# MIS772 Predictive Analytics

Association rule mining

Refer to your textbook by Vijay Kotu and Bala Deshpande, *Data Science: Concepts and Practice*, 2nd ed, Elsevier, 2018.





### Association rule mining

- Understanding association rules
  - Evaluation metrics
    - Support
    - Confidence
    - Lift
- Example rule generation algorithm
  - Apriori algorithm



### Question:

- A person 35 years of age, shopping at around 6.00pm on a Friday, has
  just purchased a pack of nappies on the way home. What would you think
  will be the most likely items bought next?
  - 1: A pack of plastic bags
  - 2: A DVD of a newly released movie
  - 3: A soft toy
  - 4: A bottle of milk
  - 5: Pair of sunglasses









- What are they?
  - Are a measure of how strongly two (or more) items co-occur
  - Find patterns in the data
  - Are rules extracted from large amounts of data
  - {Item A} -> {Item B}: if A is in the item set, then B will most likely be there too
  - {Item A and Item B} -> {Item C and Item D and Item E}
    - If a shopper buys milk, then they will most likely buy bread too
    - If a football team is awarded a penalty, then they will most likely score a goal
    - If a customer buys one product per quarter, then they will most likely not churn for a year

Refer KD, Chapter 6

Association rule generic form:

 ${Antecedent(s)} \rightarrow {Consequent(s)}$ e.g., if  ${A,B}$  Then  ${C}$ 







#### Containers

- Frequent item sets reside in...
  - Baskets of occurrence (e.g., one transaction, one episode of care, one online session, etc.)
  - Windows of time (e.g., one day, one quarter [of a game], etc.)
- Data may need to be pre-processed to...
  - Create containers
  - Find co-occurrences in those containers







- Pre-processing
  - Example...field hockey, finding containers

can be within a time window of 15 seconds

|  | Time       | Location                         | Event                   |
|--|------------|----------------------------------|-------------------------|
|  | 7:05:05 PM | first quarter - own side         | passed the ball         |
|  | 7:05:08 PM | first quarter - own side         | lost the ball           |
|  | 7:05:12 PM | second quarter - own side        | intercepted the ball    |
|  | 7:05:14 PM | midfield                         | passed the ball         |
|  | 7:05:18 PM | midfield                         | passed the ball         |
|  | 7:05:20 PM | second quarter - own side        | passed the ball         |
|  | 7:05:22 PM | second quarter - opponent's side | passed the ball         |
|  | 7:05:25 PM | first quarter - opponent's side  | shot on goal - returned |
|  | 7:05:27 PM | first quarter - opponent's side  | intercepted the ball    |
|  | 7:05:29 PM | first quarter - opponent's side  | passed the ball         |
|  | 7:05:35 PM | first quarter - opponent's side  | passed the ball         |
|  | 7:05:40 PM | second quarter - opponent's side | passed the ball         |
|  | 7:05:52 PM | first quarter - opponent's side  | shot on goal - scored   |
|  | 7:06:40 PM | second quarter - own side        | passed the ball         |
|  |            |                                  |                         |

Sample data sorted by time

can be within a specific location

| Time       | Location 🗸                       | Event                   |
|------------|----------------------------------|-------------------------|
| 7:05:12 PM | second quarter - own side        | intercepted the ball    |
| 7:05:20 PM | second quarter - own side        | passed the ball         |
| 7:06:40 PM | second quarter - own side        | passed the ball         |
| 7:05:22 PM | second quarter - opponent's side | passed the ball         |
| 7:05:40 PM | second quarter - opponent's side | passed the ball         |
| 7:05:14 PM | midfield                         | passed the ball         |
| 7:05:18 PM | midfield                         | passed the ball         |
| 7:05:05 PM | first quarter - own side         | passed the ball         |
| 7:05:08 PM | first quarter - own side         | lost the ball           |
| 7:05:25 PM | first quarter - opponent's side  | shot on goal - returned |
| 7:05:27 PM | first quarter - opponent's side  | intercepted the ball    |
| 7:05:29 PM | first quarter - opponent's side  | passed the ball         |
| 7:05:35 PM | first quarter - opponent's side  | passed the ball         |
| 7:05:52 PM | first quarter - opponent's side  | shot on goal - scored   |
|            |                                  |                         |

Sample data sorted by locations







- Pre-processing
  - Example...media website, transforming data

| Session ID | List of media categories accessed |
|------------|-----------------------------------|
| 1          | {News, Finance}                   |
| 2          | {News, Finance}                   |
| 3          | {Sports, Finance, News}           |
| 4          | {Arts}                            |
| 5          | {Sports, News, Finance}           |
| 6          | {News, Arts, Entertainment}       |

