

Description

Image

1. Close-up of the material's surface. © Chris Lefteri 2. Bike seats with polyurethane cores. © Chris Lefteri

The material

Think of polyurethanes and you think of the soft, the stretchy, materials and fabrics (Lycra or Spandex). Like PVC, polyurethanes have thermoplastic, elastomeric and thermosetting grades. They are easily foamed; some 40% of all PU is made into foam by mixing it with a blowing agent. The foams can be open- or closed-cell, microcellular or filter grades. They are the strongest of elastomers.

Composition (summary)

(CO-NH-R-NH-CO-O-R-O)n

General properties

Density Price Date first used	63.7 * 1.88 1941	-	78 2.07	lb/ft^3 USD/lb		
Mechanical properties						
Young's modulus	2.9e-4	-	0.00435	10^6 psi		
Shear modulus	1.02e-4	-	0.00116	10^6 psi		
Bulk modulus	0.218	-	0.232	10^6 psi		
Poisson's ratio	0.49	-	0.498			
Yield strength (elastic limit)	3.63	-	7.4	ksi		
Tensile strength	3.63	-	7.4	ksi		
Compressive strength	7.25	-	14.5	ksi		
Elongation	380	-	720	% strain		
Fatigue strength at 10^7 cycles	* 2.73	-	5.55	ksi		
Fracture toughness	0.182	-	0.364	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	* 0.51	-	1.2			
Thermal properties						
Glass temperature	-99.7	-	-9.67	°F		
Maximum service temperature	152	-	188	°F		
Minimum service temperature	* -99.7	-	-9.67	°F		
Thermal conductor or insulator?	Good ins	Good insulator				
Thermal conductivity	0.162	-	0.173	BTU.ft/h.ft^2.F		
Specific heat capacity	0.394	-	0.406	BTU/lb.°F		
Thermal expansion coefficient	83.3	-	91.7	µstrain/°F		

Page 2 of 2

Electrical properties

Electrical conductor or insulator? Good insulator Electrical resistivity 1e18 1e22 µohm.cm Dielectric constant (relative permittivity) 5 9 Dissipation factor (dielectric loss tangent) 0.003 0.009 Dielectric strength (dielectric breakdown) 406 559 V/mil

Optical properties Transparency

Transparency	Translucent				
Processability					
Castability	4 - 5				
Moldability	4 - 5				
Machinability	2 - 3				
Weldability	1				

Eco properties

Embodied energy, primary production	* 8.96e3	-	9.91e3	kcal/lb
CO2 footprint, primary production	* 3.52	-	3.89	lb/lb
Recycle	×			

Supporting information

Design guidelines

Urethanes have exceptional strength (up to 48 MPa) and abrasion resistance, low compression set and good fuel resistance. They have useful properties from -55 C to 90 C

Technical notes

Urethane elastomers (elPU) are co-polymers of diisocyanate and polyester.

Typical uses

Cushioning; packaging; shoe soles; tires; fuel hoses; gears; bearings; car bumpers; adhesives; fabric-coating.

Links

Reference

ProcessUniverse

Producers