Models

1 Data

Adjacency matrix $\mathbf{Y} = [y_{i,i'}]$ corresponding to an undirected, binary network.

2 Erdos-Renyi Model

Likelihood

$$y_{i,i'} \mid \theta \stackrel{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\theta\right)$$

Prior

$$\theta \sim \mathsf{Beta}(a_{\theta}, b_{\theta})$$

Parameters

$$\Upsilon = (\theta)$$
.

Hyper-parameters

$$(a_{\theta},b_{\theta})$$
.

Posterior

$$p(\theta\mid\mathbf{Y}) = p(\mathbf{Y}\mid\theta)\,p(\theta) = \theta^{a_{\theta}+s_{y}-1}(1-\theta)^{b_{\theta}+N-s_{y}-1} = \mathsf{Beta}(\theta\mid a_{\theta}+s_{y},b_{\theta}+N-s_{y})\,,$$
 where $s_{y} = \sum_{i=1}^{I-1}\sum_{i'=i+1}^{I}y_{i,i'}$ and $N = I(I-1)/2$.

Prior Elicitation

$$a_{\theta} = 1$$
, $b_{\theta} = 1$.

3 Distance Model

Likelihood

$$y_{i,i'} \mid \zeta, \boldsymbol{u}_i, \boldsymbol{u}_{i'} \stackrel{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\mathrm{expit}(\zeta - \| \boldsymbol{u}_i - \boldsymbol{u}_{i'} \|) \right)$$

Prior

$$\begin{aligned} \boldsymbol{u}_i \mid \sigma^2 \stackrel{\text{iid}}{\sim} \mathsf{N}(\boldsymbol{0}, \sigma^2 \mathbf{I}) \\ \sigma^2 &\sim \mathsf{IGam}(a_{\sigma}, b_{\sigma}) \\ \zeta \mid \omega^2 &\sim \mathsf{N}(0, \omega^2) \\ \omega^2 &\sim \mathsf{IGam}(a_{\omega}, b_{\omega}) \end{aligned}$$

Parameters

$$\Upsilon = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_I, \zeta, \sigma^2, \omega^2),$$

where $\zeta \in \mathbb{R}$ and $\boldsymbol{u}_i = (u_{i,1}, \dots, u_{i,K}) \in \mathbb{R}^K$.

Hyper-parameters

$$(a_{\sigma}, b_{\sigma}, a_{\omega}, b_{\omega})$$
.

Posterior

$$p(\Upsilon \mid \mathbf{Y}) = p(\mathbf{Y} \mid \zeta, \{\mathbf{u}_i\}) p(\{\mathbf{u}_i\} \mid \sigma^2) p(\sigma^2) p(\zeta \mid \omega^2) p(\omega^2)$$

$$\propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \prod_{i=1}^{I} (\sigma^2)^{-K/2} \exp\left\{-\frac{1}{2\sigma^2} \|\mathbf{u}_i\|^2\right\} \times (\sigma^2)^{-(a_{\sigma} + 1)} \exp\left\{-\frac{b_{\sigma}}{\sigma^2}\right\}$$

$$\times (\omega^2)^{-1/2} \exp\left\{-\frac{1}{2\omega^2} \zeta^2\right\} \times (\omega^2)^{-(a_{\omega} + 1)} \exp\left\{-\frac{b_{\omega}}{\omega^2}\right\},$$

where $\theta_{i,i'} = \operatorname{expit}(\zeta - \|\boldsymbol{u}_i - \boldsymbol{u}_{i'}\|)$.

MCMC Algorithm

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $u_i^{(b+1)}$, $i=1,\ldots,I$, according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\boldsymbol{u}_i \mid \text{rest}) \propto \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \prod_{i'=1}^{i-1} \theta_{i',i}^{y_{i',i}} (1 - \theta_{i',i})^{1-y_{i',i}} \times \exp\{-\frac{1}{2\sigma^2} \|\boldsymbol{u}_i\|^2\}.$$

2. Sample $\zeta^{(b+1)}$ according to a Metropolis-Hastings Algorithm, considering the fcd:

$$p(\zeta \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \exp\{-\frac{1}{2\omega^2} \zeta^2\}.$$

- 3. Sample $(\sigma^2)^{(b+1)}$ from $p(\sigma^2 \mid \text{rest}) = \mathsf{IGam}\left(\sigma^2 \mid a_\sigma + \frac{IK}{2}, b_\sigma + \frac{1}{2}\sum_{i=1}^I \|\boldsymbol{u}_i\|^2\right)$.
- 4. Sample $(\omega^2)^{(b+1)}$ from $p(\omega^2 \mid \text{rest}) = \mathsf{IGam}\left(\omega^2 \mid a_\omega + \frac{1}{2}, b_\omega + \frac{1}{2}\zeta^2\right)$.

Prior Elicitation

Setting a priori $\mathbb{E}\left[\sigma^{2}\right]=V_{2}\left(I^{1/K}\right)$ and $\mathbb{E}\left[\omega^{2}\right]=100$, with $\mathbb{CV}\left[\sigma^{2}\right]=\mathbb{CV}\left[\omega^{2}\right]=\infty$, it follows that

$$a_{\sigma} = 2$$
, $b_{\sigma} = V_2(I^{1/K})$, $a_{\omega} = 2$, $b_{\omega} = 100$,

where $V_2(I^{1/K})$ is the volume of a 2-dimensional Euclidean ball of radius $I^{1/K}$.

