Dérivation et Intégration

IAD DABAGHI

Enseignant-Chercheur en Mathématiques jad.dabaghi@devinci.fr

Table des matières

- Introduction
- Analyse réelle
- Relations de comparaison
- Formules de Taylor
- Développements limités

Objectifs

000

- Comprendre les comportements locaux et asymptotiques des fonctions
- Savoir manipuler les développements limités
- Connaître les principales propriétés des fractions rationnelles
- Savoir calculer plusieurs familles d'intégrales

Contenu du module

- Chapitre 1 : Analyse réelle (CMO 1)
 - Un peu de topologie, continuité d'une fonction en un point.
- Chapitre 2: Relations de comparaison (CMO 1)
 - Fonctions dominées, fonctions négligeables, fonctions équivalentes.
- Chapitre 3: Développements limités (CMO 1 & CMO 2)
 - Formules de Taylor, opérations sur les développements limités, applications.
 - Contrôle continu 45 minutes 11 Mars 2023
- Chapitre 4: Fractions rationnelles (CMO 3)
- Chapitre 5 : Calcul d'intégrales (CMO 4)

Analyse réelle

5/74

Analyse réelle

Definition (distance)

Soit E un ensemble non vide. Une **distance** sur E est une application $d: E \times E \to \mathbb{R}^+$ qui vérifie $\forall (x, y, z) \in E \times E \times E$

$$d(x,y)=0 \iff x=y$$
 (homogénéité)
 $d(x,y)=d(y,x)$ (symétrie)
 $d(x,z)\leq d(x,y)+d(y,z)$ (inégalité triangulaire).

Le couple (E, d) est appelé **espace métrique**.

Exemple:

- Sur \mathbb{R} , la métrique usuelle est d(x,y) = |x-y|
- Sur \mathbb{C} , la métrique usuelle est $d(z_1, z_2) = |z_2 z_1|$

Definition (Ouvert)

Soit (E, d) un espace métrique. On dit que $A \in \mathcal{P}(E)$ est un ouvert de E si A contient une boule ouverte. Autrement dit, si

$$\forall x \in \mathcal{A}, \ \exists r > 0 \ \text{tel que } B(x,r) \subset \mathcal{A}.$$

Exemples ouverts:

- IR
- R²
-]a,b[

Definition (Voisinage)

• (E, d) espace métrique et $a \in E$.

On dit que $\mathcal{V} \subset E$ est un voisinage de a si, et seulement si, il existe un ouvert $O \subset \mathcal{V}$ contenant a. Autrement dit s'il existe $B(a,r) \subset \mathcal{V}$.

Continuité

00000

Definition (Caractérisation de Weierstrass)

Une fonction f est dite continue en $a \in I$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, |x - \alpha| \le \eta \Rightarrow |f(x) - f(\alpha)| \le \varepsilon \quad (\lim_{\alpha \to 0} f(x) = f(\alpha)).$$

Fonctions dominées

Definition

Soit $f: I \to \mathbb{R}$ et $\varphi: I \to \mathbb{R}$ et $a \in I$. Alors f est **dominée** par φ au voisinage de a, s'il existe une $u: I \to \mathbb{R}$ bornée au voisinage de a et telle que $f = \varphi u$ au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

Fonctions dominées

Definition

Soit $f: I \to \mathbb{R}$ et $\varphi: I \to \mathbb{R}$ et $a \in I$. Alors f est **dominée** par φ au voisinage de a, s'il existe une $u: I \to \mathbb{R}$ bornée au voisinage de a et telle que $f = \varphi u$ au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

Exemple: $f(x) = x^2 \sin\left(\frac{1}{x}\right) \text{ sur } \mathbb{R} \text{ et } \varphi(x) = x^2. \text{ Alors}$

$$f(x) = \varphi(x)u(x)$$
 avec $u(x) = \sin\left(\frac{1}{x}\right)$. borne!

Ainsi,
$$f = \mathcal{O}(\varphi)$$
.

11/74

Fonctions négligeables

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur I tel que $f = \varphi \varepsilon$ au voisinage de a et $\lim_{\alpha} \varepsilon = 0$. On note $f = o(\varphi)$.

12/74

12/74

Fonctions négligeables

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur I tel que $f = \varphi \varepsilon$ au voisinage de a et $\lim_a \varepsilon = 0$. On note $f = o(\varphi)$.

Exemple: $x^3 = o(x^2)$ au voisinage de 0 car $x^3 = x \times x^2$ avec $\varepsilon(x) = x$ et $\lim_{x \to 0} \varepsilon(x) = 0$.

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$ *.*

- **1** La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- La fonction f tend vers 0 en a si, et seulement si f = o(1).

Démonstration:

(\Rightarrow) f bornée au voisinage de α où $\mathcal{V}_{\alpha} =]\alpha - \eta, \alpha + \eta[$. Donc $f(x) = f(x) \times 1 \ \forall x \in \mathcal{V}_{\alpha}$. Alors, $f = \mathcal{O}(1)$.

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- 1 La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- La fonction f tend vers 0 en a si, et seulement si f = o(1).

Relations de comparaison 00000000000000000

Démonstration:

- (\Rightarrow) f bornée au voisinage de α où $\mathcal{V}_{\alpha} =]\alpha \eta, \alpha + \eta[$. Donc $f(x) = f(x) \times 1 \ \forall x \in \mathcal{V}_{\alpha}$. Alors, $f = \mathcal{O}(1)$.
 - $(\Leftarrow) f = \mathcal{O}(1)$. Alors $\exists \varphi$ bornée sur \mathcal{V}_q tel que $f = \varphi \times 1$ sur \mathcal{V}_q . Donc f bornée sur \mathcal{V}_{α} . ◆□▶ ◆問▶ ◆三▶ ◆三▶ ● めぬぐ

 (\Rightarrow) f tend vers 0 en a donc:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in [a - \eta_1, a + \eta_1], \ |f(x)| \le \varepsilon.$$

On pose

$$\varphi$$
: $\mathcal{D}_f \to \mathbb{R}$
 $x \mapsto f(x)$ $\lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 (\Rightarrow) f tend vers 0 en a donc:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in [a - \eta_1, a + \eta_1], \ |f(x)| \leq \varepsilon.$$

On pose

$$\varphi: \mathcal{D}_f \to \mathbb{R}$$
 $x \mapsto f(x)$
 $\lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 $(\Leftarrow) f = o(1)$ au voisinage de a. Alors $\exists \varphi$ définie au voisinage de a tel que $f = \varphi 1$ au voisinage de a avec $\lim_a \varphi = 0$. Or $\lim_a \varphi \in \mathcal{V}_a$ donc $\lim_a f = \lim_a \varphi = 0$.

