000-Gallon Gasoline UST-Removed (REC #10)

No BTEX compounds were detected in the soil samples collected from soil boring B-9. However, a soil sample was collected at B-48 for MTBE as requested by the Illinois EPA. The results of the analysis indicated no MTBE concentrations were detected above the laboratory detection limits.

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

2.4.1.10 Former Bulk Oil Storage (REC #11)

PNAs were detected in soil samples collected from B-10, B-11, and B-12 located near the former bulk oil storage area. Additionally, BTEX was detected above laboratory detection limits in B-11. However, no PNA constituent was detected at concentrations above TACO Tier 1 SROs in B-10. Benzo(a)pyrene was detected at a concentration above the TACO Tier 1 SRO in soil sample B-12A (2 to 4 feet). Naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were detected at concentrations above the TACO Tier 1 ingestion exposure route SROs in soil sample B-12A (4 to 6 feet).

At the request of the Illinois EPA, TPH was collected from soil borings B-50 and B-51 during the second stage of the Phase II investigation. TPH was found in B-50 at a concentration exceeding the soil attenuation capacity for soils below 1 meter presented in

Section 742.215 of TACO (2,000 mg/kg). TPH concentrations were below the soil attenuation capacity in the soil sample collected from B-51.

2.4.1.11 Former Slag Pile (REC #12)

Total and TCLP metals were detected in soil borings B-13A (1.5 feet) and B-13B (3 feet) in the former slag pile area. However, no total metal or TCLP metal constituents were detected at concentrations above TACO Tier 1 SROs except the total lead and TCLP lead concentrations in soil sample B-13A (1.5 feet). Total lead was detected at concentrations above the soil ingestion SRO, and the TCLP lead concentration was above the TACO Tier 1 groundwater ingestion exposure route SRO.

During the second stage of the Phase II investigation, soil boring B-52 was advanced west of B-13A to further delineate total lead concentrations above the TACO Tier 1 soil ingestion SRO to the west. Analytical results indicated total lead concentrations were found above TACO Tier 1 soil ingestion SROs.

Based on these sample results from the Phase II investigation, REC #8 is considered fully delineated and no further investigation is necessary. The second stage of the Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4.

2.4.1.12 Brick-Lined Storm Sewer (REC #13)

Total and TCLP metals were detected in soil boring B-14 located near the brick lines storm sewer. However, no total metal or TCLP metal constituent was detected at concentrations above TACO Tier 1 SROs. Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004/ MEM/JMF

2.4.1.13 Former 10,000-Gallon Heating Oil UST (REC #14)

PNAs were detected in soil boring B-15A (2 to 4 feet) located at the location of the former 10,000-gallon heating oil UST. However, no PNA constituent was detected at concentrations above TACO Tier 1 SROs.

To address the Illinois EPA's request to collected TPH samples at former petroleum tank locations, soil boring B-54 was advanced near B-15 during the second stage of the Phase II investigation. TPH was detected at concentrations well below the soil attenuation capacity for soil below 1 meter.

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

2.4.1.14 Former Flue Dust Loading Area (REC #15)

Total and TCLP metals were detected in soil samples collected from borings B-16 and B-17 in the former flue dust loading area. Total lead was detected above the TACO Tier 1 soil ingestion SRO, and TCLP lead was detected above the TACO Tier 1 groundwater ingestion exposure route SRO in soil sample B-17A (1.5 feet).

Soil boring B-55 was advanced near B-17 to collect samples for SVOCs and target metals as requested by the Illinois EPA. Sample results indicated only total lead was detected above the TACO Tier 1 soil ingestion SRO. Based on these sample results from the Phase II investigation, REC #15 is considered fully delineated and no further investigation is necessary. The second stage of the Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4

2.4.1.15 Railroad Tracks (REC #16)

Total and TCLP metals were detected in soil samples collected from borings B-18, B-19, and B-20 located near the railroad tracks. Additionally, PNAs were detected in soil samples B-19 and B-20. No PNA, total metal, or TCLP metal constituents were detected at concentrations above TACO Tier 1 SROs except for TCLP lead in soil sample B-19A (0 to 2 feet) and total lead in soil sample B-20A (0 to 2 feet). TCLP lead was detected at concentrations above the TACO Tier 1 groundwater ingestion exposure route SRO in soil sample B-19A (0 to 2 feet). Total lead was detected at a concentration above the TACO Tier 1 ingestion SRO in soil sample B-20A (0 to 2 feet).

Soil borings B-56, B-57, and B-58 were advanced along the railroad tracks to delineate total lead concentrations on the western side of the property during the second stage of the Phase II investigation. Soil samples were analyzed for total lead. Total lead was detected in all soil borings above laboratory detection limits. However, only B-57/2' and B-58/2' had detections of total lead above the TACO Tier 1 ingestion SRO. Based on these sample results from the Phase II investigation, REC #16 is considered fully delineated and no further investigation is necessary. The second stage of the Phase II investigation was conducted in this area to delineate metal concentrations above ingestion SROs in connection with RECs #3 and #4.

2.4.1.16 Potential Solvent Usage (REC #17)

No VOC compound was detected in soil sample B-21 collected from the potential solvent usage area located near the Besly Building on the south side of the subject property.

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

S1 and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001/11/29/2004/MEM/JMF

2.4.1.17 Potential Hydraulic Oil Release-Besly Building (REC #18)

No PNA or BTEX compound was detected above TACO Tier 1 SROs in soil samples B-22 and B-23 located in the basement of the Besly Building near the hydraulic elevators.

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

2.4.1.18 Former Locomotive Warehouse (REC #19)

No PNA or VOC compound was detected in soil sample B-24 except naphthalene. Naphthalene was detected at a concentration below TACO Tier 1 SROs in soil sample B-24A (4 to 6 feet).

Based on the results of the Phase II investigation, no contaminants of concern were detected above TACO Tier 1 SROs in association with this REC. No further investigation is warranted.

2.4.1.19 Unknown Fill Material (REC #20)

PNAs, total and TCLP metals were detected in soil boring B-25 advanced in the fill material below the Forsyth Building. Naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were detected at concentrations above TACO Tier 1 soil ingestion exposure route SROs in soil samples B-25A (2 to 4 feet) and B-25B (6 to 8 feet). No total metal or TCLP metal constituent was detected at concentrations above TACO Tier 1 SROs except for lead. Total lead was detected at concentrations above the soil ingestion SRO in B-25A (2 to 4 feet) and B-25B (6 to 8 feet). The TCLP lead concentration was

above the TACO Tier 1 groundwater ingestion exposure route SRO in soil sample B-25A (2 to 4 feet).

During Stage 2 of the Phase II investigation, soil samples B-60 and B-61 were advanced near B-25 in the Forsyth Building to determine horizontal delineation of total lead and PNAs above TACO Tier 1 ingestions SROs. Soil sample B-59 was advanced to determine vertical extent of contamination.

Sample results indicated total lead was not detected above the TACO Tier 1 SRO in any of the soil samples. No PNAs were detected at concentrations below TACO Tier 1 SROs except benzo(a)pyrene, which was detected in soil borings B-60/5' and B-51/5' at concentrations above ingestion SROs.

2.4.1.20 Potential Hydraulic Oil Release-Howard Medical Building (REC #21)

No samples were collected at this location due to lack of access to the building during the investigation. B-26 was the proposed boring number for this location. If SiPi acquires the Howard Medical building before the completion of remedial activities, an investigation and possible remediation activities will be implemented. The results of the investigation and remediation activities, if necessary, will be included in the Remediation Activities Completion Report (RACR).

2.4.1.21 Downgradient Property Boundary (Not Identified as a REC)

PNAs and total metals were detected above laboratory detections limits in soil sample B-28 collected during the installation of MW-5. No total metal or PNA constituent was detected above TACO Tier 1 SROs except benzo(a)pyrene. Benzo(a)pyrene was detected at a concentration above the TACO Tier 1 ingestion SRO in B-28 (2 to 4 feet).

Soil samples B-43, B-48, and B-62 were collected during Stage 2 of the Phase II investigation to determine the horizontal and vertical delineation of benzo(a)pyrene at B-28. Benzo(a)pyrene was detected at concentrations above the TACO Tier 1 ingestion SRO in soil samples B-43/2' and B-62/3'. B-62/8' and B-48/3' had detections of benzo(a)pyrene below the TACO Tier 1 ingestion SRO.

2.4.1.22 Upgradient Property Boundary (Not Identified as a REC)

Total metals were detected above laboratory detections limits in soil sample B-27 collected during the installation of MW-1. No metal constituent was detected in soil sample B-27/MW-1 except total lead. Total lead was detected at a concentration above TACO Tier 1 ingestion exposure route SRO.

During Stage 2 of the Phase II investigation, soil boring B-53 was advanced west of B-27/MW-1 to determine the horizontal extent of contamination to the western property boundary. No total metals constituent was detected above TACO Tier 1 SROs in soil sample B-53/4'.

2.4.2 Monitoring Well Analytical Results

Groundwater results were compared to TACO Tier 1 Class II GROs. The groundwater analytical results are listed in Table 4. The analytical data is provided in Attachment B.

No VOCs or PNAs were detected in any of the groundwater samples collected from the monitoring wells installed at the subject property. No total metal constituents, except barium, were detected in any of the groundwater samples. Barium was detected in all of the groundwater samples at concentrations below TACO Tier 1 Class II GROs.

2.4.3 Other Results

Three soil samples were submitted to First Environmental for f_{∞} analysis (Method ASTM D 2974-87). The laboratory analytical method was performed in accordance with 35 IAC Part 742.

The f_{oc} values ranged from 2.5% to 13.33% in the samples analyzed. However, the sample containing f_{oc} at 13.33% was collected in an area that contained contamination. Results of the f_{oc} analysis are summarized in Table 2. A copy of the laboratory report is provided in Appendix F.

Slug testing was conducted on four of the monitoring wells to determine hydraulic conductivity. Based on hydraulic conductivity obtained during slug testing on the monitoring wells at the subject property, the fill material containing groundwater has a hydraulic conductivity of 6.26×10^{-3} cm/sec to 1.65×10^{-4} cm/sec. The hydraulic conductivity testing results are provided in Appendix G.

2.5 ENDANGERMENT ASSESSMENT

Based on the findings of the Phase II investigations, the original RECs described in the Phase I ESA can be consolidated into five areas of concern (AOCs).

2.5.1 AOC I: Former Foundry Operations/Fill Material (Former REC #3 & 4)

2.5.1.1 Contaminants of Concern

Historic foundry operations were conducted in the middle portion of the building. It is possible there is residual metal dust onsite because of this operation. The middle section of the main building was brought up to dock height with unknown fill reported to contain

cinders. Perched water under this part of the building may have originated from subgrade quench tank pits and machine pits. The water in these pits may contain residual metals. A machine pit under the pouring conveyor equipment was reported to be leaking wash water from cooling the ingots to the subsurface as well. In addition, an out-of-use one-ton electric induction furnace has a deep-water pit and associated deeper trough (~20 to 25 feet deep). The trough was reported to have been leaking prior to its removal from service.

Clayton identified the contaminants of concern for this area as: PNAs and metals.

2.5.1.2 Contaminated Media

A total of 48 borings were advanced on the property that address the former foundry operations and fill material beneath the subject buildings. PNA constituents assumed to be associated with the historic fill material were detected in borings B-7, B-28/MW-5, B-43, and B-62 at concentrations above TACO Tier 1 ingestion exposure route SROs. Additionally, soil borings B-6 and B-7 had concentrations of naphthalene above the TACO Tier 1 inhalation exposure route SROs.

Total lead was detected above the TACO Tier 1 ingestion exposure route SRO in soil samples collected from B-5, B-6, B-13, B-17/MW-4, B-20, B-32, B-33, B-37, B-39, B-40, B-41, B-49, B-52, B-55, B-57, and B-58. Total arsenic concentrations exceeded the TACO Tier 1 ingestion exposure route SRO in soil samples collected from B-4 and B-5.

TCLP metals, lead and/or cadmium, were detected at concentrations above the TACO Tier 1 soil migration to groundwater SROs from the soil samples collected from B-3, B-4, B-5, B-5, B-6, B-7, B-13, B-17/MW-4, B-19, B-25, B-27/MW-1, B-32, and B-44. TCLP

lead was detected above toxicity characteristic hazardous waste levels in soil samples collected from B-4, B-7, B-31, and B-34.

PNA compounds were detected at concentrations above TACO Tier 1 Class II GROs in groundwater grab samples collected from B-2 and B-6 (GW-2 and GW-6). Soil boring B-29 was advanced downgradient of GW-2 and GW-6 during Stage 2 of the Phase II investigation to determine if PNA compounds in the groundwater are in the dissolved phase or if the PNAs are found only in the sediment. Two samples were collected for PNAs. One sample was directly collected in a specified laboratory container. The second sample was field- and laboratory-filtered to remove any sediment. The results of the groundwater grab sample collected at B-29 indicated PNAs were detected only in the unfiltered sample collected (GW-29U). No PNA was detected above TACO Tier 1 GROs in either the unfiltered and filtered sample.

A groundwater grab sample collected from soil boring B-3 contained concentrations of total lead above TACO Tier 1 Class II GROs. A groundwater grab sample was collected during the second stage of the Phase II investigation to determine if the total lead is in dissolved phase or if it is contained only in the sediment. Two samples were collected for total lead from groundwater grab sample GW-30. One sample was directly collected in a specified laboratory container. The second sample was field- and laboratory-filtered to remove any sediment. Results of the analysis indicated the unfiltered sample GW-30U contained concentrations of total lead above the TACO Tier 1 Class II GRO. The filtered sample GW-30F did not contain concentrations of total lead above laboratory detection.

2.5.1.3 Extent of Compounds of Concern

2.5.1.3.1 Soil PNA Impacts

PNAs associated with the historic fill material and/or the former foundry operations include naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. PNA soil impacts above TACO Tier 1 ingestion/inhalation exposure route SROs are bracketed to the north by soil borings B-2 and B-29, to the south by B-48, to the west by B-40 and B-55, and to the east by the property boundary. Further sampling is required to determine the full extent of contamination to the southeast. This sampling will be conducted either as a separate phase prior to implementation of remedial actions or in connection with implementation of the remedial actions. While further delineation is needed to complete the remedial actions, the remedial action plan for this AOC can be developed prior to completing the additional sampling.

2.5.1.3.2 Soil Metals Impacts

Lead soil impacts above TACO Tier 1 ingestion/inhalation exposure route SROs are bracketed to the north by soil borings B-3, B-36, and B-19; to the south by B-8; to the west by soil borings B-19, B-53, and B-56; and to the east by the property boundary. The lead contamination beneath the subject building appears to be contained within the fill material. Further sampling will be required to address the extent of impact of total lead on the southwest side of the main property.

TCLP lead was detected above toxicity characteristic hazardous levels in soil borings B-4, B-7, B-31, and B-34 in the fill material beneath the subject building. The TCLP lead impacts above the hazardous level near B-4 are bracketed to the north by soil horing B-33, to the west by B-32, and to the east by B-5. Due to the presence of TCLP lead

above toxicity characteristic hazardous levels in B-34, further delineation is necessary to the south.

The additional sampling for metals and TCLP metals will be conducted either as a separate phase prior to implementation of remedial actions or in connection with implementation of the remedial actions. While further delineation is needed to complete the remedial actions, the remedial action plan for this AOC can be developed prior to completing the additional sampling.

2.5.2 AOC II: Potential Transformer Release (Former REC #5)

2.5.2.1 Contaminants of Concern

Approximately 15 years ago, there had been a transformer explosion in the group of four ComEd transformers located on the western roof of the middle section of the building. Oils were reported to have run down the gutters and into the storm drains to the subsurface storm sewer system. It is not known if the oil released contained PCBs. The contaminants of concern for this area were identified as VOCs, PNAs, and PCBs.

2.5.2.2 Contaminated Media

A total of 9 borings were advanced on the property that address the former transformer release. PNA constituents assumed to be associated with the historic transformer release were detected at concentrations above TACO Tier 1 ingestion exposure route SROs in borings B-4 and B-34. PCBs were detected at concentrations above TACO Tier 1 soil ingestion exposure route SROs in soil borings B-4, B-31, and B-32.

During the second stage of the Phase II investigation, high PID readings were detected in soil samples collected at 7 feet bgs in soil sample B-31. These samples were submitted to

the laboratory for VOC analysis. Results of the analysis indicated vinyl chloride was detected at a concentration above the TACO Tier 1 ingestion exposure route SRO in soil sample B-31/7'. Additionally, trichloroethene and cis-1,2-dichloroethene were detected above the TACO Tier 1 migration to groundwater SRO.

2.5.2.3 Extent of Compounds of Concern

2.5.2.3.1 Soil PNA Impacts

PNAs associated with the historic transformer release include benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene. PNA soil impacts above TACO Tier 1 ingestion/inhalation exposure route SROs are bracketed to the north by soil borings B-33, to the south by B-55, to the west by B-32, and to the east by B-5. The southern extent of PNAs above ingestion/inhalation will be further delineated during remedial activities.

2.5.2.3.2 Soil PCB Impacts

PCBs associated with the historic transformer release include arochlor 1254 and arochlor 1260. PCB soil impacts above TACO Tier 1 ingestion/inhalation exposure route SROs are bracketed to the north by soil borings B-33, to the south by B-34, to the west by B-54, and to the east by B-35.

2.5.2.3.3 Soil VOC Impacts

VOCs associated with the historic transformer release include trichloroethene, cis-1,2-dichloroethene, and vinyl chloride. VOC soil impacts have not been delineated. The VOCs detected in this area will be horizontally and vertically delineated during the remediation activities at the subject property.

2.5.3 AOC III: Abandoned 2,000-gallon Gasoline UST (Former REC#9)

2.5.3.1 Contaminants of Concern

A former 2,000-gallon gasoline UST is present underneath the southern portion of the main building in the liquids storage room of the cyanide area. The UST was reported to have been removed from service and filled with pea gravel in 1981. The contaminants of concern for this area were identified as BTEX.

2.5.3.2 Contaminated Media

A total of 6 borings were advanced to assess the former abandoned 2,000-gallon gasoline UST area. Contaminated media are limited to benzene-contaminated soils in the southeast portion of the subject property.

2.5.3.3 Extent of Compounds of Concern

2.5.3.3.1 Soil BTEX Impacts

BTEX constituents associated with the former 2,000-gallon gasoline UST include benzene. Benzene soil impacts above TACO Tier 1 ingestion/inhalation exposure route SROs are bracketed to the north by soil borings B-6, to the south by B-48, to the west by B-49, and to the east by B-47. Accordingly, this AOC is considered to be fully delineated and no further investigation is necessary prior to implementation of remedial activities.

2.5.4 AOC IV: Fill Material at the Forsyth Building (Former REC #20)

2.5.4.1 Contaminants of Concern

The Forsyth building located on the south end of the subject property was constructed on top of several feet of fill material to raise the truck doors to dock height. The fill beneath the building is of unknown origin. The contaminants of concern for this area were identified as PNAs, VOCs, and metals.

2.5.4.2 Contaminated Media

A total of 4 borings were advanced at the Forsyth building to address the unknown fill material. PNA constituents were detected at concentrations above TACO Tier 1 ingestion exposure route SROs in borings B-25, B-60, and B-61. Total lead was detected at concentrations above TACO Tier 1 soil ingestion exposure route SROs in soil boring B-5. TCLP lead was detected at a concentration above the TACO Tier 1 migration to groundwater SRO in soil sample B-25A (2 to 4 feet). No VOC constituent was detected above TACO Tier SROs.

2.5.4.3 Extent of Compounds of Concern

2.5.4.3.1 Soil VOC Impacts

Soil sample B-25 was analyzed for VOCs during the first stage of the Phase II investigation. No soil sample had VOCs above the Illinois EPA Tier 1 SROs. Accordingly, no further investigation of VOCs is warranted.

2.5.4.3.2 Soil Metals Impacts

In the fill material beneath the Forsyth building, metal impacts above Illinois EPA Tier 1 SROs and/or the background levels provided in Part 742 Appendix A – Table G were limited to total lead and TCLP lead. Lead soil impacts above TACO Tier 1 SROs are bracketed to the north by B-61, to the west by B-60, and to the south and east by the property boundary. A soil sample collected at 12 feet bgs from B-59 near soil boring indicated total lead was below laboratory detection limits. Based on the Phase II investigation results, metals impacts to soils at this AOC have been fully delineated and no further investigation is necessary.

2.5.4.3.3 Soil PNA Impacts

PNA impacts above Illinois EPA Tier 1 SROs are limited to naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrcne, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. PNA soil impacts above TACO Tier 1 SROs are undefined due to the presence of benzo(a)pyrene above the TACO Tier 1 ingestion exposure route SRO in the soil samples collected to the north and west (B-61 and B-60, respectively) of the original boring B-25. However, soil samples collected at 12 feet bgs from B-59, near soil boring B-25, indicated the soil does not contain PNAs above TACO Tier 1 SROs. Based on the Phase II investigation results, PNA impacts to soils at this AOC have been fully delineated and no further investigation is necessary..

2.5.5 AOC V: Former Bulk Oil Storage (Former REC #11)

2.5.5.1 Contaminants of Concern

Formerly two heating oil ASTs operated as part of a bulk fuel oil transfer station. The oil pump house was situated west of the ASTs and was reportedly used to control transfer of

oil from railcars to the ASTs. The original tanks were situated along the northeastern property boundary. The tanks were subsequently relocated to the north central portion of the property and were secured within concrete containment (walls and floor). The ASTs were decommissioned in 1973. The contaminants of concern for this area were identified as BTEX and PNAs.

2.5.5.2 Contaminated Media

A total of 4 borings were advanced at the former locations of the heating oil ASTs on the north side of the subject property to address whether there was any impacts from this REC. No BTEX constituent was detected above TACO Tier SROs. PNA constituents were detected at concentrations above TACO Tier 1 ingestion exposure route SROs in borings B-11, B-50, and B-51. Additionally, benzo(a)anthracene was detected above the TACO Tier 1 migration to groundwater SRO in B-50. As requested by the Illinois EPA, TPH samples were collected from B-50 and B-51 during the second stage of the Phase II investigation. Soil sample B-50 (4 to 6 feet) contained concentrations of TPH above the soil attenuation capacity of 2,000 mg/kg.

2.5.5.3 Extent of Compounds of Concern

2.5.5.3.1 Soil BTEX Impacts

Soil samples B-10 and B-11 were analyzed for BTEX during the first stage of the Phase II investigation. No soil sample had BTEX above the Illinois EPA Tier 1 SROs.

2.5.5.3.2 Soil PNA Impacts

PNA impacts above Illinois EPA Tier 1 SROs were limited to naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and

dibenzo(a,h)anthracene. PNA soil impacts above TACO Tier 1 SROs were detected in samples collected on the east and west side of the northern portion of the property. The extent of PNA contamination is assumed to extend to the property boundaries to the north, west, and east. The PNA impacts to the south extend to soil boring B-10.

TPH was detected in soil sample B-50 (4 to 6 feet) above the soil attenuation capacity. Based on the results of the investigation, a correlation appears to exist between the PNA concentrations and the TPH concentration. Based on the results of the sampling in the northern portion of the area, TPH above the soil attenuation capacity is most likely limited to B-11/MW-3 and B-50. However, sampling conducted at monitoring well MW-3 did not indicate the presence of free phase hydrocarbons. Further sampling will be conducted to determine the extent of TPH above the soil attenuation capacity. This sampling will be conducted either as a separate phase prior to implementation of remedial actions or in connection with implementation of the remedial actions. While further delineation is needed to complete the remedial actions, the remedial action plan for this AOC can be developed prior to completing the additional sampling.

2.5.6 Comparison of Investigation Analytical Results with Tier 1 SROs

Clayton performed an Endangerment Assessment (EA) of the subject property based on the findings of the Phase I and Phase II investigations. Clayton compared the soil results with the TACO Tier 1 Class II soil migration to groundwater SROs and the most stringent inhalation and ingestion TACO Tier 1 SROs for Commercial/Industrial Properties (35 IAC Part 742) for the EA.

2.5.6.1 VOCs

The subject property has benzene above TACO Tier 1 SROs near the abandoned 2,000-gallon gasoline UST located in the southern portion of the main building. Vinyl chloride

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF

was detected above TACO Tier 1 SROs in a soil sample collected near the former transformer release on the western side of the main building.

2.5.6.2 PNAs

The subject property has the following soil PNAs with impacts above the TACO Tier 1 SROs for Commercial/Industrial Properties: naphthalene, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. The PNA impacts are mainly isolated to four areas: the northern parking area, near the location of the former transformer release in the central portion of the facility, in the south section of the main building, and in the fill material beneath the Forsyth building. No soil sample, except soil boring B-50, contained total concentrations of TPH higher than the soil attenuation capacity.

2.5.6.3 PCBs

The subject property has soil with impacts of PCBs above TACO Tier 1 SROs for Commercial/Industrial Properties. The PCB impact is isolated to near the location of the former transformer release in the central portion of the facility. No soil sample contained total concentrations of PCBs higher than the toxicity characteristic hazardous level.

2.5.6.4 Metals

Metal impacts at concentrations above the Illinois EPA Tier 1 SROs and/or the background levels provided in Part 742 Appendix A - Table G are located mainly in the middle portion of the subject property. The subject property has the following metals with impacts above Illinois EPA Tier 1 SROs: arsenic and lead.

Total arsenic and lead were detected above TACO Tier 1 SROs in many soil samples collected from the fill material located in the central portion of the subject property and the middle and southern portion of the main building.

Additionally, TCLP lead above toxicity characteristic hazardous levels was detected in two areas at the property: near the former transformer release on the western side of the main building and near the potential hydraulic oil release from the pouring conveyor on the southeastern portion of the middle section of the main building.

2.5.7 Exposure Routes

Clayton evaluated the following potential exposure routes for actual or potential impact to a receptor or potential receptor from a contaminant of concern at the subject property:

- Inhalation of vapors
- · Ingestion of soil
- · Ingestion of groundwater

The compounds lead, arsenic, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene were all above Illinois EPA Tier I Commercial/Industrial Ingestion SROs.

Naphthalene, benzene, and vinyl chloride were detected above TACO Tier I Commercial/Industrial Inhalation SROs at the subject property.

Benzene, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, cadmium, lead, benzo(a)anthracene, and carbazole were all above TACO Tier 1 Class II SROs for the soil component of groundwater ingestion exposure route for commercial/industrial properties.

Based on the results of groundwater sampling at the monitoring wells, no VOC, PNA, or metal constituent appears to be in dissolved phase.

As stated before, all three exposure routes were identified with the potential for actual or potential impact to a receptor or potential receptor from the above-referenced contaminants of concern. The number of soil samples collected that may affect the exposure pathways are summarized below:

COMPOUNDS	SOIL INGEST. PATHWAY	SOIL INHAL. PATHWAY	MIGRATION TO CLASS II GW PATHWAY	TCLP HAZ WASTE	SOIL ATTEN, CAPACITY
VOCS					
Benzene	0	1	1	0	0
Cis-1,2-dichloroethene	0	0	1	0	0
Trichloroethene	0	0	1	0	0
Vinyl chloride	0	1	1	0	0
PNAs					
Naphthalene	0	5	0	0	0
Benzo(a)anthracene	7	-	7	0	0
Benzo(b)fluoranthene	5	_	1	0	0
Benzo(k)fluoranthene	1	-	0	0	0
Benzo(a)pyrene	16	-	1	0	0
Indeno(1,2,3-cd)pyrene	4	-	1	0	0
Dibenz(a,h)anthracene	7	-	1	0	0
Carbazole	0	-	1	0	0
ТРН	0	o	0	0	1
Metals					
Arsenic	2	0	0	0	_
Cadmium	0	0	6	0	-
Lead	22	-	14	4	-

2.5.8 Contaminant Fate and Transport

The soil component of the groundwater ingestion exposure route will be excluded based on the results of the groundwater grab sampling from the soil boring and the groundwater

sampling conducted from the monitoring wells. The inhalation and ingestion exposure pathways will be excluded by installing engineered barriers. Any soil above toxicity characteristic hazardous levels or above soil attenuation capacity will be removed from the subject property.

2.5.9 Physical Features Affecting Contaminant Transport and Exposure Risk

The physical features affecting contaminant transport include: the structures on subject property, the paved parking areas, and the site geology. The structures and paved parking areas limit infiltration of precipitation that reduces leaching and vertical transport of contaminants.

3.0 <u>REMEDIAL OBJECTIVES</u>

The remediation objectives established for the soil at the subject property containing constituents of concern are the Tier 1 industrial/commercial SROs established for these constituents in Appendix B, Table B in the 35 IAC 742 regulations. The remediation objectives established for the groundwater containing constituents of concern are the Tier 1 Class II GROs established for these constituents in Appendix B, Table E in the 35 IAC 742 regulations.

TCLP lead was detected above the toxicity characteristic hazardous level of 5.0 parts per million (ppm) in soil samples collected from soil borings B-4 and B-7. Additionally, the soil sample collected for TPH from B-50 in the north parking area contained total organics above the default values for soil attenuation capacity in Section 732.215 (6,000 mg/kg for soil within the top meter and 2,000 mg/kg for soils below one meter of the surface). The proposed remedial activities to address the leachable lead and the residual TPH concentrations will be presented in a RAP.

3.1 EVALUATION OF THE SOIL INGESTION EXPOSURE ROUTE

The remediation objectives established for the constituents of concern identified in the soil at the subject property are based on the applicable Tier 1 Industrial/Commercial SROs. The remediation objectives for the most stringent soil ingestion exposure route SROs are summarized below:

COMPOUNDS	SOIL INGESTION EXPOSURE ROUTE REMEDIATION OBJECTIVE
PNAs ug/kg	
Benzo(a)anthracene	8,000
Benzo(b)fluoranthene	8,000
Benzo(k)fluoranthene	78,000

COMPOUNDS	SOIL INGESTION EXPOSURE ROUTE REMEDIATION OBJECTIVE	
Вепло(а)ругене	800	
Indeno(1,2,3-cd)pyrene	8,000	
Dibenz(a,h)anthracene	800	
Metals mg/kg		
Arsenic	61	
Lead	400	

The soils remaining at the subject property with concentrations above the soil ingestion exposure route will be excluded by using an engineered barrier (over the areas of the Site where contamination exists) that will remain in place through use as an institutional control. The engineered barrier will consist of one or more of the following: concrete, asphalt, pavement, buildings, or 3 feet of clean fill material. The engineered barrier will most likely be installed during development of the subject property. Further information regarding the location and installation of engineered barriers will be provided in the RAP.

3.2 EVALUATION OF THE SOIL INHALATION EXPOSURE ROUTE

The remediation objectives established for the constituents of concern identified in the soil at the subject property are based on the applicable Tier 1 Industrial/Commercial SROs. The remediation objectives for the most stringent soil inhalation exposure route SROs are summarized below:

COMPOUNDS	SOIL INHALATION EXPOSURE ROUTE REMEDIATION OBJECTIVE	
VOCS ug/kg	·	
Benzene	1,600	
Vinyl chloride	1,100	
PNAs ug/kg		
Naphthalene	1,800	

The soil inhalation exposure route will be excluded by using an engineered barrier (over the areas of the subject area where contamination exists) that will remain in place through use as an institutional control. The engineered barrier will consist of one or more of the following: concrete, asphalt, pavement, buildings, or 3 feet of clean fill material. The engineered barrier will most likely be installed during development of the subject property. Further information regarding the installation of engineered barriers will be provided in the RAP.

3.3 EVALUATION OF THE GROUNDWATER INGESTION EXPOSURE ROUTE

Based on groundwater sampling information collected at the subject property, no evidence of dissolved phase contaminants have been identified in the water contained in the fill material. The fill material that contains residual chemical compounds has been in contact with the water within the fill material for a relatively long duration, in most cases more that 80 years. Based on the groundwater results of water samples collected from both permanent groundwater monitoring wells and groundwater grab samples, none of the compounds detected in the soil/fill samples have leached into the groundwater. Based on this data, it does not appear that these compounds will ever leach into water beneath the subject property. Therefore, the migration to groundwater pathway will be excluded in the RAP.

4.0 <u>CONCLUSIONS</u>

This report is a compilation of the Comprehensive SI Report and the RO Report completed in accordance with the Illinois EPA SRP and 35 IAC Part 742. Subsurface investigations of the subject property have been conducted as discussed in the Comprehensive SI Report. The RO Report has evaluated the soil and groundwater exposure routes with respect to the identified impacted soil encountered on the subject property located at 1720 North Elston Avenue, Chicago, Illinois. Clayton, on behalf of SiPi Metals, is submitting this report in order to satisfy the requirements of the SI Reporting protocols and to obtain approval of the remediation objectives in accordance with 35 IAC 740. The approved remediation objectives will be used in developing the RAP to address the impacted soils related to the AOCs identified during the site investigation. The following conclusions were identified during the investigation activities:

- 1. In general, the geology beneath the subject property consists of sandy fill and/or topsoil underlain by silty clay. The topsoil and/or fill ranges in thickness from 1.5 to 9.0 feet. Groundwater was encountered at the interface between the fill material and the native silty clay. Based on water level elevations in the groundwater monitoring wells, the general groundwater flow direction is to the east.
- 2. During Phase I ESA activities, 21 RECs were identified at the subject property.
- 3. Based on the results of the Phase II investigations, no further investigation is warranted at the following RECs:
 - a) REC 1: The northeast section of the main building was formerly used to process metals out of spent acidic plating solutions.
 - b) REC 10: A gasoline UST and dispensing pump formerly located at the west end of the southern wall of the main building was removed without documentation in 1990.

- c) REC 14: Two 10,000-gallon fuel oil USTs installed in 1974 and removed in 1990 without documentation, were present in the area north of the Taylor Baghouse.
- d) REC 17: The former operations may have included the use of paints and solvents at the 1660 Besly Building.
- e) REC 18: Two hydraulic freight elevator systems are located at the 1660 Besly Building.
- f) REC 19: A "locomotive warehouse" was situated on this property in a 1914 Sanborn Fire Insurance Map.
- 4. RECs 2, 6, 7, 8, 12, 13, 15, and 16 had soil and/or groundwater constituents above TACO Tier 1 SROs, however based on the constituents detected, the individual RECs have been combined into the AOCs.
- 5. During extensive assessment activities at the subject property, the original RECs were subdivided into the following five AOCs (AOC I through V):
 - a) AOC I Former Foundry Operations/Fill Material (Former REC #3 & 4): PNA constituents assumed to be associated with the historic fill material were detected in borings B-7, B-28/MW-5, B-43, and B-62 at concentrations above TACO Tier 1 ingestion exposure route SROs. Additionally, soil borings B-6 and B-7 had concentrations of naphthalene above the TACO Tier 1 inhalation exposure route SROs. Total lead was detected in soil samples collected from B-5, B-6, B-13, B-17/MW-4, B-20, B-32, B-33, B-37, B-39, B-40, B-41, B-49, B-52, B-55, B-57, and B-58 above the TACO Tier 1 ingestion exposure route SRO. Total arsenic concentrations exceeded the TACO Tier 1 ingestion exposure route SRO in soil samples collected from B-4 and B-5. TCLP lead was detected above toxicity characteristic hazardous waste levels in soil samples collected from B-4, B-7, B-31, and B-34. Figure 6A shows the extent of contamination for this AOC.
 - b) AOC II Potential Transformer Release (Former REC #5): PNA constituents assumed to be associated with the historic transformer release were detected in borings B-4 and B-34 at concentrations above TACO Tier 1 ingestion exposure route SROs. PCBs were detected in soil borings B-4, B-31, and B-32 at concentrations above TACO Tier 1 soil ingestion exposure route SROs. Additionally, results indicated vinyl chloride was detected in soil sample B-31/7' at a concentration above the TACO Tier 1 ingestion exposure route SRO. Figure 6B shows the extent of contamination for this AOC.

- c) REC III Abandoned 2,000-gallon Gasoline UST (Former REC#9): Benzene was detected soil boring B-8 in the southeast portion of the subject property above the TACO Tier 1 soil inhalation exposure route. Figure 6C shows the extent of contamination for this AOC.
- d) AOC IV Fill Material at the Forsyth Building (Former REC #20): PNA constituents were detected in borings B-25, B-60, and B-61 at concentrations above TACO Tier 1 ingestion exposure route SROs. Total lead was detected in soil borings B-5 at concentrations above TACO Tier 1 soil ingestion exposure route SROs. Figure 6D shows the extent of contamination for this AOC.
- e) AOC V Former Bulk Oil Storage (Former REC #11): PNA constituents were detected in borings B-11, B-50, and B-51 at concentrations above TACO Tier 1 ingestion exposure route SROs. As requested by the Illinois EPA, TPH samples were collected from B-50 and B-51 during the second stage of the Phase II investigation. Soil sample B-50 (4 to 6 feet) contained concentrations of TPH above the soil attenuation capacity of 2,000 mg/kg. Figure 6E shows the extent of contamination for this AOC.
- 6. The total petroleum hydrocarbon and the sum of the concentrations of constituents detected in samples collected during site investigation activities was not above the minimum soil attenuation capacity of 2,000 mg/kg, except in soil boring B-50 located in the northern parking area.
- 7. No constituent was detected above toxicity characteristic hazardous levels except TCLP lead found in the fill material on the east and west sides of the middle section of the subject property building (soil borings B-4 and B-7).
- 8. The groundwater results of water samples collected from both permanent groundwater monitoring wells and groundwater grab samples indicated no evidence of dissolved phase contaminants have been identified in the water contained in the fill material. Based on this data, it does not appear these compounds will ever leach into water beneath the subject property. Therefore, the migration to groundwater pathway will be excluded in the RAP.
- 9. The subject property meets the criteria for Class II Groundwater.
- 10. The areas containing constituents above the ingestion and/or inhalation SROs will be covered with an engineered barrier. This engineered barrier will be used to exclude the ingestion and inhalation pathways at the subject property. Further discussion on the engineered barrier will be presented in the RAP.

11. Based on the information presented in this report, Clayton requests approval for the soil remediation objectives for the following compounds:

	Compound	Remediation Objective
a)	Benzene	1,6 0 0 μg/kg
b)	Vinyl Chloride	1,100 μg/kg
c)	Benzo(a)anthracene	8,000 μg/kg
d)	Benzo(b)fluoranthene	8,000 µg/kg
e)	Benzo(k)fluoranthene	78,000 μg/kg
f)	Benzo(a)pyrene	800 μg/kg
g)	Indeno(1,2,3-cd)pyrene	8,000 μg/kg
h)	Dibenz(a,h)anthracene	800 μg/ kg
i)	Naphthalene	1,800 μg/kg
j)	Arsenic	61 mg/kg
k)	Lead	400 mg/kg

Clayton, on behalf of SiPi Metals, respectfully requests that the Illinois EPA SRP approve of the SROs in this report.

5.0 REFERENCES

- Berg, Richard C. and John P. Kempton, United States Geological Survey, *Potential for Contamination of Shallow Aquifers from Land Burial of Municipal Wastes*, Map.
- Illinois Pollution Control Board (IPCB), 1997a. Tiered Approach to Corrective Action Objectives (TACO): 35 Ill. Adm. Code Part 742. Updated to June 1998.
- Illinois Pollution Control Board (IPCB), 1997b. Site Remediation Program and Groundwater Quality: 35 Ill. Adm. Code Part 740. Adopted rule, Final Order June 5, 1997.
- United States Geological Survey, "Chicago Loop Quadrangle, Illinois, 7.5 Minute Series Topographic Map."
- Willman, H.B., et al. 1975. *Handbook of Illinois Stratigraphy*. Illinois State Geological Survey Bulletin 95.

printed 01/27/2011 8:20AM by Richard.Jordan p. 67/383=

FIGURES

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF

QUADRANGLE LOCATION

FIGURE 1

SITE LOCATION MAP

SIPI METALS 1720 N. ELSTON AVENUE CHICAGO, ILLINOIS

(SOURCE OF MAP IS USGS 7.5 MINUTE QUADRANGLE MAP, CHICAGO LOOP, ILLINOIS)

TABLES

SI and RO Report SiPi Metals Corporation / Chicago; Illinois 15-04183rc001/11/29/2004/ MEM/JMF TABLE 1
Solf-Groundwater Grab Sampling
Extent of Impact Assosament
Siri Metals / Chicago, Ulhole

PELEASABLE DEC n 3 2004

REVIEWER MD

	· · · · · · · · · · · · · · · · · · ·							c, limole										HE.	VIEV	4 C-1	1 101
AREA OF		1	Sali Sample	NO. OF GROUND	40, OF 501.								AN	ALVES	_ {						
REVERTIGATION	DESCRIPTION	ESPERO ID	Dopate (FT BG8)	WATER GRAB DAMPLED	BAMPLES	VOCA	BTEX	MTEE	Naphthalona	8V0Ca	PNA	¥	PCBu	Total Americ	Togal Lodal	Total Motula	Targel Metala	TCLP Metals	TOLP	. #	FOE
EC #I	Former Plating Solution Process Area	B-1	Н.		— ,	,						-			1	T.		,		-	
EC 19	8,694-Gal. Aberdoned Heating Oil UST		HIH					_			-		-	<u> </u>	 	 '-			-		├
	NO.	B-8 B-99	HIN.	- ;	-	⊦	-			├	2 2			-	- }-	+					↤
		6-30	2 4 10	- * -	1 2	 	_	-	1		- ¥	Ι-			1	+	 	!		<u> </u>	-
HEC 93/4	Materio Fountry Operational/in	B⊲	142	- i-	1	 	-		· ·	_	١,	Η.		├	+ +	 -			_	-	←
	Motorial	D-3	44		- ; -	 -	1				l i	-			1	 	 		_	+	;─
	i	B-6	1 2	1	1	-	 			-	 -	_			Н-	 		-i-		H	-
	l	B-7	1-2	— i —	i		1				1	\vdash				1				1	;
	i	8-29	1	2	1						2				<u> </u>	 			7-7-	<u> </u>	1
	į.	Q-36	MA	2						${}^{-}$					1 4	1	-				\leftarrow
		8-20		0	J _								•	_,_	1					ĺ	\vdash
		W-17	5	_ <u></u>	_ 1 _		L				L _	_		1	11	_		Γ –		_	(
	•	B-100	Ð		1					ſ					Li	I	1			1	
	l	8-30	2 414	0			_ _			└		Li	_		1	<u> </u>					
	[846	2				-		 _	⊢ –	 	_			1Å		!				L_
	ļ	<u> 841 </u>	2_	<u> </u>	. 1						ļ			ļ.,	1	L -	<u> </u>				_
	h	8-41			_ 1 _		1			1					- ∔	! -	1			-	٠.
	Ī	B-44		- :-	1					_	_				-+	 			_1_	_	⊢
	ļ.	B-G	1.5	+-	 -		} 			⊢ −	 				1	 	1	-	1-1-	-	—-
	l.	H46	9 2 19		2	_	├─	_		-	←-			 -	- 4	!	-2		-1-2-	_	 -
AEC AS	Polyntial Trapplarmer Fluis saw	84	1563							 - -	,	_	-,-		\vdash	٠.	<u> </u>		-		١,
	1	Bar	347			-				,	' '		-		 	 -			-	1	⊢`-
	,	B-32	3 8	-	 -	<u>-</u>	$\overline{}$			 *	 	\vdash	1	7	+ 1	 			-		├
	l		-:-		 					\vdash	, , ,	\vdash	1		 	 					├-
	ſ					_	-			-				-	1 :	+		-		_	
	ļ.	_B-34	↓ .• _	°	-1 -	<u> </u>				 	1	-		<u> _' _</u>	1 3	-		 -	1.		⊢
		<u> </u>	 ┻	9	1					 -			.1	<u> </u>	- }	—		ļ	L.,		! —
		D-64	46		_ 1							1_	_1_			<u> </u>					<u></u>
ALC M	Potential Hydraulio Oli Glatereo	84	46	_ 2 .	. 1		L				ا وا	_			l i	1		1		1	[
		B-30		0							_	_		1	1	r-					_
		B-37			_ 1 _									1					_		
		8-30	1 8											_			Τ,				_
EC#	Polestial Oil Robuso from Crimprateurs		1									_		_	 			1		_	
		84	 • 		 - '	1	1			 	1			_	 	 -' -		1	⊢–		
	1	_ B-ter	2 440				Ĺ'	<u> </u>	<u> </u>	.	\vdash $-$	1		_	14	⊢ –	<u> </u>	<u> </u>			Щ.
	I	B-40	2			_ _			1		— -				1	⊢		∟			_
	1	<u>B-41</u>		_ e .		L	L		1_	ļ					<u>.</u>	L	L				
	1	B-43	1 .		1 7 -		• •		1	1 1	I					1 _	1 1			1	

6-04160±007/11/8/2004/RJFX/8/4

Page I of 3

GLAYTON GROUP SERVICES, INC

TABLE 1
Soll/Groundheiter Grab Sampling
Extent of Impact Assessment

SP! Hetals / Chicago, Illinois

PELEASABLE
DEC n 8 2004
REVIEWEH MD

AREA OF		l	Soil Sample	HC. OF GROUND	NO OF BOIL		_						AH	ALVSES	_ !						
INVESTIGATION	DESCRIPTION	BORING ID	Depth (FT BOS)	WATER GRAS	BAMPLES	VOCa	BTEX	MITTE	Napirihaleno	SVOCa	PNA	тен	PCB4	Tatal Aramnin	Total Lengt	Total	Terget Metals	TCLP Metals	TCLP	pH.	FO
EC 10	Polantiaj Hydraulio Oli Relegas	B-7	14		1		1				1				1	,		1		1	Ħ
		B-43			,						ī	_							1	\Box	Г
		B-44	1.5																1	\Box	Г
		B-46	2	•	1										1				1	\Box	Γ.
		<u>9</u> -40	8 <u>A</u> 10		2	\Box				2					٠,		_ ₂		2_		
Ec #9	Abundoned 2,000 Gallos Gasoline UST	84	24814	,		_ ·					Ι,				Γ:	Γ.					Γ
		B-47	4	- ; -			1	<u> </u>		_	 				 ;	l *	-	-	1	_	H
		B-48			- 		1	\vdash_{τ}			٠,	_		-	٠.	 			- ` -	-	H
		B-49	1	 	- 	<u> </u>	1	<u>-</u>		- -	<u> </u>	_			41	†	· **		_		H
REC PIO	2,600 Gallon Garofine UST - Parmored				<u> </u>	\vdash	<u> </u>	\vdash								1 —	\vdash			$\overline{}$	Н
	1	B-0	4-6, 8-15, 10 19	١.	,	1		l		}	1			\ \ \	ا	1	!	1		í '	1
		B-48	,		1		1	1		1	1	_			П				_	$\overline{}$	Т
REC #11	Former Bulk Oil Blorage	B-10	4-0		1	$\overline{}$	1				1		_		\rightarrow				\vdash	$\overline{}$	⇈
		B-11AFRA	40	,			1	\vdash							П			_	_		r
		B-19	24450		•															$\overline{}$	Г
		B-50	40		1						1	7								\Box	Г
		B-61	24	۰	1						1	1			\Box					\Box	П
FIEC #10	Former Stag Pile	B-13	1,8 & 3		2											2	-	2		2	Ι.
		8-53	2		,										1	T				$\overline{}$	Г
REC 812	Brick Lined Storm Reser	B-14MFW-D	540	-		_		 				_	_		-				,		١,
REC J14	Former 10,686-Gallon Hasting Oil LISTs	B-14657FB	349	- °-	-					-	-	_		_	-	 -	_	-		ا ت	۳
		P-10	34550		2		2		<u> </u>								<u> </u>	<u> </u>			
		B-64	4-6		١,	'''-	I					١.			1 7		1				
AEC 816	Former Flue Direct Leveling Area	 •••	9-0		- '-	-				 		-			 	+	├	\vdash	_	_	⊢
	_	D-10	244	۰	,		İ								Li			2		2	
			l										, i		_	Τ.					Г
	Į.	B-17/MW-4	1.5 & 4	•		┡	┝					├~			├ ─	┷	├ ──	<u> </u>	\vdash	1	₩
	<u> </u>	B-65	2							1		L					1		_	1	
REC #15	Pathroad Tracks	B-18	02408	0	2	2					2				Ì	2		2		ž	\Box
]	B-18	02244								2			L _	$\sqcup 1$			_ 2	<u> </u>	a	\perp
		B-£0	02424			1	<u> </u>		<u> </u>	Ь—	3	 			┝╬	2	<u> </u>	-		1	ــــــــــــــــــــــــــــــــــــــ
	1	D-58		-	1	┞—	├				l	⊢-		L—-	ᅫ	├	├	<u> </u>	\vdash		Ь.
	1	9-47	1 2		_,_	└	<u> </u>	—			_	<u> </u>		<u> </u>	-11	— —	⊢–	⊢—		<u>—</u> '	├
	1	B-64	9	f 0	1	I		ļ	I	l	I	l		l	1 +	1	ı	ı	i l	1 '	ı

F-0411R3ta:007 / 11/6/2006 / RJCAMAF

Page 2 of 3

ZLAYTON ORIOUP SERVICES, NC.

TABLE 1 SolVGroundwater Grab Sampling Extent of Impure Assessment

BiPl Metals / Chicago, Bilnois

			_			_									-+			_			
AREA OF	DESCRIPTION	BORING ID	Sail Sumple	NO. OF GROUND- WATER GRAD	NO. OF SOIL								AN	ALYSES							
MOTABLITARIVAL		BOMING B	Doyal (FT BG9)	WATER GHAB SAMPLES	GAMPLEG	VOCa	erex	MTBE	Maphihalese	840C#	PNAu	TPH	PCBs	Telal Arannio	Techi Last	Yetel Motels	Target Metals	TCLP Matrix	TCLP Leed	рH	FDC
	Potential Solvent Vesge	B-\$160W-4	0-9		1	_ , _														$\overline{}$	
	Sea by Building Potential Hydrautic Of Release	<u> </u>	44	_ ,	1	٦_					1_	Γ_				1					
	_	R-91	04 64-19	<u> </u>	L. *						2		L		1						
REC #1#	Former Locomotive Wavehouse	5-34	46 8 64	<u> </u>	-	1					2				П					\neg	
RUBC #20	Foreign Building Unknown Fill Meleriel	8-25	24600		•	2					2				\Box	2		-2		3	$\overline{}$
	S	75-69	13		,						1	_			1					$\overline{}$	_
		B-00	- 5		1						1				1	T				\neg	$\overline{}$
	L .	5-61	- 6		1	_		·-			1		Γ		1					\neg	
Monitoring Wells	Assess Doungradient Property Boundary	B covered	н		,	1									П	٦,		٦,		,	
		B-43	L.		1	-					1							-	•		
		B-85	٠.	a	9						Ĺ	_					_1_			1	
	Access Upgradant Property Security	B-27/A/N6-1	1.5	0	1													,		1	
		B-402	240	0	2	L.	L.,				2										
Totals		61		7	104	20	26	2	F	11	B0	7	10	7	2	31	12	26	19	37	4

Availysis was conducted for groundwater and soil Analysis conducted on groundwater only Two samples were collected, unlittered and filtered

RELEASABLE DEC 0 3 2004 REVIEWER MD

QUAYTON GROUP SERVICES, INC.

Page 3 of s

Page 1 of 6

15-04183ta001 / 11/8/2004 / MEMBHS

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

											THE PROPERTY OF THE PARTY OF TH				
COMPOUNDS	Ingestion	Inhetation	Groundwater	Characteristic	B-14	B-2	Ш	B-34	1 4	1	B-5A	B-6A	B-7A	8-8	
	Exposure Route	Exposure Route	Ingestion Class II *	Hazardous Waste **	5 - 4	A 2-4 H	m #	1-2#	1,5#	e #	- -	12	2.5	4 ½	ı ş
VOCs (ug/kg)					Ī										
Benzene	100,000	1,500	170		<5.0	<2.0	<2.0	€5.0	MA	NA	42.0	42.0	42.0	1,850	8.0
1,1-Dichloroethane	200,000,000	130,000	110,000	•	65.0	Ν	N.	¢5.0	\$	Ϋ́	¥	NA	NA	MA	Ž
i, 1-Dichloroethene	1,800,000	300,000	300		<5.0	NA	ΥN	<5.0	¥	Ϋ́	ž	NA.	ΝA	\$	2
cis-1,2-Dichloroethene	20,000,000	1,200,000	01,1		¢5.0	ž	ž	0.5 25.0	¥	Ϋ́	₹	Ϋ́	Ϋ́	¥	Z
trans-1,2-Dichlorpethane	41,000,000	3,100,000	3,400		€5.0	Ž	ž	5,0 5,0	¥	Ä	¥	Ą.	ZA	AN	z
Ethyl benzene	2,000,000		19,000	,	<5.0	¢5.0	45.0	0,55	¥	¥	\$50	ភ	<5.0	55.2	40
oluene	410,000,000		29,000	,	<5.0	¢5.0	\$50	o.5>	Ž	¥	65.0	<5.0	65,0	26	v
richloraethene	520,000		300		\$5.0	¥Ν	₹	\$5.0	ž	ž	¥	ΔĀ	NA	ΑN	Ž
Viny chlaride	2,900		70		<u>0</u> 12	Ž	Ž	<u>Ş</u>	Ą	AN	₹	≸	¥.	₹.	Ϋ́
Xylenes (total)	410,000,000	320,000	150,000	 -	5.0	45.0	¢50	\$0	¥	Ž	¢5.0	9.9	\$50	614	250
MTBE	2,000,000	140,000	320		¥.	ž	ž	¥	¥	¥	ž	₹ V	ž	Ϋ́	Ž
SVOCs (up/kg)					ľ										
Naphthalene	4,100,000	1,300	18,000	•	ž	55	425	\$5	574	089,	55	2,590	6,530	₹	AN
Acenaphthylene		-			ΨN	\$50	SS SS	- 50	287	88	양	<u> </u>	1,370	ΑN	Ž
Acenaphthene	120,000,000	•	2,900,000		ž	\$50	OS>	9 <u>0</u>	675	1,600	99	9	4,560	Ā	ΑN
Fluorene	62,000,000	-	2,800,000	-	NA	<50	\$50	ଝ	894	1,980	양	183	5,160	₽¥	Ä
Phenanthrene	-	-	•	- - -	NA	<50	<50	410	8.060	14,500	233	1,200	20,600	ΑN	
Anthracene	610,000,000	•	59,000,000	-	ΑN	450 450	<50	952	1,840	3,970	\$; 	170	16,100	Ā	~
Fluoranthene	82,000,000		21,000,000	- -	NA	45D	c50	648	9,220	20,200	244	898	203,000	٨N	ž
Pyrene	61,000,000	_ -	21,000,000	-	NA	0\$>	450	628	8,240	19,200	206	679	162,000	AN	AN
Benzo(a)anthracene	8,000		8,000		ΑN	±	0	319	3,970	9,330	117	340	106,000	NA	N
Chrysene	780,000	-	800,000		AN	<20	<50	8	4,340	10,300	151	492	96,500	¥	Ž
Senzo(b)fluoranthene	8,000		25,000	-	NA	3 ¢	٧,٧	252	3,360	026'6	100	305	75,200	ďΖ	_
Benzo(k)fluoranthene	78,000	•	250,000	-	NA	<11	<11	255	3,160	059'9	32	213	(008' 26	₹	ž
Benza(a)pyrene	800	•	82,000	,	ΔN	<15	¢15	317	4,040	10,400	112	340	110,000	₹	ž
Indeno(1,2,3-cd)pyrene	8,000		000'69		Ą.	625	428	173	2,780	7,310	75	196	69,200	¥	¥
Dibenz(a,h)anthracene	900	٠	7,600	•	AN.	<20	0.7×	55	675	1,540	21	70	16,200	¥	Ž
Benzo(g,h,i)penylene		•		-	ΝA	<50	05>	144	2,540	6,470	75	287	37,500	AN	Ϋ́
bis(2-Ethylhexyl)phthalate		31,000,000	31,000,000		ΝΑ	NA	NA	NA	MA	ΨN	NA.	NA	NA	NA	ΝÀ
Carbazole	290,000	٠.	2,800		NA	ΝA	ΝΑ	ΑN	AN	Ν	Ν	ΝA	NA	AN.	NA
Dibenzoluran	.	-	•		ΝA	NA	ΑN	NA	MA	NA.	NA	NA	NA	N.	Ν
2-Methylnaphthalene	•	-	-		NA	Ϋ́	₹	NA	Ž	ď	AN	AN	AN.	NA	MA
PCBs (ug/kg)					1										
Aroclor 1254	1.000	•	-	20,000	¥¥	ď	ž	NA	857	3,440	¥.	ΑN	AN.	NA	Ϋ́
Araclar 1260	000'1	-	-	50,000	ž	ž	₹	ž	₹	ž	¥	¥	ž	¥	ž
IPH (mg/kg)					1		-	-	-	-	7			 	
GESOIIDE	-	-			<u>₹</u>	ž	₹	¥	ž	ž	₹	Ψž	ž	ž	₹
Diese	,	1	1		<u>₹</u>	ž	₹	≨	ž	Y S	¥	¥	Ϋ́	¥	2
		- -			¥Z	ΑN		ď.	Ϋ́	Ž	ΨN	₹ Z	ž	¥	₹
Total TPH	000'9	**6,000 above 1 meter / 2,000 below		1 meter	¥	₹	- 1	ΑN	ž		Ν	ΑN	ΝA	AN	z
NOTES:	Only defected compounds are included	compounds are	included in this	n this table.	Т	=abbove Tier ∵	_ :	Ingestion Exposure Route SROs	e Route SF	ॐ :					
	Mer I Sho tor Commercialing	or Commercial	Industrial Prop	Properties .		a above Tier		Inhalation Exposure House SHOS	re Houte o	Ş.					
	Cleanup cojective from 40 CFR Fart	Tipo Cierna de la companion de	VFR F88 251.24		7	- above Life	oundwater 	 above Lifetindwater Ingestion Exposure House 	uposure H	oute					

Page 2 of 6

15-04183te001 / 11/8/2004 / MEWBRS

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

COMPOUNDS							ľ								
	Homeshin		Groundwater	Characteristic		9-6		B-10A	B-11/	B-12	12	4	B-15	å	B-18
	Exposure Route	Exposure Route *	Ingestion Class II *	Hazardous Waste "	φ	e 5 # 5	10-12#	#94	MW-3A	4 4 £	6 9	A 2-4 ft	B 6-8 H	A 4 0-0	8 8 9 9
VOCs (ug/kg)															
Benzene	100,000	1,600	170	,	620	<2.0	\$20	<2.0	8.2	<2.0	<2.0	42.0	<2.0	45.0	₩
I, 1-Dichloroethane	200,000,000	130,000	110,000	-	¥	NA	Ϋ́	¥.	NA.	¥	Ą	Ν			Ŝ
1,1-Dichlomethene	1,800,000	300,000	300		₹.	NA	Ϋ́	Ν×	Ą	Ϋ́	¥	Ϋ́	¥		55
cis-1,2-Dichloroethene	20,000,000	1,200,000	1,100	•	NA	ΑN	Ž	≨	Ϋ́	NA	ž	¥		45.0	<5.0
trans-1,2-Dichloroethene	41,000,000	3,100,000	3,400	-	ΝA	ΑN	Ā	MA	ΑN	AA	¥	¥	AN	65.0	\$
Ethyl benzene	2,000,000	58,000	19,000	-	45,0	5,0	65.0	<5.0	5.1	65.0	€5.D	<5.0		<5.0	45.0
Toluene	410,000,000	42,000	000'62	,	<5.0	\$.0 5.0	€5.0	<5.0	<5.0	€5.0	<5.0	<5.0		¢\$.0	₩,
Frichloroethene	520,000	8,900	300	-	Ϋ́	ΑN	Ϋ́	Ϋ́	Ā	₹	NA	Ā	ΝA	c5.0	45
Vinyl chloride	7,900	1,100	70		ž	AN	¥	ΑĀ	¥	¥	AN	AN		×10	V
Xylenes (total)	410,000,000	320,000	150,000		¢5.0	\$5.0	\$5.0	<5.0	<5.0	<5.0	<5.0	<5.0		0.65	\$
MTBE	2,000,000	140,000	320		Ā	NA	Ϋ́	AN	ΑN	Ą	ž	₹		٧N	Ž
SVOCs (ug/kg)															
Naphthalene	4,100,000	1,800]	18,000	-	¥	Ā	¥	572	7,430	182	25	77	<25	\$5	25
Acenaphthylene	,	-		'	Ā	Ϋ́	¥	OS V	51.0	7	OS.	£50			
Acenaphthene	120,000,000		2,900,000	-	¥	NA	ž	818	1,420	28	S	ŝ	°20	\$50	පි
Я потепе	82,000,000	·	2,800,000	-	NA	NA	Ϋ́	1,130	1,740	103	18	Ŝ			
Phenanthrene	-			-	NA	NA	ΝΑ	371	8,480	1,250	150	స్ట			
Anthracene	610,000,000	•	59,000,000	-	ΝA	NA	ΝA	428	2,560	332	500	\$			ŝ
Huoranthene	82,000,000	-	21,000,000	-	NA	NA	NA	B94	19,600	2,780	ιζ	<u>.</u>			
Pyrane	61,000,000	,	21,000,000	-	Ā	Ϋ́	Ϋ́Α	966	28,900	2,890	°20	116			
Benzo(a)anthracene	8,000	-	8,000	•	Ą.	ž	Ϋ́Z	416	12,900	1,740	<.8.7	77	<8.7		ľ
Chrysene	780,000		800,000	-	₹ Y	ΝA	Ϋ́N	401	12,400	1,870	S,	Ę6			දි
Benzo(b)fluoranthene	9,000 9,000	-	25,000		Ž	AN	ΝĀ	303	14,800	065'	F	67			v
Benzo(k)fluoranthene	78,000	,	250,000		₹	MA	Ν	326	8,690	1,710	F	46		두	4
Benzo(a)pyrene	008	-	62,000		Ź	NA	ΑN	345	22,400	1,980	415	83		A15	415
Indeno(1,2,3-cd)pyrene	000'8	-	000'69		ΑÑ	NA	ΨV	216	9,550	1,150	6₹	35	67>	429	Ş
Dibenz(a,h)anthracene	008	-	7,600	'	Ą	ξ	Ϋ́	88	2,590	316	₹50	420		420	-S0
Benzo(g,h,i)penylene	•	•	-	-	NA	NA	NA	182	9.010	196	<50 <50	<50		S	25×
bis(2-Ethylhexyt)phthalate	410,000	31,000,000	31,000,000		NA	NA	NA	NA	NA	AN	ΑN	AA		MA	NA
Carbazole	290,000		2,800		NA	NA	Ϋ́N	NA	NA	NA	NA	ΝA		NA	Α̈́
Dibenzofuran	•				NA	Ν	ΝĀ	ΝA	ΝΆ	NA	ΝĀ	Ϋ́	NA	NA	NA
2-Methylnaphthalene					Ą	ΑN	ž	Ä	ΑN	Ā	ΑN	NA		NA	Ν̈́
PCBS (ug/kg)				000		-									
#C21 10100 K	ODO'L	†		ODO'OC	ž	ž	ž	Ž	ğ	ž	NA NA	NA	ď.	₹ Z	Ž
Arodor 1260	000't	-		20,000	₹	₹	ž	₹	₹	₹	¥	Ϋ́	NA.	NA	Ž
Gasoline Gasoline			1		4	2	1				VIV	414			
Diesel					2	2	5 5	2 2	2	2		42		1	
ō	ļ,				2	Ş Ş	ž	2	2	2 2	AIA AIA	2 2	42	2 2	Ž
Total TPH	6,000 8	*** 5,000 above 1 meter / 2,000	72,000 below	below 1 meter	ž	ž	ž	2	Ž	Ž	Z Z	Z		Z Z	Z Z
NOTES:	Only detected compounds are included in this table.	ompounds are	ncluded in this	s table.	_	= above Tis	r 1 Indestir	in Exposur	above Tier 1 Indestion Exposure Boute SBOs	1					
	1 Tier 1 SRO for Commercial/Industrial Properties	v Commercial/I	ndustrial Prop	erties	BOLD	= above Tie	er 1 Inhalati	on Exposu	= above Tier 1 Inhalation Exposure Route SROs	ကို					
	Cleanup objective from 40 CFR Par	ective from 40 (2FR Part 261.24	24	Ϊ	= above Gr	oundwater	Ingestion !	= above Groundwater Ingestion Exposure Route	oute					
TACO Section 7	TACO Section 742,215	on 742,215		_	ľ	- C	- T	1							

Page 3 of 6

15-04183ta001 / 11/8/2004 / MEN/BRS

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

re Exposure drassil	Particular		Ther 1	Tier1	Tier 1	Toxicity					SAMP	FLOCATIO	ONS AND	DEPTH				
Stepove Stepove Justice Just	Exposure	COMPOUNDS	Ingestion			Characteristic	B-1	6	8-24		B-21/	B-22A	8	23	74	73	82	
Particularies 1,000,000 1,000	Controller		Exposure Route	Exposure Soute	Ingestion Class II*	Hazardous Weste	4.2.#	# 9 4	A 0-2#	2 B	NW-6A 0-2 ft	4- 4-	4 20	B-10 th	4 4 # # # # # # # # # # # # # # # # # #	B 8-8	4 7 X	6.9 #8.8
Proceedings 20,000,000 130,000	The control 1,000	VOCs (ug/kg)																
Patrocelines 20,000.00 13,000 11,000 12,000 1	Districtionarishmen 1,300,000 130,000 110,000 300,000	Benzene	100,000	1,600	170		<5.0	- 5.0	<5.0	<5.0	¢5.0	₹2:0	<5.0	<5.0	€5.0		¢5.0	<5.0
Comparison Com	1,000,000 3,000	1,1-Dichloroethane	200,000,000	130,000	110,000		<5.0	<5.0	<5.0	<5.0	<5.0	≥ 5.0	<5.0	<5.0	0.6		€ 2.0	¢5.0
Comparison Com	Control cont	1, t · Dichloroethene	1,800,000	300,000	aoe		<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	5.0 5.0	<5.0	65.0		45.0	45.0
A	## Care of the contraction of the care of	cis-1,2-Dichloroethene	20,000,000	1,200,000	1,100		¢5.0	<5.0	<5.0	<5.0	¢5.0	<5.0	5.0	<5.0	<5.0	1	0.5 ₀	<5.0
Continue	Control	trans-1,2-Dichloroethene	41,900,000	3,100,000	3,400	,	<5.0	<5.0	45.0	€5.0	45.0	<5.0	€5.0	<5.0	<5.0		\$50	650
Comparison Com	Continue	Ethyl benzene	2,000,000	59,000	19,000	,	£50	<5.0	<5.0	<5.0	45.0	45.0	¢5.0	<5.0	<5.0		\$5.0	<5.0
Control Cont	Controlled 260,000 15,00	Toluene	410,000,000		29,000	,	¢50	45.0	¢5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		€5.0	45.0
Control Cont	Equivalent 2,500 1,100	Trichloroethene	520,000		300		<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		√ 20.0	<5.0
Control Cont	Section 15,000	Vinyl chloride	2,900		70	,	ot >	410	o!>	<10	<u>~</u>	o1>	101	0F>	<10	ot.>	P	<10
2,000,000 13,000	Second	Xytenes (total)	410,000,000	320,000	150,000		\$50	<5.0	65.0	<5.0	45.0	<5.0	<5.0	<5.0	65.0	¢5.0	45.0	45.0
Particular 1,000	Fe (1947/49)	MTBE	2,000,000	140,000	320		Ϋ́	Ϋ́Z	AN	ΝA	¥	ž	Z Z	M	NA	¥	ž	ž
Particular Par	Particle	SVOCe (ug/kg)																
Particular 120,000,000	Description 120 000,000 C-50	Naphthalene	4, 100,000	1,800	18,000	•	67	<25	170	150	ΑN	<25	<25		43	425	3,530	766
Profession Pro	Publication 120,000,000 2,900,000	Acenaphthylene	1	-	-		<50	450	°50	ŝ	Ϋ́	×50	ŝ		<50	<50	3,820	533
Particular Particul Particu	Page	Acenaphthene	120,000,000		2,900,000	-	<50	450	<50	\$50 50	NA	\$50	\$50		<50	95	2,340	888
The column The	California Cal	Fluorene	B2,000,000	-	2,800,000	-	<50	×50	<50	8	ΑM	°20	950		°20	05>	6,250	1,010
Comparison	Colored Colo	Phenanthrene		-	,		210	<50	1,200	963	ΝA	15	·20		¢50	< 20	78,800	10,400
Column C	Colored Compared Compared Colored Co	Anthracene	610,000,000		29,000,000	-	<50	<50	108	<50	Ν	<50	<50		<50	×50	8,890	2,580
Structure	Sample Si 1000 1000 1180	Fluoranthene	82,000,000		21,000,000	•	264	<50	1,170	242	ΝA	<50	<20		<50	99>	71,600	16,600
Second S	Sample S	Pyrene	61,000,000		21,000,000		247	<20	1,180	262	Ν	<50	×20		<50	<50	73,700	15,400
Second Composition Second	Comparison Com	Benzo(a)anthracene	8,000	-	9,000	•	142	<8.7	675	151	ΨN	<8.7	<8.7		<8.7	<b.7< td=""><td>17,000</td><td>029'B</td></b.7<>	17,000	029'B
Secondariantense 8 000 25 000 1 1 1 1 1 1 1 1 1	Columbic	Сһлуѕепе	780,000	-	800,000		160	<50	62.2	166	ž	જુ	\$50		<50	95	15,000	050'B
Kilkinamilnee 78 000	Signature 78,000 250,000 157 151 540 126 NA Signature 8,000	Senzo(b)fluoranthene	8,000	-	25,000	-	128	<11	683	134	ž	1 17	۲۱۰	<11	<11	<11>	15,600	6,940
Secondary Seco	(1,2,3-cd)pyrene	Benzo(k)fluoranthene	78,000	•	250,000		157	<11	540	126	¥.	7	£	£	11 >	£	9,540	6,870
110 123-3Cdipyrene 8.000 110 126 126 126 127	(1,2,3-d)pyrene 8,000 - 69,000 - 110	Benzo(a)pyrene	000	-	82,000	-	171	<15	907	174	¥	<15	<15	<15	<15	<15	17,100	8,860
1,000 1,00	Section Sect	Indeno(1,2,3-cd)pyrene	8,000		000'69		110	429	440	35	ž	¢29	429	8	57	8	8,230	3,980
(gh.).betylene (gh.).b	Syling S	Dibenz(a,h)anthracene	008		7,600		58	<20	127	22	ž	ح50	20	¢20	420	~S0	2,330	1,110
State 1,000 31,000,000 31,000,000 31,000,000 31,000,000 31,000,000 31,000,000 31,000,000 31,000,000 31,000 31,000,000 31,000,000 31,000	State	Benzo(g,h,)perylene	٠	•	•	•	94	<50	370	69	¥	<50	-\$5	¢50	<50	\$5	6,210	3,220
NA	Solution 1,000 2,800 NA	bis(2-Ethylhexyl)phthatate	410,000	31,000,000	31,000,000		₹	NA	NA	ΝA	ΥN	٧V	AN	NA	NA	Ϋ́	ΝA	NA
Vinaphthalene	Vihaphthalene	Carbazofe	290,000	•	2,800		NA	AN	Ϋ́Z	ΝA	ΥN	ΝA	NA	ĄN	ΝA	Ž	۸A	NA
1254 1,000	Vinaphthalene	Dibenzoluran	,	•	•		¥	ΝA	Ϋ́Z	ΝA	¥Ν	۸N	ΑŅ	ĄN	ΝA	Ą	۸A	NA
(ug/kg) 1,000	1,000	2-Methylnaphthalene	-	,	•		AN	ΝΑ	ď	۸N	¥N	۸A	ΝΑ	ĄN	NA	¥Z	Α'n	ΑN
1254 1,000	1254 1,000	PCBs (ug/kg)																
1260	1,000	Araclar 1254	1,000	-	•	20,000	ž	¥Z	ž	ΑN	₹Z	∀ ∠	NA	NA	ΔN	¥Z	ΨŽ	Ϋ́
NA	NA	Aroclor 1260	80.	•	,	50,000	ž	NA	¥	ΝΑ	Ϋ́N	ΝΑ	ΝA	ĀN	NA	¥	ΑĀ	¥
E	NA	TPH (mg/kg)					1		***	1	-	-	-	7	1	1		
NA NA NA NA NA NA NA NA	PH NA	Jan San Caraca		†	1		₹.	ď.	₹ :	₹	ž	¥ :	₹ :	¥ :	¥ :	₹ :	ž	Ž.
The Table Section 742.215	The state of the first of the state of the s	Ziesei.	1	<u>'</u>	<u> </u>	<u>'</u>	ž :	¥ .	2	<u> </u>	₹:	₹.	¥ :	2 2	¥ :	₹ :	₹ :	2
Only detected compounds are included in this table. Cleanup objective from 40 CFR Part 261.24 TACO Section 742.215	Chily detected compounds are included in this table. Chily detected compounds are included in this table. Child detected compounds are included in this table. Children objective from 40 CFR Part 261 24 TACO Sarrion 749 215	Total TDH	000 5	, owy	moleculary /	· motor	¥ 4	2	¥ 4	2 2	2 2		2	2	2		₹	2
TACO Section 742.215	Cany Detected Configurate Included in tills labila. Tler 1 SRO for Commercial/Industrial Properties Cleanup objective from 40 CFR Part 261.24 TAPO Revision 242 215		25'5 T T	BLOVE I ITISIE	World Delay	Tatella.	_ L	Z F		<u> </u>	<u> </u>	Į	2	2	3	2	ž	2
42.215			Tier 1 SRO for Cleanup obj	or Commercials active from 40	Included in tills Industrial Prop CFR Part 261.3	erties 24		= above lier = above Tier = above Grou	r 1 Ingesoo 1 1 Inhalatik undweter I	n Exposur on Exposul Ingestion E	e Houre Streen Route Streen	ag Ag ag						
	21.17		TACO Sect	ion 742.215				= above Soil	! Attenuatio	n Capacit	>-							

Page 4 of 6

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

COMPONINGE Inspection Postulation Abstraction Postulation Po	Faper Fape				Characteristic Hazardous	B-28/	B-29	B3		8-32	B-33	8.34	B-35	B-38	8-36	L
Statement Stat	200,000		* BUILDING	Lugastion	Shoplezen					_			-	_	;}	
Control Cont	200,002 1,80 20,00 20,00 41,00 410,00 52		Route *	Class .	Waste **	24°5	12 12	#			₽	#	3#	# **		2
Continuentaries 200,000 16,00 110 2.50 14,00 110 2.50 110 110 2.50 110 110 2.50 110 110 2.50 110 110 2.50 110 2.50 110 2.50 110 2.50 2.50 110 2.50	200,000 200,000 20,000 1e 41,000 410,000	H		1			ľ									
Section Continue	200,00 1,80 20,00 1,00 2,00 4,10,00 4,10,00	000'01	1,600	170	•	<5.0	NA	NA	6.4	MA	ΑN	NA	₹	ΑΝ	NA	ž
Comparison Com	1,80 20,00 2,00 4,100 4,10,00 4,10,00	000001	130,000	110,000	,	<5.0	NA	ΑN	46.B	NA	ΝA	NA	NA	Ä	ΑN	ž
Companient Com	20,00 41,00 410,00 52,00 52,00	000 0	300,000	300		<5.0	NA	NA	562	Ą	ž	ž	ž	Ϋ́	NA	ž
Comparison Com	10roethene 41,00		1,200,000	1,100		<5.0	NA	ΝA	89,200	NA	Ä	ΝA	ΑN	AN	M	Ϋ́
1,000,000 1,000	2,00 410,00		3,100,000	3,400		<5.0	NA	NA	2,550	ΑN	¥	₹	¥	¥	ΑΝ	Ϋ́
1,000,000 4,000 5,000 5,000 4,000 5,000 4,000 5,000 4,000	410,00	00000	58,000	19,000		<5.0	Ā	NA	<5.0	NA	ΝĀ	₹	MA	NA	ΑΝ	ž
Colored Colo	na 52	000,00	42,000	29,000		€5.0	M	NA	114	NA	ΑN	N.	ΝA	NA	NA	¥
Colorable Colorabid Colo		0000'0	006'8	300		65.0	¥	₹	8,500	NA	¥	₹	ΑĀ	Ϋ́N	Ą	ž
Comparison Com		2,900	1,100	70		01×	₹	NA	7,840	NA	¥	¥	Α¥	AN.	Ą	ž
Libert L	s (total)	000'01	320,000	150,000		€5.0	₹	Ν	æ	A	ΑĀ	Ž	₹ V	Ϋ́N	¥	Ž
Haritherene		000'0	140,000	320		ĄN	₹	ΝA	√5.0	Ν	Ϋ́	NA	ΝĀ	ΑN	NA	ΝĀ
This color 1,000	(S)									Н					-	
Thirdy T		000'0	1,800	18,000		721	<25	1,760	<330	364	<25	205	ΜA	<330	4330	Ā
Higher 12,000,000 1,170 1,100 1,170 1,100 1,170			-			16	6 €0	196	<330	75	\$50	135	ΨZ	(330)	ΨV	Ϋ́
Section Sect		0000	,	2,900,000	1	66	°250	1,170	<330	75	<50	116	ΨV	<330	ΑN	MA
Fig. 10 Fig.		000'0	•	2,800,000	,	88	°50	1,420	<330	<50	<20	154	NA	<330	AN	NA
Figure F	g.		•			1,510	ÇÇ	14,100	<330	681	<50	1,710	NA	<330	۸A	NΑ
Figure F		00,00	+	59,000,000		787	ÇÇ	3,740	<330	70	<50	460	Ā	<330	AN	ΝA
Second Section 21,000 billion 2,700 bill		0000	1	21,000,000	-	4,290	÷	17,300	889	237	ŝ	2,300	≨	×330	¥	¥
Second S	5,	000	`- 	21,000,000		4,740	×20	15,600	- See	487	G.	2,770	Ą	<330	ΑŽ	ΑN
3,500 2,50	anthracene	8,000		000'8		3,400	<8.7	8,240	88	202	9 .3	1,380	NA	<330	NA	NA
Liberylate 6 000 250,000 2,500 4,070		000'0	-	800,000		3,060	950	8,450	4330	263	<50	1,390	ΝA	<330	ΝA	NA
Juny cartifient		8,000	•	25,000	-	3,590	<11	5,050	<330	193	L	1,330	NA	<330	ΝA	۷N
Participation Book	8,000	•	250,000	-	2,660	t1>	7,910	4330	360	7	1,480	Ϋ́	4330	ΑĀ	ΝĀ	
Colorado	900	-	82,000		4,070	<15	7,630	06>	316	415	1,720	¥	8	Ϋ́	MA	
Color Colo	_ -i	00 8 8	•	000'69	•	2,050	¢29	3,120	<330	320	<29	1,300	NA	<330	ΑΝ	ΑN
Page	Dibenz(a,h)anfhracene	SS SS		7,600		527	<20	1,340	690	7.0	<20	305	NA	0 6 >	NA	NA
Value sytylpinth state			-	,	-	1,530	ŝ	3,390	<330	320	¢20	1,170	NA	<330	NA	NA
Fig. 10 Fig.			1,000,000	31,000,000		¥	ž	581	<330	Ϋ́	ž	Ϋ́	ž	<330	¥	Ϋ́Α
Table Tabl		000	- 	2,800		ž	Ź	4,530	<330	Ϋ́	ž	AN	₹	×330	ΑN	¥
1,000		+	•	-		Ž	YY.	1,010	4330	Ž	ž	¥	₹	330	ž	Ϋ́
1,000 1,00	z-weinynaphinaiene	+	•			X	2	1,350	¢330	ž	ž	ž	X	330	¥	Ϋ́
1,000		1000	1	1	En 200			48,	100	000	00 7	100 F	60	414	4	214
Way NA		1,000	† -	,	50,000	47	2	3 5	3 6	7,50	1 6 6	360	201	2 2	2	SZ
NA				1			1	1	,	2	,	2	-	5	<u> </u>	5
Main	Gasoline -	_	,		,	Ϋ́	¥	AN	ž	NA	NA	AN	MA	Ϋ́	¥	¢10
H6,000 above 1 meter / 2,000 balow 1 meter / 2,000 balow 2 meter / 2,000 balow 3 meter / 3,000 balow 3 m	Diesel -		-	_	-	٨N	NA	AN	ž	M	Ä	Ϋ́ Z	₹	Ž	¥	47
H 6,000 above 1 meter / 2,000 balow 1 me			-		•	Ϋ́	NA	ΝA	ΑN	NA	ΝΑ	ΑN	NA	ΑĀ	Ϋ́	¢10
Only detected compounds are included in this table. Tier 1 SRO for Commercial/Industrial Properties Genup dejective from 40 CFR Part 261.24 TACO Section 742.215	_	-6,000 abc	ove 1 meter,		meter .	¥	ΝA	ı	ž	Ϋ́	Ш	ΑN	Ν	ΝA	ΑN	47
		ected com SRO for C rup objecti	pounds are Commercial/I ive from 40 (inctuded in this Industrial Prope SFR Part 261.2	table.		= above Tis = above Tis = above Gr	or 1 Ingestion or 1 Inheletic oundwater In	n Exposure in Exposur igestion Ex	a Route SR e Routa SF xposure Ro	SOS SOS with					
	TACK	O Section	742.215		_	Ī	a above So	I Attenuation	n Capacity							

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

SiPi Metals / Chicago, Illinois

	Tier 1	Tier 1	Tier 1	Toxicity				SAMPL	E LOCATI	SAMPLE LOCATIONS AND DEPTH	ОЕРТН			
COMPOUNDS	Ingestion	Inhalation	9.	Characteristic	8-40	7	B-42	B-43	ď	B-46	B-47	B-48	B-49	B-50
	Route *	Houte *	Class II '	Waste **	2 ft	2#	# 6	Ħ	8 11	101	3.1	# 6	3#	4-6 #
VOCs (ug/kg)	1													
Benzene	100,000		0.21	-	NA	NA	<2.0	Ą	NA	NA	٧	<2.0	8	
1,1-Dichloroethane	200,000,000		110,000		NA	NA	MM	4	ΑN		ΝA	ž	ĄN	
1,1-Dichloroethene	1,800,000		300	-	AM	NA	ΨN	٨N	AN			NA	NA	Ą
dis-1,2-Dichloroethene	20,000,000		1,100	1	AN	NA	¥	ΑÄ	Ϋ́N		Ϋ́	Ϋ́	Ā	
trans-1,2-Dichloroethene	41,000,000	3	004'8	1	άZ	ΝĀ	AN	¥	Ϋ́		₹ Z	ΑN	Ν	
Ethyl benzene	2,000,000		000'61	r	NA	ΝA	<5.0	¥₩	NA		•	<5.D	<5.0	ž
Toluene	410,000,000	•	000'67	,	NA	¥Ν	<5.D	AA	ΑN			65.0	<5.0	
Trichloroethene	920,000				AN	¥	AN	AN	AN			Ϋ́N	AN	
Vinyl chloride	abs'z		202		Ā	NA.	¥	¥	AN		₹	AA	ΑN	Ϋ́
Xylenes (total)	410,000,000	320,000			ΑZ.	2	<5.0	¥	NA			<5.0	<5.0	
MTBE	2,000,000	140,000	320		AN	₹	NA	Ā	ΑN		Ĺ	¢5.0	¥	
SVOCs (ug/kg)														
Naphthalene	4,100,000	1,800	18,000		989	703	<330	128	<330	-330		185	NA	1.940
Acenaphthylene		,	•	1	Ā	NA	<330	230	<330	İ	Ž	ŝ	¥	
Acenaphthens	120,000,000	-	2,900,000		Z	NA	<330	Ş	<330			200	ž	8
Fluorene	82,000,000	,	2,800,000	,	Ā	NA	<330	95	<330	0E6>		ŝ	NA	
Phenanthrene	-	-	-	,	Ā	¥	<330	95	<330	330		305	NA	"
Anthracene	610,000,000	j •	29,000,000	,	AN	NA	<330	139	<330	¢330	ĄZ	68	NA	7,720
Fluoranthene	82,000,000	-	21,000,000	•	NA	Ϋ́	<330	2,190	<330			570	AN	
Pyrene	61,000,000	•	21,000,000		NA	NA	<330	3,070	<330			911	NA.	
Benzo(a)anthracene	8,000	•	8,000	•	¥.	ΝA	<330	1,560	<330	L		220	NA	
Chrysene	780,000	-	800,000		₹	ΑÑ	<330	1,390	<330			539	AN	ı
Benzo(b)fluoranthene	8,000	-	25,000	•	¥N	NA	<330	1,930	<330	066>		738	ΝA	
Benzo(k)fluoranthene	78,000	-	250,000	,	Ž	NA	<330	1,180	<330	<330		546	NA	14,800
Benzo(a)pyrene	800		82,000	ı	₹	¥	8	2,240	06>	06>	Ϋ́Z	778	Ϋ́	
Indeno(1,2,3-cd)pyrene	9,000	-	000'69	,	ž	¥.	°330	1,160	9330 *	066>	ΑN	523	AN.	
Dibenz(a,h)anthracene	800	1	7,600	,	ΑN	NA	06°	312	06>	06>	N.A.	173	ΝĀ	3,970
Benzo(g,h,i)perylene		,	-	-	Ϋ́	ΝA	<330	896	<330	≪330	ΑN	395	NA	12,800
bis(2-Ethylhexyl)phthatate		31,000,000	31,000,000		Ź	¥	<330	NA	<330	<330	NA	NA	NA	
Carbazole	290,000	-	2,800		Ϋ́	¥	<330	NA	<330	<330	NA	NA	NA	
Dibenzofuran		•	•		ž	₹	×330	Ā	<830	<33D	NA	NA	NA	
2-Methylnaphthalene		-	,		ď Z	¥	<330	Ϋ́	<330	930	42	Ž	Ž	Z
PCBS (ug/ng)				000		1			-]	-	1		
August 1000	000	,		00000	ž	42	ž	2	5	4	ξ.	ž	Y.	
TDH (modin)	70.	·	•	200,00	2	Ž	2	₹	¥	ž	₹2	ž	ΣŽ	ξ
Gasoline				,	1	¥2	JAN.	AN A	ΔV		40	T T	AIA	7.195
Diesel					4Z	₹N	NA	Ž	\$		ΥN	Z	N N	
ত			,	<u> </u>	₹	¥	₹	ž	Ž	Ž	ž	Ž	Ž	
Total TPH	000'8	***8,000 above 1 meter	r / 2,000 below 1 meter	1 meter	Ν	ΑN	ΑN	N.	¥		ΑN	¥	MA	3,630
NOTES:	Only detected of	compounds are	Only detected compounds are included in this table.	s table.	ľ	= above Tis	above Tier 1 Ingestion Exposure Route SROs	on Exposur	e Route S	Ę				
	Tier 1 SRO for Commercia		Mndustrial Properties	erties	BOLD	= above Tit	= above Tier 1 Inhalation Exposure Route SROs	ion Exposu	re Route S	3HOs				
	Cleanup ob	Cleanup objective from 40	CFR Part 261,24	5 4		= above GI	 above Groundwater Ingestion Exposure Route 	Ingestion :	∹xposure f	Pourte				
	TACO Section 742.215	tion 742.215				= above Sc	 above Soil Attenuation Capacity 	on Capacil	>-					
	NA = Not analyzed	lyzed												

Page 5 of 6

TABLE 2A Soil Analytical Data - VOCs, SVOCs, PCBs, and TPH

Pagestion Inhalation Groundwater Characteristic B-51		Tier 1	Tier 1	Tier 1	Toxicity			SAMPL	SAMPLE LOCATIONS AND DEPTH	ONS AND	DEPTH		
Factorative Factorative	COMPOUNDS	Ingestion	Inhalation	Groundwater	Characteristic	8-51	\$- 55-	B-55	B-29	09-B	B-61	B-62	2
The control of the		Exposure Route	Exposure Route	Ingestion Class *	Hazardous Waste **	24#	# 84	2#	± 21	# 25	5#	3#	6 1
100,000 130,000 17	VOCs (ug/kg)						ļ						
Controllerer 200,000 Controllerer 20,000 Con	Вепгеле	100,000		170		VΑ	Ϋ́	¥.	Ν		Ž	¥N V	Ž
Name	1,1-Dichloroethane	200,000,000		110,000		ΑN	Ϋ́	₹	×.		¥	NA.	_
Dictable 20,000,000 1,200,000 1,100	1,1-Dichloroethene	1,800,000		300		ΑN	¥	ΑN	AN AN	i	Z	A.N.	_
1,000,000 3,000 3,400 NA NA NA NA NA NA NA	dis-1,2-Dichloroethene		1,200,000	1,100		¥	Ą	Ϋ́	Ϋ́		ΜA	Ž	ž
there \$2,000,000	rans-1,2.Dichloroethene		67			¥	Ϋ́	ΑÑ	Ϋ́		AN	¥	_
thene \$50,000	Ethyl benzene	2,000,000				Ž	2	AN A	A.Y		ZA	Z.	
120,000,000 1,000	Toluene	410,000,000				ž	Ž	Ϋ́	Ž		ž	₹	
trene	Trichloroethene	520,000				¥	Ϋ́	≨	N.		NA	ď	
1,000,000 320,000 150,000 140,000 320 150,000 140,000 320 150,000 140,000 320 150,000 150,	Vinyl chloride	2,900				Ϋ́	1	Ϋ́	Ž		ž	¥	֓֡֜֞֜֜֜֜֜֜֜֜֜֜֜֜֡
2,000,000 1,800 18,000 1,800	Kylenes (total)		32	150,000		ž	×.	Ϋ́	Σ		¥	N.	2
120,000 1,800 1,	MTBE	2,000,000		320		Ž	Ž	¥	Ž		¥	AA	Ϋ́
120,000	SVOCs (ug/kg)									İ			
Page 120,000,000 2,900,000 660 NA 6330 650 107	Vaphthalane	4,100,000	1,800	18,000	-	592	ž	330	525		5	140	V
120,000,000 2,900,000 2	4cenaphthylene			-		153	¥	×330	920		ŝ	S.	155
Fig. 1000,000 Fig. 1000,0	Acenaphthene			2,900,000		344	Ą	×330	S		339	35	- - - - - - - -
Fig. 10	-потепе			2,800,000	-	999	Ν	<330	\$5 \$5	640	46	9	150
Fig. 610,000,000 55,000,000 733	Phenanthrene	-	-			2,930	Ϋ́	965	S	3,290	3,600	752	¥
Second S	Anthracene	610,000,000		29,000,000	,	793	¥	<330	S,	1,050	1,220	255	Ÿ
Compact	-luoranthene	82,000,000		21,000,000		2,470	₹ Z	1,450	55	4,160	5,320	1,570	ů
1,530 NA 791 <87.7 2,470	yrene	δ	•	21,000,000		2,020	AN	1,370	45D	4,940	5,840	2,020	ŝ
T80,000 800,000 1,440 NA 887 <50 2,290	3enzo(a)anthracene	000'B		8,000		1,530	¥	791	48.7	2,470	2,720	1,180	89
1,150 NA 734 <11 1,710	Shrysene	780,000	1	800,000	,	1,440	ΑN	1887	GS.	2,280	2,410	1,030	\$2 \$2
uoranthene 78,000 250,000 - 1,890 NA 604 <11 2,660 2,3 cd]pyrene 800 82,000 1,890 NA 766 <15	3enzo(b)/luoranthene	8,000	,	25,000	,	1. 60	¥.	734	11>	1,710	2,300	1,260	⊽
ytene 800	3enzo(k)/iluoranihene	78,000	 -	250,000	 -	970	₹	8	Ŀ	2,660	2,840	828	Ţ
2,3-cd/jpyrene 6:000	Janzo(a)pyrene	008		82,000		1,880	Ž	766	415		3,680	1,410	415
1,000 1,00	ndenc(1,2,3-cd)pyrene	9,000		90000		99	ž	392	⁽²⁹		1,950	867	429
Ultray Dhihalate	Sibenz(a,h)anthracene	900	,	7,600		244	¥	171	620	693	581	293	420
Ithexyl)phthalate 410,000 31,000,000 NA NA NA NA NA NA NA	3enzo(g,h,l)perylene		,	,	,	£	Ą	408	G;	1,510	1,610	739	SŞ.
290,000	is(2-Ethylhexyl)phihalate			3, '000'000		ΑN	¥	330	AA	NA	ΑN	₹	Ž
Paperhalene	Sarbazole	290,000	-	2,800		Ϋ́	¥	930	ž	Ą	Ϋ́	₹	Ž
Section Sect	Dibenzofuran		-			ΝA	ΑN	<330	Z	ΑN	AN	¥	ΑN
1,000 1,0	2-Methylnaphthalene		•			AN	NA	<330	AA	ΥZ	Ϋ́	Ž	≱
54	PCBs (ug/kg)												
50,000 1,000 NA NA NA NA NA NA NA	Arodor 1254	1,000			50,000	AN	<160	Ϋ́	NA		NA	AN	Ž
kg) < 16 < 10 NA <	Aroclor 1260	1,000	-		50,000	NA	<160	AN	AN		AN A	¥	Ϋ́
 <10 < 10 NA NA NA NA NA NA NA NA NA NA NA NA NA	TPH (mg/kg)			:									
165 13 NA NA NA NA NA NA NA NA NA NA NA NA NA	assoline	·		,		₽	<u>م</u>	¥	Į	Ϋ́	ΥN	Ą	ΣÃ
93 <10 NA NA NA NA NA NA NA NA NA NA NA NA NA	Jiesel	ʻ	1		•	185	13	¥	ΑN	ΑN	AM	NA	ΝA
9,000 above 1 meter / 2,000 below 1 meter 256 13 NA NA NA NA NA Only detected compounds are included in this table. ■ £bove Tier 1 Ingestion Exposure Route SR0s I in 1 SRO for Commercial/Industrial Properties BOLD ≈ above Tier 1 Inhelation Exposure Route SROs	5	-	-			93	<10	ΑX	Ϋ́	Ž	ΑN	ĄV	NA
Only detected compounds are included in this table. Tier 1 SRO for Commercial/Industrial Properties BOLD	Fotal TPH	000'9	above 1 meter	/ 2,000 below	i meter	258	13	AN	NA	ΝA		NA	۷.
BOLD	VOTES:	Only detected	sompounds are	included in thi	s table.		= sbove Tie	at 1 Ingesti	OT Exposu	ire Route SI	ROS		
		Tier 1 SRO	or Commercial	/Industrial Prop	erties	BOLD	≈ above Tie	or 1 inhalat	ion Exposi	ure Route S	ROs		
** Cleanup objective from 40 CFR Part 261.24		: Cleanup ob	jective from 40	CFR Part 261.	24		= above Gr	oundwater	Ingestion :	Exposure A	toute		
*** TACO Section 742.215		ı			_								
		۰	tion 740 015				0 5 2 5 6 1	SALL A MANAGEMENT	Section Contraction	ê			

15-04183la001 / 11/8/2004 / MEM/BRS

Soil Analytical Data - Total and TCLP Metals TABLE 2B

SiPi Metals / Chicago, Illinois

	Tibr	Tior 1	Tier 1	Toxicity					5.41	VD: FI O	ATIONS	SAMPI E I OCATIONS AND DEPTH					
COMPOUNDS	Ingestion	Em alation	Emalation Groundwater Characteristic	Characteristic	B-1A	B-34	I		B-5.A	B-6A	B-74	2		B-13	9	B-14/WW-2	W-2
	Exposure	Exposure	Ingestion	Hazardous	;	;	A	a ;		;		₹ ;	a	4	an j	V	an j
Tatal Mateto (matter)	Rouge	Route .	Class II*	Waste "	7 H	1.2 11	1.5 1.5 1.5	E F	# 4	211	1-2 11	2 2	<u></u>	1.5 11	Ę,	¥	E .
Cyanide	4 100].			¥	¥	Α¥	≨	¥.	≨	¥	AN.	ž	¥	¥	≨	ž
Aluminum		٠	,		¥	ž	ž	≨	ź	₹	ž	ΝA	¥	₹ <u>X</u>	Ä	₹	Ā
Anlimony	62			-	NA	MA	ΑN	Ž	Ϋ́	ΚĀ	Ϋ́	NA A	NA	NΑ	AN	¥	ΑN
Arsenic	63	1,200			2.8	27.5	21.3	92.1	79.6	42.B	16.5	6.4	7.8	7.6	1.1	2.9	9.1
Baritim	14,000	870,000	,	•	62.4	88	556	60.9	432	320	1,490	40.5	34.1	88.5	2.8	46.4	58
Beryllium	410			-	NA	NA	NA	MA	NA	NA	AN	NA	NA	NA	MA	NA	ΝA
Cadmlum	200	2,800	•	•	0.8	<u>6</u>	22.5	24.3	3.1	107	16.8	9.1	1.0	14.5	0,1	<0.1	1.0>
Calcium	-		-	-	NA	ž	NA	Ϋ́	≨	ΝA	AN	NA	NA	ΝĀ	NA	AN	NA
Chromium	4,100	420	,	•	20.6	27.7	94.6	126	22.6	16	82.1	22	16.3	15.4	1.3	24.9	19.2
Cobalt	12,000	-	-		ΚZ	MA	NA.	A.N	AN	MA	N.	AN.	NA	N.A.	NA	MA	NA.
Copper	8,200	,		•	AN	¥	N N	NA NA	¥	Ā	NA	AN	NA	NA	NA	Ą	ΑĀ
Iron	-	1	-		ΑN	AN	Ā	NA	¥	¥	ΝĀ	ΑN	NA.	NA	AN	ž	A'
Lead	400		•	-	83.8	153	10,200	8,940	1,010	34,000	8,790	20.6	14.2	1,200	3.4	18	18.1
Magnesium	-		-		AN	NA	NA	N.A.	Ą	Ν	ΑN	AN	N.A.	AN	NA	¥	ΝA
Manganese	9,800		-	ı	AN.	NA.	NA	NA	ΑN	ΑN	¥	IAN	NA	ΝA	NA	¥	٨
Mercury	61.		,	-	0.14	90'0	2.07	17.3	0.38	1.1	0.21	<0.05	<0.05	0.36	<0.05	40.05	40 .05
Nickel	4,100	21,000	-	,	NA	NA	≨	Α.	¥	¥	AN	NA	ΥN	Ϋ́	NA	¥	NA
Potassium	•	,	-	•	AN	AN.	¥	Ϋ́	¥	Ą	ΑĀ	NA	AA.	ΑŽ	Ϋ́	≨	NA
Selentum	1,000	•		_	<0.2	2.8	<0.2	12.9	6.3	6.0	1.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Silver	000'L	1	•	-	10.8	0.5	8.8	9.6	0.4	51.4	7	<0.1	\$0.1	20.3	7.0	40.1	۵.1
Socieum	-	1	1	-	NA	NA	NA	NA	۸A	¥	ΝA	ΝA	NA	NA	NA	NA	NA
Vanadlum	1,400		•	-	ΥN	¥	NA.	ž	ΑN	NA NA	ΑN	ΝA	NA	NA	AN	NA	٨A
Zinc	61,000		•	•	NA	MA	¥	¥N	Ϋ́	¥	ΑĀ	ΝA	¥	¥ ≥	ž	¥	Ϋ́
TCLP Metais (mg/L)																	
Arsenic		-	0.024	5.0	<0.002	<0.002	<0.002	0.024	<0.002	0.003	<0.002	0.005	<0,002	0,005	20.05 40.002	40.002 0.002	9.005 9
Barium			2.0	1001	<1.0	41.0	<1.0	1.1	€1.0	<1.0	2.4	0.1>	<1.0	<1.0	4.0	<1.0	<1.0
Cadmium		-	90.05	1.0	< 0.001	9000	0.314	0.508	0.042	0.529	0.348	<0.001	0.002	0.143	9000	< 0.001	40.001
Chromium	-		0.1	0'5	0.194	100.0	0.002	0.003	0.002	<0.001	0.003	0.005	0.002	0.005	0.005	40.001	<0.001
Lead			0.1	0'\$	<0.002	0.188	21.8	96.1	0.787	2.53	21.8	0.046	0.009	0.68	0.03	0.014	40.005
Mercury		,	10.01	0.2	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Selenium		-	50.0	1.0	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005
Silver		•	90.05	0.2	<0.001	100'0>	100.0>	<0.001	100:0>	<0.001	<0.001	100.0	0.001	<0.001	<0.001	<0.001	<0.001
FOC			-	•	NA	AN	¥	13.33	AA.	ΝΑ	ZA.	ΝA	2.54	MA	NA	NA	2.5
Hd			,	,	11.6	9.19	10.22	B.44	B.96	B.12	9.04	8.51	9.8	8.59	8.37	B.73	9.75

NOTES:

Only compounds detected are included in this table

* = Tier 1 SRO for Commerdal/industrial Properties

** = Cleanup objective from 40 CFR Part 261.24

NA = Not analyzed

= above Tier 1 Ingestion Exposure Route SROs = above Tier 1 Inhalation Exposure Route SROs = above Groundwater Ingestion Exposure Route = above Toxicity Characteristic Hazardous Waste BOLD

Page 2 of 5

15-04163ta001 / 11/8/2004 / MEM/BRS

Soil Analytical Data - Total and TCLP Metals TABLE 2B

SiPi Metals / Chicago, Illinois

Parts (mg/kg) hygestion Exposure Exposu	Groundwater Characteristic ingestion Hazardous Class II * Waste **	haracleristic	B-16 2 tt	6	B-17/WW-4				B-19	B-18 B-19		B-20	B-25	55	B-27/
Exposure Exposure Route	Class II *	Hazardous Waste **		┝	_							֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓			
Houte Route Route Boute	╶╏┤╎╏╎╽╎╪╏ ┼┼┼╁┼┼	Waste **					<	Ф	4	a	4	10	-	80	MW-1A
Metats (mg/kg) Je Num					=======================================	#	0-211	=======================================	0-2 T	# 9	0.2 #	¥	7.	ī	1.5 ft
100 100					acksquare	-								Ī	
Num 4100 2,300 In 14,000 870,000 In 14,000 870,000 In 420 2,300 In 420 2,300 In 420 2,300 In 12,000 In 8,200 8,700 In 8,200 8,700 In 8,200 8,700 In 1,000 In 1,000 In I,000 I			ΝA	MA	ΑN	VΝ	Ϋ́	Ϋ́	₹	₹	¥		₹	ž	¥
1,200 1,20			ΑÑ	AN	Ϋ́	٨×	ž	۸Ñ	₹	ž	¥		₹	NA	NA
1,200 1,20		-	NA	NA.	NA	NA	ΑN	NA	¥	¥	ΑN	ΑN	Ā	ž	¥
14,000 870,0		-	15	-	21.3	16.7	1.1	-	5.5	1.1	14.7		17.2	15.9	89
1,000 1,00		-	9. 0.49	2.4	219	48.8	1.	4.6	57.4	5.8	108	6.88	450	734	149
1,000 1,00			NA	AN	ΑĀ	ΑN	¥	¥	¥	₹	Ϋ́		₹	¥	¥
Figure 1,000 420 Figure 1,000 420 Figure 1,000 6,700 Figure 1,000 Fi		•	6.9	40.1	٥. 1.	0	& 1.	1.0	1.7	-0	2.5		1.7	<u>-</u> 0	16
ation 420 at 12,000 at 8,200 ation 420 12,000 ation 420 400 400 400 ation 1,000 ation			ΑN	ΑN	¥	ž	¥	Ϋ́	ž	ž	ž	_	¥	ž	Ž
12,000 sium		-	10.8	1.4	56.6	19.3	1.8	1.4	8.4	1.4	18.8		1.83	36.8	95.2
### 8,200 ###################################		-	ΑN	NA	NA	¥¥	AN	AN AN	ž	≨	¥		ž	Ž	¥
salum 400			NA	NA	NA	ΑA	AN	NA NA	₹	Ā	≱		₹	ž	MA
sium 8,600 8,700 ry 61 52,000 ry 4,100 21,000 m 1,000			MA	NA	NA	ΝA	AN	NA	¥	₹	AA		¥	Ā	₹
sium 9,600 8,700 ry 61 52,000 ry 61 52,000 sium 1,000 ru 1,000	-		299	1.3	060	24	1.7	1.2	112	1.6	513		852	818	2,060
Interest 9,500 8,700 17 61 52,000 1		-	NA	AN	ΝA	≨	AN	NA	¥	Ϋ́	Ϋ́		NA	ΝĀ	¥
1000 1000	-	-	NA	NA	AN	NA	NA	NA	Ϋ́	NA	NA		NA	₩	ž
4,100 21,000 1,000	-	-	60.0	<0.05	0.24	<0.05	-0.05	<0.05	1.0	<0.05	0.13		1.2	6B-0	0.22
lum 1,000 1,	-	-	AN	NA.	¥N.	NA	ΝA	NA	ΝA	¥	ΝA		NA	AN	₹
1,000 1,000	,	-	AN	NA	¥	AN	NA.	ΑN	ΝA	₹	ΝA		NA	NA	Ž
1,000 Ium 1,400 Metals (mg/L) 61,000 C 1 Ium Ium		-	<0.2	<0.2	1.3	<0.5	<0.2	<0.2	97	40.2	<0.2		30.2 2	0.4	40.2
Jian 1,400 (1,0))(1,000 (1,000 (1,0))(1,000 (1,000 (1,0))(1,000 (1,000 (1,0))(1,0)(1,0)(1,0)(1,0)(1,0)(1,0)(1,0	,	-	0.8	€0.1	17	<0.1	<0.1	€.1	1.2	c0.1	6		4.0	0.4	18.1
Alum 1,400 61,000 Metals (mg/L) ic n inan		-	NA	NA.	ΝA	NA	NA	ΝA	Ā	₹	ΝA	AN	NA	MA	ž
Metals (mg/L) 61,000	-	•	AN	MM	NA	NA	NA	NA	¥	₹V	NA		ΝA	ΑN	ΝĀ
Metals (mg/L) ic in in inim	-	,	NA	¥	Ā	NA	NA	NA	NA	ž	NA		NA	NA	NA
ic nium nlum				_					_						
ium ilum .	0.024	2.0	0.003	<0.002	0.00	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	200°0>	0.007	<0.002	0.003
nlum	2.0	100	<1.0			<1.0	<1.0	<1.0	0,1>	<1.0	0.1>		<1.0	0.1>	<1.0
mulin	0.05	0.1			0.043	<0.001	0.002	0.003	BEO'C	0.005	100.0>	P10.0	0.011	0.008	0.214
	1.0	5.0	<0.001	0.002	0.004	0.002	0.002	0.002	2007	<0.001	0.007	100:0>	<0.001	<0.001	0.001
	0.1	5.0	0.03	0.012	0.619	0.034	9000	0.007	0.315	0.007	< 0.002	600'0	0.105	0.1	2.32
Melodiy	0.01	0.2	_	Y		<0.0005[<		-0.000.0>	<0.0005	<0.0005	<0.0005	5000.0>	<0.0005	<0.0005	₹000 02
Selenium	0.05	1.0		Ľ			<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Silver	0.05	5.0	Ц		2000	<0.001	40:00	<0.001	€.00	<0.001	<0.001	¥	40.001	100,0>	<0.001
2	-	-	¥	¥		ď.	¥	¥	≨	₹	¥	42	¥	¥	ž
Hall 1	- '	•	8.16			893	8,31	8.83	8 8	8.24	9.46		8.73	8.35	9.6

NOTES: Only compounds detacted are included in this table

* = Ther 1 SRO for Commercial/industrial Properties

** = Clearup objective from 40 CFR Part 281 24

NA = Not analyzed

= above Tier 1 ingestion Exposure Route SROs = above Tier 1 inhalation Exposure Route SROs = above Groundwaler ingestion Exposure Route = above Toxicity Characteristic Hazandous Waste BOLD

Soil Analytical Data - Total and TCLP Metals TABLE 28

SiPi Metals / Chicago, Illinois

	,	ļ					İ								
			_	LOXICITY					MPLE	A I IONS /	SAMPLE LOCATIONS AND DEPTH	- 1			
COMPOUNDS	Frosting	Inhalation Exposure	৯	Characteristic Hazardous	B-26/ MW-5	87 87	8-31 -		B-32	B-33	B-34	B-36	B-37	B-38	65-48
	Route *	Houte *	Class II.	Waste **	74 H	# 23	æ ##	7#	3.1	3#	£	\$ # \$	5#	₽	2#
Total Metals (mg/kg)							-								
Cyanide	4,100	-		•	NA	ž	0.91	6 0.10	₹	ΝA	¥	Ą	ΑN	OT 02	ĄN
Aluminum	•		•	-	NA	NA	5820	12,800	A.A.	Ϋ́	ž	₹	ΑN	12,800	ΑN
Ardimony	82			•	NA	NA	3.8	<1.0	₹N	Ą	ž	ž	¥	41.0	Ϋ́
Arsenic	61	1,200	-	-	24	Ν	13.5	13.3	20.3	4	23.4	11.13	12.5	10.7	AN
Barium	14,000	870,000	•	-	91.8	Ϋ́	78.5	36.6	≨	ž	Š	₹	¥	37.8	A
Beryllium	410	2,100		,	Ą	Ϋ́	1.1	0.9	₹	₹	NA	≨	ž	8.0	₹
Cadmium	200	2,800	-	,	49.1	₹	5.	9.0	₹	≨	¥	¥	Ą.	0.3	
Calcium	•		-	,	Ą	¥	82,400	75,500	₹	₹	¥	ΑN	ΑN	38,800	
Chromium	4,100	420	-		18.3	ž	24.6	18.4	Ν	₹	Ϋ́	Ą	Ϋ́	20.8	
Cobalt	12,000	•	•	1	ďΖ	ž	6.2	14.7	ž	≨	¥	Ą	ž	14.2	¥
Copper	8,200		•	,	NA	¥	653	48.4	¥	≨	ΑN	₹	Ą	47.1	ž
lron	-	-		-	NA	¥	24,200	32,500	ΑN	≱	≨	ΑŽ	≨	24,900	Ϋ́
Lead	400				125	¥	1,060	22.1	¥.	≨	ž	78.2	,020	17	579
Magnesium	-		,		AN	¥	6,060	43,400	ž	≨	ΑN	MA	₹	24,400	¥
Manganese	9,600	8,700	1		ΥN	¥	044	431	Ϋ́Z	≨	≨	¥	₹	352	Ā
Mercury	61	52,000	-	•	0.79	¥	9.0	¢0.05	Ϋ́Z	≨	¥	ď.	ž	<0.05	ž
Nickel	4,100	21,000	4	•	NA	ž	54.7	43.6	NA	ž	Ϋ́	Ā	¥	42.5	NA
Potassium	•	•	-	1	NA	¥	999	3,280	ΑN	≨	≨	Ą	≨	3,030	ž
Selenium	1,000			,	<0.2	NA	1	<0.2	ΥN	Ϋ́N	ΥN	Ϋ́	₹	& 8.2	₹
Silver	1,000	-	•	•	0.7	ž	2.5	£.0	₹	NA	¥	ž	≨	0.2	₹
Socium	-	•		-	NA	MA	2,630	564	Ž	NA	Ν	Ā	≨	425	ž
Variadium	1,400				ΝA	ΝA	14.8	28.7	¥Ν	₩	¥.	AN	Ν	20.9	Ϋ́
Zinc	61,000		,		NA	ΝA	4,880	99	≨	Ž	₹	ž	₹	63.2	Ą
TCLP Metats (mg/L)					-										
Arsenic	-	-	0.024	0.3	<0.002	¥	ΝĀ	NA	ž	ž	¥	Ą	¥	AN	Ā
Banium	-	L	2.0	100	o.i>	ΑN	AN	MA	NA	NA	ΑN	ΝA	ΨV	NA	Ϋ́
Cadmium			0.05	1.0	<0.001	≨	≨	Ž	ž	ž	Ā	ΑN	Ž	ž	ΑN
Chromium	-	1	1.0	6.0	40.001	≨	¥	ΝΑ	¥	Ϋ́	NA	NA.	NA	NA	Ā
Lead		-	0.1	6.0	Ø.002	0.05	ž	ž	0.237	0.004	9.69	Ϋ́	NA	ž	ΑĀ
Mercury			10.01	0.2	<0.0005	MA.	ΑN	ΝA	Ā	Ϋ́Z	¥	Ϋ́	ΝA	Ϋ́	ž
Selentum		-	0.05	1.0	<0.002	¥¥	ΑM	NA	¥	ž	Ž	Ϋ́	ΝA	ž	¥
Silver			0.05	5.0	<0.001	N.	NA	NA	NA	ž	Ā	Ą	ΝA	NA	Ϋ́
FOC	•				NA	NA	MA	NA	NΑ	٧N	NA	AN	NA	NA	AN
PH		,			8.95	ΝA	7.8	ž	≱	₹	Ā	ž	₹	8,68	¥

* = Tier 1 SRO for Commercial/Industrial Properties
** = Cleanup objective from 40 CFR Part 261.24
NA = Not analyzed NOTES: Only compounds detected are included in this table

80 D

= above Tier 1 Ingestion Exposure Roule SROs = above Tier 1 Inhalation Exposure Roule SROs = above Groundwater Ingestion Exposure Route = above Toxicity Cheracteristic Hazardous Waste

Soil Analytical Data - Total and TCLP Metals TABLE 2B

SiPi Metals / Chicago, Illinois

_	Ther	Tier 1	Tier 1	Toxicity			ŝ	SAMPLE LOCATIONS AND DEPTH	CATIONS	AND DEPT	E		
COMPOUNDS	Indestion	Intratation	Groundwater	Characterietic	09-40	P. A.	CP a	1970	NA R	370		a ve	07.0
	Exposure	_	Ingestion	Hazardous	}	Š	Ĭ	} 5	1	f			ř
	Route *	Route *	Class II.	Waste **	2#	2#	911	2#	1.5#	2#	3 LT	10#	3#
Total Metals (mg/kg)													
Cyanide	4,100	,			Ϋ́	NA	A0.10	¥	ΝA	¥	<0.10	6 010	ž
Aluminum	-	•	-		ž	AN	12,000	Ž	Ą	ΥN	17,400	11,200	AN
Antimony	82				Ϋ́	ΑN	0. 10.	ΑN	NA NA	ΝA			Ā
Arsenic	61	1,200			ž	Ą	29.8	 	₹	Ϋ́	13.6	10.6	NA
Barium	14,000	8			٧Z	Ν	40.9	ΑZ	ΑĀ	NA			NA
Beryllum	410				ž	ΨN	6,0	Ϋ́	¥	Ϋ́	1.1	9.0	AN
Cadmium	200	2,800			Ϋ́	AN	0,4		NA	Ϋ́			MA
Calclum	-		,		¥Ν	×	42,400		Ϋ́	Ϋ́	46,100	37,500	AN
Сһгояпіцт	4,100	420			ΑN	Ν	18		NA	ΝA	24.9		AN
Cobalt	12,000	•			Ä	Ą	31.8	 	¥	Ž	17.2		MA
Copper	9,200	-			ΨN	¥	50.1		NA	NA	55.8	38.6	NA
from	-	-			ΑN	ΑĀ	33,500		ΑN	Ϋ́Z	31,200		ž
Lead	400	•	•	-	2,020	9	24.7	¥	ΝA	956	18.4	19.61	5,180
Magnesium	-		•		NA	≨	24,500	¥	NA	ž	28,300	18,800	ž
Manganese	9,600		- 1		NA	ΑĀ	482	AN	NA	NA.	520	607	ž
Mercury	61		,		NA	¥.	<0.05		NA	NA	<0.05	<0.05	NA
Nickel	4.180	21,000			Ą	×	49		NA	NA	46.5	42.8	MA
Polassium	,	1	,	•	Ą	ΑN	2,660	NA	NA	NA	4,530	2,860	NA
Selenium	1,000	•	-		ΑN	Ϋ́	<0.2	AN	٧N	NA	<0.2	<0.2	Ž
Silver	98	-		1	¥	₹	<0.1	AN	NA NA	NA	0.2	0.1	NA NA
Soditu⊓	'		•		NA	ΑN	504	NA	NA.	NA	428	386	NA
Vanadium	1,400	•			NA	Ą	21.4	ΥN	NA	NA	28.7	18.5	Ā
Zinc	61,000	•			NA	N.	8.69	MA	NA	NA	65.8	28	Ä
TCLP Metals (mg/L)													
Arsenic	,	•	0.024	0'9	NA	ΑN	¥	NA	NA	٧V	ΝA	A.A.	ΝA
Barium		•	2.0	001	¥	¥	¥	ΑN	NA	٧×	NA	Ä	Ą
Cadmium	-	•	90'0	0.1	¥	₹	¥	NA	¥¥	Ϋ́	Ā	NA	NA
Chromium	,	-	0.1	0'5	AN.	ΑN	ΝΑ	ΑN	NA	NA	Ν	NA	≱
Lead	,	•	0.1	0'9	ΥN	₹	¥¥	40.002	3.19	0.012	<0.002	0.022	¥
Mercuny	,	ŀ	10.0	0.2	NA	¥	NA	NA	NA	NA	AN	NA	ΝA
Selenium	'	,	0.05	1.0	ΑN	¥	NA	NA	AN	NA	NA	ΝA	NA
Silver	,	-	0.05	5.0	۸N	¥	AN	ΑN	NA	NA	NA	νN	NA
FOC	'	,	•	•	AN	NA	NA	NA	NA	NA	NA	ΜA	NA
Ha	,				Ϋ́	MΔ	9.50	NA	NA	MA	MA	VIV	2

Only compounds detected are included in this table

= Tier 1 SRO for Commercial/inclustrial Properties

= Cleanup objective from 40 CFR Part 261 24

NA = Not analyzed MOTES:

= above Tier 1 ingestion Exposure Route SROs = above Tier 1 inhalation Exposure Route SROs = above Groundwater Ingestion Exposure Route = above Toxicity Characteristic Hazardous Waste

800

15-04183ta001 / 11/8/2004 / MEM/BRS

Soil Analytical Data - Total and TCLP Metals TABLE 2B

SiPi Metals / Chicago, Illinois

	Tilest 1	Tler 1	Tler 1	Toxicity			VS.	MPLELO	CATIONS	SAMPLE LOCATIONS AND DEPTH	 -		
COMPOUNDS	Ingestion		#	Characteristic	8-52	B-63	9.55	95-B	B-57	B-58	B-59	B-60	8-61
	Route *	Exposure Route	Ingestion Class ()*	Maste **	2#	£	2#	2.11	2#	211	12#	5 H	24
Total Metals (mg/kg)													
Cyanide	4,100	-	-	-	NA	60.1	0.40	AN	NA	ΑN	Ϋ́N	¥	NA
Ahminum	-	•	•		ž	637	10,900	ΝA	NA	Ą	₹Z	Ϋ́	ž
Antimony	82	-	-		ΑĀ	0.15	9.7	NA	Ā	ΝA	Ϋ́Z	ΑN	ž
Arsenic	19	1,200	-	-	Ϋ́	1.2	10.4	ž	₹	₹	ž	₹	Ϋ́
Barium	14,000	870,000			AN	4.0	828	ΝA	Ą	NA	₹	¥	Ϋ́
Beryllum	410	2,100		,	NA	ė,	1.3	Ϋ́	A	₹.	2	ΨŽ	Ϋ́
Cadmium	200	2,800			NA	0.2	18.7	ΑN	AN	Ā	Z.	¥	ž
Calcium	,				ž	1,330	30,000	AN	Ā	Ž	ž	¥	ΑN
Chromium	4,100	420			ž	1.4	25.2	¥	¥	Ϋ́	ź	ž	A.N
Cobaff	12,000	•			ž	0.0	12	Ä	≶	₹ Z	Ϋ́Z	X	Ϋ́
Copper	8,200		-		₹	6.0	483	AN	₹	ž	ž	ξ	Ϋ́Z
Iron	•	-			NA	1,680	27,500	NA	¥	NA	Ϋ́Z	NA	Ϋ́Z
Lead	400	-	•		2,700	5.4	645	311	407	431	18.2	133	17.6
Magnesium		•	•		NA	862	15,660	AN	NA	ΑN	Ϋ́N	NA	Ϋ́Z
Manganese	009°G	8,700	-	-	NA	31.3	619	AN	NA	Α¥	X	¥	Ϋ́
Mercury	61	52,000	•		NA	<0.05		NA	NA	ΥN	N.A.	ΑN	¥
Nickel	4,100	21,000	-	-	M	1.9		Ν	ž	Ą	ž	Ϋ́	ΑN
Potassium		-	-	-	NA	73.9	2,050	NA	NA	NA	ΝÀ	NA	Ϋ́
Selenium	1,000	-	-	•	NA	0.2	₹0. 5	Ϋ́Z	N.	ΝA	Ϋ́	۸N	ΑN
Silver	1,000	•	1		NA	40.1	1.0	NA	NA NA	ΝA	NA	AM	Ϋ́
Sodium	-	-			NA	66.7	189	AN	¥	NA	ΥN	NA	Ϋ́
Vanadtum	1,400		-	-	NA	2.0	22	ž	NA.	¥	Ϋ́Z	NA	¥
Zinc	61,000		•		NA	122	1,760	NA	NA	NA	ΑN	NA	ΑN
TCLP Metais (mg/L)						i					-		
Arsenic	-	-	0.024	5.0	NA	NA	NA	NA	NA	MA	NA	NA	Ν
Barlum	•	-	2.0	1001	NA	ΥN	NA	NA	NA	ΝA	NA	NA	X
Cadmium	-		0.05	1.0	NA	NA,	NA	NA	NA	NA	NA	NA	Ϋ́
Chromium	-		1.0	5.0	MA	NA	NA	Ν	ΜĀ	NA	NA	٨A	NA
Lead	-		0.1	5.0	NA	NA.	NA	Ϋ́	NA.	ΝA	NA	ΑN	×
Mercury		•	0.01	0.2	NA	NA	NA	Ν	NA!	NA	ΝA	NA	NA
Selenium	-		0.05	1.0	NA	NA	NA	NA	NA	NA	NA	NA	Ϋ́
Silver	1	•	0.05	5.0	ΝA	NA	NA	N.	NA	NA	ΝĀ	ΝA	NA
FOC	,			•	ΝA	Ϋ́Z	N	NA	NA	NA	NA	NA	NA
Ha	-	•	-	-	ΑĀ	8.73	8.23	Ä	¥	Ϋ́	ž	AA	¥

NOTES: Orly compounds detected are included in this table remainded in this table remainded in this table remainder

** = Cleanup objective from 40 CFR Part 261.24
NA = Not analyzed

= above Groundwater Ingestion Exposure Route = above Toxicity Characteristic Hazardous Waste = above Tier 1 ingestion Exposure Route SRCs BOLD

above Tier 1 Inhalation Exposure Route SROs

Groundwater Grab Sample Analytical Data TABLE 3

SiPi Metals / Chicago, Illinois

		ĺ								
	ORIFICTIVES				SAM	SAMPLE LOCATIONS	NS			
COMPOUNDS	•	GW-2	GW-3	9-W5	GW-8	GW-22	GW-29F	GW-29U	GW-30F	GW-30U
VOCs (ug/L)										
Benzene	25	<5.0	<5.0	<5.0	6.7	<5.0	ΑN	NA	Ϋ́	Z
PNAs (ug/L)										
Phenanthrene		5 *	\$>	ជា	ΝΑ	Ą.	\$ >	\$	AN	AN
Fluoranthene	1400	3	<2>	21	NA	Ş	~ 2	\$	ΨŽ	ΥN
Pyrene	1050	[3]	<2	41	ΨN	Q V	₹	42	¥	NA
Benzo(a)anthracene	59.0	1.5	0.5	10.6	¥Z	<0.13	<0.13	0.55	AN	NA
Chrysene	7.5	1.8	<1.5	13	ΑN	<1.5	<1.5	<1.5	Ϋ́	NA
Benzo(b)fluoranthene	6:0	1,4	0.48	12	ΑN	<0.18	<0.18	0.7	AZ AZ	AZ.
Benzo(k)fluoranthene	0.85	1.3	0.41	8.6	ΝA	<0.17	<0.17	0.59	Ϋ́Z	NA NA
Benzo(a)pyrene	2	1.8	9.0	μΩ	ΝA	<0.2	<0.2	0.8	AN	AN
Indeno(1,2,3-cd)pyrene	2.15	1.2	0.4	8.1	NA	<0.3	<0.3	0.6	ΨZ	٩N
Dibenz(a,h)anthracene	1.5	0.3	<0.3	3.2	NA	<0.3	<0.3	€.0>	ΑN	AN
Benzo(g,h,i)perylene	-	1.2	<0.4	6.8	NA	<0.4	<0.4	0.0	AN.	AN
Total Metals (mg/L)										į
Arsenic	0.5	NA	0.016	0.008	0.004	ΑN	ΝA	Ν	¥Z	AN
Barium	2	NA	0.105	0.199	0.047	Ϋ́	NA	NA	ΥN	Ϋ́
Chromium	1	NA	0.005	<0.001	<0.001	Ϋ́Z	Ϋ́	AM	Ϋ́	¥
Lead	0.1	NA	0.178	0.012	<0.002	ΑN	Ν	MA	<0.002	32

NOTES:

Only compounds detected are included in this table

* TACO Tier 1 GROs for the Groundwater Component of the Groundwater Ingestion Route, Class II

= above TACO Tier 1 GRO, Class II

TABLE 4
Groundwater Analytical Data
August 19, 2004

SiPi Metals / Chicago, Illinois

				SAMPLE LOCATIONS	CATIONS		
COMPOUNDS	OBJECTIVES *	MW1-081904	MW2-081904	MW3-081904	MW4-081904	MW5-081904	MW6-081904
VOCs (ug/L)							
Benzene	25	<5.0	0'\$>	<5.0	€5.0	<5.0	<5.0
PNAs (ug/L)							
Phenanthrene		<5.0	0.3>	<5.0	<5.0	<5.0	Q'9>
Fluoranthene	1400	<2.0	0.2>	≪.0	<2.0	<2.0	<2.0
Pyrene	1050	<2.0	<2.0	42.0	<2.0	<2.0	<2.0
Benzo(a)anthracene	0.65	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Chrysene	7.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Benzo(b)fluoranthene	6.0	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Benzo(k)fluoranthene	0.85	<0.17	21.0>	<0.17	<0.17	<0.17	<0.17
Benzo(a)pyrene	2	<0.2	2.0>	<0.2	<0.2	<0.2	<0.2
Indeno(1,2,3-cd)pyrene	2.15	<0.3	6.0>	<0.3	<0.3	E:0>	€:0>
Dibenz(a,h)anthracene	1.5	<0.3	<0.3	<0.3	<0.3	6.0>	<0.3
Benzo(g,h,i)perylene	•	<0.4	<0.4	<0.4	<0.4	<0.4	40.4
Total Metals (mg/L)					:		
Arsenic	0.2	<0.002	<0.002	900.0	<0.002	<0.002	<0.002
Barium	2	0.057	0.142	0.295	690:0	960:0	0.076
Chromium	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	0.1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

NOTES:

Only the compounds detected in the previous groundwater grab samples are included in this table *TACO Tier 1 GROs for the Groundwater Component of the Groundwater Ingestion Route, Class II

APPENDIX A

SITE REMEDIATION PROGRAM FORMS (DRM-2)

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF printed 01/27/2011 8:20AM by Richard.Jordan p. 99/383-

Illinois Environmental Protection Agency Bureau of Land Remedial Project Management Section 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

FOR ILLINOIS EPA	USE:	
Log No.		

Site Remediation Program Form (DRM-2) (To Be Submitted with all Plans and Reports)

I. Site Identification: Site Name: SiPi Metals Corporation Street Address: 1720 North Elston Avenue City; Chicago Illinois Inventory I. D. Number: 0316005887 IEMA Incident Number: II. Remediation Applicant: Applicant's Name: Mr. Leslie Pinsof Street Address: 1720 North Elston Avenue Company: SiPi Metals Corporation City: Chicago State: IL____ ZIP Code: 60622 Phone: (773) 276-0070 I hereby request that the Illinois EPA review and evaluate the attached project documents in accordance with the terms and conditions of the Environmental Protection Act (415 HLCS 5), implementing regulations, and the review and evaluation services agreement. Remediation Applicant's Signature: III. Contact Person: Contact's Name: Russell Chadwick __ Company: Clayton Group Services, Inc. Street Address: 3140 Finley Road City: Downers Grove State: L ZIP Code: 60515 Phone: (630) 795-3200 IV. Review & Evaluation Licensed Professional Engineer or Geologist ("RELPEG"), if applicable: RELPEG's Name: _____ Company: _____ City: _____ State: ZIP Code: Phone: Registration Number: License Expiration Date:

All information submitted is available to the public except when specifically designated by the Remediation Applicant to be treated confidentially as a trade secret or secret process in accordance with the Illinois Compiled Statutes, Section 7(a) of the Environmental Protection Act, applicable Rules and Regulations of the Illinois Pollution Control Board and applicable Illinois EPA rules and guidelines. The Illinois EPA is authorized to require this information under Sections 415 ILCS 5/58 - 58.12 of the Environmental Protection Act and regulations promulgated thereunder. Disclosure of this information is required as a condition of participation in the Site Remediation Program. Failure to do so may prevent this form from being processed and could result in your plan(s) or report(s) being rejected. This form has been approved by the Forms Management Center.

IL 532 2547 LPC 566 Feb-2000

Document Title: Comprehensive Site Investigation/Tier 1 Remediati	on Objectives Report Date of Preparation of Plan or Report:
Prepared by: Clayton Group Services, Inc.	
Type of Document Submitted:	Sampling Plan
Site Investigation Report - Comprehensive	Health and Safety Plan
Site Investigation Report - Focused	Community Relations Plan
Remediation Objectives Report-Tier 1or 2	Risk Assessment
Remediation Objectives Report-Tier 3	Contaminant Fate & Transport Modeling
Remedial Action Plan	Environmental Remediation Tax Credit - Budget Plan Revi
Remedial Action Completion Report	Other:
Document Title:	Date of Preparation of Plan or Report:
	Prepared for:
Type of Document Submitted:	Sampling Plan
Site Investigation Report - Comprehensive	Health and Safety Plan
Site Investigation Report - Focused	Community Relations Plan
Remediation Objectives Report-Tier 1or 2	Risk Assessment
Remediation Objectives Report-Tier 3	Contaminant Fate & Transport Modeling
Remedial Action Plan	Environmental Remediation Tax Credit - Budget Plan Revis
Remedial Action Completion Report	Other:
VI. Professional Engineer's or Geologist's Sea	•
direction, and this document and all attachments were knowledge and belief, the work described in the plan at	
Engineer or Geologist Name: Mr. John Rohr	Professional Engineer's or
Company: Clayton Group Services, Inc. Phone: (630) 7	95-3200

Note: The authority of a Licensed Professional Geologist to certify documents submitted to the Illinois Environmental Protection Agency for review and evaluation pursuant to Title XVII of the Environmental Protection Act is limited to Site Investigation Reports (415 ILCS 58.7(f), as amended by P.A. 92-0735, effective July 25, 2002). A Licensed Professional Geologist cannot certify Remediation Objectives Reports, Remedial Action Plans or Remedial Action Completion Reports.

License Expiration Date

Registration Number:

Signature:

printed 01/27/2011 8:20AM by Richard.Jordan p. 101/383=

APPENDIX B

PHOTO LOG

\$1 and RO Report \$iPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF

Project 15-04183,00-004 SiPi Metals 1720 N. Elston PHOTO LOG Chicago, II

Location/Direction: Facing northeast Soil drums and completed MW-3.

PHOTOGRAPH#2

by DWL: 08/09/04

PHOTOGRAPH#1

Location/Direction: Facing north Drilling at soil boring B-12

Chicago, II Project 15-04183.00-004 SiPi Metals 1720 N. Elston PHOTO LOG

by DWL: 08/09/04

Location of MW-2 on the west side of the building. Location/Direction: Facing southeast

PHOTOGRAPH#3

Drill rig set up at soil boring B-13. Location/Direction: Facing north

15-04183pt001 / 11/29/04 / DWL

Project 15-04183.00-004 PHOTO LOG SiPi Metals 1720 N. Elston Chicago, II

PHOTOGRAPH#5

Location/Direction: Facing south Drilling at MW-4.

by DWL: 08/10/04

Drilling at soil boring B-20; at the west side of the concrete retention by DWL: 08/10/04 Location/Direction: Facing southeast PHOTOGRAPH # 6

basin.

PHOTO LOG SiPi Metals 1720 N. Elston Chicago, II Project 15-04183.00-004

PHOTOGRAPH # 7
Location/Direction: Facing west

by DWL: 08/11/04

Geoprobe set up at soil boring B-23 in the basement of 1620 Besly Ct.

PHOTOGRAPH #8

by DWL: 08/11/04

Location/Direction: Facing east

Completed MW-6 before putting on the flushmount cover.

A 4

PHOTO LOG SiPi Metals 1720 N. Elston Chicago, II Project 15-04183,00-004

PHOTOGRAPH#9

by DWL: 08/11/04

Location/Direction: Facing east

Drilling at MW-5 at the southeast corner of the building.

PHOTOGRAPH # 10

Location/Direction: Facing west

by DWL: 08/12/04

Soil boring B-1 inside the northeast corner of the building.

Project 15-04183.00-004 1720 N. Elston PHOTO LOG SiPi Metals Chicago, Il

PHOTOGRAPH # 12

by DWL: 08/13/04

Drilling at B-3, inside the building. Location/Direction: Facing east

Drilling at soil boring B-4, near the transformers. Location/Direction: Facing east PHOTOGRAPH#11

by DWL: 08/12/04

printed 01/27/2011 8:20AM by Richard.Jordan p. 108/383=

APPENDIX C

WELL SEARCH MAP AND WELL LOGS

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001/11/29/2004/ MEM/JMF

Scole 1:24000 0 1/2 1 MILE 1000 0 1000 2000 3000 FEET

FIGURE 7

1,000 FT. RADIUS WELL SEARCH

SIPI METALS 1720 N. ELSTON AVENUE CHICAGO, ILLINOIS

Map Area: 39N-13E-1 m3 to 40N-14E-28 m3

0	1502	3004 ft
Illino	ois State Geolog	ical Survey
QuE	StoR: Custo	om Map
Date: 30-	SEP-04 Scale:	1:18024

Cisplayed data is based upon information supplied to the illinous State Geological Survey (ISGS) and are not field verified. The ISGS does not guarantee title validity, accuracy or completeness of these data. 30-SEP-04

QuEStoR Data Extraction

DB: oradb

Non Oil and Gas - Wells

Chicago Dept. of Subways 4-39N-14E 120310290100 P-74

Subway Boring Cook

Elev: 593GL NW NW NW Status: ENG

comp. date: 04/01/39 permit date: permit: 0

td: 55

producing formation: latitude: 4: 2002260 Lambert Y: 3236174 td formation: latitude: 41.909962 longitude: 87.646894

120310290200 Chicago Dept. of Subways 4-39N-14E

Subway Boring 165 SL 165 WL P-75 Cook

593GL NW NW NW Elev: Status: ENG comp. date: 04/01/39 permit: 0 permit date:

Lambert X: 3502108 Lambert Y: 3236003 td: 55

producing formation: td formation:

latitude: 41.909499 longitude: 87.647468

120310290300 Chicago Dept. of Subways 4-39N-14E

Cook Subway Boring P-76

593GL Status: ENG NW NW NW Elev: comp. date: 04/01/39 permit date: permit: 0

Lambert Y: 3236174 Lambert X: 3502260 td: 55

producing formation: td formation:

latitude: 41.909962 longitude: 87.646894

120310290600 Chicago Pub. Works Dept. 5-39N-14E

Chgo Pub Wks Dept Cook

Elev: 593GL Status: ENG NE NW NE

comp. date: 01/01/27 permit: 0 permit date:

Lambert X: 3500291 Lambert Y: 3236092 td: 78

producing formation: td formation: latitude: 41.909846 longitude: 87.654163

120310290900 Chicago Pub. Works Dept. 5-39N-14E

Cook Chgo Pub Wks Dept

Status: ENG SE NW SE Elev: 587GL

permit: 0 permit date: comp. date: 01/01/27

Lambert X: 3500421 Lambert Y: 3232804 td: 62

producing formation: td formation:

latitude: 41.900779 longitude: 87.653930

120310290800 Chicago Pub. Works Dept. 5-39N-14E

Cook Chgo Pub Wks Dept

Status: ENG Elev: 584GL

permit: 0 comp. date: 01/01/27 permit date:

Lambert X: 3499396 Lambert Y: 3233749 td: 63

producing formation: td formation:

latitude: 41.903441 longitude: 87.657640

120310290700 Chicago Pub. Works Dept. 5-39N-14E

Cook Chgo Pub Wks Dept

Status: ENG SE NW SE Elev: 589GL

permit: 0 permit date: comp. date: 01/01/27

Lambert X: 3500421 Lambert Y: 3232804 td: 64

producing formation: td formation:

latitude: 41,900779 longitude: 87.653930

5-39N-14E 120312658900 Chicago Pub. Works Dept. Cook Chgo-Halsted Vdct Ch-3

-1-

Status: ENG SE SE SE Elev: 594GL permit: 0

producing formation: td formation: latitude: 41.897234 longitude: 87.648991

120310165200 Geiger, S. B. Co. 5-39N-14E

1 Cook Fleischmann Yeast

Elev: 590TM Status: WATER N2 NE

comp. date: 01/01/27

td: 1965

permit: 0 permit date:
Lambert X: 3500633 Lambert Y: 3235777
producing formation: td formation:
latitude: 41.908959 longitude: 87.652925

120310165100 Layne Bowler Co ' 5-39N-14E

Cook Fleischmann Yeast

Status: WATER N2 NE Elev: 590TM

permit: 0 permit date:
Lambert X: 3500633 Lambert Y: 3235777 comp. date: 01/01/25

td: 1962

producing formation: td formation:

producing formation: td formation: latitude: 41.908959 longitude: 87.652925

120312659000 Chicago Pub. Works Dept. Cook St Bulkhead Walls 5-39N-14E

Re-4 Elev: 592GL Status: ENG NE NW NE

comp. date: 03/01/61

td: 70

permit: 0 permit date:
Lambert X: 3500291 Lambert Y: 3236092
producing formation: td formation:
latitude: 41.909846 longitude: 87.654163

Chicago Dept. of Subways 120310291100 5-39N-14E

Subway Boring

Cook Subway Boring
Status: ENG 165 NL 165 EL
permit: 0 permit date: NE NE NE Elev: 593GL Lambert X: 3501766 Lambert Y:

comp. date: 04/01/39

Lambert Y: 3236317 td: 55

producing formation: td formation: latitude: 41.910384 longitude: 87.648706

120310291200 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring
Status: ENG 165 SL 165 EL SW SW SE
permit: 0 permit date: SC Q40

Elev: 593GL comp. date: 05/01/39

permit: 0 permit date: Lambert X: 3499986 Lambert Y: td: 55

Lambert X: 3499986 Lambert Y: 3231303 producing formation: td formation: latitude: 41.896668 longitude: 87.655647

120310291300 Chicago Dept. of Subways 5-39N-14E

041

Cook Subway Boring
Status: ENG 165 SL 165 WL SW SW SE
permit: 0 permit date:
Lambert X: 3499660 Lambert Y: 3231289
producing formation: td formation:
latitude: 41.896648 longitude: 87.656850 Elev: 593GL comp. date: 05/01/39

td: 55

5-39N-14E

120310291400 Chicago Dept. of Subways
Cook Subway Boring
Status: ENG 165 NL 165 WL SW SW SPERMIT: 0 permit date: 165 NL 165 WL SW SW SE permit: 0 permit date:
Lambert X: 3499646 Lambert producing formation 042 Elev: 593GL comp. date: 05/01/39

td: 55

producing formation: td forma latitude: 41.897555 td formation: longitude: 87.656877

Chicago Dept. of Subways 5-39N-14E 120310291500 Q43 Elev: 593GL Subway Boring Cook Cook Status: ENG NE SE SW permit: 0 permit date: comp. date: 05/01/39
Lambert X: 3499133 Lambert Y: 3232090 td: 55
producing formation: td formation: latitude: 41.898884 longitude: 87.658734 120310291600 Chicago Dept. of Subways 5-39N-14E Subway Boring Cook Status: ENG NE SE SW Elev: 592GL permit: 0 permit date:
Lambert X: 3499133 Lambert Y: 3232090
producing formation: td formation:
latitude: 41.898884 longitude: 87.658734 comp. date: 05/01/39 td: 55 120310291700 Chicago Dept. of Subways 5-39N-14E Q45 Subway Boring Cook Elev: 594GL Status: ENG NW SE SW permit: 0 permit date: comp. date: Lambert X: 3498477 Lambert Y: 3232062 td: 55 comp. date: 05/01/39 producing formation: td formation: producing formation: td formation: latitude: 41.898844 longitude: 87.661155 120310291800 Chicago Dept. of Subways 5-39N-1
Cook Subway Boring Q46
Status: ENG 165 NL 165 EL NW SE SW Elev: 593GL
permit: 0 permit date: comp. date: 05/01/
Lambert X: 3498634 Lambert Y: 3232233 td: 56
producing formation: td formation: latitude: 41.899306 longitude: 87.660563 5-39N-14E comp. date: 05/01/39 32233 td: 56 Cook Subway Boring Q47
Status: ENG 165 SL 165 WL SW NE SW Elev: 593GL
permit: 0 permit date: comp. date: 05/01/39
Lambert X: 3498293 Lambert Y: 3232549 td: 55
producing formation: td formation: latitude: 41.900196 longitude: 87.661797 120310292000 Chicago Dept. of Subways 5-39N-1
Cook Subway Boring Q48
Status: ENG 165 SL 165 WL SW NE SW Elev: 593GL
permit: 0 permit date: comp. date: 05/01/
Lambert X: 3498293 Lambert Y: 3232549 td: 55
producing formation: td formation: latitude: 41.900196 longitude: 87.661797 5-39N-14E comp. date: 05/01/39 Subways 5-39N-1
Q49
SE NW SW Elev: 593GL 120310292100 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring
Status: ENG 165 NL 165 EL SE N
permit: 0 permit date:
Lambert X: 3497950 Lambert Y: 3232864
producing formation:
latitude: 41 907000 comp. date: 05/01/39 td: 55 producing formation: td formation: latitude: 41.901083 longitude: 87.663039 td formation: 120310292200 Chicago Dept. of Subways 5-39N-14E Q50 Cook Subway Boring Q50
Status: ENG 165 SL 165 WL NE NW SW Elev: 593GL
permit: 0 permit date: comp. date: 05/01/39 producing formation: td forma latitude: 41,901970 td: 55 td formation:

Status: ENG

Lambert X: 3495149

permit: 0

120310292300 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring 051 Status: ENG 593GL Elev: NW NW SW comp. date: 05/01/39 permit: 0 permit date: Lambert X: 3497108 Lambert Y: 3233323 td: 55 producing formation: td formation: latitude: 41.902394 longitude: 87.666110 120310292400 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring Q52 Status: ENG Elev: 593GL NW NW SW comp. date: 05/01/39 permit: 0 permit date: Lambert X: 3497108 Lambert Y: 3233323 td: 55 producing formation: td formation: latitude: 41.902394 longitude: 87.666110 120310292500 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring 053 Status: ENG 165 SL 165 WL SW SW NW 593GL Elev: permit date: permit: 0 comp. date: 05/01/39 Lambert Y: 3233810 Lambert X: 3496923 td: 55 producing formation: latitude: 41.903746 td formation: longitude: 87.666756 120310292600 Chicago Dept. of Subways 5-39N-14E Cook Subway Boring R-5A 165 NL 165 WL Status: ENG NW NE NW Elev: 592GL permit date: producing formation:
Lambert Y: 3236168
producing formation: permit: 0 comp. date: 04/01/39 td: 35 td formation: longitude: 87.662077 120310293000 Chicago Pub. Works Dept. 6-39N-14E Cook Land & Lake Tunnels 3 Status: ENG NW SE SE Elev: 597GL comp. date: 01/01/11 producing formation: latitude 41 2000001 permit: 0 permit date: td: 66 td formation: latitude: 41.898695 longitude: 87.670866 120310292800 Chicago Pub. Works Dept. 6-39N-14E Cook Northwest Land & Lake Tunnels 1 595GL Status: ENG -SW NE SE Elev: permit: 0 permit date: . comp. date: 01/01/11 Lambert Y: 3232612 Lambert X: 3495812 td: 68 producing formation: td formation: latitude: 41.900512 longitude: 87.670920 120310292900 Chicago Pub. Works Dept. 6-39N-14E 2 Cook Northwest Land & Lake Tunnels Status: ENG SW NE SE 595GL Elev: permit: 0 permit date: comp. date: 01/01/11 Lambert X: 3495812 Lambert Y: 3232612 67 tđ: producing formation: td formation: latitude: 41.900512 longitude: 87.670920 120310293100 Chicago Pub. Works Dept. 6-39N-14E Cook Northwest Land & Lake Tunnels

-4~

permit date:

Lambert Y: 3232586

SE NW SE

Elev: 597GL

td:

comp. date: 01/01/11

66

producing formation: td formation: latitude: 41.900477 longitude: 87.673356

Chicago Pup. Works Dage:
Northwest Land & Lake Tunnels 9
NW SE Elev: 598GL 120310293300 Chicago Pub. Works Dept. 6-39N-14E

Cook

Status: ENG

permit: 0 permit date: comp. date: 01/01/11

Lambert Y: 3232902 Lambert X: 3494804 td: 67

producing formation: latitude: 41.901370 td formation: longitude: 87.674598

Chicago Pub. Works Dept. 120310293200 6-39N-14E

Cook Potomac Ave. Shaft-NW Land & Lk Tun

Status: ENG SE SW NW Elev: 597GL

permit date: permit: 0 comp. date: Lambert Y: 3233800 Lambert X: 3492444 td: 91

producing formation: td formation:

latitude: 41.903977 longitude: 87.683198

120310293400 Chicago Dept. of Subways 6-39N-14E

Subway Boring 165 SL 165 EL Cook 054 Status: ENG

SE SE NE Elev: 594GL comp. date: 05/01/39 permit: 0 permit date:

Lambert X: 3496594 Lambert Y: 3233800 td:

producing formation: td formation: latitude: 41.903737 longitude: 87.667970

120310293500 Chicago Dept. of Subways 6-39N-14E

Subway Boring Q55

Status: ENG SE SE NE Elev: 593GL

permit date: permit: 0 comp. date: 05/01/39

Lambert X: 3496422 Lambert Y: 3233959 td: 38

producing formation: td formation:

latitude: 41.904185 longitude: 87.668593

120310293600 Chicago Dept. of Subways 6-39N-14E

Cook Subway Boring Q56A Status: ENG SE SE NE 593GL Elev:

permit: 0 permit date: comp. date: 05/01/39

td: 55

producing formation: td forma latitude: 41.904185 td formation: longitude: 87.668593 td formation:

120310293700 Chicago Dept. of Subways 6-39N-14E

Cook Subway Boring Q57 165 NL 165 EL Status: ENG SW SE NE Elev: 594GL permit date:

permit: 0 comp. date: 05/01/39

Lambert X: 3495917 Lambert Y: 3234099 td:

producing formation: latitude: 41.904615 td formation: td formation: longitude: 87.670433

120310293800 Chicago Dept. of Subways 6-39N-14E

Cook Subway Boring Status: ENG 165 SL 165 EL 058

NW SE NE Elev: permit date: permit: 0 comp. date: 11/01/40

producing formation: Lambert Y: 3234434 producing formation: td formationed by the formation of the formatio td: 20

td formation:

120310293900 Chicago Dept. of Subways 6-39N-14E Cook

Subway Boring Q59 Status: ENG 165 SL 165 WL NW SE NE Elev: 594GL

longitude: 87.670460

```
permit: 0 permit date: comp. date: 12/01/40 Lambert X: 3495576 Lambert Y: 3234421 td: 20 producing formation: td formation: latitude: 41.905505 longitude: 87.671679
120310294000 Chicago Dept. of Subways
Cook Subway Boring
                                                                            060

NE SW NE Elev: 596GL
                                                                                                                                 6-39N-14E
Cook Subway Boring Q60
Status: ENG 165 NL 165 EL NE SW NE Elev: 596GL
permit: 0 permit date: comp. date: 12/01/40
Lambert X: 3495228 Lambert Y: 3234732 td: 19
producing formation: td formation:
 producing formation: td formation: latitude: 41.906397 longitude: 87.672920
120310294100 Chicago Dept. of Subways 6-39N Cook Subway Boring Q61 SE NW NE Elev: 595GL
                                                                                                                                 6-39N-14E
Cook Subway Boring Q61
Status: ENG SE NW NE Elev: 595GL
permit: 0 permit date: comp. date: 12/01/40
Lambert X: 3495041 Lambert Y: 3235220 td: 17
producing formation: td formation:
latitude: 41.907752 longitude: 87.673570
120310294200 Chicago Dept. of Subways 6-39N-14E
Cook Subway Boring Q62
Status: ENG 165 SL 165 WL SE NW NE Elev: 595GL
permit: 0 permit date: comp. date: 12/01/40
Lambert X: 3494881 Lambert Y: 3235049 td: 16
producing formation: td formation: latitude: 41.907290 longitude: 87.674165
120310296100 Chicago Dept. of Subways
Cook Subway Boring
Status: ENG NE NW NE
permit: 0 permit date:
Lambert X: 3500501 Lambert Y: 3230830
producing formation: td formation:
latitude: 41.895336 longitude: 87.653783
                                                                                                                                  B-39N-14E
                                                                                                       8-39N
Q38
Elev: 592GL
                                                                             NE NW NE Elev: 592Gb
comp. date: 05/01/39
td: 55
120310296200 Chicago Dept. of Subways Q39
Cook Subway Boring Q39
Status: ENG 165 NL 165 WL NE NW NE Elev: 593GL
permit: 0 permit date: comp. date: 05/01/39
Lambert X: 3500330 Lambert Y: 3230988 td: 55
producing formation: td formation: latitude: 41.895781 longitude: 87.654402
120313145400 Testing Service Corp. 31-4
Cook Mayfair Const. Co. MW-2
Status: MONIT SW NE NE Elev: 0
                                                                                                                                 31-40N-14E
Status: MONIT SW NE NE Elev: 0
permit: none permit date: comp. date: 12/07/92
Lambert X: 3495486 Lambert Y: 3240520 td: 20
producing formation: td formation:
latitude: 41.922315 longitude: 87.671558
Water from sand seams at depth 3 to 17 ft.
Screen: Diam. 2 in. Length: 15 ft. Slot: .01
 Casing and Liner Pipe -
           Diam. (in.) Kind and Weight From(ft)
2 SCH 40 PVC 0
 Size hole below casing: 4.25 in.
 Static level 5 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 gpm for 0 hours.
   crushed limestone, brick, & sand gravel & sandy silt grav & brown silts
 Formations Passed Through
                                                                                               Thickness Bottom
                                                                                                3 3
                                                                                                    2
                                                                                                                              5
                                                                                                   15
     gray & brown silty clay
                                                                                                                           20
```

```
120313145500 Testing Service Corp.
Cook Mayfair Const. Co. MW-8
Status: MONIT SW NE NE Elev:
                                                                        31-40N-14E
permit: none permit date: comp. date:
Lambert X: 3495486 Lambert Y: 3240520 td: 20
producing formation: td formation:
latitude: 41.922315 longitude: 87.671558
                                                            comp. date: 12/07/92
Water from sand seams at depth 4 to 12 ft.
Screen: Diam. 2 in. Length: 15 ft. Slot: .01
Casing and Liner Pipe -
      Diam. (in.) Kind and Weight From(ft) To(ft)

2 SCH 40 PVC 0
SCH 40 PVC
                                                       15 20
  gray & brown silty clay
                    Testing Service Corp.
Mayfair Const. Co.
                                                                    31-40N-14E
120313145600
Cook
                                                             Elev: 0
                                            SW NE NE
Status: MONIT
permit: none permit date:
Lambert X: 3495486 Lambert Y: 3240520
producing formation: td formation:
latitude: 41.922315 longitude: 87.671558
                                                            comp. date: 12/08/92
                                                               td: 18
Water from sand seams at depth 5 to 19 ft. Screen: Diam. 2 in. Length: 15 ft. Slot: .01
Casing and Liner Pipe -
      Diam. (in.) Kind and Weight From(ft) To(ft)

2 SCH 40 PVC 0 1
Size hole below casing: 4.25 in.
Static level 5 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 gpm for 0 hours.

Formations Passed Through Thickness Pattern
                                                      Thickness Bottom
Formations Passed Through
  crushed limestone, brick, & sand gravel & sandy sile
                                                              3
   gray & brown silty clay
                                                        15 20
120310337800 Geiger, S. B. Co.
                                                                           32-40N-14E
                      Birk Bros Brew
                                                         Elev: 597GL
                                           NW SE NW
Status: WATER
permit: 0 permit date:
Lambert X: 3498145 Lambert Y: 3239962
producing formation: td formation:
latitude: 41.920629 longitude: 87.661790
                                                            comp. date: 01/01/43
                                                               td: 1600
120310337900
                      Miller, J. P. Art. Well
                                                                           32-40N-14E
Cook
                      Birk Bros Brew
                                                            Elev: 0
                                            NW
 Status: WATER
permit: permit date:
Lambert X: 3497804 Lambert Y: 3240278
producing formation: td formation:
latitude: 41.921519 longitude: 87.663024
                                                             comp. date:
                                                               td: 1610
                                                             0585
                                                                          32-40N-14E
 120310338300 Chicago Pub. Works Dept.
 Coak
                      Chgo Pub Wks Dept
 Status: ENG
                                             SW SW SE
                                                               Elev:
comp. date: 01/01/27
Lambert X: 3499604 Lambert Y: 3236723 producing formation: td formation: latitude: 41.911623 longitude: 87.656650
                                                               td: 72
```

```
120310338000
                     Chicago Pub. Works Dept.
                                                                     32-40N-14E
   Cook
                        Chgo Pub Wks Dept
   Status: ENG
                                                           Elev: 583GL
                                            SW NW NW
   Lambert X: 3496807 Lambers > producing for
                                                          comp. date: 01/01/27
   producing formation: td formatitude: 41.922374
                                                            td:
                             td formation:
longitude: 87.666681
   120310338100
                                                                      32-40N-14E
                        Chicago Pub. Works Dept.
    Cook
                        Chgo Pub Wks Dept
   NE NW S
permit: 0 permit date:
Lambert X: 3497545 Lambert Y: 3238618
producing formation:
latitude: 41 P16066
    Status: ENG
                                            NE NW SW
                                                            Elev: 586GL
                                                           comp. date: 01/01/27
                                                             td: 62
                                           td formation:
    latitude: 41,916960 longitude: 87.664104
   120310338200 Chicago Pub. Works Dept.
                                                                      32-40N-14E
   Cook
                        Chgo Pub Wks Dept
3 Status: ENG
                                                            Elev: 585GL
                                            NE NW SW
                          permit date:
    permit: 0
                                                           comp. date: 01/01/27
                            Lambert Y: 3238618
    Lambert X: 3497545
                                                            td: 64
    producing formation:
                                           td formation:
    producing formation: td formation: latitude: 41.916960 longitude: 87.664104
                    Rock & Soil Drilling Corp.
    120313405700
                                                            MW-03
                                                                    32-40N-14E
                        GI North Property LLC
    Cook
                                                           Elev: 0
    Status: MONIT
                                            NW SW SE
   permit: permit date:
Lambert X: 3499575 Lambert Y: 3237381
producing formation:
Latitude: 41.913438 longitude: 87.656708
Water from at depth 0 to 0 ft.
                                                           comp. date: 02/18/02
                                                             td: 20
    Screen: Diam. 2 in. Length:
                                        10 ft.
                                                  Slot: .01
    Casing and Liner Pipe -
         Diam. (in.) Kind and Weight From(ft)
                                                               To(ft)
            2
                           PVC
                            PVC SCREEN
                                                          10
    Size hole below casing: in.
    Static level 0 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 gpm for 0 hours.
    Formations Passed Through
                                                    Thickness Bottom
      gravelly sand, loose fill
                                                                7
                                                      7
      brown/gray silty clay, stiff
                                                       13
                                                                  20
                                                                      32-40N-14E
                      Rock & Soil Drilling Corp.
    120313405800
                                                               MW-04
                        GI North Property LLC
    Cook
                                            NW SW SE
                                                             Elev:
    Status: MONIT
    Lambert X: 3499575 Lambert Todate:
                                                           comp. date: 02/14/02
                           Lambert Y: 3237381
                                                            td: 20
   producing formation: td formation: latitude: 41.913438 longitude: 87.656708 Water from at depth 0 to 0 ft.
    Screen: Diam. 2 in. Length:
                                       10 ft.
                                                   Slot: .01
    Casing and Liner Pipe -
         Diam. (in.)
                          Kind and Weight From(ft)
                                                               To(ft)
                            PVC
    Size hole below casing: . in.
    Static level 0 ft. below casing top which is 0 ft. above grnd level. Pumping level 0 ft. when pumping at 0 gpm for 0 hours.
    Formations Passed Through
                                                     Thickness Bottom
      topsoil & gravel
                                                                   4
      brown silty clay, stiff
                                                        9
                                                                   13
                                                                   20
      gray silty clay, stiff
```

```
32
_____MW-05
                                                                 32-40N-14E
                   Rock & Soil Drilling Corp.
120313405900
                    GI North Property LLC
                                       NW SW SE
                                                       Elev:
Status: MONIT
                       permit date:
                                                      comp. date: 02/15/02
permit:
                                                       td: 20
Lambert X: 3499575
                        Lambert Y: 3237381
                                      td formation:
producing formation:
latitude: 41.913438 longitude: 87
Water from at depth 0 to 0 ft.
                              longitude: 87.656708
                                            | Slot: .01
Screen: Diam. 2 in. Length:
                                   10 ft.
Casing and Liner Pipe -
                      Kind and Weight
                                             From(ft)
     Diam. (in.)
                         PVC
                        PVC SCREEN
Size hole below casing: in.
Static level 0 ft. below casing top which is 0 ft. above grnd level. Pumping level 0 ft. when pumping at 0 gpm for 0 hours.
Formations Passed Through
                                                Thickness Bottom
                                                      . 9
  gravelly sand, loose fill
                                                  11
  brown silty clay, stiff
                                                       MW01
                                                                32-40N-14E
                    Rock & Soil Drilling Corp.
120313405500
                    GI North Property LLC
Cook
                                                      Elev:
Status: MONIT
                                        NW SW SE
permit: permit date:
Lambert X: 3499575 Lambert Y: 3237381
producing formation:
                                                      comp. date: 02/18/02
                                                        td: 18
                                       td formation:
latitude: 41.913438 longitude: 87
Water from at depth 0 to 0 ft.
                           longitude: 87.656708
Screen: Diam. 2 in. Length:
                                    10 ft.
                                              Slot: .01
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                              From(ft)
                       PVC
PVC SCREEN
        2
                                                                  18
Size hole below casing: in.
Static level 0 ft. below casing top which is 0 ft. above grnd level. Fumping level 0 ft. when pumping at 0 gpm for 0 hours.
Formations Passed Through
                                                Thickness Bottom
                                                           2
  topsoil w/gravel
                                                   2
 brown silty clay, stiff
                                                  10
                                                              12
brown/gray silty clay, stiff
                                                   6
                                                              18
                                                                  32-40N-14E
                    Rock & Soil Drilling Corp.
120313405600
Cook
                    GI North Property LLC
                                     NW SE SW
Status: MONIT
                                                      Elev:
                                                       comp. date: 02/14/02
                       permit date:
Lambert X: 3498259 Lambert Y: 3237327 producing formation: td formation: latitude: 41.913363 longitude: 87.661566 Water from at depth 0 to 0 ft.
                                                        td: 18
Screen: Diam. 2 in. Length:
                                    10 ft.
                                              Slot: .01
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft)
                        PVC
Size hole below casing: in.
Static level 0 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 gpm for 0 hours.
Formations Passed Through
                                                Thickness Bottom
  topsoil w/gravel
                                                  2
                                                            2
  brown silty clay, stiff
                                                               12
  gray silty clay, stiff
120312668800
                     Chicago Pub. Works Dept.
                                                                  32-40N-14E
Cook
                     St Bulkhd Walls
                                                            Re-2
Status: ENG
                                                        Elev: 590GL
                                         SE SW NW
                                                       comp. date: 03/01/61
```

-9-

permit date:

permit: 0

Lambert X: 3497518

Lambert Y: 3239277

td: 86

Lambert X: 3497518 Lambert producing formation: latitude: 41.918777 long

td formation: longitude: 87.664154

120310338400

Chicago Dept. of Subways

32-40N-14E

Cook

Subway Boring

P-78

Status: ENG 165 SL 165 WL

Elev: 593GL comp. date: 01/01/39

Lambert Y: 3236633

td: 55

Lambert X: 3501423 Lambert X: producing formation:

td formation:

producing formation: latitude: 41.911274 long

longitude: 87.649947

SE SE SE

SW SE SE

120310338500

Chicago Dept. of Subways

32-40N-14E

Cook

Subway Boring

P-79

permit: 0

Status: ENG 165 NL 165 EL

Elev: 593GL

comp. date: 04/01/39

producing formation: Lambert Y: 3236948 latitude: 41,912151

td formation:

td: 55

longitude: 87.651196

32-40N-14E

120310338600 Cook

Chicago Dept. of Subways Subway Boring

P-80

Status: ENG

Elev: 593GL NW SE SE

comp. date: 04/01/39

td: 55

Dambert X: 3500890 permit date:

Lambert X: 3500890 Lambert Y: 3237436

producing formation:
latitude: 47 033334

td formation: latitude: 41.913516 longitude: 87.651853

120310338700

Chicago Dept. of Subways

32-40N-14E

Cook

Subway Boring · 165 SL 165 WL

P-81 NW SE SE

Status: ENG permit: 0

permit date:

593GL Elev: comp. date: 04/01/39

Lambert X: 350.0734

Lambert Y: 3237264

td: 49

producing formation: td formation: latitude: 41.913051 longitude: 87.652441

120310338800

Chicago Dept. of Subways

32-40N-14E

Cook

Subway Boring

P-82

Status: ENG

Elev: 593GL comp. date: 05/01/39

permit: 0 permit date:
Lambert X: 3500232 Lambert Y: 3237408
producing formation: td formation:
latitude: 41.913476 longitude: 87.654282

td: 55

NE SW SE

120310338900 Chicago Dept. of Subways
Cook Subway Boring
Status: ENG 165 NL 165 WL NW SE
permit: 0

32-40N-14E

P-83

Elev: 595GL

permit date:

comp. date: 04/01/39

NW SE SE

Lambert X: 3500718 Lambert Y: 3237593 producing formation: td formation: latitude: 41.913958 longitude: 87.652476

td: 55

120310339000 Chicago Dept. of Subways

32-40N-14E

Cook Status: ENG Subway Boring

SW NE SE

Elev: 594GL comp. date: 05/01/39

Lambert X: 3500860 permit date:

td: 55

producing formation: Lambert Y: 3238094
latitude: 41.915221

td formation: longitude: 87.651914

32-40N-14E

120310339100 Cook

Chicago Dept. of Subways

Subway Boring

P-94

-10-

165 NL 165 WL Status: ENG SW NE SE Elev: 594GL comp. date: 12/01/40 permit date: permit: 0

Lambert X: 3500688 Lambert Y: 3238252 td: 21

producing formation: td formation: latitude: 41.915776 longitude: 87.652537

120310339200 Chicago Dept. of Subways 32-40N-14E Cook P-95

Subway Boring 165 NL 165 WL Status: ENG NW NE SE Elev: 595GL

permit: 0 comp. date: 12/01/40 permit date:

Lambert X: 3500658 Lambert Y: 3238910 td: 21 producing formation:

td formation: latitude: 41.917590 longitude: 87.652598 printed 01/27/2011 8:20AM by Richard.Jordan p. 122/383**-**

TELEPHONE LOG SHEET											
	DATE	9-29-04									
PROJECT NO. 15-04183	TIME	1420									
COMPANY / AGENCY Cook County Department of Public Health											
CONVERSATION WITH John Kar	PHONE	NO. (708) 492-2000									
SUBJECT OF CONVERSATION: Well Search FOIA											
NOTES: John Kar indicated that any location within the City of City jurisdiction. There are no records at the CCDPH registrounding area.	chicago garding	limits are out of the CCDPH's the subject property and the									

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276, 217-782-3397 JAMES R. THOMPSON CENTER, 100 WEST RANDOLPH, SUITE 11-300, CHICAGO, IL 60601, 312-814-6026

ROD R. BLAGOJEVICH, GOVERNOR

RENEE CIPRIANO, DIRECTOR

10/7/2004

Phone: 217/782-8482 Fax: 217/782-9891

E-mail: janet.christer@epa.state.il.us

Marie Mueller Clayton Group Services 3140 Finley Rd. Downers Grove, IL 60515

Request information regarding the location of community water supply wells in Cook County, IL (FOIA NO: 2004-2172)

Dear Marie Mueller:

The FOIA Sector, Bureau of Water has processed your request dated 09/28/2004 for public records pursuant to the Freedom of Information Act ("FOIA") (5ILCS 140/1 et. Seq.).

You requested information from Public Water Supplies pertaining to the nearest community water supply wells located in Sections 5 and 6, T39N, R4E and in Sections 31 and 32, T40N, R14E. Based upon the information provided, the project area appears to be located outside 2,500 feet from a community water supply well.

Effective September 1st, 2001, the Pleasant Valley Public Water District, in Peoria County, is the first and only regulated recharge area to designate a defined area with specific regulations in place for the area contributing groundwater to its public water supply wells pursuant to section 17.3 of the Illinois Environmental Protection Act (Act). Further, Class III Special Resource Groundwaters has been listed by the Illinois Pollution Control Board with respect to the contribution to Parker Fen in McHenry County.

The Illinois Department of Public Health should be contacted at (217) 782-5830 in regards to the regulations concerning private, semi-private or non-community public water supply wells and the Illinois State Water Survey should be contacted at (217) 333-9043 in regards to the location of these wells.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. 80x 19276, Springfield, Illinois 62794-9276, 217-782-3397 James R. Thompson Center, 100 West Randolph, Suite 11-300, Chicago, IL 60601, 312-814-6026

ROD R. BLAGOJEVICH, GOVERNOR

RENEE CIPRIANO, DIRECTOR

I trust that this meets your needs. Should you require any further information, please feel free to contact me at the above referenced number.

Sincerely,

Janet Christer

FOIA Coordinator, Bureau of Water

Christie

cc: File

ity of Chicago Richard M. Daley, Mayor

epartment of Water Management

Commissioner

rdine Water Purification Plant 200 East Ohio Street Chicago, Illinois 60611 (312) 744-7001 12) 744-9631 (FAX) 12) 744-2968 (TTY)

www.cityofchicago.org/ watermanagement September 30, 2004

Ms. Marie E. Mueller Clayton Group Services 3140 Finley Road Downers Grove, IL 60515 Phone 630-795-1130

Re: Site Address: 1720 N. Elston Avenue, Chicago, Illinois

Dear Ms Mueller:

On behalf of the Department of Water Management, I am responding to your Freedom of Information Act request, for the above referenced location.

In your letter you requested a copy of documents pertaining to any public and private water supply wells within a radius of 1,500 feet from the address referenced above.

The Department of Water Management is not the keeper of record for the information that you are requesting. I recommend that you contact:

Janet Christer IEPA, Bureau of Water Division of Public Water Supplies #13 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276 217-782-8482 (Voice)

This information should satisfy your Freedom of Information Act Request from the Department of Water Management.

Sincerely,

Gary Litherland

Freedom of Information Officer

of Litterland

cc: Richard A. Rice
Thomas LaPorte

Rod R. Blagojevich, Governor Eric E. Whitaker, M.D., M.P.H., Director

525-535 West Jefferson Street . Springfield, Illinois 62761-0001 . www.idph.state.il.us

October 15, 2004

Marie Mueller Clayton Group Services 3140 Finley Rd. Downers Grove, IL 60515

RE: Illinois Freedom of Information Act request No. 05053167

Dear Ms. Mueller:

This letter is in response to your Illinois Freedom of Information Act (FOIA) request for water well information related to two Cook County locations – Township 39N, Range 14E, Sections 5 and 6 – Township 40N, Range 14E, Sections 31 and 32.

The Illinois Department of Public Health Division of Environmental Health has indicated that after a complete search of central office files, no information was found related to the above-cited property.

You may wish to contact the Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820 or by telephone 217-333-9043.

If I may be of any further assistance to you, please write to me at 535 W. Jefferson St., Springfield, IL 62761; or telephone me at 217-782-5750, TTY (hearing impaired use only) 800-547-0466.

Sincerely,

Brent M. DeMichael

Freedom of Information Officer

Improving public health, one community at a time

printed on recycled paper

printed 01/27/2011 8:20AM by Richard.Jordan p. 127/383-

APPENDIX D

BORING LOGS

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF printed 01/27/2011 8:20AM by Richard.Jordan p. 128/383————

<u>Cla</u>	yton
GROUP	SERVICES

BORING N	0: B-1	PROJECT NO: 154	0-003	PROJECT NAME: Sipi Metals								
BORING L	OCATION: NE corne	of North Section o	f buildin	19		c	OORDINA	TES:				· · · · · · · · · · · · · · · · · · ·
DRILLING	CO: CS Drilling				DRILLE	ER: M. I	Natali					
DRILLING I	EQUIP: Dingo 420				BOREN	OLE D	IIA: 2"					
START DA	TE: 8/12/04		FINISH	DATE: 8/	12/04				LOGG	ED BY:	D. Lams	sma
START TIM	IE (hours): 0745		FINISH	I TIME (ho	urs): 08:				GHEC	KED BY	: M. Mu	eller
						s	AMPLES	3		PI	Ď	
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 m	CONCRETE											
+	FILL			(-)- (\((-)\)		1.5/2	HPU	М	-			
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gravel, gray, mo FILL Sand, brown, mo grained, some sil chips	ist ist, fine to coarse It and gravel, cond	rete			1.5/2	HPU	м	-	4.6	6	VOCs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
6 1 2	Refusal at 4.0) Feet										
8 10 10 11 11 11 11 11 11 11 11 11 11 11	NOTE: G. Phillip is possibly a sub	s indicated that the floor at this locate	ère on									
12												
14 14 14 14 14 14 14 14 14 14 14 14 14 1												
16 th to the						•						
18 1 1 1 6												
20-	L		-	<u> </u>	لــــــــــــــــــــــــــــــــــــــ				<u></u>	<u> </u>	<u></u>	

Page: 1 of 1

GROUP SERVICES BORING NO: B-2 PROJECT NO: 15-04183.00-003 PROJECT NAME: Sīpi Metais												
BORING LOCATION: Adjacent to abandoned 9,000 gal UST COORDINATES:												
		DO gal US	iT				TES:				· · · ·	
<u> </u>	CO: CS Orilling			DRILLS	R: M. N	atail						
DRILLING S	QUIP: Bobcat Geoprobe	<u> </u>		BORE	OLE DI	A: 2"						
START DAT	TÉ: 8/13/04	FINIS	H DATE: 8/	13/04				LOGG	ED BY:	D. Lams	ma	
START TIM	E (hours): 0930	FINIS	H TIME (ho	urs): 10				CHEC	KED BY		iller	
				ļ	S/	MPLES	<u> </u>		PI			
ОЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
ft m	CONCRETÉ FILL Gravel, dark brown, moist, some	sand			2/2	HPU	М		6.2	7		
2	FILL Silty clay, gray, moist, some fine coarse sand, soft, cohesive				2/2	HPU	м	-	0.9	7.3	BTEX, PNAs	
6 6	FILL Sand, black, saturated, fine to ex grained, some silt and gravel	arse			1.5/2	HPU	s`	-				
8-T	SILTY CLAY (CL) Gray, moist, some medium to co sand, soft, cohesive Grades brown, gray mottle, stiff				1.5/2	HPU	М		1.8	8.7	BTEX, PNAs	
10 T	feet	or 0-0			1.5/2	HPU	М	-	1.1	9.6		
12-1					1,5/2	HPU	м	_	1,2	11.8	BTEX, PNAs	
14	End of Boring at 12.0 Fee	t									GW for BTEX, PNAs	
16	·				,							
187									!			
20 - 6 Page	e: 1 of 1	<u></u>			<u> </u>				Boi	ring N	o.: B-2	

printed 01/27/2011 8:20AM by Richard.Jordan p. 130/383-

BORING N	C: B-3 PROJECT NO: 15-	7-003	PROJECT NAME: Sipi Metals								
BORING L	OCATION: East side of Middle section o	f buildin	g		C	CORDINA	ATES:				, <u>,</u>
DRILLING	CO: CS Drilling			DRILLE	ER: M. I	Natali					
DRILLING	EQUIP: Bobcat Geoprobe			BORE	HOLE D	IA: 2"					
START DA	TE: 8/13/04	FINISH	DATE: 8/	13/04				LOGG	SED BY:	D. Lams	ima
START TIN	ME (hours): 0750	FINISH	(TIME (ho	urs): 07	50			CHEC	KED BY	: M. Mu	eller
		'			s	AMPLE:	ŝ		Pi	D	· · · · · · · · · · · · · · · · · · ·
DEPTH	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
o mo	FILL		{-> (-}		1.5/2	HPU	М		10.8	10.7	VOCs, PNAs, 8 RCRA Metals,
2	Silty clay, brown, moist, soft, cohes FILL Gravel, light brown, moist, some sa FILL				1.5/2	HPU	мл	-			TCLP 8 RCRA Metals, pH
4 + + + + + + + + + + + + + + + + + + +	Sand, black, wet, fine to medium grained, with silt Saturated at 4.0 feet SILTY CLAY (CL)				1.5/2	HPU	S/M	-			
6-1-2	Gray, moist, some fine to medium sand, soft, cohesive				1.5/2	HPU	М	-	_		
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	End of Boring at 8.0 Feet		11111102222				-				GW for VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals
12											
14											
16 11 11 11 11 11 11 11											
18 Thurton		,									
20 = 6	v 1 of 1										

Page: 1 of 1

C	lá	ŗ	y	to)I	1
GR	OU	۲	SE	RV	101	: 5

BORING N	0: B-4	PROJECT NO: 15-0	04183.00)-003	PROJECT NAME: Sipi Metals							
BORING L	OCATION: North end	of transformers	•		_	cod	DRDINA	TES:				
DRILLING	CO: CS Drilling				DRILLE	R: M. Na	tali					
DRILLING	EQUIP: Dingo 420				BORE	IOLE DIA	: Z"		••			
START DA	TE: 8/12/04		FINISH	DATE: 8/	12/04				LOGO	ED BY:	D. Lams	ima
START TIN	IE (hours): 1217		FINISH	TIME (ho	urs): 130	11			CHEC	KED BY	: M. Mue	eller
					<u> </u>	SA	MPLES	3		PI	D	
ОЕРТН	DES		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
6 2 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CONCRETE FILL Gravel, gray, mo	lst			=	2/2	НРυ	м	-	21.1	10.9	PNAs, PCBs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
1 1 1 1 1 1 1 1 1	FILL Sand, dark brow grained, some si Saturated at 4.0	n, moist, fine to co ilt, brick fragments feet	parse			2/2	HPU	м	· •	36.9	52.7	BTEX, PNAs, PCBs, 8 RCRA Metals, TCLP 8
6	SILTY CLAY (C Gray, moist, som sand, soft, cohes	ne medium to coar	rse			1.5/2	неи	S/M	-	_	_	RCRA Metals, pl-
87						1.5/2	HPU	М	-			
10	End of Boring	at 8.0 Feet										
12-4	į											
14-1												
16 17 17 17 18 17 1										:		
20-6												

Page: 1 of 1

printed 01/27/2011 8:20AM by Richard.Jordan p. 132/383—

BORING N	O: B-5	0-003	PROJECT NAME: Sipi Metals										
BORING L	OCATION: Inside bui	iding; near transfor	mers				COC	DRDINA	TES:		 ·		
DRILLING	CO: CS Drilling				DRILL	ER: N	I, Na	tali		•	-		
DRILLING	EQUIP: Dingo 420	· · · · · · · · · · · · · · · · · · ·			BORE	HOLE	DIA	: 2=					
START DA	TE: 8/12/04		FINISH	DATE: 8/	12/04					LOGG	ED BY:	D. Lams	ima
START TIN	ME (hours); 0900		FINISH	1 TIME (ho	urs); 09	25				CHEC	KED BY	: M. Mue	eller
							SAI	MPLES	3		PI	D	
DEPTH	DES	CRIPTION		GRAPHIC	NUMBER	DCC0\/cbc	Necoveri	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m	CONCRETE FILL Sand, dark brown coarse grained, s	e to			2/	/2	HPU	М	- -	0.7	5.4		
2+	dense	ome siit and gravi	#1 ,			21	/2	HPU	м		21	11.4	
4† 111+111+111+111+11+11+11+11+11+11+11+11						1.5	5/2	HPU	M	-	10.5	13.1	8TEX, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
6 2	Saturated at 6.0 SILTY CLAY (CI					1.5	5/2	нри	S/M	-			
8 10 10	sand, cohesive End of Boring												
10													
12 - 4													
14-1													,
16 7													
18 th													
20 - 6 Page	e: 1 of 1		 -	<u> </u>		<u> </u>					Bori	ing No	o.: B-5

30RING NO: 9-8 PROJECT NO: 15-04183.00-003 PROJECT NAME: Sipi Metals												
BORING LO	OCATION: Compress	sor room				co	ORDINA	TES:				
DRILLING (CO; CS Drilling				DRILLE	R: M. Na	ıtali					
DRILLING E	EQUIP: Jackhamme	r Geoprobe			BOREH	OLE DIA	A: 2"					
START DA	TE: 8/12/04		FINIS	H DATE: 8/	12/04		•	·	LOGG	ED BY:	D. Lams	ıma
START TIM	E (hours): 1335		FINIS	H TIME (ho	urs): 140	0			CHEC	KED BY	: M. Mue	Her
						SA	MPLES	3		PI	D	
ОЕРТН	DES		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
o fil mo	CONCRETE			77. 7.57	:					· · · · · -	<u> </u>	
2	FILL Sand, dark brow grained, some si glass pieces	n, moist, fine to ilt, brick fragmen	coarse its,			1/2	нги	м		2.7	12.6	BTEX, PNAs, 8 RCRA Metals, TCLP 8 RCRA
4	J F				1/2	HPU	М	-	2	23.3	Metals, pH	
• • • • • • • • • • • • • • • • • • •	Saturated, odor at 5.0 feet	urated, odor at 5.0 feet				1/2	HPU	M/S	-		-	
# 0 2 4 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SILTY CLAY (C Gray, moist, sor sand, soft, cohe	ne medium to co	 Darse			1/2	HPU	S/M	-			GW for BTEX, PNAs, 8 RCRA
10 12 14 15 18 18 18 18 18 18 18 18 18 18 18 18 18	End of Boring at 8.0 Feet											Metals

BORING N	NG NO: B-7 PROJECT NO: 15-04183.00-003					PROJECT NAME: Sipi Metals							
BORING L	OCATION: SE corne	r of middle section o	ng		co	ORDINA	TES:		- 				
DRILLING	CO: CS Drilling				DRILL	ER: M. N	latali						
DRILLING	EQUIP: Jackhamme	r Geobrobe			BORE	HOLE D	IA: 2"	_					
START DA	TE: 8/12/04		FINISH	I DATE: 8/	12/04				LOGO	SED BY:	D. Lams	mà	
START TIN	ME (hours): 1435		FINISH	₹ TIME (ho	urs): 15	05			CHEC	KED BY	: M. Mu	alter	
	<u> </u>		•			9/	AMPLE:	3	·	PI	D		
ОЕРТН	DESCRIPTION CONCRETE FILL			GRAPHIC	NUMBER	RECOVERY	МЕТНОБ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
oft m	CONCRETE			71-75				· <u>-</u> ·					
2-	<u> </u>				1.5/2	HPU	м	-	8.8	9.7	BTEX, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH		
24					1.5/2	HPU	М	_	11	9.6			
***************************************	More silty clay, saturated, wood chips at 4.0 feet					2/2	НРО	s	-	_			
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SILTY CLAY (CI Brown, gray mot coarse sand, col	tle, some medium	to			2/2	HPU	М	-				
9 14 14 14 14 14 14 14 14 14 14 14 14 14	End of Boring	at 8.0 Feet											
12 - 4													
14-1													
16 11 11 11 11 11 11 11 11 11 11 11 11 1													
1877 1 6	6												
	1			<u>L</u>			<u>. </u>		Ь.				

Page: 1 of 1

BORING N	O; B-8	PROJECT NO: 15-0	14183.0	0-003	PROJECT NAME: Sipi Metals								
BORING LO	OCATION: Liquid sta	orage room	·			cc	ORDINA	TES:			•		
DRILLING	CO: CS Drilling				DRILLE	R: M. N	atali						
DRILLING I	EQUIP: Dingo 420				BORE	IQLE DI	A: 2"						
START DA	TE: 8/12/04		FINISH	DATE: 8/1	2/04				LOGG	SED BY:	D. Lams	ima	
START TIM	IE (hours): 1000		FINISH	TIME (hou	purs): 1035 CHE					CKED BY: M. Mueller			
						SA	MPLE	S		PI	D		
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
0 = 0	CONCRETE			737	1								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL \ Sand, black, moi \grained, some si	st, fine to coarse	/	1		2/2	HPU	M	-	11.3	49.1		
Talanhin	SILTY CLAY (CI	L) ist, some medlum	to			2/2	HPU	M		21.1	50.8	BTEX, 8 RCRA Metals, TCLP 8 RCRA Metals, pH, Total	
	Grades brown, g gravel, stiff at 4.0	ray mottle, trace fi) feet	nę			2/2	HPU	М		10	31.7	Cyanide	
1 2						2/2	нри	м	-	5.5	13.2	BTEX, 8 RCRA Metals, TCLP 8 RCRA Metals, pH, Total Cyanide	
84	Grades soft at 8. Sandy seam, gra medium grained	.0 feet By, saturated, fine t from 8.7 to 8.8 fee	to et			2/2	HPU	W/S/W	<u>.</u>	9.5	8.8	Oyamoe	
12						2/2	н₽∪	М	-	9.1	-		
14-	Grades gray at 1	2.0 feet				3/3	нги	М	-	1.8	-	GW for BTEX, 8 RCRA Metals, Total Cyanide	
18 1	End of Boring	at 15.0 Feet											
20- 6 Page	s: 1 of 1									Bor	ing N	o.: B-8	

Clayton GROUP SERVICES

BORING N	O: B-9 PROJECT NO: 15-	04183.00-0	003		PR	OJECT	NAME:	Sipi M	etals		
BORING L	OCATION: Outside SW corner of buildin	9			co	ORDINA	ATES:				
DRILLING	CO: CS Drilling			DRILLE	R; M. N	atali					
DRILLING	EQUIP: Bobcat Geoprobe			BOREH	OLE DI	A: 2"					
START DA	TE: 8/13/04	FINISH D	DATE: 8/1	3/04				LOGG	ED BY:	D. Lams	sma
START TIN	/E (hours): 1120	FINISH T	TIME (hov	ırs): 113:	3.		ı	CHEC	KEO BY	: M, Mu	aller
					S/	MPLE	S		Pi	D	
DEPTH	DESCRIPTION ·		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
	ASPHALT		7 7 7			<u> </u>					
# m 0 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL Sand, black, moist, fine to coarse grained, some gravel				2/2	HPU	м	<u> </u>	0.9	7.7	į
	Wet at 3.5 feet				2/2	HPU	MAY	.	1	10.7	
1	SILTY CLAY (CL) Brown, gray mottle, some medium coarse sand, stiff, cohesive	to			2/2	HPU	М	•	0.8	8	втех
6 7 2					2/2	НРО	М	,	0.8	9.1	
8 Tinh 2					2/2	HPU	М	-	0.8	12.8	втех
12-1					2/2	HPU	: м		8.0	9	BTEX
4	End of Boring at 12.0 Feet					!					
14 Tark 1 A A A A A A A A A A A A A A A A A A)					
167							į				
18			`								
20 6											<u> </u>
Page	e: 1 of 1								Bar	ina M	0 · B-0

BORING N	Q; B-10	PROJECT NO: 15-0	-003	PROJECT NAME: Sipi Metals										
BORING L	OCATION: North par	king lot				СО	ORDINA	TES:						
DRILLING	CO: CS Drilling				DRILLE	R: M. N:	atali							
DRILLING	EQUIP: Diedrich D-1	20		BOREHOLE DIA: 2"										
START DA	TE: 8/9/04		FINISH	SH DATE: 8/9/04 LOGGED BY								D. Lamşma		
START TIM	ME (hours): 0717		FINISH	TIME (hoo	urs): 081	05			CHEC	KED BY	M. Mue	iller		
						SA	MPLES	<u> </u>		PI	D			
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
12 min 1 2 min 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ASPHALT FILL Gravel, gray, mo					1.75/2	HPU	м		0	o			
4-	coarse sand	, some silt, trace				1.75/2	HPU	М	-	ū	0			
6-1	to coarse sand,	irown, molst, some glass pieces	nne			1.5/2	U9H	М	_	446	191	BTEX, PNAS		
6 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOPSOIL	me fine sand, silty n at 8.0 feet		~~~		1.5/2	нри	M	-	102	10.9			
10	SILTY CLAY (C Gray, brown, mo	piśt, some medium	to			2/2	HPU	S/M	•					
112-		···				2/2	HPU	М	-			GW for BTEX, PNAs		
14-		g at 12.0 Feet												
18- 20-	e: 1 of 1	·										P.45		
· ey	•									DOL	my N	o.: B-10		

	GROUP	SERVICES												
BORING N	O: 8-11	WELL NO: MW-3	PR	ROJECT NO: 15	-0418	13.00-003	PR	OJECT	NAM	e: Sipi Me	etals			
BORING L	OCATION: North	parking lot	•		COORDINATES:									
	CO: CS Drilling			DRILLER: M. N	atali				Т	LOGGED BY: D. Lamema				
	EQUIP: Diedrich	D-120		SCREEN INTERVAL: 5.0 to 15.0 ft bgs							CHECKED BY: M. Mueller			
	ATER LEVEL: 3.7		$\overline{}$	SCREEN MTUSLOT: PVC/0.01						<u></u>				
	E DIA: 8.25"		—⊢	STICKUP: Flushmount						START DATE: 8/9/04 START TIME (hours): 0900				
		No 404 905 Date Class	-											
		N: 101.82' Rel. Elev.	+	G.S. ELEVATIO			Elev.		—	FINISH C				
KISEK DIA	JMTL/LGTH: 2*/F	VCIS.		DEV. METHOD	5: Ba					FINISH TIME (hours): 0927				
						S/	MPLE	S		PI	D			
ОЕРТН	DES	SCRIPTION	GRAPHIC	WELL	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
0 H m										<u> </u>				
[4]	ASPHALT	/	*:					[[
2	FILL Gravel, gray. coarse sand	moist, some fine to	e c			2/2	HPU	M	•	0	7.6			
4-	medium grain fragments	rown, moist, fine to ned, with silt, brick				2/2	HPU	М	•	55	258			
4-1 1-1 6-1		k brown, moist, n to coarse sand				1/2	HPU	М	-	681	798	BTEX, PNAs		
6 1 2	Sand, black, medium grain	moist, fine to ned, some silt, odor				1/2	HPU	М		260	2 57			
Birthing	SAND (SW)	soft, organics /				2/2	HPU	S/M			-			
10 7	SILTY CLAY Brown, gray r sand, stiff	(CL) mottle, some coarse				2/2	HPU	М	-	-	-			
14-						3/3	НРО	М	-		-			
167	End of Bor	ing at 15.0 Feet												
18-														
Page	e: 1 of 1						Bor	ing/V	Veil	No.: B	-11/M	W-3		

BORING N	O: B-12 PROJECT NO: 15-0	4183.00-003			ROJECT	NAME	Sipi M	letāls		
BORING L	OCATION: West of north parking lot			,	COORDINA	TES:				
DRILLING	CO: CS Drilling	· -	DRI	LLER: M.	Natali					
DRILLING	EQUIP: Diedrich D-120		BOF	REHOLE	DIA: 2"					
START DA	TE: 8/9/04	FINISH DATE	8/9/04				LOGG	ED BY:	D. Lams	ma
START TIM	IE (hours): 0825	FINISH TIME	hours):	0845		_	CHEC	KED BY	: M, Mu	eller
			-	- , - ;	SAMPLE	S	I .	PI	Ď	
DEPTH	DESCRIPTION	GRAPHIC	N S S S S S S S S S S S S S S S S S S S	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 Hm	ASPHALT		_							
2-	FILL Gravel, gray, moist, some fine to coarse sand			2/2	PU	м		D	0	
ב מילוולוילן וולוולוילוולוילוילוילוילוילוילוילוילוילו	FILL Sand, dark brown, moist, fine to medium grained, some silt			2/2	1 HPU	м		0	0	BTEX, PNAs
6-1	TOPSOIL Black, moist, slity, some fine sand	~~	, . 	2/2	1 HPU	м	-	o	0	
	SILTY CLAY (CL) Gray, moist, some medium to coar sand, soft, cohesive	se iii	î	2/7	∑ HPU	м	-	0	0	BTEX. PNAs
811111111111111111111111111111111111111	Grades stiff at 8.0 feet			1.5	2 HPU	м	-	0	0	
12				1.5	2 HPU	м	-	0	0	BTEX, PNAs
14-7	End of Boring at 12.0 Feet					:				
16-7								-		
18-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1										
Page	e: 1 of 1							Bor	ina N	o.: B-12

Clayton	
GROUP SERVICES	

BORING N	NO: B-13	PROJECT NO: 154	04183.00	0-003		PR	OJECT	NAME:	Sipi N	letais		<u> </u>
BORING L	OCATION: West of T	aylor Bayhouse				co	ORDINA	ATES:				
DRILLING	CO: CS Drilling				DRJLLI	ER: M. Ni	ațali					
DRILLING	EQUIP: Diedrich D-1	120			BORE	HOLE DIA	4: 2"					
START DA	ATE: 8/10/04	· · · · · · ·	FINISH	DATE: 8/	0/04				LOGO	ED BY:	D. Lam	sma
START TII	ME (hours): 0745		FINISH	I TIME (hor	urs): 08	00			CHEC	KED BY	: M. Mu	ellar
						SA	MPLE	Ś		PI	D	
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
oft m	ASPHALT	-		ā - T	4							
2-1	FILL Sand, black, moi grained, some gr Grades tan, fine	ist, fine to coarse ravel to medium grained	d at			2/2	нрџ	м	-	0	3.9	8 RCRA Metals, TCLP 8 RCRA Metals, ph
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 feet Wet at 3.5 feet Grades dark brow	wn, saturated, fine	to.			2/2	HPU	M/W	-	0.2	2.8	8 RCRA Metals, TCLP 8 RCRA Metals, ph
1	coarse grained, s feet SILTY CLAY (CI	some fine gravel a	t 4.0			1.5/2	HPU	S/M	-	-		
6-1-2	Gray, moist, soft	t, cohesive				1.5/2	HPU	М		0	2.4	
8 T	Grades brown, g	gray mottle, some I fine gravel at 8.0	faet			2/2	HPU	М	-	-		
10 Thin the state of the state		<u>-</u>				2/2	HPU	М	-			
-4	End of Boring	g at 12.0 Feet					!					
14 -												
161												
18 -												
20 - 6	n: 1 of 1											

Page: 1 of 1

	GROUP SERVICES											
BORING NO		PRO	OJECT NO: 15	-0418				AM	E: Sipi Me	tals		
	CATION: West side of building	1.			000	ORDINA	TES:					
	CO: CS Drilling		RILLER: M. N					4	LOGGED BY: D. Lamsma			
	EQUIP: Diedrich D-120	_	CREEN INTE			4	CHECKED BY: M. Mueller					
	ATER LEVEL: 9.17' toc		CREEN MTL/			START DATE: 8/9/04						
	E DIA: 8.25"	_	TICKUP: Flus			START TIME (hours): 1100						
	SING ELEVATION: 100.85' Rel. Elev.	-	S.S. ELEVATIO			FINISH D						
RISER DIA	MTULGTH: 2"/PVC/5"		DEV, METHOD	S; Ba			FINISH T	IME (ho	ours); 1150			
				ļ,	SA	MPLE	<u>s</u>		PI	D	_	
ОЕРТН	DESCRIPTION	GRAPHIC	WELL	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
ft m 0 - 0	CONCRETE	7 (一)										
<u> </u>	FILL Gravel, gray, moist, some sand				2/2	HPU	М	-	-			
2 1 1 4 1	Silty clay, dark brown, moist, some fine to coarse sand, stiff, glass pieces				2/2	HPU	М	-	0	0		
10 minutes	SILTY CLAY (CL) Gray, moist, some medium to coarse sand, trace fine gravet, stiff				1.5/2	HPU	М	-	0	0	8 RCRA Metals, TCLP 8 RCRA Metals, p	
8	Grades brown, gray mottle at 5.5 feet				1.5/2	HPU	М	-	0	0	8 RCRA Metals, TCLP 8	
- - - - - - - - - - - - - - - - - - -					2/2	HPU	м	-	C	0	RCRA Metals, p	
127	Grades gray, some fine to				2/2	HPU	М	-	0	0	8 RCRA Metals, TCLP 8 RCRA Metals	
14 7	medium sand, very soft, cohesive at 12.0 feet				2/2	HPU	М		0	٥		
16					2/2	HPU	м	-	0	a		
18 118 118 118 118 118 118 118 118 118	End of Boring at 16.0 Feet											
20 6	n: 1 of 1								No.: B-	-		

BORING N	O: B-15	PROJECT NO: 15-4	04183.0	0-003		P	ROJECT	NAME:	Sipi M	letals		
BORING L	OCATION: North of	propane tank		_		С	OORDINA	ATES:				
DRILLING	CO: CS Drilling			_	DRILLI	ER: M.	Natali					
DRILLING	EQUIP: Diedrich D-1	20			BOREI	HOLE C	1A: 2"					
START DA	TE: 8/9/04		FINISH	I DATE: 8/9	9/04			_	LOGG	SED BY:	D. Lams	sma .
START TIM	IE (hours): 1430	<u>. </u>	FINISH	i TIME (bo	urs): 15	10			CHEC	KED BY	: M. Mue	aller
			-			S	AMPLE:	5		PI	D	
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 T 0	ASPHALT	··		4 = -	ļ							
2	FILL	ist, some fine to	_/		Acres Constitution	2/2	HPU	м	-	a	27.7	
1 1 1 1 1 1	fine to medium s nails	ay, dark brown, me and, brick fragmer parse sand, satura	its.			2/2	HPU	м	-	0	67.6	BTEX, PNAs
6	odor at 4.0 feet SILTY CLAY (C					2/2	HPU	S/M	-	0	0	
7 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						2/2	HPU	М	4	13	0	BTEX, PNAs
10 T						2/2	HPU	М	•	7.1	0.6	,
12 -						2/2	HPU	М	-	0	0	BTEX, PNAs
77774874747 14	NO RECOVERY					0/3	HPU		-	-		
7 / 18 / 18 f									,			
1891 144												
20	: 1 of 1									<u></u>		D 4"
raye	. 1 01 1									Bor	ıng Ne	o.: B-15

BORING N	O: B-16 PROJECT NO: 15-0	04183.00	0-003		PR	OJECT	NAME:	Sipi M	etals				
BORING L	OCATION: North of retention pond				CO	ORDINA	TES:						
DRILLING	CO: CS Drilling			DRILLER: M. Natali									
DRILLING	EQUIP: Diedrich D-120			BOREHOLE DIA: 2"									
START DA	TE: 8/10/04	FINISH	DATE: 8/	E: 8/10/04 LOGGED BY: D. Lamsma									
START TIN	ME (hours): 0717	FINISH	TIME (ho	urs); 07:	30			CHECKED BY: M. Mueller					
				ļ	SA	SAMPLES			Pl	D	[
ОЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
oft m	ASPHALT		-71-7-7	,									
# 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL, Sand, brown, black, molst, fine to medium grained, some gravel Grades tan at 2.2 feet	/			2/2	HPU	М	-	0	2.1	8 RCRA Metals, TCLP 8 RCRA Metals, pH		
4-1-	Saturated at 4.0 feet			C	2/2	HPU	M	_	0	1.6	8 RCRA Metals, TCLP 8		
	SILTY CLAY (CL) Brown, gray mottle, moist, some or	oarse			2/2	нри	S/M	-	0	2.5	RCRA Metals, pH		
6 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sand, stiff				2/2	HPU	м	-	0	2.1			
10-					1.5/2	HPU	м	-	-		·		
12					1.5/2	нри	м	•		-			
14 7 7	End of Boring at 12.0 Feet								·				
16													
18 - 6			ļ										
	e: 1 of 1		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	Boi	ing N	│ lo.; B-16		

printed 01/27/2011 8:20AM by Richard.Jordan p. 144/383=

PODING	GROUP SERVICES	.	ROJECT NO: 1										
BORING NO		NAM	IE: Sipi Metals										
	OCATION: East of Wheelebrator Bayhou				CO	ORDINA	TES;						
	CO: CS Drilling	_	DRILLER: M. I	Vatali	 				LOGGED BY: D. Lamsma				
	EQUIP: Diedrich D-120	_	SCREEN INTERVAL: 5.0 to 15.0 ft bgs							CHECKED BY: M. Mueller			
	ATER LEVEL: 11.26' toc	-	SCREEN MTL/SLOT: PVC/0.01							DATE; B	/10/04		
	€ DIA: 8.25"		STICKUP: Flu						START	FIME (he	ours): 1018		
_	SING ELEVATION: 100.40' Rel. Elev.		G.S. ELEVATI			. Elev.			FINISH (PATE: 8	/10/04		
RISER DIA	/MTL/LGTH: 2"/PVC/5"		DEV. METHOD)\$: Ba	iller			_ [FINISH 1	IME (h	ours): 1040		
				<u> </u>	SA	MPLE	S		PI				
DEРТН	DESCRIPTION	GRAPHIC	WELL	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
oftim o——o				— —									
]]	ASPHALT	Ħ											
🗓	FILL Gravel, gray, moist, some sand				2/2	HPU	м	_	0.7	4.4	8 RCRA		
Ĭ₂∄ │	FILL									<u> </u>	Metals, TCLP 8 RCRA Metals, pt		
	Sand, black, moist, fine to coarse grained, some silt and gravel, brick fragments, slag	ппе			2/2	HPU	M	-	1.6	3.3	8 RCRA		
41111111111	SILTY CLAY (CL) Gray, moist, some medium sand Grades brown, gray mottle, some coarse sand at 4.0 feet				1.5/2	нри	м	-	0.5	2.9	Metals, TCLP 8 RCRA Metals, pt		
	Trace gravel from 8.0 to 12.0 feet				1.5/2	нРυ	М	-	0	3.1	8 RCRA Metals, TCLP 8 RCRA Metals		
10-1	•				1.75/2	HPU	м	-	0	3.5			
12-1					1.75/2	нри	м	•	0	2.7			
14-1					3/3	нри	М	-	a	1			
16-1	End of Boring at 15.0 Feet		cca ——4i						 				
187						:							
20 - 6 Page	: 1 of 1				<u> </u>	Bori	na/M		No.: B-	17/M	W-4		

BORING N	D: 8-18	0-003		F	ROJEC	NAME	: Sipi M	etals				
BORING L	OCATION: Outside fo	ence, east of railroad	d tracks			d	OORDII	ATES:		· ·		
DRILLING	CO: CS Drilling				DRILL	ÉR: M.	Natali					
DRILLING	EQUIP: Diedrich D-1	20			BORE	HOLE	DIA: 8.26			·		
START DA	TE: 8/10/04		FINISH	DATE: 8/1	10/04				LOGO	SED BY:	Ď. Lams	sma
START TIN	4E (hours): 1418		FINISH	TIME (hou	urs); †4:				CHEC	KED 8Y	: M. Moi	eller
						5	AMPL	S		PI	D	
рертн	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 1 0				9	Z	02	_ ≥	<u>\</u>	<u>m</u>	ល	<u> </u>	
2-	FILL Sand, tan, moist	Black, moist, sandy, roots				2/2	HPU	N I	-	0	4.1	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, PH
4	grained				2/2	: HPI	М	-	1.6	2.9		
14 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- -					2/2	: HPI	М	-	1	3	VOCs, PNAs, 8
B 2	Saturated at 8.0	feet	:			2/2	HPI	W	-	1	3,5	RCRA Metals, TCLP 8 RCRA Metals, PH
8	Grades dark bro grained, wood cl	wn, fine to coarse hips at 8.5 feet				1.5/	2 HP	s l	-	-	<u>-</u> -	
	SILTY CLAY (C Brown, gray, mo coarse sand, so	ist, some medium	to			1.5/	2 HPI	W	-	_	-	
14-1	End of boring											
16												
18 11 11 11 11												
20 = 6]								
	e: 1 of 1	<u>.</u>		<u> </u>	L.	!	1		<u> </u>	Bor	ing N	o.: B-18

printed 01/27/2011 8:20AM by Richard.Jordan p. 146/383-

BORING NO: B-19 PROJECT NO: 15-04183.00-003 PROJECT NAME: Sipi Metals												
BORING L	OCATION: Outside for	ence; west of storag	e bins			٦,	CORDINA	ATES:				 · · ·
DRILLING	CO: CS Drilling	<u> </u>			DRILL	ER: M,	Natali					_
DRILLING	EQUIP: Diedrich D-1	20			BORE	HOLE	DIA: 2"			•		·
START DA	TE: 8/10/04	· - · · · · · · · · · · · · · · · · · ·	FINISH	DATE: 8/	10/04				LOGO	SED BY:	D. Lame	sma
START TIM	/IE (hours): 1445		FINISH	I TIME (ho	urs): 15	000			CHEC	KED BY	; M. Mu	eller
					-	;	SAMPLE	S .		P	D	
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m 0 - 0 2 - 1	FILL Sand, brown, mo grained, trace fin	sist, fine to medium	1			1.5/	2 HPU	М	-	0	2.8	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
4+++++++++++++++++++++++++++++++++++++	Grades tan, no g	pravel at 4.0 feet				1.5/	2 HPU	М	-	0	3.2	VOCs, PNAs, 8
₹ [†] 1111 [†] 11 6		Grades tan, no gravel at 4.0 feet				2/2	HPU	м	-	0	3.7	RCRA Metals, TCLP 8 RCRA Metals, pH
8-1	Wet at 7.0 feet	Wet at 7.0 feet Grades dark brown, fine to coarse				2/2	HPU	м⁄w	•	C	2.3	
10	grained at 8.0 fer SILTY CLAY (CI Brown, gray, mo	et L) ist, some medium	to		1	2/2	HPU	W/M		-		
12-	coarse sand, sof	t, cohesive				2/2	HPU	м	-	-		
14	End of Boring	at 12.0 Feet										
1611												
										:		
18 - - - 20 - 6												
	e: 1 of 1		·		1		l	1		Bor	ing N	o.: B-19

BORING N	O: B-20	PROJECT NO: 15-0	0-003		P	ROJECT	NAME:	Sipi M	letals			
BORING L	OCATION: Outside fo	ence; west of retenti	on pone	d		c	OORDINA	TES:				
DRILLING	CO: CS Drilling				DRILLI	ER: M.	Natali					
DRILLING	EQUIP: Diedrich D-1	20			BORE	HOLE C	DIA; 2"					
START DA	TE: 8/10/04	i	FINISH	I DATE: 8/	10/04				LOGG	SED BY:	D. Lams	ima
START TIN	ME (hours): 1515		FINISH	TIME (hor	urs): 15				CHEC	KED BY	: M. Mue	eller
					}	s	AMPLE	<u>s</u>	_	PI	D	
DEРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	grained, some si	-				2/2	P H	М	_	0	4.6	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
	Grades to silty clay, brown, moist, stiff from 2.5 to 3.0 feet Grades tan, saturated, fine to medium grained at 3.0 feet Wood chips from 3.7 to 4.0 feet				2/2	HPU	M/S	-	0	3.4	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH	
	SILTY CLAY (CL) Gray, moist, some medium to coarse sand and fine gravel				2/2	HPU	S/M	-				
3 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		sand and line gravel				2/2	HPU	М	-			
10.3-	End of Boring	at 8.0 Feet										
7					,							
12 - 4												
14												
16												
18 -	:	·										
20 6 Page	e: 1 of 1	· · · · · · · · · · · · · · · · · · ·								Rar	ine M	o.: B-20

	ORING NO: B-21 WELL NO: MW-8 PROJECT NO: 15-04183.00-003 PROJECT NAME: Sipi Metals											
			PR	OJECT NO: 15	-0418				NAM	IE: Sipi M	etals	· · · · · · <u>- · · · · · · · · · · · · ·</u>
	·	of 1660 Besly Ct.				COC	DRDINA	ATES:				
	CO: CS Drilling		<u> </u>	ORILLER: M. N.	atali					LOGGE	BY: D	. Lamsma
	EQUIP: Diedrich		9	CREEN INTER	RVAL	: 4.0 to 14	4.0 ft bg	js		CHECKE	DBY:	M. Mueller
	ATER LEVEL: 3.6	37' toc	S	CREEN MTL/S	SLOT	: PVC/0.0	1			START	PATE: 8	11104
	E DIA: 8.25"		S	TICKUP: Flus	hmoi	unt				START 1	îME (bi	ours): 0755
TOP of CA	SING ELEVATIO	N: 100.51' Rel. Elev.	G	S.S. ELEVATIO	IN: 10	1.00' Rel	. Elev,			FINISH C	ATE: 8	11/04
RISER DIA	MTL/LGTH; 2"/P	VC/4"		EV. METHOD	S: Ba	ller				FINISH 7	IME (ho	iurs): 0820
						SA	MPLE	S		PI	D	<u> </u>
DEРТН	DES	CRIPTION	GRAPHIC	WELL	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 0			L.,	<u> </u>								
	coarse graine	own, moist, fine to	*			1.5/2	неи	м	-	1.5	2.8	
τι	and gravel Saturated at a	4 0 4nat				1.5/2	HPU	М	-	1.2	3 .1	VOCs
	SILTY CLAY Gray, moist, s	(CL) some medium to				2/2	HPU	S/M	•		-	
2	coarse sand, Grades brown feet	soft n, gray mottle at 6.0				2/2	H₽U	М	-		_	
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1.75/2	нРU	М			_	
12						1.75/2	HPU	м	-		-	
14 1						2/3	HPU	М	•	-	_	
1611	End of Bor	ing at 15.0 Feet									-	
18-1												
20 - 6	Page: 1 of 1 Boring/Well No.: B-21/MW-6											

Page: 1 of 1

Boring/Well No.: B-21/MW-6

Clay	yton
GROUP	SERVICES

BORING N	O: B-22	0-003		PR	OJECT	NAME:	Sipi M	etals				
BORING LO	OCATION: Basemen	t of 1660 Besly Ct.				co	ORDINA	TES:				
DRILLING (CO: CS Drilling				DRILLE	R: M. N	atali					
DRILLING	EQUIP: Dingo 420				BORE	iOLE DI	A: 2 ⁻					
START DA	TE; 8/11/04		FINISH	DATE: 8/	11/04				Logo	ED BY:	Ď. Lams	mà
START TIM	tE (hours): 1025		FINISH	f TIME (hou	urs); 104	£1			CHEC	KED BY	M. Mue	eller
		•••				SA	MPLES	3		PI	D	
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
# 0 11 11 11 11 11 11 11 11 11 11 11 11 1	CONCRETE FILL: Sand, brown, mo	oist, fine to medium				2/2	нРО	M	-	4	2.8	
1 4 —	SILTY CLAY (CL) Brown, gray mottle, moist, some medium to coarse sand, stiff, cohesive					2/2	HPU	М		1.8	2.3	
6	Trace fine grave	et			2/2	HPU	М	-	2.5	3.2	VOCs, PNAs	
8	Trace fine gravel from 6.0 to 8.0 feet Sand seam, saturated from 6.8 to 7.0 feet					2/2	неи	M/S	<u>-</u>	3.4	2.9	
10 -						1.5/2	HPU	м	_	_	_	
12-						1.5/2	HPU	м	_	-		GW for VOCs,
14	End of Boring	at 12.0 Feet										PNAs
16 11 11 11 11 11 11 11 11 11 11 11 11 1		. ·										
20 - 6	e: 1 of 1									Bor	ing N	o.: B-22

BORING N	O: B-23 PROJECT NO: 15-	-003		PRO	DJECT	NAME:	Şipi M	letais		·	
BORING L	OCATION: Basement of 1860 Besly Ct.	:			cod	ORDINA	TES:				·
DRILLING	CO: CS Drilling			DRILL	ER: M. Na	ıtali					
DRILLING	EQUIP: Dingo 420	-		BOREI	IOLE DIA	.: 2 "					·
START DA	TE: 8/11/04	FINISF	DATE: 8/	1/04		_		LOGG	SED BY:	D. Lama	ıma
START TIN	IE (hours): 0930	FINISH	TIME (hou	JTS): 10	18			CHEC	KED BY	: M. Mu	eller
		•			SA	MPLE	3	<u>. </u>	PI	D	
DEPTH	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
O to	CONCRETE				··						
2	Fil.t. Sand, dark brown, moist, fine to co grained, some silt and gravel	arse /			1.5/2	HPU	М	-	4.6	3	VOCs, PNAs
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SILTY CLAY (CL) Brown, gray mottle, some medium coarse sand, soft, cohesive	to			1,5/2	HPU	М	-	3.3	3	,
4 771.1.1.1	Grades stiff at 4.0 feet			0.5/2	н₽∪	м		5	2.3		
6 1 1 1 1 1 1 1 1 1				0.5/2	HPŲ	М	-	3,4	2.2		
8	Grades soft at 8.0 feet				1.75/2	н Р Ц	М	-	3.8	2.9	VOCs, PNAs
10 1	Grades gray at 10.0 feet				1.75/2	HPU	м	-	3.3	2.8	
12 - 1 - 4 - 14 - 1					3/3	НРЏ	М	-	3.2	4.4	VOCs, PNAs
16 1	End of Boring at 15.0 Feet										
18 1 6							٠				
Page	: 1 of 1								Bor	ing N	o.: B-23

BORING NO: B-24 PROJECT NO: 15-04183,00-003 PROJECT NAME: Sipi Metals												
BORING L	OCATION: In parking lot north of 1880 B	esly Ct.		co	ORDINA	TES:						
DRILLING	CO: CS Drilling		DRILLI	ER: M. N	atali							
DRILLING	EQUIP: Diedrich D-120		BORE	1QLE DI	A; 2"							
START DA	TE: 8/11/04	FINISH DATE: 8/	11/04				LOGG	ED BY:	D. Lams	ma		
START TIN	fE (hours): 0718	FINISH TIME (hor	urs); 07	34			CHEC	KEO BY	: M. Mu	iller		
			<u> </u>	SA	MPLES			PI	D,			
БЕРТН	DESCRIPTION	GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
tt m 0	ASPHALT FILL Sand, black, moist, fine to coarse grained, some silt and gravel			2/2	HPU	М	•	0	2.2			
2 				2/2	HPU	М	-	0.6	2.9			
611	SILTY CLAY (CL) Gray, moist, some fine to medium sand, soft			1/2	НРИ	м		0.5	3.2	VOCs, PNAs		
8-1	Grades brown, gray mottle, some			1/2	HPU	М	1	0.8	2.1	VOCs, PNAs		
10-7	medium to coarse sand and fine gr. stiff at 8.0 feet	avel,		2/2	HPU	м	-	1	2.3			
12-				2/2	НРО	м	-	1.3	3.3	VOCs, PNAs		
14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	End of boring at 12,0 Feet											
20 6 Page	Page: 1 of 1 Boring No.: 8-24											

START DATE: #11/04 FINISH DATE: #11/04 FINISH TIME (hours): 1405 CHECKED BY: M. Mustler	ORING N	ORING NO: 8-25 PROJECT NO: 15-04183,00-003						ROJECT	NAME	Sipi M	etals		
START DATE: #11/04 FINISH DATE: #11/04 FINISH TIME (hours): 1405 CHECKED BY: M. Mueller	BORING L	OCATION: Inside the	Forsyth building		. <u>.</u>		С	OORDIN	ATES:				· · · · · ·
START TATE	OR(LLING	CO: CS Drilling				DRILLI	ER: M.	Natali					
DESCRIPTION DESCRIPTION	ORILLING I	EQUIP: Dingo 420				BORE	HOLE D	IIA: 2"					
SAMPLES PID	START DA	TE: 8/11/04		FINISH	DATE: 8/	11/04				LOGG	ED BY:	D, Lams	ıma
DESCRIPTION	START TIM	IE (hours): 1320		FINISH	I TIME (ho	urs): 14	05			CHEC	KED BY	: M. Mu	eller
DESCRIPTION DESCR							S	AMPLE	S	1	Pl	D	
CONCRETE FILL Sand, brown, black, moist, fine to coarse grained, some silt, brick fragments, concrete pieces 2/2 HPU M - 17.9 3.6 Ashpalt and glass pieces from 4.0 to 8.0 feet 1.25/2 HPU M - 15.6 3.7 VCCs, PNAs, RCRA Metals TCLP 8 RCR, Metals, pH 1.25/2 HPU M - 16.7 4 Saturated, wood chips at 8.5 feet SiLTY CLAY (CL) Brown, moist, some medium to coarse sand, stiff, cohesive 1.25/2 HPU M End of Boring at 12.0 Feet		DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
FILL Sand, brown, black, moist, fine to coarse grained, some silt, brick fragments, concrete pieces 2/2 HPU M - 19.7 3.6 2/2 HPU M - 17.9 3.5 RCRA Metals TCLP B RCRJ Metals, pH Ashpalt and glass pieces from 4.0 to 8.0 feet 1.25/2 HPU M - 15.8 3.7 1.25/2 HPU M - 16.7 4 VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH Saturated, wood chips at 8.5 feet 1.25/2 HPU M - 16.7 4 VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH Saturated, wood chips at 8.5 feet 1.25/2 HPU M - 16.7 4 TCLP B RCRJ Metals TCLP B RCRJ Metals, pH VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH 1.25/2 HPU M - 15.8 3.7 VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH 1.25/2 HPU M - 15.7 4 TCLP B RCRJ Metals TCLP B RCRJ Metals, pH VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH 1.25/2 HPU M - 15.8 3.7 VOCs, PNAs, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH 1.25/2 HPU M - 15.8 3.7 VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ Metals, pH VOCs, PNAS, RCRA Metals TCLP B RCRJ	0 + 0	CONCRETE			-,-,-,-,				ļ				
2/2 HPU M - 17.9 3.6 TCLP 8 RCR/ Metals, pH Ashpalt and glass pieces from 4.0 to 8.0 feet 1.25/2 HPU M - 15.8 3.7 VOCs, PNAs, RCRA Metals TCLP 8 RCR/ Metals, pH 1.25/2 HPU M - 16.7 4 Saturated, wood chips at 8.5 feet SILTY CLAY (CL) Brown, moist, some medium to coarse and, stiff, cohesive 1.25/2 HPU M End of Boring at 12.0 Feet	2-	FILL Sand, brown, bla coarse grained,	Sand, brown, black, moist, fine to coarse grained, some silt, brick				2/2	HPŲ	М	-	19.7	3.6	
1.25/2 HPU M - 15.8 3.7 1.25/2 HPU M - 16.7 4 VOCs, PNAs, RCRA Metals TCLP 8 RCR/ Metals, pH SiLTY CLAY (CL) Brown, moist, some medium to coarse sand, stiff, cohesive 1.25/2 HPU M - 16.7 4 Find of Boring at 12.0 Feet	7				2/2	HPU	М	-	17.9	3.6	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH		
Saturated, wood chips at 8.5 feet Siltry CLAY (CL) Brown, moist, some medium to coarse sand, stiff, cohesive 1.25/2 HPU M/S/N	1 11111				1.25/	2 HPU	м	-	15.8	3.7			
Saturated, wood chips at 8.5 feet SILTY CLAY (CL) Brown, moist, some medium to coarse sand, stiff, cohesive 1.25/2 HPU M/S/M	2						1.25/	2 HPU	М	-	16.7	. 4	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
1.25/2 HPU M	المهدد المعا	SILTY CLAY (C Brown, moist, so	L) ome medium to co:	arse			1.25/	2 HPU	W/S/N	-	_	-	
End of Boring at 12.0 Feet 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	7	sand, stiff, cohes	sive				1.25/	2 HPU	м	-	-		
20 = 6	14 16 16 16 16 16 16 16 16 16 16 16 16 16	End of Boring	g at 12.0 Feet									,	
	20		<u> </u>					<u> </u>					

Page: 1 of 1

ORING NO	GROUP SERVICES D: B-27 WELL NO: MW-1	PF	RO.	JECT NO: 15	-0418	3.00-003	PRO	DJECT	NAM	E: Sipi Me	etals	
	CATION: Northwest of propane tank		_				RDINA					
RILLING	CO: CS Drilling	T	DR	ILLER: M. N	atali					LOGGED	BY: D.	Lamsma
RILLING	QUIP: Diedrich D-120		sc	REEN INTE	RVAL	4.0 to 14	.0 ft bg	· · · · · · · · · · · · · · · · · · ·	ヿ	CHECKE	DBY: N	M. Mueller
TATIC WA	TER LEVEL: 2.58' toc			REEN MTL/					\dashv	START D	ATE: 8	/10/04
OREHOLI	E DIA; 8.25"		ST	ICKUP: Flus	hmou	ınt				START T	IME (ho	ours): 0820
OP of CA	SING ELEVATION: 101.19' Rel. Elev.		G.5	S. ELEVATIO	N: 10	1.74' Rel	. Elev.			FINISH D	ATE: B	110/04
RISER DIA	MTL/LGTH: 2"/PVC/4"		DΕ	V. METHOD	S: Ba	iler				FINISH T	IME (ha	purs): 0908
		┰	Т			S.A	MPLE	S		Pi	D	
рертн	DESCRIPTION	GRAPHIC		WELL	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 m 0	CONCRETE	<u> </u>	- - 			1,2/2	HPU	м		0	-	8 RCRA
ft m 0 - 10 2 - 1 - 1	Sant, dark brown, moist, fine to coarse grained, some gravel, slag, wood chips Wet at 3.0 feet					1.2/2	HPU	w/s	_			Metals, TCLP 6 RCRA Metals, pH
[™] †••••••••••••••••••••••••••••••••••••	Saturated at 3.5 feet SILTY CLAY (CL)		77			1.5/2	HPU	S/M	-	-	-	
6 - 2	Brown, gray mottle, moist, some coarse sand, soft					1.5/2	HPU	М	-	-		
8 1	NO RECOVERY					0/2	HPU		-	-	-	
						0/2	HPU			-	-	
14 1	SILTY CLAY (CL) Brown, gray mottle, moist, some coarse sand, soft					2/3	HPU	м	-	-	-	
167												
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
20 – °	e: 1 of 1							<u> </u>	17 11	No,: B	A=25.	1111.4

	GROUP	SERVICES												
BORING N		WELL NO: MW-5				0: 15	-0418	3.00-003	PR	DJEÇT	MAM	E: Sipi Me	etals	
		orner of Elston Ave and '	Waba	ansl	a Ave			coc	ORDINA	TES:				
DRILLING	CO: CS Drilling	. 		DRI	ILLER:	M. N	atali			_		LOGGE	BY: D.	Lamsma
	EQUIP: Diedrich			SC	REEN II	NTE	RVAL	5.0 to 1	5.0 ft bg	9		CHECKE	D BY: f	M. Mueller
STATIC W	ATER LEVEL: 3.	78' toc		SC	REEN A	ATL/S	BLOT	PVG/0.0	11			START	PATE; 8	/11/04
BOREHOL	E DIA: 8.25"		_T	STI	CKUP:	Flus	hmou	ınt				START 1	IME (ho	zurs): 1514
TOP of CA	SING ELEVATIO	N: 101.82' Rel. Elev.		G.S	. ELEV	ATIC	N: 10	2.27' Rel	. Elev.		\neg	FINISH D	ATE; 8	/11/04
RISER DIA	/MTL/LGTH: 2"/F	PVC/5'		DE	V. METI	GOH.	\$: Ba	ller				FINISH T	IME (ho	ours): 1535
				Т				SA	MPLE	S		PI	D	
ОЕРТН	DE	SCRIPTION	GRAPHIC		WELL		NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 1 m	1 m m 1 m 1 m m m m m m m m m m m m m m													
ASPHALT														
FILL Gravel, gray, moist, some sand														
# m 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		rown, moist, fine to ned, some silt	m, moist, fine to , some silt					1.5/2	HPU	м	<u>.</u>	0.1	12	VOCs, PNAs, 8 RCRA Metals, TCLP 8 RCRA Metals, pH
	NO RECOVE Bottom 2.5 fe was wet	ERY eet of sample tube	1000	35.5				0/2	HPU				<u>-</u>	
6-1-2								0/2	НРЏ		-	_		
87	SILTY CLAY Brown, gray	' (CL) mottle, stiff, cohesive						2/2	HPU	м	-		_	
12								2/2	нРυ	М	-			
14-								3/3	HPŲ	М	-			
16 1 1 1	End of Bo	ring at 15,0 Feet				∷ J								
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,									į				
20 - 6 Page	e: 1 of 1	-						· · · · · · · · · · · · · · · · · · ·	Bori	ing/V	Veil	No.; B	-28/M ¹	W-5

BORING N	O: B-29	J-004 —————		PRO	NECT	NAME:	Sipi M	etais				
BORING LO	OCATION: Near cast	ing ring				cod	ORDINA	TES:				
DRILLING (CO: CS Drilling				DRILLE	R: A. Me	ndez					<u> </u>
DRILLING	EQUIP: Dingo 420				BOREH	OLE DIA	: 2"					
START DA	TE: 9/29/04		FINISH	DATE: 9/3	29/04				LOGG	ED BY: I	D. Lams	ma
START TIM	IE (hours): 1455		FINISH	TIME (hou	urs): 150	07			CHEC	KED BY:	M. Ger	тапп
						ŞA	MPLE:	3		PI	D	
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	метнор	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
Oft m	CONCRETE			1.77								
2	FILL	n, moist, some gra	avel			2/2	HPU	М		4.1	5.2	CNA TOLD
ndar#:::					2/2	HPU	М	•	3.6	5.9	PNAs, TCLP Lead	
491111111111111111111111111111111111111	FILL Silty sand, dark and gravel	clay			1.5/2	HPU	W		•	-		
8-1	SILTY CLAY (CL) Gray, moist, some medium to coarse					1.5/2	HPU	W/M		-	-	GW for PNAs
	sand, cohesive End of Boring	at 8.0 Feet	/									
10-1												
12 4												
14-												
1677 + + +												
1877777												
20- 6 Page	e: 1 of 1				<u> </u>					Bor	ing N	o.; B-29

printed 01/27/2011 8:20AM by Richard.Jordan p. 156/383-----

Clayton
GROUP SERVICES

BORING N	RING NO; B-30 PROJECT NO: 15-04183.00-004						OJECT	NAME:	Sipi M	etals		
BORING L	OCATION: Adjacent	to B-3			co	ORDINA	TES:					
DRILLING	CO: CS Drilling				DRILLE	R: A. M	endez	<u>-</u> -			_	
DRILLING	EQUIP: Dingo 420				BORE	OLE DI	A: 2"			-		
START DA	TE: 9/28/04		FINISH	DATE: 9/2	28/04		•	-	LOGG	ED BY:	D. Lams	sma
START TIM	(E (hours): 0930		FINISH	TIME (hou	urs): 094	4 0			CHEC	KED BY	: M. Ger	mann
					<u> </u>	SA	MPLE	\$		PI	<u>D</u>	
рертн	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
E 0 2 11 11 11 11 11 11 11 11 11 11 11 11 1	CONCRETE FILL Sand and gravel	7-7-7-7		1.5/2	HPU	M	:		_			
2	Sand and gravel, gray, brown, moist Crades black, wet, fine to medium sand, with silt at 3.0 feet Saturated at 3.5 feet					1.5/2	HPU	w/s			-	
6	Saturated at 3.5 feet SILTY CLAY (CL) Gray, moist, some medium to coarse sand, cohesive, soft					1.5/2	HPU	S/M		-	-	
8-1						1.5/2	HPU	М				GW for Total Lead
10 12 14 16 18 18 18 20	End of Boring	at 8.0 Feet										Lead

Page: 1 of 1

$\overline{\mathbf{C}}$	1	a	y	t	O	1	1
GI	(O	UP	5 t	ĸ	V١	C 6	5

BORING N	O: B-31 PROJECT NO	15-04183,0	0-004		PR	OJECT N	IAME:	Sipi M	etals	_	
BORING LO	OCATION: Adjacent to 8-4				CO	ORDINA	TES:				
DRILLING (CO: CS Drilling			DRILLE	R: A. M	endez				•	
DRILLING	EQUIP: Dingo 420			BOREH	IOLE DIA	4: 2"					
START DA	TE: 9/29/04	FINIS	H DATE: B/	29/04				LOGG	ED BY:	D. Lams	ma
START TIN	IE (hours): 0900	FINISI	H TIME (ho	urs); 135	50			CHEC	KED BY	: M. Ger	masn
		•		<u> </u>	SA	MPLES	<u> </u>		PI	D	
БЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCRETE FILL Sand, dark brown, moist, fine to medium grained, some silt and	o gravel			2/2	HPU	м		1.9	6.4	
# # # # #	Wet at 4.0 feet				2/2	HPU	М		4.3	4.1	PC8s, SVOCs, Target Metals, ph
	SILTY CLAY (CL) Gray, brown, moist, some med	lium to		No. 2 Table	2/2	HPU	w		-		
7 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	coarse sand, trace fine gravet,	soft			2/2	HPU	М		54.9	586	VOCs, PCBs, SVOCs, Target Metals, pH
h					2/2	нрџ	М		72.8	455	
12 17					2/2	HPU	м		22.5	64.3	VOCs
16 18 18 18 20 6	End of Boring at 12.0 Fe	et									
	e: 1 of 1					1		i	Bor	ing N	o.: B-31

printed 01/27/2011 8:20AM by Richard.Jordan p. 158/383=

BORING I	NO: B-32	PROJECT NAME: Sipi Metals											
BORING (OCATION: Forklift ra	ımp	7		COORDINATES:								_
DRILLING	CO: CS Drilling				DRILLE	R: A. M	lendez						
DRILLING	EQUIP: Dingo 420				BORE	IOLE D	IA: 2"						_
START D	ATE: 9/29/04		FINISH	DATE: 9/	29/04				LOGG	ED BY:	D. Lame	ıma	_
START TI	ME (haurs): 0957		FINISH	TIME (ho	urs): 100	00			CHEC	KED BY	: M, Ger	mann	_
						S	AMPLES			PI	D		_
рертн	DES	BCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCRETE FILL Sand, tan, moist	;, fine to medium		7.7.27 1000		2/2	НР	м		1.7	9.8		_
2-7	grained Grades dark bro at 1.0 foot	avel			2/2	HPU	M		2.7	35.7	PNAs, PCBs, Total Arsenic, TCLP Lead		
411111111111111111111111111111111111111	End of Boring	g at 4.0 Feet	• "										
**************************************							:						
10 th the training of the trai								ı					
14-1													
16 1													
18 1													
20 = 6 Pag	e: 1 of 1									Bor	ing N	o.: B-32	

BORING N	Ю: В-33	PROJECT NO: 154	3-004		F	ROJECT	NAME:	Sipi M	etals			
BORING L	OCATION: In truck d	ocks/receiving				(CORDINA	TES:				- ·· , , , <u></u>
DRILLING	CO: CS Drilling				DRILLE	ER: A.	Mendez					
DRILLING	EQUIP: Dingo 420		· · · · · ·	_	BORE	OLE	DIA: 2"	·				
START DA	TE: 9/29/04		FINISH	DATE: 9/2	29/04				LOGO	ED BY:	D. Lams	ma
START TIM	ME (hours): 0944		FINISH	TIME (ho	urs): 094	48			CHEC	KED BY	: M. Ger	marsn
							SAMPLES	3		P	D	
2 DЕРТН		CRIPTION	12.12	GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
	CONCRETE	<u> </u>		7.77								
0 Et 1 1 1 1 1 1 1 1 1	FILL Sand, black, moi grained, some sil	7		2/2	. HPU	М		11.3	24.5			
**************************************	SILTY CLAY (CI Gray, brown, mo			2/2	: HPU:	М		4.4	9.1	PNAs, PCBs, Total Arsenic, TCLP Lead		
7 11 11 11 11 11 11 11 11 11 11 11 11 11	coarse sand, cot									TOLI LOQU		
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												·
10-7												
14										,		
16-												
18-7											-	
 			٠									
Page	 e: 1 of 1	·		l	<u> </u>					Bor	ina N	o.: B-33

BORING N	O: B-34	004		PRO	DJECT	NAME:	Sipi M	letals				
BORING L	OCATION: Forklift ra	imp				cod	ORDINA	ATES:				
DRILLING	CO: CS Drilling				DRILLE	ER: A. Me	ndez					
DRILLING	EQUIP: Dingo 420				BORE	HOLE DIA	\: 2 "					
START DA	TE: 9/29/04		FINISH	DATE: 9/2	9/04				LOGG	ED BY:	D. Lams	ima
START TIN	ME (hours): 0833		FINISH	TIME (hou	ırs): 08	45			CHEC	KED BY	: M. Ger	mann
					<u> </u>	SA	MPLE	5		PI	D	
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
oft m	CONCRETE			/ - / - / (_) _ / -								
2 - 1	FILL Sand, dark brown, black, moist, fine to					2/2	HPU	M		1.6	7.4	
1			-	2/2	HPU	М		1.7	15.9.	SVOCs, PCBs, Target Metals, TCLP Lead		
4 1 1 2 6 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Saturated at 5.0 feet					1.5/2	HPU	M/S		-	_	TCLP Lead
	SILTY CLAY (Cl Gray, brown, mo coarse sand	L) ist, some medium	to			1.5/2	HPU	M	:	1.1	5.3	
######################################	End of Boring	at 8.0 Feet										
10111111												
12-1							!					
14												
16												
}	{											
18-												
6												
Page	: 1 of 1				<u> </u>		<u> </u>	<u> </u>		Bori	ina N	o.: B-34

BORING N	O: B-35	3-004		PRO	NECT N	AME:	Sipi Mı	etals				
BORING LO	OCATION: Southeas	t of DJ press			cod	DRDINA	TES:	<u>-</u>				
DRILLING	CO: CS Drilling				DRILLER	₹: A, Me	endez					
DRILLING I	EQUIP: Dingo 420		-		BOREHO	OLE DIA	4: 2"					
START DA	TE: 9/28/04		FINISH	1 DATE: 9/2	28/04				LOGG	ED BY: 8	3.Peters	on
START TIM	/IE (hours): 1545		FINISH	I TIME (ho	urs): 1558				CHEC	KED BY:		mann
					-	SA	MPLES	<u> </u>		PI		
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
oft m	CONCRETE			(-)(-)								
2	FILL Silty clay, gray, brown, moist, some medium to coarse sand and medium to coarse gravel					2/2	HPU	М		0	0	
						2/2	HPU	М		o	0	PCBs
4 1	End of Boring											
813-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-												
12 11 4												
14-1				!				:				,
16-1												
18-7							:					
20 Pag	e: 1 of 1		•					<u>L</u>	1	Bos	ring N	lo.: B-35

BORING N	C: B-36	0-004	•	PR	OJECT	AME	Sipi M	letals				
BORING L	OCATION: Northeas	t of DJ press				cc	ORDINA	TES:				
DRILLING	CO: CS Drilling				DRILL	ER: A. N	lendez					
DRILLING	EQUIP: Dingo 420				BORE	HOLE DI	A: 2"					· · · · · · · · · · · · · · · · · · ·
START DA	TE: 9/28/04		FINISI	H DATE: 9/:	28/04				LOGG	SED BY:	S. Peter	rson
START TIN	NE (hours): 1440		FINISI	H TIME (hor	urs): 15	35			CHEC	KED BY	; M. Gei	mann
						S	AMPLES	3		PI	D	
ОЕРТН		SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
G E O	CONCRETE			7.77	ļ							
2-r	FILL Sand, brown, black, moist, fine to medium grained, some gravel, brick fragments					1/2	HPU	М		0	0	
Thanki iri	fragments					1/2	HPU	М		О	0	
<u> </u>	Grades to silty sand at 4.0 feet					2/2	HPU	М		0	0	Total Arsenic, Total Lead
6 2	End of Boring	at 6.0 Feet			' 							
8 10 10 10 10 10 10 10 10 10 10 10 10 10											!	
10-=						•						
12.h						:						
14												
🗐												
16 -												l I
+ 11 + 11 + 11 + 11 + 11 + 11 + 11 + 1												
18												
20 6	e: 1 of 1									P		D 25
raye										DOL	ing N	o.: B-36

BORING NO: B-37 PROJECT NO: 15-04183.00-004 BORING LOCATION: South of DJ press							PROJECT NAME: Sipi Metals					
BORING L	OCATION: South of			COC	ORDINA	TES:						
DRILLING	CO: CS Drilling				DRILLE	R: A. Me	ndez					
CRILLING I	EQUIP; Dingo 420				BORE	OLE DIA	: 2"					· · · · · · · · · · · · · · · · · · ·
START DA	TE: 9/28/04		FINISH	DATE: 9/	28/04				LOGG	ED SY: I	D. Lams	mà
START TIN	/IE (hours): 1316		FINISH	TIME (ho	urs); 13!				CHEC	KED BY		เพลทา
					 	SA	MPLES	<u> </u>		Pi	D	
БОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m 0	CONCRETE FILL Sand, dark brow medium grained				1.7/2	НРО	M		0	0		
411						1.7/2	HPU	M		2.8	3.9	
4	Saturated at 5.5 feet					2/2	HPU	ន		0	8.5	Total Arsenic, Total Lead
10 12 14 16 18 18 18 20 6	End of boring	al 6.0 Feet								Bor	ing N	o.: B-37

BORING N	O: B-38 PROJECT NO: 154	0 418 3,00	0-004		PR	OJECTI	NAME	Sipi M	letals		
BORING LO	OCATION: Adjacent to 8-5				CC	ORDINA	TES:				
DRILLING	CQ; CS Drilling			DRILLI	ER: A. M	lendez					
DRILLING	EQUIP: Dingo 420			BORE	HOLE DI	A: 2"					
START DA	TE: 9/29/04	FINISH	I DATE: 9/	29/04				LOGG	SED BY:	5. Peter	son
START TIN	ME (hours): 0810	FINISH	I TIME (ho	urs): 10	45			CHEC	KED BY	: M. Ger	mann
					S/	MPLE	}		PI	Đ	
БЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
oft m	CONCRETE		-21-2-2	 	-						
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL Sand, dark brown, moist, fine to medium grained, some silt and fine	to	(A)(2)		2/2	HPU	М		0.7	5.2	
17 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to	medium gravel			2/2	HPU	М		11.6	8.9	!	
הלי הלייה הלייה לייה הלייה לייה	Wet at 6.0 Feet				1,5/2	HPU	M		2.5	3.1	
1 2		_			1.5/2	нри	w		-	-	
8 10 10	SILTY CLAY (CL) Gray, brown, moist, some medium coarse sand, cohesive	to			2/2	HPU	м		1.4	4.9	SVOCs, Target Metals, pH
12-					2/2	HPU	M		2.2	2.6	SVOCs, Target Metals, pH
14-	End of Boring at 12.0 Feet										
18 1 6 20											
Page	2: 1 of 1								Bor	ina N	o.: B-38

BORING N	O: B-39	0-004		PF	ROJECT	NAME	Sipi M	etals				
BORING L	OCATION: Near abai	ndoned 9000 gallon	UST			cc	ORDINA	TES:				·
DRILLING	CO: CS Brilling				DRILLI	ER: A. M	Mendez					· · · · · · · · · · · · · · · · · · ·
DRILLING	EQUIP: Dingo 420				BORE	HOLE D	IA: 2"		·			
START DA	TË: 9/28/04		FINISH	1 DATE: 9/3	28/04				LOGG	ED BY:	D. Lame	ma
START TIN	1E (hours): 1118		FINISH	TIME (ho	urs): 13				CHEC	KED BY		mann
						S/	AMPLES	-	_	PI	D	
рертн	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
# C	CONCRETE			/ / / / / /->!- / \/->!->		1.5/2	HPU			0	0	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1.5/2	HPU	М		0	0	Naphthalene, Total Lead
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Saturated at 4.0 feet					1.5/2	НРО	S				
8-1	SILTY CLAY (C Gray, moist, son sand, soft	L) ne medium to coan	se			1.5/2	нри	М			-	,
10-			_			2/2	HPU	М		ı	1	.∓P H
12 14 1 16 18 18 6 20 C		at 10.0 Feet				•					5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Page	: 1 of 1									Bori	ing N	o.: B-39

BORING NO: B-40 PROJECT NO: 15-04183.00-004 BORING LOCATION: East of Taylor Banbouse						OJECT N	IAME:	Sipi M	etais	_		
BORING L	OCATION: East of Taylor Baghouse			co	ORDINA	TES:						
DRILLING	CO: CS Drilling			DRILLE	R: A. M	endez						
DRILLING	EQUIP: Dingo 420			BOREH	OLE DI	A: 2"		-			.	
START DA	TE: 9/30/04	FINISH	DATE: 9/	BOREHOLE DIA: 2" 30/04 LOGGED BY: S. Peterson CHECKED BY: M. Germann SAMPLES PID (1.9) NOR CHECKED BY: M. Germann REMARKS PID 2/2 HPU M 80.2 16.2 Naphthalene, Total Lead 2/2 HPU M 9 5.6								
START TIM	AE (hours): 0750	FINISH	I TIME (ho	urs); 975	5			CHEC	PID O O O O O O O O O O O O O		mann	
					SA	MPLES			PI	D		
ОЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
0 + 0	ASPHALT]								
0 m 0	FILL Sand, dark brown, moist, fine to medium grained, some silt and gra	ıvel			2/2	НРυ	м		80.2	16.2	Naphthalene.	
2 7	SILTY CLAY (CL) Gray, moist, some fine sand and g	ravel			2/2	HPU	М		9	5.6	Total Lead	
4 6 8 10 12 14 16 18 18 6 1 8 20 14 4 20 18 18 20 18 2	End of Boring at 4.0 Feet											

Page: 1 of 1

BORING N	O: B-41	PROJECT NO: 15-0	0-004		PRO	JECT N	IAME:	Sipl M	etals			
BORING L	OCATION: South of	compressor room				coc	RDINA	TES:				
DRILLING	CO: CS Drilling				DRILLE	R: A. Me	ndez					
DRILLING	EQUIP: Dingo 420				BORE	OLE DIA	: 2°					
START DA	TE: 9/29/04	_	FINISH	DATE: 9/2	9/04				LOGG	ED BY: 5	5. Peter	80n
START TIN	AE (hours); 1313		FINISH	TIME (hou	ırs): 132	:5			CHEC	KED BY:	M. Ger	ากลกก
					1	SA	MPLES	3		PI	D	
DEPTH	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
tt mo	CONCRETE			<u>/->/-/</u>						i		1
3	FILL Sand, brown, dry grained, some s	y, fine to medium it and grave!				0.8/2	HPU	D 		19.2	4.4	Naphthálene,
*		. <u> </u>				0.8/1	HPU	۵				Total Lead
2 4 6 8 10 12 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	Refusal at 3.0	O Feet										
20											-	
Pag	e: 1 of 1			<u> </u>	•					Bor	ing N	lo.: B-41

	PROJECT NO: 15-04183.00-004 PROJECT NAME: Sipi Metais PRING LOCATION: West of compressor room COORDINATES:												
BORING L	OCATION: West of c	ompressor room		· · · ·		Ç	OQRDINA	TES:	-				
DRILLING	CO: CS Drilling				DRILLE	ER: A. N	1endez			 			
DRILLING	EQUIP: Oingo 420				BORE	IOLE D	IA: 2"			_			
START DA	TE: 9/29/04		FINISH C	DATE: 9/2	29/04				LOGG	SED 8Y:	S. Peter	rson	
START TIN	IE (hours): 1410		FINISH T	ΠΜΕ (hou	ars): 14:	32			CHEC	KED BY	: M. Ge	rmann	
		<u> </u>				S.	AMPLE:	5		PI	D		
ОЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
oft m	CONCRETE			->- 			_						
2-1	FILL					1/2	HPU	M		7.3	3.8		
			1/2	HPU	М		8.2	90					
indulating the state of the sta	FILL Sity clay, brown, and gravel	, wet, some fine sa	∍nd			2/2	HPU	w			1		
2	SILTY CLAY (C Light gray, brown	n, moist, some fine				2/2	HPU	м		18	3.2		
}	sand and fine gra	avel, stiff				2/2	НРО	М	•	17.5	١,	BTEX, SVOCs, Target Metals, pH	
10						2/2	HPU	M		18	3.5	BTEX, SVOCs, Target Metals, pH	
14	End of Boring												
16													
18													
20 6 Page	e: 1 of 1						Bor	ina N	o.: B-42				

BORING N	G NO; B-43 PROJECT NO: 15-04183,00-004 PROJECT NAME: Sipi Metals												
BORING L	OCATION: South of												
DRILLING	CO: CS Drilling				DRILL	RILLER: A. Mendez OREHOLE DIA: 2"							
DRILLING	EQUIP: Jackhamme	r Geoprobe			BORE	HOLE DI	A: 2"			_			
START DA	TE: 9/30/04		FINISH	1 DATE: 9/3	10/04				LOGG	ED BY:	S. Peter	son	
START TIN	4E (hours): 1159		FINIS	TIME (ho	urs): 12				CHEC	KED BY	M. Ger	mann	
						S	AMPLES	S		PI	D		
DEPTH		CRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
0 EC	CONCRETE			-1-1-1-1									
1 3	FILL	pist, medium to coa	arse			1.5/2	HPU	М		10.7			
grained, some silt and gravel						1.5/2	HPU	М		3.8		PNAs, TCLP Lead	
411	End of Boring at 4.0 Feet					-							
2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										:			
10 1		·								·			
12-4		•			·							. :	
14													
16													
18										,			
Page	e: 1 of 1					<u> </u>				Bor	na Ne	o.: B-43	

BORING NO: B-44 PROJECT NO: 15-04183.00-004 PROJECT NAME: Slpi Metals									_			
BORING LOCATION: In courtyard COORDINATES: DRILLING CO: CS Drilling DRILLER: A. Mandez												
DRILLING	CO: CS Drilling				DRILLE	ER: A. M	Aendez					
DRILLING	EQUIP: Dingo 420				BORE	OLE D	1A: 2"			_		
START DA	TE: 9/29/04		FINISH	DATE: 9/2	29/04				LOGG	ED BY:	S. Peter	son
START TIM	ME (hours): 1532		FINISH	TIME (hou	urs): 15				CHEC	KED BY	M. Ger	mann
						S	AMPLE:	<u> </u>		Pl	D	
ОЕРТН	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m	CONCRETE			7/ 7/2			-		<u> </u>			
2	FILL Sand, reddish brown, moist, fine to medium grained, some silt and grayet					1.5/2	HPU	М		2.6	6	TCLP Lead
Grades dark brown, saturated at 2.0 feet					1.5/2	НРО	s		1			
10 12 14 14 16 18 18 18 20 Page	End of Boring	g at 4.0 Feet										
Page	:: 1 of 1									Bori	ing No	D.: B-44

BORING N	O: B-45	0-004		PR	DIECT	NAME:	Sipi M	etals		·- · · · · · · · · · · · · · · · · · ·		
BORING LOCATION: Inside casting ring COORDINATES: DRILLING CO: CS Drilling DRILLER: A. Mendez												
DRILLING	CO: CS Drilling				DRILLI	R: A. Me	endez					
DRILLING	EQUIP: Jackhamme	r Geoprobe			BORE	HOLE DIA	4: 2 "					
START DA	TE: 9/30/04		FINISH	I DATE: 9/3	COORDINATES: DRILLER: A. Mendez BOREHOLE DIA: 2" ATE: 9/30/04 ME (hours): 1438 CHECKED BY: S. Peterson CHECKED BY: M. Germann SAMPLES PID REMARKS 2/2 HPU M 16.8 22.2							
START TIM	ME (hours): 1427		FINISH	I TIME (hou	ırs): 14	38			CHEC	KED BY	: M. Ger	mann
" '						SA	MPLE	3		PI	D	
ОЕРТН		GRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
OH M	CONCRETE			7.77	<u>.</u>		 					
oft m	FILL Sand, gravel, bro coarse grained, s	own, moist, mediur some silt	n tø	000 000 000		2/2	HPU	М		16.8	22.2	TCLP Lead
coarse grained, some silt End of Boring at 2.0 Feet												
4===	<u>-</u>											
6								-	Ì			
<u></u>			-									
8											:	
1] ,											
10==												
∃ } -												
12												
<i>_</i> ,											•	
1 = =			٦									
1												
16												
}												
18-						,					:	
‡											•	
]												
Page	o: 1 of 1			<u></u>	<u></u>				l	Bor	ina N	o.: B-45

Boring N	PRING NO: B-46 PROJECT NO: 15-04183,00-004 PRING LOCATION: Adjacent to B-7						PROJECT NAME: Sip Metals COORDINATES:						
BORING L	OCATION: Adjacent			cc	ORDINA	ATES:							
DRILLING	CO: CS Drilling			COORDINATES: DRILLER: A. Mendez BOREHOLE DIA; 2"									
DRILLING	EQUIP: Jackhamme	r Geoprobe		DRILLER: A. Mendez BOREHOLE DIA: 2" LOGGED BY: S. Peterson CHECKED BY: M. Germann									
START DA	TE: 9/30/04	· · ·	FINISH DATE: 9	30/04				LOGG	ED BY:	S. Peter	ъоп		
START TIM	AE (hours): 1343		FINISH TIME (ho	ะนะร): 14	14			CHEC	KED BY	: M. Ger	mann		
					S/	MPLE	S	i	Pi	D			
ОЕРТН	DES	SCRIPTION	GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
O TO	CONCRETE		7.77	-		+							
المسلما	FILL Sand, gravel, bro coarse grained,	own, moist, mediur	n to 200		1.2/2	HPU	М		0	16.6			
# 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		some siit		N. C. C.	1.2/2	HPU	м		10.8	18.2			
4 -	Wet at 4.0 feet		00°3 20°3		2/2	HPU	W/M			-			
6	CLAYEY SILT (Black, moist, sor	ne fine gravel											
8-1-2	SILTY CLAY (C Gray, moist, son sand and fine gra	ne mediun to coars	se III		2/2	нри	М		16.6	20.4	SVOCa Tarret		
10-1					2/2	HPU	м		**		Metals, pH, TCLP Lead SVOCs, Target		
12-	End of Boring	at 10.0 Feet					1		I		Metals, pH, TCLP Lead		
4													
14 				•									
16													
187	-												
20 6	e: 1 of 1				-						<u> </u>		
rage	. I VI I			-					ROL	ıng N	o.: B-46		

BORING N		PROJECT NO: 154	4183.00-004		PR	OJECT N	AME:	Sipi M	etals							
BORING L	DCATION: North of a	acid area			CO	ORDINA	TES:			D BY: S. Peterson ED BY: M. Germann PID UNDERSTRUCTURE STATE OF THE PID REMARKS 16.9 17.6						
DRILLING	CO: GS Drilling			ORILLE	R: A. Me	endez			GED BY: S. Peterson CKED BY: M. Germann PID REMARKS V O V J J 16.9 17.6							
DRILLING	EQUIP: Dingo 420			BOREH	OLE DI	4: 2"					·					
START DA	TE: 9/30/04		FINISH DATE: 9/	39/04				LOGG	ED BY:	S. Peter	son					
START TIM	ME (hours): 1315		FINISH TIME (ho	urs): 131	7			CHEC	KED BY	: M. Ger	mann					
					SA	MPLES	3		PI	D						
рертн	DES	CRIPTION	GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS					
oft m	CONCRETE		7.77	.}}		-										
2-	FILL Silty sand, brown medium sand, so	n, moist, fine to ome fine gravel			1.7/2	HPU	M		16.9	17.6						
2-1	SILTY CLAY (C	L)			1.7/2	HPU	М		1 .1	15.8	BTEX, TCLP Lead					
	End of Boring	ne fine to medium	sand													
6 1 2		,														
10 10 10 10 10 10 10 10 10 10 10 10 10 1								 			!					
}							· ·									
10=																
12-																
1										:						
14-	-															
46.3																
16-1																
18 =																
=	1															
20	<u> </u>						<u></u>									
Page	e: 1 of 1	·							Bor	ing N	o.: B-47					

BORING NO: 8-48 PROJECT NO: 15-04183.00-004 BORING LOCATION: Outside southwest cormer of building						PR	OJECT	NAME:	Sipi M	letals		<u> </u>
BORING L	OCATION: Outside s	outhwest cormer o	f buildin	9		co	ORDINA	ATES:				
DRILLING	CO: CS Drilling				DRILLE	R: A. M	endez	_			_	
DRILLING	EQUIP: Dingo 420				BORE	OLE DI	A: 2"					
START DA	TE: 9/29/04		FINISH	DATE: 9/:	29/04		•	_	LOGO	ED BY:	D. Lams	sma
START TIM	AE (hours): 0730		FINISH	TIME (ho	SAMPLES SAMPLES WELLHOD 1.5/2 HPU M 1.5/2 HPU M/W			CHEC	KED BY	: M. Gei	mann	
			-			SA	MPLE	S	·	PI	D	
В БЕРТН		CRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
ft m	ASPHALT	<u> </u>		-4 -	<u> </u>		- 					
<u></u>	FILL Gravel, gray, mo	ist, some sand				1.5/2	KPU	м		8.1	7.5	
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Sand, tan, moist grained	, fine to medium lay, dark brown, s	ome			1.5/2	нри	M/W		3.3	16.7	BTEX, MTBE, PNAs
7 1 4 4 16 8 10 12 14 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	End of Boring	at 4.0 Feet										
20-	: 1 of 1											o.: B-48

BORING N	ORING NO: 8-49 PROJECT NO: 15-04183,00-004 PROJECT NAME: SIPI Metals ORING LOCATION: In street, west of building COORDINATES:											
BORING L	OCATION: In street,	west of building		COORDINATES: DRILLER: A. Mendex								
DRILLING	CO: CS Drilling				DRILLS	ER: A. N	flendez					
DRILLING	EQUIP: Dingo 420				BORE	OFE D	IA: 2"					
START DA	TE: 9/30/04		FINIS	DATE: 9/	30/04		_		LOGO	ED BY:	S. Peter	Son
START TIM	ME (hours): 1120		FINISH	TIME (ho	ura): 11				CHEC	KED BY	: M. Ger	тапп
					<u> </u>	5/	AMPLE:	3		PI	D	-
ОЕРТН	DES	GRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	grained	ist, medium to coa	irse			1.5/2	HPU	M		0.4	14,3	
4	FILL Sand, black, mo- grained, some sl	ist, medium to coa It and gravel	rse		and and and and and and and and and and	1.5/2	HPU	M		14.6	17.2	BTEX, Total Lead
6 minimum 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	End of Boring	; at 4.0 Feet										
10 1			-									
1477												,
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
<u> </u>	e: 1 of 1			<u> </u>	<u> </u>	L			<u> </u>	 Вог	ing N	o.: B-49

Cla	yton
GROUP	SERVICES

BORING N	PROJECT NAME: Sipi Metals											
BORING L	OCATION: In north parking lot			COORDINATES: DRILLER: A. Mendez BOREHOLE DIA: 2" TE: 9/28/D4 LOGGED BY: D. Lamsma CHECKED BY: M. Germann SAMPLES PID REMARKS REMARKS								
DRILLING	CO: CS Drilling			DRILLE	COORDINATES: CLER: A. Mendez							
DRILLING	EQUIP: Dingo 420			BOREH	OLE DI	A: 2"	-		· · · · ·			
START DA	TE: 9/28/04	FINISH	DATE: 9/	28/04		· -		LOGG	SED BY:	D. Lams	ıma	
START TIM	//E (hours): 0823	FINISH	TIME (ho	urs): 084	10			CHEC	90 PID R PID		mann	
					SA	MPLES	3		PI	D		
DEPTH	DESCRIPTION	:	GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE		SCAN	HEADSPACE	REMARKS	
#	ASPHALT FILL Gravel, gray, moist, some sand FILL				2/2	HPU	M		58.9	63,2		
11 day 12 ret	Sand, dark brown/black, moist, sor sift and gravel	ne i			2/2	HPU	М		33.7	9.1		
	PEAT (PT) Black, moist, some sand, slight od- organics	or,		TO THE PARTY OF TH	2/2	HPU	М		23.4	102	TPH	
+++++++++++++++++++++++++++++++++++++++	SILTY CLAY (CL) Gray, brown, moist, some medium coarse sand, cohesive	to			2/2	HPU	M		16.3	31.4		
8 10					2/2	HPU	M		80.6	46.4		
14 14 16 18 18 18 18 18	End of Boring at 10.0 Feet										-	
20-	: 1 of 1		L				<u> </u>	L	Pa-	ine M	o · B 50	

BORING NO: B-51 PROJECT NO: 15-04183.00-004						PROJECT NAME: Sipi Metals							
BORING LOCATION: In north parking lot COORDINATES:													
DRILLING	CO: CS Drilling				DRILLER: A. Mendez								
DRILLING	EQUIP: Dingo 420		BOREHOLE DIA: 2"										
START DATE: 9/28/04 FINISH DATE: 9/2						/28/04 LOGGED BY: D. Lamama							
START TIM	/IE (hours): 0735	<u></u>	FINISH	TIME (ho	curs): 0812 CHECKED BY: M. Germann							mann	
						SAMPLES			PI	D			
ОЕРТН	DESCRIPTION			GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
	ASPHALT FILL Gravel, gray, moist, some sand FILL				2/2	HPU	М		0	0.4			
1. tricking	Sand, dark brown, black, moist, some sitt and fine gravel PEAT (PT) Black, moist, with silt, organics SILTY CLAY (CL) Gray, brown, moist, some medium to					2/2	HPU	М		0	43.8	TPH	
6						5/2	HPU	М		0	3		
8-1	coarse sand and fine gravel					2/2	HPU	М		0	2.1		
10-						2/2	HPU	М		0	1.7		
12 14 15 16 18 18 18 18 18 18 18 18 18 18 18 18 18	End of Boring	g at 10.0 Feet											
Page	Page: 1 of 1 Boring No.: B-51												

	Clayton
\	GROUP SERVICES

BORING N	0: 8-52 PROJECT NO: 15-	PROJECT NAME: Sipi Metals									
BORING LOCATION: Adjacent to B-13 COORDINATES:											
DRILLING	CO: CS Drilling	DRILLER: A. Mendez									
DRILLING	EQUIP: Dingo 420	BORE	BOREHOLE DIA: 2"								
START DA	TE: 9/30/04	9/30/04	N30/04 LOGGED BY: S. Peterson								
START TIM	AE (hours): 0728	ours): 07	curs): 0733 CHECKED BY: M. Germann								
				SAMPI		IPLES		PI	D		
Е ОЕРТН				RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
2 2	ASPHALT FILL Sand, gray, moist, fine to medium grained, some gravel	=2.5	P	2/2	HPU'	м		1.5	5.7	Total Lead	
# 0 2 4 4 6 6 1 2 2	SILTY CLAY (CL) Gray, moist, some fine to medium and fine gravel	sand		2/2	нец	М		1.1	4	:	
6 10 10 11 11 11 11 11 11 11 11 11 11 11	End of Boring at 4.0 Feet										
12 11 14 11 11 1											
16 18											
20 - 6 Page	Page: 1 of 1 Boring No.: B-52										

BORING NO: B-53 PROJECT NO: 15-04183,00-004 PROJECT NAME: Sipi Metals												
BORING L	OCATION: Outside fence, southwest of I	VW-1		COORDINATES:								
DRILLING	CO: CS Drilling		DRILLER: A. Mendez									
DRILLING	EQUIP: Dingo 420		BOREHOLE DIA: 2"									
START DA	TE: 9/30/04	U30/04 LOGGED BY: D. Lamsma										
START TIM	ME (hours): 1010	ours): 1020 CHECK						(ED BY: M. Germann				
			SAMPLES			<u> </u>	PI	D				
DESCRIPTION				NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS	
8 0 2 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILL Sand, dark brown, moist, fine to medium grained, some gravel, trace	e silt			1.5/	2 HPU	М		2	8.5		
_ 	Grades tan at 2.5 feet Wet at 4.0 feet				1.5/	2 HPU	м		10	6.9	Target Metals, ph	
Territore o	wet at 4.0 leet				1.2/	2 HPU	w		11.9	4.4		
6 - 2 - 2	Grades dark brown, saturated at 6. feet SILTY CLAY (CL) Gray, moist, some medium to coar				1.2/	2 HPU	\$/M		-	_		
8 Tribinda 10 Tr	sand, cohesive				1.5/	2 HPU	м	:	8	5.2		
12-1					1.5/	2 HPU	м		4.3	4.3	Target Metals, ph	
14 1	End of Boring at 12.0 Feet								:			
16												
1871771717												
Page	a: 1 of 1		L				·	<u> </u>	Bor	ing N	o.: B-53	

BORING N	O: B-54	PROJECT NAME: Sipi Metals												
BORING LOCATION: North of propane storage area COORDINATES:														
DRILLING CO: CS Drilling DRILLER: A. Mendez														
DRILLING	EQUIP: Dingo 420		BOREHOLE DIA: 2"											
START DATE: 9/29/04 FINISH DATE: 9/						LOGGED BY: S. Peterson								
START TIME (hours): 1555 FINISH TIME					nours): 1623					CHECKED BY: M. Germann				
				SAMPLO		AMPLES			PID					
Е БЕРТН				GRAPHIC	NUMBER	RECOVERY	МЕТНОР	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS		
# m 0	ASPHALT FILL Sand, black, moist, fine to medium grained, some silt and gravel, brick fragments			='		2/2	нри	М		2.9	6.3			
4 tr						2/2	HPU	M		6.7	8.9			
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SILTY CLAY (C Light brown, gra- sand and gravel	L) y, maist, some fine				2/2	HPU	М		12.2	9.1	.TPH		
2						2/2	HPU	M		14.8	7.3			
8 10 10						2/2	HPU	M		3.8	6.3			
10	End of Boring	at 10.0 Feet												
14 T											-			
16 tr									:					
18-1														
20 6	2.1.051									Пон	in a N	B 54		

Clayton
GROUP SERVICES

BORING NO	ING NO: B-55 PROJECT NO: 15-04183,00-004					PROJECT NAME: Sipi Metals						
BORING LO	OCATION: Adjacent	to MW-4				co	ORDINA	TES:				
DRILLING (CO: GS Drilling				DRILLE	R: A. Me	andez					
DRILLING I	EQUIP: Dingo 420				BOREH	OLE DIA	A: 2"					
START DA	TE: 9/30/04		FINISH	DATE: 9/30/04 LOGGED BY: S. Peterson								
START TIM	fE (hours): 1055		FINISH	TIME (hos	urs): 110	2			CHEC	KED BY	M. Ger	mann
				- -		SA	MPLES	}		PI	D	<u> </u>
рертн	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
E 0 11 11 11 11 11 11 11 11 11 11 11 11 1	ASPHALT FILL Sand, black, mo grained, some g	ist, medium to coa	rse	**************************************		2/2	HPU	м		0.2	14.1	SVOCs, Target
با دراندان ا	SILTY CLAY (C	L)				2/2	HPU	М		8.0	13.9	Metals, pH
4 10 12 14 16 18 10 12 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	Gray, moist, son sand and fine gr	ne medium to coar avel	se									
Pag	e: 1 of 1				_				·	Bor	ing N	o.: B-55

printed 01/27/2011 8:20AM by Richard.Jordan p. 182/383-

BORING N	O: B-56	0-004		Pf	ROJECTI	NAME	Sipi M	letals				
BORING L	OCATION: Adjacent	to B-20				C	CORDINA	TES:				
DRILLING	CO: CS Drilling	· 			DRILLI	ER: A. N	Mendez					
ORILLING	EQUIP: Dingo 420				BORE	IOLE D	LA: 2"	-		_		
START DA	TE: 9/30/04		FINISH	DATE: 9/3	30/04		_		LOGG	ED BY:	S. Peter	son
START TIM	/IE (hours): 1033		FINISH	I TIME (hor	urs): 10:	34			CHEC	KED BY	: M. Ger	mann
						S	AMPLE	3	{	PI	D	
DEPTH	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	метнор	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
# B B	FILL Sand and gravel,	Gravel, gray, moist FILL Sand and gravel, gray, moist, medium to coarse sand, some silt, wood chips Grades black at 2.0 feet				2/2	HPU	М		5	6.8	
2 1 1 1 1 1 1 1	to coarse sand, s Grades black at 2	some silt, wood chi	ips		3	2/2	нри	М		14.5	5.3	Total Lead
rational and a second	End of Boring	at 4.0 Feet										•
677.2										ž.		
8 8 1 1 1 1 1 1 1 1 1 1 1 1 1												
1014												
127			-			, 	,					
14 -] [
16 16										:		
† 10 to 10 t												
18-									}		,	
20- Page	: 1 of 1			L						Bor	ing N	o.: B-56

BORING N	O: B-57	PROJECT NO: 154	04183.00-00	04		PRO)ECT I	AME:	Sipi M	etals		
BORING L	OCATION: West of a	etention pond				coc	ORDINA	TES:				
DRILLING (CO: CS Drilling				DRILLE	R: A. Me	ndez					<u></u>
DRILLING 1	EQUIP: Dingo 420			BOREHOLE DIA: 2"								
START DA	TE: 9/30/04		FINISH D	ATE: 9/30/04 LOGGED BY: S. Peterson								son
START TIM	IE (hours): 1042		FINISH TI	ME (hou	E (hours): 1045 CHECKED BY: M. Gere							mann
		•				SAI	MPLES	<u>-</u>	PID			
ОЕРТН		SCRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	scan	HEADSPACE	REMARKS
tt m o		sist, medium toi cos				2/2	HPU	M		1	3.3	
1	grained, some ç Wet at 3.5 feet	ravel				2/2	HPU	M/W		4.3	4.5	Total Lead
4 6 8 10 12 14 16 18 18 20 6	End of Borin	g at 4.0 Feet										
	e: 1 of 1	<u> </u>			.		ţ	<u> </u>	<u> </u>	Bor	ina N	o.: B-57

(٦ [,]		Ź	ľ	y	1	t	C)	ľ	1
 C	K (Ö	ij	þ	5	Ë	K	٧	1 (Î.F.	5

BORNE COSTO	·· · · · · · · · · · · · · · · · · · ·						•		Sipi M	41213		
	BORING LOCATION: Adjacent to 8-19 COORDINATES:											
DRILLING CO: CS Dr	illing				DRILLS	R: A. M	endez			_		
DRILLING EQUIP: DI	ngo 420		_		BOREH	OLE DIA	4: 2"					
START DATE: 9/30/0-	4		FINISH	DATE: 9/	30/04				LOGO	ED BY:	D. Lams	ima
START TIME (hours):	1002		FINISH	TIME (ho	urs); 100	mann						
		· 			Т	SAMPLES			PID			
DEPTH	DESCR	IPTIÓN		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
oft m of the stand, of medium	ark brown, n n grained, so	noist, fine to me gravel				1/2	нри	M		1.6	7.6	Total Lead
<u>}</u>						1/2	HPU	М		10.2	6.6	Total Load
End o	f Boring at	4.0 Feet										

Page: 1 of 1

Boring No.: B-58

BORING NO	D: B-59 PROJECT NO: 15-C	14183.00-004			PR	OJECT N	AME	Sipi M	letals		
BORING LO	CATION: Forsyth Building	· · · · · · · · · · · · · · · · · · ·			co	ORDINA	TES:				····
DRILLING	CO: CS Drilling			DRILLE	R: A. M	endez			<u>. </u>		
DRILLING !	EQUIP: Dingo 420			BOREH	OLE DIA	4: 2"					
START DA	TE: 9/30/04	FINISH DATE	ATE: 9/30/04 LOGGED BY: S. Peterson								50n
START TIM	IE (hours): 0828	FINISH TIME	(hai	urs): 08	57			CHE	KED BY	: M. Ger	mann
					SA	MPLES	3		Pi	D	
ОЕРТН	DESCRIPTION	GRAPHIC		NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 <u>+</u> 0	CONCRETE		7-7			_					
הלגולות פרובים	FILL, Sand, gravel, black, moist, fine to medium sand, some silt, brick fragments				2/2	нри	м		15.2	4.4	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grades gray at 1,5 feet	ile Sile			2/2	HPU	м		19.4	5.7	
4	Asphalt pieces from 5.0 to 6.0 feet Grades dark brown at 6.5 feet				2/2	HPU	М		20.5	5.9	
8 1 2				- Interest of the second	2/2	HPU	М		19.7	3.7	
	SILTY CLAY (CL) Gray, moist, some fine sand and fi gravel	ne IIII			2/2	HPU	M	-	10.3	3.4	
10					2/2	HPU	M		19.3	5.2	
4					2/2	HPU	M		8.4	6.5	PNAs, Total Lead
					2/2	HPU	м		7.3	5.1	PNAs, Total Lead
16 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	End of Boring at 16.0 Feet			1							
20- 6 Page	e: 1 of 1	,	-						Po	rine N	o.: B-59

BORING N	O: B-60 PROJECT NO: 15-	D-0D4		F	ROJEC	TNAN	IE: Sip	i Metals			
BORING L	OCATION: Forsyth Building					COORD	NATE	S :			
DRILLING	CO: CS Drilling			DRILLI	ER: A.	Mende:	:				
DRILLING	EQUIP: Dingo 420			BORE	HOLE	DIA: 2"					
START DA	TE: 9/30/04	FINISH	I DATE: 9/	30/04				LC	GGED BY	r: S. Pete	rson
START TIM	ME (hours): 0917	FINISH	I TIME (ho	ME (hours): 0932 CHECKED BY: M. (rmann
				<u> </u>		SAMPL	.ES	1		PID	
ОЕРТН	DESCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTIIRE	W. O. W.O. IR	SCAN	HEADSPACE	REMARKS
o#mo	CONCRETE		71,77	╁		+-		+-			ł
0 E 0	FILL Sand, gray, moist, fine to medium grained, some silt and gravel, brick		(-) - /		2/2	≥ HP	U M		23.8	7.5	
•	fragments Grades black at 2.0 feet				2/2	2 HP	U M		20.4	6.3	
4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Asphalt pieces from 4.0 to 6.0 feet				2/2	₽ HP	υ M	ı	20.1	4	PNAs, Total Lead
6 8 10 12 4 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	End of Boring at 6.0 Feet				95 9						
18 11 1 1 6	1011										

Boring No.: B-60

BORING NO	G NO: B-61 PROJECT NO: 15-04183.00-004 PROJECT NAME: Sipi Metals											
BORING LO	CATION: Forsyth E	Building				co	ORDINA	TES:				
DRILLING (CO: CS Drilling				DRILLE	R: A. M	endez					
DRILLING E	EQUIP: Dingo 420	-			BORE	IOLE DI	A: 2"					. <u></u>
START DA	TE: 9/30/04		FINISH	DATE: 9/	30/04				LOGG	ED BY:	D. Lams	·ma
START TIM	E (hours); 0904		FINISH	TIME (ho	urs): 09	13			CHEC	KED BY	: M. Ge	mann
						\$/	MPLES	3	r	Pİ	D	· · · · · · · · · · · · · · · · · · ·
рертн	DES	SCRIPTION		GRAPHIC	NUMBER	RECOVERY	METHOD	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
0 m 0	CONCRETE			-7- <u>-</u> 7-2	-							
ft m 0	FILL Sand, gravel, gr	ay, moist, fine to				2/2	НРИ	М		18.4	5.3	1
2	fragments Grades dark bro				40 MIN 44 CO	2/2	HPU	м		18.1	5.7	
477						2/2	HPU	м		6.2	4.9	PNAs, Total Lea
6+++2	End of Borin	g at 6.0 Feet	<u> </u>			! !						
8 8 1							į,	1				
10-1												
12 =		•										
14 = 1				,								
16-1												
18 1												
20												
	e: 1 of 1			·				<u> </u>		Boi	ing N	lo.: B-61

Clayton
CROUP SERVICES

BORING N	O: B-62	-004		PRO	DECT	VAME:	Sipi M	etals				
BORING L	OCATION: Adjacent	to MW-5				CO	ORDINA	TES:	,			·····
DRILLING	CO: CS Drilling				DRILLE	R: A. Me	ındez					
DRILLING	EQUIP: Dinga 420				BORE	IOLE DIA	l: 2"			_		
START DA	TE: 9/29/04		FINISH	DATE: 9/2	19/04				LOGG	ED BY:	D. Lams	ima
START TIM	RE (hours): 0750		FINISH	TIME (hou	urs): 07	59			CHEC	KEO BY	: M. Ger	mann
:			ļ			SA	MPLE:	3		PI	D	
БЕРТН	DES	CRIPTION		GRAPHIC	NUMBER	RECOVERY	МЕТНОВ	MOISTURE	BLOW CNT (6")	SCAN	HEADSPACE	REMARKS
1 H 0 H 0 H	ASPHALT				4							
**************************************		n, moist, some gra				2/2	нри	M		0	6.6	
E0 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grades dark brown 1.0 foot Silt and clay at 3	wn/black, some sill .0 feet	t at			2/2	H₽U	М		1	5.5	PNAs
4	Saturated at 4.0	feet										
<u> </u>	<u>-</u>					1.5/2	HPU	S/M				
[]	SILTY CLAY (CI Gray, brown, mo coarse sand, coh	ist, some medium	to			1.5/2	нри	М		2	6.9	PNAs
107	End of Boring	at 8.0 Feet										
12-3	1											
14 1		,										
16 -												
18 1												
20 - 6 Page) : 1 of 1		<u></u>							Bor	ina N	o.: B-62

APPENDIX E

SEPTEMBER 24, 2004 LETTER FROM THE ILLINOIS EPA

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004 / MEM/JMF

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Crand Avenue East, P.O. Box 19276, Springfield, Julinois 62794-9276, 217-782-3397 James R. Thompson Center, 100 West Randolph, Suite 11-300, Chicago, IL 60601, 312-814-6026

ROD R. BLAGOJEVICH, GOVERNOR

RENEE CIPRIANO, DIRECTOR

217/785-8410

7002 3150 0000 1113 4499

September 24, 2004

Leslie S. Pinsof SiPi Metals Corporation 1720 N. Elston Avenue Chicago, IL 60622

Refer to: 0316005887 - Cook County

Chicago/SiPi Metals Corporation Site Remediation Program/Technical

Dear Mr. Pinsof:

The Illinois Environmental Protection Agency (Illinois EPA) has completed review of the Phase I Environmental Site Assessment (dated August 9, 2004) and the Phase II Environmental Investigation (dated September 14, 2004). Per our meeting on September 23, 2004 to discuss further site investigation and the review of the above referenced documents, the Illinois EPA has the following comments.

- 1) Please refer to 35 Illinois Administrative Code 620.210 for the definition of Class I groundwater. I believe the site groundwater would be classified as Class II because it does not meet the Class I requirement of being located 10 feet or more below the land surface and is not in contact with an underlying hydraulfe zone.
- 2) The Target Compound List (TCL) semivolatile organics (SVOCs) and inorganics should be run at soil sampling locations in each Recognized Environmental Conditions (REC) area proposed for additional sampling. This is being requested to complete requirements for a comprehensive investigation. In addition, pH should be run in conjunction with the inorganic testing.
- 3) The vertical soil delineation needs to be determined in a few REC areas. This delineation will also help verify if the native silty clay geologic layer has been impacted by site contamination conditions.
- 4) Methyl Tertiary-butyl ether (MTBE) needs to be sampled for at any gasoline tank storage areas that had been in use since 1978.

ROCKFORD = 4302 North Main Street, Rockford, IL 61103 = (815) 987-7760 • DES PLAINES = 9511 W. Harrison St., Des Plaines, IL 60016 = (847) 294-4000 ELGIN = 595 South State, Elgin, IL 60123 = (847) 608-3131 • PEORIA = 5415 N. University St., Peoria, IL 61614 = (309) 693-5463 • CHAMPAIGN = 2125 South First Street, Champaign, IL 61820 = (217) 278-5800 SPRINGFIELD = 4500 S. Sixth Street Rd., Springfield, IL 62706 = (217) 786-6892 • COLLINSVILLE = 2009 Mall Street, Collinsville, IL 62234 = (618) 346-5120 MARION = 2309 W. Main St., Suite 116, Marion, IL 62959 = (618) 993-7200

- 5) A lead grab sample may be collected again at boring B-3 to verify past results. A filtered and un-filtered sample can be sent to the laboratory for analysis comparison.
- 6) The site boundary may be redefined at a later date to include the Howard Medical Building and Forsyth building area once ownership has been obtained and the investigation in this area has been completed.
- 7) The use of a Soil Management Zone (SMZ) to move around contaminated soil from one contaminated area to another on-site contaminated area could be used in the future once a proposal outlining this is approved. No soil moving on-site is permitted with out an approved SMZ. Please refer to 35 Illinois Administrative Code 740.535 for requirements to establish SMZs.
- 8) The remediation site shall be identified by the Remediation Applicant ("RA") as that property, or portion of a property, where a No Further Remediation ("NFR") letter is requested.

The site investigation report shall include a map identifying all on-site and off-site injection wells and withdrawal wells (pursuant to 35 Illinois Administrative Code ("35 IAC") Part 740.425(b)(2)(D)(ii) and 740.435(b)(2)(C)(ii)) within at least 1,000 feet of the remediation site in accordance with 35 IAC 740.210(a)(7). Regulated recharge areas and modeled recharge areas must also be identified to determine if the extent of these areas exist within the 1,000-foot area surrounding the remediation site. This information shall be collected by the consultant, by contacting all of the following sources:

Illinois State Geological Survey;
Illinois State Water Survey;
Illinois EPA Division of Public Water Supply;
Illinois Department of Public Health;
County and Municipal Health Departments; and
Local water supply entity (i.e., public water districts, public water supply companies).

The consultant may obtain the information through appropriate web sites, written inquiry or by telephone to identify potential water wells within the distances identified above. The consultant, shall submit a map with the locations of all onsite and off-site injection wells and withdrawal wells and regulated and modeled recharge areas within at least 1,000 feet of the remediation site (no less than one inch equals 200 feet), and a certification form that states all of the above sources have been contacted.

If the site investigation or remediation objectives report identifies that contamination has migrated off the remediation site or is predicted to travel off the remediation site, the consultant, shall provide a map identifying all the on-site

printed 01/27/2011 8:20AM by Richard.Jordan p. 192/383**-**

and off-site injection wells and withdrawal wells and regulated or modeled recharge areas within 1,000 feet of the most downgradient point of contamination. This information shall be collected by the consultant, by contacting all of the following sources:

Illinois State Geological Survey;
Illinois State Water Survey;
Illinois EPA Division of Public Water Supply;
Illinois Department of Public Health;
County and Municipal Health Departments; and
Local water supply entity (i.e., public water districts, public water supply companies).

In addition to the above sources, a physical well survey may be required to positively identify any water wells. This physical survey will include, at a minimum, the placement of written information at properties within the measured or modeled distance of the groundwater plume.

The consultant shall submit a map with the locations of all on-site and off-site injection wells and withdrawal wells and recharge areas within at least 1,000 feet of the most downgradient point of contamination (no less than one inch equals 200 feet), and a certification form that states all of the above sources have been contacted.

Sincerely,

Tammy S. Smith

Voluntary Site Remediation Unit Remedial Project Management Section Division of Remediation Management

Bureau of Land

cc: Russell Chadwick
Clayton Group Services
3140 Finley Road
Downers Grove, IL 60515

APPENDIX F

LABORATORY ANALYTICAL RESULTS

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001 / 11/29/2004/ MEM/JMF

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

August 17, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183

First Environmental File ID: 34321-28

Date Received: August 10, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results, except for TCLP analyses, have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183

Sample Number:

34321

Sample Description: B-10A/4-6

34321-28

Date Received:

08/10/04

Date Taken: Time Taken: 08/09/04

8:34

Date Reported:

08/18/04

Analyte	Result	Units	Flags
Solids, Total	86.55	%	
BTEX Method 5035A/8260B Analysis Date: 08/16/04			
Analysis Date: 08/16/04			
Benzene	< 2.0	ug/kg	
Toluene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
Xylenes (total)	< 5.0	ug/kg	

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/12/04

Analysis Date:

08/15/04

Naphthalene	. 572	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	818	ug/kg
Fluorene	1,130	ug/kg
Phenanthrene	371	ug/kg
Anthracene	428	ug/kg
Fluoranthene	894	ug/kg
Pyrene	996	ug/kg
Benzo[a]anthracene	416	ug/kg
Chrysene	401	ug/kg
Benzo[b]fluoranthene	303	ug/kg
Benzo[k]fluoranthene	326	ug/kg
Benzo[a]pyrene	345	ug/kg
Indeno[1,2,3-cd]pyrene	216	ug/kg
Dibenz[a,h]anthracene	68	ug/kg
Benzo[g,h,i]perylene	182	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34324

Sample Description: B-11/MW-3A 4-6

Lab File ID:

34321-28

Date Received:

08/10/04

Date Taken: Time Taken: 08/09/04

Flags

Date Reported:

9:55 08/18/04

Analyte	Result	Units
Solids, Total	85.96	%

BTEX Method 5035A/8260B

Analysis Date:

08/16/04

Benzene	8.2	ug/kg
Toluene	< 5.0	ug/kg
Ethyl benzene	5 .1	ug/kg
Xylenes (total)	< 5.0	ug/kg

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date:

08/17/04

Naphthalene		7,430	ug/kg
Acenaphthylene		518	ug/kg
Acenaphthene		1,420	ug/kg
Fluorene		1,740	ug/kg
Phenanthrene		8,480	ug/kg
Anthracene		2,560	ug/kg
Fluoranthene		19,600	ug/kg
Pyrene		28,900	ug/kg
Benzo[a]anthracene		12,900	ug/kg
Chrysene		12,400	ug/kg
Benzo[b]fluoranthene		14,600	ug/kg
Benzo[k]fluoranthene	i,	8,690	ug/kg
Benzo[a]pyrene		22,400	ug/kg
Indeno[1,2,3-cd]pyrene		9,550	ug/kg
Dibenz[a,h]anthracene		2,590	ug/kg
Benzo[g,h,i]perylene	•	9,010	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34322

Sample Description: B-12A/2-4

Lab File ID:

34321-28

Date Received:

08/10/04

Date Taken: Time Taken:

08/09/04 9:33

Date Reported:

08/18/04

Analyte	Result	Units	Flags
Solids, Total	82.94	%	
BTEX Method 5035A/8260B Analysis Date: 08/16/04			
Benzene	< 2.0	ug/kg	
Toluene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
Xylenes (total)	< 5.0	ug/kg	
Polypuclear Aromatic Compounds Metho	a 3540C/8270C		

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/12/04

Analysis Date:

Naphthalene	. 182	ug/kg
Acenaphthylene	71	ug/kg
Acenaphthene	87	ug/kg
Fluorene	103	ug/kg
Phenanthrene	1,250	ug/kg
Anthracene	332	ug/kg
Fluoranthene	2,780	ug/kg
Ругепе	2,890	ug/kg
Benzo[a]anthracene	1,740	ug/kg
Chrysene	1,870	ug/kg
Benzo[b]fluoranthene	1,590	ug/kg
Benzo[k]fluoranthene	1,710	ug/kg
Benzo[a]pyrene	1,980	ug/kg
Indeno[1,2,3-cd]pyrene	1,150	ug/kg
Dibenz[a,h]anthracene	316	ug/kg
Benzo[g,h,i]perylene	961	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 198/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34323

Sample Description: B-12B/6-8

Lab File ID:

34321-28

Date Received:

08/10/04

Date Taken:

08/09/04

Time Taken:

9:39

Date Reported:

08/18/04

Analyte	Result	Units	Flags
Solids, Total	86.22	%	
BTEX Method 5035A/8260B			
Analysis Date: 08/16/04			
Benzene	< 2.0	ug/kg	
Toluene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
Xylenes (total)	< 5.0	ug/kg	
Polomodon America Company and Market	1 5 5 4 D C V D 5 5 D C		

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/12/04

Analysis Date:

Naphthalene	. < 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg
Benzo[a]anthracene	< 8.7	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	< 11	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	< 50	ug/kg

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34325

Sample Description: B-15A/2-4 Lab File ID:

Date Received: Date Taken:

08/10/04 08/09/04

Time Taken:

< 5.0

ug/kg

15:25

34321-28

Date Reported:

08/18/04

Analyte	Result	Units	Flags
Solids, Total	81.14	%	
BTEX Method 5035A/8260B Analysis Date: 08/16/04			
Benzene	< 2.0	ug/kg	
Toluene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/12/04

Analysis Date:

Xylenes (total)

Naphthalene	44	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	204	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	134	ug/kg
Pyrene	116	ug/kg
Benzo[a]anthracene	77	ug/kg
Chrysene	97	ug/kg
Benzo[b]fluoranthene	67	ug/kg
Benzo[k]fluoranthene	46	ug/kg
Benzo[a]pyrene	82	ug/kg
Indeno[1,2,3-cd]pyrene	35	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	< 50	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 200/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34326

Sample Description: B-15B/6-8

Lab File ID:

34321-28

Date Received:

08/10/04

Date Taken:

08/09/04

Time Taken: Date Reported: 15:20 08/18/04

Analyte

Result

Flags

Solids, Total

80.52

%

Units

BTEX Method 5035A/8260B

Analysis Date:

08/16/04

Benzene	
Toluene	
Ethyl benzene	
Xylenes (total)	

< 2.0ug/kg < 5.0 ug/kg < 5.0ug/kg

< 5.0 ug/kg

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/12/04

Analysis Date:

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg·
Benzo[a]anthracene	< 8.7	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	< 11	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	< 50	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34327

Sample Description:

B-14/MW-2A 5

Lab File ID:

34321-28

Date Received:

08/10/04

Time Taken:

Date Taken:

08/09/04

Time ra

11:19

Date Reported:

08/18/04

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	83.38	%	08/11/04	160.3
pH @ 25°C (1:10)	8.73	units	08/11/04	9045C
Total Metals				
Arsenic	2.9	mg/kg	08/16/04	3050B/6010B
Barium	46.4	mg/kg	08/16/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/16/04	3050B/6010B
Chromium	24.9	mg/kg	08/16/04	3050B/6010B
Lead	18.0	mg/kg	08/16/04	3050B/6010B
Mercury	<0.05	mg/kg	08/13/04	7470A
Selenium	<0.2	mg/kg	08/16/04	3050B/6010B
Silver	<0.1	mg/kg	08/16/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/16/04	3010A/6010B
Barium	<1.0	mg/L	08/16/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/16/04	3010A/6010B
Chromium	<0.001	mg/L	08/16/04	3010A/6010B
Lead	0.014	mg/L	. 08/16/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/16/04	3010A/6010B
Silver	< 0.001	mg/L	08/16/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34328

Sample Description: Lab File ID:

B-14/MW-2B 8

34321-28

Date Received:

08/10/04

Date Taken:

08/09/04

Time Taken:

11:25

Date Reported:

08/18/04

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	79.68	%	08/11/04	160.3
pH @ 25°C (1:10)	8.75	units	08/11/04	9045C
Total Metals				
Arsenic	9.1	mg/kg	08/16/04	3050B/6010B
Barium	29.0	mg/kg	08/16/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/16/04	3050B/6010B
Chromium	19.2	mg/kg	08/16/04	3050B/6010B
Lead	18.1	mg/kg	08/16/04	3050B/6010B
Mercury	<0.05	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/16/04	3050B/6010B
Silver	<0.1	mg/kg	08/16/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/16/04	3010A/6010B
Barium	<1.0	mg/L	08/16/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/16/04	3010A/6010B
Chromium	< 0.001	mg/L	08/16/04	3010A/6010B
Lead	< 0.002	mg/L	08/16/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/16/04	3010A/6010B
Silver	< 0.001	mg/L	08/16/04	3010A/6010B

CHAIN OF CUSTODY RECORD Environmental

Laboratories, Inc.

Page / of pgs

First Environmental Laboratories 1600 Shore Road, Suite D
Naperville, Illinois 60563
Phone: (630) 778-1200 • Fax: (630) 778-1233
24 Hr. Pager (708) 569-7507
E-mail: info@firstenv.com
IEPA Certification# 100292

Zp. 60515 795-1130 Clayton Group Savices Lamsma Mueller Street Address: 3/40 Finlay City: Downers Grove Send Report To: Marie Sampled By: Oarrea Phone: 795-3200 Company Name:

	77700						4	Analyses		
Project I.D. 15-04/83	-04183			`			1			
P.O. # ::				\		\	~ (3)	\ \{\}		
				\				31	\	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	``	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ر الحري الحري			
Matrix Order	Martiv Orden C - Cail W - West - O - Cal.		/4	10000000000000000000000000000000000000	分 込	\4 \?\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>		
Date/Time Taken	Sample Description	Matrix	\	<u>`</u>	>	<u></u>			Comments	Yahin
4530 4/8	3-104/4-6	\ <u>\</u>	×	X	-	<u> </u>				46.60
1 0977	8-12 4 /2-4	2	×	×	\vdash					1000
0939	8-11811-8	~	×	×	+-	-				7 7
1.440	B-12C/ 10-12	n			 				HALD	
0,955	7-11 85-4W/11-8	ч	×	×	_	_				200
0/0/	6 W-10	≨	L			_			0704	3
1525	13-154/2-4	<u>^</u>	×	×	-					37.6
1520	8-9/8 51-8	N	X	X						7
7151	13-12 0/ 10-13	~							HOLD	8 1
6///	B-14/ MW-ZA 5	~			×	×	.,			17.5
52//	1125 B.14/ MW-Z B 8	2			×	X				320
82/1	B-14/4W-8C 11	ч			-				4010	1

Cooler Temperature:

Received within 6 hrs. of collection:

Notes and Special Instructions:

Date/Time 8-10-04 (200	Date/Time
ived By:	eived By:
Date Time Stolet 0600 Received By	_ Date/Time Rece
Relinquished By: Lean +	Relinquished By:

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

August 20, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183

First Environmental File ID: 34608-30 Date Received: August 12, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results for the soil samples have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34610

Sample Description:

B-13A/1.5

Lab File ID:

34608-30

Date Received:

08/12/04

Date Taken:

08/10/04

Time Taken:

7:55

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	93.75	9/0	08/16/04	160.3
pH @ 25°C (1:10)	8.59	units	08/13/04	9045C
Total Metals	•			
Arsenic	7.6	mg/kg	08/17/04	3050B/6010B
Barium	88. <i>5</i>	mg/kg	08/17/04	3050B/6010B
Cadmium	14.5	mg/kg	08/17/04	3050B/6010B
Chromium	15.4	mg/kg	08/17/04	3050B/6010B
Lead	1,200	mg/kg	08/17/04	3050B/6010B
Mercury	0.36	mg/kg	08/13/04	7470A
Selenium	<0.2	mg/kg	08/17/04	3050B/6010B
Silver	20.3	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	0.005	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.143	mg/L	08/17/04	3010A/6010B
Chromium	0.002	mg/L	08/17/04	3010A/6010B
Lead	0.680	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	. 08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 206/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Date Received:

08/12/04

Sample Number:

34611

Date Taken:

08/10/04

Sample Description:

B-13B/3

Time Taken:

7:57

Lab File ID:

34608-30

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	97.88	%	08/16/04	160.3
pH @ 25°C (1:10)	8.37	units	08/13/04	9045C
Total Metals				
Arsenic	1.1	mg/kg	08/17/04	3050B/6010B
Barium	2.8	mg/kg	08/17/04	3050B/6010B
Cadmium	<0.1	mg/kg	08/17/04	3050B/6010B
Chromium	1.3	mg/kg	08/17/04	3050B/6010B
Lead .	3.4	mg/kg	08/17/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/13/04	7470A
Selenium	<0.2	mg/kg	08/17/04	3050B/6010B
Silver	<0.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals			-	
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Вапит	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.009	mg/L	08/17/04	3010A/6010B
Chromium	0.002	mg/L	08/17/04	3010A/6010B
Lead	0.030	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	m mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 207/383

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34608

Sample Description:

B-16A/2

Lab File ID:

34608-30

Date Received:

08/12/04

Date Taken:

08/10/04

Time Taken:

7:22

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	87.12	%	08/16/04	160.3
pH @ 25°C (1:10)	8.16	units	08/13/04	9045C
Total Metals	,			
Arsenic	16.0	mg/k g	08/17/04	3050B/6010B
Barium	94.9	mg/kg	08/17/04	3050B/6010B
Cadmium	6.9	mg/kg	08/17/04	3050B/6010B
Chromium	10.8	mg/kg	08/17/04	3050B/6010B
Lead	299	mg/kg	08/17/04	3050B/6010B
Mercury	0.09	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	0.8	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	0.003	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.028	mg/L	08/17/04	3010A/6010B
Chromium	< 0.001	mg/L	08/17/04	3010A/6010B
Lead	0.030	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

Project ID: Date Received: 08/12/04 15-04183 Sample Number: 34609 Date Taken: 08/10/04 Sample Description: Time Taken: 7:26 B-16B/4 Lab File ID: 34608-30 Date Reported: 08/20/04

Date Analyzed Method Analyte Result Units Solids, Total 86.70 % 08/16/04 160.3 pH @ 25°C (1:10) 08/13/04 9045C 8.35 units **Total Metals** Arsenic 1.0 08/17/04 3050B/6010B mg/kg 2.4 Barium mg/kg 08/17/04 3050B/6010B Cadmium < 0.1mg/kg 08/17/04 3050B/6010B Chromium 1.4. mg/kg 08/17/04 3050B/6010B Lead 1.3 mg/kg 08/17/04 3050B/6010B < 0.05 mg/kg 7470A Mercury 08/13/04 Selenium < 0.2 mg/kg 08/17/04 3050B/6010B <0.1 Silver mg/kg 08/17/04 3050B/6010B **TCLP Metals** Arsenic < 0.002 mg/L 08/17/04 3010A/6010B Barium <1.0 mg/L 08/17/04 3010A/6010B Cadmium 0.002 mg/L 08/17/04 3010A/6010B Chromium 0.002 mg/L08/17/04 3010A/6010B Lead 0.012 mg/L 08/17/04 3010A/6010B Mercury <0.0005 mg/L08/13/04 7470A Selenium < 0.002 mg/L 08/17/04 3010A/6010B Silver < 0.001 mg/L08/17/04 3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34613

Sample Description:

B-17/MW-4A 1.5

Lab File ID:

34608-30

Date Received:

08/12/04

Date Taken: Time Taken: 08/10/04

10:25

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	84.17	%	08/16/04	160.3
pH @ 25°C (1:10)	8.13	units	08/13/04	9045C
Total Metals				
Arsenic	21.3	mg/kg	08/17/04	3050B/6010B
Barium	219	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	26.6	mg/kg	08/17/04	3050B/6010B
Lead	1,090	mg/kg	08/17/04	3050B/6010B
Mercury	0.24	mg/kg	08/13/04	7470A
Selenium	1.3	mg/kg	08/17/04	3050B/6010B
Silver	1.7	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	0.008	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.043	mg/L	08/17/04	3010A/6010B
Chromium	0.004	mg/L	08/17/04	3010A/6010B
Lead	0.619	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	0.002	mg/L	08/17/04	3010A/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 210/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34614

Sample Description:

B-17/MW-4B 4

Lab File ID:

34608-30

Date Received:

08/12/04

Date Taken:

08/10/04

Time Taken:

10:34

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	82.70	%	08/16/04	160.3
pH @ 25°C (1:10)	8.33	units	08/13/04	9045C
Total Metals		·		
Arsenic	16.7	mg/kg	08/17/04	3050B/6010B
Barium	48.8	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	19.3	mg/kg	08/17/04	3050B/6010B
Lead	24.0	mg/kg	08/17/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	<0.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/17/04	3010A/6010B
Chromium	0.002	${ m mg/L}$	08/17/04	3010A/6010B
Lead	0.034	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	. 08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34616

Sample Description: B-18A/0-2 Lab File ID:

34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken: Date Reported:

15:50 08/20/04

Analyte Solids, Total

97.02

Result

Units Flags

%

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/17/04

Acatoma	< 10.0	
Acetone Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform		ug/kg
	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	u g/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg
A control desired		-66

printed 01/27/2011 8:20AM by Richard.Jordan p. 212/383**-**

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Lab File ID:

Silver

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34616

Sample Description: B-18A/0-2 34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken: Date Reported:

Result

08/17/04

15:50

08/20/04

Flags

Units

ug/kg

3010A/6010B

Analyte

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04 08/18/04

Analysis Date: < 25 ug/kg Naphthalene Acenaphthylene < 50ug/kg < 50 Acenaphthene ug/kg < 50 Fluorene ug/kg < 50 ug/kg Phenanthrene < 50 Anthracene ug/kg Fluoranthene < 50 ug/kg < 50 Pyrene ug/kg Benzo[a]anthracene < 8.7ug/kg < 50 Chrysene ug/kg Benzo[b]fluoranthene < 11 ug/kg < 11Benzo[k]fluoranthene ug/kg < 15 Benzo[a]pyrene ug/kg Indeno[1,2,3-cd]pyrene < 29 ug/kg < 20 Dibenz[a,h]anthracene ug/kg Benzo[g,h,i]perylene < 50

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.31	units	08/13/04	9045C
Total Metals				
Arsenic	1.1	mg/kg	08/17/04	3050B/6010B
Barium	4.1	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	1.8	mg/kg	08/17/04	3050B/6010B
Lead	1.7	mg/kg	08/17/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	<0.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.002	mg/L	08/17/04	3010A/6010B
Chromium	0.002	mg/L	08/17/04	3010A/6010B
Lead	0.006	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
	.0.001	T ,~	00/4 5/04	20101///0102

mg/L

< 0.001

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34615

Sample Description: B-18B/6-8 Lab File ID:

34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken:

15:46

Date Reported:

08/20/04

Flags

Solids, Total

Analyte

Result 96.69

Units

%

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/17/04

Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	u <i>g</i> /kg
Xylenes (total)	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 214/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183 34615

Sample Description: B-18B/6-8 34608-30

Date Received:

08/12/04 08/10/04

Date Taken: Time Taken:

15:46

Date Reported: 08/20/04

Result Units Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date:

Analyte

08/18/04

inacyoto Date.	COLLORDA		
Naphthalene		< 25	ug/kg
Acenaphthylene		< 50	ug/kg
Acenaphthene		< 50	ug/kg
Fluorene		< 50	ug/kg
Phenanthrene		< 50	ug/kg
Anthracene		< 50	ug/kg
Fluoranthene		< 50	ug/kg
Pyrene		< 50	ug/kg
Benzo[a]anthracene		< 8.7	ug/kg
Chrysene		< 50	ug/kg
Benzo[b]fluoranthene		< 11	ug/kg
Benzo[k]fluoranthene	;	< 11	ug/kg
Benzo[a]pyrene		< 15	ug/kg
Indeno[1,2,3-cd]pyrer	ne	< 29	ug/kg
Dibenz[a,h]anthracen	е	< 20	ug/kg
Benzo[g,h,i]perylene		< 50	ug/kg

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.83	units	08/13/04	9045C
Total Metals				
Arsenic	1.0	mg/kg	08/17/04	3050B/6010B
Barium	3.4	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	1.4	mg/kg	08/17/04	3050B/6010B
Lead	1.2	mg/kg	08/17/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	< 0.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals			•	
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.003	mg/L	08/17/04	3010A/6010B
Chromium	0.002	mg/L	08/1 7 /04	3010A/6010B
Lead	0.007	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: Project ID: Sample Number: Sample Description:		Date Received: Date Taken: Time Taken: Date Reported:	08/12/04 08/10/04 15:55
Lab File ID:	34608-30	Date Reported:	08/20/04

Description: B-19A/0-2 D: 34608-30		Time Taken: Date Reported:	
Analyte	Result	Units	Flags
Solids, Total	94.34	%	
Volatile Organic Compounds Analysis Date: 08/18/04			
Acetone	< 10.0	ug/kg	
Benzene	< 5.0	ug/kg	
Bromodichloromethane	< 5.0	ug/kg	
Bromoform	< 5.0	ug/kg	
Bromomethane	< 10.0	ug/kg	
2-Butanone	< 10.0	ug/kg	
Carbon disulfide	< 5.0	ug/kg	
Carbon tetrachloride	< 5.0	ug/kg	
Chlorobenzene	< 5.0	ug/kg	
Chlorodibromomethane	< 5.0	ug/kg	
Chloroethane	< 10.0	ug/kg	
Chloroform	< 5.0	ug/kg	
Chloromethane	< 10.0	ug/kg	
1,1-Dichloroethane	< 5.0	ug/kg	
1,2-Dichloroethane	< 5.0	ug/kg	
1,1-Dichloroethene	< 5.0	ug/kg	
cis-1,2-Dichloroethene	< 5.0	ug/kg	
trans-1,2-Dichloroethene	< 5.0	ug/kg	
1,2-Dichloropropane	< 5.0	· ug/kg	
cis-1,3-Dichloropropene	< 5.0	ug/kg	
trans-1,3-Dichloropropene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
2-Hexanone	< 10.0	ug/kg	
4-Methyl-2-pentanone	< 10.0	ug/kg	
Methylene chloride	< 5.0	ug/kg	
MTBE	_ < 5.0	ug/kg	
Styrene	< 5.0	ug/kg	
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg	
Tetrachloroethene	< 5.0	ug/kg	
Toluene	< 5.0	ug/kg	•
1,1,1-Trichloroethane	< 5.0	ug/kg	
1,1,2-Trichloroethane	< 5.0	ug/kg	
Trichloroethene	< 5.0	ug/kg	
Vinyl Acetate	< 10.0	ug/kg	
Vinyl Chloride	< 10.0	ug/kg	
Xylenes (total)	< 5.0	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 216/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Silver

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183 34617

Sample Description: B-19A/0-2 34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken:

Result

15:55 08/20/04

Analyte

Date Reported: Units

Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date:

08/18/04

Naphthalene	67	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	. < 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	210	ug/kg
Anthracene	< 50	ug/k g
Fluoranthene	264	ug/kg
Pyrene	247	ug/kg
Benzo[a]anthracene	142	ug/kg
Chrysene	160	ug/kg
Benzo[b]fluoranthene	128	ug/kg
Benzo[k]fluoranthene	157	ug/kg
Benzo[a]pyrene	171	ug/kg
Indeno[1,2,3-cd]pyrene	110	ug/kg
Dibenz[a,h]anthracene	28	ug/kg
Benzo[g,h,i]perylene	94	ug/kg

8.33	units	08/13/04	9045C
5.5 57.4 1.7 8.4 112 0.10 <0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	08/17/04 08/17/04 08/17/04 08/17/04 08/17/04 08/13/04 08/17/04	3050B/6010B 3050B/6010B 3050B/6010B 3050B/6010B 3050B/6010B 7470A 3050B/6010B
12	mg/kg	08/17/04	3050B/6010B
<0.002 <1.0 0.038 0.002 0.315 <0.0005	mg/L mg/L mg/L mg/L mg/L mg/L	08/17/04 08/17/04 08/17/04 08/17/04 08/17/04 08/13/04	3010A/6010B 3010A/6010B 3010A/6010B 3010A/6010B 3010A/6010B 7470A 3010A/6010B
	57.4 1.7 8.4 112 0.10 <0.2 12 <0.002 <1.0 0.038 0.002 0.315	5.5 mg/kg 57.4 mg/kg 1.7 mg/kg 8.4 mg/kg 112 mg/kg 0.10 mg/kg <0.2 mg/kg 12 mg/kg 12 mg/kg 12 mg/L <1.0 mg/L 0.038 mg/L 0.002 mg/L 0.315 mg/L <0.0005 mg/L	5.5 mg/kg 08/17/04 57.4 mg/kg 08/17/04 1.7 mg/kg 08/17/04 8.4 mg/kg 08/17/04 112 mg/kg 08/17/04 0.10 mg/kg 08/13/04 <0.2 mg/kg 08/17/04 12 mg/kg 08/17/04 12 mg/kg 08/17/04 <0.002 mg/L 08/17/04 <1.0 mg/L 08/17/04 0.038 mg/L 08/17/04 0.002 mg/L 08/17/04 0.035 mg/L 08/17/04 0.315 mg/L 08/17/04 <0.0005 mg/L 08/17/04

mg/L

08/17/04

3010A/6010B

<0.001

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

15-04183 34618

Sample Description: B-19B/4-6

Lab File ID: 34608-30

Solids, Total

Analyte

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken: Date Reported: 16:00

Result

97.34

08/20/04 Flags

Units

%

Analysis Date:

08/17/04

Allalysis Date. 00/1//04		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0 ·	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	u <i>g</i> /kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 218/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Silver

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183

Sample Description: B-19B/4-6 Lab File ID:

34618 34608-30 Date Received: Date Taken:

08/12/04 08/10/04

Time Taken:

Result

16:00

Date Reported:

Units

3010A/6010B

08/20/04

Flags

Analyte Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date:

08/18/04

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg
Benzo[a]anthracene	< 8.7	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	< 11	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	< 50	ug/kg

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.24	units	08/13/04	9045C
Total Metals				
Arsenic	1.1	mg/kg	08/17/04	3050B/6010B
Barium	5.8	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	1.4	mg/kg	08/17/04	3050B/6010B
Lead	1.6	mg/kg	08/17/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	<0.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Barium	<1.0	$\overline{\mathrm{mg}}/\mathrm{L}$	08/17/04	3010A/6010B
Cadmium	0.005	mg/L	08/17/04	3010A/6010B
Chromium	< 0.001	mg/L	08/17/04	3010A/6010B
Lead	0.007	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B

 $m\bar{g}/L$

08/17/04

< 0.001

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34619

Sample Description: B-20A/0-2

34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Lab File ID:

Time Taken: Date Reported: 16:05 08/20/04

Analyte

Result

Units Flags

Solids, Total

86.19

%

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/18/04

Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg
		

printed 01/27/2011 8:20AM by Richard.Jordan p. 220/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Silver

CLAYTON GROUP SERVICES

Project ID: Sample Number:

15-04183

Sample Number: 34619 Sample Description: B-20A/0-2

Lab File ID: 34608-30

Date Received: Date Taken:

08/12/04

Time Taken:

Result

08/17/04

3010A/6010B

08/10/04 16:05

Flags

Date Reported: 08/20/04

Units

Analyte

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date: 08/18/04

Naphthalene	170	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	1,200	ug/kg
Anthracene	108	ug/kg
Fluoranthene	1,170	ug/kg
Pyrene	1,180	ug/kg
Benzo[a]anthracene	675	ug/kg
Chrysene	779	ug/kg
Benzo[b]fluoranthene	683	ug/kg
Benzo[k]fluoranthene	540	ug/kg
Benzo[a]pyrene	706	ug/kg
Indeno[1,2,3-cd]pyrene	440	ug/kg
Dibenz[a,h]anthracene	127	ug/kg
Benzo[g,h,i]perylene	370	ug/kg

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	9.46	units	08/13/04	9045C
Total Metals Arsenic Barium Cadmium	14.7 106 2.5	mg/kg mg/kg mg/kg	08/17/04 08/17/04 08/17/04	3050B/6010B 3050B/6010B 3050B/6010B
Chromium Lead Mercury Selenium Silver	18.8 513 0.13 <0.2 3.0	mg/kg mg/kg mg/kg mg/kg mg/kg	08/17/04 08/17/04 08/13/04 08/13/04 08/17/04	3050B/6010B 3050B/6010B 3050B/6010B 7470A 3050B/6010B 3050B/6010B
TCLP Metals Arsenic Barium Cadmium Chromium Lead Mercury Selenium	0.003 <1.0 <0.001 0.007 <0.002 <0.0005 <0.002	mg/L mg/L mg/L mg/L mg/L mg/L	08/17/04 08/17/04 08/17/04 08/17/04 08/17/04 08/13/04 08/17/04	3010A/6010B 3010A/6010B 3010A/6010B 3010A/6010B 3010A/6010B 7470A 3010A/6010B

mg/L

< 0.001

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34620

Sample Description: B-20B/2-4 Lab File ID:

34608-30

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken: Date Reported: 16:10 08/20/04

Analyte Solids, Total Result 84.09

< 5.0

< 10.0

< 10.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 10.0

< 10.0

< 5.0

Units Flags

%

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

Ethyl benzene

4-Methyl-2-pentanone

1,1,2,2-Tetrachloroethane

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl Acetate

Vinyl Chloride

Xylenes (total)

1,1,1-Trichloroethane

1,1,2-Trichloroethane

2-Hexanone

MTBE

Styrene

Toluene

08/18/04

Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0 ·	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 222/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Project ID: 08/12/04 15-04183 Date Received: 08/10/04 Date Taken: Sample Number: 34620 Time Taken: 16:10 Sample Description: B-20B/2-4 Lab File ID: Date Reported: 08/20/04 34608-30

> Units Flags Analyte Result Polynuclear Aromatic Compounds Method 3540C/8270C Preparation Date: 08/16/04 Analysis Date: 08/18/04 150 ug/kg Naphthalene < 50 Acenaphthylene ug/kg ug/kg < 50 Acenaphthene < 50 Fluorene ug/kg Phenanthrene 363 ug/kg < 50 ug/kg Anthracene Fluoranthene 242 ug/kg 262 Pyrene ug/kg 151 Benzo[a]anthracene ug/kg Chrysene 166 ug/kg 134 Benzo[b]fluoranthene ug/kg 126 Benzo[k]fluoranthene ug/kg Benzo[a]pyrene 174 ug/kg Indeno[1,2,3-cd]pyrene 95 ug/kg 27

ug/kg

ug/kg

83

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.76	units	08/13/04	9045C
Total Metals				
Arsenic	14.5	mg/kg	08/17/04	3050B/6010B
Barium	58.9	mg/kg	· 08/1 7 /04	3050B/6010B
Cadmium	4.0	mg/kg	08/17/04	3050B/6010B
Chromium	7.2	mg/kg	08/17/04	3050B/6010B
Lead	156	mg/kg	08/17/04	3050B/6010B
Mercury	0.06	mg/kg	08/13/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	0.7	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	m mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.014	mg/L	08/17/04	3010A/6010B
Chromium	< 0.001	mg/L	08/17/04	3010A/6010B
Lead	0.009	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34623

Sample Description: B-21/MW-6A

Lab File ID:

34608-30

Date Received: Date Taken:

08/12/04 08/11/04

Time Taken:

8:40

Date Reported:

08/20/04

Solids, Total

Analyte

Result 79.39

Units Flags

%

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/18/04

Acetone	< 10.0	u g/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform .	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 224/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:	CLAYTON GROUP SERVICES
_ ,	

 Project ID:
 15-04183
 Date Received:
 08/12/04

 Sample Number:
 34625
 Date Taken:
 08/11/04

 Sample Description:
 B-22A/4-6
 Time Taken:
 11:25

 Lab File ID:
 34608-30
 Date Reported:
 08/20/04

D: 34608-30	Date Rep	ported:	08/20/04
Analyte	Result	Units	Flags
Solids, Total	83.31	. %	
Volatile Organic Compounds Method 5035 Analysis Date: 08/18/04	A/8260B		
Acetone	< 10.0	ug/kg	
Benzene	< 5.0	ug/kg	
Bromodichloromethane	< 5.0	ug/kg	
Bromoform	< 5.0	ug/kg	
Bromomethane	< 10.0	ug/kg	
2-Butanone	< 10.0	ug/kg	
Carbon disulfide	< 5.0	ug/kg	
Carbon tetrachloride	< 5.0	ug/kg	
Chlorobenzene	< 5.0	ug/kg	
Chlorodibromomethane	< 5.0	ug/kg	
Chloroethane	< 10.0	ug/kg	
Chloroform	< 5.0	ug/kg	
Chloromethane	< 10.0	ug/kg	
1,1-Dichloroethane	< 5.0	ug/kg	
1,2-Dichloroethane	< 5.0	ug/kg	
1,1-Dichloroethene	< 5.0	ug/kg	
cis-1,2-Dichloroethene	< 5.0	ug/kg	
trans-1,2-Dichloroethene	< 5.0	ug/kg	
1,2-Dichloropropane	< 5.0	ug/kg	
cis-1,3-Dichloropropene	< 5.0	ug/kg	
trans-1,3-Dichloropropene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
2-Hexanone	< 10.0	ug/kg	
4-Methyl-2-pentanone	< 10.0	ug/kg	
Methylene chloride	< 5.0	ug/kg	
MTBE	< 5.0	ug/kg	
Styrene	< 5.0	ug/kg	
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg	
Tetrachloroethene	< 5.0	ug/kg	
Toluene	< 5.0	ug/kg	
1,1,1-Trichloroethane	< 5.0	ug/kg	
1,1,2-Trichloroethane	< 5.0	ug/kg	
Trichloroethene	< 5.0	ug/kg	
Vinyl Acetate	< 10.0	ug/kg	
Vinyl Chloride	< 10.0	ug/kg	
Xylenes (total)	< 5.0	ug/kg	

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34625

Sample Description: B-22A/4-6 Lab File ID: 34608-30

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Benzo[a]pyrene

Date Received: Date Taken:

08/12/04

Time Taken:

< 11

< 11

< 15

< 29

< 20

< 50

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

08/11/04 11:25

Date Reported:

08/20/04

Analyte		Result	Units	Flags
Polynuclear Aroma Preparation Date: Analysis Date:	ntic Compounds Meth 08/16/04 08/18/04	od 3540C/8270C		
Naphthalene		< 25	ug/kg	
Acenaphthylene		< 50	ug/kg	
Acenaphthene		< 50	ug/kg	
Fluorene		< 50	ug/kg	
Phenanthrene		51	ug/kg	
Anthracene		< 50	ug/kg	
Fluoranthene		< 50	ug/kg	
Pyrene		< 50	ug/kg	
Benzo[a]anthracene		< 8.7	ug/kg	
Chrysene		< 50	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 226/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number: Sample Description: B-23A/0-2

34626

Lab File ID: 34608-30

Analyte

Date Received: Date Taken:

08/12/04

Time Taken:

Result

81.73

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 10.0

< 10.0< 5.0

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg ug/kg

ug/kg

08/11/04 11:30

Units

%

Date Reported:

08/20/04

Flags

Solids, Total	

Volatile Organic Compounds Method 5035A/8260B

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Trichloroethene

Vinyl Acetate

Vinyl Chloride

Xylenes (total)

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Toluene

Volatile Organic Compounds interact 5	033A/0200B	
Analysis Date: 08/18/04		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183 34626

Sample Number: Sample Description:

B-23A/0-2

Date Received: Date Taken:

08/12/04

Time Taken:

Units

ug/kg

08/11/04 11:30

Lab File ID:

34608-30

Date Reported:

Result

08/20/04

Flags

Analyte

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date: 08/19/04 Naphthalene < 25 ug/kg Acenaphthylene < 50 ug/kg < 50 Acenaphthene ug/kg Fluorene < 50 ug/kg < 50 Phenanthrene ug/kg < 50 ug/kg Anthracene < 50 Fluoranthene ug/kg < 50 ug/kg Pyrene Benzo[a]anthracene < 8.7 ug/kg < 50 Chrysene ug/kg Benzo[b]fluoranthene < 11 ug/kg Benzo[k]fluoranthene < 11 ug/kg < 15 Benzo[a]pyrene ug/kg Indeno[1,2,3-cd]pyrene < 29 ug/kg < 20 Dibenz[a,h]anthracene ug/kg Benzo[g,h,i]perylene < 50

printed 01/27/2011 8:20AM by Richard.Jordan p. 228/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183
 Date Received:
 08/12/04

 Sample Number:
 34627
 Date Taken:
 08/11/04

 Sample Description:
 B-23B/8-10
 Time Taken:
 11:35

 Lab File ID:
 34608-30
 Date Reported:
 08/20/04

Lab File ID: 34608-30 Date Reported:

Analyte		Result	Units	Flags
Solids, Total		85.41	%	
Volatile Organic Analysis Date:	Compounds Method 5 08/18/04	5035A/8260B		
		- 10.0	н.	

Volatile Organic Compounds Method 5035A/8260B			
Analysis Date: 08/18/04			
Acetone	< 10.0	ug/kg	
Benzene	< 5.0	ug/kg	
Bromodichloromethane	< 5.0	ug/kg	
Bromoform	< 5.0	ug/kg	
Bromomethane	< 10.0	ug/kg	
2-Butanone	< 10.0	ug/kg	
Carbon disulfide	< 5.0	ug/kg	
Carbon tetrachloride	< 5.0	ug/kg	
Chlorobenzene	< 5.0	ug/kg	
Chlorodibromomethane	< 5.0	ug/kg	
Chloroethane	< 10.0	ug/kg	
Chloroform	< 5.0	ug/kg	
Chloromethane	< 10.0	ug/kg	
1,1-Dichloroethane	< 5.0	ug/kg	
1,2-Dichloroethane	< 5.0	ug/kg	
1,1-Dichloroethene	< 5.0	ug/kg	
cis-1,2-Dichloroethene	< 5.0	ug/kg	
trans-1,2-Dichloroethene	< 5.0	ug/kg	
1,2-Dichloropropane	< 5.0	ug/kg	
cis-1,3-Dichloropropene	< 5.0	ug/kg	
trans-1,3-Dichloropropene	< 5.0	uğ/kg	
Ethyl benzene	< 5.0	ug/kg	
2-Hexanone	< 10.0	ug/kg	
4-Methyl-2-pentanone	< 10.0	ug/kg	
Methylene chloride	< 5.0	ug/kg	
MTBE	< 5.0	ug/kg	
Styrene	< 5.0	ug/kg	
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg	
Tetrachloroethene	< 5.0	ug/kg	
Toluene	< 5.0	ug/kg	
1,1,1-Trichloroethane	< 5.0	ug/kg	
1,1,2-Trichloroethane	< 5.0	ug/kg	
Trichloroethene	< 5.0 < 10.0	ug/kg	
Vinyl Chloride	< 10.0	ug/kg	
Vinyl Chloride	< 5.0	ug/kg ug/kg	
Xylenes (total)	~ J.U	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183 34627

Sample Description: B-23B/8-10 34608-30

Date Received: Date Taken:

08/12/04 08/11/04

Time Taken:

Result

11:35

Units

Date Reported:

08/20/04 Flags

Analyte

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date:

08/19/04

00/19/04			
		< 25	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 50	ug/kg
		< 8.7	ug/kg
		< 50	ug/kg
•		< 11	ug/kg
•		< 1I	ug/kg
		< 15	ug/kg
ae		< 29	ug/kg
e		< 20	ug/kg
		< 50	ug/kg
	e e	ne	<pre></pre>

printed 01/27/2011 8:20AM by Richard.Jordan p. 230/383-

Xylenes (total)

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183
 Date Received:
 08/12/04

 Sample Number:
 34621
 Date Taken:
 08/11/04

 Sample Description:
 B-24A/4-6
 Time Taken:
 8:27

 Lab File ID:
 34608-30
 Date Reported:
 08/20/04

Analyte Result Units Flags

Solids, Total 77.10 %

Volatile Organic Compounds Method 5035A/8260B

Analysis Date: 08/18/04

Acetone < 10.0 ug/kg

Panzana < 5.0 ug/kg

Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
-		~ ~

< 5.0

ug/kg ·

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183

34621 Sample Description: B-24A/4-6

34608-30

Date Received: Date Taken:

08/12/04

Time Taken:

08/11/04 8:27

Units

Date Reported:

08/20/04

Analyte

Result

< 50

Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

Benzo[g,h,i]perylene

08/16/04

Analysis Date:

08/18/04

Allarysis Date.	00/10/04		
Naphthalene		43	ug/kg
Acenaphthylene		< 50	ug/kg
Acenaphthene		< 50	ug/kg
Fluorene		< 50	ug/kg
Phenanthrene		< 50	ug/kg
Anthracene		< 50	ug/kg
Fluoranthene		< 50	ug/kg
Pyrene		< 50	ug/kg
Benzo[a]anthracene		< 8.7	ug/kg
Chrysene		< 50	ug/kg
Benzo[b]fluoranthene		< 11	ug/kg
Benzo[k]fluoranthene		< 11	ug/kg
Benzo[a]pyrene		< 15	ug/kg
Indeno[1,2,3-cd]pyren	ıe	< 29	ug/kg
Dibenz[a,h]anthracene	2	< 20	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 232/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

7 '	1 Omt.
· •	ICIII.

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number: Sample Description: B-24B/6-8

34622

Lab File ID:

34608-30

Date Received:

08/12/04

Date Taken: Time Taken:

Result

78.78

08/11/04 8:33

Date Reported:

Units

%

08/20/04

Flags

Solids, Total	78
Volatile Organic Compounds Method 5035A	4/8260B

Analysis Date:

Analyte

08/18/04

Analysis Date: 08/18/04		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg
- •		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34622

Sample Description: B-24B/6-8 Lab File ID:

Analyte

34608-30

Date Received:

08/12/04

Date Taken: Time Taken: 08/11/04

Date Reported:

8:33

Units

Result

08/20/04

Flags

Polynuclear Arom	atic Compound	s Method 3540C/8270C	
Preparation Date:	08/16/04		
Analysis Date:	08/18/04	,	

Analysis Date:	08/18/04	•	
Naphthalene		< 25	ug/kg
Acenaphthylene		< 50	ug/kg
Acenaphthene		< 50	ug/kg
Fluorene	-	< 50	ug/kg
Phenanthrene		< 50	ug/kg
Anthracene		< 50	ug/kg
Fluoranthene		< 50	ug/kg
Pyrene	•	< 50	ug/kg
Benzo[a]anthracene		< 8.7	ug/kg
Chrysene		< 50	ug/kg
Benzo[b]fluoranther	ne	< 11	ug/kg
Benzo[k]fluoranther	16	< 11	ug/kg
Benzo[a]pyrene		< 15	ug/kg
Indeno[1,2,3-cd]pyr	ene	. < 29	ug/kg
Dibenz[a,h]anthrace	ne	< 20	ug/kg
Benzo[g,h,i]perylene	e	< 50	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 234/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

\sim	٠	
1 1	1	ent:
- (-)	1	CIII.

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183 34628

Sample Number: Sample Description: B-25A/2-4

Date Received:

08/12/04

Date Taken: Time Taken:

Result

88.25

08/10/04 14:25

Analyte

Solids, Total

34608-30

Date Reported:

Units

%

08/20/04 Flags

Volatile Organic Con	nnaunde Method	5035 A /8260R

Analysis Date: 08/18/04	1 5035A/8260B	
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183

Sample Number:

34628 B-25A/2-4

Sample Description: B-25A/2-4

Date Received: Date Taken:

Result

6,210

08/12/04 08/10/04

34608-30

Time Taken: Date Reported:

Units

ug/kg

14:25 08/20/04

Flags

Analyte

Polynuclear Aromatic Compounds Method 3540C/8270C Preparation Date: 08/16/04

Preparation Date: Analysis Date:

Benzo[g,h,i]perylene

08/19/04

3,530 ug/kg Naphthalene ug/kg 3,820 Acenaphthylene 2,340 ug/kg Acenaphthene 6,250 ug/kg Fluorene 78,800 ug/kg Phenanthrene 8,890 ug/kg Anthracene Fluoranthene 71,600 ug/kg 73,700 ug/kg Pyrene 17,000 Benzo[a]anthracene ug/kg 15,000 ug/kg Chrysene Benzo[b]fluoranthene 15,600 ug/kg 9,540 ug/kg Benzo[k]fluoranthene 17,100 ug/kg Benzo[a]pyrene 8,230 ug/kg Indeno[1,2,3-cd]pyrene 2,330 ug/kg Dibenz[a,h]anthracene

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.73	units	08/13/04	9045C
Total Metals Arsenic Barium Cadmium Chromium Lead Mercury	17.2 450 1.7 29.1 852 1.20	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	08/17/04 08/17/04 08/17/04 08/17/04 08/17/04	3050B/6010B 3050B/6010B 3050B/6010B 3050B/6010B 3050B/6010B 7470A
Selenium Silver	<0.2 0.4	mg/kg mg/kg	08/17/04 08/17/04	3050B/6010B 3050B/6010B
TCLP Metals Arsenic	0.007	mg/L	08/17/04	3010A/6010B
Barium Cadmium Chromium Lead Mercury	<1.0 0.011 <0.001 0.105 <0.0005	mg/L mg/L mg/L mg/L mg/L	08/17/04 08/17/04 08/17/04 08/17/04 08/13/04	3010A/6010B 3010A/6010B 3010A/6010B 3010A/6010B 7470A
Selenium Silver	<0.002 <0.001	mg/L mg/L	08/17/04 08/17/04	3010A/6010B 3010A/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 236/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

~1	·	
. I I	ient.	

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 24629

Sample Description: B-25B/6-8 Lab File ID:

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken:

Result

88.93

14:32

Units

%

Analyte

34608-30

Date Reported:

08/20/04 Flags

Volatile Organic Compounds Method 5035A/8260B

Solids, Total

Analysis Date: 08/18/04		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5:0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Silver

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 24629

Date Received: Date Taken:

Result

08/12/04 08/10/04

14:32

Sample Description: B-25B/6-8 Lab File ID:

34608-30

Time Taken: Date Reported:

Units

08/20/04

Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date: Analysis Date:

Analyte

08/16/04

08/19/04

Naphthalene 766 ug/kg Acenaphthylene 533 ug/kg Acenaphthene 888 ug/kg Fluorene 1,010 ug/kg Phenanthrene 10,400 ug/kg Anthracene 2,580 ug/kg Fluoranthene 16,600 ug/kg Pyrene 15,400 ug/kg Benzo[a]anthracene 8,620 ug/kg Chrysene 8,050 ug/kg Benzo[b]fluoranthene 6,940 ug/kg Benzo[k]fluoranthene 6,870 ug/kg Benzo[a]pyrene 8,860 ug/kg Indeno[1,2,3-cd]pyrene 3,980 ug/kg Dibenz[a,h]anthracene 1,110 ug/kg

Benzo[g,h,i]perylene			3,220	ug/kg
Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.35	units	08/13/04	9045C
Total Metals				
Arsenic	15.9	mg/kg	08/17/04	3050B/6010B
Barium	734	mg/kg	08/19/04	3050B/6010B
Cadmium	0.1	mg/kg	08/17/04	3050B/6010B
Chromium	36.8	mg/kg	.08/17/04	3050B/6010B
Lead	818	mg/kg	08/1 7 /04	3050B/6010B
Mercury	0.89	mg/kg	08/16/04	7470A
Selenium	0.4	mg/kg	08/17/04	3050B/6010B
Silver	0.4	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.008	mg/L	08/17/04	3010A/6010B
Chromium	< 0.001	mg/L	08/17/04	3010A/6010B
Lead	0.100	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
CT 1-3				

mg/L

08/17/04

3010A/6010B

< 0.001

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34612

Sample Description:

34608-30

Lab File ID:

B-27/MW-1A 1.5

Date Taken:

Date Received:

08/12/04

Time Taken:

08/10/04 8:54

Date Reported:

08/20/04

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	77.72	%	08/16/04	160.3
pH @ 25°C (1:10)	9.69	units	08/13/04	9045C
Total Metals				
Arsenic	8.1	mg/kg	08/17/04	3050B/6010B
Barium	149	mg/kg	08/17/04	3050B/6010B
Cadmium	16.0	mg/kg	08/17/04	3050B/6010B
Chromium	95.2	mg/kg	08/17/04	3050B/6010B
Lead	2,060	mg/kg	08/17/04	3050B/6010B
Mercury	0.22	mg/kg	08/13/04	7470A
Selenium	<0.2	mg/kg	08/17/04	3050B/6010B
Silver	18.1	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	0.003	mg/L	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	0.214	mg/L	08/17/04	3010A/6010B
Chromium	0.001	mg/L	08/17/04	3010A/6010B
Lead	2.32	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7470A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	<0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

CLAYTON GROUP SERVICES Client: Date Received: 08/12/04 15-04183 Project ID: Date Taken: 08/10/04 34630 Sample Number: Time Taken: 15:55 Sample Description: B-28.MW-5 2-4 Date Reported: 08/20/04 Lab File ID: 34608-30 Result Units Flags Analyte 79.92 % Solids, Total

Volatile Organic Compounds Method 5035A/8260B

Analysis Date: 08/18/04		
Allalysis Date. Odr Loro4		
Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ng/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 240/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Result

Analytical Report

Client: CLAYTON GROUP SERVICES

Project ID: 15-04183 34630 Sample Number:

Sample Description: B-28.MW-5 2-4

Lab File ID: 34608-30

Analyte

Date Received: Date Taken:

08/12/04 08/10/04

Time Taken:

15:55

Flags

08/20/04 Date Reported: Units

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/16/04

Analysis Date: 08/19/04

Naphthalene	721	ug/kg
Acenaphthylene	91	ug/kg
Acenaphthene	99	ug/kg
Fluorene	99	ug/kg
Phenanthrene	1,510	ug/kg
Anthracene	494	ug/kg
Fluoranthene	4,290	ug/kg
Pyrene	4,740	ug/kg
Benzo[a]anthracene	3,400	ug/kg
Chrysene	3,060	ug/kg
Benzo[b]fluoranthene	3,590	ug/kg
Benzo[k]fluoranthene	2,660	ug/kg
Benzo[a]pyrene	4,070	ug/kg
Indeno[1,2,3-cd]pyrene	2,050	ug/kg
Dibenz[a,h]anthracene	527	ug/kg
Benzo[g,h,i]perylene	1,530	ug/kg

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.95	units	08/13/04	9045C
Total Metals				
Arsenic	24.0	mg/kg	08/17/04	3050B/6010B
Barium	91.8	mg/kg	08/17/04	3050B/6010B
Cadmium	< 0.1	mg/kg	08/17/04	3050B/6010B
Chromium	18.3	mg/kg	08/17/04	3050B/6010B
Lead	125	mg/kg	08/17/04	3050B/6010B
Mercury	0.79	mg/kg	08/16/04	7470A
Selenium	< 0.2	mg/kg	08/17/04	3050B/6010B
Silver	0.7	mg/kg	08/17/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	$\mathrm{mg/L}$	08/17/04	3010A/6010B
Barium	<1.0	mg/L	08/17/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/17/04	3010A/6010B
Chromium	< 0.001	mg/L	08/17/04	3010A/6010B
Lead	< 0.002	mg/L	08/17/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/13/04	7 4 70A
Selenium	< 0.002	mg/L	08/17/04	3010A/6010B
Silver	< 0.001	mg/L	08/17/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34624

Sample Description: GW-22 Lab File ID:

34608-30

Date Received: Date Taken:

08/12/04 08/11/04

Time Taken: Date Reported:

Units

Result

11:15 08/20/04

Flags

Volatile Organic Compounds Method 5030B/8260B

Analysis Date:

Analyte

08/17/04

Acetone	< 10.0	ug/L
Benzene	< 5.0	ug/L
Bromodichloromethane	< 1.0	ug/L
Bromoform	< 1.0	ug/L
Bromomethane	< 5.0	ug/L
2-Butanone	< 10.0	ug/L
Carbon disulfide	< 5.0	ug/L
Carbon tetrachloride	< 5.0	ug/L
Chlorobenzene	< 5.0	ug/L
Chlorodibromomethane	< 1.0	ug/L
Chloroethane	< 10.0	ug/L
Chloroform .	< 1.0	ug/L
Chloromethane	< 10.0	ug/L
1,1-Dichloroethane	< 5.0	ug/L
1,2-Dichloroethane	< 5.0	ug/L
l,l-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene	< 5.0	ug/L
trans-1,2-Dichloroethene	< 5.0	ug/L
1,2-Dichloropropane	< 5.0	ug/L
cis-1,3-Dichloropropene	< 1.0	ug/L
trans-1,3-Dichloropropene	< 1.0	ug/L
Ethyl benzene	< 5.0	ug/L
2-Hexanone	< 10.0	ug/L
4-Methyl-2-pentanone	< 10.0	ug/L
Methylene chloride	< 5.0	ug/L
MTBE	< 5.0	ug/L
Styrene	< 5.0	ug/L
1,1,2,2-Tetrachloroethane	< 5.0	ug/L
Tetrachloroethene	< 5.0	ug/L
Toluene	< 5 .0	ug/L
l,l,l-Trichloroethane	< 5.0	ug/L
1,1,2-Trichloroethane	< 5.0	ug/L
Trichloroethene	< 5.0	ug/L
Vinyl Acetate	< 10.0	ug/L
Vinyl Chloride	< 2.0	ug/L
Xylenes (total)	< 5.0	ug/L
		2

printed 01/27/2011 8:20AM by Richard.Jordan p. 242/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

15-04183 34624

Date Received: Date Taken:

08/12/04 08/11/04

Sample Description: GW-22 Lab File ID:

34608-30

Time Taken: Date Reported:

Units

Result

11:15 08/20/04

Flags

Analyte

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/13/04

Analysis Date: 08/15/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	$\mathrm{ug/L}$
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene	< 2	ug/L
Benzo[a]anthracene	< 0.13	иg/ ${ m L}$
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	< 0.18	ug/L
Benzo[k]fluoranthene	< 0.17	ug/L
Benzo[a]pyrene	< 0.2	ug/L
Indeno[1,2,3-cd]pyrene	< 0.3	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g,h,i]perylene	< 0.4	ug/L

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

August 24, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183

First Environmental File ID: 35275-77 Date Received: August 10 and 13, 2004

Dear Ms. Mueller:

The above referenced samples were analyzed as per your request on August 19, 2004.

PROJECT SUMMARY

Analyses were performed in accordance with ASTM D2974-87

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

printed 01/27/2011 8:20AM by Richard.Jordan p. 244/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Date Received:

08/10/04

Project ID:

15-04183

Date Reported:

08/24/04

Lab File ID:

35275-77

FOC Method D2974-87 Date Analyzed: 08/23/04

Lab Sample <u>Number</u>	Sample <u>Description</u>	Date & Time <u>Taken</u>	<u>FOC</u> %
35275	B-14/MW-2B 8	08/09/04 11:25	2.50
35276	B-8B/6-8	08/12/04 11:46	2.54
35277	B-4B/3	08/12/04 13:40	13.33

Eirst Environmental

First Environmental Laboratories

1600 Store Road, Suite D

Maperville, Illinois 60563

First Environmental Laboratories
1600 Store Road, Suite D
Naperville, Illinois 60563
Phone: (630) 778-1280 - Fax: (630) 778-1233
24 Br. Pager (708) 569-7507
E-nall: info@firstenv.com
IRPA Certification* 100292

Analyses

Grayo Sarvices

Company Name: 164/62

CHAIN OF CUSTODY RECORD

Projec	1.D. /	Project I.D.: 15-04183						/	1			1			
P.O. #.:	ا اِن		ŀ	٠		\	\	egy V		`	<u>)</u>	\	_		
				•	`	\	\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\	100	\			
					\		(C)	۶\ >	ر در	<i>'</i> €	**	P.; -			
Matri	K Codes: S:	Matrix Codes; \$ = Sojj W = Water O = Other		`	P	3	20/20/20/20/20/20/20/20/20/20/20/20/20/2	$\tilde{\chi}$	<u>/</u> 3	\$	100000000000000000000000000000000000000	<u> </u>			
Dule/	Date/Time Taken	Sample Description	W	Matrix	_	_	· ``	_	<u> </u>	, <u> </u>	, *		Comments	و	Labito
1/2	0850	0850 13-14/2-4	-	\ <u>\</u>	X	×	X	×		1				\ \ !	-
-	0111	1110 GW-8	Z	-	1	X			×		T				
	1135	1135 8-54/4.6	-	<u> ~ </u>	1.		×	×		×					
	24//	1142 13-84/2-4	- \	l L	1	-		X	×						
	9411	146 B-8B/6-8 FOC	' -	1	-			×	×					35075	C SALC
	1300	8-41/1.5	-1	J.	_	X	X	×		X	×			21 10 1	
	1340	1340 B-48/3 FOC	•1	_	-	X	X	×		X	X	HOLD	BTEX	3522	346/73
	1355	1355 B-6A/2	<i>y</i> 1.			X	X	×		X				-	
-	1415	1415 GW-6	3	,		X	ا			X		-			
>	1525	1525 13-74 11-2	Š		<i>j</i>	×	X	X		X					
8//3	5/80	0815 GW-3	≩		X	X	- 			×					
8/2 2/2	8/13 1020 6W-Z	6w-Z	3		 	×				×			i		,

Cooler Temperature: < (2°C ord A. Received within 6 lus, of collection:

Notes and Special Instructions:

Date/Time_ - Received By: Received By: 25/5/ . Date/Time 8/3 Date/Time_ Relinguished By: 1 Relinquished By:_

Res. 1405

CHAIN OF CUSTODY RECORD

First	Environmental	Laboratories, Inc.	

Phone: (630) 778-1200 - Fax: (630) 778-1233 First Environmental Laboratories 24 Hr. Pager (708) 569-7507 TEPA Certification# 100292 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Illinois 60563

Services	Sine: 12 Zip: 605/5	!
Company Name: Clay Ton Group Services Street Address: 3/40 Finley Red	City: Downers Grove	Sangled By: Dorren W. Lamsma

TECH CERTIFICATION TO TAKE	!						Analyses	32			
Project I.D.: 15-04/83			`	J.	Z	\	\	\	\ \ \		
			1		<u>}</u>	1			<u> </u>		
			(2)	300	/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, \		\		
Matrix Codes: S = Soil W = Water O = Other		(3)	2) 2)	40 >\	9	1000					
Sample Description	Matrix									Comments	Lab I.D.
13-164/2	~	×	X	X							346.05
4/891.8 3210	5	X	X	*							06
18-134/1.5	\$	×	X	X							a l
E /8E1-81	5	X	X	X		 	_				11
511 KI-MW/LZ-8 4580	5	×	×	メ		<u>-</u>					ال
21 AH-WM/1-81 2501	_ { _	\times	X	*						,	13
4 84-WW/11-8 4EOI	\$	Х	×	×							14
1037 B-17/MW-46 6.	۶								HOLD		
8-9/ 881-8 3451	\$	×	X	×	×	Ϋ́		_	į		1
1550 18-184 10-2	>	×	×	×	×	X					16
1555 3-194/0-2	\$	X	X	X	×	X		-			U
9-4/861-8 0091	2	×	X	X	×						ź

ا ئ ي	Received within 6 hrs. of collection:
اد	5.0
ure	6 hr
יש er Temperature:	within
ler Te	ived
Cooler	Ş

Notes and Special Instructions: _

]	1
1	-
	22
	15m
	le.
-	Ã
	1
	~
	- A
	Z
	eg
	Ġ.
	Rec
	1
	0
	9
	8
	0
	(1)
	12
	밑
	Ē
	ate.
	<u> </u>
	1
	!
	N
	1
	**
	الما
	110
	1
	<u>ہ</u>
	8
	nquished I
	<u> </u>
	%

Received By: ...

Date/Time,

Relinquished By: _

Ev. 1

Date/Time

printed 01/27/2011 8:	20AM by Richar	d.Jordan p	. 248/383
-----------------------	----------------	------------	-----------

First Environmental

CHAIN OF CUSTODY RECORD

Phone: (630) 778-1200 • Fax: (630) 778-1233 First Environmental Laboratories Laboratories, Inc. 24 Hr. Pager (708) 569-7507 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Illinois 60563

IEPA Certification# 100292

5/509 795-1130 Services Group Lowsma 11/12/1/2 7775 Clayton 295-3200 7, 11861 Parre 3/40 Company Name: Send Report To: Street Address: Sampled By: Phone:

		70.574							Analyses				
Pro	Project I.D.:	15-04/83						3	(3)				
PO.#	*				`	\	\				\		
		10 10 10 10 10 10 10 10 10 10 10 10 10 1			\		~ \		\	\	\ \		
				•	2	2.5	2	<u> </u>	\	\	\		
					70		~ 	<i>></i>	\	\	\		
Mat	Matrix Codes: S = Soil	= Soil W = Water O = Other		`\		4	₹ }	>	\				
Date	Date/Time Taken	Sample Description	Matrix		<u>.</u>	•			_	<u> </u>	Comments	nts	Lab I.D.
8%	1605	13-201 10-8	^	×	X	×	X	×					34/19
8/10	0/9/	4-2 /802-8 0191	~	×	×	×	×	<u> </u>					20
8/11	0735	B-24c /10-12	v	人	人						UTOH		,
	0827	5-244 146	~	×	X								7
	0833	8-9/8428	~	×	×		-						7.7
	0840	13-21/MW-6A 2-4	n	X			-		1				2.2
	5111	1115 GW-22	3	×	×		-	_					52
	5211	1125 13-224/4.6	<u>ن</u> م	×	X		-						35
_	1130	1130 8-23410-2	•~	×	X								1/6
	5611	8-23 B 1 8-10	4	×	×	-			-				7.7
	04//	8-236 / 12-15	S	Ų							HOLD		
4	1425	1425 13-254 12-4	~	×	×	×	X	×					32

(0<u>]</u> Date/Time_E/12/04 Date/Time_ - Received By: -Received By: 0000 . Date/Time 8/2 Date/Time_ 7 Relinquished By: _ Relinquished By:

Received within 6 hrs. of collection:

Cooler Temperature:

Notes and Special Instructions:

Rev. 1/01

ر ا ا ا

First Environmental Laboratories, Inc

CHAIN OF CUSTODY RECORD

Phone; (630) 778-1200 • Fax: (630) 778-1233 First Environmental Laboratories ان 24 Hr. Pager (708) 569-7507 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Minois 60563

IEPA Certification# 100291

Ser V. Cos		Same: Ile 215	Par: 785-1/30	Sec. Market	
Company Name: Cloy Tan Group	Street Address: 3/40 Finley Col	City. Downers Grove	Phone: 795-320 @	Send Report To. Mer: Mye //er	Sampled By: Lercen W. Lonsma

								Č	27,700				
Project I.D.:	15-04183						3	Z.					
P.O. #.:						\		Š	\	\	\		
				\	\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	حلا کر		\	\			
				5	12		/ / X/ 3/3/A/30/				\		
Matrix Codes: S =	Matrix Codes: $S = Soil$ W = Water O = Other		7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.	<i>S</i> ,	جي '_	\	\	\			
Date/Time Taken	Sample Description	Matrix	_							l		Comments	Lab I.D.
111 1432	111 1432 8-258 16-8	S	×	X	×	χ	×						34629
1555	4-2 5-MW/82-81 5551	8	×	X	×	×	X	-					30
								-	-	-			
							-		-				
								-	ļ	-			
							-	-	 -				
									-	-			
								-	-	-			
										-			
							ļ 						
								-		-			
						ĺ							

ا ا ا ا	ر
	ij
	E S
	e e
	5
(8
•	_

Received within 6 hrs. of collection:

Notes and Special Instructions: ...

Date/Time	Η,
Ry- C.	/
Received By:	_ Received By:
စ္ပင္သ	Date/Time F
Relinquished By: Hore 1 2	Relinquished By:

1/0/1

printed 01/27/2011 8:20AM by Richard.Jordan p. 250/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

August 24, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183

First Environmental File ID: 34867-84

Date Received: August 13, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results for the soil samples have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183 34867

Sample Description: B-1A/2-4 Lab File ID:

34867-84

Date Received: Date Taken:

08/13/04 08/12/04

Time Taken:

8:50

Date Reported:

08/24/04

Solids, Total

Analyte

89.42

Result

%

Units Flags

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/19/04

Acetone	< 10.0	ug/kg
Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane	< 10.0	ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 5 .0	u g/k g
Carbon tetrachloride	< 5.0	ug/kg
Chlorobenzene	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
1,1-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 252/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183
 Date Received:
 08/13/04

 Sample Number:
 34867
 Date Taken:
 08/12/04

 Sample Description:
 B-1A/2-4
 Time Taken:
 8:50

 Lab File ID:
 34867-84
 Date Reported:
 08/24/04

Analyte	Result	Units	Date Analyzed	Method
рН @ 25°C (1:10)	11.60	units	08/19/04	9045C
Arsenic	2.8	mg/kg	08/20/04	3050B/6010B
Barium	62.4	mg/kg	08/20/04	3050B/6010B
Cadmium	8.0	mg/kg	08/20/04	3050B/6010B
Chromium	20.6	mg/kg	08/20/04	3050B/6010B
Lead	. 83.8	mg/kg	08/20/04	3050B/6010B
Mercury	0.14	mg/kg	08/18/04	7470A
Selenium	<0.2	mg/kg	08/20/04	3050B/6010B
Silver	10.8	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/20/04	3010A/6010B
Barium	<1.0	mg/L	08/20/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/20/04	3010A/6010B
Chromium	0.194	. mg/L	08/20/04	3010A/6010B
Lead	< 0.002	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	0.004	mg/L	08/20/04	3010A/6010B
Silver	< 0.001	mg/L	08/20/04	3010A/6010B

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34880

Sample Description: B-2A/2-4 Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

10:45

Date Reported:

08/24/04

Analyte	Result	Units Flags
Solids, Total	79.84	%
BTEX Method 5035A/8260B Analysis Date: 08/20/04		
Benzene Toluene Ethyl benzene Xylenes (total)	< 2.0 < 5.0 < 5.0 < 5.0	ug/kg ug/kg ug/kg ug/kg

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/18/04

Analysis Date:

08/21/04

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg
Benzo[a]anthracene	13	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	14	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	< 50	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 254/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183 34881

Sample Number: Sample Description: B-2B/6-8

Lab File II

Benzo[a]pyrene

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

10:50

D: 34867-84	1	Date Rep	oorted:	08/24/04
Analyte		Result	Units	Flags
Solids, Total		79.18	%	
BTEX Method 503	5A/8260B			
Analysis Date:	08/20/04			
Benzene		· < 2.0	ug/kg	
Toluene		< 5.0	ug/kg	
Ethyl benzene		< 5.0	ug/kg	
Xylenes (total)		< 5.0	ug/kg	
Polynuclear Aroma	atic Compounds Me	thod 3540C/8270C		
Preparation Date:	08/18/04			
Analysis Date:	08/23/04			
Naphthalene		< 25	ug/kg	
Acenaphthylene		< 50	ug/kg	
Acenaphthene		< 50	ug/kg	
Fluorene		< 50	ug/kg	•
Phenanthrene		< 50	ug/kg	
Anthracene	-	< 50	ug/kg	
Fluoranthene		< 50	ug/kg	
Pyrene		< 50	ug/kg	
Benzo[a]anthracene		10	ug/kg	
Chrysene		< 50	ug/kg	
Benzo[b]fluoranthen		· < 11	ug/kg	
Benzo[k]fluoranthen	e	< 11	<i>п</i> g∕kg	

< 15

< 29

< 20

< 50

ug/kg

ug/kg

ug/kg

ug/kg

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

15-04183 34879

Sample Description: B-3A/1-2 Lab File ID:

34867-84

Date Received: Date Taken:

08/13/04 08/12/04

Time Taken:

10:35

Date Reported:

08/24/04 Flags

Solids, Total

Analyte

85.88

Result

%

Units

Volatile Organic Compounds Method 5035A/8260B

Analysis Date:

08/20/04

Anatona	< 10.0	11 m/lec
Acetone Benzene	< 5.0	ug/kg
Bromodichloromethane	< 5.0	ug/kg
Bromoform	< 5.0	ug/kg
Bromomethane		ug/kg
2-Butanone	< 10.0	ug/kg
Carbon disulfide	< 10.0	ug/kg
	< 5.0	ug/kg
Carbon tetrachloride	< 5.0	ug/kg
Chlorodillanasanathan	< 5.0	ug/kg
Chlorodibromomethane	< 5.0	ug/kg
Chloroethane	< 10.0	ug/kg
Chloroform	< 5.0	ug/kg
Chloromethane	< 10.0	ug/kg
1,1-Dichloroethane	< 5.0	ug/kg
1,2-Dichloroethane	< 5.0	ug/kg
I,I-Dichloroethene	< 5.0	ug/kg
cis-1,2-Dichloroethene	< 5.0	ug/kg
trans-1,2-Dichloroethene	< 5.0	ug/kg
1,2-Dichloropropane	< 5.0	ug/kg
cis-1,3-Dichloropropene	< 5.0	ug/kg
trans-1,3-Dichloropropene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
2-Hexanone	< 10.0	ug/kg
4-Methyl-2-pentanone	< 10.0	ug/kg
Methylene chloride	< 5.0	ug/kg
MTBE	< 5.0	ug/kg
Styrene	< 5.0	ug/kg
1,1,2,2-Tetrachloroethane	< 5.0	ug/kg
Tetrachloroethene	< 5.0	ug/kg
Toluene	< 5.0	ug/kg
1,1,1-Trichloroethane	< 5.0	ug/kg
1,1,2-Trichloroethane	< 5.0	ug/kg
Trichloroethene	< 5.0	ug/kg
Vinyl Acetate	< 10.0	ug/kg
Vinyl Chloride	< 10.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 256/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183
 Date Received:
 08/13/04

 Sample Number:
 34879
 Date Taken:
 08/12/04

 Sample Description:
 B-3A/1-2
 Time Taken:
 10:35

 Lab File ID:
 34867-84
 Date Reported:
 08/24/04

Analyte Units Flags Result Polynuclear Aromatic Compounds Method 3540C/8270C Preparation Date: 08/18/04 Analysis Date: 08/21/04 ug/kg Naphthalene < 25 Acenaphthylene < 50 ug/kg < 50 ug/kg Acenaphthene Fluorene < 50 ug/kg Phenanthrene 410 ug/kg Anthracene 95 ug/kg 646 Fluoranthene ug/kg Pyrene 628 ug/kg ug/kg Benzo[a]anthracene 319 300 ug/kg Chrysene Benzo[b]fluoranthene 252 ug/kg Benzo[k]fluoranthene 255 ug/kg Benzo[a]pyrene 317 ug/kg Indeno[1,2,3-cd]pyrene 173 ug/kg Dibenz[a,h]anthracene 55 ug/kg Benzo[g,h,i]perylene 144 ug/kg

B#_4L_3

Result	Units	Date Analyzed	Method
9.19	units	08/19/04	9045C
27.5	· mg/kg	08/20/04	3050B/6010B
338	mg/kg	08/20/04	3050B/6010B
< 0.1	mg/kg	08/20/04	3050B/6010B
_e 27.7	mg/kg	08/20/04	3050B/6010B
153	mg/kg	08/20/04	3050B/6010B
0.06	mg/kg	08/17/04	7470A
2.8	mg/kg	08/20/04	3050B/6010B
0.5	mg/kg	08/20/04	3050B/6010B
< 0.002	mg/L	08/20/04	3010A/6010B
<1.0	mg/L	08/20/04	3010A/6010B
0.006	mg/L	08/20/04	3010A/6010B
0.001	mg/L	08/20/04	3010A/6010B
0.188	mg/L	08/20/04	3010A/6010B
< 0.0005	mg/L	08/18/04	7470A
< 0.002	mg/L	08/20/04	3010A/6010B
< 0.001	mg/L	08/20/04	3010A/6010B
	9.19 27.5 338 <0.1 27.7 153 0.06 2.8 0.5 <0.002 <1.0 0.006 0.001 0.188 <0.0005 <0.002	9.19 units 27.5 mg/kg 338 mg/kg <0.1 mg/kg 27.7 mg/kg 153 mg/kg 0.06 mg/kg 0.5 mg/kg <1.0 mg/L <1.0 mg/L 0.006 mg/L 0.001 mg/L 0.188 mg/L <0.0005 mg/L <0.002 mg/L <1.0 mg/L 0.188 mg/L <0.0005 mg/L <0.0005 mg/L	9.19 units 08/19/04 27.5 mg/kg 08/20/04 338 mg/kg 08/20/04 <0.1 mg/kg 08/20/04 27.7 mg/kg 08/20/04 153 mg/kg 08/20/04 0.06 mg/kg 08/17/04 2.8 mg/kg 08/20/04 0.5 mg/kg 08/20/04 <1.0 mg/L 08/20/04 <1.0 mg/L 08/20/04 0.006 mg/L 08/20/04 0.006 mg/L 08/20/04 <1.0 mg/L 08/20/04 0.006 mg/L 08/20/04 0.001 mg/L 08/20/04 0.188 mg/L 08/20/04 <0.0005 mg/L 08/18/04 <0.0002 mg/L 08/20/04

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34872

Sample Description: B-4A/1.5

Lab File ID:

34867-84

Date Received:

08/13/04 08/12/04

Date Taken: Time Taken:

13:00

Date Reported:

08/24/04

Flags

Analyte	Result	Units
Solids, Total	85.90	%

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/18/04

Analysis Date:

08/20/04

•		
Naphthalene	574	ug/kg
Acenaphthylene	287	ug/kg
Acenaphthene	675	ug/kg
Fluorene	884	ug/kg
Phenanthrene	8,060	ug/kg
Anthracene	1,840	ug/kg
Fluoranthene	9,220	ug/kg
Pyrene	8,240	ug/kg
Benzo[a]anthracene	3,970	ug/kg
Chrysene	4,340	ug/kg
Benzo[b]fluoranthene	3,360	ug/kg
Benzo[k]fluoranthene	3,160	ug/kg
Benzo[a]pyrene	4,040	ug/kg
Indeno[1,2,3-cd]pyrene	2,780	ug/kg
Dibenz[a,h]anthracene	675	ug/kg
Benzo[g,h,i]perylene	2,540	ug/kg

PCBs Method 3540C/8082

Preparation Date:

08/16/04

Date Analyzed:

08/23/04

< 80.0	ug/kg
< 80.0	ug/kg
< 80.0	ug/kg
< 80.0	ug/kg
< 80.0	ug/kg
857	ug/kg
< 160	ug/kg
	< 80.0 < 80.0 < 80.0 < 80.0 857

printed 01/27/2011 8:20AM by Richard.Jordan p. 258/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183 34872

Sample Number: 34872 Sample Description: B-4A/1.5

B-4A/1.5 34867-84 Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:
Date Reported:

13:00 08/24/04

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	10.22	units	08/19/04	9045C
Arsenic	21.3	mg/kg	08/20/04	3050B/6010B
Barium	556	mg/kg	08/20/04	3050B/6010B
Cadmium	22.5	mg/kg	08/20/04	3050B/6010B
Chromium	94.6	mg/kg	08/20/04	3050B/6010B
Lead	10,200	mg/kg	08/23/04	3050B/6010B
Mercury	2.07	mg/kg	08/18/04	7470A
Selenium	<0.2	mg/kg	08/20/04	3050B/6010B
Silver	8.8	mg/kg	08/20/04	3050B/6010B
TCLP Metals Arsenic Barium	<0.002 <1.0	mg/L mg/L	08/20/04 08/20/04	3010A/6010B 3010A/6010B
Cadmium	0.314	mg/L	08/20/04	3010A/6010B
Chromium	0.002	mg/L	08/20/04	3010A/6010B
Lead	21.8	mg/L	08/20/04	3010A/6010B
Mercury	<0.0005	mg/L	08/18/04	7470A
Selenium	<0.002	mg/L	08/20/04	3010A/6010B
Silver	<0.001	mg/L	08/20/04	3010A/6010B
				

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183 34873

Sample Number:

Sample Description: B-4B/3

Lab File ID:

34867-84

Date Received:

08/13/04 08/12/04

Date Taken: Time Taken:

13:40

Date Reported:

08/24/04

Flags

Analyte	Result	Units
•		
Solids, Total	83.33	. %

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/18/04

Analysis Date:

08/20/04

Naphthalene	1,680	ug/kg
Acenaphthylene	999	ug/kg
Acenaphthene	1,600	ug/kg
Fluorene	1,980	ug/kg
Phenanthrene	14,500	ug/kg
Anthracene	3,970	ug/kg
Fluoranthene	20,200	ug/kg
Ругеле	19,200	ug/kg
Benzo[a]anthracene	9,330	ug/kg
Chrysene	10,300	ug/kg
Benzo[b]fluoranthene	9,930	ug/kg
Benzo[k]fluoranthene	6,650	ug/kg
Benzo[a]pyrene	10,400	ug/kg
Indeno[1,2,3-cd]pyrene	7,310	ug/kg
Dibenz[a,h]anthracene	1,540	ug/kg
Benzo[g,h,i]perylene	6,470	ug/kg

PCBs Method 3540C/8082

Preparation Date:

08/16/04

Date Analyzed:

08/20/04

Aroclor 1016	< 80.0	ug/kg
Aroclor 1221	< 80.0	ug/kg
Aroclor 1232	< 80.0	ug/kg
Aroclor 1242	< \$0.0	ug/kg
Aroclor 1248	< 80.0	ug/kg
Aroclor 1254	3,440	ug/kg
Aroclor 1260	< 160	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 260/383-

First Environmental Laboratories, Inc.

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34873

Sample Description: B-4B/3 Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

13:40

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	. 8.44	units	08/19/04	9045C
Arsenic	92.1	mg/kg	08/20/04	3050B/6010B
Barium	60.9	mg/kg	08/20/04	3050B/6010B
Cadmium	24.3	mg/kg	08/20/04	3050B/6010B
Chromium	126	mg/kg	08/20/04	3050B/6010B
Lead	8,940	mg/kg	08/20/04	3050B/6010B
Mercury	17.3	mg/kg	08/17/04	7470A
Selenium	12.9	mg/kg	08/20/04	3050B/6010B
Silver	8.6	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	0.024	mg/L	08/20/04	3010A/6010B
Barium	1.1	mg/L	08/20/04	3010A/6010B
Cadmium	0.506	mg/L	08/20/04	3010A/6010B
Chromium	0.003	mg/L	08/20/04	3010A/6010B
Lead	96.1	mg/L	08/23/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B
Silver	< 0.001	mg/L	08/20/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34869

Sample Description: B-5A/4-6

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken: Time Taken: 08/12/04 11:35

Date Reported:

08/24/04

Flags

Result Units Analyte % Solids, Total

84.57

BTEX Method 5035A/8260B

Analysis Date:

08/20/04

Benzene	< 2.0	ug/kg
Toluene	< 5.0	ug/kg
Ethyl benzene	< 5.0	ug/kg
Xylenes (total)	< 5.0	ug/kg

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/18/04

Analysis Date:

08/20/04

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	233	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	244	ug/kg
Pyrene	206	ug/kg
Benzo[a]anthracene	117	ug/kg
Chrysene	151	ug/kg
Benzo[b]fluoranthene	100	ug/kg
Benzo[k]fluoranthene	95	ug/kg
Benzo[a]pyrene	112	ug/kg
Indeno[1,2,3-cd]pyrene	75	ug/kg
Dibenz[a,h]anthracene	21	ug/kg
Benzo[g,h,i]perylene	75	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 262/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183
 Date Received:
 08/13/04

 Sample Number:
 34869
 Date Taken:
 08/12/04

 Sample Description:
 B-5A/4-6
 Time Taken:
 11:35

 Lab File ID:
 34867-84
 Date Reported:
 08/24/04

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.99	units	08/19/04	9045C
Arsenic	79.6	mg/kg	08/20/04	3050B/6010B
Barium	432	mg/kg	08/20/04	3050B/6010B
Cadmium	3.1	mg/kg	08/20/04	3050B/6010B
Chromium	22.6	mg/kg	08/20/04	3050B/6010B
Lead	1,010	mg/kg	08/20/04	3050B/6010B
Mercury	0.36	mg/kg	08/17/04	7470A
Selenium	6.3	mg/kg	08/20/04	3050B/6010B
Silver	0.4	mg/kg	08/20/04	3050B/6010B
TCLP Metals				,
Arsenic	< 0.002	mg/L	08/20/04	3010A/6010B
Barium	<1.0	$\mathrm{mg/L}$	08/20/04	3010A/6010B
Cadmium	0.042	mg/L	08/20/04	3010A/6010B
Chromium	0.002	mg/L	08/20/04	3010A/6010B
Lead	0.787	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B
Silver	< 0.001	mg/L	08/20/04	3010A/6010B

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34874

Sample Description: B-6A/2

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken: Time Taken: 08/12/04

Date Reported:

13:55

08/24/04

Analyte	Result	Units	Flags
Solids, Total	76.4 1	%	
BTEX Method 5035A/8260B Analysis Date: 08/20/04			
Benzene Toluene Ethyl benzene Xylenes (total)	< 2.0 < 5.0 5.0 6.4	ug/kg ug/kg ug/kg ug/kg	

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

08/18/04

Analysis Date:

08/23/04

Naphthalene	2,590	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	- 61	ug/kg
Fluorene	183	ug/kg
Phenanthrene	1,200	ug/kg
Anthracene	170	ug/kg
Fluoranthene	866	ug/kg
Pyrene	879	ug/kg
Benzo[a]anthracene	340	ug/kg
Chrysene	492	ug/kg
Benzo[b]fluoranthene	305	ug/kg
Benzo[k]fluoranthene	213	ug/kg
Benzo[a]pyrene	340	ug/kg
Indeno[1,2,3-cd]pyrene	196	ug/kg
Dibenz[a,h]anthracene	70	ug/kg
Benzo[g,h,i]perylene	287	ug/kg

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183 34874

Sample Description: B-6A/2

34867-84

Date Received: Date Taken:

08/13/04

Time Taken:

08/12/04 13:55

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.12	units	08/19/04	9045C
Arsenic Barium	42.6 350	mg/kg mg/kg	08/20/04 08/20/04	3050B/6010B 3050B/6010B
Cadmium	107	mg/kg	08/20/04	3050B/6010B
Chromium Lead	91.0 3 4, 000	mg/kg mg/kg	08/20/04 08/23/04	3050B/6010B 3050B/6010B
Mercury Selenium	1.10 0.9	mg/kg mg/kg	08/17/04 08/20/04	7470A 3050B/6010B
Silver	51.4	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	0.003	mg/L	08/20/04	3010A/6010B
Barium	<1.0	mg/L	08/20/04	3010A/6010B
Cadmium	0.529	mg/L	08/20/04	3010A/6010B
Chromium	< 0.001	${ m mg/L}$	08/20/04	3010A/6010B
Lead	2.53	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	${ m mg/L}$	08/18/04	7470 A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B
Silver	< 0.001	mg/L	08/20/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34876

Sample Description: B-7A/1-2

Lab File ID:

34867-84

Date Received:

Date Taken:

08/13/04 08/12/04

Time Taken:

15:25

Date Reported:

08/24/04

Result

Flags

Solids, Total

Analyte

82.47

%

Units

BTEX Method 5035A/8260B

Analysis Date:

08/20/04

Benzene Toluene Ethyl benzene

Xylenes (total)

< 2.0 < 5.0

ug/kg ug/kg

< 5.0 < 5.0 ug/kg ug/kg

ug/kg

Polynuclear Aromatic Compounds Method 3540C/8270C Preparation Date:

08/18/04

Analysis Date:

Naphthalene

08/20/04

1 .mpitatatome
Acenaphthylene
Acenaphthene
Fluorene
Phenanthrene

6,530 1,370 4,560

ug/kg ug/kg 5.160 ug/kg

Anthracene

70,600 16,100 203,000 ug/kg ug/kg ug/kg

Fluoranthene Pyrene Benzo[a]anthracene

106,000 96,600 75,200

182,000

ug/kg ug/kg ug/kg

ug/kg

Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene

97,800 110,000 69,200

ug/kg ug/kg ug/kg

Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene

16,200 37,500

ug/kg ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183 34876

Date Received:

08/13/04

Sample Number:

Sample Description: B-7A/1-2

Date Taken: Time Taken: 08/12/04 15:25

Lab File ID:

34867-84

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	9.04	units	08/19/04	9045C
Arsenic	16.5	mg/kg	08/20/04	3050B/6010B
Barium	1,490	mg/kg	08/23/04	3050B/6010B
Cadmium	16.8	mg/kg	08/20/04	3050B/6010B
Chromium	82.1	mg/kg	08/20/04	3050B/6010B
Lead	8,790	mg/kg	08/23/04	3050B/6010B
Mercury	0.21	mg/kg	08/17/04	7470A
Selenium	1.5	mg/kg	08/20/04	3050B/6010B
Silver	2.0	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	m mg/L	08/20/04	3010A/6010B
Barium	2.4	mg/L	08/20/04	3010A/6010B
Cadmium	0.348	mg/L	08/20/04	3010A/6010B
Chromium	0.003	mg/L	08/20/04	3010A/6010B
Lead	21.8	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B
Silver	<0.001	mg/L	08/20/04	3010A/6010B

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

Silver

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34870

Sample Description: B-8A/2-4

Lab File ID:

34867-84

Date Received:

Date Taken:

08/13/04

Time Taken:

08/12/04

Date Reported:

11:42

08/24/04

Flags

3010A/6010B

08/20/04

Analyte	Result	Units
Solids, Total	82.03	%

BTEX Method 5035A/8260B

Analysis Date:

08/20/04

Benzene	1,850	ug/kg
Toluene	26.0	ug/kg
Ethyl benzene	55.2	ug/kg
Xylenes (total)	61.4	ug/kg

Analyte	Result	Units	Date Analyzed	Method
Cyanide	<0.10	mg/kg	08/23/04	9010B/9014
pH @ 25°C (1:10)	8.51	units	08/19/04	9045C
Arsenic	6.4	mg/kg	08/20/04	3050B/6010B
Barium	40.5	mg/kg	08/20/04	3050B/6010B
Cadmium	<0.1	mg/kg	08/20/04	3050B/6010B
Chromium	22.0	mg/kg	08/20/04	3050B/6010B
Lead	20.6	mg/kg	08/20/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/17/04	7470A
Selenium	<0.2	mg/kg	08/20/04	3050B/6010B
Silver	<0.1	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	0.005	mg/L	08/20/04	3010A/6010B
Barium	<1.0	mg/L	08/20/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/20/04	3010A/6010B
Chromium	0.002	mg/L	08/20/04	3010A/6010B
Lead	0.046	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B

mg/L

0.001

printed 01/27/2011 8:20AM by Richard.Jordan p. 268/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34871

Sample Description: B-8B/6-8

Lab File ID:

Analyte

34867-84

Result

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

11:46

Date Reported:

Date Analyzed

08/24/04

Method

Analyte	Result	Units	Flags
Solids, Total	83.92	%	
BTEX Method 5035A/8260B Analysis Date: 08/20/04	,		
Benzene Toluene Ethyl benzene Xylenes (total)	< 2.0 < 5.0 < 5.0 < 5.0	ug/kg ug/kg ug/kg ug/kg	

1 Edday to	220041	04.00	~ <u> </u>	
Cyanide	<0.10	mg/kg	08/23/04	9010B/9014
pH @ 25°C (1:10)	8.80	units	08/19/04	9045C
Arsenic	7.8	mg/kg	08/20/04	3050B/6010B
Barium	34.1	mg/kg	08/20/04	3050B/6010B
Cadmium	<0.1	mg/kg	08/20/04	3050B/6010B
Chromium	16.3	mg/kg	08/20/04	3050B/6010B
Lead	14.2	mg/kg	08/20/04	3050B/6010B
Mercury	< 0.05	mg/kg	08/17/04	7470A
Selenium	<0.2	mg/kg	08/20/04	3050B/6010B
Silver	<0.1	mg/kg	08/20/04	3050B/6010B
TCLP Metals				
Arsenic	< 0.002	mg/L	08/20/04	3010A/6010B
Barium	<1.0	mg/L	08/20/04	3010A/6010B
Cadmium	0.002	mg/L	08/20/04	3010A/6010B
Chromium	0.002	mg/L	08/20/04	3010A/6010B
Lead	0.009	mg/L	08/20/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/18/04	7470A
Selenium	< 0.002	mg/L	08/20/04	3010A/6010B
Silver	0.001	${\sf mg/L}$	08/20/04	3010A/6010B

Units

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34882

Sample Description: B-9A/4-6

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

12:00

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		80.98	%	
BTEX Method 5	035A/8260B			
Analysis Date:	08/20/04			
Benzene		< 2.0	ug/kg	
Toluene		< 5.0	ug/kg	
Ethyl benzene		< 5.0	ug/kg	
Xylenes (total)		< 5.0	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 270/383-

Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34883

Sample Description: B-9B/8-10

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

12:10

Date Reported:

Analyte	Result	Units	Flags
Solids, Total	81.81	%	
BTEX Method 5035A/8260B Analysis Date: 08/19/04			
Benzene Toluene Ethyl benzene	< 2.0 < 5.0 < 5.0	ug/kg ug/kg ug/kg	
Xylenes (total)	< 5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

. Project ID:

15-04183

Sample Number:

34884

Sample Description: B-9C/10-12

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

12:15

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		82.02	%	
BTEX Method 5	035A/8260B			
Analysis Date:	08/19/04			
Benzene		< 2.0	ug/kg	
Toluene		< 5.0	ug/kg	
Ethyl benzene		< 5.0	ug/kg	
Xylenes (total)		< 5.0	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 272/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

Sample Number:

15-04183

34878

Sample Description: GW-2 34867-84

Date Taken:

Time Taken: Date Reported:

Units

Result

Date Received:

08/13/04 10:20

08/24/04

Flags

08/13/04

Analyte					
BTEX	Metho				
Analysi	s Date:				

thod 5030B/8260B 08/19/04

Benzene	< 5.0	ug/L
Toluene	< 5.0	ug/L
Ethyl benzene	< 5.0	ug/L
Xylenes (total)	< 5.0	ug/L

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/17/04

Analysis Date:

08/20/04

Allarysis Date.	00/20/04			
Naphthalene		<	10	ug/L
Acenaphthylene		` <	10	ug/L
Acenaphthene		· <	10	ug/L
Fluorene		<	2	u g/ L
Phenanthrene		· <	5	· ug/L
Anthracene		<	5	ug/L
Fluoranthene			3	ug/L
Pyrene			3	ug/L
Benzo[a]anthracene			1.5	ug/L
Chrysene			1.8	ug/L
Benzo[b]fluoranthene			1.4	ug/L
Benzo[k]fluoranthene			1.3	ug/L
Benzo[a]pyrene			1.8	ug/L
Indeno[1,2,3-cd]pyren	е		1.2	ug/L
Dibenz[a,h]anthracene			0.3	ug/L
Benzo[g,h,i]perylene	•		1.2	ug/L

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number: Sample Description: GW-3

34877

Lab File ID:

34867-84

Date Received: Date Taken:

Result

08/13/04 08/13/04

Time Taken:

8:15

08/24/04 Date Reported:

Units

Flags

Volatile Organic Compounds Method 5030B/8260B

Analysis Date:

Analyte

08/19/04

Acetone	< 10.0	ug/L
Benzene	< 5.0	ug/L
Bromodichloromethane	< 1.0	ug/L
Bromoform	< 1.0	ug/L
Bromomethane	< 5.0	ug/L
2-Butanone	< 10.0	ug/L
Carbon disulfide	< 5.0	ug/L
Carbon tetrachloride	< 5.0	ug/L
Chlorobenzene	< 5.0	ug/L
Chlorodibromomethane	< 1.0	ug/L
Chloroethane	< 10.0	ug/L
Chloroform	< 1.0	ug/L
Chloromethane	< 10.0	ug/L
1,1-Dichloroethane	< 5.0	ug/L
1,2-Dichloroethane	< 5.0	ug/L
1,1-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene	< 5.0	ug/L
trans-1,2-Dichloroethene	< 5.0	ug/L
1,2-Dichloropropane	< 5.0	ug/L
cis-1,3-Dichloropropene	< 1.0	ug/L
trans-1,3-Dichloropropene	< 1.0	ug/L
Ethyl benzene	< 5.0	ug/L
2-Hexanone	< 10.0	ug/L
4-Methyl-2-pentanone	< 10.0	ug/L
Methylene chloride	< 5.0	ug/L
MTBE	< 5.0	ug/L
Styrene	< 5.0	ug/L
1,1,2,2-Tetrachloroethane	< ·5.0	ug/L
Tetrachloroethene	< 5.0	ug/L
Toluene	< 5.0	ug/L
I,1,1-Trichloroethane	< 5.0	ug/L
1,1,2-Trichloroethane	< 5.0	ug/L
Trichloroethene	< 5.0	ug/L
Vinyl Acetate	< 10.0	ug/L
Vinyl Chloride	< 2.0	ug/L
Xylenes (total)	< 5.0	ug/L

printed 01/27/2011 8:20AM by Richard.Jordan p. 274/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: Sample Description: GW-3

Lab File ID:

15-04183 34877

34867-84

08/13/04 08/13/04

Time Taken: Date Reported:

Units

Result

Date Taken:

Date Received:

8:15 08/24/04

Flags

Analyte

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/17/04

Analysis Date: 08/20/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	ug/L
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene	< 2	u g/ L
Benzo[a]anthracene	0.50	ug/L
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	0.46	ug/L
Benzo[k]fluoranthene	0.41	ug/L
Benzo[a]pyrene	0.6	ug/L
Indeno[1,2,3-cd]pyrene	0.4	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g,h,i]perylene	< 0.4	ug/L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	0.016	mg/L	08/19/04	3010A/6010B
Barium	0.105	mg/L	08/19/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/19/04	3010A/6010B
Chromium	0.002	mg/L	08/19/04	3010A/6010B
Lead	0.178	${ m mg/L}$	08/19/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/17/04	7470A
Selenium	< 0.002	mg/L	08/19/04	3010A/6010B
Silver	< 0.001	mg/L	08/19/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34875

Sample Description: GW-6

Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken:

08/12/04

Time Taken:

14:15

Date Reported:

08/24/04

Analyte		Result	Units	Flags
BTEX Method 50	30B/8260B			
Analysis Date:	08/19/04			
Benzene	·	< 5.0	ug/L	
Toluene ·		< 5.0	ug/L	
Ethyl benzene		< 5.0	ug/L	
Xylenes (total)		< 5.0	ug/L	
Polynuclear Arom	atic Compounds Meth	od 3510C/8270C		

Preparation Date

08/17/04

Analysis Date:

08/20/04

·	00.20.0			
Naphthalene		<	10	ug/L
Acenaphthylene		<	10	ug/L
Acenaphthene		. <	10	ug/L
Fluorene	•	<	2	ug/L
Phenanthrene			9	ug/L
Anthracene		<	5	ug/L
Fluoranthene			21	· ug/L
Pyrene			17	ug/L
Benzo[a]anthracene			10.6	ug/L
Chrysene			13	ug/L
Benzo[b]fluoranthene			12	ug/L
Benzo[k]fluoranthene			8.6	ug/L
Benzo[a]pyrene			10	ug/L
Indeno[1,2,3-cd]pyrene	;		8.1	ug/L
Dibenz[a,h]anthracene			3.2	ug/L
Benzo[g,h,i]perylene			6.8	ug/L

printed 01/27/2011 8:20AM by Richard.Jordan p. 276/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183 34875

Date Received: Date Taken:

08/13/04

Sample Number:

Sample Description: GW-6

Time Taken:

08/12/04 14:15

Lab File ID:

34867-84

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Arsenic	0.008	mg/L	08/19/04	3010A/6010B
Barium	0.199	mg/L	08/19/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/19/04	3010A/6010B
Chromium	< 0.001	mg/L	08/19/04	3010A/6010B
Lead	0.012	mg/L	08/19/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/17/04	7470A
Selenium	< 0.002	mg/L	08/19/04	3010A/6010B
Silver	< 0.001	mg/L	08/19/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183

Sample Number:

34868

Sample Description: GW-8 Lab File ID:

34867-84

Date Received:

08/13/04

Date Taken: Time Taken: 08/12/04

11:10

Date Reported:

Analyte		Kesun	Onits	riags
BTEX Method 50	30B/8260B			
Analysis Date:	08/19/04			-
Benzene	•	6.7	ug/L	
Toluene		< 5.0	ug/L	
Ethyl benzene		< 5.0	ug/L	
Xylenes (total)		< 5.0	ug/L	

Analyte	Result	Units	Date Analyzed	Method
Arsenic	0.004	mg/L	08/19/04	3010A/6010B
Barium	0.047	mg/L	08/19/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/19/04	3010A/6010B
Chromium	< 0.001	mg/L	08/19/04	3010A/6010B
Lead	< 0.002	mg/L	08/19/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/17/04	7470A
Selenium	< 0.002	mg/L	08/19/04	3010A/6010B
Silver	< 0.001	mg/L	08/19/04	3010A/6010B

printed 01/27/2011 8:20AM by Ric	chard.Jordan p). 278/383 -
----------------------------------	----------------	---------------------

First Environmental

CHAIN OF CUSTODY RECORD

Naperville, Illinois 60563 Phone: (630) 778-1200 • Fax: (630) 778-1233 24 Hr. Pager (708) 569-7507 First Environmental Laboratories Laboratories, Inc. IEPA Certification# 100292 E-mail: info@firstenv.com 1600 Shore Road, Suite D

Group Services		51509 TL 21 Sales	12//-3		
Company Name: ClayTen Group	Street Address: 3/40 Fin 184 Rd	City: Dounts Grave	Phone: 795-3204	Send Report To. Molie Mye Her	Sampled By: Doller M. Lowsma

1 W = Water O = Other Sample Description Au-8 W-8 W-8 W-8 W-8 SA 4-6 SA 4-6 SA 4-6 SA 4-6 SA 4-6 SA 4-7 SA 4-6 SA 4-7 SA 4-6 SA 4-7 SA 4-6 SA 7-7 SA 4-7 SA	v			11/100	1,001			Commends Lab I.D.	<u>'</u>	No Bottle rela This		27	16.3	X	X HOLD BTEX	200	6.25	1,64	123	
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 S	Apalyse	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\) \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹		<u> </u>	Ŋ	×	<u>.</u>		X	X	X	X	X	×	
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 S	•	2	\ \ \ \	7	×<	≯ ∂	<u>></u>		×	\$	×		_	×	×	×		χ̈́		
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 S			Z	- A		ジジ	<u>ر</u>		X	<u></u>		-				 `			-	
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 S					3	<u>></u>	٦	-	×	×	×		×	×		X	X	×	×	•
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 S)		•	\ 		>` `^			×	X	×	×			X	×	X		
1 W = Water O = Other Sample Description Matr. SA / 2-4 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-6 SA / 4-7 SA / 4-6 SA / 4-7 S					`	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 \		X		1								Χ	
Codes: S = Soil W = Water O = Other Taken Sample Description SSO G-1A/2-4 1135 G-8A/2-4 1142 G-8B/2-4 1145 G-4A/.5 1355 G-4A/.5 1415 G-4B/3 1525 G-7A/1-2 1815 G-4B/3 1855 G-4B/3 1855 G-4B/3							,	Matrix	Ņ	ž	Ŋ	٧	>	8	. \$	~ ~	K	\$	≩	
Project I Project I Date/Tim	TELY CELINICATION# 100792	D: 15-04/83					Matrix Codes: S = Soil W = Water O = Other	Date/Time Taken Sample Description	0850 B-14/2-4	1110 (FW-8	1135 B-SA/4-6	1142 13-84/2-4	1146 8-88/6-8	1300 B-4A/1.5	1340 6-48/3	1355 13-64/2	1415 GW-6	1525 18-74 11-2	0815 GW-3	

Cooler Temperature; Clar 22 22 Received within 6 hrs. of collection:

Notes and Special Instructions: ___

4/23 loy 1450	
4 WHAMBAL Date/Time	Date/Time_
Received By: Hally	Received By:
Date/Time 8/3 1450	Date/Піпте
telinquished By:	elinquished By:

Rev. 1/01

First

CHAIN OF CUSTODY RECORD

Laboratories, Inc. Environmental

First Environmental Laboratories Phone: (630) 778-1200 • Fax: (630) 778-1233 24 Hr. Pager (708) 569-7507 IEPA Certification# 100292 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Illinois 60563

375.03 GP 95-1130 Lomsme MURITAL Clay Fen 795-3200 Ż, 61010 700/87 Street Address: 3/40 Marie City. Lowners Company Name: Send Report To: Sampled By: Phone

THE COUNTY TANKS	76700							Ana	VSes		
Project I.D.:	15-04/83						1.2	12	10/51		
P.O. #.:					\	\	نوي م	ر اي	\ \	\ \ \	
				/	\	\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	1		
			`		25	₹ *	, c		4		
			\	3		Š		< >	3		•
Matrix Codes: S	Matrix Codes: S = Soil W = Water O = Other	,	<u>`</u>	→	₹ }	₹ }	~ ^	j,	\	_	
Date/Time Taken	Sample Description	Matrix								Соптепт	Lab LD.
8/13 1035	2-1/ 48-81 5801	^	×	X	X	X	X				24175
1045	4-2/42-8 Shol	^		X				×			1011
1050	1050 8-213/6-8	V		X				×			124
1055	1055 B-Z C/10-12	n								HOLD	
1200	1200 13-94/4-6	8						X			44.3
1210	8/8/8-10	Ŋ						X			7 7 7
V 1215	1215 13-90/10-12	^						X			74
								-	-		9
						<u> </u>					
-			:								
			-						-		

Cooler Temperature: Store on Act Received within 6 hrs. of collection:

Notes and Special Instructions:

1450	
Phalon	
12 Cate/Time	Date/Time
len Mu	
ceived By:	ceived By:
# 1450 Re	Re
. Date/Time 8//3	. Date/Time
then it	
Relinquished By:	Relinquished By

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

)

August 27, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183.00-003

First Environmental File ID: 35397-09 Date Received: August 20, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: <u>Test Methods for Evaluating Solid Waste</u>, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number: 35402 Sample Description: MW1-081904 Lab File ID:

35397-09

Date Received: Date Taken:

08/20/04

Time Taken:

08/19/04 11:25

Date Reported:

08/27/04

Analyte	Result	Units	Flags
Volatile Organic Compounds Method 5030	B/8260B		
Analysis Date: 08/25/04	•		
Acetone	< 10.0	ug/L	
Benzene	< 5.0	ug/L	
Bromodichloromethane	< 1.0	ug/L	. •
Bromoform	< 1.0	ug/L	•
Bromomethane	< 5.0	ug/L	
2-Butanone	< 10.0	ug/L	
Carbon disulfide	< 5.0	ug/L	
Carbon tetrachloride	< 5.0	ug/L	
Chlorobenzene	< 5.0	ug/L	
Chlorodibromomethane	< 1.0	ug/L	
Chloroethane	< 10.0	ug/L	
Chloroform	< 1.0	ug/L	
Chloromethane	< 10.0	ug/L	
1,1-Dichloroethane	< 5.0	ug/L	
1,2-Dichloroethane	< 5.0	ug/L	
1,1-Dichloroethene	< 5.0	ug/L	
cis-1,2-Dichloroethene	< 5.0	ug/L	
trans-1,2-Dichloroethene	< 5.0	ug/L	
1,2-Dichloropropane	< 5.0	ug/L	
cis-1,3-Dichloropropene	< 1.0	ug/L	
trans-1,3-Dichloropropene	< 1.0	ug/L	
Ethyl benzene	< 5.0	ug/L	
2-Hexanone	< 10.0	ug/L	
4-Methyl-2-pentanone	· < 10.0	ug/L	
Methylene chloride	< 5.0	ug/L	
MTBE	< 5.0	ug/L	
Styrene	< 5.0	ug/L	
1,1,2,2-Tetrachloroethane	< 5.0	ug/L	
Tetrachloroethene	< 5.0	ug/L	
Toluene	< 5.0	ug/L	
1,1,1-Trichloroethane	< 5.0	ug/L	
1,1,2-Trichloroethane	< 5.0	ug/L	
Trichloroethene	< 5.0	ug/L	
Vinyl Acetate	< 10.0	ug/L	
Vinyl Chloride	< 2.0	ug/L	
Xylenes (total)	< 5.0	ug/L	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35401

Sample Description: MW1-081904 Lab File ID:

35397-09

Date Received:

08/20/04

Date Taken:

08/19/04

Time Taken: Date Reported:

11:10 08/27/04

Analyte

Result

Units

Flags

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/24/04

Analysis Date:

08/26/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	ug/L
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene .	< 2	ug/L
Benzo[a]anthracene	< 0.13	ug/L
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	< 0.18	ug/L
Benzo[k]fluoranthene	< 0.17	ug/L
Benzo[a]pyrene	< 0.2	ug/L
Indeno[1,2,3-cd]pyrene	< 0.3	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g,h,i]perylene	< 0.4	ug/L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	<0.002	mg/L	08/24/04	3010A/6010B
Barium	0.057	mg/L	08/24/04	3010A/6010B
	<0.001	-	08/24/04	3010A/6010B
Cadmium	<0.001	mg/L	08/24/04	3010A/6010B
Chromium	<0.001	mg/L	08/24/04	3010A/6010B
Lead	<0.002	mg/L	08/23/04	
Mercury		mg/L		7470A
Selenium	< 0.002	mg/L	08/24/04	3010A/6010B
Silver	< 0.001	mg/L	08/24/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35400

Sample Description: MW2-081904 Lab File ID:

35397-09

Result

08/20/04

Time Taken: Date Reported:

Units

Date Taken:

Date Received:

08/19/04 10:25

08/27/04

Flags

AЛ	aiy	te

Volatile Organic Compounds Method 5030B/8260B

Analysis Date:

Acetone < 10.0 ug/L Benzene < 5.0 ug/L Bromodichloromethane < 1.0 ug/L Bromoform < 1.0 ug/L Bromomethane < 5.0 ug/L 2-Butanone < 10.0 ug/L Carbon disulfide < 5.0 ug/L Carbon tetrachloride < 5.0 ug/L Chlorobenzene < 5.0 ug/L Chlorodibromomethane < 1.0 ug/L Chloroform < 1.0 ug/L Chloromethane < 10.0 ug/L 1,1-Dichloroethane < 5.0 ug/L 1,2-Dichloroethane < 5.0 ug/L 1,1-Dichloroethene < 5.0 ug/L			
Bromodichloromethane < 1.0	Acetone		
Bromoform < 1.0	——- -		ug/L
Bromomethane < 5.0		< 1.0	
Bromomethane < 5.0	Bromoform	< 1.0	ug/L
2-Butanone < 10.0	Bromomethane	< 5.0	
Carbon disulfide < 5.0	2-Butanone	< 10.0	ug/L
Carbon tetrachloride < 5.0	Carbon disulfide	< 5.0	
Chlorobenzene < 5.0	Carbon tetrachloride	< 5.0	
Chlorodibromomethane < 1.0 ug/L Chloroethane < 10.0	Chlorobenzene	< 5.0	
Chloroethane < 10.0 ug/L Chloroform < 1.0	Chlorodibromomethane	< 1.0	
Chloroform < 1.0 ug/L Chloromethane < 10.0	Chloroethane	< 10.0	
Chloromethane < 10.0	Chloroform	< 1.0	
1,1-Dichloroethane < 5.0 ug/L 1,2-Dichloroethane < 5.0 ug/L	Chloromethane	< 10.0	
1,2-Dichloroethane < 5.0 ug/L	1,1-Dichloroethane	< 5.0 ^	
	1,2-Dichloroethane	< 5.0	-
-,, , - vio	1,1-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene < 5.0 ug/L	cis-1,2-Dichloroethene	< 5.0	
trans-1,2-Dichloroethene < 5.0 ug/L		< 5.0	
1,2-Dichloropropane < 5.0 ug/L	1,2-Dichloropropane	· < 5.0	_
cis-1,3-Dichloropropene < 1.0 ug/L	cis-1,3-Dichloropropene	< 1.0	
trans-1,3-Dichloropropene < 1.0 ug/L	trans-1,3-Dichloropropene	< 1.0	_
Ethyl benzene < 5.0 ug/L		< 5.0	-
2-Hexanone < 10.0 ug/L	2-Hexanone	< 10.0	
4-Methyl-2-pentanone < 10.0 ug/L	4-Methyl-2-pentanone	< 10.0	_
Methylene chloride < 5.0 ug/L		< 5.0	_
MTBE < 5.0 ug/L	MTBE	< 5.0	-
Styrene < 5.0 ug/L	Styrene	< 5.0	_
1,1,2,2-Tetrachloroethane < 5.0 ug/L	1,1,2,2-Tetrachloroethane	< 5.0	
Tetrachloroethene < 5.0 ug/L	Tetrachloroethene	< 5.0	
Toluene < 5.0 ug/L	Toluene	< 5.0	
1,1,1-Trichloroethane < 5.0 ug/L	1,1,1-Trichloroethane	< 5.0	
1,1,2-Trichloroethane < 5.0 ug/L	1,1,2-Trichloroethane	< 5.0	_
Trichloroethene < 5.0 ug/L	Trichloroethene	< 5.0	_
Vinyl Acetate < 10.0 ug/L	Vinyl Acetate	< 10.0	
Vinyl Chloride < 2.0 ug/L	Vinyl Chloride	< 2.0	
Xylenes (total) < 5.0 ug/L	Xylenes (total)	< 5.0	_

printed 01/27/2011 8:20AM by Richard.Jordan p. 284/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35399

Sample Description: MW2-081904

Lab File ID:

35397-09

Date Received:

08/20/04

Date Taken:

Result

08/19/04

Time Taken:

10:00

Date Reported:

Units

08/27/04

Flags

Polynuclear	Aromatic	Compounds	Method	3510C/8270C

Preparation Date

08/24/04

Analysis Date:

Analyte

08/26/04

· Mary one Date.	00,20,01			
Naphthalene			< 10	ug/L
Acenaphthylene			< 10	ug/L
Acenaphthene			< 10	ug/L
Fluorene			< 2	ug/L
Phenanthrene			< 5	ug/L
Anthracene			< 5	ug/L
Fluoranthene			< 2	ug/L
Pyrene			< 2	ug/L
Benzo[a]anthracene			< 0.13	ug/L
Chrysene			< 1.5	ug/L
Benzo[b]fluoranthene			< 0.18	ug/L
Benzo[k]fluoranthene			< 0.17	ug/L
Benzo[a]pyrene		-	< 0.2	ug/L
Indeno[1,2,3-cd]pyren	ie		< 0.3	ug/L
Dibenz[a,h]anthracene	2		< 0.3	ug/L
Benzo[g,h,i]perylene			< 0.4	ug/L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	< 0.002	mg/L	08/24/04	3010A/6010B
Barium	0.142	mg/L	08/24/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/24/04	3010A/6010B
Chromium	< 0.001	mg/L	08/24/04	3010A/6010B
Lead	< 0.002	mg/L	08/24/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/23/04	7470A
Selenium	< 0.002	mg/L	08/24/04	3010A/6010B
Silver	< 0.001	mg/L	08/24/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35398

Lab File ID:

Sample Description: MW3-081904

35397-09

Date Received:

08/20/04

Date Taken: Time Taken: 08/19/04 9:00

Date Reported:

08/27/04

Analyte Result Units Flags

Volatile Organic Compounds Method 5030B/8260B Analysis Date: 08/24/04

Acetone	< 10.0	ug/L
Benzene	< 5.0	ug/L
Bromodichloromethane	< 1.0	ug/L
Bromoform	< 1.0	ug/L
Bromomethane	< 5.0	ug/L
2-Butanone	< 10.0	ug/L
Carbon disulfide	< 5.0	ug/L
Carbon tetrachloride	< 5.0	ug/L
Chlorobenzene	< 5.0	ug/L
Chlorodibromomethane	< 1.0	ug/L
Chloroethane	< 10.0	ug/L
Chloroform	< 1.0	ug/L
Chloromethane	< 10.0	ug/L
1,1-Dichloroethane	< 5.0	ug/L
1,2-Dichloroethane	< 5.0	ug/L
1,I-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene	< 5.0	ug/L
trans-1,2-Dichloroethene	< 5.0	ug/L
1,2-Dichloropropane	< 5.0	ug/L
cis-1,3-Dichloropropene	< 1.0	ug/L
trans-1,3-Dichloropropene	< 1.0	ug/L
Ethyl benzene	< 5.0	ug/L
2-Hexanone	< 10.0	ug/L
4-Methyl-2-pentanone	< 10.0	ug/L
Methylene chloride	< 5.0	ug/L
MTBE	< 5.0	ug/L
Styrene	< 5.0	ug/L
1,1,2,2-Tetrachloroethane	< 5.0	ug/L
Tetrachloroethene	< 5.0	ug/L
Toluene	< 5.0	ug/L
1,1,1-Trichloroethane	< 5.0	ug/L
1,1,2-Trichloroethane	< 5.0	ug/L
Trichloroethene	< 5.0	ug/L
Vinyl Acetate	< 10.0	ug/L
Vinyl Chloride	< 2.0	ug/L
Xylenes (total)	< 5.0	ug/L
		-

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35397

Sample Description: MW3-081904

Lab File ID:

35397-09

Date Received:

08/20/04

Date Taken:

08/19/04

Time Taken:

Result

8:30

Date Reported:

Units

08/27/04

Flags

Polynuclear	Aromatic	Compounds	Method	3510C/8270C

Preparation Date

08/24/04

Analysis Date:

Analyte

08/26/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	ug/L
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene	< 2	ug/L
Benzo[a]anthracene	< 0.13	ug/L
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	< 0.18	ug/L
Benzo[k]fluoranthene	< 0.17	ug/L
Benzo[a]pyrene	< 0.2	ug/L
Indeno[1,2,3-cd]pyrene	< 0.3	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g.h.i]pervlene	< 0.4	ug/L

Analyte .	Result	Units	Date Analyzed	Method
Arsenic	0.006	mg/L	08/24/04	3010A/6010B
Barium	0.295	mg/L	08/24/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/24/04	3010A/6010B
Chromium	<0.001	mg/L	08/24/04	3010A/6010B
Lead	< 0.002	mg/L	08/24/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/23/04	7470A
Selenium	< 0.002	mg/L	08/24/04	3010A/6010B
Silver	< 0.001	mg/L	08/24/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35404

Lab File ID:

Sample Description: MW4-081904

35397-09

Date Received:
Date Taken:

08/20/04 08/19/04

Time Taken: Date Reported;

Units

Result

12:30 08/27/04

Flags

Volatile Organic Compounds Method 5030B/8260B

Analysis Date:

Analyte

08/25/04

Analysis Date: 06/25/04		
Acetone	< 10.0	ug/L
Benzene	< 5.0	ug/L
Bromodichloromethane	< 1.0	ug/L
Bromoform	< 1.0	ug/L
Bromomethane	< 5.0	ug/L
2-Butanone	< 10.0	ug/L
Carbon disulfide	< 5.0	ug/L
Carbon tetrachloride	< 5.0	ug/L
Chlorobenzene	< 5.0	ug/L
Chlorodibromomethane	< 1.0	ug/L
Chloroethane	< 10.0	ug/L
Chloroform	< 1.0	ug/L
Chloromethane	< 10.0	ug/L
1,1-Dichloroethane	< 5.0	ug/L
1,2-Dichloroethane	< 5.0	ug/L
1,1-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene	< 5.0	ug/L
trans-1,2-Dichloroethene	< 5.0	ug/L
1,2-Dichloropropane	< 5.0	ug/L
cis-1,3-Dichloropropene	< 1.0	π ē /L
trans-1,3-Dichloropropene	< 1.0	ug/L
Ethyl benzene	< 5.0	ug/L
2-Hexanone	< 10.0	ug/L
4-Methyl-2-pentanone	< 10.0	ug/L
Methylene chloride	< 5.0	ug/L
MTBE	< 5.0	ug/L
Styrene	< 5.0	ug/L
1,1,2,2-Tetrachloroethane	< 5.0	ug/L
Tetrachloroethene	< 5.0	ug/L
Toluene	< 5.0	ug/L
1,1,1-Trichloroethane	< 5.0	ug/L
1,1,2-Trichloroethane	< 5.0	ug/L
Trichloroethene	< 5.0	ug/L
Vinyl Acetate	< 10.0	ug/L
Vinyl Chloride	< 2.0	ug/L
Xylenes (total)	< 5.0	ug/L

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35403

Sample Description: MW4-081904

Lab File ID:

35397-09

Date Received:

08/20/04

Date Taken: Time Taken: 08/19/04

Date Reported:

12:01 08/27/04

Analyte

Result

Units

Flags

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/24/04

Analysis Date:

08/26/04

			
Naphthalene	•	< 10	ug/L
Acenaphthylene		< 10	ug/L
Acenaphthene		< 10	ug/L
Fluorene		< 2	ug/L
Phenanthrene		< 5	ug/L
Anthracene		< 5	ug/L
Fluoranthene		< 2	ug/L
Pyrene		< 2	ug/L
Benzo[a]anthracene		< 0.13	ug/L
Chrysene		< 1.5	ug/L
Benzo[b]fluoranthene		· < 0.18	ug/L
Benzo[k]fluoranthene		< 0.17	u g/ L
Benzo[a]pyrene		< 0.2	u g/ L
Indeno[1,2,3-cd]pyrene		< 0.3	ug/L
Dibenz[a,h]anthracene		< 0.3	u g /L
Benzo[g,h,i]perylene		< 0.4	u g/ L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	<0.002	mg/L	08/24/04	3010A/6010B
Barium	0.069	mg/L	08/24/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/24/04	3010A/6010B
Chromium	< 0.001	mg/L	08/24/04	3010A/6010B
Lead	< 0.002	mg/L	08/24/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/23/04	7470A
Selenium	< 0.002	mg/L	08/24/04	3010A/6010B
Silver	< 0.001	mg/L	08/24/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number: 15-04183.00-003 35408

Sample Description: MW5-081904 Lab File ID:

35397-09

Date Received: Date Taken:

08/20/04

Time Taken:

08/19/04 14:37

Date Reported: 08/27/04

Analyte	Result	Units	Flags
Volatile Organic Compounds Method 5030	B/8260B		
Analysis Date: 08/25/04			
		~	
Acetone	< 10.0	ug/L	
Benzene	< 5.0	ug/L	
Bromodichloromethane	< 1.0	ug/L	
Bromoform	< 1.0	ug/L	
Bromomethane	< 5.0	ug/L	
2-Butanone	< 10.0	ug/L	
Carbon disulfide	< 5.0	ug/L	
Carbon tetrachloride	< 5.0	ug/L	
Chlorobenzene	< 5.0	ug/L	
Chlorodibromomethane	< 1.0	ug/L	
Chloroethane	< 10.0	ug/L	
Chloroform	< 1.0	ug/L	
Chloromethane	< 10.0	ug/L	
1,1-Dichloroethane	< 5.0	ug/L	
1,2-Dichloroethane	< 5.0	ug/L	
1,1-Dichloroethene	< 5.0	ug/L	
cis-1,2-Dichloroethene	< 5.0	ug/L	
trans-1,2-Dichloroethene	< 5.0	ug/L	
1,2-Dichloropropane	< 5.0	ug/L	
cis-1,3-Dichloropropene	< 1.0	ug/L	
trans-1,3-Dichloropropene	< 1.0	ug/L	
Ethyl benzene	< 5.0	ug/L	
2-Hexanone	< 10.0	ug/L	
4-Methyl-2-pentanone	< 10.0	ug/L	
Methylene chloride	< 5.0	ug/L	
MTBE	< 5.0	ug/L	
Styrene	< 5.0	ug/L	
1,1,2,2-Tetrachloroethane	< 5.0	ug/L	
Tetrachloroethene	< 5.0	ug/L	
Toluene	< 5.0	ug/L	
1,1,1-Trichloroethane	< 5.0	ug/L	
1,1,2-Trichloroethane	< 5.0	ug/L	
Trichloroethene	< 5.0	ug/L	
Vinyl Acetate	< 10.0	ug/L	
Vinyl Chloride	< 2.0	ug/L	
Xylenes (total)	< 5.0	ug/L	
		-	

printed 01/27/2011 8:20AM by Richard.Jordan p. 290/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35407

Sample Description: MW5-081904

Lab File ID:

35397-09

Date Received:

08/20/04

Date Taken:

08/19/04

Time Taken:

Result

14:20

Date Reported:

Units

08/27/04

Flags

Polynuciear	Aromatic	Compounds	Method	3510C/8270C

Preparation Date

08/24/04

Analysis Date:

Analyte

08/26/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	ug/L
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene	< 2	ug/L
Benzo[a]anthracene	< 0.13	ug/L
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	· < 0.18	ug/L
Benzo[k]fluoranthene	< 0.17	ug/L
Benzo[a]pyrene	< 0.2	ug/L
Indeno[1,2,3-cd]pyrene	< 0.3	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g,h,i]perylene	< 0.4	ug/L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	<0.002	mg/L	08/24/04	3010A/6010B
Barium	0.096	mg/L mg/L	08/24/04	3010A/6010B
Cadmium	<0.001	mg/L	08/24/04	3010A/6010B
Chromium	< 0.001	mg/L	08/24/04	3010A/6010B
Lead	< 0.002	mg/L	08/24/04	3010A/6010B
Mercury	< 0.0005	$\mathrm{mg/L}$	08/23/04	74 7 0A
Selenium	< 0.002	m mg/L	08/24/04	3010A/6010B
Silver	< 0.001	mg/L	08/24/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003 35406

Sample Number:

Sample Description: MW6-081904

Date Received: Date Taken:

08/20/04 08/19/04

Analyte

Time Taken:

13:32

35397-09

Date Reported:

Result

08/27/04

Flags

Units

Volatile Organic Compounds	Method	5030B/8260B

Analysis Date:

08/25/04

•		
Acetone	< 10.0	ug/L
Benzene	< 5.0	ug/L
Bromodichloromethane	< 1.0	ug/L
Bromoform	< 1.0	ug/L
Bromomethane	< 5.0	ug/L
2-Butanone	< 10.0	ug/L
Carbon disulfide	< 5.0	ug/L
Carbon tetrachloride	< 5.0	ug/L
Chlorobenzene	< 5.0	ug/L
Chlorodibromomethane	< 1.0	ug/L
Chloroethane	< 10.0	ug/L
Chloroform	< 1.0	ug/L
Chloromethane	< 10.0	ug/L
1,1-Dichloroethane	< 5.0	ug/L
1,2-Dichloroethane	< 5.0	ug/L
1,1-Dichloroethene	< 5.0	ug/L
cis-1,2-Dichloroethene	< 5.0	ug/L
trans-1,2-Dichloroethene	< 5.0	ug/L
1,2-Dichloropropane	< 5.0	ug/L
cis-1,3-Dichloropropene	< 1.0	ug/L
trans-1,3-Dichloropropene	< 1.0	ug/L
Ethyl benzene	< 5.0	· ug/L
2-Hexanone	< 10.0	ug/L
4-Methyl-2-pentanone	· < 10.0	ug/L
Methylene chloride	< 5.0	ug/L
MTBE	< 5.0	ug/L
Styrene	< 5.0	ug/L
1,1,2,2-Tetrachloroethane	< 5.0	ug/L
Tetrachloroethene	< 5.0	ug/L
Toluene	< 5.0	ug/L
1,1,1-Trichloroethane	< 5.0	ug/L
1,1,2-Trichloroethane	< 5.0	ug/L
Trichloroethene	< 5.0	ug/L
Vinyl Acetate	< 10.0	ug/L
Vinyl Chloride	< 2.0	ug/L
Xylenes (total)	< 5.0	ng/L
7 \		-5

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003

Sample Number:

35405

Sample Description: MW6-081904

35397-09

Date Received:

08/20/04

Date Taken: Time Taken: 08/19/04 13:10

Date Reported:

08/27/04

Analyte

Result

Units

Flags

Polynuclear Aromatic Compounds Method 3510C/8270C

Preparation Date

08/24/04

Analysis Date:

08/26/04

Naphthalene	< 10	ug/L
Acenaphthylene	< 10	ug/L
Acenaphthene	< 10	ug/L
Fluorene	< 2	ug/L
Phenanthrene	< 5	ug/L
Anthracene	< 5	ug/L
Fluoranthene	< 2	ug/L
Pyrene	< 2	ug/L
Benzo[a]anthracene	< 0.13	ug/L
Chrysene	< 1.5	ug/L
Benzo[b]fluoranthene	< 0.18	ug/L
Benzo[k]fluoranthene	< 0.17	ug/L
Benzo[a]pyrene	< 0.2	ug/L
Indeno[1,2,3-cd]pyrene	< 0.3	ug/L
Dibenz[a,h]anthracene	< 0.3	ug/L
Benzo[g,h,i]perylene	< 0.4	ug/L

Analyte	Result	Units	Date Analyzed	Method
Arsenic	<0.002	mg/L	08/23/04	3010A/6010B
Barium	0.076	mg/L	08/23/04	3010A/6010B
Cadmium	< 0.001	mg/L	08/23/04	3010A/6010B
Chromium	< 0.001	mg/L	08/23/04	3010A/6010B
Lead	< 0.002	mg/L	08/23/04	3010A/6010B
Mercury	< 0.0005	mg/L	08/23/04	7470A
Selenium	< 0.002	mg/L	08/23/04	3010A/6010B
Silver	< 0.001	mg/L	08/23/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

35409

Sample Description: Lab File ID: Trip Blank

Date Taken:

08/20/04

Time Taken:

Date Received:

08/19/04 N/A

Date Reported:

08/27/04

35397-09

_ p v...-

Q/2//Q4

Analyte	Result	Units	Flags
Volatile Organic Compounds Method 5030	B/8260B		
Analysis Date: 08/24/04	•		
Acetone	< 10.0	nw/I	
Benzene	< 5.0	ug/L ug/L	
Bromodichloromethane	< 1.0	ug/L	
Bromoform	< 1.0	ug/L ug/L	
Bromomethane	< 5.0	ug/L	
2-Butanone	< 10.0	ug/L	
Carbon disulfide	< 5.0	ug/L	
Carbon tetrachloride	< 5.0	ug/L	
Chlorobenzene	< 5.0	ug/L	
Chlorodibromomethane	< 1.0	ug/L	
Chloroethane	< 10.0	ug/L	
Chloroform	< 1.0	ug/L	
Chloromethane	< 10.0	ug/L	
1,1-Dichloroethane	< 5.0	ug/L ug/L	
1,2-Dichloroethane	< 5.0	ug/L	
1,1-Dichloroethene	< 5.0	ug/L	
cis-1,2-Dichloroethene	< 5.0	ug/L	
trans-1,2-Dichloroethene	< 5.0	ug/L	
1,2-Dichloropropane	< 5.0	ug/L	
cis-1,3-Dichloropropene	< 1.0	ug/L	
trans-1,3-Dichloropropene	< 1.0	ug/L	
Ethyl benzene	< 5.0	ug/L	
2-Hexanone	< 10.0	ug/L	
4-Methyl-2-pentanone	< 10.0	ug/L	
Methylene chloride	< 5.0	ug/L	
MTBE	< 5.0	ug/L	
Styrene	< 5.0	ug/L	
1,1,2,2-Tetrachloroethane	< 5.0	ug/L	
Tetrachloroethene	< 5.0	ug/L	
Toluene	< 5.0	ug/L	
1,1,1-Trichloroethane	< 5.0	ug/L	
1,1,2-Trichloroethane	< 5.0	ug/L	
Trichloroethene	< 5.0	ug/L	
Vinyl Acetate	< 10.0	ug/L	
Vinyl Chloride	< 2.0	ug/L	
Xylenes (total)	< 5.0	ug/L	

First Environmental	CHAÎN OF CUSTODY RECORD	ted 01/2
Laboratories, Inc.	7	
First Environmental Laboratories	Suret Address: 3140 Finty Road	
1600 Shore Road, Suite D Naperville, Illinois 60563	DOWNERS GROVE 1	
Phone: (630) 778-1200 • Fax: (630) 778-1233	Phone: (950-745-3200 Send Remort To: Marie Mitalle)	
E-mail: info@firstenv.com	Macie Mul	
IEPA Certification# 100292	Analyses	
Project I.D.: 15-04/83.00-003	/	
P.O. #: 15-04/13.00-003		- ·
	Sor Cand Will	
Matrix Codes; S = Soil W = Water O = Other		
Date/Ilme Taken Sample Description	Matrix Comments La	Lab I.D.
81964 0830 MW3-081904	SEV X X M	357
0400		23
1000 MWZ-081904	M X X M	56
1025 MWZ - 0\$1904	× ×	400
MW.	×	10
_]		05
	W X X X	03
_]		7.0
	w x x	65
]	-	Ó.
20 /	×	0.7
V 1437 MWS-08/904	W X X	000
Jan 181-18	×	50
Cooler Temperature:C		
Received within 6 hrs. of collection:		
Notes and Special Instructions:	rd TAT	
Relinanished By MILL Date	Pologicaline 8/19/04 Received By 1/10 04	
	Received By: V	<u> </u>
		•

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

September 29, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183.00-004

First Environmental File ID: 38095, 38143

Date Received: September 28, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38095

2009

Sample Description: Lab File ID: GW-30

38095

Date Received:

09/28/04

Time Taken:

Date Taken:

09/28/04

9:55

Date Reported:

09/29/04

Analyte	Result	Units	Date Analyzed	Method
Lead, dissolved	<0.002	mg/L	09/28/04	6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 297/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38143

Sample Description:

GW-30 Unfiltered

Lab File ID:

38143

Date Received:

09/28/04

Date Taken:

09/28/04

Time Taken:

9:55

Date Reported:

09/29/04

Analyte	Result	Units	Date Analyzed	Method
Lead, total	32.0	mg/L	09/29/04	6010B

Environmental

CHAIN OF CUSTODY RECORD

First Environmental Laboratories Phone: (630) 778-1200 • Fax: (630) 778-1233 Laboratories, Inc. 24 Hr. Pager (708) 569.7507 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Illinois 60563

IEPA Certification# 100292

795-1130 Services P TRISON Custo Mueller Street Address: 3/100 Finle. City: Don net 3 Grove. Clarton Send Report To: Morie Sampled By: Derra Company Name:

							<	Analyses					
Project 1.D. 15 - 04/83 00 - 004	83.00.004			1	\								_
P.O. #.:				\	<u>ک</u>	<	\	•	\	\		•	
				>	٠ ک	35	\	\	\	\			
	-			\ <	\ 	<u>\</u>	\	\	\	\	-		
			\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\f\ \\					\			
Matrix Codes; S = Soil 'W = Water O = Other	V = Water 0 = Other	٠.	3	<u> </u>		\	\	\					
Date/Time Taken	Sample Description	Matrix	_	_	_	_		<u> </u>					
9/28 0955 GW-30	0 %	3	×		×	<u> </u>		+	<u> </u>		nents	Lab I.D.	_
4-0112-H	4-011	3		Y		+		-	7	24 hr fun	TUCALOUNDE	78097	_
7-1/85-818080	7-1/8	\ \		۲ ۲	+	1		+	+				
120	Grap 7 1. 0.11			4	1	1		+	-			38142	
	10 4-11 tru			+	_	-				į			
				-	-								_
								_	_				
				_	 			-					
				-		<u> </u> -		+	+				
				1	+			-	-	- 2			
			1										
						<u> </u>		+	-				
				-	+	+		+	-				
					_								

Cooler Temperature: 60'C and ACL Received within 6 hrs. of collection:

F. (resed
The
re- F./tu
otes and Special Instructions: _

Sample

GE-30

5.5/	
Ser for	
Date/	
max	
Cheller !	
Received By:	-
5/01 9/55	
Date/Time 4/2	
The state of the s	
Linquished By	

Date/Time_

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

October 5, 2004

Ms. Marie Mueller CLAYTON GROUP SERVICES INC. 3140 Finley Road Downers Grove, IL 60515

Project ID: 15-04183.00-004

First Environmental File ID: 38096-97 Date Received: September 28, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results for the soil samples have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely.

William H. Mottashed

Project Manager

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Date Received:

09/28/04

Project ID:

15-04183.00-004

Date Reported:

10/05/04

Lab File ID:

38096-97

TPH - Method Modified 8015B

Date Analyzed:

10/05/04

Sample#	Description	Date/Time Taken	TPH as Gasoline mg/kg	TPH as <u>Diesel</u> mg/kg	TPH as <u>Oil</u> mg/kg	Total <u>TPH</u> mg/kg	Total <u>Solids</u> %
38096	B-51/2-4	09/28/04 9:00	<10	165	93	258	87.14
38097	B-50/4-6	09/28/04 9:08	<125	3,630	<125	3,630	78.77

: 1 04/07/0044	0.00 AM by Diaband	Laurelaus in 204/202
nrintea utizzzzuta	8. ZUAIVI DV RICDAIO	.Jordan p. 301/383
	o.zor iivi by i tionala	.001ddii p. 001/000

First Environmental Laboratories, Inc.	Environmental Laboratories
	Envi
	First

Phone: (630) 778-1290 • Fax: (630) 778-1233 24 Hr. Pager (708) 569-7507 E-mail: info@firstenv.com

1600 Shore Road, Suite D Naperville, Illinois 60563

CHAIN OF CUSTODY RECORD

86
-
Page /
£

		Zie:			
eg .		late;	795-1130		
Service		ر کر	Pax:		Lemina, Som Peterson
dn		51509			on la
بى ك	ky Par	7.7	0	veller	5 20
ay to	6	Grove	795-3200	7	Lems
De: 01	3/4	n es 3 ·	79	To: Mo!	Derra
Company Name Clayton Gloup Services	Street Address: 3140 Fin 1	City. Donners Grove	none:	end Report To: Motice Muell	Sampled By: Der Ce. 6
Öl ,	3 3	a	科	Š	ΔI.
·					

Comments 24 hr Furnaceunol	IEPA Certification# 100292						₹.	Analyses				
ter D=Other Ite Description Matrix # \$ \$ \times \	-04183.00-004				7							
ter O = Other Comments Comments Com				>		<u> </u>		\	\ \	\		
ter O = Other le Description Matrix W X X Comments F S X X F Furnacieving -6 S X X					\searrow							
1e Description Matrix	= Soil 'W' = Water O = Other		~) } }							\ <u>e</u> .	
4	Sample Description	Matrix								Comm	ents	Lab I.D.
X X	GW-30	3	×						24		a (ac) mal	
	4-2/12-8	~		×	_							750% 2
	9-4/65-81	۰۸		メ	_							35,097
												-
					· ·							
					<u></u>							
						ļ <u>.</u>						

anthi	tion:
Cooler Temperature: 44.c	Received within 6 hrs. of collecti

7	
e-Fitter	
Notes and Special Instructions:	-

Filtered GW-30 Sample

Relinquished By 4	Date/Time 9/26/04/ 9155	Received By Le Less March	Date/Time Joy 1155
Relinquished By:	Date/Time	Received By:	Date/Time
D 1-01			

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

October 8, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183.00-003

First Environmental File ID: 38316-36 Date Received: September 30th, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: <u>Test Methods for Evaluating Solid Waste, Physical/Chemical Methods</u>, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results for the soil samples have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38332

Sample Description: B-29/2

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1505

Date Reported:

10/08/04

Flags

Analyte		Result	Units
Solids, Total	•	89.22	%

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg
Benzo[a]anthracene	< 8.7	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	· < 11	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg
Benzo[g,h,i]perylene	··· < 50	ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/06/04

TCLP Lead

0.050

mg/L

printed 01/27/2011 8:20AM by Richard.Jordan p. 304/383=

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

38319

Sample Number: Sample Description: B-31/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

914

Date Reported:

10/08/04

Flags

Analyte	Result	Units
Solids, Total	72.53	%

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Acenaphthene	1,170	ug/kg
Acenaphthylene	991	ug/kg
Anthracene	3,740	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	8,240	ug/kg
Benzo[b]fluoranthene	5,050	ug/kg
Benzo[k]fluoranthene	7,910	ug/kg
Benzo[g,h,i]perylene	3,390	ug/kg
Benzo[a]pyrene	7,630	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	581	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	4,530	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	u g /kg
2-Chlorophenoi	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	8,450	ug/kg
Dibenz[a,h]anthracene	1,340	ug/kg
Dibenzofuran	1,010	ug/kg
1,2-Dichlorobenzene	< 330	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38319

Sample Description: B-31/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken: Time Taken: 09/29/04 914

Date Reported:

Analyte	Result	Units	Flags
1,3-Dichlorobenzene	< 330	ug/ k g	
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	•
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	17,300	ug/kg	
Fluorene	1,420	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	3,120	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	. 1,350	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene.	1,760	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003

Sample Number:

38319

Sample Description: B-31/3

B-31/3 38316-36

19

Time Taken:

Date Taken:

Date Received:

09/30/04 09/29/04

914

Date Reported:

Analyte		Result	Units	Flags
n-Nitrosodiphenylan	nine	< 330	ug/kg	
Pentachlorophenol		< 330	ug/kg	
Phenanthrene		14,100	ug/kg	
Phenol		< 330	ug/kg	
Рутепе		15,600	ug/kg	
1,2,4-Trichlorobenze	ene	< 330	ug/kg	
2,4,5-Trichlorophene	ol	< 660	ug/kg	
2,4,6-Trichlorophene	ol	< 330	ug/kg	
PCBs Method 3540	C/8082			
Preparation Date:	10/04/04		·	
Date Analyzed:	10/06/04			,
Aroclor 1016		< 80.0	ug/kg	
Aroclor 1221		< 80.0	ug/kg	
Aroclor 1232		< 80.0	ug/kg	
Aroclor 1242		< 80.0	ug/kg	
Aroclor 1248		< 80.0	ug/kg	
Aroclor 1254		1,180	ug/kg	
Aroclor 1260		< 160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38319

Sample Description: B-31/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

914

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	7.80	units	10/01/04	9045C
Cyanide	0.91	mg/kg	10/04/04	9010B/9014
Aluminum	5,820	mg/kg	10/05/04	3050B/6010B
Antimony	3.8	mg/kg	10/05/04	3050B/6010B
Arsenic	13.5	mg/kg	10/05/04	3050B/6010B
Barium	78.5	mg/kg	10/05/04	3050B/6010B
Beryllium	1.1	mg/kg	10/05/04	3050B/6010B
Cadmium	5.1	mg/kg	10/05/04	3050B/6010B
Calcium	82,400	mg/kg	10/05/04	3050B/6010B
Chromium	24.6	mg/kg	10/05/04	′ 3050B/6010B
Cobalt	6.2	mg/kg	10/05/04	3050B/6010B
Copper	653	mg/kg	10/05/04	3050B/6010B
Iron	24,200	mg/kg	10/05/04	3050B/6010B
Lead	1,060	mg/kg	10/05/04	3050B/6010B
Magnesium	6,060	mg/kg	10/05/04	3050B/6010B
Manganese	440	mg/kg	10/05/04	3050B/6010B
Mercury	0.60	mg/kg	10/04/04	7470A
Nickel	54.7	mg/kg	10/05/04	3050B/6010B
Potassium	1,660	mg/kg	10/05/04	3050B/6010B
Selenium	1.0	mg/kg	10/05/04	3050B/6010B
Silver	2.5	mg/kg	10/05/04	3050B/6010B
Sodium	2,630	mg/kg	10/05/04	3050B/6010B
Thallium	<1.0	mg/kg	10/05/04	3050B/6010B
Vanadium	14.8	mg/kg	10/05/04	3050B/6010B
Zinc	4,880	mg/kg	10/05/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 308/383-

Trichloroethene

Vinyl Acetate

Vinyl Chloride

Xylenes (total)

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

Sample De

Lab File II

Date Received:

09/30/04 09/29/04

4

lumber: escription: D:	38322 B-31/7 38316-36	Date Rec Date Tak Time Tak Date Rep	en: :en:	09/29/04 1130 10/08/04
Analyte		Result	Units	Flags
Solids, To	tal	81.47	%	
Volatile C Analysis I	Organic Compounds Met Date: 10/06/04	thod 5035A/8260B		
Acetone		< 10.0	ug/kg	
Benzene		6.4	ug/kg	
Bromodic	hloromethane	< 5.0	ug/kg	
Bromofon	n	< 5.0	ug/kg	
Bromome	thane	< 10.0	ug/kg	
2-Butanon	ıe	< 10.0	ug/kg	
Carbon dis	sulfide	< 5.0	ug/kg	
Carbon tet	rachloride	< 5.0	ug/kg	
Chloroben	zene	< 5.0	ug/kg	
Chlorodib	romomethane	< 5.0	ug/kg	
Chloroetha	ane	< 10.0	ug/kg	
Chloroform	n	< 5.0	ug/kg	
Chloromet	hane	< 10.0	ug/kg	
1,1-Dichle	roethane	46.8	ug/kg	
1,2-Dichlo	roethane	< 5.0	ug/kg	-
1,1-Dichle	roethene	· 299	ug/kg	
cis-1,2-Die	chloroethene	89,200	ug/kg	
trans-1,2-I	Dichloroethene	2,550	ug/kg	
1,2-Dichlo	ropropane	< 5.0	ug/kg	
cis-1,3-Die	chloropropene	< 5.0	ug/kg	
trans-1,3-I	Dichloropropene	< 5.0	ug/kg	
Ethyl benz	ene	< 5.0	ug/kg	
2-Hexanor	1 c	< 10.0	ug/kg	
4-Methyl-2	2-pentanone	< 10.0	ug/kg	
Methylene	chloride	< 5.0	ug/kg	
MTBE		< 5.0	ug/kg	
Styrene		< 5.0	ug/kg	
	trachloroethane	< 5.0	ug/kg	
Tetrachlor		< 5.0	ug/kg	
Toluene		114	ug/kg	
	nloroethane	< 5.0	ug/kg	
	nloroethane	< 5.0	ug/kg	
m (-1-1	ul	0.500	- 7	

8,500

7,840

< 10.0

0.8

ug/kg

ug/kg

ug/kg

ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38330

Sample Number: 36330
Sample Description: B-32/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken: Time Taken: 09/29/0**4** 1001

Date Reported:

10/08/04

3, 3 2, 4 .

Analyte	Result	Units	Flags
Solids, Total	75.38	. %	
Polynuclear Aromatic Compounds Met Preparation Date: 10/05/04 Analysis Date: 10/07/04	hod 3540C/8270C		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	364 75 75 75 < 50 681 70 237 487 202 263 193 360 316 320 70	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
PCBs Method 3540C/8082 Preparation Date: 10/04/04 Date Analyzed: 10/06/04	320	ug/kg	
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	< 80.0 < 80.0 < 80.0 < 80.0 < 80.0 2,980 < 160	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 310/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38330

Sample Description: B-32/3 Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1001

Date Reported:

Analyte	•		Result	Units	Flags
Analyte	Result	Units	Date Analyzed	Met	hod
Arsenic	20.3	mg/kg	10/05/04	3050B/	
TCLP Lead	0.237	. mg/L	10/06/04	3010A	6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38329

Sample Description: B-33/3

Aroclor 1260

Lab File ID:

38316-36

Date Received:

ug/kg

< 160

09/30/04

Date Taken: Time Taken: 09/29/04

0950

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		82.00	%	
Polynuclear Aroma Preparation Date:	tic Compounds M 10/05/04	Iethod 3540C/8270C		
Analysis Date:	10/07/04			
Naphthalene		< 25	ug/kg	-
Acenaphthylene		< 50	ug/kg	
Acenaphthene		< 50	ug/kg	
Fluorene		< 50	ug/kg	
Phenanthrene		< 50	ug/kg	
Anthracene		< 50	ug/kg	
Fluoranthene		< 50	ug/kg	
Pyrene		< 50	ug/kg	
Benzo[a]anthracene		9.3 ·	ug/kg	
Chrysene	•	< 50	ug/kg	
Benzo[b]fluoranthen	e	< 11	ug/kg	
Benzo[k]fluoranthen	e	< 11	ug/kg	
Benzo[a]pyrene		< 15	ug/kg	
Indeno[1,2,3-cd]pyre		< 29	ug/kg	
Dibenz[a,h]anthracer		< 20	ug/kg	
Benzo[g,h,i]perylene		< 50	ug/kg	
PCBs Method 35400	C/8082			
Preparation Date:	10/04/04			
Date Analyzed:	10/06/04			
Aroclor 1016		< 80.0	ug/kg	
Aroclor 1221		< 80.0	ug/kg	
Aroclor 1232		< 80.0	ug/kg	
Aroclor 1242	•	< 80.0	ug/kg	
Aroclor 1248		< 80.0	ug/kg	
Aroclor 1254		< 160	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 312/383-

First Environmental Laboratories, Inc.

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38329

Sample Description: B-33/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

0950

Date Reported:

10/08/04

Analyte

Result

Units

Flags

Analyte	Result	Units	Date Analyzed	Method
Arsenic	4.1	mg/kg	10/05/04	3050B/6010B
TCLP Lead	0.004	mg/L	10/06/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003

Sample Number:

38336

Sample Description: B-34/3

38316-36

Date Taken:

09/30/04 09/29/04

Time Taken:

Date Received:

0840

Date Reported:

Analyte	Result	Units	Flags
Solids, Total	85.68	%	
Polynuclear Aromatic Compounds Preparation Date: 10/05/04 Analysis Date: 10/07/04	Method 3540C/8270C		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	205 135 116 154 1,710 460 2,300 2,770 1,380 1,390 1,330 1,480 1,720 1,300 305	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
Benzo[g,h,i]perylene	1,170	ug/kg	
PCBs Method 3540C/8082 Preparation Date: 10/04/04 Date Analyzed: 10/06/04	•		
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	< 80.0 < 80.0 < 80.0 < 80.0 < 80.0 < 160 935	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 314/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38336

Sample Description: B-34/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

0840

Date Reported:

10/08/04

Analyte

Result

Units

Flags

Analyte	Result	Units	Date Analyzed	Method
Arsenic	23.4	mg/kg	10/05/04	3050B/6010B
TCLP Lead	9.66	mg/L	10/06/04	3010A/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report.

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38320

Sample Description: B-35/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/28/04

Time Taken:

1600

Date Reported:

•	Result	Units	Flags
	80.15	%	
C/8082			
10/04/04			
10/06/04			
	< 80.0	ug/kg	
	< 80.0	ug/kg	
-	< 80.0	ug/kg	
	< 80.0	ug/kg	
,	< 80.0	ug/kg	
	< 160	ug/kg	
	197	ug/kg	
	10/06/04	80.15 C/8082 10/04/04 10/06/04 < 80.0 < 80.0 < 80.0 < 80.0 < 80.0 < 80.0 < 80.0 < 160	80.15 % C/8082 10/04/04 10/06/04 < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 160 ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 316/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38328

Sample Description: B-36/5 Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/28/04

Time Taken:

1540

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	80.19	%	10/01/04	160.3
Arsenic	11.3	mg/kg	10/05/04	3050B/6010B
Lead	78.2	mg/kg	10/05/04	3050B/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38327

Sample Description: B-37/5

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken: Time Taken: 09/28/04 1355

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	79.11	%	10/01/04	160.3
Arsenic	12.5	mg/kg	10/05/04	3050B/6010B
Lead	1,020	mg/kg	10/05/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 318/383=

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38321

Sample Description: B-38/9 Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1050

Date Reported:

10/08/04

Flags

Anaiyte	Result	Units
Solids, Total	82.54	%

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/06/04

Acenaphthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	< 330	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	< 330	ug/kg
Benzo[b]fluoranthene	< 330	ug/kg
Benzo[k]fluoranthene	< 330	ug/kg
Benzo[g,h,i]perylene	< 330	ug/kg
Benzo[a]pyrene	< 90	ug/kg
Benzoic Acid	· < 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	ug/kg
2-Chlorophenol	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	< 330	ug/kg
Dibenz[a,h]anthracene	< 90	ug/kg
Dibenzofuran	< 330	. ug/kg
1,2-Dichlorobenzene	< 330	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number: Sample Description: B-38/9

38321

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken: Time Taken: 09/29/04 1050

Date Reported:

Analyte	Result	Units	Flags
1,3-Dichlorobenzene	< 330	ug/kg	
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	· ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	,
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 320/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Result

Date Received: Date Taken:

Date Analyzed

09/30/04

Sample Number:

38321 Sample Description: B-38/9

Time Taken:

09/29/04 1050

Lab File ID:

Analyte

38316-36

Date Reported:

10/08/04

Method

Analyte	Result	Units	Flags
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	u g /kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

Units

. Allery ve				
pH @ 25°C (1:10)	8.66	uni ts	10/01/04	9045C
Cyanide	< 0.10	mg/kg	10/04/04	9010B/9014
Aluminum	12,800	mg/kg	10/05/04	3050B/6010B
Antimony	<1.0	mg/kg	10/05/04	3050B/6010B
Arsenic	10.7	mg/kg	10/05/04	3050B/6010B
Barium	37.8	mg/kg	10/05/04	3050B/6010B
Beryllium	0.8	mg/kg	10/05/04	3050B/6010B
Cadmium	0.3	mg/kg	10/05/04	3050B/6010B
Calcium	36,800	mg/kg	10/05/04	3050B/6010B
Chromium	20.8	mg/kg	10/05/04	3050B/6010B
Cobalt	14.2	mg/kg	10/05/04	3050B/6010B
Copper	47.1	mg/kg	10/05/04	3050B/6010B
Iron	24,900	mg/kg	10/05/04	3050B/6010B
Lead	17.0	mg/kg	10/05/04	3050B/6010B
Magnesium	24,400	mg/kg	10/05/04	3050B/6010B
Manganese	352	mg/kg	10/05/04	3050B/6010B
Mercury	< 0.05	mg/kg	10/04/04	7470A -
Nickel	42.5	mg/kg	10/05/04	3050B/6010B
Potassium	3,030	mg/kg	10/05/04	3050B/6010B
Selenium	< 0.2	mg/kg	10/05/04	3050B/6010B
Silver	0.2	mg/kg	10/05/04	3050B/6010B
Sodium	426	mg/kg	10/05/04	3050B/6010B
Thallium	<1.0	mg/kg	10/05/04	3050B/6010B
Vanadium	20.8	mg/kg	10/05/04	3050B/6010B
Zinc	63.2	mg/kg	10/05/04	3050B/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38325

Sample Description: B-39/2

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/28/04

Time Taken:

1124

Date Reported:

10/08/04

Flags

Analyte

Result

Solids, Total

82.34

%

Units

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/06/04

Naphthalene

< 330

ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/05/04

Lead

579

mg/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 322/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38326

Sample Description: B-39/10 Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/28/04

Time Taken:

1304

Date Reported:

Analyte	Result	Units	Flags
Solids, Total	81.78	%	
TPH - Modified Method 8015B Analysis Date: 10/05/04			
TPH Gasoline TPH Diesel TPH Oil TPH Total	< 10 47 < 10 47	mg/kg mg/kg mg/kg mg/kg	•

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38331

Sample Description: B-41/2

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/09/04

Time Taken:

1325

Date Reported:

10/08/04

Flags

Analyte	Result	Units
Solids, Total	92.22	%

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene

703

ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/05/04

Lead

6,900

mg/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 324/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38323

Sample Description: B-42/9

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1434

Date Reported:

10/08/04

Analyte	Result	Units	Flags
Solids, Total	82.31	%	
BTEX Method 5035A/8260B Analysis Date: 10/06/04			
Benzene	< 2.0	ug/kg	
Toluene Ethyl benzene	< 5.0 < 5.0	·ug/kg ug/kg	
Xylenes (total)	< 5.0	ug/kg	
Rase Neutral/Acid Compounds Method 3	540C/8270C		

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/06/04

Acenaphthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	. < 330	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	< 330	ug/kg
Benzo[b]fluoranthene	< 330	ug/kg
Benzo[k]fluoranthene	< 330	ug/kg
Benzo[g,h,i]perylene	< 330	ug/kg
Benzo[a]pyrene	< 90	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	· < 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38323 ...

Sample Description: B-42/9

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken: Time Taken: 09/29/04

Date Reported:

1434 10/08/04

Analyte	Result	Units	Flags
4-Chloro-3-methylphenol	< 330	ug/kg	
2-Chloronaphthalene	< 330	ug/kg	
2-Chlorophenol	< 330	ug/kg	
4-Chlorophenyl-phenylether	< 330	ug/kg	
Chrysene	< 330	ug/kg	
Dibenz[a,h]anthracene	< 90 ·	ug/kg	
Dibenzofuran	< 330	ug/kg	
1,2-Dichlorobenzene	< 330	ug/kg	
1,3-Dichlorobenzene	< 330	ug/kg	
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	. < 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 326/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38323

Sample Description: B-42/9 Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken;

09/29/04

Time Taken:

1434

Date Reported:

10/08/04

Analyte	Result	Units	Flags
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

09/30/04

Analytical Report

Client: CLAYTON GROUP SERVICES

Project ID: 15-04183.00-003 Date Received:

Sample Number: 38323 Date Taken: 09/29/04
Sample Description: B-42/9 Time Taken: 1434

Lab File ID: 38316-36 Date Reported: 10/08/04

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.59	units	10/01/04	9045C
Cyanide	< 0.10	mg/kg	10/04/04	9010B/9014
Aluminum	12,000	mg/kg	10/05/04	3050B/6010B
Antimony	<1.0	mg/kg	10/05/04	3050B/6010B
Arsenic	29.8	mg/kg	10/05/04	3050B/6010B
Barium	40.9	mg/kg	10/05/04	3050B/6010B
Beryllium	0.9	mg/kg	10/05/04	3050B/6010B
Cadmium	0.4	mg/kg	10/05/04	3050B/6010B
Calcium	42,400	mg/kg	10/05/04	3050B/6010B
Chromium	18.0	mg/kg	10/05/04	3050B/6010B
Cobalt	31.8	mg/kg	10/05/04	3050B/6010B
Copper	50.1	mg/kg	10/05/04	3050B/6010B
Iron	33,500	mg/kg	10/05/04	3050B/6010B
Lead	24.7	mg/kg	10/05/04	3050B/6010B
Magnesium	24,500	mg/kg	10/05/04	3050B/6010B
Manganese	482	mg/kg	10/05/04	3050B/6010B
Mercury	< 0.05	mg/kg	10/04/04	7470A
Nickel	49 .0	mg/kg	10/05/04	3050B/6010B
Potassium	2,660	mg/kg	10/05/04	3050B/6010B
Selenium	<0.2	mg/kg	10/05/04	3050B/6010B
Silver	<0.1	mg/kg	10/05/04	3050B/6010B
Sodium	409	mg/kg	10/05/04	3050B/6010B
Thallium	<1.0	mg/kg	10/05/04	3050B/6010B
Vanadium	21.4	mg/kg	10/05/04	3050B/6010B
Zinc	69.8	mg/kg	10/05/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 328/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38334

Sample Description: B-44/1.5

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1540

Date Reported:

10/08/04

Analyte

Result

Units

Flags

Metals Method 3050B/6010B

Analysis Date:

10/06/04

TCLP Lead

3.19

mg/L

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38318

Sample Description: B-48/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

0737

Date Reported:

10/08/04

Analyte	Result	Units	Flags
Solids, Total	74.57	%	
BTEX Method 5035A/8260B Analysis Date: 10/06/04			
Benzene	< 2.0	ug/kg	
Toluene	< 5.0	ug/kg	
Ethyl benzene	< 5.0	ug/kg	
Xylenes (total)	< 5.0	u g/kg	
MTBE	< 5.0	ug/kg	
Polynuclear Aromatic Compounds Method 35	40C/8270C		

Polynuclear Aromatic Compounds Method

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	185	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	u g/k g
Phenanthrene	302	ug/kg
Anthracene	89	ug/kg
Fluoranthene	670	ug/kg
Pyrene	911	ug/kg
Benzo[a]anthracene	550	ug/kg
Chrysene	539	ug/kg
Benzo[b]fluoranthene	738	ug/kg
Benzo[k]fluoranthene	546	ug/kg
Benzo[a]pyrene	778	ug/kg
Indeno[1,2,3-cd]pyrene	523	ug/kg
Dibenz[a,h]anthracene	173	ug/kg
Benzo[g,h,i]perylene	395	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 330/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003

Sample Number:

38335

Sample Description: B-54/4-6

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1645

Date Reported:

10/08/04

Analyte	Result	Units	Flags
Solids, Total	80.95	%	
TPH - Modified Method 8015B Analysis Date: 10/05/04			
TPH Gasoline TPH Diesel TPH Oil TPH Total	< 10 13 < 10 13	mg/kg mg/kg mg/kg mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38316

Sample Description: B-62/3

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

0754

Date Reported:

10/08/04

Analyte	Result	Units	Flags
Solids, Total	79.97	%	

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

NT 1.41 1	1.40	
Naphthalene	140	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	752	ug/kg
Anthracene	255	ug/kg
Fluoranthene	1,570	ug/kg
Pyrene	2,020	ug/kg
Benzo[a]anthracene	1,180	ug/kg
Chrysene	1,030	ug/kg
Benzo[b]fluoranthene	1,260	ug/kg
Benzo[k]fluoranthene	858	ug/kg
Benzo[a]pyrene	1,410	ug/kg
Indeno[1,2,3-cd]pyrene	867	ug/kg
Dibenz[a,h]anthracene	293	ug/kg
Benzo[g,h,i]perylene	739	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 332/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38317

Sample Description: B-62/8

Benzo[g,h,i]perylene

Lab File ID

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

< 50

ug/kg

0800

10/08/04

ID:	38316-3	6	Date Repo	orted:	10/08/04
Analyte			Result	Units	Flags
Solids, To	otal		82.77	%	
-		•	Method 3540C/8270C		
Preparation	on Date:	10/07/04			
Analysis	Date:	10/08/04			
Naphthal	ene		< 25	ug/kg	
Acenapht	hylene		< 50	ug/kg	
Acenapht	hene		< 50	ug/kg	
Fluorene			< 50	ug/kg	
Phenanth	rene		< 50	ug/kg	
Anthrace	ne		< 50	ug/kg	
Fluoranth	iene		< 50	ug/kg	
Pyrene			< 50	ug/kg	
Benzo[a]	anthracene		< 8.7	ug/kg	
Chrysene			· < 50	ug/kg	
Benzo[b]	fluoranther	ne	< 11	ug/kg	
Benzo[k]	fluoranther	ne	< 11	ug/kg	
Benzo[a]	pyrene		< 15	ug/kg	
Indeno[1,	2,3-cd]pyr	ene	< 29	ug/kg	
Dibenz[a,	,h]anthrace	ene	< 20	ug/kg	
			_		

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

38333

Sample Description: GW-29U

Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

Result

1520

Date Reported:

Units

10/08/04

Flags

Dolumnelage	Aromatic	Campande	Mathod	3510(**/8270)

Preparation Date

10/04/04

Annismic Date:

Analyte

10/04/04

Analysis Date:	10/04/04		
Naphthalene .		< 10	ug/L
Acenaphthylene		< 10	ug/L
Acenaphthene		< 10	ug/L
Fluorene		< 2	ug/L
Phenanthrene		< 5	ug/L
Anthracene		< 5	ug/L
Fluoranthene		< 2	ug/L
Pyrene		< 2	ug/L
Benzo[a]anthracene		0.55	ug/L
Chrysene		< 1.5	ug/L
Benzo[b]fluoranthene		0.70	ug/L
Benzo[k]fluoranthene		0.59	ug/L
Benzo[a]pyrene		0.8	ug/L
Indeno[1,2,3-cd]pyrene	е	0.6	u g/L
Dibenz[a,h]anthracene		< 0.3	u g/L
Benzo[g,h,i]perylene	•	0.6	ug/L

printed 01/27/2011 8:20AM by Richard.Jordan p. 334/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

. 15-04183.00-003

Sample Number:

38324

Sample Description: GW-29F Lab File ID:

38316-36

Date Received:

09/30/04

Date Taken:

09/29/04

Time Taken:

1520

Units

Date Reported:

Result

10/08/04

Flags

Polynuclear Aromatic	Compounds Method	3510C/8270C

Preparation Date

10/04/04

Analysis Date:

Analyte

10/04/04

Allalysis Date.	10/04/04		
Naphthalene		<	10 ug/L
Acenaphthylene		<	
Acenaphthene		<	10 ug/L
Fluorene		< ;	2 ug/L
Phenanthrene		< ;	5 ug/L
Anthracene		< :	5 ug/L
Fluoranthene		< :	2 ug/L
Pyrene		< :	2 ug/L
Benzo[a]anthracene		< (0.13 ug/L
Chrysene		< 1	1.5 ug/L
Benzo[b]fluoranthene		. < (0.18 ug/L
Benzo[k]fluoranthene		< (0.17 ug/L
Benzo[a]pyrene		< (0.2 ug/L
Indeno[1,2,3-cd]pyrene	;	< (0.3 ug/L
Dibenz[a,h]anthracene		< (0.3 ug/L
Benzo[g,h,i]perylene		< (0.4 ug/L

CHAIN OF CUSTODY RECORD

Laboratories, Inc. Environmental

First Environmental Laboratories Phone: (630) 778-1200 • Fax: (630) 778-1233 24 Hr. Pager (708) 569-7507 IEPA Certification# 100292 E-mail: info@firstenv.com 1600 Shore Road, Suite D Naperville, Illinois 60563

		# 1c 20 60515	795-1130		
Services		3	Parc		Peresson
Company Name: Cloyten Group Services	Street Address: 3140 Finites Red	CIV. Dounes Grove	Phone: 795 - 32 de.	Send Report To: Marie Muelle	Sampled By: Person Leason, S. Paresson

	Lab I.D.	38316	<u>. </u>	25		-ي	20	21	77	ţ	7.3	}	74
* CO C. * CO C	Comments				Pet Les 16Bs 61 Ason					HOLD		HOLD	
* 53 m H	/ >								×				
1,35					1	×		×			×		
301/2000	- 				*	X		X			×		
133	, -				*	×	Х		_			<u> </u>	
337					*	×		*			X		
1378	>			<u> </u>			_						
SAL SALVE	<u> </u>	×	メ	×							*		_
	Matrix	>	5 7	N	*	w	У,	٧	۷	~	×	v	3
ζ.													
Project I.D.: 15 - 04183, 00 -00>	Matrix Codes: S = Soil W = Water O = Other Date/Time Taken Sample Description	8-62/3	8/29-8	13-48/3	0840 B 34/3 DAS	0914 8-31/3	8-35/3	6/88.	1130 13-31/7	1350 18-31/11	1434 B-42/9	11/24-8 9841	1520 GW-29F
2-6	S = Sol		_		B	8	8	5	13	-81 6	8	0-	ن
Project I.D.: //	Matrix Codes: S Date/Time Taken	4510	0880	0737	0840	4160	209/ 4	188-8 0501	1130	1350	1434	1436	1520
Proj P.O.	Mat	67/6				>	32/2	63/6	-	L	L L		2

Cooler Temperature:__

Received within 6 hrs. of collection:

		//			1
1		//	Date/Time 7/30/04 /29	Date/Time	
Torget metals	hot Metals		23		
hos list or	table to Ta	-	/700 Received By: (Received By:	
* - Kuss Choolwick	* See attacher	-	Date/Time 729	li	
Notes and Special Instructions:			Relinquished By: HECV 1. T.	Relinquished By:	

	orinted 01/27/2011	8:20AM by	/ Richard.Jordan	o. 336/383 ₁
--	--------------------	-----------	------------------	-------------------------

First

CHAIN OF CUSTODY RECORD

Laboratories, Inc. Environmental

Phone: (630) 778-1200 • Fax: (630) 778-1233 First Environmental Laboratories 24 Hr. Pager (708) 569-7507 E-mail: info@firsteny.com IEPA Certification# 100292 1600 Shore Road, Suite D Naperville, Illinois 60563

		Same: 36 215	Fax 795- 1130	Muella	" Petusan
Company Name: CleyTen	Street Address: 3/40 Finley Rd	Clivi Douners Grave	Phone: 795-3200	Send Report To: Letter to Merie Murella	Sampled By: Verren Lansme, Som Petruson

. Analyses

i.		13	3732	The standard of the standard o	12	150 Ker.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	237			
ple Description	Matrix								Comments	wa i	Lab I.D.
8-39/2	>	X	ĸ								782
8-39/10	S		¥					-			72
1355 8-37/5	W	×		×			-				7
1540 8-3615	5	×	-	X			 	-			ă
8-35/3				'	X	_		_			1
0950 13-33/3	×			×	×	×	×				25
1001 2450 8-32/3	5			X	×	×	×				12
Put 1050 B=38/4	7										
11/38/11	> 5								HOLD		
1325 18-41 /2	5 7	× ×	_								3
1505 13-29/2	>					×	×				7.
1520 GW-290	₹		-			×	•	L			32

Cooler Temperature

Received within 6 hrs. of collection:

Notes and Special Instructions: __

		Date/Time 9/30/04 /	Date/Time	
//	1//	Received By:	Received By	
		Date/Time /29 1700	1	
		Relinquished By:	Relinquished By:	Rev. 1/01

60515

795-1130 77

CHAIN OF CUSTODY RECORD

Page 3 of 3 pgs

First Environmental Laboratories, Inc.	CHAIN OF CUSTODI RECORD
First Environmental Laboratories	
1606 Shore Road, Suite D	Street Address: 5/40 Finley /2
Naperville, Illinois 60563	S Crown S
Phone: (630) 778-1200 • Fax: (630) 778-1233	Phone: (75-3200
24 Hr. Pager (708) \$69-7507	Send Report To. Marie Myeller
E-mail: info@firstenv.com	Sampled By. Lord Consone Som Paterson
IEPA Certification# 100292	agailan 4

5	IEFA Certification# 100292	(00.292							Analyses	99				
ᄝ	1.D. /	Project I.D.: 15 -04/83.00-004												
#1	P.O. #.:				\	403			15.59.			\		
				_	?\ <u>``</u>	To The state of th		135	ACC. 018 28 20 18 2 18 18 18 18 18 18 18 18 18 18 18 18 18					
<u>,</u>	Codes: S	= Soil W		٧.		<i>></i>	>	<u>></u>	\	\				
Ę	Date/Time Taken	Sample Description	Matrix	-								Comments	_	Lab I.D.
l	0451	51/76-8	~	×				_						78374
8/29		3-4/15-8 5491	>		×									2
	0480	18-34/3	5	X		×	イイ		-					36
											-		-	
l														
l														
İ			<u> </u>											
								:						
l														
l														

7 Cooler Temperature:_ Received within 6 hrs. of collection;

Date/Time /29 /700 Notes and Special Instructions: __

Date/Time__

Received By: Received By:

Date/Time,

h

ş

Relinquished By: 🔼 Relinquished By: **1** 'u' **1**

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

October 11, 2004

Ms. Marie Mueller CLAYTON GROUP SERVICES INC. 3140 Finley Road Downers Grove, IL 60515

Project ID: 15-04183.00-004

First Environmental File ID: 38565-80 Date Received: October 1st, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Singerely,

William H. Mottashed

Project Mahager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38566

Sample Description: B-40/2

Lab File ID:

38565-80

10/01/04

Date Taken: Time Taken:

Date Received:

09/30/04

755

Date Reported:

10/11/04

Analyte

Result

Units Flags

Solids, Total

81.38

%

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/08/04

Naphthalene

698

ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/06/04

Lead

2,020

mg/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 340/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38576

Sample Description: B-43/2 Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1206

Date Reported:

10/11/04

Analyte

Result

Units

Flags

Solids, Total

88.36

%

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	128	ug/kg
Acenaphthylene	230	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	546	ug/kg
Anthracene	139	ug/kg
Fluoranthene	2,190	ug/kg
Pyrene	3,070	ug/kg
Benzo[a]anthracene	1,560	ug/kg
Chrysene	1,390	ug/kg
Benzo[b]fluoranthene	1,930	ug/kg
Benzo[k]fluoranthene	1,180	ug/kg
Benzo[a]pyrene	2,240	ug/kg
Indeno[1,2,3-cd]pyrene	1,160	ug/kg
Dibenz[a,h]anthracene	312	ug/kg
Benzo[g,h,i]perylene	896	ug/kg

Metals Method 3010A/6010B

Analysis Date:

10/07/04

TCLP Lead

< 0.002

mg/L

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38580

Sample Description: B-45/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1440

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		84.48	%	
Metals Method 30			-	
Analysis Date:	10/07/04			
TCLP Lead		0.012	mg/L	

printed 01/27/2011 8:20AM by Richard.Jordan p. 342/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38578

Sample Description: B-46/8 Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1403

Date Reported:

10/11/04

Analyte		Result	Units	Flags
Solids, Total		81.61	%	
Base-Neutral/Acid	Compounds Method	1 3540C/8270C		
Preparation Date:	10/05/04			
Analysis Date:	10/07/04			
Acenaphthene		< 330	ug/kg	
Acenaphthylene		< 330	ug/kg	
Anthracene		< 330	ug/kg	
Benzidine		< 330	ug/kg	
Benzo[a]anthracene	:	< 330	ug/kg	
Benzo[b]fluoranthe	ne	< 330	ug/kg	
Benzo[k]fluoranthe	ne	< 330	110//ca	

Benzo[k]fluoranthene < 330 ug/kg Benzo[g,h,i]perylene < 330 ug/kg Benzo[a]pyrene < 90 ug/kg Benzoic Acid < 330ug/kg Benzyl alcohol < 330 ug/kg bis(2-Chloroethoxy)methane < 330 ug/kg bis(2-Chloroethyl)ether < 330 ug/kg bis(2-chloroisopropyl)ether < 330 ug/kg bis(2-Ethylhexyi)phthalate < 330 ug/kg 4-Bromophenyl-phenylether < 330ug/kg Butylbenzylphthalate < 330ug/kg Carbazole < 330ug/kg 4-Chloroaniline < 330 ug/kg 4-Chloro-3-methylphenol < 330 ug/kg 2-Chloronaphthalene < 330 ug/kg

2-Chlorophenol < 330 ug/kg 4-Chlorophenyl-phenylether < 330 ug/kg < 330Chrysene ug/kg Dibenz[a,h]anthracene < 90 ug/kg

Dibenzofuran < 330 ug/kg 1.2-Dichlorobenzene < 330 ug/kg 1,3-Dichlorobenzene < 330 ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38578

Sample Description: B-46/8

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken: Time Taken: 09/30/04

1403 10/11/04

Date Reported:

Analyte	Result	Units	Flags
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	•
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 344/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183.00-004
 Date Received:
 10/01/04

 Sample Number:
 38578
 Date Taken:
 09/30/04

 Sample Description:
 B-46/8
 Time Taken:
 1403

 Lab File ID:
 38565-80
 Date Reported:
 10/11/04

Analyte	Result	Units	Flags
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.47	units	10/05/04	9045C
Cyanide	< 0.10	mg/kg	10/06/04	9010B/9014
Aluminum	17,400	mg/kg	10/06/04	3050B/6010B
Antimony	1.8	mg/kg	10/06/04	3050B/6010B
Arsenic	13.6	mg/kg	10/06/04	3050B/6010B
Barium	45.5	mg/kg	10/06/04	3050B/6010B
Beryllium	1.1	mg/kg	10/06/04	3050B/6010B
Cadmium	0.3	mg/kg	10/06/04	3050B/6010B
Calcium	46,100	mg/kg	10/06/04	3050B/6010B
Chromium	24.9	mg/kg	10/06/04	3050B/6010B
Cobalt	17.2	mg/kg	10/06/04	3050B/6010B
Copper	55.8	mg/kg	10/06/04	3050B/6010B
Iron	31,200	mg/kg	10/06/04	3050B/6010B
Lead	18.4	mg/kg	10/06/04	3050B/6010B
TCLP Lead	< 0.002	mg/L	10/07/04	3010A6010B
Magnesium	28,300	mg/kg	10/06/04	3050B/6010B
Manganese	559	mg/kg	10/06/04	3050B/6010B .
Mercury	< 0.05	mg/kg	10/04/04	7470A
Nickel	4 6.5	mg/kg	10/06/04	3050B/6010B
Potassium	4,530	mg/kg	10/07/04	3050B/6010B
Selenium	<0.2	mg/kg	10/06/04	3050B/6010B
Silver	0.2	mg/kg	10/06/04	3050B/6010B
Sodium	428	mg/kg	10/06/04	3050B/6010B
Thallium	<1.0	mg/kg	10/06/04	3050B/6010B
Vanadium	28.7	mg/kg	10/06/04	3050B/6010B
Zinc	65.8	mg/kg	10/06/04	3050B/6010B

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38579

Sample Description: B-46/10

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken: Time Taken: 09/30/04

Date Reported:

1415 - 10/11/04

Analyte		Result	Units	Flags
Solids, Total		86.65	%	
Base-Neutral/Acid	Compounds Method	3540C/8270C		
Preparation Date:	10/05/04			
Analysis Date:	10/07/04			

Acenaphthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	< 330	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	< 330	ug/kg
Benzo[b]fluoranthene	< 330	ug/kg
Benzo[k]fluoranthene	< 330	ug/kg
Benzo[g,h,i]perylene	< 330	ug/kg
Benzo[a]pyrene	< 90	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	ug/kg
2-Chlorophenol	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	< 330	ug/kg
Dibenz[a,h]anthracene	< 90	ug/kg
Dibenzofuran	< 330	ug/kg
1,2-Dichlorobenzene	< 330	ug/kg
1,3-Dichlorobenzene	< 330	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 346/383...

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38579

Sample Description: B-46/10 Lab File ID:

38565-80

Date Received: Date Taken:

10/01/04

Time Taken:

09/30/04 1415

Date Reported:

Analyte	Result	Units	Flags
1,4-Dichlorobenzene	< 330	ug/kg	
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ng/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nîtroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
		_	

printed 01/27/2011 8:20AM by Richard.Jordan p. 347/383---

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183.00-004
 Date Received:
 10/01/04

 Sample Number:
 38579
 Date Taken:
 09/30/04

 Sample Description:
 B-46/10
 Time Taken:
 1415

 Lab File ID:
 38565-80
 Date Reported:
 10/11/04

Analyte	Result	Units	Flags
Phenanthrene	< 330	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	< 330	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

Analyte ·	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.60	units	10/05/04	9045C
Cyanide	< 0.10	mg/kg	10/06/04	9010B/9014
Aluminum	11,200	mg/kg	10/06/04	3050B/6010B
Antimony	<1.0	mg/kg	10/06/04	3050B/6010B
Arsenic	10.6	mg/kg	10/06/04	3050B/6010B
Barium	44.9	mg/kg	10/06/04	3050B/6010B
Beryllium	0.8	mg/kg	10/06/04	3050B/6010B
Cadmium	0.9	mg/kg	10/06/04	3050B/6010B
Calcium	37,500	mg/kg	10/06/04	3050B/6010B
Chromium	17.0	mg/kg	10/06/04	3050B/6010B
Cobalt	24.4	mg/kg	10/06/04	3050B/6010B
Copper	38.6	mg/kg	10/06/04	3050B/6010B
Iron	20,900	mg/kg	10/06/04	3050B/6010B
Lead	19.6	mg/kg	10/06/04	3050B/6010B
TCLP Lead	0.022	mg/L	10/07/04	3010A6010B
Magnesium	18,800	mg/kg	10/06/04	3050B/6010B
Manganese	607	mg/kg	10/06/04	3050B/6010B
Mercury	< 0.05	mg/kg	10/04/04	7470A
Nickel	42.9	mg/kg	10/06/04	3050B/6010B
Potassium	2,860	mg/kg	10/07/04	3050B/6010B
Selenium	< 0.2	mg/kg	10/06/04	3050B/6010B
Silver	0.1	mg/kg	10/06/04	3050B/6010B
Sodium	382	mg/kg	10/06/04	3050B/6010B
Thallium	<1.0	mg/kg	10/06/04	3050B/6010B
Vanadium	18.5	mg/kg	10/06/04	3050B/6010B
Zinc	58.0	mg/kg	10/06/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 348/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-004

38577

Sample Number: Sample Description: B-47/3

38565-80

Date Received:

10/01/04

Date Taken: Time Taken: 09/30/04 1323

Date Reported:

Analyte	Result	Units	Flags
Solids, Total	85.19	%	
BTEX Method 5035A/8260B Analysis Date: 10/07/04			
Benzene Toluene Ethyl benzene Xylenes (total)	< 2.0 < 5.0 < 5.0 < 5.0	ug/kg ug/kg ug/kg ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38575

Sample Description: B-49/3

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1129

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		69.58	. %	
BTEX Method 503	35A/8260B			
Analysis Date:	10/07/04			
Benzene		< 2.0	ug/kg	
Toluene		< 5.0	ug/kg	
Ethyl benzene	•	< 5.0	ug/kg	
Xylenes (total)		< 5.0	ug/kg	
Metals Method 305	50B/6010B			
Analysis Date:	10/06/04			
Lead		5,180	mg/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 350/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38565

Sample Description: B-52/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

735

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		92.27	%	
Metals Method 30	50B/6010B	·		
Analysis Date:	10/06/04			
Lead		2,700	mg/kg	

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38571

Sample Description: B-53/4

Date Received:

10/01/04

Date Taken: Time Taken: 09/30/04

1014

Lab File ID:

38565-80

Date Reported:

Analyte	Result	Units	Date Analyzed	Method
Solids, Total	97.08	%		
pH @ 25°C (1:10)	8.73	units	10/05/04	9045C
Cyanide	< 0.10	mg/kg	10/06/04	9010B/9014
Aluminum	637	mg/kg	10/06/04	3050B/6010B
Antimony	<1.0	mg/kg	10/06/04	3050B/6010B
Arsenic	1.2	mg/kg	10/06/04	3050B/6010B
Barium	4.0	mg/kg	10/06/04	3050B/6010B
Beryllium	< 0.1	mg/kg	10/06/04	3050B/6010B
Cadmium	0.2	mg/kg	10/06/04	3050B/6010B
Calcium	1,330	mg/kg	10/06/04	3050B/6010B
Chromium	1.4	mg/kg	10/06/04	3050B/6010B
Cobalt	0.8	mg/kg	10/06/04	3050B/6010B
Copper	6.0	mg/kg	10/06/04	3050B/6010B
Iron	1,680	mg/kg	10/06/04	3050B/6010B
Lead	5.4	mg/kg	10/06/04	3050B/6010B
Magnesium	862 ·	. mg/kg	10/06/04	3050B/6010B
Manganese	31.3	mg/kg	10/06/04	3050B/6010B
Mercury	< 0.05	mg/kg	10/04/04	7470A
Nickel	1.9	mg/kg	10/06/04	3050B/6010B
Potassium	73.9	mg/kg	10/06/04	3050B/6010B
Selenium	<0.2	mg/kg	10/06/04	3050B/6010B
Silver	<0.1	mg/kg	10/06/04	3050B/6010B
Sodium	66.7	mg/kg	10/06/04	3050B/6010B
Thallium	<1.0	mg/kg	10/06/04	3050B/6010B
Vanadium	2.0	mg/kg	10/06/04	3050B/6010B
Zinc	122	mg/kg	10/06/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 352/383-

First Environmental Laboratories, Inc.

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

38574

Sample Number: Sample Description: B-55/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1104

Date Reported:

10/11/04

Flags

Analyte	Result	Units
Solids, Total	90.88	%

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/08/04

Agovanhthana	= 220	
Accepthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	< 330	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	791	ug/kg
Benzo[b]fluoranthene	734	ug/kg
Benzo[k]fluoranthene	604	ug/kg
Benzo[g,h,i]perylene	408	ug/kg
Benzo[a]pyrene	76 6	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330⋅	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	ug/kg
2-Chlorophenol	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	887	ug/kg
Dibenz[a,h]anthracene	171	ug/kg
Dibenzofuran	< 330	ug/kg
1,2-Dichlorobenzene	< 330	ug/kg
-		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38574

Sample Description: B-55/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken: Time Taken: 09/30/04

1104

Date Reported:

Analyte	Result	Units	Flags
1,3-Dichlorobenzene	< 330	ug/kg	
1,4-Dichlorobenzene	< 330	ug/kg	٦
3,3'-Dichlorobenzidine	< 660	ug/kg	
2,4-Dichlorophenol	< 330	ug/kg	
Diethylphthalate	< 330	ug/kg	
2,4-Dimethylphenol	< 330	ug/kg	
Dimethylphthalate	< 330	ug/kg	
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	1,450	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	392	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 354/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Result

Date Received:

10/01/04

Sample Number:

38574

Date Taken:

09/30/04

Sample Description: B-55/2

Time Taken:

Date Analyzed

1104

Method

Lab File ID:

Analyte

38565-80

Date Reported:

10/11/04

Analyte	Result	Units	Flags
n-Nitrosodiphenylamine	< 330	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	996	ug/kg	
Phenol	< 330	ug/kg	
Pyrene	1,370	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

Units

V	,			
pH @ 25°C (1:10)	8.23	units	10/05/04	9045C
Cyanide	0.40	mg/kg	10/06/04	9010B/9014
Aluminum	10,900	mg/kg	10/06/04	3050B/6010B
Antimony	9.7	mg/kg	10/06/04	3050B/6010B
Arsenic	10.4	mg/kg	10/06/04	3050B/6010B
Barium	85.8	mg/kg	10/06/04	3050B/6010B
Beryllium	1.3	mg/kg	10/06/04	3050B/6010B
Cadmium	18.7	mg/kg	10/06/04	3050B/6010B
Calcium	30,000	mg/kg	10/06/04	3050B/6010B
Chromium	25.2	mg/kg	10/06/04	3050B/6010B
Cobalt	12.0	mg/kg	10/06/04	3050B/6010B
Copper	463	mg/kg	10/06/04	3050B/6010B
Iron	27,500	mg/kg	10/06/04	3050B/6010B
Lead	645	mg/kg	10/06/04	3050B/6010B
Magnesium	15660	mg/kg	10/06/04	3050B/6010B
Manganese	619	mg/kg	10/06/04	3050B/6010B
Mercury	0.42	mg/kg	10/04/04	7470A
Nickel	40.2	m g/kg	10/06/04	3050B/6010B
Potassium	2,050	mg/kg	10/07/04	3050B/6010B
Selenium	< 0.2	mg/kg	10/06/04	3050B/6010B
Silver	1.0	mg/kg	10/06/04	3050B/6010B
Sodium	681	mg/kg	10/06/04	3050B/6010B
Thallium	<1.0	mg/kg	10/06/04	3050B/6010B
Vanadium	22.0	mg/kg	10/06/04	3050B/6010B
Zinc	1,760	mg/kg	10/07/04	3050B/6010B

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38572

Sample Description: B-56/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1035

Date Reported:

10/11/04

Analyte

Result

Flags

Solids, Total

83.60

%

Units

Metals Method 3050B/6010B

Analysis Date:

10/06/04

Lead

311

mg/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 356/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38573

Sample Description: B-57/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1047

Date Reported:

Analyte		Result	Units	Flags
Solids, Total	,	80.38	%	
Metals Method 30 Analysis Date:	9 50B/6010B 10/06/04			
Lead		407	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38570

Sample Description: B-58/2

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

1006

Date Reported:

Analyte		Result	Units	Flags
Solids, Total		92.21	%	
Metals Method 30 Analysis Date:	050B/6010B 10/06/04			
Lead	10/00/04	431	mg/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 358/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38567

Sample Description: B-59/12

Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

0850

Date Reported:

10/11/04

Analyte

Result

Units

Flags

Solids, Total

82.98

%

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	< 25	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	< 50	ug/kg
Fluorene	< 50	ug/kg
Phenanthrene	< 50	ug/kg
Anthracene	< 50	ug/kg
Fluoranthene	< 50	ug/kg
Pyrene	< 50	ug/kg
Benzo[a]anthracene	. < 8.7	ug/kg
Chrysene	< 50	ug/kg
Benzo[b]fluoranthene	< 11	ug/kg
Benzo[k]fluoranthene	< 11	ug/kg
Benzo[a]pyrene	< 15	ug/kg
Indeno[1,2,3-cd]pyrene	< 29	ug/kg
Dibenz[a,h]anthracene	< 20	ug/kg

Metals Method 3050B/6010B

Analysis Date:

Benzo[g,h,i]perylene

10/06/04

Lead

18.2

< 50

mg/kg

ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38569

Sample Description: B-60/5

Lab File ID:

38565-80

Date Received:

Date Taken:

10/01/04

Time Taken:

09/30/04

0930

Date Reported:

10/11/04

Flags

Analyte	Result	Units
Solids, Total	93 56	0/2

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	284	ug/kg
Acenaphthylene	107	ug/kg
Acenaphthene	533	ug/kg
Fluorene	640	ug/kg
Phenanthrene	3,290	ug/kg
Anthracene	1,050	ug/kg
Fluoranthene .	4,160	ug/kg
Pyrene	4,940	ug/kg
Benzo[a]anthracene	2,470	ug/kg
Chrysene	2,290	ug/kg
Benzo[b]fluoranthene	1,710	ug/kg
Benzo[k]fluoranthene	2,660	ug/kg
Benzo[a]pyrene	2,790	ug/kg
Indeno[1,2,3-cd]pyrene	1,870	ug/kg
Dibenz[a,h]anthracene	693	ug/kg
Benzo[g,h,i]perylene	1510	ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/06/04

Lead

133

mg/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-004

Sample Number:

38568

Sample Description: B-61/5 Lab File ID:

38565-80

Date Received:

10/01/04

Date Taken:

09/30/04

Time Taken:

0912

Date Reported:

10/11/04

Analyte

Result

Units

Flags

Solids, Total

97.13

%

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/05/04

Analysis Date:

10/07/04

Naphthalene	103	ug/kg
Acenaphthylene	< 50	ug/kg
Acenaphthene	339	ug/kg
Fluorene	46	ug/kg
Phenanthrene	3,600	ug/kg
Anthracene	1,220	ug/kg
Fluoranthene	5,320	ug/kg
Pyrene	5,840	ug/kg
Benzo[a]anthracene	2,720	ug/kg
Chrysene	2,410	ug/kg
Benzo[b]fluoranthene	2,300	ug/kg
Benzo[k]fluoranthene	2,940	ug/kg
Benzo[a]pyrene	3,680	u g/k g
Indeno[1,2,3-cd]pyrene	1,950	ug/kg
Dibenz[a,h]anthracene	581	u g/k g
Benzo[g,h,i]perylene	1,610	ug/kg

Metals Method 3050B/6010B

Analysis Date:

10/06/04

Lead

17.6

mg/kg

Laboratories, Inc. Environmental

First Environmental Laboratories

Phone: (630) 778-1200 • Fax: (630) 778-1233 1600 Shore Road, Suite D Naperville, Illinois 60563

24 Hr. Pager (708) 569-7507 IEPA Certification# 100292 E-mail: info@firstenv.com

Services		S1405 305 27 SIANE	30		Petrisen	
Company Name: Clay Tay Group Services	Street Address 3140 Finley Rd	City: Downers Gave	Phone: 795-3200	Send Report To: Melia Myelly	Sampled By: Deller Lawsons, Sen Petrisen	

Analyses

Project I.D.: 15 - 04/83.00 - 004				\		\langle	7			
P.O.#:				ڮ	3	023 	`	\		
3			$\langle $				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
		/	\ <u>\</u>		5) (0)	<i>y</i> ~	97	\		
Matrix Codes: $S = Soil$ W = Water $O = Other$	be en	~	<u>~</u> ~		2	×	\ \ \			
Date/Time Taken Sample Description	Matrix								Comments	Lab I.D.
430 0735 B-5212	\$	×								7856F
1 0755 18-40/2	8	×	Υ_							66
0850 3-59/12	Δ.	×		×	. – .					67
~ 51/65-81 ODGO	۸	18		*				_	0704	
5/18-81 5160	>	×		×						39
5/09-8 08-60	8	У		X						69
7/85-8/9001	8	×								70
H/85-8 HIOI	S	X. w		Z	X 7	X				71
21/25-8 2201	8				`				HOLD	
2/95-8/5501	>	X								77
2/ L5-81 Lho1	ч	X								78
1104 8-55/2					<u>×</u> ×	×				<u>ት</u> ሪ

Cooler Temperature:

Received within 6 hrs. of collection:

Notes and Special Instructions: _

Date/Time & Date/Time_ O700 Received By:, Received By: 101 Date/Time_ Date/Time_ Relinquished By: Man Relinquished By:

Rev. 1/01

printed 01/27/2011 8:20AM by Richard.Jordan p. 362/383
--

Environmental

CHAIN OF CUSTODY RECORD

Phone: (630) 778-1200 • Fax: (630) 778-1233 First Environmental Laboratories Laboratories, Inc. 24 Hr. Pager (708) 569-7507 E-mail: info@firsteny.com 1600 Shore Road, Suite D Naperville, Illinois 60563

IEPA Certification# 100292

Services	Star 76 Zip 605/5	Som Peterson
Company Name: Clay Ton Group Services Street Address: 3140 Fin low Red	City: Doungs Grove	welly smet

							Lab I.D.	76707	7,	07.		2,2	3						
		/ /	\		\	_	Comments			HOLD - TCLP Lend									
Analyses		\ \	1 20 / 100 /	\ \ X	کِ ک	>	_				*			-		-			
Ans		7	20/	3	ره م	Ž				 	X				<u> </u>				ł
		\	7	<u>></u>	\\ \\\	ر د					\vdash	×							t
		Z	3			シ シ			×		×	Х	×						
		\	<		<u>ئ</u> ور	<u> </u>		<u>.</u>	X			_			_				ļ
		`	\	13.		رح ح		×							_	-	ļ	<u> </u>	
						\	_	×		×			_		-				-
							Matrix	N	N	V	v	M	^						
76700	Project I.D.: 15 - 04/83, 00-004					Matrix Codes: S = Soil W = Water O = Other	Sample Description	8-49/3	1206 13-43/2	1323 18-47/3	1403 18-46 18	1415 13-46/10	1440 B-45/2						
ELA CCIMICALIONA 100,092	Project I.D.: 15.	P.O. #.:				Matrix Codes: S =	Date/Time Taken	430 1129	1206	1323	1403	5///	1440			٠٠ - ١٠٠٠			

Received within 6 hrs. of collection: __ ပ Cooler Temperature

Notes and Special Instructions: ,

, , ,	Date/Time (6///54	Date/Time
	700 Received By:	Received By:
	Date/Time 19/, 070	Date/Time
	Relinquished By: Here h C	Relinquished By:

Rev. 1/01

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

October 14, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183.00-004

First Environmental File ID: 38882-83 Date Received: September 28, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as per your request on October 7, 2004.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results have been expressed on a dry weight basis per method protocol.

All analyses were performed within established holding times, and all Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met. QA/QC documentation will remain on file for future reference.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-004

Sample Number:

38883

Sample Description: ·B-50/4-6

38882-83

Date Received:

09/28/04

Date Taken: Time Taken:

09/28/04 9:08

Date Reported:

Result

10/14/04

Units

Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/11/04

Analysis Date:

Analyte

10/12/04

•		•
Naphthalene	1,940	ug/kg
Acenaphthylene	936	ug/kg
Acenaphthene	2,690	ug/kg
Fluorene	3,450	ug/kg
Phenanthrene	22,800	ug/kg
Anthracene	7,720	ug/kg
Fluoranthene	29,500	ug/kg
Pyrene	39,100	u g /kg
Benzo[a]anthracene	15,200	ug/kg
Chrysene	14,300	ug/kg
Benzo[b]fluoranthene	13,300	ug/kg
Benzo[k]fluoranthene	14,800	ug/kg
Benzo[a]pyrene	25,400	ug/kg
Indeno[1,2,3-cd]pyrene	13,200	ug/kg
Dibenz[a,h]anthracene	3,970	ug/kg
Benzo[g,h,i]perylene	12,800	ug/kg

printed 01/27/2011 8:20AM by Richard.Jordan p. 365/383-

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID: Sample Number:

Lab File ID:

15-04183.00-004

Number: 38882

Sample Description: B-51/2-4

38882-83

Date Received:

09/28/04

Date Taken: Time Taken: 09/28/04 9:00

Date Reported:

10/14/04

Analyte

Result

Units 1

Flags

Polynuclear Aromatic Compounds Method 3540C/8270C

Preparation Date:

10/11/04

Analysis Date:

10/12/04

Naphthalene	565	ug/kg
Acenaphthylene	153	ug/kg
Acenaphthene	344	ug/kg
Fluorene	680	ug/kg
Phenanthrene	2,930	ug/kg
Anthracene	733	ug/kg
Fluoranthene	2,470	ug/kg
Pyrene	2,020	ug/kg
Benzo[a]anthracene	1,530	ug/kg
Chrysene	1,440	ug/kg
Benzo[b]fluoranthene	1,160	ug/kg
Benzo[k]fluoranthene	970	ug/kg
Benzo[a]pyrene	1,880	ug/kg
Indeno[1,2,3-cd]pyrene	901	ug/kg
Dibenz[a,h]anthracene	244	ug/kg
Benzo[g,h,i]perylene	947	ug/kg

Cooler Temperature: 50°C an Lich

re- Fitter Received within 6 hrs. of collection: Notes and Special Instructions: .. 9155 Received By Steller Received By: Date/Time CU/25/64 Relinquished By

Sample

GW-30

The

Date/Time.

Relinquished By:

printed 01/27/2011 8:20AM by Richard.Jordan p. 367/383.

First Environmental Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

October 19, 2004

Ms. Marie Mueller
CLAYTON GROUP SERVICES INC.
3140 Finley Road
Downers Grove, IL 60515

Project ID: 15-04183.00-004

First Environmental File ID: 39379-80 Date Received: September 30, 2004

Dear Ms. Mueller:

The above referenced project was analyzed as per your request on October 12, 2004.

PROJECT SUMMARY

Analyses were performed in accordance with the methods found in the USEPA publication: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, December 1996. Specific method references are listed on the Analytical Report.

Results have been expressed on a dry weight basis per method protocol.

I thank you for the opportunity to be of service and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data, please contact me at (630) 778-1200.

Sincerely,

William H. Mottashed

Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

39379

Sample Description: B-31/7 Lab File ID:

Date Taken;

09/30/04

Time Taken:

09/29/04

1130

39379-80

Date Reported:

Date Received:

10/19/04

Analyte	Result	Units	Date Analyzed	Method
pH @ 25°C (1:10)	8.30	units	10/13/04	9045C
Cyanide	< 0.10	mg/kg	10/15/04	9010B/9014
Aluminum	12,800	mg/kg	10/19/04	3050B/6010B
Antimony	<1.0	mg/kg	10/19/04	3050B/6010B
Arsenic	13.3	mg/kg	10/19/04	3050B/6010B
Barium	36.6	mg/kg	10/19/04	3050B/6010B
Beryllium	0.9	mg/kg	10/19/04	3050B/6010B
Cadmium	0.6	mg/kg	10/19/04	3050B/6010B
Calcium	75,500	mg/kg	10/19/04	3050B/6010B
Chromium	18.4	mg/kg	10/19/04	3050B/6010B
Cobalt	14.7	mg/kg	10/19/04	3050B/6010B
Copper	48.4	mg/kg	10/19/04	3050B/6010B
Iron	32,500	mg/kg	10/19/04	3050B/6010B
Lead	22.1	mg/kg	10/19/04	3050B/6010B
Magnesium	43,400	mg/kg	10/19/04	3050B/6010B
Manganese	431	mg/kg	10/19/04	3050B/6010B
Mercury	< 0.05	mg/kg	10/13/04	7470A
Nickel	43.6	mg/kg	10/19/04	3050B/6010B
Potassium	3,280	mg/kg	10/19/04	3050B/6010B
Selenium	<0.2	mg/kg	10/19/04	3050B/6010B
Silver	< 0.1	mg/kg	10/19/04	3050B/6010B
Sodium	564	mg/kg	10/19/04	3050B/6010B
Thallium	<1.0	mg/kg	10/19/04	3050B/6010B
Vanadium	28.7	mg/kg	10/19/04	3050B/6010B
Zinc	66.0	mg/kg	10/19/04	3050B/6010B

printed 01/27/2011 8:20AM by Richard.Jordan p. 369/383-

First Environmental Laboratories, Inc.

1600 Shore Road · Naperville, Illinois 60563 · Phone (630) 778-1200 · Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

39379

Sample Description: B-31/7

Date Received: Date Taken:

09/30/04

Time Taken:

Result

09/29/04 1130

Lab File ID:

Analyte

39379-80

Date Reported:

Units

10/19/04

Flags

Base-Neutral/Acid Compounds Method 3540C/8270C

Preparation Date:

10/14/04

Analysis Date:

10/15/04

	_	
Acenaphthene	< 330	ug/kg
Acenaphthylene	< 330	ug/kg
Anthracene	< 330	ug/kg
Benzidine	< 330	ug/kg
Benzo[a]anthracene	< 330	ug/kg
Benzo[b]fluoranthene	< 330	ug/kg
Benzo[k]fluoranthene	< 330	ug/kg
Benzo[g,h,i]perylene	< 330	ug/kg
Benzo[a]pyrene	< 90	ug/kg
Benzoic Acid	< 330	ug/kg
Benzyl alcohol	< 330	ug/kg
bis(2-Chloroethoxy)methane	< 330	ug/kg
bis(2-Chloroethyl)ether	< 330	ug/kg
bis(2-chloroisopropyl)ether	< 330	ug/kg
bis(2-Ethylhexyl)phthalate	< 330	ug/kg
4-Bromophenyl-phenylether	< 330	ug/kg
Butylbenzylphthalate	< 330	ug/kg
Carbazole	< 330	ug/kg
4-Chloroaniline	< 330	ug/kg
4-Chloro-3-methylphenol	< 330	ug/kg
2-Chloronaphthalene	< 330	ug/kg
2-Chlorophenol	< 330	ug/kg
4-Chlorophenyl-phenylether	< 330	ug/kg
Chrysene	< 330	ug/kg
Dibenz[a,h]anthracene	< 90	ug/kg
Dibenzofuran	< 330	ug/kg
1,2-Dichlorobenzene	< 330	ug/kg
1,3-Dichlorobenzene	< 330	ug/kg
1,4-Dichlorobenzene	< 330	ug/kg
3,3'-Dichlorobenzidine	< 660	ug/kg
2,4-Dichlorophenol	< 330	ug/kg
Diethylphthalate	< 330	ug/kg
	 -	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client: CLAYTON GROUP SERVICES

 Project ID:
 15-04183.00-003
 Date Received:
 09/30/04

 Sample Number:
 39379
 Date Taken:
 09/29/04

 Sample Description:
 B-31/7
 Time Taken:
 1130

 Lab File ID:
 39379-80
 Date Reported:
 10/19/04

Analyte	Result	Units	Flags
2,4-Dimethylphenol	< 330	ug/kg	_
Dimethylphthalate	< 330	ug/kg	•
Di-n-butylphthalate	< 330	ug/kg	
4,6-Dinitro-2-methylphenol	< 1,600	ug/kg	
2,4-Dinitrophenol	< 1,600	ug/kg	
2,4-Dinitrotoluene	< 250	ug/kg	
2,6-Dinitrotoluene	< 260	ug/kg	
Di-n-octylphthalate	< 330	ug/kg	
Fluoranthene	< 330	ug/kg	
Fluorene	< 330	ug/kg	
Hexachlorobenzene	< 330	ug/kg	
Hexachlorobutadiene	< 330	ug/kg	
Hexachlorocyclopentadiene	< 330	ug/kg	
Hexachloroethane	< 330	ug/kg	
Indeno[1,2,3-cd]pyrene	< 330	ug/kg	
Isophorone	< 330	ug/kg	
2-Methylnaphthalene	< 330	ug/kg	
2-Methylphenol	< 330	ug/kg	
3&4-Methylphenol	< 330	ug/kg	
Naphthalene	< 330	ug/kg	
2-Nitroaniline	< 1,600	ug/kg	
3-Nitroaniline	< 1,600	ug/kg	
4-Nitroaniline	< 1,600	ug/kg	
Nitrobenzene	< 260	ug/kg	
2-Nitrophenol	< 1,600	ug/kg	
4-Nitrophenol	< 1,600	ug/kg	
N-Nitrosodimethylamine	< 330	ug/kg	
N-Nitroso-di-n-propylamine	< 330	ug/kg	
n-Nitrosodiphenylamine	< 330·	ug/kg	
Pentachlorophenol	< 330	ug/kg	
Phenanthrene	< 330	ug/kg	~
Phenol	< 330	ug/kg	
Pyrene	< 330	ug/kg	
1,2,4-Trichlorobenzene	< 330	ug/kg	
2,4,5-Trichlorophenol	< 660	ug/kg	
2,4,6-Trichlorophenol	< 330	ug/kg	

printed 01/27/2011 8:20AM by Richard.Jordan p. 371/383-

First **Environmental** Laboratories, Inc.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

15-04183.00-003

Sample Number:

39379

Sample Description: B-31/7 Lab File ID:

Date Received:

09/30/04

Date Taken: Time Taken: 09/29/04

1130 10/19/04

Analyte

39379-80

Date Reported:

Result

Flags

Units

PCBs Method 3540C/8082

Preparation Date:

10/14/04

Date Analyzed:

10/15/04

Aroclor 1016 < 80.0 ug/kg < 80.0 Aroclor 1221 ug/kg < 80.0 ug/kg Aroclor 1232 Aroclor 1242 < 80.0 ug/kg Aroclor 1248 < 80.0 ug/kg Aroclor 1254 ug/kg < 160 Aroclor 1260 < 160 ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233 IL ELAP / NELAC Accreditation # 100292

Analytical Report

Client:

CLAYTON GROUP SERVICES

Project ID:

Lab File ID:

15-04183.00-003

Sample Number:

39380

Sample Description: B-54/4-6

39379-80

Date Received:

09/30/04

Date Taken:

09/28/04

Time Taken:

1645

Date Reported:

10/19/04

Analyte

Result

Units

Flags

PCBs Method 3540C/8082

Preparation Date:

10/14/04

Date Analyzed:

10/15/04

Aroclor 1016	
Aroclor 1221	
Aroclor 1232	
Aroclor 1242	
Aroclor 1248	
Aroclor 1254	
Aroclor 1260	

< 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg < 80.0 ug/kg ug/kg < 80.0 ug/kg < 160 < 160 ug/kg

First Environmental Laboratories

1600 Shore Road, Suite D Naperville, littada 60563

Laboratories, Inc.

First Environmental

Phones (630) 778-1200 • Pax: (630) 778-1233

24 Hr. Pager (705) 569-7507

ISPA Certification# 100292. E-malli lafo@firsteny.com

Sevices Clayten Garap イン・バイ りで Marie Phone: 795-324c Sampled By: Oscres Company Name: Clar. Derry Send Report To. Street Address:

80515

							. Апагуже	738		
Project LD: 7	Project I.D.: (> - 07(8 > 00 -00)			\		\		*		
						\	\			-
	,		\		\ \ \ \ !	3			(2)	_
Matrix Codes:	Matrix Codes: S = Soil W = Water O = Other		2		300000000000000000000000000000000000000		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\leq		•
Date/Dime Taken	n Sample Description	Matrix	_	<u> </u>		<u>`</u>				
4270 PSY	129-8	ч	×	-	+		+	+	Comment	Lab I.D.
0.800	\$ /29-0	N	\ \	 			-	_		\$ 2.716
0737	8-48/3	\$	十	1	-		+	+		<u> </u>
0860	0849 B 24/3 nov		+	\dagger	1		╈	1	ŀ	9
¥160 ×	11/12	,			;		П		1011 Lest 1665, 61 Astrik	-
New 1600	13.5.8	\ \ \		1	<u> </u>	小	X			9
	18-38/	\ <u>\</u>	-	+	7	4	, 	1		67
1/30	18-31/7	2		╀		>	₽	×	The Order	- B
1356	1350 17-31/11	ч		-	1		1	$\left\{ \right]$	5	2/2
1454	1484 0-42/9	'n	 	×	×	-	>		7.07	
1436	1436 13-42/11	V	\dagger				╫	-	1721.17	7
V 1520	6w-29F	3	×		-	İ	·		War.	
]				_				7

Cooler Temperature:_

Received within 6 hrs. of chilection:

Date/Time_ 1000 _ Received By:__ 1700 . Detections 72.9 * - Russ Notes and Special Instructions: _ Relinguished By: Lane

Date/Time_

Received By 🔪

Date/Ijme,

Relinquished By:

Rev. 1/81

printed 01/27/2011	8:20AM by Richard.Jordan p.	374	1/383-	

First Environmental Laboratories, Inc.	

First Environmental Laboratories Naperville, Illinois 60563 Frome: (620) 778-1200 - Bax; (630) 778-1233 14 Hr. Pager (700) 569-7507 E-nail: inlo@firstenc.com IEPA Certification# 100292 1600 Shore Road, Suite D.

Services		SAN 12 20 60515	PA 795-1130	-	CETUSON.
Company Name: Clayten Group Services	Street Addices: 3140 Finley Rd	City Lounds Grove	Phone: 795-3200	Send Report ID: Meric Musifice	Sampled By Portes Loreson Som Peterson

•			•					о О	GALL	,	•	4. T.							
								39360											
						Lab l.D.	TENIH.	-	36							,			
								Valcibi	heh				•						
i						Comments		as ana 122											
		<u> </u>	\ \ \	\	<u>\</u>			D 28 20 C											
n			\	\	\			_				_				_		_	
Analyses		/ 35	400	/ ///68//68//10//	\	_	_					_	_	_	_	_			
•	/	`	\	$\overline{\ \ }$	<u> </u>		_	_		_				_		 			
		`		<u> </u>	\sum		1		*							!			
		`					Ş	S	\times				_			_		_	
	\	<u></u> → ,	<u>></u>	Ę	<u>`</u>		_	W	\times						_	 			
i		•	/		<u>~</u>		_	X		!						_	_		
							×	_	X	į			<u>. </u>			_		_	
					-	Matrix	N	~	Ş						_			_	
	<i>b</i> :				ici	F													
	00-00				0=0 I	Sample Description	LA												
- {	183.				= Wate	Sample	11/	1-11	Μ		:							-	
Aron	70-5				Soil W		11. S	75-8	16-81										
ACTION TO THE TOTAL TOTA	Project I.D. 15 -04/83.00-004		•		Matrix Codes: S=Soil W=Water 0=Other	Dale/Time Taken	51/ th-81 0451 53/6	9-4/ 25-81 5491	0840 B-34/3										
	Project	P.O. #::_			Matrix	Dale/TY	1/25	Ĺ	1/29										

Cooler Temperature:

Received within 6 hrs. of collection:

Notes and Special Instructions: __

Date/Time__ Received By: _ Date/Time /29 1700 Date/Time__ Relinquished By. Lory Relinguished By:

printed 01/27/2011	8:20AM by	/ Richard.Jordan i	p. 375/383 –

Laboratories, Inc. First Environmental

First Environmental Laboratories Phone: (630) 778-1290 • Pax: (630) 778-1233 E-mailt Info@firstenv.com IRPA Certification# 100292 24 Hr. Pager (708) 559-7597 Naper-Ille, Ilthoris 60563 1600 Shore Road, Salts D

51509 7.7/8 795- \$200 Street Address: 3140 Jour ers Company Name: Send Report To: Sampled By: Phone: ä

Page 2 2 Page

CHAIN OF CUSTODY RECORD

Mainta	Project I.D.: 15 - 04183, 00-009
The state of the s	
IN TO TO THE POST OF THE POST	
X	
785 787 787 787 787 787 787 787	
<i>OTOM</i>	
770H X X X X X X X X X X X X X X X X X X X	
<i>Topy</i>	
770H X X X X X X X X X X X X X X X X X X X	
<i>1 1 1 1 1 1 1 1 1 1</i>	-
<i>1000</i>	
× × ×	
× × ×	_
×	

Received within 6 hrs. of collection: Cooler Temperature:

Notes and Special Instructions: ___

· • • · · · · · · · · · · · · · · · · ·	Date/Time 9/30/04 /	Dale/Time	
	Received By:	Received By.	>
	Date/Time /29 1700	DateAline	
	Relinquished By:	Refinguished By:	

APPENDIX G

HYDRAULIC CONDUCTIVITY RESULTS

SI and RO Report SiPi Metals Corporation / Chicago, Illinois 15-04183rc001/11/29/2004/ MEM/JMF

