# Section 2.3 – Partial Derivatives

#### Partial Derivatives of a Function of Two Variables

We define the partial derivative of f with respect to x at the point  $(x_0, y_0)$  as the ordinary derivative of  $f(x, y_0)$  with respect to x at the point  $x = x_0$ .

To distinguish partial derivatives from ordinary derivatives we use the symbol  $\partial$  *rather* than the **d** symbol.



# **Definition**

The *partial derivative* of f(x, y) with *respect to x* at the point  $(x_0, y_0)$  is

$$\left. \frac{\partial f}{\partial x} \right|_{\left(x_0, y_0\right)} = \lim_{h \to 0} \frac{f\left(x_0 + h, y_0\right) - f\left(x_0, y_0\right)}{h}$$

provided the limit exists.

# Definition

The *partial derivative* of f(x, y) with *respect to y* at the point  $(x_0, y_0)$  is

$$\left. \frac{\partial f}{\partial y} \right|_{\left(x_0, y_0\right)} = \lim_{h \to 0} \frac{f\left(x_0, y_0 + h\right) - f\left(x_0, y_0\right)}{h}$$

provided the limit exists.

The partial derivative with respect to *y* is denoted:

$$\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), \quad f_{y}\left(x_{0}, y_{0}\right), \quad \frac{\partial f}{\partial y}, \quad f_{y}$$





### **Calculations**

# Example

Find the values of  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$  at the point (4, -5) if  $f(x, y) = x^2 + 3xy + y - 1$ 

### Solution

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left( x^2 + 3xy + y - 1 \right)$$

$$= 2x + 3y$$

$$\frac{\partial f}{\partial x}\Big|_{(4,-5)} = 2(4) + 3(-5)$$

$$= -7$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left( x^2 + 3xy + y - 1 \right)$$
$$= 3x + 1$$

$$\frac{\partial f}{\partial y}\Big|_{(4,-5)} = 3(4) + 1$$

$$= 13$$

# Example

Find  $\frac{\partial f}{\partial y}$  as a function if  $f(x, y) = y \sin xy$ 

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (y \sin xy)$$

$$= \sin xy \frac{\partial}{\partial y} (y) + y \frac{\partial}{\partial y} (\sin xy)$$

$$= \sin xy + (y \cos xy) \frac{\partial}{\partial y} (xy)$$

$$= \sin xy + xy \cos xy$$

# **Example**

Find  $f_x$  and  $f_y$  as a function if  $f(x, y) = \frac{2y}{y + \cos x}$ 

#### Solution

$$f_{x} = \frac{\partial}{\partial x} \left(\frac{2y}{y + \cos x}\right) \qquad \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^{2}}$$

$$= \frac{\left(y + \cos x\right)\frac{\partial}{\partial x}(2y) - \left(2y\right)\frac{\partial}{\partial x}(y + \cos x)}{\left(y + \cos x\right)^{2}}$$

$$= \frac{\left(y + \cos x\right)(0) - 2y(-\sin x)}{\left(y + \cos x\right)^{2}}$$

$$= \frac{2y\sin x}{\left(y + \cos x\right)^{2}}$$

$$= \frac{2y\sin x}{\left(y + \cos x\right)^{2}}$$

$$= \frac{\left(y + \cos x\right)(2) - \left(2y\right)(1)}{\left(y + \cos x\right)^{2}}$$

$$= \frac{2y + 2\cos x - 2y}{\left(y + \cos x\right)^{2}}$$

### OR

 $= \frac{2\cos x}{\left(y + \cos x\right)^2}$ 

$$f_{x} = \frac{\partial}{\partial x} \left( \frac{2y}{\cos x + y} \right) \qquad \left( \frac{ay + b}{cy + d} \right)' = \frac{ady' - bcy'}{(cy + d)^{2}}$$

$$= \frac{2y \sin x}{(y + \cos x)^{2}}$$

$$f_{y} = \frac{\partial}{\partial y} \left( \frac{2y}{y + \cos x} \right) \qquad \left( \frac{ay + b}{cy + d} \right)' = \frac{ad - bc}{(cy + d)^{2}}$$

$$= \frac{2\cos x}{(y + \cos x)^{2}}$$

# Example

Find  $\frac{\partial z}{\partial x}$  if the equation  $yz - \ln z = x + y$  defines z as a function of the two independent variables x and y and the partial derivative exist.

