风机性能曲线的拟合方法

李 裕 辉

(无锡轻工业学院)

【提要】本文根据风机性能测试数据,应用微型计算机,采用最小二乘法来拟合风机性能曲线,同时调用BASIC语言绘图程序,能自动绘制拟合出一条和各工况点原参数相关的风机性能曲线。

一、序言

某棉纺厂将VFC504A环形鼓风机与打结机配套使用在喷气纺纱机上,利用鼓风机吸口处产生的高负压,吸取纱线的断头两端,送到打结机上打结,从而实现了打结的自动化,减轻了工人的劳动强度。

由于该风机在产品说明书中没有性能曲线,使用时有一定困难,故有必要对其性能进行测试,并绘制和分析其性能曲线,以指导生产实践。

本文探讨了如何应用微机对所测试的数据 进行处理,以建立该风机性能曲线的数学表达 式和自动绘制性能曲线的方法。

二、风机性能曲线的数学表达式

VFC504A环形鼓风机的性能曲线形 状 接近抛物线型, 所以采用以最小二乘法原则确定的多项式来拟合试验数据的曲线, 其通式可写为:

 $H=b_1+b_2Q^1+b_3Q^2+\cdots+b_nQ^{n-1}$ (1) 现以H-Q曲线为例,其拟合曲线的具体方法如下:

设由测试采样及数据处理后得到n个 工 况 点的数据为:

$$Q_1, Q_2, Q_3, \dots, Q_n$$

 $H_1, H_2, H_3, \dots, H_n$

若多项式 $H'=b_1+b_2Q^1+b_3Q^2+\cdots+b_nQ^{n-1}$ 所描绘的曲线为试验数据拟合曲线,则第i个数据 H_i 与拟合曲线上相应的 H_i' 值之间的差值为, $\Delta_i=H_i-H_i'$

$$= H_i - (b_1 + b_2 Q_i^1 + b_3 Q_i^2 + \cdots + b_n Q_i^{n-1})$$

最小二乘法拟合曲线的拟合原则就是偏差的平方和达到最小值,即要使:

$$\sum_{i=1}^{D} \Delta_{i}^{2} = \sum_{i=1}^{D} (H_{i} - (b_{1} + b_{2}Q_{i}^{1} + b_{3}Q_{i}^{2} + \cdots + b_{n}Q_{i}^{n-1}))^{2}$$

为最小值,也就是说要使 $\sum_{i=1}^{D} \Delta_i^2$ 分别对 b_1 , b_2 , b_3 , ..., b_n 的一阶偏导数等于零。从而就可以求出 b_1 , b_2 , b_3 , ..., b_n 的表达式。

$$\begin{cases} \frac{\partial}{\partial b_{1}} \sum_{i=1}^{D} \Delta_{i}^{2} = 2 \sum_{i=1}^{D} \left[H_{i} - (b_{1} + b_{2}Q_{i}^{1} + b_{3}Q_{i}^{2} + \dots + b_{n}Q_{i}^{n-1}) \right] & (-Q_{i}^{0}) = 0 \\ \frac{\partial}{\partial b_{2}} \sum_{i=1}^{D} \Delta_{i}^{2} = 2 \sum_{i=1}^{D} \left[H_{i} - (b_{1} + b_{2}Q_{i}^{1} + b_{3}Q_{i}^{2} + \dots + b_{n}Q_{i}^{n-1}) \right] & (-Q_{i}^{1}) = 0 \\ \frac{\partial}{\partial b_{3}} \sum_{i=1}^{D} \Delta_{i}^{2} = 2 \sum_{i=1}^{D} \left[H_{i} - (b_{1} + b_{2}Q_{i}^{1} + b_{3}Q_{i}^{2} + \dots + b_{n}Q_{i}^{n-1}) \right] & (-Q_{i}^{2}) = 0 \\ \frac{\partial}{\partial b_{n}} \sum_{i=1}^{D} \Delta_{i}^{2} = 2 \sum_{i=1}^{D} \left[H_{i} - (b_{1} + b_{2}Q_{i}^{1} + b_{3}Q_{i}^{2} + \dots + b_{n}Q_{i}^{n-1}) \right] & (-Q_{i}^{n-1}) = 0 \end{cases}$$

