ITWS1 - Fall 2017 (IIIT Sricity)

Practice Assignment 1

1. Binary to Decimal Conversion

In order to convert a binary number to decimal we repeatedly add the product of digit value and the positional value.

Example:11101 (binary)

Start at the right hand digit

Convert from Binary to Decimal

$$(1001101)_2 = (\underline{})_{10}$$

2. Decimal to Binary Conversion

In order to convert a decimal number to binary, we may repeatedly subtract the largest possible binary positional value from the number and place a 1 if a subtraction is possible and 0 if not.

```
Example: 329 (decimal)
    329-1024 no,
    329-512 no,
    329-256=73,
                      1
    73-128 no,
    73-64=9,
                      1
    9-32 no,
                      0
    9-16 no,
    9-8=1,
                      0
    1-4 no,
    1-2 no,
    1-1=0
Positional Values
 1024
         512 256
```

Therefore: 329 (decimal) = 101001001 (binary)

Convert from Decimal to Binary

```
(1539)_{10} = (\underline{\phantom{0}})_2
```

- 3. Convert the following binary numbers to decimal:
 - a) 11111₂
 - b) 101101₂
 - c) 1100011₂
 - d) 101₂
 - e) 0.11₂
 - f) 101.11₂
 - g) 1010₂
 - h) 10100₂
 - i) 101000₂
- 4. Looking at your working in 3g-h, in general, if B is some binary number (such as 1010_2), what number do you get when you attach a zero at the right end (such as 10100_2). What number do you get when you attach 2 zeros at the right end? In general, what number do you get when you attach n zeros at the right end?
- 5. **Counting in different number systems.** Complete a table of the decimal values from 0 through 18 written in the following bases: Binary, Octal, and Hex.

Binary	Octal	Decimal	Hex
0000	0	0	0
0001	1	1	1
0010	2	2	2
		3	
		4	
		5	
		6	
		7	
		8	
		9	
		10	
		11	
		12	
		13	
		14	
		15	
		16	
		17	
	_	18	

Complete the following table	6.	Comp	lete	the	follo	pniwo	table
--	----	------	------	-----	-------	-------	-------

For octal - binary conversions, each octal digit is represented by 3 binary digits. For hexadecimal - binary conversions, each hexadecimal digit is represented by 4 binary digits.

BINARY	OCTAL	DECIMAL	HEX
100110110101			
	3734		
			2B4

7.	Write the code for the following ASCII characters. Show binary, hex and decimal
	values.

Hex	C	c
Binary	c	c
Decimal	c	c
Hex	Y	у
Binary	Y	у
Decimal	Υ	у

8. **Fill in the following binary values table.** This exercise is designed to help students understand the effect of the size of a number on both the magnitude of a number and the number of values which can be represented.

Unit	Number of Bits n	Largest Number 2 ⁿ -1	Number of values 2 ⁿ
Bit	1		
2 Bit	2		
Nibble	4		
Byte	8		
1K	10		
2 bytes	16		
3 bytes	24		
Full word * (Signed Long)	32		

^{*} Just give the largest positive number and the number of positive values.

9. Write a table of all the possible values of a 4bit signed binary number. Start off with +7 at the top and continue down to -8.

Hint: To make sure that you are on track, calculate the complement of a positive number to verify that you have correctly calculated the value of the equivalent negative number.

Value	Signed binary	Value	Signed binary
+7	0111	-1	
+6		-2	
+5		-3	
+4		-4	
+3		-5	
+2		-6	
+1		-7	
+0		-8	

10. Represent 0.78125, 1.25, and 78.725 in binary.