

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

SECTION 8.1

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- · Local search.
- · Randomization.

Algorithm design antipatterns.

- NP-completeness. $O(n^k)$ algorithm unlikely.
- **PSPACE**-completeness. $O(n^k)$ certification algorithm unlikely.
- Undecidability.
 No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

Rabin (1966)

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

constants tend to be small, e.g., $3n^2$

Practice. Poly-time algorithms scale to huge problems.

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an *n*-by-*n* generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

input size = $c + \log k$

Poly-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of Y in a single step

Poly-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_P Y$ with $Y \leq_P X$.

Intractability: quiz 1

Suppose that $X \leq_P Y$. Which of the following can we infer?

- **A.** If X can be solved in polynomial time, then so can Y.
- **B.** X can be solved in poly time iff Y can be solved in poly time.
- **C.** If *X* cannot be solved in polynomial time, then neither can *Y*.
- **D.** If *Y* cannot be solved in polynomial time, then neither can *X*.

Poly-time reductions

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?

Ex. Is there a vertex cover of size ≤ 3 ?

Consider the following graph G. Which are true?

- **A.** The white vertices are a vertex cover of size 7.
- **B.** The black vertices are an independent set of size 3.
- C. Both A and B.
- **D.** Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_P Vertex-Cover.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n-k.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

- Let S be any independent set of size k.
- V-S is of size n-k.
- Consider an arbitrary edge $(u, v) \in E$.
- *S* independent \Rightarrow either $u \notin S$, or $v \notin S$, or both. \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
- Thus, V S covers (u, v).

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

 \Leftarrow

- Let V S be any vertex cover of size n k.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- V S is a vertex cover \Rightarrow either $u \in V S$, or $v \in V S$, or both. \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, *S* is an independent set. •

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- *m* available pieces of software.
- Set *U* of *n* capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$
 $k = 2$

Intractability: quiz 4

Given the universe $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ and the following sets, which is the minimum size of a set cover?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** None of the above.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 1, 4, 6 \}$
 $S_b = \{ 1, 6, 7 \}$
 $S_c = \{ 1, 2, 3, 6 \}$
 $S_d = \{ 1, 3, 5, 7 \}$
 $S_e = \{ 2, 6, 7 \}$
 $S_f = \{ 3, 4, 5 \}$

Vertex cover reduces to set cover

Theorem. Vertex-Cover \leq_P Set-Cover.

Pf. Given a Vertex-Cover instance G = (V, E) and k, we construct a Set-Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe U = E.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v \}$.

vertex cover instance
$$(k = 2)$$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2)

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. •

"yes" instances of VERTEX-COVER are solved correctly

vertex cover instance (k = 2)

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2)

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S, k).

• Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. •

"no" instances of VERTEX-COVER are solved correctly

vertex cover instance (k = 2)

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$

set cover instance (k = 2)

SECTION 8.2

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Satisfiability

Literal. A Boolean variable or its negation.

$$x_i$$
 or $\overline{x_i}$

Clause. A disjunction of literals.

$$C_j = x_1 \vee \overline{x_2} \vee x_3$$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT. Given a CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4)$$

yes instance: x_1 = true, x_2 = true, x_3 = false, x_4 = false

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

G

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

 $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_1}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_2}$ \overline

 $\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \Rightarrow Consider any satisfying assignment for Φ .

- · Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$. •

"yes" instances of 3-SAT are solved correctly

G

$$\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4)$$

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \leftarrow Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining literals consistently).
- All clauses in Φ are satisfied. \blacksquare

G

"no" instances of 3-SA are solved correctly

$$\Phi = (\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_4)$$

26

Review

Basic reduction strategies.

- Simple equivalence: Independent-Set = P Vertex-Cover.
- Special case to general case: Vertex-Cover ≤ P Set-Cover.
- Encoding with gadgets: $3-SAT \leq_P INDEPENDENT-SET$.

Transitivity. If $X \le_P Y$ and $Y \le_P Z$, then $X \le_P Z$. Pf idea. Compose the two algorithms.

Ex. 3-SAT \leq_P INDEPENDENT-SET \leq_P VERTEX-COVER \leq_P SET-COVER.

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$. Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

SEARCH PROBLEMS VS. DECISION PROBLEMS

VERTEX-COVER. Does there exist a vertex cover of size $\leq k$? FIND-VERTEX-COVER. Find a vertex cover of size $\leq k$.

Theorem. Vertex-Cover \equiv_{P} FIND-Vertex-Cover.

