ST2334 Cheatsheet

Chapter 1 Introduction

- P(S) = 1, $P(\emptyset) = 0$
- ${}^{n}C_{r} = n! / r!(n-r)!$
- Equally-likely, frequency

Axioms of Probability

- $0 \le P(A) \le 1$
- Addition principle: sum partitions
- $A \subseteq B$, $P(B) = P(A) P(BA^c)$
- Inclusion-Exclusion Principle
- Mutually-exclusive ⇔ P(A∩B) = 0
- Independence \Leftrightarrow P(A \cap B) = P(A)*P(B)
 - $\circ\,\text{S}$ and \emptyset independent of any event
 - o Complements are pairwise independent
 - O Mutual independence => pairwise independent
- Conditional Probability (reduced sample space)
 P(B|A) = P(B∩A)/P(A), P(S|A) = 1
- Rule of Total Probability
 - \circ B = partition of S, P(A) = $\Sigma_{1, n}$ P(B_i A)
- Bayes' Theorem
 - $\bigcirc P(B_k|A) = P(B_k)*P(A|B_k) / \Sigma P(B_i)*P(A|B_i)$
- Examples: Monty Hall, Bertrand's Paradox, Birthday Problem, Inverse Birthday Problem

Chapter 2 Random Variables

- X: S $\rightarrow \mathbb{R}$ (assigns number to each outcome)
- Collection of $(x_i, f(x_i)) \rightarrow \text{probability distribution}$

Discrete RV: (pmf/ pf), Σ f(x_i) = 1 Continuous RV: (pdf) f(x) \geq 0, = $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx = 1$

Cumulative Distribution Function

- $F(x) = P(X \le x)$, non-decreasing
- [D] $F(x) = \sum_{t \le x} P(X = t)$
- [C] $F(x) = \int_{-\infty, x} f(t) dt$, f(x) = d/dx(F(x))

Mean (weighting avg)

- [D] $\mu_X = E(X) = \sum_{x_i} x_i P(X = x_i)$
- [C] $\mu_X = \int_{-\infty}^{\infty} x f(x) dx$
- Properties
 - \circ E(a +bX) = Σ (a + bx)P(X=x) = a + bE(X)
 - $\circ E[g(x)] = \Sigma / \int g(x) f_x(x)$
 - \circ kth moment: g(x) = x^k, E[g(x)] = E(X^k)

Variance

- $g(x) = (x \mu_X)^2$, $V(X) = E(X^2) = [E(X)]^2$
- $V(X) = 0 \Rightarrow P(X = \mu_X) = 1$
- $V(a + bX) = b^2 V(X)$
- $\sigma_x = SD(X) = \sqrt{V(X)}$

Chebyshev's Inequality

- Estimating distribution using E(X) and V(X)
- $P(|X \mu| > k\sigma) \le 1/k^2$, $P(|X \mu| \le k\sigma) \ge 1 1/k^2$

Chapter 3 Joint Distributions

- (X, Y) is a 2D RV
- [D] (joint pmf) f_{X,Y} (x, y) = P(X = x, Y = y)
 Range is finite/ countably inf (draw table)
- [C] (joint pdf) $P((X, Y) \in D) = \iint f_{X,Y}(x, y) dy dx$

Marginal Distribution: $f_X(x)$ or $f_Y(y)$ alone ○ Σ or \int over the other variable

Conditional Distributions

- $\circ f_{X|Y}(x|y) = f_{X,Y}(x,y) / f_{Y}(y), f_{Y}(y) > 0 \text{ (non-zero)}$
- $\circ f_{Y}(y) > 0$,
- $f_{X,Y}(x, y) = f_{X|Y}(x|y) * f_{Y}(y)$
- o For fixed y,
- $f_{X|Y}(x|y) \ge 0$
- $\circ [D] \Sigma_x f(x_i) = 1,$
- $[C] \int_{-\infty, \infty} f_{X|Y}(x|y) dx = 1$

Independent RVs

- $f_{X,Y}(x, y) = f_X(x) * f_Y(y), \forall x, y$
- $f_{X|Y}(x|y) = f_X(x)$, $\forall x$ x has same distribution $\forall y$
- Dependence: $f_{X,Y}(x, y) = 0$, but $f_X(x) > 0 ^ f_Y(y) > 0$

Expectation and Covariance

- $E[g(X, Y)] = \Sigma \Sigma / \iint all g(x, y) f_{X,Y}(x, y)$
- Covariance $g(X, Y) = (X \mu_X)^*(Y \mu_Y)$
- $\circ \text{Cov}(X, Y) = E[(X \mu_X)^*(Y \mu_Y)] = E(XY) \mu_X \mu_Y$
- \circ Cov(X, X) = V(X)
- \circ Cov(aX + b, cX + d) = ac*Cov(X, Y)
- $\circ V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab*Cov(X, Y)$
- \circ Independent => Cov(X, Y) = 0
- Correlation Coefficient:
- $\rho_{X,Y} = \text{Cov}(X, Y) / \sqrt{V(X)V(Y)}, -1 \le \rho_{X,Y} \le 1$

Chapter 4 Common Probability Distributions

Uniform

- [Continuous] X ~ U(a, b)
- $f_x(x) = 1/(b-a)$ within range
- E(X) = (a+b)/2, $V(X) = (b-a)^2/12$
- $F_X(x) = 0 \rightarrow (x-a)/(b-a) \rightarrow 1$

Binomial: $f_x(x) = {}^{n}C_x * p^{x}(1-p)^{1-x}, x = \mathbb{N}_0$

- $X \sim B(n, p), E(X) = np, V(X) = np(1-p)$
- # of successful independent Bernoulli trials
- Bernoulli: $f_x(x) = p^x(1-p)^{1-x}$, x = 0 or 1
- Geometric: # trials for 1 success
- \circ Memoryless: P(X > n + k | X > n) = P(X > k)
- Negative Binomal: $f_x(x) = {}^{x-1}C_{k-1} * p^k q^{x-k}, x = k, k+1...$ • # trials for k success, Geom(p) = NB(1, p)
 - \circ E(X) = k/p, V(X) = k(1-p)/p²

Poisson: # success in interval

- Intervals independent, p(success) ∝ interval size
- $f_x(x) = e^{-\lambda} \lambda^x / x!$, $x = \mathbb{N}_0$
- X ~ Poisson(λ), E(X) = V(X) = λ
- Approximates Binomial as $n \rightarrow \infty$ and $p \rightarrow 0$ $0 \le 20$, $p \le 0.05$ or $n \ge 100$, $np \le 10$
- For large p, let q = 1-p
- $\circ \lambda$ = np, fairly constant as n $\rightarrow \infty$

Exponential: $f_x(x) = \lambda e^{-\lambda x}$, x > 0, $\lambda > 0$

- $X \sim Exp(\lambda)$, $E(X) = 1/\lambda$, $V(X) = 1/\lambda^2$
- Memoryless, models duration btwn successes

Normal: symmetric and asymptotic

- Max of $1/(\sigma \sqrt{2\pi})$ achieved at $x = \mu$
- Standardisation: Z ~ N(0,1), Y = aZ + b, Y ~ N(b, a²)
- Binomial approximation: n $\rightarrow \infty$, p $\rightarrow 0.5$
 - o np > 5 and n(1-p) > 5
 - o Apply continuity correction of 0.5

Chapter 5 Sampling Distributions

- Statistics from samples are RVs, no unknowns
- Sample Mean
- \circ E(\overline{X}) = E(X), V(\overline{X}) = V(X)/n
- LLN: $P(|\overline{X} \mu| > \epsilon) \rightarrow 0$ as $n \rightarrow \infty$
- CLT: $\overline{X} \sim N(\mu, \sigma^2/n)$ approximately, for $n \ge 30$
 - Large n not needed for approx. normal X
- Difference of Sample Means of 2 Populations
 - o Two independent samples, n ≥ 30
- $\circ \overline{X} \overline{Y} \sim N(\mu_1 \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$
- χ²-Distribution
 - $\circ Y \sim \chi^{2}(n)$, E(Y) = 2, V(Y) = 2n
 - $\circ Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2), Y_1 + Y_2 \sim \chi^2(n_1 + n_2)$
- \circ Z² \sim $\chi^2(1)$
- \circ Sample Variance from $X \sim N(\mu, \sigma^2)$
 - $S^2 = \Sigma(X_i \overline{X})^2 / (n-1), E(S^2) = \sigma^2$
- U = (n-1)S²/ $\sigma^2 \sim \chi^2$ (n-1), used later in F
- t-Distribution
 - \circ Unknown population σ , use S to estimate
- T = Z/ $\sqrt{(U/n)}$ ~ t(n), where U ~ $\chi^2(n)$
- \circ T \sim t(n), E(T) = 0, V(T) = n/(n-2)
- \circ T = $(\overline{X}-\mu)/S \sqrt{n} \sim t(n-1)$
- F-Distribution
 - o Ratio of two estimates of variance
 - \circ F = (U/n₁) / (V/n₂) \sim F(n₁, n₂)

Chapter 6 Estimation based on ~N

Point Estimation

- $\hat{\theta}$ estimates unknown parameter θ
- Unbiased: $E(\hat{\theta}) = \theta$

