Задача 11-1

Элемент **X** образует простое серебристо-белое вещество **A** с металлическим блеском. Соединения этого элемента давно используются в полупроводниковой и энергетической промышленности. Ниже представлена схема превращений веществ, содержащих элемент**X**:

В конце XX и особенно в XXI веке ряд соединений элемента X, в частности вещество I, нашли применение в качестве катализаторов в нефтехимических процессах изза особого строения кристаллической решётки.

Соединение I образует бесцветные кристаллы ромбической сингонии с параметрами элементарной ячейки a = 0.5798 нм, b = 1.224 нм, c = 0.5214 нм. Плотность этого вещества составляет 4.28 г/см³.

Вопросы:

- 1. Определите элемент Х. Ответ подтвердите расчётом.
- **2.** Определите вещества A I, если известно, что вещества G и E состоят из 4-х элементов, а вещества B и H бинарные соединения.
- 3. Напишите уравнения всех реакций, приведенных на схеме.
- **4.** Предположите, для чего может применяться последовательность стадий $A \rightarrow B \rightarrow A$ на практике.

Решение задачи 11-1 (авторы: Пошехонов И.С., Спасюк П.В.)

1. По изображению кристаллической решетки вещества **I** видно, что оно состоит из атомов трех элементов: серые $-\mathbf{x}$, черные $-\mathbf{y}$, белые $-\mathbf{z}$. Определим число атомов в ячейке:

$$N(x) = 4 + 8 \cdot \frac{1}{2} = 8$$
 $N(y) = 16$ $N(z) = 2 + 4 \cdot \frac{1}{2} = 4$

Мольное соотношение: $N(\mathbf{x}) : N(\mathbf{y}) : N(\mathbf{z}) = 8 : 16 : 4 = 2 : 4 : 1$

Тогда, стехиометрический состав **I**: zx_2y_4 (или x_2zy_4)

Для элементарной ячейки число формульных единиц $N(x_2y_4z) = 4$.

Масса элементарной ячейки может быть выражена через число частиц, входящих в ее состав:

$$m = v \cdot M = \frac{N}{N_A} \cdot M$$

Объем прямоугольного параллелепипеда:

$$V = a \cdot b \cdot c$$

Подставив эти выражения в определение плотности, получим:

$$\rho = \frac{m}{V} = \frac{NM}{N_A \cdot a \cdot b \cdot c}$$

Откуда:

$$\mathbf{M}(\mathbf{X}) = \frac{a \cdot b \cdot c \cdot N_A \cdot \rho}{N} = \frac{0.5798 \cdot 10^{-7} \cdot 1.224 \cdot 10^{-7} \cdot 0.5214 \cdot 10^{-7} \cdot 6,02 \cdot 10^{23} \cdot 4,28}{4} = \mathbf{238} \,\, \text{г/моль}$$

Исходя из схемы реакций, вещество **I**, вероятно, содержит натрий и кислород, помимо элемента **X**, т.е. относится к классу солей. Учитывая определенный выше стехиометрический состав **I**, возможны формулы: NaX_2O_4 или Na_2XO_4 . Определим молярные массы элемента **X** для этих случаев:

 $M_1(\mathbf{X}) = (238 - 23 - 16.4)/2 = 75.5$ г/моль (при данном составе не имеет химического смысла)

$$M_2(\mathbf{X}) = 238 - 23 \cdot 2 - 16 \cdot 4 = 128$$
 г/моль (соответствует теллуру)

Следовательно, X - Te теллур.

2. Формулы веществ:

В	C	D	E	F	G	Н	I
Na ₂ Te ₂	H ₆ TeO ₆	Na ₆ TeO ₆	Na ₂ H ₄ TeO ₆	Na ₂ TeO ₃	Te ₂ O ₃ (OH)NO ₃	TeO ₂	Na ₂ TeO ₄

3. Уравнения реакций:

1. 6 Te + 2 Al + 8 NaOH
$$\rightarrow$$
 3 Na₂Te₂ + 2 Na[Al(OH)₄]

или 3 Te + 2Al + 8 NaOH
$$\rightarrow$$
 3 Na₂Te + 2Na[Al(OH)₄]

2.
$$2Na_2Te_2 + 2H_2O + O_2 \rightarrow 4Te + 4NaOH$$

или
$$2Na_2Te + 2H_2O + O_2 \rightarrow 2Te + 4NaOH$$

3.
$$5\text{Te} + 6\text{HClO}_3 + 12\text{H}_2\text{O} \rightarrow 5\text{H}_6\text{TeO}_6 + 3\text{Cl}_2$$

4.
$$H_6TeO_6 + 6NaOH \rightarrow Na_6TeO_6 + 6H_2O$$

5.
$$Na_6TeO_6 + 4H_2O \rightarrow Na_2H_4TeO_6 + 4NaOH$$

6.
$$2Na_2H_4TeO_6 \rightarrow 2Na_2TeO_3 + O_2 + 4H_2O$$

7.
$$2\text{Te} + 9\text{HNO}_3 \rightarrow 8\text{NO}_2 + \text{Te}_2\text{O}_3(\text{OH})\text{NO}_3 + 4\text{H}_2\text{O}$$

8.
$$Te_2O_3(OH)NO_3 \rightarrow 2TeO_2 + HNO_3$$

9.
$$TeO_2 + 2NaOH \rightarrow Na_2TeO_3 + H_2O$$

10.
$$Na_2TeO_3 + H_2O_2 \rightarrow Na_2TeO_4 + H_2O$$

4. В большинстве случаев добываемый теллур содержит примеси серы и селена, которые затрудняют химическую обработку вещества. Одним из способов очистки теллура может служить его последовательное восстановление и окисление.

Используемые источники:

- **1.** П.С. Киндяков, Б.Г. Коршунов. Химия и технология редких и рассеянных элементов, Т. 3-M.: «Мир», 2004.-c. 476.
- **2.** Третьяков Ю.Д. Неорганическая химия, Т. 3, Книга 1 М.: «Академия», 2007. с. 171-173.
- **3.** Путилова И.Н. Курс общей химии М.: «Высшая школа», 1964. с. 379.

Система оценивания:

1.	Определение элемента X, обоснование расчетом	1 балл
2.	Формулы веществ по 1 баллу	8 баллов
3.	Уравнения реакций $1 - 10$ по 1 баллу	10 баллов
4.	Обоснование использования перехода $A \rightarrow B \rightarrow A$	1 балл
	ИТОГО:	20 баллов