

بسمه تعالى

آموزش زبان VHDL

شبیه سازی وسنتز

واحد درسی مدارات منطقی دیجیتال و آزمایشگاه

دانشگاه فردوسی مشهد- گروه مهندسی برق اردیبهشت ماه 1387

فهرست

- مقدمه
- توضیح FPGA و ساختمان آن
- FPGA مراحل طراحی بوسیله
 - ربان برنامه نویسی VHDL

مقدمه

- □ سیستم های دیجیتال امروزی:
 - ASIC -
 - FPGA -
 - Microcontroller -
 - _ تركيبي از قطعات بالا

System On chip Design

ASIC

- طراحی شده برای کاربرد خاص
- ساختمان غير قابل تغييير

FPGA

- Field Programmable gate arrays
- ارایه ای از گیت های آماده
 - = قابل برنامه ریزی برای کاربرد دلخواه

Microcontroller

I/O CPU Memory

- تراشه همه منظوره
 - 📕 شامل
 - CPU .1
 - I/O .2
 - Memory .3

مقابسه

	ASIC	FPGA	μP
انعطاف	Low	High	Highest
سرعت	Highest	High	Low
قيمت	Highest	High	Low
توان	Low	High	Highest
سهولت دسترسى	Low	High	Highest

FPGA

ساختمانFPGA

مراحل طراحی بوسیله FPGA

- تعریف پروژه
- طراحی بلوک دیاگرام و ماشین حالت
 - کد نویسی طراحی
 - سبیه سازی رفتاری
 - سنتز مدار منطقی
 - سبیه سازی مدار منطقی
- پیاده سازی و تست بر روی Evaluation Board

زبان برنامه نویسی VHDL <= FPGA

■ تعریفVHDL:

VHSIC Hardware Description Language

زبان توصيف سخت افزار مدارات مجتمع بسيار سرعت بالا

فهرست مطالب

- ساختار کد در زبان VHDL
 - توصیف تاخیر
 - مفهوم سیگنال در VHDL
- Port MAP معرفی دستور
- آشنایی با محیط نرم افزار ActiveHDL
 - ایجاد TestBench رفتاری

ساختار یک طراحی در VHDL

شروع با یک مثال

توصيف گيت NOT

•

سوالات زیر را از خود بپرسید:

- 1. نام بلوك ؟
- 2. ورودی و خروجی؟
 - 3. معماری داخلی؟

پاسخ به سوالات => توصیف سخت افزار

1. نام بلوك:

دلخواه :Inv

2. ورودی و خروجی:

یک ورودی تک بیتی:Input

یک خروجی تک بیتی:Output

2. معماری داخل:

Not (Input) => Output

نتیجه گیری

یک برنامه VHDLدو قسمت دارد:

:Entity .1

نام ، ورودی - خروجی

:Architecture .2

نام فایل:Inv.vhd

NOT Gate (Entity)

```
entity Inv is
    port(
    i : in STD_LOGIC;
    o : out STD_LOGIC
    );
end Inv;
```

NAND Gate (Architecture)

```
architecture arch_inv of Inv is
begin
O <= not i;
end arch inv;</pre>
```

مثال:گیت NAND نام فایل:Nand2.vhd

NAND Gate (Entity)

```
entity nand2 is

port(

i1: in STD_LOGIC;

i2: in STD_LOGIC;

o: out STD_LOGIC

);

end nand2;
```

NAND Gate (Architecture)

```
architecture arch_nand2 of Inv is
begin
O <= i1 nand i2;
end arch_nand2;</pre>
```

مثال:گیت XOR نام فایل:Xor2.vhd

NAND Gate (Entity)

```
entity Xor2 is

port(
    i1: in STD_LOGIC;
    i2: in STD_LOGIC;
    o :out STD_LOGIC

);
end Xor2;
```

NAND Gate (Architecture)

```
architecture arch_ xor2 of Inv is
begin
O <= i1 xor i2;
end arch_ xor2;</pre>
```

توصیف تاخیر در VHDL

نام فایل:and2_dalay.vhd

O <= i1 and i2 after

مفهوم سيگنال

- انتقال داده دینامیک
 - 2. اتصال قطعات

1. انتقال داده دینامیک

مثال: توصيف مدار روبرو

راه های نوشتن کد

راه اول :توصیف مستقیم نام فایل:Example3.vhd

o <=(a and b) xor (c or d);

Sig0 Sig1

راه دوم: استفاده از سیگنال به عنوان واسطه

کد CExample4:نام فایل

sig0<=a and b; sig1<=c or d; O<= sig0 xor sig1;

<u>کاربرد سیگنال به عنوان اتصال دهنده قطعات</u>

استفاده از یک بلوک در یک طراحی جدید اتصال یک قطعه به دنیای خارج

مثال:ساخت بافر بوسیله گیت Not

مدار مورد نظر

■ قطعه مورد استفاده: گیت NOT

معرفی دستور Port Map

نام فایل:Buffer.vhd

Lable1: entity inv port map (i=>Input, o=>sig);

i=>Input

o=>sig

مثال: 4 to 1 MUX

قطعات مورد نیاز

گیت NOT: 2 عدد

- گیت AND با 3 ورودی: 4 عدد
 - گیت OR با 4 ورودی: 1 عدد

كد قطعات بالا بايد از قبلا نوشته شده باشد.

■ فایل های مورد استفاده: Or4.vhd ،And3.vhd ،Inv.vhd

نمونه:Pot map گیت OR

نام فايل: Mux_4_to_1.vhd

Lable7: entity or4 port map (i1=>sig3, i2=>sig4, i3=>sig5,i4=>sig6, o=>y);

آشنایی با محیط ActiveHDL

- ایجاد پروژه جدید
- Compile کد نویسی و
- سبیه سازی و مشاهده نتایج

مثال:مقایسه گر تک بیتی

قطعات مورد نياز

گیت NOT: 2 عدد

. Nand دو ورودی: 7 عدد

2. 3 Nand ورودى: 4 عدد

خطوط سبزبه هیچ پورتی متصل نیستند=>سیگنال لازم دارند

شكل نهايي

یک نمونه از Port map مدار

الم فايل: 1bit_comp_sig.bde single_bit_comp.vhd

L1:entity inv port map(i=>a,O=>sig1)

می توانیم Port map را ساده تر نیز انجام دهیم

L1:entity inv port map (a, sig1)

اگر i و O را حذف کنیم نرم افزار،پورت ها را به ترتیب به مقادیر مورد نظر ما متصل می کند.

پس لازم نیست نام پورت های Entity مورد استفاده را بنویسیم.

ساخت Testbench رفتاری

شبیه سازی رفتاری در VHDL

چرا شبیه سازی:

کشف نقایص با کمترین هزینه و زمان

راه های ساخت TestBench

- 1. استفاده از امکانات نرم افزار
- 2. نوشتن کد برای TestBench

مزیت روش دوم: قابلیت استفاده در تمامی نرم افزار ها

نوشتن کد Testbench

- 1. طرح را در یک بلوک بزرگتر قرار می دهیم
- 2. به تمام پایه های آن سیگنال متصل می شود(Port map)
 - 3. سیگنال ها را در زمان های دلخواه مقدار می دهیم

مثال:کد TestBench برای گیت Not

Entity ورودی و خروجی ندارد.

entity Inv_TB is end Inv_TB;

architecture

```
architecture arch_inv_TB of Inv_TB is signal i_tb,o_tb:std_logic; سیگنال برای مقدار دهی begin

L0:entity inv port map(i_tb,o_tb); اتصال سیگنال ها i_tb <= '0', '1' after 100 ns, '0' after 300 ns; مقدار دهی سیگنال end arch inv TB;
```

منابع و مآخذ

1. VHDL (ANALYSIS AND MODELING OF DIGITAL SYSTEMS)-----ZAINALABEDIN NAVABI