Contact Details

Dr. Mahmud Muhammad

(PhD, MSc, and BSc in Geology)
Email: mahmud.geology@hotmail.com

Website: mahmudm.com

Objective

The goal of this project is to develop a suite of probability density functions (PDFs) that describe Eruption Source Parameter (ESP) inputs required by the NAME model. These estimations are crucial for accurate volcanic ash dispersion modeling.

Key Tasks:

1. Automated Retrieval and Parsing of Volcanic Advisory Reports (VAA):

• Implement a system to automatically retrieve and parse real-time Volcanic Advisory Reports (VAA) from the Tokyo Volcanic Ash Advisory Center (TVAAC).

2. Annual VEI Probability Parsing:

• Utilize the methodology outlined in Whelley et al. (2015) to extract annual Volcanic Explosivity Index (VEI) probabilities for the volcano of concern using data from VAA reports.

3. Bayesian Sampling for Total Eruption Mass (TEM):

• Estimate the range of Total Eruption Mass (TEM) for a known VEI level using Bayesian probability sampling. This estimation will account for a range of tephra particl densities.

Estimate the range of Total Eruption Ma
 Mass Eruption Rate (MER) Estimation:

• Calculate the Mass Eruption Rate (MER) based on the derived Total Eruption Mass (TEM).

5. **Eruption Duration Calculation:**

• Derive the eruption duration by integrating the MER and TEM values.

6. Plume Height Estimation from MER:

Estimate the volcanic plume height using the Mass Eruption Rate (MER).

7. MER Estimation from Plume Height:

Estimate the MER using observed Plume Height.

8. Estimation of Mass fraction of ash particle size below 63 microns:

• Estimate the Mass fraction of ash particle size below 63 microns using the Mass Eruption Rate (MER).

Start: Parse data from VAAC

Step 1: Parse location and volcano name	Step 2: Calculate weighted VEI using Whelley et al. 2015	Step 3: Estimate Total Volume	Step 4: Compute Total Erupted Mass (TEM)	Step 5: Derive Mass Eruption Rate (MER)	Step 6: Calculate eruption duration	Step 7: Estimate plume height
---	---	----------------------------------	--	---	---	-------------------------------

Parsing of Volcanic Advisory Reports (VAA)

In [40]: # Using Whelley et al., 2015 paper that calculated VEI Level eruption for 750 volcanoes in southeast Asia we start estimating Eruption source paramerters from VEI and probablistic volume estimates.

first we load Whelley 2015 Volcano Database later will be use to filter Volcanish Ash Advisory Center in realtime (computer need internet connection to parse VAA reports)

import vei

data_loader=vei.LOADDATA()

whelley_data=data_loader.whelley_2015(as_geodataframe=True)

In [41]: # import Libraries and classes required to parse VAA reports and filter dataset for later use.

import vep_vaa_text
from vep_vaa_text import VEP_TVAAC_VAAText
scraper = VEP_TVAAC_VAAText()

scraper.fetch_webpage()
tables = scraper.extract_all_tables()

Perform a search Note: for realtime operation set all parameters to None to retrive the latest report VAA report

search_results = scraper.search(query='SINABUNG', date_time=None, advisory_number='2020') # Replace with your query string, set all parameters to None to retrive latest report dates: Note takes longer processing time

downloaded VAA report. latest VAA report. latest date data=scraper.download vaa text(output dir="./vaa texts 2". filtered results=search results.csv=True.gdf=whelley data)

downloaded_VAA_report, latest_VAA_report , latest_date_data=scraper.download_vaa_text(output_dir="./vaa_texts_2", filtered_results=search_results, csv=True, gdf=whelley_data)

downloaded_VAA_report.head(2)

