Lecture 22: Self-Supervised Learning

Reminder: A5

Recurrent networks, attention, Transformers

Due on **Tuesday 4/12**, 11:59pm ET

Last Time: Visualizing and Understanding CNNs

Maximally Activating Patches

Nearest Neighbor

(Guided) Backprop

Synthetic Images via Gradient Ascent

Feature Inversion

Last Time: Making Art with CNNs

Justin Johnson Lecture 22 - 4 April 6, 2022

Today: Self-Supervised Learning

Recall: Supervised vs Unsupervised Learning

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Assume you want to label 1M images. How much will it cost?

Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset)

× (10 seconds/image) (Fast annotation)

 \times (1/3600 hours/second)

× (\$15 / hour) (Low wage paid to annotator)

Justin Johnson Lecture 22 - 8 April 6, 2022

Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset)

× (10 seconds/image) (Fast annotation)

 \times (1/3600 hours/second)

X (\$15 / hour) (Low wage paid to annotator)

= \$41,667

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could easily be 3x this or more)

Assume you want to label 1B images. How much will it cost?

```
(1,000,000,000 images) (Large dataset)
```

$$\times$$
 (1/3600 hours/second)

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could easily be 3x this or more)

Problem: Supervised Learning is Not How We Learn

Babies don't get supervision for everything they see!

Baby image is CCO public domain

Justin Johnson Lecture 22 - 11 April 6, 2022

Solution: Self-Supervised Learning

Lets build methods that learn from "raw" data – no annotations required

Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally-occurring signal in the raw data rather than human annotations.

Justin Johnson Lecture 22 - 12 April 6, 2022

Solution: Self-Supervised Learning

Lets build methods that learn from "raw" data – no annotations required

Unsupervised Learning: Model isn't told what to predict. Older terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally-occurring signal in the raw data rather than human annotations.

Semi-Supervised Learning: Train jointly with some labeled data and (a lot) of unlabeled data.

Justin Johnson Lecture 22 - 13 April 6, 2022

Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a network on a pretext task that doesn't require supervision

Justin Johnson Lecture 22 - 14 April 6, 2022

Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a network on a pretext task that doesn't require supervision

Encoder: ϕ

Loss: $L(\hat{y}, y)$

Input Image: *x*

Features: $\phi(x)$

Prediction: \hat{y}

Input Image: x

Features: $\phi(x)$

Downstream tasks: Image classification, object detection, semantic segmentation

Justin Johnson Lecture 22 - 15 April 6, 2022

Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a network on a pretext task that doesn't require supervision

Input Image: x

Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning

Input Image: *x*

Features: $\phi(x)$

Goal: Pretrain + Transfer does better than supervised pretraining, and better than directly training on downstream

Justin Johnson Lecture 22 - 16 April 6, 2022

Self-Supervised Learning: Pretext Tasks

Generative: Predict part of the input signal

- Autoencoders
 (sparse, denoising, masked)
- Autoregressive
- GANs
- Colorization
- Inpainting

Discriminative: Predict something about the input signal

- Context prediction
- Rotation
- Clustering
- Contrastive

Multimodal: Use some additional signal in addition to RGB images

- Video
- 3D
- Sound
- Language

Recall: Autoencoder

Autoencoder tries to reconstruct inputs. Hidden layer (hopefully) learns good representations. Generative pretraining task!

$$L(x) = R(x, \hat{x})$$
$$= ||x - \hat{x}||_2^2$$

$$W_1 \in \mathbb{R}^{H \times D}$$

Input Image: $x \in \mathbb{R}^D$

Hidden Layer: $h \in \mathbb{R}^H$

Reconstructed Image: $\hat{x} \in \mathbb{R}^D$

Lee et al, "Efficient Sparse Coding Algorithms", NeurIPS 2006; Ranzato et al, "Efficient Learning of Sparse Representations with an Energy-Based Model", NeurIPS 2006; Lee et al, "Sparse deep belief net models for visual area V2", NeurIPS 2007; Ng, "Sparse Autoencoder", CS294A Lecture Notes

Recall: Autoencoder

Autoencoder tries to reconstruct inputs. Hidden layer (hopefully) learns good representations

$$L(x) = R(x, \hat{x})$$
$$= ||x - \hat{x}||_2^2$$

H < D is the only thing forcing nontrivial hidden representations...

$$W_1 \in \mathbb{R}^{H \times D}$$

Hidden Layer: $h \in \mathbb{R}^H$

Reconstructed Image: $\hat{x} \in \mathbb{R}^D$

Input Image:
$$x \in \mathbb{R}^D$$

Lee et al, "Efficient Sparse Coding Algorithms", NeurIPS 2006; Ranzato et al, "Efficient Learning of Sparse Representations with an Energy-Based Model", NeurIPS 2006; Lee et al, "Sparse deep belief net models for visual area V2", NeurIPS 2007; Ng, "Sparse Autoencoder", CS294A Lecture Notes

Sparse Autoencoder

Train an autoencoder to reconstruct inputs with sparse activations (mostly 0). Many ways to implement sparsity penalties!

$$L(x) = R(x, \hat{x}) + \lambda S(h)$$

= $||x - \hat{x}||_{2}^{2} + \lambda ||h||_{1}$

Input Image: $x \in \mathbb{R}^D$

Hidden Layer: $h \in \mathbb{R}^H$

Reconstructed Image: $\hat{x} \in \mathbb{R}^D$

Lee et al, "Efficient Sparse Coding Algorithms", NeurIPS 2006; Ranzato et al, "Efficient Learning of Sparse Representations with an Energy-Based Model", NeurIPS 2006; Lee et al, "Sparse deep belief net models for visual area V2", NeurIPS 2007; Ng, "Sparse Autoencoder", CS294A Lecture Notes; Le et al, "Building high-level features using large-scale unsupervised learning, ICML 2012

Denoising Autoencoder

Train an autoencoder to reconstruct noisy inputs (pixels randomly set to zero)

$$L(x) = R(x, \hat{x})$$
$$= ||x - \hat{x}||_2^2$$

Input Image: $x \in \mathbb{R}^D$

Corrupted Image: $x \in \mathbb{R}^D$

Hidden Layer:
$$h \in \mathbb{R}^H$$

Reconstructed Image: $\hat{x} \in \mathbb{R}^D$

Vincent et al, "Extracting and Composing Robust Features with Denoising Autoencoders", ICML 2008

Model predicts relative location of two patches from the same image.

<u>Discriminative</u> pretraining task

Intuition: Requires understanding objects and their parts

$$X = (30, 3); Y = 3$$

Model predicts relative location of two patches from the same image.

<u>Discriminative</u> pretraining task

Intuition: Requires understanding objects and their parts

Classification over 8 positions

Model predicts relative location of two patches from the same image. <u>Discriminative</u> pretraining task

Intuition: Requires understanding objects and their parts

Two networks with shared weights sometimes called a "Siamese network" – but I don't really like this term

Classification over 8 positions

Model predicts relative location of two patches from the same image. <u>Discriminative</u> pretraining task

Intuition: Requires understanding objects and their parts

"For experiments, we use a ConvNet trained on a K40 GPU for approximately four weeks."

Classification over 8 positions

Input Patch

Input Patch Random Init

Input Patch Random Init Supervised AlexNet

Works well!

Similar to AlexNet

Input Patch Random Init Supervised AlexNet

Their Features

Supervised AlexNet

Their Features

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

Justin Johnson Lecture 22 - 29 April 6, 2022

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

Justin Johnson Lecture 22 - 30 April 6, 2022

Extension: Solving Jigsaw Puzzles

Rather than predict relative position of two patches, instead predict permutation to "unscramble" 9 shuffled patches

Noroozi and Favoro, "Unsupervised learning of visual representations by solving jigsaw puzzles", ECCV 2016

Extension: Solving Jigsaw Puzzles

Problem: These methods only work on patches, not whole images!

Rather than predict relative position of two patches, instead predict permutation to "unscramble" 9 shuffled patches

Noroozi and Favoro, "Unsupervised learning of visual representations by solving jigsaw puzzles", ECCV 2016

Input Image

Input Image

Encoder: ϕ

Decoder: ψ

Predict Missing Pixels

Human Artist

Input Image

Encoder: ϕ

Decoder: ψ

Predict Missing Pixels

L2 Loss (Best for feature learning)

Input Image

Encoder: ϕ Decoder: ψ

Predict Missing Pixels

L2 + Adversarial Loss (Best for nice images)

