TRhizo-localAdaptation

Cockerham's Test

David Murray-Stoker

Contents

Load Packages & Data	2
Quantify Genetic Variation	3
Data Management	3
Aboveground Biomass	5
Nodule Density	6
Fixing Nodule Density	8
Export Genetic Variation Data	9
Genetic Correlations	10
Data Management	10
Correlations	12
Aboveground Biomass & Fixing Nodule Density	12
Nodule Density	13
Cockerham's Test	14
Set Functions	14
Calculations for Cockerham's Test	15
Aboveground Biomass	15
Nodule Density	16
Fixing Nodule Density	
Results of Cockerham's Tests	
R. Session Information	19

Load Packages & Data

```
## Load the tidyverse
library(tidyverse)

## Packages for analysis
library(broom)
library(lme4)
library(lmerTest)

## Read in data
biomass.data <- read_rds(file = "data/cleaned_biomass_data.rds")
nodule.data <- read_rds(file = "data/cleaned_nodule_data.rds")</pre>
```

Quantify Genetic Variation

Data Management

```
## Aboveground biomass data
# Local
aboveground.biomass.local.data <- biomass.data %>%
  select(Population, Microbiome, Block, Aboveground_Biomass) %>%
  filter(Microbiome == "Local")
# Rural
aboveground.biomass.rural.data <- biomass.data %>%
  select(Population, Microbiome, Block, Aboveground_Biomass) %>%
  filter(Microbiome == "Nonlocal_R")
aboveground.biomass.urban.data <- biomass.data %>%
  select(Population, Microbiome, Block, Aboveground_Biomass) %>%
  filter(Microbiome == "Nonlocal_U")
## Nodule density
# Local | Ambient N
nodule.density.local.ambient.N.data <- nodule.data %>%
  filter(Nitrogen == "Ambient_N") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Local")
# Rural / Ambient N
nodule.density.rural.ambient.N.data <- nodule.data %>%
  filter(Nitrogen == "Ambient_N") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Nonlocal_R")
# Urban / Ambient N
nodule.density.urban.ambient.N.data <- nodule.data %>%
  filter(Nitrogen == "Ambient_N") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Nonlocal_U")
# Local | N Addition
nodule.density.local.N.addition.data <- nodule.data %>%
  filter(Nitrogen == "N_Addition") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Local")
# Rural | N Addition
nodule.density.rural.N.addition.data <- nodule.data %>%
  filter(Nitrogen == "N_Addition") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Nonlocal_R")
# Urban | N Addition
nodule.density.urban.N.addition.data <- nodule.data %>%
  filter(Nitrogen == "N_Addition") %>%
  select(Population, Microbiome, Block, Nodule_Density) %>%
  filter(Microbiome == "Nonlocal_U")
## Fixing nodule density data
```

```
# Local
fixing.nodule.density.local.data <- nodule.data %>%
    select(Population, Microbiome, Block, Fixing_Nodule_Density) %>%
    filter(Microbiome == "Local")
# Rural
fixing.nodule.density.rural.data <- nodule.data %>%
    select(Population, Microbiome, Block, Fixing_Nodule_Density) %>%
    filter(Microbiome == "Nonlocal_R")
# Urban
fixing.nodule.density.urban.data <- nodule.data %>%
    select(Population, Microbiome, Block, Fixing_Nodule_Density) %>%
    filter(Microbiome == "Nonlocal_U")
```

