	1	
Principi programskih jezikov	2	
2. izpit, 24. junij 2020	3	
	Σ	
Ime in priimek	Vnisna številka	J

Navodila

• Ne odpirajte te pole, dokler ne dobite dovoljenja.

• Preden začnete reševati test:

- Vpišite svoje podatke na testno polo z velikimi tiskanimi črkami.
- Na vidno mesto položite osebni dokument s sliko in študentsko izkaznico.
- Preverite, da imate mobitel izklopljen in spravljen v torbi.
- Dovoljeni pripomočki: pisalo, brisalo, in poljubno pisno gradivo.
- Vse rešitve vpisujte v polo.
- Če kaj potrebujete, prosite asistenta, ne sosedov.
- Med izpitom ne zapuščajte svojega mesta brez dovoljenja.
- Testna pola vam bo odvzeta brez nadaljnjih opozoril, če:
 - komunicirate s komerkoli, razen z asistentom,
 - komu podate kak predmet ali list papirja,
 - odrinete svoje gradivo, da ga lahko vidi kdo drug,
 - na kak drug način prepisujete ali pomagate komu prepisovati,
 - imate na vidnem mestu mobitel ali druge elektronske naprave.

• Ob koncu izpita:

- Ko asistent razglasi konec izpita, **takoj** nehajte in zaprite testno polo.
- Ne vstajajte, ampak počakajte, da asistent pobere vse testne pole.
- Testno polo morate nujno oddati.
- Čas pisanja je 120 minut. Na vidnem mestu je zapisano, do kdaj imate čas.
- Predvideni ocenjevalni kriterij:
 - $1. \geq 90$ točk, ocena 10
 - 2. \geq 80 točk, ocena 9
 - $3. \geq 70$ točk, ocena 8
 - 4. \geq 60 točk, ocena 7
 - 5. \geq 50 točk, ocena 6

Veliko uspeha!

1. naloga (25 točk)

a) (6 točk) V Elbonji za zapis logičnih izrazov uporabljajo samo operatorje in (and), ali (or) in ekskluzivni ali (xor). V ta namen uporabljajo naslednjo sintakso:

```
\begin{split} &\langle izraz\rangle ::= \langle ekskluzivni\rangle \ | \ \langle ekskluzivni\rangle \ or \ \langle izraz\rangle \\ &\langle ekskluzivni\rangle ::= \langle konjuktivni\rangle \ | \ \langle konjuktivni\rangle \ xor \ \langle eksluzivni\rangle \\ &\langle konjuktivni\rangle ::= \langle osnovni\rangle \ | \ \langle osnovni\rangle \ and \ \langle konjuktivni\rangle \\ &\langle osnovni\rangle ::= (\ \langle izraz\rangle ) \ | \ 0 \ | \ 1 \end{split}
```

Zapišite izraz brez nepotrebnih oklepajev, ki predstavlja sintaktično drevo

Odgovor:

b) (6 točk) V λ -računu smo definirali izraz $A:=(\lambda x\,.\,\lambda y\,.\,x\,y)\,y$. Izračunajte izraz $A\,A$ do konca in označite pravilni odgovor:

- (a) $y(\lambda z \cdot y z)$
- (b) $(\lambda y \cdot y y)(\lambda y \cdot y y)$
- (c) izraz se računa v nedogled
- (d) nič od zgoraj naštetega

Pazite na pravilno uporabo vezanih in prostih spremenljivk!

c) (7 točk) Implementirajte *kakeršenkoli* modul z imenom Cow, ki ustreza podpisu

```
module type BOVINE =
sig
    type t
    val cow : t
    val equal : t -> t -> bool
    val to_string : t -> string
    end

Odgovor:
    module Cow : BOVINE =
    struct
    (* Tu vpisite vsebino modula *)
```

end

d) (6 točk) Izpeljite *glavni tip* funkcije f, ki je v OCamlu definirana kot

```
let f a b = b a
```

2. naloga (35 točk)

a) (15 točk) Dokažite *delno* pravilnost programa:

```
 \begin{cases} b > 1 \\ \text{i} := 2 ; \\ \text{j} := 0 ; \\ \text{while j < b do} \\ \text{i} := \text{i} + \text{i} + \text{i} - 2; \\ \text{j} := \text{j} + 1 ; \\ \text{end} \\ \{i = 3^b + 1\}
```

- **b)** (5 točk) Ali se zgornji program vedno ustavi? Če menite da se ustavi, navedite nenegativno celoštevilsko količino, ki se v zanki while zmanjšuje. Odgovora ni treba utemeljiti.
- (a) Ni nujno, da se pri danih pogojih program vedno ustavi.
- (b) Program se vedno ustavi, ker se zmanjšuje količina _____

c) (15 točk) Implementirajte program iz vprašanja (a) v OCamlu ali v Haskellu kot funkcijo

```
power3plus1 : int -> int
```

ki sprejme nenegativno celo število b in vrne enako vrednost, ki jo določa speficikacija. Funkcija naj ne uporablja zanke while ali for. Za vse točke naj bodo vsi rekurzivni klici repni.

3. naloga (50 točk)

Imamo tehtnico in uteži, kot je prikazano na spodnji sliki. Če želimo stehtati modro kroglo, jo postavimo skupaj z utežmi na tehtnico, tako da je doseženo ravnovesje. Iz prikazane razporeditvene uteži lahko sklepamo, da ima modra krogla maso 1g+16g-4g=13g.

a) (5 točk) V prologu sestavite predikat balance (L, R, B), ki velja natanko tedaj, ko je B bilanca na tehtnici, ker je L seznam uteži na levi strani tehtnice in R seznam uteži na desni. Se pravi, B je razlika skupne mase uteži na desni in skupne mase uteži na levi. Primeri uporabe:

```
?- balance([], [], B).
B = 0.
?- balance([4], [1, 16], B).
B = 13.
?- balance([1, 42], [1, 2, 3], B).
B = -37
```

Namig: prav vam bosta prišla predikat sum/2 iz vaj in predikat sum/3 iz knjižnice clpfd.

b) (15 točk) Sestavite predikat <code>split(Ws, L, R)</code>, ki velja natanko tedaj, ko seznama uteži <code>L</code> in <code>R</code> predstavljata razporeditev uteži na levi in desni strani tehtnice, pri čemer uporabljamo samo uteži s seznama <code>Ws</code>. Na tehtnico lahko postavimo vsako utež iz <code>Ws</code> največ enkrat.

Primeri uporabe:

```
?- split([1], L, R).
L = [1], R = [];
L = [], R = [1];
L = R, R = [].
?- split([1,2,3], L, R).
L = [1, 2, 3], R = [];
L = [1, 2], R = [3];
...
% (skupno 27 odgovorov)
?- split([1,1,3], [3], R).
R = [1, 1];
R = [1];
R = [1];
R = [];
false.
```

Uteži v seznamih L in R vedno naštejemo v enakem vrstnem redu, kot so podane v seznamu Ws. Na primer poizvedba ?- split([1,2,3],L,R) poda rešitev L=[1,2], kot je prikazano v zgornjem primeru, in ne poda rešitve L=[2,1], ker le-ta ne spoštuje vrstnega reda [1,2,3].

c) (10 točk) Sestavite predikat measure (Ws, W), ki velja natanko tedaj, ko lahko z utežmi s seznama Ws stehtamo predmet z maso W. Primera uporabe:

```
?-measure([1,3], W).
                              ?- measure([1,1], W).
                              W = -2 ;
W = -4 ;
W = 2;
                              W = 0;
                              W = -1 ;
W = -1 ;
W = -2 ;
                              W = 0;
W = 4;
                              W = 2;
W = 1;
                              W = 1;
W = -3 ;
                             W = -1 ;
W = 3;
                              W = 1;
W = 0.
                              W = 0.
```

V rešitvi smete uporabiti balance/3 in split/3, tudi če niste rešili podnalog (a) in (b).

d) (10 točk) Sestavite predikat measure_interval (Ws, A, B), ki velja natanko tedaj, ko lahko z utežmi v seznamu Ws stehtamo predmete z masami od A do vključno B. Primeri:

```
?- measure_interval([1,3], 0, 4]).
true.
?- measure_interval([W1,W2,W3], 5, 3).
true.
?- measure_interval([1,2,3], 0, 8).
false.
```

Za čast in slavo pospešite rešitev z uporabo predikata once (Q), ki vrne le prvo rešitev cilja Q.

e) (10 točk) Zapišite poizvedbo, ki poišče nabor štirih uteži z masami 1 do 40, s katerimi lahko tehtamo predmete z masami na intervalu [0, 40].

Poizvedba: