Of Given integer N. Return minimum count of numbers, sum of whose squares is equal to N.

Exi N=100 = 102 ars=1

 E_{V2} $N = |0| = 7 |0^2 + 1^2$ and =2

 E_{13} $N = 13 \Rightarrow 3 + 2$ ars = 2

 \mathcal{E}_{xy} $N = 6 \neq 2^2 + 1^2 + 1^2$ ax=3

Did you think greedily ?

 $E_x: N=12 \rightarrow 3^2+1^2+1^2+1^2$

 $\frac{2}{2} + \frac{2}{2} + \frac{2}{2}$

a13=3

2) What does a state represent.

dp[i] => X

X => minimum count of numbers, sum of whose squares is equal to?

3) Meansona relation
$$i = floor(\sqrt{n})$$

$$dp [n] = 1 + Imin (n-i^2)$$

$$i=1$$

Top down dp[n+1] = d-1], dp[0] = 0 - Checking if - previously exculted int count (int n) I calculating are if (dp(n) | =-1)

I store

Tedusn dp(n)

I bedusn int ax + Ni for (inti=1; ixiEN; i++) & are \Rightarrow min (are, 1 + count $(N-i^2)$); do [n] = am. return ar;

Or N houses in a straight line
You are a third.
Each house has some gold in it.
Each house has some gold in it. Each house also has alorm eyetem in it.
If you rob the house i, then the houses i-1 and i+1 would be notified and you
Cannot rob them
Maximize the amount of gold that you can collect.
8 1 2 3
Ex1 A: 10 50 20 60 7 110
8 1 2 3
Ex2 A: 10 20 10 20 7 UD
Can we go greaty
Ex 50 60 40 72

Ex 1 1 1 100 7 200 Find sum of all subsert.

Find max Find if valid Tc: 0 (NX21)

UMU -D max gild gobb-d including ith house. Element af choice Max gold 30600 till ith house i-2-A [i] + Op (i-2) If tobbed. op [i-i] next publical 2) State OP[1] & maximum axwes till it has. 3) Accossive relation do [i] = max (A[i]+dp (i-2), Op [i-i] 4) arewer - Op [N]

Top down

$$dp[n] = d-13$$
 $dp[o] = 7 \ aso[o];$
 $dp[l] = 7 \ max(aso[o], aso[i])$

Int $max-gold \ (int n , int aso[7))$
 $det \ (dp[n] \ l = -i)$
 $det \ (dp[n] \ l = -i)$

$$dp(n) = max (awln) + max-qull(n-2)$$

$$max-qull(n-1)$$

return an op [n];

3) Paccussine selvis

i-1

dp[i] =7 i | max (dp[i]) + 1

0 arr [i] < arr[i]

4) What is as

The second of t

