Universidad de la República

Facultad de Ingeniería

Proyecto de fin de carrera

Recarga Fácil por Radio Frecuencia $RF^2 \label{eq:Facility}$

Daniel Aicardi, Melina Rabinovich, Edgardo Vaz

Tutores: Ing. Juan Pablo Oliver, Ing. Andrés Aguirre

Montevideo, Uruguay Julio 2011

Recarga Fácil por Radio Frecuencia

Resumen

El presente documento describe el prototipo Recarga Fácil por Radio Frecuencia, RF^2 , realizado como proyecto de fin de carrera de Ingeniería Eléctrica en la Universidad de la República Oriental del Uruguay entre marzo de 2010 y julio de 2011. El mismo consiste en un sistema embebido para recarga y consulta de tarjetas RFID, como las que se utilizan hoy día en el sistema de transporte metropolitano, y fue pensado para operar de forma autónoma interactuando directamente con el usuario.

El hardware fue enteramente diseñado por el grupo de trabajo a excepción de la single board computer. Las herramientas de software utilizadas son open source, así como también las librerías usadas para desarrollar la aplicación final. El diseño, la fabricación, y el armado del prototipo fue realizado en su totalidad en Uruguay.

Agradecimientos

En primer lugar queremos agradecer a nuestras familias y amigos. Agradecemos al grupo de robótica del INCO, a Leonardo Steinfeld, Nicolás Barabino, Francisco Lanzari, María Eugenia Corti, Santiago Reyes, Viterbo Rodríguez, Christian Gutierrez, Andrés Bergeret, Gonzalo Tabares, Klaus Rotzinger, Marcelo Fiori, Pablo Cancela, Ana y Claudia Rabino. Y a todos los que de alguna forma u otra colaboraron con nosotros.

a nuestras familias.

Prefacio

"El ciudadano Línea saca su billetera, extrae su tarjeta y la introduce en la máquina registradora; una serie de gestos automáticos. Unas mandíbulas de aluminio se cierran sobre ella, unos dientes de cobre buscan la clave magnética, y una lengua electrónica saborea la vida del ciudadano Línea. Lugar y fecha de nacimiento. Padres. Raza. Religión. Historial educativo, militar y de servicios civiles. Estado. Hijos. Ocupaciones, desde el comienzo hasta el presente. Asociaciones. Medidas físicas, huellas digitales, retínales, grupo sanguíneo. Grupo psíquico básico. Porcentaje de lealtad, índice de lealtad en función del tiempo hasta el momento del último análisis... ... El ciudadano Línea se encuentra en la ciudad donde, la noche anterior, dijo que estaría, así que no ha tenido que hacer una corrección. Los nuevos informes se añaden al historial del ciudadano Línea. Toda su vida regresa al banco de datos. Desaparece de la unidad exploradora y la unidad comparativa, para que éstas atiendan la próxima llegada. La máquina ha tragado y digerido otro día. Está satisfecha."

Sam Hall (1953), Poul Anderson

La narración anterior es parte de un cuento de ciencia ficción llamado "Sam Hall", escrita por Poul Anderson en 1953. En esta historia el autor describe un mundo donde cada persona tiene asignada una tarjeta conteniendo datos que la caracterizan, y puede ser controlado su accionar a través de una super computadora que almacena y procesa los datos de toda la humanidad. En nuestros días este cuento de ciencia ficción no está tan alejado de la realidad, las tarjetas "inteligentes" (smart cards) son cada vez más usadas en múltiples aplicaciones como ser, pasaporte electrónico, pago electrónico, sistemas de transporte, controles de acceso y sistemas de seguridad, entre otros. El siguiente proyecto se desarrolla con la intención de aprender las bases del mundo de las tarjetas "inteligentes" y que sirva como punto de partida para que otros entiendan su funcionamiento. Los autores no desean que se use el contenido de este documento con fines como los que se indicaban en la narrativa de ciencia ficción, muy por el contrario, el empleo de esta tecnología debe estar en favor de las personas y no en su contra.

Índice general

	Títul	alo]
	Resu	sumen	 		I
	Agra	radecimientos			H
	Dedi	dicatoria	 		ΙV
	Prefa	facio			V
	Tabl	la de contenidos			V]
	Índic	ice de figuras			IX
	Índic	ice de cuadros		•	X
I	Int	troducción			1
1.		scripción del proyecto			2
	1.1.	Definición			2
	1.2.	Antecedentes		•	2
2.	•	jetivo general del proyecto			3
		. ¿Qué y para qué?			3
	2.2.	0 1			
	2.3.				4
	2.4.	1			4
	2.5.	. Criterios de éxito	 •	•	2
II	Di	iseño			6
3.	Fun	ncionamiento del prototipo			7
	3.1.	Requerimientos			7
	3.2.	1 1 1			7
	3.3.	. Funcionamiento general del prototipo	 •	•	8
4.		rdware			10
		. Arquitecturas estudiadas			10
	4.2.	1	 •		13
	43	Elección de hardware			14

Índice general VII

		4.3.1. 4.3.2. 4.3.3. 4.3.4.	VLT - Conversor de Voltajes	14 15 16 17					
	4.4								
	4.4.			17					
		4.4.1.	SBC	17					
		4.4.2.	VLT - Conversor de Voltajes	17					
		4.4.3.	,	19					
		4.4.4.	Lector/Escritor RFID	20					
5.	Docu	umentos	s y esquemáticos del hardware	25					
	5.1.	Herran	nientas de diseño	25					
	5.2.	Esquer	náticos y componentes	25					
		5.2.1.	SBC	27					
		5.2.2.		28					
		5.2.3.	SCUI - Lector de tarjetas de contacto e Interfaz de Usuario	30					
		5.2.4.	<u> </u>	35					
6	Soft	woro		39					
υ.	6.1.			4(
	6.2.								
	0.2.	6.2.1.		4(
		6.2.2.	1	40					
		6.2.3.	1	40					
	6.3.			40					
	0.5.	6.3.1.		40					
		6.3.2.		40					
		6.3.3.	, , ,						
		6.3.4.		40					
		6.3.5.	1	40					
		6.3.6.	1 6	40					
	6.4.			40					
	0.4.	6.4.1.							
		6.4.2.		40					
		6.4.3.		40					
		6.4.4.	3	40					
	6 5	6.4.5.		40					
	6.5.			40					
		0 1	ACTIOL DATA PIPCUCION AUTONOMA	41					

ĺ	ndice general	Ţ	VIII

Ensayos	41
Ensayos	42
7.1. SBC	42
7.2. VLT - Conversor de Voltajes	43
7.3. SCUI - Lector de tarjetas de contacto e Interfaz de usuario	43
7.4. Lector/Escritor RFID	45
Compras	48
Compras	49
3.1. SBC	49
3.2. PCBs	50
3.3. VLT	50
3.4. SCUI	51
3.5. Lector-Escritor RFID	53
Anexos	56
	Ensayos 7.1. SBC 7.2. VLT - Conversor de Voltajes 7.3. SCUI - Lector de tarjetas de contacto e Interfaz de usuario 7.4. Lector/Escritor RFID Compras Compras 8.1. SBC 8.2. PCBs 8.3. VLT 8.4. SCUI 8.5. Lector-Escritor RFID

Índice de figuras

3.1.	Diagrama de flujo	9
4.1.	Solución considerada 1	10
4.2.	Solución considerada 2	11
4.3.	Solución considerada 3	11
4.4.	Solución considerada 4	12
4.5.	Solución considerada 5	12
4.6.	Diagrama de bloques de la arquitectura seleccionada	13
4.7.	Arquitectura de una celda I/O del TXB0108	18
5.1.	Esquemático de la placa VLT - Voltage Level Translator	29
5.2.	Esquemático de la placa SCUI	32
5.3.	Esquemático del lector de tarjetas de contacto, incluido en la placa SCUI	33
5.4.	Esquemático de la interfaz de usuario, incluido en la placa SCUI	34
5.5.	Esquemático del módulo digital del lector/escritor RFID	37
5.6.	Esquemático de la antena RFID, Inductor + Adaptación de impedancia.	38

Índice de cuadros

5.1.	Conector 14x2 Beagleboard – VLT	26
	Conector 20x2 VLT - SCUI	
5.3.	SBC y lista de accesorios	27
5.4.	Lista de componentes de la placa de circuito impreso VLT	28
5.5.	Lista de componentes del lector de tarjetas de contacto, SC	30
5.6.	Lista de componentes para la interfaz de usuario, LCD	31
5.7.	Lista de componentes de la antena RF, Inductor + Adaptación de impedan-	
	cia	35
5.8.	Lista de componentes del lector/escritor RFID, sin la antena RF	36
8.1.	SBC	49
8.2.	PCBs	50
8.3.	VLT	50
8.4.	SC	51
8.5.	LCD	52
8.6.	Inductor + Adaptación	53
8.7.	CL RC632 + filtro EMC	55

Parte I Introducción

Capítulo 1

Descripción del proyecto

1.1. Definición

A partir de la puesta en marcha del sistema de transporte metropolitano, surge la necesidad de consultar y recargar tarjetas RFID (utilizadas en dicho sistema) en línea con un servidor, de forma rápida, segura y autogestionada por parte del usuario, en diversos puntos de Montevideo.

1.2. Antecedentes

- AFE: Prototipo de sistema embebido capaz de cargar y consultar tarjetas RFID como las utilizadas en el sistema de transporte metropolitano. El mismo se compone de varios módulos: una SBC (single board computer), un lector/escritor de tarjetas RFID, un lector de tarjetas de contacto, un módem 3G/GPRS y una interfaz con el usuario que consta de un display, leds y buzzer.
- OpenPCD: Diseño de hardware libre para dispositivos de proximidad de acoplamiento (PCD) basado en comunicación RF de 13,56MHz. Este dispositivo es capaz de desplegar información desde Tarjetas de proximidad de Circuito Integrado (PICC) que se ajusten a las normas de proveedores independientes, tales como ISO 14443, ISO 15693, así como los protocolos propietarios como Mifare Classic.

Capítulo 2

Objetivo general del proyecto

2.1. ¿Qué y para qué?

En principio, el objetivo del proyecto era realizar un prototipo de sistema embebido mediante el cual se pudiera interactuar con tarjetas RFID (basadas en las normas ISO 14443) como las usadas en el sistema de transporte metropolitano. Mejorar la arquitectura actual del dispositivo AFE rompiendo dependencias tecnológicas con el actual lector/escritor de tarjetas Mifare.

Para lograrlo se partiría de la base de un dispositivo open-hardware y open-firmware (OpenPCD).

Luego se dejó de lado el partir del dispositivo OpenPCD, para lograr un diseño propio de lector/escritor de tarjetas RFID.

2.2. ¿Por qué cambiar la arquitectura actual?

Como arquitectura precedente existe la del prototipo AFE (Artefacto Feo de Exhibir), realizada por el grupo de electrónica de la Intendencia de Montevideo. La misma consiste en una SBC, que se fabrica con otro propósito y es utilizada en esta aplicación puesto que es la única forma de adquirir este tipo de hardware en plaza. A ésta se conectan a través de puertos USB, un lector/escritor de tarjetas Mifare, un lector de tarjetas de contacto, un modem 3G y un dispositivo diseñado a partir de un microcontrolador PIC, llamado USB4ALL, el cual es open-hardware y open-firmware, en el que

se pueden conectar otro tipo de dispositivos cuya interfaz nativa no sea USB, como ser display, buzzer, leds, sensores, etc, los cuales no pueden ser conectados directamente a la SBC porque la misma no cuenta con los puertos de expansión necesarios.

Surge entonces la necesidad de cambiar la configuración de dicha arquitectura. Se hace necesario romper dependencias tecnológicas con el lector/escritor de tarjetas Mifare, ya que dejó de ser soportado por la librería posolite (a pedido del fabricante); y con la SBC, que es empleada en una aplicación específica y puede dejar de fabricarse o sufrir cambios drásticos que ya no permitan su uso.

2.3. Alcance

- Hardware: Se fabricará un módulo donde se insertará la tarjeta de contacto (SAM). Se agregará un display, leds y buzzer como interfaz para el usuario. Se fabricará un módulo de lectura/escritura RFID. Se estudiará la forma de conectar los periféricos a la placa de la SBC.
- Software: Se hará lo necesario para que el lector/escritor RFID funcione como un dispositivo soportado por la librería librfid. Se hará lo posible para lograr compatibilidad hacia atrás con el AFE.

2.4. Especificación funcional

El prototipo final deberá ser capaz de interactuar con tarjetas RFID a través de la antena del dispositivo lector/escritor RFID, y con una tarjeta de contacto (SAM). Luego de los controles correspondientes y autenticación de la tarjeta (con datos encriptados), comenzará la interacción con el usuario mediante un display que será la interfaz de comunicación con el mismo. El display informará al usuario de las tareas que se estén realizando, mensajes cortos y descriptivos. Los tiempos de recarga y consulta deberán ser menores a un minuto.

2.5. Criterios de éxito

- Lograr recargar y consultar tarjetas RFID mediante el dispositivo embebido.
- Los tiempos de recarga y consulta deberán ser menores a un minuto.

Parte II

Diseño

Capítulo 3

Funcionamiento del prototipo

3.1. Requerimientos

El principal requerimiento a cumplir es la interacción con tarjetas RFID de acuerdo a la norma ISO14443, tanto para su lectura como escritura. La comunicación con tarjetas de contacto de acuerdo a la norma ISO7816 es necesaria para la interacción con un módulo de seguridad que permita la generación de las claves usadas para autenticarse con las tarjetas RFID. Por último mantener informado al usuario de lo que sucede durante una transacción a través de una simple interfaz visual y sonora.

3.2. Descripción del prototipo

Este prototipo integra la lista de dispositivos que hoy en día se hacen llamar sistemas embebidos. Su hardware está integrado por una Single Board Computer (SBC), con un conversor de niveles de tensión (VLT), a la cual se conectan un lector/escritor de tarjetas RFID basadas en la norma ISO14443, un lector de tarjetas de contacto compatibles con la norma ISO7816, y la interfaz de usuario compuesta por un buzzer, leds y un display LCD16x2. Entre las ventajas que podemos hallar en este dispositivo es que el lector/escritor de tarjetas RFID es un diseño realizado en PCB de dos capas que lo hace más sencillo y económico que el diseño del lector/escritor OpenPCD, y al igual que este último es compatible con la librería open source conocida como librfid. Por su lado, en el lector de tarjetas de contacto debemos destacar su simplicidad, ya que no cuenta

con ningún tipo de hardware específico (ASIC) que cumpla con el estandar ISO7816, sólo es necesario tener disponible un puerto serial (UART) y con un par de puertos de entrada/salida de propósito general para lo que tiene que ver con el manejo del oscilador y el reset para la tarjeta de contacto. Esto lo hace portable a cualquier SBC que cuente con los puertos detallados anteriormente. Para la interfaz de usuario es necesario contar con siete puertos de entrada/salida de propósito general, para lo que es el control y la entrada de caracteres en el display, con cuatro puertos más para los leds y el buzzer.

3.3. Funcionamiento general del prototipo

Una vez que el prototipo RF^2 se encuentra operativo, el dispositivo despliega en el display el mensaje "Aproxime su tarjeta", permaneciendo en dicho estado hasta que algún usuario acerque una tarjeta al lector/escritor RFID. En la primera transacción entre lector y tarjeta se obtiene el identificador único (UID) de ésta última, que será enviado al módulo de seguridad, SAM (previa autenticación exitosa), para que a partir de éste, se generen las claves de acceso que permitan la lectura y escritura de la tarjeta RFID. Mientras se lleva a cabo la operación, se despliega en el display el mensaje, "No retire su tarjeta" a la vez que el led amarillo es encendido para indicar precaución ya que se están procesando datos. La siguiente acción a llevar a cabo es verificar que la tarjeta del usuario tenga saldo pendiente de acreditar, en caso afirmativo se indica al usuario el saldo a acreditar a través del display con el mensaje "Saldo a acreditar \$...". Si todo fue exitoso, se borra el saldo transferido de la lista de saldos pendientes a acreditar para que no se transfiera saldo indefinidas veces. A continuación se despliega en el display el nuevo monto almacenado en la tarjeta, "Su saldo es de \$...", se enciende el led verde y se emite un pitido mediante el buzzer en señal que la operación fue satisfactoria. Por último se muestran en el display los mensajes "Transacción finalizada", "Gracias" y vuelve al inicio para comenzar un nuevo ciclo.

En caso que la tarjeta no tuviera saldo pendiente de acreditar, el prototipo RF^2 funciona en modo consulta y despliega en el display el saldo disponible en la tarjeta, "Su saldo es de \dots ", encendiendo el led verde y emitiendo un pitido, seguido de los mensajes "Transacción finalizada", "Gracias" y vuelve al inicio para comenzar un nuevo ciclo.

En caso de ocurrir un error durante alguno de los pasos anteriores, ya sea porque el usuario retiró la tarjeta en un momento inadecuado, o simplemente porque el prototipo no logró leer o escribir la tarjeta en forma correcta, se enciende el led rojo, se emite un doble pitido mediante el buzzer, y el display muestra el mensaje "Error, vuelva a intentarlo", acto seguido el ciclo vuelve a comenzar.

Figura 3.1: Diagrama de flujo

Capítulo 4

Hardware

4.1. Arquitecturas estudiadas

Se plantearon varias alternativas como posible solución. A medida que se encontraron limitantes o que no se cumplían los requerimientos exigidos, se fueron descartando dichas opciones.

A continuación se describen algunas de las arquitecturas consideradas:

1 - OpenPCD + lector de tarjetas de contacto + display + buzzer + leds

Figura 4.1: Solución considerada 1

Al dispositivo OpenPCD, se conecta el resto del hardware a través de su único puerto de entrada-salida disponible que es de tipo I2C.

2 - SBC + OpenPCD + microcontrolador + lector de tarjetas de contacto + display + buzzer + leds

Figura 4.2: Solución considerada 2

Tanto el dispositivo OpenPCD como el microcontrolador se conectan directamente por USB a la SBC. El microcontrolador maneja el resto de los dispositivos (lector de tarjetas de contacto, display, buzzer y leds).

3 - SBC + OpenPCD + lector de tarjetas de contacto + display + buzzer + leds

Figura 4.3: Solución considerada 3

El dispositivo OpenPCD se conecta por USB a la SBC. La SBC maneja los dispositivos (lector de tarjetas de contacto, display, buzzer y leds) a través de sus interfaces nativas.

4 - SBC + lector de tarjetas RFID + lector de tarjeta de contacto + display + buzzer + leds

Figura 4.4: Solución considerada 4

Todos los periféricos se conectan a la SBC a través de sus interfaces nativas, esto incluye también el integrado CL RC632 de Philips. Se debe diseñar la antena para propagar la señal RF hacia las tarjetas.

5 - microcontrolador + lector de tarjetas RFID + lector de tarjeta de contacto + display + buzzer + leds

Figura 4.5: Solución considerada 5

Consta de un único PCB, que posee un microcontrolador como sistema central al cual se conectan el resto de los dispositivos. Dicho PCB tiene incorporada la antena para la propagación de RF.

4.2. Arquitectura seleccionada

Luego de estudiar ventajas y desventajas de las arquitecturas planteadas, se eligió la que más se adaptó a los requerimientos necesarios:

■ SBC + lector de tarjetas RFID + lector de tarjeta de contacto + display + buzzer + leds

En la figura 4.6 se muestra un diagrama de bloques correspondiente a la arquitectura seleccionada:

Figura 4.6: Diagrama de bloques de la arquitectura seleccionada

En una primera instancia se pretendía utilizar únicamente el dispositivo OpenPCD, ya que el mismo cuenta con un microcontrolador de la familia ARM, el AT91SAM7S128, una vez estudiado se llegó a la conclusión de que no permitía la instalación de un kernel

de Linux. Otra desventaja encontrada fue que sólo tiene un puerto I2C como forma de conectar periféricos.

Surgió entonces la necesidad de usar una SBC como dispositivo capaz de ejecutar un sistema operativo y las aplicaciones necesarias para que el dispositivo cumpla con los requerimientos exigidos. El dispositivo OpenPCD pasaría entonces a cumplir la función de lector/escritor de tarjetas RFID, conectado a la SBC a través de su puerto USB, mientras que para el resto de los periféricos se diseñaría un PCB que fuera capaz de ser conectado a la SBC a través de sus interfaces nativas. Esta arquitectura fue descartada por el incremento en el costo del proyecto.

Fue necesario entonces descartar el uso del dispositivo OpenPCD y dar lugar a un diseño propio del lector/escritor de tarjetas RFID, utilizando para esto el integrado CL RC632 de Philips.

La última opción y la más ambiciosa, plantea el diseño completo de un PCB conteniendo un microcontrolador y memoria capaz de ejecutar un sistema operativo, los lectores de tarjetas, tanto de contacto como RFID, un modem 3G y el resto de los periféricos (display, leds, buzzer). Esta opción fue dejada de lado por entender que excedería los plazos de tiempo del proyecto.

Se pensó entonces en diseñar la arquitectura SBC + lectores de tarjetas + display + buzzer + leds, y dado que se cuenta con un OpenPCD, la opción SBC + OpenPCD + lector de tarjetas de contacto + display + buzzer + leds se dejaría como arquitectura de respaldo por si no funcionara el lector de tarjetas RFID.

4.3. Elección de hardware

4.3.1. SBC

En primera instancia se confeccionó una lista con posibles candidatas de SBC disponibles en el mercado internacional, teniendo en cuenta factores como: precio, puertos de E/S, memoria RAM, memoria Flash, puertos USB, Linux embebido, entre otros. Se definieron una serie de requisitos mínimos necesarios para seleccionar de la lista la SBC que más se adecuara a la arquitectura definida. Para la comunicación con el resto de los módulos será necesario: una interfaz UART para el módulo de seguridad (SAM); una

interfaz SPI para el módulo lector/escritor RFID (CL RC632 de Philips); 20 GPIO para display, leds, buzzer, otros; 1 USB host para una posible conexión de un módem 3G (intercambio de datos con un servidor central). En cuanto a la memoria disponible debe ser de 32Mb de RAM y 8Mb de flash para el uso de un sistema operativo embebido. Es conveniente, pensando a futuro, que el procesador trabaje a una frecuencia no menor a 200MHz. Dado el presupuesto estimado para el proyecto, el precio no debe superar los 150 dólares en origen. Como requisito adicional se exigió que existiera un foro actualizado y soporte técnico que permitiera evacuar dudas.

Aplicados los requisitos mínimos a la lista previamente confeccionada de SBC candidatas, optamos por dos: GESBC-9G20 y Hawkboard. En cuanto a la primera opción, GESBC-9G20, los fabricantes no respondieron consultas, por tanto se descartó. Se optó entonces por la segunda opción, Hawkboard, puesto que respondieron a las consultas en tiempos razonables y se logró evacuar dudas desde el foro.

Luego de comprar dos Hawkboard, ambas resultaron defectuosas a nivel de hardware, después de varios meses de pruebas sin resultados y sin respuestas concretas por parte del proveedor y fabricante y con la intención de cumplir con los plazos del proyecto, se optó por utilizar una SBC (Beagleboard) que se consiguió en préstamo por medio del INCO. Ésta SBC cumplió con los requisitos mínimos, aunque en ese momento tenía un costo del doble de la Hawkboard, teniéndose que diseñar un módulo hardware adicional. Finalmente, la SBC seleccionada para trabajar fue la Beagleboard.

Las características generales de la BeagleBoard son: cuenta con un procesador OMAP 3530 de 720MHz con arquitectura ARM. Posee memoria NAND-flash de 256Mb y memoria ROM de igual tamaño. Tiene una ranura adicional para extender la memoria a través de una memoria SD. Entre otras cosas cuenta con un puerto USB OTG, un puerto USB host, un bloque de expansión de 28 pines (con señales a 1,8 Volts), puerto JTAG, conector RS232, etc.

4.3.2. VLT - Conversor de Voltajes

Este módulo no fue tenido en cuenta en la primera etapa del diseño de la arquitectura hardware, sino que surge como necesidad debido al cambio de SBC. Como consecuencia de lo anterior se vio la ventaja de incorporar una placa que permite la conexión entre

la SBC y el resto del hardware, el cual puede permanecer inalterado por más que no ocurra lo mismo con la SBC, ya que ésta puede cambiar de versión o dejar de fabricarse en un breve lapso de tiempo. El único elemento a cambiar sería entonces la placa VLT, que es más simple y barata de fabricar que las restantes partes. La placa de circuito impreso VLT consta básicamente de dos conectores, uno de ellos permite la conexión con la Beagleboard y el otro la conexión con el restante hardware el cual se encuentra intergrado en un PCB llamdo SCUI. Ambos conectores no se encuentran directamente interconectados entre sí a través de pistas, pues para el caso particular de Beagleboard fue necesario incorporar conversores de tensión que permitieran el traslado del nivel de tensión desde 1,8 Volts que usa esta SBC, a las tensiones con las que operan los periféricos, ya sea 3,3 o 5 Volts. El último elemento, no menos importante, es un regulador de tensión LDO que permite generar 3,3 Volts a partir de la fuente de tensión de 5 Volts de la propia Beagleboard.

4.3.3. SCUI - Lector de tarjetas de contacto e Interfaz de Usuario

El módulo SCUI puede dividirse en dos partes, una de ellas es un lector de tarjetas de contacto basadas en la norma ISO7816, y la otra es una simple interfaz para el usuario. El lector de tarjetas de contacto (smart cards), está compuesto por un conversor full duplex a half duplex el cual se encuentra conectado a uno de los puertos UART de la SBC a través del módulo VLT, que se describió en el punto anterior. Este conversor permite la transmisión de datos directamente entre la tarjeta y la SBC, sin necesidad de intercalar un ASIC para el manejo de tarjetas del tipo ISO7816. Cuenta también con un oscilador para alimentar la entrada de reloj de las tarjetas. La entrada de control (OE) del oscilador operada desde la SBC permite poner la salida de reloj en tercer estado, cosa muy útil a la hora de cumplir con la secuencia de inicialización de las tarjetas descritas en el estándar. El lector permite operar con tarjetas clase A (alimentadas a 5 Volts) y clase B (alimentadas a 3,3 Volts) haciendo uso de un jumper que permite intercambiar la tensión de alimentación suministrada a la tarjeta. Se cuenta con un zócalo para insertar la tarjeta de contacto. Por otra parte, la intefaz de usuario está compuesta por tres leds (verde, amarillo y rojo), buzzer y un display LCD16x2 donde son desplegados los mensajes que indican al usuario la operación que se efectúa sobre su tarjeta mifare. El último elemento

a describir aquí es un conector receptáculo 5x2 (100mils) en el que se conecta el módulo lector/escritor RFID que opera con las tarjetas RFID mifare.

4.3.4. Lector/Escritor RFID

Este módulo es el encargado de la comunicación con las tarjetas RFID que cumplen con la norma ISO14443[iso]. Consta básicamente de 4 secciones entre las que se encuentran: el integrado CL RC632[pdf]; el filtro EMC, el circuito de adaptación de impedancia (matching); y el inductor de la antena. El ASIC CL RC632 permite, por un lado la comunicación digital con un microprocesador a través de su puerto de datos y por el otro lado la transmisión de datos hacia la antena que emitirá la señal RF para la comunicación con las tarjetas ISO14443. Lo que llamamos propiamente antena RF está conformada por el circuito de adaptación de impedancia (matching) y por el inductor, que propaga el campo magnético para lograr el acoplamiento necesario entre lector y tarjeta, de aquí la sigla PCD (Proximity Coupling Device).

Los principios básicos de funcionamiento de la antena se detallan en el anexo [*].

4.4. Funcionamiento de módulos

4.4.1. SBC

La SBC está formada por un microcontrolador y memoria suficiente para ejecutar un sistema operativo linux orientado a desarrollar sistemas embebidos. Sobre el sistema operativo se instalan los módulos y librerías necesarias para hacer uso del hardware que contiene la SBC. En la aplicación se utilizará uno de sus puertos SPI para la comunicación con el lector/escritor de tarjetas RF, un puerto UART para la comunicación de datos con el lector de tarjetas de contacto y varias salidas GPIO para el control de la interfaz de usuario.

4.4.2. VLT - Conversor de Voltajes

El corazón de esta placa son los integrados TXB0108[pdf] que permiten la interconexión de dispositivos que operan en distintos niveles de tensión. Básicamente el integrado está constituído por dos puertos, puerto A y puerto B cada uno de 8 bits. El puerto A opera con la tensión de 1,8 Volts que permite ser conectado a la Beagleboard, el puerto B opera con la tensión de 3,3 Volts cuando se encuentra conectado al IC CL RC632, y de 5 Volts para los restantes periféricos. Cada I/O de un puerto es sensible a los flancos de subida o bajada, trasladando estos cambios a la I/O correspondiente del puerto opuesto. Este integrado posee también una entrada de control para poner los puertos en estado de alta impedancia. Una ventaja es que no poseen entrada de control de dirección de flujo de datos, de modo que se ahorran pines de control que no se tienen disponibles en la Beagleboard. En la figura 4.7 se puede observar como están constituídas cada una de las entradas/salidas del integrado. Otra pieza que compone esta placa es el regulador de tensión LDO implementado a partir del integrado LM1117[pdf], éste se utiliza para convertir la entrada de tensión de 5 Volts en una salida de tensión de 3,3 Volts y así poder alimentar el periférico correspondiente.

Figura 4.7: Arquitectura de una celda I/O del TXB0108

4.4.3. SCUI - Lector de tarjetas de contacto e Interfaz de Usuario

Lector de tarjetas de contacto ISO7816

Es un lector muy simple de implementar, su construcción se basa en un conversor full a half duplex construido a partir de un circuito transistorizado trabajando en zona de corte y saturación. Los transistores empleados son el NPN 2N3904[pdf] y el PNP 2N3906[pdf] los cuales fueron seleccionados en base a su rápida característica de conmutación que es del orden de algunas decenas de nanosegundos. Dada la característica del circuito, es posible recibir el eco de la transmisión de datos generados por la SBC. Un elemento fundamental que compone el circuito del lector es el oscilador de frecuencia 3,579545 Mhz, este valor no es antojadizo sino que permite generar la base de tiempo adecuada para la transmisión de datos entre la tarjeta y la SBC. Otras frecuencias de reloj fueron empleadas, como ser 4 Mhz y 5 Mhz, con resultados inciertos en la recepción de los datos, aún cuando sería posible usar estos valores según la referencia [Smart Cards Handbook] para los parámetros obtenidos desde el ATR de la tarjeta. El circuito cuenta también con protección de descarga ESDA6V1W5 [pdf] para los contactos de la smart card.

Interfaz de usuario

El elemento a destacar es un display LCD16x2 que basa su funcionamiento en el controlador Hitachi HD44780[pdf]. La transferencia de datos hacia el display se hace a través de un puerto con 4/8 bits de datos y 3 bits de control. Debido a que no se cuenta con la cantidad de pines disponibles en la Beagleboard para operar en el modo de 8 bits, se empleó en su lugar el modo 4 bits del display. El bit de control RS indica si el byte a enviar por el puerto de datos es una palabra de control o un caracter ASCII a ser almacenado en la memoria interna del display. El bit R/W por su parte indica si se efectuará una lectura o una escritura de la memoria interna del display. Por último en el bit E se indica mediante flanco de bajada que se ejecute la operación indicada con los anteriores dos bits de control, previo a este flanco las señales en el puerto de datos deben permanecer fijas. El display cuenta también con una entrada para calibrar el contraste del LCD, la calibración se realiza a partir de un divisor resistivo implementado con resistencias y un preset. El backlight del display es accionado desde uno de los pines de la SBC a partir de un circuito transistorizado que opera en zona de corte/saturación.

