Deena 20104016

Basic Analysis using Numpy and Pandas

Import Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Importing Dataset

```
In [2]: df=pd.read_csv("4_drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
•••						
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

To display first 10 rows

In [3]: df.head(10)

Out[3]:

		Age	Sex	ВР	Cholesterol	Na_to_K	Drug
-	0	23	F	HIGH	HIGH	25.355	drugY
	1	47	М	LOW	HIGH	13.093	drugC
	2	47	М	LOW	HIGH	10.114	drugC
	3	28	F	NORMAL	HIGH	7.798	drugX
	4	61	F	LOW	HIGH	18.043	drugY
	5	22	F	NORMAL	HIGH	8.607	drugX
	6	49	F	NORMAL	HIGH	16.275	drugY
	7	41	М	LOW	HIGH	11.037	drugC
	8	60	М	NORMAL	HIGH	15.171	drugY
	9	43	М	LOW	NORMAL	19.368	drugY

To display last 5 rows

In [4]: df.tail(5)

Out[4]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

Satistical Summary

```
In [5]: df.describe()
```

Out[5]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

To find shape and size

```
In [6]: df.shape
Out[6]: (200, 6)
In [7]: df.size
Out[7]: 1200
```

To fill the null values

In [8]: df.isna()

Out[8]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
195	False	False	False	False	False	False
196	False	False	False	False	False	False
197	False	False	False	False	False	False
198	False	False	False	False	False	False
199	False	False	False	False	False	False

200 rows × 6 columns

To fill missing values

_

Out[9]:

In [9]: df.dropna()

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

coloumns

```
In [10]: df.columns
Out[10]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
```

to print a particular coloumn

```
In [11]: | data=df[['Age', 'Sex']]
           data
                 Age Sex
              0
                  23
              1
                  47
                        Μ
              2
                  47
                        М
              3
                  28
                        F
              4
                  61
                        F
            195
                  56
                        F
            196
                  16
                        М
            197
                  52
                        Μ
            198
                  23
                        Μ
            199
                  40
                        F
           200 rows × 2 columns
```

line plot

```
In [12]: data.plot.line()
```

Out[12]: <AxesSubplot:>

bar plot

```
In [13]: data.plot.bar()
```

Out[13]: <AxesSubplot:>

hist plot

```
In [14]: data.plot.hist()
```

Out[14]: <AxesSubplot:ylabel='Frequency'>

Area plot

```
In [15]: data.plot.area()
```

Out[15]: <AxesSubplot:>

Box plot

```
In [16]: data.plot.box()
```

Out[16]: <AxesSubplot:>

pie plot

```
In [17]: data.plot.pie(y='Age')
Out[17]: <AxesSubplot:ylabel='Age'>
```



```
In [18]: data.plot.scatter(x='Age',y= 'Sex')
```

Out[18]: <AxesSubplot:xlabel='Age', ylabel='Sex'>

