Chapitre 1 : Introduction à l'Intelligence Artificielle (IA)

1. Définition de l'IA

L'Intelligence Artificielle (IA) peut être définie différemment selon les perspectives :

- Alan Turing : L'IA est ce qui rend difficile la distinction entre une tâche réalisée par un humain et une machine.
- **Charles Darwin**: L'IA est ce qui permet la survie de l'individu le plus apte, capable de s'adapter à son environnement.
- Thomas Edison: L'IA est tout ce qui fonctionne efficacement et génère du profit.
- **Microsoft**: L'IA désigne les logiciels qui imitent les comportements et les capacités humaines.

2. Charges de travail principales de l'IA

L'IA comprend plusieurs domaines clés :

- Apprentissage automatique (Machine Learning) : Enseigner à un modèle informatique à faire des prédictions à partir de données.
 - o Apprentissage supervisé : L'algorithme apprend à partir de données étiquetées.
 - Apprentissage non supervisé : L'algorithme identifie des structures dans des données non étiquetées.
 - Apprentissage par renforcement : L'algorithme apprend en interagissant avec un environnement.
- **Détection d'anomalies** : Identification automatique d'erreurs ou d'activités inhabituelles.
- Vision par ordinateur : Capacité des logiciels à analyser des images et vidéos.
- Traitement du langage naturel (NLP) : Compréhension et génération du langage humain.
- **Exploration des connaissances** : Extraction d'informations à partir de données non structurées.

3. Caractéristiques de l'IA

L'IA se distingue par plusieurs éléments :

 Manipulation des informations symboliques: Contrairement aux systèmes classiques, l'IA utilise des concepts abstraits et des règles (ex. température de 39,2°C → patient fiévreux).

- **Utilisation des méthodes heuristiques** : Contrairement aux algorithmes déterministes, les heuristiques permettent de trouver des solutions approximatives plus rapidement.
- Traitement d'informations incomplètes : L'IA utilise des raisonnements approximatifs et statistiques.
- **Représentation des connaissances** : Stockage et traitement des connaissances sous forme de bases de données spécialisées.

4. Historique de l'IA

- Années 50 : Optimisme initial, mais échecs dans les jeux et la reconnaissance vocale.
- Années 60 : Développement des premiers systèmes heuristiques.
- Années 70 : Expansion avec les systèmes experts et la compréhension du langage naturel.
- Années 80 : Intégration de l'IA dans l'économie avec des applications industrielles.
- Années 90 : Commercialisation (assistants intelligents, robots domestiques).

5. Applications de l'IA

L'IA est omniprésente dans divers domaines :

- **Recherche et recommandations** : Google (suggestions de recherche), Netflix (recommandations de films).
- Santé : Diagnostic assisté par IA, robots chirurgicaux.
- Entreprise: Automatisation des tâches répétitives, analyse des données clients.
- Éducation : Correction automatique, adaptation de l'apprentissage aux besoins des élèves.
- Industrie: Robots industriels collaborant avec les humains.

6. Paradigmes de programmation

- Programmation procédurale : Basée sur des instructions séquentielles.
- **Programmation logique** : Basée sur des règles logiques (ex. Prolog).

Chapitre 2 : Résolution des problèmes en IA

1. Introduction

L'IA cherche à résoudre des problèmes difficiles pour les humains en s'appuyant sur des règles et des stratégies adaptées.

2. Principe de la résolution des problèmes en IA

- L'objectif est de concevoir des méthodes générales applicables à divers types de problèmes.
- Un algorithme doit être indépendant du domaine concerné.
- La description du problème et la stratégie de résolution doivent être séparées.

3. General Problem Solver (GPS)

- Développé en 1959 par Newell et Simon.
- Inspiré de la manière dont les humains résolvent des problèmes.
- Fonctionnement : Réduction des différences entre l'état initial et l'objectif.
- Malgré ses ambitions, il s'est limité à la résolution d'énigmes simples.

4. Types de problèmes en IA

- **Problèmes de satisfaction de contraintes (CSP)**: Trouver une solution respectant des contraintes (ex. Sudoku, séquençage ADN).
- **Problèmes de planification**: Trouver une séquence d'actions menant à un objectif (ex. emploi du temps, transport, jeux comme le Solitaire).

5. Représentation graphique d'un problème

Un problème peut être modélisé sous forme de graphe où :

- Les nœuds représentent des états.
- Les arcs représentent des opérations qui transforment un état en un autre.
- La **solution** est un chemin du nœud initial vers un nœud final.

6. Représentation d'un problème en IA

Un problème est défini par un triplet (I, O, B):

- I : États initiaux.
- **O** : Ensemble des opérations possibles.
- **B**: États finaux (solutions acceptables).

Exercices et Études de cas

1. Problème des 4 reines

- **Objectif**: Placer 4 reines sur un échiquier 4x4 sans qu'elles se menacent.
- Représentation :
 - I : Échiquier vide.
 - o **O**: Placer une reine.
 - o **B**: Disposition correcte des reines.

2. Problème du voyageur de commerce

- **Objectif**: Trouver le chemin le plus court reliant plusieurs villes et revenant au point de départ.
- Représentation :
 - I : Ville de départ.
 - o **O**: Déplacement d'une ville à une autre.
 - B : Toutes les villes sont visitées une seule fois avant de revenir au point de départ.

3. Problème de la traversée de la rivière

- **Objectif**: Faire traverser un fermier, un loup, un mouton et un chou sans incidents.
- Contraintes :
 - o Si le loup et le mouton restent seuls, le loup mange le mouton.
 - o Si le mouton et le chou restent seuls, le mouton mange le chou.
- Représentation :
 - o I: Tout le monde est sur la rive gauche.
 - o **O**: Transport d'un élément à la fois avec le fermier.
 - o **B**: Tout le monde est sur la rive droite sans incident.

Conclusion:

- √ L'IA vise à imiter l'intelligence humaine à travers des algorithmes.
- ✓ Elle repose sur des techniques comme l'apprentissage automatique et le traitement du langage naturel.
- ♥ Contrairement aux algorithmes classiques, l'IA utilise des méthodes heuristiques.
- √ L'IA peut gérer des informations incomplètes et incertaines.
- ✓ Son développement a progressé depuis les années 50, avec une intégration économique à partir des années 80.
- ✓ Les domaines d'application sont variés : santé, entreprise, éducation, industrie.
- √ L'IA cherche à résoudre des problèmes complexes en imitant les stratégies humaines.
- ✓ Le General Problem Solver (GPS) est un modèle initial de résolution de problèmes basé sur la réduction des différences entre état initial et but.
- ✓ Il existe deux grands types de problèmes :
 - Problèmes de satisfaction de contraintes (CSP) : Ex. Sudoku.
 - **Problèmes de planification** : Ex. emploi du temps, transport.
 - ✓ Un problème est modélisé sous forme de graphe (états et transitions).
 - I : État initial.
 - **O**: Opérations possibles.
 - **B** : État final recherché.

Questions-Réponses:

Chapitre 1: Introduction à l'IA

? Qu'est-ce que l'Intelligence Artificielle (IA) ?

✓ C'est la capacité d'un programme informatique à imiter l'intelligence humaine pour réaliser des tâches complexes.

? Quels sont les principaux domaines de l'IA?

✓ Apprentissage automatique, vision par ordinateur, traitement du langage naturel, détection d'anomalies, exploration des connaissances.

? Quelle est la différence entre IA et informatique classique ?

√ L'IA utilise des heuristiques et apprend des données, tandis que l'informatique classique suit des règles strictes et déterministes.

? Quels sont les types d'apprentissage en IA?

✓ Apprentissage supervisé, non supervisé et par renforcement.

? Quels sont quelques domaines d'application de l'IA?

✓ Santé (diagnostic), entreprises (automatisation), éducation (correction automatique), industrie (robots).

? Quels sont les paradigmes de programmation en IA ?

✓ Programmation procédurale et programmation logique.

Chapitre 2 : Résolution des problèmes en IA

? Pourquoi l'IA est-elle utilisée pour résoudre des problèmes ?

✓ Parce que certains problèmes ont trop de possibilités pour être résolus par des méthodes classiques.

? Qu'est-ce que le General Problem Solver (GPS) ?

✓ Un modèle de résolution de problèmes basé sur la réduction des écarts entre l'état initial et l'objectif.

? Quels sont les types de problèmes en IA?

✓ Problèmes de satisfaction de contraintes (CSP) et problèmes de planification.

? Comment représenter un problème en IA ?

✓ Par un triplet (I, O, B):

- I: état initial,
- **O**: opérations possibles,
- B : état final recherché.

? Comment modéliser un problème en IA?

✓ Sous forme de graphe, où les nœuds représentent les états et les arcs les transitions possibles.

? Quels sont quelques problèmes classiques en IA?

✓ Problème des 4 reines, problème du voyageur de commerce, problème de la traversée de la rivière.

Chapitre 3 : Résolution d'un problème par recherche aveugle

1. Introduction aux méthodes non informées (recherche aveugle)

- **Définition**: Une recherche **non informée** ne possède aucune connaissance spécifique du domaine (ex. emplacement de l'objectif, proximité, coût).
- **♦ Principe** : L'algorithme explore systématiquement l'espace de recherche sans information sur la solution.
- Fonctionnement : Il génère tous les états possibles jusqu'à atteindre la solution, ce qui le rend coûteux en mémoire et en temps.
- Autre nom : Recherche aveugle (Blind Search).

2. Algorithme général des méthodes non informées

	L	'a	lgo	ritl	nme	suit	ces	éta	pes	:
--	---	----	-----	------	-----	------	-----	-----	-----	---

- [1] Initialiser l'arbre ou le graphe de recherche avec l'état initial.
- 2 **Vérifier** s'il reste des nœuds à explorer.
- [3] **Sélectionner** un nœud pour l'expansion (selon la stratégie choisie).
- 4 Tester si ce nœud est une solution :

 - X Sinon → générer ses successeurs et les ajouter à la structure de recherche.
 - 5 Répéter jusqu'à trouver la solution ou ne plus avoir de nœuds à explorer.

4. Recherche en largeur (BFS - Breadth First Search)

- **♦ Stratégie**: Explore tous les nœuds d'un niveau avant de passer au suivant.
- **♦ Structure utilisée : File d'attente (FIFO)**
- **♦** Avantages :
- ✓ Garantie de trouver la solution optimale (si coût uniforme).
- ✓ Fonctionne bien pour des solutions proches de l'état initial.
- **♦ Inconvénients** :
- X Consomme beaucoup de mémoire (stocke tous les nœuds).

5. Recherche en profondeur (DFS - Depth First Search)

Stratégie: Suit un chemin jusqu'à la profondeur maximale avant de revenir en arrière.

♦ Structure utilisée : Pile (LIFO)

♦ Avantages :

✓ Moins gourmand en mémoire que BFS.

✓ Peut être plus rapide si la solution est profonde.

♦ Inconvénients :

X Peut explorer des chemins inutiles.

X Ne garantit pas toujours la solution optimale.

X Risque de boucles infinies sur des graphes sans borne.

