Data Science - A practical Approach

Lorenz Feyen

CONTENTS

I	1. Introduction	3
1	Introduction	5
II	2. Data Preparation	7
2	Data Preparation	9
3	Indexing and slicing	11
4	Missing Data 4.1 Kamyr digester	15 15 17 22
5	Concatenation and deduplication	25
6	Some practice	27
III 7	I 3. Data Preprocessing Data Preprocessing	29 31
IV	4. Data Exploration	33
8	Data Exploration	35
V	5. Data Visualisation	37
9	Data Visualisation	39
VI	6. Machine Learning	41
10	Machine Learning	43

this is a foreword

pdf version can be found here here.

CONTENTS 1

2 CONTENTS

Part I

1. Introduction

CHAPTER	
ONE	

INTRODUCTION

this is an introduction

Part II

2. Data Preparation

	_
СНАРТЕ	3
TWO)

DATA PREPARATION

this is an introduction

CHAPTER

THREE

INDEXING AND SLICING

```
import pandas as pd
```

```
min_temp_df.Date = pd.to_datetime(min_temp_df.Date)
```

```
min_temp_df = min_temp_df.set_index('Date')
```

```
min_temp_df.loc['1989-06-01':'1989-06-30']
```

```
Temp
Date
1989-06-01 2.3
1989-06-02 1.4
1989-06-03 2.1
1989-06-04 6.6
1989-06-05 8.9
1989-06-06 7.8
1989-06-07 9.0
1989-06-08 10.3
           7.9
1989-06-09
1989-06-10
           7.2
1989-06-11
           8.6
1989-06-12 8.8
```

```
(continued from previous page)
```

```
1989-06-13 6.2
1989-06-14 9.5
1989-06-15 10.2
1989-06-16
          9.7
1989-06-17 11.2
1989-06-18 10.2
1989-06-19 10.1
1989-06-20
1989-06-21 6.6
1989-06-22 5.0
1989-06-23 4.7
1989-06-24 5.3
1989-06-25 4.5
1989-06-26 2.3
1989-06-27 1.4
1989-06-28 0.5
1989-06-29 2.4
1989-06-30 8.0
```

```
min_temp_df.loc['1989-06-01':'1989-06-30'].mean()
```

```
Temp 6.56 dtype: float64
```

```
import seaborn as sns
```

```
tip_df = sns.load_dataset('tips')
tip_df.head()
```

```
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
```

```
tip_index_df = tip_df.set_index('day')
```

```
tip_index_df.loc['Sun']
```

```
total_bill tip sex smoker time size
day
       16.99 1.01 Female
                         No Dinner
                                     2
       10.34 1.66 Male
Sun
                         No Dinner
                                     3
       21.01 3.50
                 Male No Dinner
                                     3
Sun
       23.68 3.31 Male No Dinner
                                   2
Sun
       24.59 3.61 Female No Dinner
Sun
                                    4
        ... ... ... ...
       20.90 3.50 Female Yes Dinner
       30.46 2.00 Male Yes Dinner
Sun
      18.15 3.50 Female Yes Dinner
Sun
Sun
      23.10 4.00 Male Yes Dinner
                                    3
Sun
      15.69 1.50 Male Yes Dinner
```

(continued from previous page)

```
[76 rows x 6 columns]
```

```
tip_index_df = tip_df.set_index(['day','time'])
```

```
tip_index_df.loc[('Thur','Lunch')].tip.mean()
```

```
/tmp/ipykernel_36874/2537502835.py:1: PerformanceWarning: indexing past lexsort depth-
may impact performance.
  tip_index_df.loc[('Thur','Lunch')].tip.mean()
```

2.767704918032786

```
pd.pivot_table(tip_df, values='total_bill', index='day', columns='time', aggfunc=
    'median')
```

```
time Lunch Dinner
day
Thur 16.00 18.780
Fri 13.42 18.665
Sat NaN 18.240
Sun NaN 19.630
```

CHAPTER

FOUR

MISSING DATA

In this notebook we will look at a few datasets where values from columns are missing. It is crucial for data science and machine learning to have a dataset where no values are missing as algorithms are usually not able to handle data with information missing.

For python, we will be using the pandas library to handle our dataset.

```
import pandas as pd
```

