

UNIVERSIDADE DE BRASÍLIA

Faculdade do Gama

Sistemas de Banco de Dados 2

Trabalho Final (TF)

Tema D – Data Warehouse

Ivan Diniz Dobbin - 17/0013278

Rogério S. dos Santos Júnior - 17/0021751

Brasília, DF

INTRODUÇÃO

(2013, p. 3):

Nas últimas décadas, principalmente nos últimos anos, o grande crescimento do fluxo de dados aumentou a importância da profissão de cientista de dados. Por causa dessa quantidade crescente de dados surgem vários temas definidos por Kimball e Ross

- → Coletamos uma quantidade significativa de dados, mas não conseguimos acessálos;
- → Precisamos fatiar e dividir os dados de todas as maneiras;
- → Pessoas de negócio precisam acessar os dados facilmente;
- → Me mostre apenas o que é importante;
- → Gastamos muitas reuniões apenas discutindo quem tem os números corretos em vez de tomar decisões;
- → Queremos que as pessoas usem as informações para tomar decisões mais baseadas em fatos.

Kimball e Ross (2013, p. 3-4) transformaram esses temas em requerimentos:

- → O sistema data warehouse e business intelligence deve tornar a informação acessível;
- → O sistema DW/BI deve apresentar a informação de maneira consistente.
- → O sistema DW/BI deve ser adaptável a mudança;
- → O sistema DW/BI deve apresentar as informações em tempo hábil;
- → O sistema DW/BI deve ser um bastião seguro que protege as informações ativas;
- → O sistema DW/BI deve servir como a base autorizada e confiável para melhorar a tomada de decisão;
- → A comunidade empresarial deve aceitar o sistema DW / BI para considerá-lo bemsucedido.

É dentro desse contexto que se insere essa pesquisa, que vai explicar de forma detalhada sobre data warehouses e o seu contexto de trabalho.

1) Definição da Tecnologia

Um data warehouse, do inglês "armazém de dados", é um sistema gerenciador de dados especial que tem o objetivo de servir de fonte de consulta para análises mais complexas. Esta tecnologia tem como objetivo consolidar um grande volume de dados de diversas fontes.

Data warehouse é uma coleção de dados orientada a assunto, integrada, não volátil, variável no tempo para apoio às decisões da gerência. (Inmon et al. (2008) apud Elmasri e Navathe (2018), p. 996)

Como principal distinção dos bancos de dados tradicionais, que são transacionais (orientado à objeto, relacionais etc.), os data warehouses servem, principalmente, para aplicações que visão sustentar decisões. Proporcionam dados para estudos complexos.

Normalmente, a operação de um data warehouse envolve os seguintes aspectos:

- → Base SQL para armazenar os dados;
- → Pré-processamento ETL sobre os dados;
- → Ferramentas para visualização de dados;
- → Ferramentas que se usam os dados para treinar algoritmos de predição (ML/AI);

Vale destacar que, pela alta demanda de consultas, são bases muito bem otimizadas e que suportam demandas de alto desempenho dos dados e informações de uma organização. Por não possuírem margem para inserções ou atualizações, esse tipo de base é ideal para dar consultas, processamento de dados ou data mining.

O data warehouse é constituído, como um SGBD, por diversas tecnologias que permitem a sua operacionalização para que seja o mais otimizado e automatizado possível. Por passa por um pré-processamento, os dados tem redundância minimizada e fornecem uma fonte única para ambiente de BI ou até mesmo para o data science da empresa.

Outro termo que vale a pena destacar é o data mart que é uma unidade que compõe um data warehouse. Este contém um grupo de dados específico para uma área como por exemplo: departamento financeiro. Usado para tomar decisões mais locais.

Figura 01: Visão simplificada de data mart e data warehouse - Fonte: Panoply 2020

2) Objetivos Principais da Tecnologia

Para servir para consultas em larga escala, os data warehouses não podem receber dados de qualquer maneira, é necessário um tratamento prévio para que os dados possam ser disponibilizados na base. Dessa forma, surge como solução o ETL.

O ETL, do inglês "extrair, transformação e carga", é a atividade que consiste em passar o dado por um extenso pré-processamento para que ele seja o mais consistente possível. Um *data warehouse* possui diversas fontes e é necessário que eles sejam convertidos para um formato que possa ser analisado e armazenado.

De acordo com a Oracle Brasil, dentre as principais características do data warehouse, vale citar:

- → Atualização automática regular da base;
- → Armazena dados históricos de meses, ano e até decadas;
- → Proporciona análises avançadas e consultas ad-hoc;
- → Usa modelagem parcialmente normalizada para otimizar o desempenho;
- → Acessa milhões de linhas ao mesmo tempo.

O principal objetivo do data warehouse é servir como fonte de consulta para atividades de business intelligence (BI) e análise avançada. Esta tecnologia está

intrinsicamente ligada a área de data science e é usando amplamente usando em atividades como machine learning, artificial intelligence e data mining.

Por ser uma fonte segura, rápida, convergente, homogênea e atualizada de dados é a opção mais utilizada ao se pensar em tecnologia de armazenamento de grandes fluxos de informações. Possuem uma gama variada de fontes, tais como: dados de uma empresa, log de aplicativos ou aplicativos de transações.

É o mais indicado para análise de dados volumosos ao longo de grandes períodos. Seus recursos permitem às empresas ter insights a partir dos dados armazenados na base e assim tomar as melhores decisões para o seu negócio

3) Schema de um data warehouse

Antes de entender as principais formas que um data warehouse é modelado é necessário entender dois termos: fact tables que são tabela principal que reúne os atributos das tabelas secundárias mais os seus próprios atributos principais (exemplo: valor total da venda); dimension tables, tabela secundária de características sobre a tabela principal (exemplo: horário que a venda foi realizada).

Os dois modelos de schema mais utilizados para organizar um Data Warehouse são star schema e snowflake schema. O princípio do star schema é pegar uma fact table e dividi-la em dimension tables desnormalizadas. Para unir as dimension tables com as fact tables é necessário apenas uma junção, assim a velocidade nas consultas é maior.

Figura 02: Star Schema - Fonte: Panoply 2020

No snowflake schema divide-se a fact table em uma série de dimension tables normalizadas. Você garante maior integridade dos dados, mas realizar consultas é bem mais lento pela necessidade de mais junções para acessar dados relevantes.

Figura 03: SnowFlake Schema - Fonte: Panoply 2020

4) Vantagens da Tecnologia Utilizada

O fator mais vantajoso para se manter uma base desse porte é que ela permite que dados que, anteriormente só ocupavam espaço, tenham algum valor. Extrai valor de grandes quantidades de dados históricos e fornece um registro consistente e organizado dos dados de uma empresa

Inmon, grande cientista da área, descreve as quatro características que fazem os data warehouses sejam a melhor opção para àqueles que se inserem dentro do contexto:

- → Integração: por serem usados dados de diversas fontes é necessário padronizar previamente os dados antes de serem inseridos na base;
- → Não volátil: em um data warehouse, as únicas operações realizadas são de consulta e exclusão e isso faz com que os dados não sofram alteração. De acordo com as boas práticas, a única forma de modificação presente na base é a inserção, que consiste na adição de novos dados, e a exclusão;

- → Variável com o tempo: a sua manutenção consiste apenas na inserção de novos dados de um novo período. Não existem problemas de concorrência, como nos bancos transacionais, pois os dados não sofrem atualização e já são processados previamente;
- → Orientado para o assunto: faz alusão que os data warehouses são feitos dentro de um contexto bem determinado que permite que a sua construção seja otimizada e planejada para uma determinada finalidade.

