FINANCIAL ECONOMETRICS

Problem Set-4

Q1.

a.


```
. probit usreclead spread if datem >=tm(1959m1) & datem <= tm(2004m12)
Iteration 0: Log likelihood = -219.36155
Iteration 1: Log likelihood = -157.12272
Iteration 2: Log likelihood = -152.64591
Iteration 3: Log likelihood = -152.61901
Iteration 4: Log likelihood = -152.61901
Probit regression
                                                         Number of obs =
                                                                            552
                                                         LR chi2(1)
                                                                       = 133.49
                                                         Prob > chi2
                                                                       = 0.0000
Log likelihood = -152.61901
                                                         Pseudo R2
                                                                       = 0.3043
   usreclead
               Coefficient Std. err.
                                                 P> | z |
                                                           [95% conf. interval]
                                           z
      spread
                -.7375142
                            .0788315
                                        -9.36
                                                 0.000
                                                          -.8920211
                                                                      -.5830074
       _cons
                -.6045698
                            .0852819
                                        -7.09
                                                 0.000
                                                          -.7717192
                                                                      -.4374205
```

The estimated parameters are as follows: $\alpha = -0.6045$ and $\beta = -0.7375$. These parameter estimates closely align with those documented in the article, differing only in the fourth decimal place.

. reg growthrate_GDP L4.spread, robust								
Linear regress	sion			Number of	obs	=	188	
				F(1, 186)		=	10.75	
				Prob > F		=	0.0012	
				R-squared	l	=	0.0760	
				Root MSE		=	.82237	
		Robust						
growthrate~P	Coefficient	std. err.	t	P> t	[95%	conf.	interval]	
spread								
L4.	.183433	.0559374	3.28	0.001	.073	0797	.2937864	
_cons	.6116473	.1086074	5.63	0.000	.397	3866	.825908	
. reg growthra	ate_GDI L4.spr	ead, robust						
Linear regress	sion			Number of	obs	=	188	
				F(1, 186)		=	11.03	
				Prob > F		=	0.0011	
				R-squared		=	0.0704	
				Root MSE		=	.78174	
		Robust						
growthrate~I	Coefficient	std. err.	t	P> t	[95%	conf.	interval]	
spread								
L4.	.1672431	.0503461	3.32	0.001	.0679	203	.2665658	

The statistical analysis reveals that the lag spread exhibits significant correlation in both regression models. Consequently, it appears that the spread holds explanatory value in forecasting recessions, whether utilizing GDP or GDI as the dependent variable. The positive slope indicates that the estimates rise in tandem with an increase in the spread. This finding aligns with the observations made in the article, particularly in the context of comparing the 10-year Bond with the 3-month T-Bill.

6.63

0.000

.4496772

.8304626

.0965089

_cons

.6400699

		Ü	_		rate_GDI, ro	
Linear regression	on			Number of	obs =	187
				F(3, 183)	=	4.26
				Prob > F	=	0.0062
				R-squared	=	0.0804
				Root MSE	=	.8237
		Robust				
growthrate_GDP	Coefficient		t	P> t	[95% conf.	interval]
spread						
L4.	.1856465	.0554234	3.35	0.001	.0762954	.2949975
growthrate_GDP						
L4.	.0754082	.1341731	0.56	0.575	1893169	.3401332
growthrate_GDI						
L4.	067856	.148222	-0.46	0.648	3602999	.2245878
_cons	.5959841	.1337635	4.46	0.000	.3320671	.8599011

. reg growthrate	e_GDI L4.sprea	d L4.growth	rate_GDI	P L4.growth	nrate_GDI, ro	bust
Linear regression	on			Number of	obs =	187
				F(3, 183)	=	4.71
				Prob > F	=	0.0034
				R-squared	=	0.0839
				Root MSE	=	.77748
		Robust				
growthrate_GDI	Coefficient	std. err.	t	P> t	[95% conf.	interval]
spread						
L4.	.1728412	.0497078	3.48	0.001	.0747671	.2709153
growthrate_GDP						
L4.	1723254	.1190574	-1.45	0.149	4072271	.0625762
growthrate_GDI						
L4.	.1408358	.1261372	1.12	0.266	1080343	.389706
_cons	.6528919	.1181915	5.52	0.000	.4196988	.8860851

It is evident that the additional regressors do not contribute significantly to the predictive accuracy of the estimates, as they lack statistical significance even when considering a more lenient significance threshold of 10%. In contrast, the spread emerges as a variable with explanatory power for recessions based on the regression analysis.

