#### Notes on Context Free Grammars

Geoffrey Matthews

Department of Computer Science Western Washington University

February 21, 2017

## Readings

- http://www.cs.rochester.edu/~nelson/courses/csc\_173/grammars/cfg.html
- http://en.wikipedia.org/wiki/Context-free\_grammar
- http://en.wikipedia.org/wiki/Context-free\_language
- http://en.wikipedia.org/wiki/Parsing
- http://en.wikipedia.org/wiki/Pushdown\_automata
- http://en.wikipedia.org/wiki/LR\_parser
- ▶ https://parasol.tamu.edu/~rwerger/Courses/434/lec12-sum.pdf
- http://www.cs.sunysb.edu/~cse350/slides/cfg3.pdf

#### Context Free Grammar

A context free grammar is a grammar where all the rules are the following form:

$$S \rightarrow w$$

where S is a single nonterminal and w is a string of terminals and nonterminals.

## Context Free Grammar Examples

$$S \ o \ aS|\epsilon$$

$$\begin{array}{ccc} S & \rightarrow & ABC \\ A & \rightarrow & a \\ B & \rightarrow & b \\ C & \rightarrow & c \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & AB|A \\ A & \rightarrow & aA|a \\ B & \rightarrow & Bb|b \end{array}$$

## Context Free Grammar for Arithmetic Expressions

$$\begin{array}{cccc} E & \rightarrow & T \\ E & \rightarrow & E + E \\ E & \rightarrow & E * E \\ E & \rightarrow & (E) \\ T & \rightarrow & a \\ T & \rightarrow & b \\ T & \rightarrow & T0 \\ T & \rightarrow & T1 \end{array}$$

Note that T could have been reprsented by a regular language.

## Context Free Grammar for Programming Language

```
S \rightarrow \text{ while } E \text{ do } S \mid \text{ if } E \text{ then } S \text{ else } S \mid I := E S \rightarrow \{SL\} L \rightarrow SL; \mid \epsilon E \rightarrow \ldots I \rightarrow \ldots
```

- ► Reference manuals for programming languages usually give the syntax of the language as a CFG.
- ▶ Note that keywords, punctuation, *etc.* can be represented by a regular language.

#### **Derivations**

- ► Start with *S*
- Find a rule for a nonterminal.
- Replace nonterminal with RHS.
- Until no more nonterminals.

$$S \rightarrow AS|\epsilon$$
  
 $A \rightarrow AA|a$ 

$$S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow Aa \Rightarrow aa$$



#### **Derivations**

- Start with S
- Find a rule for a nonterminal.
- Replace nonterminal with RHS.
- Until no more nonterminals.

$$S \rightarrow AS|\epsilon$$

$$A \rightarrow AA|a$$



$$S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow Aa \Rightarrow aa$$

The **language of a grammar** is the set of all sentences for which there exists a derivation.



#### **Derivations**

- ▶ If there is more than one possible tree for some sentence, the grammar is **ambiguous**.
- ▶ There are usually many possible derivations, but only one tree.
- Important derivations are leftmost and rightmost.

$$S \rightarrow AS|\epsilon$$
  
 $A \rightarrow AA|a$ 

#### Rightmost:

$$\underline{S} \Rightarrow \underline{AS} \Rightarrow \underline{AAS} \Rightarrow \underline{AA} \Rightarrow \underline{Aa} \Rightarrow aa$$

$$\underline{S} \Rightarrow \underline{AS} \Rightarrow \underline{A} \Rightarrow \underline{AA} \Rightarrow \underline{Aa} \Rightarrow aa$$

#### Leftmost:

$$\underline{S} \Rightarrow \underline{A}S \Rightarrow \underline{A}AS \Rightarrow a\underline{A}S \Rightarrow aa\underline{S} \Rightarrow aa$$



Parse Tree

Prove that this grammar is ambiguous.

# All regular languages are context free languages



# Generate All Possible Sentences from a CF grammar

#### Length 1 derivations:

1. *d* 



# Generate All Possible Sentences from a CF grammar

#### Length 2 derivations:

$$S \rightarrow abS \mid bAc \mid d$$
  
 $A \rightarrow aA \mid \epsilon$ 

$$S \Rightarrow abS \Rightarrow ababS$$
  
 $S \Rightarrow abS \Rightarrow abbAc$   
 $S \Rightarrow abS \Rightarrow abd$ 

$$S \Rightarrow bAc \Rightarrow baAc$$

$$S \Rightarrow bAc \Rightarrow bc$$



1. d

2. abd

3. bc

## Generate All Possible Sentences from a CF grammar

#### Length 3 derivations:

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \qquad 1. \ d$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababbAc \qquad 2. \ abd$$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababd \qquad 3. \ bc$$

$$S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbaAc \qquad 4. \ ababd$$

$$A \Rightarrow aA \mid \epsilon \qquad S \Rightarrow abS \Rightarrow abbAc \Rightarrow abbc \qquad 5. \ abbc$$

$$S \Rightarrow bAc \Rightarrow baAc \Rightarrow baAc \Rightarrow bac \qquad 6. \ bac$$

$$S \Rightarrow bAc \Rightarrow baAc \Rightarrow bac \qquad 7. \dots$$

## CFG problems

- Any regular language.
- $\triangleright a^n b^n$
- $\rightarrow a^n b^{2n}$
- $\rightarrow a^n b^{3n}$
- $\rightarrow a^{4n+5}b^{3n+2}$
- $\triangleright a^n b^m a^n$
- Even length palindromes
- Odd length palindromes
- All palindromes
- ► All strings with the same number of a's and b's
- $\{a^i b^j c^k \mid i \neq j \text{ or } j \neq k\}$

