El 10a	MATHEMATIK	rref([A])
2012-13	2. Probearbeit – windschief & doch Gerade!	• • • ([])

Diese Arbeit ist mal **MIT**, mal **OHNE GTR** zu lösen; bitte beachte den entsprechenden Hinweis bei jeder Aufgabe! Erlaubt und erwünscht ist ein Geodreieck! Achte darauf, dass du strukturiert schreibst und dass du deine Gedankengänge dokumentierst! **Bearbeitungszeit: 90 Minuten**

Aufgabe 1 - mit GTR

(9 Punkte)

Gegeben sind die Punkte $P_1(1|2|3)$ und $P_2(2|3|0)$.

- a) Spiegele P₂ am Ursprung auf P₃.
- b) Spiegele P_1 an der x_3 -Achse auf P_4 .
- c) Berechne den Abstand der beiden Punkte P₂ und P₃.
- d) Stelle eine Geradengleichung für die Gerade g auf, auf der P₁ und P₂ liegen.
- e) Zeichne die Gerade g in ein geeignetes Koordinatensystem.
- f) Liegt P₃ auf dieser Geraden g? Überprüfe rechnerisch!

Aufgabe 2 - mit GTR

(4 Punkte)

Welche gegenseitigen Lagen können Geraden im Dreidimensionalen relativ zueinander haben? Gib zur Geraden g: $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ je ein entsprechendes Beispiel an!

Aufgabe 3 - mit GTR

(4 Punkte)

- a) Vereinfache die Matrix M = $\begin{pmatrix} 1 & 2 & | & 3 \\ -2 & 1 & | & 9 \end{pmatrix}$ auf die uns gewohnte Form M' wie bspw. diese: M' = $\begin{pmatrix} 1 & 0 & | & 7 \\ 0 & 1 & | & 5 \end{pmatrix}$ mit deinem GTR.
- b) Interpretiere deine Lösung geometrisch!

Aufgabe 4 – ohne GTR

(3 Punkte)

Überprüfe dein Ergebnis aus A3 nun per Hand!

Aufgabe 5 – mit GTR

(4 Punkte)

Gegeben sind die zwei Geraden

g:
$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$$
 und h: $\vec{x} = \begin{pmatrix} 3 \\ -1 \\ -3 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$.

- a) Überprüfe, wie diese beiden Geraden zueinander liegen.
- b) Gib, falls möglich, den Schnittpunkt S an.