Оглавление

0	Про н	еравенства	1
1	Вступление		1
	1.1	Про ограниченные множества	2
	1.2	Про полунормы	3
	1.3	Пространства $C^{\infty}(\Omega), \mathcal{D}_K$	3
2	О полноте		3
	2.1	Теорема Банаха-Штейнгауза	3
	2.2	Полезные частные случаи	4
	2.3	Теорема об открытом отображении	5
	2.4	Теорема о замкнутом графике	5
	2.5	Билинейные отображения	6

0 Про неравенства

Определение. Пусть X – векторное пространство. Нормой на нем называется функция $||\cdot|| \to \mathbb{R}_{\geqslant 0}$ удовлетворяющая условиям:

- 1. $||x|| = 0 \Leftrightarrow x = 0$ (невырожденность)
- 2. $||\lambda x|| = \lambda ||x||$ (однородность)
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)

Тут мы посмотрим на то, какие где бывают нормы:

0.1 Самый важный случай

Рассмотрим конечномерное пространство \mathbb{C}^d и зафиксируем $p\in[1,+\infty)$. Можем определить две нормы:

$$||x||_p = \left(\sum |x_i|^p\right)^{\frac{1}{p}} \quad ||x||_{\infty} = \max_i |x_i|$$

1 Вступление

Во всем конспекте F обозначает поле скаляров, все векторные пространства будем смотреть только над ним. В качестве F мы берем только \mathbb{R} , либо \mathbb{C} с естественными топологиями на них.

Определение. Топологическое пространство X являющееся векторным пространством называется топологическим векторным пространством (ТВП), если

- 1. Топология удовлетворяет T_1 (синглетоны замкнуты)
- 2. Сложение и умножение на скаляр непрерывны

Замечание.

- 1. Сдвиг на любой вектор $u\mapsto u+v$ и растяжение на любой скаляр $\alpha\neq 0: u\mapsto \alpha u$ являются гомеоморфизмами.
- 2. Топология для такого X всегда инвариантна относительно сдвигов.
- 3. Следовательно, полностью определяется локальной базой.

Это основное определение, помимо него напомним еще определений:

Определение. Пусть X – векторное пространство и $A \subseteq X$

1. Если $0 \in A$ и $\forall \alpha, \beta \in F$ выполняется $\alpha A + \beta A \subseteq A$, то A называется **подпространством** X; обозначается $A \leqslant X$.

- 2. Если $\forall t \in (0,1)$ выполняется $tA + (1-t)A \subseteq A$, то A называется **выпуклым**.
- 3. Если $\forall \alpha \in F: |\alpha| \leqslant 1$ выполняется $\alpha A \subseteq A$, то A называется **уравновешенным**.

Замечание. Подпространства являются выпуклыми уравновешенными множествами.

Определение (Типы пространств). Пусть X – ТВП, говорим, что X

- (А) **локально выпукло**, если существует локальная база из выпуклых окрестностей.
- (В) локально ограничено, если существует ограниченная окрестность нуля.
- (С) локально компактно, если существует предкомпактная окрестность нуля.
- (D) **метризуемо**, если его топология метризуема.
- (F) является **F-пространством**, если топология индуцируется **полной инвариантной** метрикой.
- (G) является **пространством Фреше**, если оно локально-выпуклое F-пространство
- (E) **нормируемо**, если существует норма, индуцирующая топологию X
- (F) обладает свойством **Гейне-Бореля**, если

(ограниченное \land замкнутое \Rightarrow компактное)

Небольшой обзор результатов касающихся затронутых выше понятий

Теорема 1.1 (Воспоминания о будущем).

