#### Observation of dataset

- 1) At 1<sup>st</sup> glance three columns are not useful. EmployeeCount, EmployeeNumber and ID. EmployeeCount is same for all. EmployeeNumber and ID are not characteristics on which attrition of an employee will depend.
- 2) All columns with textual data is categorical.
- 3) About correlation!
  - → PercentSalaryHike and PerformanceRating are highly correlated

"scipy.stats.pearsonr (data.PerformanceRating, data.PercentSalaryHike)" result: (0.7713657093111319, 1.3500749445473152e-203)

Spearman **Result**: (correlation = **0.6268477**, pvalue=2.49431543e-113)

- $\rightarrow$  Similarly some more columns are interrelated, but only columns of x, attrition rate(y) is not related to any of x value.
- → Montly income is highly related to Job level, Job Level and total working years, total working years and monthly income

### **Pre-Processing Methods:**

## 1) Data Understanding:

Glanced through data to understand various columns in data. Dropped columns which obviously do not affect y. For eg. EmployeeCount, EmployeeNumber and ID.

### 2) Converting text to numbers:

Since I am using scikit-learn library, it only processes numbers.

Converted columns having text to numbers:

BusinessTravel, Department, EducationField, Gender, JobRole, MaritalStatus, OverTime

Since all these columns were categorical , so easily converted them into numbers

## 3) Normalisation:

Following given is range of dataset:

| Age | DailyRate | DistanceFromHome | Education | EnvironmentSatisfaction |
|-----|-----------|------------------|-----------|-------------------------|
| 42  | 1397      | 28               | 4         | 3                       |

| HourlyRate | JobInvolvement | JobLevel | JobSatisfaction | MonthlyIncome |
|------------|----------------|----------|-----------------|---------------|
| 70         | 3              | 4        | 3               | 18990         |

| Monthly Rate | NumCompanies | PercentSalary | Performance | Relationship |
|--------------|--------------|---------------|-------------|--------------|
|              | Worked       | Hike          | Rating      | Satisfaction |
| 24905        | 9            | 14            | 3           | 3            |

Since data has wide variation in range and therefore algorithm wasn't converging for logistic regression and linear SVC, and hence normalisation was necessary.

Also note for decison tree, normalisation is not necessary, therefore it converged.

#### 4) PCA

If number of components is reduced using PCA to any number below 29, for any number n the accuracy is comes out to 85.92%

Since it is less than 86.86%, it is not useful.

This can also be understood from correlation – heat map, as most of data columns are not highly correlated

Rather removing one or two column manually might work!

# 5) Visualisation and understanding correlation in data:



## **Approaches**

- 1) After performing pre-processing methods 1 & 2, applied Logistic Regression and linear Support Vector Classification, both of these failed to converge even after using 10000 iterations.
- 2) However, Decision Tree algorithm worked giving accuracy of about 80% (submission 2 and 3 on Kaggle)
- 3) Did normalisation of data and applied Logistic Regression giving accuracy of around 86%.
- 4) and Linear SVC giving accuracy of about 89% (after normalisation)
- 5) Tried PCA to see whether accuracy is less due to it but was not successful
- 6) Random Forest: depth = 4 gave accuracy of 86.86%
- 7) Gradient Boosting: manipulated parameter: learning rates and n\_estimator. This method gave highest accuracy of 91.4%

where lr\_rate:0.11, n\_estimator: 70

## Reason of Gradient Boosting being highest in accuracy:

Ensemble machine learning methods are ones in which a number of predictors are aggregated to form a final prediction, which has lower bias and variance than any of the individual predictors. There are 2 type of ensembles: Bagging and Boosting.

Gradient boosting produces an ensemble of decision trees that, on their own, are weak decision models.

| n_estimator | learning_rate | accuracy_train | accuracy_validation |
|-------------|---------------|----------------|---------------------|
| 20          | 0.06          | 0.857          | 0.867               |
| 20          | 0.5           | 0.95           | 0.871               |
| 20          | 0.4           | 0.953          | 0.878               |
| 20          | 0.3           | 0.936          | 0.864               |
| 20          | 0.45          | 0.959          | 0.876               |
| 30          | 0.05          | 0.867          | 0.869               |
| 30          | 0.06          | 0.875          | 0.871               |
| 30          | 0.55          | 0.873          | 0.873               |
| 50          | 0.05          | 0.883          | 0.871               |
| 50          | 0.1           | 0.923          | 0.889               |

| 50 | 0.11 | 0.928 | 0.898 |
|----|------|-------|-------|
| 50 | 0.12 | 0.928 | 0.887 |
| 60 | 0.1  | 0.936 | 0.891 |
| 60 | 0.11 | 0.938 | 0.894 |
| 60 | 0.12 | 0.942 | 0.887 |
| 60 | 0.15 | 0.955 | 0.887 |
| 70 | 0.05 | 0.899 | 0.878 |
| 70 | 0.1  | 0.941 | 0.891 |
| 70 | 0.15 | 0.965 | 0.885 |
| 70 | 0.2  | 0.974 | 0.88  |
| 70 | 0.08 | 0.926 | 0.887 |
| 70 | 0.09 | 0.93  | 0.889 |
| 70 | 0.11 | 0.946 | 0.896 |
| 70 | 0.12 | 0.952 | 0.882 |
| 80 | 0.05 | 0.906 | 0.882 |
| 80 | 0.1  | 0.948 | 0.891 |
| 80 | 0.15 | 0.969 | 0.882 |
| 80 | 0.08 | 0.936 | 0.885 |
| 80 | 0.09 | 0.936 | 0.887 |
| 80 | 0.11 | 0.954 | 0.898 |
| 80 | 0.12 | 0.962 | 0.878 |

Gradient Boosting came out to be best after normalisation

Reason: it is highly Job level and TotalWorkingYears

<sup>\*\*\*\*</sup>Removing monthly income column is improving result in each of the methods above and result of SVC and GradientBoosting is after removing Monthly Income.

## Results and Final learning

### **Results:**

| Method                                       | Accuracy |
|----------------------------------------------|----------|
| Decision Tree                                | 80%      |
| Logistic Regression (After<br>Normalisation) | 86%      |
| Random Forest                                | 86.86%   |
| SVC (After Normalisation)                    | 89%      |
| Gradient Boosting                            | 91.4%    |

# Final Learning:

- 1) For the first time particilated in kaggle competitions
- 2) Learnt to use scikit-learn library
- 3) Learnt to use various python libraries such as pandas and matplotlib
- 4) Practical implementation of correlation graphs.
- 5) Tried Logistic Regression, Support Vector Classification, Decision Tree, Random Forest and Gradient Boosting; understood various parameters of these methods
- 6) Learnt Bagging and Boosting also
- 7) Understood importance of correlation, and importance of normalisation