#### **Solution**

$$\frac{\partial}{\partial x}(yz) - \frac{\partial}{\partial x} \ln z = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x}$$

$$y\frac{\partial z}{\partial x} - \frac{1}{z}\frac{\partial z}{\partial x} = 1 + 0$$

$$\left(y - \frac{1}{z}\right)\frac{\partial z}{\partial x} = 1$$

$$\left(\frac{yz - 1}{z}\right)\frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial x} = \frac{z}{yz - 1}$$

# Example

The plane x = 1 intersects the paraboloid  $z = x^2 + y^2$  in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5).

#### Solution

The slope is the value of the partial derivative  $\frac{\partial z}{\partial y}$  at (1, 2)

$$\frac{\partial z}{\partial y}\Big|_{(1,2)} = \frac{\partial}{\partial y} \left(x^2 + y^2\right)\Big|_{(1,2)}$$
$$= 2y\Big|_{(1,2)}$$
$$= 4$$

The plane x = 1 intersects the paraboloid  $z = x^2 + y^2$  in a parabola.  $\Rightarrow z = 1 + y^2$ 

$$\frac{\partial z}{\partial y}\Big|_{y=2} = \frac{\partial}{\partial y} (1 + y^2)\Big|_{y=2}$$
$$= 2y\Big|_{y=2}$$
$$= 4$$



#### **Functions of More than Two Variables**

The partial derivatives of more than two variables are ordinary derivatives with respect to one variable, taken while the other independent variables are held constant.

# **Example**

If x, y, and z are independent variables and  $f(x, y, z) = x \sin(y + 3z)$ .

Find 
$$\frac{\partial f}{\partial x}$$
,  $\frac{\partial f}{\partial y}$ ,  $\frac{\partial f}{\partial z}$ 

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left( x \sin(y + 3z) \right)$$
$$= \frac{\sin(y + 3z)}{\sin(y + 3z)}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left( x \sin(y + 3z) \right)$$
$$= x \cos(y + 3z)$$

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left( x \sin(y + 3z) \right)$$
$$= 3x \cos(y + 3z)$$

# Example

If resistors of  $R_1$ ,  $R_2$ , and  $R_3$  ohms are connected in parallel to make an R-ohm resistor, the value of R can be found from the equation.

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Find the value of  $\frac{\partial R}{\partial R_2}$  when  $R_1 = 30 \Omega$ ,  $R_2 = 45 \Omega$ , and  $R_3 = 90 \Omega$ 

#### **Solution**

$$\frac{\partial}{\partial R_2} \left( \frac{1}{R} \right) = \frac{\partial}{\partial R_2} \left( \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)$$

$$-\frac{1}{R^2} \frac{\partial R}{\partial R_2} = \frac{\partial}{\partial R_2} \left( \frac{1}{R_2} \right)$$

$$-\frac{1}{R^2} \frac{\partial R}{\partial R_2} = -\frac{1}{R_2^2}$$

$$\frac{\partial R}{\partial R_2} = \frac{R^2}{R_2^2} = \left( \frac{R}{R_2} \right)^2$$

$$\frac{1}{R} = \frac{1}{30} + \frac{1}{45} + \frac{1}{90} = \frac{6}{90} = \frac{1}{15}$$

$$\Rightarrow R = 15$$

$$\frac{\partial R}{\partial R_2} = \left( \frac{15}{45} \right)^2$$

$$= 4$$



A small change in the resistance  $R_2$  leads to a change in R about  $\frac{1}{9}th$  as large.

# **Partial Derivatives and Continuity**

### **Example**

Let 
$$f(x, y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

- a) Find the limit of f as (x, y) approaches (0, 0) along the line y = x.
- b) Prove that f is not continuous at the origin.
- c) Show that both partial derivatives  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$  exist at the origin.

#### **Solution**

$$z = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

a) Since f(x, y) is constantly zero along the line y = x (except at the origin)

$$\lim_{(x,y)\to(0,0)} f(x,y)\Big|_{y=x} = \lim_{(x,y)\to(0,0)} 0$$

$$= 0$$

- **b**) Since f(0, 0) = 1, and the limit proves that f is **not** continuous at (0, 0).
- c)  $\frac{\partial f}{\partial x}\Big|_{(0,0)} = \frac{\partial}{\partial x} 1\Big|_{(0,0)} = \frac{0}{1}$  is the slope of the line at any x.

The slope of the line at any y,  $\frac{\partial f}{\partial y}\Big|_{(0,0)} = 0$ 

#### **Second-Order Partial Derivatives**

The second-order derivatives are denoted by

$$\frac{\partial^{2} f}{\partial x^{2}} \text{ or } f_{xx}, \quad \frac{\partial^{2} f}{\partial y \partial x} \text{ or } f_{xy}, \quad \frac{\partial^{2} f}{\partial y^{2}} \text{ or } f_{yy}, \quad \text{and} \quad \frac{\partial^{2} f}{\partial x \partial y} \text{ or } f_{yx}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right), \qquad \frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right)$$

 $\frac{\partial^2 f}{\partial y \partial x}$  or  $f_{xy} = (f_x)_y$  Differentiate first with respect to x, then with respect to y.

