PHY 103: General Physics 2 (2014 – 2015, Semester – I) Department of Physics, Indian Institute of Technology - Kanpur **Assignment- 13**

(ONLY the *ed questions 5,7 and 12 will be DONE in the tutorial)

- **1.** The magnetic moment of an iron atom in metallic iron is $2.2\mu_B$. Take the density of iron to be $7.9\,\mathrm{g/cm^3}$ and its atomic mass $56\,\mathrm{g/mol}$. Find the saturation magnetization of iron.
- **2.** Find the magnetic field due to the spin angular momentum of an electron at a distance of 0.1 nm on its spin axis.
- **3.** A cobalt piece shows magnetization of 1.5×10⁵ A/m. The density of cobalt is 8.9×10³ kg/m³ and its atomic mass is 58.9g/mole. Find the average magnetic moment per atom in units of Bohr magneton.
- **4.** A tightly wound long solenoid of radius R having n turns per unit length carries a current I. A disk of small thickness t and radius only slightly less than that of the solenoid, is kept inside the solenoid coaxially with it. The disk has magnetization m_0 along the common axis. Find the value of H on the axis of the disk at a distance x from its center. What would be the value of H if the disk is removed?
- **5.** *A cylindrical bar magnet of length L and cross-sectional area $A \ (\ll L^2)$ is uniformly magnetized to have a magnetization M_0 along its length. Find the magnetic field B due to the magnet at a point on its axis (a) at a distance r from the center of the magnet with $r \gg L$, (b) just outside the ends of the magnet and (c) at the center of the magnet. Assume the length L of the magnet to be large as compared to its thickness.
- **6.** A long circular cylinder of radius R carries a magnetization $\mathbf{M} = ks^2\phi^2$, where k is a constant, s is the distance from the axis and $\hat{\phi}$ is the usual azimuthal unit vector. (a) Find the bound volume current density. (b) Using Ampere's law for B-field find the magnetic field inside the cylinder. (c) From these results, find the value of H-field inside the cylinder.
- **7.** *A cylindrical material has length and radius both equal to L. It is uniformly magnetized along its axis and the magnetization is M. Find the magnetic field at the center.
- **8.** An infinite hollow cylinder of inner radius a and outer radius b has a frozen-in magnetization $\mathbf{M} = \frac{C}{s}\hat{\varphi}$, in cylindrical (s,ϕ,z) coordinates with C as a constant and the z-axis along the axis of the cylinder. (a) Find the surface and volume bound current densities. (b) Find the H-field everywhere.
- **9.** The H and B fields in a uniformly magnetized large piece of material are $H_0\hat{k}$ and $B_0\hat{k}$. It has got a small cavity. Find the B- field and H- field at the center of the cavity if the cavity has the shape of (a) a very thin but long cylinder with its axis

- parallel to \hat{k} , (b) a sphere of small radius R and (c) a thin but wide disk with its axis parallel to \hat{k} .
- **10.** A current *I* flows down a long straight copper wire of radius *a*, distributed uniformly over its cross section. (a) What is the magnetic field at a distance *s* from the axis? (b) Find the bound current in the wire.
- **11.** A large slab of a material with $\mu_r = 2.5$ fills up the region 0 < z < 2m. The H- field in this region is $10y\hat{k} 5x\hat{j}$ in SI units. Find (a) the free current density, (b) the bound current density and (c) the magnetization in the slab.
- **12***. The region $y \le x+2$ is filled with a medium with relative permeability $\mu_r = 1.5$ The H-field here is $\mathbf{H} = 2\hat{i} + 6\hat{j} + 4\hat{k}$. All quantities are in SI units. Calculate the B- field in the region $y \ge x+2$. There is no free current anywhere and the region y > x+2 is air.