Lesson 3 Dynamical Systems

3-6: The Ergodic Theorem

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

From Recurrence to Averages

 (X, \mathcal{B}, μ) probability space, $T: X \to X \mu$ -preserving.

Poincaré recurrence: For every measurable $E \subseteq X$ with $\mu(E) > 0$, almost every point in E returns to E infinitely often.

Question: Can we say something about how often a point returns on average?

- ightharpoonup Assume $X = A^{\mathbb{N}}$, A finite, T shift mapping, $E = [\sigma]$.
- For a sequence x to return to E then means that σ occurs as a substring in x.
- ightharpoonup The average number of returns to $[\sigma]$ by time n is then given as

▶ Q: Does this average converge? To $\mu[\sigma]$?

PENNSTATE

Eberly College of Science

→ Ergodic Theorem

The Ergodic Theorem

T measure-preserving transformation on probability space (X, \mathcal{B}, μ) .

▶ If f is a μ -integrable function on X, then the average

$$\frac{1}{n}\sum_{i=0}^{n-1}f(T^{i}(x))$$

converges for μ -almost every $x \in X$.

- ▶ If we denote the limit by $f^*(x)$, then f^* is integrable $(L^1(\mu))$ and $\int f d\mu = \int f^* d\mu$. Furthermore, f^* is T-invariant, i.e. $f^* \circ T = f^*$.
- Finally, if T is ergodic, then f^* is constant μ -a.e. and hence $f^*(x) = \int f d\mu$, which means

$$\frac{1}{n}\sum_{i=0}^{n-1}f(\underline{T}^{i}(x))\overset{n\to\infty}{\longrightarrow}\int fd\mu.$$

Example - Law of Large Numbers

- Let (X_n) be a binary Bernoulli process with P(1) = p, P(0) = 1 p.
- ▶ μ_p Kolmogorov measure on $2^{\mathbb{N}}$, i.e. $\mu_p[1] = p$, $\mu_p[0] = 1 p$. μ_p is invariant under shift map T.
- ▶ Let $f = \chi_{[1]}$. We have $f(T^ix) = 1$ iff $T^ix \in [1]$ iff $x_i = 1$.
- ▶ By the ergodic theorem, for μ_p -almost every $x \in 2^{\mathbb{N}}$,

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{[1]}(T^{i}x) = \lim_{n} \frac{|\{i < n : x_{i} = 1\}|}{n} \longrightarrow \int \chi_{[1]} d\mu_{p}$$

$$= \lim_{n} \frac{x_{0} + x_{1} + \dots + x_{n-1}}{n} = \mu_{p}[1] = p.$$

Therefore, the ergodic theorem can be seen as an extension of penn State the strong law of large numbers to arbitrary stationary processes.

Proving the Ergodic Theorem (I)

It suffices to consider real-valued $f \in L^1(\mu)$. Put

$$f^*(x) = \limsup_{n} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$$
 and $f_*(x) = \liminf_{n} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$.

We want to show: $f^*(x) = f_*(x) \mu$ -almost everywhere.

For real r < s, let

$$E_{r,s} = \{ \underline{x \in X} : f_*(x) < r \text{ and } f^*(x) > s \}.$$

We have

$$\{x: f_*(x) < f^*(x)\} = \bigcup_{r < s \in \mathbb{Q}} E_{r,s}.$$

Hence it suffices to show $\mu(E_{r,s}) = 0$.

Proving the Ergodic Theorem (II)

Idea: Show that

$$\int_{E_{r,s}} \underline{f} d\mu \geqslant s\mu(E_{r,s}),$$

and at the same time

$$\int_{E_{r,s}} f d\mu \leqslant r\mu(E_{r,s}).$$

If r < s, this forces $\mu(E_{r,s}) = 0$.

This follows from the maximal ergodic theorem.

Maximal Ergodic Theorem

THM: Let T be a measure-preserving transformation on a probability space (X, \mathcal{B}, μ) , and $f \in L^1(\mu)$. Define

$$f^*(x) = \limsup_{n} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x).$$

Then, for any $\lambda \in \mathbb{R}$

$$\int_{\{f^*>\lambda\}} f d\mu \geqslant \lambda \mu \{f^*>\lambda\}.$$

Suppose T is the shift on $2^{\mathbb{N}}$ and μ is shift-invariant and ergodic.

