Pregunta 1 (3 puntos)

En el espacio \mathcal{H} de las funciones reales derivables y con derivada continua en [0,1] se define

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}$$

$$(f, g) \longmapsto \langle f, g \rangle = f(0)g(0) + \int_0^1 f'(t)g'(t) dt$$

- a) Demuestre que $\langle \cdot, \cdot \rangle$ es un producto interno en \mathcal{H} .
- b) Sea g la función constante 1, esto es, $g(t) = 1 \ \forall t \in [0,1]$. Determine el subespacio ortogonal a g.
- c) Sea $F = \{ f \in \mathcal{H} : f(0) = 0 \}$. Determine F^{\perp} .

Pregunta 2 (2,5 puntos) (1 + 1,5)

En el espacio de sucesiones reales ℓ^2 , sea el conjunto:

$$C = \left\{ \left\{ x_n \right\}_{n=1}^{\infty} \in \ell^2 \colon x_n \ge 0 \text{ para todo } n \right\}$$

- 1. Demuestre que C es un subconjunto convexo y cerrado de ℓ^2 .
- 2. Demuestre que la proyección P_C sobre C es:

$$P_C(\{x_1, x_2, \dots, x_n, \dots\}) = \{ \max\{x_1, 0\}, \max\{x_2, 0\}, \dots, \max\{x_n, 0\}, \dots \}.$$

Pregunta 3 (2 puntos) Sean \mathcal{H} un espacio prehilbertiano complejo ($\mathbb{K} = \mathbb{C}$) y $T \colon \mathcal{H} \to \mathcal{H}$ un operador lineal. Demuestre que si $\langle T(x), x \rangle = 0$ para todo $x \in \mathcal{H}$, entonces T(x) = 0 para todo $x \in \mathcal{H}$.

Pregunta 4 (2,5 puntos)

Sea en
$$\ell^2$$
 la sucesión $\{\mathbf{v}_n\}_{n\geq 1}$ dada por $\mathbf{v}_n = \{\underbrace{0,0,\ldots,0}^{2(n-1)\text{ términos}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,\ldots\}.$

- a) Demuestre que $\{\mathbf{v}_n\}_{n\geq 1}$ es un sistema ortonormal de ℓ^2 .
- b) Sea $\mathbf{x} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. Compruebe si $\mathbf{x} = \sum_{n=1}^{\infty} \langle x, \mathbf{v}_n \rangle \mathbf{v}_n$. ¿Qué se puede concluir sobre $\{\mathbf{v}_n\}_{n\geq 1}$?