算法导论习题选集

作业4

节选自《算法导论》教材第三版

课程网站: https://algorithm.cuijiacai.com

Problem 1

(概率计数) 利用一个 b 位的计数器,我们一般只能计数到 $2^b - 1$ 。而用 R.Morris 的 概率 计数法,我们可以计数到一个大得多的值,代价是精度有所损失。

对 $i=0,1,\cdots,2^b-1$,令计数器值 i 表示 n_i 的计数,其中 n_i 构成了一个非负的递增序列。假设计数器初值为 0 ,表示计数 $n_0=0$ 。INCREMENT 运算单元工作在一个计数器上,它以概率的方式包含值 i 。如果 $i=2^b-1$,则该运算单元报告溢出错误;否则,INCREMENT 运算单元以概率 $1/(n_{i+1}-n_i)$ 把计数器增加 1 ,以概率 $1-1/(n_{i+1}-n_i)$ 保持计数器不变。对所有的 $i\geq 0$,若选择 $n_i=i$,此计数器就是一个普通的计数器。若选择 $n_i=2^{i-1}(i>0)$,或者 $n_i=F_i$ (第 i 个佩波那契数,参见作业 3 问题 2),则会出现更多有趣的情形。对于这个问题,假设 n_{2b-1} 已经足够大,发生一个溢出错误的概率可以忽略。

- 1. 请说明在执行 n 次 INCREMENT 操作后, 计数器所表示的数期望值正好是 n 。
- 2. 分析计数器表示的计数的方差依赖于 n_i 序列。我们来看一个简单情形: 对所有 $i \ge 0$, $n_i = 100i$ 。在执行了 n 次 INCREMENT 操作后,请估计计数器所表示数的方差。

(续页)

Problem 2

(查找一个无序数组) 本题将分析三个算法, 他们在一个包含n个元素的无序数组A中查找一个值x。

考虑如下的随机策略:随机挑选 A 中的一个下标 i 。如果 A[i] = x ,则终止;否则,继续挑选 A 中一个新的随机下标。重复随机挑选下标,直到找到一个下标 j ,使 A[j] = x 或者直到我们已经检查过 A 中的每一个元素。注意,我们每次都是从全部下标的集合中挑选,于是可能会不止一次地检查某个元素。

- 1. 请写出过程 RANDOM-SEARCH 的伪代码来实现上述策略。确保当 A 中所有下标都挑选过时,你的算法应停止。
- 2. 假定恰好有一个下标 i 使得 A[i] = x 。在我们找到 x 和 RANDOM-SEARCH 结束之前,必须挑选 A 下标的数目期望是多少?
- 3. 假设有 $k \ge 1$ 个下标 i 使得 A[i] = x ,推广你对第 2 问的解答。在找到 x 或 RANDOM-SEARCH 结束之前,必须挑选 A 下标的数目期望是多少?你的答案应该是 n 和 k 的函数。
- 4. 假设没有下标 i 使得 A[i] = x 。在检查完 A 的所有元素或 RANDOM-SEARCH 结束之前,我们必须挑选的 A 的下标的数目期望是多少?

现在考虑一个确定性的线性查找算法,我们称之为 DETERMINSTIC-SEARCH。具体地说,这个算法在 A 中顺序查找 x ,考虑 A[1], A[2], A[3], \cdots ,A[n] ,直到找到 A[i] = x ,或者到达数组的末尾。假设输入数组的所有排列都是等可能的。

- 5. 假设恰好有一个下标 i 使得 A[i] = x 。DETERMINSTIC-SEARCH 平均情形的运行时间 是多少? DETERMINSTIC-SEARCH 最坏情况的运行时间又是多少?
- 6. 假设有 $k \ge 1$ 个下标 i 使得 A[i] = x,推广你对第 5 问的解答。DETERMINSTIC-SEARCH 平均情形的运行时间是多少? DETERMINSTIC-SEARCH 最坏情形的运行时间又是多少? 你的答案应该是 n 与 k 的函数。
- 7. 假设没有下标 i 使得 A[i] = x 。DETERMINSTIC-SEARCH 平均情形的运行时间是多少? DETERMINSTIC-SEARCH 最坏情形的运行时间又是多少?

最后,考虑一个随机算法 SCRAMBLE-SEARCH ,它先将输入数组随机变换排列,然后在排列变换后的数组上,运行上面的确定性线性查找算法。

- 8. 设 k 是满足 A[i] = x 的下标的数目,请给出在 k = 0 和 k = 1 情况下,算法 SCRAMBLE-SEARCH 最坏情况的运行时间和运行时间期望。推广你的解答以处理 $k \ge 1$ 的情况。
- 9. 你将会使用3种查找算法中的哪一个?解释你的答案。

(续页)

(续页)