ECE 340: Semiconductor Electronics

Chapter 3: Energy bands and charge carriers in semiconductors (part II)

Wenjuan Zhu

Outline

Carrier concentrations

- The Fermi level
 - Electron and hole concentration at equilibrium
 - Temperature dependence of carrier concentration
 - Compensation and space charge neutrality

Carrier concentration

- How to calculate electron (and hole) densities at
 - Any temperature
 - Any doping concentration
 - Any energy level

Fermi-Dirac distribution

• Electrons (and holes) obey Fermi-Dirac statistics

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

 E_F : Fermi level, at which an energy state has a probability of 1/2 being occupied by an electron

k: Boltzmann constant (8.62x10⁻⁵ eV/K)

T: temperature in Kelvin (K)

- f(E) is the probability that a state at energy E is occupied
- 1-f(E) is the probability that a state at energy E is unoccupied

Fermi function at different temperatures

- At T=0K, occupancy is "digital": No occupation of states above E_f and complete occupation of states below E_f .
- At T>0K, occupation probability is reduced with increasing energy. $f(E=E_f) = 1/2$ regardless of temperature.
- The Fermi function is symmetrical about E_F , i.e. $f(E_F + \Delta E) = 1 f(E_F \Delta E)$

Fermi distribution function applied to semiconductors

E_F in Energy Band Diagram

Outline

- Carrier concentrations
 - The Fermi level
- Electron and hole concentration at equilibrium
 - Temperature dependence of carrier concentration
 - Compensation and space charge neutrality

Density of State concept

- Density of state N(E): number of available state per unit of volume per unit of energy (unit: cm⁻³eV⁻¹)
- N(E)dE: number of available state per unit of volume lying in the energy range between E and E + dE (unit: cm⁻³)

Density of states in 3D solid

• In conduction band $(E>E_c)$:

$$N_c(E) = \frac{\sqrt{2}}{\pi^2} \left(\frac{m_n^*}{\hbar^2}\right)^{\frac{3}{2}} (E - E_c)^{1/2}$$

In valence band (E<E_v):

$$N_v(E) = \frac{\sqrt{2}}{\pi^2} \left(\frac{m_p^*}{\hbar^2}\right)^{\frac{3}{2}} (E - E_v)^{1/2}$$

• Most important feature is $\sim E^{1/2}$ (more states at higher E)

Notice in 3D: $DOS \propto \sqrt{E}$

Carrier density calculation

Electron concentrations in conduction band:

$$n_0 = \int_{E_c}^{\infty} f(E) N_c(E) dE$$

Probability the state is occupied by electrons

Hole concentrations in valence band:

$$p_0 = \int_{-\infty}^{E_v} [1 - f(E)] N_v(E) dE$$

Probability the state is occupied by holes

Carrier Concentration in Semiconductors

Fermi function, density of state and carrier concentration

- In the gap, density of state $N(E)=0 \Rightarrow$ carrier centration=0
- At T=0K, f(E)=0 at conduction band --> no electrons 1-f(E)=0 at valence band \rightarrow no holes
- At high T, in the conduction or valence band, both density of state and Fermi function are finite → finite carriers

Maxwell-Boltzmann Approximation

If
$$E - E_F > 3kT$$
, $f(E) \approx e^{-(E - E_F)/kT}$

If
$$E_F - E > 3kT$$
, $f(E) \approx 1 - e^{E - E_F/kT}$

Carrier Concentration

• If E_F is well inside the band gap, $(E_V + 3kT < E_F < E_C - 3kT)$, by using Boltzmann approximation, we get:

Electron concentration:

$$n_0 \approx N_C e^{-(E_C - E_F)/kT}$$

$$n_0 \approx N_C e^{-(E_C - E_F)/kT}$$
 where $N_C = 2 \left(\frac{2\pi m_n^* kT}{h^2}\right)^{3/2}$ Effective density of state in conduction band

