浙江工业大学 2020/2021 学年第一学期期末考试 《复变函数与积分变换》试卷

班级		姓名		学号任·		课老师	
题号	_	=	三	四	五	六	总分
得分							
一、填空、选择题(共 39 分,每空 3 分) $1、当z = \frac{1+i}{1-i}$ 时, $z^{100} + z^{75} + z^{50} = $							
2、 $f(z) = 2x^3 + 3iy^3$ 在							
3、设 $f(z)$ 在单连通区域 B 内处处解析且不为零,C 为 B 内任何一条简单正向闭							
曲线,则 $\oint_C \frac{f''(z)+2f'(z)+f(z)}{f(z)} dz =$ 。							
4 、设 $z=0$ 为函数 $\frac{1-e^{z^2}}{z^4sinz}$ 的 m 级极点,那么 m=。							
5 、设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 在 $ z < R$ 内 解 析 , k 为 正 整 数 , 那 么							
$Res\left[\frac{f(z)}{z^k},0\right] = $							
6. $Ln(-i) = $ \circ							
7、设 $\mathcal{F}[f(t)] = F[\omega]$,若对 $t \to +\infty$ 时, $g(t) = \int_{-\infty}^{t} f(t)dt \to 0$,则 $\mathcal{F}[g(t)] =$ 。							
8. $\mathcal{L}[e^{2t} + 5\delta(t)] =$							
9、一个向量顺时针旋转 $\frac{\pi}{3}$ 后对应的复数为 $1-\sqrt{3}i$,则原向量对应的复数是()							
(A)2	(B)	$-1-\sqrt{3}i$	(C)1	$+\sqrt{3}i$	$(D)\sqrt{3}$	+ <i>i</i>	
10、设 $f(z)$ 在区域 D 内解析,C 为 D 内任一条简单闭曲线,它的内部完全属于							
D。若 $f(z)$ 在 C 上的值为 2,那么对 C 所围区域内任一点 z_0 , $f(z_0)=($)							
(A)0	(B)1		(C)2])))不确定		
11、下列约	及数中 条	件收敛的纫	3数为()			

 $\text{(A)} \sum_{n=1}^{\infty} e^{in} \qquad \text{(B)} \ \sum_{n=1}^{\infty} \frac{(8i)^n}{n!} \qquad \text{(C)} \ \sum_{n=1}^{\infty} \frac{i^n}{n} \qquad \text{(D)} \ \sum_{n=1}^{\infty} \frac{(-1)^n + i}{\sqrt{n+1}}$

12、设幂级数 $\sum_{n=1}^{\infty}C_nz^n$, $\sum_{n=1}^{\infty}nC_nz^{n-1}$, $\sum_{n=1}^{\infty}\frac{C_n}{n+1}z^{n+1}$ 的收敛半径分别为 R_1, R_2, R_3 ,则 R_1, R_2, R_3 关系()

(A) $R_1 < R_2 < R_3$ (B) $R_1 > R_2 > R_3$ (C) $R_1 = R_2 < R_3$ (D) $R_1 = R_2 = R_3$

二、(8 分)已知f(z) = u(x,y) + iv(x,y)为复平面内满足u(x,y) + v(x,y) = 2xy的 解析函数, 求f(z)。

 $\equiv (10 \, f)$ 求函数 $f(z) = \frac{1}{z^2(z-i)}$ 在环域 (1)0 < |z-i| < 1 (2)0 < |z| < 1 内的 洛朗级数。

四、计算如下积分的值(积分曲线均取正向)(共28分,每题7分)

1.
$$\oint_{|z|=\frac{3}{2}} \frac{dz}{(z^2+1)(z^2+4)}$$

$$2 \cdot \oint_{|z|=2} \frac{e^z}{z^5} dz$$

$$3. \oint_{|z|=4} \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} dz$$

$$4 \int_0^{\pi} \frac{d\theta}{2 - \cos\theta}$$

五、(10 分) 利用 Laplace 变换求微分方程 $y^{(4)}+2y'''-2y'-y=\delta(t)$ 满足初始条件y(0)=y'(0)=y''(0)=y'''(0)=0的解。

六、(5分) 阐述复变函数与积分变换在你相应专业中的应用。