Aprendizaje Automático

Universidad Nacional de San Martín, 2021

Grupo N°20 Proyecto VOLCANO

Iván Melchor Estudiante de posgrado (UNRN - UGR)

Pablo Reynoso Peitsch Estudiante de grado (CyT UNSAM)

Contenido

- 1. Base de datos y problema a resolver
- 2. Parametrización de las señales/espectro
- 3. Algoritmos de clustering (no supervisado)
- 4. Mixtura y Regresor Logístico (semi supervisado)
- 5. Autoencoders

Espectro

Base de datos

1044 señales de Largo-Periodo (LP)

Forma de onda

Problema:

Clasificar señales sismo-volcánicas (LP)

- 1: Extraemos parámetros (features) de los cuales no conocemos las etiquetas (labels) mediante técnicas de análisis de series temporales (y otros).
- 2: Entrenamos algoritmos de clustering (no-supervisados) para visualmente validar los resultados.
- 3: Seleccionamos el mejor modelo, fijamos etiquetas (cuantas más mejor) y entrenamos un clasificador para propagar las etiquetas (semi-supervisados).

Extracción de parámetros preprocesado PCA (5 componentes): 80% PCA (3 componentes): 66% PCA (2 componentes): 57% Max. Peak Freq. Max. Peak Width Duración Max. Peak Energy (PSD) FORMA DE ONDA **Detrended Fluctuation** Snd. Peak Freq. **ESPECTRALES** Thd. Peak Freq. Entropía de permutación 16 parámetros Centroide Nro. Zero-cross Centroide (1-10 Hz) **Hjorth Complex** Nro. Peaks (>50%) Hjorth Mobil Nro. Peaks (>75%) Nro. Peaks (>90%) más info: github.com/raphaelvallat/antropy

Modelos no supervisados

Clustering

- Density-Based Spatial Clustering (DBSCAN)
- MeanShift
- Hierarchical
- K-Means
- Gaussian Mixture Model (GMM)

Reducción de dimensionalidad para graficar

tSNE

Aprendizaje profundo

AutoEncoder

TSNE

Labels — LP₁₁₄

LP₄₈₂

LP₄₈₃

LP₅₅₇

LP₆₃₁

DBSCAN

Mean Shift

Num. labels: 14 Score: 0.21932905612489612

Counter({0: 729, -1: 302, 1: 2, 12: 1, 10: 1, 4: 1, 7: 1, 3: 1, 11: 1, 9: 1, 8: 1, 5: 1, 6: 1, 2: 1})

12

CONCLUSIONES PARCIALES

- La métrica Silhouette no es conveniente para seleccionar el mejor modelo en nuestro caso. Hay que aplicar validación visual.
- El dataset es separable en siete clusters.
- El modelo Hierarchical es el que da mejor resultado.

T-SNE + Gaussian Mixture Model

Etiquetado Manual

Supervised labels: 97 Sup_label, nro_LPs		
1	28	
2	10	
3	4	
4	30	
5	3	
6	3	
7	2	
8	3	
9	2	
10	2	
11	2	
12	2	
13	2	
14	2	
15	2	

No hay compatibilidad entre nuestros resultados y los resultados del TSNE+GMM

Como no podemos entrenar un clasificador sin etiquetas. Consideraremos las etiquetas arrojadas por el modelo TSNE+GMM como correctas

tSNE + GMM (prob. > 99.6%): 538 etiquetas

Entrenamiento: 403

Validación: 135

Regularización Ridge (C=1.0)

Validación cruzada 5 folds

Recall 1.0 / Precisión 1.0

Recall 0.82 / Precisión 0.83

Entrenamiento

Propagación de etiquetas

129 etiquetas (27%) no coinciden

PDF por clase

¿Problema resuelto?

Un problema complejo. Pocas señales clasificadas manualmente e incapacidad de establecer etiquetas.

tSNE+GMM provee buenos resultados que permiten entrenar un regresor capaz de diferenciar entre las diferentes etiquetas.

Sin embargo, las PDFs no muestran claras diferencias (generales) que permitan zanjar el problema.

A continuación, dos opciones:

- 1. Continuar la búsqueda de señales similares y el etiquetado manual. Se tiene mayor control sobre el proceso, pero requiere muchas horas de trabajo que no siempre van a dar resultado.
- 2. Buscar más parámetros que caractericen mejor las señales (feature engineering).

AUTOENCODERS

Trainable params: 1,072

AUTOENCODERS

16 + 5 (StandarScaler) parámetros

Reducción de métricas AIC y BIC < Nro. de etiquetas con prob. > 99.6% (84% respecto del original)

Conclusiones

Los mejores resultados se obtuvieron al aplicar tSNE+GMM, filtrar etiquetas por probabilidad, propagar con Logistic Regression y remover aquellas etiquetas que no eran consistentes.

El AE Simple logra reproducir el espectro de las señales, pero los parámetros sí permiten diferenciar entre clases, pero no mejor a como veníamos haciendo.

Combinar los parámetros obtenidos con AE Simple con los parámetros iniciales tampoco mejoró el procedimiento original.

Trabajo futuro. Aplicar Self-Organizing Map (SOM), y Deep Embedding Clustering (DEC). Probar con AEs más sofisticados. Evaluar el peso de cada parámetro.

Estamos en github!

Todas las funciones y procedimientos pueden encontrarse en:

github.com/ifmelchor/volcano_ML-UNSAM