Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Segundo Semestre 2009

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : 2

Profesores : Ricardo Aravena (Sec 01) y Ricardo Olea (Sec 02)

Ayudante : José Quinlan y Constanza Quezada.

Problema 1

Sean X e Y variables aleatorias distribuidas conjuntamente con función densidad dada por:

$$f_{X,Y}(x,y) = x + y, \quad 0 \le x \le 1, \ 0 \le y \le 1.$$

(a) Determine la función de densidad condicional de Y dado X=x.

(b) Calcule P(Y > 1/2 | X = 3/4).

(c) ¿Son X e Y variables aleatorias independientes? Justifique.

Solución

(a) La función de densidad condicional de Y dado X = x se define como:

$$f_{Y \mid X=x}(y) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$
 [0.5 Ptos.]

donde

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$= \int_{0}^{1} (x+y) \, dy$$

$$= xy + \frac{y^2}{2} \Big|_{0}^{1}$$

$$= x + \frac{1}{2}, \quad [0.5 \text{ Ptos.}] \quad 0 \le x \le 1 \quad [0.2 \text{ Ptos.}]$$

Por lo tanto

$$f_{Y|X=x}(y) = \frac{x+y}{x+\frac{1}{2}}$$
, [0.5 Ptos.] $0 \le y \le 1$, con $0 \le x \le 1$. [0.3 Ptos.]

(b) Se pide

$$\begin{split} P(Y > 1/2 \,|\, X = 3/4) &= \int_{1/2}^1 f_{Y \,|\, X = 3/4}(x) \,dy \quad \textbf{[0.5 Ptos.]} \\ &= \int_{1/2}^1 \frac{\frac{3}{4} + y}{\frac{3}{4} + \frac{1}{2}} \,dy \\ &= \frac{4}{5} \,\left[\frac{3}{4} \,y + \frac{y^2}{2}\right]_{1/2}^1 \quad \textbf{[0.5 Ptos.]} \\ &= \frac{4}{5} \cdot \frac{6}{8} \\ &= \frac{3}{5} = \frac{6}{10} = 0.6 \quad \textbf{[1.0 Ptos.]} \end{split}$$

(c) Si X e Y son variables aleatorias independientes si y solo si

$$f_{X,Y} = f_X(x) \cdot f_Y(y)$$
 o equivalentemente si $f_{Y \mid X=x}(y) = f_Y(y)$

Tenemos que

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

$$= \int_{0}^{1} (x+y) dx$$

$$= \frac{x^2}{2} + xy \Big|_{0}^{1}$$

$$= \frac{1}{2} + y, \quad [0.8 \text{ Ptos.}] \quad 0 \le y \le 1 \quad [0.2 \text{ Ptos.}]$$

Alternativa 1

Como

$$f_X(x) \cdot f_Y(y) = \left(\frac{1}{2} + x\right) \times \left(\frac{1}{2} + y\right) = \frac{1}{4} + \frac{1}{2}(x+y) + xy$$

es distinto de $f_{X,Y}(x,y)$, entones ambas variables aleatorias NO son independientes. [1.0 Ptos.]

Alternativa 2

Como $f_Y(y)$ es distinta a $f_{Y|X=x}(y)$, entonces X e Y no son variables aleatorias independientes.

[1.0 Ptos.]

Problema 2

Un autobús tiene una ruta habitual que parte desde un centro comercial hacia las localidades A y B en forma secuencial. Luego retorna al centro comercial como se muestra la siguiente figura.

Suponga que los tiempos de viaje T_i respectivos (bajo un tráfico normal) son variables aleatorias independientes con distribución Normal según:

Tiempo de Viaje	μ_{T_i} (min)	δ_{T_i}
T_1	30	0.30
T_2	20	0.20
T_3	40	0.30

Sin embargo, durante las horas altas (08:00 - 10:00 AM y 04:00 - 06:00 PM), el tiempo medio de viaje entre las localidades A y B aumenta en un 50 % al igual que el coeficiente de variación.

- (a) El tiempo programado del autobús para completar la ruta es de 2 horas a lo más. Determine la probabilidad que bajo un trafico normal la ruta no se cumpla según lo programado.
- (b) ¿Cuál es la probabilidad de que un pasajero de la localidad A bajo tráfico normal tarde menos de una hora en llegar al centro comercial?
- (c) Si el número de pasajeros procedentes de la localidad B es el doble que al número de pasajeros de la localidad A. ¿Que porcentaje de los pasajeros durante horas altas tardaran menos de 1 hora en llegar al centro comercial?

