Low Density Parity Check — Sum-product algorithm

Digital Signal Processing for Communication and Audio-visual Systems

Contents

-

- 1 Log-likelihood ratio
 - Definition
 - Obtaining probabilities
 - Property

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR
- 3 Algorithm

Contents

-

- 1 Log-likelihood ratio
 - Definition
 - Obtaining probabilities
 - Property

Log-likelihood ratio

Definition

LLR⁽¹⁾(x) =
$$\ln\left(\frac{P(x=1)}{P(x=0)}\right) = -\text{LLR}^{(0)}(x)$$
 (1)

$$LLR^{(0)}(x) = ln\left(\frac{P(x=0)}{P(x=1)}\right)$$
 (2)

Obtaining probabilities from LLR

$$P(x=0) = \frac{P(x=0)}{P(x=0) + P(x=1)} = \frac{\frac{P(x=0)}{P(x=1)}}{\frac{P(x=0)}{P(x=1)} + 1}$$

$$P(x=0) = \frac{e^{\mathsf{LLR}^{(0)}(x)}}{1+e^{\mathsf{LLR}^{(0)}(x)}} = \frac{e^{\mathsf{-LLR}^{(1)}(x)}}{1+e^{\mathsf{-LLR}^{(1)}(x)}}$$

$$P(x=0) = \frac{1}{1+e^{\mathsf{-LLR}^{(0)}(x)}} = \frac{1}{1+e^{\mathsf{LLR}^{(1)}(x)}}$$
(3)

Log-likelihood ratio

Obtaining probabilities

Obtaining probabilities from LLR

$$P(x = 1) = \frac{e^{\mathsf{LLR}^{(1)}(x)}}{1 + e^{\mathsf{LLR}^{(1)}(x)}} = \frac{e^{\mathsf{-LLR}^{(0)}(x)}}{1 + e^{\mathsf{-LLR}^{(0)}(x)}}$$

$$P(x = 1) = \frac{1}{1 + e^{\mathsf{-LLR}^{(1)}(x)}} = \frac{1}{1 + e^{\mathsf{LLR}^{(0)}(x)}}$$

Property

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$
(4)

tanh(x) =
$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2 \cdot x}}{1 + e^{-2 \cdot x}} = \frac{e^{2 \cdot x} - 1}{e^{2 \cdot x} + 1}$$

 $x = \operatorname{artanh}(\operatorname{tanh}(x)) = \frac{1}{2} \cdot \ln\left(\frac{1 + \operatorname{tanh}(x)}{1 - \operatorname{tanh}(x)}\right)$

$$x = \operatorname{artanh}(y) = \frac{1}{2} \cdot \ln\left(\frac{1+y}{1-y}\right) \tag{5}$$

Log-likelihood ratio Property

Property
$$1 - 2 \cdot P(x = 1) = 1 - 2 \cdot \frac{e^{-\mathsf{LLR}^{(0)}(x)}}{1 + e^{-\mathsf{LLR}^{(0)}(x)}}$$

$$-2 \cdot P(x=1) = \frac{1 - e^{-LLR(0)}(x)}{1 + e^{-LLR(0)}(x)}$$

$$1 - 2 \cdot P(x = 1) = \frac{1 - e^{-\mathsf{LLR}^{(0)}(x)}}{1 + e^{-\mathsf{LLR}^{(0)}(x)}}$$
$$1 - 2 \cdot P(x = 1) = \tanh\left(\frac{\mathsf{LLR}^{(0)}(x)}{2}\right) \tag{6}$$

$$1 - 2 \cdot P(x = 0) = \tanh\left(\frac{\mathsf{LLR}^{(1)}(x)}{2}\right) \tag{7}$$

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR

Sum-product algorithm Sets of nodes

Sets of nodes:

- $A(c_j)$ is the set of variable nodes connected to *check* node c_j .
- $\mathbf{A}(v_i)$ is the set of check nodes connected to *variable* node v_i .

Sum-product algorithm Sets of nodes

■ Tanner graph, $A(v_i)$ and $A(c_j)$

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR

-

Impact of Gaussian channel

Probabilities corresponding to bit x_i given the received coordinate y_i assuming a *BPSK* modulation: $_{-(y_i-(-1))^2}$

$$P(x_i = 0, v_i \to c_j, \text{channel}) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma^2} \cdot e^{\frac{-(y_i - (-1))^2}{2 \cdot \sigma^2}} \cdot dy$$

$$P(x_i = 1, v_i \to c_j, \text{channel}) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma^2} \cdot e^{\frac{-(y_i - (-1))^2}{2 \cdot \sigma^2}} \cdot dy$$

$$\frac{P(x_i = 0, v_i \to c_j, \text{channel})}{P(x_i = 1, v_i \to c_j, \text{channel})} = e^{\frac{-2 \cdot y_i}{\sigma^2}}$$

LLR value corresponding to bit x_i (influence of the channel) used in messages to check nodes $s \in A(x_i)$

Sum-product algorithm Estimation of probabilities at check nodes

• c_j connected to 2 variable nodes: v_{k_1} and v_{k_2} .

$$A(c_j) = \{v_{k_1}; v_{k_2}\}$$

The equation that must be satisfied is:

$$s_j = x_{k_1} + x_{k_2} = 0$$

Suggestion to variable node v_{k_1}

$$P(x_{k_1} = 0) = P(x_{k_2} = 0) = 1 - P(x_{k_2} = 1)$$

$$P(x_{k_1} = 0) = \frac{1}{2} + \frac{1}{2} \cdot (1 - 2 \cdot P(x_{k_2} = 1))$$

Estimation of probabilities at check nodes

 c_j connected to 3 variable nodes: v_{k_1} , v_{k_2} and v_{k_3} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; v_{k_3}\}$$

$$s_j = x_{k_1} + x_{k_2} + x_{k_3} = 0$$

■ Suggestion to variable node v_{k_1}

$$P(x_{k_1} = 0) = P(x_{k_2} + x_{k_3} = 0) = P\left(\sum_{l=2}^{3} x_{k_l} = 0\right)$$

$$P(x_{k_1} = 0) = P(x_{k_2} = 0) \cdot P(x_{k_3} = 0) + P(x_{k_2} = 1) \cdot P(x_{k_3} = 1)$$

$$P(x_{k_1} = 0) = (1 - P(x_{k_2} = 1)) \cdot (1 - P(x_{k_3} = 1)) + P(x_{k_2} = 1) \cdot P(x_{k_3} = 1)$$

$$P(x_{k_1} = 0) = 1 - P(x_{k_2} = 1) - P(x_{k_3} = 1) + 2 \cdot P(x_{k_2} = 1) \cdot P(x_{k_3} = 1)$$

$$P(x_{k_1} = 0) = \frac{1}{2} + \frac{1}{2} \cdot (1 - 2 \cdot P(x_{k_2} = 1) - 2 \cdot P(x_{k_3} = 1) + 4 \cdot P(x_{k_2} = 1) \cdot P(x_{k_3} = 1)$$

Sum-product algorithm Estimation of probabilities at check nodes

 c_i connected to 3 variable nodes: v_{k_1} , v_{k_2} and v_{k_3} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; v_{k_3}\}
 s_j = x_{k_1} + x_{k_2} + x_{k_3} = 0$$

■ Suggestion to variable node v_{k_1}

$$P(x_{k_1} = 0) = \frac{1}{2} + \frac{1}{2} \cdot (1 - 2 \cdot P(x_{k_2} = 1)) \cdot (1 - 2 \cdot P(x_{k_3} = 1))$$

$$P(x_{k_1} = 0) = P\left(\sum_{l=2}^{3} x_{k_l} = 0\right) = \frac{1}{2} + \frac{1}{2} \cdot \prod_{l=2}^{3} (1 - 2 \cdot P(x_{k_l} = 1))$$

