

ROSENBUSCH

LIBRARY

\$MI

PETROGRAPHICAL TABLES

AN AID TO THE

Microscopical Determination

ROCK-FORMING MINERALS

ROSENBUSCH-HATCH

REESE LIBRARY

OF THE

UNIVERSITY OF CALIFORNIA.

Received May, 1890

Accessions No. 40888 Shelf No.

PETROGRAPHICAL TABLES

AN AID TO THE

Microscopical Determination

OF

ROCK-FORMING MINERALS

BY

PROFESSOR H. ROSENBUSCH

TRANSLATED AND EDITED (WITH THE AUTHOR'S PERMISSION)

BY

DR. F. H. HATCH

Of H.M. Geological Survey.

LONDON:
SWAN SONNENSCHEIN & CO.,
PATERNOSTER SQUARE, E.C.

[1889]

Q E 4 33

EARTH SCIENCES LIBRARY

40888

INTRODUCTION.

In preparing an English edition of Professor Rosenbusch's Hülfstabellen zur mikroskopischen Mineralbestimmung in Gesteinen, I have made a slight alteration in the order of the columns, and added an Index, which, I think, will facilitate reference: in all other respects the original arrangement remains unchanged.

Some explanation of the signs and symbols used in the tables is perhaps necessary. The letters a, b, c, represent the crystallographic axes: a and b being the lateral axes, and c the vertical. The axes of the ellipsoid of elasticity are denoted by the Old English letters a, b, c: a being the axis of greatest elasticity, b, the axis of mean elasticity, and c, the axis of least elasticity. The Greek letters a, b, c, have sometimes been used to denote the axes of elasticity; but, as the practice is not uniform, and as the Greek letters, moreover, have been adopted by Professor Rosenbusch (and indeed are used invariably in Germany) for the chief indices of refraction in biaxial crystals, I have thought it best to leave the symbols unchanged. After all, the symbols themselves are of little moment, so long as the meaning attaching to them is made clear.

The three chief indices of refraction in biaxial crystals are then as follows:

- a = index of refraction for rays vibrating parallel to a, but transmitted in a direction normal to a.
- β = index of refraction for rays vibrating parallel to \mathfrak{h} , but transmitted in a direction normal to \mathfrak{h}
- $\gamma = \text{index of refraction for rays vibrating parallel to } \mathfrak{c}$, but transmitted in a direction normal to \mathfrak{c} .

The mean index of refraction is $n = \frac{\alpha + \beta + \gamma}{3}$.

2 E denotes the apparent optic axial angle, or angle between the optic axes measured in air.

The expression $\rho < \nu$ (under the head of dispersion) indicates that the optic axial angle for red rays is smaller than that for violet; $\rho > \nu$ that it is greater.*

While the book was passing through the press some additional data with reference to the minerals monazite and mosandrite have been kindly furnished by Professor Rosenbusch. These data were determined in his laboratory on monazite from Arendal, and mosandrite from Löven, Langesundfjord.

F. F. H.

^{*} In addition to the above symbols, the ordinary mathematical signs are used as abbreviations. These are: =, the sign of equality, used in the column headed "Optic Orientation" to express the coincidence of an axis of elasticity with a crystal-lographic axis; V, greater than; <, less than; \(\pm\), perpendicular to; \(\pm\), parallel to; \(\pm\), angle; +, positive; - negative.

INDEX.

	Table		Table		Table
Acmite	III. (c)	Dumortierite .	. III. (a)	Muscovite .	. III. (d)
Aetinolite	III. (d)	Elæotite	. II. (b)	37 4 11.	
Aegyrine	III. (c)	Epistilbite .	. III. (f)		. III. (f) . II. (b)
Ainigmatite	III. (d)	Eucolite	. II. (b)	NT.	T 1
		Enstatite	. III. (e)	011	
		Eudialite	. II. (b)	0.11	
Allanite				Δ 1	. III. (b)
	I. I.			0 17 11	. I.
Analcime			. III. (b)		. III. (b)
Anatase	II. (a)	Felspars	. III. (f)	011 311	. III. (f)
Andalusite	III. (a)	Fluorite	. I.		. III. (e)
Andesine	III.(f)	Gadolinite .	. III. (b)	Paragonite .	. III. (d)
Anhydrite		Gahuite	. <u>I</u> .		. III. (e)
Anomite	III. (d)	Garnet	. I.	Pennine	. III. (e)
Anorthite	III. (f)	Gastaldite .	. III. (d)		. I.
Anorthoelase	III. (f)	Gedrite	. III. (d)	Phillipsite .	. III. (f)
Anthophyllite	III. (d)	Gehlenite	. II. (a)	Phlogopite .	. III. (d)
Antigorite	III. (e)	Gismondite .	. II. (b)	Picotite	. I.
Apatite		Glass	. I.	Piedmontite .	TIT (A)
Apophyllite	II. (b)	Glaucophane .	. III. (d)	Pistacite .	· III. (b) Excelote
Aragonite		Gmelinite	. II. (b)	Pleonaste	. I.
Arfvedsonite	III. (d)	Green Augite .	. III. (c)	Prehnite	. III. (b)
Astrophyllite	III. (e)	Grossularia .	. I.	Pseudobrookite	. III. (a)
Augite		Gypsum	. III. (a)		. I.
Axinite		Hæmatite .	. II. (a)	Quartz	. IÎ. (a)
Barkevicite	III. (d)	Harmotome .	. III. (f)	Riebeckite .	. III. (d)
Basaltie Hornblende		Haüyne	. I.	Th. 1. 1. 1.	
900 1.01	: :	Hereynite .	i î.	Ripidolite .	. III. (b) . III. (e)
Bastite Biotite	III. (d)		. II. (b)		. III. (e)
		Herschelite . Heulandite .		75	
	: :		. III. (b)		. II. (a)
Brandisite		Homilite		~	. III. (f)
Brewsterite	III. (f)	Hornblende .	. III. (d)	Sapphirine .	. III. (a)
Bronzite			. III. (b)		. III. (f)
Brookite	; ;	Hydro-nepheline	. II. (b)	Selenite	. III. (a)
Brueite		Hypersthene .	. III. (c)	Serpentine .	. III. (e)
Bytownite		Idoerase	. III. (b)	Seybertite .	. III. (e)
Calcite		Ilmenite	. II. (a)		. III. (a)
Cancrinite	II. (b)	Jadëite	. III. (c)		. III. (e)
Carpholite .		Kämmererite .	. III. (e)	Sodalite	. I.
Cassiterite	II. (a)	Kaolinite	. III. (e)		. I.
Chabasite	II. (b)	Kataphlëite .	. II. (b)	Sphene	. III. (e)
Chalcedony		Kyanite	. III. (a)	SpineI	. I.
Chiastolite	III. (a)	Laavenite	. III. (c)	Staurolite	. III. (a)
Chlorites		Labradorite .	. III. (f)	Stilbite	. III. (f)
Chloritoid .) (Laumontite .	. III. (f)	per s	. III. (e)
Chondrodite		Lazulite	. III. (a)	Thomsonite .	. III. (f)
Chromite		Lepidolite .	. III. (d)	Thulite	. III. (b)
Chromium-Mica		Leucite	. I.		. III. (b)
corr	. III. (c)	Leucophane .	. III. (e)	Tourmaline .	. II. (b)
Clinohumite .	. III. (b)	Levyne	. II. (b)	Tremolite	. III. (d)
Clintonite .	. III. (e)	Lithionite .	. III. (d)	Tridymite	. II. (a)
Cordierite .		Magnesite .	. II. (a)	Triphane	. III. (c)
/	. II. (a)		. III. (e)	Uwarowite .	. I.
		Malacolite . Margarite		Vesuvian	. II. (b)
	: :	1		7771.2 4.	. III. (b)
			. III. (e) . II. (a)	Withamite . Wöhlerite .	. III. (0)
Datolite	. III. (b)	Meionite	. II. (a)	Wollastonite .	· III. (e)
Delessite	. III. (e)	Melanite			. III. (c)
Desmine	. III. (f)	Melinophane .	. II. (b)	Xanthophyllite	. III. (e)
Diaelasite	. III. (c)	Melitite	. II. (b)	Zeolites	. ' III. (f)
Diallage	. III. (c)	Mieas	. III. (d)	Zinnwaldite .	. III. (d)
	. II. (a)	Microeline .	. III. (f)	Zireon	. II. (a)
Disthene	. III. (a)	Monazite	. III. (a)	Zoisite	. III. (b)
Dolomite	. II. (a)	Mosandrite .	. III. (b)		

Q E 4 3 3 R 6 1

0/

Name.	System.		Cleavage		Characteristic Form.	Char. of Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour.	. 1
		Quality.	Direction.	Angle.		Opt.		Of Principal Zo	ne.	3	
Glass	amorphous					•••				(celourless, yellow- ish, greenish, brewnish, red	
Opal	amorphous									colourless	
Spinel Pleonaste . Hercynite Gahnite . Picotite . Chromite .	regular regular regular regular regular regular				(111), grains (111), grains (111), grains (111), grains (111) (111), grains		::: ::: ::: :::	::: ::: ::: :::		colourless, light red green green green brown brown	
Fluorite	regular	good	111		(100), grains				•••	colourless, violet, etc.	
Grossularia Almandine Melanite . Spessartine Pyrope . Uwarowite Common Garnet.	regular regular regular regular regular regular	bad bad bad bad bad bad	110 110 110 110 110 110 110		(110), grains (110), (211), grs. (110), (110)(211), grains (110), grains grains (110) (110), grains					colourless, pale-green red brown co'ourless, light-reddish blood-red green reddish	
Leucite	regular	•••	· · · ·		(211), round grs.				•••	coleurless	
Sodalite Nosean Hauyne	regular regular regular	fair fair fair	110 110 110		(110), grains (110) (110), grains				•••	colourless, blue, green, yellow, etc.	
Analcime.	regular regular	fair fair	100		(211), (211) (100), grains (111)					colourless	
Perofskite .	regular			•••	(111) (100), grs.	•••	•••			greyish brown, pale violet, brownish yellow	

FRACTING MINERALS.

ular donble
rith Na₂CO₃
treated with es colonr on weak double
d by fusion consistency common.
ulty. Kely-
nals alwaye ith intersect- win-lamelle, on = 0.001.
d double re- secumulation the gelatine few or no (= nosean). of gypsum
ot gypsum
malous with on. 6 double re-
uals mostly with twin-
City of the city o

				_					_		-
Name.	Syste		Cleavage		Characteristic Form.	Opt. Char. of the Minerals.	Principal Zone or Face.	Forms Of the Principal	Opt. Char.	Colour.	
Rutile Cassiterite		(lair	1 110 100 100	90° 90° 90°	prisms, grains knee & heart-shaped twins sagenite-texture grains, rods, prisms, twins	+	110:110 110:110	prismatic prismatic	+	yellow,fox-red,violet colourless, yellowish brownish	E
Zirkon		(4000	1 110	90°	prisms, pyramids	+	110:110	prismatic	+	colourless, yellowish reddish	
Anatase .	tetra	g. {good	001	136½°	pyramidal tabular		001		+	colourless, yellowish bluish	O E
Micaceo Hæmati (Eisengli mer)	ite hex	hedr.			scales		0001			red, yellow, grey	,
Micaceo Ilmeni (Titaneis glimmer)	ite hex	hedr		• • •	scales	•••	0001			madder or clove- brown	
Corundum	hex rhombo	hedr.		•••	prisms, grains, plates	-				colourless, blue	C E
Quartz	hex. rho hedr. (tr	apez.			grains, blebs, doubly-ter- minated pyramids	+				colourless	
Chalcedon	y · hexag				fibrous	-	1010:0110	fibrous	-	colourless, yellowish	
Tridymite.	· · hexag	g.(?) ···		•••	minute plates	+	0001			colourless	
Brucite .	hex rhombo	hedr. good	0001		scales	+ 4	0001	lath-shaped	-	colourless	
Calcite.	hex	nedr. good	×(1011)	105°5′	grains	_				colourless	
Dolomit				106°15′		_	•••			colourless, yellowish	
Magnes			κ(1011) (0001	107°25′	rhombohedra, grains	_	•••			colourless, bluish,	
Apatite	hexag.	pyr. bad	1010		prisms, grains	-	1010:0110	lath-shaped	-	brownish	
Dipyre. Cousernite.	ra-	g. good fair	100	90°	rods, prisms, grains	_	110:110	lath-shaped	_	colourless	
Gehlenite.	. tetra	g. fair	001	•••	isometric	-			•••	colourless	

ING UNIAXIAL MINERALS.

chroism.	$n = \frac{a + \beta + \gamma}{3}$	of Refraction o	etion (n) fraction.	and $\gamma - \beta$	Optic Orien- tation.	2 E	Dispersion.	Specific Gravity.	Behaviour with Reagents.	Chemical Composition.	Remarks.
erceptible	2.759	0.287			c = c			4.2-4.25	not attacked by	TiO,	The fusion with (or solution in) K-S-O2 is coloured orange by
o yellowish-grey		0.107			e = c			6.87	like Rutile	SnO_2	K ₂ S ₂ O ₇ is coloured orange by H ₂ O ₂ . A borax bead, coloured blue with copper sulphate, becomes ruby
	1.987	0.060		•••	c = t			4.4-4.7	like Rutile	$Z_1 SiO_4$	red. Fused with Na ₂ Co ₃ gives tridy-mite-like tablets of ZrO ₂ .
te, orange ue; pale vellow, i perceptible	2.524	0.061			c = a		• • •	3.9	like Rutile	${ m TiO}_2$	Like Rutile.
	1.93			•••	3	• • •	• • •	4.5-5.3	soluble in . HCl	${ m Fe_2O_3}$	REESE LIBRA
					?			4.3-4.9	soluble in HCl with difficulty	${ m FeTiO_3}$	REESE LIBRARY UNIVERSITY CALIFORNIA.
green	1.764	0.009			c = a			3.9—4.0	insoluble in acids	$\mathrm{Al_2O_3}$	Twinning parallel to R; not ds composed by fusion with Na ₂ Co ₃
	1.551	0.009			c = c			2.65	soluble in HFl only	SiO_2	
	1.537	>0.009			c = a			2.59-2.64	like Quartz	SiO_2	•••
	1.428	0.018?			c = c			2.28—2.33	soluble in alkalies	SiO ₂	The plates often divided into si- biaxial sectors.
	1.570	0.021		•••	c = t		•••	2.35	soluble in acids	$ m MgH_2O_2$	Becomes brownish, when moister sd with silver-nitrate on platinum foil.
	1.601	0.172			e = a			2.72	soluble in acetic acid with effervescence	$CaCO_3$	Twinning parallel to k (1012), ver common.
	1.622	0.179	•••		c = a			2.85-2.95	insoluble in acetic acld	CaCO ₃ +MgCo ₃	Twinning parallel to κ (1012), no observed.
					e = a	•••		3.0	insoluble in cold HCl	· MgCO ₃	Twinning parallel to & (1012), not observed.
>.0	1.637	0.004			c = a	•••		3.16—3.22	easily soluble in acids	3(Ca ₃ P ₂ O ₈)+ Ca(C1F1) ₂	Reaction for phosphoric acid with ammonium molybdate in uitric acid solution.
	1·578 1·550	0·036 0·015			c = a	•••		2·74 2·57	soluble in HCl when rich in Ca: insoluble when poor in Ca Mixtures of: Me = Si ₁₂ Al ₁₂ Ca ₈ O ₄ Ma = Si ₁₃ Al ₆ Na ₈ O ₄		Index of refraction, double refraction and specific weight vary with the percentage of lime.
	1.660	0.005			c = a			2.95—3.0	gelatinizes with HCl	$\mathrm{Ca_{3}Al_{2}Si_{2}O_{10}}$	

