Banasthali Vidyapith Department of Computer Science Course Handout: M.Tech. (AI)/ M.Tech. (CS) I Semester July –December 2025

Date: 9 July 2025

Course Code: AI 505L Course Name: Computer Vision Lab

Credit Points: 2 Max. Marks: 100 (CA: 40 + ESA: 60)

Course Instructor:

Ms. Aishvarya Garg, Research Associate, Computer Science

Course Outcomes:

On completion of the course, students will be able to:

- CO 1 To understand and apply the image fundamentals and mathematical transforms necessary for computer vision.
- CO 2 To apply the image enhancement techniques and image restoration procedures.
- CO 3 To apply the image segmentation and representation techniques.
- CO 4 To comprehend the practical aspects of analysis of images with computers.
- CO 5 To implement classification and machine learning techniques in computer vision.

Suggested Books:

- R1. Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Cengage Learning.
- R2. Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business Media.
- R3. Forsyth David, A., & Jean, P. (2002). Computer Vision: a modern approach. PHI
- R4. Cipolla, R., Battiato, S., & Farinella, G. M. (Eds.). (2010). Computer Vision: Detection, recognition and reconstruction (Vol. 285). Springer.
- R5. Ikeuchi, K. (2014). Computer vision: A reference guide. Springer Publishing Company, Incorporated.
- R6. Nixon, M., & Aguado, A. (2019) Feature extraction and image processing for computer vision. Academic press.

Suggested E-Learning Material:

- E1. Computer Vision: Foundations and Applications http://vision.stanford.edu/teaching/cs131_fall1415/schedule.html
- E2. Deep Learning in Computer Vision https://www.coursera.org/learn/deep-learning-in-computer-vision

Assessment Schedule:

Component	Marks	Submission/ Examination Date(s)	Allotment/ Syllabus
Continuous Assessment**	40		Course related topics
End-Semester Examination	60	1 December – 19 December, 2025*	Lab No. 01 to 25 (Entire Syllabus)

^{*} Subject to change, if required.

^{**}Continuous assessment will be based on practical test(s)/ viva-voce/ minor project(s)/ any other component(s) as decided by the instructor(s) on regular basis.

Laboratory-Wise Schedule: (02 hours/ laboratory)

Laboratory	Topics to be Covered
Number	
1	Introduction to MATLAB: To read and display an image.
2-3	Geometric transformations of image:
	(i) Translation
	(ii) Scaling
	(iii) Rotation
	(iv) Shrinking
	(v) Zooming
4-5	Histogram Equalization:
	Histogram mapping and equalization of an input image (grayscale and color).
6- 7	Image Denoising: To add noise in the image and apply image restoration techniques using
	(i) Average filter
	(ii) Median filter
	(iii) Gaussian filter
	(iv) Wiener filter
8-9	Edge Detection: Edge detection using following operators:
	(i) Canny
	(ii) Prewitt
	(iii) Sobel
	(iv) Log
10-11	Segmentation: Segmentation of an image using
	(i) Thresholding
	(ii) Clustering
	(iii) Graph based segmentation
	(iv) Region growing
	(v) Watershed segmentation
12-13	Frequency Domain: To apply following transforms on an input image and perform inverse
	transforms to reconstruct the image:
	(i) Discrete Fourier Transform
	(ii) Discrete Cosine Transform
4.1	(iii) Discrete Wavelet Transform
14	Filtering: To perform low pass and high pass filtering in frequency domain.
15-16	Feature Extraction: LBP, HOG, SIFT, SURF, Moment, Invariant moments
17-18	Classification: Binary and multiclass classification using Support Vector Machine (SVM)
19-20	Object Detection: Real time object detection, Real- time face detection in multi-scale images with an attentional cascade of boosted classifiers.
21-22	Tracking: Color object tracking, moving object tracking based on background subtraction.
23	Application: Activity recognition.
24	Application: Emotion recognition
25	Optical flow in any image processing application
43	Optical now in any image processing application

Ms. Aishvarya Garg