In [1]:

Project 1

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]:

data_train = pd.read_csv('train.csv')
data_test=pd.read_csv('test.csv')
```

In [3]:

data_train

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	X38
0	0	130.81	k	V	at	а	d	u	j	0	 0	0	1	0	0	0	0
1	6	88.53	k	t	av	е	d	У	1	0	 1	0	0	0	0	0	0
2	7	76.26	az	W	n	С	d	Χ	j	Χ	 0	0	0	0	0	0	1
3	9	80.62	az	t	n	f	d	Χ	1	е	 0	0	0	0	0	0	0
4	13	78.02	az	V	n	f	d	h	d	n	 0	0	0	0	0	0	0
4204	8405	107.39	ak	S	as	С	d	aa	d	q	 1	0	0	0	0	0	0
4205	8406	108.77	j	0	t	d	d	aa	h	h	 0	1	0	0	0	0	0
4206	8412	109.22	ak	V	r	а	d	aa	g	е	 0	0	1	0	0	0	0
4207	8415	87.48	al	r	е	f	d	aa	I	U	 0	0	0	0	0	0	0
4208	8417	110.85	Z	r	ae	С	d	aa	g	W	 1	0	0	0	0	0	0

4209 rows × 378 columns

```
In [4]:
```

data_test

	ID	X0	X1	X2	Х3	X4	X5	X6	X8	X10	 X375	X376	X377	X378	X379	X380	X382
0	1	az	٧	n	f	d	t	а	W	0	 0	0	0	1	0	0	0
1	2	t	b	ai	а	d	b	g	У	0	 0	0	1	0	0	0	0
2	3	az	٧	as	f	d	а	j	j	0	 0	0	0	1	0	0	0
3	4	az	1	n	f	d	Z		n	0	 0	0	0	1	0	0	0
4	5	W	S	as	С	d	У	i	m	0	 1	0	0	0	0	0	0
420	4 8410	aj	h	as	f	d	aa	j	е	0	 0	0	0	0	0	0	0
420	5 8411	t	aa	ai	d	d	aa	j	У	0	 0	1	0	0	0	0	0
420	8413	У	V	as	f	d	aa	d	W	0	 0	0	0	0	0	0	0
420	7 8414	ak	٧	as	а	d	aa	С	q	0	 0	0	1	0	0	0	0
420	8416	t	aa	ai	С	d	aa	g	r	0	 1	0	0	0	0	0	0

4209 rows × 377 columns

In [5]:

data_train.shape

(4209, 378)

In [6]:

data_test.shape

(4209, 377)

In [7]:

data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 378 entries, ID to X385

dtypes: float64(1), int64(369), object(8)

memory usage: 12.1+ MB

```
In [8]:

data_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 377 entries, ID to X385
dtypes: int64(369), object(8)
memory usage: 12.1+ MB
```

Problem statement 1

- variance = 0
- · removing those values

For train data

```
In [9]:
print(len(data_train['X93'].unique()))
 1
In [10]:
for each in data_train:
    if len(data_train[each].unique())==1:
         print(each)
 X11
 X93
 X107
 X233
 X235
 X268
 X289
 X290
 X293
 X297
 X330
 X347
In [11]:
```

data_train.drop(['X11','X93','X107','X233','X235','X268','X289','X290','X293','X297',

For test data

```
In [12]:
    for each in data_test:
        if len(data_test[each].unique())==1:
            print(each)

X257
        X258
        X295
        X296
        X369

In [13]:
    data_test.drop(['X257','X258','X295','X296','X369'],axis=1,inplace= True)
```

Problem statement 2

· finding null and unique values

```
In [14]:
    for each in data_train:
        if data_train[each].isnull().sum()==True:
            print(each)

In [15]:
    for each in data_test:
        if data_test[each].isnull().sum()==True:
            print(each)
```

no null values

Problem statement 3

- Finding Categorical columns
- · applying label encoder

```
In [16]:
for each in data_train:
    print(np.dtype(data_train[each]))
 int64
 int64
In [17]:
categorical_col_train=[c for c in data_train if data_train[c].dtype==np.dtype('0')]
In [18]:
categorical_col_train
 ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
In [19]:
categorical_col_test=[c for c in data_test if data_test[c].dtype==np.dtype('0')]
In [20]:
categorical_col_test
 ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
 · applyting label encoder
```

train data

In [21]:

catdf_train= data_train[categorical_col_train]

In [22]:

catdf_test= data_test[categorical_col_test]

In [23]:

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

In [24]:

catdf_train

	X0	X1	X2	Х3	X4	X5	X6	X8
0	k	V	at	а	d	u	j	0
1	k	t	av	е	d	У	1	0
2	az	W	n	С	d	Χ	j	Χ
3	az	t	n	f	d	Χ	1	е
4	az	V	n	f	d	h	d	n
4204	ak	S	as	С	d	aa	d	q
4205	j	0	t	d	d	aa	h	h
4206	ak	V	r	а	d	aa	g	е
4207	al	r	е	f	d	aa	1	u
4208	Z	r	ae	С	d	aa	g	W

4209 rows × 8 columns

```
In [25]:
catdf_test
```

```
X2 X3 X4 X5 X6
                                       X8
0
      az
          ٧
                         d
                             t
                                  а
                                       W
1
          b
                         d
                             b
               ai
                    а
                                  g
                                       У
2
                    f
                         d
      a7
               as
                             а
3
          f
                         d
                                       n
4
                    C
                         d
      W
          S
               as
                                       m
4204
          h
                    f
                         d
     aj
               as
                             aa
                                       е
4205 t
               ai
          aa
                             aa
4206
                    f
          V
                         d
               as
                             aa
4207 ak
               as
                    а
                         d
                             aa
                                       q
4208 t
               ai
                         d
          aa
                    C
                             aa
```

4209 rows × 8 columns

```
In [26]:
```

```
data_train['X0']=le.fit_transform(data_train['X0'])
data_train['X1']=le.fit_transform(data_train['X1'])
data_train['X2']=le.fit_transform(data_train['X2'])
data_train['X3']=le.fit_transform(data_train['X3'])
data_train['X4']=le.fit_transform(data_train['X4'])
data_train['X5']=le.fit_transform(data_train['X5'])
data_train['X6']=le.fit_transform(data_train['X6'])
data_train['X8']=le.fit_transform(data_train['X8'])
```

In [27]:

data_train

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	X38
0	0	130.81	32	23	17	0	3	24	9	14	 0	0	1	0	0	0	0
1	6	88.53	32	21	19	4	3	28	11	14	 1	0	0	0	0	0	0
2	7	76.26	20	24	34	2	3	27	9	23	 0	0	0	0	0	0	1
3	9	80.62	20	21	34	5	3	27	11	4	 0	0	0	0	0	0	0
4	13	78.02	20	23	34	5	3	12	3	13	 0	0	0	0	0	0	0
4204	8405	107.39	8	20	16	2	3	0	3	16	 1	0	0	0	0	0	0
4205	8406	108.77	31	16	40	3	3	0	7	7	 0	1	0	0	0	0	0
4206	8412	109.22	8	23	38	0	3	0	6	4	 0	0	1	0	0	0	0
4207	8415	87.48	9	19	25	5	3	0	11	20	 0	0	0	0	0	0	0
4208	8417	110.85	46	19	3	2	3	0	6	22	 1	0	0	0	0	0	0

4209 rows × 366 columns

test data

```
In [28]:
```

```
data_test['X0']=le.fit_transform(data_test['X0'])
data_test['X1']=le.fit_transform(data_test['X1'])
data_test['X2']=le.fit_transform(data_test['X2'])
data_test['X3']=le.fit_transform(data_test['X3'])
data_test['X4']=le.fit_transform(data_test['X4'])
data_test['X5']=le.fit_transform(data_test['X5'])
data_test['X6']=le.fit_transform(data_test['X6'])
data_test['X8']=le.fit_transform(data_test['X8'])
```

In [29]:

data_test

	ID	X0	X1	X2	Х3	X4	X5	X6	X8	X10	 X375	X376	X377	X378	X379	X380	X382
0	1	21	23	34	5	3	26	0	22	0	 0	0	0	1	0	0	0
1	2	42	3	8	0	3	9	6	24	0	 0	0	1	0	0	0	0
2	3	21	23	17	5	3	0	9	9	0	 0	0	0	1	0	0	0
3	4	21	13	34	5	3	31	11	13	0	 0	0	0	1	0	0	0
4	5	45	20	17	2	3	30	8	12	0	 1	0	0	0	0	0	0
4204	8410	6	9	17	5	3	1	9	4	0	 0	0	0	0	0	0	0
4205	8411	42	1	8	3	3	1	9	24	0	 0	1	0	0	0	0	0
4206	8413	47	23	17	5	3	1	3	22	0	 0	0	0	0	0	0	0
4207	8414	7	23	17	0	3	1	2	16	0	 0	0	1	0	0	0	0
4208	8416	42	1	8	2	3	1	6	17	0	 1	0	0	0	0	0	0

4209 rows × 372 columns

feature selection

In [30]:

X = data_train.drop(['y','ID'],axis=1)

