IOD Capstone Project

Customer Churn Prediction

Cohort: ds-sg-pt-19jul21

0	12.1.2022	Kong Wei Shen	Sifat Khan/
			Gregory Murray
Revision	Date	Prepared by	Review By

Contents

1.	Ва	ackground	3
2.	Sc	cope	3
	2.1	Problem Statement	3
	2.2	Objective	3
3.	Fo	older Structure	3
	3.1	Readme – Documentation	3
	3.2	Data	3
	3.3	EDA (Exploratory Data Analysis)	3
	3.4	Pre-process & Model Development	3
	3.5	Deployment	4
4. Data Input & Output		Pata Input & Output	4
	4.1	Input File	4
	4.2	Default File	4
	4.3	Output File	4
5. Workflow			
	5.1	Data Exploration	4
	5.2	Prediction Deployment	4
	5.3	Modification/ Troubleshooting	4
6.	Ex	xploratory Data Analysis	4
7.	Pr	re-process	5
8.	M	Nodel Development	5
9.	Ev	valuation	6
	9.1	Model Evaluation	6
	9.2	Business Evaluation	6
10).	Denloyment	7

1. Background

This project is discussed about customer churn in telco company. Churn means leaving the company or terminating a contract/service; thus, churn is a revenue loss to company. Nowadays customer retention is one of the primary KPI for company with subscription-based business model.

2. Scope

2.1 Problem Statement

- How to identify which are the customer who going to churn/ terminating the contract/services.
- What are the characteristics of customer who is going to churn?

2.2 Objective

- To develop a model to predict customer is churn.
- To identify features which lead to customer churn in a specific dataset.
- Forecast minimum retaining rate for surplus profit in a event a marketing campaign to be conducted.

3. Folder Structure

- 3.1 Readme Documentation
 - 1. Operation Manual.docx Current document
 - 2. Presentation -KWS.pptx Summary of this document in presentation format.
 - 3. Archive_Original_Notebook_All.ipynb An Achieve of Jupiter notebook consists of full stack codes

3.2 Data

- The data set is collected from Kaggle
- Source: (https://www.kaggle.com/blastchar/telco-customer-churn)
- Telco-Customer-Churn.csv For training and testing)
- Telco-Customer-Churn Deployment.csv For deployment purpose
- Telco-Customer-Churn Deployment (Batch).csv For deployment purpose in simplified contain.

3.3 EDA (Exploratory Data Analysis)

• EDA.ipynb - Jupiter notebook for data profiling and exploration purpose.

3.4 Pre-process & Model Development

Jupiter notebook contain all pre-process in a function.

- Modelling.ipynb
 Jupiter notebook for model development.
- model.sav Model used for prediction purpose.

3.5 Deployment

- Deployment.ipynb

 Jupiter notebook use for prediction. (Only activate this notebook for production)
- Preprocess.py
 Python file created from be in this directory for deployment usage.

 Preprocess.ipynb
 . This python file needs to

4. Data Input & Output

- 4.1 Input File
 - The input file to be store in folder structure as in 3.2
 - Format shall be csv, xls any version readable by python.
- 4.2 Default File
 - Telco-Customer-Churn Deployment.csv Serve as default file for deployment.
- 4.3 Output File
 - Prediction output such as Shall be save to folder structure 3.5.

5. Workflow

- 5.1 Data Exploration
 - Activate notebook state in 3.3.
- 5.2 Prediction Deployment
 - Activate notebook state in 3.5
- 5.3 Modification/Troubleshooting
 - Activate notebook state in 3.4 (Preprocess.ipynb) for alteration in any pre-processing. Upon completion, download the python file and save into directory in 3.5.
 - Activate notebook state in 3.4 (Modelling) for modifying the predictive model. If you wish to save the new file in another name, rename the file not in 'model.sav'.

6. Exploratory Data Analysis

EDA contain of data profiling of target and features. All contain shall be listed as below:

- Data correlation
- Churn distribution.

- Bar plot of all features category by Churn
- Scatter plot using 2 features with category,
- Count plot using create new features consists of all additional services.

7. Pre-process

This section included data cleaning, pre-processing, and feature engineering. Refer below list

- Drop the rows with missing values.
- · Consolidating wording with same meaning
- Change data type from object to float
- Check columns with two classes
- Label Male & Female to 1 & 0
- Convert Yes & No to 1 & 0
- Creating dummy columns for features with multiple classes and non continues datapoint
- Rename column to presentable format
- Create updated columns
- Convert all columns to float type
- Convert the data object into NumPy array otherwise you will not be able to impute
- Define the criteria for dealing with the missing values
- Transform to impute data
- Scale data between 0 & 1 and normalisation
- Move the data back to a dataframe

8. Model Development

Several models are developed to compare the predictive performance. Hyperparameter tuning by using Grid Search CV. Ensembled method by using Ada Boosting. Models developed as below:

- Logistic Regression
- Support Vector Machine
- K Nearest Neighbours
- Random Forest
- Decision Tree
- AdaBoosting

9. Evaluation

9.1 Model Evaluation

Evaluation metrics as below:

- Accuracy
- F1 Score
- Precision
- Recall
- ROC_AUC
- Confusion Matrix

9.2 Business Evaluation

Forecast minimum retaining rate base on confusion matrix.

Assumption:

Using median charges for churn customer as sales monthly sales per person.

Campaign cost 20% of the monthly sales.

Monthly Charges = \$79.25

Campaign Cost = \$79.25 x 20% = **\$15.85**

Total cost for campaign is False Negative + True Negative = 138+294 x (15.85)

Profit at 20% Customer NOT Churn

Sales - Cost

 $= (79.25 \times 294 \times 20\%) - (138+294) \times (15.85)$

=\$ 4659.6- 6847.2 = - 2187.6

Profit at 29.39% Customer NOT Churn

Sales - Cost

 $= (79.25 \times 294 \times 29.39\%) - (138+294) \times (15.85)$

Profit at 80% Customer NOT Churn

Sales - Cost

= \$ (79.25 x 294 x 80%)- (138+294)x(15.85)

=\$ 18639.6- 6847.2 = 11792.4

10. Deployment

Activate notebook in structural folder state in 3.5.