Scaling SparkR in Production. Lessons from the Field.

Heiko Korndorf
Wireframe, CEO & Founder

Who Am I

Heiko Korndorf

- Founder Wireframe
- MS in Computer Science
- Application Areas: ERP, CRM, BI, EAI
- Helping companies in
 - Manufacturing
 - Telecommunications
 - Financial Services
 - Utilities
 - Oil & Gas
 - Professional Services

Content

Classify this talk

Data Science: Scaling your R application with SparkR

Data Engineering: How to bring Data Science applications into

your production pipelines, i.e. adding R to your toolset.

Management: Integrating Data Science and Data Engineering with

SparkR

Agenda

- R and Real-world Projects I + II
- SparkR Architecture 1.x/2.x
- Approach with Spark 1.5/1.6
 - Parallelization via YARN
 - Dynamic R Deployment, incl. dependencies/packages
 - R-Graphics: headless environment, concurrency
- Approach with Spark 2.0
 - Parallelization via Spark R
 - Use Spark APIs: SQL, Mllib
 - On-Prem vs Cloud (Elasticity/decouple storage and compute)
- Integrating Data Science and Data Engineering
- A Broader Look at the Ecosystem
- Outlook and Next Steps

Data Science with R

- Very popular language
- Designed by statisticians
- Large community
- > 10.000 packages
 - plus: integrated package management
- But: Limited as Single-Node platform
 - Data has to fit in memory
 - Limited concurrency for processing

SparkR Projects

Project I

- Compute-Intensive
- · On-Prem / MS Azure
- Monthly Runs

Project II

- Data Integration
- · On-Prem / Amazon AWS
- Monthly/Daily Runs

SparkR from an R Perspective

- Import SparkR-package and initialize SparkContext and SQLContext
- Access Data stored in Hadoop, HBase, Cassandra, etc.
- Use Spark Libraries
- Parallelize R

SparkR Architecture 1.x/2.x

Time Series Forecasting

- Time Series: a series of data points indexed in time order
- Methods:
 - Exponential Smoothing
 - Neural Networks
 - ARIMA:

$$\left(1-\sum_{i=1}^p \phi_i L^i
ight)(1-L)^d X_t = \delta + \left(1+\sum_{i=1}^q heta_i L^i
ight)arepsilon_t$$

- ARIMA(p,d,q)
 - AR: p = order of the autoregressive part
 - I: d = degree of first differencing involved
 - MA: q = order of the moving average part

Parallelization with SparkR 1.x

Parallelizing Computation with YARN/Spark 1.x

Parallelization with SparkR 1.x

Parallelizing Computation with YARN/Spark 1.x

- Sequential computation: > 20 hrs.
- Single-Server, parallelized: > 4.5 hrs
- SparkR 1.6.2, 25 nodes, 4 cores: ca. 12 mins.

Dynamic R Deployment

Challenge: R not installed on cluster

- R's installation location is hard-coded in R
- Modify some Spark and R source files and build Spark and R from source
- Include dependant packages in R
- Submit Spark job with R as YARN dependency

Microsoft R Server HDInsight

- Microsoft R Server for HDInsight integrates Spark and R
- Based on Revolution Analytics
- UDFs via rxExec()

Parallelization with SparkR 2.0

Parallelizing Computation with YARN/SparkR 2.x

Parallelization with SparkR 2.0

Support for User-Defined Functions

- dapply / dapplyCollect
 - input: DataFrame, func [, Schema]
 - output: DataFrame
- gapply / gapplyCollect
 - input: DataFrame¦GroupedData, groupBy, func [, Schema]
 - output: DataFrame
- spark.lapply
 - · input: parameters, func
 - Access to data/HDFS
 - output: List

Advanced Parallelization

Not only Data-Parallel vs Model-Parallel More generic than Map-Reduce

- Coordinating Computation
- Managing Data I/O

2-Level Parallelization

- (1) Submit multiple jobs to your cluster:
- Cluster Manager (YARN, Spark, Mesos)
- Spark Job: Driver and Executors

- (2) Use GPGPU
- Spark Job: Driver and Executor
- Let Executor use GPGPU

(3) Combine 1 and 2

Cultural Integration

Data Science

- Exploratory
- Loosely structured
- Higher-level abstractions
- Less concerned with performance and efficiency

- Precision
- Robustness & Repeatability
- Focus on efficiency and performance

Spark & R – A Dynamic Ecosystem

Other Interesting Projects in the Spark/R Ecosystem:

- SystemML
- Renjin
- sparklyr
- RHIPE (R on Hadoop)
- Spark Time Series Libraries (spark-timeseries, huohua/Flint)

Outlook & Next Steps

- Organizational: Further Integrate Data Engineering & Data Science
 - Source Code Control & Versioning
 - Continuous Build
 - Test Management
- Technical: New Approaches
 - Simplify/Unify Data Pipelines (SparkSQL)
 - Mix Spark/Scala and R!
 - R Graphics: raster images to data frame
 - Performance Improvement: use MLlib
 - Performance Improvement: move calculation to GPU

Questions?

THANK YOU.

Heiko Korndorf
heiko.korndorf@wireframe.li

