Лабораторная работа 2: Использование численных методов в задачах оптимизации

Цель работы: Знакомство с современными методами оптимизации, применение численных методов дифференцирования для решения прикладных задач.

Описание: В рамках лабораторной работы предлагается использовать численные методы, включающие в себя конечно-разностные схемы вычисления производных, для задач оптимизации (без ограничений).

Предлагаемые методы: краткая справка по алгоритму BFGS

В качестве первого алгоритма предлагается использовать модифицированный метод BFGS. Сходимость оптимизационного алгоритма гарантируется только на дваждыдифференцируемой выпуклой функции.

Общая постановка оптимизационной задачи (минимизации): пусть $\mathbf{x} = (x_1, ... x_n) \in \mathbb{R}$, а допустимое множество составляет всё \mathbb{R} , т.е. ограничения не ставятся. Задана целевая функция $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$, для которой необходимо выполнить поиск: $f(\mathbf{x}) \to min$. Иначе задачу оптимизации можно представить так: требуется найти решения $\mathbf{x}' : f(\mathbf{x}') \le f(\mathbf{x}^*) \ \forall x^* \in \mathbb{R}^n$.

В качестве алгоритма оптимизации предлагается использовать классический алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS), где используется следующая модель целевой функции на k-ой итерации:

$$f(\mathbf{x}_k + \mathbf{p}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k) \mathbf{p} + \frac{1}{2} \mathbf{p}^T H(\mathbf{x}_k) \mathbf{p}$$
(1)

В данном соотношении \mathbf{p} - минимизатор, направление, в котором движется оптимизационный алгоритм; $H(\mathbf{x}_k)$ - матрица Гессе функции f. Для вычисления направления p_k , направления p на k-ой итерации используется следующая модель:

$$\mathbf{p}_k = -H_k^{-1} \nabla f_k \tag{2}$$

Для вычисления следующего приближаемого решения \mathbf{x}_{k+1} используется соотношение $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, где α - параметр, удовлетворяющий условиям Вольфе из ур. 3:

$$f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \le f(\mathbf{x}_k) + c_1 \alpha_k \nabla f(\mathbf{x}_k)^T \mathbf{p}_k$$
$$\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)^T \mathbf{p}_k \ge {}_2 \alpha_k \nabla f(\mathbf{x}_k)^T \mathbf{p}_k$$
(3)

Использование алгоритма линейного поиска

Параметр α_k соответствует величине шага вдоль направления поиска и определяется так, чтобы соблюдать условия Вольфе. Для произвольных параметров c_1 , c_2 , $0 < c_1 < c_2 < 1$, а также заданного **p**-направления поиска процедура подбора происходит по схеме на алг. 1:

Для определения значений α в интервале от α_i до α_j используется алгоритм приближений **zoom** (α_i, α_j) , рассмотренный на алгоритме 2.

Детально процесс подбора параметров шага минимизатора описан в 3 главе [2].

Задание матрицы Гессе

В прикладных решениях задачи используется лишь приближенные значения H, так как вычислять точное значение определителя матрицы Гессе требует слишком

```
input : Оптимизируемая функция f, её градиент \nabla f, приближение решения
                \mathbf{x}, направление минимизатора p, параметры c_1, c_2, \alpha_{max}, max\_iter
  output: Значение параметра a
  \alpha_0 \longleftarrow 0, выбрать \alpha_1 \in (0, \alpha_{max});
  i \leftarrow 1;
  while True do
       Вычислить f(\mathbf{x} + \alpha_i \mathbf{p});
       if f(\mathbf{x} + \alpha_i \mathbf{p}) > f(\mathbf{x}) + c_1 \alpha_i \nabla f(\mathbf{x}), usu (f(\mathbf{x} + \alpha_i \mathbf{p}) \geq f(\mathbf{x} + \alpha_{i-1} \mathbf{p}) \ u \ i > 1)
             return \mathbf{zoom}(\alpha_{i-1}, \alpha_i);
       Вычислить \nabla f(\mathbf{x} + \alpha_i \mathbf{p});
       if |\nabla f(\mathbf{x} + \alpha_i \mathbf{p})| \le -c_2 |\nabla f(\mathbf{x})| then
            return \alpha_i;
       if \nabla f(\mathbf{x} + \alpha_i \mathbf{p}) \geq 0 then
            return \mathbf{zoom}(\alpha_{i-1}, \alpha_i);
       Выбрать \alpha_{i+1} \in (\alpha_{i+1}, \alpha_{max});
       i \longleftarrow i + 1;
  end
Algorithm 1: Согласованный со слабым условием Вольфе алгоритм линейного
поиска величины шага.
  input : Оптимизируемая функция f, её градиент \nabla f, приближение решения
                \mathbf{x}, направление минимизатора p, величины шага \alpha_{low}, \alpha_{high},
                параметры c_1, и c_2
  output: Значение параметра a
  while True do
       Интерполировать f для определения \alpha_i между \alpha_{low} и \alpha_{hiqh}. Упрощенный
         подход: \alpha_i \leftarrow 0.5(\alpha_{low} + \alpha_{high});
       Вычислить f(\mathbf{x} + \alpha_i \mathbf{p});
       if f(\mathbf{x} + \alpha_i \mathbf{p}) > f(\mathbf{x}) + c_1 \alpha_i \nabla f(\mathbf{x}) usu f(\mathbf{x} + \alpha_i \mathbf{p}) \geq f(\mathbf{x} + \alpha_{low} \mathbf{p}) then
            \alpha_{high} \longleftarrow \alpha_j;
       else
             Вычислить \nabla f(\mathbf{x} + \alpha_i \mathbf{p});
```

