Closest pair problem

Shput: A list of $n^{3/2}$ points $S \subseteq \mathbb{R}^{2}$. Output: Points (a,b), $(c,d) \in S$ that are the closest.

- Trivial or brute-force approach?

Go over all the possible pairs. #steps $\gtrsim \binom{h}{2} = O(n^2)$, $SZ(n^2)$, $\Theta(n^2)$. (brush-up your asymptotics) [Big-Oh, Big-Omega, Theta]

- If n=1billion = 10° then n vs. n² time is a Huge difference (1018 nanopecs > 300 yrs is impossible!)
- Could you find a closest pair faster?
- Hint: Recurse.

 But, how do we divide the points S?

-	- Sort by the x-coordinate & collect
	the lower 1/2 points in the set L.
	The remaining 1/2 points form R.
	[Sorting takes O(nlgn) operations. Who
	Let us revise Merge Sort:
	Given set X = {x,, x, } we recursively sor
	the first 1/2 numbers to get L & the la
	n/2 to get R.
	Now we want to merge L= } ly < < ln/2
	& R= { my < < rnp 3:
	i) Find the earliest position of ly in R
	d'insert it.
	ii) From that position onwards, find the
	position of le l'insert it in R.
	iii) Continue till you reach lop or rong
	D The comparisons done in the Merge Step
	are only O(n).
	D'The recurrence for time is:
	T(n) = 2.T(n/2) + O(n)
	\Rightarrow T(n) = O(nlgn). \Box

1t

- Coming back to Closest Pair: We have left points L & right paints R. cp-dist(L). Say, recursively we find closest pair & CP-dist(R) distance S_ in L & S_ in R. · Compute S:= min (SL, SR). We can find the S-strip
on the left - S_ &

the one on the right - S_R.

How to combine?

Sort S_R by y-coordinate. distinct · For each $p \in S_L$ $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{R}$ · let y_p be the y_-coord . · Binary search for points q = Sp with y-coordinates (y,-8, y,+8). Likey all can be found in O(6n) time.) · Compute the distance (p,q) & update 8 if required. } · Output S. Divide step: 2T(1/2)+0(n/9n)
Divide step: 2T(1/2)+0(n/9n)
Divide step: 0(n/9n)+0(n)

$\Rightarrow T(n) = 2T(h/2) + O(n6n).$
⇒ $T(n) = 2T(h/2) + O(nf_0n)$. ⇒ $T(n) = O(nf_0^2n) = \tilde{o}(n)$. $\rightarrow sof_0^4n$
J T Oh
Theorem: There is an O(n/2n) time aborithm
Theorem: There is an O(nlg2n) time algorithm to compute Closest Pair of n points in R?
- Note: The time would also depend on the
- Note: The time would also depend on the number of lits required to store a point
- O(n/g²n) is an improvement over O(n²). Can we do better? Is this a
Can we do better? Is this a
Lower bound?
- Suppose we want to reduce it to Only
Then, there are two places where
ent 5 , we need to optimize:
sort 5 rue need to optimize: sny once: 1) Don't sort 5 in Divide step.
2) " " Sp in Combine step,
- What are the alternatives?

Alternative Divide Step: (middle after)
We to I to We find the x-median of S in O(n) time. - How can this be done without sorting? Median of Medians Idea: - Let Select (S,i) be the function that returns the element of rank i in S. Generalization We will recursively define it! helps! Select(S,i) { i) Divide the n elements 5 into 1/5 groups each of size 5. Find the median in each group. ii) iii) Use Select () recursively to find the median of these n/5 medians. Compute the rank k of x in S. iv) Divide Saround z: Sin are V) elements (x & 5m are those >x. If i=k then return x. Solve of ick " Select (Sxx, i).

& Combine of i>k " Select (Sxx, i-k).

- Proof of correctness requires you:

 -to check the base case,

 to check the recursive calls, &

 to check the returned value.
- Jime complexity. T(h) has a recurrence,

 First recursive call is on $\frac{1}{5}$ size.

 Second $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$

 $D # S_{7x} \ge 3n/10 - 1$ $D # S_{7x} + # S_{7x} = n - 1$ $- J_{hw}, # S_{7x}, # S_{7x} \le 7n/0.$

 $= > T(n) \leq T(\frac{n}{5}) + T(\frac{n}{10}) + O(n)$

T(n) = T(h/5) + T(7h/10) + O(n)Note: 15 + 7/10 = 0.9 < 1

 \Rightarrow T(n) = O(n).

Lemma: Median is computable in O(151) time.

Alternative Combine Step:
We demand that CP-dist (L) &
CP-dist(R) give us L & R each sorted
by y-coordinate.
· Note that the combine step of CP-dist(s)
· Note that the Combine step of CP-dist(s) could merge the two & y-sort S as well
=> Sp is abready sorted by y-coordinate.
D The new implementation of CP. dist(s) has
I he new implementation of (P. dist(s) has the recurrence: $T(n) = 2T(\frac{h}{2}) + O(n)$.
 os-Hoey 1975)
 n: Closest pair in the plane is computable
in O(ngn) time.
an: What about 1-D?
se! Write the full pseudocode for this
algorithm. This will force you to deal
with boundary cases & conditions.