

31st International Conference on **Neural Information Processing**

December 2-6, 2024 · Auckland, New Zealand iconip2024.org

Towards Private and Fair Machine Learning: Group-Specific Differentially Private Stochastic Gradient Descent with Threshold Optimization

Zhi Yang, CSE, SUSTech, Shenzhen, China

Changwu Huang, CSE, SUSTech, Shenzhen, China

Xin Yao, School of Data Science, Lingnan University, Hong Kong, China

Outline

1. Introduction

2. Related Work

3. Methodology

4. Experimental Study

5. Conclusion

Emphasize the importance of data privacy protection.

Technique

- Differential Privacy
- Homomorphic Encryption
- Federated Learning

• • • • • •

《GDPR》

➤ Differential Privacy (DP) has emerged as the predominant choice for ensuring data privacy^[1].

《ECOA》

Explicitly prohibits discrimination based on protected traits.

Existing ML algorithms exhibit varying degrees of discrimination in their decisions.

- Demographic Parity
- Accuracy Parity

Fairness-aware ML methods

- Pre-process
- In-process
- Post-process

December 2-6, 2024 · Auckland, New Zealand, iconip2024.01

 From both ethical and legal perspectives, fairness and privacy are two crucial aspects for the development of ML/AI.

They are interrelated research issues rather than isolated challenges.

- Combining privacy and fairness poses challenges in two main categories: addressing amplified unfairness due to DP and achieving outcome fairness in the ML model.
- However, current methods often address the two objectives in isolation, overlooking their combined impact.
- To bridge this gap, we introduce a group-specific DP stochastic gradient descent (DP-SGD) training mechanism with classification threshold optimization, which concurrently addressing accuracy and outcome fairness issues in differentially private models.

2.Related Work

Fairness measurements:

• Demographic Parity (DemParity) [2]:

$$|P(\hat{y} = 1|s = s_a) - P(\hat{y} = 1|s = s_b)| \le \theta$$

• Accuracy Parity (AccParity) [3]:

$$|P(\hat{y} = y|s = s_a) - P(\hat{y} = y|s = s_b)| \le \theta$$

2.Related Work

Differentially Private Stochastic Gradient Descent (DP-SGD)^[4]:

Algorithm 1 DP-SGD

Input: Training dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, the parameterized model $f_w(\cdot)$, loss function $\ell(\hat{y}, y)$ for prediction \hat{y} and label y, iterations T, batch size b, learning rate η , noise scale σ , gradient norm bound C.

- 1: Initialize $w^{(0)}$ randomly.
- 2: **for** t = 0, 1, ..., T 1 **do**
- 3: Sample a batch $B^{(t)}$ from D with sampling probability b/N for each data point.
- 4: for $i \in B^{(t)}$ do
- 5: $g_i \leftarrow \nabla \ell(f_{w(t)}(\mathbf{x}_i), y_i)$
- 6: $\bar{g}_i \leftarrow g_i \cdot min(1, \frac{C}{\|g_i\|_2})$
- 7: end for
- 8: $\tilde{g} \leftarrow \frac{1}{b} \left(\sum_{i \in B^{(t)}} \bar{g}_i + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$
- 9: $w^{(t+1)} \leftarrow w^{(t)} \eta \tilde{g}$
- 10: end for

Output: Model $f_{w^{(T)}}(\cdot)$ and accumulated (ϵ, δ) .

$$\vec{g} \leftarrow \frac{1}{b} \left(\sum_{i \in B^{(t)}} \bar{g}_i + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$$

2.Related Work

- Mitigating the unfairness amplified by DP. Recent studies have found that incorporating DP into models can increase AccParity measurement between sensitive groups^[3, 5-6]. Various efforts have been made to address this issue^[6, 7].
- Achieving outcome fairness in differentially private models. Several works study how to achieve outcome fairness using fairness-aware learning when enforcing DP in the private model^[8, 9].

3. Methodology

• We introduce GS-DP-SGD, a group-specific training strategy for DP-SGD that aims to alleviate the accuracy discrepancy exacerbated by DP-SGD.

3. Methodology

• To mitigate the outcome unfairness of the private model trained by GS-DP-SGD, we incorporate a post-processing method called reject option based classification (ROC)^[10].

Algorithm 4 Threshold Optimization based Classification (TOC)

Input: Validation dataset $D_{valid} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{M}$, fairness constraint θ , model $f_{w^{(T)}}$.

1: for $\gamma \in linspace(0.5, 1, 100)$ do

2: for $\mathbf{x}_i \in D_{valid}$ do

3: $\hat{y}_i = \text{ROC}(f_{w^{(T)}}(\cdot), \gamma, \mathbf{x}_i)$

4: end for

5: $m_{\gamma} = |P(\hat{y} = 1|s = s_a) - P(\hat{y} = 1|s = s_b)|$

6: if $m_{\gamma} \leq \theta$ then Return γ

7: end for

8: **Return** the γ that has minimal m_{γ}

Output: The threshold γ .

