Ecuaciones diferenciales lineales de orden n con coeficientes constantes

$$F(D)y = Q(x)$$

<u>MÉTODO DE LOS COEFICIENTES INDETERMINADOS PARA EL CÁLCULO DE</u> <u>UNA SOLUCIÓN PARTICULAR</u>

En este caso la relación fundamental es $y = Ar_1(x) + Br_2(x) + \cdots + Gr_t(x)$ (**), en la que las funciones $r_i(x)$ son los términos de Q(x) y aquellos que se obtienen de estos mediante derivación, y A, B,...G son constantes que habrá que determinar obligando a la expresión (**) a cumplir la ecuación diferencial.

Por ejemplo, si la ecuación es $F(D)y = x^2$, la relación que tenemos que escribir es $y = Ax^2 + Bx + C$.

En ecuaciones como $F(D)y = \sec x$, no se puede aplicar el método puesto que el número de términos nuevos que se obtienen derivando es infinito.

Este método hay que corregirlo en los siguientes casos:

- a) Si un término u de Q(x) aparece también en la función complementaria, correspondiendo a una raíz múltiple, de orden de multiplicidad s, en la expresión (**) hay que añadir un término de la forma x^s·u más los que se deducen de él derivando.
- b) Si un término de Q(x) es de la forma $x^r \cdot u$ y u aparece en la función complementaria, correspondiendo a una raíz de índice de multiplicidad s, la expresión (**) ha de contener el término $x^{r+s}u$ más los que se deducen de él derivando.