## Removing $\epsilon$ from grammars

$$\begin{array}{ccc} S & \rightarrow & aDaE \\ D & \rightarrow & bD \mid E \\ E & \rightarrow & cE \mid \epsilon \end{array}$$

- ▶ Find all nonterminals N such that  $N \Rightarrow^* \epsilon$ .
- Make new rules from old by removing one or more of the null nonterminals.
- ▶ Remove all null productions  $N \to \epsilon$ .
- ▶ May have to keep  $S \to \epsilon$ , but only if  $\epsilon \in L(S)$ .

## Removing $\epsilon$ from grammars

$$\begin{array}{ccc} S & \rightarrow & aDaE \\ D & \rightarrow & bD \mid E \\ E & \rightarrow & cE \mid \epsilon \end{array}$$

▶ Null nonterminals: *D* and *E* 

| New Productions                           |
|-------------------------------------------|
| $S  ightarrow$ aa $E \mid$ a $Da \mid$ aa |
| D 	o b                                    |
| $D 	o \epsilon$                           |
| E 	o c                                    |
| none                                      |
|                                           |

#### Final grammar:

$$S \rightarrow aDaE \mid aaE \mid aDa \mid aa$$
  
 $D \rightarrow bD \mid b \mid E$   
 $E \rightarrow cE \mid c$ 

## Chomsky Normal Form

▶ All rules must be in one of these forms:

$$\begin{array}{ccc} A & \rightarrow & BC \\ A & \rightarrow & a \\ S & \rightarrow & \epsilon \end{array}$$

- ▶ A, B and C are nonterminals, a is a single terminal, and S is the start symbol.
- ▶ The last rule is necessary only if the language contains  $\epsilon$ .
- ▶ If a grammar is in CNF, what do we know about the tree?
- ▶ If a grammar is in CNF, how long is a derivation?

## Converting to Chomsky Normal Form

- 1. Add  $S_0$ , a new start symbol, and the rule  $S_0 \rightarrow S$ .
  - ▶ Only necessary if *S* is recursive
- 2. Eliminate  $\epsilon$  rules.
  - Except possibly  $S_0 \rightarrow \epsilon$
- 3. Eliminate **unit** rules,  $A \rightarrow B$ :
  - ▶ Find all rules  $B \to W$ , where W is a string longer than one.
  - ▶ Add  $A \rightarrow W$  for all of them.
- 4. Fix longer rules:
  - ▶ Replace  $A \rightarrow UVWXYZ$  with
  - $\blacktriangleright \ A \rightarrow UA_1, \ A_1 \rightarrow VA_2, \ A_2 \rightarrow WA_3, \ A_3 \rightarrow XA_4, \ A_4 \rightarrow YZ.$
- 5. For each terminal x, add a rule  $X \to x$  and replace all terminals in long (length two) strings with the corresponding nonterminals.

### Example converting to Chomsky Normal Form

Step 1: 
$$S_0 oup S$$
 Step 4:  $S_0 oup aD \mid ab \mid cT \mid c \mid \epsilon$ 
 $S oup aSb \mid T$   $S oup aD \mid ab \mid cT \mid c \mid \epsilon$ 
 $T oup cT \mid \epsilon$   $D oup Sb$ 
 $T oup cT \mid c$ 

Step 2:  $S_0 oup S \mid \epsilon$ 
 $S oup aSb \mid ab \mid T$  Step 5:  $S_0 oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S oup AD \mid AB \mid CT \mid c \mid \epsilon$ 
 $S o$ 

 $S \rightarrow aSb \mid T$  $T \rightarrow cT \mid \epsilon$ 

 $C \rightarrow c$ 

## Note on Eliminating Unit Rules

If we have two mutually recursive unit rules, for example in the following grammar:

$$A \rightarrow B|XY|UVW$$
  
 $B \rightarrow A|DE|FGH$ 

It doesn't hurt to eliminate both of them, so long as the remainder of the clauses is added to each:

$$A \rightarrow XY|UVW|DE|FGH$$
  
 $B \rightarrow DE|FGH|XY|UVW$ 

Any derivation that used the two unit rules, such as

$$A \Rightarrow B \Rightarrow A \Rightarrow B \Rightarrow FGH$$

Can be replaced by a short-circuited version

$$A \Rightarrow FGH$$



## Consequences of Chomsky Normal Form

- What do all trees look like?
- What do all derivations look like?
- ► How long are the derivations?

