ADVANCED QUANTUM MECHANICS

https://github.com/Muatyz/review-sheet

January 15, 2025

Contents

第一草	Homework	2
1.1	Homework 1	2
	1.1.1 Hermitian operators	2
	1.1.2 Matrix diagonalization and unitary transformation	5
1.2	Homework 2	6
	1.2.1 Angular momentum for 4-dimensional space	6
	1.2.2 Harmonic oscillator	8
1.3	Homework 3	10
	1.3.1 Schwinger boson representation	10
	1.3.2 1D tight-binding model	13
1.4	Homework 4	15
	1.4.1 Mean-field Solutions for Extended Hubbard Model	15
1.5	Homework 5	18
	1.5.1 Quantum Rotor Model	18
第二章	2022秋高等量子力学期末考核	20
2.1	单项选择	20
2.2	多项选择	23
2.3	简答题	24
24	応用题	26

第一章 Homework

1.1 Homework 1

1.1.1 Hermitian operators

- 1. Prove theorem 1: If A is Hermitian operator, then all its eigenvalues are real numbers, and the eigenvectors corresponding to different eigenvalues are orthogonal.
 - (a) Since A is Hermitian, we have $A^{\dagger} = A$. Let λ be an eigenvalue of A and v the corresponding eigenvector, so

$$Av = \lambda v$$
.

Consider the inner product

$$\langle v, Av \rangle = \langle v, \lambda v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.$$

 $\langle Av, v \rangle = \langle \lambda v, v \rangle = \lambda^* \langle v, v \rangle = \lambda^* ||v||^2.$

So we have $\lambda ||v||^2 = \lambda^* ||v||^2$, which implies $\lambda = \lambda^*$, so λ is real(since $||v||^2$ is not zero, as $v \neq 0$).

(b) Let λ_1 and λ_2 be two different eigenvalues of A, and v_1 and v_2 the corresponding eigenvectors, so we have

$$Av_1 = \lambda_1 v_1, \quad Av_2 = \lambda_2 v_2.$$

Consider the inner product

$$\langle v_1, Av_2 \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle, \langle Av_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle = \lambda_1 \langle v_1, v_2 \rangle.$$

Since A is Hermitian, we have $\langle v_1, Av_2 \rangle = \langle Av_1, v_2 \rangle$, so we have $(\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle = 0$, which implies $\langle v_1, v_2 \rangle = 0$ (since $\lambda_1 \neq \lambda_2$). \square

- 2. Prove theorem 2: If A is Hermitian operator, then it can be always diagonalized by unitary transformation.
 - (a) Non-degenerate.

Let $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ be the eigenvalues of A, and $\{v_1, v_2, \cdots, v_n\}$ the corresponding eigenvectors.

By theorem 1, we have $\langle v_1, v_2 \rangle = \delta_{ij}$.

We define the unitary matrix as $U = [v_1, v_2, \dots, v_n]$, so we have $U^{\dagger}U = \mathbb{I}$. Now we compute $U^{\dagger}AU$. Since $Av_i = \lambda_i v_i$, we have

$$U^{\dagger}AU = \begin{pmatrix} v_1^{\dagger} \\ v_2^{\dagger} \\ \vdots \\ v_n^{\dagger} \end{pmatrix} A \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} v_1^{\dagger}Av_1 & v_1^{\dagger}Av_2 & \cdots & v_1^{\dagger}Av_n \\ v_2^{\dagger}Av_1 & v_2^{\dagger}Av_2 & \cdots & v_2^{\dagger}Av_n \\ \vdots & \vdots & \ddots & \vdots \\ v_n^{\dagger}Av_1 & v_n^{\dagger}Av_2 & \cdots & v_n^{\dagger}Av_n \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \Lambda.$$

(b) 简并.

令 m 重简并 λ_1 的本征矢为 $\{v_1^{(1)},v_1^{(2)},\cdots,v_1^{(m)}\}$. 那么新的 U 矩阵将为 $U=\left[v_1^{(1)},v_1^{(2)},\cdots,v_1^{(m)},v_{m+1},\cdots,v_n\right]$. 那么计算

$$\begin{split} U^{\dagger}AU &= \begin{pmatrix} v_{1}^{(1)\dagger} \\ v_{1}^{(2)\dagger} \\ \vdots \\ v_{m+1}^{(m)\dagger} \\ \vdots \\ v_{n}^{(m)\dagger} \end{pmatrix} A \begin{pmatrix} v_{1}^{(1)} & v_{1}^{(2)} & \cdots & v_{1}^{(m)} & v_{m+1} & \cdots & v_{n} \end{pmatrix} \\ & \vdots \\ \vdots \\ v_{n}^{(1)\dagger} \end{pmatrix} \\ &= \begin{pmatrix} v_{1}^{(1)\dagger} \\ v_{1}^{(2)\dagger} \\ \vdots \\ v_{n}^{(m)\dagger} \\ v_{m+1}^{\dagger} \\ \vdots \\ v_{n}^{\dagger} \end{pmatrix} \begin{pmatrix} \lambda_{1}v_{1}^{(1)} & \lambda_{1}v_{1}^{(2)} & \cdots & \lambda_{1}v_{1}^{(m)} & \lambda_{m+1}v_{m+1} & \cdots & \lambda_{n}v_{n} \end{pmatrix} \\ &= \begin{pmatrix} \lambda_{1} & v_{1}^{(1)\dagger}v_{1}^{(2)} & \cdots & v_{1}^{(1)\dagger}v_{1}^{(m)} & v_{1}^{(1)\dagger}v_{m+1} & \cdots & v_{1}^{(1)\dagger}v_{n} \\ v_{1}^{(2)\dagger}v_{1}^{(1)} & \lambda_{1} & \cdots & v_{1}^{(2)\dagger}v_{1}^{(m)} & v_{1}^{(2)\dagger}v_{m+1} & \cdots & v_{1}^{(1)\dagger}v_{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ v_{1}^{(m)\dagger}v_{1}^{(1)} & v_{1}^{(m)\dagger}v_{1}^{(2)} & \cdots & \lambda_{1} & v_{1}^{(m)\dagger}v_{m+1} & \cdots & v_{1}^{(m)\dagger}v_{n} \\ v_{m+1}^{\dagger}v_{1}^{(1)} & v_{m+1}^{\dagger}v_{1}^{(2)} & \cdots & v_{m+1}^{\dagger}v_{1}^{(m)} & \lambda_{m+1} & \cdots & v_{m+1}^{\dagger}v_{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ v_{n}^{\dagger}v_{1}^{(1)} & v_{n}^{\dagger}v_{1}^{(2)} & \cdots & v_{n}^{\dagger}v_{1}^{(m)} & v_{n}^{\dagger}v_{m+1} & \cdots & \lambda_{n} \end{pmatrix} \end{split}$$

我们并不清楚 λ_1 简并子空间内各基矢是否相互正交, 但是可确定的是 $v_1^{(j)\dagger}v_k,\quad k>m$ 和 $v_j^\dagger v_k,\quad j,k>m$ 是必定为 0 的. 那么上述矩阵将化为

$$U^{\dagger}AU = \begin{pmatrix} \lambda_1 & v_1^{(1)\dagger}v_1^{(2)} & \cdots & v_1^{(1)\dagger}v_1^{(m)} \\ v_1^{(2)\dagger}v_1^{(1)} & \lambda_1 & \cdots & v_1^{(2)\dagger}v_1^{(m)} \\ \vdots & \vdots & \ddots & \vdots \\ v_1^{(m)\dagger}v_1^{(1)} & v_1^{(m)\dagger}v_1^{(2)} & \cdots & \lambda_1 \\ & & & & \lambda_{m+1} \\ & & & & & \lambda_n \end{pmatrix}$$

使用 Gram-Schmidt 正交化方法, 使得 $\{v_1^{(1)},v_1^{(2)},\cdots,v_1^{(m)}\}$ 化为正交归一的基矢 $\{\phi_1,\phi_2,\cdots,\phi_m\}$:

$$v_1^{(1)\prime} = v_1^{(1)}, \quad \phi_1 = \frac{v_1^{(1)\prime}}{||v_1^{(1)\prime}||},$$

$$v_1^{(2)\prime} = v_1^{(2)} - \langle v_1^{(2)}, \phi_1 \rangle \phi_1, \quad \phi_2 = \frac{v_1^{(2)\prime}}{||v_1^{(2)\prime}||},$$

$$v_1^{(3)\prime} = v_1^{(3)} - \langle v_1^{(3)}, \phi_1 \rangle \phi_1 - \langle v_1^{(3)}, \phi_2 \rangle \phi_2, \quad \phi_3 = \frac{v_1^{(3)\prime}}{||v_1^{(3)\prime}||}, \cdots$$

以此类推, 我们可以得到 $\{\phi_1, \phi_2, \cdots, \phi_m\}$, 那么我们可以构造新的 $U = \left[\phi_1, \phi_2, \cdots, \phi_m, v_{m+1}, \cdots, v_n\right]$, 并且存在关系 $\phi_i^{\dagger} A \phi_i = \lambda_1 \delta_{ij}$, 使得 $U^{\dagger} A U$ 为对角矩阵 Λ . \square

3. Prove theorem 3: Two diagonalizable operators A and B can be simultaneously diagonalized if, and only if, [A, B] = 0.

(a) Let's say

$$A|v\rangle = \lambda |v\rangle, \quad B|v\rangle = \mu |v\rangle.$$

where $|v\rangle$ is the eigenvector of A and B, λ and μ are the corresponding eigenvalues. So

$$[A, B]|v\rangle = (AB - BA)|v\rangle = (AB|v\rangle - BA|v\rangle) = (\lambda\mu - \mu\lambda)|v\rangle = 0.$$

for all $|v\rangle$, which means [A, B] = 0.

(b) Let's say [A, B] = 0.

$$A|v\rangle = \lambda|v\rangle,$$

 $AB|v\rangle = BA|v\rangle = B\lambda|v\rangle = \lambda (B|v\rangle),$

- i. 非简并. 那么 $B|v_i\rangle = \mu_i|v_i\rangle$.
- ii. 简并. 假设 A 的本征值 λ_1 存在 m 重简并, 对应的本征矢为 $\{|v_1^{(1)}\rangle, |v_1^{(2)}\rangle, \cdots, |v_1^{(m)}\rangle\}$. 设 $B|v_1^{(i)}\rangle = \sum_j b_{ij}|v_1^{(j)}\rangle$. 而其余本征矢则维持非简并形式 $B|v_j\rangle = \mu_j|v_j\rangle$. 令幺正矩阵 $U = \left[|v_1^{(1)}\rangle, |v_1^{(2)}\rangle, \cdots, |v_1^{(m)}\rangle, |v_{m+1}\rangle, \cdots, |v_n\rangle\right]$ 尝 试使 B 对角化:

所以问题就在于要使分块矩阵
$$b = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{pmatrix}$$
 对角化. 构造 $b = U_b^\dagger \Lambda_b U_b$,于是
$$U^\dagger B U = \begin{pmatrix} U_b^\dagger \Lambda_b U_b & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{pmatrix} U_b^\dagger & \\ & & \\ \end{pmatrix} \begin{pmatrix} \Lambda_b & \\ & & \\ \end{pmatrix} \begin{pmatrix} U_b & \\ & \\ \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} U_b^\dagger & \\ & \\ \end{pmatrix}^{-1} U^\dagger B \underbrace{U \begin{pmatrix} U_b & \\ & \\ \end{pmatrix}^{-1}}_{U'} = \begin{pmatrix} \Lambda_b & \\ & \\ & \Lambda_\mu \end{pmatrix} = \Lambda.$$

于是通过构造 U' 和 U'^{\dagger} , 我们可以将 B 对角化. \square

1.1.2 Matrix diagonalization and unitary transformation

1. Diagonalizing a matrix L corresponds to finding a unitary transformation V such that $L = V\Lambda V^\dagger$, where Λ is a diagonal matrix whose diagonal elements are eigenvalues, V is an unitary matrix whose column vectors are the corresponding eigenstates. Find a unitary matrix V that can diagonalize the Pauli matrix $\sigma^x_{(z)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and find the eigenvalues of $\sigma^x_{(z)}$.

Find the eigenvalues of $\sigma^x_{(z)}$ by solving the characteristic equation

$$\det(\sigma_{(z)}^x - \lambda I) = \det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0,$$

So we have $\lambda = \pm 1$. For $\lambda_+ = 1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

So the eigenvector corresponding to λ_+ is $|+\rangle_{(z)}^x=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$. For $\lambda_-=-1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

So the eigenvector corresponding to λ_- is $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The eigenvectors have been normalized, so the unitary matrix V is $[|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. The diagonal matrix Λ contains the eigenvalues on the diagonal, which means

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

Thus we diagonalized the Pauli matrix $\sigma_{(z)}^x$ by the unitary transformation V:

$$\sigma_{(z)}^x = V^{\dagger} \Lambda V = V^{\dagger} \sigma_{(z)}^z V$$

We notice that the diagnosed matrix Λ is just the Pauli matrix $\sigma_{(z)}^z$, which means we can transform the representation of the Pauli matrix σ^z to the σ^x representation by the unitary transformation V:

$$\sigma_{(z)}^x = V^{\dagger} \sigma_{(z)}^z V = V^{\dagger} \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = (V^{\dagger})^{-1} \sigma_{(z)}^x (V)^{-1}$$

 $\sigma^x_{(z)}$ is the matrix of σ^x in the σ^z representation. Noticed that $V=V^\dagger=V^{-1}$, so

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

2. The three components of the spin angular momentum operator \vec{S} for spin-1/2 are S^x , S^y , and S^z . If we use the S^z representation, their matrix representations are given by $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, where the three components of $\vec{\sigma}$ are the Pauli matrices σ^x , σ^y , and σ^z .

Now consider using the S^x representation. Please list the order of basis vectors you have chosen in the S^x representation, and calculate the matrix representations of the three components of the operator \vec{S} in this representation.

Within S^z representation, we have

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

From the previous question, we have found the eigenvalues and corresponding eigenvectors:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

The matrix V that transforms the S^z representation to the S^x representation is

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

In the S^z representation, we have

$$S_{(z)}^{x} = \frac{\hbar}{2}\sigma^{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^{y} = \frac{\hbar}{2}\sigma^{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^{z} = \frac{\hbar}{2}\sigma^{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

So

$$\begin{split} S^x_{(x)} &= V S^x_{(z)} V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S^y_{(x)} &= V S^y_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \\ S^z_{(x)} &= V S^z_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

So the basis vectors in the S^x representation are

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

1.2 Homework 2

1.2.1 Angular momentum for 4-dimensional space

Consider a 4-dimensional space with coordinates (x, y, z, w).

