Chapter-20 गमन एवं संचलन

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1. कंकाल पेशी के एक सार्कोमियर का चित्र बनाइए और विभिन्न भागों को चिहिनत कीजिए। उत्तर :

कंकाल पेशी के सार्कीमियर की संरचना

चित्र- (A) विश्रामावस्था में एक सार्कोमियर (पेशी तन्तुक), (B) इसका एक पेशीखण्ड (विश्राम अवस्था में), (C) संकुचित पेशीखण्ड। प्रश्न 2.

पेशी संकुचन के सप तन्तु सिद्धान्त को परिभाषित कीजिए।

उत्तर:

हक्सले (Huxley,1954)

ने रेखित पेशी तन्तुओं का इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा अध्ययन करके इनमें उपस्थित एक्टिन तथा

मायोसिन छड़ों (actin and myosin filaments) का विशिष्ट विन्यास देखा। इस विन्यास को देखते हुए इन्होंने पेशी तन्तु संकुचन का सप तन्तु या छड़ विसर्पण सिद्धान्त (sliding filament theory) दिया।

रेखित पेशियों के संकुचन की कार्य-विधि

रेखित पेशियों में संकुचन तन्त्रिका उद्दीपन के फलस्वरूप होता है। एक्टिन छड़े मायोसिन छड़ों के ऊपर फिसलकर इनके भीतर (सामियर के केन्द्र की ओर) प्रवेश कर जाती हैं, जिससे पेशी तन्तु में संकुचन हो जाता है।

पेशी संकुचन का सप तन्तु या छड़ विसर्पण सिद्धान्त

सामान्य अवस्था में सार्कोमियर (sarcomere) में ATP तथा मैग्नीशियम आयन होते हैं; कैल्सियम आयन भी सूक्ष्म मात्रा में होते हैं। एक्टिन छड़े ट्रोपोमायोसिन (tropomyosin) के साथ इस प्रकार जुड़ी रहती हैं कि ये मायोसिन छड़ों के साथ नहीं जुड़ सकतीं। जब पेशी तन्तु को तन्त्रिका आवेग द्वारा श्रेशहोल्ड उद्दीपन (threshold stimulus) प्राप्त होता है, तब पेशी तन्तु के अन्तर्द्रव्यीय जाल (ER) से Ca⁺⁺ (कैल्सियम आयन) सार्कोमियर में मुक्त हो जाते हैं। ये कैल्सियम आयन ट्रोपोमायोसिन के साथ संयुक्त (bind) हो जाते हैं और एक्टिन छड़े (actin filaments) स्वतन्त्र हो जाती हैं। इसी समय ATP के जल विघटन (hydrolysis) के फलस्वरूप ऊर्जा मुक्त होती है। इस ऊर्जा की उपस्थित में एक्टिन तथा मायोसिन सक्रिय हो जाते हैं और नए सेतु बन्धों (across bridges) की रचना होती है। इसके फलस्वरूप एक्टिन छड़े मायोसिन छड़ों के ऊपर फिसलकर साकमियर के केन्द्र की ओर चली जाती हैं। एक्टिन तथा मायोसिन मिलकर एक्टोमायोसिन (actomyosin) की रचना करते हैं।

प्रक्रिया में पेशी तन्तु की लम्बाई कम हो जाती है अर्थात् संकुचन हो जाता है। जब उद्दीपन समाप्त हो जाता है, तब सक्रिय पम्पिंग दवारा कैल्सियम आयनों को अन्तर्रव्यीय जाल में पम्प कर दिया जाता है। ट्रोपोमायोसिन स्वतन्त्र हो जाता है, इससे एक्टिन व मायोसिन के बीच के सेतु बन्ध टूट जाते हैं। एक्टिन फिर ट्रोपोमायोसिन के साथ संयुक्त (bind) हो जाता है। पेशी तन्तु वापस अपनी पुरानी लम्बाई में लौट आता है। मृत्यु के पश्चात् ATP के न बनने के कारण Ca⁺⁺ वापस सार्कोप्लाज्मिक जाल में नहीं जा सकते; अतः पेशियाँ सिकुड़ी रह जाती हैं और शरीर अकड़ा रह जाता

ऊर्जा आपूर्ति (Energy supply):

पेशी संकुचन के लिए ऊर्जा की आपूर्ति ATP द्वारा होती है। पेशियों में ATP का निर्माण ग्लाइकोजन के अपचय (catabolism) के फलस्वरूप होता है।

