Fußgängerbezogene Datenaufbereitung in OpenStreetMap

Ansprüche, Datenhaltung, Praxis

Robert Bieber | Universität Potsdam

Projektidee

- OSM Datenbestand
 - für Routingdienste, mobile Navigation und Karten
- OSM Karteninformation werden detaillierter
 - □ Nutzergruppen: Auto → Fahrrad → Fußgänger
- Problem: Straßenbegleitende Fußwege
- Keine klaren Regeln in der Datenaufnahme, -haltung
- Viele Vorschläge, wenig Konsens!
- Überblick und Test der Modellierung
- keine eigene Definition

Nutzergruppe Fußgänger

- Anforderung an das Modell
 - Lage des Fußweges
 - Lage von Straßen, Barrieren
 - Überquerungsmöglichkeiten
 - Begehbare Flächen
 - Objektinformationen (Adressen, Namen)
 - Transportmittel (Haltestellen)
 - Orientierungspunkte (Landmarken)

Bedürfnis¹

Geschwindigkeit

Entfernung

Sicherheit

Orientierung

Mobilität

Attraktivität

¹ Nach Reichenberger 2003

Nutzergruppe Fußgänger

Nutzeransprüche an ein Routing/Navigation

Nutzergruppe	Erweiterte Ansprüche			
mobilitätseingeschränkte	Wegart, Wegbeschaffenheit (Oberflächenform, Belag),			
Menschen	Steigung, Breite → Barrierefreiheit/Mobilität			
Touristen	Landmarken, Unterkunft, Verkehr, Kultur, Natur			
	→ Attraktivität, Entfernung			
Geschäftsreisende	Unterkunft, Transport, Verpflegung, Kommunikation			
	→ Geschwindigkeit			
Kinder	Verkehrsgeschwindigkeit, Straßenübergang			
	→ Sicherheitsaspekte			

Relevante Objekte in OpenStreetMap

- Objektartenkatalog: siehe Map Features
- Beinhaltet Objekte und Eigenschaften für alle Ansprüche

nighway	path	S	Allgemeiner Weg oder Pfad (keine Nutzungsart vorgegeben) oder Weg mit einer oder mehreren vorgegebenen Nutzungsarten (z.B. kombinierter Fuß- und Radweg, siehe auch DE:Germany_roads_tagging). Auch für Wanderwege oder Trampelpfade. Siehe auch sac_scale=*, um den Schwierigkeitsgrad von Wanderrouten zu bewerten.	Ty	
nighway	cycleway	ß	Allgemeiner Radweg (de_CH: Veloweg), hauptsächlich für Radfahrer. (Ein offizieller Radweg mit Beschilderung wird durch zusätzliches bicycle=designated und foot=no genauer beschrieben.) Mehr Beispiele (z.B. gemeinsamer Rad-/Fußweg) gibts hier.		
nighway	footway	ß	Allgemeiner Fußweg, hauptsächlich für Fußgänger. (Ein offizieller Fußweg mit Beschilderung wird durch ein zusätzliches foot=designated genauer beschrieben). Mehr Beispiele (z.B. gemeinsamer Rad-/Fußweg) gibts hier.		
nighway	bridleway	<	Reitweg (ggf. mit beschildert) Kurzform für highway=path horse=designated. In Deutschland normalerweise mit foot=no verbunden (im Unterschied zu UK). Wenn der Weg nicht in erster Linie für Reiter bestimmt ist (=designated), dann wähle highway=path.		
nighway	steps	⊴	Treppen auf Fuß-/Wanderwegen	To make	

Fußgängerrouting

- Beschreibung des Straßen- und Wegenetzes in Form eines Graphen
- fußgängerrelevante Wege <u>direkt</u> bzw. indirekt in Form von Kanten modelliert
- Verknüpfung mit Knotenpunkten
- Übergänge als <u>Kanten</u> bzw. <u>Knoten</u>
- Gewichtung der Kanten entspricht der Wegbeschaffenheit oder Sicherheitsaspekten
- Zuordnung nachbarschaftlicher
 Eigenschaften über Graphenrichtung
- Berechnung des geeigneten Weges mit kürzester Entfernung nach o.g. Regeln

OpenStreetMap - Datenmodell und Regeln

Straßenbegleitender Weg (Bürgersteig)

- Hindernis trennt Straße von Fußweg?
- "Ist ein ständiger Wechsel auf die Straße möglich?"
 - □ Ja → Erweiterung der Straße (highway) via tag
 - □ Nein → Erfassung als eigenen way

Datenhaltungsarten für straßenbegleitende Wege

- Geometrie
 - Straße, Radweg, Fußweg sind separate Objekte
- Attribut
 - highway = <Straßentyp>
 - name = <Straßennname>
 - <Typ begleit. Weg> = yes/both/...
- Relation
 - Beziehung zwischen Straße und Weg
 - Komplexe Abbildung
 - Probleme minimieren

Beispielkreuzung: Grundriss

Datenmodell: Geometrische Datenhaltung

Datenmodell: Attributive Datenhaltung

Geometrische Datenhaltung

- Geometrie repräsentiert Form des Objektes (z.B. Bürgersteig)
- Eigenschaften direkt über zusätzliche Attribute (key=value)
- Keine Nachbarschaftsbeziehungen nötig
- Präzise Erfassung im Gelände oder von Bilddaten
- Grafische Linienbündel → Verwechslungsgefahr
- Problem der Verdrängung in Kartengrafik
- Verbindungswege realisieren Übergänge

Attributive Datenhaltung

- Nur Topologie des Bürgersteigs wird über allein über Straßengeometrie repräsentiert
- Zuordnung der Nachbarschaft erfolgt über Attribut (value:left/right)
- Nur Start- und Endpunkt (node) müssen präzise erfasst werden
- Lageinformationen bleiben im Modell versteckt
- Untergliederung von Attribut nötig (key:value.key:value)
- Erste Abstraktion der realen Situation
- Kartendarstellung über erweiterte Kontur an Straße
- Knotenpunkt der Straßengeometrie steht für Übergang
- Häufiges Auftrennen von ways (Splitting)

http://taginfo.openstreetmap.de/search?q=footway:#keys

key=footway:*

Du hast gesucht nach: footway: Values Keys Keys Count Key footway:right:surface footway:left:surface footway:right:smoothness footway:left:smoothness 317 footway:right footway:left footway:right:width 266 footway:right.sloped_curb.start footway:left:width 237 footway:right.sloped_curb.end 218 footway:left.sloped_curb.start footway:right:incline 197 175 footway:left.sloped_curb.end

key=cycleway:*

Relationale Datenhaltung

- Beziehung zwischen Geometrie oder Geometrieteil und Relation
- Topologie aller "Spuren" einer Straße in Relation repräsentiert
- Mitglieder sind Straßengeometrie und weitere Objekte oder Relationen
- Splitting-Problem über Zusammenfassen eingrenzen (Redundanz)
- Erhebliche Abstraktion der Realität → Komplex

Datenhaltung:		Geometrie	Attribut	Relation	
Datenerfassungsaufwand im Gelände		-	+	+	
Arbeitsaufwand beim Digitalisieren			++	++	
Editorunterstützung	JOSM	+	+	+-	
	Potlatch	+	+	-	
Fehleranfälligkeit/ -sichtbarkeit		-	-		
Erlernbarkeit		++	+	-	
Kreuzungsproblematik		++	I	I	
Komplexität des Routingalgorithmus		++	I	-	
Map Matching		-	I	I	
kartographische	Ist-Zustand	-			
Darstellung	Ideal-Zustand	-	I	I	
geometrische Genauigkeit		++	-	-	
Redundanz				++	
Komplexität		-	+		

Fazit und Ausblick

- Anwendung und Einstieg für Beitragende und Nutzer ermöglichen und erleichtern
- Verträglichkeit aller Nutzergruppen (ÖPNV, Fahrrad, Wandern...)
- Vereinigung mehrerer Interessen und Ansprüche schwierig
- Unterschiedlicher Genauigkeitsanspruch bzw. Aufnahmemaßstab
- ungenaue Abgrenzung Bürgersteig

Fragen?

weitere Informationen demnächst im OpenStreetMap-Wiki unter: http://wiki.openstreetmap.org/wiki/PedestrianProject

Referent: Dipl.-Ing. (FH) Robert Bieber

Kontakt: rbieber@uni-potsdam.de

Autoren: Bieber, Gerlach, Klinke, Scheibner, Schulze, Ziegler, Kluge

Uni Potsdam | Institut für Geographie | Geoinformatik | 2011

Pedestrian Project