由此可得到联立方程组:

$$\begin{cases} b_1 \sum_{i=1}^{D} Q_i^{\ 0} + b_2 \sum_{i=1}^{D} Q_i^{\ 1} + b_3 \sum_{i=1}^{D} Q_i^{\ 2} + \cdots + b_n \sum_{i=1}^{D} Q_i^{\ n-1} = \sum_{i=1}^{D} H_i Q_i^{\ 0} \\ b_1 \sum_{i=1}^{D} Q_i^{\ 1} + b_2 \sum_{i=1}^{D} Q_i^{\ 2} + b_3 \sum_{i=1}^{D} Q_i^{\ 3} + \cdots + b_n \sum_{i=1}^{D} Q_i^{\ n} = \sum_{i=1}^{D} H_i Q_i^{\ 1} \\ b_1 \sum_{i=1}^{D} Q_i^{\ 2} + b_2 \sum_{i=1}^{D} Q_i^{\ 3} + b_3 \sum_{i=1}^{D} Q_i^{\ 4} + \cdots + b_n \sum_{i=1}^{D} Q_i^{\ n+1} = \sum_{i=1}^{D} H_i Q_i^{\ 2} \\ \vdots \\ b_1 \sum_{i=1}^{D} Q_i^{\ n-1} + b_2 \sum_{i=1}^{D} Q_i^{\ n} + b_3 \sum_{i=1}^{D} Q_i^{\ n+1} + \cdots + b_n \sum_{i=1}^{D} Q_i^{\ 2^{n-1}} = \sum_{i=1}^{D} H_i Q_i^{\ n-1} \\ \vdots \\ b_1 \sum_{i=1}^{D} H_i Q_i^{\ k-1}, \quad (k=1, 2, 3, \cdots, 2n-1) \end{cases}$$

$$\Leftrightarrow : S_k = \sum_{i=1}^{D} H_i Q_i^{\ k-1}, \quad (k=1, 2, 3, \cdots, n)$$

其中, D为H-Q曲线上所选的点数。

则可得到方程组:

$$\begin{cases}
S_{1}b_{1} + S_{2}b_{2} + S_{3}b_{3} + \cdots + S_{n}b_{n} = t_{1} \\
S_{2}b_{1} + S_{3}b_{2} + S_{4}b_{3} + \cdots + S_{n+1}b_{n} = t_{2} \\
S_{3}b_{1} + S_{4}b_{2} + S_{5}b_{3} + \cdots + S_{n+2}b_{n} = t_{3} \\
\vdots \\
S_{n}b_{1} + S_{n+1}b_{2} + S_{n+2}b_{3} + \cdots + S_{2n-1}b_{n} = t_{n}
\end{cases}$$
(2)

可见,该方程组为一非齐次方程组,其系数 S_x 的矩阵为实系数对称方程。

这样就可以得到上述待定的拟合曲线方程 (风机性能曲线的数学表达式)中的系数 b_1 , b_2 , b_3 , …, b_n 。以 $H=b_1+b_2Q^1+b_3Q^2+\dots+b_nQ^{n-1}$ 的这一方程式,在 $Q_1\sim Q_n$ 范围内 取适当的间隔(Q_i)代入,求出H_i,就可以画出一条与工况点原参数相关的较光滑的曲线来。

三、性能曲线的绘制

为能够满足精度要求,采用七次曲线进行模拟,同时在曲线上取八个点(D=8)。 用计算机绘制性能曲线的过程如下,

(一) 釆样和数据处理

根据实测的原始数据在坐标纸上大略地将曲线画出来,这样根据曲线的趋势选取数据,数据的选取必须具有代表性,既要考虑到所选取数据的均均分布,又要考虑异常数据的合理取舍。现选取实测点中的工况点序号(见表1)。

$$S_{k} = \sum_{i=1}^{D} Q_{i}^{k-1}, \quad (k=1, 2, 3, \dots, 2n-1)$$

$$t_{L (H)} = \sum_{i=1}^{D} H_{i} Q_{i}^{L-1}, \quad (L=1, 2, 3, \dots, 2n-1)$$

	-	
	7	悪
77 I	- 1	70

工况点序号	1	3	4	6	9	11	14	16
风量Q。(米³/时)	179.89	174.64	172.37	168.12	160.52	154.04	141.44	136.12
风压P。(毫米水柱)	209.82	264.07	287.13	331.53	396.51	453.75	596.47	666.45
功率N。(干瓦)	0.1798	0.2018	0.2228	0.2518	0.2987	0.3327	0.4206	0.4676
效率K。(%)	57.16	59.57	60.49	60.28	58.03	57.21	54.64	52.84

..., n)

(4)

同理:

$$t_{L(N)} = \sum_{i=1}^{D} N_i Q_i^{L-1},$$
 (5)

$$t_{L(K)} = \sum_{i=1}^{D} K_{i} Q_{i}^{L-1},$$
 (6)

根据公式(3)、(4)、(5)、(6)、用BASIC语言编程,并将所选取的数据存放在置数语句中,然后将程序在机上运行,便可得出 S_K 、 t_L (μ)、 t_L (μ), t_L (μ)的结果。

下面为所求得的 S_K 、 $t_{L(H)}$ 、 $t_{L(N)}$ 、 $t_{L(K)}$ 的值:

$$S_{K}$$
值: $S_{(1)} = 8$

 $S_{(2)} = \cdot 35754$

 $S_{(3)} = \cdot 0161161578$

 $S_{(4)} = 7.32251884 E - 04$

 $S_{(5)} = 3.35169503 E - 05$

 $S_{(6)} = 1.54457809E - 06$

 $S_{(7)} = 7.16201639E - 08$

 $S_{(8)} = 3.3395564E - 09$

 $S_{(a)} = 1.5650655 E - 10$

 $S_{(10)} = 7.36794245 E - 12$

 $S_{(11)} = 3.48280194E - 13$

 $S_{(12)} = 1.65233725E - 14$

 $S_{(13)} = 7.86490973E - 16$

 $S_{(14)} = 3.75465429E - 17$

 $S_{(15)} = 1.79721591E - 18$

 $t_{L(H)}$ 值: $T_{(1)} = 3205.73$

 $T_{(2)} = 138.255101$

 $T_{(3)} = 6.01931467$

 $T_{(4)} = .264511869$

 $T_{(5)} = .0117285674$

 $T_{(6)} = 5.24532942E - 04$

 $T_{(7)} = 2.36494693 E - 05$

 $T_{(8)} = 1.07438665E - 06$

 $t_{L(N)}$ 值: $T_{(1)} = 2.3848$

 $T_{(2)} = .103397834$

 $T_{(3)} = 4.52576059E - 03$

 $T_{(4)} = 1.99932766E - 04$

 $T_{(5)} = 8.91111066E - 06$

 $T_{(6)} = 4.0053382E - 07$

 $T_{(7)} = 1.81460196E - 08$

 $T_{(8)} = 8.28162682E - 10$

 $t_{L(K)}$ 值: $T_{(1)} = 460.19$

 $T_{(2)} = 20.636444$

 $T_{(3)} = .933018265$

 $T_{(4)} = .042506788$

 $T_{(5)} = 1.95021635E - 03$

 $T_{(6)} = 9.00543909E - 05$

 $T_{(7)} = 4.18284092E - 06$

 $T_{(8)} = 1.95317131E - 09$

(三)解线性方程组

由方程组(2)可写成矩阵形式:

SB = T

其中, S为该方程组的系数矩阵(实系数对称矩阵)即:

$$\begin{pmatrix}
S_1 & S_2 & S_3 & \cdots & S_n \\
S_2 & S_3 & S_4 & \cdots & S_{n+1} \\
S_3 & S_4 & S_5 & \cdots & S_{n+2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots$$

 $\langle S_n \mid S_{n+1} \mid S_{n+2} \mid \cdots \mid S_{2n-1} \rangle$

B为列向量,即: T为列向量,即:

$$B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}; \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_n \end{pmatrix}$$

把S、T合并为增广矩阵〔S T],对增广矩阵进行初等变换,使S化为单位矩阵 I,同时T也化为U,即得IB=U,所以U即为 解向量B。

对增广矩阵进行初等变换,可分两个步骤 进行。

(1) 归1

将第一行的所有的元素都分别除以其对角 线元素,使得对角线元素化为1,用式子表示即:

$$S_{1j}^{(1)} = S_{1j}^{(0)} / S_{1l}^{(0)}$$

 $t_1^{(1)} = t_1^{(0)} / S_{1l}^{(0)}$ (j=1, 2,...,n)

式中:右上角的(0)表示原来的元素;(1) 表示作第一次变换后的元素。

(2) 消元

用第i行 (i=2, 3, …, n) 的 元 素 减 去第一行相应元素的 S_{ii} 倍,使 $S_{ii}=0$,用式子 表示,即:

$$S_{ij}^{(1)} = S_{ij}^{(0)} - S_{ii}^{(0)} S_{tj}^{(1)}$$

$$(i = 2, 3, \dots, n;$$

$$j = 1, 2, \dots, n)$$

$$t_{i}^{(1)} = t_{i}^{(0)} - S_{ii}^{(0)} t_{i}^{(1)}$$

$$(i = 2, 3, \dots, n)$$

对于增广矩阵由〔S⁽⁰⁾ T⁽¹⁾〕化为[S⁽¹⁾ T⁽¹⁾]即。

$$\begin{bmatrix} S^{(1)} & S_{3}^{(1)} & S_{3}^{(1)} & \cdots & S_{n}^{(1)} & t_{1}^{(1)} \\ 0 & S_{3}^{(1)} & S_{4}^{(1)} & \cdots & S_{n+1}^{(1)} & t_{2}^{(1)} \\ 0 & S_{4}^{(1)} & S_{5}^{(1)} & \cdots & S_{n+2}^{(1)} & t_{3}^{(1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & S_{n+1}^{(1)} & S_{n+2}^{(1)} & \cdots & S_{2n-1}^{(1)} & t_{n}^{(1)} \end{bmatrix}$$

这是第一次变换。同理,再进行第二次,第三次, …,第n次变换,则增广矩阵化为:

$$(S^{(n)} T^{(n)}) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & b_1^{(n)} \\ 0 & 1 & 0 & \cdots & 0 & b_2^{(n)} \\ 0 & 0 & 1 & \cdots & 0 & b_3^{(n)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 & b_n^{(n)} \end{pmatrix}$$

这时方程组的解可求出,即:

$$B = T (N)$$

从上面分析过程可知,对角线元素不能为零,否则运算会中断。有了这一分析过程,就可以编出求解系数 b_1 , b_2 , b_3 , …, b_a 的 程序,其流程框图见图 1。

由 S_K 、 $t_{L(H)}$; S_K 、 $t_{L(N)}$; S_K 、 $t_{L(K)}$ 各 值分别组成的增广系数矩阵输入(即放入置语句中),将程序在机上运行后,便可得到各方程组的解,即:H-Q曲线的特征公式的系数

$$B_{(1)} = 23338.1492$$

$$B_{(2)} = -1413561.84$$

$$B_{(3)} = 25422321.9$$

$$B_{(4)} = -75122892.2$$

$$B_{(5)} = 2.89760279E + 09$$

 $B_{(e)} = -1.56559148E + 11$

 $B_{(7)} = 1.75303503E + 12$

 $B_{(8)} = -4.08721021E + 12$

N-Q曲线的特征公式的系数

 $B_{(1)} = 123.564203$

 $B_{(2)} = -8441.2265$

 $B_{(3)} = 166386.125$

 $B_{(4)} = -462126.966$

 $B_{(5)} = 14618366.2$

 $B_{(a)} = -1.00926158E + 09$

 $B_{(7)} = 1.1290216E + 10$

 $B_{(8)} = -1.52269533E + 10$

K-Q曲线的特征公式的系数

 $B_{(1)} = 399.891393$

 $B_{(2)} = -45039.2785$

 $B_{(8)} = 1846158.07$

 $B_{(4)} = -20750943.2$

 $B_{(5)} = -180122009$

 $B_{(6)} = -5.23026733E + 09$

 $B_{(7)} = 3.31928949E + 11$

 $B_{(8)} = -3.24916334E + 12$

(四) 绘制性能曲线

由上面求解得出的H-Q曲线、N-Q曲线

及K-Q曲线的特征公式的系数,则可写出各特征公式,并编成相应的程序在机上运行,便自动绘制出各性能曲线(见图2)。

图 2 性能曲线

四、小结

(一) 采用最小二乘法原则来拟合试验曲线,对不同类型的风机只要给出性能曲线上的一些工况点,就能得到相应的性能曲线。

(二)应用微型计算机使风机性能曲线试验的数据计算和绘制曲线迅速、准确、且立即可对性能曲线进行分析。

(三)此方法可供其它类似机械设备的性 能曲线进行拟合,如水泵性能曲线的拟合等。

SZJ-190型喷水织机通过鉴定

由国营新征机械厂和陕西第十棉纺织厂共同承担研制的SZJ-190型喷水织机于1987年2月20~21日在国营新征机械厂召开了鉴定会。会议由陕西省经委主持,有国家经委,国家科委等八个省市,四十六个单位,九十多名代表出席了会议。会议代表认真审查了产品设计、工艺资料,产品的科学技术水平、技术经济效益,社会效益、环境保护。对工厂的检测手段,质量管理方法等进行了审查,一致认为该产品达到了国际七十年代末、八十年代初水平、可进行小批量投产。省标准局颁发了产品合格证书。

