EMERGING METHODS FOR EARLY DETECTIONOF FORESTFIRES

VIDEOANALYSIS

OPENCYFORVIDEOPROCESSING

Date	04 November2022
Team ID	PNT2022TMID30362
Project Name	EmergingMethodsforEarly Detectionof
	Forest Fires

Importing The Image Data Generator Library

importkeras

from keras. preprocessing. image import Image Data Generator

Definetheparameters/argumentsfor ImageDataGeneratorclass

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rota ti on_range=180,zoom_range=0.2, horizontal_flip=True)test_datagen=ImageDataGenerator(rescale=1./2)

horizontal_flip=True)test_datagen=ImageDataGenerator(rescale=1./2 55)

ApplyingImageDataGeneratorfunctionalitytotrainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/train_set',target_size=(128,128),batch_size=32,class_mod e='binary')

Found436imagesbelongingto2classes.

ApplyingImageDataGeneratorfunctionalitytotestset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/
Dataset/test_set',target_size=(128,128),batch_size=32,c
lass_mode='binary')

Found121imagesbelongingto2classes.

Importmodelbuildinglibraries

#TodefineLinearinitialisationimportSequential
fromkeras.modelsimportSequential
#ToaddlayersimportDense
fromkeras.layersimportDense
#TocreateConvolutionkernelimportConvolution2D
fromkeras.layersimportConvolution2D
#importMaxpoolinglayer
fromkeras.layersimportMaxPooling2D
#importflattenlayer
from keras.layers import
Flattenimport
warningswarnings.filterwarnings('igno re')

Initializingthemodel

model=Sequential()

AddCNNLayer

model.add(Convolution2D(32,(3,3),input_shape=(12 8,128,3),activation='relu'))#addmaxpooling layer

model.add(MaxPooling2D(pool_size=(2,2)))
#addflattenlayer
model.add(Flatten())

AddHiddenLayer

```
#add hidden
layermodel.add(Dense(150,activation='relu')
)#add output
layermodel.add(Dense(1,activation='sigmoid')
```

Configurethelearningprocess

```
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["
accuracy"])
```

```
Trainthemodel
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_
data=x_test,validation_steps=4)
Epoch1/10
14/14[======]-97s7s/step -loss:
1.3060 -
accuracy: 0.7775 - val loss: 0.5513 - val accuracy:
0.8512Epoch2/10
14/14[======]-26s2s/step -loss:
0.3178 -
accuracy: 0.8807 - val loss: 0.1299 - val accuracy:
0.9421Epoch3/10
14/14[======]-26s2s/step -loss:
0.2226 -
accuracy: 0.9106 - val_loss: 0.1311 - val_accuracy:
0.9421Epoch4/10
14/14[======]-31s2s/step -loss:
0.1836 -
accuracy: 0.9174 - val loss: 0.1129 - val accuracy:
0.9339Epoch5/10
14/14[=======]-30s 2s/step-loss:
0.1675 -
```

```
accuracy: 0.9243 - val loss: 0.0925 - val accuracy:
0.9669Epoch6/10
14/14[======]-26s2s/step -loss:
0.1884 -
accuracy: 0.9289 - val_loss: 0.1287 - val_accuracy:
0.9339Epoch7/10
14/14[======] -28s 2s/step -loss:
0.1724 -
accuracy: 0.9335 - val loss: 0.0926 - val accuracy:
0.9752Epoch8/10
14/14[======]-26s2s/step -loss:
0.1510 -
accuracy: 0.9404 - val loss: 0.0757 - val accuracy:
0.9752Epoch 9/10
14/14[======]-26s
                                                  #importcv2
2s/step-loss:
accuracy:0.9174-val_loss:0.0537 -val_accuracy:0.9835
                                                  importcv2
Epoch10/10
14/14[=======]-26s
2s/step-loss:
accuracy:0.9312-val_loss:0.0573 -val_accuracy:0.9835
<keras.callbacks.Historyat0x7f05d66a9c90>
```

SaveTheModel

model.save("forest1.h5")

Predictions

#import
load_modelfrom
keras.model
fromkeras.models
importload_model
#importimageclassfromk
eras
from tensorflow.keras.preprocessing import image
#importnumpy
importnumpy

0.173-2

0.154-6

```
#loadthesavedmodel
model=load_model("forest1.h5")
img=image.load_img(r'/content/drive/MyDrive/Dataset/test_set/fore
 st/
0.48007200_1530881924_final_forest.jpg')x=image.img_to_arra
 y(img)
res = cv2.resize(x, dsize=(128, dsize=(1
 128),interpolation=cv2.INTER_CU
BIC)#expand the image
shapex=np.expand_di
ms(res,axis=0)p
red=model.predi
ct(x)
 1/1[======]-0s
 126ms/step
pred
 array([[0.]],dtype=float32)
```

OpenCVForVideoProcessing

```
pipinstalltwilio
```

Looking in indexes: https://pypi.org/simple, https://us-

python.pkg.dev/colab-

wheels/public/simple/Requirementalready

satisfied:twilioin

/usr/local/lib/python3.7/dist-packages(7.15.1)

Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-

packages(fromtwilio)(2022.5)

Requirementalreadysatisfied:requests>=2.0.0in

/usr/local/lib/python3.7/dist-

packages(fromtwilio)(2.23.0)Requirementalreadysatisfied:

PyJWT<3.0.0,>=2.0.0in

/usr/local/lib/python3.7/dist-

packages(fromtwilio)(2.6.0)Requirementalreadysatisfied:urllib3!=1.25.0,!=1

.25.1,<1.26,>=1.21.1in

/usr/local/lib/python3.7/dist-packages(fromrequests>=2.0.0-

>twilio)(1.24.3)

Requirementalreadysatisfied:certifi>=2017.4.17in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0-

>twilio)(2022.9.24)

Requirementalreadysatisfied:idna<3,>=2.5in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0-

>twilio)(2.10)

Requirementalreadysatisfied:chardet<4,>=3.0.2in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0-

>twilio)(3.0.4)

pipinstallplaysound

Looking in indexes: https://pypi.org/simple, https://us-

python.pkg.dev/colab-

wheels/public/simple/Requirementalready

satisfied:playsound in

/usr/local/lib/python3.7/dist-packages(1.3.0)

#importopencylibrary

importcv2

#importnumpy
importnumpyasnp
#importimagefunctionfromkeras
fromkeras.preprocessingimport

```
image#importload_modelfromk
eras
fromkeras.modelsimportload_model
#import client from twilio
APIfrom twilio.rest import
Client#importplaysoundpacka
ge
fromplaysoundimportplaysound
```

WARNING:playsound:playsoundisrelyingonanotherpythonsubproces s.Pleaseuse`pipinstallpygobject`ifyouwantplaysoundtorun more efficiently.

```
#load the saved
modelmodel=load_model("fores
t1.h5") #define
videovideo=cv2.VideoCapture(
0)#define the
featuresname=['forest','withfire'
]
```