Session: Logistic Regression

Logistic Regression
Decision Boundary
Advanced

Problem: Applying for Pernando K - fernando k use @ dell.com - from Machine Learning at Dell Brazil (QE) & Credit Card

- In the US, most adults have a credit score (a.k.a. FICO score)
- Ranges from 300 to 850
- Credit score important for loans, mortgages, and credit cards

Problem: Applying for Fernando K - fernando K - fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) & Credit Card

- Data:
 - -X Credit Score
 - Y Approval (Yes/No)
- Can we predict approval?

Credit Score	Approved?
560	No
750	Yes
680	Yes
650	No
450	No
800	Yes
775	Yes
525	No
620	No
705	No
830	Yes
610	Yes
690	No

Visualize the Credit Papproval Data

Try Linear Regression of the Company of the Company

• But...

Problems with Apply 10 Tig Linear Regression

- Unstable
- Wrong value range

Logistic Regression

→ Logistic Regression

Decision Boundary

Advanced

Sigmoid (Logistic) F2019-08-in Ction

Instead of

$$H = T_0 + T_1 x_1 + T_2 x_2 + ... + T_n x_n$$

- Let us change our hypothesis to
 Let us change our hypothesis to

$$S(H) = \frac{1}{1 + e^{-H}}$$

- So, instead of straight line, we get an S-shape
- ♦ How do we get the best values of [T₀, T₁, ..., T_n]?
 - = It is also Gradient Descent
 - = But first, let us describe how we use the result

Answer Provided by 2019-23-20 gistic Regression

- Probability p that the answer is 1
- ◆ p > 0, p < 1
- ◆ p > 0.5 => answer is **yes**
- ◆ p < 0.5 => answer is **no**

Logistic Regression 2019-03-96 Cases

- In ML Spark, this is simply
 - -LogisticRegression.setThreshold

- But in life it may be
 - Fraud investigation
 - Tumor prediction malignant or benign
 - Credit approval
 - Student admission
 - Character recognition

How to Explain Precise Compositions Licensed for personal use only for Fernando K < fernando kruse @ dell.com> from Machine Learning at Dell Brazil (QE) @ Composition Precise Compositio

- Say, you get 75% for malignant tumor prediction
 - Tell the patient that the probability of him having cancer is 75%
- But what should the doctor do?
- "Conservative" doctor
 - Operates at 25%
- "Progressive" doctor
 - Recommends "wait and see"
- And both can explain why they are right

Lab: Logistic Regression Lab: Logistic Regression Lab: Logistic Regression

Overview:

Practice Logistic Regression

Approximate Time:30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

- LOGIT-1: Credit card approval

Decision Boundary

→ Decision BoundaryAdvanced

The Meaning of Sigmald

Sigmoid

$$S(z) = \frac{1}{1 + e^{-z}}$$

•
$$Z = 0 => S(z) = \frac{1}{2}$$

•
$$Z < 0 => S(z) < \frac{1}{2}$$

Divides the "yes" answer from the "no" answer

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Decision Boundary 12019-03-12 Numbers

Say

$$-T0 = -3$$

$$-T1 = 1$$

$$-T2 = 1$$

We will predict

$$-Y = 1$$
 if

$$-3 + X1 + X2 >= 0$$

X

Decision Boundary 2019-03-Regions

Decision boundary separates our points into 2 groups

Non-linear Decision 2012 Oundary

Sometimes, points cannot be cut up by a line

Adding New Features at Dell Brazil (QE) @ Fernando K < fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @dell.com> from Machine Learning at Dell Brazil (QE) @ Fernando K viuse @ Fernando K vi

X1	X2	X3 = X1**2	X4 = X2**2
2	3	4	9
1	4	1	16
3	5	9	25

- My formula
- ◆ T(X) = T0 + T1*X1 + T2*X2 + T3*X3 + T4*X4
- ◆ Let us choose T0 = -1; T1 = T2 = 0
- ◆ Predict y = 1 if -1 + x1**2 + X2**2 > 0

Equation of a Circle 2019-03-12 Licensed for personal use only for Fernando K (fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- New formula
- \bullet -1 + x1**2 + X2**2 > 0 or
- ◆ X1**2 + X2**2 > 1

What shapes are Possible?

- Circles
- Ellipses
- Many other shapes with >2 degree polynomials

Advanced

Logistic Regression Decision Boundary

Multinomial logistic of the grand of the second for personal use only for Fernando K dernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the green second from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial logistic of the grand from Machine Learning at Dell Brazil (QE) @ Multinomial l

- We have seen Logistic Regression predicting binary outcomes
 - Approved / Denied
- We can use it to calculate 'more than two' states as well
 - multinomial logistic regression
- For K possible outcomes
 - Chose one outcome as a "pivot"
 - The other K-1 outcomes can be separately regressed
 - against the pivot outcome

Solving the Logistic of Regression Problem

- Earlier we said that training the Logistic Regression model is done with Gradient Descent
- But what is our Cost Function?

What We Used for Langue ar Regression

- Cost function for Linear Regression
- Cost function for Linear Regression

$$C(T_0, T_1, , , Tn) = \frac{1}{2m} \sum_{i=1}^{m} (y'_i - yi)$$
• But then we added a sigmoid to burn rediction

- So now the cost function is not convex.
- But then we added a sigmoid to our prediction
- So now the cost function is not convex.

Cost Function for Logistic Regression

- To make it convex
- We will use a different cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x)) \quad \text{if } y = 1$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x)) \quad \text{if } y = 0$$

Advanced Optimization (QE) @

- Conjugate gradient
 - For symmetric, positive mx

- BFGS
 - Authors' names
- L-BFGS
 - Modified
 - For limited-memory, sparse matrices

Evaluating Classification Models Evaluating Classification Models

- Let's consider a binary classifier
 - Picks one of two outcomes (spam / not-spam)
- Two approaches
 - Confusion matrix
 - ROC curve

Confusion Matrix / English or Matrix Machine Learning at Pell Brazil (QE) @ Matrix

- Let's consider a binary classifier
 - Picks one of two outcomes (spam / not-spam)
- Say we are classifying 10 emails (6 spam, 4 not-spam)
- See 'confusion matrix' below

Classification =>	Spam	Not Spam
Actual Spam (6 total)	4 count	2 count
	66% accuracy Correct	33% Incorrect
	True-Positive Rate (sensitivity)	False negative rate (miss rate)
Actual Not Spam (4 total)	1 count	3 count
	25 % Incorrect	75% Correct
	False-positive rate (fall-out)	True negative rate (specificity)

Measuring Accuracy of Logistic Model

- Since Logistic Regression is used for classification we can use
 - Confusion Matrix
 - ROC and AUC (Area Under Curve)
- Confusion Matrix:

correct: 14 + 5 = 19

missed: 3 + 1 = 4

accuracy = 19/(19+4) = 82.6%

- ROC diagnostic capability of a binary classifier
 - With changing threshold
- True Positive Rate (TPR) vs False Positive Rate (FPR)
- ◆ AUC = 0.874

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Lab: Logistic Regression Lab: Logistic Regression Lab: Logistic Regression

Overview:

Practice Logistic Regression

Approximate Time:30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

- LOGIT-2: College Admission

Review Questions 2019-03-12 Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- How does Logistic Regression differ from Linear Regression?
- What do they have in common?