Robust Weighting and Matching Techniques for Causal Inference in Observational Studies with Continuous Treatment

Universität Stuttgart

Universität Stuttgart

Ioan Scheffel

October 25, 2022

Contents

1	Chapter One Title	2
2	Convex Analysis	3
3	Random Matrix Inequality	5
4	Simple yet useful Calculations	6

Chapter One Title

Assumption 1. Assume, the following conditions hold:

- (i) The minimizer $\lambda_0 = \arg\min_{\lambda \in \Theta} \mathbb{E}\left[-Tn\rho\left(B(X)^T\lambda\right) + B(X)^T\lambda\right]$ is unique, where $\Theta \subseteq \mathbb{R}^n$ is the parameter space for λ .
- (ii) The parameter space $\Theta \subseteq \mathbb{R}^n$ is compact compact with diameter diam(Θ) < ∞ .
- (iii) $\lambda_0 \in \text{int}(\Theta)$, where $\text{int}(\cdot)$ stands for the interior of a set.

the 1(ii)

We study the following problem:

$$\underset{w \in \mathbb{R}^n}{\text{minimize}} \qquad \sum_{i=1}^n T_i f(w_i)
\text{subject to} \left| \sum_{i=1}^n w_i T_i B_k(X_i) - \frac{1}{n} \sum_{i=1}^n B_k(X_i) \right| \le \delta_k, \ k = 1, \dots, K$$
(1.1)

Proposition 1.1. The dual of Problem (1.1) is equivalent to the unconstrained optimization problem

$$\underset{\lambda \in \mathbb{R}^K}{\text{minimize}} \quad \frac{1}{n} \sum_{j=1}^n \left[-Tn\rho \left(B(X_j)^T \lambda \right) + B(X_j)^T \lambda \right] + |\lambda|^T \delta$$
 (1.2)

Convex Analysis

We begin by defining convex sets

Definition 2.1. A subset $\Omega \subseteq \mathbb{R}^n$ is called CONVEX if we have $\lambda x + (1 - \lambda)y \in \Omega$ for all $x, y \in \Omega$ and $\lambda \in (0, 1)$.

Clearly, the line segment $[a, b] := \{\lambda a + (1 - \lambda)b \mid \lambda \in [0, 1]\}$ is contained in Ω for all $a, b \in \Omega$ if and only if Ω is a convex set.

Next we define convex functions.

The concept of convex functions is closely related to convex sets.

The line segment between two points on the graph of a convex function lies on or above and does not intersect the graph.

In other words: The area above the graph of a convex function f is a convex set, i.e. the *epigraph* $\operatorname{epi}(f) := \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq \alpha\}$ is a convex set in \mathbb{R}^{n+1} .

Often an equivalent characterisation of convex functions is more useful.

Theorem 2.1. The convexity of a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ on \mathbb{R}^n is equivalent to the following statement:

For all $x, y \in \mathbb{R}^n$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{2.1}$$

Definition 2.2. proper convex function

Definition 2.3. convex conjugate

Given proper convex functions $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ and a matrix $A \in \mathbb{R}^{n \times n}$, we define the primal minimization problem as follows:

minimize
$$f(x) + g(Ax)$$
 subject to $x \in \mathbb{R}^n$. (2.2)

The Fenchel dual problem is then

maximize
$$-f^*(A^Ty) - g^*(-y)$$
 subject to $y \in \mathbb{R}^n$. (2.3)

Theorem 2.2. Let $f,g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper convex functions and $0 \in ri(dom(g) - A(dom(f)))$. Then the optimal values of (2.2) and (2.3) are equal, i.e.

$$\inf_{x \in \mathbb{R}^n} \{ f(x) + g(Ax) \} = \sup_{y \in \mathbb{R}^n} \{ -f^* (A^T y) - g^*(-y) \}.$$
 (2.4)

