Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-302339

(43)Date of publication of application: 02.11.1999

CENTRAL FAX CENTER OCT 0 9 2007

RECEIVED

C08F279/00

(21)Application number: 10-123873

(71)Applicant: TECHNO POLYMER KK

(22)Date of filing:

(72)Inventor: YAMAWAKI KAZUTADA

MURAKI HIROSHIGE MOTAI MASAAKI

(54) RUBBER-MODIFIED THERMOPLASTIC RESIN AND ITS COMPOSITION (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a rubber-modified thermoplastic resin with excellent impact resistance, weatherability, appearance after molded, chemical resistance, scratch resistance and slidability, by graft copolymerization of specified amount of vinyl monomer component(s) in the presence of a specific ethylene-a-olefin rubber and a hydrogenated conjugated diene-based rubbery polymer.

SOLUTION: This rubber-modified thermoplastic resin with a graft percentage of 10-100% and the intrinsic viscosity [n] of methyl ethyl ketone solubles of 0.2-0.8 dL/g, is obtained by graft polymerization of monomer component (s) selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds and other vinyl monomers copolymerizable therewith in the presence of (A) a rubbery polymer ≥70° C in melting point Tm composed of ethylene, a 3-20Cα-olefin and a non-conjugated diene in the weight ratio of (5-95):(95-5):(0-30) and (B) a 2nd rubbery polymer <70° C in melting point Tm or with no Tm, and (C) a hydrogenated conjugated diene-based rubbery polymer in the weight ratio A/B/C of (10-60):(0-30):(90-10).

LEGAL STATUS

[Date of request for examination]

28.02.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(1)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-302339

(43)公開日 平成11年(1999)11月2日

(51) Int.Cl.

COSF 279/00

識別配号

P I

COSF 279/00

審査請求 未請求 請求項の数6 FD (全 14 貝)

(21)出願部号 特局平10-123873 (71)出頭人 396021575 テクノポリマー株式会社 (22) 出願日 平成10年(1998) 4月20日 東京都中央区京橋一丁目18番1号 (72)発明者 山脇 一公 東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内 (72) 発明者 村木 博成 東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内 (72)発明者 馬波 政明 東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内 (74)代理人 弁理士 白井 埔隆

(54) 【発明の名称】 ゴム変性熱可塑性樹脂やよびその組成物

(57) 【要約】

【課題】 耐衝撃性、耐険性、成形外観、耐薬品性、耐 傷つき性および擂動性に優れたゴム変性熱可塑性樹脂お よびその組成物を提供すること。

【解決手段】エチレン/αーオレフィン/非共役ジエンからなる、融点が70℃以上のゴム質重合体(A)および融点が70℃未満またはTmの無いゴム質重合体(B)、ならびに水添共役ジエン系ゴム質重合体(C)の存在下に、ビニル系単震体をグラフト重合して得られ、かつ、特定のグラフト率および可溶分の固有粘度(n)を有するゴム変性熱可塑性樹脂、ならびにこの樹脂に特定の重合体を配合した組成物。

(2)

特朗平11-302339

【特許請求の範囲】

【請求項1】 エチレン/炭素数3~20のαーオレフィン/非共役ジエン=5~95/95~5/0~30蛋量%からなる、Tm (融点)が70℃以上のゴム質重合体(A)およびTm (融点)が70℃未満またはTmの無いゴム質重合体(B)ならびに水添共役ジエン系ゴム質重合体(C)(ただし、(A)/(B)/(C)=10~60/0~30/90~10蛋量%〕の存在下に、芳香族ビニル化合物、シアン化ビニル化合物、およびその他の共産合可能な他のビニル系単量体の群からででもり、で少なくとも1種の単量体成分をグラフト重合してそれ、かつ、グラフト率が10~100%であり、メチルエチルケトン可溶分の固有粘度〔n〕が0.2~0.8 d 1/g であることを特徴とするゴム変性熱可塑性樹脂。

【請求項2】 ゴム質重合体(A)が70℃以上のTm(融点)を有するエチレンーブテン共産合体またはエチレンーオクテン共産合体であり、ゴム質重合体(B)が20℃以上70℃未満のTmを有するエチレンープロピレンー(非共役ジエン)共重合体である請求項1記載のゴム変性熱可塑性樹脂。

【 翻求項3】 ゴム質蛋合体(A)が70℃以上のTm(融点)を有するエチレンーブテン共電合体またはエチレンーオクテン共電合体であり、ゴム質電合体(B)がTmが無いエチレンープロピレン(非共役ジエン)共配合体である請求項1記載のゴム変性熱可塑性樹脂。

【請求項4】 全光線透過率が30%以上である請求項1~3いずれか1項に配載のゴム変性熱可塑性樹脂。

【請求項5】 請求項1記載のゴム変性熱可塑性樹脂 (イ)10~99度量%ならびに下記(ロ)および/または(ハ)からなる重合体90~1重量%を主成分とする組成物であり、かつ、この組成物中のゴム質重合体(A)および(B)の合有量が3~45重量%であるゴム変性熱可塑性樹脂組成物。

(ロ) 汚香族ビニル化合物および/または (メタ) アクリル酸エステルからなるビニル系単型体 (a) 30~100重量%ならびにシアン化ビニル化合物 (b) 70~0重量%とを重合して得られる重合体。

(ハ) 芳香族ビニル化合物および/または (メタ) アクリル酸エステルからなるビニル系単遺体 (a) 50~9 7 重量%、シアン化ビニル化合物 (b) 0~4 7 重量% ならびにマレイミド系単量体 (c) 50~3 重量%を重合して得られる重合体 [ただし、(a) + (b) + (c) = 100 重量%)。

【請求項6】 全光線透過率が30%以上である騎求項5記賊のゴム変性熱可塑性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の屈する技術分野】本発明は、耐衝撃性、耐候 性、成形外観、耐薬品性、耐傷つき性および摺動性に優 れたゴム変性熱可塑性樹脂およびその組成物に関する。 【0002】

【従来の技術】主鎖に実質的に二重結合を持たないエチ レンーαーオレフィンをゴム成分として用いて、スチレ ン、アクリロニトリルなどをグラフト重合して得られる ゴム変性熱可塑性樹脂(AES樹脂)は、共役ジエン系 ゴムを用いたABS樹脂に比べ、紫外線、酸素およびオ ゾンに対する抵抗性が大きく、格段に耐候性が良いこと が知られている。そのため、AES樹脂などのゴム変性 熱可塑性樹脂は、自動車外装部品などとして使用されて いるが、耐薬品性が劣るため、ゴム量を低減するなどの 対策が必要で、その結果、強度の低下を招いている。さ らに、無塗装で使用されるため、良着色性や耐傷つき性 が要求されるが、一般的にゴム変性熱可塑性樹脂は均一 系に比べ着色性や傷つき性に劣り、使用部位や使用方法 に制限を受ける場合がある。 これらの欠点を克服し、附 街撃性、耐候性、成形外観、耐薬品性、耐傷つき性およ び摺動性に優れたゴム変性熱可塑性樹脂およびその組成 物が求められている。

[0003]

【発明が解決しようとする課題】本発明は、上記従来技術の課題を背景になされたもので、特定の物性を有する特定の1種または2種のエチレンーαーオレフィンゴムと水添共役ジエン系ゴム質重合体の存在下に特定量のビニル系単量体成分を更合した特定の物性を有するゴム変性熱可塑性樹脂および特定の重合体を有するその組成物を得ることにより、耐衝整性、耐候性、成形外観、耐露品性、耐傷つき性および摺動性に優れたゴム変性熱可塑性樹脂およびその組成物を提供するものである。

[0004]

