TD MI2 Suites Semaines : 11-12

TD SUITES ET SERIES NUMERIQUES

N.B.

La difficulté de chaque exercice est indiquée par le nombre d'astérisques : il va d'un * pour les exercices d'application directe du cours, à quatre **** pour les exercices plus abstraits ou mélangeant différentes notions.

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

Vocabulaire:

Soit a et r deux nombres réels. On dit que une suite $(x_n)_n$ est une suite arithmétique de premier terme a et de raison r, si elle est donnée par

$$\begin{cases} x_0 = a \\ x_{n+1} = x_n + r \end{cases}$$

Question 3**

Soit a et r deux nombres réels et soit $(x_n)_n$ une suite arithmétique de premier terme a et de raison r.

- a. Donner une formule explicite pour x_n .
- b. Calculer la limite $\lim_{n\to\infty} x_n$ en fonction de a et de r.

Question 4**

a. Prouver par récurrence la formule

$$\sum_{k=0}^{k} n = 0 + 1 + 2 + \dots + k = \frac{k(k+1)}{2}.$$

b. Soit $(x_n)_n$ une suite arithmétique de premier terme a et de raison r. Calculer explicitement $\sum_{n=0}^k x_n$.

Vocabulaire:

Soit a et r deux nombres réels. On dit qu'une suite $(x_n)_n$ est une suite géométrique de premier terme a et de raison r, si elle est donnée par

$$\begin{cases} x_0 = a \\ x_{n+1} = x_n \cdot r \end{cases}$$

Ouestion 9**

Soit $q \in \mathbb{R}$ et soit $(x_n)_n$ une suite géométrique de premier terme 1 et de raison q.

- a. Donner une formule explicite pour x_n .
- b. On suppose de plus $q \neq 1$. Prouver par récurrence la formule

$$\sum_{n=0}^{k} x_n = \frac{1 - q^{k+1}}{1 - q}.$$

Que vaut la somme si q = 1?

Question 11**

Calculer les sommes suivantes.

a.
$$1 - 2 + 4 - 8 + 16 - 32 + \dots + 4096$$
.

b.
$$1+3+9+27+81+\cdots 59049$$
.

c.
$$1+3+5+7+9+\cdots+999$$
.

Question 12*

Déterminer le nombre a tel que les 3 nombres suivants : 7, a et 8 soient les termes consécutifs d'une suite géométrique.

TD MI2 Suites Semaines : 11-12

SUITES RÉCURRENTES

Question 14***

On considère la suite $(x_n)_n$ de réels strictement positifs, définie par

 $\begin{cases} x_0 = 2 \\ \ln(x_{n+1}) = 1 + \ln(x_n) \end{cases}$

- a. Exprimer x_{n+1} en fonction de x_n et préciser la nature de la suite $(x_n)_n$.
- b. Déterminer la monotonie de la suite $(x_n)_n$.
- c. Calculer la somme $\sum_{n=0}^{k} x_n$ en fonction de k.
- d. Exprimer la somme $\sum_{n=0}^k \ln(x_n)$ en fonction de k. En déduire le calcul de $x_0 \cdot x_1 \cdot x_2 \cdots x_k$ en fonction de k.

Question 15**

On donne la suite $(x_n)_n$ suivante

$$\begin{cases} x_0 = 7\\ x_{n+1} = 2x_n - 3 \end{cases}$$

Montrer que $x_n = 2^{n+2} + 3$ pour tout n.

Question 16**

On considère la suite $(x_n)_n$ de réels strictement positifs suivante

$$\begin{cases} x_0 = 1\\ x_{n+1} = \sqrt{x_n + 1} \end{cases}$$

- a. Démontrer que $0 < x_n < 2$ pour tout n.
- b. Démontrer que $x_n \leq x_{n+1}$ pour tout n.

Question 17**

On considère la suite $(x_n)_n$ définie par

$$\begin{cases} x_0 = 10 \\ x_{n+1} = \frac{x_n}{2} + 1 \end{cases}$$

- a. Conjecturer le sens de variation de $(x_n)_n$.
- b. Étudier les variations de la fonction f définie par $f(x) = \frac{x}{2} + 1$.
- c. Démontrer la conjecture.

Question 18**

Déterminer le terme général de la suite $(x_n)_n$ définie par :

$$\begin{cases} x_0 = 2 \\ x_1 = 2 \\ x_{n+2} = 2x_{n+1} - 2x_n \end{cases}$$

Question 19**

Déterminer le terme général de la suite $(x_n)_n$ définie par :

$$\begin{cases} x_0 = 0 \\ x_1 = 1 \\ x_{n+2} = x_{n+1} + x_n \end{cases}$$

Reconnaissez-vous cette suite?

