Packet Tracer. Исследование методов реализации сети VLAN

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
S1	VLAN 99	172.17.99.31	255.255.255.0	_
S2	VLAN 99	172.17.99.32	255.255.255.0	Н/Д (недоступно)
S3	VLAN 99	172.17.99.33	255.255.255.0	_
PC1	NIC	172.17.10.21	255.255.255.0	172.17.10.1
PC2	NIC	172.17.20.22	255.255.255.0	172.17.20.1
PC3	NIC	172.17.30.23	255.255.255.0	172.17.30.1
PC4	NIC	172.17.10.24	255.255.255.0	172.17.10.1
PC5	NIC	172.17.20.25	255.255.255.0	172.17.20.1
PC6	NIC	172.17.30.26	255.255.255.0	172.17.30.1
PC7	NIC	172.17.10.27	255.255.255.0	172.17.10.1
PC8	NIC	172.17.20.28	255.255.255.0	172.17.20.1
PC9	NIC	172.17.30.29	255.255.255.0	172.17.30.1

Задачи

Часть 1. Наблюдение за трафиком широковещательной рассылки в сети с VLAN

Часть 2. Наблюдение за трафиком широковещательной рассылки без сетей VLAN

Общие сведения

В этом упражнении необходимо отслеживать пересылку широковещательного трафика через коммутаторы при сконфигурированных и не сконфигурированных VLAN.

Инструкция

Часть 1. Наблюдайте за широковещательным трафиком в сети с VLAN

Шаг 1: Запустите ping с PC1 на PC6.

- а. Дождитесь, когда все индикаторы состояния каналов загорятся зеленым цветом. Для ускорения процесса нажмите кнопку **Fast Forward Time** (Ускорить), расположенную на нижней панели инструментов желтого цвета.
- б. Нажмите на вкладку **Simulation** (Симулирование) и используйте инструмент **Add Simple PDU** (Добавить простой PDU). Нажмите кнопку **PC1**, а затем нажмите кнопку **PC6**.
- в. Нажмите на кнопку **Capture/Forward** (Захват/Вперед), чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер заполнен) нажмите на кнопку **View Previous Events** (Просмотреть предыдущие события).

Успешно ли выполнена проверка связи? Дайте пояснение. Команда не выполнена, т.к компы в разных vlan

Взгляните на Simulation Panel (Панель моделирования) и скажите, куда коммутатор **S3** отправил пакет после того, как получил его? PC4

При нормальной эксплуатации, когда коммутатор получает широковещательный кадр на одном из своих портов, он пересылает кадр из всех портов. Обратите внимание , что коммутатор S2 отправляет ARP-запрос из интерфейса Fa0/1 на коммутатор S1. Также обратите внимание , что коммутатор S3 отправляет ARP-запрос из интерфейса Fa0/11 на PC4. Узлы PC1 и PC4 принадлежат сети VLAN 10. Узел PC6 принадлежит сети VLAN 30. Поскольку широковещательный трафик находится в пределах сети VLAN, узел PC6 не может получить ARP-запрос от узла PC1. Поскольку узел PC4 не является пунктом назначения, он отбрасывает ARP-запрос. Эхо-запрос от узла PC1 не удался, потому что PC1 не может получить ARP-ответ.

Шаг 2. Отправьте ping-запрос с PC1 на PC4.

- а. Нажмите на кнопку **New** (Создать) под раскрывающейся вкладкой Scenario 0 (Сценарий 0). Теперь нажмите значок **Add Simple PDU** (Добавить простой PDU) в правой части Packet Tracer и с помощью утилиты ping проверьте связь компьютера **PC1** с **PC4**.
- б. Нажмите на кнопку **Capture/Forward** (Захват/Вперед), чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер заполнен) нажмите на кнопку **View Previous Events** (Просмотреть предыдущие события).

Успешно ли выполнена проверка связи? Дайте пояснение. Успешно, т.к компы в одной vlan

в. Изучите Simulation Panel (Панель моделирования).

Почему коммутатор **S1**, получив пакет, пересылает его на узел **PC7**? Потому что он находится в vlan10

Часть 2. Наблюдение за широковещательным трафиком без VLAN.

Шаг 1. Очистите конфигурации всех трех коммутаторов и удалите базу данных **VLAN**.

- а. Вернитесь в режим реального времени (Realtime).
- б. Удалите загрузочную конфигурацию на всех трех коммутаторах.

Какая команда используется для удаления загрузочной конфигурации на коммутаторах? Erase startup-config

Где на коммутаторах хранится файл сети VLAN? vlan.dat во флеш-памяти

в. Удалите файл VLAN на всех трех коммутаторах.

С помощью какой команды можно удалить файл сети VLAN на коммутаторах? delete flash:vlan.dat

```
S1>enable
S1#erase startup-config
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
[OK]
Erase of nvram: complete
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
S1#
S1#delete flash:vlan.dat
Delete filename [vlan.dat]?
Delete flash:/vlan.dat? [confirm]
```

Шаг 2. Перезагрузите коммутаторы.

Используйте команду **reload** в привилегированном режиме EXEC для сброса всех коммутаторов. Дождитесь, когда весь канал загорится зеленым цветом. Для ускорения процесса нажмите кнопку **Fast Forward Time** (Ускорить), расположенную на нижней панели инструментов желтого цвета.

Шаг 3.Щелкните кнопку Capture/Forward (Захват/Вперед), чтобы отправить ARPзапросы и проверить связь с помощью эхо-запросов.

- а. После того как коммутаторы перезагрузятся, а индикатор состояния канала загорится зеленым, сеть будет готова к пересылке ваших ARP- и эхо-запросов.
- б. Выберите **Scenario 0** (Сценарий 0) в раскрывающейся вкладке, чтобы вернуться к сценарию 0.
- в. В режиме Simulation (Моделирование) нажмите на кнопку Capture/Forward (Захват/Вперед), чтобы перейти к следующему шагу. Обратите внимание, что теперь коммутаторы пересылают ARP-запросы из всех портов, кроме порта, на котором ARP-запрос был получен. Подобное поведение коммутаторов демонстрирует, каким образом сети VLAN могут повышать производительность сети. Широковещательный трафик находится в пределах каждой сети VLAN. При появлении окна Buffer Full (Буфер заполнен) нажмите на кнопку View Previous Events (Просмотреть предыдущие события).

Вопросы для повторения

- 1. Если компьютер в сети VLAN 10 отправляет широковещательное сообщение, какие устройства его получат? 1,4,7
- 2. Если компьютер в сети VLAN 20 отправляет широковещательное сообщение, какие устройства его получат? 2,5,8
- 3. Если компьютер в сети VLAN 30 отправляет широковещательное сообщение, какие устройства его получат? 3,6,9
- 4. Что происходит с кадром, отправленным с компьютера сети VLAN 10 на компьютер сети VLAN 30? Не дойдет до получателя
- 5. Что представляют собой коллизионные домены на коммутаторе применительно к портам? Каждый порт – коллизионный домен
- 6. Что представляют собой широковещательные домены на коммутаторе применительно к портам? Все порты, находящиеся в одной vlan