

AD-A045 101

CONSAD RESEARCH CORP PITTSBURGH PA

F/G 5/9

AN OVERVIEW OF THE PROTOTYPE INTEGRATED SIMULATION EVALUATION M--ETC(U)

F44620-76-C-0125

APR 77 C R EISELE, C D LAIDLAW

AFOSR-TR-77-1007

NL

UNCLASSIFIED

1 OF
ADA045101

END
DATE
FILMED
11-77
DDC

AD A 045101

CONSAD Research Corporation

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

AFOSR-TR- 77 - 1007
FINAL REPORT

AN OVERVIEW OF THE PROTOTYPE INTEGRATED SIMULATION EVALUATION MODEL OF THE AIR FORCE MANPOWER AND PERSONNEL SYSTEM

Contract Number F44620-76-C-0125

Prepared for:

**Directorate of Life Sciences
Air Force Office of Scientific Research
Attention: NL
Building 410
Bolling Air Force Base, D.C. 20332**

Prepared by:

**CONSAD Research Corporation
121 North Highland Avenue
Pittsburgh, Pennsylvania 15206**

27 April 1977

Approved for public release;
distribution unlimited.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM								
1. REPORT NUMBER (19) AFOSR TR-77-1007	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER								
4. TITLE (and Subtitle) An Overview of the Prototype Integrated Simulation Evaluation Model of the Air Force Manpower and Personnel System.		5. TYPE OF REPORT & PERIOD COVERED 9 FINAL Report								
7. AUTHOR(S) 10 Charles R. Eisele Charles D. Laidlaw		6. PERFORMING ORG. REPORT NUMBER 15 F44620-76-C-0125 new								
9. PERFORMING ORGANIZATION NAME AND ADDRESS CONSAD RESEARCH CORPORATION 121 North Highland Avenue Pittsburgh PA 15206		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 16 61102F 231363 17A3								
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research (NL) Bolling AFB DC 20332		12. REPORT DATE 11 27 April 77								
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 12 86 p.								
15. SECURITY CLASS. (of this report) Unclassified										
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE										
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.										
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)										
18. SUPPLEMENTARY NOTES										
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <table> <tr> <td>Integrated simulation</td> <td>Personnel assignment planning</td> </tr> <tr> <td>Modular design</td> <td>Simulated personnel flow</td> </tr> <tr> <td>Force structure planning</td> <td>Mission response evaluation</td> </tr> <tr> <td>Training program requirements</td> <td>R/D</td> </tr> </table>			Integrated simulation	Personnel assignment planning	Modular design	Simulated personnel flow	Force structure planning	Mission response evaluation	Training program requirements	R/D
Integrated simulation	Personnel assignment planning									
Modular design	Simulated personnel flow									
Force structure planning	Mission response evaluation									
Training program requirements	R/D									
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <p>The Air Force Office of Scientific Research (NL) and the Air Force Human Resource Laboratory (OR) are jointly conducting a program of research and development to provide Air Force manpower and personnel analysts with the capability to consider, in a timely and consistent fashion, second and higher order, in addition to primary, response characteristics of the Air Force Manpower and Personnel System (AF M&PS) to proposed policy implementations. The basic direction of the program is toward developing a large-scale,</p>										

387958

cont on p 1473

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Item 20 (continued) F P14734

was
AF/MPS

empirically based, computer simulation model of the AF MAPS. As a means of demonstrating the basic structural form and logic flow of an Integrated Simulation Evaluation Model (ISEM) of the AF MAPS, an ISEM-Prototype has been designed, constructed, and installed on the USAF CDC Computer System at Wright-Patterson AFB. The ISEM-P design is based on a modular representation of the Air Force Manpower and Personnel System in which long-range force structure planning, training program requirements, short-range personnel assignment planning, and actual personnel flows are simulated as integrated activities for the purpose of evaluating force structure response to various mission and policy changes. Current research plans call for continued evaluation of the applications and utility of ISEM through ongoing testing of the ISEM-P using "real world" scenario problems posed by actual Air Force manpower and personnel managers and analysts.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

1.0 INTRODUCTION

As a means of demonstrating the basic structural form and logic flow of an Integrated Simulation Evaluation Model (ISEM) of the Air Force Manpower and Personnel System, an ISEM-Prototype has been designed and constructed by CONSAD Research Corporation. Contract support for this development is provided by the Air Force Office of Scientific research, with technical assistance being provided by the Air Force Human Resource Laboratory.

The ISEM-P design is based on a modular representation of the Air Force Manpower and Personnel System (AFM&PS) in which long range force structure planning, training program development, short range personnel assignment planning and actual personnel flows are simulated as integrated activities for the purpose of evaluating force structure response to various mission and policy changes. In the prototype model these activities are encompassed in three simulation submodels:

- 1. The Aggregate Planning Submodel which accepts as input a multi-year mission plan; converts that plan into direct mission and support manpower requirements; projects the personnel force structure on the basis of expected attrition; and develops yearly plans for recruitment, training and retention which infer maintenance of the personnel force structure at the desired mission strength subject to manpower ceilings.**

2. The Assignment Planning Submodel which develops short range plans for personnel flow at the base level in response to yearly plans, and in cognizance of base level manpower requirements and personnel supplies.
3. The Personnel Flow Submodel which executes assignment plans by reflecting actual movements of personnel through training and travel pipelines over simulated time.

1.1 ISEM-P Concepts and Components

As is the case in any simulation modelling effort, a representation of the "real world" to be modelled must be chosen and used to form the modelling framework. In ISEM-P the real world image of the Air Force Manpower and Personnel Systems centers around the Personnel Force Structure and the Air Force Mission which it must support. The integrating of these two system components is most evident at an Air Force Base to which mission tasks are assigned and skilled personnel are attached to carry out those assignment tasks. Hence, the Air Force Base was chosen as the basic structural component of the prototype model.

1.1.1 Bases, Mission and Outputs

For demonstration purposes, seventeen bases were chosen as a reasonable scale for representing the operational Air Force (see Attachment 1). Each of these bases possess the following characteristics as attributed in the simulation model (Figure 1):

FIGURE 1: Characteristics of Bases

1. A base has a name, a location and owns some assigned mission, such as flying or training.
2. A base owns some outputs which support its mission such as an aircraft squadron producing some required amount of flying hours or a school producing some required number of graduates.
3. Every output owned by a base has a type, a quantity and a utilization rate such as two B-52 Squadrons flying forty-five hours per aircraft per month.
4. Every output requires a set of skills at various skill levels in order to be produced at the level required by the mission.
5. Every skill and skill level requires manpower in an amount dependent upon the type, quantity and utilization of outputs with which they are associated.

Missions at a base and their associated outputs are, of course, variable to allow for changes in force mission or force structure configuration over time. Outputs can be added, eliminated or changed with respect to utilization according to any desired time trajectory or plan. As missions or outputs at a base are altered, required skills, skill levels and manpower are correspondingly added, eliminated or adjusted according to standard manpower relationships contained within the model. These standards are also variable to the extent that users may specify new parameters or equations to reflect technological innovations or changes in management engineering policies.

1.1.2 Manpower Skill and Skill Level Classification

The basic accounting of manpower requirements and the personnel supplies which fill them is done according to skill type and level of expertise in the skill. A skill type describes a function to be performed and is associated with either a requirement to perform that function or with a group of personnel who possess the ability to perform that function. A skill level describes the amount of experience/training required in the performance of a function or the experience level possessed by a group of personnel in a particular skill type. The prototype model has 51 Airman skill types and 49 Officer skill types (see Attachment 2). These correspond, for the most part, to actual skill descriptions contained in the Air Force Specialty Classifications (AFSC). In order to reduce the number of skill types to a manageable yet representative set, those skills which are relatively homogeneous with respect to function performed and less sensitive to fluctuations in mission requirements, were aggregated to a general career field level. These aggregated skill types are mostly in the base or indirect mission support categories. Other skills which are more sensitive to mission fluctuation yet still homogeneous relative to function, were aggregated to the career group level. These mid-aggregate skills are mostly in the direct mission support category such as air operations or communications. Remaining skills which are most sensitive to mission changes

and output type were classified at the more detailed specialty level.

These disaggregate skill types are mostly in the mission category such as aircrew or maintenance (Figure 2).

Each skill type in the model is stratified by skill level. There are five skill levels for airmen and four levels for officers:

<u>Level</u>	<u>Airmen</u>	<u>Officer</u>
1	Helper	Lieutenant
2	Apprentice	Captain
3	J Journeyman	Major
4	Technician	Colonel
5	Supervisor	

In addition to the basic accounting of manpower requirements and skilled personnel by skill and skill level, the model also maintains additional memories of personnel supply for planning and management purposes.

These supplemental memories each add an additional dimension to the skill and level stratification and the principle ones are listed below:

1. Air Force Incumbency (years)
2. Skill Level Upgrade Eligibility (months)
3. Overseas Assignment Return Eligibility (months)

1.1.3 Simulated Time

The basic increment of time in ISEM-P is considered to be equivalent to real time of one month. The simulation of events and activities such as personnel movements, planning, projection, and training are all scheduled on the basis of multiples or fractions of months. Specifically, the three main submodels discussed in Section 1.1

FIGURE 2: Manpower Requirements

all simulate some aspect of manpower/personnel planning or force structure state change at different aggregates of monthly time:

1. The Aggregate Planning Submodel functions on a twelve month or yearly cycle in developing system-wide plans for manpower requirements, personnel authorization, personnel training, recruitment and attrition. There is no limit to the number of yearly plans which can be generated, however, they are normally developed on a five year cycle with the base year changing to reflect the most current state of the force structure.
2. The Assignment Planning Submodel functions on a nine month assignment planning horizon in scheduling personnel movements, Air Force entry, training and attrition according to monthly objectives established by the yearly plans.
3. The Personnel Flow Submodel functions on a discrete monthly basis for execution of assignment plans and reporting of force structure state. Discrete events such as training or travel completion are, however, scheduled on the basis of month fractions, if training and travel times so dictate.

