Lab 3 Report

Jon Bear

October 2024

Rosbag Google Drive Link: https://drive.google.com/drive/folders/11AlkXrp8wsSy8YKRbfoYOfePwz4mimio?usp=sharing

1 Introduction

The purpose of this lab is to understand how to characterize and choose IMU sensors for different robotic applications. In order to do so, we wrote a ROS2 driver for the VectorNav VN-100 IMU and collected 5 hours of data with the IMU stationary.

2 Time-series Readings on the 10 minute dataset

2.1 Accelerometer

Mean: [0.41614433, -0.04168208, -9.71783585] Std Dev: [0.01235747, 0.01204045, 0.01981698]

The distribution of the Accelerometer Readings is normal, with constant accelerations in both the +X and -Z directions, and no acceleration in the Y direction. The +X acceleration is likely due to the rotation of the earth, while the -Z acceleration is due to gravity.

2.2 Angular Rate Gyros

 $\begin{array}{lll} \text{Mean: } [\text{-}4.17073141\text{e-5}, \, 5.28862795\text{e-5}, \, \text{-}1.9370589\text{e-5}] \\ \text{Std Dev: } [0.00060263, \, 0.00065851, \, 0.00066114] \end{array}$

The distribution of data for the angular rate gyros is normal, all with means near 0.

2.3 Orientation

 $\begin{array}{lll} \text{Mean: } [0.00423002,\, 0.04286492,\, 0.44842187] \\ \text{Std Dev: } [0.00017211,\, 0.00027105,\, 0.00072557] \end{array}$

The orienation angle readings are all oscillatory, but also skewed, likely because the IMU took a small amount of time to determine the correct approximate angle readings with oscillatory behavior.

3 Allan Variance Graphs on 5 hour dataset

3.1 Linear Acceleration

10⁻²

10²

10⁴

10⁰

3.2 Angular Velocity

3.3 Magnetic Field

4 Analysis

4.1 What kinds of errors/sources of noise are present?

The sources of noise that are present are Angle Random Walk (aka Noise Density) and the In-Run Bias Stability.

4.2 How do we model them? Where do we measure them? Can you relate your measurements to the datasheet for the VN100?

We can model the Angle Random Walk and In-Run Bias Stability with an Allan Deviation Plot for each directional measurement. As shown in the previous Allan Deviation plots, Angle Random Walk is the slope of the σ_N line, defined by the parameter N. Additionally, the In-Run Bias Stability is defined by the parameter B which is the altitude of the zero-slope line represented by σ_B .

Relating to the datasheet for the VN-100: Accelerometer: B < 0.04mg, $N = 0.14mg/\sqrt{Hz}$ Gyro: $B < 10 \deg/hr$, $N = 0.003 \deg/s/\sqrt{Hz}$

These values align with the B and N parameters derived in each Allan Variation test.