4.1 Kamyr digester

The first dataset we will be looking at is taken from a psysical device equiped with numerous sensors, each timepoint (1 hour) these sensors are read out and the data is collected. Let's have a look at the general structure

```
kamyr_df = pd.read_csv('https://openmv.net/file/kamyr-digester.csv')
kamyr_df.head()
```

```
Observation
               Y-Kappa
                         ChipRate
                                    BF-CMratio
                                                 BlowFlow
                                                            ChipLevel4
     31-00:00
                  23.10
                           16.520
                                       121.717
                                                 1177.607
                                                                169.805
     31-01:00
                                        79.022
                                                 1328.360
1
                  27.60
                           16.810
                                                                341.327
2
     31-02:00
                  23.19
                           16.709
                                        79.562
                                                 1329.407
                                                                239.161
3
     31-03:00
                  23.60
                            16.478
                                        81.011
                                                 1334.877
                                                                213.527
     31-04:00
4
                  22.90
                            15.618
                                        93.244
                                                 1334.168
                                                                243.131
   T-upperExt-2
                   T-lowerExt-2
                                    UCZAA
                                           WhiteFlow-4
                                                                SteamFlow-4
0
         358.282
                           329.545
                                    1.443
                                                 599.253
                                                                      67.122
                                                          . . .
         351.050
                           329.067
                                    1.549
                                                 537.201
                                                                      60.012
1
                                                          . . .
         350.022
                           329.260
                                    1.600
                                                 549.611
                                                                      61.304
2
                                                          . . .
3
         350.938
                                    1.604
                                                 623.362
                                                                      68.496
                          331.142
                                                          . . .
4
         351.640
                          332.709
                                      NaN
                                                 638.672
                                                                      70.022
   Lower-HeatT-3
                   Upper-HeatT-3
                                    ChipMass-4
                                                  WeakLiquorF
                                                                 BlackFlow-2
0
         329.432
                          303.099
                                        175.964
                                                      1127.197
                                                                     1319.039
         330.823
                           304.879
                                        163.202
                                                       665.975
                                                                     1297.317
1
2
         329.140
                                                                     1327.072
                          303.383
                                        164.013
                                                       677.534
3
         328.875
                          302.254
                                        181.487
                                                       767.853
                                                                     1324.461
4
         328.352
                          300.954
                                        183.929
                                                       888.448
                                                                     1343.424
   WeakWashF
                SteamHeatF-3
                                T-Top-Chips-4
                                                 SulphidityL-4
0
      257.325
                       54.612
                                       252.077
                                                             NaN
      241.182
                                                           29.11
1
                       46.603
                                       251.406
2
      237.272
                       51.795
                                       251.335
                                                             NaN
```

(continued from previous page)

3	239.478	54.846	250.312	29.02
4	215.372	54.186	249.916	29.01
[5]	rows x 23 colu	mns]		

Interesting, there seem to be 22 sensor values and 1 timestamp for each record. As mechanical devices are prone to noise and dropouts of sensors we would be foolish to assume no missing values are present.

```
kamyr_df.isna().sum().divide(len(kamyr_df)).round(4)*100
```

Г	
Observation	0.00
Y-Kappa	0.00
ChipRate	1.33
BF-CMratio	4.65
BlowFlow	4.32
ChipLevel4	0.33
T-upperExt-2	0.33
T-lowerExt-2	0.33
UCZAA	7.97
WhiteFlow-4	0.33
AAWhiteSt-4	46.84
AA-Wood-4	0.33
ChipMoisture-4	0.33
SteamFlow-4	0.33
Lower-HeatT-3	0.33
Upper-HeatT-3	0.33
ChipMass-4	0.33
WeakLiquorF	0.33
BlackFlow-2	0.33
WeakWashF	0.33
SteamHeatF-3	0.33
T-Top-Chips-4	0.33
SulphidityL-4	46.84
dtype: float64	

As expected, the datapoint 'AAWhiteSt-4' even has 46% of data missing! It seems we only have 300 datapoints and presumably these missing values occur in different records our dataset will be decimated if we just drop all rows with missing values.

```
kamyr_df.shape
```

```
(301, 23)
```

```
kamyr_df.dropna().shape
```

```
(131, 23)
```

As we drop all rows with missing values, we are left with only 131 records. Whilst this might be good enough for some purposes, there are more viable options.

Perhaps we can first remove the column with the most missing values and then drop all remaining

```
kamyr_df.drop(columns=['AAWhiteSt-4 ','SulphidityL-4 ']).dropna().shape
```

```
(263, 21)
```

Significantly better, although we lost the information of 2 sensors we now have a complete dataset with 263 records. For purposes where those 2 sensors are irrelevant this is a viable option, keep in mind that this dataset is still 100% truthful, as we have not imputed any values.

Another option, where we retain all our records would be using the timely nature of our dataset, each record is a measurement with an interval of 1 hour. I have no knowledge of this dataset but one might make the assumption that the interval of 1 hour is taken as the state of the machine does not alter much in 1 hour. Therefore we could do what is called a forward fill, where we fill in the missing values with the same value of the sensor for the previous measurement.

This would solve nearly all nan values as there might be a problem where the first value is missing. This is shown below.

```
kamyr_df.fillna(method='ffill')['SulphidityL-4 ']
```

```
NaN
       29.11
1
2
       29.11
3
       29.02
4
       29.01
        . . .
296
       30.43
297
       30.29
298
       30.47
299
       30.47
300
       30.46
Name: SulphidityL-4 , Length: 301, dtype: float64
```

Although our dataset is not fully the truth, we can see that little to no changes occur in the sensor and using a forward fill is arguably the most suitable option.

4.2 Travel times

Another dataset from the same source contains a collection of recorded travel times and specific information about the travel itself as e.g.: the day of the week, where they were going, ...

```
travel_df = pd.read_csv('https://openmv.net/file/travel-times.csv')
travel_df
```

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
0	1/6/2012	16:37	Friday	Home	51.29	127.4	78.3	
1	1/6/2012	08:20	Friday	GSK	51.63	130.3	81.8	
2	1/4/2012	16:17	Wednesday	Home	51.27	127.4	82.0	
3	1/4/2012	07:53	Wednesday	GSK	49.17	132.3	74.2	
4	1/3/2012	18:57	Tuesday	Home	51.15	136.2	83.4	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
202	7/13/2011	17:08	Wednesday	Home	51.96	132.6	57.5	
203	7/12/2011	17:51	Tuesday	Home	53.28	125.8	61.6	
204	7/11/2011	16:56	Monday	Home	51.73	125.0	62.8	
	AvgMovingS	Speed FuelE	conomy Tot	calTime	MovingTime	Take407All	Comments	
0		84.8	NaN	39.3	36.3	No	NaN	

(continues on next page)

4.2. Travel times 17

(continued	from	previous	page

							1 0 /
1	88.9	NaN	37.9	34.9	No	NaN	
2	85.8	NaN	37.5	35.9	No	NaN	
3	82.9	NaN	39.8	35.6	No	NaN	
4	88.1	NaN	36.8	34.8	No	NaN	
200	82.4	7.89	65.5	39.7	No	NaN	
201	95.1	7.89	40.1	32.1	Yes	NaN	
202	76.7	NaN	54.2	40.6	Yes	NaN	
203	87.6	NaN	51.9	36.5	Yes	NaN	
204	92.5	NaN	49.5	33.6	Yes	NaN	
[205 rows 2	x 13 columns]						

we have a total of 205 records and we can already see that the FuelEconomy column seems pretty bad, let's quantify that.

```
travel_df.isna().sum().divide(len(travel_df)).round(4)*100
```

Date	0.00
StartTime	0.00
	0.00
DayOfWeek	
GoingTo	0.00
Distance	0.00
MaxSpeed	0.00
AvgSpeed	0.00
AvgMovingSpeed	0.00
FuelEconomy	8.29
TotalTime	0.00
MovingTime	0.00
Take407All	0.00
Comments	88.29
dtype: float64	

In the end, it doesn't seem that bad, but there are comments and nearly none of them are filled in. Which in perspective is understandable. Let's see what the comments look like

```
travel_df[~travel_df.Comments.isna()].Comments
```

```
15
                                    Put snow tires on
39
                                            Heavy rain
49
                                  Huge traffic backup
50
        Pumped tires up: check fuel economy improved?
52
                                  Backed up at Bronte
54
                                   Backed up at Bronte
60
                                                 Rainy
78
                                      Rain, rain, rain
                                      Rain, rain, rain
91
92
          Accident: backup from Hamilton to 407 ramp
110
                                               Raining
132
                              Back to school traffic?
133
                   Took 407 all the way (to McMaster)
150
                                Heavy volume on Derry
156
                           Start early to run a batch
      Accident at 403/highway 6; detour along Dundas
158
165
                                          Detour taken
166
                                       Must be Friday
172
                                Medium amount of rain
```

(continued from previous page)

```
174 New tires
182 Turn around on Derry
184 Empty roads
187 Police slowdown on 403
189 Accident blocked 407 exit
Name: Comments, dtype: object
```

As you would expect, these comments are text based. Now imagine we would like to run some Natural Language Processing (NLP) on these, it would be a pain to perform string operations on it when it is riddled with missing values.

Here a simple example where we select all records containing the word 'rain', with no avail.

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

```
ValueError
                                           Traceback (most recent call last)
/tmp/ipykernel_36906/1298831137.py in <module>
----> 1 travel_df[travel_df.Comments.str.lower().str.contains('rain')]
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/

¬frame.py in __getitem__(self, key)

  3446
  3447
               # Do we have a (boolean) 1d indexer?
-> 3448
               if com.is bool indexer(key):
                    return self._getitem_bool_array(key)
  3449
   3450
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/
⇔common.py in is_bool_indexer(key)
   137
                            # Don't raise on e.g. ["A", "B", np.nan], see
    138
                            # test_loc_getitem_list_of_labels_categoricalindex_with_
⇔na
--> 139
                            raise ValueError(na_msg)
   140
                        return False
   141
                    return True
ValueError: Cannot mask with non-boolean array containing NA / NaN values
```

The last line of the python error traceback gives us the reason it failed, because there were NaN values present.