- 1. Show that the operators $L_i = \epsilon_{ijk} x_j p_k$ and $K_i = w p_i x_i p_w$ generate rotations in this space by showing that the transformations generated by these operators leave the four dimensional radius, defined by $R^2 = x^2 + y^2 + z^2 + w^2$, invariant.
 - (a) Since the operator $L_i = \sum_{jk} \epsilon_{ijk} x_j p_k$ is defined in the usual 3-dimension subspace, so we still have

$$[L_{i}, x_{j}] = \left[\sum_{kl} \epsilon_{ikl} x_{k} p_{l}, x_{j}\right] = \sum_{kl} \epsilon_{ikl} [x_{k} p_{l}, x_{j}]$$

$$= \sum_{kl} \epsilon_{ikl} (x_{k} [p_{l}, x_{j}] + [x_{k}, x_{j}] p_{l}) = \sum_{kl} \epsilon_{ikl} x_{k} (-i\hbar \delta_{lj})$$

$$= \sum_{k} \epsilon_{ikj} x_{k} (-i\hbar) = \left[i\hbar \sum_{k} \epsilon_{ijk} x_{k}\right].$$

So we have

$$\begin{split} [L_i,R^2] &= [L_i,x^2 + y^2 + z^2 + w^2] = [L_i,x^2] + [L_i,y^2] + [L_i,z^2] + [L_i,w^2], \\ [L_i,x_j^2] &= [L_i,x_jx_j] = x_j[L_i,x_j] + [L_i,x_j]x_j = x_j \left[i\hbar\sum_k \epsilon_{ijk}x_k\right] + \left[i\hbar\sum_k \epsilon_{ijk}x_k\right] x_j \\ &= 2i\hbar\sum_k \epsilon_{ijk}x_jx_k \\ \left[L_i,\sum_j^3 x_j^2\right] &= \sum_j^3 [L_i,x_j^2] = 2i\hbar\sum_{jk} \epsilon_{ijk}x_jx_k = 0, \quad \text{since } j \leftrightarrow k \text{ symmetry} \\ [L_i,w^2] &= [L_i,ww] = w[L_i,w] + [L_i,w]w = 0. \end{split}$$

So we have $[L_i, R^2] = 0$, which means the operator L_i leaves the 4-dimension radius invariant.

(b) $K_i = wp_i - x_i p_w$.

Now we consider the commutator. Due to the definition of K_i , only the terms with w will be affected. So we have:

$$[K_{i}, R^{2}] = [K_{i}, x^{2} + y^{2} + z^{2} + w^{2}] = \sum_{j=1}^{3} [K_{i}, x_{j}^{2}] + [K_{i}, w^{2}]$$
$$[K_{i}, w^{2}] = [K_{i}, w]w + w[K_{i}, w]$$
$$[K_{i}, w] = [wp_{i} - x_{i}p_{w}, w] = \left[w\left(-i\hbar\frac{\partial}{\partial x_{i}}\right) - x_{i}\left(-i\hbar\frac{\partial}{\partial w}\right), w\right]$$

Assume a sample function f(x, y, z, w), wo we have

$$\begin{split} & \left[w \left(-i\hbar \frac{\partial}{\partial x_i} \right) - x_i \left(-i\hbar \frac{\partial}{\partial w} \right), w \right] f = (-i\hbar) \left[w \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial w}, w \right] f \\ & = (-i\hbar) \left\{ \left(w \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial w} \right) (wf) - w \left(w \frac{\partial f}{\partial x_i} - x_i \frac{\partial f}{\partial w} \right) \right\} \\ & = (-i\hbar) (-x_i) f \\ & \Rightarrow \left[[K_i, w] = i\hbar x_i \right] \end{split}$$

So we have

$$[K_i, w^2] = [K_i, w]w + w[K_i, w] = i\hbar x_i w + w(i\hbar x_i) = 2i\hbar x_i w$$

For the other term, we have

$$[K_i, x_j] = w[p_i, x_j] = (-i\hbar)w\delta_{ij}$$

$$[K_i, x_j^2] = [K_i, x_j x_j] = x_j[K_i, x_j] + [K_i, x_j]x_j = -2i\hbar x_j w\delta_{ij}$$

Thus we have

$$[K_i, R^2] = [K_i, x^2 + y^2 + z^2 + w^2] = \sum_{j=1}^{3} [2i\hbar x_j w \delta_{ij}] - 2i\hbar x_i w = 2i\hbar x_i w - 2i\hbar x_i w = 0.$$

2. Compute the commutators $[L_i, K_j]$ and $[K_i, K_j]$.

(a) $[L_i, K_i]$

$$[L_i, K_j] = [L_i, wp_j - x_jp_w] = [L_i, wp_j] - [L_i, x_jp_w] = w[L_i, p_j] - [L_i, x_jp_w]$$

We have known that $[p_k, p_j] = 0$ and $[x_l, p_j] = i\hbar \delta_{lj}$, so we have

$$[L_i, p_j] = \left[\sum_{lk} \epsilon_{ilk} x_l p_k, p_j\right] = \sum_{lk} \epsilon_{ilk} (\underline{x_l[p_k, p_j]} + [x_l, p_j] p_k) = \sum_{lk} \epsilon_{ilk} i\hbar \delta_{lj} p_k = i\hbar \sum_k \epsilon_{ijk} p_k$$

$$\Rightarrow \left[w[L_i, p_j] = i\hbar \sum_k \epsilon_{ijk} w p_k\right]$$

For the other term, we have

$$\begin{split} [L_i,x_jp_w] &= x_j[L_i,p_w] + [L_i,x_j]p_w \\ [L_i,x_j] &= \left[\sum_{kl} \epsilon_{ikl}x_kp_l,x_j\right] = \sum_{kl} \epsilon_{ikl}[x_kp_l,x_j] \\ &= \sum_{kl} \epsilon_{ikl}(x_k[p_l,x_j] + [x_k,x_j]\overline{p_l}) = \sum_{kl} \epsilon_{ikl}x_k(-i\hbar\delta_{lj}) \\ &= \sum_{k} \epsilon_{ikj}x_k(-i\hbar) = i\hbar\sum_{k} \epsilon_{ijk}x_k, \\ [L_i,p_w] &= \sum_{jk} \epsilon_{ijk}[x_jp_k,p_w] = \sum_{jk} \epsilon_{ijk}(x_j[p_k,p_w] + [x_j,p_w]p_k) = \epsilon_{ijk}(x_j \cdot 0 + 0 \cdot p_k) = 0 \\ &\Rightarrow [L_i,x_jp_w] = x_j \cdot 0 + i\hbar\sum_{k} \epsilon_{ijk}x_k \cdot p_w = \boxed{i\hbar\sum_{k} \epsilon_{ijk}x_kp_w} \end{split}$$

Combining the terms we derived, we have

$$[L_i, K_j] = i\hbar \sum_k \epsilon_{ijk} w p_k - i\hbar \sum_k \epsilon_{ijk} x_k p_w = i\hbar \sum_k \epsilon_{ijk} K_k$$

(b)
$$[K_i, K_j]$$
.

$$\begin{split} [K_{i},K_{j}] &= [wp_{i}-x_{i}p_{w},wp_{j}-x_{j}p_{w}] = [wp_{i},wp_{j}] - [wp_{i},x_{j}p_{w}] - [x_{i}p_{w},wp_{j}] + [x_{i}p_{w},x_{j}p_{w}] \\ [wp_{i},wp_{j}] &= w^{2}[p_{i},p_{j}] = 0; \\ [wp_{i},x_{j}p_{w}] &= x_{j}(\underline{w[p_{i},p_{w}]} + [w,p_{w}]p_{i}) + (w[p_{i},x_{j}] + \underline{[w,x_{j}]p_{i}})p_{w} = x_{j}i\hbar p_{i} + w(-i\hbar)\delta_{ij}p_{w} \\ &= i\hbar(x_{j}p_{i}-\delta_{ij}wp_{w}) \\ [x_{i}p_{w},wp_{j}] &= w(\underline{x_{i}[p_{w},p_{j}]} + [x_{i},p_{j}]p_{w}) + (x_{i}[p_{w},w] + \underline{[x_{i},w]p_{w}})p_{j} = wi\hbar\delta_{ij}p_{w} + x_{i}(-i\hbar)p_{j} \\ &= i\hbar(wp_{w}\delta_{ij}-x_{i}p_{j}) \\ [x_{i}p_{w},x_{j}p_{w}] &= 0 \end{split}$$

So combine the terms we derived, we have

$$[K_i, K_j] = 0 - i\hbar(x_j p_i - \delta_{ij} w p_w) - i\hbar(w p_w \delta_{ij} - x_i p_j) + 0 = i\hbar(x_i p_j - x_j p_i) = i\hbar \sum_k \epsilon_{ijk} L_k$$

1.2.2 Harmonic oscillator

1. Find the energy eigenvalues E_n and the corresponding wave functions $\psi_n(x)$ for a one-dimensional quantum harmonic oscillator system.

We have known that the Hamitonian of a quantum harmonic oscillator is given by

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2x^2$$

And the energy eigenvalues E_n are given by

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \cdots$$

The corresponding wave functions $\psi_n(x)$ are given by

$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega x^2}{2\hbar}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$$

where $H_n(x)$ are the Hermite polynomials.

2. Calculate $\langle m|x|n\rangle$, $\langle m|p|n\rangle$, $\langle m|x^2|n\rangle$, and $\langle m|p^2|n\rangle$.

We have known that the position operator x and the momentum operator p could be expressed by the creation a^{\dagger} and annihilation a operators:

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right), \quad \hat{p} = i\sqrt{\frac{\hbar m\omega}{2}} \left(a^{\dagger} - a \right)$$

$$\hat{x}^2 = \frac{\hbar}{2m\omega} (a + a^{\dagger})^2 = \frac{\hbar}{2m\omega} (a^2 + a^{\dagger 2} + a^{\dagger} a + a a^{\dagger})$$

$$\hat{p}^2 = -\frac{\hbar m\omega}{2} (a^{\dagger} - a)^2 = -\frac{\hbar m\omega}{2} (a^{\dagger 2} - a^{\dagger} a - a a^{\dagger} + a^2)$$

which is governed by

$$a|n\rangle = \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

Apply the calculating formula to the matrix elements, and we have

$$\begin{split} \langle m|\hat{x}|n\rangle &= \sqrt{\frac{\hbar}{2m\omega}} \left(\langle m|a|n\rangle + \langle m|a^{\dagger}|n\rangle \right) = \sqrt{\frac{\hbar}{2m\omega}} \left(\langle m|\sqrt{n}|n-1\rangle + \langle m|\sqrt{n+1}|n+1\rangle \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n}\delta_{m,n-1} + \sqrt{n+1}\delta_{m,n+1}) \\ \langle m|\hat{p}|n\rangle &= i\sqrt{\frac{\hbar m\omega}{2}} (\langle m|a^{\dagger}|n\rangle - \langle m|a|n\rangle) = i\sqrt{\frac{\hbar m\omega}{2}} (\langle m|\sqrt{n+1}|n+1\rangle - \langle m|\sqrt{n}|n-1\rangle) \\ &= i\sqrt{\frac{\hbar m\omega}{2}} (\sqrt{n+1}\delta_{m,n+1} - \sqrt{n}\delta_{m,n-1}) \\ \langle m|\hat{x}^2|n\rangle &= \frac{\hbar}{2m\omega} (\langle m|a^2|n\rangle + \langle m|a^{\dagger 2}|n\rangle + \langle m|a^{\dagger a}|n\rangle + \langle m|aa^{\dagger}|n\rangle) \\ &= \frac{\hbar}{2m\omega} (\langle m|\sqrt{n(n-1)}|n-2\rangle + \langle m|\sqrt{(n+1)(n+2)}|n+2\rangle + \langle m|n|n\rangle + \langle m|n+1|n\rangle) \\ &= \frac{\hbar}{2m\omega} (\sqrt{n(n-1)}\delta_{m,n-2} + \sqrt{(n+1)(n+2)}\delta_{m,n+2} + n\delta_{m,n} + (2n+1)\delta_{m,n}) \\ \langle m|\hat{p}^2|n\rangle &= -\frac{\hbar m\omega}{2} \left(\langle m|a^{\dagger 2}|n\rangle - \langle m|2a^{\dagger a}|n\rangle + \langle m|a^2|n\rangle - \langle m|1|n\rangle \right) \\ &= -\frac{\hbar m\omega}{2} (\sqrt{(n+1)(n+2)}\delta_{m,n+2} - (2n+1)2n\delta_{m,n} + \sqrt{n(n-1)}\delta_{m,n-2}) \end{split}$$

3. Assume the quantum harmonic oscillator is in a thermal bath at temperature T; find the partition function Z and the average energy $\langle E \rangle$ of the system.

Note $\frac{1}{k_BT}$ as β for simplicity. Since the energy eigenvalues are given by $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$, the partition function Z is given by

$$Z = \sum_{n=0}^{\infty} e^{-\beta E_n} = \sum_{n=0}^{\infty} e^{-\beta \left(n + \frac{1}{2}\right)\hbar\omega} = e^{-\frac{1}{2}\beta\hbar\omega} \sum_{n=0}^{\infty} e^{-\beta\hbar\omega n}$$

For the series $\sum_{n=0}^{\infty} x^n$, we have the limit value $\frac{1}{1-x}$ when |x|<1. So we have

$$Z = e^{-\frac{1}{2}\beta\hbar\omega} \frac{1}{1 - e^{-\beta\hbar\omega}} = \boxed{\frac{e^{-\frac{1}{2}\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}}$$

The average energy $\langle E \rangle$ is given by

$$\begin{split} \langle E \rangle &= -\frac{\partial \ln Z}{\partial \beta} = -\frac{\partial}{\partial \beta} \left(-\frac{1}{2} \beta \hbar \omega - \ln(1 - e^{-\beta \hbar \omega}) \right) \\ &= -\left(-\frac{1}{2} \hbar \omega - \frac{1}{1 - e^{-\beta \hbar \omega}} (-e^{-\beta \hbar \omega}) (-\hbar \omega) \right) \\ &= \boxed{\frac{1}{2} \hbar \omega + \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1}} \end{split}$$

4. Prove that the inner product of coherent states is given by:

$$\langle \alpha | \beta \rangle = e^{-\frac{1}{2}(|\alpha|^2 + |\beta|^2) + \alpha^* \beta}$$

The coherent states are given by

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

$$|\beta\rangle = e^{-\frac{1}{2}|\beta|^2} \sum_{m=0}^{\infty} \frac{\beta^m}{\sqrt{m!}} |m\rangle$$

So the inner product could be derived as

$$\begin{split} \langle \alpha | \beta \rangle &= \left(e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^{*n}}{\sqrt{n!}} \langle n| \right) \left(e^{-\frac{1}{2}|\beta|^2} \sum_{m=0}^{\infty} \frac{\beta^m}{\sqrt{m!}} |m\rangle \right) \\ &= e^{-\frac{1}{2}|\alpha|^2} e^{-\frac{1}{2}|\beta|^2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\alpha^*)^n \beta^m}{\sqrt{n!m!}} \langle n|m\rangle \end{split}$$

where $\langle n|m\rangle=\delta_{n,m}$ due to the orthogonality of the energy eigenstates. So we have

$$\langle \alpha | \beta \rangle = e^{-\frac{|\alpha|^2}{2}} e^{-\frac{|\beta|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{*n} \beta^n}{n!} = e^{-\frac{|\alpha|^2 + |\beta|^2}{2}} \sum_{n=0}^{\infty} \frac{(\alpha^* \beta)^n}{n!} = e^{-\frac{|\alpha|^2 + |\beta|^2}{2}} e^{\alpha^* \beta}. \quad \Box$$

1.3 Homework 3

1.3.1 Schwinger boson representation

A two-dimensional quantum harmonic oscillator contains two decoupled free bosons, whose annihilation operators can be represented as a and b respectively. $a=\frac{1}{\sqrt{2}}(x+ip_x)$, $b=\frac{1}{\sqrt{2}}(y+ip_y)$. They satisfy the commutation relations $[a,a^\dagger]=[b,b^\dagger]=1$ and $[a,b]=[a,b^\dagger]=0$. This system has U(2) symmetry, which includes an SU(2) subgroup. Let's explore how to construct the SU(2) representation using bosonic operators. Define $S^x=\frac{1}{2}(a^\dagger b+b^\dagger a)$, $S^z=\frac{1}{2}(a^\dagger a-b^\dagger b)$.