Los restantes elementos que componen la interfaz de usuario son leds y buzzer que son accionados directamente desde los pines del puerto de expansión de la SBC.

4.4.4. Lector/Escritor RFID

En el corazón del lector/escritor de tarjetas RFID, se encuentra el chip CL RC632 que forma parte de una familia de integrados empleados para la comunicación con tarjetas sin contacto, pertenecientes a la norma ISO14443 las cuales operan a la frecuencia 13,56 Mhz. El CL RC632 soporta todas las capas del esquema de comunicación que se establecen en la mencionada norma, incluyendo el algoritmo de seguridad (CRYPTO1) para autenticar las tarjetas Mifare Classic. En lo que sigue se describen algunas de las características principales del integrado.

Interfaz

Los comandos, bits de configuración y las banderas se acceden a través de la interfaz con un microprocesador. El puerto elegido para la comunicación desde la SBC es el SPI, aunque es posible la comunicación a través de su puerto paralelo.

Registros

La configuración del chip se lleva a cabo a partir de un mapa de registros de control que se encuentra dividido en 8 páginas con 8 registros cada una. La manera de alcanzar estos registros es mediante el intercambio de página, mecanismo que puede ser deshabilitado mediante escritura de un "1" en el bit 7 del registro 0 en la página 0, logrando direccionamiento plano. La función de cada uno de sus registros puede ser observada en la hoja de datos del integrado [RC632.pdf].

Memoria EEPROM

La memoria está dividida en 32 bloques con 16 bytes cada bloque. El contenido de memoria EEPROM en los bloques 1 y 2 (dirección 10hex a 2Fhex) se utilizan para configurar los registros del CL RC632 durante la fase de inicialización, de forma automática. La configuración por defecto soporta la comunicación MIFARE ISO 14443 A, aunque los usuarios pueden especificar la inicialización para I-Code1, ISO 15693 o ISO 14443 B, mediante los bloques de memoria 3 al 7. Se reservan 384 bytes para almacenar las claves CRYPTO1 que son usadas para la autenticación con las tarjetas. El

formato de una de estas claves puede verse en [RC632.pdf] y tiene una longitud de 12 bytes, por tanto es posible almacenar en memoria las 32 claves que posee una tarjeta.

Buffer FIFO

El integrado contiente un buffer FIFO de 64 bytes para flujo de datos con un microprocesador. La entrada y salida del buffer de datos está conectado con el registro FIFOData. Escribir en este registro almacena un byte en el buffer e incrementa el puntero de escritura del buffer. La lectura de este registro muestra el contenido del buffer e incrementa el puntero de lectura. La distancia entre el puntero de escritura y lectura se puede obtener mediante la lectura del registro FIFOLength, indicando así la cantidad de bytes que se llevan almacenados. Es posible observar y controlar el estado del buffer mediante varios registros, para evitar que se produzcan errores de comuncicación con el microprocesador.

Interrupciones

El CL RC632 indica ciertos eventos estableciendo el bit IRQ en el registro Primary-Status, y además, por la activación del pin IRQ. La señal en el pin IRQ se puede utilizar para interrumpir un micrprocesador. Las posibles fuentes de interrupción son:

- Timer, a través de su bandera TimerIRq
- Transmisor, coprocesador CRC y memoria E2PROM, a través de su bandera TxIRq
- Receptor, a través de su bandera RxIRq
- Registro de comando, a través de su bandera IdleIRq
- Buffer FIFO, a través de sus banderas HiAlertIRq y LoAlertIRq

El CL RC632 informa al microprocesador sobre el origen de una interrupción mediante el establecimiento del bit adecuado en el registro InterruptRq. La relevancia de cada bit de petición de interrupción como fuente de una interrupción puede ser enmascarada con el bit de habilitación de interrupciones en el registro InterruptEn. Si alguna bandera de solicitud de interrupción se establece en 1 (una solicitud de interrupción está pendiente) y la correspondiente bandera de habilitación de interrupción está en "1", la bandera de estado IRq en el registro PrimaryStatus se establece en 1. Por otra parte

diferentes fuentes de interrupción pueden estar activas al mismo tiempo. Por lo tanto, se hace un OR con todos los bits de solicitud de interrupción, el resultado se envía a la bandera IRq y se conecta al pin IRQ. Los bits de petición de interrupciones están seteados de forma automática por las máquinas de estado internas del CL RC632. Adicionalmente, el microprocesador tiene acceso para setearlos o borrarlos. Una implementación especial de los registros InterruptRQ y InterruptEn permiten el cambio de un único bit de estado sin tocar el resto.

Configuración del Pin IRQ: El nivel lógico de la bandera de estado IRq es visible por el pin IRQ. Además, la señal en el pin puede ser controlada por los siguientes bits del registro IRQPinConfig

- IRQInv: Si este bit es 0, la señal en el pin IRQ es igual al nivel lógico del bit IRq. Si es 1, la señal en el pin IRQ está invertida con respecto al bit IRq.
- IRQPushPull: Si este bit es 1, el pin IRQ tiene características de una salida estándar CMOS, de otra manera la salida es open drain y un resistor externo es necesario para alcanzar un nivel alto en este pin.

Para poder hacer uso de lo descrito anteriormente se previó y reservó una entrada en el conector de expansión de la Beagleboard (ver esquemáticos), sin embargo el software empleado no hace uso del mecanismo de interrupciones sino que opera mediante polling.

Transmisor, pines Tx1 y Tx2

La señal en Tx1 y Tx2 es la portadora, centrada en 13,56 Mhz, modulada ASK 100 % con los datos a transmitir. Estos pines son conectados directamente a la antena para propagar la señal RF hacia las tarjetas RFID. La distancia de operación alcanzada es de hasta 10cm de longitud, dependiendo de la geometría de la antena, así como también adaptación de impedancia lograda, entre otros [App Notes]. Algunos registros del integrado permiten la configuración del transmisor, posibilitando entre otras cosas apagar la señal portadora en caso de ser necesario.

Conjunto de comandos

El CL RC632 opera como una máquina de estado capaz de interpretar y ejecutar un conjunto de comandos pre establecidos. La ejecución de uno de ellos es posible escribiendo su código correspondiente en el "Registro de Comandos", si fuera necesario

el pasaje de parámetros, éstos se colocarán en el buffer FIFO mencionado antes. Una lista detallada de comandos junto con los parámetros necesarios es mostrada en la hoja de datos, entre ellos podemos destacar los siguientes: Authent, Transceive, LoadKey.

Antena RF

En lo que sigue se describen algunas de las partes que integran la antena RF que se conecta directamente a los pines Tx1 y Tx2 del integrado descrito antes.

Filtro EMC

La frecuencia de la portadora de la señal transmitida se centra en 13,56 Mhz, sin embargo se generan también armónicos de mayor frecuencia. Para cumplir con la regulación internacional EMC es que se agrega este filtro pasa bajos, cuya frecuencia de corte debe ubicarse en 14,4 Mhz, o sea 13,56 Mhz más 847,5 Khz para permitir el ancho de banda necesario que logre el baud rate requerido en la transmisión de los bits. En síntesis el filtro ayuda a mejorar la relación señal a ruido para la señal recibida y decrementa el sobretiro en los pulsos transmitidos mejorando la calidad de la señal transmitida. Los valores propuestos para los componentes de este filtro se encuentran en las notas de aplicación [app notes.pdf]

Matching

Por su parte el circuito de adaptación de impedancia permite que la antena resuene a la frecuencia deseada, en este caso 13,56 Mhz. Los valores de los elementos que conforman este circuito deben ser estimados y sintonizados a partir del diseño del inductor de la antena. El factor de calidad total de la antena debe ser tenido en cuenta para cumplir con los requerimientos establecidos en la norma ISO14443. El mecanismo para el cálculo de los elementos que foman este circuito se detallan en las notas de aplicación [app notes.pdf].

