Mobile Robotics - Übungsblatt 10

11. Juli 2012

Stefan Wrobel, Viktor Kurz {wrobels,kurzv}@informatik.uni-freiburg.de

Aufgabe 1:

(a) Office

	sonar	laser	monocular vision	stereo vision
Lampen an der Decke	+	+	+	+
Schreibtischstühle	-	-	+	+
Türen	+	+	+	++
Fenster	-	-	+	++
Säule	++	++	+	+

(b) Outdoor

	sonar	laser	monocular vision	stereo vision
Bäume	-	+	+	+
Schilder	+	++	+	++
Gebäude	+	+	++	++

(c) Underwater

	sonar	laser	monocular vision	stereo vision
Felsen	+	+	-	-
Bojen	+	+	+	+
Unterwasserkabel	-	-	+	+
Pflanzen	-	-	+	+

Aufgabe 2:

Wird nur die Richtung wahrgenommen, in der sich eine Landmarke befindet, dann kann diese theoretisch überall auf der Strecke zwischen der Position des Roboters und der maximal messbaren Distanz des Roboters in der gemessenen Richtung liegen. Dazu kommt noch die Ungenauigkeit der gemessenen Richtung. Bei großer Messreichweite ergibt sich also eine recht große Fläche, in der sich die gemessene Landmarke befinden kann. Bei nur einer gemessenene Landmarke wäre eine denkbare Initialisierung, als Erwartungswert den Punkt nach der halben Strecke der maximal messbaren Distanz vom Punkt des Roboters aus in Richtung der Messung in Betracht zu ziehen. Die Varianz in Richtung dieser Strecke muss recht groß sein, die "seitliche Varianz" ist abhängig von der Genauigkeit des Sensors.

Werden mindestens zwei Landmarken gemessen und die Zurodnung ist bekannt, so kann die Position des Roboters relativ zu den Landmarken näherungsweise ermittelt werden. Dadurch lässt sich die Position der Landmarken relativ zum Roboter festlegen. Die Varianz hängt dann von der Genauigkeit des Sensors ab.

Aufgabe 3:

(a)

Mögliche Zuweisungen der Features z_t^1 und $z_t^2\colon$

		0
#	z_t^1	z_t^2
1	new feature	new feature
2	false alarm	new feature
3	l_1	new feature
4	l_2	new feature
5	new feature	false alarm
6	false alarm	false alarm
7	l_1	false alarm
8	l_2	false alarm
9	new feature	l_1
10	false alarm	l_1
11	l_2	l_1
12	new feature	l_2
13	false alarm	l_2
14	l_1	l_2

(b)

#	remaining features	$\#$ possible assignments of z_{t+1}^1 (= $\#$ features, false alarm, new feature)
1	l_{3}, l_{4}	4
2	l_4	3
3	l_1, l_4	4
4	l_{2}, l_{4}	4
5	l_3	3
6	-	2
7	l_1	3
8	l_2	3
9	l_1, l_3	4
10	l_1	3
11	l_1, l_2	4
12	l_{2}, l_{3}	4
13	l_2	3
14	l_{1}, l_{2}	4