Задание 1. «Какая кривая куда загибается?»

Для снятия вольтамперных характеристик необходимо использовать подключение по схеме реостата. При последовательном включении не удается производить измерения при малых токах.

1.1 Зависимость силы тока через графитовый стержень от напряжения на нем приведена в таблице и на графике.

<i>U</i> , <i>B</i>	I, A
0,2	0,05
0,4	0,10
0,6	0,15
0,8	0,20
1,0	0,25
1,2	0,35
1,4	0,40
1,6	0,45
1,8	0,50
2,0	0,55
2,2	0,60
2,4	0,70

Как следует из графика, ВАХ графита отклоняется «вверх» от пропорциональной зависимости. Данный результат объясняется тем, что сопротивление графита уменьшается (!!!) с ростом температуры, поэтому сила тока возрастает быстрее, чем растет напряжение.

1.2 Зависимость силы тока через лампочку накаливания от напряжения на ней приведена в таблице и на графике.

U, V	I, A
0	0,00
0,2	0,05
0,4	0,06
0,6	0,07
0,8	0,08
1,0	0,09
1,2	0,10
1,4	0,10
1,6	0,11
1,8	0,11
2,0	0,12
2,2	0,12
2,4	0,13
2,6	0,14
2,8	0,15
3,0	0,15

1.4 При параллельном соединении суммарная сила тока равна сумме токов, протекающий через каждый из элементов. Поэтому необходимо просуммировать данные, полученные в пп. 1.1 и 1.2 (при одинаковых напряжениях). Результаты таких расчетов и их сравнение с экспериментально измеренной ВАХ параллельного соединения, показаны на графике. Стрелка показывает «направление суммирования». Соответствие расчетов с экспериментально измеренными значениями вполне удовлетворительное.

1.5 При последовательном соединении необходимо суммировать напряжения при одинаковых токах. Результаты, представлены на следующем графике.

Примечание. Более точные зависимости и лучшее соответствие можно получить при использовании цифрового мультиметра.

Задание 2. «Тянуть и плющить!»

В данной задаче трудно ожидать полного соответствия ваших результатов с «авторским решением» - слишком много неоднозначных факторов: разные кольца, разное крепление, разные длины нитей. Поэтому представленные численные результаты следует рассматривать как иллюстративные, для качественной проверки лучше провести собственные измерения.

Часть 1. Крепление сверху.

Результаты измерений представлены в таблице 1.

Число	Большая	Малая	Высота	Опускание	Сумма осей	Изменение растяжения
ложек <i>n</i>	ось <i>а, мм</i>	ось <i>b, мм</i>	h, MM	$h-h_0$, мм	a-b, мм	$d-d_0$, мм
0	74,0	84,0	229,0	0,0	158,0	0,0
1	74,5	82,0	230,0	1,0	156,5	2,5
2	75,5	81,5	231,0	2,0	157,0	4,0
3	76,0	81,0	232,0	3,0	157,0	5,0
4	76,5	80,5	233,0	4,0	157,0	6,0
5	77,0	80,5	233,5	4,5	157,5	6,5
6	78,0	79,5	234,5	5,5	157,5	8,5
7	79,0	78,0	235,0	6,0	157,0	11,0
8	80,0	77,0	236,0	7,0	157,0	13,0
9	80,0	77,0	236,5	7,5	157,0	13,0
10	80,5	76,0	237,0	8,0	156,5	14,5
11	81,0	75,5	237,5	8,5	156,5	15,5
12	81,5	75,0	238,0	9,0	156,5	16,5
13	82,0	74,0	239,0	10,0	156,0	18,0
14	82,0	73,0	239,5	10,5	155,0	19,0

В таблице приведена сумма длин осей, в пределах погрешности ее можно считать постоянной. Требуемые графики представлены ниже.

Видно, что зависимость опускания от массы не линейна. Зависимость изменения растяжения линейная (почти прямо пропорциональная). Ее можно записать в виде $d-d_0\approx 1{,}3\cdot n$

Часть 2. Упор снизу.

Результаты измерений представлены в таблице 2.

