February 8 · Levul: De five TECE(R×RN) - 112/4 t 9 t (x, y) = (47t) 1/2 if $\Delta = flat Laplowan, we$

On the other hand

$$\frac{\partial}{\partial t} \frac{\partial}{\partial t} (x, y) = \frac{1}{(4\pi)^{n/2}} \left(\frac{n}{2} \frac{1}{t^{1+\frac{1}{2}}} + \frac{112-y11}{4t^{2}} \right)$$

$$= \frac{\partial}{\partial t} \left(\frac{1}{4} \frac{1}{t^{2}} \right) \frac{\partial}{\partial t} \frac{\partial}{$$

This is "Witch's lemma" k7,0 (417) 12 999

$$\left(\frac{\partial_{\xi} \phi(x)}{\partial_{\xi} \phi(x)}\right) = \int_{\mathbb{R}^{2}} q_{\xi}(x,y) dy$$

The following lemma justifies thinking about

9 t(x, y) as an integral kernal for the

operator:

-t
$$\Delta$$

-t Δ

-t

Prop: For leven,
$$\|\phi\|_{2+1} < \infty$$
:

 $\|\phi\|_{2+1} < \phi - \sum_{k=0}^{\lfloor t \rfloor} \frac{1}{\lambda^k} \phi \| \leq O(t^{\lfloor t \rfloor t + 1})$

$$||Q_{\xi}\varphi - \sum_{k=0}^{2} \alpha(k) \frac{t^{k}/2}{k!} \frac{d(k)(x)}{k!}||$$

$$||Q_{\xi}\varphi - \sum_{k=0}^{2} \alpha(k) \frac{t^{k}/2}{k!} \frac{d(k)(x)}{k!} \frac{d(k)(x)}{k!}$$

$$||Q_{\xi}\varphi - \sum_{k=0}^{2} \alpha(k) \frac{t^{k}/2}{k!} \frac{d(x)}{k!}$$

$$||Q_{\xi}\varphi - \sum_{k=0}^{2} \alpha(k) \frac{t^{k}/2}{k!} \frac{d(x)}{k!} \frac{d(x)}{k!}$$

$$||Q_{\xi}\varphi - \sum_{k=0}^{2} \alpha(k) \frac{t^{k}/2}{k!} \frac{d(x)}{k!} \frac{d(x)}{k!$$

<u>Je</u>	will	Show	that	4/	~ ~;) on	aua/oo	- -
the	heat	ken	عا	9 t (2	11)	Jefn	aualoo Jalov	
any	0W	poet	Roman	~~	man.	fold.		