Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 3 Bases de Probabilités

Exercice 1. Montrer que si Var(X) = 0 alors X est constante p.s.

Exercice 2. Soit $X \sim \mathcal{B}(p)$ une variable de Bernoulli de paramètre $p \in]0,1[$, définie par $\mathbb{P}(X=1)=1-\mathbb{P}(X=0)=p$. Quel est sa loi μ_X ? Montrer qu'elle a une densité par rapport à $\mu=\delta_0+\delta_1$. Généraliser au cas d'une variable aléatoire quelconque à valeurs dans un espace discret.

Exercice 3. Montrer que si $X \sim \mathcal{E}(\theta)$ alors pour tout s, t > 0,

$$\mathbb{P}(X > s + t) = \mathbb{P}(X > s)\mathbb{P}(X > t).$$

Exercice 4. Soit $X \sim \mathcal{N}(0,1)$ et Z définie par $\mathbb{P}(Z=-1) = \mathbb{P}(Z=1) = 1/2$ qu'on suppose indépendante de X. On considère la variable Y := ZX.

- (a) Montrer que $Y \sim \mathcal{N}(0, 1)$.
- (b) Calculer Cov(X, Y). Est-ce que X et Y sont indépendantes ?
- (c) Est-ce que le vecteur aléatoire ${}^{\mathbf{t}}(X,Y)$ est un vecteur Gaussien?

Exercice 5. Calculer la fonction caractéristique $\varphi(t) := \mathbb{E}[e^{itX}]$ de $X \sim \mathcal{N}(0,1)$.

Aide: On pourra montrer que $\varphi'(t) = -t\varphi(t)$.

Exercice 6. On admet¹ que la fonction caractéristique d'un loi Gamma $\Gamma(k,\theta)$ est

$$\varphi(t) = \left(\frac{\theta}{\theta - it}\right)^k.$$

(a) Montrer que

 $X \sim \Gamma(k, \theta), \quad Y \sim \Gamma(\ell, \theta), \quad X, Y \text{ indépendantes} \quad \Rightarrow \quad X + Y \sim \Gamma(k + \ell, \theta).$

(b) Soit X_1, \ldots, X_d des variables i.i.d $\mathcal{N}(0,1)$. Calculer la densité de la variable X_1^2 puis montrer que $X_1^2 + \cdots + X_d^2 \sim \Gamma(d/2, 1/2)$.

¹Mais cela peut être prouvé avec la même idée que celle de l'exercice 5.

Exercice 7. On suppose que X est une variable aléatoire réelle.

(a) Montrer que

$$\lim_{R \to \infty} \mathbb{P}(|X| > R) = 0.$$

(b) Si on suppose de plus que $X \in L^p$, montrer que

$$\mathbb{P}(|X| > R) \le \frac{\mathbb{E}|X|^p}{R^p},$$

et que si il existe $\alpha > 0$ tel que $C := \mathbb{E}[e^{\alpha|X|}] < \infty$, alors

$$\mathbb{P}(|X| > R) \le \frac{C}{e^{\alpha R}}.$$

Discuter cette dernière condition pour $X \sim \mathcal{N}(0,1)$ et $X \sim \mathcal{E}(\theta)$.

(c) Que pensez vous de la décroissante de $\mathbb{P}(|X|>R)$ quand $R\to\infty$ pour une variable X de Cauchy, c'est-à-dire de densité

$$f(x) = \frac{1}{\pi(1+x^2)}$$

par rapport à Lebesgue?

Exercice 8. Soit X une variable aléatoire réelle. Montrer que

$$\mathbb{E}|X| = \int_0^\infty \mathbb{P}(|X| > t) \, \mathrm{d}t.$$

Aide : On pourra utiliser le théorème de Fubini-Tonelli.

Plus généralement, montrer que si $\varphi: \mathbb{R}_+ \to \mathbb{R}$ est croissante et dérivable p.p alors

$$\mathbb{E}\big[\varphi(|X|)\big] = \int_0^\infty \varphi'(t) \,\mathbb{P}(|X| > t) \,\mathrm{d}t + \varphi(0)$$

et donner des formules explicites pour $\varphi(x) = x^p$ et $\varphi(x) = e^{\alpha x}$.

Exercice 9. Soit X_1, \ldots, X_d des variables i.i.d $\mathcal{N}(0, 1)$.

- (a) Donner la densité du vecteur aléatoire $X={}^{\mathbf{t}}(X_1,\ldots,X_d)$ par rapport à la mesure de Lebesgue de \mathbb{R}^d .
- (b) Si $\mu \in \mathbb{R}^d$ et $A \in GL_d(\mathbb{R})$, donner la densité du vecteur aléatoire $AX + \mu$.
- (c) Que peut-on dire si A n'est pas inversible ?