【課題を解決するための手段】本発明は、エチレン/炭 集数3~20のαーオレフィン/非共役ジエン=5~9 5/95~5/0~30重量%からなる、Tm (融点) が70℃以上のゴム質重合体(A)およびTm(融点) が70℃未淘またはTmの無いゴム質重合体(B)なら びに水添共役ジエン系ゴム質重合体(C)(ただし、 (A) / (B) / (C) = $1.0 \sim 6.0 / 0 \sim 3.0 / 9.0$ ~10重盈%〕の存在下に、芳香族ビニル化合物、シア ン化ビニル化合物、およびその他の共重合可能な他のビ ニル系単震体の群から選ばれた少なくとも1種の単量体 成分をグラフト重合して得られ、かつ、グラフト率が1 0~100%であり、メチルエチルケトン可溶分の固有 粘度〔n〕が0.2~0.8d١/gであることを特徴 とするゴム変性熱可塑性樹脂を提供するものである。こ こで、上記ゴム変性熱可塑性樹脂としては、ゴム質量合 体(A)が70℃以上のTm(融点)を宵するエチレン - ブテン共団合体またはエテレン-オクテン共軍合体で あり、ゴム質重合体(B)が20℃以上70℃未満のT mを有するエチレンープロピレンー(非共役ジエン)共 **軍合体である上記記載のゴム変性熱可塑性樹脂であるこ**

とが好ましい。また、上記ゴム変性熱可塑性樹脂として は、ゴム質重合体(A)が70℃以上のTm(融点)を 有するエチレンープテン共軍合体またはエチレンーオク テン共重合体であり、ゴム質重合体(B)がTmが無い エチレンープロビレン(非共役ジエン)共重合体である 上記記載のゴム変性熱可塑性樹脂であるものも好まし い。次に、本発明は、上記ゴム変性熱可塑性樹脂(イ) 10~99 重量%ならびに下記(ロ)および/または (ハ) からなる重合体90~1重量%を主成分とする組 成物であり、かつ、この組成物中のゴム質量合体(A)・

および(B)の含有量が3~45重量%であるゴム変性 熱可塑性樹脂組成物を提供するものである。

(ロ) 芳香族ピニル化合物および/または (メタ) アク リル酸エステルからなるビニル系単量体 (a) 30~1 0 0 重量%ならびにシアン化ビニル化合物 (b) 7 0~ 0 重量%とを重合して得られる重合体。

(ハ) 芳香族ビニル化合物および/または(メタ)アク リル酸エステルからなるビニル系単量体 (a) 50~9 7 重量%、シアン化ビニル化合物(b)0~47 重量% ならびにマレイミド系単量体(c) 50~3重量%を重 合して得られる重合体 (ただし、(a) + (b) +

(c)=100重量%)。また、上記ゴム変性熱可塑性 樹脂およびその組成物としては、全光線透過率が30% 以上であることが好ましい。

[0005]

【発明の実施の形態】本発明に使用されるゴム質重合体 は、異なるTm(融点)を有する2種のゴム質重合体と 水添共役ジエン系ゴム質重合体とを併用する。これによ り、耐衝撃強圧と着色性のバランスに優れ、さらに耐傷 つき性、摺動性が良好なゴム変性熱可塑性樹脂を得るこ とができる。ここで、上記2種のゴム質量合体として は、エチレン/炭素数3~20のα-オレフィン/非共 役ジエン=5~95/95~5/0~30重量%からな るゴム質重合体であり、Tm (融点) が70℃以上のゴ ム質量合体(A)、およびTm(融点)が70℃未満ま たはTmの無いゴム質量合体(B)である。ここで、T mの無いゴム質重合体(B)は、DSC(示差走査熱量 計)を用い、1分間に20℃の一定昇温速度で吸熱変化 を測定し、得られた吸熱パターンのピーク温度を読み取 った値である。また、「Tm(融点)が無い」とは、D SCの測定において、吸熱変化のピークを示さず、実質 的にゴム質重合体に結晶性がないことを意味する。

【0006】上記ゴム質重合体を構成する炭素数3~2 0のα-オレフィン(以下「α-オレフィン」という) としては、具体的には、プロピレン、1-プテン、1-ペンテン、1 - ヘキセン、4 - メチル - 1 - ペンテン、 1-ヘプテン、1-オクテン、1-デセン、1-ドデセ ン、1-ヘキサデセン、1-エイコセンなどが挙げられ る。これらのαーオレフィンは、単独でまたは2種以上 を混合して使用することができる。αーオレフィンの炭

素数は3~20であるが、好ましくは3~16、さらに 好ましくは6~12である。炭素数が20を超えると、 共重合性が極端に低下するため、樹脂の表面外観を著し く悪化させる。エチレン/αーオレフィンの軍量比は、 5~95/95~5であり、好ましくは50~90/5 0~10、さらに好ましくは60~88/40~12、 特に好ましくは70~85/30~15である。α-オ レフィンの重量比が95を超えると、耐候性が劣るので 好ましくない。一方、5未満であるとゴム質量合体のゴ ム弾性が充分でないために、充分な耐衝撃性が発現しな

【0007】非共役ジエンとしては、アルケニルノルボ ルネン類、環状ジエン類、脂肪族ジエン類が挙げられ、 好ましくは5-エチリデン-2-ノルボルネンおよびジ シクロペンタジエンである。これらの非共役ジエンは、 単独でまたは2種以上を混合して使用することができ る。非共役ジエンの、ゴム質重合体全量に対する割合 は、0~30重量%、好ましくは0~20重量%、さら に好ましくは0~10重量%である。非共役ジエンの割 合が30重量%を超えると、成形外観および耐候性が悪 くなり好ましくない。なお、本発明のゴム質量合体 (A)~(B)における不飽和基量は、ヨウ素価に換算 して4~40の範囲が好ましい。

【0008】本発明のゴム質重合体(A)は、70℃以 上のTm(融点)を有するエチレンーαーオレフィンー (非共役ジエン) 系ゴムであり、例えば、Tmが70℃ 以上で結晶性を有するエチレン-プロピレンゴム、エチ レンープテンゴム、エチレンーヘキセンゴム、エチレン ーオクテンゴム、エチレンーデセンゴムなどが挙げら れ、好ましくはエチレンープテンゴム、エチレンーオク テンゴムである。

【0009】本発明のゴム質軍合体(B)は、Tm(融 点)が70℃未満または実質的にTmを有しないエチレ ンーαーオレフィンー(非共役ジエン)系ゴムであり、 例えば、エチレンープロピレンゴム、エチレンープテン ゴム、エチレンーヘキセンゴム、エチレンーオクテンゴ ム、エチレンーデセンゴムなどであって、Tmが70℃ 未満、好ましくは40℃以下、さらに好ましくはTmを 実質的に有しないものが使用できる。好ましくは、エチ レンープロビレジゴム、エチレンープテンゴムである。

【0010】本発明の水添共役ジェン系ゴム質量合体

(C)は、下記の構造を有する共役ジェンブロック共重 合体の水桑添加物が好ましい。すなわち、芳香族ビニル 化合物単位からなる重合体プロックA、1.2~ビニル **結合含量が25モル%を超える共役ジエン系化合物単位** からなる重合体ブロックの二重結合部分を95モル%以 上水素添加して得られる重合体プロックB、1,2-ビ ニル結合含量が25モル%以下の共役ジエン系化合物単 位からなる国合体ブロックの二重結合部分を95モル% 以上水素添加して得られる重合体プロックで、および芳 香族ビニル化合物と共役ジエン系化合物の共軍合体を95モル%以上水築添加して得られる重合体ブロックDのうち、2種以上を組み合わせたものからなるブロック共軍合体である。

[0011]上記重合体プロックAの製造に用いられる 芳香族ピニル化合物としては、ステレン、αーメチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、pーtーブチルスチレン、エチルスチレン、ビニルナフタレンなどが挙げられ、これらは、1種単独で使用することも、あるいは2種以上を混合して用いることもできる。中でも好ましいものは、スチレンである。ブロック共重合体中の0~65 知識%が好ましく、さらに好ましくは10~40重量%である。重合体ブロックAが65 重量%を超えると、対衝撃強度が劣り好ましくない。

