organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(S)-Benzyl 3-(4-hydroxyphenyl)-2-(tritylamino)propanoate

Meimei Chen, Xinmei Lai, Changen Zhou and Xuemei Yang*

College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108 Fujian, People's Republic of China Correspondence e-mail: mei_tcm@163.com

Received 24 April 2011; accepted 8 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.093; data-to-parameter ratio = 8.7.

The title compound, $C_{35}H_{31}NO_3$, was obtained by the reaction of (S)-benzyl 2-amino-3-(4-hydroxyphenyl)propanoate and (chloromethanetriyl)tribenzene. The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure. In the crystal, molecules are linked into chains running along the a axis by intermolecular $O-H\cdots O$ hydrogen bonds.

Related literature

For the synthesis and the physiological role of isodityrosine, see: Skaff *et al.* (2005). For the structure of the NH₂ analogue of the title compound, (*S*)-benzyl 2-amino-3-(4-hydroxyphenyl)propanoate, see: Luo *et al.* (2009).

Experimental

Crystal data C₃₅H₃₁NO₃

 $M_r = 513.61$

Orthorhombic, $P2_12_12_1$ a = 9.1188 (18) Å b = 15.774 (3) Å c = 19.393 (4) Å V = 2789.4 (10) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.32 \times 0.25 \times 0.11 \text{ mm}$

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.976$, $T_{\max} = 0.991$ 24111 measured reflections 3097 independent reflections 2200 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.053$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.093$ S = 1.093097 reflections 356 parameters

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.10 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O3-H3A···O1 ⁱ	0.82	1.95	2.772 (3)	175

Symmetry code: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, -z$.

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support by the Fujian Provincial Department of Education project (JA09130) and the Fujian Provincial Health Department Special Project (wzzsj0901).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2100).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Luo, S.-N., Chen, L., Gao, Y.-X., Xu, P.-X. & Zhao, Y.-F. (2009). Acta Cryst. E65, 0270.

Rigaku (2000). CrystalClear. Rigaku Coporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Skaff, O., Jolliffe, K. A. & Hutton, C. A. (2005). J. Org. Chem. 70, 7353-7363.

o1412 Chen et al. doi:10.1107/\$1600536811017351 Acta Cryst. (2011). E**67**, o1412

supplementary m	aterials	

Acta Cryst. (2011). E67, o1412 [doi:10.1107/S1600536811017351]

(S)-Benzyl 3-(4-hydroxyphenyl)-2-(tritylamino)propanoate

M. Chen, X. Lai, C. Zhou and X. Yang

Comment

The title compound is an important intermediate in the synthesis of isodityrosine, which occurs in plant cell wall proteins and presumably conveys a strengthening and/or defensive role to the proteins (Skaff *et al.*, 2005). The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles in the compound are comparable to those reported for a similar compound (Luo *et al.*, 2009). The dihedral angle between the C18-phenyl and C24-phenyl, C18-phenyl and C30-phenyl, C24-phenyl and C30-phenyl planes are 80.2 (1), 61.9 (1) and 65.4 (1)°, respectively. The crystal packing is stabilized by strong O—H···O intermolecular hydrogen-bonding interactions involving the hydroxyl group which link the molecules into a chain running along the *a* axis (Table 1).

Experimental

To a solution of (S)-benzyl 2-amino-3-(4-hydroxyphenyl)propanoate (0.68 g, 2.5 mmol), and (chloromethanetriyl)tribenzene (0.70 g, 2.5 mmol) in acetonitrile (8 ml) at 273 K was added dropwise triethylamine (0.40 g, 4 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was removed and the crude product was purified by column chromatography (petroleum ether-ethyl acetate, 4:1) to give the title compound (I) as a white solid in 85% yield. Single crystals of (I) were obtained by slow evaporation of a petroleum ether/ethyl acetate solution (6:1 v/v).

Refinement

The NH hydrogen atom was located in a difference Fourier map and freely refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.98 Å (methine), O—H = 0.82 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$ and $1.5 U_{eq}(O)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration of (I) was assigned assuming that the absolute configuration of the starting materials was retained during the synthesis.

