Planning and Scheduling: Hierarchical Task Network Planning

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Acknowledgements

- These slides are based on those slides by Dana Nau, Gerhard Wickler, Hai Hoang, José Luis Ambite
- Several improvements were applied by Iman Awaad

Motivation

- We may already have an idea how to go about solving problems in a planning domain
- E.g.: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes", e.g. for flying:
 - buy ticket from local airport to remote airport
 - travel to local airport
 - fly to remote airport
 - travel to final destination
- How to enable planning systems to make use of such recipes?

Two Approaches

- Control rules (Chapter 10 in the book):
 - Write rules to prune every action that does not fit the recipe
- Hierarchical Task Network (HTN) planning:
 - Describe the actions and subtasks that do fit the recipe

Control Rules v HTN Planning

- Control rules (Chapter 10):
 - Write rules to prune every action that does not fit the recipe
- Hierarchical Task Network (HTN) planning:
 - Describe the actions and subtasks that do fit the recipe
- Objective of HTN planning: perform a given set of tasks
- Inputs include:
 - Operators: can directly perform a primitive task
 - Methods: recipes for decomposing a complex/non-primitive task into simpler non-primitive or primitive subtasks
- Planning process:
 - Decompose non-primitive tasks recursively until primitive tasks are reached

Hierarchical Decomposition & Problem Reduction

- To get to a conference in ?x, get to the airport, take a plane to ?x, then go to the conference hotel
 - To get to the airport, either drive or take a cab
 - If you have money for the taxi fare:
 - Enter the cab, say "I want to go to ?y", wait until you are at ?y, pay the fare, then exit the taxi"
- Idea is to capture the hierarchical structure of a planning domain
 - assuming it contains complex tasks and schemas for reducing them.
- Reduction schemas:
 - given by the designer
 - express preferred ways to accomplish a task

Outline

- Main idea behind HTN planning
- STNs: Representation and planning algorithms
 - Total order
 - Partial order
- Generalizing the formalism and algorithm to HTN
- Expressivity: comparison to classical planning and control rules
- Experimental Results

HTN Planning

- A type of problem reduction
- Decompose tasks into subtasks
- Handle constraints (e.g., taxi not good for long distances)
- Resolve interactions (e.g., take taxi early enough to catch plane)
- If necessary, backtrack and try other decompositions

```
get-ticket(BWI, Toulouse)
go to Orbitz
find-flights(BWI, Toulouse)
buy-ticket(BWI, Toulouse)
travel(UMD, BWI)
get-taxi
ride-taxi(UMD, BWI)
pay-driver
fly(BWI, Toulouse)
travel(Toulouse, LAAS)
get-taxi
ride-taxi(Toulouse, LAAS)
pay-driver
```


Tasks are in rectangle and methods in ovals

HTN Planning

- HTN planners may be domain-specific
 - e.g., see Chapters 20 (robotics) and 23 (bridge)
- Or they may be domain-configurable
 - Domain-independent planning engine
 - Domain description defining operators and also methods
 - Problem description
 - domain description, initial state, initial task network

HTN Planning

- HTN planners may be domain-specific
 - e.g., see Chapters 20 (robotics) and 23 (bridge)
- Or they may be domain-configurable
 - Domain-independent planning engine
 - Domain description
 - methods, operators
 - Problem description
 - domain description, initial state, initial task network

```
Abstract-search(u)

if Terminal(u) then return(u)

u \leftarrow \text{Refine}(u) ;; refinement step
B \leftarrow \text{Branch}(u) ;; branching step

B' \leftarrow \text{Prune}(B) ;; pruning step

if B' = \emptyset then return(failure)

nondeterministically choose v \in B'

return(Abstract-search(v))
end
```

HTN Planning: Task Networks

- Ground/unground
- Primitive/non-primitive
- Partial/total order
- Horizontal arrows show the order in which a plan will be executed in
- A method if applied only if its preconditions are satisfied

initial state

 S_0

HTN v what we've seen so far

- What stays the same:
 - Each state of the world is represented by a set of atoms
 - Each action corresponds to a deterministic state transition
 - Terms, literals, operators, actions, plans have same meaning
 - E.g. (block b1) (block b2) (block b3) (block b4) (on-table b1) (on b2
 b1) (clear b2) (on-table b3) (on b4 b3) (clear b4)
- What's new:
 - Perform a set of tasks; not achieve a set of goals
 - Methods describing ways in which tasks can be performed
 - Organized collections of tasks and subtasks called task networks

