

1 2 3

1 2 3 4

28S-

18S-

FIG.1A

β -actin

FIG.1B

FIG.4

TATCAGCTAG TGGCTGCACC CGCGAACACCC ACCCTGGTCC GGAGTAGCTG CGGACAGAAT 60

TGCTGGCTA GTAGAAGCTT TGGAAACGGAGC AGTCAG ATG AGT GAT AAA CCA GAC 115
M S D K P D

TTA TCA GAA GTT GAA ACA TTT GAC AAA TCA AAG TTG AAG AAG ACT AAT 163
L S E V E T F D K S K L K K T N
1

ACT GAA GAA AAG AAT ACT CCT TCG AAG GAA ACT ATC CAG CAG GAG 211
T E E K N T L P S K E T I Q Q E

AAA GAA TAT CAA AGA TC ATAAAATGAG ATTCTCTCT CAAGAGAAC TTCAAC 267
K E T N Q R S *

TTCGCTGGAT AGTCTGGAT TTAGACATGT TTCTGTAAAC CTATCCAATA TGTAGACATT 327
TTAGGGGGTT CCTGATAGGT TCTTAAGTAC CCTGACTGAA AGGTCAACCAA 387
TCATTAATG TGCTC 412

FIG. 2

Rat thymb4
Bov thymb9
Rat thymb10
Trout thymb11
Trout thymb12
Human thymb15

MSDKPDMAE	IEXFDRSKLE	KTEEQEKNPL	PSKETIEQEK	QAGES	49
AGADKPDLSE	IMSFQKNTL	KTEEQEKNPL	PTKETIEQEK	QAK	50
MADKPDLMGE	IASFQKAKLE	KTEEQEKNPL	PTKETIEQEE	RSETD	49
ACSDKPDLAE	WASFQKNTL	KTEEQEKNPL	PTKETIEQEE	QAS	50
ACSDKPDLAE	VSNFDKTKLE	KTEEQEKNPL	PTKETIEQEE	QAT	50
MSDKPDLMSE	VETFDKSKLE	KTMFEEKML	PSKETIEQEK	EYNQRS	49

FIG. 3

BEST AVAILABLE COPY

FIG. 5B

FIG.6A

FIG.6B

FIG.6C

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 8A

FIG. 8B

FIG. 9

FIG. 11

BEST AVAILABLE COPY

FIG.IOD

FIG.IOC

FIG.IOB

B

A