⑩ 日本国特許庁(JP)

⑪特許出頭公開

®公開特許公報(A) 昭61-149340

Mat.Cl.	識別記号	厅内整理番号	9公開	昭和61年(1986)7月8日
B 29 C 65/02 # B 32 B 15/08 B 29 L 9:00		2114-4F 2121-4F 4F	等査請求 有	発明の数 1 (全で頁)

お登明の名称

人 馬 方色

ポリエステル樹脂フィルム被覆金属板の製造方法

頭 昭59-272013 到特

碩 昭59(1984)12月25日 御出

徳山市正の宮町5番2号 厚 夫 仓等 明 궄 下松市大字西豊井1963番地 広 英 哲 풐 金路 男

山口県熊毛郡熊毛町大字呼坂418番地の54 治 則 久保田 母亲 男 쿸

德山市西北山7417番地 夫 母差 男

東京都千代田区霞が関1丁目4番3号 東岸鈕飯株式会社 ①出 類 人 弁理士 小 林

L 発明の名称

ポリニステル樹脂フィルム被覆金属板の製造 方法

2. 特許請求の範囲

二铀配向ポリエテレンテレフタレート微層の融 点(Tm)~(Tm+100℃)に加热された金 異板の片面あるいは両面に、 P E T 一BOフィル ムをラミネートするに楽し、ラミネートロールの 表面温度を30~180℃にコントロールしたク ミネートロールによりラミネート後、10秒以内 に100℃以下に冷却し、上層にPBT—BO樹 設層を有し、下層に無配向PBT鐵路層を有して、 PET-BO樹脂層の厚みが全PBT樹脂層の15 ~95分であることを符及とするポリエステル数 贈フィルム被重金驾板の製造方法。

3、発明の詳細な説明

(重集上の利用分野)

本発明は、ポリエステル関ロフィルム被覆金属 板の製造方法に関し、詳しくは、二輪配向ポリエ 一例としては、塩化ビニル樹脂フィルムを接着

ナレンテレフタレート樹脂フィルム(以下PET 一B0フィルムとよぶ)の融点以上に刃為された 金典板にPETーBOフィルムをラミネートし、 上層にPET一BO樹脂層、下層に無配向PET 樹脂藩を有したポリエステル樹脂フィルム安優会 異板の製造方法に関するものである。

〔従来の技術〕

従来、熱可量性フィルムを全属板にラミネート した金属板は小葉気部品,家具,収納ケース。内 外技選材等程々の分野で広く使用されている。一 股に金属板に結可塑性フィルムを退務的にうミネ ートする方法として以下の方法がよく知られてい る。一つは、金馬板表面に使着剤をロールコータ 一等で塗布した後、溶剤等の揮発性物質を蒸発せ しめた後、フミネートして直ちに冷却するか、お るいはさらに後加熱処理を施して冷却する方法で ある。他の一つは、為可塑生樹脂に予め活生基等 を導入して熱接着可能な熱可量性樹脂フィルムを フミネートする方法である。

利を用いて 環版に ラミネートした 塩化 ビニル 樹脂 \ 被復 類 液、 ボリオレフィンフィルムを 金 選 板 に ラミネートしたもの (特別 明 5 3 - 1 4 1 7 3 6)、 共重合 ポリエステルフィルムを 金 製 板 に ラミネートしたもの (特 公昭 5 7 - 2 3 5 8 4) ある いは、 ボリニステルフィルムを 没者 剤を用いて 金 繊 板 に ラミネートしたもの (特別 昭 5 8 - 3 9 4 4 8) などがある。

(発明が解決しようとする問題点)

このように、従来発明された熱可型性樹脂被獲 金属板は一長一短を有しておりいずれも満足のい

」などの特性が浸れたものである。

一般に、PETーBOフィルムは、配向結晶を 有しているため、水分、各種イオンの透過性に対 して優れたパリヤー性を有しているため各種包装 材料分野に用いられてきた。又機械的特性及び耐 熱性が著しく受れているため磁気テープ分野,電 気絶縁分野など揺広く用いられてきたが、高度な 配向結晶を有しているため投資剤なしては全く被 替体への接着性を有さない欠点を有していた。 ― 方PET一BOフィルムを融点以上に加熱し、急 冷することによって得られる無配向。無足形状態 の P B T 樹組は 二待公昭 4 9 - 3 4 1 8 0 に示さ れるように金属坂同志の授着剤として用いられる 程優れた接着力を有している。しかしながら、無 配向、無定形状態のPET殻組は、水分、各種イ オンの透透性に対して著しくパリャー性が低下し、 又、"液域的強度も大幅に低下するといった欠点を 育している。このようにPET樹脂は、配向結晶 の有無によって大きぐ異なった性質を有している。

本角明の方法で得られるポリエステル樹脂フィ

くちのではなかった。

(問題点を解決するための手段)

である。 での題点のでは、 での題点のでは、 での題点のでは、 での面がでするが、 がは、 での面がでするが、 がは、 ででは、 ででは、 のでは、 ので

ルム被覆金属板の加工部を生が変をの加工部を登り、加工部を登り、加工部を登り、加工部を登り、加工部を登り、加工部を登り、加工部を登り、加工部のでは、一般のでは、一般のでは、一般のでは、一般では、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。のでは、一般である。

本発明によるボリエステル樹脂フィルム交叉 裏板は、加工密度性、加工財産性、耐熱性、含気 絶縁性などの多くの優れた特性を育しているため、 毎蓋、絞り缶、2回絞り缶等の缶用材料の存在の ず、PET樹脂の電気絶縁性、耐熱性を利用して 電気製品部材としても適用できるものである。

以下、本籍明の内容について評細には得する。まず、PBT-BOフィルムとしてに、ピリニテレングリコールとテレフタール酸の基づ合物であって、公知の押し出し加工後フィルム交叉を制定をの後、蔵、資二糖方向に延伸された後、特固定

J I

う、

,

つぎに、本発明に用いられる金属板としては、 レート状およびコイル状の選板。 類落。 鉄箔 はな な ボアルミニクム板 、アルミニクム 落または、 弦 坂に 表面処理を施したものがあげられる。 特に 下滑が 金属クロム、上滑がクロム水和酸に 下滑が金属クロムは とり 電路でもつ電解クロム酸処理 額板 、 極薄のあっ き調板 、 極薄 失場合金 変質 鋼板 、 極薄 クロム の

(TTM)で(TTM)の)のでは、10℃にででの示意をでして、10℃にででの示意をできます。を対して、2000のでは、

つぎに、PETーBOフィルムを金属板にラミ ネートする祭のラミネートロールの表面温度も本 発明における重要な因子である。すなわち、本発 男のPETーBOフィルムの二層構造化は、ラミ ネートロールニップにPETーBOフィルムが使 き頭板,ニッアルめっき消板。用めっき哨板。五 始めっき飛板、クロム水和鍵化物安健機板。 オン ボキシル番等の特性協力ないはキシーと構造をす した育趣物処理周板あるいはリン製芸処理。クロ メート処理あるいは前述の耳及物処理を施したこ ルミニクム仮はPET-BOフィルムとの登録方 に特に優れているので、本角明において用いられ る金賞板として通している。さらにつぎに示す二 周 および 三滑被 昼 繭 板。 合金 めっき および 復合 カ っき鋼板も通している。その例として、クコメー ト処理、リン観塩処理、クロムークロメート処理 あるいは有級物処理を充したこれらの主義のっき 選収。これらの全国の二溢あるいは三溢めっき、 ニッケル端のような合立めっき鶏板、少量のニュ ケル、コパルト、鉄、クロム~ モリブデンの少く とも一種を金属状あるいは化合物で含む塩合三鉛 めっき頭板などがあげられる。

つぎに、本発明における重要な因子の1つであるPBT-BOフィルムをラミネートする直前の金属板の温度は、PBT-BOフィルムの発点

しているこく短時間の間で一般的に決定されてし まう。すなわち、PET-BOフィルムを有温力 熱された金属板にラミネートした時、PBT-3 0 フィルム中に温度勾配が生じ、全異版例が高温 で、ラミオートロール側が低温になっている。ラ ミネートロール通道中、PBTフィルム中には温 度勾配が生じ続け、金属板の温度は、PETフィ ルムの配向結晶の融解熱およびラミネートコーシ からの设無により低下してくる。そして、えミメ ート金属板が気ミネートロールのニップより出た 舞聞には、PBTフィルム中には温度勾足がなく なり、金属板の風度と一致する。従って、ラミネ ートロール通過中に、金属板の迅度をPETー3 ○フィルムの二軸配向の破壊開始風度(To)以 下に下げてやる必要がある。かかる海洋と作り出 **ずためには、ラミネートロールの表面且変は符に** 重要な因子である。すなわち、ラミャー・コージ の表面温度を30~180℃、より汗ェンくは50 ~150℃にコントロールしてやる必要がある。 ラミネートロールの 表面温度が 1 8 0 C以上にた ると、PBTーBOフィルムを金属板にラミネー トした時、PET一BOフィルムの厚みによって も異なるが、フィルム中の全層に亘り二曲配向結 品がくずれ、加工対象性、電気組織性等が低下し てくる。一方、ラミネートロールの表面温度を30 ℃以下にしようとした場合は、ラミネートロール 自身を外部冷却など特別の冷却装置を付投してや る必要があり設備が大規模になり行ましくない。 このラミネートロールの表面温度の管理は、ラミ オート返便をあげるとより重要になってくる。ラ ミネートロールの材質は、クロムめっきロール。 セラミックロール、ゴムロールいずれも使用可能 であるが、高速で美麗にラミネートするためには、 ゴムロールが好ましい。ゴムロールのゴム材質に ついては、特に規制するものではないが、熱伝導 性、耐熱性に優れたシリコンロールが好ましい。

つぎに、PBT-BOフィルムを金属板にラミネートした後の冷却条件も本発明において重要な因子である。すなわち、ラミネート後10秒以内にポリエステル樹脂フィルム被覆金属板を100

お以下になると、加工性、耐食性、電気絶縁性などが著しく低下してくる。このように、二軸配向結晶残存量は重要な因子であるが、二軸配向結晶 残存量を求める手段としては、塩屈折法、密度法、 X 線回折法などがあるが、例えばX 線回折法によ りつぎのようにして求められる。

- (i) ラミネート前のPBT-BOフィルムおよびラミネート後のPBTフィルムについてのX線回折強度を20-20~30°の範囲で測定する。
- (2) 2 0 = 2 0°, 2 0 = 3 0°におけるX線回折 強度曲線を直線で結びベースラインとする。
- (3) 2 f = 2 f 近辺にあらわれるシャープなピーク高さなペースラインより過度する。

(実施例)

以下、実施例にて詳細に説明する。

℃以下に急冷することも重要で、もし長時間100 ℃以上の温度に保たれた場合は、ラミキーと時に 全質板界面に生成した無配向、無定形PBT明証 層が抵大球晶化し加工密管性、加工耐食性が大き く低下してくる。急冷する方法は、特に規制する ものではないが、水中浸漬法、水スプレー法など が好ましい。

つぎに、金属板を加熱する方法としては、 公知の熱風伝熱方式, 抵抗加熱方式, 誘導加熱方式, ヒートロール伝熱方式などがあげられ、 特に制設 するものではないが、設備費, 設備の簡素化, 交 び短時間昇温特性を考慮した場合、ヒートロール 伝熱方式が汗ましい。

つぎに、PET-BOフィルムを金属板に ラミネート後の無配向、無定形PET部間の生成量も重要な因子で、PET-BO樹間の厚みが全PET樹脂層の 15~95%であることが重要であるPET-BO樹脂層の厚みが、全PET樹脂層の 95%以上の場合は、加工密管性が劣り特に 現实り加工等を施すと頻識しやすくなる。一方、15

実施例 1

板厚 0.2 3 mmの 商延鋼板を 7 0 g/ℓ 水酸化ナトリクム R 放中で 電解脱脂し、 1 0 0 g/ℓ 碳酸 P 下 で酸洗し水洗した後、無水クロム酸 3 0 g/ℓ ,ファ化ナトリクム 1.5 g/ℓ の溶液中で、電流密度 20 A/dm² ,電解液温度 3 0 ℃の条件で陰極 電解 D にのように処理された中 3 0 0 mmの P E T ー B O ロム酸処理鋼板に厚さ 1 6 μm の P E T ー B O フィルム(商品名 ルミラー 東レ聯)をつぎの条件で連続的に両面 ラミネートした。

帯状調板の加熱方法 ……………… ヒートロール加熱 ラ ミネート 直前の鋼板の温度 ………… 2 9 0 ℃ ラミネートロール …………… シリコンロール ラミネートロールの 表面温度………… max 9 0 ℃ ラミネートされた鋼板が 1 0 0 ℃

以下へ帝却されるまでの時間 …………… 2 59 得られたポリエステル樹脂フィルム安理無板の二軸配向結晶量は、X 線回折接により以下の条件で算出した。

. i ere

间折条件

t)

10

12

15

ż

3

ميز ...

知

a

泈

ŧ

ກ

裘

20

크

た.

.C

9 - 7 , 1 : Cu

雷耳王

4 0 K V

管理统 20mA

二铀配向量の基出方法

- (1) フミメート前のフィルム及びラミネート 後の設理全集板について各々20~ 30の範囲で刻定した。
- (2) 2 0 = 20°, 2 0 = 30°におけるX線回 折強度曲線を直線で結びベースラインとし
- (3) 28=26° 近辺にあらわれるシャープな ピークのピーク高さをベースラインより側 定した。
- (4) ラミネート前のフィルムのピーク高さを Ia、ラミネート後のフィルムのピーク高さ をIbとしたとき、 Ib∕Ia×100 を二軸配向 箱品残存量とした。

実施例1と同様の冷延調板を、実施例1と同様 の前処理を施した後、破設錫25 8/2 . フェノー

BLL, 硫酸ニッケル(6水塩)25 U BLL, ホウ 复40 g/l からなるワット浴を用いて、電流密度 10 A/dm², 俗温 4 5 ℃の条件で、 0.6 g/m²のニ **ッケルめっきを施した。水洗後、重クロム酸ソー** ダ30 g/ℓの溶液中で、電流密度 1 0 A/dm², 電 解液温度45℃の条件でクロメート処理を施し、 水洗、乾燥した。ごの巾300mのニッケルめっ き帯状鎖板に厚さ 1 8 8 μm の P E T — B O フィ ルム(商品名 ルミラー:東レ脚製)をつぎの条 件で連続的に両面ラミネートした。

寄状調板の加熱方法 ………… ヒートロール加熱 ラミネート直前の覇板の温度…………350℃ ラミネートロール ………… シリコンロール **ラミネートロールの表面温度……-----120℃** フミネートされた頭板が100℃

以下へ冷却される迄の時間-8 砂 得られたよりエステル樹脂フィルム铍度調板の こ他配向結晶度は、実施例1と同様な手法でX線

回折住により求めた。パ

、ルスルフェン酸(6 0 %水溶液) 1 5 €/€. ニト キン化は一ナフトールスルフェン能28/2の司卯 液を用い、電流空度 2 0 A/dm2 , 写解液温度 4 0 ℃の条件で、碼 0.3 g/m² の場めっきを施し、水洗。 乾燥した。この巾300mの湯めっき帯状温板に **寒さ38 μm のPET-BOフィルム(無品名** ルミター:乗り推及)をつぎの条件で連続的に両 面タミネートした。

> 帯状頭板の加熱方法 …………… ヒートコール勿熱 ラミネート直前の39板の温度2 8 0 ℃ タミネートロール シリコンロール ヲミネートロールの表面温度………1 6 0 ℃ ラミネートされた頭板が100℃

以下へ冷却される迄の時間 …………… 3 秒

得られたポリエステル樹脂フィルム支援調板の 二軸配向結晶量は、実施例1と同様な手法でX線 回折法により求めた。

真脑例 3

実施例1と同様の帝延園板を、実施例1と同様 の前処理を施した後、塩化ニッケル(6水塩)40

実施例 4

板厚Q30皿のアルミニクム板を30 紀 の犬 酸ソーダ溶液中で陰極電解脱脂し、水洗後、リン 酸 60 8/2, クロム酸 10 8/2, ファ化ナト リクム 5 8/1 からなる俗を用いて、俗温 2 5℃ で浸漬処理後、水洗、乾燥した。この巾300元 の帯状アルミニクム板に厚み75 μm のPETー BOフィルム(商品名 ダイヤホイル:ダイヤホ イル幽嬰)をつぎの条件で退視的に両面ラミネー

帯状アルミニクム仮の加熱方法

......ヒートロール加熱 カミネート直前のアルミニクム板の虚皮 プミネートロール………… シリコンコール ヲミオートロールの表面温度……… 40℃ クミネートされたアルミニクム坂が

100℃以下へ冷却される迄の時間……1む 得られたポリエステル樹脂フェルム安压アルミ ニウム板の二軸配向結晶型は、実施男1と同様な 手法でX級回折法により求めた。 実施例 5

帯状アルミニクム板の加熱方法

.....ヒートロール加熱

ラミネート直前のアルミニウム板の温度

ラミネートロール……… シリコンロール

ラミネートロールの表面温度......1 20℃

ラミネートされたアルミニウム板が

100℃以下へ冷却される迄の時間……… 5 秒

得られたポリエステル樹脂フィルム接度アルミニクム板の二軸配向結晶量は、実施例1と同様な

フィルムを用いて、ヲミネート温度を除き、他は 同じ条件でラミネートした。

ラミネート運前のアルミニクム板の温度

..... 2 5 5 °C

.....2 7 0 °C

得られたポリエステル樹脂フィルム被覆アルミニウム版の二軸配向結晶量は、実施例1と同様な手法でX級回折法により求めた。

比较例 4

実施例 5 と同じアルミニクム板、PET-BOフィルムを用いて、ラミネート温度を除き、他は同じ条件でラミネートした。

ラミネート直前のアルミニクム板の温度

得られたポリエステル樹脂フィルム被領アルミニクム版の二軸配向被晶盤は、実施例1と同様な手法でX級回折法により求めた。

ニポリエステル樹脂フィルム被覆金属板はつぎに示す試験法で評価し、その結果を第1長に示した。

(1) 金属板のめっきRの脚定

. 螢光X線法でめっき重。皮膜量を測定した。

手法でX領回折法により求めた。

比较例1

実施例1と同様のPET-BOフィルム、 を用いてラミネートロールの表面温度を除さ 同じ条件でラミネートした。

フミネートロールの表面風度… max 2 : 得られたポリエステル樹脂フィルム被収至二軸配向結晶量は、実施例 1 と同様な手法で回折法により求めた。

比较例 2

実施例1と同様のPBT-BOフィルム、 を用いてラミネート後の冷却条件を除き、注 じ条件でラミネートした。

ラミネートされた関板が100℃

得られたポリエステル樹脂フィルム被覆類 二軸配向結晶量は、実施例 1 と同様な手法で 回折法により求めた。

比较例 3

実施例4と同じアルミニウム板,PET―

(2) 金属板とポリニステル樹脂フィルムの 5 力

ポリエステル樹脂フィルム被反を禁板を直上 一部の円板に打ち抜き、絞り比20で円満はけっ に絞り加工を施した後、100℃の沸騰水中で Ar熱水処理を施した後、調部におけるポリニア ル樹脂フィルムの新種程度を、料雑なしを5 m 全面別種を1点として5 段階に分けた。

(3) 加工耐食性

上記(2) 項で述べた間状カップにPH 2.2 に関型れたクエン酸を 5.0 耐入れ、 5.5 ℃で 3.0 日間 個し得出鉄あるいは溶出アルミニクムを測定し 又、同様のカップに 3.26 NaCe を入れ55 ℃で 3 日間放置後肉腹粗質により胃食状況を調査した 33 反

連は

o.C

ほの

X page 1

羽夜

は同

5 为

返の

ВО

接着

逐 80

, ブ こ 1

ステ

Ä,

医含氮皮

した・

30 た.

第1 表 本発明実施例の特性

				X.	911	天政	M 2	T.H	M3	天海	A 4	XXA 5	比包	Ø1	比较	FT 2	H	297 3	比较别 4
	- 1	ă	気	4	Æ	-	友	•	æ	7 n	1	T N !		Æ	無	Æ	7	~ <u>:</u>	T N !
全基	£				* 1015			Cr ³		Cr ^{ox}		C 12,011	Cr°	. 3012 G11	Cr°	Q 1 1 Q 0 1 5	Ct _o	0012 0013	Cr ³⁼ 4017
		x + /	単の	1	μas	1	μen	18	8 μπ3	75.	u as	2 S µ Œ	1	دمیر ا	16	μα.	,	<u>م</u> س 5	25 μΦ
_ No 6		PET (%)	9.7.5		15		5 0		85	1	0	5 0	-	3		1 5		98	o
庚		2	ħ		5		4	İ	4		5	5		5		3		1	3
2 = : + x	ン 値 ト	1 =	出 映 はア/ ウム pm)	۱ ۵	102	38	147	海出	H 4. 3,	38	*1	当出せず		9.5		2.6		_	15
	水		製板の数状況		となし	20	in t	X (となし	至化	πL	変化なし		的 1発生	1 12 M	的 色 用 主	-	_	退分的尺 孔 宜

注 *1 Ccoは金属クロムを、Ccoxはクロム水和酸化物中のクロムを示す。

*2 めっきされたSnの大部分は加熱によって鉄一場合金となる。

』 (発明の効果)

かく」して得られた片面あるいは両面にPBTーBOフィルムをラミネートした金属板は、加工耐食性、加工密質性に優れているため、容器用材料、建材部材、電機品部材等幅広い用途に適用できるものである。

特許出職人 東洋鋼飯株式会社

代 鬼 人 小 杯

ŗ.

(19) JAPAN PATENT OFFICE (JP)

(12) EARLY DISCLOSURE PATENT GAZETTE (A)

(11) Early Disclosure Number	Sho 51-149340 <=149340/36>
(51) Int. Cl. 4	Patent Office Internal Filing Numbers
B 29 C 65/02 // B 29 B -15/08 B 29 L 9:00	2114-4F 2221-4F 4F
(43) Date of Disclosure	July 8, 1986
Examination requested	7es
Number of inventions	1
(Total number of pages of Japanese document	7)
(54) Title of the Invention	Method of manufacture of metal sheet coated with polyester resinfilm
(21) Number assigned to Appli	cation Sho 59-272013 <=272013/84>
(22) Date of Application	December 25, 1984
(72) Inventors	Atsuo Tanaka 5-2, Enomiya-cho, Tokuyama-shi.
	Akihiro Kanabusa 1963, Oaza Nishi Toyoi, Kudamatsu-shi.
	Harunori Kubota 416-54, Oaza Yobizaka, Kumage-cho, Kumage-gun, Yamaguchi-ken.
•	Tsumeo Imui 7417, Nishikitayama, Tokuyama-shi.
(71) Applicants	Toyo Kohan Kabushiki Kaisha (Toyo Kohan Co., Ltd.), 1-4-3, Kasumigasaki, Chiyoda-ku, Tokyo.

SPECIFICATION

1. TITLE OF THE INVENTION

Method of manufacture of metal sheet coated with polyester resin film.

2. CLAIM

1 8

Method of manufacture of metal sheet coated with polyester resin film, characterized in that when one or both sides of a metal sheet heated to the melting-point of biaxially oriented polyethylene terephthalate resin (Tm) - (Tm+100°C) is/are laminated with FET-BO film, lamination is effected by a laminating roll of which the surface temperature has been controlled to 30-180°C, after which the sheet is cooled within 10 seconds to below 100°C, such that the sheet has an upper layer of PET-BO resin and a lower layer of unoriented FET resin, and the thickness of the layer of FET-BO resin is 15-95% of that of the whole layer of PET resin.

3. DETAILED EXPLANATION OF THE INVENTION

(Field of industrial use)

This invention relates to a method of manufacture of metal sheet coated with a polyester resin film. In more detail, it relates to a method of manufacture of a metal sheet coated with polyester resin film, whereby a metal sheet heated to at least the melting-point of biaxially oriented polyethylene terephthalate resin is laminated with PET-30 film, and this metal sheet then has an upper layer of PET-30 resin and a lower layer of unoriented PET resin.

(Prior art)

Metal sheets laminated with thermoplastic film have been widely used hitherto for electrical parts, furniture, casings, interior and exterior finishing material for use in construction, etc. The following methods of laminating thermoplastic material on to metal sheet are generally known. One method is to smear the surface of the metal sheet with adhesive by means of a 'roller coater', evaporate a volatile substance on it such as a solvent, and then carry out the laminating, which is followed immediately by cooling, or else post-heat treatment can be applied, followed then by cooling. Another method is to laminate thermoplastic resin film which has the capability of thermal adhesion. This method involves the prior introduction of a polar group into the thermoplastic resin.

Examples are: a metal sheet coated with vinyl chloride resin, which is laminated to the sheet using a film of vinyl chloride resin as adhesive, a metal sheet laminated with polyolefin film (laid-open Japanese Patent Application No. Sho 53-141786 (=141786/78)), a metal sheet laminated with copolymer polyester film (published Japanese Patent No. Sho 57-23584 (=23584/82)), or a metal sheet laminated with polyester film, using an adhesive (laid-open Japanese Patent Application No. Sho 58-39448 (=39448/83)).

(Problems which the invention aims to solve)

However, vinyl chloride resin-coated steel sheet was not satisfactory in respect of liability to surface defects and heat-resistance, polyolefin resin-coated steel sheet had inferior heat-resistance and corrosion-resistance, and copolymer polyester resin-coated steel sheet was too costly to be of much use in practice. Metal sheet laminated with polyester film via an adhesive involves the extra process for applying the adhesive, and an oven for evaporating the volatile substance (solvent, etc.), all of which considerably reduces workability.

Thus the metal sheets coated with thermoplastic resin that have been the subject of inventions hitherto have all had both merits and demerits, and none of them has been fully satisfactory.

(Means to solve the problems)

The invention takes account of the excellence of PET-30 film in several respects, such as corrosion-resistance, workability, electrical insulation properties, heat-resistance, resistance to chemicals, etc. Its aim is to provide a metal sheet coated with polyester resin film whereby PET-30 film is laminated on to a metal sheet without the use of an adhesive, and it has the following distinctive features and effects.

The method of the invention is characterized, that is to say, in that PST-50 film is laminated, continuously and at high speed, to one side or both sides of a metal sheet which has been heated to or above the melting-point of the PET-BO film, and this is followed by rapid cooling. In the polyester resin film-coated metal sheet obtained by the method of the invention, the biaxially oriented crystals lose their orientation only in the vicinity of the interface of the resin with the metal sheet, resulting in a thin layer of unoriented, amorphous resin in this part, while the crystals of the surface layer remain biaxially oriented, so that a two-layer structure is obtained, giving excellent adhesion, corrosion-resistance and resistance to chemicals in working.

Generally speaking, because it has oriented crystals, and acts as a barrier against the passage of moisture and various ions, PET-30 has been widely used in the field of packaging materials. It has been much used also, because of mechanical characteristics and its resistance to corrosion and its electrical insulation properties, in the magnetic tape and electrical insulation fields. However, this high level of crystalline orientation also meant that it could not adhere to the material (on to which it was to be coated) without the use of an adhesive agent. On the other hand, the unoriented, amorphous PET resin obtained by heating PET-30 to or above its melting-point and then rapidly cooling it has such excellent adhesive force that, as indicated

in published Japanese Patent No. Sho 49-34180 <=34180/74>, it can actually be used to bind metal sheets together. But this unoriented, amorphous PET resin has the disadvantage that its barrier properties against the passage of moisture and various ions are markedly lower, and its mechanical strength also is much reduced. Thus the properties of PET resin differ considerably according to whether or not its crystals are oriented.

The reasons why the polyester resin film-coated metal sheet obtained by the method of the invention has such excellent adhesion and corresion-resistance in working are believed to be that a thin layer is formed of unoriented, amorphous PET resin, which as stated above provides very good adhesion to the surface in contact with the metal sheet; that above this there is a layer of PET-BO, which has barrier properties against moisture and various ions and also possesses excellent mechanical characteristics; and that there is a good balance between the two.

The polyester resin film-coated metal sheet of the invention has numerous excellent characteristics, such as good adhesion and corrosion-resistance in working, heat-resistance, electrical insulation, etc., and it can be applied not only as a material for tins (tin lids, drawn tins, twice-drawn tins, etc.), but also (utilizing the insulating and heat-resistant properties of PET resin) for the components of electrical products.

The invention will now be explained in greater detail. First, the PET-BO film is a polycondensate of polyethylene glycol and terephthalic acid. The film is formed after extrusion working by a known method after which it is oriented in the lengthwise and transverse directions, and it then undergoes a thermal fixing process. There is no particular restriction on the thickness of the film, but 5-300µm is preferable. If it is less than 5µm thick, laminating workability is impaired, and it also becomes extremely difficult to achieve the right balance, after lamination, between the unoriented, amorphous PET resin layer and the biaxially oriented PET layer. If the thickness of the film exceeds

300µm, on the other hand, characteristics such as corrosion-resistance in working and electrical insulation properties are preserved, but it is no longer so economic. Various additives such as heat and light stabilizers, anti-oxidants, pigments, antistatic agents, etc. may be added as required to films obtained in this way, or they may be activated by, for example, corona discharge treatment, with a view to improving their adhesion.

Wext, examples of the metal sheet used in the invention are: steel sheet, in sheet or coil form, steel foil, iron foil, aluminium sheet or foil, or surface-treated metal sheet. The following are particularly suitable, because of their good adhesion to the PST-80 film: electrolytically chromate-treated steel sheet with a two-layer structure consisting of an upper layer of metal chrome and a lower layer of hydrate chrome oxide; steel sheet with very thin tin plating; steel sheet with a very thin coating of iron-tin alloy; steel sheet with a very thin plating of chrome; nickel-plated steel sheet; copper-plated steel sheet; zinc-plated steel sheet; steel sheet coated with hydrate chrome oxide; steel sheet treated with an organic substance, having a polar group such as a carboxylic group or a chelate structure; aluminium sheet.treated with phosphate, chromate or an organic Also suitable are two-layer and three-layer coated steel sheet, and alloy-plated and composite-plated steel sheet. Particular examples are steel sheet which has been chromate-treated, phosphatetreated, chrome/chromate-treated, or steel sheet plated with the metals mentioned and treated with an organic substance; steel steet plated with two or three layers of the metals mentioned, or with an alloy such as nickel-tin; steel sheet with composite zinc plating including a small amount of at least one of nickel, cobalt, iron, chrome and molybdenum in metal form or in a chemical compound.

Next, the temperature of the metal sheet immediately before the PET-30 film is laminated, which is one of the important elements in the invention, must be in the range from the melting-point of the PST-30

film (Tm) to (Tm+100) °C. Note: the term 'melting-point' (Tm) used here is found from the heat-absorption peak on a differential scanning calorimeter (DSC) for a heating rate of 10 °C/min, the point indicating the maximum depth of the peak being taken as Tm. If the temperature of the metal sheet is lower than Tm, the PST-30 film will not become sufficiently unoriented and amorphous at the interface where, on lamination, it comes into contact with the metal sheet, with the result that sufficient adhesive force will not be obtained. If on the other hand the metal sheet is heated to above (Tm+100) °C, the greater part of the laminated PET-30 film will become unoriented and amorphous, with consequent deterioration in such characteristics as corrosion-resistance in working, electrical insulation properties, etc. Also, the shape of the metal sheet, i.e. its evenness, will be impaired if it is heated to over (Tm+100) °C.

Another important element in the invention is the surface temperature of the laminating roll when the the PET-50 film is laminated to the metal sheet. The formation of the two-layer structure of the PET-50 film in the invention is determined primarily during the short time in which the PET-BO film is in contact with the mip of the laminating roll. the PET-30 film has been laminated to the metal sheet, which has been heated to a high temperature, a temperature gradient occurs in the PET-BO film, with a high temperature on the metal sheet side and a low temperature on the laminating roll side. During its passage through the laminating roll, this temperature gradient continues to be produced in the PET-30 film, and the temperature of the metal sheet falls, by reason of heat-absorption from the laminating roll and because of the fusion of the oriented crystals of the PET film. In the instant that the laminated metal sheet emerges from the nip of the laminating roll, the temperature gradient in the PET-30 film ceases to exist, and the temperature of the film matches that of the metal sheet. During the passage through the laminating roll, therefore, the temperature of the metal sheet must be lowered to below the temperature at which the biaxial orientation of the PET-30 film begins to break down (To). particularly important factor in creating this condition is the surface temperature of the laminating roll. Specifically, the surface temper-

- 7 -

ature of the laminating roll must be controlled to 30-130°C, and preferably to 50-150°C. If the surface temperature of the laminating roll rises above 180°C, the biaxial orientation of the crystals will break down, when the PET-30 film is laminated to the metal sheet, over the whole of the entire layer of film (though the extent to which this occurs will depend on the thickness of the film), with consequent impairment of corrosion-resistance in working and electrical insulation properties. On the other hand, any attempt to lower the surface temperature of the laminating roll to below 30°C would involve installing an external cooler especially for the laminating roll, which is not desirable because of the extra plant required. This control of the surface temperature of the laminating roll becomes even more important when the laminating speed is raised. Chrome-plated or ceramic or rubber rollers may be used for the laminating roll, but for laminating at high speed and to produce a pleasing appearance, rubber rolls are There is no particular restriction on the material to be used for the rubber roll, but a silicone roll is preferable.

The cooling conditions after the PET-30 film has been laminated to the metal sheet are also important in the invention. The metal sheet, with its coating of polyester resin film, must be cooled to below 100°C within 10 seconds after lamination. If it is kept at above 100°C for any length of time, the layer of unoriented, amorphous FET that was produced at the interface with the metal sheet at the lamination stage will become coarsely spherulitic, leading to reduced adhesion and corrosion-resistance in working. There is no particular restriction on the method of rapid cooling, but water-spraying is preferable.

As for heating the metal sheet, methods that may be cited include hot air heat transfer, resistance heating, induction heating, heat transfer by heating roll, etc., and there is no particular restriction, but when plant cost, the need to keep the plant as simple as possible, and the desirability of achieving a rise in temperature in a very short time are taken into consideration, the heating roll method is preferable.

Another important factor is the amount of unoriented, amorphous PET resin produced when the PET-80 film is laminated to the metal sheet. The thickness of the PET-80 resin must be 15-95% of the whole layer of PET resin. If it is more than 95%, adhesion in working is impaired, with peeling liable to occur during deep drawing, in particular. If on the other hand it is less than 15%, there is a very marked deterioration in workability, corrosion-resistance and electrical insulation properties. Thus the amount of biaxially oriented crystals remaining is important, and this amount may be found by birefringence, the density method, or X-ray diffraction, etc. By X-ray diffraction (for example) it is found as follows.

- (1) The X-ray diffraction intensities of the PET-BO film before lamination and of the PET film after lamination are measured over the range $2\theta = 20-30^{\circ}$.
- (2) The X-ray diffraction intensity curves at $20 = 20^{\circ}$ and $20 = 30^{\circ}$ are joined with a straight line, which is taken as the base line.
- (3) The heights of the sharp peaks appearing in the vicinity of $2\theta = 26^{\circ}$ are measured, from the base line.
- (4) If the height of the peak of the pre-lamination film is taken as Ia, and that of the post-lamination film as Ib, the amount of biaxially oriented crystals remaining is $Ia/Ib \times 100$.

[Embodiments]

4.

The invention is explained in detail below with reference to embodiments.

Embodiment 1

A cold-rolled steel sheet of thickness 0.23mm was electrolytically degreased in a 70g/l solution of sodium hydroxide, acid-cleaned in a 100g/l solution of sulphuric acid, and washed in water. It was then

given cathode electrolytic treatment in a solution of 30 g/l of anhydrous chromic acid and 1.5g/l of sodium fluoride, with current density of 20A/dm^2 and the temperature of the electrolyte at 30°C. It was then washed in warm water (30°C), and dried.

The 300mm-wide strip of electrolytically chromate-treated steel sheet, treated in this way, was laminated with PET-BO film of thickness 16µm (trade name: Lumilla, Toray Co.), continuously and on both sides, under the following conditions.

The amount of biaxially oriented crystals in the polyester resin film-coated steel sheet obtained in this way was calculated by X-ray diffraction under the following conditions.

Diffraction conditions Target: Cu

À.

Lamp voltage 40KV

Lamp current 20mA

Method of calculating biaxial orientation

- (1) The X-ray diffraction intensities of the film before lamination and of the coated sheet after lamination were measured over the range $2\theta = 20-30^{\circ}$ in each case.
- (2) The X-ray diffraction intensity curves at $2\theta = 20^{\circ}$ and $2\theta = 30^{\circ}$ were joined with a straight line, which was taken as the base line.
- (3) The heights of the sharp peaks appearing in the vicinity of 28 = 26° was measured, from the base line.

(4) With the height of the peak of the pre-lamination film being taken as Ia, and that of the post-lamination film as Ib, the amount of biaxially oriented crystals remaining was taken as $Ia/Ib \times 100$.

Embodiment 2

A cold-rolled steel sheet similar to that of Embodiment 1 was pretreated in the same way as in Embodiment 1. It was then plated with tin $(0.3g/m^2)$, using an electrolytic solution consisting of 25g/l of tin sulphate, 15g/l of phenol sulphonic acid (60% aqueous solution), and 2g/l of ethoxy- α -naphthol sulphonic acid, with current density of $20A/dm^2$ and electrolyte temperature of 40%C, and washed in water and dried. This 300mm-wide strip of tin-plated steel sheet, treated in this way, was laminated with PET-30 film of thickness $23\mu m$ (trade name: Lumilla, Toray Co.), continuously and on both sides, under the following conditions.

The amount of biaxially oriented crystals in the polyester resin film-coated steel sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Embodiment 3

1.

A cold-rolled steel sheet similar to that of Embodiment 1 was pretreated in the same way as in Embodiment 1. It was then plated with nickel (0.6g/m²), using a Vatts bath consisting of 40g/l of nickel chloride (6-hydrate), 250g/l of nickel sulphate (6-hydrate) and 40g/l of boric acid, with current density of 10A/dm² and bath temperature of 45°C. After washing in water, it was chromate-treated in a 30g/l solution of sodium dichromate, with current density of 10A/dm² and

electrolyte temperature of 45°C. This 300mm-wide strip of nickelplated steel sheet, treated in this way, was laminated with PET-50 film of thickness 188µm (trade name: Lumilla, Toray Co.), continuously and on both sides, under the following conditions.