Let's try to give a more ``direct'' proof that almost surely,

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} x_{i} = \mu[1].$$

Suppose the statement is false, then wlog for some $\varepsilon > 0$, the set

$$E = \{x: \limsup_{n} \frac{1}{n} \sum_{i=0}^{n-1} x_i \geqslant \mu[1] + \varepsilon\}$$

has positive measure $\mu(E) > 0$.

 $\overline{\it E}$ is $\it T$ -invariant ($\it TE \subseteq \it E$), so by ergodicity $\it \mu(\it E)=$ 1.

So almost every $x \in 2^{\mathbb{N}}$ has a long stretch of ``too many" 1's infinitely often.

On the other hand, at any finite point in time, the expected value of $\sum_{i < n} x_i / n$ must be $\mu[1]$, since

$$\mu[1] = \int \chi_{[1]}(x) d\mu(x) = \int (\chi_{[1]} \circ T)(x) d\mu(x)$$

$$= \int \frac{1}{n} \sum_{i=0}^{n-1} \chi_{[1]}(T^{i}x) d\mu(x) = \int \frac{\sum_{i < n} \chi_{i}}{n} d\mu(x)$$
(*)

Idea: Find a long interval that contains many short intervals in which the number of 1's is too large for (*) to hold.

Assume $x \in E$. Since $TE \subseteq E$, for every n there exists a minimal $s(n) = s_x(n)$ for which

$$\frac{x_n+x_{n+1}+\cdots+x_{s(n)-1}}{s(n)-n}\geqslant \mu[1]+\varepsilon.$$

Only a certain fraction of x has a large $s_x(0)$: Given $\delta > 0$, there exists L such that

$$\mu(D) \leqslant \delta^2$$
, where $D = \{x: s_x(0) > L\}$.

Hence if we give up a little bit of measure, we can work with sequences that obtain an ε -excess of 1's by a fixed time L.

Furthermore, not many orbits will visit D very often: Let $g_N(x)$ be the average number of visits of T^ix to D by time N,

$$g_N(x) = \frac{1}{N} \sum_{i=0}^{N-1} \chi_D(T^i x).$$

T measure preserving implies $\int g_N d\mu \leqslant \delta^2$. Then Markov's inequality yields

$$\mu(G_N) \geqslant 1 - \delta$$
, where $G_N = \{x : g_N(x) \leqslant \delta\}$.

 $\mu \neq x : g_N \neq \delta \neq 1 - g_N \neq 1 - g$

For $x \in G_N$, the portion of long intervals with starting point in [0, N-1] is not more than δ :

The Packing Lemma

LEMMA: Suppose $x \in G_N$. There exists a sequence $n_1 < n_2 < n_3 < \cdots < n_k$ of natural numbers such that

- (1) the intervals $[n_i, s_x(n_i)]$ are disjoint,
- (2) $[n_i, s_x(n_i)] \subseteq [0, N-1]$ for all $i \leqslant k$,
- (3) $|\bigcup_{i}[n_{i},s_{x}(n_{i})]| \geqslant (1-2\delta)N$.

The Lemma allows us to bound the number of 1's in [0, N - 1] from below:

$$\sum_{j=0}^{N-1} x_j \geqslant \sum_{i=1}^k \sum_{j=n_i}^{s(n_i)} x_j \geqslant (1-2\delta)N(\mu[1]+\epsilon).$$

Note that this bound is independent of x (though the sequence of n_i 's does depend on x), as long as $x \in G_N$. Hence we can bound the integral

$$\int \sum_{j=0}^{N-1} x_j \geqslant (1-2\delta) \mathcal{N}(\mu[1]+\varepsilon) \mu(G_N).$$

Thus,

$$\underline{\mu[1]} = \int \frac{\sum_{i < N} x_i}{N} d\mu(x) \geqslant (1 - 2\delta)(1 - \delta)(\underline{\mu[1]} + \varepsilon),$$

which is impossible, since δ can be chosen arbitrarily small.

PENNSTATE

Eberly College

8 5 5 of Science

[Source: Shields, *The ergodic theory of discrete sample paths*]