Aboveground Biomass

```
## Aboveground biomass
# Local
aboveground.biomass.local.Vg.LMM <- lmer(</pre>
  sqrt(Aboveground_Biomass) ~ Block + (1 | Population),
  data = aboveground.biomass.local.data,
 REML = TRUE
)
aboveground.biomass.local.Vg.df <- data.frame(VarCorr(aboveground.biomass.local.Vg.LMM)) %>%
 filter(grp == "Population") %>%
  add_column(Microbiome = "Local") %>%
  add_column(Nitrogen = "Combined")
# Rural
aboveground.biomass.rural.Vg.LMM <- lmer(</pre>
  sqrt(Aboveground_Biomass) ~ Block + (1 | Population),
 data = aboveground.biomass.rural.data,
 REML = TRUE
)
aboveground.biomass.rural.Vg.df <- data.frame(VarCorr(aboveground.biomass.rural.Vg.LMM)) %>%
 filter(grp == "Population") %>%
  add_column(Microbiome = "Rural") %>%
  add_column(Nitrogen = "Combined")
# Urban
aboveground.biomass.urban.Vg.LMM <- lmer(</pre>
  sqrt(Aboveground_Biomass) ~ Block + (1 | Population),
 data = aboveground.biomass.urban.data,
 REML = TRUE
aboveground.biomass.urban.Vg.df <- data.frame(VarCorr(aboveground.biomass.urban.Vg.LMM)) %>%
 filter(grp == "Population") %>%
  add_column(Microbiome = "Urban") %>%
  add_column(Nitrogen = "Combined")
```

Nodule Density

```
## Nodule density
# Ambient N / Local
nodule.density.local.ambient.N.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.local.ambient.N.data,
  REML = TRUE
)
nodule.density.local.ambient.N.Vg.df <- data.frame(</pre>
  VarCorr(nodule.density.local.ambient.N.Vg.LMM)
) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Local") %>%
  add_column(Nitrogen = "Ambient_N")
# Ambient N / Rural
nodule.density.rural.ambient.N.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.rural.ambient.N.data,
  REML = TRUE
nodule.density.rural.ambient.N.Vg.df <- data.frame(</pre>
  VarCorr(nodule.density.rural.ambient.N.Vg.LMM)
) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Rural") %>%
  add_column(Nitrogen = "Ambient_N")
# Ambient N / Urban
nodule.density.urban.ambient.N.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.urban.ambient.N.data,
  REML = TRUE
nodule.density.urban.ambient.N.Vg.df <- data.frame(</pre>
  VarCorr(nodule.density.urban.ambient.N.Vg.LMM)
) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Urban") %>%
  add_column(Nitrogen = "Ambient_N")
# N Addition / Local
nodule.density.local.N.addition.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.local.N.addition.data,
  REML = TRUE
)
nodule.density.local.N.addition.Vg.df <- data.frame(</pre>
```

```
VarCorr(nodule.density.local.N.addition.Vg.LMM)
) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Local") %>%
  add_column(Nitrogen = "N_Addition")
# N Addition | Rural
nodule.density.rural.N.addition.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.rural.N.addition.data,
  REML = TRUE
)
nodule.density.rural.N.addition.Vg.df <- data.frame(</pre>
  VarCorr(nodule.density.rural.N.addition.Vg.LMM)
) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Rural") %>%
  add_column(Nitrogen = "N_Addition")
# N Addition / Urban
nodule.density.urban.N.addition.Vg.LMM <- lmer(</pre>
  log(Nodule_Density + 1) ~ Block + (1 | Population),
  data = nodule.density.urban.N.addition.data,
  REML = TRUE
)
nodule.density.urban.N.addition.Vg.df <- data.frame(</pre>
  VarCorr(nodule.density.urban.N.addition.Vg.LMM)
) %>%
 filter(grp == "Population") %>%
  add_column(Microbiome = "Urban") %>%
  add_column(Nitrogen = "N_Addition")
```

Fixing Nodule Density

```
## Fixing nodule density
# Local
fixing.nodule.density.local.Vg.LMM <- lmer(</pre>
  log(Fixing_Nodule_Density + 1) ~ Block + (1 | Population),
  data = fixing.nodule.density.local.data,
  REML = TRUE
)
fixing.nodule.density.local.Vg.df <- data.frame(VarCorr(fixing.nodule.density.local.Vg.LMM)) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Local") %>%
  add_column(Nitrogen = "Combined")
# Rural
fixing.nodule.density.rural.Vg.LMM <- lmer(</pre>
  log(Fixing_Nodule_Density + 1) ~ Block + (1 | Population),
  data = fixing.nodule.density.rural.data,
 REML = TRUE
)
fixing.nodule.density.rural.Vg.df <- data.frame(VarCorr(fixing.nodule.density.rural.Vg.LMM)) %>%
  filter(grp == "Population") %>%
  add_column(Microbiome = "Rural") %>%
  add_column(Nitrogen = "Combined")
# Urban
fixing.nodule.density.urban.Vg.LMM <- lmer(</pre>
  log(Fixing_Nodule_Density + 1) ~ Block + (1 | Population),
  data = fixing.nodule.density.urban.data,
  REML = TRUE
fixing.nodule.density.urban.Vg.df <- data.frame(VarCorr(fixing.nodule.density.urban.Vg.LMM)) %>%
  filter(grp == "Population") %>%
  add column(Microbiome = "Urban") %>%
  add_column(Nitrogen = "Combined")
```

Export Genetic Variation Data

```
## Combine and export data for management in Excel in prep for Cockerham's test
# Bind aboveground biomass data
aboveground.biomass.combined.Vg.data <- bind_rows(</pre>
  aboveground.biomass.local.Vg.df,
  aboveground.biomass.rural.Vg.df,
  aboveground.biomass.urban.Vg.df
# Bind nodule density data
nodule.density.combined.Vg.data <- bind_rows(</pre>
  nodule.density.local.ambient.N.Vg.df,
  nodule.density.rural.ambient.N.Vg.df,
  nodule.density.urban.ambient.N.Vg.df,
  nodule.density.local.N.addition.Vg.df,
  nodule.density.rural.N.addition.Vg.df,
  nodule.density.urban.N.addition.Vg.df
# Bind fixing nodule density data
fixing.nodule.density.combined.Vg.data <- bind_rows(</pre>
  fixing.nodule.density.local.Vg.df,
 fixing.nodule.density.rural.Vg.df,
  fixing.nodule.density.urban.Vg.df
## Bind all data together
combined.Vg.data <- bind_rows(</pre>
  aboveground.biomass.combined.Vg.data,
  nodule.density.combined.Vg.data,
  fixing.nodule.density.combined.Vg.data
) %>%
  add_column(Trait = c(
    rep("Aboveground_Biomass", 3),
    rep("Nodule_Density", 6),
    rep("Fixing_Nodule_Density", 3)
  )) %>%
  select(Trait, Microbiome:Nitrogen, vcov) %>%
  rename(Vg = vcov)
## Export data to prepare for Cockerham's test
write_csv(combined.Vg.data, file = "data/cockerham_data_uncleaned.csv")
```

Genetic Correlations

Data Management

```
## Format data to calculate correlations
full.data <- nodule.data %>%
  full_join(
   biomass.data %>% select(UID, Aboveground_Biomass),
   bv = c("UID")
  ) %>%
  select(
   Population: Nitrogen, Aboveground_Biomass, Nodule_Density: Fixing_Nodule_Density
  drop_na()
## Local by Rural data
local.by.rural.data <- full.data %>%
  filter(Microbiome != "Nonlocal_U") %>%
  group_by(Population, Microbiome) %>%
  select(-Nodule Density) %>%
  summarise(
   AG Biomass = mean(Aboveground Biomass),
   Fix_Nod_Density = mean(Fixing_Nodule_Density),
    .groups = "keep"
  ) %>%
  ungroup() %>%
  drop_na() %>%
  pivot_wider(names_from = Microbiome, values_from = AG_Biomass:Fix_Nod_Density)
## Local by Urban data
local.by.urban.data <- full.data %>%
  filter(Microbiome != "Nonlocal R") %>%
  group by (Population, Microbiome) %>%
  select(-Nodule_Density) %>%
  summarise(
   AG_Biomass = mean(Aboveground_Biomass),
   Fix Nod Density = mean(Fixing Nodule Density),
    .groups = "keep"
  ) %>%
  ungroup() %>%
  drop_na() %>%
  pivot_wider(names_from = Microbiome, values_from = AG_Biomass:Fix_Nod_Density)
## Rural by Urban data
rural.by.urban.data <- full.data %>%
  filter(Microbiome != "Local") %>%
  group_by(Population, Microbiome) %>%
  select(-Nodule_Density) %>%
  summarise(
   AG Biomass = mean(Aboveground Biomass),
   Fix_Nod_Density = mean(Fixing_Nodule_Density),
    .groups = "keep"
  ) %>%
  ungroup() %>%
```

```
drop_na() %>%
  pivot_wider(names_from = Microbiome, values_from = AG_Biomass:Fix_Nod_Density)
## Nodule density data (N-treatment specific)
# Local by Rural data
nodule.density.local.by.rural.data <- full.data %>%
  filter(Microbiome != "Nonlocal_U") %>%
 group by (Population, Microbiome, Nitrogen) %>%
 summarise(
   Nod_Density = mean(Nodule_Density),
    .groups = "keep"
 ) %>%
  ungroup() %>%
  pivot_wider(names_from = Microbiome:Nitrogen, values_from = Nod_Density) %>%
  drop_na()
# Local by Urban data
nodule.density.local.by.urban.data <- full.data %>%
  filter(Microbiome != "Nonlocal_R") %>%
  group_by(Population, Microbiome, Nitrogen) %>%
  summarise(
   Nod_Density = mean(Nodule_Density),
    .groups = "keep"
  ) %>%
  ungroup() %>%
  pivot_wider(names_from = Microbiome:Nitrogen, values_from = Nod_Density) %>%
 drop_na()
# Rural by Urban data
nodule.density.rural.by.urban.data <- full.data %>%
  filter(Microbiome != "Local") %>%
  group_by(Population, Microbiome, Nitrogen) %>%
  summarise(
   Nod_Density = mean(Nodule_Density),
    .groups = "keep"
  ) %>%
  ungroup() %>%
  pivot_wider(names_from = Microbiome:Nitrogen, values_from = Nod_Density) %%
  drop_na()
```

Correlations

Aboveground Biomass & Fixing Nodule Density

Table 1: Fitness correlations between local and nonlocal-rural for aboveground biomass and fixing nodule density.

	AG_Biomass_Nonlocal_R	AG_Biomass_Local	Fix_Nod_Density_Nonlocal_R
AG_Biomass_Nonlocal_R	1.000	0.561	0.104
AG_Biomass_Local	0.561	1.000	0.235
Fix_Nod_Density_Nonlocal_R	0.104	0.235	1.000
$Fix_Nod_Density_Local$	0.089	0.135	0.251

Table 2: Fitness correlations between local and nonlocal-urban for above ground biomass and fixing nodule density.

	$AG_Biomass_Nonlocal_U$	$AG_Biomass_Local$	Fix_Nod_Density_Nonlocal_U
AG_Biomass_Nonlocal_U	1.000	0.495	0.123
AG_Biomass_Local	0.495	1.000	0.180
Fix_Nod_Density_Nonlocal_U	0.123	0.180	1.000
$Fix_Nod_Density_Local$	0.264	0.135	0.305

Table 3: Fitness correlations between nonlocal-rural and nonlocal-urban for aboveground biomass and fixing nodule density.

	$AG_Biomass_Nonlocal_R$	$AG_Biomass_Nonlocal_U$	Fix_Nod_Density_Nonloc
AG_Biomass_Nonlocal_R	1.000	0.611	
$AG_Biomass_Nonlocal_U$	0.611	1.000	
Fix_Nod_Density_Nonlocal_R	0.104	0.139	
$Fix_Nod_Density_Nonlocal_U$	0.177	0.123	-

Nodule Density

Table 4: Fitness correlations between local and nonlocal-rural by nitrogen treatment for nodule density.

