

SEQUENCES

Why

We want to speak of infinite processes, and to do so we define sequences indexed by N. In other words, important families are those indexed by the natural numbers.

Definition

A sequence (infinite sequence) is a family whose index set is N (the set of natural numbers without zero). The *nth term* or coordinate of a sequence is the result of the *n*th natural number, $n \in N$.¹

Notation

Let A be a non-empty set and $a: \mathbb{N} \to A$. Then a is a (infinite) sequence in A. a(n) is the nth term. We also denote a by $(a_n)_n$ and a(n) by a_n . If $\{A_n\}_{n\in\mathbb{N}}$ is an infinite sequence of sets, then we denote the direct product of the sequence by $\prod_{i=1}^{\infty} A_i$.

Natural unions and intersections

We denote the family of the infinite sequence of sets $(A_n)_n$ by $\bigcup_{i=1}^{\infty} A_i$. Similarly, we denote the intersection of an infinite sequence of sets by $\bigcap_{i=1}^{\infty} A_i$, respectively.

¹Future editions may also comment that we are introducing language for the steps of an infinite process.

