
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free). Reviewer: markspencer

Timestamp: [year=2008; month=10; day=24; hr=13; min=30; sec=35; ms=59;]

Validated By CRFValidator v 1.0.3

Application No: 10567091 Version No: 2.0

Input Set:

Output Set:

Started: 2008-09-25 12:59:17.733

Finished: 2008-09-25 12:59:22.458

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 725 ms

Total Warnings: 42

Total Errors: 0

No. of SeqIDs Defined: 54

Actual SeqID Count: 54

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(31)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(32)

Input Set:

Output Set:

Started: 2008-09-25 12:59:17.733 **Finished:** 2008-09-25 12:59:22.458

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 725 ms

Total Warnings: 42

Total Errors: 0

No. of SeqIDs Defined: 54

Actual SeqID Count: 54

Err	or code	Error Description
		This error has occured more than 20 times, will not be displayed
W	402	Undefined organism found in <213> in SEQ ID (35)
W	402	Undefined organism found in <213> in SEQ ID (36)
W	402	Undefined organism found in <213> in SEQ ID (37)
W	402	Undefined organism found in <213> in SEQ ID (38)
W	402	Undefined organism found in <213> in SEQ ID (39)
W	402	Undefined organism found in <213> in SEQ ID (40)

SEQUENCE LISTING

<110>		BECK, NICOI		IR .				
<120>	NOVEL	GENET	「ICALI	Y ENCODED 1	BIOINDICATOR	RS OF CALCIU	JM-IONS	
<130>	08544	19-0185	ō					
<140>	1056	7091						
		3-09-25	5					
<150>	PCT/E	SP2004/	00873	39				
<151>								
<150>	EP 03	3016691	1 2					
<151>								
1517	2003	00 04						
<160>	54							
<170>	Paten	ntIn ve	ersion	n 3.3				
<210>	1							
<211>	1863							
<212>	DNA							
		icial	Seaue	ence				
<220>								
<223>	Descr	iption	n of A	artificial :	Sequence: Sy	nthetic		
	polyn	ucleot	ide					
<400>	1							
atggto	gagca	agggc	gagga	gctgttcacc	ggggtggtgc	ccatcctggt	cgagctggac	60
ggcgad	cgtaa	acggc	cacag	gttcagcgtg	tccggcgagg	gcgagggcga	tgccacctac	120
ggcaaq	gctga	ccctga	aagtt	catctgcacc	accggcaagc	tgcccgtgcc	ctggcccacc	180
ctcgto	gacca	ccctga	acctg	gggcgtgcag	tgcttcagcc	gctaccccga	ccacatgaag	240
cagcad	cgact	tcttca	aagtc	cgccatgccc	gaaggctacg	tccaggagcg	taccatcttc	300
ttcaaq	ggacg	acggca	aacta	caagacccgc	gccgaggtga	agttcgaggg	cgacaccctg	360
gtgaad	ccgca	tcgago	ctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	420
aagcto	ggagt	acaact	acat	cagccacaac	gtctatatca	ccgccgacaa	gcagaagaac	480
ggcato	caagg	cccact	tcaa	gatecgecae	aacatcgagg	acggcagcgt	gcagctcgcc	540
gaccad	ctacc	agcaga	aacac	ccccatcggc	gacggccccg	tgctgctgcc	cgacaaccac	600
taccto	gagca	cccagt	ccgc	cctgagcaaa	gaccccaacg	agaagcgcga	tcacatggtc	660