Solución

(a) Se pide $P(T_1 + T_2 + T_3 > 120)$ [0.5 Ptos.], donde

$$T_1 + T_2 + T_3 \sim \text{Normal}\left(\mu = 30 + 20 + 40, \ \sigma = \sqrt{[0.30 \cdot 30]^2 + [0.20 \cdot 20]^2 + [0.30 \cdot 40]^2}\right)$$

 $\sim \text{Normal}\left(\mu = 90, \ \sigma = 15.52417\right)$ [0.5 Ptos.]

Por lo tanto

$$P(T_1 + T_2 + T_3 > 120) = 1 - P(T_1 + T_2 + T_3 \le 120)$$
 [0.2 Ptos.]
= $1 - \Phi\left(\frac{120 - 90}{15.52417}\right)$ [0.5 Ptos.]
 $\approx 1 - \Phi(1.93)$
= $1 - 0.9732$
= 0.0268 [0.3 Ptos.]

(b) Se pide $P(T_2 + T_3 < 60)$ [0.5 Ptos.], donde

$$T_2 + T_3 \sim \text{Normal} \left(\mu = 20 + 40, \ \sigma = \sqrt{[0.20 \cdot 20]^2 + [0.30 \cdot 40]^2} \right)$$

 $\sim \text{Normal} \left(\mu = 60, \ \sigma = 12.64911 \right)$ [0.5 Ptos.]

Por lo tanto

$$P(T_2 + T_3 < 60) = \Phi\left(\frac{60 - 60}{12.64911}\right)$$
 [0.5 Ptos.]
= $\Phi(0) = 0.5$ [0.5 Ptos.]

(c) Sea n el número de pasajeros de la localidad A y 2n el número de pasajeros de la localidad B.

La probabilidad que un pasajero de la localidad A tarde menos de una hora al centro comercial en hora alta esta dada por:

$$P(T_2 + T_3 < 60) = P(A)$$
 [0.2 Ptos.]

donde

$$T_2 + T_3 \sim \text{Normal}\left(\mu = 30 + 40, \ \sigma = \sqrt{[0.30 \cdot 30]^2 + [0.30 \cdot 40]^2}\right)$$

 $\sim \text{Normal}\left(\mu = 70, \ \sigma = 15\right)$ [0.2 Ptos.]

Luego

$$P(A) = \Phi\left(\frac{60-70}{15}\right) \approx \Phi(-0.67) = 1 - \Phi(0.67) = 1 - 0.7486 = 0.2514$$
 [0.2 Ptos.]

La probabilidad que un pasajero de la localidad B tarde menos de una hora al centro comercial en hora alta esta dada por:

$$P(T_3 < 60) = P(B)$$
 [0.2 Ptos.]

donde

$$T_3 \sim \text{Normal} \left(\mu = 40, \ \sigma = \sqrt{[0.30 \cdot 40]^2} \right)$$

 $\sim \text{Normal} \left(\mu = 40, \ \sigma = 12 \right)$ [0.2 Ptos.]

Luego

$$P(B) = \Phi\left(\frac{60 - 40}{12}\right) \approx \Phi(1.67) = 0.9525$$
 [0.4 Ptos.]

Por lo tanto el porcentaje de pasajeros en hora alta que tarda menos de una hora en llegar al centro comercial es:

$$\frac{n \cdot P(A) + 2 \, n \cdot P(B)}{3 \, n} = \frac{1}{3} \, P(A) + \frac{2}{3} \, P(B) = \frac{1}{3} \cdot 0.2514 + \frac{2}{3} \cdot 0.9525 = 0.7188 = 71,88 \, \% \quad \textbf{[0.6 Ptos.]}$$

Problema 3

Actualmente el gas natural residencial tiene dos fuentes de origen (GAR: Gasoducto vía Argentina y GNL: Gasoducto vía Quintero). Suponga que el consumo C de gas natural (demanda) diario se comporta como una variable aleatoria normal con parámetros $\mu=75$ y $\sigma=10$ (expresado el miles de m³). En cambio la oferta, corresponde a la suma de las dos fuentes GAR+GNL, donde la primera distribuye normal con parámetros $\mu=25$ y $\sigma=10$; mientras que el aporte de GLN sigue una distribución normal de $\mu=60$ y $\sigma=5$, ambas independientes.

