

Ullmann's Encyclopedia of Industrial Chemistry

Fifth, Completely Revised Edition

Volume A 13:

High-Performance Fibers to Imidazole and Derivatives

Editors: Barbara Elvers, Stephen Hawkins,
Michael Ravenscroft, Gail Schulz

Contents

High-Performance Fibers	1
High-Temperature Materials	25
Holography	79
Hormones	89
Hydraulic Fluids	163
Hydrazine	177
Hydrazoic Acid	193
Hydrides	199
Hydrocarbons	227
Hydrochloric Acid	283
Hydrogen	297
Hydrogen Peroxide	443
Hydrogen Sulfide	467
Hydrogenation and Dehydrogenation ..	487
Hydroquinone	499
Hydroxycarboxylic Acids, Aliphatic ..	507
Hydroxycarboxylic Acids, Aromatic ..	519
Hydroxylamine	527
Hypnotics	533
Ice Cream and Frozen Desserts	563
Imaging Technology	571
Imidazole and Derivatives	661

Cross References

1100217
1100220
1100223
1100226
1100230
1100233
1100236
1100239
1100242
1100245
1100248
1100251
1100254
1100257
1100260
1100263
1100266
1100269
1100272
1100275
1100278
1100281
1100284
1100287
1100290
1100293
1100296
1100299
1100302
1100305
1100308
1100311
1100314
1100317
1100320
1100323
1100326
1100329
1100332
1100335
1100338
1100341
1100344
1100347
1100350
1100353
1100356
1100359
1100362
1100365
1100368
1100371
1100374
1100377
1100380
1100383
1100386
1100389
1100392
1100395
1100398
1100401
1100404
1100407
1100410
1100413
1100416
1100419
1100422
1100425
1100428
1100431
1100434
1100437
1100440
1100443
1100446
1100449
1100452
1100455
1100458
1100461
1100464
1100467
1100470
1100473
1100476
1100479
1100482
1100485
1100488
1100491
1100494
1100497
1100500
1100503
1100506
1100509
1100512
1100515
1100518
1100521
1100524
1100527
1100530
1100533
1100536
1100539
1100542
1100545
1100548
1100551
1100554
1100557
1100560
1100563
1100566
1100569
1100572
1100575
1100578
1100581
1100584
1100587
1100590
1100593
1100596
1100599
1100602
1100605
1100608
1100611
1100614
1100617
1100620
1100623
1100626
1100629
1100632
1100635
1100638
1100641
1100644
1100647
1100650
1100653
1100656
1100659
1100662
1100665
1100668
1100671
1100674
1100677
1100680
1100683
1100686
1100689
1100692
1100695
1100698
1100701
1100704
1100707
1100710
1100713
1100716
1100719
1100722
1100725
1100728
1100731
1100734
1100737
1100740
1100743
1100746
1100749
1100752
1100755
1100758
1100761
1100764
1100767
1100770
1100773
1100776
1100779
1100782
1100785
1100788
1100791
1100794
1100797
1100800
1100803
1100806
1100809
1100812
1100815
1100818
1100821
1100824
1100827
1100830
1100833
1100836
1100839
1100842
1100845
1100848
1100851
1100854
1100857
1100860
1100863
1100866
1100869
1100872
1100875
1100878
1100881
1100884
1100887
1100890
1100893
1100896
1100899
1100902
1100905
1100908
1100911
1100914
1100917
1100920
1100923
1100926
1100929
1100932
1100935
1100938
1100941
1100944
1100947
1100950
1100953
1100956
1100959
1100962
1100965
1100968
1100971
1100974
1100977
1100980
1100983
1100986
1100989
1100992
1100995
1100998
11001001
11001004
11001007
11001010
11001013
11001016
11001019
11001022
11001025
11001028
11001031
11001034
11001037
11001040
11001043
11001046
11001049
11001052
11001055
11001058
11001061
11001064
11001067
11001070
11001073
11001076
11001079
11001082
11001085
11001088
11001091
11001094
11001097
11001100
11001103
11001106
11001109
11001112
11001115
11001118
11001121
11001124
11001127
11001130
11001133
11001136
11001139
11001142
11001145
11001148
11001151
11001154
11001157
11001160
11001163
11001166
11001169
11001172
11001175
11001178
11001181
11001184
11001187
11001190
11001193
11001196
