第 13 讲: 布尔代数

姓名: 林凡琪 学号: <u>211240042</u>

评分: _____ 评阅: ____

2022年2月16日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业(必做部分)

题目 1 (Definition)

请证明: A bounded, distributive, and complemented lattice is a Boolean algebra.

图 1: George Boole

解答:

代数系统 $\langle B, \vee, \wedge \rangle (\vee, \wedge)$ B 上二元运算), 称为布尔代数, 如果 B 满足以下条件: (1) 运算 \vee, \wedge 满足交换律.

- (2)∨运算对 ∧运算满足分配律,∧运算对 ∨运算也满足分配律.
- (3)B 有 \lor 运算幺元 1 和 \land 运算零元 0, \land 运算幺元和 \lor 运算零元 1.
- (4)B 中的任意元素 a, 都有其补元 a'

有补分配格首先是格, 所以满足 (1);

分配格满足分配律, 所以满足条件 (2);

因为 B 是有补分配格, 所以每一个元素都有唯一一个补元, 其中元素 0,1 的补元就是对方, 所以一定满足 (3);

B 是有补分配格, 所以不妨设 a 为 B 中任意一个元素, b 和 c 都是 a 的补元, 那么 $a \wedge b = 0 = a \wedge c$, $a \vee b = 1 = a \vee c$

但因为 B 是分配格, 所以当且仅当 b=c 时, $a \wedge b=a \wedge c$, $a \vee b=a \vee c$, 所以 a 只有唯一补元.

题目 2 (Dn)

请证明: D_n (定义见阅读材料 Example 15.1 (c)) 是 Boolean algebra 当且仅当 $n = p_1 p_2 \cdots p_k$ (for some k), 这里 p_i 皆为素数且互异。

解答:

不妨假设 p_i 不为素数, $p_i = p_{i-1} \times p_{i+1}$, 则 $lcm(p_{i-1}, p_{i+1}) = p_i \neq n$, 不符合分配格的条件, 所以不是布尔代数.

再不妨假设 $p_i = p_{i+1}$, 则一定有一个 $p_{i+2} = p_i \times p_{i+1}$, 此时 p_{i+2} 不是素数, 证明过程 同上一假设.

题目 3 (Atom)

设 B 为 Boolean algebra, 对于任意元素 $a \in B$, 定义 $Atom(a) = \{x \le a \mid x \text{ is an atom}\}$ 。 现假设 B 为有穷 Boolean algebra。请证明:

$$\forall a \in B : a \neq 0 \implies \mathsf{Atom}(a) \neq \emptyset.$$

解答:

因为 B 为有穷布尔代数, 所以对 B 中每一元素 a, 均存在元素 a', 使得 $a \wedge a' = 0$ 所以 $0 \le a$ 所以 $\forall a \in B : a \ne 0 \Longrightarrow \mathsf{Atom}(a) \ne \emptyset$. 因为 0 一定小于 a.

证明: 设存在原子 b, 使得 $b \leq a$

- 1) 如果 a 是原子,则今 a = b,则 $b \leq a$
- 2) 如果 a 不是原子,则必存在 $a_1 \in B$ 使得 $0 < b_1 < a$,如果 b_1 不是原子,则必存在 $b_2 \in B$ 使得 $0 < b_2 < b_1 < a$,如此下去,因为 B 是有穷布尔代数,上述过程经过有限步骤而最后会结束,最后得到原子 $b_k, 0 < b_k < ... < b_2 < b_1 < a 令 b_k = b 则 <math>b \leq a$

题目 4 (Isomorphic)

请证明: 有穷且等势的 Boolean algebras 均同构。

解答:

由 Stone 布尔代数的表示定理可推出有穷且等势的 Boolean algebras 均同构, 所以在此证明 Stone 定理即可.

即证: 任意有限布尔代数 $\langle B, \lor, land, - \rangle$, M 是所有原子构成的集合, 则 $\langle B, lor, land, - \rangle$ 与 $\langle P(M), \cup, , \rangle$ 同构.

证明: 构造映射 $f:B \to \Pi(M)$, 对于 $\xi \in B$ 有

$$f(x) = \begin{cases} \Phi & x = 0\\ \{a | a \in M, a \leqslant x\} & x \neq 0 \end{cases}$$

- (1) 先证明 ϕ 是双射
- (a) 先证明 ϕ 是入射: 只有 $\xi = 0$ 时, 才有 $\phi(\xi) = \Phi$.

任取 $x_1, x_2 \in B, x_1 \neq 0, x_2 \neq 0, x_1 \neq x_2$

 $x_1 = a_1 \vee a_2 \vee ... \vee a_k \not \equiv a_i \leqslant x_1 \ (1 \leqslant i \leqslant k)$

 $x_2 = b_1 \lor b_2 \lor \dots \lor b_m \not\equiv b_i \leqslant x_2 \ (1 \leqslant j \leqslant m)$

因为每一个非 0 元素写成上述表达式的形式是唯一的, 又因为 $x_1 \neq x_2$, 所以 $\{a_1, a_2, ... a_k\} \neq \{b_1, b_2, ..., b_m\}$ 故 $\phi(x_1) \neq f(x_2)$, f 入射.

(b) 证明 f 满射: 任取 $M_1 \in \Pi(M)$ 如果 M_1 为 Phi, 则 $\phi(0) = M_1$, 如果 $M_1 \neq Phi$, 令 $M_1 = \{a_1, a_2, ..., a_k\}$, 由 \vee 的封闭性得, 必存在 $\xi \in B$, 使得 $a_1 \vee a_2 \vee ... \vee a_k = x$ 显然每个 $a_i \leq \xi$, 故 $\phi(\xi) = M_1$, 所以 ϕ 是满射的.