			1000		_		_					
	Name.	System.		Cleavage.		Characteristic Form.	Char. of Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour.	P
			Quality.	Direction.	Angle.		Opt.		Of the Principal 2	one.		
	ocrase Vesuvian) .	tetrag.		•••	•••	isometric .					colourless, yellow- ish, pink, brown- ish, bluish	
Me	elilite	tetrag.	fair	001		tablets, short prisms	-	001 110 : 110	lath-shaped, almost square	±	colourless to yel- lowish	
	pheline Elæolite)	hexag.	bad	0001 1010	•••	short prisms, grains	_			•••	colourless	
Ca	ncrinite .	hexag.	good	1010	120°	long prisms, rods	-	1010:0110	lath-shaped	-	colourless	
To	urmaline .	hex. rhombohedr.		•••	•••	prisms, grains	-	1010:0110	lath-shaped	_	very variable : vio- let, blue, green	stro
Eu	dialyte	hex. rhombohedr.	fair	0001		isometric	+				reddish, colourless	
Eu	colite	hex. rhombohedr.	fair	0001	•••	isometric	-	•••			reddish, colourless	
Ca	taplëite .	hexag.	good	1010	120°	tabular	+	0001	lath-shaped	_	yellowish, colourless	
Me	elinophane.	tetrag.	good	001		tabular	-	001	lath-shaped	+	pale yellowish, colourless	
	Apophyl- lite	tetrag.	good	001		leafy, granular	Ŧ	•		•••	colourless	
	Chabasite	hex. rhombohedr.	good	κ(1011)	86°	isometric	_				colourless	
Zeolites.	Hydro- nepheline	hexag. (?) tetrag. (?)	•••		•••	grains, short rods	•••	···			colourless	
Zeo	Gismon-dine	tetrag.		•••	• • •		+				colourless	
	Gmelinite	hex. rhombohedr.	fair	1010		rhombohedra, plates	±				colourless	1-3
	Hersche- lite	hexag.	good	0001		tabular	_		lath-shaped	+	colourless	
	Levyne .	hex. rhombohedr,	bad	1011			-			+	colourless	

TING BIAXIAL MINERALS.

	Index Do	of Refrac	tion (n) a raction.	nd	Optic	0.77	rsion,	Specific	Behaviour	Chemical	Remarks.
oism,	$n = \frac{\alpha + \beta + \gamma}{3}$	γ—a	β-α	γβ	Orienta- tion.	2 E	Dispersion,	Gravity.	with Reagents.	Composition.	atom and
	1.726	0.002			c = a	•••		3.40-3.47	not attacked by HCl	essentially a lime- alumina silicate	Melts easily to a glass. Frequent optic anomalies. Double refraction very variable, sometimes even +.
	1.629	0.002			c = a			2.9-2.95	gelatinizes casily with HCl	$(\mathrm{CaMgFe})_{12}\mathrm{Al_4Si_9O_{36}}$	Peg-structure.
	1:54	0.004		•••	c = a		•••	2.55—2.61	gelatinizes with HCl	$\mathrm{Na_{2}Al_{2}Si_{2}O_{8}}$	The gelatine produced by treatment with HCl contains cubes of salt.
	1.515 0.030		•••	•••	c = a			2.45	dissolves with effer- vescence in HCl	${ m Na_2Al_2Si_2O_8} + { m 2~(CaCO_3)} + { m 3H_2O}$	
> E	1.635	0.023	•••		c = a	•••		3.0—3.24	not attacked by acids	$\begin{array}{l} \text{isomorphous mixtures of:} \\ \text{NaHOB}_2\text{O}_33\text{Al}_2\text{O}_34\text{SiO}_2 \\ 5\text{MgOB}_2\text{O}_3\text{Al}_2\text{O}_35\text{SiO}_2 \\ 5\text{FeOB}_2\text{O}_3\text{Al}_2\text{O}_35\text{SiO}_2 \end{array}$	Often apparently biaxial, with small optic axial angle.
112				* * *	c = c	• • •		2.95—3.0	gelatinizes with HCl	Na ₂ (CaFe) ₂ (SiZr) ₆ O ₁₅	
	1.620	0.004	•••		c = a	•••		2.85—2.94	Ditto	Na ₂ (CaFe) ₂ (SiZr) ₆ O ₁₅	= 0
	1.612	0.030	•••	•••	c = c	• • •		2.8	gelatinizes with HCl	(Na ₂ CaFe)(SiZr) ₄ O ₉ + 2 aq	Often apparently biaxial,
	1.602	0.019	•••	•••	c = a	•••	• • •	3.0		6NaF+7[(BeCa) ₃ Si ₂ O ₇]	Often apparently biaxial.
	1.532	0.001	•••		c = a or t			2·35—2·39	dissolves in HCl with separation of pulverulent SiO ₂	$4 H_2 Ca Si_2 O_6 + KF + aq.$	Often optically anomaleus.
	1.50	0.003		•••	c = a	***		2.15	decomposed by HCl with separation of flocculent SiO ₂	$\begin{array}{c} \operatorname{Ca_2Al_4Si_9O_{26}} + 14\operatorname{aq}. \\ \cdot \end{array}$	Frequent twin-lamellation.
	1.47 (?)	•••	•••			•••		2.26	decomposed by HCl	Na ₄ H ₂ Al ₆ Si ₆ O ₂₄ +6aq.	
	1.52	0.008	•••		•••			2.265	gelatinizes with HCl	$CaAl_2Si_2O_8 + 4aq.$	Invariable separation between crossed nicols into several biaxial areas, in which 2 E = 558 (approximately).
	1.48	0.001						2.04-2.12	gelatinizes with HCl	(Na ₂ Ca)Al ₂ Si ₄ O ₁₂ +6aq.	Often optically anomalous.
	1.46	0.002	•••	•••	•••			2.06	decomposed by HCl	(Na ₂ K ₂ Ca)Al ₂ Si ₄ O ₁₂ + 5aq.	Basal sections shew a separation into 6 sectors.
	1.50	0.002						2.1—2.2		$CaAl_2Si_3O_{10} + 5aq.$	Frequent separation into 6 sectors in basal section.

-									_		
Name.	System.		leavage.	Angle.	Characteristic Form.	Opt. Char. of the Mineral.	Principal Zone or Face.	Forms Of Principal Ze	Opt. Char.	Colour.	Pleochroism.
Brookite .	rhombic	good	010		plates	+	100	narrow lathes	_	fox-red	feeble
Pseudo- brookite.	rhombic	•••	•••		plates	+	100	narrow lathes	_	fox-red	feeble
Aragonite .	rhombic				columnar	-	100010	lath-shaped	-	colourless	
Anhydrite .	rhombic	good	$\begin{cases} 010 \\ 001 \\ 100 \end{cases}$		isometric	+				colourless	
Gypsum (Selenite)	monoclinic	good fair	010 111 100		leafy, granular	+				colourless	
Monazite .	monoolinio	good fair	001 100		thick tablets	+	•••			pale brown	···.
Lazulite .	monoclinic	•••	•••		grains, pyramids	_	•••			blue	a colourless, b =
Andalusite (Chiastolite)	rhombic'	good	110	91°	columnar,granular	_	110:110	lath-shaped	-	colourless*	c pink, a = colourless
Sillimanite	rhombic	good	100		columnar, acicular	+	100:010	long lathes	+	colourless	
Kyanite (Disthene)	triclinic	good fair	100 010		columnar, leafy	_	100:010	lath-shaped	+	colourless, blue	feeble, betwe bluish & colourl
Topaz	rhombic	good	001		isometric	+			•••	colourless	
Dumortierite	rhombic	fair	110	120°	acicular, fibrous	-	110:110	long lathes	-	blue	c blue, a = b ye lowish to colourl
Staurolite .	rhombic	fair	010		short columnar	+	110:110	lath-shaped	+	yellow, reddish	c red, a = b yo lowish
Sapphirine	monoclinic	good fair	010 100 110	80°	grains, plates parallel to 010	-	•••			pale blue to colour- less	a pale blue, c = colourless
Carpholite	monoclinic(?) rhombic (?)	•••	•••		acicular, fibrous		110:110	rod-shaped lath-shaped	+	yellowish, colour- less	c colourless, a = straw-yellow, ye lowish green
Axinite	triclinic	fair	010		grains, plates	-				colourless	

CING BIAXIAL MINERALS.

Index D $n = \frac{a+\beta+\gamma}{3}$	ouble Re	ction (n) fraction.	and γ-β	Optic Orientation.	2 E	Dispersion.	Specific Gravity	Behaviour with Reagents.	Chemical Composition.	Remarks.
2.53	very high			a = t, c = a $a = t, b = a$	>90° 46°	$ \begin{array}{c c} \rho < v \\ \rho > v \end{array} $	3.8-4.15	insoluble in acids	TiO ₂	The optic axial plane for yellow and red often lies in 001, that for blue in 010.
very high	very high			a = t, b = a	84°30½′ (2 H)	ρ < v	4.98	insoluble in HCl	46—47%TiO ₂ ,48% to 49%Fe ₂ O ₃ ,4—5%MgO	Soluble in sulphuric acid on boiling.
1.631	0.156	0.153	0.004	c = a, b = c	30°	ρ < υ	2.94	like Calcite	${ m CaCO_3}$	
1.587	0.043	0.005	0.038	a = c, c = a	71°		2.8—3	notably soluble in H ₂ O	CaSO ₄	REESE LIBRARY
1.524	0.009	0.002	0.007	$b = h, c : t = 53^{\circ}$ behind	95°	inclined	2·2—2·4	notably soluble in H_2O	$CaSO_4 + 2 aq.$	CALIFORNIA STAY
1.811	0.046	0.001	0.045	$b=a, c:t=3^{\circ} \text{ in front}$	24°	horizontal ρ < υ	49:—5:2	soluble in HCl	$(CeLa)_3P_2O_8$	Twinning parallel to 100.
1.625	0.036	0.029	0.007	$b = b, c: a = 9\frac{1}{2}$ behind	135°	inclined $\rho \leq v$	3-3.12	scarcely attacked by HCl	$\rm (MgFe)Al_2P_2H_2O_{10}$	
1.638	0.011	0.006	0.005	c = a, a = t	>180°		3.16-3.2	unattacked even by HFl	$\mathrm{Al}_2\mathrm{SiO}_5$	Frequent inclusions of carbon-accone matter.
1.667	0.021	0.002	0.019	c = t, $b = a$	40°	strong $\rho < v$	3.24	like Andalusite	$\mathrm{Al_2SiO_5}$	
1.720	0.016	0.008	0.008	a nearly 1 100, t in 100 in the acute ₹ a 30° oblique to M: T	vari- able	ρ < υ	3.5—3.7	like Andalusite	$\mathrm{Al_2SiO_5}$	Gliding along 001. Twinning parallel to 100.
1.620	0.010	0.002	0.008	c = c, a = a	70°-120°	$\rho > v$	3.54	like Andalusite	$5\mathrm{Al_2SiO_5} + \mathrm{Al_2SiFl_{10}}$	
1.65	0.010	•••		c = a, a = r	50°	(ρ < υ (Bertrd.) (ρ > υ (M. L.)	3.36	insoluble in acids	$\mathrm{Al_8Si_3O_{18}}$	Twinning on the Aragonite-type.
741—1.752	0.0100.012	0.005	0.005	c = r, $b = a$	>180°		3·4—3·8	insoluble in acids	$\mathrm{FeAl_4Si_2O_{11}}$	
1.665	0.009	•••	•••	$b = \mathfrak{b}$	very large	ρ < υ	3·4—3·5	insoluble in acids	$\mathrm{Mg_4Al_{10}Si_2O_{23}}$	Twinning parallel to a face of the zone of the principal cleavage.
1.640	0.024	•••		c = c	110°	•••	2.93	insoluble in acids	$ m H_4MnAl_2Si_2O_{10}$	A measurement of the angle of extinction to c could not be carried out in Carpholite from Schlaggenwald. According to Michel Levy and Lacroix it is 5° in Carpholite from Wippra.
1.677	0.009	0.005	0.004	a _ (111)	171°	horizontal and inclined	3.3	insoluble in acids	$H(CaFe)_3Al_2BSi_4O_{16}$	

-												
	Name.	System.		leavage.		Characteristic Form.	Opt. Char. of the Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour	Pleochroism
			Quality.	Direction.	Angle.		Q.#3		Of the Principal	Zone,		
Co	rdierite .	rhombic	bad	010		short columns, grains	-				colourless, blue	c yellowish white, h blue or colourles
Pr	ehnite .	rhombic	good	001		leafy, tabular, granular	+	001		•••	colourless	
	tolite otryolite)	mono- clinic				isometric, fibrous	_	•••			colourless	
Ho	milite .	mono- clinic	•••	•••	•••	variable, often short columns parallel to b or c	+				greenish	b > a > c
Ga	dolinite.	mono- clinic		•••			+				bottle-green, brownish	
Oli	ivine	rhombic	fair	{010 100		tables, short columns, grains	+		lath-shaped, isometric		colourless, greenish,yellowish	•••
Fa	yalite .	rhombic	fair	${010 \atop 100}$	•••	ditto		• • •	ditto		colourless, reddish, yellowish	
Hu	ımite	rhombic?	good	001		grains	+		isometric to elliptical		colourless to golden yellow	a pale brown, b e deep golden ye
a	nohumite nd Chon- rodite .	mono- clinic	good	001	•••	ditto	+		ditto		ditto	ditto
	Zoisite .	rhombic	{good bad	010 100		short rods, leafy	+	100:010	lath-shaped	±	colourless	
	Thulite.	rhombic	{good } bad	001 100		ditto	+	ditto	ditto	±	reddish	e yellowish, b pi a reddish white
ທັ	Pistacite	mono- clinic	{good {fair	001	115°24	rods, grains	-	001:100	ditto	±	colourless, yellowish,	c green, b yellow green, a colour
9 (Piedmon- tite, Wi- thamite	mono- clinic	{good {fair	001 100		ditto	+	ditto.	ditto	±	red, yellow	c red, b amethys coloured to pir a orange to cit yellow
	Orthite (Allanite)	mono- clinic	{good {fair	001 100	•••	columns, prisms	-	ditto	ditto	±	brown	¢ brownish yello b deep brown re a pale brownish g
Mo	sandrite	monoclinic	good	100		plates	+	100:010 001:100	short lathes		colourless to pale yellow	
Rin	nkite	monoclinic	good	100	•••	ditto	+	ditto	ditto		yellow to colour- less	c yellowish, a=

ING BIAXIAL MINERALS.

