

Interpreting Language Models with Contrastive Explanations

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing | E M N L P 2 0 2 2

Kayo Yin (University of California) Graham Neubig (Carnegie Mellon University)

TABLE OF CONTENTS

01 02 03

Introduction Related Work Method

04 05 06

Experiments Discussion Conclusion

01

Introduction

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

1.1 OVERVIEW

Why Contrastive Explanations

- Traditional interpretability methods fall short in explaining language model predictions.
- LMs operate in a large, <u>complex output space</u> where subtle distinctions matter.
- <u>Contrastive explanations</u> identify why a model chose one output <u>over another</u>. In LMs, that would be tokens.
- Goal: Use contrastive explanations to provide more informative, human-intuitive explanations for LM behavior.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

1.1 OVERVIEW

How It Works

• Table 1: Explanations for the GPT-2 prediction. Input tokens that are measured to raise or lower the probability of "barking" are in red and blue respectively, and those with little influence are in white.

Input: Can you stop the dog from

Output: barking

1. Why did the model predict "barking"?

Can you stop the dog from

2. Why did the model predict "barking" instead of "crying"?

Can you stop the dog from

3. Why did the model predict "barking" instead of "walking"?

Can you stop the dog from

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

1.2 QUESTIONS

Driving Questions (Q)

- **(RQ1)** Are contrastive explanations better at identifying evidence that we believe, a-priori, to be useful to capture a variety of linguistic phenomena?
- **(RQ2)** Do contrastive explanations allow human observers to better simulate language model behavior?
- (RQ3) Are different types of evidence necessary to disambiguate different types of words, and does the evidence needed reflect (or uncover) coherent linguistic concepts?

02

Related Work

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

2.1 MODEL EXPLS.

Methods' Objective

 Explain why a model made a certain prediction by <u>computing saliency scores</u> over input features. Higher saliency score → greater contribution of token to the model's output.

Current Landscape

- Extensive research on <u>input feature</u> explanations in <u>text classification</u>.
- Studies focus on <u>linguistic features</u> like syntax in language models.

Gap in the Literature

- Few methods exist for explaining language modeling predictions directly.
- The large output space of LMs makes explanation harder.

- Overview
- Ouestions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

- Implications
- Pros & Cons

- Future Work

2.2 CONTRASTIVE EXPLS.

Methods' Objective

Contrastive explanations clarify why, for a given input x, the model predicts a target y_t instead of a foil y_t .

Related Concepts

- <u>Counterfactual explanations</u> modify input x to make y_t more likely than y_t .
- Use <u>feature erasure</u> in <u>text classification</u> to identify contrastive factors by projecting inputs into a space separating decisions.

Gap in the Literature

Extend contrastive explanations to language models, where input and output complexity is much higher.

9

Method

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

3.1 GRADIENT NORM

Standard Gradient Norm

- Measures <u>saliency</u> using the L1 norm of the gradient of output w.r.t. input.
- Highlights which input tokens most influence the model's prediction of token y_t .

$$g(x_i) = \nabla_{x_i} q(y_t | \boldsymbol{x})$$

$$S_{GN}(x_i) = ||g(x_i)||_{L1}$$

Contrastive Extension: Contrastive Gradient Norm (CGN)

- Measures how input x_i shifts the model's preference for target y_t over foil y_f .
- Captures <u>differential influence</u> of x_i on selecting y_t instead of y_f .

$$g^*(x_i) = \nabla_{x_i} \left(q(y_t | \boldsymbol{x}) - q(y_f | \boldsymbol{x}) \right)$$

$$S_{GN}^*(x_i) = ||g^*(x_i)||_{L1}$$

- Overview
- Ouestions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred
- Contexts

- Implications
- Pros & Cons

- Future Work

3.2 GRADIENT × INPUT

Standard Gradient × Input

- Computes <u>saliency</u> as the dot product between the gradient and input.
- Captures how much each input token contributes to the prediction based on both sensitivity and magnitude.

