Summary of the Operational View

- The importance of the operational view
- Help clarify user demands
- Consider all 4 C's
- Customer
- Consumer
- -Client
- Caretaker
- What's in the system? (SBD)
- MAI are the interfaces? (IEM)
- (QSM) fli seu sw lliw woH •
- How will it grow or age? (OSD)

Systems Engineering 0.101: A quick overview

Part 2: The Functional View

Create graphical artifacts first!

Create graphics first, text second when depicting artifacts of a system design.

- Graphics assist in communication with customers, coworkers and other stakeholders
- Text documents will flow from the artifacts.
- Heuristic: A picture really is worth 1000 words!

Functional data flow & control flow diagrams

- Data flow diagrams and control flow diagrams
 the step below System Boundary diagrams
- Graphical depiction of interactions between functions
- Stay focused on the functions, not the implementation
- Stay focused on the functions, not the implementation
- Functions
- Show data and control flows differently
- Hatley-Pirbhai use solid & dashed
- IDEF0 uses entry/exit point
- Define the interfaces in an Interface Table or Data

Site Decomposition

- The process of breaking down the SBD is known as decomposition
- Usually, the next level is functional...
- ...but sometimes the first level is decomposition to sites
- That's the situation for our AHPLS

Functional Data Flow/Control Flow Heuristics

- don't know anything.
- Heuristic: One person's system is another person's component.
- Heuristic: Good quality interface specifications are simple, unambiguous, complete, consise, and focus on substance.
- Heuristic: Working documents should be the same as customer deliverables; that is , they should use the customer's language, not engineering jargon.

(ssed 1s.

Ground DFD (first pass)

Sample Data Flow Diagram

Functional Flow Block Diagram (FFBD)

- Purpose: Depict serial/concurrent properties of the functionality
- Design Goal: Maximize concurrency
- Consider: Relationships between functions to determine dependencies
- Do: Consider sequence "left-to-right"
- Don't: Worry about data flows
- The FFBD is still a static model

Data Flow/Control Flow Diagram vs. FFBD

ground stations

bearing to available

Functional Flow Block Diagram

8

candidate signal levels

Measure

noition

station

ground

tune to "best"

Select and

Hints for working with FFBDs

- At higher levels of abstraction, functions tend to be concurrent
- At lower levels of detail, functions eventually become serial
- To determine concurrency, consider if functions can
 run independently (given necessary inputs)
- Serial relationships tend to impose more constraints on implementation
- Understand why functions are concurrent or serial
 and be conscious of the implications

Figure 1-2: Notional AMS(R)S Partitioning

"Minimum Aviation System Performance Standard for AMS(R)S Data and Voice Communications Supporting Required Communication Performance (RCP) and Required Surveillance Performance (RSP) in Procedural Airspace" Washington, DC: RTCA, Inc., 2013.

A few words about user interfaces

- In the "up front" functional analysis phase
- Consider what information must be presented
- Consider what information must be retained
- Consider what information must be input
- Consider users' environments
- Don't forget the caretakers!
- In the "detailed" functional analysis phase
- Develop user interface command structure
- This can be viewed as a functional hierarchy, taking the commands as functions
- Apply advanced techniques (not covered in 450/451)
- "Leave details to the experts!"

Functional Trade Studies

- Trade studies are hard to do at the functional level
- Heuristic: Do the hard parts first
- What do we trade?
- Function sets defining different mission scenarios
- Different functional decompositions of the same higher-level function
- Alternatives should span the range of potential solutions
- What are our metrics?
- Number
- Complexity
- Reuse
- Scaleability
- Integrity/reliability
- The trade need not be explicit or detailed, but does need to be captured.
- Heuristic: Simplify, Simplify!
- Heuristic: It doesn't exist if it isn't written down

Functional/architectural tradeoff example

							Target Range		
260	270	294	223	221	236	257	əɔu	Relative Importance	
l.	l.	6	3	3	3	l l	3	Minimize installation complexity	
l	l	3	0	l	3	0	G	Minimize acq. cost.	
6	6	6	6	6	6	6	3	AOC Data Comm.	
6	3	6	3	3	l	l	7	Comp. wcurrent antenna placement	
6	l	6	3	3	0	0	ಶ	Minimize Number of Antennas	
0	0	0	0	0	0	0	Į.	Upgrade of existing radio	
l	3	l	3	3	3	3	3	Minimize susceptibility to existing Sys.	<u> </u>
l	3	l	3	3	3	3	3	Minimize interference to existing Sys.	1,2,
3	6	3	l	0	3	6	₽	Good continuity	
3	6	3	l	0	3	6	ε	Good availability	
6	6	6	6	6	6	6	ε	ATS Data Comm.	
6	6	6	6	6	6	6	G	DSB-MA-8SD	
6	6	6	6	6	6	6	ε	Advanced Surveillance Functionality	
6	6	6	6	6	6	6	G	ADS-B functionality	
Arch #7	Arch #6	Arch #5	Arcn #4	Arch #3	Arch #2	Arch #1	Importance Ratir	Customer Need	·ε 'τ 'o
							ng	Maximize, minimize, or tar	
							19g.		
Sters	Functional Product Requirements - Operating Parameters								

Things to consider

- Heuristic: Act on fact!
- Often the simple trade study will only show what you don't know.
- Heuristic: Know what you don't know.
- Be careful with your weighting, as it can change the results of table-based trades.
- Heuristic: The last time your solution is perfect is before you show it to someone else.