4 Class Model (Stochastic Block Model, SBM)

Likelihood

$$y_{i,i'} \mid \xi_i, \xi_{i'}, \{\eta_{k,\ell}\} \stackrel{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\mathrm{expit}\, \eta_{\phi(\xi_i, \xi_{i'})} \right)$$

$$p(\mathbf{Y} \mid \{\xi_i\}, \{\eta_{k,\ell}\}) = \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} (\operatorname{expit} \eta_{\phi(\xi_i, \xi_{i'})})^{y_{i,i'}} (1 - \operatorname{expit} \eta_{\phi(\xi_i, \xi_{i'})})^{1 - y_{i,i'}}$$

$$= \prod_{k=1}^{K} \prod_{\ell=k}^{K} (\operatorname{expit} \eta_{k,\ell})^{s_{k,\ell}} (1 - \operatorname{expit} \eta_{k,\ell})^{n_{k,\ell} - s_{k,\ell}}$$

where $s_{k,\ell} = \sum_{\mathcal{S}_{k,\ell}} y_{i,i'}$, $n_{k,\ell} = \sum_{\mathcal{S}_{k,\ell}} 1$, with $\mathcal{S}_{k,\ell} = \{(i,i') : i < i' \text{ and } \phi(\xi_i,\xi_{i'}) = (k,\ell)\}$, and $\phi(x,y) = (\min\{x,y\}, \max\{x,y\})$ is a function to take into account that $\mathbf{Y} = [y_{i,i'}]$ is a symmetric matrix.

Prior

$$egin{aligned} \eta_{k,\ell} \mid \zeta, au^2 & \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\zeta, au^2) \\ & \zeta \sim \mathsf{N}(\mu_\zeta, \sigma_\zeta^2) \\ & au^2 \sim \mathsf{IGam}(a_\tau, b_ au) \\ & \xi_i \mid oldsymbol{\omega} & \stackrel{\mathsf{iid}}{\sim} \mathsf{Cat}(oldsymbol{\omega}) \end{aligned}$$

$$\omega \mid \alpha \sim \mathsf{Dir}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

$$\alpha \sim \mathsf{Gam}(a_{\alpha}, b_{\alpha})$$

Parameters

$$\Upsilon = (\eta_{1,1}, \eta_{1,2}, \dots, \eta_{K,K}, \xi_1, \dots, \xi_I, \omega_1, \dots, \omega_K, \zeta, \tau^2, \alpha),$$

where $\xi_i \in \{1, ..., K\}$, i = 1, ..., I, are the cluster assignments $(\xi_i = k \text{ means that actor } i \text{ belongs to cluster } k)$, and $\boldsymbol{\omega} = (\omega_1, ..., \omega_K)$ is a probability vector such that $\mathbb{P}r\left[\xi_i = k \mid w_k\right] = w_k$, k = 1, ..., K.

Hyper-parameters

$$(\mu_{\zeta}, \sigma_{\zeta}^2, a_{\tau}, b_{\tau}, a_{\alpha}, b_{\alpha})$$
.

Posterior

$$p(\mathbf{\Upsilon} \mid \mathbf{Y}) = p(\mathbf{Y} \mid \{\xi_{i}\}, \{\eta_{k,\ell}\}) p(\{\eta_{k,\ell}\} \mid \zeta, \tau^{2}) p(\zeta) p(\tau^{2}) p(\{\xi_{i}\} \mid \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid \alpha) p(\alpha)$$

$$\propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \exp\left\{-\frac{1}{2\sigma_{\zeta}^{2}} (\zeta - \mu_{\zeta})^{2}\right\} \times (\tau^{2})^{-(a_{\tau}-1)} \exp\left\{-\frac{b_{\tau}}{\tau^{2}}\right\}$$

$$\times \prod_{k=1}^{K} \prod_{\ell=k}^{K} (\tau^{2})^{-1/2} \exp\left\{-\frac{1}{2\tau^{2}} (\eta_{k,\ell} - \zeta)^{2}\right\} \times \prod_{i=1}^{I} \prod_{k=1}^{K} \omega_{k}^{[\xi_{i}=k]} \times \frac{\Gamma\left(\frac{\alpha}{K}\right)^{K}}{\Gamma(\alpha)} \prod_{k=1}^{K} \omega_{k}^{\frac{\alpha}{K}-1}$$

$$\times \alpha^{a_{\alpha}-1} \exp\left\{-b_{\alpha} \alpha\right\},$$

where $\theta_{i,i'} = \operatorname{expit}(\eta_{\phi(\xi_i,\xi_{i'})})$ and $[\cdot]$ is the Iverson bracket.

MCMC

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $\eta_{k,\ell}^{(b+1)}$, $\ell = k, ..., K$ and k = 1, ..., K, according to a Metropolis–Hastings Algorithm, considering the fcd:

$$\log p(\eta_{k,\ell} \mid \text{rest}) \propto s_{k,\ell} \log(\text{expit } \eta_{k,\ell}) + (n_{k,\ell} - s_{k,\ell}) \log(1 - \text{expit } \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,\ell} - \zeta)^2,$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\tau^2} (\eta_{k,$$

where $s_{k,\ell} = \sum_{S_{k,\ell}} y_{i,i'}$ and $n_{k,\ell} = \sum_{S_{k,\ell}} 1$, with $S_{k,\ell} = \{(i,i') : i < i' \text{ and } \phi(\xi_i, \xi_{i'}) = (k,\ell)\}$.

2. Sample $\xi_i^{(b+1)}$, $i=1,\ldots,I$, from a categorical distribution on $\{1,\ldots,K\}$, such that:

$$\mathbb{P}\mathrm{r}\left[\xi_{i}=k\mid\mathrm{rest}\right]\propto\omega_{k}\times\prod_{i'=i+1}^{I}\eta_{\phi(k,\xi_{i'})}^{y_{i,i'}}(1-\eta_{\phi(k,\xi_{i'})})^{1-y_{i,i'}}\times\prod_{i'=1}^{i-1}\eta_{\phi(\xi_{i'},k)}^{y_{i',i}}(1-\eta_{\phi(\xi_{i'},k)})^{1-y_{i',i}}.$$

- 3. Sample $\boldsymbol{\omega}^{(b+1)}$ from $p(\boldsymbol{\omega} \mid \text{rest}) = \text{Dir}\left(\boldsymbol{\omega} \mid \frac{\alpha}{K} + n_1, \dots, \frac{\alpha}{K} + n_K\right)$, where n_k is the number of actors in cluster $k \in \{1, \dots, K\}$.
- 4. Sample $\zeta^{(b+1)}$ from $N(m, v^2)$, where

$$v^{2} = \left(\frac{1}{\sigma_{\zeta}^{2}} + \frac{K(K+1)/2}{\tau^{2}}\right)^{-1} \quad \text{and} \quad m = v^{2} \left(\frac{\mu_{\zeta}}{\sigma_{\zeta}^{2}} + \frac{1}{\tau^{2}} \sum_{k=1}^{K} \sum_{\ell=k}^{K} \eta_{k,\ell}\right).$$