3. Methodology

 Overall, we implement GS-DP-SGD with Threshold Optimization (referred to as GS-DP-SGD-TO) to address both the exacerbated accuracy disparity (i.e., AccParity) and the outcome fairness (i.e., DemParity) issues.

Algorithm 5 GS-DP-SGD-TO

Input: Training dataset D_{train} , validation dataset D_{valid} , the parameterized model $f_w(\cdot)$, loss function $\ell(\cdot,\cdot)$, iterations T, batch size b, learning rate η , noise scale σ , gradient norm bound C, fairness constraint θ .

1: $f_{w(T)}$, $(\epsilon, \delta) = \text{GD-DP-SGD}(D_{train}, f(\cdot), \ell(\cdot, \cdot), T, b, \eta, \sigma, C)$

2: $\gamma = \text{TOC}(D_{valid}, \theta, f_{w^{(T)}})$

Output: The ROC model ROC $(f_{w^{(T)}}, \gamma, \cdot)$ and the accumulated (ϵ, δ) .

Experimental Setup:

- *Datasets:* Six commonly used binary classification datasets relevant to fairness research: Adult, Dutch, Bank, Credit, Compas, and Law.
- Comparison Methods: Methods aiming to reduce accuracy disparity: DP-SGD-F^[6], DP-SGD-A^[7], and GS-DP-SGD. Methods aiming to achieve fairness in model decisions: FairDP^[8] and DP-SGD-P^[9].
- Model: MLP with two hidden layers of 256 units each, a maximum of 20 iterations.
- Evaluation Metrics: Two common group fairness metrics: Accuracy Parity (AccParity) and Demographic Parity (DemParity).

■Compare with methods of alleviating the accuracy unfairness intensified by DP.

						_					
Dataset	Method	ϵ	$\mathbf{Acc}\ (\uparrow)$	$\mathbf{AccParity}\ (\downarrow)$	$\mathbf{DemParity}\ (\downarrow)$		SGD		0.898 ± 0.004	0.160 ± 0.014	0.190 ± 0.018
Adult	SGD		0.848 ± 0.003	0.114 ± 0.008	0.191 ± 0.007	Law	DP-SGD	3.671	0.888 ± 0.004	0.202 ± 0.015	0.000 ± 0.000
	DP- SGD	2.654	0.789 ± 0.005	0.154 ± 0.010	0.064 ± 0.005		DP-SGD-F	3.694	0.888 ± 0.004	0.202 ± 0.015	0.001 ± 0.001
	DP- SGD - F	2.667	0.829 ± 0.003	$\overline{0.112 \pm 0.008}$	0.210 ± 0.005		DP-SGD-A	3.683	0.898 ± 0.004	0.158 ± 0.015	0.182 ± 0.017
	DP-SGD-A	2.661	0.848 ± 0.003	0.114 ± 0.007	0.191 ± 0.010		GS-DP-SGD	3.679	0.895 ± 0.004	0.163 ± 0.021	0.139 ± 0.053
	GS-DP-SGD	2.657	0.832 ± 0.005	0.116 ± 0.010	0.199 ± 0.057		GS-DP-SGD-TO	3.679	0.894 ± 0.004	0.176 ± 0.017	0.049 ± 0.024
	GS-DP-SGD-TO	2.658	0.837 ± 0.005	0.108 ± 0.015	0.047 ± 0.015		SGD		0.900 ± 0.003	0.036 ± 0.007	0.035 ± 0.004
Dutch	SGD		0.834 ± 0.003	0.070 ± 0.006	0.335 ± 0.016	Bank	DP-SGD	2.831	0.884 ± 0.004	0.050 ± 0.007 0.050 ± 0.006	0.003 ± 0.004 0.002 ± 0.001
	DP-SGD	2.269	0.793 ± 0.005	0.070 ± 0.000 0.111 ± 0.011	0.333 ± 0.010 0.231 ± 0.033		DP-SGD-F	2.845	0.887 ± 0.004	$\frac{0.030 \pm 0.000}{0.047 \pm 0.007}$	0.002 ± 0.001 0.007 ± 0.003
	DP-SGD-F	2.280	0.812 ± 0.005	$\frac{0.111 \pm 0.011}{0.092 \pm 0.008}$	0.231 ± 0.033 0.232 ± 0.024		DP-SGD-A	2.838	0.902 ± 0.003	0.036 ± 0.006	0.007 ± 0.005 0.037 ± 0.005
	DP-SGD-A	2.275	0.834 ± 0.004	0.069 ± 0.006	0.332 ± 0.021 0.332 ± 0.017		GS-DP-SGD	$\frac{2.836}{2.837}$	0.888 ± 0.005	0.030 ± 0.000 0.043 ± 0.013	0.037 ± 0.003 0.048 ± 0.031
	GS-DP-SGD	$\frac{2.213}{2.267}$	0.805 ± 0.001	0.081 ± 0.005	0.208 ± 0.064						
	GS-DP-SGD-TO	2.267	0.786 ± 0.006	0.070 ± 0.026	0.052 ± 0.020		GS-DP-SGD-TO	2.837	0.901 ± 0.004	0.037 ± 0.008	0.026 ± 0.013
		2.201				_	SGD		0.812 ± 0.004	0.024 ± 0.010	0.030 ± 0.006
Compas	SGD		0.673 ± 0.014	0.027 ± 0.015	0.291 ± 0.021	Credit	DP-SGD	3.365	0.778 ± 0.005	0.031 ± 0.008	0.000 ± 0.000
	DP-SGD	4.118	0.623 ± 0.025	0.041 ± 0.022	0.170 ± 0.057		DP-SGD-F	3.381	0.779 ± 0.006	0.029 ± 0.008	0.005 ± 0.006
	DP-SGD-F	4.204	0.632 ± 0.021	0.035 ± 0.019	0.184 ± 0.044		DP-SGD-A	3.373	0.817 ± 0.005	0.023 ± 0.011	0.033 ± 0.007
	DP-SGD-A	4.161	0.678 ± 0.013	0.024 ± 0.016	0.281 ± 0.020		GS-DP-SGD	3.366	0.809 ± 0.004	0.031 ± 0.013	0.035 ± 0.023
	GS-DP-SGD	4.113	0.676 ± 0.011	0.024 ± 0.020	0.287 ± 0.037		GS-DP-SGD-TO	3.366	0.821 ± 0.006	0.026 ± 0.009	0.020 ± 0.009
	GS-DP-SGD-TO	4.113	0.668 ± 0.010	0.029 ± 0.017	0.073 ± 0.060		GD-D1-5GD-10	5.500	0.021 ± 0.000	0.020 ± 0.003	0.020 ± 0.003

■Compare with methods of mitigating outcome unfairness for differentially private models.

GS-DP-SGD-TO reliably and effectively reduces the AccParity value.

■Compare with methods of mitigating outcome unfairness for differentially private models.

GS-DP-SGD-TO achieves the highest accuracy at the same DemParity value.

5. Conclusion

• Our approach uses group-specific DP-SGD during training to reduce accuracy disparity, followed by threshold optimization to improve outcome fairness.

• Extensive experiments confirm its effectiveness across datasets, balancing AccParity and DemParity with reasonable utility.

5.Conclusion

■Limits:

 The outcome fairness metric may exceed the predefined constraint due to threshold selection based on the validation set.

• It currently applies only to binary classification tasks and single sensitive attributes.

31st International Conference on Neural Information Processing

December 2-6, 2024 · Auckland, New Zealand iconip2024.org

Thank you!

References

December 2-6, 2024 · Auckland, New Zealand iconip2024.ord

- [1] Sanyal, A., Hu, Y., Yang, F.: How unfair is private learning? In: Uncertainty in Artificial Intelligence. pp. 1738–1748. PMLR (2022)
- [2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)
- [3] Bagdasaryan, E., Poursaeed, O., Shmatikov, V.: Differential privacy has disparate impact on model accuracy. Advances in neural information processing systems 32 (2019)
- [4] Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308–318 (2016)
- [5] Tran, C., Dinh, M., Fioretto, F.: Differentially private empirical risk minimization under the fairness lens. Advances in Neural Information Processing Systems 34, 27555–27565 (2021)
- [6] Xu, D., Du, W., Wu, X.: Removing disparate impact on model accuracy in differentially private stochastic gradient descent. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1924–1932 (2021)
- [7] Esipova, M.S., Ghomi, A.A., Luo, Y., Cresswell, J.C.: Disparate impact in differential privacy from gradient misalignment. arXiv preprint arXiv:2206.07737 (2022)
- [8] Tran, K., Fioretto, F., Khalil, I., Thai, M.T., Phan, N.: Fairdp: Certified fairness with differential privacy. arXiv preprint arXiv:2305.16474 (2023)
- [9] Pannekoek, M., Spigler, G.: Investigating trade-offs in utility, fairness and differential privacy in neural networks. arXiv preprint arXiv:2102.05975 (2021)
- [10] Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: 2012 IEEE 12th international conference on data mining. pp. 924–929. IEEE (2012)

