4.5 Polynomial-time variations and extensions of Ford and Fulkerson algorithm

Assume throughout this section that n = O(m). |V| = |V|

This is not restrictive, because if m < n-1, then the graph is disconnected and we can determine the connected component containing the source and focus on that one.

Moreover, let U := u(A) (sum of all capacities)

We will discuss 2 efficient maximum flow algorithms:

- (a) The capacity scaling algorithm
- (b) Edmonds Karp algorithm

Definition 4.30: $G_{f,\Delta}$

Let f be an s-t flow in the directed graph G=(V,A) with capacities $u\colon A\to \mathbb{Z}_{\geq 0}$ and let $\Delta\in\mathbb{R}_{\geq 0}$. We denote by $G_{f,\Delta}$ the subgraph of the residual graph $G_f=(V,B)$ containing only the arcs with residual capacity of at least Δ .

 $G_{f,2}$

Algorithm 6: Capacity scaling algorithm for maximum s-t flows

```
Input: Directed graph G=(V,A) with arc capacities u\colon A\to \mathbb{Z}_{\geq 0} and s,t\in V,s\neq t.

Output: A maximum s-t flow f.

f(a)=0 \ \forall a\in A. // We start with the zero flow.

\Delta=2^{\lfloor\log_2(U)\rfloor}.

while \Delta\geq 1 do // These iterations are called phases.

while \exists f-augmenting path\ P\ in\ G_{f,\Delta} do

Augment f along P and set f to the augmented flow.

\Delta=\frac{\Delta}{2}.

return f
```

Theorem 4.31

Algorithm 6 returns a maximum s-t flow.

Theorem 4.32

Algorithm 6 runs in $O(m^2 \log U)$ time.

4.5.2 Edmonds-Karp algorithm

Idea: Augment always on shortest paths.

Algorithm 7: Edmonds-Karp algorithm

Input: Directed graph G = (V, A) with arc capacities $u: A \to \mathbb{Z}_{\geq 0}$ and $s, t \in V, s \neq t$.

Output: A maximum s-t flow f.

 $f(a) = 0 \ \forall a \in A.$

while $\exists f$ -augmenting path in G_f **do**

Find an f-augmenting path P in G_f minimizing |P|.

Augment f along P and set f to augmented flow.

return f

Key property: Distances from s and distances to to become larger in residual graphs, when only considering arcs with strictly positive residual capacity.

Lemma 4.33

Let G = (V, A) be a directed graph with arc capacities $u: A \to \mathbb{Z}_{\geq 0}$, and let $s, t \in V$ with $s \neq t$. Moreover, let f_1 be an s-t flow in G, and let f_2 be an s-t flow obtained by augmenting f_1 along a shortest augmenting path P in G_{f_1} . Then,

$$d_{f_1}(s,v) \le d_{f_2}(s,v) \quad \forall v \in V , \text{ and } d_{f_1}(v,t) \le d_{f_2}(v,t) \quad \forall v \in V ,$$

where $d_f(v, w)$ denotes, for $v, w \in V$ and an s-t flow f, the length (in terms of number of arcs) of a shortest v-w path in G_f that only uses arcs with strictly positive f-residual capacity.

Theorem 4.34

Algorithm 7 runs in $O(nm^2)$ time.