Число ложек <i>n</i>	Большая ось <i>а, мм</i>	Малая ось <i>b</i> , <i>мм</i>	Высота стаканчика <i>h</i> , <i>мм</i>	Опускание $h - h_0$, <i>мм</i>	Сумма осей $a-b$, <i>мм</i>	Изменение растяжения $d - d_0$, <i>мм</i>
0	75,0	82,5	297,0	0,0	157,5	0,0
1	75,0	83,0	299,0	2,0	158,0	0,5
2	74,0	84,0	300,0	3,0	158,0	2,5
3	73,5	84,5	301,0	4,0	158,0	3,5
4	73,0	84,5	302,0	5,0	157,5	4,0
5	72,5	85,0	302,0	5,0	157,5	5,0
6	72,0	86,0	303,0	6,0	158,0	6,5
7	72,0	86,5	303,5	6,5	158,5	7,0
8	71,5	86,5	304,0	7,0	158,0	7,5
9	70,5	87,0	305,0	8,0	157,5	9,0
10	70,0	87,5	305,0	8,0	157,5	10,0
11	69,5	88,0	305,5	8,5	157,5	11,0
12	69,0	89,0	306,0	9,0	158,0	12,5
13	68,5	89,5	307,0	10,0	158,0	13,5
14	68,0	90,0	307,5	10,5	158,0	14,5
15	67,0	90,0	308,0	11,0	157,0	15,5

Требуемые графики представлены ниже.

Как видно – результаты аналогичные зависимость опускания не линейна, зависимость сжатия – прямо пропорциональная, приближенно описывается функцией

$$d - d_0 \approx 1.0 \cdot n$$
.

- 3. Сравнение. Как это не странно на первый взгляд во втором случае деформации меньше, как по сжатию кольца, так и по опусканию груза. Объяснение такого результата может быть следующим:
- а) Изменение высоты. В первом случае (крепление сверху) опускание происходит по двум причинам, во-первых, опускается центр кольца при его сжатии, во-вторых, уменьшение горизонтальной оси также приводит к движению вниз. Во втором случае (крепление

снизу) опускание стаканчика из-за вертикального сжатия частично компенсируется расширением горизонтальной оси, поэтому стаканчик опускается меньше.

б) Степень деформации. В первом случае кольцо сжимается только под действием горизонтальных составляющих сил натяжения нитей, нить сверху не действует. Во втором – нить действует сверху, здесь силы натяжения стремятся сжать кольцо по вертикали, а горизонтальные составляющие сил натяжения нити (действующие на боковые стороны) частично препятствуют этому.

11 класс.

Задание 1. «Мертвая петля»

В данной задаче результаты существенно зависят от используемой резины. Даже в одной пачке резиновые колечки различаются. Основной целью данной задачи является сравнение результатов, рассчитанных на основании измерений первой части, с результатами измерений второй части. Кроме того, положение равновесия рычага слабо устойчиво, малые изменения параметров может приводить к заметному изменению положения равновесия. Здесь приводятся результаты одной из типичных серий измерений авторов.

Часть1. Исследование деформации резинки.

Результаты измерений длины резинки при нагрузке и разгрузке приведены в таблице и на графике.

Число Длина грузов, резинки *l*. cm n 8,5 0 10,3 1 2 16,6 23,3 3 28,4 4 5 32.3 34,7 6 34,7 6 5 34,1 4 33,0 3 29,8

2

1

0

22,1

12,3

8,8

Таблица 1.

2.1 Условие равновесия линейки, прикрепленной резинкой к штативу и с подвешенными грузами, следует из равенства моментов сил тяжести подвешенных грузов и силы упругости резины:

$$mgx = F_{vnn}d. (1)$$

2.2 Указанные геометрические соотношения следуют из рассмотрения подобия треугольников и почти очевидны.

2.3 Приведенные геометрические соотношения позволяют по данным таблицы 1 для каждого значения l последовательно рассчитать: горизонтальное отклонение

$$x = l\sqrt{1-\left(\frac{l}{2L}\right)^2}$$
; плечо силы упругости $d = \frac{xL}{l} = L\sqrt{1-\left(\frac{l}{2L}\right)^2}$; момент силы упругости

 $M_{\it el} = nd$ (в качестве единицы силы используется число грузов).

