Optimal transport for domain adaptation

Nicolas Courty, Remi Flamary, Devis Tuia, and Alain Rakotomamonjy

Presented by Mengying Yan @ ML in practice reading group

Introduction

- Domain adaptation challenge: divergence between the data probability distribution functions of the domains
- Main idea: transform data to make their distributions closer

Proposed framework:

- Use optimal transport to estimate the transportation map between the two distributions – align PDFs
- Use regularization terms for the optimal transport problem that exploits labels from the source domain

Why optimal transport?

- Defines a transformation for each sample
- Can be used for computing distances (e.g. Wasserstein) and those distances can be evaluated directly on empirical distributions
- Can be used even when the supports of the distributions don't overlap

Domain adaptation as a transportation problem

Fig. 1. Illustration of the proposed approach for domain adaptation. (left) Dataset for training, i.e., source domain, and testing, i.e., target domain. Note that a classifier estimated on the training examples clearly does not fit the target data. (middle) A data dependent transportation map $T_{\gamma 0}$ is estimated and used to transport the training samples onto the target domain. Note that this transformation is usually non linear. (right) The transported labeled samples are used for estimating a classifier in the target domain.

- 1. Estimate marginal distribution μ_s and μ_t from X_s and X_t
- 2. Find a transport map T from μ_s to μ_t
- 3. Use T to transport labeled samples X_s and train a classifier using them

Assumptions

- The domain drift is due to an unknown, possibly nonlinear map of the input space $T:\Omega_S\to\Omega_t$
- The transformation preserves the conditional distribution $P_s(y|x^s) = P_t(y|T(x^s))$
 - Label information is preserved by the transformation,

Discrete optimal transport

• Empirical distributions $\mu_s = \sum_{i=1}^s p_i^s \delta_{\mathbf{x}_i^s}, \quad \mu_t = \sum_{i=1}^s p_i^t \delta_{\mathbf{x}_i^t}$

 $\int_{\Omega_c}^{\Omega_t} \boldsymbol{\gamma}(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \boldsymbol{\mu_t},$

Probabilistic couplings (joint distribution)

$$\mathcal{B} = \left\{ \gamma \in (\mathbb{R}^+)^{n_s \times n_t} | \gamma \mathbf{1}_{n_t} = \mu_s, \gamma^T \mathbf{1}_{n_s} = \mu_t \right\}$$

Optimal transportation plan:

$$\gamma_0 = \underset{\gamma \in \mathcal{B}}{\operatorname{argmin}} \quad \langle \gamma, \mathbf{C} \rangle_{;F}$$

- $$\begin{split} \boldsymbol{\gamma}_0 = & \underset{\boldsymbol{\gamma}}{\operatorname{arg\,min}}_{\boldsymbol{\gamma}} & \int_{\Omega_s \times \Omega_t} c(\mathbf{x}, \mathbf{y}) \boldsymbol{\gamma}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}, \\ & \text{s.t.} & \int_{\Omega_t} \boldsymbol{\gamma}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \underline{\boldsymbol{\mu}_s}, \end{split}$$
- Cost function $c: \Omega_s \times \Omega_t \to \mathbb{R}^+$
- Chose l2 Euclidean di $C(i,j) = ||\mathbf{x}_i^s \mathbf{x}_i^t||_2^2$
- The optimal cost is the same as W1 Wasserstein distance

Regularized optimal transport

Optimization problem (for domain adaptation)

$$\min_{\gamma \in \mathcal{B}} \quad \langle \gamma, \mathbf{C} \rangle_F + \lambda \Omega_s(\gamma) + \eta \Omega_c(\gamma)$$

- Entropic regularization
- Class-based regularization (use label info in source domain)
 - Group Lasso
 - Laplacian
- Semi-supervised regularization

Entropic Regularization

$$\Omega_s(\boldsymbol{\gamma}) = \sum_{i,j} \boldsymbol{\gamma}(i,j) \log \boldsymbol{\gamma}(i,j)$$

- To avoid overfitting
- Want to decrease sparsity by increasing entropy
- Equivalent to KL divergence between γ and uniform joint distribution $\gamma_u = \frac{1}{n_s n_t}$: $\mathrm{KL}(\gamma || \gamma_u)$
- Efficient Sinkhorn Knopp algorithm

Group Lasso Regularization

$$\Omega_c(\gamma) = \sum_j \sum_{cl} ||\gamma({\mathcal I}_{cl},j)||_2$$

- Want each target sample to receive masses only from source samples that have the same label
- I_{cl} contains the indices of rows in γ related to source domain samples of class cl
- Convex so that generalized conditional gradient can be used
- Assumption: distribution of labels $P_s(y) = P_t(y)$

Laplacian regularization

$$\Omega_c(\gamma) = rac{1}{N_s^2} \sum_{i,j} S_s(i,j) \|\hat{\mathbf{x}}_i^s - \hat{\mathbf{x}}_j^s\|_2^2$$

- Want similar samples in the source domain to also be similar after transportation
- Graph-based
- $S_s(i,j)$ positive symmetric similarity matrix for source
- In practice, prune S_s using class information in source

$$S_s(i,j) = 0 \text{ if } y_i^s \neq y_j^s$$

Semi-supervised regularization

$$\Omega_{semi}(\gamma) = \langle \gamma, \mathbf{M} \rangle$$

- Few labeled samples are available in the target domain
- Cost matrix M(i,j) = 0 if $y_i^s = y_j^t$, otherwise infinity

Generalized conditional gradient (GCG)

- Our optimization problem
- General case: $\min_{\gamma \in \mathcal{B}} f(\gamma) + g(\gamma)$
 - F differentiable, g convex

$$f(\gamma) = \langle \gamma, \mathbf{C} \rangle_F + \eta \Omega_c(\gamma)$$

 $g(\gamma) = \lambda \Omega_s(\gamma)$

$$\min_{m{\gamma} \in \mathcal{B}} \quad \langle m{\gamma}, \mathbf{C}
angle_F + \lambda \Omega_s(m{\gamma}) + \eta \Omega_c(m{\gamma})$$

Algorithm 1. Generalized Conditional Gradient

- 1: Initialize k = 0 and $\gamma^0 \in \mathcal{P}$
- 2: repeat
- 3: With $\mathbf{G} \in \nabla f(\gamma^k)$ solve

$$\gamma^* = \underset{\gamma \in \mathcal{B}}{\operatorname{argmin}} \quad \langle \gamma, \mathbf{G} \rangle_F + g(\gamma)$$

4: Find the optimal step α^k

$$\alpha^k = \operatorname*{argmin}_{0 \leq \alpha \leq 1} f(\gamma^k + \alpha \Delta \gamma) + g(\gamma^k + \alpha \Delta \gamma)$$

with
$$\Delta \gamma = \gamma^* - \gamma^k$$

5: $\gamma^{k+1} \leftarrow \gamma^k + \alpha^k \Delta \gamma$, set $k \leftarrow k+1$

6: until Convergence

Implementation

• For this paper: https://remi.flamary.com/soft/soft-transp.html

We provide regularized optimal transport solvers of the form:

$$\min_{oldsymbol{\gamma} \in \mathcal{P}} \hspace{0.5cm} \langle \mathbf{M}, oldsymbol{\gamma}
angle_F \hspace{0.5cm} + \hspace{0.5cm} \Omega(oldsymbol{\gamma})$$

where $\mathcal{P} = \{ \gamma \mathbf{1} = \mu_t, \gamma^\top \mathbf{1} = \mu_s, \gamma \geq 0 \}$ is the convex set of matrices satisfying marginal μ_s and μ_t and \mathbf{M} is a transportation cost matrix.

The regularization term $\Omega(\gamma)$ can be :

- Classic LP transport: $\Omega(oldsymbol{\gamma})=0$
- Sinkhorn regularization : $\Omega(m{\gamma}) = rac{1}{\lambda} \sum_{i,j} \gamma_{i,j} \log \gamma_{i,j}$
- Sinkhorn + Class regularization : $\Omega(m{\gamma}) = rac{1}{\lambda} \sum_{i,j} \gamma_{i,j} \log \gamma_{i,j} + \eta \sum_j \sum_c \left| |\gamma_{\mathcal{I}_c,j}| \right|_q^p$
- Python Package POT: https://pythonot.github.io
- Source code: https://github.com/PythonOT/POT
 - Actively maintained and updated
 - Detailed comments for functions

Simulation: two moons

Simulation: two moons -- results

TABLE 1
Mean Error Rate over 10 Realizations for the
Two Moons Simulated Example

Target rotation angle	10°	20°	30°	40°	50°	70°	90°
SVM (no adapt.)	0	0.104	0.24	0.312	0.4	0.764	0.828
DASVM [9]	0	0	0.259	0.284	0.334	0.747	0.82
PBDA [22]	0	0.094	0.103	0.225	0.412	0.626	0.687
OT-exact	0	0.028	0.065	0.109	0.206	0.394	0.507
OT-IT	0	0.007	0.054	0.102	0.221	0.398	0.508
OT-GL	0	0	0	0.013	0.196	0.378	0.508
OT-Laplace	0	0	0.004	0.062	0.201	0.402	0.524

1. OT-exact: non-regularized OT

2. OT-IT: Entropic regularization

3. OT-GL: Group-lasso + entropic regularization

4. OT-Lap: Laplacian + entropic regularization

Align distributions and then use SVM as a classifier

Visual application

Visual application – results 1

TABLE 3
Overall Recognition Accuracies in Percent Obtained over All Domains Pairs Using the SURF Features

Domains	1NN	PCA	GFK	TSL	JDA	OT-exact	OT-IT	OT-Laplace	OT-LpL1	OT-GL
$\overline{U{ ightarrow}M}$	39.00	37.83	44.16	40.66	54.52	50.67	53.66	57.42	60.15	57.85
$M{\rightarrow}U$	58.33	48.05	60.96	53.79	60.09	49.26	64.73	64.72	68.07	69.96
mean	48.66	42.94	52.56	47.22	57.30	49.96	59.20	61.07	64.11	63.90
P1→P2	23.79	32.61	22.83	34.29	67.15	52.27	57.73	58.92	59.28	59.41
P1→P3	23.50	38.96	23.24	33.53	56.96	51.36	57.43	57.62	58.49	58.73
P1→P4	15.69	30.82	16.73	26.85	40.44	40.53	47.21	47.54	47.29	48.36
P2→P1	24.27	35.69	24.18	33.73	63.73	56.05	60.21	62.74	62.61	61.91
P2→P3	44.45	40.87	44.03	38.35	68.42	59.15	63.24	64.29	62.71	64.36
P2→P4	25.86	29.83	25.49	26.21	49.85	46.73	51.48	53.52	50.42	52.68
P3→P1	20.95	32.01	20.79	39.79	60.88	54.24	57.50	57.87	58.96	57.91
P3→P2	40.17	38.09	40.70	39.17	65.07	59.08	63.61	65.75	64.04	64.67
P3→P4	26.16	36.65	25.91	36.88	52.44	48.25	52.33	54.02	52.81	52.83
P4→P1	18.14	29.82	20.11	40.81	46.91	43.21	45.15	45.67	46.51	45.73
P4→P2	24.37	29.47	23.34	37.50	55.12	46.76	50.71	52.50	50.90	51.31
$P4{\rightarrow}P3$	27.30	39.74	26.42	46.14	53.33	48.05	52.10	52.71	51.37	52.60
mean	26.22	34.55	26.15	36.10	56.69	50.47	54.89	56.10	55.45	55.88
$C \rightarrow A$	20.54	35.17	35.29	45.25	40.73	30.54	37.75	38.96	48.21	44.17
$C \rightarrow W$	18.94	28.48	31.72	37.35	33.44	23.77	31.32	31.13	38.61	38.94
$C \rightarrow D$	19.62	33.75	35.62	39.25	39.75	26.62	34.50	36.88	39.62	44.50
$A \rightarrow C$	22.25	32.78	32.87	38.46	33.99	29.43	31.65	33.12	35.99	34.57
$A{\rightarrow}W$	23.51	29.34	32.05	35.70	36.03	25.56	30.40	30.33	35.63	37.02
$A \rightarrow D$	20.38	26.88	30.12	32.62	32.62	25.50	27.88	27.75	36.38	38.88
$W \rightarrow C$	19.29	26.95	27.75	29.02	31.81	25.87	31.63	31.37	33.44	35.98
$W{\rightarrow}A$	23.19	28.92	33.35	34.94	31.48	27.40	37.79	37.17	37.33	39.35
$W \rightarrow D$	53.62	79.75	79.25	80.50	84.25	76.50	80.00	80.62	81.38	84.00
$D \rightarrow C$	23.97	29.72	29.50	31.03	29.84	27.30	29.88	31.10	31.65	32.38
$D{\rightarrow}A$	27.10	30.67	32.98	36.67	32.85	29.08	32.77	33.06	37.06	37.17
$D {\rightarrow} W$	51.26	71.79	69.67	77.48	80.00	65.70	72.52	76.16	74.97	81.06
mean	28.47	37.98	39.21	42.97	44.34	36.69	42.30	43.20	46.42	47.70

Unsupervised DA
Classifier: one-nearest
neighbor (1NN)

- γ and η are validated on validation target set (0.001; 0.01; 0.1; 1; 10; 100; 1000)
- S_s : nearest neighbor graph (pruned by classes)