【0012】上記室合体ブロックB、CおよびDは、共役ジエン系化合物の軍合体の水森添加部分からなる。上記電合体ブロックB、CおよびDの製造に用いられる共役ジエン系化合物としては、1、3ープタジエン、イソプレン、1、3ーペンタジエン、クロロプレンなどが挙げられるが、工業的に利用でき、物性の優れた水添ジエン系が対象とは、1、3ープタジエン、イソプレンが好ましい。上記軍合体ブロックDの製造に用いられる芳香族ビニル化合物としては、上記軍合体ブロックAの製造に用いられる芳香族ビニル化合物としては、上記軍合体ブロックAの製造に用いられる芳香族ビニル化合物としては、上記軍合体ブロックAの製造に用いられる芳香族ビニル化合物としては、上記軍合体ブロックAの製造に用いられる芳香族ビニル化合物としては、上記軍合体ブロックAの製造に用いられる芳香族ビニル化合物と同様のものが挙げられ、これらは、1種単独で使用することもできる。中でも好ましいものは、ステレンである。

【0013】上記集合体ブロックB、CおよびDの水素 添加率は、95モル%以上であり、好ましくは96モル %以上である。95モル%未満であると、重合中にゲル の発生を招き、安定に重合できず好ましくない。 軍合体 ブロックBの1,2-ビニル結合含量は、25モル%を 超え90モル%以下が好ましく、30~80モル%がさ らに好ましい。25モル%以下であると、ゴム的性質が 失われ耐衝撃性の低下を招き好ましくなく、一方、90 モル%を超えると、耐薬品性が発現されず好ましくな い。また、里合体プロックCの1、2-ビニル結合含量 は、25%モル以下が好ましく、20モル%以下がさら に好ましい。25モル%を超えると、耐傷つき性および 摺動性が発現されず好ましくない。重合体ブロックDの 1, 2-ビニル結合含量は、25~90モル%が好まし く、30~80モル%がさらに好ましい。25モル%来 **満であると、ゴム的性質が失われ耐衝撃性の低下を招き** 好ましくなく、一方、90モル%を超えると、耐薬品性 が発現されず好ましくない。また、重合体ブロックDの 芳香族ビニル化合物含量は、25重量%以下が好まし く、20重量%以下がさらに好ましい。25重量%を超っ えると、ゴム的性質が失われ耐衝撃性の低下を招き好ま しくない。

【0014】上記ブロック共重合体の分子構造は、分岐状、放射状あるいはこれらの組み合わせでもよく、さらにブロック構造としては、ジブロック、トリブロック、もしくはマルチブロック、またはこれらの組み合わせでもよい。例えば、A-(B-A)n、(A-B)n、A-(B-C)n、C-(B-C)n、(B-C)n、C-(D-A)n、(A-D)n、A-(D-C)n、C-(D-C)n、(D-C)n、C-(D-C)n、(D-C)n、(C-C)n、(B-C-D)n、(A-B-C-D)n、(ただし、n=1以上の整数)で表されるブロック共重合体であり、好ましくは、A-B-A、A-B-A-B、A-B-C、A-D-C、C-B-Cの構造を有するブロック共重合体である。

【0015】ゴム質単合体(A)、(B) および(C)の重量平均分子量(Mw)は、それぞれ、6万~30万が好ましく、さらに好ましくは7万~25万である。6万未満では、耐衝撃性が発現せず、一方、30万を超える高分子量のものでは相溶性が低下し、衝撃強度と成形外観が悪くなり、好ましくない。

【0016】本発明で用いるゴム質蛋合体の組み合わせとしては、下記①、②および/または③が好ましい。 ①ゴム質理合体(A);70℃以上のTm(融点)を有するエチレンーブテン共軍合体またはエチレンーオクテン共軍合体/水承共役ジエン系ゴム質重合体(C)この組み合わせの場合、透明性、着色性、耐傷つき性および潜動性のバランスに優れる。

ゆゴム質重合体(A):70℃以上のTm(融点)を有するエチレンープテン共重合体またはエチレンーオクテン共重合体(B):20℃以上70℃未満のTm(融点)を有するエチレンープロピレンー(非共役ジエン)共重合体/水派共役ジエン系ゴム質重合体(C)

この組み合わせの場合、耐緊品性、着色性、耐傷つき性 および摺動性のパランスに優れる。

⑤ゴム質重合体(A);70℃以上のTm(融点)を有するエチレンープテン共重合体またはエチレンーオクテン共重合体/ゴム質重合体(B);Tm(融点)が無いエチレンープロピレンー(非共役ジエン)共重合体/水深共役ジエン系ゴム質重合体(C)

この組み合わせの場合、耐衝撃性および摺動性のバランスに優れる。

【0017】本発明の効果を発現するためには、使用するゴム質重合体(A)、(B)および(C)自体が相溶化し易いゴム構造に加え、グラフト重合する際に、均一にグラフト反応が進むような有機過酸化物や溶媒の選択をすること、ゴム質重合体(A)、(B)および(C)を均一溶液に溶解させて重合を開始したり、予め溶融混練りしたものを溶液に溶解し、溶液重合または塊状重合

(5)

することや、再乳化したものを乳化重合または懸濁量合 することなど、重合方法を工夫することで、目的の効果 を得ることができる。

【0018】本発明のグラフト重合に用いられる単電体成分は、芳香族ビニル化合物、シアン化ビニル化合物、およびその他の共電合可能な他のビニル系単量体の群から選ばれた少なくとも1種である。このうち、芳香族ビニル化合物としては、上記共役ジエンブロック共更合体ブロックAの製造に用いられる芳香族ビニル化合物と同様のものが挙げられ、これらは、1種単独でも、1種単独を開することも、あるいは2種以上を混合して用いることをいました合物中にスチレンを50厘量%以上含むものである。芳香族ビニル化合物の使用量は、単量体成分中に、好ましくは10~80厘量%、さらに好ましくは20~70重量%である。10重量%未満では、樹脂の熱安定性が低下し好ましくない。

【0019】また、シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリルなどが挙げられ、好ましくはアクリロニトリルである。シアン化ビニル化合物の使用量は、単量体成分中に、好ましくは5~50 質量%、さらに好ましくは10~35 重量%である。5 重量%未満では耐薬品性が低下し、一方、50 重量%を超えると、成形外貌が低下し、また色調や光沢が悪化する。

【0020】さらに、上記単量体成分のうち、その他の 共軍合可能なビニル系単量体としては、メチルアクリレ ート、エチルアクリレート、プロピルアクリレート、ブ チルアクリレート、アミルアクリレート、ヘキシルアク リレート、オクチルアクリレート、2-エチルヘキシル アクリレート、シクロヘキシルアクリレート、フェニル アクリレートなどのアクリル酸アルキルエステルや、メ チルメタクリレート、エチルメタクリレート、プロビル メタクリレート、ブチルメタクリレート、アミルメタク リレート、ヘキシルメタクリレート、オクチルメタクリ レート、2-エチルヘキシルメタクリレート、シクロヘ キシルメタクリレート、ドデシルメタクリレート、オク *タデ*シルメタクリレート、フェニルメタクリレート、ベ ンジルメタクリレートなどのメタクリル酸アルキルエス テル;無水マレイン酸、無水イタコン酸などの不飽和酸 無水物;アクリル酸、メタクリル酸などの不飽和酸;マ レイミド、Nーメチルマレイミド、Nープチルマレイミ ド、N-フェニルマレイミド、N-シクロヘキシルマレ イミドなどのα、β-不飽和ジカルボン酸のイミド化合 物などが挙げられ、好ましくはメチルメタクリレート、 N-フェニルマレイミドおよびN-シクロヘキシルマレ イミドが挙げられる。これらのその他の共軍合可能なビ 二ル系単盘体は、1種単独で使用するか、あるいは2種 以上を混合して使用できる。その他の共宝合可能なビニ

ル系単量体の使用量は、本発明の効果を損なわない程度 の量であり、単量体成分中に0~95重量%、好ましく は5~95重量%、さらに好ましくは15~90重量% である。

【0021】上記ゴム質軍合体と単量体成分の使用割合は、ゴム質量合体(A)、(B)および(C)の合計の使用盤が好ましくは5~40重量%、さらに好ましくは10~35重量%である。5重量%未満では、耐衝撃性が発現せず、一方、40重量%を超えると、表面光沢が低下し、好ましくない。また、ゴム質量合体(A)、

