

Billiard-Al

Ein intelligenter Billardtisch

BSc Thesis

Studienrichtung: Informatik - Computer Perception and Virtual Reality

Autor: Lukas Seglias, Luca Ritz
Dozent: Markus Hudritsch

Experte:

Datum: 22. September 2021

Inhaltsverzeichnis

1	Zusammenfassung	3
2	Einführung	5
3	Ziele 3.0.1 Planung	
4	Billiard-Al 4.1 Klassifikation 4.2 Modellierung physikalisches System 4.2.1 Objekte 4.2.2 Ereignisse und ihre Repräsentation 4.2.3 Kantenfunktion 4.2.4 Layer 4.2.5 Beispiel eines Graphen 4.3 Suchalgorithmus	11 12 12 13 13
5	Resultate 5.1 Klassifikation	15 15
6	Weitere Arbeiten	17
7	Fazit	19
8	Anhang	27

Erklärung der Diplomandinnen und Diplomanden Déclaration des diplômant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbständig durchgeführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und anderen Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thèse de bachelor de manière autonome. Toutes les sources d'information (littérature spécialisée, discussions avec spécialistes etc.) et autres ressources qui m'ont fortement aidé-e dans mon travail sont intégralement mentionnées dans l'annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec indication précise de leur provenance.

Name/ <i>Nom</i> , Vorname/ <i>Prénom</i>	
Datum/ <i>Date</i>	
Unterschrift/ <i>Signature</i>	

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen. Ce formulaire doit être joint au rapport de la thèse de bachelor.

Erklärung der Diplomandinnen und Diplomanden Déclaration des diplômant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbständig durchgeführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und anderen Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thèse de bachelor de manière autonome. Toutes les sources d'information (littérature spécialisée, discussions avec spécialistes etc.) et autres ressources qui m'ont fortement aidé-e dans mon travail sont intégralement mentionnées dans l'annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec indication précise de leur provenance.

Name/ <i>Nom</i> , Vorname/ <i>Prénom</i>	
Datum/ <i>Date</i>	
Unterschrift/ <i>Signature</i>	

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen. Ce formulaire doit être joint au rapport de la thèse de bachelor.

1 Zusammenfassung

TODO: Zusammenfassung

2 Einführung

Wie vieles andere ist auch das Erlernen des Billardspiels eine schwierige Sache. Es stellen sich Fragen wie "Welche Kugel soll man anspielen?", "Wie soll man die Kugel anspielen?" oder "Wie hält man den Queue richtig?". Darauffolgend gibt es noch diverse weitere Überlegungen, welche den Profi vom Anfänger unterscheiden. Wie in anderen Spielen auch, ist hier Weitsicht gefragt. Es geht also nicht nur darum, eine Kugel zu versenken, sondern auch den Spielstand so zu verändern, dass optimal weitergespielt werden kann. Das Stichwort ist im Billard vorallem die Platzierung der weissen Kugel.

TODO: Weiter schreiben

3 Ziele

Ins Billard-Spiel einzusteigen ist nicht ganz einfach. Zu Beginn lässt es sich schlecht abschätzen, welchen Weg eine Kugel nehmen wird, wenn man sie anschlägt und den optimalen Stoss über mehrere Züge hinaus zu planen, erst recht. Denn bei fortgeschrittenen Spielen ist es oft wichtig, dass die weisse Kugel optimal für den nächsten Stoss platziert wird.

Es soll ein System entstehen, das dem Spieler den optimalen Stoss vorschlägt basierend auf Kriterien und optional einer festgelegten Tiefe des Spielstands. Dazu soll eine Kamera den Spielstand auf dem Billiartisch erkennen, verarbeiten und dem Spieler Hilfestellungen mittels eines Projektors anzeigen.

Diese Arbeit setzt auf bereits geleisteter Tätigkeit aus "Projekt 2" auf[Luk21a]. Die Tätigkeiten werden nachfolgend beschrieben.

Vorschlag eines optimalen Stosses Es wird ein Stoss vorgeschlagen, welcher anhand der gewählten Kugel möglichst optimal ist. Dieser Stoss kann direkt (einfach) oder indirekt (erweitert) sein.

