Домашняя работа по курсу «Теория риска и стохастическая финансовая математика»

Артемий Сазонов

17 декабря 2022 г.

Д38

Виды и механизмы перестрахования. Пропорциональное перестрахование, квотный договор. Уравновешенность договора, экономические и финансовые условия

Задача 1.

Нарисовать кривую Лоренца для распределения Парето с $F(x)=1-(x/\sigma)^{-\alpha}, \, x \geq \sigma > 0.$

Решение

Найдем квантильную функцию распределения F:

$$y = 1 - (x/\sigma)^{-\alpha} \implies x = \sigma(1 - y)^{-\frac{1}{\alpha}},$$
 (8.1)

$$\int_{0}^{u} \sigma(1-t)^{-\frac{1}{\alpha}} dt = \int_{1-u}^{1} \sigma s^{-\frac{1}{\alpha}} ds = \sigma \frac{\alpha - 1}{\alpha} \left(1 - (1-u)^{\frac{\alpha - 1}{\alpha}} \right). \tag{8.2}$$

Следовательно

$$L_X(u) = 1 - (1 - u)^{\frac{\alpha - 1}{\alpha}}.$$
 (8.3)

См Рис 8.1.

Задача 2.

Проверить, что если $X \prec_{Lor} Y$, то $CV(X) \leq CV(Y)$. Верно ли обратное утверждение?

Рис. 8.1: Кривая Лоренца для распределения Парето с разными параметрами

Решение

$$X \prec_{Lor} Y \stackrel{\text{def}}{\Longleftrightarrow} \frac{X}{\mathbb{E}[X]} <_{cx} \frac{Y}{\mathbb{E}[Y]}$$

Имеем:

$$\mathbb{E}[X^2]/(\mathbb{E}[X])^2 \le \mathbb{E}[Y^2]/(\mathbb{E}[Y])^2, \tag{8.4}$$

$$(\mathbb{E}[X^2] - (\mathbb{E}[X])^2) / (\mathbb{E}[X])^2 \le (\mathbb{E}[Y^2] - (\mathbb{E}[Y])^2) / (\mathbb{E}[Y])^2. \tag{8.5}$$

Взяв квадратный корень от обех частей получаем требуемое утверждение. Чтобы показать, что обратное неверно, возьмем случайные величины X,Y со средним, равным 1, X < C = const п.н., Y - неограничена, и $\operatorname{var} X > \operatorname{var} Y$. Подойдут например $X: \mathbb{P}(X=0) = 2/3, \mathbb{P}(X=3) = 1/3$ и $Y \sim Exp(1)$. Тогда $\sqrt{2} = CV(X) > CV(Y) = 1$. Но $\mathbb{E}(X-3)^+ = 0 < \mathbb{E}(Y-3)^+ = e^{-3}$. Значит, либо $X <_{cx} Y$ либо X и Y - несравнимы.

Задача 3.

Пусть X и Z - независимые случайные величины, $X \sim \Gamma(1,\lambda^{-1})$, $Z \sim \Gamma(\alpha,1)$. Проверить, что Y = X/Z имеет распределение Парето с функцией распределения $F(x) = 1 - (x/\sigma)^{-\alpha}, \, x \geq \sigma > 0$.

Решение

$$\iint_{x/y \le t} f_{X,Y}(x,y) dx dy = \iint_{x/y \le t} f_X(x) f_Y(y) dx dy =$$

$$= [x/y = u, x = v] = \int_{u \le t} \int_{v \in \mathbb{R}} f_X(v) f_Y(v/u) \frac{|v|}{u^2} dv du =$$

$$= \int_{0 \le u \le t} \int_0^{+\infty} \frac{1}{\lambda} e^{v/\lambda} \frac{1}{\Gamma(\alpha)} \left(\frac{v}{u}\right)^{\alpha - 1} e^{-v/u} \frac{v}{u^2} dv du =$$

$$= \int_{0 \le u \le t} \frac{1}{\Gamma(\alpha) u^{\alpha + 1} \lambda} \int_0^{+\infty} v^{\alpha} \exp\left\{-\left(\frac{1}{\lambda} + \frac{1}{u}\right) v\right\} dv du =$$

