Integrales de línea Cálculo Vectorial

Prof. María Tarazona¹

¹Departamento de Matemática y Física Universidad Nacional Experimental del Táchira

20 de marzo de 2024

Contexto de Integrales de línea

Fuente de la información: Ron Larson & Bruce H. Edwars. Cálculo de varias variables. Novena edición. Volumen 2.

Integrales de línea

$$\int_{a}^{b} f(x) dx$$

Se integra sobre el intervalo [a, b].

se integró sobre el intervalo [a, b]. De manera similar, en las integrales dobles

$$\int_{\mathbb{R}} \int f(x, y) dA$$

Se integra sobre la región R.

se integró sobre la región R del plano. En esta sección se estudia un nuevo tipo de integral llamada **integral de línea**

$$\int_{\mathbb{R}} f(x, y) ds$$

Se integra sobre una curva C.

en la que se integra sobre una curva C suave a trozos.

Definición de Integral de línea de un campo escalar

DEFINICIÓN DE INTEGRAL DE LÍNEA

Si f está definida en una región que contiene una curva suave C de longitud finita, entonces la **integral de línea de f a lo largo de C** está dada por

$$\int_C f(x, y) ds = \lim_{\|\Delta\| \to 0} \sum_{i=1}^n f(x_i, y_i) \Delta s_i$$
 Plano.

0

$$\int_{C} f(x, y, z) ds = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta s_i$$
 Espacio.

siempre que este límite exista.

Partición de la curva C Figura 15.8

Evaluación de una Integral de línea

TEOREMA 15.4 EVALUACIÓN DE UNA INTEGRAL DE LÍNEA COMO INTEGRAL DEFINIDA

Sea f continua en una región que contiene una curva suave C. Si C está dada por $\mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}$, donde $a\leq t\leq b$, entonces

$$\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt.$$

Si *C* está dada por $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, donde $a \le t \le b$, entonces

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt.$$

La integral anterior puede definirse entonces como:

$$\int_{C} f ds = \int_{r} f(r(t)) ||r'(t)|| dt$$

donde r(t) corresponde a la parametrización de la curva y $ds = \|r'(t)\| dt$

Figura 15.10

Evaluación de una integral de línea sobre una trayectoria

Solución Para empezar, se integra, en sentido ascendente sobre la recta y = x, usando la parametrización siguiente.

$$C_1$$
: $x = t$, $y = t$, $0 \le t \le 1$

En esta curva, $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j}$, lo que implica que x'(t) = 1 y y'(t) = 1. Por tanto,

$$\sqrt{[x'(t)]^2 + [y'(t)]^2} = \sqrt{2}$$

y se tiene

$$\int_{C_1} x \, ds = \int_0^1 t \sqrt{2} \, dt = \frac{\sqrt{2}}{2} t^2 \Big|_0^1 = \frac{\sqrt{2}}{2}.$$

Recordemos que la parametrización de un trozo de recta desde el punto \emph{r}_0 a \emph{r}_1 , viene dada por:

$$r(t) = (1-t)r_0 + tr_1;$$
 $0 \le t \le 1$

Ejemplo 3 (Continuación)

A continuación, se integra, en sentido descendente, sobre la parábola $y=x^2$, usando la parametrización

$$C_2$$
: $x = 1 - t$, $y = (1 - t)^2$, $0 \le t \le 1$.

En esta curva, $\mathbf{r}(t) = (1-t)\mathbf{i} + (1-t)^2\mathbf{j}$, lo cual implica que x'(t) = -1 y y'(t) = -2(1-t). Por tanto,

$$\sqrt{[x'(t)]^2 + [y'(t)]^2} = \sqrt{1 + 4(1-t)^2}$$

y se tiene

$$\begin{split} \int_{C_2} x \, ds &= \int_0^1 (1 - t) \sqrt{1 + 4(1 - t)^2} \, dt \\ &= -\frac{1}{8} \left[\frac{2}{3} \left[1 + 4(1 - t)^2 \right]^{3/2} \right]_0^1 \\ &= \frac{1}{12} (5^{3/2} - 1). \end{split}$$

Por consiguiente,

$$\int_C x \, ds = \int_{C_1} x \, ds + \int_{C_2} x \, ds = \frac{\sqrt{2}}{2} + \frac{1}{12} (5^{3/2} - 1) \approx 1.56.$$

EJEMPLO 5 Hallar la masa de un resorte (o muelle)

Hallar la masa de un resorte que tiene la forma de una hélice circular

$$\mathbf{r}(t) = \frac{1}{\sqrt{2}}(\cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}), \quad 0 \le t \le 6\pi$$

donde la densidad del resorte es $\rho(x, y, z) = 1 + z$, como se muestra en la figura 15.11.

