

11-2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DOT-CG-N-1-82 DOT-TSC-CG-82-7

History and Status of U.S. Marine Radiobeacon System

Arthur E. O'Brien

Transportation Systems Center Cambridge MA 02142

February 1983 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

DITIE FILE COPY

Office of Navigation Washington DC 20593

83 03 10 035

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2. Gevernment Accession Ne.	3. Recipient's Cetelog No.	
DOT-CG-N-1- 82	AD-A125 461		
4. Title and Subtitle History and Status of	5. Report Date February 1983		
System	6. Perferming Organization Code TSC/DTS-52		
	8. Perferming Organization Report No.		
7. Author(s) Arthur E. O'Brien	DOT-TSC-CG-82-7		
9. Performing Organization Name and A	9. Performing Organization Name and Address U.S. Department of Transportation		
Research and Special E Transportation Systems	Programs Administration	11. Contract or Grant No.	
Cambridge, MA 02142		13. Type of Report and Paried Covered	
12. Spensoring Agency Name and Address U.S. Department of Transportation U.S. Coast Guard		JanNov. 1982 Final Report	
Office of Navigation Washington, DC 20593		14. Sponsoring Agency Code G-NRN-2	
15. Supplementery Notes			

16. Abstract

The U.S. Marine Radiobeacon System first became operational with three transmitter sites and a handful of users in 1921 under the jurisdiction of the Lighthouse Service of the Department of Commerce. The system grew rapidly from the time of its inception. By 1939, when the Coast Guard assumed system responsibility, the number of transmitter sites had grown to 141 with an estimated 4,000 users. By January of 1982, the system consisted of 198 transmitter sites with an estimated 423,000 users, most of whom were pleasure boat owners. This report has been prepared to chronicle the development of this system and to report its current status and near term future prospects.

17. Key Werds	18. Distribution State	ment	
Marine Radiobeacon, Radionavigation	THROUGH INFORMA	DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161	
19. Security Classif. (of this report)	20. Security Cleasif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	68	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

PREFACE

The U.S. Marine Radiobeacon System is maintained and operated by the U.S. Coast Guard under the authority of 14 U.S.C.81(1). Marine radiobeacons are low and medium frequency radio transmitters specifically designed and installed as aids to navigation. Radiobeacons are located at definite points shown on navigation charts and listed in nautical publications. They transmit signals by radio in all directions much the same as lighthouses do by means of light beams. Radiobeacons are located such that bearings from two or more can be obtained for position fixes in most areas about the coasts and Great Lakes.

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB 🔲	- 1
Unann	ounced \square	
Justi	fication	
By		(
Distr	ibution/	'
Avai	lability Codes	
	Avail and/or	
Dist	Special	
A	1	
F	3	

attlement betylered i fallen er lette til aktiva til saks

METRIC CONVERSION FACTORS

	7	.9 .9	e31	333	**	Luki		
	1.	11	ıii	200 00 00 00 00 00 00 00 00 00 00 00 00	iii		1	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
siene from Metric	Mathety by	ia	223	ASS (weight)	22 22 11 Votume	8255 _x 2	TEMPERATURE (enect)	****
Approximate Countiens from Metric Messures	Was Yes floor			opere o Contempor o opere o biformisto opere o biformisto bectero (19.000 m²)		Marie	Colone	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1	1 8	3	ใกวิง	•1-	133	پ	* 6 + 60
et 	22 12 4	i ja						
TT	rrirriri	"" "	" " "	. - 	<u> </u>		• 	
	į		55.3	ננרו	•3-	1117	in s	
Kosaco	1			Pares Conjunction Pares Service Pares Service Pares Distances Decision				bergebine bed sales, we has like, Piol. 78,
Approximate Conversions to Motrik Mossuco	is tolling	LENGTH	# # ##	¥ :8:22	MASS (weigh) 20 4.4 VOLUME		TEMPERATURE (010C1)	Subtracting 328 Subtracting Subtracting to 1.13 to 200.
Approximate Coor	Wes Yes Lear	1	1111	### ### ### ### ### ### ### ### #### ####		***************************************	TEMPE	inequation (administration of the control of the co
	71.		1271	12 3 7	10	<i>1</i> 11	a,	To a 1.2 M Por Unite of Baughts

TABLE OF CONTENTS

			PAGE
1.0	INTR	ODUCTION	1
	1.1	Radiobeacon Navigation	1
	1.2	Radiobeacon Locations	1
2.0	SYST	EM EVOLUTION	2
	2.1	Early History	2
	2.2	Coast Guard Involvement	12
	2.3	The Wartime Period	16
	2.4	The Post-War Period	16
	2.5	The Fifties and Early Sixties	17
	2.6	System Realignment of 1963	18
	2.7	The Department of Transportation Years	27
3.0	THE	CURRENT SYSTEM	29
4.0	THE	NEAR TERM FUTURE SYSTEM	37
REFE	RENCE	es es	46
APPE	NDIX	A: U.S. Marine Radiobeacon System, 1 January 1982.	A-1
APPE	NDTY	B. Near Future Additional Radiobeacon Stations.	B-1

FIGURES

			PAGE
FIGURE	1.	DIRECTIVE PROPERTIES OF A LOOP ANTENNA	3
FIGURE	2.	EXAMPLE OF EARLY LOOP SHIPBOARD ANTENNA	
		(USCG CUTTER TAMPA)	4
FIGURE	3.	TYPICAL RADIOBEACON SPARK GAP TRANSMITTER	6
FIGURE	4.	PHOTOGRAPH OF VACUUM TUBE TRANSMITTER	7
FIGURE	5.	TOP-LOADED RADIOBEACON AT CAPE COD STATION	
		CIRCA 1930	9
FIGURE	6.	RADIOBEACON CONFIGURATION, 1 July 1931	10
FIGURE	7.	ATLANTIC AND GULF COASTS RADIOBEACON	
		CONFIGURATION, 1939	13
FIGURE	8.	PACIFIC COAST AND ISLANDS RADIOBEACON	
		CONFIGURATION, 1939	14
FIGURE	9.	GREAT LAKES RADIOBEACON CONFIGURATION, 1939	15
FIGURE	10.	ATLANTIC AND GULF COASTS RADIOBEACON	
		CONFIGURATION, EARLY 1963	20
FIGURE	11.	PACIFIC COAST AND ISLANDS RADIOBEACON	
		CONFIGURATION, EARLY 1963	21
FIGURE	12.	GREAT LAKES RADIOBEACON CON IGURATION, EARLY 1963	22
FIGURE	13.	ATLANTIC AND GULF COAST RADIOBEACON	
		CONFIGURATION, LATE 1963	24
FIGURE	14.	PACIFIC COAST AND ISLANDS RADIOBEACON	
		CONFIGURATIONS, LATE 1963	25
FIGURE	15.	GREAT LAKES RADIOBEACON CONFIGURATION, LATE 1963	26
FIGURE	16.	SEQUENCED RADIOBEACON AT EASTERN POINT, MA	
		18 July 1977	30

FIGURES (CONT'D)

		PAGE
FIGURE 17.	CONLINUOUS RADIOBEACON AT EASTERN POINT, MA	
	14 JANUARY 1980	31
FIGURE 18.	SOLID STATE RADIOBEACON TRANSMITTER	
	(AN/FRN-40)	32
FIGURE 19.	RADIOBEACON SYSTEM, ATLANTIC AND GULF COASTS,	
	1 JANUARY 1982	33
FIGURE 20.	RADIOBEACON SYSTEM, PACIFIC COAST AND ISLANDS,	
	1 JANUARY 1982	34
FIGURE 21.	RADIOBEACON SYSTEM, GREAT LAKES,	
	1 JANUARY 1982	35
FIGURE 22.	RADIOBEACON COVERAGE, ATLANTIC AND GULF	
	COASTS - BEARING (1982)	37
FIGURE 23.	RADIOBEACON COVERAGE, PACIFIC COAST - BEARING	38
FIGURE 24.	RADIOBEACON COVERAGE, ALASKAN COAST - BEARING	39
FIGURE 25.	RADIOBEACON COVERAGE, ATLANTIC AND GULF	
	COASTS - FIX (1982)	40
FIGURE 26.	RADIOBEACON COVERAGE, PACIFIC COAST - FIX	41
FIGURE 27.	RADIOBEACON COVERAGE, ALASKAN COAST - FIX	42
FIGURE 28.	TRANSMITTER, RADIOBEACON, CDWQ-NX1000BD (250W)	43
FIGURE 29.	RADIOBEACON COVERAGE, ATLANTIC AND GULF	
	COASTS FTY (10811)	3(3)

TABLES

		PAGE
TABLE I.	LIST OF U.S. RADIOBEACONS FOR MARINE USE	
	(1 July 1931).	11
TABLE II.	FIELD INTENSITY REQUIREMENTS	19

1.0 INTRODUCTION

This report has been prepared to chronicle the development of the U.S. Marine Radiobeacon System and to report its current status and near term future prospects.

1.1 RADIOBEACON NAVIGATION

Marine Radiobeacons are low and medium frequency radio transmitters specifically designed and installed as aids to navigation. They are located at entrances to heavily travelled harbors, at coastal prominences, and at other key locations and landmarks to transmit radio signals for use by marine navigators. Radio direction finders are specialized radio receivers used by mariners to determine a direction to the radiobeacon transmitting source.

The general problems and practices of navigation when using radio bearings are analagous to those associated with visual bearings on lighthouses or other known objects. The practical differences between radio and visual navigation are not differences in principle, but in the availability of radio signals beyond visual range and under all weather conditions. Radiobeacons are located at definite points shown on navigation charts and are listed in nautical publications. They transmit signals by radio in all directions much the same as lighthouses do by means of light beams. Each radiobeacon is identified by the unique characteristics of the transmitted code much like the visual signal sequences of lighthouses. Radiobeacons are located such that bearings from two or more can be obtained for position fixes in most areas about the coasts and Great Lakes, and can be used to follow a desired or prescribed course.

1.2 RADIOBEACON LOCATIONS

Geographic locations of Marine Radiobeacons and their assigned characteristics, operating frequencies, and service ranges may be obtained from the following sources:

- 1) Coast Guard Light Lists (CG 158-162); available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.
- 2) Defense Mapping Agency Hydrographic/Topographic Center Publication 117 (Radionavigation Aids); available from the Defense Mapping Agency, Topographic Center, 6500 Brooks Lane, Washington, DC 20315.
- 3) Nautical Charts, available from the National Oceanic and Atmospheric Administration, National Ocean Survey (C-44), Riverdale, MD 20840.

Changes in operation, outages, and scheduled alterations are announced in Local Notices to Mariners which are available from local Coast Guard District Commanders. It is imperative that users of this system maintain current information at all times to avoid undue problems.

Radiobeacon locations as of 1 January 1982 are listed in Section 3 of this report. Earlier configurations are discussed in Section 2 and the near term future locations are noted in Section 4.

2.0 SYSTEM EVOLUTION

The present Radiobeacon System is the result of evolutionary development over a period of more than sixty years. This development is traced through its various stages in this section.

2.1 EARLY HISTORY

For centuries, mariners relied solely upon visual references to navigate throughout their uncertain world. With time, it became clear that the visible segment utilized a very limited portion of the electromagnetic spectrum. Furthermore, it was discovered that radiowaves, which are not visible, occupied another portion of that spectrum. In addition to peculiar properties of their own, these radiowaves possessed many of the properties of the more familiar visual signals. Thus, the directive properties of radio signals were established early in the development of radio science. This feature, coupled with the long-range all-weather usage properties of radio signals, led to their consideration as an aid to navigation. Considerable time elapsed, however, before theory was reduced to practice and radiowaves were applied as useful aids to navigation. The major problem that had to be solved was finding a radiowave analog to the optical bearing indicator in order to permit the determination of the angle (bearing) from which the transmitted signal arrived at the receiver.

Early work by Farraday, Hertz, and Maxwell in the nineteenth century formed the basis for investigations and experiments by the U.S. Bureau of Standards in 1912 and 1913. These efforts at first produced a simple device which demonstrated the feasibility of direction finding using radio signals, and by 1916 a more practical receiver was constructed by the Bureau. The method of radio direction finding which evolved was based on the directive properties of the so-called coil or loop antenna. operated on the principle that the amount of electromagnetic force induced in a vertical loop antenna by an incident electromagnetic wave was determined by the angle between the plane of the loop and that of the wave front. When the plane of the loop was aligned with the direction of the incident wave, the induced signal would be at a maximum. As the loop was rotated, the intensity of the received signal would be reduced until a minimum was reached when the plane of the loop became orthogonal to the line of direction of the incident signal. Thus, the direction of origin of an incident wave could be determined by positioning the loop to minimize the received signal since the minimum, which is well defined, could be determined with sufficient accuracy for navigation purposes. directive characteristics of a loop antenna are shown in Figure 1 and a photograph of an early loop shipboard installation is shown in Figure 2.

Direction finding equipments were installed on the lighthouse tender TULIP and were tested jointly by the Bureau of Standards and the Lighthouse Service of the U.S. Department of Commerce in January of 1917 using signals from a spark gap transmitter located at Navesink Lighthouse in New Jersey.

FIGURE 1. DIRECTIVE PROPERTIES OF A LOOP ANTENNA

FIGURE 2. EXAMPLE OF EARLY LOOP SHIPBOARD ANTENNA (USCG CUTTER TAMPA)

Although results were promising, the onset of World War I forced a temporary curtailment of further efforts. Tests were resumed in October of 1919 using three experimental transmitters located at lighthouses in Chesapeake Bay and an improved radio direction finder on the tender ARBUTUS.

Equipment improvements followed throughout the next year and prototype spark gap transmitters, similar to that shown in the photograph of Figure 3, were installed at Sea Girt Lighthouse in New Jersey and on AMBROSE and FIRE ISLAND Lightships in the approaches to New York Harbor. Following an extensive test and demonstration period, these three stations became operational as the first elements of the U.S. Marine Radiobeacon Service on 1 May 1921 under the jurisdiction of the aforementioned Lighthouse Service (Ref. 1). Two additional transmitters were commissioned in 1922 - DIAMOND SHOALS Lightship, North Carolina and the first Pacific coast station, SAN FRANCISCO Lightship, California.

When first introduced, radiobeacon transmissions were referred to as "radio fog signals" or "wireless fog signals" since they were originally planned as a supplementary aid under fog conditions. For the first few years, radiobeacon signals were transmitted continuously during fog conditions. Transmissions also were made during the periods of 0900-0930 and 1500-1530 each day to permit vessels equipped with radio direction finders to exercise the method and apparatus in clear weather. This limited operation led to the recognition of radiobeacons as valuable aids in clear weather as well as fog because of the availability of radio signals beyond visual range. As a consequence, hourly operation was introduced on the NANTUCKET Lightship in 1924 and the use of the restrictive term "radio fog signals" was phased out (Ref. 2).

By April of 1924, when the first vacuum tube transmitter was installed on AMBROSE Lightship, the Service had a dozen spark gap transmitters operating on the Atlantic and Pacific coasts on a common frequency of 300 kHz (1000 meters). Over the next few years, conversion to vacuum tube transmitters, an example of which is shown in Figure 4, was accomplished and the number of new radiobeacons increased by at least 10 per year, including the first units about the Great Lakes (LAKE HURON Lightship) and the Gulf Coast (South Pass, Louisiana) in 1925, Alaska (Cape Spencer) in 1926, and Hawaii (Makapuu Point) in 1927 (Ref. 3). This expansion soon led to interstation interference. This factor, along with foreign radiobeacon developments, necessitated the establishment of international regulatory bodies to coordinate and control the use of the available radio frequencyspectrum. One of the first meetings convened to discuss spectrum usage was the International Radiotelegraph Conference which was held in Washington, DC in November of 1927. The regulations established by that conference provided that Marine Radiobeacons, "shall use the waves of 285 to 315 kilocycles per second (1050 to 950 meters)" and that continuous or modulated continuous waves be used. In the United States, this band was divided into 2 kiloHertz channels using the even frequencies as the carriers (e.g., 286 kHz, 288 kHz, 290 kHz) with a few exceptions for operational utility. Transmitter stations were configured in groups of three per frequency and synchronized to a non-interfering operating schedule of one minute on and two minutes silent. Accurate timing of radiobeacon signals was accomplished by use of a signal timer controlled by

FIGURE 3. TYPICAL RADIOBEACON SPARK GAP TRANSMITTER

FIGURE 4. PHOTOGRAPH OF VACUUM TUBE TRANSMITTER

a primary clock which was checked frequently against U.S. Naval Observatory time signals. This arrangement made possible the grouping of stations with a minimum of interference. Radiobeacons were assigned individual code identifiers which were transmitted by either keying the modulated audio frequency or by the keying of the modulated carrier. During periods of good visibility, radiobeacon signals generally were transmitted for two 10 minute periods per hour. During fog or low visibility conditions they were transmitted continuously.

Radiobeacons also were divided into classes based on the average reliable range of their signals:

Class A - 200 miles Class B - 100 miles Class C - 20 miles

The different classes imposed different requirements on transmitting equipment, particularly antenna characteristics. Since radiobeacons were strategically located to provide optimum service to mariners, the available sites were not necessarily compatible with the best of installation practices. As a consequence, transmitting antennas were selected to best suit the power requirements and physical factors of the site. For high power radiobeacons, electrically matched insulated towers, typically 125 ft., were used. A unique example of such matching was the top-loaded antenna at Cape Cod Station shown in Figure 5. Low power or limited range sites generally used an insulated vertical mast or vertical whip antenna, typically 35 ft. in height, with a ground system or a counterpoise system of radials where soil conditions precluded a ground system.

Automatic radiobeacon operation was introduced in 1928 and distance finding beacons, wherein radio and fog signals were synchronized, were first commissioned at Cape Henry, VA, in 1929. The replacement of the obsolete spark gap transmitters was completed in 1930 and the system configuration that resulted in July of 1931 is shown in Figure 6. The characteristics of the various transmitter sites were as noted in Table I (90 active transmitters, 12 under construction) (Ref. 2).

Radiobeacon navigation was readily accepted by the maritime community. Because of the many factors affecting navigation, however, it is difficult to assess the effect of radiobeacon navigation on maritime safety. Yet, the following figures are of interest. Radiobeacons were deemed remarkably effective on the Great Lakes during the years 1927-30 by shipping interests. In this four year period there were 31 strandings in a group of 470 vessels, or one for each 15 vessels. For the years 1923-26, immediately before the advent of radiobeacons, there were 76 strandings in a comparable group of 572 vessels, or 1 stranding for each 7.5 vessels. Shipping interests considered the availability of radiobeacon signals to be the most important factor in this reduction (Ref. 4).

FIGURE 5. TOP-LOADED RADIOBEACON AT CAPE COD STATION CIRCA 1930

FIGURE 6. RADIOBEACON CONFIGURATION, 1 JULY 1931.

Parish Priory

Character-latic

Trees.

1

Location

FOR MARINE USE (1 JULY 1931). LIST OF U.S. RADIOBEACONS TABLE I.

Establishment of new radiobeacon transmitter installations virtually stopped during the years 1932-1934; however system refinement was pursued and in 1934 the Lighthouse Service established an unattended aid by equipping a lightship for radio remote control of all facilities, including light, fog signal, and radiobeacon (Ref. 3). Construction of new transmitter installations resumed in 1935 and in that same year officers of the U.S. and Canadian Lighthouse administrations adopted identical principles of radiobeacon operation. A simplified signal timer was introduced in 1936 and a radiobeacon buoy transmitter was successfully tested in 1938. During 1939, the first radiobeacon buoy was placed in service as North Channel Radiobeacon Buoy No. 10 in Boston Harbor, MA.

