WHAT IS CLAIMED IS:

1. A public-key cryptographic scheme comprising: a key generation step of generating a secretkey:

$$\bullet x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$$

and a public-key:

• G, G': finite (multiplicative) group $G \subseteq G'$

• q: prime number (the order of G)

• $g_1, g_2 \in G$

 $\bullet \ c = g_1^{x_1}g_2^{x_2}, \ d_1 = g_1^{y_{11}}g_2^{y_{12}}, \ d_2 = g_1^{y_{21}}g_2^{y_{22}}, \ h = g_1^z,$

 $ullet \pi: X_1 imes X_2 imes M \longrightarrow G':$ one-to-one mapping

• $\pi^{-1}: \operatorname{Im}(\pi) \longrightarrow X_1 \times X_2 \times M$

where the group G is a partial group of the group G', X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \quad (\forall \alpha_1 \in X_1, \ \forall \alpha_2 \in X_2)$$

where M is a plaintext space;

a ciphertext generation and transmission step of selecting random numbers $\alpha_1{\in}X_1$, $\alpha_2{\in}X_2$, $r{\in}Zq$ for a plaintext m (m \in M), calculating:

$$u_1 = g_1^r$$
, $u_2 = g_2^r$, $e = \pi(\alpha_1, \alpha_2, m)h^r$, $v = g_1^{\alpha_1} c^r d_1^{\alpha r} d_2^{mr}$

where α = $\alpha_{_1}$ $|\mid$ $\alpha_{_2},$ and transmitting $(u_{_1},~u_{_2},~e,~v)$ as a ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using

the secret key, α'_1 , α'_2 , m' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $m' \in M$) which satisfy:

$$\pi(\alpha_1',\alpha_2',m')=e/{u_1}^z$$

and if the following is satisfied:

$$g_1^{\alpha'_1}u_1^{x_1+\alpha'y_{11}+m'y_{21}}u_2^{x_2+\alpha'y_{12}+m'y_{22}}=v$$

outputting m' as the deciphered results (where $\alpha'=\alpha'_1$ $||\alpha'_2\rangle$, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

2. A public-key cryptographic scheme comprising: a key generation step of generating a secretkey:

$$\bullet\ x_1,x_2,y_{11},y_{12},y_{21},y_{22},z\in\mathbb{Z}_q$$

and a public-key:

- p, q: prime number (q is a prime factor of p-1)
- $\bullet \ g_1, g_2 \in \mathbb{Z}_p : \operatorname{ord}_p(g_1) = \operatorname{ord}_p(g_2) = q$
- $\bullet \ c = g_1^{x_1} g_2^{x_2} \bmod p, \ d_1 = g_1^{y_{11}} g_2^{y_{12}} \bmod p, \ d_2 = g_1^{y_{21}} g_2^{y_{22}} \bmod p, \ h = g_1^z \bmod p,$
- k_1, k_2, k_3 : positive constant $(10^{k_1+k_2} < q, 10^{k_3} < q, 10^{k_1+k_2+k_3} < p)$

a ciphertext generation and transmission step of selecting random numbers $\alpha=\alpha_1\mid\mid\alpha_2\mid\mid\alpha_1\mid=k_1,\mid\alpha_2\mid$ = k_2) for a plaintext m (|m| = k_3 where |x| is the number of digits of x), calculating:

$$\widetilde{\mathbf{m}} = \alpha || K$$

selecting a random number $r \in Zq$, calculating:

 $u_1 = {g_1}^r \bmod p, \quad u_2 = {g_2}^r \bmod p, \quad e = \stackrel{\sim}{m} \ h^r \bmod p, \quad v = {g_1}^{\alpha_1} c^r {d_1}^{\alpha r} {d_2}^{mr} \bmod p$

and transmitting (u_1, u_2, e, v) as a ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , m' ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$, $|m'| = k_3$) which satisfy:

$$\alpha_1'||\alpha_2'||m'=e/u_1^z \bmod p$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + m' y_{21}} u_2^{x_2 + \alpha' y_{12} + m' y_{22}} \equiv v \pmod{p}$$

outputting m' as the deciphered results (where $\alpha'=\alpha'_1$ || α'_2), whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