Algorithm 2: Процедура **zoom** для определения величины α_i .

if $|\nabla f(\mathbf{x} + \alpha_i \mathbf{p})| \leq -c_2 \nabla f(\mathbf{x}) \cdot \mathbf{p}$ then

if $\nabla f(\mathbf{x} + \alpha_j \mathbf{p})(\alpha_{high} - \alpha_{low}) \ge 0$ then

return α_i ;

 $\alpha_{high} \longleftarrow \alpha_{low};$

 $\alpha_{low} \longleftarrow \alpha_j$;

end

end

много вычислений. Также, последующие вычисления требуют обратную матрицу Гессе, поэтому приближать рекомендуется именно её. На первом шаге эволюционного алгоритма матрицу допустимо задать как единичную, в то время как на последующих шагах для обновления значений используется соотношение 5, где $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$ и $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$:

$$H_{k+1} = (I - \rho_k \mathbf{s}_k \mathbf{y}_k^T) H_k (I - \rho_k \mathbf{s}_k \mathbf{y}_k^T) + \rho_k \mathbf{s}_k \mathbf{s}_k^T$$

$$\tag{4}$$

$$\rho_k = \frac{1}{\mathbf{y}_k^T \mathbf{s}_k} \tag{5}$$

Критерием останова может выступать условие достижение достаточно низкого значения нормы градиента функции: $||\nabla f(\mathbf{x}_k)||_2 < \epsilon$.

Вариант алгоритма L-BFGS, позволяющий экономить вычислительные ресурсы за счёт иного подхода к приближению обратной матрицы Гессе. О данном методе можно прочесть в источниках [2], или [4].

Метод конечных разностей

Для градиента функции $\nabla f(\mathbf{x}_k) = (\frac{\partial}{\partial x_1} f(\mathbf{x}), \dots, \frac{\partial}{\partial x_n} f(\mathbf{x}))$ можно использовать следующую конечно-разностную форму (6) для схемы вперёд, имеющей 1ый порядок аппроксимации, и (7) для центральной схемы, имеющей 2ой порядок аппроксимации:

$$\frac{\partial}{\partial x_j} f(\mathbf{x}) \approx \frac{f(\mathbf{x} + h_j \mathbf{e}_j) - f(\mathbf{x})}{h_j} \tag{6}$$

$$\frac{\partial}{\partial x_j} f(\mathbf{x}) \approx \frac{f(\mathbf{x} + h_j \mathbf{e}_j) - f(\mathbf{x} - h_j \mathbf{e}_j)}{2h_j}$$
 (7)

Ход работы:

1. Для иллюстрации возможностей подхода вам предстоит искать минимум функции (8), где $\mathbf{x} \in \mathbb{R}^3$.

$$f(\mathbf{x}) = \frac{1}{2} [(x_1)^2 + \sum_{i=1}^{2} (x_i - x_{i+1})^2 + (x_3)^2] - x_1$$
 (8)

- Покажите, что алгоритмы BFGS и L-BFGS можно применять к этой оптимизационной задаче.
- Реализовать алгоритмы оптимизации BFGS и L-BFGS, в которых для каждой воплощены версии, в которых а) используется аналитическое (определите самостоятельно) задание градиента целевой функции, и б) численное, на основе конечных разностей. Не допускается использование готовых решения (например, можно использовать numpy при написании кода на руthon, однако не допускается использование scipy.optimize).
- Реализовать инициализацию приближения матрицы Гессе через произвольную матрицу (например, единичную), и через вычисленные на основе конечных разностей частные производные целевой функции.
- Сравнить поведение созданных вариантов алгоритма BFGS и L-BFGS на примере функции (8).

- 2. Практическое применение: использование метода оптимизации BFGS, L-BFGS для обучения модели MO.
 - Адаптировать подход машинного обучения, используемый в Лаб. работе 1, под более вычислительно-дорогое приближение градиента на основе конечно-разностных методов;
 - Реализовать алгоритм оптимизации Adam, адаптированный под конечноразностные методы определения производных;
 - На основе уже созданных методов оптимизации реализовать обучение модели;
 - Провести сравнение характеристики работы алгоритмов BFGS, L-BFGS и Adam (с различными гиперпараметрами) при решении задачи MO.

Список литературы

- [1] Shi, Hao-Jun Michael and Xuan, Melody Qiming and Oztoprak, Figen and Nocedal, Jorge, "On the Numerical Performance of Derivative-Free Optimization Methods Based on Finite-Difference Approximations", arXiv:2102.09762, 2021.
- [2] Jorge Nocedal, Stephen J. Wright, "Numerical Optimization", Springer New York, NY, 2006.
- [3] Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston, 2004.
- [4] Pytlak, Radosław. Conjugate Gradient Algorithms in Nonconvex Optimization, 2009.