FEB. 6. 2006 8:03PM ENZO BIOCHEM NO. 7993 P. 64

Stavrianopoulos et al., Serial No. 08/486,070 (Filed June 7, 1995) Exhibit 4 [Fifth Supplemental IDS -- February 6, 2006]

EXHIBIT 4

U\$005098825A

United States Patent [19]

Tchen et al.

[11] Patent Number:

5,098,825

[45] Date of Patent:

Mar. 24, 1992

[54] PROBE CONTAINING A MODIFIED NUCLEIC ACID RECOGNIZABLE BY SPECIFIC ANTIBODIES AND USE OF THIS PROBE TO DETECT AND CHARACTERIZE A HOMOLOGOUS DNA SEQUENCE

[75] Inventors: Pául Tchen, Nanterre; Philip Kourileky, Paris; Marc Leng, St Cyr; Anne B. Cami, Paris, all of France

[73] Assignce: Institut Pasteur, Paris, France

[21] Appl. No.: 512,602

tani

[22] Filed: Apr. 24, 1990

Related U.S. Application Data

[63] Continuation of Ser. No. 245,952, Sep. 15, 1988, abandoned, which is a continuation of Ser. No. 525,269, Aug. 23, 1983, abandoned.

Foreign Application Priority Data

[aa]	
Dec	:. 23, 1981 [FR] France
[51] [52]	Int. Cl. ³ C12Q 1/68 11.S, Cl. 435/6; 435/71; 435/810; 436/501; 436/804; 436/808; 436/828;
[58]	530/389.1; 530/389.8; 935/78; 935/81 Pield of Search
	436/501, 828, 804, 808; 935/78, 81; 530/387

[56] References Cited

U.S. PATENT DOCUMENTS

4,061,466	12/1977	Sjohölm et al 436/828 X
4,166,104	B/1979	Wagner et al 436/539 X
4,358,535	11/1982	Falkow et al 435/36 X
4,459,359	7/1984	Neurath 436/828 X
4,493,899	1/1985	Smith et al 436/811 X

FOREIGN PATENT DOCUMENTS

2019408 of 1979 United Kingdom.

OTHER PUBLICATIONS

Sage et al., Biochemistry, vol. 18, No. 7, pp. 1328-1332. Spodheim-Maurizot et al., Chemical Abstracts, vol. 94 97632j (1981).

Leng et al., Chemical Abstracts, vol. 89, No. 21, 174795r (1978).

Guigues et al., Chemical Abstracts, vol. 91, No. 5, 33858t (1979).

Grunberger et al., Coding and Conformational Properties of Oligonucleotides Modified with the Carcinogen N-2-Acetylaminofluorene, PNAS 66, 488-494 (1970). Fuchs et al., Physical Studies on Deoxyribonucleic Acid after Covalent Binding of a Carcinogen, Biochemistry 11, 2659-2666 (1972).

Fuchs et al., Dynamic Structure of DNA Modified with the Carcinogen N-Acetoxy-N-2-acetylaminofluorene, Biochemistry 13, 4435-4440 (1974).

Fuchs, In Vitro Recognition of Carcinogen-Induced Local Denaturation Sites in Native DNA by S1 Endonuclease from Aspergillus Oryzae, Nature 257, 151-152 (1975).

Fuchs et al., Comparative Orientation of the Fluorene Residue in Native DNA Modified by N-Acetoxy-N-2-Acetylaminofluorene and Two 7-Halogeno Derivatives, Biochemistry 15, 3347-3351 (1976). de Murcia, G. et al., Proc. Nat'l Acad. Sci., vol. 76, 1979, pp. 6076-6080. Sage et al., Biochemistry, vol. 18, No. 7, pp. 1328-1332

Primary Examiner—Amelia Burgess Yarbrough Attorney, Agent, or Firm—Finnegan, Henderson, Farabow, Garrett & Dunner

[57] ABSTRACT

(1979).

A method and kit for detecting a predetermined nucleotide sequence in a specimen using a nucleic acid probe modified with N-2-acetylaminofluorene (AAF).

