1. Calculs de rayons

Trouver le rayon de convergence de la série entière $\sum a_n z^n$:

(a)
$$a_n \xrightarrow[n \to \infty]{} \ell \neq 0$$
.

(h)
$$a_n = e^{\sqrt{n}}$$
.

(m)
$$a_n = \binom{nk}{n}$$
, k entier fixé.

(b)
$$(a_n)$$
 est periodique (c) $a_n = \sum_{d|n} d^2$.

(b)
$$(a_n)$$
 est périodique non nulle. (i) $a_n = \frac{1.4.7...(3n-2)}{n!}$.

(n)
$$a_n = e^{(n+1)^2} - e^{(n-1)^2}$$
.

(d)
$$a_n = \frac{n^n}{n!}$$
.

$$(\mathbf{j}) \ a_n = \frac{1}{\sqrt{n}^{\sqrt{n}}}.$$

(o)
$$a_n = \int_{t=0}^1 (1+t^2)^n dt$$
.

(e)
$$a_{2n} = a^n$$
, $a_{2n+1} = b^n$, $0 < a < b$.

(b)
$$a_n = \sqrt{n}^{\sqrt{n}}$$
.
(c) $a_n = \int_{t=0}^1 (1+t^2)^n dt$.
(k) $a_n = \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)^{\ln n}$.
(p) $a_n = \sqrt[n]{n} - \sqrt[n+1]{n+1}$.

(p)
$$a_n = \sqrt[n]{n} - \sqrt[n+1]{n+1}$$
.

(f)
$$a_{n^2} = n!$$
, $a_k = 0$ si $\sqrt{k} \notin \mathbb{N}$.

(1)
$$a_{n+2} = 2a_{n+1} + a_n,$$

 $a_0 = a_1 = 1.$

(q)
$$a_n = \frac{\cos n\theta}{\sqrt{n} + (-1)^n}$$
.

(g)
$$a_n = (\ln n)^{-\ln n}$$
.

$$a_0 = a_1 = 1.$$

2. Trouver les rayons de convergence des séries entières $\sum a_n z^n$ pour :

(a)
$$a_n$$
 est la somme des diviseurs de n ;

(e)
$$a_n = n^{(-1)^n}$$
:

(b)
$$a_n = 1$$
 si n est premier, $a_n = 0$ sinon;

(f)
$$a_n = e^{-\sqrt{n}}$$
;

(c)
$$a_n = (\sqrt{n})^n$$
;

(d)
$$a_n = (\ln(n!))^2$$
;

(g)
$$a_n = \left(\frac{1}{1+\sqrt{n}}\right)^n$$
.

3. Soit R le rayon de convergence de $\sum a_n z^n$.

Lui comparer les rayons de convergence des séries entières de termes généraux :

(a)
$$a_n^2 z^n$$
;

(c)
$$a_n z^{2n}$$
:

(e)
$$n^{\alpha}a_nz^n$$
, α réel quelconque.

(b)
$$a_n e^{\sqrt{n}} z^n$$
;

(c)
$$a_n z^{2n}$$
;
(d) $a_n z^{n^2}$;

4. Déterminer le rayon de convergence de la série entière :

(a)
$$\sum_{n\geq 0} \frac{2^n}{3^n + n} z^{4n}$$

(b)
$$\sum_{n\geq 0} \frac{n^2+n}{2^n+n!} z^n$$

5. Déterminer le rayon de convergence R, l'ensemble \mathcal{C} (resp. \mathcal{A}) des nombres réels pour lesquels la série entière de coefficient : $a_n = \left(\sin \frac{n\pi}{3}\right)$ converge (resp. converge absolument).

6. Déterminer le rayon de convergence R, l'ensemble \mathcal{C} (resp. \mathcal{A}) des nombres réels pour lesquels la série entière de terme général : $u_n(x) = \frac{x^{n^2}}{n}$ converge (resp. converge absolument).

7. Déterminer le rayon de convergence R et calculer pour tout nombre réel x tel que |x| < R la somme

Que se passe-t-il si |x| = R?

8. Calculer la somme de la série entière suivante pour tout nombre réel x :

(a)
$$S(x) = \sum_{n=1}^{+\infty} \frac{x^n}{(2n)!}$$

(b)
$$S(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{4n^2 - 1}$$

9. Déterminer le rayon de convergence R et pour tout nombre réel x tel que |x| < R calculer de deux manières différentes la somme $S(x) = \sum_{n=0}^{+\infty} \sin \frac{n\pi}{3} x^n$.

10. Déterminer le rayon de convergence de la série entière $\sum \frac{x^{2n+1}}{n(2n+1)}$

Calculer sa fonction somme f(x) sur l'intervalle ouvert de convergence.

11. Étudier la convergence et calculer la somme de la série $\sum a_n z^n$, où $a_n = \frac{1}{n!} \sum k \cdot k!$

- 12. Étudier la nature et calculer la somme de la série de terme général : $a_n = \sum_{k=n}^{+\infty} \frac{(-1)^n}{k^2}$
- 13. Calculer les sommes des séries suivantes :

(a)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)}$$

(b)
$$\sum_{n=0}^{+\infty} \frac{1}{(3n+1)(6n+5)}$$

14. Développer en séries entières autour de 0 (en précisant l'ensemble de validité) la fonction f définie par

(a)
$$f(x) = \ln(1 + x + x^2)$$
;

(d)
$$f(x) = \ln(x^2 - 5x + 6)$$
;

(b)
$$f(x) = \sqrt{\frac{1+x}{1-x}};$$

(e)
$$f(x) = \arctan(x+1)$$
;
(f) $f(x) = \arctan(x+\sqrt{3})$;

(c)
$$f(x) = (1+x)\ln(1+x)$$
;

(g)
$$f(x) = \sin^3 x$$
.

