Projection-based Model Order Reduction techniques

Olivier Zahm*

Practical Session M2:SIAM, 2018.

1 Description of the model

Consider the problem of finding the function $u:\Omega\to\mathbb{R}$ which satisfies the following Partial Differential Equation (PDE)

$$\begin{aligned}
-\nabla \cdot \kappa \nabla u + \alpha \cdot \nabla u &= f & \text{in } \Omega, \\
u &= 0 & \text{on } \partial \Omega.
\end{aligned} \tag{1}$$

The domain $\Omega = [0,1]^2$ is a square which is partitioned into four subdomains

The diffusion field $\kappa = \kappa(x)$ and the advection field $\alpha = \alpha(x)$ are parametrized by means of a 5-dimensional vector $x = (x_1, \dots, x_5)$ as follow

$$\kappa(x) = \kappa(s, x) = \sum_{i=1}^{4} x_i 1_{\Omega_i}(s)$$
 and $\alpha(x) = \alpha(s, x) = x_5 \begin{pmatrix} 1/2 - s_2 \\ s_1 - 1/2 \end{pmatrix}$, (2)

where $s = (s_1, s_2) \in \Omega$ denotes the spatial variable and 1_{Ω_i} the indicator function¹ associated with Ω_i . The parameter set is defined by

$$\mathcal{P} = \left\{ x \in \mathbb{R}^5 \text{ s.t. } 0.05 \le x_1, \dots, x_4 \le 1 \\ -100 \le x_5 \le 100 \right\}.$$

When it is considered at random, the parameter X is a random vector uniformly distributed over \mathcal{P} .

^{*}olivier.zahm@inria.fr

¹The indicator function 1_{Ω_i} is such that $1_{\Omega_i}(s) = 1$ if $s \in \Omega_i$ and $1_{\Omega_1}(s) = 0$ if $s \notin \Omega_i$.

The source term f = f(s) is equal to f(s) = +1 if $s \in [0.05, 0.2] \times [0.4, 0.6]$, f(s) = -1 if $s \in [0.05, 0.2] \times [0.4, 0.6]$ and f(s) = 0 elsewhere. The source term f is independent x. Finally, the scalar quantity of interest Y(x) is defined as the mean value of the solution on the subdomain Ω_3 , meaning

$$Y(x) = \frac{1}{|\Omega_3|} \int_{\Omega_3} u(x) d\Omega.$$
 (3)

1.1 Weak solution and finite element approximation

The weak formulation of (1) consists in finding $u = u(x) \in V = H_0^1(\Omega)$ such that

$$\underbrace{\int_{\Omega} \kappa(x) \nabla u(x) \cdot \nabla v \, d\Omega + \int_{\Omega} \alpha(x) \cdot \nabla u(x) \, v \, d\Omega}_{= a(u(x), v; x)} = \underbrace{\int_{\Omega} f v \, d\Omega}_{= \ell(v)}, \tag{4}$$

for all $v \in V$. We recall that the weak formulation is obtained by multiplying (1) by a test function $v \in V$, by integrating over Ω and by doing an integration by part. The Finite Element Method (FEM) consists in replacing V by a finite dimension space $V^h = \text{span}\{\phi_1, \ldots, \phi_N\} \subset V$, $N \gg 1$, which consists of piecewise polynomial functions ϕ_i (sometimes called "hat" functions, or "shape" functions). With this discretization, the variational formulation (4) becomes an algebraic equation

$$A(x)u(x) = b,$$

where $A_{i,j}(x) = a(\phi_j, \phi_i; x)$, $b_i = \ell(\phi_i)$ and where u(x) is now a vector containing the the coefficients of the approximation on the finite element basis $\{\phi_1, \ldots, \phi_N\}$. For more details on the FEM, see the book [1]. The quantity of interest Y(x) defined by (3) can be expressed as a linear form of the solution vector u(x) as

$$Y(x) = q^T u(x),$$

where $q \in \mathbb{R}^N$ is the vector defined by $q_i = \frac{1}{|\Omega_3|} \int_{\Omega_3} \phi_i d\Omega$.

1.2 Affine decomposability

Using the parametrization (2) of $\kappa(x)$ and $\alpha(x)$, the bilinear form $a(\cdot,\cdot;x)$ can be written as

$$a(u(x), v; x) = \sum_{k=1}^{4} x_k \underbrace{\int_{\Omega_i} \nabla u(x) \cdot \nabla v \, d\Omega}_{= a_k(u(x), v)} + x_5 \underbrace{\int_{\Omega} \binom{1/2 - s_2}{s_1 - 1/2} \cdot \nabla u(x) \, v \, d\Omega}_{a_5(u(x), v)},$$

which, after FEM discretization, yields the decomposition

$$A(x) = \sum_{k=1}^{5} x_k A_k,$$
 (5)

where $(A_k)_{i,j} = a_k(\phi_j, \phi_i)$. Thus, A(x) admits an affine decomposition with respect to the parameter

2 Tasks

The above described benchmark is implemented in the file parametrizedPDE.m. It is an object oriented code which uses Matlab[©] classes. The file ProjectionBasedMOR.m provides a tutorial to learn how to use this class. Read and run the ProjectionBasedMOR.m one section after the other to learn how to:

- instantiate an object: model = parametrizedPDE();
- draw a random parameter: X = model.randX();
- compute the a solution: u = model.u(X);
- compute the quantity of interest: Y = model.q'*u;
- plot the solution: model.plotSol(u)
- get the FEM (full) system: model.A(X) and model.b
- get the matrices of the affine decomposition (5):

$$A_1 = model.K1, \ldots, A_4 = model.K4, A_5 = model.Ad,$$

Task#1: Offline-online efficient galerkin projection

Using the affine decomposition of the operator A(x), implement the offline-online efficient algorithm presented in the Lecture Note, see Algorithm 2. Tasks:

- Observe the speedup of the online phase and the slowdown of the offline phase.
- Estimate the computation time of the offline phases and of the online phases (per sample evaluation) of Algorithm 1 and of Algorithm 2. After how many sample evaluations does Algorithm 2 becomes more interesting to use compared to Algorithm 1?
- How this evolves with respect to r? (repeat the previous analysis for, say, $r \in \{5, 10, 20, 50, 100\}$)

Task#2: POD

In the script.m file, the reduced space V_r (see the matrix Vr) is built in a naive way using random snapshots of the solution. A better way to build V_r is to use the Proper Orthogonal Decomposition (POD) or the Reduced Basis (RB) method, see Sections 2 and 3 of the Lecture notes. Implement the POD (Algorithm 3). Hint: according to Remark 2.2, the function [U,D,V]=svd(A) can be useful...

- Compare the quality of the POD basis and the one of the naive algorithm. For instance, one can plot the L^2 -error as a function of $r \in \{5, 10, 20, 50, 100\}$.
- Compare the L^2 -error of the POD with the sum of the eigenvalues $\sqrt{\sum_{i\geq r+1}\hat{\sigma}_i^2}$, see Equation (7) in the Lecture notes.

Task#3: Reduced basis

Implement and test the RB method (Algorithm 4). How does this compare to the POD in terms of number of solution evaluations? of reduced space dimension? of L^2 versus L^{∞} error?

References

[1] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis, Courier Corporation, 2012.