2019-2020 学年第一学期期终考试试题

考试科目: 线性代数 B1	考试时间: 2020.01.14
学生所在系: 学号:	
一. 填空題 (每题 4 分, 共 24 1 . 设三维向量 α , β 满足 $\alpha^T\beta$	分) $=2.$ 则 $etalpha^T$ 的特征值为
2. 设 4 阶矩阵 A 与 B 相似, 列式 B ⁻¹ -I =	I 为单位矩阵. 若矩阵 A 的特征值为 $1,2,3,4$, 则行
3. 已知矩阵 / -2	2 0 0 \ / -1 0 0 \
$\begin{pmatrix} 2\\3 \end{pmatrix}$	$\left(\begin{array}{ccc} 2 & 0 & 0 \\ a & 2 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cccc} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{array}\right)$
相似.则 a+b=	
4. 设矩阵	(1 0 2)
	$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$
$\mathbb{M} A^{-1} = \underline{\hspace{1cm}}.$	
5. 设	/ 0 2 1 \
	$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & a & 1 \\ 5 & 0 & 3 \end{pmatrix}.$
且 A 的秩为 2. 则 a =	

6. 设三阶矩阵 $A=(a_{ij})$ 满足 $A^*=A^T$, 且 $a_{11}=a_{12}=a_{13}$. 则 $a_{11}=$ _____.

二. 判断题 (每题 5 分, 共 20 分) 1. 下列两矩阵是否相似? 是否相合? 说明理由.

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right), B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

2. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 的矩阵, AB = I, 其中 I 为 m 阶单位矩阵. 则 秩 (A) 是否一定等于秩 (B)? 说明理由.

3. 设 $a_{ij} = \frac{i}{j}$, i, j = 1, ..., n. 二次型 $f(x_1, ..., x_n) = \sum_{i=1}^{n} (a_{i1}x_1 + ... + a_{in}x_n)^2$ 的符号 差是否为 n? 说明理由.

4. 设方阵 A 的每行元素之和都为 1. 那么 A^5 的每行元素之和是否为 1? 说明理由.

三. 计算及证明题 (共 56 分)

 $1.(8\,

eta)$ 设 3 阶实对称正交矩阵 A 非负定, |A|=-1, 且 $(1,1,1)^T$ 为对应于特征值 -1 的特征向量. 求 A.

$$A = \begin{pmatrix} 1 & \frac{1}{2} & 0\\ \frac{1}{2} & 1 & -\frac{1}{2}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

 $\alpha=(3,-1,2)^T$. 求 $\lim_{n\to+\infty}|A^n\alpha|$. 这里 $|\cdot|$ 表示向量的长度.

 $3.(8\ \mathcal{G})$ 设 T 是 n 维线性空间 V 的线性变换, n>1, $\alpha\in V$. 设 $T^n\alpha=0$, 但是 $T^{n-1}\alpha\neq 0$. (1) 求证: 向量组 $\alpha,T\alpha,...,T^{n-1}\alpha$ 线性无关. (2) 求证: T 不能对角化.

4.(6~
ho) 设 K 为集合 $\{c_1+c_2x+c_3\cos x:c_1,c_2,c_3\in \mathbb{R}\}$ 在通常的函数加法和数乘下构成的线性空间. 定义内积 $\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)\,g(x)\,dx$. 从 $1,x,\cos x$ 出发, 构造 K 的一个

5.(8分)设

$$A = \begin{pmatrix} 10 & 1 & 2 & 3 & 3 \\ 1 & 10 & 2 & 1 & 0 \\ 2 & 2 & 10 & 3 & x \\ 3 & 1 & 3 & 10 & x \\ 3 & 0 & x & x & 10 \end{pmatrix}.$$

$$10^{5}.$$

证明: 当 |x| < 3 时, $|A| < 10^5$.

 $6.(8\ 分)$ 设 t 为参数. 讨论以下二次曲面的类型: $x_1^2+x_2^2+tx_3^2+4x_1x_2+2x_1x_3+x_3-10=0.$

 $7.(10\ eta)$ 设 K 是次数小于 3 的实系数多项式在通常的数乘及加法运算下构成的线 性空间. (1) 证明 $1, x + 2, x^2 + x + 3$ 是 K 的一个基; (2) 求线性变换

Tf := f'' - f

在这个基底下的矩阵; (3) 求 T 的特征向量.