## Предельные теоремы. Свойства оценок. Оценивание характеристик распределения.

Леонид Иосипой

Курс «Вероятностные модели и статистика» Центр непрерывного образования, ВШЭ

15 апреля 2021

- Повторение
- Закон больших чисел
- Центральная предельная теорема. Концентрация II
- Свойства оценок
- Оценивание характеристик распределения

#### 1. Функции распределения.

Функцией распределения случайной величины X называется функция  $F_X:\mathbb{R}\to [0,1]$  задаваемая следующей формулой

$$F_X(u) = \mathbb{P}(X \leq u).$$

#### 1. Функции распределения.

#### Важное свойство функции распределения:

Любую случайную величину X можно задать через функцию распределения. То есть по функции распределения можно восстановить распределение случайной величины X:

- в дискретном случае можно восстановить  $a_k$  и  $p_k$ ;
- в непрерывном случае можно восстановить f(u).

#### 1. Функции распределения.

График  $F_X(u)$  для  $X \sim \mathbf{B}_p$ ,  $p \in [0, 1]$ .



$$F_X(u) = \mathbb{P}(X \leq u).$$

#### 1. Функции распределения.

График  $F_X(u)$  для  $X \sim \text{Exp}(\lambda)$ ,  $\lambda > 0$ .



#### 1. Функции распределения.

Как найти плотность Y = g(X), зная плотность X?

- 1) Выразить функцию распределения  $F_Y(u)$  через функцию распределения  $F_X(u)$ ;
- 2) Продифференцировать  $F_Y(u)$ .

2. Неравенства концентрации.

#### Теорема (Неравенство Маркова)

Пусть X — произвольная случайная величина. Тогда для любого t>0

$$\mathbb{P}(|X| > t) \le \frac{\mathbb{E}|X|}{t}.$$

#### 2. Неравенства концентрации.

## Теорема (Неравенство Чебышёва)

Пусть X — произвольная случайная величина и  $|\mathbb{E}X| < \infty$ . Тогда для любого t>0

$$\mathbb{P}(|X - \mathbb{E}X| > t) \le \frac{\operatorname{Var} X}{t^2}.$$



#### 3. Распределение суммы случайных величин.

Пусть даны две независимые случайные величины X и Y:

▶ Дискретная свертка: если X и Y дискретные и принимают значения из  $\mathbb{Z}$ , то для произвольного  $k \in \mathbb{Z}$ 

$$\mathbb{P}(X+Y=k) = \sum_{j=-\infty}^{+\infty} \mathbb{P}(X=j) \cdot \mathbb{P}(Y=k-j).$$

▶ Непрерывная свертка: если X и Y непрерывные и имеют плотности  $f_X(u)$  и  $f_Y(u)$  соответственно, то для  $u \in \mathbb{R}$ 

$$f_{X+Y}(u) = \int_{-\infty}^{+\infty} f_X(z) f_Y(u-z) dz.$$

#### 4. Базовые операции.

1) Центрирование: вычитание из X ее мат. ожидания  $\mathbb{E} X$ ,

$$\mathbb{E}[X - \mathbb{E}X] = \mathbb{E}[X] - \mathbb{E}[X] = 0;$$

2) Нормирование: деление X на  $\sqrt{\operatorname{Var}(X)}$ ,

$$\operatorname{Var}\left(\frac{X}{\sqrt{\operatorname{Var}(X)}}\right) = \left(\frac{1}{\sqrt{\operatorname{Var}(X)}}\right)^2 \cdot \operatorname{Var}(X) = 1;$$

3) Стандартизация: центрирование + нормирование,

$$\frac{X - \mathbb{E}X}{\sqrt{\mathsf{Var}(X)}}.$$

Пусть  $X_1, X_2, X_3, \ldots$  независимые одинаково распределенные случайные величины.

Определим  $S_n = X_1 + \ldots + X_n$ .

Пусть  $\mu = \mathbb{E}[X_1]$  и  $\sigma^2 = \text{Var}(X_1) < \infty$ .

### Теорема (Закон больших чисел, ЗБЧ)

В обозначениях выше, для любого t > 0,

$$\mathbb{P}\left(\left|\frac{S_n}{n}-\mu\right|>t
ight) o 0$$
 при  $n o \infty.$ 



#### Закон больших чисел

Иногда закон больших чисел записывают так:

$$\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu$$
.

Знак « $\stackrel{\mathbb{F}}{\to}$ » обозначает сходимость «по вероятности».

То есть правильно читать эту формулу так:

«Случайная величина  $S_n/n$  сходится к  $\mu$  по вероятности».

#### Закон больших чисел

**Доказательство.** Найдем мат. ожидание и дисперсию  $S_n/n$ :

$$\mathbb{E}\left[\frac{S_n}{n}\right] = \frac{1}{n} \cdot \mathbb{E}[S_n] = \frac{1}{n} \cdot \left(\mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]\right) = \frac{1}{n} \cdot n\mu = \mu,$$

$$\operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2}\operatorname{Var}\left(S_n\right) = \frac{1}{n^2}\left(\operatorname{Var}X_1 + \dots + \operatorname{Var}X_n\right) = \frac{1}{n^2} \cdot n\sigma^2$$
$$= \frac{\sigma^2}{n}.$$

Воспользуемся неравенством Чебышёва:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > arepsilon
ight) \leq rac{\mathsf{Var}(rac{S_n}{n})}{arepsilon^2} = rac{\sigma^2}{narepsilon^2} o 0$$
 при  $n o \infty$ .

Итак,  $\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu$ , но как ведут себя отклонения? Нормально!

## Теорема (Центральная предельная теорема, ЦПТ)

В обозначениях выше (которые для 3БЧ), для любых a < b,

$$\mathbb{P}\left(a < rac{S_n - \mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}} < b
ight) o \mathbb{P}(a < Z < b)$$
 при  $n o \infty$ ,

где  $Z \sim \mathcal{N}(0,1)$ . Если  $\Phi(u)$  — функция распределения Z,

$$\mathbb{P}(a < Z < b) = \Phi(b) - \Phi(a).$$

#### Обратите внимание, что:

ightharpoonup Стандартизация  $S_n/n$  и  $S_n$  дает один и тот же результат:

$$\frac{S_n/n - \mathbb{E}[S_n/n]}{\sqrt{\text{Var}(S_n/n)}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\text{Var}(S_n)}}.$$

▶ Нормировка разности  $S_n/n - \mathbb{E}[S_n/n]$  на  $\sqrt{\text{Var}(S_n/n)}$  увеличивает ее значение в  $\sqrt{n}$  раз:

$$\frac{1}{\sqrt{\operatorname{Var}(S_n/n)}} = \frac{\sqrt{n}}{\sigma}.$$

ightharpoonup Функция распределения  $\Phi(u)$  стандартного нормального закона явно не вычисляется! Найти ее значение можно либо с помощью какого-либо программного обеспечения, либо по таблице.

Если Вы пользуетесь таблицей, то может быть полезна формула, которая следует из симметрии распределения:

$$\Phi(-u) = 1 - \Phi(u) \quad \text{для} \quad u > 0.$$

#### Задача

Правильная монета подбрасывается 10 000 раз. Оцените с помощью неравенства Чебышёва и центральной предельной теоремы вероятность того, что число гербов отличается от 5000 не более, чем на 100.

#### Решение.

Пусть 
$$X_1, \ldots, X_n \sim \mathbf{B}_{1/2}, \ n = 10\,000.$$

Как обычно: 
$$S_n = X_1 + ... + X_n$$
.

Найдем сначала мат. ожидание и дисперсию  $S_n$ :

$$\mathbb{E}[S_n] = \mathbb{E}[X_1 + \ldots + X_n] = n \cdot \mathbb{E}[X_1] = np = 5000,$$

$$Var(S_n) = Var(X_1 + \ldots + X_n) = n \cdot Var(X_1) = np(1 - p) = 2500.$$

По неравенству Чебышёва:

$$\mathbb{P}(|S_n - 5000| \le 100) = \mathbb{P}(|S_n - \mathbb{E}[S_n]| \le 100)$$

$$= 1 - \mathbb{P}(|S_n - \mathbb{E}[S_n]| > 100)$$

$$\ge 1 - \frac{\text{Var}(S_n)}{100^2}$$

$$= 1 - \frac{2500}{100^2}$$

$$= 0.75.$$

Что это значит?

По центральной предельной теореме:

$$\mathbb{P}(|S_n - 5000| \le 100) = \mathbb{P}(4900 \le S_n \le 5100)$$

$$= \mathbb{P}\left(\frac{4900 - 5000}{\sqrt{2500}} \le \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\text{Var}(S_n)}} \le \frac{5100 - 5000}{\sqrt{2500}}\right)$$

$$= \mathbb{P}\left(-2 \le \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\text{Var}(S_n)}} \le 2\right)$$

$$\approx \Phi(2) - \Phi(-2)$$

$$\approx 0.9544.$$

Что это значит? Правильный ответ: 0.9545.