6. Comparaison BFS vs DFS

Critère	BFS (Largeur)	DFS (Profondeur)
Exploration	Niveau par niveau	En profondeur d'abord
Structure	File d'attente (FIFO)	Pile (LIFO)
Solution optimale	√ Oui (si coût uniforme)	X Pas garanti
Mémoire	➤ Grande (stocke tous les nœuds)	✓ Faible (stocke seulement les branches explorées)
Temps	X Lent si la solution est loin	✓ Plus rapide si la solution est en profondeur
Boucles infinies	✓ Pas de risque	X Risque élevé

Conclusion

- ✓ Les recherches non informées sont utiles quand on n'a pas d'information sur l'objectif.
- ✓ DFS est rapide mais peut être inefficace si mal utilisé.
- ✓ D'autres méthodes comme l'approfondissement itératif ou la recherche bidirectionnelle permettent d'optimiser l'exploration.
- ✓ Méthodes non informées → Fonctionnent sans heuristique, juste en testant tous les états possibles.

- ✓ Algorithme général → Explore les nœuds un par un selon une stratégie jusqu'à trouver la solution.
- \checkmark BFS (Recherche en largeur) \rightarrow Explore niveau par niveau, garantit la solution optimale mais consomme beaucoup de mémoire.
- ✓ DFS (Recherche en profondeur) → Suit un chemin jusqu'au bout avant de revenir en arrière, économique en mémoire mais peut explorer inutilement.
- ✓ DFS limitée → Comme DFS, mais avec une profondeur maximale pour éviter les explorations infinies.
- ✓ Approfondissement itératif → Combine BFS et DFS en augmentant progressivement la profondeur maximale.
- ♥ Coût uniforme → Explore toujours le chemin le moins coûteux en premier.
- ✓ Recherche bidirectionnelle → Recherche simultanée depuis l'état initial et l'état final, plus rapide si applicable.

Questions-Réponses:

? Qu'est-ce qu'une recherche non informée ?

✓ Une méthode de recherche qui ne possède aucune information sur la proximité de la solution et explore tous les états possibles.

? Pourquoi appelle-t-on ces méthodes "recherche aveugle" ?

✓ Parce qu'elles ne tiennent pas compte de l'emplacement de l'objectif et explorent l'espace de recherche de manière exhaustive.

? Quels sont les principaux types de recherche non informée ?

≪ Recherche en largeur (BFS), recherche en profondeur (DFS), recherche en profondeur limitée, approfondissement itératif, recherche par coût uniforme, recherche bidirectionnelle.

? Quelle est la structure de données utilisée pour chaque méthode ?

- \forall BFS \rightarrow File d'attente (FIFO).
- \varnothing **DFS** \rightarrow Pile (LIFO).
- \checkmark Coût uniforme \rightarrow File de priorité.
- \checkmark Bidirectionnelle \rightarrow Deux arbres de recherche.

? Comment fonctionne la recherche en largeur ?

✓ Explore tous les nœuds d'un niveau avant de passer au suivant.

? Quels sont les avantages de BFS ?

✓ Trouve toujours la solution optimale (si le coût des actions est uniforme).

? Quels sont les inconvénients de BFS ?

✓ Consomme beaucoup de mémoire car elle stocke tous les nœuds explorés.

? Comment fonctionne la recherche en profondeur ?

✓ Explore un chemin jusqu'à la profondeur maximale avant de revenir en arrière.

? Quels sont les avantages de DFS?

- ✓ Consomme moins de mémoire que BFS.
- ✓ Peut être plus rapide si la solution est en profondeur.

? Quels sont les inconvénients de DFS ?

- ✓ Ne garantit pas la solution optimale.
- ✓ Peut tomber dans des boucles infinies si le graphe est infini.

? Pourquoi utiliser la recherche en profondeur limitée ?

✓ Pour éviter les boucles infinies et limiter l'exploration à une certaine profondeur.

? Comment fonctionne l'approfondissement itératif ?

✓ Combine BFS et DFS en explorant progressivement des profondeurs croissantes.

? Quels sont les avantages de la recherche par coût uniforme ?

✓ Trouve le chemin le moins coûteux en explorant en priorité les nœuds avec le plus faible coût cumulé.

? Comment fonctionne la recherche bidirectionnelle ?

✓ Démarre la recherche à la fois depuis l'état initial et depuis l'état final, les deux explorations se rejoignent au milieu.