Kane's Method: Finding Constraint Equations

Eric Stoneking Nov 2014

Kane's Equation

Recall Kane's equation in matrix form:

$$\Omega^{T}(T-I\alpha-\omega\times H)+V^{T}(F-ma)=0$$

We've said that the matrices Ω and V project Euler's and Newton's equations into the state space spanned by the generalized speeds.

Let's step back and look at the bigger picture.

Rigid Bodies and Joints

- A system of rigid bodies has a total of 6N_h DOF
- Assign 6DOF to the root body
- Examine each joint
 - The outer body motion is dictated by the inner body motion and the joint DOFs
- A joint introduces 0-6 constraints (typically 1-5)
 - Example: a simple hinge introduces 3 translational constraints and 2 rotational constraints, leaving 1 DOF
- So each of the 6N_b potential DOFs either becomes a DOF or a constraint: N₁ + N_c = 6N_b

Doing It the Hard Way

- Typical Newton-Euler formulations (ref Haug, etc) adjoin the constraint equations to the equations of motion and solve them together
- Introduces constraint forces (and torques) as additional unknowns to be solved for
 - These are obtained "for free", in the sense that you have no choice but to obtain them
- Size of system to be solved is then 6N_b+N_c
 - Solution time grows like $(6N_b + N_c)^3$
- Due to roundoff, constraints may not be perfectly satisfied
 - This can also degrade the accuracy of the overall solution

Kane's Method is Faster and More Accurate

- Constraints are identically satisfied
 - Numerical issues related to augmented systems are avoided entirely
- Size of system to solve is 6N_b-N_c
 - Solution time grows like (6N_b-N_c)³
 - Example: $N_b = 2$, $N_c = 5$ (a 1DOF hinge)
 - $-6N_{b}+N_{c}=17, 6N_{b}-N_{c}=7$
 - $-7^3/17^3 = 0.07$
 - So Kane's Method is much faster
 - This system is solved 4x per time step for RK4
- Computation of constraint forces/torques is optional, not compulsory
 - 1x per time step (not 4x), and with no matrix inversion

Assigning DOFs and Constraints

- Every system starts out with 6N_b potential
 DOFs
- Give the root body (B₁) 6 DOFs
- Examine each joint in turn
 - Assign each potential DOF to an actual DOF or a constraint
 - For a tree topology, all potential DOFs will be accounted for
 - Non-tree topologies are a topic for another day

An Example Joint Definition

```
! Inner, outer body indices
1 213 GIMBAL ! RotDOF, Seq, GIMBAL or SPHERICAL
0 123 ! TrnDOF, Seq
```

- Identify number of rotational, translational DOFs
- Give 3-element sequences in all cases
 - Ex: Rotational axis 2 is free, and axes 1 and 3 are constrained (in that order!)
- Spherical joints are distinguished from 3-DOF gimbal joints by additional keyword

Theory

Imagine the dynamical system with all potential DOFs. We write Kane's equation:

$$\Omega_P^T[T - I(\Omega \dot{u} + \alpha_r) - \omega \times H] + V_P^T[F - m(V \dot{u} + \alpha_r)] = 0$$

where Ω_P , V_P project into all $6N_b$ dimensions of the state space.

Now partition Ω_P , V_P :

$$\Omega_P = [\Omega \ \Omega_c], \ V_P = [V \ V_c]$$

where Ω , V project into the permissible motion subspace, and Ω_c , V_c project into the constrained subspace.

Equations of Motion

$$\Omega^{T}[T-I(\Omega \dot{u}+\alpha_{r})-\omega\times H]+V^{T}[F-m(V\dot{u}+a_{r})]=0$$

Rearrange to solve for \dot{u} :

$$(\Omega^T I \Omega + V^T m V) \dot{u} = \Omega^T (T - I \alpha_r - \omega \times H) + V^T (F - m \alpha_r)$$

- An N_u x N_u system of equations to solve by Gaussian elimination (or similar)
- Propagate using RK4
 - Requires system to be solved four times per timestep
- If constraints are unwanted, this gives the complete solution

Equations of Constraint

$$\Omega_c^T [T - I(\Omega \dot{u} + \alpha_r) - \omega \times H] + V_c^T [F - m(V \dot{u} + \alpha_r)] = 0$$

