Komputerowa analiza szeregów czasowych 2023/2024

Lista 2

1. Rozpatrzymy klasyczny model regresji dany następującym wzorem:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

gdzie ϵ_i i=1,2,...,n są niezależnymi zmiennymi losowymi o rozkładzie t Studenta z $\nu>2$ stopniami swobody. Za pomocą symulacji Monte Carlo (przy różnych wielkościach ν i różnych wielkościach n) wyznacz empiryczne odpowiedniki dla wartości oczekiwanej i wariancji estymatorów $\hat{\beta}_0$ oraz $\hat{\beta}_1$ i porównaj je z wartościami teoretycznymi wyznaczonymi na wykładzie. Jak ν i n wpływają na poprawność estymatorów? Te same analizy wykonaj przy założeniu rozkładu normalnego $N(0, \sigma^2)$ zmiennych ϵ_i . Tym razem sprawdź jak σ oraz n wpływają na poprawność estymatorów.

2. Rozpatrzymy model regresji dany następującym wzorem:

$$Y_i = \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

gdzie ϵ_i i = 1, 2, ..., n są niezależnymi błędami o rozkładzie $N(0, \sigma)$.

- a) Wyznacz postać estymatora $\hat{\beta}_1$ współczynnika kierunkowego metodą najmniejszych kwadratów.
- b) Sprawdź czy wyznaczony estymator jest estymatorem nieobciążonym parametru β_1 .
- c) Wyznacz wariancję estymatora.
- d) Sprawdź, czy estymator MNK ma taką samą postać jak estymator wyznaczony metodą największej wiarygodności.
- e) Za pomocą symulacji Monte Carlo (przy różnych wielkościach σ i różnych wielkościach n) wyznacz empiryczne odpowiedniki dla wartości oczekiwanej i wariancji estymatora $\hat{\beta}_1$.

 Jak σ i n wpływaja na poprawność estymatora?

3. W modelu regresji

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, 2, ..., n \tag{1}$$

gdzie ϵ_i , i=1,2,...,n są niezależnymi zmiennymi losowymi $N(0,\sigma)$, za pomocą metody Monte Carlo sprawdź rozkład estymatorów $\hat{\beta}_0$ oraz $\hat{\beta}_1$ i porównaj go z rozkładem teoretycznym przy ustalonej wielkości σ .

- 4. Wykorzystując tą samą metodę co w poprzednim zadaniu, sprawdź rozkłady studentyzowanych estymatorów $\hat{\beta}_0$ oraz $\hat{\beta}_1$ i porównaj je z rozkładami teoretycznymi.
- 5. Dla danych wysymulowanych zastosuj metodę znajdowania punktu zmiany reżimu opisaną w pracy: Gajda Janusz, Sikora Grzegorz, Wyłomańska Agnieszka: Regime variance testing a quantile approach, Acta Phys. Polon B 44(5), 1015-1035, 2013.

 Sprawdź poprawność metody wykorzystując symulacje Monte Carlo.