	ı	
Class	:	
Batch	:	
Roll. No	:	
ABC ID	:	
Assignment No.	:	B.2.a
Assignment Name	:	CMOS HALF-ADDER
Date Of Performance	:	

Block Diagram:-

Truth Table:-

I/P's are ALWAYS STRONG
O/P :: S-1 = STRONG -1 , S-0 = STRONG - 0

Ai	Bi	SUM	CARRY
0	0	S-0	S-0
0	1	S-1	S-0
1	0	S-1	S-0
1	1	S-0	S-1

Waveform:

Conclusion:-

- 1) Drawn the LAYOUT for CMOS HALF-ADDER using 90 nm Foundry.
- 2) MOSFET Count for HALF-ADDER using Conventional CMOS Logic would be 28 MOSFETs (22 for EX-OR Gate + 6 for OR Gate)
- 3) Using the TG \rightarrow MUX , MUX \rightarrow LOGIC-GATE Approach , we reduced the MOSFET count to just 14 MOSFETs as seen in the LAYOUT.
- 4) Kept Frequency of 1^{st} i/p (Ai) half that of frequency of 2^{nd} i/p (Bi).
- 5) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 6) Being a **Pure-CMOS System** (PMOS // NMOS & CMOS INVERTER) , it gives both **S-1** & **S-0** as O/P.