

PERENCANAAN JARINGAN SUTT/SUTET

PEMBANGUNAN INFRASTRUTUR KETENAGALISTRIKKAN

- Peraturan Presiden Republik Indonesia Nomor 4 Tahun 2016 tentang Percepatan Pembangunan Infrastruktur Ketenagalistrikan
- Peraturan Pemerintah No 25 tahun 2021 tentang Penyelenggaraan bidang energi dan sumber daya mineral : Jasa lain Penungjang penyedia tenagalistrik
- Peraturan mentri ESDM Nomor 6 Tahun 2021 tentang standarisasi kompetensi tenaga Teknik keteagaListrikan
- Peraturan Mentri ESDM Nomor 13 tahun 2021 tentang ruang bebas dan jarak minimum jaringan transmisi tenaga Listrik dan kompensasi atas tahan bangungan tanaman yang berada di ruang bebas transmisi tenaga Listrik

PERENCANAAN JARINGAN TEGANGAN TINGGI DAN TEGANGAN EKSTRA TINGGI

Proses penyaluran energi Listrik dari Pembangkit ke Gardu Induk dapat memalui beberapa tahapan dan terbagi atas beberapa level tegangan yaitu :

- Tegangan Ekstra Tinggi (Extra High Voltage, EHV)
- Tegangan Tinggi (High Voltage, HV)
- Tegangan Menengah (Medium High Voltage, MHV)
- Tegangan Rendah (Low Voltage, LV).

Penyaluran/distribusi energi listrik dari gardu induk satu ke gardu induk berikutnya menggunakan konduktor yang rentangkan antara tiang-tiang (tower) pada level tegangan tinggi tersebut

SISTEM PENYALURAN TENAGA LISTRIK

BEBERAPA TAHAPAN DALAM PEMBANGUNAN JARINGAN TRANSMISI

- STUDY DESKTOP
- SURVEY DAN PENGUKURAN
- PERENCANAAN TOWER SCHEDULLE
- PERENCANAAN LONGPROFILE
- PERENCANAAN PONDASI
- PERENCANAAN TOWER
- PERIJINAN LOKASI
- PEMBEBASAN LAHAN

- PENGUJIAN MATERIAL
- PENGADAAN MATERIAL & FABRIKASI
- PEKERJAAN PONDASI TOWER
- PEKERJAAN ERECTION TOWER
- PEMBEBASAN ROW
- PEKERJAAN STRINGING & SAGGING
- PEKERJAAN KOMISSIONING
- PENERBITAN RLB
- PENERBITAN SLO (JIKA TERKAIT DGN GARDU INDUK)

- PMELIHARAAN KONDUKTOR & ACC
- PEMELIHARAAN TOWER TRANSMISI
- PEMELIHARAAN PONDASI
- ASESSMEN
- PEMELIHARAAN JALUR ROW

TAHAP STUDY DESKTOP

Study Desktop

Dengan melakukan ploting lokasi tower melalui media GoogleEarth, hal ini dimaksudkan agar jalur transmisi sedikit mungkin melalui daerah pemukiman yang rawan terhadap penolakan Pembangunan Transmisi SUTT/SUTET

Study desktop ini dengan melakukan plotting tower pada lokasi yg akan dibangun tower berdasarkan sudut belok sesuai SPLN.

Pada plotting ini Perencana agar memperhitungkan rulling span untuk penentuan tower tension dan rencana penempatan alat tensioner serta dengan mempertimbangkan kebutuhan sambungan/potongan konduktor yang akan disupply.

• Survey dan Pengukuran Suvey dan pengukuran dilakukan setelah mendapatkan koordinat lokasi pada study desktop dengan mengambil koordinat akurat (GPS Geodetik, Drone, Total Station, Kompas dll) dan mempelajari rona lingkungan sekitar, lokasi tapak tower dan pencapaian.

Type Tower berdasarkan Level Tegangan

Tabel 1. Tipe tower SUTT 66 kV dan 150 kV

No.	Tipe Tower	Posisi Tower	Sudut belok Jalur	Tipe Insulator
1	AA	Suspension	0° - 3°	Gantung
2	BB	Tension	0° - 20°	Tarik
3	CC	Tension	20° - 40°	Tarik dengan <i>jumper</i> pada sisi luar
4	DD	Tension	40° - 60°	Tarik dengan <i>jumper</i> pada sisi luar
5	EE	Tension	60° - 90°	Tarik dengan <i>jumper</i> pada sisi luar
6	DDR	Tension	Terminal tower 0°- 60°	Tarik dengan <i>jumper</i> pada sisi luar

Tabel 2. Tipe tower SUTET 275 kV dan 500 kV

No.	Tipe Tower	Tipe Tower Posisi Sudut belok Tower Jalur		Tipe Insulator **)
1	AA *)	Suspension	0° - 5°	Gantung
2	BB	Tension	0° - 10°	Tarik
3	cc	Tension	10° - 30°	Tarik dengan <i>jumper</i> pada sisi luar
4	DD	Tension	30° - 60°	Tarik dengan <i>jumper</i> pada sisi luar
5	EE	Tension	60° - 90°	Tarik dengan <i>jumper</i> pada sisi luar
6	FF	Tension	Terminal tower 0° - 45°	Tarik dengan <i>jumper</i> pada sisi luar
7	GG	Tension	Tower transposisi (0° - 10°)	Tarik dengan <i>jumper post</i> insulator

CATATAN:

- *) Untuk *compact* tower 500 kV sudut belok 0° 2° pada tower tipe *suspension* dan sudut belok terminal tower 0° 60° pada tower tipe FF;
- **) Tipe insulator pada *compact* tower 500 kV digunakan *horizontal line post vertical or inclined* braced suspension insulator pada tower suspension, dan insulator tarik dengan *line post* insulator pada tower *tension*.

- Hal-hal yang termasuk dalam pekerjaan Survey dan Pengukuran lapangan adalah :
- 1. Patok Center Tower
- 2. Patok Pelurus Jalur Transmisi
- 3. Patok As Tapak Tower
- 4. Patok Batas Tanah`

Perencanaan Tower Schedulle

Dengan membuat table Tower Sechedulle yang berisi informasi (Nomor Tower, Type Tower, Sudut Tower, luas tapak tower, Jarak antar tower, Rentang angin, Rentang berat, Rasio tower dan keterangan berupa informasi kondisi lahan tapak tower). Perencanaan Tower Schedulle ini mengacu pada SPLN T5.014-1 2021.

										CLIDVE	V IALLID TO	ANICANICI		VER SCH		ADAIA 6	ISTET DURIK	OCAMBI				
	WT = WEIGHT SPA WD = WIND SPAN SIO WT/WD = 0,70	V			Indicat	M				JUNE	2	ANJWISI	300 KV		W BALL	P	ISTET DUNIK		Project Section Conductor	: : GITET New Balaraja - GISTE :	T Durikosambi	
NO	NOMOR TOVER		IPE VER	L.,	DUT BELOK		ORDINAT TITIK			SPAN	TOTAL JARAK	VIND SPAN (Vds)	VEIGHT SPAN (Vts)		1	PROVINSI	KABUPATEN/ KOTA	KECAMATA N	DESA	KETERANGAN CROSSING TOVER	NOMOR TOVER	KET.
1	DDR New Balaraja	nne	.	L/R	Derajat	X 657308.503	9314612.814	ZONA 48 M	z 20,126	(meter)	(meter) 0.000	(meter)	(meter)	(Vts/Vds) #DIV/0!	_	Banten	Tangerang	Balaraja	Sukamurni		DDR New Balaraja	NEW
2	T01	00	<u> </u>	R	29.606	657100.000	9314891.000		19.746	347.651	347.651			#DIV/0!	-	Banten	Tangerang	Jayanti	Pabuaran	Sawah	T01	EKSISTING
3	T02	АА			0	657044.639	9315325.487	48 M		438.000	785.651			#DIV/0!	-	Banten	Tangerang	Jayanti	Pabuaran	Sawah, Jalan Tol Sawah	T02	NEW
1	T03	АА		L	4.023	656988.000	9315770.000	48 M	18.548	408 902	1233.757			#DIV/0!	-	Banten	Tangerang	Jayanti	Pabuaran	Sawan Sawan	T03	NEW

Perencanaan Longprofile

Dengan membuat profile sepanjang jaringan memanjang transmisi, perencanaan long profile ini direkomendasikan mengguna kan skala H. 1:2000, V. 1:400. untuk pembuatan sagging (lendutan konduktor) dapat menggunakan sagging dari pabrik konduktor atau dengan melakukan perhitungan mandiri mengacu pada SPLN T5.014-1 2021.

Perencanaan longprofile ini sangat bervariasi disesuaikan dengan jenis konduktor yang dipergunakan.

Foto Drone

Tarikan kerja maksimum (MWT) dari beberapa jenis kawat penghantar A1/SA1A sesuai SPLN T3.001-1: 2007 adalah sebagai berikut:

Tabel 8. Tarikan kerja maksimum kawat penghantar

No.	Jenis Kawat Penghantar	Tegangan (kV)	Rentang Dasar (m)	MWT (kg)
1	160-A1/SA1A-26/7	66	250	1700
2	250-A1/SA1A-26/7	150	350	2400
3	450-A1/SA1A-54/7	150	350	3400
4	316-A1/SA1A-26/7	150	350	3000
5	450-A1/SA1A-54/7	275	400	4600
6	400-A1/SA1A-54/7	500	500	4300
7	450-A1/SA1A-54/7	500	500	4700

$$D = \frac{WS^{2}}{8T} (m)$$

$$L_{o} = S + \frac{WS^{2}}{24T} = S + \frac{8D^{2}}{3S} (m)$$

Dimana:

T = tegangan mendatar dari penghantar (kg)

W =berat penghantar per satuan panjang (kg/m)

l = panjang penghantar sebenarnya dari titik terendah sampai dengan titik koordinat (x, y) (m)

d = andongan (sag) pada titik (x, y) (m)

PERENCANAAN PONDASI

• Perencanaan Pondasi Dalam ketentuannya PLN telah melakukan klasifikasi pondasi dengan beberapa kelas PERDIR No 0145.P/DIR/2016

	TECH	INICAL SPE	CIFICATION	N OF FOUN	DATION CL	ASS		
FOUNDATION CLASS	1A	1B	2A	2B	3 A	3B	4A	7
FOUNDATION TYPE	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney	Concrete Pad & Chimney
SOIL DESCRIPTION	Very Good Soil	Ve <u>ry</u> G <u>o</u> od Soil	Good Soil	Good Soil	Normal Soil	Normal Soil	Soft Rock —€o nd it io n—	Normal Soil
WATER TABLE	Below Foundation Level	Below Foundation Level	Below Foundation Level	Below Foundation Level	Below Foundation Level	Below Foundation Level	Below Foundation Level	Above Foundation Level
ALLOWABLE BEARING CAPACITY (Q _{ALL}) (kg/cm²)	3.31-5.0	2.51 - 3.30	1.61 - 2.50	1.21 - 1.60	0.91 - 1.20	0.71 - 0.90	5.01-8.00	0.71-5.00

Didapat dari hasil penelitian Geoteknik

PERENCANAAN PONDASI

Pondasi Pad and Chimney merupakan pondasi dangkal, sesuai klasifikasi pondasi PLN, pondasi pad and chimney ini berkisar dari kelasi 1 hingga kelas 7 yang dibedakan dari allowable bearing capacity tanah yang didapat pada tower tersebut.

Pembacaan kalendering sondir tanah untuk penentuan pondasi dangkal mulai dari kedalaman 2,00 - 4,00 meter.

Pondasi Borpile/Pancang merupakan pondasi dalam, sesuai klasifikasi pondasi PLN, pondasi borpile ini merupakan kelas 6 dengan allowable cearing capacity tanah mencapai tanah keras sesuai desain yang dipersyaratkan dalam RKS.

Pembacaan kalendering sondir tanah untuk penentuan pondasi dalam jika tanah keras berada jauh dibawah melebihi 4 meter. meter.

