Name		
Sign		
_		
	Random No.	Personal No.
	Random No.	Personal No.

(Do not write your school/Centre Name or Number anywhere on this booklet)

545/4 CHEMSITRY (PRACTICAL) Paper 4 Jul/Aug 2022 2 hours

Nama

BUSOGA REGION JOINT EXAMINATION BOARD

Uganda Certificate of Education

CHEMISTRY PRACTICAL

Paper 4

INSTRUCTIONS TO CANDIDATES

Answer both questions. Answers are to be written in the spaces provided in this booklet All your working must be in blue or black ink. Any work done in pencil except drawings will not be marked

You are **not** allowed to use any reference books (i.e. text books, booklets on qualitative analysis etc.)

All working must be clearly shown

Mathematical tables and silent non – programable calculators may be used

For	For Examiner's Use Only		
Q.1			
Q.2			
Total			

1.	You are provided with the following;				
	BA1 , which is a solution containing a carbonate Y_nCO_3 made by dissolving 7.42g in a litre				
	BA2, which is a 0.2M hydrochloric acid solution.				
	You are required to determine the value of n in Y_nCO_3 .				
	Procedure:				
	Pipette 20 or 25 cm ³ of <i>BA1</i> into a clean conical flask.				
	Add $2-3$ drops of phenolphthalein indicator and titrate the solution with BA2 from the burette until the end point. Repeat the titration to obtain consistent results.				
	Record your results in the table below.				
	Results:				
	Volume of pipette used				cm ³
	Titration number	1	2	3	
	2				
	Final burette reading(cm ³)				
	Initial burette reading(cm ³)				-
	V. 1. CDAO 1(3)				
	Volume of BA2 used(cm ³)				
Į	Titre values used to calculate the average volume of <i>BA2</i> used				
					•••••
	Average volume of BA2 used				

Questions:
(a)Calculate the number of moles of;
(i) BA2 that reacted.
(ii) Y_nCO_3 in 1000cm ³ of solution $BA1$
() **0
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)
(1 mole of Y_nCO_3 reacts with 2 moles of hydrochloric acid)

(b) Determine the
(i) Molar mass of Y_nCO_3 .
(ii) Value of n in Y_nCO_3 (Y = 38, C = 12, O = 16)

2. You are provided with substance Q which contains **two** cations and **one** anion. Carry out the following test on Q to identify the cations and anion. Where any gas is evolved, it must be identified and tested. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a). Heat one spatula endful of Q strongly until there is no further change.		
(b). Dissolve two spatula endfuls of Q in about 3cm^3 of water. To the mixture add ammonia solution drop wise until in excess. Filter and keep both the filtrate and residue.		
(c) To the filtrate, add dilute nitric acid drop wise until the solution is just acidic. Divide the solution into five portions		

(i)To the first portion of the	
acidified filtrate, add 2-3 drops	
of lead (ii) nitrate solution	
(ii)To the second portion of the	
acidified filtrate, add 2-3 drops	
of silver nitrate solution	
(iii)To the third portion of the	
acidified filtrate, add 2-3 drops	
of barium nitrate solution	
(iv). To the fourth portion of the	
acidified filtrate, add sodium	
hydroxide solution drop wise	
until in excess.	
(iv).To the fifth portion of the	
acidified filtrate, add ammonia	
solution drop wise until in	
excess.	

(d) Wash the residue with		
water and dissolve it in dilute		
sulphuric acid. Divide the		
resultant solution into three		
portions.		
(i) To the first portion of the		
(i). To the first portion of the		
solution, add sodium hydroxide		
solution drop wise until in		
excess.		
(ii) To the second portion of the		
solution, add ammonia solution		
drop-wise until in excess.		
1		
(iii)To the third portion of the		
solution, add 2-3 drops of		
potassium iodide solution		
(e), (i) Cations in 0 :	and	
(5). (1) Callons III &		
(ii) Anion in Q :		