14 Claims, No Drawings

5,098,825

PROBE CONTAINING A MODIFIED NUCLEIC ACID RECOGNIZABLE BY SPECIFIC ANTIBODIES AND USE OF THIS PROBE TO DETECT AND CHARACTERIZE A HOMOLOGOUS DNA SEQUENCE

This application is a continuation of application Ser. No. 245,952, filed Sep. 15, 1988 now abandoned, which is a continuation of Ser. No. 06/525,269, filed Aug. 23, 10 1983, now abandoned.

The invention relates to a probe containing a modified nucleic acid recognisable by specific antibodies and to the use of this probe to detect and characterise a homologous DNA sequence in a specimen which can 15 contain it. More particularly the invention relates to a probe chemically modified so that it can, after hybridization with the homologous DNA sequence sought, be detected by antibodies specific with respect to the probe itself.

It is known that DNA's can react under suitable conditions with carcinogenic substances, such as Nacetoxy-N-2-acetylaminofluorene, to form a product which can be recognised by antibodies formed, on the one hand, against N-2 (guanosine-8-yl)-acetylamino- 25 fixed antibodies may be, either precipitated or develfluorene and, on the other hand, against the same DNA's modified by N-acetoxy-N-2-acetylaminafluorene. These techniques have particularly been described in an article of Gilbert de Murcia and collaborators entitled "Visualisation by electronic microscopy of 30 fixation sites of N-acetoxy-N-2-acetylaminofluorene on a DNA of ColE 1 by means of specific antibodies' (Proc. Natl. Acad. Sci USA, volume 76, No. 12, 6076-6 080 Dec. 1979).

Under the conditions described by these authors it is 35 action is very rapid. possible to modify from 0.07 to 0.15% of the bases of the DNA treated with N-acetoxy-N-2-acetylaminofluorene, the lixation points of the latter chemical substance on the DNA being then locatable by electronic microscopy, after prior reaction of the DNA so modified with 40 mosomes, for example in the case of pre-natal diagnosis. the antibodies of the above-indicated type previously formed in the rabbit, then with anti-immunogobulins of rabbits marked with ferritine. The technique described consequently enables healthy native DNA's to be distinaction of carcinogenic substances.

The invention is based on a discovery that the modification of a DNA sequence by N-acetoxy-N-2acetylamino-fluorene would not alter, after prior denaturstion of this modified DNA, its capacity to be hy- 50 bridized with a complementary DNA sequence not bearing such modification groups, when these sequences are placed under conditions enabling such hybridation. The invention takes advantage of this discovery to propose an improved method for detecting the possible 55 presence and characterisation of a sequence or of a particular nucleic acid fragment, particularly of a gene within a composition which can contain it.

The method according to the invention is characterised in that there is placed in contact with the composi- 60 tion presumed to contain a susquence or a certain nucleic acid fragment, a probe containing a complementary nucleic acid which can be hybridized with the nucleic acid sequence or the gene sought, the probe being more particularly characterised in that it bears at 65 lessi one N-2-acetylaminofluorene group fixed covalently to at least one of the bases of this probe, the possible presence of the nucleic acid sequence or of the gene

sought being then developable by an antibody action effective with respect to N-2-(guanosine-8-yl)accivlaminofluorene or previously prepared with respect to the probe bearing acetylaminofluorene residues

(called below DNA-AAF).

It goes without saying that the method claimed within the scope of the present application extends to the use of any other chemical group fixable to a DNA under the conditions described by Murcia et coll.

Naturally, it is self-evident that the DNA-AAF used as a probe is placed in the presence of the DNA to be studied under conditions enabling the re-pairing of complementary sequences, which involves naturally prior denaturisation under well-known conditions of DNA's which can be mutually hybrided.

After hybridization, the DNA-AAF not hybridized specifically is preferably removed by tinsing before proceeding with the detection of the hybrids formed, particularly by placing them in the presence of anti-20 DNA-AAF antibodies, which can then be fixed to the probe modified and hybridized at the same time with the DNA sequence sought, when the latter was present in the composition used.

After rinsing of the excess antibodies still present, the

Preferably, development is done by means of an anti-DNA-AAF antibody, advantageously marked by an enzyme of which it is then possible to detect or determine the activity with respect to a specific substrate. Advantageously, those enzymes will be used which are capable of inducing a color reaction at the level of the corresponding substrates.

Development by means of enzymes giving color re-

The method is very sensitive, especially if amplifying systems (beads, trees or balls of antibodies associated with the enzymes), are used, so that it cnables the localization of the genes after hybridization in situ on chro-

The method can be quantitative, by measurement of

the intensity of the color.

Additional characteristics of the invention with appear also in the course of the description which follows guished from DNA's which have been subjected to the 45 of a typical example of employing the method according to the invention.

Use is made of the following materials and methods:

The DNA's

DNA of pBR 322 phage bearing a sequence of hamster ribosome gene of 6.6 kb inserted at the EcoRI site (clone PWE 6)

separate DNA of phage λ 57 as negative control.

DNA Treated with AAF (DNA-AAF)

The DNA of the clone PWE6 was linearized (by Sal I restriction enzyme) and treated with AAF by the technique described by G. de Murcia et al. (PNAS vol. 76, No. 12 p. 6076-6080 1979). The number of modified guanines was estimated at 2% of the number of pairs of bases by measurement of the optical density at 305 nm and 260 nm.

Antibodies

DNA-AAF serum obtained by immunization of a

Anti-Guo-AAF rabbit antibodies purified on an affinity column

3

rabbit anti-lgG goat antibody linked to peroxydase. The antibodies were obtained under the conditions described in the above-mentioned article.

Detection Test of DNA-AAF

Variable amounts of DNA-AAF were deposited on nitrocellulose filters (Schleicher and Schüll, 19pe BA 85) of 5 mm diameter.

The DNA had previously been diluted in a 2×SSC solution and denaturated at 100° C., for 5 minutes.

After deposition, the membranes were placed in the oven at 80° C. for 2 hours.

The membranes were then treated with a 3% bovine albumin solution (SIGMA ref. A. 7888), 1, SSC, at 40° C. for one hour, then incubated 30 minutes at amblant temperature in the same solution in the presence of anti-DNA-AAF antibodies or anti-Guo-AAF of rabbit at a final 2 µg ml.

After incubation, the membranes were washed seven times with PBS, at ambiant temperature, then left to incubate 30 minutes in a 3% bovine alumbin solution, I SSC containing rabbit IgG goat antibodies linked to peroxydase at 2 µg/ml final.

After washing seven times with PBS, the color reaction was done by the addition of the following solution, prepared extemporaneously:

- 2 mg of 3-amino 9 ethylcarbazol (SIGMA ref. A 5754) dissolved in 0.5 ml of N-N' dimethyl formamide.
- 9.5 m) of 0.05 M pH 5.1 acetic acetate buffer, 10 μ l of H₂O₂ (Merk ref. 7209)

Hyridization Test with DNA-AAF Used as a Probe

Deposition of variable amounts of DNA PWE 6:

- 1) 100 ng
- 2) 10 ng
- 3) 1 ng
- 4) 100 ng

After deposition, the filters were placed at 80° C. for 40 ing: 2 hours, then prehybridated 4 hours at 68° C. in a 6 × SSC solution and 10 × Denhardt. (1 × Denhardt containing:

0.02% of Polyvinyl pyrollidone,

0.02% of the reagent marketed under the name Ficolle 45 400 by "Pharmacia fine Chemicals".

0.02% of bovine albumin)

They were then hybridized in a 2×SSC 1×Denhardt solution in the presence of 200 µl per membrane of DNA-AAF solution previously denaturated containing 50 respectively:

10 ng/ml final

ing/mi final and

100 pg/ml final

After hybridization, the filters were washed

30 minutes in 2×SSC 1 Denhardt

30 minutes in 1×SSC 1 Denhardt

30 minutes in 0.5×5SC 1 Denhardt

30 minutes in 0.2×SSC 1 Denhardt

I hour 0.1×SSC 1 Denhardt

then incubated for one hour at 40° C. in a solution containing 3% of albumin at 1×SSC. The subsequent operations were carried out as previously (contacting with anti-DNA-AAF or anti Guo-AAF antibodies, PBS washing, antibodies+peroxydase, PBS washing and 65 development).

