Pronalaženje skrivenog znanja

Elektrotehnički fakultet Univerziteta u Beogradu

Master akademske studije

modul Računarska tehnika i informatika

2017/2018

Mašinsko učenje

Vuk Batanović, Elektrotehnički fakultet Univerziteta u Beogradu

Uvod u mašinsko učenje

- Šta je mašinsko učenje?
- ► Arthur Samuel (1959): Field of study that gives computers the ability to learn without being explicitly programmed
- ► Kombinacija primenjene statistike, veštačke inteligencije, matematičke optimizacije, računarskih nauka,...
- Čemu mašinsko učenje?
 - Problemi za koje je vrlo teško ručno definisati kako ih treba rešiti klasično programiranje nije moguće
 - ► Izvlačenje korisnih informacija iz velike količine sirovih podataka ili predviđanje budućih trendova korišćenjem trenutno dostupnih podataka istraživanje podataka (engl. data mining / predictive analytics) - ručna analiza nije moguća ili je previše spora
 - Kompleksni sistemi koji se dinamički prilagođavaju okruženju

Uvod u mašinsko učenje

- Neki problemi za koje je teško ručno definisati kako ih treba rešiti
 - ▶ Obrada prirodnih jezika (engleskog, francuskog, srpskog,...)
 - ▶ Detekcija spam-a, analiza sentimenta teksta, mašinsko prevođenje,...
 - Računarski vid
 - ▶ Optical character recognition (OCR), prepoznavanje lica ili pokreta,...
 - Robotika
 - ► Kretanje robota kroz prostor
 - Prepoznavanje obrazaca
 - ▶ Pomoć pri postavljanju dijagnoza u medicini (engl. *Computer Aided Diagnosis* CAD)
 - Igranje igara
 - ► Go DeepMind AlphaGo

Uvod u mašinsko učenje

- Istraživanje podataka
 - Obuhvata veliki broj tehnika za pronalaženje ili predikciju korisnih informacija iz sirovih podataka
 - ▶ Sirovih podataka često ima puno, ali je malo korisnih informacija
 - ▶ Primeri upotrebe
 - ► Analiza ponašanja korisnika vaših proizvoda/usluga (engl. *customer analytics*)
 - ▶ Predviđanja kretanja cene akcija na berzi
 - Sistemi za podršku u odlučivanju
 - Medicinska i genetska istraživanja
 - Analiza senzorskih očitavanja

...

Razlika između mašinskog učenja i istraživanja podataka

- Istraživanje podataka obuhvata mašinsko učenje kao jedan od veoma čestih koraka u pronalaženju korisnih informacija
- Pored toga, pod istraživanje podatka spada:
 - Pretprocesiranje podataka,
 - ▶ Rukovanje podacima,
 - Skladištenje podataka,
 - Eksplorativna analiza,
 - Vizuelizacija, itd.
- Neretko se u marketinške svrhe ovi pojmovi brkaju
 - ▶ Buzzwords: data mining, data science, machine learning, deep learning, big data...

Tipovi mašinskog učenja

- Nadgledano učenje (engl. Supervised learning)
- Nenadgledano učenje (engl. Unsupervised learning)
- Polunadgledano učenje (engl. Semi-supervised learning)
- Učenje sa podrškom (engl. Reinforcement learning)

Nadgledano učenje

- Najčešće primenjivan tip mašinskog učenja
- lacktriangle Svakom ulaznom podatku x je pridružena željena izlazna vrednost y koju algoritam treba da predvidi
- ightharpoonup Cilj učenja je da se na osnovu datih parova (x,y) pronađe optimalna funkcija koja mapira ulaz u izlaz
- Realna funkcija preslikavanja je nepoznata, tako da se funkcija koja se optimizuje često naziva hipotezom i označava sa h(x)
- Model nadgledanog učenja koji se primenjuje određuje opšti oblik te funkcije (npr. da se radi o linearnoj funkciji) tj. prostor mogućih hipoteza
- ► Konkretne vrednosti podataka koje se koriste pri obučavanju određuju tačan oblik te funkcije tj. najbolju hipotezu u datom prostoru

Odlike / atributi

- ▶ U klasičnom mašinskom učenju (koje je tema u ovom kursu) potrebno je ručno specificirati koji su to faktori u ulaznim podacima koji utiču na izlaz te faktore nazivamo *atributima* ili *odlikama* (engl. *features*)
- Pri učenju se svaki podatak tretira kao skup/vektor nekih njegovih odlika:

$$x = (x_1, x_2, \dots, x_n)$$

- U dubokom mašinskom učenju (engl. *deep learning*) model je u stanju da sam pronađe relevantne odlike
 - Ali je zato potrebno pronaći odgovarajuću strukturu modela za svaki posmatran problem

Nadgledano učenje

- Cilj učenja jeste da se dobije takav model koji će davati dobre rezultate ne samo nad podacima koji su korišćeni pri obučavanju modela već i na nekim kasnijim/drugim, dotle neviđenim podacima
 - Ova sposobnost modela se naziva sposobnost generalizacije
- ► Tip vrednosti *y*
 - ► Kontinualna vrednost problem *regresije*
 - Diskretna / kategorička vrednost problem klasifikacije
 - ▶ Ako postoje samo dve klase binarna klasifikacija
 - ► Ako postoji više klasa višeklasna klasifikacija
 - Strukturirana vrednost problem strukturne predikcije

Primer problema regresije - predviđanje cene nekretnina

Modifikovana slika preuzeta sa: http://www.youtube.com/watch?v=dnKETo-gWbc

Primer problema klasifikacije - razdvajanje objekata na osnovu njihovih slika

Slika preuzeta sa: http://eighteenthelephant.wordpress.com/2015/10/23/learning-about-machine-learning-part-i/

Primer problema klasifikacije - razdvajanje objekata na osnovu njihovih slika

Slika preuzeta sa: http://eighteenthelephant.wordpress.com/2015/10/23/learning-about-machine-learning-part-i/

Binary classification:

Multi-class classification:

Ilustracija razlike između binarne i višeklasne klasifikacije

Slika preuzeta sa: Andrew Ng, Machine Learning, Coursera

Strukturna predikcija

- Strukturirani podatak
 - Sastoji se iz nekoliko delova
 - Nisu samo delovi ti koji sadrže korisne informacije već je važan i odnos između njih u okviru posmatrane strukture
- Primeri strukturiranih podataka
 - Sekvence
 - Stabla
 - ▶ Slike
 - ▶ Tekstualni dokumenti
 - ...

Primer strukturne predikcije - mašinsko prevođenje

Slika preuzeta sa: http://asivokon.github.io

Parametarski i neparametarski modeli

- Parametarski modeli imaju tačno određen broj parametara
 - ► Naivni bajesovski klasifikator
 - Linearna regresija
 - Logistička regresija
 - Metoda potpornih vektora bez kernela
- Naparametarski modeli mogu teorijski imati beskonačan broj parametara same vrednosti podataka predstavljaju parametre
 - ► K najbližih suseda
 - ► Stabla odlučivanja
 - ► Metoda potpornih vektora sa kernelom sa radijalnom osnovom

Nenadgledano učenje

- Dati su samo ulazni podaci x
- ► Ne postoji željena izlazna vrednost
- Potrebno je pronaći neku pravilnost u podacima
- Tipični zadaci nenadgledanog učenja
 - Grupisanje (engl. clustering) podaci se svrstavaju u grupe koje maksimizuju neki kriterijum sličnosti ili minimizuju neki kriterijum različitosti
 - Smanjenje dimenzionalnosti (engl. dimensionality reduction) pronalaženje manjeg skupa promenljivih koje zadržavaju glavne obrasce i varijacije u skupu početnih promenljivih

Klasifikacija vs grupisanje

Klasifikacija	Grupisanje
Broj klasa poznat unapred	Broj klasa nije poznat unapred
Postojeći podaci imaju označenu pripadnost klasi	Postojeći podaci nemaju označenu pripadnost klasi
Model se koristi za klasifikovanje novih podataka	Model se koristi za razumevanje/istraživanje postojećih podataka
Spada u probleme nadgledanog mašinskog učenja	Spada u probleme nenadgledanog mašinskog učenja

Supervised Learning

Unsupervised Learning

Ilustracija razlike između klasifikacije i grupisanja

Slika preuzeta sa: Andrew Ng, Machine Learning, Coursera

Polunadgledano učenje

- Kombinacija nadgledanog i nenadgledanog učenja
- $\blacktriangleright\,$ Za manji deo ulaznih podataka $x_{\scriptscriptstyle S}$ obeležene su željene vrednosti izlaza $y_{\scriptscriptstyle S}$
- ightharpoonup Za veći deo ulaznih podataka x_u željene vrednosti izlaza nisu obeležene
- Cilj polunadgledanog učenja jeste iskorišćavanje neobeleženih ulaznih podataka radi boljeg obučavanja modela
- Ima veliku vrednost u praksi jer je za mnoge probleme teško dobiti dovoljne količine podataka sa obeleženim željenim izlazom

Učenje sa podrškom

- Uglavnom se primenjuje na obučavanje softverskih agenata koji deluju u nekom prostoru akcija
- ▶ Učenje se vrši na osnovu datih ulaznih podataka (koji predstavljaju akcije agenta) i signala podrške
- Signal podrške stiže tek na kraju nekog skupa akcija agenta
- Signal podrške može biti pozitivan ili negativan
 - Predstavlja željeni ili neželjeni ishod ponašanja agenta
- Na algoritmu učenja je da iskoristi signal podrške da utvrdi koja tačno akcija ili koji skup akcija je na kraju doveo do pozitivnog/negativnog signala podrške i da shodno tome koriguje ponašanje agenta

Učenje sa podrškom

- ► Zbog svoje prirode učenje sa podrškom je jako pogodno za probleme gde je "nagrada" za uspeh dugoročna, a ne kratkoročna
- Često se primenjuje u
 - ▶ Robotici
 - ► Igranju igara
 - ▶ Šah
 - ► Go *DeepMind AlphaGo* (pobedio svetskog šampiona u igri Go)
 - ▶ Video igre
- Za ovakve probleme klasično nadgledano učenje je veoma nepogodno
 - ▶ Npr. za igranje šaha bi trebalo da se sistemu za svaku moguću poziciju specificira najbolji sledeći potez

Mašinsko učenje u ovom kursu

- ▶ U ovom kursu će akcenat biti na tehnikama nadgledanog učenja
 - ► Pre svega na algoritme klasifikacije (i, donekle, regresije)
- Nadgledano učenje trenutno ima najširi spektar upotrebe
 - Većina sistema koji se danas oslanjaju na mašinsko učenje koriste predominantno ili bar delimično neki oblik nadgledanog mašinskog učenja
- Klasifikacija je jedan od najlakših problema za razumevanje
 - ▶ Dobro polazište za kasnije izučavanje kompleksnijih problema, poput strukturne predikcije