Результаты расчетов приведены в таблице 2, по этим данным построен график зависимости момента силы упругости от горизонтального отклонения \boldsymbol{x}

Таблица 2.

l , см	х, см	d, см	n	M_{el}
8,5	8,45	39,77	0	0,00
10,3	10,21	39,67	1	39,67
16,6	16,24	39,13	2	78,26
23,3	22,29	38,27	3	114,80
28,4	26,55	37,39	4	149,58
32,3	29,55	36,59	5	182,97
34,7	31,27	36,04	6	216,25
34,7	31,27	36,04	6	216,25
34,1	30,85	36,18	5	180,92
33,0	30,06	36,44	4	145,75
29,8	27,66	37,12	3	111,36
22,1	21,24	38,44	2	76,89
12,3	12,15	39,52	1	39,52
8,8	8,75	39,76	0	0,00

На этом же графике построены зависимости моментов сил тяжести (при различном числе подвешенных грузов) от горизонтального отклонения \mathbf{x} . Точки пересечения дают значения горизонтального отклонения для различного числа грузов.

Отметим, что графики пересекаются под малыми углами, поэтому незначительное изменение параметров, приводит к тому, что точка пересечения смещается достаточно сильно. На приведенном графике наиболее характерными являются ветвь нагрузки и прямая 4 (т.е. для 4 грузов) и ветвь разгрузки с прямой 5. Так учет массы линейки приведет к малому изменению угла наклона прямых, но большому смещению положений равновесия.

В таблице 3 приведены значения горизонтального смещения, снятые с приведенного графика и измеренные экспериментально. Также приведен график этих зависимостей.

Таблица 3.

таолица.		
n	$X_{pacчem}$	$X_{измер}$.
1	8,7	8,7
2	9,0	9,3
3	9,5	10,0
4	10,2	12,0
5	20,0	24,5
6	27,7	31,5
6	31,0	31,5
5	30,2	33,3
4	27,5	31,5
3	11,5	13,2
2	10,0	10,3
1	9,0	9,0

Получено неплохое соответствие (для такой сложной зависимости). Главная причина расхождений (помимо очевидных погрешностей измерения) является слабая устойчивость и как следствие достаточно резкие переходы от одного положения равновесия к другому. Для подтверждения данного вывода приведем аналогичные графики для другой резинки (все обозначения прежние) – проведите прямые чуть выше и соответствие будет гораздо точнее.

Задание 2. «Как устоять на иголке!»

Лишнее теоретическое введение.

Рассмотрим идеализированную систему, упрощающую исследуемый маятник: пренебрежем высотой иголок (т.е. будем считать, что оси вращения проходят через точку пересечения спиц); пренебрежем массой булавок и ластика. Эта модель показана на рисунке — спицы находятся в вертикальной плоскости, проходящей через ось Oy.

Период колебаний математического маятника определяется по формуле

$$T = 2\pi \sqrt{\frac{I}{mga}},\tag{1}$$

где I - момент инерции относительно оси вращения, a - расстояние от оси вращения до центра масс, m - масса маятника.

С помощью этой формулы и теоремы Штейнера можно записать выражения для периодов: продольных колебаний (вокруг оси Ox)

$$T_{1} = 2\pi \sqrt{\frac{\frac{L^{2}}{12} + \left(z - \frac{L}{2}\right)^{2}}{g\left(z - \frac{L}{2}\right)\cos\alpha}};$$
(2)

Поперечных колебаний (вокруг оси Оу)

$$T_{2} = 2\pi \sqrt{\frac{\frac{L^{2}}{12}\cos^{2}\alpha + \left(z - \frac{L}{2}\right)^{2}\cos^{2}\alpha}{g\left(z - \frac{L}{2}\right)\cos\alpha}} = T_{1}\cos\alpha.$$
(3)

При выводе учтено, что момент инерции тонкой однородной спицы относительно оси перпендикулярной спице и проходящей через ее центр масс равен $I_0 = \frac{mL^2}{12}$.

Функция (2) имеет минимум при

$$z = \frac{L}{2} + \frac{L}{\sqrt{12}} \approx 0.79L, \tag{4}$$

который равен

$$T_{1\min} = 2\pi \sqrt{\frac{2}{\sqrt{12}\cos\alpha} \frac{L}{g}} \,. \tag{5}$$

Эти теоретические измышления и послужили основой данной задачи. Правда ластик и булавки приводят к некоторым отклонениям, особенно существенным, когда длина нижней части спиц приближается к половине ее длины.

