Lecture 23 - Naive Bayes

DSC 40A, Spring 2023

Announcements

- ► Homework 7 is released, due **Thursday 6/1 at 11:59pm**.
- Monday is a holiday. No lecture, and no office hours.
- Midterm 2 is Monday 6/5 during lecture.
 - You'll be allowed an unlimited number of handwritten note sheets for Midterm 2 (and Final Part 2). Start studying and preparing your notes now!
 - Midterm 2 covers Homeworks 5 through 7. Clustering is included, but the vast majority will be probability and combinatorics.

Agenda

- ► Classification.
- Classification and conditional independence.
- Naive Bayes.

Recap: Bayes' theorem, independence, and conditional independence

- Bayes' theorem: $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$.
- A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$.

 A and B are conditionally index.
- A and B are conditionally independent given C if $P((A \cap B)|C) = P(A|C) \cdot P(B|C).$
 - In general, there is no relationship between independence and conditional independence.

Classification

Taxonomy of machine learning

Classification problems

- Like with regression, we're interested in making predictions based on data (called **training data**) for which we know the value of the response variable.
- The difference is that the response variable is now categorical.
- Categories are called classes.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
 - Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.

You have a green-black avocado, and want to know if it is ripe.

color	ripeness	
bright green	unripe	
green-black	ripe 🕡	
purple-black	ripe	
green-black	unripe 🛈	
purple-black	ripe	
bright green	unripe	
green-black	ripe 🕗	
purple-black	ripe	
green-black	ripe 🕝	
green-black	unripe ල	
purple-black	ripe	
Training	1-40	

Question: Based on this data, would you predict that your avocado is ripe or unripe?

unripe

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Strategy: Calculate two probabilities:

P(ripe|green-black)

P(unripe|green-black) = 2

Then, predict the class with a 5 larger probability.

Estimating probabilities

- population parameter ► We would like to determine P(ripe|green-black) and P(unripe|green-black) for all avocados in the universe.
- All we have is a single dataset, which is a sample of all avocados in the universe.
- We can estimate these probabilities by using sample proportions.

ripe green-black avocados in sample P(ripe|green-black) ≈ # green-black avocados in sample Per the law of large numbers in DSC 10, larger samples

lead to more reliable estimates of population parameters.

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

$$P(\text{ripe|green-black}) = \frac{3}{5}$$

$$P(\text{unripe|green-black}) = \frac{2}{5}$$

direct interpretation

Bayes' theorem for classification

Suppose that A is the event that an avocado has certain features, and B is the event that an avocado belongs to a certain class. Then, by Bayes' theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

More generally:

generally:

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$

- What's the point?
 - Usually, it's not possible to estimate *P*(class|features) directly from the data we have.
 - Instead, we have to estimate P(class), P(features|class), and P(features) separately.

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

115 ina Raine Thin

		USING Dayes IMM
color	ripeness	$P(class features) = \frac{P(class) \cdot P(features class)}{P(features)}$
bright green	unripe	ripe greenblock
green-black	ripe	- Prince) Parenblack/rigo
purple-black	ripe	= P(ripe). P(green ibrack/ripe) P(gran-black)
green-black	unripe	= 3 3
purple-black	ripe	$\frac{11}{5} = \frac{11}{5} = \frac{3}{5}$
bright green	unripe	
green-black	ripe	Drumingly and lich-Drumon Dranger I land
purple-black	ripe	P(unripelgreen-black) = P(unripe). P(green-black/noripe
green-black	ripe	P (green-black)
green-black	unripe	= 4,2 7 -
purple-black	ripe	丁女-年起

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	unripe	
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

 $P(class|features) = \frac{P(class) \cdot P(features|class)}{P(features)}$

purple-black

ripe

You have a green-black avocado, and want to know if it is ripe. Based on this data. would you predict that your avocado is

. n
to"
res)
the
e is
lripe
1 775
-k/unri

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate *P*(ripe|features) and *P*(unripe|features) and choose the class with the **larger** probability.

P(ripe|firm, green-black, Zutano)P(unripe|firm, green-black, Zutano)

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Issue: We have not seen a firm green-black Zutano avocado before.

This means that *P*(ripe|firm, green-black, Zutano) and *P*(unripe|firm, green-black, Zutano) are undefined.

A simplifying assumption

- We want to find P(ripe|firm, green-black, Zutano), but there are no firm green-black Zutano avocados in our dataset.
- Bayes' theorem tells us this probability is equal to

```
P(\text{ripe}|\text{firm, green-black, Zutano}) = \frac{P(\text{ripe}) \cdot P(\text{firm, green-black, Zutano}|\text{ripe})}{P(\text{firm, green-black, Zutano})}
```

► **Key idea: Assume** that features are **conditionally independent** given a class (e.g. ripe).

