

Automated NMA Results Slide Generation with multiNMA in R: Streamlining Evidence Synthesis

Introductions

Mei is a statistician, epidemiologist and actuary with extensive experience in biostatistics, RWE and HEOR projects across multiple chronic disease areas.

Emma Hawe

Evidence Synthesis, Statistics and EU-HTAR Lead

Emma is a statistician with 25 years of experience in consulting, academia, and regulatory settings. She has led numerous literature reviews and statistical analysis projects, including network meta-analyses. Emma is interested in health technology assessment (HTA) and joint clinical assessment (JCA) strategies.

Alexandra Boskovic

Analyst

Alexandra is an analyst with a background in biomedical and population health sciences. She has a strong background in programming and database management in R and geospatial analysis in ArcGIS.

With thanks to Catrin Trehame, Niraj Shah and Zheyuan Yang

Who are LCP Health Analytics?

LCP is a consultancy and technology firm with >1,000 people working across financial services and health and energy analytics.

Our Health Analytics team contains clinicians, epidemiologists, data scientists, health economists and actuaries. We leverage real world datasets and applied analytics to analyse the health and economic value of medicines and other healthcare sector interventions.

LCP Health Analytics website

Contents

- Background and motivations
- Approach
- Demo
- Conclusions and next steps

Background and motivations

Bayesian network meta-analysis (NMA) – the big picture

- NMAs help us to see the bigger picture.
- Many treatment options for the same indication.
- Randomised controlled trials (RCTs) of all treatments of interest almost never exist.
- Instead, RCTs tend to compare with placebo or a subset of comparators.
- How do we determine which treatment is "best"?

ISPOR Introduction to NMA webinar by Emma Hawe

https://www.ispor.org/education-training/webinars/webinar/an-introduction-to-network-meta-analysis

What is Bayesian network meta-analysis (NMA)?

- Understanding the comparative efficacy and safety of disease therapies, even in the absence of head-to-head trials, is crucial for clinicians and decision-makers.
- **Network meta-analysis (NMA)**, a type of indirect treatment comparison (ITC), estimates this relative efficacy and safety.
- NMA extends standard pairwise meta-analysis by relating the relative differences in the efficacy of multiple treatments, accounting for all available evidence from a network of studies.
- When performing NMA, one must choose between a frequentist or Bayesian model. For Bayesian models, prior distributions are typically non-informative.

Standard pairwise meta-analysis

Network meta-analysis

HTA requirements for NMA

- For HTA submissions, it is necessary to generate efficacy estimates relative
 to all comparators of interest. When there is a connected network of
 evidence, NMA is typically performed, with HTA agencies generally
 preferring the Bayesian approach over the frequentist one.
- The Bayesian NMA approach used in this tool aligns with NICE DSU guidelines and utilizes NICE DSU examples.
- However, conducting systematic literature reviews for data extraction and manually reporting results can be time-consuming, posing challenges for meeting HTA submission timelines.
- Specifically, the EU Health Technology Assessment Regulation (EU-HTAR) for Joint Clinical Assessments (JCA) from 2025 will likely require multiple analyses to be performed within 100 days of the PICO scoping. This currently applies to oncology drugs and Advanced Therapy Medicinal Products (ATMPs) from January 2025, will apply to orphan products from January 2028, and will extend to all new medicines from January 2030.

Automated results outputs improve efficiency and quality control

Approach

8

Building blocks

- We developed a R code workflow around these three key components:
 - R multinma package for NMA modelling¹
 - R Markdown for PowerPoint slides and Word document automation
 - LCP templates for PowerPoint slide packs and Word reports
- The workflow integrates: automated model specification, batch processing with parallelisation of NMA models, diagnostic tests, results and diagnostics plotting and results extraction
- The outputs are client-ready slides and reports with consistent styling, in addition to the underlying plots and results tables
- The tool is scalable, accommodating in the same framework:
 - Multiple outcome types binary, rates, continuous
 - Random and fixed effects NMA
 - Sensitivity analyses unrelated mean effects and nodesplit (for checking the consistency assumption)
 - Custom configurations for: run settings, prior distributions and names of headings

Tool architecture

- Two sets of files are used:
 - **Input and execution files** these sit within the main folder and are utilised in each model run. Configuration of the model runs are within these files
 - into each model subfolder and then run within the subfolders

Demo

Conclusions and next steps

The NMA automation tool has accelerated and simplified the process for conducting multiple NMAs

- It minimises user input and variability in the analytical approach and in how findings are presented.
- For reporting, visuals include forest plots, pairwise grids, rank plots and summary tables, with reproducible code ensuring transparency and reliability.
- For straightforward NMA analyses, users only need to specify characteristics of the data and of the analysis (allowing for flexibility in characteristics and prior distributions) in a table of metadata, and do not need to generate any code in R.
- By streamlining the process of converting NMA outputs into ready-to-use slides and reports, our tool
 addresses an urgent need for greater speed and reliability in reporting analysis results for HTAs,
 particularly under strict EU-HTAR deadlines.

Next steps

- Integrating non-multinma NMA models into this tool
- Extension to multilevel network meta-regression (ML-NMR), which is in the multinma package
- Potentially adapting the tool based on client feedback (the tool can already capture customised information within clients' templates, if desired)

Contact us

Mei Chan Senior Statistician mei.chan@lcp.uk.com

Emma Hawe
Evidence Synthesis, Statistics and EU-HTAR Lead
emma.hawe@lcp.uk.com

in

Our strategic mission:

We aim to lead the transition of health systems from importers of illness to exporters of health through realigning value between patients, manufacturers of medicines and payers.

About Lane Clark & Peacock LLP

We are a limited liability partnership registered in England and Wales with registered number OC301436. LCP is a registered trademark in the UK and in the EU. All partners are members of Lane Clark & Peacock LLP. A list of members' names is available for inspection at 95 Wigmore Street, London, W1U 1DQ, the firm's principal place of business and registered office.

Lane Clark & Peacock LLP is authorised and regulated by the Financial Conduct Authority and is licensed by the Institute and Faculty of Actuaries for a range of investment business activities.

© Lane Clark & Peacock LLP 2025

https://www.lcp.uk.com/emails-important-information contains important information about this communication from LCP, including limitations as to its use

The use of our work

This work has been produced by Lane Clark & Peacock LLP.

This work is only appropriate for the purposes described and should not be used for anything else. It is subject to any stated limitations (eg regarding accuracy or completeness). Unless otherwise stated, it is confidential and is for your sole use. You may not provide this work, in whole or in part, to anyone else without first obtaining our permission in writing.

If the purpose of this work is to assist you in supplying information to someone else and you acknowledge our assistance in your communication to that person, please make it clear that we accept no liability towards them.

Our mission is to help transition health systems from importers of illness to exporters of health

Addressing the two driving challenges for health systems:

- Increasingly complex multimorbid unmet patient needs
- A misalignment of how HTA bodies and governments value medicines and the value – healthcare and wider societal – of health to patients, populations and economies.

Underpinned by our approach to support clients to improve the population's health and reduce inequalities

Expertise in data science, medicine, research, health economics, epidemiology & statistics

State of the art expertise, methods and technology

Why LCP Health Analytics?

Visionary approach to our clients' challenges

- Leading the market in identifying solutions for tomorrow's challenges for patients, health systems and our clients
- Clear mission-based team and approach

Unique leadership team & sector experience

- Unique combination of leadership experience across science, medicine, pharmaceutical, consultancy and policy sectors
- Demonstrative partnerships and network with key decision makers across the sector

Delivering greater value to clients

- Thought partners who deliver value beyond core issues and leverage early access to emerging datasets and collaborations
- Continuity of team from pitch to delivery, with hands on project leadership by senior experts across service areas

Parameters File

A	В	С	D		E	F	G	Н	
Variablenames	Dietary	Thrombolytics	Thrombolytics_ume	Thr	rombolytics_nodesplit	Parkinsons_arm_based	Diabetes	Myeloma	
Study data	X	X	X	X		X	X	X	
dataname	dietary_fat	thrombolytics_example.csv	thrombolytics_example.csv	thro	ombolytics_example.csv	parkinsons_example.csv	diabetes_example.csv	ndmm_agd.csv	
studyn	Study ID	Study ID	Study ID	Stu	idy ID	Study ID	Study ID	Study ID	
studyc	Study	Study	Study	Stu	idy	Study	Study	Study	
trtn	Arm ID	Arm ID	Arm ID	Arn	n ID	Arm ID	Arm ID	Arm ID	
' trtc	Arm	Arm	Arm	Arn	n	Arm	Arm	Arm	
response	Mean rate	Mean rate	Mean rate	Mea	an rate	Mean rate	Mean rate	Mean rate	
sample_size	Number rai	Number randomised	Number randomised	Nun	mber randomised	Number randomised	Number randomised	Number randomised	
0 exposure	Person year	Person years at risk	Person years at risk	Per	rson years at risk	Person years at risk	Person years at risk	Person years at risk	
1 studyc_col		studyn	studyn	stud	dyn	studyn	studyc	studyf	
2 trtc_col	trtc	trtc	trtc	trtc		trtn	trtc	trtf	
3 response col	r	r	r	r		у	r	status	
4 exposure_col	E	NA	NA	NA		NA	time	eventtime	
sample_size_col	n	n	n	n		n	n	NA	
6 se_col	NA	NA	NA	NA		se	NA	NA	
7 trt_ref	Control	SK	SK	SK			4 Placebo	Pbo	
Analysis params	X	X	X	X		X	X	X	
9 Comparisontype	bayesnma	bavesnma	bayesnma		/esnma	bayesnma	bayesnma	bayesnma	
outcometype	rate	binary	binary	bina		continuous	binary	time-to-event	
1 effecttype	random	random	random		dom	random	random	random	
2 likelihood dist	poisson	binomial	binomial	bino	omial	normal	binomial	mspline	
3 link_function	log	logit	logit	logi	it	identity	cloglog	NA	
4 consistency_setting	-		ume		desplit	consistency	consistency	consistency	
5 niter	1000			000	200			000	2000
6 prior_int_dist	normal	normal	normal	non		normal	normal	normal	
prior_int_location	0		0	0			0	0	
B prior_int_scale	10		D	10	1	0 1	0	10	10
prior_trt_dist		normal	normal	non		normal	normal	normal	
prior_trt_location	0		0	0			0	0	(
1 prior_trt_scale	10		0	10	1	1	0	10	1
2 prior_het_dist		half_normal	half_normal		f_normal	half_normal	half_normal	half_normal	
prior_het_scale	5		5	5			5	5	
4 baseline dist	gnorm	gnorm	qnorm	qno		qnorm	qnorm	gnorm	
baseline location	0		0	0		•	0	0	
6 baseline_scale	10			10	1		0	10	10
7 Report params		x	X	Х		x	X	X	- 1
3 outcomename		outcome	outcome		come	outcome	outcome	outcome	
comparisonname						Bayesian network meta-analysis			alveie
) compansonname	Dayesiali II	Dayesian network meta-dilalysis	Dayesian network meta-analys	sis Day	yesian network meta-analysis	Dayesian network meta-analysis	Dayesian network meta-analy	aia Dayesiaii lietwork illeta-alik	alysis

Execution Script


```
library(rmarkdown)
library(fs)
library(rstudioapi)
library(here)
# Define base path for models
base_path <- dirname(getActiveDocumentContext() path)
working_dir <- here("working")
model_script <- here("Model code.r") # Script to run models</pre>
#ppt_template <- here("automated_powerpoint.Rmd")</pre>
#word_template <- here("automated_word_report.Rmd")</pre>
params1 <- read.csv(here("Multinma_params.csv"), stringsAsFactors = FALSE)</pre>
modelnames <- colnames(params1)[-1]
modelnames_inconsistency <- grep("_nodesplit", modelnames, value = TRUE, invert = FALSE) # identify nodesplit runs
modelnames <- grep("_nodesplit|_ume", modelnames, value = TRUE, invert = TRUE) # exclude nodesplit and ume runs from the main set of runs
modelnames <- modelnames [which(modelnames %in% c("Dietary", "Parkinsons_arm_based"))]
for (model_name in c(modelnames, modelnames_inconsistency)) {
 model_n <- which(modelnames == model_name) + 1
 model_path <- file.path(base_path, model_name)</pre>
 # 1. Copy Multinma_params.csv
 file.copy(from = file.path(base_path, "Multinma_params.csv"),
           to = file.path(model_path, "Multinma_params.csv"),
 # 2. Copy automated PowerPoint Rmd
 file.copy(from = here("automated_powerpoint.Rmd"),
           to = file.path(model_path, "automated_powerpoint.Rmd"),
           overwrite = TRUE)
  # 3. Copy automated Word Rmd
 file.copy(from = here("automated_word_report.Rmd"),
           to = file.path(model_path, "automated_word_report.Rmd"),
           overwrite = TRUE)
 # 4. Copy Model code.r into each model folder
 file.copy(from = here("Model code.r"),
           to = file.path(model_path, "Model code.r"),
           overwrite = TRUE)
```

```
# 5. Copy Health Analytics Presentation Template NEW_RmdCOMPATIBLE.pptx into each model folder
 file.copy(from = here("Health Analytics Presentation Template NEW_RmdCOMPATIBLE.pptx"),
          to = file.path(model_path, "Health Analytics Presentation Template NEW_RmdCOMPATIBLE.pptx"),
          overwrite = TRUE)
 # 6. Copy LCP Word Document Template.docx into each model folder
 file.copy(from = here("LCP Word Document Template.docx"),
          to = file.path(model_path, "LCP Word Document Template.docx"),
          overwrite = TRUE)
model_path <- file.path(base_path, model_name)
 message("

Running model for: ", model_name)
 setwd(model_path)
 source("Model code.r", local = TRUE)
 message("☑ Finished model: ", model_name)
 # copy over nodesplit plots
 if (model_name %in% modelnames_inconsistency){
   file.copy(from = file.path(model_path, paste(model_name, "Direct indirect network estimates density plot.png")),
           to = file.path(sub("_nodesplit","",model_path), paste(model_name,"Direct indirect network estimates density plot.png")),
   file.copy(from = file.path(model_path, paste(model_name, "Posterior dists inconsistency factors forest plot.png")),
            to = file.path(sub("_nodesplit","",model_path), paste(model_name, "Posterior dists inconsistency factors forest plot.png")),
           overwrite = TRUE)
rmarkdown::render(
   input = file.path(model_path, "automated_powerpoint.Rmd"),
   output_file = pasteO(model_name, "_Results.pptx"),
  output_dir = model_path,
   envir = new.env()
 message(" | PowerPoint rendered for: ", model_name)
rmarkdown::render(
   input = file.path(model_path, "automated_word_report.Rmd"),
  output_file = pasteO(model_name, "_Results_Word.docx"),
   output_dir = model_path,
   envir = new.env()
 message(" > Word report generated for: ", model_name)
```

Running the execution script

Model folders before and after running the execution script

> Parkinsons_arm_based

Network Meta-analysis (NMA) Results Prepared for: Client Name

Study network diagram

Study network diagram

PowerPoint output

Analysis performed

A Bayesian random effects model has been performed. - Treatment effect prior: A Normal distribution with mean 0 and standard deviation 10 - Intercept prior: A Normal distribution with mean 0 and standard deviation 10 - Heterogeneity prior: A half-Normal distribution with scale 5 - Number of iterations: 2000 (half of these iterations are burn in)

These priors have all been selected to be relatively non-informative, following NICE DSU guidance on choice of priors. List any additional analysis performed or sensitivity analysis proposed (e.g. exclusion of outliers, baseline risk, informative priors)

Pairwise grid

Posterior relative treatment effect pairwise grid

Results table

	Mean	Standard Deviation	Lower 95% credible interval	Upper 95% credible interval
1	0.534	0.657	-0.745	1.771
2	-1.310	0.696	-2.671	0.092
3	0.040	0.467	-0.868	0.991
5	-0.288	0.432	-1.178	0.597

Cumulative rankogram

The cumulative rankogram visually summarises how treatments stack up against one another in terms of their probability of being the best, second-best, third-best, and so on in relation the endpoint of interest.

1 treatment has the highest probability of being the treatment with the greatest efficacy for outcome, with a probability of 71.6%.

Results from rankograms should be interpreted with caution, they may not present a clear picture of the evidence, particularly in sparse networks, further they do not consider whether differences in ordering are clinically meaningful.

Cumulative rank probabilities

1

Model diagnostic tests - identifying patterns in divergent transitions

There were 16 divergent transitions.

Funnel plot

Funnel plots of treatment effects

Network Meta-analysis (NMA) Results

Prepared for: Client Name

Prepared by: Lane Clark & Peacock LLP (LCP)

Contact details:

Version:

Date:

Contents

- Overview of Network Meta-analysis
- Statistical considerations
- Analysis performed
- Evidence base
- · Study network map
- Pairwise grid
- · Heterogeneity and model fit parameters
- Results
- Cumulative rankogram
- Predicted treatment effects
- · Predicted treatment effects relative to reference
- Conclusions
- Appendix

Overview of Network Meta-analysis

When synthesizing data collected from SLRs, standard pairwise meta-analysis allow the estimation of the mean effect of an intervention versus a single comparator (often placebo). When multiple comparisons are required or the evidence base consists of multiple comparators, a more extensive methodology is required. Network meta-analysis is an extension of standard pairwise meta-analysis. An NMA relates the relative difference in the efficacy of multiple treatments by accounting for all available evidence from a network of studies.

Statistical considerations

Frequentist vs Bayesian Methods

One selection required when performing NMA is whether to use frequentist, typically a general lineal mixed model with variance restricted to a standard distribution, or a Bayesian model, in which the exact distributions are estimated from the evidence base Frequentist methods tend

Results

Study network diagram

Fig 1. Study network map diagram

Table 1. Summary of studies by treatment

Treatment	Studies
1 vs 2	2, 3
1 vs 3	1 7
1 vs 4	3
2 vs 4	3
3 vs 4	4, 5
4 vs 5	6, 7

Table 2. Heterogeneity and model fit parameters

	Values
Deviance Information Criterion (DIC)	26.393
pD penalty	12.627
Residual deviance	13.766

The estimated heterogeneity is 0.385 (SD=0.37).

Table 3. NMA results

	Mean	Standard Deviation		Upper 95% credible interval
1	0.534	0.657	-0.745	1.771
2	-1.310	0.698	-2.671	0.092
3	0.040	0.467	-0.868	0.991
-5	-0.288	0.432	-1.178	0.597

Cumulative rankogram

The cumulative rankogram visually summarises how treatments stack up against one another in terms of their probability of being the best, second-best, third-best, and so on in relation the endpoint of interest. 1 treatment has the highest probability of being the treatment with the greatest efficacy for outcome, with a probability of 71.6%. Results from rankograms should be interpreted with caution, they may not present a clear picture of the evidence, particularly in sparse networks, further they do not consider whether differences in ordering are clinically meaningful.

