Nombre y Apellido:

Justifique todas sus respuestas

Parte práctica.

- 1. (15 pts.) Sea W el subespacio de $\mathbb{R}^{2\times 2}$ generado por el conjunto $S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$ y sea $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2\times 2} : a+d=b+c \right\}$.
 - a) Dar una descripción implícita y una base del subespacio $W \cap U$ y determinar su dimensión.
 - b) Probar que Tr A = 0, para toda matriz $A \in W \cap U$.
 - c) Hallar un subespacio U' de $\mathbb{R}^{2\times 2}$ tal que $\mathbb{R}^{2\times 2}=U\oplus U'$.
- 2. (15 pts.) Sea $T: \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal definida por T(x, y, z) = (-x z, -y + z, -x y + 2z, x + z).
 - a) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
 - b) Dar una descripción implícita de $\operatorname{Im} T$, calcular su dimensión y mostrar una base.
 - c) Calcular $[T]_{\mathcal{B}}^{\mathcal{B}'}$, donde \mathcal{B} y \mathcal{B}' son las bases ordenadas de \mathbb{R}^3 y \mathbb{R}^4 dadas, respectivamente, por

$$\mathcal{B} = \{(0,1,1), (2,0,0), (0,1,-1)\}, \quad \mathcal{B}' = \{e_1 - e_2, e_1, e_3 - e_4, e_3\},$$

siendo $\{e_1, e_2, e_3, e_4\}$ la base ordenada canónica de \mathbb{R}^4 .

- 3. (15 pts.) Sea $A = \begin{pmatrix} -i & 0 & i \\ 0 & 1+i & 0 \\ 0 & 1 & -1 \end{pmatrix} \in \mathbb{C}^{3\times 3}$.
 - a) Calcular el determinante de A.
 - b) Probar que A es inversible y hallar matrices elementales $E_1, E_2, \ldots, E_n \in \mathbb{C}^{3\times 3}, n \in \mathbb{N}$, tales que $A = E_n \ldots E_2 E_1$.
 - c) $T: \mathbb{C}^3 \to \mathbb{C}^3$ la transformación lineal cuya matriz en la base ordenada canónica es A. Decidir si T diagonalizable y en caso afirmativo mostrar una base ordenada \mathcal{B} de \mathbb{C}^3 tal que $[T]_{\mathcal{B}}$ sea diagonal.
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Si $T: V \to V$ es una transformación lineal tal que $\operatorname{Im}(T) \subseteq \operatorname{Nu}(T)$, entonces $T^2 = 0$.
 - b) Existe una base \mathcal{B} de $\mathbb{R}^{2\times 2}$ tal que $A^t=A$, para toda $A\in\mathcal{B}$.
 - c) Sea V un espacio vectorial de dimensión n y sea $T:V\to V$ una transformación lineal no inversible. Entonces existe una base ordenada de V tales que la matriz de T en dicha base tiene al menos una columna nula.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial sobre un cuerpo \mathbb{F} .
 - a) Dar la definición de subconjunto linealmente independiente de V.
 - b) Probar que si S es un subconjunto linealmente independiente de V y $\beta \in V$ es un vector que no pertenece al subespacio generado por S, entonces el conjunto $S \cup \{\beta\}$ es linealmente independiente.
 - c) Probar que si $V \neq 0$ y S es un conjunto finito de generadores de V, entonces S contiene una base de V.
- 6. (20 pts.) Sean V y W espacios vectoriales y sea $T:V\to W$ una transformación lineal.
 - a) Dar la definición del núcleo y de la imagen de T.
 - b) Probar que T es inyectiva si y solo si $Nu(T) = \{0\}.$
 - c) Probar que si V y W tienen la misma dimensión finita, entonces T es inyectiva si y solo si es T sobreyectiva si y solo si T es un isomorfismo.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				