Multifractal stationary random processes

Emmanuel Bacry

CMAP, Ecole Polytechnique 91128 Palaiseau Cedex, France
emmanuel.bacry@polytechnique.fr
http://www.cmap.polytechnique.fr/~bacry
emmanuel.bacry@polytechnique.fr

LastWave software at:

 $http://www.cmap.polytechnique.fr/\ \ \ bacry/LastWave$

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 07 JAN 2005		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Multifractal station	5b. GRANT NUMBER					
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CMAP, Ecole Polytechnique 91128 Palaiseau Cedex, France				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 50, Wavelets and M nent contains color i		(WAMA) Works	hop held on 1	19-31 July 2004.,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 34	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Multifractal stationary random processes

- Random cascades (Mandelbrot)
- Intuitive construction
- Theoretical construction
- Some particular examples

Random cascades (Mandelbrot)

Dyadic case

- $l_n = T\lambda^n, \lambda = 1/2$
- $I = [0, T[, I_0 = [0, T/2[, I_{01} = [T/4, T/2[, ...]$
- $M_{l_n}(I_{s_0...s_n}) = W_{s_0...s_n} M_{l_{n-1}}(I_{s_0...s_{n-1}})$
- $\{W_{s_0...s_i}\}$ are i.i.d,
- $\mathbb{E}(W_{s_0...s_i}) = 1/2 \ (\Rightarrow M_{l_n} \text{ martingale}).$
- "Discrete scale invariance" (around 0)

$$\int_{0}^{t/2} M_{l_{n}}(dt) =^{law} W \int_{0}^{t} M_{l_{n-1}}(dt)$$

$$M_{l_{n}}(dt/2) =^{law} W M_{l_{n-1}}(dt)$$

$$M_{l_{n}}(dtl_{n}/l_{n-1}) \stackrel{law}{=} W M_{l_{n-1}}(dt)$$

By taking $n \to +\infty$

$$\int_0^{t/2} M(dt) \stackrel{law}{=} W \int_0^t M(dt)$$

→ NO : not stationary, no continuous scale invariance

Towards "continuous" cascades

Discrete cascades (dyadic case)

$$M_{l_n}(dtl_n/l_{n-1}) \stackrel{law}{=} WM_{l_{n-1}}(dt)$$

⇒ Try to represent it as a discretization of an underlying continuous construction.

- $M_{l'}(l'dt) = ^{law} W_{l',l}(t) M_l(ldt), \quad l' \leq l \leq T$
- law of $W_{l',l}(t)$ depends only on l'/l (and i.i.d).

Why infinitely divisible laws?

- $M_l(dt) = ^{law} W_{l,l'}(t) M_{l'}(dt), \quad l \leq l' \leq T$ $\Rightarrow \ln W_{l',T} = \ln W_{l',l} + \ln W_{l,T}$ $\Rightarrow \ln W_{l',T} = \text{sum of 2 i.i.d variables (for } l = \sqrt{l'T})$ $\omega_l(t) = \ln W_{l,T}(t) = \sum \text{arbitrary number of i.i.d var.}$ $\Rightarrow \omega_l(t) \text{ is infinitely divisible.}$
- P(dt, dl) stochastic "infinitely divisible noise" on the \mathcal{S}^+ half-plane $(t, l) \in \mathbb{R} \times \mathbb{R}^{+*}$ with respect to the measure $\mu(dt, dl)$,
 - $A \subset \mathcal{S}^+$, P(A) infinitely divisible
 - the law of P(A) depends only on $\mu(A)$
 - P(A) and P(B) independent iff $A \cap B = \emptyset$

2d-representation of discrete cascades

$$\omega_{l_n}(s_0 \dots s_n) = \sum_{i=0}^n \ln(W_{s_0 \dots s_i})$$

$$\omega_{l_n}(s_0 \dots s_n) = P(A_{2^{-n}}(s_0 \dots s_n))$$

$$\ln W_{s_0...s_i}$$
 i.d $\Rightarrow \mu(dt, dl) = dtdl/l^2$

Continuous cascades

$$\omega_l(t) = \ln W_{l,T}(t) = P(A_l(t))$$

$$M_l(dt) \stackrel{def}{=} e^{\omega_l(t)} dt$$

$$\Longrightarrow M_{l'}(dt) =^{law} W_{l',l}(t) M_l(dt), \quad l' \leq l \leq T$$

