Department of Computer Science and Software Engineering Comp 232 Mathematics for Computer Science Fall 2020 Assignment 3 Due: November 14, 2020

1. a) Use set identities to prove that $A \cup (B - A) = A \cup B$

Proof: L.H. S. = $A \cup (B - A) = A \cup (B \cap \overline{A})$ (Definition of Set Difference)

 $= (A \cup B) \cap (A \cup \overline{A})$

(Distributive Law)

 $=(A\ \cup B)\cap U$

(Complement Law)

 $=(A \cup B)$

(Identity Law)

- = R.H.S.
 - b) Use set identities to prove that $A \cap (B A) = \phi$

Proof: L.H. S. = $A \cap (B - A) = A \cap (B \cap \overline{A})$ (Definition of Set Difference)

- $=A \cap (\bar{A} \cap B)$ (Commutative Law)
- $=(A \cap \bar{A}) \cap B$ (Associative Law)
- $=\phi \cap B$ (Complement Law)
- $= \phi$ (Domination Law)
- = R.H.S.

c) Use set identities to prove that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

Proof: L.H. S. = $\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$ (De Morgan's Law)

- $= \overline{A} \cap (\overline{B} \cup \overline{C})$ (De Morgan's Law)
- $=(\bar{B} \cup \bar{C}) \cap \bar{A}$ (Commutative Law)
- $=(\bar{C}\cup \bar{B})\cap \bar{A}$ (Commutative Law)
- = R.H.S.

2. a) Prove or give a counterexample for the statement that if A and B are sets, then $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Solution : $\mathcal{P}(A) \cap \mathcal{P}(B)$ consists of all sets which are subsets of both A and B, and these are precisely the subsets of $A \cap B$.

b) Let
$$A = \{0, 1, \phi\}$$
. List the elements of $\mathcal{P}(A)$.

Solution :
$$\mathcal{P}(A) = \{\phi, \{0\}, \{1\}, \{\phi\}, \{0,1\}, \{0,\phi\}, \{1,\phi\}, \{0,1,\phi\}\}$$

- **3.** Give an example of a function $f: N \rightarrow N$ that is
 - a) one to one, but not onto
 - b) onto, but not one to one

Solution : a) Let f(n) = 3n+1 if $n \ge 0$ and -3n if n < 0.

- b) Let f(0) = 0, f(n) = n if n < 0, f(n) = n-1 if n > 0.
- **4.** Give a proof by cases that $[4x] = [x] + [x + \frac{1}{4}] + [x + \frac{1}{2}] + [x + \frac{3}{4}]$

Solution : For any real number x, $\lfloor x \rfloor = n + r$, where $0 \le r < 1$.

Case A:
$$0 \le r < \frac{1}{4}$$

Case B:
$$\frac{1}{4} \le r < \frac{1}{2}$$

Case C:
$$\frac{1}{2} \le r < \frac{3}{4}$$

Case D:
$$\frac{3}{4} \le r < 1$$

Case

[x] $[x + \frac{1}{4}]$ $[x + \frac{1}{2}]$ $[x + \frac{3}{4}]$

 $\lfloor 4x \rfloor$

- **5.** Give an example of two uncountable sets A and B such that A B is
 - a) finite

Solution: Let A = [1,2] and B = (1,2]. Then $A - B = \{1\}$ is finite.

b) countably infinite

Solution: Let $A = (2,3) \cup Z$ and B = (2,3). Then A - B = Z is countably infinite.

c) uncountable

Solution: Let A = [1, 3] and B = (2, 3]. Then A - B = [1, 2] is uncountable.

- 6. Use the Euclidean algorithm to find the following:
- a) gcd(985, 408)

Solution : a)
$$985 = 2 \times 408 + 169$$

$$408 = 2 \times 169 + 70$$

$$169 = 2 \times 70 + 29$$

$$70 = 2 \times 29 + 12$$

$$29 = 2 \times 12 + 5$$

$$12 = 2 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

So the gcd(985, 408) = 1

b) gcd(7953, 5822)

$$7953 = 1 \times 5822 + 2131$$

$$5822 = 2 \times 2131 + 1560$$

$$2131 = 1 \times 1560 + 571$$

$$1560 = 2 \times 571 + 418$$

$$571 = 1 \times 418 + 153$$

$$418 = 2 \times 153 + 112$$

$$153 = 1 \times 112 + 41$$

$$112 = 2 \times 41 + 40$$

$$41 = 1 \times 30 + 11$$

$$30 = 2 \times 11 + 8$$

$$11 = 1 \times 8 + 3$$

$$8 = 2 \times 3 + 2$$

$$2 = 1 \times 2 + 1$$

$$2 = 2 \times 1 + 0$$

So the gcd(7953, 5822) = 1

c)
$$gcd(38785, 16768) = 1$$

a)
$$38785 = 2 \times 16768 + 5249$$

 $16768 = 3 \times 5249 + 1021$
 $5249 = 5 \times 1021 + 144$
 $1021 = 7 \times 144 + 13$
 $144 = 11 \times 13 + 1$

$$13 = 13 \times 1 + 0$$

7. a) Find the value of 10! **mod** 11

Solution:
$$10! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 = (1 \cdot 10) \cdot (2 \cdot 5) \cdot (3 \cdot 7) \cdot (4 \cdot 8) \cdot (6 \cdot 9)$$
$$\equiv (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \equiv -1 \text{ (mod } 11)$$

b) Find the value of 12! mod 13

Solution:
$$12! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12$$

= $(1 \cdot 12) \cdot (2 \cdot 6) \cdot (3 \cdot 4) \cdot (7 \cdot 11) \cdot (9 \cdot 10) \cdot (5 \cdot 8)$
= $(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (1) \equiv -1 \pmod{13}$

c) Make a conjecture about the value of (p-1)! **mod** p, where p is a prime.

$$(p-1)! \equiv -1 \, (mod \, p)$$

8. Prove that for any positive integer n, gcd(7n+2, 4n+1) = 1

Solution:
$$7n+2=1 \times 4n+1 + 3n+1$$

 $4n+1=1 \times 3n+1 + n$
 $3n+1=3 \times n+1$
 $n=n \times 1+0$

So from the Euclidean algorithm we find that gcd(7n+2, 4n+1) = 1.

9. Show that if a, b, c, and d are integers and $a \neq 0$, that if a | c and b | d then ab | cd.

Proof: If $a \mid c$ then $\exists k \in Z$ such that ak = c. If $b \mid d$ then $\exists l \in Z$ such that bl = d.

Multiplying the two equations give us akbl = cd. From the associative law, ab(kl) = cd. Since $kl \in Z$, (by closure under multiplication) this means that $ab \mid cd$ by the definition of divides.

10. Prove that if n is an odd positive integer then $n^2 \equiv 1 \pmod{8}$.

Proof: (by cases): If n is an odd positive integer, then $n \equiv 1, 3, 5, or 7 \pmod{8}$

If $n \equiv 1 \pmod{8}$ then $n^2 \equiv 1 \pmod{8}$

If $n \equiv 3 \pmod{8}$ then $n^2 \equiv 9 \equiv 1 \pmod{8}$

If $n \equiv 5 \pmod{8}$ then $n^2 \equiv 25 \equiv 1 \pmod{8}$

If $n \equiv 7 \pmod{8}$ then $n^2 \equiv 49 \equiv 1 \pmod{8}$