MASTER 1 - Big Data & Deep Learning

1. Prétraitement des données

- Télécharger fashion mnist de la bibliothèque Keras. Datasets.
- Comment sont codées les données, de quel type sont-elles. Quelle est forme des données taille des données d'entrée et des targets pour le train et test.
- Comment se répartissent les targets au sein des deux jeux de données.
 Cette répartition est-elle cohérente pour les modèles d'apprentissage.
- Quels traitements doivent être appliqués à ces données pour un traitement par un NLP. Expliquez pourquoi faire ces prétraitements.
- Qu'aurait-il fallu faire si la répartition était déséquilibrée.
- Créer la liste des targets, correspondant aux données suivantes :

T-shirts, Pantalons, Pulls, Robes, Manteaux, Sandales, Chemises, Baskets, Sacs, Bottines.

- Afficher les neuf premières entrées avec le nom de leur target.
- Transformer vous données afin qu'elles puissent être traitées correctement par un réseau de neurones.

2. Création d'un premier modèle

- De quel type doit être la couche de sortie (nombre de neurones, fonction d'activation).
- On souhaite créer un premier model avec simplement deux couches cachées identiques de même taille (256 neurones) et avec des fonctions d'activation de type *relu*.
- Combien y-a-t-il de poids (paramètres) à caler. Détaillez les nombres de poids obtenus par couches et par neurones.
- Quel est selon vous les meilleurs paramètres pour la fonction compile.
 Donnez petite explication pour les trois paramètres (fonction de perte, fonction d'apprentissage, mesure de la qualité du réseau).
- Si l'on souhaite mettre à jour nos poids moins de 200 fois en ayant un pourcentage de validation de 20%, quelle est la taille des *batchs*.

- Entrainez le modèle sur 20 *epochs*, avec les paramètres précédents (*batchs* et pourcentage de validation).
- Affichez maintenant le taux d'erreur sur le test et la validation. Que constatez-vous, pensez-vous que pour notre réseau il soit judicieux de faire plus de 20 *epochs*.

3. Modification du modèle

- Ajoutez maintenant une troisième couche cachée identique aux précédentes, et effectuer un nouvel apprentissage.
- Affichez les taux d'erreurs sur les parties test et validation. Que constatez-vous par rapport au modèle à deux couches cachées. Est-il judicieux d'ajouter cette nouvelle couche.
- Reprenez le modèle à deux couches cachées et divisez le nombre de neurones par deux. Les résultats sont-ils dégradés.
- Sur la base d'un modèle à deux couches cachées avec 256 et 128 neurones, ajoutez des couches de dropout après chacune de ces deux couches avec un taux de désactivation de 40%. (model M)
- Effectuer l'apprentissage et affichez à nouveau les courbes des taux d'erreurs. Que peut-on en conclure.
- Augmentez le nombre de mise à jour des poids, en divisant par deux la taille de *batchs*. Quel impact cela a-t-il sur les taux d'erreurs.
- Si maintenant on utilise des fonctions d'activation de type sigmoïde ou elu sur les couches cachées, cela a-t-il un impact réel pour ce jeu de données.
- Compte tenu de tous ces tests quel bilan peut-on faire pour sur les réseaux de neurones (en général) au regard du nombre de couche, du nombre de neurones par couche, du nombre d'epochs et de batchs.

4. Analyse des résultats sur la partie test

A partir du modèle M effectuer une prédiction sur les données de test. Évaluer les performances du modèle. Ces performances sont-elles cohérentes par rapport aux résultats obtenus sur la partie validation au cours du fit.

- Transformer les résultats de la prédiction, de type one-hot encoding, en une valeur, entre 0 et 9, correspondant au numéro de l'habit. Enregistrez les prédictions et les valeurs des sorties test en dataframe, pour faciliter les traitements ultérieurs.
- Affichez pour chacun des objets de la base de données le nombre d'erreurs commis. Quel est l'objet le plus mal identifié.
- Afficher via la fonction *heatmap* de la bibliothèque *seaborn* la matrice de confusion entre les valeurs de teste et de prédiction. Vous remplacerez les nombres des abscisses x et des ordonnées y par les noms des objets de la liste *targets* (*T_shirt*, ..., *Bottines*).
- Pour chemises classées en T-shirt affichez les 25 premières erreurs commises (5 images par 5). Ces affichages permettent-ils de comprendre les erreurs commises. Pensez-vous qu'en conservant la taille des images les résultats pourraient être améliorés.
- Effectuer la même chose pour les bottines classées en sandales. Pensezvous que les résultats du modèle pourraient être améliorés en conservant la taille des images.