Simple Task Network (STN) Planning

- A special case of HTN planning
- States and operators
 - The same as in classical planning
- Task: an expression of the form $t(u_1,...,u_n)$
 - t is a task symbol, and each ui is a term
- Two kinds of task symbols (and tasks):
 - Primitive: tasks that we know how to execute directly
 - task symbol is an operator name
 - Non-primitive: tasks that must be decomposed into subtasks
 - use methods (next slide)

STN: Domains, Planning Problems, Solutions

initial task network: our goal plan which consists of primitive tasks that can satisfy our goal

- Domain: methods, operators: D=(O,M)
- Problem: initial state, initial task network, operators, methods: $P = (S_0, w_j, O, M)$
- Total-order STN domain and problem:
 - Same as above except that all methods are totally ordered
- Solution: any executable plan that can be generated by recursively applying
 - methods to non-primitive tasks
 - operators to primitive tasks

 S_0

STN: Methods (totally-ordered)

- Totally-ordered method: a 4-tuple m = (name(m), task(m), precond(m), subtasks(m))
 - name(m): an expression of the form $n(x_1,...,x_n)$
 - $x_1,...,x_n$ are parameters variable symbols
 - task(m): a nonprimitive task
 - precond(m): preconditions (literals)
 - subtasks(m): a sequence of tasks $\langle t_1, ..., t_k \rangle$

buy-ticket (a(x), a(y))

travel (x, a(x))

air-travel(x,y)

long-distance(x,y)

fly (a(x), a(y))

travel(x,y)

travel (a(y), y)

- air-travel(x,y)
 - task: travel(x,y)
 - precond: long-distance(x,y)
 - subtasks: $\langle buy-ticket(a(x),a(y)), travel(x,a(x)), fly(a(x),a(y)), travel(a(y),y) \rangle$

STN: Methods (partially-ordered)

- Partially-ordered method: a 4-tuplem = (name(m), task(m), precond(m), subtasks(m))
 - name(m): an expression of the form $n(x_1,...,x_n)$
 - $x_1,...,x_n$ are parameters variable symbols
 - task(m): a nonprimitive task
 - precond(m): preconditions (literals)
 - subtasks(m): a partially ordered set of tasks $\{t_1, ..., t_k\}$
- air-travel(x,y)
 - task: travel(x,y)
 - precond: long-distance(x,y)
 - network: $u \mid =buy$ -ticket(a(x),a(y)), u2=travel(x,a(x)), u3=fly(a(x),a(y)), u4=travel(a(y),y), $\{(u\mid u3),(u2,u3),(u3,u4)\}$

buy-ticket (a(x), a(y))

Example: DWR

- Task:
 - Move three stacks of containers in a way that preserves the order of the containers
- One way to move each stack:
 - First move
 the containers
 from p to an
 intermediate
 pile r
 - Then move them from r to q

Example: DWR

- Methods (informal):
 - move each stack twice:
 - move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 - move stack:
 - repeatedly/recursively move the topmost container until the stack is empty
 - move top-most:
 - take followed by put action

Example: DWR Total-Order Formulation

```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
               move-topmost-container (p_1, p_2)
   task:
   precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
               \mathsf{attached}(p_1, l_1), \mathsf{belong}(k, l_1), ; \mathsf{bind}\ l_1\ \mathsf{and}\ k
               \mathsf{attached}(p_2, l_2), \mathsf{top}(x_2, p_2) ; bind l_2 and x_2
   subtasks: \langle \mathsf{take}(k, l_1, c, x_1, p_1), \, \mathsf{put}(k, l_2, c, x_2, p_2) \rangle
recursive-move(p, q, c, x):
               move-stack(p, q)
   task:
   precond: top(c, p), on(c, x); true if p is not empty
   subtasks: \langle move-topmost-container(p, q), move-stack(p, q) \rangle
               ;; the second subtask recursively moves the rest of the stack
do-nothing(p,q)
               move-stack(p, q)
   task:
   precond: top(pallet, p) ; true if p is empty
   subtasks: () ; no subtasks, because we are done
move-each-twice()
               move-all-stacks()
   task:
   precond: ; no preconditions
   subtasks: ; move each stack twice:
               (move-stack(p1a,p1b), move-stack(p1b,p1c),
                move-stack(p2a,p2b), move-stack(p2b,p2c),
                move-stack(p3a,p3b), move-stack(p3b,p3c)
```


STN: Solving Total-Order Planning Problems

```
\mathsf{TFD}(s,\langle t_1,\ldots,t_k\rangle,O,M)
    if k = 0 then return \langle \rangle (i.e., the empty plan)
    if t_1 is primitive then
          active \leftarrow \{(a,\sigma) \mid a \text{ is a ground instance of an operator in } O,
                             \sigma is a substitution such that a is relevant for \sigma(t_1),
                             and a is applicable to s}
                                                                                   state s; task list T=(|\mathbf{t}_1|, \mathbf{t}_2, ...)
         if active = \emptyset then return failure
          nondeterministically choose any (a, \sigma) \in active
                                                                                                     action a
         \pi \leftarrow \mathsf{TFD}(\gamma(s,a),\sigma(\langle t_2,\ldots,t_k\rangle),O,M)
         if \pi = failure then return failure
                                                                                   state \gamma(s,a); task list T=(t<sub>2</sub>,...)
         else return a, \pi
    else if t_1 is nonprimitive then
          active \leftarrow \{m \mid m \text{ is a ground instance of a method in } M,
                             \sigma is a substitution such that m is relevant for \sigma(t_1),
                             and m is applicable to s}
                                                                                          task list T=(|\mathbf{t}_1|,\mathbf{t}_2,...)
         if active = \emptyset then return failure
          nondeterministically choose any (m, \sigma) \in active
                                                                                     method instance m
          w \leftarrow \text{subtasks}(m), \sigma(\langle t_2, \ldots, t_k \rangle)
          return TFD(s, w, O, M)
                                                                                    task list T=(\mathbf{u_1},...,\mathbf{u_k},\mathbf{t_2},...)
```

Example: DWR Decomposition Tree - TFD

Comparison to Forward and Backward Search

In state-space planning, must choose whether to search forward or backward

- In HTN planning, there are two choices to make about direction:
 - forward or backward
 - up or down
- TFD goes down and forward

Comparison to Forward and Backward Search

- Like a backward search, TFD is goal-directed
 - Goals correspond to tasks

- Like a forward search, it generates actions in the same order in which they'll be executed
- Whenever we plan the next task
 - we've already planned everything that comes before it
 - Thus, we know the current state of the world

Expressivity Relative to Classical Planning

- Any classical planning problem can be translated into an ordered-task planning problem in polynomial time
- Several ways to do this. One is roughly as follows:
 - For each goal or precondition e, create a task te
 - For each operator o and effect e, create a method mo,e
 - Task: t_e
 - Subtasks: t_{c1} , t_{c2} , ..., t_{cn} , o, where c1, c2, ..., cn are the preconditions of o
 - Partial-ordering constraints: each tci precedes o
- There are HTN planning problems that cannot be translated into classical planning problems at all
 - Example on the next page

Example: Classical planning can not represent this

- Two methods:
 - No arguments
 - No preconditions
- Two operators, a and b
 - Again, no arguments and no preconditions

- Initial state is empty, initial task is t
- Set of solutions is $\{a^nb^n \mid n > 0\}$

here we can have an infinite planning that is impossible in classical

- No classical planning problem has this set of solutions
 - The state transition system is a finite state automaton
 - No finite state automaton can recognise {aⁿbⁿ | n > 0}

Increasing Expressivity Further

- Knowing the current state makes it easy to do things that would be difficult otherwise
 - States can be arbitrary data structures

Us: East declarer, West dummy

Opponents: defenders, South & North

Contract: East -3NT

On lead: West at trick 3

East: **♠**KJ74

West: ♠A2

Out: **♦**QT98653

- Preconditions and effects can include
 - logical inferences (e.g., Horn clauses)
 - complex numeric computations
 - interactions with other software packages
- Example: SHOP http://www.cs.umd.edu/projects/shop

