Name:	******		***********		•••	
Roll No.	· :	••••••	••••••	********		
Invigila	tor's S	Signature:	••••••	•••••	••••	
			(ECE-N)/ 010	SEM-6/EC	-601/2010	
		DIGITAL SIGN	AL PRO	CESSING	}	
Time Al	lotted	l: 3 Hours		Full Marks: 70		
Candi		he figures in the ma are required to give as far		wers in their		
1. Ch	oose	GRO (Multiple Choice the correct alterna			ne following: $10 \times 1 = 10$	
i)	If x	If x_1 (n) and x_2 (n) are finite length sequences of				
		es L and M respect length	ively, thei	r linear con	volution has	
	a)	L+M-2	b)	L + M - 1		
	c)	L + M	d)	none of th	ese.	
n)	The	e digital systems in	$x(n^2)$ is			
	a)	linear and causal				
	b)	non-linear and ca	usal			
	c)	linear and non-ca	usal			
	d)	non-linear and no	n-causal.			
6004					[Turn over	

- iii) Zero padding of a signal
 - a) reduces aliasing
 - b) increases frequency
 - c) increases time resolution
 - d) has no effect.
- iv) In a system y(-n) = x(n-1)
 - a) the system is causal for all
 - b) the system is linear and causal for all
 - c) the system is stable, linear and causal for all
 - d) none of these.
- v) If $x[n] = \{1, 0, 0, 1\}$, the DFT value X(0) is
 - a) 2

b) 1 + j

c) (

- d) 1 j.
- vi) The Fourier transform of an aperiodic discrete time sequence is
 - a) discrete and periodic function of frequency
 - b) discrete and aperiodic function of frequency
 - c) continuous and periodic function of frequency
 - d) continuous and aperiodic function of frequency.

2

vii) The convolution of u[n] with u[n-4] at n=5 is

a) 5

b) 2

c) 1

d) 0.

viii) A digital filter is said to be IIR

- a) if present output depends on previous output only
- b) if system function H(z) has one or more non-zero denominator co-efficients
- c) if all the poles lie outside the unit circle
- d) if system function has only zeros.
- tx) FIR filter is
 - a) recursive and linear
 - b) ton-recursive and linear
 - c) recursive and non-linear
 - d) none of these.

x) System function of digital filter expressed as $H(z) = b_k z^{-k}$ represents

- a) IIR filter
- b) FIR filter
- c) Butterworth filter
- d) Chebyshev filter.

xi) Stability criteria for a discrete time LTI system is

- a) h(n) > 1
- b) h(n) < 1
- c) h(n) = 1
- d) h(n) = 0.

6004

:

Turn over

- xii) A digital filter has $h(n) = \{-3, -2, 0, 2, 3\}$ then it has
 - a) no linear phase
 - b) symmetric linear phase
 - c) anti-symmetric linear phase
 - d) none of these.

xiii)
$$\left(\frac{1}{2}\right)^n u(n)$$
 is

- a) energy signal
- b) power signal
- c) both (a) and (b)
- d) none of these.

xiv) The system
$$y(n) = x(n) + nx(n+1)$$
 is

- a) linear time invariant
- b) non-linear time invariant
- c) linear time variant
- d) none of these.
- xv) The mapping from analog to digital domain in impulse invariant method is
 - a) one to many
- b) many to one
- c) one to one
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Given the following transfer function T(z) of a DSP system, write the difference equation:

$$T(z) = \frac{3 + 2z^{-1} + z^{-2}}{1 - 4z^{-1} + 5z^{-2}}.$$

- 3. If Fourier transform of x(n) is $X(j\omega)$, then prove that
 - a) $x(-t) \leftrightarrow X(-j\omega)$,

b)
$$x(at) \leftrightarrow \frac{1}{|a|} X(\frac{j\omega}{a})$$
.

- 4. State the properties of convergence for the Z-transform.
- 5. Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+3)}$ with T = 0.1 s.
- 6. Define phase delay and group delay.

The length of an FIR filter is 13. If the filter has a linear phase, show that

$$\sum_{n=0}^{\frac{M-1}{2}} h(n) \sin \omega (\tau - n) = 0.$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. 3

 $3\times15=45$

- 7. a) What is ROC? State its properties.
 - b) Find the system function and impulse response of the system described by

$$y(n) = x(n) + 2x(n-1) - 4x(n-2) + x(n-3)$$

c) Find the inverse Z-transform of

$$X(z) = z(z^2 - 4z + 5)/(z-3)(z-2)(z-1); 2 < z < 3$$

- d) Prove that an LTI system is BIBO stable if the ROC of system function includes the unit circle. 2 + 5 + 5 + 3
- 8. a) Sketch the magnitude response of Butterworth LPF filter and derive an expression for order of such a filter.
 - b) Design a digital Butterworth filter using the following specifications using Impulse Invariant method

$$0.9 < H(j\omega) < 1 \text{ for } 0 < \omega < 0.2 \text{ pi}$$

$$H(j\omega) < 0.2$$
 for 0.4 pi $< \omega <$ pi

- c) What are the advantages and disadvantages of bilinear transformation? 5 + 5 + 5
- 9. a) Compute 8-point DFT of the sequence $x(n) = \{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0\}$ using any

FFT algorithm.

b) Find the linear convolution using circular convolution for the two sequences

$$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$$

 $h(n) = \{1, 2\}$

c) Compute the circular convolution of two sequences

$$x(n) = \{1, 2, 0, 1\}$$

 $x(n) = \{2, 2, 1, 1\}$

6 + 5 + 4

- 10. a) Obtain the mapping formula for the approximation of derivatives method using backward difference:
 - b) Determine H(z) for a Butterworth filter satisfying the following constraints:

$$\sqrt{0.5} \le \left| H\left(e^{j\omega}\right) \right| \le 1, \ 0 \le \omega \le \pi/2$$

$$\left| H\left(e^{j\omega}\right) \right| \le 0.2, \ 3\pi/4 \le \omega \le \pi$$

with T = 1s. Apply impulse invariant transformation.

6 + 9

11. Write short notes on any three of the following:

 3×5

- a) Gibbs phenomenon
- b) CCS6713 architecture
- c) IIR and FIR filters
- d) Periodic and aperiodic signals.