3.8. Antroji norminė forma

Atributai B visiškai priklauso nuo atributų A FP aibės F atžvilgiu, jei B - f-priklauso nuo visos aibės A, bet nėra f-priklausantys nei nuo jokio aibės A poaibio, t.y.

$$A \to B \in F^+ \Rightarrow \forall C \subset A : C \to B \notin F^+$$

L(R) atributas a ($a \in R$) - **pirminis** FP aibės F atžvilgiu, jei a priklauso L raktui, kitaip, a - nepirminis atributas.

Projektaj Vykdymas

1 rojekiai_v ykaymas							
Projektas	Pavadinimas	Svarba	Trukmė	Vykdytojas	• • •		
1	Studentų apskaita	Maža	12	1			
1	Studentų apskaita	Maža	12	2			
1	Studentų apskaita	Maža	12	3			
1	Studentų apskaita	Maža	12	4			
2	Buhalterinė apskaita	Vidutinė	10	1			
2	Buhalterinė apskaita	Vidutinė	10	2			
2	Buhalterinė apskaita	Vidutinė	10	4			
3	WWW svetainė	Didelė	6	1			
3	WWW svetainė	Didelė	6	2			
3	WWW svetainė	Didelė	6	3			

Projektai ir Vykdymas yra 2NF.

Projektai (Projektas, Pavadinimas, Svarba, Trukmė, Pradžia)

 $Projektas \rightarrow \{Pavadinimas, Svarba, Trukmė, Pradžia\}$

Vykdymas (*Projektas*, *Vykdytojas*, *Statusas*, *Valandos*) $\{Projektas, Vykdytojas\} \rightarrow \{Statusas, Valandos\}$

Lentelės skaidymas į kelias lenteles, esančias 2NF:

- 1) kuriama nauja lentelė, kurios atributais yra pradinės lentelės atributai, ieinantys i FP tarp nepirminių atributų (atributo) ir rakto dalies. Šios FP determinantas - naujos lentelės raktas;
- 2) FP dešinėje esantys atributai pašalinami iš pradinės lentelės;
- 3) žingsnius 1 ir 2 kartoti kiekvienam tokiai FP.

L(R) yra 2NF F atžvilgiu,

jei ji yra 1NF ir visi nepirminiai atributai visiškai priklauso nuo kiekvieno L rakto.

DB yra 2NF FP aibės F atžvilgiu tada ir tik tada, kai visos lentelės yra 2NF atžvilgiu F.

Projektai_Vykdymas (<u>Projektas</u>, Pavadinimas, Svarba, Trukmė, Pradžia, *Vykdytojas, Statusas, Valandos*)

Projektas→ {*Pavadinimas*, *Svarba*, *Trukmė*, *Pradžia*} $\{Projektas, Vykdytojas\} \rightarrow \{Statusas, Valandos\}$

{*Projektas, Vykdytojas*} - lentelės raktas Projektas, Vykdytojas - pirminiai atributai

Nepirminiai Pavadinimas, Svarba, Trukmė, Pradžia nevisiškai f-priklauso nuo rakto, jie f-priklauso tik nuo Projektas

⇒ *Projektai_Vykdymas* nėra 2NF.

2NF sumažina duomenų perteklių ir pašalina anomalijas.

Darbas su 2 lentelėmis yra sudėtingesnis, nei su 1.

Tačiau:

- duomenų paieškose galima jungti kelias lenteles
- SOL leidžia apibrėžti virtualiasias lenteles, apjungiančias kelias lenteles.

Schematiškai lentelę, nesančią 2NF, galima pavaizduoti taip:

 $L(\underline{A}, \underline{B}, C, D)$, kurioje galioja: $AB \to CD$ ir $A \to D$ D f-priklauso nuo rakto dalies A.

L skaidome i dvi: $L_1(A, B, C)$ ir $L_2(A, D)$.

 L_1 galioja FP $AB \rightarrow C$,

 L_2 galioja FP $A \rightarrow D$.

