Doc. no. : Issue : v.2.7 Date : 2018/12/10

Cat :

Page : 60 of 118

7.3.15 Readout protocol details

The communication principle is based on a modulo 16-bits words due to the Gigabit Ethernet TLK1501 transceiver working at 800Mbit/s (CLK = 40MHz, 8/10b encoding). Therefore the FEB-VRB or FEB-FEB communication protocol is based on 32-bits words where the 4 MSB bits [31..28] are reserved for a Word ID. The word ID defines the content of the remaining 28 LSB bits [27..0] of the 32-bits word.

The Table 3 presents the word ID definition of the beginning of each 32-bits word of the readout data sent by the FEB.

Line	Word ID	Word ID definition					
DATA	0	Spill header ID					
DATA	1	STRIG header ID					
DATA	2	Hit time ID					
DATA	3	Hit amplitude ID					
DATA	4	GTRIG trailer 1 ID					
DATA	5	GTRIG trailer 2 ID					
DATA	6	Spill trailer ID					
DATA	7	Spill time ID					
DATA	8	Reserved for future use (old Command Answer Header ID)					
DATA	9	Reserved for future use (old Command Answer Argument ID)					
DATA	10	Reserved for future use (old Command Answer Trailer ID)					
DATA	1113	Reserved for future use					
DATA	14	TDM ID					
DATA	15	Special Word ID					

Table 3: Word ID definitions for readout data

The special word ID is used for:

- closing the USB communication
- GRESET information
- FIFO FULL information

Doc. no. : Issue : v.2.7

Date : 2018/12/10

Cat :

Page : 61 of 118

FW V6.2

Time Slot Start																							
31 30 29 28	27 26 7	25 24	23 7	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
TDM ID	ID=0 S	Slot ID																TD	M TAC	G			
Spill header																			411		4		
31 30 29 28		25 24	23 2	22 21	20		10	17			14	13	12	11	10	9	8	7	6	5	4	3	2
Spill header ID	Board ID				1	SId		DA	AQ typ		<u> </u>						Spil	Tim	e fror	m GT	RIG ((10ns	s res
Spill header ID	Board ID				_	SId		4 '		Spill			n res	set r	eque	est)							
Spill time ID	Spill time of	on spill	start (1	10ms re	solut	cion,	max=	=745	.6 h=	=31 d	lays)												
GTRIG header #			4		4	4	4	4	4			4	4	4	4	4	4	4	4	4	4	4	4
	27 26 2						18	17	16	15	14	113	12	11	10	9	8	7	6	5	4	3	2
GTRIG header ID	Global Tric	ger tar	g (from	reset m	eque	st)																	
Second Debe - 11th									_					_	_	_		_		_			
Event Data : Hit		24	Too I	- 0 104	120	Lin	Lin	Lin	1.5	14.5	-	Li D	Lin	To de	110	10	10	4=	45	4	4	12	4
31 30 29 28		25 24	23 2	<u> 22 21 </u>	20	19	18	17	16		47	13	12	11	10	9	8 Ins re	17	16	5	4	13	12
Hit time ID	Channel II	<u> </u>			Hit I	D		Tag	ID	EDGE	4	$\overline{}$	Щ,	HIL	lime	(2.5)	ns re	S.)					
31 30 29 28	122 126 1	25 24	100 1	22 21	120	19	1.8	T ₄ ¬	146	Tar	Lan	Lin	Lin	Tala	T _{1.0}	To	To	Π	16	TE	T4	T ₂	12
Hit Amplitude ID	Channel II	<u> 75 24 </u>		<u>/2 Z1 </u>	Hit I		10	Tag	16	15 120r	114 olitude		112	Am	- litur	10 p	8		- nt	15	14	3	12
	Channel I				Till 1	.U		Tay	ID	АПр	lituu	2 10		Апр	Jilluc	le m	neasu	reme	ant				
Event Data : Hit	dt n																						
31 30 29 28		25 24	122 1	22 21	20	19	18	I _{1.7}	1.5	15	14	13	I _{1.2}	T-1	I _{1.0}	9	To	17	15	TE	T ₄	To	12
Hit time ID	Channel II	23 27	43 4	.4 41	Hit I	1.0	10	Tag	ID.	EDGE		12	12	E it	time		ins re	25	10	13	14	13	14
THE TIME TO	Chainer	<u> </u>			The	U		Tay	10	EDGE		—		THE	All III	(2.5)	15 16	5.					
31 30 29 28	27 26 1	25 24	23 -	22 21	120	19	18	117	16	115	14	13	12	T1.1	T10	9	8	7	16	15	14	13	T ₂
Hit amplitude ID	Channel II	D 12-	123 12	. 4 4 4 4	Hit I	1.0		Tag	ID	Amr	olitude	e ID	114	Δm	alitu	de m	neasu	rem.	ent	15	1	13	
The ampheade 15	Tenumer 2				The			rug	10	Altrip.	Heu.	2 10		Airie	Micac	10	Subc	Terri	HIL				
GTRIG trailer #1					47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	
31 30 29 28		25 24	23 7	22 21	20	19	18	17	16	1.5	14	13	12	11	10	9	8	7	6	15	4	3	2
GTRIG trailer 1 ID									47		47						47	47			47		
GTRIG trailer 2 ID							bal Tri	rigge	r tim	e (10	Jus r	es. %	o cur	rent	spill	star	t, ma	x=1	0.5s)				
Spill trailer						4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
31 30 29 28	-/ -0 -	25 24	23 2	22 21	20		18	17	16			13					8	7	6	5	4	3	2
Spill trailer ID	Board ID				0	SId		4 '				(fron	m res	set r	eque	est)							
Spill trailer ID	Board ID				1	SId			npera									HU	ımidity	У			
Spill time ID	Spill time of	on spill	end (1)	0ms res	soluti	on, m	nax=	745.	6 h=7	31 da	ays)												
Time Slot End					4	4	4	4	4	4	47	47	47	4	47	47	4	47	4	4	4	4	
31 30 29 28	27 26 2	25 24	23 2	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	15	4	3	2
	~ /									استتا	سنت				127	4		حظه			_		
TDM ID	ID=1 S	Slot ID			21-	bits C	CILL OF	WELL IN	-4														

Table 4: TDM, GTRIG, SPILL & DATA structure for the FEB readout communication

IMPORTANT NOTICE: SPILL HEADER ID with bit20=0 for Spill Tag information can occur any time within [Spill header-Spill Trailer] du availability of the Spill Tag when using the external B-MIND triggering system (~800ns delay from spill gate)

EDM

Doc. no. : Issue : v.2.7 Date : 2018/12/10

Cat : Page : 62 of 118

FW V6.2

31 30 29 28	27 26 25	24 23 2	2 21 20	19 18	3 17 1	.6 15	14 1	3 12	11	10 9	8	7	6	5	4	3 2
Readout End																
Special Word ID	Board ID		0	Specia	l Word I	D PARAN	$1 = 0 \times 1$	10000								
GTRIG RESET																
Special Word ID	Board ID		0	Specia	l Word I	D PARAN	$1 = 0 \times 0$	00001								
SPILL RESET																
Special Word ID	Board ID		0	Special	l Word I		1 - 0×0	00003								
Special Word ID	Board 1D		U	Specia	i wolu 1	DFARAN	1 – 0x0	00002								
GTRIG + SPILL	RESET															
Special Word ID	Board ID		0	Specia	l Word I	D PARAN	$1 = 0 \times 0$	00003								
FIFO FULL																
Special Word ID	Board ID		0	Specia	l Word I	D PARAN	$1 = 0 \times 0$	00010								
LOST of GTX WO	ORD INTEGRIT	Y														
Special Word ID		0×00		Specia	l Word I	D PARAN	$1 = 0 \times F$	OOFF								

Table 5 : Special Word IDs structure for the FEB readout communication

Doc. no. : Issue : v.2.7 Date : 2018/12/10

Cat :

Page : 63 of 118

Amplitude ID:

	HG	LG	HouseKeeping
COMPUTE	0000	0001	0111*
COMPARE	0010	0011	0110
BASELINE	0100	0101	0111*
OTHERS	0111*	0111*	0111*

^{*:} forbidden value (error)

Tag ID: 2 LSB: These bits are used for Tagging synchronization in order to place Timing & Amplitude measurement within the corresponding GTRIG event i.e. between its real Header/Trailer. The 2 LSB bits of the Tag ID must correspond to the current 2 LSB bits of the Global Trigger Tag. Due to the different clock domains and the FIFOs cascade latency used for the readout, the hit or amplitude ID message may be sent on the next GTRIG header/trailer cell if the event occurs just before the GTRIG signal. Moreover the probability of having an amplitude event on the next GTRIG is higher since it takes ~9us to process the analog readout (ASIC LG/HG multiplexed outputs) compared to an hit event which is pushed in the readout flow within 10-20ns due to FIFO to FIFO shorter latencies (2.5ns clocking).