由(1) 得 ϕ 是双射的.

(2) 证明 f 满足三个同构关系式.

任取 $x_1, x_2, \in B$ 因为 phi 是双射, 必有 $M_1, M_2 \in \Pi(M)$, 使得 $f(x_1) = M_1, f(x_2) = M_2$,

(a) 证明 $f(x_1 \wedge x_2) = f(x_1) \cap f(x_2) = M_1 \cap M_2$

先证 $M_3 \subseteq M_1 \cap M_2$

如果 $M_3 = \Phi$ 显然有 $M_3 \subseteq M_1 \cap M_2$

如果 $M_3 \neq \Phi$, 任取 $a \in M_3$, 由 f 定义得 $a \leq x_1 \wedge x_2$, 又因为 $x_1 \wedge x_2 \leq x_1, x_1 \wedge x_2 \leq x_2$, 所以 $a \leq x_1, a \leq x_2$ 由 f 定义得 $a \in f(x_1), a \in f(x_2)$ 即 $a \in M_1, a \in M_2$, 故 $a \in M_1 \cap M_2$, 所以 $M_3 \subseteq M_1 \cap M_2$

再证 $M_1 \cap M_2 \subseteq M_3$

如果 $M_1 \cap M_2 = \Phi$ 显然有 $M_1 \cap M_2 \subseteq M_3$

如果 $M_1 \cap M_2 \neq \Phi$, 任取 $a \in M_1 \cap M_2$ 是满足 $a \leq x_1, a \leq x_2$ 的原子, $a \leq x_1 \wedge x_2$ 由

f定义得

 $a \in f(x_1 \land x_2)$ 即 $a \in M_3$, 所以 $M_1 \cap M_2 \subseteq M_3$

所以 $M_1 \cap M_2 = M_3$ 即 $f(x_1 \wedge x_2) = f(x_1) \cap f(x_2)$

(b) 证明 $f(x_1 \vee x_2) = f(x_1) \cup f(x_2) = M_1 \cup M_2$

先证 $M_4 \subseteq M_1 \cup M_2$

若 $M_4 = Φ$, 显然 $M_4 \subseteq M_1 \cup M_2$

如果 $M_4 \neq Phi$, 任取 $a \in M_4$, 由 f 定义得 $a \leq x_1 \vee x_2$, 则必有 $a \leq x_1$ 或者 $a \leq x_2$

由 f 定义得 $a \in f(x_1)$ 即 $a \in M_1$ 或 $a \in f(x_2)$ 即 $a \in M_2$

所以 $a \in M_1 \cup M_2$, 则 $M_4 \subseteq M_1 \cup M_2$.

再证 $M_1 \cup M_2 \subseteq M_4$

如果 $M_1 \cup M_2 = \Phi$, 显然有 $M_1 \cup M_2 \subseteq M_4$

如果 $M_1 \cup M_2 \neq \Phi$, 任取 $a \in M_1 \cup M_2$

如果 $a \in M_1$, 则 $a \leqslant x_1 \leqslant x_1 \lor x_2$, 所以 $a \in f(x_1 \lor x_2)$, $a \in M_4$

如果 $a \in M_2$, 则 $a \leq x_2 \leq x_1 \vee x_2$, 所以 $a \in f(x_1 \vee x_2)$, $a \in M_4$

所以 $M_1 \cup M_2 \subseteq M_4$

综上所述 $M_4 = M_1 \cup M_2$

即 $f(x_1 \lor x_2) = f(x_1) \cup f(x_2)$ (3) 证明 $f(\overline{x_1}) = f(x_1), x \in B$

 $\Rightarrow x_2 = \overline{x_1} \perp f(x_1) = M_1, f(x_2) = M_2$

于是 $x_1 \lor x_2 = 1, x_1 \land x_2 = 0$

 $\phi(x_1 \vee x_2) = M, \phi(x_1 \wedge x_2) = \Phi$

 $\phi(x_1 \lor x_2) = \phi(x_1) \cup \phi(x_2) = M_1 \cup M_2 = M$

 $\phi(x_1 \wedge x_2) = \phi(x_1) \cap \phi(x_2) = M_1 \cap M_2 = \Phi$

所以 $M_2 = M_1$ 即

由 (1)(2)(3) 得 $f(x_1 \land x_2) = f(x_1) \cap f(x_2)$ $\phi(x_1 \lor x_2) = \phi(x_1) \cup \phi(x_2)$ 所以 $\langle B, \lor, land, - \rangle$ 与 $\langle P(M), \cup, , \rangle$ 同构所以可推得有限等势布尔代数同构。

2 作业(选做部分)

题目 1 (Isomorphic)

是否任何 Boolean Algebra 都与某个幂集 Boolean Algebra 同构?请证明或给出反例。

解答:

3 Open Topics

Open Topics 1 (Karnaugh map)

以三变量为例,介绍卡诺图的应用与基本原理。 参考资料:

- Karnaugh map @ wiki
- 课程阅读材料 Section 15.12

Open Topics 2 (Circuit Design)

为了在液晶显示器上显示数字 $0 \sim 9$,我们通常设置 7 个液晶段 $a \sim g$ 。请设计数字电路,实现该显示器的功能。

提示: 该电路有 4 个输入信号, 7 个输出信号。如右图所示。

4 反馈