

EE2211 Pre-Tutorial 7

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 7

Recap

- Overfitting, underfitting & model complexity
 - Overfitting: low error in training set, high error in test set
 - Underfitting: high error in both training & test sets
 - Overly complex models can overfit; Overly simple models can underfit
- Feature selection
 - Extract useful features from training set
- Regularization (e.g., L2 regularization)
 - Solve "ill-posed" problem (e.g., more unknowns than data points)
 - Reduce overfitting
- Bias-Variance Decomposition Theorem
 - Test error = Bias Squared + Variance + Irreducible Noise
 - Can be interpreted as trading off bias & variance:
 - Overly complex models can have high variance, low bias
 - Overly simple models can have low variance, high bias

Overfitting

Training

Testing

Overfitting Example

Training Set Fit

Good

Order 9

Overfitting Example

	Training Set Fit	Test Set Fit	
Order 9	Good	Bad	

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i \, x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} \, x_i x_j + \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} \, x_i x_j x_k + \cdots$$

Underfitting

Training

Testing

Underfitting Example

Fit

Bad

Training

Set Fit

Good

Bad

Order 9

Order 1

Underfitting Example

9	National University of Singapore
120	National University of Singapore

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	Bad	Bad

Perfect Fitting

Training

Testing

"Just Nice"

Good

Order 2

National University of Singapore

Training Samples Regression (Order 2) 2 4 6 8

'J	us	t	N	IC	e"

	Training Set Fit	Test Set Fit	
Order 9	Good	Bad	
Order 1	Bad	Bad	
Order 2	Good	Good	

Fitting VS Model Complexity

Overfitting / Underfitting Schematic

Linear model

Model Complexity or Number of Features Complex model

Overfitting

 Overfitting occurs when model predicts the training data well, but predicts new data (e.g., from test set) poorly

Reason 1

- Model is too complex for the data
- Previous example: Fit order 9 polynomial to 10 data points

Reason 2

- Too many features but number of training samples too small
- Even linear model can overfit, e.g., linear model with 9 input features (i.e., w is 10-D) and 10 data points in training set => data might not be enough to estimate 10 unknowns well

Solutions

- Use **simpler models** (e.g., lower order polynomial)
- Use regularization (see next part of lecture)

Underfitting

 Underfitting is the inability of trained model to predict the targets in the training set

Reason 1

- Model is too simple for the data
- Previous example: Fit order 1 polynomial to 10 data points that came from an order 2 polynomial
- Solution: Try more complex model

Reason 2

- Features are not informative enough
- Solution: Try to develop more informative features

Feature Selection

- Less features might reduce overfitting
 - Want to discard useless features & keep good features, so perform feature selection
- Feature selection procedure
 - Step 1: feature selection in training set
 - Step 2: fit model using selected features in training set
 - Step 3: evaluate trained model using test set
- Very common mistake
 - Feature selection with test set (or full dataset) leads to inflated performance
 - Do not perform feature selection with test data

Pearson's R

 Pearson's correlation r measures linear relationship between two variables

Pearson's R

- Given features x, we want to predict target y
- Assume x & y both continuous
- Compute Pearson's correlation coefficient between each feature & target y in the training set
 - Pearson's correlation r measures linear relationship between two variables
- Two options
 - Option 1: Pick K features with largest absolute correlations
 - Option 2: Pick all features with absolute correlations > C
 - K & C are "magic" numbers set by the ML practitioner
- Other metrics besides Pearson's correlation are possible

Regularization

- Regularization is an umbrella term that includes methods forcing learning algorithm to build less complex models.
- Motivation 1: Solve an ill-posed problem
 - For example, estimate 10th order polynomial with just 5 datapoints
- Motivation 2: Reduce overfitting
- For example, in previous lecture, we added $\lambda \mathbf{w}^T \mathbf{w}$:

$$\underset{\mathbf{w}}{\operatorname{argmin}}(\mathbf{P}\mathbf{w} - \mathbf{y})^{T}(\mathbf{P}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

• Minimizing with respect to w, primal solution is

$$\hat{\mathbf{w}} = (\mathbf{P}^T \mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{P}^T \mathbf{y}$$

- For $\lambda > 0$, matrix becomes invertible (Motivation 1)
- w might also perform better in test set, i.e., reduces overfitting (Motivation 2) will show example later

Regularization

Bias vs Variance

Suppose we are trying to predict red target below:

Low Bias: blue predictions on average close to red target
Low Variance: low variability among blue predictions

Low Bias

Low Variance

High Variance

Low Bias: blue predictions on average close to red target High Variance: large variability among blue predictions

High Bias: blue predictions on average not close to red target Low Variance: Low variability among blue predictions

High Bias

High Bias: blue predictions on average not close to red target High Variance: high variability among blue predictions

Bias + Variance Trade Off

Test error = Bias Squared + Variance + Irreducible Noise

Linear model

Model Complexity or Number of Features

Complex model

Bias + Variance Example

Order 2

Achieves Lower

Test Error

Each time we randomly pick 10 different training samples.

- Simulate data from order 2 polynomial (+ noise)
- · Randomly sample 10 training samples each time
- Fit with order 2 polynomial: low variance, low bias
- Fit with order 4 polynomial: high variance, low bias

Given a new (or test) sample $x \in \mathbb{R}^d$, we can obtain its prediction $\hat{f}(x)$ as follows:

$$\hat{f}_D(x) = x^T \widehat{w}$$

Evaluate the bias and variance of $\hat{f}(x)$ below:

Variance
$$(\hat{f}(s)) = E[(\hat{f}_D(s) - E[\hat{f}_D(s)])^2]$$

$$Bias\left(\hat{f}(x)\right) = E[\hat{f}_D(x)] - f(x)$$
 'average'

- $\hat{f}_D(x)$ is the model's prediction for a specific dataset D
- $E[\hat{f}_D(s)]$ is the expected prediction of the model (averaged over all possible datasets)
- f(s) is the true underlying functions

© Copyright National University of Singapore. All Rights Reserved.

Refer to "Optional Material on Bias-Variance Decomposition Theorem"

Bias + Variance Example

Bias-Variance Decomposition Theorem $E_D\left[\left(y(x) - \hat{f}_D(x)\right)^2\right] = \operatorname{Bias}(\hat{f})^2 + \operatorname{Var}(\hat{f}) + \sigma^2,$

$$E_D\left[\left(y(x) - \hat{f}_D(x)\right)^2\right] = \operatorname{Bias}(\hat{f})^2 + \operatorname{Var}(\hat{f}) + \sigma^2$$

- Test error = Bias Squared + Variance + Irreducible Noise
 - Mathematical details in optional uploaded material (won't be tested)
- "Variance" refers to variability of prediction models across different training sets
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - "Variance" quantifies variability across trained models
- "Bias" refers to how well an average prediction model will perform
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - If we average the trained models, how well will this average trained model perform?
- "Irreducible Noise" reflects the fact that even if we are perfect modelers, it might not be possible to predict target y with 100% accuracy from feature(s) x

Underfitting & Overfitting & Good Fit

	Model Complexity	Training Error	Test Error	Dominant Factor of Test Error	Reasons	Solutions
Underfitting	Low	High	High	High Bias	Overly simple model; Less informative features	More complex model; More informative features
Overfitting	High	Very low	High	High Variance	Overly complex model; Overly small training size	Simpler model; Regularization
Good fit (Optimal)	Moderate	Low	Low	Balance	Proper model complexity; sufficient data	Keep balanced model; Cross-validation for hyperparameter tuning

THANK YOU