Working of VFH Algorithm

1. Sensor Data Division

- The algorithm divides range data into angular sectors (like slices of a pie).
- For each sector, it calculates the distance to the nearest obstacle.

2. Polar Histogram Generation

- These range values are plotted into a polar histogram.
- The histogram visually represents obstacles around the robot using concentric rings.

3. Noise Filtering

- A threshold removes values too small to be real obstacles (noise).
- A Gaussian filter is applied to smooth the histogram.

4. Safe Path Direction Calculation

- The histogram is divided into sectors again.
- For each sector, compute the average range.
- Sectors with the largest range values are considered safest (least obstructed).

5. Virtual Vector Field Creation

- A virtual vector field is created using adjacent sector values.
- These vectors point in the direction of safest movement.

6. Movement Decision

- The algorithm sums vectors in each sector.
- The sector with the highest sum is selected as the movement direction.

Hloooooo
Haiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Byeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

	(Pages - 1) Class No :
	Name:
	ST. ALBERT'S COLLEGE (AUTONOMOUS), ERNAKULAM
行子	B.Voc.SOFTWARE DEVELOPMENT
~	Second Internal Examination SEPT 2024 SEMESTER V
Course Code: VC	
Course Title:Pro	gramming in Java and Lab
Time: I hour	Maximum Marks : 25
	PART A
	Answer any two questions. Each question carries 1 mark
1. What is ar	Exception?
2. What is Th	hread?
3. What is '	finally'?
	$(2 \times 1 = 2)$
	PART B
4 What are	Answer any two questions. Each question carries 2 marks
	the different types of exceptions?
	ate 'throw' and 'throws'.
o. What are	the different stages of a thread?
	$(2 \times 2 = 4)$
	PART C Answer any one question. Each question carries 4 marks
7 Explain try	/ – catch in Java with example.
	va program to handle division by zero exception.
o. Wille a Jav	
	$(1 \times 4 = 4)$
	PART D Answer any one question. Each question carries 15 marks
9. Java prograi	m to demonstrate method overriding with the following data. Create a base class

9. Java program to demonstrate method overriding with the following data. Create a base class "Vehicle" and declare the variable reg_no as string and model as integer. Create a function read() inside the class to read data for the variables. Create a derived class "TwoWheeler" and declare the variables no_gear and power as integer. Create another as string, Create a derived class "Scooter" and declare variables manufacturer, owner function read() to get the data for no_gear, power, manufacturer and owner. Create another function print that prints the values of all the variables.

10. Explain different ways for creating threads with example.

 $(1 \times 15 = 15)$

Another demo

1) Describe any four attractive features of the biological neural network that make it superior to the most sophisticated Artificial Intelligence computer system for pattern recognition tasks.

1. Massive Parallelism

- The brain processes information in parallel using billions of neurons and trillions of synapses.
- This allows for simultaneous analysis of large volumes of data, which is critical in recognizing patterns like faces, speech, and handwriting.
- Al Limitation: Most Al systems, even with GPUs, still simulate parallelism and have hardware and speed limits.

2. Robustness and Fault Tolerance

- Biological neural networks are highly tolerant to noise, damage, and incomplete data.
- The brain can still function even if some neurons are damaged or missing.
- In pattern recognition, the brain can often recognize patterns even with partial or noisy input.
- Al Limitation: Al systems often fail or perform poorly with noisy or incomplete data unless specially trained for it.

3. Learning from Few Examples (One-shot or Few-shot Learning)

 The human brain can learn and generalize from very few examples — sometimes even from just one exposure.

Error Sources in Odometric Data

Even though odometry is simple and fast, it is **not perfectly accurate**. Various types of errors can accumulate over time:

1. Wheel Slippage

- If a wheel slips (especially on smooth, wet, or uneven surfaces), the rotation does not correspond to actual movement.
- Causes wrong estimation of distance or direction.

2. Uneven Surface or Rough Terrain

- If the ground is not flat, wheels may bounce or tilt, leading to wrong measurements.
- The robot might move in ways that are not detected properly by wheel sensors.

3. Imperfect Wheel Calibration

- If the wheels are not exactly the same size or the encoders are slightly inaccurate, the robot's estimation of distance and rotation will be wrong.
- Small calibration errors accumulate into large position errors over time.

4. Mechanical Wear and Tear

- Over time, wheels, gears, and sensors can wear out or get loose.
- This results in inaccurate readings of rotations and distances.