$$= \int_{0 \le u \le t} \frac{\left(\frac{1}{\lambda} + \frac{1}{u}\right)^{-(\alpha + 1)}}{\Gamma(\alpha) u^{\alpha + 1} \lambda} \int_0^{+\infty} s^{\alpha} \exp\left(-s\right) ds du =$$

$$= \frac{\Gamma(\alpha + 1)}{\lambda \Gamma(\alpha)} \int_{0 \le u \le t} \left(\frac{u}{\lambda} + 1\right)^{-\alpha - 1} du = \alpha \int_1^{1 + t/\lambda} s^{-\alpha - 1} ds =$$

$$= 1 - (1 + t/\lambda)^{-\alpha}.$$

Задача 4.

Показать, что $X<_{st}Y\not\Rightarrow X<_kY$. (Указание: рассмотреть $X\sim U(0,2)$, $Y\sim U(1,2)$, где U(a,b) - равномерное распределение на (a,b).)

Решение

Рассмотрим предложенные случайные величины. $X^* = X/\mathbb{E}[X] = X, Y^* = Y/\mathbb{E}[Y] = \frac{2}{3}Y$. Для любого t $F_X(t) \geq F_Y(t) \iff X <_{st} Y$. Однако, $\frac{2}{3}Y \sim U(2/3,4/3)$ и $\mathbb{E}[(X^*-4/3)^+] = 1/3 > \mathbb{E}[(Y^*-4/3)^+] = 0$. Следовательно, X^* и Y^* либо несравнимы, либо $Y^* <_{sl} X^*$. Осталось вспомнить, что $Y^* <_{sl} X^* \Leftrightarrow Y <_k X_k$.

Задача 5.

Показать, что $X<_kY \not\Rightarrow X<_{st}Y$. (Указание: рассмотреть $X\sim Exp(1)$, $Y\sim Exp(2)$, где Exp(a) - показательное распределение с параметром a.)

Решение

Рассмотрим предложенные случайные величины. $X^* = X/\mathbb{E}X = X, \ Y^* = Y/\mathbb{E}Y = 2Y \sim X \Rightarrow X^* <_{sl} Y^*$, но $\bar{F}_Y(x) = e^{-2x} < e^{-x} = \bar{F}_X(x), \ x \geq 0 \Rightarrow Y <_{st} X$.

Задача 6.

Проверить, что гамма-распределение с $\alpha \geq 1$ и равномерное имеют тип IFR.

Решение

(a) Случай гамма распределения. Для простоты будем рассматривать $1/\lambda(x)$. Необходимо показать, что $1/\lambda(x)$ - убывает по x.

$$1/\lambda(x) = \left(\frac{\beta^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)}\right)^{-1} \int_{x}^{\infty} \frac{\beta^{\alpha} t^{\alpha - 1}}{\Gamma(\alpha)} e^{-\beta t} dt =$$

$$= [t - x = u, dt = du] = \int_{0}^{\infty} \left(\frac{u}{x} + 1\right)^{\alpha - 1} e^{-\beta u} du \quad (8.6)$$

не возрастает по x при $\alpha \geq 1$.

(b) Случай равномерного распределения U(a, b).

$$\lambda(x) = \frac{\frac{1}{b-a}}{1 - \frac{x-a}{b-a}} = \frac{1}{b-x},\tag{8.7}$$

Это выражение возрастает по x.

Задача 7.

Показать, что если $X_i <_{mor} Y_i$, $i \ge 1$, то $\min_i X_i <_{mor} \min_i Y_i$.

