ZeRO (Zero Redundancy Optimizer)

목차

- 1. Problem to solve
- 2. Background
 - a. Transformer memory
- 3. Solution
 - a. ZeRO-DP
 - b. ZeRO-R
- 4. Experiments
- 5. Results

Problem to solve

- Large model을 학습하는 다른 방법에 불필요한 redundancy가 있음

Points to learn

- transformer model의 memory(training) 요구량 계산 방법
- DP,MP,PP에서 redundant memory 사용과 비효율성
- 이 논문에서 제안하는 ZeRO-DP, ZeRO-R

Background

- - model state
 - residual state로 나뉨
- model state ⊢
 - model parameter
 - gradient
 - optimizer state
- residual state는
 - activation
 - temporary buffer
 - unusable memory fragments

Background(Model state memory)

- parameter와 gradient는 16bit으로 각각 n_params * 2byte의 size를 가짐
- Optimizer state는 n_params * 12byte의 size를 가짐
 - momentum(time averaged momentum) 32bit
 - variance(variance of the gradients) 32bit
 - parameters 32bit

Background(Residual state memory)

Activation

- seq len 1K, 32 batch, 1.5B model에 대해서 60GB정도 필요함
 - activation recomputation을 통해 약 8GB정도로 줄일 수 있음

Temporary buffers

- allreduce와 같은 comm연산 할 때 buffer에 flatten할 때 필요한 메모리
- 1.5B model에 대해서 32bit buffer 할당 시 6GB정도 필요함

Memory fragmentation

- contiguous memory가 부족한 현상.
- large model training시 30%정도의 memory 여유가 있음에도 불구하고 out of memory 발생

Background(DP,MP,PP 단점)

DP

- model state를 모든 GPU에 copy해야 함. redundant

MP

- model을 vertically 쪼개는거라서 communication overhead가 크고, 연구자들이 코드로 적용하기 많이 어려움

PP

- bubble을 없애기 위해서 DP를 충분히 추가해줘야 함.

Background(PP의 bubble)

Solution(ZeRO-DP)

Figure 1: Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations. Ψ denotes model size (number of parameters), K denotes the memory multiplier of optimizer states, and N_d denotes DP degree. In the example, we assume a model size of $\Psi = 7.5B$ and DP of $N_d = 64$ with K = 12 based on mixed-precision training with Adam optimizer.

Solution(ZeRO-DP)

DeepSpeed + ZeRO

Experiments

DP	7.5B Model (GB)			128B Model (GB)			1T Model (GB)		
	P_{os}	P_{os+g}	P_{os+g+p}	Pos	P_{os+g}	P_{os+g+p}	P_{os}	P_{os+g}	P_{os+g+p}
1	120	120	120	2048	2048	2048	16000	16000	16000
4	52.5	41.3	30	896	704	512	7000	5500	4000
16	35.6	21.6	7.5	608	368	128	4750	2875	1000
64	31.4	16.6	1.88	536	284	32	4187	2218	250
256	30.4	15.4	0.47	518	263	8	4046	2054	62.5
1024	30.1	15.1	0.12	513	257	2	4011	2013	15.6

Table 1: Per-device memory consumption of different optimizations in ZeRO-DP as a function of DP degree . Bold-faced text are the combinations for which the model can fit into a cluster of 32GB V100 GPUs.

Results

Figure 2: ZeRO training throughput and speedup w.r.t SOTA baseline for varying model sizes. For ZeRO, the MP always fit in a node, while for baseline, models larger than 40B require MP across nodes.

Results

MP	GPUs	Max	Theoretic	Measured Model Size			
		Baseline	P_{os}	P_{os+g}	P_{os+g+p}	Baseline	$ZeRO$ -DP (P_{os})
1	64	2B	7.6B	14.4B	128B	1.3B	6.2B
2	128	4B	15.2B	28.8B	256B	2.5B	12.5B
4	256	8B	30.4B	57.6B	0.5T	5B	25B
8	512	16B	60.8B	115.2B	1T	10B	50B
16	1024	32B	121.6B	230.4B	2T	20B	100B

Table 2: Maximum model size through memory analysis (left) and the measured model size when running with ZeRO-OS (right). The measured model size with Pos matches the theoretical maximum, demonstrating that our memory analysis provides realistic upper bounds on model sizes.