Pf. \leq_P Decision problem is a special case of search problem.

Pf.
$$\geq_P$$

To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k 1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k-1$ in $G-\{v\}$.

OPTIMIZATION PROBLEMS VS. SEARCH PROBLEMS

FIND-VERTEX-COVER. Find a vertex cover of size $\leq k$.

FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER \equiv_P FIND-MIN-VERTEX-COVER.

Pf. \leq_{P} Search problem is a special case of optimization problem.

Pf. \geq_P To find vertex cover of minimum size:

- Binary search (or linear search) for size k^* of min vertex cover.
- Solve search problem for given k^* . •

SECTION 8.5

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ that visits every node exactly once?

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a cycle Γ that visits every node exactly once?

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

Theorem. Directed-Hamilton-Cycle ≤ P Hamilton-Cycle.

Pf. Given a directed graph G = (V, E), construct a graph G' with 3n nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ .
- Then G' has an undirected Hamilton cycle (same order). \blacksquare

Pf. ←

- Suppose G' has an undirected Hamilton cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:

```
..., black, white, blue, black, white, blue, black, white, blue, ..., black, blue, white, black, blue, white, black, blue, white, ...
```

• Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. \blacksquare

3-satisfiability reduces to directed Hamilton cycle

Theorem. $3-SAT \le P$ DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of Directed-Hamilton-Cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ . We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path *i* from left to right \Leftrightarrow set variable $x_i = true$.

Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

$$A_1 = true, x_2 = true, x_3 = true$$

C.
$$x_1 = false, x_2 = false, x_3 = true$$

B.
$$x_1 = true, x_2 = true, x_3 = false$$

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

• For each clause: add a node and 2 edges per literal.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

For each clause: add a node and 2 edges per literal.

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance Φ has satisfying assignment x^* .
- Then, define Hamilton cycle Γ in G as follows:
 - if $x_i^* = true$, traverse row *i* from left to right
 - if $x_i^* = false$, traverse row *i* from right to left
 - for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle (and we splice in C_j exactly once)

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ←

- Suppose G has a Hamilton cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - nodes immediately before and after C_i are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G \{C_1, C_2, ..., C_k\}$.
- Set $x_i^* = true$ if Γ' traverses row i left-to-right; otherwise, set $x_i^* = false$.
- traversed in "correct" direction, and each clause is satisfied.

Poly-time reductions

SECTION 8.6

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-dimensional matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

instructor	course	time
Wayne	COS 226	TTh 11-12:20
Wayne	COS 423	MW 11-12:20
Wayne	COS 423	TTh 11–12:20
Tardos	COS 423	TTh 3-4:20
Tardos	COS 523	TTh 3-4:20
Kleinberg	COS 226	TTh 3-4:20
Kleinberg	COS 226	MW 11-12:20
Kleinberg	COS 423	MW 11-12:20

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$X = \{ x_1, x_2, x_3 \}, \qquad Y = \{ y_1, y_2, y_3 \}, \qquad Z = \{ z_1, z_2, z_3 \}$$

$$T_1 = \{ x_1, y_1, z_2 \}, \qquad T_2 = \{ x_1, y_2, z_1 \}, \qquad T_3 = \{ x_1, y_2, z_2 \}$$

$$T_4 = \{ x_2, y_2, z_3 \}, \qquad T_5 = \{ x_2, y_3, z_3 \},$$

$$T_7 = \{ x_3, y_1, z_3 \}, \qquad T_8 = \{ x_3, y_1, z_1 \}, \qquad T_9 = \{ x_3, y_2, z_1 \}$$

an instance of 3d-matching (with n = 3)

Remark. Generalization of bipartite matching.

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. $3-SAT \leq_P 3D-MATCHING$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

number of clauses

• Create gadget for each variable x_i with 2k core elements and 2k tip ones.

a gadget for variable x_i (k = 4)

Construction. (part 1)

- number of clauses
- Create gadget for each variable x_i with 2k core elements and 2k tip ones.
- No other triples will use core elements.
- In gadget for x_i , any perfect matching must use either all gray triples (corresponding to $x_i = true$) or all blue ones (corresponding to $x_i = false$).

Construction. (part 2)

- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 .

Construction. (part 3)

- There are 2nk tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining (n-1)k tips, create (n-1)k cleanup gadgets: same as clause gadget but with 2nk triples, connected to every tip.

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z?

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z?

