

RAJARATA UNIVERSITY OF SRI LANKA FCULTY OF APPLIED SCIENCES

B.Sc. Second year Semester I Examination – October/November 2015 CHE 2105 – Inorganic Chemistry II

Answer both questions.

Time: 1 hour

Velocity of light = $3 \times 10^8 \,\mathrm{m \ s^{-1}}$ 1 amu = $1.66 \times 10^{-27} \,\mathrm{kg}$ Mass of an electron = $9.109 \, 10^{-31} \,\mathrm{kg}$ Mass of a proton = $1.673 \times 10^{-27} \,\mathrm{kg}$ Mass of a neutron = $1.675 \times 10^{-27} \,\mathrm{kg}$ 1 MeV = $9.648 \times 10^7 \,\mathrm{kJ \ mol^{-1}}$ Avogadro constant = $6.022 \times 10^{23} \,\mathrm{mol^{-1}}$

The use of non-programmable calculator is permitted.

- 1). (a) Describe one laboratory and one industrial preparation for hydrogen.
 - (b) Give the increasing order of melting points of LiF, LiCl, LiBr and LiI. Explain the reasons for your answer.
 - (c) Write balanced equation for the following reactions on heating
 - (i) NaHCO₃ $\xrightarrow{\Delta}$
 - (ii) $CaCO_3 \xrightarrow{\Delta}$
 - (d) Give the chemical test that could be used to distinguish between [Co(NH₃)₆]Cl₃ and [Co(NH₃)₃Cl₃]. Find the oxidation state of Co in the coordination compounds.
 - (e) Give balanced chemical equations for the reaction of Cu(s) with concentrated and dilute HNO₃.
 - (f) Write balanced chemical equation when H₂O₂ reacts with K₂Cr₂O₇ in acidic medium?

- (g) Write an equation for the following nuclear reaction;
 - (i) beta decay of ¹⁴C,
 - (ii) the nuclide $^{232}_{90}$ Th decays in succession by $\alpha, \beta, \beta, \alpha, \alpha, \alpha$ and β decay.
- (h) Define radioactivity. State two properties of beta (β) particles.
- (i) Give two differences between a nuclear reaction and a chemical reaction.
- (j) Explain how the carbon-14 isotope allows certain archaeological discoveries to be dated.

 $10 \times 12 \text{ marks} = 120 \text{ marks}$

2). Answer either part (A) or part (B)

Part (A)

Answer all parts.

(a) Write a balanced chemical equation to show the reaction between CaH_2 and H_2O . How many grams of CaH_2 are needed to produce 26.4 L of H_2 gas at 20° C and 0.98×10^5 Pa.

(20 marks)

- (b) Account for the following observations:
 - (i) The solubility of MgSO₄(s) in water is greater than that of BaSO₄(s).
 - (ii) The hydroxides of alkaline earth metals are less basic than alkali metals of the corresponding periods.

(30 marks)

- (c) (i) What products are formed when Li, Na and K burn in dioxygen? How do these products react with water? Write down the balanced relevant chemical equations in each of the reaction.
 - (ii) Explain with equations the production of dihydrogen by coal gasification and water gas shift reaction

(30 marks)

Part (B)

Answer all parts.

- (a) Write notes on the following with suitable examples,
 - (i) nuclear fission
 - (ii) nuclear fusion.

(20 marks)

- (b) (i) Outline the principle of rock dating.
 - (ii) A certain rock sample contains $^{238}_{92}$ U and $^{206}_{82}$ Pb in the mass ratio 5:4. Calculate the age of the rock. Half life of $^{238}_{92}$ U is 4.8×10^9 years.

(20 marks)

- (c) Discuss the application of radioisotopes as tracers in medicine and agriculture.
 - (20 marks)
- (d) The following reaction is one of the processes which occur during fission:

 $^{235}_{92}$ U \rightarrow^{140}_{58} Ce $+^{94}_{40}$ Zr $+^{1}_{0}$ n $+6^{0}_{-1}$ e

Calculate how much energy is released in MeV per fission.

(20 marks)

