第一节课

- 集合 X 被称为**拓扑空间**,如果存在集族 $\tau \subset 2^X$ 满足:
 - $\circ X,\emptyset \in \tau$.
 - \circ τ 中任意个集合之并属于 τ .
 - \circ τ 中有限个集合之交属于 τ .

这样的集族 τ 称为 X 上的一个**拓扑**, τ 中的集合称为**开集**。

- 设 $\tau \in X$ 上的拓扑, $Y \subset X$, 则 $\tau|_Y = \{U \cap Y | U \in \tau\}$ 是Y上的拓扑。
- 定义在拓扑空间上的函数 $f:X\to Y$ 称为是**连续**的,如果开集在 f 作用下的原象总是开集。

第二节课

• 设 $A \subset X$, 点 $p \in X$ 称为 A 的**极限点**, 如果 p 的任意邻域与 $A - \{p\}$ 交集非空。

 $X=\mathbb{C}$ 上的 Zariski 拓扑: $A\subset X$ 是开集当且仅当 A 的补集是有限集或 X。 在 Zariski 拓扑下, A 是闭集 \iff A 是有限集或 X \iff A 是某个多项式的零点集合。 在 Zariski 拓扑下, |A| 有限 \implies A 没有极限点, A 无限 \implies X 中的点都是 A 的极限点。

- 称集合 A 是**闭集**,如果其补集 $X \setminus A$ 是开集。A 是闭集 $\iff A$ 包含 A 的所有极限点。
- 集合 A 与其极限点集合之并 \overline{A} 称为 A 的**闭包**。 \overline{A} 是包含 A 的最小闭集。
 - 。 推论: A 是闭集 \iff $A = \overline{A}$.
- 集合 $A \subset X$ 称为是**稠密**的,如果 $\overline{A} = X$ 。
- $x \in A$ 称为集合 A 的**内点**,如果存在 x 的邻域 $U \subset A$ 。
- $x \in X$ 称为集合 A 的**边界点**,如果 x 既不是 A 的内点也不是 $X \setminus A$ 的内点。
- 设集族 β 包含 X 的一些开子集。若 X 中的每个开集都是 β 中集合之并,则称 β 是 X 的**拓扑** 基。
- 设 $\beta \subset 2^X$ 非空,若有以下条件成立:
 - $\circ \bigcup_{A \in \beta} A = X.$
 - 。 任意 $B_1,B_2\in\beta$ 和 $x\in B_1\cap B_2$,存在 $B_3\in\beta$ 使得 $x\in B_3\subset B_1\cap B_2$. 则 β 中任意数量集合之并全体构成 X 上的一个拓扑。
- 设 $f:X\to Y$ 和 $g:Y\to Z$ 都是连续映射,则 $g\circ f:X\to Z$ 也是连续的。
- 设 $f:X \to Y$ 连续, $A \subset X$ 具备子空间拓扑 $au|_A$,则 $f|_A:A \to Y$ 也是连续的。
- 关于拓扑空间上的连续映射,以下几条等价:
 - 1. $f: X \to Y$ 是连续的.
 - 2. 若 β 是 Y 的一个拓扑基,则 β 中集合的原象是开集.
 - 3. 对任意 $A\subset X$,有 $f(\overline{A})\subset \overline{f(A)}$.
 - 4. 对任意 $B \subset Y$,有 $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.

- 5. 对任意闭集 $B \subset Y$, $f^{-1}(B)$ 是 X 中的闭集.
- $1 \Longrightarrow 2$: 显然, 因为拓扑基中只有开集。
- $2\Longrightarrow 3\colon f(A)\subset \overline{f(A)}$ 显然。设 $x\in \overline{A}\setminus A$ 但 $f(x)\notin f(A)$,任取 f(x) 的邻域 U,存在拓扑基中的集合 B 满足 $f(x)\in B\subset U$ 。而根据 2, $f^{-1}(B)$ 是 X 中的开集,从而是 x 的邻域。注意 x 是 A 的极限点,因此 $f^{-1}(B)$ 与 A 交集非空,也即 B 和 f(A) 交集非空。进一步地,U 与 f(A) 交集非空,从而 f(x) 是 f(A) 的极限点,满足 $f(x)\in \overline{f(A)}$ 。
- $3\Longrightarrow 4$: 在3中令 $A=f^{-1}(B)$ 即有 $f[\overline{f^{-1}(B)}]\subset \overline{B}$,从而 $\overline{f^{-1}(B)}\subset f^{-1}(\overline{B})$ 。
- $4\Longrightarrow 5$: 根据 4, $\overline{f^{-1}(B)}\subset f^{-1}(\overline{B})=f^{-1}(B)$, 因此 $f^{-1}(B)$ 也是闭集。
- $5 \Longrightarrow 1$: 根据开闭集的关系显然。
- 连续映射 $f:X\to Y$ 称为**同胚**,如果存在连续的 $g:Y\to X$ 满足 $f\circ g=\mathrm{id}_Y$ 和 $g\circ f=\mathrm{id}_X$ 。
 - 一般情况下,连续双射 $f: X \to Y$ 不一定是同胚。

第三节课

- 连续的局部性
 - 。 $f:X\to Y$ 是连续的,如果 X 可以被一族开集 $\{U_{\alpha}\}$ 覆盖,且 f 限制在每个 U_{α} 上都连续.
 - 。 $f:X\to Y$ 是连续的,如果 X 可以被有限个闭集 $\{F_i\}$ 覆盖,且 f 限制在每个 F_i 上都连续.
- 设 $\beta \subset 2^X$ 非空,若满足以下两条,则称 β 是 X 的一组**基**:
 - 1. β 中任意集合非空.
 - 2. 任取 $B_1, B_2 \in \beta$,存在 $B_3 \in \beta$,使得 $B_3 \subset B_1 \cap B_2$.
- 设映射 $f:X\to Y$,其中集合 X 有一组基 β ,集合 Y 是拓扑空间。点 $p\in Y$ 称为 f 在 β 上的 极限,如果对 p 的任意邻域 V,都存在 $A\in\beta$ 使得 $f(A)\subset V$ 。符号表示为 $\lim_{\beta}f(x)=p$ 。
- 设 d 是集合 X 上的一个度量,子集 $A\subset X$ 。对任意 $x\in X$,定义 $d(x,A)=\inf_{a\in A}d(x,a)$

固定集合 A,映射 $x \to d(x,A)$ 是连续的。

• 设闭集 $A,B\subset X$ 不交,则存在连续映射 $f:X\to\mathbb{R}$ 满足 $f|_A=1$, $f|_B=-1$,且在 $A\cup B$ 以外的其他点上 $f(x)\in (-1,1)$ 。

构造
$$f(x)=\dfrac{d(x,B)-d(x,A)}{d(x,B)+d(x,A)}$$
 即可。注意对于闭集 A ,有 $x\in A\iff d(x,A)=0$

• Tietze 扩张定理:设 X 是度量空间,闭集 $C\subset X$ 。如果映射 $f:C\to\mathbb{R}$ 连续,则 f 可以连续地扩张成 X 上的连续映射。

- 称序列 $\{x_n\}$ 为**柯西列**,若任给 $\epsilon>0$,都存在 N 使得 $d(x_m,x_n)<\epsilon$ 对所有 m,n>N 成立。
- 称序列 $\{x_n\}$ 收敛到 $a\in X$,如果 $\lim_{n\to\infty}d(x_n,a)=0$ 。 点 a 称为 $\{x_n\}$ 的极限。
- 度量空间 (X,d) 称为是**完备**的,如果 X 中每个柯西列都收敛到 X 中某点。

在通常的欧氏度量下, ℝ 是完备的, 而 ℚ 不是完备的。

C[a,b] 在度量 $d(f,g) = \int_a^b |f(x) - g(x)| dx$ 下不是完备的。

C[a,b] 在度量 $d(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$ 下是完备的。

第四节课

- 设 (X,d) 是完备度量空间 (Y,d) 的子空间,并且 $\overline{X}=Y$,则称 (Y,d) 是 (X,d) 的**完备化**。
- 称度量空间 (X_1,d_1) 和 (X_2,d_2) 等距同构,若存在双射 $f:X_1\to X_2$,使得对任意 $a,b\in X_1$ 都有 $d_1(a,b)=d_2[f(a),f(b)]$ 。这样的 f 也称为等距同构映射。
- 设 (X,d) 是度量空间,则对任意 $a,b,u,v\in X$ 有 $|d(a,b)-d(u,v)|\leq d(a,u)+d(b,v)$ 。
- 完备化的唯一性: 设 (Y_1,d_1) 和 (Y_2,d_2) 都是 (X,d) 的完备化,则它们等距同构。
- **完备化的存在性**: 在等距同构意义下,每个度量空间都存在完备化。 大致证明思路可参考这个知乎专栏。
- 拓扑空间 X 称为是**紧空间**,如果 X 的每个开覆盖都存在有限子覆盖。
- 子集 $A \subset X$ 称为是**紧集**,如果 A 在相应的子空间拓扑下是紧空间。
- 设 $f: X \to Y$ 连续, 若 X 是紧空间, 则 f(X) 是 Y 的紧子集。
- 子集 $X\subset \mathbb{R}^n$ 是紧集当且仅当 X 是有界闭集。

第五节课

- 拓扑空间 X 称为是 Hausdorff 空间,若 X 中任意两个不同的点都存在不交的邻域。
 - 容易发现,所有度量空间都是 Hausdorff 空间。

但赋以 Zariski 拓扑的 C 不是 Hausdorff 空间。

- 设 f:X o Y,其中 Y 是 Hausdorff 空间,则对 X 的任一组基 eta, $\lim_{eta}f(x)$ 若存在必唯一。
- 紧集和闭集的关系: Hausdorff 空间的紧子集是闭集,紧空间的闭子集是紧集。
- 设 f:X o Y 是连续双射,其中 X 是紧空间,Y 是 Hausdorff 空间,则 f 是同胚。
- 设 X 是紧空间, $A\subset X$ 是无限子集,则 A 一定有极限点。
- 设 $f:X\to\mathbb{R}$ 连续,若 X 是紧空间,则 f 有界且可以取到边界值。
- **勒贝格引理**:设 X 是紧的度量空间, $\{U_{\alpha}\}$ 是 X 的一个开覆盖,则存在 $\delta>0$,使得 X 的任意 直径小于 δ 的子集都包含在某个 U_{α} 中。这样的 δ 称为 $\{U_{\alpha}\}$ 的一个勒贝格数。

对于度量空间 (X,d) 的子集 A,其**直径**定义为 $\sup_{x_1,x_2\in A}d(x_1,x_2)$ 。

- 设 X,Y 是拓扑空间,我们称在 $X\times Y$ 上定义的、以 $\beta=\{U\times V|U\in\tau_X,V\in\tau_Y\}$ 为拓扑基的拓扑为 X,Y 的**乘积拓扑**,对应的 $X\times Y$ 称为**乘积空间**。
- 对于乘积空间 $X \times Y$,我们称映射 $P_1(x,y) = x$ 和 $P_2(x,y) = y$ 为**投影映射**。
- 乘积拓扑是使得投影映射为连续映射的最小拓扑 (满足这一条件的拓扑必包含乘积拓扑)。
- $f:Z \to X \times Y$ 连续 $\iff P_1 \circ f:Z \to X$ 和 $P_2 \circ f:Z \to Y$ 都连续。
- 设 X 和 Y 非空,则 $X \times Y$ 是 Hausdorff 空间 $\iff X$ 和 Y 都是 Hausdorff 空间。

第六节课

- 设 β 是 X 的一组拓扑基,则 X 是紧的 \iff 任意 β 中集合构成的 X 的开覆盖都存在有限子覆盖。
- $X \times Y$ (在乘积拓扑意义下) 是紧的 $\iff X$ 和 Y 都是紧的。
- 空间 X 称为是**连通**的,如果非空集合 A,B 满足 $A\cup B=X\Longrightarrow \overline{A}\cap B$ 和 $A\cap \overline{B}$ 不全为空。
- 关于连通性,以下几条等价:
 - 1. X 是连通的.
 - 2. X 的既开又闭子集只有 X 和 \emptyset .
 - 3. X 不能表示为两个不交非空开集的并.
- 设 $f: X \to Y$ 连续,则 X 连通 $\Longrightarrow f(X)$ 连通。
- 设 X 是拓扑空间,Z 是 X 的稠密子集,则 Z 连通 \Longrightarrow X 连通。 推论:设 Z \subset X 连通,Z \subset Y \subset \overline{Z} ,则 Y 连通。特别地,我们有 \overline{Z} 连通。
- $X \in \mathbb{R}$ 中非平凡的连通集 $\iff X$ 是区间。

第七节课

- $\operatorname{th} A, B \subset X$ 是相互分离的, 如果 $\overline{A} \cap \overline{B} = \emptyset$.
- 设 $X=\bigcup_{\alpha}A_{\alpha}$,若每个 A_{α} 都连通,且不存在相互分离的一对 A_{α} ,则 X 连通。 推论: 设 $X=\bigcup_{\alpha}A_{\alpha}$,若每个 A_{α} 都连通,且 $\bigcap_{\alpha}A_{\alpha}\neq\emptyset$,则 X 连通。
- 设 X,Y 非空,则 $X \times Y$ 连通 $\iff X$ 和 Y 都连通。
- 在 X 上定义关系: $x \sim y \iff$ 存在连通的 $A \subset X$ 满足 $x,y \in A$ 。则 \sim 是等价关系,且由 \sim 导出的等价类称为 X 的**连通分支**。
- 连通分支一定是闭集,且不同连通分支之间一定相互分离。 推论:若 *X* 只有有限个连通分支,则每个连通分支都是既开又闭的。
- 连续映射 $\gamma:[0,1]\to X$ 称为拓扑空间 X 的一条**道路**, $\gamma(0)$ 和 $\gamma(1)$ 称为这条道路的**起点**和**终** 点。

- 拓扑空间 X 称为是**道路连通**的,如果 X 中任意两点都可以用一条道路连接。
- **道路连通的空间是连通的**。 \mathbb{R}^n 的连通开子集是道路连通的。
- 在 X 上定义关系: $x \sim y \iff$ 存在一条道路 γ 连接 x 和 y。则 \sim 是等价关系,且由 \sim 导出的等价类称为 X 的**道路连通分支**。

