CROSS-INDUSTRY
STANDARD PROCESS FOR
DATA MINING (CRISP-DM)
&
PREDICTIVE ANALYTICS I

LEK HSIANG HUI

OUTLINE

CRISP-DM
Simple Linear Regression
Multi Linear Regression
Coding Scheme for Categorical Variables

CRISP-DM

CRISP-DM

Simple Linear Regression

Multi Linear Regression Coding Scheme for Categorical Variables

CRISP-DM

Cross-industry standard process for data mining (CRISP-DM) breaks the process of data mining into 6 major phases

STEP 1 – BUSINESS UNDERSTANDING

Understand the purpose of the data mining study

- Project objectives
- Requirements of the business
- Rough idea of potential data to use for analysis
- Preliminary plan

Notice that the process starts with the business understanding (i.e. problem)

It does NOT start with the data!

STEP 2 - DATA UNDERSTANDING

Identify the relevant data from the many sources

- Normally: download and use datasets off internet
- Now: learn how to mine the datasets yourself
- Then, perform Exploratory Data Analysis (EDA)
 - Perform statistical analysis
 - Perform various types of visualizations

Download and access: Regression.ipynb

HANDS-ON: EDA - Q1

STEP 3 – DATA PREPARATION

STEP 4 - MODEL BUILDING

Apply and compare various data mining techniques

- Some techniques have specific requirements on the form of data (e.g. need to be numeric)
- Most techniques can only be applied to one type of problem (e.g. classification) while others can be applied for both regression and classification

STEP 5 – TESTING AND EVALUATION

Evaluate the models developed in step 4 (depending on the problem)

- Regression how far is the prediction from the actual values
- Classification classification error rates
- Could also have other evaluation methods for other tasks

We usually divide the labeled data into training and testing data and perform K-Fold Cross Validation

STEP 6 - DEPLOYMENT

Development and assessment of model is usually not the end of the project

Depending on the requirements, the deployment phase can be:

- As simple as generating a report
- Or as complex as implementing a system that uses the model for daily operations

Monitoring and maintenance of models

Over time, the models built may be become obsolete

SIMPLE LINEAR REGRESSION

CRISP-DM

Simple Linear Regression

Multi Linear Regression Coding
Scheme for
Categorical
Variables

ADVERTISING EXAMPLE

Suppose we hypothesize that there is a relationship between Sales and amount spend on <u>TV</u> advertisement

SIMPLE LINEAR REGRESSION

Simple linear regression assumes that there is a single predictor variable X and the relationship between the response Y and X is linear

 $Y pprox eta_0 + eta_1 X$ intercept Slope

This model contains 2 unknown constants that we aim to find

ADVERTISING EXAMPLE

Assume that there is a <u>linear relationship</u> between <u>Sales</u> and amount spend on <u>TV</u> advertisement

$$Sales \approx \beta_0 + \beta_1 TV$$

- Want to see how the spending on TV advertisement can affect Sales
- How to estimate β_0 and β_1 ?
 - Using training data (supervised learning)

TRAINING DATA

Advertising.csv

Thousands \$ spent

200 observations

Thousands
Units sold

LEAST SQUARES CRITERION

$$E = e_1^2 + e_2^2 + ... + e_8^2$$

 β_0 and β_1 estimate by minimizing the least squares criterion

LEAST SQUARES FIT

• Let $\hat{y}_{\hat{i}} = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the i^{th} value of X

Residual Sum of Squares (RSS)

$$RSS = e_1^2 + e_2^2 + ... + e_n^2$$

• where $e_i = y_i - \hat{y}_i$

Download and access: Regression.ipynb

HANDS-ON: REGRESSION

USEFUL PREDICTORS

To determine whether a predictor is useful:

- We check whether the p-value of the coefficient estimate is < 0.05
- Low p-value → coefficient estimate is statistically significant

MODEL SUMMARY

OLS Regression Results

De	p. Variab	ole:	S	ales	R-s	0.612	
	Mod	iel:	(OLS	Adj. R-s	0.610	
	Meth	od: L	east Squ	ares	F-s	tatistic:	312.1
	Da	ite: Sat,	12 Jun 2	021 F	Prob (F-st	1.47e-42	
	Tin	ne:	12:49	9:18	Log-Like	-519.05	
No. Ob	servatio	ns:	200			AIC:	1042.
Di	Residua	als:		198		1049.	
	Df Mod	del:		1			
Covar	iance Ty	pe:	nonrol	oust			
	coef	std err	t	P> t	[0.025	0.975]	
const	7.0326	0.458	15.360	0.000	6.130	7.935	
TV	0.0475	0.003	17.668	0.000	0.042	0.053	

MEASURE MODEL PERFORMANCE

To measure the quality of fit (of the entire model), we can use:

- R²
- F-statistics
- Mean Square Error (MSE)

R²

R² measures the proportion of variability in Y that can be explained using X

- Takes value between 0 and 1
- Value close to 0 → regression did not explain much of the variability in the response (linear model likely to be wrong)
- In the Advertising dataset, R² ≈ 0.61 → 0.61 of the variability in <u>Sales</u> is explained by a linear regression on <u>TV</u>
- What is a good R² value depends on the application

ADJUSTED R²

R² will always increase with more variables

 Thus, not really a good way to evaluate the effectiveness of the predictors

Adjusted R² factors into the number of predictors in the calculation of R². (Penalize cases where many irrelevant predictors are added)

- Adjusted R² is always lesser than R²
- This is often used instead

MODEL SUMMARY

OLS Regression Results

							_		
De	p. Variab	le:	S	ales	R-s		0.612		
	Mod	lel:	(OLS	Adj. R-s		0.610		
	Meth	od: L	east Squa	ares	F-s		312.1		
	Da	te: Sat,	12 Jun 2	021 F	Prob (F-st	1.	47e-42		
	Tin	ne:	12:49	9:18	Log-Likelihood:			-519.05	
No. Ob	servatio	ns:	200 AIC			AIC:		1042.	
Df	Residua	ıls:		198		BIC:			
	Df Mod	lel:		1					
Covar	iance Ty	pe:	nonrol	oust					
	coef	std err	t	P> t	[0.025	0.975]			
const	7.0326	0.458	15.360	0.000	6.130	7.935			
TV	0.0475	0.003	17.668	0.000	0.042	0.053			

F STATISTICS

F-Statistics is another test to determine whether there is a relationship between the response and the predictors

- Value close to 1 → no relationship between the response and predictors
- Value much larger than 1 → likely to find relationship between the response and predictors
- More importantly to look at the p-value, whether the F-statistics is significant

MODEL SUMMARY

OLS Regression Results

De	p. Variab	ole:	S	ales	R-s	0.612	
	Mod	lel:	(OLS	Adj. R-s	0.610	
	Meth	od: L	east Squ	ares	F-s	312.1	
	Da	te: Sat,	12 Jun 2	021 P	rob (F-st	1.47e-42	
	Tin	ne:	12:49:18 Log-Likelihood:				-519.05
No. Ob	servatio	ns:	200 AIC			AIC:	1042.
Df	Residua	als:	198			BIC:	1049.
	Df Mod	lel:		1			
Covar	iance Ty	pe:	nonrol	oust			
	coef	std err	t	D. H	[0.025	0.975]	
	coei	Stu err		P> t	[0.025	0.975]	
const	7.0326	0.458	15.360	0.000	6.130	7.935	
TV	0.0475	0.003	17.668	0.000	0.042	0.053	

MSE

While R² and F-statistics gives a rough idea of how effective is the regression model, it does not tell how much is the error

 The prediction error is sometimes more important <u>Mean Squared Error (MSE)</u> is able to measure the prediction accuracy/error

$$MSE = \frac{1}{\text{degrees_of_freedom}} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Prediction for observation *i* based on our model

MODEL SUMMARY

(n-2) = degrees of freedom (Lost 2 degrees of freedom because we estimate β_0 and β_1) **OLS Regression Results**

0.0475

	De	p. Variab	ole:	S	ales	R-s	quared:	0.612
		Mod	lel:	(OLS	Adj. R-s	0.610	
		Meth	od: L	east Squa	ares	F-s	312.1	
		Da	te: Sat,	12 Jun 2	021	tatistic):	1.47e-42	
		Tin	ne:	12:49	9:18	Log-Lik	-519.05	
No.	Ob	servatio	ns:		200		1042.	
7	Df	Residua	als:		198		1049.	
		Df Mod	lel:		1			
Cov	var	iance Ty	pe:	nonrol	oust			
					.		0.0757	
		coef	std err	t	P> t	[0.025	0.975]	
con	st	7.0326	0.458	15.360	0.000	6.130	7.935	
224								

0.003 17.668 0.000

0.042

0.053

MEASURING QUALITY OF FIT

MULTI LINEAR REGRESSION

CRISP-DM

Simple Linear Regression

Multi Linear Regression Coding
Scheme for
Categorical
Variables

MULTI LINEAR REGRESSION

ADVERTISING EXAMPLE

Suppose we hypothesize that there might be a linear relationship between <u>Sales</u> and amount spend on <u>TV</u>, <u>Radio</u>, <u>Newspaper</u> advertisement

$$Sales \approx \beta_0 + \beta_1 TV + \beta_2 Radio + \beta_3 Newspaper$$

- β_1 , β_2 , β_3 are the coefficients that quantifies the association between TV, Radio, Newspaper spending on the Sales (response)
- β_i is the average effect on Y for one unit increase in X_i while keeping the other predictors fixed

CODING SCHEME FOR CATEGORICAL VARIABLES

CRISP-DM

Simple Linear Regression

Multi Linear Regression Coding
Scheme for
Categorical
Variables

QUALITATIVE PREDICTORS

Regression requires the attributes to be quantitative (i.e. numerical)

Need to specially handle qualitative predictors

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
3	104.593	7075	514	4	71	11	Male	No	No	Asian	580
4	148.924	9504	681	3	36	11	Female	No	No	Asian	964
5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331
6	80.18	8047	569	4	77	10	Male	No	No	Caucasian	1151
7	20.996	3388	259	2	37	12	Female	No	No	African American	203
8	71.408	7114	512	2	87	9	Male	No	No	Asian	872
9	15.125	3300	266	5	66	13	Female	No	No	Caucasian	279
10	71.061	6819	491	3	41	19	Female	Yes	Yes	African American	1350

Credit.csv

CODING SCHEME

How to include the gender variable?

2 values: male and female

$$Gender_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

Supposed we want to include income and gender:

$$Balance_{i} \approx \beta_{0} + \beta_{1}Income_{i} + \beta_{2}Gender_{i} = \begin{cases} \beta_{0} + \beta_{1}Income_{i} + \beta_{2} & \text{if female} \\ \beta_{0} + \beta_{1}Income_{i} & \text{if male} \end{cases}$$

INTERPRETATION

$$Balance_{i} \approx \beta_{0} + \beta_{1}Income_{i} + \beta_{2}Gender_{i} = \begin{cases} \beta_{0} + \beta_{1}Income_{i} + \beta_{2} & \text{if female} \\ \beta_{0} + \beta_{1}Income_{i} & \text{if male} \end{cases}$$

β_2 is the average difference in credit card balance between females and males for a given income level

- Treat males are the "baseline"
- The coding scheme (whether male should be 1 or female should be 1) will not affect the interpretation of the regression

CODING SCHEME

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
3	104.593	7075	514	4	71	11	Male	No	No	Asian	580
4	148.924	9504	681	3	36	11	Female	No	No	Asian	964
5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331
6	80.18	8047	569	4	77	10	Male	No	No	Caucasian	1151
7	20.996	3388	259	2	37	12	Female	No	No	African American	203
8	71.408	7114	512	2	87	9	Male	No	No	Asian	872
9	15.125	3300	266	5	66	13	Female	No	No	Caucasian	279
10	71.061	6819	491	3	41	19	Female	Yes	Yes	African American	1350

If there is k ($k \ge 3$) values, create k-1 dummy variables

$$Ethnicity_{ia} = \begin{cases} 1 & \text{if } i \text{th person is Asian} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$

$$Ethnicity_{ic} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian} \\ 0 & \text{if } i \text{th person is not Caucasian} \end{cases}$$

How about African American?

If person is neither Asian nor Caucasian → person is African American

$$Balance_{i} \approx \beta_{0} + \beta_{1}Ethnicity_{ia} + \beta_{2}Ethnicity_{ic} = \begin{cases} \beta_{0} + \beta_{1} & \text{if asian} \\ \beta_{0} + \beta_{2} & \text{if Caucasian} \\ \beta_{0} & \text{if African American} \end{cases}$$

WHAT'S NEXT?

Predictive Analytics II