Sample data set

Source: Page 197, KD Ch6

clickstream converted to binary codes (items=visits to specific categories)

| Session ID | News | Finance | Entertainment | Sports | Arts |
|------------|------|---------|---------------|--------|------|
| 1          | 1    | 1       | 0             | 0      | 0    |
| 2          | 1    | 1       | 0             | 0      | 0    |
| 3          | 1    | 1       | 0             | 1      | 0    |
| 4          | 0    | 0       | 0             | 0      | 1    |
| 5          | 1    | 1       | 0             | 1      | 0    |
| 6          | 1    | 0       | 1             | 0      | 1    |

Sample data set

Source: Page 198, KD Ch6







- Pre-processing
  - Example...media website, transforming data (cont.)
  - Which rules are likely to be valid?
    - {News} -> {Entertainment}
    - {News} -> {Sports}
    - {Finance} -> {Arts}
    - {Finance} -> {News}
    - {News, Finance} -> {Sports}
    - {News, Finance} -> {Arts}

| Session ID | News | Finance | Entertainment | Sports | Arts |
|------------|------|---------|---------------|--------|------|
| 1          | 1    | 1       | 0             | 0      | 0    |
| 2          | 1    | 1       | 0             | 0      | 0    |
| 3          | 1    | 1       | 0             | 1      | 0    |
| 4          | 0    | 0       | 0             | 0      | 1    |
| 5          | 1    | 1       | 0             | 1      | 0    |
| 6          | 1    | 0       | 1             | 0      | 1    |

Sample data set

Source: KD Page 198, Ch6







## Question

Given the very large number of possible permutations between items, how do we know when to keep or not to keep a rule(s)?







| Session ID | News | Finance | Entertainment | Sports | Arts |
|------------|------|---------|---------------|--------|------|
| 1          | 1    | 1       | 0             | 0      | 0    |
| 2          | 1    | 1       | 0             | 0      | 0    |
| 3          | 1    | 1       | 0             | 1      | 0    |
| 4          | 0    | 0       | 0             | 0      | 1    |
| 5          | 1    | 1       | 0             | 1      | 0    |
| 6          | 1    | 0       | 1             | 0      | 1    |

#### Evaluation metrics

- Support
  - Is the relative frequency of occurrence of an item set in the container set.
    - (i.e. Fraction of total items that contain a specific occurrence)
  - Filters out rules that are not worth considering further.
  - Support({News})=5/6=0.83
  - Support({News, Finance})=4/6=0.67
  - {News} -> {Sports}: Support({News, Sports})=2/6=0.33
  - {News, Finance} -> {Arts}: Support({News, Finance, Arts})=0/6=0







Association rule generic form:

 ${Antecedent(s)} \rightarrow {Consequent(s)}$ 

#### Evaluation metrics

- Confidence
  - Measures the likelihood of occurrence of the right-side of the rule (i.e., consequent) out of all the items in the container that contain the left-side of the rule (i.e., antecedent). This is the *reliability* of the rule.

$$Confidence(X \to Y) = \frac{Support(X \cup Y)}{Support(X)}$$

$$Confidence(\{News\} \rightarrow \{Finance\}) = \frac{Support(\{News, Finance\})}{Support(\{News\})} = \frac{4/6}{5/6} = 0.8$$

$$Confidence(\{News, Finance\} \rightarrow \{Sports\}) = \frac{Support(\{News, Finance, Sports\})}{Support(\{News, Finance\})} = \frac{2/6}{4/6} = 0.5$$







Important note: the use of  $\cup$  in these formulas in the textbook differs from the meaning commonly used in mathematical set theory (where  $\cup$  indicates a union between two sets). In the textbook formulas, the symbol is used to indicate *intersection* (i.e.,  $A \cup B$  in the formulas refer to instances where A and B co-occurs).

#### Evaluation metrics

- Lift
  - Is similar to confidence; however, it considers the support of the right-side of the rule too.
  - Values closer to 1 indicate non-useful rules, larger lift values indicate more significant rules.

$$Lift(X \to Y) = \frac{Support(X \cup Y)}{Support(X) \times Support(Y)}$$

$$Lift(\{News, Finance\} \rightarrow \{Sports\}) = \frac{Support(\{News, Finance, Sports\})}{Support(\{News, Finance\}) \times Support(Sports)} = \frac{2/6}{4/6 \times 2/6} = 1.5$$

| Session ID | News | Finance | Entertainment | Sports | Arts |
|------------|------|---------|---------------|--------|------|
| 1          | 1    | 1       | 0             | 0      | 0    |
| 2          | 1    | 1       | 0             | 0      | 0    |
| 3          | 1    | 1       | 0             | 1      | 0    |
| 4          | 0    | 0       | 0             | 0      | 1    |
| 5          | 1    | 1       | 0             | 1      | 0    |
| 6          | 1    | 0       | 1             | 0      | 1    |







