Experiment 5: Perceptron Learning Algorithm (PLA) One-vs-Rest Multi-class Classification

Prepared by: **Sreeram GM**Course / Lab: Experiment 5

September 9, 2025

Contents

1	Aim	1			
2	Dataset				
3 Preprocessing					
4	Implementation 4.1 Mounting and CSV / Image loading	2 2			
	4.2 Preprocessing function and dataset build	3			
	 4.4 PLA (One-vs-Rest) implementation	4			
	4.6 Evaluation and saving	6			
5	Hyperparameter Search and Best Configuration	6			
6	Results 6.1 Overall summary	6 6 6 8			
7	Discussion	9			
8	Conclusion	10			

1 Aim

Implement the Perceptron Learning Algorithm (PLA) as a one-vs-rest multi-class classifier for the image dataset, perform hyperparameter search, evaluate the best model on a held-out test set, and present results (metrics, confusion matrix, ROC, training-error curve).

2 Dataset

- Dataset root (Colab / Google Drive): /content/drive/MyDrive/colabdata/dataset
- Contents:
 - Img/: folder containing image files.

- *.csv : CSV file mapping image filenames to labels.
- Summary (from experiment run):

- Number of classes: **62**

- Train samples: 2728

- Test samples: **682**

3 Preprocessing

- 1. Mount Google Drive in Colab and locate dataset folder.
- 2. Load CSV mapping filenames to labels; auto-detect filename and label columns when possible.
- 3. For each image:
 - Convert to grayscale (PIL 'L').
 - Resize to 28×28 .
 - Normalize pixel values to [0, 1].
 - Flatten to a vector of length 784.
- 4. Use LabelEncoder to convert labels into integer class indices.
- 5. Use stratified train/test split (80% train, 20% test). During hyperparameter search, use an internal validation split from train.

4 Implementation

Below are the key code sections used in the experiment. The full code is included in the appendix.

4.1 Mounting and CSV / Image loading

```
from google.colab import drive
  drive.mount('/content/drive')
  DATASET_ROOT = '/content/drive/MyDrive/colabdata/dataset'
  IMG_FOLDER = DATASET_ROOT + '/Img'
5
  # find CSV file in dataset root
  def find_csv_file(dataset_root):
       candidates = [f for f in os.listdir(dataset_root) if f.lower().
9
          endswith('.csv')]
       if not candidates:
10
           raise FileNotFoundError(f"No CSV file found in {dataset_root}.
11
              Place CSV in that folder.")
       return os.path.join(dataset_root, candidates[0])
12
  CSV_PATH = find_csv_file(DATASET_ROOT)
14
  df = pd.read_csv(CSV_PATH).dropna().reset_index(drop=True)
15
16
  # auto-detect filename & label columns
```

```
possible_file_cols = ['filename','file','image','img','path','
      image_path','file_name','File']
   possible_label_cols = ['label','class','target','y','label_name','Label
19
      , ]
   file_col = None
20
   label_col = None
21
   for c in df.columns:
22
       low = c.lower()
23
       if low in possible_file_cols or any(p in low for p in
24
          possible_file_cols):
           file_col = c
25
       if low in possible_label_cols or any(p in low for p in
26
          possible_label_cols):
           label_col = c
27
   if file_col is None: file_col = df.columns[0]
28
   if label_col is None: label_col = df.columns[1] if len(df.columns)>1
29
      else df.columns[0]
   print("Detected file column:", file_col)
  print("Detected label column:", label_col)
```

Listing 1: Mount Drive and auto-detect CSV + load filenames

4.2 Preprocessing function and dataset build

```
from PIL import Image
   import numpy as np
2
3
   def load_and_preprocess(img_path, size=(28,28), as_gray=True):
4
       img = Image.open(img_path)
5
       if as_gray:
6
           img = img.convert('L')
       img = img.resize(size, Image.BILINEAR)
8
       arr = np.asarray(img, dtype=np.float32)/255.0
9
       return arr.flatten()
10
11
   # Resolve paths and build lists
12
   image_paths = []
13
   labels = []
14
   missing_files = []
15
   for idx, row in df.iterrows():
16
       fname = str(row[file_col])
17
       full_path = fname
18
       if not os.path.isabs(full_path):
19
           p1 = os.path.join(IMG_FOLDER, fname)
20
           p2 = os.path.join(IMG_FOLDER, os.path.basename(fname))
21
           if os.path.exists(p1): full_path = p1
22
           elif os.path.exists(p2): full_path = p2
23
           else:
24
                p3 = os.path.join(DATASET_ROOT, fname)
25
                if os.path.exists(p3): full_path = p3
26
27
                    missing_files.append(fname)
28
                    continue
29
30
       image_paths.append(full_path)
       labels.append(row[label_col])
31
32
  # load images (can be slow)
```

Listing 2: Image preprocessing and building X,y arrays

4.3 Label encoding and splitting

```
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

le = LabelEncoder()
y_enc = le.fit_transform(y)
classes = le.classes_
n_classes = len(classes)

X_train, X_test, y_train_idx, y_test_idx = train_test_split(
X, y_enc, test_size=0.2, stratify=y_enc, random_state=42)
```

Listing 3: Label encoding and train/test split

4.4 PLA (One-vs-Rest) implementation

```
class PerceptronPLA:
1
       def __init__(self, n_features, lr=1.0):
2
           self.lr = lr
3
           self.w = np.zeros(n_features + 1, dtype=np.float32) # include
4
               bias
5
       def predict_raw(self, X):
6
           Xb = np.hstack([X, np.ones((X.shape[0],1), dtype=np.float32)])
           return Xb.dot(self.w)
9
       def predict(self, X):
10
           return np.where(self.predict_raw(X) >= 0, 1, -1)
11
12
       def fit(self, X, y, epochs=10, shuffle=True, verbose=False):
13
           Xb = np.hstack([X, np.ones((X.shape[0],1), dtype=np.float32)])
14
           n = X.shape[0]
15
           history = []
16
           for ep in range(epochs):
17
                errors = 0
18
                indices = np.arange(n)
19
                if shuffle: np.random.shuffle(indices)
20
                for i in indices:
21
                    xi = Xb[i]; yi = y[i]
22
                    pred = 1 if xi.dot(self.w) >= 0 else -1
23
                    if pred != yi:
24
                        self.w += self.lr * yi * xi
25
26
                        errors += 1
27
                history.append(errors / n)
           return history
28
29
  def train_ovr_pla(X_train, y_train, lr=1.0, epochs=20):
```

```
31
       n_features = X_train.shape[1]
       models = \{\}
32
       history = {}
33
       for c_idx, c_label in enumerate(classes):
34
            y_bin = np.where(y_train == c_idx, 1, -1)
35
           p = PerceptronPLA(n_features, lr=lr)
36
            hist = p.fit(X_train, y_bin, epochs=epochs)
37
            models[c_idx] = p
38
           history[c_idx] = hist
39
       return models, history
40
```

Listing 4: Perceptron PLA class and OvR training

4.5 Hyperparameter search (grid) and retraining

```
# grid
   lr_values = [1.0, 0.1, 0.01]
   epoch_values = [10, 20, 50]
3
   best_acc = 0.0
5
   best_params = None
6
   best_models = None
7
   best_history = None
   search_X_tr, search_X_val, search_y_tr, search_y_val = train_test_split
10
       X_train, y_train_idx, test_size=0.2, stratify=y_train_idx,
11
          random_state=42)
12
   for lr in lr_values:
13
14
       for ep in epoch_values:
           candidate_models, candidate_hist = train_ovr_pla(search_X_tr,
15
               search_y_tr, lr=lr, epochs=ep)
           # validation predictions
16
           def ovr_predict_local(models, X_input):
17
               n_samples = X_input.shape[0]
18
               scores_loc = np.zeros((n_samples, len(models)), dtype=np.
19
                   float32)
               for c_idx, m in models.items():
20
                    scores_loc[:, c_idx] = m.predict_raw(X_input)
21
               preds_loc = np.argmax(scores_loc, axis=1)
22
               return preds_loc
23
           val_preds = ovr_predict_local(candidate_models, search_X_val)
24
           acc = accuracy_score(search_y_val, val_preds)
25
           if acc > best_acc:
26
27
               best_acc = acc
               best_params = (lr, ep)
28
               best_models = candidate_models
29
               best_history = candidate_hist
30
31
   # retrain on full X_train with best params
32
   best_lr, best_ep = best_params
33
   models, hist = train_ovr_pla(X_train, y_train_idx, lr=best_lr, epochs=
34
      best_ep)
```

Listing 5: Grid search over LR and epochs; retrain best on full train

4.6 Evaluation and saving

```
def ovr_predict(models, X):
       n = X.shape[0]
2
       scores = np.zeros((n, len(models)), dtype=np.float32)
3
       for c_idx, model in models.items():
4
           scores[:, c_idx] = model.predict_raw(X)
5
       preds = np.argmax(scores, axis=1)
6
       return preds, scores
7
9
  y_pred_idx , raw_scores_test = ovr_predict(models , X_test)
10
  # metrics
11
  acc = accuracy_score(y_test_idx, y_pred_idx)
12
  prec, rec, f1, _ = precision_recall_fscore_support(y_test_idx,
13
      y_pred_idx, average='macro', zero_division=0)
14
  # save models
15
  with open('/content/pla_ovr_models.pkl','wb') as f:
16
       pickle.dump({'best_params':best_params,'models':{c:m.w for c,m in
17
          models.items()}, 'label_encoder':le}, f)
```

Listing 6: Prediction, metrics, plots, save weights

5 Hyperparameter Search and Best Configuration

- Grid searched: Learning rates = $\{1.0, 0.1, 0.01\}$; Epochs = $\{10, 20, 50\}$.
- Best hyperparameters: learning rate = 0.1, epochs = 50.
- Best validation accuracy (internal validation): 0.1978.

