

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №2 по курсу «Математическая статистика» на тему: «Интервальные оценки»

Студент группы ИУ7-63Б		Паламарчук А. Н.	
	(Подпись, дата)	(Фамилия И.О.)	
Преподаватель	-	Саркисян П. С.	
	(Подпись, дата)	(Фамилия И.О.)	

Содержание

1	Зад	дание	3
	1.1	Цель работы	3
	1.2	Содержание работы	3
2	Teo	ретическая часть	4
	2.1	Определение γ – доверительного интервала	4
	2.2	Границы γ — доверительного интервала	4
	2.3	Оценка для математического ожидания	4
	2.4	Оценка для дисперсии	[
3	Пра	актическая часть	6
	3.1	Результаты расчетов	6

1 Задание

1.1 Цель работы

Цель работы: построение гистограммы и эмпирической функции распределения.

1.2 Содержание работы

- 1) Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление точечных оценок $\hat{\mu}(\vec{X}_n)$ и $S^2(\vec{X}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - b) вычисление нижней и верхней границ $\underline{\mu}(\vec{X}_n)$, $\overline{\mu}(\vec{X}_n)$ для γ доверительного интервала для математического ожидания MX;
 - с) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{X}_n), \ \overline{\sigma}^2(\vec{X}_n)$ для γ доверительного интервала для дисперсии DX;
- 2) вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3) для заданного пользователем уровня доверия γ и N объёма выборки из индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x_N})$, также графики функций $y = \hat{\mu}(\vec{x_n})$, $y = \underline{\mu}(\vec{x_n})$ и $y = \overline{\mu}(\vec{x_n})$ как функций объема n выборки, где n изменяется от 1 до N;
 - b) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x_N})$, также графики функций $z=S^2(\vec{x}_n), \ z=\underline{\sigma}^2(\vec{x}_n)$ и $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

2 Теоретическая часть

2.1 Определение γ – доверительного интервала

Пусть $\vec{X}_n - c$ лучайная выборка объема n из генеральной совокупности X с функцией распределения $F(x;\theta)$, зависящей от параметра θ , значение которого неизвестно. Предположим, что для параметра θ построен интервал $\left(\underline{\theta}(\vec{X}_n), \overline{\theta}(\vec{X}_n)\right)$, где $\underline{\theta}(\vec{X}_n)$ и $\overline{\theta}(\vec{X}_n)$ являются функциями случайной выборки \vec{X}_n , такими, что выполняется равенство

$$\mathbf{P}\left\{\underline{\theta}(\vec{X}_n) < \theta < \overline{\theta}(\vec{X}_n)\right\} = \gamma. \tag{2.1}$$

В этом случае интервал $\left(\underline{\theta}(\vec{X}_n), \overline{\theta}(\vec{X}_n)\right)$ называют интервальной оценкой для параметра θ с коэффициентом доверия γ (или, сокращенно, γ – доверительной интервальной оценкой), а $\underline{\theta}(\vec{X}_n)$ и $\overline{\theta}(\vec{X}_n)$ соответственно нижней и верхней границами интервальной оценки.

Интервал $(\underline{\theta}(\vec{x}_n), \overline{\theta}(\vec{x}_n))$ называют доверительным интервалом для параметра θ с коэффициентом доверия γ или γ -доверительным интервалом.

2.2 Границы γ – доверительного интервала

Пусть \vec{X}_n — случайная выборка объема n из генеральной совокупности X, распределенной по нормальному закону с параметрами μ и σ^2 .

2.3 Оценка для математического ожидания

$$\underline{\mu}(\vec{X}_n) = \overline{X} - \frac{S(\vec{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1), \tag{2.2}$$

$$\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1), \qquad (2.3)$$

где \overline{X} — оценка мат. ожидания, n — число опытов, $S(\vec{X}_n)$ — точечная оценка дисперсии случайной выборки $\vec{X}_n, t_{1-\alpha}(n-1)$ — квантиль уровня 1 — α для распределения Стьюдента с n-1 степенями свободы, α — величина, равная $\frac{(1-\gamma)}{2}$.

2.4 Оценка для дисперсии

$$\underline{\sigma}^2(\vec{X}_n) = \frac{S(\vec{X}_n)(n-1)}{\chi_{1-\alpha}^2(n-1)},\tag{2.4}$$

$$\overline{\sigma}^{2}(\vec{X}_{n}) = \frac{S(\vec{X}_{n})(n-1)}{\chi_{\alpha}^{2}(n-1)},$$
(2.5)

где: n — объем выборки, $\chi^2_{\alpha}(n-1)$ — квантиль уровня α для распределения χ^2 с n-1 степенями свободы, α — величина, равная $\frac{(1-\gamma)}{2}$.

3 Практическая часть

3.1 Результаты расчетов

Индивидуальный вариант №14

Результаты расчетов для выборки приведены на формулах (3.1), (3.2), (3.3), (3.4), (3.5), (3.6).

$$\hat{\mu} = 3.096281 \tag{3.1}$$

$$S^2 = 1.248040 \tag{3.2}$$

$$\mu(\vec{X}_n) = 2.927930 \tag{3.3}$$

$$\overline{\mu}(\vec{X}_n) = 3.264632 \tag{3.4}$$

$$\underline{\sigma}^2(\vec{X}_n) = 1.021816 \tag{3.5}$$

$$\overline{\sigma}^2(\vec{X}_n) = 1.564865 \tag{3.6}$$

На рисунке 3.1 представлены точечная оценка математического ожидания $\hat{\mu}(\vec{x}_n)$ и границы $\underline{\mu}(\vec{x}_n)$, $\overline{\mu}(\vec{x}_n)$ γ — доверительного интервала в зависимости от объёма выборки n. Горизонтальная линия соответствует оценке $\hat{\mu}(\vec{x}_N)$ для полной выборки.

Рисунок 3.1 – График оценки μ

На рисунке 3.2 изображены точечная оценка дисперсии $S^2(\vec{x}_n)$ и гра-

ницы $\underline{\sigma}^2(\vec{x}_n)$, $\overline{\sigma}^2(\vec{x}_n)$ γ — доверительного интервала. Пунктирные линии демонстрируют изменение интервала при увеличении объёма данных, а горизонтальная линия — оценку $S^2(\vec{x}_N)$ для всей выборки.

Рисунок 3.2 – График оценки σ^2