

Tarea 3

6 de Septiembre 2023

 2^{0} semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías Diego Pérez - 22203583

Problema 1

1. Demostraremos que la siguiente interpretación:

 $\mathcal{I}(Dom) := \mathbb{Q}$

 $\mathcal{I}(<) :=$ Uso común dado a <

 $\mathcal{I}(=) :=$ Uso común dado a =

satisface Σ_2 y particularmente, satisface Σ_1 . Para hacerlo, basta verificar que $\mathcal{I} \models \alpha_i$ para todo i.

- α_1 sigue de que x = x.
- α_2 sigue de la transitividad de <.
- α_3 sigue de que \mathbb{Q} admite un orden.
- α_4 basta tomar $y = x + 1 \in \mathbb{Q}$.
- α_5 basta tomar $y = x 1 \in \mathbb{Q}$.
- α_6 basta tomar $z = \frac{x+y}{2} \in \mathbb{Q}$.

2. a)
$$\forall x (P(x) \to \neg Q(x))$$
 o equivalentemente, $\forall x (\neg P(x) \lor \neg Q(x))$.

b)
$$\forall x(R(x) \to \neg S(x))$$
 o equivalentemente, $\forall x(\neg R(x) \vee \neg S(x))$.

- c) $\forall x(\neg Q(x) \rightarrow S(x))$ o equivalentemente, $\forall x(Q(x) \lor S(x))$.
- d) $\forall x(P(x) \rightarrow \neg R(x))$ o equivalentemente, $\forall x(\neg P(x) \vee \neg R(x))$.
- e) Respuesta: Si lo implica. Demostraremos que el conjunto

$$\Sigma = \{ \forall x (\neg P(x) \lor \neg Q(x)), \forall x (\neg R(x) \lor \neg S(x)), \forall x (Q(x) \lor S(x)), \neg (\forall x (\neg P(x) \lor \neg R(x))) \}$$

es inconsistente, lo que implicará lo pedido. Para hacerlo, demostraremos $\Sigma \models \square$.

$$(1) \forall x(\neg P(x) \lor \neg Q(x)) \in \Sigma$$

(2)
$$\neg P(a) \lor \neg Q(a)$$
 especificación universal

$$(3) \qquad \forall x (\neg R(x) \lor \neg S(x)) \qquad \in \Sigma$$

(4)
$$\neg R(a) \lor \neg S(a)$$
 especificación universal

$$(5) \forall x(Q(x) \lor S(x)) \in \Sigma$$

(6)
$$Q(a) \vee S(a)$$
 especificación universal

(7)
$$\neg P(a) \vee \neg R(a)$$
resolución (2), (4), (6)

(8)
$$\neg(\neg P(a) \lor \neg R(a))$$
 $\in \Sigma$ y especificación universal (9) \square resolución (7) y (8)

Como queríamos.

Problema 2

- a) Por definición de $\mathcal{T}(A)$, este conjunto contiene los subconjuntos X de A tales que $A \setminus X$ es finito, junto con el elemento \varnothing . Sigue que \varnothing es un elemento de $\mathcal{T}(A)$.
- b) Por definición de $\mathcal{T}(A)$, basta verificar que $A \setminus A$ es finito, pero esto se desprende de $A \setminus A = \emptyset$. Sigue que $A \in \mathcal{T}(A)$
- c) **Proposición:** Sea $M(A) = \bigcup \mathcal{T}(A)$, entonces, para cada conjunto A, M(A) = A.

<u>Demostración:</u> Notar que si A tiene 1 elemento o es el conjunto vacio, entonces la proposición se cumple trivialmente, por lo que supongamos que A tiene al menos 2 elementos. Para cada elemento x de A, sea $A_x = A \setminus \{x\}$. Primero, como $A \setminus A_x = \{x\}$ finito y $A_x \subseteq A$, tenemos que $A_x \in \mathcal{T}(A)$. Supongamos que existe un $a \in A$ tal que $a \notin M(A)$, entonces, por definición de M, $a \notin T$ para cualquier elemento T de $\mathcal{T}(A)$. Sin embargo, $a \in A_b$ para $a \neq b$ (b existe ya que A tiene al menos 2 elementos) y $A_b \subseteq A$, contradicción. Sigue que $A \subseteq M(A)$.

Por otro lado, todo elemento X de $\mathcal{T}(A)$ cumple $X \in \mathcal{P}(A)$, por lo que $X \subseteq A$, implicando $M(A) \subseteq A$. Como $A \subseteq M(A)$, se concluye que A = M(A).

Por (b), tenemos que $M(A) = A \in \mathcal{T}(A)$.

d) Sea $N = \bigcap \mathcal{X}$. Primero, si X es un elemento de \mathcal{X} , entonces $X \in \mathcal{P}(A)$, por lo que $X \subseteq A$. Esto implica que $N \subseteq A$ y $N \in \mathcal{P}(A)$. Queda demostrar que $A \setminus N$ es finito. Supongamos por contradicción que $A \setminus N$ es infinito, luego, existe una secuencia infinita de x_0, x_1, \cdots de elementos de A tales que $x_i \in A$ pero $x_i \notin S$ para algún $S \in \mathcal{X}$ y para todo $i \geq 0$. Como \mathcal{X} tiene una cantidad finita de elementos, existe un $S \in \mathcal{X}$ y una subsecuencia infinita de $\{x_i\}$ (llamemosla $\{y_i\}$) con $y_i \in A$ pero $y_i \notin S$. Luego, $A \setminus S$ es infinito, lo que contradice $S \in \mathcal{T}(A)$. Sigue que $A \setminus N$ es finito, por lo que $N \in \mathcal{T}(A)$.