ABCDEF is a convex hexagon. AB = BC = CD, DE = EF = FA, $\angle BCD = \angle EFA = 60^{\circ}$.

G and H are two points inside the hexagon such that $\angle AGB = \angle DHF = 120^{\circ}$.

Prove that $AG + GB + GH + DH + HE \ge CF$.

Construct two equilateral Δs *PAB* and *QDE* outside the hexagon.

By the theorem of circle 7,

$$PG = AG + BG \cdot \cdots \cdot (1)$$

$$QH = EH + DH \cdot \cdot \cdot \cdot \cdot (2)$$

It is easy to see that $\triangle APB \cong \triangle BCD$ and $\triangle AFE \cong \triangle DQQ$ (S.A.S.)

 $\triangle ABE \cong \triangle DBE (S.S.S.)$

The figure is symmetric about *BE*.

$$\therefore CF = PQ$$

$$AG + GB + GH + DH + HE$$

$$= PG + GH + HQ$$
 by (1) and (2)

 $\geq PQ$ (shortest distance between P and Q)

= CF.

The problem is solved.

