- Seja T: V → W uma função. Mostre que:
  - a) Se T é uma transformação linear, então T(0) = 0.
  - b) Se T(0) ≠ 0, então T não é uma transformação linear.
- 2. Determine quais das seguintes funções são aplicações lineares:
  - a)  $f: \mathbb{R}^2 \to \mathbb{R}^2$  $(x, y) \mapsto (x + y, x - y)$
  - b)  $g: \mathbb{R}^2 \to \mathbb{R}$  $(x, y) \mapsto xy$
  - c)  $h: M_2 \to \mathbb{R}$   $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
  - d)  $k: P_2 \rightarrow P_3$  $ax^2 + bx + c \longmapsto ax^3 + bx^2 + cx$
  - e) M: R3 → R2

$$(x, y, z) \longmapsto (x, y, z) \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{bmatrix}$$

- $f) N: \mathbf{R} \to \mathbf{R}$  $x \mapsto |x|$
- 3. a) Ache a transformação linear  $T: \mathbb{R}^3 \to \mathbb{R}^2$  tal que T(1, 0, 0) = (2, 0), T(0, 1, 0) = (1, 1) e T(0, 0, 1) = (0, -1).
  - b) Encontre v de  $\mathbb{R}^3$  tal que  $T(\mathbf{v}) = (3, 2)$ .
- 4. a) Qual é a transformação linear  $T: \mathbb{R}^2 \to \mathbb{R}^3$  tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?
  - b) Ache T(1, 0) e T(0, 1).
  - c) Qual é a transformação linear  $S: \mathbb{R}^3 \to \mathbb{R}^2$  tal que S(3, 2, 1) = (1, 1), S(0, 1, 0) = (0, -2) e S(0, 0, 1) = (0, 0)?
  - d) Ache a transformação linear P:R<sup>2</sup> → R<sup>2</sup> tal que P = S ∘ T.
- a) Ache a transformação T do plano no plano que é uma reflexão em torno da reta x = y.
  - b) Escreva-a em forma matricial.
- No plano, uma rotação anti-horária de 45° é seguida por uma dilatação de √2. Ache a aplicação A que representa esta transformação do plano.

- 7. Qual é a aplicação A que representa uma contração de 1/2 seguida por uma rotação horária de 45°?
- Verifique qual o núcleo é imagem e suas respectivas dimensões das transformações dadas nos exemplos do parágrafo 5.1.
- Dados T:U→ V linear e injetora e u<sub>1</sub>, u<sub>2</sub>, ..., u<sub>k</sub>, vetores LI em U, mostre que {T(u<sub>1</sub>), ..., T(u<sub>k</sub>)} é LI.
- 10. Sejam R, S e T três transformações lineares de  $R^3$  em  $R^3$ .

Se 
$$[R] = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$
 e

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \\ 3 & 1 & 2 \\ 1 & -2 & 0 \end{bmatrix}, \text{ ache}$$

T tal que  $R = S \circ T$ .

11. Sejam  $\alpha = \{(1, -1), (0, 2)\}$  e  $\beta = \{(1, 0, -1), (0, 1, 2), (1, 2, 0)\}$  bases de  $\mathbb{R}^2$  e  $\mathbb{R}^3$  respectivamente e

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$$

- a) Ache T.
- b) Se S(x, y) = (2y, x y, x), ache  $[S]_{\beta}^{\alpha}$ .
- c) Ache uma base  $\gamma$  de  $\mathbb{R}^3$  tal que  $[T]_{\gamma}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$ .
- 12. Se  $[R] = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$  e  $[S] = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ , ache  $R \circ S$ .
- 13. Se R(x, y) = (2x, x y, y) e S(x, y, z) = (y z, z x),
  - a) Ache [ROS].
  - b) Ache [SOR].

14. Seja V o espaço vetorial de matrizes 2 X 2 com base

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Se 
$$T: V \to \mathbb{R}^2$$
 é dada por  $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a + d, b + c),$ 

a) Ache  $[T]_{\alpha}^{\beta}$  onde  $\alpha$  é a base canônica de  $\mathbb{R}^2$ .