# Задача

Мой дед любит ходить. Его шаги — независимые одинаково распределенные случайные величины, равномерно распределенные на [70, 80] см. С какой вероятностью он за 10 000 шагов пройдет расстояние, отличное от 7.5 км. не более. чем на 10 м.?

Решение. Заметим, что в условии задачи числа даны в разных единицах измерения. Приведем все к метрам.

Пусть  $X_1, \ldots, X_n$  имеют равномерное распределение на [0.7, 0.8] M., n = 10000.

Как обычно:  $S_n = X_1 + ... + X_n$ .

Найдем сначала мат. ожидание и дисперсию  $S_n$ :

$$\mathbb{E}[S_n] = \mathbb{E}[X_1 + \ldots + X_n] = n \cdot \mathbb{E}[X_1] = n \cdot \frac{0.8 + 0.7}{2} = 7500,$$

$$Var(S_n) = Var(X_1 + \ldots + X_n) = n \cdot Var(X_1) = n \cdot \frac{(0.8 - 0.7)^2}{12}$$

$$= \frac{100}{12}.$$

По неравенству Чебышёва:

$$\mathbb{P}(|S_n - 7500| \le 10) = \mathbb{P}(|S_n - \mathbb{E}[S_n]| \le 10)$$

$$= 1 - \mathbb{P}(|S_n - \mathbb{E}[S_n]| > 10)$$

$$\ge 1 - \frac{\text{Var}(S_n)}{10^2}$$

$$= 1 - \frac{100}{12 \cdot 10^2}$$

$$= \frac{11}{12}.$$

Что это значит?

По центральной предельной теореме:

$$\mathbb{P}(|S_n - 7500| \le 10) = \mathbb{P}(-10 \le S_n - \mathbb{E}[S_n] \le 10)$$

$$= \mathbb{P}\left(-\frac{10}{\sqrt{100/12}} \le \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\text{Var}(S_n)}} \le \frac{10}{\sqrt{100/12}}\right)$$

$$= \mathbb{P}\left(-2\sqrt{3} \le \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\text{Var}(S_n)}} \le 2\sqrt{3}\right)$$

$$\approx \Phi\left(2\sqrt{3}\right) - \Phi\left(-2\sqrt{3}\right)$$

$$\approx 0.9994.$$

Что это значит?

Поговорим о задаче снижения размерности.

Будем рассматривать наблюдения  $u_1, u_2, \ldots, u_n$  как точки  $\mathbb{R}^D$ .

|                | Признак 1 | Признак 2 | <br>Признак <i>D</i> |
|----------------|-----------|-----------|----------------------|
| $u_1$          |           |           |                      |
| $u_2$          |           |           |                      |
|                |           |           |                      |
| и <sub>п</sub> |           |           |                      |

Хранить все D координат каждой точки  $u_i$  может быть «дорого».

Мы хотим придумать такое отображение  $F:\mathbb{R}^D o \mathbb{R}^d$  для данных  $u_1, u_2, \ldots, u_n$ , которое бы сохраняло их «структуру» и d было бы намного меньше D.

Что можно понимать под «структурой» данных?

Один из вариантов ответа на этот вопрос — попарные расстояния между точками  $u_1, u_2, \ldots, u_n$ .





Формально можно записать так:

1) 
$$||F(u_i) - F(u_j)|| = ||u_i - u_j||$$
 для всех  $i \neq j$ .

В этом случае можно понизить размерность до

$$d = n - 1$$
.

2)  $(1-\delta)\|u_i-u_j\|^2 \le \|F(u_i)-F(u_j)\|^2 \le (1+\delta)\|u_i-u_j\|^2$  для некоторого  $\delta \in (0,1)$  всех  $i \ne j$ .

В этом случае можно понизить размерность до

$$d = n - 1$$
.

Что делать дальше?

3) Потребуем, чтобы с вероятностью не менее  $1-\varepsilon$ , для некоторого  $\varepsilon>0$ :

$$(1-\delta)\|u_i-u_j\|^2 \le \|F(u_i)-F(u_j)\|^2 \le (1+\delta)\|u_i-u_j\|^2$$

для некоторого  $\delta \in (0,1)$  всех  $i \neq j$ .