Figures

Fig. 1. The molecular structure of the compound with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

(S)-Benzyl 3-(4-hydroxyphenyl)-2-[(triphenylmethyl)amino]propanoate

Crystal data

 $C_{35}H_{31}NO_3$ F(000) = 1088 $M_r = 513.61$ $D_{\rm x} = 1.223 \; {\rm Mg \; m}^{-3}$

Orthorhombic, P2₁2₁2₁ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2ac 2ab Cell parameters from 1875 reflections

a = 9.1188 (18) Å $\theta = 3.3-27.5^{\circ}$ b = 15.774(3) Å $\mu = 0.08 \text{ mm}^{-1}$ T = 293 Kc = 19.393 (4) Å $V = 2789.4 (10) \text{ Å}^3$ Plate, colourless Z = 4 $0.32 \times 0.25 \times 0.11$ mm

Data collection

Rigaku Mercury CCD 3097 independent reflections diffractometer

Radiation source: sealed tube 2200 reflections with $I > 2\sigma(I)$

graphite $R_{\rm int} = 0.053$

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ ϕ and ω scans

Absorption correction: multi-scan $h = -9 \rightarrow 11$ (ABSCOR; Higashi, 1995) $T_{\min} = 0.976, T_{\max} = 0.991$ $k = -19 \rightarrow 19$ 24111 measured reflections $l = -23 \rightarrow 23$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.041$

H atoms treated by a mixture of independent and $wR(F^2) = 0.093$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0476P)^2]$ S = 1.09where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} < 0.001$ 3097 reflections $\Delta \rho_{\text{max}} = 0.10 \text{ e Å}^{-3}$ 356 parameters

 $\Delta \rho_{min} = -0.14 \text{ e Å}^{-3}$ 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}^*/U_{\rm eq}$
O1	-0.8415 (2)	-0.39107 (11)	-0.11380 (10)	0.0635 (5)
O2	-0.88195 (19)	-0.52988 (11)	-0.09751 (11)	0.0642 (5)
O3	-0.5931 (3)	-0.20753 (13)	0.11146 (12)	0.0932 (7)
Н3А	-0.5162	-0.1806	0.1105	0.140*
N1	-0.5558 (2)	-0.42813 (13)	-0.16568 (11)	0.0470 (5)
H1A	-0.580 (3)	-0.3773 (16)	-0.1508 (14)	0.055 (7)*
C1	-0.7971 (3)	-0.46331 (15)	-0.11394 (14)	0.0523 (6)
C2	-0.6402 (3)	-0.48944 (14)	-0.12606 (13)	0.0476 (6)
H2A	-0.6401	-0.5434	-0.1511	0.057*
C3	-0.5679 (3)	-0.50374 (15)	-0.05462 (14)	0.0587 (7)
Н3В	-0.6194	-0.5490	-0.0310	0.070*
Н3С	-0.4674	-0.5219	-0.0614	0.070*
C4	-0.5684 (3)	-0.42608 (16)	-0.00941 (13)	0.0553 (6)
C5	-0.6842 (3)	-0.41039 (18)	0.03513 (14)	0.0650(8)
H5A	-0.7593	-0.4501	0.0384	0.078*
C6	-0.6923 (3)	-0.33742 (18)	0.07511 (15)	0.0680(8)
H6A	-0.7719	-0.3283	0.1041	0.082*
C7	-0.5796 (3)	-0.27833 (18)	0.07110 (16)	0.0650(8)
C8	-0.4624 (3)	-0.29330 (18)	0.02834 (16)	0.0668 (8)
H8A	-0.3859	-0.2544	0.0263	0.080*
C9	-0.4573 (3)	-0.36602 (17)	-0.01186 (16)	0.0628 (7)
Н9А	-0.3778	-0.3747	-0.0411	0.075*
C10	-1.0349 (3)	-0.5109 (2)	-0.0818 (2)	0.0829 (10)
H10A	-1.0841	-0.4903	-0.1229	0.099*
H10B	-1.0402	-0.4671	-0.0468	0.099*
C11	-1.1086 (3)	-0.58942 (19)	-0.05648 (16)	0.0632 (7)
C12	-1.0872 (3)	-0.6677 (2)	-0.08728 (17)	0.0738 (8)
H12A	-1.0209	-0.6726	-0.1235	0.089*
C13	-1.1629 (4)	-0.7384 (2)	-0.06509 (19)	0.0823 (10)
H13A	-1.1461	-0.7908	-0.0856	0.099*
C14	-1.2625 (4)	-0.7310 (3)	-0.0128 (2)	0.0860 (10)
H14A	-1.3161	-0.7781	0.0011	0.103*
C15	-1.2837 (4)	-0.6554 (2)	0.01881 (19)	0.0864 (10)
H15A	-1.3504	-0.6511	0.0549	0.104*
C16	-1.2062 (3)	-0.5841 (2)	-0.00253 (17)	0.0767 (9)
H16A	-1.2204	-0.5326	0.0198	0.092*
C17	-0.5633 (2)	-0.43267 (14)	-0.24205 (12)	0.0435 (5)
C18	-0.4822 (3)	-0.35431 (13)	-0.26981 (14)	0.0460(6)
C19	-0.3684 (3)	-0.31829 (14)	-0.23272 (15)	0.0537 (7)
H19A	-0.3452	-0.3397	-0.1894	0.064*

