

胡钧

核天体物理研究组制程质近代物理研究所

2012创新群体研讨会 2012年12月14-15日,北京香山

报告内容

- ●近期工作
- ●工作展望
- ●团队及经费

近期工作1

RIBLL1 - 低能次级束测试

参照东京大学CRIB装置,在RIBLL1上加装气体靶。

● 产生反应(逆运动学)

¹H(²²Ne, ²²Na)n

● 主束(²²Ne⁷⁺)

能量: 6.2 MeV/u;流强:~300 enA (RIBLL1入口)

● 气体靶

氢气 [\$30,80毫米长,500 mbar大气压,酒精冷却~2°C]

● 次级束(²²Na¹¹⁺)

▶纯度:30%,流强:1.7×10⁴ pps

▶预期: 1000 enA ²²Ne, 1atm氢气, ²²Na流强可达2×10⁵ pps

近期工作1(续)

测试结果

• 束流粒子鉴别图

狭缝条件:C1: ± 15 mm ($\Delta E/E=\pm 1.5\%$), C2: ± 10 mm ($\Delta E/E=\pm 1.0\%$)

TOF1计数率:46万每秒

TOF2计数率:7.6万每秒

T1 - T2传输效率: 17%

【参见: J.J. He et al., NIMA(2012)】

近期工作1(续)

Nuclear Instruments and Methods in Physics Research A 680 (2012) 43-47

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

A new low-energy radioactive beam line for nuclear astrophysics studies in China

J.J. He^{a,*}, S.W. Xu^a, P. Ma^a, J.S. Wang^a, Y.Y. Yang^{a,b}, J.B. Ma^a, L.Y. Zhang^{a,b,c}, L. Li^a, X.Q. Yu^a, S.L. Jin^a, J. Hu^{a,d}, S. Kubono^d, S.Z. Chen^{a,b}, N.T. Zhang^a, M.L. Liu^a, X.G. Lei^a, Z.Y. Sun^a, Y.H. Zhang^a, X.H. Zhou^a, H.S. Xu^a, G.Q. Xiao^a

^a Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China

^b Graduate School of Chinese Academy of Sciences, Beijing 100049, China

^c School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

^d Center for Nuclear Study (CNS), University of Tokyo, Wako Branch at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

近期工作2

关键天体核反应: 18 Ne $(\alpha, p)^{21}$ Na

发生在X射线暴过程中的从热CNO循环突破到rp过程的关键反应

合作单位:

近物所,北京原子能院,上海应物 所,东京大学等

实验参数:

●初级束: ²⁰Ne⁸⁺

--能量: 8.1 MeV/u

--流强: 150 pnA

●次级東: ²¹Na¹¹⁺

--能量: 4.2 MeV/u

--流强: 2×10⁵pps

--纯度: 70%

束流离子鉴别

反冲粒子鉴别

数据分析完成

文章撰写中

近期工作3

关键核天体反应 $^{14}O(\alpha,p)^{17}F$ 研究

实验参数:

●初级束: 16O6+

--能量: 6.6 MeV/u

--流强: 90 pnA

●次级束: ¹⁷F⁹⁺

--能量: 3.6 MeV/u

--流强: **2.5×10⁵pps**

--纯度: 90%

近期工作3(续)

¹⁷F⁹⁺ @ H₂ Target

Energy: 61.8 MeV

Intensity: 2.5×10⁵ pps

H₂ Gas Target

Length: 300 mm Pressure: 600 Torr

Entrance Window:

2.5 µm Havar foil

Exit Window:

25 µm Mylar foil

Micron Si

Area: 5 ×5 cm²

 ΔE : 65 μ m (PSD)

E: 1.5 mm (SSD)

近期工作3(续)

工作展望

工作展望1

● RIBLL1核天体物理实验

准备¹⁸Ne(α,p)²¹Na, ¹⁴O(α,p)¹⁷F等实验

【2013年CNS靶室运抵兰州】

工作展望2

● 低能核天体关键反应截面研究【挑战: ¹³C(α,n)¹6O反应】

科学问题: 天体物理慢中子俘获s过程悬而未决的中子流来源问题

最可能的中子源: 核反应¹³C(α,n)¹⁶O,¹⁷O(α,n)²⁰Ne和²²Ne(α,n)²⁵Mg

科学意义:这些天体反应的截面研究对于人们理解处于AGB星演化阶段的红巨星中重元素的核合成具有非常重要的意义。

研究现状: 三个反应在低能区的实验数据极度缺乏或者数据的误差 太大,因此,他们对s过程中子流的贡献尚没有明确的定论。

天体物理场所:

1.5-3 M_⊙AGB星

典型温度:

 $T_9 \sim 0.09 - 0.27$

典型密度:

 $\rho \sim 10^3 - 10^5 \text{ g/cm}^3$

实验可行性

320KV高压平台: 运行稳定, 性能良好, 脉冲束

4He束流: 50 pnA

13C靶: 容易制备或购买

探测器系统:

己购置1套中子探测器(液体闪烁体) 及相应的电子学系统(2013年6月到货)

屏蔽系统:

需要购置搭建(中子及γ射线屏蔽材料)

表: ¹³C(α,n)¹6O实验中可探测到的中子产额的估算结果。

$E_{\rm cm}({\rm keV})$	V (kV)	σ (barn)	Y(c/day)	Y(c/week)	Y(c/month)
220	144	5.91E-20		3	21
230	150	1.57E-19	7	52	225
240	157	1.62E-12	18	125	536
250	163	3.67E-12	40	283	1211
270	177	1.63E-11	179	1255	5379
280	183	5.49E-11	604	4228	18119

关于团队

职工:

何建军(博士),胡钧(博士) 许世伟(硕士),于祥庆(硕士) 侯素青(在职博士生),马少波(在职硕士生)

研究生:

张立勇(预聘用博士),陈思泽(博士)

外籍专家引进

德国波鸿鲁尔大学Claus Rolfs教授

曾任职于加拿大,美国,意大利等许多著名大学。曾是诺贝尔物理学奖得主W.A. Fowler的长期合作者;美国物理学会Hans A. Bethe Prize的获得者;曾在PRL, PLB, PRC等国际重要学术刊物发表450多篇文章,出版了核天体物理"圣经"式著作《Cauldrons in the Cosmos》。

2011-2012年中科院"外国专家特聘研究员"

日本东京大学Shigeru Kubono教授

东京大学核科学研究中心宇宙核物理组负责人。曾在Nature, PRL, APJ, PLB等刊物上发表文章130余篇。 2012 - 2013年度中科院"外国专家特聘研究员"。

研究经费

项目名称	经费来源	经费	状态
		(万元)	
地下核天体物理前期研究	院方向项目	50	已结题
核天体物理研究	"百人计划"	173	年底结题
对新星和X射线爆过程中的关键	自然基金	46	年底结题
核反应的实验研究	面上项目		
恒星中氢、氦燃烧过程中的关	自然基金	300	正在
键核反应及rp路径上原子核性 质的研究	重点项目	(160)	执行
元素核合成中的	国家自然基金	600	正在
关键科学问题研究	"创新群体科学基金"	(50)	执行
RIBLL1低能	所支持经费	50	正在
次级束改造			执行
X射线暴关键核反应	自然基金	30	正在
¹⁴ O (α, p) ¹⁷ F的研究	青年科学基金		执行

