Алгебры

Харитонцев-Беглов Сергей

6 сентября 2021 г.

Содержание

1.	Teop	рия чисел	1
	1.1	НОД, делимость, линейные диофантовы уравнения	1

1. Теория чисел

1.1. НОД, делимость, линейные диофантовы уравнения

Определение 1.1. Диофантовым уравнение называется уравнение, которое можно решить \mathbb{Z} .

Рассмотрим линейное диофантово уравнене

$$ax + by = c..$$

Если бы мы были в \mathbb{R} , то решение быстро бы нашлось: $y = \frac{c-ax}{b}$. Но в целых штуках такая штука не всегда будет решением, т.к. b не всегда делит c-ax.

Определение 1.2. а делится на b (a:b,b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Простые свойства:

- 1. $\forall a: 1|a$.
- $2. \forall a: a|a.$
- 3. $\forall a, b : c, k, l \in \mathbb{Z} \Rightarrow (ka + lb) : c$.

Доказательство.
$$a,b$$
: $c\Rightarrow \exists d,e: \begin{array}{l} a=c\cdot l \\ b=c\cdot e \end{array}$. Тогда $ka+lb=k\cdot cd+l\cdot ce=c\cdot (kd+le)\Rightarrow$ $(ka+lb)$: c

- 4. $\forall k \neq 0, k \in \mathbb{Z} : a : b \iff ak : bk$.
- 5. $a:b \iff a^2:b^2$.
- 6. $a:b \Rightarrow \begin{bmatrix} |a| > |b| \\ a = 0 \end{bmatrix}$.
- 7. $a:b,b:c \Rightarrow a:c$.
- 8. a:a.
- 9. $a:b, b:a \Rightarrow a = \pm b$.

Теорема 1.1 (О делении с остатком).
$$a,b \in \mathbb{Z}\exists ! (q,r) : \begin{cases} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{cases}$$

- **Доказательство**. Единственность. Пусть есть два результата: $a = b \cdot q_1 + r_1$ и $a = b \cdot q_2 + r_2$. Тогда приравняем: $b \cdot q_1 + r_1 = b \cdot q_2 + r_2 \iff b(q_1 q_2) = r_2 r_1 \xrightarrow{r_1, r_2 \in [0; |b| 1]} [|r_1 r_2| < |b|] |r_2 r_1 : b \Rightarrow r_2 r_1 = 0 \iff r_1 = r_2 \Rightarrow b(q_1 q_2) = 0 \iff q_1 = q_2$
 - Существование.

I.
$$a \geqslant 0, b \geqslant 0$$
.
— База: $a = 0$. $0 = b \cdot 0 + 0$. $(0, 0)$ — подходит.
— Переход: $a \to a + 1$.
 $a = b \cdot q + r$, где $0 \leqslant r < b$.

$$a+1=b\cdot q+(r+1).$$
 * $r< b-1$. Тогда $r+1< b\Rightarrow (q,r+1)$ — подходит.

$$* r = b - 1$$
. Тогда $a + 1 = b \cdot q + b = b \cdot (q + 1) \Rightarrow (q + 1, 0)$ — подходит.

II.
$$a < 0, b > 0$$
. $a < 0 \Rightarrow -a > 0$.

Из I:
$$\exists (q,r): -a = b \cdot q + r$$
, где $0 \leqslant r < b$. Соответственно $a = -bq - r$.

$$-r = 0.$$
 $a = b \cdot q + 0 \Rightarrow (-q, 0) -$ подходит.

$$-\ r>0 \Rightarrow r\in [1;b-1].\ a=-bq-b+b-r=b\cdot (-q-1)+b-r \Rightarrow (-q-1,b-r)---$$

III.
$$b<0\iff -b>0$$
. $\exists q,r:a=(-b)\cdot q+r$, где $0\leqslant r<|b|$, тогда $a=b(-q)+r\Rightarrow (-q,r)$ — подходит

Вернемся к диофантову уравнению ax + by = c, где a, b, c фиксированы, а x, y — переменные. Пусть только a, b — фиксированы. Тогда подумаем, когда же ax + by = c имеет решения. Тогда решим задачу: описать $\{ax + by \mid x, y \in \mathbb{Z}\} =: \langle a, b \rangle$

Пример. $\langle 1, b \rangle = \mathbb{Z}$

Пример. (4,6) = четные числа

Заметим:

- 1. $\forall m, n \in \langle a, b \rangle m + n \in \langle a, b \rangle$
- 2. $m \in \langle a, b \rangle \Rightarrow km \in \langle a, b \rangle \forall k$

Определение 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{ \begin{array}{l} m,n\in I\Rightarrow m+n\in I \ (\text{замкнутость по сложению})\\ m\in I\Rightarrow \forall k\in \mathbb{Z}k\cdot m\in I \ (\text{замкнутость по домножению})\\ I\neq\varnothing \end{array} \right.$$

Пример. $\{0\}$ — идеал.

