アクティブマター乱流のメゾスケール連続体モデル

荒木 亮

2020年9月6日

目次

1	連続体モデル方程式の導出	1
	1.1 仮定とその正当化	
2	2次元安定性解析	3
3	方程式の無次元化	3
4	渦度方程式の導出	3
5	Fourier スペクトル法を用いた数値計算に向けて	3

1 連続体モデル方程式の導出

本節では、先行研究 [1](とその supplemental material [2])および同じ著者らによる論文 [3] に基づいて、高密度なバクテリア懸濁液などのアクティブマターをよく記述する連続体モデルを導出する.

1.1 仮定とその正当化

連続体モデルを導出するために次を仮定する.

仮定 1. 十分に高密度なバクテリア懸濁液(や自己推進ロッド(SPR, Self Propelled Rods)の集合)は、非圧縮アクティブ流体としてよく近似できる.

仮定 2. バクテリア流体の本質的なダイナミクスは平均流速 v(t,x) で捉えられる 1 .

仮定1はバクテリア乱流の実験や SPR の数値計算において密度ゆらぎが小さいことから正当化できる. 仮定2には議論の余地がある. アクティブマターはしばしば長距離相互作用をもち, このとき平均流速と平均の向きは decouple されているためである. しかし,十分に高密度な環境下ではこれらはよく couple する. そのため, 仮定2は十分に高密度な環境で妥当としてよい.

¹ここでの「平均」は粗視化して連続場として捉えるという意味か?

1.2 場の方程式

仮定1の非圧縮性は

$$\nabla \cdot v = \frac{\partial v_i}{\partial x_i} = 0 \qquad i = 1, \dots, d$$
 (1)

で定義できる. ただし d は空間次元である.

平均流速vは一般化されたd次元 Navier–Stokes 方程式

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p - (\alpha + \beta |\boldsymbol{v}|^2) \boldsymbol{v} + \nabla \cdot \boldsymbol{E}$$
(2)

で記述される. p は圧力, α と β はパラメータで, v に依存するひずみ率テンソル(rate-of-strain tensor)E は以降で定義する.

 $(\alpha + \beta |\mathbf{v}|^2)\mathbf{v}$ は Toner-Tu モデルでの局所駆動項である.安定性より $\beta \geq 0$ が要求されるが, α は正負どちらでも良い. $\alpha > 0$ のときこの項は系を $\mathbf{v} = 0$ の等方平衡状態へ駆動する. $\alpha < 0$ かつ $\beta > 0$ のとき,速度ポテンシャルは双安定となり

$$v_0 = \sqrt{\frac{|a|}{\beta}} \tag{3}$$

なる特徴速さで決まる大域極秩序状態となる.

最後に対称かつトレースなしテンソル E について議論する.これを,active nematics の理論を元にして

$$E_{ij} = \Gamma_0 \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \Gamma_2 \nabla^2 \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) + Sq_{ij}$$
 (4)

と表現する.

$$q_{ij} = v_i v_j - \frac{\delta_{ij}}{d} |\boldsymbol{v}|^2 \tag{5}$$

は Q テンソルの平均場近似であり,アクティブ応力(active stress)の寄与を表す. $\gamma_0>0$ のとき $S=\Gamma_2=0$ ととれば,式 5 は通常の粘度 Γ_0 の rate-of-strain テンソルとなる.

安定性解析から、 $\Gamma_0 < 0$ を許すとき $\Gamma_2 > 0$ である必要がある.また、S > 0 は puller で S < 0 は pusher なアクティブマターを表現する.

直感的には、 Γ の項は応力テンソルの(vに対し線形な)機械的な展開から生じ、 Γ_2 は長距離多粒子相関に対応すると理解できる.

式4を式2に代入して閉じた方程式が得られる.

$$(\mathbf{\nabla} \cdot \mathbf{E})_{j} = \frac{\partial E_{ij}}{\partial x_{i}} = \Gamma_{0} \left(\frac{\partial v_{i}}{\partial x_{i} x_{j}} + \frac{\partial v_{j}}{\partial x_{i} x_{i}} \right) - \Gamma_{2} \nabla^{2} \left(\frac{\partial v_{i}}{\partial x_{i} x_{j}} + \frac{\partial v_{j}}{\partial x_{i} x_{i}} \right) + S \left(\frac{\partial v_{i} v_{j}}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} \frac{\delta_{ij}}{d} |\mathbf{v}|^{2} \right)$$

$$= \Gamma_{0} \frac{\partial v_{j}}{\partial x_{i} x_{i}} - \Gamma_{2} \nabla^{2} \frac{\partial v_{j}}{\partial x_{i} x_{i}} + S \left(\frac{\partial v_{i} v_{j}}{\partial x_{i}} - \frac{\partial}{\partial x_{j}} \frac{1}{d} |\mathbf{v}|^{2} \right)$$

$$\mathbf{\nabla} \cdot \mathbf{E} = \Gamma_{0} \nabla^{2} \mathbf{v} - \Gamma_{2} (\nabla^{2})^{2} \mathbf{v} + S (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{v} - \frac{S}{d} \mathbf{\nabla} |\mathbf{v}|^{2}$$

ここで

$$\lambda_0 = 1 - S \qquad \lambda_1 = -\frac{S}{d} \tag{6}$$

とおけば,

$$\frac{\partial \boldsymbol{v}}{\partial t} + \lambda_0 \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} = -\boldsymbol{\nabla} p + \lambda_1 \boldsymbol{\nabla} \boldsymbol{v}^2 - (\alpha + \beta |\boldsymbol{v}|^2) \boldsymbol{v} + \Gamma_0 \nabla^2 \boldsymbol{v} - \Gamma_2 (\nabla^2)^2 \boldsymbol{v}$$
(7)

をえる.

 Γ の項は Swift-Hohenberg 理論における高次微分項と似ており、このモデルにおいて準カオス的な流れパターンを作り出すために不可欠な項である.

- 2 2次元安定性解析
- 3 方程式の無次元化
- 4 渦度方程式の導出
- 5 Fourier スペクトル法を用いた数値計算に向けて

参考文献

- [1] Henricus H Wensink et al. Meso-scale turbulence in living fluids. *Proc. Natl. Acad. Sci. USA* 109.36 (2012).
- [2] Henricus H Wensink, Julia M Yeomans, and Raymond E Goldstein. Supporting Information Appendix: Meso-scale turbulence in living fluids. *Proc. Natl. Acad. Sci. USA* (2012), pp. 1–9.
- [3] Jörn Dunkel et al. Minimal continuum theories of structure formation in dense active fluids. *New J. Phys.* 15.22pp (2013), p. 45016.