MA 02 LINEAR ALGEBRA II PRACTICE EXAM – FINAL B

July 24 (Wed), 2024

Section: C7.					
Instructors:	Yasuyuki K	achi (lecture)	& Shur	nji Moriya (recitation)
		, ,			e is 'Version A'.)
				•	•
					ctice exams. The
purpose of these	e practice e	exams is to g	ive you	ı an idea (of how the actual
exam will look l	like, in tern	ns of the leng	gth and	l the form	at.
[I] (20pts)	(1) Let $f($	(x) and $g(x)$ by	e polyn	omials. Let	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$
True or false:		f(A)g(A) =	g(A)f	(A).	
[Answer]:		True.		False.	$\left(\underline{\text{Check one.}} \right)$
(2) Let a, b and	c be real nu	imbers. Let A	$A = \begin{bmatrix} a \\ b \end{bmatrix}$	$\begin{bmatrix} b \\ c \end{bmatrix}$ be a s	symmetric matrix.
True or false:					
	an orthogona	l matrix Q such	ch that	$Q^{-1}AQ$ is	a diagonal matrix.
Answer]:		True.		False.	(Check one.

Section:	C7.
----------	-----

[II] (20pts) Find the characteristic polynomial, the eigenvalues, and then eigenvectors associated with each of the eigenvalues of A. Is A diagonalizable? If not, then find the Jordan canonical form of A.

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix},$$

Section: C7.

[III] (20pts) Find the characteristic polynomial, the eigenvalues, and then eigenvectors associated with each of the eigenvalues of A. Then diagonalize the matrix

$$A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix},$$

with the condition the matrix Q with which $Q^{-1}AQ$ equals the diagonal matrix is orthogonal .

Section: C7.

<u>Name</u>:

[IV] (40pts) Let a, b, c and d be real numbers. Let

$$(1) \quad AQ =$$

(2)
$$Q^2 =$$

$$(3) \quad Q^{-1}AQ =$$