Multi-modal Optimization

- Aim: To find multiple global and local optima of a single objective problem.
- ➤ Evolutionary Algorithms vs. Classical Optimization Methods: Evolutionary methods with populations are more suited compared to single solution based methods.
- > Standard GAs/EAs converge to the global or a sub-optimal point
- ➤ Prevent convergence to a single solution and maintain multiple solutions Niching (each desired solution is called a niche)

1

Niching and Multimodal Optimization

- Traditional evolutionary algorithms with elitist selection are suitable to locate a single optimum of **functions**.
- Real problem may require the identification of optima along with several optima.
- For this purpose, niching methods extend the simple evolutionary algorithms by promoting the formation of subpopulations in the neighborhood of the local optimal solutions.
- Multiple solutions are shown below for a maximization problem.

Multi-modal Optimization Methods

- ➤ Some existing Niching Techniques
 - o Sharing
 - o Clearing
 - o Crowding
 - Restricted Tournament Selection
 - o Clustering
 - o Species Based
 - Neighborhood based DE

3

Multi-modal Optimization - Sharing

- > Sharing
 - o First among Niching Techniques
 - o Proposed by Holland Improved by Goldberg & Richardson
 - Population divided into subgroups based on similarity of individuals
 (σ threshold of dissimilarity or niche radius)
 - Information sharing with other individuals in the same niche
 (Fitness sharing)

$$f_i' = \frac{f_i}{m}$$

m is niche count

o Complexity – O(NP)

NP – population size

Multi-modal Optimization - Clearing

➤ Clearing

- o Retain the best members while eliminating the worst individuals of each niche
- o Complexity O(cNP)

NP – population size, c – number of subpopulations

- o Advantages
 - o Lower Complexity
 - o Significant reduction in genetic drift due to selection noise
 - o Population can be much smaller

5

Multi-modal Optimization - Crowding

> Crowding

- o Proposed by De Jong
- o Newly generated individuals can replace similar individuals in the population.
- o Similarity determined by a distance metric
- o 2 parents randomly selected and produce 2 offspring by Mutation and crossover
- o Offspring replace nearest or similar parent if offspring are of greater fitness
- o Complexity O(NP)

Multi-modal Optimization - RTS

- ➤ Restricted Tournament Selection (RTS)
 - Proposed by Harick
 - o Similar to Crowding (except with a limited-windowed population)
 - Corresponding to each offspring randomly choose *w* individuals from the population
 - w window size
 - o From w, pick the nearest or similar individual to the offspring
 - o Restricts competition with some of the similar individuals
 - o Complexity O(NP * w)

7

Neighborhood Mutation Based DE

STEPS OF GENERATING OFFSPRING USING NEIGHBORHOOD MUTATION

Input	A population of solutions of current generation (current parents)
Step 1	For $i = 1$ to NP (population size)
	1.1 Calculate the Euclidean distances between individual i and other members in the population.
	1.2 Select m smallest Euclidean distance members to individual i and
	form a subpopulation (subpop) using these m members.
	1.3 Produce an offspring u_i using DE equations within $subpop_i$, i.e.,
	pick r_1 , r_2 , r_3 from the subpopulation.
	2.3 Reset offspring u _i within the bounds if any of the dimensions exceed
	the bounds.
	2.4 Evaluate offspring u _i using the fitness function.
	Endfor
Step 2	Selection NP fitter solutions for next generation according to the strategies of
	different niching algorithm.
Output	A population of solutions for next generation

Compared with about 15 other algorithms on about 27 benchmark problems including recent IEEE TEC articles.

B-Y Qu, P N Suganthan, J J Liang, "Differential Evolution with Neighborhood Mutation for Multimodal Optimization," *IEEE Trans on Evolutionary Computation*, Doi: 10.1109/TEVC.2011.2161873, 2012.

Multi-modal Optimization

> Species based

- o Separating population into several species based on similarity
- Similar to sharing except no change in fitness
 (σ species distance)

➤ Ensemble of Niching Algorithms (ENA)

- o Population divided into niches using various niching methods
- o Same selection and survival criteria used

E. L. Yu, P. N. Suganthan, "Ensemble of niching algorithms", *Information Sciences*, Vol. 180, No. 15, pp. 2815-2833, Aug. 2010.

9

Ensemble of niching algorithms – Page 1

10

Ensemble of niching algorithms – Page 2

11

Multi-Objective GAs

- Introduction
- Pareto Optimality
- Dominance
- Non-dominated Sorting GA II (NSGA-II)
- Maintaining Diversity

Reference:

K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley, 2001. (Second edition, with exercise problems)

12

Multi-Objective Optimization

We often face them

More Examples

A cheaper but inconvenient flight

A convenient but expensive flight

Mathematical Representation

Min/Max
$$(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$$

Subject to $g_j(\mathbf{x}) \ge 0$
 $h_k(\mathbf{x}) = 0$
 $\mathbf{x}^{(L)} \le \mathbf{x} \le \mathbf{x}^{(U)}$

15

Which Solutions are Optimal?

Relates to the concept of domination

 $\mathbf{x}^{(1)}$ dominates $\mathbf{x}^{(2)}$ if

- 1. $\mathbf{x}^{(1)}$ is no worse than $\mathbf{x}^{(2)}$ in all objectives
- 2. $\mathbf{x}^{(1)}$ is strictly better than $\mathbf{x}^{(2)}$ in at least one objective

Pareto-Optimal Solutions

Non-dominated solutions: Among a set of solutions P, the non-dominated set of solutions P' are those that are not dominated by any member of the set P. $O(N \log N)$ algorithms exist.

Pareto-Optimal solutions: When P = S, the resulting P' is Pareto-optimal set

A number of solutions are optimal

Where S is the set of all feasible solutions

17

Pareto-Optimal Fronts f₂ (max) Min-Max f₁ (min) Max-Min f₂ (min) Max-Max f₁ (max)

Like single-objective optimization, local and global P-O fronts exist:

19

Differences with Single-Objective Optimization

- One optimum versus multiple optima
- Requires search and decisionmaking
- Two spaces of interest, instead of one

20

Weighted Sum Approach

Conventional non-evolutionary methods usually follow this approach 21

Weighted Sum Method

• Construct a weighted sum of objectives and optimize

$$F(\mathbf{x}) = \sum_{m=1}^{M} w_m f_m(\mathbf{x}).$$

 $\bullet~$ User supplies weight vector ${\bf w}$

Difficulties with Weighted Sum Method

- Need to know w
- Non-uniformity in Paretooptimal solutions
- Inability to find some Pareto-optimal solutions

Ideal Multi-Objective Optimization

 ${\bf Step~1}~{\bf Find~a~set~of~Pareto-optimal~solutions}$

Step 2 Choose one from the set

23

Two Goals in Ideal Multi-Objective Optimization

- 1. Converge on the Paretooptimal front
- 2. Maintain as diverse a distribution as possible

Why Use Evolutionary Algorithms?

- Population approach suits well to find multiple solutions
- Niche-preservation methods can be exploited to find diverse solutions
- Implicit parallelism helps provide a parallel search

• Multiple applications of classical methods do not constitute a parallel search

25

History of Evolutionary Multi-Objective Optimization (EMO)

- Early penalty-based approaches
- VEGA (1984)
- Goldberg's (1989) suggestion
- MOGA, NSGA, NPGA (1993-95) used Goldberg's suggestion
- Elitist EMO (SPEA, NSGA-II, PAES, MOMGA etc.) (1998 – Present)

What to Change in a Simple GA?

- Modify the fitness computation
- Emphasize non-dominated solutions for convergence
- Emphasize less-crowded solutions for diversity

Identifying the Non-dominated Set

- **Step 1** Set i = 1 and create an empty set P'.
- **Step 2** For a solution $j \in P$ (but $j \neq i$), check if solution j dominates solution i. If yes, go to Step 4.
- **Step 3** If more solutions are left in P, increment j by one and go to Step 2; otherwise, set $P' = P' \cup \{i\}$.
- **Step 4** Increment i by one. If $i \leq N$, go to Step 2; otherwise stop and declare P' as the non-dominated set.
- $O(MN^2)$ computational complexity
 - M total number of objectives, N population size

Finding the Non-dominated Set: An Efficient Approach

Kung Algorithm

Step 1 Sort the population in descending order of importance of f_1

Step 2, Front(P) If |P| = 1, return P as the output of Front(P). Otherwise, $T = \text{Front}(P^{(1)} - -P^{(|P|/2)})$ and $B = \text{Front}(P^{(|P|/2+1)} - -P^{(|P|)})$. If the *i*-th solution of B is not dominated by any solution of T, create a merged set $M = T \cup \{i\}$. Return M as the output of Front(P).

 $O\left(N(\log N)^{M-2}\right)$ for $M\geq 4$ and $O(N\log N)$ for M=2 and 3

29

Example on Kung Algorithm from Slides 5-6

Step 1: Sort the popln according 1st objective: P={6,5,3,4,1,2}

Step 2: P's size is not 1. We'll have to divide recursively until size is 1.

[front T] {6,5,3} (label A)

[front B] {4,1,2} (label B)

[front T]{6} [front B] {5,3} (label C)

{1,2} (label D)

{5} {3}

{1} {2}

[front T] {4}

5 & 3 do not dominate each other →{5,3} at C.

6, 5 & 3 do not dominate each other \rightarrow {6,5,3} at A.

1 dominates 2 \rightarrow discard 2 to have {1} at D. 4 & 1 do not dominate each other \rightarrow {4,1} at B.

Example cont.

Step 2 (cont.): when all the sizes are 1, we work upward.

Finally we have 2 non-dominated sets {6,5,3} derived from front T and {4,1} derived from front B.

Now check each solution in {4,1} if they are dominated by any solution in {6,5,3}.

In this example, 4 & 1 are dominated by 3 & 5.

Hence, the final non-dominated set is {6,5,3}.

31

A Simple Non-Dominated Sorting Procedure

- Identify the best non-dominated set
- Discard them from population
- Identify the next-best nondominated set
- Continue till all solutions are classified
- We discuss a $O(MN^2)$ algorithm later

Which are Less-Crowded Solutions?

• Crowding can be in decision variable space or in objective space

33

Non-Elitist EMOs

- Vector evaluated GA (VEGA) (Schaffer, 1984)
- Vector optimized EA (VOES) (Kursawe, 1990)
- Weight based GA (WBGA) (Hajela and Lin, 1993)
- Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)
- Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)
- Niched Pareto GA (NPGA) (Horn et al., 1994)
- Predator-prey ES (Laumanns et al., 1998)

Vector-Evaluated GA (VEGA)

- Divide population into M equal blocks
- Each block is reproduced with one objective function
- Complete population participates in crossover and mutation
- Bias towards to individual best objective solutions
- A non-dominated selection: Non-dominated solutions are assigned more copies
- Mate selection: Two distant (in parameter space) solutions are mated

35

Shortcomings of Non-Elitist EMOs

- Elite-preservation is missing
- Elite-preservation is important for proper convergence in SOEAs
- Same is true in EMOs
- Three tasks
 - Elite preservation
 - Progress towards the Pareto-optimal front
 - Maintain diversity among solutions

Elitist EMOs

- Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 1995)
- Thermodynamical GA (TDGA) (Kita et al., 1996)
- Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)
- Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)
- Pareto-archived ES (PAES) (Knowles and Corne, 1999)
- Multi-objective Messy GA (MOMGA) (Veldhuizen and Lamont, 1999)
- Other methods: Pareto-converging GA, multi-objective micro-GA, elitist MOGA with coevolutionary sharing

37

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

Elites are preserved

Maintaining Diversity in NSGA-II

Fronts F_1 and F_2 are chosen by elitism.

Only a part of F_3 can be retained in the population of N.

Hence, choose diverse solutions in F_3 to have diversity.

Sort F_3 population according one fitness at a time.

Calculate the distances to the neighbors as shown below.

Solutions in F_3 with the highest distances are chosen to fill in.

39

An Illustration of NSGA-II

Six parents and six offspring

Parents after one iteration: (a,3,1,e,5,b)

NSGA-II on Test Problems

(Min)
$$f_1(\mathbf{x}) = x_1$$

(Min) $f_2(\mathbf{x}) = g \left[1 - (f_1/g)^2 \right]$

where
$$g(\mathbf{x}) = g \left[1 - (f_1/g) \right]$$

(Min)
$$f_1(\mathbf{x}) = x_1$$

(Min) $f_2(\mathbf{x}) = g \left[1 - \sqrt{\frac{f_1}{g}} - \frac{f_1}{g} \sin(10\pi f_1) \right]$
where $g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^n x_i$

41

Constrain-Domination Principle

A solution i constrained-dominates a solution j, if any is true:

- 1. Solution i is feasible and solution j is not.
- 2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.
- 3. Solutions i and j are feasible and solution i dominates solution j.

Constrained NSGA-II Simulation Results

(Min)
$$f_1(\mathbf{x}) = x_1$$

(Min) $f_2(\mathbf{x}) = \frac{1+x_2}{x_1}$
 $x_2 + 9x_1 \ge 6$
 $-x_2 + 9x_1 \ge 1$

(Min)
$$f_1(\mathbf{x}) = x_1$$

(Min) $f_2(\mathbf{x}) = x_2$
 $x_1^2 + x_2^2 - 1 - \frac{1}{10}\cos\left(16\tan^{-1}\frac{x_1}{x_2}\right) \ge 0$
 $(x_1 - 0.5)^2 + (x_2 - 0.5)^2 \le 0.5$

43

Applications of Multiobjective Optimization

- 1. Identify different trade-off solutions for choosing one
- 2. Understanding insights about the problem
 - Reveal common properties among P-O solutions
 - Identify what causes trade-offs
 - Such information are valuable to users
 - May not exist other means of finding above
- 3. To aid in other optimization tasks

Revealing Salient Insights: Truss Structure Design

Revealing Salient Insights: A Cantilever Plate Design

Eight trade-off solutions are chosen

Trade-Off Solutions

• Symmetry in solutions about mid-plane, discovery of stiffener

47

Two-Objective Test Problems

- Pareto-optimal front is controllable and known
- ZDT problems:

$$Min. \quad f_1(\mathbf{x}) = f_1(\mathbf{x}_I),$$

Min.
$$f_2(\mathbf{x}) = g(\mathbf{x}_{II})h(f_1, g).$$

• Choose $f_1()$, g() and h() to introduce various difficulties

Zitzler-Deb-Thiele's Test Problems

ZDT1

ZDT2

$$f_1(\mathbf{x}) = x_1,$$

 $g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^n x_i,$
 $h(f_1, g) = 1 - (f_1/g)^2.$

49

Zitzler-Deb-Thiele's Test Problems

 $f_1 = x_1,$

ZDT3

$$f_{1} = x_{1}, \qquad f_{1} = x_{1}, \qquad g = 10n - 9 + \sum_{i=2}^{n} x_{i}, \qquad g = 10n - 9 + \sum_{i=2}^{n} x_{i}, \qquad h = 1 - \sqrt{f_{1}/g} - (f_{1}/g) \sin(10\pi f_{1}). \qquad h = 1 - \sqrt{f_{1}/g}.$$

ZDT4

 $g = 10n - 9 + \sum_{i=2}^{n} (x_i^2 - 10\cos(4\pi x_i)),$

$$f_2 = 1 - \sqrt{f_1/g}$$
.

Local Pareto-optimal fronts

 f_2 1

Global Pareto-optimal front

Constrained Test Problem Generator

Minimize
$$f_1(\mathbf{x}) = x_1$$

Minimize $f_2(\mathbf{x}) = g(\mathbf{x}) \left(1 - \frac{f_1(\mathbf{x})}{g(\mathbf{x})} \right)$
Subject to $c(\mathbf{x}) \equiv \cos(\theta) (f_2(\mathbf{x}) - e) - \sin(\theta) f_1(\mathbf{x}) \ge$
 $a \left| \sin \left(b\pi \left(\sin(\theta) (f_2(\mathbf{x}) - e) + \cos(\theta) f_1(\mathbf{x}) \right)^c \right) \right|^d$

51

Various Parameter Settings

$$\theta = -0.2\pi, \quad b = 10, \quad c = 1, \quad e = 1.$$

CTP 7:
$$\theta = -0.05\pi, a = 40, b = 5, c = 1, d = 6, e = 0$$

Performance Metrics

- Two essential metrics (functionally)
 - Convergence measure
 - Diversity measure

53

Multi-Modal EMOs

- Different solutions having identical objective values
- Multi-modal Pareto-optimal solutions: Design, Bioinformatics

Other Problem Scenarios

- In addition to the bound constrained single objective, general constraints, multi-objective, multimodal-niching, there are additional problem scenarios too.
- Dynamic Optimization: Objective function or constraints changing with time.
- Expensive Optimization: Evaluation of objective function or constraint equation suffering from excessive complexity.
 Surrogate methods are used.
- Large Scale Optimization: Huge number of decision variables or large number of objectives in a multiobjective optimization problem (MOP).
- Noisy Objective Function: Objective function is not accurate.
- Robust Optimization: Searches for robust optimal solution.
- Several combinations of the above scenarios possible.

55