1 EDA

The rounding in noise_level is weird. (fig1) Fuel_type can be easily classified with other variables. (fig2) There are a lot of linear relations between variables. (fig3)

2 PCA

The covariance matrix (fig 4) is unbalanced so PCA should be done on scaled data.

The distribution of the orthogonal/score distances of the validation set are very similarly distributed as the ones of the train set. (fig 7)

3 clustering

HDBSCAN and hierarchical ward clustering deliver similar results and both find Fuel_type. From the heatmap (fig 11) you can see the distinction between the distribution from cars with different fuel types.

4 linear regression

Because the variables suffer from multicollinearity we chose to for lars with lasso penalty. The lasso penalty means that we penalize the regression for big coefficients you could also think of it as constrainment on the coefficients. The lars part indicates a smart constrained optimization implementation of it.

The model that we chose satisfy all assumptions (fig 14, 15).

Doing an ANOVA with multicollinearity is tricky. We didn't do one but what we would do is clustering the variables and looking to the variance of these clusters.

5 classification

We chose for knn with k = 1 because it has the least complexity and works.

6 figures

Figure 1: weird rounding noise

Figure 2: plt1

Figure 3: plt2

Figure 4: robust covariance

Figure 5: robust correlation

Figure 6: biplot

Figure 7: validation pca

Figure 8: hdbs1

Figure 9: hdbs2

ward.D

Figure 10: ward

Figure 11: heatmap

Figure 12: lars1

Figure 13: lars2

Figure 14: lars3

Figure 15: lars4

Figure 16: knn train

Figure 17: knn validation