- 1. Локально ограничено ⇒ обладает счетной локальной базой.
- 2. Метризуемо ⇔ обладает счетной локальной базой.
- 3. Нормируемо ⇔ (локально выпукло ∧ локально ограничено)
- 4. Конечномерно ⇔ локально компактно
- 5. Обладает свйоством Гейне-Бореля ⇒ конечномерно

1.1 Про ограниченные множества

Существует два различных определения ограниченных множеств, в которых легко запутаться, если речь идет о метризуемых ТВП:

$$(X,d)$$
 – метрическое пространство

X – **TB** Π

 $E\subset X$ называется ограниченным, если

 $E \subset X$ называется ограниченным, если $\exists M > 0$:

$$\forall x, y \in E \ d(x, y) < M$$

$$\forall U$$
 – окр.0 $\exists t_0 > 0$: $\forall t > t_0$
 $E \subset tU$

Лемма 1.2. Если X нормируемое пространство и d(x, y) = ||x - y||, то эти понятия совпадают. В ином случае они могут отличаться во всех нетривиальных случаях.

Доказательство. Почему они отличаются в других случаях: достаточно взять новую инвариантную метрику, индуцирующую ту же самую топологию d' = d/(1+d). В ней всё X будет ограниченным.

Пусть $(X, ||\cdot||)$ – нормированное пространство и d(x, y) = ||x - y||. За B_R будем обозначать шар радиуса R в нуле. Понятно, что достаточно показать, что B_1 – топологически ограничен (Если E метрически ограниченно $\Rightarrow E \subseteq B_R = RB_1$). Так как топология X индуцируется метрикой, базой в точке выступают шары, а значит какойто $B_{\varepsilon} = \varepsilon B_1$ содержится в U.

Пусть теперь E топологически ограничено, предположим, что оно не метрически ограничено. То есть, существует $\{x_n\} \subset E$ такая, что $||x_n|| \to +\infty$. Тогда в качестве окрестности нуля попробуем взять B_1 , понятно, что $\sup_{x \in tB_1} ||x|| = t$, а значит, не найдется t_0 подходящего под условия.

1.2 Про полунормы

1.3 Пространства $C^{\infty}(\Omega), \mathcal{D}_K$

Пусть $\Omega\subseteq\mathbb{R}^n$ – открытое множество. С мультиииндексом $\alpha=(\alpha_1,\ldots,\alpha_n)$ свяжем дифференциальный оператор

$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$$

Порядком α назовем число $|\alpha| = \alpha_1 + \ldots + \alpha_n$ и доопределим $D^{\alpha}f = f$, если $|\alpha| = 0$. Пусть $K \subseteq \Omega$ – компакт. Определим множество

$$\mathcal{D}_K = \{ f \in C^{\infty}(\Omega) : \operatorname{supp} f \subseteq K \}$$

Представим $\Omega = \bigcup K_i$, где K_i – компакты и $K_i \subset \operatorname{Int} K_{i+1}$

2 О полноте

Под ${\rm Hom}(X,Y)$ обозначается множество всех линенйных отображений $X\to Y$, под ${\bf c}{\rm Hom}(X,Y)$ множество тех из них, которые непрерывны в тополгиях X,Y.

Теорема 2.1 (Бэра о полноте). В полных метрических пространствах и локально компактных хаусдорфовых пространствах

$$\bigcap_{n\in\mathbb{N}}$$
 (открытое, всюду плотное) всюду плотно

2.1 Теорема Банаха-Штейнгауза

Сначала, введем определение

Определение. Пусть $\Gamma \subseteq \operatorname{Hom}(X,Y)$. Оно называется равностепенно непрерывным, если

для любой
$$W$$
 – окр. 0 в Y существует V – окр. 0 в X: $\Gamma(V) \subseteq W$

Как мы увидим ниже, равностепенно-непрерывные семейства переводят ограниченные множества в ограниченные. Теорема Банаха-Штейнгауза же скажет, что если точек, орбиты которых под действием Γ ограниченны *много*, то Γ равностепенно непрерывно.

