

SIMULATION STUDIES TO PREDICT DRUG PRECIPITATION IN VIVO

APM Forum, 17th April 2013

Kaoutar Abbou Oucherif

Co-advisors: Dr. Lynne Taylor

Dr. Jim Litster

Motivation

Physical Models of the GI Tract

Physical modeling of the GI tract:

- > Two compartment model
- Multi-compartmental dissolution system

Donor phase Acceptor phase

Experimental set up to examine dipyridamole precipitation

Reservoir Vessel

Gastric Compartment

Intestinal Compartment TIM 1 model (www.tno.nl)

Absorption Compartment

Scheme of a multicompartment dissolution system

ACAT Model

Tab

pK_a

Dos

Mean precipitation time: 1800

Effective particle radius: 5 µm

Effective permeability: 4.4×10^{-4} cm s⁻¹

Particle density: 1.2 g/mL

Current Commercial Softwares

	μш	- TM					
	μm	Plus TM simulation					
		arameters	Pharmacokinetics				
	μm						
	μm	conditions	Body weight: 70 kg				
7		del: log D model	First pass extraction (fixed): 12.5%				
_	nm	it time: 0.1 h	Blood to plasma concentration ratio = 1				
250 mL			Clearance: 0.15 L/(h kg)				
		transit time: 3.3 h	Vc: 1.9 L/kg				
9	Small intestin	e radius: 1.2 cm	-				
5	Small intestin	e length: 300 cm	-				
(Colon volume	: 1200 mL	-				
			-				

gCOAS: a tool to Predict Oral Absorption

gCOAS: Nucleation Models

Classical nucleation:

$$J_{prim} = lnA_0 \left(\frac{-16\pi (\alpha \sigma)^3 v^2_0}{3k^3 T^3 lnS^2} \right)$$

 Parameters to be estimated: pre-exponential factor and the surface energy correction factor.

Power law kinetics:

$$J_{prim} = lnk_n \left(\frac{\Delta C}{\rho_C}\right)^n \exp\left(\frac{-E_{A,n}}{RT}\right)$$

 Parameters to be estimated: nucleation coefficient, nucleation order, and the activation energy.

Custom kinetics:

 E.g., extracting nucleation rates from probability distribution functions of induction time

$$P(t) = 1 - \exp(jV(t - t_g))$$

Input induction time (900 s)

- Case study: felodipine precipitation
- Objectives:
 - Extract the nucleation and growth kinetic parameters of felodipine to use as inputs in gCOAS
 - Quantify the inhibitory effect of HPMC on both the nucleation and growth rates of felodipine

Abbou Oucherif, K., Raina, S., Taylor, L. S. & Litster, J. D. Quantitative analysis of the inhibitory effect of HPMC on felodipine crystallization kinetics using population balance modeling. CrystEngComm (2013).doi:10.1039/c2ce26490k

Experimental Methods

- 18 mL 50 mM pH 6.8 buffer at 25 °C
- Felodipine supersaturations of 5 and 10
- HPMC concentrations: o to 3.5 ppm.
- Seeded experiments: 2 mg of seeds were prepared by grinding with a mortar and pestle
- Particle size characterized via a Malvern Mastersizer laser diffractometer (Worcesteshire, UK).
- Concentration measured using Ocean Optics 6 channel fiber optic system

Modeling Approach

- Extract the growth kinetic parameters from seeded experiments
 - Power law kinetics used to model crystal growth

$$G = k_g \left(\frac{\Delta C}{\rho_c}\right)^g \exp\left(\frac{-E}{RT}\right)$$

- Use growth data to extract the nucleation kinetic parameters from unseeded experiments
- Power law kinetics used to model crystal nucleation

$$J_{prim} = \frac{\ln k_n}{\rho_c} \left(\frac{\Delta C}{\rho_c}\right)^n \exp\left(\frac{-E_{A,n}}{RT}\right)$$

gCRYSTAL : Estimation of PSD Parameters

global specifications

Model Parameters

- Probability of parameter lying between (Final Value -α% Confidence Interval) and (Final Value +α% Confidence Interval) = α%
- The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.

Model	Final In	Initial	nitial Lower	Upper	Confidence Interval			95%	Standard
Parameter	Value	Guess	Bound	Bound	90%	95%	99%	t-value	Deviation
Flowsheet. PSD_input_predicted.peak(1).LO_g	11.263	11.751	1	30	2.284	2.849	4.217	3.953	1.205
Flowsheet. PSD_input_predicted.peak(1).sd_g	2.30738	2.23454	1	5	0.3345	0.4174	0.6178	5.528	0.1765
Reference t-value (95%):				1.89502					

Results: growth kinetics

- High correlation between growth order and growth coefficient
- Growth order fixed to 1.6
- Felodipine growth is a hybrid between mass diffusion and surface integration controlled growth

HPMC Concentration [μg/mL]	Growth order	Growth coefficient	95% confidence interval
0	1.6	0.14122	0.03148
.2	1.6	0.12878	0.01462
-5	1.6	0.0644	0.0167
1.5	1.6	0.052235	0.004368
2.5	1.6	0.050515	0.01847
3.5	1.6	0.04856	0.006527

Results: growth kinetics (cont'd)

Results: growth kinetics (cont'd)

Results: nucleation kinetics

- Nucleation order fixed to 1
- Direct correlation between HPMC concentration and effect on the nucleation rate

HPMC Concentration [µg/mL]	Nucleation order	Nucleation coefficient	95% confidence interval
0	1	37.66	0.487
0.5	1	30.94	0.102
1.5	1	28.26	0.068
2.5	1	28.62	0.269
3⋅5	1	22.63	0.012

Results: nucleation kinetics (cont'd)

Result Highlights

0

0.002

0.004

Concentration [Kg/m^3]

0.006

Result Highlights

- HPMC has a much greater effect on inhibiting nucleation:
 - up to an 8 order decrease in nucleation rate vs.
 only a decrease by a factor of 2 for the growth rate
- Practical applications:
 - Better understanding of stabilization mechanism of inhibitors (decouple the effect of additives on nucleation and growth)
 - Develop better formulation strategies by facilitating the screening of polymers

Future Work

- Conduct crystallization experiments of poorly soluble APIs in the presence of bile salts
- Use estimated crystallization kinetic parameters as inputs in gCOAS
- Predict API concentration and fraction of drug absorbed as a function of time and location in the GI tract

Acknowledgments

- PSE
- Lilly Endowment Grant
- Dr. Lynne Taylor's research group
- Dr. Litster's research group

Felodipine as a Case Study

Objective: quantify the ability of hydroxypropylmethyl cellulose (HPMC) to inhibit both the nucleation and growth of a model amorphous compound, felodipine.

- Significance of the study: stabilize amorphous solid dispersions via the use of carrier polymers to inhibit crystallization
- Benefits of amorphous materials:
 - Enhanced dissolution rates
 - Higher supersaturation levels in the GI tract

Obtaining Nucleation Rates from PDF

 Probability of forming a nuclei follows a Poisson distribution:

$$P_m = \frac{N_m}{m!} \exp(-N)$$

Probability that there is at least 1 nucleus:

$$P_{\geq 1} = 1 - P_0 = 1 - \exp(-N)$$

Nucleation rate is:

$$N = JVt_j$$

Nucleation time $t_j = t - t_g$ $P(t) = 1 - \exp(jV(t - t_g))$

Project Road Map

