

M.Sc. In Data Science
Data Governance Applications

Chatbot Training for Healthcare Applications

Agenda

01	Introduction	08	Key evidence: Outcome disparity
02	Data Documentation	09	Model fairness: Before mitigation
03	Data Quality Evaluation	10	Mitigation experiment - Reweighing
04	Privacy Risk	11	Trade off & limitations
05	Anonymization Techniques	12	Recommendations
06	Bias & Fairness Audit	13	Conclusion
07	Key evidence: Sample imbalance		

Introduction

- A new AI-powered chatbot is being developed to assist patients with healthcare inquiries.
- Goal: The chatbot aims to improve patient access to information, help with appointment scheduling, and enhance engagement.
- The Mandate: Our team has been brought in as a consulting group to conduct a thorough audit before the system is deployed.

Technische Fakultät 20.01.2025 3

Data Documentation

Author: "thedevastator"

Purpose:

- Survey data about mental health among medical students.
- Useful for analyzing prevalence of mental health issues (depression, anxiety, panic attacks), associations with demographic, academic, and behavioral variables;
- Possibly modeling whether students seek professional mental health treatment.

Size of Dataset	55 MB
Number of Instances	(888 x 20)
Number of Fields	888
Labeled Classes	20
Number of Labels	20

Data Documentation

id	Participants ID number	string
age	age at questionnaire 20-21	numeric
year	CURICULUM YEAR: In which curriculum year are	1=Bmed1; 2=Bmed2; 3=Bmed3; 4=Mmed1; 5=Mmed2; 6
sex	GENDER : To which gender do you identify the most?	1=Man; 2=Woman; 3=Non-binary
glang	MOTHER TONGUE: What is your mother tongue?	1=French; 15=German; 20=English; 37=Arab; 51=B
part	PARTNERSHIP STATUS : Do you have a partner?	0=No; 1=Yes
job	HAVING A JOB : Do you have a paid job?	0=No; 1=Yes
stud_h	HOURS OF STUDY PER WEEK: On average, how many	string
health	SATISFACTION WITH HEALTH: How satisfied are you?	1=Verydissatisfied; 2=Dissatisfied; 3=Neither

psyt	PSYCHOTHERAPY LAST YEAR: During the last 12 months	0=No; 1=Yes
jspe	JSPE total empathy score	numeric
qcae_cog	QCAE Cognitive empathy score	numeric
qcae_aff	QCAE Affective empathy score	numeric
amsp	AMSP total score	numeric
erec_mean	GERT : mean value of correct responses	numeric
cesd	CES-D total score	numeric
stai_t	STAI score	numeric
mbi_ex	MBI Emotional Exhaustion	numeric
mbi_cy	MBI Cynicism	numeric
mbi_ea	MBI Academic Efficacy	numeric

Visualizing and Assessment of Missing Values

• The Non-Null Count column in the pandas DataFrame output shows that every single one of the 886 entries has a value.

• This is visually confirmed by the heatmap on the right, which is a solid block of color, indicating the absence of any missing data points.

Visualizing and Assessment of Duplicate Records

- The bar chart shows the count of Total Records is exactly equal to the count of Unique IDs, proving that every entry is unique.
- Thus confirming that the dataset contains no duplicate records.

Technische Fakultät

Visualizing and Assessment of Categorical Data

The charts reveal the frequency of each category within key variables, highlighting an imbalance in the distribution of students across categories, such as a majority being female and having high health scores.

Potential Privacy Risks

Sensitive Data Exposure

Unauthorized Access

Data Breaches

Re-identification

Improper Data Retention

Anonymization

Pseudonymization

Replace direct identifiers with pseudonyms or codes.

Limitation: not fully anonymous.

Tokenization

Replace identifiers with placeholder tokens.

Limitation: Requires secure token vault

Redaction

Remove sensitive data

Limitation: Reduces context for training

Differential Privacy

Inject noise into the dataset

Limitation: Complex to implement, may harm accuracy

Reversibility:

- ✓ Pseudo/Token = reversible with key;
- ✓ Redaction/DP = irreversible.

Anonymization

Pseudonymization

Replace direct identifiers with pseudonyms or codes.

Limitation: not fully anonymous.

Tokenization

Replace identifiers with placeholder tokens.

Limitation: Requires secure token vault

Redaction

Remove sensitive data

Limitation: Reduces context for training

Differential Privacy

Inject noise into the dataset

Limitation: Complex to implement, may harm accuracy

Workflow:

Ingestion → Pseudo/Token/Redact → k-/l-checks → DP for outputs.

- **1. Tokenization** process of replacing sensitive data elements with Tokens
 - ✓ In data privacy, tokenization is used to protect information such as names, IDs, or other identifiers in a dataset.
 - "John Smith", "123-45-6789", or a unique user ID
 - •Token are randomly generated or mapped value (e.g., "A1B2C3D4", "abc123", or "user_001") that replaces the original data in the dataset.

✓ Mapping :

- •The relationship between tokens and real values is securely stored in a separate, protected location (the "token vault").
- •Without access to this vault, the token cannot be reversed to reveal the original value.
- >Protects Sensitive Data: Even if the dataset is exposed, the original values are not revealed.
- > Prevents Re-identification: Tokens cannot be reversed without the mapping vault.
- **Compliance:** Helps meet privacy regulations by reducing the risk of data breaches.

index	id	age	year	sex	glang	part	job	stud_h	health	psyt	jspe	qcae_cog	qcae_aff	amsp	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea
0	2	18	1	1	120	1	0	56	3	0	88	62	27	17	0.73809522	34	61	17	13	20
1	4	26	4	1	1	1	0	20	4	0	109	55	37	22	0.69047618	7	33	14	11	26
2	9	21	3	2	1	0	0	36	3	0	106	64	39	17	0.69047618	25	73	24	7	23
3	10	21	2	2	1	0	1	51	5	0	101	52	33	18	0.83333331	17	48	16	10	21
4	13	21	3	1	1	1	0	22	4	0	102	58	28	21	0.69047618	14	46	22	14	23

index	age	year	sex	glang	part	job	stud_h	health	psyt	jspe	qcae_cog	qcae_aff	amsp	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea	id_token
0	18	1	1	120	1	0	56	3	0	88	62	27	17	0.73809522	34	61	17	13	20	zR8nfwgvRU6fPv882CG23A
1	26	4	1	1	1	0	20	4	0	109	55	37	22	0.69047618	7	33	14	11	26	iCuGZIEIRhigfhPzHSyPTA
2	21	3	2	1	0	0	36	3	0	106	64	39	17	0.69047618	25	73	24	7	23	5b310yp6QiWgO88jZ6FcuQ
3	21	2	2	1	0	1	51	5	0	101	52	33	18	0.83333331	17	48	16	10	21	aQxegD0sQGysJ8VU8PVxPA
4	21	3	1	1	1	0	22	4	0	102	58	28	21	0.69047618	14	46	22	14	23	KDZI-SCORA-VPVNttGbaFw

```
id_to_token: [(2, 'zR8nfwgvRU6fPv882CG23A'), (4, 'iCuGZlEIRhigfhPzHSyPTA'), (9, '5b310yp6QiWg088jZ6FcuQ'), (10, 'aQxegD0sQGysJ8VU8PVxPA'), token_to_id: [('zR8nfwgvRU6fPv882CG23A', 2), ('iCuGZlEIRhigfhPzHSyPTA', 4), ('5b310yp6QiWg088jZ6FcuQ', 9), ('aQxegD0sQGysJ8VU8PVxPA', 10),
```


- **2. Redaction** process of removing or masking sensitive information from a dataset before it is shared.
 - ✓ Removing Columns: Deleting columns that contain direct identifiers
 - names, ID numbers, or email addresses.
 - ✓ Masking Values: Replacing specific data values with a placeholder
 - Replace rare 'lang' values with "REDACTED"
 - ✓ Partial Redaction: Hiding only part of a value
 - •05.05.1989 as "1989"
 - > Protect Privacy: Prevents unauthorized access to personal or identifying information.
 - ➤ Data Sharing: Enables sharing of data for research or analysis without exposing confidential details.
 - Legal & Ethical Compliance: Meets requirements of data protection laws and ethical standards.

