EJERCICIOS - CAPÍTULO 3 DE INGENIERÍA ECONÓMICA

Grupo 10:

Valentina Cangrejo Sanabria – 20181025122 Carlos Andrés Martínez Quiñones - 20172007044

PRESENTADO A:

Abel Antonio Navarrete

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS FACULTAD DE INGENIERÍA INGENIERÍA ECONÓMICA BOGOTA D.C. 2020

- 1. Se constituye un CDT a 180 días por \$650 000, con una tasa del 26% natv (nominal anual trimestre vencido) y teniendo en cuenta que la retención en la fuente es del 7% EA (anual efectiva) determinar:
 - a. La tasa de interés (rentabilidad) antes de impuestos.
 - b. La tasa de interés (rentabilidad) después de impuestos.
 - c. El valor en pesos que le entregan al vencimiento.
 - d. Suponiendo una inflación del 18% anual efectiva, determinar la tasa real obtenida.

3. Diagrama de flujo de caja

4. Declaración de fórmulas

F = P (1 + i) n Valor Futuro
j=im Tasa nominal anualizada
(1 + i1)m1 = (1 + i2)m2 Equivalencia de tasas
RF=7% EA Retención en la fuente
I=F-P Monto del interés
F neto= F-R Valor futuro neto
1+f Tasa de interés Real

5. Desarrollo matemático

a) La tasa de interés (rentabilidad) antes de impuestos.

$$(1 + i_1)^{m1} = (1 + i_2)^{m2}$$
$$(1 + 0,065)^4 = (1 + i_2)^1$$
$$i_2 = 1,286466-1$$

$$i_2 = 0,286466$$

 $i_2 = 28,647 \% \text{ pav}$
 $j_2 = 28,647 \% \text{ pav} \times 1 \text{ pav} = 28,647\% \text{ naav}$

b) La tasa de interés después de impuestos

$$F=\$650.000 (1 + 0,065)^{2}$$

$$F=\$737.246,25$$

$$I=|F-P|=|\$737.246,25-$$

$$\$650.000|=\$87246.25$$

$$RF= (0.07)(\$87246.25)$$

$$=\$6107.2375$$

$$F_{final}=\$737.246,25-\$6107.2375=\$731139.0125$$

Con los datos anteriores ya podemos hallar la tasa de interés después de impuestos de la siguiente manera:

\$731139.0125=\$650.000
$$(1 + i_3)^2$$

 $(1 + i_3)^2 = 1,12482925\%$
 $i_3 = 26.52\% \times 1 \text{ ptv} = 26.52\% \text{ EA} = i_3$

c) El valor en pesos que le entregan al vencimiento.

$$F_{final} = $731139.0125$$

d) Suponiendo una inflación del 18% anual efectiva, determinar la tasa real obtenida.

$$i_r = \frac{i - f}{1 + f}$$

$$i_r = 0.2652 - 0.18$$

$$1 + 0.18$$

$$i_r = 7.22\% \text{ EA}$$

6. Respuesta

a.
$$j_2 = 28.647\%$$
 EA

b.
$$j_3 = 26.52\% EA$$

c.
$$F_{final}$$
=\$731139.0125

d.
$$i_r = 7.22\%$$
 EA

2. Un inversionista desea obtener una rentabilidad real del 8% EA (anual efectiva) ¿A qué tasa periódica debe invertir suponiendo que la inflación va a ser del 18% EA?

1. Asignación de fecha focal
ff = 0
2. Declaración de variables
$i_e = ?EA$
$i_R = 8\%EA$
3. Diagrama de flujo de caja
No aplica
4. Declaración de formulas
$i_R = \frac{(i-i_f)}{(1+i_f)}$
5. Desarrollo matemático
$0.08 = \frac{(i_e - 0.18)}{(1 + 0.18)}$ $0.08 * 1.18 = i_e - 0.18$
$0.0944 + 0.18 = i_e$
$i_e = 0.2744$
6. Respuesta
Debe invertir una tasa periódica de 27.44% ea

3. Un artículo es fabricado en Estados Unidos y se vende en Colombia en \$50.000 ¿Cuánto valdrá el artículo en Colombia y en Estados Unidos al final de un año, suponiendo los siguientes índices económicos: cambio actual US\$1 = \$2.000, inflación en Estados Unidos 3% EA, devaluación del peso 18% EA?

	1. Asignación de fecha focal	
ff=1 pav		
	2. Declaración de variables	
Pc= 50.000		
Peu= US?		
If =3% EA		
N=1pav		
3. Diagrama de flujo de caja		

4. Un artículo es fabricado en Colombia y cuesta \$68.000, cuando el cambio es de US\$1 = \$2.000. Suponiendo que el IPP de este sector en Colombia es del 22% EA, y que la devaluación del peso frente al dólar sea del 18%EA, hallar el precio del mismo artículo en cada país al final de un año.

- 5. Dos inversionistas de origen alemán, uno residente en Alemania y el otro residente en Colombia, han decidido realizar un negocio en Alemania y cada uno aportará el 50%. El negocio exige una inversión inicial de marcos DM\$300 000 y al final de 3 años devolverá la suma de marcos DM\$400 000. Hallar las tasas totales y reales para cada uno de los socios suponiendo que los siguientes indicadores económicos se mantuvieron estables durante los 3 años.
- a. tasa promedio de inflación en Colombia 22% EA

- b. tasa promedio de inflación en Alemania 2% EA
- c. tasa de devaluación del peso frente al dólar: primer año 18% EA, segundo año 20% EA y tercer año 17% EA, devaluación marco frente al dólar: años 1 y 2 el 2% EA, para el tercer año hay una revaluación del 3% EA
- d. cambio actual US\$ = DM\$2,23 US\$ = \$1 300

1. Asignación de fecha focal
2. Declaración de variables
3. Diagrama de flujo de caja
4. Declaración de formulas
5. Desarrollo matemático
6. Respuesta

- 6. El señor Yukimoto residente en el Japón y Mr.Jones residente en Estados Unidos se asocian para comprar un banco en Colombia. El valor de cada acción del banco es de \$9.000 pesos/acción y esperan venderla al final de 3 meses en \$9.700 pesos/
- a. Calcule la tasa de interés anual efectiva y la rentabilidad real (tasa de interés real) anual de cada uno de los socios
- b. ¿Cuánto tendrá cada uno en su respectiva moneda al final de los 3 meses?. Tome en cuenta la siguiente información:

Inflación en: Colombia 18% EA, en Estados Unidos 3.5% EA, en Japón 2.3% EA tasa de devaluación del peso frente al dólar 22% EA tasa de acción. (Trabajar con 5 decimales). devaluación del dólar frente al Yen 1% EA Cambio actual US\$1 = \$2.000; US\$1 = Yen105

1. Asignación de fecha focal
2. Declaración de variables
3. Diagrama de flujo de caja
4. Declaración de formulas
5. Desarrollo matemático
6. Respuesta

7. Un inversionista desea obtener una rentabilidad real del 8% EA (anual efectiva) ¿A qué tasa periódica debe invertir suponiendo que la inflación va a ser del 18% EA?

1. Asignación de fecha focal				
ff = 0natv				
2. Declara	ción de variables			
iR = 8% pav $jR = 8% EA$				
if = 18% pav	jf = 18% EA			
3. Diagram	a de flujo de caja			
4. Declarac	ción de formulas			
$iR\frac{i-i}{1+i_f}$ Tasa de interés Real				
5. Desarro	ollo matemático			
$i = i_R(1 + i_f) + i_f$				
i = 0,08 (1 + 0,18)	$(8) + 0, 18 = 27, 44\% \ pav$			
$j = 27,44\% \ pav \ 1 \ pav = 27,44\% \ naav \equiv 27,44\% \ EA$				
6. I	Respuesta			
<i>j</i> = 27, 44% <i>EA</i>				

8. Un artículo es fabricado en Estados Unidos y se vende en Colombia en \$50.000 ¿Cuánto valdrá el artículo en Colombia y en Estados Unidos al final de un año, suponiendo los siguientes índices económicos: cambio actual US\$1 = \$2 000, inflación en Estados Unidos 3% EA, devaluación del peso 18% EA?

1. Asignación de fecha focal					
ff =	ff = 0natv				
2. Declaraci	ión de variables				
P= \$50.000 COL\$	jf = 18% EA				
dólar: 1 US \$= \$2.000 COL\$	if = 18% pav				
jd=3% EA	nd = 1 pav				
id=3% pav $nf=1$ pav					
3. Diagrama	de flujo de caja				
4. Declaración de fórmulas					

$$F = P(1+i)^n$$

Valor Futuro

$$i = i_1 + i_2 + i_1 i_2$$

Tasas Combinadas

5. Desarrollo matemático

Valor del artículo en Estados Unidos:

$$P_{EU} = \frac{\$50.000}{\$20.000} 25 US \$$$

$$F = 25(1 + 0.03) 1 = 25.75 US$$
\$

Valor del artículo en Colombia:

$$i = 0.03 + 0.18 + 0.03 \times 0.18 = 21.54\%$$
 pav
 $F = \$50.000(1 + 0.2154)^{1} = \60.770 COL\$

6. Respuesta

Después de un año el precio del artículo en los Estados Unidos es de y en Colombia el precio serio de %60.770 COL \$

9. Un artículo es fabricado en Colombia y cuesta \$68.000, cuando el cambio es de US\$1 = \$2.000. Suponiendo que el IPP de este sector en Colombia es del 22% EA, y que la devaluación del peso frente al dólar sea del 18% EA, hallar el precio del mismo artículo en cada país al final de un año

1. Asignación de fecha focal

$$ff = 0natv$$

2. Declaración de variables

i = 22% pav j = 22% EA P = \$68.000P = USD \$34

3. Diagrama de flujo de caja

4. Declaración de fórmulas

Valor Futuro

$$j=im$$
 Tasa nominal anualizada
$$(1+i_1)^{m1} = (1+i_2)^{m2}$$
 Equivalencia de tasas

$$RF = 7\%$$
 EA Retención en la fuente $I = F-P$ Monto del interés

$$F$$
 neto = F - R Valor futuro neto

 $F = P(1 + i)^{n}$

iR	Tasa de interés Real
	5. Desarrollo matemático
	F = \$68.000(1 + 0, 22) = \$82.960 F = \$82.960 * (USD\$1/\$2000*1,18) = USD\$35.15
	6. Respuesta
	F = \$82.960
	F = USD \$35.15

