

اصول سیستمهای کامپیوتری

فصل دوم کتاب هریس: طراحی مدارات ترکیبی (Chapter 2: Combinational Logic Design)

مدرس: دکتر محمد حسن شیرعلی شهرضا

معرفی درس

فصل دوم: طراحی مدارات ترکیبی (Combinational Logic Design)

فهرست مطالب:

- Introduction
- **Boolean Equations**
- **Boolean Algebra**
- From Logic to Gates
- **Multilevel Combinational Logic**
- X's and Z's
- Karnaugh Maps
- **Combinational Building Blocks**
- **Timing**

- مقدمه
- عبارات بول
 - جبر بول
- از منطق به دروازه های منطقی
 - مدارات ترکیبی چند سطحی
 - \mathbf{Z} و \mathbf{X} و مادهای -
 - جدول کارنو
- اجزای ساختاری مدارات ترکیبی
 - زمانبند*ی*

این جلسه مطابق با فصل دوم از کتاب هریس است

مقدمه

یک مدار منطقی از اجزای زیر تشکیل می شود:

- ورودی ها
- خروجی ها
- مشخص کننده عملکرد
- مشخص کننده زمانبندی

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

مدار منطقي

Nodes

- − Inputs: *A*, *B*, *C*
- Outputs: *Y*, *Z*
- Internal: n1

Circuit elements

- E1, E2, E3
- Each a circuit

گره ها:

- ورودی ها: A, B, C
 - خروجی ها: Y,Z
- گره های داخلی: n1

اجزای مدار:

- E1, E2, E3 •
- هر کدام یک مدار منطقی هستند

انواع مدارهاي منطقي

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs
- Sequential Logic
 - Has memory
 - Outputs determined by previous and current values of inputs

مدارات ترکیبی:

- بدون حافظه
- خروجی ها با توجه به ورودی ها
 در لحظه جاری مشخص می شوند

مدارات ترتيبي:

- دارای حافظه
- خروجی ها با توجه به ورودی های قبلی و ورودی ها در لحظه جاری مشخص می شوند

قواعد مدارهای منطقی ترکیبی

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

- هر جزء مدار یک مدار ترکیبی است
- هر گره یا ورودی است یا فقط به یک خروجی متصل است
 - مدار شامل مسیر برگشتی نیست

مثال:

عبارت جبر بول

- Functional specification of outputs in terms of inputs
- Example:

$$S = F(A, B, C_{in})$$

$$C_{out} = F(A, B, C_{in})$$

تابعی که خروجی ها را بر حسب
 ور.دی ها مشخص می کند

مثال:

$$S = F(A, B, C_{in})$$

 $C_{out} = F(A, B, C_{in})$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

چند تعریف در جبر بول

- مكمل: متغيرى كه بالاى آن يك خط رسم شده است **A'**, **B'**, **C'**
 - اجزا: متغیرها یا مکمل آنها A, A', B, B', C, C'
 - ترکیب: حاصل ضرب چند متغیر یا مکمل متغیر *ABC*, *A'C*, *BC*
 - مینترم: حاصل ضربی که شامل همه متغیرها است **ABC', AB'C', ABC**
- ماکسترم: حاصل جمعی که شامل همه متغیرها است (A+B+C'), (A+B'+C'), (A+B+C)
- Complement: variable with a bar over it A', B', C'
- Literal: variable or its complement A, A', B, B', C, C'
- Implicant: product of literals *ABC*, *A'C*, *BC*
- Minterm: product that includes all input variables *ABC'*, *AB'C'*, *ABC*
- Maxterm: sum that includes all input variables (A+B+C'), (A+B'+C'), (A+B+C)

فرم حاصل جمع حاصل ضرب ها (SOP)

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

- هر عبارتی را می توان بصورت حاصل جمع حاصل ضرب ها (SOP) نوشت
 - در جدول درستی هر سطر یک مینترم است
- مینترم حاصل ضرب متغیرها یا مکمل آنها است
- هر مینترم فقط و فقط برای آن سطر درست است
 - تابع با ترکیب یای (OR) مینترم هایی که مقدار درست دارند ساخته می شود
- بنابراین مجموع (OR) حاصل ضرب ها (AND) است

				minterm
_ A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

فرم حاصل جمع حاصل ضرب ها (SOP)

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

- هر عبارتی را می توان بصورت
 حاصل جمع حاصل ضرب ها (SOP) نوشت
- در جدول درستی هر سطر یک مینترم است
- مینترم حاصل ضرب متغیرها یا مکمل آنها است
- هر مینترم فقط و فقط برای آن سطر درست است
 - تابع با ترکیب یای (OR) مینترم هایی که مقدار درست دارند ساخته می شود
- بنابراین مجموع (OR) حاصل ضرب ها (AND) است

				minterm
A	B	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

فرم حاصل جمع حاصل ضرب ها (SOP)

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

- هر عبارتی را می توان بصورت حاصل جمع حاصل ضرب ها (SOP) نوشت
- در جدول درستی هر سطر یک مینترم است
- مینترم حاصل ضرب متغیرها یا مکمل آنها است
- هر مینترم فقط و فقط برای آن سطر درست است
 - تابع با ترکیب یای (OR) مینترم هایی که مقدار درست دارند ساخته می شود
- بنابراین مجموع (OR) حاصل ضرب ها (AND) است

			_	minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) = \mathbf{AB} + \mathbf{AB} = \Sigma(1, 3)$$

فرم حاصل ضرب حاصل جمع ها (POS)

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

- هر عبارتی را می توان بصورت حاصل ضرب حاصل جمع ها (POS) نوشت
- در جدول درستی هر سطر یک ماکسترم است
- ماكسترم حاصل جمع متغيرها يا مكمل آنها است
- هر ماکسترم فقط و فقط برای آن سطر نادرست است
 - تابع با ترکیب واو (AND) ماکسترم هایی که مقدار نادرست دارند ساخته می شود
- بنابراین حاصل ضرب (AND) حاصل جمع ها (OR) است

A
 B
 Y
 maxterm name

 0
 0
 0
 A + B

$$M_0$$

 0
 1
 1
 A + B
 M_1

 1
 0
 0
 \overline{A} + B
 M_2

 1
 1
 \overline{A} + \overline{B}
 M_3

$$Y = F(A, B) = (A + B)(A + B) = \Pi(0, 2)$$

مثال برای عبارت جبر بول

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open (O) or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

- شما نهار نمی خورید (E)
- اگر سلف باز (0) نباشد یا
- سلف فقط کورن داگ (C) داشته باشد
- یک جدول درستی رسم کنید که نشان دهد شما در چه حالتی نهار می خورید (E) .

0	С	Ε
0	0	
0	1	
1	0	
1	1	

مثال برای عبارت جبر بول

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open (O) or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

- شما نهار نمی خورید (E)
- اگر سلف باز (0) نباشد یا
- سلف فقط کورن داگ (C) داشته باشد
- یک جدول درستی رسم کنید که نشان دهد شما در چه حالتی نهار می خورید (E) .

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

عبارت در قالب های 50P و POS

• حاصل جمع حاصل ضرب ها SOP – sum-of-products

0	С	E	minterm
0	0		OC
0	1		O C
1	0		$O\overline{C}$
1	1		ОС

حاصل ضرب حاصل جمع ها
 POS – product-of-sums

0	С	Y	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

عبارت در قالب های SOP و POS

حاصل جمع حاصل ضرب ها SOP – sum-of-products

0	С	Ε	minterm
0	0	0	<u> </u>
0	1	0	O C
1	0	1	\overline{C}
1	1	0	O C

$$Y = OC'$$

$$= \Sigma(2)$$

0	С	Ε	maxterm
0	0	0	0 + C)
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

• حاصل ضرب حاصل جمع ها POS – product-of-sums

$$Y = (O' + C')(O' + C)(O + C)$$

= $\Pi(0, 1, 3)$

جبر بول

- اصول و قضایا برای ساده کردن عبارات
- مشابه جبر معمولی است، ولی ساده تر:
 متغیرها فقط دو مقدار دارند (0 و 1)
- دوگان اصول و قضایا:
 در دوگان AND و O و 1 تغییر می کنند

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

جبر بول

• اصول و دوگان آنها

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	T = 0	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

• قضایا و دوگان آنها

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

قضیه همانی • قضیه همانی Identity Theorem

$$\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$$

$$\mathbf{B} + \mathbf{0} = \mathbf{B}$$

قضیه همانی

• قضیه همانی Identity Theorem

$$\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$$
$$\mathbf{B} + \mathbf{0} = \mathbf{B}$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 = B

قضیه عضو تهی • قضیه عضو تهی

• قضیه عضو تهی Null Element Theorem

$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

$$\mathbf{B} + \mathbf{1} = \mathbf{1}$$

قضیه عضو تهی • قضیه عضو تهی

• قضیه عضو تهی Null Element Theorem

$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

$$\mathbf{B} + \mathbf{1} = \mathbf{1}$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

قضیه خود توانی

• قضیه خود توانی Idempotency Theorem

$$\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$$

$$\mathbf{B} + \mathbf{B} = \mathbf{B}$$

قضیه خود توانی

• قضیه خود توانی Idempotency Theorem

$$\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$$
$$\mathbf{B} + \mathbf{B} = \mathbf{B}$$

$$B = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 = B

قضیه پیچشی • قضیه پیچشی Involotion Theorem

$$(B')' = B$$

قضيه پيچشي

• قضیه پیچشی Involotion Theorem

$$(B')' = B$$

$$B \longrightarrow - = B$$

قضيه مكمل

• قضیه مکمل Complement Theorem

$$B \cdot B' = 0$$

 $B + B' = 1$

$$\frac{B}{B}$$
 = 0 ----

$$\frac{B}{B}$$
 $=$ 1

خلاصه قضایای جبر بول

• قضایا و دوگان آنها

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

تعداد دیگری از قضایای جبر بول

• قضایا و دوگان آنها

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7'	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12'	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem
	$-\sqrt{D_0+D_1+D_2}$		= \D0 • D1 • D2/	rneorem

• مثال ١:

$$Y = AB + A'B$$

• مثال ١:

$$Y = AB + A'B$$

$$= B(A + A)$$
 T8

$$= B(1)$$
 T5'

$$= B$$
 T1

• مثال ۲:

$$Y = Y = A(AB + ABC)$$

• مثال ۲:

•
$$Y = A(AB + ABC)$$

$$= A(AB(1 + C))$$
 T8

$$= A(AB(1))$$
T2'

$$= A(AB)$$
 T1

$$= (AA)B$$
 T7

$$= AB$$
 T3

قضیه دمورگان

• قضیه دمورگان DeMorgan Theorem

$$\bullet \ Y = (AB)' = A' + B'$$

$$A = A = A = A$$

$$A = A = A$$

جابجایی مکمل ها

- جابجایی مکمل ها Bubble Pushing
 - عقب سو Backward

بدنه تغییر می کند مکمل ها به ورودی اضافه می شوند

• جلو سو Forward

بدنه تغییر می کند مکمل ها به خروجی اضافه می شوند

جابجایی مکمل ها

• عبارت جبر بول برای مدار زیر چیست؟

جابجایی مکمل ها

• عبارت جبر بول برای مدار زیر چیست؟

$$Y = AB + CD$$

- از خروجی شروع کرده و به سمت ورودی ها می رویم
 - مكمل خروجي را به عقب مي بريم
- گیت ها را به شکلی رسم می کنیم که مکمل ها حذف شوند

تبدیل عبارات منطقی به دروازه های منطقی

- مدار دو سطحى: لايه اول AND و لايه دوم
 - مثال

$$Y A'B'C' + A'B'C + AB'C$$

قواعد رسم مدار

- ورودی ها در سمت چپ (یا بالا)
- خروجی ها در سمت راست (یا پایین)
- جریان دروازه های منطقی از چپ به راست
 - اتصالات مستقيم بهتر هستند

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

قواعد رسم مدار (ادامه)

- سیم است ایک تقاطع ${f T}$ شکل نشانه اتصال دو سیم است ${f T}$
- یک نقطه در محل تلاقی دو سیم نشانه اتصال بین آن دو سیم است
 - سیم هایی که نقطه ندارند به یکدیگر متصل نیستند

Circuit Schematics Rules

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect wires connect without a dot do not connect

at a T junction at a dot not connect

مدار با چند خروجی

• مثال: مدار اولویت

خروجی فعال متناسب با ورودی درست با اهمیت بیشتر است

Example:

Output asserted corresponding to most significant TRUE input

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_o	Y ₃	Y ₂	Y ₁	Yo
Ω	0	0	0			•	
Ö	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	1 0				
0	1	1	1				
	0	0	1 0				
1 1	0	0	1 0				
1	0	1	0				
1	0	1	1 0				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

مدار با چند خروجی

• مثال: مدار اولویت

خروجی فعال متناسب با ورودی درست با اهمیت بیشتر است

Example:

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y ₃	Y ₂ 0 0 0 1 1 1 0 0 0 0 0 0 0	Y ₁	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1 1 1	A_2 0 0 0 1 1 0 0 1 1 1 1	A_1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

سخت افزار مدار اولویت

• سخت افزار مدار اولویت (Priority Circuit Hardware)

	A_3	A_2	A_{1}	A_{o}	Y_3	Y_2	Y_1	Y_o
-	0 0 0 0 0 0 0 1 1 1 1			0		0		0
	0	0	0	1	0	0	0	1
	0	0	1	0	0	0	1	0
	0	0	1	1	0	0	1	0
	0	1	0	0	0	1	0	0
	0	0 0 0 1 1 1 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0101010101010	00000001111111	1	0	0
	0	1	1	0	0	1	0	0
	0	1	1	1	0	1	0	0
	1	0		0	1	0	0	0
	1	0	0	1	1	0	0	0
	1	0	1	0	1	0	0	0
	1	0	0 1 1 0 0	1	1	0	0	0
	1	1	0	0	1	0	0	0
	1	1	0	1	1	0	0	0
	1	1	1	0		0 0 0 0 1 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0
	1	1	1	1	1	0	0	0

حالات بدون اهميت

• حالات بدون اهميت (Don't Care)

• حالات بدون اهمیت را با X نشان می دهند

A_3	A_2	A_{1}	A_{o}	Y ₃	Y_2	Y_1	Y_o
$egin{array}{c} A_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0		0	0	0		0
0	0	0	1	0	0	0	1
0	0 0 0 1 1 1 0 0 0	0 0 1 1 0 0 1 1 0 0 1	0 1 0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1 0 1 0 1 0 1 0 1	0 0 0 0 0 1 1 1 1 1 1 1	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0 0 0	1	0	0
1	X	X	X	1	0	0	0

بافر سه حالته

• بافر سه حالته (Tristate Buffer)

- خروجی می تواند صفر یا یک یا باز باشد
- در حالتی که خروجی باز است مقدار خروجی نامشخص بوده و به آن امپدانس بالا
 (High Impedane) می گویند
 - حالت امپدانس بالا را با Z نشان می دهند \circ

E	Α	Y
0	0	Z
Ο	1	Ζ
1	0	0
1	1	1

جدول كارنو

(K-Maps) (Karnaugh Maps) • جدول کارنو

- عبارات جبر بول را می توان با ترکیب ترم های آن ساده کرد
- جدول کارنو یک روش گرافیکی برای ساده کردن عبارات است

$$PA + PA' = P$$
 مثال: O

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y A	В			
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0

C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABŌ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

جدول كارنو

(K-Maps) (Karnaugh Maps) • جدول کارنو

- اگر در یک مستطیل همه اعضا 1 باشند، دور آن دایره رسم می شود
- در عبارت جبر بول متناظر با آن دایره، متغیرهایی که در تمام سلول های آن دایره
 وجود دارند یا در هیچکدام وجود ندارند، آورده می شوند
- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are not in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y A	В			
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0
				ـشگاه صنعتی

• جدول کارنو۳ متغیره (3-Input K-Map)

Truth Table

_ A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

Y C	B 00	01	11	10
0				
1				

• جدول کارنو۳ متغیره (3-Input K-Map)

Truth Table

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

•
$$Y = A'B + BC'$$

تعاریف مربوط به جدول کارنو

• تعاریف مربوط به جدول کارنو(K-Maps Definitions)

- ه مکمل: متغیری که علامت معکوس دارد A', B', C'
 - **جزء:** متغیر یا مکمل آن *A,A',B,B',C,C'*
 - **ترکیب:** حاصل ضرب چند جزء **AB'C, A'C, BC**
- ترکیب ضروری: ترکیب متناظر با بزرگترین دایره در جدول کارنو
- Complement: variable with a bar over it A', B', C'
- Literal: variable or its complement A, A', B, B', C, C'
- **Implicant:** product of literals AB'C, A'C, BC
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

قواعد جدول كارنو

- قواعدجدول كارنو(K-Maps Rules)
 - هر 1 حداقل باید در یک دایره باشد
 - هر دایره باید یک مستطیل باشد
- که طول و عرض آن توان ۲ (یعنی ۱ یا ۲ یا ۴ یا ...) باشند
 - هر دایره باید بزرگترین دایره ممکن باشد
 - یک دایره می تواند در لبه ها شکسته شود
 - (X) حالات بدون تفاوت (X)
- فقط اگر به ساده کردن عبارت کمک می کنند در دایره هستند
- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

Α	В	С	D	Y
0	0		0	1
0	0 0	0 0	1	1 0
0	0	1	1 0	
0	0	1		1
0	1	0	0	0
0	0 1 1 1 1 0 0	0	1 0 1 0	1
0	1	1	0	1
0	1	1		1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1 1 1	0	1 0 1 0 1 0 1	1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1	1	1 0 0 1 0 0 1 0 0 1 1	0	0
1	1	1	1	0

Α	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0		1 0	1
0	0	1 0 0 1 0 0 1 0 0	1	
0		0	0	0
0	1 1 1	0	1 0 1 0	1
0	1	1	0	1
0	1	1	1	1
1	1 0 0 0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	1	1	1 0 1 0 1 0 1	0
1	1	1	1	0

Y						
CDA	B 00	01	11	10		
00	1	0	0	1		
01	0	1	0	1		
11	1	1	0	0		
10	1	1	0	1		

Α	В	С	D	Y
0	0		0	1
0	0 0	0	0 1 0	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 1 1 1 0 0 0 0 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1 1	1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 0 0 0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

Α	В	С	D	Y
0	0	0		1
0	0	0 0	1	1 0
0	0	1	0	
0	0	1 1 0	1	1
0	1	0	0	0
0	1 1	0 1 1 0 0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1 1 0	1	X
1	1	0	0	X
0 0 0 0 0 0 0 1 1 1 1 1	0 0 1 1	0	0 1 0 1 0 1 0 1 0 1	1 0 X 1 1 1 X X X X
1	1	1	0	X
1	1	1	1	X

Y CD A	B 00	01	11	10
00				
01				
11				
10				

Α	В	С	D	Y
0	0	0	0	1
0	0		1	1 0
0	0	1	0	
0	0	0 1 1	1 0 1 0	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	1 0 0 0	1 0 0 1 1	1 0 1 0 1 0 1 0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1 1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	1 0 X 1 1 1 X X X
1	1	1	1	X

