

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE
(QCSEE)

The Aerodynamic and Preliminary Mechanical
Design of the QCSEE OTW Fan

February 1975

by

Advanced Engineering & Technology Programs Department
General Electric Company

(NASA-CR-134841) QUIET CLEAN SHORT-HAUL
EXPERIMENTAL ENGINE (QCSEE): THE
AERODYNAMIC AND PRELIMINARY MECHANICAL
DESIGN OF THE QCSEE OTW FAN (General
Electric Co.) 80 p HC A05/MP A01 CSCL 21E G3/07

N80-15112

Unclassified
33494

Prepared For

National Aeronautics and Space Administration

NASA Lewis Research Center
Contract NAS3-18021

1. Report No. NASA CR-134841	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle QUIET CLEAN SHORT-HAUL EXPERIMENTAL ENGINE (QCSEE) The Aerodynamic and Preliminary Mechanical Design of the QCSEE OTW Fan		5. Report Date
6. Performing Organization Code February 1975		7. Author(s) Advanced Engineering & Technology Programs Department Group Engineering Division
8. Performing Organization Report No. R75AEG381		9. Performing Organization Name and Address General Electric Company 1 Jimison Road Cincinnati, Ohio 45215
10. Work Unit No.		11. Contract or Grant No. NAS3-18021
12. Sponsoring Agency Name and Address National Aeronautics & Space Administration Washington, D.C. 20546		13. Type of Report and Period Covered Contractor Report
14. Sponsoring Agency Code		
15. Supplementary Notes Interim Report, Project Manager, C.C. Ciepluch, QCSEE Project Office, Technical Advisor, M. Vanco, NASA Lewis Research Center, Cleveland, Ohio 44135		
16. Abstract The QCSEE Program provides for the design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short-haul passenger aircraft. The overall objective of the program is to develop the propulsion technology required for future externally blown flap types of aircraft with engines located both under-the-wing and over-the-wing. This report covers the aerodynamic and mechanical preliminary design of the QCSEE over-the-wing 1.36 pressure ratio fan. Design information is given for both the experimental and flight designs.		
17. Key Words (Suggested by Author(s)) Aerodynamics, Fan Mechanical Design, Composite Materials		
18. Security Classif. (of this report) Unclassified	19. Security Classif. (of this page) Unclassified	20. No. of Pages 74

* For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

	<u>Page</u>
1.0 OTW FAN DESIGN	1
1.1 Summary	1
2.0 OTW FAN AERODYNAMIC DESIGN	2
2.1 Operating Requirements	2
2.2 Basic Design Features	2
2.3 Detailed Configuration Design	5
2.4 Rotor Blade Design	7
2.5 Core OGV Design	29
2.6 Transition Duct Strut Design	39
2.7 Vane-Frane Design	46
3.0 OTW FAN MECHANICAL DESIGN	61
3.1 OTW Fan Rotor Summary	61
3.2 OTW Fan Blade	61
3.3 OTW Fan Disk Design	73
3.4 OTW Fan Spinner	73

PRECEDING PAGE BLANK NO.

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1.	Major Operating Requirements for OTW Fan.	3
2.	Cross Section of OTW Fan.	4
3.	OTW Radial Distribution of Rotor Total Pressure Ratio.	6
4.	OTW Radial Distribution of Rotor Efficiency.	8
5.	OTW Radial Distribution of Rotor Diffusion Factor.	9
6.	OTW Radial Distribution of Rotor Relative Mach Number.	10
7.	OTW Radial Distribution of Rotor Relative Air Angle.	11
8.	OTW Radial Distribution for Core OGV.	12
9.	OTW Rotor Chord Distribution.	27
10.	OTW Rotor Thickness Distribution.	28
11.	OTW Rotor Incidence, Deviation, and Empirical Adjustment Angles.	30
12.	OTW Rotor, Percent Throat Margin.	31
13.	OTW Fan Blade Plane Sections.	32
14.	OTW Camber and Stagger Radial Distribution.	33
15.	OTW Core OGV.	40
16.	OTW Core OGV.	41
17.	Cylindrical Section of OTW OGV at the Pitch Line Radius.	42
18.	Transition Duct Flowpath.	44
19.	Transition Duct Strut.	45
20.	Vane Frame Aerodynamic Environment.	47

LIST OF ILLUSTRATIONS (Concluded)

<u>Figure</u>		<u>Page</u>
21.	Vane-Frame Nominal Vane Configuration.	49
22.	Vane Frame Unwrapped Section at I.D.	50
23.	Vane-Frame Unwrapped Section at I.D., 32 Vanes Plus Pylon LE Fairing.	52
24.	QCSEE Vane Frame.	59
25.	QCSEE Vane Frame.	60
26.	QCSEE OTW Fan Rotor.	62
27.	QCSEE OTW Fan.	64
28.	QCSEE OTW Fan Campbell Diagram - First Flexural Frequency.	65
29.	QCSEE OTW Fan Blade Campbell Diagram.	66
30.	Limit Cycle Boundaries.	68
31.	OTW Fan Blade.	69
32.	QCSEE OTW Fan Blade Chord Vs. Span.	71
33.	OTW Fan Blade Maximum Thickness/Chord Vs. Span.	72
34.	OTW Fan Rotor.	74

LIST OF TABLES

<u>Table</u>		<u>Page</u>
I.	QCSEE OTW Fan.	2
II.	Design Blade Element Parameters for QCSEE OTW Fan.	13
III.	OTW Rotor Blade Coordinates.	34
IV.	OTW Core OGV Coordinates at the Pitch Line Radius.	43
V.	Vane Frame Coordinates.	53
VI.	QCSEE OTW Fan Design Criteria.	63
VII.	QCSEE OTW Fan Blade.	70

SECTION 1.0
OTW FAN DESIGN

1.1 SUMMARY

An Under-the Wing and an Over-the Wing fan rotor will be built and tested as part of the NASA QCSEE program.

The aerodynamic design of both the variable-pitch UTW and fixed-pitch OTW geared fans was completed during the Preliminary Design Phase.

At the major operating conditions of takeoff and maximum cruise, a corrected flow of 405.5 kg/sec (894 lbm/sec) was selected for both fans which enables common inlet hardware to yield the desired 0.79 average throat Mach number at the critical takeoff noise measurement condition. The aerodynamic design bypass pressure ratio is 1.34 for the UTW and 1.36 for the OTW which is intermediate between the takeoff and maximum cruise power settings. The takeoff pressure ratios are 1.27 for the UTW and 1.34 for the OTW. The takeoff corrected tip speeds are 289 m/sec (950 ft/sec) for the UTW and 354 m/sec (1162 ft/sec) for the OTW. These pressure ratios and speeds were selected on the basis of minimum noise within the constraints of adequate stall margin and core engine supercharging.

The OTW fan employs 28 fixed-pitch fan blades. A flight version of the design would use composite fan blades, but titanium fan blades will be used in the experimental fan as a cost saving measure. The conceptual design with composite blades was used to establish the number of fan blades, and in conjunction with the aerodynamic design, the blade airfoil shape. The metal blades require a larger fan disk rim than would be required for composite blades. The fan disk support cone and the remaining fan components on the experimental engine will be of flight design.

SECTION 2.0

OTW FAN AERODYNAMIC DESIGN

2.1 OPERATING REQUIREMENTS

The major operating requirements for the over-the-wing (OTW) fan, Figure 1, are takeoff, where noise and thrust are of primary importance, and maximum cruise, where economy and thrust are of primary importance. A secondary requirement was to utilize hardware common to the UTW fan when no significant performance penalty was involved. At takeoff, a low fan pressure ratio of 1.34 was selected to minimize the velocity of the bypass stream at nozzle exit. A corrected flow of 405.5 kg/sec (894 lb/sec), the same as for the UTW, at this pressure ratio yields the required engine thrust. The inlet throat is sized at this condition for an average Mach number of 0.79 to minimize forward propagation of fan noise. This sizing of the inlet throat prohibits higher corrected flow at altitude cruise. The required maximum cruise thrust is obtained by raising the fan pressure ratio to 1.38. The aerodynamic design point was selected at an intermediate condition, which is a pressure ratio of 1.36 and a corrected flow of 408 kg/sec (900 lb/sec). Table I summarizes the key parameters for these three conditions.

Table I. QCSEE OTW Fan.

Parameter	Design Point	Takeoff	Maximum Cruise
Total fan flow	408 kg/sec (900 lb/sec)	405.5 kg/sec (894 lb/sec)	405.5 kg/sec (894 lb/sec)
Pressure ratio - bypass flow	1.36	1.34	1.38
Pressure ratio - core flow	1.43	1.43	1.44
Bypass ratio	9.9	10.1	9.8
Corrected tip speed	358 m/sec (1175 ft/sec)	354 m/sec (1162 ft/sec)	359 m/sec (1178 ft/sec)

2.2 BASIC DESIGN FEATURES

A cross section of the selected OTW fan configuration is shown in Figure 2. The fan outer flowpath, vane-frame including outer and inner flowpath, and transition duct including the six frame struts are all common to the UTW fan configuration. Thus the integrated nacelle vane-frame assembly is common to both propulsion systems. There are 28 fixed-pitch rotor blades. The overall proportions for the rotor blades, blade number, and radial distributions of thickness and chord were selected to provide a satisfactory aeromechanical flight-type composite configuration. However, to minimize overall program costs, titanium was substituted for the actual blade construction. The stall

Figure 1. Major Operating Requirements for OTW Fan.

Figure 2. Cross Section of OTW Fan.

margin for the OTW fan is projected to be adequate. The circumferential grooved casing treatment, however, can be retained from the UTW fan to provide added protection against stall. The rotor was positioned axially such that the trailing edge hub intersects the hub flowpath at the same axial station as the UTW which puts the aft face of the fan disk at approximately the same engine station. A tip axial spacing between rotor trailing edge and vane-frame leading edge equal to 1.9 true rotor tip chords results. The vane-blade ratio is 1.18. Immediately following the rotor, in the hub region, is a splitter which divides the flow into the bypass portion and core portion. The proximity of the splitter leading edge to the rotor blade is to enable additional design control on the streamlines in the hub region to provide improved surface velocity and loading distributions. The 156 OGV's for the fan hub, or core portion, flow are in the annular space under the splitter. There are six struts in the gooseneck which guides the fan hub flow into the core compressor.

In the vane-frame, which is common with the UTW Fan, the vanes are non-axisymmetric in that five vane geometries, each with a different camber and stagger, are employed around the annulus. This nonaxisymmetric geometry is required to conform the vane-frame downstream flow field to the geometry of the pylon, which protrudes forward into the vane-frame, and simultaneously maintains a condition of minimum circumferential static pressure distortion upstream of the vane-frame. There are 33 vanes in the vane-frame which yield a vane-blade ratio of 1.18.

2.3 DETAILED CONFIGURATION DESIGN

The corrected tip speed at the aerodynamic design point was selected at 358 m/sec (1175 ft/sec). This was selected for design purposes, as a compromise between the takeoff and cruise tip speed requirements. The objective design point adiabatic efficiency is 88% for the bypass portion and 78% for the core portion. Requirements include 16% stall margin at takeoff and high fan hub pressure ratio to provide good core engine supercharging. An inlet radius ratio of 0.42 was selected, compared to 0.44 for the UTW fan, to provide additional annulus area convergence at rotor hub which reduces the hub aerodynamic loading. Discharge radius ratios are approximately the same for the two fans. For the 1.803 m (71.0 in.) tip diameter, a flow per annulus area of 194 kg/sec-m² (39.8 lb/sec-ft²) results.

The standard General Electric axisymmetric flow computation procedure was employed in calculating the velocity diagrams. Several calculation stations were included internal to the rotor blade to improve the overall accuracy of the solution in this region. The physical splitter geometry is represented in the calculations. Forward of the splitter, calculation stations span the radial distance from OD to ID. Aft of the splitter, calculation stations span the radial distance between the OD and the topside of the splitter and between the underside of the splitter and the hub contour. At each calculation station effective area coefficients consistent with established design practice were assumed.

The design radial distribution of rotor total pressure ratio is shown in Figure 3. This distribution is consistent with a stage average pressure ratio of 1.36 in the bypass region. The higher than average pressure ratio

Figure 3. OTW Radial Distribution of Rotor Total Pressure Ratio.

in the hub region provides maximum core engine supercharging subject to a balance between the constraints of acceptable rotor diffusion factors, stator inlet absolute Mach numbers, and stator diffusion factors. A stage average pressure ratio of 1.43 results at the core OGV exit. The assumed radial distribution of rotor efficiency for the design is shown in Figure 4 which was based on measured results from similar configurations (Quiet Engine, Fan B). The assumption of efficiency rather than total-pressure-loss coefficient is a General Electric design practice for rotors of this type. The radial distribution of rotor diffusion factor which results from these assumptions is shown in Figure 5. Figures 6 and 7 show the radial distributions of rotor relative Mach number and air angle, respectively. At the rotor hub the flow turns 16° past axial which corresponds to a work coefficient of 2.6.

The assumed radial distribution of total-pressure-loss coefficient for the core portion OGV is shown in Figure 8. The relatively high level, particularly in the ID region, is in recognition of the very high bypass ratio of the OTW engine and, accordingly, the small relative size of the core OGV compared to the rotor. The annulus height of the core stator is approximately 70% of the rotor staggered spacing, a significant dimension when analyzing secondary flow phenomena. It is anticipated that a significant portion of the core OGV will be influenced by the rotor secondary flows. The moderately high core OGV diffusion factors, turning angles, and inlet Mach numbers, as shown in Figure 8, were contributing factors in the total-pressure-loss coefficient assumptions. An average swirl of 6° is retained in the fluid at exit from the core OGV, like the UTW configuration. This was done to lower its aerodynamic loading. The transition duct struts designed for the UTW configuration were cambered to accept this swirl.

A tabulation of significant blade element parameters for the OTW design is presented in Table II.

2.4 ROTOR BLADE DESIGN

The rotor blade tip solidity was selected as 1.3. With a rotor tip inlet relative Mach number of 1.22, a reduction in tip solidity would lower the overall performance potential of the configuration. The rotor hub solidity was selected as 2.2. The primary factors in this selection were the rotor hub loading and sufficient passage length to do the required 56° turning. The radial chord distribution is linear with radius. Mechanical input was provided to ensure that this chord distribution and the selected thickness distribution, as shown in Figures 9 and 10, produced a satisfactory aeromechanical configuration.

The detailed layout procedure employed in the design of the fan blade geometry generally parallels established design procedures. In the tip region of the blade where the inlet relative flow is supersonic, the uncovered portion of the suction surface was set to ensure that the maximum flow passing capacity is consistent with the design flow requirement. The incidence angles in the tip region were selected according to transonic blade design practice which has

Figure 4. OTW Radial Distribution of Rotor Efficiency.

Figure 5. OTW Radial Distribution of Rotor Diffusion Factor.

Figure 6. OTW Radial Distribution of Rotor Relative Mach Number.

Figure 7. OTW Radial Distribution of Rotor Relative Air Angle.

Figure 8. OTW Radial Distribution for Core OGV.

Table II. Design Blade Element Parameters for QCSEE OTW Fan.

