Entrega 1: Creación de un Estimador de la media poblacional

Daniel Aramburu, Guillermo Palomo, Jorge Salas y Marc Pastor

9 de Octubre de 2020

1. Introducción

El objetivo de este trabajo es crear un Estadístico para estimar la media poblacional de una distribución continua determinada (que no sea la Distribución Normal ni la Exponencial) y comparar su rendimiento con la media muestral (que es el estadístico más usado para aproximar la media poblacional). En nuestro caso hemos optado por la distribución Beta (con alpha y beta = 2) debido a que su función de densidad es simétrica y centrada, y nos parece que es sencillo encontrar un Estadístico fiable para aproximar su media poblacional.

2. Distribución Beta

La Distribución Beta es una distribución continua que depende de dos parámetros (alpha y beta) y que toma valores en el intervalo [0,1]. Debido a que solo está definida en [0,1] es una distribución muy usada para modelizar la probabilidad de que ocurra un evento, aunque también es usada para describir datos empíricos (debido a la variedad de formas que puede adoptar en función de los valores que tomen sus parámetros) y para modelar la fiabilidad de un sistema. Su función de densidad es distinta de cero solo cuando 0 < x < 1 y es la siguiente:

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

También se puede escribir como:

2.0 Forma de la distribución Beta

2.1 Momentos

2.2 Función Generadora de Momentos

3. Creación del Estadístico para estimar la Media Poblacional

En primer lugar hemos creado la función *muestreo*. Esta función es la base de toda la práctica, ya que nos permite crear muestras aleatorias, calcular nuestro Estadístico, y la media muestral en cada una de esas 40 muestras, etc.

```
library(tidyverse)
library(e1071)
library(moments)
library(gt)
library(ggpubr)
library(ggplotify)
library(grid)
muestreo <- function(alpha, beta){</pre>
        lista <- list()</pre>
        tabla_muestras <- matrix(ncol = 40, nrow = 10) %>% as.data.frame()
        lista[[6]] <- matrix(ncol = 40, nrow = 1) %>% as.data.frame()
        media_poblacional <- alpha / (alpha + beta)</pre>
        varianza_poblacional <- alpha * beta / (((alpha + beta) ^ 2 ) * (alpha + beta + 1))
        for(j in 1:40){
                 set.seed(j)
                 tabla_muestras[, j] <- rbeta(10, shape1 = alpha, shape2 = beta)
                 colnames(tabla muestras)[j] <- as.numeric(gsub("V", "",</pre>
                                                                   colnames(tabla_muestras)[j]))
                 colnames(lista[[6]])[j] <- as.numeric(gsub("V", "",</pre>
                                                                colnames(tabla muestras)[j]))
                 lista[[6]][, j] <- 0.5*(quantile(tabla_muestras[, j],</pre>
                                                    probs = c(0.6)) +
                                                   quantile(tabla_muestras[, j],
                                                             probs = c(0.4))
        }
        lista[[1]] <- tabla_muestras</pre>
        lista[[2]] <- media_poblacional</pre>
        lista[[3]] <- varianza_poblacional</pre>
        lista[[4]] <- data.frame(Muestra = names(colMeans(tabla_muestras)),</pre>
                                   mediamuestral = unname(colMeans(tabla_muestras)))
        lista[[5]] <- data.frame(Estimador = "Media Muestral",</pre>
                                   Media = mean(lista[[4]][, 2]),
                                   Mediana = median(lista[[4]][, 2]),
                                   SD = sd(lista[[4]][, 2]),
                                   IQR = IQR(lista[[4]][, 2]),
                                   MAD = mad(lista[[4]][, 2]),
                                   Curtosis = moments::kurtosis(lista[[4]][, 2]),
                                   Asimetría = e1071::skewness(lista[[4]][, 2]))
        lista[[6]] <- gather(as.data.frame(lista[[6]]))</pre>
        colnames(lista[[6]]) <- c("Muestra", "Estadístico")</pre>
        lista[[7]] <- data.frame(Estimador = "Estadístico",</pre>
                                   Media = mean(lista[[6]][, 2]),
                                   Mediana = median(lista[[6]][, 2]),
                                   SD = sd(lista[[6]][, 2]),
```

4. Evaluación de nuestro Estadístico

4.1 Tabla de Medidas (falta pasar a formato leible por un pdf, es decir eliminar lo de gt)

4.2 Histogramas

```
grafico_estadistico_histogram <- ggplot(data = datosgrafico,</pre>
                                        aes(x = Estadístico)) +
        geom_histogram(fill = "lightblue", binwidth = 0.05, color = "black") +
        ggtitle("Histograma de nuestro Estadístico") +
        geom_vline(aes(xintercept = resultados[[7]]$Media, col = "Estimador"),
                   linetype = "dashed", size = 1) +
        geom_vline(aes(xintercept = resultados$media_poblacional,
                       col = "Media Poblacional"), size = 1) +
        scale_color_manual(name = "",
                           values = c("Media Poblacional" = "black",
                                      Estimador = "red")) +
        xlab("x") + ylab("f(x)") +
        theme(legend.position = "top",
              legend.text = element_text(size = 14),
              axis.text.x = element_text(size = 12),
              axis.text.y = element_text(size = 12),
              axis.title = element_text(size = 13, face = "bold"),
              plot.title = element_text(size = 18, face = 'bold',
                                        hjust = 0.5)) +
        xlim(0, 1)
grafico_estadistico_histogram
```

Histograma de nuestro Estadístico

