Devoir surveillé n°7 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Étude de deux suites récurrentes.

Remarque importante : Les parties I et II sont indépendantes. La partie III peut-être traitée seule, en acceptant les résultats des questions 6) et 7). La partie IV utilise toutes les parties précédentes.

* * *

Soit S l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, \ u_{n+2} = (n+1)u_{n+1} + u_n.$$
 (*)

On considère les deux suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ de S définies par :

$$\begin{cases} x_0 = 1 \\ x_1 = 0 \end{cases} \text{ et } \begin{cases} y_0 = 0 \\ y_1 = 1 \end{cases}.$$

I: Étude de l'ensemble S

- 1) Montrer que S est un \mathbb{R} -espace vectoriel.
- 2) Soit α et β des réels.
 - a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ u_n=\alpha x_n+\beta y_n$ est élément de S.
 - b) Précisez les deux premiers termes de $(u_n)_{n\in\mathbb{N}}$ en fonction de α et β .
- 3) Réciproquement, soit $(u_n)_{n\in\mathbb{N}}\in S$. Soient α et $\beta\in\mathbb{R}$. On pose, pour tout $n\in\mathbb{N}, v_n=\alpha x_n+\beta y_n$.
 - a) Comment faut-il choisir α et β pour avoir $u_0 = v_0$ et $u_1 = v_1$?
 - **b)** Montrer par récurrence qu'avec ce choix de α et β on a $\forall n \in \mathbb{N}$, $u_n = v_n$.
- 4) Que peut-on donc en déduire de la famille $((x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}})$ vis-à-vis de S?

II : Convergence des suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$

- 5) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de S. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge.
 - a) Montrer qu'alors $nu_n \xrightarrow[n \to +\infty]{} 0$.
 - **b)** Quelle est la limite de $(u_n)_{n\in\mathbb{N}}$?
- **6)** Montrer que $x_n \xrightarrow[n \to +\infty]{} +\infty$.
- 7) Que dire de la nature de la suite (y_n) ?

III : Comportement relatif des deux suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$

On considère les suites $(u_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de termes généraux suivants :

$$w_n = x_{n+1}y_n - x_ny_{n+1}, \ z_n = \frac{x_n}{y_n}, \ a_n = z_{2n} \ \text{et} \ b_n = z_{2n+1}.$$

- 8) Montrer que $\forall n \in \mathbb{N}, w_n = (-1)^{n+1}$.
- 9) Montrer que $(a_n)_{n\in\mathbb{N}}$ est décroissante.
- **10)** De même, montrer que $(b_n)_{n\in\mathbb{N}}$ est croissante.
- **11)** Montrer que $\forall n \geqslant 1$, $a_n b_n = -\frac{w_{2n}}{y_{2n} y_{2n+1}}$.
- 12) Quelle est la limite de la suite de terme général $a_n b_n$?
- **13)** Que peut-on dire de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$?
- **14)** Montrer que la suite $(z_n)_{n\in\mathbb{N}}$ est convergente. On note θ sa limite. Montrer que $\theta > 0$.
- 15) Donner un encadrement de θ à l'aide de a_n et b_n . En déduire que

$$\forall n \ge 2, \ |z_n - \theta| \le \frac{1}{y_n y_{n+1}}.$$

IV: Étude asymptotique des suites de S

On pose pour tout $n \in \mathbb{N}$: $\varepsilon_n = x_n - \theta y_n$.

- **16)** Montrer que $(\varepsilon_n)_{n\in\mathbb{N}}$ est élément de S.
- 17) Montrer que $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$.
- **18)** Soit $(u_n)_{n\in\mathbb{N}}$ une suite de S. Écrire u_n en fonction de $y_n, \varepsilon_n, u_0, u_1$.

- 19) Préciser le comportement en $+\infty$ de la suite $(u_n)_{n\in\mathbb{N}}$ suivant les valeurs de u_0 et u_1 .
- **20)** On revient à la suite $(\varepsilon_n)_{n\in\mathbb{N}}$.

Montrer $\varepsilon_n = o(1/n)$.

Puis, montrer : $\varepsilon_n = o(1/n^2)$.

Plus généralement, montrer : $\varepsilon_n = o(1/n^p)$ pour tout entier naturel p.

II. Étude d'un endomorphisme.

Soit $g: \mathbb{R}^2 \to \mathbb{R}^2$. On note Id l'application identité de \mathbb{R}^2 . $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -2x & + & y \\ x & - & 2y \end{pmatrix}$

- 1) Démontrer que g est un endomorphisme de \mathbb{R}^2 .
- 2) L'endomorphisme g est-il un automorphisme? Si c'est le cas, donner sa réciproque.
- 3) Déterminer l'expression de $g^2 + 4g + 3Id$.
- 4) En déduire l'existence de deux réels α et β tels que $(g \alpha Id) \circ (g \beta Id) = 0$. On choisira $\alpha < \beta$.
- 5) On pose $G_{\alpha} = \text{Ker}(g \alpha \text{Id})$ et $G_{\beta} = \text{Ker}(g \beta \text{Id})$. Donner une base de G_{α} et de G_{β} .
- **6)** Montrer que G_{α} et G_{β} sont supplémentaires dans \mathbb{R}^2 .
- 7) Donner l'expression de p, projection sur G_{α} parallèlement à G_{β} , et de q, projection sur G_{β} parallélement à G_{α} .
- 8) Montrer que p + q = Id, que $p \circ q = q \circ p = 0$.
- 9) Montrer que $\alpha p + \beta q = g$.
- **10)** Pour tous $a, b, c, d \in \mathbb{R}$, calculer $(ap + bq) \circ (cp + dq)$.
- 11) Déterminer l'endomorphisme g^n pour tout $n \in \mathbb{Z}$.

— FIN —