Quelques remarques

① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

Relations de comparaison 0000000000000000000 ① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

Relations de comparaison 0000 00000000000000000

② Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

Quelques remarques

① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

② Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

Le même phénomène s'observe pour la notation \mathcal{O} .

Relations de comparaison

Règles de calcul

Propriété

2
$$f_1 = \mathcal{O}(\varphi)$$
 et $f_2 = \mathcal{O}(\varphi) \Rightarrow f_1 + f_2 = \mathcal{O}(\varphi)$

3
$$f_1 = \mathcal{O}(\varphi_1)$$
 et $f_2 = \mathcal{O}(\varphi_2) \Rightarrow f_1 f_2 = \mathcal{O}(\varphi_1 \varphi_2)$

$$f_1 = o(\varphi_1) \ \text{et} \ f_2 = o(\varphi_2) \Rightarrow f_1 f_2 = o(\varphi_1 \varphi_2)$$

6
$$f = \mathcal{O}(\varphi_1)$$
 et $\varphi_1 = \mathcal{O}(\varphi_2) \Rightarrow f = \mathcal{O}(\varphi_2)$

$$f = o(\varphi_1)$$
 et $\varphi_1 = o(\varphi_2) \Rightarrow f = o(\varphi_2)$

Démonstration

1 $f = o(\varphi)$ au voisinage d'un point $a \Rightarrow f = g\varphi$ au voisinage de a et $\lim_a g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in [a - \eta, a + \eta], \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de α . Alors, $f = \mathcal{O}(\varphi)$.

Démonstration

1 $f = o(\varphi)$ au voisinage d'un point $a \Rightarrow f = g\varphi$ au voisinage de a et $\lim_a g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in [a - \eta, a + \eta], \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors, $f = \mathcal{O}(\varphi)$.

② $f_1 = \mathcal{O}(\varphi)$ et $f_2 = \mathcal{O}(\varphi)$ donc $f_1 = \varphi u$ au voisinage de α et $f_2 = \varphi v$ au voisinage de α avec u et v bornées au voisinage de α .

$$\exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

$$\exists \eta_2 > 0 \ \forall x \in]\alpha - \eta_2, \alpha + \eta_2[, f_2(x) = \varphi(x)v(x).$$

Pour $\eta = \min(\eta_1, \eta_2)$ on a $\forall x \in]a - \eta, a + \eta[(f_1 + f_2)(x) = \varphi(x)(u + v)(x)$. Or u + v bornée au voisinage de a donc $f_1 + f_2 = \mathcal{O}(\varphi)$.

Relations de comparaison

Démonstration

Puisque $f_1 = o(\varphi)$ et $f_2 = o(\varphi)$ au voisinage de α il existe une fonction ε_1 définie au voisinage de α et il existe une fonction ε_2 définie au voisinage de α tel que

$$\lim_{x \to a} \varepsilon_1(x) = 0$$
 et $\lim_{x \to a} \varepsilon_2(x) = 0$

et vérifiant $f_1 = \varepsilon_1 \varphi$ au voisinage de g et $g = \varepsilon_2 \varphi$ au voisinage de g. Ainsi, la

fonction $\varepsilon = \varepsilon_1 + \varepsilon_2$ est bien définie au voisinage de a et $\lim_{x\to a} \varepsilon(x) = 0$. Alors, $f_1 + f_2 = o(\varphi).$

Règle pratique

Propriété

Soit I un intervalle de $\mathbb R$ et $a\in I$. Supposons que φ ne s'annule pas sur $I\setminus a$. Alors au voisinage de a

- **1** f est dominée par φ si, et seulement si, $\frac{f}{\varphi}$ est bornée au voisinage de a.
- 2 f est négligeable devant φ si, et seulement si, $\lim_{x\to a} \frac{f(x)}{\varphi(x)} = 0$.

Fontions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de α , s'il existe une fonction h définie sur l telle que f = gh au voisinage de α et $\lim_{x\to a} h(x) = 1$. On note $f \sim g$.

Fontions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de α , s'il existe une fonction h définie sur l telle que f = gh au voisinage de α et $\lim_{x\to a} h(x) = 1$. On note $f \sim g$.

Relations de comparaison

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x. Montrer que f et g sont équivalentes en 0.

Relations de comparaison

Fontions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de α , s'il existe une fonction h définie sur l telle que f = gh au voisinage de α et $\lim_{x\to a} h(x) = 1$. On note $f \sim g$.

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x. Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Relations de comparaison

Fontions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de α , s'il existe une fonction h définie sur l telle que f = gh au voisinage de α et $\lim_{x\to a} h(x) = 1$. On note $f \sim g$.

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x.

Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Remarque : $x \mapsto x$ est un DL à l'ordre 1 de la fonction $x \mapsto \sin(x)$ au voisinage de 0.

Équivalent pour les polynômes

$$f(x) = \sum_{k=p}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

1 Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc $f(x) \sim a_p x^p$.

$$f(x) = \sum_{k=n}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

1 Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc $f(x) \sim a_p x^p$.

2 Étude en $+\infty$: Pour $x \in \mathbb{R}$ on a

$$f(x) = a_n x^n \left(1 + \frac{a_{n-1}}{a_n} x^{-1} + \frac{a_{n-2}}{a_n} x^{-2} + \dots + \frac{a_p}{a_n} x^{p-n} \right)$$

Donc $f(x) \sim a_n x^n$.

Cas pratique

Comment montrer que deux fonctions sont équivalentes au voisinage d'un point?

Propriété

Soient f et g deux fonctions définies sur un intervalle I et $a \in I$. On suppose que g ne s'annule pas sur l\a. Alors, la fonction f est équivalente à la fonction g au voisinage de a, si et seulement si.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Résultats fondamentaux

Propriété

Soient f et g deux fonctions équivalentes en $a \in I$.

- **1** Si g a une limite finie ou infinie en a alors f a une limite finie en a et : $\lim_{a} f = \lim_{a} g$.
- Si g est positive sur I alors f est positive au voisinage de a.
- Si g ne s'annule pas sur l alors f ne s'annule pas au voisinage de a.

Obtention d'équivalents : Si f est dérivable en $a \in I$ et si $f'(a) \neq 0$, alors au voisinage de a:

$$f(x) - f(a) \sim f'(a)(x - a)$$

Application

Montrer que $e^x - 1 \sim x$ au voisinage de 0 **Correction :** Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^x - e^0 \underset{0}{\sim} e'(0)(x-0) \Rightarrow e^x - 1 \underset{0}{\sim} x.$$

Montrer que $e^x - 1 \sim x$ au voisinage de 0 **Correction :** Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

Relations de comparaison

$$e^x - e^0 \underset{0}{\sim} e'(0)(x-0) \Rightarrow e^x - 1 \underset{0}{\sim} x.$$

Montrer que $ln(1+x) \sim x$ au voisinage de 0 **Correction :** $x \mapsto \ln(1+x)$ est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{1+0}(x-0) \Rightarrow \ln(1+x) \sim x.$$

Montrer que $e^x - 1 \sim x$ au voisinage de 0 Correction : Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^x - e^0 \underset{0}{\sim} e'(0)(x-0) \Rightarrow e^x - 1 \underset{0}{\sim} x.$$

Montrer que $ln(1+x) \sim x$ au voisinage de 0 **Correction :** $x \mapsto ln(1+x)$ est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{0} (x-0) \Rightarrow \ln(1+x) \sim x.$$

3 Montrer que $sin(x) \sim x$ au voisinage de 0

Correction : $x \mapsto \sin(x)$ est dérivable en 0 et et possède une dérivée non nulle

$$\sin(x) - \sin(0) \sim \sin'(0)(x - 0) \Rightarrow \sin(x) \sim x.$$

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t \to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

25/74

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\alpha}u(t)=a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\alpha}u(t)=a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

 $\rho^{\sin t} = 1$

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\alpha}u(t)=a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Relations de comparaison

- ρ $\sin t = 1$
 - **Correction :** $u(t) = \sin t$, $f(x) = e^x 1$ et g(x) = x. On a $f \sim g$ et $\lim_{t \to 0} u(t) = 0$ donc
 - $f(u(t)) \sim g(u(t))$. Finalement, $e^{\sin t} 1 \sim \sin t$.
- In(cos(t))

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\alpha}u(t)=a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Relations de comparaison

- ρ $\sin t = 1$
 - **Correction :** $u(t) = \sin t$, $f(x) = e^x 1$ et g(x) = x. On a $f \sim g$ et $\lim_{t \to 0} u(t) = 0$ donc
 - $f(u(t)) \sim g(u(t))$. Finalement, $e^{\sin t} 1 \sim \sin t$.
- \bigcirc In(cos(t))
 - **Correction :** On a $\ln(\cos(t)) = \ln(1 + \cos(t) 1)$. Posons $u(t) = \cos(t) 1$. Alors, $\lim_{t\to 0} u(t) = 0$. De plus, $\ln(1+y) \sim y$. Donc, $\ln(1+u(t)) \sim u(t)$. Ainsi,

$$\ln(\cos(t)) \sim \cos(t) - 1.$$

◆ロト◆昼ト◆草ト◆草 りゅつ

Opération sur les fonctions équivalentes

Propriété

Si au voisinage de a on a

- 1) $f_1 \sim g_1$ et $g_1 \sim g_2$ alors $f_1 \sim g_2$ en a (transitivité).
- 2 Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$ en a (produit).
- 3 Si $f_1 \sim g_1$ et $f_2 \sim g_2$ et si aucune de ces fonctions ne s'annule sur $I \setminus a$ alors $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.

Propriété

- ① Si g = o(f) au voisinage d'un point $a \in I$, alors $f + g \sim f$.
- 2 Soient f et g deux fonctions définies sur un intervalle I et $a \in I$. Si $f \underset{a}{\sim} g$ alors $f = \mathcal{O}(g)$ au voisinage de a.

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_+^* par

$$f(x) = e^{\frac{1}{X^2}} - e^{\frac{1}{(X+1)^2}}.$$

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_{+}^{*} par

$$f(x) = e^{\frac{1}{x^2}} - e^{\frac{1}{(x+1)^2}}$$

Correction: On a

$$\forall x \in \mathbb{R}_+^*, f(x) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{1}{(x+1)^2}} - \frac{1}{x^2} \right) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{-2x-1}{x^2(x+1)^2}} \right).$$

Or
$$1 - e^y \sim y$$
 et $\lim_{x \to +\infty} \frac{-2x - 1}{x^2(x+1)^2} = 0$. Donc, $1 - e^{\frac{-2x - 1}{x^2(x+1)^2}} \sim \frac{-2x - 1}{x^2(x+1)^2} \sim \frac{-2}{x^3}$. De

plus,
$$e^{\frac{1}{x^2}} \underset{\text{ADD DABAGHI}}{\sim} 1$$
. Ainsi, $f(x) \underset{+\infty}{\sim} -\frac{2}{x^3}$.

27/74

Déterminer un équivalent en 0 de ln(sin(x))

Correction:

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Ainsi

$$ln(\sin(x)) \sim \ln(x).$$

28/74

Remarques importantes

Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple :** Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \sim g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Remarques importantes

Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple :** Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \sim g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Somme d'équivalents : Si $u_1 \sim u_2$ et $v_1 \sim v_2$ alors $u_1 + v_2 \not\sim u_2 + v_2$. **Exemple:**

$$u(x) = \sin(2x) + \cos(x) - 1.$$

On a

$$\sin(y) \sim y$$
 et $\lim_{x \to 0} 2x = 0 \Rightarrow \sin(2x) \sim 2x$ $\cos(x) - 1 = -2\sin^2(\frac{x}{2}) \sim -\frac{x^2}{2}$

Or

$$\lim_{x\to 0}\frac{u(x)}{2x}=\left(\frac{\sin(2x)}{2x}+\frac{\cos(x)-1}{2x}\right)=1 \ \Rightarrow u(x) \underset{0}{\sim} \ \underset{0}{\sim} \ 2x$$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Application : Montrez que
$$\forall x \in [-\pi, \pi]$$
, $\cos(x) \ge 1 - \frac{x^2}{2}$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Application : Montrez que $\forall x \in [-\pi, \pi]$, $\cos(x) \ge 1 - \frac{x^2}{2}$

Correction: Formule de Taylor avec reste intégral à la fonction cos à l'ordre 2:

$$\cos(x) = \sum_{k=1}^{2} \frac{x^{k}}{k!} \cos^{(k)}(0) + \int_{0}^{x} \frac{(x-t)^{2}}{2} \cos^{(3)}(t) dt = 1 - \frac{x^{2}}{2} + \int_{0}^{x} \frac{(x-t)^{2}}{2} \sin(t) dt \ge 0.$$

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a,b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a, b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Exercice : Montrer que
$$\forall x \in \mathbb{R}$$
, $\left| \sin(x) - x + \frac{x^3}{6} \right| \leq \frac{x^4}{24}$.

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a, b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Exercice : Montrer que $\forall x \in \mathbb{R}$, $\left| \sin(x) - x + \frac{x^3}{6} \right| \leq \frac{x^4}{24}$.

Correction : On applique l'inégalité de Taylor-Lagrange à l'ordre 3 à la fonction sin de classe C^{∞} sur \mathbb{R} et vérifiant $\forall n \in \mathbb{N}$, $\sup_{\mathbf{x} \in \mathbb{R}} |f^{(n)}(\mathbf{x})| \leq 1$.

$$\left| \sin(x) - \sum_{k=0}^{3} \frac{x^{k}}{k!} f^{(k)}(0) \right| = \left| \sin(x) - x - \frac{x^{3}}{6} \right| \le \frac{|x|^{4}}{4!} = \frac{x^{4}}{24!} = \frac{x^{4}}{$$

IAD DABAGHI

Theorem (Formule de Taylor-Young)

Si f est une fonction de classe C^n sur I, il existe une fonction ε définie sur I telle que :

$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + (x-a)^{n} \varepsilon(x) \quad avec \quad \lim_{x \to a} \varepsilon(x) = 0.$$

$$\iff f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + o((x-a)^{n})$$

Formule très importante! Elle permet de déterminer le développement limité de f à l'ordre n.

Mais... peu commode en pratique...

① Développement limité de $x\mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x\mapsto e^x$ est de classe \mathcal{C}^∞ . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

① Développement limité de $x \mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x \mapsto e^x$ est de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

2 Développement limité de $x \mapsto \cos(x)$ au voisinage de 0. **Correction :** La fonction $x \mapsto \cos(x)$ est de classe C^{∞} . La formule de Taylor-Young donne

$$cos(x) = 1 + \frac{x}{1!}\cos'(0) + \frac{x^2}{2!}\cos^{(2)}(0) + \frac{x^3}{3!}\cos^{(3)}(0) + \frac{x^4}{4!}\cos^{(4)}(0) + \dots + o(x^n)$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{2n!} + o(x^{2n})$$

Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. **Correction :** La fonction $x \mapsto \sin(x) \in \mathcal{C}^{\infty}$. La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

3 Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. **Correction :** La fonction $x \mapsto \sin(x) \in \mathcal{C}^{\infty}$. La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

① Développement limité de $(1+x)^{\alpha}$ où x>-1 et $\alpha\in\mathbb{R}$. **Correction :** La fonction $x\mapsto (1+x)^{\alpha}$ est \mathcal{C}^{∞} sur $]-1,+\infty[$. La formule de Taylor-Young donne

$$(1+x)^{\alpha}=1+\alpha x+\alpha(\alpha-1)\frac{x^2}{2}+\cdots+\alpha(\alpha-1)\cdots(\alpha-n+1)\frac{x^n}{n!}+o(x^n)$$

Développements limités

Développements limités

Definition

Une fonction f admet un développement limité l'ordre n au voisinage de 0 s'il existe des réels a_0, a_1, \dots, a_n et une fonction ε définie sur \mathcal{D}_f tels que :

$$\forall x \in \mathcal{D}_f, f(x) = \sum_{\substack{k=0 \\ \text{Partie régulière}}}^n a_k x^k + \underbrace{x^n \varepsilon(x)}_{\text{Reste}} \quad \text{avec} \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

Remarque : Écriture équivalente :

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n).$$

Quelques exemples

(1) $f:]-1,1[\rightarrow \mathbb{R}$ définie par

$$f(x) = x - x^2 + 2x^3 + x^3 \ln(1+x)$$

admet un DL à l'ordre 3 en 0 car

$$\forall x \in]-1,1[, f(x) = x - x^2 + 2x^3 + x^3 \varepsilon(x) \text{ avec } \varepsilon(x) = \ln(1+x) \xrightarrow{0} 0$$

Quelques exemples

 $(1) f:]-1,1[\rightarrow \mathbb{R}$ définie par

$$f(x) = x - x^2 + 2x^3 + x^3 \ln(1+x)$$

admet un DL à l'ordre 3 en 0 car

$$\forall x \in]-1,1[, f(x) = x - x^2 + 2x^3 + x^3 \varepsilon(x) \text{ avec } \varepsilon(x) = \ln(1+x) \underset{0}{\rightarrow} 0$$

 ${m eta}$ Si une fonction f est de classe ${\cal C}^n$ sur un intervalle contenant 0, alors la formule de Taylor-Young prouve qu'elle admet un développement limité à l'ordre n en 0 qui s'écrit :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}).$$

Propriété (Unicité du DL)

Si f est une fonction pour laquelle il existe deux (n+1)-listes de réels (a_0, a_1, \dots, a_n) et (b_0, b_1, \dots, b_n) vérifiant :

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
 et $f(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$,

alors

$$(a_0, a_1, \cdots, a_n) = (b_0, b_1, \cdots, b_n).$$

Parité et développements limités

Propriété

Si f admet en 0 un DL à l'ordre n dont la partie régulière est $P(x) = \sum_{k=0}^{n} a_k x^k$.

- Si f est paire, alors P(x) ne contient que des puissances paires de x.
- Si f est impaire, alors P(x) ne contient que des puissances impaires de x.

Parité et développements limités

Propriété

Si f admet en 0 un DL à l'ordre n dont la partie régulière est $P(x) = \sum_{k=0}^{n} a_k x^k$.

- Si f est paire, alors P(x) ne contient que des puissances paires de x.
- Si f est impaire, alors P(x) ne contient que des puissances impaires de x.

Démonstration: f admet un **DL** à l'ordre n en 0 donc $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$

f est paire :
$$\forall x \in \mathcal{V}_0, f(x) = f(-x) = \sum_{k=0}^{n} a_k (-1)^k x^k + o((-x)^n).$$
 Unicité du DL : $\forall 1 \le k \le n, \ a_k (-1)^k = a_k.$

le polynôme P ne contient que des puissances paires de x.

Développements limités en 0 des fonctions élémentaires

Fonction exponentielle:
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + o(x^n)$$

La fonction hyperbolique ch :
$$ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

42/74

La fonction hyperbolique sh:
$$sh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

La fonction sinus :
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

La fonction cosinus :
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+2})$$

La fonction $x \mapsto \ln(1+x)$:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Pour α un réel quelconque, la fonction $x \mapsto (1+x)^{\alpha}$:

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)$$

La fonction $x \mapsto \frac{1}{1-x}$:

$$\frac{1}{1-x}=\sum_{k=0}^n x^k+o(x^n)$$

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$. **Correction:**

Transformation de l'expression

$$f(x) = \frac{1}{2+x-2} = \frac{1}{2} \frac{1}{\left(1 + \frac{x-2}{2}\right)}.$$

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

1 Transformation de l'expression

$$f(x) = \frac{1}{2+x-2} = \frac{1}{2} \frac{1}{\left(1 + \frac{x-2}{2}\right)}.$$

2 Changement de variable. On pose h = x - 2. Alors h tend vers 0 au voisinage de 2.

$$f(x) = \frac{1}{2} \frac{1}{1 + \frac{h}{2}}$$
 DL de $\frac{1}{1 + u}$ en 0!

Développements limités

3 DL en 0 de
$$u \mapsto \frac{1}{1+u}$$

$$\frac{1}{1+u}=1-u+u^2-u^3+o(u^3).$$

3 DL en 0 de $u \mapsto \frac{1}{1+u}$

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + o(u^3).$$

4 On remplace u par $\frac{h}{2} \rightarrow 0$:

$$\frac{1}{2}\left(\frac{1}{1+\frac{h}{2}}\right) = \frac{1}{2}\left(1-\frac{h}{2}+\frac{h^2}{4}-\frac{h^3}{8}+o\left(\frac{h^3}{8}\right)\right).$$

3 DL en 0 de $u \mapsto \frac{1}{1+u}$

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + o(u^3).$$

4 On remplace u par $\frac{h}{2} \rightarrow 0$:

$$\frac{1}{2}\left(\frac{1}{1+\frac{h}{2}}\right) = \frac{1}{2}\left(1-\frac{h}{2}+\frac{h^2}{4}-\frac{h^3}{8}+o\left(\frac{h^3}{8}\right)\right).$$

5 DL de f au voisinage de x = 2 ($h = x - 2 \rightarrow 0$):

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + \frac{1}{2}o\left(\left(\frac{x-2}{2}\right)^3\right).$$

Développements limités

6 Simplification des termes négligeables :

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = o((x-2)^3)$$

car

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = \left(\frac{x-2}{2}\right)^3 \varepsilon\left(\frac{x-2}{2}\right) \quad \text{avec} \quad \lim_{x \to 2} \varepsilon\left(\frac{x-2}{2}\right) = 0$$
$$= (x-2)^3 \varepsilon_1(x) \quad \text{avec} \quad \varepsilon_1(x) = \frac{1}{8}\varepsilon\left(\frac{x-2}{2}\right) \quad \text{où} \quad \lim_{x \to 2} \varepsilon_1(x) = 0$$
$$= o((x-2)^3)$$

6 Simplification des termes négligeables :

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = o((x-2)^3)$$

car

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = \left(\frac{x-2}{2}\right)^3 \varepsilon\left(\frac{x-2}{2}\right) \quad \text{avec} \quad \lim_{x \to 2} \varepsilon\left(\frac{x-2}{2}\right) = 0$$

$$= (x-2)^3 \varepsilon_1(x) \quad \text{avec} \quad \varepsilon_1(x) = \frac{1}{8}\varepsilon\left(\frac{x-2}{2}\right) \quad \text{où} \quad \lim_{x \to 2} \varepsilon_1(x) = 0$$

$$= o((x-2)^3)$$

Conclusion:

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + o\left((x-2)^3\right).$$

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Démonstration: (\Rightarrow) Si f est continue en x_0 : $\lim_{x\to x_0} f(x) = f(x_0)$.

On définit ε par $\varepsilon(x) = f(x) - f(x_0)$. Alors $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi, au voisinage de x_0

$$f(x) = f(x_0) + x^0 \times \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0 \Rightarrow f(x) = f(x_0) + o(1)$.

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Démonstration: (\Rightarrow) Si f est continue en x_0 : $\lim_{x\to x_0} f(x) = f(x_0)$.

On définit ε par $\varepsilon(x) = f(x) - f(x_0)$. Alors $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi, au voisinage de x_0

$$f(x) = f(x_0) + x^0 \times \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0 \Rightarrow f(x) = f(x_0) + o(1)$.

(⇐) si f admet un DL à l'ordre 0 en x_0 : $f(x) = a_0 + \varepsilon(x)$ où $\lim_{x \to x_0} = \varepsilon(x) = 0$. Alors

$$\lim_{x \to x_0} f(x) = a_0 \quad \Rightarrow \quad \text{f continue en } x_0$$

Propriété

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x\to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

51/74

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Démonstration: (\Rightarrow) Si f est dérivable en x_0 alors $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$. On pose :

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$$
 si $x \in \mathcal{D}_f \setminus \{x_0\}$ et $\lim_{x \to x_0} \varepsilon(x) = 0$.

On a $f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varepsilon(x)$. Alors, f admet un DL à l'ordre 1 en x_0 .

Propriété

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Démonstration: (\Rightarrow) Si f est dérivable en x_0 alors $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$. On pose:

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \quad \text{si} \quad x \in \mathcal{D}_f \setminus \{x_0\} \quad \text{ et } \quad \lim_{x \to x_0} \varepsilon(x) = 0.$$

On a $f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varepsilon(x)$. Alors, f admet un DL à l'ordre 1 en x_0 . (\Leftarrow) Si f admet un DL à l'ordre 1 en x_0 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0) \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a_1.$$

alors f est dérivable en x_0 et $f'(x_0) = a_1$.

51/74

Opérations sur les développements limités

Remarque:

La formule de Taylor-Young permet de calculer le DL d'une fonction en un point.

Pas toujours le bon choix!

Exemple: DL à l'ordre 5 au voisinage de 0 de

$$f(x) = \sin(x)e^x \frac{1}{\sqrt{1+x}}$$

Calcul des dérivées successives très coûteux!

Alternative : Opérations élémentaires pour calculer des DL

- somme
- produit, quotient
- composition

Somme de Développement limités

Propriété

Soient f et g deux applications de \mathcal{D} dans \mathbb{R} admettant en 0 des DL à l'ordre n:

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, le **DL de** f + g en 0 est : $f(x) + g(x) = P(x) + Q(x) + o(x^n)$.

53/74

Somme de Développement limités

Propriété

Soient f et g deux applications de \mathcal{D} dans \mathbb{R} admettant en 0 des DL à l'ordre n:

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, le **DL de**
$$f + g$$
 en 0 est : $f(x) + g(x) = P(x) + Q(x) + o(x^n)$.

Démonstration : Il existe des fonctions ε_1 et ε_2 définies sur \mathcal{D} telles que :

$$\forall x \in \mathcal{V}_0, f(x) = P(x) + x^n \varepsilon_1(x) \text{ avec } \lim_{x \to 0} \varepsilon_1(x) = 0$$

 $\forall x \in \mathcal{V}_0, g(x) = Q(x) + x^n \varepsilon_2(x) \text{ avec } \lim_{x \to 0} \varepsilon_2(x) = 0.$

$$\Rightarrow \forall x \in \mathcal{V}_0, f(x) + g(x) = P(x) + Q(x) + x^n \varepsilon(x)$$
 où $\varepsilon(x) = \varepsilon_1(x) + \varepsilon_2(x) \to 0$.

JAD DABAGHI Dérivation et Intégration 19 Janvier 2023

Déterminer le développement limité à l'ordre 3 au voisinage de 0 de la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{1}{1-x}-e^x$.

Déterminer le développement limité à l'ordre 3 au voisinage de 0 de la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{1}{1-x}-e^x$.

Correction: Au voisinage de 0

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$$

et

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}).$$

Par somme de développements limités on obtient au voisinage de 0

$$f(x) = -\frac{1}{2}x^2 + \frac{5}{6}x^3 + o(x^3).$$

Produit de Développements limités

Propriété

Soient f et g deux applications de $\mathcal D$ dans $\mathbb R$ admettant en 0 des DL à l'ordre n :

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, la fonction fg admet au voisinage de 0 un DL à l'ordre n qui s'écrit :

$$f(x)g(x) = R(x) + o(x^n)$$

où R est le polynôme obtenu en ne gardant, dans le produit PQ, que les termes de degré inférieur ou égal à n.

Démonstration:

$$f(x)g(x) = (P(x) + x^n \varepsilon_1(x)) (Q(x) + x^n \varepsilon_2(x))$$

= $P(x)Q(x) + x^n (\varepsilon_1(x)Q(x) + \varepsilon_2(x)P(x) + x^n \varepsilon_1(x)\varepsilon_2(x))$.

Soit R le polynôme obtenu en ne gardant dans le produit PQ que les termes de degré inférieur ou égal à *n*. Alors

$$\forall x \in \mathcal{V}_0, \ P(x)Q(x) = R(x) + x^{n+1}T(x) \quad \text{où} \quad \deg(T) \leq n-1.$$

Donc

$$\forall x \in \mathcal{V}_0, f(x)g(x) = R(x) + x^{n+1}T(x) + x^n(\underbrace{\varepsilon_1(x)Q(x) + \varepsilon_2(x)P(x) + x^n\varepsilon_1(x)\varepsilon_2(x)}_{=\varepsilon(x)\to 0})$$

Ainsi, fg admet R comme DL à l'ordre n au voisinage de 0.

Déterminer le DL à l'ordre 3 en 0 de g définie sur] -1, $+\infty$ [par $g(x) = \frac{\cos(x)}{\sqrt{1+x}}$.

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

Déterminer le DL à l'ordre 3 en 0 de g définie sur $]-1,+\infty[$ par $g(x)=\frac{\cos(x)}{\sqrt{1+x}}$.

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ à l'ordre 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

Déterminer le DL à l'ordre 3 en 0 de g définie sur $]-1,+\infty[$ par $g(x)=\frac{\cos(x)}{\sqrt{1+x}}.$

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

2 DL en 0 de $x \mapsto \frac{1}{1+x}$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3) = Q(x) + o(x^3)$$

Déterminer le DL à l'ordre 3 en 0 de g définie sur $]-1,+\infty[$ par $g(x)=\frac{\cos(x)}{\sqrt{1-x}}$.

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

2 DL en 0 de $x \mapsto \frac{1}{1+x}$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3) = Q(x) + o(x^3)$$

DL de g obtenu en ne gardant dans le produit que les termes de degré < 3.

$$g(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + o(x^3).$$

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

1 $u \in \mathcal{C}^{\infty}(]-\frac{\pi}{2},\frac{\pi}{2}[]$ donc par Taylor-Young, u admet un DL à l'ordre 4 en 0.

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

- 1 $u \in \mathcal{C}^{\infty}(]-\frac{\pi}{2},\frac{\pi}{2}[]$ donc par Taylor-Young, u admet un DL à l'ordre 4 en 0.
- 2 La fonction $x \mapsto \cos(x)$ admet en 0 le DL à l'ordre 4 :

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

Donc

$$1 - \cos(x) = \frac{x^2}{2} - \frac{x^4}{24} - o(x^4)$$

Formules de Taylo

3 la fonction $u \mapsto \frac{1}{1-u}$ admet le DL à l'ordre 4 en 0 :

$$\frac{1}{1-u}=1+u+u^2+u^3+u^4+o(u^4).$$

3 la fonction $u \mapsto \frac{1}{1-u}$ admet le DL à l'ordre 4 en 0 :

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + o(u^4).$$

On utilise la règle du produit de DL :

$$(1 - \cos(x))^2 = \frac{x^4}{4} + o(x^4)$$

D'où

$$g(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4).$$

Intégration des développements limités

Propriété

Soit I un intervalle contenant 0 et $f: I \to \mathbb{R}$ une fonction continue possédant en 0 un DL à l'ordre n qui vaut $\sum_{k=0}^{n} a_k x^k$. Si F est une primitive de f, alors elle admet un DL à l'ordre n+1 en 0 qui est :

$$F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}.$$

Remarque: Très pratique pour retrouver le DL d'une fonction dont on connait la primitive $(x \mapsto \arctan(x), x \mapsto \ln(1+x), \text{ etc...}).$

Applications

Ecrivons le DL à l'ordre n de $\frac{1}{1+x}$:

Correction:

$$\frac{1}{1+x}=1-x+x^2+\cdots+(-1)^nx^n+o(x^n).$$

Or $x \mapsto \ln(1+x)$ est une primitive de $x \mapsto \frac{1}{1+x}$.

Donc, le DL de $x \mapsto \ln(1+x)$ est

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1}.$$

Application

Ecrivons le développement limité à l'ordre n de $\frac{1}{1+x^2}$:

Correction:

$$\frac{1}{1+x^2}=1-x^2+x^4+(-1)^nx^{2n}+o(x^{2n}).$$

Or $x \mapsto \frac{1}{1+x^2}$ est une primitive de $x \mapsto \arctan(x)$.

Ainsi, le développement limité de $x \mapsto \arctan(x)$ est donné par

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!}.$$

Propriété

Si f admet en x_0 un DL d'ordre n dont la partie régulière est : $\sum_{k=p}^n a_k (x-x_0)^k$ avec $a_p \neq 0$. alors:

$$f(x) \sim_{x_0} a_p (x - x_0)^p$$
.

Recherche d'équivalents

Propriété

Si f admet en x_0 un DL d'ordre n dont la partie régulière est : $\sum_{k=p}^n a_k (x-x_0)^k$ avec $a_p \neq 0$. alors:

$$f(x) \sim_{x_0} a_p (x - x_0)^p$$
.

Démonstration:

$$f(x) = \sum_{k=p}^{n} a_k (x - x_0)^k + o((x - x_0)^p)$$

et

$$\frac{f(x)}{a_p(x-x_0)^p}=1+\frac{a_{p+1}}{a_p}(x-x_0)+\frac{a_{p+2}}{a_p}(x-x_0)^2+\cdots+\frac{a_{n+p}}{a_p}(x-x_0)^n\xrightarrow[x_0]{}1.$$

Exercice

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur $\mathbb R$ par

$$f(x) = x \left(1 + \cos(x)\right) - 2\tan(x).$$

Correction::

Exercice

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur $\mathbb R$ par

$$f(x) = x(1 + \cos(x)) - 2\tan(x).$$

Correction::

① f(-x) = -f(x) ⇒ f est impaire. La partie régulière du DL de f ne contient que des puissances impaires de x.

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur $\mathbb R$ par

$$f(x) = x (1 + \cos(x)) - 2\tan(x).$$

Correction::

- 1) $f(-x) = -f(x) \Rightarrow f$ est impaire. La partie régulière du DL de f ne contient que des puissances impaires de x.
- 2 DL en 0 à l'ordre 3 de $x \mapsto \cos(x)$

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$$

$$\Rightarrow x (1 + \cos(x)) = 2x - \frac{x^3}{2} + xo(x^3).$$

Développements limités

3 Simplification des termes négligeables :

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
 $= x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
 $= o(x^4)$.

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $o(x^4)$.

4 DL en 0 **à l'ordre** 3 **de** $x \mapsto x(1 + \cos(x))$

$$x(1 + \cos(x)) = 2x - \frac{x^3}{2} + o(x^4).$$

6 Simplification des termes négligeables :

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $o(x^4)$.

4 DL en 0 **à l'ordre** 3 **de** $x \mapsto x(1 + \cos(x))$

$$x(1+\cos(x)) = 2x - \frac{x^3}{2} + o(x^4).$$

5 $\tan(x) = \sin(x) \times \frac{1}{\cos(x)}$. Le DL de $x \mapsto \sin(x)$ à l'ordre 4 est :

$$\sin(x) = x - \frac{x^3}{3!} + o(x^4).$$

Formules de Taylo

Développements limités

6 Transformation
$$\frac{1}{u} \rightarrow \frac{1}{1-u}$$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)} \quad \text{avec} \quad u(x) = 1 - \cos(x)$$

6 Transformation $\frac{1}{u} \rightarrow \frac{1}{1-u}$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)} \text{ avec } u(x) = 1 - \cos(x)$$

7 Or le DL à l'ordre 3 au voisinage de 0 de $\frac{1}{1-u}$ est : $\frac{1}{1-u} = 1 + u + u^2 + u^3 + o(u^3)$.

formation
$$\frac{1}{u} \rightarrow \frac{1}{1-u}$$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)}$$
 avec $u(x) = 1 - \cos(x)$

- 7 Or le DL à l'ordre 3 au voisinage de 0 de $\frac{1}{1-u}$ est : $\frac{1}{1-u} = 1 + u + u^2 + u^3 + o(u^3)$.
- **3** Ainsi, le DL de $x \mapsto \frac{1}{\cos(x)}$ est donné par

$$\frac{1}{\cos(x)} = 1 + (1 - \cos(x)) + (1 - \cos(x))^2 + (1 - \cos(x))^3 + o((1 - \cos(x))^3)$$

$$= \frac{x^2}{2} - o(x^4) + \left(\frac{x^2}{2} - o(x^4)\right)^2 + \left(\frac{x^2}{2} - o(x^4)\right)^3 + o\left(\left(\frac{x^2}{2} - o(x^4)\right)^3\right).$$

9 DL d'un produit : on ne garde que les termes de degré \leq 3.

$$(1 - \cos(x))^2 = -x^2 o(x^3) + (o(x^3))^2 = -o(x^5) + o(x^6) = o(x^5).$$

$$(1-\cos(x))^3 = o(x^7).$$

DL d'un produit : on ne garde que les termes de degré < 3.

$$(1 - \cos(x))^2 = -x^2o(x^3) + (o(x^3))^2 = -o(x^5) + o(x^6) = o(x^5).$$

$$(1 - \cos(x))^3 = o(x^7).$$

Simplification des termes négligeables,

$$o\left(\left(\frac{x^2}{2}-o(x^3)\right)^3\right)=o(x^7).$$

1 DL de
$$x \mapsto \frac{1}{\cos(x)}$$
 à l'ordre 3

$$\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + o(x^4).$$

① DL de $x \mapsto \frac{1}{\cos(x)}$ à l'ordre 3

$$\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + o(x^4).$$

(2) On obtient alors le DL à l'ordre 3 de $x \mapsto \tan(x)$

$$\tan(x) = \underbrace{\left(x - \frac{x^3}{3!} + o(x^4)\right)}_{\text{DL sin}} \underbrace{\left(1 + \frac{x^2}{2} + o(x^4)\right)}_{\text{DL 1/cos}}$$

$$tan(x) = x - \frac{x^3}{3} + o(x^4).$$

 \bigcirc DL au voisinage de 0 de f:

$$DL f(x) = DL \{x(1 + \cos(x))\} + DL \{-2\tan(x)\}$$

$$= \left(2x - \frac{x^3}{2} + o(x^4)\right) - 2\left(x - \frac{x^3}{3} + o(x^4)\right)$$

$$= -\frac{7x^3}{6} + o(x^4)$$

 \bigcirc DL au voisinage de 0 de f:

$$DL f(x) = DL \{x(1 + \cos(x))\} + DL \{-2 \tan(x)\}$$

$$= \left(2x - \frac{x^3}{2} + o(x^4)\right) - 2\left(x - \frac{x^3}{3} + o(x^4)\right)$$

$$= -\frac{7x^3}{6} + o(x^4)$$

@ Equivalent de f en 0:

$$f(x) \sim -\frac{7}{6}x^3$$
.

Etude de tangentes

DL d'ordre 1: f est dérivable en x_0 ssi f admet un DL à l'ordre 1 en x_0 . Alors f possède une tangente T en x_0 . La position de \mathcal{C}_f par rapport à T est donnée par le signe de

$$f(x) - f(x_0) - (x - x_0)f'(x_0)$$

Etude de tangentes

DL d'ordre 1 : f est dérivable en x_0 ssi f admet un DL à l'ordre 1 en x_0 . Alors f possède une tangente T en x_0 . La position de C_f par rapport à T est donnée par le signe de

$$f(x) - f(x_0) - (x - x_0)f'(x_0)$$

DL d'ordre 2 : Si f possède en x_0 un DL d'ordre 2. Alors

$$f(x) = a_0 + (x - x_0)a_1 + (x - x_0)^2a_2 + o((x - x_0)^2)$$
 avec $a_2 \neq 0$.

Alors la tangente est la droite d'équation $T_v = a_0 + a_1(x - x_0)$ et, au voisinage de x_0 , la position de C_f par rapport à T_V est donnée par le signe de α_2 , car :

$$f(x) - (a_0 + a_1(x - x_0)) = (x - x_0)^2 a_2 + o((x - x_0)^2)$$

$$\underset{x_0}{\sim} a_2(x - x_0)^2.$$

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_p(x - x_0)^p + o((x - x_0)^p)$$
 avec $a_p \neq 0$

On note k le degré du premier coefficient non nul dans le DL à partir du degré 2 et on note a_{k} son coefficient.

- Si k est pair et $a_k > 0$ alors la courbe est au dessus de sa tangente.
- Si k est pair et $a_k < 0$ alors la courbe est en dessous de sa tangente.
- Si k est impair et $a_k > 0$ alors la courbe traverse sa tangente en passant au dessus.
- Si k est impair et $a_k > 0$ alors la courbe traverse sa tangente en passant en dessous.

Application

 $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{1+e^x}$. Déterminer la position de la tangente à \mathcal{C}_f en 0.

Correction:

Transformation en DL usuel

$$f(x) = \frac{1}{2 + (e^x - 1)} = \frac{1}{2} \frac{1}{(1 + u(x))}$$
 avec $u(x) = \frac{e^x - 1}{2}$.

DL de $u \mapsto (1 + u)^{-1}$ en 0 à l'ordre 3 en 0

$$(1+u)^{-1} = 1 - u + u^2 - u^3 + o(u^3).$$

DL de $x \mapsto e^x$ en 0 à l'ordre 3 en 0

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}).$$

Alors,
$$u(x) = \frac{e^x - 1}{2} = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{12} + o(x^3)$$
.

4 Règle du DL d'un produit :

$$u^{2}(x) = \frac{x^{2}}{4} + \frac{x^{3}}{4} + o(x^{3})$$
 et $u^{3}(x) = \frac{x^{3}}{8} + o(x^{3})$

6 DL de *f* **en** 0 :

$$f(x) = \frac{1}{2} - \frac{1}{4}x + \frac{1}{48}x^3 + o(x^3)$$

6 Equation de la tangente à f au point 0:

$$g(x)=-\frac{1}{4}x+\frac{1}{2}$$

$$f(x) - g(x) = \frac{1}{48}x^3 + o(x^3) \sim \frac{1}{48}x^3 > 0$$
 pour $x > 0$

Illustration graphique

