Nom, prénom:			Contrôle court n°1 - Durée 1 heure	
Cm	Λ	В	<i>C</i>	Calculatrice et documents interdits - répondre sur la feuille
Grp:	A	Б	C	

EXERCICE 1.: CODAGE DE L'INFORMATION

1.1. Décodez les octets 35H et A0H selon les trois types de codage présents dans le tableau ci-dessous:

Octet	Entier	Entier relatif	ASCII
35 Н			
АО Н			

1.2.	Convertissez	$\pi \ en$	base 2	(avec l'approximate)	mation $\pi \cong 3.125$).
------	--------------	------------	--------	----------------------	-----------------------------

1.3. Codez π selon la norme IEEE ($\pi \cong 3.125$). Donnez le résultat sous forme hexadécimale.

EXERCICE 2.: PROCESSEUR

2 1	0	1.	
∠.1.	Questions	ae	cours.

a) Qu'est-ce qu'un registre?

b) Qu'est-ce qu'un code d'instruction (de quoi est-il composé) ?

c) Pour le 80x86, donnez le nom, la taille et expliquez le rôle des registres suivants :

ΑX

ΙP

2.2. Quel doit être la taille du bus d'adresse d'un processeur 16 bits pour qu'il puisse accéder à une mémoire de 8 Ko?

EXERCICE 3.: OPERATIONS ARITHMETIQUES ET LOGIQUES

3.1. Sur un processeur 8 bits, donnez le résultat des opérations suivantes et positionnez les indicateurs.

25H +	5AH	ΖF	=
	2	SF	=
		CF	=
B5H +	4AH	ΖF	=
		SF	=
		CF	=

- 3.2. Soit un nombre dans l'accumulateur 8 bits.
 - a) Donnez une instruction permettant de mettre ses 7 bits de poids faible à 0.
 - b) On considère un accumulateur ne pouvant avoir initialement que 2 valeurs : 00H ou 80H. Donnez <u>une</u> instruction permettant de mettre l'accumulateur à 01H s'il contenait 80H et de le mettre (ou le laisser) à 00H s'il contenait 00H.
 - c) Quelle est la fonction réalisée par l'exécution des deux instructions précédentes ?

EXERCICE 4.: PROGRAMME

Soit l'extrait de programme suivant, stocké à l'adresse 0000H.

Code instruction	Opération
A0 0B 00	MOV AL, [000B]
04 FF	ADD AL, FF
3C 00	CMP AL, 00
75 FA	JNE 0003
A2 00 10	MOV [1000], AL

4.1. Complétez le tableau ci-dessous en donnant l'état des registres après l'exécution des 4 premières instructions exécutées (précisez dans la première colonne l'instruction qui a été exécutée).

Opération	IP	RTA	AL	RTUAL
Etat initial	0000	0000	0.0	0.0

4.2. Expliquez simplement en une phrase ce que fait la suite d'instructions précédente.