FCC Part 15C Measurement and Test Report

For

Y-cam Solutions Ltd

3 Dee Road, Richmond, Surrey. United Kingdom

FCC ID: V4FCUBE

FCC Rules: FCC Part 15C

Product Description: Y-cam Cube

Tested Model: <u>Cube</u>

Report No.: <u>STR130185411</u>

Tested Date: <u>2013-01-23 to 2013-02-20</u>

Issued Date: <u>2013-02-20</u>

Tested By: <u>Jack Li / Engineer</u>

Reviewed By: <u>Lahm Peng / EMC Manager</u>

Approved & Authorized By: <u>Jandy so / PSQ Manager</u>

Prepared By:

SEM.Test Compliance Service Co., Ltd

3/F, Jinbao Commerce Building, Xin'an Fanshen Road,

Jack Li Lahm peny Jumbres

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd

TABLE OF CONTENTS

Y-cam Solutions Ltd

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.5 EUT SETUP AND TEST MODE	
2. SUMMARY OF TEST RESULTS	
3. ANTENNA REQUIREMENT	
•	
3.1 Standard Applicable	
4. POWER SPECTRAL DENSITY	
4.1 STANDARD APPLICABLE	
4.3 TEST PROCEDURE	
4.4 ENVIRONMENTAL CONDITIONS	
4.5 SUMMARY OF TEST RESULTS/PLOTS	9
5. 6DB BANDWIDTH	15
5.1 STANDARD APPLICABLE	
5.2 TEST EQUIPMENT LIST AND DETAILS	
5.4 ENVIRONMENTAL CONDITIONS	
5.5 SUMMARY OF TEST RESULTS/PLOTS	
6. RF OUTPUT POWER	22
6.1 Standard Applicable	22
6.2 TEST EQUIPMENT LIST AND DETAILS	
6.3 Test Procedure	
6.4 ENVIRONMENTAL CONDITIONS	
7. FIELD STRENGTH OF SPURIOUS EMISSIONS	
7.1 MEASUREMENT UNCERTAINTY	
7.2 STANDARD APPLICABLE	
7.3 TEST EQUIPMENT LIST AND DETAILS	33
7.4 Test Procedure	
7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
7.7 SUMMARY OF TEST RESULTS/PLOTS	
8. OUT OF BAND EMISSIONS	57
8.1 STANDARD APPLICABLE	
8.2 TEST EQUIPMENT LIST AND DETAILS	57
8.3 TEST PROCEDURE	
8.4 Environmental Conditions	
9. CONDUCTED EMISSIONS	
9.1 MEASUREMENT UNCERTAINTY	
9.2 TEST EQUIPMENT LIST AND DETAILS.	
9.3 TEST PROCEDURE	73
9.4 BASIC TEST SETUP BLOCK DIAGRAM	
9.5 Environmental Conditions	
9.6 TEST RECEIVER SETUP	
9.7 SUMMARY OF TEST RESULTS/PLOTS	
9.8 CONDUCTED EMISSIONS TEST DATA	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Y-cam Solutions Ltd

Address of applicant: 3 Dee Road, Richmond, Surrey. United Kingdom

Manufacturer: Y-cam Solutions Ltd

Address of manufacturer: 3 Dee Road, Richmond, Surrey. United Kingdom

General Description of EUT	
Product Name:	Y-cam Cube
Trade Name:	Y-cam
Model No.:	Cube
Adding Model(s):	Cube White, Cube Black
Rated Voltage:	12V

Note: The test data is gathered from a production sample, provided by the manufacturer. The other model listed in the report has different appearance only of Cube without circuit and electronic construction changed, declared by the manufacturer.

Technical Characteristics of EUT	
Support Standards:	802.11b/g/n
Frequency Range:	2412-2462MHz
RF Output Power:	10.10 dBm (Conducted)
Data Rate:	1-11Mbps, 6-54Mbps, up to 150Mbps
Modulation:	CCK, BPSK, QPSK, 16QAM, 64QAM
Quantity of Channels:	11
Channel Separation:	5MHz
Antenna Type:	Integral Antenna
Antenna Gain:	2.5 dBi
Lowest Internal Frequency of EUT:	32.768kHz
Device Category:	Fixed Device

1.2 Test Standards

The following report is prepared on behalf of the Y-cam Solutions Ltd in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The public notice KDB 558074 for digital transmission systems shall be performed also.

1.4 Test Facility

• FCC – Registration No.: 994117

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

• Industry Canada (IC) Registration No.: 7673A

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

• CNAS Registration No.: L4062

Shenzhen SEM. Test Electronics Service Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.C (518101)

REPORT NO.: STR13018541I PAGE 4 OF 76 FCC PART 15.247

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List				
Test Mode	Description	Remark		
TM1	802.11b	2412MHz, 2437MHz, 2462MHz		
TM2	802.11g	2412MHz, 2437MHz, 2462MHz		
TM3	802.11n-HT20	2412MHz, 2437MHz, 2462MHz		

Special Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
USB Cable 0.2		Shielded	Without Ferrite			
RJ45 Cable	1.0	Unshielded	Without Ferrite			

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						
PC	Samsung	R20	/			
Adapter	Ktec	KSA0101200100D5	/			

Auxiliary Cable List and Details				
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite				
RJ45 Cable	4.0	Unshielded	Without Ferrite	
DC Line	3.0	Unshielded	Without Ferrite	

REPORT NO.: STR13018541I PAGE 5 OF 76 FCC PART 15.247

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.247(e)	Power Spectral Density Compli	
§ 15.247(a)(2)	6 dB Bandwidth Compli	
§ 15.247(b)(3)	RF Output Power Compl	
§ 15.209(a)(d)	Radiated Emission Con	
§ 15.247(d)	Band Edge (Out of Band Emissions)	Compliant

N/A: not applicable

3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Evaluation Information

This product has a permanent antenna, fulfill the requirement of this section.

REPORT NO.: STR13018541I PAGE 7 OF 76 FCC PART 15.247

4. Power Spectral Density

4.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2012-03-28	2013-03-27
Attenuator	ATTEN	ATS100-4-20	/	2012-03-28	2013-03-27

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

4.3 Test Procedure

According to the KDB 558074, the test method of power spectral density as below:

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW \geq 3 kHz.
- 5. Set the VBW \geq 3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

4.5 Summary of Test Results/Plots

Test Mode	Test Channel MHz	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	2412	-14.70	8
802.11b	2437	-15.49	8
	2462	-16.66	8
	2412	-19.47	8
802.11g	2437	-20.36	8
	2462	-21.66	8
	2412	-19.42	8
802.11n HT20	2437	-20.21	8
	2462	-21.57	8

Please refer to the following test plots:

802.11b-Low Channel

802.11b-Middle Channel

802.11b-High Channel

802.11g-Low Channel

802.11g-Middle Channel

802.11g-High Channel

802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

802.11n-HT20-High Channel

5. 6dB Bandwidth

5.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2012-03-28	2013-03-27
Attenuator	ATTEN	ATS100-4-20	/	2012-03-28	2013-03-27

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.3 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission..

5.4 Environmental Conditions

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

5.5 Summary of Test Results/Plots

Test Mode	Test Channel MHz	6 dB Bandwidth kHz	Limit kHz	
	2412	12387	500	
802.11b	2437	12260	500	
	2462	11794	500	
802.11g	2412	16550	500	
	2437	16549	500	
	2462	16517	500	
802.11n-HT20	2412	16569	500	
	2437	16532	500	
	2462	16547	500	

Please refer to the following test plots:

802.11b-Low Channel

802.11b-Middle Channel

802.11b-High Channel

802.11g-Low Channel

802.11g-Middle Channel

802.11g-High Channel

802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

802.11n-HT20-High Channel

6. RF Output Power

6.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

6.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Spectrum Analyzer	Agilent	E4402B	US41192821	2012-03-28	2013-03-27	
Attenuator	ATTEN	ATS100-4-20	/	2012-03-28	2013-03-27	

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

According to section 15.247(b)-power output of the KDB-558074 (2012),

- 1. This procedure provides an integrated measurement alternative when the maximum available RBW < EBW.
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 3 MHz.
- 4. Set the span to a value that is 5-30 % greater than the EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