1. Express S^y in terms of a and b. [Hint: Make $\vec{S} \times \vec{S} = i\vec{S}$]

To satisfy the commutation relation $\vec{S} \times \vec{S} = i\vec{S}$, we have

$$[S^x, S^y] = iS^z, \quad [S^y, S^z] = iS^x, \quad [S^z, S^x] = iS^y$$

So we have

$$S^{y} = \frac{1}{i} [S^{z}, S^{x}] = \frac{1}{i} \left[\frac{1}{2} \left(a^{\dagger} a - b^{\dagger} b \right), \frac{1}{2} \left(a^{\dagger} b + b^{\dagger} a \right) \right]$$
$$= \frac{1}{4i} [a^{\dagger} a - b^{\dagger} b, a^{\dagger} b + b^{\dagger} a]$$

We have commutation formula that

$$\begin{split} [\hat{A}, \hat{B} + \hat{C}] &= [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}] \\ [\hat{A} + \hat{B}, \hat{C}] &= [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}] \\ [\hat{A}, \hat{B}\hat{C}] &= \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C} \\ [\hat{A}\hat{B}, \hat{C}] &= \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B} \\ \Rightarrow [\hat{A}\hat{B}, \hat{C}\hat{D}] &= \hat{A}\hat{C}[\hat{B}, \hat{D}] + \hat{A}[\hat{B}, \hat{C}]\hat{D} + \hat{C}[\hat{A}, \hat{D}]\hat{B} + [\hat{A}, \hat{C}]\hat{D}\hat{B} \end{split}$$

So we have

$$S^{y} = \frac{1}{4i} \left[a^{\dagger}a, a^{\dagger}b \right] + \frac{1}{4i} \left[a^{\dagger}a, b^{\dagger}a \right] - \frac{1}{4i} \left[b^{\dagger}b, a^{\dagger}b \right] - \frac{1}{4i} \left[b^{\dagger}b, b^{\dagger}a \right]$$

$$\left[a^{\dagger}a, a^{\dagger}b \right] = \underline{a^{\dagger}a^{\dagger}} \left[a, b \right] + a^{\dagger} \left[a, a^{\dagger} \right] b + \underline{a^{\dagger}} \left[a^{\dagger}, b \right] a + \left[a^{\dagger}, a^{\dagger} \right] b a = a^{\dagger}b$$

$$\left[a^{\dagger}a, b^{\dagger}a \right] = \underline{a^{\dagger}b^{\dagger}} \left[a, a \right] + \underline{a^{\dagger}} \left[a, b^{\dagger} \right] a + b^{\dagger} \left[a^{\dagger}, a \right] a + \left[\underline{a^{\dagger}, b^{\dagger}} \right] a a = -b^{\dagger}a$$

$$\left[b^{\dagger}b, a^{\dagger}b \right] = \underline{b^{\dagger}a^{\dagger}} \left[b, b \right] + \underline{b^{\dagger}} \left[b, a^{\dagger} \right] b + a^{\dagger} \left[b^{\dagger}, b \right] b + \left[\underline{b^{\dagger}, a^{\dagger}} \right] b b = -a^{\dagger}b$$

$$\left[b^{\dagger}b, b^{\dagger}a \right] = \underline{b^{\dagger}b^{\dagger}} \left[b, a \right] + b^{\dagger} \left[b, b^{\dagger} \right] a + \underline{b^{\dagger}} \left[b^{\dagger}, a \right] b + \left[\underline{b^{\dagger}, b^{\dagger}} \right] a b = b^{\dagger}a$$

$$\Rightarrow S^{y} = \frac{1}{4i} \left(a^{\dagger}b - b^{\dagger}a + a^{\dagger}b - b^{\dagger}a \right) = \boxed{\frac{1}{2i} \left(a^{\dagger}b - b^{\dagger}a \right)}$$

2. Prove that S^y is actually related to the angular momentum operator of the harmonic oscillator $L=xp_y-yp_x$, namely $S^y=\frac{L}{2}$.

Define

$$x = \frac{a + a^{\dagger}}{\sqrt{2}}, \quad p_x = \frac{i(a^{\dagger} - a)}{\sqrt{2}}$$
$$y = \frac{b + b^{\dagger}}{\sqrt{2}}, \quad p_y = \frac{i(b^{\dagger} - b)}{\sqrt{2}}$$

So the angular momentum operator is

$$\begin{split} L &= \left(\frac{a+a^\dagger}{\sqrt{2}}\right) \left(\frac{i(b^\dagger-b)}{\sqrt{2}}\right) - \left(\frac{b+b^\dagger}{\sqrt{2}}\right) \left(\frac{i(a^\dagger-a)}{\sqrt{2}}\right) \\ &= \frac{i}{2} \left[\left(a+a^\dagger\right) \left(b^\dagger-b\right) - \left(b+b^\dagger\right) \left(a^\dagger-a\right)\right] \\ &= \frac{i}{2} \left(ab^\dagger - ab + a^\dagger b^\dagger - a^\dagger b - ba^\dagger + ba - b^\dagger a^\dagger + b^\dagger a\right) \end{split}$$

Because $[a,b]=[a,b^{\dagger}]=0,$ we have $ab^{\dagger}=b^{\dagger}a$ and $a^{\dagger}b=ba^{\dagger},$ so

$$L = \frac{i}{2} \left(ab^{\dagger} - a^{\dagger}b - a^{\dagger}b + ab^{\dagger} \right) = i(ab^{\dagger} - a^{\dagger}b)$$

While
$$S^y = \frac{1}{2i}(a^{\dagger}b - ab^{\dagger}) = \frac{i}{2}(ab^{\dagger} - a^{\dagger}b)$$
, so $S^y = \frac{L}{2}$. \square

3. Define the following set of states, where $s=0,1/2,1,\cdots$, and $m=-s,-s+1,\cdots,s-1,s$ (they are called the Schwinger boson representation),

$$|s,m\rangle = \frac{(a^{\dagger})^{s+m}}{\sqrt{(s+m)!}} \frac{(b^{\dagger})^{s-m}}{\sqrt{(s-m)!}} |\Omega\rangle$$

where $|\Omega\rangle$ is the state annihilated by a and b, i.e., $a|\Omega\rangle=b|\Omega\rangle=0$. Prove that the state $|s,m\rangle$ is indeed a simultaneous eigenstate of $\vec{S}^2=(S^x)^2+(S^y)^2+(S^z)^2$ and S^z , with eigenvalues s(s+1) and m respectively. [Hint: Use the particle number basis.]

We have known that

$$S^{z} = \frac{1}{2} (a^{\dagger} a - b^{\dagger} b)$$
$$\vec{S}^{2} = (S^{x})^{2} + (S^{y})^{2} + (S^{z})^{2}$$

where $a^{\dagger}a$ counts the number of particles in the a mode, and $b^{\dagger}b$ counts the number of particles in the b mode. So we have

$$a^{\dagger}a|s,m\rangle = (s+m)|s,m\rangle, \quad b^{\dagger}b|s,m\rangle = (s-m)|s,m\rangle$$

$$\Rightarrow S^{z}|s,m\rangle = \frac{1}{2}\left((s+m) - (s-m)\right)|s,m\rangle = \boxed{m|s,m\rangle}$$

So $|s,m\rangle$ is an eigenstate of S^z with eigenvalue m.

Define ladder operators $S^{\pm} = S^x \pm iS^y$:

$$S^{+} = a^{\dagger}b, \quad S^{-} = b^{\dagger}a$$

 $\Rightarrow S^{2} = S^{z}S^{z} + \frac{1}{2}\left(S^{+}S^{-} + S^{-}S^{+}\right)$

接下来证明 Schwinger boson 表象下定义的态 $|s,m\rangle$ 以及对应的升降算符 S^{\pm} 仍然满足传统的波函数关系. 以 $S^{+}=a^{\dagger}b$ 为例:

$$S^{+}|s,m\rangle = a^{\dagger}b \frac{(a^{\dagger})^{s+m}}{\sqrt{(s+m)!}} \frac{(b^{\dagger})^{s-m}}{\sqrt{(s-m)!}} |\Omega\rangle$$

$$= \frac{\sqrt{s+m+1}}{\sqrt{s-m}} \frac{(a^{\dagger})^{s+m+1}}{\sqrt{(s+m+1)!}} bb^{\dagger} \frac{(b^{\dagger})^{s-m-1}}{\sqrt{(s-m-1)!}} |\Omega\rangle$$

$$= \frac{\sqrt{s+m+1}}{\sqrt{s-m}} (b^{\dagger}b+1) |s,m+1\rangle$$

$$= \frac{\sqrt{s+m+1}}{\sqrt{s-m}} (s-m-1+1) |s,m+1\rangle$$

$$= \sqrt{s(s+1) - m(m+1)} |s,m+1\rangle$$

说明该定义下的算符仍然满足传统的数值关系, S^- 证明略.则我们有

$$S^{+}|s,m\rangle = a^{\dagger}b|s,m\rangle = \sqrt{s(s+1) - m(m+1)}|s,m+1\rangle$$

$$S^{-}|s,m\rangle = b^{\dagger}a|s,m\rangle = \sqrt{s(s+1) - m(m-1)}|s,m-1\rangle$$

$$\Rightarrow S^{+}S^{-}|s,m\rangle = S^{+}\sqrt{s(s+1) - m(m-1)}|s,m-1\rangle = \left[s(s+1) - m(m-1)\right]|s,m\rangle$$

$$S^{-}S^{+}|s,m\rangle = S^{-}\sqrt{s(s+1) - m(m+1)}|s,m+1\rangle = \left[s(s+1) - m(m+1)\right]|s,m\rangle$$

$$S^{z}S^{z}|s,m\rangle = m^{2}|s,m\rangle$$

Combine the above results, and we have

$$\begin{split} S^2|s,m\rangle &= S^z S^z |s,m\rangle + \frac{1}{2} \left(S^+ S^- + S^- S^+ \right) |s,m\rangle \\ &= m^2 |s,m\rangle + \frac{1}{2} \left[s(s+1) - m(m-1) + s(s+1) - m(m+1) \right] |s,m\rangle \\ &= \boxed{s(s+1)|s,m\rangle} \end{split}$$

1.3.2 1D tight-binding model

The Hamiltonian of a periodic tight-binding chain of length L is given by the following expression:

$$H_{ ext{chain}} = -t \sum_{n=1}^L \left(\hat{a}_n^\dagger \hat{a}_{n+1} + \hat{a}_{n+1}^\dagger \hat{a}_n
ight)$$

where t is the hopping matrix element between adjacent sites n and n+1, \hat{a}_n^{\dagger} creates a fermion at site n, and the set of operators $\{a_n^{\dagger},a_n;n=1,\cdots,L\}$ satisfies the standard anticommutation relations:

$$\{a_n, a_{n'}^{\dagger}\} = \delta_{nn'}, \quad \{a_n, a_{n'}\} = 0, \quad \{a_n^{\dagger}, a_{n'}^{\dagger}\} = 0$$

We assume periodic boundary conditions, i.e., we consider $a_{L+n}^{\dagger}=a_n^{\dagger}$. The purpose of this problem is to prove that this Hamiltonian can be diagonalized by a linear transformation of the discrete Fourier transform form:

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}$$

1. Let's require that b_k^{\dagger} remains invariant under any shift of the summation index $n \to n + n'$ ("translation invariance"). Prove that this implies that the index k is quantized and determine the set of allowed k values. How many independent b_k^{\dagger} operators are there?

不妨令
$$n \rightarrow n+1$$
, 有

$$\begin{split} b_k^\dag &= \frac{1}{\sqrt{L}} \sum_{n=1}^L e^{ik(n+1)} a_{n+1}^\dag = \frac{1}{\sqrt{L}} \sum_{n'=2}^{L+1} e^{ikn'} a_{n'}^\dag \\ &= \frac{1}{\sqrt{L}} \left[\sum_{n'=2}^L e^{ikn'} a_{n'}^\dag + e^{ik(L+1)} a_{L+1}^\dag \right] \\ &= \frac{1}{\sqrt{L}} \left[\sum_{n'=1}^L e^{ikn'} a_{n'}^\dag - e^{ik} a_1^\dag + e^{ik(L+1)} a_{L+1}^\dag \right] \\ \Rightarrow e^{ik} a_1^\dag &= e^{ik(L+1)} a_{L+1}^\dag = e^{ik(L+1)} a_1^\dag \\ \Rightarrow e^{ikL} &= 1 = e^{i2\pi m}, \quad m \in \mathbb{Z} \\ \Rightarrow k &= \frac{2\pi}{L} m, \quad m \in \{0, 1, 2, \cdots, L-1\} \end{split}$$

So there are L independent b_k^{\dagger} operators.

2. Verify that the set of b_k and b_k^{\dagger} operators also satisfies the above standard anticommutation relations. That is:

$$\{b_k, b_{k'}^{\dagger}\} = \delta_{kk'}, \quad \{b_k, b_{k'}\} = 0, \quad \{b_k^{\dagger}, b_{k'}^{\dagger}\} = 0$$

Hint: Use the identity $\sum_{m=1}^{L}e^{irac{2\pi}{L}m}=0$.

We have

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}, \quad b_k = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{-ikn} a_n$$

So

$$\begin{split} \{b_k, b_{k'}^{\dagger}\} &= \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{ik'n'} \{a_n, a_{n'}^{\dagger}\} = \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{ik'n'} \delta_{nn'} \\ &= \frac{1}{L} \sum_{n=1}^{L} e^{-ikn} e^{ik'n} = \frac{1}{L} \sum_{n=1}^{L} e^{i(k'-k)n} = \boxed{\delta_{kk'}} \\ \{b_k, b_{k'}\} &= \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{-ik'n'} \{a_n, a_{n'}\} = \boxed{0} \\ \{b_k^{\dagger}, b_{k'}^{\dagger}\} &= \frac{1}{L} \sum_{n,n'} e^{ikn} e^{ik'n'} \{a_n^{\dagger}, a_{n'}^{\dagger}\} = \boxed{0} \end{split}$$

3. Prove that the inverse transformation of the above has the form:

$$a_n^\dagger = \frac{1}{\sqrt{L}} \sum_k e^{-ikn} b_k^\dagger$$

where the sum is over the set of allowed k values determined in (a).

