Vertex of the Quadratic

Given a quadratic $d(t) = at^2 + bt + c$ compute its value at $t_1 = -\frac{b}{2a}$ namely $d(t_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{t}_{1^+}\mathsf{h}$, namely

 $d(t_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = d(t_1 + h) - d(t_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

 $d(t) = 4 t^2 - 16 t - 55$ d 800 600 400

