Concepts in Routing

Outline

- What is Routing
- Packet Switching and Layering Issues
- Performance Criteria
- Network Information Sources
- Decision Time
- Decision Place
- Network Information Update Timing

What is Routing? Routing in Everyday Life-1

Consider you have to go from one part of the country to another to visit your relatives.

- You will get their address etc. and plan the journey
- You will consult a map of the country
 - First find the city
 - Find what mode of transport can take you there
- Next consult map of the city
 - First find the locality
 - Find what train or bus will take you there
- Next ask about a landmark near the house

What is Routing? Routing in Everyday Life-2

- How soon you need to get there?
- How much money do you have to get there?
- Can you withstand the journey?
- How much time you have to plan your journey?
 - Is everything reserved and planned in advance? Or it is done moment-to-moment?
 - Who plans your journey? Do they send you tickets? Your agent?
 Or while you go?
- What happens if ... Train Accident, Rasta-Roko, no accommodation on flight etc..?

Switching - 1

 Switched communication networks transfer data beyond a local area from source to destination through intermediate switching nodes

Switching - 2

- Types of Switching
- Circuit Switching (Telephone Networks)
 - Establishment-Transfer-Disconnect phases
 - Routing in connection establishment phase
 - Fixed Bandwidth transmission
- Packet Switching (Data Networks)
 - Datagrams
 - Independent Route for each packet
 - Virtual Circuits
 - Call setup delays; after route setup each packet has fixed route

Switching - 3

- Connection Oriented Services (Mostly VC)
 - Call setup request
 - Logical connection numbers setup
 - Packets labeled as to the logical connection and sequenced
- Connection Less Services (Datagram)
 - Packets treated independently
 - No reliability or ordering support

Main Concern: getting packets from source to destination

- Network layer must know the topology of the subnet and choose appropriate paths through it.
- When source and destination are in different networks, the network layer (IP) must deal with these differences.
- Key issue: what service does the network layer provide to the transport layer (connection-oriented or connectionless).

Other Issues:

- Inter-networking
 - Are Networks Homogenous or Heterogeneous
- Control and Signaling
 - Distinguish between and routed and routing protocols
 - If an error in routing/forwarding occurs how is it to be communicated?
 - Protocol to reserve and release network resources
- Congestion, Quality of Service and Load Balancing
- Security

Example Networks

Example Networks-2

Wide Area Network (WAN)

Interdomain level

Performance Criteria

Routing algorithms Desirable properties

- Correctness: If it is not, then what's the point?
- Simplicity: for efficiency and ease in implementation, maintenance
- Robustness: must be able to sustain the changes in the networks (failures, overloads etc.)
- Stability: when run long enough, should converge to equilibrium
- Optimality: maximize performance criteria
- Fairness: trade off with optimality
- Efficiency: Overheads minimized

Performance Criteria

Routing Algorithms Metrics for Optimization

- Bandwidth
- Delay
- Load
- Reliability
- Hop counts
- Cost

Two Common Performance Measures

Quantity of Service (Throughput)

- •How much data travels across the net?
- •How long does it take to transfer long files?

Quality of Service (Average packet delay)

- •How long does it take for a packet to arrive at its destination?
- •How responsive is the system to user commands?
- •Can the network support real-time delivery such as audio and video?

Decision time

- When forwarding each packet
- When set up a virtual circuit

Decision place

Routing decisions are usually based on knowledge of network (not always)

Distributed: made by each node/router **Centralized:** made by a central location **Source:** made by the sender

Distributed routing

- Nodes use local knowledge
- May collect info from adjacent nodes
- May collect info from all nodes on a potential route

Central routing

 A central station collects info from all nodes

- Update timing
 - When is network information held by nodes updated
 - Fixed never updated
 - Adaptive regular updates

- Routing strategies
 - Fixed,
 - Flooding,
 - Random,
 - Adaptive

CENTRAL ROUTING DIRECTORY

From Node

1

To Node

1	2	3	4	5	6
-	1	5	2	4	5
2	_	5	2	4	5
4	3		5	3	5
4	4	5	_	4	5
4	4	5	5	_	5
4	4	5	5	6	_