11001199
11001202
11001205
11001208
11001211
11001214
11001217
11001220
11001223
11001226
11001229
11001232
11001235
11001238
11001241
11001244
11001247
11001250
11001253
11001256
11001259
11001262
11001265
11001268
11001271
11001274
11001277
11001280
11001283
11001286
11001289
11001292
11001295
11001298
11001301
11001304
11001307
11001310
11001313
11001316
11001319
11001322
11001325
11001328
11001331
11001334
11001337
11001340
11001343
11001346
11001349
11001352
11001355
11001358
11001361
11001364
11001367
11001370
11001373
11001376
11001379
11001382
11001385
11001388
11001391
11001394
11001397
11001400
11001403
11001406
11001409
11001412
11001415
11001418
11001421
11001424
11001427
11001430
11001433
11001436
11001439
11001442
11001445
11001448
11001451
11001454
11001457
11001460
11001463
11001466
11001469
11001472
11001475
11001478
11001481
11001484
11001487
11001490
11001493
11001496
11001499
11001502
11001505
11001508
11001511
11001514
11001517
11001520
11001523
11001526
11001529
11001532
11001535
11001538
11001541
11001544
11001547
11001550
11001553
11001556
11001559
11001562
11001565
11001568
11001571
11001574
11001577
11001580
11001583
11001586
11001589
11001592
11001595
11001598
11001601
11001604
11001607
11001610
11001613
11001616
11001619
11001622
11001625
11001628
11001631
11001634
11001637
11001640
11001643
11001646
11001649
11001652
11001655
11001658
11001661
11001664
11001667
11001670
11001673
11001676
11001679
11001682
11001685
11001688
11001691
11001694
11001697
11001700
11001703
11001706
11001709
11001712
11001715
11001718
11001721
11001724
11001727
11001730
11001733
11001736
11001739
11001742
11001745
11001748
11001751
11001754
11001757
11001760
11001763
11001766
11001769
11001772
11001775
11001778
11001781
11001784
11001787
11001790
11001793
11001796
11001799
11001802
11001805
11001808
11001811
11001814
11001817
11001820
11001823
11001826
11001829
11001832
11001835
11001838
11001841
11001844
11001847
11001850
11001853
11001856
11001859
11001862
11001865
11001868
11001871
11001874
11001877
11001880
11001883
11001886
11001889
11001892
11001895
11001898
11001901
11001904
11001907
11001910
11001913
11001916
11001919
11001922
11001925
11001928
11001931
11001934
11001937
11001940
11001943
11001946
11001949
11001952
11001955
11001958
11001961
11001964
11001967
11001970
11001973
11001976
11001979
11001982
11001985
11001988
11001991
11001994
11001997
11002000
11002003
11002006
11002009
11002012
11002015
11002018
11002021
11002024
11002027
11002030
11002033
11002036
11002039
11002042
11002045
11002048
11002051
11002054
11002057
11002060
11002063
11002066
11002069
11002072
11002075
11002078
11002081
11002084
11002087
11002090
11002093
11002096
11002099
11002102
11002105
11002108
11002111
11002114
11002117
11002120
11002123
11002126
11002129
11002132
11002135
11002138
11002141
11002144
11002147
11002150
11002153
11002156
11002159
11002162
11002165
11002168
11002171
11002174
11002177
11002180
11002183
11002186
11002189
11002192
11002195
11002198
11002201
11002204
11002207
11002210
11002213
11002216
11002219
11002222
11002225
11002228
11002231
11002234
11002237
11002240
11002243
11002246
11002249
11002252
11002255
11002258
11002261
11002264
11002267
11002270
11002273
11002276
11002279
11002282
11002285
11002288
11002291
11002294
11002297
11002300
11002303
11002306
11002309
11002312
11002315
11002318
11002321
11002324
11002327
11002330
11002333
11002336
11002339
11002342
11002345
11002348
11002351
11002354
11002357
11002360
11002363
11002366
11002369
11002372
11002375
11002378
11002381
11002384
11002387
11002390
11002393
11002396
11002399
11002402
11002405
11002408
11002411
11002414
11002417
11002420
11002423
11002426
11002429
11002432
11002435
11002438
11002441
11002444
11002447
11002450
11002453
11002456
11002459
11002462
11002465
11002468
11002471
11002474
11002477
11002480
11002483
11002486
11002489
11002492
11002495
11002498
11002501
11002504
11002507
11002510
11002513
11002516
11002519
11002522
11002525
11002528
11002531
11002534
11002537
11002540
11002543
11002546
11002549
11002552
11002555
11002558
11002561
11002564
11002567
11002570
11002573
11002576
11002579
11002582
11002585
11002588
11002591
11002594
11002597
11002600
11002603
11002606
11002609
11002612
11002615
11002618
11002621
11002624
11002627
11002630
11002633
11002636
11002639
11002642
11002645
11002648
11002651
11002654
11002657
11002660
11002663
11002666
11002669
11002672
11002675
11002678
11002681
11002684
11002687
11002690
11002693
11002696
11002699
11002702
11002705
11002708
11002711
11002714
11002717
11002720
11002723
11002726
11002729
11002732
11002735
11002738
11002741
11002744
11002747
11002750
11002753
11002756
11002759
11002762
11002765
11002768
11002771
11002774
11002777
11002780
11002783
11002786
11002789
11002792
11002795
11002798
11002801
11002804
11002807
11002810
11002813
11002816
11002819
11002822
11002825
11002828
11002831
11002834
11002837
11002840
11002843
11002846
11002849
11002852
11002855
11002858
11002861
11002864
11002867
11002870
11002873
11002876
11002879
11002882
11002885
11002888
11002891
11002894
11002897
11002900
11002903
11002906
11002909
11002912
11002915
11002918
11002921
11002924
11002927
11002930
11002933
11002936
11002939
11002942
11002945
11002948
11002951
11002954
11002957
11002960
11002963
11002966
11002969
11002972
11002975
11002978
11002981
11002984
11002987
11002990
11002993
11002996
11002999
11003002
11003005
11003008
11003011
11003014
11003017
11003020
11003023
11003026
11003029
11003032
11003035
11003038
11003041
11003044
11003047
11003050
11003053
11003056
11003059
11003062
11003065
11003068
11003071
11003074
11003077
11003080
11003083
11003086
11003089
11003092
11003095
11003098
11003101
11003104
11003107
11003110
11003113
11003116
11003119
11003122
11003125
11003128
11003131
11003134
11003137
11003140
11003143
11003146
11003149
11003152
11003155
11003158
11003161
11003164
11003167
11003170
11003173
11003176
11003179
11003182
11003185
11003188
11003191
11003194
11003197
11003200
11003203
11003206
11003209
11003212
11003215
11003218
11003221
11003224
11003227
11003230
11003233
11003236
11003239
11003242
11003245
11003248
11003251
11003254
11003257
11003260
11003263
11003266
11003269
11003272
11003275
11003278
11003281
11003284
11003287
11003290
11003293
11003296
11003299
11003302
11003305
11003308
11003311
11003314
11003317
11003320
11003323
11003326
11003329
11003332
11003335
11003338
11003341
11003344
11003347
11003350
11003353
11003356
11003359
11003362
11003365
11003368
11003371
11003374
11003377
11003380
11003383
11003386
11003389
11003392
11003395
11003398
11003401
11003404
11003407
11003410
11003413
11003416
11003419
11003422
11003425
11003428
11003431
11003434
11003437
11003440
11003443
11003446
11003449
11003452
11003455
11003458
11003461
11003464
11003467
11003470
11003473
11003476
11003479
11003482
11003485
11003488
11003491
11003494
11003

cobalt- or rhodium-phosphin complexes are used.

Propen is the olefin mostly used. The oxo-products are converted to alcohols, carboxylic acids, aldol-condensation products, and primary amines. About 20 commercial processes are state-of-the-art. An excellent review is given in [8.41] (see → Oxo Synthesis).

Homologation. Under the reaction conditions of the hydroformylation alcohols and aldehydes react with carbon monoxide - hydrogen under elongation of the chain by one CH_2 - unit

Homologation has been performed with a number of alcohols, the production of ethanol from methanol has been most intensively investigated. The homologation is not used industrially because of the many side reactions which take place [8.42].

Synthesis Gas as Chemical Feedstock. Hydrogen–carbon monoxide mixtures, hydrogen alone, and their primary product methanol are important feedstocks for the chemical industry. Nowadays, ethylene which is produced from propane, ethane, naphtha, or gas oil is the most important feedstock for the production of industrial organic chemicals in the chemical industry. Basically, it is, however, possible to obtain these compounds from synthesis gas thus changing the feedstock basis to coal (see Fig. 100).

8.1.5. Hydrogen in Organic Synthesis

Hydrogen is required for the production of chemicals and intermediates in organic chemistry. A large number of hydrogenations or reductions are carried out on a technical scale (\rightarrow Hydrogenation and Dehydrogenation).

Activated and nonactivated double and triple bonds in olefins and acetylenes can be easily partially or totally hydrogenated, whereas the hydrogenation of aromatic and heterocyclic bonds requires more energetic conditions. Functional groups, such as carbonyl, nitro, nitroso, and nitrile groups, can also be hydrogenated.

The reaction conditions are dictated by equilibrium (65). The reactions are exothermal and run in the presence of a catalyst.

Directions for carrying out catalytic hydrogenations on a laboratory or industrial scale are given.

in [8.43]. Summaries of hydrogenation reactions are given in [8.44] and [8.45]. Hydrogenation catalysts are metals of groups 8–10 of the periodic system (see front matter of this volume), e.g., Raney nickel, as well as copper and molybdenum. In particular the noble metals (Pt, Pd), are highly-active catalysts [8.46]. Homogeneous systems with molecularly dispersed catalysts in the solution, can be used for special synthesis problems (selective hydrogenation, asymmetric synthesis) but are at present of no great importance in commercial areas because of the frequently encountered difficulty to remove the catalyst from the reaction mixture. Table 40 gives an

