(No) => Null hypotheris (historic Claim) => True if, X his irride the Confidence Area

(MA => Alternate Hyp (Current Claim) => True if, X his irride the digregations Area

Right-Tail 2 Tox

2-Tail 2 Tort

H. => U = X N+ => U + X | U <>> X

RR on both the Tails,

My = X > M (x<4)

d >> Significan Arm

LA

Couch >> (1-0)

More the long in Toly. >10

Your theher a Toly: (10

d	1T	± 4.65	SÍ.	
57.	+ '		\$1.	_
	2 T	± 1.96	2/2/7	
107.	4 -	± 1.28	187.	
	2 (+ 1.65	i) (n.	

-) CLT - Control Limit Theorem

Con convent any type of direntium into a Normal Distribution

$$F(\overline{X}) = M$$

$$F(\overline{X}) = \sigma / \pi_{N} \rightarrow \text{Hol.Gstor}$$

The first the M.T.
$$CI = M \pm 2 + 44 \cdot 5$$
 for $CI = M \pm 2 \cdot 4 + 44 \cdot 5$ for $CI = M \pm 2 \cdot 4 + 44 \cdot$

37 21 principal at a school claims that the students in his school are above average in terms of intelligence (A random sample of 30 students' IQ scores have a mean of 112.5. The mean population IQ is 100 with STD of 15. Test the hypothesis of principal's claim. CITA RR (104.12, +

The average weights of students of my class is 168 lbs. A nutritionist believes that the mean is different She measured the weights of 36 students and found that the mean to be 169.5 lbs with a std of 3.9. AT 95% confidence, is there enough evidence to discard the null hypothesis?

$$UL = 168 + 1.96 + 2.9 \Rightarrow 169.2$$

$$UL = 168 - 1.96 + 3.9 \Rightarrow 166.2$$

$$UL = 168 - 1.96 + 3.9 \Rightarrow 166.2$$