

Quantification of Mitochondrial Dynamics in High Invasive and Low Invasive Prostate Cancer Cells

ANGELINE AGUINALDO, DREXEL UNIVERSITY 2017 FEBRUARY 27, 2016 3:00 PM EST

Research Project Details

<u>Project Duration</u> September 2015 - Present

Advisor

Dr. Andrew Cohen

Collaborators

Dr. M. Cecilia Caino

Dr. Dario C. Altieri

Hosting Institute

Drexel University

What Happens during Cell Metastasis?

Previous Work: M. Cecilia Caino and Dario Altieri (August 2015)¹

Mitochondria are transported to the periphery of the cells

- Mitochondria organelles migrate toward the focal adhesion points of the cell in high invasive cancer cells
- Transported along microtubules and actin tracks

Figure 1. Confocal microscopy image of tumor cells treated with vehicle (control) and GDC-0941 (PI3K antagonist). Maximum projection of 3D stack. Scale bar = 50um.¹

Why Mitochondria?

Previous Work: M. Cecilia Caino and Dario Altieri (November 2015)²

Figure 2. Schematic representation of mitochondria localization in the presence of PI3K inhibitors. This promotes regional ATP production near the focal adhesion points. ²

- In healthy cells, mitochondria are transported based on the demand for energy production
- During metastasis, external mobilizing processing are in need of high levels of macromolecules
- ATP is delivered to focal adhesion points

Mechanism Related to Mitochondria Mobility

Objectives/Hypotheses Tested

<u>Three major detectable</u> morphologies or behaviors are expected to occur in the absence of Protein X:

- 1) Increased number of mitochondrial fission and fusion events in high invasive cell (HI) versus control (CTRL)
- 2) Increased speed of mitochondria in high invasive cell (HI) versus control (CTRL)
- 3) Mitochondria closer to the boundary in high invasive cell (HI) versus control (CTRL)

Experiment Parameters

- Cells underwent gene therapy to suppress the expression of Protein X → High-invasive cells
- Prostate cancer cells
- 30 cells total
 - 15 Low-invasive cells (Control)
 - 15 High-invasive cells
- Mitochondria marked with Red Flourescent Protein (RFP)
- Time-lapse confocal microscopy images of each cell
 - 101 frame taken, 10 seconds apart

Figure 3. Time-lapse confocal images of mitochondria in a control cell before image processing.

Computational Analysis

^[3] Michel, René, Ralf Steinmeyer, Michael Falk, and Gregory S. Harms. "A New Detection Algorithm for Image Analysis of Single, Fluorescence-labeled Proteins in Living Cells." *Microscopy Research and Technique Microsc. Res. Tech.* 70.9 (2007): 763-70. Web.

Fission & Fusion

- Use start frame and end frame of a track
- Identifies its 'nearest self'

Velocity

 Distance centroid traveled every frame

Spatiotemporal Distribution

- Distance transform of cell computed
- Obtains distance from boundary for each mitochondria centroid

Results

Group	Wilcoxon Rank-Sum Test (p-value)
Fission (CTRL v HI)	4e-219
Fusion (CTRL v HI)	9e-197
Velocity (CTRL v HI)	3e-96

3D Movie Demo

Project Reflection

ROLES & RESPONSIBILITIES

Software developer for a mitochondria analysis package containing the following features:

- Segmentation and tracking of mitochondria
- Quantification of fission and fusion events
- * Calculation of *mitochondria migration velocity*
- Calculation of spatial distribution of the mitochondria
- Automatic output of *plots, movies, and annotated images*

This software was developed in MATLAB and MEX (C, C++)

Project Reflection

SKILLS LEARNED

- Developed good coding practices
- Greatly improved my skills in programming algorithms
- Learned how to construct visuals that best 'tell your story'
- Contributed to a research publication end-to-end
- Learned how to assess if results 'make sense'
- Learned how to combat frustration and failure

Thank you for listening! Questions?

Angeline Aguinaldo

Drexel University, 2017

angeline.m.aguinaldo@drexel.edu