Colorization

Intuition: A model must be able to identify objects to be able to colorize them

Input: Grayscale Image

Output: Color Image

Zhang et al, "Colorful Image Colorization", ECCV 2016

Colorization

Zhang et al, "Colorful Image Colorization", ECCV 2016

Zhang et al, "Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction", CVPR 2017

Justin Johnson Lecture 22 - 39 April 6, 2022

Zhang et al, "Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction", CVPR 2017

Justin Johnson Lecture 22 - 40 April 6, 2022

Zhang et al, "Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction", CVPR 2017

Justin Johnson Lecture 22 - 41 April 6, 2022

Zhang et al, "Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction", CVPR 2017

Justin Johnson Lecture 22 - 42 April 6, 2022

(1) Randomly initialize a CNN

(1) Randomly initialize a CNN

(2) Run many images through CNN, get their final-layer features

(1) Randomly initialize a CNN

(3) Cluster the features with K-Means; record cluster for each feature

(2) Run many images through CNN, get their final-layer features

(1) Randomly initialize a CNN

(3) Cluster the features with K-Means; record cluster for each feature

(4) Use cluster assignments as pseudolabels for each image; train the CNN to predict cluster assignments

(2) Run many images through CNN, get their final-layer features

(1) Randomly initialize a CNN

(3) Cluster the features with K-Means; record cluster for each feature

(4) Use cluster assignments as pseudolabels for each image; train the CNN to predict cluster assignments

(2) Run many images through CNN, get their final-layer features

Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018
Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019
Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020
Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020

(5) Repeat: GOTO (2)

Justin Johnson Lecture 22 - 47 April 6, 2022

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

Justin Johnson Lecture 22 - 50 April 6, 2022

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

Justin Johnson Lecture 22 - 51 April 6, 2022

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

Justin Johnson Lecture 22 - 52 April 6, 2022

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

Justin Johnson Lecture 22 - 53 April 6, 2022

Fair evaluation of SSL methods is very hard! No theory, so we need to rely on experiment

Many choices in experimental setup, huge variations from paper to paper:

- CNN architecture? AlexNet, ResNet50, something else?
- Pretraining dataset? ImageNet, or something else?
- Downstream task? ImageNet classification, detection, something else?
- Pretraining hyperparameters? Learning rates, training iterations, data augmentation?
- Transfer learning protocol?
 - Linear probe? From which layer? How to train linear models? SGD, something else?
 Transfer learning hyperparameters? Data augmentation or BatchNorm during transfer learning?
 - Fine-tune? From which layer? Architecture of "head" you attach? Linear or nonlinear? Fine-tuning hyperparameters?
 - KNN? What value of K? Normalization on features?

Some papers have tried to do fair comparisons of many SSL methods

Places 205 Linear Classification from AlexNet conv5

Some papers have tried to do fair comparisons of many SSL methods

Places 205 Linear Classification from AlexNet conv5

Some papers have tried to do fair comparisons of many SSL methods

Places 205 Linear Classification from AlexNet conv5

Some papers have tried to do fair comparisons of many SSL methods

Self-Supervised Learning for Natural Language

Computer Vision

Natural Language Processing

Image Features: H x W x C

Input Image

Word Features L x C

A white and gray cat standing outside on the grass

Input Sentence (L words)

Self-Supervised Learning for Natural Language

RNN language models train on raw text – no human labels required! Their hidden states give features that transfer to many downstream tasks!

Peters et al, "Deep contextualized word representations", NAACL 2018

Self-Supervised Learning for Natural Language

Transformer-based language models work even better! Can scale up to very large datasets, and give extremely powerful features that transfer to downstream tasks

Wildly successful: larger models, larger datasets give better features that improve performance on many downstream NLP tasks. The dream of SSL made real!

A white and gray cat on some green grass [END]

[START] A white and gray cat on some green grass

Radford et al, "Language models are unsupervised multitask learners", 2019 Brown et al, "Language Models are Few-Shot Learners", arXiv 2020 Rae et al, "Scaling Language Models: Methods, Analysis, & Insights from Training Gopher", arXiv 2021

This Week: Pathways Language Model (PaLM)

Transformer with 118 layers, 48 heads, d_model=18,432, 540B parameters Dataset: 780 billion tokens; trained on 6144 TPU-v4 chips

Bigger models trained on more data tend to give better downstream task performance

Model	Avg NLG	Avg NLU
GPT-3 175B	52.9	65.4
GLaM 64B/64E	58.4	68.7
PaLM 8B	41.5	59.2
PaLM 62B	57.7	67.3
PaLM 540B	63.9	74.7

NLG = Natural Language Generation (8 benchmarks)

NLU = Natural Language
Understanding (21 benchmarks

Chowhery et al, "PaLM: Scaling Language Models with Pathways", 2022

This Week: Pathways Language Model (PaLM)

Transformer with 118 layers, 48 heads, d_model=18,432, 540B parameters Dataset: 780 billion tokens; trained on 6144 TPU-v4 chips

Bigger models trained on more data tend to give better downstream task performance

Model	Avg NLG	Avg NLU
GPT-3 175B	52.9	65.4
GLaM 64B/64E	58.4	68.7
PaLM 8B	41.5	59.2
PaLM 62B	57.7	67.3
PaLM 540B	63.9	74.7

NLG = Natural Language Generation (8 benchmarks)

NLU = Natural Language
Understanding (21 benchmarks

How can we achieve this success in vision? Intensified interest in SSL since ~2018

Chowhery et al, "PaLM: Scaling Language Models with Pathways", 2022

Quiz: What is this?

Quiz: What is this?

Answer: Deer!

Quiz: What is this?

augmentations (scale, shift, color jitter) of the same initial image patch

Answer: Deer!

Given an initial dataset of N image patches

Given an initial dataset of N image patches

Sample K different augmentations for each; now have K*N total patches

Given an initial dataset of N image patches

Sample K different augmentations for each; now have K*N total patches

CNN inputs an augmented patch

CNN

Given an initial dataset of N image patches

Predicts which of the N original images it came from (N-way classification) **CNN** CNN inputs an augmented patch

Sample K different augmentations for each; now have K*N total patches

Given an initial dataset of N image patches

Problem: number of parameters in final layer depends on N; hard to scale

Sample K different augmentations for each; now have K*N total patches

Contrastive Learning

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Similar images should have similar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Justin Johnson Lecture 22 - 73 April 6, 2022

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Similar images should have similar features

Dissimilar images should have dissimilar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Justin Johnson Lecture 22 - 74 April 6, 2022

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Let $d = \|\phi(x_1) - \phi(x_2)\|_2$ be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Justin Johnson Lecture 22 - 75 April 6, 2022

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Let $d = \|\phi(x_1) - \phi(x_2)\|_2$ be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

 $L_{\mathbf{S}}(x_1, x_2) = d^2$

Pull features together

CNN

White kitten image is free for commercial use under the Pixabay license

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Let $d = \|\phi(x_1) - \phi(x_2)\|_2$ be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

$$L_{\mathcal{S}}(x_1, x_2) = d^2$$

Pull features together

CNN

 $L_{\mathbf{D}}(x_1, x_2)$ = max(0, m - d)²
Push features apart
(up to margin m)

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Problem: Where to get positive and negative pairs?

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Let $d = \|\phi(x_1) - \phi(x_2)\|_2$ be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

CNN

 $= \max(0, m - d)^2$ Push features apart (up to margin m)

 $L_{\mathbf{D}}(x_1,x_2)$

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Batch of N images

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Batch of Two augmentations N images for each image

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019
Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019
Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which of the *other* 2N-1 images came from the same original image

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019
Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019
Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which of the *other* 2N-1 images came from the same original image

Similarity between x_i and x_j :

$$s_{i,j} = \frac{\phi(x_i)^T \phi(x_j)}{\|\phi(x_i)\| \cdot \|\phi(x_i)\|}$$

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019
Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019
Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which of the other 2N-1 images came from the same original image

Similarity between x_i and x_i :

$$s_{i,j} = \frac{\phi(x_i)^T \phi(x_j)}{\|\phi(x_i)\| \cdot \|\phi(x_i)\|}$$

If (x_i, x_i) is a positive pair, then loss for x_i is:

$$L_{i} = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{\substack{k=1\\k\neq i}}^{2N} \exp(s_{i,k}/\tau)}$$

 $(\tau \text{ is a temperature})$

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which of the *other* 2N-1 images came from the same original image

Similarity between x_i and x_j :

$$s_{i,j} = \frac{\phi(x_i)^T \phi(x_j)}{\|\phi(x_i)\| \cdot \|\phi(x_i)\|}$$

If (x_i, x_j) is a positive pair, then loss for x_i is:

$$L_{i} = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{\substack{k=1\\k\neq i}}^{2N} \exp(s_{i,k}/\tau)}$$
(τ is a temperature)

Interpretation: Cross-entropy loss over the other 2N-1 elements in the batch!

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019

Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019

Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

ImageNet Linear Classification from SSL Features

He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 Chen et al, "An Empirical Study of Training Self-Supervised Vision Transformers", ICCV 2021

(Lots of caveats here ... different architectures, etc)

ImageNet Linear Classification from SSL Features

He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 Chen et al, "An Empirical Study of Training Self-Supervised Vision Transformers", ICCV 2021

(Lots of caveats here ... different architectures, etc)

ImageNet Linear Classification from SSL Features

He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 Chen et al, "An Empirical Study of Training Self-Supervised Vision Transformers", ICCV 2021

(Lots of caveats here ... different architectures, etc)

Contrastive SSL Pretraining then Finetuning on Detection

Justin Johnson Lecture 22 - 89 April 6, 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into nonoverlapping patches, discard most of them

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Masked Autoencoders (MAE): Reconstructions

Input Patches

Prediction

Actual Image

He et al, "Masked Autoencoders are Scalable Vision Learners", CVPR 2022

Justin Johnson Lecture 22 - 94 April 6, 2022

Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction

Actual Image

He et al, "Masked Autoencoders are Scalable Vision Learners", CVPR 2022

Justin Johnson Lecture 22 - 95 April 6, 2022

Masked Autoencoders (MAE): Reconstructions

Prediction Input Patches Actual Image

He et al, "Masked Autoencoders are Scalable Vision Learners", CVPR 2022

Justin Johnson Lecture 22 - 96 April 6, 2022

SSL Pretraining, then finetuning for ImageNet Classification

MAE Pretraining outperforms training from scratch, and allows scaling to larger ViT models

The motivation of SSL is scaling to large data that can't be labeled

Justin Johnson Lecture 22 - 98 April 6, 2022

The motivation of SSL is scaling to large data that can't be labeled

Most papers pretrain on (unlabeled) ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single object per image, balanced classes

Justin Johnson Lecture 22 - 99 April 6, 2022

The motivation of SSL is scaling to large data that can't be labeled

Most papers pretrain on (unlabeled) ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single object per image, balanced classes

Self-Supervised Learning on larger datasets hasn't been as successful as NLP

Caron et al, "Unsupervised pre-training of images features on non-curated data", ICCV 2019
Chen et al, "Big self-supervised models are strong semi-supervised learners", NeurIPS 2020
Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021
Goyal et al, "Self-supervised Pretraining of Visual Features in the Wild", arXiv 2021
He et al, "Masked Autoencoders are Scalable Vision Learners", arXiv 2021

Justin Johnson Lecture 22 - 100 April 6, 2022

The motivation of SSL is scaling to large data that can't be labeled

Most papers pretrain on (unlabeled) ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single object per image, balanced classes

Self-Supervised Learning on larger datasets hasn't been as successful as NLP

Idea: What if we go beyond isolated images?

Caron et al, "Unsupervised pre-training of images features on non-curated data", ICCV 2019
Chen et al, "Big self-supervised models are strong semi-supervised learners", NeurIPS 2020
Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021
Goyal et al, "Self-supervised Pretraining of Visual Features in the Wild", arXiv 2021
He et al, "Masked Autoencoders are Scalable Vision Learners", arXiv 2021

Justin Johnson Lecture 22 - 101 April 6, 2022

Don't learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, "Learning to See by Moving", ICCV 2015 Wang et al, "Unsupervised Learning of Visual Representations using Videos", ICCV 2015 Pathak et al, "Learning Features by Watching Objects Move", CVPR 2017

Don't learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, "Learning to See by Moving", ICCV 2015 Wang et al, "Unsupervised Learning of Visual Representations using Videos", ICCV 2015 Pathak et al, "Learning Features by Watching Objects Move", CVPR 2017

Sound: Image with audio track from video

Owens et al, "Ambient Sound Provides Supervision for Visual Learning", ECCV 2016 Arandjelovic and Zisserman, "Look, Listen and Learn", ICCV 2017

Justin Johnson Lecture 22 - 103 April 6, 2022

Don't learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, "Learning to See by Moving", ICCV 2015 Wang et al, "Unsupervised Learning of Visual Representations using Videos", ICCV 2015 Pathak et al, "Learning Features by Watching Objects Move", CVPR 2017

Sound: Image with audio track from video

Owens et al, "Ambient Sound Provides Supervision for Visual Learning", ECCV 2016 Arandjelovic and Zisserman, "Look, Listen and Learn", ICCV 2017

3D: Image with depth map or point cloud

Xie et al, "PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding", ECCV 2020 Zhang et al, "Self-supervised pretraining of 3D features on any point-cloud", CVPR 2021

Don't learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, "Learning to See by Moving", ICCV 2015 Wang et al, "Unsupervised Learning of Visual Representations using Videos", ICCV 2015 Pathak et al, "Learning Features by Watching Objects Move", CVPR 2017

Sound: Image with audio track from video

Owens et al, "Ambient Sound Provides Supervision for Visual Learning", ECCV 2016 Arandjelovic and Zisserman, "Look, Listen and Learn", ICCV 2017

3D: Image with depth map or point cloud

Xie et al, "PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding", ECCV 2020 Zhang et al, "Self-supervised pretraining of 3D features on any point-cloud", CVPR 2021

Language: Image with natural-language text

Sariyildiz et al, "Learning Visual Representations with Caption Annotations", ECCV 2020

Desai and Johnson, "VirTex: Learning Visual Representations from Textual Annotations", CVPR 2021

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

Jia et al, "Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision", ICLR 2021

Desai et al, "RedCaps: Web-curated Image-Text data created by the people, for the people", NeurIPS 2021

Why Language?

Large dataset of (image, caption)

a dog with his head out the window of the car

a black and orange cat is resting on a keyboard and yellow back scratcher 1. **Semantic density**: Just a few words give rich information

2. **Universality**: Language can describe any concept

3. **Scalability**: Non-experts can easily caption images; data can also be collected from the web at scale

Justin Johnson Lecture 22 - 106 April 6, 2022

Generating Captions

Desai and Johnson, "Desai and Johnson, "VirTex: Learning Visual Representations from Textual Annotations", CVPR 2021

Generating Captions

PASCAL VOC Linear Classification

Desai and Johnson, "Desai and Johnson, "VirTex: Learning Visual Representations from Textual Annotations", CVPR 2021

Justin Johnson Lecture 22 - 108 April 6, 2022

Matching Images and Text

Contrastive loss: Each image predicts which caption matches

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

Jia et al, "Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision", ICLR 2021

Justin Johnson Lecture 22 - 109 April 6, 2022

Matching Images and Text: CLIP

Contrastive loss: Each image predicts which caption matches

Large-scale training on 400M (image, text) pairs from the internet

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

Jia et al, "Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision", ICLR 2021

Justin Johnson Lecture 22 - 110 April 6, 2022

Matching Images and Text: CLIP

Instagram-pretrained

SimCLRv2

BYOL

MoCo

Linear probe average over all 27 datasets

Very strong performance on many downstream vision problems!

Performance continues to improve with larger models

CLIP-VIT

CLIP-ResNet

EfficientNet

EfficientNet-NoisyStudent

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

Justin Johnson April 6, 2022 Lecture 22 - 111

BiT-M

BiT-S

ResNet

CLIP: Zero-Shot Classification

(2) Create dataset classifier from label text

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

CLIP: Zero-Shot Classification

Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021

RedCaps: Images and Captions from Reddit

tied this mouse

itap of the taj mahal

r/itookapicture: r/perfectfit: this lemon in my drink

r/shiba: mlem!

Data from 350 manually-chosen subreddits 12M high-quality (image, caption) pairs

Desai, Kaul, Aysola, and Johnson, NeurIPS Datasets & Benchmarks Track, 2021

Summary

Self-Supervised Learning (SSL) aims to scale up to larger datasets without human annotation

First train for a **pretext** task, then **transfer** to **downstream** tasks

Many pretext tasks: context prediction, jigsaw, colorization, clustering, rotation

SSL has been wildly successful for language

Intense research on SSL in vision; current best are contrastive, masked autoencoding

Multimodal SSL uses images together with additional context

Multimodal SSL with vision + language has been very successful; seems very promising!

Justin Johnson Lecture 22 - 115 April 6, 2022

Next Time: 3D Vision