1.1.4 Travel and Training Pipelines

In order to effectively simulate and evaluate the flow of personnel in response to assignment planning, the concept of a pipeline network is used to represent travel and training flows in ISEM-P.

Uni-directional travel pipelines connect all bases in the model. Each base pair, therefore, has two connecting travel pipes each of which may have a unique mode of transport, travel time and/or travel capacity. Status of a travel pipeline is indicated by its current personnel volume stratified by skill, skill level, travel purpose and

destination arrival time. These pipelines are used to flow personnel from base to base and account for time in travel.

Training pipelines are similar to travel pipes except that entry to and exit from training pipes occurs at the same base. A training pipe resides at a base and represents a school which has a training time, a capacity and a purpose. Training time is equivalent to the duration of the course being taught. Capacity is dictated by the number of instructors and amount of equipment available. Purpose dictates the result obtained by graduation from the school, such as an upgrading from level 1 to level 3 in a given skill. The number of training pipes is dictated by the number of unique training purposes and they are used to change the skill or skill level classification of a group of personnel over time. Status of a training pipe is indicated by its current trainee volume stratified by graduation time and pending skill or skill level award. Training and travel pipelines can be used end-to-end to represent training-in-transit policy, if so desired (Figure 3).

1.2 Programming Approach

ISEM-P is programmed in the SIMSCRIPT II.5 simulation language for use on Air Force, Control Data Corporation (CDC) equipment. An appendix to this report, containing a complete listing of the program code, is available under separate cover. SIMSCRIPT was selected

FIGURE 3: Role of Pipelines in the Assignment/Training Process

because of its compatibility with the entity/flow concepts outlined in earlier sections, its interface compatibility with other popular programming languages and its adaptability to most major computer hardware systems including USAF Honeywell and UNIVAC installations.

In SIMSCRIPT components of the "real world" system being simulated are represented as entities, sets, or events. Entities represent permanent or temporary objects in the system whose characteristics are described by attributes. Events represent activities which occur over simulated time and usually cause changes in the state-of-the-system. Sets are ordered accumulations of entities or events and are used to associate those entities or events with each other to reflect ownership, commonality, or a hierarchy.

1.2.1 Permanent Entities

As the name implies, a permanent entity represents an object with a permanence of definition and function in the system being modelled. While the attributes which describe these objects are themselves subject to change, the entities, for the most part, are neither created nor destroyed from within the system. Principle entities of this type in ISEM-P are bases, skills, missions, training pipes, and travel pipes. Creation of these permanent entities does not destroy the flexibility of the model but rather enhances it by providing a fixed framework against which changes can be reflected. Consider the following example. A

skill is a permanent entity because skills are always required to produce outputs which support missions. Yet a skill is described by a type, a required supply of personnel, an authorized supply and an actual supply, all of which reflect the changing state of the system relative to the fixed reference called skill (Figure 4).

1.2.2 Temporary Entities

A temporary entity, as its name implies, is a transient object which can be created and destroyed within the system as needed. These entities are generally created to store and transfer information about a current or pending change in system state and are then destroyed when that system state change is effected. Principal entities of this type in ISEM-P are personnel assignments and planning periods. Personnel assignments (ABLKS) are temporary entities created to flow personnel groups into the Air Force (entry), out of the Air Force (separation), among bases and through training. ABLKS have descriptive attributes such as size, skill, skill level, origin, destination, departure date and purpose which dictate their flow and the timing and type of change they are to reflect in system (force structure) state. Planning periods are temporary entities created to store information on projected or planned force state changes in a time ordered manner for use in creating and/or executing personnel assignments. These periods have descriptive attributes such as projected personnel supplies, authorized supplies, planned training, planned assignments and expected separations.

FIGURE 4: Personnel Supply (Given by Base, Year, Month and/or Total for Air Force)

1.2.3 Events and Sets

Events are used in ISEM-P to schedule the occurrence of some activity which results in a change in the state of the force structure. These events are usually associated with a planning period or an exogenous input and contain instructions as to what change in system state is to occur at the time period with which the event is associated.

Typical events which guide the basic flow of personnel in ISEM-P are as follows (Figure 5):

- Entry into the Air Force
- Separation from the Air Force
- Entry to and Exit from Travel Pipes
- Entry to and Graduation from Training Pipes
- Adjustments to Year Plans or Assignment Plans

Sets in ISEM-P are used to associate entities, rank order events and accumulate delay information. When used to associate entities they usually reflect ownership of one type of entity by another type such as:

- Every base owns a set of missions which is a simple list of missions assigned to that base.
- Every mission owns a set of outputs which is a simple list of outputs required to support that mission.
- Every output owns a set of skills which is a list of skills required to produce that output.

When sets are used to reflect the ordering of events, they usually associate entities in a time-ordered manner such as:

FIGURE 5: Basic Physical Flow of Personnel

- Every base owns a set of planning periods which is a list of planning periods in accordance with the order of time in which some change in the state of the base is to take place.
- Every base and planning period owns a set of planned assignments which is a list of personnel assignments to be effected at that base during that time period according to the order of time in which they were created.

When sets are used to accumulate delay or status information for transient personnel supplies, they usually associate entities by means of a queue or in-process volume which is serviced at a given rate by an event (Figure 6). For example:

- Some bases own a set of training pipes which is a list of training schools present at that base.
- Every training pipe has an entry queue which is a set through which all training assignments must pass before entry into the training pipe.
- Every entry queue contains some personnel assignments in the form of a list of assignments to the training school ordered by time of arrival at the training base which is serviced by Event Enter School until the queue is dissipated or training capacity is reached. If capacity is reached before the queue is dissipated, then non-serviced assignments maintain their queue position and are delayed until the next entry event.

FIGURE 6: Transient Personnel Supplies

2.0 AN OVERVIEW OF THE ISEM-P STRUCTURE

The general submodel structure of ISEM-P has been discussed in earlier sections and is now presented in a stylized, flowchart form in Figure 7. In addition to the three main submodels, the flowchart also indicates the principle program routines contained in those submodels as well as their interactions with scenarios, initialization and reporting.

2.1 Initialization

Two modes of initialization are used to establish the initial condition for a simulation run using ISEM-P. The first mode is static initialization which establishes the base, mission and output configuration, the manpower requirements and the personnel supplies at a fixed point in time which will become month one of year one for the simulation run. The second mode is dynamic initialization which establishes training requirements, planned assignments, Air Force Entry and Air Force Separation at least nine months in advance of the static initialization time so as to encompass the first assignment planning cycle and initialize such transient entities as travel and training pipelines.

Static initialization will perform the following functions:

1. Read in all data tables used for initialization and/or operational runs.

FIGURE 7: Basic Structure and Flow of ISEM-P

2. Execute the Manpower Requirements Routine for initial conditions of base mission and output.
3. Equate base manpower requirements to base supply to initialize personnel supplies by skill and level.
4. Distribute personnel supplies by skill and level over years of Air Force tenure to initialize the Air Force incumbency memory.
5. Distribute personnel supplies by skill and level over months of skill level tenure to initialize the upgrade eligibility memory.
6. For overseas bases, distribute personnel supplies by skill and level over months of base tenure to initialize overseas return eligibility memory.

Dynamic initialization will carry out the following functions:

1. Execute the Manpower Requirements Routine for years one's sending values of base mission and output if different from initial mission conditions.
2. Execute the Year End Strength Routine for year one ending values of airman and officer ceilings to establish manpower ceilings by skill and level.
3. Execute the Training Plan Routine for established manpower ceilings and projected attrition to the end of year one and establish a monthly plan of training upgrades, desired Air Force entry and expected separations for each base.
4. Execute Routine Extrapolate, Routine Rotation and Routine Levy for the established monthly plans at each base to determine the required assignments in each month of year one.
5. Execute Routine Assignment for established assignment requirements at each base to establish a planned schedule of assignments at each base, for each planning period (month) in year one.

6. For those assignments scheduled in periods prior to month one of year one, execute the Personnel Flow Submodel to initialize training and travel volumes up to the static initialization period.

Upon completion of the initialization process a full, multi-year simulation run can be made based on established conditions in month one of year one and scheduled events for months one through nine of year one.

2.2 Scenarios

The basic scenario required to generate a multi-year run of ISEM-P consists simply of a multi-year trajectory of congressional manpower authorizations and a multi-year mission plan for each base. Authorizations are input as year end strength ceilings for officers and airmen for each year. Mission plans need only specify the type, quantity and utilization of outputs at each base, for each year. If so desired, only starting (year one) authorization and mission plans need be specified with values for subsequent years being input as changes to those starting conditions.

In addition to the basic format, changes to several model parameters and data sets can be effected in a cross-sectional or time-phased manner by the inclusion of exogenous event notices in the scenario. Such optional changes could include:

- Mandated ceilings for a particular skill or skill level group.
- Mid-year adjustments to year end manpower ceilings.
- Changes in retention rates for a particular skill, skill level or year group, or a blanket change in retention rates for all personnel classifications.
- Changes in training standards reflected by increases or decreases in training times and/or equipment utilization.

2.3 The Aggregate Planning Submodel

The Aggregate Planning Submodel is composed of three principle routines: (1) Manpower Requirements; (2) Year End Strength; and (3) Training Plan. These three routines are executed in series to convert a multi-year scenario of congressional authorizations and mission plans into a set of month-by-month, yearly plans whose execution infers maintenance of the personnel force structure at desired mission levels within manpower ceilings.

2.3.1 Manpower Requirements Routine

This routine accepts as input yearly mission plans for each base in the model given in terms of mission type, required output type, quantity of standard output units and utilization rate of output units. An example of a mission specification for a given base would be:

Mission Type = Tactical Fighter Support
Output Type = F-4 Squadron
Output Quantity = 3 Squadrons
Utilization Rate = 25 Flying Hours/Aircraft/Month

Contained within the Requirements Routine are a set of standard manpower equations which are based for the most part on actual Air Force Manpower Standards. These standards indicate the types of skills required at a base to provide direct, indirect and base mission support for the given output specification. The equations are also used to calculate the required number of manpower slots for each skill based on the quantity, type, and utilization rate of the assigned outputs. The following example will serve to illustrate the logic flow of this routine for a base with an assigned flying mission:

1. Based on specified flying hours, aircraft type and number of squadrons, total base flying hours are used to calculate the requirement for pilot, navigation and squadron air operation skills.
2. Total base flying hours are used to calculate the number of flight plans which is used to calculate the requirement for air traffic control and base air operations skills.
3. Total flying hours per aircraft type are used to calculate the requirement for field, organizational and various maintenance skills.
4. A standard equipment configuration is used to determine the requirement for communications, radar and weather equipment operation, repair and maintenance skills.
5. The total number of aircraft by type is used to calculate total munitions which is used to calculate the requirement for munition loading storage and handling as well as weapons maintenance skills.

6. The sum of all required mission, direct and indirect mission support skills, is then used to iteratively solve a set of simultaneous equations which relate the requirements for base support skills to the size of base population.
7. When the requirements for all mission, direct mission support, indirect mission support and base support skills have been calculated, they are distributed over skill levels according to distribution specified by the manpower standards or typical distributions used system-wide for base support skills.
8. Base manpower requirements by skill and skill level are then entered into a manpower requirements matrix for the base.
9. An equivalent manpower matrix is also generated to reflect the minimum (threshold) manpower requirements for each skill and level, necessary to maintain production of base outputs.

The end product of the Manpower Requirement Routine will be a manpower and minimum manpower requirements matrix given by skill and skill level for each base, for each year in the multi-year mission plan.

2.3.2 Year End Strength Routine

This routine accepts as input the mission manpower requirements generated in the requirements routine and a set of Congressional manpower ceilings for officers and airmen, for each year in a multi-year scenario plan. Given these inputs, the Year End Strength Routine determining a year end ceiling for each skill and level, for each year based on the relative total requirements for manpower in a skill and level across all bases. The basic algorithm for allocating a year end

authorization ceiling to each skill and level consists of the following steps:

1. Sum minimum manpower and standard manpower requirements across all bases for each skill and level in each year.
2. Allocate to each skill and level a share of the total authorization equal to their minimum requirements. If the total is not sufficient to cover minimums, then a report is generated which details the degree of below minimum manning and a user adjustment to requirements is requested.
3. If minimums are met and authorizations remain, then the amount above minimum is allocated to skills and levels in proportion to their respective ratios of minimum to standard manpower requirements. This allocation is a default which can be replaced by an input priority scheme for allocating authorization above the minimum.

Since year end authorization for a given skill and level must also include training authorizations in that skill and level in a given year, the above algorithm must be modified as follows:

1. The total year end authorization for mission requirements becomes the total year end authorization less the authorized amount in training that year.
2. Each skill and level is then allocated a year end strength equal to their requirements share times the total authorization less some unknown training authorization.
3. Given the starting supply of personnel by skill and level for this planning cycle, a projected supply is calculated using expected attrition rates for each skill, level and year group.

1. Using the projected year end supplies and authorized year end strength for the highest level of a given skill, the positive, zero or negative difference between year end authorization and projected supply is calculated.
2. If the difference is negative, then projected supply exceeds authorization and the training requirement for the skill and level is set to zero for that year. In the case of an expected supply surplus, the retention rate ($1 - \text{attritions rate}$) is adjusted downward for the skill and level in the surplus year to dissipate the expected average by the year's end.
3. If the difference is zero, then the projected supply equal authorization and the training requirement for the skill and level is set to zero for that year. No adjustment is made to retention in this case.
4. If the difference is negative, then the projected supply is less than authorization and the training requirement for the skill and level is set equal to the size of the negative difference for that year.
5. This three-way test is then repeated for the next highest level in the same skill with one logic change. The projected supply for the next highest level is reduced by an amount equal to the non-zero training requirement for the highest level. This assures that losses due to training upgrades will be accounted for in establishing training requirements for each subsequent level in a given skill.
6. Three calculations are repeated from supervision down to apprentice level for each year and airman skill; and from Colonel down to Lieutenant level for each year and officer skill.
7. When the training requirement has been calculated for each skill and level in each year, it is allocated over each month in a year according to the distribution of separation over those months. This distribution was selected since attrition is the main determinant of training requirements for a given mission.

8. Expected separations for each skill and level in a given year are distributed over months according to a typical distribution of Air Force entry. This distribution was selected since the month of separation is generally determined by the month of entry plus the term of enlistment.
9. After training requirements have been allocated to each month of a multi-year plan for each skill and level, the requirement is split into training to be conducted on the job (OJT) and training to be conducted by formal technical schools. This split is accomplished by means of a policy variable dictating the OJT/Formal School ratio for each skill and level upgrade. This split is, of course, constrained by the total authorization.

Monthly training requirements must next be adjusted for the fact that a formal school training requirement for a given skill and level in a given month will increase the training requirement for the next lowest level in some earlier month. This results from the fact that formal school training requires the removal of personnel from a base supply for assignment to school at a time period equal to the time of training requirement less training time for the required level upgrade. This will cause unfilled requirements for the lower level skill which must be accommodated for by training.

A similar training lag effect is also present in the calculation of the helper to apprentice level training requirement and the recruit to helper level training requirement. The apprentice level training requirement in any given month must be lagged by the helper to apprentice level training time for a given skill to determine the required monthly

entry of basic training graduates (helper levels) into apprentice level training. This monthly requirement for helper level personnel must then be lagged by basic training time to calculate the monthly requirement for entry into the Air Force. The adjustment of training requirements due to formal school training lags and the calculation of helper level and Air Force entry requirements are both accomplished through the use of the following algorithm:

1. Starting with the first month, in the first year, for each level in a given skill, the training time for formal school to the next highest level is established from the training time table.
2. The formal school training requirement for the next highest level is then read for the period equal to the current period plus training time for upgrade to that next highest level.
3. The amount of required formal school training in the "look ahead" month then becomes the amount which must be assigned to school training from the supply of the given level personnel in the current month.
4. The above process is repeated for each skill and level, for every month of each year in a multi-year plan.
5. The monthly requirements calculated for entry of basic training graduates (helper level) into apprentice level school becomes the required lagged disposition scheme of helper level personnel at the exit end of the basic training pipe.
6. The total of the helper level monthly requirements over all skills becomes the total lagged requirement for entry into the Air Force.

In reality the "look ahead" calculation conducted in step 2 above may involve more than one training time increment. When adjusting apprentice level training requirements, for example, the adjustment depends on the journeyman requirement in some subsequent period which will in turn depend on the technician requirement in some subsequent period beyond the first look ahead.

Examples used in the above discussion were geared towards airman skills, however, the same adjustment process is used for officer skills. Upon completion of the above listed steps, every month in a multi-year plan will have the following values calculated for each skill and level:

- Required OJT Training (inflow)
- Required Formal School Training (inflow)
- Planned Separation (outflow)
- Required Formal School Assignments (outflow)

A share of these monthly values is then allocated to each base according to each base's proportional share of the total authorization for a given skill and level in a given year. The rationale for this allocation process is as follows:

1. A base with the greatest proportional share of a skill and level authorization will in general have the greatest proportional share of the total supply of that skill and level.
2. A base with the greatest proportional share of a skill level supply will, on the average, realize the greatest proportional share of skill and level separation in a given year.

3. Since separations are the major determinant of training requirements, a base with the greatest proportional share of separation from a skill and level in a given year would require the largest proportional share of planned training into that skill and level in that given year.

The end product of the Training Plan Routine is, therefore, a shared value of monthly training requirements and separations for each base, for every month in a multi-year plan.

2.4 Assignment Planning Submodel

The basic function of this submodel is to convert the planned training requirements and separations developed in the Training Plan Routine into a set of planned personnel movements for each month at each base. A secondary function of the submodel is to develop monthly assignment plans to maintain the required assignment rotations at overseas bases. All assignment planning is based on a month-by-month, recursive projection of base supplies, with the horizon planning month being nine months ahead of current time.

Prior to a discussion of each routine within this submodel, some discussion of data available to and associated with each base for each month would be appropriate. As discussed in earlier sections every base owns a set of planning periods (months) and each of these planning periods has some monthly data associated with it by means of attributes

or sets. Principle data associated with these periods for assignment planning purposes are as follows:

- . Every planning period has some planned separation, required OJT upgrades, required technical school upgrades and planned school assignments.
- . Every planning period owns a set of pending assignments out of the personnel supply at the base.
- . Every planning period owns a set of pending assignments into the personnel supply at the base.
- . Every planning period has an authorized year end strength for each skill and level at the base.

2.4.1 Routine Extrapolate

The purpose of this routine is to project the personnel supply by skill and level, at each base, nine months in advance of the current time period. This is accomplished by using the projected ending supply of month eight (the ninth month of the previous planning cycle) and incrementing that supply by the net difference between planned inflow and outflows associated with the ninth or horizon month. An additional function performed by this routine is to compare the projected supply for the current horizon month with the year end authorization by skill and level for the year in which the horizon month resides. This is done to determine if the current supply trajectory is targetted toward the year end authorization. It should be noted here that the aggregate, yearly plans only inferred a targeting of total year end strength by skill and level across all bases. It is therefore still possible that a supply

imbalance could exist among bases with the surpluses and deficits netting out to the desired year end strength in the aggregate. It is for this reason that Routine Extrapolate seeks to identify base level supply deficits so that remedial assignment action can be taken to correct a skill and level supply imbalance among bases.

The following logic steps are employed within Routine Extrapolate to carry out its projection and comparison function:

- (1) For each skill and level determine the month ending supply for period equal to horizon period minus one.
- (2) Add to that skill and level supply the OJT Training Requirement, Required Formal Training and any pending assignments into the given skill and level associated with the horizon month.
- (3) Subtract from the total calculated in Step 2, the Planned Separations, Required Formal School Assignments, Required OJT Training for the given skill level plus one, and any pending assignments out of the given skill and level associated with the horizon month. The result of this subtraction becomes the projected supply for a given skill and level for the horizon month.
- (4) Subtract the value of year end authorization for the given skill and level associated with the horizon month* from the projected skill and level supply for the horizon month.

* A monthly skill and level authorization may differ from the year end authorization if a scenario has dictated a monthly phase-out or phase-in of a mission or output at a base.

- (5) If the calculated difference is positive or zero, then a supply surplus or exact targeting exists relative to authorizations and no additional assignment action is required.
- (6) If the difference is negative then a supply deficit is expected and a skill level demand equal to the difference is associated with the base and horizon month for use by the assignment routine.

The end products of Routine Extrapolate are a projected supply for each skill and level, at each base, for the current horizon month and a set of assignment demands for each skill and level, at each base for which a supply deficit was projected.

2.4.2 Routine Rotation

This routine is simply a memory mechanism which is associated with all bases where a set of assignment actions are required to take place according to an established schedule. Principally this memory is associated with overseas bases where a fixed tour of duty mandates that a certain portion of the skill and level supply be reassigned each month to a non-overseas base. This in turn establishes an equivalent requirement for skill and level assignments into the personnel supply at overseas bases each month. This memory may also be associated with any base where mission or output changes mandate a specific schedule of supply reduction or augmentations on a monthly basis.

The rotation memories are maintained by skill and level and contain as many time period (month) cells as are required by the fixed

assignment schedule. If the reassignment schedule for an overseas base is 12, 18 or 24 months, then the rotation memory contains 12, 18 or 24 time cells respectively. Each time cell contains the fraction of the skill and level personnel supply at the base which must be reassigned 1, 2, 3, or 12 months from the current time period. As personnel arrive at these overseas bases they are assigned to the last cell in the rotation memory for the current rotation cycle. If these memories are used to reflect concurrent or discrete drawdowns and build-ups of different skills then the mechanism is similar to that of overseas assignment cycles except that usually only one cycle is used.

The purpose of these mandated assignment cycle memories is to provide information to the Assignment Routine regarding required assignment actions so that personnel movements can be scheduled accordingly.

2.4.3 Routine Assignment

The primary function of this routine is to set up schedules for personnel movements over time which will satisfy assignment requirements mandated by training schedules, rotation memories, separations and projected skill and level demands. This function is performed for each skill and level at every base for the horizon month. In general, the assignment algorithm assesses the assignment in and assignment

out requirements at each base (including training bases); creates assignment blocks (ABLKS) for assignments out and schedules them in the pending assignment out set for the given base and planning period; and schedules a corresponding assignment into the assignment in set of the destination base indicated for the ABLK. The following steps indicate the basic order of the logic used to set up and schedule personnel movements in Routine Assignment:

- (1) For every base having a Required Formal School Training (inflow) in the horizon month, create an ABLK to schedule the required number of skill and level personnel to be moved from the training base to the requirement base in the horizon month. Place these ABLKS in the graduation disposition set for the appropriate training pipe at the appropriate training base in the horizon month.
- (2) For every base having Required Formal School Assignments (outflow) in the horizon month, create an ABLK to schedule the required number of skill and level personnel to be moved from the requirement base to the appropriate training base. Place these ABLKS in the pending assignment out set for the requirement base in the horizon month.
- (3) For required assignments of helper level personnel from basic training graduation to apprentice level schools in the horizon month, create ABLKS to schedule the required number of personnel to be moved from the basic training base to the appropriate training base. Place these ABLKS in the graduate disposition set for the basic training base in the horizon month.

- (4) For required entry of personnel into the Air Force, create an ABLK to schedule the required number to be entered into basic training. Place these ABLKS in the assignment pending in set for the basic training base in the horizon month.
- (5) For each ABLK created in steps 1-4 to move personnel into training pipes, create an equivalent ABLK and place it in the graduation pool set for the training pipe at a time period equal to school entry period plus training time. ABLKS placed in graduation pools should be changed to reflect the new skill or skill level obtained by training.
- (6) For each ABLK created in steps 1-4 to move personnel from training bases to requirement bases, create an equivalent ABLK and place it in the assignment pending in set for the destination base.
- (7) For every base with pending assignments out created in steps 1-4, reserve that fraction of skill and level supply designated for assignment action.
- (8) For every base with a demand for assignment due to supply deficits or rotation requirements in the horizon month, perform the following:
 - (a) Check that fraction of training pipe graduation pools for which assignment disposition are not present to determine if required number of skill and level personnel will be available;
 - (b) Check rotation memories at bases other than the requirement base* to determine if the required number of skill and level personnel are available;

*If assignment requirement exists at an overseas base, assignments from other overseas bases are not allowed.

- (c) If sufficient supplies cannot be found in steps (a) and (b), then transfer the assignment requirement to the Levy Routine.
- (9) If an appropriate personnel supply is found to meet the assignment requirements, then create an ABLK to schedule the movement of the required number of skill and level personnel from the designated supply base to the requirement base. Place these ABLKS in the appropriate pending assignment out or graduation disposition sets at the supply bases in the appropriate time period.
- (10) Repeat steps 6 and 7 for all ABLKS created in step 9.

When executing steps 8(a) and 8(b), the time period used to determine supply availability is that period equal to the period at which the requirement exists less travel time from the supplying base to the requirement base. This infers that movements will begin sufficiently early to insure arrival in the required time period.

It should be noted that all personnel supplies available for assignment (training and rotation) which are not committed in any given assignment cycle, remain associated with their availability period for possible assignment up until current time equals their availability time. If supplies remain uncommitted until current time, then the Personnel Flow Submodel creates an assignment for them.

The end products of the Assignment Routine are therefore all those scheduled personnel movements placed in pending assignment, graduation disposition or graduation pool sets at each base for every assignment planning period (horizon month).

2.4.4 Routine Levy

This routine receives as input from the Assignment Routine all those assignment requirements in the horizon month for which assignments could not be created from available, uncommitted personnel supplies. Upon receipt of assignment requirements, this routine searches all bases for supply surpluses in the required skill and level. These surpluses are identified in a manner similar to that used to identify supply deficits in Routine Extrapolate. The appropriate time period for identifying supply surpluses is calculated to allow for required travel as in Routine Assignment and the same restrictions regarding reassessments among overseas bases apply to Routine Levy as well.

In identifying supply surpluses at bases to meet assignment requirements the following logic steps are employed:

- (1) For the required skill and level, compare the extrapolated, non-assignment reserved supply at each base in the appropriate time period with the authorized supply for that period.
- (2) If a surplus in the required amount exists, then transmit the appropriate supply, origin base, destination base and time period information back to Routine Assignment for creation and scheduling of required ABLKS.
- (3) If surpluses are insufficient to meet requirements at any one base, then several bases may be used to accommodate one requirement.

- (4) If surpluses over all bases are insufficient to meet requirements, then the requirements are carried over to the next assignment cycle.
- (5) ABLKS created as a result of Routine Levy are assigned a LEVY code for their purpose attribute and a subject to cancellation up until current time if excess supplies or additional surpluses are identified prior to that time.

2.5 Personnel Flow Submodel

The purpose of the submodel is to cause physical changes in the state of the personnel force structure by executing planned personnel movements scheduled by the Assignment Planning Submodel. Five principle routines are contained in this submodel and they are executed in an integrated, simultaneous manner to effect scheduled movements.

- . Routine Movements removes ABLKS from pending assignment sets at each base, every month, enters them into travel pipes according to specified destination and removes the equivalent size of the ABLK from the skill and level supply at the base.
- . Routine Check Pipe examines the current volume of the travel pipes relative to capacity, to determine if ABLKS received from Routine Movements can be entered directly into the pipe or queued to await a reduction in volume.
- . Routine Check School examines the current volume of the training pipes relative to capacity to determine if ABLKS exiting travel pipes with a training purpose can be entered directly into training or queued to await the start of the next class.

- Routine Graduation matches ABLKS exiting training pipes with ABLKS in graduation disposition pools and enters matched assignments into travel pipes.
- Routine Find Assignment searches bases for any cancellation ABLKS with LEVY codes and creates new ABLKS to assign uncommitted training and rotation supplies remaining in the current time period.

The basic logic flow executed in the operation of these five routines is outlined below:

- (1) Routine Movements calls Routine Check Pipe and enters ABLKS into waiting queues or travel pipes according to the volume/capacity status of the pipes.
- (2) Entering an ABLK into a travel pipe automatically schedules a pipe exit event for a period equal to current time plus travel time.
- (3) Pipe exit events remove ABLKS from travel pipes according to schedule and places them into base personnel supplies or training pipes according to ABLK specifications. If training pipe entry is specified, then Routine Check School is called to enter ABLKS into waiting queues or training pipes depending on the current volume/capacity status.
- (4) Entering an ABLK into a training pipe automatically schedules a graduation event for a time period equal to current time plus training time.
- (5) Graduation events transfer control of ABLKS to the Graduation Routine which matches them with disposition ABLKS. Matched ABLKS are then subject to control by Routine Movements which places them in travel pipes to the appropriate destination.

- (6) If graduation ABLKS are insufficient to meet disposition requirements, then unfulfilled dispositions are carried over to the next graduation cycle.
- (7) If a surplus of graduation ABLKS exists relative to disposition then Routine Find Assignment is called to create ABLKS for the disposition of the surplus graduates. Find Assignment can also be called from Routine Movements if surpluses of rotation supplies are detected relative to pending assignments in the current time period.

3.0 PROGRAM OUTPUT AND REPORT GENERATION

In order to facilitate user flexibility in analyzing program output from ISEM-P, all report generation is performed by a Data Post-Processing Program which is separate from the central simulation model. Input to this program consists of a detailed, formatted record of the value of every system state, policy and planning variable for each month and/or year in a multi-year simulation run. Although all of these data may not be required for any given analysis or report, the detailed output record can be cataloged and stored for future reference or analysis. Keeping these full-scale output records, eliminates the need to make expensive and time-consuming reruns of a previous simulation just by record some additional data which was not monitored in the initial run.

The Data Post Processor is designed to be interactive with batch options for large report requests. The user may specify the format of tabular outputs from three standardized report options. Two-dimensional line printer plotting can also be requested for time trajectory or cross-variable plots. The following parameters are also available to the user to specify the desired type, aggregation and frequency of state, policy or planning variables he wishes to be reported:

- (1) Variable Type: Supply, Authorization, Training Requirement, Pipe Volumes, Manpower Requirements, Assignments, Delays, Separations.
- (2) Variable Aggregation: Skill, Skill Level, Mission, Base, MAJCOM, Grade, Year Group, Location.
- (3) Variable Frequency: Months, Years, Year Aggregations.

Specification of these parameters will result in the performance of desired summations, cross-tabulations and frequency calculations. Reports would then be generated according to format specifications and any requested plots would be made for specified variable pairs. See Attachment 3 for examples of tabular format and plotting options.

ATTACHMENT 1: Model Bases

<u>Base No.</u>	<u>Base Name</u>		<u>Location</u>	<u>MAJCOM</u>
	<u>Model</u>	<u>Actual</u>		
1	Training 1	Lackland	San Antonio, Tx.	ATC
2	Training 2	Lowry	Denver, Col.	ATC
3	Training 3	Williams	Mesa, Ariz.	ATC
4	APOE East	McGuire	Trenton, N.J.	MAC
5	APOE West	Travis	Fairfield, Calif.	MAC
				SAC(T)
6	Operations 1	Homestead	Homestead, Fla.	TAC
7	Operations 2	Ellsworth	Rapid City, S.D.	SAC
8	Operations 3	Grand Forks	Grand Forks, N.D.	SAC
9	Operations 4	Loring	Limestone, Maine	SAC
10	Operations 5	Pope	Fayetteville, N.C.	MAC
11	Operations 6	Shaw	Sumter, S.C.	TAC
12	Operations 7	Mountain Home	Boise, Idaho	TAC
13	Operations 8	George	Victorville, Calif.	TAC
14	Overseas 1	Bitburg	Bitburg, W.Germany	USAFE
15	Overseas 2	Alconbury	Alconbury, U.K.	USAFE
16	Overseas 3	Kadena	Kadena, Okinawa	PACAF
17	Overseas 4	Kunsan	Kunsan, Korea	PACAF

ATTACHMENT 2: Model Skills

Skill Number	Skill Name	Skill Number	Skill Name
1	Aerial Gunner	36	Metalworking
2	Refuel Operator	37	Mechanical/Electrical Maintenance
3	Loadmaster	38	Civil Engineering
4	Intelligence	39	Fire Protection
5	Photomapping	40	Transportation
6	Weather	41	Food Service
7	Air Operations	42	Fuel Service
8	Air Traffic Control	43	Supply
9	Detection and Deployment	44	Procurement
10	Telecommunications Operations	45	Accounting and Finance
11	Radio Operator	46	Administration
12	Weather Equipment Repair	47	Manpower/Personnel
13	Radar Equipment Repair	48	Education and Training
14	Radio Equipment Repair	49	Security Police
15	Computer Systems Repair	50	Medical/Dental
16	Communications and Crypto Equipment Repair	51	Aircrew Protection
17	Bombing and Navigation Systems Mechanic	52	C-141 Pilot
18	FCS Mechanic	53	C-130 Pilot
19	Weapons Control Systems Mechanic	54	KC-135 Pilot
20	Flight Control and Instrumentation	55	F-4 Pilot
21	Integrated Avionics	56	F-111 Pilot
22	Avionics/Guidance	57	B-52 Pilot
23	Instrument Trainer	58	RF-4 Pilot
24	Defensive Systems Trainer	59	Flight Training Instructor
25	Navigation/Bombing/Tactics Trainer	60	C-130 Air Operations Officer
26	Wire Communications System Maintenance	61	C-141 Air Operations Officer
27	Aircraft Accessory Repair	62	B-52 Air Operations Officer
28	Aircraft Maintenance - Propellor	63	KC-135 Air Operations Officer
29	Aircraft Maintenance - Jet	64	F-4 Air Operations Officer
30	Jet Engine Mechanic	65	F-111 Air Operations Officer
31	Propellor Engine Mechanic	66	RF-4 Air Operations Officer
32	Munitions Maintenance	67	UPT Air Operations Officer
33	Weapons Mechanic	68	B-52 Navigator
34	Vehicle Maintenance	69	KC-135 Navigator
35	Computer Systems Operations		

ATTACHMENT 2 (continued)

Skill Number	Skill Name
70	C-130 Navigator
71	C-141 Navigator
72	F-4 Navigator
73	RF-4 Navigator
74	F-111 Navigator
75	B-52 EWO
76	Air Traffic Control
77	Weapons Control
78	Weather
79	Communications/Electronics Systems
80	Computer Maintenance
81	Aircraft Maintenance/Avionics
82	Munitions
83	Computer Technology
84	Civil Engineering
85	Chartography
86	Transportation
87	Supply
88	Fuels
89	Procurement
90	Financial
91	Administration
92	Personnel/Manpower
93	Education/Training
94	Intelligence
95	Security Police
96	Biomedical
97	Physician
98	Nurse
99	Dental
100	Veterinarian

**ATTACHMENT 3: Output Display Options
Designed for ISEM-P**

**(Examples of output formats actually
used in prototype testing are contained
in Attachment 4)**

I. Purpose of the Display Package

A. Information and Reference

1. Organizational Structure
2. Information and Decision Flow
3. System Delay or Failure Identification
4. Stratified Force Structure Data
5. Management Status

B. Analysis

1. Quantification of System Time Response
2. Statistical Profiles of Force Structure
3. Supply-Demand Comparisons
4. Quantification of Services Delivery

C. Evaluation

1. Decision Process Efficiency
2. Communications Adequacy
3. Augmentation Capability
4. Training Capacity

II. Output Data Generation

A. User Inputs

1. Variable Monitoring Specifications
2. Frequency Specifications
3. Aggregation Requirements

B. Data File Creation

1. Identify, Record and Store
2. Perform Required Manipulations
 - a. Aggregation
 - b. Cross-Tabulation
 - c. Ordering
 - d. Percentages
 - e. Matching
 - f. Formatting
3. Index and Catalogue

III. User Display Options

A. Data Set Selection

1. Total or Sampled File Output
2. Matched Files, e.g., Requirements and Actual Levels
3. Comparative Files, e.g., Two Related Skill Trajectories
4. Sequential Time Files
5. Cross-Sectional Time Files
6. Reference File Dumps

B. Output Format Selection

1. Tabular
 - a. Time Stratification
 - b. Single/Multiple Cell Entries, e.g., Absolutes and Percentages
 - c. Variable Codes or Names
 - d. Subtotals and/or Totals
 - e. Organization or Process
2. Graphical
 - a. Time Scale
 - b. Variable Scale
 - c. Discrete or Overlay Plots
 - d. Intersection Indicators
 - e. Histogram Vertical/Horizontal
 - f. Unit or Grouped Distributions

IV. Output Display Formats

A. General Comments

1. Time Groupings and Scales are Limited to:
 - a. Years
 - b. Years/Months
 - c. Years/Bi-Weekly
2. Variable Descriptors are:
 - a. Location
 - b. Specialty
 - c. Skill Level
 - d. Service or Assignment Incumbency
 - e. Function
 - f. Command

3. Any Grouping of the Above Descriptors Can Be Output in Tabular or Plot Format
4. Cell Entries and Plot Points Can Represent:
 - a. Absolute Personnel Numbers: Actual, Required, Authorized, Projected, Levied or Frozen
 - b. Percentage Level Changes Over Time
 - c. Percentage of Authorized or Required Level
 - d. Abnormal Fluctuations as Measured by a Pre-determined Norm, e.g., Levels Incurring a Greater Than 20 Percent ± Fluctuation

B. Tabular Options

1. One Dimensional Personnel Levels - T-1
2. Two Dimensional Personnel Levels - T-2
3. "n" by Two Dimensional Personnel Levels - T-3
 - a. Two Dimensions are Explicit
 - b. Cell Entries Imply a Grouping of Remaining Descriptors
4. Unit Dimension Summaries - T-4
 - a. Simple Accounting of Personnel by Each Descriptor in a Given Time Period
 - b. Percent Change from Previous Summary is Output
5. Pipeline Occupancy - Training - T-5
 - a. Number in Training is Stratified by Purpose Code (e.g., TDY Enroute Overseas) for a Given Time Period
 - b. Occupancy is Geographically Stratified With Duration in Weeks or Month Groups
6. Pipeline Occupancy - Travel - T-6
 - a. Number in Pipeline is Specified for a Given Travel Purpose and Time Period
 - b. Travel is Geographically Stratified and Duration can be Day or Week Groupings
7. Pipeline Status - Training - T-7
 - a. Volume and Capacity are Indicated as Number of Personnel in a Given Time Period
 - b. Delay is in Days or Weeks as a Function of Queue Length
 - c. Queue Length is Number Exceeding Capacity in a Given Time Period

8. Reference Listing: PIC Organization (Node) File
- T-8*
 - a. Organization Codes are the Office Letter Codes
 - b. Classification Refers to Active (a transaction takes place), Passive (receipt of information), or Dummy (a routing point)
9. PIC Decision Sequence - Organizations - T-9*
 - a. Sequence Number is Order in Which Decisions are Made
 - b. Decision/Action is a General Description of Transaction to Take Place, e.g., Approve, Cancel or Reclama
10. PIC Decision Sequence - Network - T-10*
 - a. Purpose Code Describes Reason for Linkage, e.g., Information Transfer or Request for Decision
 - b. Flow Description is the Transaction Code Assigned by APDS
 - c. Link Time is a Distributed Delay in Days or Weeks
 - d. Frequency Describes a Continuous Flow Situation
11. PIC Organizational Status Summary - T-11*
 - a. Transactions are the Numbers Processed Through a Given Organization for the Specified Purpose
 - b. Queues and Delays are as Described Earlier (7-b, c)
12. PIC Process Status - Network Summary - T-12*
 - a. Summarize One Process Through all Organizations for a Given Time Period
 - b. Column Descriptions are as Above (T-11)
13. "n" Dimensional Threshold Encroachments - T-13
 - a. Categories can Reflect a Grouping of up to Six Descriptors
 - b. Threshold Levels are Predetermined
 - c. Violations are Based on a Linear Projection of Recent Months' Drawdown

C. Graphical Options

1. Single Variable Plots - P-1
2. Two Variable Plots
 - a. Option 1 (P-2) - Plot Points Represent Grouped Data for Two Selected Descriptors

*Not available in ISEM-P.

- b. Option 2 (P-3) - Same as Option 1 Except All Stratifications of One Descriptor Are Shown As Separate Plots on One Graph
- 3. "n" Variable Plots - P-4
- 4. Requirements/Authorization Overplots - P-5
 - a. Actual Levels are Plotted with Requirements or Authorization Over Time
 - b. Intersections are Indicated by a Unique Letter, e.g., "I"
- 5. Cross-Variable Overplots - P-6
 - a. Comparison of Two Different Primary Variables
 - b. More Than Two Variables can be Accommodated
- 6. Unit Variable Distribution - P-7
- 7. Grouped Variable Distributions
 - a. Option 1 (P-8) - Horizontal Histograms
 - b. Option 2 (P-9) - Vertical Histograms

D. Plotting Mechanics

- 1. Scaling Will be With Linear Interpolation Between Minimum and Maximum Data Points
- 2. Expanded Scales Will Be Used for Clarity When Maximums are Relatively Small, i.e., Less than 100
- 3. Explicit Curvature Cannot Be Represented Due to Line Spacing
- 4. Overplots Will Be Accomplished Through Alternate Printing Of Two Buffers
- 5. Standard Scales Will Be Used When Appropriate
- 6. Multiple Plots Will Have Predetermined Intersection Codes
- 7. Printed Legends Can Be Used in Lieu of Variable Descriptions
- 8. Closely Parallel Plots Should Be Produced in Singular Rather Than Multiple Plot Format

Date:

Run Title:

Run Number:

Single Variable Plots

P-1

Variable Group: Skill
Plot Variable: 11xxx
Time Period: 1980

Scale Factors:
Y - 100
X - Month

Date:

Run Title:

Run Number:

Two Variable Plots - Option 1

55

Variable Group: Skill X Location
Plot Variables: 11xxx/Pacific
Time Period: 1980

Scale Factors:
Y - 100
X - Month

Date:

Run Title:

Run Number:

Two Variable Plots - Option 2

P-3

Variable Group: Skill X Location
Plot Variable: 11xxx
Time Period: 1980

Scale Factors:
Y - 100
X - Month

Date:

Run Title:

Run Number:

"n" Variable Plots

P-4

Primary Variable Group:

Skill
11xxx

Primary Plot Variable:

1980

Time Period:

Command/Location

Scale Factors:

Y - 100

X - Month

SAC/CONUS-NT

Classification Variables:

Plot Grouping:

Date:

Run Title:

Run Number:

Requirements / Authorization Overplots

P-5

Primary Variable Group:
Primary Plot Variable:
Time Period:
Classification Variables:
Plot Grouping:

Skill
11xxx
1980
Skill Level / Location
A2 / Pacific

Scale Factors:
Y - 100
X - Month

Date:

Run Title:

Run Number:

Cross-Variable Overplots

P-6

Primary Variable Group:
Plot Groupings:

Time Period:

Skill/Skill Level
 $X = 302 \times 0/A2$
 $Z = 303 \times 0/A3$
1980

Scale Factors:
 $Y = 100$
 $X - Month$

Date:

Run Title:

Run Number:

Unit Variable Distributions

P-7

Variable Group: Skill
Plot Variable: 11xxxx

Scale Factors:
Y - 100
X - Years

Date:

Run Title:

Run Number:

Grouped Variable Distributions - Option 1

P-8

Variable Group: Skill
Plot Variable: 11xxx

Scale Factors:
X - 100
Y - Year Groups

Date:

Run Title:

Run Number:

Grouped Variable Distributions - Option 2

P-9

Variable Group: Skill
Plot Variable: 11xxxx

Scale Factors:
X - Year Groups
Y - 100

Date:

Run Title:

Run Number:

Page:

One-Dimensional Personnel Levels

Dimension Selected: Location

Time Increment: Year x Month

Baseline Date: December 1975

T-1

Dimensional Grouping	Year x Month						Grouping Total
	80-1	80-2	80-3	80-4	80-5	80-6	
Pacific							
European							
CONUS/Eastern Zone							
CONUS/Western Zone							
CONUS/Northern Zone							
							Increment Total

Date:

Run Title:
Run Number:

Two-Dimensional Personnel Levels

Dimensions Selected: Location/Skill - Airman
Time Period: 80-1
Baseline Date: December 1975

Page:

T-2

Skill Category	PACAF	USAFE	CONUS/EZ	Location	CONUS/WZ	CONUS/NT	Skill Category
11xxxx							
111xxx							
112x0							
113x0							
114x0							
20xxxx			
98xxxx			

Date:

Run Title:
Run Number:

Page:

"n" by Two-Dimensional Personnel Levels

Primary Categories: MAJCOM-SAC
Dimensions Selected: Location/Skill - Airman
Time Period: 80-1
Baseline Date: December 1975

Date:

Run Title:
Run Number:

Unit Dimension Summaries of Personnel

Time Period:
Baseline Date:

80-1
December 1975

Page:

T-4

Dimension/Grouping

Location/

USAFE
PACAF
CONUS/NT

• •

Skill (Airman)/

11xxx
111xx
112xx

• •

MAJCOM/
SAC
TAC
MAC

• •

% Change - Previous Period

Number of Personnel

Date:

Run Title:
Run Number:

Page:

Pipeline Occupancy Information - Training

Purpose Code: A
Dimension Selected: Skill
Time Period 80-1
Baseline Date: December 1975

Dimension Grouping	CONUS/EZ	CONUS/WZ			CONUS/NT			PACAF/PAE			USAFE/PAE		
		<2	3-5	>5	<2	3-5	>5	<2	3-5	>5	<2	3-5	>5
11xxx
111xx
112xx
113xx
114xx
20xxx
98xxx

Date:

Run Title:
Run Number:

Page:

Pipeline Occupancy Information - Travel

Purpose: TDY
Dimension Selected: Skill
Time Period: 80-1
Baseline Date: December 1975