15. Montrer que :

(a)
$$\int_{0}^{1} \frac{\ln(1+x)}{x} dx = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$$

(b)
$$\int_{0}^{1} \frac{\operatorname{Arctan}(x)}{x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

16. Formule de Cauchy (classique)

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0, on note f(z) sa somme.

Soit $r \in]0, R[$, montrer que :

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

- 17. Soit f la fonction définie sur] 1,1[par $f(x) = \frac{\operatorname{Arcsin} x}{\sqrt{1-x^2}}$
 - (a) Justifier que f est développable en série entière sur]-1,1[.
 - (b) Montrer que f est solution de l'équation de l'équation différentielle $(1-x^2)y'-xy=1$.
 - (c) Déterminer le développement en série entière de f sur] -1,1[.
 - (d) Déterminer le développement en série entière de $x \to Arcsin^2 x$.
- **18.** Soit f la fonction définie sur]-1,1[par $f(x)=\frac{\mathrm{Arccos}x}{\sqrt{1-x^2}}$
 - (a) Justifier que f est développable en série entière sur] -1,1[.
 - (b) Montrer que f est solution de l'équation de l'équation différentielle $(1-x^2)y'-xy=-1$.
 - (c) Déterminer le développement en série entière de f sur] -1,1[.
 - (d) Déterminer le développement en série entière de $x \to \operatorname{Arccos}^2 x$.
- **19.** Soit la série entière de coefficient $a_n = \sum_{k=0}^n \frac{1}{k!}$.

Trouver son rayon de convergence R, puis calculer pour tout nombre réel x tel que |x| < R, la somme S(x) de la série.

20. Soit f la fonction définie sur \mathbb{R} par : $f(x) = e^{-x^2} \int_0^x e^{t^2} dt$.

Montrer que f est développable en série entière sur \mathbb{R} , et déterminer son développement en série entière au voisinage de 0.

21. Soit (a_n) une suite de réels strictement positifs. On pose $S_n = \sum_{k=0}^n a_k$ et on suppose

$$S_n \to +\infty$$
 et $a_n/S_n \to 0$

Déterminer le rayon de convergence des séries entières $\sum_{n\geqslant 0}a_nx^n$ et $\sum_{n\geqslant 0}S_nx^n$ puis former une relation entre leur somme.

22. On pose $a_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$a_{n+1} = \sum_{k=0}^{n} a_{n-k} a_k$$

(a) Donner une formule permettant de calculer

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- (b) Calculer S(x).
- (c) Calculer les a_n .
- (d) Donner un équivalent de la suite (a_n) .
- 23. Déterminer le développement en série entière au voisinage de 0 de la fonction f définie par :

$$f(x) = \arctan\left(\frac{1-x^2}{1+x^2}\right)$$
 et préciser le rayon de convergence R.

24.* Soit $\sum a_n x^n$ une série entière de rayon de convergence R = 1. Pour $x \in]-1,1[$, on définit

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

On suppose que la suite (a_n) est à termes réels positifs et que la fonction S est bornée sur [0,1]

- (a) Montrer que $\sum a_n$ est une série convergente.
- (b) Montrer que

$$\lim_{x \to 1^-} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = \sum_{n=0}^{+\infty} a_n$$

- **25.*** Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières, de somme respectives f(z) et g(z), telles que les b_n soient tous positifs, et $a_n = o(b_n)$.
 - (a) On suppose de plus que le rayon de convergence de $\sum b_n z^n$ est infini. Montrer que f(x) = o(g(x)) si x tend vers $+\infty$.
 - (b) En supposant cette fois-ci que le rayon de convergence R de $\sum b_n z^n$ est fini, et $\sum b_n R^n$ diverge, comparer f et g au voisinage de R à gauche.
 - (c) On remplace dans la question précédente l'hypothèse $a_n = o(b_n)$ par $a_n \sim b_n$. Comparer f et g au voisinage de R à gauche.
 - (d) Application:

Soit (a_n) une suite réelle convergente de limite $a \neq 0$. Trouver le rayon de convergence de $\sum_{n\geq 1} \frac{a_n}{n} z^n$.

Pour
$$t \in]-1,1[$$
, on pose $f(t) = \sum_{n=1}^{+\infty} \frac{a_n}{n} t^n$, calculer $\lim_{t \to 1^-} \frac{f(t)}{\ln(1-t)}$.

26.* On considère deux suites (a_n) et (b_n) de réels. On suppose que les b_n sont positifs ou nuls, que le rayon de convergence de la série $\sum b_n x^n$ est égal à 1 et que la série $\sum b_n$ diverge. On suppose enfin que $a_n \sim b_n$.

On définit alors pour |x| < 1, les deux fonctions $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et $g(x) = \sum_{n=0}^{+\infty} b_n x^n$

- (a) Montrer que g(x) tend vers $+\infty$ lorsque x tend vers 1^- .
- (b) Montrer que $f(x) \sim g(x)$ lorsque x tend vers 1⁻.
- (c) application : Pour $p \in \mathbb{N}$, déterminer un équivalent quand x tend vers 1^- de $f(x) = \sum_{n=0}^{+\infty} n^p x^n$.
- **27.*** On considère la série entière $\sum_{n>1} \left(\sin \frac{1}{\sqrt{n}} \right) x^n, \ x \in \mathbb{R}.$
 - (a) Déterminer le rayon R.
 - (b) Étudier la convergence en -R et R.
 - (c) En notant S la somme, étudier la continuité de S.
 - (d) Montrer que : $(1-x)S(x) \xrightarrow[x \to 1^{-}]{} 0$.