

Pré-Cálculo

Fabricio Alves Oliveira fabricio.oliveira@ifc.edu.br

Apresentação da Disciplina e do Cronograma de Ensino

Disciplina: Pré-Cálculo

Carga Horária: 60 horas

Professor: Fabricio Alves Oliveira (<u>fabricio.oliveira@ifc.edu.br</u>)

Conteúdo Programático

- 1. Conjuntos numéricos e intervalos reais
- 2. Potenciação e Radiciação
- 3. Polinômios
- 4. Produtos notáveis, fatoração de polinômios e expressões fracionárias
- 5. Funções de uma variável real a valores reais
- 6. Função afim, função quadrática e função modular
- 7. Equações e inequações do $1^{\mathbb{Q}}$ grau, $2^{\mathbb{Q}}$ grau e modulares
- 8. Função exponencial
- 9. Função logarítmica
- 10. Trigonometria e funções trigonométricas

Bibliografia Básica

- 1. DEMANA, Franklin D., et al. **Pré-cálculo**. 2. ed. São Paulo: Pearson, 2013. 452 p. ISBN 9788581430966.
- 2. ADAMI, Adriana Miorelli. **Pré-cálculo**. Porto Alegre: Bookman, 2015. [200] p. ISBN 9788582603208.
- 3. SAFIER, Fred. **Pré-cálculo.** 2. ed. Porto Alegre, RS: Bookman, 2011. x, 402 p. Coleção Schaum (Bookman)). ISBN 9788577809264 (broch.).

Bibliografia Complementar

- 1. IEZZI, Gelson; MURAKAMI, Carlos. **Fundamentos de matemática elementar**, 1: conjuntos, funções. 9. ed. São Paulo: Atual, 2013. 410 p.
- 2. IEZZI, Gelson; MURAKAMI, Carlos; DOLCE, Osvaldo. Fundamentos de matemática elementar, 2: logaritmos. 10. ed. São Paulo: Atual, 2013. 218 p.
- 3. IEZZI, Gelson. **Fundamentos de matemática elementar**, 3: trigonometria . 9. ed. São Paulo: Atual, 2013. 311 p. ISBN 9788535716849.
- 4. IEZZI, Gelson. Fundamentos de matemática elementar, 6: complexos, polinômios e equações. 8. ed. São Paulo: Atual, 2013. 250 p. ISBN 9788535717525.
- 5. IEZZI, Gelson; HAZZAN, Samuel. **Fundamentos de matemática elementar**: 4: seqüências, matrizes, determinantes e sistemas. 8. ed. São Paulo: Atual, 2013. 282 p. ISBN 9788535717488.

Materiais de Apoio

- Slides/PDF do professor e listas de exercícios compartilhados no sistema acadêmico (SIGAA).
- Software livre de geometria dinâmica e cálculo simbólico GeoGebra, disponível em: https://www.geogebra.org/download (GeoGebra Clássico 5).

Avaliação

Três provas individuais, sem consulta e dissertativas:

- P_1 (10 pontos) a ser realizada no dia 28/08/2023.
- $\mathbf{P_2}$ (10 pontos) a ser realizada no dia $\mathbf{09/10/2023.}$
- P_3 (10 pontos) a ser realizada no dia 27/11/2023.

Listas de Exercícios (LE) (10 pontos no total)

Média Semestral

- Será utilizada a **média ponderada das três provas e das listas de exercícios** para gerar a média semestral (MS), considerando peso igual a 3 (três) para cada prova e peso igual a 1 (um) para as listas de exercícios.
- Desse modo, a média semestral é calculada por

$$MS = \frac{3P_1 + 3P_2 + 3P_3 + LE}{10}.$$

Observações:

- As provas e as listas de exercícios irão avaliar interpretação e resolução de problemas, aplicação de conceitos e propriedades.
- A segunda chamada de prova deverá ser solicitada na secretária acadêmica, respeitando regras e prazos estipulados no PPC do curso.

Aprovação

Será considerado aprovado o discente que:

- tiver frequência igual ou superior a 75% (setenta e cinco por cento); e
- média semestral (MS) igual ou superior a 7,0 (sete), com a oferta de exame final.

Exame Final: 18/12/2023

Observação: A média final para aprovação, na ocasião da realização do exame final será igual a divisão por 2 da soma das média do período com a nota obtida no exame final. Para considerar aprovação, a nota final deverá ser superior ou igual a 5,0, ou seja,

Média Final =
$$\frac{\text{Média do Período + Nota do Exame Final}}{2} \ge 5.0.$$

Horário de Atendimento Docente

• Dias e horários:

• Segunda e Quinta: 17:00 às 18:30

• Sala: 13.

1- Conjuntos, Conjuntos Numéricos e Intervalos Reais

Conjuntos

Na teoria dos conjuntos três noções são aceitas sem definição, isto é, são consideradas **noções** primitivas:

- i. conjunto;
- ii. elemento;
- iii. pertinência entre elemento e conjunto.

Noção intuitiva de conjunto: agrupamento ou coleção de objetos.

Exemplos:

- (a) conjunto das vogais:
 - {*a*, *e*, *i*, *o*, *u*}
 - $\{x | x \text{ \'e uma vogal}\}$
- (b) conjunto dos números ímpares positivos:
 - {1,3,5,7,9,11,13,...}
 - $\{x | x \text{ \'e um n\'umero \'impar positivo}\}$

Usualmente, indicamos um conjunto com uma letra maiúscula, A, B, C, ..., e um elemento com uma letra minúscula, a, b, c, d, x, y,

Relação de Pertinência

Sejam A um conjunto e x um elemento.

- Para indicar que x é elemento do conjunto A, escrevemos $x \in A$.
- Para indicar que x não é elemento do conjunto A, escrevemos $x \notin A$.

É também comum representar um conjunto utilizando **diagramas de Euler-Venn**. Na representação a seguir, temos:

Conjuntos Notáveis

(1) Conjunto unitário: possui um único elemento.

Exemplos:

- (a) conjunto dos divisores de 1, inteiros e positivos: {1}
- (b) conjunto das soluções da equação 3x + 1 = 10: {3}

(2) Conjunto vazio: não possui elemento algum.

O conjunto vazio e definido por meio de uma propriedade contraditória, isto é, uma afirmação que é sempre falsa, não podendo ser satisfeita por objeto algum.

Representação do conjunto vazio: Ø ou {}

Exemplos:

- (a) $\{x | x \neq x\} = \emptyset$
- (b) $\{x | x > 0 \text{ e } x < 0\} = \emptyset$
- (3) Conjunto universo *U*: é o "maior" conjunto do qual podem ser retiradas as respostas de um certo problema.

Exemplos:

- (a) se procuramos as soluções reais de uma equação, nosso conjunto universo é \mathbb{R} (conjunto dos números reais);
- (b) se estamos resolvendo um problema cuja solução vai ser um número inteiro, nosso conjunto universo é Z (conjunto dos números inteiros);
- (c) se estamos resolvendo um problema de Geometria Plana, nosso conjunto universo é um certo plano α .

Observação: Quase sempre a resposta para algumas questões depende do universo U em que estamos trabalhando. Considere a questão:

"Qual é o conjunto dos pontos P que ficam a igual distância de dois pontos dados A e B, com $A \neq B$?"

(i) Se U é a reta AB, então o conjunto procurado é formado apenas pelo ponto P (ponto do médio do segmento de extremidades A e B)

(ii) Se U é um plano contendo A e B, o conjunto procurado é a reta mediatriz do segmento AB.

(iii) Se U é o espaço, o conjunto procurado é o plano mediador do segmento AB (plano perpendicular a AB no seu ponto médio).

Desse modo, sempre que descrevermos um conjunto através de uma propriedade, é essencial informar o conjunto universo em que estamos trabalhando:

 $\{x \in U \mid x \text{ satisfaz determinada propriedade}\}.$

Subconjuntos

Um conjunto A é **subconjunto** de um conjunto B quando todo elemento de A pertence também a B.