 L_1 turi išorinį raktą A, nukreipiantį į L_2 .

Suskaidydami lentelę, nepraradome savybių, nes $AB \rightarrow CD$ yra išvedama iš $AB \rightarrow C$ ir $A \rightarrow D$

Lentelė, nesanti 2NF, mažiausiai turi 3 stulpelius:

T(A, B, C), kurioje galioja FP: $AB \rightarrow C$ ir $A \rightarrow C$

T skaidome i dvi: $T_1(A, B)$ ir $T_2(A, C)$.

 T_1 galioja tik triviali FP $AB \rightarrow AB$,

 T_2 galioja FP $A \rightarrow C$.

 T_1 turi išorinį raktą A, nukreipiantį į L_2 .

Suskaidydami lentelę, nepraradome savybių, nes

 $AB \rightarrow C$ yra išvedama iš $A \rightarrow C$, papildant determinanta stulpeliu B.

Hezo (I.J. Heath) teorema. Tarkime, lentelėje L(A, B, C) galioja $A \to B$ arba $A \to C$, kur A, B ir C – lentelės atributų aibės poaibiai. Tuomet lentelę L galima gauti jungiant jos projekcijas $L_1(A, B)$ ir $L_2(A, C)$.

Irodymas. **Tarkime**, $A \rightarrow B$ arba $A \rightarrow C$ if $L \neq L_1 \bowtie L_2$. Jei L_1 ir L_2 yra L projekcijos, tai $L \subseteq L_1 \bowtie L_2$ Jei $L \neq L_1 \bowtie L_2$, tai $\langle a, b, c \rangle \in L_1 \bowtie L_2$, kurios **nėra** L. Jei $\langle a, b, c \rangle \in L_1 \bowtie L_2$, tai $\langle a, b \rangle \in L_1$ ir $\langle a, c \rangle \in L_2$. Vadinasi, $\langle a, b, c' \rangle \in L$ ir $\langle a, b', c \rangle \in L$, kuriose $b' \neq b$ ir $c' \neq c$. Todėl, negalioja nei $A \rightarrow B$ nei $A \rightarrow C$. **Prieštara**.

Atvirkščias teiginys nėra teisingas:

tai, kad $\pi_{AB}(L)$ ir $\pi_{AC}(L)$ yra L skaidymas be praradimo **nereiškia**, kad $A \rightarrow B$ arba $A \rightarrow C$

L			L_{I}		L_2	
\boldsymbol{A}	В	C	A	В	\boldsymbol{A}	\boldsymbol{C}
a	b	С	a	b	a	c
a	b'	С	a	b'	a	c'
a	b	c'				
a	b'	c'				

 $L_1 = \pi_{AB}(L)$, $L_2 = \pi_{AC}(L)$ ir $L = L_1 \bowtie L_2$,

bet negalioja $A \rightarrow B$, $A \rightarrow C$.

Pvz., lentele

Projektai_Vykdymas(<u>Projektas</u>, Pavadinimas, Svarba, Trukmė, Pradžia, Vykdytojas, Statusas, Valandos)

išskaidykime kitaip:

Projektai Vykdymas1(Projektas, Pavadinimas,

Svarba, Trukmė, Pradžia, Vykdytojas)

Projektai Vykdymas2(Vykdytojas, Statusas, Valandos)

Skaidymas (dekompozicija) išsaugant FP –

lentelės skaidymas, kai neprarandamos jokios FP.

Skaidymas (dekompozicija) be praradimo –

lentelės skaidymas, kai jungiant naujasias lenteles gaunami pradinės lentelės duomenys.

