IN THE CLAIMS

Claim 1 (Currently Amended): A device to analyze or reconstruct one or more a

Please amend the claims as follows:

signal signals Ij coming from one or more a light sources, source, comprising at least:

[[•]] means [[to]] for separate separating the signals Ij signal into at least two input signals;

Ij1 and Ij2,

[[•]] at least two channels V_{17} , V_{2} respectively possessing a gain G_{17} , G_{2} and a dynamic range, D_{17} , D_{27} , said channels having are each configured to have a converter tube, at least one sensor, and being adapted to obtain, at output, a signal Ij1, I'j2 to generate at least one output signal with amplitudes $A_{11}(t)$, $A_{12}(t)$ a first amplitude $A_{11}(t)$ and a second amplitude $A_{12}(t)$; and

[[•]] a device for the processing configured to process [[of]] the output signals, I'j1, I'j2 adapted to memorizing wherein the device configured to process includes a memory unit configured to store at least one of the first amplitude $A_{11}(t)$ and second amplitude $A_{12}(t)$ $A_{11}(t)$, $A_{12}(t)$, of at least one of the two output signals I'j1, I'j2 when I'j1 and/or I'j2 one of the output signals is below a threshold value [[S_{max}]] and to determining a determination unit configured to determine [[the]] an amplitude [[A₁(t)]] of the corresponding signal from the light source, [[I'j.]] and

said converter tubes are configured to convert the input signal into an electron beam that impacts a screen and said sensor is configured to sense an image on the screen and generate the output signal.

Claim 2 (Currently Amended): [[A]] The device according to claim 1, wherein the signal processing device configured to process further comprises: works as follows:

for a signal I'; corresponding to a given spatial position j

- if the amplitude $A_{ji}(t)$ is smaller than or equal to a threshold value S_{max} then the processing device stores the pair of values $(A_{ji}(t), t)$,
- a device configured to store a pair of values $(A_{jl}(t),t)$, where t is time, if the first amplitude is smaller than or equal to the threshold value;
- if the amplitude $A_{j1}(t)$ is greater than the threshold value S_{max} , then the processing device stores the pair of values $(A_{j2}(t), t)$ and

a device configured to store a pair of values $(A_{i2}(t),t)$, where t is time, if the second amplitude is greater than the threshold value; and

[[•]] a device configured to determine, from the stored values $(A_{j1}(t), t)$, $(A_{j2}(t), t)$, the device determines the <u>a</u> corresponding values <u>values</u> of amplitude $A_{j}(t)$ in order to obtain <u>of</u> the signal <u>from the light source.</u>[[I'_j.]]

Claim 3 (Currently Amended): [[A]] The device according to one of the claims claims 1 or 2, wherein said means [[of]] for separating the signal I have from the light source has an attenuation coefficient K determined so that K is smaller than or equal to the dynamic range of at least one of said channels. V_1 , V_2 .

Claim 4 (Currently Amended): [[A]] The device according to elaim 3, claims 1 or 2, wherein the means [[of]] for separation separating have a value of has an attenuation coefficient K with a value that is substantially equal to the dynamic range of at least one of said channels. V_1 , V_2 .

Claim 5 (Currently Amended): [[A]] <u>The</u> device according to one of the claims 1 [[to 4]] <u>or 2</u>, wherein the sensors are streak cameras.

Claim 6 (Currently Amended): [[A]] The device according to one of the claims 1 [[to 5]] or 2, comprising:

n channels having a dynamic range, [[D_n,]] where n is an integer, and

(n-1) means [[of]] <u>for</u> separating the signal. <u>or signals I_i-</u>

7. (Canceled)

Claim 8 (Currently Amended): A method to analyze of analyzing a signal from a light source [[I_j]] with a wide dynamic range, wherein it comprises at least the following steps: comprising steps of:

[[(a)]] separating the signal to be analyzed into at least two input signals; I_{j+} , I_{j-2} ,

[[(b)]] making each <u>input</u> signal I_{j1} , I_{j-2} go through at least one channel V_1 , V_2 comprising including a converter tube, at least one sensor, <u>and</u> each of the channels having a dynamic range; D_1 , D_2 ,

converting the input signal into an electron beam that illuminates a screen and said sensor senses an image on the screen and generates an output signal.

[[(c)]] memorizing each <u>output</u> signal $\frac{1}{1}$ -and $\frac{1}{1}$ -and $\frac{1}{1}$ -and the two channels $\frac{1}{1}$ -and $\frac{1}{1}$ -and

(d) reading [[the]] values of the first amplitude $A_{jl}(t)$ and comparing each of the values with a threshold value; [[S_{max}]]

[[(e)]] if [[Aj1(t)]] the first amplitude $A_{j1}(t)$ is smaller than the threshold value [[S_{max}]], memorizing the value of the amplitude $A_{j1}(t)$ and [[the]] a corresponding instant t, where t is time;

[[(f)]] if [[Ajl1(t)]] the first amplitude $A_{j1}(t)$ is greater than the threshold value, [[S_{max},]] then memorizing the value $A_{j2}(t)$ and [[the]] corresponding instant t, where t is time; [[(g)]] determining the resultant amplitude of the signal from the light source [[Aj(t)]] from [[the]] pairs of values having an amplitude $\frac{(A_{j1}(t), t); (A_{j2}(t), t)]}{(A_{j1}(t), t); (A_{j2}(t), t)}$.

Claim 9 (Currently Amended): [[A]] The method according to claim 8, wherein the signal from a light source is split up separated into several signals, I_j-with j varying spatially, and wherein the steps of claim 8 (a) to (g) are reiterated for each of the values of j. of the separated signals.

Claim 10 (Currently Amended): [[A]] The method according to one of the claims 8 and 9 claims 8 or 9, wherein the threshold value [[S_{max}]] corresponds to the value of saturation of the sensor with the smallest dynamic range.

Claim 11 (Currently Amended): [[A]] The method according to one of the claims 8 to 10, claims 8 or 9, wherein a sensor comprises a streak camera.

Claim 12 (Currently Amended): [[A]] The method according to one of the claims 8 to 10, claims 8 or 9, wherein the signal from the light source to be analyzed I_j corresponds to [[the]] a projection of a single laser beam through a slot.

Claim 13 (Currently Amended): [[A]] The method according to one of the claims 8 to 10, claims 8 or 9, wherein the analyzed signal [[I_j]] is a linear image coming from a spectrometer or [[the]] a section of a physical phenomenon.

Application No. 09/864,297 Reply to Office Action of September 22, 2004

Claim 14 (Currently Amended): [[A]] The method according to one of the claims 8 to 10, claims 8 or 9, wherein the signal from a light source to be analyzed I_j is a signal formed by a row of optic fibers, each of the fibers producing a signal having an index j.