Notação: $A \subseteq B$ (A está contido em B)

Em símbolos, a definição acima fica:

$$A \subset B \Leftrightarrow (\forall x \in A \Rightarrow x \in B).$$

Exemplos:

- (a) $\{a,b\} \subset \{a,b,c,d\}$
- (b) $\{x | x \text{ \'e inteiro e par}\} \subset \{x | x \text{ \'e inteiro}\}$

Observações:

- (i) O símbolo ⊂ é chamado **sinal de inclusão**.
- (ii) Quando $A \subset B$ também podemos escrever $B \supset A$ (B contém A).
- (iii) A notação $A \not\subset B$ indica que A não está contido em B. Evidentemente, isso ocorre se existe ao menos um elemento de A que não pertence a B.

Igualdade entre Conjuntos

Dois conjuntos são **iguais** quando possuírem os mesmos elementos. Assim, a igualdade entre dois conjuntos ocorre quando todo elemento do primeiro for também elemento do segundo e, reciprocamente, qualquer elemento do segundo pertencer ao primeiro. Desse modo, podemos escrever:

$$A = B \Leftrightarrow A \subset B \in B \subset A$$
.

Assim, para provarmos que A = B, devemos provar que $A \subseteq B$ e $B \subseteq A$.

Propriedades da Inclusão

Sejam A, B e C três conjuntos. Então:

$$(i) \emptyset \subset A$$

(ii)
$$A \subset A$$
 (reflexiva)

(iii)
$$A \subset B \in B \subset A \Rightarrow A = B$$
 (antissimétrica)

(iv)
$$A \subset B \in B \subset C \Rightarrow A \subset C$$
 (transitiva)

Operações entre Conjuntos

(1) União

Dados dois conjuntos A e B, chama-se **união** de A e B o conjunto formado pelos elementos que pertencem a A ou a B.

$$A \cup B = \{x | x \in A \text{ ou } x \in B\}.$$

O conjunto $A \cup B$ é formado pelos elementos que pertencem a pelo menos um dos conjuntos $A \in B$.

(a)
$$\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$$

(b)
$$\{a, b, c\} \cup \emptyset = \{a, b, c\}$$

Propriedades da União

Sejam $A, B \in \mathcal{C}$ três conjuntos. Então:

(i)
$$A \cup A = A$$
 (idempotente)

(ii)
$$A \cup \emptyset = A$$
 (elemento neutro)

(iii)
$$A \cup B = B \cup A$$
 (comutativa)

(iv)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 (associativa)

(2) Intersecção

Dados dois conjuntos $A \in B$, chama-se **intersecção** de $A \in B$ o conjunto formado pelos elementos que pertencem a $A \in B$.

$$A \cap B = \{x | x \in A \in x \in B\}.$$

O conjunto $A \cap B$ é formado pelos elementos que pertencem aos conjuntos A e B simultaneamente.

- (a) $\{a, b, c\} \cap \{b, c, d, e\} = \{b, c\}$
- (b) $\{a,b\} \cap \emptyset = \emptyset$

Propriedades da Intersecção

Sejam $A, B \in \mathcal{C}$ três conjuntos. Então:

- (i) $A \cap A = A$ (idempotente)
- (ii) $A \cap U = A$ (elemento neutro)
- (iii) $A \cap B = B \cap A$ (comutativa)
- (iv) $(A \cap B) \cap C = A \cap (B \cap C)$ (associativa)

Quando $A \cap B = \emptyset$, isto é, quando A e B não tem elementos em comum, são chamados de conjuntos disjuntos.