Solución Como

$$\|\mathbf{r}'(t)\| = \frac{1}{\sqrt{2}}\sqrt{(-\sin t)^2 + (\cos t)^2 + (1)^2} = 1$$

se sigue que la masa del resorte es

Masa =
$$\int_{C} (1+z) ds = \int_{0}^{6\pi} \left(1 + \frac{t}{\sqrt{2}}\right) dt$$
$$= \left[t + \frac{t^{2}}{2\sqrt{2}}\right]_{0}^{6\pi}$$
$$= 6\pi \left(1 + \frac{3\pi}{\sqrt{2}}\right)$$
$$\approx 144.47.$$

La masa del resorte es aproximadamente 144.47.

 $\mathbf{r}(t) = \frac{1}{\sqrt{2}} (\cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k})$

Figura 15.11

Recordemos que la masa de un resorte puede modelarse a partir de la siguiente ecuación: $\textit{Masa} = \int_{\mathcal{C}} \rho\left(x,y,z\right) ds$

Definición de Integral de línea de un campo vectorial

DEFINICIÓN DE LA INTEGRAL DE LÍNEA DE UN CAMPO VECTORIAL

Sea **F** un campo vectorial continuo definido sobre una curva suave C dada por $\mathbf{r}(t)$, $a \le t \le b$. La **integral de línea** de **F** sobre C está dada por

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}'(t) \, dt.$$

Es posible utilizar la integral anterior para calcular el trabajo realizado en un campo de fuerzas. Viene dado por la ecuación:

$$W = \int_{C} \mathbf{F}(x, y, z) \cdot \mathbf{T}(x, y, z) ds$$

En este punto, conocemos que el vector tangente unitario T(x, y, z), puede expresarse como

 $T(x,y,z) = \frac{r'(t)}{\|r'(t)\|}$, esto hace que la ecuación para el cálculo del trabajo se transforme en:

$$W = \int_{c} \mathbf{F} \cdot \mathbf{T} ds = \int_{c} \mathbf{F} \cdot \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \left\| \mathbf{r}'(t) \right\| dt = \int_{c} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_{c} \mathbf{F} \cdot d\mathbf{r}$$

EJEMPLO Evalúe $\int_C \mathbf{F} \cdot d\mathbf{r}$, donde $\mathbf{F}(x,y,z) = xy \, \mathbf{i} + yz \, \mathbf{j} + zx \, \mathbf{k} \, y \, C$ es la cúbica torcida dada por

$$x = t \qquad y = t^2 \qquad z = t^3 \qquad 0 \le t \le 1$$

SOLUCIÓN Tenemos

$$\mathbf{r}(t) = t\,\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$$

$$\mathbf{r}'(t) = \mathbf{i} + 2t\,\mathbf{j} + 3t^2\mathbf{k}$$

$$\mathbf{F}(\mathbf{r}(t)) = t^3 \mathbf{i} + t^5 \mathbf{j} + t^4 \mathbf{k}$$

Por tanto,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_0^1 (t^3 + 5t^6) dt = \frac{t^4}{4} + \frac{5t^7}{7} \bigg]_0^1 = \frac{27}{28}$$

Integral de línea en forma diferencial

Integrales de línea en forma diferencial

Otra forma normalmente utilizada de las integrales de línea se deduce de la notación de campo vectorial usada en la sección anterior. Si \mathbf{F} es un campo vectorial de la forma $\mathbf{F}(x,y) = M\mathbf{i} + N\mathbf{j}, \ y \ C$ está dada por $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, entonces $\mathbf{F} \cdot d\mathbf{r}$ se escribe a menudo como M dx + N dy.

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$

$$= \int_{a}^{b} (M\mathbf{i} + N\mathbf{j}) \cdot (x'(t)\mathbf{i} + y'(t)\mathbf{j}) dt$$

$$= \int_{a}^{b} \left(M \frac{dx}{dt} + N \frac{dy}{dt} \right) dt$$

$$= \int_{C} (M dx + N dy)$$

Esta **forma diferencial** puede extenderse a tres variables. Los paréntesis se omiten a menudo, y se escribe:

$$\int_C M \, dx + N \, dy \qquad y \qquad \int_C M \, dx + N \, dy + P \, dz$$

Figura 15.18

EJEMPLO 9 Evaluación de una integral de línea en forma diferencial

Evaluar

$$\int_C y \, dx + x^2 \, dy$$

donde C es el arco parabólico dado por $y = 4x - x^2$ desde (4, 0) a (1, 3), como se muestra en la figura 15.18.

Solución En lugar de pasar al parámetro t, se puede simplemente conservar la variable x y escribir

$$y = 4x - x^2$$
 $dy = (4 - 2x) dx$

Entonces, en la dirección de (4, 0) a (1, 3), la integral de línea es

$$\int_{C} y \, dx + x^{2} \, dy = \int_{4}^{1} \left[(4x - x^{2}) \, dx + x^{2} (4 - 2x) \, dx \right]$$

$$= \int_{4}^{1} (4x + 3x^{2} - 2x^{3}) \, dx$$

$$= \left[2x^{2} + x^{3} - \frac{x^{4}}{2} \right]_{4}^{1} = \frac{69}{2}. \quad \text{Ver el ejemplo 7.}$$

Teorema fundamental de Integrales de línea

NOTA El teorema fundamental de las integrales de línea es similar al teorema fundamental de cálculo (sección 4.4) que establece que

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
donde $F'(x) = f(x)$.