Решение

Напомним, что $F_{\min_i X_i}(x) = 1 - (1 - F(x))^n$. Действительно, $\mathbb{P}(\min_i X_i < x)$ означает, что хотя бы 1 из X_i меньше либо равен x. Это тоже самое, что

$$\sum_{k=1}^{n} \mathbb{P}(X_{(k)} \le x, X_{(k+1)} > x) = \sum_{k=1}^{n} \binom{n}{k} F^{k}(x) (1 - F(x))^{n-k} = 1 - (1 - F(x))^{n}.$$
 (8.8)

Отсюда, поскольку $\frac{1-F_X(x)}{1-F_Y(x)}$ убывает по x, то

$$\frac{1 - F_{\min_i X_i}(x)}{1 - F_{\min_i Y_i}(x)} = \left(\frac{1 - F_X(x)}{1 - F_Y(x)}\right)^n \tag{8.9}$$

убывает по x и, следовательно, $\min_{i} X_{i} <_{mor} \min_{i} Y_{i}$.

ДЗ9

Непропорциональное страхование. Экцедент убытка по риску/катастрофе. Финансовые и экономические условия.

Задача 1.

Рассматривается договор эксцедента убытка по риску XL: $5\,xs\,2$. Предполагается, что возможны 4 возобновления. Добавочные премии за возобновление полосы: 25%, 50%, 100%, 200%. Произошло 8 убытков, их размеры: 5, 10, 7, 4, 6, 8, 3, 9. Первоначальная премия равна 4. Подсчитать размер добавочных премий. Все размеры в млн.

Решение

Пусть X_i – указанные убытки, $Y:=\min{\{5,(X_i-2)_+\}}$ – перестраховое покрытие, $L=5\cdot(4+1)=25$ – максимальное значение гарантий перестраховщика, $Y=\sum_{i=1}^8 Y_i$ – суммарные выплаты по обязательствам перестраховщика.

i	X_i	Y_i	Y	XL	добавочная премия
1	3	3	3	3	0.6
2	10	5	8	5	1.6
3	7	5	13	5	3.2
4	4	2	15	2	1.6
5	6	4	19	4	6.4
6	8	5	24	5	1.6
7	3	1	25	1	_
8	9	5	30	_	_

Добавочные премии закончились на 7-м убытке, т.к. мы достигли максимальных гарантий перестраховщика.

Задача 2.

Подсчитать, чему равна премия по договору $3\,xs\,2$ (млн.), если размеры последовательных убытков равнялись $3,\,3.4,\,3.2,\,4.8,\,4.4,\,7$. Предполагается, что применяется скользящая ставка премии от 2% до 5% (при коэффициенте надбавки 100/80 убытков на гарантии перестраховщика, уже оплаченных или еще не урегулированных). Премия прямого страховщика равна $200\cdot10^6$.

Решение

Пусть X_i – указанные убытки, $Y:=\min{\{3,(X_i-2)_+\}}$ – перестраховое покрытие, $Y=\sum_{i=1}^6 Y_i=11.8$.

$$r = \min\{\underbrace{r_{\text{max}}}_{5\%}, \max\{\underbrace{r_{\text{min}}}_{2\%}, \underbrace{\frac{dY}{A}}_{=\frac{100 \times 11.8}{8 \times 200} = 73.75\%}\}\} = 5\%.$$

$$(9.1)$$

Итого, $P = rA = .05 \times 200 = 10$.

Д3 10

Оптимальное перестрахование. Порядки рационального перестраховщика, эксцедента богатства и рассеивания.

Задача 1.

Решение

• Пусть $X \sim U[0,2b]$. Тогда

$$\pi_{\rho}(X) = \int_{0}^{2b} (1 - t/(2b))^{\frac{1}{\rho}} dt =$$

$$= [1 - t/(2b) = y, -2bdy = dt] = 2b \int_{0}^{1} y^{\frac{1}{\rho}} dy = 2b \frac{1}{\frac{1}{\rho} + 1} = \frac{2b\rho}{1 + \rho}. \quad (10.1)$$

Подставляя значения ρ получаем $\pi_{1,2}(X)=\frac{2.4b}{2.2}\approx 1.09b$, $\pi_{1,5}(X)=\frac{3b}{2.5}=1.2b$, $\pi_{1,8}(X)=\frac{3.6b}{2.8}\approx 1.286b$

• Пусть $Y \sim \exp(1/b)$. Тогда

$$\pi_{\rho}(Y) = \int_0^{+\infty} \exp(-t/(b\rho))dt = b\rho. \tag{10.2}$$

Подставляя значения ho получаем $\pi_{1,2}(Y)=1.2b$, $\pi_{1,5}(Y)=1.5b$, $\pi_{1,8}(Y)=1.8b$.

• Пусть $Z \sim ar{F}_Z(t) = b^2/(b+t)^2$. Тогда

$$\pi_{\rho}(Y) = \int_{0}^{+\infty} b^{2\rho}/(b+t)^{2\rho} dt =$$

$$= [y = b+t, dy = dt] = b^{2\rho} \int_{b}^{+\infty} y^{-2\rho} dy = \frac{b}{2\rho - 1}, \ \rho > 1/2. \quad (10.3)$$

Подставляя значения ρ получаем $\pi_{1,2}(Z)=b/1.4$, $\pi_{1,5}(Z)=b/2$, $\pi_{1,8}(Z)=b/2.6$.

Д3 11

Апостериорная тарификация. Теория ограниченных флуктуаций. Модель Бюлмана.

Задача 1.

Найти наилучшее приближение X_{t+1} с помощью неоднородной линейной комбинации X_1, \ldots, X_t .

Решение

Ищем оценку в следующем виде:

$$\hat{X}_{t+1} = \beta \cdot \mathbb{X}_t, \quad \mathbb{X}_t = [1, X_1, X_2, \dots, X_t]^T, \quad \beta = [\beta_0, \dots, \beta_t],$$
 (11.1)

$$\forall s = 0, \dots, t \quad \text{cov} \left[X_{t+1} - \hat{X}_{t+1}, X_s \right] = 0$$
 (11.2)

Очевидно, что из $X_0=1$ следует несмещенность оценки и выражение β_0 через другие коэффициенты:

$$\beta_0 = \left(1 - \sum_{s=1}^t \beta_s\right) m. \tag{11.3}$$

В частности,

$$0 = \cos\left[X_{t+1} - \hat{X}_{t+1}, X_s\right] = \mathbb{E}\left[\left(X_{t+1} - \hat{X}_{t+1}\right) X_s\right]. \tag{11.4}$$

Итого,

$$cov \left[X_{t+1} - \hat{X}_{t+1}, X_s \right] = cov \left[X_{t+1}, X_s \right] - \sum_{u=0}^{t} \beta_u \cos \left[X_u, X_s \right] =
= a - \sum_{u=1, u \neq s}^{t} \beta_u a - \beta_s (a + s^2) = 0, \quad (11.5)$$

откуда имеем

$$\forall i = 1, \dots, t \quad \beta_i s^2 = a \left(1 - \sum_{s=1}^t \beta_s \right) \implies \forall i = 1, \dots, t \quad \beta_i = \frac{a}{at + s^2}. \tag{11.6}$$

Задача 2.

Найти наилучшее приближение $\mu(\Theta)$ с помощью однородной линейной комбинации X_1,\ldots,X_t .

Решение

Ищем оценку в следующем виде:

$$\hat{\mu} = \beta \cdot \mathbb{X}_t, \quad \mathbb{X}_t = [X_1, X_2, \dots, X_t]^T, \quad \beta = [\beta_1, \dots, \beta_t], \tag{11.7}$$

$$\forall s = 0, \dots, t \quad \cos \left[X_{t+1} - \hat{X}_{t+1}, X_s \right] = 0.$$
 (11.8)

$$\mathbb{E}\left[\left(\mu(\theta) - \hat{\mu}\right) X_{s}\right] = \cos\left[\mu(\theta) - \hat{\mu}, X_{s}\right] = \cos\left[\mu(\theta), X_{s}\right] - \cos\left[\hat{\mu}, X_{s}\right] =$$

$$= \cos\left[\mu(\theta), X_{s}\right] - \sum_{u=1}^{t} \beta_{u} \cos\left[X_{u}, X_{s}\right] + \mathbb{E}[X_{s}] \left(\mathbb{E}\left[\mu(\theta)\right] - \sum_{u=1}^{t} \beta_{u} \mathbb{E}\left[X_{u}\right]\right) =$$

$$= a - \sum_{u=1}^{t} \beta_{u} a - \beta_{s} s^{2} + m^{2} \left(1 - \sum_{u=1}^{t} \beta_{u}\right) = 0 \quad (11.9)$$

Итого,

$$\beta_{...} = \frac{a+m^2}{(a+m^2)t+s^2} \tag{11.10}$$

Задача 3.

