

Language: Finnish

Day: 1

Lauantaina 15.4.2023

Tehtävä 1. Tarkastellaan $n \geqslant 3$ positiivista reaalilukua a_1, a_2, \ldots, a_n . Kullakin $1 \leqslant i \leqslant n$ määritellään $b_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ (oletetaan lisäksi, että $a_0 = a_n$ ja $a_{n+1} = a_1$). Oletetaan, että kaikilla i ja j, jotka toteuttavat ehdon $1 \leqslant i, j \leqslant n$, pätee $a_i \leqslant a_j$ jos ja vain jos $b_i \leqslant b_j$.

Todista, että $a_1 = a_2 = \cdots = a_n$.

Tehtävä 2. Tarkastellaan teräväkulmaista kolmiota ABC. Olkoon D se piste kolmion ABC ympäripiirretyllä ympyrällä, että AD on halkaisija. Oletetaan, että pisteet K ja L ovat janoilla AB ja AC (tässä järjestyksessä) ja että DK ja DL ovat ympyrän AKL tangentteja.

Osoita, että suora KL kulkee kolmion ABC ortokeskuksen läpi.

Kolmion ortokeskus on kolmion korkeusjanojen leikkauspiste.

Tehtävä 3. Olkoon k positiivinen kokonaisluku. Lexillä on sanasto \mathcal{D} , joka sisältää joitakin k merkin pituisia jonoja, jotka muodostuvat vain kirjaimista A ja B. Lexi haluaisi kirjoittaa kirjaimen A tai kirjaimen B jokaiseen $k \times k$ -ruudukon ruutuun niin, että jokainen sarake muodostaa sanastoon \mathcal{D} kuuluvan sanan luettaessa ylhäältä alaspäin ja jokainen rivi muodostaa sanastoon \mathcal{D} kuuluvan sanan luettaessa vasemmalta oikealle.

Mikä on pienin kokonaisluku m niin, että jos \mathcal{D} sisältää vähintään m eri jonoa, niin Lexi pystyy täyttämään ruudukon näin riippumatta siitä, mitkä jonot on sanastossa D?

Language: Finnish Aika: 4 tuntia ja 30 minuuttia Jokainen tehtävä on 7 pisteen arvoinen

Tehtävät on pidettävä salassa sunnuntaihin 16. huhtikuuta klo 22:00 UTC asti (00:00 (maanantai) Keski-Euroopan kesäaikaa).

Language: Finnish

Day: 2

Sunnuntaina 16.4.2023

Tehtävä 4. Turbo-etana on ympyrän kehällä. Kehän pituus on 1. Kun Turbo-etanalle annetaan ääretön jono positiivisia reaalilukuja c_1, c_2, c_3, \ldots , Turbo-etana liikkuu lukujen c_1, c_2, c_3, \ldots verran ympyrän kehällä, joka kerta valiten erikseen menevänsä joko myötä- tai vastapäivään.

Esimerkiksi, jos jono olisi $c_1; c_2; c_3; \ldots$ on $0,4; 0,6; 0,3; \ldots$, niin Turbo saattaisi edetä seuraavalla tavalla:

Määritä suurin vakio C > 0, jolla on seuraava ominaisuus: jokaisella reaalilukujonolla c_1, c_2, c_3, \ldots , jolla $c_i < C$ kaikilla i, Turbo-etana voi (tarkasteltuaan jonoa) varmistaa, että ympyrän kehällä on jokin piste, johon se ei koskaan osu, ja jonka yli se ei koskaan liiku.

Tehtävä 5. Olkoon $s \ge 2$ annettu positiivinen kokonaisluku. Jokaisella positiivisella kokonaisluvulla k määritellään sen käännös k' seuraavasti: kirjoitetaan k muodossa as+b, missä a,b ovat epänegatiivisia kokonaislukuja ja b < s. Silloin k' = bs+a. Olkoon n positiivinen kokonaisluku. Tarkastellaan ääretöntä jonoa d_1, d_2, \ldots missä $d_1 = n$ ja d_{i+1} on luvun d_i käännös kaikilla positiivisilla kokonaisluvuilla i.

Osoita, että tässä jonossa on luku 1 jos ja vain jos jakojäännös on 1 tai s, kun luku n jaetaan luvulla s^2-1 .

Tehtävä 6. Olkoon ABC kolmio, jonka ympäripiirretty ympyrä on Ω . Olkoot S_b ja S_c (tässä järjestyksessä) keskipisteet niillä kaarilla AC ja AB, joilla ei ole kolmatta kärkeä. Olkoon N_a keskipiste kaarella BAC (se kaari BC, joka sisäältää pisteen A). Olkoon I kolmion ABC sisäänpiirretyn ympyrän keskipiste. Olkoon ω_b se ympyrä, joka sivuaa suoraa AB ja sisäpuolelta sivuaa ympyrää Ω pisteessä S_b , ja olkoon ω_c se ympyrä, joka sivuaa suoraa AC ja sisäpuolelta sivuaa ympyrää Ω pisteessä S_c . Osoita, että suora IN_a , ja ympyröiden ω_b ja ω_c leikkauspisteiden kautta kulkeva suora leikkaavat toisensa ympyrällä Ω .

Kolmion sisäänpiirretty ympyrä on se ympyrä, joka on kolmion sisällä ja sivuaa kolmion kaikkia sivuja.

Language: Finnish Aika: 4 tuntia ja 30 minuuttia Jokainen tehtävä on 7 pisteen arvoinen

Tehtävät on pidettävä salassa 16. huhtikuuta klo 22:00 UTC asti (00:00 (maanantai) Keski-Euroopan kesäaikaa).