California Wildfires

Motivating Question

Can we forecast the spread of wildfires using machine learning?

Where do we get the data about active fires?

VIIRS (Visible Infrared Imaging Radiometer Suite) - 375m

Land Cover (LANDFIRE) – 30m

Meteorology (Rapid Refresh) - 13km

VIIRS Discretization

11.25 km x 11.25 km

Landfire + Meteorology Cropping

Slope

Aspect

Task Setup

Challenge Data

- Training Data 10k instances (~1.4 GB)
- Testing Data 5k instances (~.7 GB)
- **Input** 32 channel, 30 x 30 images
 - 5 VIIRS detections,
 - o 17 Land Cover
 - 10 Meteorological
- Target 30 x 30 binary images
 - +12 hour VIIRS detections
 - +24 hour VIIRS detections

More data available upon request.

Tasks / Areas to Explore

- Improve accuracy beyond baselines
- Comparing different evaluation metrics (MSE, IOU, etc.) and relating to qualitative performance
- Investigate importance / usefulness of different input layers
 - Integrate time of day and (possibly) latitude/longitude
- Explore efficacy of different model & architectures
 - E.g. Use a graphical model to learn a conditional joint distribution (over all spatial locations)
- Produce multiple forecasts for a given input (possible outcomes / trajectories)

Meteorology Processing

Window Size = 22.5km