Out[41]	DTG VAAC VOLCANO VOLCA	CANO CODE PSN AF	REA SUMMIT ELEV AD\	VISORY NR INFO SOURCE AVIAT	TION COLOUR CODE	FCST VA CLD +6 HR	FCST VA CLD +12 HR FCST VA CLD +18 HR	RMK	NXT ADVISORY Latitude L	ongitude ADVIS	JRY_YEAR REPORT_NUMBER	DTG_DATETIME
	0 20200810/1635Z DARWIN SINABUNG	261080 N0310 E09824 INDONE	ESIA 2460M	2020/12 HIMAWARI-8, CVGHM, PIREP, WEBCAM	RED	10/2235Z NO VA EXP	11/0435Z NO VA EXP 11/1035Z NO VA EXP VA TO FL320 LAST PARTIALLY	OBS ON SAT IMAGERY NO LATER TO	HAN 20200810/2235Z= 3.166667	98.4	2020 1	2 2020-08-10 16:35:00
	1 20200810/1030Z DARWIN SINABUNG	261080 N0310 E09824 INDONE	ESIA 2460M	2020/10 HIMAWARI-8, CVGHM, PIREP, WEBCAM	RED 10/1630Z SI	FC/FL140 N0303 E09852 - N0337 10/2230Z SF	FC/FL140 N0253 E10049 - N0348 11/0430Z NO VA EXP ERUPTION HAS CEASED. VA	O FL320 LAST PARTIALL NO LATER T	HAN 20200810/1630Z= 3.166667	98.4	2020 10	0 2020-08-10 10:30:00

2 rows × 23 columns

In [42]: latest_date_data

THE PARK VOLCANO VOLCANO CODE PSN AREA SUMMIT ELEV ADVISORY NR INFO SOURCE AVIATION COLOUR CODE ... FCST VA CLD +12 HR FCST VA CLD +12 HR FCST VA CLD +12 HR FCST VA CLD +13 HR FCST VA

1 rows × 24 columns

In [43]: # Retrive data from the Latest report date
from rich.console import Console
from rich.table import Table

Initialize the console
console = Console()

Create a table for a professional and structured output

table = Table(title="Volcanic Activity Observations", show_lines=True, title_style="bold blue")
Define table columns

Define table columns
table.add_column("Parameter", style="dim", width=25)

table.add_column("Value", style="bold white", justify="center")
Populate the table with data, if available

if 'VOLCANO' in latest_date_data.columns:
 volcano_name = latest_date_data['VOLCANO'].to_list()[0]

table.add_row("Site of Volcanic Activity", volcano_name)
if 'Altitude_Meters' in latest_date_data.columns:

observed_ash_altitude_meter = latest_date_data['Altitude_Meters'].to_list()[0]
table.add_row("Observed Ash Altitude (m ASL)", str(observed_ash_altitude_meter))

if 'Latitude' in latest_date_data.columns:
 latitude = latest_date_data['Latitude'].to_list()[0]
 table.add_row("Latitude", str(latitude))

if 'Longitude' in latest_date_data.columns:
 longitude = latest_date_data['Longitude'].to_list()[0]

table.add_row("Longitude", str(longitude))

Call the search_whelley_2015 method on the instance
search_results, vei_range = data_loader.search_whelley_2015(Volcano=volcano_name, max_vei_returns=2)

View the search results
#print(f"Potential VEI Levels for Volcano site {volcano_name} is based on Whelley et al. 2015 paper {vei_range}")

#print(search_results)

table.add_row(f"Potential VEI Levels for Volcano {volcano_name} based on Whelley et al. 2015 paper", str(vei_range))

Render the table

console.print(table)

Volcanic Activity Observations

Parameter	Value
Site of Volcanic Activity	SINABUNG
Observed Ash Altitude (m ASL)	4267.2
Latitude	3.09
Longitude	9.92
Potential VEI Levels for Volcano SINABUNG based on Whelley et al. 2015 paper	[2, 3]

Step 1: Define Total Eruption Mass (TEM) from VEI

This cell initializes the VEI_BulkVolume_Mass class to perform probabilistic calculations of total eruption mass based on known VEI values.

Key Parameters:

- use_default_densities=True : Applies default density values for tephra deposits.
- density_min=800 and density_max=1700 (kg/m³): Define the density range for volcanic materials.
- num_samples=1000 : Specifies the number of Monte Carlo samples for probabilistic calculations.

Outcome:

The vei_toMass object enables generating probabilistic TEM values for subsequent calculations.