(B) および(C)の使用比率は、(A) / (B) / (C) = 60~10/0~30/10~90重量%であり、好ましくは50~20/0~20/20~80重量%である。ゴム質量合体(A)の使用割合が10重量%未満では、耐薬品性、耐傷つき性および摂動性が劣り、一方、60重量%を超えると成形外観が劣る。また、ゴム質重合体(B)が30重量%を超えると、耐薬品性、耐傷つき性および摺動性に劣る。ゴム質重合体(C)が10重量%未満では、耐衝撃性、着色性および成形外観に劣り、一方、90重量%を超えると耐薬品性、耐傷つき性および摂動性が劣る。

【0022】本発明のゴム変性熱可塑性樹脂のグラフト率は、10~100%、好ましくは20~80%、さらに好ましくは30~60%である。グラフト率が10%未満では、耐衝盤性強度が低く、一方、100%を臨えると、耐衝撃性と成形外観のバランスが悪くなり好ましくない。グラフト率は、重合開始剤の種類・量、理合温度、さらには単量体成分の濃度などによって調整することができる。

【0023】また、本発明のゴム変性熱可塑性樹脂のマトリックス成分であるメテルエチルケトン可溶分の固有粘度〔n〕(30℃、メチルエチルケトン中で測定)は、0.2~0.8dl/g、好ましくは0.25~0.7dl/g、さらに好ましくは0.3~0.5dl/gである。この固有粘度〔n〕が0.2dl/g未満であると、耐衝撃強度が低くなり、一方、0.8dl/gを超えると、光沢低下やフローマークの発生を招き好ましくない。上記固有粘度〔n〕は、重合開始剤、連鎖移動剤、乳化剤、溶剤などの種類や農、さらに重合時間、重合温度などを変えることにより、容易に制御することができる。

【0024】本発明のゴム変性熱可塑性樹脂は、特定のゴム質重合体(A)、(B) および(C) の存在下に、上記単量体成分を乳化重合、懸濁重合、溶液重合、塊状重合などでラジカルグラフト重合を行い、製造することができる。好ましくは乳化重合、溶液重合である。なお、上記ラジカルグラフト重合には、通常使用されている重合溶媒(溶液重合の場合)、重合開始剤、連鎖移動剤、乳化剤(乳化重合の場合)などを用いられる。また、ゴム変性熱可塑性樹脂を製造するのに用いるゴム質

重合体および単量体成分は、ゴム質重合体全量の存在下 に、単量体成分を一括添加して重合してもよく、分割も しくは連続添加して重合してもよい。また、これらを組 み合わせた方法で、重合してもよい。さらに、ゴム質重 合体の全量または一部を、重合途中で添加して重合して もよい。

【0025】溶液理合法では、溶剤が用いられる。この溶剤は、適常のラジカル理合で使用される不活性重合溶剤であり、例えばエチルベンゼン、トルエンなどの芳香族炭化水素、メチルエチルケトン、アセトンなどのケトン類、ジクロロメチレン、四塩化炭素などのハロゲン化炭化水素などが用いられる。溶剤の使用量は、上記ゴム質理合体および単量体成分の合計量100重量部に対し、好ましくは20~200重量部、さらに好ましくは50~150熏量部である。

【0026】上記單合開始剤は、重合法に合った一般的な開始剤が用いられる。溶液單合に際しては、例えばケトンパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、バーオキシエステル、ハイドロパーオキサイドなどの有機過酸化物が重合開始剤として用いられる。また、重合開始剤は、重合系に、一括または連続的に添加することができる。重合開始剤の使用量は、単量体成分に対し、通常、0.05~2重量%、好ましくは0.2~0.8 質量%である。

【0027】また、乳化量合に際しては、重合開始剤と して、クメンハイドロバーオキサイド、ジイソプロピル ベンゼンハイドロパーオキサイド、パラメンタンハイド ロバーオキサイドなどで代表される有機ハイドロバーオ キサイド類と含糖ピロリン酸処方、スルホキシレート処 方などで代表される選元剤との組み合わせによるレドッ クス系、あるいは過硫酸塩、アゾビスイソブチロニトリ ル、ベンゾイルパーオキサイドなどの過酸化物が使用さ れる。好ましくは、油溶性開始剤であり、クメンハイド ロパーオキサイド、ジイソプロビルベンゼンハイドロバ ーオキサイド、パラメンタンハイドロパーオキサイドな どで代表される有機ハイドロパーオキサイド類と含糖ビ ロリン酸処方、スルホキシレート処方などで代表される **還元剤との組み合わせによるレドックス系がよい。ま** た、上記油溶性開始剤と水溶性開始剤とを組み合わせて もよい。組み合わせる場合の水溶性開始剤の添加比率 は、全添加量の好ましくは50重量%以下、さらに好ま しくは25重量%以下である。さらに、重合開始剤は、 重合系に一括または連続的に添加することができる。重 合開始剤の使用量は、単量体成分に対し、通常、0.1 ~1.5重星%、好ましくは0.2~0.7重量%であ

【0028】また、連鎖移動剤としては、オクチルメルカプタン、nードデシルメルカプタン、tードデシルメルカプタン、nーヘキサデシルメルカプタン、nーテトラデシルメルカプタン、tーテトラデシルメルカプタン

などのメルカブタン類、テトラエチルチウラムスルフィド、四塩化炭素、臭化エチレンおよびペンタフェニルエタンなどの炭化水素類、またはアクロレイン、メタクロレイン、アリルアルコール、2ーエチルへキシルチオグリコレート、αーメチルスチレンのダイマーなどが挙げられる。これらの連鎖移動剤は、単独でまたは2種以上を組み合わせて使用することができる。連鎖移動剤の使用方法は、一括添加、分割添加、または連続添加のいずれの方法でも差し支えない。連鎖移動剤の使用量は、単量体成分に対し、通常、2.0重量%以下程度である。

【0029】乳化剤を使用する場合は、アニオン性界面 活性剤、ノニオン性界面活性剤、両性界面活性剤が挙げ られる。このうち、アニオン性界面活性剤としては、例 えば高級アルコールの硫酸エステル、アルキルベンゼン スルホン酸塩、脂肪酸スルホン酸塩、リン酸系塩、脂肪 酸塩などが挙げられる。また、ノニオン性界面活性剤と しては、通常のポリエチレングリコールのアルキルエス テル型、アルキルエーテル型、アルキルフェニルエーテ ル型などが用いられる。さらに、両性界面活性剤として は、アニオン部分としてカルボン酸塩、硫酸エステル 塩、スルホン酸塩、リン酸エステル塩を、カチオン部分 としてアミン塩、第4級アンモニウム塩などを持つもの が挙げられる。乳化剤の使用量は、単量体成分に対し、 通常、0.3~5.0重量%程度である。なお、グラフ ト室合の際の重合温度は、10~160℃、好ましくは 30~120℃である。

【0030】次に、本発明のゴム変性熱可塑性樹脂組成物は、上記ゴム変性熱可塑性樹脂(イ)と、下記の重合体(ロ)および/または(ハ)を主成分とする。

(ロ) 芳香族ビニル化合物および/または(メタ) アクリル酸エステルからなるビニル系単量体(a) 30~100重量%ならびにシアン化ビニル化合物(b) 70~0重量%とを軍合して得られる重合体。

(ハ) 芳香族ビニル化合物および/または (メタ) アクリル酸エステルからなるビニル系単量体 (a) 50~97重量%、シアン化ビニル化合物 (b) 0~47重量%ならびにマレイミド系単量体 (c) 50~3重量%を重合して得られる重合体(ただし、(a) + (b) + (c) =100重量%]。

【0031】上記重合体(ロ)および(ハ)に使用される芳香族ビニル化合物、(メタ)アクリル酸エステル、シアン化ビニル化合物は、上記ゴム変性熱可塑性樹脂のグラフト重合に使用される単彙体成分と同様のものが使用できる。好ましい芳香族ビニル化合物は、スチレン、αーメチルスチレン、好ましい(メタ)アクリル酸エステルは、メチルメタクリレート、好ましいシアン化ビニル化合物は、アクリロニトリルである。また、上記重合体(ハ)に使用されるマレイミド系単量体としては、マレイミド、Nーメチルマレイミド、Nーブチルマレイミド、Nー(pーメチルフェニル)マレイミド、Nーフェ

二ルマレイミド、N-シクロヘキシルマレイミドなどの α 、 β - 不飽和ジカルボン酸のイミド化合物などが挙げられ、好ましくはN-シクロヘキシルマレイミドである。また無水マレイン酸などを共軍合させ、それをイミド化する方法でもよい。

【0032】上記重合体(ロ)の芳香族ビニル化合物お よび/または(メタ)アクリル酸エステルからなるビニ ル系単量体(a)の使用量は30~100重量%、好ま しくは30~95重量%であり、シアン化ビニル化合物 (b) の使用量は70~0重量%、好ましくは70~5 重量%である。ビニル系単量体 (a) の使用量が30重 量%未満では、成形性、耐衝撃強度が低下する。また、 上記重合体(ハ)の芳香族ビニル化合物および/または (メタ) アクリル酸エステルからなるピニル系半層体 (a) の使用登は50~97重量%、好ましくは55~ 95 里量%であり、シアン化ビニル化合物 (b) の使用 登は0~47重量%、好ましくは2~40重量%であ り、マレイミド系単壁体 (c) の使用量は50~3厘量 %、好ましくは5~45里量%である。ビニル系単量体 (a)の使用量が50重量%未満では、耐衝撃強度が低 下し、一方、97重量%を超えると、耐薬品性、耐衝撃 強度が低下する。ビニル系単量体(b)の使用量が47 **量量%を超えると、成形外観や色調が低下する。ビニル** 系単量体(c)の使用量が3重量%未満では、耐熱性が 発現せず、一方、50重量%を超えると、耐衝撃強度が 低下する。

【0033】ゴム変性熱可塑性樹脂組成物中の、上記ゴム変性熱可塑性樹脂(イ)ならびに(口)および/または(ハ)の重合体の使用剤合〔(イ):(口)および/または(ハ)〕は、好ましくは10~99:9~10重量%、さらに好ましくは30~95:70~5重量%である。ゴム変性熱可塑性樹脂(イ)の使用剤合が10重量%未満では耐衝撃強度や摺動性が低下し、一方、99重量%を超えると着色性、透明性や耐熱性が劣る。

【0034】本発明の上記ゴム変性熱可塑性樹脂およびその組成物の全光線透過率は、30%以上であり、好ましくは40%以上である。全光線透過率が30%未満であると、碧色性が低下し、ウエルド外観も悪くなるので、好ましくない。

【0035】本発明のゴム変性熱可塑性樹脂およびその相成物は、目的に応じて、上記以外の下記の他の筆合体をブレンドすることができる。すなわち、他の蛋合体としては、例えばエチレン、プロピレン、プテンー1、3ーメチルベンテンー1、3ーメチルベンテンー1、4ーメチルベンテンー1などのαーオレフィンの単独重合体や、これらの共軍合体などが挙げられる。代表例としては、高密度、中密度、低密度ポリエチレンや直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレンー酢酸ビニル共重合体、エチレンーアクリル酸エチル共重合体などのポリエチレン類、プロピレン単独重合体、ブ

ロピレン-エチレン-ジエン系化合物共重合体などのポリプロピレン類、ポリプテン-1、ポリ-4-メチルペンテン-1などが挙げられる。これらの中で、結晶性ポリエチレン、結晶性ポリプロピレンが好ましい。

【0036】上記結晶性ポリエチレンとしては、市販の 結晶性を有する高密度ポリエチレン、中密度ポリエチレ ン、低密度ポリエチレンや、直鎖状低密度ポリエチレン を使用することができる。ボリエチレンの分子量は、特 に限定されないが、数平均分子量が1,000~20, 000のものが好ましい。また、結晶性ポリプロピレン としては、例えば結晶性を有するアイソタクチックプロ ピレン単独電合体や、エチレン単位の含量が少ないエチ レンープロピレン共重合体からなる共重合部とから構成 された、いわゆるプロピレンプロック共重合体として市 販されている、実質上、結晶性のプロピレンとエチレン とのブロック共軍合体、あるいはこのブロック共軍合体 における各ホモ重合部または共重合部が、さらにブテン - 1 などのα-オレフィンを共運合したものからなる、 実質上、結晶性のプロピレンーエチレンーαーオレフィ ン共重合体などが好ましく挙げられる。

【0037】また、上記他の軍合体としては、本発明の ゴム変性熱可塑性樹脂以外のゴム変性されたスチレン系 樹脂が挙げられる。このゴム変性スチレン系樹脂として は、例えばハイインパクトポリスチレン、ABS樹脂、 AES樹脂、ACS樹脂、アクリルゴム強化AS樹脂な どが挙げられる。これらの樹脂を、少量の官能基で変性 した官能基変性ステレン系樹脂であってもよい。 これら の中で、好ましくはABS樹脂、AES樹脂、アクリル ゴム強化AS樹脂である。さらに、上記他の重合体とし ては、ポリ塩化ビニル、ポリフェニレンエーテル、ポリ カーポネート、ポリエチレンテレフタレート、ポリブチ レンテレフタレート、ポリアセタール、ポリアミド、ポ リフッ化ビニリデン、ボリスチレン、スチレンーメタク リル酸メチル共運合体、スチレン-無水マレイン酸共重 合体、塩素化ポリエテレンなどが挙げられる。これらの 他の重合体は、1種単独で使用することも、あるいは2 種以上を混合して用いることもできる。

【0038】なお、本発明のゴム変性熱可塑性樹脂およびその組成物に対し、ヒンダードフェノール系、リン系、イオウ系などの酸化防止剤や、光安定剤、紫外線吸収剤、滑剤、着色剤、離燃剤、増強剤など、通常使用される添加剤を配合することができる。

【0039】本発明のゴム変性熱可塑性樹脂およびその組成物に、上記他の重合体や添加剤を配合するには、各種押し出し機、バンバリーミキサー、ニーダー、ロール、フィーダールーダーなどを用い、各成分を混練りすることにより得られる。好ましい製造方法は、押し出し機、バンバリーミキサーを用いる方法である。各成分を混練りするに際しては、各成分を一括して混練りしてもよく、数回に分けて添加混練りしてもよい。混練りは、

押し出し機で多段添加式で混練りしてもよく、またパン パリーミキサー、ニーダーなどで混練りし、その後、押 し出し機でペレット化することもできる。

【0040】このようにして得られる本発明のゴム変性 熱可塑性樹脂およびその組成物は、射出成形、シート押 し出し、真空成形、異形成形、発泡成形、インジェクションプレス、プレス成形、プロー成形などによって、各 種成形品に成形することができる。本発明のゴム変性熱 可塑性樹脂およびその組成物は、耐衝繁性、耐候性、成 形外観、耐薬品性、耐傷つき性および摺動性に優れており、これらの特性を生かして、OA・家電分野、電気・ 電子分野、雑貨分野、サニタリー分野、自動車分野など の各種パーツ、ハウジング、シャーシ、トレーなどに使 用することができる。

[0041]

【実施例】以下、実施例を挙げ本発明をさらに具体的に 説明するが、本発明はその要旨を越えない限り、以下の 実施例に何等制約されるものではない。なお、実施例 中、部および%は特に断らない限り重量基準である。また、実施例中の各種評価は、次のようにして測定したも のである。

【0042】エチレン含量エチレンーαーオレフィン系 共勇合体を、「H-NMR、13C-NMRを用いて、エ チレン/αーオレフィン組成比を求め、これとあらかじ め求めておいた赤外分析の結果との関係を示す検量線を 作製した。この検量線を基に、得られる共量合体の組成 を求めた。

融点(Tm)

デュボン社製、DSC(示差走査熟量計)測定法によって測定した。

重量平均分子量(Mw)(分子量)

ウォーターズ(WATERS)社製、150C型ゲルパーミエーションクロマトグラフィー(GPC)装置で、 取ソー(株)製、Hタイプカラムを用い、oージクロロベンゼンを溶媒として、120℃で測定した。得られた分子量は、標準ポリスチレン換算値である。