D	of Refra	fraction.		Optic Orientation.	2 E	Dispersion.	Specific Gravity.	Behaviour with Reagents.	Chemical Compositions.	Remarks.
$n = \frac{\alpha + \beta + \gamma}{3}$	γ—α	βα	γ-β			Di				
1.542	0.009	0.006	0.003	c = a, $b = c$	64°150	ρ < υ	2.59-2.66	insoluble in HCl	$\mathrm{Mg_{2}Al_{4}Si_{5}O_{18}}$	Twinning on the Aragonite type.
1.630	0.033	0.010	0.023	c = t, $a = a$	125°	ρ < υ	2.8—3.0	insoluble in HCl	$\mathrm{H_{2}Ca_{2}Al_{2}Si_{3}O_{12}}$	Occasionally intersecting systems of polysynthetic twin-lamella, with considerable change in the axial angle, double refraction and optic character.
1.650	0.044	0.028	0.016	b = b, c:a = 4° behind	176°	ρ > υ	2.8-3.0	gelatinizes with HCl	$\mathrm{H_{2}Ca_{2}B_{2}Si_{2}O_{10}}$	F
1.678	0.021	•••		$b = a, c : c$ nearly 0°	122°	ρ > υ horizontal	3.3	ditto	$\mathrm{FeCa_2B_2Si_2O_{10}}$	Twins parallel to 001, also 034 and 021; often intergrown with yellow amorphous lamellæ.
>1.78	•••			$b = b, c : c = 3^{\circ}$ behind	great	$\rho < v$	4-4.3	ditto	$\mathrm{FeBe_2Y_2Si_2O_{10}}$	Often altered to an amorphous substance, then free from Be.
1.678	0.036	0.017	0.019	a = c, b = a	>180°	$\rho < v$	3.4	gelatinizes with HCl	$({ m MgFe})_2{ m SiO}_4$	Often altered to serpentine. Twins parallel to 011 rare.
•••	0.043-0.048	•••	•••	•••	•••		4-4:14	ditto	Fe ₂ SiO ₄	
1.622	0.032-0.038	•••		a = c, b = a	153°	ρ < υ	3.06—3.23	soluble in HCl	$\mathrm{Mg_{5}Si_{2}(OF_{2})_{9}}$	Frequent polysynthetic twinning parallel to a face of the zone 001:010.
1.622	0.033	0.012	0.020	$b = t, a : a = 12^{\circ} - 30^{\circ}$ in front; above	ditto	crossed	ditto	ditto	ditto	Mostly polysynthetic twins parallel to 011.
1.000	0.006	0.001	0.005	a = c, c = a	10°-100°	$\rho < v$	3.25—3.36	unattacked	TI C ALC: O	
1.696		0.001	0.003	a = c, b = a	10 -100	p - v	3.28-3.40	by HCl	$\mathrm{H_{2}Ca_{4}Al_{6}Si_{6}O_{26}}$	•••
•••	0.006	•••	***	b = b, c:a =	>180°	ρ < υ		ditto	Mn ₂ O ₃ -bearing Zoisit	•••
1.756	0°0380°056	0.024	0.014	3°—5° behind	1 80°	$\rho > v$	3.39	ditto	$\mathrm{H_{2}Ca_{4}(AlFe)_{6}Si_{6}O_{26}}$	Twins parallel to 100 not rare.
1.76	0.05		•••	$b = b, c : c = 3^{\circ} - 5^{\circ}$ behind	•••		3.40	ditto	$\rm H_2Ca_4(AlFeMn)_6Si_6O_{26}$	ditto
>1.78	0.032	•••		b = b, a:a = 30° in front	>180°	•••	3.55—3.8	attacked by HCl with difficulty	H ₂ (CaFe) ₄ (Al Ce Fe) ₆ Si ₆ O ₂₆	Twins parallel to 100. Often altered to isotropic substances. According to $Br\ddot{o}gger$ an orthite from the augite-syenite of Langesund, having a small $2E$ and $-(?)$ double retraction, gives $b=c$, $c:a(?)=22^o-37\frac{1}{2}$ behind $c>b>a$ from deep brown to pale strawyellow.
1.7716	0.0122	0.0035	0.0087	$b = b, c : a = 2^{\circ}$ behind	169°	inclined $ ho$ v	2.93—3.03	soluble in HCl	2(R RO ₃)+RHO	Twinning parallel to 100. I (R = Ce, La, Di,Mg,Ca,Fe), IV I R = Si,Ti; R = K,Na.H. Almost always Intergrown with Fluorite.
great	small		•••	$b = a, c : b = 7\frac{1}{2}$	not great	horizontal $\rho < v$	3.46	ditto	2(R RO ₃)+NaF	Twinning parallel to 100. Almost always intergrown with Fluorite. II R = Ce,La,Di,Y,Fe,Ca IV R = Si,Ti

-												
	Name.	System.	C	leavage.		Characteristic Form.	t. Char. of Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour.	Pleochroism
_			Quality.	Direction.	Angle.		Opt.		Of the Principal	Zone.		100
Ro	osenbuschite	mono- clinic	{good fair	001 100 201	•••	rods, needles	-	001:100	long lathes	_	light orange	feeble c > b:
Pe	ctolite	mono- clinic	good	{ 001 100		rods, needles	+	001:100	long lathes	+	colourless	
w	ollastonite .	mono- clinic	good	\begin{cases} 001 \\ 002 \\ 100 \\ 101 \end{cases}	•••	rods, needles	-	001:100	long lathes	<u>+</u>	colourless	
	Bronzite and Enstatite	rhombic	$\begin{cases} \operatorname{good} \\ \operatorname{fair} \end{cases}$	010 110 100	88°	short prisms, grains	+	100:001	long lathes	土	almost colourless,	feeblo
	Hyper- sthene .	rhombic	fair	Ditto	,	Ditto	_	Ditto	Ditto	+	greenisb, reddish	green, brownis red, reddish yell
	Diaclasite	rhombic	fair	Ditto		Ditto	-	•••	Ditto	+	yellowish	very feeble
	Diallage .	mono- clinic	good	100 110	87°	grains, short prisms	+	Ditto	isometric	•••	greenish yellowish	variable
Pyroxenes.	Green Augite . (Diopside, Malacolite, Salite)	mono- clinic	good	110	87°	prisms, grains	+	Ditto	long lathes	• • •	colourless to greenish	
H	Augite	mono- clinic	good	110	87°	short prisms, grains	+	Ditțo	broad lathes	•••	green, pink, brownish, violet	very variable
	Aegyrine (Acmite)	mono- clinic	good fair	110 010	87°	prisms	+(3)	Ditto	long lathes	_	green (brown)	a green (brown boliveto sap green (pale brown), grass green (greenish yellov
	Jadëite .	mone- clinic	good fair	110 100	87°	Ditte	+	Ditto	lath-shaped		colourless	
	Triphane.	mono- clinic	good	110 100	87°	Ditto	+	Ditto	lath-shaped	•••	colourless	• • •
Wċ	öhlerite	mono- clinic	$\begin{cases} \operatorname{good} \\ \operatorname{fair} \end{cases}$	010 100 110	90°	tabular	-	100	tabular lath-shaped		pale yellow	
Las	avenite	mono- clinic	good	100	•••	prisms, grains	-	110:110	lath-shaped	•••	yellow	t deep red brow. b greenish yellov a light wine- yellow

TING BIAXIAL MINERALS.

Index of 3 := $\frac{\alpha+\beta+\gamma}{3}$	of Refraction (n) and Double Refraction. $\frac{\beta+\gamma}{3}$ γ —a β —a γ — β		Optic Orientation.	2 E	Dispersion.	Specific Gravity.	Behaviour with Reagents.	Chemical Composition.	Remarks.	
high	large			b=x, c: t= 36° behind	large		3.31	easily gela- tinizes with HCl	$ m R_2(SiZrTi)_2O_6 m Na(FeTiLa)Si_2O_6$	$R=Ca, Mn, Na_2, H_2.$
1.6	0.038			b=t, c:n= 6° in front	107°	•••	2.8	soluble in HCl with separation of flocculent SiO ₂	$(\mathrm{CaNa_2H_2})\mathrm{SiO_3}$	Twins parallel to 100.
1.630	0.014	0.012	0.002	b=b, c: n= 38° in front	690	ρ > υ	2.8-2.9	easily gela- tinizes with HCl	${\rm CaSiO_3}$	Twinning parallel to 100.
1.668	0.010	0.005	0.005	c=£, a=#	>180°	ρ < υ	3·1—3·3	insoluble in HCl	(MgFe)SiO ₃	Intergrown with diallage. Cleavage-flakes parallel to 010 do not show the locus of an optic axis or hisectrix.
l·70–1·715	0.013	0.010	0.003	Ditto	95°	ρ > υ	3.5	Ditto	$({ m FeMg}){ m SiO_3}$	Ditto.
•••		***	•••	b=n, c=r		ρ > υ	> 2.8	Ditto	like bronzite, but containing H ₂ O	Intermediate between bronzite and bastite.
1.688	0.024	0.002	0.022	b=b, c:t= 39° in front	990		3.3	Ditto	Ca(MgFe)Si ₂ O ₆ (Al ₂ O ₃)	Intergrown with bronzite. By taking up water, 2 E is apparently reduced. Cleavage-flakes parallel to 100 show the locus of an optic axis.
1.680—1.720	0.030	0.008	0.022	Ditto	112°		3.3	Ditto	Ditto	Twinning parallel to 100.
1.715	0.022	•••		b=b, c:r= 45°-54° in front	70°–103°	•••	3.4	Ditto	$\begin{array}{c} \operatorname{Ca(MgFe)Si_2O_6} \\ (\operatorname{MgFe})(\operatorname{AlFe})_2\operatorname{SiO_6} \end{array}$	Twinning parallel to 100, more seldom parallel to 001.
1.808	0.052	•••		b=b, c: n=' 3°-5°	•••		3.5	Ditto	$\mathrm{Na_4Fe_2Si_4O_{12}}$	Twinning parallel to 100. Often zonal structure—the onter portion brown, the inner portion green.
1.666 (?)	0.029		•••	b=b, c:t= 31°-45° in front			3.3	Ditto	$\mathrm{Na_2Al_2Si_4O_{12}}$	Twinning parallel to 100.
1.667	0.016	0.006	0.010	b=b, c: c= 26° in front	101°		3.15	Ditto	$\mathrm{Li_2Al_2Si_4O_{12}}$	
1.714	0.026	0.016	0.010	b=t, c: n= 43° behind	176°	strong ρ < υ	3.41	soluble in HCl with separation of silicic and niobic acids	(CaNa ₂) ₁₈ Nb ₂ (SiZr) ₁₂ O ₄₂	Twinning parallel to 100. Crystallographic position according to Des Cloizeaux.
high	large	•••		b=b, c:π= 21° behind			3.51	insoluble in HCl	$\begin{array}{c} \mathrm{SiO_2}{=}29^{\circ}63,\ ZrO_2{=}28^{\circ}79\\ \mathrm{Ta_2}O_5{=}5^{\circ}20,\ \mathrm{Fe_3}O_3{=}4^{\circ}73\\ \mathrm{Ti_2}O_3{=}2^{\circ}11,\ \mathrm{MnO}{=}5^{\circ}59\\ \mathrm{CaO}{=}9^{\circ}70,\ \mathrm{Na_2}O=10^{\circ}77\\ \mathrm{H_2}O{=}2^{\circ}24 \end{array}$	

	Name.	System.	Cleavage.			Characteristic	Char. of Mineral	Principal Zone or	Forms	Opt. Char.	Colour,	
паше,		System.	Quality. Direction. Angle.		Form.	Opt. Cl	Zone or Face.	Of the Principal	Zone.		Pleochro	
	Antho- phyllite.	rhombie	good	100 110	124°	rods	+	110:110	lath-shaped	+	almost colourless	feeble
	Gedrite .	rhombie	ditto	ditto		ditto	_	ditto	ditto	+	ditto	ditto
oles.	Tremolite.	monoclinic	ditto	110	124°30′	ditto	-	ditto	ditto	+	colourless	
	Actinolite (Smaragdite Nephrite)	monoclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	+	green	feeble in tints, r>
	Common Horn- blende	monoclinic	ditto	ditto	ditto	rod-shaped, leafy, granular	-	ditto	ditto	+	green, brownish	strong and $\mathfrak{c} \geq \mathfrak{b} > \mathfrak{u}$, green, \mathfrak{x} ye
mphib	Basaltic Horn- blende	monoclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	+	brown	strong in land yellow $t \ge b > \pi$
A	Arfvedso- nite	monoclinic	ditto	ditto	ditto	prisms	+	ditto	ditto	+	green,bluish green	between grand bluis
	Barkevi- cite	monoclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	+	brown	strong in land yell
	Glauco- phane Gastaldite	monoclinic	ditto	ditto	ditto	rod-shaped, leafy	_	ditto	ditto	+	blue	t blue, b
	Riebeckite	monoclinic	ditto	ditto	ditto	prismatic, fibrous		ditto	ditto	-	blue, green	c green, b
	nigmatite = Cossyrite	triclinic	good	110 110		prisms		110:110	lath-shaped		brownish red, coffee brown to opaque	feeble
	Biotite (Meroxene, Lepidomelane)	monoclinic good 001 leafy, tabular		leafy, tabular	-	⊥ 001	lath-shaped	+	brown, green,	strong r≥		
П	Anomite .	monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	ditto	ditto
Æ	Phlogopite	monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	ditto	ditto, but feeble
Mica	Zinnwal- dite Lithionite	monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	pale flax-colour greenish white deep red-brown	of variable $t > b >$
	Lepidolite	monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	colourless	•••
	Muscovite	monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	colourless, greenish	
		monoclinic	ditto	ditto		ditto	-	ditto	ditto	+	colourless	o H
	Chromium- mica		ditto	ditto	•••	ditto	-	ditto	ditto	+	green	

V-REFRACTING MINERALS.

Nov27										
α and $\beta - \gamma$			Optic Orientation.	2 E Specific Gravity. Behaviour with Reagents.		Chemical Composition.	Remarks.			
72-1)9	0.015	c = t, a = a	177°	ρ<υ	3.15-3.24	insoluble in HCl	(MgFe) SiO ₃	
B 185				ditto	88°	$\rho > v$		ditto	ditto, but containing Al ₂ O ₃	
		14	0.014	$b = b, c : t = 18^{\circ}$ behind	77°	ρ < v	2.9-3.0	ditto	$CaMg_3Si_4O_{12}$	• • •
1.628	0.025	0.016	0.009	ditto	77°	ρ>υ	3.02-3.1	ditto	${ m Ca(MgFe)_3Si_4O_{12}}$	
1.642	0.023	0.012	0.011	$b = b, c : c = 12^{\circ} - 22^{\circ}$ behind		•••	3.2-3.3	ditto	ditto, but containing ${ m Al_2O_3}$	Twins parallel to 100.
1.71—1.72	0.072	0.045	0.027	$b = b, c : t = 0^{\circ} - 10^{\circ}$ behind	>180°	ρ<υ	3.3	ditto	ditto, rich in Fe ₂ O ₃ and Al ₂ O ₃	The donble refraction is that given by Michel Levy and Lacroix; they are maximum values, determined on Bohemian horablendes. Twinning parallel to 100.
1.70 %				$b = b, c : c(?)$ $= 14^{\circ} \text{ in front}$	•••		3.5	ditto	essentially Na ₂ Fe ₂ Si ₄ O ₁₂	•••
1.698	0.021	0.020	0.001	$b = b, c : t - 0^{\circ} - 12^{\circ}$ behind			3.5	ditto	ditto	
1.644	0.022	•••		$b = b, c : c = 5^{\circ}$ behind	•••	•••	3.1	ditto	essentially Na ₂ Al ₂ Si ₄ O ₁₂	
	weak	•••	• • •	$b = b, c : a = 5^{\circ} - 7^{\circ}$	large	***	> 3.3	ditto	essentially Na ₂ Fe ₂ Si ₄ O ₁₂	
				extinction-angle on 100 = 30°, on 010 39°, measured to cleavage-cracks			3.75	insoluble in HCl	approximately like hornblendes rich in iron and soda	Twinning parallel to 010.
	0.050		•••	b = b, e : π =	0°—73°	ρ<υ	2.8-3.2	attacked by HCl	$\begin{array}{c} \operatorname{Si_6(AlFe)_6(KH)_6O_{24}} \\ \operatorname{Si_6(MgFe)_{12}O_{24}} \end{array}$	Frequent twinning, according to Techermak's law.
				$b = t, c : \pi = 0^{\circ} - 8^{\circ}$	0°—40°	$\rho \lesssim v$	ditto	ditto	ditto	ditto
1.584	0.044	•••	•••	like biotite	0°-30°	ρ < υ	2.75-2.97	ditto	ditto, often contain- ing fluorium	ditto
				like biotite	0°—65°	$\rho > v$	2.82-3.20	ditto	lithium-bearing, rich in iron	ditto
	•••	•••	•••	$b = c, c : x = 0^{\circ} - 2^{\circ}$	50°—70°	$\rho > v$	2.76-2.85	not attacked by HCl	Si ₆ Al ₆ (KLi) ₆ O ₂₄ , F-bearing	
1.592	0.042	0.039	0.003	$b = c, c : \pi = 0^{\circ} - 2^{\circ}$	40°—70°	ρ>υ	2.76—3.1	ditto	$\mathrm{Si_6Al_6K_2H_4O_{24}}$	
1.57 ?	great	•••		like muscovite	70°	ρ>υ	2.778	ditto	$\mathrm{Si_6Al_6Na_2H_4O_{24}}$	
	• • •		***		•••				$\mathrm{Si_6(Al,Cr)_2K_2H_4O_{24}}$	