- 5. Sample $(\sigma^2)^{(b+1)}$ from $p(\sigma^2 \mid \text{rest}) = \mathsf{IGam}\left(\sigma^2 \mid a_\tau + \frac{K(K+1)}{4}, b_\tau + \frac{1}{2}\sum_{k=1}^K\sum_{\ell=k}^K(\eta_{k,\ell} \zeta)^2\right)$.
- 6. Sample $\alpha^{(b+1)}$ according to a Metropolis-Hastings Algorithm, considering the fcd:

$$\log p(\alpha \mid \text{rest}) \propto \log \Gamma(\alpha) - K \log \Gamma(\alpha/K) + \frac{\alpha}{K} \sum_{k=1}^{K} \log \omega_k - (a_{\beta} - 1) \log \alpha - b_{\alpha} \alpha.$$

Prior Elicitation

$$\mu_{\zeta} = 0$$
, $\sigma_{\zeta}^2 = 3$, $a_{\tau} = 2$, $b_{\tau} = 3$, $a_{\alpha} = 1$, $b_{\alpha} = 1$.

5 Eigen Model

Likelihood

$$y_{i,i'} \mid \zeta, oldsymbol{u}_i, oldsymbol{u}_{i'}, oldsymbol{\Lambda} \overset{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\mathrm{expit}(\zeta + oldsymbol{u}_i^T oldsymbol{\Lambda} oldsymbol{u}_{i'})
ight)$$

Prior

$$egin{aligned} oldsymbol{u}_i \mid \sigma^2 \overset{ ext{iid}}{\sim} \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \\ & \sigma^2 \sim \mathsf{IGam}(a_\sigma, b_\sigma) \\ \lambda_k \mid \kappa^2 \overset{ ext{iid}}{\sim} \mathsf{N}(0, \kappa^2) \\ & \kappa^2 \sim \mathsf{IGam}(a_\kappa, b_\kappa) \\ \zeta \mid \omega^2 \sim \mathsf{N}(0, \omega^2) \\ & \omega^2 \sim \mathsf{IGam}(a_\omega, b_\omega) \end{aligned}$$

Parameters

$$\Upsilon = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_I, \lambda_1, \dots, \lambda_K, \zeta, \sigma^2, \kappa^2, \omega^2),$$

where $\zeta \in \mathbb{R}$ and $\mathbf{u}_i = (u_{i,1}, \dots, u_{i,K}) \in \mathbb{R}^K$, and $\mathbf{\Lambda} = \operatorname{diag}[\lambda_1, \dots, \lambda_K]$.

Hyper-parameters

$$(a_{\sigma}, b_{\sigma}, a_{\kappa}, b_{\kappa}, a_{\omega}, b_{\omega})$$
.

Posterior

$$p(\Upsilon \mid \mathbf{Y}) = p(\mathbf{Y} \mid \zeta, \{\mathbf{u}_i\}, \{\lambda_k\}) p(\{\mathbf{u}_i\} \mid \sigma^2) p(\sigma^2) p(\{\lambda_k\} \mid \kappa^2) p(\kappa^2) p(\zeta \mid \omega^2) p(\omega^2)$$

$$\propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \prod_{i=1}^{I} (\sigma^2)^{-K/2} \exp\left\{-\frac{1}{2\sigma^2} \|\mathbf{u}_i\|^2\right\} \times (\sigma^2)^{-(a_{\sigma} + 1)} \exp\left\{-\frac{b_{\sigma}}{\sigma^2}\right\}$$

$$\times \prod_{k=1}^{K} (\kappa^2)^{-1/2} \exp\left\{-\frac{1}{2\kappa^2} \lambda_k^2\right\} \times (\kappa^2)^{-(a_{\kappa} + 1)} \exp\left\{-\frac{b_{\kappa}}{\kappa^2}\right\} \times (\omega^2)^{-1/2} \exp\left\{-\frac{1}{2\omega^2} \zeta^2\right\}$$

$$\times (\omega^2)^{-(a_{\omega} + 1)} \exp\left\{-\frac{b_{\omega}}{\omega^2}\right\},$$

where $\theta_{i,i'} = \operatorname{expit}(\zeta + \boldsymbol{u}_i \boldsymbol{\Lambda} \boldsymbol{u}_{i'})$.

MCMC

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $\boldsymbol{u}_i^{(b+1)}$, $i=1,\ldots,I$, according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\boldsymbol{u}_i \mid \text{rest}) \propto \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \prod_{i'=1}^{i-1} \theta_{i',i}^{y_{i',i}} (1 - \theta_{i',i})^{1-y_{i',i}} \times \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{u}_i\|^2\right\}.$$

2. Sample $\lambda_k^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\lambda_k \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \exp\left\{-\frac{1}{2\kappa^2} \lambda_k^2\right\}.$$

3. Sample $\zeta^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\zeta \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \exp\{-\frac{1}{\omega^2} \zeta^2\}.$$

- 4. Sample $(\sigma^2)^{(b+1)}$ from $p(\sigma^2 \mid \text{rest}) = \mathsf{IGam}\left(\sigma^2 \mid a_\sigma + \frac{IK}{2}, b_\sigma + \frac{1}{2}\sum_{i=1}^{I} \|\boldsymbol{u}_i\|^2\right)$.
- 5. Sample $(\kappa^2)^{(b+1)}$ from $p(\kappa^2 \mid \text{rest}) = \mathsf{IGam}\left(\kappa^2 \mid a_\kappa + \frac{Q}{2}, b_\kappa + \frac{1}{2} \sum_{k=1}^K \lambda_k^2\right)$.

6. Sample $(\omega^2)^{(b+1)}$ from $p(\omega^2 \mid \text{rest}) = \mathsf{IGam}\left(\omega^2 \mid a_\sigma + \frac{1}{2}, b_\sigma + \frac{1}{2}\zeta^2\right)$.

Prior Elicitation

Setting a priori $\mathbb{E}\left[\sigma^2\right] = \mathbb{E}\left[\kappa^2\right] = \mathbb{E}\left[\omega^2\right] = 3$, with $\mathbb{CV}\left[\sigma^2\right] = \mathbb{CV}\left[\kappa^2\right] = \mathbb{CV}\left[\omega^2\right] = \infty$, it follows that

$$a_{\sigma} = 2$$
, $b_{\sigma} = 3$, $a_{\kappa} = 2$, $b_{\kappa} = 3$, $a_{\omega} = 2$, $b_{\omega} = 3$.

6 Class-Distance Model

Likelihood

$$y_{i,i'} \mid \zeta, \{u_k\}, \xi_i, \xi_{i'} \stackrel{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\mathsf{expit}\, \eta_{\phi(\xi_i, \xi_{i'})} \right)$$

where

$$\eta_{k,\ell} = \zeta - \|\boldsymbol{u}_k - \boldsymbol{u}_\ell\|$$

Prior

$$egin{aligned} oldsymbol{u}_k \mid \sigma^2 \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \ & \sigma^2 \sim \mathsf{IGam}(a_\sigma, b_\sigma) \ & \zeta \mid \omega^2 \sim \mathsf{N}(0, \omega^2) \ & \omega^2 \sim \mathsf{IGam}(a_\omega, b_\omega) \ & \xi_i \mid oldsymbol{\omega} \stackrel{\mathsf{iid}}{\sim} \mathsf{Cat}(oldsymbol{\omega}) \ & oldsymbol{\omega} \mid lpha \sim \mathsf{Dir}\left(rac{lpha}{K}, \dots, rac{lpha}{K}
ight) \ & lpha \sim \mathsf{Gam}(a_lpha, b_lpha) \end{aligned}$$

Parameters

$$\Upsilon = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_K, \xi_1, \dots, \xi_I, \omega_1, \dots, \omega_K, \sigma^2, \omega^2, \alpha),$$

where $\zeta \in \mathbb{R}$ and $\boldsymbol{u}_k = (u_{k,1}, \dots, u_{k,Q}) \in \mathbb{R}^Q$.

Hyper-parameters

$$(a_{\sigma}, b_{\sigma}, a_{\omega}, b_{\omega}, a_{\alpha}, b_{\alpha})$$
.

Posterior

$$p(\mathbf{\Upsilon} \mid \mathbf{Y}) = p(\mathbf{Y} \mid \zeta, \{\mathbf{u}_k\}, \{\xi_i\}, \{\xi_{i'}\}) p(\{\mathbf{u}_k\} \mid \sigma^2) p(\sigma^2) p(\zeta \mid \omega^2) p(\omega^2) p(\{\xi_i\} \mid \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid \alpha) p(\alpha)$$

$$\propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1-\theta_{i,i'})^{1-y_{i,i'}} \times \prod_{k=1}^{K} (\sigma^2)^{-K/2} \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{u}_k\|^2\right\} \times (\sigma^2)^{-(a_{\sigma}+1)} \exp\left\{-\frac{b_{\sigma}}{\sigma^2}\right\} \\
\times (\omega^2)^{-1/2} \exp\left\{-\frac{1}{2\omega^2} \zeta^2\right\} \times (\omega^2)^{-(a_{\omega}+1)} \exp\left\{-\frac{b_{\omega}}{\omega^2}\right\} \times \prod_{i=1}^{I} \prod_{k=1}^{K} \omega_k^{[\xi_i=k]} \times \frac{\Gamma\left(\frac{\alpha}{K}\right)^K}{\Gamma(\alpha)} \prod_{k=1}^{K} \omega_k^{\frac{\alpha}{K}-1} \\
\times \alpha^{a_{\alpha}-1} \exp\left\{-b_{\alpha} \alpha\right\}$$

where $\theta_{i,i'} = \text{expit } \eta_{\phi(\xi_i,\xi_{i'})}$ and $[\cdot]$ is the Iverson bracket.

MCMC

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $\boldsymbol{u}_k^{(b+1)}, \, k=1,\dots,K,$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\boldsymbol{u}_k \mid \text{rest}) \propto \prod_{\substack{i,i':i < i' \\ \xi_i = k \text{ or } \xi_{i'} = k}} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{u}_k\|^2\right\}.$$

2. Sample $\zeta^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\zeta \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \exp\{-\frac{1}{\omega^2} \zeta^2\}.$$

3. Sample $\xi_i^{(b+1)}$, $i=1,\ldots,I$, from a categorical distribution on $\{1,\ldots,K\}$, such that:

$$\mathbb{P}\mathrm{r}\left[\xi_{i}=k\mid\mathrm{rest}\right]\propto\omega_{k}\times\prod_{i'=i+1}^{I}\eta_{\phi(k,\xi_{i'})}^{y_{i,i'}}(1-\eta_{\phi(k,\xi_{i'})})^{1-y_{i,i'}}\times\prod_{i'=1}^{i-1}\eta_{\phi(\xi_{i'},k)}^{y_{i',i}}(1-\eta_{\phi(\xi_{i'},k)})^{1-y_{i',i}}.$$

- 4. Sample $\boldsymbol{\omega}^{(b+1)}$ from $p(\boldsymbol{\omega} \mid \text{rest}) = \text{Dir}(\boldsymbol{\omega} \mid \frac{\alpha}{K} + n_1, \dots, \frac{\alpha}{K} + n_K)$, where n_k is the number of actors in cluster $k \in \{1, \dots, K\}$.
- 5. Sample $(\sigma^2)^{(b+1)}$ from $p(\sigma^2 \mid \text{rest}) = \mathsf{IGam}\left(\sigma^2 \mid a_\sigma + \frac{KQ}{2}, b_\sigma + \frac{1}{2}\sum_{k=1}^K \|\boldsymbol{u}_k\|^2\right)$.
- 6. Sample $(\omega^2)^{(b+1)}$ from $p(\omega^2 \mid \text{rest}) = \mathsf{IGam}\left(\omega^2 \mid a_\sigma + \frac{1}{2}, b_\sigma + \frac{1}{2}\zeta^2\right)$.
- 7. Sample $\alpha^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$\log p(\alpha \mid \text{rest}) \propto \log \Gamma(\alpha) - K \log \Gamma(\alpha/K) + \frac{\alpha}{K} \sum_{k=1}^{K} \log \omega_k - (a_{\alpha} - 1) \log \alpha - b_{\alpha} \alpha.$$

Prior Elicitation Setting a priori $\mathbb{E}\left[\sigma^2\right] = V_2\left(K^{1/Q}\right)$, $\mathbb{E}\left[\omega^2\right] = 3$ and $\mathbb{E}\left[\alpha\right] = 1$, with $\mathbb{CV}\left[\sigma^2\right] = \mathbb{CV}\left[\omega^2\right] = \infty$ and $\mathbb{CV}\left[\alpha\right] = 1$, it follows that

$$a_{\sigma} = 2$$
, $b_{\sigma} = V_2(K^{1/Q})$, $a_{\omega} = 2$, $b_{\omega} = 3$, $a_{\alpha} = 1$, $b_{\alpha} = 1$,

where $V_2(K^{1/Q})$ is the volume of a 2-dimensional Euclidean ball of radius $I^{1/Q}$.

7 Class–Eigen Model

Likelihood

$$y_{i,i'} \mid \zeta, \{\boldsymbol{u}_k\}, \boldsymbol{\Lambda}, \xi_i, \xi_{i'} \stackrel{\mathsf{ind}}{\sim} \mathsf{Ber}\left(\mathrm{expit}\, \eta_{\phi(\xi_i, \xi_{i'})} \right)$$

where

$$\eta_{k,\ell} = \zeta + \boldsymbol{u}_k^T \boldsymbol{\Lambda} \boldsymbol{u}_\ell$$

Prior

$$egin{aligned} oldsymbol{u}_k \mid \sigma^2 \stackrel{ ext{iid}}{\sim} \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \ & \sigma^2 \sim \mathsf{IGam}(a_\sigma, b_\sigma) \ & \lambda_q \mid \kappa^2 \stackrel{ ext{iid}}{\sim} \mathsf{N}(0, \kappa^2) \ & \kappa^2 \sim \mathsf{IGam}(a_\kappa, b_\kappa) \ & \zeta \mid \omega^2 \sim \mathsf{N}(0, \omega^2) \ & \omega^2 \sim \mathsf{IGam}(a_\omega, b_\omega) \ & \xi_i \mid oldsymbol{\omega} \stackrel{ ext{iid}}{\sim} \mathsf{Cat}(oldsymbol{\omega}) \ & \omega \mid lpha \sim \mathsf{Dir}\left(rac{lpha}{K}, \dots, rac{lpha}{K}
ight) \ & lpha \sim \mathsf{Gam}(a_lpha, b_lpha) \end{aligned}$$

Parameters

$$\Upsilon = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_K, \lambda_1, \dots, \lambda_Q, \xi_1, \dots, \xi_I, \omega_1, \dots, \omega_K, \sigma^2, \kappa^2, \omega^2, \alpha),$$

where $\zeta \in \mathbb{R}$ and $\boldsymbol{u}_k = (u_{k,1}, \dots, u_{k,Q}) \in \mathbb{R}^Q$, and $\boldsymbol{\Lambda} = \operatorname{diag}[\lambda_1, \dots, \lambda_Q]$.

Hyper-parameters

$$(a_{\sigma}, b_{\sigma}, a_{\kappa}, b_{\kappa}, a_{\omega}, b_{\omega}, a_{\alpha}, b_{\alpha})$$
.

Posterior

$$p(\mathbf{\Upsilon} \mid \mathbf{Y}) = p(\mathbf{Y} \mid \zeta, \{\mathbf{u}_k\}, \{\lambda_q\}, \{\xi_i\}) p(\{\mathbf{u}_k\} \mid \sigma^2) p(\sigma^2) p(\{\lambda_q\} \mid \kappa^2) p(\kappa^2) p(\zeta \mid \omega^2) p(\omega^2)$$

$$p(\{\xi_{i}\} \mid \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid \alpha) p(\alpha)$$

$$\propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \prod_{k=1}^{K} (\sigma^{2})^{-K/2} \exp\left\{-\frac{1}{2\sigma^{2}} \|\boldsymbol{u}_{k}\|^{2}\right\} \times (\sigma^{2})^{-(a_{\sigma}+1)} \exp\left\{-\frac{b_{\sigma}}{\sigma^{2}}\right\}$$

$$\times \prod_{q=1}^{Q} (\kappa^{2})^{-1/2} \exp\left\{-\frac{1}{2\kappa^{2}} \lambda_{q}^{2}\right\} \times (\kappa^{2})^{-(a_{\kappa}+1)} \exp\left\{-\frac{b_{\kappa}}{\kappa^{2}}\right\} \times (\omega^{2})^{-1/2} \exp\left\{-\frac{1}{2\omega^{2}} \zeta^{2}\right\}$$

$$\times (\omega^{2})^{-(a_{\omega}+1)} \exp\left\{-\frac{b_{\omega}}{\omega^{2}}\right\} \times \prod_{i=1}^{I} \prod_{k=1}^{K} \omega_{k}^{[\xi_{i}=k]} \times \frac{\Gamma\left(\frac{\alpha}{K}\right)^{K}}{\Gamma(\alpha)} \prod_{k=1}^{K} \omega_{k}^{\frac{\alpha}{K}-1} \times \alpha^{a_{\alpha}-1} \exp\left\{-b_{\alpha} \alpha\right\},$$

where $\theta_{i,i'} = \text{expit } \eta_{\phi(\xi_i,\xi_{i'})}$ and $[\cdot]$ is the Iverson bracket.

MCMC

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $\boldsymbol{u}_{k}^{(b+1)}$, $k=1,\ldots,K$, according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\boldsymbol{u}_k \mid \text{rest}) \propto \prod_{\substack{i < i' \\ \xi_i = k \text{ or } \xi_{i'} = k}} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \exp\left\{-\frac{1}{2\sigma^2} \|\boldsymbol{u}_k\|^2\right\}.$$

2. Sample $\lambda_q^{(b+1)}$, $q=1,\ldots,Q$, according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\lambda_q \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \exp\left\{-\frac{1}{2\kappa^2} \lambda_q^2\right\}.$$

3. Sample $\zeta^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$p(\zeta \mid \text{rest}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1-y_{i,i'}} \times \exp\{-\frac{1}{\omega^2} \zeta^2\}.$$

4. Sample $\xi_i^{(s+1)}$, $i=1,\ldots,I$, from a categorical distribution on $\{1,\ldots,K\}$, such that:

$$\mathbb{P}\mathrm{r}\left[\xi_{i} = k \mid \mathrm{rest}\right] \propto \omega_{k} \times \prod_{i'=i+1}^{I} \eta_{\phi(k,\xi_{i'})}^{y_{i,i'}} (1 - \eta_{\phi(k,\xi_{i'})})^{1-y_{i,i'}} \times \prod_{i'=1}^{i-1} \eta_{\phi(\xi_{i'},k)}^{y_{i',i}} (1 - \eta_{\phi(\xi_{i'},k)})^{1-y_{i',i}}.$$

5. Sample $\boldsymbol{\omega}^{(b+1)}$ from $p(\boldsymbol{\omega} \mid \text{rest}) = \text{Dir}(\boldsymbol{\omega} \mid \frac{\alpha}{K} + n_1, \dots, \frac{\alpha}{K} + n_K)$, where n_k is the number of actors in cluster $k \in \{1, \dots, K\}$.

6. Sample
$$(\sigma^2)^{(b+1)}$$
 from $p(\sigma^2 \mid \text{rest}) = \mathsf{IGam}\left(\sigma^2 \mid a_\sigma + \frac{KQ}{2}, b_\sigma + \frac{1}{2}\sum_{k=1}^K \|\boldsymbol{u}_k\|^2\right)$.

7. Sample
$$(\kappa^2)^{(b+1)}$$
 from $p(\kappa^2 \mid \text{rest}) = \mathsf{IGam}\left(\kappa^2 \mid a_\kappa + \frac{Q}{2}, b_\kappa + \frac{1}{2} \sum_{q=1}^Q \lambda_q^2\right)$.

8. Sample
$$(\omega^2)^{(b+1)}$$
 from $p(\omega^2 \mid \text{rest}) = \mathsf{IGam}\left(\omega^2 \mid a_\sigma + \frac{1}{2}, b_\sigma + \frac{1}{2}\zeta^2\right)$.

9. Sample $\alpha^{(b+1)}$ according to a Metropolis-Hastings Algorithm, considering the fcd:

$$\log p(\alpha \mid \text{rest}) \propto \log \Gamma(\alpha) - K \log \Gamma(\alpha/K) + \frac{\alpha}{K} \sum_{k=1}^{K} \log \omega_k - (a_{\alpha} - 1) \log \alpha - b_{\alpha} \alpha.$$

Prior Elicitation

Setting a priori $\mathbb{E}\left[\sigma^2\right] = \mathbb{E}\left[\kappa^2\right] = \mathbb{E}\left[\omega^2\right] = 3$, $\mathbb{E}\left[\alpha^2\right] = 1$, with $\mathbb{CV}\left[\sigma^2\right] = \mathbb{CV}\left[\kappa^2\right] = \mathbb{CV}\left[\omega^2\right] = \infty$ and $\mathbb{CV}\left[\alpha\right] = 1$, it follows that

$$a_{\sigma} = 2$$
, $b_{\sigma} = 3$, $a_{\kappa} = 2$, $b_{\kappa} = 3$, $a_{\omega} = 2$, $b_{\omega} = 3$, $a_{\alpha} = 1$, $b_{\alpha} = 1$.

8 Multilevel-Class Model

Likelihood

$$y_{i,i'} \mid \xi_i, \xi_{i'}, \{\eta_{k,\ell}\} \stackrel{\text{ind}}{\sim} \text{Ber}\left(\text{expit } \eta_{\phi(\xi_i, \xi_{i'})}\right)$$

$$p(\mathbf{Y} \mid \{\xi_i\}, \{\eta_{k,\ell}\}) = \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} (\operatorname{expit} \eta_{\phi(\xi_i, \xi_{i'})})^{y_{i,i'}} (1 - \operatorname{expit} \eta_{\phi(\xi_i, \xi_{i'})})^{1 - y_{i,i'}}$$
$$= \prod_{k=1}^{K} \prod_{\ell=k}^{K} (\operatorname{expit} \eta_{k,\ell})^{s_{k,\ell}} (1 - \operatorname{expit} \eta_{k,\ell})^{n_{k,\ell} - s_{k,\ell}}$$

where $s_{k,\ell} = \sum_{\mathcal{S}_{k,\ell}} y_{i,i'}$ and $n_{k,\ell} = \sum_{\mathcal{S}_{k,\ell}} 1$, with $\mathcal{S}_{k,\ell} = \{(i,i') : i < i' \text{ and } \phi(\xi_i, \xi_{i'}) = (k,\ell)\}$.

Prior

$$\begin{split} \eta_{k,\ell} \mid \gamma_k, \gamma_\ell, \{\mu_{q,r}\}, \sigma^2 &\sim \mathsf{N}(\mu_{\phi(\gamma_k,\gamma_\ell)}, \sigma^2) \\ \mu_{q,r} \mid \zeta, \tau^2 &\stackrel{\mathsf{ind}}{\sim} \mathsf{N}(\zeta, \tau^2) \\ & \zeta \sim \mathsf{N}(\mu_\zeta, \sigma_\zeta^2) \\ & \tau^2 \sim \mathsf{IGam}(a_\tau, b_\tau) \\ & \sigma^2 \sim \mathsf{IGam}(a_\sigma, b_\sigma) \\ & \gamma_k \mid \boldsymbol{\vartheta} &\stackrel{\mathsf{iid}}{\sim} \mathsf{Cat}(\boldsymbol{\vartheta}) \end{split}$$

$$oldsymbol{artheta} \mid eta \sim \mathsf{Dir}\left(rac{eta}{Q}, \dots, rac{eta}{Q}
ight) \ eta \sim \mathsf{Gam}(a_eta, b_eta) \ eta_i \mid oldsymbol{\omega} \stackrel{\mathsf{iid}}{\sim} \mathsf{Cat}(oldsymbol{\omega}) \ oldsymbol{\omega} \mid lpha \sim \mathsf{Dir}\left(rac{lpha}{K}, \dots, rac{lpha}{K}
ight) \ lpha \sim \mathsf{Gam}(a_lpha, b_lpha)$$

