Machine Learning

Lecture 12: Naïve Bayes Classifier

COURSE CODE: CSE451

2023

Course Teacher

Dr. Mrinal Kanti Baowaly

Associate Professor

Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh.

Email: mkbaowaly@gmail.com

Definition: Naïve Bayes Classifier

- A probabilistic classifier based on applying Bayes' theorem
- The reason why it is called 'Naïve' because it requires rigid independence assumption between input variables/attributes
- Two specific assumptions are required for the attributes:
 - ✓ Attributes are statistically independent given the class value
 - ✓ Attributes are equally important

Bayes' theorem

Using Bayes theorem, we can find the probability of A happening, given that B has occurred. Here, B is the evidence and A is the hypothesis.

Bayes' theorem is stated mathematically as the following equation:

» Read <u>Conditional</u> <u>Probability</u>

- ullet $P(A\mid B)$ is a conditional probability: the likelihood of event A occurring given that B is true.
- ullet $P(B\mid A)$ is also a conditional probability: the likelihood of event B occurring given that A is true.
- ullet P(A) and P(B) are the probabilities of observing A and B independently of each other

Naïve Bayes Classifier

Given a problem instance X to predict the class labels Y. In the Bayes' theorem, if the evidence (B) is represented by an instance (X) and the hypothesis (A) is represented by a class label y ∈ Y, then the probability of the class label y given an instance X is:

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

• If we have multiple features i.e., $X = (x_1, x_2, x_3, ..., x_n)$ then the Bayes' theorem can be rewritten as:

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

How to classify with Naïve Bayes Classifier

- For the classification, Naïve Bayes Classifier finds the probability of all class labels and pick the most probable one to label the instance
- Suppose, we have two class labels, $Y = \{yes, no\}$ and an instance X
- Calculate posterior probabilities: P(yes|X) and P(no|X)
- If P(yes|X) > P(no|X), then X is labeled/classified as yes otherwise as no

Example: Classify with Naïve Bayes Classifier

Problem: If the weather is sunny then can players play or not?

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes -	
Sunny	Yes	ŀ
Overcast	Yes -	
Rainy	No	
Rainy	No	
Sunny	Yes	L
Rainy	Yes	
Sunny	No	
Overcast	Yes _	
Overcast	Yes	L
Rainy	No	

Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

Weather	Play
Sunny	?

Solution: Find P(Yes|Sunny) and P(No|Sunny)

Example: Classify with Naïve Bayes Classifier (Cont..)

- P(Yes|Sunny) = P(Sunny|Yes) * P(Yes) / P (Sunny) Here, P(Sunny|Yes) = 3/9 = 0.33, P(Yes) = 9/14 = 0.64, P(Sunny) = 5/14 = 0.36 Now, P(Yes|Sunny) = 0.33 * 0.64 / 0.36 = 0.60
- P(No|Sunny) = P(Sunny|No) * P(No) / P (Sunny) Here, P(Sunny|No) = 2/5 = 0.40, P(No)= 5/14 = 0.36, P(Sunny) = 5/14 = 0.36 Now, P(No|Sunny) = 0.40* 0.36/ 0.36 = 0.40

Frequency Table			
Weather	No Yes		
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

Like	elihood tab	le]	
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14]	

0.64

0.36

- We can see that P(Yes|Sunny) > P(No|Sunny)
- So if the weather is sunny then players can play the sport.

Now it's your turn

Problem 1: If the weather is overcast then can players play or not?

Problem 2: If the weather is rainy then can players play or not?

Example: Classify with Naïve Bayes Classifier (In case of multiple features)

Suppose we have a Day with the following values:

```
Outlook = Rain
Humidity = High
Wind = Weak
Play = ?
```

No need to calculate this probability (Evidence)

```
Let X = (Outlook=Rain, Humidity=High, Wind = Weak)
Find, P(Yes|X) = P(X|Yes) * P(Yes) / P(X) and <math>P(No|X) = P(X|No) * P(No) / P(X)
```

```
Now, P(X|Yes) * P(Yes)
= P(Outlook=Rain, Humidity=High, Wind = Weak|Yes) * P(Yes)
= P(Outlook = Rain|Yes)*P(Humidity= High|Yes)* P(Wind= Weak|Yes)*P(Yes)
```

Solution: Dzone - Naive Bayes Tutorial

Estimating conditional probabilities for continuous attributes

- A Gaussian distribution is usually chosen to represent the class conditional probabilities for continuous attributes
- For each class y, the class conditional probability for x_i

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

where μ represents mean and σ^2 represents variance.

HW: Zero frequency problem

- What is Zero frequency problem in Naïve Bayes Classifier?
 - How to handle with Zero frequency problem?

Types of Naïve Bayes Classifier

- Multinomial Naive Bayes: When features are discrete count variables / categorical
- Bernoulli Naive Bayes : When feature vectors are binary (i.e. zeros and ones)
- Gaussian Naive Bayes: When features follow a normal distribution

Adv. & Disadv. of Naïve Bayes Classifier

Advantage

- Works surprisingly well
- Simple
- Handling missing value is easier
- Robust to irrelevant attributes

Disadvantage

- Can't handle dependent variables
- Suffers from "Zero Frequency" problem

Some Learning Materials

Naïve Bayes

Naive Bayes Tutorial: Naive Bayes Classifier in Python

Naive Bayes Classification using Scikit-learn