В этом случае можно понизить размерность до

$$d \geq \frac{16}{\delta^2} \log \left( \frac{n}{\varepsilon} \right)$$
.

$$d \geq \frac{16}{\delta^2} \log \left( \frac{n}{\varepsilon} \right)$$

- ▶ Логарифмическая зависимость от n!
- ▶ Отображение F(u) можно построить явно!

$$F(u) = \frac{1}{\sqrt{d}} X u,$$

где X — матрица размера  $d \times D$ , у которой все элементы — независимые  $\mathcal{N}(0,1)$  величины.

▶ Можно использовать алгоритм онлайн (не зная наперед данные).

Пусть дана реализация выборки  $x_1, \ldots, x_n$  из некоторого распределения с неизвестным параметром  $\theta$ . Для простоты будем считать, что  $\theta$  одномерный.

Допустим, мы построили оценку  $\widehat{ heta}$  для параметра heta. Как понять, является она хорошей или нет.

Оценка  $\widehat{\theta}(x_1,\ldots,x_n)$  параметра  $\theta$  называется несмещенной, если

$$\mathbb{E}_{ heta}\left[\widehat{ heta}(X_1,\ldots,X_n)
ight]= heta$$
 для всех  $heta\in\Theta$ .

Здесь индекс  $\theta$  у математического ожидания  $\mathbb{E}_{\theta}$  означает, что мы считаем математическое ожидание случайной величины  $\widehat{\theta}(X_1,\ldots,X_n)$ , где  $X_i$  распределены с параметром  $\theta$ .

Несмещенность означает, что при многократном вычислении оценки на разных данных среднее арифметическое полученных оценок будет стремится к истинному значению параметра  $\theta$ .

Оценка  $\hat{\theta}(x_1, \dots, x_n)$  параметра  $\theta$  называется состоятельной, если для всех  $\theta \in \Theta$ 

$$\widehat{ heta}(X_1,\ldots,X_n)\stackrel{\mathbb{P}_{ heta}}{ o} heta$$
 при  $n o\infty$ .

Состоятельность оценки означает концентрацию оценки около истинного значения параметра с ростом размера выборки n (что устремив  $n \to \infty$ , оценка сойдется к истинному значению параметра  $\theta$ ).

### Какими свойствами обладают оценки, полученные методом максимального правдоподобия?

При некоторых условиях на регулярность модели:

- Возможная смещённость
- Состоятельность
- Асимптотическая эффективность
  - Это означает, что дисперсия при  $n \to \infty$  является наименьшей возможной среди многих других оценок.

Оценивание характеристик распределения

Теперь допустим нам дана реализация выборки  $x_1, \ldots, x_n$  из некоторого распределения, о котором мы ничего не знаем. Что можно сделать в данном случае?

Естественно, точно восстановить распределение по конечной выборке нельзя. Но можно оценить какие-то параметры распределения!

Оценивание характеристик распределения

## Оценивание характеристик распределения

Допустим, мы хотим оценить  $\mathbb{E}[g(X)]$ , где X — случайная величина, из распределения которой получена выборка, а  $q:\mathbb{R}\to\mathbb{R}$  — некоторая (известная) функция.

Это можно сделать с помощью оценки Монте-Карло:

$$\frac{1}{n}\sum_{i=1}^n g(x_i).$$

Оценка Монте-Карло является несмещенной и состоятельной.

1. Несмещенность:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n g(X_i)\right] = \frac{1}{n}\Big(\mathbb{E}[g(X_1)] + \dots \mathbb{E}[g(X_n)]\Big) = \mathbb{E}[g(X)].$$

2. Состоятельность: согласно закону больших чисел

$$\frac{1}{n}\sum_{i=1}^n g(X_i) \quad \stackrel{\mathbb{P}}{\longrightarrow} \quad \mathbb{E}[g(X)].$$

# Оценивание характеристик распределения

#### Примеры:

1. Математическое ожидание:

$$\mathbb{E}[X] \approx \frac{1}{n} \sum_{i=1}^{n} x_i.$$

2. Моменты большего порядка: для k > 1

$$\mathbb{E}[X^k] \approx \frac{1}{n} \sum_{i=1}^n x_i^k.$$

Более сложные функции. Например:

$$\mathbb{E}[X^3 \sin(X) \log(X)] \approx \frac{1}{n} \sum_{i=1}^n x_i^3 \sin(x_i) \log(x_i).$$

Чтобы оценить погрешность метода Монте-Карло, можно воспользоваться центральной предельной теоремой.

Аналогично тому, как было в законе больших чисел

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(X_{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(X_{i})] = \mathbb{E}[g(X)],$$

$$\left(1\sum_{i=1}^{n}G(X_{i})\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(X_{i})] = \frac{\sigma^{2}}{n}$$

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}g(X_{i})\right)=\frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[g(X_{i})]=\frac{\sigma^{2}}{n},$$

где  $\sigma^2 = \text{Var}[g(X)]$  по определению.

