FICHE METHODE: LES INCERTITUDES DE MESURE

1. Ecrire le résultat d'une mesure :

L'étude des incertitudes d'une mesure permettent d'évaluer la qualité de la mesure. Une mesure ne peut jamais conduire à une valeur vraie, rigoureusement certaine, mais seulement à des valeurs approchées. On parle de variabilité d'une mesure. Pour évaluer la variabilité d'une mesure, on utilise une grandeur appelée incertitude-type. Elle quantifie le doute qu'il existe entre le résultat de cette mesure et la valeur vraie.

L'incertitude type définit un intervalle dans lequel la valeur « vraie » se trouve probablement. Elle est généralement noté u et elle est arrondie par excès en conservant généralement 1 chiffre significatif. Le résultat de la mesure est alors arrondi à la même décimale. On note le résultat de la mesure sous la forme : $x = x_{mes} \pm u(x_{mes})$

L'incertitude fournit un intervalle de valeurs [x - u(x); x + u(x)] dans lequel la valeur vraie (mesure exacte, jamais accessible) se trouve avec une forte probabilité.

2. Valeur mesurée et valeur de référence :

Lorsque l'on dispose du résultat x_{mes} d'une mesure et de son incertitude-type $u(x_{mes})$, il est possible de comparer le résultat à la valeur de référence x_{ref} . Cette valeur peut être par exemple prévue théoriquement, indiquée par le fabriquant ou extraite de travaux scientifiques. Pour qu'une mesure expérimentale soit compatible à une valeur de référence il faut que celle-ci se situe dans l'intervalle de confiance à 95% c'est-à-dire :

$$\begin{aligned} x_{mes} - 2u(x_{mes}) &\leq x_{ref} \leq x_{mes} + 2u(x_{mes}) \\ \Leftrightarrow -2u(x_{mes}) &\leq x_{ref} - x_{mes} \leq 2u(x_{mes}) \\ \Leftrightarrow &|x_{ref} - x_{mes}| \leq 2u(x_{mes}) \\ \Leftrightarrow &\frac{|x_{ref} - x_{mes}|}{u(x_{mes})} \leq 2 \end{aligned}$$

En pratique on calcule $\frac{|x_{mes}-x_{ref}|}{u(x_{mes})}$ si cette valeur est inférieure ou égale à 2 on pourra dire que la valeur mesurée et la valeur de référence sont compatibles avec un niveau de confiance de 95 %. Sinon, il faudra donner une explication.

3. Deux types d'incertitudes :

a. Incertitude de type A:

Lorsque l'on réalise plusieurs mesures d'une même grandeur, il est possible dans calculer la meilleure estimation du résultat ainsi que la valeur de l'incertitude type associée.

b. Incertitude de type B:

Dans le cas d'une mesure unique, de nombreuses sources d'erreurs peuvent être cumulées notamment des erreurs dues à l'expérimentateur, à l'appareil de mesure ou encore aux conditions expérimentales.

Quelques exemples:

Cas	Incertitude-type				
Lecture simple sur un appareil numérique sans notice (voltmètre, balance, etc) Ou lecture simple sur un outil de mesure analogique (thermomètre analogique, éprouvette graduée, etc)	$u=\frac{g}{\sqrt{12}}$ g étant l'écart entre 2 valeurs affichées sur l'appareil résolution Si la lecture sur l'appareil de mesure n'est pas stable il vous faudra évaluer approximativement l'incertitude.				
Lecture double sur une échelle graduée (burette, règle, oscilloscope, etc)	$u=rac{g}{\sqrt{6}}$ g étant l'écart entre 2 graduations				
Indication de type ± t donnée par le constructeur (verrerie)	$u=rac{t}{\sqrt{3}}$ t étant la tolérance donnée par le constructeur				
Erreur de mise en œuvre expérimentale	A évaluer de façon cohérente				
Ces incertitudes-types peuvent s'	ajouter selon : $u(x)^2 = u(x_1)^2 + u(x_2)^2$				

4. Les incertitudes composées :

Lorsqu' une grandeur est déterminée par un calcul à partir d'autres grandeurs mesurées; son incertitude-type se calcule comme :

La grandeur X se calcule	Calcul de l'incertitude-type				
$X = A \pm B$	$u(X)^2 = u(A)^2 + u(B)^2$				
$X = \frac{A \times B}{C}$	$\left(\frac{u(X)}{X}\right)^2 = \left(\frac{u(A)}{A}\right)^2 + \left(\frac{u(B)}{B}\right)^2 + \left(\frac{u(C)}{C}\right)^2$				

Applications:

A) Un élève lit une valeur de tension électrique de 9,00 V sur un voltmètre numérique.

- 1. Calculez l'incertitude de lecture $u(U_R)$
- 2. Ecrire le résultat sous la forme $U = U_{mesuré} \pm u(U_B)$
- B) 10 binômes effectuent cette mesure avec les mêmes voltmètres.

U (en V)	9,41	9,12	8,59	8,98	9,68	8,56	8,69	9,12	8,12	9,36
UA	1	2	3	4	5	6	7	8	9	10

A l'aide de la calculatrice, déterminer l'incertitude de type A en jeu puis écrire le résultat de mesure sous la forme $U = \bar{u} \pm u(U_A)$

C) Sachant que l'incertitude type ici provient à la fois de la lecture sur le voltmètre et la répétition des mesures, la véritable incertitude dépend des 2 précédentes : $u(U) = \sqrt{u(U_A)^2 + u(U_B)^2}$

Calculez u(U) et écrire sous sa forme finale le résultat de la mesure.