♦ databricksFinal

(https://databricks.com)

Overview

This notebook will show you how to create and query a table or DataFrame that you uploaded to DBFS. DBFS (https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html) is a Databricks File System that allows you to store data for querying inside of Databricks. This notebook assumes that you have a file already inside of DBFS that you would like to read from.

This notebook is written in **Python** so the default cell type is Python. However, you can use different languages by using the <code>%LANGUAGE</code> syntax. Python, Scala, SQL, and R are all supported.

Bringing in DATAFRAME

	1 ² 3 id	1 ² 3 age	A ^B _C sex	^{AB} _C dataset	A ^B C cp	1 ² 3 trestbps	
1	1	63	Male	Cleveland	typical angina	14	
2	2	67	Male	Cleveland	asymptomatic	16	
3	3	67	Male	Cleveland	asymptomatic	12	
4	4	37	Male	Cleveland	non-anginal	13	
5	5	41	Female	Cleveland	atypical angi	1	
6	6	56	Male	Cleveland	atypical angi	12	
7	7	62	Female	Cleveland	asymptomatic	14	
8	8	57	Female	Cleveland	asymptomatic	12	
9	9	63	Male	Cleveland	asymptomatic	13	
10	10	53	Male	Cleveland	asymptomatic	14	
11	11	57	Male	Cleveland	asymptomatic	14	
12	12	56	Female	Cleveland	atypical angi	14	
13	13	56	Male	Cleveland	non-anginal	13	
14	14	44	Male	Cleveland	atypical angi	12	
15	15	52	Male	Cleveland	non-anginal	17	

Describe the Variables

```
# Describe the variables
variables_description = {
    'age': 'Age of the patient',
    'sex': 'Sex of the patient (1 = male, 0 = female)',
    'cp': 'Chest pain type (1 to 4)',
    'trestbps': 'Resting blood pressure (in mm Hg)',
    'chol': 'Serum cholesterol (in mg/dl)'
}
variables_description
```

```
Out[28]: {'age': 'Age of the patient',
  'sex': 'Sex of the patient (1 = male, 0 = female)',
  'cp': 'Chest pain type (1 to 4)',
  'trestbps': 'Resting blood pressure (in mm Hg)',
  'chol': 'Serum cholesterol (in mg/dl)'}
```

Converting to Pandas

```
import pandas as pd
 df = df.toPandas()
 print(pandas df.head())
                    dataset
  id age
             sex
                                           cp trestbps chol
                                                               fbs \
            Male Cleveland
  1
      63
                              typical angina
                                                   145
                                                        233
                                                              TRUE
  2
1
            Male Cleveland
                                                        286
      67
                                asymptomatic
                                                   160
                                                             FALSE
            Male Cleveland
2
  3
     67
                                asymptomatic
                                                   120
                                                        229
                                                             FALSE
3
  4
      37
            Male Cleveland
                                                   130
                                                        250
                                 non-anginal
                                                             FALSE
  5
4
      41
          Female Cleveland
                             atypical angina
                                                   130
                                                        204
                                                             FALSE
          restecg thalch exang oldpeak
                                                                       thal num
                                                slope ca
  lv hypertrophy
                     150
                         FALSE
                                         downsloping
                                                               fixed defect
                                    2.3
                                     1.5
1
  lv hypertrophy
                     108
                           TRUE
                                                 flat
                                                                     normal
                                                                               2
2
                                                 flat 2
  lv hypertrophy
                     129
                                    2.6
                                                          reversable defect
                                                                               1
                           TRUE
3
           normal
                     187 FALSE
                                    3.5 downsloping
                                                                     normal
                                                                               0
4
   lv hypertrophy
                     172
                          FALSE
                                    1.4
                                            upsloping
                                                                     normal
                                                                               0
```

Selecting Certain Variables

```
variables = ['age', 'sex', 'cp', 'trestbps', 'chol']
df_selected = df[variables]
# Display the selected variables
print(df_selected.head())
```

```
cp trestbps
                                        chol
  age
          sex
0
   63
         Male
                typical angina
                                  145.0 233.0
1
   67
         Male
                 asymptomatic
                                  160.0 286.0
2
   67
         Male
                  asymptomatic
                                 120.0 229.0
3
         Male
                                  130.0 250.0
   37
                  non-anginal
4
   41 Female atypical angina
                                  130.0 204.0
```

Histograms and Outliers

```
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

# Plot histograms
df[['age', 'sex', 'cp', 'trestbps', 'chol']].hist(figsize=(10, 8), bins=20)
plt.show()

# Identifying outliers
df[['age', 'trestbps', 'chol']].describe()
```


