<u>zad.1</u>

Zadanie polegało na drobnej modyfikacji zadania 5 z listy 1 i analizie uzyskanych wyników po modyfikacji. Usunęliśmy ostatnią 9 z x_4 i ostatnią 7 z x_5 , czyli x_4 = 0.577215664, x_5 = 0.301029995.

Wyniki z zadania 5 lista 1:

	Przód	Tył	DESC	ASC
	$\sum_{i=1}^{n} x_i y_i$	$\sum_{i=n}^{1} x_i y_i$		
Float32	-0.4999443	-0.4543457	-0,5	-0,5
Float64	1.0251881368296672e-10	-1.5643308870494366e- 10	0	0

Wyniki uzyskane po modyfikacji:

	Przód	Tył	DESC	ASC
	$\sum_{i=1}^{n} x_i y_i$	$\sum_{i=n}^{1} x_i y_i$		
Float32	-0.4999443	-0.4543457	-0,5	-0,5
Float64	-0.004296342739891585	-0.004296342998713953	-	-
			0.004296342	0.004296342
			842280865	842280865

Po dokonaniu niewielkiej zmiany danych poprzez usunięcie ostatniej wartości 9 z x4 i ostatniej wartości 7 z x5, wyniki obliczeń zostały znacząco zmienione.

Dla typu Float32 wyniki nie uległy zmianie, ale dla typu Float64 wyniki uległy zmianie. W szczególności wartości funkcji forward i backward zmieniły się znacząco. Funkcje descending i ascending również wykazały pewne zmiany, choć nie były one tak duże jak dla funkcji forward i backward.

Wniosek:

Niewielkie zmiany danych mogą znacząco wpływać na wyniki obliczeń, szczególnie w przypadku operacji numerycznych na liczbach zmiennoprzecinkowych. Zmiana nawet w ostatniej cyfrze dziesiętnej może mieć znaczący wpływ na wynik, zwłaszcza gdy są one wykorzystywane w długich łańcuchach obliczeń. Jest to spowodowane ograniczeniami precyzji obliczeń dla liczb zmiennoprzecinkowych, co może prowadzić do błędów zaokrągleń i propagacji błędów w obliczeniach. Dlatego ważne jest, aby zachować ostrożność i uwzględniać te aspekty podczas pracy z danymi numerycznymi.

zad.2

Zadanie polegało na narysowaniu wykresu funkcji $f(x) = e^x \ln(1 + e^{-x})$ w co najmniej dwóch programach do wizualizacji, obliczeniu granicy funkcji $\lim_{x\to\infty} f(x)$ oraz porównaniu wykresu

funkcji z policzoną granicą.

Matplotlib.pyplot (x € [-40;40] 400 punktów)

Wykres f(x)=e^xln(1+e^{-x}) został narysowany przy użyciu dwóch różnych narzędzi do wizualizacji: Microsoft Excel oraz biblioteki Matplotlib w Pythonie. Wykresy te pokazują, że funkcja dąży do 1 w miarę zbliżania się xx do nieskończoności, co zgadza się z obliczoną granicą funkcji dla xx dążącego do nieskończoności.

$$\lim_{x \to \infty} e^x \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{e^{-x}} = \lim_{x \to \infty} \frac{-e^{-x}}{(1 + e^{-x}) \cdot (-e^{-x})} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1$$

Wniosek:

Możemy zauważyć, że wykresy obu narzędzi wizualizacji są zgodne co do ogólnej formy krzywej. Oba wykresy zbiegają do 1 w miarę dążenia x do nieskończoności, co potwierdza obliczoną granicę.

Zjawisko to można wyjaśnić, analizując wzór funkcji. Funkcja f(x)=e^xln(1+e^{-x}) składa się z dwóch składników wykładniczych, które dążą do nieskończoności dla x dążącego do nieskończoności. Składnik ln(1+e^{-x}) jest ograniczony, ponieważ jest logarytmem sumy, której drugi składnik dąży do zera, a więc cały wyrażenie dąży do 1 dla x dążącego do nieskończoności.

Otrzymane dane numeryczne oraz wykresy potwierdzają tę obserwację i są zgodne z teorią granic funkcji w nieskończoności.