6 Results

6.1 Overall summary

• Number of classes: 62

• Train samples: 2728

• Test samples: 682

• Best LR, epochs: (0.1, 50)

• Validation accuracy (best): 0.1978

• Accuracy (test): **0.1833**

• Macro F1: **0.1674**

6.2 Per-class precision / recall / f1

Table 1: Per-class metrics (test set)

class_label	precision	recall	f1
0	0.214286	0.272727	0.240000
1	0.083969	1.000000	0.154930
2	1.000000	0.090909	0.166667
3	0.666667	0.181818	0.285714
4	0.000000	0.000000	0.000000
5	0.500000	0.090909	0.153846
6	0.000000	0.000000	0.000000
7	0.000000	0.000000	0.000000
8	0.666667	0.181818	0.285714
9	0.000000	0.000000	0.000000
A	0.000000	0.000000	0.000000
В	1.000000	0.272727	0.428571
\mathbf{C}	0.250000	0.727273	0.372093
D	1.000000	0.090909	0.166667
${ m E}$	0.375000	0.272727	0.315789
\mathbf{F}	0.000000	0.000000	0.000000
G	0.444444	0.363636	0.400000
H	1.000000	0.090909	0.166667
I	0.000000	0.000000	0.000000
J	0.375000	0.545455	0.444444
K	0.000000	0.000000	0.000000
L	1.000000	0.363636	0.533333
M	0.666667	0.363636	0.470588
N	1.000000	0.090909	0.166667
O	0.166667	0.090909	0.117647
P	0.470588	0.727273	0.571429
Q	0.291667	0.636364	0.400000
R	1.000000	0.090909	0.166667
S	0.000000	0.000000	0.000000
${ m T}$	0.454545	0.454545	0.454545
U	0.600000	0.272727	0.375000
V	0.363636	0.363636	0.363636
W	0.000000	0.000000	0.000000
X	1.000000	0.181818	0.307692
Y	0.000000	0.000000	0.000000
Z	0.500000	0.090909	0.153846
a	1.000000	0.090909	0.166667
b	0.000000	0.000000	0.000000
c	0.333333	0.181818	0.235294
d	0.133333	0.181818	0.153846
e	0.076923	0.090909	0.083333
f	0.000000	0.000000	0.000000
g	0.111111	0.272727	0.157895
h	0.045455	0.272727	0.077922
i	0.333333	0.181818	0.235294
j	0.200000	0.090909	0.125000
k	0.014925	0.090909	0.025641
1	0.000000	0.000000	0.000000
m	1.000000	0.090909	0.166667
n	0.000000	0.000000	0.000000
O	0.000000	0.000000	0.000000
p	0.571429	0.363636	0.444444
q	0.114286	0.727273	0.197531
r	0.153846	0.363636	0.216216

class_label	precision	recall	f1
s	0.130435	0.272727	0.176471
t	0.083333	0.090909	0.086957
u	0.000000	0.000000	0.000000
\mathbf{v}	0.000000	0.000000	0.000000
w	0.000000	0.000000	0.000000
X	0.000000	0.000000	0.000000
у	1.000000	0.090909	0.166667
Z	0.000000	0.000000	0.000000

6.3 Figures (placeholders)

Figure 1: Confusion matrix (replace with actual image path).

Figure 2: Micro-average ROC curve (replace with actual image path).

Figure 3: Training error vs epochs (average over classes).

7 Discussion

• Test accuracy is low (about 18.33%) and macro F1 is 0.1674. This indicates the dataset is challenging for PLA, likely due to:

- Large number of classes (62) with limited samples per class.
- High intra-class variability and possible class imbalance.
- PLA is a linear classifier and may not capture complex patterns in image data.
- Some classes have very high precision but very low recall (or vice versa), indicating the classifier is biased / sparse in predictions for those classes.
- Consider stronger models (MLP/CNN), data augmentation, feature extraction, or dimensionality reduction for improved performance.

8 Conclusion

The PLA (OvR) baseline was implemented and tuned with grid search. While it works end-to-end and provides interpretable per-class metrics, its performance on this image classification task is limited. Use the results as a baseline for comparison with MLP/CNN models.