We have the definition

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}$$

So

$$\frac{1}{\sqrt{L}} \sum_{k} e^{-ikn} b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{k} e^{-ikn} \left(\frac{1}{\sqrt{L}} \sum_{n'} e^{ikn'} a_{n'}^{\dagger} \right)$$

$$= \frac{1}{L} \sum_{n'} \sum_{k} e^{ik(n'-n)} a_{n'}^{\dagger} = \sum_{n'} \left(\frac{1}{L} \sum_{k} e^{ik(n'-n)} \right) a_{n'}^{\dagger}$$

$$= \sum_{n'} (\delta_{nn'}) a_{n'}^{\dagger} = a_n^{\dagger}. \quad \Box$$

4. Show that b_k^{\dagger} is indeed a creation operator of a single-particle eigenstate of $H_{\rm chain}$ by proving that its commutator with the Hamiltonian has the form $[H_{\rm chain}, b_k^{\dagger}] = \varepsilon_k b_k^{\dagger}$. Give the explicit expression for the corresponding eigenvalue ε_k .

We have known that

$$H_{\text{chain}} = -t \sum_{n=1}^{L} \left(\hat{a}_{n}^{\dagger} \hat{a}_{n+1} + \hat{a}_{n+1}^{\dagger} \hat{a} \right), \quad \hat{a}_{L+1} = \hat{a}_{1}$$

$$b_{k}^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_{n}^{\dagger}$$

So the commutator

$$\begin{split} [H_{\mathrm{chain}},b_k^\dagger] &= -t \sum_{n=1}^L \left(\left[a_n^\dagger a_{n+1},b_k^\dagger \right] + \left[a_{n+1}^\dagger a_n,b_k^\dagger \right] \right) \\ &= -\frac{t}{L} \sum_{n=1}^L \sum_{n'}^L \left(\left[a_n^\dagger a_{n+1},e^{ikn'}a_{n'}^\dagger \right] + \left[a_{n+1}^\dagger a_n,e^{ikn'}a_{n'}^\dagger \right] \right) \\ &= -\frac{t}{L} \sum_{n=1}^L \sum_{n'}^L e^{ikn'} \left(a_n^\dagger a_{n+1}a_{n'}^\dagger - \underbrace{a_{n'}^\dagger a_n^\dagger a_{n+1}}_{t} + a_{n+1}^\dagger a_n a_{n'}^\dagger - \underbrace{a_{n'}^\dagger a_{n+1}^\dagger a_n}_{t} \right) \end{split}$$

根据 a,a^\dagger 的反对易关系, 交换相邻的升算符和降算符满足关系 $\begin{cases} a_{n'}^\dagger a_n^\dagger = -a_n^\dagger a_{n'}^\dagger \\ a_{n'} a_n = -a_n a_{n'} \end{cases}$ 交换 * 项中的升算符, 从而使其变号:

$$\begin{split} [H_{\text{chain}},b_k^{\dagger}] &= -\frac{t}{\sqrt{L}} \sum_{n=1}^L \sum_{n'}^L e^{ikn'} \left(a_n^{\dagger} a_{n+1} a_{n'}^{\dagger} + a_n^{\dagger} a_{n'}^{\dagger} a_{n+1} + a_{n+1}^{\dagger} a_n a_{n'}^{\dagger} + a_{n+1}^{\dagger} a_{n'}^{\dagger} a_n \right) \\ &= -\frac{t}{\sqrt{L}} \sum_{n=1}^L \sum_{n'}^L e^{ikn'} \left[a_n^{\dagger} \underbrace{\left(a_{n+1} a_{n'}^{\dagger} + a_{n'}^{\dagger} a_{n+1} \right)}_{\left\{ a_{n+1}, a_{n'}^{\dagger} \right\}} + a_{n+1}^{\dagger} \underbrace{\left(a_n a_{n'}^{\dagger} + a_{n'}^{\dagger} a_n \right)}_{\left\{ a_n, a_{n'}^{\dagger} \right\}} \right] \\ &= -\frac{t}{\sqrt{L}} \sum_{n=1}^L \sum_{n'}^L \left[e^{ikn'} a_n^{\dagger} \delta_{n+1,n'} + e^{ikn'} a_{n+1}^{\dagger} \delta_{n,n'} \right] \\ &= -\frac{t}{\sqrt{L}} \sum_{n=1}^L \left[e^{ik} e^{ikn} a_n^{\dagger} + e^{-ik} e^{ik(n+1)} a_{n+1}^{\dagger} \right] \\ &= -t \left[e^{ik} b_k^{\dagger} + e^{-ik} b_k^{\dagger} \right] \\ &\varepsilon_k b_k^{\dagger} = -2t \cos k b_k^{\dagger} \end{split}$$

So the corresponding eigenvalue $\varepsilon_k = -2t \cos k$

1.4 Homework 4

.4.1 Mean-field Solutions for Extended Hubbard Model

The Hamiltonian of the extended Hubbard model can be written as:

$$\hat{H} = -t \sum_{\langle i,j \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \mathbf{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_{i} n_{j}$$

where:

- $c^{\dagger}_{i\sigma}$ and $c_{i\sigma}$ are the fermionic creation and annihilation operators for an eletron with spin σ at site i.
- $n_{i\sigma}=c_{i\sigma}^{\dagger}c_{i\sigma}$ is the number operator for electrons with spin σ at site i.
- $n_i = \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i\sigma}$ is the number operator for total electrons at site i.
- U>0 is the strength of the on-site interaction between electrons.
- V>0 is the strength of the interaction between electrons at neighboring sites.
- t > 0 is the hopping strength of the electrons.

We consider the case of half-filling for two lattice sites ($\langle N \rangle = \langle n_{1\uparrow} + n_{1\downarrow} + n_{2\uparrow} + n_{2\downarrow} \rangle$). In the mean-field approximation, calculate the ground state energy E_{MF} . Please consider initial mean-field values with following four cases.

In the mean-field approximation, the Hamiltonian can be written as

$$\begin{split} \hat{H} &= -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_{i} n_{j} \\ &= -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \left(n_{i\uparrow} \langle n_{i\downarrow} \rangle + n_{i\downarrow} \langle n_{i\uparrow} \rangle - \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle \right) \\ &+ V \sum_{\langle i,j \rangle} \left(n_{i} \langle n_{j} \rangle + n_{j} \langle n_{i} \rangle - \langle n_{i} \rangle \langle n_{j} \rangle \right) \\ &= c^{\dagger} \begin{bmatrix} U \langle n_{1\downarrow} \rangle + V \langle n_{2} \rangle & -t \\ -t & U \langle n_{1\uparrow} \rangle + V \langle n_{2} \rangle & -t \\ -t & U \langle n_{2\downarrow} \rangle + V \langle n_{1} \rangle \end{bmatrix} c \end{split}$$

1. Case 1: Paramagnetic(PM). Initial mean-field value $\langle n_{i\sigma} \rangle = \frac{1}{2}$.

For this case, the interactions are weak, so we expect that the hopping term is dominant. Thus we have

$$\langle n_{i\uparrow} \rangle = \langle n_{i\downarrow} \rangle = \frac{1}{2}, \text{ for all } i.$$

$$\begin{bmatrix} U\frac{1}{2} + V & -t \\ U\frac{1}{2} + V & -t \\ -t & U\frac{1}{2} + V \\ -t & U\frac{1}{2} + V \end{bmatrix} = UDU^{-1}$$

Except for the different diagnoal elements, this matrix is very similar to the case in the lecture. We can get

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & & -1 \\ 1 & & -1 \\ & 1 & & 1 \\ 1 & & 1 \end{bmatrix}, \quad D = \begin{bmatrix} -t + \frac{U}{2} + V & & & \\ & & -t + \frac{U}{2} + V & \\ & & & t + \frac{U}{2} + V \end{bmatrix}$$

$$E_{\mathrm{MF}} = -2t + \frac{U}{2} + V$$

2. Case 2: Ferromagnetic(FM). Initial mean-field value $\langle n_{i\uparrow} \rangle = 1$ and $\langle n_{i\downarrow} \rangle = 0$.

When U is large, we expect no double occupancy. For this case, the mean-field values are chosen as

$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = 1, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0.$$

$$\begin{bmatrix} V & & -t & \\ & U+V & & -t \\ -t & & V & \\ & -t & & U+V \end{bmatrix} = \begin{bmatrix} & & -t & \\ & U & & -t \\ -t & & & \\ & -t & & U \end{bmatrix} + V\mathbb{I} = UDU^{-1}$$

The effect of V is still just shifting the energy, and we get

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & & & \\ & & 1 & -1 \\ 1 & 1 & & \\ & & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} -t+V & & & \\ & & t+V & \\ & & & -t+U+V \\ & & & t+U+V \end{bmatrix}$$

(a) When $-t + U + V < t + V \iff U < 2t$,

$$\langle n_{1\uparrow} \rangle = \sum_{ij} V_{1i}^* V_{1j} \langle \gamma_i^{\dagger} \gamma_j \rangle = V_{11}^* V_{11} + V_{13}^* V_{13} = \frac{1}{2}$$
$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = \frac{1}{2}$$

which implies the system is still in PM phase and $E_{\rm MF} = -2t + \frac{U}{2} + V$.

(b) When U > 2t,

$$\langle n_{1\uparrow} \rangle = \sum_{ij} V_{1i}^* V_{1j} \langle \gamma_i^{\dagger} \gamma_j \rangle = V_{11}^* V_{11} + V_{12}^* V_{12} = 1$$
$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = 1, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0$$

Now the system is in FM phase and $E_{\rm FM}=V$.

3. Case 3: Anti-ferromagnetic(AFM). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha$ and $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha$.

Another choice when U is large is to give

$$\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha.$$

$$\begin{bmatrix} \alpha U + V & -t \\ -t & (1-\alpha)U + V & -t \\ -t & (1-\alpha)U + V \end{bmatrix}$$

$$= \begin{bmatrix} -t & -t \\ -t & (1-2\alpha)U & -t \\ -t & (1-2\alpha)U & -t \end{bmatrix} + (\alpha U + V)\mathbb{I} = UDU^{-1}$$

The effect of $\bar{V} = \alpha U + V$ is still just shifting the energy. Similar to the contents in the lecture note, mark $\bar{U} = (1 - 2\alpha)U$ and shift each eigenenergy with \bar{V} , we get

$$E_{\text{MF}} = \bar{U} - \sqrt{4t^2 + \bar{U}^2} + 2\alpha U + 2V - 2\alpha (1 - \alpha)U - V$$
$$= (1 - 2\alpha + 2\alpha^2)U - \sqrt{4t^2 + \bar{U}^2} + V$$

and the self-consistent equation is

$$\alpha = \frac{4t^2}{4t^2 + [\sqrt{4t^2 + (1 - 2\alpha)U^2} + (1 - 2\alpha)U]^2}$$

- (a) When $U\gg t$, we get $\alpha\approx 0$ and $E_{\rm MF}\approx -\frac{4t^2}{U}+V$. This corresponds to an AFM solution, which is lower than FM.
- (b) When $U \ll t$, we get $\alpha \approx \frac{1}{2}$ and back to the PM solution.

4. Case 4: Charge density wave(CDW). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 - \alpha$ and $\langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha$.

When V is much stronger, we expect a double occupancy will occur. Thus the mean-field values are chosen as

$$\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 - \alpha, \quad \langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha.$$

$$\begin{bmatrix} (1-\alpha)U + 2\alpha V & -t \\ -t & (1-\alpha)U + 2\alpha V & -t \\ -t & \alpha U + 2(1-\alpha)V & \\ -t & \alpha U + 2(1-\alpha)V \end{bmatrix} = UDU^{-1}$$

The result is a little complicated and one can solve the matrix by Mathematica easily. Note $\beta = (1 - 2\alpha)(U - 2V)$ and $\gamma = 2t$, we have

$$D = \frac{1}{2} \left((U + 2V)\mathbb{I} + \sqrt{\beta^2 + \gamma^2} \begin{bmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \right)$$

The self-consistent equation is

$$1 - \alpha = \frac{2\beta^2 + \gamma^2 - 2\beta\sqrt{\beta^2 + \gamma^2}}{2\beta^2 + 2\gamma^2 - 2\beta\sqrt{\beta^2 + \gamma^2}}$$

(a) When $\beta^2 \gg \gamma^2 \iff V \gg \frac{U}{2}$ and $V \gg t$, we have

$$\alpha \approx 0$$
, $\langle n_{1\sigma} \rangle = 1$, $\langle n_{2\sigma} \rangle = 0$; $H_{\text{MF}} \approx U$.

(b) When $\beta^2 \ll \gamma^2 \iff V \ll t$ and $U \ll t$, we have $\langle n_{i\sigma} \rangle = \frac{1}{2}$ which corresponds to the PM solution.

1.5 Homework 5

1.5.1 Quantum Rotor Model

The angular coordinate of a quatum rotor is $\theta \in [0, 2\pi)$, note that $\theta \pm 2\pi$ and θ are equivalent. The eigenstate of the operator $\hat{\theta}$ is represented by $|\theta\rangle$, and $\theta \pm 2\pi\rangle$ represents the same state as $|\theta\rangle$. Define the rotation operator for the quantum rotator as $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

Thus $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, and $\hat{R}(2\pi)$ is the identity operator.

The rotation operator $\hat{R}(\alpha)$ is a unitary operator, its generator is the Hermitian operator \hat{N} , which is related to the angular momentum operator of the quantum rotator \hat{L} by $\hat{L}=\hbar\hat{N}$, so $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$, and in the $\hat{\theta}$ representation, we have $\hat{N}=-i\frac{\partial}{\partial\theta}$.

Consider a specific quantum rotor model, its Hamiltonian is

$$\hat{H} = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos 2\hat{\theta}$$

where $g\cos 2\hat{\theta}$ is a small external potential, which can be treated as a perturbation. Assuming $|N\rangle$ is the eigenstate of the operator \hat{N} with eigenvalue N, i.e., $\hat{N}|N\rangle = N|N\rangle$. It can be calculated that $|N\rangle$ is expanded in terms of $|\theta\rangle$ as

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle$$

1. Use the fact that $\hat{R}(2\pi)$ is the identity operator to prove that N must be an integer.

Since $\hat{R}(2\pi) = \mathbb{I}$, so we have $|\theta - 2\pi\rangle = |\theta\rangle$. For eigenstate $|N\rangle$ of operator \hat{N} , we have

$$\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta - 2\pi\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN\theta} |\theta\rangle$$

$$\iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle$$

$$\iff e^{iN\theta} = e^{iN(\theta - 2\pi)} = e^{iN\theta} e^{-i2\pi N}$$

So N should be an integer to keep the invariance of the shift of θ by 2π .

2. Consider the unperturbed Hamiltonian $\hat{H}_0=\frac{1}{2}\left(\frac{1}{2}\hat{N}-\frac{1}{2}\right)^2$, prove that $|N\rangle$ is also an eigenstate of \hat{H}_0 , and find its eigenenergy, demonstrating that each energy level is doubly degenerate.

$$\begin{split} \hat{H}_0|N\rangle &= \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 \\ \Rightarrow N_\pm - \frac{1}{2} = \pm \sqrt{2 E_N^{(0)}} \Rightarrow N_\pm = \frac{1}{2} \pm \sqrt{2 E_N^{(0)}} \end{split}$$

which means for any N, there exists N' = 1 - N to make the energy level degenerate.

3. Using the basis set $\{|N\rangle\}$, write down the representation matrix for the perturbation term $\hat{V} = -g\cos2\hat{\theta}$, and prove that the perturbation does not connect degenerate levels (i.e., if $|N\rangle$ and $|N'\rangle$ are degenerate, then $\langle N|\hat{V}|N'\rangle=0$). Therefore, although the energy levels of \hat{H}_0 are degenerate, we can still use non-degenerate perturbation theory.

$$\begin{split} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta}|N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{split}$$

As the discussion before, if $|N\rangle$ and $|N'\rangle$ are degenerate, then N+N'=1, which means the delta note equals to 0 when $N\in\mathbb{Z}$, so the perturbation does not connect degenerate levels.

4. Calculate the perturbation correction to each energy level E_N up to second order in g, and prove that all degeneracies of the energy levels remain unlifted.

$$\begin{split} E_N^{(1)} &= \langle N | \hat{V} | N \rangle = -\frac{g}{2} \left(\langle N | N + 2 \rangle + \langle N | N - 2 \rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N | \hat{V} | N' \rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

So the corrected energy level is

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N-3)(2N+1)}$$

Apply N' = 1 - N to check if the degeneracy is lifted, we have

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

so the degeneracy of the energy levels remains unlifted.

第二章 2022秋高等量子力学期末考核

2.1 单项选择

1. 让大量热化的自旋通过 Stern-Gerlach 装置SG \hat{z} ,测得 S_{+}^{z} 的概率是?

大量热化自旋表示充分随机, 所以 $P(S_+^z) = ||\chi_+^{z\dagger} \frac{1}{\sqrt{2}} (\chi_+^z + \chi_-^z)||^2 = \boxed{\frac{1}{2}}$

- 2. **Pauli** 矩阵 $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 那么 $\sigma^x \sigma^z$ 等于? $\sigma^x \sigma^z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- 3. 混态可以用混态的密度矩阵来描述. 假设系统处于态 $|\phi_i\rangle$ 的概率为 p_i ,注意 $\sum_i p_i=1$,那么该系统的密度矩阵为 $ho=\sum_i |\phi_i\rangle p_i\langle\phi_i|$,那么 ${
 m Tr}[
 ho]$ 应满足?

因为密度矩阵的迹表示系统的总概率, 而概率必须归一化, 即 $\operatorname{Tr}[\rho] = \sum_{i} p_{i} = \boxed{1}$

4. 如果 ρ 是混态的密度矩阵, 那么 $Tr[\rho^2]$ 应满足?

对任意密度矩阵总有 $\hat{\rho} = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$. 那么 $\hat{\rho}^2 = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}| \sum_{\beta} p_{\beta} |\psi_{\beta}\rangle\langle\psi_{\beta}| = \sum_{\alpha} p_{\alpha}^2 |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$. 对于纯态 $(p_n^2 = p_n)$ Tr $[\rho^2] = \text{Tr}[\rho] = 1$, 而混态 $(p_n^2 \neq p_n)$ 则是 Tr $[\rho^2]$ < 1.

5. 考虑系统哈密顿量 H 不显含时间,时间演化算符为 $U(t,0)=e^{-iHt/\hbar}$. 在海森堡绘景中,我们让算符承载时间演化,海森堡绘景中的算符定义为 $A_H(t)=U^\dagger(t,0)AU(t,0)$,其中 A 是薛定谔绘景中的算符,如果 A 不显含时间,那么 $\mathrm{d}A_H(t)/\mathrm{d}t$ 等于?

$$\begin{split} \frac{\mathrm{d}A_H(t)}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} A e^{-iHt/\hbar} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} \right) A e^{-iHt/\hbar} + e^{iHt/\hbar} \frac{\mathrm{d}}{\mathrm{d}t} \left(A e^{-iHt/\hbar} \right) \\ &= \frac{iH}{\hbar} e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A \frac{iH}{\hbar} e^{-iHt/\hbar} = \frac{i}{\hbar} \left(H e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A e^{-iHt/\hbar} H \right) \\ &= \frac{i}{\hbar} \left[H, A_H(t) \right] = \boxed{\frac{1}{i\hbar} \left[A_H(t), H \right]} \end{split}$$

6. 电磁场中电荷为 q 的单粒子哈密顿量为 $H=\frac{(\vec{p}-q\vec{A})^2}{2m}+q\phi$,那么薛定谔方程 $i\hbar\frac{\partial\psi}{\partial t}=H\psi$ 满足规范不变性: $\vec{A}\to\vec{A}-\nabla\Lambda$, $\phi\to\phi+\frac{\partial\Lambda}{\partial t}$, $\psi\to$?

推导极其麻烦, 建议直接背结论, 不要试图考场现推. 假设 $\psi' = \psi e^{if(\vec{r},t)}$ 是满足规范变换的, 其中 $f(\vec{r},t)$ 是待定函数. 连同其它的规范变换, 代入薛定谔方程得到 $f(\vec{r},t)$ 的微分方程:

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] &= \left[\frac{(-i\hbar\vec{\nabla}-q(\vec{A}-\vec{\nabla}\Lambda))^2}{2m} + q\left(\phi + \frac{\partial\Lambda}{\partial t}\right)\right]\left[\psi e^{if(\vec{r},t)}\right] \\ &i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] = \left[i\hbar\frac{\partial\psi}{\partial t} - \hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)} \\ &\vec{\nabla}\left(\psi e^{if(\vec{r},t)}\right) = \left(\vec{\nabla}\psi + \psi i\vec{\nabla}f\right)e^{if(\vec{r},t)} \\ &\left[-i\hbar\vec{\nabla}-q(\vec{A}-\vec{\nabla}\Lambda)\right]\left[\psi e^{if(\vec{r},t)}\right] = \left[-i\hbar\vec{\nabla}\psi + \hbar\psi\vec{\nabla}f - q(\vec{A}-\vec{\nabla}\Lambda)\psi\right]e^{if(\vec{r},t)} \end{split}$$

$$\begin{split} & \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right]^2 \left[\psi e^{if(\vec{r},t)} \right] = \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right] \left\{ \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] e^{if(\vec{r},t)} \right\} \\ & = \left(-i\hbar \right) \left\{ \left[-i\hbar \nabla^2 \psi + \hbar(\vec{\nabla}\psi) \cdot (\vec{\nabla}f) + \hbar\psi \nabla^2 f - q(\vec{\nabla} \cdot \vec{A} - \nabla^2\Lambda)\psi - q(\vec{A} - \vec{\nabla}\Lambda) \cdot (\vec{\nabla}\psi) \right] e^{if(\vec{r},t)} \right\} \\ & + \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] \cdot i(\vec{\nabla}f) e^{if(\vec{r},t)} \right\} \\ & - q(\vec{A} - \vec{\nabla}\Lambda) \cdot \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] e^{if(\vec{r},t)} \end{split}$$

展开变换前的薛定谔方程:

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{(-i\hbar\vec{\nabla} - q\vec{A})^2}{2m} + q\phi\right]\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A})\psi + \frac{i\hbar q}{m}\vec{A}\cdot(\vec{\nabla}\psi) + \frac{q^2A^2}{2m}\psi + q\phi\psi$$
 (1)

展开变换后的薛定谔方程:

$$\begin{split} &\left[i\hbar\frac{\partial\psi}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\nabla^2\psi-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &\left.+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\right.\\ &\left.+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}(\vec{A}-\vec{\nabla}\Lambda)^2\psi\right.\\ &\left.+q\left(\phi+\frac{\partial\Lambda}{\partial t}\right)\psi\right] \end{split} \tag{2}$$

(②)
$$-$$
 (①) $\cdot e^{if(\vec{r},t)}$, 得到

$$\begin{split} &\left[i\hbar\frac{\partial \cancel{\psi}}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\vec{\nabla^2\psi}-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\\ &+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}\Big(\vec{A}^{\cancel{Z}}+(\vec{\nabla}\Lambda)^2-2\vec{A}\cdot(\vec{\nabla}\Lambda)\Big)\psi\\ &+q\left(\not\phi+\frac{\partial\Lambda}{\partial t}\right)\psi\Big] \end{split}$$

$$\begin{split} -\hbar\psi\frac{\partial f}{\partial t} &= -\frac{i\hbar^2}{m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f) - \frac{i\hbar^2}{2m}\psi\nabla^2f - \frac{i\hbar q}{2m}\psi\nabla^2\Lambda - \frac{i\hbar q}{m}(\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi) \\ &+ \frac{\hbar^2}{2m}\psi(\nabla f)^2 - \frac{\hbar q}{m}(\vec{A} - \vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi \\ &+ \frac{q^2}{2m}\left[(\vec{\nabla}\Lambda)^2 - 2\vec{A}\cdot(\vec{\nabla}\Lambda)\right]\psi \\ &+ q\frac{\partial\Lambda}{\partial t}\psi \end{split}$$

重点观察含 \vec{A} 的项, 由于需要对任意 \vec{A} 都成立, 所以 \vec{A} 的系数必须为 0, 即

$$\vec{A} \cdot \left(-\frac{\hbar q}{m} \vec{\nabla} f - \frac{q^2}{2m} 2 \vec{\nabla} \Lambda \right) = 0$$

最简单的解法即 $f = \frac{-q\Lambda}{\hbar}$, 所以规范变换后的波函数为 $\psi' = \boxed{\psi e^{-iq\Lambda/\hbar}}$. 需要关注一开始给出的 Λ 的符号, 从而影响整体变换的正负.

$$\begin{cases} \vec{A} \rightarrow \vec{A} - \nabla \Lambda \\ \phi \rightarrow \phi + \frac{\partial \Lambda}{\partial t} \\ \psi \rightarrow \psi \mathrm{exp} \left(-\frac{iq\Lambda}{\hbar} \right) \end{cases} , \quad \begin{cases} \vec{A} \rightarrow \vec{A} + \nabla \Lambda \\ \phi \rightarrow \phi - \frac{\partial \Lambda}{\partial t} \\ \psi \rightarrow \psi \mathrm{exp} \left(+\frac{iq\Lambda}{\hbar} \right) \end{cases}$$

7. 角动量的对易关系为 $[J_i,J_j]=i\hbar\epsilon_{ijk}J_k$,升降算符定义为 $J_\pm=J_x\pm iJ_y$,那么 $[J_+,J_-]=$?

$$\begin{split} [J_+, J_-] &= [J_x + iJ_y, J_x - iJ_y] \\ &= [J_x, J_x] - i[J_x, J_y] + i[J_y, J_x] + [J_y, J_y] = -2i[J_x, J_y] = -2i(i\hbar J_z) \\ &= \boxed{2\hbar J_z} \end{split}$$

- 8. 二维谐振子的哈密顿量为 $H=\hbar\omega\left(a_1^\dagger a_1+a_2^\dagger a_2+1
 ight)$ 其第一激发态的简并度为?
 - 二维谐振子的哈密顿量用粒子数算符写作 $\hat{H} = \hbar\omega \left(\hat{n}_1 + \hat{n}_2 + \frac{1}{2}\right)$, 所以第一激发态即 $n_1 + n_2 = 1$, 这代表了 $|01\rangle$ 和 $|10\rangle$ 两个正交态, 所以简并度为 2.
- 9. 量子比特 A 和 B 构成双量子比特体系,双量子比特态 $|\psi\rangle$ 中量子比特 A 的纠缠熵定义为 $S(A) = -\mathbf{Tr}[\rho_A \ln \rho_A]$,其中 ρ_A 是约化密度矩阵,由密度矩阵求迹掉量子比特 B 的自由度得到.考虑自旋单态 $|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$,计算可得量子比特 A 的纠缠熵为?

密度矩阵为

$$\rho = |\psi\rangle\langle\psi| = \frac{1}{\sqrt{2}} (|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B) \frac{1}{\sqrt{2}} (\langle\uparrow|_A\langle\downarrow|_B - \langle\downarrow|_A\langle\uparrow|_B))$$

$$= \frac{1}{2} (|\uparrow\rangle_A\langle\uparrow|_A \otimes |\downarrow\rangle_B\langle\downarrow|_B - |\uparrow\rangle_A\langle\downarrow|_A \otimes |\downarrow\rangle_B\langle\uparrow|_B - |\downarrow\rangle_A\langle\uparrow|_A \otimes |\uparrow\rangle_B\langle\downarrow|_B + |\downarrow\rangle_A\langle\downarrow|_A \otimes |\uparrow\rangle_B\langle\uparrow|_B)$$

接下来进行部分求迹, 从而得到所需的约化密度矩阵 ρ_A . 迹被定义为对角线元素之和, 所以我们通过矢量 $\mathbb{I}_A\otimes |\uparrow\rangle_B$ 和 $\mathbb{I}_A\otimes |\downarrow\rangle_B$ 来提取对角元素. 具体方法是

$$\begin{split} (\mathbb{I}_{A} \otimes \langle \uparrow |_{B}) \rho(\mathbb{I}_{A} \otimes | \uparrow \rangle_{B}) &= \frac{1}{2} |\downarrow \rangle_{A} \langle \downarrow |_{A}, \\ (\mathbb{I}_{A} \otimes \langle \downarrow |_{B}) \rho(\mathbb{I}_{A} \otimes |\downarrow \rangle_{B}) &= \frac{1}{2} |\uparrow \rangle_{A} \langle \uparrow |_{A}, \\ &\Rightarrow \rho_{A} = \sum_{i}^{\uparrow, \downarrow} (\mathbb{I}_{A} \otimes \langle i|_{B}) \rho(\mathbb{I}_{A} \otimes |i \rangle_{B}) = \frac{1}{2} (|\downarrow \rangle_{A} \langle \downarrow |_{A} + |\uparrow \rangle_{A} \langle \uparrow |_{A}) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

由于 ρ_A 已经是对角阵, 所以对角线上元素即为特征值 $\lambda_{A,i}$. 计算 ρ_A 的纠缠熵:

$$\begin{split} S(A) &= -\mathrm{Tr}[\rho_A \ln \rho_A] = -\sum_i^{\uparrow,\downarrow} \lambda_{A,i} \ln \lambda_{A,i} \\ &= -\left(\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2}\right) = \boxed{\ln 2 = 1 \text{ bit}} \end{split}$$

10. 假设哈密顿量 H 是厄密的, 其基态能量为 E_0 , 给定某个态 Ψ , 测得能量期望值为 $E[\Psi]=\frac{\langle\Psi|H|\Psi\rangle}{\langle\Psi|\Psi\rangle}$, $E(\Psi)$ 和 E_0 的关系为?

