- 5. Si Q es una matriz de $n \times n$ con elementos complejos, entonces Q es una matriz unitaria si Q'*Q = eye(n). Se puede generar una matriz unitaria aleatoria Q generando una matriz aleatoria compleja A y después haciendo Q = orth(A).
 - a) Genere dos matrices aleatorias unitarias de 4×4 como se acaba de describir. Verifique que satisfacen la propiedad de ser unitarias y que las columnas forman una base ortonormal para \mathbb{C}^4 .
 - b) Verifique que la inversa de cada matriz es unitaria.
 - c) Verifique que el producto de las matrices es unitario.
 - d) Genere un vector aleatorio v en \mathbb{C}^4 . Verifique que cada matriz unitaria conserva la longitud, es decir, $|Q\mathbf{v}| = |\mathbf{v}|$.
 - e) Repita los incisos a) a d) para dos matrices aleatorias unitarias de 6×6 .

E Ejercicios de repaso

De los ejercicios 1 al 5 encuentre una base ortonormal para el espacio vectorial dado.

1. En
$$\mathbb{R}^2$$
, $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

- **2.** \mathbb{R}^2 comenzando con la base $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$.
- 3. $H = \{(x, y, z) \in \mathbb{R}^3 : 2x y 3z = 0\}$
- **4.** $H = \{(x, y, z) \in \mathbb{R}^3 : 3x = 2y = 5z\}$
- **5.** $H = \{(x, y, z, w) \in \mathbb{R}^4 : x + y z = 0, 3z + w = 0\}$

De los ejercicios 6 al 8:

- a) Calcule proy_H v.
- **b)** Encuentre una base ortonormal para H^{\perp} .
- c) Exprese v como h + p, donde $h \in H$ y $p \in H^{\perp}$.
- **6.** H es el subespacio del problema 3; $\mathbf{v} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$.
- 7. H es el subespacio del problema 4; $\mathbf{v} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.
- 8. H es el subespacio del problema 5; $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ -1 \end{pmatrix}$.
- **9.** Encuentre una base ortonormal para $\mathbb{P}_2[0, 2]$.
- **10.** Utilice el resultado del ejercicio 9 para encontrar un polinomio que sea la mejor aproximación por mínimos cuadrados a e^x sobre el intervalo [0, 2].