- 3. A public-key cryptographic scheme according to claim 1, wherein the public-key is generated by a receiver and is made public.
- 4. A public-key cryptographic scheme according to claim 1, wherein in said ciphertext transmission step, the random numbers $\alpha_1{\in}X_1$, $\alpha_2{\in}X_2$ and $r{\in}Zq$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r$$
, $u_2 = g_2^r$, h^r , $g_1^{\alpha_1} c^r d_1^{\alpha_r}$

5. A public-key cryptographic scheme according to claim 2, wherein in said ciphertext transmission

step, the random numbers α_1 , α_2 ($|\alpha_1|=k_1$, $|\alpha_2|=k_2$), and $r{\in} Zq$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r \mod p$$
, $u_2 = g_2^r \mod p$, $h^r \mod p$, $g_1^{\alpha_1} c^r d_1^{\alpha_r} \mod p$

- 6. A cryptographic communication method comprising:
- a key generation step of generating a secretkey:
 - $\bullet \ x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$

and a public-key:

- G, G': finite (multiplicative) group $G \subseteq G'$
- q: prime number (the order of G)
- \bullet $g_1,g_2\in G$
- $c = g_1^{x_1} g_2^{x_2}$, $d_1 = g_1^{y_{11}} g_2^{y_{12}}$, $d_2 = g_1^{y_{21}} g_2^{y_{22}}$, $h = g_1^{z}$.
- $\pi: X_1 \times X_2 \times M \longrightarrow G'$: one-to-one mapping
- $\bullet \pi^{-1}: \operatorname{Im}(\pi) \longrightarrow X_1 \times X_2 \times M$
- E: symmetric encipher function

where the group G is a partial group of the group G', X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \qquad (\forall \alpha_1 \in X_1, \ \forall \alpha_2 \in X_2)$$

where M is a key space;

a ciphertext generation and transmission step of selecting random numbers $\alpha_1 \in X_1$, $\alpha_2 \in X_2$, $r \in Zq$ for key data K (K \in M), calculating:

$$u_1 = g_1^r$$
, $u_2 = g_2^r$, $e = \pi(\alpha_1, \alpha_2, K)h^r$, $v = g_1^{\alpha_1}c^r d_1^{\alpha r} d_2^{Kr}$

where $\alpha = \alpha_1 \mid \mid \alpha_2$, generating a ciphertext C of transmission data m by:

$$C = E_K(m)$$

by using a (symmetric cryptographic function E and key data K, and transmitting (u_1 , u_2 , e, v, C) as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , K' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $K' \in M$) which satisfy:

$$\pi(\alpha_1'||\alpha_2'||K') = e/{u_1}^z$$

and if the following is satisfied:

$$g_1{}^{\alpha'_1}u_1{}^{x_1+\alpha'y_{11}+K'y_{21}}u_2{}^{x_2+\alpha'y_{12}+K'y_{22}}=v$$

where $\alpha' = \alpha'_1 \mid \mid \alpha'_2$ executing a decipher process by:

$$m = D_{K'}(C)$$

outputting deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

7. A cryptographic communication method according to claim 6, wherein the ciphertext C is generated by:

$$C = E_K(f(\alpha_1,\alpha_2)||m)$$

by using a symmetric cryptographic function E, the key data K and a publicized proper function f, it is checked whether the following is satisfied:

$$\begin{split} g_1^{\alpha_1'} u_1^{x_1 + \alpha' y_{11} + K' y_{21}} u_2^{x_2 + \alpha' y_{12} + K' y_{22}} &= v, \\ f(\alpha_1', \alpha_2') &= [D_{K'}(C)]^k \end{split}$$

where f outputs a value of k bits and $[x]^k$ indicates the upper k bits of x, and if the check passes, a decipher process is executed by:

$$m = [D_{K'}(C)]^{-k}$$

where $[x]^{-k}$ indicates a bit train with the upper k bits of x being removed.

