Analyse Numérique

7 mai 2020 Exercices – Série 24 Questions marquees de à rendre le 14 mai 2020 avant 13h00

1. (*, tout l'exercice) A-stabilité de la méthode theta

On rappelle le théorème suivant vu en cours : Si une méthode de Runge-Kutta avec fonction de stabilité R(z) vérifie

- $|R(iy)| \le 1$ pour tout $y \in \mathbb{R}$ (propriété appelée I-stabilité)
- R(z) n'a pas de pôle dans $\mathbb{C}_{-} = \{z \in \mathbb{C} ; \Re z \leq 0\}$

alors la méthode est A-stable.

On considère la méthode théta définie par :

$$y_{n+1} = y_n + (1 - \theta)hf(t_n, y_n) + \theta hf(t_{n+1}, y_{n+1}),$$

où $\theta \in [0, 1]$.

- (a) (0.50 points) Montrer que la méthode théta est bien une méthode de Runge-Kutta et donner son tableau de Butcher.
- (b) (0.25 points) Quelle méthode retrouve-t-on pour $\theta = 1/2$?
- (c) (0.75 points) Montrer que la méthode est I-stable si et seulement si $\theta \geq 1/2$. Indication: Rappelez-vous que pour $z_1, z_2 \in \mathbb{C}$, on $a \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ et observez que $|1 - \theta iy|^2 = 1 + \theta^2 y^2$.
- (d) (0.50 points) En utilisant le théorème rappelé plus haut, en déduire une condition suffisante sur θ pour que la méthode soit A-stable. Montrer que cette condition est nécessaire. Indication: La condition $|R(z)| \leq 1$ doit être vraie sur tout \mathbb{C}_- et donc pour des z arbitrairement grands en module.

2. (Valeurs propres du Laplacien discret)

On considère la matrice $N \times N$

$$A = (N+1)^2 \begin{pmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & & \end{pmatrix}$$

utilisée pour la discrétisation du Laplacien en 1D $(\Delta u := \frac{\partial^2 u}{\partial x^2}(x,t))$ avec conditions aux bords de Dirichlet u(0,t)=u(1,t)=0 sur une grille de points à pas constant $\Delta x=1/(N+1)$. Le but est de montrer que les valeurs propres de A sont

$$\lambda_k = (N+1)^2 \left(2\cos\left(\frac{k\pi}{N+1}\right) - 2 \right), \qquad 1 \le k \le N,$$

avec les vecteurs propres associés $v^{(k)} = \left(v_1^{(k)}, \dots, v_N^{(k)}\right)^T$ définis par

$$v_j^{(k)} = C \sin \left(\frac{jk\pi}{N+1}\right), \qquad 1 \le j, k \le N.$$

(a) On pose la matrice suivante

$$B := (N+1)^{-2}A + 2Id = \begin{pmatrix} 0 & 1 & & & \\ 1 & 0 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & & \end{pmatrix}.$$

Montrer que pour chaque valeur propre μ de B, les composantes du vecteur propre associé $v=(v_1,\ldots,v_N)^T$ satisfont la relation de récurrence

$$v_0 = 0,$$
 $v_{j-1} + v_{j+1} = \mu v_j,$ $j = 1, 2, ..., N,$ $v_{N+1} = 0.$

En déduire que v peut se mettre sous la forme $v_j = C\left(\zeta_1^j - \zeta_2^j\right)$ où

$$\zeta_1 + \zeta_2 = \mu$$
, $\zeta_1 \zeta_2 = 1$ et $\left(\frac{\zeta_1}{\zeta_2}\right)^{N+1} = 1$.

(b) En déduire les valeurs possibles de ζ_1 et ζ_2 , puis celles de μ . Conclure sur les valeurs et vecteurs propres de A.

Indication : les racines (N+1)-ième de l'unité sont exactement les $\exp\left(\frac{2ik\pi}{N+1}\right),\ 0\leq k\leq N.$

- (c) Vérifier le théorème de Gerschgorin avec la matrice A.
- (d) Quel est le conditionnement $\kappa = ||A|| \cdot ||A^{-1}||$ de la matrice A? Que se passe-t-il quand N tend vers l'infini? Que peut-on en déduire sur la résolution numérique par différences finies de $\Delta u = f$ sur [0,1] avec u(0) = u(1) = 0?