Quantitative Methods 2

Tutorial 11 Nhan La

MLR assumptions

	Assumption	Violation
MLR1	$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$	Nonlinearity
MLR2	$E(\varepsilon_i x_i)=0$	Omitted variable
MLR3	$\operatorname{Var}(\varepsilon_i x_i) = \sigma^2$	Heteroskedasticity
MLR4	$E(\varepsilon_i \varepsilon_j \big x_i, x_j) = 0$	Autocorrelation
MLR5	No exact linear relationship among x_i	(Perfect) multicollinearity
MLR6	$\varepsilon_i x_i \sim N(0, \sigma^2)$	Unreliable hypothesis testing

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- Multicollinearity
 - Effect of X_i on Y, holding all other X's constant?
- Heteroskedasticity: $Var(\varepsilon_i|x_i) = \sigma_i^2$
- Consequence:
 - $-\hat{\beta}$ are still linear and unbiased
 - $SE(\hat{\beta})$ are incorrect, thus hypothesis tests are incorrect

Violation of MLR5: Multicollinearity

• High R^2 but only a few significant t-ratios with the logical signs

$$- t_k = \frac{\widehat{\beta}_k - 0}{SE(\widehat{\beta}_k)}$$

- $-R^2 \ge 0.8$ (strict); $R^2 \ge 0.5$ (less strict)
- Strong correlation between *X*'s. Stronger correlation between some *X*'s than between these variables and *Y*

$$-|r| > 0.8$$

•
$$VIF_j = \frac{1}{1 - R_j^2} \ge 5$$

	Assumption	Violation
MLR1	$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$	Nonlinearity
MLR2	$E(\varepsilon_i x_i)=0$	Omitted variable
MLR3	$Var(\varepsilon_i x_i) = \sigma^2$	Heteroskedasticity
MLR4	$E(\varepsilon_i \varepsilon_j x_i, x_j) = 0$	Autocorrelation
MLR5	No exact linear relationship among x_i	(Perfect) multicollinearity
MLR6	$\varepsilon_i x_i \sim N(0, \sigma^2)$	Unreliable hypothesis testing

Multiple linear regression

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- General F test
 - General expression: $F = \frac{n-k-1}{m} \frac{SSE_r SSE}{SSE}$
 - Same dependent variable: $F = \frac{n-k-1}{m} \frac{R^2 R_r^2}{1 R^2} = \frac{(R^2 R_r^2)/m}{(1 R^2)/(n k 1)}$
- Conduct the linear restriction test
 - Use EViews' coefficient restriction test, or
 - Estimate separately restricted and unrestricted models

Tutorial 11

Point prediction

$$\hat{y}_0 = \hat{E}(Y|x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_{0,1} + \dots + \hat{\beta}_k x_{0,k}$$

Individual confidence interval prediction

$$- k = 1: s_{\hat{y}_0} = s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

$$- k > 1: s_{\hat{y}_0} \approx s_{\varepsilon}$$

$$- \hat{y}_0 \pm t_{\alpha/2, n-2} s_{\hat{y}_0}$$

• Sub-population (group) confidence interval prediction

$$- k = 1: s_{\hat{E}(y_0)} = s_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} = \sqrt{s_{\hat{y}_0}^2 - s_{\varepsilon}^2} < s_{\hat{y}_0}$$
$$- \hat{y}_0 \pm t_{\alpha/2, n-2} s_{\hat{E}(y_0)}$$

Tutorial 11

- Dummy independent variable models
 - Intercept dummy variable: $y = \beta_0 + \beta_1 X + \beta_2 D + \varepsilon$
 - Slope dummy variable: $y = \beta_0 + \beta_1 X + \beta_2 DX + \varepsilon$
 - Combined dummy variable: $y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 DX + \varepsilon$
- Interpretation
 - Group change instead of incremental change
- Dummy (index) variable trap
 - If a categorical variable consists of k categories, only need to create and include (at most) k-1 dummy variables
 - If include k dummy variables: perfect multicollinearity

Exercise 3d

$$MBAGPA = \beta_0 + \beta_1 UGPA + \beta_2 MBAA + \beta_3 D_1 + \beta_4 D_2 + \beta_5 D_3 + \varepsilon$$

- Base group: BA
- Coefficients β_3 , β_4 and β_5 of D_1 , D_2 and D_3 show the effect on *MBAGPA* of BCom, BEng, and BSc compared with BA, respectively
- For instance, when BA = $1 \Rightarrow D_1 = 0$, $D_2 = 0$, $D_3 = 0$ $MBAGPA = \beta_0 + \beta_1 UGPA + \beta_2 MBAA + \varepsilon$
- When BCom=1 \Rightarrow $D_1 = 1$, $D_2 = 0$, $D_3 = 0$. Also BA = 0 $MBAGPA = \beta_0 + \beta_1 UGPA + \beta_2 MBAA + \beta_3 \times 1 + \varepsilon$
- Hence β_3 represents the difference of effect on MBAGPA between BCom and BA
- What if we want to find effect of BCom (vs. Not BCom)?

$$D_1 = \begin{cases} 1 \text{ if BCom} \\ 0 \text{ if Not BCom} \end{cases}$$

$$MBAGPA = \beta_0 + \beta_1 UGPA + \beta_2 MBAA + \beta_3 D_1 + \varepsilon$$