

Nomenclatura

$\boldsymbol{Z}[\Omega]$	Impedancia	I [A]	Corriente
V[V]	Tensión	j	Unidad imaginaria
<i>t</i> [s]	Tiempo	P[W]	Potencia activa
Q [VAr]	Potencia reactiva	S [VA]	Potencia aparente
m	Relación de transformación	I_{exc} o I_0 [A]	Corriente de excitación
I_{Fe} [A]	Corriente debido a pérdidas en el Fe	I_{μ} [A]	Corriente magnetizante

UNIDAD 1

ACÁ QUIERO PONER LO DE LAS BOBINAS Y ESO... VER

UNIDAD 2

TRANSFORMADORES

Transformador Ideal en vacío

SIN PÉRDIDAS

Autoinducción
$$L = \frac{\mu N^2 S}{l}$$

CON PÉRDIDAS

Fem
$$\mathscr{F} = N_1 \mathbf{I}_1 = N_1 \mathbf{I}_0$$

Fem
$$\mathscr{F} = N_1 \mathbf{I}_1 = N_1 \mathbf{I}_0$$

Relación de transfor. $m = \frac{E_1}{E_2} = \frac{V_1}{V_2}$

$$\mathbf{I}_0 = \mathbf{I}_u + \mathbf{I}_{Fe}$$

Transformador Ideal en carga

Fem
$$\mathscr{F} = N_1 \mathbf{I}_1 - N_2 \mathbf{I}_2$$

$$I_0 = I_1 - \frac{N_2}{N_1} I_2$$

Fem $\mathscr{F} = N_1 \mathbf{I}_1 - N_2 \mathbf{I}_2$ $\mathbf{I}_0 = \mathbf{I}_1 - \frac{N_2}{N_1} \mathbf{I}_2$ ucida $\mathbf{I'}_2 = \frac{\mathbf{I}_2}{m}$ Corriente reducida