Mécanique quantique – L2

Antoine Bourget – Alain Comtet - Antoine Tilloy

Séance du 26 Novembre 2014 - www.lkb.ens.fr/rubrique327

Soutien 5 : Potentiels carrés à une dimension

1 Etude d'un puit carré infini

On considère une particule de masse m se déplaçant dans un puits de potentiel V(x) tel que :

$$x \in [0, a]$$
 $V(x) = 0$
 $x \notin [0, a]$ $V(x) = +\infty$.

- 1. Écrire l'équation satisfaite par une fonction d'onde d'énergie E. Quelles conditions aux limites doit vérifier cette fonction?
- 2. Résoudre l'équation d'onde. Montrer que pour que les conditions aux limites soient respectées, l'énergie ne peut prendre que des valeurs quantifiées repérées par un indice $n \ge 1$. Préciser la fonction d'onde $\phi_n(x) = \langle x|n\rangle$ associée au ket $|n\rangle$. La normer.
- 3. On place le système à l'instant t = 0 dans l'état :

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|n\rangle + |n+1\rangle).$$

Donner sans calcul l'expression de $|\psi(t)\rangle$ à un instant t ultérieur. Calculer la valeur moyenne de l'énergie $\langle H \rangle$ dans cet état.

- 4. Montrer que la valeur moyenne de la position $\langle x \rangle$ de l'état précédent est une fonction périodique du temps dont on calculera la fréquence ν_n .
- 5. Comparer le résultat précédent avec celui que l'on obtiendrait pour une particule classique évoluant dans le potentiel V(x) avec l'énergie $E = \langle H \rangle$ calculée à la question 3.

2 Transmission par une barrière de potentiel

On considère une particule de masse m en présence d'une barrière de potentiel V(x) telle que :

$$x \in [0, a] \qquad V(x) = V_0$$

$$x \notin [0, a] \qquad V(x) = 0.$$

- 1. Écrire l'équation satisfaite par une fonction d'onde d'énergie $E = \frac{\hbar^2 k^2}{2m}$.
- 2. On pose

$$x \in]-\infty, 0]$$
 $\psi(x) = e^{ikx} + r(k)e^{-ikx}$
 $x \in [a, \infty[$ $\psi(x) = t(k)e^{ikx}.$

Donner l'interprétation physique des coefficients r(k) et t(k). En utilisant la conservation du courant montrer que $|r(k)|^2 + |t(k)|^2 = 1$.

- 3. Calculer t(k) pour $E < V_0$. Par continuation analytique, en déduire l'expression de t(k) pour $E > V_0$.
- 4. Donner l'allure de $T(E)=|t(k)|^2$ dans chacune des régions. Quelle est l'interprétation des résonances de diffusion pour $E>V_0$?