Figure 100. Synthesis gas as feedstock in the chemical industry

Table 40. Selection of important industrial hydrogenation reactions

Reaction	Product	Process features	Uses
Hydrogenation of unsaturated hydrocarbons and aromatics			
$\text{C}_6\text{H}_6 + 3 \text{H}_2 \longrightarrow \text{C}_6\text{H}_{12}$	cyclohexane	middle pressure hydrogenation over Ni-/Pt-Li-Al ₂ O ₃ catalyst in liquid phase (IFP, Mitsubishi) gas phase (UOP, DSM, Thority, Houdey)	starting material for nylon production (cyclohexanone/ol, adipic acid, caprolactam), solvent
(analogous: cyclohexanol from phenol, cyclohexane carboxylic acid from benzoic acid)			
$\text{CN}-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-\text{CN} + \text{H}_2 \longrightarrow \text{CN}-(\text{CH}_2)_4-\text{CN}$	adiponitrile	Du Pont (300 °C), liquid phase hydrogenation 25–30 MPa/70–100 °C over Raney nickel	hexanediamine
$\text{OH}-\text{CH}_2-\text{C}\equiv\text{C}-\text{CH}_2\text{OH} + 2 \text{H}_2 \longrightarrow \text{OH}-(\text{CH}_2)_4-\text{OH}$	butanediol	trickle bed, 20 MPa, 180–200 °C Ni catalyst with Cu-, Cr-promotors	polyesters, polyurethane-plasticizer component, solvent
$\text{C}_6\text{H}_5\text{SO}_2 + \text{H}_2 \longrightarrow \text{C}_6\text{H}_5\text{SO}_2$	sulfolane	Shell process, 11 000 t/a	aromatics extraction solvents, sour gas, scrubbing agent
Selective hydrogenation as purification step during production of ethylene, propene, and butadiene			
Further processing of oxo-products			
$\text{R}-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{H} + \text{H}_2 \longrightarrow \text{R}-\text{CH}_2\text{OH}$	oxo-alcohols	gas phase hydrogenation at 2–0.3 MPa/ 115 °C, Ni catalyst	components for solvents, plasticizers, detergents
(analogous: ethylhexanol from ethylhexanal)		sump phase hydrogenation, 8 MPa/115 °C Ni catalyst	
$\text{R}-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{NH}_3 + \text{H}_2 \longrightarrow \text{R}-\text{CH}_2-\text{NH}_2$	primary amines	hydrogenation (up to 30 MPa, 25–130 °C), Raney nickel catalyst	
Hydrogenation of other ketones and aldehydes			
Maleic acid \longrightarrow , butyrolactone \longrightarrow $\text{OH}-(\text{CH}_2)_4-\text{OH}$	butanediol	Mitsubishi, Kao Ind. (Japan) process	
$\text{CH}_3\text{OOC}-\text{C}_6\text{H}_4-\text{COOCH}_3 \xrightarrow{\text{Pd}} \xrightarrow{\text{Cu chromite}}$	bis(hydroxy-methyl)-cyclohexane	two step Eastman-Kodak process	

Table 40. (continued)

Reaction	Product	Process features	Uses
$\text{CH}_2=\text{CH}-\text{C}(=\text{O})-\text{H} + \text{H}_2 \longrightarrow \text{CH}_2=\text{CH}-\text{CH}_2\text{OH}$	allyl alcohol	Degussa gas phase process (heterogenous catalysts)	starting material for glycerol, glycidol
2 Acetone \longrightarrow methyl oxide $\xrightarrow{\text{Pd zeolite}}$ $i\text{-Bu}-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{CH}_3$	MIBK	hydrogenation at Pt-zeolites (modified one step processes)	(extraction) solvent
Fats, oils + $\text{H}_2 \longrightarrow \text{R}-\text{CH}_2-\text{OH}$	fatty alcohols	20–40 MPa/200–400 °C, catalysts of Adkins-type	sour gas scrubbing agent (Selexol)
$\text{R}-\text{O}-\text{CH}_2\text{CH}_2-\text{OH} + \text{HCHO} + \text{H}_2 \longrightarrow \text{R}-\text{O}-\text{CH}_2\text{CH}_2-\text{OCH}_3$	polyethylene-glycol ethers	new Hoechst process	
Hydrogenation of N-compounds			
NO_2 + 3 $\text{H}_2 \longrightarrow$	aniline	fixed bed hydrogenation over NiSiCuS , 300–475 °C (Bayer, Allied, Lonza), fluidized bed hydrogenation, 5 MPa/100 °C over Cu catalyst (BASF, Cyanamid)	starting material for dyes, pharmaceuticals, isocyanate polymers, solvents
NO_2 + 6 $\text{H}_2 \longrightarrow$	diaminotoluenes	analogous to nitrobenzene reduction	
Nitriles + $\text{H}_2 \rightarrow$ primary amines	hexanediamine	5–15 MPa/60–130 °C over Raney Ni or Raney Co	starting material for fibers, sour gas scrubbing agent
Miscellaneous reactions			
CH_3 + $\text{H}_2 \longrightarrow$	benzene	3–5 MPa/500–650 °C over $\text{Cr}_2\text{O}_3-\text{Mo}_2\text{O}_3-\text{CoO}$ catalyst (Houdry, UOP, Shell, BASF) 10–25 MPa/400–500 °C over $\text{Pt-Al}_2\text{O}_3-\text{SiO}_2$	50 % of toluene production further processed to benzene
Xylene isomerization under H_2 partial pressure	$\text{o}/\text{p}\text{-xylene}$	catalysts	terephthalic acid, phthalic acid

overview of commercially used hydrogenation reactions.

High-purity hydrogen is necessary for the partial or total hydrogenation of fats and oils (for the production of edible fats or for technical purposes). In fat hydrogenation the polyene, triene, and diene fatty acids in their glyceride form are selectively hydrogenated to the corresponding monoene acids.

The industrial production of sugar alcohols, such as sorbitol, xylitol or mannitol from the corresponding sugars is carried out by catalytic hydrogenation. Batch suspension processes using Raney nickel catalysts are mainly employed under reaction conditions of 120–150 °C and 3–7 MPa [8.47].

8.1.6. Hydrogen in Inorganic Synthesis

The catalytic hydrogenation of anthraquinone and its derivatives followed by their autoxidation to yield hydrogen peroxide is the basis of the commercially important process for hydrogen peroxide production (→ Hydrogen Peroxide, p. 447–456). Further important reactions in inorganic chemistry are the production of hydrochloric acid from hydrogen and chlorine (→ Hydrochloric Acid) and the hydroxylamine synthesis (→ Hydroxylamine).

8.2. Hydrogen in Metallurgy

Iron Metallurgy. To reduce iron ore, apart from coke (classical blast furnace process), other reducing agents can be used. For reduction a gas containing hydrogen, carbon monoxide, or mixtures of these is suitable. The reduction gas is produced by steam reforming or partial oxidation of fossil fuels. These "direct reduction" processes (→ Iron, A14, p. 554) yield sponge iron,

which can be melted to give crude iron which is further processed to steel.

The leading direct reduction technologies are the Midrex, the HyL I, and the HyL III process with 90 % of the total capacity [8.48]. The hydrogen content of the reducing gas is ca. 40–65 vol % (Midrex, shaft furnace) and 75 vol % (HyL III, retorts). To fully utilize the reduction potential of the gas, carbon dioxide and water vapor are removed and the gas is recycled.

The use of *pure hydrogen* has advantages with respect to the reaction time, the degree of reduction and the texture of the reduced pellets [8.49], but the carbidizing reaction necessary for steel production cannot take place, so that reduction with pure hydrogen has not been able to establish itself.

Nonferrous Metallurgy. Hydrogen is employed as reducing agent and as utility in some powder metallurgy production processes. Table 41 shows the use of hydrogen during the production and handling of various nonferrous metals.

For recovery of copper from its sulfidic ores reduction with hydrogen in the presence of calcium oxide has been suggested [8.50]. The thermodynamically unfavorable position of the hydrogen reduction reaction on metal sulfides is improved by the removal of the developing hydrogen sulfide (as CaS) from the equilibrium mixture.

8.3. Other Uses

Use of the High Temperature of the Oxyhydrogen Flame. The combustion of a stoichiometrical hydrogen–oxygen mixture leads to flame temperatures in the range of 3000–3500 K. Such flames can be used for:

Table 41. Use of hydrogen in the nonferrous metallurgy

Metal	Unit operation	Product
Copper	reduction of copper salt solutions under pressure	Cu powder
Nickel	selective reduction during cobalt production	Ni powder
Cobalt	reduction of aqueous cobalt salt solutions under pressure (4 MPa, 175 °C)	Co powder
Molybdenum, tungsten	reduction of the oxides or molybdates and tungstenates	Mo, W powder
Tantalum	reduction of tantalum chloride, TaCl ₅ , in hydrogen plasma	Ta hydride, Ta powder
Germanium	reduction of germanium tetroxide, GeO ₄ , at 650 °C	Ge powder for further processing in zone melting
Uranium	reduction of the higher uranium oxides at 650 °C	UO ₂