ÁLGEBRA

CHAPTER 19

5th

of Secondary

TEMA:

Programación Lineal

@ SACO OLIVEROS

MOTIVATING STRATEGY

EL PROGRAMADOR MECÁNICO

HELICO THEORY

PROGRAMACIÓN LINEAL

Parte de las matemáticas dedicadas a la optimización.

OPTIMIZAR:

Conseguir los mejores resultados ya sea minimizando o maximizando variables de operación.

EJEMPLOS DE OPTIMIZACIÓN:

- Maximizar las ganancias reduciendo costos de producción.
- > Maximizar alcance de audiencia reduciendo inversión en publicidad.

PROGRAMACIÓN LINEAL BIDIMENSIONAL

ELEMENTOS DE LA PROGRAMACIÓN

Función Objetivo: f(x,y) = ax + by

> Restricciones: SISTEMA DE INECUACIONES

- > Punto factible: P
- \triangleright Punto extremo: V_1, V_2, V_3, V_4, V_5
- \triangleright Solución óptima: $V_0 = (x_0, y_0)$
- > Valor óptimo: $f(x_0, y_0)$

HELICO PRACTICE

1) Resuelva gráficamente el sistema de inecuaciones:

$$\begin{cases} x + 2y \ge 10 \\ 2x - 3y < 12 \end{cases}$$

Resolución

$$x + 2y = 10$$

X	Y
0	5
10	0

0≥10 FALSO

$$2x - 3y = 12$$

X	Y
0	-4
6	0

0<12 VERDAD

2) Construya la gráfica de la región factible del sistema:

Resolución

$$x + 4y = 8$$

X	Y
0	2
8	0

$$2x - y = 8$$

X	Y
0	-8
4	0

3) Construya la gráfica de la región factible del sistema:

$\begin{cases} 2x + y \le 10 \\ 2x + 3y \ge 12 \\ x \ge 0; y \ge 0 \end{cases}$

Resolución

$$2x + y = 10$$

X	Y
0	10
5	0

0≤10 VERDAD

$$2x + 3y = 12$$

X	Y
0	4
6	0

0≥12 FALSO

Determine los vértices del conjunto solución del sistema:

$$\begin{cases} x + 3y \ge 6 \\ 5x + 4y \le 20 \\ x \ge 0; y \ge 0 \end{cases}$$

Rpta: Los vértices son:

$$(0;2)$$
, $(0;5)$, $(\frac{36}{11};\frac{10}{11})$

5) Hallar el valor máximo de la función objetivo z=3x+2y sujeta a las restricciones:

$$\begin{cases} 3x + 4y \ge 12 \\ 3x + 2y \le 12 \\ x \ge 0; y \ge 0 \end{cases}$$

i)
$$3x + 4y \ge 12$$

VERIFICANDO:

$$0 \ge 12$$
 (F)

Sin el Origen

$$z_{(0;6)} = 3(0) + 2(6) = 12$$

$$z_{(0;3)} = 3(0) + 2(3) = 6$$

$$z_{(4;0)} = 3(4) + 2(0) = 12$$

VERIFICANDO:

Con el Origen

6) Hallar el valor mínimo de la función objetivo z = x + 3y sujeta a las restricciones:

$$\begin{cases} 2x + 5y \ge 30 \\ 2x + 3y \le 30 \\ x \ge 0; y \ge 0 \end{cases}$$

i)
$$2x + 5y \ge 30$$

VERIFICANDO: $0 \ge 30$ (F)

Sin el Origen

 $\mathbf{z}_{(0;10)} = \mathbf{1}(0) + 3(10) = 30$

 $z_{(0;6)} = 1(0) + 3(6) = 18$

 $z_{(15;0)} = 1(15) + 3(0) = 15$

ii)
$$2x+3y \le 30$$

VERIFICANDO: $0 \le 30$ (V)

Con el Origen

 $z_{min} = 15$

(15;0)

7) Hallar el valor mínimo de la función objetivo z=2x+y sujeta a las restricciones:

$$\begin{cases} 3x + y \le 10 \\ 2x - y \le 5 \\ x \ge 0; y \ge 0 \end{cases}$$

VERIFICANDO: $0 \le 10$ (V)

Con el Origen

ii)
$$2x-y \leq 5$$

VERIFICANDO: $0 \le 30$ (V)

Con el Origen

 $\mathbf{z}_{min} = \mathbf{0}$

8) Una editorial planea utilizar una sección de planta para producir 2 libros de texto. La utilidad unitaria es de s/2 para el libro I y de s/3 para el libro II. El libro I requiere 4 horas para su impresión y 6 horas para su encuadernación, el libro II requiere 5horas para imprimirse y 3 horas para ser encuadernado. Se dispone de 200 horas para imprimir y 210 para encuadernar. Determine la máxima utilidad que se puede obtener.

Variables

x: Libro del tipo I

y: Libro del tipo II

F. Objetivo

z = 2x + 3y

Restricciones

4x+5y≤ 200 Con Origen

6x+3y≤ 210 Con Origen

