

ENZYMES

Peter Hunyadi & Nikola Vinko

ENZYMES Overview

- 600 enzymes
- Graph representation of an enzyme
- 6 EC enzyme labels: reflect catalyzed chemical reaction

Example graph

- Node represent secondary structure elements (SSE)
 - Helix,sheet or turn
- Edge connects two SSE that are neighbors along the amino acid sequence or are one of three nearest neighbors in space

Examples of representative enzymes

Examples of representative enzymes

Dimensionality Reduction on unprocessed data

 We see some outlier points which are far separated from the main cluster

Visualizing outliers: unique structure and high/low number of edges/nodes

Preprocessing: removing outliers and graphs with extreme edge/node counts

Dimensionality Reduction on labeled dataset: WL4

Cluster evaluation based on NMI

Clusters do not represent the true labels

Clusters have different degree distributions

Cluster 1, Indices [233 240]

Cluster 2, Indices [485 232]

roupی

 \sim

DR describes node labels and node count

True label analysis based on node properties

- We notice higher correlation between EC 4,5
- Also EC 1,3 are highly correlated

Difference between EC1 and other EC classes

UMAP of only node attribute data (wtihout labels)

• SVM accuracy comparison of kernels

WL iterations 1-5 With preprocessing	0,44898
	0,56122
	0,57143
	0,62245
	0,61225
WL iterations 1-5 WithOUT preprocessing	0,45834
	0,575
	0,625
	0,625
	0,60834
Graphlet	0,32653
Shortest Paths	0,48979

Conclusion

- UMAP vector representation is strongly driven by node labels (SSE elements), edge/node count
- Clusters do not represent the ground truth labels
- Clusters are formed based on different SSE composition, and structural differences e.g. degree distribution
- Node attributes play also an important role in EC classification which could be used for building better kernels

Thank you for your attention!

• NMI values for the 3 kernels (with removing the extreme values first)

	WL iter 3	Graphlet	Shortest Paths
Kmeans	0,1018	0,0828	0,1091
Hierarchical Ward	0,2079	0,1710	0,1866
Hierarchical Complete	0,1774	0,1576	0,1601
Hierarchical Average	0,0446	0,0887	0,0602
Hierarchical Single	0,0338	0,0551	0,0508
Subkmeans	0,0833	0,0717	0,0754

Overview of NMI performance for different representations

Scatter plot of avg. nodes and avg. edges