Inductor

El inductor de la antena es quien propaga el campo magnético para la transmisión de datos hacia las tarjetas. El diseño de la antena comienza a partir de este elemento. El cálculo detallado del valor del inductor se encuentra en las notas de aplicación [microchip.pdf], aunque su costo y tiempo en la práctica son considerables; una estimación

del valor de la inductancia puede verse en el [anexo], en el que se deben tener en cuenta los siguientes elementos: geometría de la antena, ancho y espesor del conductor del PCB, longitud de una espira, número de vueltas, etc.

Receptor

El circuito receptor de la antena se encuentra bien detallado en las notas de aplicación [app notes.pdf] y no fue necesario efectuar ningún cambio para lograr buenos resultados en este diseño particular.

Capítulo 5

Documentos y esquemáticos del hardware

5.1. Herramientas de diseño

Las herramientas CAD utilizadas para el diseño del hardware son Kicad[ref] y gE-DA[ref], ambas son de uso libre y open source. Para el caso del lector/escritor RFID se empleó la aplicación gEDA, ya que permite generar pistas con forma de arco de circunferencia, elemento necesario para formar el inductor de la antena. El resto del hardware se diseñó en Kicad, dado que tiene una interfaz gráfica más amigable que gEDA lo que la hace más sencilla de usar. Ambas aplicaciones tienen la ventaja de permitir agregar y editar componentes o módulos diseñados por el mismo usuario y permiten generar archivos en formato gerber necesarios para enviar al fabricante de circuitos impresos.

5.2. Esquemáticos y componentes

En lo que sigue se muestran una serie de cuadros y esquemáticos para lograr un mayor detalle del diseño de las distintas partes que conforman el hardware del prototipo RF^2 . En el cuadro 5.1 se observa la distribución de pines asociada con el conector que une la SBC (Beagleboard), con el conversor de niveles de tensión, VLT. Por su parte el cuadro 5.2 muestra el orden de los pines en el conector que interconecta la placa de circuito impreso, VLT, con la placa de circuito impreso, SCUI, que contiene el resto del

hardware.

Función	Nombre	Nº de pin	Nº de pin	Nombre	Función
Fuente 1,8 Volts	1V8	1	2	5V	Fuente 5 Volts
Led Verde	GPIO	3	4	GPIO	RST_SC
Led Rojo	GPIO	5	6	UART_TX	UART_TX
XOE	GPIO	7	8	UART_RX	UART_RX
D7	GPIO	9	10	GPIO	Led Amarillo
SPI_CS	SPI_CS	11	12	GPIO	Buzzer
D5	GPIO	13	14	GPIO	BacK Light
Е	GPIO	15	16	GPIO	D6
SPI_SOMI	SPI_SOMI	17	18	GPIO	D4
SPI_SIMO	SPI_SIMO	19	20	GPIO	RW
SPI_CLK	SPI_CLK	21	22	GPIO	RS
IRQ_RF	GPIO	23	24	GPIO	RST_RF
OE	REGEN	25	26	nRESET	N.C.
Referencia 0 Volts	GND	27	28	GND	Referencia 0 Volts

Cuadro 5.1: Conector 14x2 Beagleboard – VLT

Función	Nombre	Nº de pin	Nº de pin	Nombre	Función
Referencia 0 Volts	GND	1	2	N/C	RFU
Fuente 3,3 Volts	3V3	3	4	RST_RF	Reset RC632
RFU	N/C	5	6	SPI_SOMI	SPI para RC632
RFU	N/C	7	8	SPI_CLK	Reloj SPI
RFU	N/C	9	10	SPI_SIMO	SPI para RC632
RFU	N/C	11	12	SPI_CS	Chip Select RC632
Control LCD16x2	RS	13	14	IRQ_RF	Interrup RC632
Control LCD16x2	RW	15	16	BLK	BacK Light
Control LCD16x2	Е	17	18	XOE	Reset oscilador
Dato LCD16x2	D4	19	20	BUZZ	Buzzer

Dato LCD16x2	D5	21	22	N/C	RFU
Dato LCD16x2	D6	23	24	N/C	RFU
Dato LCD16x2	D7	25	26	N/C	RFU
RFU	N/C	27	28	UART_RX	Smart card
Fuente 5 Volts	5V	29	30	UART_TX	Smart card
Referencia 0 Volts	GND	31	32	RST_SC	Reset Smart card
Led Rojo	LED_R	33	34	N/C	RFU
Led Amarillo	LED_A	35	36	N/C	RFU
Led Verde	LED_V	37	38	N/C	RFU
RFU	N/C	39	40	N/C	RFU

Cuadro 5.2: Conector 20x2 VLT - SCUI

5.2.1. SBC

Componente	Descripción
SBC	Beagleboard RevC4
Memoria SD	4GB SDHC Class 6 SD Card
Cable serial DB9 nulo	DB9F Null Modem (RS-232) (6-ft)
Cable conversor usb-serial	USB to DB9M RS-232 (PL-2302)
Cable USB	USB Mini-A to USB A Female, OTG
Cable USB	USB Mini-B Male to USB A Male
Fuente	5VDC/2,5A

Cuadro 5.3: SBC y lista de accesorios

5.2.2. VLT - Conversor de Voltajes

Componente	Descripción	Footprint	Valor
C1	Polarized Capacitor (Tantal)	6032[2312]	10uF, 25V
C2	Polarized Capacitor (Tantal)	6032[2312]	100uF, 6V3
U4	Regulador LM1117-3.3	SOT-223	3.3V, 800mA
U1, U2, U3	Voltage Level Translator	TSSOP20	-
P1	RECEPTACLE, 28WAY, 2ROW	SMD Pitch 2,54	28 pines
P2	RECEPTACLE, 40WAY, 2ROW	SMD Pitch 2,54	40 pines
P1b	HEADER, 28WAY, 2ROW	T H Pitch 2,54	28 pines
P2b	HEADER, 40WAY, 2ROW	T H Pitch 2,54	40 pines

Cuadro 5.4: Lista de componentes de la placa de circuito impreso VLT

Figura 5.1: Esquemático de la placa VLT - Voltage Level Translator

5.2.3. SCUI - Lector de tarjetas de contacto e Interfaz de Usuario

Componente	Descripción	Footprint	Valor
R9	Resistor 100W 1/4W 1 %	3216[1206]	100W 1/4W 1 %
R10, R13	Resistor 100KW 1/4W 5 %	3216[1206]	100KW 1/4W 5 %
R11, R12, R14	Resistor 10KW 1/4W 5 %	3216[1206]	10KW 1/4W 5 %
Q2	TRANSISTOR, NPN, 300MHZ	SOT23	MMBT3904
Q3	TRANSISTOR, PNP, 250MHZ	SOT23	MMBT3906
J2	SIM socket (6 contacts)	SMD	-
JP3, JP4	HEADER, 1ROW, 3WAY	T H Pitch 2,54	3 pines
X1	Oscillator 3.579545MHz	SMD	3.579545 Mhz
ESD1	Anti ESD	SOT323	6V / 150W

Cuadro 5.5: Lista de componentes del lector de tarjetas de contacto, SC

Componente	Descripción	Footprint	Valor
R1	Resistor 4K7 1/10W 1 %	1608[0603]	4,7KW 1/10W 1 %
R2, R8	Resistor 3R3 1/10W 1 %	1608[0603]	3,3W 1/10W 1 %
R3, R4, R5	Resistor 680R 1/10W 1 %	1609[0603]	680W 1/10W 1 %
R6, R7	Resistor 10K 1/10W 1 %	1608[0603]	10KW 1/10W 1 %
RV1	Preset 15K 1/10W 25 %	SMD	15KW 1/10W 25 %
Q1	TRANSISTOR, NPN, 300MHZ	SOT23	MMBT3904
S1	LCD MODULE 16X2 CHARACTER	Pitch 2,54	-
CONN1	HEADER FEMALE 16POS.1"TIN	Through Hole	16 pines
CONN2	HEADER, 1ROW, 16WAY	T H Pitch 2,54	16 pines
LED1	Led green 5mm	Through Hole	1,9V, 2mA
LED2	Led red 5mm	Through Hole	1,9V, 2mA
LED3	Led yellow 5mm	Through Hole	2,4V, 2mA
BUZZ1	Buzzer	Through Hole	3 20Vdc, 3 16mA

Cuadro 5.6: Lista de componentes para la interfaz de usuario,

LCD

Figura 5.2: Esquemático de la placa SCUI

Figura 5.3: Esquemático del lector de tarjetas de contacto, incluido en la placa SCUI

Figura 5.4: Esquemático de la interfaz de usuario, incluido en la placa SCUI

5.2.4. Lector/Escritor RFID

Componente	Descripción	Footprint	Valor
C1, C2	Capacitor	1608[0603]	10pF, Ceramic NPO, 2 %
C3, C4	Capacitor	1609[0603]	100pF, Ceramic NPO, 2 %
C5, C6, C7, C8	Capacitor	1608[0603]	NC
R1, R2	Resistor	1608[0603]	0W, 1/10W, 1 %

Cuadro 5.7: Lista de componentes de la antena RF, Inductor

Componente	Descripción	Footprint	Valor
C10	Capacitor	1610[0603]	10pF, Ceramic NPO, 2 %
C1, C2	Capacitor	1608[0603]	15pF, Ceramic NPO, 5 %
C12, C13	Capacitor	1608[0603]	56pF, Ceramic NPO, 2 %
C14, C15	Capacitor	1608[0603]	68pF, Ceramic NPO, 1 %
C9	Capacitor	1609[0603]	100pF, Ceramic NPO, 2 %
C16	Capacitor	1608[0603]	1nF, Ceramic NPO, 10 %
C4, C5, C7, C8, C11, C17	Capacitor	1608[0603]	100nF, Ceramic X7R, 10 %
C3, C6, C18	Capacitor	1608[0603]	10uF, Ceramic X5R, 20 %
L1, L2, L3, L6	Inductor	2012[0805]	22nH, 700mA, 5 %
L4, L5	Inductor	3225[1210]	1uH, 400mA, 5 %
R3	Resistor	1608[0603]	50W, 1/10W 1 %
R2	Resistor	1608[0603]	820W, 1/10W 5 %
R1	Resistor	1608[0603]	2,2KW, 1/5W 1 %
U1	Reader	SO32	CL RC632
	ISO14443		
U2	Crystal Oscil-	49USMXL	13.56MHz, 10pF
	lator, HC49 US		
	SMD		

⁺ Adaptación de impedancia

U3	Operational	SOT23-5	OPA354
	Amplifier (up to		
	7.5V)		
CONN1, CONN2	U.FL-R Connec-	U.FL-R-SMT	-
	tor		
J1	HEADER,	T H Pitch 2,54	10 pines
	10WAY, 2ROW		
J1b	RECEPTACLE,	SMD Pitch 2,54	10 pines
	10WAY, 2ROW		

Cuadro 5.8: Lista de componentes del lector/escritor RFID, sin la antena RF

Figura 5.5: Esquemático del módulo digital del lector/escritor RFID

Figura 5.6: Esquemático de la antena RFID, Inductor + Adaptación de impedancia

Capítulo 6

Software

1	T .	4 1		• /
6.1.	In1	trad	lucc	Inn
V.I.		uw	lucc	11711

- **6.2.** Arquitectura de Software
- 6.2.1. Descripción
- 6.2.2. Sistema Operativo
- 6.2.3. Librerías
- 6.3. Herramientas utilizadas en el desarrollo del sistema
- 6.3.1. Introducción
- 6.3.2. Generación de MLO, u-boot.bin y uImage
- 6.3.3. Generación de FS
- 6.3.4. Croscompilación
- 6.3.5. Depuración de código
- 6.3.6. Librerías
- 6.4. Desarrollo
- 6.4.1. MLO
- 6.4.2. u-boot
- **6.4.3.** uImage
- 6.4.4. FileSystem
- 6.4.5. Librerías

Parte III

Ensayos

Capítulo 7

Ensayos

7.1. **SBC**

Las Hawkboard fabricadas entre el 1º de agosto y el 20 de octubre de 2010 fueron vendidas en el mercado con un error a nivel de hardware que no había sido constatado por el fabricante y que no fue reconocido por éste hasta el mes de noviembre. La solución al problema fue liberada en la fecha 20 de diciembre de 2010 y constaba de sustituir en el circuito, los ferrites FB12 y FB13 por un puente de soldadura de estaño (el uso de jumper 0R fue probado sin obtener buenos resultados). Mayores detalles de la solución pueden encontrarse en el documento Hawkboard_Press_Release_Solution.pdf[anexo]. El inconveniente mencionado antes evitaba que el sistema operativo Linux iniciara correctamente, generándose un mensaje de "kernel panic" indicando que el sistema operativo no podía ser ejecutado. Esto evitó que se pudieran probar las partes de hardware y software que se tenían desarrolladas hasta ese entonces, teniendo que recurrirse a mecanismos alternativos como el uso de un microprocesador rabbit para efectuar pruebas sobre el lector/escritor RFID.

Pruebas sobre las interfaces

7.2. VLT - Conversor de Voltajes

No existieron problemas en este módulo, y dadas las características del circuito no hay demasiados puntos de falla. Si fuera necesario verificar los valores de tensión en el regulador de tensión, la tensión de entrada puede ser medida desde el conector CONN_14x2 y la de salida desde el conector CONN_20x2, ver Figura 5.1. Un detalle a tener en cuenta a la hora de medir los valores de tensión de las señales que pasan a través de los conversores de nivel, cuando las mismas se encuentren en estado ocioso (estáticas), es que no debe hacerse con multímetros de mala calidad, o se obtendrán valores incorrectos durante la medición. Se recomienda para una correcta medición el empleo de osciloscopio con puntas x10. Como se mencionó antes no se tuvieron inconvenientes con este módulo, pero generó conflictos en el circuito conversor full a half duplex del lector de tarjetas de contacto que serán detallados más adelante.

7.3. SCUI - Lector de tarjetas de contacto e Interfaz de usuario

SC

Las primeras pruebas realizadas sobre el lector de tarjetas de contacto se efectuaron sobre una placa de circuito impreso de fabricación propia, conectándose el lector directamente sobre el conector de expansión de la Beagleboard. La intención de esta prueba era más que nada la de probar el circuito conversor full a half duplex, transmitiendo una serie de bytes por el canal Tx y recibiendo el eco mediante el canal Rx, cotejando que los bytes recibidos coincidieran con los transmitidos. El primer problema encontrado aquí estuvo asociado a una falla en uno de los transistores, el PNP 3906, que debió ser sustituido por encontrarse defectuoso. El software usado aquí para efectuar las pruebas sobre el hardware se basa en un controlador serial desarrollado por el grupo de robótica del INCO, el cual fue mínimamente modificado ya que uno de los parámetros, CSIZE, en la configuración del puerto afectaba el número de bits que conforman un byte recibido. La línea de código que hacía referencia a este parámetro fue comentada ya que modificaba el valor del parámetro csN, con N=5 en lugar de N=8 (donde N es el número de bits que forman el byte). El cambio anterior permitió que los bytes recibidos

en el canal Rx coinicidieran con los transmitidos en Tx, validando en una primera instancia el hardware conversor full a half duplex del lector de tarjetas. El siguiente paso fue intercalar entre la Beagleboard y el lector de tarjetas de contacto, el conversor de niveles (VLT) para realizar las mismas pruebas que se datallaron antes, aunque en este caso los resultados no fueron alentadores ya que los bytes recibidos no coincidían con los transmitidos. Todo indicaba que el conversor de nivel afectaba el conversor full a half duplex. Luego de algunas pruebas más sobre el circuito, sin cambios favorables, se decidió consultar al foro de Texas Instruments (fabricante del integrado TXB0108). Desde el soporte técnico solicitaron se les enviara una imagen capturada con osciloscopio de las señales en el puerto serial para observar la forma de los pulsos. En la Figura "X" debajo se puede ver la deformación de los pulsos en la señal Rx (canal 1 del osciloscopio) cuando el circuito contaba con un valor de 500 Ohms en la resistencia R9 (ver Figura 5.3); la solución encontrada fue disminuir el valor de R9 y no aumentarlo como se había intentado anteriormente sin beneficio alguno. Al usar valores entre 90 Ohms y 180 Ohms para la resistencia R9, la forma de los pulsos recibidos en Rx (canal 1) fueron la copia de los pulsos transmitidos en Tx (canal 2), como puede verse en la Figura "Y" para un valor de 90 Ohms. Aquí puede verse el hilo de discusión en el foro: $http://e2e.ti.com/support/interface/etc_interface/f/391/t/114719.aspx.$

