## **SHAM** implementations



#### My SHAM model has 3 parameters:

- 1.  $\sigma$ , controls the Vpeak-M\* scatter, BOSS SHAM  $\sigma$ =0.31
- Vceil, prevent the most massive halos from having a galaxy
- 3. Vsmear, smear the peculiar velocity for the z uncertainty

## **SHAM** implementations



#### My SHAM model has 3 parameters:

- 1.  $\sigma$ , controls the Vpeak-M\* scatter (**Vpeak scattering**)
- Vceil, prevent the most massive halos from having a galaxy (Vpeak\_scat truncation)
- 3. Vsmear, smear the peculiar velocity for the z uncertainty

## **SHAM** implementations



### **Vpeak scattering:**

1. Gaussian scatter:

 $Vpeak\_scat = Vpeak*(1+N(0,\sigma_2))$ 

### **Vpeak scat truncation:**

a. dsigma cut:

remove Vpeak\_scat/σ >Vceil

### SHAM for eBOSS LRG&ELG



#### **Optimal Parameter Properties:**

- 1. **large optimal**  $\sigma$ , **increasing** as I extend the prior
- "L" shaped Vceil-σ posteriors, meaning that for large σ,
  Vceil won't change (i.e., a random halo-galaxy relation)
- 3. They might be out of the  $1\sigma$  confidence interval

## SHAM posteriors for LRG in SGC





## SHAM posteriors for LRG in SGC





#### SHAM for eBOSS LRG in SGC



#### The optimal SHAM parameters:

- 1. BOSS SHAM give  $\sigma$ =0.31, but mine are **much larger**
- 2. Vceil-σ posteriors have an "L" shape
- 3. some optimal parameters are beyond the  $1\sigma$  confidence interval



## SHAM posteriors for ELG in SGC





# SHAM posteriors for ELG in SGC



### SHAM for eBOSS ELG in SGC



#### The optimal SHAM parameters:

- 1. my  $\sigma$  is much larger than 1, i.e., a random halo-galaxy relation
- 2. Vceil posteriors have an long tail
- 3. some optimal parameters are beyond the  $1\sigma$  confidence interval

