Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2022-23

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

http://mixstef.github.io/courses/csintro/

Μ. Στεφανιδάκης

Τι είναι αλγόριθμος;

• Αλγόριθμοι

- «Βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος»
 - Ανεξάρτητα από το υπολογιστικό σύστημα
- Τυπικός ορισμός:
 - Μια διαδικασία με πεπερασμένο αριθμό διατεταγμένων βημάτων
 - πιθανώς με επαναλήψεις και συνθήκες
 - η οποία επιλύει ένα συγκεκριμένο πρόβλημα
 - μετασχηματισμού εισόδων σε εξόδους
 - σε πεπερασμένο χρόνο

Βασικές αλγοριθμικές δομές

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές

Υποπρογράμματα (υποαλγόριθμοι)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές

- Επαναχρησιμοποίηση
 - κλήση συναρτήσεων
- Ευκολότερη κατανόηση
 - σημαντικό όσο και η απόδοση

Αναδρομή: ένα κομψό εργαλείο

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Το γενικότερο πλαίσιο: μείωση ενός προβλήματος σε πολλά υποπροβλήματα
 - Και στη συνέχεια, συνδυασμός των μερικών λύσεων
- Αναδρομή
 - Μία συνάρτηση καλεί τον εαυτό της
 - δημιουργεί μικρότερα υποπροβλήματα
 - Μέχρι να φτάσει σε μια βασική περίπτωση
 - με άμεσο υπολογισμό του (μερικού)αποτελέσματος
 - Ακολουθούν επιστροφές με συνδυασμό των μερικών αποτελεσμάτων
 - μέχρι το τελικό αποτέλεσμα

Αναδρομή: ένα παράδειγμα

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές

με σχήματα τύπου L;

Αναδρομή: ένα παράδειγμα

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές

Αναδρομή

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Αλγοριθμικά «κομψή» λύση αλλά
 - Πιθανή επιβάρυνση κατά την κλήση των συναρτήσεων
 - Και μεγαλύτερη χρήση πόρων για διατήρηση προηγούμενων καταστάσεων
- Συχνά πρέπει να μετατρέψουμε την αναδρομή σε επανάληψη
 - Ευτυχώς αυτό είναι πάντα δυνατό
 - ακόμα κι αν οδηγεί σε λιγότερο κομψή διατύπωση του αλγορίθμου
 - με τη βοήθεια δομών δεδομένων που μιμούνται τη λειτουργία της αναδρομής

Πολυπλοκότητα ενός αλγορίθμου

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα

- Για την κατανόηση της απόδοσής του
 - Χρειαζόμαστε ένα βασικό μέγεθος
 - Που θα εστιάζει στη μεγάλη εικόνα
 - Την αύξηση του χρόνου εκτέλεσης ανάλογα με το μέγεθος του προβλήματος (δεδομένων εισόδου)
 - Ανεξάρτητα από την ταχύτητα της γλώσσας προγραμματισμού
 - Ανεξάρτητα από την ταχύτητα του υλικού
 - Προσοχή: δεν ενδιαφερόμαστε για απόλυτους χρόνους
 - Αντιθέτως, υπολογίζουμε πόσες φορές εκτελείται μια βασική λειτουργία!
 - Σε σχέση με το μέγεθος των δεδομένων εισόδου

Ο ασυμπτωτικός συμβολισμός Ο(...)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα

Big O notation

- Έκφραση κλάσης πολυπλοκότητας σε σχέση με το μέγεθος *n* των δεδομένων εισόδου
 - αφαιρώντας σταθερούς παράγοντες
- Τυπικά
 - O(g(n)), είναι ένα σύνολο συναρτήσεων
 - f(n) ανήκει στο O(g(n)) εάν υπάρχει n_0 και θετική σταθερά c έτσι ώστε $f(n) \le cg(n)$ για κάθε $n \ge n_0$
- Πρακτικά
 - O(g(n)), είναι οι συναρτήσεις που αυξάνονται με αργότερο ρυθμό από το g(n) άρα είναι αποδοτικότερες
- Παράδειγμα
 - $T\alpha n^2$, $3n^2$, $85.8n^2+3.44$ ανήκουν όλα στο $O(n^2)$

Ο ασυμπτωτικός συμβολισμός Ο(...)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Αν για παράδειγμα η πολυπλοκότητα ενός αλγορίθμου είναι O(n²)
 - Αυτό σημαίνει ότι για μέγεθος δεδομένων n θα εκτελεστεί αριθμός λειτουργιών της τάξης του n²
 - Και ότι ένας αλγόριθμος O(n) είναι αποδοτικότερος
 - Απόδοση ανεξάρτητη από μέγεθος δεδομένων
 - Ο(1) η ιδανική περίπτωση!
 - Πολυωνυμικά προβλήματα
 - O(logn), O(n), $O(n^2)$, $O(n^k)$
 - Συνήθως επιλύσιμα
 - Μη πολυωνυμικά προβλήματα
 - $O(k^n) \acute{\eta} O(n!)$
 - Γενικά, μη επιλύσιμα

Η βασική μονάδα δεδομένων

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων

- Η "εγγραφή" (record ή structure)
 - Μία αυτοτελής ομάδα δεδομένων
 - Με συγκεκριμένη μορφή αποθήκευσης
 - Κάθε μέλος της ομάδας βρίσκεται σε καθορισμένη θέση (διεύθυνση) μέσα στην εγγραφή
 - Ως "κόμβος" δεδομένων σε πιο σύνθετες δομές δεδομένων

Πίνακες (arrays)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες

- Ακολουθία όμοιων εγγραφών
 - Σε συνεχόμενες θέσεις μνήμης
 - Πίνακας μιας διάστασης
 - Ο υπολογισμός της θέσης (διεύθυνσης) του i-οστού στοιχείου είναι άμεσος
 - Αρχή πίνακα + i * μέγεθος εγγραφής
 - Θυμηθείτε: το ί ξεκινά από το 0!
 - Είναι δυνατή η υλοποίηση πινάκων πιο πολλών διαστάσεων
 - Π.χ. για πίνακα δύο διαστάσεων, ως συνεχόμενες σειρές στη μνήμη
 - Πώς υπολογίζεται στην περίπτωση αυτή η διεύθυνση του στοιχείου _{. . :}

Λειτουργίες σε πίνακες

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες

- Λήψη στοιχείου i
 - Σταθερή πολυπλοκότητα O(1)
 - Εφόσον ο υπολογισμός της θέσης του κάθε στοιχείου είναι άμεσος
- Προσθήκη στοιχείου (στο τέλος)
 - O(1) θεωρώντας ότι υπάρχει χώρος
 - Αμεσος υπολογισμός θέσης νέου στοιχείου
- Εισαγωγή στοιχείου (π.χ. στην αρχή)
 - Ο(n) θα πρέπει να μετατοπιστούν τα ήδη υπάρχοντα στοιχεία

Αναζήτηση σε πίνακα

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση

- Αναζήτηση στοιχείου με κάποιες ιδιότητες
 - Τιμές-κλειδιά
 - Εύρεση θέσης (i) στοιχείου αν υπάρχει!
- Εάν τα στοιχεία δεν είναι ταξινομημένα...
 - Με βάση τις αναζητούμενες τιμές-κλειδιά
- ...τότε πρέπει να διασχίσουμε τον πίνακα σειριακά
 - από τη μία άκρη προς την άλλη (διάσχιση πίνακα)
 - συγκρίνοντας κάθε στοιχείο που συναντάμε
 - O(n) − ΟΚ για μικρούς πίνακες

Δυαδική Αναζήτηση (binary search)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση

- Εάν τα στοιχεία <mark>είναι</mark> ταξινομημένα...
 - Με βάση τις αναζητούμενες τιμές-κλειδιά
- ...τότε η αναζήτηση γίνεται πολύ πιο αποδοτική!
 - Χωρίζοντας τον πίνακα στη μέση
 - Και ψάχνοντας μόνο ένα από τα δύο μέρη
 - Μικρότερο υποπρόβλημα!
 - Επαναλαμβάνουμε τη διαδικασία μέχρι την εύρεση
 - ή μέχρι να φανεί ότι δεν υπάρχει αυτό που ψάχνουμε
 - Ο(log₂n)- η μόνη βιώσιμη λύση για μεγάλους πίνακες!