# Example

If  $f(x, y) = x \cos y + y e^x$ . Find the second derivatives  $\frac{\partial^2 f}{\partial x^2}$ ,  $\frac{\partial^2 f}{\partial y \partial x}$ ,  $\frac{\partial^2 f}{\partial y^2}$ , and  $\frac{\partial^2 f}{\partial x \partial y}$ 

 $\frac{\partial f}{\partial y} = -x \sin y + e^x$ 

$$\frac{\partial f}{\partial x} = \cos y + ye^{x}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial}{\partial x} \left( \cos y + ye^{x} \right)$$

$$= ye^{x}$$

$$\frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial f}{\partial y} \left( \frac{\partial f}{\partial x} \right)$$

$$= \frac{\partial}{\partial y} \left( \cos y + ye^{x} \right)$$

$$= -\sin y + e^{x}$$

$$\frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right)$$

$$= \frac{\partial}{\partial y} \left( -x \sin y + e^{x} \right)$$

$$= -x \cos y$$

$$\frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( -x \sin y + e^{x} \right)$$

$$= -\sin y + e^{x}$$

# **Theorem** – The Mixed Derivative Theorem

If f(x, y) and its partial derivatives  $f_x$ ,  $f_y$ ,  $f_{xy}$ , and  $f_{yx}$  are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$f_{xy}(a, b) = f_{yx}(a, b)$$

# Example

Find 
$$\frac{\partial^2 w}{\partial x \partial y}$$
 if  $w = xy + \frac{e^y}{v^2 + 1}$ 

#### **Solution**

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial}{\partial x} \left[ \frac{\partial}{\partial y} \left( xy + \frac{e^y}{y^2 + 1} \right) \right]$$

$$= \frac{\partial}{\partial x} \left( x + \frac{e^y \left( y^2 + 1 \right) - 2y e^y}{\left( y^2 + 1 \right)^2} \right)$$

$$= 1$$

# Partial Derivatives of Still Higher Order

# Example

Find 
$$f_{yxyz}$$
 if  $f(x, y, z) = 1 - 2xy^2z + x^2y$ 

$$f_{y} = -4xyz + x^{2}$$

$$f_{yx} = -4yz + 2x$$

$$f_{yxy} = -4z$$

$$f_{yxyz} = -4$$

# **Differentiability**

### **Theorem** – The Increment Theorem for Functions of Two Variables

Suppose that the first partial derivatives of f(x, y) are defined throughout an open region R containing a point  $(x_0, y_0)$  and that  $f_x$  and  $f_y$  are continuous at  $(x_0, y_0)$ . Then the change

$$\Delta z = f\left(x_0 + \Delta x, y_0 + \Delta y\right) - f\left(x_0, y_0\right)$$

In the value of f that results from moving from  $(x_0, y_0)$  to another point  $(x_0 + \Delta x, y_0 + \Delta y)$  in R satisfies an equation of the form

$$\Delta z = f_x \left( x_0, y_0 \right) \Delta x + f_y \left( x_0, y_0 \right) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

In which each of  $\varepsilon_1$ ,  $\varepsilon_2 \to 0$  as both  $\Delta x$ ,  $\Delta y \to 0$ 

### **Definition**

A function z = f(x, y) is *differentiable at*  $(x_0, y_0)$  If  $f_x(x_0, y_0)$  and  $f_y(x_0, y_0)$  exist and  $\Delta z$  satisfies an equation of the form

$$\Delta z = f_x \left( x_0, y_0 \right) \Delta x + f_y \left( x_0, y_0 \right) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

In which each of  $\varepsilon_1$ ,  $\varepsilon_2 \to 0$  as both  $\Delta x$ ,  $\Delta y \to 0$ . We call *f differentiable* if it is differentiable at every point in its domain, and say that its graph is a *smooth surface*.

