SDRAM CONTROLLER Specification

Author: Dinesh Annayya

dinesha@opencores.org

Rev. 0.0 January 18, 2012

Revision History

Rev.	Date	Author	Description
0.0	01/17/2012	Dinesh Annayya	First draft release

1

Introduction

Synchronous DRAM (SDRAM) has become a mainstream memory of choice in embedded system memory design. For high-end applications using processors the interface to the SDRAM is supported by the processor's built-in peripheral module. However, for other applications, the system designer must design a controller to provide proper commands for SDRAM initialization, read/write accesses and memory refresh.

This SDRAM controller reference design, located between the SDRAM and the bus master, reduces the user's effort to deal with the SDRAM command interface by providing a simple generic system interface to the bus master. Figure 1 shows the relationship of the controller between the bus master and SDRAM. The bus master can be either a microprocessor or a user's proprietary module interface.

Figure 1. SDR SDRAM Controller System

FEATURES

- Support for industry-standard SDRAM devices and modules
- Supports all standard SDRAM functions
- Fully Synchronous; All signals registered on positive edge of system clock
- One chip-select signals
- Support SDRAM with four bank
- Programmable CAS latency
- Data mask signals for partial write operations
- Bank management architecture, which minimizes latency
- 16/32 Configurable data width
- Automatic controlled refresh
- Static synchronous design
- Fully synthesizable

2

IO ports

2.1 Core Parameters

Parameter	Type	Default	Description
SDR_DW	Bit	16	SDRAM DATA Width Selection:
			16 – 16 Bit SDRAM Mode
			32 – 32 Bit SDRAM Mode
SDR_BW	Bit	2	SDRAM BYTE Width Selection
			2 – 16 Bit SDRAM Mode
			4 – 32 Bit SDRAM Mode

2.2 Application interface signals

8					
Port	Width	Direction	Description		
app_req	1	Input	Application Request		
app_req_addr	30	Input	Address		
app_req_addr _mask	29	Input	Address Mask		
app_req_wr_ n	1	Input	0 - Write, 1 - Read		
app_req_wra p	1	Input	Address Wrap		
app_req_ack	1	Output	Application Request Ack		
sdr_core_bus	1	Output	SDRAM Controller Busy Indication,		
y_n			0 - busy, 1 - free		
app_wr_data	32	Input	Write Data		
app_wr_next	1	Input	Next Write Data Request		
_req					
app_wr_en_n	4	Output	Byte wise write Enable, Active low		
app_rd_data	32	Input	Read Data		
app_rd_valid	1	Output	Read Valid		

2.3 SDRAM External connections

Port	Width	Direction	Description
sdr_cke	1	Output	SDRAM clock enable
sdr_cs_n	1	Output	SDRAM command inputs CS#
sdr_ras_n	1	Output	SDRAM command inputs RAS#
sdr_cas_n	1	Output	SDRAM command inputs CAS#
sdr_we_n	1	Output	SDRAM command inputs WE#
sdr_dqm	2/4	Output	SDRAM data bus mask
sdr_ba	2	Output	SDRAM bank address
sdr_addr	12	Output	SDRAM address bus
pad_sdr_din	16/32	Input	SDRAM Data Inut
sdr_dout	16/32	Output	SDRAM Data Output
sdr_den_n	16/32	Output	SDRAM Data Output enable

The tri-state buffers for the DQ lines must be added at a higher hierarchical level. Connections should be made according to the following figure:

Verilog code for 32 BIT SDRAM:

```
assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;
assign Dq[15:8] = (sdr_den_n[1] == 1'b0) ? sdr_dout[15:8] : 8'hZZ;
assign Dq[23:16] = (sdr_den_n[2] == 1'b0) ? sdr_dout[23:16] : 8'hZZ;
assign Dq[31:24] = (sdr_den_n[3] == 1'b0) ? sdr_dout[31:24] : 8'hZZ;
```

Verilog code for 16 BIT SDRAM:

```
assign Dq[7:0] = (sdr\_den\_n[0] == 1'b0) ? sdr\_dout[7:0] : 8'hZZ;
assign Dq[15:8] = (sdr\_den\_n[1] == 1'b0) ? sdr\_dout[15:8] : 8'hZZ;
```


Simulation

Run Directorty: sdr_ctrl/trunk/verif/run

- 1. Compiling and Simulating in 16 BIT SDR Mode ./run modelsim SDR 16BIT
- Compiling and Simulating in 32 BIT SDR Mode ./run_modelsim SDR_32BIT

Golden Log file are available under: sdr_ctrl/trunk/verif/log

- **SDR_16BIT_complie.log** SDR-16BIT Compile log
- **sdr16_sim.log** SDR-16BIT Simulation log
- **SDR_16BIT_basic_test1.log** -- SDR-16BIT Basic Test simulation log
- **SDR_32BIT_complie.log** SDR-32BIT Compile log
- sdr32_sim.log -- SDR-32BIT Simulation log
- SDR_32BIT_basic_test1.log SDR-32BIT Basic Test Simulation log

WAVEFORM

Image files are available under: sdr_ctrl\trunk\verif\dump

1. Application Write Request:

2. Application Read Request

3. SDRAM 16 Bit Write Transaction

4. SDRAM 16 Bit Read Transaction

5. SDRAM 32 Bit Write Transaction

6. SDRAM 32 bit Read Transaction

Appendix A

Synthesis results