		_										
	Name.	System.		Cleavage.		Characteristic Form.	Opt Char. of the Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour.	Pleochroism
_			Quality.	Direction.	Angle.		Opt		Of the Principal 2	Zone.		
Ma	rgarite	mono- clinic	good	001		scales, plates		Τ 001	lath-shaped	+	colourless	
Та	le	rhombic	good	001		scales, plates	_	Τ 001	lath-shaped	+	colourless	
Ka	olinite	triclinic	good	001		scales, plates	-	⊥ 001	lath-shaped	+	colourless	
d group.	Chloritoid, Ottrelite, Sismon- dine, Ma- sonite	mono- clinic	good	001		scales, plates	+	⊥ 001	lath-shaped	_	green, blue, seldom colourless	t yellowish go b plum colou indigo-blue n olive-gree
Chloritoid	Brandisite, Xantho- phyllite	mono- clinic	good	ditto		ditto	-	ditto	ditto	+	brownish yellow, yellowish green	moderate to fe
บี	Clintonite Seybertite	mono- clinic	good	ditto		ditto	-	ditto	ditto	+	ditto	ditto
As	trophyllite	triclinic	good fair	001 010		leafy, tabular	+	⊥ 001	lath-shaped	+	yellow	between yellov yellowish bro
ω.	Pennine, Ripido- lite	mono- clinic	good	001		scales	+	1,001	lath-shaped	±	green	yellowish to dish for ray 1 001, green
rite	Clino- chlore	mono- clinic	good	ditto		ditto	+	ditto	ditto	-	ditto	ditto
Chlo	Kämme- rerite	mono- clinic	good	ditto	***	ditto	+	ditto	ditto	-	peach-blossom to colourless	feeble
	Delessite.	(?)	good	ditto	***	ditto, sphero- crystals	_	ditto	ditto	+	colourless to greenish yellow	feeble
Serpentines.	Serpentine, Chrysotile	}rhombic		•••		fibrous	+	110:110	fibrous	+	colourless, green- ish, yellowish	
pent	Bastite .	rhombic	good	010		tabular, leafy	_			• • • •		
Ser	Antigorite	rhombic	good	010	•••	tabular, leafy	-	•••	•••		yellowish	very feeble
Sp	hene	} mono- clinic	fair	110	133°52′	prisms, grains	+				colourless, yellow- ish, reddish	c = yellowish b = greenish a = pale yello
Le	ucophane .	rhombic (sphen, hem.)	good	010		grains	_	•••			colourless	

FRACTING BIAXIAL MINERALS.

	Index of R	Refract	ion.		Optic Orientation.	2 E.	Dispersion.	Specific Gravity.	Behaviour with Reagents.	Chemical Composition.	Remarks.
	$n = \frac{\alpha + \beta + \gamma}{3}$	γα	β—α	γβ			Ä				
	1.75	0.009			b=b, ¢:π=	10°—70°	ρ < υ	2.8—3.1	not attacked by HCl	$\mathrm{H_{2}CaAl_{4}Si_{2}O_{12}}$	
	1.551	0.01-0.02			b=c, c=n	10°—20°	ρ > υ	2.7—2.8	not attacked by HCl	$ m H_2Mg_3Si_4O_{12}$	
	1.54	strong		•••	c: n=12°, b=r			2.34—2.57	dissolved by boiling sul- phuric acid	$ m H_4Al_2Si_2O_{12}$	
,	1.72	0.012			b=b, a: x= 12°-18°	108°	ρ > υ	3:54	unattacked by acids	H ₂ (FeMgMn)Al ₂ SiO ₇	Twinning according to Tschermak's law very common. Zonal structure.
9	1.654	0.012	•••	•••	b=b, c: x= 0°-5°	0°—30°	ρ < υ	3.0-3.1	scarcely attacked by acids	$H_4(CaFeMg)_6(AlFe)_6$ Si_2O_{21}	Twinning according to Tschermak's law very common.
		•••		•••	b=t, c: π= 0°-10°	0°—30°	ρ < υ	3.0-3.1	ditto		ditto.
d	1.704	0.055	0.025	0.030	a nearly normal to 001, b nearly normal to 010	> 180°	•••	3·3—3·4	insoluble in acids	${ m H_8(KNa)_4(FeMn)_9Fe_2} \over { m Ti_4} { m ^5i_{13}O_{52}}$	Polysynthetic twin-lamella- tien parallel to 010.
1	1.577	0.001-0.003	•••	• • •	a or tappa- rently 1 001	very small	•••	2.60—2.96	gelatinizes with HCl	$H_8(MgFe)_5(AlFeCr)_2$ $Si_3()_{18}$	Pseudo-hexagonal.
Ì	1.589	0.005-0.011	0.003	0.008	b=b, s makes an angle of 12°-15° with the nermal to 001	0°—75°	•••	ditto	ditto	ditto	Twinning according to Tschermak's law common.
ı		feeble			ditto		• • •	2.62-2.76	ditto	ditto, contains chro- mium	
	1.619	0.014	•••		a apparently perpendicular to 001	00	•••	2.89	ditto	ditto, rich in FeO	
	1.54	0.009			e=r			2.5-2.7	gelatinizes with acids	H ₄ (MgFe) Si ₂ O ₉	
	1.574	small			$c=\epsilon$, $b=a$	20°90°	P > v	2.6-2.8	ditto	ditto	Clcavage-flakes show the locus of a bisectrix.
	1.565	0.011	0.010	0.001	e=r, b=n	20°—90°		2.5	ditto	ditto	ditto.
	1.930	0.121	0.006	0.115	b=b, £ <u>1</u> 102	50°	ρ > υ	3·3—3·7	not attacked by HCl	${\rm CaSiTiO}_5$	Twinning parallel to 001,
	1.588	0.027	0.024	0.003	c=t, a=#	74°	$\rho > v$	2.97	• • •	6 NaF + (Be.Ca) ₁₅ Si ₁₄ O ₄₃	Intersecting systems of polysynthetic twin-lamella frequent.
					Telegraph Tolling						

							1055						
	Name.	System.	C	leavage.		Characteristic Form.	Opt. Char. of the Mineral.	Principal Zone or Face.	Forms	Opt. Char.	Colour.	Pleochroism.	In
			Quality.	Direction.	Angle.		Opt. the I	Face.	Of the Principal 2	ione,			$n = \frac{a+1}{2}$
	Orthoclase	mono- clinie	good	$001 \\ 010$	900	prisms, tables, grains	-	001:010 110:110	lath-shaped, tabular	<u>+</u>	colourless	•••	1.523—1
	Sanidine .	mono- clinic	ditto	ditto	ditto	ditto	-	ditto	ditto	do.	ditto	•••	ditto
	Microcline	triclinic	ditto	ditto	90°20′	ditto	_	ditto	ditto	do.	ditto		1.51
	Anortho- clase	triclinic	ditto	ditto	ditto	ditto	_	ditto	ditto	do.	ditto		1.52
elspars.	Albite	triclinic	ditto	ditto	93°to 94°	ditto	+	ditto	ditto	do.	ditto		1.58
Fels	Oligoclase	triclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	do.	ditto		1.50
	Andesine .	triclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	do.	ditto .		1.5
	Labrado- rite	triclinic	ditto	ditto	ditto	ditto	+	ditto	ditto	do.	ditto		1:5
	Bytownite	triclinic	ditto	ditto	ditto	ditto		ditto	ditto	do.	ditto		•••
	Anorthite.	triclinic	ditto	ditto	ditto	ditto	-	ditto	ditto	do.	ditto		1.50
	Natrolite . (Mesotype)	rhombic	good	110	91°	needles, prisms	+	110:110	narrow lathes	+	colourless yellowish		1.4
	Scolecite .	mono- clinic				ditto	-	ditto	ditto	-	colourless		1.5
	Desmine .	mono- clinic	good	010		rods, leaves	-	001:010	lath-shaped	-	ditto		1.4
	Phillipsite	mono- clinic	ditto	010		small prisms, needles	+	ditto	ditto	+	ditto		1.5
tes.	Harmo- tome .	mono- clinic	ditto	010 001	900	ditto	+	ditto	ditto	±	ditto		1.5
Zeolites.	Heulandite (Stilbite)	mono- clinic	ditto	010		leafy, tabular	+	001:100	lath-shaped tabular	-	ditto	***	1.5
	Epistilbite	mono- clinic	ditto	010		prisms	-	110:110	lath-shaped	+	ditto	•••	1.5
	Brewste- rite	mono- clinic	ditto	010	•••	prisms	+	ditto	ditto	-	ditto		1.4
	Thomso- nite	rhombic	ditto	010 100		tabular, leafy	+	ditto	ditto	±	ditto		1.5
Ē	Laumon- tite	mono- clinic	good bad	010 100		small prisms	-	ditto	ditto	+	ditto		1.5