Υ	_			
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	Х

Α	В	С	D	Y
0	0	0	0	1
0	0		1	1 0
0	0	1	0	
0	0	0 1 1	1 0 1 0	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	1 0 0 0	1 0 0 1 1	1 0 1 0 1 0 1 0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1 1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	1 0 X 1 1 1 X X X
1	1	1	1	X

$$Y = A + \overline{BD} + C$$

ساختارهای پایه در مدارات ترکیبی

- ساختارهای پایه در مدارات ترکیبی (Combinational Building Blocks)
 - مالتی پلکسر (Multiplexers)
 - کدگشا یا دیکدر (Decoders)

مالتي پلكسر

• مالتی پلکسر (Multiplexer) یا MUX

- یکی از N ورودی ها را به خروجی متصل می کند
- تعداد $\log_2 N$ بیت برای انتخاب یا کنترل ورودی دارد
 - مثال: یک مالتی یلکسر ۲ به ۱

- Selects between one of
 N inputs to connect to output
- log₂*N*-bit select input control input
- Example: **2:1 Mux**

S	D_1	D_0	Y	S	Υ
0	0	0	0	0	D_0
0	0	1	1	1	D_1
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

پیاده سازی مالتی پلکسر

- پیاده سازی با دروازه های منطقی (Logic gates)
- در قالب حاصل جمع حاصل ضرب ها (Sum-of-products form)

پیاده سازی مالتی پلکسر

- پیاده سازی با بافر سه حالته (Tristates)
- برای مالتی پلکسر با N ورودی از N بافر سه حالته استفاده می شود
- هر بار فقط یکی از این بافرها فعال می شود تا ورودی مورد نظر انتخاب شود
- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

پیاده سازی یک مدار ترکیبی با مالتی پلکسر

- پیاده سازی یک مدار ترکیبی با مالتی پلکسر
- مى توان از مالتى پلكسر معادل جدول درستى استفاده كرد
- Using the mux as a lookup table

_ <i>A</i>	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = AB$$

پیاده سازی یک مدار ترکیبی با مالتی پلکسر

- پیاده سازی یک مدار ترکیبی با مالتی پلکسر
 - استفاده از مالتی پلکسر کوچکتر
- Reducing the size of the mux

كدكشا

- کدگشا یا دیکدر (Decoders)
- ورودی و 2^N خروجی دارد $^{\bullet}$
- هر لحظه فقط یک خروجی فعال است
- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

پیاده سازی کدگشا

• پیاده سازی کدگشا یا دیکدر (Decoder Implementation)

پیاده سازی یک مدار ترکیبی با کدگشا

- پیاده سازی یک مدار ترکیبی با کدگشا(Logic Using Decoders)
 - مینترم ها با یکدیگر OR می شوند (OR minterms)
 - مثال: پیاده سازی نقیض یای انحصاری یا XNOR

زمانبندي

- زمانبندی(Timing)
- به مدت زمان بین تغییر کردن ورودی تا تغییر کردن خروجی، تاخیر مدار گفته می شود
 - چگونه می توان مدارات سریع تری ساخت؟
 - Delay between input change and output changing
 - How to build fast circuits?

زمانبندي

- دلايل ايجاد تاخير
- خازن ها و مقاومت های موجود در مدار باعث تاخیر می شوند
 - محدودیت سرعت نور نیز وجود دارد
 - زمان تغییر وقتی مدار از یک به صفر می رود
 با زمانی که از صفر به یک می رود متفاوت است
- در مدارای که چند ورودی و چند خروجی دارد، بعضی از آنها سریع تر هستند
 - مدار زمانی که گرم باشد کندتر بوده و زمانی که سرد باشد سریعتر است
 - Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

زمانبندي

• كوتاهترين مسير و مسير بحراني (طولاني) (Critical (Long) & Short Paths)

در تهیه این پاورپوینت از پاورپوینت فصل دوم کتاب زیر استفاده شده است:

Sarah L. Harris and David Harris, Digital Design and Computer Architecture, RISC-V Edition, 1st Edition, 2022

Digital Design and Computer Architecture RISC-V Edition

