2000 年 9 月

1

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \alpha = \frac{1 + \sqrt{5}}{2}$$

とするとき、次の問いに答えよ。

- (1) 行列 A の固有値を求めよ。
- (2) 行列 A の正規化された固有ベクトルを α を用いて表せ。
- (3) 行列 A を対角化する正則行列 P、つまり、 PAP^{-1} が対角行列となるような P を α を用いて書け。

$$\begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}$$

で数列 $\{a_n\}$ を定める。このとき次の問いに答えよ。

- (i) 数列 $\{a_n\}$ の一般項を α を用いて表せ。
- $(ext{ii})$ 極限値 $\lim_{n o \infty} \ rac{a_n}{a_{n-1}}$ を求めよ。

- $egin{aligned} egin{aligned} e$
 - (1) A > 0 であるための必要十分条件が

$$a,b \geq 0$$
 かつ $ab \geq c^2$

であることを示せ。

$$(2)$$
 $P=\begin{pmatrix}1&0\\0&0\end{pmatrix},$ $Q=\begin{pmatrix}0&0\\0&1\end{pmatrix}$ とする。 $A\geq P$ かつ $A\geq Q$ であるための条件を求めよ。

- (3) $A \geq P$ かつ $A \geq Q$ を満たす 2×2 実対称行列 A の集合は、順序 $A \geq B$ に関する最小元をもつか? つまり 2 元からなる集合 $\{P,Q\}$ の上限は存在するか? 存在するときはそれを求め、存在しないときはそのことを示せ。
- $oxed{oxed}$ 実数全体 $oxed{R}$ で定義された関数 f(x) が C^2- 関数(2 回微分可能で第 2 階 導関数が連続)とする。このとき x
 eq y に対し、 2 変数関数 $g(x,y),\,h(x,y)$ を

$$g(x,y) = \frac{f(x) - f(y)}{x - y}, \quad h(x,y) = \frac{f(x) + f(y) - 2f\left(\frac{x + y}{2}\right)}{(x - y)^2}$$

で定める。

- (1) 任意の実数 ξ に対して $\lim_{x \to \xi, y \to \xi} g(x,y)$ を求めよ。
- (2) 任意の実数 ξ に対して $\lim_{x \to \xi, y \to \xi} h(x, y)$ を求めよ。
- (3) 任意の実数 ξ について $x=y=\xi$ のときの関数 g の値 $g(\xi,\xi)$ を $\lim_{x\to\xi,y\to\xi}g(x,y)$ として g の定義域を平面 \mathbf{R}^2 へ拡張するとき、g は平面 \mathbf{R}^2 上で C^1 関数 (1回偏微分可能ですべての第 1 階偏導関数が連続) となることを証明せよ。
- (4) 任意の実数 ξ について $x=y=\xi$ のときの関数 h の値 $h(\xi,\xi)$ を $\lim_{x\to\xi,y\to\xi}h(x,y)$ として h の定義域を平面 \mathbf{R}^2 へ拡張するとき、h は平面 \mathbf{R}^2 上で連続関数となることを証明せよ。

三角多項式 $g(x) = \sum_k b_k e^{-ikx}$ について、次に答えよ。

- (1) すべての x において $g(x)+g(x+\pi)=1$ が成立するときの、偶数番目の係数 $b_0,b_{\pm 2},b_{\pm 4},\dots$ を求めよ。
- (2) 実数 $a_0, a_1, a_2, ..., a_n$ により g が

$$g(x) = \left| \sum_{k=0}^{n} a_k e^{-ikx} \right|^2$$

で与えられるとき、

$$b_n$$
, b_{n-1} および b_0

を $a_0, a_1, a_2, ..., a_n$ を用いて表せ。

(3) 実数 a_0,a_1,a_2 を用いて定義される $g(x)=|a_0+a_1e^{-ix}+a_2e^{-i2x}|^2$ が

$$g(0) = 1,$$
 $g(x) + g(x + \pi) = 1$ $(-\pi \le x < \pi)$

を満たすような一組の a_0, a_1, a_2 を求めよ。

関数 f(x) は \mathbf{R}^n 上定義された実数値、有界、リプシッツ連続関数とする。すなわち、ある定数 $C_0,\,C_1>0$ が存在して、

$$|f(x)| < C_0, \quad |f(x) - f(y)| \le C_1 |x - y| \quad \forall x, y \in \mathbf{R}^n.$$

また、関数 b(x) は ${f R}^n$ 上定義され、 ${f R}^n$ に値をとる有界な一回連続微分可能な関数とする。このとき、任意の $x\in {f R}^n$ に対して常微分方程式

$$\frac{dx(t)}{dt} = b(x(t)) \qquad t \ge 0,$$

$$x(0) = x$$

を解き、関数 u(x,t) $(x \in \mathbf{R}^n, t \ge 0)$ を

$$u(x,t) = \int_0^t e^{-s} f(x(s)) ds$$
 $x \in \mathbf{R}^n, \quad t \ge 0$

で定義する。このとき以下の問いに答えよ。

(1) 任意の $x \in \mathbf{R}^n$ と $0 \le \tau \le t$ をみたす任意 の τ について

$$u(x,t) = \int_0^{\tau} e^{-s} f(x(s)) ds + e^{-\tau} u(x(\tau), t - \tau)$$

が成り立つことを示せ。ただし $x(\cdot)$ は x(0)=x を初期条件とする上の常微分方程式の解である。

(2) u(x,t) が偏微分方程式

$$\frac{\partial u}{\partial t}(x,t) + u(x,t) - (b(x), \nabla u(x,t)) - f(x) = 0 \qquad t > 0, \quad x \in \mathbf{R}^n,$$
$$u(x,0) = 0 \qquad x \in \mathbf{R}^n$$

の解であることを証明せよ。

ただし
$$(b(x), \nabla u(x,t))$$
 は内積を表し、 $\nabla u(x,t) = \left(\frac{\partial u}{\partial x_1},...,\frac{\partial u}{\partial x_n}\right)$ である。

- (1) Hilbert 空間 $\mathcal H$ の点列 $\{\phi_n\}_{n=1}^\infty$ が正規直交系であることの定義を述べよ。
- (2) $\{\phi_n\}_{n=1}^\infty$ を $\mathrm{Hilbert}$ 空間 $\mathcal H$ の正規直交系とする。任意の $x\in\mathcal H$ に対して不等式

$$\sum_{n=1}^{\infty} |(\phi_n, x)|^2 \le ||x||^2$$

を示せ。

- (3) Hilbert 空間 \mathcal{H} の点列 $\{x_n\}_{n=1}^{\infty}$ が点 $x_0 \in \mathcal{H}$ に弱収束すること、および強収束することの定義をそれぞれ述べよ。
 - (4) Hilbert 空間 $\mathcal H$ の正規直交系 $\{\phi_n\}_{n=1}^\infty$ は弱収束あるいは強収束するか。

7

- (1) X,Y を位相空間とし、f を X から Y への連続写像とする。このとき、X のコンパクト集合 X_0 の像 $f(X_0)$ は Y のコンパクト集合であることを示せ。
- (2) X をコンパクト距離空間、Y を距離空間とする。X から Y への連続写像 f は一様連続であることを示せ。

m を 正整数, ${\bf Z}$ を整数全体, $R={\bf Z}/m{\bf Z}$ を法 m による剰余環とし, R に成分をもつ 2 次正方行列全体のなす環を

$$M = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a, b, c, d \in R \right\}$$

とする。以下の問いに答えよ。

- (1) M の元 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ が M に逆元をもつための条件は, ad-bc が R に逆元をもつことであることを示せ。
- (2) 逆元をもつ M の元の全体

$$M^{\times} = \{ x \in M \mid xy = 1 \ (\exists y \in M) \}$$

は群になることを示せ。

- (3) m が素数のとき、(2) の群 M^{\times} の位数を求めよ。
- (4) m が素数 p のべき $m=p^k$ のとき, (2) の群 M^{\times} の位数を求めよ。

9

 $f(x)=x^3-2000$ とし、f(x) の有理数体 ${\bf Q}$ 上の最小分解体を L、その ${\bf Q}$ 上のガロア群を G とする。このとき次の問いに答えよ。

- (1) f(x) = 0 の解をすべて求めよ。
- (2) $L = \mathbf{Q}(\sqrt[3]{2}, \sqrt{-3})$ であることを示せ。
- (3) G の元で $\sqrt{-3}$ を固定する非自明な元(恒等写像でない元)の一つを σ とするとき、 σ によって生成される群 N は G の位数 3 の正規部分群であることを示せ。
- (4) G の元で $\sqrt[3]{2}$ を固定する非自明な元を τ とし、 τ によって生成される G の部分群を H とする。このとき、問 (3) の σ を具体的に一つ固定することによって、G の部分群と L の部分体の間のガロア対応を図示せよ。

2次元ユークリッド空間 ${f R}^2$ と複素平面 ${f C}$ とを同一視し、1次元のサークルを $S^1=\{z\in {f C}; |z|=1\}$ とする。 ${f C}$ 上のベクトル場 X を次のように与える:

C 上の任意の点 z において、X(z) は z を始点、 $z+\sqrt{-1}z$ を終点とするベクトルである。

このとき、次の問いに答えよ。

- (1) このベクトル場 X は S^1 で長さが 1 の接ベクトル場であることを示せ。
- (2) R² 内の t をパラメータとする曲線 C(t) = (x(t), y(t)) を

$$C(t) = (x(t), y(t)) = (xe^t \cos t - ye^t \sin t, xe^t \sin t + ye^t \cos t)$$

により与える。このとき t=0 における曲線 C(t) の接べクトルを求めよ。

(3) $z=(x,y)=x+\sqrt{-1}y$ とするとき、t=0 における曲線 C(t) の接ベクトルと X(z) との関係を調べよ。

11

中身のつまった 6 面体 ABCD-EFGH から以下の同一視を行って得られる空間を M とする。

·面 ABCD = EFGH

·面 ABFE = DCGH

·面 ADHE = BCGF

- (1) *M* が 3 次元多様体になることを示せ。
- (2) M の基本群を求めよ。