Método Interpolación y Lagrange

Axel Alberto Mireles Martínez

Definición de método

Interpolación

Es un método numérico utilizado para estimar valores desconocidos entre un conjunto de puntos de datos conocidos.

Lagrange

Es un tipo específico de interpolación que usa polinomios para estimar un valor. Se utiliza cuando se necesita encontrar una función que se ajuste a un conjunto de datos discretos

Antecedentes

La interpolación se usaba desde la antigüedad por astrónomos como los babilonios y griegos para estimar posiciones de planetas usando tablas. Con el tiempo, matemáticos como John Napier e Isaac Newton desarrollaron métodos más precisos en los siglos XVI y XVII.

El método de Lagrange fue propuesto en 1795 por Joseph-Louis Lagrange, un matemático francés. Aunque otros ya trabajaban con polinomios de interpolación, él formuló una expresión clara y general para construir un polinomio que pase por varios puntos.

Relación con otros métodos

Extrapolación: La interpolación se usa para calcular valores entre datos conocidos, mientras que la extrapolación calcula valores fuera del rango de esos datos.

Regresión: En la interpolación el resultado pasa exactamente por todos los puntos; en la regresión se ajusta una curva que sigue la tendencia general, sin pasar por cada punto.

Método de Newton: Es otro tipo de interpolación polinómica. A diferencia de Lagrange, Newton permite agregar nuevos puntos sin rehacer todo el polinomio, aunque requiere más pasos.

Fórmula del método

$$P_{CX} = \sum_{i=0}^{n} y_i \cdot \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

Algoritmo método de Lagrange

1. Definir la función objetivo y las restricciones:

Dada una función objetivo f(x) y restricciones de igualdad g(x) = 0, se define la función lagrangiana $L(x, \lambda) = f(x) - \lambda * g(x)$, donde λ es el multiplicador de Lagrange.

2. Calcular el gradiente de la función lagrangiana:

Se calcula el gradiente de L con respecto a todas las variables, incluyendo los multiplicadores de Lagrange: $\nabla L = (\partial L/\partial x_1, \partial L/\partial x_2, ..., \partial L/\partial x_n, \partial L/\partial \lambda)$.

Algoritmo método de Lagrange

3. Resolver el sistema de ecuaciones:

Se iguala el gradiente a cero y se resuelve el sistema de ecuaciones resultante: $\nabla L = 0$.

4. Evaluar los puntos críticos:

Se evalúa la función objetivo f(x) en los puntos críticos obtenidos en el paso anterior para encontrar los máximos, mínimos o puntos silla.

Aplicaciones en la vida cotidiana

- Economía y finanzas: Se usa para predecir precios, ventas o valores faltantes en tablas de datos.
- Diseño gráfico y animación: La interpolación crea transiciones suaves entre imágenes o movimientos.
- Ingeniería y física: Se aplica para modelar trayectorias, curvas o comportamientos de sistemas físicos.
- Educación y software científico: El método de Lagrange se usa en programas educativos para mostrar cómo se construyen funciones a partir de puntos dados.

Problema

Aplicar la Interpolación de Lagrange para encontrar el polinomio que interpole los datos siguientes:

$$(0,1)$$
, $(1,3)$ y $(2,0)$

Formula:
$$P_n(x) = \sum_{i=0}^{n-1} F(x_i) L_i(x)$$

donote:
$$L_i(x) = \prod_{j=0}^{n-1} \frac{x-x_j}{x_i-x_j}$$

Iteración #1 Iteración #2 Iteración #3
$$= (\frac{1}{2})(x^2-3x+2) = -(x^2-2x) = \frac{1}{2}(x^2-x)$$

iN/Iuchas gracias!