Generated on 2024-10-28 10:02:20 by gEcon version 1.2.1 (2023-01-18) Model name: RSW_RP

1 HIGHREGIME

1.1 Optimisation problem

$$\begin{split} &\max_{p:H_t, y:H_t, i:H_t} UH_t = -0.5 \left(p:tH - p:tCB + p:H_t \right)^2 + \beta \mathbf{E}_t \left[UH_{t+1} \right] + \beta \left(-\mathbf{E}_t \left[UH_{t+1} \right] + \mathbf{E}_t \left[UL_{t+1} \right] \right) \left(1 - pHss - \tau \left(-p:tCB + p:H_t \right)^2 \right) - 0.5\kappa\theta^{-1}yH_t^2 \\ &\text{s.t.}: \\ &p:H_{t-1} = \log \exp(t_{t-1} + \kappa yH_{t-1} + \beta p:H_t \left(pHss + \tau \left(-p:tCB + p:H_t \right)^2 \right) + \beta \left(-p:H_t + p:L_t \right) \left(1 - pHss - \tau \left(-p:tCB + p:H_t \right)^2 \right) \quad \left(\lambda_t^{\text{HIGHREGIME}^1} \right) \\ &y:H_{t-1} = yH_t - \sigma \left(iH_{t-1} - p:H_t \right) + \left(-yH_t + yL_t \right) \left(1 - pHss - \tau \left(-p:tCB + p:H_t \right)^2 \right) + \sigma \left(-p:H_t + p:L_t \right) \left(1 - pHss - \tau \left(-p:tCB + p:H_t \right)^2 \right) \quad \left(\lambda_t^{\text{HIGHREGIME}^2} \right) \end{aligned} \tag{1.3}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathrm{HIGHREGIME^{UH}}} - \beta \left(1 - p H ss - \tau \left(- p i l CB + p i H_{t-1} \right)^2 \right) = 0 \quad (UH_t)$$

$$-p i t H + p i l CB - p i H_t + \lambda_t^{\mathrm{HIGHREGIME^1}} \left(\beta \left(p H ss + \tau \left(- p i l CB + p i H_t \right)^2 \right) - \beta \left(1 - p H ss - \tau \left(- p i l CB + p i H_t \right)^2 \right) + 2\beta \tau p i H_t \left(- p i l CB + p i H_t \right) - 2\beta \tau \left(- p i l CB + p i H_t \right) \left(- p i H_t + p i L_t \right) \right) + \lambda_t^{\mathrm{HIGHREGIME^2}}$$

$$\lambda_t^{\mathrm{HIGHREGIME^2}} \left(p H ss + \tau \left(- p i l CB + p i H_t \right)^2 \right) - \kappa \theta^{-1} y H_t + \mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{UH}}} \left(- \lambda_{t+1}^{\mathrm{HIGHREGIME^2}} + \kappa \lambda_{t+1}^{\mathrm{HIGHREGIME^1}} \right) \right] = 0 \quad (yH_t)$$

$$(1.4)$$

$$-\sigma \mathbf{E}_{t} \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^{\mathrm{UH}}} \lambda_{t+1}^{\mathrm{HIGHREGIME}^{2}} \right] = 0 \quad (iH_{t})$$

$$(1.7)$$

2 LOWREGIME

2.1 Optimisation problem

$$\max_{\textit{piL}_t, \textit{yL}_t, \textit{yL}_t} \textit{UL}_t = -0.5 \left(-\textit{pitCB} + \textit{pitL} + \textit{piL}_t \right)^2 + \beta \mathbf{E}_t \left[\textit{UL}_{t+1} \right] + \beta \left(\mathbf{E}_t \left[\textit{UH}_{t+1} \right] - \mathbf{E}_t \left[\textit{UL}_{t+1} \right] \right) \left(1 - \textit{pLss} - \tau \left(-\textit{pitCB} + \textit{piL}_t \right)^2 \right) - 0.5 \kappa \theta^{-1} \textit{yL}_t^2 \\ \text{s.t.} : \qquad (2.1)$$

$$\begin{aligned} p\!i\!L_{t-1} &= \log \textit{etapi}_{t-1} + \kappa \textit{y} L_{t-1} + \beta \textit{pi} L_t \left(\textit{pLss} + \tau \left(- \textit{pitCB} + \textit{pi} L_t \right)^2 \right) + \beta \left(\textit{piH}_t - \textit{pi} L_t \right) \left(1 - \textit{pLss} - \tau \left(- \textit{pitCB} + \textit{pi} L_t \right)^2 \right) \\ y\!L_{t-1} &= y\!L_t - \sigma \left(i\!L_{t-1} - \textit{pi} L_t \right) + \left(y\!H_t - y\!L_t \right) \left(1 - \textit{pLss} - \tau \left(- \textit{pitCB} + \textit{pi} L_t \right)^2 \right) + \sigma \left(\textit{piH}_t - \textit{pi} L_t \right) \left(1 - \textit{pLss} - \tau \left(- \textit{pitCB} + \textit{pi} L_t \right)^2 \right) \\ &\left(\lambda_t^{\text{LOWREGIME}^1} \right) \end{aligned} \tag{2.2}$$

2.2 First order conditions

$$\beta - \lambda_{t}^{\text{LOWREGIME}^{\text{UL}}} - \beta \left(1 - pLss - \tau \left(-pitCB + piL_{t-1} \right)^{2} \right) = 0 \quad (UL_{t})$$

$$pitCB - pitL - piL_{t} + \lambda_{t}^{\text{LOWREGIME}^{1}} \left(\beta \left(pLs + \tau \left(-pitCB + piL_{t} \right)^{2} \right) - \beta \left(1 - pLss - \tau \left(-pitCB + piL_{t} \right)^{2} \right) + 2\beta\tau piL_{t} \left(-pitCB + piL_{t} \right) - 2\beta\tau \left(-pitCB + piL_{t} \right) \left(piH_{t} - piL_{t} \right) \right) + \lambda_{t}^{\text{LOWREGIME}^{2}} \left(\sigma \right)$$

$$\lambda_{t}^{\text{LOWREGIME}^{2}} \left(pLss + \tau \left(-pitCB + piL_{t} \right)^{2} \right) - \kappa\theta^{-1}yL_{t} + \text{E}_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{\text{UL}}} \left(-\lambda_{t+1}^{\text{LOWREGIME}^{2}} + \kappa\lambda_{t+1}^{\text{LOWREGIME}^{1}} \right) \right] = 0 \quad (yL_{t})$$

$$-\sigma \text{E}_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{\text{UL}}} \lambda_{t+1}^{\text{LOWREGIME}^{2}} \right] = 0 \quad (iL_{t})$$

$$(2.5)$$

3 EXOG

3.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{3.1}$$

(4.10)

4 Equilibrium relationships (after reduction)

$$-\epsilon \operatorname{liq} i_t + \epsilon^{e_t^T + \phi \log \operatorname{diq} i_{t-1}} = 0 \tag{4.1}$$

$$\lambda_t^{\operatorname{HIGHREGIME}^2} \left(pHss + \tau \left(-piCB + piH_t \right)^2 \right) + \left(\beta - \beta \left(1 - pHss - \tau \left(-piCB + piH_t \right)^2 \right) \right) \operatorname{E}_t \left[-\lambda_{t+1}^{\operatorname{HIGHREGIME}^2} + \kappa \lambda_{t+1}^{\operatorname{HIGHREGIME}^1} \right] - \kappa \theta^{-1} yH_t = 0 \tag{4.2}$$

$$\lambda_t^{\operatorname{LOWREGIME}^2} \left(pLss + \tau \left(-piCB + piL_t \right)^2 \right) + \left(\beta - \beta \left(1 - pLss - \tau \left(-piCB + piL_t \right)^2 \right) \right) \operatorname{E}_t \left[-\lambda_{t+1}^{\operatorname{HIGHREGIME}^2} + \kappa \lambda_{t+1}^{\operatorname{HIGHREGIME}^1} \right] - \kappa \theta^{-1} yL_t = 0 \tag{4.3}$$

$$-pH_{t-1} + \log \operatorname{diq} i_{t-1} + \kappa yH_{t-1} + \beta pH_t \left(pHss + \tau \left(-piCB + pH_t \right)^2 \right) + \beta \left(-pH_t + pL_t \right) \left(1 - pHss - \tau \left(-piCB + pH_t \right)^2 \right) = 0 \tag{4.4}$$

$$-pL_{t-1} + \log \operatorname{diq} i_{t-1} + \kappa yL_{t-1} + \beta pL_t \left(pLss + \tau \left(-piCB + pH_t \right)^2 \right) + \beta \left(pH_t - pL_t \right) \left(1 - pLss - \tau \left(-piCB + pL_t \right)^2 \right) = 0 \tag{4.5}$$