Luckily the string variable has more or less it's on 'null' value, being an empty string, this way these operations are still possible, most of the comments will just contain nothing.

```
travel_df.Comments = travel_df.Comments.fillna('')
```

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

```
Date StartTime DayOfWeek GoingTo Distance MaxSpeed AvgSpeed
39
    11/29/2011
               07:23
                                              51.74
                                                     112.2
                                                                  55.3
                         Tuesday
                                     GSK
    11/9/2011
                  16:15 Wednesday
                                              51.28
                                                       121.4
                                                                  65.9
60
                                     Home
78
    10/25/2011
                  17:24
                         Tuesday
                                     Home
                                              52.87
                                                       123.5
                                                                  65.1
    10/12/2011
                  17:47 Wednesday
                                     Home
                                              51.40
                                                       114.4
                                                                 59.7
110
     9/27/2011
                  07:36
                           Tuesday
                                      GSK
                                              50.65
                                                       128.1
                                                                  86.3
172
      8/9/2011
                  08:15
                           Tuesday
                                      GSK
                                              49.08
                                                       134.8
                                                                  60.5
    AvgMovingSpeed FuelEconomy TotalTime MovingTime Take407All \
```

(continues on next page)

4.2. Travel times

(continued	from	previous	nage)

39	61.0	NaN	56.2	50.9	No	
60	71.8	9.35	46.7	42.1	No	
78	72.4	8.97	48.7	43.8	No	
91	65.8	8.75	51.7	46.9	No	
110	88.6	8.31	35.2	34.3	Yes	
172	67.2	8.54	48.7	43.8	No	
39 60	Comments Heavy rain Rainy					
78	Rain, rain, rain					
91	Rain, rain, rain					
110	Raining					
172	Medium amount of rain					

Fixed! now we can use the comments for analysis.

We still have to fix the FuelEconomy, let us take a look at the non NaN values

```
travel_df[~travel_df.FuelEconomy.isna()]
```

			DayOfWeek	_		-		\
6	1/2/2012	17:31	Monday	Home	51.37		82.9	
7	1/2/2012	07:34	Monday	GSK	49.01	128.3	77.5	
8	12/23/2011	08:01	Friday	GSK	52.91	130.3	80.9	
9	12/22/2011	17:19	Thursday	Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursday	GSK	49.15	129.4	74.0	
	• • •							
197	7/20/2011	08:24	Wednesday	GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tuesday	Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tuesday	GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
	AvgMovingSpe	ed FuelEc	onomy Tota	alTime N	MovingTime	Take407All	Comments	
6	87	.3	_	37.2	35.3	No		
7	85	.9	_	37.9	34.3	No		
8	88	.3	8.89	39.3	36.0	No		
9	78	.1	8.89	43.5	39.3	No		
10	81	. 4	8.89	39.8	36.2	No		
197	87	.3	7.89	38.5	33.3	Yes		
198	102	.6	7.89	33.3	29.9	Yes		
199	96	. 4	7.89	37.2	31.7	Yes		
200	82	. 4	7.89	65.5	39.7	No		
201	95	.1	7.89	40.1	32.1	Yes		
[188	rows x 13 co	lumns]						

It seems that aside NaN values there are also other intruders, a quick check on the data type (Dtype) reveils it is not recognised as a number!

```
travel_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
```

(continued from previous page)

```
Data columns (total 13 columns):
    Column
                   Non-Null Count Dtype
#
                   205 non-null object
Ω
   Date
                  205 non-null object
205 non-null object
205 non-null object
 1
    StartTime
    DayOfWeek
2
 3
    GoingTo
 4
    Distance
                   205 non-null float64
 5
   MaxSpeed
                   205 non-null float64
6 AvgSpeed
                   205 non-null float64
7
   AvgMovingSpeed 205 non-null float64
8 FuelEconomy 188 non-null object
9 TotalTime 205 non-null float64
10 MovingTime 205 non-null float64
10 Movingin
11 Take407All
                   205 non-null object
                   205 non-null object
12 Comments
dtypes: float64(6), object(7)
memory usage: 20.9+ KB
```

The column is noted as an object or string type, meaning that these numbers are given as '9.24' instead of 9.24 and numerical operations are not possible. We can cast them to numeric but have to warn pandas to coerce errors, meaning errors will be converted to NaN values. Later we'll handle the NaN's.

```
travel_df.FuelEconomy = pd.to_numeric(travel_df.FuelEconomy, errors='coerce')
travel_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 13 columns):
# Column
           Non-Null Count Dtype
    ----
                  _____
                  205 non-null object
Ω
    Date
                 205 non-null object
205 non-null object
1
   StartTime
2
   DayOfWeek
3 GoingTo
                 205 non-null object
                 205 non-null float64
4 Distance
5 MaxSpeed 205 non-null float64
6 AvgSpeed 205 non-null float64
  AvgMovingSpeed 205 non-null float64
  FuelEconomy 186 non-null float64
8
                 205 non-null float64
9
    TotalTime
10 MovingTime
                 205 non-null float64
11 Take407All
                 205 non-null
                                 object
                  205 non-null object
12 Comments
dtypes: float64(7), object(6)
memory usage: 20.9+ KB
```

Wonderful, now the column is numerical and we can see 2 more missing values have popped up! We could easily drop these 19 records and have a complete dataset.

travel_df.dropna()	

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
8	12/23/2011	08:01	Friday	GSK	52.91	130.3	80.9	
9	12/22/2011	17:19	Thursday	Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursday	GSK	49.15	129.4	74.0	
							(cor	tinues on next nage)

4.2. Travel times 21

								(continued fro	om previous page)
11	12/21/2011	07:45	Wedneso	day	GSK	51.77	124.8	71.7	
12	12/20/2011	16:05	Tueso	day	Home	51.45	130.1	75.2	
197	7/20/2011	08:24	Wedneso	day	GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tueso	day	Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tueso	day	GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Mond	day	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thurs	day	GSK	50.90	123.7	76.2	
	AvgMovingSpeed	FuelE	conomy	Tota	alTime	MovingTime	Take407All	Comments	
8	88.3		8.89		39.3	36.0	No		
9	78.1		8.89		43.5	39.3	No		
10	81.4		8.89		39.8	36.2	No		
11	78.9		8.89		43.3	39.4	No		
12	82.7		8.89		41.1	37.3	No		
197	87.3		7.89		38.5	33.3	Yes		
198	102.6		7.89		33.3	29.9	Yes		
199	96.4		7.89		37.2	31.7	Yes		
200	82.4		7.89		65.5	39.7	No		
201	95.1		7.89		40.1	32.1	Yes		
[186	rows x 13 colur	mns]							

However im leaving them as an excercise for you to apply a technique we will see in the next part

4.3 Material properties

Another dataset from the same source contains the material properties from 30 samples, this time there is not timestamp as the samples are not related in time with each other.

```
material_df = pd.read_csv('http://openmv.net/file/raw-material-properties.csv')
material_df
```

	~ 7					1 1 0	1	
	Sample	size1	size2	size3	density1	density2	density3	
0	X12558	0.696	2.69	6.38	41.8	17.18	3.90	
1	X14728	0.636	2.30	5.14	38.1	12.73	3.89	
2	X15468	0.841	2.85	5.20	37.6	13.58	3.98	
3	X21364	0.609	2.13	4.62	34.2	11.12	4.02	
4	X23671	0.684	2.16	4.87	36.4	12.24	3.92	
5	X24055	0.762	2.81	6.36	38.1	13.28	3.89	
6	X24905	0.552	2.34	5.03	41.3	16.71	3.86	
7	X25917	0.501	2.17	5.09	NaN	NaN	NaN	
8	X27871	0.619	2.11	5.13	NaN	NaN	NaN	
9	X28690	0.610	2.10	4.18	35.0	12.15	3.86	
10	X31385	0.532	2.09	4.93	NaN	NaN	NaN	
11	X31813	0.738	2.29	5.47	NaN	NaN	NaN	
12	X32807	0.779	2.62	5.59	NaN	NaN	NaN	
13	X33943	0.537	2.23	5.41	35.2	11.34	3.99	
14	X35035	0.702	2.05	5.10	34.2	10.54	4.02	
15	X39223	0.768	2.51	5.09	34.9	12.55	3.90	
16	X40503	0.714	2.56	6.03	35.6	12.20	4.02	
17	X41400	0.621	2.42	5.10	38.7	14.27	3.98	
18	X42988	0.726	2.11	4.69	37.1	13.14	3.98	

(continued from previous page)

_									 	10,
	19	X44749	0.698	2.36	5.40	36.6	12.16	4.01		
	20	X45295	NaN	NaN	NaN	38.1	13.34	3.89		
	21	X46965	0.759	2.47	4.83	38.7	14.83	3.89		
	22	X49666	0.535	2.13	5.23	NaN	NaN	NaN		
	23	X50678	0.716	2.29	5.45	37.3	13.70	3.92		
	24	X52894	0.635	2.08	4.94	NaN	NaN	NaN		
	25	X53925	0.598	2.12	4.69	37.9	13.45	3.78		
	26	X54254	0.700	2.47	5.22	38.8	14.72	3.92		
	27	X54272	0.957	2.96	7.37	36.2	13.38	4.20		
	28	X54394	0.759	2.66	5.36	35.2	12.19	3.98		
	29	X55408	0.661	2.10	4.27	NaN	NaN	NaN		
	30	X56952	0.646	2.38	4.51	40.1	15.68	3.86		
	31	X57095	0.662	2.34	4.71	35.0	12.37	3.90		
	32	X57128	0.749	2.43	5.16	37.3	13.04	3.92		
	33	X61870	0.598	2.21	4.90	NaN	NaN	NaN		
	34	X61888	0.619	2.59	5.81	NaN	NaN	NaN		
	35	X72736	0.693	2.05	5.02	39.6	15.55	3.94		

let us quantify the amount of missing data

```
material_df.isna().sum().divide(len(material_df)).round(4)*100
```

```
Sample 0.00
size1 2.78
size2 2.78
size3 2.78
density1 27.78
density2 27.78
density3 27.78
dtype: float64
```

Unfortunately that is a lot of missing data, covered in all records, dropping here seems almost impossible if we want to keep a healthy amount of records.

Here it would be wise to go for a more elaborate method of imputation, I opted for the K-nearest neighbours method, which looks at the K most similar records in the dataset to make an educated guess on what the missing value could be, this because we can assume that records with similar data are also similar over all the properties (columns).

Im using the sklearn library for this, which has more imputation techniques such as MICE. More info can be found here

```
from sklearn.impute import KNNImputer
```

im creating an imputer object and specify that i want to use the 5 most similar records and weigh them by distance from the to imputed record, meaning closer neighbours are more important.

```
imputer = KNNImputer(n_neighbors=5, weights="distance")
```

As the imputer only takes numerical values I had to do some pandas magic and drop the first column, which I then added again. The result is a fully filled dataset, you can recognise the new values as they are not rounded.

```
pd.DataFrame(
   imputer.fit_transform(material_df.drop(columns=['Sample'])),
   columns=material_df.columns.drop('Sample')
)
```

size1 size2 size3 density1 density2 density3 0 0.696000 2.690000 6.380000 41.8000000 17.180000 3.990000 1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.150000 5.200000 37.600000 13.580000 3.980000 3 0.69900 2.130000 4.620000 34.200000 11.20000 3.920000 5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552002 2.340000 5.030000 31.30000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 4.180000 35.00000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.930000 37.811132 13.66072 3.99364 11 0.733000 2.230000 <td< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	_							
1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.850000 5.200000 37.60000 13.580000 3.980000 3 0.699000 2.130000 4.620000 34.200000 11.120000 4.020000 4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.762000 2.810000 6.360000 38.10000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 37.811132 13.646072 3.99364 11 0.738000 2.290000 5.470000 37.88833 13.255412 3.941654 12 0.779000 2.620000		size1		size3	_	density2		
2	0	0.696000	2.690000	6.380000	41.800000	17.180000	3.900000	
3	1	0.636000	2.300000	5.140000	38.100000	12.730000		
4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.752000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.00000 12.150000 3.943667 9 0.610000 2.100000 4.930000 35.000000 12.150000 3.980364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.100000 34.200000 10.54000 3.990000 14 0.702000 2.050000 5.100000 34.200000 12.550000 3.980000 15 0.768000 2.510000	2	0.841000	2.850000	5.200000	37.600000	13.580000	3.980000	
5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 5.470000 37.881132 13.646072 3.998364 11 0.738000 2.290000 5.470000 37.88133 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 34.200000 11.340000 3.990000 14 0.702000 2.510000 5.09000 34.90000 12.200000 3.990000 15 0.768000 2.510000	3		2.130000	4.620000	34.200000	11.120000	4.020000	
6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.100000 38.700000 12.200000 4.020000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 18 0.726000 2.100000 <td>4</td> <td></td> <td>2.160000</td> <td>4.870000</td> <td>36.400000</td> <td>12.240000</td> <td>3.920000</td> <td></td>	4		2.160000	4.870000	36.400000	12.240000	3.920000	
7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.550000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.200000 12.200000 4.020000 16 0.714000 2.560000 5.100000 38.700000 14.270000 3.980000 19 0.698000 2.360000 <td>5</td> <td>0.762000</td> <td>2.810000</td> <td>6.360000</td> <td>38.100000</td> <td>13.280000</td> <td>3.890000</td> <td></td>	5	0.762000	2.810000	6.360000	38.100000	13.280000	3.890000	
8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.088833 13.256412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 3.990000 15 0.768000 2.510000 5.090000 34.200000 12.200000 3.990000 16 0.714000 2.560000 5.100000 37.100000 12.200000 4.020000 17 0.621000 2.420000 5.100000 37.100000 13.240000 3.980000 18 0.726000 2.100000 4.690000 37.100000 13.340000 3.980000 19 0.698000 2.470000 </td <td>6</td> <td>0.552000</td> <td>2.340000</td> <td>5.030000</td> <td>41.300000</td> <td>16.710000</td> <td>3.860000</td> <td></td>	6	0.552000	2.340000	5.030000	41.300000	16.710000	3.860000	
9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.08833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.09000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 13.140000 3.980000 18 0.726000 2.160000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 </td <td>7</td> <td>0.501000</td> <td>2.170000</td> <td>5.090000</td> <td>38.495282</td> <td>14.029399</td> <td>3.931180</td> <td></td>	7	0.501000	2.170000	5.090000	38.495282	14.029399	3.931180	
10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.890000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 5.230000 37.391815 13.089536 3.944335 23	8	0.619000	2.110000	5.130000	37.405275	13.157346	3.943667	
11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.70000 14.830000 3.99000 22 0.535000 2.130000 5.230000 37.300000 13.700000 3.92000 24 <td>9</td> <td>0.610000</td> <td>2.100000</td> <td>4.180000</td> <td>35.000000</td> <td>12.150000</td> <td>3.860000</td> <td></td>	9	0.610000	2.100000	4.180000	35.000000	12.150000	3.860000	
12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.2500000 4.020000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.40000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.350000 13.700000 3.780000 24	10		2.090000	4.930000	37.811132	13.646072	3.908364	
13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.700000 3.920000 24 0.635000 2.120000 4.690000 37.90000 13.450000 3.780000 25 </td <td>11</td> <td></td> <td>2.290000</td> <td>5.470000</td> <td></td> <td>13.255412</td> <td></td> <td></td>	11		2.290000	5.470000		13.255412		
14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.70000 3.93900 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 <td>12</td> <td>0.779000</td> <td>2.620000</td> <td>5.590000</td> <td>36.540567</td> <td>12.889902</td> <td>3.970973</td> <td></td>	12	0.779000	2.620000	5.590000	36.540567	12.889902	3.970973	
15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.90000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.980000 29<	13	0.537000	2.230000	5.410000	35.200000	11.340000	3.990000	
16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28	14	0.702000	2.050000	5.100000	34.200000	10.540000	4.020000	
17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.880000 29	15	0.768000	2.510000	5.090000	34.900000	12.550000	3.900000	
18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30	16		2.560000	6.030000	35.600000	12.200000		
19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 37.300000 12.370000 3.990000 32	17	0.621000	2.420000	5.100000	38.700000	14.270000	3.980000	
20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.920000 32	18	0.726000	2.110000	4.690000	37.100000	13.140000	3.980000	
21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.340000 4.710000 35.00000 12.370000 3.90000 31 0.662000 2.430000 5.160000 37.300000 13.040000 3.92000 32 <td>19</td> <td>0.698000</td> <td>2.360000</td> <td>5.400000</td> <td>36.600000</td> <td>12.160000</td> <td>4.010000</td> <td></td>	19	0.698000	2.360000	5.400000	36.600000	12.160000	4.010000	
22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.900000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.920000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34<	20	0.733097	2.653959	5.881504	38.100000	13.340000	3.890000	
23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.90000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	21	0.759000	2.470000	4.830000	38.700000	14.830000	3.890000	
24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	22	0.535000	2.130000	5.230000		13.089536	3.944335	
25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	23	0.716000	2.290000	5.450000	37.300000	13.700000	3.920000	
26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 35.932339 12.318210 3.989911	24	0.635000	2.080000	4.940000	37.254724	13.206262	3.933904	
27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	25	0.598000	2.120000	4.690000	37.900000	13.450000	3.780000	
28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.700000	2.470000	5.220000	38.800000	14.720000	3.920000	
29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911			2.960000	7.370000				
30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	28		2.660000	5.360000	35.200000	12.190000	3.980000	
31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.661000	2.100000	4.270000	36.172345	12.755632	3.887375	
32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.662000						
34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
35 0.693000 2.050000 5.020000 39.600000 15.550000 3.940000								
	35	0.693000	2.050000	5.020000	39.600000	15.550000	3.940000	

This concludes the part of missing values, perhaps you can try yourself and impute the missing values for the FuelEconomy using the SimpleImputer or even the IterativeImputer.

CHAPTER

FIVE

CONCATENATION AND DEDUPLICATION

https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2020-01.csv

```
import pandas as pd
```

```
ModuleNotFoundError Traceback (most recent call last)
/tmp/ipykernel_13304/4080736814.py in <module>
----> 1 import pandas as pd

ModuleNotFoundError: No module named 'pandas'
```

```
/home/lorenzf/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.

py:3441: DtypeWarning: Columns (6) have mixed types.Specify dtype option on importator set low_memory=False.

exec(code_obj, self.user_global_ns, self.user_ns)
```

df

```
VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count
             1.0 2020-01-01 00:28:15 2020-01-01 00:33:03
                                                                         1.0
              1.0 2020-01-01 00:35:39
                                         2020-01-01 00:43:04
1
                                                                          1.0
              1.0 2020-01-01 00:47:41
2
                                         2020-01-01 00:53:52
                                                                          1.0
3
              1.0
                   2020-01-01 00:55:23
                                         2020-01-01 01:00:14
                                                                          1.0
                                         2020-01-01 00:04:16
4
              2.0 2020-01-01 00:01:58
                                                                          1.0
              . . .
                                   . . .
                                                                          . . .
6405003
             NaN 2020-01-31 22:51:00
                                         2020-01-31 23:22:00
                                                                          NaN
             NaN 2020-01-31 22:10:00
                                         2020-01-31 23:26:00
6405004
                                                                          NaN
             NaN 2020-01-31 22:50:07
6405005
                                         2020-01-31 23:17:57
                                                                          NaN
6405006
             NaN 2020-01-31 22:25:53
                                         2020-01-31 22:48:32
                                                                          NaN
6405007
             NaN 2020-01-31 22:44:00
                                         2020-01-31 23:06:00
                                                                          NaN
         trip_distance RatecodeID store_and_fwd_flag PULocationID \
                  1.20
                              1.0
Λ
                                                    N
                                                                238
                  1.20
                               1.0
                                                                239
1
                                                    Ν
2
                  0.60
                               1.0
                                                    Ν
                                                                238
3
                  0.80
                               1.0
                                                    Ν
                                                                238
4
                  0.00
                               1.0
                                                    Ν
                                                                193
                  . . .
                               . . .
                                                  . . .
                                                                . . .
6405003
                  3.24
                                                                237
                               NaN
                                                  NaN
```

/		C	•	
(c	ontinued	from	previous	page

						(continued fre	1 10,
6405004	22.13	NaN		NaN	2	59	
6405005	10.51	NaN		NaN	1	.37	
6405006	5.49	NaN		NaN		50	
6405007	11.60	NaN		NaN	1	.79	
0100007	11.00	21021		11011	-		
	DOLocationID	payment_type	fare_amount	extra	mta tax	tip_amount	\
0	239	1.0	6.00	3.00	0.5	1.47	`
1	238	1.0	7.00	3.00	0.5	1.50	
	238						
2		1.0	6.00	3.00	0.5	1.00	
	151	1.0	5.50	0.50	0.5	1.36	
4	193	2.0	3.50	0.50	0.5	0.00	
	• • •	• • •	• • •	• • •	• • •	• • •	
6405003	234	NaN	17.59	2.75	0.5	0.00	
6405004	45	NaN	46.67	2.75	0.5	0.00	
6405005	169	NaN	48.85	2.75	0.0	0.00	
6405006	42	NaN	27.17	2.75	0.0	0.00	
6405007	205	NaN	54.56	2.75	0.5	0.00	
	tolls_amount	improvement_s	_				
0	0.00		0.3	11.			
1	0.00		0.3	12.			
2	0.00		0.3	10.			
3	0.00		0.3	8.	16		
4	0.00		0.3	4.	80		
	• • •		• • •		• •		
6405003	0.00		0.3	21.	14		
6405004	12.24		0.3	62.	46		
6405005	0.00		0.3	51.	90		
6405006	0.00		0.3	30.	22		
6405007	0.00		0.3	58.	11		
	congestion_su	_					
0		2.5					
1		2.5					
2		2.5					
3		0.0					
4		0.0					
6405003		0.0					
6405004		0.0					
6405005		0.0					
6405006		0.0					
6405007		0.0					
[6405008	rows x 18 col	umns]					

CHAPTER

SIX

SOME PRACTICE

Now that you have learned techniques in data preparation, why don't you put them to use in this wonderfully horrifying dataset. Good luck!

```
import os
import json

import pandas as pd
import kaggle
```

```
ModuleNotFoundError Traceback (most recent call last)

/tmp/ipykernel_36949/2054829274.py in <module>

3
4 import pandas as pd
----> 5 import kaggle

ModuleNotFoundError: No module named 'kaggle'
```

```
df = pd.read_csv('./data/monster_com-job_sample.csv')
```

```
df.head()
```

```
country country_code date_added has_expired \
0 United States of America US NaN No
1 United States of America US NaN No
2 United States of America US NaN No
3 United States of America US NaN No
```

(continued from previous page)

```
United States of America
                                      US
                                                NaN
         job_board
                                                       job_description \
                    TeamSoft is seeing an IT Support Specialist to...
  jobs.monster.com
   jobs.monster.com The Wisconsin State Journal is seeking a flexi...
   jobs.monster.com Report this job About the Job DePuy Synthes Co...
  jobs.monster.com Why Join Altec? If you're considering a career...
  jobs.monster.com Position ID# 76162 # Positions 1 State CT C...
                                           job_title
                                                                 job_type
0
                IT Support Technician Job in Madison
                                                       Full Time Employee
1
            Business Reporter/Editor Job in Madison
                                                                Full Time
  Johnson & Johnson Family of Companies Job Appl...
                                                      Full Time, Employee
3
                     Engineer - Quality Job in Dixon
                                                                Full Time
4
        Shift Supervisor - Part-Time Job in Camphill
                                                     Full Time Employee
                                            location \
                                   Madison, WI 53702
0
1
                                   Madison, WI 53708
  DePuy Synthes Companies is a member of Johnson...
3
                                           Dixon, CA
                                        Camphill, PA
4
                      organization \
Ω
                               NaN
          Printing and Publishing
  Personal and Household Services
3
                  Altec Industries
4
                            Retail
                                            page_url salary
  http://jobview.monster.com/it-support-technici...
  http://jobview.monster.com/business-reporter-e...
  http://jobview.monster.com/senior-training-lea...
3 http://jobview.monster.com/engineer-quality-jo...
                                                        NaN
4 http://jobview.monster.com/shift-supervisor-pa...
                                                        NaN
                       sector
                                                        uniq_id
      IT/Software Development 11d599f229a80023d2f40e7c52cd941e
0
                          NaN e4cbb126dabf22159aff90223243ff2a
2
                          NaN 839106b353877fa3d896ffb9c1fe01c0
   Experienced (Non-Manager)
                               58435fcab804439efdcaa7ecca0fd783
  Project/Program Management 64d0272dc8496abfd9523a8df63c184c
```

Need some inspiration? perhaps this might work.

Part III

3. Data Preprocessing

SEVEN

DATA PREPROCESSING

this is an introduction

Part IV

4. Data Exploration

\sim	ш	Λ		T		
u	п	А	Г		ᆮ	R

EIGHT

DATA EXPLORATION

this is an introduction

Part V

5. Data Visualisation

CHARTER	
CHAPTER	
NINE	

DATA VISUALISATION

this is an introduction

Part VI

6. Machine Learning

СНАРТІ	ĒR
TE	N

MACHINE LEARNING

this is an introduction