8. A cryptographic communication method comprising:

a key generation step of generating a secretkey:

•
$$x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$$

and a public-key:

- p, q: prime number (q is a prime factor of p-1)
- $\bullet \ g_1, g_2 \in \mathbb{Z}_p : \operatorname{ord}_p(g_1) = \operatorname{ord}_p(g_2) = q$
- $c = g_1^{x_1} g_2^{x_2} \mod p$, $d_1 = g_1^{y_{11}} g_2^{y_{12}} \mod p$, $d_2 = g_1^{y_{21}} g_2^{y_{22}} \mod p$, $h = g_1^x \mod p$,
- k_1, k_2, k_3 : positive constant $(10^{k_1+k_2} < q, 10^{k_3} < q, 10^{k_1+k_2+k_3} < p)$
- E: symmetric encipher function

a ciphertext generation and transmission step of selecting random numbers $\alpha=\alpha_1\mid\mid\alpha_2\mid\mid\alpha_1\mid=k_1,\mid\alpha_2\mid$ = k_2) for key data K (|K| = k_3 where |x| is the number

of digits of x), calculating:

$$\widetilde{\mathbf{m}} = \alpha || K$$

selecting a random number $r \in \mathbb{Z}q$, calculating:

 $u_1=g_1{}^r \bmod p$, $u_2=g_2{}^r \bmod p$, $e=\widetilde{\mathrm{m}}\; h^r \bmod p$, $v=g_1{}^{\alpha_1}c^rd_1{}^{\alpha r}d_2{}^{Kr} \bmod p$ and generating a ciphertext C of transmission data by:

$$C = E_K(m)$$

by using a (symmetric) cryptographic function E and the key data K, and transmitting $(u_1,\ u_2,\ e,\ v,\ C)$ as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , K' ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$, $|K'| = k_3$) which satisfy:

$$\alpha_1'||\alpha_2'||K'=e/{u_1}^z \bmod p$$

and if the following is satisfied:

$$g_1{}^{\alpha'_1}u_1{}^{x_1+\alpha'y_{11}+K'y_{21}}u_2{}^{x_2+\alpha'y_{12}+K'y_{22}}\equiv v\pmod p$$

where $\alpha' = \alpha'_1 \mid \mid \alpha'_2$, executing a decipher process by:

$$m = D_{K'}(C)$$

outputting deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected. 9. A cryptographic communication method according to claim 8, wherein the ciphertext C is generated by:

$$C = E_K(f(\alpha_1, \alpha_2)||m)$$

by using a symmetric cryptographic function E, the key data K and a publicized proper function f, it is checked whether the following is satisfied:

$$\begin{split} g_1\alpha_1'u_1^{x_1+\alpha'y_{11}+K'y_{21}}u_2^{x_2+\alpha'y_{12}+K'y_{22}} &\equiv v \pmod p, \\ f(\alpha_1',\alpha_2') &= [D_{K'}(C)]^k \end{split}$$

where f outputs a value of k bits and $[x]^k$ indicates the upper k bits of x, and if the check passes, a decipher process is executed by:

$$m = [D_{K'}(C)]^{-k}$$

where $[x]^{-k}$ indicates a bit train with the upper k bits of x being removed.

- 10. A cryptographic communication method according to claim 6, wherein the public-key is generated by a receiver and is made public.
- 11. A cryptographic communication method according to claim 6, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($\alpha_1 \in X_1$, $\alpha_2 \in X_2$) and $r \in Zq$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad h^r, \quad g_1^{\alpha_1} c^r d_1^{\alpha_r}$$

12. A cryptographic communication method according to claim 6, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$) and $r \in \mathbb{Z}q$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r \mod p$$
, $u_2 = g_2^r \mod p$, $h^r \mod p$, $g_1^{\alpha_1} c^r d_1^{\alpha_r} \mod p$

- 13. A cryptographic communication method comprising:
- a key generation step of generating a secretkey:

$$\bullet \ x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$$

and a public-key:

- G, G': finite (multiplicative) group $G \subseteq G'$
- q: prime number (the order of G)
- \bullet $g_1, g_2 \in G$
- $\bullet c = g_1^{x_1}g_2^{x_2}, d = g_1^{y_1}g_2^{y_2}, h = g_1^{z_1},$
- $\pi: X_1 \times X_2 \times M \longrightarrow \text{Dom}(E): \text{ one-to-one mapping}$ (Dom(E) is the domain of the function E)
- $\bullet \ \pi^{-1}: \mathrm{Im}(\pi) \longrightarrow X_1 \times X_2 \times M$
- H: hash function
- E: symmetric encipher function

where the group G is a partial group of the group G', $\rm X_1$ and $\rm X_2$ are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \qquad (\forall \alpha_1 \in X_1, \ \forall \alpha_2 \in X_2)$$

a ciphertext generation and transmission step

of selecting random numbers $\alpha_1 \in X_1$, $\alpha_2 \in X_2$, $r \in Zq$, calculating:

$$u_1 = g_1^r$$
, $u_2 = g_2^r$, $v = g_1^{\alpha_1} c^r d^{\alpha_r}$, $K = H(h^r)$

where $\alpha = \alpha_1 \mid \mid \alpha_2$, generating a ciphertext C of transmission data m by

$$C = E_K(\pi(\alpha_1, \alpha_2, m))$$

by using a (symmetric) cryptographic function E; and transmitting $(u_1,\ u_2,\ v,\ C)$ as the ciphertext; and

a ciphertext reception and decipher step of calculating:

$$K' = H(u_1^z)$$

by using the secret key, calculating from the received ciphertext, α'_1 , α'_2 (where $\alpha'_1 \in X_1$ $\alpha'_2 \in X_2$) which satisfy:

$$\pi(\alpha_1',\alpha_2',m')=D_{K'}(C)$$

if the following is satisfied:

$$g_1{}^{\alpha'_1}u_1{}^{x_1+\alpha'y_1}u_2{}^{x_2+\alpha'y_2}=v,$$

where $\alpha' = \alpha'_1 \mid \mid \alpha'_2$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

14. A cryptographic communication method comprising:

a key generation step of generating a secretkey:

$$\bullet \ x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$$

and a public-key:

- p, q: prime number (q is a prime factor of p-1)
- $\bullet g_1, g_2 \in \mathbb{Z}_p : \operatorname{ord}_p(g_1) = \operatorname{ord}_p(g_2) = q$
- $\bullet c = g_1^{x_1} g_2^{x_2} \mod p, \ d = g_1^{y_1} g_2^{y_2} \mod p, \ h = g_1^{z} \mod p,$
- k_1, k_2, k_3 : positive constant $(10^{k_1+k_2} < q, 10^{k_3} < q, 10^{k_1+k_2+k_3} < p)$
- H: hash function
- E: symmetric encipher function (the domain of E is all positive integers)

a ciphertext generation and transmission step of selecting random numbers $\alpha=\alpha_1\mid\mid\alpha_2\mid\mid\alpha_1\mid=k_1,\mid\alpha_2\mid$ = k_2 , where (|x| is the number of digits of x), selecting a random number reZq, calculating:

$$u_1 = g_1^r \mod p, \quad u_2 = g_2^r \mod p, \quad v = g_1^{\alpha_1} c^r d^{\alpha_r} \mod p, \quad K = H(h^r \mod p)$$

transmitting the ciphertext $(u_1,\ u_2,\ v,\ C)$; generating a ciphertext C of transmission data m by:

$$C = E_K(\alpha_1||\alpha_2||m)$$

by using a (symmetric) cryptographic function, and transmitting $(u_1,\ u_2,\ v,\ C)$ as the ciphertext;

a ciphertext reception and decipher step of calculating:

$$K' = H(u_1^z \bmod p)$$

by using the secret key, calculating from the received

٠,

ciphertext, α'_1 , α'_2 ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$) which satisfy:

$$\alpha_1'||\alpha_2'||m'=D_{K'}(C)$$

and if the following is satisfied:

$$g_1^{\alpha_1'}u_1^{x_1+\alpha'y_1}u_2^{x_2+\alpha'y_2} \equiv v \pmod{p}$$

outputting m' as the deciphered results (where $\alpha'=\alpha'_1$ $\mid\mid\alpha'_2\rangle$, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

- 15. A cryptographic communication method according to claim 13, wherein the public-key is generated by a receiver and is made public.
- 16. A cryptographic communication method according to claim 13, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($\alpha_1 \in X_1$, $\alpha_2 \in X_2$) and $r \in Zq$ are selected beforehand and the u_1 , u_2 , e and v are calculated and stored beforehand.
- 17. A cryptographic communication method according to claim 14, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$), and $r \in \mathbb{Z}q$ are selected beforehand and the u_1 , u_2 , e and v are calculated and stored beforehand.
- 18. A cryptographic communication method comprising:
- a key generation step of generating a secretkey:

 $\bullet \ x_1, x_2, y_1, y_2 \in \mathbb{Z}_q$

• sk: (asymmetric cryptography) decipher key

and a public-key:

• G: finite (multiplicative) group

• q: prime number (the order of G)

• $g_1, g_2 \in G$

 $\bullet \ c = g_1^{x_1}g_2^{x_2}, \ d = g_1^{y_1}g_2^{y_2},$

• $\pi: X_1 \times X_2 \times M \longrightarrow \mathrm{Dom}(E):$ one-to-one mapping (Dom(E) is the domain of the function E)

• $\pi^{-1}: \operatorname{Im}(\pi) \longrightarrow X_1 \times X_2 \times M$

• $E_{pk}(\cdot)$: (asymmetric cryptography) encipher function

where the group G is a partial group of the group G', $\rm X_1$ and $\rm X_2$ are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \qquad (\forall \alpha_1 \in X_1, \ \forall \alpha_2 \in X_2)$$

where M is a plaintext space;

a ciphertext generation and transmission step of selecting random numbers $\alpha_1{\in}X_1$, $\alpha_2{\in}X_2$, $r{\in}Zq$, calculating:

$$u_1 = g_1^r$$
, $u_2 = g_2^r$, $v = g_1^{\alpha_1} c^r d^{\alpha r}$

where $\alpha = \alpha_1 \mid \mid \alpha_2$, generating a ciphertext C of transmission data m by:

$$e=E_{pk}(\pi(\alpha_1,\alpha_2,m))$$

by using an (asymmetric) cryptographic function E_{pk} , and transmitting $(u_1,\ u_2,\ e,\ v)$ as the ciphertext; and

a ciphertext reception and decipher step of

calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , m' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $m' \in M$) which satisfy:

$$\pi(\alpha_1',\alpha_2',m')=D_{sk}(e)$$

and if the following is satisfied:

$$g_1^{\alpha'_1}u_1^{x_1+\alpha'y_1}u_2^{x_2+\alpha'y_2}=v$$

where:

$$\alpha'=\alpha_1'||\alpha_2'$$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

- 19. A cryptographic communication method comprising:
- a key generation step of generating a secretkey:
 - $\bullet \ x_1, x_2, y_1, y_2 \in \mathbb{Z}_q$
 - sk: (asymmetric cryptography) decipher key

and a public-key:

- p, q: prime number (q is a prime factor of p-1)
- $g_1, g_2 \in \mathbb{Z}_p$: $\operatorname{ord}_p(g_1) = \operatorname{ord}_p(g_2) = q$
- $\bullet c = g_1^{x_1} g_2^{x_2} \mod p, \ d = g_1^{y_1} g_2^{y_2} \mod p,$
- k_1, k_2 : positive constant $(10^{k_1+k_2} < q)$
- $E_{pk}(\cdot)$: (asymmetric cryptography) encipher function (the domain is all positive integers)

a ciphertext generation and transmission step of selecting random numbers $\alpha=\alpha_1\mid\mid\alpha_2\;(\mid\alpha_1\mid=k_1,\mid\alpha_2\mid$ = k_2 , where $\mid x\mid$ is the number of digits of x), selecting a random number $r\in \mathbb{Z}q$, calculating:

$$u_1 = g_1^r \mod p$$
, $u_2 = g_2^r \mod p$, $v = g_1^{\alpha_1} c^r d^{\alpha_r} \mod p$

generating a ciphertext C of transmission data m (positive integer) by:

$$e = E_{pk}(\alpha_1||\alpha_2||m)$$

by using the secret key, and transmitting $(u_1,\ u_2,\ e,\ v)$ as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , m' ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$, m' is a positive integer) which satisfy:

$$\alpha_1'||\alpha_2'||m'=D_{sk}(e)$$

and if the following is satisfied:

$$g_1^{\alpha'_1}u_1^{x_1+\alpha'y_1}u_2^{x_2+\alpha'y_2} \equiv v \pmod{p},$$

where:

$$\alpha' = \alpha_1' || \alpha_2'$$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

20. A cryptographic communication method according to claim 18, wherein the public-key is

generated by a receiver and is made public.

- 21. A cryptographic communication method according to claim 18, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($\alpha_1 \in X_1$, $\alpha_2 \in X_2$) and $r \in Zq$ are selected beforehand and the u_1 , u_2 and v are calculated and stored beforehand.
- 22. A cryptographic communication method according to claim 19, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$), and $r \in \mathbb{Z}q$ are selected beforehand and the u_1 , u_2 and v are calculated and stored beforehand.