DAIICT

SC531 PROBABILITY & RANDOM VARIABLES SECOND IN-SEMESTER EXAMINATION

ID NUMBER:	NAME:

NOTES:

- 1. The question paper has FIVE questions of 4 marks each. Time allowed: 60 minutes.
- 2. Write your answers in the boxes provided below.
- 3. ATTACH your rough-work sheet(s) with the filled-in question paper returned.

CALCULATION OF M

Let d1, d2 be the <u>RIGHTMOST TWO DIGITS</u> of your ID number, <u>in that order</u>.

For example, if ID number = 202211345, then d1 = 4 and d2 = 5.

First calculate integer X = d1 + 4*d2.

Then calculate

M = remainder(X/3) + 2 = modulo(X,3) + 2.

Enter the value in the box on the right.

M	=
---	---

ANSWERS	Part (a)	Part (b)
A-1		
A-2		
A-3		
A-4		
A-5		

IN THE FOLLOWING, USE THE VALUE OF M WHICH YOU HAVE CALCULATED.

Q-1. Consider the following observed values of random variables X and Y, consisting of FIVE values each. For this pair of RVs, (a) Find the covariance Cov(X,Y) and (b) Find the regression coefficient r_{XY} .

X values -2 -1 0 1 2 Y values -3M -2M 1 2M 3M

- 2. (a) For random variable X, it is known that the mean is 50 and the standard deviation is M. <u>Using only Tchebycheff inequality</u>, find an upper bound on the probability that the value of X will be outside the interval [48 ... 52].
- (b) Further, it is given that the RV X of part (a) is normally distributed. Find the value ΔX such that Prob($|X-50| \le \Delta X$) = 0.98. Use the standard normal values provided.
- 3. Let X represent hourly traffic at a railway station, which is assumed to be Poisson distributed with parameter $\lambda = M^2$. Samples of 100 such traffic readings are taken, and their average X_{mean} calculated.
- (a) Using CLT, find the standard deviation of X_{mean}.
- (b) Find the range $[X_{min} ... X_{max}]$, centred on $\lambda = M^2$, such that the value of X is within that range with a probability of 90%. Use the standard normal values provided.
- 4. (a) Random variable X has mean value 100 and standard deviation 5. For a <u>left-tailed test</u> of hypothesis, the level of significance (LOS) α is taken as M (in percent). Find the critical region of X, using the standard normal values provided.
- (b) The average fatality rate for a specific category of hospitalized patients is 20%. In a given hospital, out of 100 patients of this category, 16 have died. At LOS = M (in percent), can this hospital be considered significantly better than average, for this category of patients? Use the standard normal values provided.
- 5. (a) Discrete random variable X has N = 5*M equi-probable outcomes. A partition U is defined on the sample space S such that each event in U corresponds to exactly one outcome. Find the entropy H(U).
- (b) The partition U of part (a) is modified by <u>merging</u> (that is, <u>combining</u>) ANY THREE of the events of U. Let the resulting partition be V. Find the entropy H(V).

Values of the standard normal variable, for Q-2, Q-3 and Q-4:						
z: CDF F(z):		_		2.054 0.98	2.326 0.99	