HCI: Interactive System Design (Usability Engineering Perspective)

Professor Ram Mohana Reddy Guddeti Information Technology Department NITK Surathkal, Mangalore, India

Usability Engineering UE

Overview of Usability Engineering (UE)

- The need for usability
- What do usability and UE mean?
- What happens without UE?
- UE Lifecycle
- User-Centered Design (UCD)
 Methodology

Usability Engineering

- Jacob Nielsen: Usability Engineering (1993) Well known book.
- Xristine Faulkner (2000): defines it as follows

"UE is an approach to the <u>development of software</u> and <u>systems which involves user participation</u> from the outset and guarantees the usefulness of the product through the use of a <u>usability</u> <u>specification</u> and <u>metrics</u>"

• UE refers to the USABILITY FUNCTION aspects of the entire **process** of conceptualizing, executing & testing products (both hardware as well as software), from requirements gathering stage to installation / marketing & testing of their use.

Definition of Usability

- Usability is the effectiveness, efficiency and satisfaction with which users achieve specific goals in particular environments; where
 - Effectiveness is the accuracy and completeness with which specified users can achieve specified goals in particular environments;
 - Efficiency is the resources expended in relation to the accuracy and completeness of goals achieved; and
 - Satisfaction is the comfort (experience) and acceptability of the work system to its users and other people affected by its use.

User's Definition of Usability

USABILITY: The ability of a User to Use the product/system / environment as desired Usability Engineering: The 'affordance' offered by a product that makes it useable.

Usability does not happen by it self. It has to be "engineered" into the product.

Usability is related to <u>Human Performance</u>

Capabilities
Limits
Consequences

Intuitiveness

Maximum success for first-time users, with minimum training, explanation or thought

Efficiency

Maximum success for long-term users, with minimum time, mental load, physical effort

Usability is conceptualized into the product by **DESIGN**

Some Standard Definitions

- **'Usability'** is the measure of the *quality* of a <u>User's experience</u> when interacting with a product or system
- 'Usability Engineering' is the processes of deriving, specifying, measuring, constructing and evaluating <u>usability features</u> into products and systems.
- Usability Study is the systematic analysis based on heuristics and/or experimental evaluation of the interaction between people and the products including the environment of use.
 Psychology / Cognitive Science / Behavioral Science
- Usability Testing is the scientific verification of the specified usability parameters with respect to the Users needs, capabilities, expectations, safety & satisfaction.

Usability as applied to Product Design
Usability as applied to Human Computer Interaction Usability as applied to Human Environment Interaction
Usability as applied to Systems (including Engineering systems)

The UE Lifecycle UCD Methods (ISO 13407)

SYSTEM LIFE CYCLE							
FEASIBILITY		REQUIREMENTS		DESIGN	IMPLEMENT	RELEASE	
USER REQs	CONTEXT OF USE	FUNCTIONAL	TECHNICAL	PROTOTYPE	USEABILITY TESTING	FEEDBACK	

Design Stages

Task	Information Produced		
Knowing the user	User characteristics, User background		
Knowing the task	User's current task, Task analysis		
User requirements	User requirements specification		
Setting usability goals	Usability specification		
Design process	Design Specification		
HCI Guidelines & heuristic analysis	Feedback for design iteration		
Prototyping	Prototype for user testing		
Evaluation with users	Feedback for freezing design		
Redesign and evaluate with users	Finished product		
Evaluate with users and report	Feedback on product for future systems		

The Goals of Usability Engineering

5 Es

- Effective to use Functional
- Efficient to use Efficient
- Error free in use Safe
- Easy to use Friendly

- Enjoyable in use Pleasurable Experience

Achieves 5 times Enhancement in Engineering value.

Home Work

Usability Evaluation

Conduct a quick Usability evaluation of <u>your mobile</u> phone & Compare it with the evaluation of your friends phone.

Rating out of 10

Effective to use - Functional

Efficient to use - Efficient

Error free in use - Safe

Easy to use - Friendly

Enjoyable in use - Pleasurable

Total:

User Requirement AnalysiS

Usability
Evaluation
& Testing

USER CENTRED
DESIGN PROCESS

Conceptual design

•UE is based on a <u>User-Centered Design (UCD)</u> approach to analysis and design. It concentrates on those aspects of products & services that have a bearing on their effective, efficient & pleasurable USE by humans.

Implementation

ISO 13407, 1999

"Human-centered design is an approach to interactive system development that focuses specifically on making systems usable. It is a multi-disciplinary activity."

User

The UCD Methodology.

User Centered Design Processes: UCD

Definition of UE & other Related Fields

HCI: Human Computer Interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. ACM - Association for Computing Machinery.

Human Factors & Ergonomics: Stress on human physical issues (physiology) and on optimizing work processes

User Interface Design: Focuses on interface layer assuming all deeper functions are fixed.

HCD- Human Centered Design: Approaches to software engineering with user focus at all stages of software design

ID – Interaction Design: wider scope in terms of devices beyond computers. More emphasis on cognitive & experiential factors.

UE- Usability engineering: focuses on design & implementation processes. It is essentially research & design based activity.

There are overlaps in the above fields. Each is independent. UE has all of them.

Relationship between UE & Human Computer Interaction; Interaction Design; Experience Design; GUI Design

UX = User Experience

UI = User Interface

ID = Interaction design

HCI = Human Computer Interaction

UE = Usability Engineering

Please note: UE is written as 'Usability' as well as 'Use-ability'.

UE vs Software Engineering

- Key difference (Karat and Dayton, 1995):
 - "In most cases of the design and development of commercial software, <u>usability is not</u> dealt with at the same level as other aspects of SE, (e.g.
 - Clear usability objectives are not set; and
 - Resources for appropriate activities are not given priority by project management)."
- To produce *usable* interactive products requires (Mayhew, 1999):
 - UI design principles and guidelines.
 - Structured methods for achieving usability.

Usability Testing & UE – the Difference

- Usability engineering
 - Methodical approach to producing user interface + Experience
- + function + aesthetics
 - A way to deliver a product that works

- Usability Testing
 - Part of processof UE
 - Real users performing real tasks

Usability Testing

Analytical Evaluation:

- By simulating how the user's activity will be performed.
- Heuristic evaluation measures design against a list of usability factors.

Empirical Evaluation:

- By building and testing a prototype.
- Formal usability testing tests a component of the design under controlled conditions actual users; thus needs a usability laboratory.

Cost-justifying Usability

\$1 spent on usability = \$10 saved (Nielsen, 1993).

Rs. 50 spent saves Rs 500 worth of trouble shooting due to poor design

Ignoring UE

Frustrated users Low productivity

Poor user interface design is the cause
High costs Support/Help desk costs
Entering data incorrectly
Deleting data
Loss of market share, good will Competitors rush in.

Mobile / Tablet / Device companies now are heavily investing in UE as the value adder as well as product differentiator.

They do not consider 'cost' as a constraining factor as far as UE is concerned.

Evolution of HCl and understanding of Users

- •User as 'cog' in the system (1970's)
- •User a source of error (80's),
- •User a social actor (90's)
- •User as a consumer now (2000's)

Previous
approaches
are insufficient

- When user is a consumer, his needs need to be understood in order for the product to stay in the market....
- User experience with interactive products start determining which ones will sell.

The UE processes is based on four fundamental axioms of Design

- User is the only constant entity of an artificially created system.
- User is the starting point of all design
- User is the final datum of reference for all design decisions
- User is the measure of all things.

Nielsen (1993) identified 5 attributes that contribute to usability:

- •Learnability. The user should be able to promptly start performing their tasks with the system.
- •Efficiency. Once the user has learned the system, a high level of productivity should be possible.
- •Memorability. The casual user should be able to return to the system after not having used it for some time, without having to relearn everything.
- •Errors. Users should not make many errors using the system, and if they do, they should be able to easily recover from them. Catastrophic errors should not occur.
- •<u>Satisfaction</u>. Users should like using the system and should be subjectively satisfied when using it. The system should be pleasant to use.

Digging Deeper into Usability What makes a product usable?

Is it all subjective ?...... Can we measure Usability?

Stanton & Barber 1996 proposed measuring the following:

Learnability Effectiveness Attitude Flexibility Compatibility

Learnability: A product (system) should allow users to reach the acceptable levels of competency and the performance within a specified time.

Learnability
Consistency
Familiarity
Standards

- Help the users to master the system
- Let the users have to learn only once
- Build on users' prior knowledge
- Respect established cultural and
- application specific conventions.

Self-descriptiveness - Make objects and controls intuitive

Help

- Provide easy access to 'help' resource

'Intuitive' User Interfaces do not require investing resources in 'Learning'. Such interfaces follow the User's Mental Model of Interaction

Designing User Interface for Mobiles / Tablets

1,2,3.

Technological feasibility is different from Usability.

Engineering / Software should not dictate usability

What is involved in GUI design?

- Designing for ease of use
- Usability: Semantics,
 Dialogue, Communication
 Mental Models
- Designing for attractiveness
- Aesthetics
- User Experiences
- Designing for contextual awareness

Culture, Behavior

Some Usability Books

 A Practical Guide to Usability Testing by Joe Dumas & Ginny. Redish (1993)

The Psychology
of Human
Computer
Interaction
Stuart Card,
Thomas Moran
& Allen Newell
(1983)

2. <u>Handbook of</u>
<u>Usability Testing</u> by
Jeffrey Rubin (1994)

3. <u>Usability</u>
Engineering by
Jakob Nielsen
(1993)Morgan
Kaufman , Academic
Press London.