NUMENCLATURE FOR TABULATION

HEADING	IDENTIFICATION	METRIC UNITS	
GENERAL			
SL	STREAMLINE NUMBER	-	
PSI	STREAM FUNCTION	-	
RADIUS	STREAMLINE RADIUS	CM.	
X IMM	PERCENT IMMERSION FROM OUTER WALL	%	
Z	AXIAL DIMENSION	CM.	
ULKAGE	ANNULUS BLOCKAGE FACTOR	-	
FLOW	WEIGHT FLOW	KG/SEC	
ANGLES AND MACH NUMBERS			
PHI	MERIDIONAL FLOW ANGLE	DEG.	
ALPHA	ABSOLUTE FLOW ANGLE	ARCTAN (CU/CZ)	DEG.
BETA	RELATIVE FLOW ANGLE	ARCTAN (-NU/CZ)	DEG.
M-ABS	ABSOLUTE MACH NUMBER	-	
M-REL	RELATIVE MACH NUMBER	-	
VELOCITIES			
C	ABSOLUTE VELOCITY	M/SEC	
N	RELATIVE VELOCITY	M/SEC	
CZ	AXIAL VELOCITY	M/SEC	
U	BLADE SPEED	M/SEC	
CU	TANGENTIAL COMPONENT OF C	M/SEC	
NU	TANGENTIAL COMPONENT OF N	M/SEC	
FLUID PROPERTIES			
PT	ABSOLUTE TOTAL PRESSURE	N/SQ.CM.	
TT	ABSOLUTE TOTAL TEMPERATURE	DEG-K	
TT-REL	RELATIVE TOTAL TEMPERATURE	DEG-K	
PS	STATIC PRESSURE	N/SQ.CM.	
TS	STATIC TEMPERATURE	DEG-K	
RHO	STATIC DENSITY	KG/CU.METER	
EFF	CUMULATIVE ADIABATIC EFFICIENCY REFERENCED TO PTI, TTI	-	
PTI	INLET ABSOLUTE TOTAL PRESSURE	N/SQ.CM.	
TTI	INLET ABSOLUTE TOTAL TEMPERATURE	DEG-K	
AERODYNAMIC BLADING PARAMETERS			
TPLC	TOTAL PRESSURE LOSS COEFFICIENT	-	
PR-ROW	TOTAL PRESSURE RATIO ACROSS BLADE ROW	-	
DEL-T	TOTAL TEMPERATURE RISE ACROSS ROTOR	DEG-K	
D	DIFFUSION FACTOR	-	
DP/U	STATIC PRESSURE RISE COEFFICIENT	-	
CZ/CZ	AXIAL VELOCITY RATIO ACROSS BLADE ROW	-	
SOLIDT	SOLIDITY	-	
R-AVG	AVERAGE STREAMLINE RADIUS ACROSS BLADE ROW	CM.	
F-TAN	TANGENTIAL BLADE FORCE PER UNIT BLADE LENGTH	N/CM	
F-AXL	AXIAL BLADE FORCE PER UNIT BLADE LENGTH	N/CM	
F-COEF	FLOW COEFFICIENT $\approx CZ_1/U_1$	-	
T-COEF	WORK COEFFICIENT $\approx (2\pi G J \rho P \Delta L - T) / (U_2 \cdot U_1)$	-	

ORIGINAL PAGE IS
OF POOR QUALITY

Table II. Design Blade Element Parameters for QCSE OTW Fan (Continued).

SL	PSI	RADIUS	z IMM	PHI	ALPHA	BLTA	H=ANS	H=REL	C	CL	U	CU	NU	SU	METRIC UNITS		
STATION	1.00000	Z	419.606826	MOTOR	I	IMPT											
1	0.	90.1702	0.	0.	62.65	0.556	1.219	163.7	462.5	183.7	350.1	0.	-350.1	1	SL		
2	0.1000	86.2926	7.0	1.01	61.72	0.559	1.179	164.4	369.2	184.4	342.7	0.	-342.7	2			
3	0.2500	80.6662	19.1	2.46	59.51	0.569	1.121	167.7	369.6	187.5	318.4	0.	-318.4	3			
4	0.4000	73.6279	31.6	4.22	56.72	0.585	1.063	192.5	350.1	191.9	292.4	0.	-292.4	4			
5	0.5400	67.0436	44.1	6.50	53.76	0.598	1.007	196.5	330.9	195.2	266.3	0.	-266.3	5			
6	0.6900	59.2360	59.0	9.61	50.12	0.607	0.939	199.3	306.3	196.5	235.3	0.	-235.3	6			
7	0.8000	52.1487	71.4	12.57	46.98	0.610	0.863	200.3	269.9	195.5	209.5	0.	-209.5	7			
8	0.8800	47.4202	81.5	15.46	45.48	0.606	0.834	199.0	274.0	191.6	186.3	0.	-186.3	8			
9	0.9420	42.395	90.5	17.70	42.30	0.596	0.800	195.9	259.2	186.6	169.6	0.	-169.6	9			
10	0.9610	41.1753	93.5	16.17	41.47	0.592	0.773	194.7	254.3	185.0	163.5	0.	-163.5	10			
11	0.9810	39.5530	96.7	16.39	40.36	0.591	0.759	194.3	249.6	184.4	156.7	0.	-156.7	11			
12	1.0000	37.7470	100.0	16.35	36.77	0.598	0.752	196.7	247.3	186.7	149.9	0.	-149.9	12			
SL	PSI	RADIUS	PT	TT	TT-KEL	PT	TT	TT-KEL	PT	TT	RHO	PT/PTT	TT/TTT	EFF	BULKAGE	SL	
1	0.	90.1702	10.132	269.16	352.00	6.212	271.37	1.05422	1.00000	1.00000	0.98000	0.	0.98000	1			
2	0.1000	86.2926	10.132	269.16	352.00	6.190	271.24	1.05297	1.00000	1.00000	0.98000	0.	0.98000	2			
3	0.2500	80.6662	10.132	269.16	346.62	6.154	270.63	1.04790	1.00000	1.00000	0.98000	0.	0.98000	3			
4	0.4000	73.6279	10.132	269.16	330.72	6.040	269.73	1.03637	1.00000	1.00000	0.98000	0.	0.98000	4			
5	0.5400	67.0436	10.132	269.16	323.45	7.959	266.95	1.03089	1.00000	1.00000	0.98000	0.	0.98000	5			
6	0.6900	59.2360	10.132	269.16	315.70	7.900	266.39	1.02550	1.00000	1.00000	0.98000	0.	0.98000	6			
7	0.8000	52.1487	10.132	269.16	310.01	7.880	266.19	1.02364	1.00000	1.00000	0.98000	0.	0.98000	7			
8	0.8800	47.4202	10.132	269.16	305.62	7.900	266.66	1.02619	1.00000	1.00000	0.98000	0.	0.98000	8			
9	0.9420	42.395	10.132	269.16	302.50	7.971	269.07	1.03294	1.00000	1.00000	0.98000	0.	0.98000	9			
10	0.9610	41.1753	10.132	269.16	301.47	7.994	269.29	1.03416	1.00000	1.00000	0.98000	0.	0.98000	10			
11	0.9810	39.5530	10.132	269.16	300.38	7.902	269.37	1.03488	1.00000	1.00000	0.98000	0.	0.98000	11			
12	1.0000	37.7470	10.132	269.16	299.35	7.955	265.91	1.03055	1.00000	1.00000	0.98000	0.	0.98000	12			

PT/PTT 1.0000 LFT CONK. rLOM PT 10.132 MASS AVERAGED VALUE'S TT 269.16 TT/TTT 1.000000 C2 CORR. RPM 3702.8 U-TIP 350.1

**ORIGINAL PAGE IS
OF POOR QUALITY**

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	RADIUS	z IMM	Phi	ALPHA	Beta	H-ABS	H-REL	C	C2	U	GU	NU	SL
1	0	90.1702	0.	Phi	29.08	59.79	0.516	0.897	180.3	315.1	157.5	358.1	87.6	-270.5
2	0.1000	86.4904	0.1	0.61	29.13	57.30	0.534	0.663	186.0	300.7	162.4	343.5	90.5	-253.0
3	0.2500	80.8166	20.6	1.49	29.26	53.87	0.569	0.812	190.7	282.9	166.5	521.0	93.2	-227.8
4	0.4000	74.8402	35.7	2.62	29.96	49.54	0.567	0.757	196.3	261.9	169.9	297.3	96.0	-199.2
5	0.5000	68.9141	46.6	4.03	31.56	43.61	0.595	0.700	205.4	241.6	174.7	273.7	107.3	-166.4
6	0.6000	62.1238	61.7	6.16	34.61	53.47	0.648	0.639	222.6	219.8	182.6	246.7	126.0	-120.7
7	0.8000	56.7578	73.6	9.21	36.29	22.02	0.708	0.601	242.5	206.0	186.9	265.4	149.1	-120.7
8	0.8800	52.5924	62.9	13.34	64.29	8.37	0.769	0.564	263.2	192.9	185.9	205.3	161.2	-27.3
9	0.9200	48.7355	91.2	13.71	46.87	-4.44	0.819	0.549	279.2	187.2	181.4	193.6	207.6	14.1
10	0.9610	47.4842	94.0	14.07	49.66	-6.03	0.817	0.557	284.6	189.4	182.0	188.6	214.5	25.7
11	0.9810	46.1091	97.0	15.10	50.21	-11.77	0.863	0.575	292.7	195.9	184.6	183.1	223.0	38.5
12	1.0000	44.7422	100.0	16.96	50.63	-15.20	0.893	0.600	301.5	202.7	187.6	177.7	226.7	51.0
SL	PSI	RADIUS	P1	11	TT-HL	PS	1S	TTU	MMU	P1/P11	TT/T11	EFF	BLKAGE	SL
1	0	90.1702	11.58/	319.39	552.00	11.328	303.22	1.5015	1.5410	1.10837	0.8069	0.9600	0.9600	1
2	0.1000	86.4904	13.69/	519.11	346.89	11.283	301.90	1.30195	1.3520	1.10741	0.8378	0.9600	0.9600	2
3	0.2500	80.6166	13.749	517.94	339.44	11.200	299.85	1.30125	1.3570	1.10336	0.8617	0.9600	0.9600	3
4	0.4000	74.8402	13.890	317.17	332.14	11.094	297.99	1.29695	1.3620	1.10145	0.9367	0.9600	0.9600	4
5	0.5000	68.9141	13.912	311.39	325.45	10.949	296.40	1.28694	1.3730	1.10143	0.9367	0.9600	0.9600	5
6	0.6000	62.1238	14.206	519.11	518.46	10.716	294.41	1.26798	1.4020	1.10741	0.9437	0.9600	0.9600	6
7	0.8000	56.7578	14.591	321.61	313.45	10.497	292.34	1.26497	1.4400	1.11608	0.9459	0.9600	0.9600	7
8	0.8800	52.5924	15.188	325.78	304.61	10.267	291.29	1.22685	1.4490	1.13054	0.9392	0.9600	0.9600	8
9	0.9200	48.7355	15.346	326.17	306.01	9.879	289.37	1.18939	1.5162	1.13865	0.9070	0.9600	0.9600	9
10	0.9610	47.4842	15.244	326.59	305.86	9.631	286.01	1.16497	1.5045	1.13906	0.8867	0.9600	0.9600	10
11	0.9810	46.1091	15.123	328.56	304.85	9.298	285.93	1.13289	1.4925	1.14016	0.8667	0.9600	0.9600	11
12	1.0000	44.7422	14.955	326.61	303.86	8.913	283.44	1.09566	1.4460	1.14037	0.8382	0.9600	0.9600	12
SL	PSI	TPLL	PH-KUN	DEL-T	D	DP/Q	CZ/L	SOLIDY	H-AV6	H-AXL	F-CURF	F-CURF	F-CURF	SL
1	0	0.10793	1.5410	31.23	0.306	0.275	0.651	0.300	90.102	95.41	1479.67	0.513	0.469	1
2	0.1000	0.09320	30.95	0.315	0.277	0.681	1.3340	0.3914	96.16	1.142.01	0.546	0.527	2	
3	0.2500	0.07096	1.5570	29.78	0.328	0.316	0.667	1.3941	80.4414	94.5.17	1.336.06	0.589	0.581	3
4	0.4000	0.05247	1.3620	29.01	0.348	0.365	0.685	1.4672	74.291	93.0.17	1.217.62	0.656	0.660	4
5	0.5000	0.04486	1.3730	29.43	0.376	0.414	0.695	1.5533	67.789	94.6.50	1.096.99	0.733	0.764	5
6	0.6000	0.0412	1.4020	30.95	0.412	0.466	0.929	1.676.40	60.6769	100.6.46	965.77	0.655	1.057	6
7	0.8000	0.05110	1.4400	33.45	0.437	0.493	0.960	1.7945	54.732	108.1.72	939.04	0.933	1.323	7
8	0.8800	0.06958	1.4990	57.62	0.477	0.516	0.969	1.9203	49.9628	111.1.49	704.75	1.016	1.750	8
9	0.9200	0.12229	1.5145	40.01	0.486	0.472	0.912	2.0461	45.735	118.0.63	519.62	1.099	2.145	9
10	0.9610	0.15387	1.5045	40.23	0.471	0.423	0.984	2.0911	48.3297	116.7.11	640.6.3	1.131	2.272	10
11	0.9810	0.18928	1.4925	40.39	0.441	0.349	1.001	2.1490	42.811	115.4.05	349.70	1.177	2.460	11
12	1.0000	0.22996	1.4760	40.45	0.405	0.264	1.005	2.2310	41.2466	114.3.20	453.13	1.245	2.574	12

MASS AVERAGED VALUES
 P1/P11 1.5948 EFF 0.9040 PT 19.132 FLU 308.411 CORR. 3599.5 1.11032 CZ 174.26 HU P12/P11 1.5948

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	RADIUS	z INH	PHI	ALPHA	BETA	H-ABS	H-REL	C	H	CZ	U	CU	NU	S _L	METRIC UNITS					
																STATION	1.60000	Z	453.700389	CORE	OCV
1	0.9082	51.9304	0.	-2.03	46.70	5.70	0.755	0.529	259.1	176.7	177.7	206.3	168.5	-17.7	1						
2	0.9420	49.8937	54.2	-0.68	47.93	-1.45	0.799	0.535	273.2	165.1	163.0	196.2	202.9	4.6	2						
3	0.9610	48.7022	54.2	1.13	48.95	-0.87	0.811	0.535	277.1	162.6	161.9	193.4	208.9	15.5	3						
4	0.9810	47.3683	76.6	2.94	51.01	-0.97	0.613	0.518	277.7	177.0	174.6	166.1	215.7	27.6	4						
5	1.0000	45.9741	100.0	3.30	53.84	-13.60	0.607	0.491	275.8	167.8	162.7	182.6	222.6	40.0	5						
SL	PSI	RADIUS	P1	T1	T1-REL	P3	13	RHO	PT/PT1	T1/T11	EFF	BLKA&t;	S _L								
1	0.9082	51.9304	15.260	326.66	309.33	10.462	293.45	1.22207	1.5661	1.13451	0.9241	0.96000	1								
2	0.9420	49.8937	15.346	328.17	307.71	10.073	291.02	1.20642	1.5165	1.13663	0.9070	0.96000	2								
3	0.9610	48.7022	15.244	326.39	306.78	9.869	290.16	1.16706	1.5045	1.13960	0.8687	0.96000	3								
4	0.9810	47.3683	15.123	328.56	305.78	9.771	290.18	1.1756	1.4925	1.14016	0.8687	0.96000	4								
5	1.0000	45.9741	14.955	326.61	304.76	9.744	290.75	1.16747	1.4760	1.14037	0.3362	0.96000	5								

P1/P11 1.5021 EFF 0.6694 PT 15.2220 MASS AVERAGED VALUES
 CORR, FLOW 26.621 TT 326.10 T1/T11 1.13661 CZ 176.09
 CORR, RPM 3554.5

ORIGINAL PAGE IS
OF POOR QUALITY

Table II. Design Blade Element Parameters for QCSEK OTW Fan (Continued).

SL	PSI	RADIUS	R _T	PHI	ALPHA	B1/A	H=ABS	H=REL	C	P	C2	U	CU	MU	SU	METRIC UNITS						
																STATION	1.90000	2	457.845397	CORE	06V	EXIT
1	0.9082	51.5824	z 144	0.	-2.03	4.00	4.17	0.526	0.742	185.5	261.6	184.9	19.4	-185.5	1							
2	0.9420	49.7700	35.02	-2.36	6.00	42.57	0.551	0.744	190.3	262.3	191.1	197.7	20.3	-177.4	2							
3	0.9610	48.7398	35.02	-1.21	6.00	47.21	0.544	0.731	192.1	258.1	191.0	193.6	20.1	-175.5	3							
4	0.9810	47.5964	37.4	0.33	6.00	41.84	0.530	0.718	190.0	253.6	189.0	189.0	19.9	-169.2	4							
5	1.0000	46.4313	100.0	3.50	6.00	42.00	0.514	0.692	181.9	245.2	180.7	184.4	19.0	-165.4	5							
SL	PSI	RADIUS	R _T	II	T1=REL	P _S	T _S		RMD	PT/PT1	TT/TT1	LF		BLNKST	SL							
1	0.9082	51.5824	14.507	326.86	343.80	12.015	309.75	1.35143	1.4317	1.15431	0.6059	0.94000										
2	0.9420	49.7700	14.828	326.17	343.62	12.063	309.37	1.35834	1.4634	1.15833	0.8279	0.94000										
3	0.9610	48.7398	14.611	326.39	343.17	11.944	310.01	1.36216	1.4620	1.13960	0.7897	0.94000										
4	0.9810	47.5964	14.206	326.56	342.60	11.668	310.59	1.30869	1.4020	1.14010	0.7230	0.94000										
5	1.0000	46.4313	13.680	326.61	342.35	11.426	312.14	1.27523	1.3501	1.14037	0.6379	0.94000										
SL	PSI	TPLC	PH=KUH	0tL-T	O	OP/Q	C2/C2	SOLUTY	H=AVG	F=1AN	F=2AN	F=3AN	F=4AN	F=5AN	F=6AN							
1	0.9082	0.15705	0.9506	0.9447	0.324	1.036	2.0054	51.7564	1226.63	555.15												
2	0.9420	0.09821	0.9663	0.939	0.377	1.055	2.0778	49.8316	1310.24	697.21												
3	0.9610	0.11628	0.9564	0.9467	0.384	1.050	2.1220	48.7210	1296.05	695.55												
4	0.9810	0.17204	0.94393	0.9478	0.352	1.062	2.1725	47.9823	1256.85	695.53												
5	1.0000	0.24677	0.9147	0.9505	0.323	1.111	2.2279	46.2027	1176.56	596.12												

P1/P_{T1} 1.4280 E_{FF} 0.7730 P_T 14.469 MASS AVERAGED VALUES
COMP. fL0_x 26.004 CORR. RPH 5554.5 T1/T₁₁ 1.13061 C₂ 165.62 RUN P12/P11 0.9500

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

	STATION	11.60000	Z	487.60000	BYPASS	OCT	INLET	NEUTRAL UNITS
SL	PSI	RADIUS	Z	1MM	PW1	ALPHA	BETA	M-REL
1	0.	90.1792	0.	0.	27.51	50.13	0.545	0.915
2	0.1000	86.6702	9.4	0.69	27.63	55.00	0.561	0.884
3	0.2500	81.2596	24.0	0.11	27.66	52.08	0.573	0.835
4	0.4000	75.5505	39.3	-0.05	28.62	46.75	0.587	0.782
5	0.5400	69.8527	54.6	-0.32	39.20	45.39	0.610	0.726
6	0.6900	65.6971	72.0	-0.65	35.10	34.13	0.638	0.666
7	0.8300	58.3418	85.6	-0.76	36.30	23.71	0.715	0.639
8	0.9600	54.4932	96.1	-0.35	40.64	11.12	0.786	0.700
9	0.9902	52.9921	100.0	0.	62.87	7.27	0.002	0.390
								273.6
								201.0
								203.4
								201.0
								210.5
								184.7
								225.7
SL	PSI	RADIUS	P1	P1	TT-REL	P3	T3	RHO
1	0.	90.1792	15.267	319.59	352.00	11.104	301.49	1.2630
2	0.1000	86.6702	13.699	519.11	347.14	11.066	300.23	1.2640
3	0.2500	81.2596	13.749	317.94	349.00	11.066	298.36	1.2651
4	0.4000	75.5505	13.809	317.17	342.97	10.928	296.71	1.2639
5	0.5400	69.8527	15.912	317.39	326.51	10.916	295.30	1.2759
6	0.6900	65.6971	14.206	319.11	319.73	10.621	293.67	1.2595
7	0.8300	58.3418	14.591	321.61	314.89	10.373	291.74	1.2396
8	0.9600	54.4932	15.188	325.78	311.43	10.104	289.97	1.2136
9	0.9902	52.9921	15.260	326.86	310.21	9.991	289.61	1.2010

P1/P11 = 1.3602 EFF = 0.9059 P1 = 14.026 MASS AVERAGED VALUES
 CORR. FLOW = 1.0000 T1 = 319.13 T11 = 1.10766 C2 = 182.45
 CORR. RPM = 30000.1

**ORIGINAL PAGE IS
OF POOR QUALITY**

Table II. Design Blade Element Parameters for QCSEE Off Pan (Continued).

Metric analysis											
station 11.90000			z = 500.00000			atpass			outfit		
psi	radius	z	pm1	pm1	alpha	beta	beta	beta	beta	beta	beta
0.1000	84.5060	0	0.11	0.11	0.053	0.053	0.053	0.053	0.053	0.053	0.053
0.2500	81.1113	20.9	0.22	0.22	0.084	0.084	0.084	0.084	0.084	0.084	0.084
0.4000	72.3355	36.6	0.33	0.33	0.087	0.087	0.087	0.087	0.087	0.087	0.087
0.5000	67.9555	52.0	0.44	0.44	0.093	0.093	0.093	0.093	0.093	0.093	0.093
0.5400	62.9690	61.0	0.49	0.49	0.095	0.095	0.095	0.095	0.095	0.095	0.095
0.5500	61.9611	72.0	0.50	0.50	0.096	0.096	0.096	0.096	0.096	0.096	0.096
0.5600	60.9900	82.0	0.51	0.51	0.097	0.097	0.097	0.097	0.097	0.097	0.097
0.5700	59.9900	92.0	0.52	0.52	0.098	0.098	0.098	0.098	0.098	0.098	0.098
0.5800	58.9900	102.0	0.53	0.53	0.099	0.099	0.099	0.099	0.099	0.099	0.099
0.5900	57.9900	112.0	0.54	0.54	0.100	0.100	0.100	0.100	0.100	0.100	0.100
0.6000	56.9900	122.0	0.55	0.55	0.101	0.101	0.101	0.101	0.101	0.101	0.101
0.6100	55.9900	132.0	0.56	0.56	0.102	0.102	0.102	0.102	0.102	0.102	0.102
0.6200	54.9900	142.0	0.57	0.57	0.103	0.103	0.103	0.103	0.103	0.103	0.103
0.6300	53.9900	152.0	0.58	0.58	0.104	0.104	0.104	0.104	0.104	0.104	0.104
0.6400	52.9900	162.0	0.59	0.59	0.105	0.105	0.105	0.105	0.105	0.105	0.105
0.6500	51.9900	172.0	0.60	0.60	0.106	0.106	0.106	0.106	0.106	0.106	0.106
0.6600	50.9900	182.0	0.61	0.61	0.107	0.107	0.107	0.107	0.107	0.107	0.107
0.6700	49.9900	192.0	0.62	0.62	0.108	0.108	0.108	0.108	0.108	0.108	0.108
0.6800	48.9900	202.0	0.63	0.63	0.109	0.109	0.109	0.109	0.109	0.109	0.109
0.6900	47.9900	212.0	0.64	0.64	0.110	0.110	0.110	0.110	0.110	0.110	0.110
0.7000	46.9900	222.0	0.65	0.65	0.111	0.111	0.111	0.111	0.111	0.111	0.111
0.7100	45.9900	232.0	0.66	0.66	0.112	0.112	0.112	0.112	0.112	0.112	0.112
0.7200	44.9900	242.0	0.67	0.67	0.113	0.113	0.113	0.113	0.113	0.113	0.113
0.7300	43.9900	252.0	0.68	0.68	0.114	0.114	0.114	0.114	0.114	0.114	0.114
0.7400	42.9900	262.0	0.69	0.69	0.115	0.115	0.115	0.115	0.115	0.115	0.115
0.7500	41.9900	272.0	0.70	0.70	0.116	0.116	0.116	0.116	0.116	0.116	0.116
0.7600	40.9900	282.0	0.71	0.71	0.117	0.117	0.117	0.117	0.117	0.117	0.117
0.7700	39.9900	292.0	0.72	0.72	0.118	0.118	0.118	0.118	0.118	0.118	0.118
0.7800	38.9900	302.0	0.73	0.73	0.119	0.119	0.119	0.119	0.119	0.119	0.119
0.7900	37.9900	312.0	0.74	0.74	0.120	0.120	0.120	0.120	0.120	0.120	0.120
0.8000	36.9900	322.0	0.75	0.75	0.121	0.121	0.121	0.121	0.121	0.121	0.121
0.8100	35.9900	332.0	0.76	0.76	0.122	0.122	0.122	0.122	0.122	0.122	0.122
0.8200	34.9900	342.0	0.77	0.77	0.123	0.123	0.123	0.123	0.123	0.123	0.123
0.8300	33.9900	352.0	0.78	0.78	0.124	0.124	0.124	0.124	0.124	0.124	0.124
0.8400	32.9900	362.0	0.79	0.79	0.125	0.125	0.125	0.125	0.125	0.125	0.125
0.8500	31.9900	372.0	0.80	0.80	0.126	0.126	0.126	0.126	0.126	0.126	0.126
0.8600	30.9900	382.0	0.81	0.81	0.127	0.127	0.127	0.127	0.127	0.127	0.127
0.8700	29.9900	392.0	0.82	0.82	0.128	0.128	0.128	0.128	0.128	0.128	0.128
0.8800	28.9900	402.0	0.83	0.83	0.129	0.129	0.129	0.129	0.129	0.129	0.129
0.8900	27.9900	412.0	0.84	0.84	0.130	0.130	0.130	0.130	0.130	0.130	0.130
0.9000	26.9900	422.0	0.85	0.85	0.131	0.131	0.131	0.131	0.131	0.131	0.131
0.9100	25.9900	432.0	0.86	0.86	0.132	0.132	0.132	0.132	0.132	0.132	0.132
0.9200	24.9900	442.0	0.87	0.87	0.133	0.133	0.133	0.133	0.133	0.133	0.133
0.9300	23.9900	452.0	0.88	0.88	0.134	0.134	0.134	0.134	0.134	0.134	0.134
0.9400	22.9900	462.0	0.89	0.89	0.135	0.135	0.135	0.135	0.135	0.135	0.135
0.9500	21.9900	472.0	0.90	0.90	0.136	0.136	0.136	0.136	0.136	0.136	0.136
0.9600	20.9900	482.0	0.91	0.91	0.137	0.137	0.137	0.137	0.137	0.137	0.137
0.9700	19.9900	492.0	0.92	0.92	0.138	0.138	0.138	0.138	0.138	0.138	0.138
0.9800	18.9900	502.0	0.93	0.93	0.139	0.139	0.139	0.139	0.139	0.139	0.139
0.9900	17.9900	512.0	0.94	0.94	0.140	0.140	0.140	0.140	0.140	0.140	0.140
1.0000	16.9900	522.0	0.95	0.95	0.141	0.141	0.141	0.141	0.141	0.141	0.141
1.0100	15.9900	532.0	0.96	0.96	0.142	0.142	0.142	0.142	0.142	0.142	0.142
1.0200	14.9900	542.0	0.97	0.97	0.143	0.143	0.143	0.143	0.143	0.143	0.143
1.0300	13.9900	552.0	0.98	0.98	0.144	0.144	0.144	0.144	0.144	0.144	0.144
1.0400	12.9900	562.0	0.99	0.99	0.145	0.145	0.145	0.145	0.145	0.145	0.145
1.0500	11.9900	572.0	1.00	1.00	0.146	0.146	0.146	0.146	0.146	0.146	0.146
1.0600	10.9900	582.0	1.01	1.01	0.147	0.147	0.147	0.147	0.147	0.147	0.147
1.0700	9.9900	592.0	1.02	1.02	0.148	0.148	0.148	0.148	0.148	0.148	0.148
1.0800	8.9900	602.0	1.03	1.03	0.149	0.149	0.149	0.149	0.149	0.149	0.149
1.0900	7.9900	612.0	1.04	1.04	0.150	0.150	0.150	0.150	0.150	0.150	0.150
1.1000	6.9900	622.0	1.05	1.05	0.151	0.151	0.151	0.151	0.151	0.151	0.151
1.1100	5.9900	632.0	1.06	1.06	0.152	0.152	0.152	0.152	0.152	0.152	0.152
1.1200	4.9900	642.0	1.07	1.07	0.153	0.153	0.153	0.153	0.153	0.153	0.153
1.1300	3.9900	652.0	1.08	1.08	0.154	0.154	0.154	0.154	0.154	0.154	0.154
1.1400	2.9900	662.0	1.09	1.09	0.155	0.155	0.155	0.155	0.155	0.155	0.155
1.1500	1.9900	672.0	1.10	1.10	0.156	0.156	0.156	0.156	0.156	0.156	0.156
1.1600	0.9900	682.0	1.11	1.11	0.157	0.157	0.157	0.157	0.157	0.157	0.157
1.1700	-0.9900	692.0	1.12	1.12	0.158	0.158	0.158	0.158	0.158	0.158	0.158
1.1800	-1.9900	702.0	1.13	1.13	0.159	0.159	0.159	0.159	0.159	0.159	0.159
1.1900	-2.9900	712.0	1.14	1.14	0.160	0.160	0.160	0.160	0.160	0.160	0.160
1.2000	-3.9900	722.0	1.15	1.15	0.161	0.161	0.161	0.161	0.161	0.161	0.161
1.2100	-4.9900	732.0	1.16	1.16	0.162	0.162	0.162	0.162	0.162	0.162	0.162
1.2200	-5.9900	742.0	1.17	1.17	0.163	0.163	0.163	0.163	0.163	0.163	0.163
1.2300	-6.9900	752.0	1.18	1.18	0.164	0.164	0.164	0.164	0.164	0.164	0.164
1.2400	-7.9900	762.0	1.19	1.19	0.165	0.165	0.165	0.165	0.165	0.165	0.165
1.2500	-8.9900	772.0	1.20	1.20	0.166	0.166	0.166	0.166	0.166	0.166	0.166
1.2600	-9.9900	782.0	1.21	1.21	0.167	0.167	0.167	0.167	0.167	0.167	0.167
1.2700	-1.9900	792.0	1.22	1.22	0.168	0.168	0.168	0.168	0.168	0.168	0.168
1.2800	-2.9900	802.0	1.23	1.23	0.169	0.169	0.169	0.169	0.169	0.169	0.169
1.2900	-3.9900	812.0	1.24	1.24	0.170	0.170	0.170	0.170	0.170	0.170	0.170
1.3000	-4.9900	822.0	1.25	1.25	0.171	0.171	0.171	0.171	0.171	0.171	0.171
1.3100	-5.9900	832.0	1.26	1.26	0.172	0.172	0.172	0.172	0.172	0.172	0.172
1.3200	-6.9900	842.0	1.27	1.27	0.173	0.173	0.173	0.173	0.173	0.173	0.173
1.3300	-7.9900	852.0	1.28	1.28	0.174	0.174	0.174	0.174	0.174	0.174	0.174
1.3400	-8.9900	862.0	1.29	1.29	0.175	0.175	0.175	0.175	0.175	0.175	0.175
1.3500	-9.9900	872.0	1.30	1.30	0.176	0.176	0.176	0.176	0.176	0.176	0.176
1.3600	-1.9900	882.0	1.31	1.31	0.177	0.177	0.177	0.177	0.177	0.177	0.177
1.3700	-2.9900	892.0	1.32	1.32	0.178	0.178	0.178	0.178	0.178	0.178	0.178
1.3800	-3.9900	902.0	1.33	1.33	0.179	0.179	0.179	0.179	0.179	0.179	0.179
1.3900	-4.9900	912.0	1.34	1.34	0.180	0.180	0.180	0.180	0.180	0.180	0.180
1.4000	-5.9900	922.0	1.35	1.35	0.181	0.181	0.181	0.181	0.181	0.181	0.181
1.4100	-6.9900	932.0	1.36	1.36	0.182	0.182	0.182	0.182	0.182	0.182	0.182
1.4200	-7.9900	942.0	1.37	1.37	0.183	0.183	0.183	0.183	0.183	0.183	0.183
1.4300	-8.9900	952.0	1.38	1.38	0.184	0.184	0.184</				

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

NOMENCLATURE FOR TABULATION		
HEADING	IDENTIFICATION	ENGLISH UNITS
<u>GENERAL</u>		
SL	STREAMLINE NUMBER	-
PSI	STREAM FUNCTION	-
RADIUS	STREAMLINE RADIUS	IN.
Z IMM	PERCENT IMMERSION FROM OUTER WALL	%
Z	AXIAL DIMENSION	IN.
BLKAGE	ANNULAR BLOCKAGE FACTOR	-
FLON	WEIGHT FLOW	LBM/SEC
<u>ANGLES AND MACH NUMBERS</u>		
PHI	MERIDIONAL FLOW ANGLE	
ALPHA	ABSOLUTE FLOW ANGLE	DEG.
BETA	RELATIVE FLOW ANGLE	DEG.
M-Abs	ABSOLUTE MACH NUMBER	DEG.
M-rel	RELATIVE MACH NUMBER	-
<u>VELOCITIES</u>		
C	ABSOLUTE VELOCITY	FT/SEC
W	RELATIVE VELOCITY	FT/SEC
CZ	AXIAL VELOCITY	FT/SEC
U	BLADE SPEED	FT/SEC
CU	TANGENTIAL COMPONENT OF C	FT/SEC
WU	TANGENTIAL COMPONENT OF W	FT/SEC
<u>FLUID PROPERTIES</u>		
PT	ABSOLUTE TOTAL PRESSURE	LBF/SQ. IN.
TT	ABSOLUTE TOTAL TEMPERATURE	DEG=R
TT-REL	RELATIVE TOTAL TEMPERATURE	DEG=R
PS	STATIC PRESSURE	LBF/SQ. IN.
TS	STATIC TEMPERATURE	DEG=R
RHO	STATIC DENSITY	LBM/CU. FT.
EFF	CUMULATIVE ADIABATIC EFFICIENCY REFERENCED TO PT1, TT1	-
PT1	INLET ABSOLUTE TOTAL PRESSURE	LBF/SQ. IN.
TT1	INLET ABSOLUTE TOTAL TEMPERATURE	DEG=R
<u>AERODYNAMIC BLADING PARAMETERS</u>		
TPLC	TOTAL PRESSURE LOSS COEFFICIENT	-
PR-BUN	TOTAL PRESSURE RATIO ACROSS BLADE RUN	-
DEL-T	TOTAL TEMPERATURE RISE ACROSS MOTOR	DEG=R
D	DIFFUSION FACTOR	-
DP/D	STATIC PRESSURE RISE COEFFICIENT	-
CZ/CZ	AXIAL VELOCITY RATIO ACROSS BLADE RUN	-
SOLIDY	SOLIDITY	-
R-AVG	AVERAGE STREAMLINE RADIUS ACROSS BLADE ROW	IN.
F-TAN	TANGENTIAL BLADE FORCE PER UNIT BLADE LENGTH	LBF/IN
F-AXL	AXIAL BLADE FORCE PER UNIT BLADE LENGTH	LBF/IN
F-COEF	FLOW COEFFICIENT $= C_2 U_1 / U_2$	-
T-COEF	WORK COEFFICIENT $= (2 \cdot g \cdot J \cdot C_P \cdot \Delta T) / (U_2 \cdot U_1)$	-

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE
OF POOR QUALITY

Table II. Design Blade Element Parameters for QSEE OTW Fan (Continued).

	STATION	1.00000	2	163.20001	ROTUN	1	INLET	ENGLISH UNITS
SL	R21	Radius	z	1mm	P11	ALPHA	061A	m-ABS
SL	R21	Radius	z	0	0	0	0219	ft
SL	0	0.1900	55.5000	0	1.01	0.01	0.556	ft
SL	1	0.2500	55.9711	1.01	2.05	0	0.559	ft
SL	2	0.3100	56.3515	1.01	3.05	0	0.569	ft
SL	3	0.3700	56.7313	1.01	4.05	0	0.572	ft
SL	4	0.4300	57.1052	0.99	5.05	0	0.576	ft
SL	5	0.4900	57.4790	0.99	6.05	0	0.580	ft
SL	6	0.5500	57.8430	0.99	7.05	0	0.584	ft
SL	7	0.6100	58.2069	0.99	8.05	0	0.588	ft
SL	8	0.6700	58.5696	0.99	9.05	0	0.592	ft
SL	9	0.7300	58.9296	0.99	10.05	0	0.596	ft
SL	10	0.7900	59.2869	0.99	11.05	0	0.600	ft
SL	11	0.8500	59.6393	0.99	12.05	0	0.604	ft
SL	12	0.9100	59.9862	0.99	13.05	0	0.608	ft
SL	13	0.9610	60.3267	0.99	14.05	0	0.612	ft
SL	14	1.0100	60.6610	0.99	15.05	0	0.616	ft
SL	15	1.0600	61.0010	0.99	16.05	0	0.620	ft
SL	16	1.1100	61.3367	0.99	17.05	0	0.624	ft
SL	17	1.1600	61.6667	0.99	18.05	0	0.628	ft
SL	18	1.2100	62.0000	0.99	19.05	0	0.632	ft
SL	19	1.2600	62.3267	0.99	20.05	0	0.636	ft
SL	20	1.3100	62.6530	0.99	21.05	0	0.640	ft
SL	21	1.3600	63.0000	0.99	22.05	0	0.644	ft
SL	22	1.4100	63.3267	0.99	23.05	0	0.648	ft
SL	23	1.4600	63.6530	0.99	24.05	0	0.652	ft
SL	24	1.5100	64.0000	0.99	25.05	0	0.656	ft
SL	25	1.5600	64.3267	0.99	26.05	0	0.660	ft
SL	26	1.6100	64.6530	0.99	27.05	0	0.664	ft
SL	27	1.6600	65.0000	0.99	28.05	0	0.668	ft
SL	28	1.7100	65.3267	0.99	29.05	0	0.672	ft
SL	29	1.7600	65.6530	0.99	30.05	0	0.676	ft
SL	30	1.8100	66.0000	0.99	31.05	0	0.680	ft
SL	31	1.8600	66.3267	0.99	32.05	0	0.684	ft
SL	32	1.9100	66.6530	0.99	33.05	0	0.688	ft
SL	33	1.9600	67.0000	0.99	34.05	0	0.692	ft
SL	34	2.0100	67.3267	0.99	35.05	0	0.696	ft
SL	35	2.0600	67.6530	0.99	36.05	0	0.700	ft
SL	36	2.1100	68.0000	0.99	37.05	0	0.704	ft
SL	37	2.1600	68.3267	0.99	38.05	0	0.708	ft
SL	38	2.2100	68.6530	0.99	39.05	0	0.712	ft
SL	39	2.2600	69.0000	0.99	40.05	0	0.716	ft
SL	40	2.3100	69.3267	0.99	41.05	0	0.720	ft
SL	41	2.3600	69.6530	0.99	42.05	0	0.724	ft
SL	42	2.4100	70.0000	0.99	43.05	0	0.728	ft
SL	43	2.4600	70.3267	0.99	44.05	0	0.732	ft
SL	44	2.5100	70.6530	0.99	45.05	0	0.736	ft
SL	45	2.5600	71.0000	0.99	46.05	0	0.740	ft
SL	46	2.6100	71.3267	0.99	47.05	0	0.744	ft
SL	47	2.6600	71.6530	0.99	48.05	0	0.748	ft
SL	48	2.7100	72.0000	0.99	49.05	0	0.752	ft
SL	49	2.7600	72.3267	0.99	50.05	0	0.756	ft
SL	50	2.8100	72.6530	0.99	51.05	0	0.760	ft
SL	51	2.8600	73.0000	0.99	52.05	0	0.764	ft
SL	52	2.9100	73.3267	0.99	53.05	0	0.768	ft
SL	53	2.9600	73.6530	0.99	54.05	0	0.772	ft
SL	54	3.0100	74.0000	0.99	55.05	0	0.776	ft
SL	55	3.0600	74.3267	0.99	56.05	0	0.780	ft
SL	56	3.1100	74.6530	0.99	57.05	0	0.784	ft
SL	57	3.1600	75.0000	0.99	58.05	0	0.788	ft
SL	58	3.2100	75.3267	0.99	59.05	0	0.792	ft
SL	59	3.2600	75.6530	0.99	60.05	0	0.796	ft
SL	60	3.3100	76.0000	0.99	61.05	0	0.800	ft
SL	61	3.3600	76.3267	0.99	62.05	0	0.804	ft
SL	62	3.4100	76.6530	0.99	63.05	0	0.808	ft
SL	63	3.4600	77.0000	0.99	64.05	0	0.812	ft
SL	64	3.5100	77.3267	0.99	65.05	0	0.816	ft
SL	65	3.5600	77.6530	0.99	66.05	0	0.820	ft
SL	66	3.6100	78.0000	0.99	67.05	0	0.824	ft
SL	67	3.6600	78.3267	0.99	68.05	0	0.828	ft
SL	68	3.7100	78.6530	0.99	69.05	0	0.832	ft
SL	69	3.7600	79.0000	0.99	70.05	0	0.836	ft
SL	70	3.8100	79.3267	0.99	71.05	0	0.840	ft
SL	71	3.8600	79.6530	0.99	72.05	0	0.844	ft
SL	72	3.9100	80.0000	0.99	73.05	0	0.848	ft
SL	73	3.9600	80.3267	0.99	74.05	0	0.852	ft
SL	74	4.0100	80.6530	0.99	75.05	0	0.856	ft
SL	75	4.0600	81.0000	0.99	76.05	0	0.860	ft
SL	76	4.1100	81.3267	0.99	77.05	0	0.864	ft
SL	77	4.1600	81.6530	0.99	78.05	0	0.868	ft
SL	78	4.2100	82.0000	0.99	79.05	0	0.872	ft
SL	79	4.2600	82.3267	0.99	80.05	0	0.876	ft
SL	80	4.3100	82.6530	0.99	81.05	0	0.880	ft
SL	81	4.3600	83.0000	0.99	82.05	0	0.884	ft
SL	82	4.4100	83.3267	0.99	83.05	0	0.888	ft
SL	83	4.4600	83.6530	0.99	84.05	0	0.892	ft
SL	84	4.5100	84.0000	0.99	85.05	0	0.896	ft
SL	85	4.5600	84.3267	0.99	86.05	0	0.900	ft
SL	86	4.6100	84.6530	0.99	87.05	0	0.904	ft
SL	87	4.6600	85.0000	0.99	88.05	0	0.908	ft
SL	88	4.7100	85.3267	0.99	89.05	0	0.912	ft
SL	89	4.7600	85.6530	0.99	90.05	0	0.916	ft
SL	90	4.8100	86.0000	0.99	91.05	0	0.920	ft
SL	91	4.8600	86.3267	0.99	92.05	0	0.924	ft
SL	92	4.9100	86.6530	0.99	93.05	0	0.928	ft
SL	93	4.9600	87.0000	0.99	94.05	0	0.932	ft
SL	94	5.0100	87.3267	0.99	95.05	0	0.936	ft
SL	95	5.0600	87.6530	0.99	96.05	0	0.940	ft
SL	96	5.1100	88.0000	0.99	97.05	0	0.944	ft
SL	97	5.1600	88.3267	0.99	98.05	0	0.948	ft
SL	98	5.2100	88.6530	0.99	99.05	0	0.952	ft
SL	99	5.2600	89.0000	0.99	100.05	0	0.956	ft
SL	100	5.3100	89.3267	0.99	101.05	0	0.960	ft
SL	101	5.3600	89.6530	0.99	102.05	0	0.964	ft
SL	102	5.4100	90.0000	0.99	103.05	0	0.968	ft
SL	103	5.4600	90.3267	0.99	104.05	0	0.972	ft
SL	104	5.5100	90.6530	0.99	105.05	0	0.976	ft
SL	105	5.5600	91.0000	0.99	106.05	0	0.980	ft
SL	106	5.6100	91.3267	0.99	107.05	0	0.984	ft
SL	107	5.6600	91.6530	0.99	108.05	0	0.988	ft
SL	108	5.7100	92.0000	0.99	109.05	0	0.992	ft
SL	109	5.7600	92.3267	0.99	110.05	0	0.996	ft
SL	110	5.8100	92.6530	0.99	111.05	0	1.000	ft
SL	111	5.8600	93.0000	0.99	112.05	0	1.004	ft
SL	112	5.9100	93.3267	0.99	113.05	0	1.008	ft
SL	113	5.9600	93.6530	0.99	114.05	0	1.012	ft
SL	114	6.0100	94.0000	0.99	115.05	0	1.016	ft
SL	115	6.0600	94.3267	0.99	116.05	0	1.020	ft
SL	116	6.1100	94.6530	0.99	117.05	0	1.024	ft
SL	117	6.1600	95.0000	0.99	118.05	0	1.028	ft
SL	118	6.2100	95.3267	0.99	119.05	0	1.032	ft
SL	119	6.2600	95.6530	0.99	120.05	0	1.036	ft
SL	120	6.3100	96.0000	0.99	121.05	0	1.040	ft
SL	121	6.3600	96.3267	0.99	122.05	0	1.044	ft
SL	122	6.4100	96.6530	0.99	123.05	0	1.048	ft
SL	123	6.4600	97.0000	0.99	124.05	0	1.052	ft
SL	124	6.5100	97.3267	0.99	125.05	0	1.056	ft
SL	125	6.5600	97.6530	0.99	126.05	0	1.060	ft
SL	126	6.6100	98.0000	0.99	127.05	0	1.064	ft
SL	127	6.6600	98.3267	0.99	128.05	0	1.068	ft
SL	128	6.7100	98.6530	0.99	129.05	0	1.072	ft
SL	129	6.7600	99.0000	0.99	130.05	0	1.076	ft
SL	130	6.8100	99.3267	0.99	131.05	0	1.080	ft
SL	131	6.8600	99.6530	0.99	132.05	0	1.084	ft
SL	132	6.9100	100.0000	0.99	133.05	0	1.088	ft
SL	133	6.9600	100.3267	0.99	134.05	0	1.092	ft
SL	134	7.0100	100.6530	0.99	135.05	0	1.096	ft
SL	135	7.0600	101.00					

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	STATION 1.50000 2 173.700000 ROTOR 1 EXIT										ENGLISH UNITS			
		RADIUS	X IMM	PPI	ALPHA	BETA	M-ABS	M-REL	C	U	CU	MU	SL		
1	0	35.5000	0	29.08	59.79	0.516	0.897	591.9	1027.1	516.9	1175.0	287.4	887.6	1	
2	0.1000	34.0513	0.1	29.1	57.30	0.534	0.863	606.5	1055.1	532.9	1127.0	297.0	830.1	2	
3	0.2500	31.8175	20.6	1.49	29.28	53.67	0.569	0.612	625.6	945.5	625.6	905.1	305.6	974.7	3
4	0.4000	29.4646	33.7	2.62	29.08	49.54	0.567	0.757	644.1	859.4	557.4	771.1	321.6	975.6	4
5	0.5400	27.1315	46.6	4.05	31.56	43.61	0.595	0.700	673.8	792.6	573.1	710.4	352.9	754.0	5
6	0.6000	24.4581	61.7	6.18	34.61	53.47	0.646	0.639	730.6	721.2	639.2	739.5	415.4	836.1	6
7	0.6600	22.3455	73.6	9.21	36.29	22.02	0.700	0.601	795.7	675.6	619.6	489.1	415.4	825.5	7
8	0.5500	20.6714	82.9	13.34	44.29	6.37	0.769	0.564	863.7	632.8	609.5	684.2	594.5	869.6	8
9	0.9420	19.1871	91.2	13.71	48.07	4.44	0.619	0.549	916.0	614.2	595.0	635.1	601.2	466.1	9
10	0.9610	18.6495	94.0	14.07	49.66	6.03	0.837	0.557	934.5	621.4	597.5	616.6	616.6	846.3	10
11	0.9810	18.1532	97.0	15.10	50.21	-11.77	0.863	0.557	960.2	639.6	605.5	600.6	727.0	126.2	11
12	1.0000	17.6150	100.0	16.96	50.63	-15.20	0.863	0.600	986.4	664.9	615.5	563.0	750.3	167.2	12
SL	PSI	RADIUS	P1	T1-REL	P2	T2	RHO	PT/PT1	PT/PT1	EFF	BLKAGE	SL			
1	0	35.5000	19.707	574.90	635.59	16.430	545.79	0.08125	1.3410	1.1637	0.8069	0.6900			
2	0.1000	34.0513	19.8669	574.40	626.41	16.304	543.42	0.08128	1.3520	1.1074	0.8376	0.7600			
3	0.2500	31.8175	19.942	572.30	610.99	16.245	539.73	0.08124	1.3570	1.1336	0.8817	0.8600			
4	0.4000	29.4646	20.016	570.90	597.84	16.090	536.38	0.08097	1.3620	1.01066	0.9168	0.9600			
5	0.5400	27.1315	20.178	571.30	565.81	15.861	535.52	0.08034	1.3730	1.03043	0.9347	0.9900			
6	0.6000	24.4581	20.604	574.40	573.23	15.542	529.95	0.0796	1.4020	1.10741	0.9437	0.9600			
7	0.6600	22.3455	21.162	578.90	564.22	15.152	526.20	0.07772	1.4400	1.1606	0.9459	0.9600			
8	0.8800	20.6714	22.029	586.40	557.65	14.891	524.32	0.07665	1.4999	1.15054	0.9392	0.9600			
9	0.9420	19.1871	22.257	590.70	552.26	14.329	520.86	0.07625	1.5145	1.19883	0.9170	0.9600			
10	0.9610	18.6495	22.110	591.10	550.55	13.969	516.42	0.07273	1.5045	1.13960	0.8667	0.9600			
11	0.9810	18.1532	21.934	591.40	548.74	13.486	514.67	0.07073	1.4925	1.1010	0.8647	0.9600			
12	1.0000	17.6150	21.691	591.30	546.96	12.927	510.19	0.06839	1.4760	1.14037	0.8382	0.9600			
SL	PSI	TPLC	PR-RUN	DELT-T	DP/Q	CZ/CZ	80DTY	RAVG	F-TAN	F-CDEF	T-CDEF	SL			
1	0	0.10798	1.3410	56.21	0.306	0.255	0.050	1.3000	35.5000	547.84	0.513	0.889			
2	0.1000	0.09393	1.3520	55.71	0.315	0.277	0.051	1.3340	34.0123	551.69	0.523	0.927			
3	0.2500	0.07096	1.3570	53.61	0.328	0.316	0.057	1.3941	31.6695	538.57	0.589	0.951			
4	0.4000	0.05247	1.3620	52.21	0.348	0.365	0.065	1.4672	29.2269	531.14	0.656	0.960			
5	0.5400	0.04886	1.3730	52.61	0.376	0.414	0.095	1.5533	26.7613	540.35	0.735	0.984			
6	0.6900	0.04512	1.4020	55.71	0.412	0.466	0.229	1.6764	23.6685	575.66	0.835	1.024			
7	0.8000	0.05110	1.4490	60.21	0.437	0.493	0.266	1.7995	21.5264	617.66	1.323				
8	0.8800	0.04958	1.490	67.71	0.477	0.516	0.269	1.9203	19.604	666.94	1.738				
9	0.9420	0.12229	1.5145	72.01	0.486	0.472	0.272	2.0461	18.066	674.27	2.049				
10	0.9610	0.15387	1.5045	72.41	0.471	0.423	0.284	2.0911	17.9226	666.44	2.185				
11	0.9810	0.18928	1.4925	72.71	0.441	0.349	1.001	2.1490	16.9229	659.44	1.9973	2.177			
12	1.0000	0.22906	1.4760	72.81	0.435	0.264	1.005	2.2310	16.2360	632.79	1.245	2.574			
PT/PT1	1.3946	EFF	V-9040	PT1	20.498	TT	575.91	TT/TT1	1.11032	C2	571.73	ROM PT2/PT1	1.93940		
		CORR.	FLW	679.931	CORR.	NM	3559.5	CORR.							
														MASS AVERAGED VALUES	

ORIGINAL PAGE IS
OF POOR QUALITY

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	RADIUS	Z INK	PML	ALPHA	BETA	H=ABS	H=REL	C	CL	CU	CJ	CV	INLET	ENGLISH UNITS		
															SL		
1	0.9082	20.4450	0.	-2.03	46.70	5.70	0.755	0.320	850.1	586.2	676.7	616.5	638.2	1			
2	0.9420	19.6432	34.2	-0.19	47.93	-1.45	0.799	0.535	696.3	600.7	650.2	665.4	15.2				
3	0.9610	19.1741	54.2	1.15	48.95	-4.87	0.811	0.535	900.0	599.2	634.6	680.5	50.8				
4	0.9610	18.6469	76.6	2.94	51.01	-6.97	0.813	0.518	911.0	580.6	573.0	617.5	707.7	90.4			
5	1.00000	18.1000	100.0	3.50	53.84	-13.80	0.807	0.491	904.9	550.4	533.7	599.1	730.2	131.1			
SL	PSI	RADIUS	P1	11	TI=REL	P8	TS	RHO	PI/PT1	TI/TII	TFF	BLKAST			SL		
1	0.9082	20.4450	22.133	588.36	556.80	15.175	526.21	0.0754	1.5061	1.15451	0.9241	0.96000	1				
2	0.9420	19.6432	22.257	590.70	553.87	14.617	523.83	0.07532	1.5145	1.13683	0.9070	0.96000	2				
3	0.9610	19.1741	22.110	591.10	552.21	14.341	522.33	0.07411	1.5045	1.13960	0.8867	0.96000	3				
4	0.9610	18.6469	21.934	591.40	550.40	14.201	522.32	0.07336	1.4925	1.14018	0.8667	0.96000	4				
5	1.00000	18.1000	21.691	591.50	548.56	14.152	523.35	0.07288	1.4760	1.14037	0.8432	0.96000	5				

PI/PT1 1.5021 TTT 0.06694 P1 222.075 TI 590.5R TII/TIII 1.13861 CJ 584.27
 CMM, FLOW 58.690 CMM, RPM 3554.5

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	RADIUS	X 1MM	PHI	ALPHA	HETA	H=ABS	H=REL	C	H	CZ	U	CU	NU	SL	ENGLISH UNITS					
																STATION	1.90000	Z	180.174989	CORE	OGV
1	0.9082	20.3080	0.	-2.03	6.00	45.17	0.526	0.742	0.067	0.584	605.0	672.2	0.50	-0.086	1						
2	0.9420	19.5944	35.2	-2.36	6.00	42.57	0.551	0.744	0.375	0.606	633.5	648.5	66.0	-0.920	2						
3	0.9610	19.1686	52.2	-1.21	6.00	42.25	0.594	0.731	0.304	0.665	626.8	635.1	65.9	-0.569	3						
4	0.9810	18.7387	77.4	0.53	6.00	41.64	0.538	0.716	0.234	0.632.1	619.9	620.2	65.2	-0.555	4						
5	1.0000	18.2660	100.0	3.30	6.00	42.46	0.510	0.692	0.049	0.592.7	605.0	605.0	62.5	-0.362	5						
SL	PSI	RADIUS	P1	T1	TT-MEL	PS	18	RHO	PI/PT1	TT/T11	TF+	BLKAGE	SL								
1	0.9082	20.3080	21.040	588.36	616.84	17.427	557.52	0.0437	1.9317	1.15431	0.6059	0.94400	1								
2	0.9420	19.5944	21.507	590.0	618.52	17.496	556.87	0.04480	1.4634	1.15883	0.6279	0.94400	2								
3	0.9610	19.1686	21.888	591.10	617.71	17.323	558.03	0.06379	1.4420	1.13960	0.7697	0.94400	3								
4	0.9810	18.7387	20.604	591.00	616.69	16.922	559.06	0.06170	1.4020	1.14018	0.7230	0.94400	4								
5	1.0000	18.2800	19.641	591.50	615.69	16.572	561.04	0.07961	1.3501	1.14037	0.6379	0.94400	5								
SL	PSI	TPLC	PH=H0W	DEL-T	D	DP/U	C7/C2	SOLIDY	H=Avg	F=IAN	F=AXL	F=CDEF	T=CDEF	SL							
1	0.9082	0.15705	0.9506	0.497	0.324	1.038	2.0054	20.5765	700.54	317.00				1							
2	0.9420	0.09821	0.9663	0.450	0.377	1.055	2.0176	19.6168	748.17	398.12				2							
3	0.9610	0.11828	0.9584	0.467	0.384	1.050	2.1220	19.1810	740.07	397.17				3							
4	0.9810	0.17204	0.9393	0.478	0.352	1.082	2.1225	16.6938	716.54	374.20				4							
5	1.0000	0.24477	0.4147	0.505	0.323	1.111	2.2279	18.1900	672.98	340.39				5							

PI/PT1 1.4280 tff 0.7730 PI 20.985 MASS AVERAGED VALUES
 CORR. FLDK 61.739 CORR. RHM 3534.5 CORR. RHM PI2/PI1 0.9506

ORIGINAL PAGE IS
OF POOR QUALITY

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Continued).

SL	PSI	RADIUS	Z INH	PHI	ALPHA	BETA	H=ABS	H=REL	C	C7	U	CU	"U	ENGLISH UNITS
1	0	35.5000	0.	0.	27.51	50.13	0.545	0.915	622.2	1045.1	551.8	1175.0	287.4	-.967.6
2	0.1000	36.1221	9.4	0.9	27.63	55.60	0.561	0.884	639.0	1007.2	566.1	1129.6	296.3	-.933.0
3	0.2500	31.9919	24.0	0.1	52.68	52.68	0.573	0.835	650.9	949.1	575.4	1058.9	304.2	-.754.7
4	0.4000	29.7442	39.3	-0.05	28.62	48.75	0.587	0.782	665.2	885.6	583.9	984.5	316.6	-.965.9
5	0.5400	27.5140	54.6	-0.12	50.20	43.39	0.610	0.726	689.9	820.5	596.2	910.7	347.1	-.961.6
6	0.6900	24.9614	72.0	-0.65	33.10	54.15	0.650	0.666	741.6	750.7	621.4	826.3	405.1	-.921.2
7	0.8000	22.9700	85.6	-0.76	56.30	23.71	0.715	0.630	803.7	707.5	647.7	875.6	475.6	-.980.5
8	0.8600	21.9163	96.1	-0.35	40.66	11.52	0.786	0.668	880.1	681.3	667.6	769.4	575.6	-.156.1
9	0.9082	20.8630	100.0	0.	42.47	7.27	0.802	0.596	897.6	667.4	662.1	670.5	606.1	-.94.4
SL	PSI	RADIUS	P1	P1	TT=HEL	P3	TT	RHO	P1/P010	TT/PT1	TT/TT1	EFF	BLKAGE	SL
1	0	35.5000	19.707	574.90	653.59	16.105	542.68	0.08010	1.3410	1.19837	0.8069	0.96000	1	2
2	0.1000	34.1221	19.869	578.40	628.85	16.050	540.42	0.08016	1.3520	1.10751	0.8378	0.96000	2	3
3	0.2500	31.9919	19.942	572.30	612.01	15.963	537.04	0.08023	1.3570	1.10356	0.8617	0.96000	3	4
4	0.4000	29.7442	20.016	570.90	599.35	15.850	534.06	0.08010	1.3620	1.10066	0.9168	0.96000	4	5
5	0.5400	27.5140	20.176	571.50	587.71	15.691	531.69	0.07966	1.3730	1.10143	0.9347	0.96000	5	6
6	0.6900	24.9614	20.604	574.40	574.51	15.405	528.60	0.07866	1.4020	1.10741	0.9437	0.96000	6	7
7	0.8000	22.9700	21.162	578.90	566.80	15.045	525.4	0.07733	1.4400	1.11608	0.9459	0.96000	7	8
8	0.8600	21.9163	22.029	586.40	560.56	14.655	521.94	0.07579	1.4990	1.13054	0.9392	0.96000	8	9
9	0.9082	20.8630	22.133	588.36	558.36	14.491	521.30	0.07503	1.5061	1.13051	0.9241	0.96000		

PT/PT1 = 1.35842 TTF = 0.9059 P1 = 20.343 MASS AVERAGED VALUES
 CUMN. FLUID = 621.412 CORR. KPH = 3604.1

T1 = 774.43 T2 = 117111 CORR. KPH = 3604.1

CL = 590.57

Table II. Design Blade Element Parameters for QCSEE OTW Fan (Concluded).

SL	PSI	RADIUS	Z IMM	PHI	ALPHA	HETA	H=ABS	H=REL	C	U	CU	NU	SL	ENGLISH UNITS					
														STATION	11.90000	Z 200.00000	BYPASS	AVG	EXIT
1	0.	35.5000	0.	0.	66.04	0.45	1.116	522.0	1285.6	522.0	1175.0	0.	-1175.0						
2	0.1000	34.0881	9.6	-0.61	66.00	0.47	1.093	550.4	1255.4	550.4	1126.3	0.	-1126.3						
3	0.2500	31.9368	24.3	-0.84	62.29	0.48	1.042	555.2	1194.0	555.1	1057.1	0.	-1057.1						
4	0.4000	29.6596	39.9	-0.99	60.44	0.487	0.986	556.9	1128.6	556.8	981.7	0.	-981.7						
5	0.5400	27.3949	55.4	-1.06	58.11	0.493	0.933	564.3	1068.0	564.2	906.7	0.	-906.7						
6	0.6900	24.8271	72.9	-0.84	54.34	0.515	0.883	589.7	1011.4	589.7	821.7	0.	-821.7						
7	0.8000	22.8609	86.4	-0.34	50.66	0.541	0.853	619.7	976.0	619.7	756.7	0.	-756.7						
8	0.8800	21.3945	96.4	0.00	47.24	0.569	0.838	654.6	654.6	654.6	708.1	0.	-708.1						
9	0.9082	20.8630	100.0	0.	46.66	0.565	0.823	651.1	651.1	651.1	690.5	0.	-690.5						
SL	PSI	RADIUS	P1	TT	TT-REL	P3	TS	RHO	PT/PT1	TT/TT1	EFF	BLKAGE	SL						
1	0.	35.5000	19.347	574.90	689.80	16.805	552.22	0.08214	1.3165	1.10337	0.7582	0.9590	1						
2	0.1000	34.0881	19.682	574.90	680.35	16.809	549.19	0.08267	1.3393	1.10741	0.8105	0.9590	2						
3	0.2500	31.9368	19.805	572.30	665.30	16.869	546.63	0.08329	1.3477	1.10336	0.8610	0.9500	3						
4	0.4000	29.6596	19.889	570.90	651.11	16.916	545.09	0.08376	1.3534	1.10066	0.8971	0.9500	4						
5	0.5400	27.3949	20.040	571.30	639.73	16.970	544.80	0.08406	1.3635	1.10143	0.9150	0.9500	5						
6	0.6900	24.8271	20.420	574.60	630.60	17.040	545.46	0.08426	1.3895	1.10741	0.9174	0.9500	6						
7	0.8000	22.8609	20.827	570.90	626.55	17.073	546.94	0.08425	1.4172	1.11608	0.9224	0.9500	7						
8	0.8800	21.3945	21.269	586.40	628.13	17.073	550.71	0.08360	1.4467	1.13054	0.9533	0.9500	8						
9	0.9082	20.8630	21.195	586.36	628.04	17.071	553.08	0.08331	1.4423	1.13451	0.9222	0.9500	9						
SL	PSI	TPLC	PR-RDM	DEL-T	D	DP/Q	CZ/CZ	SUDTY	R-AVG	T-TAN	F-AXL	F-CDEF	T-CDEF	SL					
1	0.	0.0995	0.9817	0.9906	0.9936	0.9951	0.9938	0.228	0.965	1.3144	34.1051	575.38	96.52	1					
2	0.1000	0.08891	0.9906	0.9936	0.9937	0.9931	0.9921	0.228	0.965	1.4525	34.1051	594.78	135.53	2					
3	0.2500	0.03436	0.9936	0.9937	0.9932	0.9931	0.9926	0.228	0.965	1.6215	29.7019	581.73	142.98	3					
4	0.4000	0.03046	0.9946	0.9947	0.99432	0.99321	0.9925	0.228	0.965	1.6217	27.4545	585.78	150.23	4					
5	0.5400	0.03073	0.9946	0.9947	0.99436	0.99336	0.9924	0.228	0.965	1.6217	24.8952	643.05	166.69	5					
6	0.6900	0.03546	0.9911	0.9842	0.9842	0.9836	0.9831	0.228	0.957	2.3292	22.9154	722.18	205.27	6					
7	0.8000	0.05475	0.9842	0.9832	0.9832	0.9832	0.9831	0.228	0.961	2.5456	21.0169	837.00	249.44	7					
8	0.8800	0.10312	0.9835	0.9835	0.9835	0.9834	0.9833	0.320	0.961	2.6340	20.8630	850.73	306.96	8					
9	0.9082	0.12270	0.9576	0.403	0.338	0.983	0.338	0.320	0.961	2.6340	20.8630	850.73	323.17	9					

PT/PT1 1.36607 ERF 0.6730 Curr. FLN 628.475 CORR. RPM 3600.1 MASS AVERAGED VALUES
 PT 20.114 TT 574.43 Curr. RPM 3600.1 PT2/PT1 0.9888

Figure 9. OTW Rotor Chord Distribution.

Figure 10. OTW Rotor Thickness Distribution.

yielded good overall performance for previous designs. In the hub region, where the inlet flow is subsonic, incidence angles were selected from NASA cascade data correlations with adjustments from past design experience. The blade trailing edge angle was established by the deviation angle which was obtained from Carter's Rule applied to the camber of an equivalent two-dimensional cascade with an additive empirical adjustment, X . This adjustment is derived from aerodynamic design and performance synthesis for this general type of rotor. However, in the rotor hub, the significant turning past axial results in profile shapes that resemble impulse turbine blades. Design practice in turbine blade layout suggested that blade sections using the full empirical adjustment would result in an overturning of the flow. This overturning by the rotor would aggravate a relatively high-Mach-number-high-loading condition on the core OGV. Consequently the empirical adjustment was reduced 2° in this region. The incidence and deviation angles and the empirical adjustment angle employed in the design are shown in Figure 11.

Over the entire blade span, the minimum passage area, or throat, must be sufficient to pass the design flow including allowances for boundary layer losses, and flow nonuniformities. In the transonic and supersonic region the smallest throat area, consistent with permitting the design flow to pass, is desirable since this minimizes overexpansions on the suction surface. A further consideration was to minimize disturbances to the flow along the forward portion of the suction surface to minimize forward propagating waves that might provide an additional noise source. Design experience guided the degree to which each of these desires was applied to individual section layouts. The percent throat margin, the percentage by which the ratio of the effective throat area to the capture area exceeds the critical area ratio, is shown in Figure 12. The values employed are generally consistent with past experience.

The resulting blade shapes have very little camber in the tip region. In the mid-span region, the shapes generally resemble multiple circular arc sections with the majority of the camber occurring in the aft portion. In the inner region, the shapes are similar to a double circular arc. Figure 13 shows plane sections through the blade at several radial locations. The resulting camber and stagger radial distributions are shown in Figure 14.

Table III gives the detailed coordinate data (in inches) for the blade sections shown in Figure 13. The coordinate center is at the stacking axis.

2.5 CORE OGV DESIGN

A moderately low aspect ratio of 1.3 was selected for the core portion OGV to provide a rugged mechanical system. This selection was in recognition of the potentially severe aeromechanical environment of the core OGV, i.e., large rotor blade wakes, because of its small size in relationship to that of the rotor blade. A solidity at the ID of 2.24 was selected to yield reasonable levels of diffusion factor, Figure 8. The number of OGV's which result is 156.

Profiles for the core OGV are multiple circular arcs. The incidence angle over the outer portion of the span was selected from a correlation of the NASA low-speed cascade data. Locally, in the ID region, the incidence angle was

Figure 11. OTW Rotor Incidence, Deviation, and Empirical Adjustment Angles.

Figure 12. OTW Rotor, Percent Throat Margin.

Figure 13. CTW Fan Blade Plane Sections.

Figure 14. OTW Camber and Stagger Radial Distribution.

Table III. OTW Rotor Blade Coordinates.

SECTION 1 RADIUS 85.4 cm (33.6 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-2.78178	-4.47491	-2.78178	-4.47491
-2.79734	-4.43788	-2.77430	-4.47669
-2.80533	-4.42957	-2.76476	-4.47444
-2.80416	-4.39092	-2.75367	-4.46786
-2.79192	-4.34304	-2.74166	-4.45656
-2.76740	-4.28666	-2.72913	-4.44034
-2.73155	-4.22121	-2.71574	-4.41937
-2.71088	-4.19097	-2.61086	-4.29975
-2.36580	-3.96699	-2.47530	-4.03354
-2.45267	-3.73754	-2.33392	-3.80988
-2.31947	-3.51046	-2.19255	-3.58855
-2.18619	-3.28551	-2.05125	-3.36926
-2.03204	-3.06239	-1.91003	-3.15167
-1.91940	-2.84078	-1.76890	-2.93581
-1.78507	-2.62038	-1.62286	-2.72013
-1.62549	-2.35700	-1.45875	-2.46267
-1.46493	-2.09456	-1.28982	-2.20571
-1.30418	-1.83272	-1.12109	-1.94912
-1.14319	-1.57129	-0.95250	-1.69246
-0.98196	-1.31000	-0.78432	-1.43570
-0.82047	-1.04887	-0.61633	-1.17865
-0.65866	-0.78782	-0.44863	-0.92127
-0.49650	-0.52600	-0.29124	-0.69355
-0.33416	-0.26986	-0.11417	-0.40551
-0.17141	-0.00906	0.05256	-0.14723
-0.00827	0.25547	0.21692	0.11116
0.15525	0.51555	0.38946	0.36950
0.31912	0.77501	0.55050	0.62749
0.48332	1.03358	0.71579	0.88485
0.64811	1.29083	0.88089	1.14146
0.81389	1.54026	1.04429	1.39739
0.98072	1.79942	1.20685	1.65230
1.14900	2.04991	1.36900	1.90441
1.31876	2.29756	1.52779	2.15941
1.48963	2.54228	1.69681	2.41109
1.66156	2.78404	1.84396	2.66132
1.83443	3.02283	2.00058	2.91007
2.00639	3.25688	2.15641	3.18738
2.19237	3.49236	2.31161	3.40316
2.35711	3.72353	2.46636	3.64755
2.50295	3.91458	2.59509	3.85012
2.62092	4.06610	2.69909	4.01316
2.64589	4.09597	2.70616	4.04594
2.66631	4.07602	2.68631	4.07802

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

Table III. OTW Rotor Blade Coordinates (Continued).

SECTION 2 RADIUS 76.0 cm (29.9 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-5.03623	-1.06821	-5.03623	-4.06821
-5.05028	-4.05023	-3.02900	-4.07056
-5.05600	-4.02175	-3.01942	-4.06910
-5.05190	-5.98360	-5.00798	-4.06351
-5.03635	-5.93762	-2.99527	-4.05337
-5.00805	-3.88401	-2.98164	-4.03844
-2.46790	-5.87254	-2.96670	-4.01893
-2.95664	-5.80562	-2.85970	-3.87436
-2.81140	-3.54153	-2.70510	-3.66771
-2.66608	-5.37902	-2.55054	-3.46322
-2.52070	-5.16457	-2.39603	-3.26051
-2.37525	-2.96112	-2.24159	-3.05929
-2.22971	-2.75404	-2.08724	-2.85931
-2.08407	-2.54818	-1.95300	-2.66041
-1.93831	-2.34344	-1.77887	-2.46247
-1.76321	-2.09914	-1.59411	-2.22608
-1.58144	-1.85627	-1.40458	-1.99074
-1.41231	-1.61472	-1.22529	-1.75646
-1.23647	-1.37440	-1.04126	-1.52291
-1.06034	-1.13525	-0.85752	-1.29019
-0.88391	-0.84717	-0.64099	-1.05802
-0.70715	-0.66013	-0.49099	-0.82638
-0.53005	-0.42410	-0.30823	-0.59522
-0.35258	-0.18906	-0.12583	-0.36453
-0.17474	0.04448	0.05619	-0.13432
0.00352	0.27793	0.23779	0.09536
0.18223	0.50468	0.41895	0.32440
0.36131	0.74013	0.59973	0.55254
0.54076	0.96910	0.78015	0.77959
0.72080	1.19614	0.95990	1.00560
0.90196	1.42080	1.13865	1.25067
1.08441	1.64265	1.31608	1.45502
1.26840	1.86196	1.49195	1.67873
1.45382	2.07691	1.66640	1.90163
1.64044	2.28932	1.83959	2.12360
1.82829	2.49865	2.01165	2.34456
2.01710	2.70494	2.18271	2.56440
2.20673	2.90831	2.35294	2.78300
2.39701	3.10888	2.52252	3.00022
2.58716	3.30674	2.69164	3.21586
2.74693	3.46962	2.83236	3.39420
2.87458	3.59845	2.94512	3.53619
2.90375	3.61272	2.95540	3.56710
2.93458	3.60096	2.93958	3.60096

Table III. OTW Rotor Blade Coordinates (Continued).

SECTION 3 RADIUS 67.6 cm (26.6 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-3.30760	-3.65312	-3.30760	-3.65312
-3.32026	-3.65432	-3.30060	-3.65597
-3.32348	-3.60575	-3.29103	-3.65525
-3.31741	-3.56853	-3.27931	-3.65050
-3.31991	-3.52398	-3.26600	-3.64154
-3.31742	-3.47297	-3.25142	-3.62785
-3.22360	-3.41479	-3.23527	-3.60977
-3.21909	-3.39714	-3.11700	-3.47384
-3.05099	-3.19385	-2.94709	-3.28066
-2.89181	-2.99309	-2.77721	-3.09005
-2.73253	-2.74472	-2.60744	-2.90180
-2.57313	-2.59854	-2.43778	-2.71564
-2.41360	-2.40435	-2.26824	-2.53134
-2.25393	-2.21203	-2.09886	-2.34875
-2.09409	-2.02146	-1.92964	-2.16770
-1.90204	-1.74498	-1.72681	-1.95234
-1.70970	-1.57081	-1.52428	-1.73889
-1.51704	-1.34867	-1.32206	-1.52724
-1.32404	-1.12912	-1.12019	-1.31730
-1.13068	-0.91156	-0.91868	-1.10901
-0.93692	-0.69618	-0.71157	-0.90236
-0.74273	-0.48306	-0.51689	-0.69738
-0.54809	-0.27227	-0.31665	-0.49417
-0.35299	-0.06397	-0.11689	-0.29285
-0.15740	0.14169	0.08240	-0.09355
0.03870	0.34453	0.28118	0.10364
0.23529	0.54442	0.47945	0.29865
0.43229	0.74138	0.67733	0.49133
0.62968	0.93533	0.87481	0.68165
0.82779	1.12588	1.07157	0.86993
1.02699	1.31258	1.26724	1.05659
1.22762	1.49498	1.46148	1.24200
1.42989	1.67276	1.65409	1.42647
1.63363	1.84601	1.84522	1.60991
1.83864	2.01486	2.03508	1.79219
2.04479	2.17941	2.22380	1.97323
2.25192	2.33979	2.41155	2.15297
2.45984	2.49618	2.59850	2.33129
2.66836	2.64882	2.78485	2.50802
2.87729	2.79788	2.97079	2.68297
3.05154	2.91952	3.12560	2.82728
3.18938	3.01431	3.24809	2.94047
3.22012	3.02239	3.26295	2.96905
3.25310	3.00468	3.25310	3.00468

ORIGINAL PAGE IS
OF POOR QUALITY

Table III. OTW Rotor Blade Coordinates (Continued).

SECTION 4 RADIUS 56.9 cm (22.4 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-3.70070	-2.94436	-3.70070	-2.94436
-3.71184	-2.92529	-3.69407	-2.94762
-3.71375	-2.89737	-3.68473	-2.94759
-3.70520	-2.86173	-3.67305	-2.94391
-3.68470	-2.81977	-3.65952	-2.93615
-3.65130	-2.77237	-3.64441	-2.92403
-3.60574	-2.71883	-3.62746	-2.90783
-3.57466	-2.68367	-3.48527	-2.76947
-3.39242	-2.48070	-3.28863	-2.58312
-3.20996	-2.28286	-3.09221	-2.40238
-3.02726	-2.09009	-2.89603	-2.22707
-2.84431	-1.90220	-2.70010	-2.05686
-2.66105	-1.71900	-2.50448	-1.89150
-2.47743	-1.54040	-2.30921	-1.73085
-2.29343	-1.36637	-2.11434	-1.57477
-2.07205	-1.16353	-1.88106	-1.39336
-1.84999	-0.96725	-1.64846	-1.21822
-1.62722	-0.77751	-1.41658	-1.04917
-1.40370	-0.59431	-1.18544	-0.88602
-1.17942	-0.41765	-0.95506	-0.72856
-0.95435	-0.24749	-0.72548	-0.57662
-0.72849	-0.08381	-0.49668	-0.43003
-0.50182	0.07338	-0.26869	-0.28863
-0.27432	0.22403	-0.04154	-0.15225
-0.04601	0.36813	0.18482	-0.02080
0.18299	0.50579	0.41048	0.10572
0.41270	0.63694	0.63542	0.22748
0.64329	0.76116	0.85949	0.34500
0.87489	0.87805	1.08255	0.45880
1.10755	0.98727	1.30454	0.56932
1.34126	1.08860	1.52549	0.67685
1.57587	1.18199	1.74553	0.78147
1.81125	1.26748	1.96481	0.88311
2.04717	1.34510	2.18355	0.98161
2.28342	1.41495	2.40196	1.07675
2.51976	1.47709	2.62027	1.16831
2.75600	1.53163	2.83869	1.25599
2.99191	1.57866	3.05744	1.33945
3.22717	1.61836	3.27684	1.41845
3.46159	1.65125	3.49708	1.49296
3.65635	1.67376	3.68119	1.55147
3.80694	1.68806	3.82437	1.59422
3.93712	1.68052	3.85968	1.61329
3.85821	1.64890	3.85821	1.64890

Table III. OTW Rotor Blade Coordinates (Concluded).

SECTION 5 RADIUS 47.2 cm (18.6 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-4.01950	-2.03176	-4.01950	-2.03176
-4.02898	-2.01315	-4.01344	-2.03528
-4.02944	-1.98693	-4.00466	-2.03594
-4.01988	-1.95415	-3.99347	-2.03339
-3.99904	-1.91614	-3.98027	-2.02721
-3.96615	-1.87371	-3.96527	-2.01717
-3.92184	-1.82620	-3.94822	-2.00355
-3.87249	-1.77546	-3.78535	-1.87231
-3.67613	-1.57936	-3.56818	-1.70557
-3.47906	-1.39170	-3.35172	-1.54845
-3.28116	-1.21231	-3.13608	-1.40053
-3.08235	-1.04104	-2.92135	-1.26146
-2.88252	-0.87775	-2.70765	-1.13090
-2.68156	-0.72245	-2.49507	-1.00864
-2.47939	-0.57518	-2.28371	-0.89447
-2.23508	-0.40916	-2.03177	-0.76780
-1.98887	-0.25492	-1.70173	-0.65197
-1.74074	-0.11256	-1.53363	-0.54648
-1.49077	0.01780	-1.28735	-0.45076
-1.23914	0.13620	-1.04274	-0.36410
-0.98592	0.24275	-0.79971	-0.28589
-0.73122	0.33748	-0.55817	-0.21563
-0.47499	0.42034	-0.31016	-0.15296
-0.21717	0.49101	-0.07974	-0.09781
0.04195	0.54901	0.15739	-0.05007
0.30202	0.59404	0.39356	-0.00965
0.56268	0.62589	0.62914	0.02352
0.82355	0.64443	0.86452	0.04945
1.08437	0.64960	1.09993	0.06805
1.34491	0.64119	1.33564	0.07905
1.60485	0.61896	1.57194	0.09206
1.86388	0.58258	1.80916	0.07650
2.12152	0.53172	2.04776	0.06166
2.37730	0.46628	2.28822	0.03678
2.63088	0.38623	2.53086	0.00103
2.88199	0.29165	2.77602	-0.04651
3.13032	0.18287	3.02394	-0.10670
3.37576	0.06074	3.27473	-0.17994
3.61867	-0.07386	3.52807	-0.20633
3.85941	-0.22028	3.78357	-0.36596
4.05853	-0.35065	3.99799	-0.45899
4.22191	-0.46319	4.17587	-0.54185
4.23936	-0.48730	4.20729	-0.54492
4.23503	-0.52379	4.23503	-0.52379

reduced 4°. This local reduction in incidence was in recognition of traverse data results on other high bypass fan configurations which show core stator inlet air angles several degrees higher than the axisymmetric calculated values. The deviation angle was obtained from Carter's Rule as was described for the rotor blade, but no empirical adjustment was made. The resulting incidence and deviation angles are shown in Figure 15. An average throat area 5% greater than the critical contraction ratio was employed in the design. The throat area margin is shown in Figure 15. Locally, in the ID region, the margin is zero for the axisymmetric vector diagrams. However, as noted above, the anticipated inlet air angle in this region will be several degrees higher, and therefore the capture area will be several percent lower than the axisymmetric calculation. The effective throat-to-capture area ratio will therefore increase to provide adequate margin.

The multiple circular arc mean line consisted of a maximum radius arc forward of the throat, which occurs at the passage leading edge. This arc was determined by the incidence and throat area selection. A small blend region transitioned into a second arc prescribed by the overall camber requirement. The resulting radial distributions of camber, stagger, solidity, chord, and thickness-to-chord ratio are given in Figure 16. Figure 17 is a cylindrical section of the OGV at the pitch line radius. The coordinates for this section are given in Table IV. The coordinate data are in inches.

2.6 TRANSITION DUCT STRUT DESIGN

The transition duct flowpath is shown in Figure 18. It is common to both the UTW and OTW engines. The ratio of duct exit to duct inlet flow area is 1.02. There are six struts in the transition duct which are aerodynamically configured to remove the 0.105 radian (6°) of swirl left in the air by the core OGV's and to house the structural spokes of the composite wheels (see Figure 2). In addition, at engine station 196.5 (Figure 2), the 6 and 12 o'clock strut positions must house radial accessory drive shafts. The number of struts and axial position of the strut trailing edge were selected identical with the F101 engine to minimize unknowns in the operation of the core engine system. The axial positions and thickness requirements of the composite wheel spokes were dictated by mechanical considerations. The axial location of the strut leading edge at the OD was determined by its proximity to the splitter leading edge in the UTW engine configuration. At the OD flowpath, the strut leading edge is 17.8 mm (0.7 in.) forward of the wheel spoke. A relatively blunt strut leading edge results from the 26.7 mm (1.05 in.) wheel spoke thickness requirement. The wheel spoke is radial. The axial lean of the strut leading edge provides relief from the LE bluntness at lower radii and makes the LE approximately normal to the incoming flow. A NASA 65-series thickness distribution was selected for the basic profile thickness which was modified for the special considerations required in this design. The strut thickness is the same for all radii aft of the forward wheel spoke LE (Figure 18) to facilitate fabrication. A cylindrical cut cross section showing the nominal strut geometry at three radii is shown in Figure 19. The thickness distribution for the 6 and 12 o'clock struts was further modified for the

Figure 15. OTW Core OGV.

Figure 16. ORV Core OGV.

**Figure 17. Cylindrical Section of OTW OGV
at the Pitch Line Radius.**

ORIGINAL PAGE IS
OF POOR QUALITY

Table IV. OTW Core OGV Coordinates at the
Pitch Line Radius.

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-0.69945	0.49823	-0.69945	0.49823
-0.70090	0.49528	-0.69819	0.49859
-0.70045	0.49048	-0.69620	0.49907
-0.69858	0.48394	-0.69354	0.49662
-0.69455	0.47578	-0.69027	0.49418
-0.68843	0.46613	-0.68644	0.49073
-0.68014	0.45503	-0.68199	0.48630
-0.66980	0.44240	-0.69740	0.46172
-0.63825	0.40533	-0.61859	0.42409
-0.60276	0.36934	-0.57997	0.38796
-0.56712	0.32484	-0.54451	0.35325
-0.53132	0.28973	-0.50320	0.31980
-0.49538	0.25390	-0.46513	0.28750
-0.45929	0.21936	-0.42701	0.25630
-0.42303	0.18994	-0.38917	0.22620
-0.37924	0.14753	-0.34401	0.19169
-0.33520	0.11117	-0.29914	0.15908
-0.29088	0.07495	-0.25454	0.12844
-0.24632	0.04494	-0.21017	0.09976
-0.20159	0.01510	-0.16597	0.07292
-0.15670	-0.01268	-0.12193	0.04776
-0.11167	-0.03852	-0.07803	0.02418
-0.06651	-0.06248	-0.03427	0.00209
-0.02121	-0.08461	0.00936	-0.01656
0.02419	-0.10493	0.05290	-0.03784
0.06964	-0.12351	0.09637	-0.05582
0.11516	-0.14043	0.13978	-0.07260
0.16075	-0.15574	0.18312	-0.08818
0.20637	-0.16936	0.22642	-0.10239
0.25198	-0.18148	0.26974	-0.11992
0.29759	-0.19198	0.31306	-0.12820
0.34319	-0.20104	0.35639	-0.13945
0.38876	-0.20861	0.39975	-0.14969
0.43420	-0.21472	0.44315	-0.15895
0.47973	-0.21938	0.48663	-0.16723
0.52510	-0.22263	0.53019	-0.17457
0.57036	-0.22449	0.57306	-0.18099
0.61532	-0.22499	0.61763	-0.18650
0.66056	-0.22414	0.66452	-0.19109
0.70546	-0.22190	0.70554	-0.19476
0.74277	-0.21894	0.74234	-0.19709
0.77178	-0.21591	0.77111	-0.19837
0.77702	-0.21344	0.77675	-0.20069
0.77961	-0.20683	0.79961	-0.20683

Figure 18. Transition Duct Flowpath.

**Transition Duct Strut Nominal Geometry
(4 Struts Required)**

<u>Section Radii</u>	
(cm)	(in)
47.7	18.8

45.7	18.0
------	------

43.7	17.2
------	------

**Modified Geometry for Radial Drive Envelope
(2 Struts Required)**

47.7	18.8
------	------

45.7	18.0
------	------

Envelope for Radial Drive

43.7	17.2
------	------

Engine Sta.
196.5

Figure 19. Transition Duct Strut.

envelope of the radial drive shaft. Cylindrical cut cross sections of these struts are also shown in Figure 19. The leading edge 40% chord of these further modified sections is identical to that of the nominal strut geometry, and aft of forward wheel spoke LE, the strut thickness is the same for all radii. The core engine has demonstrated operation in the presence of a similar thick strut in the F101 application without duress.

2.7 VANE-FRAME DESIGN

The vane-frame performs the dual function of an outlet guide vane for the bypass flow and a frame support for the engine components and nacelle. It is a common piece of hardware for both the UTW and OTW engine fans. It is integrated with the pylon which houses the radial drive shaft at engine station 196.50 (see Figure 2), houses the engine mount at approximately engine station 210, provides an interface between the propulsion system with the aircraft system, and houses the forward thrust links. The vane-frame furthermore acts as an inlet guide vane for the UTW fan when in the reverse mode of operation.

A conventional OGV system turns the incoming flow to axial. The housing requirements of the pylon dictate a geometry which requires the OGV's to overturn approximately 0.174 radian (10°) on one side and to overturn approximately 0.174 radian (10°) on the other side. The vanes must be tailored to downstream vector diagrams which conform to the natural flow field around the pylon to avoid creating velocity distortions in the upstream flow. Ideally, each vane would be individually tailored. However, to avoid excessive costs, five vane geometry groups were selected as adequate.

The Mach number and air angle at inlet to the vane-frame are shown in Figure 20 for both the UTW and OTW fans. In the outer portion of the bypass duct annulus, the larger air angle in the UTW environment results in a less negative incidence angle for it than for the OTW environment. The Mach number in the outer portion of the annulus is also higher in the UTW environment. When selecting incidence angles, a higher Mach number environment naturally leads to the desire to select a less negative incidence angle. The amount by which the incidence angle would naturally be increased due to the higher Mach number UTW environment is approximately equal to the increase in the inlet air angle of the UTW environment. In the inner portion of the annulus, the inlet Mach number and air angle are higher for the OTW environment. The natural increase in incidence angle desired because of the higher Mach number is approximately the same as the increase in the inlet air angle. As a result of these considerations, no significant aerodynamic performance penalty is assessed to using common hardware for both the UTW and OTW fans.

Locally, near the bypass duct ID, there is a discontinuity in the aerodynamic environment of the UTW configuration. This discontinuity represents that portion of the flow which passes under the island but bypasses the splitter. The calculation ignored mixing across the vortex sheet. In the design of the vane geometry no special considerations were incorporated because of this discontinuity since it is believed that in a real fluid the mixing process will greatly diminish the vortex strength.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 20. Vane Frame Aerodynamic Environment.

The vane chord at the OD was selected largely by the mechanical requirement of axial spacing between the composite frame spokes. At the ID the vane leading edge was lengthened primarily to obtain an aerodynamically reasonable leading edge fairing on the pylon compatible with the envelope requirements of the radial drive shaft. The ID region is significantly more restrictive in this regard because of choking considerations, particularly for the OTW environment, with the reduced circumferential spacing between vanes. The solidity resulting from 33 vanes, an acoustic requirement, was acceptable from an aerodynamic loading viewpoint as shown in Figure 21. The two diffusion factor curves are a result of the two aerodynamic environments, UTW and OTW, to which the common vane frame geometry is exposed. The thickness is a modified NASA 65-series distribution. Maximum-thickness- and trailing-edge-thickness-to-chord ratios of 0.08 and 0.02, respectively, were selected at the OD. The same maximum thickness and trailing edge thickness were used at all other radii which results in maximum-thickness- and trailing-edge-thickness-to-chord ratios of 0.064 and 0.016, respectively, at the ID.

As a guide in the selection of the overall vector diagram requirements of the vane frame, a circumferential analysis of an approximate vane geometry, including the pylon, was performed. This analysis indicated, for uniform flow at vane inlet, that the vane discharge Mach number was approximately constant circumferentially and that the discharge air angle was nearly linear circumferentially between the pylon wall angles. Figure 22, an unwrapped cross section at the ID, shows the flowfield calculated by this analysis. The specific design criteria selected for the layout of the five-vane geometry groups was to change the average discharge vector diagram with zero swirl to vector diagrams with $\pm 5^\circ$ of swirl and $\pm 10^\circ$ of swirl.

The meanline shapes for each of the five-vane groups vary. For the vane group which overturns the flow by $+10^\circ$ the meanline is approximately a circular arc. As a result of passage area distribution and choking considerations, the meanline shape employed in the forward 25% chord region of this vane group was retained for the other four groups.

The incidence angle for all vane groups was the same and was selected for the group with the highest camber. A correlation of NASA low-speed cascade data was the starting point for the incidence selection. Over the outer portion of the vane, where the inlet Mach number is lower, the incidence angles were slanted to the low side of the correlation. This was done in consideration of the reverse thrust mode of operation for the UTW fan. In this mode, the OGV's impart a swirl counter to the direction of rotor rotation. Additional vane leading edge camber tends to increase the counterswirl and therefore the pumping capacity of the fan. In the inner portion of the vane the incidence angles are higher than suggested by the correlation because of the higher inlet Mach number. Also, in the reverse mode of operation, this reduction in vane leading edge camber in the ID region reduces the swirl for that portion of the fluid which enters the core engine and tends to reduce its pressure drop.

Figure 21. Vane-Frame Nominal Vane Configuration.

Figure 22. Vane Frame Unwrapped Section at I.D.

The deviation angle for each of the five vane groups was calculated from Carter's Rule as described for the rotor. The portion of the meanline aft of the 25% chord point approximates a circular arc blending between the front circular arc and the required trailing edge angle. For the vane group which underturns the flow by 10° the aft portion of the blade has little camber. Figure 23 shows an unwrapped cross section at the ID of two of the 10° over-cambered vanes and two of the 10° under-cambered vanes adjacent to the pylon. Note that the spacing between the pylon and the first under-cambered vane is 50% larger than average. This increased spacing was required to open the passage internal area, relative to the capture area, to retrieve the area blocked by the radial drive shaft envelope requirements.

Table V gives the detailed coordinate data for the two vane geometries and the pylon leading edge geometry shown in Figure 23. The coordinate data for the nominal vane geometry at three radial locations is also given in this table. The vane coordinates are in inches.

The radial distributions of camber and stagger for the nominal and two extreme vane geometries are shown in Figure 24. The radial distributions of chord and solidity for the nominal vane are shown in Figure 25. The design held the leading and trailing edge axial projection common for all five groups which results in slightly different chord lengths for the other four vane types.

Figure 23. Vane-Frame Unwrapped Section at ID, 32 Vanes Plus Pylon LE Fairing.

ORIGINAL PAGE IS
OF POOR QUALITY

Table V. Vane Frame Coordinates.

Vane Type: Closed 2
Radius 53.0 cm (20.86 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-6.46210	2.34116	-6.46210	2.34116
-6.46759	2.32790	-6.47014	2.34917
-6.46654	2.30949	-6.45181	2.35181
-6.47875	2.28616	-6.42730	2.34886
-6.46396	2.25823	-6.39677	2.34011
-6.44206	2.22584	-6.36025	2.32555
-6.41331	2.18867	-6.31735	2.30561
-6.29919	2.05618	-6.16591	2.22947
-6.07119	1.83449	-5.89480	2.07990
-5.83097	1.63835	-5.63592	1.92961
-5.58939	1.45347	-5.37839	1.79199
-5.34632	1.27982	-5.12236	1.66526
-5.10018	1.11977	-4.86939	1.54502
-4.85192	0.97171	-4.61855	1.43098
-4.60258	0.83339	-4.36878	1.32361
-4.30233	0.67897	-4.07011	1.20263
-4.00106	0.53619	-3.77245	1.08890
-3.69886	0.40428	-3.47572	0.98129
-3.39590	0.28251	-3.17976	0.87882
-3.09242	0.16986	-2.88431	0.78108
-2.78889	0.06546	-2.58892	0.68742
-2.49547	-0.03115	-2.29341	0.59624
-2.18202	-0.12036	-1.99793	0.50613
-1.87857	-0.20389	-1.70246	0.41663
-1.57498	-0.28229	-1.40712	0.32765
-1.27110	-0.35637	-1.11208	0.23941
-0.96707	-0.42655	-0.81710	0.15212
-0.66307	-0.49346	-0.52225	0.06612
-0.35916	-0.55754	-0.22724	-0.01841
-0.05521	-0.61845	-0.06774	-0.10206
0.24894	-0.67585	0.36251	-0.18531
0.55329	-0.73002	0.65709	-0.26774
0.85774	-0.78128	0.95157	-0.34873
1.16223	-0.82964	1.24600	-0.42780
1.46682	-0.87488	1.54034	-0.50454
1.77141	-0.91602	1.83448	-0.57877
2.07653	-0.95211	2.12848	-0.65013
2.38133	-0.98311	2.42260	-0.71727
2.68567	-1.00936	2.71719	-0.77845
2.98924	-1.03206	3.01255	-0.83151
3.24155	-1.04887	3.25934	-0.86832
3.41111	-1.05853	3.42574	-0.89974
3.46658	-1.04155	3.47884	-0.91753
3.50000	-0.98095	3.50000	-0.98095

Table V. Vane Frame Coordinates (Continued).

Vane Type: Pylon Leading Edge
 Radius 53.0 cm (20.86 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-6.46132	2.39154	-6.46132	2.39154
-6.48473	2.38081	-6.47148	2.39700
-6.48161	2.36491	-6.45525	2.39712
-6.47179	2.34406	-6.43279	2.39173
-6.45509	2.31849	-6.40420	2.38068
-6.43144	2.28828	-6.36944	2.36404
-6.40114	2.25305	-6.32808	2.34232
-6.28510	2.12434	-6.17848	2.26374
-6.06174	1.89820	-5.90277	2.12120
-5.82801	1.69438	-5.63744	1.98182
-5.58938	1.50620	-5.37700	1.85097
-5.35069	1.32592	-5.11662	1.73488
-5.11131	1.15379	-4.85694	1.63146
-4.86999	0.99135	-4.59920	1.53737
-4.62695	0.83784	-4.34317	1.45194
-4.33354	0.66380	-4.03770	1.36062
-4.03838	0.49997	-3.73397	1.28070
-3.74142	0.34566	-3.43206	1.21133
-3.44249	0.20051	-3.13211	1.15184
-3.14194	0.06430	-2.83378	1.10152
-2.84029	-0.06372	-2.53655	1.05974
-2.53811	-0.18441	-2.23985	1.02584
-2.23601	-0.29875	-1.94307	0.99894
-1.93375	-0.40770	-1.64646	0.97830
-1.63088	-0.51145	-1.35045	0.96310
-1.32713	-0.60978	-1.05531	0.95241
-1.02219	-0.70205	-0.76138	0.94519
-0.71617	-0.78789	-0.46851	0.94075
-0.40945	-0.86865	-0.17635	0.94005
-0.10190	-0.94573	0.11497	0.94418
0.20685	-1.01906	0.40510	0.95304
0.51627	-1.08827	0.69456	0.96621
0.82574	-1.15361	0.98398	0.98345
1.13505	-1.21546	1.27354	1.00450
1.44405	-1.27381	1.56343	1.02871
1.73876	-1.32623	2.14355	1.08453
2.03355	-1.37574	2.44720	1.11734
3.50000	-1.64800	3.50000	1.20800

Table V. Vane Frame Coordinates (Continued).

Vane Type: Open 2
Radius 53.0 cm (20.86 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-6.48210	2.34116	-6.48210	2.34116
-6.48759	2.32791	-6.47013	2.34918
-6.48653	2.30950	-6.45180	2.35183
-6.47873	2.28619	-6.42726	2.34891
-6.46391	2.25830	-6.39669	2.34021
-6.44195	2.22597	-6.36008	2.32574
-6.41309	2.18893	-6.31705	2.30598
-6.29837	2.05743	-6.16673	2.23191
-6.06881	1.84013	-5.89719	2.08881
-5.82663	1.65165	-5.64026	1.94846
-5.58259	1.47748	-5.38519	1.82404
-5.33663	1.31730	-5.13205	1.71340
-5.08740	1.17343	-4.88217	1.61171
-4.83591	1.04408	-4.63456	1.51847
-4.58317	0.92682	-4.38819	1.43400
-4.27866	0.80069	-4.09378	1.34319
-3.97293	0.68941	-3.80058	1.26249
-3.66610	0.59230	-3.50849	1.19083
-3.35833	0.50871	-3.21733	1.12737
-3.04985	0.43788	-2.92688	1.07194
-2.74105	0.37917	-2.63676	1.02425
-2.43218	0.33258	-2.34670	0.98319
-2.12344	0.29797	-2.05652	0.94770
-1.81511	0.27447	-1.76592	0.91756
-1.50737	0.26103	-1.47473	0.89269
-1.20033	0.25681	-1.18284	0.87302
-0.89392	0.26100	-0.89033	0.85854
-0.58804	0.27293	-0.59728	0.84962
-0.28271	0.29217	-0.30369	0.84652
0.02205	0.31915	-0.00952	0.84873
0.32598	0.35420	0.28547	0.85578
0.62892	0.39664	0.58146	0.86776
0.93104	0.44568	0.87827	0.88487
1.23245	0.50099	1.17578	0.90731
1.53315	0.56243	1.47401	0.93516
1.83305	0.63035	1.77304	0.96799
2.13206	0.70498	2.07295	1.00552
2.43030	0.78549	2.37364	1.04842
2.72800	0.87088	2.67486	1.09772
3.02565	0.95941	2.97614	1.15510
3.27398	1.03479	3.22691	1.20994
3.44400	1.08772	3.39850	1.25063
3.49006	1.12517	3.45780	1.24339
3.50000	1.19138	3.50000	1.19138

Table V. Vane Frame Coordinates (Continued).

Vane Type: Nominal
Radius 53.0 cm (20.86 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-6.48210	2.34116	-6.48210	2.34116
-6.48759	2.32791	-6.47013	2.34918
-6.48654	2.30949	-6.45181	2.35182
-6.47874	2.28617	-6.42729	2.34888
-6.46394	2.25825	-6.39675	2.34014
-6.44203	2.22588	-6.36020	2.32561
-6.41324	2.18874	-6.31726	2.30372
-6.29896	2.05654	-6.16614	2.23018
-6.07054	1.83608	-5.89545	2.08244
-5.82980	1.64205	-5.63708	1.93498
-5.58753	1.46015	-5.38025	1.80119
-5.34355	1.29036	-5.12513	1.67933
-5.09631	1.13518	-4.87326	1.56502
-4.84677	0.99309	-4.62370	1.45801
-4.59597	0.86190	-4.37539	1.35882
-4.29378	0.71764	-4.07866	1.20915
-3.99047	0.58679	-3.78304	1.10034
-3.68627	0.46852	-3.48832	1.05511
-3.38139	0.36194	-3.19426	0.96836
-3.07616	0.26589	-2.90057	0.88755
-2.77084	0.17937	-2.60697	0.81205
-2.46549	0.10210	-2.31339	0.74054
-2.16009	0.03377	-2.01986	0.67182
-1.85478	-0.02657	-1.72625	0.60556
-1.54964	-0.07997	-1.43246	0.54168
-1.24470	-0.12720	-1.13847	0.48014
-0.93983	-0.16894	-0.84442	0.42105
-0.63494	-0.20568	-0.55036	0.36497
-0.33012	-0.23761	-0.25628	0.31230
-0.02535	-0.26417	0.03788	0.26268
0.27916	-0.28484	0.33230	0.21567
0.58316	-0.30022	0.62722	0.17134
0.88725	-0.31091	0.92205	0.13018
1.19188	-0.31606	1.21636	0.09358
1.49640	-0.31452	1.51076	0.06272
1.80035	-0.30547	1.80573	0.03755
2.10352	-0.28852	2.10149	0.01793
2.40575	-0.26457	2.39819	0.00441
2.70721	-0.23490	2.69565	-0.00204
3.00816	-0.20101	2.99363	0.00047
3.25869	-0.17029	3.24220	0.01049
3.42732	-0.14778	3.40980	0.02082
3.47856	-0.12068	3.46729	0.00351
3.50000	-0.05474	3.50000	-0.05474

ORIGINAL PAGE IS
OF POOR QUALITY

Table V. Vane Frame Coordinates (Continued).

Vane Type: Nominal
Radius 69.8 cm (27.48 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-5.58734	1.85159	-5.58734	1.85159
-5.59204	1.83581	-5.57482	1.86239
-5.58888	1.81511	-5.55459	1.86805
-5.57767	1.78979	-5.52679	1.86834
-5.55820	1.76017	-5.49156	1.86305
-5.53036	1.72642	-5.44892	1.85215
-5.49435	1.68825	-5.39858	1.83610
-5.41795	1.61418	-5.30236	1.80216
-5.20924	1.44123	-5.05671	1.70308
-4.99074	1.28915	-4.82084	1.59775
-4.77087	1.14424	-4.58634	1.49967
-4.54950	1.00677	-4.35334	1.40820
-4.32535	0.87943	-4.12313	1.32006
-4.09911	0.76166	-3.89500	1.23567
-3.87166	0.65193	-3.66808	1.15607
-3.59755	0.52960	-3.39695	1.06657
-3.32237	0.41733	-3.12689	0.98287
-3.04629	0.31473	-2.85773	0.90412
-2.76943	0.22135	-2.58935	0.82965
-2.49196	0.13645	-2.32156	0.75933
-2.21403	0.05948	-2.05426	0.69304
-1.93557	-0.00932	-1.78749	0.62999
-1.65657	-0.06966	-1.52125	0.56948
-1.37718	-0.12194	-1.25540	0.51166
-1.09766	-0.16670	-0.98968	0.45683
-0.81820	-0.20440	-0.72390	0.40517
-0.53899	-0.23556	-0.45787	0.35607
-0.26019	-0.26099	-0.19103	0.31220
0.01826	-0.28092	0.07536	0.27132
0.29653	-0.29522	0.34234	0.23382
0.57458	-0.30326	0.60952	0.19928
0.85232	-0.30529	0.87702	0.16812
1.12961	-0.30174	1.14497	0.14089
1.40634	-0.29289	1.41349	0.11784
1.68247	-0.27890	1.68260	0.09902
1.95797	-0.25944	1.95234	0.08394
2.23282	-0.23433	2.22272	0.07231
2.50703	-0.20433	2.49376	0.06873
2.78065	-0.17056	2.76537	0.06229
3.05389	-0.13473	3.03738	0.06670
3.28146	-0.10422	3.26418	0.07653
3.42738	-0.08386	3.40977	0.08530
3.47882	-0.05633	3.46701	0.06804
3.50000	0.00941	3.50000	0.00941

Table V. Vane Frame Coordinates (Concluded).

Vane Type: Nominal
Radius 90.1 cm (35.5 in.)

Convex		Concave	
X (Axial)	Y	X (Axial)	Y
-4.44480	1.64519	-4.49480	1.64519
-4.50141	1.62777	-4.48003	1.65611
-4.49961	1.60423	-4.45704	1.66064
-4.48913	1.57488	-4.42603	1.65851
-4.46969	1.54012	-4.38719	1.64946
-4.44110	1.50020	-4.34056	1.63344
-4.40352	1.45490	-4.28574	1.61098
-4.36001	1.40641	-4.22984	1.58666
-4.17865	1.23208	-4.01147	1.48459
-3.98730	1.08043	-3.80307	1.38218
-3.79412	0.93890	-3.59652	1.28894
-3.59889	0.80698	-3.39201	1.20396
-3.40085	0.68675	-3.19030	1.12394
-3.20110	0.57686	-2.99032	1.04840
-3.00038	0.47518	-2.79129	0.97765
-2.75845	0.36283	-2.55353	0.89860
-2.51543	0.26034	-2.31686	0.82511
-2.27133	0.16734	-2.08128	0.75648
-2.02632	0.08355	-1.84660	0.69213
-1.78065	0.00833	-1.61258	0.63195
-1.53453	-0.05889	-1.37902	0.57580
-1.28796	-0.11186	-1.14590	0.52287
-1.04094	-0.16853	-0.91323	0.47240
-0.79365	-0.21078	-0.68083	0.42448
-0.54628	-0.24579	-0.44852	0.37939
-0.29894	-0.27378	-0.21617	0.33741
-0.05184	-0.29518	0.01642	0.29879
0.19482	-0.31062	0.24945	0.26389
0.44100	-0.32059	0.48296	0.23289
0.68673	-0.32477	0.71691	0.20524
0.93213	-0.32276	0.95120	0.18045
1.17721	-0.31479	1.18580	0.15901
1.42173	-0.30120	1.42098	0.14150
1.66547	-0.28239	1.65692	0.12812
1.90844	-0.25863	1.89364	0.11880
2.15059	-0.22976	2.13118	0.11295
2.39198	-0.19569	2.36947	0.11011
2.63272	-0.15716	2.60842	0.11097
2.87313	-0.11508	2.84770	0.11677
3.11556	-0.07029	3.08696	0.13000
3.31347	-0.03164	3.28679	0.14794
3.43200	-0.00838	3.40618	0.16054
3.48205	0.02185	3.46416	0.14584
3.50000	0.08854	3.50000	0.08854

Figure 24. QCSEE Vane Frame.

Figure 25. QCSEE Vane Frame.

SECTION 3.0

OTW FAN MECHANICAL DESIGN

3.1 OTW FAN ROTOR SUMMARY

The OTW experimental fan has 28 fixed-pitch metal blades with a 180 cm (71 in.) fan tip diameter similar to that of the UTW fan. This rotor is shown in Figure 26. The conceptual design of this fan is based on using composite fan blades, but metal blades will be used for reasons of economy and low risk. The conceptual composite bladed design dictates the absence of blade shrouds, determines the number of fan blades, and affects the sizing of such parameters as the blade solidity, reduced velocity, and leading edge thickness. In the flight engine, composite blades would be substituted for the metal blades without aerodynamic change or compromise in the composite blade mechanical design. While the demonstrator fan disk is heavier than the composite bladed flight weight disk, it reflects a flight configuration in both design criteria and material selection. A comparison between the experimental and flight OTW fan design criteria is given in Table VI.

The OTW fan has both a forward rotating spinner and aft flowpath adapter. The inner flowpath formed by these two parts and the blade platform is identical to the inner flowpath of the UTW fan from a point near the blade trailing edge aft. The tip speed of the OTW fan is about 14% higher than for the UTW Fan. The OTW fan, reduction gear, and fan frame assembly are shown in Figure 27.

3.2 OTW FAN BLADE

The OTW fan blades will be machined 6Al-4V titanium forgings. The steady-state operating stresses in the blade are relatively low, reflecting the relatively low tip speed of this fan. The mechanical design of these blades avoids resonance and fan blade instability in the operating range.

The fan blades are a "low-flexed" design, i.e., the first flexural frequency of the blades is less than two times the per-rev frequency of the fan in its operating speed range. Without a thicker blade root, which would have been aerodynamically unsatisfactory, low-flexing was necessary because of the lack of blade shrouds. This approach, though not common, is used successfully on General Electric's TF34 fan and J79 stage 1 compressor blade and was successful on NASA's Quiet Engine C fan. The first flexural blade frequency Campbell diagram is shown in Figure 28. The frequency of the disk-blade assembly will be somewhat lower than the individual blade frequency (solid curve, Figure 28) due to the flexibility of the supporting fan disk. This allows for some adjustment of the 2 per-rev resonant point during final disk design as shown by the two dashed lines. This resonance crossover will occur below approach fan speed but above flight idle in a region of the performance map not used for steady-state operation. The Campbell diagram for the first three modes is shown in Figure 29. In the absence of frame struts or inlet

Figure 26. QCSEE OTW Fan Rotor.

ORIGINAL PAGE IS
OF POOR QUALITY

Table VI. QCSEE OTW Fan Design Criteria.

	<u>Demonstrator</u>	<u>Flight</u>
Materials		
Disk	Titanium	Titanium
Blades	Titanium	Composite
Number of Blades	28	28
Per Blade Centrifugal Load, N (lb)	558,696 (125,600)	184,156 (41,400)
Design Point Speed, rpm	3792	3792
Design Burst Speed, rpm	5729	5729
Disk Low-Cycle Fatigue Life (Min)	> 48,000 Flight Cycles	> 48,000 Flight Cycles
Disk Low-Cycle Fatigue Life with Initial 0.025 x 0.076 cm (0.01 x 0.03 in.) Defect	> 16,000 Flight Cycles	> 16,000 Flight Cycles

Figure 27. QCSEE OTW Fan.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 28. QCSEE OTW Fan Campbell Diagram – First Flexural Frequency.

Figure 29. QCSEE OTW Fan Blade Campbell Diagram.

guide vanes ahead of the fan, higher order resonances have not been a problem on similar configuration engines such as TF34 and CF6.

Blade "instability" or "limit cycle vibration" can be a problem on fans. It is characterized by a high amplitude vibration in a single mode, (normally the first flexural or torsional mode) at a non-integral per-rev frequency. It is not one of the classical airfoil flutter cases and is apparently confined to cascades. Because of the non-linearity in the aerodynamics involved, it has resisted practical solutions by solely theoretical means. Accordingly, General Electric has adopted a semi-empirical "reduced velocity" approach for limit cycle avoidance. Reduced velocity gives a measure of a blade's stability against self excited vibration. This parameter is defined as $V_R = W/bf_t$

where:

$b = 1/2$ chord at 5/6 span-ft

$W =$ average air velocity relative to the blade over the outer third of the span-ft/sec

$f_t =$ first torsional frequency at design rpm-rad/sec.

The basic criterion used for setting the design of the OTW metal blade was the requirement of having a reduced velocity parameter no higher than 1.5. This allowable range is based on previous testing of a variety of fan configurations in combination with the specific aerodynamic design of the OTW blade.

The design practice is to have the blade stall before instability occurs. Blade instability apparently does not occur once the blades are stalled. The blades are designed so that when the fan is throttled, stall is expected to occur before the empirically predicted blade instability is encountered. The blade stability is affected by varying the blade chord and thickness distribution which changes the reduced velocity parameter. The operating and stall characteristics of this blade are presented in Figure 30 in terms of reduced velocity versus incidence angle. This shows an acceptable blade design in which the throttled fan will stall before encountering the anticipated blade stability limit.

The OTW composite flight blade would have additional stability margin due to the higher stiffness-to-weight ratio possible in composite designs.

The blade will be attached to the disk by a conventional dovetail. The outer flowpath contour will permit individual blade removal in the engine without the necessity of "drop down" dovetail slots. This dovetail will be plasma sprayed with a copper-nickel-indium coating for dovetail fretting protection.

Figure 31 shows a QCSEE OTW fan blade model. The design description of the blade is provided in Table VII and in Figures 32 and 33.

Figure 30. Limit Cycle Boundaries.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 31. OTW Fan Blade.

Table VII. QCSEE OTW Fan Blade.

Number of Blades	28	
Fan Tip Diameter, cm	180.3	
(in.)	(71)	
Airfoil Length, cm	52.1	
(in.)	20.5	
Aspect Ratio	2.1	
Average Root Centrifugal Stress, N/cm² (psi)	15,291 (22,177)	
	<u>Blade Tip</u>	<u>Blade Root</u>
Chord, cm	26.31	20.68
(in.)	(10.36)	(8.14)
Max. Thickness/Chord, %	2.65	8.6
Solidity	1.3	2.34

Figure 32. QCSEE OTW Fan Blade Chord Vs. Span.

Figure 33. OTW Fan Blade Maximum Thickness/Chord Vs. Span.

3.3 OTW FAN DISK DESIGN

The OTW fan disk will be machined from a single-piece 6Al-4V titanium forging. An integral cone attaches the ring disk to the main reduction gear shafting. The blades will be retained in the disk dovetail slots by individual steel straps and tangs on the blades. The spinner and aft flowpath adapter attach to flanges on the OD of the disk rim as shown in Figure 34.

The fan disk is designed for a burst margin of 141% of the maximum cycle speed and for a low-cycle fatigue life in excess of 36,000 flight hours.

3.4 OTW FAN SPINNER

The OTW spinner and aft flowpath adapter will be fabricated from the same 6061 aluminum forgings used for corresponding parts on the UTW fan. Fan balance can be performed without removing the spinner by means of radial spinner balance weights, and the blades can be individually removed and replaced in the field by removing the forward spinner only. Access holes in the aft adapter permit unbolting the number one bearing support cone and pulling the disk and main reduction gear as a complete package. Since the OTW fan does not have a pitch change mechanism, the forward spinner cap also provides access for a visual inspection of the main reduction gear.

Figure 34. OTW Fan Rotor.