```
In [31]:
Χ
       X0
            X1
                 X2
                      X3
                           X4
                                X5
                                     X6
                                          X8
                                               X10
                                                     X12
                                                                X375
                                                                        X376
                                                                               X377
                                                                                       X378
                                                                                              X379
                                                                                                      X380
                                                                                                              X382
                                                                0
0
       32
            23
                 17
                      0
                           3
                                24
                                     9
                                          14
                                               0
                                                      0
                                                                                1
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
 1
       32
            21
                 19
                           3
                                     11
                                               0
                                                      0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
                      4
                                28
                                          14
 2
       20
            24
                 34
                      2
                           3
                                27
                                     9
                                          23
                                               0
                                                      0
                                                                0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              1
 3
       20
            21
                 34
                      5
                           3
                                27
                                     11
                                          4
                                               0
                                                      0
                                                                0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
 4
       20
            23
                 34
                      5
                           3
                                12
                                     3
                                          13
                                               0
                                                      0
                                                                0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
 4204
       8
            20
                      2
                           3
                                     3
                                               0
                                                      0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
                 16
                                0
                                          16
                                                                1
                                     7
                                          7
 4205
      31
            16
                 40
                      3
                           3
                                0
                                               0
                                                      0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
                                                      1
                                                                0
 4206
       8
            23
                 38
                      0
                           3
                                0
                                     6
                                          4
                                               0
                                                                        0
                                                                                1
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
4207
            19
                 25
                      5
                           3
                                0
                                     11
                                          20
                                               0
                                                      0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
4208
      46
            19
                 3
                      2
                           3
                                0
                                     6
                                          22
                                               0
                                                      0
                                                                        0
                                                                               0
                                                                                       0
                                                                                               0
                                                                                                      0
                                                                                                              0
4209 rows × 364 columns
In [32]:
y= data_train['y']
In [33]:
У
  0
          130.81
  1
           88.53
  2
           76.26
  3
           80.62
           78.02
 4204
          107.39
  4205
          108.77
          109.22
  4206
           87.48
  4207
 4208
          110.85
 Name: y, Length: 4209, dtype: float64
```

Model Building

```
In [34]:
from sklearn.model_selection import train_test_split
In [35]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_stat
In [36]:
from sklearn.decomposition import PCA
In [37]:
obj=PCA(n_components= 0.7)
In [38]:
obj.fit(X_train)
 PCA(n_components=0.7)
In [39]:
X_train_PCA=obj.transform(X_train)
X_test_PCA=obj.transform(X_test)
In [40]:
X_train.shape
 (2820, 364)
In [41]:
y_train.shape
 (2820,)
In [42]:
X_train_PCA.shape
 (2820, 3)
```

Model Building

```
In [43]:
!pip install xgboost
 Requirement already satisfied: xgboost in d:\users\coold\anaconda3\lib\site-packages (1.6.2)
 Requirement already satisfied: scipy in d:\users\coold\anaconda3\lib\site-packages (from xgboost) (1.7.3)
 Requirement already satisfied: numpy in d:\users\coold\anaconda3\lib\site-packages (from xgboost) (1.21.5)
In [44]:
from xgboost import XGBRegressor
 d:\Users\coold\anaconda3\lib\site-packages\xgboost\compat.py:36: FutureWarning: pandas.Int64Index is deprecat
 andas in a future version. Use pandas. Index with the appropriate dtype instead.
   from pandas import MultiIndex, Int64Index
In [45]:
model=XGBRegressor()
In [46]:
model.fit(X_train_PCA, y_train)
 XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
              gamma=0, gpu_id=-1, importance_type=None,
              interaction_constraints='', learning_rate=0.300000012,
              max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,
              monotone constraints='()', n estimators=100, n jobs=8,
              num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,
              reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',
              validate parameters=1, verbosity=None)
In [47]:
y_pred = model.predict(X_test_PCA)
In [48]:
y test.shape
```

Applying PCA on Test data

(1389,)

```
In [49]:
ForPred_data_test= data_test.drop(['ID'],axis=1)
In [50]:
data_test_PCA=obj.fit_transform(ForPred_data_test)
In [51]:
y_pred_data_test=model.predict(data_test_PCA)
In [52]:
y_pred_data_test
 array([ 79.00339 , 93.31714 , 90.503395, ..., 107.86341 , 110.77077 ,
        90.692505], dtype=float32)
In [53]:
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
In [55]:
mean_squared_error(y_test,y_pred_data_test[:1389])
 248.82796637257636
```