AIRBORNE DOPPLER LIDAR DETECTION OF WIND SHEAR RESULTS OF PERFORMANCE ANALYSIS

NASA LaRC/LOCKHEED PO#SEPAK 8630A
OCTOBER 22-23, 1987

COHERENT TECHNOLOGIES, INC.

R. MILTON HUFFAKER

AIRBORNE WIND SHEAR

LIDAR COMPUTER SIMULATION

- * READ INPUT PARAMETERS
- * SET UP MEASUREMENT GEOMETRY
 - Ζ, θ, Φ, ΔR
- * REALIZATION LOOP
- * SHOT LOOP
- * RANGE GATE LOOP
- * CALCULATE \propto (AFGL HITRAN) INTERPOLATE β , C_n^2
- * CALCULATE E {RECEIVED POWER}
- * MULTIPLY BY SRF SPECKLE, REFRACTIVE TURBULENCE, PHASE FRONT MISMATCH
- * INCOHERENT SAMPLE LOOP
 IF CY/2 (AR) (USE SAME R FOR ALL)

- * APPLY EXPONENTIAL FLUCTUATION TO E {POWER}
 X SRF
 SPECKLE DOMINATED PDF
- × CALCULATE WIDE AND NARROWBAND SNR $B_{w} = 4 V_{max}/\lambda; B_{n} = 1/\tau$
- * INTERPOLATE TRUE RADIAL VELOCITY FROM MICROBURST, V
- * CALCULATE ESTIMATED VELOCITY \hat{V}_r CONVOLVE V_r WITH GAUSSIAN TEMPORAL PULSE
- * CALCULATE VELOCITY WIDTH SECOND MOMENT
- * CALCULATE CRAMER-RAO E {VEL. ERROR} = σ_{V} USE SNR AND VEL. WIDTH
- * CHECK IF $\sigma_{\rm V}$ < V THRESHOLD? IF NO. THROW ESTIMATE AWAY

- * IF YES, GENERATE A GAUSSIAN R.V. V_E MEAN = 0, STD DEV = σ_V
- * CALCULATE $V_m = \hat{V}_r + V_E$
- * COMPLETE INCOHERENT SAMPLE LOOP
- * CALCULATE MEDIAN V and snr (IF EVEN NUMBER, AVE TWO IN MIDDLE)
- * COMPLETE RANGE GATE LOOP
- ***** COMPLETE SHOT LOOP
- * CALCULATE \overline{SNR}_n , \overline{V}_m , \overline{V}_E , σ_{V_E} / \sqrt{NSHOT}
- * COMPLETE REALIZATION LOOP
- * CALCULATE $\sigma_{\overline{\mathbf{v}}_{\underline{\mathsf{E}}}}$

AIRBORNE WINDSHEAR LIDAR BASE CASE PARAMETERS (CO2 LASER)

ATMOSPHERIC PARAMETERS

LARC PROVIDED MICROBURST FIELDS

NO RAIN, HAIL, CLOUDS

MID-LATITUDE SUMMER MODEL ATMOSPHERE

AEROSOL BACKSCATTER COEFFICIENT $\beta = 5 \times 10^{-8} \, (\text{m}^{-1} \cdot \text{sr}^{-1})$

MODIFIED NOAA-WPL-37 C_n PROFILE

LASER PARAMETERS

WAVELENGTH [CO₂ 10P(20)] $\lambda = 10.591 \mu m$

PULSE ENERGY = 5 mJ

OVERALL OPTICAL EFFICIENCY = .1

PULSE DURATION = $2 \mu s$

300 m RANGE RESOLUTION

10 PULSES AVERAGED

15 cm TELESCOPE DIAMETER (e⁻² INTENSITY)

3 km FOCAL RANGE

AIRCRAFT POSITION AND LIDAR ANGLE PARAMETERS

4 km TO CENTER OF MICROBURST (ON-AXIS)

500 m HEIGHT ABOVE GROUND LEVEL

-30 LIDAR ELEVATION POINTING ANGLE

AIRBORNE WINDSHEAR LIDAR BASE CASE PARAMETERS (Ho:YAG LASER)

ATMOSPHERIC PARAMETERS

LARC PROVIDED MICROBURST WIND FIELD

NO RAIN, HAIL, CLOUDS

MID-LATITUDE SUMMER MODEL ATMOSPHERE

AEROSOL BACKSCATTER COEFFICIENT $\beta = 1.25 \times 10^{-6} \, (\text{m}^{-1} \cdot \text{sr}^{-1})$

MODIFIELD NOAA-WPL-37 Cn PROFILE

LASER PARAMETERS

WAVELENGTH [Ho:YAG] $\lambda = 2.0913 \mu m$

PULSE ENERGY = 5 mJ

OVERALL OPTICAL EFFICIENCY = .2

PULSE DURATION = $.5\mu$ s (4 SAMPLES AVERAGED INCOHERENTLY OVER 2 μ s)

