VISUAL PHYSICS ONLINE

Question 1 (P5023)

How could you find the mass of the Earth from its radius and the acceleration due to gravity at the Earth's surface?

Question 2 (P5086)

What is the gravitational force acting a 2000 kg satellite when it is orbiting the Earth at twice the Earth's radius?

Earth's mass
$$M_E = 5.97 \times 10^{24} \text{ kg}$$

Earth's radius
$$R_E = 6.38 \times 10^6$$
 m

Question 3 (P5117)

A 50 kg person and a 75 kg person are sitting on a bench 500 mm apart. Estimate the gravitational force acting between the two people.

Question 4 (P5188 21 22)

- (a) Explain the reason for the selection of infinity as the place of zero gravitational potential energy.
- (b) How does this selection of zero level result in any point with a gravitational field having a negative gravitational potential energy value?

Question 5 (P5345)

Find the net force acting on the Moon from the Earth and the Sun if they are at right angles to each other.

$$M_M = 7.35 \times 10^{22} \text{ kg}$$
 $M_S = 1.99 \times 10^{30} \text{ kg}$

$$R_{ME} = 3.84 \times 10^5 \text{ km}$$
 $R_{MS} = 1.50 \times 10^8 \text{ km}$

Answer 1 (A5023)

$$F_G = \frac{G \, m \, M_E}{r_E^2} = m \, g \implies M_E = \frac{g \, r_E^2}{G}$$

Answer 2 (A5086)

4900 N

Answer 3 (A5117)

Answer 4 (A5188)

- (a) The gravitational force between the objects at infinity is zero.
- (b) The zero level at infinity is the maximum level which means that all other values must be negative.

Answer 5 (A5345)

$$F = 4.77 \times 10^{20} \text{ N}$$
 $\theta = 24.6^{\circ}$