MIPS Datapath Group Project

Jericho Dizon Jose Idrovo Adrian Rodriguez Jiawei Wu

December 9, 2022

2. Verilog Model

The Verilog code we selected is from Zybooks 12.9.1, it is attached in file verilog.v

3. Datapath

We implemented a pipelined datatpath in our verilog code.

4. Memory

Single level memory implementation

5. Simulation

```
Sample MIPS program
```

```
add $s1,$s2,$s3
add $s4,$s1,$s3
j dest
```

Contents of each instruction

r-type instructions

line	opcode[31:26]	rs[25:11]	rt[20:16]	rd[15:11]	shAmt[10:6]	funct[5:0]
1	000000	10010 (s2)	10011 (s3)	10001 (s1)	X	100000
2	000000	10001 (s1)	10011 (s3)	10100 (s4)	Х	100000

i-type instruction

```
line opcode[31:26] address[25:0]
```

3 000010 dest

Verilog Processor Execution: () Cycle 1 (Instruction Fetch):

In cycle 1 of execution, PC, Instruction, and the Add ALU is used

PC: Input: 0, Output = 0

Instruction Memory: Input: 0,

Cycle 2 (Instruction Decode):

In cycle 2 of execution, WriteReg, our Control Unit, Register File, and Sign Extend are used.

Execution

	Cycle 3 (Execution):
	Cycle 4 (Memory):
	Cycle 5 (Write Back):
6.	References
	https://bellerofonte.diism.unisi.it/index.php
	Computer Organization and Design - Interative Version (MIPS)
	FOR REFERENCE AMIGOS:
	Single-level memory is organizing memory with processor and (slow) main memory (DRAM)
	Compare with multilevel memory, which has at least one (quick) cache between the processor
	and main memory.
7.	Contributions
	Jose Idrovo:
	Adrian Rodriguez:
	Jericho Dizon:
	Jiawei Wu: