$$x_1 + x_2 = u$$
 x one plus x two equals u
L - I = d capital L minus small I is equal to d

$$a \times b = c$$
 a multiplied by b is equal to c
albo: a times b equals c
 $a \div b = c$ a divided by b is equal to c

$$a \div b = c$$
 a divided by b is equal to c albo: a over b is equal to c
$$\frac{an}{bn} = \frac{a}{b}$$
 an over bn equals a over b

$$\frac{an}{bn} = \frac{a}{b}$$
 an over bn equals a over b

 $\frac{a}{b} = \frac{ac}{bd}$ a over b, this fraction multiplied by c over d equals ac over bd

=
$$2\frac{1}{3}$$
 seven sixths divided by one half equals seven thirds equals two and a third

$$\frac{1}{6}$$
 $\frac{1}{2}$ $\frac{1}{3}$ seven sixths divided by one half equals seven thirds equals two and a third $\frac{1}{2}$ $\frac{1}{3}$ equals two and a third $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ two thirds equal (zero) point six six six recurring

Zyczymy przyjemnej zabawy lingwistyczno-matematycznej! pomogą ci poprawić umiejętność odczytywania wzorów i równań. Cwiczenia zamieszczone na kolejnych stronach Your Turn 27–33

Your Turn 27 Cztery podstawowe działania

of arithmetic The four fundamental operations arytmetyczne

Zgodnie z przykładem odczytaj po angielsku poniższe równania

$$\frac{4. \text{ klm}}{\text{km}} = 1$$

D - d = s

$$5. \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

6.
$$\frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$
7. $\frac{6}{5} \div \frac{2}{5} = \frac{6}{5} \times \frac{3}{5} = 3$

$$8. \frac{1}{3} = 0.333$$

Pierwiastkowanie – Roots

Pierwiastki opisujemy w następujący sposób:

 $\sqrt[n]{a} = b$

the n-th root of a is b

 $\sqrt[3]{27} = 3$

pierwiastek **n**-tego stopnia z **a** równa się **b**

 $\sqrt{4}=2$

the square root of four is two

pierwiastek kwadratowy z czterech wynosi dwa

the cubic [kju:bɪk] root of twenty-seven is three

the fourth root of x is k pierwiastek sześcienny z dwudziestu siedmiu wynosi trzy

 $\sqrt[4]{x} = k$

pierwiastek czwartego stopnia z **x** równa się **k**

Your Turn 28 Pierwiastkowanie

Roots

Odczytaj po angielsku następujące równania.

$$\sqrt[4]{81} = 3$$

the fourth root of eighty-one is three

$$2. \qquad \sqrt[5]{a} = b$$

3.
$$\frac{\sqrt{36}}{\sqrt{4}} = \sqrt{\frac{36}{4}} = \sqrt{9} = 3$$

W $- = \sqrt{9} = 3$

Potęgowanie – Powers

 $X \cdot X \cdot X = X^3$

x squared x do kwadratu

 \times_{3}

x cubed x do sześcianu

×

lub:

lub:

x to the n-th (power) x do n-tej (potęgi)

x to the power of n x do potęgi n-tej

the n-th (power) of x

×

x to the (power of) minus one

x do potęgi minus pierwszej

اا ئ مي ا ۔

a to the (power of) minus n equals one over a to the n-th

a do potęgi minus **n**-tej równa się jeden dzielone przez **a** do potęgi **n**-tej

x plus four (in brackets) all to the minus three x dodać cztery (w nawiasie) do potęgi minus trzeciej

 $a^{-3} = b^3 b^{\frac{2}{9}x}$

a to the minus three equals b cubed times b ${\bf a}$ do potęgi minus trzeciej równa się ${\bf b}$ do sześcianu razy ${\bf b}$ do potęgi dwie dziewiąte ${\bf x}$ to the power two ninths x

80

Odczytaj następujące równanie:

 $[(x + k)^{p} - \sqrt[3]{x}]^{-q} - s = 0$ x plus k in (round) brackets to the equals zero / nothing (power of) minus q, minus s of x all [in square brackets] to the (power of) p, minus the third root

Uwaga: w krajach anglosaskich często używa się takiego znaku pierwiastka: _V

Your Turn 29 Potęgowanie

Powers

Odczytaj po angielsku następujące równania

- 1. $100^{2} = \sqrt{100} = 10$ one hundred to the (power of)
- one half equals (the square) root of one hundred equals ten
- 2. k^4m^2 : $k^2m = k^2m$
- 3. a4k-1b-1 ∃ Þ
- 5. $[Z (m+k)^{z-1}]^{L} = P$

For example ...

Logarytmowanie - Logarithms

$\log_{10} x = \lg x$

 $log_bc = n$

logarytm o podstawie b z c równa się n the logarithm of c to the base b is equal to n

Inc

l, n, c [el en si]

lub opisowo:

log2 = 0.301

natural logarithm of c logarytm naturalny z c

the logarithm of two equals (nought/zero) logarytm z dwóch równa się zero przecinek trzysta jeden point three zero one

Your Turn 30 Logarytmowanie Logarithms

Jak to powiedzieć po angielsku? Kieruj się przykładem

 $n = log_a b$

the base a n equals the logarithm ["logaridam] of b to

- 2 $\Rightarrow n = \log_a b$
- $\log_{\alpha}(x y) = \log_{a} x + \log_{a} y$
- $log_{10}x = lgx$
- $lg0.21544 = lg \frac{2.1544}{10} = lg \times 2.1544 lg10 =$ 0.33333 –1 (the mantissa [mænˈtɪsə]) 10

For example ...

Funkcje trygonometryczne – Trigonometric Functions

 $tan\alpha =$

sine [saɪn]

sinus

Sinus

Arcsinus

the arc sine / the inverse

sine arkus sinus

Arccosinus

Cosinus

cosine

the arc cosine / the inverse

cosine arkus kosinus

the arc tangent / the arkus tangens inverse tangent

Arccotangens the arc cotangent / the

Cotangens cotangent

(ctn) kotangens

['tænd**g**ent] tangens

Tangens

Arctangens

kosinus tangent

inverse cotangent arkus kotangens

Zapis funkcji trygonometrycznych: $y = \sin^{-1} x$

zapis polski zapis angielski:

 $y = \arcsin x$

Your Turn 31 Trygonometria Trigonometry

Po angielsku mówimy... Wpisz "słownie", wzorując się na przykładach.

1. $y = \sin x$

y equals the sine of x

2. $y = sin^{-1}x = y = arcsin x$

y equals the inverse sine of x y equals the arc sine of x

y equals the angle ['ængl] whose

lub: lub:

3. y = ctn x

 $\cos 45^\circ = \frac{1}{2} \sqrt{2}$

ū $tan60^\circ = \sqrt{3}$

 $A = \frac{1}{2} ab \sin \gamma$

For example ...

Podstawowe symbole matematyczne – Basic Symbols

- identical [arˈdentɪkl] with / always equal with zawsze równe, równe tożsamościowo
- mniejsze niż less than
- greater than większe niż
- much less than znacznie mniejsze niż

- much greater than
- not greater than / less than or equal to nie większe niż (mniejsze niż lub równe)
- not less than / greater than or equal to nie mniejsze niż (większe niż lub równe)
- not equal to nie równa się
- approximately [əˈprɒksɪmətli] równa się w przybliżeniu
- (directly) proportional to (symbol używany w Wielkiej
- (directly) proportional to (symbol uzywany w Polsce) (wprost) proporcjonalny do

(wprost) proporcjonalny do

- is parallel to jest równoległy do
- |-3|=3 the absolute value of -3 (minus three) is 3 wartość bezwzględna z -3 równa się 3
- parentheses [pəˈrenθəsiːz]; round brackets nawias okrągły
- nawias kwadratowy (square) brackets
- braces nawias klamrowy

Your Turn 32 Podstawowe symbole matematyczne Basic Symbols

Ćwiczeń nigdy za wiele. Zapisz słowami co wyrażają symbole

- $\pi \approx 3.14$
- π [Da1] is approximately equal to three point one four
- H
- ω
- q

o 8

86

- 4 EF | DG
- ū $\sqrt{x^2} = |x|$

...........