Теорема 2.2. Пусть $\Gamma \subseteq \operatorname{Hom}(X,Y)$ – равностепенно непрерывно, а $E \subseteq X$ ограниченно. Тогда $\Gamma(E)$ суть ограниченное множество в Y.

Доказательство. Рассмотрим W – окрестность 0 в Y, выберем V – окрестность 0 в X из определения. E – ограниченно \Rightarrow имеем $E \subseteq tV$ для больших t. Для них же:

$$\Gamma(E) \subseteq \Gamma(tV) = t\Gamma(V) \subseteq tW$$

Теорема 2.3 (Банаха-Штейнгауза). Пусть $\Gamma \subseteq \mathbf{c}\mathrm{Hom}(X,Y)$. Предположим, что множество $B = \{x \in X : \Gamma(x) - \text{ограниченно}\}$ имеет вторую категорию в X.

Тогда B = X и Γ равностепенно непрерывно.

Доказательство. Пусть W – уравновешенная окрестность 0 в Y, будем искать такую V в X, что $\Gamma(V) \subseteq W$. Для этого найдем такую U – уравновешенная окрестность 0 в Y, что $\overline{U} + \overline{U} \subseteq W$, положим

$$E = \cap_{\Lambda \in \Gamma} \Lambda^{-1}(\overline{U}).$$

$$x \in B \Rightarrow \Gamma(x) \in nU$$
 для больших $n \Rightarrow \frac{1}{n}x \in E$ для таких же n

Тогда заметим, что $B \subseteq \cup_n nE$. Значит, какой-то из nE – множество второй категории. Заметив, что $x \mapsto nx$ это гомеоморфизм X получаем:

$$E$$
 — множество второй категории
$$E$$
 — замкнуто так как все $\Lambda \in \Gamma$ непрерывны \Longrightarrow В E есть внутренняя точка x_0

Значит, в множестве $x_0 - E$ содержится окрестность нуля V, причем:

$$\Lambda(V) \subset \Lambda x_0 - \Lambda(E) \subseteq \overline{U} - \overline{U} \subseteq W$$

2.2 Полезные частные случаи

Теорема 2.4. Пусть X - F-пространство и $\Gamma \subseteq \mathbf{c}\mathrm{Hom}(X,Y)$ и $\forall x \in X \ \Gamma(x)$ ограниченно в Y. Тогда Γ равностепенно непрерывно.

Теорема 2.5. Пусть X – банахово, Y – нормируемо, причем $\sup_{\Lambda \in \Gamma} ||\Lambda x|| < \infty$. Тогда существует такой M > 0, что

$$||\Lambda x|| \leq M||x|| \quad \forall x \in X \ \forall \Lambda \in \Gamma$$

Доказательство. Применим предыдущую теорему к метрикам, порожденным нормами. В них ограниченность эквивалентна метрической. ■

Теорема 2.6. Пусть $\Lambda_n \in \mathbf{c}$ Ноm(X,Y). Определим $C = \{x \in X : \Lambda_n x - \text{последовательность Коши}\}, <math>L = \{x \in X : \Lambda_n x \to \Lambda x\}$. Тогда

- 1. Если C второй категории в X, то C = X
- 2. Если L второй категории в X и Y F-пространство, то L = X и Λ непрерывно.

Доказательство. 1. По Б-Ш Λ_n – равностепенно непрерывна и

2.3 Теорема об открытом отображении

Отображение назыввается **открытым**, если оно переводит открытые множества в открытые. На ТВП эквивалентно открытости в нуле.