Проверить, пользуясь тем, что X_{t+1} и X_1, \ldots, X_t условно независимы при данной Θ , равенство

$$E(X_{t+1}|X_1,\ldots,X_t)=E(\mu(\Theta)|X_1,\ldots,X_t).$$

Решение

 $\mu(\Theta) := \mathbb{E}\left[X_i|\Theta\right]$. Знаем, что

$$\mathbb{E}\left[X_{t+1}|X_1,\dots,X_t,\Theta\right] = \mathbb{E}\left[X_{t+1}|\Theta\right] = \mu(\Theta). \tag{11.11}$$

Имеем

$$\mathbb{E}\left[\mu(\Theta)|X_1,\ldots,X_t\right] = \mathbb{E}\left[\mathbb{E}\left[X_{t+1}|\Theta\right]|X_1,\ldots,X_t\right] = \\ = \mathbb{E}\left[\mathbb{E}\left[X_{t+1}|X_1,\ldots,X_t,\Theta\right]|X_1,\ldots,X_t\right] \overset{\text{iterated expectations}}{=} \mathbb{E}\left[X_{t+1}|X_1,\ldots,X_t\right] \quad (11.12)$$

ДЗ 12

Оценка структурных параметров и модель Бюлмана-Штрауба

Задача 1.

Верны следующие соотношения

- (a) $\operatorname{cov}(\mu(\Theta_k), X_{pl}) = a\delta_{kp}$,
- (b) $cov(X_{ki}, X_{pl}) = (a + s^2 \delta_{il}) \delta_{kp}$,

(c)
$$\operatorname{cov}(\bar{X}_{k\cdot}(t), \bar{X}_{p\cdot}(t)) = (a + \frac{s^2}{t})\delta_{kp}$$
, где $\bar{X}_{j\cdot}(t) = \frac{1}{t}\sum_{i=1}^t X_{ji}$.

Решение

Часть (а)

 $\mu(\Theta_k) = \mathbb{E}\left[X|\Theta_k\right]$. Отсюда получаем

$$\operatorname{cov}\left[\mu(\Theta_{k}), X_{pl}\right] = \mathbb{E}\left[\left(\mu(\Theta_{k}) - \mathbb{E}[\mu(\Theta_{k})]\right) \left(X_{pl} - \mathbb{E}\left[X_{pl}\right]\right) |\Theta_{k}\right] = \\ = \mathbb{E}\left[\left(\mu(\Theta_{k}) - m\right) \mathbb{E}\left[X_{pl} - m|\Theta_{k}\right]\right] \quad (12.1)$$

Pассмотрим p = k.

$$\mathbb{E}\left[X_{pl} - m|\Theta_k\right] = \mathbb{E}\left[X_{kl} - m|\Theta_k\right] = \mu(\Theta_k) - m. \tag{12.2}$$

$$\operatorname{cov}\left[\mu(\Theta_k), X_{pl}\right] = \mathbb{E}\left[\left(\mu(\Theta_k) - m\right)(X_{pl} - m)|\Theta_k\right] = \\ = \mathbb{E}\left[\left(\mu(\Theta_k) - m\right)^2\right] = \operatorname{var}\mu(\Theta_k) = a. \quad (12.3)$$

При $p \neq k$ $X_{pl} \perp \!\!\! \perp \Theta_k$. Поэтому

$$\mathbb{E}\left[X_{pl} - m|\Theta_k\right] = \mathbb{E}\left[X_{pl} - m\right] = 0 \implies \cos\left[\mu(\Theta_k), X_{pl}\right] =$$

$$= \mathbb{E}\left[\left(\mu(\Theta_k) - m\right)(X_{pl} - m)\right] = \mathbb{E}\left[\mu(\Theta_k) - m\right] \mathbb{E}\left[X_{pl} - m\right] = 0 \quad (12.4)$$

Получили первое утверждение.

