- umfasst folgende Punkte
 - Definitionsbereich, Stetigkeit, Differenzierbarkeit
 - Nullstellen f(x)=0
 - Extremstellen
 - Wendepunkte
 - Monotonieintervalle
 - Krümmung
 - Skizze

Extremstelle

- lokale Extremstelle ==> $f'(x_0) = 0$
 - Umkehrung ist falsch
- Ableitungen bestimmen bis $f^{(n)}(x_0) \neq 0$
 - n gerade ==> Extremstelle
 - * $f^{(n)}(x_0) > 0 ==> Minimum$
 - * $f^{(n)}(x_0) < 0 ==>$ Maximum
 - n ungerade ==> keine Extremstelle, sondern Wendepunkt

Nullstelle

 \bullet Wenn in x_0 $f(x_0)=f'(x_0)=\ldots=f^{(n)}(x_0)=0$ und $f^{(n)}(x_0)\neq 0,$ dann ist x_0 eine n-fache Nullstelle

Monotonie

- f: (a,b) -> R
 - monoton wachsend, wenn $f'(x) \ge 0$ für alle $x \in (a,b)$
 - monoton fallend, wenn $f'(x) \leq 0$ für alle $x \in (a,b)$

Krümmung von Funktionsgraphen

- f: $(a,b) -> \mathbb{R}, x,y \in (a,b), t \in (0,1)$
 - konvex/Linkskrümmung, wenn $f(tx+(1-t)y) \leq tf(x) + (1-t)f(y)$
 - konkav/Rechtskrümmung, wenn $f(tx+(1-t)) \ge tf(x) + (1-t)f(y)$
- Bestimmen der Krümmung mittels Monotonie
 - konvex, wenn f' monoton wachsend <==> $f''(x) \geq 0$ für alle x
e(a,b)
 - konkav, wenn f' monoton fallend <==> $f''(x) \leq 0$ für alle x
e(a,b)

Wendepunkte

• Punkte, in denen die Krümmung sich ändert

- $-\,$ f' ' wechselt in x_0 das Vorzeichen
- In Wendepunkten wechselt der Funktionsgraph die Seite der Tangente
- \bullet Ableitungen bestimmen bis $f^{(n)}(x_0) \neq 0$
 - n ungerade ==> Wendepunkt
 - n gerade ==> Extremstelle

 $[[{\bf Anwendungen\ der\ Differentialrechnung}]]$