Hole concentration:

$$p_0 \approx N_V e^{-(E_F - E_V)/kT}$$

$$p_0 \approx N_V e^{-(E_F - E_V)/kT}$$
 where $N_v = 2(\frac{2\pi m_p^* kT}{h^2})^{3/2}$ Effective density of state in valence

band

Intrinsic carrier concentration

np product

$$n_0 p_0 = N_c N_v e^{-E_g/kT}$$

• For Intrinsic material $n_i = p_i$

$$\implies n_i p_i = n_i^2 = N_c N_v e^{-E_g/kT}$$

$$\implies n_i = \sqrt{N_c N_v} e^{-E_g/2kT}$$

For silicon, at room T, $n_i = 1.5 \times 10^{10} cm^{-3}$

$$\implies n_0 p_0 = n_i^2$$

Express carrier concentration using intrinsic carrier concentration

$$n_0 \approx N_C e^{-(E_C - E_F)/kT}$$

$$p_0 \approx N_V e^{-(E_F - E_V)/kT}$$

$$n_i = N_c e^{-(E_c - E_i)/kT}$$

$$p_i = N_v e^{-(E_i - E_v)/kT}$$

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$p_0 = n_i e^{(E_i - E_F)/kT}$$

Intrinsic level

For intrinsic material:

$$n_i = N_c e^{-(E_c - E_i)/kT} = N_v e^{-(E_i - E_v)/kT} = p_i$$

$$\Longrightarrow E_i = \frac{E_c + E_v}{2} + \frac{kT}{2} ln \left(\frac{N_v}{N_c} \right) \quad \text{or} \quad E_i = \frac{E_c + E_v}{2} + \frac{3kT}{4} ln \left(\frac{m_p^*}{m_n^*} \right)$$

If
$$N_v = N_c$$
 (i.e. $m_p^* = m_n^*$), then $E_i = \frac{E_c + E_v}{2}$, i.e at mid-gap

If
$$N_v > N_c$$
, (i.e. $m_p^* > m_n^*$), will E_i above or below the mid-gap?

If
$$N_v < N_c$$
, (i.e. $m_p^* < m_n^*$), will E_i above or below the mid-gap?

Example problem 1

An intrinsic Silicon wafer has 1x10¹⁰ cm⁻³ holes. When 1x10¹⁸ cm⁻³ donors are added, what is the new hole concentration?

Solution to problem 1

An intrinsic Silicon wafer has $1x10^{10}$ cm⁻³ holes. When $1x10^{18}$ cm⁻³ donors are added, what is the new hole concentration?

if
$$N_{\scriptscriptstyle D}\rangle\!\rangle \ N_{\scriptscriptstyle A}$$
 and $N_{\scriptscriptstyle D}\rangle\!\rangle \ n_{\scriptscriptstyle i}$
$$n\cong N_{\scriptscriptstyle D} \quad \text{and} \quad p\cong \frac{n_{\scriptscriptstyle i}^2}{N_{\scriptscriptstyle D}}$$

$$n \cong N_D = 10^{18} \text{ cm}^{-3}$$

$$p = \frac{n_i^2}{n} = \frac{\left(10^{10}\right)^2}{10^{18}} \text{ cm}^{-3} = 100 \text{ cm}^{-3}$$

Example problem 2

Silicon doped with 10^{16} Boron atoms per cm³. What are the hole & electron concentrations at room temperature? (assume lights off). Is this n- or p-type material? Where is the Fermi level E_F with respect to the other energy bands?

Hint:

$$n = n_i e^{\left(E_f - E_i\right)/kT}$$

$$p = n_i e^{\left(E_i - E_f\right)/kT}$$

$$n_i = 1.5 \times 10^{10} cm^{-3}$$

Solution to problem 2

Silicon doped with 10^{16} Boron atoms per cm³. What are the hole & electron concentrations at room temperature? (assume lights off). Is this n- or p-type material? Where is the Fermi level E_F with respect to the other energy bands?

$$n = n_i e^{(E_f - E_i)/kT}$$

$$p = n_i e^{(E_i - E_f)/kT}$$

Since B (trivalent) is a p-type dopant in Si, hence, the material will be predominantly p-type, and since $N_A >> n_i$, therefore, p_0 will be approximately equal to N_A , and n_0 = n_i^2/p_0 = 2.25 x 10⁴ cm⁻³.

$$E_i - E_F = kT \ln(p_0/n_i) = 0.026 \ln[10^{16}/(1.5 \times 10^{10})] = 0.35 \text{ eV}$$

Outline

- Carrier concentrations
 - The Fermi level
 - Electron and hole concentration at equilibrium
- Temperature dependence of carrier concentration
 - Compensation and space charge neutrality

Temperature dependence of carrier concentration (1)

-intrinsic semiconductor

Intrinsic carrier concentration:

$$n_i = 2\left(\frac{2\pi kT}{h^2}\right)^{\frac{3}{2}} \left(m_n^* m_p^*\right)^{3/4} e^{-E_g/2kT}$$

- Tincreases $\rightarrow n_i$ increase
- E_g decrease $\rightarrow n_i$ increase
- m_n^* and m_p^* are density-of-state effective mass

Question: (1) Does density of state change with T?

- (2) Does E_g change with T?
- (2) why plot n_i vs 1000/T?

Si				
T(°C)	$n_{\rm i}({\rm cm}^{-3})$			
0	8.86×10^{8}			
5	1.44×10^{9}			
10	2.30×10^{9}			
15	3.62×10^{9}			
20	5.62×10^{9}			
25	8.60×10^{9}			
30	1.30×10^{10}			
35	1.93×10^{10}			
40	2.85×10^{10}			
45	4.15×10^{10}			
50	5.97×10^{10}			
300 K	1.00×10^{10}			

GaAs				
T(°C)	$n_{\rm i}({\rm cm}^{-3})$			
0	1.02×10^{5}			
5	1.89×10^{5}			
10	3.45×10^{5}			
15	6.15×10^{5}			
20	1.08×10^{6}			
25	1.85×10^{6}			
30	3.13×10^{6}			
35	5.20×10^{6}			
40	8.51×10^{6}			
45	1.37×10^{7}			
50	2.18×10^{7}			
300 K	2.25×10^{6}			

- Plot \log_{10} of n_i vs. T
- n_i is very temperaturesensitive! Ex: in Silicon:
 - While $T = 300 \rightarrow 330$ K (10% increase)
 - $n_i = \sim 10^{10} \rightarrow \sim 10^{11}$ cm⁻³ (10x increase)

Temperature dependence of carrier concentration (1) -Extrinsic semiconductor

- Assume Si sample doped with $N_D = 10^{15} \text{ cm}^{-3} \text{ (n-type)}$
- Recall the band diagram, including the donor level.
- Note three distinct regions:
 - Low, medium, and hightemperature

Operating Temperature of Semiconductor

Real example of operating temperature

MAXIMUM	RATINGS (T.c. = 25° C unless otherwise no	(hed)

Rating		Value	Unit
Drain-to-Source Voltage	VDSS	400	Vdc
Drain-to-Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	400	Vdc
Gate-to-Source Voltage — Continuous	VGS	±20	Vdc
Drain Current — Continuous — Continuous @ 100°C — Single Pulse (t _p ≤ 10 μs)	ID ID	10 6.0 40	Amps Apk
Total Power Dissipation Derate above 25°C	PD	125 1.00	Watts W/°C
total Power bisspason w TX = 25 C, when mounted war the minimum recommended pad size		E.U	PROMS
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
(V _{DD} = 25 Vdc, V _{GS} = 10 Vpk, I _L = 10 Apk, L = 10 mH, R _G = 25 Ω)	-AS	32.0	2
Thermal Resistance — Junction to Case — Junction to Ambient — Junction to Ambient, when mounted with the minimum recommended pad size	Reja Reja Reja	1.00 62.5 50	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

E-FET and Designer's are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

Thermal Clad is a trademark of the Bergquist Company

Preferred devices are Motorola recommended choices for future use and best overall value.

Motorola, Inc. 1994

Operating temperature

- When do we need higher operating temperature for electronics?
 - Car, airplane engine monitor/control
 - Geothermal equipment
 - Oil field down-hole drilling
- How to increase operating temperature?
 - Raise doping
 - Use large band gap material → reduce intrinsic carrier density n_i

Dependence of E_F on Temperature and Doping

Outline

- Carrier concentrations
 - The Fermi level
 - Electron and hole concentration at equilibrium
 - Temperature dependence of carrier concentration

Compensation and space charge neutrality

Compensation process

- So far, we assumed material is either just n- or p-doped and life was simple. At most moderate temperatures:
 - $n_0 \approx N_d$
 - $p_0 \approx N_a$

What if a piece of Si contains BOTH dopant types? This is called compensation.

Space Charge Neutrality

 More generally, we must have charge neutrality in the material, i.e. positive charge = negative charge:

$$p_0 + N_d^+ = n_0 + N_a^-$$

• If all the impurities are ionized $(N_d^+ = N_d, N_a^- = N_a)$:

$$p_0 + N_d = n_0 + N_a$$

- If the material is doped n type $(n_0>>p_0)$: $n_0 \approx N_d-N_a$
- If the material is doped p type $(p_0>>n_0)$: $p_0\approx N_a-N_d$
- If $N_d = N_a$, the material is back to intrinsic: $n_0 = p_0 = n_i$

Carrier concentration: general case

$$n_o = \frac{N_d - N_a}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2}$$
 $p_o = \frac{N_a - N_d}{2} + \sqrt{\left(\frac{N_a - N_d}{2}\right)^2 + n_i^2}$

$$p_o = \frac{N_a - N_d}{2} + \sqrt{\left(\frac{N_a - N_d}{2}\right)^2 + n_i^2}$$

 $|n_0 p_0| = n_i^2$ and

If
$$N_d - N_a \gg n_i$$
, then $n_o \approx N_d - N_a$
If $N_d \gg n_i$ and $N_d >> N_a$, then $n_o \approx N_d$
 $p_o \approx n_i^2/N_d$

If
$$N_a - N_d \gg n_i$$
, then $p_o \approx N_a - N_d$
If $N_a \gg n_i$ and $N_a >> N_d$, then $p_o \approx N_a$
 $n_o \approx n_i^2/N_a$

Example of Heavy Doping

An intrinsic Silicon wafer has 1x10¹⁰ cm⁻³ holes. When 1x10¹⁸ cm⁻³ donors are added, what is the new hole concentration?

if
$$N_{\scriptscriptstyle D}
angle
angle \ N_{\scriptscriptstyle A}$$
 and $N_{\scriptscriptstyle D}
angle
angle \ n_{\scriptscriptstyle i}$
$$n\cong N_{\scriptscriptstyle D} \quad \mbox{and} \quad p\cong \frac{n_{\scriptscriptstyle i}^2}{N_{\scriptscriptstyle D}}$$

$$n \cong N_D = 10^{18} cm^{-3}$$

$$p = \frac{n_i^2}{n} = \frac{(10^{10})^2}{10^{18}} cm^{-3} = 100 cm^{-3}$$

Example of Heavy Doping

An intrinsic Silicon wafer has 1x10¹⁰ cm⁻³ holes. When 1x10¹⁸ cm⁻³ donors are added, what is the new hole concentration?

Example of Both Donors and Acceptors

An intrinsic Silicon wafer has $1x10^{10}$ cm⁻³ holes. When $1x10^{18}$ cm⁻³ acceptors and $8x10^{17}$ cm⁻³ donors are added, what is the new hole concentration?

Example of Light Doping and High T

An intrinsic Silicon wafer at 470K has 1x10¹⁴ cm⁻³ holes. When 1x10¹⁴ cm⁻³ acceptors are added, what is the new electron and hole concentrations?

Example of High Temperature

An intrinsic Silicon wafer at 600K has 4x10¹⁵ cm-3 holes. When 1x10¹⁴ cm⁻³ acceptors are added, what is the new electron and hole concentrations?