Es ist weiterhin anzumerken, dass es in erster Linie um Snooker-Billard geht. Dies hat mehrere Gründe. Einerseits soll in dieser Arbeit nicht die Klassifikation der Kugeln im Zentrum stehen, sondern die Suche nach einem optimalen Stoss. Es wird angenommen, dass dies mit Snooker-Kugeln einfacher ist als mit Pool-Billard-Kugeln. Andererseits wird das Projekt zusammen mit einem Unternehmen durchgeführt, welches eventuell auch einen kommerziellen Ansatz verfolgen will. Da grössere Turniere wie Weltmeisterschaften in Snooker ausgetragen werden, kam schnell der Wunsch auf, das Hauptaugenmerk darauf zu legen. Nichtsdestotrotz wird die Anwendung so abstrakt gehalten, dass sie mit wenig Aufwand auf Pool-Billard portiert werden könnte. Dies bildet jedoch kein Ziel der Bachelor-Thesis.

3.0.1 Planung

Die initiale Planung beinhaltet eine Auflistung der Tätigkeiten, dem zugewiesenen Meilenstein sowie deren Schätzung in PT (Personen-Tage). Jedem Arbeitspaket wird eine ID zugewiesen, welche bei der Zeiterfassung verlinkt wird. Das Total der zu vergebenden PT beträgt 90.

	Klassifikation der Kugeln Aufsetzen Dokumentation	M-1	6
	Aufastzan Dakumentation		O
	Ausetzen bokumentation	M-1	2
T-3	Beschreibung Suchalgorithmus	M-1	3
T-4	Implementation Suchalgorithmus	M-1	5
T-5	Beschreibung der physikalischen Eigenschaften für die einfache Suche	M-1	6
T-6	Implementation der einfachen Suche und deren Bewertungsfunktion	M-1	10
T-7	Beschreibung der physikalischen Eigenschaften für die erweiterte Suche	M-2	6
T-8	Implementation der erweiterten Suche und deren Bewertungsfunktion	M-2	8
T-9	Überprüfen/Verbessern der Detektionsgenauigkeit	M-1	6
T-10	Video erstellen	M-3	2
T-11	Plakat schreiben	M-3	2
T-12	Booklet-Eintrag schreiben	M-3	1
T-13	Präsentation des Finaltags vorbereiten	M-3	2
T-14	Präsentation der Verteidung vorbereiten	M-3	2
T-15	Finalisieren Dokumentation andere Arbeiten	M-3	4
T-16	Projektmanagement	Kein	4
T-17	Effizienz Erfassung und Steigerung der einfachen Suche	M-1	4
T-18	Effizienz Erfassung und Steigerung der erweiterten Suche	M-2	2
T-19	Dokumentation der Resultate der einfachen Suche	M-1	6
T-20	Dokumentation der Resultate der erweiterten Suche	M-2	2
T-21	Umbau in Unity	M-1	6
O-1	Suche über mehrere Spielstände	M-2	
0-2	Detektion des Queues in 2D	M-2	
O-3	Detektion des Queues in 3D	M-2	
0-4	Stossberechnung anhand detektiertem Queue in 2D	M-2	
O-5	Stossberechnung anhand detektiertem Queue in 3D	M-2	
O-6	Spielerabhängige Heuristik	M-2	
O-7	Live-Verfolgung und Darstellung der Kugeln	M-2	
	Total		90

Tabelle 3.1: Ziele

3.0.1.1 Meilensteine

Es werden drei Meilensteine definiert, welche auch aus optionalen Zielen bestehen können. Die Deadlines ergeben sich aus den Schätzungen der zugewiesenen Arbeitspakete.

Meilenstein 1 - 15.11.2021 Das Ziel ist eine sehr einfache simple Suche. Darunter zu verstehen ist eine Lösung, welche einen direkten Treffer findet (Weiss -> Kugel -> Loch). Code Deliverables:

Klassifikation - T-1

Alle Kugeln können entsprechend ihrere Farbe klassifiziert werden.

Suchalgorithmus für einfache Suche - T-4, T-6, T-17

Ein direkter Stoss wird in akzeptabler Zeit gefunden.

Unity-Umbau - T-21

Unity ist bereit für den Einsatz. Zum Umbau gehören insbesondere die Farbe der Markierung der Kugeln und deren Bahnen. Weiterhin muss Unity mehrere Suchergebnisse anzeigen können.

Dokumentation Deliverables:

Klassifikation - T-1

Das Vorgehen der Klassifikation wie deren Resultate und Genauigkeit sind dokumentiert.

Suchalgorithmus für Suche - T-3

Der Algorithmus der Suche ist theoretisch und mit Pseudocode beschrieben. Die theoretische Beschreibung muss nicht gänzlich mit der effektiven Implementation übereinstimmen, da diese auf Performance optimiert wird.

Resultate der einfachen Suche - T-19

In den Resultaten ist die Genauigkeit und Performance des einfachen Suchvorgangs beschrieben.

Physik der einfachen Suche - T-5

Die benötigte Physik der einfachen Suche ist beschrieben.

Bewertungsfunktion - T-6

Die Bewertungsfunktion der einfachen Suche ist dokumentiert.

Meilenstein 2 - 13.12.2021 Das Ziel ist eine erweiterte Suche, die auch indirekte Stösse über weitere Kugeln oder Banden finden kann. Optional sollen auch mehrere Stösse berücksichtigt werden. Code Deliverables:

Suchalgorithmus für erweiterte Suche - T-8, T-18

Ein indirekter Stoss wird in akzeptabler Zeit gefunden.

Suchalgorithmus über mehrere Stösse - O-1

Es werden mehrere Spielstände bei der Suche berücksichtigt.

Queue in 2D detektieren - O-2

Der Queue wird als 2D-Objekt detektiert.

Queue in 3D detektieren - O-3

Der Queue wird mittels Tiefeninformationen der Kamera als 3D-Objekt detektiert.

Stossberechnung anhand detektiertem 2D-Queue - O-4

Der Stoss wird je nach Haltung des Queues in 2D berechnet. Es wird angenommen, dass der Queue zentral auf die weisse Kugel gerichtet ist.

Stossberechnung anhand detektiertem 3D-Queue - O-5

Der Stoss wird je nach Haltung des Queues in 3D berechnet. Der Queue muss nicht mehr zentral auf die weisse Kugel gerichtet sein.

Spielerabhängige Heuristik - O-6

Je nach Spieler kann eine andere Heuristik zur Bewertung der Stösse eingestellt werden. Durch die Unterscheidung können für professionelle Spieler erfolgsversprechendere schwerer durchzuführende und für Anfänger eher leichtere Stösse gefunden werden.

Live-Verfolgung und Darstellung der Kugeln - O-7

Die Kugeln werden ohne Benutzereingabe getrackt und deren Position über den Projektor dargestellt.

Dokumentation Deliverables:

Physik der erweiterten Suche - T-7

Die benötigte Physik der erweiterten Suche ist beschrieben.

Resultate der erweiterten Suche - T-20

In den Resultaten ist die Genauigkeit und Performance des erweiterten Suchvorgangs beschrieben.

Bewertungsfunktion - T-8

Die Bewertungsfunktion der erweiterten Suche ist dokumentiert.

Meilenstein 3 - 17.01.2022 Das Ziel ist der Abschluss aller Arbeiten zu denen auch Plakat, Booklet oder Video gehören. *Deliverables:*

Video - T-10

Das finale Video ist erstellt.

Plakat - T-11

Das Plakat ist erstellt.

Booklet - T-12

Der Booklet-Eintrag ist erstellt.

Präsentation für Finaltag - T-13

Die Präsentation/Ausstellung für den Finaltag ist vorbereitet.

Präsentation für Verteidigung - T-14

Die Präsentation für die Verteidigung ist vorbereitet.

Finalisieren der Arbeiten - T-15

Die Dokumentation wie auch der Code sind abgeschlossen.

4 Billiard-Al

4.1 Klassifikation

4.2 Modellierung physikalisches System

Der in Kapitel 4.3 beschriebene Algorithmus benötigt ein möglichst optimales Datenmodell, um effizient arbeiten zu können.

Das Modell beschreibt den Ablauf durch Effekte, wie zum Beispiel Kollisionen, welche auftreten. Das Modell wird in drei Teile gegliedert. Zum Einen gibt es Objekte, welche entweder variabel oder konstant sind. Variabel sind sie, sobald sie einen Energiewert besitzen, der sich über die Zeit oder durch Interaktionen mit anderen Objekten verändert. Konstant sind sie, wenn sie einen fixen Energiewert haben. Dieser kann auch 0 sein. Weiterhin gibt es Ereignisse (Events), welche Schlüsselveränderungen im System signalisieren. Zu guter Letzt existiert eine Kantenfunktion, die zwischen den Ereignissen auf den Status des Objekts angewendet werden kann.