ctgctggagt tcgtgaccgc cgcccgcatg ctcagcgagg agatgattgc tgagttcaaa

720

gctgcctttg acatgtttga tgcggacggt ggtggggaca tcagcaccaa ggagttgggc 780 acggtgatga ggatgctggg ccagaacccc accaaagagg agctggatgc catcatcgag 840 gaggtggacg aggatggcag cggcaccatc gacttcgagg agttcctggt gatgatggtg 900 960 cgccagatga aagaggacgc caagggcaag tctgaggagg agctggccaa ctgcttccgc atcttcqaca agaacqctqa tqqqttcatc qacatcqaqq aqctqqqtqa qattctcaqq 1020 gccactgggg agcacgtcat cgaggaggac atagaagacc tcatgaagga ttcagacaag 1080 aacaatgacg gccgcattga cttcgatgag ttcctgaaga tgatggaggg tgtgcaggag 1140 ctcatqqtqa qcaaqqqcqa qqaqctqttc accqqqqtqq tqcccatcct qqtcqaqctq 1200 gacggcgacg taaacggcca caagttcagc gtgtccggcg agggcgaggg cgatgccacc 1260 tacqqcaaqc tqaccctqaa qttcatctqc accaccqqca aqctqcccqt qccctqqccc 1320 accetegtga ceacettegg ctaeggeetg atgtgetteg eeegetaeee egaceaeatg 1380 cgccagcacg acttettcaa gtecgecatg cecgaagget acgtecagga gegeaceate 1440 1500 ttcttcaagg acgacggcaa ctacaagacc cgcgccgagg tgaagttcga gggcgacacc ctggtgaacc gcatcgagct gaagggcatc gacttcaagg aggacggcaa catcctgggg 1560 cacaagctgg agtacaacta caacagccac aacgtctata tcatggccga caagcagaag 1620 aacggcatca aggccaactt caagatccgc cacaacatcg aggacggcag cgtgcagctc 1680 gccgaccact accagcagaa cacccccatc ggcgacggcc ccgtgctgct gcccgacaac 1740 cactacctga gctaccagtc cgccctgagc aaagacccca acgagaagcg cgatcacatg 1800 gtcctgctgg agttcgtgac cgccgccggg atcactctcg gcatggacga gctgtacaag 1860 1863 taa

<210> 2

<211> 620

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic polypeptide

<400> 2

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

1 5 10 15

Val Glu Leu Asp Gly Asp Val Asn Gly His Arg Phe Ser Val Ser Gly
20 25 30

Glu Gly	Glu Gly 35	Asp Ala	a Thr	Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile
Cys Thr 50	Thr Gly	' Lys Le	ı Pro 55	Val	Pro	Trp	Pro	Thr 60	Leu	Val	Thr	Thr
Leu Thr	Trp Gly	Val Glı 70	n Cys	Phe	Ser	Arg	Tyr 75	Pro	Asp	His	Met	Lys 80
Gln His	Asp Phe	Phe Ly:	s Ser	Ala	Met	Pro 90	Glu	Gly	Tyr	Val	Gln 95	Glu
Arg Thr	Ile Phe	_	s Asp	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu
Val Lys	Phe Glu	Gly As	o Thr	Leu 120	Val	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly
Ile Asp 130	Phe Lys	Glu Ası	135	Asn	Ile	Leu	Gly	His 140	Lys	Leu	Glu	Tyr
Asn Tyr 145	Ile Ser	His Ası		Tyr	Ile	Thr	Ala 155	Asp	Lys	Gln	Lys	Asn 160
Gly Ile	Lys Ala	His Phe	e Lys	Ile	Arg	His 170	Asn	Ile	Glu	Asp	Gly 175	Ser
Val Gln	Leu Ala	=	s Tyr	Gln	Gln 185	Asn	Thr	Pro	Ile	Gly 190	Asp	Gly
Pro Val	Leu Leu 195	Pro As	o Asn	His 200	Tyr	Leu	Ser	Thr	Gln 205	Ser	Ala	Leu
Ser Lys 210	Asp Pro	Asn Glı	1 Lys 215	Arg	Asp	His	Met	Val 220	Leu	Leu	Glu	Phe
Val Thr 225	Ala Ala	Arg Met 230		Ser	Glu	Glu	Met 235	Ile	Ala	Glu	Phe	Lys 240
Ala Ala	Phe Asp	Met Phe	e Asp	Ala	Asp	Gly 250	Gly	Gly	Asp	Ile	Ser 255	Thr

Lys	Glu	Leu	Gly 260	Thr	Val	Met	Arg	Met 265	Leu	Gly	Gln	Asn	Pro 270	Thr	Lys
Glu	Glu	Leu 275	Asp	Ala	Ile	Ile	Glu 280	Glu	Val	Asp	Glu	Asp 285	Gly	Ser	Gly
Thr	Ile 290	Asp	Phe	Glu	Glu	Phe 295	Leu	Val	Met	Met	Val 300	Arg	Gln	Met	Lys
Glu 305	Asp	Ala	Lys	Gly	Lys 310	Ser	Glu	Glu	Glu	Leu 315	Ala	Asn	Cys	Phe	Arg 320
Ile	Phe	Asp	Lys	Asn 325	Ala	Asp	Gly	Phe	Ile 330	Asp	Ile	Glu	Glu	Leu 335	Gly
Glu	Ile	Leu	Arg 340	Ala	Thr	Gly	Glu	His 345	Val	Ile	Glu	Glu	Asp 350	Ile	Glu
Asp	Leu	Met 355	Lys	Asp	Ser	Asp	Lys 360	Asn	Asn	Asp	Gly	Arg 365	Ile	Asp	Phe
Asp	Glu 370	Phe	Leu	Lys	Met	Met 375	Glu	Gly	Val	Gln	Glu 380	Leu	Met	Val	Ser
Lys 385	Gly	Glu	Glu	Leu	Phe 390	Thr	Gly	Val	Val	Pro 395	Ile	Leu	Val	Glu	Leu 400
Asp	Gly	Asp	Val	Asn 405	Gly	His	Lys	Phe	Ser 410	Val	Ser	Gly	Glu	Gly 415	Glu
Gly	Asp	Ala	Thr 420	Tyr	Gly	Lys	Leu	Thr 425	Leu	Lys	Phe	Ile	Cys 430	Thr	Thr
Gly	Lys	Leu 435	Pro	Val	Pro	Trp	Pro 440	Thr	Leu	Val	Thr	Thr 445	Phe	Gly	Tyr
Gly	Leu 450	Met	Суз	Phe	Ala	Arg 455	Tyr	Pro	Asp	His	Met 460	Arg	Gln	His	Asp
Phe 465	Phe	Lys	Ser	Ala	Met 470	Pro	Glu	Gly	Tyr	Val 475	Gln	Glu	Arg	Thr	Ile 480

Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 515 520 525

Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 530 540

Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 545 550 555 560

Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 565 570 575

Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu Ser Lys Asp 580 585 590

Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 595 600 605

Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 610 615 620

<210> 3 <211> 1902

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic polynucleotide

<400> 3

atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacag gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgacctg gggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg taccatcttc 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360

gtgaaccgca t	cgagctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	420
aagctggagt a	acaactacat	cagccacaac	gtctatatca	ccgccgacaa	gcagaagaac	480
ggcatcaagg d	cccacttcaa	gatccgccac	aacatcgagg	acggcagcgt	gcagctcgcc	540
gaccactacc a	agcagaacac	ccccatcggc	gacggccccg	tgctgctgcc	cgacaaccac	600
tacctgagca d	cccagtccgc	cctgagcaaa	gaccccaacg	agaagcgcga	tcacatggtc	660
ctgctggagt t	cgtgaccgc	cgcccgcatg	ctaatggatg	acatctacaa	ggctgcggta	720
gagcagctga d	cagaagagca	gaaaaatgag	ttcaaggcag	ccttcgacat	cttcgtgctg	780
ggcgctgagg a	atggctgcat	cagcaccaag	gagctgggca	aggtgatgag	gatgctgggc	840
cagaacccca c	cccctgagga	gctgcaggag	atgatcgatg	aggtggacga	ggacggcagc	900
ggcacggtgg a	actttgatga	gttcctggtc	atgatggttc	ggtgcatgaa	ggacgacagc	960
aaagggaaat d	ctgaggagga	gctgtctgac	ctcttccgca	tgtttgacaa	aaatgctgat	1020
ggctacatcg a	acctggatga	gctgaagata	atgctgcagg	ctacaggcga	gaccatcacg	1080
gaggacgaca t	cgaggaact	catgaaggac	ggagacaaga	acaacgacgg	ccgcatcgac	1140
tatgatgagt t	cctggagtt	catgaagggt	gtggaggagc	tcatggtgag	caagggcgag	1200
gagetgttca d	ccggggtggt	gcccatcctg	gtcgagctgg	acggcgacgt	aaacggccac	1260
aagttcagcg t	gtccggcga	gggcgagggc	gatgccacct	acggcaagct	gaccctgaag	1320
ttcatctgca o	ccaccggcaa	gctgcccgtg	ccctggccca	ccctcgtgac	caccttcggc	1380
tacggcctga t	igtgcttcgc	ccgctacccc	gaccacatgc	gccagcacga	cttcttcaag	1440
teegeeatge o	ccgaaggcta	cgtccaggag	cgcaccatct	tcttcaagga	cgacggcaac	1500
tacaagaccc o	gcgccgaggt	gaagttcgag	ggcgacaccc	tggtgaaccg	catcgagctg	1560
aagggcatcg a	acttcaagga	ggacggcaac	atcctggggc	acaagctgga	gtacaactac	1620
aacagccaca a	acgtctatat	catggccgac	aagcagaaga	acggcatcaa	ggccaacttc	1680
aagatccgcc a	acaacatcga	ggacggcagc	gtgcagctcg	ccgaccacta	ccagcagaac	1740
acccccatcg o	gcgacggccc	cgtgctgctg	cccgacaacc	actacctgag	ctaccagtcc	1800
gccctgagca a	aagaccccaa	cgagaagcgc	gatcacatgg	tcctgctgga	gttcgtgacc	1860
gccgccggga t	cactctcgg	catggacgag	ctgtacaagt	aa		1902