C20	-0.2885 (3)	-0.25094 (14)	-0.25893 (17)	0.0605 (8)
H20A	-0.2128	-0.2273	-0.2331	0.073*
C21	-0.3209(3)	-0.21891 (16)	-0.32313 (18)	0.0653 (8)
H21A	-0.2666	-0.1742	-0.3410	0.078*
C22	-0.4340(3)	-0.25330 (16)	-0.36070 (17)	0.0675 (8)
H22A	-0.4569	-0.2313	-0.4039	0.081*
C23	-0.5139 (3)	-0.32054 (16)	-0.33443 (15)	0.0576 (7)
H23A	-0.5899	-0.3435	-0.3604	0.069*
C24	-0.4747 (2)	-0.50967 (13)	-0.26782 (14)	0.0453 (6)
C25	-0.3816 (3)	-0.55510 (14)	-0.22560 (15)	0.0538 (6)
H25A	-0.3730	-0.5403	-0.1794	0.065*
C26	-0.3005 (3)	-0.62277 (16)	-0.25129 (18)	0.0659 (8)
H26A	-0.2390	-0.6528	-0.2219	0.079*
C27	-0.3097(3)	-0.64575 (17)	-0.31902 (19)	0.0709 (9)
H27A	-0.2555	-0.6913	-0.3357	0.085*
C28	-0.4008(3)	-0.60035 (17)	-0.36234 (17)	0.0719 (9)
H28A	-0.4074	-0.6150	-0.4087	0.086*
C29	-0.4819(3)	-0.53335 (16)	-0.33723 (16)	0.0612 (7)
H29A	-0.5426	-0.5033	-0.3670	0.073*
C30	-0.7246 (2)	-0.43698 (14)	-0.26576 (13)	0.0465 (6)
C31	-0.7951 (3)	-0.51343 (16)	-0.27810 (15)	0.0604(7)
H31A	-0.7414	-0.5635	-0.2766	0.072*
C32	-0.9434 (3)	-0.5167 (2)	-0.29257 (18)	0.0796 (9)
H32A	-0.9875	-0.5687	-0.3014	0.095*
C33	-1.0252 (3)	-0.4450(2)	-0.29411 (18)	0.0837 (10)
H33A	-1.1252	-0.4477	-0.3032	0.100*
C34	-0.9585 (3)	-0.3682 (2)	-0.28198 (18)	0.0754 (9)
H34A	-1.0136	-0.3186	-0.2833	0.090*
C35	-0.8094(3)	-0.36430 (17)	-0.26780 (15)	0.0586 (7)
H35A	-0.7658	-0.3120	-0.2595	0.070*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0675 (12)	0.0552 (10)	0.0677 (14)	0.0113 (9)	0.0054 (10)	-0.0029 (9)
O2	0.0479 (10)	0.0620 (10)	0.0828 (15)	-0.0012 (9)	0.0103 (9)	0.0059 (10)
O3	0.0862 (15)	0.0956 (14)	0.0977 (18)	-0.0321 (12)	0.0211 (13)	-0.0388 (13)
N1	0.0494 (11)	0.0434 (10)	0.0481 (13)	-0.0039 (10)	0.0001 (10)	-0.0030 (10)
C1	0.0549 (14)	0.0506 (14)	0.0514 (17)	-0.0020 (12)	0.0001 (13)	-0.0030 (12)
C2	0.0488 (13)	0.0433 (11)	0.0509 (16)	-0.0012 (11)	0.0009 (12)	0.0007 (11)
C3	0.0599 (16)	0.0560 (14)	0.0602 (18)	-0.0017 (13)	-0.0048 (14)	0.0093 (13)
C4	0.0582 (15)	0.0619 (15)	0.0457 (15)	-0.0090 (14)	-0.0059 (13)	0.0086 (13)
C5	0.0701 (19)	0.0780 (18)	0.0470 (17)	-0.0272 (15)	0.0035 (14)	0.0034 (14)
C6	0.0656 (18)	0.0870 (19)	0.0514 (18)	-0.0230 (15)	0.0126 (15)	-0.0098 (15)
C7	0.0656 (18)	0.0720 (17)	0.057(2)	-0.0152 (15)	0.0003 (16)	-0.0074 (15)
C8	0.0600 (17)	0.0761 (18)	0.064(2)	-0.0204 (15)	0.0011 (16)	-0.0005 (15)
C9	0.0527 (15)	0.0773 (17)	0.0584 (19)	-0.0086 (15)	0.0012 (14)	0.0024 (15)
C10	0.0475 (14)	0.088(2)	0.114(3)	0.0076 (16)	0.0153 (18)	0.015(2)

