Package 'FractalTools'

January 9, 2018

Type Package
Title Fractality-based tools
Version 1.0
Date 2018-01-05
Author Mohamed Laib and Mikhail Kanevski
Maintainer Mohamed Laib <mohamed.laib@unil.ch></mohamed.laib@unil.ch>
Description Contains some tools based on the fractality concept such as Local-fractality and cross local fractality.
License GPL (>= 3)
Imports Rcpp (>= 0.12.14), bigmemory, biganalytics, RcppArmadillo, BH
LinkingTo BH, Rcpp, bigmemory, RcppArmadillo
Encoding UTF-8
NeedsCompilation yes
RoxygenNote 6.0.1.9000
R topics documented:
FractalTools-package CrossLocalSB GlobalSB LocalSB unidat Index
FractalTools-package FractalTools: Fractality-based tools

Description

Contains some tools based on the fractality concept such as Local-fractality and cross local fractality.

2 CrossLocalSB

Details

The algorithm does not deal with missing values, please make sure to remove them. The algorithms use "bigmemory" library, which is optimized to handle big data. However, the algorithm is based on pairwise distances, and according to the computing power of your machine, large number of data points can take much time and needs more memory.

Note

This R code was developed and used for the following research: "Analysis of high dimensional environmental data using local fractality concept and machine learning", the European Geosciences Union General Assembly (EGU 2018).

Author(s)

```
Mohamed Laib <Mohamed.Laib@unil.ch> and Mikhail Kanevski <Mikhail.Kanevski@unil.ch>,
```

References

Mikhail Kanevski, Mario G. Pereira, Local fractality: The case of forest fires in Portugal, In Physica A, Volume 479, 2017, Pages 400-410, ISSN 0378-4371.

Kanevski M., Pozdnoukhov A. and Timonin V. Machine Learning of Spatial Environmental Data. EPFL Press, 2009.

CrossLocalSB	Cross Local fractality (Sand-Box method) by fixing radial
--------------	---

Description

Calculate the cross local fractal dimension between two datasets by using the Sand-Box method.

Usage

```
CrossLocalSB(data1, data2, rad)
```

Arguments

datal	First dataset. Data of class: matrix or data.frame.
data2	$Second\ dataset.\ Data\ of\ class:\ {\tt matrix}\ or\ {\tt data}.\ {\tt frame}.$
rad	Vector containing values of the radial.

Value

A data frame contains: data, columns at each radials. The last presents the Fractal dimension of each points.

GlobalSB 3

Examples

```
## Not run:
D1<-matrix(runif(10*2), ncol=2)
D2<-matrix(runif(100*2), ncol=2)

D1<-as.data.frame(D1)
D2<-as.data.frame(D2)
rad<-seq(0.1,0.9,0.01)
tst<-CrossLocalSB(D1,D2, rad = rad)
tst

## End(Not run)</pre>
```

GlobalSB

Global fractality by fixing a radial (Sand-Box method)

Description

Calculate the fractal dimension of a dataset by using the Sand-Box method

Usage

```
GlobalSB(data, rad)
```

Arguments

data Data of class: matrix or data.frame.
rad Vector containing values of the radial.

Value

A list containing

- Fdim Computed fractal dimension.
- SB Data frame of log (radial) and the log (number of points).

Examples

4 LocalSB

```
Regline <- lm(A[[2]][,2]^A[[2]][,1])
abline(Regline, col="red", lwd=2)
legend("bottomright",paste("Fractal dimension:", round(A$Fdim,2)), bty="n")
#### IDmining examples #####
library(IDmining)
#### SwissRoll dataset ####
data<-SwissRoll(N=1000)
data<-apply(data,MARGIN=2,FUN = function(X) (X - min(X))/diff(range(X)))</pre>
rad<-seq(0.1,0.31,0.01)
A<-GlobalSB(data, rad)
A$Fdim
plot(A[[2]][,1],A[[2]][,2],type="b",pch=16,lwd=2,xlab="log(Rad)",ylab="log(N)",
      main="Sandbox plot", cex.main=1.5, las=1, axes=F)
axis(1)
axis(2)
grid()
Regline <- lm(A[[2]][,2]~A[[2]][,1])</pre>
abline(Regline, col="red", lwd=2)
legend("bottomright",paste("Fractal dimension:", round(A$Fdim,2)), bty="n")
#### Butterfly dataset ####
data <- Butterfly(1000)[,-9]</pre>
data<-apply(data,MARGIN=2,FUN = function(X) (X - min(X))/diff(range(X)))</pre>
rad<-seq(0.1,0.31,0.01)
A<-GlobalSB(data, rad)
A$Fdim
plot(A[[2]][,1],A[[2]][,2],type="b",pch=16,lwd=2,xlab="log(Rad)",ylab="log(N)",
      main="Sandbox plot", cex.main=1.5, las=1, axes=F)
axis(1)
axis(2)
grid()
Regline <- lm(A[[2]][,2]^A[[2]][,1])
abline(Regline, col="red", lwd=2)
legend("bottomright",paste("Fractal dimension:",
         round(Regline$coefficient[2],2)), bty="n")
## End(Not run)
```

LocalSB

Local fractality (Sand-Box method) by fixing radial

Description

Calculate the fractal dimension of a dataset by using the Sand-Box method

Usage

```
LocalSB(data, Rad)
```

unidat 5

Arguments

data Data of class: matrix or data.frame.

Rad Vector containing values of the radial.

Value

A data frame contains: data, columns at each radials. The last presents the Fractal dimension of each points.

Examples

```
## Not run:
#### Uniform variables ####
data <- unidat(n=10000, d=20)</pre>
\label{eq:data-apply} $$  data \sim -apply(data, MARGIN=2, FUN = function(X) (X - min(X))/diff(range(X))) $$
rad<-seq(0.1,1,0.01)
A<-LocalSB(data, rad)
A$Results$Fdim
#### IDmining examples #####
library(IDmining)
#### SwissRoll dataset ####
data<-SwissRoll(N=1000)</pre>
data < -apply(data, MARGIN=2, FUN = function(X) (X - min(X))/diff(range(X)))
rad<-seq(0.1,1,0.01)
A<-LocalSB(data, rad)
A$Results$Fdim
#### Butterfly dataset ####
data <- Butterfly(1000)[,-9]</pre>
data <- apply(data,MARGIN=2,FUN = function(X) (X - min(X))/diff(range(X)))
rad<-seq(0.1,0.31,0.01)
A<-LocalSB(data, rad)
A$Results$Fdim
## End(Not run)
```

unidat

Simulated uniform matrix

Description

Gives a matrix of uniform variables

Usage

```
unidat(n=1000, d=20)
```

6 unidat

Arguments

n Number of points.

d Number of variables.

Value

A matrix of n*d

Examples

```
## Not run:
raw_data<-unidat(n=1000, d=10)
dim(raw_data)
## End(Not run)</pre>
```

Index

```
CrossLocalSB, 2
FractalTools (FractalTools-package), 1
FractalTools-package, 1
GlobalSB, 3
LocalSB, 4
unidat, 5
```