1 Adatbiztonság, adatvédelem Szteganográfia 2 Mi is az a Szteganográfia? **■**Görög eredetű szó. ► Jelentése: Leplezni, rejtjelezni ► Krisztus előtt nagyjából 440 környékén már használták. ■Célja: kommunikáció tényének elrejtése egy harmadik fél elől. ► Egyfajta művészet is. 3 Mi is az a Szteganográfia? ■ A szteganográfia szót Johannes Trithemius német szerzetes használta legelőször 1499ben írt Steganographia c. könyvében. ► A könyvet csak 1606-ban adták ki. 1609-ben pedig felkerült az egyház tiltott könyveinek listájára. ► A listáról a könyv csak 1900-ban került le. 4 Mi is az a Szteganográfia? ► A könyv 3 kötetes ►A tiltás oka az volt, hogy sokáig nem értették, miről szól a könyv, mivel szteganográfiai adatrejtéssel íródott. ► A 3. kötetet nemrég sikerült csak megfejteni. ►Az első két kötettel nem volt gond, mivel a titkosító kulcs ismert volt hozzá. 5 Sztenográfia ■Nem azonos a szteganográfiával ■ A rövidített írásmód "művészete" ■Főként jegyzetelők alkalmazzák, lényege az, hogy hosszú szavakat cserélünk rövidebb, kódolt szavakra. ■Egyfajta papír alapú tömörítés ► Akár 200 szó leírása is lehetséges percenként ► A szabályokat a jegyzetkészítő találja ki 6 Sztenográfia ■Éppen ezért a jegyzet eredeti készítője tökéletesen tudja olvasni a szöveget, viszont más, aki nem ismeri a szabályokat nem, vagy nagyon sok munka befektetésével képes csak megfejteni azokat. ■Gyakran keverik a szteganográfia fogalommal. 7 Szteganográfia ►Két fő csoportra bontható ■Technikai adatrejtés ■Tudományos módszerek adatrejtésre. Az eredmény analóg és digitális formában is megjeleníthető marad ■ Nyelvészeti adatrejtés ►Pl.: zsargon kód.

■Tetoválás

►Láthatatlan tinták

8 Technikai adatrejtés analóg módon

- ■Nyomdai megoldások:
 - ■Betűk közötti térköz módosításával
 - Betűtípusok közötti módosítással

9 Nyomdai megoldások

- ► Leginkább a nyomtatás elterjedésének időszakára tehetőek ezen megoldások
- Akkoriban a legtöbb könyv kevert betűkkel lett nyomtatva, mivel a nyomdászoknak sokszor nem állt rendelkezésre ugyanazon betűből sok, így ki kellett pótolniuk más betűtípusból.
- A betűtípusok variálásával lehet rejteni információt.

10 Példa

- Róka ejtett Jánosra tetemes elázott tölgy tönköket.
- ►A mondatnak önmagában nem sok értelme van. Két következtetést vonhatunk le:
 - ►Ez művészet ©
 - ■Dőlt betűket összeolvasva azt kapom: Rejtett

11 Nyomdai megoldások

- ■Ugyanez a hatás térköz módosításokkal elérhető
- ► Ha pedig nem adunk semmi támpontot, és csak szabályokra hagyatkozunk (pl. minden szó első betűje), akkor azt kapjuk, hogy ez nyelvészeti megoldás.

12 Láthatatlan tinta házilag

- ■Üzenet felírása a papírra citromlé segítségével (igazi citromból!)
- ► Hagyni papírt önmagától megszáradni
- Papírt normál módon használni
- Üzenet "előcsalogatása": melegíteni kell a papírt, míg láthatóvá nem válik az üzenet. (barna színű lesz)
- ■Másik megoldás: UV tinta, kereskedelmi forgalomban is kapható.

13 UV Tinta

14 Technikai adatrejtés digitális módon

- **-**Kép
- ►Videó
- ►Hang
- ■Szöveg és gyakorlatilag bármilyen fájl.

15 Adatrejtés szövegbe és egyéb fájlokba

- ■Mikor fog működni:
 - ►Akkor, ha a hordozó formátumom egy komplex formátum. Pl: DOC, EXE
 - Alapelv: Eredeti fájl végére írom a titkos információmat. A formátumhoz tartozó natív program úgyis csak az eredeti fájltartalmat olvassa be a formátum felépítése miatt.
 - ■N+1 alkalmazás az interneten ilyen célra.

16 **Gyakorlati példa**

- ► Fogjuk a titkosítandó fájljainkat. Becsomagoljuk őket valami tömörítőprogrammal. Pl: ZIP, RAR, 7z, stb...
- ►Kész tömör fájlt hozzáfűzzük a hordozó formátumunkhoz.
- ►Erre saját program is használható lenne, de alapból adott Windows rendszeren is az eszköz a célra ©

17 Gyakorlati példa	
► Hozzáfűzés:	
■Copy /b hordozo.exe + rejtett.zip kimenet.exe	
Gyakorlati példa ■Kibontás: ■Egyszerű átnevezéssel. Igen, ennyire egyszerű. ⑤ ■Pro: ■Egyszerű, mint a faék. ■Archívum fájlok titkosíthatóak is, méghozzá egész jól. ■Problem: ■Digitális aláírt EXE-vel nem működik. ■Viszonylag egyszerű detektálni némi szakértelemmel	
19 Demo ©	
20 Digitális aláírás problémája	
20 Digitális aláírás problémája ■Azonosítja, hogy a fájl sérült – e, vagy sem.	
► Valamilyen Hash algoritmussal azonosít, ezért itt bukik az egész ⊗	
■Nem aláírt programok esetén minden rendben van. Programok nagy része nem aláírt,	
mivel drága mulatság.	
■Vállalati környezetben adminisztrátor kikényszerítheti az aláírás meglétét AD segítségéve	اڊ
21 Egy másik exe-be rejtési mód ©	
■Resource információk módosításával	
■EXE/DLL = program kód + resource fájlok	
■Resource: például képek, hangok, ikonok, amiket a program használ működése során	
■N+1 program ezen információk olvasására és módosítására.	
▶PI: Resource Edit, http://www.resedit.net/	
22 Gondok a módszerrel	
■Nem minden EXE/DLL esetén működik szintén, mivel ahogy a fordító programok	
fejlődnek, az előállított EXE formátuma is fejlődik. ■Ezért az eszköznek ezt követnie kell, mert a kimeneti fájl használhatatlanná válhat.	
■ Valamint tömörített EXE fájlokkal (UPX és egyéb kereskedelmi) nem működik a módszer.	
Ezeket először ki kell csomagolni, majd újra csomagolni.	
23 Adatrejtés képekbe	
■lgazi művészet ©	
■Több megközelítés és módszer lehetséges	
■ Mintakereséssel	
■Színek módosításával	
24 Minta kereséssel és módosítással	
25 Gondok	
■Vannak képek, amelyek jobban alkalmasabbak a többieknél.	
■Ennél fogva képenként változik a rejthető adat mennyisége	
Komplex analízist igényel, amely időigényes lehet> GPU használata segít	

26	Színinformációk módosítása
	■Mielőtt belemennénk, egy kis elmélet (és némi matek ^(a)) szükséges a számítógépes színábrázolásról.
27	Színábrázolási módszerek
	Fekete - fehér – 1 bit/pixel
	 Rögzített/adaptív palettás képek – 16 256 különböző szín 2,3 byte-tal ábrázolva. 16 bit színmélység 5r 6g 5b 5r 5g 5b 1x
	⇒24 bit színmélység
	■8r 8g 8b
	■32 bit színmélység
	■8a 8r 8g 8b
	■
28	Színábrázolási módszerek
	► Legalkalmasabb erre a célra a 24 bit / 32 bit színmélység
	■Rögzített / adaptív palettás képek nem igazán alkalmasak a célra, mivel könnyen észrevehető a módosítás.
	- -
29	A módszer lényege
	■Minden színkomponens utolsó 1 (LSB) bitjét módosítjuk a rejteni kívánt adatunknak megfelelően.
	■1 pixel így 3 bit rejtett információt hordoz. ■Amennyiben 2 bitet módosítunk és mondjuk 32 bites képet használunk, akkor 2 pixel 1
	byte-ot tárol.
	■Ebben az esetben egy 800x600-as képbe 234 Kb információ rejthető el, szinte észrevehetetlenül.
30	Amiért nem vesszük észre
	■Emberi szem nem képes 16,7 millió színt megkülönböztetni.
	► Ha 2pixel egymás mellett eltérő színű, azt sem tudjuk megkülönböztetni, ha a kép elég nagy.
	■Ezen az elven alapul a JPEG tömörítés is.
	■JPEG nem a legjobb választás szteganográfiai hordozónak, de megoldható.
	■BMP, TIFF túl nagy fájlméret. Legjobb választás: PNG
31	Példa #1
	►H betű rejtése 1db 32 bites pixelen
	►A H betű 8 bites ASCII kódja: 48 hex -> binárisan: 0100 1000
	► Hordozó pixel színe:
	⇒FF 31 72 D4 ⇒2 logkisch halviértékű hit médosítások után komponensenként a színkéd:
	■2 legkisebb helyiértékű bit módosítások után komponensenként a színkód:■FD 30 72 D4