6.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

6.5 Summary of Test Results/Plots

Test Mode	Frequency MHz	Reading dBm	Output Power mW	Limit mW
	2412	9.73	9.3972	1000
802.11b_short_1Mbps	2437	8.76	7.5162	1000
	2462	7.79	6.0117	1000
	2412	10.10	10.2329	1000
802.11b_short_11Mbps	2437	8.98	7.9068	1000
	2462	7.26	5.3211	1000
	2412	6.16	4.1305	1000
802.11g_6Mbps	2437	5.25	3.3497	1000
	2462	3.80	2.3988	1000
	2412	6.64	4.6132	1000
802.11g_54Mbps	2437	4.88	3.0761	1000
	2462	4.24	2.6546	1000
	2412	6.59	4.5604	1000
802.11n HT20_MCS0	2437	5.03	3.1842	1000
	2462	3.77	2.3823	1000
	2412	6.86	4.8529	1000
802.11n HT20_MCS7	2437	5.08	3.2211	1000
	2462	4.03	2.5293	1000

Please refer to the following test plots:

802.11b-short-1Mbps-Low Channel

802.11b-short-1Mbps-Middle Channel

802.11b-short-1Mpbs-High Channel

802.11b-short-11Mbps-Low Channel

802.11b-short-11Mbps-Middle Channel

802.11b-short-11Mpbs-High Channel

802.11g-6Mbps-Low Channel

802.11g-6Mbps-Middle Channel

802.11g-6Mpbs-High Channel

802.11g-54Mbps-Low Channel

802.11g-54Mbps-Middle Channel

802.11g-54Mpbs-High Channel

802.11n-HT20-MCS0-Low Channel

802.11n-HT20-MCS0-Middle Channel

802.11n-HT20-MCS0-High Channel

802.11n-HT20-MCS7-Low Channel

802.11n-HT20-MCS7-Middle Channel

802.11n-HT20-MCS7-High Channel

7. Field Strength of Spurious Emissions

7.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is +5.10 dB.

7.2 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

7.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2012-03-28	2013-03-27
EMI Test Receiver	R&S	ESVB	825471/005	2012-03-28	2013-03-27
Pre-amplifier	Agilent	8447F	3113A06717	2012-03-28	2013-03-27
Pre-amplifier	Compliance Direction	PAP-0118	24002	2012-03-28	2013-03-27
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2012-02-25	2013-02-24
Horn Antenna	ETS	3117	00086197	2012-02-25	2013-02-24
Horn Antenna	Horn Antenna ETS		00088203	2012-02-25	2013-02-24
Loop Antenna SCHWARZECK		HFRA 5165	9365	2012-02-25	2013-02-24

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

REPORT NO.: STR13018541I PAGE 33 OF 76 FCC PART 15.247

7.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

7.6 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

7.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst margin of:

-2.66 dB at 249.4250 MHz in the Horizontal polarization for 802.11n-HT20 Low Channel, 9kHz to 25 GHz, 3 Meters

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

REPORT NO.: STR13018541I PAGE 35 OF 76 FCC PART 15.247

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT: Y-cam Cube

Tested Model: Cube

Operating Condition: 802.11b Transmitting Low Channel-2412MHz

Comment: AC120V/60Hz, 12V DC

Test Specification: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	251.1804	35.26	7.34	42.60	46.00	-3.40	212	100	peak
2	642.8613	20.33	15.14	35.47	46.00	-10.53	321	200	peak
3	750.1083	18.72	17.78	36.50	46.00	-9.50	242	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	28.52	4.53	33.05	43.50	-10.45	124	100	peak
2	213.7634	30.33	5.52	35.85	43.50	-7.65	242	100	peak
3	249.4250	35.08	7.27	42.35	46.00	-3.65	201	100	peak

Operating Condition: 802.11b Transmitting Middle Channel-2437MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	249.4250	33.87	7.27	41.14	46.00	-4.86	130	100	peak
2	321.0608	25.18	10.46	35.64	46.00	-10.36	234	100	peak
3	965.5421	21.59	18.37	39.96	54.00	-14.04	340	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	28.31	4.53	32.84	43.50	-10.66	320	100	peak
2	213.7634	31.66	5.52	37.18	43.50	-6.32	304	100	peak
3	249.4250	34.65	7.27	41.92	46.00	-4.08	259	100	peak

Operating Condition: 802.11b Transmitting High Channel-2462MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	27.26	5.52	32.78	43.50	-10.72	240	100	peak
2	251.1804	33.70	7.34	41.04	46.00	-4.96	51	100	peak
3	750.1083	20.08	17.78	37.86	46.00	-8.14	148	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	27.53	4.53	32.06	43.50	-11.44	127	100	peak
2	249.4250	34.65	7.27	41.92	46.00	-4.08	344	100	peak
3	965.5421	21.42	18.37	39.79	54.00	-14.21	287	100	peak

Operating Condition: 802.11g Transmitting Low Channel-2412MHz

Comment: AC120V/60Hz, 12V DC

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
		(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
Ī	1	219.8449	24.25	5.91	30.16	46.00	-15.84	115	200	peak
Ī	2	251.1804	35.04	7.34	42.38	46.00	-3.62	227	100	peak
	3	857.0247	20.96	17.97	38.93	46.00	-7.07	165	200	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	158.1123	27.51	3.63	31.14	43.50	-12.36	38	100	peak
2	213.7634	29.86	5.52	35.38	43.50	-8.12	134	100	peak
3	249.4250	34.58	7.27	41.85	46.00	-4.15	218	100	peak

Operating Condition: 802.11g Transmitting Middle Channel-2437MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	31.68	5.52	37.20	43.50	-6.30	67	100	peak
2	249.4250	34.37	7.27	41.64	46.00	-4.36	257	100	peak
3	321.0608	25.18	10.46	35.64	46.00	-10.36	133	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	32.31	5.52	37.83	43.50	-5.67	200	100	peak
2	249.4250	34.15	7.27	41.42	46.00	-4.58	173	100	peak
3	965.5421	23.92	18.37	42.29	54.00	-11.71	242	100	peak

Operating Condition: 802.11g Transmitting High Channel-2462MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	251.1804	34.96	7.34	42.30	46.00	-3.70	157	100	peak
2	965.5421	20.57	18.37	38.94	54.00	-15.06	205	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	28.31	4.53	32.84	43.50	-10.66	223	100	peak
2	213.7634	31.41	5.52	36.93	43.50	-6.57	220	100	peak
3	251.1804	34.57	7.34	41.91	46.00	-4.09	154	100	peak

Operating Condition: 802.11n-HT20 Transmitting Low Channel-2412MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	28.08	5.52	33.60	43.50	-9.90	350	100	peak
2	249.4250	36.07	7.27	43.34	46.00	-2.66	131	200	peak
3	965.5421	22.09	18.37	40.46	54.00	-13.54	174	100	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	28.52	4.53	33.05	43.50	-10.45	240	100	peak
2	213.7634	30.33	5.52	35.85	43.50	-7.65	196	100	peak
3	249.4250	35.08	7.27	42.35	46.00	-3.65	218	100	peak

Operating Condition: 802.11n-HT20 Transmitting Middle Channel-2437MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	31.68	5.52	37.20	43.50	-6.30	211	100	peak
2	251.1804	34.30	7.34	41.64	46.00	-4.36	208	100	peak
3	750.1083	21.28	17.78	39.06	46.00	-6.94	137	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	124.5690	28.51	4.53	33.04	43.50	-10.46	275	100	peak
2	213.7634	27.45	5.52	32.97	43.50	-10.53	129	100	peak
3	249.4250	33.61	7.27	40.88	46.00	-5.12	268	100	peak

Operating Condition: 802.11n-HT20 Transmitting High Channel-2462MHz

Comment: AC120V/60Hz, 12V DC

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	31.68	5.52	37.20	43.50	-6.30	178	100	peak
2	249.4250	32.87	7.27	40.14	46.00	-5.86	234	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	213.7634	31.66	5.52	37.18	43.50	-6.32	210	100	peak
2	249.4250	35.15	7.27	42.42	46.00	-3.58	138	100	peak
3	965.5421	23.92	18.37	42.29	54.00	-11.71	165	100	peak

