Natural Language Processing

(for Bioinformatics)

About me

Applied LLM Engineer @ ecom.tech

Building production-grade multi-agent & multimodal systems.

Specializing in:

- Agentic Orchestration
- Multimodal RAG & Code Generation
- High-Performance Inference

Previously: Sber AI, Tochka, MTS AI ITMO University (M.Sc. in Artificial Intelligence)

Oleg Zagorulko

The Data Explosion in genomics

https://pubmed.ncbi.nlm.nih.gov/?term=genomics%5BTitle%2FAbstract%5D&timeline=expanded

ITMO

Data Flood

https://github.com/MAGICS-LAB/DNABERT_2

https://github.com/dmis-lab/biobert

ITMO

Data Flood

NLP Models

Insights

https://github.com/MAGICS-LAB/DNABERT_2

https://github.com/dmis-lab/biobert

ITMO

Data Flood

NLP Models

Insights

Or not...

https://github.com/MAGICS-LAB/DNABERT 2

https://github.com/dmis-lab/biobert

ITMO

Lecture 2

Distributional semantics

Count-based method

Word2Vec

ITMO

ITMO

Format and Grading

ITMO

Tests (theory checks) (max + 25%)

- Short multiple-choice or open-ended questions after selected lectures
- Assess understanding of theoretical concepts and key terminology

Homework Assignments (max +75%)

- Three practical tasks, focused on implementing NLP techniques for bioinformatics.
- Evaluated on correctness, clarity of code, and relevance of results

Optional Homework (max +25%)

- Advanced task

Format and Grading

ITMO

A: 90-100% - Excellent

B: 80-89% - Good

C: 70-79% - Satisfactory

D: 60-69% - Poor

F: <60% - Fail

ітмо

ML recap

Types of Machine Learning Tasks

Types of Machine Learning Tasks

TL;DR: regression, classification, ranking

Types of Machine Learning Tasks

TL;DR: cluster analysis

Types of Machine Learning Tasks

TL;DR: training an agent to act in an environment in order to maximize reward

Linear models

TL;DR: Linear models are the simplest and most interpretable class of functions. They are a natural starting point for both classification and regression tasks, because they provide a fast, transparent, and mathematically tractable way to map objects to targets.

To assign each object (e.g., a card transaction, a mining site) a target value.

Classification: $X \rightarrow \{0,1,...,K\}$

Regression: X→R

What makes them useful?

- The simplest parameterized family of functions.
- Easy to compute and interpret.
- Provide a clear performance baseline.
- Serve as a foundation for more complex (nonlinear) models.

Linear models: weighted sum of features + bias

TL;DR: A linear model predicts the target as a weighted sum of features plus a bias. It is called *linear* because it is linear with respect to the numerical features. In regression, it approximates values with a line (or hyperplane); in classification, it defines a separating rule between classes.

Linear functions: $y=W_1X_1+...+W_DX_D+W_0$, or more compactly $y=\langle X,W\rangle+W_0$

Works directly with numerical features.

Regression: fits a line (or hyperplane) to approximate target values.

Classification: defines a separating rule (positive side \rightarrow one class, negative side \rightarrow another).

Linear regression and classification

Logistic regression

TL;DR: Logistic regression maps linear model outputs to probabilities using the sigmoid function, making it ideal for binary classification tasks such as click-through prediction.

Classes: 0 and 1

Goal: predict the probability of an event, not just a label

Linear model outputs values on $(-\infty, +\infty)(-\infty, +\infty)$

We need mapping to [0,1]

Use logit (log-odds)

Model estimates the probability of the positive class

$$\langle w, x_i
angle = \log rac{p}{1-p}$$

$$p = rac{1}{1 + e^{-\langle w, x_i
angle}} = \sigma(\langle w, x_i
angle)$$

Regression Metrics

$$MSE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 \hspace{1cm} MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}$$

$$MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}$$

$$MAE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)| \ R^2 = 1 - rac{\sum_{i=1}^{N} (y_i - f(x_i))^2}{\sum_{i=1}^{N} (y_i - ar{y})^2}$$

$$R^2 = 1 - rac{\sum_{i=1}^{N} (y_i - f(x_i))^2}{\sum_{i=1}^{N} (y_i - ar{y})^2}$$

https://education.yandex.ru/handbook/ml/article/metriki-klassifikacii-i-regressii

Classification Metrics

ITMO

https://education.yandex.ru/handbook/ml/article/metriki-klassifikacii-i-regressii https://en.wikipedia.org/wiki/Precision_and_recall

Classification Metrics

ITMO

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$

https://en.wikipedia.org/wiki/Precision_and_recall

QA