МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

Моделювання операційних підсилювачів з негативним зворотнім зв'язком

ББК 7 3Ц
I-72

Укладачі: М.В. Цисін.

I-72 Звіт. Моделювання операційних підсилювачів з негативним зворотнім зв'язком./ укл. М.В. Цисін. –К. :КНУ ім. Т.Шевченка, 2021. – 9 с. (Укр. мов.)

Наведено звіт виконання роботи з моделювання електронних схем у програмі $LTspice^{TM}$.

УДК 053.08 (002.21)

ББК 73Ц

Звіт

Звіт. Моделювання операційних підсилювачів з негативним зворотнім зв'язком: 9 с.

 $Mema\ pofomu$ — ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП

Об'єкт дослідження – операційні підсилювачі, диференціальне підсилення постійного струму

Предмет дослідження – теоретичні основи, принципи роботи, фізичний зміст і застосування операційних підсилювачів

Методи дослідження:

1) *Метод співставлення*, одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів

Зміст

Теоретичні відомості	5
Виконання роботи	6
Інвертувальний підсилювач:	6
Неінвертувальний підсилювач:	7
Інтегратор на базі інвертувального підсилювача:	8
Висновки	9
Лжерела	. 9

Теоретичні відомості

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення **зворомного зв'язку** полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 180$), то зворотний зв'язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$), то такий зворотний зв'язок називають позитивним (П33).

Операційним підсилювачем називають багатокаскадний диференціальний підсилювач постійного струму, який має в діапазоні частот до кількох десятків кілогерц коефіцієнт підсилення більший за 10^4 і за своїми властивостями наближається до уявного «ідеального» підсилювача. Під «ідеальним» розуміють такий підсилювач, який має:

- 1) нескінченний коефіцієнт підсилення за напругою диференціального вхідного сигналу $(K \rightarrow \infty)$
- 2) нескінченний вхідний імпеданс ($Z_{bx} \to \infty$)
- 3) нульовий вихідний імпеданс ($Z_{bux} = 0$)
- 4) рівну нулеві напругу на виході ($U_{bux} = 0$) при рівності напруг на вході ($U_{bux1} = U_{bux2}$)
- 5) нескінченний діапазон робочих частот

Виконання роботи

Інвертуючий підсилювач:

Наша схема:

Вхідний та вихідний сигнали:

Неінвертуючий підсилювач:

Наша схема:

Вхідний та вихідний сигнали:

Інтегратор на базі інвертуючого підсилювача:

Наша схема:

Вхідний та вихідний сигнали:

Висновки

В цій роботі ми дослідили як змінюється сигнал після проходження різних типів операційних підсилювачів з негативним зворотнім зв'язком. Були розглянуті такі типи: інвертувальний, неінвертуючий підсилювачі та інтегратор на базі інвертуючого підсилювача. Для дослідження перших двох типів використовувався гармонічний сигнал, для інтегратора — імпульсний.

Отримані нами результати, а саме зміна фази та структура сигналу повністю відповідають очікуваним.

Джерела

- Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету. Слободянюк О.В.
- Вивчення радіоелектронних схем методом комп'ютерного моделювання. Ю. О. Мягченко