C11	0.0413 (14)	0.0848 (19)	0.0636 (19)	0.0012 (14)	-0.0009 (14)	0.0096 (16)
C12	0.0581 (17)	0.100(2)	0.063(2)	-0.0097 (17)	0.0019 (16)	0.0024 (17)
C13	0.074(2)	0.095(2)	0.079(3)	-0.0201 (18)	-0.012(2)	-0.0012 (19)
C14	0.070(2)	0.108(3)	0.079(3)	-0.023 (2)	-0.006(2)	0.020(2)
C15	0.0677 (19)	0.121(3)	0.071(2)	-0.005 (2)	0.0142 (18)	0.027(2)
C16	0.0615 (17)	0.095(2)	0.074(2)	0.0083 (18)	0.0020 (17)	0.0060 (18)
C17	0.0428 (12)	0.0409 (11)	0.0468 (15)	0.0003 (11)	-0.0020 (11)	-0.0019 (11)
C18	0.0412 (12)	0.0405 (12)	0.0561 (17)	0.0037 (10)	0.0022 (12)	0.0015 (12)
C19	0.0519 (15)	0.0465 (12)	0.0629 (18)	-0.0011 (12)	-0.0019(14)	0.0002 (13)
C20	0.0518 (15)	0.0443 (13)	0.085 (2)	-0.0030 (12)	0.0055 (16)	-0.0022 (14)
C21	0.0544 (16)	0.0441 (13)	0.097(3)	0.0032 (13)	0.0180 (17)	0.0079 (15)
C22	0.0648 (18)	0.0657 (16)	0.072 (2)	0.0100 (15)	0.0140 (17)	0.0205 (15)
C23	0.0525 (15)	0.0582 (14)	0.0620 (19)	-0.0007 (13)	0.0019 (14)	0.0059 (14)
C24	0.0403 (12)	0.0420 (12)	0.0537 (16)	-0.0010 (10)	0.0005 (12)	-0.0016 (11)
C25	0.0480 (14)	0.0526 (14)	0.0607 (17)	0.0049 (12)	-0.0015 (13)	-0.0011 (13)
C26	0.0576 (16)	0.0586 (15)	0.082 (2)	0.0164 (13)	0.0025 (16)	0.0059 (15)
C27	0.0674 (19)	0.0568 (16)	0.089 (3)	0.0153 (15)	0.0183 (18)	-0.0065 (16)
C28	0.086 (2)	0.0665 (16)	0.063 (2)	0.0143 (17)	0.0089 (18)	-0.0134 (15)
C29	0.0652 (17)	0.0611 (14)	0.0572 (19)	0.0122 (13)	-0.0035 (14)	-0.0084 (13)
C30	0.0421 (12)	0.0490 (12)	0.0483 (15)	0.0031 (12)	-0.0008 (11)	-0.0003 (12)
C31	0.0500 (14)	0.0579 (15)	0.073 (2)	-0.0059 (13)	-0.0068 (14)	-0.0077 (14)
C32	0.0519 (17)	0.087 (13)	0.100 (3)	-0.0137 (17)	-0.0099 (18)	-0.0042 (18)
C32	0.0319 (17)	0.087 (2)	0.091 (3)	-0.0061 (19)	-0.0043 (16)	0.0042 (18)
C34	0.0400 (14)				0.0048 (17)	
C35	0.0491 (16)	0.094 (2)	0.083 (2) 0.0674 (19)	0.0195 (17) 0.0051 (13)	0.0048 (17)	0.0150 (18)
C33	0.0493 (14)	0.0590 (14)	0.0074 (19)	0.0031 (13)	0.0000 (14)	0.0028 (14)
Geometric para	imeters (Å, °)					
O1—C1		1.209(3)	C16—	H16A	0.930	00
O2—C1		1.342 (3)	C17—	C18	1.538	3 (3)
O2—C10		1.459 (3)	C17—	C30	1.542	
O3—C7		1.369 (3)	C17—	C24	1.542	2 (3)
ОЗ—НЗА		0.8200	C18—		1.385	
N1—C2		1.455 (3)	C18—		1.392	
N1—C17		1.484 (3)	C19—	C20	1.385	` '
N1—H1A		0.88 (2)	C19—		0.930	
C1—C2		1.508 (3)	C20—		1.376	
C2—C3		1.551 (4)	C20—		0.930	
C2—H2A		0.9800	C21—		1.374	
C3—C4		1.506 (4)	C21—		0.930	
C3—H3B		0.9700	C22—		1.384	
C3—H3C		0.9700	C22—1		0.930	
C4—C5		1.387 (4)	C23—1		0.930	
C4—C9		1.388 (4)	C23—1		1.380	
C4—C9 C5—C6						
		1.390 (4)	C24—(1.398	
C5—H5A		0.9300	C25—		1.391	
C6—C7		1.389 (4)	C25—	п∠ЗА	0.930	JU
C6 IICA				C27	1.26	: (4)
C6—H6A C7—C8		0.9300 1.373 (4)	C26—C26—		1.365 0.930	