Rearrange to isolate generalized constraint forces:

$$F_c = \Omega_c^T T + V_c^T F = \Omega_c^T [I(\Omega \dot{u} + \alpha_r) + \omega \times H] + V_c^T [m(V \dot{u} + \alpha_r)]$$

- All terms on RHS are known from solution of equations of motion
- No simultaneous solution needed (no matrix inverse!)
 - Simply matrix multiplication and addition
- Evaluated once per timestep (not four times, as would be if it were solved along with equations of motion)
- Completely optional
 - Find all, some, or none as desired

Conclusion

- Kane's method provides a straightforward way to obtain constraint forces and torques
- Accuracy of equations of motion is not compromised as happens when EOM are augmented with constraint equations
- Computational complexity of Kane's method is much less than for augmented formulation
- Addition of constraint equations is much less burdensome by using Kane's method
 - Constraint equations do not "perturb" equations of motion
 - No matrix inversion
 - Solve once per timestep, not four times (for RK4)
 - Can restrict attention to those constraints of interest

Appendix: Example from OSIRIS-REX

Example from OSIRIS-REX

- To study the dynamics of the Touch-And-Go (TAG) maneuver, we built a model of O-Rex in 42 with:
 - Main Body: 6 DOF
 - Shoulder and Elbow Joints: All DOF constrained
 - To find constraint forces and torques
 - Pogo Joint: 1DOF Translation
 - Wrist: 2DOF Gimballed
- Following slides show part of output file Tree00.42
 - Documents partition of potential DOFs into DOFs and constraints

Main Body has 6DOF

*****	****	****	* * * *	*****	*****	******
Body 00:	RotS	eq = 1	23	TrnSeq = 123		
Axis	F/C	u[]	x[]	Col in u00.42	Col in x00.42	Col in Constraint00.42
Rot1	F	00	00	01	01	and the second
Rot2	F	01	01	02	02	Aughter of Aug
Rot3	F	02	02	03	03	
(Sph)	-	- -	03		04	
Trn1	F	06	07	07	08	AND AND AND
Trn2	F	07	80	08	09	ma
Trn3	F	80	09	09	10	

Shoulder and Elbow are Constrained

******** Joint 00			TrnSeq = 123		******
Axis	F/C	u[] x[]		Col in x00.42	Col in Constraint00.42
Rot1 Rot2 Rot3	C C C	=======================================	==	==	01 02 03
Trn1 Trn2 Trn3 ******	C C C *****	 *****	 ******	 *****	04 05 06 ******
Joint 01:	Rots	Seq = 213 u[] x[]		Col in	Col in Constraint00.42
Rot1 Rot2 Rot3	C C C	 		 	07 08 09
Trn1 Trn2 Trn3	C C C		 		10 11 12

Pogo and Wrist Joints

****	*****	****	******	****	*****
Joint	02: Rot	Seq = 213	TrnSeq = 312		
			Col in		Col in
Axis	F/C	u[] x[u00.42	x00.42	Constraint00.42
Rot1	C				13
Rot2	C C				14
Rot3	C				15
Trn1	F	03 04	04	05	me - me
Trn2	C				16
Trn3	C				17
****	*****	*****	*********	*****	*****
Taint					
Joint	03: Rot	Seq = 213	TrnSeq = 123		
JOINT		Seq = 213	Col in	Col in	
Axis	03: Rot	Seq = 213 u[] x[]	Col in	Col in	Col in Constraint00.42
Axis		u[] x[Col in u00.42	Col in x00.42	
Axis Rot1	F/C F	u[] x[]	Col in u00.42	Col in x00.42	
Axis Rot1 Rot2	F/C F F	u[] x[Col in u00.42	Col in x00.42	Constraint00.42
Axis Rot1	F/C F	u[] x[]	Col in u00.42	Col in x00.42	
Axis Rot1 Rot2 Rot3	F/C F F C	u[] x[]	Col in u00.42	Col in x00.42	Constraint00.42
Axis Rot1 Rot2 Rot3 Trn1	F/C F F C C	u[] x[]	Col in u00.42	Col in x00.42	Constraint00.42 18 19
Axis Rot1 Rot2 Rot3 Trn1 Trn2	F/C F F C C	u[] x[]	Col in u00.42	Col in x00.42	Constraint00.42 18 19 20
Axis Rot1 Rot2 Rot3 Trn1	F/C F F C C	u[] x[]	Col in u00.42	Col in x00.42	Constraint00.42 18 19