	$Nonlocal_R_Ambient_N$	$Nonlocal_R_N_Addition$	$Local_Ambient_N$	Local_N_Add
Nonlocal_R_Ambient_N	1.000	0.046	0.053	
$Nonlocal_R_N_Addition$	0.046	1.000	0.044	
$Local_Ambient_N$	0.053	0.044	1.000	
Local_N_Addition	0.344	0.311	0.127	

Table 5: Fitness correlations between local and nonlocal-urban by nitrogen treatment for nodule density.

	$Nonlocal_U_Ambient_N$	$Nonlocal_U_N_Addition$	$Local_Ambient_N$	Local_N_Add
$Nonlocal_U_Ambient_N$	1.000	0.362	0.153	
$Nonlocal_U_N_Addition$	0.362	1.000	0.011	
$Local_Ambient_N$	0.153	0.011	1.000	
Local_N_Addition	0.394	0.254	0.120	

Table 6: Fitness correlations between nonlocal-rural and nonlocal-urban by nitrogen treatment for nodule density.

	$Nonlocal_R_Ambient_N$	$Nonlocal_R_N_Addition$	$Nonlocal_U_Ambient_N$	Nonloca
Nonlocal_R_Ambient_N	1.000	0.084	-0.282	
$Nonlocal_R_N_Addition$	0.084	1.000	0.320	
$Nonlocal_U_Ambient_N$	-0.282	0.320	1.000	
$Nonlocal_U_N_Addition$	-0.189	-0.050	0.362	

Cockerham's Test

```
## Cockerham data
cockerham.data <- read_csv(
   "data/cockerham_data_cleaned.csv",
   col_types = c("ffnnn"),
   show_col_types = FALSE
)</pre>
```

Set Functions

```
## Function for imperfect correlation (page 88, Cockerham 1963)
imperfect_correlation <- function(Vg1, Vg2, Rg) {</pre>
  out <- 2 * sqrt(Vg1) * sqrt(Vg2) * (1 - Rg)
  return(out)
}
## Function for heterogeneous variances (page 88, Cockerham 1963)
heterogeneous_variances <- function(Vg1, Vg2) {
 out <- ((sqrt(Vg1) - sqrt(Vg2))^2)
 return(out)
}
## Calculate imperfect correlation values for each row
cockerham.data$Crossing <- sapply(1:nrow(cockerham.data), FUN = function(r) {</pre>
  Vg1 <- cockerham.data$Vg1[r]</pre>
  Vg2 <- cockerham.data$Vg2[r]
  Rg <- cockerham.data$Rg[r]</pre>
  crossing.value <- imperfect_correlation(Vg1, Vg2, Rg)</pre>
  return(crossing.value)
})
## Calculate heterogeneous variance values for each row
cockerham.data$Heterogeneous_Variances <- sapply(1:nrow(cockerham.data), FUN = function(r) {</pre>
  Vg1 <- cockerham.data$Vg1[r]</pre>
  Vg2 <- cockerham.data$Vg2[r]
  heterogeneous.variance.value <- heterogeneous_variances(Vg1, Vg2)
  return(heterogeneous.variance.value)
})
```

Calculations for Cockerham's Test

Aboveground Biomass

```
## Group by trait and calculate sum of imperfect correlation values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
aboveground.biomass.crossing <- cockerham.data %>%
  filter(Trait == "Aboveground_Biomass") %>%
  summarise(Crossing_Sum = sum(Crossing) / (3 * (3 - 1)))
## Group by trait and calculate sum of heterogeneous variances values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
aboveground.biomass.heterogeneous.variance <- cockerham.data %>%
  filter(Trait == "Aboveground_Biomass") %>%
  summarise(Hetero_Variance_Sum = sum(Heterogeneous_Variances) / (3 * (3 - 1)))
## Make tibble for aboveground biomass calculation
aboveground.biomass.cockerham.data <- tibble(</pre>
  Trait = "Aboveground_Biomass",
  aboveground.biomass.crossing,
  aboveground.biomass.heterogeneous.variance
) %>%
  mutate(Total_Variance = Crossing_Sum + Hetero_Variance_Sum) %>%
  mutate(Percent_Crossing = 100 * Crossing_Sum / Total_Variance)
```