第八节课

- 设 X 是拓扑空间, $X=\bigcup_{i\in I}P_i$ 为其一个分划,其中每个 P_i 都非空。记 $Y=\{P_i\,|\,i\in I\}$,定义 $\pi:X\to Y$ 为 $\pi(x)=P_j$,如果 $x\in P_j$,并在 Y 上定义拓扑:U 是开集当且仅当 $\pi^{-1}(U)$ 是 X 中的开集。则称该拓扑为 Y 上的**黏合拓扑**,Y 称为对应于分划 $X=\bigcup_{i\in I}P_i$ 的**黏合空间**。
- 设 Y 是 X 的一个黏合空间,Z 是拓扑空间,则 $f:Y\to Z$ 连续 $\iff f\circ\pi:X\to Z$ 连续。
- 设 $f:X\to Y$ 是连续的满射,如果 $U\subset Y$ 是开集 $\iff f^{-1}(U)$ 是开集,则称 f 为**黏合映射**。
- 设 $f: X \to Y$ 是连续的满射, 如果 f 将开集 (闭集) 映射为开集 (闭集) ,则 f 是黏合映射。
- 设 $f:X \to Y$ 是连续的满射,如果 X 是紧空间且 Y 是 Hausdorff 空间,则 f 是黏合映射。
- 连续局部性的推广: 设 $X=\bigcup_{\alpha\in I}X_{\alpha}$,定义不交并 $\widetilde{X}=\bigcup_{\alpha\in I}X_{\alpha}$,并在其上装备拓扑: $U\subset\widetilde{X}$ 是开集 \iff 对每个 α , $U\cap X_{\alpha}$ 是 X_{α} 中的开集。又令 $j:\widetilde{X}\to X$ 满足 $j|_{X_{\alpha}}$ 是 X_{α} 到 X 的嵌入,则当 j 是黏合映射时,只要 $f:X\to Y$ 限制在每个 X_{α} 上都连续,就有 f 连续。
- **射影空间** $\mathbb{R}P^n$ 的三种构造方法:
 - 1. 取 n 维单位球面 $S^n\subset\mathbb{R}^{n+1}$,将 S^n 的对径点黏合,即可得到射影空间 $\mathbb{R}\mathrm{P}^n$.
 - 2. 将 $\mathbb{R}^{n+1}\setminus\{0\}$ 中位于同一条过原点直线上的所有点黏合,即可得到射影空间 $\mathbb{R}\mathbf{P}^n$.
 - 3. 取 n 维单位球 $B^n\subset\mathbb{R}^n$,仅将其边界 S^{n-1} 的对径点黏合,即可得到射影空间 $\mathbb{R}P^n$. 第二种构造方法实际上取的是 \mathbb{R}^{n+1} 的所有一维线性子空间,因此可以很容易地进行推广。

第九节课

- 设 X 是拓扑空间,I=[0,1],令 $CX=X\times I/X\times\{1\}$,即将 $X\times\{1\}$ 黏合成一个点,所得的黏合空间 CX 称为一个锥。
- 设 X 是拓扑空间,I=[0,1],在空间 $X\times I$ 中将 $X\times\{0\}$ 黏合成一个点, $X\times\{1\}$ 黏合成 另一个点,所得的黏合空间 SX 称为一个**双角锥**。
- 设子空间 $A\subset Y$, $f:A\to X$ 连续,在 $X\sqcup Y$ 中黏合所有 $a\in A$ 和 $f(a)\in X$, 所得的黏合空间记作 $X\cup_f Y$, 这样的 f 称为一个贴映射。

- 设 $f:X\to Y$ 连续,在 CX 中利用贴映射 f 将 $X\times\{0\}$ 粘到 Y 上,所得的黏合空间 $Y\cup_f$ CX 称为一个映射锥。
- 一个**拓扑群**是指使得乘法运算和求逆运算都连续的 Hausdorff 空间。 容易验证,拓扑群的子群在子空间拓扑下也是拓扑群。
- 设 G_1,G_2 是拓扑群,映射 $f:G_1 o G_2$ 称为是**同构**,如果f同时是同胚和群同构。
- 设 G 是拓扑群, $x\in G$,映射 $L_x:g\in G\to xg\in G$ 称为一个**左平移**。可以验证, L_x 同时是同胚和群同构。类似也可以定义**右平移** $R_x:g\in G\to gx\in G$ 。
- 设 G 是拓扑群,K 是包含 G 中单位元 e 的连通分支,则 K 是 G 的闭正规子群。
- 设 G 是连通的拓扑群,则 G 中单位元 e 的任意邻域都构成了 G 的一个生成元集合。
- 一般线性群 $\mathrm{GL}(n;\mathbb{R})$ 在 \mathbb{R}^{n^2} 的欧氏拓扑下构成拓扑群。 $\mathrm{GL}(n;\mathbb{R}) \not = \mathbb{R}^{n^2}$ 的开子集,并且不连通(行列式符号不同的矩阵各自构成一个连通分 支)。
- 特殊线性群 $\mathrm{SL}(n;\mathbb{R})\subset\mathrm{GL}(n;\mathbb{R})$ 不是紧的,但是连通的。
- 正交矩阵群 O(n) 和 特殊正交矩阵群 SO(n) 都是紧的。
- 设 G 是拓扑群,X 是拓扑空间,称 $f:G\times X\to X$ 为 G 到 X 的**作用**,如果 f 是群作用且连续。

可以验证,对每个 $g \in G$,映射 $x \to gx$ 都是同胚。

第十节课

- 设拓扑群 $G \curvearrowright X$,在 X 上定义等价关系: $x \sim y \iff$ 存在 $g \in G$ 满足 x = gy,则 \sim 给出了 X 的一个分划,称为 X 的 **G-轨道**,该分划对应的黏合空间 X/G 称为**商空间**或**轨道空间**。
- $\mathbb{R}P^n$ 中的两点 x,y 称为是**齐次**的,如果存在 $\lambda \neq 0$ 满足 $x = \lambda y$ 。将齐次的点视为等同,定义集合 $U_i = \{(x_1, \cdots, x_{n+1}) \in \mathbb{R}P^n | x_i \neq 0\}$,则 U_i 是 $\mathbb{R}P^n$ 中的开集且同胚于 \mathbb{R}^n 。 容易发现,集族 $\{U_i | i = 1, \cdots, n+1\}$ 给出了 $\mathbb{R}P^n$ 的一个开覆盖。

类似的操作也可以对 $\mathbb{C}\mathbf{P}^n$ 进行,得到一族同胚于 \mathbb{C}^n 的开集,构成 $\mathbb{C}\mathbf{P}^n$ 的开覆盖。

- 设拓扑群 $G \curvearrowright X$,则自然映射 $\pi: X \to X/G$ 是开映射(将开集映射为开集)。
- 设拓扑群 $G \curvearrowright X$,若 G 和 X/G 都连通,则 X 连通。

推论: $\mathrm{SO}(n)$ 是连通的,因为 $\mathrm{SO}(n+1)/\mathrm{SO}(n)\cong S^n$ 。

第十一节课

• 设 $f,g:X\to Y$ 连续,称 f 与 g **同伦**,如果存在连续的 $F:X\times I\to Y$ 满足 F(x,0)=f(x) 且 F(x,1)=g(x)。这里 I=[0,1] 为单位闭区间。

形如 F(x,t) = (1-t)f(x) + tg(x) 的 F 称为**直线同伦**。

- 设 $f,g:X\to Y$ 连续,称 f 与 g 相对于 $A\subset X$ 同伦,如果 $f|_A=g|_A$,并且上述定义中的 F 进一步满足 F(x,t)=f(x)=g(x) 对所有 $x\in A$, $t\in I$ 成立。
- 设 $f,g:X\to Y$ 相对于 A 同伦, $h:Y\to Z$ 连续, 则 $h\circ f$ 与 $h\circ g$ 相对于 A 同伦。
- 设 g,h:Y o Z 相对于 B 同伦,f:X o Y 连续,则 $g\circ f$ 与 $h\circ f$ 相对于 $f^{-1}(B)$ 同伦。
- 道路 $\gamma:I\to X$ 称为是**环路**,如果 $\gamma(0)=\gamma(1)$ 。固定 $p\in X$,考虑所有满足 $\gamma(0)=\gamma(1)=p$ 的环路,它们在相对于 $\{0,1\}\subset I$ 的同伦下划分成若干等价类,这些等价类称为**同伦**类。
- 上述所有同伦类的集合在适当的乘法运算下构成群,称为 X 的基点为 p 的**基本群**,记作 $\pi_1(X,p)$ 。

乘法的定义详见 Armstrong 书第 5.2 节。

若将环路定义中的 I 换成 S^n , 最终得到的基本群就记作 $\pi_n(X,p)$ 。

第十二节课

- 设 X 是道路连通的,则对任意 $p,q\in X$ 有 $\pi_1(X,p)$ 与 $\pi_1(X,q)$ 同构,该同构类记作 $\pi_1(X)$ 。
- 设 $f: X \to Y$ 连续,则 f 诱导了一个由 $\pi_1(X)$ 到 $\pi_1(Y)$ 的自然映射 $f_*: \langle \alpha \rangle \mapsto \langle f \circ \alpha \rangle$ 。

