

AAI 695: Applied Machine Learning

Lecture 1-2 : Polynomial Fitting

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Elements for the learning problems

Learning = Improving with experience at some task

- Improve over task T,
- with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T: Play checkers
- P: % of games won in world tournament
- E: opportunity to play against self

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

How to measure the fit between model and training data?

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Minimize E(w) for unknown w. (maximum likelihood)

0th Order Polynomial

Model selection: how to choose the order M?

9th Order Polynomial

M=9: perfectly fit for training data set. Question: the larger M the better?

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^\star)/N}$

M=9: good for training data, not for test data. What is under-fitting? **Bias-Variance** Problem

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

coefficients increases as M getting larger (larger oscillations).

Data Set Size:

$$N = 15$$

9th Order Polynomial

Overfitting less severe as data set size increases

Data Set Size:

$$N = 100$$

9th Order Polynomial

The larger the data set, the more complex model we can afford

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

To support complex model under limited data size for maximum likelihood approach.

Regularization:

$$\ln \lambda = -18$$

Regularization:

$$\ln \lambda = 0$$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Acknowledgement

The slides were largely borrowed from Dr. Christopher M. Bishop's material at http%3A%2F%2Fresearch.microsoft.com%2F%7Ecmbishop%2Fprml;

For details please read Chapter 1 of textbook "Pattern Recognition and Machine Learning", by Christopher Bishop.

stevens.edu