2 LE RÉSISTOR

2.1 PRÉSENTATION

On adopte bien sûr la convention récepteur.

Un résistor est caractérisé par sa résistance, exprimée en ohm (Ω)

2.2 LOI D'OHM

Lorsqu'un résistor est traversé par un courant I_R , la différence de potentiel U_R à ses bornes suit la relation :

$$U_R = R \times I_R$$
.

- → Avec la convention récepteur utilisée :
- si U_{AB} est positif (V_A > V_B), le courant I circulera bien du potentiel le plus élevé au potentiel le moins élevé (de A vers B); I sera alors positif (I = U/R);
- Par contre, si U_R est négatif (V_A < V_B), le courant I circulera du potentiel le moins élevé au potentiel le plus élevé; I sera alors aussi négatif (I = U/R).
- → Afin de déterminer le courant traversant un résistor R en utilisant la loi d'Ohm, il faut bien utiliser la tension aux bornes de R :

 $I = U_{AB}/R \neq V_{A}/R \neq V_{B}/R$.

2.3 EXPRESSION DE LA PUISSANCE DANS UN RÉSISTOR

$$P = U \times I = R \times I^2 = U^2/R$$
.

2.4 ASSOCIATION DE RÉSISTORS

En série

La résistance équivalente de plusieurs résistors placés en série dans un montage est égale à la somme des résistances. Exemple:

■ En parallèle (ou dérivation)

La résistance équivalente $R_{\rm eq}$ de plusieurs résistors ($R_{\rm 1}$, $R_{\rm 2}$,..., $R_{\rm n}$) placés en parallèle dans un montage est trouvée en utilisant la relation :

$$\frac{I}{R_{\text{eq}}} = \left(\frac{I}{R_1} + \frac{I}{R_2} + \dots + \frac{I}{R_n}\right).$$

Exemple:

Cas particulier de 2 résistors en parallèle

2.5 COMPOSANT : LE RÉSISTOR AJUSTABLE OU POTENTIOMÈTRE

Représentation/Fonctionnement

. Un résistor ajustable, ou potentiomètre, est un résistor dont on peut faire varier la résistance. Il possède trois bornes G (gauche), D (droite) et C. C est la borne correspondant au curseur :

LA BOBINE

5.1 PRÉSENTATION/PROPRIÉTÉS

La bobine est un dipôle qui se caractérise par son inductance exprimée en henry (H). On utilisera en général les sous-multiples du henry (mH et µH), car les valeurs des inductances sont souvent très inférieures à I henry.

Symbole

On adopte la convention récepteur.

Rappel des relations entre flux/courant/tension

Relation flux/courant dans une spire de la bobine

Le flux $\varphi(t)$ est proportionnel au courant $i_1(t)$:

$$\varphi(t) = L.i_t(t)$$

Relation tension/flux dans une spire de la bobine

La tension u,(t) suit les variations du flux :

$$u_L(t) = \frac{d\varphi(t)}{dt}$$
.

Relation courant/tension dans une bobine

On a donc finalement la relation entre la tension $u_L(t)$ et le courant $i_L(t)$:

$$u_L(t) = L \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$$
.

Opérateur dérivation : d/dt ?

La fonction $di_L(t)/dt$, signifie que la tension $u_L(t) = L.di_L(t)/dt$ est proportionnelle aux variations du courant en fonction du temps. Cette fonction est appelée dérivée en fonction du temps :

- si $i_1(t)$ varie rapidement, $u_1(t)$ sera importante.
- si $i_L(t)$ est constant (invariant dans le temps), alors $u_i(t)$ sera nulle.

Exemple

(1) : $i_{\underline{t}}(t)$ varie lentement, avec une pente positive. $u_{\underline{t}}(t)$ sera donc positive et faible.

(2): $i_{\underline{l}}(t)$ varie deux fois plus vite qu'en (1). $u_{\underline{l}}(t)$ sera donc deux fois plus importante.

(3) : $i_L(t)$ varie lentement (comme (1)) mais avec une pente négative. $u_t(t)$ sera donc de même valeur qu'en (1) mais négative.

(4): $i_L(t)$ ne varie plus (courant constant). Donc $u_L(t)$ est nulle.

■ Énergie

L'énergie W emmagasinée dans une bobine d'inductance L parcourue par un courant I_L suit la relation :

$$W = \frac{L.I_L^2}{2}.$$

Association de bobines

Association série

L'inductance équivalente $L_{\rm eq}$ de plusieurs bobines placées en série dans un montage est déterminée par la formule :

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_n.$$

$$L_1 \qquad L_2 \qquad L_n \qquad \qquad L_{eq}$$

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_n.$$

Association parallèle

L'inductance équivalente $L_{\rm eq}$ de plusieurs bobines placées en série dans un montage est déterminée par la formule :

$$L_{eq} = \left(\frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}} + \frac{1}{L_{4}} + \dots + \frac{1}{L_{n}}\right)^{-1}.$$

$$L_{1} = \left\{\begin{array}{c} L_{2} \\ L_{2} \\ \end{array}\right\} = \left\{\begin{array}{c} L_{eq} \\ \end{array}\right\}$$

Propriétés de U, et I,

Le courant parcourant une bobine ne peut pas présenter de discontinuité

Dans le premier cas, le courant $i_{\ell}(t)$ ne présente pas de discontinuité. La tension $u_{\ell}(t)$ est donc proportionnelle à la pente de $i_{\ell}(t)$ (variation de l_{ℓ} dans le temps) ;

4 LE CONDENSATEUR

4.1 DÉFINITIONS/PROPRIÉTÉS

Le condensateur est un dipôle qui se caractérise par sa capacité exprimée en Farad (F). On utilisera essentiellement les sous-multiples du Farad (µF, nF et pF) car les valeurs des capacités sont pratiquement toujours très inférieures à 1 Farad.

Symboles

Pour un condensateur polarisé, le + indique la patte à connecter au potentiel le plus élevé.

Rappel des relations entre charge/courant/tension

Relation charge/tension dans un condensateur

La charge q(t) est proportionnelle à la tension $u_c(t)$:

$$q(t) = C.u_C(t).$$

Relation charge/courant dans un condensateur

Le courant ic(t) suit les variations de la charge :

$$i_{\mathbb{C}}(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t}$$

Relation courant/tension dans un condensateur

On a donc finalement la relation entre le courant i_c(t) et la tension $u_c(t)$:

$$i_{\rm C}(t) = \frac{{\rm C.d}u_{\rm C}(t)}{{\rm d}t}.$$

Opérateur dérivation d/dt

La fonction $du_c(t)/dt$, appelée dérivée de $u_c(t)$ en fonction du temps, signifie que le courant Ic est proportionnel aux variations de Uc en fonction du temps :

- si u_C(t) varie rapidement, i_C(t) sera important;
- si u_C(t) est constant (invariant dans le temps), alors ic(t) sera nul.

Exemple

- (1): u_c(t) varie lentement, avec une pente positive. i_c(t) sera donc positif et faible.
- (2): uc(t) varie deux fois plus vite qu'en (1). ic(t) sera donc deux fois plus fort que (1).
- (3): u_C(t) varie lentement (comme (1)) mais avec une pente négative. ic(t) sera donc de même valeur que (1) mais négatif.
- (4): u_C(t) ne varie plus (tension constante), donc i_C(t) est nul.

Energie

L'énergie W emmagasinée dans un condensateur de capacité C suit la relation :

$$W = C.U^2/2$$
.

Association de condensateurs

Association parallèle

La capacité équivalente Ceq de plusieurs condensateurs placés en parallèle est donnée par la relation :

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_n.$$

$$C_1 \quad C_2 \quad C_3 \quad C_n \quad C_{eq}$$

Association série

La capacité équivalente $C_{\rm eq}$ de plusieurs condensateurs placés en série est donnée par la relation :

$$C_{\text{eq}} = \left(\frac{I}{C_1} + \frac{I}{C_2} + \frac{I}{C_3} + \dots + \frac{I}{C_n}\right)^{-1}.$$

$$C_1 \mid C_2 \mid C_3 \mid \dots \mid C_n \mid \dots$$

Schéma équivalent réel du condensateur

Celui-ci tient compte des résistors et des bobines parasites. Ces éléments n'ont d'effet qu'en très haute fréquence. Leur valeur dépend de la technologie de fabrication du condensateur (voir technologie § 4.3).

L.: Bobine équivalente des liaisons.

R, : Résistance équivalente des liaisons.

R.: Résistance dite d'isolement.