

Automated Portable Hammering Machine TA202A: Manufacturing processes II

GROUP NUMBER 8:

- 1. B P HITESH (210252)
- 2. DEEPAK K R (210305)
- 3. DHRUV GARG (210339)
- 4. DWIJA KAKKAD (210367)
- 5. HAVI BOHRA (210429)
- 6. INDRESH RAJESH SINGH (210452)
- 7. POOJA KUMARI (210726)
- 8. RAJVARDHAN VERMA (210819)
- 9. SHARVANI JADHAV (210960)
- 10.SHIV NARAYAN (210978)
- 11. VRINDA SHARMA (211184)

COURSE INSTRUCTOR:

DR. MOHIT LAW

GUIDE:

MR. GIREESH PRATAP

Project Overview

Objective: The aim of the project is to fabricate an automated hammering machine that facilitates fast and safe hammering without much human effort.

Manufacturing: In all, 23 parts were used to make the project, of which 9 were manufactured and the rest were recycled or bought for the complete making of the machine.

Cost: The project cost was estimated to be ₹ 14955/- including labor, machining and material costs.

Improvements: The time between two consecutive strokes of the hammer can be reduced so that time can be saved and other one is apart from the anvil, an elaborate elevation system for the machine can be devised. This will allow us to hammer a wide range of objects with varying sizes.

Table of Contents

Content	Page No.		
Cover Page	1		
Project Overview	2		
Table Of Contents	3		
Isometric Drawing	4		
Sizing of Motor	5-6		
Parts List	7		
Part Drawings	8-18		
Cost Analysis	19		

Sizing of Motor

Moment of Inertia of Shaft-1:

Dimensions:

- Diameter, D = 12.7 mm
- Length, L = 180 mm

Density of material of shaft (mild steel), $\rho = 7860 \, kg/m^3$

Mass of shaft, $M = \pi \rho \frac{D^2 X L}{4} = 0.1792 \, kg$

Moment of inertia, I1 = $\frac{1}{8}$ X M X D^2 = 3.6129 X 10^{-6} kg m^2

Moment of Inertia of Shaft-2:

Same as Shaft - 1

Moment of Inertia of Spur Gear-1 (approximated as a disc):

Dimensions of gear:

- Diameter, D = 83 mm
- Width, W = 10 mm

Dimensions of extension:

- Outer Diameter, d = 25 mm
- Length, l = 25 mm
- Inner Diameter, d2 = 12.7 mm

Density of material of gear (mild steel), ρ = 7860 kg/m^3

Moment of Inertia, I2 = $\pi \rho \frac{(D^4 - d2^4)XW}{32} + \pi \rho \frac{(d^4 - d2^4)Xl}{32} = 3.7305 X 10^{-4} kg m^2$

Moment of Inertia of Spur Gear-2 (approximated as a disc):

Dimensions of gear:

- Diameter, D = 43 mm
- Width, W = 10 mm

Dimensions of extension:

- Diameter, d = 25 mm
- Length, l = 10 mm
- Inner Diameter, d2 = 12.7 mm

Density of material of gear (mild steel), $\rho = 7860 \ kg/m^3$

Moment of Inertia, I3 =
$$\pi \rho \frac{(D^4 - dz^4)XW}{32} + \pi \rho \frac{(d^4 - dz^4)Xl}{32} = 2.8994 X 10^{-5} kg m^2$$

Distances between shafts, d3 = 250mm

Total moment of inertia wrt motor axis (approx.),
$$J = (I3+I1) + (I2+I1+(M+mass of gear 1)Xd3^2) = 3.2607 X 10^{-5} + 1.8710 X 10^{-2} kg m^2$$

= 1.8743 X 10⁻² kg m²

Speed of rotation, V = 75 RPM

Required Torque =
$$\frac{JXV}{9.55 X ta} = \frac{1.8743 X 10^{-2} X 75}{9.55 X 2} = 0.0736 Nm$$

Final torque = Required Torque X FOS = 0.0736 X 2 = 0.1472 N m

The motor provided has a maximum torque rating of 1 Nm and maximum angular velocity rating of 300 RPM. Both of the specifications are being met.

Parts List

Part Name	Quantity	Material	Manufactured / Bought	Machining Operations
Cam disc	1	Mild Steel	M	Drilling + Cutting
Spur gear	2	Mild Steel	M	Turning + Milling
Hammer head	1	Mild steel	M	Turning + Drilling
Hammer handle	1	wood	M	Drilling + Cutting
Anvil	1	Mild steel	M	Cutting
Hammer Slot	1	Mild Steel	M	Drilling + Cutting + Vertical Milling
L support	6	Mild Steel	M	Drilling + Cutting
Rolling Cylinder	1	Mild Steel	M	Drilling + Turning
Anvil Stand	1	Mild Steel	M	Drilling + Cutting
Base plate	1	Mild Steel	В	-
Motor Holder	1	Plastic	M	3-D printing
Shaft	3	Mild Steel	В	Cutting
Motor	1	-	В	-
Arduino	1	-	В	-
Infrared Sensor	1	-	В	-

PARTS LIST						
ITEM QTY PART NUMBER						
1	1 1 collar by havi					
2	1	Spur Gear2				

SPUR GEAR - 1

SPECIFICATION QUANTITY = 1

NUMBER OF TEETH (N) = 40

MODULE (M) = 2

OUTER DIAMETER = M*(N+2) = 2*42 = 84

INDEX CALCULATION = 40/N = 40/40 = 1

MATERIAL: Mild Steel Manufactured traditionally Tolerance: 0.1 mm

Designed by	Checked by	Approved by	Date		Date		
Indresh					13-02-202	23	
			collar_gear_dimension		Edition	Sheet 1 / 1	

PARTS LIST							
ITEM QTY PART NUMBER							
1	1	Spur Gear1					
2	1	collar by havi					

SPUR GEAR - 2

SPECIFICATION QUANTITY = 1

NUMBER OF TEETH (N) = 20

MODULE(M) = 2

OUTER DIAMETER = M*(N+2) = 2*22 = 44

INDEX CALCULATION = 40/N = 40/20 = 2

MATERIAL: Mild Steel Manufactured traditionally

Tolerance: 0.1 mm

Designed by	Checked by	Approved by	Date		Date		
Indresh					13-02-20	23	
			collar_gea	ar_2		Edition	Sheet 1 / 1

MATERIAL: Mild Steel , wood Manufactured traditionally

Tolerance: 0.1 mm

Designed by	Checked by	Approved by	Date	Date	
Indresh				13-02-2023	

Hammer_Assembly_Chacking_Balance_Assembly

MATERIAL: Mild Steel Manufactured traditionally Tolerance: 0.1 mm

Dept.	Technical reference	Created by	Approv	ed by	
		Pooja Kumari 14-04-202	23		
	•	Document type	Docum	ent status	
scale: 1:1		Title	DWG 1	No.	
		Chase rolling Cylinde	er		
			Rev.	Date of issue	Sheet
					1/1

Rev.

Date of issue

Sheet

1/1

MATERIAL: Mild Steel Manufactured traditionally Tolerance: 0.1 mm

Dept. Technical reference Created by Dhruv Garg 12-02-2023

Document type Document status

Title DWG No.

MATERIAL: Mild Steel Manufactured traditionally Tolerance: 0.1 mm

Dept.	Technical reference	Created by		Approve	ed by	
		Dhruv Garg 12-	02-2023			
	•	Document type		Docume	ent status	
		Title		DWG N	0.	
		Baseplate dime	ensions			
				Rev.	Date of issue	Sheet
						1/1

Cost Analysis

Total weight of project = 21.8kg
Weight of steel used = approx. total weight of project
= 21.8kg

1. Cost of Material

Density of mild steel = 7850kg/m³ Cost of mild steel = 100Rs/kg Weight of mild steel used =21.8 kg Total cost of material =Rs. 2180

2. Cost of machining:

Drilling: (6 X 1 hr) X Rs 75/hr = Rs 450
 Milling: 4 hrs X Rs 250/hr = Rs. 1000
 3D printing: 3hrs X Rs. 100/hr = Rs. 300
 Turning: 6 hr X Rs 75/hr = Rs. 450

3. Cost of electric kit = Rs. 1000

4. Labour

Unskilled Labour Rate = Rs. 650/Day = Rs. 81.25/Hr
Hours of Unskilled labour = 6 x 7 x 2 = 84
Unskilled Labour Charge = Rs. 6825
Skilled Labour Rate = Rs. 850/Day = Rs. 106.25/Hr
Hours of Skilled Labour = 6 x 4 x 1 = 24
Skilled Labour Charge = Rs. 2550
Total Labour Cost = Rs. 9375

5. Additional Cost:

Cost of wood = Rs 100
 Cost of nut, bolt etc = Rs 50
 Cost of Sensor = Rs. 50

Total cost of project = Rs. 14955