Page 15, Problem 14. Page 19, Exercises 1, 2; Computer Problems 1,4.

 Do the following operations by hand in IEEE double precision computer arithmetic, using the Rounding to Nearest Rule. (Check your answers, using MATLAB.)

(a)
$$(4.3 - 3.3) - 1$$
 (b) $(4.4 - 3.4) - 1$ (c) $(4.9 - 3.9) - 1$

$$a_{1}(f)(4) - f(3) - f(3)) - f(1)$$

$$4_{0} = 100_{1}$$

$$0_{3} \mid x^{2}$$

$$0_{1} \cdot 1$$

$$0_{2} \mid x^{2}$$

$$0_{3} \cdot 1$$

$$0_{1} \cdot 1$$

$$0_{3} \mid x^{2}$$

$$0_{4} \cdot 1$$

$$0_{1} \cdot 1$$

6.)
$$(44-34)-1$$
 $P((44)=100.0110-0110$
 $P((34)=11.0110-0110$
 0.4
 0.4
 0.8
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4

= 2-51 = 2-51

$$C. (49-39)-1$$

1. Identify for which values of x there is subtraction of nearly equal numbers, and find an alternate form that avoids the problem.

(a)
$$\frac{1-\sec x}{\tan^2 x}$$
 (b) $\frac{1-(1-x)^3}{x}$ (c) $\frac{1}{1+x}-\frac{1}{1-x}$

$$-\frac{(1-sec x)(1+sec x)}{(1-sec x)(1+sec x)}$$

$$=\frac{1}{(1+sec x)}$$

$$= \frac{(1-x)-(1+x)}{(1+x)(1-x)}$$

$$= \frac{(1-x)-(1+x)}{(1-x)}$$

$$= \frac{(1-x)-(1+x)}{(1-x)}$$

$$=\frac{1-x_1}{-5x}$$

$$(1-x)^{3} = 1-3x + 3x^{2}-x^{3}$$

$$= -3+3x+x^{2}$$

$$= -3+3x+x^{2}$$

Find the roots of the equation $x^2 + 3x - 8^{-14} = 0$ with three-digit accuracy. 2.

$$X_{12} = \frac{-b \pm \sqrt{b^2 - 4ac}}{La}$$

$$+, = \frac{-3 - \lambda q + 4.8^{-14}}{2} \qquad \times -\frac{3000}{2}$$

$$\begin{array}{lll}
X_{12} & -b \pm \sqrt{b^2 - 4al} \\
 & \pm \sqrt{12} & \pm \sqrt{12} \\
 & \pm \sqrt$$

1. Calculate the expressions that follow in double precision arithmetic (using MATLAB, for example) for $x = 10^{-1}, \dots, 10^{-14}$. Then, using an alternative form of the expression that doesn't suffer from subtracting nearly equal numbers, repeat the calculation and make a table of results. Report the number of correct digits in the original expression for each x.

(a)
$$\frac{1 - \sec x}{\tan^2 x}$$
 (b) $\frac{1 - (1 - x)^3}{x}$

a.

X

1 - (1-x3)

x+3x-3

2.71000000000000

2.9701000000000

2 9970010000000

2 99970001000000

2 99997000010000

2 99999700000100

2.999997000001

2.999999700000

2 999999700000

2.9999999700000

10⁻²
10⁻²
10⁻²
10⁻³
10⁻⁶
10⁻⁶
10⁻⁸
10⁻¹⁰
10⁻¹⁰
10⁻¹¹
10⁻¹¹
10⁻¹⁴

4. Evaluate the quantity $\sqrt{c^2 + d} - c$ to four correct significant digits, where c = 246886422468 and d = 13579.

$$= \sqrt{c^2 + d} - C$$

$$= (\sqrt{c^2 + d} - C) (\sqrt{c^2 + d} + C)$$

$$= \sqrt{c^2 + d} + C$$

$$= 2.750 \times 10^{-8}$$

