E. Ehab's REAL Number Theory Problem

https://codeforces.com/problemset/problem/1325/E

time limit per test: 3 seconds

memory limit per test: 256 megabytes

input: standard input output: standard output

You are given an array a of length n that has a special condition: every element in this array has at most 7 divisors. Find the length of the shortest non-empty subsequence of this array product of whose elements is a perfect square.

A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements.

Input

The first line contains an integer n (1 \leq n \leq 10⁵) – the length of a.

The second line contains n integers $a_1, a_2, ..., a_n$ (1 $\leq a_i \leq 10^6$) – the elements of the array a.

Output

Output the length of the shortest non-empty subsequence of a product of whose elements is a perfect square. If there are several shortest subsequences, you can find any of them. If there's no such subsequence, print "-1".

Examples

Input	Output
3 1 4 6	1
4 2366	2
3 6 15 10	3
4 2357	-1

Note

In the first sample, you can choose a subsequence [1].

In the second sample, you can choose a subsequence [6,6].

In the third sample, you can choose a subsequence [6,15,10].

In the fourth sample, there is no such subsequence.