Visual application – results2

TABLE 4
Results of Adaptation by Optimal Transport
Using DeCAF Features

		Lay	er 6		Layer 7				
Domains	DeCAF	JDA	OT-IT	OT-GL	DeCAF	JDA	OT-IT	OT-GL	
C→A	79.25	88.04	88.69	92.08	85.27	89.63	91.56	92.15	
$C{\rightarrow}W$	48.61	79.60	75.17	84.17	65.23	79.80	82.19	83.84	
$C \rightarrow D$	62.75	84.12	83.38	87.25	75.38	85.00	85.00	85.38	
$A \rightarrow C$	64.66	81.28	81.65	85.51	72.80	82.59	84.22	87.16	
$A {\rightarrow} W$	51.39	80.33	78.94	83.05	63.64	83.05	81.52	84.50	
$A{ ightarrow}D$	60.38	86.25	85.88	85.00	75.25	85.50	86.62	85.25	
$W{\rightarrow}C$	58.17	81.97	74.80	81.45	69.17	79.84	81.74	83.71	
$W{\rightarrow} A$	61.15	90.19	80.96	90.62	72.96	90.94	88.31	91.98	
$W{\to}D$	97.50	98.88	95.62	96.25	98.50	98.88	98.38	91.38	
$D \rightarrow C$	52.13	81.13	77.71	84.11	65.23	81.21	82.02	84.93	
$D{\rightarrow} A$	60.71	91.31	87.15	92.31	75.46	91.92	92.15	92.92	
$D{ ightarrow}W$	85.70	97.48	93.77	96.29	92.25	97.02	96.62	94.17	
mean	65.20	86.72	83.64	88.18	75.93	87.11	87.53	88.11	

DeCAF: activation feature extracted from 6th and 7th layers of a CNN (imageNet)

Visual application – results3 semi-supervised

TABLE 5
Results of Semi-Supervised Adaptation with Optimal
Transport Using the SURF Features

	Unsupervis	sed + labels	Semi-supervised					
Domains	OT-IT	OT-GL	OT-IT	OT-GL	MMDT [28]			
C→A	37.0 ± 0.5	41.4 ± 0.5	46.9 ± 3.4	47.9 ± 3.1	$\textbf{49.4} \pm \textbf{0.8}$			
$C \rightarrow W$	28.5 ± 0.7	37.4 ± 1.1	64.8 ± 3.0	$\textbf{65.0} \pm \textbf{3.1}$	63.8 ± 1.1			
$C \rightarrow D$	35.1 ± 1.7	44.0 ± 1.9	59.3 ± 2.5	$\textbf{61.0} \pm \textbf{2.1}$	56.5 ± 0.9			
$A{\rightarrow}C$	32.3 ± 0.1	36.7 ± 0.2	36.0 ± 1.3	$\textbf{37.1} \pm \textbf{1.1}$	36.4 ± 0.8			
$A{\rightarrow}W$	29.5 ± 0.8	37.8 ± 1.1	63.7 ± 2.4	$\textbf{64.6} \pm \textbf{1.9}$	$\textbf{64.6} \pm \textbf{1.2}$			
$A{ ightarrow}D$	36.9 ± 1.5	46.2 ± 2.0	57.6 ± 2.5	$\textbf{59.1} \pm \textbf{2.3}$	56.7 ± 1.3			
$W \rightarrow C$	35.8 ± 0.2	36.5 ± 0.2	38.4 ± 1.5	$\textbf{38.8} \pm \textbf{1.2}$	32.2 ± 0.8			
$W{\to}A$	39.6 ± 0.3	41.9 ± 0.4	47.2 ± 2.5	47.3 ± 2.5	$47.7 \pm\ 0.9$			
$W{\rightarrow}D$	77.1 ± 1.8	$\textbf{80.2} \pm \textbf{1.6}$	79.0 ± 2.8	79.4 ± 2.8	67.0 ± 1.1			
$D{\rightarrow}C$	32.7 ± 0.3	34.7 ± 0.3	35.5 ± 2.1	36.8 ± 1.5	34.1 ± 1.5			
$D{ ightarrow} A$	34.7 ± 0.3	37.7 ± 0.3	45.8 ± 2.6	46.3 ± 2.5	$\textbf{46.9} \pm \textbf{1.0}$			
$D {\rightarrow} W$	81.9 ± 0.6	$\textbf{84.5} \pm \textbf{0.4}$	83.9 ± 1.4	84.0 ± 1.5	74.1 ± 0.8			
mean	41.8	46.6	54.8	55.6	52.5			

- SURF: transform each image into a 800 bins histogram
- Three labels per class
- Unsupervised + labels (unsupervised alignment + learning with labels)
- Semi-supervised (target labels are used for alignment)

Recommendations

Well written and well organized. Good first paper to read

Discussion

- This paper focuses on using regularization to preserve label information whereas Chapel et al. (2020) use partial transport (transport only part of the mass)
- Classifier
- Labeling mechanism