Pondasi blok angkur merupakan pondasi dalam, sesuai klasifikasi pondasi PLN, pondasi angkur ini merupakan kelas 5 yang jarang dipergunakan

JARAK AMAN GALIAN DISEKITAR MENARA TRANSMISI

CONTOH TABEL JARAK AMAN GALIAN DISEKITAR MENARA TRANSMISI

Tabel 1. Jarak Aman Galian Tanah Lempung

			Kedalaman Galian									
	Ket	5 Meter	10 1	Meter		15 Meter						
		0.0 - 0.5	0.0 - 0.5	0.5 - 10.0	0.0 - 0.5	0.5 - 10.0	10.0 - 15.0					
		_				,						
SUTT 70 kV												
Jarak Minimal (meter)	(A)	18,0	1	9,0		20,0						
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5					
Bahu (meter)	(C)	-		1,5	-	1,5	15,0					
SUTT 150 kV												
Jarak Minimal (meter)	(A)	19,0	1	9,0		20,0						
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5					
Bahu (meter)	(C)	-	-	1,5		1,5	15,0					
SUTET 275 kV												
Jarak Minimal (meter)	(A)	19,0	1	9,0		20,0						
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5					
Bahu (meter)	(C)	-	-	1,5	-	1,5	15,0					
SUTET 500 kV					•							
Jarak Minimal (meter)	(A)	19,0	1	9,0		20,0						
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5	1:1,5					
Bahu (meter)	(C)		-	1,5		1,5	15,0					

		T-1	T	abel 2.b Jara	ak Aman Ga	lian Tanah 1	Lempung	dan Pasir	· :		· · · ::	
						K	edalaman G	alian				
	Ket			25 Meter	_	•			30	Meter		
	<u> </u>	0,0 - 0,5	0,5 - 10,0	10,0 - 15,0	15,0 - 20,0	20,0 - 25,0	0,0 - 0,5	0,5 - 10,0	10,0 - 15,0	15,0 - 20,0	20,0 - 25,0	25,0 - 30,0
SUTT 70 kV		l		L							l	
Jarak Minimal (meter)	(A)			9,0						9,0		
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:2	1:2	1:2	1:2	1:1,5	1:2	1:2	1:2	1:2	1:2
Bahu (meter)	(C)		1,5	5,0	1,5	5,0	-	1,5	5,0	1,5	5,0	1,5
SUTT 150 kV							L		_		<u> </u>	
Jarak Minimal (meter)	(A)			16,0			1			16,0		
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:2	1:2	1:2	1:2	1:1,5	1:2	1:2	1:2	1:2	1:2
Bahu (meter)	(C)	-	1,5	5,0	1,5	5,0	-	1,5	5,0	1,5	5,0	1, <u>5</u>
SUTET 275 kV				<u></u>								
Jarak Minimal (meter)	(A)	r		17,0	*		1			17,0		
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:2	1:2	1:2	1:2	1:1,5	1:2	1:2	1:2	1:2	1:2
Bahu (meter)	(C)	-	1,5	5,0	1,5	5,0	-	1,5	5,0	1,5	5,0	1,5
SUTET 500 kV												
Jarak Minimal (meter)	(A)			17,0						17,0		
Kemiringan Lereng (vertikal:horizontal)	(B)	1:1,5	1:2	1:2	1:2	1:2	1:1,5	1:2	1:2	1:2	1:2	1:2
Bahu (meter)	(C)	-	1,5	5,0	1,5	5,0	-	1,5	5,0	1,5	5,0	1,5
(vertikal:horizontal)	<u> </u>	<u> </u>									_	

ROW

• Perencanaan Tower Dalam ketentuannya PLN telah menentukan type tower sesuai SPLN T5.014-1 2021.