For example ...

Inne znaki – More Symbols

suma (po) a (z indeksem) k the sum of a (sub) k

 $\sum a_{k}$

- $K=(-\infty, +\infty)$ infinity duże K równa się przedział otwarty od minus nieskończoności do plus nieskończoności capital K equals the open interval minus infinity, plus
- × x dąży do x zero x tends to x zero / nought
- $\lim_{n\to\infty}a_n=0$ (sinx)' = cosxgranica / limes **a** równa się zero, gdy **n** dąży do nieskończoności the (first) derivative [dr'rrvetrv] of the sine [sain] of x the limit of a sub n is zero as n tends to infinity
- SV delta s delta s equals the cosine of x (pierwsza) pochodna z sinus **x** równa się cosinus **x**
- $\dot{s} = \frac{ds}{dt}$ s dot equals ds [diː es] by dt [diː tiː] s z kropką równa się ds przez dt
- $y^{(n)} = f^{(n)}(x)$ y n prime [praɪm] equals f n prime of χ pochodna z **y** rzędu **n** równa się **f n** od **x**
- dn [di: en] sub v by dx [di: eks] to the n-th power

dy dy

\int ctn xdx = \text{ln | sinx| + C} the integral ['Inttgral] of the cotangent of x dx [eks di: eks] equals the natural ['nætʃral] logarithm of the absolute value of the sine of x plus capital C calka z kotangens xdx równa się logarytm naturalny z wartości bezwzględnej z sinus x plus C

Your Turn 33 Inne znaki

More symbols

Odczytaj po angielsku poniższe równania. Wzoruj się na przykładzie.

- 1. $\int f(x)dx = F(x) + C$ the integral of $\int f(x)dx = F(x) + C$ capital $\int f(x)dx = F(x) + C$
- capital F of k plus capital C
- $2. \quad y = \sum_{k=0}^{4} a_k x^k$

 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$

4. Właściwe znaczenie we właściwym kontekście Focus on meanings

W rozdziale tym zapoznasz się z szeregiem słów i zwrotów, które występują w tekstach technicznych. Dużą trudność sprawia zazwyczaj dobór słownictwa właściwego dla danego kontekstu znaczeniowego. Można powiedzieć, że kontekst warunkuje odpowiednie zrozumienie wypowiedzi, zwłaszcza w języku technicznym, który powinien się przecież charakteryzować szczególną precyzją w oddawaniu znaczeń.

Wyjaśnienia zawarte w rozdziale "Właściwe znaczenie we właściwym kontekście" ograniczają się do najważniejszych słów, takich, które wystąpić mogą w tekstach technicznych z rozmaitych specjalności.

Jeżeli przygotowujesz się do tłumaczenia na angielski polskich tekstów technicznych, to warto zacząć od opanowania podstaw, które prezentujemy. Będziesz jednak z pewnością musiał korzystać ze słownika, aby znaleźć słowa związane z tematyką poruszaną przez konkretny tekst, z którym przyjdzie ci się zmierzyć.

Zapoznaj się dobrze z całym materiałem, a następnie daj sobie trochę czasu na "przetrawienie" nowych wiadomości. Następnie wróć do ćwiczeń jeszcze raz.

For example ...

zmienić

changezmienić, wymienić (dokonać istotnych, gruntownych zmian)alterprzerobić (zmienić częściowo)modifyzmodyfikować (dokonać niewielkich zmian, ulepszeń)