. CLAIMS

5

1. Multiply quaternized polysiloxanes of the formula (S1)

S1

where

the sum total of (q + w) has a range of 10-1500 and the q/w ratio has a range of 5-600,

R is C₁-C₄-alkyl, linear or branched,

 R_1 is hydrogen, C_1 - C_3 -alkyl or C_1 - C_3 -alkoxy,

R₂ is C₁-C₇-alkyl or benzyl,

15 X is a direct bond

or

20

10

where

r is 1-4 and

 R_3 is C_1 - C_7 -alkyl or -NH- C_1 - C_7 -alkyl,

or

5

where

R₂ and r are each as defined above,

 R_4 is C_1 - C_3 -alkyl,

10 or

Y is

15

$$\begin{array}{c} \text{- CH}_2 \text{- CH - CH}_2 \text{-} \\ \text{-} \\ \text{OH} \end{array}$$

or

20 -(CH₂)_x-,

where

x is 1-4,

Z is C₂-C₄-alkylene, linear or branched and

25 A is CH₃OSO₃, chloride, bromide, iodide or tosylsulfate,

or of the formula (S2)

$$\begin{array}{c} R \\ N \\ \Theta \\ A \\ O \\ C \\ C \\ H_2 \\ N \\ - C \\ H_2 \\ O \\ - C \\ O \\ - C \\ -$$

where

R, R_2 and A^- have the same meaning as in formula (S1),

5 m is 1 - 4,

p is 1 - 4, and

s is 5 - 1500

10 2. Multiply quaternized polysiloxanes according to Claim 1 wherein the sum total of (q + w) has a range of 15-600 and the q/w ratio has a range of 10-400,

R is methyl, ethyl or propyl,

15 R_1 is H, methyl, -OCH₃ or -OC₂H₅,

R₂ is methyl or benzyl,

R₃ is methyl or -NH-C₄H₉,

R₄ is methyl,

Z is C₃-alkylene, linear or branched,

20 A is CH₃OSO₃ or chloride,

m is 3,

p is 3,

s is 10 - 600,

r is 2, and

25 x is 3.

3. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E1

$$H_{3}C \xrightarrow{OH} CH_{3} CH_{2} \xrightarrow{CH^{-}CH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3} CH_{3} \xrightarrow{A^{\bigcirc}C_{2}H_{5}} CH_{3} \xrightarrow{A^{\bigcirc}C_{2}H_{5}} CH_{3} \xrightarrow{A^{\bigcirc}C_{2}H_{5}} CH_{3} \xrightarrow{A^{\bigcirc}C_{2}H_{5}} CH_{3} \xrightarrow{CH_{2}^{\bigcirc}CH^{-}CH_{2}^{-}} CH_{3} \xrightarrow{C_{2}H_{5}} CH_{3} \xrightarrow{C_{2}H_{5}} CH_{3} CH_$$

5

or having structural units of the formula E1a

$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{5} \longrightarrow C_{2}H_{5} \longrightarrow CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{5} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow CH_{3}$$

10

4. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E2

5

26

$$CH_{3} = CH_{3}OSO_{3}^{\bigcirc \bigcirc}$$

$$CH_{3} = CH_{3}OSO_{3}^{\bigcirc \bigcirc}$$

$$CH_{2}CHOHCH_{2}N C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$CH_{3}$$

$$CH_{2}CHOHCH_{2}N C_{2}H_{5}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}CHOHCH_{2}N C_{2}H_{5}$$

$$CH_{3}$$

$$CH_$$

5. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E3

$$CH_{3} \longrightarrow Si-(CH_{2})_{3} - N - (CH_{2})_{2} \longrightarrow N$$

$$CH_{3} \longrightarrow Si-(CH_{2})_{3} - N - (CH_{2})_{2} \longrightarrow N$$

$$CH_{3} \longrightarrow CH_{2}CHOHCH_{2}N$$

$$CH_{3} \longrightarrow CH_{3}$$

$$CH_{3}$$

10 6. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E4

$$CH_{3} = CH_{3}OSO_{3}^{\bigcirc \bigcirc}$$

$$CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} CH_{3} CH_{3} CH_{7}$$

$$CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{4} CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{4} CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$$

$$CH$$

7. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E5

10 8. Multiply quaternized polysiloxanes according to Claim 1 or 2 of the formula E6

10

25

35

- 9. Process for preparing multiply quaternized polysiloxanes of the formula (S1) according to any one of Claims 1 to 6, characterized in that the following reactions are carried out:
- 5 A) reaction of dialkylamine with epichlorohydrin to form a glycidyldialkylamine,
 - B) reaction of the glycidyldialkylamine with 3-aminoalkyldialkoxymethylsilane or with 3-(2-aminoalkylamino)alkyldialkoxymethylsilane to form the corresponding silanes.
 - C) reaction of the resultant silanes with polydimethylsiloxanediol or with octamethylcyclotetrasiloxane or with tetraalkyl- or aryltrialkyl-ammonium hydroxide to form polysiloxanes, with subsequent quaternization to form the multiply quaternized polysiloxanes.
- 15 10. Process for preparing multiply quaternized polysiloxanes of the formula (S1) where Y is -(CH₂)_x- and X is

- 20 characterized in that the following reactions are carried out:
 - A) reaction of N'-[3-(dialkylamino)alkyl]-N,N-dialkylalkane-1,3-diamine with dialkoxy(3-glycidyloxyalkyl)methylsilane,
 - B) reaction of the reaction product from A) with polydimethylsiloxanediol or with octamethylcyclotetrasiloxane, with subsequent quaternization.
 - 11. Process for preparing multiply quaternized polysiloxanes of the formula (S2) according to Claims 1 or 2, characterized in that the following reactions are carried out:
- A) reaction of octaalkylcyclotetrasiloxane with 1,1,3,3-tetraalkyldisiloxane,
 - B) reaction of the reaction product from A) with an allyl glycidyl ether and a hydrosilylation catalyst;
 - reaction of the reaction product from B) with N,N,N',N' tetraalkyldialkylenetriamine to form the polysiloxane and subsequent quaternization.

WO 2005/035628 PCT/IB2004/003220

29

12. Use of multiply quaternized polysiloxanes according to Claims 1 to 8 as a softener in the textile industry.

5