

연합학습(Federated Learning)

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes: initialize w_0

for each round $t = 1, 2, \dots$ do

 $m \leftarrow \max(C \cdot K, 1)$

 $S_t \leftarrow (\text{random set of } m \text{ clients})$

for each client $k \in S_t$ in parallel do

$$w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$$

$$w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$$

ClientUpdate(k, w): // Run on client k

 $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$

for each local epoch i from 1 to E do

for batch $b \in \mathcal{B}$ do

$$w \leftarrow w - \eta \nabla \ell(w; b)$$

return w to server

Federated Learning: Collaborative Machine Learning without Centralized Training Data(Google AI Blog)

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017

연합학습(Federated Learning)

<u>데이터의 공유 없이</u>, 모델을 학습시킬 수 있는 인공지능 기술

- 1. Communication Cost
 - 2. <u>Data Privacy</u>
 - 3. Generative Model

Google Al Blog

원격 PPG(Remote Photo-plethysmography)

A Study of Projection-based Attentive Spatial-Temporal Map for Remote Photoplethysmography Measurement, MDPI bioengineering, Dae-Yeol Kim, Tvstorm Assessment of ROI Selection for Facial Video-Based rPPG, MDPI, sensors, Dae-Yeol Kim, Tvstorm

원격 PPG의 문제점

원격 PPG의 연합학습 적용

연합학습 적용 실험 결과

Federated Learning and Centralized Learning

	Local Model Update(epoch)	Pearson Correlation
Federated learning	1	0.0183
	2	0.0446
	3	0.0982
	5	0.2676
	10	0.4671
	20	0.5343
	30	0.5594
	50	0.5805
	100	0.5706
Centralized learning	-	0.6231

Comparison table of Pearson correlation coefficients by local model update(epoch)

메타러닝(Meta Learning)기반 개인화 적용

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International conference on machine learning. PMLR, 2017.

메타러닝(Meta Learning)기반 개인화 적용 및 결과

Comparison FedMeta vs Federated learning

감사합니다.