TD 4. Complexes.

Exercice 1. Soient z et z' des complexes de module 1 tels que $zz' \neq -1$. Montrer que $\frac{z+z'}{1+zz'}$ est réel.

Exercice 2. Résoudre |z-1|=|z+3|.

Exercice 3. Déterminer l'ensemble des nombres complexes z tels que $z, \frac{1}{z}$ et 1-z aient même module.

Exercice 4. Soient $z, z' \in \mathbb{C}$, montrer : $|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$. Interpréter géométriquement cette relation (Identité du parallélogramme).

Exercice 5. Mettre les complexes suivants sous forme trigonométrique (où θ est dans $[0, 2\pi]$):

$$z_1 = 2i - 2\sqrt{3}$$
 $z_2 = \frac{1+i}{\sqrt{3}i-1}$ $z_3 = \left(\frac{1-3i}{i-2}\right)^{11}$ $z_4 = 2ie^{i\theta}$

$$z_5 = -e^{i\frac{\pi}{4}}$$
; $z_6 = \sin(\theta)$; $z_7 = -\sin(\theta) + i\cos(\theta)$; $z_8 = i - e^{i\frac{\pi}{4}}$

Exercice 6. On pose $z_1 = 3 + 3i$ et $z_2 = \sqrt{2} + i\sqrt{6}$.

Déterminer les formes algébrique et trigonométrique de $z = \frac{z_1}{z_2}$; en déduire $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 7. Déterminer l'ensemble des entiers n tel que $(1+i)^n$ soit réel.

Exercice 8. On note $\omega = e^{i\frac{2\pi}{7}}$, $A = \omega + \omega^2 + \omega^4$, et $B = \omega^3 + \omega^5 + \omega^6$.

- a) Montrer que $B = \overline{A}$ et que Im(A) > 0.
- b) Calculer A + B et AB, en déduire A et B.

Exercice 9. Soit $\alpha \in \mathbb{C}$, une racine 5ème de l'unité, distincte de 1.

Montrer que $(\alpha^2 + \alpha + 1)(\alpha^3 + \alpha + 1)(\alpha^4 + \alpha + 1) = \alpha(\alpha + 1)$.

Exercice 10. Linéariser $\sin^2 x \cos^3 x$.

Sommes

Exercice 11. Soient $n \in \mathbb{N}$, et a, b des réels. Calculer $\sum_{k=0}^{n} \cos(ak+b)$ et $\sum_{k=0}^{n} \sin(ak+b)$.

Application : calculer $S = \cos(\frac{\pi}{11}) + \cos(\frac{3\pi}{11}) + \cos(\frac{5\pi}{11}) + \cos(\frac{7\pi}{11}) + \cos(\frac{9\pi}{11})$.

Exercice 12. Soit $n \in \mathbb{N}^*$ tel que $n \geq 2$, $p \in \mathbb{Z}$ et $\omega = e^{2i\pi/n}$. Calculer les sommes suivantes :

$$S_1 = \sum_{k=0}^{n-1} \binom{n}{k} \omega^k \text{ (on montrera que c'est un réel)} \quad ; \quad S_2 = \sum_{k=0}^{n-1} \omega^{kp}.$$

Exercice 13. Soit $n \in \mathbb{N}^*$, $n \ge 2$, et $\theta \in \mathbb{R} \setminus \{k \frac{\pi}{2} / k \in \mathbb{Z}\}$. Calculer $\sum_{k=0}^{n} \frac{\cos(k\theta)}{\cos^k \theta}$.

Équations

Exercice 14. Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$:

a)
$$2z + 6\overline{z} = 3 + 2i$$
.

b)
$$z + \overline{z} + j(z+1) + 2 = 0$$
.

Exercice 15. Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$:

a)
$$z^4 = -7 - 24i$$

a)
$$z^4 = -7 - 24i$$
 b) $z^3 = 4\sqrt{2}(1+i)$

Exercice 16. Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$:

a)
$$iz^2 + (4i - 3)z + i - 5 = 0$$

b)
$$3z^2 + 2(1 - 3m)z + 3m^2 = 0$$

où m paramètre réel

c)
$$z^2 - 2(1 + \cos(\phi))z + 2(1 + \cos(\phi)) = 0$$
 où ϕ paramètre réel

d)
$$z^6 - z^3 + i + 1 = 0$$

e)
$$7z^3 - (14+2i)z^2 + (14+4i)z - 4i = 0$$

sachant qu'une solution est imaginaire pure

f)
$$(z^3 + 1)^2 = (z + 1)^6$$

(indication : factoriser le membre de gauche)

Exercice 17. Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$:

a)
$$(z-1)^n = z^n$$

b)
$$\left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z+1}{z-1}\right)^2 + \left(\frac{z+1}{z-1}\right) = -1$$

c)
$$z^{2n} - 2\cos(n\theta)z^n + 1 = 0$$

d)
$$e^{iz} = 1 - i$$

Géométrie et complexes

Exercice 18. Dans chacun des cas suivants, préciser la région du plan complexe des points d'affixe z vérifiant la condition indiquée (a désigne un réel fixé) :

a)
$$1 + |z| < a$$

b)
$$|1+z|=4$$
:

a)
$$1+|z| \le a$$
; b) $|1+z| = 4$; c) $0 \le 1 \le |i-z| \le 2$;

d)
$$|z| = |1 - z| = 1$$

e)
$$z = re^{i\frac{2\pi}{5}}, \ r \in [0, 2]$$

d) |z| = |1 - z| = 1; e) $z = re^{i\frac{2\pi}{5}}$, $r \in [0, 2]$; f) $z = 3e^{i\theta}$, $\theta \in [0, \frac{\pi}{2}]$.

Exercice 19. Pour tout complexe $z \neq -1$, on pose $Z = \frac{z+2}{z+1}$

En raisonnant géométriquement, déterminer l'ensemble des points d'affixe z tels que :

- a) $Z \in \mathbb{R}$
- b) $Z \in i\mathbb{R}$
- c) |Z| = 1.

Exercice 20. Déterminer les points M d'affixe complexe z tel que, si A est d'affixe 1 et N d'affixe $1+z^2$, les trois points N, A, M sont alignés.

Exercice 21. Soient A, B et C trois points distincts du plan, d'affixes respectives a, b et c.

- a) Montrer que le triangle ABC est équilatéral direct si et seulement si $a + bj + j^2c = 0$.
- b) En déduire que le triangle ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + ac + bc$.

2