## Consequences of Chomsky Normal Form

- What do all trees look like?
- What do all derivations look like?
- How long are the derivations?
- There are finitely many derivations for a given string.
- To find a parse we can exhaustively search all derivations of this length or less.

#### Greibach Normal Form

▶ All rules must be in one of these forms:

$$A \rightarrow aB_1B_2...B_n$$
  
 $S \rightarrow \epsilon$ 

- ▶  $B_1B_2...B_n$  is a (possibly empty) string of nonterminals.
- ▶ The last rule is needed only if the language contains  $\epsilon$ .
- ▶ There can be no left recursion.
- What do the trees look like?
- How long are the derivations?

## Converting to Greibach Normal Form

- 1. Add  $S_0$ , a new start symbol, and the rule  $S_0 \rightarrow S$ .
- 2. Eliminate **unit** rules,  $A \rightarrow B$ .
- 3. Remove left recursion.
- 4. Eliminate  $\epsilon$  rules.
- 5. Make substitutions as needed.
  - Can be very difficult and explode to many rules.

## Consequences of Greibach Normal Form

- ▶ All derivations of a string of length *n* have *n* steps.
- ▶ There are only finitely many derivations of length *n* or less.
- ➤ To find a parse we can exhaustively search all derivations of length n or less.
- ▶ There exists an **effective procedure** to find a parse for a CFL.

## Pumping Lemma for CF Languages

▶ If a CFL is infinite, it must have recursion in it somewhere:

$$S \rightarrow uNy$$
  
 $N \rightarrow vNx \mid w$ 

This means derivations like this are possible:

$$S \Rightarrow uNy \Rightarrow uvNxy \Rightarrow uvvNxxy \Rightarrow \dots \Rightarrow uv^4Nx^4y \Rightarrow uv^4wx^4y$$

# Pumping Lemma for CF Languages

#### **Theorem**

If a language L is context-free, then there exists some  $p \ge 1$  such that any string s in L with  $|s| \ge p$  can be written as

$$s = abcde$$

with substrings a, b, c, d, e, such that

- 1.  $|bcd| \leq p$
- 2.  $|bd| \ge 1$
- 3.  $ab^n cd^n e$  is in L for all  $n \ge 0$

#### Proof that $L = 0^n 1^n 0^n$ is not CF

- ▶ Suppose *L* is CF, then *p* exists as in the theorem.
- ▶  $0^p 1^p 0^p \in L$  by definition.
- From theorem,  $0^p 1^p 0^p = abcde$  and  $ab^n cd^n e \in L$  for all n, but we don't know which parts are where.
- ► Case 1: b or d contains two different letters.
  - ▶ Then ab²cd²e must have letters out of alphabetical order.
  - ▶ Then  $ab^2cd^2e \notin L$ , contradiction.
- ► Case 2: b and d each contain only one kind of letter.
  - ► Then ab<sup>2</sup>cd<sup>2</sup>e contains more of 1 or 2 kinds of letter, not all three.
  - ▶ Then  $ab^2cd^2e \notin L$ , contradiction.

# Pumping Lemma exercises (some are hard)

Show that each of the following languages is not CF.

- $\triangleright$  1<sup>n</sup> where n is prime
- ▶  $1^m$  where  $m = n^2$
- ▶  $1^{\ell}0^{m}1^{n}$  where  $\ell < m < n$
- ▶  $1^n 0^n 1^i$  where  $i \le n$
- ww where  $w \in (0+1)^*$
- $\sim 1^n 0^n 1^n$

# CF Languages are closed under union, product, and closure

- ▶ Let  $S_1$  and  $S_2$  be the start symbols for  $L_1$  and  $L_2$ .
- ▶ A grammar for  $L_1 \cup L_2$  can be constructed starting with

$$\mathcal{S} \to \mathcal{S}_1 \ | \ \mathcal{S}_2$$

 $\blacktriangleright$  A grammar for  $L_1L_2$  can be constructed starting with

$$S \rightarrow S_1 S_2$$

▶ A grammar for  $L_1^*$  can be constructed starting with

$$S \rightarrow S_1 S \mid \epsilon$$

# CF languages are NOT closed under complement

- ▶  $L = a^{\ell}b^{m}c^{n}$  where either  $\ell \neq m$  or  $m \neq n$  is CF
  - (exercise)
- ▶ The complement of *L* is  $a^n b^n c^n$ , which is not CF
  - (see previous)

# CF languages are NOT closed under intersection

- $L_1 = a^m b^m c^n \text{ is CF}$ 
  - (exercise)
- $L_2 = a^m b^n c^n$  is CF
  - (exercise)
- ▶  $L_1 \cap L_2 = a^n b^n c^n$ , which is not CF
  - (see previous)

# The intersection of a CF language and a regular language is CF

- Given a PDA for one and a DFSA for the other:
- Create a new PDA with states that are the cross product of the states of the two machines.
- ▶ As input is processed, run both machines in parallel.
- Accept if both accept.