Infinitely divisible laws

• Definition

X is infinitely divisible iff it is a sum of an arbitrary numbers of i.i.d. variables

• Examples

– Gaussian variable (mean m, variance σ^2)

$$p(x) = e^{-\frac{(x-m)^2}{\sigma^2}} / \sqrt{2\pi\sigma^2}$$

$$\mathbb{E}\left(e^{iqX}\right) = e^{imq-q^2\sigma^2/2}$$

$$\phi_X(q) = \ln \mathbb{E}\left(e^{iqX}\right) = imq - q^2\sigma^2/2$$

 $\phi_X(q)$ is the cumulant generating function of X

- Poisson variable (intensity λ)

$$p(x) = e^{-\lambda} \lambda^k / k!$$
$$\phi_X(q) = \lambda (e^{iq} - 1)$$

• Theorem

A sum of independent infinitely divisible variables is an infinitely divisible variable.

Moreover
$$\phi_{\alpha X + \beta Y}(q) = \phi_X(\alpha q) + \phi_Y(\beta q)$$
.

The Levy-Khintchine formula

• Combining gaussian and (an infinite number of) poisson variables :

$$\phi(q) = imq - q^2\sigma^2/2 + \int (e^{iqx} - 1)\tilde{\nu}(dx)$$
 $\tilde{\nu}(dx) \simeq$ "intensity measure"
a priori, total intensity bounded: $\int \tilde{\nu}(dx) < +\infty$
actually, intensity around 0 can be $+\infty$ $(x^{-2}dx)$

• Levy-Khintchine representation

$$\phi(q) = imq + \int \frac{e^{iqx} - 1 - iq\sin(x)}{x^2} \nu(dx)$$

 $\rightarrow \nu(dx)$ is the Levy measure

$$\to \int_{-y}^{y} \nu(dx), \int_{-\infty}^{-y} \nu(dx)/x^2, \int_{y}^{+\infty} \nu(dx)/x^2 < +\infty$$

$$-\nu(dx) = \delta(x) \rightarrow \text{gaussian}$$

$$-\nu(dx) = \delta(x - x_0) \rightarrow \text{poisson}$$

$$-\int \nu(dx)/x^2 < +\infty \rightarrow \text{compound poisson}$$

 $-\alpha$ -stable, gamma, Student, ...

"Infinitely divisible noise"

Definition (Rosinski, 1989)

P(dt, dl) is an independently scattered infinitely divisible random measure distributed on the half plane S^+ with respect to the (deterministic measure) $\mu(dt, dl)$

• $\{A_n\}_n$ disjoint sets of S^+ , $\{P(A_n)\}_n$ are i.i.d.

$$P\left(\bigcup_{n=1}^{\infty} \mathcal{A}_n\right) = \sum_{n=1}^{\infty} P(\mathcal{A}_n)$$
, a.s.

• P(A) is infinitely divisible with

$$\mathbb{E}\left(e^{iqP(\mathcal{A})}\right) = e^{\phi(q)\mu(\mathcal{A})},$$

Notation: $\psi(q) = \phi(-iq)$ whenever it is possible and $\psi(q) = +\infty$ otherwise $(\psi(q) \text{ is convex})$

$$\rightarrow \psi(q) = +\infty, \text{ if } \mathbb{E}\left(e^{qP(\mathcal{A})}\right) = +\infty,$$

$$\rightarrow \mathbb{E}\left(e^{qP(\mathcal{A})}\right) = e^{\psi(q)\mu(\mathcal{A})}, \text{ otherwise.}$$

Continuous cascades

$$M_l(dt) = ^{def} e^{P(A_l(t))} dt$$

- Schmitt F. and Marsan D., 2001
- basic ideas for construction of $\omega_l(t) = P(A_l(t))$
- scaling of e^{ω_l} versus l
- Bacry E., Delour J. and Muzy J.F., 2001
- 1d representation of the log-normal case (MRW)
- exact power law scaling of the moments
- no proof of convergence
- Barral J. and Mandelbrot B.B., 2002
- full 2d compound poisson construction
- non degeneracy, L^p convergence, ...
- multifractal formalism
- Bacry E., Muzy J.F., 2003
- full 2d log-inf. divisible construction (MRM, MRW)
- non degeneracy, L^p convergence, ...
- exact/asymptotic scaling of the moments
- Abry P., Chainais P., Riedi R. 2003
- full 2d log-infinitely divisible construction (IDC)
- L^2 convergence
- non power law scaling of the moments