Hit ID: 3 bits: these bits are used to synchronize the Amplitude event with the corresponding Timing event. Indeed, the amplitude measurement takes approximatively ~9s while several timing events can be latched and sent during this lapse. As soon as a Time event occurs on a given channel, the analog stage latches the hit ID of this channel and this latch is enabled during the entire HOLD DELAY duration and the ADC reading is started at the end. In other words, if many channels are hit the time flow, the corresponding analog ones will be associated with the Hit ID bits field since both timing & analog flows tag the same Hit ID. A rollover counter of 8 events (3-bits) is used.

EDGE: used for hit timing identification of event: 0=rising edge of event, 1=falling edge of event. The event duration may be calculated with the difference of the falling and the rising edge time stamps.

Channel ID: the channel IDs are used for the HG/LG identification but also for the Housekeeping channels identification. In this particular case, Channel number is equivalent to:

<u>CH</u>	SIGNAL	CONVERSION
<u>0</u>	TEMPERATURE ASIC 0	
1	TEMPERATURE ASIC 2	
2	NC	
<u>3</u>	TEMPERATURE ASIC 1	
4	TEMPERATURE FPGA	$\underline{T(°C)} = ADC(LSB) - 128$
<u>5</u>	GLOBAL HV	HV(V) = ADC(LSB)*822E-6*(1+1000/41.2)
<u>6</u>	BOARD TEMPERATURE	$T(^{\circ}C) = -(ADC(LSB)*822E-6 - 2.633)*1000/13.3$
7	BOARD RELATIVE HUMIDITY [§]	RH(%) = (ADC(LSB)*822E-6/3.3 - 0.1515)/0.00636
		$\underline{\text{True RH (\%)}} = \underline{\text{RH(\%)}}/(1.0546-0.00216T(^{\circ}C))$

[§] If sensor U52 is mounted, else ADC(LSB) = 0 i.e. HR=-23.8%. RH(%) is not compensated in temperature, use True RH formula with Board temperature measurement for temperature compensated RH(%).

<u>SiD</u>: Sub Board ID is an additional optional identification set by the slow control FPGA software configuration (e.g. vertical/horizontal separated identification)

Doc. no. : Issue : v.2.7 Date : 2018/12/10 Cat :

Page : 64 of 118

DAQ Type: 3-bits DAQ type composed of bits 15(LSB) to 17(MSB). This field is set by the MCB depending of the MCB DAQ mode and can have the following values:

000: None

001: 60us Beam DAQ pulse on external on external NIM input 0

010: Internal DAQ (20ms after Beam DAQ, duration=1.966s) on external NIM input 0

011: 001 OR 010 modes (i.e. 2 pulses) on external NIM input 0

100: 1.986s full pulse on external NIM input 0

101: Wagasci mode with 1x60µs Beam DAQ pulse + 6x5ms DAQ pulses on HDMI input

110: External NIM input 1(direct level)

NB: when using the FEB MCB emulation, the FEB can send only one DAQ type which is '001'.

R: Reserved bit (=0)

Special Word ID:

The bit-20 is used for defining the sub-special ID:

- 0: The 20-bits LSB (bits[19..0]) define the Special Word ID parameter :
 - o 0x10000: END of readout. In that case, bits [27..21] corresponds to board ID.
 - o 0x00001: GTRIG RESET received. In that case, bits [27..21] corresponds to board ID.
 - o 0x00002: SPILL RESET received. In that case, bits [27..21] corresponds to board ID.
 - o 0x00003: GTRIG + SPILL RESET received. In that case, bits [27..21] corresponds to board ID.
 - o 0x00010: FIFO L2 Full. In that case, bits [27..21] corresponds to board ID.
 - o 0xF00FF: Lost of GTX Word integrity. Board ID = 0 in this case having a global word 32 = 0xF00F00FF
- 1: Unused

TDM Word ID:

- The bits 27 & 26 are now defining sub-time slot ID:
 - o '00' for Time slot START. : In that case :
 - Bits [25..21] define the slot ID encapsulating the board data associated to this time slot.
 - Bits [7..0] define the TDM Tag which is incremented by 1 on every new TDM start and with a 8-bits rollover counter
 - o '01' for Time Slot END: In that case:
 - bits [25..21] define the slot ID encapsulating the board data associated to this time slot
 - bits [20..0] is the 32-bits to 21-bits truncated Fletcher checksum computed for the overall data sent within the time slot (including 'Timeslot Start' BUT excluding 'Time slot End' 32-bits words).

Fletcher checksum algorithm:

```
At every TDM slot start:

UInt32 checksumL = TDM word received;

UInt32 checksumH = TDM word received;

At every 32-bits data frame sent within the time slot:
    checksumL = checksumL + data;
    checksumH = checksumH + chksumL;

At every TDM slot end:
    UInt32 assembledChecksumH = ((checksumH>>22) & 0x3E0) | ((checksumH>>11) & 0x1F)
```