P(firm, green-black, Zutano|ripe) = P(firm|ripe)-P(green-black|ripe)-P(Zutano|ripe)

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	(Timin)	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	riass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$P(\text{ripe}|\text{firm, green-black, Zutano}) = \frac{P(\text{ripe}) \cdot \frac{P(\text{firm, green-black, Zutano}|\text{ripe})}{P(\text{firm, green-black, Zutano})}$$

color	softness	variety	ripeness
bright green	(firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	(Zutano)	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	(firm)	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Conclusion

- The numerator of P(ripe|firm, green-black, Zutano) is $\left(\frac{6}{539}\right)$
- The numerator of P(unripe) firm, green-black, Zutano) is

 Both probabilities have the same denominator,

 P(firm, green-black, Zutano).
 - Since we're just interested in seeing which one is larger, we can ignore the denominator and compare numerators.
- Since the numerator for unripe is larger than the numerator for ripe, we <u>predict that our avocado is unripe</u>.

Naive Bayes

Naive Bayes classifier

- We want to predict a class, given certain features.
- Using Bayes' theorem, we write

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$
For each class, we compute the numerator using the naive

- For each class, we compute the numerator using the naive assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
- ► We predict the class with the largest numerator.
 - ► Works if we have multiple classes, too!

Dictionary

Definitions from Oxford Languages · Learn more

adjective

(of a person or action) showing a lack of experience, wisdom, or judgment. "the rather naive young man had been totally misled"

• (of a person) natural and <u>unaffected;</u> innocent. "Andy had a sweet, naive look when he smiled"

Similar: innocent unsophisticated artless ingenuous inexperienced

 of or denoting art produced in a straightforward style that deliberately <u>rejects</u> sophisticated artistic techniques and has a bold <u>directness resembling</u> a child's work, typically in bright colors with little or no perspective.

Example: avocados, again

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	(Hass)	ripe
green-black	medium	Hass	unripe
purple-black	(soft)	Hass	ripe
bright green	firm	Zutano	unripe
green-black	Soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
nurnia-black	medium	(Hass)	rine

new

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Uh oh...

- There are no soft unripe avocados in the data set.
- ► The estimate $P(\text{soft}|\text{unripe}) \approx \frac{\text{\# soft unripe avocados}}{\text{\# unripe avocados}}$ is 0.
- The estimated numerator, P(unripe) · P(soft, green-black, Hass|unripe) = P(unripe) · P(soft|unripe) · P(green-black|unripe) · P(Hass|unripe), is also 0.
- But just because there isn't a soft unripe avocado in the data set, doesn't mean that it's impossible for one to exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0.

Smoothing

Without smoothing:

▶ With smoothing:

P(soft|unripe)
$$\approx$$

soft unripe + 1

medium unripe + 1 # firm unripe + 1

P(medium|unripe) \approx

soft unripe + 1 + # medium unripe + 1 + # firm unripe + 1

P(firm|unripe) \approx

soft unripe + 1 + # medium unripe + 1 + # firm unripe + 1

soft unripe + 1 + # medium unripe + 1 + # firm unripe + 1

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Example: avocados, with smoothing

softness	variety	ripeness
firm	Zutano	unripe
medium	Hass	ripe
firm	Hass	ripe
medium	Hass	unripe
soft	Hass	ripe
firm	Zutano	unripe
soft	Zutano	ripe
soft	Hass	ripe
soft	Zutano	ripe
firm	Hass	unripe
medium	Hass	ripe
	firm medium firm medium soft firm soft firm soft firm soft firm	firm Zutano medium Hass firm Hass medium Hass soft Hass soft Zutano soft Zutano soft Zutano firm Hass

You have a soft green-black Hass avocado. Using Naive Bayes, **with smoothing**, would you predict that your avocado is ripe or unripe?

soft unripe P(soft|unripe) ≈ soft unripe + # medium unripe + # firm unripe # medium unripe P(medium|unripe) ≈ # soft unripe + # medium unripe + # firm unripe # firm unripe P(firm|unripe) ≈ # soft unripe + # medium unripe + # firm unripe With smoothing: # soft unripe + 1 # soft unripe + 1 + # medium unripe + 1+ # firm unripe + 1 # medium unripe + 1 P(medium|unripe) ≈ # soft unripe + 1 + # medium unripe + 1+ # firm unripe + # firm unripe + 1 P(firm|unripe) ≈ # soft unripe + 1 + # medium unripe + 1+ # firm unripe + When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Smoothing

Without smoothing:

Example: avocados, with smoothing

bright green unripe green-black medium Hass ripe purple-black firm Hass + ripe green-black medium Hass 🔹 unripe purple-black soft Hass * ripe Zutano unripe green-black soft Zutano ripe

purple-black soft Hass * ripe green-black . soft Zutano ripe green-black firm Hass • unripe nurple-black medium Hass ripe

You have a soft green-black Hass avocado. Using Naive Bayes, with smoothing, would you predict that your avocado is ripe or unripe?

P(ripe soft, gb, Hass) ~ R(ripe) P(soft, gb, Hass) ~ R(ripe) P(so

Summary

Summary

- In classification, our goal is to predict a discrete category, called a class, given some features.
- The Naive Bayes classifier works by estimating the numerator of *P*(class|features) for all possible classes.
- It uses Bayes' theorem:

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$

It also uses a simplifying assumption, that features are conditionally independent given a class:

$$P(\text{feature}_1|\text{class}) \cdot P(\text{feature}_2|\text{class}) \cdot \dots$$