Изпит по "Дискретни структури" (СУ, Φ МИ, 07.02.2019 г.) — задачи за специалност "Компютърни науки", І курс, ІІ поток

Първа част

Име·	Факуппопон №	Language
rime.	 Parvilleten n.	I DVIIa
		1.0

Задача	1	2	3	Общо за 1. част
точки				
от макс.	20	20	20	60

Всяка от двете части на изпита съдържа по три задачи и всяка задача носи най-много 20 точки.

За отлична оценка са достатъчни общо 100 точки. Ако имате над 100 точки, това е бонус за Вас.

Всички отговори трябва да бъдат обосновани подробно!

Задача 1. На петте острова Гренландия, Ирландия, Исландия, Мадагаскар и Ямайка има общо сто града — $T_1, T_2, \ldots, T_{100}$. Между някои двойки градове има едно или повече шосета, а между други двойки градове няма нито едно шосе. Градът T_1 се намира на остров Гренландия и е край на точно едно шосе. Градът T_{100} е край на точно три шосета, а всеки от другите градове е край на точно четири шосета.

Професор Гео-Графова твърди, че градът T_{100} непременно се намира на остров Гренландия. Права ли е тя?

Задача 2. Колко 16-буквени редици можем да съставим от 8 букви Φ , 5 букви M и 3 букви M, ако е забранено да поставяме една до друга всички букви от който и да е от трите вида? Можем да слагаме една до друга няколко еднакви букви, но не и всички букви от един вид. Позволено е например да има две, три или четири, но не и пет последователни букви M.

Задача 3. Колко пермутации π на числата 1, 2, 3, ..., n удовлетворяват неравенството $|\pi(k) - k| \le 1$ за всяко $k \in \{1, 2, 3, ..., n\}$?

Упътване: съставете рекурентно уравнение и го решете.

РЕШЕНИЯ

Задача 1. Шосета в морето няма, така че всяко шосе свързва градове от един и същ остров. Да разгледаме неориентиран мултиграф G, чиито върхове са градовете на остров Гренландия, а ребра са шосетата между тези градове. По условие градът T_1 е един от върховете на G и този връх е от нечетна степен — първа. Както знаем, всеки мултиграф съдържа четен брой върхове от нечетна степен. Следователно G съдържа поне още един връх от нечетна степен. Това може да е само градът T_{100} : единствено неговият връх е от нечетна степен — трета; всички други върхове са от четна степен — четвърта.

Излиза, че професор Гео-Графова е права, като твърди, че градът T_{100} непременно се намира на остров Гренландия.

Задача 2. Разглежданите редици от по 16 букви представляват *пермутации с повторение*, защото всяка редица съдържа всички букви и между буквите има еднакви. Следователно броят на всички такива редици (както разрешени, така и забранени) е равен на

$$\widetilde{P}_{16}^{8;5;3} = \frac{16!}{8! \, 5! \, 3!} = 720720.$$

Една редица е забранена точно когато съдържа поне една от думите $\Phi\Phi\Phi\Phi\Phi\Phi\Phi$, ММММ и ИИИ. Броят на забранените редици се пресмята чрез принципа за включване и изключване: 20356. Останалите 720720-20356=700364 редици са разрешени. Това число е отговорът на задачата: можем да съставим 700364 редици, удовлетворяващи изискванията.

Задача 3. Да означим с a_n броя на редиците, изпълняващи неравенството. Има два случая.

Ако $\pi(n)=n$, то след задраскване на последния елемент на редицата остава пермутация на числата $1,\,2,\,3,\,\ldots\,,\,n-1$; броят на тези пермутации е равен на a_{n-1} .

Ако $\pi(n) \neq n$, то $\pi(n) = n-1$, $\pi(n-1) = n$ и след изтриване на последните два елемента остава пермутация на числата $1,\,2,\,3,\,\ldots\,,\,n-2$; броят на тези пермутации е равен на a_{n-2} .

Други възможности няма, следователно $a_n=a_{n-1}+a_{n-2}$. Като решим това уравнение с начални условия $a_1=1$ и $a_2=2$ (намерени чрез непосредствено преброяване), получаваме формулата за числата на Фибоначи.