Звуковая карта

Материал из Википедии — свободной энциклопедии

Звуковая карта (звуковая плата, аудиокарта; англ. sound дополнительное оборудование персонального компьютера и ноутбука, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли расширения, устанавливаемые отдельные карты соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC'97 или Intel HD Audio).

Звуковая плата <u>Creative</u> Labs Sound Blaster Live!

Содержание

История звуковых карт для IBM PC

Интегрированная аудиоподсистема

AC'97

HD Audio

Сравнение спецификаций

Внешняя звуковая карта

Основные производители

См. также

Примечания

Ссылки

Звуковая плата AdLib

История звуковых карт для ІВМ РС

Поскольку <u>IBM PC</u> проектировался не как <u>мультимедийная</u> звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук <u>встроенного динамика</u>, сообщавший о неисправностях. (На компьютерах фирмы Apple звук присутствовал изначально.)

Звуковая плата Mockingboard V1. Компьютеры Apple II, 1981 год

В <u>1986 году</u> в продажу поступило устройство фирмы Covox Inc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, <u>Covox</u> можно считать первой внешней звуковой платой. Covox был очень дёшев и прост по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе — для воспроизведения стереофонического [1] звучания.

В 1988 году фирма Creative Labs выпустила Creative Music System (C/MS, позднее также продавалась под названием Game Blaster) на основе двух микросхем звукогенератора Philips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на YM3812 микросхемы фирмы Yamaha. для генерации звука использовал синтезатор принцип частотной модуляции (FM, frequency modulation). Данный принцип позволял получить более естественное звучание инструментов, чем у Game Blaster.

Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта Sound Blaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

Одним из методов сокращения объёмов, занимаемых музыкой, является <u>MIDI</u> (Musical Instrument Digital Interface) — способ записи команд, посылаемых инструментам. MIDI-файл (обычно это файл с расширением mid) содержит ссылки на <u>ноты</u>. Когда MIDI-совместимая звуковая карта получает эту ссылку, она ищет необходимый звук в таблице (Wave Table). Стандарт

Дочерняя плата волнового синтеза Yamaha DB50XG. 1995 год

Дочерняя плата волнового синтеза Roland SCB-55

General MIDI описывает около 200 звуков. Карты, поддерживающие этот стандарт, обычно имеют память, в которой хранятся звуки, либо используют для этого память компьютера. Одной из первых wavetables-карт была <u>Gravis Ultrasound</u>, получившая в <u>России</u> прозвище «Гусь» (от сокращённого названия GUS). Creative, стремясь упрочить своё положение на рынке, выпустила собственный звуковой процессор <u>EMU8000</u> (EMU8K) и музыкальную плату на его основе <u>Sound Blaster AWE32</u>, которая была, несомненно, лучшей картой того времени. «32» — это количество голосов MIDI-синтезатора в карточке.

С возрастанием мощности процессоров, постепенно стала отмирать <u>шина ISA</u>, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для <u>шины PCI</u>. В <u>1998 году</u> компания Creative вновь делает широкий шаг в развитии звука и выпуском карты <u>Sound Blaster Live!</u> на аудиопроцессоре EMU10K, который поддерживал технологию <u>EAX</u>, устанавливает новый стандарт для IBM PC, который остаётся (в усовершенствованном виде) актуален и по сей день.

Интегрированная аудиоподсистема

AC'97

 $AC'97^{[2]}$ (сокращенно от <u>англ.</u> *audio codec '97*) — это стандарт для аудиокодеков, разработанный подразделением <u>Intel Architecture Labs</u> компании <u>Intel</u> в 1997 г. Этот стандарт используется в основном в системных платах, модемах, звуковых картах и корпусах с аудиорешением передней

панели. АС'97 поддерживает частоту дискретизации 96 кГц при использовании 20-разрядного стереоразрешения и 48 кГц при использовании 20-разрядного стерео для многоканальной записи и воспроизведения.

АС'97 состоит из встроенного в южный мост чипсета хост-контроллера и расположенного на плате аудиокодека. Хост-контроллер (он же цифровой контроллер, DC'97; англ. digit controller) отвечает за обмен цифровыми данными между системной шиной и аналоговым кодеком. Аналоговый кодек — это небольшой чип (4×4 мм, корпус TSOP, 48 выводов), который осуществляет аналогоцифровое и цифроаналоговое преобразования в режиме программной передачи или по DMA. Состоит из узла, непосредственно выполняющего преобразования — АЦП/ЦАП (аналоговоцифровой преобразователь / цифроаналоговый преобразователь; англ. analog digital converter / digital analog converter, сокр. ADC/DAC). От качества применяемого АЦП/ЦАП во многом зависит качество оцифровки и декодирования цифрового звука.

