Операции, Групи, Пръстени, Полета, Линейни пространства

Йонко Йонков

3 ноември $2020\,\mathrm{r}$.

1 Операции

Нека M е множество. n-арна операция наричаме всяка функция $*:M^n \to M$.

2 Бинарни операции

В частност на горната дефиниция имаме, че бинарна операция е всяка функция $*:M^2 \to M$

3 Свойства на бинарните операции

Нека $*: M^2 \to M$

Определение 1. Затвореност: Ще казваме, че множеството M е затворено относно операцията *, ако: $(\forall a \in M)(\forall b \in M)(\exists c \in M)[a*b=c].$

Определение 2. Асоциативност: Ще казваме, че * е асоциативна, ако: $(\forall a \in M)(\forall b \in M)(\forall c \in M)[(a*b)*c = a*(b*c)].$

Определение 3. Комутативност: Ще казваме, че * е комутативна, ако: $(\forall a \in M)(\forall b \in M)[a*b=b*a]$

Определение 4. Неутрален елемент: Казваме, че * има неутрален елемент, ако:

$$(\exists e \in M)(\forall a \in M)[e * a = a * e = a]$$

Определение 5. Обратен елемент: Нека * има неутрален елемент e и $a \in M$. Ще казваме, че елеметът $a' \in M$ е обратен на a относно операцията *, ако: a*a'=a'*a=e.

Определение 6. Група:

Нека G е множество и $*:G^2\to G$ е бинарна операция. Ще казваме, че < G, *> е група (множеството G образува група относно *), ако:

- 1.G е затворено относно операцията *
- 2.* е асоциативна
- 3.* има неутрален елемент e
- $4.(\forall a \in G)(a' \in G)[a*a'=a'*a=e]$ (всеки елемент си има обратен)

Определение 7. Абелева група

Нека < G, *> е група. Ще казваме, че < G, *> е абелева група, ако * е комутативна.

Определение 8. Пръстен

Нека R е множество, а + и . са бинарни операции, които ще наричаме съответно събиране и умножение. Казваме, че < R, +, . > е пръстен, ако:

- 1. < R, + > е абелева група
- 2.R е затворено относно .
- 3.. е асоциативна

$$4.(\forall a \in R)(\forall b \in R)(\forall c \in R)[(a.(b+c) = a.b + a.c) \land ((a+b).c = a.c + b.c)]$$
 (Лява и дясна дистрибутивност)

Определение 9. Поле

Нека $< \mathbb{F}, +, .>$ е пръстен. Ще казваме, че $< \mathbb{F}, +, .>$ е поле, ако:

- 1. . има неутрален елемент $e \in \mathbb{F}$
- 2. . е комутативна

 $3.(\forall a\in\mathbb{F}\setminus\{0_{\mathbb{F}}\})(\exists a'\in\mathbb{F})[a.a'=a'.a=e]$, където e е неутраленият елемент относно . .

Определение 10. Линейно пространство

Нека $\langle \mathbb{F}, +, . \rangle$ е поле. Нека \mathbb{V} е множество, чиито елементи ще наричаме вектори. Нека $\oplus : \mathbb{V}^2 \to \mathbb{V}$ и $\odot : \mathbb{F} \times \mathbb{V} \to \mathbb{V}$ са бинарни операции, които ще наричаме съответно събиране на вектори и умножение на вектор със скалар. Ще казваме, че $\langle V, \oplus, \odot \rangle$ е линейно пространство над полето $\langle \mathbb{F}, +, . \rangle$, ако:

- $1.<\mathbb{V},\oplus$ е абелева група
- $2.(\forall \lambda \in \mathbb{F})(\forall \mathbf{v} \in \mathbb{V})(\exists \mathbf{w} \in \mathbb{V})[\lambda \odot \mathbf{v} = \mathbf{w}]$
- $3.(\forall \mathbf{v} \in \mathbb{V})[1_{\mathbb{F}} \odot \mathbf{v} = \mathbf{v}]$
- $4.(\forall \lambda \in \mathbb{F})(\forall \mathbf{v} \in \mathbb{V})(\forall \mathbf{w} \in \mathbb{V})[\lambda \odot (\mathbf{v} \oplus \mathbf{w}) = \lambda \odot \mathbf{v} \oplus \lambda \odot \mathbf{w}]$
- $5.(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall \mathbf{v} \in \mathbb{V})[(\lambda + \mu) \odot \mathbf{v} = \lambda \odot \mathbf{v} \oplus \mu \odot \mathbf{v}]$
- $6. \forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall \mathbf{v} \in \mathbb{V})[\lambda \odot (\mu \odot \mathbf{v}) = (\lambda . \mu) \odot \mathbf{v}]$

Определение 11. Линейно подпространство

Нека $\mathbb F$ е поле и $< V, \oplus, \odot >$ е линейно пространство над $\mathbb F$. Нека $\mathbb W \subseteq \mathbb V$. Ще казваме, че $< \mathbb W, \oplus, \odot >$ е подпространство на $< \mathbb V, \oplus, \odot >$, ако:

 $1.0_{\mathbb{V}} \in \mathbb{W}$

 $2.(\forall \mathbf{w}_1 \in \mathbb{W})(\forall \mathbf{w}_2 \in \mathbb{W})(\exists \mathbf{w} \in \mathbb{W})[\mathbf{w}_1 \oplus \mathbf{w}_2 = \mathbf{w}]$ (затвореност относно \oplus) $3.(\forall \lambda \in \mathbb{F})(\forall \mathbf{w} \in \mathbb{W})(\exists \mathbf{u} \in \mathbb{W})[\lambda \odot \mathbf{w} = \mathbf{u}]$ (затвореност относно \odot)

Зад 1.Да се докаже, че $< \mathbb{Z}, +>$ образува група.

Зад 2.Да се докаже, че $<\mathbb{R},\oplus,\odot>$ е пръстен, където \oplus и \odot са дефинирани по следния начин:

$$(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})[a \oplus b = a + b - 1]$$
$$(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})[a \odot b = a + b - ab]$$

Зад 3. Да се докаже, че $< \mathbb{Q}(\sqrt{2}), +, .>$ е поле, където $\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2}|a\in\mathbb{Q}\land b\in\mathbb{Q}\}.$

Зад 4. Да се докаже, че $<\mathbb{R}^3, \oplus, \odot>$ образува ЛП над \mathbb{R} . Да се докаже, че $<\mathbb{W}=\{(a_1,0,a_3)|a_1,a_3\in\mathbb{R}\}, \oplus, \odot>$ е подпространство на $<\mathbb{R}^3, \oplus, \odot>$. Където операциите са дефинирани по следния начин: $(\forall \mathbf{v}_1=(a_{11},a_{12},a_{13})\in\mathbb{R}^3)(\forall \mathbf{v}_2=(a_{21},a_{22},a_{23})\in\mathbb{R}^3)$ $[\mathbf{v}_1+\mathbf{v}_2=((a_{11}+a_{21}),(a_{12}+a_{22}),(a_{13}+a_{23}))]$ $(\mathbf{v}=(a_1,a_2,a_3)\in\mathbb{R}^3)(\forall \lambda\in\mathbb{F})[\lambda\odot\mathbf{v}=(\lambda.a_1,\lambda.a_2,\lambda.a_3)]$