C8—C9	1.388 (4)	C27—C28	1.381 (4)
C8—H8A	0.9300	C27—H27A	0.9300
С9—Н9А	0.9300	C28—C29	1.379 (4)
C10—C11	1.492 (4)	C28—H28A	0.9300
C10—H10A	0.9700	C29—H29A	0.9300
C10—H10B	0.9700	C30—C35	1.383 (3)
C11—C16	1.376 (4)	C30—C31	1.387 (3)
C11—C12	1.385 (4)	C31—C32	1.382 (4)
C12—C13	1.381 (4)	C31—H31A	0.9300
C12—H12A	0.9300	C32—C33	1.355 (4)
C13—C14	1.366 (5)	C32—H32A	0.9300
C13—H13A	0.9300	C33—C34	1.376 (4)
C14—C15	1.355 (5)	C33—H33A	0.9300
C14—H14A	0.9300	C34—C35	1.388 (4)
C15—C16	1.391 (4)	C34—H34A	0.9300
C15—H15A	0.9300	C35—H35A	0.9300
C1—O2—C10	116.1 (2)	C15—C16—H16A	119.8
C7—O3—H3A	109.5	N1—C17—C18	106.75 (19)
C2—N1—C17	118.05 (19)	N1—C17—C30	110.11 (19)
C2—N1—H1A	107.5 (17)	C18—C17—C30	112.93 (19)
C17—N1—H1A	111.0 (17)	N1—C17—C24	109.69 (19)
O1—C1—O2	123.0 (2)	C18—C17—C24	105.51 (17)
O1—C1—C2	125.1 (2)	C30—C17—C24	111.62 (19)
O2—C1—C2	111.7 (2)	C19—C18—C23	117.8 (2)
N1—C2—C1	113.7 (2)	C19—C18—C17	120.6 (2)
N1—C2—C3	110.09 (19)	C23—C18—C17	121.5 (2)
C1—C2—C3	107.7 (2)	C18—C19—C20	121.2 (3)
N1—C2—H2A	108.4	C18—C19—H19A	119.4
C1—C2—H2A	108.4	C20—C19—H19A	119.4
C3—C2—H2A	108.4	C21—C20—C19	120.0 (3)
C3—C2—H2A C4—C3—C2	113.6 (2)	C21—C20—C19 C21—C20—H20A	120.0 (3)
C4—C3—H3B	108.8	C19—C20—H20A	120.0
C2—C3—H3B	108.8	C22—C21—C20	119.8 (3)
C4—C3—H3C	108.8	C22—C21—C20	120.1
C4—C3—H3C C2—C3—H3C	108.8	C20—C21—H21A	120.1
H3B—C3—H3C	107.7	C21—C22—C23	120.1 (3)
C5—C4—C9	117.1 (2)	C21—C22—C23 C21—C22—H22A	119.9
C5—C4—C3 C9—C4—C3	120.6 (2)	C23—C22—H22A	119.9
C4—C5—C6	122.2 (3)	C22—C23—C18	121.0 (3)
	122.4 (3)	C22—C23—H23A	119.5
C4—C5—H5A	118.8	C18—C23—H23A	119.5
C6—C5—H5A	118.8	C25—C24—C29	117.5 (2)
C7—C6—C5	119.0 (3)	C25—C24—C17	122.6 (2)
C7—C6—H6A	120.5	C29—C24—C17	119.8 (2)
C5—C6—H6A	120.5	C24—C25—C26	120.9 (3)
O3—C7—C8	123.7 (3)	C24—C25—H25A	119.6
O3—C7—C6	116.7 (3)	C26—C25—H25A	119.6
C8—C7—C6	119.6 (3)	C27—C26—C25	121.0 (3)
C7—C8—C9	120.5 (3)	C27—C26—H26A	119.5

