Complexities

Array

Linked List to both head and toil

Enhanced Linked Lists give pointers

Sorted Append Delete (+shift) Binary Search

Insert

Insert (Enhanced) $\mathcal{O}(1)$

Delete (+shift) $\mathcal{O}(n)$

Traverse(Search) $\mathcal{O}(n)$

Append

Tree/Heap

Heapify/Heap sort

Top Down $\mathcal{O}(n \cdot log_2 n)$ Bottom up $\mathcal{O}(n)$

For the T(n) for the number of sinks run by Heapify, the sequence is:

$$T(n)=rac{n}{2}\cdot 0+rac{n}{4}\cdot 1+rac{n}{8}\cdot 2+\cdots +1\cdot h$$

Stacks

Insert

Delete

Push $\mathcal{O}(1)$

Pop $\mathcal{O}(1)$

Queue

Enqueue $\mathcal{O}(1)$ Dequeue $\mathcal{O}(1)$

Big O no

 $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0, \infty \Rightarrow f \in \Theta(g)$ $\lim_{n \to \infty} \frac{f(n)}{g(n)} \neq \infty \Rightarrow f \in O(g)$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0 \Rightarrow f \in \Omega(g)$$

worst case $f(n) \in \mathcal{O}(g(n)): f(n) \leq Cg(n)$

best case $f(n) \in \Omega(g(n)) : f(n) \geq Cg(n) \ \forall n > n_0$ average case $f(n) \in \Theta(g(n)): C_1g(n) \leq f(n) \leq C_2g(n)$

Heaps

These are the *only* conditions:

Max Heap

Min Heap

36

 $parent \ge child$

Tree representation

 $parent \leq child$

Height and Size

 $N = 2^{h(T)+1} - 1$

$$h(T) = egin{cases} -1 \ 1 + \max(h(T_{ ext{left}}), h(T_{ ext{right}})) \end{cases}$$

if T is null otherwise if T is null otherwise

rees

Imagine a flag attached to each node:

To traverse the tree, collect the flags:

Number of nodes

ABDECEG **LNR**

DEBFGCA LRN

Strict Complete

Array, node at index i:

$$egin{aligned} \operatorname{left}(i) &= 2i+1 \ \operatorname{right}(i) &= 2i+2 \ \operatorname{parent}(i) &= \left\lfloor rac{i-1}{2}
ight
floor \end{aligned}$$

Each node has 0

Balanced

or 2 children

Each before the

last level is filled

d = Depth of left subtree - Depth of right subtree = 0 or 1

Heap Sort

Top Down (siftDown) Approach:

heapify and repeat until sorted

Bottom up (siftUp)

Pick last unsorted node, heapify up. Repeat until sorted.