Um projeto bem feito de data warehouse fornece a uma empresa a opção de proporcionar aos usuários mais flexibilidade na consulta aos dados, uma vez que pode proporcionar informações mais detalhadas ou não, e de possuir um maior volume de tráfego de dados.

5) Desvantagens da Tecnologia Utilizada

Como toda implementação de nova funcionalidade é sempre importante analisar o contexto e a necessidade do escopo de implementação de um data warehouse, pois senão houver os profissionais, os recursos e a gestão necessária a operacionalização pode resultar em custos desnecessários e uma base que não consiga atingir os padrões necessários.

A montagem exige um extenso planejamento que pode levar até anos. Para que um data warehouse seja constituído é necessário um longo estudo dos dados da organização para ter propriedade e realizar a modelagem do banco de forma a prever como eles serão usados. O fato de as informações não serem alteradas faz com que toda a acomodação seja pensada com antecedência.

A escolha de tecnologias deve ser muito bem analisada para que a base tenha a melhor performance possível. O pré-processamento e o armazenamento dos dados são tarefas que vão lidar com volumes massivos de dado e por isso se faz necessário ferramentas que estejam de acordo com o escopo de atuação do data warehouse.

Com a evolução das tecnologias, tanto das fontes de dados quanto do data warehouse, o gerenciamento se torna um verdadeiro desafio. As bases de dados sofrem alterações e atualizações que devem ser refletidos no data warehouse para que a

operação seja mantida. Dessa forma, é ele saiba lidar com esse tipo de demanda.

Outro ponto muito relevante é a qualidade e consistência dos dados. Por se tratar de um papel de decisão em muitas organizações, as informações devem possuir um elevado padrão de controle. A integração de dados é muito desafiadora, dado o domínio de informação de cada base, e o projetista do data warehouse deve ser capaz de lidar com as alterações das fontes de dados.

O sistema deve sempre refletir os melhores caminhos de modo que os padrões de utilização se modificam com o tempo para que o data warehouse esteja sempre otimizado às demandas da organização. Isso é essencial para que o funcionamento pleno da base seja antigido.

A equipe que cuida de uma operação como essa deve possuir amplas habilidades. A multidisciplinaridade também é esperada, uma vez que não consiste somente em um banco, mas em conhecer todo o contexto da organização, regras, regulamentações, políticas e restrições, para realizar o planejamento de acordo.

Por fim, vale ressaltar os altos custos envolvidos no planejamento, execução e planejamento de uma operação como essa. Atualmente, os valores relacionados às tecnologias de armazenamento são bem onerosos, além da necessidade de manutenção. A capacitação dos profissionais necessários à atividade também é outro ponto bem relevante, pois geram mais gastos.

6) Exemplo de Uso

Para poder ilustrar as empresas que usam o data warehouse, estão elencados 3 casos de sucesso relacionadas ao data warehouse, o que ele proporcionou nas empresas, o que mudou e qual a nova realidade das organizações:

→ Vivo (Telefônica): para centralizar os dados de 6 empresas que a compõe seu conglomerado, a empresa possui um data warehouse que permite uma economia de US\$ 28 milhões todos os meses. Essa central reúne dados de uso de SMS, uso de rede, volume de voz trafegado, consumo financeiro do cliente etc., e usa esses dados para alimentar sua área de BI;

- → Ministério da Justiça do Brasil: com um data warehouse que fornece dados para operações complexas, tais como a Lava Jato. Essa base central permite armazenar dados vitais ao funcionamento do órgão e possui bilhões de registros. O processamento conta poderoso computador da IBM que é capaz de coletar, agrupar e processar petabytes (106 GB) em questão de milésimos de segundos. É capaz de cruzar informações de pessoas envolvidas nos mais diversos processos do judiciário.
- → Avon: para substituir o formar de tomar decisões, que era tido por experiência e percepção dos gestores, a empresa optou por implementar um data warehouse para poder tomar decisões baseadas em dados mais concretos. Dessa forma, se pode monitorar as estratégias traçadas e identificar oportunidades de negócio;

Existem diversas ferramentas que implementam um data warehouse padrão e oferecem um ambiente em nuvem para que as empresas possam armazenar seus dados e recebam insights de forma automatizada. Uma das principais vantagens delas é o fato de não ser necessário realizar a manutenção física dos servidores, que gera muitos custos. As principais são:

- → Google BigQuery: serviço oferecido pela gigante da tecnologia, este serviço pode ser contratado on-line e, assim, conceder acesso a uma suíte de ferramentas e armazenamento de grandes massas de dados. Conta com vários recursos que permitem as organizações ter insights de seus negócios. É uma plataforma que proporciona uma interface visual para seus usuários facilitando o seu uso. Possui vasta documentação e suporte e inúmeros clientes famosos (Twitter, Dow Jones, SBT, Mercado Livre etc.);
- → Oracle Autonomous Data Warehouse: serviço em nuvem que promete eliminar a complexidade da operacionalização de um data warehouse e automatizar a

gerênciamento da base. Possui diversas ferramentas de predição e autoajuste para melhorar o desempenho;

→ Amazon Redshift: serviço de alta performance oferecido pela amazon que tem fácil integração com outros serviços oferecido por essa outra gigante da tecnologia. Possui clientes bem famosos (Mc Donald's, Duolingo, Fox, Amazon).

BIBLIOGRAFIA

AMAZON. Amazon RedShift. Disponível em: link para o site. Acesso em: 16 nov. 2020.

DEVMEDIA. Data Warehouse. Disponível em: link para o site. Acesso em: 16 nov. 2020.

ELMASRI, Ramez; NAVATHE, Shamkant B. **Sistemas de Banco de Dados**. 7. ed. São Paulo: Pearson, 2018. 1127 p. ISBN 978-85-430-2500-1.

GOOGLE. Google BigQuery. Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

GUERRA, Ana Rita. **Telefônica Vivo revoluciona sistema de oferta ao cliente com processamento de dados veloz**. 22 out. 2015. Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

KIMBALL, Ralph; ROSS, Margy. **The Warehouse toolkit**: the definitive guide to dimensional modeling. 3rd ed. Indianapolis, IN: John Wiley & Sons, c2013. 601 p. Disponível em: <u>link para o livro</u>. Acesso em: 10 nov. 2020.

MAGALHÃES, Paulo. **10 cases de sucesso de empresas que utilizaram o Big Data**. 26 abr. 2017. Disponível em: link para o site.

ORACLE. **Oracle Autonomous Data Warehouse**. Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

ORACLE BRASIL. O que É um Data Warehouse? Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

PANOPLY. **DATA Mart vs Data Warehouse**. Disponível em: <u>link para o site</u>. Acesso em: 10 nov. 2020

PANOPLY. Cloud Data Warehouse vs Traditional Data Warehouse Concepts. Disponível em: <u>link para o site</u>. Acesso em: 13 nov. 2020

SAS. **ETL**: o que é e qual a sua importância? Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

THINK CONSULTING. **3 empresas que utilizam business intelligence e obtiveram sucesso**. Disponível em: <u>link para o site</u>. Acesso em: 16 nov. 2020.

THINK CONSULTING. Afinal, você sabe o que é data warehouse? Disponível em: link para o site. Acesso em: 16 nov. 2020.

DOCUMENTAÇÃO DA BASE DE DADOS

Os dados foram extraídos do Kaggle dos <u>tweets das eleições dos Estados Unidos</u> <u>da América de 2020</u>. A partir do arquivo CSV (hashtag_joebidden.csv) foi feita a modelagem do banco MySQL de forma a normalizar os dados em suas respectivas tabelas. Em seguida, com o auxílio de um script Python os dados foram inseridos na base, totalizando 155 mil tuplas. Foi gerado o <u>dump</u> da base modelada.

1) Diagrama Entidade Relacionamento (DE-R)

2) Diagrama Lógico