$$S_{GI}(x_i) = g(x_i) \cdot x_i$$

Contrastive Extension: Contrastive Gradient × Input (CG×I)

- Measures <u>differential contribution</u> of token x_i in target vs. foil prediction.
- Highlights how the token affects preference for one output over another.

$$S^*_{GI}(x_i) = g^*(x_i) \cdot x_i$$
 where $g^*(x_i) =
abla_{x_i}(q(y_t \mid x) - q(y_f \mid x))$

12

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

3.3 INPUT ERASURE

Standard Input Erasure

- Measures <u>saliency</u> by <u>removing a token</u> and observing the change in output.
- Indicates how much token x_i contributes to the prediction of y_t .

$$S_E(x_i) = q(y_t \mid x) - q(y_t \mid x_{\neg i})$$

Contrastive Extension: Contrastive Input Erasure (CIE)

- Measures how <u>erasing</u> x_i affects the <u>preference between</u> target and foil tokens.
- <u>High value</u> means removing x_i hurts y_t more than y_t , suggesting it supports y_t .
- More accurate but computationally expensive (multiple forward passes).

$$S_E^*(x_i) = \left[q(y_t \mid x) - q(y_t \mid x_{
eg i})
ight] - \left[q(y_f \mid x) - q(y_f \mid x_{
eg i})
ight]$$

Experiments

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Motivation & Methodology

Goal:

 Assess whether contrastive explanations better identify <u>linguistically</u> <u>meaningful evidence</u> than non-contrastive ones.

Approach:

- Use <u>BLiMP dataset</u> (67 linguistic paradigms) of minimal sentence pairs differing in grammatical acceptability.
- Define <u>ground-truth evidence</u> tokens via <u>linguistic rules</u> (e.g. anaphor agreement depends on antecedents).
- Compare how explanation methods align with this known evidence.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussior

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Linguistic Phenomena

- Five key phenomena studied, and <u>rule-based extraction</u> done using <u>spaCy</u>.
- Rules identify input tokens that should control the prediction decision (e.g. "teenagers" → "themselves").

Phenomenon	Acceptable Example	Unacceptable Example	Rule
Anaphor Agreement	Katherine can't help herself . Many teenagers were helping themselves .	Katherine can't help himself . Many teenagers were helping herself .	coref coref
Argument Structure	Amanda was <u>respected</u> by some waitresses .	Amanda was <u>respected</u> by some picture .	main_verb
Determiner-Noun Agreement	Phillip was lifting this mouse . Tracy praises those lucky guys .	Phillip was lifting this mice. Tracy praises those lucky guy.	det_noun det_noun
NPI Licensing	Even these trucks have often slowed.	Even these trucks have ever slowed.	npi
Subject-Verb Agreement	A sketch of lights doesn't appear.	A sketch of lights don't appear.	subj_verb

Table 2: Examples of BLiMP minimal pairs. Contrastive tokens are **bolded**. Tokens extracted by our rules that enforce grammatical acceptability are <u>underlined</u>.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Evaluation Metrics

Models Used:

- 1. Dot Product: Sum of saliency on known evidence tokens.
- 2. Probes Needed: How many top-ranked tokens before a relevant one appears.
- 3. Mean Reciprocal Rank (MRR): <u>Inverse</u> of the <u>rank</u> of the first relevant token.

• Interpretation:

- Higher dot product and MRR = <u>better alignment</u>
- Fewer probes needed = more efficient explanation

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Results Overview

Models Used:

- o *GPT-2*: 1.5B parameters
- o *GPT-Neo*: 2.7B parameters

Key Findings:

- Contrastive <u>outperforms non-contrastive</u>
 across all metrics and both models.
- Random baseline performs worse than contrastive, <u>sometimes better</u> than noncontrastive.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Error Analysis & Insights

- On correct predictions, contrastive methods align significantly better.
- On <u>incorrect predictions</u>, performance varies; contrastive methods are still competitive.

