Exercices. Feuille 4

Exercice 1. Soit P un polynôme sur \mathbb{R} . Montrer que si $\alpha \in \mathbb{R}$ est une racine simple de P, alors P change de signe au voisinage de α .

Exercice 2. Soit $P \in \mathbb{R}[X]$, $x \in \mathbb{R}$ et m un entier non nul.

- 1. Montrer que x est racine de P de multiplicité au moins m si et seulement si $P(x) = P'(x) = \cdots = P^{(m)}(x) = 0$.
- 2. Comment caractériser le fait que x est racine de P de multiplicité exactement m?
- 3. Montrer que que tout polynôme réel de degré d est égal au développement de Taylor d'ordre d de P (en tout point).

Exercice 3. (Subtil) Soit $P \in \mathbb{R}[X]$ un polynôme de degré au moins 2. Montrer que si P est scindé (sur \mathbb{R}), alors P' est aussi scindé (sur \mathbb{R}) et de plus toutes les racines de P' sont comprises (au sens large) entre la plus petite et la plus grande des racines de P.

Exercice 4. Montrer qu'un polynôme scindé simple sur \mathbb{R} ne peut pas avoir deux coefficients consécutifs nuls.

Exercice 5. Montrer que les fonctions trigonométriques ne sont pas des fonctions polynomiales (et ce, sur aucun intervalle de \mathbb{R}). Idem pour exp.

Exercice 6. Examen 2013

- 1. Montrer que $X^{4n} 1$ est divisible par $X^4 1$ pour tout entier $n \ge 1$.
- 2. Soit a, b, c, d des entiers. Montrer que

$$X^{4a+3} + X^{4b+2} + X^{4c+1} + X^{4d} = X^3 + X^2 + X + 1 + (X^4 - 1)Q(X)$$

pour un certain polynôme Q.

3. En déduire que $X^{4a+3} + X^{4b+2} + X^{4c+1} + X^{4d}$ est divisible par $X^3 + X^2 + X + 1$.

Exercice 7. Théorème de Stone-Weierstrass Soit $f:[0,1] \to \mathbb{R}$ continue.

On pose, pour $x \in [0,1]$, $n \in \mathbb{N}$ et $k \leq n : P_{n,k}(x) = \binom{n}{k} x^{\overline{k}} (1-x)^{n-k}$. Puis on définit, pour $x \in [0,1]$, et $n \in \mathbb{N} : g_n(x) = \sum_{k=0}^n P_{n,k}(x) f\left(\frac{k}{n}\right)$. Il s'agit de montrer que $\lim_{n \to \infty} \|f - g_n\|_{\infty} = 0$.

- 1. Montrer que pour tout $\varepsilon > 0$, il existe un réel positif M tel que : $\forall x, y \in [0, 1], |f(x) f(y)| \le \varepsilon + M(x y)^2$.
- 2. Montrer que pour tous $x \in [0,1], n \in \mathbb{N}, k \leq n$:
 - $-P_{n,k}(x) \ge 0$ $-\sum_{k=0}^{n} P_{n,k}(x) = 1$ $-\sum_{k=0}^{n} P_{n,k} \left(x - \frac{k}{n}\right)^{2} \le \frac{1}{4n}.$
- 3. Démontrer le théorème.