Parameters

 $\mathbf{\Upsilon} = (\eta_{1,1}, \eta_{1,2}, \dots, \eta_{K,K}, \mu_{1,1}, \mu_{1,2}, \dots, \mu_{Q,Q}, \zeta, \tau^2, \sigma^2, \gamma_1, \dots, \gamma_K, \vartheta_1, \dots, \vartheta_Q, \beta, \xi_1, \dots, \xi_I, \omega_1, \dots, \omega_K, \alpha),$ where $\boldsymbol{\xi} = (\xi_1, \dots, \xi_I)$, $\xi_i \in \{1, \dots, K\}$, are the actors-cluster assignments $(\xi_i = k \text{ means that actor } i \text{ belongs to cluster } k)$, $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_K)$, $\gamma_k \in \{1, \dots, Q\}$, are the super-cluster assignments $(\gamma_k = q \text{ means that cluster } k \text{ belongs to super-cluster } q)$, $\phi(x, y) = (\min\{x, y\}, \max\{x, y\})$ is a function to take into account that both $\mathbf{Y} = [y_{i,i'}]$ and $\boldsymbol{\eta} = [\eta_{k,\ell}]$ are symmetric matrices, and $\boldsymbol{\omega} = (\omega_1, \dots, \omega_K)$ and $\boldsymbol{\vartheta} = (\vartheta_1, \dots, \vartheta_Q)$ are probability vectors such that $\mathbb{P}\mathbf{r} [\xi_i = k \mid \omega_k] = \omega_k$ and $\mathbb{P}\mathbf{r} [\gamma_k = q \mid \vartheta_q] = \vartheta_q$, respectively.

Hyper-parameters

$$(\mu_{\zeta}, \sigma_{\zeta}^2, a_{\tau}, b_{\tau}, a_{\sigma}, b_{\sigma}, a_{\beta}, b_{\beta}, a_{\alpha}, b_{\alpha}).$$

Posterior

$$p(\Upsilon \mid \mathbf{Y}) \propto \prod_{i=1}^{I-1} \prod_{i'=i+1}^{I} \theta_{i,i'}^{y_{i,i'}} (1 - \theta_{i,i'})^{1 - y_{i,i'}} \times \prod_{k=1}^{K} \prod_{\ell=k}^{K} (\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2} \left(\eta_{k,\ell} - \mu_{\phi(\gamma_k,\gamma_\ell)}\right)^2\right\} \\ \times \prod_{q=1}^{Q} \prod_{r=q}^{Q} (\tau^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\tau^2} (\mu_{q,r} - \zeta)^2\right\} \times \exp\left\{-\frac{1}{2\sigma_{\zeta}^2} (\zeta - \mu_{\zeta})^2\right\} \times (\tau^2)^{-(a_{\tau} - 1)} \exp\left\{-\frac{b_{\tau}}{\tau^2}\right\} \\ \times (\sigma^2)^{-(a_{\sigma} - 1)} \exp\left\{-\frac{b_{\sigma}}{\sigma^2}\right\} \times \prod_{k=1}^{K} \prod_{q=1}^{Q} \vartheta_q^{[\gamma_k = q]} \times \frac{\Gamma\left(\frac{\beta}{Q}\right)^Q}{\Gamma(\beta)} \prod_{q=1}^{Q} \vartheta_q^{\frac{\beta}{Q} - 1} \times \beta^{a_{\beta} - 1} \exp\left\{-b_{\beta}\beta\right\} \\ \times \prod_{i=1}^{I} \prod_{k=1}^{K} \omega_k^{[\xi_i = k]} \times \frac{\Gamma\left(\frac{\alpha}{K}\right)^K}{\Gamma(\alpha)} \prod_{k=1}^{K} \omega_k^{\frac{\alpha}{K} - 1} \times \alpha^{a_{\alpha} - 1} \exp\left\{-b_{\alpha}\alpha\right\},$$

where $\theta_{i,i'} = \operatorname{expit} \eta_{\phi(\xi_i,\xi_{i'})}$ and $[\cdot]$ is the Iverson bracket.

MCMC

The algorithm proceeds by generating a new state $\Upsilon^{(b+1)}$ from a current state $\Upsilon^{(b)}$, $b=1,\ldots,B$, as follows:

1. Sample $\eta_{k,\ell}^{(b+1)}$ according to a Metropolis–Hastings Algorithm, considering the fcd:

$$\log p(\eta_{k,\ell} \mid \text{rest}) \propto s_{k,\ell} \log(\text{expit } \eta_{k,\ell}) + (n_{k,\ell} - s_{k,\ell}) \log(1 - \text{expit } \eta_{k,\ell}) - \frac{1}{2\sigma^2} (\eta_{k,\ell} - \mu_{\phi(\gamma_k,\gamma_\ell)})^2$$

$$= s_{k,\ell} \eta_{k,\ell} - n_{k,\ell} \log(1 + \exp \eta_{k,\ell}) - \frac{1}{2\sigma^2} (\eta_{k,\ell} - \mu_{\phi(\gamma_k,\gamma_\ell)})^2,$$

where $s_{k,\ell} = \sum_{S_{k,\ell}} y_{i,i'}$ and $n_{k,\ell} = \sum_{S_{k,\ell}} 1$, with $S_{k,\ell} = \{(i,i') : i < i' \text{ and } \phi(\xi_i, \xi_{i'}) = (k,\ell)\}$.

2. Sample $\mu_{q,r}^{(b+1)}$ from $N(m, v^2)$, where

$$v^{2} = \left(\frac{1}{\tau^{2}} + \frac{n_{q,r}}{\sigma^{2}}\right)^{-1}$$
 and $m = v^{2} \left(\frac{\zeta}{\tau^{2}} + \frac{s_{q,r}}{\sigma^{2}}\right)$,

where $s_{q,r} = \sum_{\mathcal{S}_{q,r}} \eta_{k,\ell}$ and $n_{q,r} = \sum_{\mathcal{S}_{q,r}} 1$, with $\mathcal{S}_{q,r} = \{(k,\ell) : k \leq \ell \text{ and } \phi(\gamma_k, \gamma_\ell) = (q,r)\}$.

3. Sample $\zeta^{(b+1)}$ from $\mathsf{N}(m,v^2),$ where

$$v^2 = \left(\frac{1}{\sigma_{\zeta}^2} + \frac{n_Q}{\tau^2}\right)^{-1}$$
 and $m = v^2 \left(\frac{\mu_{\zeta}}{\sigma_{\zeta}^2} + \frac{\mu_{\cdot \cdot}}{\tau^2}\right)$,

where $n_Q = Q(Q+1)/2$ and $\mu_{\cdot \cdot \cdot} = \sum_{q=1}^{Q} \sum_{r=q}^{Q} \mu_{q,r}$.

4. Sample $(\tau^2)^{(b+1)}$ from $\mathsf{IGam}(a,b)$, where

$$a = a_{\tau} + n_{Q}/2$$
 and $b = b_{\tau} + \frac{1}{2} \sum_{q=1}^{Q} \sum_{r=q}^{Q} (\mu_{q,r} - \zeta)^{2}$,

where $n_Q = Q(Q+1)/2$.

5. Sample $(\sigma^2)^{(b+1)}$ from $\mathsf{IGam}(a,b)$, where

$$a = a_{\sigma} + n_{K}/2$$
 and $b = b_{\sigma} + \frac{1}{2} \sum_{k=1}^{K} \sum_{\ell=k}^{K} (\eta_{k,\ell} - \mu_{\phi(\gamma_{k},\gamma_{\ell})})^{2}$,

where $n_K = K(K+1)/2$.

6. Sample $\gamma_k^{(b+1)}$ from a categorical distribution on $\{1,\ldots,Q\}$, such that:

$$\mathbb{P}\mathrm{r}\left[\gamma_{k} = q \mid \mathrm{rest}\right] \propto \vartheta_{q} \times \prod_{\ell=k}^{K} \mathsf{N}(\eta_{k,\ell} \mid \mu_{\phi(q,\gamma_{\ell})}, \sigma^{2}) \times \prod_{\ell=1}^{k-1} \mathsf{N}(\eta_{\ell,k} \mid \mu_{\phi(q,\gamma_{\ell})}, \sigma^{2}),$$

for $q \in \{1, \dots, Q\}$.

7. Sample $\boldsymbol{\vartheta}^{(b+1)}$ from $p(\boldsymbol{\vartheta} \mid \text{rest}) = \text{Dir}\left(\boldsymbol{\vartheta} \mid \frac{\beta}{Q} + n_1, \dots, \frac{\beta}{Q} + n_Q\right)$, where n_q is the number of clusters in super-cluster $q \in \{1, \dots, Q\}$.

8. Sample $\beta^{(b+1)}$ according to a Metropolis-Hastings Algorithm, considering the fcd:

$$p(\beta \mid \text{rest}) \propto \log \Gamma(\beta) - K \log \Gamma(\beta/Q) + \frac{\beta}{Q} \sum_{q=1}^{Q} \log \vartheta_q - (a_{\beta} - 1) \log \beta - b_{\beta} \beta.$$

9. Sample $\xi_i^{(b+1)}$ from a categorical distribution on $\{1,\ldots,K\}$, such that:

$$\mathbb{P}\mathrm{r}\left[\xi_{i} = k \mid \mathrm{rest}\right] \propto \omega_{k} \times \prod_{i'=i+1}^{I} \eta_{\phi(k,\xi_{i'})}^{y_{i,i'}} (1 - \eta_{\phi(k,\xi_{i'})})^{1-y_{i,i'}} \times \prod_{i'=1}^{i-1} \eta_{\phi(k,\xi_{i'})}^{y_{i',i}} (1 - \eta_{\phi(k,\xi_{i'})})^{1-y_{i',i}}.$$
for $k \in \{1, \dots, K\}$.

- 10. Sample $\boldsymbol{\omega}^{(b+1)}$ from $p(\boldsymbol{\omega} \mid \text{rest}) = \text{Dir}\left(\boldsymbol{\omega} \mid \frac{\alpha}{K} + n_1, \dots, \frac{\alpha}{K} + n_K\right)$, where n_k is the number of actors in cluster $k \in \{1, \dots, K\}$.
- 11. Sample $\alpha^{(b+1)}$ according to a Metropolis-Hastings Algorithm, considering the fcd:

$$p(\alpha \mid \text{rest}) \propto \log \Gamma(\alpha) - K \log \Gamma(\alpha/K) + \frac{\alpha}{K} \sum_{k=1}^{K} \log \omega_k - (a_\alpha - 1) \log \alpha - b_\alpha \alpha.$$

Prior Elicitation

$$\mu_{\zeta} = 0$$
, $\sigma_{\zeta}^2 = 3$, $a_{\tau} = 2$, $b_{\tau} = 3$, $a_{\sigma} = 2$, $b_{\sigma} = 3$, $a_{\beta} = 1$, $b_{\beta} = 3$, $a_{\alpha} = 1$, $b_{\alpha} = 1$.

9 WAIC

$$\operatorname{lppd} = \sum_{i=1}^{n} \log \left(\frac{1}{B} \sum_{b=1}^{B} p(y_i \mid \theta^b) \right)$$

$$p_{\text{WAIC}_1} = 2 \sum_{i=1}^{n} \left[\log \left(\frac{1}{B} \sum_{b=1}^{B} p(y_i \mid \theta^b) \right) - \frac{1}{B} \sum_{b=1}^{B} \log p(y_i \mid \theta^b) \right]$$

$$p_{\text{WAIC}_2} = \frac{1}{B-1} \sum_{i=1}^{n} \sum_{b=1}^{B} (a_{i,b} - \bar{a}_i)^2, \quad \bar{a}_i = \frac{1}{B} \sum_{b=1}^{B} a_{i,b}, \quad a_{i,b} = \log p(y_i \mid \theta^b)$$

$$\mathrm{WAIC} = -2\,\mathrm{lppd} + 2\,p_{\mathrm{WAIC}}$$