Spurious Emissions Above 1GHz

Test Mode: 802.11b

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Chann	el-2412MHz			
4824	63.72	-3.88	59.84	74.00	-14.16	Н	PK
4824	45.38	-3.88	41.50	54.00	-12.50	Н	AV
7236	46.07	1.14	47.21	74.00	-26.79	Н	PK
7236	33.37	1.14	34.51	54.00	-19.49	Н	AV
4824	70.08	-3.88	66.20	74.00	-7.80	V	PK
4824	53.30	-3.88	49.42	54.00	-4.58	V	AV
7236	55.84	1.14	56.98	74.00	-17.02	V	PK
7236	41.64	1.14	42.78	54.00	-11.22	V	AV
			Middle Chan	nel-2437MHz			
4874	59.99	-3.75	56.24	74	-17.76	Н	PK
4874	46.85	-3.75	43.10	54	-10.90	Н	AV
7311	35.54	1.47	37.00	74	-17.00	Н	PK
7311	46.90	1.47	48.37	54	-25.63	Н	AV
4874	64.60	-3.75	60.85	74	-13.15	V	PK
4874	51.62	-3.75	47.87	54	-6.13	V	AV
7311	48.78	1.47	50.25	74	-23.75	V	PK
7311	38.29	1.47	39.76	54	-14.24	V	AV
			High Chann	el-2462MHz			
4924	56.46	-3.59	52.87	74	-21.13	Н	PK
4924	42.42	-3.59	38.83	54	-15.17	Н	AV
7386	34.93	1.79	36.72	74	-17.28	Н	PK
7386	46.80	1.79	48.59	54	-25.41	Н	AV
4924	58.02	-3.59	54.43	74	-19.58	V	PK
4924	43.66	-3.59	40.07	54	-13.93	V	AV
7386	45.97	1.79	47.76	74	-26.24	V	PK
7386	35.35	1.79	37.14	54	-16.86	V	AV

Test Mode: 802.11g

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2412MHz			
4824	48.94	-3.88	45.06	74.00	-28.94	Н	PK
4824	36.20	-3.88	32.32	54.00	-21.68	Н	AV
7236	44.29	1.14	45.43	74.00	-28.57	Н	PK
7236	33.70	1.14	34.84	54.00	-19.16	Н	AV
4824	52.33	-3.88	48.45	74.00	-25.55	V	PK
4824	38.68	-3.88	34.80	54.00	-19.20	V	AV
7236	44.26	1.14	45.40	74.00	-28.60	V	PK
7236	33.14	1.14	34.28	54.00	-19.72	V	AV
			Middle Chan	nel-2437MHz			
4874	47.55	-3.75	43.80	74.00	-30.20	Н	PK
4874	36.17	-3.75	32.42	54.00	-21.58	Н	AV
7311	46.47	1.47	47.94	74.00	-26.06	Н	PK
7311	34.46	1.47	35.93	54.00	-18.07	Н	AV
4874	48.08	-3.75	44.33	74.00	-29.68	V	PK
4874	38.45	-3.75	34.70	54.00	-19.30	V	AV
7311	46.38	1.47	47.85	74.00	-26.15	V	PK
7311	34.54	1.47	36.01	54.00	-17.99	V	AV
			High Chann	el-2462MHz			
4924	46.10	-3.59	42.51	74.00	-31.49	Н	PK
4924	34.86	-3.59	31.27	54.00	-22.73	Н	AV
7386	45.03	1.79	46.82	74.00	-27.18	Н	PK
7386	33.74	1.79	35.53	54.00	-18.47	Н	AV
4924	47.68	-3.59	44.09	74.00	-29.91	V	PK
4924	35.51	-3.59	31.92	54.00	-22.08	V	AV
7386	44.42	1.79	46.21	74.00	-27.79	V	PK
7386	33.69	1.79	35.48	54.00	-18.52	V	AV