Se 
$$S: \mathbb{R}^2 \to V$$
 e  $[S]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}$ 

- b) Ache S e, se for possível, (a, b) tal que  $S(a, b) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ .
- 15. Seja  $T: \mathbb{R}^2 \to \mathbb{R}^2$  tal que  $[T] = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$ . Ache os vetores u, v tal que
  - $a) T(\mathbf{u}) = \mathbf{u}$
  - b) T(v) = -v
- Mostre que se T: V → W é uma transformação linear,
  - a) Im(T) é um subespaço de W.
  - b) ker(T) é um subespaço de V.
- 17. Sejam S e T aplicações lineares de V em W. Definimos S + T como (S + T)v = S(v) + T(v) para todo  $v \in V$  e definimos  $\alpha S$  como  $(\alpha S)v =$  $= \alpha \cdot S(v)$  para todo  $\alpha \in \mathbb{R}$  e  $v \in V$ .
  - a) Mostre que S + T é uma transformação linear de V em W.
  - b) Mostre que αS é uma transformação linear de V em W.
  - c) Mostre que  $X = \{T \mid T: V \to W\}$  é um espaço vetorial sobre R.
  - d) Suponha que dim V = 2 e dim W = 3. Tente procurar dim X.
- 18. No Exercício 11 determine ker T, Im T, Im S, ker S e comprove a validade dos teoremas 5,3.9 e 5,4.5 para estas transformações.
- 19. Considere a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por  $T(x, y, z) = (z, x - y, -z)$ .

- a) Determine uma base do núcleo de T.
- b) Dê a dimensão da imagem de T.
- c) T é sobrejetora? Justifique.
- d) Faça um esboço de ker T e Im T.

- 20. Dê, quando possível, exemplos de transformações lineares T, S, L, M e H satisfazendo:
  - a)  $T: \mathbb{R}^3 \to \mathbb{R}^2$  sobrejetora
  - b)  $S: \mathbb{R}^3 \to \mathbb{R}^2$ , com  $ker S = \{(0, 0, 0)\}$

  - c)  $L : \mathbb{R}^3 \to \mathbb{R}^2$ , com  $Im L = \{(0, 0)\}$ d)  $M : \mathbb{R}^2 \to \mathbb{R}^2$ , com  $ker M = \{(x, y) \in \mathbb{R}^2; x = y\}$ e)  $H : \mathbb{R}^3 \to \mathbb{R}^3$ , com  $ker H = \{(x, y, z) \in \mathbb{R}^3; z = -x\}$
- 21. Seja P<sub>3</sub> = conjunto dos polinômios com grau menor ou igual a 3, e

$$T: P_3 \to P_3$$
  
 $f \to f'$  (derivada)

- a) Mostre que P3 é um espaço vetorial de dimensão 4.
- b) Mostre que T é uma transformação linear. c) Determine ker T e Im T e encontre uma base para cada um destes subespaços vetoriais.
- 22. Seja  $D: P_3 \rightarrow P_3$  $f \mapsto f''$  (derivada segunda)

Mostre que D é linear e determine uma base para ker D.

23. Sejam  $\alpha = \{(0, 2), (2, -1)\}$  e  $\beta = \{(1, 1, 0), (0, 0, -1), (1, 0, 1)\}$  bases de R2 e R3.

$$[S]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Dê a expressão para  $S(x, y_i)$ .

24. Seja

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Encontre ker  $T_A$ , Im  $T_A$ , ker  $T_B$ , Im  $T_B$ , ker  $(T_B \circ T_A)$  Im  $(T_B \circ T_A)$ . Determi ne bases para estes seis subespaços.