By March 1939, the Radiobeacon System had grown to 141 transmitters with an estimated 4000 users (Ref. 5). The system configuration at that time is shown in Figures 7, 8, and 9 (Ref 6).

2.2 COAST GUARD INVOLVEMENT

Under Presidential Reorganization Plan No. 11, made effective 1 July 1939, by Public Resolution No. 20, it was provided "that the Bureau of Lighthouses in the Department of Commerce and its functions be transferred to and consolidated with and administered as a part of the Coast Guard. This consolidation, made in the interest of efficiency and economy, will result in the transfer to and consolidation with the Coast Guard of the system of approximately 30,000 aids to navigation (including light vessels and lighthouses) maintained by the Lighthouse Service on the sea and lake coasts of the United States, on the rivers of the United States, and on the coasts of all other territory under the jurisdiction of the United States with the exception of the Philippine Islands and Panama Canal proper." (Ref. 7)

Thus did the Coast Guard, then a part of the Treasury Department, become responsible for the operation and maintenance of the Radiobeacon System, a function which continues to this day under the authority of 14 U.S.C. 81(1). (Ref. 8)

Few changes were made in the early years of Coast Guard administration with one notable exception, that of refinement of buoy instrumentation. In May of 1941, the initial buoy installation in Boston Harbor was replaced by a newly designated Graves Lighted Whistle Radiobeacon Buoy 5. This was followed in June 1941 by the establishment of Cape Ann Lighted Whistle Radiobeacon Buoy 2 and York Split Channel Lighted Whistle Radiobeacon Buoy 1A. A fourth radiobeacon buoy was approved for the entrance to Cape Fear River, NC, and many others were to follow. These buoy installations were designated Class D radiobeacons having an average effective range of 10 miles. (Ref. 9)

FIGURE 7. ATLANTIC AND GULF COASTS RADIOBEACON CONFIGURATION, 1939

FIGURE 8. PACIFIC COAST AND ISLANDS RADIOBEACON CONFIGURATION 1939

FIGURE 9. GREAT LAKES RADIOBEACON CONFIGURATION 1939

2.3 THE WARTIME PERIOD

Under the provisions of its establishing act, the Coast Guard was transferred to the Department of the Navy on 1 November 1941. With U.S. entry into World War II in the following month, numerous changes were made to the Radiobeacon System, including the immediate silencing of most Alaskan stations and modifications to the operational characteristics of many coastal sites.

Dimouts and blackouts of individual radiobeacons, as well as power level reductions and site relocations, were instituted to various degrees at various times during the wartime years in such a manner as to insure safe passage of U.S. and allied vessels while denying the use of radiobeacon signals to the enemy. Despite these restrictive actions, the Radiobeacon System actually experienced growth during this troublesome period with at least 10 new installations being established annually.

The year 1944 saw the end of radiobeacon silence at Alaskan sites, the lifting of most operational restrictions at coastal installations and the establishment of 18 new radiobeacon stations, mostly along the North Atlantic coast. The reconstituted Radiobeacon System provided essential support to maritime efforts which contributed to an allied victory and the cessation of hostilities in 1945.

The Coast Guard was returned to Treasury Department juristiction on 1 January 1946, to resume its normal peacetime mission. At that time, the Radiobeacon System consisted of 191 transmitter sites with an estimated 10,000 users.

2.4 THE POST-WAR PERIOD

Construction of radiobeacons leveled off after World War II because of the comprehensive coverage provided by the stations then operating. It was during this period that the first major revision was made to the Radiobeacon System. Individual transmitters were assessed on the basis of their coverage both singularly and with respect to other transmitters and on the basis of accessibility to the transmitter site. As a result of this effort many transmitters were moved back from jettys and other difficult to reach sites. The transmitted power levels of some transmitters were changed, while other transmitters were deemed unnecessary and were disestablished. Transmitters were installed at new sites to increase coverage capability, and technological innovations from the wartime period were introduced to the system as particular situations warranted. Following this adjustment, the count of radiobeacon transmitters was 186 in April of 1949, and users numbered an estimated 20,000. (Ref. 4).

This period also saw changes in the rules, regulations, and international agreements governing the use of Marine Radiobeacons. The International Telecommunication Union (ITU) meeting at Atlantic City in 1947 recommended a change in the radiobeacon frequency allocation from the prior established band of 285-315 kHz to an expanded band of 285-325 kHz for marine operation in ITU Region II. (The entire U.S. Marine Radiobeacon

System is within the area defined by the Atlantic City Conference as Region II.) The Extraordinary Administrative Radio Conference held in Geneva in 1951 for the preparation and adoption of new international frequency lists for the various radio services agreed to the adoption of this expanded band with an effective date of 1 November 1952. Thus, following the channel spacing used in the band 285-315 kHz, five new fundamental radiobeacon frequencies became available (316 kHz, 318 kHz, 320 kHz, 322 kHz, and 324 kHz). However, since aeronautical radiobeacons were then operating on these frequencies, it was some time before the entire expanded band became fully dedicated to maritime usage.

The importance of the Radiobeacon System as an aid to navigation was evidenced when the Communications Act of 1934, as amended and revised to 1 September 1948, required that any passenger vessel of 5000 tons or more, navigating in the open seas, be provided with an efficient radio direction finding device.

International recognition of the value of this system was achieved when the International Conference on Safety of Life at Sea, held in London in 1948, established the requirement that every ship of 1600 tons or more must be provided with an approved radio direction finding apparatus when engaged in international voyages. Through this action, the Radiobeacon System became the only internationally mandated radionavigation system - a distinction which continues to this day. In addition, the Safety of Life at Sea Conference recognized that the field strengths necessary to obtain usable bearings at the edges of the advertised service ranges depended upon the sensitivity and selectivity of direction finders and the noise levels due to atmospherics and other causes. Hence, it was recommended that direction finding equipments (receivers) should have a sensitivity of no less than 50 microvolts per meter (µv/m). Upon acceptance of this recommendation by the ITU, the Coast Guard adjusted the transmitted power of each U.S. Marine Radiobeacon to provide a field strength of 50 $\,\mu\nu/m$ at its advertised service range.

2.5 THE FIFTIES AND EARLY SIXTIES

By June of 1953, the number of radiobeacons had once again risen to the level of 191 installations, an increase of but 5 from the 1949 level (Ref. 10). The user community had, however, grown much more significantly to an estimated level of 40,000, spurred in large part by the regulatory actions of the late forties. The Radiobeacon System remained essentially the same over the next decade or so, adding or deleting a beacon here or there to satisfy the immediate needs of the user community with minimal effect on the overall system. However, one major modification was introduced - that of field strength criteria at advertised service ranges. Pursuant to the Radio Regulations adopted by the 1959 ITU Conference in Geneva, the field intensities at the extremity of the advertised range in Region II were changed to the following levels to permit satisfactory bearing determination in the presence of atmospheric noise:

50 $\mu\nu/m$ for Radiobeacons north of $40^{\circ}N$ 75 $\mu\nu/m$ for Radiobeacons between $40^{\circ}N$ and $31^{\circ}N$ 100 $\mu\nu/m$ for Radiobeacons between 31°N and 30°S

The Coast Guard adopted these field strength criteria in January of 1961 at which time the system consisted of 194 radiobeacons (Ref 11). All Marine Radiobeacons had their field intensities adjusted as determined by their latitude. A few exceptions, accepted by the ITU, were made to improve the service rendered in troublesome areas. The nominal field intensities required to meet these criteria are listed in Table II (Ref. 12). The listed intensity levels have been fixed since 1961 and consequently are those in current practice.

The 1959 Radio Regulations also stipulated that all radiobeacon emissions must occupy the minimum practical frequency spectrum (bandwidth) and must possess a frequency stability of a least 0.01%, characteristics that were commonly observed in U.S. radiobeacon practice prior to that mandate.

Over the years, different types of radiobeacons evolved to satisfy particular needs. For instance, local or marker beacons for local use at a nominal distance of 10 miles, transmitted a series of 0.5 second dashes for a period of 15.5 seconds then remained silent for 14.5 seconds. Sequenced beacons, in groups of three on a common frequency, transmitted an identifying code for one minute and remained silent for two minutes during two 10 minute periods each hour. These beacons operated throughout the hour in limited visibility situations. Continuous beacons transmitted an identifying code at all times in all weather conditions. Distance finding beacons sent out synchronized radio and fog signals to permit measurements of distance over limited ranges. Calibration stations operated upon request to allow a mariner to determine the precision of his direction finding equipment.

The locations and characteristics of the various elements of the U.S. Marine Radiobeacon System as it existed in early 1963 are shown in Figures 10, 11, and 12 (Ref 13).

Radio direction finders (ship board receivers) also developed in sophistication over time and automatic direction finding (ADF) equipments found their way into the user inventory. The operational utility of ADF equipments on large vessels coupled with increased acceptance of radiobeacon navigation by the pleasure boat community presaged the need for a reassessment of transmitted signal characteristics and an ultilate realignment of the Radiobeacon System.

2.6 SYSTEM REALIGMENT OF 1963

Ease of operation and low cost to the user made the Marine Radiobeacon System a major aid to navigation for the pleasure craft owners as well as for the commercial users. Due to the phenomenal rise in small boating in the late 1950's and early 1960's, additional radiobeacon transmitter sites were sought to accommodate the more than 100,000 members of this user class. However, the available radio spectrum had become saturated to the point that it was virtually impossible to add another station without undue interference. In an effort to alleviate this problem, the entire Radiobeacon System was reassessed during the early 1960's and several major changes were effected during the months of June and July 1963.

TABLE IL.
FIELD INTENSITY REQUIREMENTS

ADVERTISED	REQUIRED INTENSITY AT ONE MILE* IN MICROVOLTS PER METER					
RANGE (Mi) *		GREAT				
V/	50 /w/m	75 µV/m	איע 100 m/m	LAKES		
10	500	750	1000	550		
15	750	1125	1500	800		
20	1000	1500	2000	1100		
25	1300	1950	2600	1450		
30	1500	2250	3000	1800		
35	1800	2700	3600	2150		
40	2100	3150	4200	2550		
45	2400	3600	4800	2950		
50	2700	4050	5400	3400		
55	3000	4500	6000			
60	3300	4950	6600	4350		
65	3600	5400	7200			
70	3900	5850	7800	5400		
75	4200	6300	8400			
80	4500	6750	9000	6600		
85	4900	7350	9800			
90	5300	7950	10600	7850		
95	5600	8400	11200			
100	6000	9000	12000	9300		
110	6800	10200	13600			
120	7600	11400	15200			
130	8400	12600	16800			
140	9300	13950	18600			
150	10400	15600	20800	i i		
160	11500	17250	23000			
170	12600	18900	25200			
180	13800	20700	27600			
190	15100	22650	30200			
200	16600	24900	33200			
250	25100	37650	50200			
300	37500	56250	75000	1		
350	54900	82350	109800			

*Nautical Miles for Sea Water Statute Miles for Great Lakes

20

FIGURE 11. PACIFIC COAST AND ISLANDS RADIOBEACON CONFIGURATION, EARLY 1963

FIGURE 12. GREAT LAKES RADIOBEACON CONFIGURATION, EARLY 1963

As noted earlier, a sequenced beacon is one whose transmission are time shared with other beacons operating on the same frequency. Historically, three stations time-shared two ten minute periods each hour in fair weather and operated throughout the hour in foul weather. A major revision to system operation was introduced in June of 1963 whereby sequenced beacons would operate one minute on/five minutes off in groups of six radiobeacons to a frequency. The purpose of the change was to relieve band congestion and to make room for possible additional radiobeacons. In addition to the re-grouping modification, the distinction between fair and foul weather operation was eliminated, thus providing ten minutes of operation per hour from each station under all weather conditions. All radiobeacons in the United States and Canada were changed to the new mode of operation by the end of July 1963. This was a tremendous engineering feat requiring the utmost of planning, coordination, and cooperation amoung the U.S. Coast Guard, the Canadian Department of Transport, and the user community (Ref. 14). Comparison of the resultant configuration, Figures 13, 14, and 15, (Ref. 15) with the immediately preceeding configuration, Figures 10, 11, and 12, clearly shows the enormous scope of this near-immediate system realignment.

Concurrent with the above change, the type of radiobeacon emission was changed from keyed-carrier keyed-tone transmission to continuous carrier keyed tone transmission. This latter type of emission is more suitable than the former to ADF usage in that a continuous carrier minimizes jitter and hunting effects. As an added aid to those users with manual direction finders, a 10 second dash was added at the end of each operating minute at all sequenced stations to enhance their ability to obtain accurate bearings in a timely fashion.

A further related modification was a change from amplitude modulation to dual carrier emission (Ref. 16). In radiobeacon usage, dual carrier emission is the simultaneous transmission of two RF carriers whose frequencies are separated by 1020 Hz (the desired modulation frequency). One carrier operates continuously at the designated station frequency. The second carrier operates 1020 Hz above the first and is keyed in accordance with the station code. The keyed carrier is transmitted at half the power of the continuous carrier thereby yielding a modulation of 70% after detection. This type of emission, which remains in current usage, has the advantage of transmitting the same amount of information while using half the bandwidth required by amplitude modulation. In theory, this change allowed the addition of more radiobeacon stations. In practice, however, full advantage of the narrow bandwidth characteristic of dual carrier emission could not be realized until direction finders were redesigned with compatible narrow IF bandpasses. This was a very gradual process over the next several years.

Following the realignment of 1963, the system configuration remained essentially unchanged over the next few years with only minor adjustments where necessitated by operational considerations. System instrumentation did, however, exhibit change with the gradual introduction of various solid state components and sub-systems which partially replaced some of the older tube-type equipments. This was followed by the eventual deployment of fully solid state transmitters in the mid-sixties.

FIGURE 13. ATLANTIC AND GULF COAST RADIOBEACON CONFIGURATION, LATE 1963.

FIGURE 14. PACIFIC COAST AND ISLANDS RADIOBEACON CONFIGURATIONS, LATE 1963.

FIGURE 15. GREAT LAKES RADIOBEACON CONFIGURATION, LATE 1963.

2.7 THE DEPARTMENT OF TRANSPORTATION YEARS

In April of 1967, the U.S. Coast Guard was assimilated into the newly formed Department of Transportation (DOT). This administrative change had no immediate effect on the Radiobeacon System and the Coast Guard continued with the routine maintenance, operation and refinement of the system. In its charter, the DOT was designated as the principal provider of civil air, maritime, and terrestrial navigation systems. This function received statutory recognition in Public Law 89-670, the legislation creating the New Department. In April 1972, the DOT published a National Plan for Navigation (NPN) to address the major civil air and marine navigation systems. Prominent among the latter was the Radiobeacon System about which it was stated in part that:

"Continued operation of the marine radiobeacon system will be required for backup to more accurate systems and to provide a navigation system which is suitable for the multitude of recreational boats... Current plans are that the transmitting system will be augmented and reconfigured to provide better service to the large number of users of the system in selected areas of the United States."

At the time the NPN was published, the recreational boat user community exceeded 200,000 members. The Coast Guard, anticipating the increased needs of these users, had already initiated a planning activity to satisfy such needs while concurrently maintaining and improving the service provided to the commercial user. This activity, eventually formalized as the Radiobeacon Improvement Program of 1974, identified the following goals:

- 1. Optimization of radiobeacon service to meet current requirements
- 2. Reduction of support costs

The separate Coast Guard Districts responded with plans to address these goals which incorporated inputs from perceived needs as voiced in Coast Guard conducted surveys of the user communities and requirements analyses conducted within the involved Districts.

During the years 1975 and 1976, coordinated plans were prepared for the Atlantic and Gulf Coasts, the West Coast, and the Great Lakes areas by consolidating the individual plans submitted earlier by the various Coast Guard Districts. Although the resultant plans did not accomodate all of the specific recommendations of all commands, they were the result of an exhaustive analysis of what had been recommended and what could be accomplished under the constraints of frequency availability and interference protection. The plans did, however, provide for the orderly transition from the then existing system to a new configuration which satisfied the cited goals in the following manner:

Optimization

1. Provide the mariner with improved radiobeacon service where he wants it and the type of service he desires.

- Effect efficient utilization of the existing marine radiobeacon frequency band.
- 3. Convert as many radiobeacons as possible from sequenced to continuous operation in order to provide the mariner with maximum fix information per time unit, convert marker beacons to continuous coded operation, and convert all beacons from single characteristic code to multiple characteristic codes.
- 4. Assign maximum ranges, up to 150NM where possible, to all radiobeacons where such increases prove merited and beneficial to the mariner.
- 5. Provide an almost continuous two line fix capability at least to 50NM offshore or to the 100 fathom curve, whichever is greater.

Cost Reduction

 Convert to a standardized totally solid state design transmitter installation.

Implementation of the various features of the plans was initiated by a Coast Guard directive, since overall responsibility for the Radiobeacon System was made a Headquarters function of the Radionavigation Aids Branch of the Aids to Navigation Division, Office of Marine Environment and Systems. In the past, the separate Coast Guard Districts were somewhat autonomous in regard to radiobeacons under their jurisdiction.

In contrast to the almost immediate change of 1963, the improvement of 1974 was a very gradual undertaking eventually leading to the system as it exists today. The revised DOT NPN of 1977 attested to the fact that the Radiobeacon System was undergoing change and the Federal Radionavigation Plan, prepared jointly by DOT and DOD in 1980, contained the following reference to the status of Marine Radiobeacons:

"There approximately 200 Coast Guard-operated are radiobeacons. Operation of these systems will continue through the The system is being modernized, expanded slightly and reconfigured to provide better sevice in response to the increasing demand. This effort includes establishing 37 new stations, relocation of some others, changes in type of operation of selected beacons, and changes in frequency. These changes will improve service by providing more beacons, improving signal availability, and providing service in many area where coverage does not exist. The changes in frequency will result in more efficient use of the RF spectrum and will allow for additional beacons in some areas if needed."

The optimization portion of the system improvement of 1974 was substantially completed by the end of 1980. Of the many changes introduced, the most observable were the conversion of many radiobeacons from sequenced to continuous operation. The operational changeover greatly simplified the equipments necessary at the affected transmitter sites. Evidence of this simplification is shown in the before and after photographs of the transmitter configuration at a typical installation (Eastern Point, MA), Figures 16 and 17. In sequenced operation, Figure 16, considerable hardware was required to maintain the necessary time reference control. In continuous operation, Figure 17, these equipments were no longer needed, greatly reducing the complexity of the site.

As to cost reduction, experience with solid state transmitters established the superiority of such equipment over older vacuum tube designs in terms of reliability, maintainability and savings in power consumption. The efficacy of such designs, demonstrated over the preceding decade, led to the development of specifications for the first Coast Guard-wide standardized solid state transmitter in 1977 (Figure 18). The first installation of this design was established at Guard Island, Alaska in August of 1978. In the final version of the Radiobeacon Improvement Program of 1974, adopted in the Spring of 1980, provision was made to introduce Radiobeacons of common total solid state design throughout the near-term future system.

An organizational change also occurred in this time period - the formulation of the Office of Navigation within the Coast Guard in May of 1980. With this change, responsibility for the operation and maintenance of the U.S. Marine Radiobeacon System was assigned to the OMEGA/Radiobeacon Branch of the Radionavigation Division of that Office.

3.0 THE CURRENT SYSTEM

On 1 January 1982, the system consisted of 199 radiobeacons configured as shown in Figures 19, 20, and 21. Individual site characteristics were as noted in Appendix A (Ref. 17). Radiobeacon installations by Coast Guard District at that time were:

0.140 0240 40101	
CG District	No. Radiobeacons
1	23
3	19
5	13
7	12
8	11
9	62
11	15
12	20
13	17
17	7

The Federal Radionavigation Plan of 1980 projected that the Radiobeacon System would provide service to some 423,000 users by 1982.

FIGURE 16. SEQUENCED RADIOBEACON AT EASTERN POINT, MA 18 JULY 1977

FIGURE 17. CONTINUOUS RADIOBEACON AT EASTERN POINT, MA 14 JANUARY 1980

Copy available to DTIC does not permit fully legible reproduction

FIGURE 18. SOLID STATE RADIOBEACON TRANSMITTER (AN/FRN-40)

Copy available to DTIC does not permit fully legible reproduction

FIGURE 20. RADIOBEACON SYSTEM, PACIFIC COAST AND ISLANDS, I JANUARY 1982

Copy available to DTIC does not permit fully legible reproduction

35

The bearing coverage provided by this system is shown graphically in Figures 22, 23, and 24. Fix coverage (two or more beacon coverage) is shown in Figures 25, 26, and 27. Fix coverage is provided everywhere within the Great Lakes.

4.0 THE NEAR TERM FUTURE SYSTEM

The Radiobeacon Improvement Program of 1974 as amended to 1980 will result in the deployment of a new generation of radiobeacons of common solid state design. A photograph of a typical transmitter is shown in Figure 28. The near-term future system (late 1984) will consist of the stations listed in Appendix A and the additional stations listed in Appendix B.

The addition of 8 installations about the Atlantic and Gulf Coasts will result in increased areas of fix coverage, particularly off the west coast of Florida as shown in Figure 29. The envelope of bearing coverage will remain the same as that shown in Figure 22. The additional 14 installations about the Great Lakes will increase the redundancy of fix coverage in that region. Pacific and Alaskan coast coverage will be unchanged.

FIGURE 24. RADIOBEACON COVERAGE, ALASKAN COAST - BEARING

FIGURE 25. RADIOBEACON COVERAGE, ATLANTIC AND GULF COASTS - FIX (1982)

FIGURE 26. RADIOBEACON COVERAGE, PACIFIC COAST - FIX

FIGURE 27. RADIOBEACON COVERAGE, ALASKAN COAST - FIX

FIGURE 28. TRANSMITTER, RADIOBEACON, CDWQ-NX1000BD (250W)

FIGURE 29. RADIOBEACON COVERAGE, ATLANTIC AND GULF COASTS - FIX (1984)

REFERENCES

- 1. The Lighthouse Service, John S. Conway, Department of Commerce, Lighthouse Service, 1923.
- Radiobeacons and Radiobeacons Navigation, George R. Putnam, Department of Commerce, Lighthouse Service, July 1931.
- 3. Chronology of Aids to Navigation and the Old Lighthouse Service, 1716-1939, Department of Transportation, U.S. Coast Guard, CG-458, 1974.
- 4. Electronic Navigational Aids, Treasury Annual Report, 1931-42.
- 5. U.S. Coast Guard Abstract, Treasury Annual Report, 1931-42.
- 6. Light List, Department of Commerce, Lighthouse Service, 1939.
- 7. Annual Report of the Secretary of the Treasury on the State of Finances for the Fiscal Year Ended June 30, 1939.
- 8. U.S. Code, Title 14, Section 81, Paragraph 1.
- 9. Coast Guard Bulletin, Vol. 1, No. 25, July 1941.
- 10. Study of the Direction Finder Marine Radiobeacon System, RTCM, March 1954.
- 11. Study of Roles and Missions of the U.S. Coast Guard, Vol. 1, Section D, Aids to Navigation, U.S Treasury Report to the Secretary, June 1962.
- 12. Coast Guard Manual M 10550.4, Vol. II, Chapter 2.
- 13. Light List, Department of Transportation, U.S. Coast Guard, 1963.
- 14. Development of Electronic Aids to Navigation for the Small Craft Navigator, Lt. L.J. DeGraw, USCG, Navigation, Journal of the Institute of Navigation, Vol. 13, No. 2, Summer 1966.
- 15. Light List, Department of Transportation, U.S. Coast Guard, 1964.
- 16. A Close Look at the Dual-Carrier Radiobeacon System, P.J. Culicetto, U.S. Coast Guard Engineers Digest (CG-133), January-March 1968.
- 17. Light List, Department of Transportation, U.S. Coast Guard (CG-158-162), 1982.

APPENDIX A

U.S. MARINE RADIOBEACON SYSTEM 1 JANUARY 1982

BABIOBEACON SYSTEM-ATLANTIC AND BULF COASTS

1

SPECIAL RADIO DIRECTION PRICES CAUBRATION STATIONS

All serions transminal continuously during the sittle required for collection with layed user modulated carrier (A—2 engineer), coaper where roand, and have a missible range of 5 males. Their assigned characterise is transmissed every followed by a 20—secured dark, the cruptive sequence large represent towar per mature. The answers in located on the light structure unlies otherwise reducted under Remarks." In the event special collection service seasons service will not be given.

Special collection operation will be made only upon require in advance to the deserct contentable in whose district the collections makes in advance and deserct limits of which are lated on p. III. The day, time and frequency on which special collections make the second if struct is deserted on both frequencies based, the same that transmission on each frequency is deserted make to specified. Upon across or the sustain on the date and have specified, makes perceived may be consisted by means of the usual whose signal or flag hairs.

Seation	Pos	Reion	Fre-						
Justy	Latirade. N	Langirude,	quenc		Characeristic			Remarks .	
Easter Pous Station, MA.1	42 54 46	70 49 54	290	325	EP	10	••,	Amenna is lucited on an orange and whose checkered building	
Compy Island Light Station, NY	40 34 35	74 00 35		480	C3	10 0 0	••••	Calibration available 0800 to 1800 (fazzl time lonly on request to Rockaay Station on 1368 mHz FM	
Cape May Point, NJ	34 56 00	74 57 42	505	480	CI	10000	•••••	Amerina lucated on light	
Cape Henry Light Station, VA+	36 55 17	76 00 26	306	480	F2	(* * * * *	•••••	Special fixed white light of 100 cp displayed at nurth uniter of light nurth uniter during calibration visible from 909- to 270	
Thomas Point Light Station, Md 1	38 53 56	76 26 11	293	480	F3	r	••••	Fur calibration 291 kHz fulling procedure on p XVI, XVII, to change to 480 kHz, dip flaghout	

¹ Request for appetial colibration service may be made via Coast Guard Radio Marshfield (NMF) or via Gloucester Sistion on 2182 kHz. During colibration direct communication with Eastern Point Light Station can be made on VHF 157-1 mHz.

² Request for colibration service must be received 24 hours in advance via VHF-FM channel 16 (156.8 mHz) or in writing to Commander, Coast Guard Group Cape May, Cape May, N. J. 08204.

³ Request for colibration service may also be made in advance directly to Commander, Baltimore Group, U. S. Coast Guard, BMg. 70 USCG yard Baltimore.

Md. 21226.

⁴ Request for colibration service may also be made Via Coast Guard Group Managin Route On VME-EM Channel 14 (156.8 mMz).

^{*} Request for calibration service may also be made Via Count Guard Group Hampson Roads On VHF-FM Channel 16 (1568 mHz)

BADIOREACON SYSTEM—ATLANTIC AND GUU COAST-By Proquenties

SEQUENCED

Freq. kHz		Station		Characteristic	Range (neutral miles)	Lat. (N)	Long (W)
286	1	HIGHLAND	н	(•••••	100	42 02 24	70 03 40
77.77		NANTUCKET LS	NS	(0 0 0 0 0)	100	40 30 00	69 28 00
	111	MONTAUK POINT	MP	(0 0 0 0 0 0)	125	41 04 02	71 31 47
	IV	AMBROSE	T	(0)	125	40 27 32	73 49 52
	V	GREAT DUCK ISLAND	GD	(0 0 0 0 0 0)	50	44 08 32	66 14 47
	VI	EXECUTION ROCKS	K	(0 0 0)	20	40 52 41	73 44 18
	VI	MANANA ISLAND	MI	(• • • •)	100	43 45 48	69 19 38
298	111	CAPE HENLOPEN	HL	(******)	125	38 47 39	75 05 26
	ľV	CAPE HENRY	CB	(*******)	150	36 55 35	76 00 27
	V	OREGON INLET	PI	(0 0 0 0 0 0)	125	35 46 06	75 31 24
	VI	CAPE LOOKOUT	a	(* • • • • • • • •)	150	34 36 00	76 32 16
	11	OAK ISLAND	OA	(• • • • •)	70	33 53 33	78 02 06
	mi	CHARLESTON	5	(0 0 0)	125	32 45 28	79 50 36
106	11	LITTLE GULL	J	(* * * *)	20	41 12 22	72 06 29
	I, IV	CLINTON HARBOR	a	(0 • 0 • • • •)	20	41 16 00	72 31 10
308	U	PARTRIDGE ISLAND (C)	υ	(0 0 0)	50	45 14 13	66 03 17
	m	SOUTHWEST HEAD (C)	N	(● ●)	50	44 36 03	66 54 20
	IV	· WEST QUODDY	₩Q.	(*****)	20	44 48 54	66 57 04
	VI	SEAL ISLAND (C)	H	(* * * *)	40	43 23 28	66 00 53

RADIOBEACON SYSTEM—ATLANTIC AND GULF COASTS—By Proquencies (Cont'd)

CONTINUOUS

Freq. hHz	Section		Cheracteristic	Range (navical miles	Lat. (N)	Long (W)
	DBV 2002715.44	-				
156	DRY TORTUGAS	OE	(* • • •)	170	24 37 36	82 55 18
**	PUNTA TUNA	X	(* • • •)	55	17 59 25	65 53 08
190	CHESAPEAKE LIGHT	œ	()	50	36 54 15	75 42 47
90	PRYING PAN SHOALS	77	(* 2 * * * * * *)	50	33 29 07	77 35 24
90	FREEPORT	R	(• • •)	20	28 56 27	95 18 04
91	NOBSKA POINT	NP	(** ****)	20	41 30 58	70 39 20
91	HALFWAY ROCK	HR	(**** ***)	10	43 39 21	70 02 15
91	FIRE ISLAND	RT	(0 0 0 0)	15	40 37 48	73 13 09
95	OCEAN CITY INLET	oc	(* * * * * * *)	10	38 19 30	75 05 18
94	MISSIPPI RIVER GULF OUTLET APPROACH LIGHTED HORN BUOY NO	G	(● ● ●)	20	29 26 24	88 56 54
M	JUPITER INLET	J	(• • • •)	125	26 36 34	80 04 54
15	SCITUATE HARBOR	SH	(* * * * * * * *)	10	42 11 56	70 43 12
15	BRENTON REEF	BR	(**** ***)	10	41 25 55	71 23 22
16	GALVESTON	G	(● ● ●)	125	29 19 40	94 44 20
99	HILLSBORO INLET	Q	(● ● ● ●)	25	26 15 33	80 04 52
30	MOSILE POINT	C	(● ● ● ●)	125	30 13 38	86 01 24
01	PORTLAND LIGHTED HORN BUOY P	PH	(••••	30	43 31 37	70 05 31
01	BLOCK ISLAND	B I	(**** **)	20	41 09 09	71 33 07
D2 ·	EAST ROCKAWAY INLET	ER	(0 00)	10	40 35 11	73 45 11
м	BOSTON LIGHTED HORN BUOY B	ВН	(**** ***)	30	42 22 42	70 47 00
м	ARANSAS PASS	z	(● ● ● ●)	125	27 50 18	97 03 32
×	ST. JOHNS	R	(• • •)	125	30 23 09	81 23 51
17	SOUTHWEST PASS ENT.	от	(* * * *)	125	28 54 19°	89 25 45
10	CLEVELAND LEDGE	a	(• • • • • • • • • • • • • • • • • • •	10	41 37 51	70 41 42
×	MANASQUAN INLET	М	(0 0 0 0)	20	40 06 03	74 02 03
36	INDIAN RIVER INLET	IR	(0 0 0 0)	10	36 36 35	75 04 06
"	HATTERAS INLET STATION	н	(**** **)	30	35 12 27	75 42 21
10	SMITH POINT	SP	(••• •••)	20	37 52 47	76 11 01
•	GEORGETOWN	,	(* * * *)	30	33 13 21	79 11 06
10	BGMONT KEY	н	(* * * *)		27 36 02	82 45 39
10	SARINE PASS	,	(* * * *)		29 42 19	93 51 13

RADIOBEACON SYSTEM—ATLANTIC AND BUEF COASTS—By Proquendes (Cont'd)

CONTINUOUS

freq. His	Station		Chericieristic	Range (nautical miles)	Lat. (N)	lung (W)
311	CHATHAM	ан	(**** ****)	20	41 40 17	69 57 02
511	SHINNECOCK INLET	5N	(*** **)	20	40 50 32	72 28 44
12	FIVE PATHOM BANK LIGHTED HORN BUOY F	,	(• • • •)	10	30 47 16	74 34 36
13	CAPE CANAVERAL	2	(0 0 0 0)	125	28 27 36	80 32 36
14	MATINICUS ROCK	MOL	(0 0 0 0)	20	43 47 00	60 51 19
14	BUZZARDS BAY	30	(0)	20	41 23 47	71 02 02
14	COVE POINT	•	(0 • 0 • • • • •)	20	30 23 10	76 22 55
14	SOUTH PASS WEST JETTY	M	(O O)	50	28 59 25	69 08 29
14	BRAZOS SANTIAGO PASS	PIL	(**** ** ****)	175	26 04 23	97 09 51
16	ATLANTIC CITY	AC	(* * * * * *)	15	39 21 57	74 24 37
17	WOLF TRAP	₩0	(* * * * * *)	20	37 23 24	76 11 24
17	TYPEE	TB	(* * • • •)	125	52 01 18	80 50 45
10	CAP COD CANAL BREAKWATER	Œ	(0 • 0 • 0 • 0 •)	20	41 46 19	70 30 04
18	SAN JUAN	L	(• • • •)	18 28 14	66 07 03	
19	JONES INLET	Л	(**** **)	10	40 34 50	73 34 24
19	DELAWARE LIGHTED HORN BUOY D	D	(● ● ●)	10	30 27 10	74 35 06
20	THE CUCKOLDS	a	(**** ***)	10	43 46 46	69 39 02
20	SAYBROOK BREAKWATER	58	(*** ***)	10	41 15 47	72 20 36
20	CAPE SAN BLAS	•	(* • •)	125	29 40 10	85 21 26
21	DIAMOND SHOALS	D6	(0 • • • • •)	50	35 09 13	75 17 50
22	PORTSMOUTH HARBOR (NEW CASTLE) LIGHT	NCE	(0 • • • • •)	10	43 04 16	70 42 36
22	NEW BEDFORD	NB	(0 • 0 • • •)	10	41 37 28	70 54 22
22	BARNEGAT INLET	M	(0)	20	39 45 28	74 06 21
22	DIADI	U	(• • •)	100	25 45 42	80 08 02
23	CALCASIEU	UT	(*** *)	150	29 46 42	95 20 34
24	WACHAPRIAGUE INLET	WI	(* * * * * *)	10	37 34 24	75 37 30
25	EASTERN POINT	20	(0 0000)	10	42 34 50	70 39 54
25	POINT JUDITH	Pj	(* • • • • • • • • • • • • • • • • • • •	10	41 21 19	71 28 55
25	BRANT POINT	Н	(0 • • • • • • •)	10	41 17 23	70 05 27
25	CAPE MAY	CM	(******)	10	18 56 18	74 92 20

BABICOBACON SYSTEM-PAGING COAST AND PAGING BLANCE

SPECIAL RADIO DIRECTION PINOSE CALIBRATION STATIONS

All sessions transmirted continuously during the time required for calibration with layed sone modulated earrier (A=2 emission), except where arread, and have a reliable range of 3 miles. Their assigned charceristic is transmirted twist followed by a 20—second dash, the complete sequence being represed twist per minute. The aments is located on the light structure unless otherwise indicated under Remarks." In the event spacial calibration servize inserferes with the operation of regular radiobascon transmission, the special calibration service will not be given.

Special calibration operation will be made only ups request in advance to the district commander in whose district the calibration station is located, the address and district limits of which are listed on p. III. The day, time and frequency on which special calibration service is desired must be stated in the time that transmission on each frequency is durined must be specified. Upon arrival at the station on the date and hour specified, station personnel may be entered by means of the usual whistle signal or flag hoist.

Service	Pasition		Fre-		
		Longitude,	quency (kHz)	Characteristic	Remarks
as Angeles Light Station, Calif	33 42 50	116 15 02	311 40	M2 (* * * * * * *)	
Painer Blunc Light, Calif	37 51 10	122 25 04	31	N2 (a)	
Alki Poinc Light Statues, Wash.1	47 34 35	122 25 10	300 40	02 (*** ****)	
Geerd Island Light Storios, Alaska	55 26 47	151 52 45	294 48	Q2 (0000 0000)	
lerbers Point Light, Howsii ⁵	21 18 00	156 06 30	310 40	BP (**** ***)	
Peint Lone Light, Calif	52 39 54	117 14 50	311 48	Y2 (**** ****)	
Ulbert Hand Light, B.C. (Can.)2	46 23 13	125 28 36	30	T (*)	
vint Athinson Light, B.C. (Con.)2	49 19 50	125 15 48	32	T (*)	
ert Servens Wherf Light *	46 12 24	123 57 00	293 40	K5 (*** ****)	

Request for special calibration service may also be made to C. G. Base Terminal Island or Commander, Eleventh Coast Guard District (con).
On request through Victoria Marine Radio, VAK.
On request through Coast Guard Station Asseria, at submit letter to Commander Thirteenth Coast Guard District (con) Seattle, Wash.
On request through Coast Guard Station Asseria, at submit letter to Commander Thirteenth Coast Guard District (con) Seattle, Wash, 98174
On request through Coast Guard Communications Station Honolulu, Air Station Berbers Point or submit letter to Commander, Fourteenth Coast District (con) Honolulu, Haveii.

BADIOSEACON SYSTEM-PACIFIC COAST AND PACIFIC ISLANDS-By Proquencies

SEQUENCED

Proq. Mils		Scetion		Charactéristic	Range (nautical mile	Lat. (N)	Long (W)
200	1	CAPE FLATTERY		(0000)	100	48 23 30	124 44 08
	11	JAMES ISLAND	Jì	(****	50	47 34 16	124 38 46
	111	CARMANAH, (Can.)	D	(900)	35	48 36 43	124 45 01
	īv	AMPHITIUTE POINT, (Can.)	A	(**)	50	48 55 31	125 32 24
296	I-IV	SANDS HEAD, (Can.)	G	(000)	20	49 06 22	123 18 06
	n-v	POINT ATKINSON, (Can.)	V	(0000)	30	49 19 51	123 15 49
	m	SISTERS ISLAND, (Can.)	M	(**)	30	49 29 13	124 26 00
102	1-17	POINT LOMA	L	(****)	150	32 39 59	117 14 34
	n.v	LOS ANGELES	A	(00)	70	33 42 31	118 15 03
	E1-V1	POINT ARGUELLO	ö	(000)	190	34 34 42	120 38 34
304	1	CAPE ARAGO	Y	(0000)	50	43 20 29	124 22 27
	111	WILLAPA BAY	UT	(*** *)	20	46 44 03	124 04 38
	ΪV	CAPE DISAPPOINTMENT	o.	(000)	50	46 16 35	124 03 02
	Ÿ	CAPE BLANCO	OE	(000 0)	100	42 50 18	124 33 48
	VI	YAQUINA HEAD	•	(***)	50	44 40 36	324 04 42
	1	LANGARA ISLAND, (Can.)	н	(***)	60	54 15 23	133 03 30
~~	11	TRUPLE ISLAND. (Can.)	0	(000)	50	94 17 35	130 52 50
	m	BONILLA ISLAND, (Can)	ĭ	(****)	60	13 29 34	130 38 08
314	u	POINT WILSON	Q	(0000)	30	46 06 40	122 45 12
,,,,	111	SMITH ISLAND	Ğ	(000)	20	48 19 06	122 50 33
	iv	RACE ROCKS. (Can.)	ĭ	(****)	40	40 17 53	123 31 40
	Ÿ	NEW DUNGENESS	ΰ	(e-e)	30	44 10 54	123 06 30
316	1	LENNARD ISLAND, (Can.)	ĸ	(***)	30	49 06 38	125 55 20
	ū	QUATSINO, (Can.)		(8000)	50	30 26 29	128 01 51
	īV	PINE ISLAND, (Can.)	P	(0000)	40	50 58 33	127 43 35
				MARKER			
Freq UHz		Station				Lm. (N)	Ling (W)
104		WHIFFIN SPIT				48 21 31	123 42 56

RADIOBEACON SYSTEM—PACIFIC COAST AND PACIFIC ISLANDS—By Proquencies

CONTINUOUS

Freq. kHs	Station		Characteristic	Range (neutical miles)	Lac. (N)	Long (W)
207	EGG ISLAND	UEM	(*** * **)	. 25	51 14 56	127 49 57
218	PRINCE RUPERT	PR	(**** ***)	100	54 15 49	130 25 20
233	VICTORIA, (Can.)	YJ	(****	75	48 57 45	125 19 00
148	DEAD TREE, (Can.)	Z	(0000)	25	53 21 01	151 56 25
205	NEWPORT BAY	NE	(oo o)	15	33 35 18	117 52 43
186	CAPE SPENCER	T	(*)	200	58 11 58	136 38 17
196	BLUNTS REEF LIGHTED HORN BUOY B	BR	(2000 000)	15	40 26 25	124 30 15
196	PIGEON POINT	M	(**** **)	40	37 10 51	122 25 36
*	SAN LUIS OBISPO	SI.	()	20	35 09 45	120 45 55
99	MARINA DEL REY	MR	(00 000)	10	35 57 46	118 27 40
90	POINT PINOS	P	(****)	10	36 38 02	121 55 58
92	CAPE ST. JAMES, (Can.)	g	(**** ****)	100	51 56 10	131 00 54
92	· CAPE HINCHINBROOK	•	(***)	100	60 14 18	146 38 48
92	DANA POINT	DP	(000 0000)	15	55 27 15	117 41 26
92	POINT REYES	R	(***)	10	37 59 45	123 01 20
92	TRINIDAD HEAD	TR	(n •••)	15	41 03 15	124 08 58
94	SANTA BARBARA	SB	()	10	54 24 24	119 41 36
94	SANTA CRUZ HARBOR	SC	(*** ****)	10	36 57 38	122 00 03
95	FIVE FINGER	D	(***)	60	57 16 18	155 37 42
96	CHETCO RIVER	3	(****)	20	42 02 49	124 16 01
96	LONG BEACH	L	(**** ****)	10	33 43 23	118 11 10
%	POINT BONITA	3	(****)	10	37 48 55	122 51 42
96	PIEDRAS BLANCAS	PB	(**** ****)	15	35 39 54	121 17 06
90	CAPE ST. ELIAS	0	(***)	150	59 47 48	144 36 18
90	MOSS LANDING HARBOR	MI.	(00 0000)	10	36 48 24	121 47 15
00	HUMBOLDT BAY	Н	(****)	50	40 41 04	124 13 15
. 02	ETHELDA BAY, (Can.)	TC	(* ***)	125	53 03 05	129 41 12
05	SAN FRANCISCO APPROACH LIGHTED HORN BUOY SF	SF	(*** ****)	17	37 45 00	122 41 30
07	AVALON	AV	(00 0000)	10	33 20 56	118 19 29
07	FORT BRAGG	N	(**)	20	39 25 51	123 48 29
08	CHANNEL ISLAND	a	(**** **)	10	54 09 21	119 13 33
10	MORRO BAY	M	(00)	15	35 21 46	120 52 08
10	ST GEORGE REEF	SG	(000 000)	20	41 50 13	124 23 46

RADIOBEACON SYSTEM—PACIFIC COAST AND PACIFIC ISLANDS—By Proquencies (Con'd)

CONTINUOUS

Pros. Wele	Station		Cherenteristic	Range (assetical miles)	Let. (N)	Long (W)
314	PARALLON ISLAND	7	(****)	50	37 41 46	123 00 02
314	ST. PAUL	SPY	(*** **** ****)	150	57 09 30	170 13 36
314	VENTURA MARINE	VM	(**** **)	15	34 14 46	119 16 09
316	COLUMBIA RIVER APPROACH LIGHTED HORN BUOY CR	CR.	(0000 000)	20	46 11 06	124 10 58
317	MISSION BAY	МВ	(00 0000)	15	32 45 30	117 15 33
18	CAPE DECISION	UT	(··· ·· ·)	100	56 00 07	154 08 04
119	REDONDO BEACH	R3	(*** ****)	15	33 50 27	118 23 40
120	POINT ARENA	A	(**)	50	36 57 20	123 44 28
120	CAPE KIWANDA	K	(***)	15	45 12 56	123 58 12
22	POINT SUR	S	(***)	50	36 18 22	121 54 02
22	EDIZ HOOK	ĸ	(***)	20	46 08 25	123 24 04
23	ANACAPA ISLAND	AN	(** **)	10	34 00 57	119 21 32
23	OCEANSIDE	oc	(*** ****)	10	33 12 34	117 23 37
24	GUARD ISLAND	J	(****)	100	55 26 47	131 52 45
24	UMPQUA RIVER	U	(***)	20	43 39 49	124 11 50
25	· CLESENT CITY	c	(****)	20	41 44 11	124 11 23
125	BODEGA HEAD	30	(**** ***)	20	58 18 39	123 03 52
25	GRAYS HARBOR	G	(***)	50	46 54 17	124 07 50
99	ALERT BAY, (Can.)	AL	(00 0000)	25	50 35 12	126 55 28
154	CAPE SCOTT, (Can.)	ZES	(**** * ***)	75	50 46 57	120 25 31
159	TOPINO, (Can.)	YAZ	(0000 so 0000)	50	49 02 54	125 42 16
44	SANDSPIT, (Can.)	ZP	(***********)	50	53 11 46	131 56 33
74 .	ESTEVAN POINT, (Can.)	EP.	()	100	49 22 39	126 32 30
78	ACTIVE PASS, (Con.)	AP	(** ****)	25	46 32 26	125 17 25
6 0	MCINNES ISLAND, (Can.)	MS	(20 000)	100	52 15 42	120 45 16
105	LAWN POINT, (Can.)	12	(**** ****)	45	53 25 24	131 54 49