### Quiz!

- In a set of 10,000 transactions...
  - an analysis shows that 6,000 of customer transactions include computer games, while 7,500 include videos, and 4,000 include both computer games and videos. What is the confidence of the rule {computer games} -> {videos}?
    - A: 0.40
    - B: 0.89
    - C: 0.76
    - D: 0.67







# Step-by-step calculation...

- $Confidence(X \to Y) = \frac{Support(X \cup Y)}{Support(X)}$
- Confidence  $(games \rightarrow videos) = \frac{Support (games \cup videos)}{Support (games)}$
- Support {games, videos} =
  - $\bullet$  4000/10000 = 0.4
  - Why?
    - of the 10,000 transactions "4,000 include both computer games and videos"
- Support {games} =
  - 6000/10000 = 0.6
  - Why?
    - of the 10,000 transactions "6,000 of customer transactions include computer games"
- Therefore:
  - Confidence (games  $\rightarrow videos$ ) =  $\frac{0.4}{0.6}$  = 0.67 (i.e., option D)







- Two main steps
  - Step 1: Finding all frequent item sets
    - Look at all possible combinations of items
    - There will be 2<sup>n</sup> -1 item sets in a set of n items
    - Filtering non-important items out (using support)
  - Step 2: Generating/extracting rules from frequent item sets
    - Look at all possible rules
    - For a dataset with n items, there will be  $3^n 2^{n+1} + 1$  rules
    - Filter out rules that are not significant (using confidence or lift)







- Example...
  - Media website
    - Items: News, Finance, Sports, Entertainment









- Apriori algorithm
  - To find frequent item sets more efficiently
  - Makes use of support of item sets
    - Item sets with a support of larger than a threshold are frequent
    - Rule 1...
      - If an item set is frequent, then all its **subsets** are frequent









Apriori algorithm

- Rule 2...
  - If an item set is infrequent, then all its supersets are infrequent









- Generating/extracting rules
  - Generate all rules for each frequent item set with n items
  - Makes use of confidence or lift of rules to filter out non-significant rules
  - In the previous example...
    - For the item set {News, Sports, Finance}, there will be the following rules/confidence values:
    - {News, Sports} -> {Finance}: confidence=1.0
    - {News, Finance} -> {Sports}: confidence=0.5
    - {Sports, Finance} -> {News}: confidence=1.0
    - {News} -> {Sports, Finance}: confidence=0.4
    - {Sports} -> {News, Finance}: confidence=1.0
    - {Finance} -> {News, Sports}: confidence=0.5

all rules with a confidence ≥ a threshold will be kept as output







- Frequent pattern (FP)-growth algorithm
  - Another algorithm for finding frequent item sets
  - Extra reading...
  - Details are not examinable
  - Reference: Pages 206-210, KD Ch6
  - FP-growth algorithm...
    - works on the basis of compressing item sets into compressed tree structures called FP-Trees
    - is often more efficient than the Apriori algorithm







# Sample exam question

You are given a data set including 1,000 shopping transactions. In this data set, there are transactions that include items as listed in the table below:

- a) Given the transaction set, will you say the association rule  $\{Milk\} \rightarrow \{Beer\}$  represents a correct and likely association? Justify your answer.
- b) Given Confidence(X  $\rightarrow$  Y) =  $\frac{\text{Support}(X \cup Y)}{\text{Support}(X)}$ , calculate the Confidence of the association rule  $\{Clock\} \rightarrow \{Towel\}$  in the transaction set, and
- c) Briefly explain the main shortcoming/s of Confidence as related to this case. What other association rule analysis evaluation metric do you suggest to be used to address the shortcoming/s of Confidence? Justify your answer.

$$6 + 8 + 6 = 20$$
 Marks

| Items                  | Frequency of  |
|------------------------|---------------|
|                        | occurrence in |
|                        | transactions  |
| Milk and DVD           | 650           |
| Milk and Beer          | 20            |
| Bread and Beer         | 35            |
| Towel and Milk and DVD | 15            |
| Clock and Towel        | 575           |
| Clock                  | 620           |







- What are frequent item sets?
- Give the large number of possible permutations between items, how do we know when to keep or not to keep a rule(s)?
- What is the shortcoming of support?
- What is the shortcoming of confidence?
- How should interpret lift values?

- Describe the apriori algorithm.
- What are frequent item subsets?
- What are frequent item supersets?
- How could you apply the insights from association rules to inform which items to stock and where to place them on supermarket shelves (e.g. in the cleaning products aisle)?