【0043】水添率

四塩化エチレンを溶媒として用い、15%濃度で測定した。100MHzの ¹H-NMRスペクトルの不飽和結合部のスペクトル減少から算出した。

スチレン (ブロック) 合豊

13C-NMRを用いて、ST (スチレンブロック) とEB (ブタジエン部分が水添されたエチレン-ブチレンブロック) の組成比率から求めた。

【0044】グラフト率

グラフト共軍合体(ゴム変性熱可塑性樹脂)の一定量 (x)をアセトン中に投入し、振とう機で2時間振とう し、遊離の共軍合体を溶解させる。遠心分離器を用い て、この溶液を15.000rpmで30分間、遠心分 離し、不溶分を得る。次に、真空乾燥により、120℃ で1時間乾燥し、不溶分 (y) を得る。グラフト率は、 次式より算出した。

グラフト率(%) = { [(y) - (x) ×グラフト共重 合体のゴム分率] / [(x) ×グラフト共集合体のゴム 分率] $\}$ × 1 0 0

固有粘度〔ヵ〕

ゴム変性熱可塑性樹脂のマトリックス成分であるメチル エチルケトン(MEK)可溶分を、MEK中30℃で測 定した。

【0045】<u>アイソット衝撃強度</u>

ASTM D256に準拠して測定した(断面1/4× 1/2インチ、ノッチ付き)。

落錘衝擊強度

デュポンインパクトテスターを用い、打撃棒先端R=1/2"で、厚み1.6mmの成形品の溶鍵衝撃強度を測定した。

【0046】 耐候性

試験片を、カーボンアークを光源とするサンシャインウェザーメーター【スガ試験機(株)製、WELー6XSーDC】に1、000時間曝露し、上記アイゾット衝撃強度を測定し、曝鬱前のものと比較して保持率を算出した。

試験条件;

ブラックパネル温度 63±3℃ 檜内湿度 60±5%RH 降雨サイクル 2時間毎に18分

カーボン交換サイクル 6 0 時間 【 0 0 4 7 】成形外観 (着色性)

グラフト共重合体(ゴム変性熱可塑性樹脂)またはその 組成物を下記配合処方で配合し、押し出し機を通して着 色ペレットを得た。これをさらに成形して、色調評価プ レートを得た。なお、黒色配合物の着色性については、 色差計により明度を測定し、マンセル色数値(値が大き いほど、着色性が悪い)で表した。他の着色配合につい ては、彩度を自視で判定した。

黑色配合;

樹脂またはその組成物100部カーボンブラック0.5部ステアリン醛カルシウム0.3部

赤色配合;

 樹脂またはその組成物
 100部

 ベンガラ
 1.0部

ステアリン酸カルシウム 0.3部

判定基準;

◎: 非常に鮮明である。

○;鮮明である。

△;○と×の問

×;鮮明さが不足

××;鮮明さがない。

[0048] フローマーク

型締め圧力120トンの射出成形機を用い、肉原2.5 mm、縦横の長さがそれぞれ150×150 mmの平板を成形し(成形温度210 $^{\circ}$)、フローマークの発生状況を目視で判定した。

〇;フローマークの発生が全く無い。

×;フローマークの発生がある。

表面光沢

ASTM D523 (450) の方法に準拠して測定した。

【0049】<u>耐薬品</u>性

黒色配合ペレット(配合樹脂またはその組成物100部、カーボンブラック0.5部、ステアリン酸カルシウム0.3部)による成形品を、JIS 6号灯油(灯油温度80℃)に浸置し、1時間放置後、表面を拭き取り、乾燥させたのち、以下の目視判定で評価した。

〇;変化および光沢低下が全く無い。

×;白化、光沢低下などの劣化が見られる。

耐傷つき性

成形品表面をガーゼで強く拭き、表面の傷つき程度を自 税判定した。

○: 傷付きが無い。

△;○と×の間。

×; 傷が著しく付く。

【0050】摺動性

鈴木式摺動試験機を使用し、相手材としてはスチール (S45C)を用いた。試験片は、外径25.6mm、 内径20.0mmの中空円筒状のものを用い、相手材も 同様の形状のものを用いた。動摩操係数の測定条件は、 室温23℃、湿度50%の雰囲気下で荷重0.5kg、 走行速度50cm/秒、走行距離3kmで測定し、動摩 線係数および摩耗量を測定した。動摩線係数は、次式に よって算出した。

 $\mu = (3 \times F \times (r_2^2 - r_1^2)) / (P \times (r_2^3 - r_1^3))$

(式中、 μ は動摩撫係数、Fはロードセルに与える力、Pは荷重、Rはロードセルまでのアーム長、 r_1 は内

径、 r 2 は外径を表す。)

【0051】全光線透過率

着色剤を添加しないナチュラルペレットを用いて成形し、ASTM D1003に準拠して測定した。
【0052】参考例1 [ゴム質重合体(A) および(B) の調料]

実施例および比較例で用いられたゴム質蛋合体を、以下 のようにして調製した。

ゴム質重合体(A) -1;窒素置換した内容積20リットルのオートクレーブ中に、精製トルエン8リットル、精製トルエン40ミリリットル中に溶解したアルミニウム原子換算で60ミリモルのメチルアルミノキサンを加え、40℃に昇温した後、エチレンを3.5リットル/時間、1ープテンを1.5リットル/時間で連続的に供給した。次いで、精製トルエン12ミリリットル中に溶解したジシクロペンタジエニルジルコニウムジクロリド12マイクロモルを添加して蛋合を開始した。反応中は、温度を40℃に保ち、連続的にエチレン、プロピレンを供給しつつ、20分間反応させた。その後、メタノールを添加して、反応を停止させ、水蒸気部によりクラム状のゴム質重合体(A) -1を回収した。得られたゴム質重合体(A) -1の融点および重量平均分子量を表1に示す。

【0053】ゴム質重合体(A)-2:1-ブテンを1ーオクテンに変えた以外は、上記ゴム質重合体(A)-1と同様にして、ゴム質重合体(A)-2を得た。得られたゴム質重合体(A)-2の融点および重量平均分子量を表1に示す。

ゴム質重合体(B)-1~3;表1に示すα-オレフィン、非共役ジエンの種類、量を用い、触媒量を変えた以外は、上記ゴム質重合体(A)-1と同様にして、ゴム質重合体(B)-1~3を符た。得られたゴム質重合体(B)-1~3の融点および重量平均分子量を表1に示す。

【0054】

	A- 3	A-2	B-1	B-2	B-3
ゴム質重合体組成(部)		 			1
エチレン	84	90	80	78	56
プロピレン	-	-	_	22	39
1-プテン	16	-	20	_	-
1-オクテン	_	10	_	-	_
ジシクロペンタジエン	_	_	-	_	5
ゴム質重合体肝価		ŀ			
Tm (除点) (°C)	85	111	68	40	無し
Mw (實量平均分子量)(×10 ⁴)	20	18	20	20	23
		1 :		l	· .

【0055】参考例2 [ゴム質重合体 (C) の調製]

ゴム質重合体(C)-1;窒素置換したオートクレーブ

中に、シクロヘキサン400部、1.3-ブタジエン1 5部、テトラヒドロフラン0.05部、nープチルリチ ウム0.04部を加え、60℃で4時間重合したのち、 スチレンを10部加え、60℃で4時間重合し、さらに 1, 3-ブタジエンを65部加え、60℃で4時間望合 し、最後にステレンを10部加え、60℃で4時間重合 した。得られた活性重合体をメタノールで失活させ、重 合体溶液をジャケット付きの反応器に移し、水添触媒と して、2,6-ジーt-ブチルーp-クレゾール0.1 5部、ビス(シクロペンタジエニル) チタニウムジクロ リドO、07部と、n-ブチルリチウムO、15部およ びジエチルアルミニウムクロリドロ、28部を添加し、 水染ガスで10kg/cm2の圧力にて1時間反応させ た。スチームストリッピングにより、溶剤を除去し、乾 燥後、ゴム質量合体(C)−1を得た。このゴム質重合 体(C)-1の重量平均分子量は15万、水深率は9 9. 9%、スチレンブロック含量は20%であった。 【0056】ゴム質型合体(C)-2;窒素置換したオ ートクレーブ中に、シクロヘキサン400部、スチレン T 5部、テトラヒドロフラン 0. 0 5部、nープチルリ チウム0.04部を加え、60℃で4時間重合したの ち、1、3-ブタジエンを70部加え、60℃で4時間 重合し、最後にステレンを15部加え、60℃で4時間 **重合させた以外は、上記ゴム質重合体(C)−1と同様** に行い、ゴム質重合体(C)-2を得た。このゴム質量 合体(C)-2の重量平均分子量は15万、水添率は9 9. 9%、スチレンプロック含質は30%であった。 ゴム質菌合体(C)-3;窒素置換したオートクレープ 中に、シクロヘキサン500部、1、3~プタジエン7 O部を仕込んだのち、n-ブチルリチウムO. O5部を 加え、50℃で軍合を行った。重合転化率が31%にな ったのち、テトラヒドロフラン0.25部を加え、80 ℃で4時間重合した。重合転化率がほぼ100%になっ たのち、スチレンを30部加えて、1時間反応させた以 外は、上記ゴム質重合体(C)-1と同様に行い、ゴム 質重合体(C)-3を得た。このゴム質重合体(C)-3の重量平均分子量は12万、水添率は99.9%、ス チレンブロック含量は30%であった。

