Partial English Translation of J. P. Application No. 2000-11417 A

- (11) J.P. Application Laid-open No. 2000-11417 A
- 5 (43) Publication Date: January 14, 2000
 - (54) Title of the Invention: Semiconductor Laser Array and its Production, Optical Integrated Unit, Optical Pickup as well as Optical Disk Drive Assembly
 - (21) Application Number: Hei 10-181068
- 10 (22) Application Date: June 26, 1998

20

25

- (71) Applicant: TOSHIBA CORP
- (72) Inventor: Ichiro UCHISAKI et al.

Translation of line 1 from the bottom of right column of page 8 to line 9 of left

column of page 9 of specification

[0063]

In the example shown in Figure 7, PD 35A for a wavelength 650 nm and PD 35B for a wavelength 780 nm are formed separately on the same silicon substrate 35'. However, the same effect can be obtained by forming PD 35A and PD 35B on separate chips, respectively. A specific value of this configuration is: the distance between the center 31A of a 650 nm beam and the center of the PD 35A for a wavelength 650 nm is about 1.1 mm; and the distance between the center 31A of a 650nm beam and the center of the PD 35B for a wavelength 780 nm is about 1.3 mm; a minimum pitch of diffraction grating of the hologram element 33 is about 3 μ m; and the distance between LD 31' and a hologram element 33 is about 5 mm.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000011417 A

(43) Date of publication of application: 14.01.00

(51) Int. Cl **G11B 7/125**

(21) Application number: 10181068

(22) Date of filing: 26.06.98

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

UCHISAKI ICHIRO MORI KAZUNARI SHIOZAWA HIDEO

(54) SEMICONDUCTOR LASER ARRAY AND ITS PRODUCTION, OPTICAL INTEGRATED UNIT, OPTICAL PICKUP AS WELL AS OPTICAL DISK DRIVE ASSEMBLY

(57) Abstract:

PROBLEM TO BE SOLVED: To integrate refractive index guide type semiconductor lasers varying in oscillation wavelengths and to form a semiconductor laser array by disposing a first laser element part which exists on a substrate and releases a laser beam of a first wavelength and a second laser element part which exists in parallel therewith and releases a different wavelength.

SOLUTION: The active layer 214 of the laser element part 240 of a wavelength 780 nm is formed of a MQW structure consisting of Ga0.9Al0.1As well layers and Ga0.65Al0.35As barrier layers and the active layer 224 of the laser element part 241 of a wavelength 650 nm is formed of an MQW structure consisting of In0.5Ga0.5P well layers and In0.5(Ga0.5Al0.5)0.5P barrier layers. Refractive index steps are formed in a transverse direction by the combination of third clad layers 218, 228 processed to a projecting stripe shape and a GaAs current blocking layer 231, by which the laser element parts 240, 241 are formed as a refractive index guide

laser. The laser element parts 240, 241 are respectively applied to CD disks and DVD disks and are used as LDs of optically integrated units.

COPYRIGHT: (C)2000, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-11417 (P2000-11417A)

(43)公開日 平成12年1月14日(2000.1.14)

(51) Int.Cl.7

酸別記号

FI

テーマコート*(参考)

G11B 7/125

G11B 7/125

A 5D119

審査請求 未請求 請求項の数19 OL (全 20 頁)

(21)出願番号

特顏平10-181068

(22)出願日

平成10年6月26日(1998, 6, 26)

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72) 発明者 内 崎 一 郎

神奈川県川崎市幸区堀川町72番地 株式会

社東芝川崎事業所内

(72) 発明者 森 一 成

神奈川県横浜市磯子区新磯子町33 株式会

社東芝生産技術研究所内

(74)代理人 100064285

弁理士 佐藤 一雄 (外3名)

最終頁に続く

(54) 【発明の名称】 半導体レーザアレイ及びその製造方法、光集積ユニット、光ピックアップ並びに光ディスク駆動 装置

(57) 【要約】

【課題】 多波長型の高性能なる半導体レーザアレイ及びその製造方法、光集積ユニット、光ピックアップ並びに光ディスク駆動装置を提供する。

【解決手段】 発振波長が異なる屈折率ガイド型の半導体レーザのそれぞれについてダブル横モード制御、電流狭窄およ埋め込み加工を一括して行うことによりリソグラフィ等の工程数が少なく、素子表面が平坦で放熱性が良好な半導体レーザアレイを実現できる。また、このような多波長型のレーザアレイとホログラム素子と検出用PDとを所定の位置関係に配置することにより、光ディスクからの戻り光を一箇所に集めて1チップ上のPDで検出することができるようになり、飛躍的に小型・軽量で高信頼性を有する光ディスク駆動装置を実現できる。

【特許請求の範囲】

【請求項1】GaAs基板と、

前記基板上に設けられ第1の波長のレーザ光を放出する 第1のレーザ素子部と、

前記基板上に設けられ前記第1の波長とは異なる第2の 波長のレーザ光を前記第1の波長のレーザ光と略平行な 方向に放出する第2のレーザ素子部と、を備え、

前記第1のレーザ素子部は、InGaA1P第1クラッド層と、前記第1クラッド層の上に設けられた活性層と、前記活性層の上に設けられたInGaA1P第2クラッド層とを有し、

前記第2のレーザ素子部は、InGaAIP第1クラッド層と、前記第1クラッド層の上に設けられた活性層と、前記活性層の上に設けられたInGaAIP第2クラッド層とを有し、

前記第1のレーザ素子部の前記第2クラッド層の層厚と、前記第2のレーザ素子部の前記第2クラッド層の層厚とは、略同一であるものとして構成されていることを特徴とする半導体レーザアレイ。

【請求項2】前記第1のレーザ素子部の前記活性層は、A1GaAs層を含み、

前記第2のレーザ素子部の前記活性層は、InGaP層を含むことを特徴とする請求項1記載の半導体レーザアレイ。

【請求項3】前記第1のレーザ素子部の前記第2のクラッド層と、前記第2のレーザ素子部の前記第2のクラッド層は、いずれもレーザの共振方向に沿ったリッジ状ストライプとされ、

前記第1のレーザ素子部の前記リッジ状ストライプの層厚と前記第2のレーザ素子部の前記リッジ状ストライプの層厚とは、略同一であり、

前記第1のレーザ素子部の前記リッジ状ストライプと前記第2のレーザ素子部の前記リッジ状ストライプは、いずれもその両側が電流阻止層により埋め込まれていることを特徴とする請求項1または2に記載の半導体レーザアレイ。

【請求項4】GaAs基板と、前記基板上に設けられ第1の波長のレーザ光を放出する第1のレーザ素子部と、前記基板上に設けられ前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、を有する半導体レーザアレイの製造方法であって、

G a A s 基板の主面の一部に前記第1のレーザ素子部を 構成する第1のクラッド層と活性層と第2のクラッド層 のダブルヘテロ構造を形成する工程と、

前記G a A s 基板の主面の他の一部に前記第2のレーザ素子部を構成する第1のクラッド層と活性層と第2のクラッド層のダブルヘテロ構造を形成する工程と、

前記第1のレーザ素子部の前記第2のクラッド層と前記第2のレーザ素子部の前記第2のクラッド層とを同時に

選択エッチングして、レーザの共振方向に沿ったストライプをそれぞれ形成する工程と、

前記第1のレーザ素子部と前記第2のレーザ素子部に電 流阻止層を同時に形成する工程と、

前記第1のレーザ素子部と前記第2のレーザ素子部との間に電流を遮断するための素子分離溝を形成する工程と、

を備えたことを特徴とする半導体レーザアレイの製造方法。

【請求項5】前記第1の波長は、前記第2の波長よりも 長く、

前記第1のレーザ素子部の前記ダブルヘテロ構造を形成する工程は、前記第2のレーザ素子部の前記ダブルヘテロ構造を形成する工程よりも先に実施されることを特徴とする請求項4記載の半導体レーザアレイの製造方法。

【請求項6】第1の波長のレーザ光を放出する第1のレーザ素子部と、

前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、

前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光と前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光とを検出する検出手段と、

を備えたことを特徴とする光集積ユニット。

【請求項7】第1の波長のレーザ光を放出する第1のレーザ素子部と、

前記第1の波長とは異なる第2の波長のレーザ光を前記 第1の波長のレーザ光と略平行な方向に放出する第2の レーザ素子部と、

前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を第1の回折角度で回折させ、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を前記第1の回折角度とは異なる第2の回折角度で回折させる光学手段と、

前記光学手段によって回折された前記第1の戻り光と前記第2の戻り光とを略同一の検出位置において検出する 検出手段と

を備えたことを特徴とする光集積ユニット。

【請求項8】第1の波長のレーザ光を放出する第1のレーザ素子部と、

前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、

前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を検出する第1の検出手段と、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を検出する第2の検出手段と、を備えたことを特徴とする光集積ユニット。

【請求項9】第1の波長のレーザ光を放出する第1のレ

ーザ素子部と、

前記第1の波長とは異なる第2の波長のレーザ光を前記 第1の波長のレーザ光と略平行な方向に放出する第2の レーザ素子部と、

前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を第1の回折角度で回折させ、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を前記第1の回折角度とは異なる第2の回折角度で回折させる光学手段と、

前記光学手段によって回折された前記第1の戻り光を検 出する第1の検出手段と、

前記光学手段によって回折された前記第2の戻り光を検 出する第2の検出手段と、

を備えたことを特徴とする光集積ユニット。

【請求項10】前記第1の検出手段と前記第2の検出手段とは、同一の基板上に集積された複数のフォトダイオードのうちのいずれかであることを特徴とする請求項8または9に記載の光集積ユニット。