喷水织机是一种新型的无梭织机,具有车速高,单位面积产量高,占地面积小,机物料

消耗少等优点。是我国织机发展方向之一。SZJ-190喷水织机,每分钟转速为400~500转,运转效率98%,每纬喷水量为3.68克,振幅上下方向为1.98米/秒²,前后方向为2.23米/秒²小于国外同类织机。噪声为83分贝,经纬密度差异在±0.6%以内,幅宽差异在0.3%左右,证明该机在高速情况下送经卷取,张力控制等均达到国外同类织机水平。下机一等品率达87.5%比国外同类织机高8.33%。从考核测试数据表明SZJ-190喷水织机达到了设计要求,能够满足合纤织物的生产需要。该机的研制成功为加速我国无梭织机的发展将起到积极的推动作用。

陕西省纺织科学研究所 吴迪华

COTTON TEXTILE TECHNOLOGY

NO. 5 May 1987 (Vol. 15)

Test and Analysis of the Carding Property after Putting Various Fixed	
Carding Plates on Card	(4)
Proved by testing the size and quantity of cotton tuft by means of carding	
power tester and dynamic cotton tuft tester, putting carding plates on licker-in	
and cylinder makes carding power more effective.	
Investigation and Analysis of Japanese Card Technological Reformation	
Plan Wang Xian	(7)
The paper introduces the card innovation plan of the Daito Textile Machin-	
ary Institute of Japan and the structure of CRC unit, Also the effect of the	
yarn quality improved by the unit is analysed and discussed.	
Analysing the Characteristics of Straight Forward Feed for C4 Card	
Liu Gou-tao et al	(10)
The paper describes the arrangement characteristics of feed plate and	
roller for C4 card, calculates and contracts some technological parameters,	
deducting the formulas of carding parametric length, distance between holding	
and initial carding points, as well as the distance between the feed plate nose	
and the surface of licker-in respectively. Then the double are plate carding	
function and some problems about straight forward feed are discussed.	
Versatility and Serialization of National Rapier Looms	
Gu Bing	(17)
On the basis of demonstrating the versatility of rapier looms, taking the	
requirement of various fabric into consideration in accordance with the tech-	
nical development of rapier loom abroad, a tentative idea of manufacturing	
versatile domestic rapier loom is put forward.	
The Colour-Change Unit and Technology on Rapier Looms	
Xing Han-cheng	(20)
The colour-change units and technology of some essential rapier looms are	(20)
analysed in the article, maenwhile, the design of colour-change technology of	
imitated MAV rapier loom is emphatically introduced.	
A Study on Size-Film Forming Properties	
Tang Long-qui et al	(22)
By way of investigating the size-film forming mechanism, the paper desc-	(22)
ribes the size molecular structures and mechancial properties of size-film. The	
result of testing and analysing several typical size-film would be certainly	
instructive for production.	
The Surface Tension of PVA Size and Application of Surfactant	
Shen Rui-qing	(27)
By determining the surface tension and some properties of PVA size, the	(21)
function and application of surfactant are analysed and discussed in the	
article.	
Method of Mimiking Fan Characteristic Curve	
Li Yu-xiang	(30)
According to the test results, fan characteristic curve are mimiked in	. 507
terms of the least square method on a micro-computer. And the curve which are	

respectively correlated with original parameters could be automatically drawn by means of BASIC drawing program.

Production Practice

The Effect of Season Chang on Cotton Distribution Decision	
Xu Ming-jiong	(35)
Application and Maintenance of Rollers on CHERRY D-400MT Drawing	
FrameWong xiao-ming	(35)
The Technological Means of Exploring Grade A Rotor Spinning Yarn for Expor	
·····Zhang Ai-chang	(36)
Investigation on Hemp Degumming Technology	
Li Hui et al	(38)
The Minicomputer Supplementary Design for Dyed Yarn Fabric	
Xia Shang-chun	(40)
Initial Investigation on Total Control of Start-up Marks	
	(43)

- Innovation and Reformation
 - · Meeting Report ·
 - · Technology from Abroad ·

本 刊 启 事

1.今年下半年度的《棉纺织技术》月刊正在收订,请读者切勿错过时机,及时到当地邮局订阅,因故未能订上,可直接汇款本刊发行组(地址:西安市纺织城西街),办理邮购,邮购价为每本0.66元。

2.今年第1~4期《棉纺织技术》已售缺,请勿再汇款来;第5~6期尚有余额, 仍可办理邮购。

本刊发行组