XINYU LI

1555 Century Avenue, Shanghai, 200122, China ● (+86)15996936711 ● x11796@nyu.edu

EDUCATION

University of California at Berkeley

09/2020-Expected 2025, Berkeley

Industrial Engineering and Operations Research (Ph.D.)

New York University Shanghai

09/2016-05/2020, Shanghai

Honors Mathematics with honors (B.S.), Minor in Data Science

magna cum laude

New York University

09/2018-08/2019, New York

Highlighted Coursework: Functional Analysis(graduate), Optimization (graduate), Applied Stochastic Analysis (PhD level), Monte Carlo Method (PhD level), Probability Limit Theorem (graduate), Scientific Computing (graduate), Machine Learning, Mathematical Statistics for Data Science

RESEARCH EXPERIENCE

First-Order Methods for Peng-Wei Semi-definite Programming

02/2020-05/2020

Advisor: Prof. Shuyang Ling, NYU Shanghai

- Solved Peng-Wei Semi-Definite Programming (SDP) Relaxation using James Renegar's efficient first-order methods for SDP
- Designed three efficient algorithms and reduced the bound of total computational complexity compared with previous literature
- Built the test case models and implemented the algorithms on unsupervised machine learning clustering problems
- Drafted a senior thesis Efficient First-Order Methods for Peng-Wei Semi-definite Programming with application to optimal clustering

Stochastic-Optimization-Based Stochastic Optimal Control

05/2019-09/2019

Advisor: Prof. Jonathan Goodman, Courant Institute of Mathematical Sciences (CIMS)

- Built a test model based on Ornstein-Uhlenbeck process, applied and Linear Quadratic Gaussian (LQG)
 regulator on a linear model and compared results to those yielded by Stochastic Gradient Descent algorithm
- Studied Princeton's graduate course *Optimal Control and Estimation*; Derived equations of the LQG control in steady state of the system; solved for the theoretical solution of the LQG problem by applying deterministic optimization methods; Applied Dynamic Programming approach to conducting LQG to verify the results
- Built a nonlinear ODE model with noise as a combination of Minimal Glucose Model and Pharmacokinetics Insulin dynamics with insulin injection and meal disturbance for Type 1 diabetes patients (T1D)
- Conducted a literature review on effective glucose control on T1D and parameter estimation strategies
- Implemented filter and stochastic optimization methods, and proposed improvements on control strategy
- Summarized the programs and drafted a report in collaboration with another student at CIMS
- Presented at NYU Courant Summer Undergraduate Research Experience symposium

Effects of Nutrient Depletion on Tissue Growth in a Tissue-Engineering Scaffold Pore 05/2019-09/2019 Advisor: Prof. Pejman Sanaei, Courant Institute of Mathematical Sciences (CIMS)

- Solved Stoke's equation subject to no-slip and no penetration boundary conditions and advection-diffusion equation in cylindrical coordinates for nutrient concentration PDE using asymptotical analysis
- Built a model for cell proliferation in a tissue engineering scaffold pore and simulated the process with quasistatic analysis; Created a reverse process model to find out the optimal geometry of the scaffold given a specific restriction on tissue shape
- Drafted a paper *Cell proliferation in a tissue engineering scaffold pore, and the effects of nutrient concentration and scaffold internal geometry* in collaboration with another student at CIMS
- Presented at International Congress on Industrial and Applied Mathematics 2019
- Presented at 72nd Annual meeting of American Physics Society

FFT-based Modeling of the Coupling Behaviors of Composite Materials

11/2017-05/2018

Advisor: Prof. Romain Corcolle, NYU Shanghai

- Developed a model based on the Fast Fourier Transform (FFT) describing the homogeneous response of composite materials such as piezoelectric and magneto-strictive materials
- Constructed an effective property matrix considering coupled behaviors, and calculated the corresponding Green's operator in Fourier space, wrote an FFT-based coupling algorithm and ran simulations
- Compared the results with uncoupled algorithm and Finite Element Method
- Presented at NYU Shanghai DURF symposium

COMPETITION AND AWARDS

NYU Shanghai Excellence Award

2020

• Major Honors in Major Honors Mathematics

2020

• Zhang Xiaoqi & Cheung Kwok Ching Global Future Scholar

2018-2020

•	NYU Shanghai Recognition Award with scholarship	2018-2020
•	NYU Courant Summer Undergraduate Research Fund	05/2019
•	Meritorious Winner of Mathematical Contest in Modelling (top 9%)	03/2019
•	NYU Shanghai Deans' Undergraduate Research Fund	05/2018
•	Dean's List of Honors	2016-2019
•	Champion of Shanghai Schools Football League with NYU Shanghai women's soccer team	2018

TEACHING EXPERIENCE

Multivariable Calculus (Learning assistant); Intro to Computer Programming (Learning assistant); Po-Shen Loh's Olympiad math class (Class teacher)

English: TOFEL: 109 (Reading 27+Listening 27+Speaking 25+Writing 27), GRE: 331 (Verbal 163 (93%) + Quantitative 168 (93%) AW 3.5);

Programming Language: Python, MATLAB, Java