Исследование и разработка методов маркирования текстовых документов

Якушев Алексей

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра системного программирования

Научный руководитель к. т. н. Ю. В. Маркин

Москва, 2020 г.

Расследование утечек конфиденциальной информации

Data Leakage Prevention

Data Leakage Prevention (DLP) – совокупность технологий предотвращения и/или расследования утечек данных.

Проблема

Необходимо расследовать утечки конфиденциальных текстовых документов, вызванные фотографированием экрана и последующей публикацией фотографий в публичных источниках.

Решение

Встраивать идентификатор пользователя устройства в изображение документа, выводимого на экран. Встраивание идентификатора пользователя в изображение относится к технологии внедрения цифровых водяных знаков (ЦВЗ).

Общие сведения о ЦВЗ

Сценарии использования ЦВЗ

- screen-cam
 Фотографирование
 изображения на экране
- print-scan Сканирование распечатанного изображения
- print-cam
 Фотографирование
 распечатанного изображения

Атаки на ЦВЗ в сценарии screen-cam

- Расположение камеры относительно экрана
- Фокусировка камеры
- Эффект муара
- Неравномерная яркость на фотографии
- Сжатие фотографии

Существующие решения

Методы маркирования текстовых документов

- Изменение длины пробелов между словами. Биты кодируются соотношением суммарной длины половин пробелов в строке. Zou D., Shi Y. «Formatted Text Document Data Hiding Robust to Printing, Copying and Scanning», 2005
- Слова в тексте заменяются синонимами в зависимости от кодируемого бита. Корректность замены проверяется с помощью Google n-gram corpus.

 Chang C.-Y., Clark S. «Practical Linguistic Steganography using Contextual Synonym Substitution and a Novel Vertex Coding Method», 2014
- Добавление двух симметричных групп пикселей к буквам. Расстояние между группами кодируют бит. Varna A.L., Rane S. «Data hiding in hard-copy text documents robust to print, scan and photocopy operations», 2009

Методы маркирования, устойчивые к атакам сценария screen-cam

- ЦВЗ внедряется в домен ДКП областей, задаваемых ключевыми точками, полученными с помощью алгоритма I-SIFT. Fang H., Zhang W. «Screen-Shooting Resilient Watermarking», 2019
- Изменение яркости областей на экране. Биты кодируются уменьшением/увеличением яркости круговых областей. Gugelmann D., Sommer D. «Screen watermarking for data theft investigation and attribution», 2018

Постановка задачи

Разработать и реализовать метод маркирования текстовых документов, отображаемых на экране монитора, а также метод извлечения ЦВЗ с фотографии экрана. Метод должен удовлетворять требованиям:

- Незаметность для пользователя устройства
- Встраивание в режиме реального времени
- Независимость от формата файла докумета
- Устойчивость к атакам сценария screen-cam
- Работа в режиме слепого извлечения (без оригинала документа)

Разработанный подход к маркированию документов

- ЦВЗ представляет собой шаблон, состоящий из прямоугольных областей разной яркости, называемых маркерами
 - Светлые маркеры кодируют бит «0», темные «1»
 - Кодирующие маркеры чередуются с промежуточными для упрощения извлечения ЦВЗ
 - В начало, середину и конец шаблона встраиваются маркеры, состоящие из двух частей. Эти маркеры позволяют определить положение шаблона при извлечении ЦВЗ
 - На шаблон накладывается фильтр Гаусса для сглаживания переходов между маркерами, что снижает заметность ЦВЗ
- Шаблон отображается при помощи частично прозрачного окна, лежащего поверх остальных окон
- Шаблон встраивается в области межстрочных интервалов нижележащих окон

Разработанный подход к маркированию документов

Алгоритм встраивания ЦВЗ

- О Создание снимка экрана
- Очистка снимка экрана от предыдущей цифровой метки
- Определение частей окон, видимых пользователем
- Определение областей с текстом
- Определение областей межстрочных интервалов
- Генерация шаблона яркости, соответствующего внедряемой информации
- Встраивание шаблона на оверлей в области межстрочных интервалов маркируемого текста.

Алгоритм извлечения ЦВЗ

- Коррекция перспективы и обрезка фотографии
- Определение областей с текстом
- Определение областей межстрочных интервалов
- Удаление из межстрочных интервалов фрагментов букв
- Определение наличия ЦВЗ в межстрочных интервалах
- Извлечение ЦВЗ из межстрочных интервалов
- Объединение меток, извлеченных из разных межстрочных интервалов и текстовых областей.

Результаты работы алгоритма встраивания ЦВЗ

Маркеры цифровой метки могут быть встроены с разной непрозрачностью (opacity). Повышение непрозрачности маркеров делает ЦВЗ более устойчивым к атакам, но в то же время ведет к большей заметности метки.

- Непрозрачность 0% цвет маркеров совпадает с цветом фона
- Непрозрачность 100% пользователь видит на экране маркеры черного и белого цвета

В современном мире - мире информационнах технологий - многие компании сталкиваются с проблемой утечки конфиденциальной информации. Причиной такой утечки может стать не только атака извие, но и действия согрудников компании, нарушающих коммерческую тайну, совокупность технологий предотвращения утечек конфиденциальной информации и технических устройств, обеспечивающих это предотвращение, называемая Data Leakage Prevention (далее, DLP), позволяет не только предотвращать и и расследовать случам кражи данных. Так, на рабочем устройстве сотрудника может быть установлено специализированное ПО, осуществляющее логирование действий пользователя или запрещающее выполнять некоторые действия: в частности, может быть заблокирован доступ к сети Интернет, использование съемых USB-накопителей и т.д. Однако такие системы не могут запрегить сотруднику воспользоваться цифровой камерой.

Непрозрачность маркеров 3%

В современном мире - мире информационных технологий - многие компании сталкиваются с проблемой утечки конфиденциальной информации. Причиной такой утечки может стать не только атака извне, но и действия сотрудников компании, нарушающих коммерческую тайну. Совокупность технологий предотвращения утечек конфиденциальной информации и технических устройств. обеспечивающих предотвращение, называемая Data Leakage Prevention (далее, DLP), позволяет не только предотвращать, но и расследовать случаи кражи данных. Так, на рабочем устройстве сотрудника может быть установлено специализированное ПО, осуществляющее логирование действий пользователя или запрещающее выполнять некоторые действия: в частности, может быть заблокирован доступ к сети Интернет, использование съемных USB-накопителей и т.д. Однако такие системы не могут запретить сотруднику воспользоваться цифровой камерой.

Непрозрачность маркеров 10%

Результаты работы алгоритма извлечения ЦВЗ

Извлекаемое значение k-го бита сообщения зависит от яркости k-го кодирующего маркера.

- GS_k оценка отклонения яркости маркера от среднего значения яркости в межстрочном интервале
- CS_k оценка выпуклости функции яркости около положения кодирующего маркера в межстрочном интервале

Тогда общая оценка яркости кодирующего маркера:

$$S_k = GS_k + \alpha \cdot CS_k, \ \alpha > 0$$

Значение бита $m_k,\ k\in[1,N],$ соответствующего k-му кодирующему маркеру, вычисляется как:

$$m_k = \begin{cases} 0, & ext{ecли } S_k > 0; \\ 1, & ext{uhave.} \end{cases}$$

 $\left|S_{k}\right|$ характеризует степень уверенности в извлеченном значении.

Bit Error Rate (BER) позволяет оценить успешность извлечения ЦВЗ.

$$BER = \frac{\{\text{число неверно извлеченных бит цифровой метки}\}}{\{\text{общее число бит цифровой метки}\}} \cdot 100\%$$

Описание эксперимента

- Текст: 14 строк, 13 межстрочных интервалов, кегль шрифта 14 пт, множитель межстрочного интервала 1.15, масштаб текста 100%
- Монитор АОС-і2769Vm: диагональ 27 дюймов, разрешение 1920 × 1080 пикселей, тип матрицы IPS
- Камера смартфона Samsung Galaxy S8: 12 мегапикселей, апертура f/1.7, фокусное расстояние 26 мм
- Во все межстрочные интервалы текста встраивалась одинаковая цифровая метка, состоящая из 24 бит

В современном мире - мире информационных технологий - многие компании сталкиваются с проблемой утечки конфиденциальной информации. Причиной такой утечки может стать не только атака извне, но и действия сотрудников компании, нарушающих коммерческую тайну. Совокупность технологий предотвращения утечек конфиденциальной информации и технических устройств, обеспечивающих это предотвращение, называемая Data Leakage Prevention (далее, DLP), позволяет не только предотвращать, но и расследовать случаи кражи данных. Так, на рабочем устройстве сотрудника может быть установлено специализированное ПО, осуществляющее логирование действий пользователя или запрещающее выполнять некоторые действия: в частности, может быть заблокирован доступ к сети Интернет, использование съемных USB-накопителей и т.д. Однако такие системы не могут запретить сотруднику воспользоваться цифровой камерой.

Результаты тестирования

Извлекаемость оценивалась с помощью

- Оценка BER-24 рассчитывалась после комбинирования меток, извлеченных из разных межстрочных интервалов
- Оценка BER-312 рассчитывалась при предположении, что биты, встроенные в разные межстрочные интервалы, независимы
- ullet BER-24 = 0 и BER-312 < 15% метка извлечена успешно
- ullet BER-24 > 0 или BER-312 $\geqslant 15\%$ метка извлечена с ошибками

Эксперимент	Метка успешно извлечена	Метка извлечена с ошибками	Метка не обнаружена
Непрозрачность маркеров	≥ 3%	_	< 3%
Расстояние от камеры до экрана	30-40 см, 60-100 см	50 см	≤ 25 см
Угол между камерой и экраном	≤ 45°	60°	≥ 75°
Коэффициент качества JPEG	20-100	15	≤ 10

Заключение

Полученные результаты

- Разработан и реализован алгоритм маркирования текстовых документов, отображаемых на экране монитора.
- Разработан и реализован алгоритм извлечения цифровой метки с фотографии экрана.
- Метод показал высокие результаты устойчивости к атакам сценария screen-cam.

Дальнейшие исследования

- Развитие и оптимизация предложенного метода
- Тестирование метода при других конфигурациях экран/камера
- Разработка альтернативных схем маркирования текстовых документов

К публикации

Планируется публикация по теме диплома.