По центральной предельной теореме: для произвольных a < b

$$\mathbb{P}\left(a \leq \frac{\frac{1}{n} \sum_{i=1}^{n} g(X_i) - \mathbb{E}[g(X)]}{\sigma/\sqrt{n}} \leq b\right) \approx \mathbb{P}(a \leq Z \leq b),$$

где  $Z \sim \mathcal{N}(0, 1)$ .

Если взять a=-3 и b=3 («правило трех сигм»), то мы получим  $\mathbb{P}(-3 \le Z \le 3) \approx 0.997$ .

В результате:

$$\left| \frac{1}{n} \sum_{i=1}^n g(X_i) - \mathbb{E}[g(X)] \right| \le 3\sigma \cdot \frac{1}{\sqrt{n}}$$
 с вероятностью  $pprox 0.997$ .

А как на основе реализация выборки  $x_1, \ldots, x_n$  из некоторого распределения X оценить дисперсию Var(X)? Или какой-то другой центральный момент?

Если бы математическое ожидание  $\mathbb{E}[X]$  было бы известным, можно было бы воспользоваться оценкой Монте-Карло:

$$\frac{1}{n}\sum_{i=1}^n (x_i - \mathbb{E}[X])^2.$$

Но что делать, если  $\mathbb{E}[X]$  неизвестно?

Pluq-in principle: если оценка неизвестного параметра требует знания каких-то других неизвестных параметров, то можно попробовать подставить в эту оценку вместо неизвестных параметров их оценки.

При этом, естественно, нет никаких гарантий, что полученная оценка будет хорошей.

Обозначим оценку для математического ожидания через  $\overline{x}$ ,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Подставим ее в оценку для дисперсии, которая была выше:

$$\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2.$$

Данная оценка будет состоятельной, но смещенной.

### Оценивание характеристик распределения

Действительно, используя свойства математического ожидания, получаем:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \frac{1}{n^{2}}\sum_{i,j=1}^{n}X_{i}X_{j}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}^{2}] - \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{E}[X_{i}^{2}] - \frac{1}{n^{2}}\sum_{i\neq j}^{n}\mathbb{E}[X_{i}]\mathbb{E}[X_{j}]$$

$$= \mathbb{E}[X^{2}] - \frac{1}{n}\mathbb{E}[X^{2}] - \frac{n-1}{n}(\mathbb{E}X)^{2}$$

$$= \frac{n-1}{n} \text{ Var } X.$$

Чтобы устранить смещение, достаточно домножить оценку на n/(n-1). Мы получили несмещенную оценку для дисперсии:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Смещенную оценку дисперсии будем обозначать через:

$$S_b^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

Оценка стандартного отклонения по смещённой оценки дисперсии:

$$\widehat{\sigma}_b = \sqrt{S_b^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2}.$$

Оценка стандартного отклонения по несмещённой оценки дисперсии:

$$\widehat{\sigma} = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Обе оценки являются смещёнными, так как извлечение квадратного корня «портит» несмещённость. Но при этом обе оценки являются состоятельными.

## Доверительные интервалы

Пусть имеется реализация выборки  $x_1, \ldots, x_n$  из некоторого распределения с неизвестным (одномерным) параметром

$$\theta \in \Theta \subset \mathbb{R}$$
.

До сих пор мы занимались «точечным оцениванием» неизвестного параметра — находили оценку, способную в некотором смысле заменить параметр.

Существует другой подход к оцениванию, при котором мы указываем интервал, накрывающий параметр с заданной наперед вероятностью. Такой подход называется «интервальным оцениванием».

Пусть  $\alpha \in (0,1)$ . Две оценки  $\widehat{\theta}_1$  и  $\widehat{\theta}_2$  определяют границы доверительного интервала для параметра  $\theta$  с коэффициентом доверия  $1-\alpha$ , если для выборки  $\mathbf{X}=(X_1,\ldots,X_n)$  из закона распределения  $F_\theta$  при всех  $\theta \in \Theta$  справедливо неравенство

$$\mathbb{P}\Big(\widehat{\theta}_1(\mathbf{X}) < \theta < \widehat{\theta}_2(\mathbf{X})\Big) \geq 1 - \alpha.$$

Как правило, длина доверительного интервала возрастает при увеличении коэффициента доверия  $1-\alpha$  и стремится к нулю с ростом размера выборки n.

### Спасибо за внимание!