Estimation of probabilities at check nodes

lacksquare c_j connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; \dots; v_{k_n}\}\$$
 $s_j = \sum_{x \in A(s_j)} x = 0$

Assumption

$$P\left(\sum_{l=2}^{n-1} x_{k_l} = 0\right) = \frac{1}{2} + \frac{1}{2} \cdot \prod_{l=2}^{n-1} \left(1 - 2 \cdot P(x_{k_l} = 1)\right)$$

Suggestion to variable node v_{k_1}

$$P(x_{k_{1}} = 0) = P\left(\sum_{l=2}^{n} x_{k_{l}} = 0\right)$$

$$P(x_{k_{1}} = 0) = P(x_{k_{n}} = 0) \cdot P\left(\sum_{l=2}^{n-1} x_{k_{l}} = 0\right) + P(x_{k_{n}} = 1) \cdot \left(1 - P\left(\sum_{l=2}^{n-1} x_{k_{l}} = 0\right)\right)$$

Sum-product algorithm Estimation of probabilities at check nodes

lacksquare c_j connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; \dots; v_{k_n}\}\$$

$$s_j = \sum_{x \in A(s_j)} x = 0$$

■ Suggestion to variable node v_{k_1}

$$P(x_{k_1} = 0) = \left(1 - P(x_{k_n} = 1)\right) \cdot P\left(\sum_{l=2}^{n-1} x_{k_l} = 0\right) + P(x_{k_n} = 1) \cdot \left(1 - P\left(\sum_{l=2}^{n-1} x_{k_l} = 0\right)\right)$$

$$P(x_{k_1} = 0) = P\left(\sum_{l=2}^{n-1} x_{k_l} = 0\right) \cdot \left(1 - 2 \cdot P(x_{k_n} = 1)\right) + P(x_{k_n} = 1)$$

Sum-product algorithm Estimation of probabilities at check nodes

lacksquare c_j connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; \dots; v_{k_n}\}\$$
 $s_j = \sum_{x \in A(s_j)} x = 0$

Suggestion to variable node v_{k_1}

$$P(x_{k_1} = 0) = \left(\frac{1}{2} + \frac{1}{2} \cdot \prod_{l=2}^{n-1} \left(1 - 2 \cdot P(x_{k_l} = 1)\right)\right) \cdot \left(1 - 2 \cdot P(x_{k_n} = 1)\right) + P(x_{k_n} = 1)$$

$$P(x_{k_1} = 0) = \frac{1}{2} - P(x_{k_n} = 1) + \frac{1}{2} \cdot \prod_{l=2}^{n} \left(1 - 2 \cdot P(x_{k_l} = 1)\right) + P(x_{k_n} = 1)$$

$$P(x_{k_1} = 0) = \frac{1}{2} + \frac{1}{2} \cdot \prod_{l=2}^{n} \left(1 - 2 \cdot P(x_{k_l} = 1)\right)$$

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR

Messages from check nodes to variable nodes

From the previous slides, c_j is connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

A(c_j) = {
$$v_{k_1}, v_{k_2}, \dots$$
 and v_{k_n}
 $A(c_j) = {v_{k_1}, v_{k_2}, \dots, v_{k_n}}$
 $s_j = \sum_{v_i \in A(c_j)} x_i = 0$

■ Suggestion to variable node v_i

$$P(x_i = 0, c_j \to v_i) = \frac{1}{2} + \frac{1}{2} \cdot \prod_{v_l \in A(c_j) \setminus v_i} (1 - 2 \cdot P(x_l = 1, v_l \to c_j))$$
(9)

and from (6)

$$P(x_i = 0, c_j \to v_i) = \frac{1}{2} + \frac{1}{2} \cdot \prod_{v_l \in A(c_j) \setminus v_i} \tanh\left(\frac{\mathsf{LLR}^{(0)}(x_l, v_l \to c_j)}{2}\right) \tag{10}$$

Messages from check nodes to variable nodes

From the previous slides, c_j is connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; \dots; v_{k_n}\}$$

■ Message to node v_i (LLR)

$$LLR(x_{i}, c_{j} \rightarrow v_{i}) = LLR^{(0)}(x_{i}, c_{j} \rightarrow v_{i}) = \ln\left(\frac{P(x_{i} = 0, c_{j} \rightarrow v_{i})}{P(x_{i} = 1, c_{j} \rightarrow v_{i})}\right)$$

$$LLR(x_{i}, c_{j} \rightarrow v_{i}) = \ln\left(\frac{\frac{1}{2} + \frac{1}{2} \cdot \prod_{v_{j} \in A(c_{j}) \setminus v_{i}} \tanh\left(\frac{LLR(x_{i}, v_{l} \rightarrow c_{j})}{2}\right)}{1 - \frac{1}{2} - \frac{1}{2} \cdot \prod_{v_{j} \in A(c_{j}) \setminus v_{i}} \tanh\left(\frac{LLR(x_{i}, v_{l} \rightarrow c_{j})}{2}\right)}\right)$$

$$\mathsf{LLR}(x_i, c_j \to \nu_i) \quad = \quad \mathsf{In} \left(\begin{array}{c} 1 + \prod_{v_l \in A(c_j) \setminus \nu_i} \mathsf{tanh} \left(\frac{\mathsf{LLR}(x_l, \nu_l \to c_j)}{2} \right) \\ \\ 1 - \prod_{v_l \in A(c_j) \setminus \nu_i} \mathsf{tanh} \left(\frac{\mathsf{LLR}(x_l, \nu_l \to c_j)}{2} \right) \end{array} \right)$$

Messages from check nodes to variable nodes

- From the previous slides, c_j is connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .
 - $A(c_j) = \{v_{k_1}, v_{k_2}, \dots, v_{k_n}\}$
 - Message to node v_i (LLR) –from (5)–

$$LLR(x_i, c_j \to v_i) = 2 \cdot \operatorname{artanh} \left(\prod_{v_l \in A(c_j) \setminus v_i} \tanh \left(\frac{\operatorname{LLR}(x_l, v_l \to c_j)}{2} \right) \right)$$
(11)

Sum-product algorithm Messages from check nodes to variable nodes

$$\mathsf{LLR}(x_i)_{c_j \to v_i}^{(\mathsf{step}\ m)} = \ 2 \cdot \mathsf{artanh} \Bigg(\prod_{v_l \in A(c_j) \setminus v_i} \mathsf{tanh} \bigg(\frac{\mathsf{LLR}(x_l)_{v_l \to c_j}^{(\mathsf{step}\ m-1)}}{2} \bigg) \Bigg)$$

$$x_1 ; v_1 \circ \vdots$$

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR

From the previous slides, v_i connected m variable nodes:

$$c_{k_1}, c_{k_2}, \dots$$
 and c_{k_m} .
 $A(v_i) = \{c_{k_1}; c_{k_2}; \dots; c_{k_m}\}$

■ Message to check node c_i (LLR)

Messages from variable nodes to check nodes

$$\mathsf{LLR}(x_i, v_i \to c_j) \quad = \quad \mathsf{LLR}^{(0)}(x_i, v_i \to c_j) = \mathsf{In}\bigg(\frac{P(x_i = 0, v_i \to c_j)}{P(x_i = 1, v_i \to c_j)}\bigg)$$

LLR value sent to the check nodes includes the influence of the channel and the remaining check nodes

$$\mathsf{LLR}^{(0)}(x_i, v_i \to c_j) \qquad = \qquad \mathsf{LLR}^{(0)}(x_i, v_i \to c_j, \mathsf{channel}) + \sum_{c_k \in A(v_i) \backslash c_j} \mathsf{LLR}^{(0)}(x_i, c_k \to v_i)$$

$$\mathsf{LLR}(x_i, v_i \to c_j) = \mathsf{LLR}(x_i, v_i \to c_j, \mathsf{channel}) + \sum_{c_k \in A(v_i) \setminus c_j} \mathsf{LLR}(x_i, c_k \to v_i)$$
(12)

From the previous slides, v_i connected m variable nodes:

$$c_{k_1}, c_{k_2}, \dots$$
 and c_{k_m} .
 $A(v_i) = \{c_{k_1}; c_{k_2}; \dots; c_{k_m}\}$

Message to check node c_j (LLR)
 From (8) and (11)

Messages from variable nodes to check nodes

$$\begin{aligned} \mathsf{LLR}(x_i, \nu_i \to c_j) &=& \mathsf{LLR}(x_i, \nu_i \to c_j, \mathsf{channel}) + \sum_{c_k \in A(\nu_i) \backslash c_j} \mathsf{LLR}(x_i, c_k \to \nu_i) \\ \mathsf{LLR}(x_i, \nu_i \to c_j) &=& -\frac{2 \cdot y_i}{\sigma^2} + \sum_{c_k \in A(\nu_i) \backslash c_j} 2 \cdot \mathsf{artanh} \bigg(\prod_{\nu_l \in A(c_k) \backslash \nu_i} \mathsf{tanh} \bigg(\frac{\mathsf{LLR}(x_l, \nu_l \to c_k)}{2} \bigg) \bigg) \end{aligned}$$

(13)

Sum-product algorithm Messages from variable nodes to check nodes

$$\mathsf{LLR}(x_i)_{v_i \to c_j}^{(\mathsf{step}\ m)} = -\frac{2 \cdot y_i}{\sigma^2} + \sum_{c_k \in A(v_i) \setminus c_j} \mathsf{LLR}(x_i)_{c_k \to v_i}^{(\mathsf{step}\ m)}$$

$$x_1; v_1 \circ \vdots \\ x_i; v_i \circ \vdots \\ x_n; v_n \circ \vdots$$

$$\circ c_1 ; s_1 \\ \vdots$$

$$\circ c_j ; s_j$$

$$\circ c_{n-k} ; s_{n-k}$$

- 2 Sum-product algorithm
 - Sets of nodes
 - Estimation of probabilities
 - Impact of Gaussian channel
 - Estimation of probabilities at check nodes
 - Messages from check nodes to variable nodes
 - Messages from variable nodes to check nodes
 - Stopping criterion
 - Final LLR

Sum-product algorithm Stopping criterion

- Meaning of LLR
 - LLR $(x_i) > 0$, x_i more likely to be 0
 - LLR(x_i) < 0, x_i more likely to be 1
- Meaning of LLR (x_{k_1}) · LLR (x_{k_2})
 - LLR (x_{k_1}) · LLR $(x_{k_2}) > 0$, $x_{k_1} + x_{k_2}$ more likely to be 0
 - LLR (x_{k_1}) · LLR (x_{k_2}) < 0, $x_{k_1} + x_{k_2}$ more likely to be 1

Sum-product algorithm Stopping criterion

From the previous slides, c_j is connected to n variable nodes: v_{k_1}, v_{k_2}, \ldots and v_{k_n} .

$$A(c_j) = \{v_{k_1}; v_{k_2}; \dots; v_{k_n}\}$$

From equation (13)

$$s_j = \sum_{i=1}^{n} x_i = 0$$

$$\begin{aligned} \mathsf{LLR}(x_i, v_i \to c_j) &=& \mathsf{LLR}(x_i, v_i \to c_j, \mathsf{channel}) + \sum_{c_k \in A(v_l) \setminus c_j} \mathsf{LLR}(x_i, c_k \to v_i) \\ \\ \mathsf{LLR}(x_i, v_i \to c_j) &=& -\frac{2 \cdot y_i}{\sigma^2} + \sum_{c_k \in A(v_i) \setminus c_i} 2 \cdot \mathsf{artanh} \left(\prod_{v_l \in A(c_k) \setminus v_i} \mathsf{tanh} \left(\frac{\mathsf{LLR}(x_l, v_l \to c_k)}{2} \right) \right) \end{aligned}$$

For all c_i

$$\prod_{v_i \in A(c_i)} \mathsf{LLR}(x_i, v_i \to c_j) \quad > \quad 0$$

(14)

LLR

$$\mathsf{LLR}(x_i) \quad = \quad \mathsf{LLR}(x_i, \mathsf{channel}) + \sum_{c_k \in A(v_i)} \mathsf{LLR}(x_i, c_k \to v_i)$$

$$\mathsf{LLR}(x_i) \quad = \quad -\frac{2 \cdot y_i}{\sigma^2} + \sum_{c_k \in A(v_i)} 2 \cdot \mathsf{artanh} \Bigg(\prod_{v_l \in A(c_k) \setminus v_i} \mathsf{tanh} \bigg(\frac{\mathsf{LLR}(x_l, v_l \to c_k)}{2} \bigg) \Bigg)$$

(15)

- 1. Step m = 1. Evaluate at all v_i and send to c_i .
 - LLR $(x_i)_{v_i \to c_j}^{\text{(step 1)}}$ -see equation (13)— assuming:
 - $LLR(x_i)_{c_j \to v_i}^{(\text{step 1})} = 0$
- 2. The stopping criterion is applied at all s_j , equation(14)
 - 2.1 If it holds for all c_j , \overrightarrow{x} is a valid codeword according to LLR $(x_i)_{v_i \to c_i}^{(\text{step } m)}$. Evaluate:
 - LLR(x_i) —see equation (15)— and stop.
 - 2.2 If it doesn't hold for all c_i :
 - Step m = m + 1
 - Evaluate at all c_j and send to v_i
 - LLR $(x_i)_{c_j \to v_i}^{(\text{step } m)}$ —see equation (11)—
 - Evaluate at all v_i and send to c_j LLR $(x_i)_{v_i \to c_i}^{\text{(step } m)}$ —see equation (13)—
 - Go to phase 2.

1. Step m = 1. Send LLR $(x_i)_{v_i \to c_j}^{(\text{step } 1)}$ from all v_i

 $\circ c_1; s_1$

o *c*9 ; *s*9

- 2. Evaluate $\prod LLR(x_i)_{v \to c_j}^{(\text{step } m)}$ for all c_j $v \in A(c_i)$
 - **2.1** Strictly positive for all c_i . Evaluate:

LLR
$$(x_i) = -\frac{2 \cdot y_i}{\sigma^2} + \sum_{c_k \in A(v_i)} \text{LLR}(x_i)_{c_k \to v_i}^{(\text{step } m)}$$
. Stop.

$$x_1; v_1 \circ$$

$$\vdots$$

$$x_i; v_i \circ$$

$$\vdots$$

$$x_{10}; v_{10} \circ$$

2.2 Step
$$m = m + 1$$

Send from all
$$c_j$$
, $LLR(x_i)_{c_j \to v_i}^{(\text{step } m)} =$

Send from all
$$c_j$$
, $\operatorname{LLR}(x_i)_{c_j \to v_i}^{(\operatorname{step} m)} = 2 \cdot \operatorname{artanh} \left(\prod_{v_l \in A(c_j) \setminus v_i} \operatorname{tanh} \left(\frac{\operatorname{LLR}(x_l)_{v_l \to c_j}^{(\operatorname{step} m-1)}}{2} \right) \right)$

"Pablo Escalle García Departamento de Comunicaciones

2.2 Step *m*

Send from all
$$v_i$$
, $LLR(x_i)_{v_i \to c_i}^{(\text{step } m)} = -\frac{2 \cdot y_i}{\sigma^2} + \frac{1}{\sigma^2}$

 $\sum_{c_k \in A(v_i) \setminus c_j} \mathsf{LLR}(x_i)_{c_k \to v_i}^{(\mathsf{step } m)}$ $\circ c_1 \ ; \ s_1$

$$c_j$$
; s_j

Go to phase 2