- (a) Determine la probabilidad que el aporte de GNL triplique el aporte de GAR.
- (b) Determine en nivel mínimo de oferta que debe existir, con el objetivo de satisfacer al menos el 95 % de la demanda.
- (c) Determine la probabilidad que algunos sectores de Santiago sufran un corte por falta de gas (Blackout Gasífero) si ambos aportes están correlacionados. Suponga que $\rho = -1/2$.

Solución

Sean X: Oferta diaria GAR e Y: Oferta diaria GNL.

(a) Se pide P(Y > 3X), donde X e Y son variables aleatorias independientes con distribución:

$$X \sim \text{Normal}(\mu = 25, \sigma = 10)$$
 y $Y \sim \text{Normal}(\mu = 60, \sigma = 5)$ [0.5 Ptos.]

Lo solicitado es equivalente a calcular:

$$P(Y > 3X) = P(Y - 3X > 0) = P(W > 0)$$
 [0.5 Ptos.]

donde
$$W = Y - 3X \sim \text{Normal}(\mu = -15, \sigma = \sqrt{5^2 + 9 \cdot 10^2})$$
. [0.5 Ptos.]

Luego

$$P(W > 0) = 1 - P(W \le 0)$$
 [0.2 Ptos.]
= $1 - \Phi\left(\frac{15}{30.41381}\right)$ [0.3 Ptos.]
= $1 - \Phi(0.493197)$
 $\approx 1 - \Phi(0.49)$
= $1 - 0.6879$
= 0.3121 [0.5 Ptos.]

(b) Tenemos que el consumo diario C es una variable aleatoria Normal($\mu = 75$, $\sigma = 10$). Se pide el valor de k tal que

$$P(C \le k) = 0.95$$
 [0.5 Ptos.]

Estandarizando tenemos que

$$P(C \le k) = \Phi\left(\frac{k - 75}{10}\right) \Rightarrow \frac{k - 75}{10} = 1.645$$
 [1.0 Ptos.]

Despejando tenemos que

$$k = 75 + 1.654 \times 10 = 91.45$$
 [0.5 Ptos.]

(c) Se pide P(C > X + Y). Definamos la variable aleatoria Z = X + Y cuya distribución es

Normal
$$(\mu = 85, \sigma = \sqrt{10^2 + 5^5 + 2 \cdot 10 \cdot 5 \cdot (-1/2)})$$
. [0.5 Ptos.]

Luego

$$P(C > X + Y) = P(C - Z > 0)$$

= $P(W > 0)$

con $W \sim \text{Normal}(\mu = 75 - 85, \sigma = \sqrt{75 + 100})$. [0.5 Ptos.]

Por lo tanto

$$\begin{split} P(C > X + Y) &= 1 - P(W \le 0) \\ &= 1 - \Phi\left(\frac{10}{\sqrt{175}}\right) \\ &= 1 - \Phi(0.76) \\ &= 1 - 0.7764 \\ &= 0.2236 \quad \textbf{[1.0 Ptos.]} \end{split}$$

Problema 4

- (a) Una encuesta aplicada a 200 estudiantes PUC que han retirado la nueva TUC muestra que sólo 36 de ellos han aceptado la cuenta vista, ¿cuál es el menor nivel de significancia (valor-p) con el cual se puede afirmar que menos de un 25 % de los alumnos aceptarán la cuenta vista asociada a la TUC?.
- (b) Si 16 vigas de acero son sometida a una carga, obteniéndose una resistencia a la flexión promedio de $12.5 \ k/cm^2$ con una desv. estándar de $3.4 \ k/cm^2$. ¿existe evidencia estadística que permita afirmar que la resistencia a la flexión media de las vigas es superior a $11 \ k/cm^2$?. Use $\alpha = 5 \%$.
- (c) Se dispone de una muestra x_1, \ldots, x_n proveniente de una distribución gamma de parámetros k y ν . Si $n=20, \ k=12$ y $\sum_{i=1}^n x_i=200$, ¿cuál es el EMV de ν ?

Solución

(a) Las hipótesis son

$$H_0: p = 0.25$$
 vs. $H_a: p < 0.25$ [0.5 Ptos.]

El estadístico de prueba para n grande esta dado por

$$Z_c = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim \text{Normal}(0,1)$$
 [0.3 Ptos.]

Alternativa 1

Bajo H₀ se tiene que el estadístico de prueba

$$Z_c = rac{\hat{p} - p_0}{\sqrt{rac{p_0 \, (1 - p_0)}{n}}} \quad ext{[0.3 Ptos.]}$$

Reemplazando

$$Z_c = \frac{0.18 - 0.25}{\sqrt{\frac{0.25 \times (1 - 0.25)}{200}}} = -2.29$$
 [0.2 Ptos.]

El valor-p =
$$P(Z < -2.29) = 1 - P(Z < 2.29) = 1 - 0.9890 = 0.011$$
. [0.5 Ptos.]

Es decir, para todo $\alpha > 1.1 \%$ se puede afirmar que menos del 25 % de los alumnos aceptarán la cuenta vista asociada a la TUC. [0.2 Ptos.]

Alternativa 2

Reemplazar en el estadístico de prueba bajo H_0 la varianza por la varianza estimada

$$Z_c = \frac{0.18 - 0.25}{\sqrt{\frac{0.18 \times (1 - 0.18)}{200}}} = -2.58$$
 [0.5 Ptos.]

El valor-p =
$$P(Z < -2.58) = 1 - P(Z < 2.58) = 1 - 0.9951 = 0.0049$$
. [0.5 Ptos.]

Es decir, para todo $\alpha > 0.49 \%$ se puede afirmar que menos del 25 % de los alumnos aceptarán la cuenta vista asociada a la TUC. [0.2 Ptos.]

Alternativa 3

Reemplazar en el estadístico de prueba bajo H₀ la varianza por la varianza máxima posible

$$Z_c = \frac{0.18 - 0.25}{\sqrt{\frac{1}{4.200}}} = -1.98$$
 [0.5 Ptos.]

El valor-p = P(Z < -1.98) = 1 - P(Z < 1.98) = 1 - 0.9761 = 0.0239. [0.5 Ptos.]

Es decir, para todo $\alpha > 2.39 \%$ se puede afirmar que menos del 25 % de los alumnos aceptarán la cuenta vista asociada a la TUC. [0.2 Ptos.]

(b) Las hipótesis son

$$H_0: \mu = 11$$
 vs. $H_a: \mu > 11$ [0.5 Ptos.]

El estadístico de prueba bajo H_0 para n menor que 30 es

$$T_c = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{(n-1)}$$
 [0.2 Ptos.]

Reemplazando

$$T_c = \frac{12.5 - 11}{3.4/\sqrt{16}} = 1.765$$
 [0.5 Ptos.]

Se rechaza H_0 si $T_c > t_{p=1-\alpha}(n-1)$. [0.3 Ptos.]

Para este caso tenemos que

$$1.765 = T_c > t_{0.95}(15) = 1.753$$
 [0.3 Ptos.]

Por lo tanto, se rechaza H_0 , es decir, hay evidencia estadística para afirmar que la resistencia media de las vigas es superior a $11 \ k/cm^2$. [0.2 Ptos.]

(c) Tenemos que la función de verosimilitud está dada por:

$$L(x_{1},...,x_{n},k,\nu) = f_{X_{1},...,X_{n}|k,\nu}(x_{1},...,x_{n})$$

$$= \prod_{i=1}^{n} f_{X_{i}|k,\nu}(x_{i})$$

$$= \prod_{i=1}^{n} \frac{\nu^{k} x_{i}^{k-1} e^{-\nu x_{i}}}{\Gamma(k)}$$

$$= \left(\frac{\nu^{k}}{\Gamma(k)}\right)^{n} e^{-\nu \sum_{i=1}^{n} x_{i}} \prod_{i=1}^{n} x_{i}^{k-1} \quad [0.5 \text{ Ptos.}]$$

Por lo tanto, la función log verosimilitud queda como:

$$\ell(\nu) = n k \log \nu - n \log \Gamma(k) - \nu \sum_{i=1}^{n} x_i + (k-1) \sum_{i=1}^{n} \log x_i$$
 [0.5 Ptos.

Derivando con respecto a ν e igualando a cero se tiene que:

$$\frac{\partial}{\partial \nu} \ell(\nu) = \frac{n k}{\nu} - \sum_{i=1}^{n} x_i = 0 \Rightarrow \nu = \frac{n k}{\sum_{i=1}^{n} x_i} = \frac{k}{\overline{x}} = 1.2 \quad [1.0 \text{ Ptos.}]$$

Tablas de Percentiles p

Distribución Normal Estándar					Distribución t-student $t_p(\nu)$										
Z_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	ν	t _{0.90}	$t_{0.95}$	$t_{0.975}$	t _{0.99}
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	1	3.078	6.314	12.706	31.821
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	2	1.886	2.920	4.303	6.965
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	3	1.638	2.353	3.182	4.541
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	1.533	2.132	2.776	3.747
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	5	1.476	2.015	2.571	3.365
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	6	1.440	1.943	2.447	3.143
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	7	1.415	1.895	2.365	2.998
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	8	1.397	1.860	2.306	2.896
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	9	1.383	1.833	2.262	2.821
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	10	1.372	1.812	2.228	2.764
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	11	1.363	1.796	2.201	2.718
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	12	1.356	1.782	2.179	2.681
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	13	1.350	1.771	2.160	2.650
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	14	1.345	1.761	2.145	2.624
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	15	1.341	1.753	2.131	2.602
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	16	1.337	1.746	2.120	2.583
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	17	1.333	1.740	2.110	2.567
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	18	1.330	1.734	2.101	2.552
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	19	1.328	1.729	2.093	2.539
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	20	1.325	1.725	2.086	2.528
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	21	1.323	1.721	2.080	2.518
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	22	1.321	1.717	2.074	2.508
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	23	1.319	1.714	2.069	2.500
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	24	1.318	1.711	2.064	2.492
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	25	1.316	1.708	2.060	2.485
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	26	1.315	1.706	2.056	2.479
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	27	1.314	1.703	2.052	2.473
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	28	1.313	1.701	2.048	2.467
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	29	1.311	1.699	2.045	2.462
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	30	1.310	1.697	2.042	2.457
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	∞	1.282	1.645	1.960	2.326
0.0	1 3.0001	3.0001	3.0001	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	2.0000	٠,	1.202	1.010	1.000	

Distribution	PDF or PMF	Parameters	Relations to Moments
Binomial	$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x};$	p	$\mu_X = np$
	$x=0,1,2,\ldots,n$		$\sigma_X^2 = np(1-p)$
Geometric	$p_X(x) = p(1-p)^{x-1};$	P	$\mu_X = 1/p$
	$x = 0, 1, 2, \dots$		$\sigma_X^2 = (1-p)/p^2$
Poisson	$P_X(x) = \frac{(vt)^x}{x!} e^{-vt};$	ν	$\mu_X = vt$
	$x = 0.1, 2, \dots$		$\sigma_X^2 = vt$
Exponential	$f_X(x) = \lambda e^{-\lambda x};$	λ	$\mu_X = 1/\lambda$
	$x \ge 0$		$\sigma_X^2 = 1/\lambda^2$
Gamma	$f_X(x) = \frac{\nu(\nu x)^{k-1}}{\Gamma(k)} e^{-\nu x};$	ν , k	$\mu_X = k/\nu$
	$x \ge 0$		$\sigma_X^2 = k/v^2$
3-P Gamma	$f_x(x) = \frac{\nu[\nu(x-\nu)]^{k-1}}{\Gamma(k)} \exp[-\nu(x-\nu)];$	$\nu, \gamma, k \geq 1.0$	$\mu_X = k/\nu + \gamma$
(Shifted gamma)	$x \ge \gamma$		$\sigma_X^2 = k/v^2$
			$\theta_X = 2/\sqrt{k}, \ \nu > 0$
			$=-2\sqrt{k}, \ \nu<0$
Gaussian	$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right];$	μ , σ	$\mu_X = \mu$
(normal)	$-\infty < x < \infty$		$\sigma_X^2 = \sigma^2$
Lognormal	$f_X(x) = \frac{1}{\sqrt{2\pi}\zeta x} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\zeta}\right)^2\right];$	λ, ζ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$
	$x \ge 0$		$\sigma_{\mathrm{X}}^2 = \mu_X^2 ig(e^{arepsilon^2} - 1ig)$