<u>zad.3</u>

Zadanie polegało na rozwiązywaniu układu równań liniowych za pomocą dwóch algorytmów: eliminacji Gaussa (x = A \ b) oraz x = $A^{-1}b$ (x = inv(A) * b). Eksperymenty wykonaliśmy dla macierzy Hilberta H_n z rosnącym stopniem n > 1 oraz dla macierzy losowej R_n , n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania c = 1, 10, 10^3 , 10^7 , 10^{12} , 10^{16} . Policzyliśmy błędy względne.

Macierz Hilbert'a

k	cond(M)	rank(M)	Błąd inverse	Błąd Gauss
1	1.0	1	0.0	0.0
3	524.0567775860644	3	0.0	8.022593772267726e-15
5	476607.2502422687	5	3.3544360584359632e-12	1.6828426299227195e-12
7	4.753673565921816e8	7	4.713280397232037e-9	1.2606867224171548e-8
9	4.931537556012197e11	9	4.541268303176643e-6	3.8751634185032475e-6
11	5.222703245009594e14	10	0.007618304284315809	0.00015827808158590435
13	3.1905581877988255e18	11	5.331275639426837	0.11039701117868264
15	3.67568286586649e17	12	7.344641453111494	4.696668350857427
17	8.07124989431416e17	12	10.516942378369349	13.707236683836307
19	5.190132496359103e18	13	109.94550732878284	102.15983486270827
21	3.2903033202156175e18	13	34.52041154914292	44.089455838364245
23	6.101209031674573e17	13	22.272314298730727	25.842511917947366
25	1.3309197553221074e18	13	21.04404299195525	7.095757204652332
27	4.28683702161786e18	14	35.68974530952139	27.43309009053957
29	8.277434084408434e18	14	43.40383683199056	60.095450394724104
31	9.796434738176467e18	14	23.74575780277118	21.45662601984968
33	1.1705168465593727e19	14	32.88969741379979	37.556822732776205
35	2.552419613144824e19	14	36.723963451169304	31.166902974731222

Macierz losowa:

k	cond(M)	rank(M)	Błąd inverse	Błąd Gauss
5	1.0000000000000000	5	1.4043333874306804e-16	2.2752801345137457e-16
5	10.000000000000002	5	1.1102230246251565e-16	1.719950113979703e-16
5	999.99999999964	5	5.913961201587205e-14	5.641040893819273e-14
5	1.0000000003347442e7	5	1.4493590684128846e-10	6.532093519302093e-11
5	9.999758482382e11	5	1.2851623937929547e-5	1.560829124215582e-5
5	8.642086921456832e15	4	0.353622437247695	0.36042158358092324
10	1.0000000000000000	10	2.0770370905276122e-16	3.1597501217190306e-16
10	9.9999999999998	10	2.016820280180126e-16	2.895107444979072e-16
10	999.999999999172	10	8.931604505377229e-15	3.196979684525651e-15
10	9.99999999724053e6	10	9.23932027886643e-11	8.370024941930773e-11
10	1.0000165286196566e12	10	5.750782650493592e-6	6.590079164781899e-6
10	1.0266087190212184e16	9	0.09401005597807076	0.12811947293131962
20	1.0000000000000013	20	7.397785161770223e-16	6.698243350643887e-16
20	10.00000000000014	20	6.191422260925476e-16	6.977643512971218e-16
20	999.999999999658	20	5.924889052322839e-15	8.203639191033913e-15
20	9.99999998690587e6	20	1.2437419024553149e-10	1.6489905588559063e-10
20	1.000023692019717e12	20	2.1467206743969807e-5	2.3528857534802003e-5
20	3.0386559763121028e16	19	0.029309892941100108	0.022049530340573626

Dla macierzy Hilberta:

Dla wzrostu rozmiaru macierzy, wskaźnik uwarunkowania rośnie drastycznie, osiągając bardzo duże wartości dla większych macierzy.

Wraz ze wzrostem rozmiaru macierzy, błędy uzyskane przy użyciu odwracania macierzy oraz metody eliminacji Gaussa również rosną.

Błędy te wzrastają znacznie szybciej dla metod rozwiązywania układu równań liniowych w przypadku większych macierzy.

Dla macierzy losowej:

Wskaźnik uwarunkowania zwiększa się wraz ze wzrostem wartości "c", co oznacza większą niestabilność rozwiązań dla bardziej skomplikowanych macierzy.

