DV ROUTING ALGORITHM WITH POISONED REVERSE

University of Dhaka Department of Computer Science & Engineering

Group No: 18

Presented To:

Dr. Md. Abdur Razzaque

Professor & Chairman

Department of Computer Science &

Engineering

Presented By:

Farzana Tasnim (14)

Amina Islam (36)

COUNT TO INFINITY PROBLEM

Shortest Path For

X:

X->Y is 4

X->Z is 5 (X->Y-Z)

Shortest Path For Y:

Y->X is 4

Y->Z is 1

case:

What will happen if the link cost c(X,Y) is increased to 60?

Shortest Path For Z:

Z->X is 5 (Z->Y->X)

Z->Y is 1

COUNT TO INFINITY PROBLEM

Shortest Path For

X:

X->Y is 4

 $X \rightarrow Z$ is 5 $(X \rightarrow Y - Z)$

Shortest Path For Y:

Y->X is 4 Y->Z is 1

Shortest Path For Z:

Z->X is 5 (Z->Y->X) Z->Y is 1

At t₀: Y detects cost change

- Y's calculation: $D_Y(X) = min\{60+0, 1+5\} = 6$
- Y decides: Route to X via Z (cost 6 vs direct cost 60)
- Problem: Creates routing loop! Y→Z→Y→Z...

At t₁: Y informs Z

- Y tells Z: "My distance to X is now 6"
- Z calculates: D_Z(X) = min{50+0, 1+6} = 7
- Z updates: "My distance to X is now 7"

COUNT TO INFINITY PROBLEM

The Counting Loop:

- t_2 : Y gets Z's update \rightarrow D_Y(X) = 1+7 = 8
- t_3 : Z gets Y's update \rightarrow D_Z(X) = 1+8 = 9
- t_4 : Y gets Z's update \rightarrow D_Y(X) = 1+9 = 10
- ...continues for 44 iterations...

When Does It Stop?

- Stops when: Z's cost via Y > 50 (direct cost)
- After 44 rounds: Z finally chooses direct path to X
- Total time: Until costs count up from 6 to 50+

But we can improve this by using

Poisoned Reverse

Technique

POISONED REVERSE

DELIBERA TELIE

If router Z routes to X via Y, Z tells Y that its distance to X is ∞ . (Z lies even though it knows D_Z(X) = 6)

WHY LIE?

Prevents Y from thinking Z is a valid route **Movement of Youting To X via Z, preventing routing loops

HOW LONG LIE?

Z continues to advertise $D_Z(X) = \infty$ to Y as long as Z routes to X **Diack** Z finds a better direct path, it stops lying and tells the 6 truth.

POISONED REVERSE

LIMITATION

It can only stop loops between two directly connected routers.

If the loop involves more than two routers, this method does not work.

PROBLEM 11.A

Poison reversed is used in Distance vector algorithm

 When the distance vector routing is stabilized, router w, y, and z inform their distances to x to each other. What distance values do they tell each other?

SOLUTION 11.A

 When the distance vector routing is stabilized, router w, y, and z inform their distances to x to each other.
 What distance values do they tell each other?

Source Router	Destinatio n	Cost	Next Hop	Shortest Path	
W	X	5	Y	W->Y->X	
Y	X	4	X	Y->X	
Z	X	6	Y	Z->Y->X	

Z

PROBLEM 11.A

Source Router	Destinatio n	Cost	Next Hop	Shortest Path
W	X	5	Y	W->Y->X
Y	X	4	X	Y->X
Z	X	6	Y	Z->Y->X

Router w, y, and z inform their distances to x to

Router Z	each other: Informs W: Dz(X)=6	Informs Y: Dz(X)=∞	
Router W	Informs Y, Dw(X)=∞	Informs z, Dw(X)=5	
Router Y	Informs W, Dy(X)=4	Informs z, Dy(X)=4	

PROBLEM 11.B

Poison reversed is used in Distance vector algorithm

 Now suppose that the link cost between x and y increases to 60. Will there be a count-to-infinity problem even if poisoned reverse is used?
 Why or why not? If there is a count-to-infinity problem, then how many iterations are needed for the distance-vector routing to reach a stable state again?

SOLUTION 11.B

SOLUTION 11.B

SOLUTION 11.B

After 44 iterations, table converged:

From/To	X	Y	Z	W
X	0	52	50	51
Y	52	0	2	1
Z	50	2	0	1
W	51	1	1	0

Count to infinity problem occured although poisoned reverse is used!!

PROBLEM 11.C

Poison reversed is used in Distance vector algorithm

 How do you modify c(y,z) such that there is no count-to-infinity problem at all if c(y,x) changes from 4 to 60?

SOLUTION 11.C

 How do you modify c(y,z) such that there is no count-to-infinity problem at all if c(y,x) changes from 4 to 60?

Answer:

We will cut the cut the link between y and z.

ANY QUESTION?

THANKYOU