Referential Integrity (RI)

Von: Arkan Abdel Leonard Faix

Agande

- What is Referential Integrity (RI) in a Database?
- What means RI in a Data Warehouse?
- Should one have RI in a DWH or not?
- pro and cons of Referential Integrity (RI)

Referential Integrity (RI) in a Database?

- the relational data in database tables has to be universally configurable
- keys that reference elements of other tables need to be connected to those other fields
- not separately
- prevents errors

What means RI in a Data Warehouse

- Referential Integrity in the data warehouse is a form of data integrity
- Relational databases break the storage of data down into elements
- data would get dropped (If it is not implemented properly)

Integrity Constraints:

- Impose restrictions on allowable data, beyond those
- Imposed by structure and types

Referential integrity

- . Integrity of references
- . No dangling pointers

Student

sID	sName	GPA	HS
123	Mary		

Apply

sID	cName	Major	dec
123	Stanford	Cs	Υ

College

cName	State	enr
Stanford		

	sID	sName	GPA	HS
-	123	Mary		
*				

	sID	cName	Major	dec
-	123	Stanford	Cs	Υ
*	555	Stanford		
*	123	Yale		

	cName	State	enr
	Stanford		
k			

	(sID)	sName	GPA	HS
-	123	Mary		
k				

1				
	(sID)	(CName)	Major	dec
-	123	Stanford	Cs	Υ
*	555	Stanford		
*	123	Yale		

c Name	State	enr
Stanford		
	Stanford	

Referential integrity from R.A to S.B Each value in column A of table R must appear in column B of table S

- A is called the "foreign Key" (foreign key constraints)
- B is usually required to be the primary key for table S or at least unique
- Multi-attribute foreign keys are allowed

• Potentially violating modifications:

• Update S.B

Student Apply College

| SID | SName | GPA | HS | SID | CName | Major | dec | CName | State | enr

Special actions:

• Delete from S Error

Restrict (default), set Null, Cascade

Update S.B

Student

sID	sName	GPA	HS
0			

Apply

sID	cName	Major	dec
123			

College

cName	State	enr

Student

Apply

sID	cName	Major	dec
123			
123			

College

cName	State	enr

Special actions:

Delete from S
 Error
 Restrict (default), set Null, Cascade

Update S.B

Restrict (default), set Null, Cascade

Beispiel:

EMP

<u>EID</u>	First	Last	Salary	<u>Dno</u>
10	Arkan	Abdel	42000	1
5	Leonard	Faix	60000	2
4	Patrick	Foucks	65000	1
7	Anwar	Adial	7000	2
8	jon	mark	55000	3
			}	

DEP.

DID	Dname	Location
1	CS	floor 1
2	CIS	floor 2
3	BIT	floor 3

Die Problemlösung:

```
Create table Dept (DID char(1) Primary Key, Dname varchar(20), Location
varchar(20),
     on delete Cascade
     on update Cascade );
+ We can create our own Data Type:
Create type TypeName as varchar(30);
   create table Emp (ID......
               TypeName.....
        Last
```

Why should I enforce RI?

- Ensuring that relationships between rows of data exist and are used as they are defined.
- User can trust data and rely on relationships

Referential Integrity in Data Warehouse

- Referential integrity is a decision, not a standard practice. It depends on the data
- ETL can ensure RI -> need strong control over ETL
- Constraints can ensure RI
 - Foreign Key...

RI by Constraints

- Constraints can increase load time and write time
- · Constraints can make read queries faster
- Updates are done in the database environment, not in the warehouse environment
- Many tables + many references -> too much development overhead

Conclusion, Considerations

- How will Referential Integrity impact the performance?
- RI can save dev and support time
- RI can cost more time, maintaining constraints
- Is the DW a read-only copy of transactional databases? ->Maintaining RI probably isn't worth it.
- Can the ETL maintain integrity?

Thank you for your attention

Sources

- https://datawarehouseinfo.com/implementing-referential-integrity-in-a-data-warehouse-a-controversial-decision-with-a-lasting-impact/
- https://esj.com/articles/1998/08/13/referential-integrity-for-the-data-warehouse-environment.aspx?m=1
- https://en.wikipedia.org/wiki/Referential integrity
- sql When is referential integrity not appropriate? Stack Overflow
- Implement Referential Integrity Constraints for Consistency & Error Control (datawarehouseinfo.com)
- Referential integrity and its role in data warehousing | Auckland, Wellington, Christchurch, NZ (theta.co.nz)
- Referential integrity and its role in data warehousing: part two | Auckland, Wellington, Christchurch, NZ (theta.co.nz)