C7—C8—H8A	119.7	C25—C26—H26A	119.5
C9—C8—H8A	119.7	C26—C27—C28	119.0 (3)
C8—C9—C4	121.4 (3)	C26—C27—H27A	120.5
C8—C9—H9A	119.3	C28—C27—H27A	120.5
C4—C9—H9A	119.3	C27—C28—C29	120.3 (3)
O2—C10—C11	109.2 (2)	C27—C28—H28A	119.8
O2—C10—H10A	109.8	C29—C28—H28A	119.8
C11—C10—H10A	109.8	C28—C29—C24	121.3 (3)
O2—C10—H10B	109.8	C28—C29—H29A	119.4
C11—C10—H10B	109.8	C24—C29—H29A	119.4
H10A—C10—H10B	108.3	C35—C30—C31	117.2 (2)
C16—C11—C12	118.2 (3)	C35—C30—C17	120.3 (2)
C16—C11—C10	119.4 (3)	C31—C30—C17	122.1 (2)
C12—C11—C10	122.3 (3)	C32—C31—C30	121.4(3)
C13—C12—C11	121.0 (3)	C32—C31—H31A	119.3
C13—C12—H12A	119.5	C30—C31—H31A	119.3
C11—C12—H12A	119.5	C33—C32—C31	120.8 (3)
C14—C13—C12	119.6 (3)	C33—C32—H32A	119.6
C14—C13—H13A	120.2	C31—C32—H32A	119.6
C12—C13—H13A	120.2	C32—C33—C34	119.2 (3)
C15—C14—C13	120.4 (3)	C32—C33—H33A	120.4
C15—C14—H14A	119.8	C34—C33—H33A	120.4
C13—C14—H14A	119.8	C33—C34—C35	120.4 (3)
C14—C15—C16	120.3 (3)	C33—C34—H34A	119.8
C14—C15—H15A	119.9	C35—C34—H34A	119.8
C16—C15—H15A	119.9	C30—C35—C34	121.1 (3)
C11—C16—C15	120.4 (3)	C30—C35—H35A	119.5
C11—C16—H16A	119.8	C34—C35—H35A	119.5
C10—O2—C1—O1	2.4 (4)	N1—C17—C18—C23	-154.8 (2)
C10—02—C1—C1 C10—02—C1—C2		C30—C17—C18—C23	-134.8 (2) -33.7 (3)
C17—N1—C2—C1	177.4 (3) -85.4 (3)	C24—C17—C18—C23	88.5 (3)
C17—N1—C2—C1 C17—N1—C2—C3	-83.4 (3) 153.6 (2)	C23—C18—C19—C20	
01—C1—C2—N1	-24.8 (4)	C17—C18—C19—C20	-0.1 (4) 176.0 (2)
O2—C1—C2—N1	160.3 (2)	C18—C19—C20—C21 C19—C20—C21—C22	-0.4 (4)
01—C1—C2—C3	97.5 (3)		0.8 (4)
O2—C1—C2—C3	-77.4 (2)	C20—C21—C22—C23	-0.8 (4)
N1—C2—C3—C4	64.6 (3)	C21—C22—C23—C18	0.3 (4)
C1—C2—C3—C4	-59.9 (3)	C19—C18—C23—C22	0.1 (4)
C2—C3—C4—C5	90.2 (3)	C17—C18—C23—C22	-175.9 (2)
C2—C3—C4—C9	-87.6 (3)	N1—C17—C24—C25	-11.5 (3)
C9—C4—C5—C6	1.1 (4)	C18—C17—C24—C25	103.2 (2)
C3—C4—C5—C6	-176.7 (3)	C30—C17—C24—C25	-133.8 (2)
C4—C5—C6—C7	-0.8 (5)	N1—C17—C24—C29	171.5 (2)
C5—C6—C7—O3	179.9 (3)	C18—C17—C24—C29	-73.8 (3)
C5—C6—C7—C8	-0.5 (5)	C30—C17—C24—C29	49.2 (3)
03—C7—C8—C9	-179.1 (3)	C29—C24—C25—C26	-1.1 (4)
C6—C7—C8—C9	1.4 (5)	C17—C24—C25—C26	-178.2 (2)
C7—C8—C9—C4	-1.0 (5)	C24—C25—C26—C27	0.5 (4)
C5—C4—C9—C8	-0.3 (4)	C25—C26—C27—C28	0.3 (5)