【請求項11】第3の波長のレーザ光を放出する第3のレーザ素子部をさらに備えたことを特徴とする請求項6~10のいずれか1つに記載の光集積ユニット。

【請求項12】前記第1のレーザ素子部と前記第2のレーザ素子部とは、同一の基板上に集積されたレーザアレイを構成してなることを特徴とする請求項 $6\sim10$ のいずれか1つに記載の光集積ユニット。

【請求項13】前記レーザアレイは、請求項1~請求項3のいずれかに記載の半導体レーザアレイであることを特徴とする請求項12記載の光集積ユニット。

【請求項14】主面上に少なくともひとつの段差部を有するシリコン基板をさらに備え、

前記レーザアレイは前記シリコン基板の前記段差の下側の主面の上において、前記第1の波長のレーザ光と前記第2の波長のレーザ光とがそれぞれ前記段差部の側面に向けて出射するようにマウントされ、

前記段差部の前記側面は、前記第1の波長のレーザ光と 前記第2の波長のレーザ光を前記基板の前記主面に対し て略垂直上方に反射する反射鏡部分を有するものとして 構成されたことを特徴とする請求項6~13のいずれか 1つに記載の光集積ユニット。

【請求項15】前記光学手段は、ホログラム素子を有することを特徴とする請求項7または9に記載の光集積ユニット。

【請求項16】前記第1の波長は、780nmを中心と

前記第2の波長は、635nm、650nm及び685nmのいずれかを中心とすることを特徴とする請求項6~015のいずれか1つに記載の光集積ユニット。

【請求項17】請求項6または8に記載の光集積ユニットと、

前記第1の波長のレーザ光のうちで外部において反射さ

れて戻った第1の戻り光を第1の回折角度で回折させ、 前記第2の波長のレーザ光のうちで外部において反射さ れて戻った第2の戻り光を前記第1の回折角度とは異な る第2の回折角度で回折させる光学手段と、

を備えたことを特徴とする光ピックアップ。

【請求項18】請求項6~16のいずれか1つに記載の 光集積ユニットと、

前記光集積ユニットから放出される前記第1の波長のレーザ光または前記第2のレーザ光を集光して光ディスクに照射し、且つ前記光ディスクから反射された光を前記 光集積ユニットに導く光学系と、

を備えたことを特徴とする光ピックアップ。

【請求項19】請求項17または18に記載の光ピックアップを備えたことを特徴とする光ディスク駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体レーザアレイ及びその製造方法、光集積ユニット、光ピックアップ並びに光ディスク駆動装置に関する。より具体的には、本発明は、短波長帯域における半導体レーザアレイ及びその製造方法、およびこのようなレーザを用いた互換性を有する光ディスク・システム、例えば、CDまたはCD-Rとの互換性を確保したDVDシステムに用いて好適な、小型で高性能の光集積ユニット、光ピックアップ並びに光ディスク駆動装置に関する。

[0002]

【従来の技術】光ディスク・システムは、小型で大容量のデータを記録できるために、広く実用化されている。特に、DVD(Digital Versatile Disc)システムは、次世代のムービー、ROM、RAMなどの主流のシステムとして、その実用化が急速に進められている。一方、光ディスクとしては、従来からCD(compact disc)システムあるいはCD-R(compact disc-recordable)システムが広く普及しており、DVDシステムは、CDシステムとの互換性を有することが望ましい。すなわち、DVDシステムは、CDやCD-Rのディスクに対してもデータの読み取りや書き込みを実施できるようにする必要がある。

【0003】これらの光ディスク・システムにおいては、ディスク上に記録された情報の読み出し・書き込みを行うために、半導体レーザ(laser diode: LD)を用いた光ピックアップが用いられる。

【0004】図26は、従来のDVDシステムの光ピックアップとして提案されているものの典型的な構成を表す説明図である。すなわち、同図の光ピックアップは、CDのディスクに対して互換性を有するものであり、DVD用の光集積ユニット101と、CD及びCD-R用の光集積ユニット102とを有する。

【0005】DVD用光集積ユニット101から出射される波長650nmのレーザ光はダイクロイック・プリ

ズム103を通過し、集光レンズ104、立ち上げミラー105、波長選択性絞り106、対物レンズ107を経由して光ディスク109に達する。一方、CD用の光集積ユニット102から出射される波長780nmのレーザ光は、プリズム103により反射された後、DVD用の650nmレーザ光とほぼ同じ光路をたどり、CDまたはCD-Rディスク108に達する。

【0006】一方、ディスクからの戻り光は、前述とは 逆の光路をたどって、それぞれDVD用またはCD用の 光集積ユニット101、102に届く。ここで、通常、 CD用ディスク108とDVD-ROM用ディスク10 9とでは対物レンズ107によるスポットサイズは少し 異なるので波長選択性絞り106などにより実効的NA (numerical aperture) を変えている。

【0007】次に、このような光ピックアップに使われる従来の光集積ユニットについて説明する。図27は、従来の光集積ユニットの典型的な構成を表す斜視概念図である。光集積ユニット101、102は、ステム138とその上に設けられたヒートシンク141とを有する。ステム138には、所定の接続を行うためのリード109が適宜配置されている。また、ヒートシンク141は、銅などの熱伝導率の良好な材料により構成され、その上に、LDチップ135と検出用PD(photodiode)136が設けられている。また、LDチップ135の背面側には、モニタ用PD137が配置され、LDの光出力をフィードバック制御できるようにされている。【0008】さらに、これらの上方には、図示しないホログラム素子が設けられている。なお、図27においてはステム封止用キャップは省略した。

【0009】LDチップ135から矢印で図示した方向に出射した光は、図26に前述したような経路をたどってディスクに届く。ディスクからの戻り光は、ホログラムで回折されて、矢印で図示したようにエラー検出用PD136に入射する。PDは、ディスク上での光のフォーカスおよびトラッキングエラーを検出するためにいてつかの領域に分割されたでれの領域に入射する光量が等しくなるように設計することができる。もし合焦点からずれれば、分割された領域の入射光量に差を生じるのでよれを電流差として検出することにより、図示しない機械的なサーポ機構を介して合焦点方向へ戻すようにフィードバックする。ラジアル方向へのエラー検出も同様に行われる。

[0010]

【発明が解決しようとする課題】しかし、このような従来の光ピックアップは、構成が複雑であり、小型軽量化が困難であり、組立工程も煩雑であるという問題を有していた。これらの問題について以下に説明する。

【0011】まず、図26に示したような従来の光ピックアップは、2個の異なる光集積ユニット101、10

2からの光を一本の光軸に合成する必要がある。これは、ピックアップの光軸に対するLD出射光の角度のずれを最小に維持する必要があるからである。このために、ダイクロイック・プリズム103などの光学部品が必要とされ、構成が複雑、且つ大型化し、組立工程も煩雑になるとともに価格も高価になるという問題があった。

【0012】また、従来の光ピックアップは、2個の異なる光集積ユニット101、102を有するために、光軸の調節工程が必要であり、組立工程の良品率も低下しやすい。すなわち、ディスクからの戻り光(ホログラムからの回折光)の位置精度(X, Y, θ)にも厳しい要求がある。特に、DVDではLD-PD間で $\pm 5 \mu m$ 、 ± 0.5 °の範囲内にあることが望ましい。LD出射光が所望の精度であったとしても、それぞれの光集積ユニット内のPDとLDとの相対位置が上記の許容範囲でないと期待する特性が得られない。結局、光集積ユニットが2分岐されているために2個のLD及び2個のPD間での相対位置精度がいずれも十分に高いことが必要になる。これを実現するための調整工数の増加およびピックアップ組み立て良品率の低下が大きな問題となっている

【0013】また、光集積ユニットが2分割されているために小型化に限界がある。特に、今後需要の大きな伸長が期待できるノートバソコンへのDVDシステム搭載にあたっては、小型・軽量化が必須の条件である。しかし、図26に示したような従来の構造では、このような小型・軽量化は極めて困難であった。

【0014】本発明は、かかる点に鑑みてなされたものである。すなわち、その目的は多波長型の高性能なる半導体レーザアレイ及びその製造方法を提供するとともに、このような半導体レーザを用いて実現できる小型で高性能の光集積ユニット、光ピックアップ並びに光ディスク駆動装置を提供することにある。

ON N

[0015]

【課題を解決するための手段】すなわち、本発明の半導体レーザアレイは、GaAs基板と、前記基板上に設けられ第1の皮長のレーザ光を放出する第1のレーザ素子部と、前記基板上に設けられ前記第1の波長のレーザ光を前記第1の皮長のレーザ光を前記第1の皮長のレーザ光を前記第1のレーザ素子部は、InGaAlP第1クラッド層と、前記第1クラッド層の上に設けられたInGaAlP第2クラッド層と、前記活性層の上に設けられたInGaAlP第2クラッド層と、前記活性層の上に設けられたInGaAlP第2クラッド層と、前記活性層の上に設けられたInGaAlP第1クラッド層と、前記活性層の上に設けられたInGaAlP第2クラッド層と、前記活性層の上に設けられたInGaAlP第2クラッド層とを有し、前記第2のレーザ素子部の前記第2クラッド層の層厚と、前記第2のレーであ