पेशी संकुचन के समय ATP के जल विघटन (hydrolysis) से ऊर्जा की प्राप्ति होती है।

ADP + PCr \longrightarrow ATP + Cr विश्रामावस्था में ATP द्वारा फिर से क्रिएटिन फॉस्फेट का निर्माण हो जाता है।

ATP + Cr ———— PCr + ADP इस प्रकार पेशी में क्रिएटिन फॉस्फेट का भण्डार बना रहता है, जो आवश्यकता पड़ने पर ATP प्रदान कर सकता है।

प्रश्न 3.

पेशी संकुचन के प्रमुख चरणों का वर्णन कीजिए।

उत्तर :

[संकेत-कृपया उपर्युक्त प्रश्न 2 का उत्तर देखें]

प्रश्न 4.

'सही' या 'गलत लिखें

- (क) एक्टिन पतले तन्तु में स्थित होता है।
- (ख) रेखित पेशी रेशे का H-क्षेत्र मोटे और पतले, दोनों तन्तुओं को प्रदर्शित करता है।
- (ग) मानव कंकाल में 206 अस्थियाँ होती हैं।
- (घ) मन्ष्य में 11 जोड़ी पसलियाँ होती हैं।
- (इ) उरोस्थि शरीर के अधर भाग में स्थित होती है।

उत्तर:

- (**क**) सही
- (ख) गलत
- (ग) सही
- (घ) गलत
- (**ङ**) सही।

प्रश्न 5.

इनके बीच अन्तर बताइए

- (क) एक्टिन और मायोसिन
- (ख) लाल और श्वेत पेशियाँ
- (ग) अंस और श्रीणि मेखला।

उत्तर :

(ক)

एक्टिन और मायोसिन में अन्तर

क्र० सं०	एक्टिन (Actin)	मायोसिन (Myosin)
1.	ये 'I' बैण्ड में पाए जाते हैं और 'A' बैण्ड में भी जभरे रहते हैं।	ये केवल 'A' बैण्ड में पाए जाते हैं।
2.	ये मायोसिन तन्तुओं से पतले (लगभग 50Å मोटे)	ये एक्टिन की तुलना में मोटे (लगभग 100Å मोटे)
		होते हैं। इनकी संख्या अधिक होती है।
3. 🕶	प्रत्येक मायोफाइब्रिल में लगभग 300 पेशी तन्तु होते	प्रत्येक मायोफाइब्रिल में लगभग 1500 मायोसिन
	हैं।	तन्तु होते हैं।
4.	इनका अणुभार लगभग 46,000 डाल्टन होता है।	इनका अणुभार लगभग 4,70,000 डाल्टन होता है।
5.	सेतु बन्धन (cross bridge) अनुपस्थित होता है।	सेतु बन्धन (cross bridges) पाए जाते हैं।

लाल तथा श्वेत पेशियों में अन्तर

क्र॰ सं॰	लाल पेशीय तन्तु (Red muscle fibres)	श्वेत पेशीय तन्तु (White muscle fibres)	•
1.	मायोग्लोबिन (myoglobin) पाया जाता है।	मायोग्लोबिन नहीं पाया जाता।	
2. 3.	ये पतले, गहरे, लाल रंग के होते हैं। इनमें ऑक्सीश्वसन के फलस्वरूप ऊर्जा प्राप्त होती है।	ये मोटे तथा हल्के रंग के होते हैं। इनमें अनॉक्सीश्वसन द्वारा ऊर्जा प्राप्त होती है।	
		सार्कोप्लाज्मिक जालिका अधिक होती है।	
5.	रक्त केशिकाएँ अपेक्षाकृत अधिक संख्या में पाई	रक्त केशिकाएँ अपेक्षाकृत कम संख्या में पाई जाती	
	जाती हैं।	हैं।	
6.	लाल पेशियाँ थकावट महसूस नहीं करतीं।	श्वेत पेशियाँ शीघ्र थकावट महसूस करती हैं।	(ग

