Modelos para la Toma de Decisiones

 ${\bf 1.} \ {\bf En} \ {\bf la} \ {\bf red} \ {\bf que} \ {\bf aparecen} \ {\bf m\'as} \ {\bf abajo}, \ {\bf donde} \ {\bf los} \ {\bf n\'ameros} \ {\bf que} \ {\bf aparecen} \ {\bf en} \ {\bf cada} \ {\bf arco} \ {\bf representan} \ {\bf la} \ {\bf distancia} \ {\bf en} \ {\bf kil\'ametros} \ {\bf de} \ {\bf un} \ {\bf nodo} \ {\bf a} \ {\bf otro}, \ {\bf se} \ {\bf desea} \ {\bf determinar} \ {\bf la} \ {\bf ruta} \ {\bf con} \ {\bf la} \ {\bf distancia} \ {\bf m\'as} \ {\bf corta} \ {\bf para} \ {\bf ir} \ {\bf del} \ {\bf nodo} \ {\bf 1} \ {\bf al} \ {\bf nodo} \ {\bf 7}$

- (a) Formular un modelo de PLE para resolver el problema.
- (b) Determinar la ruta más corta entre los nodos 1 y 7.
- (c) Resolver el PLR del formulado en el apartado (a).
- a) Formular un modelo de PLE para resolver el problema.

La formulación se encuentra en la siguiente página.

• Variables de alcaisión! • Variables de alcaisión! ** ** ** ** ** ** ** ** ** ** ** ** **
Minimizer Z = 15x12 + 10x13 + 17x23 + 6x24 + 8x22 + 4x25 + 4x45 + + 5x4x + 2x56 + 6x6x
• Restrictions:
Xiz + Xiz = 1 (Sollo un nodo (2 0 3) podra sor ol que se
XIL + X32 - X24 - XEX = O (Si se visite el nodo 2, luego de labor Celedo en el nodo 1 o 3, entonces despurá se visita el nodo 4 o el 4)
(Si se visita el nodo 3, entoneces después se visita el nodo 2 a el 5): X13 - X32 - X35 = 0
(Si se visita el modo 4, entorres después se visita el modo 7 o el 5):
(Si se visite el pado 5, luego de helor estado en el nodo 3 o 4, antones olegos se visite al nodo 6)
(Si se visita di nodo 6, lengo di haber astocio en el nodo 5, después se visita el nodo +)
(Finalmente, e) made 2, 4 a 6, será el ciltura ontes ale terminar la quía en el mada 7) XZT + XGT + XGT = 1
· xi3 € \$0, \$\langle 2 \leq y \leq \tag{2 \leq y \leq \tag{4}

b) Determinar la ruta más corta entre los nodos 1 y 7.

Variable>	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	Direction	R. H. S.
Minimize	15	10	17	6	8	4	4	5	2	6		
C1	1	1									=	1
C2	1		-1	-1	1						=	0
C3		1			-1	-1					=	0
C4				1			-1	-1			=	0
C5						1	1		-1		=	0
C6									1	-1	=	0
C7			1					1		1	=	1
LowerBound	0	0	0	0	0	0	0	0	0	0		
UpperBound	1	1	1	1	1	1	1	1	1	1		
Variable Type	Binary											

Modelo de PLE en WinQSB

	20:41:25		Wednesday	May	11	2022		
	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	0	15,0000	0	0	basic	11,0000	18,0000
2	X2	1,0000	10,0000	10,0000	0	basic	7,0000	14,0000
3	X3	0	17,0000	0	10,0000	at bound	7,0000	м
4	X4	0	6,0000	0	0	basic	2,0000	м
5	X5	0	8,0000	0	3,0000	at bound	5,0000	м
6	X6	1,0000	4,0000	4,0000	0	basic	-М	8,0000
7	X7	0	4,0000	0	11,0000	at bound	-7,0000	М
8	X8	0	5,0000	0	4,0000	at bound	1,0000	м
9	X9	1,0000	2,0000	2,0000	0	basic	-М	6,0000
10	X10	1,0000	6,0000	6,0000	0	basic	-M	10,0000
	Objective	Function	(Min.) =	22,0000				

Solución obtenida

Solución:

1. Viajar del nodo 1 al nodo 3, con un coste de 10.

2. Viajar del nodo 3 al nodo 5, con un coste de 4.

3. Viajar del nodo 5 al nodo 6, con un coste de 2.

4. Viajar del nodo 6 al nodo 7, con un coste de 6.

Ruta más corta: 1-3-5-6-7

Coste mínimo: 22 km

c) Resolver el PLR del formulado en el apartado (a).

Para resolver el PLR debemos cambiar la restricción de que las variables sean binarias por una nueva restricción: que las variables sean >= 0. Finalmente, acabamos obteniendo la misma solución que en el apartado anterior.

Modelo de PLE en WinQSB

	18:47:20		Saturday	May	14	2022		
	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	0	15,0000	0	0	basic	11,0000	18,0000
2	X2	1,0000	10,0000	10,0000	0	basic	7,0000	14,0000
3	X3	0	17,0000	0	0	basic	-M	М
4	X4	0	6,0000	0	0	basic	2,0000	М
5	X5	0	8,0000	0	3,0000	at bound	5,0000	М
6	X6	1,0000	4,0000	4,0000	0	basic	-M	8,0000
7	X7	0	4,0000	0	11,0000	at bound	-7,0000	М
8	X8	0	5,0000	0	4,0000	at bound	1,0000	М
9	X9	1,0000	2,0000	2,0000	0	basic	-М	6,0000
10	X10	1,0000	6,0000	6,0000	0	basic	-М	10,0000
	Objective	Function	(Min.) =	22,0000				

Solución obtenida

- 2. Antes de salir de vacaciones, *Martín* desea hacer una copia de seguridad de sus archivos de video más importantes en discos CD-ROM. Dispone para ello de suficientes discos vacíos de 900MB. Los dieciséis archivos que desea guardar tienen los siguientes tamaños (en MB): 28.75, 34.375, 38.75, 54.375, 67.5, 71.25, 85.625, 102.5, 158.125, 227.5, 232.5, 242.5, 253.75, 270, 288.125 y 531.875.
 - (a) Suponiendo que *Martín* no tiene ningún programa para comprimir los archivos, formular un modelo de PLE para determinar cómo se deben distribuir los archivos con el fin de reducir al mínimo el número de discos CD-ROM que debe utilizar.
 - (b) ¿Cuántos CD debe utilizar y qué archivos debe ubicar en cada uno de ellos? Justificar la respuesta.
- a) Suponiendo que Martín no tiene ningún programa para comprimir los archivos, formular un modelo de PLE para determinar cómo se deben distribuir los archivos con el fin de reducir al mínimo el número de discos CD-ROM que debe utilizar.

La formulación se encuentra en la siguiente página.

b) ¿Cuántos CD debe utilizar y qué archivos debe ubicar en cada uno de ellos? Justificar la respuesta.

Nodo 1:

1	X11	0	28,7500	0	28,7500	at bound
2	X21	1,0000	34,3750	34,3750	34,3750	at bound
3	X31	1,0000	38,7500	38,7500	38,7500	at bound
4	X41	1,0000	54,3750	54,3750	54,3750	at bound
5	X51	0	67,5000	0	67,5000	at bound
6	X61	0	71,2500	0	71,2500	at bound
7	X71	0	85,6250	0	85,6250	at bound
8	X81	0	102,5000	0	102,5000	at bound
9	X91	0	158,1250	0	158,1250	at bound
10	X101	0	227,5000	0	227,5000	at bound
11	X111	0	232,5000	0	232,5000	at bound
12	X121	1,0000	242,5000	242,5000	242,5000	at bound
13	X131	1,0000	253,7500	253,7500	253,7500	at bound
14	X141	1,0000	270,0000	270,0000	270,0000	at bound
15	X151	0	288,1250	0	288,1250	at bound
16	X161	0	531,8750	0	531,8750	at bound

En el disco 1 se ubicarán los archivos: 2,3,4,12,13,14 ocupando un total de 893.750 MB, tal y como se indica con WinQSB:

17	C17	893,7500	<=	900,0000	6,2500	0
----	-----	----------	----	----------	--------	---

Nodo 2:

17	X12	1,0000	28,7500	28,7500	0	basic
18	X22	0	34,3750	0	0	basic
19	X32	0	38,7500	0	0	basic
20	X42	0	54,3750	0	0	basic
21	X52	0	67,5000	0	67,5000	at bound
22	X62	0	71,2500	0	71,2500	at bound
23	X72	1,0000	85,6250	85,6250	85,6250	at bound
24	X82	1,0000	102,5000	102,5000	102,5000	at bound
25	X92	1,0000	158,1250	158,1250	158,1250	at bound
26	X102	0	227,5000	0	227,5000	at bound
27	X112	1,0000	232,5000	232,5000	232,5000	at bound
28	X122	0	242,5000	0	0	basic
29	X132	0	253,7500	0	0	basic
30	X142	0	270,0000	0	0	basic
31	X152	1,0000	288,1250	288,1250	288,1250	at bound
32	X162	0	531,8750	0	531,8750	at bound

En el disco 2 se ubicarán los archivos: 1,7,8,9,11,15 ocupando un total de 895.625 MB, tal y como se indica con WinQSB:

18	C18	895,6250	<=	900,0000	4,3750	0

Nodo 3:

33	X13	0	28,7500	0	0	at bound
34	X23	0	34,3750	0	0	at bound
35	X33	0	38,7500	0	0	at bound
36	X43	0	54,3750	0	0	at bound
37	X53	1,0000	67,5000	67,5000	0	basic
38	X63	1,0000	71,2500	71,2500	0	basic
39	X73	0	85,6250	0	0	basic
40	X83	0	102,5000	0	0	basic
41	X93	0	158,1250	0	0	basic
42	X103	1,0000	227,5000	227,5000	0	basic
43	X113	0	232,5000	0	0	basic
44	X123	0	242,5000	0	0	at bound
45	X133	0	253,7500	0	0	at bound
46	X143	0	270,0000	0	0	at bound
47	X153	0	288,1250	0	0	basic
48	X163	1,0000	531,8750	531,8750	0	basic

En el disco 3 se ubicarán los archivos: 5,6,10,16 ocupando un total de 898.125 MB, tal y como se indica con WinQSB:

19	C19	898,1250	<=	900,0000	1,8750	0

- 3. Luctel posee una gran tienda de productos de telefonía móvil. La tienda posee tres departamentos: ventas (con 8 empleados), pagos (con 3 cajeros) y entregas (con 2 empleados). El proceso de llegada de los clientes a la tienda se realiza según un proceso de Poisson con una media de 40 por hora. Los clientes que entran en la tienda tienen que pasar necesariamente por el departamento de ventas y, si deciden comprar algún artículo (lo hacen el 75 % de los que entran), tienen que pasar por caja antes de retirar sus productos. El tiempo que se tarda en atender a un cliente se distribuye exponencialmente, con una media de 10 minutos en el departamento de ventas, de 3 minutos en el de pagos y de 2 minutos en el de entregas.
 - (a) ¿Cuál es la longitud media de las colas en cada departamento?
 - (b) ¿Cuál es el tiempo medio que un cliente pasa en la tienda? ¿Y un cliente que compra? Razonar las respuestas.

(a) ¿Cuál es la longitud media de las colas en cada departamento?

Lo que no están pidiendo es el número medio de clientes que están esperando en la cola a ser atendidos:

$$E(N_q) = \sum_{n=m+1}^{\infty} (n-m)p_n = \frac{\rho}{1-\rho}\varrho$$

Para ellos nos hace falta calcular la utilización de cada servidor (I) y la probabilidad de que un cliente que llega tenga que esperar en la cola (II):

$$U = \frac{\lambda}{m\mu} = \rho$$
 (I)

$$\varrho = \Pr\{N \ge m\} = \sum_{n=m}^{\infty} p_n = \frac{(m\rho)^m}{m!(1-\rho)} p_0$$
(II)
$$p_0 = \left(\sum_{n=0}^{m-1} \frac{(m\rho)^n}{n!} + \frac{(m\rho)^m}{m!(1-\rho)}\right)^{-1}$$

NOTA: para realizar las operaciones necesarias utilizo Derive 5.

