Lecture 5: Transformations for Simple Linear Regression STAT 632, Spring 2020

Transformations can be used to

- ▶ Linearize the relationship between the explanatory (X) and response (Y) variables
- Overcome problems due to nonconstant variance

Example: Modeling Brain Weight

- ▶ We consider a data set called brains from the alr4 package. The data set is on the the brain weight (in grams) and body weight (in kg) for 62 species of mammals.
- ▶ A scatter plot of the data (next slide) shows that the variables are extremely skewed. Three points (humans and two species of elephants) stand out from the rest of the data.

- > library(alr4)
- > plot(BrainWt ~ BodyWt, data=brains)

The histograms illustrate that the log transformation can reduce the positive skew in the data.

The log transformation linearizes the relationship between the variables.

- > lm1 <- lm(log(BrainWt) ~ log(BodyWt), data=brains)</pre>
- > plot(log(BrainWt) ~ log(BodyWt), data=brains)
- > abline(lm1)

After taking the log transformation, the residual plot shows no discernible patterns (random scatter of points around 0). The assumptions of linearity and constant variance appear to be well satisfied.

> plot(predict(lm1), resid(lm1), xlab='Fitted values', ylab='Residuals'
> abline(h=0, lty=2)

Residual standard error: 0.6943 on 60 degrees of freedom Multiple R-squared: 0.9208, Adjusted R-squared: 0.9195 F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

The R output gives the following regression equation:

$$\begin{split} \widehat{\texttt{log(BrainWt)}} &= \hat{\beta}_0 + \hat{\beta}_1 \, \mathsf{log(BodyWt)} \\ &= 2.135 + 0.7517 \, \mathsf{log(BodyWt)} \end{split}$$

- ➤ The interpretation of the estimated slope is that a unit increase in log(BodyWt) is associated with an increase in log(BrainWt) by 0.7517 (not that useful).
- ► Another common interpretation is in terms of percentage effects: A 1% increase in body weight (kg) is associated with an approximate 0.75% increase in brain weight.¹

Review of logs

Logs are exponents: $\log_b(x) = y$ (read "the log of x to the base b is y") means that $b^y = x$. Some examples:

$$\log_{10} 100 = 2 \iff 10^{2} = 100$$

$$\log_{10} 0.01 = -2 \iff 10^{-2} = 0.01$$

$$\log_{2} 8 = 3 \iff 2^{3} = 8$$

Some useful identities:

$$e^{\log(x)} = x$$

$$\log(x^r) = r \log(x)$$

$$\log(xy) = \log(x) + \log(y)$$

$$\log(x/y) = \log(x) - \log(y)$$

Note: log(x) denotes the log base e here (this is called the natural logarithm, which is also commonly denoted by ln(x))

We can back-transform to write the model in the original scale of the response.

Regression equation for log(BrainWt):

$$\widehat{\log(\texttt{BrainWt})} = 2.135 + 0.7517\log(\texttt{BodyWt})$$

Make a prediction for log(BrainWt) when BodyWt is 40 kg:

$$\log(\widetilde{\texttt{BrainWt}}) = 2.135 + 0.7517\log(40) = 4.908$$

We can then exponentiate both sides to get the prediction for BrainWt (in grams) when When BodyWt is 40 kg:

$$\widehat{\mathtt{BrainWt}} = e^{4.908} = 135.37$$

Summary: Log Transformation

A log transformation might be useful if

- ▶ the distribution of the response or predictor variable is skewed right.
- the values of the variable range over more than one order of magnitude.
- ▶ there is a fan pattern in the residuals (nonconstant variance).

Remark: The transformation $log(x_i)$ is only valid for $x_i > 0$. For nonpositive data, one workaround is to use the transformation $log(x_i + c)$, where c is a constant such that $x_i + c > 0$, for $i = 1, \dots, n$.

Example: Doctors and Hospitals

Data set containing counts on the number of medical doctors and number of hospitals in a random sample of 53 counties.

- > library(Stat2Data)
- > data("CountyHealth")
- > head(CountyHealth)

County	MDs	Hospitals	Beds
1 Bay, FL	351	3	605
2 Beaufort, NC	95	2	134
3 Beaver, PA	260	2	567
4 Bernalillo, NM	2797	11	1435
5 Bibb, GA	769	5	976
6 Clinton, PA	42	2	245

- > lm1 <- lm(MDs ~ Hospitals, data = CountyHealth)</pre>
- > plot(MDs ~ Hospitals, data = CountyHealth)
- > abline(lm1)

There residual plot shows nonconstant variance. That is, the variability in the residuals tends to increase with the fitted values. The QQ plot also indicates that the residuals deviate from a normal distribution.

```
> par(mfrow = c(1, 2))
> plot(lm1, 1:2)
```


Using Transformations to Stabilize Variance

- Problems with nonconstant variance can be overcome with transformations.
- Two common variance stabilizing transformations are the log transformation, $\log(Y)$, and the square root transformation, \sqrt{Y} .
- ▶ The square root transformation is often appropriate for count data.
- ➤ Since the data in this example are in the form of counts, we will try a square root transformation of the response.

lm2 <- lm(sqrt(MDs) ~ Hospitals, data = CountyHealth)
plot(sqrt(MDs) ~ Hospitals, data = CountyHealth)
abline(lm2)</pre>

Afre taking the square root transformation, the residual plot and QQ plot show considerable improvement. The assumptions of constant variability and normality in the residuals appear reasonably satisfied.

```
> par(mfrow = c(1, 2))
> plot(lm2, 1:2)
```


> summary(lm2)

Coefficients:

Regression equation for the transformed model:

$$\widehat{\sqrt{\mathtt{MDs}}} = -2.7533 + 6.8764\,\mathtt{Hospitals}$$

We can back-transform to write the model in the original scale of the response.

$$\widehat{\text{MDs}} = (-2.7533 + 6.8764 \, \text{Hospitals})^2$$

Summary

- ▶ It can take some trial and error to find a good transformation. Looking at scatterplots of the data and residuals can help determine which transformation best linearizes the relationship or stabilizes the variance.
- ► The log transform is commonly applied to skewed data that ranges over several orders of magnitude.
- The square root transform is commonly applied to count data to stabilize the variance.
- Transformations can be applied to the response variable, explanatory variable(s), or both.
- ➤ Transforming the response can make the model more difficult to interpret. Predictions and prediction intervals need to be back-transformed so that they can be interpreted on the original scale.