A. X = black, Y = white, and Z = blue.

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Pf. \Rightarrow If 3d-matching, then assign x_i according to gadget x_i .

Pf. \leftarrow If Φ is satisfiable, use any true literal in C_j to select gadget C_j triple.

SECTION 8.7

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?

yes instance

Intractability: quiz 6

How difficult to solve 2-Color?

- A. O(m + n) using BFS or DFS.
- **B.** O(mn) using maximum flow.
- C. $\Omega(2^n)$ using brute force.
- D. Not even Tarjan knows.

Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-Color \leq_P K-REGISTER-ALLOCATION for any constant $k \geq 3$.

REGISTER ALLOCATION & SPILLING VIA GRAPH COLORING

G. J. Chaitin IBM Research P.O.Box 218, Yorktown Heights, NY 10598

Theorem. $3-SAT \leq_P 3-COLOR$.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-Color that is 3-colorable iff Φ is satisfiable.

Construction.

- (i) Create a graph *G* with a node for each literal.
- (ii) Connect each literal to its negation.
- (iii) Create 3 new nodes T, F, and B; connect them in a triangle.
- (iv) Connect each literal to *B*.
- (v) For each clause C_j , add a gadget of 6 nodes and 13 edges.

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
- (v) ensures at least one literal in each clause is black.

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

true

- WLOG, assume that node *T* is colored *black*, *F* is *white*, and *B* is *blue*.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals black and all false literals white.
- Pick one *true* literal; color node below that node *white*, and node below that *blue*.
- · Color remaining middle row nodes blue.
- Color remaining bottom nodes black or white, as forced.

Poly-time reductions

SECTION 8.8

INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

NP-Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution-NonCommercial 2.5

Subset sum

SUBSET-SUM. Given n natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

Ex. $\{215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655\}$, W = 1505. Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. $3-SAT \le P$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each having n + k digits:

- Include one digit for each variable x_i and one digit for each clause C_j .
- Include two numbers for each variable x_i .
- Include two numbers for each clause C_j .
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible ⇒ each digit yields one equation.

$C_1 =$	$\neg x_1$	٧	χ_2	٧	<i>x</i> ₃
$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>x</i> ₃
$C_3 =$	$\neg x_1$	V	$\neg x_2$	٧	$\neg x_3$
					'

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose 3-SAT instance Φ has satisfying assignment x^* .

- If $x_i^* = true$, select integer in row x_i ; otherwise, select integer in row $\neg x_i$.
- Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- Select dummy integers to make C_j digits sum to 4. \blacksquare

$C_1 =$	$\neg x_1$	٧	x_2	٧	<i>X</i> 3
$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>X</i> 3
$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	$\neg x_3$

3-SAT instance

dummies to get clause columns to sum to 4

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \leftarrow Suppose there exists a subset S^* that sums to W.

• Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).

• If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.

Digit C_i forces subset S^* to select at least one literal in clause. •

T		x_1	x_2	x_3	C_1	C_2	C_3	
•	x_1	1	0	0	0	1	0	100,010
	$\neg x_1$	1	0	0	1	0	1	100,101
	x_2	0	1	0	1	0	0	10,100
-	$\neg x_2$	0	1	0	0	1	1	10,011
	<i>x</i> ₃	0	0	1	1	1	0	1,110
	$\neg x_3$	0	0	1	0	0	1	1,001
		0	0	0	1	0	0	100
dummies to get clause columns to sum to 4		0	0	0	2	0	0	200
		0	0	0	0	1	0	10
		0	0	0	0	2	0	20
		0	0	0	0	0	1	1
		0	0	0	0	0	2	2
	W	1	1	1	4	4	4	111,444

$C_2 = x_1 \lor \neg x_2 \lor x_3$ $C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$	$C_1 =$	$\neg x_1$	٧	χ_2	٧	<i>x</i> ₃
$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$	$C_2 =$	x_1	٧	$\neg x_2$	٧	<i>X</i> 3
	$C_3 =$	$\neg x_1$	٧	$\neg x_2$	٧	$\neg x_3$

3-SAT instance

SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

KNAPSACK. Given a set of items X, weights $u_i \ge 0$, values $v_i \ge 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. O(n U) dynamic programming algorithm for KNAPSACK.

Challenge. Prove Subset-Sum ≤ P KNAPSACK.

Pf. Given instance $(w_1, ..., w_n, W)$ of Subset-Sum, create Knapsack instance:

Poly-time reductions

Karp's 20 poly-time reductions from satisfiability