【0057】ゴム質重合体(C)-4; 資素置換したオートクレープ中に、シクロへキサン1000部、1,3ープタジエン30部、テトラヒドロフラン50部、nープチルリチウム0、09部を加え、70℃で等温重合を行ない、重合転化率がほぼ100%になったのち、テトラヒドロフラン1750部、1,3ープタジエン40部およびスチレンを30部加え、70℃で蛋合し、重合転化率がほぼ100%に達したのち、ジメチルジクロロシラン0、07部を加え、30分間カップリング反応させた。得られた活性重合体をメタノールで失活させ、重合体溶液をジャケット付きの反応器に移し、水添触媒として、2,6ージートープチルーpークレゾール0、15

部、ビス(シクロペンタジエニル)チタニウムジクロリ ドO. 07部と、n-ブチルリチウムO. 15部および ジエチルアルミニウムクロリド0、28部を添加し、水 素ガスで10kg/cm2 の圧力にて1時間反応させ た。スチームストリッピングにより、溶剤を除去し、乾 燥後、ゴム質集合体(C)-4を得た。このゴム質重合 体(C)-4の重量平均分子量は13万、水添率は9 9. 9%、スチレンブロック含量は30%であった。 【0058】実施例1(ゴム変性熱可塑性樹脂の製造) リボン型提拌異を備えた内容積10リットルのステンレ ス製オートクレーブに、ゴム質重合体(A)-1を7 部、ゴム質重合体(B)-1を3部、ゴム質重合体 (C)-1を10部、スチレンを55部、アクリロニト リルを25部、トルエンを100部仕込み、攪拌しつつ 昇温し、ゴム質重合体を完全に溶解し、均一な溶液を得 た。次いで、tードデシルメルカプタン0. 1部とベン ゾイルパーオキサイド 0.5部、ジクミルパーオキサイ ドO. 1部を添加し、95℃に一定に制御しながら、機 拌回転数2001 pmにで重合反応を行った。反応開始 後、6時間目から1時間を要して120℃まで昇温し、 さらに2時間反応を行って終了した。重合転化率は97 %であった。100℃まで冷却後、2,2-メチレンビ スー4-メチルー6-ブチルフェノール0.2部を添加 した後、反応混合物をオートクレーブより抜き出し、水 蒸気蒸留により、未反応物と溶媒を留去し、細かく粉砕 した後、40mmφの真空ベント付き押し出し機(22 0℃、700mmHg真空)にて、実質的に揮発分を留 去するとともに、グラフト共重合体(ゴム変性熱可塑性 樹脂)のペレットを得た。得られたペレットを用い、上 記評価に供した。結果を表2に示す。

【0059】実施例2~7 (ゴム変性熱可塑性樹脂の製造)

使用するゴム質量合体の種類、量、使用する単量体成分の組成比率を表2に示すように変更した以外は実施例1 と同様にして、各実施例のグラフト共量合体(ゴム変性 熱可塑性樹脂)を得た。結果を表2に示す。

【0060】実施例6(ゴム変性熱可塑性樹脂の製造)ゴム質重合体(A)-1を10部およびゴム質重合体(C)-1を10部シクロへキサン1000部に溶解させた後、オレイン酸7部を加えて加温し、70℃のゴム質重合体溶液を調製した。水酸化カリウム1.0部を水300部に溶解させ加温して70℃の水酸化カリウム水溶液を得た。3000rpmでホモミキサーをかけながら、上記水溶液に上記ゴム質重合体溶液を、温度を保ちつつ、徐々に添加し、乳化溶液を得た。得られた乳化溶液からシクロへキサンを除去し、ラテックスを得た。反応器に得られたラテックス20部、水180部、オレイン酸カリウム10部の混合液をとり、ピロリン酸ナトリウム0.2部、デキストローズ0.2部、硫酸第1鉄0004部、クメンハイドロパーオキサイド0.4部

(13)

を加え提拌混合した。これに、スチレン11部、メチルメタクリレート60部、アクリロニトリル9部および t ードデシルメルカプタン0.3部の混合物を、窒素気流下で攪拌しながら添加し、里合反応を行った。添加時間は2時間で、重合温度は60℃であった。得られた樹脂ラテックスを疑固し、乾燥後ペレット化しグラフト共重合体(ゴム変性熱可塑性樹脂)のペレットを得た。結果を表2に示す。

【0061】 実施例9(ゴム変性熱可塑性樹脂組成物の 製造)

リボン型撹拌翼を備えた内容積10リットルのステンレス製オートクレーブに、シクロヘキシルマレイミドを20部、スチレンを15部、メチルメタクリレートを60部、アクリロニトリルを5部、トルエンを30部およびαーメチルスチレンダイマーを0.1部仕込み、撹拌し均一溶液にし、50℃まで昇温したのち、ジクミルパーオキサイドを0.2部を添加し、さらに昇温し、120℃で2時間反応させた。得られたボリマー溶液を水洗気蒸留して未反応物と溶媒を除去し乾燥したのち、ベレと同様の方法で、表3に示す組成のグラフト共重合体(ゴム変性熱可塑性樹脂)と上配ブレンドボリマーとを、67/33の配合比でブレンドし、最終的なゴム量が20部のゴム変性熱可塑性樹脂組成物を得た。結果を表3に示す

【0062】実施例10~12(ゴム変性熱可塑性樹脂組成物の製造)

使用するゴム質重合体の種類、鷺、使用する単量体成分

の組成比率を表3に示すように変更した以外は実施例9と同様にして、グラフト共重合体(ゴム変性熱可塑性樹脂)を得た。得られたゴム変性熱可塑性樹脂とプレンドボリマーとを、表3に示す配合比でプレンドし、最終的なゴム量が20部のゴム変性熱可塑性樹脂組成物を得た。結果を表3に示す。

【0063】比較例1

ゴム質重合体としてゴム質重合体(A)-1のみを用いた以外は、実施例1と同様にしてグラフト共富合体(ゴム変性熱可塑性樹脂)を得た。結果を衷4に示す。 比較例2

ゴム質重合体としてゴム質重合体(B)-1および(B)-3を用いた以外は、実施例1と同様にしてグラフト共軍合体(ゴム変性熱可塑性樹脂)を得た。結果を

表4に示す。

比較例3

比較例4~8

【表2】

ゴム質重合体としてゴム質重合体 (C) -1のみを用いた以外は、実施例1と同様にしてグラフト共重合体 (ゴム変性熱可製性樹脂)を得た。結果を表4に示す。

使用するゴム質重合体の短類、量、使用する単盤体成分の担成比率を表4に示すように変更し、有機過酸化物量、分子量調節削量、重合温度などを調整した以外は実施例1と同様の手順で、それぞれのグラフト共重合体(ゴム変性熱可塑性樹脂)を得た。結果を表4に示す。【0064】

特関平11-302339

(12)