Interval Estimation

- Confidence Interval with (1- α) confidence: $\circ P(\hat{\theta}_1 < \theta < \hat{\theta}_{11}) = 1 - \alpha$
- $\bullet \ Estimating \ \mu_X$
- Known σ , X ~ N or large n: $\overline{X} \pm z_{\alpha/2} \sigma / \sqrt{n}$
- Given error margin e: $n \ge (z_{\alpha/2} \sigma/e)^2$
- Unknown σ , X ~ N and small n: $\overline{X} \pm t_{n-1;\alpha/2}$ S/ $\sqrt{1}$ n
- Unknown σ , X ~ N and large n: $\overline{X} \pm z_{\alpha/2}$ S/ \sqrt{n}
- Estimation μ_1 μ_2
- Known $\sigma_1 \neq \sigma_2$, X_1 , X_2 ~N or large n
- $(\overline{X}_1 \overline{X}_2) \pm z_{\alpha/2} \sqrt{(\sigma_1^2/n_1 + \sigma_2^2/n_2)}$
- Unknown $\sigma_1 \neq \sigma_2$, large n: σ_1 , $\sigma_2 \rightarrow S_1$, S_2
- \circ Unknown $\sigma_1 = \sigma_2$, X_1 , $X_2 \sim N$ and small n
- $S_p = [(n_1-1)S_1^2 + (n_2-1)S_2^2]/(n_1 + n_2 2)$
- $(\overline{X}_1 \overline{X}_2) \pm t_{n1+n2-2;\alpha/2} S_p \sqrt{(1/n_1 + 1/n_2)}$
- \circ Unknown σ_1 = σ_2 , large n: $t_{n1+n2-2;\alpha/2} \rightarrow z_{\alpha/2}$
- Paired data, estimating μ_D
- Find D, S_D^2 , T = (\overline{D} μ_D)/ $S_D \sqrt{n} \sim t_{n-1}$
- Small n: $\overline{D} \pm t_{n-1:\alpha/2} S_D / \sqrt{n}$
- Large n: $t_{n1+n2-2;\alpha/2} \rightarrow z_{\alpha/2}$
- Estimating σ
- \circ X \sim N, Known μ : $[(X_i \mu)/\sigma]^2 \sim \chi^2(1)$
- ($\Sigma(X_i \mu)^2 / \chi^2_{n;\alpha/2}$, $\Sigma(X_i \mu)^2 / \chi^2_{n;1-\alpha/2}$)
- \circ X ~ N, Unknown μ : (n-1)S²/ σ ² ~ χ ²(n-1)
 - $\Sigma(X_i \mu)^2 \rightarrow (n-1)S^2$, $\chi^2_{n;\alpha/2} \rightarrow \chi^2_{n-1;\alpha/2}$
- Estimating $(\sigma_1/\sigma_2)^2$, using F-distribution • $(S_1/S_2)^2/F_{n_1-1;n_2-1;\alpha/2}$, $(S_1/S_2)^2/F_{n_2-1;n_1-1;\alpha/2}$)

Chapter 7 Hypothesis Testing based on ~N

- Null hypothesis vs. alternative hypothesis
- One-tailed vs. two-tailed
 > check right region, < check left region
- Level of significance α P(reject H₀|H₀ true)
- Power 1- β P(reject $H_0 \mid H_0$ false)
- Critical value → critical region
- p-value: observed significance level

Hypothesis Test on Mean

- H_0 : $\mu = k$
- Known σ , X $^{\sim}$ N or large n (CLT): $(\overline{X} \mu)/\sigma \sqrt{n} \sim Z$
- Unknown σ , X $^{\sim}$ N; (\overline{X} μ)/S \sqrt{n} $^{\sim}$ t_{n-1}
- Using CI: X̄ → CI for μx, see if H₀ falls in CI
 Only for 2-sided tests

Hypothesis Test on Difference of Two Means

- Independent Samples
- \circ H₀: $\mu_1 \mu_2 = \delta_0$
- \circ Known σ_1 , σ_2 , X_1 , X_2 $^{\sim}$ N or large n
 - $(\overline{X}_1 \overline{X}_2) \delta_0 / \sqrt{(\sigma_1^2/n_1 + \sigma_2^2/n_2)} \sim N(0, 1)$
- \circ Unknown σ_1 , σ_2 , large n: σ_1 , $\sigma_2 \rightarrow S_1$, S_2
- \circ Unknown σ_1 , σ_2 , X_1 , X_2 $^\sim$ N, small n
- $[(\overline{X}_1 \overline{X}_2) \delta_0]/[S_p \sqrt{(1/n_1 + 1/n_2)}] \sim t_{n_1+n_2-2}$
- Paired samples (H_0 : $\mu_D = \mu_{D,0}$)
 - D ~ N, small n:
- $(\overline{D} \mu_{D,0})/S_D \sqrt{n} \sim t_{n-1}$
- Large n:
- $(\overline{D} \mu_{D,0})/S_D \sqrt{n} \sim N(0, 1)$

Hypothesis Test on Variance

- H_0 : $\sigma^2 = \sigma_0^2$,
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$

Hypothesis Test on Ratio of Variances

- H_0 : $\sigma_1^2 = \sigma_2^2$,
- $(S_1/S_2)^2 \sim F(n_1-1, n_2-1)$