Topology - Homework 02

Question 1:

Proof:

- (i) A rational number can be written in the form p/q where p and q are both integers. Then There exist a surjective map $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$. As \mathbb{Z} is easy to be proved to be countable, $\mathbb{Z} \times \mathbb{Z}$ is countable too. Then we know that \mathbb{Q} is countable.
- (ii) Consider the interval (0,1). Real numbers in (0,1) can be written in decimal. Assume that all real numbers in (0,1) can be permutated in order:

```
0.a_{11}a_{12}a_{13}\cdots \ 0.a_{21}a_{22}a_{23}\cdots \ 0.a_{31}a_{31}a_{33}\cdots
```

Consider a decimal:

$$0.b_1b_2b_3\cdots$$

with $b_1 \neq a_{11}, b_2 \neq a_{22}, b_3 \neq a_{33}, \cdots$, and such a real number is not included in above permutation.

Then we know that there doesn't exist an surjection from \mathbb{Z}_+ to \mathbb{R} and \mathbb{R} is uncountable.

Question 2:

Proof:

Since \mathbb{Q} is countable, we can obtain that $\mathbb{Q}, \mathbb{Q}^2, \dots, \mathbb{Q}^n, \dots$ are all countable, and then $\bigcup_{n=1}^{\infty} \mathbb{Q}^n$ is countable, too.

As the coefficients are defined, a polynomial equation is defined, which means we can find a surjection from $\bigcup_{n=1}^{\infty} \mathbb{Q}^n$ to the set of all polynomial equations with rational coefficients. This tells us that $\bigcup_{n=1}^{\infty} \mathbb{Q}^n$ is countable. Since every polynomial equation has only finitely many roots, the set of all such roots is countable, too.

Then we know that A is countable.

If $\mathbb{R} - \mathcal{A}$ is countable, $\mathcal{A} \bigcup \mathbb{R} - \mathcal{A}$ should be countable, which makes contradictions.

Then we obtain that $\mathbb{R} - \mathcal{A}$ is uncountable.

Question 3:

Proof:

Consider the set $\{f \in X^N : card(supp(f)) = i\}$, every function's support contains i different natural numbers. As there are only two elements in the range of f, the elements in supp(f) can identify an unique f. And the support of f can be surjectively mapped by \mathbb{N}^i since it contains i elements.

So there exists a surjection from \mathbb{N}^i to the set $\{f \in X^N : card(supp(f)) = i\}.$

 $\bigcup_{i=0}^{\infty} \mathbb{N}^i$ is countable.

Then we obtain that the set $\{f \in X^N : supp(f) \ is \ finite\}, \ X_0^N$ is countable.

Question 4:

Proof:

$$\text{(i) } d(x,x) = 0 \to x \sim x$$

If d(x,y)=0, then d(y,x)=0. \to If $x\sim y$, then $y\sim x$.

if
$$d(x,y)=0, d(y,z)=0$$
, then $d(x,z)\leq d(x,y)+d(y,z)=0,$ $d(x,z)=0$. \rightarrow If $x\sim y, y\sim z$, then $x\sim z$.

Then we know that \sim is an equivalence relation on S.

$$\mathrm{(ii)}\ d(x,y) \geq 0 \rightarrow d^*([x],[y]) \geq 0$$

$$d(x,y) = d(y,x) \to d^*([x],[y]) = d^*([y],[x])$$

$$d(x,y) \leq d(x,z) + d(z,y) \rightarrow d^*([x],[y]) \leq d^*([x],[z]) + d^*([z],[y])$$

Then we know that d^* is a well-defined metric on S^* .

Question 5:

Can.

Choose arbitrary element $p \in S$, and define:

$$d^
atural(A,B) = egin{cases} d(a,b), \ if \ A = \{a\}, B = \{b\} \ 1, \ if \ A \ and \ B \ both \ have \ not \ exactly \ one \ element \ and \ A
eq B \ 1 + d(a,p), \ if \ A = \{a\} \ and \ B \ has \ not \ exactly \ one \ element \ 0, \ if \ A = B \end{cases}$$

Obviously, this definition satisfies following properties:

$$egin{aligned} d^{
atural}(A,B)&=d^{
atural}(B,A)\ d^{
atural}(A,B)&\geq 0\ and\ d^{
atural}(A,A)&=0\ d^{
atural}(\{a\},\{b\})&=d(a,b) \end{aligned}$$

Consider $A, B, C \in \mathcal{P}(S)$,

case 1:
$$A = \{a\}, B = \{b\}$$

If $C = \{c\},$ then $d^{\natural}(A,B) = d(a,b) \leq d(a,c) + d(c,b) = d^{\natural}(A,B) + d^{\natural}(C,B).$
If $card(C) \neq 1,$ then $d^{\natural}(A,B) = d(a,b) \leq 1 + d(p,a) + 1 + d(p,b) = d^{\natural}(A,C) + d^{\natural}(B,C).$

case 2:
$$A = \{a\}$$
, but $card(B) \neq 1$ If $C = \{c\}$, then $d^{\natural}(A,B) = 1 + d(p,a) \leq d(a,c) + 1 + d(p,c) = d^{\natural}(A,C) + d^{\natural}(C,B)$. If $card(c) \neq 1$, then $d^{\natural}(A,B) = 1 + d(p,a) \leq 1 + d(p,a) + 1 = d^{\natural}(A,C) + d^{\natural}(C,B)$.

case 3:
$$card(A) \neq 1$$
, $card(B) \neq 1$
If $C = \{c\}$, then $d^{\natural}(A,B) = 1 \leq 1 + d(p,c) + 1 + d(p,c) = d^{\natural}(A,C) + d^{\natural}(C,B)$.
If $card(C) \neq 1$, then $d^{\natural}(A,B) = 1 \leq 1 + 1 = d^{\natural}(A,C) + d^{\natural}(C,B)$.

Then we know that $d^{\natural}(A,B) \leq d^{\natural}(A,C) + d^{\natural}(C,B)$ for all $A,B,C \in \mathcal{P}(S)$, which means d^{\natural} is a metric on $\mathcal{P}(S)$.