Nodo 1:

$$E(N_{q1}) = \frac{\rho_1}{1-\rho_1} \delta_1 = \frac{5/6}{1/6} * 0.5326865772 =$$
2.663432886 clientes

$$p01 = \left(\begin{bmatrix} m-1 & (m \cdot \rho) \\ \Sigma & n \cdot P \end{bmatrix} + \frac{(m \cdot \rho)}{m! \cdot (1-p)} \right)^{-1} = \frac{45927}{50060707} = 0.0009174261162$$

$$\delta 1 = \frac{\left(m \cdot \rho\right)^{m}}{m! \cdot (1 - \rho)} \cdot p01 = \frac{80000000}{150182121} = 0.5326865772$$

Nodo 2:

$$E(N_{q2}) = \frac{\rho_2}{1-\rho_2} \delta_2 = \frac{1/2}{1/2} * \frac{9}{38} = \frac{9}{38} =$$
0.2368421052 clientes

$$p02 = \left[\begin{pmatrix} m-1 & \frac{(m \cdot \rho)^n}{\Sigma} \\ n=0 & \frac{n!}{n!} \end{pmatrix} + \frac{(m \cdot \rho)^m}{m! \cdot (1-\rho)} \right]^{-1} = \frac{4}{19} = 0.2105263157$$

$$\delta \cdot 2 = \frac{(m \cdot \rho)^{m}}{m! \cdot (1 - \rho)} \cdot p02 = \frac{9}{38} = 0.2368421052$$

Nodo 3:

$$p03 = \left(\begin{bmatrix} m-1 & \frac{(m \cdot p)^n}{\sum_{n=0}^{m} & n!} + \frac{(m \cdot p)^m}{m! \cdot (1-p)} \end{bmatrix}^{-1} = \frac{1}{3} = 0.3333333333$$

$$\delta \cdot 3 = \frac{(m \cdot p)^{m}}{m! \cdot (1 - p)} \cdot p03 = \frac{1}{3} = 0.3333333333$$

(b) ¿Cuál es el tiempo medio que un cliente para en la tienda? ¿Y un cliente que compra? Razonar las respuestas.

Lo que tenemos que calcular ahora es el tiempo medio de permanencia en el sistema, es decir, el tiempo medio de respuesta:

$$E(R) = \frac{E(N)}{\lambda} = \frac{\sum_{i=1}^{k} E(N_i)}{\sum_{i=1}^{k} \gamma_i}$$

Para ello necesitamos saber el número esperado de clientes en el sistema:

$$E(N) = E(N_q) + E(N_s) = \frac{\rho}{1-\rho}\varrho + m\rho$$

Y, además ya conocemos el número medio de clientes en la cola, es decir, E(Nq).

$$E(N_1) = E(N_{q1}) + E(N_{s1}) = 2.663432886 + m_1*\rho_1 = 2.663432886 + 8*5/6 = 9.330099552 \text{ clientes}$$

$$E(N_2) = E(N_{q2}) + E(N_{s2}) = 0.2368421052 + m_2*\rho_2 = 0.2368421052 + 3*1/2 = 1.736842105 \text{ clientes}$$

$$E(N_3) = E(N_{q3}) + E(N_{s3}) = 0.33333333333 + m_3*\rho_3 = 0.33333333333 + 2*1/2 = 1.33333333333 \text{ clientes}$$

Por lo tanto, $E(N) = E(N_1) + E(N_2) + E(N_3) = 12.40027499$ clientes.

Finalmente obtenemos E(R):

$$E(R) = \frac{12.40027499}{40} = 0.3100068747 \text{ horas} = 18.60041248 \text{ min}$$

El resultado que acabamos de obtener es el referido a un cliente cualquiera que entre en la tienda (compre o no). Ahora bien, en el siguiente apartado, nos especifican que el cliente ha comprado, por tanto, lo que debemos calcular a continuación es el tiempo medio de respuesta de cada una de las 3 colas. Para ello, utilizaremos:

$$E(R) = \frac{E(N)}{\lambda} = \frac{1}{\mu} + \frac{\varrho}{m\mu(1-\varrho)}$$

$$E(R_1) = \frac{1}{6} + \frac{0.5326865772}{8*6(1-\frac{5}{6})} = 0.2332524888 \text{ horas}$$

$$E(R_2) = \frac{1}{20} + \frac{\frac{9}{38}}{3*20(1-\frac{1}{2})} = 0.05789473684 \text{ horas}$$

Por lo tanto, $E(R) = E(R_1) + E(R_2) + E(R_3) = 0.3355916700$ horas = 20.13550020 min