		Correct			Incorrect	
	DP (†)	PN (↓)	MRR (†)	$\mathrm{DP}\left(\uparrow\right)$	PN (↓)	MRR (†)
Rand	0.34	1.66	0.57	0.27	2.05	0.50
\mathbf{S}_{GN}	0.36	1.45	0.58	0.37	1.60	0.56
\mathbf{S}^*_{GN}	0.50	1.33	0.61	0.48	1.71	0.57
\mathbf{S}_{GI}	0.26	1.44	0.59	0.24	1.72	0.55
\mathbf{S}^*_{GI}	0.36	1.25	0.64	-0.05	1.27	0.64
S_E	-0.51	1.34	0.64	0.44	1.30	0.55
S_E^*	0.29	1.13	0.68	0.18	1.71	0.55

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.1 RQ1: LINGUISTIC EVIDENCE

Error Analysis & Insights

- Contrastive methods are better at capturing <u>long-distance dependencies</u>.
- Strong positive correlation between <u>evidence-target distance</u> and <u>contrastive advantage</u>.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.2 RQ2: USER PREDICTION

Motivation & Methodology

Goal:

Evaluate whether explanations <u>help users simulate model behavior</u>—i.e.,
 predict what token the model will choose.

Approach:

Compare user performance with: <u>no explanation</u>; <u>non-contrastive</u> explanations; <u>contrastive</u> explanations (proposed method).

Key Metric:

Simulation accuracy; how often users predict the model's choice.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.2 RQ2: USER PREDICTION

Study Design

- Gradient × Input (G×I)
- Contrastive G×I (CG×I)
- Erasure
- Contrastive Erasure (CE)

• Participants:

- o 10 ML grad students
- Each viewed 40 sentence-word pair tasks

Which token did the model more likely predict?

- herself

Was the explanation useful in making your decision?

- Yes
- \bigcirc No

Correct!

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- · User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.2 RQ2: USER PREDICTION

Results Overview

- All <u>explanations improve</u> simulation accuracy vs. no explanation.
- Contrastive > Non-contrastive across methods.
- Users performed <u>best when contrastive</u> explanations were provided.
- Users rated contrastive explanations as significantly more useful.

	Acc.	Acc. Correct	Acc. Incorrect	Useful	Acc. Useful	Acc. Not Useful
None	61.38	74.50	48.25	_	_	_
S_{GI}	64.00	78.25	49.75	62.12	67.20	58.75
S_{GI}^*	65.62	79.00	52.25	63.88	69.67	58.48
S_E	63.12	79.00	47.25	46.50	65.86	60.75
S_E^*	64.62	77.00	52.25	64.88	70.52	53.74

- Overview
- Ouestions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

- Implications
- Pros & Cons

- Future Work

RQ3: MODEL CONTEXTS

Motivation & Overview

Goal:

Use contrastive explanations to uncover the types of context language models rely on for specific linguistic distinctions.

Hypothesis:

- Linguistically similar foils require <u>similar context</u> to disambiguate.
- These contexts can be identified and grouped through <u>clustering</u>.

Approach:

Represent each foil by its contrastive saliency vector, & cluster these vectors to infer linguistic distinctions.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.3 RQ3: MODEL CONTEXTS

Methodology

Data:

- Targets: 10 most frequent words per POS in WikiText-103.
- o Foils: 10,000 most frequent vocabulary tokens.
- Sentences: 500 <u>randomly sampled</u> per target.

• Steps:

- 1. <u>Generate contrastive</u> explanations (Gradient Norm & G × Input only)
- 2. Aggregate saliency maps: $e(y_t, y_t) = \bigcup e(x_t, y_t, y_t)$
- 3. Apply <u>k-means clustering</u> to group foils for each target.
- 4. <u>Compare</u> foil clusters to nearest neighbors in embedding space.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.3 RQ3: MODEL CONTEXTS