Skaidant lentele L(A,B,C) i $L_1(A,B)$ ir $L_2(A,C)$ duomenys yra neprarandami, jeigu L(A,B,C)duomenis visada galima gauti jungiant L_1 ir L_2 :

SELECT A, B, C FROM L_1 , L_2 WHERE $L_1.A = L_2.A$

Jei L(A, B, C) galioja $A \rightarrow B$ arba $A \rightarrow C$,

tai jungiant L skaidini: $L_1(A, B)$ ir $L_2(A, C)$ per bendra stulpelį A, gaunami L duomenys, t. y.

SELECT A, B, C **FROM** L_1 , L_2

WHERE $L_1.A = L_2.A$

rezultatas sutaps su L.

Formaliai: $L = \pi_{AB}(L) \bowtie \pi_{AC}(L) = L_1 \bowtie L_2$.

Kitaip tariant,

Jei $A \rightarrow B$ arba $A \rightarrow C$,

tai $\pi_{AB}(L)$ ir $\pi_{AC}(L)$ yra L skaidymas be praradimo.

Projektai_Vykdymas (Projektas, Pavadinimas,

Svarba, Trukmė, Pradžia, *Vykdytojas, Statusas, Valandos*)

skaidant i

Projektai (Projektas, Pavadinimas, Svarba, Trukmė, Pradžia)

Vykdymas (*Projektas*, *Vykdytojas*, *Statusas*, *Valandos*)

išsaugomos FP ir neprarandami duomenys, nes *Projektai* sudaryta pagal Hezo teorema, naudojant FP:

Projektas→{*Pavadinimas*, *Svarba*, *Trukmė*, *Pradžia*}

Projektai_Vykdymas

Projektas Pavadinimas Svarba Trukmė Vykdytojas ... Studentų apskaita Maža 12 1 1 1 Studentų apskaita Maža 12 2 1 Maža 12 3 Studentų apskaita 1 Studentų apskaita Maža 12 4 2 Buhalterinė apskaita Vidutinė 10 1 2 10 2 Buhalterinė apskaita Vidutinė 2 Buhalterinė apskaita Vidutinė 10 4 3 WWW svetainė Didelė 1 6 3 WWW svetainė 2 Didelė 6 WWW svetainė Didelė

Projektai Vykdymas1

Projektas	Pavadinimas	Svarba	Trukmė	Vykdytojas
1	Studentų apskaita	Maža	12	1
1	Studentų apskaita	Maža	12	2
1	Studentų apskaita	Maža	12	3
1	Studentų apskaita	Maža	12	4
2	Buhalterinė apskaita	Vidutinė	10	1
2	Buhalterinė apskaita	Vidutinė	10	2
2	Buhalterinė apskaita	Vidutinė	10	4
3	WWW svetainė	Didelė	6	1
3	WWW svetainė	Didelė	6	2
3	WWW svetainė	Didelė	6	3

Lentelei *Projektai_Vykdymas2*

negalima nustatyti rakto ir prarandame dalį informacijos.

Lentelės Projektai_Vykdymas skaidinio Projektai_Vykdymas1 ir Projektai_Vykdymas2 junginį Projektai_Vykdymas1 ⋈ Projektai_Vykdymas2 sudaro 26 eilutės, nors pradinėje lentelėje tėra 10.

Iš junginio ⇒ vykdytojas Nr. 2 projektą Nr. 1 vykdo: ir dokumentuotojo, ir analitiko, ir vadovo statusuose - **netiesa**. Be to, taip skaidydami **praradome FP** {*Projektas,Vykdytojas*} → {*Statusas,Valandos*}

Vykdytojai_AM (<u>Nr</u>, Pavardė, Kvalifikacija, Kategorija, Išsilavinimas, AM_Adresas)

15511av11111a5, 7111 <u>7</u> 1a7e5a5)						
Nr	Pavardė		Išsilavinimas	AM_Adresas		
1	Jonaitis		VU	Universiteto 3, Vilnius		
2	Petraitis		VU	Universiteto 3, Vilnius		
3	Gražulytė		NULL	NULL		
4	Onaitytė		VDU	Donelaičio 58, Kaunas		
5	Antanaitis		VU	Universiteto 3, Vilnius		

Nr - vienintelis lentelės raktas. Lentelėje **galioja FP**:

 $Nr \rightarrow \{Pavarde, Kvalifikacija, Kategorija, Išsilavinimas, AM_Adresas\}$

Išsilavinimas $\rightarrow AM_Adresas$

Lentelės raktas tik iš vieno atributo ⇒ ji yra 2NF.

