PSALTer results panel

 $\mathcal{S} = \iiint \left(\frac{1}{6} \left(-4 \, t_{.3} \, \mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}}} \, \mathcal{R}^{\theta}_{,\phantom{\alpha_{i}}\theta} + 6 \, \mathcal{R}^{\alpha\beta\chi}_{\phantom{\alpha_{i}}\theta} \, \sigma_{\alpha\beta\chi} + 6 \, f^{\alpha\beta}_{\phantom{\alpha_{i}}\theta} \, \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 8 \, t_{.3} \, \mathcal{R}^{\theta}_{\phantom{\alpha_{i}}\theta} \, \partial_{i} f^{\alpha_{i}} - 8 \, t_{.3} \, \partial_{i} f^{\theta}_{\phantom{\alpha_{i}}\theta} \, \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}\theta} + 4 \, t_{.3} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta} - 8 \, t_{.3} \, \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}\theta} \, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta} + 4 \, t_{.3} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta} - 8 \, t_{.3} \, \partial^{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta} \, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta} + 4 \, t_{.3} \, \partial_{i} f^{\alpha_{i}}$ $8r.\frac{\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\beta}\mathcal{A}_{\alpha\theta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4r.\frac{\partial_{\beta}\mathcal{A}_{,\theta\alpha}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2r.\frac{\partial_{i}\mathcal{A}_{,\alpha\beta_{\theta}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 6r.\frac{\partial_{i}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 6r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4r.\frac{\partial_{\theta}\mathcal{A}_{,\alpha\beta_{i}}}{2}\partial^{\theta}\mathcal{A}^{\alpha\beta$ $6r_{5}\partial_{\theta}\mathcal{R}_{_{i}_{\kappa}}^{^{\kappa}}\partial^{\theta}\mathcal{R}_{_{\alpha}}^{^{\alpha}} + 4t_{2}\mathcal{R}_{_{,\theta\alpha}}\partial^{\theta}f^{^{\alpha}} + 2t_{2}\partial_{\alpha}f_{_{,\theta}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{\alpha}f_{_{,\theta}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{_{\beta}f_{_{\alpha}\theta}}\partial^{\theta}f^{^{\alpha}} + t_{2}\partial_{\theta}f_{_{\alpha}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{\theta}f_{_{,\alpha}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{\theta}f_{_{\alpha}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{\theta}f^{^{\alpha}} - t_{2}\partial_{\theta}f^{^{\alpha}}\partial^{\theta}f^{^{\alpha}} - t_{2}\partial_{\theta}f^{^{\alpha}$ $2t. \mathcal{A}_{\alpha \iota \theta} \left(\mathcal{A}^{\alpha \iota \theta} + 2 \partial^{\theta} f^{\alpha \iota} \right) - 6r. \partial_{\alpha} \mathcal{A}^{\alpha \iota \theta} \partial_{\kappa} \mathcal{A}_{,\ \theta}^{\ \kappa} + 12r. \partial^{\theta} \mathcal{A}^{\alpha \iota}_{\ \alpha} \partial_{\kappa} \mathcal{A}_{,\ \theta}^{\ \kappa} + 6r. \partial_{\alpha} \mathcal{A}^{\alpha \iota \theta} \partial_{\kappa} \mathcal{A}_{\theta}^{\ \kappa}, -12r. \partial^{\theta} \mathcal{A}^{\alpha \iota}_{\ \alpha} \partial_{\kappa} \mathcal{A}_{\theta}^{\ \kappa}_{\ \alpha} \partial_{\kappa} \mathcal{A}_{\theta}^{\ \kappa}_{\ \alpha} \partial_{\kappa} \mathcal{A}_{\theta}^{\ \kappa}_{\theta$

Wave operator

0 \mathcal{A}^{\parallel}	$0.f^{\parallel}$	$0.f^{\perp}$	${}^{\scriptscriptstyle{0}}\!\!:\!\!\mathcal{F}^{\scriptscriptstyle{\parallel}}$										
<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
$i\sqrt{2}kt$.	$2k^2t$.	0	0										
0	0	0	0										
0	0	0	$k^2 r_{\cdot \cdot} + t_{\cdot \cdot}$	$\overset{1^{+}}{\cdot}\mathcal{F}^{\parallel}{}_{\alpha\beta}$	$^{1^+}_{\cdot}\mathcal{F}^{\scriptscriptstyle \perp}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	${}^{1}\mathcal{H}^{\parallel}{}_{lpha}$	${}^{1}\mathcal{F}^{\perp}{}_{lpha}$	$1 f_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
			$^{1.}^{+}\mathcal{R}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 r_1 + \frac{2t_1}{3}$	$\frac{\sqrt{2} t}{3}$	$\frac{1}{3}i\sqrt{2}kt.$	0	0	0	0			
								0	0	0			
			$\overset{1^+}{\cdot}f^{\parallel} + \overset{\alpha\beta}{\cdot}$	$-\frac{1}{3}i\sqrt{2}kt.$	$-\frac{1}{3}ikt$.	$\frac{k^2 t}{3}$	0	0	0	0			
			$^{1}\mathcal{H}^{\parallel}$ lpha	0	0	0	$k^2 r_{.5} + \frac{2t_{.3}}{3}$	$-\frac{\sqrt{2} t_{3}}{3}$	0	$-\frac{2}{3}ikt$.			
			$\frac{1}{2}\mathcal{A}^{\perp} + \alpha$	0	0	0	$-\frac{\sqrt{2}\ t_{3}}{3}$	t. 3 3	0	$\frac{1}{3}i\sqrt{2}kt.$			
			$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
			$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	2 i kt. 3	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2k^2t_{3}}{3}$	$^{2^{+}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
										$2^{+}\mathcal{A}^{\parallel}$ †	0	0	0
										$2.^{+}f^{\parallel}$ †	0	0	0
										$2^{-}\mathcal{A}^{\parallel} + \alpha^{\beta\chi}$	0	0	0
	t_{3} $i\sqrt{2}kt_{3}$ 0	$ \begin{array}{ccc} t. & -i \sqrt{2} & kt. \\ 3 & i \sqrt{2} & kt. & 2 & k^2 & t. \\ 0 & 0 & 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1	
$-2 i k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta}$	1	
$\frac{1}{2ik \cdot 1 \cdot \sigma^{\perp}^{\alpha} + 1 \cdot \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$1 \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$2 \sigma^{ \alpha\beta\chi } == 0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda}\partial^{\lambda$	5	
	$3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta}_{\ \delta} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\delta \beta \varepsilon} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\delta \alpha}_{\ \delta} = 3 \ \partial_{\varepsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \varepsilon} + 3 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{\ \delta} + 2 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} $		
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta} \partial^{\epsilon} \partial^{\delta} \partial^{\delta} \partial^{\delta} \partial^{\epsilon} \partial^{\delta} \partial^{\delta$		
$2^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\ \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}$		
$2^+_{\cdot \sigma} ^{\alpha \beta} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5	
Total expected gauge generators: 26			

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 & t. > 0