Dimension Grouping	Intra CONUS	CONUS-PACAF	CONUS-USAFE
	1 2 >3	1 2 >3	1 2 >3
11xxx			
111xx			
112xx			
113xx			
114xx			
20xxx			
	.	.	.
	.	.	.
	.	.	.
	.	.	.
98xxx			

Date:

Run Title:
Run Number:

Page:

Pipeline Status Information - Training

Time Period: 80-1
Baseline Date: December 1975

<u>Training Sequence</u>	<u>Volume</u>	<u>Volume/ Capacity</u>	<u>Queue</u>	<u>Delay</u>
Tactical Aircraft	2,020	0.67	-	-
Weapons System A	1,620	1.16	260	2
CONUS/EZ	150	0.75	-	-
CONUS/WZ	865	0.87	-	-
CONUS/NT	670	1.34	260	2
Weapons System B	400	0.25	-	-
CONUS/EZ	75	0.19	-	-
CONUS/WZ	25	0.06	-	-
CONUS/NT	300	0.75	-	-

Recon/Observation
CONUS/EZ

Transport/Airlift
CONUS/EZ
CONUS/NT

• • • •

Date:

Run Title:
Run Number:

Page:

Reference Listing: PIC Organization (Node) File

T-8

<u>Node Reference</u>	<u>Organization Name</u>	<u>Organization Code</u>	<u>Classification</u>
001	Con. Base Persn. Off.	CBPO	Process
002	Mil. Persn. Center	MPC	Process
003	Major Command	MAJCOM	Process
.	.	.	.
.	.	.	.
.	.	.	.

Date:

Run Title:
Run Number:

Page:

T-9

PIC Decision Sequence Description - Organizations

Process Selected: Separation/Non-ETS, Officer
Level Selected: Major

<u>Sequence Number</u>	<u>Node Reference</u>	<u>Organization Code</u>	<u>Decision/Action Required</u>
1	001	CBPO	Initiate
2	001	CBPO	Analyze/Forward
3	003	MAJCOM	Comment/Forward
4	002	MPC	Approve/Disapprove/Inform
5	003	MAJCOM	Reclama/Confirmation
6	001	CBPO	Cancel/Implement

Date:

Run Title:
Run Number:

Page:

PIC Decision Sequence - Network Description

T-10

Process Selected:
Level Selected:

<u>Sequence Number</u>	<u>Origin Node</u>	<u>Destination Node</u>	<u>Link Reference</u>	<u>Purpose Code</u>	<u>Flow Description</u>	<u>Link Time</u>	<u>Frequency</u>
1	001	001	Intra	Authr.	Appl.	I	AR
2	001	002 003	12 13	Info.	970	D	AR
3	003	002	32	Info.	974	D	AR
4	002	001 003	21 23	Dec.	977/971	D	AR
5	003	002	32	Recl.	974	D	AR
6	001	002	12	Conf.	992	D	AR

Date:

Run Title:
Run Number:

Page:

PIC Decision Sequence - Network Description

Process Selected: Separation/Non-ETS, Officer
Level Selected: Major

<u>Sequence Number</u>	<u>Origin Node</u>	<u>Destination Node</u>	<u>Link Reference</u>	<u>Purpose Code</u>	<u>Flow Description</u>	<u>Link Time</u>	<u>Frequency</u>
1	001	001	Intra		Appl.	I	
2	001	002 003	12 13		Info.	970	D
3	003	002	32		Info.	974	D
4	002	001 003	21 23		Dec.	977/971	D
5	003	002	32		Recl.	974	D
6	001	002	12		Conf.	992	D

Date:

Run Title:
Run Number:

Page:

PIC Organizational Status Summary

Organization Code: MAJCOM

Time Period: 80-1

<u>Processes Monitored</u>	<u>Current Transactions Pending</u>	<u>Transactions Completed This Period</u>	<u>Maximum Queue Length Encountered</u>	<u>Process Delay Incurred This Period</u>
Separation	250	1,500	175	4
Officer	50	150	25	1
Airmen	200	1,350	150	3

Assignment
Officer
Airmen

Promotion
Officer
Airmen

• • • • •

Date:

Run Title:
Run Number:

Page:

PIC Process Status - Network Summary

Process Selected: Separation
Organizational Level: Major
Time Period: 80-1

<u>Sequence Number</u>	<u>Organization Code</u>	<u>Node Reference</u>	<u>Transactions Pending</u>	<u>Transactions Completed</u>	<u>Max Queue Encountered</u>	<u>Process Delay Incurred</u>
1	CBPO	001	150	700	0	0
2	CBPO	001	125	550	25	2
3	MAJCOM	003	75	675	0	0
4	MPC	002	50	480	75	1
5	MAJCOM	003	50	500	0	0
6	CBPO	001	300	600	150	3

Date:

Run Title:

Run Number:

Page:

"n" Dimensional Threshold Encroachments

Encroachment Limit: 10%
Time Period: 80-1

T-13

<u>Category Description</u>	<u>Threshold Level</u>	<u>Current Level</u>	<u>Violation Protection</u>
1225/TAC/Pacific	3,700	3,990	80-6
1115/TAC/Pacific	.	.	.
1045/MAC/CONUS-NT	.	.	.
75xx/ATC/CONUS-EZ	.	.	.

**ATTACHMENT 4: Output Data Formats Used
for ISEM-P Testing**

(Numbers used in these form examples
are for demonstration only and do not
reflect actual model output data.)

BEST AVAILABLE COPY

	AIR FORCE SKILL LEVELS FOR YEAR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	4410	4411	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426	4427	4428	4429	44210	44211	44212	44213	44214	44215	44216	44217	44218	44219	44220	44221	44222	44223	44224	44225	44226	44227	44228	44229	44230	44231	44232	44233	44234	44235	44236	44237	44238	44239	44240	44241	44242	44243	44244	44245	44246	44247	44248	44249	44250	44251	44252	44253	44254	44255	44256	44257	44258	44259	44260	44261	44262	44263	44264	44265	44266	44267	44268	44269	44270	44271	44272	44273	44274	44275	44276	44277	44278	44279	44280	44281	44282	44283	44284	44285	44286	44287	44288	44289	44290	44291	44292	44293	44294	44295	44296	44297	44298	44299	442100	442101	442102	442103	442104	442105	442106	442107	442108	442109	442110	442111	442112	442113	442114	442115	442116	442117	442118	442119	442120	442121	442122	442123	442124	442125	442126	442127	442128	442129	442130	442131	442132	442133	442134	442135	442136	442137	442138	442139	442140	442141	442142	442143	442144	442145	442146	442147	442148	442149	442150	442151	442152	442153	442154	442155	442156	442157	442158	442159	442160	442161	442162	442163	442164	442165	442166	442167	442168	442169	442170	442171	442172	442173	442174	442175	442176	442177	442178	442179	442180	442181	442182	442183	442184	442185	442186	442187	442188	442189	442190	442191	442192	442193	442194	442195	442196	442197	442198	442199	442200	442201	442202	442203	442204	442205	442206	442207	442208	442209	442210	442211	442212	442213	442214	442215	442216	442217	442218	442219	442220	442221	442222	442223	442224	442225	442226	442227	442228	442229	442230	442231	442232	442233	442234	442235	442236	442237	442238	442239	442240	442241	442242	442243	442244	442245	442246	442247	442248	442249	442250	442251	442252	442253	442254	442255	442256	442257	442258	442259	442260	442261	442262	442263	442264	442265	442266	442267	442268	442269	442270	442271	442272	442273	442274	442275	442276	442277	442278	442279	442280	442281	442282	442283	442284	442285	442286	442287	442288	442289	442290	442291	442292	442293	442294	442295	442296	442297	442298	442299	442300	442301	442302	442303	442304	442305	442306	442307	442308	442309	442310	442311	442312	442313	442314	442315	442316	442317	442318	442319	442320	442321	442322	442323	442324	442325	442326	442327	442328	442329	442330	442331	442332	442333	442334	442335	442336	442337	442338	442339	442340	442341	442342	442343	442344	442345	442346	442347	442348	442349	442350	442351	442352	442353	442354	442355	442356	442357	442358	442359	442360	442361	442362	442363	442364	442365	442366	442367	442368	442369	442370	442371	442372	442373	442374	442375	442376	442377	442378	442379	442380	442381	442382	442383	442384	442385	442386	442387	442388	442389	442390	442391	442392	442393	442394	442395	442396	442397	442398	442399	442400	442401	442402	442403	442404	442405	442406	442407	442408	442409	442410	442411	442412	442413	442414	442415	442416	442417	442418	442419	442420	442421	442422	442423	442424	442425	442426	442427	442428	442429	442430	442431	442432	442433	442434	442435	442436	442437	442438	442439	442440	442441	442442	442443	442444	442445	442446	442447	442448	442449	442450	442451	442452	442453	442454	442455	442456	442457	442458	442459	442460	442461	442462	442463	442464	442465	442466	442467	442468	442469	442470	442471	442472	442473	442474	442475	442476	442477	442478	442479	442480	442481	442482	442483	442484	442485	442486	442487	442488	442489	442490	442491	442492	442493	442494	442495	442496	442497	442498	442499	442500	442501	442502	442503	442504	442505	442506	442507	442508	442509	442510	442511	442512	442513	442514	442515	442516	442517	442518	442519	442520	442521	442522	442523	442524	442525	442526	442527	442528	442529	442530	442531	442532	442533	442534	442535	442536	442537	442538	442539	442540	442541	442542	442543	442544	442545	442546	442547	442548	442549	442550	442551	442552	442553	442554	442555	442556	442557	442558	442559	442560	442561	442562	442563	442564	442565	442566	442567	442568	442569	442570	442571	442572	442573	442574	442575	442576	442577	442578	442579	442580	442581	442582	442583	442584	442585	442586	442587	442588	442589	442590	442591	442592	442593	442594	442595	442596	442597	442598	442599	442600	442601	442602	442603	442604	442605	442606	442607	442608	442609	442610	442611	442612	442613	442614	442615	442616	442617	442618	442619	442620	442621	442622	442623	442624	442625	442626	442627	442628	442629	442630	442631	442632	442633	442634	442635	442636	442637	442638	442639	442640	442641	442642	442643	442644	442645	442646	442647	442648	442649	442650	442651	442652	442653	442654	442655	442656	442657	442658	442659	442660	442661	442662	442663	442664	442665	442666	442667	442668	442669	442670	442671	442672	442673	442674	442675	442676	442677	442678	442679	442680	442681	442682	442683	442684	442685	442686	442687	442688	442689	442690	442691	442692	442693	442694	442695	442696	442697	442698	442699	442700	442701	442702	442703	442704	442705	442706	442707	442708	442709	442710	442711	442

AID FORCE SKILL LEVELS PLAN FOR YEAR 1

PAGE 20 SHEET 20

			AUTHZ'D	DESIRED	EXP. SEP	JPSCRAZE
SKILL (92)	T0*AL.AQMN	L*V-L	1)	HELPER	1326	3978
SKILL (32)	T0*AL.32911	L*V-L	2)	APPRENTICE	2652	7956
SKILL (12)	T0*AL.12MHN	L*V-L	3)	JOURNEYMAN	3979	11934
SKILL (12)	T0*AL.AQMN	L*V-L	4)	TECHNICIAN	5304	15912
SKILL (12)	T0*AL.AQMN	L*V-L	5)	SUPERVISOR	10609	15912
SKILL (92)	T0*AL.AQMN	L*V-L	6)	ARMN.TOTAL	6639	13250
SKILL (92)	T0*AL.42MHN	L*V-L			19890	39780
SKILL (13)	T0*AL.OFFS	L*V-L	1)	LIEUTENANT	2060	5720
SKILL (13)	T0*AL.OFFS	L*V-L	2)	CAPTAIN	5720	11440
SKILL (13)	T0*AL.OFFS	L*V-L	3)	MAJOR	9580	17160
SKILL (13)	T0*AL.OFFS	L*V-L	4)	LTCOLONEL	11440	22680
SKILL (13)	T0*A..OFFS	L*V-L	5)	COLONEL	1300	34320
SKILL (13)	T0*A..OFFS	L*V-L	6)	OFFS.TOTAL	62900	42900
					65800	126700

BEST AVAILABLE COPY

COPY AVAILABLE TO PCU DOES NOT
PERMIT FULLY RELEASE PRODUCTION

80 OVERSEAS

KUNSAM AIR BASE STATUS REPORT FOR YEAR & MONTH & PAGE 5 SHEET 49

FLOW *****										ASSIGN *****				PLAN ***		
C.SUP	SEPNS	OJT.	UP	SCHOL	A.OJT	A.IN	OJT.	IN	P.SUP	SEPNS	OJT	UP	SCHOOL	A.JUT	A.SUP	0.1PR
64/1 RE-C. NAVY: LT.LUTENANT	66	67	68	69	70	71	72	-0	132	134	136	138	139	140	6*	256
64/2 OF-C. NAVY: CAPTAIN	67	68	69	70	71	72	73	-0	134	136	138	140	142	126	512	
64/3 OF-C. NAVY: MAJOR	68	69	70	71	72	73	74	-0	136	138	138	140	142	192	768	
64/4 OF-C. NAVY: LT.COLONEL	69	70	71	72	73	74	75	-0	138	140	142	144	146	256	1024	
64/5 OF-C. NAVY: COLONEL	70	71	72	73	74	75	76	-0	140	142	144	146	148	320	1280	
64/6 QF-C. NAVY: OFFS. TOTAL	345	350	355	360	365	370	375	0	680	690	700	710	720	960	3340	
65/1 F111. NAVY: LT.LUTENANT	67	68	69	70	71	72	73	-0	134	136	138	140	142	65	260	
65/2 F111. NAVY: CAPTAIN	68	69	70	71	72	73	74	-0	136	138	140	142	144	130	520	
65/3 F111. NAVY: MAJOR	69	70	71	72	73	74	75	-0	138	140	142	144	146	195	780	
65/4 F111. NAVY: LT.COLONEL	70	71	72	73	74	75	76	-0	140	142	144	146	148	260	1040	
65/5 F111. NAVY: COLONEL	71	72	73	74	75	76	77	-0	142	144	146	148	150	325	1300	
65/6 F111. NAVY: OFFS. TOTAL	345	350	355	360	365	370	375	0	690	700	710	720	730	975	3300	
66/1 9-52. FMC	LIEUTENANT	68	69	70	71	72	73	-0	136	138	140	142	144	66	264	
66/2 9-52. FMC	CAPTAIN	69	70	71	72	73	74	-0	138	140	142	144	146	132	528	
66/3 9-52. FMC	MAJOR	70	71	72	73	74	75	-0	140	142	144	146	148	196	792	
66/4 9-52. FMC	LT.COLONEL	71	72	73	74	75	76	-0	142	144	146	148	150	264	1072	
66/5 9-52. FMC	COLONEL	72	73	74	75	76	77	-0	144	146	148	150	152	330	1320	
66/6 9-52. FMC	OFFS. TOTAL	350	355	360	365	370	375	0	700	710	720	730	740	990	3360	

80

C.SUP	SEPNS	OJT.	UP	SCHOL	A.OJT	A.IN	OJT.	IN	P.SUP	SEPNS	OJT	UP	SCHOOL	A.JUT	A.SUP	0.1PR
67/1 ATR. T2. CTL	LIEUTENANT	69	70	71	72	73	74	75	-0	136	140	142	144	146	67	268
67/2 ATR. T2. CTL	CAPTAIN	70	71	72	73	74	75	76	-0	140	142	144	146	148	134	536
67/3 ATR. T2. CTL	MAJOR	71	72	73	74	75	76	77	-0	142	144	146	148	150	201	804
67/4 ATR. T2. CTL	LT.COLONEL	72	73	74	75	76	77	78	-0	144	146	148	150	152	268	1072
67/5 ATR. T2. CTL	COLONEL	73	74	75	76	77	78	79	-0	146	148	150	152	154	335	1340
67/6 ATR. T2. CTL	OFFS. TOTAL	355	360	365	370	375	380	385	0	710	720	730	740	750	1005	4020
68/1 WFAPS CH1	LIEUTENANT	70	71	72	73	74	75	76	-0	140	142	144	146	148	68	272
68/2 WFAPS CH1	CAPTAIN	71	72	73	74	75	76	77	-0	142	144	146	148	150	136	544
68/3 WFAPS CH1	MAJOR	72	73	74	75	76	77	78	-0	144	146	148	150	152	204	816
68/4 WFAPS CH1	LT.COLONEL	73	74	75	76	77	78	79	-0	146	148	150	152	154	272	1068
68/5 WFAPS CH1	COLONEL	74	75	76	77	78	79	80	-0	148	150	152	154	156	340	1360
68/6 WFAPS. CH1	OFFS. TOTAL	360	365	370	375	380	385	390	0	720	730	740	750	760	1020	4080

BEST AVAILABLE COPY

SCROLLS AND PADS FOR YEAR/MONTH/PAGE/SHEET

BEST AVAILABLE COPY

C. ENROLL	H. ENROLL	GRADS	SCH. PCK	X. GRADS	K. ENROLL	C. VOL	FVL. NO.	PK. VOL	WAT. QUE	PEAK. QUA
1	6	7	12	19	29	1	1	1	64	125
2	5	11	21	35	53	2	4	2	56	126
3	6	15	30	51	79	3	9	3	81	192
4	7	19	39	57	103	4	16	4	32	108
5	8	23	40	93	129	5	25	5	49	135
6	9	27	57	39	153	6	36	6	68	162
7	10	31	66	115	179	7	49	7	55	169
8	11	35	75	111	203	8	56	8	64	216
9	12	39	86	147	226	9	61	9	72	243
10	13	43	93	153	253	10	100	10	80	270
11	14	47	102	179	279	11	121	11	89	297
12	15	51	111	175	301	12	146	12	95	324
13	16	55	120	211	326	13	169	13	104	351
14	17	59	129	227	351	14	195	14	112	378
15	18	63	136	243	379	15	225	15	128	403
16	19	67	147	259	403	16	256	16	129	434
17	20	71	156	275	429	17	289	17	136	464
18	21	75	165	291	453	18	324	18	146	495
19	22	79	174	307	479	19	361	19	152	513
20	23	83	183	323	503	20	400	20	160	540
21	24	87	192	339	529	21	441	21	163	567
22	25	91	201	355	551	22	494	22	176	594
23	26	95	210	371	579	23	529	23	181	621
24	27	99	219	397	603	24	576	24	192	641
25	28	103	228	403	625	25	625	25	200	675
26	29	107	237	419	651	26	676	26	206	702