TEOREMA 15.5 TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

Sea C una curva suave a trozos contenida en una región abierta R y dada por $\mathbf{r}(t) = \mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{i}$, a < t < b.

Si $\mathbf{F}(x, y) = M\mathbf{i} + N\mathbf{j}$ es conservativo en R, y M y N son continuas en R, entonces,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(x(b), y(b)) - f(x(a), y(a))$$

donde f es una función potencial de **F**. Es decir, $\mathbf{F}(x, y) = \nabla f(x, y)$.

El teorema fundamental de las integrales de línea establece que si el campo vectorial \mathbf{F} es conservativo, entonces la integral de línea entre dos puntos cualesquiera es simplemente la diferencia entre los valores de la función potencial f en estos puntos.

Aplicación del teorema fundamental de las integrales de línea

Evaluar $\int \mathbf{F} \cdot d\mathbf{r}$, donde C es una curva suave a trozos desde (-1, 4) hasta (1, 2) y

$$\mathbf{F}(x, y) = 2xy\mathbf{i} + (x^2 - y)\mathbf{j}$$

como se muestra en la figura 15.20.

Solución Por el ejemplo 6 de la sección 15.1, se sabe que \mathbf{F} es el gradiente de f, donde

$$f(x, y) = x^2y - \frac{y^2}{2} + K.$$

Por consiguiente, ${\bf F}$ es conservativo, y por el teorema fundamental de las integrales de línea, se sigue que

$$\int_{C} \mathbf{F} \cdot c\mathbf{h} = f(1, 2) - f(-1, 4)$$

$$= \left[1^{2}(2) - \frac{2^{2}}{2}\right] - \left[(-1)^{2}(4) - \frac{4^{2}}{2}\right]$$

$$= 4.$$

Aplicación del teorema fundamental de las integrales de línea, $\int_C \mathbf{F} \cdot d\mathbf{r}$ Figura 15.20

Independencia de la trayectoria

TEOREMA 15.6 INDEPENDENCIA DE LA TRAYECTORIA Y CAMPOS VECTORIALES CONSERVATIVOS

Si F es continuo en una región abierta y conexa, entonces la integral de línea

$$\int_{C} \mathbf{F} \cdot d\mathbf{r}$$

es independiente de la trayectoria si y sólo si F es conservativo.

EJEMPLO 4 Trabajo en un campo de fuerzas conservativo

Para el campo de fuerzas dado por

$$\mathbf{F}(x, y, z) = e^x \cos y \mathbf{i} - e^x \sin y \mathbf{j} + 2\mathbf{k}$$

mostrar que $\int_C \mathbf{F} \cdot d\mathbf{r}$ es independiente de la trayectoria, y calcular el trabajo realizado por \mathbf{F} sobre un objeto que se mueve a lo largo de una curva C desde $(0, \pi/2, 1)$ hasta $(1, \pi, 3)$.

Solución Al expresar el campo de fuerzas en la forma $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$, se tiene $M = e^x \cos y$, $N = -e^x \sin y$ y P = 2, y se sigue que

$$\frac{\partial P}{\partial y} = 0 = \frac{\partial N}{\partial z}$$

$$\frac{\partial P}{\partial x} = 0 = \frac{\partial M}{\partial z}$$

$$\frac{\partial N}{\partial x} = -e^x \operatorname{sen} y = \frac{\partial M}{\partial y}.$$

Ejemplo (continuación)

Por tanto, \mathbf{F} es conservativo. Si f es una función potencial de \mathbf{F} , entonces

$$f_x(x, y, z) = e^x \cos y$$

$$f_y(x, y, z) = -e^x \sin y$$

$$f_z(x, y, z) = 2.$$

Integrando con respecto a X, y y Z por separado, se obtiene

$$f(x, y, z) = \int f_x(x, y, z) \, dx = \int e^x \cos y \, dx = e^x \cos y + g(y, z)$$

$$f(x, y, z) = \int f_y(x, y, z) \, dy = \int -e^x \sin y \, dy = e^x \cos y + h(x, z)$$

$$f(x, y, z) = \int f_z(x, y, z) \, dz = \int 2 \, dz = 2z + k(x, y).$$

Comparando estas tres versiones de f(x, y, z), se concluye que

$$f(x, y, z) = e^x \cos y + 2z + K.$$

Ejemplo (continuación)

Así, el trabajo realizado por ${\bf F}$ a lo largo de *cualquier* curva ${\cal C}$ desde $(0,\,\pi/2,\,1)$ hasta $(1,\,\pi,\,3)$ es

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

$$= \left[e^{x} \cos y + 2z \right]_{(0, \pi/2, 1)}^{(1, \pi, 3)}$$

$$= (-e + 6) - (0 + 2)$$

$$= 4 - e.$$