	Matrices clas	3 No: 4
	Topic	Date Date
	(BY: AJAY MITT	
	MATRICES : CLASS - L	1 (N-Y)
(-)	Inverse of a matrix	
~	denoted by A + +	
V	only of a Hyau Matin $AA^{-1} = I = A^{-1}A$ $A^{-1} = A^{-1} = IA^{-1}$	
	Row Transfermation	
A	3×3	
11/	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -1 & 4 \\ 0 & 2 & 3 \end{bmatrix}$	$R_3 \rightarrow 2R_3$
	RI -> RI+RZ (WALK RZ)	A= \ \ \ -9 - \ -9 - \ -1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$A = \begin{pmatrix} 9 & 1 & 7 \\ 3 & -1 & 9 \\ 0 & 2 & 2 \end{pmatrix}$	10 400
	$R_2 \rightarrow R_2 - 3R_1$	(C) (3)
1	$A = \begin{cases} 4 & 1 & 7 \\ -9 & -4 & -17 \\ 0 & 2 & 3 \end{cases}$	= (0 4 6) - 9 - 4 - 17

	Topic	Y-Y)	1 Pay: 2
	(BY: AJAY MITTAL 9891067390)		
	Rales		
(.)	$\begin{array}{c} R_1 \rightarrow R_1 + R_2 \end{array}$	(·) R, -> R2 - R1	
	$R_1 \rightarrow R_1 + 2R_3$	(·) Ri - 3R, -2	
	$R_2 \rightarrow 3R_2$	(-) R1-> R1+2	- 3
(.)	R, 4> R2	(') R, -> R, R2	
(.)	$R_1 \rightarrow R_1 - 3R_3$	(1) R, -> R1/K2	
	R2 - R2 + 2 R3	(1) R1 -> R2+ R3	0
		R3 -> R1 + 2	Ro
Ovi	Finds the Invan	y a matin Usn	j
QN Finds the Inval of a matrix Using Raw Transfermation			
	I'm A=	34)	
	We hay A= I	A	
Main	9 6 She) 2 2 Q	- 0 0 0 7	
	(fow Horf	2 (00.1)	
	Convergen Ri -> Ri-	-R3	

$$R_1 \rightarrow 3R_1$$

$$\begin{bmatrix} 6 & 9 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 10 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 10 \\ 0 & -51 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -15 & 6 \end{bmatrix} \neq 1$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ \frac{1}{17} & -\frac{2}{17} \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{14} & \frac{3}{14} \\ \frac{1}{14} & \frac{-2}{72} \end{bmatrix} A$$

$$\frac{1}{1+1} \begin{bmatrix} 1 & 3 \\ 5 & -2 \end{bmatrix}$$

CLASS XII CHAPTER- MATRICS		2020-2021 BY: AJAY MITTAL
	WORKSHEET NO.4	9891067390
	॥ जम ब्री छारि	राज जी भद्दराजा।
	Using elementary Row Tra	ins farmarin find the
	Dovuk of the Siun	matricer
	0	- ANS NERS -
(1)	$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$	ANS A-1- [3 -5]
	[1 3]	L-1 2 J
(2).	A= (4 5)	ANS: A-1- (4 -5)
	[3 4]	ANS: A-1 = (4 -5)
(3)	$A = \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$	Ans A-1 - (7 -107
	2 7	Ans A-1 - [7 -10] -
(4).	$A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$	Ans A-I does not exist
	1 -2 1]	
(5)	$A = \begin{pmatrix} 3 & 9 \\ 9 & 6 \end{pmatrix}$	AME A-1 does not exist
	[2 6]	
161	$A = \begin{bmatrix} 2 & -3 & 3 \end{bmatrix}$	ANE A-1-1 (-2 0 3) - 5 -1 1 0 - 2 1 -2 -
	$ \begin{array}{c cccc} A = & 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{array} $	5 -1 1 0 -
	2 3 -2 2	2 1 -2 -
(7).	A= (1 3 -2)	ANS AT = (1 -2/5 -3/5) -2/5 4/25 11/25
	-3 0 -5	-2/5 4/25 11/25 -
	2 5 0 5	-7/5 1/25 9/25
(8).	A= (2 0 -1)	12 123
(0).	F 2 0 -1	1 (3 -1 1)
	0 1 3	AMS A-1 = 3
10.1	. (0 1 2)	5 -2 2
(9/.	$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$. (1) 1/ 1/ 2
	3 1 1	AMI A-1= 1/2 1/2
		12 12 12 12 12 12 12 12 12 12 12 12 12 1
(10)	A= 2 -1 3	12 12 12
	1 2 9	AMS A-1=-1 (-2 4 -10)
	3 1 1	30 11 -+ -5
		-5 -5 5]

ULTIMATE MATHEMATICS
(A SPECIALISED INSTITUTE OF MATHEMATICS)