

Surface Areas and Volumes Ex.16.1 Q38

Answer

The dimension of the cuboid is 11cm×10cm×7cm. Therefore, the volume of the cuboid is

$$V_1 = 11 \times 10 \times 7 = 770 \text{ cm}^3$$

The radius and thickness of each coin are $\frac{1.75}{2} = 0.875 \, \text{cm}$ and 2mm = 0.2cm respectively. Therefore,

the volume of each coin is

$$V_2 = \pi \times (0.875)^2 \times 0.2 \text{ cm}^3$$

Since, the total volume of the melted coins is same as the volume of the cuboid; the number of required coins is

$$\frac{V_1}{V_2} = \frac{770}{\pi \times (0.875)^2 \times 0.2}$$
$$= \frac{770 \times 7}{22 \times (0.875)^2 \times 0.2}$$
$$= 1600$$

Surface Areas and Volumes Ex.16.1 Q39

Answer

The inner radius of the well is 4m and the height is 14m. Therefore, the volume of the Earth taken out of it is

$$V_1 = \pi \times (4)^2 \times 14 \text{ m}^3$$

The inner and outer radii of the embankment are 4m and 4+3=7m respectively. Let the height of the embankment be h. Therefore, the volume of the embankment is

$$V_2 = \pi \times \{(7)^2 - (4)^2\} \times h \text{ m}^3$$

Since, the volume of the well is same as the volume of the embankment; we have

$$V_1 = V$$

$$\Rightarrow \pi \times (4)^2 \times 14 = \pi \times \left\{ (7)^2 - (4)^2 \right\} \times h$$

$$\Rightarrow h = \frac{(4)^2 \times 14}{33}$$

$$\Rightarrow h = 6.78 \text{ m}$$

Hence, the height of the embankment is 6.78 m

Surface Areas and Volumes Ex.16.1 Q40

Answer:

The canal is 1.5 m wide and 6 m deep. The water is flowing in the canal at 10 km/hr. Hence, in 30 minutes, the length of the flowing standing water is

$$=10\times\frac{30}{60} \text{ km}$$

=5 km

= 5000 m

Therefore, the volume of the flowing water in 30 min is

$$V_1 = 5000 \times 1.5 \times 6 \text{ m}^3$$

Thus, the irrigated area in 30 min of 8 cm=0.08 m standing water is

$$= \frac{5000 \times 1.5 \times 6}{0.08}$$
$$= 562500 \text{ m}^2$$