अंस तथा श्रोशिमेखला में अन्तर

क्र॰	अंसमेखला	श्रोणिमेखला
सं०	(Pectoral girdle)	(Pelvic girdle)
1.		प्रत्येक अर्द्धांश में इलियम, इस्चियम और प्यूबिस
-	(scapula and clavicle) अस्थियाँ होती हैं।	(ileum, ischium and pubis) अस्थियाँ होती हैं।
2.	चपटे स्कैपुला में ग्लीनॉइड (glenoid) गुहा होती	उक्त अस्थियों के सन्धि तल पर ऐसीटाबुलम गुहा
	है। इसमें अग्रपाद की ह्यमस का शीर्ष लगा होता है।	(acetabulum cavity) होती है। इसमें पश्चपाद
		की फीमर का शीर्ष लगा होता है।
3.	प्रत्येक क्लैविकल को सामान्यतः जत्रुक (collar	श्रोणिमेखला के दोनों अर्द्धांश मिलकर प्यूबिक
	bone) कहते हैं।	संलयन (pubic symphysis) बनाते हैं।

प्रश्न 6.

स्तम्भ I का स्तम्भ II से मिलान करें

स्तम्भ-ा

स्तम्भ-॥

- (i) चिकनी पेशी
- (क) मायोग्लोबिन
- (ii) ट्रोपोमायोसिन (ख) पतले तन्तु
- (iii) लाल पेशी
- (ग) सीवन (suture)
- (iv) कपाल
- (**घ**) अनैच्छिक

उत्तर:

- (i) (ঘ)
- (ii) (ख)
- (iii) (ক)
- (iv) (ग)

प्रश्न 7.

मानव शरीर की कोशिकाओं द्वारा प्रदर्शित विभिन्न गतियाँ कौन-सी हैं?

उत्तर:

मानव शरीर की कोशिकाओं में मुख्यत: निम्नलिखित तीन प्रकार की गतियाँ होती हैं

1. अमीबीय या कूटपादी गति (Amoeboid or Pseudopodial Movement):

मानव शरीर में पाई जाने वाली श्वेत रुधिराणु (leucocytes) एवं महाभक्षकाणु (macrophages) कोशिकाएँ क्टपाद दवारा अमीबा की भाँति गति करती हैं।

2. पक्ष्माभी गति (Ciliary movement):

स्तनियों (मानव) में शुक्रवाहिनियों, अण्डवाहिनियों, श्वास नाल में पक्ष्माभ (cilia) पाए जाते हैं। इनकी गति से श्क्रवाहिनियों में श्क्राण् और अण्डवाहिनियों में अण्डाण् का परिवहन होता है। श्वासनाल के पक्ष्माभ श्लेष्मा को बाहर की ओर धकेलते हैं।

3. पेशीय गति (Muscular Movement):

हमारे उपांगों (अग्रपाद, पश्चपाद), जबड़ों, जिहवा, नेत्रपेशियों, आहारनाल, हृदय आदि में पेशीय गति होती है। पेशीय गति में कंकाल, पेशियाँ तथा तन्त्रिकाएँ सम्मलित होती हैं।

- 1. नेत्र गोलक-नेत्र कोटर में अरेखित पेशियों द्वारा गति करता है। आइरिस तथा सिलियरी काय (iris and ciliary body) पेशियाँ नेत्र में जाने वाले प्रकाश की मात्रा का नियमन करती हैं।
- 2. हृदय की हृदपेशियाँ तथा रक्त वाहिनियों की अरेखित पेशियाँ रक्त परिसंचरण में सहायक होती हैं।
- 3. डायफ्राम तथा पसलियों के मध्य स्थित अरेखित पेशियों के संकुचन एवं शिथिलन के फलस्वरूप श्वास क्रिया (breathing) सम्पन्न होती है।
- 4. आहारनाल की पेशियों में क्रमाकुचन गतियों के कारण भोजन आगे खिसकता है। भोजन की लुगदी (chyme) बनती है।
- 5. कंकालीय पेशियाँ (skeletal muscles) कंकाल से जुड़ी होती हैं। प्रचलन एवं अंगों की गति से ये सीधे सम्बन्धित होती हैं। कंकाल या रेखित पेशियों के संकुचन एवं शिथिलन के कारण प्रचलन/गति होती है।

प्रश्न 8.

आप किस प्रकार से एक कंकाल पेशी और हृद पेशी में विभेद करेंगे?

उत्तर:

कंकाल (रेखिल):मेशी.और हृद पेशी में अन्तर

क्र॰ सं॰	कंकाल/रेखित पेशियाँ (Striped Muscles)	हृद पेशियाँ (Cardiac Muscles)
1.	पेशी तन्तु सामान्यतः 2 से 4 सेमी लम्बे, 10-30 μ	, ,
	मोटे अशाखित तथा बेलनाकार होते हैं।	मोटे एवं शाखित होते हैं और शाखाएँ आपस में
		एक-दूसरे से मिलकर जाल बनाती हैं।
2.	पेशी तन्तु के चारों ओर स्पष्ट सार्कोलेमा	सार्कोलेमा स्पष्ट नहीं होता।
	(sarcolemma) होता है।	
3.	प्रत्येक पेशी तन्तु बहुकेन्द्रकीय होता है।	प्रत्येक पेशी तन्तु में एक या दो केन्द्रक होते हैं।
4.	प्रत्येक पेशी तन्तु में अनेक समानान्तर तन्तुक	
	(myofilaments) होते हैं जिनके बीच-बीच में	
	पेशीद्रव्य (sarcoplasm) होता है।	
5.	प्रत्येक तन्तुक में गहरी तथा हल्की पट्टियाँ (bands)	इसमें भी गहरे तथा हल्के रंग की पट्टियाँ पाई
	होती हैं।	जाती हैं।
6.	अन्तर्विष्ट पट्टियाँ नहीं पाई जाती।	तन्तुओं के सिरों पर अनुप्रस्थ पट्टियाँ, अन्तर्विष्ट
	T.	पट्टियाँ (intercalated discs) होती हैं।
7.	रेखित पेशियाँ ऐच्छिक तथा थकने वाली होती हैं।	हृद पेशियाँ अनैच्छिक तथा न थकने वाली होती हैं।

प्रश्न 9.

निम्नलिखित जोड़ों के प्रकार बताइए

- (क) एटलस/अक्ष (एक्सिस)
- (ख) अंगूठे के कार्पल/मेटाकार्पल
- (ग) फैलेंजेज के बीच
- (घ) फीमर/एसीटेबुलम
- (ङ) कपालीय अस्थियों के बीच
- (च) श्रोणि मेखला की प्यूबिक अस्थियों के बीच

उत्तर :

- (क) उपास्थिमय संधि
- (ख) सेडल संधि
- (ग) कब्जा संधि
- (घ) कंदुक खल्लिका संधि
- (ङ) सीवन
- (च) उपास्थिमय संधि।

प्रश्न 10.

रिक्त स्थानों में उचित शब्दों को भरिए

(क) सभी स्तनधारियों में (क्छ को छोड़कर)......ग्रीवा कशेरुक होते हैं। (ख) प्रत्येक मानव पाद में फैलेंजेज की संख्या.......है। (ग) मायोफाइब्रिले के पतले तन्तुओं में 2 'F' एक्टिन और दो अन्य दूसरे प्रोटीन, जैसे......और.....होते हैं। (घ) पेशी रेशे में कैल्सियम......में भण्डारित रहता है। (च)मन्ष्य का कपाल......अस्थियों से बना होता है। उत्तर: **(क)** सात। (ख) 14 फੈलेंजेज। (ग) ट्रोपोनिन (troponin), ट्रोपोमायोसिन (tropomyosin) (घ) सार्कोप्लाज्मिक जालक (sarcoplasmic reticulum) (च) 11वीं, 12वीं। (छ) ৪ परीक्षोपयोगी प्रश्नोत्तर बह्विकल्पीय प्रश्न प्रश्न 1. एक पेशी एक भाग को दूसरे पर झुकाती है, वह है (क) फ्लेक्सर (ख) एक्सटेन्सर (ग) एबडेक्टर (घ) एडेक्टर उत्तर: (क) फ्लेक्सर प्रश्न 2. मानव शरीर में प्लावी पसलियों की संख्या है (क) 6 जोड़ी (ख) 5 जोड़ी (ग) 3 जोड़ी (घ) 2 जोड़ी उत्तर:

(घ) 2 जोड़ी

प्रश्न 3.

अंसमेखला का भाग कौन-सा है?

- (क) ग्लीनॉएड गुहा
- (ख) उरोस्थि
- (ग) इलियम
- (घ) श्रोणि उल्खने

उत्तर:

(क) ग्लीनॉएड गुहा

प्रश्न 4.

मानव करोटि की हड्डियों के बीच संधि है

- (क) कब्जा संधि
- (ख) साइनोवियल संधि
- (ग) उपास्थिमय संधि
- (घ) तन्तुमय संधि

उत्तर :

(घ) तन्तुमय संधि

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.

पेशियों में पाये जाने वाले दो प्रकार की प्रोटीन्स के नाम लिखिए।

उत्तर :

ऐक्टिन, तथा मायोसीन प्रोटीन।

प्रश्न 2.

मनुष्य के अन्तःकंकाल तन्त्र को कितने भागों में बाँटा गया है? उनके नाम लिखिए।

उत्तर:

मनुष्य के अन्तः कंकाल को दो भागों में बाँटते हैं

(ক)

अक्षीय कंकाल :

इसके अन्तर्गत खोपड़ी, कशेरुक दण्ड, पसलियाँ एवं स्टर्नम आते हैं।

(ख)

उपांगीय कंकाल :

इसके अन्तर्गत मेखलाएँ तथा हाथ-पैर की अस्थियाँ आती हैं।

प्रश्न 3.

शशक के निचले जबड़े की मुख्य अस्थि का नाम लिखिए।

उत्तर:

मैन्डिबल (mandible)

प्रश्न 4.

सैडल संधि (saddle joint) कहाँ पायी जाती हैं?

उत्तर:

अंगूठे के कार्पल और मेटा कार्पल के बीच।

लघु उत्तरीय प्रश्न

प्रश्न 1.

गति के पक्ष्माभी (सिलिअरी) तथा कशाभि (फ्लैजेलर) प्रकारों का उदाहरण सहित वर्णन कीजिए। उत्तर:

मानव के शरीर की अनेक कोशिकाएँ: जैसे-श्वासनली के भीतरी स्तर की दीवार की कोशिका, मादा अंग अंडवाहिनी (oviduct) की भीतरी दीवार की कोशिका में महीन रोम, पक्ष्माभ (cilia) पाए जाते हैं, जो पैरामीशियम की पक्ष्माभी गति को प्रदर्शित करते हैं। इसके विपरीत नर में निर्मित शुक्राणु (sperm) अपनी पूंछ (tail) द्वारा कशाभि गति (flagellar movement) प्रदर्शित करते हैं।

प्रश्न 2.

मनुष्य की ग्रीवा की प्रथम कशेरुका को स्वच्छ एवं नामांकित चित्र बनाइए (वर्णन की आवश्यकता नहीं)। उत्तर:

चित्र-एटलस कशेरुका (प्रथम ग्रीवा कशेरुका) का ऊपरी दृश्य

प्रश्न 3.

अंसमेखला तथा उसके कार्यों का विस्तार से वर्णन कीजिए।

उत्तर:

अंसमेखला

मनुष्य में अंसमेखला पूरी तरह अलग-अलग दो अर्द्ध-भागों से मिलकर बनी होती है, जिसका प्रत्येक अर्द्ध-भाग मुख्यतः एक तिकोनी और चपटी अस्थि से बना होता है। इसे अंसफलक या स्कैपुला (scapula) कहते हैं और यह पीठ व गर्दन के दोनों ओर तथा पसिलयों के पीछे स्थित होता है। अस्थि का चौड़ा भाग ऊपर की ओर तथा नुकीला भाग नीचे की ओर रहता है। स्कैपुला के पश्च भाग में एक उभार होता है, जो एक उठी हुई छोटी-सी भित्ति के समान दिखाई देता है तथा कण्टक (spine) कहलाता है। इसी के कारण अंसमेखला दो भागों में विभाजित दिखाई देती है। कण्टक का बाहर निकला हुआ ऊपरी भाग चपटा हो जाता है। इसे ऐक्रोमियन प्रवर्ध (acromian process) कहते हैं।

इसी प्रवर्ध से हॅसली की अस्थि या क्लैविकल (collar bone or clavicle) जुड़ी रहती है, जिससे हमारे उठे हुए कन्धे (shoulders) बनते हैं। इस प्रवर्ध के पास स्कैपुला में एक गड्ढा अंस उल्खल (glenoid cavity) होता है। अंस उल्खेल में अग्रबाहु की प्रगण्डिका (humerus) का गोल सिर स्थित रहता है और कन्दुक-खिल्लका सन्धि बनाता है। इस सन्धि के कारण ही हमारी भुजाएँ चारों ओर सुविधापूर्वक घूम सकती हैं। अंसमेखला पसलियों के साथ केवल मांसपेशियों से ही जुड़ी रहती है। हॅसली की अस्थि अंसमेखला की दूसरी अस्थि है, जो 'F' अक्षर की भाँति दिखाई देती है। यह एक ओर अंसक्ट प्रवर्ध (acromian process) और दूसरी ओर उरोस्थि से जुड़ी रहती है। यह अस्थि बाहु के भार को सम्भाले रखती है।

अंसमेखला के कार्य

अंसमेखला के द्वारा ही कन्धे का निर्माण होता है। इसकी हँसली की अस्थि बाहु को सम्भालने में सहायता करती है तथा अंस उल्खल में अग्रबाहु (प्रगण्डिका) का सिर कन्दुक-खल्लिका सन्धि बनाता है। इस सन्धि के होने से ही बाहु चारों ओर आसानी से घुमायी जा सकती है।

प्रश्न 4. मानव की श्रोणि मेखला का नामांकित चित्र बनाइए।

प्रश्न 1. पेशी ऊतंक कितने प्रकार के होते हैं? अरेखित पेशी ऊतक की संरचना चित्र सहित समझाइए। उत्तर :

पेशी ऊतक तथा उनके प्रकार

पेशी ऊतक की उत्पत्ति भ्रूण (embryo) के मध्य जनन स्तर या मीसोडर्म (mesodem) से होती है। पेशी अतक शरीर को 40-50% भाग बनाता है। पेशी अतक का निर्माण लम्बी, सँकरी, तरूपी, सकुंचनशील कोशिकाओं या तन्तुओं से होता है। पेशी अतक तीन प्रकार के होते हैं

- 1. अरेखित (Unstriped or Smooth)
- 2. रेखित (Striped or Striated) तथा
- 3. C (Cardiac)

अरेखित पेशी ऊतक

अरेखित पेशियों के आकुंचन पर जन्तु की इच्छा का कोई नियन्त्रण नहीं होता। ये शरीर की कार्यिकी (physiology) तथा आन्तरिक वातावरण के प्रभाव से स्वतः ही क्रियाशील होती हैं; अतः इन्हें अनैच्छिक पेशियाँ (involuntary muscles) भी कहते हैं। इन पेशियों को सम्बन्ध आंतरांगों से होने के कारण इन्हें आंतरांगी (visceral) पेशियाँ भी कहते हैं सामान्यतः खोखले आंतरांगों की भित्तियों; जैसे-आहारनाल

(alimentary canal), श्वास नली, गर्भाशय, रुधिर वाहिनियों, चित्र-अरेखित पेशी या अनैच्छिक पेशी तन्त्। पित्ताशय, पित्त नली, शिश्न आदि, में उपस्थित होती हैं।

चित्र-अरेखित प्रेशी या अनैच्छिक पेशी तन्तु। संरचना

इनकी संरचना सरल होती है। इनके तन्तु (fibres) 100-200µ तथा 10µ व्यास के पतले (सँकरे) तथा तरूप होते हैं। इन कोशिकाओं के बीच-बीच में कोशिकाविहीन, तन्तुमय संयोजी ऊतक (connective tissue) होता है। पेशी तन्तु या पेशी कोशिका सार्कोलेमा (sarcolemma) नामक कोशिका कला से घिरी होती है। कोशिका के पेशीद्रव्य (sarcoplasm) में एक्टोमायोसिन (actomyocin) प्रोटीन के बने समानान्तर पेशी तन्तुक (myofibrils) तथा एक बड़ा केन्द्रक (nucleus) होता है। पेशी की सकुंचनशीलता इन्हीं तन्तुओं के कारण होती है।

अरेखित पेशियाँ अपने समूहीकरण के आधार पर एकल इकाई (single unit) अथवा बहु-इकाई (multi-unit) के रूप में होती हैं। बहु-इकाई अरेखित पेशियों में तन्तु स्वतन्त्र रूप में कार्य करते हैं, जबिक एकल इकाई में ये आपस में बँधे रहते हैं तथा मिलकर कार्य करते हैं। नेत्रों में सिलियरी पेशियाँ, उपतारा की पेशियाँ आदि बहु-इकाई पेशियाँ हैं। आंतरांगों में अरेखित पेशियाँ एकल प्रकार की होती हैं। छिद्र के चारों ओर ये पेशियाँ संवरणी (sphincter) बनाती हैं।