 ② 这样定义的 f_* 是群同态,满足 $(g \circ f)_* = g_* \circ f_*$ 和 $(\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X)}$ 。
- 设 $f: X \to Y$ 是同胚,则相应的 f_* 是 $\pi_1(X)$ 与 $\pi_1(Y)$ 之间的群同构。 推论:基本群不相同的拓扑空间一定不同胚。
- 称道路连通空间 X 是**单连通**的,如果 $\pi_1(X) = \{e\}$ 。 显然欧氏空间的凸子集都是单连通的。
- $\pi_1(S^1)$ 同构于整数集 \mathbb{Z} 。 证明见 Armstrong 书第 5.3 节。

第十三节课

- Brouwer 不动点定理:设 B 是任意维度的球, $f:B\to B$ 连续,则存在 $x\in B$ 满足 f(x)=x。
 - 一维情况, B = [-1, 1], 易证结论成立。
 - 二维情况,反设 $f(x) \neq x$ 恒成立,则对每个 $x \in B$,将 f(x) 连接到 x 并延长至边界,得 到一点 $g(x) \in S^1$ 。这样定义的 g(x) 是连续映射,且限制在 S^1 上是恒等映射。记 i 为 S^1 到 B 的嵌入,则 $g \circ i = \mathrm{id}_{S^1}$,从而 $g_* \circ i_* = \mathrm{id}_{\pi_1(S^1)}$,这表明 g_* 是满射。但 g_* 的定义域 $\pi_1(B)$ 是平凡群,而值域 $\pi_1(S^1)$ 非平凡,显然矛盾。
- 设 U,V 是 X 的开子集且 $X=U\cup V$,若 U,V 单连通且 $U\cap V$ 道路连通,则 X 单连通。

推论: $S^n (n \geq 2)$ 是单连通的,从而基本群是平凡群。

- 设 X,Y 道路连通,则 $\pi_1(X\times Y)$ 同构于 $\pi_1(X)\times \pi_1(Y)$ 。
- 称拓扑空间 X,Y **同伦等价**,如果存在连续的 $f:X\to Y$ 和 $g:Y\to X$ 满足 $g\circ f$ 同伦于 id_X , $f\circ g$ 同伦于 id_Y 。这样的 f,g 称为一对**同伦逆**。

同伦等价是等价关系, 其条件弱于同胚。

• 设 $A\subset X$, 若连续映射 $F:X\times I\to X$ 满足 F(x,0)=x, $F(x,1)\in A$, 且当 $x\in A$ 时恒有 F(x,t)=x, 则称 F 为从 X 到 A 的一个形变收缩。

若存在这样的 F , 则 X 与 A 同伦等价 (可取 $f = F|_{t=1}$, g 为 A 到 X 的嵌入) 。

• 空间 X 称为是**可缩**的,如果 id_X 与某点 $p\in X$ 处的常数映射同伦。

欧氏空间的凸子集都是可缩的(取直线同伦即可)。

第十四节课

- 设 $f \simeq g: X \to Y$,则对 $\alpha \in \pi_1(X,p)$ 有 $g \circ \alpha \simeq \gamma^{-1} \cdot (f \circ \alpha) \cdot \gamma$,其中 $\gamma(t) = F(p,t)$ 。
- 设X,Y同伦等价,则 $\pi_1(X)\cong \pi_1(Y)$ 。

推论: 如果存在从 X 到 A 的形变收缩,则 $\pi_1(X)\cong\pi_1(A)$ 。

推论: 如果 X 是可缩的,则 $\pi_1(X)$ 是平凡的。

- 关于可缩性,以下几条成立:
 - 1. X 是可缩的 \iff $X \simeq \{p\}$.
 - 2. 设f,g:X o Y,若Y可缩,则 $f\simeq g$.
 - 3. 若 X 可缩,则 id_X 同伦于任意 $p\in X$ 处的常数映射.

关于第 3 点注意,即使 X 是可缩的,也可能不存在 X 到 $\{p\}$ 的形变收缩(要求相对同伦)。

- G_1*G_2 上的**自由积**:将元素写成 $g_1g_2\cdots g_n$ 的形式,其中每个 $g_i\in G_1\cup G_2$ 。对其进行约化操作(去除恒等元,合并相邻的同属于 G_1 或 G_2 的元),则全体约化后的元素在乘法下构成群。
- 无限多个群的自由积:设 I 为指标集, $*_{\alpha \in I}G_{\alpha}$ 定义为全体长度有限且约化后的元素集合。 若每个 $G_{\alpha}\cong\mathbb{Z}$,则它们的自由积也称为**自由群**。
- 自由积的**泛性质**: 对任意 α , 定义 i_{α} 为 G_{α} 到 $*_{\alpha \in I}G_{\alpha}$ 的自然嵌入。若存在一族 $\{\phi_{\alpha}\}$, 其中每个 $\phi_{\alpha}:G_{\alpha}\to H$ 都是同态,则存在唯一的同态 $\phi:*_{\alpha \in I}G_{\alpha}\to H$ 满足 $\phi\circ i_{\alpha}=\phi_{\alpha}$.

 定义 $\phi(g_{1}\cdots g_{n})=\phi_{\alpha_{1}}(g_{1})\cdots\phi_{\alpha_{n}}(g_{n})$ 即可,其中 $g_{i}\in G_{\alpha_{i}}$.

• van Kampen 定理: 设 $X=\bigcup_{\alpha\in I}A_{\alpha}$, 其中每个 A_{α} 都是道路连通的开集, $\bigcap_{\alpha\in I}A_{\alpha}$ 非空,且对任意 $\alpha,\beta\in I$,交集 $A_{\alpha}\cap A_{\beta}$ 也道路连通。对每个 α ,定义 $\phi_{\alpha}:\pi_{1}(A_{\alpha})\to\pi_{1}(X)$ 为 A_{α} 到 X 的嵌入所诱导的群同态,则由泛性质得到的 $\phi:*_{\alpha\in I}\pi_{1}(A_{\alpha})\to\pi_{1}(X)$ 是满射。进一步,设对任意 $\alpha,\beta,\gamma\in I$, $A_{\alpha}\cap A_{\beta}\cap A_{\gamma}$ 仍道路连通。令 $i_{\alpha\beta}:\pi_{1}(A_{\alpha}\cap A_{\beta})\to\pi_{1}(A_{\alpha})$ 为 $A_{\alpha}\cap A_{\beta}$ 到 A_{α} 的嵌入所诱导的群同态,则上述同态 ϕ 的核 N 是由全体形如 $i_{\alpha\beta}(w)i_{\beta\alpha}(w)^{-1}$ 的元素所生成的正规子群,即有群同构 $\pi_{1}(X)\cong *_{\alpha\in I}\pi_{1}(A_{\alpha})/N$ 。

第十五节课

- 设 $X=\bigvee_{\alpha}X_{\alpha}$ 是通过黏合点 $x_{\alpha}\in X_{\alpha}$ 得到的空间。若对每个 α ,都存在 x_{α} 的邻域 $U_{\alpha}\subset X_{\alpha}$,使得存在 U_{α} 到 x_{α} 的形变收缩,则 $\pi_{1}(X)\cong *_{\alpha}\pi_{1}(X_{\alpha})$ 。
- 环面的基本群是 $\mathbb{Z} imes \mathbb{Z}$,克莱因瓶的基本群是 $\langle a,b|aba^{-1}b=e
 angle$, $\mathbb{R}\mathrm{P}^2$ 的基本群是 $\mathbb{Z}/2\mathbb{Z}$ 。

