NIRMA UNIVERSITY

Institute Of Technology, Ahmedabad B.Tech. 3rd CE/IT (ODD 2020-21)

2CS305: Discrete Mathematics Tutorial -2 Topic-Relations

- 1. Give an example of a relation on a set that is
 - a) both symmetric and antisymmetric.
 - b) neither symmetric nor antisymmetric
- 2. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if
 - a) a is taller than b.
 - b) a and b were born on the same day.
 - c) a has the same first name as b.
 - d) a and b have a common grandparent.

.

- 3. Which of these are posets?
 - a) (R, =) b) (R, <) c) (R, \le) d) $((Z, \ge))$
- 4. Answer these questions for the poset ({{1}, {2}, {4},
 - $\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}, \subseteq \}$
 - a) Find the maximal elements.
 - b) Find the minimal elements.
 - c) Is there a greatest element?
 - d) Is there a least element?
 - e) Find all upper bounds of {{2}, {4}}.
 - f) Find the least upper bound of {{2}, {4}}, if it exists.
 - g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.
 - h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}}, if it exists.

- 5. Let R be an reflexive relation on a set A. Show that R is an equivalence relation if and only if (a,b) and (a,c) are in R implies that (b,c) is in R.
- 6. Let Dm denote the positive divisors of m ordered by divisibility. Draw the Hasse diagrams of:
 - (a) D12; (b) D15; (c) D16; (d) D17.
- 7. Let $A=\{2,3,6,12,24,36\}$ and the relation \leq be such that $a \leq b$ if a divides b. Draw Hasse diagram of (A, \leq) .