Homework 8 ECE2504 CRN:82729

Jacob Abel

October 17, 2017

Question 1: Determine the propagation delay of the following circuits in terms of the gate propagation delays.

 t_{pdNOT} : propagation delay of an inverter

 t_{pdAND} : propagation delay of a 2-input AND gate t_{pdOR} : propagation delay of a 2-input OR gate

Give your answers in a form similar to $5t_{pdAND} + 2t_{pdOR} + 3t_{pdNOT}$

a) (2 pts) 4x1 multiplexer (see Figure 3-25)

$$t_{pd4x1Mux} = t_{pdNOT} + 2t_{pdAND} + t_{pdOR}$$

b) (2 pts) Full adder (see Figure 3-42)

$$\begin{aligned} t_{pdFA} = & t_{pdAND} + t_{pdOR} + t_{pdXOR} \\ = & t_{pdAND} + t_{pdOR} \\ & + t_{pdAND} + t_{pdOR} + t_{pdNOT} \\ = & 2t_{pdAND} + 2t_{pdOR} + t_{pdNOT} \end{aligned}$$

c) (2 pts) 4-bit ripple carry adder (see Figure 3-43)

$$\begin{split} t_{pdRippleAdder} = & 4t_{pdFA} \\ = & 4(2t_{pdAND} + 2t_{pdOR} + t_{pdNOT}) \\ = & 8t_{pdAND} + 8t_{pdOR} + 4_{pdNOT} \end{split}$$

d) (2 pts) the logic circuit shown in Figure 8-6

$$t_{pd} = t_{pdXOR} + t_{pd4x1Mux}$$

$$= t_{pdAND} + t_{pdOR} + t_{pdNOT}$$

$$+ t_{pdNOT} + 2t_{pdAND} + t_{pdOR}$$

$$= 3t_{pdAND} + 2t_{pdOR} + 2_{pdNOT}$$

e) (2 pts) the arithmetic circuit shown in the Case Study 2 Sample Solution

$$t_{pd} = t_{pdXOR} + t_{pd4x1Mux}$$

$$= t_{pdAND} + t_{pdOR} + t_{pdNOT}$$

$$+ t_{pdNOT} + 2t_{pdAND} + t_{pdOR}$$

$$+ 2t_{pdNOT} + 3t_{pdAND} + 2t_{pdOR}$$

Question 2: (5 pts) Use contraction beginning with a 4-bit adder to design a 4-bit circuit that subtracts 4 from the 4-bit input. The function to be implemented is Z = X - 4. What does contraction mean? Do this:

- Recall the Boolean expressions for full adders. $S_i = A_i \oplus B_i \oplus C_i$ and $C_{i+1} = A_i B_i + A_i C_i + B_i C_i$
- Substitute for the known values in the equations for all four full adders to simplify the expression. For example, if A = 0001, $A_3 = 0$, $A_2 = 0$, $A_1 = 0$, $A_0 = 1$, which will result in terms such as A_3B_3 reducing to 0.
- Recall the necessary B and C_0 inputs to subtract using a 4-bit adder.

$$S_{0} = (A_{0} \oplus 1) \oplus 1 = A_{0} \qquad S_{2} = (A_{2} \oplus 1) \oplus 1 = A_{2}$$

$$C_{0} = A_{0}1 + A_{0}1 + 1(1) = 1 \qquad C_{2} = A_{2}1 + A_{2}1 + 1(1) = 1$$

$$C_{0} = 1$$

$$S_{1} = (A_{1} \oplus 0) \oplus 1 = \overline{A_{1}} \qquad S_{3} = (A_{3} \oplus 1) \oplus 1 = A_{3}$$

$$C_{1} = A_{1}0 + A_{1}1 + 0(1) = 1 \qquad C_{3} = A_{3}1 + A_{3}1 + 1(1) = 1$$

Question 3: (10 pts) Design a combinational circuit that increments its 3-bit input when S=0 and decrements its input when S=1. (Note that incrementing means adding 001 and decrementing means subtracting 001 using 2cm arithmetic.)

a) Design a simplified 2-level circuit plus inverters as needed for the inputs. (Hint: This means use K maps.)

b) Start with a 3-bit ripple carry adder and use a process similar to Case Study 2 to design the circuit.

c) Determine the (2-input) gate count and propagation delay for parts a and b. Use a form similar to Problem 1

$$t_{pdb} = 3t_{pdFA}$$
$$= 6t_{pdAND} + 6t_{pdOR} + 3t_{pdNOT}$$

Question 4: (5 pts) Consider the adder-subtractor circuit shown in the figure below. For the following inputs, determine the values of the outputs S_3 , S_2 , S_1 , S_0 , and C_4 .

S	A	B	$A + (B \oplus S)$	$S_3S_2S_1S_0$	C_4
1	1010	0111	1010+1001	0011	1
0	0111	0110	0111+0110	1001	0
0	1010	1101	1010+1101	0111	1
1	1010	0011	1010+1101	0111	1
1	0111	1001	0111+0111	1110	0

GRADING SCALE

Total: 30 pts

Pts	0	3	7	11	15	18	22	26
Letter Grade	D-	D	C-	С	B-	В	A-	A