32 Példa #1
Példa #1 továbbgondolva ■Egy 1024x768 pixeles kép 786 432 pixelt tartalmaz. ■32 bites pixelek esetén, ha 2 bitet rejtünk minden pixelbe, akkor 196 608 byte rejtése lehetséges, ami pont 192Kb. ■Ebbe azért elég sok szöveg belefér .txt formában. ■De ha csak 1 bit/pixel módosítással dolgozunk, akkor is 96 Kb információ belefér.
Példa #2 1 Eredeti Kép 2 Rejtendő kép
 Példa #2 1 Kimenet 2 Előállítása: 3 Steghide programmal: Steghide embed –cf eredeti.bmp –ef rejtett.png Kibontás: Steghide extract –sf kimenet.bmp http://steghide.sourceforge.net
36 ■ Hanganyagok digitális tárolása A tömörítetlen formátumoknak két fontos jellemzője van: Bitmélység Mintavételezési frekvencia. A bitmélység a hang intenzitását (hangerejét) határozza meg. Általában 16 vagy 24 bit
 Hanganyagok digitális tárolása A mintavételezési frekvencia azt határozza meg, hogy mennyi mintát tároljunk egy másodperc hanghoz. Shannon-Nyquist tétel alapján, ha maximum 22 500Hz-ig akarok mintavételezni (emberi fül hallásküszöbe), akkor dupla akkora mintavételezés kell a hullámjelenségek miatt*
38 Hanganyagok digitális tárolása
 Gyakorlatban azonban a mintavételezési frekvencia növelése egy pont felett feleslegessé válik. Ez nagyjából 48 KHz környékén van.
Pelv hasonló a képeknél alkalmazott megoldáshoz ■Emberi fül "hibáját" használja ki. ■20Hz -> ~22KHz hangot tudunk észlelni, de a nagy átlag "csak" 16KHz környékéig hal ■2 hangot akkor tudunk csak megkülönböztetni, ha azok között valamekkora idő eltelt. ■Ezen elveket használják ki a veszteséges hangtömörítő algoritmusok is. Pl: MP3, MP4, OGG, WMA 40 ■ Gondok szintén
40 Gondok szintén

- ► Mivel a veszteséges tömörítés is ezeken az elveken dolgozik, szintén nem szerencsés választás az MP3, MP4, stb.. formátum
 - ►MP3 is alkalmas, de nem sok adat tárolásra
- ▶PCM és lossless algoritmusok azonban tökéletesek a célra ☺
 - ■Sok adat belefér így rejtetten.

-

41 Példa

- ■19 mintán Sinus 0-180 fokig, 16 bites intenzitással ábrázolva.
- ►Az ábrázolási lépésköz: 5 fok
 - **■**0: 0, 1: 32768, -1: -32768
- ■Minden hangminta egy rejtett karaktert tárol
- **■**Üzenet: ezegy rejtett pelda

42 Példa kimenete ábrázolva

43 Példa kimenete ábrázolva 2,6x nagyítás

44 Példa tovább gondolva

- ► A CD hanganyag 44 100 minta/másodperc
- Egy Audio CD hossza 80 perc
- ►Amiben 80*60*44 100 minta fér
 - ►Ez 211 680 000 mintát jelent.
- ► Ha minden minta 1 byte rejtett adatot tárol, akkor:
 - ■211 680 000 byte extra adat rejtése lehetséges
 - ► Ez 201,87Mb adat!