- 10. Dos inversionistas de origen alemán, uno residente en Alemania y el otro residente en Colombia, han decidido realizar un negocio en Alemania y cada uno aportará el 50 %. El negocio exige una inversión inicial de marcos DM \$300.000 y al final de 3 años devolverá la suma de marcos DM \$400.000. Hallar las tasas totales y reales para cada uno de los socios suponiendo que los siguientes indicadores económicos se mantuvieron estables durante los 3 años.
- a. tasa promedio de inflación en Colombia 22 % EA

\$200.000.000 = \$150.000.000(1 + *i*)
3

$$\sqrt{$150.000.600}$$

$$i=10.064\% \text{ pav x 1 pav} = 10.064\% \text{EA}$$
6. Respuesta
Tasa de interés anual ganada por la inversión en Alemania i=10.064 % EA

b. tasa promedio de inflación en Alemania 2 % EA

c. tasa de devaluación del peso frente al dólar: primer año 18 % EA, segundo año 20 % EA y tercer año 17 % EA, devaluación marco frente al dólar: años 1 y 2 el 2 % EA, para el tercer año hay una revaluación del 3 % EA, cambio actual US\$ = DM\$2,23 US\$ = \$1 300.

1. Declaración de variables				
P= DM \$150.000.000 F=DM \$200.000.000	n= 3 pav	jf = 22% EA $id1pd = 18% EA$ $id2pd = 20% EA$ $id3pd = 17% EA$ $id12ed = 2% EA$ $id3ed = 3% EA$	Tasa de cambio: 1 US\$ = DM \$2,23 = \$1.300 COL\$ idev = %? E	

2. Declaración de fórmulas

(1+i1) m1 = (1+i2)m2 Equivalencia de tasas iR = Tasa de interés Real F = P (1+i) n Valor Futuro

3. Desarrollo matemático

Inversión en Pesos:

Tasa de cambio de Dólares a Euros

Tasa de Cambio Año X= Tasa Cambio Alem
$$(1+i)$$
 n

$$TCA12 = 2, 23(1+0,02) 2 = DM $2,320$$

$$TCA3 = 2,320(1+0,03) 1 = DM $2,3896$$
Tasa de Cambio Año $x = Tasa$ Cambio COL $(1+i)$ n

$$TCA1 = 1.300 (1+0.18) 1 = $1.534 COL$$$

$$TCA2 = 1.534 (1+0.20) 1 = $1.840, 8 COL$$$

$$TCA 3 = 1.840, 8 (1+0.17) 1 = $2.153, 74 COL$$$

Valor recibido en US\$

$$PUS$$
 = (\$200.000.000/\$2,3896) = \$83.696.016, 07

Valor recibido en COL\$

$$F COL\$ = \$83.696.016, 07 x \$2.153, 74 = \$180.259.457, 6$$

Tasa de Interés anual ganada por la inversión:

$$F = P (1 + i) n$$
\$180.259.457, 6 = \$83.696.016, 07(1 + i) 3
$$i = 29, 14\% \text{ pav } x 1 \text{ pav} = 29, 14\% \text{ EA}$$

Tasa real teniendo en cuenta la inflación promedio en Colombia

$$i_r = \frac{0.2914 - 0.22}{1 + 0.22}$$

 $i_r = 5.85\% EA$

4. Respuesta

Tasa de interés anual ganada por la inversión en Colombia: i=29, 14% EA Rentabilidad realmente obtenida por el Inversionista en Colombia es: $i_r = 5.85\%$ EA

- 11. El señor Yukimoto residente en el Japón y Mr.Jones residente en Estados Unidos se asocian para comprar un banco en Colombia, El valor de cada acción del banco es de \$9.000 pesos/acción y esperan venderla al final de 3 meses en \$9700 pesos/acción. (Trabajar con 5 decimales).
- a. Calcule la tasa de interés anual efectiva y la rentabilidad real (tasa de interés real) anual de cada uno de los socios
- b. ¿Cuánto tendrá cada uno en su respectiva moneda al final de los 3 meses? Tome en cuenta la siguiente información:
- c. Inflación en: Colombia 18% EA, en Estados Unidos 3.5% EA, en Japón 2.3% EA tasa de devaluación del peso frente al dólar 22% EA tasa de devaluación del dólar frente al Yen 1% EA Cambio actual US\$1 = \$2000; US\$1 = Yen105

1. Declaración de variables				
P = \$4.500 P = USD \$22.5 F = \$4.850 COL \$	jfc = 18% EA ifc = 18% pav jfj = 2.3% EA if j = 2.3% pav jf EU = 3.5% EA if EU = 3.5% jdp = 22% EA idp = 22% pav	Tasa de cambio 1 USD \$ = \$2.000 COL\$ = ¥ 105 nfc = 3/12 pav nfj = 3/12 pav nf EU = 3/12 pav ndp = 3/12 pav ndd = 3/12 pav	iy =?% EA iRy =?%EA imr =?% EA iRmr =?%EA	

2. Diagrama de flujo de caja

3. Declaración de fórmulas

```
(1+i1) m1 = (1+i2)m2 Equivalencia de tasas

iR = Tasa de interés Real

F = P (1+i) n Valor Futuro

j = im Tasa nominal anualizada
```

4. Desarrollo matemático

Tasa de interés anual efectiva y la rentabilidad real anual de cada uno de los socios

1. Yukimoto

P=4.500 P en USD = $\frac{$4.500}{}$ = \$2, 25 *USD*\$ P en Yenes = \$2, 25 x \times 105 =\times 236,25

Teniendo en cuenta las devaluaciones calculamos la tasa de cambio de yenes a dólares y de pesos a dólares para hallar finalmente el valor recibido por Yukimoto en yenes:

$$F = P(1 + i)^{n}$$

$$TC_{Yenes} = {}_{105(1 - 0.01)^{3/12}} = 104,736$$

$$TC_{Pesos} = {}_{2.000(1 + 0.22)^{3/12}} = \$2.101,938$$

$${}_{d6lares = \frac{\$4.850}{\$2.101,93}} = \$2,3073 SD\$_{\$2.101,93}$$

$${}_{Fyenes = \$2,3073 \times 104,736 = 241,667}$$

Con los datos anteriores podemos hallar la tasa de interés anual efectiva y la rentabilidad real para Yukimoto:

$$F = P(1 + i)^{n}$$

$$241,667 = 236,25(1 + i)^{3/12}$$

$$i_{Ry} = \sqrt{236,25^{1.667} - 1} = 9.4919 \% pav * 1 pav = 9.4919 \% EA = i_{y}$$

$$i_{Ry} \frac{0.094919 - 0.035}{1 + 0.023} = 7,030 \% EA^{1+0.023}$$
2. Mr Jones

$$P = 4.500$$

P en USD =
$$(\$4.500/\$2.000) = \$2,25$$
 USD \$

Teniendo en cuenta las devaluaciones calculamos la tasa de cambio de pesosa dólares y de pesos a dólares para hallar finalmente el valor recibido por Mr.Jones en dólares:

$$F = P(1 + i)^{n}$$

$$TC_{Pesos} = $2.000(1 + 0.22)^{3/12} = $2101,938$$

$$F_{dolares} = $4.850 = $2,3073 USD $52.101,93$$

Con los datos anteriores podemos hallar la tasa de interés anual efectiva y la rentabilidad real para Mr. Jones :

$$F = P(1 + i)^{n}$$

$$2,3073 = 2,25(1 + i)^{3/12}$$

$$i = \frac{3}{12}$$

$$i = \frac{3}{12}$$

$$iRmr = 0,1058140,035$$

$$1+0.035$$

$$= 6,840 \% EA$$

5. Respuesta

$$i_y = 9.4919\% EA$$

 $i_{RV} = 7,030 \% EA$

$$i_{mr}$$
 = 10.582% *EA*

$$i_{Rmr}$$
 = 6, 840 % *EA*
b.
$$F_{yenes}$$
 =\frac{\frac{\frac{4}}{2}}{2}41,667}
$$F_{dolares}$$
 =\frac{\frac{5}{2}}{3073} \ USD\frac{\frac{5}{3073}}{3073}

12. Si en el problema anterior el valor del banco es de ochenta mil millones de pesos y Yukimoto participa en el 40 % de la compra y Mr. Jones participa con el resto, determinar la cantidad que recibirá c/u en su respectiva moneda. (Respuestas: Yuquimoto Yenes 1.718.530.911.17Mr. Jones dólares US\$24.612 204.16)

1. Declaración de variables				
P (Yukimoto) = \$32.000.000 P (Mr. Jones) = \$48.000.000	,	F (Yukimoto)= ¥? F (Mr. Jones)= USD \$?	i =?% EA n=1 ptv	

2. Diagrama de flujo de caja

3. Declaración de fórmulas

$$F = P(1 + i) n Valor Futuro$$

4. Desarrollo matemático

Hallamos la rentabilidad del proyecto en pesos:

$$F = P(1 + i)^{n}$$

$$$4.850 = $4.500(1 + i)^{1}$$

$$i = \frac{4.850}{4.500}1 = 7,778\% ptv$$

Valor Final en pesos "ara Yukimoto:

$$F = \$32.000.000(1 + 0,0778)^{1} = \$34.489.600$$

Valor Final en Yenes para Yukimoto:

Del ejercicio anterior:

$$TC_{Pesos} = 2.000(1 + 0.22)^{3/12} = \$2.101,938$$
 $TC_{Yenes} = 105(1 - 0.01)^{3/12} = 104,736$

$$F_{d\'olares} = \frac{\$34.489.600}{\$2.101,93} = \$16.408,47 \ USD\$$$
 $F_{(yukimoto)} = \$16.408,47 \ USD\$ \ x 104,736 = 1.718.558,181\$

Valor Final en pesos para Mr. Jones:

$$F = $48.000.000(1 + 0,0778)^{-1} = $51.734.400$$

Valor Final en Dólares para Mr. Jones :

$$F_{d6 lares = \frac{\$51.734.400}{\$2.101.93}} = \$24.612,71455 USD$$
\$

5. Respuesta

F (Yukimoto) = 1.718.558, 181¥

F (Mr. Jones) = \$24.612, 71455 *USD*\$

13. En el país A cuya moneda es el ABC, un par de zapatos vale \$24.000 de ABC, existe una inflación del 22% EA y el cambio actual es de US\$1 =ABC \$1.000. En el país X rige el dólar americano y se prevé una inflación promedio del 6.5% EA. Al final de un año ¿cuál debe ser la tasa de devaluación en A con respecto al dólar a fin de no perder competitividad en los mercados de X?

1. Declaración de variables				
P = \$24.000	iABC = 22% pav	nABC = 1 pav	jABC = 22% EA	
ABC = US \$24	iUS = 6, 5% pav	nUS = 1 pav	jUS = 6, 5% EA	

2. Diagrama de flujo de caja

3. Declaración de fórmulas

F = P(1 + i) n Valor Futuro

4. Desarrollo matemático

$$F = $24.000 \ ABC (1 + 0, 22)^{1} = $29.280 \ ABC$$

 $F = US$24 (1 + 0, 065) = US$25,56$

Para que siga teniendo competitividad en el mercado x se debe hallar la tasa de cambio

$$US\$1 \equiv \frac{\$29.280 \ ABC \cdot US\$1}{US\$25,56} = \$1.145,53 \ ABC$$

$$\$1.145,53 \ ABC = \$1.000 \ ABC (1 + devaluación)^{1}$$

devaluación = (\$1.145,53 ABC / \$1.000 ABC) - 1 = 14,55% pav

5. Respuesta

devaluación = 14, 55% pav

9. Un inversionista desea que todas sus inversiones le den una rentabilidad real del 5 % EA ¿Qué tasa anual efectiva debe ofrecerse si la inflación esperada es del 17 %EA de forma tal que satisfagan los deseos del inversionista?

- 10. Un ahorrador consigna en una corporación de ahorro y vivienda la suma de \$300.000 el día 1 de marzo y el día 20 de junio consigna \$200.000. ¿Cuánto podrá retirar el 31 de agosto si la corporación paga el 27% EA (anual efectivo) de corrección monetaria para los meses de marzo y abril y el 25% EA para el resto del período (mayo, junio, julio y agosto).
- a. Elabore los cálculos en pesos
- b. Elabore los cálculos en UPAC sabiendo que el primero de marzo upac \$1 = \$6.650

1. Declaración de variables				
i1 = 27% pav i2 = 25% pav i3 = 25% pav	j1 = 27% EA j2 = 25% EA j3 = 25% EA	$P 1 = $300.000 \equiv $45, 11 \text{ UPAC}$ P 2 = F 1 P 3 = \$200.000	n1 = 2/12 pav n2 = 4/12 pav n3 = 70/300 pav	
2. Diagrama de flujo de caja				

- 11. Se estima que la corrección monetaria del primer año será del 18% EA y la del segundo año del 17% EA:
- a. Calcular la cantidad que antes de impuestos le entregarán a un inversionista que invierte la suma de \$800 000 a dos años en una cuenta de ahorros en UPAC que le garantiza pagar la corrección monetaria más el 4% EA de interés sobre los UPAC.

- b. Calcule la rentabilidad (tasa de interés EA) obtenida antes de impuestos que el cambio actual es UPAC 1 = \$14000
- c. Si la retención en la fuente es del 7% (anual efectiva) sobre los intereses, calcular la rentabilidad (tasa de interés EA) después de los impuestos
- d. Calcular la cantidad final que le entregarán después de impuestos

1. Declaración de variables

DTF = 15% nata IPC = 10% EA Libor = 5.14% nasy

2. Diagrama de flujo de caja

F1= \$?

F2= \$?

3. Declaración de fórmulas

IPC + 4 = DTF + X Ecuación de valor

$$i = i_1 + i_2 + (i_1)(i_2)$$
 Tasas combinadas

$$i = \frac{i}{i n}$$
 Tasa de interés periódica vencida $(1 + i_1)^{m^2} = (1 + i_2)^{m^2}$ Equivalencia de tasas

J = im Tasa nominal anual

4. Desarrollo matemático

a. DTF + 6 puntos

DTF + 6 = 15% nata + 6% nata = 21% nata

$$i1a = (21\% \text{ nata } / 4 \text{ pta}) = 5,25\% \text{ pta}$$

 $i1 = (0,0525 / 1-0,0525) = 5,54\% \text{ ptv}$
 $(1+0,0554)4 = (1+i)$
 $i2 = 24,07\% \text{ pav}$
 $j2 = 24,07\% \text{ pav} \times 1 \text{ pav} = 24,07\% \text{ naav} \equiv 24,07\% \text{ EA}$

 $JZ = 24, 07\% \text{ pav x 1 pav} = 24, 07\% \text{ naav} \equiv 24, 07\% \text{ E}$

b. IPC + 7 puntos

$$IPC + 4 = 0, 10 + 0, 07 + (0, 10)(0, 07) = 17,7\% EA$$

c. Libor + 8 puntos

Libor + 8 = 5, 14% nasv + 8% nasv = 13, 14% nasv

```
i1 = (13,14\% \text{ nasv } / 2 \text{ psv}) = 6,57\% \text{ psv}
(1+0,0657)2 = (1+i)
i2 = 13,57\% \text{ pav}
j2 = 13,57\% \text{ pav } x \text{ 1 pav} = 13,57\% \text{ naav} \equiv 13,57\% \text{ EA}
```

5. Respuesta

- a. 24, 07 EA
- b. 17, 70 EA
- c. 13, 57 EA
 - 12. Hallar la tasa anual efectiva de;
 - a. DTF +6 puntos
 - b. IPC +7 puntos
 - c. Libor +8 puntos

1. Declaración de variables

DTF = 15% nata IPC = 10% EA Libor = 5.14% nasv

2. Declaración de fórmulas

IPC + 4 = DTF + X Ecuación de valor i = i1 + i2 + (i1)(i2) Tasas combinadas i = (ia/1-ia) Tasa de interés periódica vencida (1+i1) 1)m1 = (+i2)m2 Equivalencia de tasas j = im Tasa nominal anual

3. Desarrollo matemático

a. DTF + 6 puntos

DTF + 6 = 15% nata + 6% nata = 21% nata
i1a = (21% nata/4 pta) = 5, 25% pta
i1 = (0,0525/1-0,0525) = 5, 54% ptv

$$(1 + 0,0554)4 = (1 + i 2)$$

i2 = 24, 07% pav

j2 = 24,07% pav x 1 pav = 24,07% naav $\equiv 24,07\%$ EA

b. IPC + 7 puntos

IPC + 4 =
$$0, 10 + 0, 07 + (0, 10)(0, 07) = 17, 7\%$$
 EA

c. Libor + 8 puntos

Libor + 8 = 5, 14% nasv + 8% nasv = 13, 14% nasv

$$i1 = (13,14\% \text{ nasv }/2 \text{ psv}) = 6,57\% \text{ psv}$$

 $(1+0,0657)2 = (1+i2)$
 $i2 = 13,57\% \text{ pav}$
 $j2 = 13,57\% \text{ pav} \times 1 \text{ pav} = 13,57\% \text{ naav} \equiv 13,57\% \text{ EA}$

4. Respuesta

a. 24, 07 EA

b. 17, 70 EA

c. 13, 57 EA

- 13. Suponiendo IPC = 8.5% EA, CM= 12% (CM= corrección monetaria), DTF = 15% nata, TCC = 15.5% nata, TBS (CF 180 días) = 19.27% A.E., TBS(Bancos 360 días) = 19.19% EA Hallar X de las siguientes igualdades:

 Observación: TBS (CF 180 días) significa tasa básica del sector corporaciones financieras a 180 días.
- a. IPC+10 = CM+x
- b. CM+14 = TCC+X
- c. DTF + 8.6 = IPC + X
- d. TBS(CF 180 días) + 6 = DTF + x
- e. TCC+3.5 = DTF+X
- f. IPC+4 = DTF+X

1. Declaración de variables

j1 = 8;5%EA

j2 = 15%nata

2. Declaración de fórmulas

IPC+4 = DTF + X

i = i1+i2+(i1)(i2) Tasas combinadas

ia = (i/1+i)

(1+i1)m1 = (1+i2)m2 Equivalente de tasas

3. Desarrollo matemático

IPC + 4 = DTF + X

IPC + 4 = 0,085 + 0,04 + (0,085)(0,04)

IPC + 4 = 0,1284 = 12,84 % EA (1 + 0,1284)1 = (1 + i)4 i = 0,036608 = 3,6608%ptv ia = 0,0366081 + 0,036608 = 0,029748 = 2,9748 % pta ja = 2,9748 * 4 = 11,899 % nata

11,899 % nata = 15 % nata + X % nata X = -3,1 % nata

4. Respuesta

a.6.56% EA b.8.2% nata EA c.17.55% A. E d.7.775% nata e.4% nata f. -3.1% nata

- 14. Asumiendo que idev = 25% EA, IPC= 9% EA, Prime Rate = 8.25% EA, DTF = 14.5% nata, Libor = 5% EA, resolver las siguientes ecuaciones:
- a. iDEV + 10 = IPC + X
- b. iDEV + (P rime + 200 p.b) = DTF + X
- c. iDEV + (Libor + 500 p.b.) = DTF + X

1. Declaración de variables

DTF = 14, 5% nata Prime Rate = 10% EA Libor = 5.14% nasv

2. Declaración de fórmulas

$$\begin{split} IPC+4&=DTF+X & Ecuación \ de \ valor\\ i&=i1+i2+(i1)(i2)Tasas \ combinadas\\ (1+i1)m1&=(1+i2)m2 & Equivalencia \ de \ tasas\\ j&=im\ Tasa \ nominal \ anual \end{split}$$

 $i = \frac{j}{T n}$ Tasa de interés periódica vencida

3. Desarrollo matemático

a. iDEV + 10 = IPC + X EA

$$0, 25 + 0, 1 + (0, 25)(0, 1) = 0, 09 + X + (0, 09)(X)$$

 $X = 26, 14\% \text{ EA}$

b. iDEV + (P rime + 200 p.b) = DTF + X nata

$$i1 = 25\%$$
 pav
 $(1 + 0, 25) = (1 + i2)4$

$$i2 = (1 + 0, 25)1/4 - 1 = 5,74\%$$
 ptv

$$i2a = (0.0574/1 + 0.0574) = 5,42\%$$
 pta

j2a = 5, 42% pta x 4 pta = 21, 70% nata

$$(1+0,1045) = (1+i4)4$$

$$i4 = (1 + 0, 1045)1/4 - 1 = 2,51\%$$
 ptv

$$i4a = (0.0251/1+0.0251) = 2.45\%$$
 pta

$$j4a = 2,45\%$$
 pta x 4 pta = 9,81% nata

$$0,2170 + 0,0981 + (0,2170) (0,0981) = 0,145 + X$$

$$X = 19, 13\%$$
 nata

c. iDEV + (Libor + 500 p.b.) = DTF + X nata

Libor +
$$500 \text{ p.b} = 5\% \text{ EA} + 5\% \text{ EA} = 10\% \text{ EA}$$

$$iDEV + (Libor + 500 \text{ p.b.}) = 0,25 + 0,10 + (0,25)(0,10) = 37,5\% EA$$

i1 = 37, 5% pav

$$(1+0.375) = (1+i2)4$$

$$i2 = (1 + 0, 375)1/4 - 1 = 8, 28\%$$
 ptv

$$i2a = (0.0828/1 + 0.0828) = 7,65\%$$
 pta

j2a = 7,65% pta x 4 pta = 30,61% nata

X = 30,61% nata -14,5% nata = 16,11% nata

4. Respuesta

- a. 26, 14% EA
- b. 19, 13% nata
- c. 16, 11% nata

15. ¿Cuál es la rentabilidad efectiva anual del comprador (tasa de interés EA) y el precio de compra para el que adquiere una aceptación financiera a 180 días si se conserva hasta su maduración, se registra en bolsa a un precio de 86,225% y la comisión de compra es del 0.5% EA en rentabilidad?

16. ¿Cuál es la comisión en pesos para el problema anterior suponiendo que la aceptación financiera tiene un valor nominal de \$278.000?

1. Declaración de variables comv = 0, 5% EA n= 180/360 P r = \$86, 225 ≡ 86, 225% 2. Diagrama de flujo de caja

17. ¿Cuál es la rentabilidad efectiva anual que obtiene un inversionista que adquiere en el mercado secundario una aceptación bancaria emitida a 90 días con un precio de registro de 97.254% y le faltan 28 días para su maduración? Suponga una comisión de compra del 0.4% EA en rentabilidad. base 360.

1. Declaración de variables Pr = 97.254% F = \$100 n = 28/360 pav ic = ?% 2. Diagrama de flujo de caja

18. Un exportador recibe una aceptación bancaria por sus mercancías la cual vence en 180

días, tiene una tasa de emisión del 28% nasv (Nominal anual semestre vencido). El mismo día en que le entregan la aceptación la ofrece en bolsa. Si las comisiones de compra y de venta son de 0,4% EA y 0.6% EA respectivamente, calcular:

- a. La tasa de registro
- b. La tasa del comprador
- c. La tasa del vendedor
- d. El precio de registro
- e. El precio de compra

1. Declaración de variables	
iv =%?	comc = 0.4%EA
ir =%?	comv = 0.6%EA
ic =%?	Pr =%?
j = 28% nasv	Pc =%?
2. Diagrama de flujo de caja	

3. Declaración de fórmulas

 $\begin{aligned} F &= P(1+i) \; n \quad \text{Valor futuro} \\ j &= \text{im} \quad \text{Tasa periódica anualizada} \end{aligned}$

4. Desarrollo matemático

$$i = (0.28/2) = 0.14 \%$$

 $(1+ir) = (1+0.14)2$
 $ir = 0.2936 = 29.36 \% EA$

$$ic = tr - cm = 0.2936 - 0.0004 = 28.96 \% EA$$

 $iv = tr + v = 0.2936 + 0.0006 = 29.96 \% EA$
 $Pr = 100(1 + 0.2936) - 180/360 = 87.922 \%$
 $Pc = 100(1 + 0.2896) - 180/360 = 88.059 \%$

5. Respuesta

- a. 29.36% EA
- b. 28.96% EA
- c. 29.96% EA
- d. 87.922%
- e. 88.059%.
 - 19. Un inversionista compró el 14 de junio 98 una Aceptación Bancaria al 29.4% EA con vencimiento el 15 de mayo 99 por \$250 millones, un segundo inversionista está dispuesto a adquirirlo el día 10 de septiembre 98 a una tasa del 34% EA.
 - a. ¿Cuál será la utilidad en pesos del primer inversionista?
 - b. ¿Cuál es la rentabilidad del primer inversionista? (use un interés comercial es decir un año de 360 días).

$$i1 = 29, 4\%$$
 pav $i2 = 34\%$ pav

20. Resuelva el problema anterior pero el segundo inversionista lo adquiere al 23.5% EA

1. Declaración de variables

2. Diagrama de flujo de caja

3. Declaración de fórmulas

$$P = F (1 + i) - n$$
 Valor presente

4. Desarrollo matemático

$$P_{c1} = \$250.000.000(1 + 0, 294)^{-331/360} = \$197.252.565, 4$$
 $P_{c2} = \$250.000.000(1 + 0, 235)^{-245/360} = \$216.548.685, 3$
 $P_{c2} - P_{c1} = \$216.548.685, 3 - \$197.252.565, 4 = \$19.296.119, 91$
 $\$216.548.685, 3 = \$197.252.565, 4(1 + i)^{86/360}$
 $i = (\$216.548.685, 3/\$197-252.565, 4)^{360/86} - 1 = 17,14\% \text{ pav}$
 $j = 47, 8\% \text{ pav } 1 \text{ pav} = 47, 8\% \text{ naav} \equiv 47, 8\% \text{ EA}$

5. Respuesta

- a. \$19.296.119, 91
- b. 47, 8% EA
 - 21. Suponga que el señor X posee una aceptación financiera con valor de vencimiento de \$6 758 000 y desea venderla en Bolsa faltándole 57 días para vencerse y quiere ganarse un 29.5% y la adquiere el señor Y. Suponga que la comisión de venta y de compra son 0.5% EA y 0. 47% EA respectivamente en rentabilidad. Base 365.
 - a. ¿Cuál es la tasa de registro?
 - b. ¿Cuál es el precio de registro?
 - c. ¿Cuál la tasa que gana el señor Y?
 - d. ¿Cuál es el precio que paga el señor Y?

e. ¿Cuál es la comisión de compra en pesos?

22. El señor XX posee una aceptación bancaria por valor de \$10 millones y la vende en Bolsa faltando 87 días para su maduración, la adquiere el señor YY y el cual desea ganar el 32% después de comisión, pero antes de impuestos. Si la comisión de

compra es del 0.4% EA y la de venta el 0.375% EA usando un año de 360 días determinar:

- a. La tasa de registro
- b. El precio de registro
- c. La tasa de cesión
- d. El precio de la cesión
- e. El precio al comprador
- f. El valor en pesos de la retención en la fuente
- g. La cantidad que debe pagar YY
- h. La cantidad que recibe XX
- i. La rentabilidad después de impuestos que gana YY

1. Declaración de variables

ic = 32% pav n = 81/365 pavjc = 32% EA

2. Diagrama de flujo de caja

3. Declaración de fórmulas

P = F(1+i) - n Valor presente ir = ic + comc Tasa de registro iv = ir + comv Tasa de venta o cesión

4. Desarrollo matemático

ir = 32% pav + 0, 4% pav

 $P_r = \$10.000.000(1 + 0,324)^{-87/360} = \$9.344.234,67$

iv = 32, 4% pav + 0, 375% pav = 32, 775% pav

 $P_V = \$10.000.000(1 + 0.32775)^{-87/360} = \$9.337.849,96$

 $P_c = \$10.000.000(1 + 0.32)^{-87/360} = \$9.351.069, 82$

RF = 0,07(\$10.000.000 - \$9.344.234,67) = \$45.903,57

 P_{CYY} = \$9.351.069, 82 + \$45.903, 57 = \$9.396.973, 39

```
P_{VXX} = $9.337.849, 96 + $45.903, 57 = $9.383.753.53
                           10.000.000 = 9.396.973, 39(1 + i)^{87/360}
                               i = (1.06)^{360/87} - 1 = 29,26\% pav
                                     5. Respuesta
       ir = 32, 4\% pav
a.
       Pr = $9.344.234, 67
b.
       iv = 32,775\% pav
c.
       P_v = $9.337.849,96
d.
       P_c = $9.351.069,82
e.
f.
       RF = $45.903,57
       P_C YY = $9.396.973,39
g.
       P_{V XX} = $9.383.753.53
h.
       i_{V Y Y} = 29,26\% pav
i.
```

23. En el problema 21 calcule el valor que recibe el vendedor y el valor que paga el comprador suponiendo que la retención en la fuente es del 7% EA sobre utilidades

$$RF = 0.07(6.758.000 - 6.494.534,28) = \$18.442,6$$

$$Pv = \$6.758.000(1 + 0.295) - 57/365 = \$6.490.612$$

$$Pvse\~norx = \$6.490.612 + 18.442,6 = \$6.509.054,6$$

$$Pcse\~nory = \$6.498.237,28 + 18.442,6 = \$6.516.679,88$$

5. Respuesta

El comprador paga \$6 516 680 Vendedor recibe \$6 509 055

24. El 27 de abril de 1999 se compra una aceptación bancaria de \$36 millones en el mercado bursátil, con vencimiento el 27 de julio de 1999 y con tasa de registro del 26% EA (anual efectiva). Si después de transcurridos 34 días la vende. ¿Qué precio se debe cobrar si el vendedor desea obtener una rentabilidad durante la tenencia del 26,5% EA? Base 365.

1. Declaración de variables

ir = 26% pav iv = 26, 5% pav jr = 26% EA jv = 26, 5% EA n = (91-34-57/365)pav

2. Diagrama de flujo de caja

3. Declaración de fórmulas

P = F(1 + i) - n Valor presente

4. Desarrollo matemático

 $P_r = \$100(1+0.26)^{-57/365} = \$96.45 \equiv 96.45\%$

$$P_r = \$36.000.000 (0,9645) = \$34.723.875,98$$

$$P_v = \$100(1+0,265)^{-57/365} = \$96,39 \equiv 96,39\%$$

$$P_v = \$36.000.000 (0,9639) = \$34.702.406,82$$

$$P_r - P_v = \$34.723.875,98 - \$34.702.406,82 = \$21.469,16$$

$$P_v = \$34.723.875,98 + \$21.469,16 = \$34.745.345,14$$

5. Respuesta

 $P_v = $34.745.375, 14$

25. Resuelva el problema anterior suponiendo que el corredor cobra una comisión del 0.1% en rentabilidad y que de todas maneras el vendedor quiere ganarse el 26.6% EA durante la tenencia.

(1 + i2)m2 Equivalencia de tasas iR Tasa de interés Real

4. Desarrollo matemático

ir = 26.5% EA - 0.1% EA = 25.9% EA $P = \$ 36.000.000(1+0.259)^{-4}(-91/365) = \$ 33.991.049,9$ $Pv = \$ 33.984.322,11(1+0.266)^{-4}(34/365) = \$ 34.746.122,69$

5. Respuesta

 $P_v = 34746123