C3—C4—C9—C8	177.6 (3)	C26—C27—C28—C29	-0.5(5)
C1—O2—C10—C11	-173.2 (3)	C27—C28—C29—C24	-0.1 (4)
O2—C10—C11—C16	139.8 (3)	C25—C24—C29—C28	0.9 (4)
O2—C10—C11—C12	-43.0 (4)	C17—C24—C29—C28	178.1 (2)
C16—C11—C12—C13	0.7 (5)	N1—C17—C30—C35	78.7 (3)
C10—C11—C12—C13	-176.5 (3)	C18—C17—C30—C35	-40.5 (3)
C11—C12—C13—C14	1.3 (5)	C24—C17—C30—C35	-159.2 (2)
C12—C13—C14—C15	-2.3 (5)	N1—C17—C30—C31	-93.8 (3)
C13—C14—C15—C16	1.3 (5)	C18—C17—C30—C31	147.0 (2)
C12—C11—C16—C15	-1.8 (5)	C24—C17—C30—C31	28.3 (3)
C10—C11—C16—C15	175.6 (3)	C35—C30—C31—C32	0.7 (4)
C14—C15—C16—C11	0.8 (5)	C17—C30—C31—C32	173.4 (3)
C2—N1—C17—C18	172.46 (18)	C30—C31—C32—C33	-1.0(5)
C2—N1—C17—C30	49.5 (3)	C31—C32—C33—C34	0.9 (5)
C2—N1—C17—C24	-73.7 (2)	C32—C33—C34—C35	-0.5 (5)
N1—C17—C18—C19	29.2 (3)	C31—C30—C35—C34	-0.3(4)
C30—C17—C18—C19	150.4 (2)	C17—C30—C35—C34	-173.2 (3)
C24—C17—C18—C19	-87.4 (3)	C33—C34—C35—C30	0.2 (5)
Hydrogen-bond geometry (Å, °)			
5 ** /	D ***	** /	5 ** /

 D—H···A D—H
 H···A D···A D—H···A

 O3—H3A··· $O1^i$ 0.82
 1.95
 2.772 (3)
 175

Symmetry codes: (i) x+1/2, -y-1/2, -z.

Fig. 1