Propriedades envolvendo união e intersecção

Sejam A, B e $\mathcal C$ três conjuntos. Então:

$$(\mathbf{i})\ A\cup (A\cap B)=A$$

$$(\mathbf{ii})\ A\cap (A\cup B)=A$$

(iii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributiva da união em relação à intersecção)

$$(iv) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (distributiva da intersecção em relação à união

(3) Diferença

Dados dois conjuntos A e B, chama-se **diferença** de A e B o conjunto formado pelos elementos de A que não pertencem a B.

$$A - B = \{x | x \in A \in x \notin B\}.$$

(a)
$$\{a,b,c\} - \{b,c,d,e\} = \{a\}$$

(b)
$$\{a, b\} - \{a, b, c, d, e\} = \emptyset$$

Propriedades da Diferença

Sejam A e B conjuntos quaisquer. Então são válidas as seguintes propriedades:

(i)
$$A - A = \emptyset$$

(ii)
$$A - \emptyset = A$$
 (elemento neutro)

(iii)
$$A - (A \cap B) = A - B$$

(iv)
$$A - B = \emptyset \Leftrightarrow A \subset B$$

(4) Complementar

Sejam A e B dois conjuntos quaisquer satisfazendo a relação $B \subset A$. Denomina-se **complementar de** B em relação a A o conjunto dos elementos que se devem acrescentar a B para que ele se transforme em A. Em termos mais precisos, o complementar de B em relação a A, representado por C_A^B , está definido somente quando $B \subset A$, e nesse caso será igual a

$$\mathsf{C}_A^B = A - B.$$

Outras notações: \bar{B} , B^{C}

Exemplos:

(a) Se
$$A = \{a, b, c, d, e\} \in B = \{c, d, e\}$$
, então $C_A^B = \{a, b\}$.

(b) Se
$$A = B$$
, então $C_A^B = \emptyset$.

(c) Se
$$A = \{a, b, c, d\}$$
 e $B = \emptyset$, então $C_A^B = \{a, b, c, d\} = A$.

(d) Se $A = \{a, b\}$ e $B = \{c, d\}$, então C_A^B não está definido, pois $B \not\subset A$.

Propriedades da complementação

Sendo B e C subconjuntos de A, valem as seguintes propriedades:

(i)
$$C_A^B \cap B = \emptyset$$
 e $C_A^B \cup B = A$

(ii)
$$C_A^A = \emptyset$$
 e $C_A^\emptyset = A$

(iii)
$$C_A(C_A^B) = B$$

$$(iv) B - C = B \cap C_A^C$$

Leis de De Morgan:

$$(\mathbf{v})\ \mathsf{C}_A^{(B\cap C)} = \mathsf{C}_A^B \cup \mathsf{C}_A^C\ (\overline{B\cap C} = \overline{B} \cup \overline{C})$$

$$(\mathbf{vi})\ \mathsf{C}_A^{(B\cup C)} = \mathsf{C}_A^B \cap \mathsf{C}_A^C\ (\overline{B\cup C} = \overline{B}\cap \overline{C})$$

Exercícios

(1) Se $A = \{0, 1, 2, 3\}$, diga se é verdadeiro ou falso.

(a) $1 \in A$;

(b) $4 \in A$;

(c) $2 \notin A$;

(d) $5 \notin A$;

(e) $1 \subset A$;

(f) $\{1\} \subset A$;

(g) $\{1,3\} \subset A$;

(h) $\emptyset \subset A$;

(i) $A \not\subset A$;

(j) $\{1, 2, 3, 4\} \subset A$; (k) $\{2, 5, 6\} \not\subset A$;

(1) $\{0,5\} \subset A$;

Solução:

(a) V

(b) F

(**c**) F

(d) V

(**e**) F

(**f**) V

 $(\mathbf{g}) V$

(h) V

(**i**) F

(**j**) F

(**k**) V

(l) F

(2) Considere $A = \{0, 1, 2, 3, 4, 5, 6\}$ e $B = \{1, 2, 3, 4, 6, 8, 9\}$. Determine, por enumeração, os conjuntos:

(a) $A \cap B$;

(b) $A \cup B$;

(c) A - B;

(d) B - A.

Solução: Temos que:

(a)
$$A \cap B = \{1, 2, 3, 4, 6\}$$

(b)
$$A \cup B = \{0, 1, 2, 3, 4, 5, 6, 8, 9\}$$

(c)
$$A - B = \{0, 5\}$$

(d)
$$B - A = \{8, 9\}$$

(3) No diagrama de Euler a seguir, cada região foi denominada com um número entre parênteses. Indicar as regiões que determinam:

(a) $A \cap B$;

(b) $A \cup B$; **(c)** A - B;

(d) \overline{A} ;

(e) \overline{B} ;

(f) $\overline{A \cap B}$;

(g) $\overline{A \cup B}$;

(h) $\overline{A-B}$;

(i) $\overline{B-A}$.

