Total No. of Questions: 8]

SEAT No.:

P4174

[Total No. of Pages : 5

[4760] - 1142

M.E. (E & TC) (VLSI & Embedded Systems) (Semester - II)

ANALOG CMOS DESIGN

(2013 **Pattern**)

Time: 3 Hours]

[Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data if necessary.

SECTION - I

Q1) a) For the circuit shown in figure, Find 'R' and the d.c. voltage 'V_D' If the drain current I_D is 80 μ A. The NMOS transistor used have $V_t = 0.6V$,

$$\mu_n C_{OX} = 200 \mu A/V^2$$
, L = 0.8 μm , W = 4 μm . [5]

- b) Draw the transistorized network of Common source amplifier, Common gate amplifier and common drain amplifiers. Differentiate these amplifiers with respect to following terms, [5]
 - i) Input resistance
 - ii) Output Resistance
 - iii) Intrinsic Voltage Gain

Q2) a) Determine the voltage gain of the circuit shown in Figure. Assume $\lambda \neq 0$. Assume M_1 is identical to M_2 and M_3 is identical to M_4 . [5]

- b) Explain how CMOS inverter can be used as an amplifier. Draw the neat circuit diagram of two stage CMOS OP-Amp and explain its operation.[5]
- Q3) a) In the circuit shown in figure calculate the minimum and maximum on-resistance of Ml. Assume $\mu_{\rm n}C_{\rm ox}=50\mu{\rm A/V^2},~{\rm W/L}=10/1,~\gamma=0,~V_{\rm TH}=0.7~{\rm V}$ and $V_{\rm DD}=3{\rm V}.$ [4]

b) Draw and Explain following analog CMOS circuits

[4]

- i) LNA
- ii) Mixer
- iii) DAC
- iv) Tunned Amplifiers
- c) What is source degeneration? Explain the effect degeneration resistance on the voltage gain of CS amplifier. [2]

- **Q4)** a) Design a fully differential telescopic op-amp with the following specifications: [4]
 - $V_{\rm DD}$ = 3 V, differential output swing = 3V, power dissipation= 10mW, voltage gain= 2000. Assume $\mu_{\rm n}C_{\rm ox}$ = 60μA/V², $\mu_{\rm p}C_{\rm ox}$ = 30 μA/V² $\lambda_{\rm n}$ = 0.1V⁻¹, $\lambda_{\rm p}$ = 0.2V⁻¹ (for an effective channel length of 0.5 μm) γ = 0, $V_{\rm THN}$ = $|V_{\rm THP}|$ = 0.7 V.
 - b) What is the necessity of MOS diode/active resistor? Draw the MOS diode/active resistor circuits for NMOS and PMOS transistors. Is there any difference in gain of the following amplifier circuits, [4]
 - i) Common source amplifier with NMOS diode connected load
 - ii) Common source amplifier with PMOS diode connected loadJustify your answer with the suitable circuit diagrams.
 - c) With the help of detailed equivalent circuit diagram explain the parasitic capacitances and resistances involved in a MOSFET. [2]
- **Q5)** a) What is the principle of operation of Current mirrors? Explain in short nonideal effects of current mirrors. What is the use of current mirrors? [4]
 - b) What is difference between active mixer and passive mixers. Draw and explain the architectures of both the mixers. [4]
 - c) A 1 V peak-to-peak sinusoidal signal is applied to an 10-bit DAC which has a Vref of 5 V. Find the maximum SNR of the digitized analog output signal. [2]
- **Q6)** a) Draw the small signal model MOS transistor including all the parasitic capacitances and derive the equation for its transconductance (g_m) and transition frequency (f_T) .

b) Determine the voltage gain of the circuit shown in Figure If $I_{D1} = I_{D2} = 1$ mA, $\lambda = 0.1$, $\mu_n C_{ox} = 100 \mu A/V^2$. Neglect body effect. [4]

$$V_{DD} = 3$$

$$M_2 \quad \left(\frac{W}{L}\right) = \frac{20}{10}$$

$$V_{out}$$

$$V_{in} \quad \left(\frac{W}{L}\right) = \frac{10}{0.1}$$

- c) For an ideal n channel MOSFET with parameters L = 1.25 μ m, μ_n = 650 cm²/vs, C_{ox} = 6.9 × 10⁻⁸ F/cm², V_{THn} = 0.65 V. Design the channel width W such that I_{DSSAT} = 4 mA with V_{GS} = 5V. [2]
- **Q7)** a) Write Short notes on following(Any Two): [4]
 - i) DAC Topologies in CMOS ICs
 - ii) Techniques used in Micro power opamp
 - iii) Non-Idealities in MOSFET
 - b) Design an NMOS cascode current source for an output impedance of 500 k Ω and a current of 0.5 mA. Assume M₁ and M₂ are identical

$$\mu_{\rm p} \ {\rm C}_{\rm ox} = 100 \ \mu {\rm A} \ {\rm and} \ \lambda = 0.1 \ {\rm V}^{-1}.$$
 [4]

- c) If the sampled analog input applied to an 8 bit SAR converter is 0.7 Vref. Find the output digital word. [2]
- **Q8)** a) Write Short notes on following(Any Two): [4]
 - i) High Speed Opamp
 - ii) Bandgap Reference Source
 - iii) CMOS Inverter as an amplifier

b) Design a current mirror circuit that produces a currents $I_1 = 0.2$ mA and $I_2 = 0.5$ mA from a reference current source of 0.3 mA connected to transistor with aspect ratio 3. [4]

c) Define and derive expressions for,

[2]

- i) g_m ,
- ii) g_{mb} .

