H-DROID CLUSTER

Bruzzo Paolo and Casula Dario {paolo.bruzzo; dario.casula}@mail.polimi.it HPPS Project at Polimi March - June 2014

Tutor: Ferroni Matteo

Professors: Donatella Sciuto, Marco D. Santambrogio

CONTEXT DEFINITION

Nowadays... more mobile devices than humans¹

Idle periods are quite common: (e.g. night time)

Potential huge amount of distributed computational power

How to exploit it?

PROJECT GOAL

to build an heterogeneous cluster:

distributed computation which performance?

previous attempt:

2012-droidCluster, homogeneous smartphone cluster²

limitation: all equal devices

TECHNOLOGIES

Computer networks:

MPICH2, message passing interface devices communication

Measuring performance:

HPL, High Performance Linpack benchmark specifically written for clusters

HPL ALGORITHM

Resolution of a linear algebraic system of N linear equations

Matrix divided into blocks

Grid of processes

A ₁₁	A14	A ₁₇	A ₁₂	A 15	A ₁₈	A13	A 16
A 31	A 34	A 37	A 32	A 35	A:8	A 33	A 36
A 51	A 54	A 57	A 52	A 55	/ /58	A 53	A 56
A 71	A 74	A 77	A 72	A 75	\ 78	A 73	A 76
A ₂₁	A ₂₄	A 27	A ₂₂	A 25	\ 28	A 23	A 26
A 41	A 44	A 47	A 42	A 45	\ 48	A 43	A 46
A 61	A 64	A 67	A 62	A 65	68	A 63	A 66
A 81	A 84	A 87	A 82	A 85	A	A 83	Asg

Matrix order and block size choices

WHY ANDROID

How to run MPI and HPL on Android?

Debian on Android!

Chroot into Debian: same kernel of Android

INTO DEBIAN

Bash script to chroot into Debian

C program to launch the MPI cluster ring

How to tune the benchmark?

CASE STUDY

Heterogeneous cluster of Android Devices:

- Master distributes workloads
- Wireless connection

TYPES OF CLUSTERS

Trivial benchmark tuning Hard benchmark tuning

Choice of MATRIX ORDER?

TUNING: MATRIX ORDER

TUNING: BLOCK SIZE

No precise rules, test different measures

Devices return same performance with different sizes

CLUSTER PERFORMANCE

PROCESSES ALLOCATION

Some devices are more powerful, why not to give them more work to do?

dual core

single core

I PROCESS PER CORE

Device Local Performance - Theorical - Real - Previous Real

Number Of Devices

THE BOTTLENECK

FUTURE WORK

What happens with tens / hundreds of devices ?

Number Of Devices

QUESTIONS?

REFERENCES

- 1. <u>digitaltrends.com</u>: Number of mobile phones to exceed world population by 2014
- 2. Büsching, Schildt, Wolf: "DroidCluster: Towards Smartphone Cluster Computing"; 20 | 2, Technische Universität Braunschweig
- 3. J. Dongarra, P. Luszczek, A. Petitet, 'The linpack benchmark: Past, present and future.' 2003
- 4. Daniel Loreto, Erik Nordlander, Adam Oliner, "Benchmarking a Large-Scale Heterogeneous Cluster", MIT, 2005
- 5. <u>netlib.org</u>: /benchmark/hpl/tuning.html