Solução:

(a) (1)

(b) (1), (2), (3)

(c) (2)

 (\mathbf{d}) (1), (3), (4)

(e) (1), (2), (4)

 (\mathbf{f}) (2), (3), (4)

(g) (4)

 (\mathbf{h}) (1), (3), (4)

(i) (1), (2), (4)

- (4) Em um grupo de 29 pessoas, sabe-se que 10 são sócias de um clube A, 13 são sócias de um clube B e 6 são sócias de ambos.
- (a) Quantas pessoas do grupo não são sócias de A nem de B?
- (b) Quantas pessoas do grupo são sócias apenas do clube A?
- (c) Quantas pessoas do grupo são sócias de A ou de B?

Solução: Considere o diagrama a seguir.

- Como 6 pessoas são sócias de ambos os clubes, então na intersecção de A e B deve conter 6 pessoas.
- Como A possui 10 sócios e já contabilizamos 6, faltam 4 pessoas.
- Como B possui 13 sócios e já contabilizamos 6, faltam 7 pessoas.
- Por fim, como o grupo contém 29 pessoas e já foram contabilizadas 4+6+7=17 pessoas, restam 12 pessoas.

Desse modo, as respostas dos itens são:

(a) 12 pessoas

(b) 4 pessoas

(c) 17 pessoas

(5) Foi feita uma pesquisa a respeito de três marcas de sabão em pó: $A, B \in \mathcal{C}$. Os resultados são mostrados na tabela a seguir.

Marca	Α	В	С	AeB	BeC	CeA	A, B e C	Nenhuma das três
Número de consumidores	109	203	162	25	41	28	5	115

Determine:

- (a) o número de pessoas consultadas;
- (\mathbf{b}) o número de pessoas que só consomem a marca A;
- (\mathbf{c}) o número de pessoas que não consomem as marcas A ou C;
- (d) o número de pessoas que consomem ao menos duas marcas.

Solução:

Dos dados da tabela, obtemos o diagrama ao lado.

De acordo com o diagrama, temos que:

(a) o número de pessoas consultadas:

$$61+20+5+23+36+142+98+115=500$$
 pessoas.

(b) o número de pessoas que só consomem a marca A:

(c) o número de pessoas que não consomem as marcas A ou C:

(d) o número de pessoas que consomem ao menos duas marcas:

$$20+23+36+5=84$$
 pessoas

Conjuntos Numéricos

Vamos recordar a seguir os conjuntos numéricos e algumas propriedades dos números reais.

Conjunto dos **números naturais**:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}.$$

Conjunto dos **números inteiros**:

$$\mathbb{Z} = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}.$$

Subconjuntos importantes de Z:

• Números Pares:

$$P = \{2k: k \in \mathbb{Z}\} = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$$

• Números Ímpares:

$$I = \{2k + 1: k \in \mathbb{Z}\} = \{\dots, -7, -5, -3, -1, 1, 3, 5, 7, \dots\}$$

• Números Primos:

Números inteiros n, com $n \neq 0$ e $n \neq \pm 1$, que são divisíveis apenas por ± 1 e $\pm n$.

$$\mathcal{F} = \{\dots, -19, -17, -13, -11, -7, -5, -3, -2, 2, 3, 5, 7, 11, 13, 17, 19, \dots\}$$

Dois números inteiros não nulos são chamados de **primos entre si** quando os únicos divisores comuns entre eles são ± 1 (equivale a dizer que eles não possuem fatores primos em comum).

Conjunto dos **números racionais**:

$$\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ e } b \neq 0 \right\}.$$

- Em $\frac{a}{b}$, a é chamado numerador e b denominador.
- Todo número inteiro $a \in \mathbb{Z}$ é um número racional, pois $a = \frac{a}{1} \in \mathbb{Q}$.
- O número $\frac{1}{b}$, com $b \neq 0$, é chamado **inverso** de b.

Operações em \mathbb{Q} :

$$(\mathbf{i}) \; \frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$

$$(\mathbf{ii}) \; \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

(iii)
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Exemplos:

a)
$$\frac{2}{3} + \frac{8}{3}$$

b)
$$\frac{1}{3} - \frac{4}{5}$$

c)
$$\frac{3}{7} \cdot \left(-\frac{2}{8}\right)$$

d)
$$-\frac{3}{4} \div \frac{1}{5}$$

Observações:

(1) Em Q temos a seguinte relação de equivalência

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc.$$

Por exemplo, $q = \frac{3}{6} = \frac{1}{2}$, pois, 3.2 = 6.1.

- Desta forma, sempre é possível escrever um número racional não nulo em forma de uma fração simplificada.
- Neste caso, dizemos que o número racional está escrito em sua forma irredutível.

No exemplo acima, $q = \frac{1}{2}$ está na forma irredutível e $q = \frac{3}{6}$ não está na forma irredutível.

(2) Todo número racional pode ser escrito na forma de decimal, sendo esta forma "finita" ou "infinita" formando uma dízima periódica. Por exemplo,

$$\frac{1}{2} = 0.5$$
 $\frac{7}{8} = 0.875$ $\frac{1}{3} = 0.3333 \dots$ $\frac{41}{333} = 0.123123123 \dots$

(3) Existem números que não podem ser escritos em forma de fração. Tais números possuem representação decimal infinita e *não periódica* e são chamados de **números irracionais.**Por exemplo, são números irracionais:

$$\sqrt{2} = 1,4142135 \dots$$
 $\pi = 3,141592 \dots$ $\sqrt{3} = 1,7320508 \dots$ $e = 2,7182818 \dots$ \sqrt{p} , sendo p um número primo

Curiosidade!

O número $\sqrt{2}$ foi um dos primeiros a ser reconhecido como irracional. Os matemáticos da Grécia Antiga conheciam apenas os números inteiros e as frações. Após o surgimento do Teorema de Pitágoras, os pitagóricos tentaram calcular a diagonal de um quadrado de lado 1, dando origem a raiz quadrada de dois.

Exercícios

(1) Prove que $\sqrt{2}$ é um número irracional.

Solução:

Suponhamos, por absurdo, que $\sqrt{2}$ seja racional, ou seja, $\sqrt{2} = \frac{p}{q}$, com $p, q \in \mathbb{Z}, q \neq 0$ e p, q primos entre si, ou seja, a fração é irredutível.

Veja que:

$$\sqrt{2} = \frac{p}{q} \implies 2 = \frac{p^2}{q^2} \implies p^2 = 2q^2 \implies p^2 \text{ \'e par } \implies p \text{ \'e par } \implies p = 2a.$$

De $\sqrt{2} = \frac{p}{q}$, temos

$$\sqrt{2} = \frac{2a}{q} \Rightarrow 2 = \frac{(2a)^2}{q^2} \Rightarrow 2q^2 = 4a^2 \Rightarrow q^2 = 2a^2 \Rightarrow q^2 \text{ \'e par } \Rightarrow q \text{ \'e par } \Rightarrow q = 2b.$$

Logo, p e q não são primos entre si, pois possuem o fator 2 em comum. Absurdo com a hipótese de p e q serem primos entre si.

Assim, $\sqrt{2}$ não pode ser um número racional e, portanto, deve ser um número irracional.

(2) Escreva os números racionais abaixo em forma de fração (determine a fração geratriz):

(a) 0.32

(b) 0,888 ...

(c) 0,18555 ... (d) 0,999 ...

Solução:

(a)
$$0.32 = \frac{32}{100} = \frac{8}{25}$$
.

(b) Faça

$$x = 0.888 \dots$$
 (I)

$$10x = 8,888 \dots$$
 (II)

Fazendo (II)-(I), obtemos:

$$9x = 8 \Rightarrow x = \frac{8}{9}.$$

Logo, $0.888 \dots = \frac{8}{9}$.

(c) Temos que

$$x = 0.18555 \dots (I)$$

$$100x = 18,555 \dots$$
 (II)

$$1000x = 185,555 \dots (III)$$

Fazendo (III)-(II), obtemos:

$$900x = 167 \Rightarrow x = \frac{167}{900} \, .$$

Logo, $0.18555 \dots = \frac{167}{900}$.

(d) Temos que

$$x = 0.999 \dots$$
 (I)
 $10x = 9.999 \dots$ (II)

Fazendo (II)-(I), obtemos:

$$9x = 9 \Rightarrow x = 1$$
.

Portanto, 0.999 ... = 1.

Conjunto dos **números reais**:

Formado pela união do conjunto dos números racionais e irracionais, ou seja,

 $\mathbb{R} = \{x : x \text{ \'e racional ou } x \text{ \'e irracional}\}.$

Observações:

(1) É claro que valem as seguintes inclusões:

(2) É comum representarmos o conjunto dos números reais através da **reta real.** Podemos associar cada número real a um único ponto da reta e vice-versa.

Proposição: Entre dois números reais distintos quaisquer, existe uma infinidade de números racionais e irracionais.

Propriedades dos Números Reais

Propriedades Básicas:

Com relação a adição usual em \mathbb{R} :

```
• Propriedade associativa: (a + b) + c = a + (b + c), \forall a, b, c \in \mathbb{R};
```

- Propriedade comutativa: a + b = b + a, $\forall a, b \in \mathbb{R}$;
- Elemento neutro aditivo: Existe um único número $0 \in \mathbb{R}$ tal que $\alpha + 0 = \alpha$, $\forall \alpha \in \mathbb{R}$;
- Elemento oposto: Para cada $\alpha \in \mathbb{R}$, existe um único $-\alpha \in \mathbb{R}$ tal que $\alpha + (-\alpha) = 0$.

Com relação a multiplicação usual em R:

- Propriedade associativa: (ab) c = a (bc), $\forall a, b, c \in \mathbb{R}$;
- Propriedade comutativa: $ab = ba, \forall a, b \in \mathbb{R}$;
- Elemento neutro multiplicativo: Existe um único número $1 \in \mathbb{R}$ tal que $\alpha.1 = \alpha$, $\forall \alpha \in \mathbb{R}$;
- Elemento inverso: Para cada $\alpha \in \mathbb{R}$, $\alpha \neq 0$, existe um único $\alpha^{-1} \in \mathbb{R}$ tal que $\alpha(\alpha^{-1}) = 1$.

Propriedades dos Números Reais

Consequências das Propriedades Básicas:

Com relação a adição e a multiplicação usuais em R:

• Propriedade distributiva: Se $a, b, c \in \mathbb{R}$, então a(b+c) = ab + ac e (b+c) a = ba + ca.

• Regra da "balança" aditiva: Se $a, b \in \mathbb{R}$ são tais que a = b, então a + c = b + c para qualquer $c \in \mathbb{R}$.

• Regra da "balança" multiplicativa: Se $a, b \in \mathbb{R}$ são tais que a = b, então ac = bc para qualquer $c \in \mathbb{R}$.

• Lei do cancelamento aditiva: Se $a, b, c \in \mathbb{R}$ são tais que a + c = b + c, então a = b.

• Lei do cancelamento multiplicativa: Se $a, b, c \in \mathbb{R}$ são tais que ac = bc e $c \neq 0$, então a = b.

• Lei de anulamento 1: Se $\alpha \in \mathbb{R}$, então $\alpha 0 = 0\alpha = 0$.

• Lei de anulamento 2: Se $a, b \in \mathbb{R}$ são tais que ab = 0, então a = 0 ou b = 0.

• Regra de sinais multiplicativa 1: Se $\alpha \in \mathbb{R}$, então $-(-\alpha) = \alpha$.

• Regra de sinais multiplicativa 2: Se $a, b \in \mathbb{R}$, então -ab = a(-b) = -(ab).

• Regra de sinais multiplicativa 3: Se $a, b \in \mathbb{R}$, então (-a)(-b) = ab.

Propriedades envolvendo desigualdades

Sejam $a, b \in c$ números reais. Então:

(i) a < b se, e somente se, a + c < b + c para qualquer c real. Em símbolos:

$$a < b \Leftrightarrow a + c < b + c$$

(ii) a < b se, e somente se, ac < bc para qualquer c > 0 positivo. (Observe que a desigualdade <u>não muda</u> de sentido)

(iii) a < b se, e somente se, ac > bc para qualquer c < 0 negativo. (Observe que a desigualdade \underline{muda} de sentido)

Em símbolos:

$$a < b \Leftrightarrow \begin{cases} ac < bc, se c > 0 \\ ac > bc, se c < 0 \end{cases}$$

Resultados análogos valem quando trocamos o símbolo de desigualdade < por \le , ou por >, ou por \ge .

Intervalos

Intervalos limitados de números reais

Os números a e b são os **extremos** de cada intervalo.

Sejam a e b números reais com a < b.

Notação de intervalo	Tipo de intervalo	Notação de desigualdade	Representação gráfica
[a,b]	Fechado	$a \le x \le b$	a b
]a, b[Aberto	a < x < b	$a \qquad b$
[a, b[Fechado à esquerda e aberto à direita	$a \le x < b$	$a \qquad b$
]a,b]	Aberto à esquerda e fechado à direita	$a < x \le b$	$a \qquad b$

T . 1		~	7.1		-	,	
Interval	OS 1	nao	lım	itados	de	numer	os reais

Sejam a e b números reais.

Notação de intervalo	Tipo de intervalo	Notação de desigualdade	Representação gráfica			
$[a, +\infty[$	Fechado	$x \ge a$	$\stackrel{\longleftarrow}{a}$			
$]a, +\infty[$	Aberto	x > a	← ○			
$]-\infty,b]$	Fechado	$x \le b$	<i>a</i> →			
$]-\infty, b[$	Aberto	x < b	<i>b</i>			
Cada intervalo tem exatamente um extremo, que é a ou b .						

Observações:

(1) Para representar intervalos abertos, pode-se usar também parênteses em vez de colchetes. Por exemplo:

$$]a,b]=(a,b].$$

(2) Os símbolos de $+\infty$ e $-\infty$ não são números reais, apenas fazem parte das notações dos intervalos ilimitados.

Exemplo: Considere os intervalos

$$A = \{x \in \mathbb{R}: -1 \le x < 3\}, B = \{x \in \mathbb{R}: x > 1\} \in C =]-\infty, 2].$$

Determinar $A \cap B$, $B \cap C$, $A \cup B \in A \cup B \cup C$.

Solução: A representação geométrica de $A, B \in \mathcal{C}$ é dada por: Logo,

$$A \cap B =]1, 3[= \{x \in \mathbb{R} \mid 1 < x < 3\}$$

$$B \cap C =]1, 2] = \{x \in \mathbb{R} \mid 1 < x \le 2\}$$

 $\bullet \ \mathsf{A} \cup \mathsf{B}$

 $A \cup B = [-1, +\infty[= \{x \in \mathbb{R} \mid x \geqslant -1\}$

 \bullet A \cup B \cup C

$$A \cup B \cup C =]-\infty, +\infty[= \mathbb{R}$$

Exercícios

Represente graficamente cada um dos seguintes intervalos:

a)]-3, 5] c)
$$\left[\frac{7}{5}, +\infty\right[$$
 e) [-1, 1[

b)
$$\left] -\infty, \frac{2}{3} \right[$$
 d)]0, 2[**f)**] $\sqrt{2}$, 5[

f)
$$]\sqrt{2}$$
, 5

Descreva, por meio de uma propriedade característica, cada um dos conjuntos representados a seguir:

- (3) Sejam $A = \{x \in \mathbb{R} \mid x > 2\} \in B = \left] -3, \frac{4}{3} \right]$. Determine:
- (a) $A \cup B$
- (b) $A \cap B$
- $(\mathbf{c}) A B$
- (d) B A