(54) DIGITAL CROSS-CONNECTI

DEVICE

(11) 3-207197 (A)

(43) 10.9.1

(22) 9.1.1990

(21) Appl. No. 2-1745 (71) FUJITSU LTD (72) KATSUICHI OHARA

(51) Int. Cl⁵. H04Q11/04

PURPOSE: To make a cross-connection by dividing ≥2 virtual group signals to be handled whose virtual group are mutually an integral multiple into an

integral number of signals of common size.

CONSTITUTION: The format of a VT frame which is used for SONET standards consists of four VT pay-load pointer parts and four data parts each consisting of (a) bytes. Each VT pay-load pointer part consists of one byte and the number (a) of bytes of the data parts is 26 for VT1.5 size, 35 for VT2 size, 53 for VT3 size, and 107 for VT6 size. Thus, the frame of the VT2 size consists of bytes 4/3 as many as that of the frame of VT1.5 size, so when the size of 26 bytes which divides the VT2 size by an integer 4 and the VT1.5 size by an integer 3 is regarded as a unit of cross-connection, a common switch part in the device is used to make the cross-connection of VT1.5 and VT2.

b: 108 bytes, c: 144 bytes, d; 216 bytes, e: 432 bytes, f: (a) bytes

(54) NOISE COUNTERMEASURE DEVICE FOR ACOUSTIC EQUIPMENT USING EARPHONE OR THE LIKE

(11) 3-207198 (A)

(43) 10.9.1991 (19) JP

(22) 9.1.1990 (21) Appl. No. 2-1967

(71) HIROSHI TAMURA (72) HIROSHI TAMURA

(51) Int. Cl⁵. H04R3/02,G10K11/16,H04R1/10//G01H3/00

PURPOSE: To hear only a generated sound by inverting an acquired external sound signal by an external sound control means and outputting the signal

to an earphone after superposing processing with the sound signal.

CONSTITUTION: The signal of external sound acquired by a microphone is inverted by the external sound control means 4, its output value is adjusted, and the signal is mixed by a mixer 5 with the sound signal from a sound signal generating means 1. The mixed sound signal is converted by the earphone 2a into a sound, which reaches the eardrum, but an external sound acquired by a microphone 2b also reaches the eardrum, so that the actual external sound and a reflected external sound cancel each other. Consequently, only the original sound from a sound signal generating means 1 can be heard.

4a: inverting circuit, 4b: delay circuit, volume circuit. a: external sound

(54) PIEZOELECTRIC SPEAKER

(11) 3-207199 (A)

(43) 10.9.1991 (19) JP

(21) Appl. No. 2-1754

(22) 9.1.1990

(71) MATSUSHITA ELECTRIC IND CO LTD (72) KAZUKI URA

(51) Int. Cl⁵. H04R17/00

PURPOSE: To reproduce a sound which is close to a natural sound by hollowing the annular barrel part of a piezoelectric diaphragm which performs secondary resonance partially and adhering a film plate made of a high polymer.

CONSTITUTION: The piezoelectric disphragm 9 is formed by sticking a thin discoid metallic plate 8 which is larger in diameter than a discoid piezoelectric ceramic plate 3 on the piezoelectric ceramic plate 3 and its annular barrel part which performs the secondary resonance is hollowed partially to form a hole 10, which is sealed by adhering the film plate 11 of high polymer resin. Therefore, the barrel part which causes the secondary resonance of the piezoelectric plate is eliminated and the amplitude of the secondary resonance is not obtained, and the sound of secondary resonance frequency is enhanced. Consequently, the sound which is close to a natural sound can be reproduced.

®日本園特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A) 平3-207198

東京都費島区西巣鴨2-25-1-401号

®Int. Cl. 5

識別配号

庁内整理番号

43公開 平成3年(1991)9月10日

H 04 R 3/02 G 10 K H 04 R 11/16 1/10 3/00 // G D1 H

H Z 104

8946-5D 8842-5D 8946-5D 7403-2G

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称

イヤホン等を用いる音響機器用騒音対策装置

②特 顧 平2-1967

籅

願 平2(1990)1月9日 @出

村 個発 明 者 B の出 願 人 Œ 村 寬 東京都豊島区西巣鴨 2-25-1-401号

四代 理 人 弁理士 石井 光正

1、発明の名称

イヤホン等を用いる音響機器用

服音対策装置

2. 特許請求の範囲

音楽または話声等の音声信号を出力する音 声信号発生手段と、

音声信号を音声に変換するイヤホンと、

前記イヤホンの近傍に設けられ、外音を推 収するマイクロホンと

背記マイクロホンで捕捉した外音の電気信 号を反転するとともに、その反転した信号の 出力値を調整する外音制御手段と、

前記外音制御手段で制御された反転信号と 前記音声信号発生手段からの音声信号とをミ キシングし、前記イヤホンに出力するミキサ - b .

からなることを特徴とする音響装置。

3. 発明の詳報な説明

【産業上の利用分野】

本発明は、ラジオ、音声再生装置、トラン シーパなどのイヤホンを用いる音響機器用騒 **音対策装置に係り、特に、携帯用音響機器に** 好渡なものに関する.

【従来の技術】

近時、携帯用音響機器の普及はめざましく、 特に、通動・選学途中の電車あるいはバス等 の中で用いられていることが少なくない。

この携巻用音響機器はイヤホン(ヘッドホ ンを含む)を備えていて、利用者はそのイヤ ホンで音楽や言語や講義などを聞いている。

【発明が解決しようとする課題】

しかしながら、上記従来の携帯用音響機器 は、イヤホンで音楽等を聴くようにしてある が、環境の外音、例えば電車内で聴いている 場合は、電車の騒音による影響を受け易いの で、良く聞こえるようにするため、ポリュー ムを大きくして難いている。

したがって、音声がイヤホンから濡れ、周 囲の人に不快感を与えるばかりでなく、自身 の耳を傷めるという問題点があった。

このような問題点を解決するために、外音を物理的に完全に遮断するようにしてもよいが、このような完全遮蔽型のイヤホンは大型 化し、携巻には不便である。

そこで、本発明は、上記問題点を解決する ためになされたものであって、その目的は、 外音を電気的に処理し、従来のイヤホンでも 外音の影響を受けずに明瞭に難くことができ、 従って問題の人に迷惑とならない小さな音量 で音楽等を楽しむことのできる音響機器用騒 音対策装置を提供することにある。

【課題を解決するための手段】

本発明に係る音響機器用騒音対象装置は、上記目的速成のために、音楽または話声等の音声信号を出力する音声信号発生手段と、音声信号を音声に変換するイヤホンと、前記イヤホンの近傍に設けられ、外音を捕捉するマイクロホンと、前記マイクロホンで捕捉した外音の電気信号を反転するとともに、その反

第1 図は、実施例装置の額略構成を示すブロック図であって、一対のイヤホン部のうちの一方のみを図示してある。他方のイヤホン部も同一構成であるので、説明の重複を避けるため、ここでは一方のイヤホン部についてのみ説明する。

図中、1は音声信号発生手及であって、同 知のカセットテープレコーダ、CDプレーヤ またはラジオ受信器から構成されている。 2 はイヤホン部であって、本発明に従ってイヤ ホン2aのほかにマイクロホン2bを有して おり、検述のミキサー5を挿入したリード線 3aにより音声信号発生手段1と接続されている。

第2図は、上記イヤホン部2の側面図であって、周知のイヤホン2aの左側、すなわちイヤホン2aの背面にダンパー6を介して無精向性のマイクロホン2bが設けられており、イヤホン2aを耳に萎着したときは、マイクロホン2bが耳の外方に位置して、耳に到達

転した信号の出力値を調整する外音制御手段 と、前記外音制御手段で制御された反転信号 と前記音声信号発生手段からの音声信号とを ミキシングし、前記イヤホンに出力するミキ サーとからなることを特徴としている。

【作用】

上記載成において、マイクロホンで課程された外音の信号は、外音制御手段で反転処理されるとともに、出力値が調整されて音声信号発生手段からの音声信号とミキサーでミキシングされる。

ミキシングされた音声信号はイヤホンで音 声に変換されて耳の散膜に達するが、同時に、 マイクロホンで捕捉された外音も散膜に達し、 実外音と反転外音が相殺するため、音声信号 発生手段からの本来の音のみが聴かれるよう に作用する。

【実施例】

以下、本発明の一実施例に係る音響機器用 騒音対策装置を図面に基いて説明する。

する外音を散膜に速する前に捕捉することが できるようになっている。このとき、ダンパー6は、イヤホン2a自身の音がマイクロホ ン2bに捕捉されること防止する。

なお、第2図の3はリード線であって、上記リード線3aと、マイクロホン2bが捕捉した外音を変換して出力する電気信号を後述の外音制御手段4へ送出するためのリード線3bとを1本化したものである。

前記外音制御手段4は、マイクロホン2bの出力する外音信号を入力して、これを反射を 処理するOPアンプから構成される反転回路 4aと、反転された外音信号を所定時間選延 させる遅延回路4bと、反転された外音信号 の大きさを調整するためのポリューム回路4 cとを直列に接続して構成されている。

図中、5は周知のミキシング回路から構成されるミキサーであって、リード線3 a 中に設けられている。このミキサー5 には、音声信号発生手段1 からの本来の音声信号と、上

特開平3-207198 (3)

記外音制御手段4からの外音信号とが入力され、これら両信号の重量された音声信号がリード線3aを介してイヤホン2aに出力される。

反転回路4a、選延回路4b、ポリューム 回路4c及びミキサー5は、第3因に示されるような、リード線3中に設けられた中継ユニット7中に内蔵されている。

この中様ユニットでは、被服のボケット等に装着するためのクリップ8を有している。なお、この中様ユニットでは従来の携帯用音を機器のON、OFF及びボリュームを備えた中様ユニットと合体させるようにしてもよい。中様ユニットでには、遅延回路4cの出力値を調査するダイヤル4b~、4c~を設けてある。次に、本実施例装置の動作について説明す。

今、音声信号発生手段 1 からペクトルAの 音声信号が出力されているとともに、耳イの

この遅延時間下は、例えば、イヤホン2 a から鼓膜口までの距離が1 caで、周囲温度が常温とすれば、T=1 (ca) / 3 4 0 (m / s) = 2 7 μs である。したがって、遅延回路 4 b の速延時間下は、周囲温度とイヤホン2 a から鼓膜までの距離によって決められる。ダイヤル4 b 'は、温度条件に応じて遅延時間下の調整(位相調整)を可能にする。

反転され、かつ遅延処理された外音信号は、ボリューム回路4cに出力され、ここで大きさが調整される。大きさの調整は、反転処理されてイヤホン2aから出力される外音の大きさと、外音そのものの大きさの絶対値が散膜口において一致するように行われる。

反転処理されるとともに、選延処理され、かつ大きさの闘整されたポリューム回路4cからの外音信号は、ミキサー5に出力され、ここで音声信号発生手段1からの音声信号と動量処理されてイヤホン2aに出力される。したがって、音声信号発生手段1から発生さ

近毎にベクトルBの外音が生じたものとする。 したがって、マイクロホン2bにおいてもこ のベクトルBの外音が想捉される。

マイクロホン2 b によって捕捉された外音 は電気信号に変換され、その外音信号は、リ ード載3 b を介して反転回路 4 a に入力され、 ここで入力時の信号のレベルと全く逆のレベ ルに変換処理されて運転回路 4 b に出力される。

れる音のベクトルがAであるとすると、この ベクトルAから外音のベクトルBが緘算され た形(A-B)でミキサー5から出力される。

そして、鼓膜口においては、イヤホン2aからベクトル(A-B)と外音ベクルトBとが加算された形、すなわちベクトル(A-B+B)となり、結局、外音は相殺されるため、鼓膜に達する音は、音声信号発生手段1からの音ベクトルAのみとなる。

したがって、音声信号発生手段1から発生

特開平3-207198 (**4**)

される音量を小さくしても明瞭に聴くことが でき、周囲の人に迷惑とならず、また、自身 の耳を傷めることがない。

また、音声信号発生手段1からの音声信号 出力を0にしたときは、騒音遮断装置、いわ ゆる耳栓としても用いることができる。

なお、上述の実施例においては、外音制御 手段4の構成を反転回路4 a、遅延回路4 b 及びボリューム回路4 cの順に接続したが、 この順序を任意にしても同効である。

また、マイクロホン2bのイヤホン2aか ちの突出量によっては、反転外音信号の位相 調整が不要な場合もあるので、遅延回路4b は必ず要るものではない。しかし、周囲温度 の変化量が大きい環境では、遅延回路を備え たものが好ましい。

さらに、音声信号発生手段1は、携帯用に限らず、設置型の音響装置であってもよいことはもちろんである。

また、外音制御手段4及びミキサー5は音

声信号発生手段1の本体内に組込むようにしてもよい。

【発明の効果】

本発明装置においては、イヤホン近傍にマイクロホンを設けて外音を増促し、反転を設けて外音信号を外音制御手段で、反転やサームとともに、音量調整したのち、ミロスを関係といて音声信号発生手段からの音声に対してイヤホンへ出力するよう、音を見いることを表してきる。

したがって、音声信号発生手段から発生される音量を小さくすることができ、周囲の人に迷惑とならず、また、自身の耳を傷めることがない。

4. 図面の簡単な説明

第1図は本発明の一実施例に係る音響機器 用騒音対策装置の概略構成を示すプロック図、 第2図はイヤホン部の側面図、第3図は中難

- ユニットの関面図である.
 - 1 … 音声信号発生手段、
 - 2…イヤホン部、
 - 2 a …イヤホン、
 - 2 b … マイクロホン、
 - 4 … 外音制御手段、
 - 5…ミキサー.

 特許出順人
 田村
 第

 代理人
 弁理士石井光正

特開平3-207198 (5)

