

WHAT IS CLAIMED IS:

- 1 1. An optical transceiver comprising: a carrier; a cover
2 couplable to a portion of said carrier to define a transceiver
3 enclosure; an electro-optical assembly supported in said
4 enclosure; and, a coupling mechanism coupled to one of said
5 carrier or said cover, said coupling mechanism cooperating with
6 said cooperating structure on the other of said carrier or said
7 cover for allowing pivoting motion in a controlled path of said
8 cover relative to said carrier between closed and opened
9 conditions relative to said enclosure about a pivoting axis
10 offset from said transceiver.

- 1 2. An optical transceiver comprising: a carrier; a separable
2 cover couplable to cooperating structure of a distal portion of
3 said carrier to define a transceiver enclosure; an electro-
4 optical assembly supported in said enclosure; and, a coupling
5 mechanism coupled to said cooperating structure for allowing
6 pivoting motion in a controlled path of said cover between closed
7 and opened conditions relative to said enclosure about a pivoting
8 axis offset from said transceiver.

- 1 3. The transceiver of claim 2 wherein said coupling mechanism
2 cams said cover to move to the closed condition without
3 interference with upstanding components of said electro-optical
4 assembly.

- 1 4. The transceiver of claim 2 wherein said coupling mechanism
2 cams said cover to move to the closed condition without applying

3 lateral loads to upstanding components of said electro-optical
4 assembly which would be sufficient to force said components from
5 their intended upright positions.

1 5. The transceiver of claim 3 wherein said coupling mechanism
2 positions that at least one of said upstanding components is in a
3 thermally conductive heat transfer relationship to an interior
4 surface of said cover when the latter is in the closed condition.

1 6. The transceiver of claim 2 wherein said coupling mechanism
2 includes a pair of separate and laterally spaced apart coupling
3 elements that project from said cover.

1 7. The transceiver of claim 6 wherein each of said coupling
2 elements has a tapering configuration that is sized and shaped to
3 be slidably received by said cooperating structure for allowing
4 the pivoting motion and to assist in a locking engagement of said
5 cover and said carrier when said cover is in the closed
6 condition.

1 8. The transceiver of claim 7 wherein said cooperating
2 structure includes a pair of elongated slots, each of said slots
3 is in corresponding separate and spaced apart wall of said
4 carrier, each of said slots being sized and shaped for camming
5 corresponding ones of said coupling elements.

1 9. The transceiver of claim 7 wherein said pair of coupling
2 elements straddle and engage opposing longitudinal marginal edges
3 of said electro-optical assembly.

1 10. The transceiver of claim 8 wherein said cover and said
2 carrier are made of a material that provides for EMI shielding.

1 11. The transceiver of claim 10 wherein said pair of coupling
2 elements fit snugly within said slots so as to block said slots
3 to provide for EMI shielding.

1 12. A data transfer system including a wall having an access
2 opening and an adapter card assembly, in combination with an
3 optical transceiver which is mounted to said wall access opening,
4 said optical transceiver comprising: a carrier; a cover
5 couplable to a portion of said carrier to define a transceiver
6 enclosure; an electro-optical assembly supported in the
7 enclosure; and, a coupling mechanism coupled to one of said
8 carrier or said cover, said coupling mechanism cooperating with
9 said cooperating structure on the other of said carrier or said
10 cover for allowing pivoting motion in a controlled path of said
11 cover relative to said carrier between closed and opened
12 conditions relative to said enclosure about a pivoting axis
13 offset from said transceiver.

1 13. A data transfer system including a wall having an access
2 opening and an adapter card assembly, in combination with an
3 optical transceiver which is mounted to said wall access opening,
4 said optical transceiver comprising: a carrier; a separable
5 cover couplable to cooperating structure of a distal portion of
6 said carrier to define a transceiver enclosure; an electro-
7 optical assembly supported in said enclosure, said electro-
8 optical assembly having a distal end protruding from said

9 enclosure and being connectable to said adapter card assembly;
10 and, a coupling mechanism coupled to said cooperating structure
11 for allowing pivoting motion of said cover between closed and
12 opened conditions relative to said enclosure about a pivoting
13 axis offset from said transceiver.

1 14. The system of claim 13 wherein said coupling mechanism cams
2 said cover to move to the closed condition without substantial
3 interference with upstanding components of said electro-optical
4 assembly.

1 15. The system of claim 13 wherein said coupling mechanism cams
2 said cover to move to the closed condition without applying
3 lateral loads to upstanding components of said electro-optical
4 assembly that would be sufficient to damage said components.

1 16. The system of claim 14 wherein said coupling mechanism
2 insures that at least one of said upstanding components is in a
3 thermally conductive heat transfer relationship to an interior
4 surface of said cover when the latter is in the closed condition.

1 17. The system of claim 13 wherein said cooperating structure
2 includes a pair of elongated slots, each of said slots is in
3 corresponding separate and spaced apart wall of said carrier,
4 each of said slots being sized and shaped for camming
5 corresponding ones of said coupling elements.

18. The system of claim 17 wherein said pair of coupling
elements straddle and engage opposing longitudinal marginal edges
of said electro-optical assembly.

1 19. The system of claim 17 wherein said cover and said carrier
2 are made of a material that provides for EMI shielding, such that
3 said pair of coupling elements fit snugly within said slots so as
4 to block said slots to provide for EMI shielding.

1 20. A method of assembling components of an optical transceiver,
2 said method comprising the steps of:

3 providing a carrier;

4 providing a cover joinable together with the carrier to
5 define an enclosure therebetween;

6 providing an electro-optical subassembly substantially
7 within the enclosure and supported by the carrier, wherein
8 the optical subassembly comprises an electro-optical unit;

9 providing a coupling mechanism on one of the carrier or
10 the cover;

11 providing a cooperating structure on the other of the
12 carrier or cover; and,

13 moving the cover to the carrier so that when the
14 coupling mechanism is joined to the cooperating structure the
15 cover pivots in a controlled path between opened and closed
16 conditions about an axis remote from the transceiver whereby
17 interference of the cover and the electro-optical assembly
18 is substantially eliminated.

21. The method of claim 20 wherein said steps of providing a coupling mechanism and cooperating structure includes providing material for each that provides for EMI shielding.