Test Mode: 802.11n-HT20

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Chann	el-2412MHz			
4824	48.60	-3.88	44.72	74.00	-29.28	Н	PK
4824	36.24	-3.88	32.36	54.00	-21.64	Н	AV
7236	44.79	1.14	45.93	74.00	-28.07	Н	PK
7236	33.18	1.14	34.32	54.00	-19.68	Н	AV
4824	54.95	-3.88	51.07	74.00	-22.93	V	PK
4824	39.58	-3.88	35.70	54.00	-18.30	V	AV
7236	46.16	1.14	47.30	74.00	-26.70	V	PK
7236	34.50	1.14	35.64	54.00	-18.36	V	AV
			Middle Chan	nel-2437MHz			
4874	46.99	-3.75	43.24	74.00	-30.76	Н	PK
4874	36.25	-3.75	32.50	54.00	-21.50	Н	AV
7311	46.68	1.47	48.15	74.00	-25.85	Н	PK
7311	34.26	1.47	35.73	54.00	-18.27	Н	AV
4874	47.87	-3.75	44.17	74.00	-29.83	V	PK
4874	38.17	-3.75	34.47	54.00	-19.53	V	AV
7311	45.72	1.47	47.19	74.00	-26.81	V	PK
7311	34.33	1.47	35.80	54.00	-18.20	V	AV
			High Chann	el-2462MHz			
4924	46.28	-3.59	42.69	74.00	-31.31	Н	PK
4924	34.90	-3.59	31.31	54.00	-22.69	Н	AV
7386	44.69	1.79	46.48	74.00	-27.52	Н	PK
7386	33.69	1.79	35.48	54.00	-18.52	Н	AV
4924	46.72	-3.59	43.13	74.00	-30.87	V	PK
4924	35.26	-3.59	31.67	54.00	-22.33	V	AV
7386	44.80	1.79	46.59	74.00	-27.41	V	PK
7386	33.65	1.79	35.44	54.00	-18.56	V	AV

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 5^{th} Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

8. Out of Band Emissions

8.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

8.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2012-03-28	2013-03-27
EMI Test Receiver	R&S	ESVB	825471/005	2012-03-28	2013-03-27
Pre-amplifier	Agilent	8447F	3113A06717	2012-03-28	2013-03-27
Pre-amplifier	Compliance Direction	PAP-0118	24002	2012-03-28	2013-03-27
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2012-02-25	2013-02-24
Horn Antenna	ETS	3117	00086197	2012-02-25	2013-02-24

8.3 Test Procedure

According to the KDB 558074, the band-edge radiated test method as follows:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation porduct outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

REPORT NO.: STR13018541I PAGE 57 OF 76 FCC PART 15.247

According to the DA 00-705, the band-edge conducted test method as follows:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2380MHz to 2410MHz for low bandedge, 2470MHz to 2500MHz for the high bandedge)

RBW = 100kHz, VBW = 300kHz

Sweep = auto; Detector function = peak; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation porduct outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the limit specified in this section (at least 20dB attenuation).

8.4 Environmental Conditions

Temperature:	23°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

8.5 Summary of Test Results/Plots

Test Mode	Test Frequency MHz	Limit dBuV / dBc	Result
	2390.00	<54 dBuV	Pass
802.11b	2400.00	>20 dBc	Pass
	2483.50	<54 dBuV	Pass
	2390.00	<54 dBuV	Pass
802.11g	2400.00	>20 dBc	Pass
	2483.50	<54 dBuV	Pass
	2390.00	<54 dBuV	Pass
802.11n-HT20	2400.00	>20 dBc	Pass
	2483.50	<54 dBuV	Pass

The edge emissions are below the FCC 15.209 Limits or complies with the 15.247(d) requirements.

Please refer to the test plots as below.

802.11b-Lowest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.70	-11.72	22.98	54.00	-31.02	Average Detector
	2310.000	50.71	-11.72	38.99	74.00	-35.01	Peak Detector
2	2390.000	39.34	-11.75	27.59	54.00	-26.41	Average Detector
	2390.000	53.39	-11.75	41.64	74.00	-32.36	Peak Detector
3	2397.170	58.48	-11.75	46.73	54.00	-7.27	Average Detector
	2397.170	74.48	-11.75	62.73	74.00	-11.27	Peak Detector
4	2400.000	55.32	-11.75	43.57	Delta=41	15 dDa	Average Detector
5	2411.660	96.47	-11.75	84.72	Della=41	.13 ubc	Average Detector

802.11b-Highest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2461.500	96.33	-11.77	84.56	/	/	Average Detector
	2461.500	105.35	-11.77	93.58	/	/	Peak Detector
2	2483.500	Delta =51.30 dBc		33.26	54.00	-20.74	Average Detector
	2483.500	Della –31	1.50 ubc	42.28	74.00	-31.72	Peak Detector
3	2500.000	37.11	-11.78	25.33	54.00	-28.67	Average Detector
	2500.000	50.74	-11.78	38.96	74.00	-35.04	Peak Detector

802.11g-Lowest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.69	-11.72	22.97	54.00	-31.03	Average Detector
	2310.000	47.36	-11.72	35.64	74.00	-38.36	Peak Detector
2	2346.570	38.17	-11.74	26.43	54.00	-27.57	Average Detector
3	2390.000	35.94	-11.75	24.19	54.00	-29.81	Average Detector
	2390.000	49.69	-11.75	37.94	74.00	-36.06	Peak Detector
4	2400.000	45.21	-11.75	33.46	Delta=40.16 dBc		Average Detector
5	2410.050	85.37	-11.75	73.62			Average Detector

802.11g-Highest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2460.300	89.49	-11.77	77.72	/	/	Average Detector
	2465.100	100.62	-11.77	88.85	/	/	Peak Detector
2	2483.500	Delta =47.15 dBc		30.57	54.00	-23.43	Average Detector
	2483.500	Della –47	.15 ubc	41.70	74.00	-32.30	Peak Detector
3	2500.000	36.40	-11.78	24.62	54.00	-29.38	Average Detector
	2500.000	49.84	-11.78	38.06	74.00	-35.94	Peak Detector

802.11n-HT20-Lowest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	34.70	-11.72	22.98	54.00	-31.02	Average Detector
	2310.000	48.23	-11.72	36.51	74.00	-37.49	Peak Detector
2	2346.570	37.30	-11.74	25.56	54.00	-28.44	Average Detector
3	2390.000	35.57	-11.75	23.82	54.00	-30.18	Average Detector
	2390.000	49.14	-11.75	37.39	74.00	-36.61	Peak Detector
4	2400.000	41.93	-11.75	30.18	Delta=38.00 dBc		Average Detector
5	2407.520	79.93	-11.75	68.18			Average Detector

802.11n-HT20-Highest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2460.400	89.11	-11.77	77.34	/	/	Average Detector
	2460.400	100.51	-11.77	88.74	/	/	Peak Detector
2	2483.500	Delta =47.55 dBc		29.79	54.00	-24.21	Average Detector
	2483.500	Della –47	.55 abc	41.19	74.00	-32.81	Peak Detector
3	2500.000	36.22	-11.78	24.44	54.00	-29.56	Average Detector
	2500.000	49.55	-11.78	37.77	74.00	-36.23	Peak Detector

Bandedge (Conducted)

802.11b-Lowest Bandedge

802.11b-Highest Bandedge

802.11g-Lowest Bandedge

802.11g-Highest Bandedge

802.11n-HT20-Lowest Bandedge

802.11n-HT20-Highest Bandedge

Conducted Spurious Emissions

802.11b Low Bandedge

Date: 4.FEB.2013 10:32:59

802.11b Middle Bandedge

Date: 4.FEB.2013 10:34:34

802.11b High Bandedge

Date: 4.FEB.2013 10:36:03

802.11g Low Bandedge

Date: 4.FEB.2013 11:07:44

802.11g Middle Bandedge

Date: 4.FEB.2013 10:54:21

802.11g High Bandedge

Date: 4.FEB.2013 10:56:15

802.11n-HT20 Low Bandedge

Date: 4.FEB.2013 10:47:49

802.11n-HT20 Middle Bandedge

Date: 4.FEB.2013 11:05:54

802.11n-HT20 High Bandedge

Date: 4.FEB.2013 11:02:52

9. Conducted Emissions

9.1 Measurement Uncertainty

Base on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ± 2.88 dB.

9.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2012-03-28	2013-03-27
L.I.S.N	Schwarz beck	NSLK8126	8126-224	2012-03-28	2013-03-27
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2012-03-28	2013-03-27

9.3 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

9.4 Basic Test Setup Block Diagram

9.5 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

9.6 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

9.7 Summary of Test Results/Plots

According to the data in section 3.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-3.41 dB at 17.694 MHz in the Line mode, Peak detector, 0.15-30MHz

9.8 Conducted Emissions Test Data

Plot of Conducted Emissions Test Data

EUT: Y-cam Cube

Tested Model: Cube

Operating Conditaion: Transmitting

Comment: AC 120V/60Hz, 12V DC

Test Specification: Neutral

	EDIT PEAK LIST (Prescan Results)	
Tracel:	-QP		
Trace2:	-AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1 Max Peak	514 kHz	48.24	-7.75
2 Average	534 kHz	38.95	-7.04
1 Max Peak	17.694 MHz	52.12	-7.87
2 Average	17.694 MHz	42.99	-7.00

***** END OF REPORT *****