

- * Dr Judith Orasanu (NASA Ames Research Center)
- * Dr Susannah Paletz (University of Pittsburgh)
- * Dr Kathy Mosier (San Francisco State University)
- * Dr Ute Fisher (Georgia Institute of Technology)
- * Ronald Miller (Dell Systems/NASA Ames Research Center)
- * Don Gyles (University of South Australia)
- * Funding
 - * This research was funded by the Federal Aviation Authority through Inter Agency Agreement #DTFAWA-10-X-80005 with NASA Ames Research Center.

- * Emphasise the complexity of coordination in ATC
- * Outline NextGen Technologies
- * Identify some of the common ways in which coordination breaks down
- * Place these breakdowns in a theoretical framework of team functioning
- * Examine the extent to which NextGen will change these breakdowns

- * ATC is a complex coordination system with multiple interacting components (people)
- * Has both distributed teamwork and co-located teamwork
- * Has formal (rule-book) and informal (opportunistic) work practices
- * Is safety-critical

- * The FAA has forecasted that air traffic in the USA will double over the next two decades
- * In order to meet this increased level of demand new technologies will need to be introduced
- * These new technologies promise to provide considerable benefits in terms of
 - enhancing operations
 - * improving safety
- * However, there needs to be a thorough human factors evaluation of these systems

- * Automatic Dependent Surveillance-Broadcast (ADS-B)
- * System-Wide Information Management (SWIM)
- * NextGen Data Communications
- * NextGen Network Enabled Weather (NNEW)
- * National Airspace System Voice Switch (NVS)

"A breakdown occurs when there is a failure of coordinated decision making that leads to a temporary loss of ability to function effectively."

[Bearman, Paletz, Orasanu & Thomas, 2010, p177]

- * 15 former air traffic controllers participated in an hour long interview
- * Interviews were conducted in two parts.
 - * In part one participants were asked to describe situations involving breakdowns in coordination between the controller and flight crew
 - * In part two participants were asked a number of general questions about breakdowns and NextGen technologies.
- * Participants had an average of 28 years of experience and an average age of 55. One participant was female.
- * The data was analyzed using a bottom-up thematic analysis technique

- * Adjacent sector controllers
- * Radar controller (r-side) and assistant (d-side)
- * Relieving and handing-over controller
- * Instructors and trainees,
- * Supervisors and controllers
- * Oceanic controllers and the service that relayed information to the pilots.

- * Using non-standard terminology and incorrect format
- * Saying one thing and meaning something else
- * Misunderstanding the intent of other controllers
- * Not being clear about what authority has been transferred when another controller requests control of an aircraft in their airspace

- * Forgetting to transfer control of aircraft to the next controller
 - * Changes to the structure of sectors
- * Neglecting to pass on information during handover
- * Information about flow rates weren't always passed on to the controller
- * Neglecting to pass on information that would have been extremely useful to another controller

- * Neglecting to watch what the other controller was doing when there was an assistant
 - * D-side controllers acting in unexpected ways
- * Perceiving information without really comprehending it
- * Instructors being out of the loop

- * Different comfort levels with non-standard solutions
- * Personality
 - * Ongoing conflict between controllers
 - * Non-communicative people
 - * Prickly individuals
- * Unprofessional behaviour
- * Expectation
 - * People taking short-cuts (e.g. dropping call signs)
 - * Assuming that the other controller will do something

- * Dividing a sector into two
- * Aircraft falling between sector boundaries
- * Handing off an aircraft that does not fulfil the requirements for the next controller
- * Noise in the control rooms
- * Incorrect data entry

Burke, Stagl, Salas, Pierce, and Kendall (2006)

- * It seems likely that NextGen technologies will reduce at least some of these causes of breakdowns because of
 - * Automation reducing the interaction between controllers
 - * Datalink communications
 - * The ability to drag and drop routes
 - * Common information sources
- * However, NextGen technologies are still at an early stage of implementation
- * There are likely to be other issues that are created by NextGen technologies that need to be considered

- * ATC represents a complex coordination network
- * A number of causes of breakdowns could be identified
- * Breakdowns tend to disrupt controllers shared situation awareness
- * NextGen Technologies will reduce some of these issues