Q.3	In an unielectronic species, the number of revolution per second made by the electron in 4 th orbit is twice of the number of revolutions per second made by the electron in 2 nd orbit of H-atom. The unielectronic specie is,			
	(1) H	(2) He ⁺	$(3) Li^{2+}$	$(4) \mathrm{Be^{3+}}$
Q.4	Which metal gives H ₂ gas on reaction with NaOH solution-			
	(1)Zn	(2) Mg	(3) Fe	(4) Cu
Q.5	Which of the following will not undergo decarboxylation.			
	(1) COOH		(2) COOH	
	$(3) \bigcirc \qquad \bigcirc $	СООН	COOH (4) O	
Q.6	50 ml aliquot of a $\rm H_2O_2$ (aq.) solution is titrated against 200 ml of 0.2 M acidified KMnO ₄ (aq. solution. After the equivalence point, remaining KMnO ₄ (aq.) solution requires 100 ml, 0.5 M $\rm H_2C_2O_2$ (aq.) solution in acidic medium. The volume strength of $\rm H_2O_2$ (aq.) solution is (1) 1 V (2) 11.2 V (3) 5.6 V (4) 22.4 V			
Q.7	The aqueous solution of slaked lime in excess water is known as - (1) Lime water (2) Lime stone (3) Milk of lime (4) Quick lime			
Q.8	How many stereoisom (1) 4	ers will be formed of 2-1 (2) 6	methyl hepta-3E, 5E-die (3) 7	enoic acid? (4) 8

SPACE FOR ROUGH WORK

- If $x \in \{1, 2, 3, \dots, 9\}$ and $f_n(x) = x \times x \times \dots \times (n\text{-digits})$ then $(f_n(3))^2 + f_n(2)$ is equal to $(1) 2f_{2n}(1)$ $(2) f_n^2(1)$ $(3) f_{2n}(1)$ $(4) f_{2n}(4)$ 0.37

- Number of points having position vector $\hat{ai} + \hat{bj} + c\hat{k}$ where a, b, c $\in \{1, 2, 3, 4, 5\}$ such that Q.38 $2^a + 3^b + 5^c$ is divisible by 4 is
 - (1)70
- (2) 140
- (3)210
- (4)280
- If n be an integer and x, y, z, w are distinct, the number of distinct terms in the expansion of 0.39 $(x+y+z+w)^n$ is
 - $(1) {}^{n}C_{2}$
- $(2)^{n+2}C_2$
- $(3)^{n+3}C_n$
- $(4) {}^{n}C_{3}$
- If $f(x) = \begin{vmatrix} x^2 + 3x & x 1 & x 3 \\ x + 1 & 2 x & x 3 \\ x 3 & x + 4 & 3x \end{vmatrix}$, then f'(0) is equal to
- (3)24
- (4) none of these
- Q.41 If $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then $P^TQ^{2019}P$ is equal to
- $(1)\begin{bmatrix} 1 & 2019 \\ 0 & 1 \end{bmatrix} \qquad (2)\begin{bmatrix} \frac{\sqrt{3}}{2} & 2019 \\ 0 & \frac{\sqrt{3}}{2} \end{bmatrix} \qquad (3)\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{2019}{2} \\ \frac{-2019}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \qquad (4)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8\}$ be two set. An element (a, b) of their cartesian product $A \times B$ is chosen at random. The probability that (a + b) = 9 is
 - $(1)\frac{4}{5}$
- $(2)\frac{3}{5}$
- $(3)\frac{2}{5}$
- $(4)\frac{1}{5}$

SPACE FOR ROUGH WORK

A conducting rod AB moves parallel to x-axis in the x-y plane. A uniform magnetic field B pointing normally out of the plane exists throughout the region. A force F acts perpendicular to the rod, so that the rod moves with uniform velocity v. The force F is given by (neglect resistance of all the wires)

- (1) $\frac{vB^2l^2}{R}e^{-t/RC}$ (2) $\frac{vB^2l^2}{R}$
- (3) $\frac{vB^2l^2}{R} \left(1 e^{-t/RC} \right)$ (4) $\frac{vB^2l^2}{R} \left(1 e^{-2t/RC} \right)$
- A cylinder of mass m and radius R is spined to a clockwise angular Q.66 velocity ω and then gently placed on an inclined plane for which coefficient of friction $\mu = \tan \theta$, θ is the angle of inclined plane with horizontal. The centre of mass of the cylinder will remain stationary for time:

 $(1) \omega_0 R/g \sin\theta$

 $(3) 2\omega_0 R/5g\sin\theta$

- (2) $2\omega_{o}R/3g\sin\theta$ (4) $\omega_{o}R/2g\sin\theta$
- N atoms of a radioactive element emit n alpha particles per second at an instant. Then the half-life of the element is
 - (1) $\frac{n}{N}$ sec.

- (2) 1.44 $\frac{n}{N}$ sec. (3) 0.69 $\frac{n}{N}$ sec. (4) 0.69 $\frac{N}{n}$ sec.
- Q.68 A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass number 80 and 120. If binding energy per nucleon for parent atom is 6.5 M eV and for daughter nuclei is 7 MeV and 8 MeV respectively, then the energy released in the decay will be:
 - (1) 200 MeV
- (2) 220 MeV
- (3) 220 MeV
- (4) 180 MeV
- The angular momentum of an electron in first orbit of Li⁺⁺ ion is: Q.69
 - (1) $\frac{3h}{2\pi}$
- (3) $\frac{h}{2\pi}$
- $(4) \frac{h}{6\pi}$

SPACE FOR ROUGH WORK