In [44]: from vei import VEI_BulkVolume_Mass

Initialize the class
vei_toMass = VEI_BulkVolume_Mass(use_default_densities=True, density_min=800, density_max=1200, num_samples=10000000)

Generate probabilistic volumes
vei_toMass.generate_probabilistic_volumes()

Calculate masses using probabilistic volumes

vei_toMass.calculate_mass(calculate_deterministic=True, calculate_probabilistic=True)

vei_toMass.calculate_percentile_bands()

Generate summary statistics

vei_toMass.generate_summary_statistics()
Visualize the results

vei_toMass.visualize_statistics()

Calculate and plot percentile bands

vei_toMass.plot_percentile_bands()

Export results
vei_toMass.export_statistics(filename="summary_statistics.csv")

vei_toMass.export_volumes_and_masses()

vei_toMass.export_data()

c:\Users\mahmud\OneDrive\Singapore_project\data\Modules\phase_1\vei.py:778: UserWarning: Mismatched number of handles and labels: len(handles) = 0 len(labels) = 4 interpretation_legend = plt.legend(handles=[], labels=interpretation_text,

1e15

Mean_Mass_Prob_kg

Mean_Mass_Det_kg

c:\Users\mahmud\OneDrive\Singapore_project\data\Modules\phase_1\vei.py:778: UserWarning: Mismatched number of handles and labels: len(handles) = 0 len(labels) = 4 interpretation_legend = plt.legend(handles=[], labels=interpretation_text,

Step 2: Load Volcanic Data for Model Inputs and Validation

This cell loads datasets containing eruption source parameters and metadata.

Data Sources:

- Mastin: Dataset of VEI-related eruption parameters.
- Aubrey: Dataset with parameters for eruption dynamics.
 IVESPA: Integrated Volcanic Eruption Source Parameters Archive for further modeling.

Purpose:

These datasets provide observational constraints and inputs for modeling eruption parameters.
Support statistical analysis and correlation studies to validate models.

In [45]: import vei from vei import analyze_correlations

data_loader=vei.LOADDATA()

Mastin = data_loader.load_Mastin(as_geodataframe=False)
Aubrey=data_loader.load_Aubry(as_geodataframe=False)
IVESPA=data_loader.load_IVESPA(as_geodataframe=False)
Sparks=data_loader.load_Sparks(as_geodataframe=False)
mastin_a=data_loader.load_Mastin_a(as_geodataframe=True)

analyze_correlations(Mastin, 'Mastin', threshold=0.7)
analyze_correlations(Aubrey, 'Aubrey', threshold=0.7)

analyze_correlations(Sparks, 'Sparks', threshold=0.7)
analyze_correlations(IVESPA, 'IVESPA', threshold=0.7)

#analyze_correlations(mastin_a, 'IVESPA', threshold=0.9)
import pandas as pd

df= pd.concat([Aubrey, IVESPA], axis=0, join='inner')

Step 3: Estimate Mass Eruption Rate (MER)

This cell prepares TEM data for use with the MERPredictor class.

inputs

• tem_values : Extracted mean probabilistic TEM values (Mean_Mass_Prob_kg) generated by the VEI model.

Purpose:

tem_values serve as input to estimate MER, an essential eruption source parameter.
MER will be used in subsequent steps to calculate eruption duration and plume rise.

In [46]: from mer_predict import MERPredictor
import pandas as pd

data=vei_toMass.data

Drop first row (VEI zero) because VEI zero is None Explosive

#data = data.drop(index=data.index[0]).reset_index(drop=True)

Ensuring the VEI column is numeric
data['VEI'] = pd.to_numeric(data['VEI'], errors='coerce')

Filtering the dataframe based on VEI column and list
data = data[data['VEI'].isin(vei_range)].reset_index(drop=True)

data

 VEI
 Bulk_Volume_km3
 Deterministic_Bulk_Volume_m3
 Probabilistic_Bulk_Volume_m3
 Mean_Mass_Det_kg
 Std_Mass_Prob_kg
 Std_Mass_Prob_kg
 Mass_55th
 Uncertainty_Mass_5th
 Uncertainty_Mass_5th

2 rows × 40 columns

In [47]: #tem_values=data.Mean_Mass_Prob_kg.to_list()
tem_values=data.Mean_Mass_Det_kg.to_list()

#tem_values=[1.998468e+11 , 3.585472e+14] model = MERPredictor(df) model.plot_posterior_predictive() mer_results=model.predict_mer(tem_values)
model.plot_percentiles_vs_tem() durations = model.convert_percentiles_to_duration(tem_values)

Step 4: Correlate VEI with MER Results

This cell adds the VEI values from the processed data into the mer_results DataFrame.