Random Matrix Inequality

Theorem 3.1. Let $(A_k)_{1 \leq k \leq n} \subseteq \mathbb{R}^{d_1 \times d_2}$ be a finite sequence of independent, random matrices. Assume that

$$\mathbb{E}(A_k) = 0 \quad and \quad ||A_k|| \le L \quad for \ each \quad k \in \{1, \dots, n\}.$$
 (3.1)

Introduce the random matrix

$$S := \sum_{k=1}^{n} A_k. (3.2)$$

Let v(S) be the matrix variance statistic of the sum:

$$v(S) := \max \left\{ \left\| \mathbb{E}(SS^T) \right\|, \left\| \mathbb{E}(S^TS) \right\| \right\}$$
(3.3)

$$= \max \left\{ \left\| \sum_{k=1}^{n} \mathbb{E}(A_k A_k^T) \right\|, \left\| \sum_{k=1}^{n} \mathbb{E}(A_k^T A_k) \right\| \right\}. \tag{3.4}$$

Then

$$\mathbb{E} \|S\| \le \sqrt{2v(S)\log(d_1 + d_2)} + \frac{1}{3}L\log(d_1 + d_2). \tag{3.5}$$

Furthermore, for all $t \geq 0$,

$$\mathbb{P}(\|S\| \ge t) \ge (d_1 + d_2) \exp\left(\frac{-t^2/2}{v(S) + Lt/3}\right). \tag{3.6}$$

Simple yet useful Calculations

Proposition 4.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous such that a minimum x^* exists and is unique. Then for all $y \in \mathbb{R}^n$ and C > 0 it follows

$$\inf_{\|\Delta\| = C} f(y + \Delta) - f(y) > 0 \qquad \Rightarrow \qquad \|x^* - y\| \le C. \tag{4.1}$$

Proof. Since $\mathcal{C} := \{ \|\Delta\| \leq C \}$ is compact and

$$f(x^*) \le f(y) < \inf_{\|\Delta\| = C} f(y + \Delta),$$

the continious function $f(y + \cdot)$ has a minimum in $\operatorname{int}(\mathcal{C}) := \{ \|\Delta\| < C \}$. Since x^* is the unique minimum of f there exists $\Delta^* \in \operatorname{int}(\mathcal{C})$ such that $x^* - y = \Delta^*$. We conclude that $\|x^* - y\| \le C$.

Theorem 4.1. (Multivariate Taylor Theorem) Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$. Then for all $x, \Delta \in \mathbb{R}^n$ there exists $\xi \in [0, 1]$ such that it holds

$$f(x + \Delta) = f(x) + \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} \Delta_i + \sum_{\substack{i,j=1\\i \neq j}} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i \partial x_j} \Delta_i \Delta_j$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i^2} \Delta_i^2$$

$$(4.2)$$

Corollary 4.1.1. Let $f \in C^2(\mathbb{R})$. Then for all $a, x, \Delta \in \mathbb{R}^n$ there exist $\xi \in [0, 1]$ such that it holds

$$f(a^{T}(x+\Delta)) - f(a^{T}x) = f'(a^{T}x) \Delta^{T}a + \frac{1}{2}f''(a^{T}(x+\xi\Delta)) \Delta^{T}A \Delta, \quad (4.3)$$

where $A := aa^T \in \mathbb{R}^{n \times n}$.

Proof. By the chain rule we have for all $a, x, \Delta \in \mathbb{R}^n$ and $\xi \in [0, 1]$

$$\frac{\partial^2 f(a^T(x+\xi\Delta))}{\partial x_i \partial x_j} = f''(a^T(x+\xi\Delta)) a_i a_j. \tag{4.4}$$

Since $A := aa^T$ is symmetric we have

$$\Delta^T A \ \Delta = 2 \sum_{\substack{i,j=1\\i\neq j}}^n a_i a_j \Delta_i \Delta_j + \sum_{i=1}^n a_i^2 \Delta_i^2.$$
 (4.5)

Plugging (4.4) and (4.5) into (4.2) yields (4.3).