$$-yH_{t-1} + yH_t - \sigma \left(iH_{t-1} - pH_t \right) + \left(-yH_t + yL_t \right) \left(1 - pHss - \tau \left(-piCB + pH_t \right)^2 \right) + \sigma \left(-pH_t + pL_t \right) \left(1 - pHss - \tau \left(-piCB + pH_t \right)^2 \right) = 0 \tag{4.6}$$

$$-yL_{t-1} + yL_t - \sigma \left(iL_{t-1} - pL_t \right) + \left(yH_t - yL_t \right) \left(1 - pLss - \tau \left(-piCB + pL_t \right)^2 \right) + \sigma \left(pH_t - pL_t \right) \left(1 - pLss - \tau \left(-piCB + pL_t \right)^2 \right) = 0 \tag{4.7}$$

$$UH_t + 0.5 \left(piH - piCB + pH_t \right)^2 - \beta \operatorname{E}_t \left[UH_{t+1} \right] - \beta \left(\operatorname{E}_t \left[UH_{t+1} \right] + \operatorname{E}_t \left[UL_{t+1} \right] \right) \left(1 - pLss - \tau \left(-piCB + pH_t \right)^2 \right) + 0.5\kappa\theta^{-1}yL_t^2 = 0 \tag{4.8}$$

$$UL_t + 0.5 \left(-piCB + pH_t + pL_t \right)^2 - \beta \operatorname{E}_t \left[UL_{t+1} \right] - \beta \left(\operatorname{E}_t \left[UH_{t+1} \right] - \operatorname{E}_t \left[UL_{t+1} \right] \right) \left(1 - pLss - \tau \left(-piCB + pH_t \right)^2 \right) + 0.5\kappa\theta^{-1}yL_t^2 = 0 \tag{4.9}$$

$$-piH + piCB - pH_t + \lambda_t^{\operatorname{HIGHREGIME}^1} \left(\beta \left(pHss + \tau \left(-piCB + pH_t \right)^2 \right) - \beta \left(1 - pHss - \tau \left(-piCB + pH_t \right)^2 \right) + 2\beta\tau pH_t \left(-piCB + pH_t \right) - 2\beta\tau \left(-piCB + pH_t \right) \right) + \lambda_t^{\operatorname{HIGHREGIME}^1} \right) + \lambda_t^{\operatorname{HIGHREGIME}^1} \left(\beta \left(pHss + \tau \left(-piCB + pH_t \right)^2 \right) - \beta \left(1 - pHss - \tau \left(-piCB + pH_t \right)^2 \right) + 2\beta\tau pH_t \left(-piCB + pH_t \right) - 2\beta\tau \left(-piCB + pH_t \right) \right) + \lambda_t^{\operatorname{HIGHREGIME}^1} \right) + \lambda_t^{\operatorname{HIGHREGIME}^1} \left(\beta \left(pHss + \tau \left(-piCB + pH_t \right)^2 \right) - \beta \left(1 - pHss - \tau$$

$$\begin{split} \textit{pitCB-pitL-piL}_t + \lambda_t^{\text{LOWREGIME}^1} \left(\beta \left(\textit{pLss} + \tau \left(-\textit{pitCB} + \textit{piL}_t\right)^2\right) - \beta \left(1 - \textit{pLss} - \tau \left(-\textit{pitCB} + \textit{piL}_t\right)^2\right) + 2\beta \tau \textit{piL}_t \left(-\textit{pitCB} + \textit{piL}_t\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right) \left(\textit{piH}_t - \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right) \left(\textit{piH}_t - \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right)\right) - \sigma \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_t\right)^2\right)\right) \\ & - \sigma \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_t\right)^2\right)\right) \\ & + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right)\right) - \beta \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right)\right) \\ & + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right)\right) \\ & + \lambda_t^{\text{LOWREGIME}^2}$$

$$-\sigma \left(\beta - \beta \left(1 - pLss - \tau \left(-pitCB + piL_t\right)^2\right)\right) E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right] = 0$$
(4.13)

(5.2)