. varsoc GDP GDI, maxlag(12)

Lag-order selection criteria

Sample: 1962q1 thru 2005q4 Number of obs = 176

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-2727.94				1.0e+11	31.0221	31.0367	31.0581
1	-1893.55	1668.8	4	0.000	8.1e+06	21.5858	21.6296	21.6939
2	-1867.67	51.756	4	0.000	6.3e+06	21.3372	21.4102	21.5173*
3	-1865.08	5.1895	4	0.268	6.4e+06	21.3532	21.4554	21.6053
4	-1854.47	21.222	4	0.000	6.0e+06*	21.278*	21.4095*	21.6023
5	-1853.37	2.1859	4	0.702	6.2e+06	21.3111	21.4718	21.7074
6	-1852.35	2.0557	4	0.726	6.4e+06	21.3448	21.5348	21.8132
7	-1851.57	1.5575	4	0.816	6.6e+06	21.3814	21.6006	21.9219
8	-1849.28	4.5798	4	0.333	6.8e+06	21.4009	21.6493	22.0134
9	-1845.2	8.1559	4	0.086	6.8e+06	21.4	21.6776	22.0845
10	-1840.9	8.599	4	0.072	6.7e+06	21.3966	21.7035	22.1532
11	-1839.91	1.9859	4	0.738	7.0e+06	21.4308	21.7669	22.2594
12	-1834.14	11.543*	4	0.021	6.8e+06	21.4106	21.7759	22.3113

* optimal lag

Endogenous: GDP GDI Exogenous: _cons

. var GDP GDI, lags(2)

Vector autoregression

 Sample: 1959q3 thru 2005q4
 Number of obs
 = 186

 Log likelihood = -2113.796
 AIC
 = 22.79351

 FPE
 = 2.72e+07
 HQIC
 = 22.83567

 Det(Sigma_ml)
 = 2.55e+07
 SBIC
 = 22.89756

Equation	Parms	RMSE	R-sq	chi2	P>chi2
GDP	3	100.224	0.9992	241093.6	0.0000
GDI	3	103.599	0.9992	227668.2	0.0000

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
GDP							
	GDP						
	L2.	.9603275	.082363	11.66	0.000	.7988989	1.121756
	GDI						
	L2.	.0534576	.0820926	0.65	0.515	107441	.2143563
	_cons	23.78564	19.57997	1.21	0.224	-14.5904	62.16169
GDI							
	GDP						
	L2.	.1329608	.0851362	1.56	0.118	0339032	.2998247
	GDI						
	L2.	.8826544	.0848567	10.40	0.000	.7163382	1.048971
	_cons	2.130209	20.23924	0.11	0.916	-37.53798	41.79839

. vecrank GDP GDI, trend(constant) lags(2)

Johansen tests for cointegration

Trend: Constant Number of obs = 186
Sample: 1959q3 thru 2005q4 Number of lags = 2

					Critical
Maximum				Trace	value
rank	Params	LL	Eigenvalue	statistic	5%
0	6	-1976.7001		18.6971	15.41
1	9	-1969.6294	0.07321	4.5556	3.76
2	10	-1967.3515	0.02420		
l					

STATA CODE

Q1.

```
a. clear all
   freduse GS10 TB3MS USREC
   gen datem = mofd(daten)
   format datem %tm
   gen time = mofd(daten) + 12
   format time %tm
   tsset time
   gen tbill = 100*(365*TB3MS/100)/(360-91*TB3MS/100)
   gen spread = GS10 - tbill
   gen usreclead = USREC[_n+12]
   probit usreclead spread if datem >= tm(1959m1) & datem <= tm(2004m12)
   gen recprob = (normal(b[cons] + b[spread] * spread))*100
   gen USREC1 = USREC*100
   label variable USREC1 "National Recession"
   label variable recprob "Predicted Probability"
   twoway (area USREC1 datem, color(gs14)) (tsline recprob, lcolor(navy)) if datem >= tm(1967m1)
   & datem <= tm(2006m12), xtitle("") ytitle("") tlabel(, format(%tmYY)) title("US Recession
   Probabilities(percent)")
b. clear all
   freduse GS10 TB3MS GDPC1 A261RX1Q020SBEA
   rename GDPC1 GDP
   rename A261RX1Q020SBE GDI
   generate time = qofd(daten)
   format time %tg
   drop if missing(GDP)
   drop if time < tq(1958q1)
   drop if time > tq(2005q4)
   tsset time
   generate tbill = 100*(365*TB3MS/100)/(360-91*TB3MS/100)
   generate spread = GS10 - tbill
   generate growthrate_GDP = (log(GDP)-log(L.GDP))*100
   generate growthrate_GDI = (log(GDI)-log(L.GDI))*100
```

reg growthrate_GDP L4.spread, robust predict for_GDP reg growthrate_GDI L4.spread, robust predict for_GDI

- c. reg growthrate_GDP L4.spread L4.growthrate_GDP L4.growthrate_GDI, robust predict for_GDP_1c reg growthrate_GDI L4.spread L4.growthrate_GDP L4.growthrate_GDI, robust predict for_GDI_1c
- d. drop if time <tq(1959q1)
 varsoc GDP GDI, maxlag(12)
 var GDP GDI, lags(2)
 vecrank GDP GDI, trend(constant) lags(2)