Ficha de Avaliação

Equações e Vectores 8.º Ano

CARLOS GOMES

karlos.gomes@clix.pt

Instruções: Para responderes às questões de *Verdadeiro/Falso* e de *Escolha Múltipla*, tens de pressionar o botão **Iniciar**. Quando terminares, pressiona o botão **Terminar**. Nesta altura poderás ver o número de respostas certas e corrigi-las, caso seja necessário, pressionando o botão **Corrigir**.

Home Page

Title Page

Contents

Page 1 of 4

Go Back

Full Screen

Close

Verdadeiro ou Falso?

1.
$$(x-3)(x+7)=2 \Leftrightarrow x-3=2 \lor x+7=2$$
 4. 5 e $\frac{1}{5}$ são as soluções da equação $b-5b^2=0$ Verdade Falso

2. A equação
$$5(3y-4)(8+y)=0$$
 tem 3 soluções. **5.** $(2x-1)^2=0 \Leftrightarrow 2x-1=0$
Verdade Falso Verdade Falso

3.
$$-4$$
 é uma das soluções da equação $y^2 - 16 = 0$ 6. $\frac{3}{2}$ é a única solução de $4x^2 - 12x + 9 = 0$ Verdade Falso Verdade Falso

7. Da figura ao lado sabe-se que a área da parte sombreada é $10 \, cm^2$. Qual das seguintes equações permite determinar a largura do rectângulo?

$$12x - \pi = 10$$

$$12x - \frac{\pi x^2}{4} = 10$$

$$12x - \frac{\pi x^2}{2} = 10$$

$$12x - \pi x^2 = 10$$

Home Page

Title Page

Contents

44 >>

•

Page 2 of 4

Go Back

Full Screen

Close

Observa a figura ao lado e diz se é Verdadeira ou Falsa cada uma das afirmações seguintes.

8.
$$\overrightarrow{AD} = \overrightarrow{CB}$$

8.
$$\overrightarrow{AD} = \overrightarrow{CB}$$
 12. $\overrightarrow{FE} + \overrightarrow{GH} = \overrightarrow{0}$

Verdade Falso Verdade Falso

9.
$$\overrightarrow{AB} = -\overrightarrow{CD}$$

9.
$$\overrightarrow{AB} = -\overrightarrow{CD}$$
 13. $\overrightarrow{DC} + \overrightarrow{FA} - \overrightarrow{FE} = \overrightarrow{DE}$

Verdade Falso Verdade Falso

10.
$$\overrightarrow{DE} + \overrightarrow{HG} = \overrightarrow{DG}$$

10.
$$\overrightarrow{DE} + \overrightarrow{HG} = \overrightarrow{DG}$$
 14. $T_{\overrightarrow{FG}}([DEF]) = [HBG]$

Verdade Falso Verdade Falso

11.
$$T_{\overrightarrow{CG}}(E) = G$$
 15. $T_{\overrightarrow{AG} + \overrightarrow{AE}}(A) = C$

15.
$$T_{\overrightarrow{AG}+\overrightarrow{AE}}(A)=C$$

Verdade Falso Verdade Falso

- [ABCD] é um paralelogramo
- E, F, G, H são pontos médios

Home Page

Title Page

Contents

Page 3 of 4

Go Back

Full Screen

Close

PROBLEMA 1. Resolve as seguintes equações aplicando a lei do anulamento do produto:

(a)
$$6x - 2x^2 = 0$$

(b)
$$y - 16y^3 = 0$$

(c)
$$x^2 + 16 = 8x$$

PROBLEMA 2. Na figura abaixo, [ABCD] é um rectângulo. A semicircunferência de centro E é tangente aos lados do rectângulo. A circunferência de centro F e raio 3 é tangente a [GC] e tangente à semicircunferência. Calcula a área do semicírculo.

FIM

Home Page

Title Page

Contents

Page 4 of 4

Go Back

Full Screen

Close

Sugestões de Resolução

Problema 1(a)

$$6x - 2x^2 = 0 \Leftrightarrow 2x(3 - x) = 0$$

\Rightarrow 2x = 0 \lor 3 - x = 0
\Rightarrow x = 0 \lor 3 = x

Home Page

Title Page

Contents

Page 5 of 4

Go Back

Full Screen

Close

Problema 1(b)

$$y - 16y^3 = 0 \Leftrightarrow y (1 - 16y^2) = 0$$

$$\Leftrightarrow y = 0 \lor 1 - 16y^2 = 0$$

$$\Leftrightarrow x = 0 \lor 1 = 16y^2$$

$$\Leftrightarrow x = 0 \lor \frac{1}{16} = y^2$$

$$\Leftrightarrow x = 0 \lor y = \pm \sqrt{\frac{1}{16}} = \pm \frac{1}{4}$$

Home Page

Title Page

Contents

>>

)

Page 6 of 4

Go Back

Full Screen

Close

Problema 1(c)

$$x^{2} + 16 = 8x \Leftrightarrow x^{2} - 8x + 16 = 0$$

$$\Leftrightarrow (x - 4)^{2} = 0$$

$$\Leftrightarrow x - 4 = 0$$

$$\Leftrightarrow x = 4$$

Home Page

Title Page

Contents

44 ÞI

•

Page 7 of 4

Go Back

Full Screen

Close

Problema 2. Uma vez que o objectivo é calcular a área do semicírculo, dá jeito conhecer o seu raio. Se traçar-mos a perpendicular a \overline{BC} pelo ponto F, obtemos o triângulo rectângulo [ELF]. Deste triângulo sabemos que $\overline{LF}=9$ (largura do rectângulo), $\overline{EL}=\overline{EC}-\overline{LC}=r-3$ (r=raio do semicírculo) e $\overline{EF}=r+3$ (uma vez que as circunferências são tangentes).

Assim sendo, e aplicando o Teorema de Pitágoras, vem que:

$$(r+3)^2 = (r-3)^2 + 9^2$$

Resolvendo esta equação obtém-se o raio pretendido:

$$(r+3)^{2} = (r-3)^{2} + 9^{2}$$

$$r^{2} + 12r + 9 = r^{2} - 12r + 9 + 81$$

$$12r + 12r = 81$$

$$24r = 81$$

$$r = \frac{81}{24} = 3.375$$

Home Page

Title Page

Contents

Page 8 of 4

Go Back

Full Screen

Close

Torna-se agora fácil determiar a área pedida:

$$A_{\ominus} = 3.375^2 \pi \ cm^2$$

Problema 2

Home Page

Title Page

Contents

Page 9 of 4

Go Back

Full Screen

Close