第十六节课

- X 的一个**覆叠空间**是指满足如下条件的空间 \widetilde{X} : 存在 $p:\widetilde{X}\to X$ 和 X 的一个开覆盖 $\{U_{\alpha}\}$,使得任意 $p^{-1}(U_{\alpha})$ 都是 \widetilde{X} 中一些开集的不交并,且 p 限制在这些开集上都是同胚。p 也称为**覆 叠映射**。
- 道路提升引理: 设 $p:\widetilde{X}\to X$ 是覆叠映射, $\gamma:I\to X$ 为一条道路, 起点 $\gamma(0)=x$ 。若 $\widetilde{x}_0\in\widetilde{X}$ 满足 $p(\widetilde{x}_0)=x$,则存在唯一的道路 $\widetilde{\gamma}:I\to\widetilde{X}$ 使得 $\widetilde{\gamma}(0)=\widetilde{x}_0$ 且 $p\circ\widetilde{\gamma}=\gamma$ 。
- **同伦提升引理**:设 $p:\widetilde{X}\to X$ 是覆叠映射, $F:Y\times I\to X$ 连续。若连续映射 $\widetilde{f}:Y\to\widetilde{X}$ 满足 $p\circ\widetilde{f}(y)=F(y,0)$,则存在唯一的 $\widetilde{F}:Y\times I\to\widetilde{X}$ 使得 $\widetilde{F}(y,0)=\widetilde{f}(y)$ 且 $p\circ\widetilde{F}=F$ 。
- 设 $p:\widetilde{X}\to X$ 是覆叠映射且 $p(\widetilde{x}_0)=x_0$,则 $p_*:\pi_1(\widetilde{X},\widetilde{x}_0)\to\pi_1(X,x_0)$ 总是单射。又设 环路 $\langle \alpha \rangle \in \pi_1(X,x_0)$,则 $\langle \alpha \rangle$ 在 p_* 下有原象 $\iff \langle \alpha \rangle$ 的提升是以 \widetilde{x}_0 为起点的环路。
- 设 $p:\widetilde{X}\to X$ 是覆叠映射且 \widetilde{X} 与 X 道路连通,则 p 的层数 $|p^{-1}(x)|$ 恰为 $H=p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$ 作为子群在 $\pi_1(X,x_0)$ 中的指数。 对于连通空间 X, $|p^{-1}(x)|$ 对任意 $x\in X$ 都是常数,因此层数是良定义的。

第十八节课

- 提升的存在性: 设 $p:(\widetilde{X},\widetilde{x}_0) \to (X,x_0)$ 是覆叠映射, $f:Y \to X$ 满足 $f(y_0)=x_0$, 其中 Y 是道路连通且局部道路连通的,则 f 存在提升 $\widetilde{f} \iff f_*\big[\pi_1(Y,y_0)\big] \subset p_*\big[\pi_1(\widetilde{X},\widetilde{x}_0)\big]$ 。 局部道路连通是指,对任意 x 和邻域 U_x ,都存在道路连通的开集 V_x ,满足 $x \in V_x \subset U_x$ 。
- 提升的唯一性: 设 $p:\widetilde{X}\to X$ 是覆叠映射, $f:Y\to X$, 其中 Y 连通。若 $\widetilde{f}_1,\widetilde{f}_2:Y\to\widetilde{X}$ 都是 f 的提升, 且存在 $y_0\in Y$ 满足 $\widetilde{f}_1(y_0)=\widetilde{f}_2(y_0)$, 则 $\widetilde{f}_1=\widetilde{f}_2$ 。

- 设 $p:\widetilde{X}\to X$ 是覆叠映射,若 $\pi_1(\widetilde{X})=\{e\}$,则称 \widetilde{X} 为**万有覆叠空间**,p 为**万有覆叠映射**。
- X 称为是**半局部单连通**的,如果对任意 $x\in X$,都存在邻域 U_x 满足 $i_*\big[\pi_1(U_x,x)\big]=\{e\}$,其中 i 是 U_x 到 X 的自然嵌入。
- 设 $p:\widetilde{X}\to X$ 是万有覆叠映射,则 X 是半局部单连通的。
- ullet 设 X 道路连通、局部道路连通、半局部单连通,则存在万有覆叠映射 $p:\widetilde{X} o X$ 。

第十九节课

- 设 X 道路连通、局部道路连通、半局部单连通,则对任意子群 $H \subset \pi_1(X,x_0)$,都存在覆叠映射 $p: X_H \to X$ 满足 $p_*(\pi_1(X_H,\widetilde{x}_0)) = H$,其中 $\widetilde{x}_0 \in p^{-1}(x_0)$ 。
- 称覆叠映射 $p_1:\widetilde{X}_1 o X$ 与 $p_2:\widetilde{X}_2 o X$ **同构**,如果存在同胚 $f:\widetilde{X}_1 o\widetilde{X}_2$ 满足 $p_1=p_2f$ 。
- 设 X 道路连通且局部道路连通,则两个道路连通的覆叠空间 $p_1:\widetilde{X}_1\to X$ 与 $p_2:\widetilde{X}_2\to X$ 保基点同构 $(f(\widetilde{x}_1)=\widetilde{x}_2)\iff p_{1*}(\pi_1(\widetilde{X}_1,\widetilde{x}_1))=p_{2*}(\pi_1(\widetilde{X}_2,\widetilde{x}_2))$ 。
- **覆叠空间分类定理**:设X道路连通、局部道路连通、半局部单连通,则以下两条成立:
 - 1. X 的全体道路连通覆叠空间在保基点同构意义下与 $\pi_1(X,x_0)$ 的子群——对应。
 - 2. X 的全体道路连通覆叠空间在同构意义下与 $\pi_1(X,x_0)$ 子群的共轭类——对应。
- 设 $p:\widetilde{X}\to X$ 是覆叠映射,我们称 \widetilde{X} 的一个自同构为 deck 变换。全体 deck 变换构成群 $G(\widetilde{X})$,从而有群作用 $G(\widetilde{X})\curvearrowright \widetilde{X}:f\cdot \widetilde{x}=f(\widetilde{x})$ 。

由提升的唯一性,若 \widetilde{X} 道路连通,且在某个点处 $f\cdot\widetilde{x}_0=\widetilde{x}_0$,则必有 $f=\operatorname{id}_{\widetilde{X}}$ 。

• 覆叠空间 $p:\widetilde{X}\to X$ 称为是**正规**的,如果对任意 $x\in X$ 和 x 的提升 $\widetilde{x}_1,\widetilde{x}_2$,都存在某个 deck 变换将 \widetilde{x}_1 映射到 \widetilde{x}_2 ,即 $G(\widetilde{X})$ 在 $p^{-1}(x)$ 上的作用是传递的。

第二十节课

- 设 X 道路连通且局部道路连通, $p:\widetilde{X} o X$ 是道路连通的覆叠空间。记 $H=p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$
 - 1. p 是正规的 \iff H 是 $\pi_1(X,x_0)$ 的正规子群.
 - 2. 设 N(H) 是 H 的正规化子,则 $G(\widetilde{X})\cong N(H)/H$.

若 p 是正规的,则 $G(\widetilde{X})\cong \pi_1(X,x_0)/H$ 。

若p是万有覆叠映射,则 $G(\widetilde{X})\cong \pi_1(X,x_0)$ 。

- 设 G 是拓扑群,Y 是拓扑空间,考虑群作用 $G \curvearrowright Y$ 。若对任意 $y \in Y$,都存在邻域 U,使得对任意 $g_1 \neq g_2 \in G$,都有 $g_1(U) \cap g_2(U) = \emptyset$,则称该群作用满足条件 (*)。 由 deck 变换构成的群作用 $G(\widetilde{X}) \curvearrowright \widetilde{X}$ 满足条件 (*)。
- 设群作用 $G \curvearrowright Y$ 满足条件 (*),则以下几条成立:

- 1. 商映射 $p: Y \to Y/G$ 是正规的覆叠映射.
- 2. 若Y 道路连通,则G 是映射p 对应的 deck 变换集合.
- 3. 若 Y 道路连通且局部道路连通,则 $G\cong \pi_1(Y/G)/p_*(\pi_1(Y))$.
- 实射影平面 $\mathbb{R}\mathrm{P}^n\ (n\geq 2)$ 的基本群都是 $\mathbb{Z}/2\mathbb{Z}$ 。
- 设点 $v_0,\ldots,v_n\in\mathbb{R}^m$ 满足 v_1-v_0,\ldots,v_n-v_0 线性无关,即不落在某个 n-1 维超平面上,则称这些点的凸包 $[v_0,\ldots,v_n]=\{\sum_{i=0}^n\lambda_iv_i\mid\sum_i\lambda_i=1\}$ 为 n **维单形**,顶点序为 v_0,\ldots,v_n 。

基本单形 $\Delta^n=\{(t_0,\ldots,t_n)\in\mathbb{R}^{n+1}\mid \sum_i t_i=1,\;t_i\geq 0\}$ 。

- n 维单形 $[v_0, \ldots, v_n]$ 的**面**是指 $\{v_0, \ldots, v_n\}$ 的非空子集生成的子单形。 单形的顶点序自然诱导了所有面的顶点序。
- 拓扑空间 X 的**奇异** n **维单形**是指连续映射 $\sigma: \Delta^n \to X$ 。

第二十一节课

- 群 $C_n(X) = \{\sum_{i=1}^m n_i \sigma_i \mid m \in \mathbb{N}, \ n_i \in \mathbb{Z}, \ \sigma_i : \Delta^n \to X \}$ 称为**链群**,其中元素称为 n **链**。定义映射 $\partial_n : C_n(X) \to C_{n-1}(X)$ 为 $\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$,这里 \hat{v}_i 表示去掉顶点 v_i 。将 ∂_n 线性延拓到整个 $C_n(X)$,我们得到一个 $C_n(X)$ 到 $C_{n-1}(X)$ 的群同态,称为**边界同态**。
- $\partial_{n-1}\circ\partial_n:C_n(X)\to C_{n-2}(X)$ 恒等于 0。 由此立即推出 $\mathrm{Im}(\partial_{n+1})\subset\ker(\partial_n)$ 。
- 设 X 是拓扑空间,群 $H_n(X)=\ker(\partial_n)/\mathrm{Im}(\partial_{n+1})$ 称为 X 的 n **维同调群**。 $\ker(\partial_n)$ 中的元素称为**闭链**。 $\mathrm{Im}(\partial_{n+1})$ 中的元素称为**边缘链**。称两个闭链 a,b **同调**,如果 a-b 是边缘链。一般地,如果有一列阿贝尔群··· $\to C_{n+1} \to C_n \to C_{n-1} \to \cdots$ 和同态 $\partial_n:C_n \to C_{n-1}$,满足 $\partial_{n-1}\circ\partial_n=0$,则称此序列为**链复形**。类似定义的 H_n 称为该链复形的 n 维同调群。
- 设X是单点空间,则 $H_n(X)=egin{cases} \mathbb{Z} & n=0 \ 0 & n>0 \end{cases}$
- 设 $\{X_{\alpha}\}_{\alpha\in I}$ 是 X 的道路连通分支,则 $H_n(X)=\bigoplus_{\alpha\in I}H_n(X_{\alpha})$ 。
- 设 X 非空且道路连通,则 $H_0(X)=\mathbb{Z}$ 。 结合上一条可知,对于一般的 X,有 $H_0(X)=\bigoplus_{\alpha\in I}\mathbb{Z}$ 。

- 考虑链复形 $\cdots \to C_2(X) \stackrel{\partial_2}{\to} C_1(X) \stackrel{\partial_1}{\to} C_0(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0$,其中 ϵ 是满同态,则该链复形的同调群 $\widetilde{H}_n(X)$ 称为 X 的**约化同调群**,满足 $H_n(X) = \begin{cases} \widetilde{H}_n(X) \oplus \mathbb{Z} & n=0 \\ \widetilde{H}_n(X) & n>0 \end{cases}$
- 设 $f:X\to Y$ 连续,则 X 上的奇异 n 维单形 σ 可以自然映射到 Y 上的奇异 n 维单形 $f\circ\sigma$ 。记这个映射为 $f_\#$,则 $f_\#$ 可以线性延拓为 $C_n(X)$ 到 $C_n(Y)$ 的同态,满足 $f_\#\circ\partial=\partial\circ f_\#$ 。 $f_\#$ 保持闭链和边缘链,从而诱导了 $H_n(X)$ 到 $H_n(Y)$ 的同态 f_* ,满足 $f_*([\alpha])=[f_\#(\alpha)]$ 。 $(f\circ g)_*=f_*\circ g_*,\ (\mathrm{id}_X)_*=\mathrm{id}_{H_n(X)}.$
- 设 $f,g:X \to Y$ 同伦,则 $f_*=g_*$ 。

第二十二节课

- 设 $f:X \to Y$ 是同伦等价,则 $f_*:H_n(X) \to H_n(Y)$ 是群同构。
- 考虑一列阿贝尔群的同态 $A. = (\cdots \to A_{n+1} \stackrel{f_{n+1}}{\to} A_n \stackrel{f_n}{\to} A_{n-1} \stackrel{f_{n-1}}{\to} \cdots)$ 。称该序列在 A_n 处**正 合**,如果 $\ker(f_n) = \operatorname{Im}(f_{n+1})$ 。称该序列**正合**,若该序列在所有 A_n 处均正合。

 正合序列 $0 \to A \stackrel{f}{\to} B \stackrel{g}{\to} C \to 0$ 称为**短正合列**,其中 f 必为单射,g 必为满射。
- 序列 $0. \to A. \stackrel{f}{\to} B. \stackrel{g}{\to} C. \to 0.$ 称为**链复形的短正合列**,如果 A., B., C. 都是链复形,f., g. 是相应的链映射,且满足所有 $0 \to A_n \stackrel{f_n}{\to} B_n \stackrel{g_n}{\to} C_n \to 0$ 都是短正合列。
- 给定链复形的短正合列 $0. \to A. \stackrel{f.}{\to} B. \stackrel{g.}{\to} C. \to 0.$,定义**边界映射** $\partial: H_n(C.) \to H_{n-1}(A.)$ 如下:设 $c \in C_n$ 是闭链,选取 $b \in B_n$ 满足 $g_n(b) = c$ 。注意 $g_{n-1} \circ \partial_n(b) = \partial_n \circ g_n(b) = 0$,因此 $\partial_n(b) \in \ker(g_{n-1}) = \operatorname{Im}(f_{n-1})$ 。设 $a \in A_n$ 满足 $f_{n-1}(a) = \partial_n(b)$,我们令 $\partial([c]) = [a]$ 。

可以证明 ∂ 是良定义的,并且是群同态。

• 记号同上,序列 $\cdots \to H_{n+1}(C.) \stackrel{\partial}{\to} H_n(A.) \stackrel{f_*}{\to} H_n(B.) \stackrel{g_*}{\to} H_n(C.) \to \cdots$ 也是正合的,称为**同调长正合列**。

第二十三节课

• 设 X 是拓扑空间,子集 $A \subset X$ 。令 $C_n(X,A) = C_n(X)/C_n(A)$,则序列 $\{C_n(X,A)\}$ 在 链复形 $\{C_n(X)\}$ 的边界同态 ∂ 诱导下也构成链复形,对应的同调群 $H_n(X,A)$ 称为**相对同调** 群。

 $H_n(X,A)$ 中的代表元称为**相对闭链**: $\alpha\in C_n(X)$,满足 $\partial\alpha\in C_{n-1}(A)$ 。 $H_n(X,A)$ 中的单位元称为**相对边缘链**: $\alpha=\partial\beta+\gamma$,其中 $\beta\in C_{n+1}(X)$, $\gamma\in C_n(A)$

