Operating Systems

Introduction to Operating System (OS)

What is an Operating System (1)?

- A modern computer consists of:
 - One or more processors
 - Main memory
 - > Disks
 - > Printers
 - Various input/output devices.
- Managing all these varied components requires a layer of software – the Operating System (OS).

What is an Operating System (2)?

- An Operating System is a program that acts as an intermediary/interface between a user of a computer and the computer hardware.
- OS goals:
 - Control/execute user/application programs.
 - Make the computer system convenient to use.
 - Ease the solving of user problems.
 - Use the computer hardware in an efficient manner.

Where does the OS fit in?

Services provided by an OS

- Facilities for program creation
 - editors, compilers, linkers, debuggers, etc.
- Program execution
 - loading in memory, I/O and file initialization.
- Access to I/O and files
 - deals with the specifics of I/O and file formats.
- System access
 - resolves conflicts for resource contention.
 - protection in access to resources and data.

Why are Operating Systems Important?

- Important to understand and know how to correctly use when writing user applications.
- Large and complex systems that have a high economic impact and result in interesting problems of management.
- Few actually involved in OS design and implementation but nevertheless many general techniques to be learned and applied.
- Combines concepts from many other areas of Computer Science: Architecture, Languages, Data Structures, Algorithms, etc.

Hierarchical view of computer system

Static View of System Components

Layers of a Computer System

Operating Systems Evolution

Evolution of Operating system

- Batch processing OS
- Interactive processing (Real time)
 - Requires real-time processing
- Time-sharing/Multitasking
 - Implemented by Multiprogramming
- Multiprocessor machines
- Embedded OS

Batch processing

Interactive processing

Programs, data, directions, and results

User domain

Machine domain

Time Sharing / Multitasking

- Users seeking services from same machine at the same time time sharing
 - Implemented using a technique called multiprogramming (time is divided into multiple intervals, execution of one job is limited to a single time interval)
- Multiple terminals connected to same machine
 - Driven by the fact that in the past computers were very expensive
- When multiprogramming is applied to single-user environments is usually called multitasking

Multiprocessor Operating Systems

- Provide time sharing/multi-tasking capabilities by assigning different tasks to different processors as well as sharing the time of one single processor
- Problems to solve:
 - Load balancing dynamically allocating tasks to the various processor so that all of them are used efficiently
 - Scaling breaking tasks into sub-tasks compatible with the number of processors available
- Trend to develop a network wide operating system rather than networks of individual operating systems

Embedded Operating Systems

- Used in hand held devices (PDAs), mobile phones, cars, etc...
- Limited data storage and power conservation are the big challenges
- Examples: VxWorks, Windows CE (Pocket PC), Palm OS, Symbinan, ThredX, RomDOS, etc...

Tasks of an Operating System

- Processor management Scheduling
 - Fairness
 - Non-blocking behavior
 - Priorities
- Memory management
 - Virtual versus physical memory, memory hierarchy
 - Protection of competing/conurrent programs
- Storage management File system
 - Access to external storage media
- Device management
 - Hiding of hardware dependencies
 - Management of concurrent accesses
- Batch processing
 - Definition of an execution order; throughput maximization