Phenomenon / POS	Target	Foil Cluster	Embd Nearest Neighbors	Example
Anaphor Agreement	he	she, her, She, Her, herself, hers	she,She, her, She, he, they, Her, we, it,she, I, that,Her, you, was, there,He, is, as, in'	That night, Ilsa confronts Rick in the deserted café. When he refuses to give her the letters,
Animate Subject	man	fruit, mouse, ship, acid, glass, water, tree, honey, sea, ice, smoke, wood, rock, sugar, sand, cherry, dirt, fish, wind, snow	fruit, fruits, Fruit, meat, flower, fruit, tomato, vegetables, fish, apple, berries, food, citrus, banana, vegetable, strawberry, fru, delicious, juice, foods	You may not be surprised to learn that Kelly Pool was neither invented by a
Determiner-Noun Agreement	page	tabs, pages, icons, stops, boxes, doors, short- cuts, bags, flavours, locks, teeth, ears, tastes, permissions, stairs, tickets, touches, cages, saves, suburbs	tabs, tab, Tab, apps, files, bags, tags, websites, sections, browsers, browser, icons, buttons, pages, keeps, clips, updates, 28, insists, 14	Immediately after "Heavy Competition" first aired, NBC created a sub
Subject-Verb Agreement	go	doesn, causes, looks, needs, makes, isn, says, seems, seeks, displays, gives, wants, takes, uses, fav, contains, keeps, sees, tries, sounds	doesn, isn, didn, does, hasn, wasn, don, wouldn, makes, gets, has, is, aren, gives, Doesn, couldn, seems, takes, keeps,doesn	Mala and the Eskimos
ADJ	black	Black, white, black, White, red, BLACK, green, brown, dark, orange, African, blue, yellow, pink, purple, gray, grey, whites, Brown, silver	Black, Black, black, White, BLACK, white, Blue, Red, White, In, B, The, The, It, red, Dark, 7, Green, African	Although general relativity can be used to perform a semi @-@ classical calculation of
ADJ	black	Asian, Chinese, English, Italian, American, Indian, East, South, British, Japanese, Euro- pean, African, Eastern, North, Washington, US, West, Australian, California, London	Asian, Asian, Asians, Chinese, African, Japanese, Korean, China, European, Indian, ethnic, Chinese, Japan, American, Caucasian, Australian, Hispanic, white, Arab	While taking part in the American Ne- gro Academy (ANA) in 1897, Du Bois presented a paper in which he rejected Frederick Douglass's plea for
ADP	for	to , in, and, on, with, for, when, from, at, (, \overline{if} , as, after, by, over, because, while, without, before, through	to, in, for, on, and, as, with, of, a, at, that, the, from, by, an, (, To, is, it, or	The war of words would continue
ADV	back	the, to, a, in, and, on, of, it, ", not, that, with, for, this, from, up, just, at, (, all	the, a, an, it, this, that, in, The, to,The, all, and, their, as, for, on, his, at, some, what	One would have thought that claims dat- ing
DET	his	the, you, it, not, that, my, [, this, your, he, all, so, what, there, her, some, his, time, him, He	the, a, an, it, this, that, in, The, to,The, all, and, their, as, for, on, his, at, some, what	A preview screening of Sweet Smell of Success was poorly received, as Tony Curtis fans were expecting him to play one of
NOUN	girl	Guy, Jack, Jones, Robin, James, David, Tom, Todd, Frank, Mike, Jimmy, Michael, Peter, George, William, Bill, Smith, Tony, Harry, Jackson	Guy,Guy, guy,guy, Gu, Dave, Man, dude, Girl, Guys, John, Steve, \x00, \xef \xbf \xbd, \xef \xbf \xbd, \x1b, \xef \xbf \xbd, \x12, \x1c, \x16	Veronica talks to to Sean Friedrich and tells him about the
NUM	five	the, to, a, in, and, on, of, is, it, ", not, that, 1, with, for, 2, this, up, just, at	the, a, an, it, this, that, in, The, to, The, all, and, their, as, for, on, his, at, some, what	From the age of
VERB	going	got, didn, won, opened, told, went, heard, saw, wanted, lost, came, started, took, gave, happened, tried, couldn, died, turned, looked	got, gets, get, had, went, gave, took, came, didn, did, getting, been, became, has, was, made, started, have, gotten, showed	Truman had dreamed of

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.3 RQ3: MODEL CONTEXTS

Observations

1. Anaphor Agreement:

- o <u>Female</u> pronouns <u>cluster together</u> when target is a male pronoun.
- Embedding neighbors of "she" include mixed genders—clusters do not.