x	id	age	year	sex	glang	part	job	stud_h	health	psyt	jspe	qcae_cog	qcae_aff	amsp	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea
0	2	18	1	1	120	1	0	56	3	0	88	62	27	17	0.73809522	34	61	17	13	20
1	4	26	4	1	1	1	0	20	4	0	109	55	37	22	0.69047618	7	33	14	11	26
2	9	21	3	2	1	0	0	36	3	0	106	64	39	17	0.69047618	25	73	24	7	23
3	10	21	2	2	1	0	1	51	5	0	101	52	33	18	0.83333331	17	48	16	10	21
4	13	21	3	1	1	1	0	22	4	0	102	58	28	21	0.69047618	14	46	22	14	23
	0 1 2 3	0 2 1 4 2 9 3 10	0 2 18 1 4 26 2 9 21 3 10 21	0 2 18 1 1 4 26 4 2 9 21 3 3 10 21 2	0 2 18 1 1 1 4 26 4 1 2 9 21 3 2 3 10 21 2 2	0 2 18 1 1 120 1 4 26 4 1 1 1 2 9 21 3 2 1 3 10 21 2 2 1	0 2 18 1 1 120 1 1 4 26 4 1 1 1 1 2 9 21 3 2 1 0 3 10 21 2 2 1 0	0 2 18 1 1 120 1 0 1 4 26 4 1 1 1 0 2 9 21 3 2 1 0 0 3 10 21 2 2 1 0 1	0 2 18 1 1 120 1 0 56 1 4 26 4 1 1 1 0 20 2 9 21 3 2 1 0 0 36 3 10 21 2 2 1 0 1 51	0 2 18 1 1 120 1 0 56 3 1 4 26 4 1 1 1 0 20 4 2 9 21 3 2 1 0 0 36 3 3 10 21 2 2 1 0 1 51 5	0 2 18 1 1 120 1 0 56 3 0 1 4 26 4 1 1 1 0 20 4 0 2 9 21 3 2 1 0 0 36 3 0 3 10 21 2 2 1 0 1 51 5 0	0 2 18 1 1 120 1 0 56 3 0 88 1 4 26 4 1 1 1 0 20 4 0 109 2 9 21 3 2 1 0 0 36 3 0 106 3 10 21 2 2 1 0 1 51 5 0 101	0 2 18 1 1 120 1 0 56 3 0 88 62 1 4 26 4 1 1 1 0 20 4 0 109 55 2 9 21 3 2 1 0 0 36 3 0 106 64 3 10 21 2 2 1 0 1 51 5 0 101 52	0 2 18 1 1 120 1 0 56 3 0 88 62 27 1 4 26 4 1 1 1 0 20 4 0 109 55 37 2 9 21 3 2 1 0 0 36 3 0 106 64 39 3 10 21 2 2 1 0 1 51 5 0 101 52 33	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 1 4 26 4 1 1 1 0 20 4 0 109 55 37 22 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 0.73809522 1 4 26 4 1 1 1 0 20 4 0 109 55 37 22 0.69047618 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 0.69047618 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18 0.833333331	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 0.73809522 34 1 4 26 4 1 1 1 0 20 4 0 109 55 37 22 0.69047618 7 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 0.69047618 25 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18 0.833333331 17	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 0.73809522 34 61 1 4 26 4 1 1 0 20 4 0 109 55 37 22 0.69047618 7 33 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 0.69047618 25 73 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18 0.83333331 17 48	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 0.73809522 34 61 17 1 4 26 4 1 1 0 20 4 0 109 55 37 22 0.69047618 7 33 14 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 0.69047618 25 73 24 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18 0.833333331 17 48 16	0 2 18 1 1 120 1 0 56 3 0 88 62 27 17 0.73809522 34 61 17 13 1 4 26 4 1 1 0 20 4 0 109 55 37 22 0.69047618 7 33 14 11 2 9 21 3 2 1 0 0 36 3 0 106 64 39 17 0.69047618 25 73 24 7 3 10 21 2 2 1 0 1 51 5 0 101 52 33 18 0.833333331 17 48 16 10

stud_h	health	psyt	jspe	•••	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea	id_token	age_group	glang_gen	year_group
56	3	0	88		0.738095	34	61	17	13	20	JsiJ_TqeTpiuyJdvx8gMxQ	17-20	Other	Bmed
20	4	0	109		0.690476	7	33	14	11	26	GjiB6PtfRGGY5K6uifj-DA	25-29	1	Mmed
36	3	0	106		0.690476	25	73	24	7	23	cnl3vFNJSKGb_3Ks9bx76g	21-24	1	Bmed
51	5	0	101		0.833333	17	48	16	10	21	bqPJU3ezQ9O9MfhIGJC4Ow	21-24	1	Bmed
22	4	0	102		0.690476	14	46	22	14	23	PIAn00SDiQRtWOtSz42A	21-24	1	Bmed

Quasi-Identifiers (QIs) are attributes that, while not directly identifying, can be combined to uniquely pinpoint an individual within a dataset.

- ✓ Defining QIs from our student mental health dataset.
 - o Age
 - curriculum year
 - Sex
 - mother tongue

k-Anonymity: Ensuring Group Privacy

Every combination of Quasi-Identifiers (QIs) in a dataset must appear in at least k records.

I-Diversity

Within every k-anonymous QI group, the sensitive attribute must have at least I distinct values to prevent re-identification.

	-anonymity: -anonymity (
			alana aen	
17–20	year_group Bmed		glang_gen	0
17-20	billea	Non-binary	1	0
			90	0
		Man	20	0
	Mmed	Man	1	0
			Other	0
	Bmed	Non-binary		0
			15	0
			102	0
	Mmed	Man	102	0
			90	0
dtype: int	64			
before - l	-diversity:	138 groups		
Before - l	-diversity (head):		
	year_group		glang_gen	
17-20	Bmed	Non-binary	1	0
1, 20	Jcu		90	0
		Man	20	ø
	Mmed	Man	1	ø
	Tillicu	Tidii	0ther	0
	Bmed	Non-binary	20	0
	billeu	Non-binary	15	
				0
	Mesonal	Man	102	0
	Mmed	Man	102	0
			90	0
Name: heal	th, dtype: i	nt64		

	anonymisatio			
	year_group			_
40+	Bmed	Woman		0
			20	0
			15	0
			102	0
			90	0
			1	0
			NaN	0
		Man	Other	0
			20	0
			15	0
dtype: int	64			
- 1	diversity: 3	52 arou	ps	
	year_group	_	•	
40+	Bmed		Other	0
			20	0
			15	0
			102	0
			90	Ø
			1	Ø
			NaN	ø
		Man	Other	0
		Hall	20	0
			15	0
Namer hoal	th, dtype: i	n+6/	13	v
	rows (any Q		o 020	
Suppliessed	TOWS (ally Q	T Main):	0.920	

Advanced Anonymization with LLMs

➤ Recent LLMs, such as Llama-3 70B, have demonstrated remarkable capabilities, achieving a 99.24% success rate in automatically removing PHI from clinical text. This breakthrough is pivotal for secure healthcare AI development.

Automating anonymisation enables the scalable and secure use of vast amounts of unstructured medical data, accelerating research and development without compromising patient privacy.

Deidentifying Medical Documents with Local, Privacy-Preserving Large Language Models: The LLM-Anonymizer

Isabella C. Wiest ¹⁰, M.D., M.Sc., ^{1,2} Marie-Elisabeth Leßmann ¹⁰, M.D., ^{1,3} Fabian Wolf ¹⁰, M.Sc., ¹ Dyke Ferber ¹⁰, M.D., ^{1,4} Marko Van Treeck ¹⁰, M.Sc., ¹ Jiefu Zhu ¹⁰, M.Sc., ¹ Matthias P. Ebert ¹⁰, M.D., ^{2,5,6} Christoph Benedikt Westphalen ¹⁰, M.D., Martin Wermke ¹⁰, M.D., ³ and Jakob Nikolas Kather ¹⁰, M.D., M.Sc., ^{1,3,4}

Received: May 26, 2024; Revised: November 18, 2024; Accepted: December 29, 2024; Published: March 27, 2025

Abstract

BACKGROUND Medical research with real-world clinical data is challenging as a result of privacy requirements. Patient data should be anonymized before analysis in research studies. Anonymization procedures aim to reduce the reidentification risk below a certain threshold, while maintaining the usefulness of the data for research purposes. However, in the context of medical text, these procedures are notoriously hard to automate and, therefore, are not scalable. Recent advancements in natural language processing (NLP), driven by the development of large language models (LLMs), have markedly improved the automatic processing of unstructured text.

METHODS We hypothesize that LLMs are highly effective tools for extracting patient-related information, which can subsequently be used to remove personal information from medical reports, while at the same time preserving information required for downstream research purposes. To test this, we conducted a benchmark study using eight local LLMs (Llama-3 8B, Llama-3 70B, Llama-2 7B, Llama-2 70B, Llama-2 7B Sauerkraut, Llama-2 70B Sauerkraut, Mistral 7B, and Phi-3 Mini) to extract and remove patient-related information from a dataset of 250 real-world clinical letters.

RESULTS Our results demonstrate that our LLM-Anonymizer, when used with Llama-3 70B, achieved a success rate of 99.24% in removing text characters carrying personal identifying information. It missed only 0.76% of text characters with identified personal information and mistakenly redacted 2.43% of characters.

CONCLUSION We provide our full LLM-based Anonymizer pipeline under an open-source

Drs. Wiest and Leßmann contributed equally to this artic

The author affiliations are listed the end of the article.

Bias & Fairness Audit — Context

Evidence, Mitigation & Recommendations

- Healthcare chatbots must treat patients fairly \rightarrow errors = real harm.
 - Risk: missed burnout in minority groups \rightarrow unsafe care.
- Our focus: fairness audit across sex & language, plus a mitigation test

Key evidence: Sample imbalance

- Majority = women + one dominant mother tongue.
- Non-binary + minority languages = tiny groups.
- → Large imbalance → subgroup results unreliable.

Key Evidence : Outcome disparity

Emotional exhaustion (mbi_ex) by sex

- Burnout (emotional exhaustion) higher in women vs men.
- Non-binary variance very high, but sample is tiny.
- → Subgroups experience burnout differently.

Model fairness: (Before Mitigation)

- Logistic regression with age, year, sex, language.
- Key metric: False Negative Rate (FNR) \rightarrow missed burnout = unsafe.
- Results:

Women: FNR ~36%

Minority languages: FNR ~16% (unstable).

• → Model misses high-burnout cases unevenly.

Dominant groups have high false negatives (unsafe). Minority results look 'better' but are unreliable due to very small sample sizes

Mitigation Experiment — Reweighing

- Reweighing \(\) fairness for minority groups.
- Overall AUC: $0.562 \rightarrow 0.570$ (small change).
- Trade-off: fairness ↑ but accuracy slightly ↓.
- Reweighing reduced disparities
 but introduced a trade-off:
 higher equity for smaller groups
 at the cost of a small performance drop.

Trade-offs & Limitations

- Trade-offs:
 - ✓ Fairness ↑ for minority groups.
 - X Accuracy ↓ slightly → more false alarms.
- Stakeholders:
 - Patients → safer, fewer missed burnout cases.
 - Doctors/Nurses → more workload from false alarms.
 - Hospital → balance safety vs efficiency
- Limitations: tiny non-binary group; survey ≠ clinical dataset.

Recommendations

Immediate (pre-rollout):

- Publish per-group fairness metrics.
- Use class weights & conservative thresholds.
- Route high-risk outputs to human review.

Medium-term:

- Collect more subgroup data (non-binary, minority languages).
- Test fairness-aware training approaches.
- Define fairness thresholds with clinicians.

Final Conclusion

Bias exists: dataset heavily imbalanced (sex, language).

Disparities matter: higher burnout in women, underrepresented groups unstable.

Model fairness: uneven FNR → unsafe for deployment "as is."

Mitigation works (partially): reweighing reduced gaps but lowered AUC slightly.

Fairness = trade-off: safety vs efficiency, must be clinician-guided.

Conclusion