Metody odwracania macierzy oraz eliminacji Gaussa w przypadku macierzy losowej również wykazują wzrost błędów wraz ze zwiększającym się wskaźnikiem uwarunkowania.

Wnioski:

W związku z powyższym, można stwierdzić, że zarówno dla macierzy Hilberta, jak i losowej, wzrost rozmiaru macierzy oraz wskaźnika uwarunkowania prowadzi do znacznego wzrostu błędów obliczeniowych. Oznacza to, że dla bardziej skomplikowanych i bardziej uwarunkowanych macierzy, dokładność rozwiązań może być znacząco ograniczona, co ma istotne znaczenie przy analizie numerycznej i przyjęciu odpowiednich metod rozwiązywania układów równań liniowych.

<u>zad.4</u>

Zadanie polegało na wyliczeniu 20 zer wielomianu P za pomocą funkcji roots w Julia, gdzie P było postacią naturalną wielomianu Wilkinsona p

Wyniki części a):

Zk	P(x)	p(x)	z _k -k
0.999999999998084	23323.616390897252	23310.180819556474	1.9162449405030202e-13

2.000000000114264	64613.550791712885	73156.18130995681	1.1426415369442111e-11
2.9999999998168487	18851.098984644806	130289.20977428103	1.8315127192636282e-10
3.999999983818672	2.6359390809003003e6	2.0313511850413051e6	1.6181327833209025e-8
5.000000688670983	2.3709842874839526e7	2.161335904910064e7	6.88670983350903e-7
5.999988371602095	1.2641076289358065e8	1.2165063267640358e8	1.162839790502801e-5
7.000112910766231	5.2301629899144447e8	5.0618859493197733e8	0.00011291076623098917
7.999279406281878	1.798432141726085e9	1.7402728325721796e9	0.0007205937181220534
9.003273831140774	5.121881552672067e9	5.263758084354482e9	0.003273831140774064
9.989265687778465	1.4157542666785017e10	1.4147808356077827e10	0.010734312221535092
11.027997558569794	3.586354765112257e10	3.692632803664623e10	0.027997558569794023
11.94827395840048	8.510931555828575e10	8.162184753413098e10	0.051726041599520656
13.082031971969954	2.2136146301419052e11	2.043743542854919e11	0.08203197196995404
13.906800565193148	3.812024574451268e11	3.851929544483458e11	0.09319943480685211
15.081439299377482	8.809029239560208e11	9.126025022282092e11	0.0814392993774824
15.942404318674466	1.6747434633806333e12	1.675114896837886e12	0.05759568132553383
17.026861831476396	3.3067827086376123e12	3.511533171799813e12	0.026861831476395537
17.99048462339055	6.166202940769282e12	6.644365795060318e12	0.009515376609449788
19.001981084996206	1.406783619602919e13	1.2746432430512717e13	0.001981084996206306
19.999803908064397	3.284992217648231e13	2.383703367289591e13	0.00019609193560299332

Wniosek:

Różnice pomiędzy obliczonymi pierwiastkami a oczekiwanymi wartościami mogą wynikać z ograniczeń wynikających z arytmetyki zmiennopozycyjnej. Zwłaszcza przy obliczaniu pierwiastków wielomianów o wysokim stopniu, błędy zaokrągleń mogą się kumulować, co prowadzi do rozbieżności pomiędzy obliczonymi pierwiastkami a ich rzeczywistymi wartościami. Ponadto, te rozbieżności mogą być także rezultatem charakterystycznych cech wielomianu Wilkinsona, którego pierwiastki są bliskie siebie i podatne na błędy numeryczne. Nawet niewielkie zaburzenia mogą znacząco wpłynąć na obliczone pierwiastki, co wyjaśnia niektóre zauważone różnice w wynikach.