After development colored spots were observed whose intensity (greater for high concentration, weaker

for low concentration DNA) depends on the amount of hybridized DNA.

The above-indicated detection method had lead to entirely negative results at the end of hybridation tests carried out between the negative control (used in amounts reaching 90 nanograms) and the DNA-AAF.

The invention is obviously not limited to the embodiments described above by way of example and one skilled in the art can introduce therein modifications without however departing from the scope of the following claims.

As modifications usable at the level of the detection of hybrids formed with the probe according to the invention, will be cited:

the development of the hybrids formed by radioactivity, for example by the use of anti-DNA-AAF antibodies rendered radio-active by iodine 125 or 13I or radio-active protein A, which will be fixed on the antibodies.

Finally, by way of possible variations in the uses, will be mentioned the application of the probe according to the invention to the purification of a complementary DNA contained in an initial composition, particularly by means

of protein A associated with a solid support (for example constituted by agarose beads).

of precipitating antibodies associated or not with a solid support (beads of agarose, of latex, etc.), to ensure the selective precipitation of the hybrid formed.

Finally forming part of the modificatons remaining within the scope of the claims is the possible substitution of the AAF by any carcinogenic equivalent molecule or the like capable of being fixed under the same conditions to certain at least of the bases of the nucleotides from which the probe is constituted.

We claim:

 A kit for the detection or isolation of a first predetermined nucleotide sequence in a specimen, comprisling:

- a probe containing a second nucleotide sequence which is complementary to said first predetermined nucleotide sequence and which can be hybridized with said first predetermined nucleotide sequence; said probe further containing a N-2-acetylaminofluorene group covalently fixed to a base of said second complementary nucleotide sequence; and
- first antibodies formed against N-2-(guanosine-8-yl)acetylaminofluorene or against a nucleotide sequence covalently fixed to an N-2-acetylaminofluorene group.

2. The kit of claim 1, which further comprises means for developing said first antibodies.

- The kit of claim 2, wherein said developing means comprise second antibodies which bear an enzyme.
- 4. The kit of claim 3, wherein said enzyme can give a color reaction.
- 5. The kit of claim 1, which further comprises protein so A on a solid support for precipitating, from said specimen, a hybrid of said first predetermined nucleotide sequence and said probe fixed to said first antibodies.

6. The kit of claim 1, wherein said first antibodies are provided on a solid support for precipitating, from said specimen, a hybrid of said first predetermined nucleotide sequence and said probe.

7. The kit of claim 1, wherein said first and second nucleotide sequences are DNA sequences.

5,098,825

5

- 8. A method for detecting a first predetermined nucleotide sequence in a specumen, comprising:
 - contacting said speciment, under hybridization conditions, with said probe of said kit of claim 1 to form a hybrid of said probe and said first predetermined nucleotide sequence; and then
 - contacting said hybrid with said first antibodies of said kit of claim I to fix said first antibodies to said hybrid.
- The method of claim 8, which further comprises precipitating, from said specimen, said hybrid fixed to said first antibodies by contacting said hybrid with protein A on a solid support.
- 10. The method of claim 8, wherein said first antibodies are on a solid support so that said hybrid precipitates from said specimen.
- 11. The method of claim 8, which further comprises developing said first antibodies.
- 12. The method of claim 11, wherein said first antibodies are developed by treating said hybrid fixed to said first antibodies with second antibodies which bear an enzyme.

- 6
 13. The method of claim 12, wherein said enzyme can give a color reaction.
- 14. A method for detecting a first predetermined DNA nucleotide sequence in a specimen, wherein the method comprises:
 - contacting said specimen, under hybridization conditions, with a probe comaining a second DNA nucleotide sequence which is complementary to said first predetermined DNA nucleotide sequence to forn a hybrid of said probe and said first predetermined DNA nucleotide sequence; said probe further containing a N-2-acetylaminofluorene group covalently fixed to a base of said second complementary DNA nucleotide sequence;
 - contacting said hybrid with antibodies formed against N-2-(guanosine-8-yl)-acetylaminofluorene or against a nucleotide sequence covalently fixed to an N-2-acetylaminofluorene group to thereby form an antibody-antigen complex, wherein said antibodies have bound thereto an immunological label selected from the group consisting of radioactive and enzymatic labels; and

detecting the label bound to the antibodies.

25

30

35

40

45

50

55

60

65

```
Dialog level 05.10.03D
Last logoff: 27jan06 13:32:40
Logon file405 31jan06 10:25:17
            *** ANNOUNCEMENT ***
                    ***
NEW FILES RELEASED
***Index Chemicus (File 302)
***Inspec (File 202)
***Physical Education Index (File 138)
                    ***
RELOADS COMPLETED
*** The 2005 reload of the CLAIMS files (Files 340, 341, 942)
is now available online.
RESUMED UPDATING
***BRIC (File 1)
Chemical Structure Searching now available in Prous Science Drug
Data Report (F452), Prous Science Drugs of the Future (F453),
IMS R&D Focus (F445/955), Pharmaprojects (F128/928), Beilstein
Facts (F390), Derwent Chemistry Resource (F355) and Index Chemicus
(File 302).
                    ***
     >>> Enter BEGIN HOMEBASE for Dialog Announcements <<<
     >>> of new databases, price changes, etc.
SYSTEM: HOME
Cost is in DialUnits
Menu System II: D2 version 1.7.9 term=ASCII
                     *** DIALOG HOMEBASE(SM) Main Menu ***
 Information:

    Announcements (new files, reloads, etc.)
    Database, Rates, & Command Descriptions

  3. Help in Choosing Databases for Your Topic
  4. Customer Services (telephone assistance, training, seminars, etc.)
  5. Product Descriptions
 Connections:
  6. DIALOG(R) Document Delivery
  7. Data Star(R)
    (c) 2003 Dialog, a Thomson business. All rights reserved.
      /H = Help
                           /L = Logoff
                                                 /NOMENU = Command Mode
Enter an option number to view information or to connect to an online
service. Enter a BEGIN command plus a file number to search a database
(e.g., B1 for ERIC).
Terminal set to DLINK
                     *** DIALOG HOMEBASE(SM) Main Menu ***
```

FEB. 6. 2006 8:05PM ENZO BIOCHEM

```
Information:
   1. Announcements (new files, reloads, etc.)
   2. Database, Rates, & Command Descriptions
  3. Help in Choosing Databases for Your Topic
  4. Customer Services (telephone assistance, training, seminars, etc.)
  5. Product Descriptions
  Connections:
  6. DIALOG(R) Document Delivery
  7. Data Star(R)
     (c) 2003 Dialog, a Thomson business.
                                              All rights reserved.
      /H = Help
                           /L = Logoff
                                                /NOMENU = Command Mode
Enter an option number to view information or to connect to an online
 service. Enter a BEGIN command plus a file number to search a database
 (e.g., Bl for ERIC).
? b351
       31jan06 10:25:22 User140240 Session D2158.1
            $0.00 0.235 DialUnits FileHomeBase
     $0.00 Estimated cost FileHomeBase
     $0.02 TELNET
$0.02 Estimated cost this search
     $0.02 Estimated total session cost 0.235 DialUnits
File 351:Derwent WPI 1963-2006/UD,UM &UP=200607
       (c) 2006 Thomson Derwent
*File 351: For more current information, include File 331 in your search.
Enter HELP NEWS 331 for details.
? s pn=wo 8302286
      S2
          1 PN=WO 8302286
? type s2/7/all
 2/7/1
DIALOG(R) File 351: Derwent WPI
(c) 2006 Thomson Derwent. All rts. reserv.
003721016
WPI Acc No: 1983-717208/ 198329
  Detection of nucleic acid sequences - using a probe contg. nucleic acid
  modified with acetyl amino fluorene
Patent Assignee: INST PASTEUR (INSP ); CENT NAT RECH SCIETIFIQU (CNRS );
  TCHEN P (TCHE-I)
Inventor: CAMI A B; KOURILSKY P; LENG M
Number of Countries: 008 Number of Patents: 008
Patent Family:
Patent No
            Kind Date
                             Applicat No Kind Date
                                                             Week
WO 8302286 A 19830707 198329
FR 2518755 A 19830624 198330
EP 97664 A 19840111 EP 82900047 A 19821223 198403
                                                            198329 B
                                                            198330
```

```
    JP
    58502165
    W
    19831215
    JP
    83500217
    A
    19830000
    198405

    EP
    97664
    B
    19860312
    EP
    83900047
    A
    19830826
    198611

    DE
    3269920
    G
    19860417
    198617

    US
    5098825
    A
    19920324
    199215

    JP
    92045783
    B
    19920727
    WO
    82FR220
    A
    19821223
    199234

    JP
    83500217
    A
    19821223
```

Priority Applications (No Type Date): FR 8124131 A 19811223 Cited Patents: 5.Jnl.Ref; GB 2019408; US 4358535; GB 2019458 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 8302296 A F 13

Designated States (National): JP US

Designated States (Regional): BE CH DE GB

EP 97664 A F

Designated States (Regional): BE CH DE GB LI

EP 97664 B F

Designated States (Regional): BE CH DE GB LI

US 5098825 A 4

JP 92045783 B 4 G01N-033/53 Based on patent JP 58502165 Based on patent WO 8302286

Abstract (Basic): WO 8302286 A

A nucleic acid sequence, such as a gene or gene fragment, present in a composition or sample, is detected by contact with a probe containing a nucleic acid that is complementary to the nucleic acid sequence sought. This probe carries at least one N-2-acetyl amino fluorene group fixed covalently to one of the bases of the probe. The presence of the desired nucleic acid sequence is shown by the action of an antibody active against N-2-(guanosin-8-yl) acetyl amino fluorene, or one of an antibody which has previously been prepared in relation to the probe carrying acetylamino fluorene residues.

Used diagnostic tests, e.g. prenatal tests. Extreme sensitivity. Abstract (Equivalent): EP 97664 B

A method for detecting the presence of a given nucleic acid sequence, of a gene or a gene fragment sought in a composition or sample which is supposed to contain it, comprising contacting said composition with a probe of nucleic acid containing a sequence complementary, or homologous, to the given nucleic acid sequence of the gene or gene fragment sought under conditions enabling after denaturation, hybrid-isation between the given sequence, the gene or gene fragment sought, on the one hand, and the sequence complementary to said probe on the other hand, and eliminating the non hybridised probe, wherein said probe bears at least one N-2-actylamino-fluorene group fixed covalently to at least one of the bases of the said probe, the possible presence of the nucleic acid sequence, of the gene or gene fragment sought being then revealable by the action of antibodies effective with respect to the promprobe bearing the acetylaminofluorene residues.

Abstract (Equivalent): US 5098825 A

Kit for the detection or isolation of a predetermined nucleotide sequence comprises a reagent contg. a complementary nucleotide sequence that hybridises with the test sample; such that the second nucleotide sequence is labelled with an N-2-acetylaminofluorene gp. attached to a base in the sequence; also antibodies to N-2-(guanosine-8-yl) acetylaminofluorene or a nucleotide sequence contg. an N-2-acetylaminofluorene gp.; and means of developing these antibodies

or related antibodies labelled with an enzyme function capable of producing a colour reaction.

USE - The prods. are aids for rapid clinical analysis and diagnosis. (4pp)

Derwent Class: B04; D16

International Patent Class (Main): G01N-033/53

International Patent Class (Additional): C12N-015/00; C12Q-001/68; G01N-033/54; G01N-033/58

? LOGOFF

31jan06 10:29:05 User140240 Session D2158.2

Logoff: level 05.10.03 D 10:29:05

You are now logged off