第二章 (连续时间系统的时域分析)

一、选择题

1. 卷积 $e^{at}u(t)*e^{at}u(t)$ 的结果表达式是()。

A, $\frac{1}{a}e^{at}u(t)$ B, $\frac{1}{a}te^{at}u(t)$ C, $te^{at}u(t)$ D, $2te^{at}u(t)$

2. 积分 $\int_{-\infty}^{\infty} (t^2 + 4) \delta(1 - t) dt$ 的值为(

B₂ -3

 C_{s} 5 D_{s} -5

3. 关于连续时间系统的单位冲激响应,下列说法中正确的是()。

A、系统在 $\delta(t)$ 作用下的全响应 B、系统在 $\delta(t)$ 作用下的零输入响应

C、系统在 $\delta(t)$ 作用下的零状态响应 D、系统在 $\delta(t)$ 作用下的自然响应

4. 连续时间信号 $f(t) = \cos(t) \cdot u(t)$ 和 $h(t) = \delta'(t) + u(t)$ 的卷积为()。

A, $\delta(t)$ B, u(t) C, $2\sin(t) \cdot u(t)$ D, $-2\sin(t) \cdot u(t)$

5. 离散时间信号卷积和 $0.4^n u(n) * 0.5^n u(n) = ()$ 。

A, $10(0.5^{n+1} - 0.4^{n+1})u(n)$ B, $10(0.5^n - 0.4^n)u(n)$

C. $10(0.5^{n+1} + 0.4^{n+1})u(n)$ D. $10(0.5^n + 0.4^n)u(n)$

6. 已知 LTI 系统,输入激励 $f(t) = sin(t) \cdot u(t)$ 与零状态响应 y(t)如图所示,则系统 冲激响应 h(t)为 ()。

- 7. 系统的全响应可以分为自由响应和()。
- A. 零输入响应

- B. 零状态响应
- C. 强迫响应
- D. 瞬态响应
- **8.** 若单位冲激响应为 h(t),输入激励为 f(t),则 y(t) = h(t) * f(t) 是 ()。
- A. 零输入响应
- B. 零状态响应
- C. 强迫响应
- D. 完全响应
- **9.** 连续时间信号 $f(t) = e^{-t}u(t)$ 和 $h(t) = \delta'(t) + u(t)$ 的卷积为()。

 - A, $\delta(t) 2e^{-t}u(t)$ B, $\delta(t) + u(t) 2e^{-t}u(t)$ C, $\delta(t) u(t)$ D, $\delta(t) + u(t)$

- **10.** 离散时间信号卷积和 $2^n u(n) * u(n) = ($)。
 - A, $(2^{n+1}-1)u(n)$ B, $(2^{n+1}+1)u(n)$ C, $(2^n-1)u(n)$ D, $(2^n+1)u(n)$

- 11. 已知 LTI 系统,输入 f(t)与零状态响应 y(t)如图所示,则系统冲激响应 h(t) 为()。

12. 已知 LTI 系统,输入 f(t)与零状态响应 v(t)如图所示,则系统冲激响应 h(t)为 ().

- 13. 关于连续时间系统的单位冲激响应,下列说法中错误的是(
 - A、系统在 $\delta(t)$ 作用下的全响应
- B、系统函数 H(s)的拉氏反变换
- C、系统单位阶跃响应的导数 D、单位阶跃响应与 $\delta'(t)$ 的卷积积分
- 14. 如下连续时间系统中,属于时不变系统的是(

$$\mathbf{A}, \ y(t) = \cos t \cdot f(t)$$

$$\mathbf{B}, \ y(t) = f(2t)$$

$$C, y(t) = f(t-1)$$

A,
$$y(t) = \cos t \cdot f(t)$$
 B, $y(t) = f(2t)$ C, $y(t) = f(t-1)$ D, $y(t) = \int_{-\infty}^{2t} f(\tau) d\tau$

15. 对于连续时间信号,单位阶跃信号与单位冲激信号的关系是u(t) = ()。

A,
$$\int_{0}^{t} \delta(\tau) d\tau$$

$$B_{\gamma} \int_{0}^{t} \delta(\tau) d\tau$$

$$C$$
, $\int_{0}^{t} \delta(t-\tau)d\tau$

A,
$$\int_0^t \delta(\tau)d\tau$$
 B, $\int_{-\infty}^t \delta(\tau)d\tau$ C, $\int_0^t \delta(t-\tau)d\tau$ D, $\int_{-\infty}^t \delta(t-\tau)d\tau$