45 Példa továbbgondolva

- ► Ha csak 4 bitet rejtünk mintánként, akkor is ~100Mb bőven belefér.
- ■Ebben az esetben a detektálhatóság esélye tovább csökken.

46 Példa MP3Stego program segítségével

►~5 perces hanganyagba 2kb-ot tud beágyazni észrevétlenül

-

47 Problémák

- A képek és a hangok esetén bemutatott példák túlzottan ideális esetek
- ► Feltételezzük, hogy az átjuttatás során az információ nem sérül meg.
- ■Pedig nagyon is sérül.

48 Problémák

- ►Képmegosztó szolgáltatások esetén bevett gyakorlat, hogy a feltöltött képeket veszteségesen újratömörítik kisebb méretre
- ► Hangmegosztó szolgáltatásoknál is fennáll ez a probléma.
- ■E-mail küldés esetén a fájloknak van feltöltési korlátja.

49 Szteganográfia detektálhatósága

- ► Ideális esetben lehetetlen, mivel a 3. fél nem tud a kommunikáció tényéről, és a használt módszerről.
- ■Statisztikai elemzéssel lehet detektálni, de nagyon nehéz. Általában erős gyanú fennállása

esetén folyamodnak ehhez.

50 Szteganográfia a mindennapokban

- ■Nem csak titkosítási célokra alkalmazott.
- ■Újabb színes lézer nyomtatók sárga pontokból álló mátrixot helyeznek el minden lapon.
- ► A mátrix tartalmazza kódolva a nyomtató sorszámát és a nyomtatás idejét is.

51 Szteganográfia a mindennapokban

- **■**Vízjelek
- ■Digitális technikában kétfajtát különböztetünk meg:
 - ■Törékeny: A legkisebb módosítások is megváltoztatják, könnyen felfedezhetővé teszi a hamisítványokat.
 - ■Robosztus: A legtöbb módosítást túléli, így bizonyítja a hordozó eredetét.

52 Vízjelek (kiegészítés)

- A gyakorlatban kevesen tudják alkalmazni rendesen. Lásd: 9gag-szerű "egymástól lopunk" és a lájkokból élő oldalak.
- ► Egy vízjel akkor jó, ha egyszerűen nem távolítható el, vagyis robosztus.
- ► Legjobb módszer: halványan látható logó bevágása a kép közepére.

53 Robosztus vízjel példa

■Stock photograpy oldalakon lehet vele találkozni, mint a dreamstime.com

54 Robosztus vízjel nyomtatás tiltására

- ► Az ipari nyomtatók 4 színnel dolgoznak, míg a számítógépes színábrázolás 3 színnel.
- →A kettő között vannak olyan színátfedések, amik képernyőn nem látszanak, de a nyomtató színkeverésében már igen.
- ► Az ilyen képek nyomtatás ellen védettek.

55 Robosztus vízjel nyomtatás tiltására

- ► Háromszínű nyomtatók sem megoldás, mivel a számítógépes modellben, ha minden színt összekeverünk, akkor fehéret kapunk.
- Nyomtatáskor azonban a színek hiánya felel meg a fehérnek, az összes szín keverése pedig feketének.
- ■Spórolási szempontból a színes nyomtatók nyomtatáskor a fekete patront is alkalmazzák

56 Pontszerzési lehetőség

- ► Készítsen egy olyan programot, ami egy 32 bites PNG képbe képes rejteni szöveget és a rejtett szöveget vissza is tudja olvasni.
- ► Nyelv: szabad választás, de a program működését és használatát dokumentálni kell.
- ■Csak az első helyes beküldőt díjazom, Lehet csoportmunka is (max. 3 fő)
- Prezentálni kell előadáson a programot.
- Díjazás: 40 pont

57 Köszönöm a figyelmet