HD Audio

HD Audio (от <u>англ.</u> high definition audio — звук высокой чёткости) является эволюционным продолжением спецификации AC'97, предложенным компанией Intel в <u>2004 году</u>, обеспечивающим воспроизведение большего количества каналов с более высоким качеством звука, чем при использовании интегрированных аудиокодеков AC'97. Аппаратные средства, основанные на HD Audio, поддерживают 24-разрядное качество звучания (до 192 кГц в стереорежиме, до 96 кГц в многоканальном режимах — до 8 каналов).

Формфактор кодеков и передачи информации между их элементами остался прежним. Изменилось только качество микросхем и подход к обработке звука.

Сравнение спецификаций

AC '97	HD Audio	Преимущество HD Audio
20 бит 96 кГц максимум	24 бит 192 кГц максимум	Полноценная поддержка новых форматов, таких, как DVD-Audio
2.0	5.1/7.1	Полноценная поддержка новых форматов, таких, как Dolby Digital Surround EX, DTS ES
Полоса пропускания 11,5 Мб/с	48 Мб/с выход, 24 Мб/с вход	Более широкая полоса пропускания позволяет использовать большее число каналов в более детальных форматах
Фиксированная полоса пропускания	Задаваемая полоса пропускания	Используются только необходимые ресурсы
Определённый канал DMA	DMA каналы общего назначения	Поддержка многопоточности и нескольких подобных устройств
Одно звуковое устройство в системе	Несколько логических звуковых устройств	Поддержка концепции Digital Home / Digital Office, вывод разных звуков на разные выводы для мультирумных возможностей и отдельного голосового чата во время онлайнигр
Опорная частота задаётся извне, основным кодеком	Опорная частота берётся от чипсета	Единый высококачественный задающий генератор для синхронизации
Стабильность работы зависит от стороннего ПО третьих фирм	Универсальная архитектура звукового драйвера от Microsoft	Единый драйвер для большей стабильности OS и базовой функциональности, не требуется специальная установка драйверов
Ограниченное автоопределение и переопределение	Полное автоопределение и переопределение	Полная поддержка Plug and Play
Стереомикрофон или 2 микрофона	Поддержка массива из 16 микрофонов, максимум	Более точные ввод и распознавание речи

Внешняя звуковая карта

Внешняя звуковая карта выполняет все те-же функции что и интегрированная или внутренняя, но с эргономическим преимуществом в удобстве. Обычно представляет из себя выносной бокс, с подключением по USB кабелю к компьютеру. Аудио разъёмы (входы и выходы) обычно расположены на лицевой и задней стороне звуковой карты, а регуляторы - на лицевой стороне.

Основные производители

- ASUS,
- Creative Labs,
- C-Media.
- Diamond Multimedia,
- ESI Audiotechnik GmbH,
- ESS Technology (сейчас только микросхемы ЦАП/АЦП),
- KYE Systems (Genius),
- M-Audio,

Внешняя звуковая карта Steinberg-UR242

- Realtek,
- Turtle Beach Systems,
- Yamaha Media Technology,
- VIA Technologies.

См. также

- ASIO
- Микросхемы звукогенераторов

Примечания

- 1. Схемы, разъемы, приспособления (http://www.386.by.ru/schemes.htm). Схемы ковоксов Архивировано (https://web.archive.org/web/20090914023535/http://www.386.by.ru/schemes.htm) 14 сентября 2009 года.
- 2. Версия, дата обновления версии и автор спецификации: Версия 2.3, апрель 2002 года, корпорация Intel. (http://download.intel.com/support/motherboards/desktop/sb/ac97 r23.pdf) (англ.)

Ссылки

■ Как выбрать звуковую карту (https://headphonesbest.ru/ratings/top-15-luchshix-zvukovyx-kart -15440#faq). Разновидности и особенности. Headphonesbest.ru

Источник — https://ru.wikipedia.org/w/index.php?title=3вуковая_карта&oldid=113570071

Эта страница в последний раз была отредактирована 13 апреля 2021 в 06:58.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.