Purpose:

- Ensures that MER results are directly associated with their corresponding VEI values.
- Facilitates traceability and cross-comparison during analysis.
- In [48]: mer_results["VEI"]=data['VEI']

Step 5: Review Mass Eruption Rate (MER) Results

This cell displays the mer_results DataFrame, which includes the calculated MER values and associated VEI data.

Purpose:

Provides an overview of the MER estimates to verify accuracy and consistency.

Out[49]:	TEM_kg	MERPercentile_5 U	ncertainty_Lower_5 Un	certainty_Upper_5	MERPercentile_25	Uncertainty_Lower_25 Unc	ertainty_Upper_25 I	MERPercentile_50	Uncertainty_Lower_50 Unc	ertainty_Upper_50	Best_MER_Estimate_kg/s Best_MER_Estim	nate_kg/s_Uncertainty D	uration_hr_P5 Du	ration_hr_P25 Du	ration_hr_P50 Du	ration_hr_P75 Dur	ration_hr_P95 Durati	ion_hr_best_estimate	best_estimate_Uncertainty VEI
	0 1.084903e+11	3.096971e+06	2.118679e+06	3.302910e+06	3.648775e+06	3.545267e+06	3.744617e+06	4.102960e+06	4.010537e+06	4.187653e+06	2.356004e+06	4.458743e+06	9.697414	8.238386	7.338108	6.548809	5.527220	12.853059	6.596794 2
	1 3.254692e+12	3.395452e+07	1.838617e+07	3.760288e+07	4.547414e+07	4.310616e+07	4.774144e+07	5.589548e+07	5.373653e+07	5.795761e+07	5.856907e+07	1.347509e+08	26.406888	19.794934	16.192163	13.222836	9.822467	15.640027	5.875602 3

2 rows × 26 columns

Step 6: Select Central MER Values for Plume Height Prediction

This cell extracts the 50th percentile (median) MER values from the mer_results DataFrame.

Purpose:

- Focuses on the central tendency of the MER distribution, minimizing the influence of outliers.
- The Best MER values (mer_list) are determined using the range between the (95th and 5th percentiles) and are used as input for plume height predictions..
- In [50]: mer_list=mer_results['Best_MER_Estimate_kg/s'].to_list()

Step 7: Estimate Plume Rise Based on MER

This cell initializes the PlumeHeightPredictor class and calculates plume heights using the median MER values.

Methodology:

• Utilizes the IVESPA dataset for plume height predictions with uncertainty quantification.

Outputs plume height estimates based on the MER values (mer_list).

Purpose:

Plume rise estimation is critical for assessing the environmental and aviation impacts of volcanic eruptions.

In [51]: from plume_rise_predict import PlumeHeightPredictor

Initialize the PlumeHeightPredictor

predictor = PlumeHeightPredictor(df) heights=predictor.predict_height_with_uncertainty(mer_list, output_file='predicted_height_with_uncertainty.csv')

Calculate Percentiles with Uncertainty

percentiles_results = predictor.calculate_percentiles_with_uncertainty(mer_list)

print(percentiles_results)

Plot Percentiles with Uncertainty

predictor.plot_percentiles_with_uncertainty(mer_list) # Plot Posterior Predictive Distribution

predictor.plot_posterior_predictive()

Plot Percentiles Without Uncertainty predictor.plot_percentiles_vs_mer()

Step 8: Review Plume Height Estimates

This cell displays the predicted plume heights.

Purpose:

Offers an immediate review of the plume height results for quality control and interpretation.

Duration_hr_P25

2.0 6.548808846345508 5.527220272531921 12.85305892546757 3.0 13.222836376123913 9.822467187015429 15.640027234396946 VEI and Related Data

VEI Duration_hr_best_estimate_Uncertainty

2.0 6.596794317718479
3.0 5.875602313234533

Duration_hr_P5

Refining Mass Eruption Rate (MER) Estimates Using Observed Plume Height

Duration_hr_P50

When plume height is observed through satellite imagery or infrasound data, it provides an opportunity to enhance previously predicted MER values. By leveraging this direct observation of plume height, we can derive a more accurate estimate of the MER, aligning it closely with the actual eruption dynamics.

In [54]: from mer_from_height import MERPredictorFromHeight

predictor = MERPredictorFromHeight(mastin_a)
Predict MER for specific heights
Save predictions to a CSV
Observed_plume_height=[5,8]
predictions=predictor.predict_MER_with_uncertainty(Observed_plume_height, output_file='predicted_mer_fromheight.csv')

Visualize the posterior predictive distribution
predictor.plot_posterior_predictive()

Visualize percentiles with uncertainty
predictor.plot_percentiles_with_uncertainty(Observed_plume_height)

predictor.plot_percentiles_vs_mer()
predictions

Out[54]:	Height_km.a.v.l l	MERPercentile_5	Uncertainty_Lower_5 U	ncertainty_Upper_5	MERPercentile_25	Uncertainty_Lower_25 Ur	ncertainty_Upper_25	MERPercentile_50	Uncertainty_Lower_50 l	Jncertainty_Upper_50	MERPercentile_75	Uncertainty_Lower_75	Uncertainty_Upper_75	MERPercentile_95	Uncertainty_Lower_95	Uncertainty_Upper_95	Best_MER_Estimate_km Be	st_MER_Estimate_km_Uncertainty
(5	59298.970586	54834.818641	60095.380949	61591.084214	61188.465025	61971.535332	63302.925497	62968.828675	63627.974544	65011.593045	64629.165918	65434.884521	67590.186068	66607.560374	73348.920879	8291.215482	13253.539930
1	8	558116.631819	535593.067374	562847.030880	571064.654538	568801.956990	573189.576914	580181.352778	578473.506582	581808.475270	589117.142069	587039.511114	591361.094434	603169.954856	597851.887123	625230.577033	45053.323037	62383.546153

In [55]: from ParticleSize_MER import Predict_ASH_BELOW_63_Micron

from vei import data_loader

#mastin_a=data_loader.load_Mastin_a(as_geodataframe=True)

psize_model=Predict_ASH_BELOW_63_Micron(mastin_a)

psize_model.set_xvar('MER_kg/s')
psize_model.set_yvar('MASS_FRACTION_ASH_BELOW_63_micron')

psize_model.calculate_percentiles_with_uncertainty(mer_list)
psize_model.predict_with_uncertainty(mer_list)

psize_model.plot_posterior_predictive()

Visualize percentiles with uncertainty
psize_model.plot_percentiles_with_uncertainty(mer_list)

psize_model.plot_percentiles()

psize_predictions=psize_model.predict_with_uncertainty(mer_list)

Out[56]:	MER_kg/s MASS_FRACTION_ASH_BELOW_63	_micron_Percentile_5 Unce	ertainty_Lower_5 Unce	rtainty_Upper_5 MAS	SS_FRACTION_ASH_BELOW_63_micron_Percentile_25	Uncertainty_Lower_25	Uncertainty_Upper_25 N	MASS_FRACTION_ASH_BELOW_63_micron_Percentile_50	Uncertainty_Lower_50	Uncertainty_Upper_50 MASS_F	RACTION_ASH_BELOW_63_micron_Percentile_75 Uncertainty_Low	er_75 Uncertainty_Upper_7	5 MASS_FRACTION_ASH_BELOW_63_micron_Percentile_95 U	ncertainty_Lower_95 Unce	ertainty_Upper_95
0	2.356004e+06	0.296646	0.293821	0.297122	0.297909	0.297673	0.298098	0.298795	0.298621	0.298967	0.299687 0.3	99493 0.29988	5 0.300963	0.300486	0.304530
1	5.856907e+07	1.596457	1.565323	1.602008	1.611337	1.608855	1.613581	1.621543	1.619678	1.623485	1.631997 1.	29621 1.63450	0 1.646602	1.640912	1.679012

In [57]: columns_to_assign=list(psize_predictions.columns)
 columns_to_assign=columns_to_assign[1:]

Assuming `columns_to_assign` contains column names and `heights` and `psize_predictions` are DataFrames

heights.loc[:, columns_to_assign] = psize_predictions[columns_to_assign]

heights.to_csv('Final_prediction_results.csv')

In [58]: psize_predictions

In [56]: psize_predictions

MRS_FRACTION_ASH_BELOW_63_micron_Percentile_50 Uncertainty_Lower_50 Unce