GREAT LAKES RADIOBEACON SYSTEM - By frequencies

SEQUENCED

Freq Litte	Sequence Sequence	Statum		Characteristic	Engr . (mim)	Las (N)	- (B)
292	1	WHITEFISH POINT, MI		(0 0 00)	100	46 46 18	84 57 28
	n	CARIBOU ISLAND, ONT.	A	(O O)	40	47 20 25	85 49 32
	111	MARQUETTE, MI.	W	(O O O)	60	46 32 47	87 22 30
	IV	SLATE ISLAND, ONT.	3	(0)	30	48 37 11	86 59 46
	V	MICHIPICOTEN ISLAND, ONT.	Q	(0 0 0 0)	30	47 45 15	85 35 45
	VI	MICHIPICOTEN HARBOR, ONT.	A	(● ■ ●)	30	47 56 33	84 54 27
	1	CLEVELAND, OH	С	(0 • 0 •)	30	41 30 32	81 45 04
	11	LONG POINT, ONT.	L	(• • • •)	40	42 33 00	80 03 20
	111	PORT COLBORNE, ONT.	Z	(0 0 0 0)	33	42 52 07	79 15 10
	IV	ERIE HARBOR, PA	Y	(• • • •)	20	42 09 21	80 04 17
	V	LONG POINT, ONT.	L	(• • • •)	40	42 55 00	80 05 20
	VI	PORT COLBORNE, ONT	Z	(● ● ● ●)	35	42 52 07	79 15 10
296	n	DEVILS ISLAND, WI	0	(● ● ●)	70	47 04 46	90 43 44
	tii	TWO HARBORS, MN	P	(0 0 0 0)	40	47 00 31	91 39 48
	V	DULUTH HARBOR, MN		(0 0 0 0)	70	46 46 49	92 05 16
	VI	KEWEENAW LOWER ENT		(● ● ● ■)	40	46 38 12	88 25 54
90	n	POINT BETSIE, MI	,	(● ● ●●)	50	44 41 30	96 15 18
	111	MILWAUKEE, WI	M	(O O)	50	45 01 37	87 52 35
	[V	MUSKEGON, MI	C	(■ ● ■ ●)	50	43 13 36	86 20 25
	VI	INDIANA HARBOR, IN	Y	(■ ◆ ■ ■)	70	41 40 51	87 26 28
	1	OWEN SOUND, ONT.	X	(0 • • 0)	30	44 34 43	80 56 19
	U DI	COLLINGWOOD, ONT. HOPE ISLAND, ONT	C F	(0 0 0 0)	50 50	44 30 29 44 54 50	80 12 35 80 10 00
	īv	SNUG HARBOR, ONT	À	(• • ••)	50	43 22 26	80 18 38
	Ÿ	GEREAUX ISLAND, ONT.	î	(* • • •)	30	43 44 39	80 39 35
	٧ı	KILLARNEY, ONT	K	(0 • 0)	30	45 58 05	81 29 22
02	1	DETOUR REEF, MI.	-	(0 0 0 0)	40	45 56 58	85 54 12
	n	POE REEF, MI	-	(O B B)	40	45 41 41	84 21 45
	īv	D TOUR REEF, MI		(0 0 0 0)	40	45 56 58	85 54 12
	V	L VSING SHOAL ML	Z	(0 0 0 0)	50	45 54 12	85 35 42
	VI	GI AYS REEF, MI	X	(0 • • •)	40	45 45 57	85 09 15
	1	PORT WELLER, ONT.	٧	(•••)	30	45 14 39	79 13 06
	11	BURLINGTON BAY, ONT.	R	(● ■ ●)	25	45 18 04	79 47 26
	ľV	PORT WELLER, ONT	V	(• • • •)	30	45 14 39	79 13 06
	٧	BURLINGTON BAY, ONT	R	(● ■ ●)	25	45 18 04	79 47 26
06	li .	MAIN DUCK ISLAND, ONT.	Y	(* * * *)	30	45 55 55	76 30 20
	111	POINT PETRE, ONT	P	(00 B 0)	30	45 50 20	77 09 19
	IV	OSWEGO, N.Y.	•	(0 0 0)	60	45 28 24	76 31 01
	٧	ROCHESTER, NY	M	(• •)	60	45 15 25	77 36 11
	11	SANDUSKY.OH	X	(0 • • 0)	40	41 29 17	82 41 39
	III VI	SOUTHEAST SHOAL ONT	H	(0 0 0 0)	40	41 49 40	82 27 40
	V1	ASHTABULA, OH	G	(■ ● ●)	40	41 55 06	80 47 46

GREAT LAKES RADIOBEACON SYSTEM — By frequencies (Cont'd) SEQUENCED

Pros.	Group Sequence	Storen		Ourstenant	Range (males)	Lar (N)	Long (W)
08	1	STURGEN BAY CANAL, WI		(0 0 0 0)	20	44 47 42	87 18 48
	121	KEWAUNEE, WI	G	(● ● ●)	20	44 27 27	87 29 55
	IV	MINNEAPOLIS SHOAL, MI	Y	(0 0 0 0)	20	45 34 54	86 59 56
	V	LUDINGTON, MI		(0 0 0 0)	50	45 57 11	86 27 36
	VI	RAWLEY POINT, WI.	L	(• • • •)	50	44 12 40	87 30 30
		ST. MARTINS, MI.	SM	(••• • •)	60	45 30 16	86 45 28
	,	PRINCENTAGE MA	С	(2.2.2)	***	47 13 40	86 57 27
12	1	KEWEENAW, MI. ANGUS ISLAND, ONT.	F	(• • • •)	50 30	48 14 09	89 00 25
	m	ROCK OF AGES, MI.	ż	(0 0 0 0)	40	47 52 00	89 18 50
	īv	MANITOU, MI	M	(O O)	100	47 25 12	87 35 10
	Ÿ	PASSAGE ISLAND, MI	x	(0 · · ·)	80	48 15 24	88 21 54
	٧ı	EAGLE HARBOR, MI.	ĵ	(• • • •)	100	47 27 40	66 09 32
	1	COVE ISLAND, ONT	D	(● ● ●)	40	45 19 40	81 44 09
	n	HARBOR BEACH, MI	ŭ	(• • •)	70	43 50 46	82 37 55
	T)	THUNDER BAY ISLAND, MI	K	(• • •)	70	45 02 15	03 11 40
	īv	COVE ISLAND, ONT	D	(● ● ●)	40	45 19 40	81 44 09
	Y	GREAT DUCK ISLAND, ONT.		(0 0 0 0)	40	45 38 30	82 57 48
	VI	PORT GRATIOT, MI	,	(• • • •)	70	45 00 17	82 25 22
				CONTINUOUS			
85		CHICAGO, IL	RT	(••••)	20	41 53 21	87 55 26
8 6		BUFFALO HARBOR, NY	BL	(**** ***)	10	42 52 14	78 54 09
9 6		GODERICH, ONT	GD	(* * * * * *)	30	43 44 48	01 43 55
96		GROS CAP REEF, ONT	A	(● ●)	20	46 30 45	34 36 54
86		SHERWOOD POINT, WI	SP	(* * * * * * * * * * * * * * * * * * *	10	44 55 34	87 26 00
90		FRANKFORT, MI.	PR	(* * * * * * * *)	10	44 37 50	86 14 42
**		LA POINTE, WI.	V	(• • • •)	20	46 45 44	90 47 05
8 9		MANITOWOC BREAKWATER WI.		(••••)	10	44 05 34 .	87 38 57
90		DETROIT RIVER, MI	M	(● ●)	20	42 00 05	85 08 28
90		GIBRALTER POINT, ONT.	72	(* * * * *)	25	45 36 50	79 25 10
93		TIBBETS POINT, NY	Q	(● ● ● ●)	20	44 06 03	76 22 14
94		SILVER BAY,MN	58	(*** ***)	10	47 16 55	91 15 51
04		WAUKEGAN, IL	W	(• • •)	10	42 21 38	87 48 48
14		SODUS OUTER LIGHT, NY.	SZ.	(• • • • • • •)	10	45 16 39	76 58 27
16		GRAND HAVEN, MI.	GO	(0 0 0 0 0 0)	10	45 05 27	86 15 22
16 16		PORT INLAND, MI SUPERIOR ENTRY SOUTH	PI SN	(• • • • •)	10 10	45 58 09 46 42 57	85 52 58 92 00 22
17		BREAKWATER, WI GREEN BAY, WI	K	(● ● ●)	20	44 59 12	87 54 04
		FAIRPORT HARBOR, OH	Ê	(0	10	41 46 04	01 16 52
16 20		ALPENA, MI	AL	(* * * * * *)	20	45 05 36	05 25 22
20		CALUMET HARBOR, IL	KX	(0 • • 0 • • • •)	10	41 45 34	87 29 36
20		NORTH MANITOU ISLAND	NU	(••••)	10	45 01 16	85 57 27
20		TACONIT HARBOR, MN	TH	(* * * * *)	10	47 51 10	90 55 24
20		TOLEDO HARBOR, OH	IJ	(0 000)	15	41 45 45	05 19 44
22		PRESQUE ISLE HARBOR, MI.	PX	(• • • • • • • • • • • • • • • • • • •	10	46 34 28	67 22 28
2.2		ROUND ISLAND PASSAGE, MI	RD	(• • • • • •)	10	45 50 34	84 36 55
22		SOUTH BUFFALO, NY	B	(• • • •)	60	42 50 01	78 52 04
24		PLUM ISLAND, WI	UM	(* * * * * *)	10	45 18 42	06 57 20
24		SHEBOYGAN, WI	SY	(* * * * * * * *)	10	43 44 58	87 42 15
		THUNDER BAY, ONT	P	(• • • •)	25	48 25 57	8 9 11 46

GREAT LAKES RADIOBEACON SYSTEM - By frequencies (Cent'd) MARKER

Prop biHz	- August	Les (M)	Long (W)
296	BATTLE ISLAND, ONT.	48 45 06	67 55 24
200	COGOURG, ONT.	43 57 12	78 09 53
290	GRAVELLY SHOAL, MI.	44 01 12	83 32 18
279	PORT STANLEY, ONT.	42 39 18	81 12 49
506	Menab Point, ont	44 28 23	81 23 36
314	OSHAWA, ONT	45 15 52	78 49 19
316	PORT DOVER, ONT.	42 46 51	90 12 06

APPENDIX B NEAR FUTURE ADDITIONAL RADIOBEACON STATIONS

Freq kHz	Station	Range Mi	Lat (N)	Long (W)
	ATLANTIC AND G	ULF COASTS		
290	Yankeetown, FL	150	29 00	82 45
303	Chincoteague Inlet, VA	20	37 54	75 22
306	Watch Hill Light, RI (V)	10	41 18	71 55
306	Horton Point, NY (III, VI)	20	41 05	72 26
313	Wrightsville Beach, NC	20	34 09	77 50
316	Stratford Point Lt, CT (III, VI)	20	41 09	73 06
316	Naples, FL	20	26 09	81 48
322	Thomas Point, MD	20	38 53	76 26
	GREAT LA	KFS		
205			1.3 1.6	9/ 29
285	Pentwater, MI	10	43 46	86 28
285	Port Washington, WI	10	43 22	87 50
287	Holland Harbor, MI	10	42 45	86 15
289	Michigan City, IN	10	41 43	86 53
298	Racine, WI (V)	80	42 43	87 45
300	Port Clinton, OH	10	41 30	82 54
302	Oak Orchard, NY (III, VI)	30	43 23	78 30
302	Charlevoix, MI (IV)	30	45 20	85 19
302	Tawas, MI (III)	70	44 16	83 29
314	Manastee, MI	10	44 15	86 24
320	Port Senelac, MI	20	43 25	82 30
322	Algoma, WI	10	44 35	87 28
323	Huron Harbor, OH	20	41 24	82 33
325	St. Joseph, MI	70	43 19	86 53