The amount of biaxially oriented crystals in the polyester resin filmcoated steel sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Embodiment 4

An aluminium sheet of thickness 0.30mm was given cathode electrolytic degreasing treatment in a 30g/l solution of sodium carbonate. After washing in water, it was immersed in a bath (temperature 25°C) consisting of 60g/l of phosphoric acid, 10g/l of chromic acid and 5g/l of sodium fluoride, washed in water, and dried. This 300mm-wide strip of aluminium sheet was laminated with PET-30 film of thickness 75µm (trade name: Diafoil, Diafoil Co.) continuously and on both sides, under the following conditions.

The amount of biaxially oriented crystals in the polyester resin film-coated aluminium sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Embodiment 5 \

An aluminium sheet of thickness 0.30mm was given cathode electrolytic degreasing treatment in a 30g/l solution of sodium carbonate. After washing in water, it was given chromate treatment, using a 30g/l solution of sodium dichromate, washed in water, and dried. This 300mm-wide strip of aluminium sheet was laminated with PET-50 film of thickness 25µm (trade name: Diafoil, Diafoil Co.) continuously and on both sides, under the following conditions.

The amount of biaxially oriented crystals in the polyester resin film-coated aluminium sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Comparative Example 1

Lamination was carried out using the same steel sheet and PET-BO film as in Embodiment 1, and under the same conditions except for the surface temperature of the laminating roll.

The amount of biaxially oriented crystals in the polyaster resin film-coated steel sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Comparative Example 2

Lamination was carried out using the same steel sheet and PST-30 film as in Embodiment 1, and under the same conditions except for the cooling condition after lamination.

Time taken for laminated steel sheet to cool to below 100°...25 sec.

The amount of biaxially oriented crystals in the polyester resin filmcoated steel sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1.

Comparative Example 3

Lamination was carried out using the same aluminium sheet and PET-BO film as in Embodiment 4, and under the same conditions except for the laminating temperature.

Temperature of alum. sheet immediately before lamination.....255°C

The amount of biaxially oriented crystals in the polyester resin filmcoated aluminium sheet obtained in this way was found by X-ray
diffraction, following the same procedure as in Embodiment 1.

Comparative Example 4

Lamination was carried out using the same aluminium sheet and PET-30 film as in Embodiment 5, and under the same conditions except for the laminating temperature.

Temperature of alum. sheet immediately before lamination.....405°C

The amount of biaxially oriented crystals in the polyester resin filmcoated aluminium sheet obtained in this way was found by X-ray diffraction, following the same procedure as in Embodiment 1. The polyester resin film-coated metal sheets were evaluated by the test method indicated below. The test results are given in Table 1.

(1) Measurement of amount of plating/coating of metal sheet

This was measured by X-ray fluorimetry.

(2) Adhesion of metal sheet and polyester resin film

The polyester resin film-coated metal sheet was die-cut to a disc, which was then deep-drawn (drawing ratio 2.0) to form a cylindrical cup. This was then placed in boiling water (100°C) for one hour, after which the extent of peeling of the polyester resin film from the body was assessed in terms of five levels, from 'no peeling' = 5 points to peeling over whole surface = 1 point.

(3) Corrosion-resistance in working

50ml of citric acid, adjusted to pH 2.2, was placed in the cylindrical cup referred to in (1) above, which was then left for 30 days at 55°C, after which the amount of iron or aluminium eluted was measured. In each case a cup containing 3% NaCl was also left for 30 days at 55°C, after which the corrosion state was examined with the naked eye.

[Effect of the invention]

Metal sheet laminated on one side or both sides with PET-20 film has outstanding corrosion-resistance and adhesion in working. It can therefore be applied to a wide range of uses, including material for containers, construction material, and material for electrical parts.

Applicants Toyo Kohan Kabushiki Kaisha
Agent Attorney Tadashi Kobayashi (agent's stamp)

A. Table 1 Characteristics of embodiments of the invention

į

		lmbod. 1 Embod. 2	Embod. 2	Embod. 3	Embod. 3 Embod. 4	Embod. 5	Comp.Ex.1	Comp. Ex. 2	Comp. Ex. 2 Comp. Ex. 3 Comp. Ex. 4	Comp. Cx. 4
	Substrate	Steel sheet Steel sheet	Steel sheet	Steel sheet Aluny.sheet	Alunj. sheet	Alum.sheet	Steel sheet	Steel sheet	Alum. sheet	Alum. sheet.
Metal	Amount	11 Cr 0.11		Ni 0.6	P 0.013	•	Cr. ⁰ 0.11	Cr ⁰ 0.1'1	P 0.013	
	jo		*2 Sn 0.3			Cr. 0.017				C' 0x 0.01.
10011	coat (g/m²)	coat (9/m²) *1 Cr 0.015		Cr 0.004	Cr. ^{0x} 0.015		Cr. 0.015	Cr ^{0x} 0.015		
Thickne ester r	Thickness of poly- ester resin film	16µm	38,410	188µm	75µm	25µm	16րտ	l 6µm	751.00	25,140
Amount o oriented ing (%)	Amount of biaxially oriented PEI remaining (1)	51	09	85	70	90	er e	. 51	98	o
Adhesiv	Adhesive force	5	4	4	2	S	s		_	3
C11111C	Citric Iron or	-					•			
prop	aluminium eluted	0.02	None	None	None	None	9.5	2.6		35
test	(mdd)									
) l eS	Corrusiun						Partial	Partial		Partial
water	of metal	No Change	No change	No change	No change	No change	red	black-brown		pitting
test	sheet			••			rušt	rust		currusic

NB *1 Cr indicates metal chrome; Cr , chrome in hydrate chrome oxide. *2 Most of the plated Sn is changed by the heating to iron-tin alloy.