Δυαδική Αναζήτηση (binary search)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση

Ταξινόμηση

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση

- Συνήθης λειτουργία σε πίνακες
 - Με βάση τιμές κλειδιών (μέρους στοιχείου πίνακα)
 - Ως βάση για την εφαρμογή άλλων αλγορίθμων
 - Όπως η δυαδική αναζήτηση που είδαμε προηγουμένως
 - Δεν υπάρχει μοναδικός αλγόριθμος ταξινόμησης με την βέλτιστη πολυπλοκότητα
 - Εξαρτάται από τη μέχρι τώρα διάταξη των δεδομένων
- Στη συνέχεια θα δούμε ορισμένους μόνο από το σύνολο των αλγορίθμων ταξινόμησης

Ταξινόμηση παρεμβολής (insertion sort)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση

- Ο πίνακας χωρίζεται σε δύο μέρη
 - Το ταξινομημένο μέρος
 - Αρχικά περιέχει το πρώτο στοιχείο του πίνακα
 - Και το αταξινόμητο
 - Τα υπόλοιπα στοιχεία
- Κάθε στοιχείο του αταξινόμητου
 - Προωθείται στη σωστή θέση μέσα στο ταξινομημένο μέρος
 - Το ταξινομημένο μέρος σταδιακά μεγαλώνει
- Πολυπλοκότητα
 - $\mathsf{O}(\mathsf{n}^2)$ στη χειρότερη περίπτωση
 - O(n) στην καλύτερη (ήδη ταξινομημένα)

Ταξινόμηση παρεμβολής (insertion sort)

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση

Quicksort

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση

- Ένας από τους γνωστότερους αλγορίθμους ταξινόμησης
 - Ακολουθεί την τακτική της διαμέρισης του πίνακα σε δύο μέρη
 - Μικρότερα και μεγαλύτερα στοιχεία από (τυπικά) το πρώτο στοιχείο του πίνακα
 - Και στη συνέχεια ταξινομεί αναδρομικά τους δύο υποπίνακες
 - Στο τέλος συνενώνει τους πίνακες
 - Μικρότερα + στοιχείο διαμέρισης + μεγαλύτερα
- Πολυπλοκότητα
 - ' O(n²) στη χειρότερη περίπτωση (ήδη ταξινομημένα)
 - O(nlog, n) καλύτερη περίπτωση και κατά μέσο όρο

Quicksort

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση

Διασυνδεδεμένες λίστες

- Αλγόριθμοι
- Βασικές αλγοριθμικές δομές
- Πολυπλοκότητα
- Δομές δεδομένων
- Πίνακες
- Αναζήτηση
- Ταξινόμηση
- Διασυνδεδεμένες λίστες

- Για αποθήκευση ακολουθίας στοιχείων
 - Εναλλακτικά των πινάκων
 - Αποτελείται από κόμβους
 - Στοιχεία (εγγραφές δεδομένων)
 - Κάθε κόμβος διασυνδέεται με τον επόμενο
 - Μονή ή διπλή φορά διασύνδεσης
 - Η εισαγωγή είναι O(1)
 - Αλλαγή μόνο της διασύνδεσης των κόμβων
 - Θα πρέπει όμως να ξέρουμε το σημείο εισαγωγής...
 - Αλλά η προσπέλαση τυχαίου στοιχείου γίνεται τώρα O(n)
 - Θα πρέπει να διασχίσουμε τη λίστα από κάποια άκρη της μέχρι να φτάσουμε στο στοιχείο που θέλουμε