300 m RANGE RESOLUTION

10 PULSES AVERAGED

15 cm TELESCOPE DIAMETER (e-2 INTENSITY)

3 km FOCAL RANGE

AIRCRAFT POSITION AND LIDAR ANGLE PARAMETERS

4 km TO CENTER OF MICROBURST

500 m HEIGHT ABOVE GROUND LEVEL

-30 LIDAR ELEVATION POINTING ANGLE

CO2 SYSTEMATIC PARAMETRIC ANALYSIS

- Step 1: OPTIMIZE PULSE DURATION/RANGE RESOLUTION: .5 μ s, 1 μ s, 2 μ s, 3 μ s, 5 μ s, 6 μ s (75m), (150m), (300m), (450m), (750m), (900m)
- Step 2: EXAMINE NUMBER OF SHOTS: 1, 2, 5, 10, 50, 100
- Step 3: EXAMINE FOCUSING: f = 3 km, $f = \infty$
- Step 4: EXAMINE OPTICAL DIAMETER: D = 7.5 cm, 15 cm, 20 cm
- Step 5: EXAMINE REFRACTIVE TURBULENCE EFFECTS: C_n^2 , $C_n^2 \times 10$
- Step 6: EXAMINE PULSE ENERGIES: $1\mu J$, $50\mu J$, .5mJ, 5mJ, 10mJ, 15mJ, 20mJ, 100mJ
- Step 7: EXAMINE AEROSOL BACKSCATTER EFFECTS: $\beta = 5 \times 10^{-8}, 10^{-8}, 10^{-9}, 10^{-10}, 10^{-11} (m^{-1} \cdot sr^{-1})$
- Step 8: EXAMINE WET MICROBURST
- Step 9: EXAMINE AIRCRAFT POSITION: 4, 3, 2, 1 km FROM CENTER
 TAKEOFF PROFILES
 OFF-AXIS ENCOUNTERS
- Step 10: EXAMINE AZIMUTHAL SCAN: ENCOMPASS ENTIRE WIND FIELD IN A 2-DIM PLANE AT 50 INCREMENTS
- Step 11: MULTIPLE REALIZATIONS

(X, Y, Z) = (4 KM, 0 KM, .5 KM)AIRCRAFT POSITION COORDINATES: CO and HO: YAG BASE CASES LIDAR POINTING ANGLE: $\theta = -3^{\circ}$ RANGE (km) 8 HO:YAG ς**!**-**R**-01ς-

2-WAY CLEAR AIR EXTINCTION

AIRBORNE WIND SHEAR LIDAR RANGE RESOLUTION = 750M ω_2 base case PULSE DURATION = 5 μ S RANGE (km) 51-07ς-01-ŞĮ 01 **S**0 ç RADIAL WIND VELOCITY (m/s)

SUMMARY OF PERFORMANCE (LARC MICROBURST MODEL, 11:00 MIN.)

- 1. 20 mJ CO₂ LIDAR LINE-OF-SIGHT WIND VELOCITY ERROR <1 m/s to 8 km in the DRY MICROBURST TEST CASE.
- 2. 5 MJ Ho:YAG LIDAR LINE-OF-SIGHT WIND VELOCITY ERROR < .5 M/s to 8 KM IN THE DRY MICROBURST TEST CASE.
- 3. 5 MJ \mbox{CO}_2 LIDAR PENETRATES TO WITHIN 1 KM OF WET MICROBURST CENTER.
- 4. 5 MJ HO: YAG PENETRATES TO WITHIN .5 KM OF WET MICROBURST CENTER.
- Both CO_2 (100 mJ) and Ho:YAG (10 mJ) perform well to 3 km operating outside the boundary layer where: Beta (CO_2) = 5 x 10^{-11} m⁻¹ · sr⁻¹ Beta (Ho:YAG) = 1.25 x 10^{-9} m⁻¹ · sr⁻¹
- 5. LIDAR PERFORMANCE IN WET MICROBURST MODEL DOES NOT IMPROVE SIGNIFICANTLY WITH REASONABLE INCREASES IN LIDAR PARAMETERS.

CONCLUSIONS

- 1. BOTH CO₂ AND HO:YAG ARE SHOWN FEASIBLE FOR AIRBORNE WIND SHEAR DETECTION FOR DRY MICROBURSTS WITH LIMITED PERFORMANCE IN WET MICROBURSTS.
- 2. Ho:YAG PERFORMS BETTER THAN CO2 FOR A SET OF IDENTICAL LIDAR PARAMETERS.
- 3. THESE RESULTS ARE QUALIFIED BY THE LIMITED NUMBER OF TEST CASES.