Ciência dos Dados

Análise Exploratória dos Dados Análise Bidimensional

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

- Estudar a relação existente entre duas variáveis quantitativas graficamente;
- Por meio de medidas adequadas, <u>medir</u> o grau de associação entre duas variáveis quantitativas;
- Descrever o comportamento médio entre duas variáveis quantitativas por meio de um <u>ajuste</u> linear.

Acompanhe, previamente, o PLANO DE AULA no BLACKBOARD!

Associação entre duas variáveis quantitativas

- Gráfico de Dispersão
- Coeficiente de Covariância
- Coeficiente de Correlação Linear de Pearson

PréAula05 Indicadores sócio-economicos

O arquivo **Mundo.xlsx** conta com uma amostra de **85 países**, para os quais levantou-se uma série de indicadores socioeconômicos.

Variáveis:

X₁: população em milhares de habitantes

X₂: densidade populacional

X₃: % de população urbana

X₄: expectativa de vida feminina

X₅: expectativa de vida masculina

X₆: crescimento populacional

X₇: mortalidade infantil

X₈: PIB per capita

X₉: % de mulheres alfabetizadas

X₁₀: população em 100.000 habitantes

Exemplo: Gráfico de dispersão e medidas de associação

Taxa de mortalidade infantil e taxa de analfabetismo no Brasil, segundo região.

Ano: 1997

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Norte	13	36
Nordeste	29	59
Sudeste	9	25
Sul	8	22
Centro Oeste	12	25

Taxa de analfabetismo: Percentual de pessoas com 15 ou mais anos de idade que não sabem ler e escrever pelo menos um bilhete simples, em determinado espaço geográfico, no ano considerado.

Taxa de mortalidade infantil: Número de óbitos de menores de um ano de idade, por mil nascidos vivos, em determinado espaço geográfico, no ano considerado.

Fonte: IBGE.

Fonte: RIPSA

Exemplo: Gráfico de dispersão e medidas de associação

Taxa de mortalidade infantil e taxa de analfabetismo no Brasil, segundo região.

Ano: 1997

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Norte	13	36
Nordeste	29	59
Sudeste	9	25
Sul	8	22
Centro Oeste	12	25

Considere:

X: Taxa de analfabetismo

Y: Taxa de mortalidade infantil

$$\overline{x} = 14, 2$$

$$\overline{y} = 33, 4$$

Fonte: IBGE.

Coeficiente de Covariância

$$Cov(X,Y) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

- ✓ Cov(X,Y) > 0 se a associação linear for positiva.
- ✓ Cov(X,Y) < 0 se a associação linear for negativa.</p>
- ✓ Cov(X,Y) = 0 indica que não existe associação linear positiva, nem negativa, mas pode existir outro tipo de associação.

Estudo de Sinal

$$(x_i - \overline{x}) < 0$$

$$(y_i - \overline{y}) > 0$$

$$(y_i - \overline{y}) > 0$$

 $(x_i - \overline{x}) > 0$

$$(x_i - \overline{x}) < 0$$

$$(y_i - \overline{y}) < 0$$

$$(x_i - \overline{x}) > 0$$
$$(y_i - \overline{y}) < 0$$

$$\bar{y}$$
) < 0

Estudo de Sinal

$$(x_{i} - \overline{x})(y_{i} - \overline{y}) < 0$$

$$(x_{i} - \overline{x})(y_{i} - \overline{y}) > 0$$

$$+$$

 $(x_i - \overline{x})(y_i - \overline{y}) > 0$

 $(x_i - \overline{x})(y_i - \overline{y}) < 0$

IV

Associação Positiva

Percebe-se um acúmulo de pontos nos quadrantes ímpares.

Associação Negativa

Percebe-se um acúmulo de pontos nos quadrantes pares.

Comportamento Geral

- ✓ Quando existe uma associação positiva (crescente) entre as variáveis, há um predomínio de pontos nos quadrantes ímpares.
- ✓ Quando existe uma associação negativa (decrescente) entre as variáveis, há um predomínio de pontos nos quadrantes pares.
- ✓ Quanto mais próxima de uma reta estiverem os pontos, maior é o predomínio nos quadrantes ímpares (se crescente) ou pares (se decrescente).

17

Exemplo: Gráfico de dispersão e medidas de associação

Taxa de mortalidade infantil e taxa de analfabetismo no Brasil, segundo região.

Ano: 1997

Ano: 2009

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Norte	13	36
Nordeste	29	59
Sudeste	9	25
Sul	8	22
Centro Oeste	12	25

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Norte	10,45	23,5
Nordeste	18,53	33,2
Sudeste	5,84	16,6
Sul	4,62	15,1
Centro Oeste	5,09	17,8

Fonte: IBGE.

Cov(X,Y) = 101,72

Cov(X,Y) = 34,45

O gráfico azul possui um coeficiente de covariância maior, mas a associação não parece ser mais forte do que a observada no gráfico vermelho.

Como resolver isso?

Padronização da covariância

Resultado teórico $|Cov(X,Y)| \le dp(X) dp(Y)$

$$-1 \le \frac{\text{Cov}(X, Y)}{\text{dp}(X) \text{dp}(Y)} \le 1$$

$$r = \frac{\text{Cov}(X,Y)}{\text{dp}(x) \text{dp}(y)} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Coeficiente de Correlação Linear

$$Corr(X, Y) = \frac{Cov(X, Y)}{DP(X)DP(Y)}$$

Vantagem em relação à covariância:

$$-1 \le r \le 1$$

Quando r = 1 ou r = -1 os pontos estarão perfeitamente alinhados sobre uma reta.