- a) Encontre T(x, y).
- b) Encontre a base  $\alpha$  de  $\mathbb{R}^2$ , tal que  $[T]_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Seja T: R<sup>3</sup> → R<sup>3</sup> onde T(v) é a projeção do vetor v no plano 3x + 2y + z = 0,
  - a) Encontre T(x, y, z).
  - b) Encontre uma base ordenada β de R3, tal que

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 27. Seja  $L: \mathbb{R}^3 \to \mathbb{R}^3$  onde L é a reflexão através do plano 3x + 2y + z = 0.
  - a) Encontre L(x, y, z).
  - b) Encontre uma base ordenada γ de R3, tal que

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- Encontre a expressão da transformação linear T: R<sup>3</sup> → R<sup>3</sup> que é uma rotação de π/3 em torno da reta que passa pela origem e tem a direção do vetor (1, 1, 0).
- \*29. Um espelho plano está apoiado em uma parede vertical formando um ângulo de 30° com ela. Se um feixe de luz de raios paralelos for emitido verticalmente (do teto para o chão) determine a direção dos raios refletidos.

\*30. Um espelho plano triangular é apoiado no canto de uma sala da forma descrita na figura abaixo.



Em que direção será refletido um feixe de luz de raios paralelos emitidos verticalmente de cima para baixo?

## 5.6.1 Respostas

3. a) 
$$T(x, y, z) = (2x + y, y - z)$$
  
b)  $y = (x, 3 - 2x, 1 - 2x)$ 

5. a) 
$$T(x, y) = (y, x)$$

$$b) \begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

7. 
$$A(x, y) = \left(\frac{x + y}{2}, \frac{x - y}{2}\right)$$

11. 
$$T(x, y) = \left(\frac{x-y}{2}, \frac{x-y}{2}, 2x+y\right)$$

13. a) 
$$[R \circ S] = \begin{bmatrix} 0 & 2 & -2 \\ 1 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix}$$
 b)  $[S \circ R] = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$ 

$$b) [S \circ R] = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$

15. a) 
$$v = (x, -x)$$

b) 
$$v = (x, 0)$$

17. d) dim 
$$X = 3 \times 2 = 6$$

19. a) 
$$ker T = [(1, 1, 0)]$$
 base =  $\{(1, 1, 0)\}$   
b)  $\dim Im T = 3 - \dim ker T = 2$  Veja (5.3.9).

c) Não, dim Im T = 2.







- **21.** a) (Veja Exemplo 4 de 4.2.2) base deste espaço:  $\{1, x, x^2, x^3\}$ 
  - b) (Veja Exemplo 5 de 5.1.2)
  - c)  $ker T = \{P(x) = k \text{ (constante)}\}\$  base:  $\{1\}$  $Im T = \{P(x) = ax^2 + bx + c, a, b, c \in \mathbb{R}\}\$  base:  $\{1, x, x^2\}$
- 23.  $S(x, y) = (y \frac{3}{2}x, y + \frac{x}{2}, -3x 2y).$
- 24.  $ker T_B = \{x, y, z\} \in \mathbb{R}^3 ; x = 0 \text{ e } z = 2y\}$  base:  $\{0, 1, -2\}$   $Im T_B = [(0, 1, 0), (0, 1, -1)]$  base:  $\{(0, 1, 0), (0, 1, -1)\}$   $ker T_A = [(1, 0)]$   $Im T_A = [(1, 2, 1)]$   $ker T_B \circ T_A = [(1, 0)]$   $Im T_B \circ T_A = [(0, 0, 1)]$
- 25. a)  $T(x, y) = \frac{1}{5}(-4x + 3y, 3x 4y)$ 
  - b)  $\alpha$  pode ser qualquer base  $\{v_1, v_2\}$  tal que  $v_1$  pertença à reta e  $v_1$  e  $v_2$  sejam perpendiculares, por exemplo,  $\alpha = \{(1, 3), (-3, 1)\}$
- 27. a)  $T(x, y, z) = \frac{1}{7}(-2x 6y 3z, -6x + 3y 2z, -3x 2y + 6z)$ 
  - b)  $\gamma$  pode ser qualquer base  $\{v_1, v_2, v_3\}$  do  $\mathbb{R}^3$  tal que  $v_1$  e  $v_2$  pertençam ao plano e  $v_3$  seja normal ao plano dado. Por exemplo,  $\gamma = \{(1, 0, -3), (0, 1, -2), (3, 2, 1)\}$ .