任意态均可通过基矢展开, 形式为 $|\Psi\rangle = \sum_{n} |n\rangle\langle n|\Psi\rangle$, 则

$$E[\Psi] = \left(\sum_{m} \langle \Psi | m \rangle \langle m | \right) \hat{H} \left(\sum_{n} |n\rangle \langle n | \Psi \rangle \right) = \sum_{m,n} \langle \Psi | m \rangle \langle m | \hat{H} | n \rangle \langle n | \Psi \rangle$$
$$= \sum_{m,n} c_{m}^{*} E_{n} \delta_{mn} c_{n} = \sum_{n} |c_{n}|^{2} E_{n} \geq \sum_{n} |c_{n}|^{2} E_{0} = E_{0}$$

2.2 多项选择

1. 与总角动量算符的平方 \vec{J}^2 对易的算符在 $(J_x, J_y, J_z, J_+, J_-)$ 中有?

已知角动量的基本对易关系 $[J_i, J_j] = i\hbar\epsilon_{ijk}J_k$, 那么

$$[J^{2}, J_{l}] = \left[\sum_{i}^{3} J_{i}^{2}, J_{l}\right] = \sum_{i}^{3} \left[J_{i}^{2}, J_{l}\right] = \sum_{i}^{3} \left(J_{i}[J_{i}, J_{l}] + [J_{i}, J_{l}]J_{i}\right)$$

$$= \sum_{i}^{3} \left(J_{i}i\hbar\epsilon_{ilk}J_{k} + i\hbar\epsilon_{ilk}J_{k}J_{i}\right)$$

$$= i\hbar\sum_{i}^{3} \left(\epsilon_{ilk}J_{i}J_{k} - \epsilon_{kli}J_{k}J_{i}\right) = 0.$$

其中利用了 ϵ_{ijk} 的反对称性质以及 $k \iff i$ 的地位等价. 而 $J_{\pm} = J_x \pm iJ_y$ 是 $\{J_l\}$ 的线性组合, 根据对易关系的线性性质可知 $[J^2, J_{\pm}] = 0$, 所以待选项均为正确答案.

2. 在原子单位制下 $\hbar = c = 1$, 和能量同单位的量在 (距离, 动量, 时间, 质量, 角动量) 中有?

能量单位为 $J=kg\cdot m^2/s^2$,距离单位为 m,动量单位为 $kg\cdot m/s$,时间单位为 s,质量单位为 kg,角动量单位为 $kg\cdot m^2/s$. 现在要求 $kg\cdot m^2/s=m/s=1$,即寻找如何通过除以 $\hbar(kg\cdot m^2/s)$,c(m/s) 来进行量纲变换

- (a) 距离. $\frac{E}{\hbar c} = \frac{\text{kg} \cdot \text{m}^2/\text{s}^2}{\text{kg} \cdot \text{m}^2/\text{s} \cdot \text{m/s}} = \frac{1}{\text{m}}$, 说明距离和能量在单位上互为倒数.
- (b) $\overline{$ 动量 . E = pc
- (c) 时间. $E = \hbar\omega = \hbar \frac{1}{\tau}$, 所以时间和能量单位互为倒数.
- (e) 角动量. 角动量的量纲正好是 $kg \cdot m^2/s$, 即无量纲数, 而能量无法通过除以 \hbar 或 c 来变成角动量的量纲, 所以角动量和能量不同单位.
- 3. 宇称算符 \mathbb{P} 连续作用两次为恒等变换,这说明宇称算符 \mathbb{P} 的本征值在 (0,1,-1,i,-i) 中有?

不妨设 $\mathbb{P}\psi = \lambda\psi$, 那么 $\mathbb{P}^2\psi = \lambda^2\psi = \psi$, 所以 $\lambda^2 = 1$, 即 $\lambda = \pm 1$. 所以字称算符的本征值为 1, -1

4. 如果算符 A 满足 $A^2 = A$, 那么算符 A 的本征值有 (0, 1, -1, i, -i) 中有?

不妨设 $A\psi = \lambda\psi$, 那么 $A^2\psi = A(\lambda\psi) = \lambda^2\psi$, $\lambda^2 = \lambda$, 即 $\lambda = 0, 1$. 所以算符 A 的本征值为 0, 1

5. 玻色子产生和湮灭算符满足对易关系 $\left[b_{\alpha}^{\dagger},b_{\beta}^{\dagger}\right]=\left[b_{\alpha},b_{\beta}\right]=0,$ $\left[b_{\alpha},b_{\beta}^{\dagger}\right]=\delta_{\alpha\beta}$,那么和总粒子数算符 $N=\sum_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}$ 对易的算符在 $(b_{\alpha},b_{\alpha}^{\dagger}b_{\alpha},b_{\alpha}^{\dagger}b_{\beta},b_{\alpha}^{\dagger}b_{\beta}b_{\mu},b_{\alpha}^{\dagger}b_{\beta}b_{\mu}^{\dagger}b_{\nu})$ 中有?

已知 $[N,A] = \sum_i \left[b_i^\dagger b_i,A\right] = \sum_i \left\{b_i^\dagger [b_i,A] + \left[b_i^\dagger,A\right] b_i\right\}$,代入以上各算符 A 判断是否对易.

(a)
$$[N, b_{\alpha}] = \sum_{i} \left\{ b_{i}^{\dagger}[b_{i}, b_{\alpha}] + \left[b_{i}^{\dagger}, b_{\alpha}\right]b_{i} \right\} = \sum_{i} \left\{ 0 + (-\delta_{i\alpha})b_{\alpha} \right\} = -b_{\alpha}$$

(h)

$$\begin{split} \boxed{\begin{bmatrix} [N,b_{\alpha}^{\dagger}b_{\alpha}] \end{bmatrix}} &= \sum_{i} \left[b_{i}^{\dagger}b_{i},b_{\alpha}^{\dagger}b_{\alpha} \right] = \sum_{i} \left\{ b_{i}^{\dagger}[b_{i},b_{\alpha}^{\dagger}b_{\alpha}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger}b_{\alpha} \right] b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger} \left(b_{\alpha}^{\dagger}[b_{i},b_{\alpha}] + \left[b_{i},b_{\alpha}^{\dagger} \right] b_{\alpha} \right) + \left(b_{\alpha}^{\dagger}[b_{i}^{\dagger},b_{\alpha}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger} \right] b_{\alpha} \right) b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger} \cdot 0 + \delta_{i\alpha}b_{\alpha}) + \left(b_{\alpha}^{\dagger}(-\delta_{i\alpha}) + 0 \cdot b_{\alpha} \right) b_{i} \right\} \\ &= \sum_{i} \delta_{i\alpha}(b_{i}^{\dagger}b_{\alpha} - b_{\alpha}^{\dagger}b_{i}) = 0 \end{split}$$

(c)

$$\begin{split} \boxed{\begin{bmatrix} [N,b_{\alpha}^{\dagger}b_{\beta}] \end{bmatrix}} &= \sum_{i} \left[b_{i}^{\dagger}b_{i},b_{\alpha}^{\dagger}b_{\beta} \right] = \sum_{i} \left\{ b_{i}^{\dagger}[b_{i},b_{\alpha}^{\dagger}b_{\beta}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger}b_{\beta} \right]b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger}[b_{i},b_{\beta}] + [b_{i},b_{\alpha}^{\dagger}]b_{\beta}) + (b_{\alpha}^{\dagger}[b_{i}^{\dagger},b_{\beta}] + [b_{i}^{\dagger},b_{\alpha}^{\dagger}]b_{\beta})b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger} \cdot 0 + \delta_{i\alpha}b_{\beta}) + (b_{\alpha}^{\dagger}(-\delta_{i\beta}) + 0 \cdot b_{\beta})b_{i} \right\} \\ &= \sum_{i} \left(b_{i}^{\dagger}b_{\beta}\delta_{i\alpha} - b_{\alpha}^{\dagger}b_{i}\delta_{i\beta} \right) = 0. \end{split}$$

(d)

$$[N,b_{\alpha}^{\dagger}b_{\beta}b_{\mu}]=b_{\alpha}^{\dagger}b_{\beta}[N,b_{\mu}]+[N,b_{\alpha}^{\dagger}b_{\beta}]b_{\mu}=-b_{\alpha}^{\dagger}b_{\beta}b_{\mu}$$

(e)

$$\boxed{[N, b_{\alpha}^{\dagger} b_{\beta} b_{\mu}^{\dagger} b_{\nu}]} = b_{\alpha}^{\dagger} b_{\beta} [N, b_{\mu}^{\dagger} b_{\nu}] + [N, b_{\alpha}^{\dagger} b_{\beta}] b_{\mu}^{\dagger} b_{\nu} = 0 + 0 = 0$$

可以不严谨地总结出一条规律: 粒子数算符 \hat{N} 只会与另一个粒子数算符对易, 而与单独的产生湮灭算符均不对易.

2.3 简答题

1. 中心势场中的单粒子哈密顿量为 $H=rac{ec{p}^2}{2M}+V(r)$. 轨道角动量 $ec{L}=ec{r} imesec{p}$, 那么 $[ec{L},H]=?$

由于是中心势场, 不妨设 $V(r) = r^n$, 则

$$\begin{split} [\vec{L}, H] &= \left[\sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j p_k, \sum_{\alpha}^3 \frac{p_{\alpha}^2}{2m} + r^n \right] = \frac{1}{2m} \sum_{ijk\alpha} \epsilon_{ijk} \hat{x}_i [x_j p_k, p_{\alpha}^2] + \sum_{ijk} \epsilon_{ijk} \hat{x}_i [x_j p_k, r^n] \\ &= \frac{1}{2m} \sum_{ijk\alpha} \hat{x}_i \epsilon_{ijk} \left\{ \underbrace{x_j p_{\alpha} [p_k, p_{\alpha}]}_{\varphi_k, p_{\alpha}} + \underbrace{x_j [p_k, p_{\alpha}] p_{\alpha}}_{\varphi_k} + p_{\alpha} [x_j, p_{\alpha}] p_k + [x_j, p_{\alpha}] p_{\alpha} p_k \right\} + \sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j [-i\hbar \frac{\partial}{\partial x_k}, r^n] \\ &= \frac{1}{2m} \sum_{ijk\alpha} 2i\hbar \delta_{j\alpha} p_{\alpha} p_k + \sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j \left(-i\hbar n r^{n-1} r^{-\frac{1}{2}} x_k \right) \\ &= \sum_{ijk} \epsilon_{ijk} \hat{x}_i \left\{ \frac{i\hbar}{m} p_j p_k + (-i\hbar n r^{n-\frac{3}{2}}) x_j x_k \right\} \end{split}$$

注意到 $j \iff k$ 和 ϵ_{ijk} 的反对称性质, 可以得到 $[\vec{L}, H] = \boxed{0}$.

2. 考虑一阶近似, 当 $i \neq f$ 时, 跃迁概率为

$$P_{i\to f}(t) = \frac{1}{\hbar^2} \left| \int_0^t \mathrm{d}t' \langle f|V(t')|i\rangle e^{\mathrm{i}\omega_{fi}t'} \right|^2$$

其中 $\hbar\omega_{fi}=E_f-E_i$. 当微扰为

$$V(t) = \begin{cases} Ve^{-\mathrm{i}\omega t} & t > 0\\ 0 & t < 0 \end{cases}$$

跃迁概率为?

$$P_{i\to f}(t) = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|Ve^{-\mathrm{i}\omega t'}|i\rangle e^{\mathrm{i}\omega_{fi}t'} \right\|^2 = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{-\mathrm{i}\omega t'} e^{\mathrm{i}\omega_{fi}t'} \right\|^2$$

$$= \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{\mathrm{i}(\omega_{fi}-\omega)t'} \right\|^2 = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{\mathrm{i}\Delta\omega t'} \right\|^2$$

$$\left\| \int_0^t \mathrm{d}t' e^{\mathrm{i}\Delta\omega t'} \right\|^2 = \left\| \frac{e^{\mathrm{i}\Delta\omega t} - 1}{\mathrm{i}\omega} \right\|^2 = \frac{(e^{\mathrm{i}\Delta\omega t} - 1)(e^{-\mathrm{i}\Delta\omega t} - 1)}{(\Delta\omega)^2} = \frac{2 - 2\cos\Delta t}{(\Delta\omega)^2} = \frac{4}{(\Delta\omega)^2} \sin^2\left(\frac{\Delta\omega t}{2}\right)$$

$$P_{i\to f}(t) = \left[\frac{4 \left| \langle f|V|i\rangle \right|^2}{\hbar^2(\Delta\omega)^2} \sin^2\left(\frac{\Delta\omega t}{2}\right) \right]$$

- 3. *算符 $\Omega(t) \equiv U^{-1}(t)U_0(t)$, 算符 $\Omega_{\pm} \equiv \lim_{t \to \pm \infty} \Omega(t)$, 其中
 - $U_0(t) = e^{-iH_0t/\hbar}$ 是自由系统 H_0 的时间演化算符;
 - $U(t) = e^{-iHt/\hbar}$ 是短程势散射系统的时间演化算符.

 $H = H_0 + V$. 散射算符定义为 $S \equiv \Omega_{-}^{\dagger} \Omega_{+}$, 那么 $[S, H_0] = ?$

4. 动量空间中自由粒子的 Dirac 方程可以写为

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_{+}(\vec{p}) = m\chi_{-}(\vec{p}), \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_{-}(\vec{p}) = m\chi_{+}(\vec{p})$$

当质量 m=0时, 两个 Weyl 旋量之间没有耦合, 得到动量空间中的 Weyl 方程

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_+ = 0, \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_- = 0$$

定义螺旋度算符为 $\frac{1}{2}\hat{\vec{p}}\cdot\vec{\sigma}$, 其中 $\hat{\vec{p}}=\frac{\vec{p}}{|\vec{p}|}$, 那么可知 Weyl 旋量 χ_{\pm} 恰好是螺旋度算符的本征态, 本征值分别为?

当 m=0 且 $|\vec{p}|=E$ 时, 原 Dirac 方程即为

$$(1 - \hat{\vec{p}} \cdot \vec{\sigma})\chi_{+}(\vec{p}) = 0, \quad (1 + \hat{\vec{p}} \cdot \vec{\sigma})\chi_{-}(\vec{p}) = 0$$

 $\Rightarrow (1 - 2\hat{h})\chi_{+}(\vec{p}) = 0, \quad (1 + 2\hat{h})\chi_{-}(\vec{p}) = 0$

其中 \hat{h} 即为螺旋度算符. 显然 χ_+ 和 χ_- 分别是 \hat{h} 的本征态, 本征值则为 $\boxed{\pm \frac{1}{2}}$

5. *一个可以制备 Bell 态的简单量子线路为

它包含两个张量: 一个 Hadamard gate (H) 和一个 controlled NOT gate (CNOT)(虚线框里), 在 Sz 表象下它们的矩阵表示为,

$$\begin{split} H &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \\ \text{CNOT} &= \exp\left\{\mathrm{i}\pi \frac{1}{4} (\mathbb{I} - \sigma_1^z) \otimes (\mathbb{I} - \sigma_2^x)\right\} \end{split}$$

将以上量子线路作用到 | ↑↑〉 上得到的态为?