ING BIAXIAL MINERALS.

of Refracuble Ref	tion (n) a	and		0.7	rsion.	Specific	Behaviour	Chemical	Daniel
γ-α	β-а	γ-β	Optic Orientation.	2 E	Dispersion	Gravity.	with Reagents	Composition.	Remarks.
0.007-0.010	0.004	0.003	$b = c$, $a : \pi = 5^{\circ}$ above	125°	ρ > υ	2.56	insoluble in acids	$(\mathrm{KNa})_2\mathrm{Al}_2\mathrm{Si}_6\mathrm{O}_{16}$	Twins on the Carlsbad type frequent; Baveno and Manebach types rarer.
ditto	ditto	ditto	ditto, or $b=b,a:a=5^{\circ}$ above	0°—50°	$\rho \gtrsim v \rho < v$	2.56	ditto	ditto	ditto
ditto	ditto	ditto	a: $a : a : n : 001 = +15^{\circ}$ a: $a : a : n : 010 = +5^{\circ}$	130°	ρ > υ	2.56	ditto	ditto	Intersecting systems of polysynthetic twin-lamellæ almost invariably present.
0.007	0.006	0.001	a: π in $001 = +1\frac{1}{2}$ ° to 6 ° a: π in $010 = +6$ to 10 °	72°—88°	ρ > υ	2.58—2.60	ditto	$(\mathrm{Na_2K_2Ca})\mathrm{Al_2Si_6O_{16}}$	Extremely fine, intersecting twin- lamellæ frequent.
0.008	0.002	0.006	a: π in $001 = +4^{\circ}$ a: π in $010 = +18^{\circ}$	155°	ρ < υ	2.62	ditto	$\mathrm{Na_2Al_2Si_6O_{16}}$	Twin-lamellation on the Albite and Carlsbad types very common; less frequent on the Pericline and Baveno types.
0.008	0.004	0.004	$a: \pi \text{ in } 001 = +1^{\circ}$ $a: \pi \text{ in } 010 = +4^{\circ}$		$\rho < v$	2.64	ditto	$\mathbf{A}\mathbf{b}_{6}\mathbf{A}\mathbf{n}_{1}$ — $\mathbf{A}\mathbf{b}_{2}\mathbf{A}\mathbf{n}_{1}$	ditto
0.008	0.004	0.004	a: π in $001 = -2\frac{1}{2}^{\circ}$ a: π in $010 = -9^{\circ}$		•••	2.65	ditto	$\mathbf{A}\mathbf{b_3}\mathbf{A}\mathbf{n_2}$ — $\mathbf{A}\mathbf{b_4}\mathbf{A}\mathbf{n_4}$	ditto
0.008	0.003	0.005	a: π in $001 = -7^{\circ}$ a: π in $010 = -20^{\circ}$	• • •	$\rho > v$	2.69	scarcely attacked by HCl	$\mathbf{A}\mathbf{b}_1\mathbf{A}\mathbf{n}_1$ — $\mathbf{A}\mathbf{b}_1\mathbf{A}\mathbf{n}_2$	ditto
			a: π in $001 = -25^{\circ}$ a: π in $010 = -33^{\circ}$	•••	$\rho > v$	2.71	much attacked by HCl	Ab_1An_3 — Ab_1An_6	ditto
0.013			a: π in 001 = -37° a: π in 010 = -36°	•••	ρ > υ	2.75	dissolved by HCl with gelatinization	$\mathrm{Ca_{2}Al_{4}Si_{4}O_{16}}$	ditto
0.012	0.003	0.009	e = r, a = n	94°—96	$\rho < v$	2:17-2:25	gelatinizes with HCl	Na ₂ Al ₂ Si ₃ O ₁₀ + 5 aq.	•••
0.008		•••	$b = x, c : x = 17^{\circ}$. 56°	p < v	2.2-2.3	ditto	$CaAl_2Si_2O_{10} + 4 aq.$	Twinning parallel to 100.
0.006	0.004		•	53°		2·12·2	soluble in HCl with separation of gelatinous SiO ₂	0.02212/0.00 16 1 0.00 1	Optic anomalies frequent. Twin- ing parallel to 001. Occasionally contains inclusions of micaceous hæmatite.
0.003			$b = a, a : c = 11^{\circ} - 18^{\circ}$		$\rho < v$	2.17-2.20	ditto	$(CaK_2)Al_2Si_4O_{12} + 4 aq.$	Twins and fourlings.
0.005	0.003	0.002	$b = r, a : r = 26^{\circ}$	86°		2.45—2.50	soluble in HCl with separation of pulverulent SiO ₂	(BaK ₂)Al ₂ Si ₅ O ₁₄ +	ditto.
0.007	0.001	0.006	b = c, $a : a = nearly 0°$	20°—60	ρ < υ	2.18—2.22	soluble in HCl with separation of gelatinous SiO ₂	CaAl2Si6O16 + 5 aq.	Occasionally contains inclusions of micaceous hæmatite.
0.010	0.008	0.002	$b=b, c: t=9^{\circ} \text{ in front}$	68°	$\rho < v$	2.25		$H_2\text{CaAl}_2\text{Si}_6\text{O}_{17} + 4 \text{ aq}.$	· Twinning parallel to 100.
0.012	2	•••	$b=\epsilon$, $c: \alpha=22^{\circ}$ in front	94°	$\rho > v$	2.2—2.4	soluble in HCl	H ₄ (SrBaCa)Al ₂ Si ₆ O ₁₈ + 3 aq.	Division into cuneate areas between crossed nicols frequent.
0.027	0.005	0.022	$b = t, a = \pi$	83°	ρ <	2·31—2·38	soluble in HCl with separation of gelatinous SiO ₂	$_{1}$ (UaNa ₂) ₂ Al ₂ Ol ₂ U ₈ +	
.0.012	0.010	0.002	$b=b, c: c=20^{\circ}$ behind	54°	ρ < υ	2.28—2.41	ditto	$H_4CaAl_2Si_4O_{14} + 2 aq.$	Twinning parallel to 100.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW THIS BOOK THIS OF 25 CENTS THIS BOOK THE FOR FAILURE TO RETURN WILL INCREASE TO 50 CE DUE. THE PENALTY DAY AND TO \$1.00 ON THE SEVENTH DAY SEP 25 1933 NOV 27 1934 MAN 3 0 1953 LU

LD 21-100m-7,'33

Rosenbusch 40888

· ○ →		642-299
OAN PERIOD 1	2	3
1 MONTH		
	5	6
ALL BOOKS	MAY BE RECA	LLED AFTER 7 DAYS
Books needed for	class reserve are	subject to immediate recall
DUE	AS STAMP	ED BELOW
		The same of the
	18810235	
	4,80	
		and the second s

FORM NO. DD8

UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720 GAYLORD

BROS., INC.

Manufacturers

Syracuse, N. Y. Stockton, Calif.

888

Storage