16. 连续时间信号 $f(t) = e^{-t}u(t)$ 和 $h(t) = \delta'(t) - u(t)$ 的卷积为()。

A
$$\delta(t) - 2e^{-t}u(t)$$

A,
$$\delta(t) - 2e^{-t}u(t)$$
 B, $u(t) - 2e^{-t}u(t)$ C, $\delta(t) - u(t)$ D, $\delta(t) + u(t)$

$$C \cdot \delta(t) - u(t)$$

$$D \cdot \delta(t) + u(t)$$

17. 已知一个 LTI 系统, 输入 f(t)与零状态响应 y(t)如图所示, 则系统 h(t)为(

18. 若 f(t) * h(t) = y(t), 则 f(3t) * h(3t) = (

Α.	y(3t)

B.
$$3y(3t)$$

(3t) B.
$$3y(3t)$$
 C. $\frac{1}{3}y(3t)$ D. $y(\frac{t}{3})$

D.
$$y(\frac{t}{3})$$

19. 给定系统差分方程为y(n)+3y(n-1)+2y(n-2)=2f(n), 当输入f(n)=u(n)时, 系统的全响应为 $y(n) = \left[\frac{1}{3} + 4 \times (-1)^n - \frac{28}{3} \times (-2)^n\right] u(n)$, 则系统的零输入响应为

()

A.
$$[4 \times (-1)^n - \frac{28}{3} \times (-2)^n] u(n)$$
 B. $[(-1)^{n+1} + \frac{8}{3} \times (-2)^n] u(n)$

B.
$$[(-1)^{n+1} + \frac{8}{3} \times (-2)^n] u(n)$$

C.
$$[5 \times (-1)^n - 12 \times (-2)^n]u(n)$$

C.
$$[5 \times (-1)^n - 12 \times (-2)^n]u(n)$$
 D. $[\frac{1}{3} - (-1)^n + \frac{8}{3} \times (-2)^n]u(n)$

20.给定系统微分方程为v''(t)+5v'(t)+6v(t)=2f(t), 当输入 $f(t)=e^{-t}u(t)$ 时,系统 的全响应为 $y(t) = (e^{-t} - 4e^{-2t} + 2e^{-3t})u(t)$,则系统的零输入响应为(

A.
$$(e^{-t} - 2e^{-2t} + e^{-3t})u(t)$$

B.
$$(-4e^{-2t} + 2e^{-3t})u(t)$$

C.
$$(e^{-t} - 4e^{-2t})u(t)$$

D.
$$(-2e^{-2t} + e^{-3t})u(t)$$

二、填空题

- **1.** 某 LTI 系统,对于系统的冲激响应 $e^{-t}u(t)$,则系统的阶跃响应为
- 2. 系统的全响应可以分为自由响应和 响应。
- 3. 若单位冲激响应为 h(t), 输入激励为 f(t), 则 v(t)=h(t)*f(t) 是该系统的 _____响应。
- **4.** 如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)
- 的响应。
- **6.** 如果一线性时不变系统的输入为f(t),零状态响应为 $y_{zs}(t) = 2f(t-t_0)$,则该 系统的单位冲激响应h(t)为_____。
- 7. 连续时间系统系统结构中常用的基本运算有积分器、加法器和。
- **8.** 如下图所示,若激励信号 $e(t) = (e^{-2t} + e^{-3t})u(t)$,那响应 $v_2(t) = \underline{\hspace{1cm}}$ 。

9. 若卷积 $f(t)*g(t) = e^{-2t}u(t)$, 则 $f'(t)*g(t) = e^{-2t}u(t)$

三、分析计算题

1. 如图所示系统由几个"子系统"组成,各系统的冲激响应分别为: $h_1(t) = \delta(t-1)$, $h_2(t) = u(t) - u(t-3)$, 求总系统的冲激响应 h(t)。

