Sprawozdanie z układów logicznych	Ćwiczenie nr: 4		
1. Imię i nazwisko – student 1: Wojciech Krzos	Temat ćwiczenia: Analiza układu synchronicznego.		
2. Imię i nazwisko – student 2: Natalia Marszałek			
Grupa laboratoryjna nr (u prowadzącego): 5	Dzień tygodnia: Czwartek		
Płyta montażowa nr (z tyłu zadajnika): NA	Godziny zajęć (od-do): 13:15 – 15:00		

1 WSTEP

1.1 TEORIA

1.1.1 Analiza układu synchronicznego

Analiza układu synchronicznego polega na badaniu zachowania układu w czasie, gdy wejścia i wyjścia są zsynchronizowane ze zegarem. W tym celu należy zbadać opóźnienia czasowe w poszczególnych elementach układu, a także określić częstotliwość zegara.

1.1.2 Rodzaje przerzutników i ich łatwość zastosowania w realizacji układów synchronicznych Wśród rodzajów przerzutników możemy wyróżnić: RS, D, T, JK, JK z przełączaniem asynchronicznym. Przerzutniki te pozwalają na zapisywanie informacji na wyjściu w sposób zsynchronizowany z zegarem, co ułatwia ich zastosowanie w układach synchronicznych.

1.1.3 Układy wzbudzeń wejść przerzutników

Układy wzbudzeń wejść przerzutników to układy kombinacyjne, które określają wartości sygnałów wejściowych przerzutników na podstawie wartości sygnałów wejściowych układu. W ten sposób można zapewnić odpowiednie wartości sygnałów wejściowych przerzutników przed ich aktywacją przez zegar.

1.1.4 Układ wyjść układu synchronicznego:

Układ wyjść układu synchronicznego określa sposób reprezentacji informacji na wyjściach układu. Może to być układ licznikowy, dekoderowy lub inny, zależny od zastosowania układu.

1.1.5 Tablica przejść-wyjść i tablica stanów:

Tablica przejść-wyjść określa, jakie wartości sygnałów wyjściowych są generowane przez układ dla różnych kombinacji sygnałów wejściowych i stanów wewnętrznych. Tablica stanów natomiast określa, jaki jest aktualny stan wewnętrzny układu dla każdego możliwego zestawu wejść. Różnica polega na tym, że w tablicy przejść-wyjść zwraca się uwagę tylko na wartości wyjść, podczas gdy w tablicy stanów określa się stan wewnętrzny układu.

1.2 CEL ĆWICZENIA

Celem tego ćwiczenia laboratoryjnego jest zapoznanie się z analizą i syntezą układów synchronicznych oraz zaprojektowanie układu zawierającego tylko bramki NAND lub tylko bramki NOT i AND, który będzie się zachowywał identycznie jak podany układ synchroniczny. W ramach ćwiczenia należy również skonstruować tablice stanów-wyjść oraz przejść-wyjść dla zrealizowanego układu i sprawdzić jego działanie dla określonej sekwencji wejść.

2.1 SYMULOWANE UKŁADY

2.1.1 Układ podstawowy

2.1.2 Układ z bramkami NAND oraz NOT

2.1.3 Układ zrealizowany jedynie za pomocną bramek NAND

2.2 TABLICE

2.2.1 Tablica stanów-wyjść

Х У1У2	0	1	Z
00	00	10	0
01	00	11	1
11	00	01	0
10	00	11	1

2.2.2 Syulacja danych wejściowych

CZ	as	t	0	t	1	t	2	t	3	t	4	t	5
)	x	1	L	-	1		1	1	L	()	(0
y ₁	y ₂	1	0	0	1	1	1	1	1	0	0	0	0
2	Z	()	()	:	1	1	L	()	()

CZ	zas	t	0	t	1	t	2	t	3	t	4	t	5
	x	1	_		1	1	<u>[</u>	1	<u>[</u>	()	()
y ₁	y ₂	1	1	1	1	0	1	1	0	0	0	0	0
	Z	1	_		1	()	()	()	()

2.3 UKŁAD Z PRZERZUTNIKAMI JK

2.3.1 Przerzutnik JK

Przeanalizujmy najpierw tabelę stanów dla przerzutnika JK:

Qn	Qn+1	J	K
0	0	0	X
1	0	X	1
0	1	1	X
1	1	X	0

I z jej pomocą budujemy tabelę odpowiednich zmiennych:

х	у1	y2	Q1	Q2	J1	K1	J2	K2
0	0	0	0	0	0	Х	0	Х
0	0	1	0	0	0	Х	Х	1
0	1	0	0	0	Х	1	0	Х
0	1	1	0	0	Х	1	Х	1
1	0	0	1	0	1	Х	0	Х
1	0	1	1	1	1	Х	Х	0

1	1	0	0	1	Х	1	1	Х
1	1	1	1	1	Χ	0	Χ	0

11 = X	K1 = -X+-O	I2 = X*Y1	K2= -X
) T - V	K1X1-Q	JZ – A II	NZX

2.3.2 Symulacja układu w LogiSim

3 KONKLUZJE

Analiza i projektowanie układów synchronicznych to ważne zagadnienia w dziedzinie elektroniki cyfrowej. W ramach ćwiczenia laboratoryjnego zapoznaliśmy się z konstrukcją układu synchronicznego, jego analizą oraz syntezą. Przeanalizowaliśmy różne rodzaje przerzutników i układy wzbudzeń ich wejść oraz układ wyjść układu synchronicznego. Następnie przeprowadziliśmy przekształcenie układu synchronicznego z wykorzystaniem tylko bramek NAND lub tylko bramek NOT i AND, przy czym wymagane było zachowanie identycznych właściwości jak w pierwotnym układzie. Wykonaliśmy również tablice stanów-wyjść i przejść-wyjść dla zrealizowanego układu i zweryfikowaliśmy jego działanie dla zadanej sekwencji wejść. Ostatecznie, przeprowadziliśmy syntezę układu synchronicznego wykorzystującego dwa przerzutniki JK oraz tylko bramki NOT i AND w najmniejszej możliwej liczbie.

4 BIBLIOGRAFIA

Stallings W. 2015. Computer Organization and Architecture. 10th edition. Boston: Pearson.

A.Kaliś, Podstawy teorii układów logicznych, skrypt.

ChatGPT. [accessed 2023 Apr 11]. https://chat.openai.com.

Wolfram|Alpha: Computational Intelligence. [accessed 2023 Apr 10]. https://www.wolframalpha.com/.