Multifractal Random Measures (MRM)

(Bacry, Muzy, 2003)

- $\mathcal{A}_l(t)$ domain:
 - General definition

$$\mathcal{A}_{l}(t) = \{(t', l'), \ l' \ge l, \ |t' - t| \le f(l')/2\}.$$

$$\int_{l}^{\infty} f(s)/s^{2} ds < \infty \text{ and } f(l) = l \text{ for } l < L$$

- Definition for "exact scaling"

$$f^{(e)}(l) = l$$
 for $l \leq T$ and $f^{(e)}(l) = T$ for $l \geq T$

- $\omega_l(t) = P(\mathcal{A}_l(t))$
 - Levy measure $\nu(dx)$
 - $\psi(1) = 0$ $(e^{\omega_l(t)} \text{ martingale})$
 - $\exists \epsilon > 0, \ \psi(1+\epsilon) < +\infty \ (\mathbb{E}\left(e^{(1+\epsilon)\omega_l(t)}\right) < +\infty$)
- $M_l(dt) = e^{\omega_l(t)}dt$
- $M(dt) = \lim_{l \to 0^+} M(dt)$

Existence of the limit MRM measure

(Bacry, Muzy, 2003)

Theorem 1 There exists a measure M(dt) such that

- (i) with probability one, $M_l(dt) \rightarrow M(dt)$ weakly
- (ii) $\forall t \in \mathbb{R}, M(\{t\}) = 0,$
- (iii) for any bounded set K of \mathbb{R} ,
 - $M(K) < +\infty$
 - $\mathbb{E}(M(K)) \leq |K|$.

Proof

- $\psi(1) = 0 \Longrightarrow \mathbb{E}\left(e^{\omega_l(t)}\right) = 1.$
- $\{M_l(I)\}_l$ is a left continuous positive martingale
- Kahane J.P., Chi. Ann. of Math. 8B, 1-12 (1987)

Continuous scale invariance

(Bacry, Muzy, 2003)

$$M_{l'}(l'dt) = W_{l',l}(t)M_l(ldt), \quad l' \leq l \leq T.$$

$$\implies M_{\lambda l}(\lambda ldt) = W_{\lambda}(t)M_{l}(ldt), \quad l' = \lambda l,$$

$$\implies M_{\lambda l}(\lambda dt) = W_{\lambda}(t)M_{l}(dt),$$

$$\implies M_{\lambda l}([0, \lambda t]) = W_{\lambda}(0)M_{l}([0, t]).$$

On the one hand

$$M_{\lambda l}([0, \lambda t]) = \int_0^{\lambda t} e^{\omega_{\lambda l}(u)} du = \lambda \int_0^t e^{\omega_{\lambda l}(\lambda u)} du.$$

On the other hand

$$W_{\lambda}(0)M_{l}([0,t]) = W_{\lambda}(0)\int_{0}^{t} e^{\omega_{l}(u)}du.$$

Consequently we want

$$\lambda e^{\omega_{\lambda l}(\lambda t)} \stackrel{law}{=} W_{\lambda} \int_{0}^{t} e^{\omega_{l}(u)} du$$

Or,

$$\omega_{\lambda l}(\lambda t) \stackrel{law}{=} \ln(W_{\lambda}/\lambda) + \omega_l(t)???$$

Scaling of $\omega_l(t)$

(Bacry, Muzy, 2003)

We want $\{\omega_{\lambda l}(\lambda t)\}_{t\leq T} = ^{law} \ln(W_{\lambda}/\lambda) + \{\omega_{l}(t)\}_{t\leq T}$,

Lemma 1 (Characteristic function of $\omega_l(t)$)

$$\mathbb{E}\left(e^{\sum_{m=1}^{q}ip_{m}\omega_{l}(t_{m})}\right) = e^{\sum_{j=1}^{q}\sum_{k=1}^{j}\alpha(j,k)\rho_{l}(t_{k}-t_{j})},$$

where

-
$$\rho_l(t) = \mu(\mathcal{A}_l(0) \cap \mathcal{A}_l(t).),$$

$$- \sum_{j=1}^{q} \sum_{k=1}^{j} \alpha(j,k) = \varphi(\sum_{k=1}^{q} p_k).$$

The exact scaling domain $f^{(e)}(l)$ is the only domain which satisfies

$$\rho_{\lambda l}(\lambda t) = -\log \lambda + \rho_l(t), \quad l \le T, \ \lambda < 1, \ t < T$$

In this case, $\ln(W_{\lambda}/\lambda)$ is infinitely divisible (indep. of M) with

$$\mathbb{E}\left(e^{iq\ln(W_{\lambda}/\lambda)}\right) = \lambda^{-\varphi(q)}.$$

Continuous scale invariance of $M^{(e)}(t)$ (Bacry, Muzy, 2003)

Theorem 2 (Continuous invariance of $M^{(e)}(t)$)

$$\{M^{(e)}([0,\lambda t])\}_{t\leq T} \stackrel{law}{=} W_{\lambda}\{M^{(e)}([0,t])\}_{t\leq T},$$

where $\ln(W_{\lambda}/\lambda)$ is infinitely divisible (indep. of M) with

$$\mathbb{E}\left(e^{iq\ln(W_{\lambda}/\lambda)}\right) = \lambda^{-\varphi(q)}.$$

Theorem 3 (Moment scaling of $M^{(e)}(t)$)

$$\mathbb{E}\left(M^{(e)}([0,t])^q\right) = \left(\frac{t}{T}\right)^{\zeta(q)} \mathbb{E}\left(M^{(e)}[0,T]\right)^q\right), \quad \forall t \leq T.$$

where

$$\zeta(q) = q - \psi(q)$$

Moments, Degeneracy of $M^{(e)}(t)$ (Bacry, Muzy, 2003)

Theorem 4 (Existence of the moments of $M^{(e)}(t)$) Let q > 0 then

(i)
$$\zeta(q) > 1 \Longrightarrow \mathbb{E}\left(M^{(e)}([0,t])^q\right) < +\infty$$
 and $\sup_l \mathbb{E}\left(M_l^{(e)}([0,t])^q\right) < +\infty$.

(ii) if
$$M^{(e)} \neq 0$$
, $\mathbb{E}\left(M^{(e)}([0,t])^q\right) < +\infty \Longrightarrow \zeta(q) \geq 1$.

Proof for (ii)

$$\mathbb{E}\left(M^{(e)}([0,t])^{q}\right) = \mathbb{E}\left(\left(M^{(e)}([0,t/2]) + M^{(e)}([t/2,t])\right)^{q}\right)$$

$$\geq \mathbb{E}\left(M^{(e)}([0,t/2])^{q}\right) + \mathbb{E}\left(M^{(e)}([t/2,t])^{q}\right)$$

Using scaling of the moments

$$\mathbb{E}\left(M^{(e)}([0,t])^q\right) \ge 2^{1-\zeta(q)}\mathbb{E}\left(M^{(e)}([0,t])^q\right) ,$$

and consequently $\zeta(q) \geq 1$.

Theorem 5 (Non degeneracy of $M^{(e)}(t)$)

(H)
$$\exists \epsilon > 0, \zeta(1+\epsilon) > 1$$

if (H) holds then $\mathbb{E}\left(M^{(e)}([0,t])\right) = t$.