4.2.1 Objekte

Wie bereits erwähnt existieren zwei Arten von Objekten:

Variabel Energiewert ändert sich. Variable Objekte werden dynamisch genannt, sofern sie einen Energiewert grösser 0 haben und werden statisch genannt, sobald der Energiewert 0 erreicht.

Konstant Energiewert ändert sich nicht.

4.2.2 Ereignisse und ihre Repräsentation

Das Ziel ist der Aufbau eines graphenähnlichen Konstrukts, welches aus Layern besteht und Zustandsübergänge variabler Objekte durch Knoten repräsentiert. Einige dieser Knoten treten bei Ereignissen wie einer Kollision oder das Verlassen des Systems auf. Andere Knoten dienen der reinen Abbildung des variablen Objekts innerhalb des Layers. Es werden die nachfolgenden Knoten definiert.

Energy-Input-Node: Dieser Node beschreibt das Auftreten eines Energie-Inputs von Aussen.

Energy-Transfer-Node (Collision-Node): Dieser Node beschreibt die Übergabe von Energie auf die beteiligten Objekte.

Der Energy-Transfer-Node wird in drei Schichten aufgeteilt. Bei der Input-Schicht wird die Kantenfunktion (siehe S. 12) angewendet. Diese berücksichtigt den Energieverlust bis zum Auftreten des Ereignisses. Die mittlere Schicht beschreibt die Übergabefunktion der beteiligten Objekte. Die dritte Schicht repräsentiert das Resultat, also den Status der Objekte nach der Energieübergabe.

Abbildung 4.1: Der Energy-Transfer-Node

No-Energy-Node: Dieser Node wird eingesetzt, sobald der Energiewert eines variablen Objekts auf 0 sinkt und somit auch den Übergang von dynamisch zu statisch repräsentiert.

Out-Of-System-Node: Dieser Node wird eingesetzt, sobald ein variables Objekt das System verlässt.

Cutting-Node: Dieser Node ist ein spezieller Energy-Transfer-Node. Er wird bei variablen Objekten eingesetzt, die nicht an einem Ereignis beteiligt sind, wenn ein solches auftritt. Zum Ereigniszeitpunkt wird ein neuer Layer (siehe S. 13) geschaffen, welcher die Objekte, die am Ereignis beteiligt sind, in einem Energy-Transfer-Node festhält. Weiterhin wird der Status aller dynamsichen Objekte ebenfalls zu diesem Zeitpunkt festgehalten. Der Cutting-Node beschränkt sich auf ein Input- sowie Output-Objekt und beinhaltet als Energieübertragungsfunktion die Identitätsfunktion.

4.2.3 Kantenfunktion

Die Kantenfunktion beschreibt eine Energieabnahme über die Zeit oder den Weg.

4.2.4 Layer

Sobald ein Ereignis auftritt wird ein neuer Layer im System eingefügt. Dieser beinhaltet sämtliche Veränderungen der variablen Objekte und beschreibt den Status des Systems komplett. Der erste sowie der letzte Layer sind speziell, da diese eigentlich nur deren Halbe sind. Ein Layer wird grundsätzlich in zwei Bereiche aufgeteilt. Es gibt den Inputbereich, welcher den Status eines variablen Objektes vor der Energieübertragung, sowie den Outputbereich, welcher den Status eines variablen Objektes nach der Energieübertragung beschreibt. Um den aktuellen Stand eines Systems zu ermitteln, kann zwischen der Zeit des Outputbereichts von Layer n-1 wie der Zeit des Inputbereichst von Layer n interpoliert werden.

4.2.5 Beispiel eines Graphen

Das beschriebene Datenmodell kann als Graph¹ visualisiert werden. Als Beispiel wird die Idee eines Billardstosses in Abbildung 4.2 hinzugezogen. Auf dem Tisch liegt eine weisse wie auch zwei rote Kugeln. Die zweite rote Kugel wird an keiner Interaktion beteiligt sein, weswegen sie ihren Zustand nie verändert. Es ist ersichtlich, dass bei jedem Ereignis jeweils ein "Out-of-energy-Node" eingefügt wird. Das erste Event beschreibt die Kollision des dynamischen Objekts "weisse Kugel" sowie des statischen Objekts "rote Kugel". Danach verliert die weisse Kugel sämtliche Energie und wechselt in den Status " Out-of-energy". Da die rote Kugel zu diesem Zeitpunkt dynamisch ist, wird für sie ein " Cutting-Node" eingefügt. Zuletzt verlässt die rote Kugel das System, für sie wird ein " Out-of-system-Node" erstellt und das System hat sämtliche Energie verloren. Ein Endzustand wurde erreicht. Es gilt weiterhin die Beschreibung auf der linken Seite der Keyframes zu beachten. Ein Layer definiert immer deren zwei Keyframes, sofern es sich nicht um den Input- oder Output-Layer handelt. Um den Zustand des Systems zu einem beliebigen Zeitpunkt zu berechnen, kann jeweils zwischen den KeyFrames n und n+1 zweier Layer interpoliert werden.