# **Exercises** Section 2.3 – Partial Derivatives

$$(1-17)$$
 Find  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$ 

1. 
$$f(x,y) = 2x^2 - 3y - 4$$

2. 
$$f(x, y) = x^2 - xy + y^2$$

3. 
$$f(x,y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2$$

**4.** 
$$f(x,y) = (xy-1)^2$$

5. 
$$f(x,y) = \left(x^3 + \frac{y}{2}\right)^{2/3}$$

$$6. \qquad f(x,y) = \frac{1}{x+y}$$

7. 
$$f(x,y) = \frac{x}{x^2 + y^2}$$

8. 
$$f(x,y) = \tan^{-1} \frac{y}{x}$$

9. 
$$f(x, y) = e^{-x} \sin(x + y)$$

(18 – 30) Find 
$$f_{x}$$
,  $f_{y}$ , and  $f_{z}$ 

**18.** 
$$f(x, y, z) = 1 + xy^2 - 2z^2$$

**19.** 
$$f(x, y, z) = xy + yz + xz$$

**20.** 
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

**21.** 
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$$

**22.** 
$$f(x, y, z) = \sec^{-1}(x + yz)$$

**23.** 
$$f(x, y, z) = \ln(x + 2y + 3z)$$

**24.** 
$$f(x, y, z) = e^{-(x^2 + y^2 + z^2)}$$

$$10. \quad f(x,y) = e^{xy} \ln y$$

11. 
$$f(x,y) = \sin^2(x-3y)$$

**12.** 
$$f(x,y) = \cos^2(3x - y^2)$$

$$13. \quad f(x,y) = x^y$$

**14.** 
$$f(x, y) = 3x^2y^5$$

15. 
$$f(x, y) = x\cos y - y\sin x$$

**16.** 
$$f(x, y) = \frac{x^2}{x^2 + y^2}$$

**17.** 
$$f(x, y) = xye^{xy}$$

**25.** 
$$f(x, y, z) = \tanh(x + 2y + 3z)$$

**26.** 
$$f(x, y, z) = \sinh(xy - z^2)$$

27. 
$$f(x, y, z) = \frac{xyz}{x+y}$$

**28.** 
$$f(x, y, z) = 4xyz^2 - \frac{3x}{y}$$

**29.** 
$$f(x, y, z) = e^{x+2y+3z}$$

**30.** 
$$f(x, y, z) = x^2 \sqrt{y+z}$$

(31-34) Find partial derivatives of the function with respect to each variable

**31.** 
$$g(r,\theta) = r\cos\theta + r\sin\theta$$

32. 
$$f(x,y) = \frac{1}{2} \ln(x^2 + y^2) + \tan^{-1} \frac{y}{x}$$

33. 
$$h(x, y, z) = \sin(2\pi x + y - 3z)$$

**34.** 
$$f(r,l,T,w) = \frac{1}{2rl} \sqrt{\frac{T}{\pi w}}$$

(35-43) Find all the second-order partial derivatives of

**35.** 
$$f(x, y) = x + y + xy$$

$$36. \quad f(x,y) = \sin xy$$

37. 
$$g(x, y) = x^2y + \cos y + y \sin x$$

**38.** 
$$r(x, y) = \ln(x + y)$$

**39.** 
$$w = x^2 \tan(xy)$$

**40.** 
$$w = ye^{x^2 - y}$$

**41.** 
$$g(x,y) = y + \frac{x}{y}$$

**42.** 
$$g(x,y) = e^x + y \sin x$$

**43.** 
$$f(x, y) = y^2 - 3xy + \cos y + 7e^y$$

(44 – 45) Verify that the function satisfies Laplace's equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 

**44.** 
$$u(x, y) = y(3x^2 - y^2)$$

**45.** 
$$u(x, y) = \ln(x^2 + y^2)$$

**46.** Let f(x, y) = 2x + 3y - 4. Find the slope of the line tangent to this surface at the point (2, -1) and lying in the

- a) Plane x = 2
- **b**) Plane y = -1.

**47.** Let w = f(x, y, z) be a function of three independent variables and writs the formal definition of the partial derivative  $\frac{\partial f}{\partial y}$  at  $(x_0, y_0, z_0)$ . Use this definition to find  $\frac{\partial f}{\partial y}$  at (-1, 0, 3) for  $f(x, y, z) = -2xy^2 + yz^2$ .

**48.** Find the value of  $\frac{\partial x}{\partial z}$  at the point (1,-1,-3) if the equation  $xz + y \ln x - x^2 + 4 = 0$  defines x as a function of the two independent variables y and z and the partial derivative exists.

**49.** Express A implicitly as a function of a, b, and c and calculate  $\frac{\partial A}{\partial a}$  and  $\frac{\partial A}{\partial b}$ .



**50.** An important partial differential equation that describes the distribution of heat in a region at time *t* can be represented by the *one-dimensional heat equation* 

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$$

Show that  $u(x,t) = \sin(\alpha x) \cdot e^{-\beta t}$  satisfies the heat equation for constants  $\alpha$  and  $\beta$ . What is the relationship between  $\alpha$  and  $\beta$  for this function to be a solution?