Question 20**

Soit $x \in \mathbb{R}$ avec x > 0. On considère la suite de réels strictement positifs définie par la relation de récurrence

$$u_0 = 1,$$
 $u_{n+1} = \frac{1}{2} \left(u_n + \frac{x}{u_n} \right)$

- a. Montrer que $u_n \ge \sqrt{x}$ pour tout $n \ge 1$.
- b. Montrer que (u_n) est décroissante à partir du rang n=1.

Question 21**

Soient 0 < a < b. Montrer préliminairement les inégalités suivantes $a < \sqrt{ab} < \frac{a+b}{2} < b$. On considère maintenant les suites de réels strictement positifs définies par la relation de récurrence

$$\begin{cases} x_1 = a \text{ et } y_1 = b \\ x_{n+1} = \sqrt{x_n y_n} \text{ et } y_{n+1} = \frac{x_n + y_n}{2} \end{cases}$$

Montrer que $x_n < x_{n+1} < y_{n+1} < y_n$ pour tout $n \ge 1$.

Question 22*

On considère la suite définie pour tout $n \ge 0$ par

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{2^n}$$
 et $x_0 = 1$.

- 1) Calculer x_1 , x_2 , x_3 , x_4 en laissant les résultats sous forme fractionnaire.
- 2) Conjecturer la forme générale de \boldsymbol{x}_n et prouver ce résultat

Autre méthode : montrer que la suite (y_n) définie par $\forall n$ $y_n=2^nx_n$ est arithmétique.

Question 23**

Etudier les suites définies de la façon suivante (comportement, convergence, expression éventuelle explicite en fonction de n) :

- a. $2U_{n+1}=U_n-1$ $U_0=1$ (trouver α tel que (V_n) définie par $V_n=U_n-\alpha$ soit géométrique)
- b. $R_{n+1}=rac{1}{3}R_n+n-1$ $R_0=1$ (on montrera que la suite définie par $V_n=4U_n-6n+15$ est géométrique)
- c. $S_{n+1} = 3S_n 2n + 3$ $S_0 = 0$
- d. $V_{n+2} = \frac{3}{35}V_{n+1} + \frac{2}{35}V_n$ $V_0 = 3$ $V_1 = -\frac{4}{35}$

Semaines: 11-12

Question 24***

1) Etudier la suite définie par $U_0=1$, $U_1=k\in\mathbb{R}$ et $\forall n\geq 0$, $U_{n+2}=U_{n+1}+U_n.$

2) Que retrouve t-on lorsqu'on prend $k=\frac{1-\sqrt{5}}{2}$? 3) La calculatrice ne peut pas calculer le nième terme de la

3) La calculatrice ne peut pas calculer le nième terme de la suite en utilisant $k=\frac{1-\sqrt{5}}{2}$. Elle utilise un $k'=k+\epsilon$. Que

vaut l'expression en fonction de n des termes de la suite si on prend $U_1 = k' = k + \epsilon$?

4) Optionnel : quelles sont les limites de la suite quand $U_1=k$ et quand $U_1=k^\prime$? Quel résultat donne la calculatrice?

DÉFINITION DE LIMITE D'UNE SUITE ET CONVERGENCE

Question 39*

(cf programmes du lycée)

1) Démontrer par récurrence que pour tout $n \geq 0$ et pour tout $x \in [0, +\infty[$ on a

$$(1+x)^n \ge 1 + nx$$
 (inégalité de Bernoulli).

- 2) En déduire que si q>1, $\lim_{n\to\infty}q^n=+\infty$.
- 3) En déduire la limite de q^n lorsque -1 < q < 1 (utiliser des théorèmes d'opération sur les limites).

Question 40*

On considère la suite (U_n) définie pour tout $n \geq 1$ par $U_n = \sum_{k=1}^n \frac{1}{k^2}.$

- a. Justifier que (U_n) est croissante.
- b. En utilisant et démonstrant la majoration $\frac{1}{k^2} \leq \frac{1}{k-1} \frac{1}{k}$, montrer que (U_n) est majorée par une suite convergente.

c. Conclure.

Question 41*

Soit $n \in \mathbb{N}^*$, $x \in \mathbb{R}$ et $U_n = \sum_{k=1}^n \frac{E(kx)}{n^2}$.

En encadrant U_n par deux suites convergentes vers $\frac{x}{2}$, montrer que la suite de terme général U_n converge vers $\frac{x}{2}$.

Question 42**

Soit $(x_n)_n$ une suite telle que $x_n>0$ pour tout n. On suppose qu'il existe $\ell\in[0,+\infty]$ tel que

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell.$$

- a. On suppose $\ell > 1$. Démontrer que $\lim_{n \to \infty} x_n = +\infty$.
- b. On suppose $\ell < 1$. Démontrer que $\lim_{n \to \infty} x_n = 0$.
- c. Montrer par des exemples que si $\ell=1$, on ne peut pas conclure.

SUITES ET MATRICES

Question 66* Etudier en fonction de leurs premiers termes les deux suites numériques définies pour tout $n \geq 0$ par $U_{n+1} = \frac{1}{4}(U_n + 3V_n)$ et $V_{n+1} = \frac{1}{4}(V_n + 3U_n)$.

Question 67*

Un opérateur téléphonique *A* souhaite prévoir l'évolution du nombre de ses abonnés dans une grande ville par rapport à son principal concurrent *B* à partir de 2021.

En 2021, les opérateurs A et B ont chacun 300 milliers d'abonnés

Pour tout entier naturel n, on note a_n le nombre d'abonnés, en milliers, de l'opérateur A la n-ième année après 2021, et b_n le nombre d'abonnés, en milliers, de l'opérateur B la n-

ième année après 2021.

Ainsi, $a_0 = 300$ et $b_0 = 300$.

Des observations réalisées les années précédentes conduisent à modéliser la situation par la relation suivante : pour tout entier naturel $n_{\rm r}$

$$\left\{ \begin{array}{l} a_{n+1}=0,7a_n+0,2b_n+60 \\ b_{n+1}=0,1a_n+0,6b_n+70 \end{array} \right.$$

On considère les matrices $M=\begin{pmatrix} 0,7 & 0,2 \\ 0,1 & 0,6 \end{pmatrix}$ et $P=\begin{pmatrix} 60 \\ 70 \end{pmatrix}$.

Pour tout entier naturel n, on note $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$

a. I Déterminer U_1

- Il Écrire la relation matricielle qui permet d'exprimer U_{n+1} en fonction de U_n .
- b. | Calculer $(I_2 M) \times \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$
 - Il En déduire que la matrice $(I_2 M)$ est inversible et préciser son inverse.
 - III Déterminer la matrice U telle que $U = M \times U + P$.
- c. Pour tout entier naturel n, on pose $V_n = U_n U$.
 - I Justifier que, pour tout entier naturel n, $V_{n+1} = M \times V_n$.
 - Il En déduire que, pour tout entier naturel n,

$$V_n = M^n \times V_0.$$

d. On admet que, pour tout entier naturel n_i

$$V_n = \begin{pmatrix} \frac{-100}{3} \times 0, 8^n - \frac{140}{3} \times 0, 5^n \\ \frac{-50}{3} \times 0, 8^n + \frac{140}{3} \times 0, 5^n \end{pmatrix}$$

- l Pour tout entier naturel n, exprimer U_n en fonction de n et en déduire la limite de la suite (a_n) .
- Il Estimer le nombre d'abonnés de l'opérateur A à long terme.

INTRODUCTION AUX SÉRIES NUMÉRIQUES

Question 1 *

Soit $(x_n)_n$ une suite de nombres réels et soir $s \in \mathbb{R}$. Donner la définition *précise* de

$$\sum_{n=0}^{+\infty} x_n = s.$$

Question 2 **

Soit $q \in \mathbb{R}$.

a. En utilisant la question ??, montrer que, si |q| < 1 alors

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}.$$

b. Montrer que, si $q \ge 1$ alors

$$\sum_{n=0}^{+\infty} q^i = +\infty.$$

c. Que peut-on dire si $q \leq -1$?

Question 3 **

Soit $(x_n)_n$ la suite donnée par $x_n = \frac{1}{n(n+1)}$ pour $n \ge 1$.

- a. On pose $S_k = \sum_{n=1}^k x_n$. Calculer explicitement S_k pour k=1,2,3,4.
- b. Vérifier que $x_n = \frac{1}{n} \frac{1}{n+1}$
- c. Calculer $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}.$

Question 4 **

Soit $(x_n)_n$ une suite telle que $x_n>0$ pour tout n. On suppose qu'il existe $\ell\in[0,+\infty]$ tel que

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell.$$

- a. On suppose que $\ell < 1$. Démontrer que $\sum_{n=0}^{+\infty} x_n = +\infty$.
- b. On suppose que $\ell > 1$. Démontrer que $\sum_{n \geq 0} x_n$ est convergente.
- c. Montrer par des exemples que si $\ell=1$, on ne peut pas conclure.

Question 5 **

Soit $(x_n)_n$ une suite telle que $x_n > 0$ pour tout n. On suppose qu'il existe $\ell \in [0, +\infty]$ tel que

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \ell.$$

- a. On suppose que $\ell < 1$. Démontrer que $\sum_{n=0}^{+\infty} x_n = +\infty$.
- b. On suppose que $\ell > 1$. Démontrer que $\sum_{n \geq 0} x_n$ est convergente.
- c. Montrer par des exemples que si $\ell=1$, on ne peut pas conclure.