Diszkrét matematika 1

3. előadás Relációk I.

Mérai László

merai@inf.elte.hu

2024 tavasz

Relációk I.

Descarte-szorzat

Relációk tárolása: rendezett páronként (ill. általában: rendezett n-esekként)

- IT cég: $\{(A, 'menedzser'), (B, 'menedzser'), (C, 'fejlesztő'), \dots \}$
- sin: $\{(0,0),(\frac{\pi}{6},\frac{1}{2}),(\frac{\pi}{4},\frac{\sqrt{2}}{2}),(\frac{\pi}{3},\sqrt{3}2),(\frac{\pi}{2},1),\dots\}$
- oszthatóság: $\{(1,2),(1,3),(1,4),(2,4),(2,6),(3,6),(3,12),\dots\}$

Definíció

Adott A, B halmazok Descarte-szorzata: $A \times B = \{(a, b) : a \in A, b \in B\}$.

Figyelem:

- ha $a \neq b$, akkor $(a, b) \neq (b, a)$
- ha $A \neq B$, akkor $A \times B \neq B \times A$
- $A^2 = A \times A$, $A^3 = A \times A \times A$, ...

Binér reláció

Definíció

- Legyen X,Y két tetszőleges halmaz. Ekkor az $R\subset X\times Y$ egy (binér) reláció B az X,Y halmaz között.
- Ha X = Y, akkor $R \subset X \times X$ egy (binér) reláció X-en.

Példa

- egyenlőség reláció: $\mathbb{I}_X = \{(x,x) : x \in X\}$
- részhalmaz reláció X-en: $\{(A,B) \in 2^X \times 2^X : A \subset B : A,B \in 2^X\}$
- altér reláció: $\{(U, V): U, V \leq \mathbb{R}^5, U \text{ altere } V\text{-nek}\}$
- sajátvektor reláció $\{(\mathbf{v}, M) \in \mathbb{R}^2 \times \mathbb{R}^{2 \times 2} : \exists \lambda : M\mathbf{v} = \lambda \mathbf{v}\}$
- \sin függvény relációja: $\{(x,\sin x)\in\mathbb{R}\times\mathbb{R}:x\in\mathbb{R}\}$

Értelmezési tartomány, értékkészlet

Definíció

Legyen $R \subset X \times Y$ egy reláció. Ekkor

- R éretelmezési tartománya ('domain'): $dmn(R) = \{x \in X : \exists y \in Y : (x,y) \in R\}.$
- R értékkészlete ('range'): $\operatorname{rng}(R) = \{y \in Y: \exists x \in X: (x,y) \in R\}.$

Példa

- Legyen $R \subset \{a, b, c, d, e\} \times \{1, 2, 3, 4, 5, 6\}$. dmn $(R) = \{a, b, d, e\}$, rng $(R) = \{1, 3, 6\}$.
- $N = \{(x^2, x) : x \in \mathbb{R}\} \operatorname{dmn}(N) = \mathbb{R}_0^+, \operatorname{rng}(R) = \mathbb{R}.$

Relációk kiterjesztése, leszűkítése, inverze

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha $S\subset R$.
- Ha $A \subset X$, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

Példa

- $N=\{(x^2,x):x\in\mathbb{R}\}$ és $S=\{(x,\sqrt{x}):x\in\mathbb{R}_0^+\}.$ Ekkor $S\subset N$
- $N|_{\mathbb{R}_0^+} = S$.

Reláció inverze

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{(y,x) \in Y \times X : (x,y) \in R\}.$$

•
$$R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$$
 és $R^{-1} = \{(1,b), (1,d), (3,a), (6,b), (6,e)\}$

• Legyen $R = \{(x, x^2) : x \in \mathbb{R}\}$ Ekkor

$$R^{-1} = \{(x^2, x) : x \in \mathbb{R}\} \neq \{(x, \sqrt{x}) : x \in \mathbb{R}_0^+\}$$

Halmaz képe, teljes inverz képe

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y: \exists x \in A: (x,y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az $R^{-1}(B)$, a B halmaz képe az R^{-1} reláció esetén.

Példa

- $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$. Ekkor $R(\{a,b,c\}) = \{1,3,6\}$
- Legyen $R=\{(x,x^2):x\in\mathbb{R}\}.$ Ekkor $R(\{2\})=\{4\}$ (vagy (R(2)=4)) és $R^{-1}(\{4\})=\{-2,+2\}$ (vagy $R^{-1}(4)=\{-2,+2\}$).

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Figyelem! Kompozíció esetén a relációkat "jobbról-balra írjuk":

Példa

• Legyen $R_{\sin} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$ $S_{\log} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, y) : \exists z : \log x = z, \sin z = y\}$$

= \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin \log x = y\}.

