Structure-Preserving Transfer of Grad-Shafranov Equilibria to Magnetohydrodynamic Solvers

Rushan Zhang, Golo Wimmer and Qi Tang

Ph.D. Student, Computational Science and Engineering Georgia Institute of Technology

MFEM Grad-Shafranov (GS) solver for axisymmetric equilibrium (2024 MFEM workshop)

Assuming axisymmetry in a tokamak, we can represent **B** with poloidal flux function Ψ and toroidal field function f,

Force Balancing

$$\mathbf{J} \times \mathbf{B} = \nabla p,$$

MHD Approx.

$$\mu \mathbf{J} = \nabla \times \mathbf{B},$$

$$\Longrightarrow \Delta^* \Psi := r \partial_r \left(\frac{1}{r} \partial_r \Psi \right) + \partial_z^2 \Psi = -\mu r^2 p'(\Psi) - f(\Psi) f'(\Psi)$$

Tokamak Rep.

 $\lim_{\|(r,z)\|\to+\infty}\Psi(r,z)=0$

$$\mathbf{B} =
abla imes \left(rac{\Psi}{r}\mathbf{e}_{\phi}
ight) + rac{f}{r}\mathbf{e}_{\phi}.$$

Therefore, the governing equations become,

$$-\frac{1}{\mu r}\Delta^*\Psi = \begin{cases} rp'(\Psi) + \frac{1}{\mu r}f(\Psi)f'(\Psi), & \text{in } \Omega_p(\Psi), \\ I_i/|\Omega_{c_i}|, & \text{in } \Omega_{c_i}, \\ 0, & \text{elsewhere in } \Omega_{\infty} \end{cases}$$

$$\Psi(0,z) = 0,$$

$$(\Psi), \quad \text{in } \Omega_p(\Psi),$$
 $\quad \text{in } \Omega_{c_i},$
 $\quad \text{elsewhere in } \Omega_{\infty}$

D. Serino, Q. Tang, X.-Z. Tang, T. V. Kolev, and K. Lipnikov. An adaptive Newton-based free-boundary Grad-Shafranov solver, SISC, 2025

DeepMind and EPFL, Nature, 2022

Task: transfer of GS equilibria to MHD solvers

GS equation solves for Ψ and f while MHD simulations need the **B** field directly.

Consider

$$\mu \mathbf{J} = \nabla \times \mathbf{B},$$

$$\mathbf{B} =
abla imes \left(rac{\Psi}{r}\mathbf{e}_{\phi}
ight) + rac{f}{r}\mathbf{e}_{\phi}.$$
 B_{p}

Thus we have the B fields

$$\mathbf{B}_p = rac{1}{r}
abla^\perp \Psi, \qquad \qquad B_t = rac{f}{r},$$

and the J fields

$$\mu \mathbf{J}_p = rac{1}{r}
abla^{\perp} (rB_t), \qquad \qquad \mu J_t = -
abla^{\perp} \cdot \mathbf{B}_p.$$

Goal: investigate errors during the transfer process

The transfer process is prone to numerical errors:

- Source 1: incompatibilities between the GS and MHD FEM spaces,
- Source 2: difference between the GS and MHD meshes,
- Source 3: discontinuities at the separatrix.

Unnatural projection is unavoidable in compatible FEM

In compatible FEM, we have the natural **FEM spaces** that corresponds to **differential operators**,

$$CG \xrightarrow{\nabla} H(\text{curl}) \xrightarrow{\nabla^{\perp}} DG, \qquad CG \xrightarrow{\nabla^{\perp}} H(\text{div}) \xrightarrow{\nabla^{\cdot}} DG.$$

Consider Ψ and f both in CG field, the most natural projection path is,

$$\Psi \in CG(\mathcal{T}_{2D})_m \rightarrow \mathbf{B}_p \in H(\operatorname{div}, \mathcal{T}_{2D})_m \rightarrow J_t \in CG(\mathcal{T}_{2D})_m,$$

$$f \in CG(\mathcal{T}_{2D})_m \rightarrow B_t \in CG(\mathcal{T}_{2D})_m \rightarrow \mathbf{J}_p \in H(\mathrm{div}, \mathcal{T}_{2D})_m.$$

However, H(div) for poloidal direction corresponds to DG for toroidal direction in stead of CG.

