Lecture 9: Machine Translation and Advanced Recurrent LSTMs and GRUs

출처: https://www.youtube.com/watch?

v=QuELiw8tbx8&list=PL3FW7Lu3i5|snh1rnUwg_TcylNr7EkRe6&index=9&t=10s

traditional machine transaction은 생략했다

- 간단한 single recurrent neural network이다. 독일어에서 영어로 번역한다고 해보자! word vector들(x_1, x_2, x_3)과 softmax classifier를 갖는다. 만약 독일어 문장의 끝에 와서 더 이상 인풋이 없을 때부터, 번역을 한다.
- 마지막 vector는 전체 구의 정보를 갖고 있어야 한다. 하지만 슬프게도...5~6개 이전 단어부터는 그렇게 하지 못한다.

MT with RNNs - Simplest Model

Encoder:
$$h_t = \phi(h_{t-1}, x_t) = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$$
 Decoder:
$$h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$$

Decoder:
$$h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$$

$$y_t = softmax\left(W^{(S)}h_t\right)$$

Minimize cross entropy error for all target words conditioned on source words

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y^{(n)}|x^{(n)})$$

(선는 각각의 vector를 위한 똑같지 않은 W matrix가 있다는 뜻이다.)

- 일반적인 RNN이 있다고 가정해보자.
- ullet encoder에서 h_t 는 linear network이다. 여기서 이전 hidden state와 현재 word vector($oldsymbol{x_t}$) matrix vector product를 곱한다.
- ullet decoder에서 $oldsymbol{h_t}$ 는 final form은 아니고 그냥 간단한 형태를 나타낸 것이다. decoder에서는 input이 없으므 로, $W^{(hx)}x_t$ 를 없애준다. 단지 이전의 hidden state를 참고하면서 쭉 이동하는 거다. y_t 는 각각의 time step 에서의 softmax output이다.
- cross entropy를 통해 error를 최소화해준다.
- machine transaction보다는 상대적으로 간단하지만, 좀 더 간단하게 만들 필요가 있다.

RNN Translation Model Extensions

1. Train different RNN weights for encoding and decoding

 첫번째 단계는 encoding과 decoding에 각각 다른 weight를 주는 것이다. encoding과 decoding에 같은 W를 쓰는 게 아니라, encoding에서 쓰는 W와 decoding에서 쓰는 W를 구분하는 것이다.

RNN Translation Model Extensions

Notation: Each input of ϕ has its own linear transformation matrix. Simple: $h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$

- Compute every hidden state in decoder from
 - Previous hidden state (standard)
 - Last hidden vector of encoder c=h_T
 - Previous predicted output word y_{t-1}

$$h_{D,t} = \phi_D(h_{t-1}, c, y_{t-1})$$

• 두번째 단계는 decoder의 모든 hidden state에서 이전 hidden state, encoder에서 전체 구의 정보를 가지고 있었던 마지막 hidden vector, 이전에 예측한 output word에 대한 matrix vector product를 한다. y_{t-1} 를 파라미터로 넣는 이유는 실제로 이렇게 해보니 model에서 단어를 반복하는 일이 줄어들었다고 한다...!

- 이전 슬라이드에 있던 그림과 똑같지만, 좀 더 잘 파악하게 시각화한 그림이다.
- k개의 단어를 one-hot vector롤 바꿔준다. 그 다음에 word embedding을 만들어 준다.
- encoder의 hidden state를 쭉 통과한 다음, 가장 마지막 output vector를 decoder의 파라미터로 넣어준다.
- 그리고 위에서 봤던 것처럼, t-1번째 hidden state, encoder의 마지막 vector, y_{t-1} 을 t번째 hidden state의 파라미터로 넣어준다.

RNN Translation Model Extensions

- Train stacked/deep RNNs with multiple layers
- Potentially train bidirectional encoder

 Train input sequence in reverse order for simpler optimization problem: Instead of A B C → X Y, train with C B A → X Y

St

- 세번째 단계는 여러 layer를 쌓는 stacked RNN을 이용하는 것이다.
- 네번째는 흔하지 않지만 bidirectional encoder를 이용하는 것이다.
- 다섯번째는 input 문장의 순서를 바꿔서 넣는 방법이다. 위의 예시를 통해 설명하자면, A는 X로 바뀔 확률이 크고 B는 Y로 바뀔 확률이 크기 때문이다. 번역할 단어와 번역될 단어를 좀 더 가깝게 둔다고 생각하면 된다. 그래서 이전 강의에서 언급했던vanishing gradient가 덜 나타나게 할 수 있다.

6. Main Improvement: Better Units

- More complex hidden unit computation in recurrence!
- Gated Recurrent Units (GRU)
 introduced by Cho et al. 2014 (see reading list)
- Main ideas:
 - keep around memories to capture long distance dependencies
 - allow error messages to flow at different strengths depending on the inputs
- 이제 GRU에 대해 살펴볼 거다.
- GRU의 main idea는 오랜 시간 동안 기억을 저장하고 있는 것이다. 그리고 input에 따라 다른 강도로 error message를 흘려보내는 것이다.

GRUs

- Standard RNN computes hidden layer at next time step directly: $h_t = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$
- GRU first computes an update gate (another layer)
 based on current input word vector and hidden state

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

Compute reset gate similarly but with different weights

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

• GRU에서는 일반적인 RNN과 달리, 먼저 gate를 계산한다. gate들은 h_t 와 마찬가지로 hidden state와 똑같은 길이를 가지고 있는 vector이다.

- 현재 input word vector와 hidden state를 이용해서 update gate를 계산한다. 그리고 다른 W를 가지고 reset gate를 계산한다.
- 일반적인 RNN과 달라지는 점은 σ 가 sigmoid 함수라는 것이다. 그래서 z_t 의 element들은 0과 1사이의 값이된다. 이 값들을 확률로 해석할 수 있다.

GRUs

• Update gate
$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

• Reset gate
$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

- New memory content: $\tilde{h}_t = \tanh(Wx_t + r_t \circ Uh_{t-1})$ If reset gate unit is ~0, then this ignores previous memory and only stores the new word information
- ullet reset gate와 Uh_{t-1} 을 element wise로 곱해준다. 그리고 Wx_t 와 더해준다. $ilde{h_t}$ 는 intermediate memory content이다.
- 만약 reset gate가 거의 0에 가깝다면, 이전의 기억(이전의 계산)을 거의 무시한다.
- 이렇게 하는 이유를 감성 분석을 예로 들어 보겠다. 영화평에서의 감성 분석을 한다고 치자. 만약 줄거리에 대한 요약이 쭉있고 마지막쯤에 "~재밌었다."라고 한다면, 줄거리는 중요하지 않고 "재밌었다"라는 단어만 중요하다. 그렇다면 굳이 줄거리에 대한 정보를 기억할 필요가 없으니, 모델에게는 줄거리, 즉 이전의 정보를 모두 잊어버리게 하는 것이다.
- 마지막 memory에서는 z_t 의 값에 따라 이전의 기억을 좀 더 저자할지 현재의 기억을 좀 더 저장할지를 결정할수 있다. 만약 z_t 가 모두 1이면 $h_t = h_{t-1}$ 이므로, 단지 이전의 기억을 카피하는 것이다.
- 감성 분석으로 다시 예를 들면, "I love this movie, it's beautiful love story."라는 영화평에서 love가 중요한 것이지 love story가 중요한 게 아니다. 일반적인 RNN에서는 중요도를 고려하지 않고 모든 time step마다 update를 한다. 그래서 중요한 정보가 점차 사라지게 된다.
- model은 언제 reset을 하고 update를 할지를 학습하게 된다.

Attempt at a clean illustration

$$z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$$

$$r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$$

$$\tilde{h}_t = \tanh \left(W x_t + r_t \circ U h_{t-1} \right)$$

$$h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t$$

• 오른쪽 수식을 보면서 왼쪽의 그림을 따라가면 무리없이 이해가 될 것이다.

GRU intuition

 If reset is close to 0, ignore previous hidden state
 → Allows model to drop information that is irrelevant in the future

$$\begin{split} z_t &= \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right) \\ r_t &= \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right) \\ \tilde{h}_t &= \tanh \left(W x_t + r_t \circ U h_{t-1} \right) \\ h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t \end{split}$$

Stanfo

- Update gate z controls how much of past state should matter now.
 - If z close to 1, then we can copy information in that unit through many time steps! Less vanishing gradient!
- Units with short-term dependencies often have reset gates very active
- 만약 reset을 0에 가깝게 한다면 이전 hidden state를 무시한다.
- z는 과거의 state가 현재에 얼마나 중요한 지를 결정한다. 만약 z가 1에 가깝다면, 그냥 이전의 hidden state를 copy하는 것이다. 그렇다면 vanishing gradient가 줄어들게 된다.

GRU intuition

- Units with long term dependencies have active update gates z
- $z_t = \sigma \left(W^{(z)} x_t + U^{(z)} h_{t-1} \right)$ $r_t = \sigma \left(W^{(r)} x_t + U^{(r)} h_{t-1} \right)$ $\tilde{h}_t = \tanh \left(W x_t + r_t \circ U h_{t-1} \right)$

Illustration:

- Derivative of $\frac{\partial}{\partial x_1}x_1x_2$? \rightarrow rest is same chain rule, but implement with **modularization** or automatic differentiation
- 회로같은 걸 공부해본 사람이라면 위처럼 보는 것도 괜찮을 것이다.
- $r_t \circ U^{(r)}h_{t-1}$ 의 미분 값을 알고 있으므로 $\frac{\partial}{\partial x_1}x_1x_2$ 의 값을 알 수 있다. 하지만 하나하나 계산하는 게 아니라 모듈을 쓰거나 자동화를 하는 것 같다.
- 굳이 update와 reset으로 나누는 이유는 어떤 정보를 기억하고 유지할 때 다른 메카니즘을 가질 수 있기 때문 이다.

Long-short-term-memories (LSTMs)

- We can make the units even more complex
- Allow each time step to modify
 - Input gate (current cell matters) $i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right)$
 - Forget (gate 0, forget past) $f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$
 - Output (how much cell is exposed) $o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$
 - New memory cell $ilde{c}_t = anh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right)$
- Final memory cell: $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$
- Final hidden state: $h_t = o_t \circ \tanh(c_t)$
- LSTM은 GRU보다 더 많은 gate를 갖기 때문에 더 복잡하다.
- input gate는 현재의 $vector(x_t)$ 를 얼마나 중요한 지를 결정한다.

- forget gate는 이전의 vector(h_{t-1})을 얼마나 잊지 않을 건지를 결정한다. 만약 forget gate의 값이 0이면 하나도 기억하고 싶지 않다는 뜻이다.
- output gate는 현재 가지고 있는 정보를 이용해서 예측을 하는 게 중요한지 아니면 정보를 계속 갖고 있는 게 중요한지를 판단한다. 만약 현재 time step의 특정한 cell이 중요하지는 않지만 점점 더 중요해지는 것이라면, 해당 final softmax의 instance로 내놓지 않고 계속 그 정보를 가지고 있는다. 즉, 해당 time step에서만 잊혀 진다.
- new memory cell은 GRU랑 비슷하게 현재의 정보를 더 저장할지 이전의 정보를 더 저장할지를 결정한다.
- 사실 4개의 gate의 parameter는 다 똑같고 3개는 sigmoid이고 1개는 tanh라는 차이밖에 없다.
- final memory cell과 final hidden state를 계산할 때, 위의 gate를 이용한다.
- final memory cell에서는 forget gate와 input gate를 이용한다. GRU처럼 단지 c와 1-c를 이용하는 게 아니라 두 개의 메카니즘을 이용한다. forget gate는 이전의 memory를 얼마나 기억할 건지를 결정하고 input gate는 현재의 memory를 얼마나 기억할 건지 결정한다. 만약 i_t 가 1이면 현재의 memory를 모두 기억한다.
- final hidden state에서는 c_t 를 계속 가지고 있을 지 아니면 해당 time step에서 예측을 하는데 이용할 건지를 결정한다. 이렇게 하는 이유는 해당 softmax classifier과 예측을 하는데 관련이 없는 정보를 받아들이는 것을 차단할 수 있다.

• 사실 비교적 간단한 시각화이지만 알아보기가 좀 어렵다...

LSTMs are currently very hip!

- En vogue default model for most sequence labeling tasks
- Very powerful, especially when stacked and made even deeper (each hidden layer is already computed by a deep internal network)
- Most useful if you have lots and lots of data
- LSTM은 layer가 쌓이고 점점 깊어질 수록 강려크하다고 한다.

이후는 성능비교, 현황과 같이 부가적인 것이라 생략한다.