Часть (b)

При $p \neq k$ величины независимы, т.е. их ковариация равна нулю. Поэтому рассмотрим p = k.

$$cov [X_{ki}, X_{pl}] = cov [X_{ki}, X_{kl}] = \mathbb{E} [\mathbb{E} [(X_{ki} - m)(X_{kl} - m)|\Theta_k]] =
= \mathbb{E} [\mathbb{E} [(X_{ki} - \mu(\Theta_k) + \mu(\Theta_k) - m)(X_{kl} - \mu(\Theta_k) + \mu(\Theta_k) - m)|\Theta_k]] =
= (a + \delta_{il}s^2)\delta_{kn}$$
(12.5)

Часть (с)

Ровно так же как и в пункте (b).

Задача 2.

При выполнении гипотез (BS1) и (BS2) установить следующие соотношения (где δ_{ij} - символ Кронекера):

(a)
$$cov(\mu(\Theta_k), X_{pi}) = a\delta_{kp}$$

(b)
$$cov(X_{ki}, X_{pj}) = (a + \delta_{ij} \frac{s^2}{W_{ki}}) \delta_{kp},$$

(c)
$$cov(X_{ki}, X_{k.}^W) = cov(X_{k.}^W, X_{k.}^W) = a + \frac{s^2}{W_k}$$
,

(d)
$$cov(X_{ki}, X_{..}^W) = \frac{s^2}{W} + a\frac{W_{k.}}{W}$$
,

(e)
$$cov(X_{k.}^W, X_{..}^W) = \frac{s^2}{W} + a \frac{W_{k.}}{W},$$

(f)
$$\operatorname{cov}(X_{...}^{W}, X_{...}^{W}) = \frac{s^{2}}{W} + a \sum_{k=1}^{n} (\frac{W_{k}}{W})^{2}$$
.

Решение

Часть (а)

Следует из п. (а) предыдущей задачи.

Часть (b)

При $p \neq k$ величины независимы, т.е. их ковариация равна нулю. Поэтому рассмотрим p = k.

$$\operatorname{cov}\left[X_{ki}, X_{pj}\right] = \operatorname{cov}\left[X_{ki}, X_{kj}\right] = \\ = \mathbb{E}\left[\operatorname{cov}\left[X_{ki}, X_{kj}|\Theta_{k}\right]\right] + \operatorname{cov}\left[\mathbb{E}\left[X_{ki}|\Theta_{k}\right], \mathbb{E}\left[X_{kj}|\Theta_{k}\right]\right] = \\ = \delta_{ij}\frac{s^{2}}{W_{ki}} + a \quad (12.6)$$

Часть (с)

b

Часть (d)

$$\operatorname{cov}\left[X_{ki}, X_{..}^{W}\right] = \frac{W_{k.}}{W_{..}} \operatorname{cov}\left[X_{ki}, X_{k.}^{W}\right] = \frac{W_{k.}}{W_{..}} \left(a + \frac{s^{2}}{W_{k.}}\right)$$
(12.7)

Часть (е)

Аналогично предыдущей части,

$$\operatorname{cov}\left[X_{k.}^{W}, X_{..}^{W}\right] = \frac{W_{k.}}{W_{..}} \operatorname{cov}\left[X_{k.}^{W}, X_{k.}^{W}\right] = \frac{W_{k.}}{W_{..}} \left(a + \frac{s^{2}}{W_{k.}}\right)$$
(12.8)

Часть (f)

$$cov [X_{..}^{W}, X_{..}^{W}] = \sum_{k=1}^{n} \frac{W_{k.}}{W_{..}} cov [X_{k.}^{W}, X_{k.}^{W}] =
= \sum_{k=1}^{n} \frac{W_{k.}}{W_{..}} \left(a + \frac{s^{2}}{W_{k.}} \right) = \frac{s^{2}}{W_{..}} + a \sum_{k=1}^{n} \left(\frac{W_{k.}}{W_{..}} \right)^{2}.$$
(12.9)