Descriptive Statistics

```
# Calculating and displaying descriptive statistics
descriptive_stats = df_selected.describe()
print(descriptive_stats)
```

```
age
                    trestbps
                                    chol
count
     920.000000 861.000000 890.000000
mean
       53.510870
                 132.132404 199.130337
std
        9.424685
                   19.066070 110.780810
min
       28.000000
                    0.000000
                                0.000000
25%
       47.000000 120.000000 175.000000
50%
       54.000000 130.000000 223.000000
       60.000000 140.000000 268.000000
75%
       77.000000 200.000000 603.000000
max
```

PMF Comparison

```
pmf_cp_male = df[df['sex'] == "Male"]
['cp'].value_counts(normalize=True).sort_index()
pmf_cp_female = df[df['sex'] == "Female"]
['cp'].value_counts(normalize=True).sort_index()

# Plotting the PMF comparison
pmf_cp_male.plot(kind='bar', color='blue', alpha=0.5, label='Male')
pmf_cp_female.plot(kind='bar', color='red', alpha=0.5, label='Female')
plt.title('PMF of Chest Pain Type by Sex')
plt.xlabel('Chest Pain Type')
plt.ylabel('Probability')
plt.legend()
plt.show()
```


CDF

```
age_cdf = df['age'].value_counts().sort_index().cumsum() / len(df)
age_cdf.plot(drawstyle='steps-post')
plt.title('CDF of Age')
plt.xlabel('Age')
plt.ylabel('Cumulative Probability')
plt.show()
```


Analytical Distribution

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
# Ensure the 'age' column is numeric
df_selected['age'] = pd.to_numeric(df_selected['age'], errors='coerce')
# Drop any rows with NaN values in the 'age' column
df_selected = df_selected.dropna(subset=['age'])
# Fit a normal distribution to the 'age' data
mu, std = stats.norm.fit(df_selected['age'])
# Plot the histogram and the fitted distribution
plt.hist(df_selected['age'], bins=25, density=True, alpha=0.6, color='g')
# Plot the probability density function (PDF)
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=2)
plt.title(f"Fit results: mu = {mu:.2f}, std = {std:.2f}")
plt.show()
```

```
<command-4255733837626512>:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
    df_selected['age'] = pd.to_numeric(df_selected['age'], errors='coerce')
```


Scatter Plots

```
plt.scatter(df['age'], df['chol'])
plt.title('Age vs Cholesterol')
plt.xlabel('Age')
plt.ylabel('Cholesterol')
plt.show()

# Scatter plot for resting blood pressure vs cholesterol
plt.scatter(df['trestbps'], df['chol'])
plt.title('Resting Blood Pressure vs Cholesterol')
plt.xlabel('Resting Blood Pressure')
plt.ylabel('Cholesterol')
plt.show()
```


Hypothesis Testing

```
from scipy.stats import ttest_ind

# Check for NaN values and drop them
chol_male = df[df['sex'] == "Male"]['chol'].dropna()
chol_female = df[df['sex'] == "Female"]['chol'].dropna()

# Check that the groups have valid data
if len(chol_male) == 0 or len(chol_female) == 0:
    print("One of the groups has no data. Hypothesis test cannot be performed.")
elif chol_male.mean() == chol_female.mean():
    print("The two groups have identical means. Hypothesis test results will be
NaN.")
else:
    # Perform the hypothesis test
    t_stat, p_value = ttest_ind(chol_male, chol_female)
    print(f"T-statistic: {t_stat}, P-value: {p_value}")
```

Regression Analysis

T-statistic: -5.9967029323480725, P-value: 2.927317272597984e-09

Df Residual	.s :	830 BIC:				2436.
Df Model: Covariance Type:		3				
		nonrobust 				
	coef	std err	t	P> t	[0.025	0 . 975]
const	-1 . 0224	0.294	-3 . 474	0.001	-1.600	 -0.445
age	0.0354	0.004	8.929	0.000	0.028	0.043
trestbps	0.0045	0.002	2.291	0.022	0.001	0.008
chol	-0.0024	0.000	-7 . 257	0.000	-0.003	-0.002
Omnibus:		======== 1.86	======= 106 Durbin	======= -Watson:		======= 1.728
Prob(Omnibu	s):	0.000 Jarque-Bera (JB):				110.970
Skew:		0.875 Prob(JB):				8.00e-25
Kurtosis:		3.363 Cond.		No.		2.17e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

[2] The condition number is large, 2.17e+03. This might indicate that there are