SECTION 260526 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment, plus ground bonding common with lightning protection system.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
 - 4. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include following:
 - a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including following:
 - 1) Test wells.
 - 2) Ground rods.
 - Ground rings.

- 4) Grounding arrangements and connections for separately derived systems.
- Instructions for periodic testing and inspection of grounding features at test wells, ground rings, and grounding connections for separately derived systems based on NETA MTS.
 - Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: 4 AWG or 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600V and shall be Lexan or PVC, impulse tested at 5000V.

2.3 CONNECTORS

- A. Listed and labeled by NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, 2-bolt connection to ground bus bar.
- D. Beam Clamps: Mechanical type, terminal, ground wire access from 4 directions, with dual, tinplated or silicon bronze bolts.
- E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- J. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- K. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.
- L. Straps: Solid copper, cast-bronze clamp. Rated for 600A.
- M. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
- N. Water Pipe Clamps:
 - 1. Mechanical type, 2 pieces with stainless-steel bolts.
 - a. Material: Tin-plated aluminum.
 - b. Listed for direct burial.
 - 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.4 GROUNDING ELECTRODES

- A. Ground Rods: Stainless steel; 3/4 inch by 10 feet.
- B. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for 8 AWG and smaller, and stranded conductors for 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, 3/0 AWG minimum.
 - 1. Bury at least 30 inches below grade.
- C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.
- D. Isolated Grounding Conductors: Green-colored insulation with more than one continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least 3 bands of green and 2 bands of yellow.
- E. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
- F. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to ground bus. Install main bonding jumper between neutral and ground buses.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Anti-Frost Heating Cables: Install separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- D. Isolated Grounding Receptacle Circuits: Install insulated equipment grounding conductor connected to receptacle grounding terminal. Isolate conductor from raceway and from

- panelboard grounding terminals. Terminate at equipment grounding conductor terminal of applicable derived system or service unless otherwise indicated.
- E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with nonmetallic raceway fitting listed for purpose. Install fitting where raceway enters enclosure and install separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of applicable derived system or service unless otherwise indicated.

3.4 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for below-grade connections.
- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways," and shall be at least 12 inches deep, with cover. Install at least one test well for each service unless otherwise indicated. Install at ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if disconnect-type connection is required, use bolted clamp.

F. Grounding and Bonding for Piping:

 Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use bolted clamp connector or bolt lug-type connector to pipe flange by using one of lug bolts of flange. Where dielectric main water fitting is installed, connect grounding

- conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- G. Ground Ring: Install grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around perimeter of building.
 - 1. Install tinned-copper conductor not less than 3/0 AWG for ground ring and for taps to building steel.
 - 2. Bury ground ring not less than 30 inches from building's foundation.
- H. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate per NFPA 70; use minimum of 20 feet of bare copper conductor not smaller than 4 AWG. Bond grounding conductor to reinforcing steel in at least 4 locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.
- Connections: Make connections so possibility of galvanic action or electrolysis is minimized.
 Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with calibrated torque wrench per manufacturer's written instructions.
 - 3. Test completed grounding system at each location where maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells. Make tests at ground rods before conductors are connected.

- a. Measure ground resistance no fewer than 2 full days after last trace of precipitation and without soil being moistened by means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
- b. Perform tests by fall-of-potential method per IEEE 81.
- 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to record of tests and observations. Include number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION