Отчет о выполнении лабораторной работы 3.3.4 Эффект Холла в полупроводниках

Костылев Влад, Б01-208

23 сентября 2023 г.

Аннотация

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

1 Теоретическая справка

Эффект Холла

Во внешнем магнитном поле \vec{B} на заряды действует сила Лоренца:

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$
.

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с \vec{E} . Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Мостик Холла

Для исследования зависимости проводимости среды от магнитного поля используют т.н. **мостик Холла**. В схеме ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l).

Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, "прибивает"носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу.

Концентрация носителей

Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp}=E_{v}a$, где

$$E_y = \frac{j_x B}{nq}.$$

Плотность тока, текущего через образец, равна $j_x = \frac{I}{ah}$, где I – полный ток, ah – поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{ngh}I = R_H \frac{B}{h}I,$$

где константу

$$R_H = \frac{1}{nq}$$

называют *постоянной Холла*. Знак постоянной Холла определяется знаком заряда носителей. **Концентрацию носителей** можно получить из *постоянной Холла*.

Подвижность носителей

Продольная напряжённость электрического поля равна

$$E_x = \frac{j_x}{\sigma_0}$$

и падение напряжения $U_{\parallel}=E_x l$ вдольпластинки определяется омическим сопротивлением образца $R_0=\frac{l}{\sigma_0 ah}$:

$$U_{\parallel} = IR_0.$$

Тогда **подвижность носителей** можно рассчитать зная удельную проводимость и концентрацию носителей по следующей формуле:

$$b = \frac{\sigma}{en}. (1)$$

Экспериментальная установка

В работе изучаются особенности проводимости полупроводников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещённой в магнитное поле перпендикулярной пластинке. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и вычисляется концентрация основных носителей заряда.

Далее представлена электрическая схема установки для измерения ЭДС Холла:

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания (1,5 B). При замыкании ключа K2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью вольтметра V.

Можно исключить влияние омического падения напряжения, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{X_{0,1,1,0}} = U_{34} - U_{0}$$

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

 $\rho_0 = \frac{U_{35}ah}{Il},$

где l — расстояние между контактами 3 и 5, а — ширина образца, h — его толщина.

2 Используемое оборудование

В работе используются: электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

3 Результаты измерений и обработка данных

Сперва построим калибровочный график $B(I_M)$, используя эту зависимость для дальнейшего пересчета (интерполяции) значений поля по измеренным токам I_M :

Далее измерим ЭДС Холла и построим на одном листе семейство характеристик $U_{Xonna}(B)$ при разных значениях тока I через образец.

I, mA	0,3	LM, mA	0,05	0,1	0,13	0,24	0,33	0,52	0,79	1,2	1,42
U_0, mV	0,007	U_34, mV	0,016	0,029	0,034	0,059	0,079	0,121	0,176	0,227	0,244
I, mA	0,4	I_M, mA	0,05	0,1	0,13	0,24	0,33	0,52	0,79	1,2	1,42
U_0, mV	0,008	U_34, mV	0,021	0,036	0,046	0,079	0,105	0,165	0,237	0,308	0,329
I, mA	0,5	I_M, mA	0,05	0,1	0,13	0,24	0,33	0,52	0,79	1,2	1,39
U_0, mV	0,009	U_34, mV	0,028	0,046	0,054	0,097	0,132	0,205	0,295	0,384	0,408
I, mA	0,7	I_M, mA	0.05	0,1	0.13	0.24	0.33	0.52	0.79	1,2	1,36
U_0, mV	0,011	U 34, mV	0,035	0.063	0,075	0.131	0,182	0,283	0,412	0,535	0,565
0_0,1110	0,011	0_34,1110	0,055	0,003	0,073	0,151	0,102	0,203	0,412	0,333	0,303
I, mA	0,85	I_M, mA	0,05	0,1	0,13	0,24	0,33	0,52	0,79	1,2	1,36
U_0, mV	0,012	U_34, mV	0,042	0,074	0,091	0,174	0,231	0,352	0,5	0,653	0,69
I, mA	1	I_M, mA	0,05	0,1	0,13	0,24	0,33	0,52	0,79	1,2	1,36
U_0, mV	0,013	U_34, mV	0,047	0,089	0,112	0,191	0,264	0,402	0,589	0,769	0,809

Изобразим все это на одном графике:

Построим график k(I), где $k = \frac{dU_H}{dB}$:

Найдем постоянную Холла:

$$R_H = k \cdot a = (785 \pm 7) \cdot 10^{-6} \frac{M^3}{K_A},$$

где а = 1 мм - толщина исследуемого образца.

Далее рассчитаем концентрацию носителей заряда:

$$n = \frac{1}{R_H \cdot e} = (204 \pm 6) \cdot 10^{20} \text{M}^{-3}$$

Удельная проводимость (сопротивление):

$$\sigma_o = \frac{IL_{35}}{U_{35}al} = \frac{1 \times 5 \cdot 10^{-3}}{4, 2 \cdot 10^{-3} \times 1 \cdot 10^{-3} \times 4 \cdot 10^{-3}} = 298 \pm 9 \frac{1}{O_{\mathcal{M} \cdot \mathcal{M}}} \qquad \rho_0 = \frac{1}{\sigma_0} = (335 \pm 12) \cdot 10^{-6} O_{\mathcal{M} \cdot \mathcal{M}}$$

Подвижность носителей:

$$\mu = \frac{\sigma_0}{en} = 913 \pm 24 \frac{c M^2}{B \cdot c}$$

4 Заключение

В заключение можно сказать, что в данной лабораторной работе мы научились измерять подвижности и концентрации носителей заряда в полупроводниках.