Steady state relationships (after reduction) 5

$$-\textit{tapi}_{\rm ss} + e^{\phi \log \textit{tapi}_{\rm ss}} = 0 \tag{5.1}$$

$$\lambda_{\rm ss}^{\rm HIGHREGIME^2} \left(\textit{pHss} + \tau \left(- \textit{pitCB} + \textit{piH}_{\rm ss} \right)^2 \right) + \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(- \textit{pitCB} + \textit{piH}_{\rm ss} \right)^2 \right) \right) \left(-\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \kappa \lambda_{\rm ss}^{\rm HIGHREGIME^1} \right) - \kappa \theta^{-1} \textit{yH}_{\rm ss} = 0 \tag{5.2}$$

$$\lambda_{\rm ss}^{\rm LOWREGIME^2} \left(p\!L\!s\!s + \tau \left(- p\!i\!t\!C\!B + p\!i\!L_{\rm ss} \right)^2 \right) + \left(\beta - \beta \left(1 - p\!L\!s\!s - \tau \left(- p\!i\!t\!C\!B + p\!i\!L_{\rm ss} \right)^2 \right) \right) \left(-\lambda_{\rm ss}^{\rm LOWREGIME^2} + \kappa \lambda_{\rm ss}^{\rm LOWREGIME^1} \right) - \kappa \theta^{-1} y\!L_{\rm ss} = 0 \tag{5.3}$$

$$-piH_{\mathrm{ss}} + \log \cot p_{\mathrm{ss}} + \kappa yH_{\mathrm{ss}} + \beta piH_{\mathrm{ss}} \left(pHss + \tau \left(-piHCB + piH_{\mathrm{ss}} \right)^2 \right) + \beta \left(-piH_{\mathrm{ss}} + piL_{\mathrm{ss}} \right) \left(1 - pHss - \tau \left(-piHCB + piH_{\mathrm{ss}} \right)^2 \right) = 0 \tag{5.4}$$

$$-piL_{\mathrm{ss}} + \log \mathit{dapi}_{\mathrm{ss}} + \kappa yL_{\mathrm{ss}} + \beta piL_{\mathrm{ss}} \left(pLss + \tau \left(-pitCB + piL_{\mathrm{ss}} \right)^2 \right) + \beta \left(piH_{\mathrm{ss}} - piL_{\mathrm{ss}} \right) \left(1 - pLss - \tau \left(-pitCB + piL_{\mathrm{ss}} \right)^2 \right) = 0 \tag{5.5}$$

$$\left(-\mathit{yH}_{\mathrm{ss}}+\mathit{yL}_{\mathrm{ss}}\right)\left(1-\mathit{pHss}-\tau\left(-\mathit{pitCB}+\mathit{piH}_{\mathrm{ss}}\right)^{2}\right)-\sigma\left(\mathit{iH}_{\mathrm{ss}}-\mathit{piH}_{\mathrm{ss}}\right)+\sigma\left(-\mathit{piH}_{\mathrm{ss}}+\mathit{piL}_{\mathrm{ss}}\right)\left(1-\mathit{pHss}-\tau\left(-\mathit{pitCB}+\mathit{piH}_{\mathrm{ss}}\right)^{2}\right)=0\tag{5.6}$$

$$\left(y\!H_{\mathrm{ss}} - y\!L_{\mathrm{ss}}\right) \left(1 - p\!L\!s\!s - \tau \left(-p\!i\!t\!C\!B + p\!i\!L_{\mathrm{ss}}\right)^2\right) - \sigma \left(i\!L_{\mathrm{ss}} - p\!i\!L_{\mathrm{ss}}\right) + \sigma \left(p\!i\!H_{\mathrm{ss}} - p\!i\!L_{\mathrm{ss}}\right) \left(1 - p\!L\!s\!s - \tau \left(-p\!i\!t\!C\!B + p\!i\!L_{\mathrm{ss}}\right)^2\right) = 0 \tag{5.7}$$

$$UH_{ss} + 0.5 \left(pitH - pitCB + piH_{ss} \right)^{2} - \beta UH_{ss} - \beta \left(-UH_{ss} + UL_{ss} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{ss} \right)^{2} \right) + 0.5\kappa \theta^{-1} yH_{ss}^{2} = 0$$
(5.8)

$$UL_{ss} + 0.5 \left(-pitCB + pitL + piL_{ss} \right)^{2} - \beta UL_{ss} - \beta \left(UH_{ss} - UL_{ss} \right) \left(1 - pLss - \tau \left(-pitCB + piL_{ss} \right)^{2} \right) + 0.5\kappa \theta^{-1} yL_{ss}^{2} = 0$$
(5.9)

