Aprendendo com os Vizinhos SCC0244 - Mineração a partir de Grandes Bases de Dados

Rafael Geraldeli Rossi Solange Oliveira Rezende

Slides baseados em [Han et al., 2011]

Conteúdo

Introdução

k Vizinhos Mais Próximos

- Paradigma de aprendizado baseado em instâncias
- Abordagem "lazy" (preguiçosa)
 - O algoritmo de aprendizado aguarda até o último instante para construir um modelo e classificar um exemplo
 - Dado os exemplos de treinamento, o aprendizado lazy apenas armazena os exemplos e espera até que seja dado um exemplo de teste para realizar algum tipo de processamento
 - Classifica um exemplo baseado na similaridade dos exemplos de treinamento
- Diferente dos outros paradigmas, há um menor esforço na etapa de aprendizado e um maior esforço na etapa de classificação
- Requer técnicas eficientes de armazenamento e recuperação
- Naturalmente suportam aprendizado incremental
- São capazes de modelar espaços de decisões complexos
- Veja: http://www.cs.cmu.edu/~alad/knn.html

- kNN k Nearest Neighbors
- Algoritmo amplamente utilizado na área de reconhecimento de padrões
- A classificação utilizando os vizinhos mais próximos, como o próprio nome diz, faz uso dos rótulos dos vizinho para descobrir a classe de um objeto não rotulado
- No caso do kNN são utilizados os rótulos dos k vizinhos mais próximos
- É atribuído a classe mais frequente dos k vizinhos ao exemplo de teste
- Normalmente os valores dos atributos são normalizados

Figura: Exemplo de classificação utilizando os 3 vizinhos mais próximos

Figura: Exemplo de classificação utilizando os 3 vizinhos mais próximos

Figura: Efeito do valor de k

Exemplo

Tabela: Parte do conjunto de dados Iris

ID	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
3	7,0	3,2	4,7	1,4	Iris-versicolor
4	6,4	3,2	4,5	1,5	Iris-versicolor
5	6,3	3,3	6,0	2,5	Iris-virginica
6	5,8	2,7	5,1	1,9	Iris-virginica

	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
ĺ	5,4	3,1	2,5	1,0	???

$$d(t,1) = \sqrt{(5,4-5,1)^2 + (3,1-3,5)^2 + (2,5-1,4)^2 + (1,0-0,2)^2}$$

$$d(t,1) = \sqrt{(0,09+0,16+1,21+0,64)} = \sqrt{2,1} = 1,44$$

$$d(t,2) = \sqrt{(5,4-4,9)^2 + (3,1-3,0)^2 + (2,5-1,4)^2 + (1,0-0,2)^2}$$

$$d(t,2) = \sqrt{(0,25+0,01+1,21+0,64)} = \sqrt{2,11} = 1,45$$

$$d(t,3) = \sqrt{(5,4-7,0)^2 + (3,1-3,2)^2 + (2,5-4,7)^2 + (1,0-1,4)^2}$$

$$d(t,3) = \sqrt{2,56+0.01+4.84+0.16} = \sqrt{7,21} = 2.68$$

$$d(t,4) = \sqrt{(5,4-6,4)^2 + (3,1-3,2)^2 + (2,5-4,5)^2 + (1-1,5)^2}$$

$$d(t,4) = \sqrt{1,0+0,01+4,0+0,25} = \sqrt{5,26} = 2,29$$

$$d(t,5) = \sqrt{(5,4-6,3)^2 + (3,1-3,3)^2 + (2,5-6,0)^2 + (1,0-2,5)^2}$$

$$d(t,5) = \sqrt{0,81+0,04+12,25+2,25} = \sqrt{15,35} = 3,91$$

$$d(t,6) = \sqrt{((5,4-5,8))^2 + (3,1-2,7)^2 + (2,5-5,1)^2 + (1,0-1,9)^2}$$

$$d(t,6) = \sqrt{0,16+0,16+6,76+0,81} = \sqrt{7,89} = 2,80$$

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2°	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4°	3	2,68	Iris-versicolor
5°	6	2,80	Iris-virginica
6°	5	3,91	Iris-virginica

Resultados de classificação

1-NN: Iris-setosa2-NN: Iris-setosa3-NN: Iris-setosa

4-NN: Empate entre Iris-setosa e Iris-versicolor
5-NN: Empate entre Iris-setosa e Iris-versicolor

• 6-NN: Empate entre Iris-setosa, Iris-versicolor e Iris-virginica

- Pode-se dar um peso diferente ao voto de cada vizinho
 - O peso do voto é dado por

$$voto = \frac{1}{dist(x, novo)}$$

na qual dist(x, novo) é a distância de um objeto x da base de treinamento ao objeto a ser classificado

- É realizado um somatório com o peso do voto dos objetos de cada classe
- O objeto é classificado com a classe que obteve o maior somatório de votos (considerando o peso)
- Reduz a sensibilidade da escolha do valor de k

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2º	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4º	3	2,68	Iris-versicolor
5°	6	2,80	Iris-virginica
6°	5	3,91	Iris-virginica

Resultados da classificação

- 1-NN: Iris-setosa = 1/1, 44; Iris-versicolor = 0; Iris-virginica = 0
- 2-NN: Iris-setosa = 1/1, 44 + 1/1, 45; Iris-versicolor = 0; Iris-virginica = 0
- 3-NN: Iris-setosa = 1/1, 44 + 1/1, 45; Iris-versicolor = 1/2, 29; Iris-virginica = 0
- 4-NN: Iris-setosa = 1/1, 44 + 1/1, 45; Iris-versicolor = 1/2, 29 + 1/2, 68; Iris-virginica = 0
- 5-NN: Iris-setosa = 1/1, 44 + 1/1, 45; Iris-versicolor = 1/2, 29 + 1/2, 68; Iris-virginica = 1/2, 80
- 6-NN: Iris-setosa = 1/1, 44 + 1/1, 45; Iris-versicolor = 1/2, 29 + 1/2, 68; Iris-virginica = 1/2, 80 + 1/3, 91

- O uso de peso nos votos pode gerar erros devido a presença de outliers
- Um objeto pode estar tão próximo a um outlier de modo que o peso os votos de outros objetos não sejam o suficiente para definir a classe de um objeto

Figura: Exemplo de problemas na classificação utilizando 3-NN devido a presença de *outliers*

- O k-NN também pode ser utilizado para predição numérica, na qual o valor retornado é a média dos valores dos k vizinhos
 - Calcular a média do atributo alvo utilizando o valor do mesmo atributo dos k-vizinhos mais próximos
- Exemplo: calcular o salário do exemplo
 {Idade = 31; Tempo de Serviço = 13} utilizando 3 vizinhos
 mais próximos e o seguinte conjunto de treinamento

Tabela: Conjunto de dados original

ID	Idade	Tempo de Serviço	Salário
1	20	2	2000
2	25	3	2500
3	50	25	8000
4	30	10	5000
5	27	5	3000
6	33	10	2700

Tabela: Conjunto de dados padronizado para o cálculo das distâncias

uus .	ads distancias					
ID	Idade	Tempo de Serviço	Salário			
1	0,00	0,00	2000			
2	0,17	0,04	2500			
3	1,00	1,00	8000			
4	0,33	0,35	5000			
5	0,23	0,13	3000			
6	0,43	0,35	2700			

Exemplo de teste padronizado:

$$\{Idade = 0, 37; Tempo de Serviço = 0, 48\}$$

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Salário
1°	4	0,1	5000
2°	6	0,1	2700
3°	2	0,47	2500
4°	1	0,6	2000
5°	3	0,66	8000
6°	5	0,7	3000

Salário do exemplo de teste

$$\textit{Salário} = \frac{5000 + 2700 + 2500}{3} = 3400,00$$

- O mesmo procedimento pode ser utilizado para a imputação de valores ausentes
 - Deve-se desconsiderar o atributo que possui valor ausente no cálculo das distâncias

Tabela: Conjunto de dados original

ID	Idade	Tempo de Serviço	Salário
1	20	2	2000
2	25	_	2500
3	50	25	8000
4	30	10	5000
5	27	5	3000
6	33	10	2700

Tabela: Conjunto de dados padronizados

ID	Idade	Tempo de Serviço	Salário
1	0,00	2	0,00
2	0,17	-	0,08
3	1,00	25	1,00
4	0,33	10	0,50
5	0,23	5	0,17
6	0,43	10	0,12

Tabela: Ranking

Ranking	ID	Distância	Tempo de Serviço
1º	5	0,1	5
2º	1	0,14	2
3°	6	0,24	10
4º	4	0,43	10
5°	3	1,23	25

Utilizando 2 vizinho mais próximos temos

Tempo de Serviço
$$=$$
 $\frac{5+2}{2}$ $=$ 3,5

- O valor de k é determinado experimentalmente
- A cada valor de k, é realizada uma avaliação em um conjunto de teste
- É escolhido o valor de k com melhor desempenho no conjunto de teste
- Em geral
 - Valor de k pequeno
 - Função de discriminação entre classes é muito flexível
 - Sensível a ruído
 - Valor de k grande
 - Função de discriminação entre classes é menos flexível
 - Tende a incluir objetos de outras classes
 - Menos sensível a ruído

- A escolha da métrica de distância é fundamental
- Seja |D| o número de exemplos de treinamento e |A| o número de atributos, a complexidade do k-NN é $O(|D| \times |A|)$
- Técnica para acelerar a classificação
 - Implementações paralelas
 - Calculo da distância baseada em um subconjunto de atributos
 - Remover exemplos de treinamento que s\u00e3o inconsistentes com seus pr\u00f3prios vizinhos
 - kD-tree
 - ...

Referências Bibliográficas I

Han, J., Kamber, M., and Pei, J. (2011).

Data Mining: Concepts and Techniques.

The Morgan Kaufmann Series in Data Management Systems. Elsevier.