るものとして構成されていることを特徴とする。

【0016】ここで、前記第1のレーザ素子部の前記活性層は、AlGaAs層を含み、前記第2のレーザ素子部の前記活性層は、InGaP層を含むことを特徴とする。

【0017】また、前記第1のレーザ素子部の前記第2のクラッド層は、p型の導電型を有し、含有するp型のキャリア密度が $3\times10^{17}\,\mathrm{c}\,\mathrm{m}^{-3}$ 以下であることを特徴とする。

【0018】また、前記第1のレーザ素子部の前記第2のクラッド層と、前記第2のレーザ素子部の前記第2のクラッド層は、いずれもレーザの共振方向に沿ったリッジ状ストライプとされ、前記第1のレーザ素子部の前記リッジ状ストライプの層厚と前記第2のレーザ素子部の前記リッジ状ストライプの層厚とは、略同一であり、前記第1のレーザ素子部の前記リッジ状ストライプと前記第2のレーザ素子部の前記リッジ状ストライプは、いずれもその両側が電流阻止層により埋め込まれていることを特徴とする。

【0019】また、前記第1の波長と前記第2の波長との平均値を λ とした時に、 λ /2または λ /4の層厚を有する誘電体または半導体の薄膜が前記第1のレーザ素子部の端面と前記第2のレーザ素子部の端面とにそれぞれ形成されてなることを特徴とする。

【0020】一方、本発明の半導体レーザアレイの製造 方法は、GaAs基板と、前記基板上に設けられ第1の 波長のレーザ光を放出する第1のレーザ素子部と、前記 基板上に設けられ前記第1の波長とは異なる第2の波長 のレーザ光を前記第1の波長のレーザ光と略平行な方向 に放出する第2のレーザ素子部と、を有する半導体レー ザアレイの製造方法であって、G a A s 基板の主面の一 部に前記第1のレーザ素子部を構成する第1のクラッド 層と活性層と第2のクラッド層のダブルヘテロ構造を形 成する工程と、前記GaAs基板の主面の他の一部に前 記第2のレーザ素子部を構成する第1のクラッド層と活 性層と第2のクラッド層のダブルヘテロ構造を形成する 工程と、前記第1のレーザ素子部の前記第2のクラッド 層と前記第2のレーザ素子部の前記第2のクラッド層と を同時に選択エッチングして、レーザの共振方向に沿っ たストライプをそれぞれ形成する工程と、前記第1のレ ーザ素子部と前記第2のレーザ素子部に電流阻止層を同 時に形成する工程と、前記第1のレーザ素子部と前記第 2のレーザ素子部との間に電流を遮断するための素子分 離溝を形成する工程と、を備えたことを特徴とする。

【0021】ここで、前記第1の波長は、前記第2の波 長よりも長く、前記第1のレーザ素子部の前記ダブルへ テロ構造を形成する工程は、前記第2のレーザ素子部の 前記ダブルヘテロ構造を形成する工程よりも先に実施さ れることを特徴とする。

【0022】また、前記第1のレーザ素子部の前記第2

のクラッド層は、p型の伝導型を有し、含有するp型ドーパントの濃度が 3×10^{17} c m^{-3} 以下であることを特徴とする。

【0023】また、前記ストライプをそれぞれ形成する前記工程は、前記第1のレーザ素子部と前記第2のレーザ素子部のそれぞれに設けられたエッチングストップ層まで前記選択エッチングを実施する工程を含むことを特徴とする。

【0024】また、前記第1の波長は、780nmを中心とし、前記第2の波長は、635nmまたは650nmを中心とすることを特徴とする。

【0025】一方、本発明の光集積ユニットは、第1の波長のレーザ光を放出する第1のレーザ素子部と、前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光と前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光とを検出する検出手段と、を備えたことを特徴とする。

【0026】または、本発明の光集積ユニットは、第1の波長のレーザ光を放出する第1のレーザ素子部と、前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を第1の回折角度で回折させ、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を前記第1の回折角度とは異なる第2の回折角度で回折させる光学手段と、前記光学手段によって回折された前記第1の戻り光と前記第2の戻り光とを略同一の検出位置において検出する検出手段と、を備えたことを特徴とする。

【0027】または、本発明の光集積ユニットは、第1の波長のレーザ光を放出する第1のレーザ素子部と、前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を検出する第1の検出手段と、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を検出する第2の検出手段と、を備えたことを特徴とする。

【0028】または、本発明の光集積ユニットは、第1の波長のレーザ光を放出する第1のレーザ素子部と、前記第1の波長とは異なる第2の波長のレーザ光を前記第1の波長のレーザ光と略平行な方向に放出する第2のレーザ素子部と、前記第1の波長のレーザ光のうちで外部において反射されて戻った第1の戻り光を第1の回折角度で回折させ、前記第2の波長のレーザ光のうちで外部において反射されて戻った第2の戻り光を前記第1の回折角度とは異なる第2の回折角度で回折させる光学手段

と、前配光学手段によって回折された前記第1の戻り光を検出する第1の検出手段と、前配光学手段によって回折された前記第2の戻り光を検出する第2の検出手段と、を備えたことを特徴とする。

【0029】ここで、前記第1の検出手段と前記第2の検出手段とは、同一の基板上に集積された複数のフォトダイオードのうちのいずれかであることを特徴とする。 【0030】また、第3の波長のレーザ光を放出する第3のレーザ素子部をさらに備えたことを特徴とする。

【0031】また、前記第1のレーザ素子部と前記第2のレーザ素子部とは、同一の基板上に集積されたレーザアレイを構成してなることを特徴とする。

【0032】また、前記レーザアレイは、請求項1~請求項5のいずれかに記載の半導体レーザアレイであることを特徴とする。

【0033】また、主面上に少なくともひとつの段差部を有するシリコン基板をさらに備え、前記レーザアレイは前記シリコン基板の前記段差の下側の主面の上において、前記第1の波長のレーザ光と前記第2の波長のレーザ光とがそれぞれ前記段差部の側面に向けて出射するようにマウントされ、前記段差部の前記側面は、前記第1の波長のレーザ光と前記第2の波長のレーザ光を前記基板の前記主面に対して略垂直上方に反射する反射鏡部分を有するものとして構成されたことを特徴とする。

【0034】また、前記光学手段は、ホログラム素子を有することを特徴とする。また、前記第1の波長は、780nmを中心とし、前記第2の波長は、635nm、650nm及び685nmのいずれかを中心とすることを特徴とする。

【0035】一方、本発明の光ピックアップは、前述の 光集積ユニットと、前記第1の波長のレーザ光のうちで 外部において反射されて戻った第1の戻り光を第1の回 折角度で回折させ、前記第2の波長のレーザ光のうちで 外部において反射されて戻った第2の戻り光を前記第1 の回折角度とは異なる第2の回折角度で回折させる光学 手段と、を備えたことを特徴とする。

【0036】または、本発明の光ピックアップは、前述の光集積ユニットと、前記光集積ユニットから放出される前記第1の波長のレーザ光または前記第2のレーザ光を集光して光ディスクに照射し、且つ前記光ディスクから反射された光を前記光集積ユニットに導く光学系と、を備えたことを特徴とする。

【0037】一方、本発明の光ディスク駆動装置は、前述のいずれかの光ピックアップを備えたことを特徴とする。

[0038]

【発明の実施の形態】本発明によれば、独特の構成を有する多波長型の半導体レーザアレイ及びその製造方法を提供することができる。また、このような半導体レーザアレイを用いることにより、従来よりも部品点数を削減

し、飛躍的な小型・軽量化が可能となる互換型の光集積 ユニット、光ピックアップ、及びDVDシステムを提供 することができる。

【0039】以下の説明では、まず、本発明の光ピックアップと光集積ユニットについて説明する。その次に、本発明の半導体レーザアレイとその製造方法について説明する。最後に本発明の光ディスク駆動装置について説明する。

【0040】以下、図面を参照しつつ本発明の実施の形態について説明する。図1は、本発明の光ピックアップの光学系を表す概念構成図である。本発明においては、DVD用の波長650nmまたは635nmのレーザ光とCD用の波長780nmのレーザ光とは同一の光集積ユニット11から出射される。これらのレーザ光は、コリメート・レンズ14、立ち上げミラー15、波長選択絞り16、対物レンズ17を介して、それぞれ、CDディスク18またはDVDディスク19に達する。

【0041】コリメート・レンズ14は、LD光を集光するための凸レンズで、そのNAは通常は $0.1\sim0.15$ の範囲とすれば良い。対物レンズ12は、ディスク上にLD光を集光するためのレンズである。

【0042】本発明の光ピックアップを図26に例示した従来の構成と比較すると、光集積ユニットが単一化されために、光学系が大幅に簡素化されていることが明らかである。

【0043】図2(a)(b)は、本発明の光集積ユニットの光学系の構成を表す概念図である。同図中で破線で示した部分が光集積ユニット11である。光集積ユニット11は、LD31と検出用PD35とを有する。さらに、同図(a)においては、光集積ユニットは光学手段33も有している。LD31は、650nmと780nmの2種類の波長のレーザ光を放出する。

【0044】光学手段33は、LDからの出射光は透過 し、ディスクからの戻り光を検出用PD35の目標位置 に回折させる。このような光学手段33としては、具体 的には、ホログラム素子を挙げることができる。ホログ ラム素子を用いた光学系としては、光の偏光状態に依存 しない「非偏光系」と、光の偏光状態に依存する「偏光 系」とがある。「非偏光系」の場合には、非偏光ホログ ラム素子を用いる。一方、「偏光系」の場合には、1 / 4 波長板と偏光ホログラム素子とを組み合わせる。光デ ィスクで反射した戻り光は、1/4波長板を往復するこ とにより、光ピームの偏光方向が90°回転するので、 偏光ホログラム素子により、効率良く回折させることが できる。つまり、往復効率を約40%近くまで髙めるこ とができ、検出感度を高めることができるという利点を 有する。なお、非偏光系の場合には、往復効率は、約1 0%弱である。

【0045】このような光学手段33すなわちホログラム素子系は、図2(a)に示したように光集積ユニット

11と一体に設けても良く、または、図2 (b) に示したように光集積ユニット11とは別に設けても良い。例えば、コリメート・レンズ14と立ち上げミラー15との間や、立ち上げミラー15と絞り16との間、あるいは絞り16と対物レンズ17との間などに設けても良い。以下の説明では、光集積ユニット11にホログラム素子を設けた場合を例に挙げて説明する。また、簡単のために、1/4波長板を省略した場合について説明する。

【0046】本発明において用いることができるホログ ラム素子は、LDからの出射光は透過し、ディスクから の戻り光のうちで特定の次数の回折光を検出用 P D 3 5 の目標位置に回折させ、コリメート・レンズ14の作用 により集光させる。このようなホログラム素子として は、偏光系の場合も非偏光系の場合も、その表面上の所 定の位置に入射した光がPD上の目標点に回折するよう に設計された伝達関数を有する微細回折格子を用いるこ とができる。そのピッチは、不等間隔であっても良い。 【0047】検出用PD35は、後に詳述するように複 数の領域に分割された受光領域を有し、フォーカス・エ ラー及びトラッキング・エラーも検出することができ る。図示した例においては、780nmレーザ光も65 0 nmレーザ光も、同一の検出用PD35で受光する。 【0048】LD31から放出されたレーザ光は、ホロ グラム素子33を透過して光集積素子11から出射す る。そして、コリメート・レンズ14により集光され、 さらに図示しない光学系を介して対物レンズ17に入射 する。同図において、Xはディスクのトラックピット 列、Yはディスクのラジアル方向を表す。ディスクで反 射されて逆の経路をたどった戻り光は、ホログラム素子 33で回折され、検出用PD35に入射する。

【0049】次に、本発明の光集積ユニット11の作用をさらに定量的に説明する。図3は、本発明の光集積ユニットにおける光の経路を説明するための概念図である。すなわち、同図(a)は一般的なホログラム素子による光の回折の様子を表す概念図であり、同図(b)は本発明の光集積ユニットにおける光の経路を表す概念図である。まず、ホログラム素子33は、一般的には、図3(a)に示したように、ガラスなどの透光性材料の表面に溝が周期的に配列した回折格子を有する。ここで、図示しない光ディスクからの戻り光が、図中上方から入射した場合について説明する。この場合、まずホログラム素子33を透過して直進する0次光成分が存在する。同時に、ホログラム素子により回折される回折光成分が存在する。この回折角度 θ は、回折格子のピッチをd、レーザ光の波長を入とした時に、 $sin\theta=n\lambda/d$

(1) と表される。ここで、n は整数であり、「回折の次数」と呼ばれる。図3においては、1 次の回折すなわち、n=1 の回折により生じた光を「1 次回折光」のように示した。

【0050】次に、図3(b)を参照しつつ本発明の光 集積ユニットにおける光の経路を説明する。同図におい ては、DVD用ディスクに対しては波長650nm、C D(及びCD-R)用ディスクに対しては波長780n mのレーザ光をそれぞれ用いる場合を例示した。それぞ れの波長の光は、LD31から放出される。ここで、L D31は、後に詳述するように、所定の間隔で平行に配 置された2つの共振器を有する半導体レーザ素子であ る。LD31から出射したレーザ光は、ホログラム素子 33を透過して図示しないディスクに達する。そして、 ディスクからの戻り光は、ホログラム素子33を通過し た後、その1次元が検出用PD35の所定位置にもどる ように配置されている。ここで、図1や図2に示したよ うなコリメート・レンズ14、立ち上げミラー15など の光学系は便宜上省略されている。実際には、ホログラ ム素子33は、LD31とコリメート・レンズ14との 間に配置しても良く、または、コリメート・レンズ14 と立ち上げミラー15との間や、立ち上げミラー15と 対物レンズ17との間に配置しても良い。

【0051】図3(b)に例示したように、ホログラム素子33により戻り光が回折される時、前述の(1)式から明らかなように、650nmより780nmと一ず光の方が回折角が大きい。従って、650nm光(31A)のピーム中心に対して780nm光(31B)ピーム中心と受光用PD35をそれぞれ反対側に配置し、且つこれらの位置関係と回折格子のピッチとを適宜設定選択すれば、両波長の光の合焦点近辺での結像位置を同一にできる。すなわち、検出用PD24上で同一の位置に集光することができる。

【0052】典型的な例では、LDビーム間距離を 200μ m、650nmビーム中心31Aと受光用PD35の中心との間の距離を 800μ m、LDとホログラム素子33との間隔を5mmとした場合には、ホログラム素子33の回折格子の最小ピッチを 3μ mとすれば良い。但し、本発明はこの特定の構成に限定されるものではなく、LDビーム間隔や受光用PD35との位置関係などは適宜選択することができる。

【0053】但し、回折格子のピッチや、LD31と受 光用PD35との位置関係などを現実的な値とするためには、LD31のピーム中心31Aと31Bとの間隔は、概ね数10~数100μmとすることが必要とされる。このためには、複数のLDチップを並べても良い。しかし、複数のLDチップをこのような微小な間隔で並べるのは容易ではない。また、それぞれのLDチップの光軸を合わせることも容易ではない。そこで、本発明の光集積ユニットにおいては、ひとつのLDチップに2種類あるいはそれ以上の共振器を集積化したレーザアレイを用いることが望ましい。後に詳述するように、本発明による半導体レーザアレイを用いれば、本発明の光集積ユニットは極めて容易に実現することができる。

【0054】次に、受光用PDについて説明する。図4 (a) は、受光用PD35の概略平面図である。このよ うに、受光用PDは複数の領域に分割されいてる。この ようなPDを採用することにより、フォーカスエラーの 検出には非点収差法などを用いることができ、トラッキ ングエラーの検出には位相差検出法などを用いることが できる。例えば、受光用PD35の4分割領域35a, 35 b, 35 c, 35 dにおいて受光電流 I a, I b, Ic, Idが生じるとする。この時、トラッキングエラ ーは(Ib+Ic)と(Ia+Id)の位相差により検 出できる。また、フォーカスエラーは(Ib+Ic) -(Ia+Id) の正負比較により検出できる。もちろん 3 ピーム法やプッシュプル法などによるトラッキングエ ラーの検出、フーコー法やスポットサイズディテクショ ン法によるフォーカスエラーの検出も可能である。な お、ディスクから読み出されるデータ信号としてのRF 信号は、通常は(Ia+Ib+Ic+Id)となる。

【0055】図4(b)は、ホログラム素子33の平面概念図である。このように、ホログラム素子33を複数の領域に分割しても良い。分割された各領域は、それぞれ少しずつ回折格子がずれているようにすることができる。このように複数の領域に分割すると、光軸がずれた場合やディスクが傾いた場合にも、いずれかの領域において戻り光を回折させ、検出用PDに集光することができる。つまり、光軸ずれなどに対する許容範囲を広げることができる。分割線は、図2に示したトラック10に対して直角方向とすることができる。こうすると軸ずれや、ディスクの傾きなどに対する許容度を改善できる。

【0056】図5は、本発明の光集積ユニットの要部構成を例示する概略斜視図である。ステムの基板38の上にヒートシンク41が固定され、このヒートシンク41の側面にLD31が半田などでマウントされている。また、ヒートシンク41の上には、検出用PD35がマウントされている。基板38は、例えばコパールにより構成され、ヒートシンク41は、例えば銅(Cu)やタンクステン銅(W-Cu)合金により構成される。また、LD31の背面側には、モニタ用PD37が設けられ、LD31の出力をモニタしてフィードバック制御できるようにされている。基板38には、気密封止・電極用リード39が必要に応じて設けられ、図示しないワイアにより、LD31やPD35、37と適宜接続されている。

【0057】LD31からは、図示したように、2種類の波長のレーザ光31A、31Bが出射する。LD31をヒートシンク41に固定するためには、これらの光ピームの角度ずれが $\pm0.5^\circ$ 以下となるように固定するのが望ましい。また、モニタ用PD37は、LD31から2種類の波長のレーザ光が同時に発光する必要がないので1個で共用できる。

【0058】LD31から出射した光ビームは、図示し

ない光学系を介してディスクにより反射され、その戻り 光が図示しないホログラム素子で回折され、例えばその 1次回折光が検出用PD35に戻る。DVDシステムに おいては、特にトラックピッチが小さいためにLD31 とPD35との相対位置(X、Y、 θ)の精度の要求が 厳しく、 $\pm 5 \mu m$ 、 ± 0 . 5° の範囲内にあることが望 ましい。図5に示した状態に組立た後に、図示しないワイアを配線してキャップで封止する。

【0059】図4などに示したホログラム素子33は、この後に検出用PD35に対して十分な位置精度でキャップの上に接着される。但し、ホログラム素子33は、前述したように、キャップから離れてコリメート・レンズ14の前または後あるいは対物レンズ17の前または後に設置しても良い。

【0060】ここで、図5に示した具体例においては、 LD35は共通n電極側をヒートシンク41に接着した 構成を表した。しかし、DVD用の650nm光の温度 特性にはマージンが少ないので、LD31の放熱特性を 少しでも改善した方が有利である。このために、LDの 発光部に近いp電極側とヒートシンク41とを接着して も良い。

【0061】図6は、このようなアップサイド・ダウンのマウント例を表す概略斜視図である。同図の例では、基板50を介して、LD31をアップサイド・ダウンの状態にマウントしている。ここで、基板50としては、絶縁性を有し熱伝導性が良好であることが望ましく、その材料としては、例えば窒化アルミニウム(AIN)を挙げることができる。この場合、LD31のp側電極とn側電極とは、それぞれリード39にワイアWにより接続される。

【0062】次に、本発明の第3の具体例について説明 する。図7は、本発明の第3の具体例を表す概念図であ る。すなわち、同図(a)は、LD31'から出射する 2 つのピーム31Αと31Βの間隔を50μmまで接近 させた例を表す。図4に示した構成と比べて2つのビー ムの発光点を非常に近く出来るのでいずれのピームも集 光が容易となり、光学的には好ましい。しかし、図示し ないディスクからの戻り光は、ホログラム素子33によ る回折角度の差によって拡がるために、検出用PD3 5'の上において単一の投影点とはならず、ひとつのP Dパターンで受光することは困難となる。そこで、図示 したように、複数のPDを設けることが望ましい。図7 (b) には、同一のシリコン基板35°の上に2つのP Dバターン35A、35Bを設けた例を表した。それぞ れのPDパターン35A、35Bは、4つの受光領域a ~dに分割されている。このように同一のシリコン基板 の上に複数のPDパターンを形成することは技術的にも 価格的にも容易であり、本具体例の実施の妨げとはなら

【0063】図7の例では、同一のシリコン基板35'

の上に650nm用PD35Aと780nm用PD35Bとを分けて設けたが、それぞれ別々のチップとしても勿論目標は果たせる。具体的な数値例を示すと、650nmピームの中心31Aと650nm用PD35Aの中心との間隔は約1.1mmであり、650nmピームの中心31Aと780nm用PD35Bの中心との間隔は約1.3mm、ホログラム素子33の回折格子の最小ピッチは約3 μ m、LD31とホログラム素子33との間隔は、約5mmである。

【0064】更にホログラム素子33とLD31との距離とホログラム素子のピッチを適正に選べば、ピーム中心31Aと31Bのいずれも650nmまたは780nmとすることができる。

【0065】次に、本発明の第4の具体例について説明 する。図8は、本発明の第4の具体例を表す概念図であ る。すなわち、同図(a)は、本発明の光集積ユニット の要部組立斜視図、同図(b)は、その基板部分の拡大 斜視図である。本具体例においては、基板60の主面に 凹部60Cが設けられ、その底面にLD31がマウント されている。そして、LD31から出射したビームは、 凹部60Cの側面に形成されたミラーMにより反射され て上方に出射する。これらのレーザ光は、ホログラム素 子33を透過して図示しない光学系を介してディスクに 入射する。ディスクからの戻り光は、ホログラム素子3 3により回折され、基板60の上に設けられた検出用P D35に入射する。基板60としては、例えばシリコン などを用いることができ、そのミラーMとしては、例え ばエッチングにより形成される(111)面を用いるこ とができる。

【0066】本具体例においても、LD31をはじめとする各要素を、前述した各具体例のような位置関係に配置することにより、図4または図7のような光学系を実現することができる。本具体例によれば、極めて薄型でコンパクトな光集積ユニットを実現することができる。

【0067】以上、具体例を参照しつつ本発明の光集積 ユニット及び光ピックアップ装置について説明した。前 述した各具体例においては、ひとつのLDチップが2つ の共振器を備えた場合の一例を示した。しかし、本発明 はこれらの具体例に限定されるものではない。この他に も、例えば、ひとつのLDチップに3つの共振器が集積 された素子を用いることもできる。そのような例として は、例えば、DVD-ROM用650nm光とDVD-ROM用635nm光とCD-ROM及びCD-R用7 80 nm光の3種類を集積したLDを挙げることができ る。また、DVD-ROM用650nm光とDVD-R AM用650nm光(舂き込み用髙出力光)とCD-R OM及びCD-R用780nm光の3種類を集積したL Dを挙げることができる。さらに、DVD-ROM用6 50nm光とCD-ROM及びCD-R用780nm光 (読み出し用光) とCD-R及びCD-RW用780n

m光(費き込み用高出力光)の3種類を集積したLDを挙げることができる。

【0068】また、685nm付近の波長帯のLDを使用すれば、光磁気または相変化型の書き換え可能な光ディスクシステムとも互換が可能となる。

【0069】次に、本発明のLDすなわち半導体レーザアレイについて詳しく説明する。図9は、本発明の半導体レーザアレイの概略断面図である。すなわち、同図に例示した半導体レーザアレイは、同一のGaAs基板210の上に650nmと780nmのそれぞれの光を発振する共振器を集積したものである。本発明の骨子は、異なるパラメータを持つダブルヘテロ構造を半導体基板上の相異なる領域に形成し、各領域のダブルヘテロ構造のクラッド層上部をほぼ共通に設計することにより、集積された各レーザ素子の横モード制御、電流狭窄および埋め込みの各工程を一括して実行できるようにしたところにある。

【0070】ここでは、最新のMOCVD技術と微細加工技術とを駆使することにより実現可能となった。特に、結晶成長時の温度制御性をあげ、ガス流の精密制御が重要である。

【0071】以下、このような集積型レーザアレイについて従来の技術と比較しつつ本発明の実施の形態について詳細に説明する。

【0072】図9は、本発明の具体例にかかる発振波長780nmと650nmの2ピーム半導体レーザアレイの構造を示す断面図である。同図において、240は発振波長780nmのレーザ素子部、241は発振波長650nmのレーザ素子部である。その構成について概説すれば、以下の如くである。

【0073】すなわち、いずれのレーザ素子部240、241においても、基板210の上に、n型(n-)GaAsパッファ層211、221、n型In_{0.5}(Ga_{0.3}Al_{0.7})_{0.5}P第1クラッド層212、222、In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P光ガイド層213、223、多重量子井戸(multipe quantum well: MQW)活性層214、224、In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P光ガイド層215、225、pーIn_{0.5}(Ga_{0.3}Al_{0.7})_{0.5}P第2クラッド層216、226、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層217、227、pーIn_{0.5}Ga_{0.5}Pエッチングストップ層218、228、pーIn_{0.5}Ga_{0.5}Pキャップ層219、229、nーGaAs電流阻止層231、pーGaAs埋め込み層232がこの順に積層されている。

【0074】ここで、波長780nmのレーザ素子部 240においては、活性層 214は、 $Ga_{0.9}Al_{0.1}As$ 井戸層と $Ga_{0.65}Al_{0.35}As$ 障壁層とのMQW構造を有する。一方、波長650nmのレーザ素子部 241においては、活性層 224は、 $In_{0.5}Ga_{0.5}As$ 井戸層と $In_{0.5}$ ($Ga_{0.5}Al_{0.5}$) 0.5 P障壁層とのMQW構

造を有する。図9の構造においては、凸ストライプ状に加工された第3クラッド層218、228とGaAs電流阻止層231の組み合わせで横方向に屈折率ステップが実現されている。GaAs電流阻止層231は電電光では電気をれぞれのリッジストライプ部分に狭窄する役割もといる。両素子部は分離溝236によって電気を立ている。両素子部は分離溝236によって電気立立になっている。マイナス側でされ、電極233は基板210の裏面に共通に形成することができるようになっている。マイナス側ででするとができるようになっている。マイナス側ででする。前述したように、レーザ素子部240はCDディスクに用い、レーザ素子部241はDVDディスクに用いて対象である。すなわち、前述した光集積ユニットのしたして用いて好適である。

【0075】また、図9のレーザアレイは、レーザ素子部240においてInGaAlP系のクラッド層に対して、GaAlAs系の活性層を採用している点で独特の構成を有する。このように独特の混晶系を組み合わせることにより、可視領域(60nm)と赤外領域(780nm)の2種類のレーザ波長を集積化することができる。

【0076】本発明によるレーザアレイは、特に、放熱特性に優れ、しかも安定して製造できるという利点を有する。本発明のレーザアレイが有するこれらの利点について、本発明の独特の構成に至る途上の関連技術による半導体レーザアレイと比較しつつ以下に説明する。

【0077】図28 (a) は、関連技術による第1の2 ビームレーザアレイの断面概略図である。同図におい て、751が波長780nmのレーザ発振部分、752 が波長650nmのレーザ発振部分である。すなわち、 このレーザアレイは、2種類の異なるレーザビームを発 生するダブルヘテロ構造が積層され、階段状に分離加工 された構成を有する。電極はそれぞれp接触層785, 783及びn接触層786,784を介して得られ、2 つのレーザはそれぞれ独立に駆動することができるよう になっている。基板に近接しているダブルヘテロ構造の みが、一方の電極を基板からとることができる。この2 ピームレーザアレイは、図28(b)に示した2つのダ ブルヘテロ構造を積層したエピタキシャル基板から製作 することができる。すなわち、公知のリソグラフィ技術 とエッチング技術とを用い、それぞれのダブルヘテロ構 造のp接触層776, 782及びn接触層778を表面 に露出した後、電極を形成する。この例は2ビームであ るがダブルヘテロ構造の積層数を増やし、リソグラフィ とエッチングを繰り返すことによって任意の数のマルチ ピームレーザの製作が論理的には可能である。