Example

- Simple travel planning domain:
 - Go from one location to another
 - State-variable formulation


```
method travel-by-foot
   precond: distance(x, y) \leq 2
              travel(a, x, y)
   task:
   subtasks: walk(a, x, y)
method travel-by-taxi
              travel(a, x, y)
   task:
   precond: cash(a) \ge 1.5 + 0.5 \times distance(x, y)
   subtasks: \langle call-taxi(a,x), ride(a,x,y), pay-driver(a,x,y) \rangle
operator walk
   precond: location(a) = x
   effects: location(a) \leftarrow y
operator\ call-taxi(a,x)
   effects: location(taxi) \leftarrow x
operator ride-taxi(a, x)
   precond: location(taxi) = x, location(a) = x
              location(taxi) \leftarrow y, location(a) \leftarrow y
   effects:
operator pay-driver(a, x, y)
   precond: cash(a) \ge 1.5 + 0.5 \times distance(x, y)
            cash(a) \leftarrow cash(a) - 1.5 + 0.5 \times distance(x, y)
```

Planning Problem

I am at home, I have \$20, I want to go to a park 8 miles away home park travel(me,home,park) Initial task: travel-by-foot travel-by-taxi Precond: distance(home,park) ≤ 2 Precond: $cash(me) \ge 1.50 + 0.50*distance(home,park)$ **Precondition fails** Precondition succeeds Decomposition into subtasks call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park) Initial Precond: ... Precond: ... Precond: ... Final state Effects: ... Effects: Effects: ... state $\langle s_0 = \{ location(me) = home, cash(me) = 20, distance(home,park) = 8 \}$ $\langle s_1 = \{ location(me) = home, location(taxi) = home, cash(me) = 20, distance(home, park) = 8 \}$ $s_2 = \{location(me) = park, location(taxi) = park, cash(me) = 20, distance(home, park) = 8\}$ $s_3 = \{\text{location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}\}$

SHOP (Simple Hierarchical Ordered Planner)

- Domain-independent algorithm for ordered task decomposition
 - Sound and complete
- Input:
 - State: a set of ground atoms
 - Task List: a linear list of tasks
 - Domain: methods, operators, axioms
- Output: one or more plans, it can return:
 - the first plan it finds
 - all possible plans
 - a least-cost plan
 - all least-cost plans

Example: SHOP

- Initial task list: ((travel home park))
- Initial state: ((at home) (cash 20) (distance home park 8))
- Methods (task, preconditions, subtasks):
 - (:method (travel ?x ?y)
 ((at x) (walking-distance ?x ?y)) ' ((!walk ?x ?y)) | 1)
- Axioms:
 - (:- (walking-dist ?x ?y) ((distance ?x ?y ?d) (eval (<= ?d 5))))</p>
 - (:- (have-taxi-fare ?x ?y)
 ((have-cash ?c) (distance ?x ?y ?d) (eval (>= ?c (+ 1.50 ?d))))
- Primitive operators (task, delete list, add list)
 - (:operator (!walk ?x ?y) ((at ?x)) ((at ?y)))
 - ...

Example: SHOP (Continued)

Limitation of Ordered-Task Planning

■ TFD requires totally ordered methods

- Can't interleave subtasks of different tasks
- Sometimes this makes things awkward:
 - Need to write methods that reason globally instead of locally

Generalize TFD to interleave subtasks

- Generalize methods to allow the subtasks to be partially ordered
- Consequence: plans may interleave subtasks of different tasks

This makes the planning algorithm more complicated

Example: DWR Partial-Order Formulation

```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
               move-topmost-container (p_1, p_2)
   task:
   precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
               \mathsf{attached}(p_1, l_1), \mathsf{belong}(k, l_1), ; \mathsf{bind}\ l_1\ \mathsf{and}\ k
               \mathsf{attached}(p_2, l_2), \mathsf{top}(x_2, p_2) ; bind l_2 and x_2
   subtasks: \langle \mathsf{take}(k, l_1, c, x_1, p_1), \mathsf{put}(k, l_2, c, x_2, p_2) \rangle
recursive-move(p, q, c, x):
               move-stack(p, q)
   task:
   precond: top(c, p), on(c, x); true if p is not empty
   subtasks: \langle move-topmost-container(p, q), move-stack(p, q) \rangle
                ;; the second subtask recursively moves the rest of the stack
do-nothing(p, q)
                move-stack(p, q)
   task:
   precond: top(pallet, p) ; true if p is empty
   subtasks: () ; no subtasks, because we are done
move-each-twice()
   task:
               move-all-stacks()
   precond:
                  ; no preconditions
   network:
                  : move each stack twice:
               u_1 = move-stack(p1a,p1b), u_2 = move-stack(p1b,p1c),
               u_3 = move-stack(p2a,p2b), u_4 = move-stack(p2b,p2c),
               u_5 = \text{move-stack(p3a,p3b)}, u_6 = \text{move-stack(p3b,p3c)},
                \{(u_1,u_2),(u_3,u_4),(u_5,u_6)\}
```


Solving Partial-Order STNs

return(PFD(s, w', O, M)

```
PFD(s, w, O, M)
    if w = \emptyset then return the empty plan
    nondeterministically choose any u \in w that has no predecessors in w
    if t_u is a primitive task then
         active \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,
                                 \sigma is a substitution such that name(a) = \sigma(t_u),
                                 and a is applicable to s}
                                                                                           \pi = \{a_1, \dots, a_k\}; w = \{\mathbf{t_1}, \mathbf{t_2}, \mathbf{t_3} \dots\}
operator instance \mathbf{a}
         if active = \emptyset then return failure
         nondeterministically choose any (a, \sigma) \in active
         \pi \leftarrow \mathsf{PFD}(\gamma(s,a), \sigma(w-\{u\}), O, M)
         if \pi = failure then return failure
         else return a, \pi
    else
         active \leftarrow \{(m,\sigma) \mid m \text{ is a ground instance of a method in } M,
                                                                                                                   w = \{ |\mathbf{t}_1|, \mathbf{t}_2, \dots \}
                            \sigma is a substitution such that name(m) = \sigma(t_u),
                                                                                                    method instance m
                            and m is applicable to s}
         if active = \emptyset then return failure
         nondeterministically choose any (m, \sigma) \in active
```

nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$

Solving Partial-Order STNs

PFD(s, w, O, M)if $w = \emptyset$ then return the empty plan

- Intuitively, w is a partially ordered set of tasks $\{t_1, t_2, ...\}$
 - But w may contain a task more than once
 - e.g., travel from UMD to LAAS twice
 - The mathematical definition of a set doesn't allow this
- Define w as a partially ordered set of task nodes $\{u_1, u_2, ...\}$
 - Each task node u corresponds to a task t_u
- In my explanations, I talk about t and ignore u

rs in w

O, $\sigma(t_u)$,

 $\pi = \{a_1, \dots, a_k\}; w = \{\mathbf{t_1}, \mathbf{t_2}, \mathbf{t_3} \dots\}$ operator instance \mathbf{a}

$$\pi = \{a_1 ..., a_k, a\}; w' = \{t_2, t_3 ...\}$$

else return $a.\pi$

else

active $\leftarrow \{(m, \sigma) \mid m \text{ is a ground instance of a method in } M, \\ \sigma \text{ is a substitution such that } name(m) = \sigma(t_u), \\ \text{and } m \text{ is applicable to } s\}$

if $active = \emptyset$ then return failure nondeterministically choose any $(m, \sigma) \in active$ nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$ return(PFD(s, w', O, M)

Solving Partial-Order STNs

```
PFD(s, w, O, M)
    if w = \emptyset then return the empty plan
    nondeterministically choose any u \in w that has no predecessors in w
    if t_u is a primitive task then
         active \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,
                                \sigma is a substitution such that name(a) = \sigma(t_u),
               \delta(w, u, m, \sigma) has a complicated definition in the book. Here's
                                                                                        \pi = \{a_1, \dots, a_k\}; w = \{|\mathbf{t_1}|, t_2, t_3 \dots\}
         if a
                  what it means:
                                                                                          operator instance a
                  We non-deterministically selected t_1 as the task to do first
                 Must do t_1's first subtask before the first subtask of every t_i \neq t_1
                                                                                        \pi = \{a_1 \ldots, a_k, |a|\}; w' = \{t_2, t_3 \ldots\}
                 Insert ordering constraints to ensure that this happens
         else
    else
                                                                                                               w = \{ |\mathbf{t_1}|, \mathbf{t_2}, \dots \}
                           \sigma is a substitution such that name(m) = \sigma(t_u),
                                                                                                 method instance m
                           and m is applicable to s}
         if active = \emptyset then return failure
         nondeterministically choose any (m, \sigma) \in active
         nondeterministically choose any task network w' \in \delta(w, u, m, \sigma)
         return(PFD(s, w', O, M)
```

STN Summary

- PFD is sound and complete
- STN simplified version of HTN
 - TFD Total-order Forward Decomposition (used in SHOP)
 - Input: tasks are totally ordered
 - Output: totally ordered plan
 - PFD Partial-order Forward Decomposition (SHOP2)
 - Input: tasks are partially ordered
 - Output: totally ordered plan
- SHOP2:
 - Won one of the top four awards in the AIPS-2002 Planning Competition
 - Freeware, open source
 - Implementation available at http://www.cs.umd.edu/projects/shop

STN v HTN

- HTN generalization of STN
 - More freedom about how to construct the task networks.
 - Can use other decomposition procedures not just forward-decomposition.
 - Like Partial-Order Planning combined with STN
 - Input: Partial-order tasks
 - Output: The resulting plan is partially ordered
 - Plans can be totally ordered or partially ordered
 - Can have constraints associated with tasks and methods
 - Things that must be true before a state, in between two given states, or after a state (replaces STN preconditions)
 - Some algorithms use causal links and threats like those in PSP

TLPlan's Expressivity Compared with SHOP and SHOP2

- Equivalent expressive power
- Both know the current state at each step of the planning process, and use this to prune operators
- Both can call external subroutines
 - SHOP uses "eval" to call LISP functions
 - In TLPlan, a function symbol can correspond to a computed function
- Main difference
 - in SHOP and SHOP2, the methods talk about what can be done
 - SHOP and SHOP2 don't do anything unless a method says to do it
 - TLPlan's control rules talk about what cannot be done
 - TLPlan will try everything that the control rules don't prohibit
- Which approach is more convenient depends on the problem domain

Experimental Comparison

- Several years ago, we did a comparison of SHOP, TLPlan, and Blackbox
 - Blackbox is a domain-independent planner that uses a combination of Graphplan and satisfiability
 - One of the two fastest planners in the 1998 planning competition
- Test domain: the logistics domain
 - A classical planning problem
 - Much simpler than real logistics planning
 - Scenario: use trucks and airplanes to deliver packages
 - Like a simplified version of the DWR domain in which containers don't get stacked on each other
- Test conditions
 - SHOP and TLPlan on a 167-MHz Sun Ultra with 64 MB of RAM
 - We couldn't run Blackbox on our machine
 - Published results: Blackbox on a faster machine with 8 GB of RAM

Logistics Domain Results

Logistics Domain Results (continued)

Same graph as before, but on a logarithmic scale

Average	Blackbox	TLPlan	SHOP
CPU time	327.1	2.9	1.1

Average no.	Blackbox TLPlan SHOP			
of actions	82.5	54.5	51.9	

Summary: Results

- TLPlan and SHOP took similar amounts of time
 - In this experiment, SHOP was slightly faster, but in others TLPlan may be faster
- Blackbox took about 1000 times as much time and needed about 100 times as much memory
- Reasons why:
 - SHOP's input included domain-specific methods & axioms
 - TLPlan's input included domain-specific control rules
 - This enabled them to find near-optimal solutions in low-order polynomial time and space
 - Blackbox is a fully automated planner
 - No domain-specific knowledge
 - trial-and-error search, exponential time and space

Domain-Configurable Planners Compared to Classical Planners

- Disadvantage:
 - Writing a knowledge base can be more complicated than just writing classical operators
- Advantage:
 - We can encode "recipes" as collections of methods and operators
 - Express things that can't be expressed in classical planning
 - Specify standard ways of solving problems
 - Otherwise, the planning system would have to derive these again and again from "first principles," every time it solves a problem
 - Can speed up planning by many orders of magnitude (e.g., polynomial time versus exponential time)

Example from the AIPS-2002 Competition

- The satellite domain
 - Planning and scheduling observation tasks among multiple satellites
 - Each satellite equipped in slightly different ways
- Several different versions. Results are shown for the following:
 - Simple time:
 - concurrent use of different satellites
 - data can be acquired more quickly if they are used efficiently
 - Numeric:
 - fuel costs for satellites to slew between targets; finite amount of fuel available.
 - data takes up space in a finite capacity data store
 - Plans are expected to acquire all the necessary data at minimum fuel cost.
 - Hard Numeric:
 - no logical goals at all thus even the null plan is a solution
 - Plans that acquire more data are better thus the null plan has no value
 - None of the classical planners could handle this

Satellite Problem Domain: Simple Time: Runtime

Satellite Problem Domain: Simple Time: Plan Quality

Satellite Problem Domain: Numeric: Runtime

Satellite Problem Domain: Numeric: Plan Quality

Satellite Problem Domain: Hard Numeric: Runtime

Satellite Problem Domain: Hard Numeric: Plan Quality

