Working Principles Of Proof Assistant

And Formalization Of Some Proofs In Agda

Ashwot Acharya, Bishesh Bohora, Supervisor: Mr K.B Manandhar Supreme Chaudhary

Kathmandu University

What are proof assistant

Proof Assistants
What are proof
assistant
Why digital
verification is
needed?

Foundations

Architecture of proof assistant

Comparative Study

Formalization O

Some Proofs

Limitations

Proof assistant, are software more specifically a type of programming language thats allows us to formalize mathematical proofs in computer for digital verification.

Proof Assistants What are proof assistant Why digital verification is needed?

Foundations

Architecture of proof assistant

Comparati Study

Formalization Of Some Proofs

Some Proofs

Limitations

Need of digital verification

- ⋄ Fast and Efficient
- Many cases can be explored which would take mathematicians long time
 - ex: The Kepler Conjecture's proof , which was so complex that verifying it manually would take 20 person-years, but proof assistants made this verification feasible and fast.
- What if you don't use proof assistants? ABC conjecture

Proof Assistants
What are proof
assistant
Why digital
verification is
needed?

Foundation:

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs

Limitations

Mathematicians when a correct proof of the four color theorem was revealed

"What the hell? It's assisted by computers!?"

Foundations

Natural Deduction

Proof Assistants
Foundations
Naturl deduction

 λ -Calcu

Architecture of proof assistant

Comparative Study

Formalization (
Some Proofs

- ♦ Natural Deduction is a rule-based system for deriving conclusions from assumptions in logic.
- Instead of using exhaustive truth tables, proofs are built step-by-step using inference rules.
- \diamond Example: Proving from $A \land (A \rightarrow \bot)$ that \bot (contradiction) can be derived.
- Basis for how proof assistants check the logical structure of proofs.

Foundations

Naturl deduction

λ-Calculi

Architecture of proof assistant

Comparative Study

Formalization O
Some Proofs

Foundations
Naturl deductio

Architecture of proof assistant

Comparative Study

Formalization C Some Proofs

Limitations

Intuitionistic Logic

- Intuitionistic Logic Also called Constructive Logic, reflects principles of constructive mathematics, where a statement is only true if a proof can be constructed.
- Omits some classical logic rules, such as the Law of Excluded Middle.
- ♦ Stronger requirement: to prove existence, a method or algorithm must be given.
- Proof assistants leverage this constructive approach for digital verification.

Foundations
Naturl deduction

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs

Limitations

Introduction Rules

Elimination Rules

Inference Rules for Intuitionistic Logic

λ -Calculus and Type Theory

Proof Assistants
Foundations
Natural deduction

λ-Calculus

Architecture of proof assistant

Comparative Study

Formalization O
Some Proofs

Limitations

- \diamond λ -Calculus: A foundational system for defining and applying functions using abstraction and application.
- Type Theory: Assigns types to every term; ensures correctness of operations.
- ⋄ Dependent types allow types to depend on values, expressing complex logical properties.
- **⋄ Curry–Howard Correspondence**:

Propositions \leftrightarrow Types Proofs \leftrightarrow Programs

Dependent types allow types to depend on values, expressing

Architecture of proof assistant

Architecture of a Proof Assistant

Proof Assistants

Foundations

Architecture of proof assistant

Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

- **Kernel**: Minimal, trustworthy codebase enforcing logical rules and validating proofs.
- ⋄ Tactic Engine: Helps build and automate proofs step by step.
- Formal Proof Language: Rigorously expresses definitions, statements, and proofs.
- Libraries: Collections of verified mathematical foundations for reuse.
- ♦ User Interface: IDEs and plugins for interactive, efficient proof development.

Foundations

Architecture of proof assistant

Kernel Tactic Engine Language User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

Kernel: The Trusted Core

- The **kernel** is the minimal and most critical part of a proof assistant.
- It enforces the logical rules of the underlying formal system (e.g., type theory).
- Responsible for validating every proof step to guarantee correctness.
- Ensures soundness and trustworthiness; the rest of the system depends on its integrity.
- Typically very small and rigorously tested or formally verified to avoid bugs.
- Example: Agda's kernel is written in Haskell and integrates normalization to check definitional equality.

Foundations

Architecture of proof assistant
Kernel
Tactic Engine
Language

User Interface
Comparative
Study

Formalization Of Some Proofs

Limitations

Tactic Engine: Proof Construction Assistant

- ♦ The tactic engine supports users in constructing proofs interactively.
- It breaks complex proof goals into simpler subgoals using proof strategies called tactics.
- Provides automation for common proof patterns, speeding up proof development.
- ⋄ Enables both forward and backward reasoning approaches.
- ⋄ Even fully automated tactics rely on the kernel for final verification.
- Varies among assistants (Agda has minimal/no tactics, Coq and Lean have powerful tactic systems).

Proof Assistants
Foundations

Architecture of proof assistant
Kernel
Tactic Engine
Language

User Interface
Comparative
Study

Formalization Of Some Proofs

Limitations

Formal Proof Language: Expressing Proofs Precisely

- ♦ This language allows expressing definitions, propositions, and proofs rigorously.
- ⋄ Typically a dependently typed language so logical properties can be encoded as types.
- Provides syntax and semantics suitable for formal reasoning and machine checking.
- ⋄ Enables users to write human-readable yet unambiguous formal proofs.
- Integrates smoothly with tactics and type checker to maintain correctness.
- ♦ Example languages: Agda's core language, Coq's Gallina, Lean's dependent type language.

Foundations

Architecture of proof assistant
Kernel
Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

Libraries: Reusable Verified Foundations

- ⋄ Extensive collections of formalized mathematics and algorithms supporting new developments.
- Include basic theories such as arithmetic, algebra, logic, and set theory.
- ⋄ Enable users to **build on existing verified results** without re-proving foundations.
- ⋄ Libraries evolve and grow, fostering collaboration and community sharing.
- Well-maintained libraries reduce duplication and improve proof assistant adoption.
- Examples include Coq's Standard Library, Agda Standard Library, Lean's mathlib.

Architecture of proof assistant
Kernel
Tactic Engine
Language
Libraries
User Interface

Foundations

Comparative Study

Formalization Of Some Proofs

Limitations

User Interface: Proof Development Environment

- Provides interactive tools like IDEs, editor plugins, or command line interfaces
- ⋄ Features include syntax highlighting, error reporting, real-time proof state visualization, and auto-completion.
- ⋄ Enhances usability and productivity for proof authors.
- Supports integration with tactics and proof language for seamless workflow.
- ⋄ Examples: CoqIDE, Proof General, Emacs-mode for Agda, VS Code extensions.
- A good interface lowers the learning curve and makes formalization more accessible.

Comparative Study

Comparative Table: Agda, Rocq (Coq), and Lean

Proof Assistants

Architecture of proof assistant

Comparative Study

Formalization C

Component	Agda	Rocq (Coq)	Lean
Proof Style	Explicit term-based, man- ual proof writing	Tactic-based, automated backward reasoning	Both tactic-based and term-style
Kernel	Minimal, written in Haskell, tight integra- tion with normalization	Based on Calculus of Inductive Constructions (CIC), written in Coq (extracted to OCaml)	CIC-based, written in $C++/C$
Type Checking	Bidirectional, transparent, normalization by evaluation	Bidirectional, heavy conversion, strong automation	Bidirectional, smart elaboration (coercion, backtracking, overload- ing)
Automation	Limited (no tactics, minimal automation)	Extensive tactic engine and proof search	Advanced, seamless tactic/term mixing, smart elaborator
Use Cases	Foundations, education, dependently typed programming	Large/complex for- malizations, industrial- scale proofs	Research, education, combinatorial/mathematical formalizations

Formalization Of Some Proofs

Eg: Defining Natural Numbers

Proof Assistants

Architecture of proof assistant

Comparative Study

Formalization O
Some Proofs

Defining Natural Numbers

simple properities
Formalization O
DeMorgan's Law

Limitations

data N : Set where

Zero : N

 $suc : N \rightarrow N$

Foundations

Architecture of proof assistant

Comparative Study

Some Proofs

Numbers simple properities

Formalization Of DeMorgan's Law

Limitations

Eg: Some mathematical properities

Transitivity properties:

data
$$_==_$$
 { A : Set } (x : A) : A -> Set where refl : x == x

Formalization Of Some Proofs

Formalization Of DeMorgan's Law

DeMorgan's Law in agda

Proof Assistants

Foundations

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs Defining Natural Numbers simple properities Formalization Of DeMorgan's Law

```
DeMorgan's Law
open import Agda. Primitive using (Level; lzero)
open import Data. Product using (\times;,)
open import Data.Sum using ( ⊎; inj1; inj2)
open import Relation. Nullary using (Dec; yes; no)
open import Data. Empty using (\bot; \bot - elim)
open import Relation.Nullary.Negation using (-)
--One Direction
\texttt{deMorganOneWay} \;:\; \forall \; \{\ell\} \; \{\texttt{P} \; \texttt{Q} \;:\; \texttt{Set} \; \ell\} \; \rightarrow \; (\lnot \; \texttt{P}) \; \uplus \; (\lnot \; \texttt{Q}) \; \rightarrow \; \lnot \; (\texttt{P} \; \times \; \texttt{Q})
deMorganOneWay (inj1 np) (p , q) = np p
deMorganOneWay (inj2 nq) (p , q) = nq q
```

```
Proof Assistants
```

Foundations

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs Defining Natural Numbers simple properities Formalization Of

DeMorgan's Law Limitations

```
Converse, Requires Non Constructive Assumptions
deMorganOtherWay :
\forall \{\ell\} \{P Q : Set \ell\}
\rightarrow Dec P

ightarrow Dec Q
\rightarrow \neg (P \times Q)
\rightarrow (\neg P) \uplus (\neg Q)
deMorganOtherWay (yes p) notPQ = inj2 (\lambda q \rightarrow notPQ (p , q))
deMorganOtherWay (no np) (yes q) = inj1 np
deMorganOtherWay (no np) (no nq) = inj1 np -- or inj2 nq
```

Foundations

Proof Assistants

proof assistant

Study

Some Proofs

Limitations

- Unable to completely formalize "Constructive Reals"
- issue encountered while creating a reciprocal function $N \to Q$
- Limited time to explore the rigorous algorithm of bi-directional type checking

Thank you!