【0078】一方、図29は、別の関連技術の2ピームレーザアレイの断面概略図である。同図において、851が波長780nmのレーザ発振部分であり、852が波長650nmのレーザ発振部分である。図28に示し

た構成と同様に、2つの異なるレーザビームを発生する ダブルヘテロ構造を積層状に配したエピタキシャル成長 層を用いている。しかし、この例では、成長層はすべて p型に設定され、n型の選択拡散領域898を結晶成長 後に形成することにより、所望のpn接合及びオーミッ ク接触が形成される。

【0079】しかしながら、これらの関連技術のレーザアレイには以下に説明する問題があった。まず、集積された各レーザ素子部に光ディスク光源に適したビーム特性を与えることが困難である。半導体レーザを光ディスクシステムに応用する場合、出射ビームの水平横モードが単一でかつ非点隔差が略10μm以下であることが要求される。しかし、図28や図29の半導体レーザアレイの各レーザ素子は、電流注入を制御しただけのいわゆる「利得導波型」のレーザであり、このままでは上記の要求を満足しない。この要求を満たすためには、レーザストライプの横方向に屈折率のステップを形成したいわゆる屈折率ガイド構造とする方法がある。図28の半導体レーザアレイの各レーザ素子部に屈折率ステップを作り付ることは原理的に不可能ではない。

【0080】しかし、積層されたダブルヘテロ構造を階段状に加工しなければならないことから必然的に表面に大きな段差ができ、リソグラフィが非常に困難になる。さらにp接触層とn接触層をいずれも電気的に分離しながら表面からとらなければならず、また、各ダブルヘテロ構造は組成や寸法が異なるためそれぞれ別々に屈折率ステップを付ける加工を実施しなければならないことから、多数のリソグラフィのステップが必要になる。これらの理由から、各レーザ素子部を屈折率ガイド型で形成したレーザアレイを歩留まり良く製作することは困難であった。

【0081】また別の問題として、レーザアレイチップ のマウントが難しいことが挙げられる。レーザを長期に 渡って安定動作させるためには、レーザ動作に伴い発生 する熱を効率よく放熱する必要がある。このため通常エ ピタキシャル層側をヒートシンクに融着する、いわゆる 「アップサイド・ダウン」のマウント方法が用いられ る。ところが図28の半導体レーザアレイは、必然的に 表面側に大きな段差が形成されるため、アレイを形成す るすべてのレーザ素子部について放熱が良好になるよう に融着することが困難であった。さらに、上述したよう に、電極の大部分をエピタキシャル層側からとらなけれ ばならないという制約があり、ヒートシンクに側にも多 くの電極パターンを形成しておかねばならない。そのた めに、ヒートシンクの構造が複雑になり、それぞれのパ ターン毎に短絡のないように歩留まりょく融着すること は極めて困難であった。

【0082】以上説明したような問題は、ビーム数が多くなればさらに深刻となる。図29の半導体レーザアレイについても同様である。図28の半導体レーザアレイ

とは異なり、表面に大きな段差はなく、マウントは比較的簡単にできるが、アップサイドダウンにマウントした場合に、基板側に形成されるレーザ素子部ほどヒートシンクまでの距離が大きくなり放熱が悪くなってしまうという欠点がある。また異なる深さへのシリコン拡散技術が必要でプロセスが煩雑になり歩留まり低下の原因となるという問題もあった。

【0083】以上詳述したように、図28や図29に例示した関連技術の半導体レーザアレイは、マウントが容易でなく、製造工程が煩雑で歩留まりも低く、光ディスクシステムの光源としての実用化は極めて困難であった。

【0084】これに対して、本発明によれば、レーザアレイの表面は十分に平坦であり、アップサイド・ダウンで確実且つ容易にマウントすることができる。従って、光ディスク・システムにおいて特に要求される温度特性を満足することができる。さらに、集積化されるいずれのレーザ素子部もアップサイド・ダウンでマウントした時に、ヒートシンクに十分接近しており、放熱性にばらつきも生じない。

【0085】しかも、レーザアレイの表面の電極バターンも複雑でなく、電極間の短絡などの問題も解消する。 そして、本発明のレーザアレイは、以下に詳述するように、製造工程に独特の特徴を有するために、容易にして確実にマルチビームレーザを実現することができるという利点を有する。

【0086】次に、本発明のレーザアレイの製造方法について説明する。図10~図18は、本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。まず、図10に示すように、n型(n-) GaAs基板210の上に780nmレーザ仕様による一連のエピタキシャル層211から220をMOCVD (metal-organic chemical vapor deposition: 有機金属化学気相成長)法により成長する。活性層214としては、A1GaAs系の多重量子井戸構造を用いることができる。 p型(p-)クラッド層のキャリヤ濃度は3×10¹⁷(cm-3)程度に抑制しp型ドーバントが周りの層に意図しない拡散をすることを防ぐのが望ましい。

【0087】次に、図11に示したように、成長層の一部を除去する。この方法としては、適宜フォトリソグラフィ技術とエッチング技術とを組み合わせれば良い。

【0088】次に、図12に示したように、再び結晶成長を行う。具体的には、650nmレーザ仕様による一連のエピタキシャル層221から229をMOCVD法により成長する。活性層224はInGaP/InGaA1Pの多重量子井戸構造を用いることができる。適切な前処理と結晶成長条件とを選択することによって、平坦な基板面への成長と同様の品質のエピタキシャル層を得ることができる。本発明者の実験の結果、この結晶成長により先に形成した780nmレーザ仕様のエピタキ

シャル層に悪影響を及ぼすことは無いことが分かった。 【0089】次に、図13に示したように、650nm レーザ仕様の成長層の一部を除去する。この方法として は、フォトリソグラフィ技術とエッチング技術とを組み 合わせれば良い。この際、n-GaAs層220により 780nm仕様のエピタキシャル層211~219は保 護される。その後、n-GaAs層220を選択的に除 去すれば良い。以上の工程により、780nmのレーザ 領域と650nmのレーザ領域とを同一基板上の別々の 領域に形成することができる。

【0090】次に図14に示したように、リッジストライプを形成する。具体的には、それぞれのレーザ素子部に、 $Si0_2$ ストライプマスク230を形成し、ウェットエッチング法を用いてキャップ層219,229及び第3クラッド層218,228を同時にエッチングする。このエッチングは、エッチングストップ層217、227まで達したところで停止させることができる。

【0091】ここで、予めキャップ層219、229及び第3クラッド層218、228はそれぞれのレーザ素子部においてほぼ同じ厚みに設計し、各素子部でほぼ同じ時間でエッチングがストップ層に達するようにすることが望ましい。その理由は、エッチングストップ層219、229も徐々にエッチングされるので、各素子部のエッチング時間が大幅に異なると、どちらかの素子部においてエッチングストップ層を越えてエッチングされてしまう問題が生じるからである。後述するように、各素子部のレーザ特性は第3クラッド層にはあまり依存しないので、予め同程度になるように設計することは容易である。

【0092】次に、図15に示したように、GaAs 電流阻止層231を成長する。具体的には、MOCVD法により選択成長を実施する。このとき $Si0_2$ マスク230の上に結晶が成長しないように成長条件を調節することができる。

【0093】次に、図16に示したように、埋め込み層 232を成長する。具体的には、 $Si0_2$ ストライプマスク230を除去した後に、MOCVD法により埋め込み層を成長する。

【0094】次に、図17に示したように、分離構236を形成する。具体的には、RIE (reactive ion etching) 法を用いて選択的にエッチングする。反応ガスとしては、例えば、 $C1_1$ と $BC1_3$ の混合ガスを用いることができる。

【0095】次に、図18に示したように、電極を形成する。具体的には、例えばリフトオフ法を用いて、それぞれのレーザ素子部に独立の電極233,234形成した後、基板210の裏面を研磨して厚さを100μm程度にし、共通電極235を形成する。その後、窒素雰囲気において約430℃にて合金化処理を行う。以上説明した工程においては、分離構236の形成とp-電極2

33,234の形成の順序は入れ替えても差し支えない。

【0096】このようにして作成されたウェーハを、ストライプに対して垂直な方向に劈開し、幅400 μ mのパーに分割する。パーの両劈開面は、レーザの反射鏡となる。両劈開面には端面保護のためスパッタ法を用いて $A1_2O_3$ 膜を形成した。その厚みは、650nmと780nmの平均の光学波長の半分になるように設定すれば良い。このときの端面反射率は、波長650nmのレーザ光に対しては29. 4%であり、780nmのレーザ光に対して28. 8%と計算される。それぞれの光学波長の半分に設計した場合の端面反射率は $30\sim32\%$ 程度であり、これと比較しても実用上問題ないレベルにある。したがって $A1_2O_3$ 端面保護膜を2つのレーザ素子に対して共通に用いることができる。

【0097】また、より高い光出力を得るためには、通常、出射端面に対向する端面に高反射膜を形成するが、これには上記平均波長の1/4あるいは $0\sim1/2$ の光学長に設定した誘電体あるいは半導体膜を多層積層してブラッグ反射鏡を形成すればよい。誘電体膜としては、例えば、 $A1_2O_3$, SiO_1 , TiO_2 , SiN_1 , などが挙げられる。半導体膜としては非晶質シリコンが挙げられる。一例として、上記の平均波長を入としたとき、 $A1_2O_3$ ($\lambda/4$ 光学長) $/SiO_1$ ($\lambda/4$ 光学長) $/SiO_2$ ($\lambda/4$ 光学長) $/SiO_3$ ($\lambda/4$ 光学長) $/SiO_4$ ($\lambda/4$ 光学長) $/SiO_5$ ($\lambda/4$ 2光学長) $/SiO_5$ ($\lambda/4$ 2 光学長) $/SiO_5$ ($\lambda/4$ 2 光学長)