実施例	1	2	3	4	5	6	7	8
グラフト重合処方(部)								
ゴム質集合体: (A) - L	7	-	-	-	7	7	-	5
(A) - 2	-	10	10	7	-	-	5	-
(B) -1	3	-	-	-	3	-	-	-
(B) -2	·-	-	-	-	-	3	-	- 1
(B) -3	-	-	u	3	-	- 1	-	- }
(C) -1	10	10	-	10		-	15	-
(C) -2	-	-	10	-	-	-	-	-
(C) -3	-	-	-	-	10	-	-	-
(C) -4	-	-	-	-	-	10	<u>-</u>	15
単盤体成分: スチレン	55	11	55	55	55	55	11	11
アクリロニトリル	25	8	25	25	25	25	9	9
メチルメタクリレート	-	60	-	- 1	- :	-	60	60
ゴム変性熱可塑性が脂評価								
グラフト率 (%)	40	40	40	40	40	40	40	40
图有粘度 (7) (dl/g) (30℃)	0.42	0.40	0.42	0.40	0.42	0. 39	0.39	0.39
アイソット強度(kg・mp/cm)	20	15	20	15	18	15	15	15
容響衝撃強度 (kg・cm) (23°C)	330	300	350	330	330	320	300	300
耐候性(衝擊強度保持率)(%)	95	95	95	95	9 5	9 5	95	95
成形外観: 黑色配合	4.4	2. 2	4.2	4.2	4. 1	4. 1	2. 3	2.1
赤色配合	0	0	O	O	0	0	(4)	٥
フローマーク	0	0 .	0	0	0	0	0	0
袋面光沢 (%)	87	92	85	85	87	83	90	90
耐薬品性	0	0	0	0	0	0	0	0
耐傷つき性	0	0	0	0	0	0	0	0
摺動性:動摩絃保数(μ)	0. 27	0. 22	0.23	0.29	0.27	0.28	0.28	0. 29
摩耗量(g)	0. 29	0_25	0. 27	0. 31	0. 29	0. 30	0. 32	0. 31
全光煌透過率 (%)	38	75	40	40	39	35	73	70

[0065]

【袋3】

特開平11-302339

(13)

実施例	9	10	11	12
グラフト重合処方(部)		[
ゴム質重合体; (A) - 1	-	10	-	-
\cdot (A) -2	10	-	10	10
(B) - 3	-	-	'-	10
(C) -1 ·	20	20	-	[-
(c) - s	-		-	20
(C) -4	! -	-	20	-
単量体成分; スチレン	11	11	11	11
アクリロニトリル	9	9	9	9
メチルメタクリレート	60	60	80	60
ゴム変性熱可塑性樹脂評価	ì		<u> </u>	<u> </u>
グラフト事 (%)	40	40	40	40
関有粘度〔η〕(d 1/g)(30°C)	0.38	0.38	0.36	0.36
ブレンドポリマー菌合処方(部)		-		ł i
単量体成分;シクロヘキシルマレイミド	20		20	30
スチレン	15	10	15	-
メチルメタクリレート	60	80	60	70
アクリロニトリル	5	10	5	-
ゴム変性熱可塑性樹脂/ブレンドボリマー配合比	67/33	67/33	67/93	50/50
ゴム変性熱可塑性機能組成物評価	i	ŀ		
アイゾット強度(kg・cm/cm)	20	25	20	15
落郷衡撃強度 (kg・cm)(23℃)	320	360	310	280
副仮性(衝撃強度保持率) (%)	95	95	95	95
成形外観;黒色配合(マンセル色数値)	1.8	1.3	1.7	1.8
赤色配合	0	0	©	Ø
フローマーク	0	0	Q.	0
表面光沢 (外)	90	92	90	93
耐薬品性	0	0	0	0
耐傷つき性	0	. 0	0	0
抱動性;助摩擦係数(µ)	0, 22	0.22	0. 21	0. 23
摩耗鱼(g)	0. 28	0.25	0. 22	0. 27
全光線透過率 (%)	73	70	68	60

[0066]

【表4】

(14)

特開平11-302339

比較例	1	2	3	4	5	6	7	8
グラフト重合処方(部)								
ゴム質重合体; (A)-1	20	-	-	-	-	-	- '	- '
(A) - 2	- 1	-	-	-	10	10	30	10
(B) - 1	- :	1Ò	-	-	-		-	-
(B) -3	·	30	-	10.	-	-	-	-
(C) -1	-	-	20	10	10	10	10	10
単量体成分:スチレン	55	35	11	11	55	55	55	55
アクリロニトリル	25	25	9	9	25	25	25	25
メチルメタクリレート	-	-	50	60	-	-	-	-
ゴム変性熱可塑性樹脂評価								
グラフト部 (%)	40	40	40	40	5	150	30	60
固有指度〔7〕(d1/g)(30℃)	0.42	0.42	.0. 42	0. 35	0, 48	0.30	0.90	0. 15
アイソット強度(kg・cm/cm)	18	23	8	15	5	22	25	7
落壁衝撃強度 (kg·cm) (23℃)	280	300	180	330	330	380	400	80
耐候性(衝撃強度保持率)(%)	95	93	95	93	93	90	93	93
成形外観:無色配合	5.5	6.5	1.8	2.7	2.3	4. 1	4.2	4.3
赤色配合	×	×	0	0	0	0	0	0
フローマーク	×	×	0	0	×	×	×	0
表面光沢 (%)	85	85	95	90	70	65	60	90
附乘品性	0	×	×	×	0	0	0	0
耐傷つき性	0	×	×	×	Δ	0	0	Δ
摺動性;動摩擦係数(µ)	0.33	0.50	0. 53	0.55	0.25	0. 28	Q. 25	0, 28
摩託量(g)	0.35	0.78	0.88	1.05	0.70	0. 23	0.35	0.38
全光線透過率 (%)	22	18	73	55	25	28	32	34

【0067】本発明のゴム変性熱可塑性樹脂(実施例1 ~8) は、いずれも、耐衝撃性、耐候性、成形外観、耐 薬品性、耐傷つき性および摺動性に優れている。本発明 のゴム変性熱可塑性樹脂組成物(実施例9~12)は、 いずれも、耐衝撃性、耐候性、成形外観、耐薬品性、耐 傷つき性および摺動性に優れ、実施例1~8のゴム変性 熱可塑性樹脂と比較して、特に、成形外観の黒色配合お よび赤色配合に優れている。これに対し、表4から明ら かなように、比較例1は、1種類のTmが70℃以上の エチレンーαーオレフィンゴム〔ゴム質重合体(A)ー 1) のみを用いた例であり、成形外観に劣る。比較例2 は、2種類のTmが70℃未満またはTmの無いエチレ 3) を用いた例であり、成形外観、耐薬品性、耐傷つき 性および摺動性に劣る。比較例3は、1種類の水添共役 ジエン系ゴム質重合体(C)ー1のみを用いた例であ り、耐薬品性、耐傷つき性および摺動性に劣る。比較例 4は、1種類のTmの無いエチレン-α-オレフィンゴ ム [ゴム質型合体 (B) -3] および 1種類の水添共役 ジエン系ゴム質重合体(C)-1を用いた例であり、耐

薬品性、耐傷つき性および摺動性に劣る。

【0068】比較例5は、グラフト率が本発明の範囲外で低い例であり、耐衝撃強度、成形外観、表面光沢および耐傷つき性が実施例に比べて劣る。比較例6は、グラフト率が本発明の範囲外で高い例であり、耐候性、成形外観および表面光沢が実施例に比べて劣る。比較例7は、メチルエチルケトン可溶分の固有粘度〔n〕が本発明の範囲外で高い例であり、成形外観および表面光沢が実施例に比べて劣る。比較例8は、メチルエチルケトン可溶分の固有粘度〔n〕が本発明の範囲外で低い例であり、耐衝撃強度および耐傷つき性が実施例に比べて劣る。

100691

【発明の効果】本発明のゴム変性熱可鍵性樹脂は、特定の物性を有する1種または2種のエチレンーαーオレフィンゴムと特定の水添共役ジエン系ゴム質重合体の存在下に特定量のビニル系単量体成分を重合した特定の物性を有するゴム変性熱可塑性樹脂および特定の重合体を有するその組成物であり、耐衝撃性、耐候性、成形外観、耐薬品性、耐傷つき性および摺動性に優れる。