Tietorakenteet ja algoritmit II

Kurssikuulustelu

Kokeessa ei saa käyttää apuna muistiinpanoja, muita materiaaleja, laskinta tai muita apuvälineitä. Huomioi kunkin tehtävän pistemäärä vastatessasi. Pisteitä annetaan vain niistä asioista mitä kysymyksissä kysytään. Lue kysymykset huolellisesti.

 $1.\,$ Mitkä seuraavista väittämistä pitävät paikkansa? Luettele kirjaimet, ei tarvitse perustella. $(4\,\mathrm{p})$

```
\begin{array}{lll} \text{(a)} \ n^3-n^2+3=O(n^3) & \text{(e)} \ n^3+4n^{2.5}-1=\Theta(n^{2.5}) \\ \text{(b)} \ n\sqrt{n}-n-9=\Theta(n^2) & \text{(f)} \ n^3+n^2\log n-2=\Omega(n^{2.5}) \\ \text{(c)} \ n^3-5n^2-5=\Omega(n^3) & \text{(g)} \ n\log n+n+7=\omega(n) \\ \text{(d)} \ n\log n-4n-6=o(n) & \text{(h)} \ n\log n+4n+5=o(n\sqrt{n}) \end{array}
```

2. Määrää ja perustele seuraavan aliohjelman aikavaativuuden kertaluokka parametrin n suhteen. Piirrä rekursiopuu ja merkitse aikavaativuuden osat siihen. (5 p):

```
\begin{array}{l} \mbox{int } XX(\mbox{int } n) \ \{ \\ & \mbox{int } a = 0; \\ & \mbox{if } (n > 1) \ \{ \\ & \mbox{a} = 2 * XX(n-1); \\ & \mbox{for } (\mbox{int } i = 0; \ i < n; \ i++) \\ & \mbox{for } (\mbox{int } j = 0; \ j < n; \ j++) \\ & \mbox{a} = a + 1; \end{array}
```

- 3. **Perustele** kukin seuraavista väittämistä **lyhyesti** oikeaksi, vääräksi tai epävarmaksi/tilanteesta riippuvaksi/epäolennaiseksi. Jos väite voi olla sekä oikein että väärin perustele *molemmat* vaihtoehdot. (á 2p)
 - (a) Vierusmatriisi on vieruslistaa tehokkaampi tapa toteuttaa suunnattu verkko.
 - (b) Satunnaistus voi nopeuttaa algoritmin toimintaa.
 - (c) 2-yhtenäisessä useasolmuisessa (≥ 3 solmua) suuntaamattomassa verkossa on kehä.
- 4. Vertaa hajautusta ja B-puuta kuvauksen toteutustapana massamuistissa. Erityisesti molempien hyvät ja huonot puolet. $(4\,\mathrm{p})$
- 5. Kuvaa lyhyesti jokin tehokas algoritmi *maksimaalisen sovituksen* hakemiseen suuntaamattomassa verkossa. Ei tarvitse täsmällistä toteutusta, riittää kuvata algoritmin toimintaperiaate ja sen tarvitsemat apurakenteet. Kerro myös mikä on algoritmin aikavaativuus ja miten se muodostuu. (8 p)
- 6. Kuvaa miten tarkistetaan onko suuntaamaton verkko *vapaa metsä* vai ei. Verkko on vapaa metsä jos kaikki sen komponentit ovat vapaita puita, eli niissä ei ole kehää. Ei tarvitse tuottaa täsmällistä toimivaa Java-algoritmia, riittää kertoa algoritmin toimintaperiaate, eli mitkä vaiheet algoritmissa on ja miten kukin vaihe toimii (toistot, ehdot ja verkolle/solmuille/kaarille tehtävät toimenpiteet). Kerro myös mikä on algoritmisi aikavaativuus ja mistä se koostuu. (8 p)