<211> 633

<220>

<223> Description of Artificial Sequence: Synthetic polypeptide

<400> 4

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 15

Val Glu Leu Asp Gly Asp Val Asn Gly His Arg Phe Ser Val Ser Gly 20 25 30

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60

Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 80

Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95

Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu
100 105 110

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140

Gly Ile Lys Ala His Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
180 185 190

Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205

Ser	Lys 210	Asp	Pro	Asn	Glu	Lys 215	Arg	Asp	His	Met	Val 220	Leu	Leu	Glu	Phe
Val 225	Thr	Ala	Ala	Arg	Met 230	Leu	Met	Asp	Asp	Ile 235	Tyr	Lys	Ala	Ala	Val 240
Glu	Gln	Leu	Thr	Glu 245	Glu	Gln	Lys	Asn	Glu 250	Phe	Lys	Ala	Ala	Phe 255	Asp
Ile	Phe	Val	Leu 260	Gly	Ala	Glu	Asp	Gly 265	Cys	Ile	Ser	Thr	Lys 270	Glu	Leu
Gly	Lys	Val 275	Met	Arg	Met	Leu	Gly 280	Gln	Asn	Pro	Thr	Pro 285	Glu	Glu	Leu
Gln	Glu 290	Met	Ile	Asp	Glu	Val 295	Asp	Glu	Asp	Gly	Ser 300	Gly	Thr	Val	Asp
Phe 305	Asp	Glu	Phe	Leu	Val 310	Met	Met	Val	Arg	Cys 315	Met	Lys	Asp	Asp	Ser 320
Lys	Gly	Lys	Ser	Glu 325	Glu	Glu	Leu	Ser	Asp 330	Leu	Phe	Arg	Met	Phe 335	Asp
Lys	Asn	Ala	Asp 340	Gly	Tyr	Ile	Asp	Leu 345	Asp	Glu	Leu	Lys	Ile 350	Met	Leu
Gln	Ala	Thr 355	Gly	Glu	Thr	Ile	Thr 360	Glu	Asp	Asp	Ile	Glu 365	Glu	Leu	Met
Lys	Asp 370	Gly	Asp	Lys	Asn	Asn 375	Asp	Gly	Arg	Ile	Asp 380	Tyr	Asp	Glu	Phe
Leu 385	Glu	Phe	Met	Lys	Gly 390	Val	Glu	Glu	Leu	Met 395	Val	Ser	Lys	Gly	Glu 400
Glu	Leu	Phe	Thr	Gly 405	Val	Val	Pro	Ile	Leu 410	Val	Glu	Leu	Asp	Gly 415	Asp
Val	Asn	Gly	His 420	Lys	Phe	Ser	Val	Ser 425	Gly	Glu	Gly	Glu	Gly 430	Asp	Ala

Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Gly Tyr Gly Leu Met 450 455 460 Cys Phe Ala Arg Tyr Pro Asp His Met Arg Gln His Asp Phe Phe Lys 465 470 475 480 Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys 485 490 Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp 505 510 Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp 515 520 525 Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn 535 540 530 Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe 545 550 555 560 Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His 565 570 575 Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp 580 585 590 Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu 600 605 595 Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile 610 615 620

Thr Leu Gly Met Asp Glu Leu Tyr Lys 625 630

<210> 5 <211> 1863 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic polynucleotide

<400> 5

atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacag gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 180 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc ctcgtgacca ccctgacctg gggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cagcacgact tetteaagte egecatgeee gaaggetaeg teeaggageg taccatette 300 360 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacat cagccacaac gtctatatca ccgccgacaa gcagaagaac 480 ggcatcaagg cccacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 600 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgcccgcatg ctcagcgagg agatgattgc tgagttcaaa 720 gctgcctttg acatgtttga tgcggacggt ggtggggaca tcagcaccaa ggagttgggc 780 acggtgatga ggatgctggg ccagaacccc accaaagagg agctggatgc catcatcgag 840 gaggtggacg aggatggcag cggcaccatc gacttcgagg agttcctg