SUTET 500 kV Type Tension 2 sirkit

SUTT 150 kV Type Tension 2 sirkit

ROW

PERMEN ESDM NO.13 Tahun 2021 Tentang Ruang Bebas dan Jarak Bebas Minimum Jaringan Transmisi Tenaga Lsitrik dan Kompenasasi Atas Tanah Bangunan dan/atau tanaman yang berada dibawah Jaringan Transmisi Tenaga Listrik

Tabel 1. Jarak Bebas Minimum Vertikal dari Konduktor

		St	JTT	SU	ret	SUT	TAS
No.	Lokasi	66 kV	150 kV	275 kV	500 kV	250 kV	500 kV
		(m)	(m)	(m)	(m)	(m)	(m)
1.	Lapangan terbuka atau	7,5	8,5	10,5	12,5	7,0	12,5
	daerah terbuka a						$\mathbf{D}_{\mathbf{I}}$
2.	Daerah dengan keadaan						5 1
١.	tertentu						
	- Bangunan, jembatan b)	4,5	5,0	7,0	9,0	6,0	9,0
	- Tanaman/tumbuhan,	4,5	5,0	7,0	9,0	6,0	9,0
	hutan, perkebunan b						
	- Jalan/jalan raya/rel	8,0	9,0	11,0	15,0	10,0	15,0
1	kereta api a)						
	- Lapangan umum 🗈	12,5	13,5	15,0	18,0	13,0	17,0
	- SUTT lain, Saluran	3,0	4,0	5,0	8,5	6,0	7,0
	Udara Tegangan						
	Rendah (SUTR),						
	Saluran Udara				i		
	Tegangan Menengah						

		St	JTT	SU'	ret:	SUTTAS	
No.	Lokasi	66 kV	150 kV	275 kV	500 kV	250 kV	500 kV
	†	(m)	(m)	(m)	(m)	(m).	(m)
	(SUTM), saluran udara						
	komunikasi, antena						
	dan kereta gantung b						
	- Titik tertinggi tiang	3,0	4,0	6,0	8,5	6,0	10,0
	kapal pada kedudukan						
	air pasang/tertinggi						
'	pada lalu lintas air ^{১)}						

CATATAN

- a) Jarak Bebas Minimum Vertikal dari Konduktor dihitung dari konduktor ke permukaan bumi atau permukaan jalan/rel
- b) Jarak Bebas Minimum Vertikal dari Konduktor dihitung dari konduktor ke titik tertinggi/terdekatnya

ROW

Ruang Bebas SUTT 66 (Enam Puluh Enam) Kilovolt dan 150 (Seratus Lima Puluh) Kilovolt Menara Sirkuit Ganda

Pandangan Atas Ruang Bebas SUTT, SUTET, dan SUTTAS

Keterangan:

/////// : I

: pandangan atas Ruang Bebas SUTT, SUTET, dan SUTTAS

L : jarak dari sumbu vertikal menara/tiang ke konduktor

H : jarak horizontal akibat ayunan konduktor

: jarak bebas impuls petir untuk SUTT dan SUTTAS atau jarak bebas impuls switsing (switching impulse) untuk SUTET

Tower 500 kV Satu sirkit

Tower 500 kV Dua sirkit

Tower Combine 500 kV & 150 kV

Tower Singlepole 500 kV

Tower 150 kV Dua sirkit

Tower 150 kV Empat sirkit

Tower Steelpole 150 kV Dua sirkit

Tower Combine 150 kV & 70 kV

Tower 70 kV Dua sirkit

Tower 70 kV Empat sirkit

Nilai Ambang Batas Medan Listrik dan Medan Magnet

NILAI AMBANG BATAS MAKSIMUM MEDAN LISTRIK DAN MEDAN MAGNET

Tabel 1. Nilai Ambang Batas Maksimum Medan Listrik yang Diizinkan pada Frekuensi 50/60 Hz

Karakteristik Pemaparan	Kuat Medan Listrik kV/m (efektif)
Yang berhubungan dengan pekerjaan	
- sepanjang hari kerja	10
- jangka pendek	30 *
- hanya pada lengan	
Yang berhubungan dengan masyarakat umum	101
- sampai dengan 24 jam/hari **	5
- beberapa jam/hari ***	10

catatan:

- * durasi paparan medan antara 10 kV/m dan 30 kV/m dapat dihitung dari rumus t≤80/E, dengan t adalah durasi dalam jam/hari kerja dan E adalah kuat Medan Listrik dalam kV/m
- ** pembatasan ini berlaku untuk ruang terbuka di mana anggota masyarakat umum dapat secara wajar diperkirakan menghabiskan sebagian besar waktu selama satu hari, seperti kawasan rekreasi, lapangan untuk bertemu dan lain-lain yang semacam itu
- *** nilai kuat Medan Listrik dapat dilampaui untuk durasi beberapa menit/hari, asalkan diambil tindakan pencegahan untuk mencegah efek kopling tak langsung

Tabel 2. Nilai Ambang Batas Maksimum Medan Magnet yang Diizinkan pada Frekuensi 50/60 Hz

Karakteristik Pemaparan	Medan Magnet (Rapat Fluks Magnet) mT (Efektif)
Yang berhubungan dengan pekerjaan	
- sepanjang hari kerja	0,5
- jangka pendek	5 *
- hanya pada lengan	25
Yang berhubungan dengan masyarakat umum	
- sampai dengan 24 jam/hari **	0,1
- beberapa jam/hari ***	1

catatan:

- * durasi paparan paling lama adalah 2 (dua) jam per hari kerja
- ** pembatasan ini berlaku untuk ruang terbuka di mana anggota masyarakat umum dapat secara wajar diperkirakan menghabiskan sebagian besar waktu selama 1 (satu) hari, seperti kawasan rekreasi, lapangan untuk bertemu dan lain-lain
- *** nilai kuat Medan Magnet dapat dilampaui untuk durasi beberapa menit/hari, sepanjang diambil tindakan pencegahan untuk mencegah efek kopling tak langsung

PERIJINAN DAN PEMBEBASAN LAHAN

Perijinan Lokasi

Dalam perencanaan perijinan dan pembebasan lokasi terdapat 2 metode yang dapat dilakukan yaitu :

- 1. Melalui Pengajuan Penetapan Lokasi / Penlok
- 2. Pengajuan KKPR (Kajian Kesesuaian Penempatan Ruang)

untuk penerapannya kedua metode itu harus memilik prasyarat yaitu, jika melalui Penlok pastikan proyek tersebut masuk dalam Proyek Strategis Nasional (PSN) dan diajukan ke Gubernur sedangkan untuk KKPR proyek tersebut tidak mesti dari PSN dan diajukan ke Kementerian ATR/BPN.

• Pembebasan Lahan

Sebelum dilakukan pembebasan lahan, PLN melakukan Kontrak dengan Kantor Jasa Penilai Publik untuk melakukan taksiran harga tanah dan bangunan pada lokasi yang akan dibebaskan, nilai yang diberikan oleh Lembaga appraisal tersebut dijadikan acuan untuk dasar pembebasan tanah dan bangunan.

CONTOH TABEL INVENTARISASI PADA JALUR TRANSMISI

2. TABEL'HASIL INVENTARISASI CALON PENERIMA PEMBAYARAN KOMPENSASI

a. Tabel Inventarisasi Tanah, Bangunan, dan/atau Tanaman Milik Masyarakat

		Nama Anggota	Rinciar	Tanah	_		Rincian Ta	naman	
No.	Lokasi Tanah pada Span <i>Tower</i>	a Span Masyarakat Calon Penerima Pembayaran		Jenis Bukti	Luas Bangunan (m²)	Jenis		sarkan aman	
	Tower	Kompensasi	(m²)	Kepemilikan	(111,	Tanaman	Produktif	Besar	Kecil
1.	Span T.1-T.2				••••	••••			
2.	Span T.1-T.2				••••	••••			
3.	Span T.1-T.2				••••	••••			
4.	Span T.2-T.3	••••			••••	••••			
5.	Span T.2-T.3					•••••			
6.	Span T.2-T.3		••••			••••			
	dst.								

CONTOH TABEL INVENTARISASI PADA JALUR TRANSMISI

b. Tabel Inventarisasi Tanah, Bangunan, dan/atau Tanaman Berstatus Barang Milik Negara/Kekayaan Negara/Barang Milik Daerah/Barang Milik Badan Usaha Milik Daerah dan Kawasan Hutan

	Lokasi Tanah pada Span Tower	Nama Instansi Calon Penerima Pembayaran Kompensasi	Status Lahan*(Luas Tanah (m²)	Y	Rincian		
No					Luas Bangunan (m²)	Jenis Tanaman	Jumlah Tanaman (buah)	Mekanisme Pemanfaatan**
1.	Span T.1-T.2							
2.	Span T.1-T.2							
3.	Span T.2-T.3							
4.	Span T.2-T.3							
	dst.							

^{*(} diisi sesuai dengan status lahan (BUMN/KN/BMD/BUMN/BUMD/Kawasan Hutan)

^{**(} diisi sesuai jenis pemanfaatan yang akan dilakukan (Kompensasi/sewa/Persetujuan Penggunaan Kawasan Hutan, dan lain-lain.)

CONTOH

NO	NOMOR PRK PUSAT	URAIAN PEKERJAAN	PIC KAK & RAB	LOKASI	MURNI (dalam ribuan Rp.)		TARGET TOR, BOQ, RAB (User)	TARGET RKS & HPE (Rendan)	RENCANA LELANG (Lakdan)	TARGET KONTRAK	RENCANA COD	
					Ruplah	Sumber Dana						Jumlah Penyedia
1	3	4	5 Y	6	7	8	9a	9 <i>b</i>	10	11	12	13
1	2023.UJBB.355.001	Pembangunan SUTT 150 kV Cikupa New Inc. (Jatake - Tangerang Lama) (8,8 kms, 44cct) & Penyempumaan GIS 150 kV Cikupa New	REN	Banten	66.835.159	APLN 2023	Feb-23	Mar-23	Apr-23	Jun-23	SMT 2-2024	BANYAK
2	2023.UJBB.189.001	Pembangunan SUTT 150 kV Pondok Kelapa II Inc. (Bekasi - Pondok Kelapa) (4cct, 4 kms)	REN	DKI Jakarta - Bekasi	23.309.955	APLN 2023	Mar-23	Apr-23	Mei-23	Jul-23	SMT 2-2024	BANYAK
3	2023.UJBB.299.002	Survey GI dan Transmisi Lokasi Tersebar Paket 2: Pekerjaan Survey SKTT 150kV Muara Karang Lama - Budi Kemuliaan	REN	DKI Jakarta	1.563.178	APLN 2023	Feb-23		Apr-23	Mei-23	-	BANYAK
4		Pekerjaan Survey SUTT 150 kV Tigaraksa II - Kopo	REN	Tangerang	TL		Feb-23	Mar-23	Apr-23	Mei-23	-	BANYAK
5		Pekerjaan Survey SKTT 150 kV Tersebar DKI Jakarta (1) 1. Survey SKTT Tambun II - TX Tambun 2. Survey SKTT Senayan - Petukangan	REN	Bekasi DKI Jakarta			Feb-23	•	Apr-23	Mei-23	-	BANYAK
6		Pekerjaan Survey SKTT 150 kV Tersebar DKI Jakarta (2): 1. SKTT TX Cawang Baru - TX Ragunan 2. SKTT Marunda - Kandang Sapi II 3. SKTT Semanggi Barat II - Karet Lama 4. SKTT Taman Rasuna II - Karet Lama	REN	DKI Jakarta			Feb-23	•	Apr-23	Mei-23	-	BANYAK
7		Pekerjaan Survey Topografi Lokasi Tersebar Paket 3 Tahun 2023	REN	DKI Jakarta			Agu-23		Okt-23	Nov-23	-	BANYAK
8		Pekerjaan Survey Topografi Lokasi Tersebar Paket 4 Tahun 2023	REN	DKI Jakarta			Agu-23		Okt-23	Nov-23		BANYAK
9		Pekerjaan Survey Topografi SUTET 500 kV Priok - Muara Karang	REN	Jakarta			Jul-23		Jul-23	Agu-23	-	BANYAK
10	2021.UISJ.5.001	Penelitian Tanah, Sondir dan Boring di Pembangunan GITET 500 KV Cikande	REN	Serang	1.500.000	APLN 2023	Feb-23	Feb-23	Mar-23	Apr-23	-	BANYAK

KLASIFIKASI KOMPETENSI

