

Pontifícia Universidade Católica do Rio de Janeiro Centro Técnico Científico Departamento de Engenharia Elétrica ELE2345 - Data Science

# Regressão: Generalized Additive Model (GAM)

Marcelo Vieira Aguiar

#### **Contexto**

- **Autores:** Trevor Hastie e Robert Tibshirani (1986)
  - Professores do departamento de estatística da Universidade de Stanford
- Generalized Additive Model GAM (Modelo Aditivo Generalizado)
  - Algoritmo de Regressão
  - Aprende relações não lineares
  - Flexível
  - Generalização em relações complexas entre variáveis independentes e dependentes

Monographs on Statistics and Applied Probability 43

# Generalized Additive Models

T.J. Hastie and R.J. Tibshirani

CHAPMAN & HALL/CRC

#### **Contexto**

#### Regressão Polinomial

• Com aumento do grau, há overfitting.

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n$$





#### • Regressão via Step Functions

Não se ajusta bem em dados não lineares

$$\hat{y} = \beta_0 + \beta_1 c_1(x) + \beta_2 c_2(x) + \dots + \beta_n c_n(x)$$

Se 
$$(0.2 \le x < 0.4, \ ent \tilde{a}o \ c_1(x) = 1 \Rightarrow \beta_1 = -0.9$$



#### **Contexto**

#### • Regressão por Splines

- Separa dados por regiões.
- Cada região irá ser ajustada por um polinômio de terceiro grau.
- Transição suave
  - Primeira e segunda derivadas contínuas no ponto de separação (restrição)
- Exemplo: 10 splines cubics



#### **GAM**

- Conceito
  - Regressão linear com múltiplas variáveis

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$





- $f_1$ ,  $f_2$  e  $f_n$  são as funções base e podem ser qualquer função (spline, step function, linear)
  - Se todas funções base forem linear, o GAM se torna uma regressão linear.
- Processo de ajuste dos  $\beta'$ s e das funções base é feito de forma conjunta pelo método dos mínimos quadrados
- Aplicações em diferentes áreas onde as variáveis são complexas e não lineares, como na modelagem de curvas e previsão de tendência.
  - Modelagem não linear mantendo a interpretabilidade do modelo.

- Biblioteca pyGAM
- Linear terms: 1()

```
from pygam import GAM
from pygam import l
import matplotlib.pyplot as plt

modelo = GAM(1(0))

modelo.fit(X, y)

y_pred = modelo.predict(X)

plt.figure(figsize=(8, 6))
plt.scatter(X, y, color='black', alpha=0.5)
plt.title("GAM como uma regressão linear")
plt.xlabel("y")
plt.ylabel("x")
plt.scatter(d["x"].values, y_pred, color='#FF9999', alpha=0.5)
plt.grid(True)
plt.show()
```

#### Código no GitHub



• Factor terms: f()

```
modelo = GAM(f(0))
intervalos = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
rotulos = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Categorizando x
X_rotulo = pd.cut(X, bins=intervalos, labels=rotulos, right=False)
modelo.fit(X_rotulo, y)
y_pred = modelo.predict(X_rotulo)
plt.figure(figsize=(8, 6))
plt.scatter(X, y, color='black', alpha=0.5)
plt.scatter(X, y_pred, color='#FF9999', alpha=0.5)
plt.title("Step Functions")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.show()
```



• Spline terms: s()

```
modelo = GAM(s(0, n_splines=16))

modelo.fit(X, y)

y_pred = modelo.predict(X)

plt.figure(figsize=(8, 6))
plt.scatter(X, y, color='black', alpha=0.5)
plt.scatter(X, y_pred, color='#FF9999', alpha=0.5)
plt.title("GAM com spline")
plt.xlabel("y")
plt.ylabel("x")
plt.grid(True)
plt.show()
```

```
print("Coeficientes", modelo.coef_)
print("Quantidade coeficientes", len(modelo.coef_))

✓ 0.0s

Coeficientes [ 0.93360326  0.57064711  0.11847733 -0.55832888 -0.99033304 -1.22763869
-1.16223178  1.01894213  1.8357214  0.55285941  0.80869567  0.77482436
  0.2311301  -0.31070271 -0.91746293 -1.5346375  0.14356554]
Quantidade coeficientes 17
```



- Hiperparâmetros pyGAM
  - Distribution
    - Normal
      - Dados contínuos que seguem uma distribuição normal
    - Gamma
      - Dados contínuos positivos com uma distribuição assimétrica
    - Inv\_gauss
      - Dados contínuos positivos com uma distribuição de cauda longa
  - Link function
    - Função de link que conecta a variável dependente (target) ao preditor
      - Identity
      - Logit
      - Inverse
      - Log
      - Inverse-squared

- Hiperparâmetros pyGAM
  - Link function
    - Exemplo para link igual a 'Log'.

$$X = [1, 2, 3, 4, 5]$$
  
 $y = [2, 3, 6, 8, 11]$ 

Modelo linear:  $\eta = \beta_0 + \beta_1 X_n$ ,  $n \in [1, 5]$ .

Onde, 
$$\beta_0 = 0.51 \text{ e } \beta_1 = 0.38$$

Para 
$$X = 1$$
,  $\eta = 0.51 + 0.38 * 1 = 0.89$   
Para  $X = 2$ ,  $\eta = 0.51 + 0.38 * 2 = 1.27$   
Para  $X = 3$ ,  $\eta = 0.51 + 0.38 * 3 = 1.65$   
Para  $X = 4$ ,  $\eta = 0.51 + 0.38 * 4 = 2.03$   
Para  $X = 5$ ,  $\eta = 0.51 + 0.38 * 5 = 2.41$ 

Para 
$$\eta = 0.89$$
,  $\hat{y} = e^{0.89} = 2.43$   
Para  $\eta = 1.27$ ,  $\hat{y} = e^{1.27} = 3.56$   
Para  $\eta = 1.65$ ,  $\hat{y} = e^{1.65} = 5.21$   
Para  $\eta = 2.03$ ,  $\hat{y} = e^{2.03} = 7.61$   
Para  $\eta = 2.41$ ,  $\hat{y} = e^{2.41} = 11.13$ 

- Exemplo com mais de uma variável
  - Aluguel de bicicletas
    - Target é 'cnt' (quantidade de bicicletas alugadas no dia)

| df_data  ✓ 0.0s |         |            |        |    |      |         |         |            |            |          |           |          |           |        |            |      |
|-----------------|---------|------------|--------|----|------|---------|---------|------------|------------|----------|-----------|----------|-----------|--------|------------|------|
|                 | instant | dteday     | season | yr | mnth | holiday | weekday | workingday | weathersit | temp     | atemp     | hum      | windspeed | casual | registered | cnt  |
| 0               | 1       | 2011-01-01 | 1      | 0  | 1    | 0       | 6       | 0          | 2          | 8.175849 | 7.999250  | 0.805833 | 0.160446  | 331    | 654        | 985  |
| 1               | 2       | 2011-01-02 | 1      | 0  | 1    | 0       | 0       | 0          | 2          | 9.083466 | 7.346774  | 0.696087 | 0.248539  | 131    | 670        | 801  |
| 2               | 3       | 2011-01-03 | 1      | 0  | 1    | 0       | 1       | 1          | 1          | 1.229108 | -3.499270 | 0.437273 | 0.248309  | 120    | 1229       | 1349 |
| 3               | 4       | 2011-01-04 | 1      | 0  | 1    | 0       | 2       | 1          | 1          | 1.400000 | -1.999948 | 0.590435 | 0.160296  | 108    | 1454       | 1562 |
| 4               | 5       | 2011-01-05 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 2.666979 | -0.868180 | 0.436957 | 0.186900  | 82     | 1518       | 1600 |
|                 |         |            |        |    |      |         |         |            |            |          |           |          |           |        |            |      |
| 726             | 727     | 2012-12-27 | 1      | 1  | 12   | 0       | 4       | 1          | 2          | 3.945849 | -1.041628 | 0.652917 | 0.350133  | 247    | 1867       | 2114 |
| 727             | 728     | 2012-12-28 | 1      | 1  | 12   | 0       | 5       | 1          | 2          | 3.906651 | 0.833036  | 0.590000 | 0.155471  | 644    | 2451       | 3095 |
| 728             | 729     | 2012-12-29 | 1      | 1  | 12   | 0       | 6       | 0          | 2          | 3.906651 | -0.001600 | 0.752917 | 0.124383  | 159    | 1182       | 1341 |
| 729             | 730     | 2012-12-30 | 1      | 1  | 12   | 0       | 0       | 0          | 1          | 4.024151 | -0.707800 | 0.483333 | 0.350754  | 364    | 1432       | 1796 |
| 730             | 731     | 2012-12-31 | 1      | 1  | 12   | 0       | 1       | 1          | 2          | 2.144151 | -1.249858 | 0.577500 | 0.154846  | 439    | 2290       | 2729 |

• Entrada do modelo: sensação térmica

```
modelo = GAM(s(0, n_splines=10))

# Ajustando o modelo aos dados
modelo.fit(df_data["atemp"].values, df_data["cnt"].values)

df_data["prev"] = modelo.predict(df_data["atemp"].values)

plt.figure(figsize=(8, 6))
plt.scatter(df_data["atemp"].values, df_data["cnt"].values, color='black', alpha=0.5)
plt.scatter(df_data["atemp"].values, df_data["prev"].values, color='blue', alpha=0.5)
plt.title("Sensação térmica X Quantidade de biclietas alugadas")
plt.xlabel("atemp")
plt.ylabel("cnt")

plt.grid(True)
plt.show()
```



• Entrada do modelo: sensação térmica, mês, flag de feriado, dia da semana, flag de dia útil e umidade

```
model input = ["atemp", "mnth", "holiday", "weekday", "workingday", "hum"]
✓ 0.0s
['atemp', 'mnth', 'holiday', 'weekday', 'workingday', 'hum']
   modelo = GAM(s(0, n splines=5) + f(1) + f(2) + f(3) + f(4) + s(5, n splines=5), link="log")
   modelo.fit(df_data[model_input].values, df_data["cnt"].values)
   df_data["prev"] = modelo.predict(df_data[model_input].values)
   plt.figure(figsize=(8, 6))
   plt.scatter(df data["atemp"].values, df data["cnt"].values, color='black', alpha=0.5)
   plt.scatter(df data["atemp"].values, df data["prev"].values, color='blue', alpha=0.5)
   plt.title("Sensação térmica X Quantidade de biclietas alugadas")
   plt.xlabel("atemp")
   plt.ylabel("cnt")
   plt.grid(True)
   plt.show()
   a = len(df data["mnth"].unique())
   b = len(df data["holiday"].unique())
   c = len(df data["weekday"].unique())
   d = len(df_data["workingday"].unique())
   print("Quantidade de meses", a)
   print("Identificador de feriado",b)
   print("Quatidade de dias da semana", c)
   print("Identificador de dias úteis", d)
                                                                  len(modelo.coef )
   total = a + b + c + d + 2*5 + 1
   print("Total de coeficientes", total)
                                                              34
Quantidade de meses 12
 Identificador de feriado 2
Quatidade de dias da semana 7
 Identificador de dias úteis 2
 Total de coeficientes 34
```



#### Vantagens e desvantagens

- Vantagens
  - Flexibilidade
  - Interpretabilidade
  - Lida bem com variáveis categóricas
- Desvantagens
  - Quantidade de coeficientes pode ser grande
  - Necessidade de especificação adequada

Código no GitHub



#### Referências

- PyGAM Documentation. (2024). PyGAM: Generalized Additive Models in Python. Acesso em <a href="https://pygam.readthedocs.io/en/latest/notebooks/tour\_of\_pygam.html">https://pygam.readthedocs.io/en/latest/notebooks/tour\_of\_pygam.html</a>
- Clark, M. (2022). Generalized Additive Models. Acesso em <a href="https://m-clark.github.io/generalized-additive-models/introduction.html">https://m-clark.github.io/generalized-additive-models/introduction.html</a>
- UFABC. (2022). Generalized Additive Models (GAM). [Vídeo]. YouTube. Acesso em <a href="https://www.youtube.com/watch?v=QQl4ixKPj2s&ab\_channel=ufabc\_hal">https://www.youtube.com/watch?v=QQl4ixKPj2s&ab\_channel=ufabc\_hal</a>
- UFSJ. (2022). Modelos Aditivos Generalizados (GAM) Aula 1. [Vídeo]. YouTube. Acesso em <a href="https://www.youtube.com/watch?v=VmD0oDer\_kM&ab\_channel=CanaldaEngenhariadeManufaturaeQualidade">https://www.youtube.com/watch?v=VmD0oDer\_kM&ab\_channel=CanaldaEngenhariadeManufaturaeQualidade</a>
- Jackson, S. S. (2022). Generalised Additive Models. In Machine Learning Lecture Notes. Acesso em <a href="https://bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/generalised-additive-models.html">https://bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/generalised-additive-models.html</a>
- Xiao, T. (2022). Introduction to PyGAM. Acesso em <a href="https://tesixiao.github.io/teaching/2022-winter-142a/pyGAM">https://tesixiao.github.io/teaching/2022-winter-142a/pyGAM</a>
- Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, 1(3), 297-318. Acesso em <a href="https://projecteuclid.org/journals/statistical-science/volume-1/issue-3/Generalized-Additive-Models/10.1214/ss/1177013604.full">https://projecteuclid.org/journals/statistical-science/volume-1/issue-3/Generalized-Additive-Models/10.1214/ss/1177013604.full</a>

# **Obrigado!** marcelov.aguiar@gmail.com 27 de maio de 2024