Пример. \mathbb{Z} — идеал (собственный).

Пример. $\langle a,b \rangle$ — идеал, порожденный a и b.

 $\forall a \in \mathbb{Z} \, \langle a \rangle = \{ax \mid x \in \mathbb{Z}\}$ — главный идеал (порожденный a).

Пример. $\{0\} = \langle 0 \rangle, \mathbb{Z} = \langle 1 \rangle, \langle 4, 6 \rangle = \langle 2 \rangle$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Доказательство. $I=\{0\}$ — ок. Тогда пусть $I\neq\{0\}$. Пусть $a\in I \land a<0 \Rightarrow -a=(-1)a\in I \land -a\in \mathbb{N}$. То есть $I\cap \mathbb{N}\neq\varnothing$. Найдем наименьшее $r\in I\cap \mathbb{N}$. Проверим, что $I=\langle r\rangle$ (тогда I-главный). Надо проверить $\langle r\rangle\subset I \land I\subset \langle r\rangle$.

Глава #1 2 из 3 Автор: XБ

- $x \in \langle r \rangle$. То есть $x = r \cdot z$. Т.к. $r \in I$, то $r \cdot z \in I$ (по определению идеала), т.е. $\langle r \rangle \subset I$.
- Пусть $a \in I$. Поделим с остатком: $a = r \cdot q + r_1$, $0 \le r_1 < r$, то есть $r_1 = a r \cdot q = a + (-q) \cdot r$. Т.к. $r \in I \Rightarrow (-q) \cdot r \in I \land q \in I \Rightarrow a + (-q) \cdot r \in I$, т.е. $r_1 \in I$. Ho! $0 < r_1 < r$, а r m минимальное натуральное из I. Тогда $r_1 = 0 \Rightarrow a = r \cdot q$, т.е. $a \in \langle r \rangle$, а значит $I \subset \langle r \rangle$.

Определение 1.4. Пусть $a,b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a,b) = \gcd(a,b) = (a,b)$

Докажем единственность. $\begin{cases} a \vdots d, b \vdots d \\ a \vdots d_1, b \vdots d_1 \end{cases} \iff d \vdots d_1. \text{ Тогда } d \vdots d_1 \wedge d_1 \vdots d, \text{ а значит } d = \pm d_1.$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- $2. \ \exists x, y \in \mathbb{Z}: \ d = ax + by$
- 3. ax + by = c имеет решение $\iff c:d$.

Доказательство. Докажем каждый пункт отдельно:

- Рассмотрим $\langle a, b \rangle$ идеал. Он главный по предыдущей теореме: $\exists d \, \langle a, b \rangle = \langle d \rangle$.
- $d \in \langle d \rangle = \langle a, b \rangle$. А значит $\exists x, y : d = ax + by$. $a = a \cdot 1 + b \cdot 0 \in \langle a, b \rangle = \langle d \rangle, \text{ значит } a \vdots d. \text{ Аналогично } b \vdots d.$ С другой стороны пусть $a \vdots d, b \vdots d,$ тогда $d = \underbrace{ax}_{\vdots d} + \underbrace{by}_{\vdots d} \vdots d$
- ax + by = c имеет решение $\iff c \in \langle a, b \rangle = \langle d \rangle$. А $c \in \langle d \rangle \iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма. $\begin{cases} ab:c \\ (a,c) = 1 \end{cases} \Rightarrow b:c.$

Доказательство. По условию $ab \vdots c$, значит $\exists x \in \mathbb{Z} : ab = c \cdot x$.

Так как (a,c)=1, то $\exists y,z\in\mathbb{Z}: ay+cz=1$. Тогда домножим все на b и получим aby+czb=b.

А значит
$$\begin{cases} aby:c \\ czb:c \end{cases} \Rightarrow b:c$$

Глава #1 3 из 3 Автор: XБ