Source 1: incompatibilities between the GS and MHD FEM spaces

Thus, we have the following three projection paths to experiment:

Compatible Finite Element
$$\begin{cases} \Psi \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{B}_p \in H(\operatorname{div}, \mathcal{T}_{2D})_m & \to & J_t \in CG(\mathcal{T}_{2D})_m, \\ f \in CG(\mathcal{T}_{2D})_m & \to & B_t \in DG(\mathcal{T}_{2D})_{m-1} & \to & \mathbf{J}_p \in H(\operatorname{curl}, \mathcal{T}_{2D})_m. \end{cases}$$
(1)
$$\underbrace{ \Psi \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{B}_p \in H(\operatorname{curl}, \mathcal{T}_{2D})_m \\ f \in CG(\mathcal{T}_{2D})_m & \to & B_t \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{J}_t \in DG(\mathcal{T}_{2D})_{m-1}, \\ f \in CG(\mathcal{T}_{2D})_m & \to & B_t \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{J}_p \in H(\operatorname{div}, \mathcal{T}_{2D})_m. \end{cases} }$$
(2) Red box: unnatural projection steps
$$\Psi \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{B}_p \in CG(\mathcal{T}_{2D})_m^2 & \to & J_t \in CG(\mathcal{T}_{2D})_m, \\ f \in CG(\mathcal{T}_{2D})_m & \to & B_t \in CG(\mathcal{T}_{2D})_m & \to & \mathbf{J}_p \in CG(\mathcal{T}_{2D})_m^2. \end{cases}$$
(3)

Source 2: difference between the GS and MHD meshes

To examine the impact from mesh misalignment, we apply a very small perturbation ($\alpha = 0.05$) to the original mesh:

$$r_i' = r_i + \alpha \sin(r_i),$$

Perturbed

Source 3: discontinuities at the separatrix.

To examine the impact from the discontinuities at the separatrix, we conduct experiments with **mesh refinement** and **alignment** along the separatrix:

Refined

Refined + aligned

Equilibrium solution for experiments — Taylor state equilibrium

Force balancing – projection paths

 $\Psi \in CG(\mathcal{T}_{2D})_m \rightarrow \mathbf{B}_p \in H(\operatorname{div}, \mathcal{T}_{2D})_m \rightarrow J_t \in CG(\mathcal{T}_{2D})_m,$ (1) $f \in CG(\mathcal{T}_{2D})_m \rightarrow B_t \in DG(\mathcal{T}_{2D})_{m-1} \rightarrow \mathbf{J}_p \in H(\operatorname{curl}, \mathcal{T}_{2D})_m.$

$$\Psi \in CG(\mathcal{T}_{2D})_m \to \mathbf{B}_p \in H(\text{curl}, \mathcal{T}_{2D})_m \to J_t \in DG(\mathcal{T}_{2D})_{m-1},
f \in CG(\mathcal{T}_{2D})_m \to B_t \in CG(\mathcal{T}_{2D})_m \to \mathbf{J}_p \in H(\text{div}, \mathcal{T}_{2D})_m.$$
(2)

$$\Psi \in CG(\mathcal{T}_{2D})_m \to \mathbf{B}_p \in CG(\mathcal{T}_{2D})_m^2 \to J_t \in CG(\mathcal{T}_{2D})_m,
f \in CG(\mathcal{T}_{2D})_m \to B_t \in CG(\mathcal{T}_{2D})_m \to \mathbf{J}_p \in CG(\mathcal{T}_{2D})_m^2.$$
(3)