Lentelės *Vykdytojai_AM* blogybės išnyksta, suskaidžius ja į lenteles:

 $\label{eq:continuous} Vykdytojai \ \ \text{ir} \ \ AM_Adresai(\underline{Pavadinimas}, Adresas)$

Išorinis raktas: Vykdytojai. Išsilavinimas nukreipia i

AM_Adresai

11111_11a1 coat	
Pavadinimas	Adresas
VU	Universiteto 3, Vilnius
VDU	Kaunas

Vykdytojai ir *AM_Adresai* yra 3NF.

3NF sumažino duomenų perteklių ir panaikino anomalijas.

Projektai_Vykdymas2

Vykdytojas		Valandos
1	Programuotojas	30
2	Dokumentuotojas	100
3	Testuotojas	100
4	Vadovas	100
1	Programuotojas	300
2	Analitikas	250
4	Vadovas	100
1	Programuotojas	250
2	Vadovas	400
3	Dizaineris	150

3.9. Trečioji norminė forma

L(R) atributų aibės R poaibis C ($C \subset R$) **tranzityviai priklauso** nuo atributų aibės A FP aibės F atžvilgiu, jei egzistuoja toks atributų aibės R poaibis B, kad A fapibrėžia B, bet **neatvirkščiai**, bei B f-apibrėžia C FP aibės F atžvilgiu, t.y. $\exists B \subset R$:

$$A \to B \in F^+, B \to A \notin F^+, B \to C \in F^+ \text{ ir } C \not\subset A \cup B$$

L(R) yra **3NF** FP aibės F atžvilgiu, jei ji yra 1NF ir nėra nepirminių atributų, tranzityviai priklausančių nuo rakto.

DB yra 3NF FP aibės *F* atžvilgiu tada ir tik tada, kai visos jos lentelės yra 3NF *F* atžvilgiu.

Tačiau, jai yra būdingas duomenų perteklius.

Lentelėje Vykdytojai_AM galioja FP

 $Nr \rightarrow I\check{s}silavinimas$,

kuri nėra apverčiama, t.y. negalioja

 $I\check{s}silavinimas \rightarrow Nr$,

be to *Išsilavinimas* f-apibrėžia *AM_Adresas*

- ⇒ šioje lentelėje nepirminis atributas *AM_Adresas* tranzityviai priklauso nuo rakto *Nr*
- ⇒ lentelė *Vykdytojai_AM* nėra 3NF.

Schematiškai: tarkime, $L(\underline{A}, B, C)$ - galioja:

$$A \rightarrow B$$
, $B \rightarrow C$, ir negalioja $B \rightarrow A$

t.y. L nėra 3NF.

L skaidome į dvi: $L_1(\underline{A}, B)$ ir $L_2(\underline{B}, C)$.

 $L_1:A\to B$

 $L_2: B \to C$

 $L_1.B - L_1$ išorinis raktas į L_2

Heath teorema užtikrina, kad neprarandami duomenys.

Be to, išsaugomos FP

$${A \rightarrow B, B \rightarrow C} \equiv {A \rightarrow BC, B \rightarrow C}$$

22-30

24-30

<u>Teorema</u>. Lentelė, esanti 3NF FP aibės F atžvilgiu, yra ir 2NF F atžvilgiu.

Irodymas. **Tarkime**, L(R) yra 3NF, bet nėra 2NF FP aibės F atžvilgiu. Tuomet $\exists a \in R : a$ - nepirminis ir a f-priklauso nuo kurio nors rakto K dalies $K', K' \subset K \subseteq R$. Tai reiškia, kad $K' \to a \in F^+, K \to K' \in F^+$ ir $K' \to K \notin F^+$, nes kitaip K' būtų L raktas, o ne K. Be to, $a \notin K$, kadangi K – raktas ir a - nepirminis.

Turime: $K \rightarrow K'$, ne $K' \rightarrow K$, $K' \rightarrow a$ bei $a \notin K$ ir juo labiau $a \notin K'$, t.y. $a \notin K \cup K'$. Tokiu būdu, nepirminis a tranzityviai priklauso nuo rakto $K \Rightarrow L(R)$ nėra 3NF - **prieštara** prielaidai.

Tarkime $L(\underline{A}, B, C)$ - lentelė, kurioje galioja FP

$$A \to B$$
 in $B \to C$

Tuomet L skaidome i dvi: $L_1(\underline{A}, B)$ ir $L_2(\underline{B}, C)$.

Pagal Hezo teoremą galimas ir toks **skaidinys**:

 $L_3(\underline{A}, B)$, kurioje $A \to B$ $L_4(A, C)$, kurioje $A \to C$

Pagal Hezo teoremą, tai dekompozicija **be praradimo**, bet šis skaidymas **neišsaugo FP**, nes

 $B \to C$ neišvedama iš $A \to B$, $A \to C$

⇒ taip nedera skaidyti.

<u>Algoritmas</u> sudaryti 3NF lenteles FP aibės *F* atžvilgiu.

 $G := F_{\min};$

i := 0;

 $\quad \text{for each } X: \exists (X \to Y) \in G$

 $R := \varnothing$:

for each $Y: \exists (X \rightarrow Y) \in G$

 $R := R \cup Y$;

endfor

i := i + 1;

Į DB reliacinę schemą įtraukti $L_i(\underline{X}, R)$;

endfor

Lentelių skaičius – determinantų skaičius aibėje F_{\min}

Dalinė priklausomybė reiškia ir tranzityviąją.

Jei lentelė nėra 2F, tai joje egzistuoja nepirminis atributas, tranzityviai priklausantis nuo rakto.

Tarkime, $L(\underline{A}, \underline{B}, C)$ galioja: $AB \to C$ ir $A \to C$. $\Rightarrow L$ nėra 2NF.

 ${\cal C}$ tranzityviai priklauso nuo rakto AB

 $\Rightarrow L$ nėra 3NF:

Galioja: $AB \rightarrow A, A \rightarrow C$

Negalioja: $A \rightarrow AB$, $C \subset AB$

Skaidymas gali būti teisingas, bet neefektyvus:

 $L(\underline{A}, B, C, D) : FP : A \to B, B \to C, B \to D$

arba : $A \rightarrow B$, $B \nrightarrow CD$ – nėra 3NF

Naikinam *CD* **tranzityvumą** nuo rakto *A*:

 $L_1(\underline{A}, B)$ ir $L_2(\underline{B}, C, D)$

Jei iš pradžių likviduojame vieną (*C*) tranzityvumą, o po to kitą, tai gauname 3 lenteles:

 $L_1(\underline{A}, B), L_3(\underline{B}, C) \text{ in } L_4(\underline{B}, D)$

Abu skaidymai yra be praradimo ir išsaugo FP.

1-asis – efektyvesnis, nes reikalauja mažiau atminties.

Pvz.: L(A, B, C, D)

 $F: A \rightarrow B, B \rightarrow C, B \rightarrow D$

F – minimalioji aibė

 $F_{\min} = F$

Aibėje F_{\min} yra 2 skirtingi determinantai (A ir B). Išorinį ciklą atliekame 2 kartus.

1-as X := A, vykdome **vidinį ciklą 1 kartą**, gauname $L_1(\underline{A}, B)$.

2-as X := B, vidinį – 2 kartus (Y := C, Y := D)gauname $L_2(\underline{B}, C, D)$