- 记 i 为嵌入映射,j 为商映射,我们有短正合列 $0\to C_n(A)\stackrel{i}{\to} C_n(X)\stackrel{j}{\to} C_n(X,A)\to 0$ 。 由此可以构造相应的同调长正合列(更多讨论见 Hatcher 书第 117-118 页)。
- 设 $f:(X,A) \to (Y,B)$,则 f 诱导了 $f_\#:C_n(X,A) \to C_n(Y,B)$ 以及相应的 f_* 。
- 设 f,g:(X,A) o (Y,B) 关于 F 同伦,且 $F|_{A imes I}\subset B$,则它们诱导的 f_* 和 g_* 相等。
- 切除定理: 设 $Z\subset A\subset X$ 满足 $\overline{Z}\subset {\rm Int}(A)$,则自然嵌入 $(X-Z,A-Z)\to (X,A)$ 诱导了 $H_n(X-Z,A-Z)$ 到 $H_n(X,A)$ 的同构。

等价地,设 $A,B\subset X$ 满足 $\mathrm{Int}(A)\cup\mathrm{Int}(B)=X$,则嵌入 $(B,A\cap B)\to (X,A)$ 诱导了 $H_n(B,A\cap B)$ 到 $H_n(X,A)$ 的同构。

第二十四节课

- 设非空闭集 $A\subset X$,使得存在开集 U,满足 $A\subset U\subset X$,且 A 是 U 的形变收缩。考虑黏合映射 $q:(X,A)\to (X/A,A/A)$,则 q_* 是 $H_n(X,A)$ 和 $H_n(X/A,A/A)\cong \widetilde{H}_n(X/A)$ 的同构。
- 设有一族拓扑空间 $\{X_{\alpha}\}$ 和点 $x_{\alpha} \in X_{\alpha}$,使得单点集 $\{x_{\alpha}\}$ 满足上面 A 的条件,则 X_{α} 到 $\bigvee_{\alpha} X_{\alpha}$ 的嵌入 i_{α} 诱导了同构 $\bigoplus_{\alpha} i_{\alpha*} : \bigoplus_{\alpha} \widetilde{H}_n(X_{\alpha}) \to \widetilde{H}(\bigvee_{\alpha} X_{\alpha})$ 。

 注:这里 $\bigvee_{\alpha} X_{\alpha}$ 的黏合点是 $x_{\alpha} \in X_{\alpha}$ 。
- $m{ullet} H_i(S^n) = egin{cases} \mathbb{Z} & i=0,n \ 0 & i
 eq 0,n \end{cases}$

由此可以证明任意维的 Brouwer 不动点定理。

- 设 $U \subset \mathbb{R}^m$ 和 $V \subset \mathbb{R}^n$ 为非空开集,如果 U 和 V 同胚,则 m=n。
- 任意 $x \in X$,群 $H_n(X, X \{x\})$ 称为 x 处的**局部同调群**。若 $\{x\}$ 是闭集,则对任意邻域 U ,根据切除定理,都有 $H_n(X, X \{x\}) = H_n(U, U \{x\})$ 。
- 设 $f:S^n\to S^n$,则 $f_*:H_n(S^n)\to H_n(S^n)\cong\mathbb{Z}$ 。设 $H_n(S^n)=\langle\alpha\rangle$ 且 $f_*(\alpha)=d\alpha$,则称 d为 f的**映射度**,记作 $\deg(f)$ 。

 $\deg(\mathrm{id}_{S^n})=1$ 。若f非满射,则 $\deg(f)=0$ 。

第二十五节课

- $f \simeq g \Longrightarrow f_* = g_* \Longrightarrow \deg(f) = \deg(g)$.
- $(f \circ g)_* = f_* \circ g_* \Longrightarrow \deg(f \circ g) = \deg(f) \deg(g)_{\bullet}$
- 若 $f: S^n \to S^n$ 是同伦等价,则 $\deg(f) = \pm 1$ 。
- 若 $f:S^n o S^n$ 是沿某一维度的镜面反射,则 $\deg(f)=-1$ 。
- 若 $f:S^n o S^n$ 是对径映射,则 $\deg(f)=(-1)^{n+1}$ 。
- 若 $f:S^n o S^n$ 没有不动点,则 $\deg(f)=(-1)^{n+1}$ 。

- n 是奇数 \iff S^n 有一个处处非零的连续切向量场。
- 称拓扑空间 X 为**胞腔复形**,如果其可以由如下方法构造出来:
 - 1. X^0 是一些点的不交并,这些点称为 0 **维胞腔**.
 - 2. 设 $\{D^n_\alpha\}$ 是一族 n 维球, $\phi_\alpha:\partial D^n_\alpha\to X^{n-1}$ 连续,将 ϕ_α 视为贴映射,把所有 D^n_α 黏合到 X^{n-1} 上,所得空间 X^n 称为 n **维骨架**, D^n_α 的内部 e^n_α 称为 n **维胞腔**.
 - 3. 若上述步骤在第 n 步停止,令 $X=X^n$,称为 n **维胞腔复形**.
 - 4. 否则令 $X = \bigcup_n X^n$,并在其上装备弱拓扑,称为**无穷维胞腔复形**.
- 每个胞腔有特征映射 $\Phi_{lpha}:D_{lpha}^n o X$,满足 $\Phi_{lpha}|_{\partial D_{lpha}^n}=\phi_{lpha}$,其定义为:

$$D^n_{lpha} \stackrel{ ext{id}}{
ightarrow} L^n_{eta} \sqcup X^{n-1} \stackrel{ ext{shop}}{
ightarrow} X^n \stackrel{ ext{id}}{
ightarrow} X$$

- 闭集 $A \subset X$ 称为**子胞腔复形**,如果 $A \in X$ 中一些胞腔的并。
- 设 X 是胞腔复形,以下几条成立:

1.
$$H_k(X^n,X^{n-1})=egin{cases} ext{ the }X ext{ in }n ext{ 维胞腔生成的自由阿贝尔群} & k=n \ 0 & k
eq n \end{cases}.$$

- 2. 若 k > n,则 $H_k(X^n) = 0$.
- 3. 对 $k \leq n-1$, X^n 到 X 的嵌入 i 诱导了 $H_k(X^n)$ 到 $H_k(X)$ 的同构.

第二十六节课

• 设 X 是胞腔复形,根据上一定理,有如下交换图表(其中斜线为正合列):

- $d_n d_{n+1} = 0$,因此图中 $\{H_n(X^n, X^{n-1})\}$ 构成链复形,对应同调群 $H_n^{CW}(X)$ 称为**胞腔同调** 群。
- $H_n^{CW}(X)=H_n(X)$, 即胞腔同调群等价于奇异同调群。
- 对于 n>1,有 $d_n(e^n_\alpha)=\sum_\beta d_{\alpha\beta}e^{n-1}_\beta$,其中 $d_{\alpha\beta}$ 是复合映射 $S^{n-1}_\alpha\stackrel{\phi_\alpha}{\to}X^{n-1}\stackrel{\pi}{\to}S^{n-1}_\beta$ 的映射 的度, ϕ_α 为贴映射, π 为黏合映射(将 $X^{n-1}-e^{n-1}_\beta$ 黏合成一点)。

第二十七节课

- 实射影空间 $\mathbb{R}\mathrm{P}^n$ 的胞腔链复形形如 $\cdots \overset{0}{ o} \mathbb{Z} \overset{2}{ o} \mathbb{Z} \overset{0}{ o} \mathbb{Z} o 0$.
- Mayer-Vietoris 序列: 设 $A,B\subset X$ 且 $X=\mathrm{Int}(A)\cup\mathrm{Int}(B)$,记 $\beta=\{A,B\}$,定义 $C_n^\beta(X)$ 为 $\{\sum n_i\sigma_i\in C_n(X):\mathrm{Im}(\sigma_i)\subset A \text{ or }\mathrm{Im}(\sigma_i)\subset B\}$,则 $\{C_n^\beta(X)\}$ 是 $\{C_n(X)\}$ 的子复形,且 $C_n^\beta(X)$ 到 $C_n(X)$ 的嵌入是链同伦等价,从而二者给出相同的同调群。 考虑短正合列 $0\to C_n(A\cap B)\overset{\phi}{\to} C_n(A)\oplus C_n(B)\overset{\psi}{\to} C_n^\beta(X)\to 0$,其中 $\phi(x)=(x,-x)$, $\psi(x,y)=x+y$,由此诱导的长正合列称为 Mayer-Vietoris 序列。 也可以定义约化版本的 MV 序列,将对应同调群换成约化同调群即可。
- 任意有限生成 Abel 群 G 都可以分解成 $\mathbb{Z}^n\oplus T$ 的形式,其中 T 只包含有限阶的元素,n 为群 G 的**秩**。若 $0\to A\to B\to C\to 0$ 是有限生成 Abel 群的短正合列,则 B 的秩等于 A,C 的秩之 和。
- 设 X 是拓扑空间,且存在 N 使得 n>N 时 $H_n(X)=0$ 。进一步设 $0\leq k\leq N$ 时, $H_k(X)$ 都是有限生成的。定义**欧拉示性数** $\chi(X)=\sum_{k=0}^N (-1)^k {\rm rank}(H_k(X))$,其中求和项 ${\rm rank}(H_k(X))$ 也称为第 k 个**贝蒂数**,记作 $\beta_k(X)$ 。
- **欧拉-庞加莱定理**: 设 X 是 n 维胞腔复形,则 $\chi(X) = \sum_{k=0}^{N} (-1)^k a_k(X)$,其中 $a_k(X)$ 为 X 的 k 维胞腔个数。
- 设 G 是 Abel 群,定义 $C_n(X;G)=\{\sum_{i=1}^m n_i\sigma_i\mid m\in\mathbb{N},\ n_i\in G,\ \sigma_i:\Delta^n\to X\}$,其对应的链复形所给出的同调群 $H_n(X;G)$ 称为**系数在** G 中的同调群。

也可以类似定义相对同调群 $H_n(X,A;G)$ 和约化同调群 $\widetilde{H}_n(X;G)$ 等。

第二十八节课

- Borsuk-Ulam 定理:设 $g:S^n o \mathbb{R}^n$ 连续,则存在 $x \in S^n$ 使得 g(x) = g(-x)。
- 设 $f:S^n o S^n$ 是奇函数,即f(-x)=-f(x),则 $\deg(f)$ 为奇数。
- 设 $\{A_1,\ldots,A_{n+1}\}$ 是 S^n 的闭覆盖,则存在 k 和 $y\in S^n$ 满足 $\{y,-y\}\subset A_k$ 。
- 设集族 $\{A_j\}_{j\in J}$,其中每个 A_j 包含某些单形 $\Delta_i^{n_i}$ 的一些面,且每个 A_j 中的面都有相同的维度。定义 K 为 $\bigsqcup_{i\in I}\Delta_i^{n_i}$ 按如下方式黏合得到的空间:每个 A_j 中的所有面都通过线性同胚黏合到同一个单形上。这样定义的 K 称为 Δ **复形**。
- 一个 Δ 复形 K 称为是**单纯复形**,如果 K 中的每个单形都由其顶点唯一确定。 单纯复形是 Δ 复形, Δ 复形是胞腔复形。
- 设 X 是拓扑空间,X 的**三角剖分**是指一个 Δ 复形 K 和同胚 $h:K\to X$ 。 若能找到 K 和 h,空间 X 就称为**可三角剖分的**。

第二十九节课

• 设 X 是 Δ 复形, X 中的 n 维开单形对应了胞腔复形中的 n 维胞腔。对每个开单形 e^n_α ,定义特征映射 $\sigma_\alpha:\Delta^n\to X$ 为 Δ^n 到 $\overline{e^n_\alpha}$ 的自然同胚。

将 σ_{lpha} 限制在 Δ^n 的一个面上,可以得到某 n-1 维开单形的特征映射。

- n 维单形 $[v_0, \ldots, v_n]$ 的一个**排序**是指单形 $[v_{s(0)}, \ldots, v_{s(n)}]$, 其中 s 是 0 到 n 的一个置换。将全体置换分成奇偶两类,则 $[v_0, \ldots, v_n]$ 的一个**定向**是指其顶点排序所对应的置换等价类的选取。
- 设 X 是 Δ 复形,定义 $\Delta_n(X)$ 为 X 中所有定向 n 维单形生成的自由阿贝尔群,其中同一单形的相同定向视为相等。 $\Delta_n(X)$ 中的元素形如 $\sum_{\alpha=1}^m n_\alpha e_\alpha^n$,也称为 n 链。

设 σ_lpha 是 e^n_lpha 的特征映射,有时也把 $\Delta_n(X)$ 中的元素写成 $\sum_{lpha=1}^m n_lpha \sigma_lpha$ 。

- 按奇异同调群的方法定义 $\partial_n:\Delta_n(X)\to\Delta_{n-1}(X)$,可以验证 $\partial_{n-1}\circ\partial_n=0$ 。于是 $\{\Delta_n(X)\}$ 构成链复形,对应的同调群 $H_n^\Delta(X)$ 称为**单纯同调群**。
- 设 $f:K\to K$ 连续,其中 K 是 n 维的有限单纯复形(只包含有限多个单形),则 f 诱导了线性映射 $f_*^{(k)}:H_k(K;\mathbb{Q})\to H_k(K;\mathbb{Q})$ 。定义 Lefschetz 数 Λ_f 为 $\sum_{k=0}^n (-1)^k \mathrm{trace} \big(f_*^{(k)}\big)$

Lefschetz 不动点定理: 若 $\Lambda_f \neq 0$, 则 f 一定有不动点。

- 给定有限单纯复形 K, K 的**重心重分** $K^{(1)}$ 由如下方式构造:记 K 中所有单形的重心集合为 A, 子集 $\{\hat{A}_1,\ldots,\hat{A}_k\}\subset A$ 构成 $K^{(1)}$ 中的单形 \iff 存在置换 s 满足 $A_{s(0)}\subsetneqq\cdots\subsetneqq A_{s(k)}$,其中 \hat{A}_i 是单形 $A_i\subset K$ 的重心。进一步,我们递归地定义 $K^{(m+1)}=[K^{(m)}]^{(1)}$ 。
- 设 K 和 L 都是有限单纯复形,映射 $s:K\to L$ 称为是**单纯**的,如果以下两条成立:
 - 1. 若 $A \in K$ 中单形,则 $s(A) \in L$ 中单形.
 - 2. 设 $A=[v_0,\ldots,v_k]$,则 $s\left(\sum_{i=0}^k t_i v_i\right)=\sum_{i=0}^k t_i s(v_i)$,这里 $\sum t_i=1$, $t_i\geq 0$. 注意 s(A) 的维数可以比 A 低。
- 设 $f:K \to L$ 连续,则当 m 足够大时,存在 $f:K^{(m)} \to L$ 的单纯估计 $s:K^{(m)} \to L$ 。

第三十节课

• Hopf trace theorem: 设 K 是 n 维有限单纯复形, $f: K \to K$ 满足 $f(K^k) \subset K^k$, 这里 K^k 是 K 的 k 维骨架, 则有 $\sum_{k=0}^n (-1)^k \mathrm{trace} \big(f_*|_{H_k(K^k,K^{k-1};\mathbb{Q})}\big) = \sum_{k=0}^n (-1)^k \mathrm{trace} \big(f_*^{(k)}\big) = \Lambda_f$ 。

特别地,当 $f=\mathrm{id}_K$ 时,定理退化为欧拉-庞加莱定理。

• 设 G 是群,形如 $[g,h]=ghg^{-1}h^{-1}$ 的元素称为**交换子**,其中 $g,h\in G$ 。令 N 为全体交换子生成的子群,则 N 正规,相应的商群 $G^{ab}=G/N$ 称为 G 的**阿贝尔化**。

• 设 X 是拓扑空间,则 $H_1(X)$ 可视为 $\pi_1(X)$ 的阿贝尔化。