2. Animacy:

- \circ Animate noun targets \rightarrow clusters of inanimate noun foils.
- o "Fruit" clusters with inanimate nouns, not with embedding neighbors.

3. Plurality:

- Plural and singular noun clusters align with grammatical rules.
- Embedding neighbors mix singular/plural forms.

4. Subject-Verb Agreement:

- Plural verbs cluster with singular foils.
- Embedding neighbors again <u>lack this linguistic coherence</u>.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

4.3 RQ3: MODEL CONTEXTS

Explanation Insights

• How GPT-2 Makes Linguistic Decisions:

- Adjectives: Relies on semantic <u>context</u> (e.g. to disambiguate "black").
- Adpositions/Adverbs: Sensitive to <u>associated verbs</u> (e.g. "back" → "dating", "traced").
- Gender Determiners/Pronouns: Looks at gendered proper nouns in input.
- Numbers vs. Words: Uses <u>contextual cues</u> like "age", "least", "consists".

Error Analysis:

- Gender errors often due to conflicting gender cues in input.
- Clustering helps explain these errors and model's misalignment.

Discussion

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

5.1 IMPLICATIONS

Interpretability Advancements

- Contrastive explanations provide <u>fine-grained insights</u> into why language models choose one token over another.
- Better aligned with linguistic evidence than non-contrastive methods.
- Enable human users to better simulate and understand model decisions.

Model Analysis at Scale

- <u>Aggregated</u> contrastive explanations can <u>reveal general model behavior</u> (e.g., grammatical rules, context use).
- Clustering in explanation space <u>uncovers linguistic distinctions</u> that are not obvious in word embeddings.

- Overview
- Ouestions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred
- Contexts

Discussion

- Implications
- Pros & Cons

- Future Work

5.2 PROS & CONS

Further Analysis of Method

Pros:

- Post-hoc methods; no need to retrain model or train a new one.
- <u>Intuitive explanations</u> for why one output is preferred over another. 0
- <u>Scalable</u> to many evaluation types: alignment, user studies, clustering.
- Generalizes across different explanation methods (gradients, erasure).

Cons:

- <u>Computationally intensive</u>, especially erasure methods.
- Requires strong NLP infrastructure (e.g., POS taggers, coref systems).

31

Conclusion

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

6.1 LIMITATIONS

Current Drawbacks in the Research

Methodological Constraints

- Hard to adapt to <u>non-English</u> languages due to lack of resources, tools, and annotated data.
- Automatic extraction of evidence (e.g., grammatical cues) depends on NLP tools with <u>non-perfect accuracy</u>.

Generalizability

- Not all explanation techniques easily adapt to the contrastive setting.
- Focused only on GPT-2/Neo and English in experiments; the <u>broader</u> applicability is not yet proven.

- Overview
- Questions

Related Work

- Model
- Contrastive

Method

- Grad Norm
- Grad x input
- Input Erasure

Experiments

- Evidence
- User Pred.
- Contexts

Discussion

- Implications
- Pros & Cons

Conclusion

- Limitations
- Future Work

6.1 FUTURE WORK

Directions for Future Research

Scaling & Efficiency

 Optimize computation to make methods more efficient for <u>real-time</u> interpretability tools.

Broader Applications

 Apply contrastive explanations to <u>other ML models and tasks</u> and extend to <u>non-English</u> LMs and multilingual interpretability.

Theoretical Development

 Explore new contrastive <u>formulations</u> and investigate how contrastive signals can inform <u>fairness</u>, <u>bias</u>, and <u>safety</u> in LMs.

THANKS!

Any questions?

Presentation by: Maryam Rezaee

TGML Lab | Spring 1404
Sharif University of Technology

Under the supervision of

Dr. Fatemeh SeyyedSalehi

