

TÉCNICAS DE CONTEO

Técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay mxn formas de hacer ambas cosas. Número total de arreglos= m x n

$$2 \times 3 \times 3 = 18$$

PERMUTACIÓN

Importa el orden, el orden cuenta, por ejemplo con las letras ABC escoja pares de letras, el resultado sería:

AB BA BC CB AC CA

¿Cuántos subgrupos ordenados de tamaño r se pueden obtener de un grupo de tamaño n?

$$P_r^n = \frac{n!}{(n-r)!}$$

- Donde
- nPr: Número de permutaciones posible
- n Numero total de objetos
- r numero de objetos utilizados en un mismo momento

¿CUANTAS PAREJAS SE PUEDEN OBTENER DE LA MESA?

 $n = 4 \ y \ r = 2$

$$P_2^4 = \frac{4!}{(4-2)!} = 12$$

COMBINACIÓN

Considere las letras ABC, para este conjunto los posibles resultados son:

AB BC AC

Para la combinación AB es lo mismo BA

¿Cuántos subconjuntos de tamaño r se pueden obtener de un conjunto de tamaño n?

$$C_r^n = \binom{n}{r} = \frac{n!}{r! (n-r)!}$$

¿CUÁNTOS SUBCONJUNTOS DE TAMAÑO 2 SE PUEDEN OBTENER DE LA MESA?

$$C_2^4 = \frac{4!}{2!(4-2)!} = 6$$

ALGUNOS CONCEPTOS BÁSICOS

Experimento: Proceso al azar que produce un resultado

Espacio muestral (S): Conjunto de todos los posibles resultados de un experimento estadístico

Evento: Subconjunto del espacio muestral

Puntos muestrales: Numero de posibles resultados que hay en un espacio muestral

Lanzar dos monedas y observar los resultados posibles, se obtiene el siguiente espacio muestral:

$$S = \{(C, C), (C, S), (S, C), (S, S)\}$$

Sea A el evento de obtener al menos una cara $A=\{(C,C),(C,S),(S,C)\}$

PROBABILIDAD

La probabilidad es una medida de la posible ocurrencia de un evento A.

Clásico:

$$P(A) = \frac{\#(A)}{\#(S)}$$

Frecuentista:

$$P(A) = \frac{N^{\circ} \text{ veces que se presentó } A}{N^{\circ} \text{ veces que se observ\'o el experimento}}$$

Subjetivo:

$$P(A) = criterio de un experto$$

PROPIEDADES

 La probabilidad de cada punto muestral debe estar entre 0 y 1

$$0 \le P(A) \le 1$$

 La suma de todos los puntos muestrales debe ser igual a 1

$$P(S) = 1$$

$$P(A_1 U A_2 U A_3 U ...) = \sum_{I=1}^{\infty} P(A_i) = 1$$

Sea el espacio muestral comprendido por el resultado de la cara superior de un dado de 6 caras cuando se lanza

$$S = \{1, 2, 3, 4, 5, 6\}$$

Halle la probabilidad de que caiga una de las caras.

$$P(A) = \frac{1}{6}$$

Sea A el evento de obtener un numero primo en la cara superior:

$$A=\{2,3,5\}$$

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

Cuando dos dados se lanzan por separado, existen N 36 resultados (6x6), entonces el espacio muestral S esta compuesto por

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Halle la probabilidad del evento A determinado por aquellas combinaciones que suman 7

DIAGRAMA DE VEN

Ilustrar las relaciones lógicas entre dos o más conjuntos de elementos. A menudo, se utilizan para organizar cosas de forma gráfica, destacando en qué se parecen y difieren los elementos.

OPERACIONES CON CONJUNTOS

Complemento de un evento:

Conjunto de todos los eventos muestrales que no pertenecen al conjunto A

$$P(\bar{A}) + P(A) = 1$$

UNIÓN DE DOS EVENTOS A Y B

Todos los resultados que están en A o en B o en ambos eventos

INTERSECCIÓN DE A Y B

Evento que consiste en todos los resultados que están tanto en *A como en B*.

EVENTOS MUTUAMENTE EXCLUYENTES

Que Ø denote el *evento nulo* (el evento sin resultados).

Cuando $A \cap B = \emptyset$, se dice que A y B son eventos **mutuamente excluyentes** o **disjuntos**.

 e) Eventos mutuamente excluyentes

Sea el espacio muestral comprendido por el resultado de la cara superior de un dado de 6 caras cuando se lanza

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{2, 3, 5\}$ Sea A el evento de obtener un numero primo en la cara superior:

 $B = \{2, 4, 6\}$ Sea B el evento de obtener un numero par:

 $C = \{1, 3, 5\}$ Sea C el evento de obtener un numero impar:

Grafique el diagrama de ven y encuentre

b. $A \cap B$ c. $A \cap C$ d. $A \cap B \cap C$ e. $B \cap C$

f. AUBUC

PARA DOS EVENTOS QUE NO SON MUTUAMENTE EXCLUYENTES

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Figura 2.4 Representación de $A \cup B$ como una unión de eventos excluyentes.

PARA TRES EVENTOS QUE NO SON MUTUAMENTE EXCLUYENTES

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(C \cap B) + P(A \cap B \cap C)$$

TÉCNICAS DE CONTEO Y PROBABILIDAD

Un almacén recibió 25 impresoras, de las cuales 10 son a láser y 15 son de inyección de tinta. Si 6 de estas 25 se seleccionan al azar para que las revise un técnico.

De cuantas formas se pueden seleccionar?

La pregunta es ¿Qué técnica de conteo se podría aplicar?

Es una combinación

$$\binom{25}{6}$$
 = 177100 formas diferentes

- De cuantas formas podría seleccionarlas si deseo que exactamente 3 de las elegidas sean de tinta
- De las 15 de tinta selecciono 3, de las 10 de laser selecciono 3

$$\binom{15}{3}\binom{10}{3} = 54600 formas diferentes$$

¿Cuál es la probabilidad de que:

• Exactamente 3 de las seleccionadas sean impresoras de inyección de tinta

$$\frac{\binom{15}{3}\binom{10}{3}}{\binom{25}{6}} = \frac{54600}{177100} = 0.31$$

 Exactamente 4 de las seleccionadas sean impresoras de inyección de tinta. (conservamos el mismo denominador)

$$\frac{\binom{15}{4}\binom{10}{2}}{\binom{25}{6}} = \frac{54600}{177100} = 0.34$$

 Por lo menos 3 impresoras sean de inyección de tinta. Hasta cuantas impresoras de tinta puedo seleccionar?

$$\frac{\binom{15}{3}\binom{10}{3}}{\binom{25}{6}} + \frac{\binom{15}{4}\binom{10}{2}}{\binom{25}{6}} + \frac{\binom{15}{5}\binom{10}{1}}{\binom{25}{6}} + \frac{\binom{15}{6}\binom{10}{0}}{\binom{25}{6}} = 0,853$$

Observemos que el denominador se repite entonces

$$\frac{\binom{15}{3}\binom{10}{3} + \binom{15}{4}\binom{10}{2} + \binom{15}{5}\binom{10}{1} + \binom{15}{6}\binom{10}{0}}{\binom{25}{6}} = 0,853$$

En la calculadora se puede ingresar

$$\sum_{x=3}^{6} \frac{\binom{15}{x} \binom{10}{6-x}}{\binom{25}{6}} = 0.853$$

REGLA DE LA ADICIÓN EJEMPLO

Se hizo una encuesta en la ciudad sobre medio de transporte y se encontró que 70% usan servicios públicos de transporte, 40% usan transporte particular y que 30% usan ambos tipos.

Calcular la probabilidad de que se use algún tipo de transporte.

Sea A el evento de usar transporte público y B de usar transporte particular.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.7 + 0.4 - 0.3 = 0.8$$

En un conjunto residencial, 60% de las familias se suscriben al periódico metropolitano, 80% lo hacen al periódico local y 50% de todas las familias a ambos periódicos. Si se elige una familia al azar,

¿cuál es la probabilidad de que se suscriba a

- (1) por lo menos a uno de los dos periódicos?
- (2) Solo al periódico local?
- (3) Solo al periódico metropolitano?
- (4) exactamente a uno de los dos periódicos?

PROBABILIDAD CONDICIONAL

P(A|B): probabilidad de que suceda A dado que sucedió B

Para dos eventos A y B con P(B)>0,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) \neq P(B|A)$$

El símbolo "|" es un condicional, como tal significa "dado que" ó "si"

Se realizó una encuesta sobre hábitos de lectura que se resume por medio de la tabla.

	Le gusta leer	No gusta leer	Total
Hombre	40	20	60
Mujer	50	10	60
Total	90	30	120

HALLE LA PROBABILIDAD DE QUE SEA MUJER?

$$P(M) = \frac{60}{120} = 0.5$$

HALLE LA PROBABILIDAD DE QUE SEA MUJER Y QUE LE GUSTE LEER?

$$P(L \cap M) = \frac{50}{120} = 0.42$$

2 formas de preguntar lo mismo:

-Halle la probabilidad de que lea dado que es mujer

-Si es mujer halle laprobabilidad de que lea

$$P(L|M) = \frac{P(L \cap M)}{P(M)} = \frac{0.42}{0.5}$$

EVENTOS INDEPENDIENTES

Dos eventos son **independientes** si el resultado del segundo evento no es afectado por el resultado del primer evento.

Dos eventos A y B son independientes si

$$P(A|B) = P(A)$$

Dos eventos A y B son independientes si

$$P(A \cap B) = P(A)P(B)$$

Ejemplo: si se lanza un dado de seis caras y una moneda, ¿cuál será la probabilidad de que se obtenga un 4 en el dado y un sello en la moneda?

$$P(4 \cap sello) = P(4) \times P(sello)$$

$$= \frac{1}{6} \times \frac{1}{2}$$

$$= \frac{1}{12}$$

REGLA DE LA MULTIPLICACIÓN

Si A y B son dos eventos cualesquiera en un espacio muestral S y P(A)≠0, entonces

$$P(A \cap B) = P(A)P(B|A)$$

La urna A contiene 4 pelotas rojas y 3 azules, mientras que la urna B contiene 8 bolas rojas y 2 azules. Se toma una pelota de la urna A sin ver su color y se deposita en la urna B. Luego se toma una pelota de la urna B. Calcular la probabilidad de que ambas pelotas elegidas de las urnas sean rojas, P(1R∩2R).

$$P(1R \cap 2R) = P(1R)P(2R|1R)$$
$$= \frac{4}{7} \frac{9}{11}$$
$$= \frac{36}{77}$$

REGLA DE LA PROBABILIDAD TOTAL

Sea B1, B2 Bk eventos mutuamente excluyentes, Entonces para cualquier otro evento A, estaría definido como

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_K)$$

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_K)P(B_K)$$

Ejemplo de probabilidad total

La empresa Chocolates La Delicia recarga sus extintores para incendios con tres empresas diferentes A, B y C. De datos históricos se sabe que el porcentaje de recargas defectuosas de A, B y C son 3%, 4% y 6% respectivamente. El porcentaje de recargadas realizadas por la empresa en cada una de las empresas ha sido 35%, 45% y 20% para A, B y C respectivamente. Ayer se recibió un extintor recargado pero se desconoce la procedencia. ¿Cuál es la probabilidad de que esté defectuoso?

$$P(D) = P(A \cap D) + P(B \cap D) + P(C \cap D) = 0.0405$$

Una tienda de video vende tres marcas diferentes de reproductores de DVD. De sus ventas de reproductores de DVD, 50% son de la marca 1, 30% son de la marca 2 y 20% son de la marca 3. Cada fabricante ofrece 1 año de garantía en las partes y mano de obra. Se sabe que 25% de los reproductores de DVD de la marca 1 requieren trabajo de reparación dentro del periodo de garantía, mientras que los porcentajes correspondientes de las marcas 2 y 3 son 20% y 10%, respectivamente.

Realice el árbol de decisión

- 1. ¿Cuál es la probabilidad de que un comprador seleccionado al azar haya adquirido un reproductor de DVD marca 1 que necesitará reparación mientras se encuentra dentro de garantía?
- 2. ¿Cuál es la probabilidad de que un comprador seleccionado al azar haya comprado un reproductor de DVD que necesitará reparación mientras se encuentra dentro de garantía.
- 3. Si un cliente regresa a la tienda con un reproductor de DVD que necesita reparación dentro de garantía, ¿cuál es la probabilidad de que sea un reproductor de DVD marca 1? ¿Un reproductor de DVD marca 2? ¿Un reproductor de DVD marca 3?

Teorema de Bayes

Si B_1 , B_2 , ..., B_k son eventos que constituyen una partición del espacio muestral S con $P(B_i)>0$ para i=1, 2, ..., K, entonces para cualquier evento A en S tal que P(A)>0

$$P(B_r|A)=?$$

$$P(B_r|A) = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)} = \frac{P(B_r \cap A)}{P(A)}$$

Ejemplo del Teorema de Bayes

Hay dos métodos, A y B, para enseñar cierta destreza industrial. El porcentaje de fracaso del método A es 20% y el de B 10%; sin embargo, como el método B es más caro se aplica sólo 30% del tiempo (el otro 70% se emplea A). Una trabajadora recibió capacitación con uno de los métodos pero no aprendió la destreza. ¿Cuál es la probabilidad de que se le haya enseñado con el método A?

$$P(A|F) = \frac{P(A)P(F|A)}{P(A)P(F|A) + P(B)P(F|B)} = \frac{0.7 \times 0.2}{0.7 \times 0.2 + 0.3 \times 0.1} = 0.8235$$