Теорема 2.7. Пусть X – F-пространство, $\Lambda \in \mathbf{c}\mathrm{Hom}(X,Y)$, причем $\Lambda(X)$ второй категории. Тогда

 $\Lambda(X) = Y$, Λ открыто, Y - F-пространство

Доказательство. Заметим, что из второго следует первое. !!!!!!!!!! Докажем второе. Пусть V – окрестность 0 в X, мы хотим проверить, что $\Lambda(V)$ содержит окрестность 0 в Y. Заведем полную инвариантную метрику d на X. Определим

$$V_n = \left\{ x \mid d(x,0) < \frac{r}{2^n} \right\}$$

где r такой маленький, что $V_0 \subset V$

2.4 Теорема о замкнутом графике

Под графиком отображения $f: X \to Y$ имеется ввиду множество $\{(x, f(x))\}_{x \in X} \subseteq X \times Y$. Для непрерывных отображений в хаусдорфовы пространства график всегда замкнут, мы будем пытаться выяснить про какие-то факты, похожие на это. Для начала обоснуем факт про замкнутность графика непрерывной функции:

Замечание. Пусть $f: X \to Y$ непрерывна и Y – Хаусдорфово. Тогда график f замкнут.

Доказательство. Рассмотрим (x_0, y_0) из дополнения графика в $X \times Y$, тогда отделим по хаусдофовости в Y точки $y_0, f(x_0)$ окрестностями U, V соответственно. По непрерывности найдем W – окрестность x_0 в X такую, что $f(W) \subseteq V$. А значит, $W \times U$ – искомая окрестность (x_0, y_0) , содержащаяся в дополнении графика.

Теорема 2.8 (О замкнутом графике). Пусть X, Y - F-пространства, $\Lambda \in \text{Hom}(X, Y)$ и его график замкнут. Тогда Λ непрерывен.

Доказательство. Рассмотрим $X \times Y$ как F-пространство. График Λ – обозначим его G – замкнутое подпространство в $X \times Y$ (поскольку лямбда линейна). А значит, G само по себе F-пространство Определим

$$\pi_1: G \to X \ (x, \Lambda x) \mapsto x$$

$$\pi_2: X \times Y \to Y \ (x,y) \mapsto y$$

Тогда π_1 непрерывная линейная биекция $G \to X$, причем G и X - F-пространства. Тогда по теореме об открытом отображении π_1^{-1} непрерывно. А значит,

$$\Lambda = \pi_2 \circ \pi_1^{-1}$$
 непрерывна

Замечание. Пусть для всяких $x_n \to x, \Lambda x_n \to y$ выполняется $y = \Lambda x$. Тогда график Λ замкнут.

2.5 Билинейные отображения

Пусть X, Y, Z – ТВП и $B: X \times Y \rightarrow Z$.

Можем определить $B_x: Y \to Z$, $B^y: X \to Z$ для фиксированных x, y – функции на срезах $X \times Y$. Если они непрерывны, то B называется **раздельно непрерывным**; если B_x , B^y линейны, то B называется **билинейным**. В некоторых случаях из раздельной непрерывности следует обычная непрерывность:

Теорема 2.9. Если X - F-пространство и B – раздельно непрерывное билинейное. Тогда B секвенциально непрерывно. В частности, если Y метризуемо, то B непрерывно.

Доказательство. Выберем $x_n \to x_0$ в X и $y_n \to y_0$ в Y Возьмем U, W окрестности 0 в Z такие, что $U + U \subseteq W$, положим $b_n(x) = B(x, y_n)$.

- 1. Так как эти последовательности сходятся, множества $\{b_n(x)\}$ ограничены в Z.
- 2. Тогда $b_n(x)$ непрерывные линейные отображения из F-пространства X в Z.
- 3. Значит, по $\ref{eq:condition}$ [следствию из теоремы Банаха-Штейнгауза], семейство $\{b_n\}$ равномерно непрерывно.

А значит найдется V – окрестность 0 в X такая, что $\forall n\ b_n(V)\subset U.$ Тогда начиная с некоторого места:

$$B(x_n, y_n) - B(x_0, y_0) = b_n(x_n - x_0) + B(x_0, y_n - y_0) \in U + U \subseteq W$$

Если Y метризуемо, то $X \times Y$ метризуемо, а значит секвенциальная непрерывность эквивалентна обычной