【0098】バーは、チップに分割し、ヒートシンクにマウントする。図19は、本発明の半導体レーザアレイをマウントした状態を表す概略図である。同図に示した例は、図6に示したマウント例に対応し、レーザ素子は、絶縁性A1Nサブマウント50を介してCuヒートシンク41にマウントされている。サブマウント50には金電極パッド352、353がパターニングしてあり、それぞれのレーザ素子部のp電極233、234に対して金錫半田351により接続される。このようなパターン電極上へのマウントは、従来のパターン認識技術を用いて行うことができる。また、サブマウントの裏面には金電極355が形成され、金錫半田356により、ヒートシンク41の表面に形成された金電極357と接続されている。

【0099】本発明の製造方法においては、まず、波長780nmのレーザ素子部240の積層構造を成長してから、次に、波長650nmのレーザ素子部241の積層構造を成長する点が独特である。この順番に成長することにより、先に成長した半導体層を劣化させることなく、2種類のレーザ構造を集積化することができる。その理由は、波長780nmのレーザ素子部の方が、昇温

に起因する劣化が少ないからである。

【0100】一般に、レーザ素子においては、特にp型クラッド層からドーパントが活性層に拡散すると発光特性が低下するという問題が生ずる。これを防ぐためには、pクラッド層の不純物濃度をできるだけ低く抑える必要がある。780nmレーザと650nmレーザとを比較すると、780nmレーザの方が活性層のパンドギャップが狭いために、クラッド層との間のパンドギャップ差を大きくすることができる。その結果として、p型クラッド層のキャリア濃度を下げることができる。一方、650nmレーザは、活性層とクラッド層とのバンドギャップ差が小さく、p型クラッド層に対して、比較的高い濃度のp型不純物をドーピングする必要がある。【0101】以上説明した理由から、波長780nmの

【0101】以上説明した理由から、波長780nmのレーザ素子部を先に成長することにより、p型不純物の拡散による素子の劣化を抑制しつつ、複数のレーザ構造を集積することができるようになる。

【0102】さらに、本発明の製造方法においては、先に成長する波長780nmのレーザ素子部240のpークラッド層に対するドーピング濃度を3×10¹⁷ (cm⁻³)程度に抑制する点も独特である。前述したように、780nmレーザにおいては、pクラッド層の濃度をこの程度の濃度に抑えることができる。その結果として、p型ドーパントが周りの層に意図しない拡散をすることを防ぎ、レーザ素子部241の成長に際しても、レーザ素子部240が加熱されてpドーパントが活性層224に拡散して発光特性を劣化させるという問題を解消することができる。

【0103】また、本発明によれば、レーザ素子部240,241のエピタキシャル層の厚みはほとんど同じなため段差を生じず、サブマウント50への接触も良好である。

【0104】さらに、本発明によれば、レーザ素子部 240、241はともにキャップ層とp側電極を介するのみでサブマウント 50にマウントされているので放熱性が良好である。 ΔmV 計を用いて両素部の熱抵抗を測定したところ、A1N サブマウント 50 まで約 30 C /W であり、単独のレーザ素子と同等の熱抵抗であることが分かった。

【0105】図20(a)(b)は、本発明の半導体レーザアレイの発振波長780nmのレーザ素子部の電流ー光出力特性と発振スペクトルを示すグラフ図である。図21(a)(b)は、本発明の半導体レーザアレイの発振波長650nmのレーザ素子部の電流ー光出力特性と発振スペクトルを示すグラフ図である。これらの図から分かるように、780nmレーザ素子部と、650nmレーザ素子部の共に単独のレーザ素子と同等の電流ー光出力特性が得られている。また、横モードは両者共に単峰である。ナイフエッジ法により非点隔差を測定したところ両者共に4~5 μ mと良好であった。また、発振

スペクトルは5mWにおいて両者共にシングルモードであった。これらの特性はそれぞれのダブルヘテロ構造を変えることによって調整することができる。その一例を次の具体例に示す。

【0106】図22及び図23は、本発明の別の具体例 にかかる発振波長780 nmと650 nmの2ピームレ ーザアレイの電流ー光出力特性と発振スペクトルを示す グラフ図である。レーザアレイの構造は、基本的には図 9に示したものと同じであるが780nmレーザ素子の 第2クラッド層216の厚みを若干厚く設定する。こう することによってレーザの発振スペクトルをマルチモー ド化させ、光ディスク応用に於いてレーザのノイズを低 減することができる。シングルモードのレーザは光ディ スク応用においては通常ノイズ低減のため高周波重畳を かけて用いる必要があるが、本具体例によれば、その必 要がなくなる。レーザしきい電流値は若干上昇するが大 きな問題にはならない。一方、図9において第3クラッ ド層の厚み218,228は共に同じ厚さに設計されて おり前記凸ストライプ形成のためのエッチング加工は両 者を同時に行うことができる。

【0107】図24は、本発明のさらに別の具体例の780nmTEモード、650nmTEモード、650nmTMモードの3ピームレーザアレイの構造を示す断面図である。780nmTEモードレーザ素子部261。650nmTEモードレーザ素子262は図9と同様のダブルヘテロ構造を有する。650nmTMモードレーザ素子263は、活性層のInGaP量子井戸層に引っ張り応力を導入することによって実現することができる。

【0108】次に、本発明の光ディスク駆動装置について説明する。図25は、本発明の光ディスク駆動装置のブロック図である。本発明によれば、図1~図8に関して前述したような光集積ユニットまたは光ピックアップを用いることにより、例えば、DVDディスクとCDディスクとについて互換性を有し、且つ小型軽量の光ディスク駆動装置を提供することができる。

【0109】図25に例示した装置は、DVD-ROMディスクとCDディスクとを駆動することができる光ディスク駆動装置であり、DVD用の信号処理系と、CD用の信号処理系とをそれぞれ有する。

【0110】DVDまたはCDの光ディスクは、ドライバにより所定の回転数で回転される。光ピックアップは、サーボによって所定の位置に移動する。この光ピックアップとして、図1~図8に関して前述したいずれかを用いる。また、その光ピックアップの光源としては、図9~図24に関して前述したいずれかの半導体レーザアレイを用いることが望ましい。

【0111】ディスクに記録されている信号は、この光 ピックアップにより検出される。この際にディスクがD VDディスクであるかCDディスクであるかを適宜判定 して、所定の光源からの光を用いる。

【0112】検出された信号は、DVDディスクからのものであるかCDディスクからのものであるかによって、それぞれ、DVD用の信号処理系またはCD用の信号処理系に選択して供給される。

【0113】まず、DVD用の信号処理系について説明すると、光ピックアップにより検出された信号はデコード規格に従って復調され、エラー訂正が加えられる。そして、映像/音声を分離し、MPEG2の映像の復調アルゴリズム及びオーディオ(AC-3又はMPEGなど)の復調までを処理するMPEG2ビデオオーディオ処理部を通して画像は、NTSC/PALにエンコードされ出力される。オーディオは、D/Aコンパータを通して出力される。映像は可変レートで出力されるため、パッファメモリがそれを吸収する役目をする。全体のシステムは、システムコントロールを担当するCPUにより制御され、サーポも含めてトータルなシステムとして成立する。

【0114】一方、CD用の信号処理系について説明すると、デコード・復調され、ショック・プルーフ・メモリを経てD/Aコンバータによりアナログ変換され、オーディオ信号として出力される。同時に検出信号のうちのサブコードは、CD-G (CD-Graphic) プロセッサによりビデオ信号として出力される。

【0115】DVDとCDでは、サーボ系は共有され、システム全体は、CPUにより管理制御される。信号処理系の一部は、適宜共有することも可能である。

【0116】本発明によれば、例えば、DVDディスクとCDディスクとについて互換性を有し、且つ小型軽量で機械的衝撃や振動あるいは周囲温度の変化などに対してもも信頼性の高い光ディスク駆動装置を提供することができる。

[0117]

【発明の効果】本発明は、以上説明した態様で実施され以下に説明する効果を奏する。まず、本発明によれば、発振波長が異なる屈折率ガイド型の半導体レーザを集積した半導体レーザアレイを提供することができる。特に、それぞれの素子についてダブル横モード制御、電流狭窄およ埋め込み加工を一括して行うので、リソグラフィ等の工程数が少なくできる。

【0118】また、本発明の半導体レーザアレイは、素子表面に段差がほとんど生じないのでリソグラフィプロセスが容易である。また、素子表面が平坦なのでヒートシンクへの融着が容易で熱放散も良好にすることができる。

【0119】さらに、本発明の半導体レーザアレイは、 すべてのレーザ素子部について一方の電極を基板側から とれるので、電気配線が容易である。

【0120】このように、本発明によれば発振波長や偏 光モードが異なる複数の屈折率ガイド構造レーザを、同 ーチップ上に簡単なプロセスで歩留まり良く集積することが可能となる。これにより、光ディスクシステムのピックアップの構造の簡略化が図れる。

【0121】また、本発明によれば、それぞれのレーザ素子部の第2クラッド層の層厚を同一とし、エッチングストップ層を設けることにより、凸ストライプ導波路形成のためのエッチング加工を制御良く確実に行うことができる。

【0122】さらに、本発明によれば、InGaAlP系クラッド層に、AlGaAs系活性層を組み合わせることにより、可視領域と赤外領域との混在型のレーザアレイを実現することができる。

【0123】また、本発明によれば、半導体レーザアレイの各レーザ素子部の発振波長を適宜選択することによりCDとDVDの両方の規格に対して互換性を有するの光ディスク・システムのための半導体レーザアレイを実現することができる。

【0124】本発明の光ピックアップを図26に例示した従来の構成と比較すると、光集積ユニットが単一化されために、光学系が大幅に簡素化されていることが明らかである。

【0125】一方、本発明によれば、複数の波長の光を放出しこれらの戻り光を検出することができる光集積ユニットを提供することができる。このような光集積ユニットを用いることにより、部品点数を大幅に削減し、光学系が大幅に簡素化された光ピックアップを実現することができる。

【0126】さらに具体的には、本発明によれば、光ピックアップの波長毎の光軸が共通となり光軸調節が一回で済む。また、ダイクロイック・プリズムのような2波長合成手段が不要となる。さらにレーザ素子、検出用受光素子、ホログラム素子、ステムなどの部品がそれぞれ1個で済む。

【0127】すなわち、本発明によれば、従来よりも飛躍的に小型・軽量で機械的振動や衝撃に対する信頼性も高い光ディスク駆動装置を実現でき産業上のメリットは多大である。

【図面の簡単な説明】

【図1】本発明の光ピックアップの光学系を表す概念構 成図である。

【図2】本発明の光集積ユニットの光学系の構成を表す 概念斜視図である。

【図3】本発明の光集積ユニットにおける光の経路を説明するための概念図である。すなわち、同図(a)は一般的なホログラム素子による光の回折の様子を表す概念図であり、同図(b)は本発明の光集積ユニットにおける光の経路を表す概念図である。

【図4】 (a) は、受光用PD35の概略平面図であり、(b) は、ホログラム素子33の概略平面図である。

【図5】本発明の光集積ユニットの要部構成を例示する 概略斜視図である。

【図 6】 アップサイド・ダウンのマウント例を表す概略 斜視図である。

【図7】本発明の第3の具体例を表す概念図である。

【図8】本発明の第4の具体例を表す概念図である。すなわち、同図(a)は、本発明の光集積ユニットの要部組立斜視図、同図(b)は、その基板部分の拡大斜視図である。

【図9】本発明の半導体レーザアレイの概略断面図である。

【図10】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図11】本発明の半導体レーザアレイの製造方法を示 す概略工程断面図である。

【図12】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図13】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図14】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図15】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図16】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図17】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図18】本発明の半導体レーザアレイの製造方法を示す概略工程断面図である。

【図19】本発明の半導体レーザアレイをマウントした 状態を表す概略図である。

【図20】(a)(b)は、それぞれ本発明の半導体レーザアレイの発振波長780nmのレーザ素子部の電流ー光出力特性と発振スペクトルを示すグラフ図である。

【図21】(a)(b)は、それぞれ本発明の半導体レーザアレイの発振波長650nmのレーザ素子部の電流ー光出力特性と発振スペクトルを示すグラフ図である。

【図22】本発明の別の具体例にかかる半導体レーザアレイの発振波長780nmの電流-光出力特性と発振スペクトルを示すグラフ図である。

【図23】本発明の別の具体例にかかる半導体レーザアレイの発振波長650nmの電流-光出力特性と発振スペクトルを示すグラフ図である。

【図24】本発明のさらに別の具体例の780nmTE モード、650nmTEモード、650nmTMモード の3ビームレーザアレイの構造を示す断面図である。

【図25】本発明のDVDシステムのブロック図であ る。

【図26】従来のDVDシステムの光ピックアップとして提案されているものの典型的な構成を表す説明図であ

る。

【図27】従来の光集積ユニットの典型的な構成を表す 斜視概念図である。

【図28】関連技術による第1の2ビームレーザアレイの断面概略図である。

【図29】別の関連技術の2ビームレーザアレイの断面 概略図である。

【符号の説明】

- 11、101、102 光集積ユニット
- 14、104 コリメート・レンズ
- 15、105 立ち上げミラー
- 16、106 波長選択絞り
- 17、107 対物レンズ
- 18、108 CDディスク
- 19、109 DVDディスク
- 31,135 LD
- 33 ホログラム素子
- 35、136 検出用PD
- 41、141 ヒートシンク
- 50 サブマウント
- 60 シリコン基板11 光集積ユニット
- 210 n-GaAs基板
- 211 n-GaAsパッファ層、
- 2 1 2 $n-I n_{0.5}$ ($G a_{0.3}A l_{0.7}$) $_{0.5}$ P第一クラッド層
- 2 1 3 I $n_{0.5}$ (G $a_{0.5}$ A $l_{0.5}$) $_{0.5}$ 光ガイド層
- 2 1 4 波長 7 8 0 nmG a_{0.9}A l_{0.1}A s / G a_{0.65}
- A l_{0.35}A s 多重量子井戸活性層
- 215 In_{0.5} (Ga_{0.5}Al_{0.5})_{0.5}光ガイド層
- 216 p-In_{0.5} (Ga_{0.3}Al_{0.7})_{0.5}P第二クラッド層
- 217 p-In_{0.5}Ga_{0.5}Pエッチングストップ層
- 218 p-In_{0.5} (Ga_{0.3}Al_{0.7})_{0.5}P第三クラッド層、
- 219 p-In_{0.5}Ga_{0.5}Pキャップ層
- 220 n-GaAs層
- 221 n-GaAsパッファ層
- 222 n-In_{0.5} (Ga_{0.3}Al_{0.7})_{0.5}P第一クラッド層
- 223 In_{0.5} (Ga_{0.5}Al_{0.5})_{0.5}光ガイド層
- 224 波長650nmのIn_{0.5}Ga_{0.5}P/In_{0.5}
- (Ga_{0.5}Al_{0.5})_{0.5}P多重量子井戸活性層
- 225 In_{0.5} (Ga_{0.5}Al_{0.5})_{0.5}光ガイド層
- 226 p-In_{0.5} (Ga_{0.3}Al_{0.7})_{0.5}P第二クラッド層
- 227 p-In_{0.5}Ga_{0.5}Pエッチングストップ層
- 2 2 8 p-In_{0.5} (Ga_{0.3}Al_{0.7})_{0.5}P第三クラ
- ッド層
- 229 p-In_{0.5}Ga_{0.5}Pキャップ層
- 230 Si02マスク

- 231 n-GaAs電流ブロック層
- 232 p-GaAs埋め込み層
- 233 780 nmレーザ素子 p 電極
- 234 650nmレーザ素子p電極
- 235 n側共通電極
- 236 素子分離溝
- 240 発振波長780nmのレーザ素子部
- 241 発振波長650nmのレーザ素子部
- 261 波長780nmTEモード発振のレーザ素子
- 262 波長650nmTEモード発振のレーザ素子
- 263 波長650nmTMモード発振のレーザ素子
- 264 波長780nmTEモード発振のレーザ素子p電極
- 265 波長650nmTEモード発振のレーザ素子p 電極
- 266 波長650 nmTMモード発振のレーザ素子p 電極
- 267 波長780nmGa_{0.9}Al_{0.1}As/Ga_{0.65}
- A 1 0.35 A S 多重量子井戸活性層
- 268 波長650nmのIn_{0.5}Ga_{0.5}P/In_{0.5}
- (Ga_{0.5}Al_{0.5})_{0.5}P多重量子井戸活性層
- 269 井戸層に引っ張り応力を導入した波長650n
- $m\mathcal{O} I n_{0.5} G a_{0.5} P / I n_{0.5} (G a_{0.5} A I_{0.5})_{0.5}$

P多重量子井戸活性層

- 351 金錫半田
- 352 780 nmLD用金電極パッド
- 353 650 nmLD用金電極パッド
- 354 絶縁性A1Nサブマウント
- 355 金
- 356 金錫半田
- 357 金
- 358 Cuヒートシンク
- 771 n-GaAs基板
- 772 n-AlGaAsクラッド層
- 773 GaAs/AlGaAs量子井戸層
- 774 p-AlGaAsクラッド層
- 775 p-AlGaAs層
- 776 p-GaAs
- 777 n-InAlPエッチングストップ層
- 778 n-GaAs接触層
- 779 n-InGaAlPクラッド層
- 780 InGaP/InGaAlP量子井戸層
- 781 p-InGaAlPクラッド層
- 782 p-InGaPコンタクト層
- 783 p-GaAs接触層
- 890 p-GaAs基板
- 891 p-GaAlAsクラッド層
- 892 GaAs/AlGaAs多重量子井戸活性層
- 893 p-GaAlAsクラッド層
- 894 p-InGaAlPクラッド層

895 InGaP/InGaAIP多重量子井戸活性896 p-InGaAIPクラッド層897 p-GaAsコンタクト層

899 分離溝900 780nmレーザ素子n電極901 650nmレーザ素子n電極902 650nmレーザ素子p電極

[図28]

【図29】

フロントページの続き

(72) 発明者 塩 澤 秀 夫 神奈川県川崎市幸区小向東芝町 1 株式会 社東芝多摩川工場内

F 夕一ム(参考) 5D119 AA01 AA04 AA36 AA38 BA01 BB02 BB03 CA10 CA11 DA01 DA05 FA05 FA09 FA17 FA25 NA01 NA04 NA08