Practice Problems 3

Office Hours: Tuesdays, Thursdays from 3:30 to 4:30 at SS 6439.

E-mail: mpark88@wisc.edu

If you need help, reach out: your classmates, the TA, textbooks, or the Professor.

NEGATIONS

- 1. Negate the following:
 - (a) * Exists $x \in \mathbb{R}$ such that $\log x = 30$
 - (b) $\forall a \in \mathbb{Q}, \sqrt{a} \in \mathbb{Q}$
 - (c) * If you're Madisonian, then you were born in Wisconsin.
 - (d) A person can be happy while not loving spicy food.
 - (e) * $\forall \epsilon \in \mathbb{R}$ such that $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, satisfying $n \geq N$, $1/n < \epsilon$.
 - (f) Between any rational numbers, there exists another rational.

SEQUENCES AND LIMITS

- 2. * Show that the every convergent sequence is a Cauchy sequence.
- 3. * Show that log x, x = 1, 2, 3... does not have any convergent subsequence.
- 4. * Define $a_n = \sum_{i=1}^n (-1)^n \frac{1}{n}$. Show that $\{a_n\}$ is Cauchy to argue it converges somewhere.
- 5. * Show that if $\{x_k\} \subset \mathbb{R}$ converges to $x \in \mathbb{R}$, so does every subsequence.
- 6. * Show that $\{x_k\} \subset \mathbb{R}$ converges to $x \in \mathbb{R}$ iff every subsequence of it has a subsequence that converges to x.
- 7. * Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges.
- 8. Prove or disprove the following:
 - (a) $y_k = \frac{1}{k}$ is a subsequence of $x_k = \frac{1}{\sqrt{k}}$.
 - (b) $x_k = \frac{1}{\sqrt{k}}$ is a subsequence of $y_k = \frac{1}{k}$.

COMPLETENESS

- 9. * Prove or disprove the following:
 - (a) \mathbb{Q} is a complete space.
 - (b) Any subset of \mathbb{R} is a complete space.