Divergence error – projection paths

 $\Psi \in CG(\mathcal{T}_{2D})_m \rightarrow \mathbf{B}_p \in H(\operatorname{div}, \mathcal{T}_{2D})_m \rightarrow J_t \in CG(\mathcal{T}_{2D})_m,$ (1) $f \in CG(\mathcal{T}_{2D})_m \rightarrow B_t \in DG(\mathcal{T}_{2D})_{m-1} \rightarrow \mathbf{J}_p \in H(\operatorname{curl}, \mathcal{T}_{2D})_m.$

$$\Psi \in CG(\mathcal{T}_{2D})_m \to \mathbf{B}_p \in H(\text{curl}, \mathcal{T}_{2D})_m \to J_t \in DG(\mathcal{T}_{2D})_{m-1},
f \in CG(\mathcal{T}_{2D})_m \to B_t \in CG(\mathcal{T}_{2D})_m \to \mathbf{J}_p \in H(\text{div}, \mathcal{T}_{2D})_m.$$
(2)

$$\Psi \in CG(\mathcal{T}_{2D})_m \to \mathbf{B}_p \in CG(\mathcal{T}_{2D})_m^2 \to J_t \in CG(\mathcal{T}_{2D})_m,
f \in CG(\mathcal{T}_{2D})_m \to B_t \in CG(\mathcal{T}_{2D})_m \to \mathbf{J}_p \in CG(\mathcal{T}_{2D})_m^2.$$
(3)

Force balancing – mesh misalignment

$$r'_i = r_i + \alpha \sin(r_i),$$
 $z'_i = z_i + \alpha \sin(z_i).$ $\alpha = 0.05.$

Force balancing - discontinuities at the separatrix

Conclusions

$$\Psi \in CG(\mathcal{T}_{2D})_{m} \rightarrow \mathbf{B}_{p} \in H(\operatorname{div}, \mathcal{T}_{2D})_{m} \rightarrow J_{t} \in CG(\mathcal{T}_{2D})_{m},
f \in CG(\mathcal{T}_{2D})_{m} \rightarrow B_{t} \in DG(\mathcal{T}_{2D})_{m-1} \rightarrow \mathbf{J}_{p} \in H(\operatorname{curl}, \mathcal{T}_{2D})_{m}.$$

$$\Psi \in CG(\mathcal{T}_{2D})_{m} \rightarrow \mathbf{B}_{p} \in H(\operatorname{curl}, \mathcal{T}_{2D})_{m} \rightarrow J_{t} \in DG(\mathcal{T}_{2D})_{m-1},
f \in CG(\mathcal{T}_{2D})_{m} \rightarrow B_{t} \in CG(\mathcal{T}_{2D})_{m} \rightarrow \mathbf{J}_{p} \in H(\operatorname{div}, \mathcal{T}_{2D})_{m}.$$

$$(1)$$

$$\Psi \in CG(\mathcal{T}_{2D})_m \to \mathbf{B}_p \in CG(\mathcal{T}_{2D})_m^2 \to J_t \in CG(\mathcal{T}_{2D})_m,
f \in CG(\mathcal{T}_{2D})_m \to B_t \in CG(\mathcal{T}_{2D})_m \to \mathbf{J}_p \in CG(\mathcal{T}_{2D})_m^2.$$
(3)

- The choice of finite element spaces and mesh alignment matter.
- Project path (1) is preferred for **force balancing**, whereas path (2) is preferred for **divergence-free**.
- Mesh refinement near the separatrix is important, whereas alignment with separatrix is less so.

Future work

Explore TMOP to automatically align the mesh with separatrix during the GS solver, which can be important for transient MHD simulations such as its anisotropic diffusion.

Thank you!

Appendix

Component-wise projection of 3D fields

Appendix

3D periodic table of finite-element spaces

Appendix

Mesh with refinement and mesh with both refinement and alignment

Refined + aligned