Wyniki części b):

7.	P(x)	ln(v)l	z _k -k
Zk	, , , ,		
0.99999999999805 +	29948.438957395843	2376.936166998515	1.9539925233402755e-14
0.0im			
1.999999999985736 +	239010.53520956426	9132.438957447212	1.4264145420384011e-12
0.0im			
3.00000000105087 +	939293.8049425513	74756.28518912959	1.0508705017286957e-10
0.0im			
3.999999950066143 +	7.44868039679552e6	626853.3644463811	4.993385704921138e-9
0.0im			
5.000000034712704 +	1.4689332508961653e7	1.0894298660834588e6	3.4712703822492585e-8
0.0im			
6.000005852511414 +	5.817946400915084e7	6.1225086377329595e7	5.852511414161654e-6
0.0im			
6.999704466216799 +	1.3954205929609105e8	1.325298174591774e9	0.00029553378320112955
0.0im			
8.007226654064777 +	2.459617755654851e8	1.7380734718418137e10	0.0072266540647767386
0.0im			
8.917396943382494 +	2.291018560461982e9	1.3487291517349084e11	0.082603056617506
0.0im			
10.09529034477879-	2.291018560461982e9	1.482434749076547e12	0.6502965968281023
0.6432770896263527im			
10.09529034477879 +	2.077690789102519e10	1.482434749076547e12	1.110092326920887
0.6432770896263527im			

11.793588728372308-	2.077690789102519e10	3.293958241693677e13	1.6650968123818863
1.6522535463872843im			
11.793588728372308 +	9.390730597798799e10	3.293958241693677e13	2.0458176697496047
1.6522535463872843im			
13.99233053734825-	9.390730597798799e10	9.545412818924856e14	2.5188313205122075
2.5188196443048287im			
13.99233053734825 +	9.592356563898315e11	9.545412818924856e14	2.7129043747424584
2.5188196443048287im			
16.73073008036981-	9.592356563898315e11	2.7420705762218144e16	2.906000476898456
2.8126272986972136im			
16.73073008036981 +	5.050467401799687e12	2.7420705762218144e16	2.8254873227453055
2.8126272986972136im			
19.50243895868367-	5.050467401799687e12	4.252454709929593e17	2.4540193937292005
1.9403320231930836im			
19.50243895868367 +	4.858653129933677e12	4.252454709929593e17	2.004328632592893
1.9403320231930836im			
20.84690887410499 +	29948.438957395843	1.3743672141534326e18	0.8469088741049902
0.0im			

Wniosek:

W przypadku drugiego eksperymentu, gdzie zmieniono współczynnik -210 na -210 - 2⁻²³, pierwiastek jednego z pierwotnych pierwiastków wielomianu stał się bardzo bliski 2, co jest charakterystycznym zjawiskiem dla eksperymentu Wilkinsona. Ograniczenia arytmetyki zmiennopozycyjnej skutkują tym, że nawet niewielkie zaburzenia mogą znacząco wpłynąć na pierwiastki wielomianów o wysokim stopniu.

<u>zad.5</u>

Zadanie polegało na napisaniu funkcji realizującą model wzrostu logistycznego zgodnie z równaniem rekurencyjnym $p_n+1:=p_n+rp_n(1+p_n)$ dla n=0,1...,40. Następnie trzeba było wykonać 40 iteracji dla danych wejściowych $p_0=0.01$ i r=3 w arytmetyce Float32. Dodatkowo, w pierwszej części eksperymentu, przy wykonaniu 10 iteracji, trzeba było zastosować obcięcie wyniku odrzucając cyfry po trzecim miejscu po przecinku, a następnie kontynuować obliczenia do 40-tej iteracji. W drugiej części zadania należało powtórzyć te same obliczenia Float32 dla arytmetyki Float64 i porównać otrzymane wyniki.

461527
.04317

b)	
Float32	0.35004452522461527
Float64	0.011611238029748606

Wniosek:

Różnice pomiędzy wynikami głównie wynikają z różnic w precyzji arytmetyki, gdzie wyniki dla Float32 są mniej dokładne niż dla Float64 ze względu na mniejszą precyzję Float32. Dodatkowo, modyfikacja przeprowadzona w eksperymencie 1 spowodowała zmianę ostatecznego wyniku w dziesiątej iteracji, co z kolei przyczyniło się do różnic w późniejszych iteracjach, powodując różnice w wynikach końcowych.

