Home Credit Default Risk

Group 13 (Phase - 3)

William Cutchin
wcutchin@iu.edu

Krisha Mehta
krimeht@iu.edu

Kunal Mehra

<u>kumehra@iu.edu</u>

Kalyani Malokar kmalokar@iu.edu

Outline:

- Project Description
- Summary Visual EDA
- Feature Engineering and Top Features
- ML Pipeline
- Overview of Modeling
- Results and discussion of results
- Conclusion and next steps

Project Description

- Home Credit Group looks to use alternative data that will help them decide if they are able to lend to these individuals and to predict their client's repayment abilities.
- Here we are using various machine learning and statistical models like Logistic
 Regression and Random Forest Classifier and Decision Tree to get these predictions.
- Our goal in this phase is to use a Neural Network Model using Pytorch for loan default classification.
- Use Tensor board to visualize the results of training and modeling

Summary Visual EDA

- The use of Kernel
 Distribution Estimation
 was extremely helpful
 when examining
 separation of target
 distributions
- Heatmaps were essential in understanding correlations and feature selection

Feature Engineering

- Process of feature Engineering
 - Take the secondary table
 - Build new features for the data
 - Run Correlation Analysis on the new table including the new features
 - Select the features with a correlation above the specified threshold
 - Merge this new highly correlated table to the main train set
- We chose this method since correlation to the target seems to be an accurate predictor of data significance

```
Feature Engineering: Feature Creation
     ## term of credit granted to the individual with the loan
     bur_merge['BUR_END_DAY_RATIO'] = bur_merge['DAYS_CREDIT_ENDDATE'] / bur_merge['DAYS_CREDIT']
     bur_merge['BUR_END_DAY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_END_DAY_RATIO'] = bur_merge['BUR_END_DAY_RATIO'].fillna(bur_merge['BUR_END_DAY_RATIO'].mean())
     bur_merge['BUR_DEBT_ANNUITY_RATIO'] = bur_merge['AMT_CREDIT_SUM_DEBT'] / bur_merge['AMT_ANNUITY']
    bur_merge['BUR_DEBT_ANNUITY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
     bur_merge['BUR_DEBT_ANNUITY_RATIO'] = bur_merge['BUR_DEBT_ANNUITY_RATIO'].fillna(bur_merge['BUR_DEBT_ANNUITY_RATIO'].mean())
     bur_merge('BUR_DEBT_LIMIT_RATIO') = bur_merge('AMT_CREDIT_SUM_DEBT') / bur_merge('AMT_CREDIT_SUM_LIMIT')
     bur_merge['BUR_DEBT_LIMIT_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
     bur_merge['BUR_DEBT_LIMIT_RATIO'] = bur_merge['BUR_DEBT_LIMIT_RATIO'].fillna(bur_merge['BUR_DEBT_LIMIT_RATIO'].mean())
    bur_merge['BUR_CREDIT_ANNUITY_RATIO'] = bur_merge['ANT_CREDIT_SIM'] / bur_merge['ANT_ANNUITY']
bur_merge['BUR_CREDIT_ANNUITY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
     bur_merge['BUR_CREDIT_ANNUITY_RATIO'] = bur_merge['BUR_CREDIT_ANNUITY_RATIO'].fillna(bur_merge['BUR_CREDIT_ANNUITY_RATIO'].mean())
     bur_merge['BUR_CREDIT_DEBT_RATIO'] = bur_merge['AMT_CREDIT_SUM'] / bur_merge['AMT_CREDIT_SUM_DEBT']
     bur_merge['BUR_CREDIT_DEBT_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
     bur_merge['BUR_CREDIT_DEBT_RATIO'] = bur_merge['BUR_CREDIT_DEBT_RATIO'].fillna(bur_merge['BUR_CREDIT_DEBT_RATIO'].mean())
     bur_merge['BUR_DAY_UPDATE_DIFF'] = bur_merge['DAYS_CREDIT'] - bur_merge['DAYS_CREDIT_UPDATE']
```

ML Pipeline

Results and discussion of results

- We can see that as we trained our data on the newly created features the AUC dropped, mainly because of a reduction of features
- However we have found that Random Forest Classifier Performs the best on this set

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC	8.
0	Baseline_Logistic_Regression	0.9199	0.9165	0.9193	0.7534	0.7542	0.7511	
1	Baseline_Logistic_Regression	0.9201	0.9167	0.9195	0.7556	0.7569	0.7521	
2	Baseline_Logistic_Regression	0.9201	0.9167	0.9194	0.7556	0.7569	0.7521	
3	FE_Baseline_Logistic_Regression	0.9200	0.9165	0.9195	0.7293	0.7318	0.7296	

Experiment	Train BCE Loss	Train ROC AUC Score	Test BCE Loss	Test ROC AUC Score	
Single Layer Neural Network Model 1	0.255943	0.793480	0.30699	0.735541	
Single Layer Neural Network Model 2	0.259213	0.787107	0.30215	0.738270	

4Ps: Past, Present, Planned, Problems

- Past: Context of the Project
 - The HCDR Project aims to predict if customers of Home Credit are able to repay a loan without a recorded credit score or agreed upon metric.
- Present: What we have done
 - Implemented Neural Network Model using Pytorch for loan default classification.
- Planned:
 - We will try to improve the accuracy and AUC score of model using Deep learning.
- Problems:
 - Final training on the larger dataset with additional features.

Conclusion and next steps

- In this last phase we implemented a NN model using Pytorch for loan default classification.
- Deep Learning models require huge amount of data to train itself and thus on a longer run Deep Learning models would work best for HCDR classification as compared to usual supervised models.
- The future scope for this project can include using embeddings in deep learning models or using some advanced classification models like lightGBM/other boosting models that can produce better results
- In our next phase, we will be implementing a deep learning model using PyTorch for classification and regression and also build a multi-headed load default system.