$$-pitH + pitCB - piH_{ss} - \lambda_{ss}^{HIGHREGIME^{1}} \left(\beta - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{ss}\right)^{2}\right)\right) + \lambda_{ss}^{HIGHREGIME^{1}} \left(\beta \left(pHss + \tau \left(-pitCB + piH_{ss}\right)^{2}\right) - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{ss}\right)^{2}\right) + 2\beta\tau piH_{ss} \left(-pitCB + piH_{ss}\right)^{2}\right) - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{ss}\right)^{2}\right) + 2\beta\tau piH_{ss} \left(-pitCB + piH_{ss}\right)^{2}\right) - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{ss}\right)^{2}\right) + 2\beta\tau piH_{ss} \left(-pitCB + piH_{ss}\right)^{2}\right)$$

$$pitCB-pitL-piL_{ss}-\lambda_{ss}^{LOWREGIME^{1}}\left(\beta-\beta\left(1-pLss-\tau\left(-pitCB+piL_{ss}\right)^{2}\right)\right)+\lambda_{ss}^{LOWREGIME^{1}}\left(\beta\left(pLss+\tau\left(-pitCB+piL_{ss}\right)^{2}\right)-\beta\left(1-pLss-\tau\left(-pitCB+piL_{ss}\right)^{2}\right)+2\beta\tau piL_{ss}\left(-pitCB+piL_{ss}\right)^{2}\right)$$

$$(5.10)$$

$$(5.11)$$

$$-\sigma \lambda_{\rm ss}^{\rm HIGHREGIME^2} \left(\beta - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{\rm ss} \right)^2 \right) \right) = 0 \tag{5.12}$$

$$-\sigma \lambda_{\rm ss}^{\rm LOWREGIME^2} \left(\beta - \beta \left(1 - pL\!s - \tau \left(-pi\!t\!CB + pi\!L_{\rm ss}\right)^2\right)\right) = 0 \tag{5.13}$$

6 Parameter settings

$\beta = 0.99$	(6.1)
$\kappa = 0.2465$	(6.2)
$\phi = 0.95$	(6.3)
piH = 0	(6.4)
pitCB = 0	(6.5)
$p\!i\!L=2$	(6.6)
pHss = 0.99	(6.7)
pLs = 0.99	(6.8)
$\sigma = 1$	(6.9)
$\tau = 0.01$	(6.10)
$\theta = 6$	(6.11)

_

7 Steady-state values

	Steady-state value
etapi	1
$i\!H$	-0.0149
iL	-1.5222
$\lambda^{ m HIGHREGIME^1}$	0.0103
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	0.0152
$\lambda^{ ext{LOWREGIME}^2}$	0
$p\!i\!H$	-2e-04
piL	-1.5036
$y\!H$	0.0604
yL	0.0913
UH	-16.4635
UL	-33.0857

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	$i\!H_{t-1}$	iL_{t-1}	piH_{t-1}	$p\!i\!L_{t-1}$	$y\!H_{t-1}$	yL_{t-1}
$etapi_t$	/ 0.95	0	0	0	0	0	0
iH_t	-848.7704	-1.911	2.0657	0.0579	-5.8446	-13.4357	0.2113
iL_t	-7.7526	-3e - 04	-1.8409	0	4.8756	-0.0019	-0.1833
$pi\!H_t$	-6739.446	0	0	1.0306	-91.6514	-101.197	1.3713
piL_t	-0.6098	0	0	0	0.9053	-1e - 04	-0.0135
$y\!H_t$	16.9118	0.2489	-0.2515	-0.0026	0.24	1.264	-0.0187
yL_t	10.4862	0.002	16.4684	0	-15.5666	0.0103	1.2203

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \epsilon t a p i \\ i H \\ i L \\ p i H \\ p i L \\ p i L \\ p j L \\ y L \\ \end{array} \begin{pmatrix} 1 \\ -4.95.6617 \\ -4.6907 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

$\mathbf{Matrix}\ R$

Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\rm HIGHREGIME^1} \\ \lambda^{\rm HIGHREGIME^2} \\ \lambda^{\rm LOWREGIME^1} \\ \lambda^{\rm LOWREGIME^2} \\ UH \\ UL \\ \end{array} \begin{pmatrix} -220.5089 \\ 0.4387 \\ -152.9985 \\ 0.497 \\ 0.0111 \\ 0.0083 \\ \end{pmatrix}$$

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$i\!H$	-0.0149	49.8555	2485.5672	Y
iL	-1.5222	0.4746	0.2253	Y
$\lambda^{ m HIGHREGIME^1}$	0.0103	24.2739	589.2208	Y
$\lambda^{ m HIGHREGIME^2}$	0	0.0423	0.0018	N
$\lambda^{ ext{LOWREGIME}^1}$	0.0152	17.4504	304.515	Y
$\lambda^{ ext{LOWREGIME}^2}$	0	0.0479	0.0023	N
piH	-2e-04	666.7814	444597.4198	Y
piL	-1.5036	0.0585	0.0034	Y
$y\!H$	0.0604	11.3389	128.5701	Y
yL	0.0913	7.201	51.8548	Y
UH	-16.4635	0.0015	0	Y
UL	-33.0857	0.0011	0	Y

9.2 Correlation matrix

	etapi	iH	iL	$\lambda^{ ext{HIGHREGIME}^1}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{ ext{LOWREGIME}^1}$	$\lambda^{ ext{LOWREGIME}^2}$	piH	piL
etapi	1	-0.32	-0.312	-0.861	0.436	-0.836	0.436	-0.52	-0.51
$i\!H$		1	0.999	0.583	-0.985	0.556	-0.985	-0.294	-0.29
iL			1	0.563	-0.979	0.533	-0.979	-0.324	-0.33
$\lambda^{ m HIGHREGIME^1}$				1	-0.71	0.997	-0.71	0.565	0.557
$\lambda^{ m HIGHREGIME^2}$					1	-0.689	1	0.125	0.131
$\lambda^{ ext{LOWREGIME}^1}$						1	-0.689	0.606	0.602
$\lambda^{ m LOWREGIME^2}$							1	0.125	0.131
$pi\!H$								1	0.997
piL									1
yН									
yL									
UH									
UL									

9.3 Cross correlations with the reference variable (iH)

					`	,					
	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	iH_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}
$-$ etapi $_t$	0.003	0.108	0.145	0.195	0.275	0.43	-0.32	-0.269	-0.222	-0.178	-0.139
$i\!H_t$	1	-0.032	-0.041	-0.058	-0.095	-0.186	1	-0.186	-0.095	-0.058	-0.041
$i\!L_t$	0.01	-0.032	-0.041	-0.057	-0.094	-0.183	0.999	-0.224	-0.09	-0.05	-0.035
$\lambda_t^{ ext{HIGHREGIME}^1}$	0.487	-0.09	-0.116	-0.155	-0.224	-0.369	0.583	0.449	0.18	0.069	0.02
$\lambda_t^{ m HIGHREGIME^2}$	0.001	0.044	0.056	0.078	0.122	0.228	-0.985	0.047	0.046	0.044	0.041
$\lambda_t^{ ext{LOWREGIME}^1}$	0.35	-0.087	-0.112	-0.15	-0.217	-0.358	0.556	0.517	0.156	0.044	0.004
$\lambda_t^{ ext{LOWREGIME}^2}$	0.001	0.044	0.056	0.078	0.122	0.228	-0.985	0.047	0.046	0.044	0.041
$pi\!H_t$	13.374	-0.053	-0.066	-0.083	-0.112	-0.167	-0.294	0.835	0.283	0.072	-0.009
$p\!i\!L_t$	0.001	-0.052	-0.066	-0.084	-0.113	-0.17	-0.299	0.871	0.227	0.039	-0.016
yH_t	0.227	-0.077	-0.102	-0.135	-0.181	-0.26	-0.418	0.542	0.299	0.186	0.124
yL_t	0.144	-0.077	-0.102	-0.135	-0.182	-0.261	-0.421	0.556	0.279	0.174	0.122
$U\!H_t$	0	0.108	0.144	0.194	0.275	0.43	-0.313	-0.315	-0.197	-0.168	-0.135
UL_t	0	0.108	0.144	0.194	0.274	0.428	-0.301	-0.299	-0.226	-0.176	-0.135

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
iH	-0.186	-0.095	-0.058	-0.041	-0.032
iL	-0.221	-0.089	-0.049	-0.035	-0.028
$\lambda^{ m HIGHREGIME^1}$	0.525	0.133	-0.031	-0.102	-0.132
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.534	0.08	-0.064	-0.114	-0.131
$\lambda^{ ext{LOWREGIME}^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
piH	0.28	0.008	-0.089	-0.119	-0.121
$p\!i\!L$	0.204	-0.024	-0.086	-0.1	-0.098
$y\!H$	0.535	0.281	0.123	0.016	-0.059
yL	0.517	0.281	0.133	0.029	-0.048
UH	0.713	0	0	0	0
UL	0	0	0	0	0

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock