Test AA

- 1. Cuando un sistema natural aprende a realizar una acción para provocar un efecto determinado a través de prueba y error, este aprendizaje se considera de tipo:
 - a) Habitación
 - b) Impronta
 - c) Asociativo
 - d) Imitación
- 2. La capacidad de los seres humanos de obtener conceptos y relaciones a partir de una serie de ejemplos y contraejemplos se denomina:
 - a) Aprendizaje inductivo
 - b) Aprendizaje deductivo
 - c) Aprendizaje genético
 - d) Aprendizaje por analogía
- 3. El tipo de aprendizaje en el que los conceptos tienen una correspondencia explícita con los elementos del sistema se denomina:
 - a) Aprendizaje simbólico
 - b) Aprendizaje no simbólico
 - c) Aprendizaje por analogía
 - d) Aprendizaje por refuerzo
- 4. Según la expresión de la teoría Vapnik-Chervonenkis (VC):
 - a) Si se escoge un modelo demasiado sencillo, la confianza VC será baja, pero el riesgo empírico será alto, y, en consecuencia, el riesgo esperado será alto
 - b) Si se escoge un modelo demasiado sencillo, el riesgo empírico será bajo, pero la confianza VC será alta, y, en consecuencia, el riesgo esperado será alto
 - c) Si se escoge un modelo demasiado complejo, la confianza VC será baja, pero el riesgo espera será alto, y, en consecuencia, el riesgo empírico será alto
 - d) Si se escoge un modelo demasiado complejo, el riesgo esperado será bajo, pero la confianza VC será alta, y, en consecuencia, el riesgo empírico será alto

- 5. Para un conjunto de datos que se distribuyen en un rango pero algunos pueden salirse y tomar valores altos o muy bajos, la forma más idónea para normalizar sería:
 - a) Normalizar mediante escalado decimal
 - b) Normalizar mediante media y desviación típica
 - c) Normalizar entre máximo y mínimo
 - d) Todas son falsas

6. La técnica de Análisis de Componentes Principales (PCA):

- a) Elimina de un conjunto de variables aquellas que aporten menos de un determinado porcentaje de información
- b) Transforma un conjunto de variables en otro conjunto de nuevas variables incorreladas
- c) Es capaz de descomponer una serte de señales en las señales originales (fuentes) a partir de las cuales se crearon
- d) Elimina de un conjunto de variables aquellas que son combinaciones lineales de otras del mismo conjunto
- 7. En una matriz de confusión, la tasa de verdaderos positivos se denomina:
 - a) Precisión
 - **b)** Tasa de error
 - c) Sensibilidad
 - d) Especificidad
- 8. En una curva ROC (Receiver Operating Characteristic) el punto (0,0) indica:
 - a) El clasificador que predice todos los casos como negativos
 - **b)** El clasificador perfecto
 - c) El clasificador que falla todas las predicciones
 - d) El clasificador que predice todos los casos como positivos
- 9. El índice kappa de un clasificador:
 - a) Mide la precisión de un clasificador
 - b) Mide el área bajo la curva de un clasificador
 - c) Mide la concordancia de un clasificador con las salidas deseadas
 - d) Mide la repetibilidad de los resultados datos por un clasificador

10. En un SVM los vectores de soporte son:

- a) Los patrones que tocan y definen los márgenes de la región de decisión
- b) Los vectores que definen la pendiente de la recta de separación
- c) Los valores de w y b de la formulación
- d) Los patrones cuyo de alfa de la formulación del problema dual es igual a 0

11. En un SVM lineal aplicado a un problema no linealmente separable:

- a) Se proyectan los patrones a un espacio de mayor dimensionalidad
- b) Se modifica la formulación para permitir cierto error en la clasificación de los patrones
- c) Se aplica una función de kernel en aquellos lugares de la formulación en los que se haría un producto escalar
- d) Los patrones que están fuera del margen de decisión tienen un valor de alfa igual a C

12. En un SVM aplicado a un problema no linealmente separable:

- a) Los patrones que están dentro del margen de decisión tienen un valor de alfa igual a 0
- b) Los patrones que están dentro del margen de decisión tienen un valor de alfa igual a C
- c) Los patrones que están en el límite del margen de decisión tienen un valor de alfa igual a O
- d) Los patrones que están en el límite del margen de decisión tienen un valor de alfa igual a C

13. Para poder aplicar un SVM para resolver problemas de clasificación en k clases, la estrategia uno contra el resto":

- a) Crea k problemas de clasificación distintos, en cada uno una clase concreta debe de ser separable del resto de clases
- b) Crea k problemas de clasificación distintos, en cada uno una clase concreta debe de ser separable de otra clase concreta
- c) Crea k(k-1)/2 problemas de clasificación distintos, en cada uno una clase concreta debe de ser separada del resto de clases
- d) Crea k(k-1)/2 problemas de clasificación distintos, en cada uno una clase concreta debe de ser separada de otra clase concreta

14. En un árbol de decisión:

- a) Las hojas describen una cuestión sobre el valor de un atributo
- b) Los nodos describen una cuestión sobre el valor de un atributo
- c) Las ramas describen una cuestión sobre el valor de un atributo
- d) Todas son falsas

15. En el algoritmo ID3:

- a) Se escoge como atributo para un nodo aquel que tenga mayor ganancia de información
- b) Se escoge como atributo para un nodo aquel que tenga mayor entropía de información
- c) Se escoge como atributo para un nodo aquel que divida los patrones en conjuntos más grandes, intentando que haya igual número de patrones de la misma clase en cada uno
- d) Se escoge como atributo para un nodo aquel que divida los patrones en conjuntos más pequeños, intentando que haya igual número de patrones de la misma clase en cada uno

16. En el algoritmo ID3, a la hora de clasificar una instancia con un valor desconocido en un atributo:

- a) No se puede realizar la clasificación en ningún caso
- **b)** No se puede realizar la clasificación, si al recorrer el árbol ese atributo está en un nodo
- c) Si al recorrer el árbol el atributo está en un nodo, se sigue la rama que sea más probable en función del resto de valores todavía no examinados en nodos anteriores
- d) Si al recorrer el árbol el atributo está en un nodo, se siguen todas las ramas y se asigna la clase más común

17. El algoritmo CART mide la impureza de un nodo mediante:

- a) Entropía
- b) Tasa de instancias mal clasificadas al asignar a todas as instancias de ese nodo la clase más común
- c) Ganancia de información
- a) Índice de Gini

18. Un árbol de regresión:

- a) Contiene una ecuación de regresión en cada hoja
- b) Aproximan la función objetivo mediante una función constante a trozos
- c) Cada hoja contiene el valor de una etiqueta asociada a una clase
- d) Utiliza como criterio de impureza el índice de Gini

19. En un árbol de modelos de regresión, el suavizado de una predicción dada por una hoja se realiza:

- a) Modificando la ecuación de regresión de la hoja con la ecuación de regresión global contenida en la raíz del árbol
- b) Modificando la ecuación de regresión de la hoja con las ecuaciones de regresión de cada uno de los nodos superiores
- Combinando el valor de predicción de una hoja, sucesivamente con los valores que van dando los nodos superiores hasta la raíz
- d) Combinando el valor de predicción de una hoja con el valor de predicción del modelo global que contiene la raíz

20. El algoritmo k-Nearest Neighbour:

- a) Solamente puede utilizarse para resolver problemas de clasificación
- b) Puede ser utilizado para resolver problemas de regresión
- c) Puede ser utilizado para resolver problemas de clustering
- d) Todas son falsas

21. En la variante del algoritmo k-Nearest Neighbour con distancia mínima:

- a) Se realiza un 1-NN con un patrón escogido al azar de cada clase
- b) Se realiza un 1-NN con un patrón escogido de cada clase, el más cercano al centroide de esa clase
- c) Se realiza un 1-NN con un patrón nuevo de cada clase, que será el centroide de esa clase
- d) Se realiza un 1-NN con un patrón nuevo de cada clase, cuya posición se habrá actualizado mediante la comparación con cada uno de los patrones

22. En aprendizaje basado en instancias, la técnica de selección de instancias de forma decremental se basa en:

- a) Ir eliminando del conjunto de prototipos instancias, siempre que, al intentar clasificarlas, se clasifiquen de forma distinta a su clase
- **b)** Ir añadiendo al conjunto de prototipos instancias, siempre que, al intentar clasificarlas, se clasifiquen correctamente
- c) Ir añadiendo al conjunto de prototipos instancias, siempre que, al intentar clasificarlas, se clasifiquen de forma distinta a su clase
- d) Ir eliminando del conjunto de prototipos instancias, siempre que, al intentar clasificarlas, se clasifiquen correctamente

23. En aprendizaje basado en instancias, en la regresión local ponderada:

- a) Una vez generada una salida, se elimina el modelo
- b) Una vez generada una salida, se combina el modelo con los anteriores
- c) El modelo generado es global, con lo que es aplicable a nuevas instancias
- d) El modelo generado es global, pero no es aplicable a nuevas instancias

24. Los vectores de salida de una red de Hopfield...

- a) cambian en función del tiempo y forman parte de un sistema dinámico
- b) la red de Hopfield solo tiene vectores de entrada
- c) permiten determinar los pesos de la red
- d) constituyen siempre un estado estable

25. Las GCS tienen:

- a) capa de entrada, una o dos capas ocultas y una capa de salida
- b) una sola capa
- c) capa de entrada y capa de salida
- d) ninguna de las anteriores es correcta

26. Los sistemas como COBWEB...

- a) permiten obtener una jerarquía de conceptos según criterios de probabilidad
- b) cumplen la propiedad de Markov
- c) emplean una estrategia adecuada de explotación-exploración
- d) todas las anteriores son correctas

- 27. Un problema de reconocimiento de caracteres, lo puedo resolver con la ayuda de:
 - a) Una GNG
 - b) Una red de Hopfield
 - c) Un perceptrón multicapa
 - d) Todas las anteriores son correctas
- 28. Si se quiere implementar un sistema que sea capaz de jugar al juego de Conecta-4 (en un tablero conectar 4 fichas del mismo color en vertical, horizontal o diagonal antes de que lo haga el oponente):
 - a) Se puede implementar usando un dendrograma
 - b) Lo mejor es emplear una red ART
 - c) Un algoritmo adecuado para implementarlo es el de Q-Learning
 - d) Una técnica útil a emplear es COBWEB
- 29. En el aprendizaje no supervisado...
 - a) se consiguen grupos de patrones similares
 - b) la autoorganización de la red permite hallar las clases de los patrones
 - c) se trabaja con patrones con etiqueta de clase
 - d) la b y la c son correctas
- 30. El criterio de agrupamiento de un algoritmo de clustering...
 - a) permite decidir si un patrón pertenece a un grupo
 - b) es un método que usa la distancia euclídea
 - c) permite definir cuantitativamente cuándo una partición es mejor que otra
 - d) todas las anteriores son correctas
- 31. En los algoritmos de clustering jerárquicos, una vez realizada una jerarquía...
 - a) no se puede incorporar un nuevo dato
 - b) se pueden incorporar nuevos datos, pero solo en dendrogramas con datos conceptuales
 - c) se puede incorporar un nuevo dato comparando desde el nodo raíz y bajando sucesivamente según el detalle requerido
 - d) todas las anteriores son incorrectas

32. En el aprendizaje por refuerzo, para inferir Q, se realizan acciones aleatoriamente desde un estado inicial hasta que...

- a) se ha alcanzado el objetivo final
- b) se han realizado un nº límite de acciones sin alcanzar el objetivo final
- c) se obtienen los valores de alfa y gamma
- d) la a y la b son correctas

33. El refuerzo en un sistema de aprendizaje por refuerzo...

- a) se obtiene gracias a un experto que indica qué acción tomar en cada momento
- b) se puede recibir retardado en el tiempo procedente del entorno
- c) hay que maximizarlo siguiendo una política obtenida por prueba y error
- d) la b y la c son correctas

34. Para entrenar las redes Stacked auto-encoders:

- a) Se realiza entrenamiento no supervisado en cada capa oculta, supervisado en la última capa y, finalmente, supervisado de forma global
- b) Se realiza entrenamiento no supervisado en cada capa oculta, y posteriormente supervisado de forma global
- c) Se realiza entrenamiento supervisado global y posteriormente se afinan los pesos de forma no supervisada
- d) Se realiza entrenamiento supervisado en la última capa, después supervisado de forma global, y posteriormente se afinan los pesos de forma no supervisada

35. ¿Cuál de los siguientes modelos de Deep Learning puede utilizarse para generar nuevos vectores de ejemplo?

- a) Stacked auto-encoders
- b) Convolutional Networks
- c) Sparse encoders
- d) Deep Belief Networks

36. La técnica de Hold Out:

- a) Se considera que el error que comete es inferior al error real (optimista)
- b) Se considera que el error que comete es similar al error real
- c) Se considera que el error que comete es superior al error real (pesimista)
- d) Permite utilizar tanto los datos de entrenamiento como los de test para estimar el error real

37. La variante de validación cruzada estratificada:

- a) Toma un valor de k=10, con lo que se hace un 10-fold cross-validation
- b) Toma un valor de k=1, con lo que se hace un leave-one-out
- c) Intenta que en cada subconjunto haya igual número de patrones de cada clase
- d) Intenta que los patrones de las distintas clases se distribuyan en conjuntos distintos

38. El test de Wilcoxon:

- a) Es paramétrico
- b) Evalúa las diferencias entre las medias de dos modelos
- c) No realiza ninguna suposición sobre los datos
- d) Todas son falsas

39. En la generación de metaclasificadores mediante fusión de etiquetas:

- a) Se utiliza un nuevo clasificador que recibe como entradas las salidas del resto de clasificadores
- **b)** Se combinan las salidas mediante una función como la media, mediana, producto, etc
- c) Se combinan en cascada distintos clasificadores
- d) Se utiliza algún sistema de votado

40. De las siguientes técnicas, ¿cuál se basa en combinar clasificadores de tipo distinto?:

- a) Bagging
- b) Apilado
- c) Boosting
- d) Aleatorización