 $\frac{zad.6}{}$ Zadanie polegało na rozwiązaniu rekurencyjnie równania z ustalonymi c i x_0 :

$$x_{n+1} = x_n^2 + c$$
, dla $n = 0,1,2,...$

Wyniki dla c = -2:

n	$x_0 = 1$	$x_0 = 2$	$x_0 = 1.99999999999999999999999999999999999$
1	-1.0	2.0	1.9999999999996
2	-1.0	2.0	1.99999999998401
3	-1.0	2.0	1.99999999993605
4	-1.0	2.0	1.9999999997442
5	-1.0	2.0	1.999999999897682
6	-1.0	2.0	1.999999999590727
7	-1.0	2.0	1.99999999836291
8	-1.0	2.0	1.999999993451638
9	-1.0	2.0	1.999999973806553
10	-1.0	2.0	1.99999989522621
11	-1.0	2.0	1.999999580904841
12	-1.0	2.0	1.999998323619383
13	-1.0	2.0	1.9999993294477814
14	-1.0	2.0	1.9999973177915749
15	-1.0	2.0	1.9999892711734937
16	-1.0	2.0	1.9999570848090826
17	-1.0	2.0	1.999828341078044
18	-1.0	2.0	1.9993133937789613
19	-1.0	2.0	1.9972540465439481
20	-1.0	2.0	1.9890237264361752
21	-1.0	2.0	1.9562153843260486
22	-1.0	2.0	1.82677862987391
23	-1.0	2.0	1.3371201625639997
24	-1.0	2.0	-0.21210967086482313
25	-1.0	2.0	-1.9550094875256163
26	-1.0	2.0	1.822062096315173
27	-1.0	2.0	1.319910282828443
28	-1.0	2.0	-0.2578368452837396
29	-1.0	2.0	-1.9335201612141288
30	-1.0	2.0	1.7385002138215109
31	-1.0	2.0	1.0223829934574389
32	-1.0	2.0	-0.9547330146890065
33	-1.0	2.0	-1.0884848706628412
34	-1.0	2.0	-0.8152006863380978
35	-1.0	2.0	-1.3354478409938944
36	-1.0	2.0	-0.21657906398474625
37	-1.0	2.0	-1.953093509043491
38	-1.0	2.0	1.8145742550678174
39	-1.0	2.0	1.2926797271549244
40	-1.0	2.0	-0.3289791230026702

Wyniki dla c = -1:

n	$x_0 = 1$	$x_0 = -1$	$x_0 = 0.75$	$x_0 = 0.25$
1	0.0	0.0	-0.4375	-0.9375
2	-1.0	-1.0	-0.80859375	-0.12109375
3	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135

5	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
11	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	-1.0	-0.9999994231907058	0.0
13	0.0	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	-1.0	-0.99999999986692	0.0
15	0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	-1.0	-1.0	0.0
17	0.0	0.0	0.0	-1.0
18	-1.0	-1.0	-1.0	0.0
19	0.0	0.0	0.0	-1.0
20	-1.0	-1.0	-1.0	0.0
21	0.0	0.0	0.0	-1.0
22	-1.0	-1.0	-1.0	0.0
23	0.0	0.0	0.0	-1.0
24	-1.0	-1.0	-1.0	0.0
25	0.0	0.0	0.0	-1.0
26	-1.0	-1.0	-1.0	0.0
27	0.0	0.0	0.0	-1.0
28	-1.0	-1.0	-1.0	0.0
29	0.0	0.0	0.0	-1.0
30	-1.0	-1.0	-1.0	0.0
31	0.0	0.0	0.0	-1.0
32	-1.0	-1.0	-1.0	0.0
33	0.0	0.0	0.0	-1.0
34	-1.0	-1.0	-1.0	0.0
35	0.0	0.0	0.0	-1.0
36	-1.0	-1.0	-1.0	0.0
37	0.0	0.0	0.0	-1.0
38	-1.0	-1.0	-1.0	0.0
39	0.0	0.0	0.0	-1.0
40	-1.0	-1.0	-1.0	0.0

Wniosek:

Analizując wyniki, można stwierdzić, że funkcja zachowuje się stabilnie dla pewnych danych, np. gdy x₀ = 1 i 2. Jednak dla danych niecałkowitych mogą występować zmiany, które można określić jako chaotyczne niedeterministyczne zachowanie. Ograniczona precyzja arytmetyki sprawia, że początkowe wartości, takie jak 0.25 i 0.75, z czasem zbliżają się do liczb całkowitych z powodu kumulacji błędów. W przypadku funkcji rekurencyjnych istotne jest utrzymanie spójności danych, ponieważ błędy szybko narastają, nawet przy wysokiej precyzji arytmetyki, co może prowadzić do utraty dokładności wyników.