A bonded cantilever-type strain-gage sensor was connected to an instrumentation preamplifier and output voltages (y) measured for a series of applied masses in grams (x). The data and scatter plot are presented below, courtesy of Andrew Bleakley (BME 4550L, Fall 2021).

Mass (g)	Voltage (V)	1.6						
0	1.082	1.4						
10	1.112	1.2				• •	* *	
20	1.138	1.2	* * '					
30	1.164							
40	1.189	0.8						
50	1.215	0.6						
60	1.24	0.4						
70	1.265	0.2						
80	1.291	0						
90	1.317	0	20	40	60	80	100	120
100	1.339							

Determine least-squares estimated linear regression coefficients for this data. Write the resulting regression equation (with unit!) and <u>draw the line</u> on the scatter plot.

An unknown mass was applied to the end of the cantilever and an output voltage of 1.177 V recorded regression line to estimate the value of mass.	Use your
Write a 95% prediction interval on a 12^{th} measurement @ 120g .	

Determine the coefficient of determination for this relationship. Would you say there is a strong linear relationship between applied mass and output voltage for this strain gage system?

Formulae:

$$\hat{\beta}_1 = \frac{\sum y_i x_i - \frac{(\sum y_i)(\sum x_i)}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}} = \frac{S_{XY}}{S_{XX}}$$

$$SS_T = \sum y_i^2 - n\bar{y}^2$$

$$SS_E = SS_T - \hat{\beta}_1 S_{XY}$$

$$\hat{\sigma}^2 = \frac{SS_E}{n-2}$$

 $R^{2} = 1 - \frac{SS_{E}}{SS_{T}} = \hat{\beta}_{1}^{2} \frac{S_{XX}}{SS_{T}} = \frac{\hat{\beta}_{1}S_{XY}}{SS_{T}}$

Parameter	Test Statistic	Critical Value	C.I.
eta_1	$t_0 = \frac{\hat{\beta}_1 - \hat{\beta}_{1,0}}{\sqrt{\hat{\sigma}^2 / S_{XX}}}$	$\pm t_{\alpha/2,n-2}$	$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \sqrt{\hat{\sigma}^2/S_{XX}}$
eta_0	$t_0 = \frac{\hat{\beta}_0 - \hat{\beta}_{0,0}}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right]}}$	$\pm t_{\alpha/2,n-2}$	$\hat{\beta}_0 \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}} \right]}$
$\mu_{Y x_0}$			$\hat{\mu}_{Y x_0} \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}} \right]}$
Y_0		P.I.:	$\hat{y}_0 \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}} \right]}$
ρ	$t_0 = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$	$\pm t_{\alpha/2,n-2}$	$\tanh\left(\tanh^{-1}R \pm \frac{z_{\alpha/2}}{\sqrt{n-3}}\right) \ (n \ge 30)$
$ ho_0$	$z_0 = (tanh^{-1}R - tanh^{-1}\rho_0)\sqrt{n-3}$	$\pm z_{\alpha/2}$	

TABLE • $\mathbb V$ Percentage Points $t_{\alpha,\mathbf v}$ of the t Distribution

v^{α}	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	.256	.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	.256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	.256	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	.254	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	.254	.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	.253	.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291