- **2.** 一个 LTI 系统有两个初始状态 $y_1(0)$ 与 $y_2(0)$,其零输入响应为 $y_0(t)$,已知当 $y_1(0)$ = 1, $y_2(0)$ = 0 时, $y_0(t)$ = 2e^{-t} + 3e^{-3t}, $t \ge 0$;而当 $y_1(0)$ = 0, $y_2(0)$ = 1 时, $y_0(t)$ = 4e^{-t} 2e^{-3t}, $t \ge 0$;求:
- (1) 当 $y_1(0) = 5$, $y_2(0) = 3$ 时,系统的零输入响应 $y_0(t)$;
- (2) 若系统输入激励为 f(t)时的零状态响应为 $y_1(t) = 2 + e^{-t} + 2e^{-3t}$, $t \ge 0$, 则当 $y_1(0) = 2$, $y_2(0) = 5$ 时,且激励为 3f(t)时,系统的零输入响应 $y_0(t)$ 和系统的完全响应 y(t)。
- **3.** 如图所示电路,开关 S 原是闭合的,电路处于稳态。若 S 在 t = 0 时打开,已 知 u_s =42V,L=1/12H,C=1F, R_1 =1 Ω , R_2 =0.75 Ω ,求 $t \ge 0$ 时的电感电流 $i_L(t)$ 。

- 4. 计算下列各卷积:
 - (1) $2e^{-2t}\varepsilon(t) * \delta'(t)$
 - $(2) 3e^{-3t} \varepsilon(t) * \varepsilon(t)$
 - $(3) 2e^{-2t}\varepsilon(t) * 3e^{-3t}\varepsilon(t)$
- **5.** 给定系统的微分方程 y''(t) + 3y'(t) + 2y(t) = f'(t) + 3f(t), 当输入为 $f(t) = e^{-4t} \varepsilon(t)$ 时,系统的全响应为 $y(t) = (\frac{14}{3}e^{-t} \frac{7}{2}e^{-2t} \frac{1}{6}e^{-4t})\varepsilon(t)$ 。 试确定系统的零输入响应和零状态响应,自然响应和强迫响应,瞬态响应和稳态响应。
- **6.** 系统的微分方程 2y''(t)+6y'(t)+4y(t)=f'(t)+5f(t), 当初始状态 y(0)=2,y'(0)=1时,求系统零输入响应 $y_{x}(t)$ 。
- 7.一个LTI 系统在相同的初始状态下,当输入为f(t)时,全响应为 $y(t) = 2e^{-t} + \cos 2t$, $t \ge 0$; 当输入为 2f(t)时,全响应为 $y(t) = e^{-t} + 2\cos 2t$, $t \ge 0$; 求:
- (1) 系统的零输入响应 $y_0(t)$;
- (2) 系统的零状态响应 $y_t(t)$;
- (3) 在相同的初始状态下,输入为4f(t)时的全响应。
- **8.** 一个 LTI 系统在相同的初始状态下,当输入为 f(t)时,全响应为 $y(t) = 2e^{-3t} + \sin 2t$, $t \ge 0$; 当输入为 2f(t)时,全响应为 $y(t) = e^{-3t} + 2\sin 2t$, $t \ge 0$; 求:
 - (1) 系统的零输入响应 $y_0(t)$;
 - (2) 系统的零状态响应 $y_t(t)$;
 - (3) 初始条件增大 1 倍,输入为 0.5f(t)时的全响应 y(t)。
- **9.** 一个 LTI 系统初始状态 y(0) = 2 时,系统的零输入响应 $y_0(t) = 6e^{-4t}$, $t \ge 0$;而 当初始状态 y(0) = 8 时及输入激励 f(t)共同作用下产生的完全响应 $y(t) = 3e^{-4t} + 5e^{-t}$,

 $t \ge 0$; 求:

- (1) 当初始状态 y(0) = 8 时,系统的零输入响应 $y_0(t)$;
- (2) 输入激励 f(t)的零状态响应 $y_f(t)$;
- (3) 当初始状态 y(0) = 1 以及输入激励为 3f(t)共同作用下产生的完全响应 y(t);
- **10.** RC 电路图如图所示,已知: $e(t) = E[u(t) u(t \tau_0)]$, 其中 E 为常数, 求解:

 $U_R(t)$, $U_C(t)$

11. 已知系统方程是
$$\frac{d^2}{dt^2}r(t) + 3\frac{d}{dt}r(t) + 2r(t) = \frac{d^3}{dt^3}e(t) + 4\frac{d^2}{dt^2}e(t) - 5e(t)$$
, 求 h(t)