$\rm MA3650$ - Numerical Methods for Differential Equations

Luke Dando

March 10, 2021

Contents

1	Revision of Taylor series and Newton's method 1.1 Lecture 1	3 3
2	Convergence of Newton's method 2.1 Lecture 3	3 3
3	Wrapping up chapter 1 3.1 Lecture 6 3.2 Summary	3 3
4	Finite differences 4.1 Lecture 7 4.2 Lecture 8	3 3
5	Explicit numerical schemes for the heat equation 5.1 Lecture 9	3 3
6	Further numerical schemes for the heat equation 6.1 Lecture 11	3 3
7	Numerical schemes for complex boundary conditions 7.1 Lecture 13	3
8	Numerical schemes for complex boundary conditions 2 8.1 Lecture 14 8.2 Lecture 15 8.3 Lecture 16	3 3 3
9	Matrix norms 9.1 Lecture 17	3
10	Matrix perturbations and condition numbers 10.1 Lecture 18	3 3
11	Interpolation, Lagrange polynomials 11.1 Lecture 21	3 3
12	Interpolation, splines 12.1 Lecture 23	3

Different schemes for the heat equation, consistency
13.1 Lecture 25
Consistency 3
14.1 Lecture 26
Convergence 3
15.1 Lecture 27
15.2 Lecture 28
Stability Fourier method 3
16.1 Lecture 29
16.2 Lecture 30
16.3 Lecture 31
Stability matrix method 3
17.1 Lecture 32
17.2 Lecture 33
17.3 Lecture 34
Polynomial Interpolation 3
18.1 Lagrange Polynomial
18.2 Vandermonde Method

1 Revision of Taylor series and Newton's method 1.1 Lecture 1 1.2 Lecture 2 $\mathbf{2}$ Convergence of Newton's method 2.1 Lecture 3 2.2 Lecture 4 Wrapping up chapter 1 3 3.1 Lecture 6 3.2Summary Finite differences 4.1 Lecture 7 4.2Lecture 8 Explicit numerical schemes for the heat equation 5 5.1Lecture 9 5.2Lecture 10 Further numerical schemes for the heat equation 6.1 Lecture 11 6.2 Lecture 12 Numerical schemes for complex boundary conditions Lecture 13 Numerical schemes for complex boundary conditions 2 Lecture 14 8.1 Lecture 15 8.2 Lecture 16 8.3 9 Matrix norms 9.1Lecture 17 Matrix perturbations and condition numbers 10 10.1 Lecture 18 10.2 Lecture 19 11 Interpolation, Lagrange polynomials 11.1 Lecture 21 11.2 Lecture 22

12

Interpolation, splines

satisfy $L_i(x_i) = 1$ and $L_i(x_j) = 0$ for $j \neq i$. Now, given n+1 points $(x_i, y_i) \in \mathbb{R}^2$, $0 \leq i \leq n$, with $x_i \neq x_j$ when $i \neq j$. The Lagrange polynomial p is a polynomial of degree up to n equal to

$$p(x) = \sum_{i=0}^{n} y_i L_i(x).$$
 (2)

This is linear if n = 1 and quadratic if n = 2.

18.2 Vandermonde Method

Given $p(x) = ax^2 + bx + c$, with a, b and c to be determined from the conditions $p(x_i) = y_i$, i = 0, 1, 2, we can input this into a matrix know as the Vandermonde matrix and solve it for values a, b and c.

$$\begin{pmatrix} x_0^2 & x_0 & 1\\ x_1^2 & x_1 & 1\\ x_2^2 & x_2 & 1 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} y_0\\ y_1\\ y_2 \end{pmatrix}. \tag{3}$$

This can be extended for larger polynomials trivially.