Summing up results on $M^{(e)}(t)$

(Bacry, Muzy, 2003)

(i)
$$\psi(1) = 0 \Longrightarrow \text{ existence of } M^{(e)}$$

(ii)
$$\exists \epsilon > 0, \ \zeta(1+\epsilon) > 1 \Longrightarrow \mathbb{E}\left(M^{(e)}([0,t])\right) = t$$

(iii)
$$\zeta(q) > 1$$
 " \iff " $\mathbb{E}\left(M^{(e)}([0,t])\right) < +\infty$

(iv)
$$\{M^{(e)}([0, \lambda t])\}_{t \le T} =^{law} W_{\lambda}\{M^{(e)}([0, t])\}_{t \le T}$$
,

(v)
$$\mathbb{E}\left(M^{(e)}([0,t])^q\right) = \left(\frac{t}{T}\right)^{\zeta(q)} \mathbb{E}\left(M^{(e)}[0,T]\right)^q\right), \quad \forall t \leq T.$$

From
$$M^{(e)}(t)$$
 to $M(t)$ (Bacry, Muzy, 2003)

Theorem 6 (Degeneracy, asymptotic scaling and moments of positive orders of M(dt))

(i)
$$M^{(e)}(dt) = a.s. 0 \iff M(dt) = a.s. 0$$
,

Moreover, if $M(dt) \neq 0$, one has

(ii) with probability one,
$$\forall t \geq 0, \quad M([0, \lambda t]) \sim XM^{(e)}([0, \lambda t]), \text{ when } \lambda \to 0^+.$$

(iii)
$$\mathbb{E}\left(M^{(e)}([0,t])^q\right) < +\infty \iff \mathbb{E}\left(M([0,t])^q\right) < +\infty.$$

(iv)
$$\mathbb{E}\left(M([0,t])^q\right) \sim_{t\to 0^+} \left(\frac{t}{T}\right)^{\zeta(q)} \mathbb{E}\left(M([0,T])^q\right)$$
.

Multifractal Random Processes (MRW)

(Bacry, Muzy, 2003)

• Definition (subordinated process)

$$X^{(s)}(t) = B(M([0,t])).$$

• Equivalent definition (stochastic integral)

$$X(t) = \lim_{l \to 0^+} X_l(t),$$

where

$$X_l(t) = \int_0^t e^{\omega_l(u)/2} dW(u),$$

Main theorem on MRW

(Bacry, Muzy, 2003)

Theorem 7 Under hypothesis $\zeta(1+\epsilon) > 1$ (non degeneracy of M),

(i)
$$\zeta(q) > 1 \Longrightarrow \mathbb{E}\left(|X(t)|^{2q}\right) < +\infty.$$

(ii)
$$\mathbb{E}\left(|X(t)|^{2q}\right) < +\infty \Longrightarrow \zeta(q) \ge 1.$$

(iii)
$$\{X^{(e)}(t)\}_{t < T} =^{law} W_{\lambda}\{X^{(e)}(t)\}_{t < T},$$

(iv)
$$\mathbb{E}\left(|X^{(e)}(t)|^{2q}\right) = \left(\frac{t}{T}\right)^{\zeta(q)} \mathbb{E}\left(|X^{(e)}(T)|^{2q}\right), \quad \forall t \leq T.$$

(v)
$$\mathbb{E}\left(|X(t)|^{2q}\right) \sim^{t \to 0^+} \left(\frac{t}{T}\right)^{\zeta(q)} \mathbb{E}\left(|X(T)|^{2q}\right)$$
.

Numerical simulation of MRW

(Bacry, Muzy, 2003)

- $\bullet \{\epsilon[k]\}_{k \in \mathbb{Z}}$ Gaussian white noise, variance 1.
- $l_n = 2^{-n}$.
- $\tilde{X}_{l_n}(t) = \sum_{k=0}^{t/l_n} \sigma \sqrt{l_n} e^{\frac{\omega_{l_n}(kl_n)}{2}} \epsilon[k].$

Theorem 8 (Convergence) If $\zeta(2+\epsilon) > 1$ then

$$\lim_{n \to +\infty} \{\tilde{X}_{l_n}(t)\}_t \stackrel{law}{=} \{X(t)\}_t.$$

Proof

$$\lim_{n \to +\infty} \tilde{M}_{l_n}(dt) =^{m.s.} M(dt)$$
where $\tilde{M}_{l_n}([0,t]) = \sum_{k=0}^{t/l_n} e^{\omega_{l_n}(kl_n)} l_n$

 $\Longrightarrow X(t)$ is the continuous limit of a random walk with stochastic variance

Log-normal MRW

(Bacry, Muzy, 2003)

$$\bullet \quad \nu(dx) = 2\lambda^2 \delta(x),$$

•
$$\psi(q) = qm + \lambda^2 q^2$$
 with $m = -\lambda^2$.

$$\sigma^2 = 1$$
, $T = 512$ and $\lambda^2 = 0.025$.

• 1d construction: Bacry, Delour, Muzy, 2001

$$X_l(t) = X_l(t-l) + \sigma \sqrt{l} e^{\frac{\omega_l(t)}{2}} \epsilon_l(t), \text{ (step-wise process)}$$
$$\mathbb{E}(\omega_l) = -Var(\omega_l)/2$$

$$Cov(\omega_l(0), \omega_l(t)) = \begin{cases} 4\lambda^2 \ln\left(\frac{T}{(|t|+l)}\right) & \text{for } |t| \leq T \\ 0 & \text{otherwise} \end{cases}$$

$$X(t) = \lim_{l \to 0^+} X_l(t)$$

Log-Poisson MRW

(Bacry, Muzy, 2003 and \simeq Barral, Mandelbrot, 2002)

- $\nu(dx) = \gamma \delta(x x_0)$, with $\gamma = \lambda x_0^2$, $x_0 = \ln \delta$
- $\zeta(q) = qm + \lambda(1 \delta^q)$ (m such that $\zeta(1) = 1$)

$$\sigma^2 = 1$$
, $T = 512$, $\lambda = 4$ and $x_0 = 0.05$.

• Log-Poisson compound

$$\int \nu(dx)x^{-2} = C < +\infty, \ p_{\ln W} = \nu(dx)x^{-2}/C$$

Compounded with $\ln W$, intensity C

$$\zeta(q) = qm + C(1 - \mathbb{E}(W^q)), \quad (m \text{ such that } \zeta(1) = 1)$$

Other MRW's

(Bacry, Muzy, 2003)

• \log - α -stable MRW

left-sided α -stable density :

$$\nu(dx) = \begin{cases} C|x|^{1-\alpha} & \text{if } x \le 0\\ 0 & \text{if } x > 0 \end{cases}$$

with C > 0 and $0 < \alpha < 2$

$$\zeta(q) = qm - \sigma^{\alpha}|q|^{\alpha}$$

 $stable \Rightarrow 1d construction$

• log-gamma MRW

$$\nu(dx) = C\gamma^2 x e^{-\gamma x} dx \text{ for } x \ge 0$$

$$\zeta(q) = qm - C\gamma^2 \ln \frac{\gamma}{\gamma - q}, \text{ with } \gamma > 1$$

• log-Student, log-Pareto, ...

Log-normal MRW

(Bacry, Muzy, 2001, 2003)

• Continuous limit of a rand. walk with stoch. variance

$$X_{l}(t) = X_{l}(t - l) + \sigma^{2} \sqrt{l} e^{\frac{\omega_{l}(t)}{2}} \epsilon_{l}(t), \text{ (step-wise)}$$

$$\mathbb{E}(\omega_{l}) = -Var(\omega_{l})/2$$

$$Cov(\omega_{l}(0), \omega_{l}(t)) = \begin{cases} 4\lambda^{2} \ln\left(\frac{T}{(|t|+l)}\right) \text{ for } |t| \leq T \\ 0 & \text{otherwise} \end{cases}$$

$$X(t) = \lim_{l \to 0^{+}} X_{l}(t)$$

- $\zeta(q) = q q(q-1)\lambda^2$
- Only 3 parameters :
 - σ^2 : deterministic random walk variance
 - T: correlation length
 - λ^2 : "multifractal coefficient" $\lambda = 0 \Rightarrow X(t) = B(t)$

Multifractal analysis of a MRW

(Bacry, Delour, Muzy, 2001)

Moments and law deformation across scales

(Bacry, Muzy, 2001, 2003)

• Explicit q-order moment formula

$$\mathbb{E}\left(X(t)^{2q}\right) = C_{2q}T^{q}\sigma^{2q}(2q-1)!! \left(\frac{t}{T}\right)^{\zeta(q)}, \text{ for } t \leq T$$

$$C_{q} = \prod_{k=0}^{q/2-1} \frac{\Gamma(1-2\lambda^{2}k)^{2}\Gamma(1-2\lambda^{2}(k+1))}{\Gamma(2-2\lambda^{2}(q/2+k-1))\Gamma(1-2\lambda^{2})}$$

• $q > 1/\lambda^2$ " \iff " $\mathbb{E}\left(X(t)^{2q}\right) = +\infty$

Discretization

(Bacry, Kozhemyak, Muzy, 2004)

- Modeling discrete data with stationary increments
 - Discrete model $X_{\Delta}[n] = X(n\Delta)$
 - Stationary incr. $\delta X_{\Delta}[n] = X_{\Delta}[n+1] X_{\Delta}[n]$
- finance, turbulence,...: Curvature($\zeta(q)$) = $\lambda^2 << 1$
- If $\lambda^2 << 1$, $X_{\Delta}[n]$ "is close to" rand. walk $R_{\Delta}[n]$

$$\delta R_{\Delta}[n] = \epsilon[n] e^{\lambda \Omega_{\Delta}[n]/2},$$

 $\epsilon[n]$: white noise, $\Omega_{\Delta}[n]$: known Gaussian process.

Theorem 9 (Meaning of "is close to")

$$\left\{ \frac{2\ln M([(n-1)\Delta, n\Delta])}{\lambda} \right\}_{n} \xrightarrow{\lambda \to 0^{+}} \left\{ \Omega_{\Delta}[n] \right\}_{n}$$

Moreover,

- $\mathbb{E}\left(\ln |\delta X_{\Delta}[n]|^q \dots\right) = \mathbb{E}\left(\ln |\delta R_{\Delta}[n]|^q \dots\right) (1 + o(\lambda^{2-\epsilon}))$ and when $\mathbb{E}\left(\delta X_{\Delta}[n]^q \dots\right) < +\infty$
 - $\mathbb{E}\left(\delta X_{\Delta}[n]^{q}\ldots\right) = \mathbb{E}\left(\delta R_{\Delta}[n]^{q}\ldots\right)\left(1 + o(\lambda^{2-\epsilon})\right),$

Application to Parameter Estimation

(Bacry, Kozhemyak, Muzy, 2004)

$$Cov(\ln |\delta X_{\Delta}[0]|, \ln |\delta X_{\Delta}[\tau]|)$$

$$\simeq Cov(\ln |\delta R_{\Delta}[0]|, \ln |\delta R_{\Delta}[\tau]|)$$

$$\simeq Var(\ln |\epsilon|) + \lambda^2 Cov(\Omega_{\Delta}[0], \Omega_{\Delta}[\tau])/4$$

$$\simeq -\lambda^2 \ln(\tau/T), \text{ for } 1 < \tau < T$$

$$\Longrightarrow \text{ independent of } \lambda$$

- Estimation of the multifractal coefficient λ^2
 - \longrightarrow linear fit
- Integral scale *T*
 - \longrightarrow decorrelation scale
- Variance σ^2
 - variance of the increments

 \Longrightarrow GMM estimation

Correlation function of $\ln |\delta X[n]|$

(Bacry, Kozhemyak, Muzy, 2004)

Parameter Estimation

(Bacry, Kozhemyak, Muzy 2004)

S&P 500 intraday data (5mn ticks, 1996-1998)

 $\lambda^2 \simeq 0.03$, $L \simeq 6$ months

Parameter Estimation (changing Δ)

(Bacry, Kozhemyak, Muzy 2004)

S&P 500 intraday data (5mn ticks, 1996-1998)

: 5mn returns

= : 30mn returns

: 1h returns

Other applications

(Bacry, Kozhemyak, Muzy 2004)

$$\delta X_{\Delta}[n] \simeq \epsilon[n] e^{\lambda \Omega_{\Delta}[n]/2}$$

- Variance prediction/estimation (Wiener filtering)
 - Prediction of $\Omega[n]$

$$\hat{\Omega}_{\Delta}[n] = h_2 * \ln(|\delta X_{\Delta}|)[n]$$
 (h_2 causal)
 $\longrightarrow \text{MLE of } e^{\lambda \Omega_{\Delta}[n]}$

- Value at Risk prediction/estimation
 - \bullet estimation of v(p) such that

$$Prob\{|\delta X_{\Delta}[n]| > v(p) \mid |\delta X_{\Delta}[n-k], k > 0\} = p$$
 \longrightarrow Edgeworth expansion