

典型的代数系统

半群

设 $V = \langle S, \circ \rangle$ 是一个代数系统, \circ 是一个二元运算,如果 \circ 是可结合的,则称 $\langle S, \circ \rangle$ 是**半**群。

例如 <N,+>, <N,·>, <[0,1],·>都是半群,但<N,->不是半群。 其中+,·, -是通常的加法,乘法,减法。

可交换半群

设 $V = \langle S, ^{\circ} \rangle$ 是一个半群,若运算 $^{\circ}$ 是可交换的,则称 $\langle S, ^{\circ} \rangle$ 是**可交换半群**。

例如 <N,+>, <N,·>, <[0,1],·>都是可交换半群。

www.znufe.edu.cn

子半群

设<S,°>是一个半群,若<H,°>是<S,°>的子代数(H是S的非空子集,且H在运算°下是封闭的),则称<H,°>是<S,°>的子半群。

<N,+>是半群<Z,+>的子半群, <N,·>是半群<Z,·>的子半群。

半群中元素的幂

在一个半群<S,°>中,元素a的幂可定义为:

$$a^1 = a$$
 , $a^{n+1} = a^n \circ a$, $n = 1,2,3,...$

因为运算°满足结合律,所以有:

$$a^{m} \circ a^{n} = a^{m+n}$$
, $(a^{m})^{n} = a^{mn}$.

显然, 半群<S,°>的元素a 若是幂等元,则 aⁿ=a, n=1,2,3,...。

www.znufe.edu.cn

循环半群

设有半群<S,°>, 若它的每一元素均为S中某一元素a的幂,则称此半群为由a生成的循环半群,a称为此半群的生成元素。

如半群<N $^+$,+>是一个循环半群,其生成元素是1 ,半群<N, $\cdot>$,<[0,1], $\cdot>$ 都不是循环半群。

定理一个循环半群一定是一个可交换半群。

证明 设半群<S, $^{\circ}$ 是一循环半群,其生成元素为a,则对 \forall x,y \in S,

必存在m,n∈N⁺,使得x=a^m,y=aⁿ,则

$$x \circ y = a^m \circ a^n = a^{m+n} = a^{n+m} = a^n \circ a^m = y \circ x$$

∴运算°满足交换律、也即一个循环半群一定是可换半群。

www.znufe.edu.cn

循环子半群

一个半群<S,°>内的任一元素a和它的所有幂组成一个集合H,则<H,°>是<S,°>的由a所生成的循环子半群。

证明

 $H= \{a^n | n \in N^+\} \subseteq S, \ 对于 \forall a^r, a^s \in H,$ $a^r \circ a^s = a^{r+s} \in H,$

:.H在运算°下是封闭的。

又:H中每一元素都是a的幂,

∴<H,°>是<S,°>的由a 所生成的循环子半群。

独异点(含幺半群)

若半群<S,°>对于运算°有么元e,则称该半群为**独异点(含幺半群)**,有时也记为<S,°,e>。

半群<[0,1],·>具有么元1, 所以<[0,1],·>是独异点。

半群<P(U), ∪ > , < P(U), ∩ > 分别具有么元Φ , U , 所以它们都是独异点。

半群<(0,1),·>, <N*,+>不具有么元, 所以都不是独异点。

www.znufe.edu.cn

可换独异点(含幺半群)

如果独异点<S,°>的运算°是可交换的,则称<S,°>是可换独异点。

如<[0,1],·>, <P(U),∪>, <P(U),∩> 都是可换独异点。

例 设 R_A 表示集合A上所有关系的集合,O表示求复合关系的运算,则 $< R_A, O>$ 是独异点,么元为 I_A 。因为复合运算是不满足交换律的,所以 $< R_A, O>$ 不是可换独异点。

子独异点(含幺半群)

设<S, * >是一个独异点,H⊆S, 么元e∈H, 且H 在运算 * 下是封闭的,则<H, * >也是一个独异点,且称<H, * >是<S, * >的子独异点。

证明

∵独异点<S,*>是半群, ∴ <H,*>也是一个半群,而么元e∈H,∴<H,*>也是一个独异点。

例如, <[0,1],·>, <N,·>, <Z,·>都是独异点<R,·>的子独异点。

www.znufe.edu.cn

循环独异点(含幺半群)

设有独异点<S,°>,若它的每一元素均为S中某一元素a的幂 (规定a°=e,则么元也可表示为a的幂),则称此独异点为由a 生成的循环独异点,a称为此独异点的生成元素。

例如,独异点<Z,+>是循环独异点,其么元为0,生成元素为1。

例 设<S, * >是一独异点,其中S = { 1,a,b,c,d } ,运算 * 的运算表如下:

* 1abcd

1 1abcd

a aabdd

b bb*da*a

c cdabb

d ddabb

试证明<S, * >是循环独异点。

证明 由以上运算表可得:

∴<S,*>是一循环独异点。

www.znufe.edu.cn

定理

一个循环独异点一定是可换独异点。

一个可换独异点<S,°>内的所有幂等元组成一个集合H ,则 <H,°>是<S,°>的一个子独异点。

证明 设 $\forall a,b \in H$,则有 $a \circ a = a$, $b \circ b = b$,而运算 \circ 是可交换,可结合的,

 \therefore a \circ b = a \circ a \circ b \circ b = a \circ (b \circ a) \circ b = (a \circ b) \circ (a \circ b)

∴a°b也是等幂元素,也即a°b∈H,H在运算°下是 封闭的。

而么元 $e^\circ e = e$,则 $e \in H$,

∴<H, *>是<S, *>的一个子独异点。

www.znufe.edu.cn

思考与练习

- 1. 设有自然数集N上的二元运算*,定义为:n1*n2=n1与n2的最小公倍数。试证明:运算*是可交换的和可结合的,求出幺元,并指出哪些元素是幂等元。
- 2. 设给出一个半群,它有左幺元和右零元,但它不是独异点。
- 3. 设<S,*>是可换半群,证明:若S中有元素a,b,使得a*a = a, b*b=b,则(a*b)*(a*b)=a*b。
- 4. 证明:在一个独异点中左可逆元的集合构成一个子独异点。