Layer	Variable Objekte					
	Weisse Kugel	Rote Kugel 1	Rote Kugel 2			
Layer 0 (Input-Layer)						
Key Frame 0						
Layer 1						
Key Frame 1						
Key Frame 2						
Layer 2						
Key Frame 3						
Key Frame 4						
Layer 3						
Key Frame 5						

Abbildung 4.2: Beispiel für ein Resultat des Algorithmus 1

¹ Aus effizientsgründen wird auf einen Graphen in der Implementation verzichtet. Das System setzt sich aus verschiedenen Layern zusammen, bei welchen die Informationen der Events für jedes variable Objekt separat und mit Zugriffszeit *O*(1) abgelegt werden.

```
Function simulate(start: Layer, constantObjects: list) → System
   system ← System()
   system ← appendLayer(system, start)
   while ! svstem.isStatic() do
      nextEvent ← nextEvent(system.lastLayer(), constantObjects)
      layer ← atMoment(nextEvent)
      system ← appendLayer(system, start)
   end
   return system
Function nextEvent(layer: Layer, constantObjects: list) → Node
   nextEvent: Node ← none
   for object in layer.dynamicObjects() do
      nextEvent ← min(nextEvent, outOfEnergy(object))
      nextEvent ← min(nextEvent, collision(object, layer.dynamicObjects()))
      nextEvent ← min(nextEvent, collision(object, layer.staticObjects()))
      nextEvent ← min(nextEvent, collision(object, constantObjects))
   end
   return nextEvent
                        Algorithm 1: Algorithmus zum Aufbau eines physikalischen Systems
```

In Algorithmus 1 wird die Grundidee erläutert. Als Input für die Funktion "simulate" dient der erste Layer, welcher mehrere variable Objekte beinhalten kann, wobei mindestens ein Objekt dynamisch (energiereich) sein sollte. Dieser Layer wird direkt dem erzeugten System hinzugefügt und dieses wird solange bearbeitet, bis alle variablen Objekte statisch sind (das System hat keine Energie mehr). In jedem Schleifendurchlauf wird das nächste Event berechnet. Die Events können diverser Natur sein. Es werden Kollisionen mit dynamischen, statischen wie auch konstanten Objekten geprüft. Bei der Kollision mit konstanten Objekten können die Ereignisse "Energy transfer" oder "Out of System" auftreten. Weiterhin wird geprüft, ob ein dynamisches Objekt seine Energie durch die Kantenfunktion verliert. Auf Basis dieses Events wird dann ein neuer Layer generiert, welcher für die am Event beteiligten Objekte den entsprechenden Node einfügen und für die anderen variablen Objekte entweder ein "Cutting-Node" oder ein "Out-of-energy-Node" berechnet wird.

4.3 Suchalgorithmus

5 Resultate

Dieses Kapitel beinhaltet die Aufführung aller Ergebnisse der Arbeit. Dies betrifft insbesondere die Fortsetzung der Genauigkeitsanalyse der Kugeldetektion aus der Vorarbeit[Luk21b], die Genauigkeitsanalyse der Klassifikation wie auch eine Aufstellung einiger Spielstände, deren Suchresultate und verwendete Berechnungszeiten für die einfache direkte wie auch erweiterte Suche.

5.1 Klassifikation

6 Weitere Arbeiten

TODO: Weitere Arbeiten

7 Fazit

TODO: Fazit

Abbildungsverzeichnis

4.1	Der Energy-Transfer-Node	12
4.2	Beispiel für ein Resultat des Algorithmus 1	13

Tabellenverzeichnis

2 1	Ziele																					Ω
J. I	ZIEIE	 																				0

Literatur

[Luk21a] Luca Ritz Lukas Seglias. "Billiard-Al". In: (2021), S. 5–6.

[Luk21b] Luca Ritz Lukas Seglias. "Billiard-AI". In: (2021), S. 21–23.

8 Anhang

TODO: Anhang