

Victor Zottmann

Terminal App Assignment

Acoustics Calculator

Sum and Average of Levels

Sound Level General Calculations Speed of Sound A-Weighting Conversion Level Attenuation Over Distance Level Conversion (Power to Pressure and Vice-Versa)

Reverberation Time

What is Reverberation Time?

Barron, M. (2009). Auditorium Acoustics and Architectural Design. London: Spon Press

Absorption Coefficients

Vary from 0 to 1, where 0 = no absorption; 1 = complete absorption

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
smooth	0.05	0.04	0.02	0.04	0.05	0.05
thin carpet	0.10	0.15	0.25	0.30	0.30	0.30
mineral wool tiles	0.42	0.72	0.83	0.88	0.89	0.80

Absorption =
$$\alpha S$$
,

where:

S = surface area

a = absorption coefficient

Total Absorption =
$$\sum \alpha_i S_i$$

where:

S = surface area

a = absorption coefficient

Sabine RT Equation:

$$T = \frac{0.161V}{A}$$
 in seconds

where:

V = volume of the room

A = total absorption of the room

Norris-Eyring RT Equation:

$$T = \frac{0.16V}{\left[-\ln(1-\overline{\alpha})\right]S} = \frac{0.16V}{-2.3S\log_{10}(1-\overline{\alpha})}$$

where:

V = volume of the room

S = total surface area

a = average absorption coefficient

```
floor_coeffs = {}
ceiling_coeffs = {}
front_wall_coeffs = {}
back_wall_coeffs = {}
left_wall_coeffs = {}
right_wall_coeffs = {}
door_coeffs = {}
window_coeffs = {}
floor_absorption = {}
ceiling_absorption = {}
front_wall_absorption = {}
back_wall_absorption = {}
left_wall_absorption = {}
right_wall_absorption = {}
door_absorption = {}
window_absorption = {}
total_surface_area = 0.0
```

```
module Absorption
  Coefficients = [
    ## Floor
      material: "thin_carpet_concrete",
      coeffs: {
       "125Hz" => 0.10,
        "250Hz" => 0.15,
        "500Hz" => 0.25,
        "1000Hz" => 0.30,
        "2000Hz" => 0.30,
        "4000Hz" => 0.30
end
```

```
while true
  puts "\nCeiling:"
  puts "\n1. Mineral wool tiles with 180mm of airspace".colorize(:green)
  puts "2. Gypsum plaster titles".colorize(:green)
  ceiling_type = gets.chomp.to_i
  case ceiling_type
  when 1
    Absorption::Coefficients.each do |key|
      if key[:material] == "mineral_wool_tiles"
       ceiling_coeffs = key[:coeffs]
      end
     end
    ceiling_coeffs.each do |frequency, coeff|
      ceiling_absorption[frequency] = (coeff * ceiling_surface_area).truncate(2)
    end
    break
  when 2 ...
  else
    invalid_material_error()
  end
end
```

```
total_surface_area = floor_surface_area + ceiling_surface_area + front_wall_surface_area +
back_wall_surface_area + left_wall_surface_area + right_wall_surface_area + door_surface_area +
window_surface_area
absorption_all_surfaces = Array.new
absorption_all_surfaces.push(
  floor_absorption,
  ceiling_absorption,
  front_wall_absorption,
  back_wall_absorption,
  left_wall_absorption,
  right_wall_absorption,
  door_absorption,
  window_absorption
```

```
total_absorption_125Hz = absorption_all_surfaces.map{|freq| freq["125Hz"]}.inject(:+)
total_absorption_250Hz = absorption_all_surfaces.map{|freq| freq["250Hz"]}.inject(:+)
total_absorption_500Hz = absorption_all_surfaces.map{|freq| freq["500Hz"]}.inject(:+)
total_absorption_1000Hz = absorption_all_surfaces.map{|freq| freq["1000Hz"]}.inject(:+)
total_absorption_2000Hz = absorption_all_surfaces.map{|freq| freq["2000Hz"]}.inject(:+)
total_absorption_4000Hz = absorption_all_surfaces.map{|freq| freq["4000Hz"]}.inject(:+)
total_absorption = {
  "125Hz" => total_absorption_125Hz,
 "250Hz" => total_absorption_250Hz,
  "500Hz" => total_absorption_500Hz,
  "1000Hz" => total_absorption_1000Hz,
 "2000Hz" => total_absorption_2000Hz,
 "4000Hz" => total absorption 4000Hz
```

```
avg_absorption_coeff_125Hz = (total_absorption_125Hz / total_surface_area).truncate(2)
avg_absorption_coeff_250Hz = (total_absorption_250Hz / total_surface_area).truncate(2)
avg_absorption_coeff_500Hz = (total_absorption_500Hz / total_surface_area).truncate(2)
avg_absorption_coeff_1000Hz = (total_absorption_1000Hz / total_surface_area).truncate(2)
avg_absorption_coeff_2000Hz = (total_absorption_2000Hz / total_surface_area).truncate(2)
avg_absorption_coeff_4000Hz = (total_absorption_4000Hz / total_surface_area).truncate(2)
avg_absorption_coeffs = {
  "125Hz" => avg_absorption_coeff_125Hz,
 "250Hz" => avg_absorption_coeff_250Hz,
 "500Hz" => avg_absorption_coeff_500Hz,
 "1000Hz" => avg_absorption_coeff_1000Hz,
 "2000Hz" => avg_absorption_coeff_2000Hz,
```

"4000Hz" => avg_absorption_coeff_4000Hz

Demo

Thank you!