Nodule Density

```
## Group by trait and calculate sum of imperfect correlation values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
nodule.density.crossing <- cockerham.data %>%
  filter(Trait == "Nodule_Density") %>%
  summarise(Crossing_Sum = sum(Crossing) / (6 * (6 - 1)))
## Group by trait and calculate sum of heterogeneous variances values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
nodule.density.heterogeneous.variance <- cockerham.data %>%
  filter(Trait == "Nodule_Density") %>%
  summarise(Hetero_Variance_Sum = sum(Heterogeneous_Variances) / (6 * (6 - 1)))
## Make tibble for Nodule Density calculation
nodule.density.cockerham.data <- tibble(</pre>
  Trait = "Nodule_Density",
  nodule.density.crossing,
 nodule.density.heterogeneous.variance
) %>%
  mutate(Total_Variance = Crossing_Sum + Hetero_Variance_Sum) %>%
  mutate(Percent_Crossing = 100 * Crossing_Sum / Total_Variance)
```

Fixing Nodule Density

```
## Group by trait and calculate sum of imperfect correlation values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
fixing.nodule.density.crossing <- cockerham.data %>%
  filter(Trait == "Fixing_Nodule_Density") %>%
  summarise(Crossing_Sum = sum(Crossing) / (3 * (3 - 1)))
## Group by trait and calculate sum of heterogeneous variances values
# Divide by number of environments*(number of environments - 1) as per Cockerham 1963
fixing.nodule.density.heterogeneous.variance <- cockerham.data %>%
  filter(Trait == "Fixing_Nodule_Density") %>%
  summarise(Hetero_Variance_Sum = sum(Heterogeneous_Variances) / (3 * (3 - 1)))
## Make tibble for Nodule Density calculation
fixing.nodule.density.cockerham.data <- tibble(</pre>
 Trait = "Fixing_Nodule_Density",
 fixing.nodule.density.crossing,
 fixing.nodule.density.heterogeneous.variance
) %>%
 mutate(Total_Variance = Crossing_Sum + Hetero_Variance_Sum) %>%
 mutate(Percent_Crossing = 100 * Crossing_Sum / Total_Variance)
```

Results of Cockerham's Tests

Table 7: Results of Cockerham's test for aboveground biomass, nodule density, and fixing nodule density.

Trait	Crossing_Sum	Hetero_Variance_Sum	Total_Variance	Percent_Crossing
Aboveground_Biomass	0.00177	0.00005	0.00181	97.38075
Nodule_Density	0.00375	0.00057	0.00432	86.90567
Fixing_Nodule_Density	0.00190	0.00004	0.00194	97.87555

R Session Information

Table 8: Packages required for data management and analysis.

Package	Loaded Version	Date
broom	1.0.5	2023-06-09
dplyr	1.1.2	2023-04-20
forcats	1.0.0	2023-01-29
ggplot2	3.4.2	2023-04-03
kableExtra	1.3.4	2021-02-20
knitr	1.43	2023-05-25
lme4	1.1-34	2023-07-04
lmerTest	3.1-3	2020-10-23
lubridate	1.9.2	2023-02-10
Matrix	1.6-0	2023-07-08
purrr	1.0.1	2023-01-10
readr	2.1.4	2023-02-10
stringr	1.5.0	2022-12-02
tibble	3.2.1	2023-03-20
tidyr	1.3.0	2023-01-24
tidyverse	2.0.0	2023-02-22