jee-main-maths-06-04-2023-shift-2

EE24BTECH11047 - Niketh Prakash Achanta

16)	The sum of all values of α , for which the points whose position vectors are $\hat{i} - 2\hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{j} + 4\hat{k}$, $(\alpha + 1)\hat{i} + 2\hat{k}$ and $9\hat{i} + (\alpha - 8)\hat{j} + 6\hat{k}$ are coplanar, is equal to									
	a) -2	b) 2	c) 6	d) 4						
17)			2), intersect the line $\frac{x}{2}$ ne distance of $\mathbf{P}(1, -9)$							
	a) 9	b) $\sqrt{54}$	c) $\sqrt{69}$	d) $\sqrt{74}$						
18)	All the letters of the word PUBLIC are written in all possible orders and these words are written as in a dictionary with serial numbers. Then the serial number of the word PUBLIC is :									
	a) 580	b) 578	c) 576	d) 582						
19)	Let the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} represent three coterminous edges of a parallelepiped of volume V. Then the volume of the parallelepiped, whose coterminous edges are represented by \mathbf{a} , \mathbf{b} + \mathbf{c} and \mathbf{a} + $\mathbf{2b}$ + $\mathbf{3c}$ is equal to:									
	a) 2V	b) 6V	c) 3V	d) V						
20)	Among the statement $(S1)$: $2023^{2022} - 19$ $(S2)$: $13(13)^n - 11n$	$ny n \in \mathbf{N}$								
	a) only (S2) is corre	ect	c) both $(S1)$ and $(S$	2) are incorrect						
	b) only (S1) is corre	ect	d) both $(S1)$ and $(S$	2) are correct						
21)	The value of $\tan 9^{\circ}$	$-\tan 27^{\circ} - \tan 63^{\circ} + \tan 63^{\circ}$	nn 81° is:							

- 22) If $(20)^{19} + 2(21)(20)^{18} + 3(21)^2(20)^{17} + \cdots + 20(21)^{19} = k(20)^{19}$, then k is equal to
- 23) Let the eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is reciprocal to that of the hyperbola $2x^2 2y^2 = 1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is:
- 24) For $\alpha, \beta, z \in \mathbb{C}$ and $\lambda > 1$, if $\sqrt{\lambda 1}$ is the radius of the circle $|z \alpha|^2 + |z \beta|^2 = 2\lambda$, then $|\alpha \beta|$ is equal to
- 25) Let a curve y = f(x), $x \in (0, \infty)$ pass through the points $\mathbf{P}(1, \frac{3}{2})$ and $\mathbf{Q}(a, \frac{1}{2})$. If the tangent at any point $\mathbf{R}(b, f(b))$ to the given curve cuts the y-axis at the points $\mathbf{S}(0, c)$ such that bc = 3, then $(PQ)^2$ is equal to
- **S** (0,c) such that bc=3, then $(PQ)^2$ is equal to 26) If the lines $\frac{x-1}{2}=\frac{2-y}{-3}=\frac{z-3}{\alpha}$ and $\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{\beta}$ intersect, then the magnitude of the minimum value of $8\alpha\beta$ is:
- 27) Let $f(x) = \frac{x}{(1+x^n)^{1/n}}, x \in \mathbb{R} \{-1\}, n \in \mathbb{N}, n > 2$. If $f^n(x) = n(fofof \cdots \text{upto n times})(x)$, then $\lim_{n \to \infty} \int_0^1 x^{n-2} (f^n(x)) dx$ is equal to
- 28) If the mean and variance of the frequency distribution.

	x_i	2	4	6	8	10	12	14	16
ĺ	f_i	4	4	α	15	8	β	4	5

are 9 and 15.08 respectively, then the value of $\alpha^2 + \beta^2 - \alpha\beta$ is

- 29) The number of points, where the curve $y = x^5 20x^3 + 50x + 2$ crosses the x-axis is:
- 30) The number of 4-letter words, with or without meaning, each consisting of 2 vowels and 2 consonants, which can be formed from the letters of the word UNIVERSE without repetition is: