MTH 3001 Problem Set 5: Polynomials

Another obvious source of problems is polynomials. Here are a few problems involving polynomials that have turned up on old exams. We've already seen a few examples on some of the earlier sheets.

One fact about polynomials that sometimes is useful is the division algorithm: if you divide a polynomial f(x) by a polynomial g(x) then f(x) = q(x)g(x) + r(x) where the quotient q(x) and the remainder r(x) are polynomials and either r is the zero polynomial, or $0 \le \deg r(x) < \deg g(x)$. So, in particular, if the divisor g(x) = x - a, then the remainder is f(a). [Adapted by Professor Jerrold Grossman from material prepared by Professor Barry Turett, Oakland University. October 11, 2004.]

1.* (1977, A-1) Consider all lines that meet the graph of

$$y = 2x^4 + 7x^3 + 3x - 5$$

in four distinct points, say (x_i, y_i) , i = 1, 2, 3, 4. Show that

$$\frac{x_1 + x_2 + x_3 + x_4}{4}$$

is independent of the line and find its value.

2.*** (1990, B-5) Is there an infinite sequence a_0, a_1, a_2, \ldots of nonzero real numbers such that for $n = 1, 2, 3, \ldots$ the polynomial $p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ has exactly n distinct real roots?

3.** (1991, A-3) Find all real polynomials p(x) of degree $n \ge 2$ for which there exist real numbers $r_1 < r_2 < \cdots < r_n$ such that

- 1. $p(r_i) = 0$ for i = 1, 2, ..., n and
- 2. $p'\left(\frac{r_i+r_{i+1}}{2}\right)=0$ for $i=1,2,\ldots,n-1$, where p'(x) denotes the derivative of p(x).

4.*** (1992, B-4) Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with $x^3 - x$. Let

$$\frac{d^{1992}}{dx^{1992}} \left(\frac{p(x)}{x^3 - x} \right) = \frac{f(x)}{g(x)}$$

for polynomials f(x) and g(x). Find the smallest possible degree of f(x).

5.*** (1994, B-2) Find all c such that the graph of the function $x^4 + 9x^3 + cx^2 + ax + b$ meets some line in four distinct points.

6.**** (2000, A-6) Let f(x) be a polynomial with integer coefficients. Define a sequence a_0, a_1, \ldots of integers such that $a_0 = 0$ and $a_{n+1} = f(a_n)$ for all $n \ge 0$. Prove that if there exists a positive integer m with $a_m = 0$ then either $a_1 = 0$ or $a_2 = 0$.

7.*** (2001, A-3) For each integer m, consider the polynomial

$$P_m(x) = x^4 - (2m+4)x^2 + (m-2)^2.$$

For what values of m is $P_m(x)$ the product of two non-constant polynomials with integer coefficients?

Hints:

- 1. Find the sum of the roots of some polynomial.
- 2. Define the a_n inductively with $|a_{n+1}|$ much less than $|a_n|$.
- 3. If n > 2, then $\frac{p'(x)}{p(x)} = \frac{1}{x r_1} + \dots + \frac{1}{x r_n}$ is positive at $(r_{n-1} + r_n)/2$.
- 4. Use partial fractions.
- 5. By replacing x by $x \frac{9}{4}$ and adding a linear polynomial, reduce to the analogous problem for $x^4 + ax^2$.
- 6. If p is a polynomial with integer coefficients, then m-n divides p(m)-p(n) for all integers m and n.
- 7. Note that $P_m(x) = (x^2 (m-2))^2 8x^2$ and this has no integer roots.