Drugi međuispit (grupa A) - 21. svibnja 2010.

- 1. Izračunaj DFT₄ transformaciju niza $x(n) = \{3, 0, -3, 0\}$.
- **a)** $X(k) = \{0, 6, 0, 6\}$ **b)** $X(k) = \{\underline{6}, 0, 6, 0\}$ **c)** $X(k) = \{\underline{0}, -6j, 0, 6j\}$ **d)** $X(k) = \{\underline{6}, 0, -6, 0\}$

- e) $X(k) = \{\underline{0}, 6j, 0, 6j\}$
- **2.** Izračunaj IDFT₆ transformaciju niza $X(k) = \{2, 8, 2, 8, 2, 8\}$.
 - a) $x(n) = \{5, 0, 0, -3, 0, 0\}$
- **b)** $x(n) = \{\underline{5}, 0, 0, 3, 0, 0\}$ **c)** $x(n) = \{\underline{3}, 0, 0, 5, 0, 0\}$ **d)** $x(n) = \{-3, 0, 0, 5, 0, 0\}$

- e) $x(n) = \{\underline{4}, 0, 0, -4, 0, 0\}$
- 3. Promatramo diskretan niz slučajnih brojeva x(n) konačne duljine N definiran za $0 \le n < N$. Poznato je da konačni niz x(n) samo u jednom koraku n poprima vrijednost različitu od nule. Neka je $y(n) = \begin{cases} x(n), & 0 \le n < N \\ 0, & \text{inače} \end{cases}$. Za transformacije $X(k) = \mathrm{DFT}_N[x(n)]$ i $Y(e^{j\Omega}) = \mathrm{DTFT}[y(n)]$ tada vrijedi:
 - a) $X(k) = Y(e^{j\Omega})$ za $\Omega = 2\pi \frac{k}{N-1}$ b) $X(k) = Y(e^{j\Omega})$ za $\Omega = 2\pi \frac{k}{N}$ c) $X(k) = Y(e^{j\Omega})$ za $\Omega = 2\pi \frac{k}{N+1}$ d) $X(N-k) = Y(e^{j\Omega})$ za $\Omega = 2\pi \frac{k}{N}$ e) $X(k) = Y(e^{j\Omega})$ za $\Omega = 2\pi \frac{k}{N}$

- Kontinuirani signal čiji spektar je $X(j\omega) = \begin{cases} 1, & -j < j\omega < j \\ 0, & \text{inače} \end{cases}$ je otipkan uz period otipkavanja $T = \pi$. Vrijednost spektra diskretnog signala $X(z^{i\Omega}) = -i\Omega$ diskretnog signala $X(e^{j\Omega})$ za $e^{j\Omega} = -j$ je:
 - **a**) 0
- **b**) 1
- c) $\frac{1}{\pi}$ d) 2 e) $\frac{2}{\pi}$

- 5. Neka je y(t) odziv sustava S na pobudu u(t), dakle y(t) = S(u(t)) te neka je T realan broj. Za sustav S kažemo da je vremenski nepromjenjiv ako za svaku pobudu vrijedi:

 - **a)** $\forall T: S(u(t-T)) = y(t-T)$ **b)** $\forall T: S(u(t-T)) = y(t+T)$ **c)** $\exists T: S(u(t-T)) = y(t-T)$ **d)** $\exists T: S(u(t-T)) = y(t+T)$ **e)** $\exists T: S(u(t+T)) = y(t+T)$

- 6. Promatramo diskretni sustav zadan izrazom $y(n) = \sum_{k=0}^{n} u(k)$ gdje je u(n) ulaz, a y(n) izlaz sustava. Taj sustav je:
 - a) linearan i vremenski promjenjiv
- b) linearan i vremenski nepromjenjiv c) nelinearan i vremenski promjenjiv
- d) nelinearan i vremenski nepromjenjiv
- e) linearan i bezmemorijski
- 7. Promatramo diskretni sustav zadan izrazom $y(n) = \sum_{k=-\infty}^{n} (n-k)u(k)$ gdje je u(n) ulaz, a y(n) izlaz sustava. Taj sustav
 - a) linearan, memorijski i vremenski promjenjiv
- b) linearan, bezmemorijski i vremenski nepromjenjiv
- c) nelinearan, memorijski i vremenski nepromjenjiv
- d) nelinearan, bezmemorijski i vremenski nepromjenjiv
- e) linearan, memorijski i vremenski nepromjenjiv
- Za neki linearni vremenski nepromjenjivi sustav je poznato da na pobudu $u_1(t)$ daje odziv $y_1(t)$ (zadani slikom). Odziv $y_2(t)$ na pobudu $u_2(t)$ zadanu slikom je:

- e) Nije moguće odrediti odziv!
- 9. Zadana su dva kontinuirana signala $x(t) = e^{-3t} \mu(t)$ i $y(t) = e^{-2t} \mu(t)$. Konvolucija ta dva signala je:

- a) $e^{-2t} e^{-3t}$ b) $(e^{-2t} e^{-3t})\mu(t)$ c) $e^{-2t} + e^{-3t}$ d) $(e^{-2t} + e^{-3t})\mu(t)$ e) $\frac{1}{\epsilon}(e^{-3t} e^{-8t})\mu(t)$

- a) $\int_{-\infty}^{t} x(\tau) d\tau$ b) x(t) c) $\frac{d}{dt}x(t)$ d) x(t-1) e) x(t+1)

- 11. Diskretni vremenski nepromjenjiv mirni sustav s impulsnim odzivom $h(n) = n \mu(n)$ pobudili smo signalom $u(n) = \mu(n)$. Odziv tog sustava y(n) = h(n) * u(n) poprima vrijednost 2019045 za koji n?
 - a) 2008
- **b)** 2009
- **c)** 2010
- **d)** 2011
- **e)** 2012
- **12.** Konvolucija $(\sin(n) * \delta(n+1))\delta(n-2)$ je:

- **a)** $\sin(n) * \delta(n-1)$ **b)** $\sin(n-1)$ **c)** $\sin(3)\delta(n-2)$ **d)** $\sin(n) * \delta(n+1)$ **e)** $\sin(n+1)$
- 13. Zadan je sustav $y(n) \frac{1}{4}y(n-1) = u(n)$ s poznatim početnim stanjem y(-1) = 4. Nađite PRIRODNI ODZIV sustava ako je pobuda $u(n) = \left(\frac{1}{2}\right)^n \mu(n)$.

 - **a)** 0 **b)** $(\frac{1}{2})^{n-1} \mu(n)$ **c)** $(\frac{1}{2})^n \mu(n)$ **d)** $(\frac{1}{2})^{n+1} \mu(n)$ **e)** $(\frac{1}{4})^n \mu(n)$

- 14. Zadan je sustav $y(n) \frac{1}{4}y(n-1) = u(n)$ s poznatim početnim stanjem y(-1) = 4. Nađite TOTALNI ODZIV sustava ako je pobuda $u(n) = \left(\frac{1}{2}\right)^n \mu(n)$.

- **a)** 0 **b)** $\left(\frac{1}{2}\right)^{n-1}\mu(n)$ **c)** $\left(\frac{1}{2}\right)^n\mu(n)$ **d)** $\left(\frac{1}{2}\right)^{n+1}\mu(n)$ **e)** $\left(\frac{1}{4}\right)^n\mu(n)$
- 15. Zadan je sustav $y(n)-\frac{1}{4}y(n-1)=u(n).$ Impulsni odziv zadanog sustava je:

- **a)** 0 **b)** $\left(\frac{1}{2}\right)^{n-1}\mu(n)$ **c)** $\left(\frac{1}{2}\right)^n\mu(n)$ **d)** $\left(\frac{1}{2}\right)^{n+1}\mu(n)$ **e)** $\left(\frac{1}{4}\right)^n\mu(n)$
- **16.** Zadan je sustav $y(n) \frac{1}{4}y(n-1) = u(n)$. Nađite MIRNI ODZIV sustava ako je pobuda $u(n) = \left(\frac{1}{4}\right)^n \mu(n)$:
 - **a)** $(n+1)(\frac{1}{4})^n \mu(n)$ **b)** $n(\frac{1}{4})^n \mu(n)$ **c)** $(n-1)(\frac{1}{4})^n \mu(n)$ **d)** $(\frac{1}{4})^n \mu(n)$ **e)** $(\frac{1}{4})^{n-1} \mu(n)$

- 17. Zadan je sustav y''(t) 2y'(t) + 2y(t) = u(t). Neka je $u(t) = 15e^{-t} \mu(t)$ i neka je $y(0^-) = 9$ i $y'(0^-) = 3$. Zadani sustav
 - a) MARGINALNO STABILAN jer su karakteristične frekvencije kompleksni brojevi
 - b) ASIMPTOTSKI STABILAN jer su realni dijelovi svih karakterističnih frekvencija veći od nule
 - c) NESTABILAN jer su realni dijelovi svih karakterističnih frekvencija veći od nule
 - d) ASIMPTOTSKI STABILAN jer su apsolutne vrijednosti svih karakteristični frekvencija veće od 1
 - e) NESTABILAN jer su apsolutne vrijednosti svih karakterističnih frekvencija veće od 1
- 18. Odredite prisilni odziv sustava iz zadatka 17.
 - **a)** $(9e^t\cos(t) 6e^t\sin(t))\mu(t)$ **b)** $(6e^t\cos(t) + 3e^{-t})\mu(t)$ **c)** $6e^{-t}\cos(t)\mu(t)$ **d)** $3e^{-t}\mu(t)$ **e)** $15e^{-t}\mu(t)$

- 19. Odredite odziv nepobuđenog sustava iz zadatka 17.
 - a) $\left(-3e^t\cos(t)+6e^t\sin(t)+3e^{-t}\right)\mu(t)$ b) $\left(9e^t\cos(t)-6e^t\sin(t)\right)\mu(t)$ c) $\left(6e^t\cos(t)+3e^{-t}\right)\mu(t)$ d) $6e^t\cos(t)\mu(t)$ e) $\left(6e^t\cos(t)-3e^{-t}\right)\mu(t)$

- **20.** Kontinuirani sustav opisan je diferencijalnom jednadžbom y'(t) + 5y(t) = u'(t) + 2u(t). Impulsni odziv zadanog sustava

- **a)** h(t) = 0 **b)** $h(t) = e^{-5t} \mu(t)$ **c)** $h(t) = -3e^{-5t} \mu(t)$ **d)** $h(t) = -3e^{-5t} \mu(t) + \delta(t)$ **e)** $h(t) = -8e^{-5t} \mu(t)$