Решение.

- 1. В наших экспериментах использовались стальные спицы длиной 34 см с небольшой пластмассовой головкой. Угол между спицами близок к 90 градусам.
- 2.1 Таблица результатов измерений и построенные по ним графики представлены в таблице и на рисунке.

Таблица 1.

z, cm	T_2 , c	T_1 , c
31	0,844	1,186
30	0,842	1,185
29	0,838	1,171
28	0,844	1,170
27	0,845	1,169
26	0,849	1,175
25	0,865	1,209
24	0,918	1,269
23	0,949	1,347
22	1,026	1,424
21	1,183	1,655
20	1,478	1,987
19	2,570	3,255

Для оценки погрешности необходимо провести несколько измерений при одном значении параметра z. Мы провели эти измерения для поперечных колебаний при $z=250\,\text{мм}$. Получен следующий ряд значений для времени 10 колебаний: 8,79; 8,71; 8,78; 8,78 с. Среднее значение периода

$$\left< T \right> = rac{\sum\limits_{k=1}^{5} t_k}{50} = 0,8754c$$
 . Тогда случайная погрешность результата одного измерения

времени следует принять равной цене деления (для электронного секундомера $1\cdot 10^{-2}\,c$), следовательно, приборная погрешность измерения периода (по 10 колебаниям) следует считать равной $\Delta T_{np.}=1\cdot 10^{-3}\,c$. Как и следовало ожидать основная погрешность случайная, поэтому можно принять, что погрешность измерения периода (слегка завышенная) $\Delta T=1\cdot 10^{-2}\,c$

Примечания.

- 1. Случайная погрешность может быть оценена и другим «школьным» методом, как среднее значение модулей отклонения.
- 2. Время реакции человека мы относим к случайным погрешностям.
- 2. Конечно, не следует ожидать от участников тщательного анализа погрешностей. Но, они обязаны оценить случайную, приборную и полную погрешности измерения периода, которая должна составлять величину порядка $\Delta T = 1 \cdot 10^{-2} \, c$.

2.2 Дополнительные измерения необходимо провести с меньшим шагом и провести несколько измерений (минимум 3) для каждого значения параметра z, после чего провести усреднение. Результаты этих измерений (времен 10 колебаний — три измерения, рассчитанный период) приведены в таблице, на основании которой построен график зависимости периода от параметра z.

Таблица.

z, мм	t_1 , c	t_2 , c	t_2 , c	T, c
300	8,53	8,47	8,48	0,849
295	8,47	8,46	8,47	0,847
290	8,45	8,44	8,39	0,843
285	8,49	8,50	8,46	0,848
280	8,45	8,44	8,43	0,844
275	8,46	8,48	8,45	0,846
270	8,53	8,53	8,51	0,852
265	8,52	8,55	8,51	0,853
260	8,57	8,56	8,57	0,857
255	8,57	8,60	8,58	0,858
250	8,79	8,71	8,71	0,874

Затем по нанесенным точкам необходимо нанести плавную кривую, пожую на параболу и уже по ней определить значения требуемых параметров. По нашим данным $z^* \approx 285 \, \text{мм}$, $T_{2 \, \text{min}} \approx 0.845 c$.

2.3 Расчет значений отношения $\frac{T_2}{T_1}$ и график его зависимости от параметра z представлены ниже.

представл	iciibi iirime
z, cm	<i>T1/T2</i>
31	0,712
30	0,711
29	0,716
28	0,721
27	0,723
26	0,723
25	0,715
24	0,723
23	0,705
22	0,721
21	0,715
20	0,744
19	0,790

Видно, что это отношение действительно остается постоянным при $z \ge 21cM$. Для подтверждения этого утверждения следует стандартным образом определить среднее значение и погрешность расчета данного отношения по всем значениям при $z \ge 21cM$. По нашим данным значение равно $\frac{T_2}{T_1} = 0,717 \pm 0,012$. Отметим, что оно близко к теоретическому значению $\cos 45^\circ \approx 0,707$.