Node 1 Directory

Destination	Next Node
2	2
3	4
4	4
5	4
	4

Node 2 Directory

Destination	Next Node
1	1
3	3
4	4
5	4
6	4

Node 3 Directory

Destination	Next Node
1	5
2	5
4	5
5	5
6	5

Node 4 Directory

Destination	Next Node
1	2
2	2
3	5
5	5
6	5

Node 5 Directory

Destination	Next Node
1	4
2	4
3	3
4	4
6	6

Node 6 Directory

Destination	Next Node
1	5
2	5
3	5
4	5
5	5

Fixed Routing

- Single permanent route for each source to destination pair
- Determine routes using a least cost algorithm
- Route fixed, at least until a change in network topology

Flooding

- No network information required
- Packet sent by node to every neighbor
- Incoming packets
 retransmitted on every
 link except incoming
 link
 - Eventually a number of copies will arrive at destination

- Optimizations in Flooding
 - Each packet is uniquely numbered so duplicates can be discarded
 - Nodes can remember packets already forwarded to keep network load in bounds
 - Can include a hop count in packets

- Properties of Flooding
 - All possible routes are tried
 - Very robust
 - At least one packet will have taken minimum hop count route
 - Can be used to set up virtual circuit
 - All nodes are visited
 - Useful to distribute information (e.g. routing)

Random routing

- Node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
- Can select outgoing path based on probability calculation
- No network information needed
- Route is typically not least cost nor minimum hop

Refinement of Random Routing:

Assign probability P_i to each outgoing link. It may be based on the data rate R_i of the link i

 $P_i = R_i / \text{sum}(R_i)$ over all links j

- Lesser load than flooding,
- Works very well for highly connected networks

Adaptive routing

- Routing decisions change as conditions on the network change (not just topology but also traffic)
 - Failure
 - Congestion
- Classification based on information sources
 - Local (isolated)
 - Adjacent nodes
 - All nodes

•Pros

- Improved performance
- Aid congestion control

•Cons

- Requires information about network
- Decisions more complex
- Tradeoff between quality of network information and overhead
- Reacting too quickly can cause oscillation
- Too slowly to be relevant

Adaptive Routing-1

Isolated Adaptive Routing

- Route to outgoing link with shortest queue
- Can include bias for each destination
 - Q+B is used to decide the route
- Rarely used does not make use of easily available information

Adaptive Routing-2

Distance Vector Routing

- Developed by Bellman-Ford, also called Bellman-Ford algorithm or backward search algorithm
- Used in ARPANET until 1979
- Belongs to distributed adaptive algorithm
- Problems
 - Delay of link information
 - Count-to-infinity problem

- Estimated delay as performance criterion
- Node exchanges delay vector with neighbors
- Update routing table based on incoming info
- Doesn't consider line speed, just queue length
- Queue length not a good measurement of delay
- Responds slowly to congestion

Adaptive Routing-3

Link State Routing

- Based on Dijkstra's Shortest Path's Algorithm
- Used in ARPANET from 1979
- Belongs to distributed adaptive algorithm
- Differs from DV as information LSP are exchanged by flooding routers

- Delay as performance criterion
- Node exchanges LSP with all routers
- Each router uses information to compute its shortest path based routing table
- Good performance under light and heavy loads
- Link cost calculations changed after 1987
- Average delay over last 10

Hierarchical Routing

Problem: Too much routing information is required to be stored for each node

 There may be too many nodes for each to have complete routing tables.

Solution: Group nodes into domains which are seen as independent networks

Domains may have further subdomains etc.

Example:

Telephone Numbering system:

Country Code+NSD

Code+ExchangeCode+Tel.

No.

+91-040-2300-1967

Summary

- Issues in routing
 - Cost
 - Decision time and place
- Routing classifications
 - Distributed
 - Central
 - Fixed
 - Adaptive

- Routing algorithms
 - Fixed
 - Flooding
 - Random
 - Adaptive
 - Isolated
 - Distance Vector Routing
 - Link State Routing
 - Hierarchical