$\mathrm{titlesec}[2016/03/21]$

MatheGK, Rausch

Aaron Tsamaltoupis

December 1, 2024

Contents

1	Q1:	Calculus	3						
2	Q2 :	Lineare Algebra 4							
3	Q3:	Stochastik	5						
	3.1	Kombinatorik	5						
	3.2	Stochastische Unabhängigkeit	5						
		3.2.1 stochastisch abhängige Ereignisse							
		3.2.2 stochastisch unabhängige Ereignisse							
	3.3	Vierfeldertafel							

1 Q1: Calculus

2 Q2: Lineare Algebra

3 Q3: Stochastik

3.1 Kombinatorik

3.2 Stochastische Unabhängigkeit

Zwei Ereignisse A und B sind stochastisch unabhängig voneinander iff

$$P_B(A) = P(A) \wedge P_A(B) = P(B)$$

Dabei gilt:

$$seiP(B){>}0{\wedge}P(A){>}0$$

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{|A \cap B|}{|A|}$$

,

$$P_B(A) = \frac{P(B \cap A)}{P(B)} = \frac{|B \cap A|}{|B|}$$

,

3.2.1 stochastisch abhängige Ereignisse

Ein Ereignis B ist abhängig von einem anderen Ereignis A, wenn sich die Wahrscheinlichkeit von B ändert, wenn das Ereignis A eintritt.

3.2.2 stochastisch unabhängige Ereignisse

3.3 Vierfeldertafel

	A	\overline{A}	Summe
В	$ A \cap B $	$ \overline{A} \cap B $	B
\overline{B}	$ \overline{B} $	$ \overline{B} \cap \overline{A} $	$ \overline{B} $
Summe	A	$ \overline{A} $	Ω

Beispiel: Oktoberfest

T=Tourist

 \overline{T} =Münchner

L = Lederhose

 $\overline{L}=$ keine Lederhose

	L	\overline{L}	Summe	Beschreibung
Τ	140	60	200	Anzahl Touristen
\overline{T}	10	40	50	Anzahl Münchner
Summe	150	100	250	

Nach der Formel bei stochastischer Abhängigkeit gilt:

$$P_L(T) = \frac{L \cap T}{L} = \frac{140}{150} \approx 93,33$$