注意到

$$A = \frac{1}{4} (\mathbb{I} - \sigma_1^z) \otimes (\mathbb{I} - \sigma_2^x) = \frac{1}{4} \begin{pmatrix} 2 \end{pmatrix} \otimes \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$A^2 = A$$

$$e^{i\alpha A} = \sum_{n=0}^{\infty} \frac{1}{n!} (i\alpha A)^n = \mathbb{I} + \sum_{n=1}^{\infty} \frac{1}{n!} (i\alpha)^n (A)^n = \mathbb{I} + A \left(\sum_{n=0}^{\infty} \frac{1}{n!} (i\alpha)^n - 1 \right)$$

$$= \mathbb{I} + A (e^{i\alpha} - 1)$$

$$\Rightarrow \text{CNOT} = \mathbb{I} - 2A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

因此, CNOT 的作用是调换第三, 第四元素的位置, 这个作用当且仅当第一个量子比特为 $|\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 时才会发生.

$$\begin{split} & \left(\hat{H}_{(1)} \otimes \mathbb{I}_{(2)} \right) |\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} = \hat{H}_{(1)} |\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} = \left[\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ & = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} + |\downarrow\rangle_{(1)}) \otimes |\uparrow\rangle_{(2)} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}). \\ & \text{CNOT} \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}) = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + \text{CNOT} |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}) \\ & = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\downarrow\rangle_{(2)}) = \boxed{\frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)}, \quad \text{for simplicity.} \end{split}$$

2.4 应用题

1. 矩阵对角化和表象变换

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L=V\Lambda V^\dagger$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x=\begin{pmatrix}0&1\\1&0\end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

通过求解其特征方程以得到 $\sigma_{(z)}^x$ 的本征值:

$$\det(\sigma^x_{(z)} - \lambda I) = \det\begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0,$$

解得 $\lambda = \pm 1$. 对于 $\lambda_+ = 1$ 有:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

所以对应于 λ_+ 的本征矢是 $|+\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. 对于 $\lambda_- = -1$ 有

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

所以对应于 λ_- 的本征矢是 $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$. 在求解过程中已经对这些本征矢进行了归一化,所以可以得到幺正矩阵 $V = [|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$. 对角矩阵 Λ 对角线上依次是本征值,即

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

于是我们可以通过幺正矩阵 V 来对 $\sigma^x_{(z)}$ 进行对角化:

$$\sigma_{(z)}^x = V^{\dagger} \Lambda V = V^{\dagger} \sigma_{(z)}^z V$$

我们注意到, 对角矩阵 Λ 和 $\sigma^z_{(z)}$ 形式完全一致, 这意味着不同表象 i 下, $\sigma^i_{(i)}$ 的形式都是 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 这就是我们通过 V 来改变表象的依据:

$$\sigma_{(z)}^x = V^{\dagger} \sigma_{(z)}^z V = V^{\dagger} \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = \left(V^{\dagger}\right)^{-1} \sigma_{(z)}^x (V)^{-1}$$

我们标记 $\sigma^x_{(z)}$ 为 σ^x 在 σ^z 表象下的矩阵. 注意 $V=V^\dagger=V^{-1}$, 所以

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 **Pauli** 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

在 Sz 表象下有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

从前文中可知, $\sigma_{(z)}^x$ 的本征矢为:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

用以将 S^z 表象转换为 S^x 表象的幺正矩阵为

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

在 Sz 表象中有

$$S_{(z)}^{x} = \frac{\hbar}{2}\sigma^{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^{y} = \frac{\hbar}{2}\sigma^{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^{z} = \frac{\hbar}{2}\sigma^{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

因此

$$\begin{split} S^x_{(x)} &= V S^x_{(z)} V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S^y_{(x)} &= V S^y_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ S^z_{(x)} &= V S^z_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

在 S^x 表象中的基矢为

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$. 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的,哈密顿量重新写为

$$H = \frac{1}{2}\hbar\omega(P^2 + Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

$$\begin{split} [Q,P] &= [\sqrt{\frac{m\omega}{\hbar}}x,\sqrt{\frac{1}{\hbar m\omega}}p] = \frac{1}{\hbar}[x,p] = \frac{1}{\hbar}i\hbar = \boxed{i}, \\ [a,a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q+iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0-i\cdot i+i\cdot (-i)+0] = \boxed{1}, \\ [a,a] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q+iP)\right] \\ &= \frac{1}{2}[Q+iP,Q+iP] = \frac{1}{2}\left([Q,Q]+i[Q,P]+i[P,Q]-[P,P]\right) \\ &= \frac{1}{2}[0+i\cdot i+i\cdot (-i)-0] = 0, \\ [a^{\dagger},a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q-iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q-iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]-i[P,Q]-[P,P]\right) \\ &= \frac{1}{2}(0-i\cdot i-i\cdot (-i)-0) = 0, \\ [a,a^{\dagger}a] &= a^{\dagger}[a,a]+[a,a^{\dagger}]a = a^{\dagger}\cdot 0+1\cdot a = \boxed{a}, \\ [a^{\dagger},a^{\dagger}a] &= a^{\dagger}[a^{\dagger},a]+[a^{\dagger},a^{\dagger}]a = a^{\dagger}\cdot (-1)+0\cdot a = \boxed{-a^{\dagger}}. \end{split}$$

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

$$\begin{split} a &= \frac{1}{\sqrt{2}} \left(Q + i P \right), \quad a^\dagger = \frac{1}{\sqrt{2}} \left(Q - i P \right) \\ \Rightarrow Q &= \frac{1}{\sqrt{2}} (a + a^\dagger), \quad P = \frac{1}{\sqrt{2}i} (a - a^\dagger) \\ \Rightarrow H &= \frac{1}{2} \hbar \omega (P^2 + Q^2) = \frac{1}{2} \hbar \omega \left\{ \left[\frac{1}{\sqrt{2}i} (a - a^\dagger) \right]^2 + \left[\frac{1}{\sqrt{2}} (a + a^\dagger) \right]^2 \right\} \\ &= \frac{1}{2} \hbar \omega \left\{ -\frac{1}{2} \left(aa - aa^\dagger - a^\dagger a + a^\dagger a^\dagger \right) + \frac{1}{2} \left(aa + aa^\dagger + a^\dagger a + a^\dagger a^\dagger \right) \right\} \\ &= \frac{1}{2} \hbar \omega \left(a^\dagger a + aa^\dagger \right) \end{split}$$

当然, 也可以利用 $[a, a^{\dagger}] = 1 \iff aa^{\dagger} = a^{\dagger}a + 1$ 将 H 变换为熟知的粒子数表象形式:

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right)$$

所以
$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \cdots$$

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

能量表象的本征矢满足 $H|n\rangle = E_n|n\rangle$, 则矩阵元为

$$\begin{split} a|n\rangle &= \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \\ \Rightarrow \langle m|a|n\rangle &= \boxed{\sqrt{n}\delta_{m,n-1}}, \quad \langle m|a^{\dagger}|n\rangle = \boxed{\sqrt{n+1}\delta_{m,n+1}} \end{split}$$

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J}=\vec{J_1}+\vec{J_2}$,设 $\vec{J_1}^2=\vec{J_2}^2=j(j+1)\hbar^2$, $J^2=J(J+1)\hbar^2$, $J=2j,2j-1,\cdots,1,0$. 在总角动量量子数 J=0 的状态下,求 $J_{1,z}$ 和 $J_{2,z}$ 的可能取值及相应概率.

根据 J=0,而 $-|J| \le M \le |J|$,夹逼定理得到 M=0. 而磁量子数守恒, 所以 $J_{1,z}+J_{2,z}=J_z=0$. 已知 C-G 系数可以用于将 $|J,M;j_1,j_2\rangle$ 以基矢 $|j_1,m_1;j_2,m_2\rangle$ 展开, 代入上述讨论结果有

$$|0,0;j,j\rangle = \sum_{m,-m}^{-j \leq m \leq j} C_{j,j,m,-m}^{0,0} |j,m;j,-m\rangle$$

概率即为 $P(m_1 = m, m_2 = -m) = |C_{j,j,m,-m}^{0,0}|^2$. 那么问题就来到如何计算这个特殊的 C-G 系数. 根据 C-G 系数的递推 定义, 可以得到其解析表达式

$$\begin{split} &\langle j_1, m_1; j_2, m_2 | J, M; j_1, j_2 \rangle \\ &= \sqrt{\frac{(2J+1)(J+j_1-j_2)!(J-j_1+j_2)!(j_1+j_2-J)!}{(j_1+j_2+J+1)!}} \\ &\times \sqrt{(J+M)!(J-M)!(j_1+m_1)!(j_1-m_1)!(j_2+m_2)!(j_2-m_2)!} \\ &\times \sum_{k_{\text{min}}}^{k_{\text{max}}} \frac{(-1)^k}{k!(j_1+j_2-J-k)!(j_1-m_1-k)!(j_2+m_2-k)!(J-M-k)!} \\ &\times \frac{1}{(J-j_2+m_1+k)!(J-j_1-m_2+k)!} \\ &k_{\text{min}} = \max\{0, j_2-m_1-J, j_1+m_2-J\}, \quad k_{\text{max}} = \min\{j_1+j_2-J, j_1-m_1, j_2+m_2\} \end{split}$$

所以代入 $j_1=j_2=j, m_1=-m_2=m$,即有 $C^{0,0}_{j,m,j,-m}=\frac{(-1)^{j-m}}{\sqrt{2j+1}}$,显然因为平方消去了可能存在的负号,使得 $|j,m;j,-m\rangle$, $\forall m\in\{-j,-j+1,\cdots,j-1,j\}$ 等概率,所以得到

$$P(m_1 = m, m_2 = -m) = \frac{1}{2j+1}$$

4. 自旋-1 模型

考虑自旋-1 体系, 自旋算符为 \vec{S} , 考虑 (\vec{S}^2, S^z) 表象, 基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, 简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$. 设 $\hbar=1$.

(a) 写出 S^x 和 S^z 的矩阵表示.

由于是在 (\vec{S}^2, S^z) 表象, 所以 S^z 的矩阵一定是对角矩阵. 选定基矢为 $\{|s,m\rangle\}$, 即 $|1,1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $|1,0\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

$$|1,-1\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
. 根据本征方程 $S^z|s,m\rangle = m|s,m\rangle$, 得到

$$S^z = \boxed{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} }$$

而对于 S^x (包括题解不要求的 S^y), 我们实际上是使用的升降算符 S^{\pm} 来定义的.

$$\begin{split} S^{+}|s,m\rangle &= \sqrt{s(s+1)-m(m+1)}|s,m+1\rangle, \\ S^{-}|s,m\rangle &= \sqrt{s(s+1)-m(m-1)}|s,m-1\rangle. \\ \Rightarrow S^{+}|1,1\rangle &= 0, \quad S^{+}|1,0\rangle = \sqrt{2}|1,1\rangle, \quad S^{+}|1,-1\rangle = \sqrt{2}|1,0\rangle, \\ S^{-}|1,1\rangle &= \sqrt{2}|1,0\rangle, \quad S^{-}|1,0\rangle = \sqrt{2}|1,-1\rangle, \quad S^{-}|1,-1\rangle = 0. \\ \Rightarrow S^{+} &= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, \quad S^{-} &= \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}. \\ \Rightarrow S^{x} &= \frac{1}{2} \left(S^{+} + S^{-} \right) = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix} \end{split}$$

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$. 考虑为 λV 微扰, 利用微扰论计算微扰后的各能级和各能态, 其中能级微扰准确到二阶, 能态微扰准确到一阶.

首先计算 H₀ 的本征矢和本征值:

$$\begin{array}{cccc} n & \text{states} & E_n \\ 1 & |\stackrel{n}{1},\stackrel{\alpha}{+1}\rangle = |\psi_1\rangle, & |\stackrel{n}{1},\stackrel{\alpha}{-1}\rangle = |\psi_3\rangle & E_1 = 1 \\ 0 & |\stackrel{n}{0},\stackrel{\alpha}{0}\rangle = |\psi_2\rangle & E_0 = 0 \\ \end{array}$$

可见在 n=1 存在简并子空间. 根据简并微扰论中的有效哈密顿量和波函数公式:

$$E_{\alpha\beta}^{(n)}(\lambda) = E_n \delta_{\alpha\beta} + V_{n\alpha,n\beta} \lambda + \sum_{m \neq n} \sum_{\gamma} \frac{V_{n\alpha,m\gamma} V_{m\gamma,n\beta}}{E_n - E_m} \lambda^2 + \cdots$$
$$|n\alpha(\lambda)\rangle = |n\alpha\rangle + \sum_{m \neq n} \sum_{\beta} |m\beta\rangle \frac{V_{m\beta,n\alpha}}{E_n - E_m} \lambda + \cdots$$

计算波函数的修正:

$$\begin{split} |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle' &= |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle + |\stackrel{m}{0}, \stackrel{\beta}{0}\rangle \frac{V_{00,0\pm 1}^{m}}{E^{(\frac{n}{1})} - E^{(\frac{m}{0})}} \lambda + \cdots \\ &= |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle + |\stackrel{m}{0}, \stackrel{\beta}{0}\rangle \frac{1}{\sqrt{2}} \lambda + \cdots \\ |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle' &= |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle + |\stackrel{m}{1}, \stackrel{\beta}{1}\rangle \frac{V_{m} \beta_{n} \alpha_{n}}{E^{(0)} - E^{(1)}} \lambda + |\stackrel{m}{1}, -1\rangle \frac{V_{m} \beta_{n} \alpha_{n}}{E^{(0)} - E^{(1)}} \lambda + \cdots \\ &= \boxed{|\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle - (|\stackrel{m}{1}, +1\rangle + |\stackrel{m}{1}, -1\rangle) \frac{1}{\sqrt{2}} \lambda} + \cdots \end{split}$$

选定 $|\stackrel{n}{1},\stackrel{\alpha}{+1}\rangle'$ 和 $|\stackrel{n}{1},\stackrel{\alpha}{-1}\rangle'$ 作为基矢, 代入计算有效哈密顿量的矩阵元为

$$\begin{split} E_{+1,+1}^{(n)} &= E^{(n)} + V_{n\alpha}^{-\alpha}{}_{n\beta}^{-\beta} \lambda + \frac{V_{n\alpha}^{-\alpha}{}_{n\gamma}^{m\gamma} V_{m\gamma}^{-\alpha}{}_{n\beta}^{-\beta}}{E^{(n)} - E^{(n)}} \lambda^2 = 1 + \lambda + \frac{\lambda^2}{2} \\ E_{-1,-1}^{(n)} &= E^{(n)}^{(n)} + V_{n\alpha}^{-\alpha}{}_{n-1,1-1}^{-\beta} \lambda + \frac{V_{n\alpha}^{-\alpha}{}_{n\gamma}^{m\gamma} V_{m\gamma}^{-\alpha}{}_{n\beta}^{-\beta}}{E^{(n)} - E^{(n)}} \lambda^2 = 1 - \lambda + \frac{\lambda^2}{2} \\ E_{-1,-1}^{(n)} &= E_{-1,-1}^{(n)} + V_{n\alpha}^{-\alpha}{}_{n-1,1-1}^{-\beta} \lambda + \frac{V_{n\alpha}^{-\alpha}{}_{n\gamma}^{m\gamma} V_{m\gamma}^{-\alpha}{}_{n\beta}^{-\beta}}{E^{(n)} - E^{(n)}} \lambda^2 = \frac{\lambda^2}{2} \\ E_{-1,+1}^{(n)} &= V_{n\alpha}^{-\alpha}{}_{n-1,1+1}^{-\beta} \lambda + \frac{V_{n\alpha}^{-\alpha}{}_{n\gamma}^{m\gamma} V_{m\gamma}^{-\alpha}{}_{n\beta}^{-\beta}}{E^{(n)} - E^{(n)}} \lambda^2 = \frac{\lambda^2}{2} \end{split}$$

有效哈密顿量为 $H_1^{\text{eff}} = \begin{pmatrix} 1 + \lambda + \frac{\lambda^2}{2} & \frac{\lambda^2}{2} \\ \frac{\lambda^2}{2} & 1 - \lambda + \frac{\lambda^2}{2} \end{pmatrix}$,此时对角元已经不等,说明简并已经解除. 那么在这个更小的子空间中,进一步使用微扰,即一阶修正后的能量和波函数视为原始哈密顿量和波函数:

$$H_{1}^{\text{eff}} = \begin{pmatrix} 1 + \lambda + \frac{\lambda^{2}}{2} & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 1 - \lambda + \frac{\lambda^{2}}{2} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 + \lambda + \frac{\lambda^{2}}{2} & 0 \\ 0 & 1 - \lambda + \frac{\lambda^{2}}{2} \end{pmatrix}}_{H'_{0}} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda$$

代入 $|\stackrel{n}{1},\stackrel{\alpha}{\pm 1}\rangle'$ 即可得到进一步考虑了简并微扰的波函数, 注意要忽略 λ^2 阶:

$$\begin{vmatrix} \stackrel{n}{1}, \stackrel{\alpha}{+} 1 \rangle'' = \boxed{ \begin{vmatrix} \stackrel{n}{1}, \stackrel{\alpha}{+} 1 \rangle + | \stackrel{n}{1}, \stackrel{\beta}{0} \rangle \frac{\lambda}{\sqrt{2}} + | \stackrel{n}{1}, \stackrel{\beta}{-} 1 \rangle \frac{\lambda}{4} }$$

$$\begin{vmatrix} \stackrel{n}{1}, \stackrel{\alpha}{-} 1 \rangle'' = \boxed{ \begin{vmatrix} \stackrel{n}{1}, \stackrel{\alpha}{-} 1 \rangle + | \stackrel{n}{1}, \stackrel{\beta}{0} \rangle \frac{\lambda}{\sqrt{2}} - | \stackrel{n}{1}, \stackrel{\beta}{+} 1 \rangle \frac{\lambda}{4} }$$

能量修正:

$$\begin{split} E_{1,+1}^{\prime\prime} &= E_{1,+1}^{\prime} + V_{1,+1+1}^{\prime} + \frac{V_{n-\alpha-\beta}^{\prime} V_{n-\beta-\alpha}^{\prime}}{E_{1,+1}^{\prime} - 1 \cdot 1,-1+1}^{-1}}{E_{n-\alpha}^{\prime} - E_{1,-1}^{\prime}} = \boxed{1 + \lambda + \frac{\lambda^2}{2}} + \mathcal{O}(\lambda^3) \\ E_{1,-1}^{\prime\prime} &= E_{1,-1}^{\prime} + V_{1-\alpha-1}^{\prime} + \frac{V_{n-\alpha-\beta}^{\prime} V_{n-\beta-\alpha}^{\prime}}{E_{1,-1}^{\prime} - 1 \cdot 1,+1-1}^{-1}}{E_{n-\alpha}^{\prime} - E_{n-\beta-\alpha}^{\prime}} = \boxed{1 - \lambda + \frac{\lambda^2}{2}} + \mathcal{O}(\lambda^3) \end{split}$$

5. 均匀电子气

考虑三维相互作用均匀电子气, 哈密顿量为 $H=H_0+H_I$. 考虑系统体积为 $V=L^3$, 每个方向的系统尺寸为 L. 采用箱 归一化, 所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数. 采用二次量子化的语言, 可给出哈密顿量在动量空间的形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma \sigma'} v(q) c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2} \sigma'} c_{\vec{k}_{1} \sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q=|\vec{q}|, x=|\vec{x}|,$

$$v(q) = \frac{1}{V} \int v(x)e^{-i\vec{q}\cdot\vec{x}} d^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

(a) 考虑零温下的自由电子气,计算总粒子数 N 和粒子数密度 n,计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子数密度 n 的函数.

分离变量法求解薛定谔方程 $\frac{\hbar^2\hat{k}^2}{2m}\psi=E\psi$. 于是能量本征值为 $\frac{\hbar^2k^2}{2m}=\sum_i\frac{\hbar^2k_i^2}{2m}$, 其中 $k_i=\frac{\sqrt{2mE_i}}{\hbar}$. 由于使用了箱 归一化, 即有边界条件 $k_il_i=n_i\pi(n_i\in\mathbb{N}^*)$, 代入即得

$$E = \frac{\hbar^2}{2m} \left[\sum_i^3 \left(\frac{\pi}{l_i}\right)^2 n_i^2 \right] = \frac{\hbar^2 \pi^2}{2m} \left(\sum_i^3 \frac{n_i^2}{l_i^2} \right)$$

每个波矢 $\vec{k} = \left(\frac{\pi}{l_x}n_x, \frac{\pi}{l_y}n_y, \frac{\pi}{l_z}n_z\right)$ 都是在 \vec{k} 空间中的一个格点, 这种格点所占据的 \vec{k} 空间体积为

 $\prod_{i}^{3} \frac{\pi}{l_{i}} = \frac{\pi^{3}}{l_{x}l_{y}l_{z}} = \frac{\pi^{3}}{V}$, 其中 V 代表了物质在 \vec{x} 空间的体积(实体积). 电子是全同费米子, 每个格点上(每个状态)能且只能容纳两个电子. 而费米-狄拉克分布为 $f(\epsilon) = \frac{1}{1+e^{\beta(\epsilon-\mu)}}$. 绝对零度($\beta \to \infty$)下, 电子可占据的最高能级即为费米能级 $\lim_{\beta \to \infty} \mu = \varepsilon_{F}$, 对应波矢 $|k| \le k_{F}$. 由于前面讨论 $k_{i} \in \mathbb{N}^{*}$, 因此 $k \le k_{F}$ 在 \vec{k} 空间中会形成 $\frac{1}{8}$ 球体. 由于题解要求,我们略去讨论各原子贡献的自由电子数目,而是直接使用总粒子(电子)数 N:

$$\frac{1}{8} \left(\frac{4}{3} \pi k_F^3 \right) = \frac{N}{2} \left(\frac{\pi^3}{V} \right)$$

其中 N 除以 2 是因为泡利不相容原理. 具体到题目中, 有 $l_i = L, \forall i,$ 于是进一步化简得到

$$\boxed{N = \frac{k_F^3 V}{3\pi^2}, \quad \frac{N}{V} = \boxed{n = \frac{k_F^3}{3\pi^2}}}$$

接下来计算总能量. 假设 N 充分大, 使得电子可存在的状态遍布整个半径为 k_F 的 $\frac{1}{8}$ 费米球, 于是求和化为积分形式, 即有 $E_{\text{tot}} = \sum_{i}^{k \leq k_F} \frac{\hbar^2 k^2}{2m} \Rightarrow \int_0^{k_F} \frac{\hbar^2 k^2}{2m} f(k) dk$, 其中 f(k) 是态密度, 表示在同一能量 $\frac{\hbar^2 k^2}{2m}$ 上的电子数目, 所以这就要求我们对电子态密度进行计算. 对于半径为 k, 厚度为 dk 的 $\frac{1}{8}$ 球壳, 在这个球壳上电子的能量都是相同的. 而这个球壳的体积为 $\frac{1}{8}(4\pi k^2 dk)$, 又已知每个格点体积为 $\frac{\pi^3}{V}$, 因此球壳中电子数目为

格点数
$$\times$$
 $2 = \frac{\frac{1}{8}(4\pi k^2 dk)}{\frac{\pi^3}{V}} \times 2 = \frac{k^2 V}{\pi^2} dk = f(k) dk$

因此总能量为

$$E^{(0)} = \int_0^{k_F} \frac{\hbar^2 k^2}{2m} \frac{k^2 V}{\pi^2} dk = \frac{\hbar^2 V}{2m\pi^2} \int_0^{k_F} k^4 dk = \frac{\hbar^2 V}{2m\pi^2} \frac{k_F^5}{5} = \boxed{\frac{\hbar^2 V k_F^5}{10m\pi^2}}$$

反解粒子数密度表达式得到 $k_F(n)$, 代入 $E^{(0)}$ 计算总能量密度:

$$k_F = (3\pi^2 n)^{\frac{1}{3}}$$

$$\frac{E^{(0)}}{V} = \frac{\hbar^2 k_F^5}{10m\pi^2} = \frac{\hbar^2}{10m\pi^2} \cdot (3\pi^2 n)^{\frac{5}{3}} = \boxed{\frac{(3n)^{\frac{5}{3}} \hbar^2 \pi^{\frac{4}{3}}}{10m}}$$

(b) 计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} | H_I | \mathbf{FS} \rangle$.

题目中定义的傅里叶变换是非幺正的,代入结论的时候需要注意系数,

$$v(\vec{q}) = \frac{1}{V} \int \frac{1}{|\vec{x}|} e^{i\vec{q}\cdot\vec{x}} d\vec{x} = \frac{1}{V} \frac{4\pi}{q^2}$$

代 $v(\vec{q})$ 入两体相互作用部分,有

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma, \sigma'} \frac{1}{V} \frac{4\pi}{q^{2}} c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2}, \sigma'} c_{\vec{k}_{1}, \sigma}$$

(c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角的,并且保持了自旋对称性,以及平移对称性,因此我们期待 $\left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}'\sigma'}\right\rangle = \left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}\sigma}\right\rangle \delta_{\vec{k},\vec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{\vec{k}\uparrow}^{\dagger}c_{\vec{k}\uparrow}\right\rangle = \left\langle c_{\vec{k}\downarrow}^{\dagger}c_{\vec{k}\downarrow}\right\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小. 代 $|\text{HF}\rangle = \prod_{k < k_F,\sigma} c_{\vec{k},\sigma}^{\dagger}|0\rangle$ 入能量一阶修正,有

$$\langle \mathrm{HF}|H_0|\mathrm{HF}\rangle = \sum_{\vec{k},\sigma} \langle \mathrm{HF}|\frac{k^2}{2} c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma} |\mathrm{HF}\rangle$$

$$\begin{split} \langle \mathrm{HF}|H_{I}|\mathrm{HF}\rangle &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} \langle \mathrm{HF}| \underbrace{c_{\vec{k}_{1}+\vec{q},\sigma}^{\dagger} c_{\vec{k}_{2}-\vec{q},\sigma'}^{\dagger} c_{\vec{k}_{2},\sigma'}^{\dagger} c_{\vec{k}_{1},\sigma}^{\dagger}}_{c_{\vec{k}}c_{\vec{k}}c_{\vec{k}}c_{\vec{k}}} |\mathrm{HF}\rangle \\ &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} (\underbrace{\delta_{\vec{k}_{1}+\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{2}}^{\dagger}}_{c_{\vec{k}_{2}}c_{\vec{k}}c_{\vec{k}}} - \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\sigma,\sigma'} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma}), \quad v(\vec{q}=0) \vec{\Lambda} \not\boxtimes_{\vec{k}}^{\pm} \\ &= -\frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \sum_{\sigma} \sum_{\sigma} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma} \delta_{\sigma,\sigma'} \\ &= -\frac{1}{V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}} \\ &= -\frac{1}{V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \int d\vec{q} \frac{V}{(2\pi)^{3}} \frac{1}{q^{2}} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}}^{\dagger} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}} \\ &= -\frac{1}{V} \sum_{\vec{r}} \sum_{\vec{k}_{1}} \frac{4\pi}{|\vec{k}_{1}-\vec{k}_{2}|^{2}} \end{split}$$

在第二行消去了一项, 这是因为它会引起 $\vec{q}=0$. 有关于最后一行的求和, 这是一个固定结论, 没有必要在考场现场计算求和, 在这里直接给出答案:

$$\begin{split} \langle \mathrm{HF}|H_I|\mathrm{HF}\rangle &= -\frac{k_F^3 V}{4\pi^3} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V \\ \Rightarrow E &= \frac{(3n)^{\frac{5}{3}} \pi^{\frac{4}{3}} V}{10} - \frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V \end{split}$$

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0, 2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}(\alpha)$ 是一个幺正算符,它的产生子为厄米算符 \hat{N} ,与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$,所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$,在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial\theta}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$. 可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

因为 $\hat{R}(2\pi) = \mathbb{I}$, 所以有 $|\theta - 2\pi\rangle = |\theta\rangle$. 对于算符 \hat{N} 的本征态 $|N\rangle$ 有

$$\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta - 2\pi\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN\theta} |\theta\rangle$$

$$\iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle$$

$$\iff e^{iN\theta} = e^{iN(\theta - 2\pi)} = e^{iN\theta} e^{-i2\pi N}$$

因此为了保持 θ 转动 2π 后的不变性,N应当是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$,证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的。

$$\begin{split} \hat{H}_0|N\rangle &= \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 \\ \Rightarrow N_\pm - \frac{1}{2} = \pm \sqrt{2 E_N^{(0)}} \Rightarrow N_\pm = \frac{1}{2} \pm \sqrt{2 E_N^{(0)}} \end{split}$$

这意味着对于任意整数 N,都对应存在着 N'=1-N 使得能级简并.

(c) 采用 $\{|N\rangle\}$ 作为基组,写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵,并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并,那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的,我们仍然可以使用非简并微扰论.

$$\begin{split} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta} |N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{split}$$

和前文一致, 如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 N+N'=1 使得只要 $N\in\mathbb{Z}$, 那么 $\delta\neq0$. 所以仍然可以使用非简并微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶, 并证明此时所有的能级简并仍然没有被解除.

$$\begin{split} E_N^{(1)} &= \langle N | \hat{V} | N \rangle = -\frac{g}{2} \left(\langle N | N+2 \rangle + \langle N | N-2 \rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N | \hat{V} | N' \rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} \left(\delta_{N,N'+2} + \delta_{N,N'-2} \right) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

微扰修正后的能级为

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N-3)(2N+1)}$$

代入 N' = 1 - N 以检查能级简并性:

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

所以简并度未变化.