Propriedades do coeficiente de correlação

- ✓ Medida de associação linear entre duas variáveis quantitativas (varia entre -1 e +1).
- ✓ Valores próximos a +1 : indicam forte relação linear positiva
- ✓ Valores próximos a -1 : indicam forte relação linear negativa
- ✓ Valores próximos a zero: indicam ausência de relação linear.

Interpretação do Coeficiente de Correlação

Taxa de mortalidade infantil e taxa de analfabetismo no Brasil, segundo região.

Covariância	101,72	
Correlação	0,976	

Covariância	34,45	
Correlação	0,993	

Fonte: IBGE.

Associação entre duas variáveis quantitativas

Ajuste de Curvas

Outro Problema

De acordo com os valores mensurados de **Taxa de mortalidade infantil e taxa de analfabetismo no Brasil, segundo região** para cada região brasileira, em 2009:

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Norte	10,45	23,5
Nordeste	18,53	33,2
Sudeste	5,84	16,6
Sul	4,62	15,1
Centro Oeste	5,09	17,8

Qual deve ser a taxa de mortalidade infantil prevista (ou esperada) (ou média) se uma região passar a ter taxa de analfabetismo igual a 8?

Análise de Regressão

Objetivo: Explicar como uma variável se comporta em função de outra.

Variável dependente (resposta): variável de interesse, cujo comportamento se deseja explicar.

Variável independente (explicativa): variável que é utilizada para explicar a variável dependente.

Modelo de regressão: equação (reta) que associa y e x.

Ajuste no Exemplo do IBGE

y (var. dep.) = Taxa de mortalidade infantil

x (var. indep.) = taxa de analfabetismo

Como é o comportamento de y em função de x?

Ajuste de Reta

y: variável de interesse (também conhecida como dependente ou resposta)

x: variável explicativa

ŷ: reta ajustada

$$\hat{y} = ax + b$$

Como obter a e b?

Diagrama de Dispersão

Como estimar essa reta?

Regressão Linear Simples

Dados: $(x_1, y_1), ..., (x_n, y_n), com y_1, ..., y_n não correlacionados.$

Método dos Mínimos Quadrados

Critério de qualidade:

Encontrar a e b que minimizem:

$$S(a;b) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Como encontrar a e b?

Método dos Mínimos Quadrados

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases} \Rightarrow \begin{cases} -2\sum_{i=1}^{n} x_i (y_i - a x_i - b) = 0 \\ -2\sum_{i=1}^{n} (y_i - a x_i - b) = 0 \end{cases}$$

$$a = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{Cov(X, Y)}{Var(X)}$$

 $b = \overline{y} - a \overline{x}$

Método dos Mínimos Quadrados

A melhor reta que descreve a relação linear entre **y** e **x** ocorre quando **a** e **b** assumem as seguintes expressões:

$$a = \frac{Cov(X,Y)}{Var(X)} = Corr(X,Y) \frac{DP(Y)}{DP(X)}$$

$$b = \overline{y} - a \overline{x}$$

sendo DP(Y) e DP(X) os desvios padrões de Y e X, respectivamente; Cov(X,Y) e Corr(X,Y) a covariância e a correlação, respectivamente, entre X e Y.

Insper

Ajuste no Exemplo do IBGE

Região	Taxa de analfabetismo	Taxa de mortalidade infantil
Média	8,91	21,24
Desvio padrão	5,24	6,62
Covariância	34,45	

Encontre a e b:

$$\hat{y} = ax + b$$

Interpretação dos coeficientes

 1,255: variação média (esperada) na taxa de mortalidade infantil quando aumenta 1 unidade na taxa de analfabetismo.

 10,058: taxa esperada de mortalidade infantil quando a região tem valor zero para taxa de analfabetismo.

Na prática, nem sempre o intercepto tem uma interpretação que faz sentido no problema.

Limitações no uso do coeficiente de correlação (r)

Mau uso da regressão

Regressão de y vs x₁

$$\hat{y} = 0.4465x - 1.9722$$

 $r = 0.99$

Regressão de y vs x₂

r = 0.94

Associação não é causalidade

Suponha que encontremos alta correlação entre duas variáveis A e B. Podem existir diversas explicações do porque elas variam conjuntamente, incluindo:

- Mudanças em outras variáveis causam mudanças tanto em A quanto em B.
- Mudanças em A causam mudanças em B.
- Mudanças em B causam mudanças em A.
- A relação observada é somente uma coincidência (correlação espúria).

A primeira explicação é frequentemente a mais apropriada. Isto indica que existe algum processo de conexão atuando.

Fonte: http://leg.ufpr.br/~silvia/CE003/node77.html

Atividade para analisar MUNDO...

15 minutos:

Estudo entre as relações de algumas variáveis quantitativas que descrevem comportamento de alguns países de acordo com o % de população que vivem em área urbana.

Arquivo:

Aula06_Atividade1_ExplorandoDuas VariáveisQuantitativas Mundo.ipynb

Atividade para analisar Discriminação Salarial...

40 minutos:

A sua empresa está sendo acusada de pagar um salário maior para os homens do que para as mulheres.

Para justificar a acusação, apresentou-se uma lista de salários de uma amostra de funcionários.

Você tem motivos para se preocupar?

Arquivo:

Aula06_Atividade2_ExmplorandoDuasVariá veisQuantitativas_Discriminacao.ipynb

CRONOGRAMA PROJETO 1

DATA	Finalização:
14/02	APS1: Check descrito na Aula 02 (COM NINJAS ATÉ 20/02)
21/02	APS2: Check descrito na Aula 04 (COM NINJAS ATÉ 25/02)
<mark>?/03</mark>	PROJETO 1 FINALIZADO <mark>(COMBINAR COM ALUNOS)</mark> Fazer git push em seu Github até 23:59 do Projeto 1 finalizado.