Una vez superados los obstáculos anteriores fue posible probar el circuito completo del lector, incluyendo la tarjeta de contacto en su zócalo correspondiente. El software usado en tal fin se basa en un controlador serial, implementado por David Corcoran (uno de los desarrolladores de pesclite), el cual debió ser modificado para usarse en el lector de tarjetas de contacto del prototipo RF^2 . Una de las mayores dificultades encontrada en esta etapa fue el hallar los parámetros adecuados de inicialización del puerto serial, que debe cumplir con las opciones 8E2 (8 bits por byte, bit de paridad par, y dos bits de parada) para operar con las tarjetas de contacto compatibles con la norma ISO7816; sin embargo la opciones adecuadas elegidas en la configuración del puerto serial fueron 8E1. Adicionalmente al problema de encontrar las opciones correctas mencionadas antes, fue que los bytes de datos recibidos como el ATR de la tarjeta no coincidían en su totalidad con los valores esperados(leídos con un lector Omnikey 3121 y la herramienta pesc_scan de pesclite), sólo algunos bytes y algunos nibbles bajos eran correctos. Esta diferencia estuvo asociada a la frecuencia usada para alimentar la señal

de reloj de la tarjeta de contacto; se usaron frecuencias de 4 Mhz y 5 Mhz que si bien podrían usarse según se indica en [handbook SC] para los parámetros especificados en el ATR de las tarjetas empleadas, estos valores no fueron adecuados según ya indicamos, teniendo que usar en su lugar un oscilador de frecuencia 3,579545 Mhz, valor que no se conseguió cuando se realizó la primer compra de componentes. Una dificultad adicional tuvo que ser sorteada en este módulo de hardware, el diseño del PCB que se envió a fabricar tenía un error, las pistas de datos de Rx y Tx estaban intercambiadas. El diseño tuvo que ser corregido y se envió a fabricar un nuevo PCB.

UI

No existieron mayores inconvenientes con la interfaz para el usuario, sí fue necesaria la corrección en el valor de una resistencia en el circuito que calibra el contraste del LCD, ya que los caracteres se observaban muy tenues.

Al momento de probar el display imprimía caracteres extraños, salvo cuando se enviaban mensajes conteniendo una única palabra. Se probó cambiando los mensajes a desplegar en el mismo, y el problema persistía, pero se llegó a la conclusión de que era provocado por los espacios (" ") puesto que cuando se envió un mensaje omitiéndolos fue deplegado en forma correcta. Luego simplemente se modificó el código fuente, para que cada vez que recibiera un caracter espacio, enviara al display el código ASCII correspondiente solucionando el problema.

Cuando se comenzaron a imprimir los saldos de las tarjetas, volvió a imprimir caracteres extraños, esta vez el problema eran los caracteres "0". La solución más rápida encontrada fue imprimir "O" cada vez que llegara un caracter "0", por lo que se modificó el código para que así sea.

7.4. Lector/Escritor RFID

Como se mencionó antes, cuando se tuvo pronto el PCB del lector/escritor RFID aún la SBC no estaba pronta para poder conectarlo y hacer las pruebas necesarias. Por lo tanto, como se tenía un kit de desarrollo rabbit 4000, se conectó el lector/escritor al rabbit y se comenzó el testeo de hardware. Para esto, previamente, hubo que configurar

los pines del rabbit de modo de obtener un puerto SPI a través del cual pudiera comunicarse con el CL RC632 soldado en el PCB. El compilador Dynamic C ya incluye una librería SPI que se utilizó para facilitar el trabajo.

Todo el software implementado para pruebas fue realizado a partir de lo estudiado en la librería librfid (http://openmrtd.org/projects/librfid/).

Una vez que el SPI estuvo operativo, se comenzó con pruebas muy básicas como enviar un comando específico al CL RC632 y esperar la respuesta correcta según la hoja de datos del CL RC632. En principio no se recibía lo esperado, pero el problema era que el puerto no estaba configurado en forma correcta, luego de reconfigurarlo en varias oportunidades (testeándolo con un led) se llegó a la configuración correcta y el CL RC632 comenzó a responder lo esperado. Fue entonces que se probaron otros comandos y surgieron otros errores. Se diseñó entonces una función para enviar comandos a registros, previo comprender el funcionamiento de los mismos (8 páginas, con 8 registros cada una). Se logró leer y escribir la memoria fifo, también resetearla (borrarla por completo y reseteando todas sus banderas). Se probó leer la eeprom, leyendo información conocida. Luego se escribió en la misma y se leyó lo escrito como prueba de que funciona. Se le dio el formato necesario a la clave de una tarjeta, para almacenar en memoria, y se cargó en la memoria correspondiente. Por último se intentó dialogar con una tarjeta, sin éxito. Aunque se verificó que el lector/escritor RFID modulaba, puesto que se pudo observar en el osciloscopio (se puede ver foto!). Se implementó un detector de campo magnético (una bobina con un led) (se puede sacar una foto :)) para comprobar la presencia de la portadora en los alrededores de la antena. Gracias al mismo, se observó que no había campo generado por el inductor del circuito impreso (no había portadora), por lo que se desconectó dicho inductor y se realizó otro que se soldó al PCB y es el que logró modular.

Para observar la forma de las señales se usó un osciloscopio, verificando que las mismas fueran correctas y cumplieran con las condiciones indicadas en el manual del CL RC632.

Luego, estuvo pronta la SBC. Se conectó entonces el PCB por SPI y se comenzaron las pruebas ya en el hardware del prototipo RF^2 . Si bien con el rabbit se pudo verificar parte del hardware, la antena propiamente dicha no estaba verificada, puesto que no se logró leer tarjeta alguna. Se revieron entonces todas las pruebas efectuadas desde

el rabbit, ahora en la SBC. Luego de varios días de trabajo sin lograr leer tarjetas, se midió (por sugerencia de Juan Pablo Oliver) en el Instituto de Ingeniería Eléctrica la impedancia de la antena. La misma no era la que se obtuvo en los cálculos teóricos, estaba muy por encima (ver figura). Se procedió entonces, siguiendo las recomendaciones de las notas de diseño (APP NOTES, ver anexo supongo), a modificar el circuito de matcheo. Se sustituyeron condensadores hasta lograr mejorar la frecuencia de resonancia del inductor. Luego, mejorado el circuito de matcheo, se re-fabricó el PCB. El mismo seguía sin lograr leer tarjetas. Entonces se volvió a revisar la configuración del puerto SPI en la Beagleboard, y luego de varias pruebas con el osciloscopio (Ed y Dan si quieren detallen porque no sé bien que hicieron, yo estaba con el rabbit, dijo Daniel: ./spidev_test -D /dev/spidev3.0 frecuencia) se llegó a la conclusión de que el problema era de software. Se encontró entonces que el pin de reset no se estaba poniendo a nivel bajo como se debía hacer. Luego de corregir el error, se comenzó a leer parte de las tarjetas, aunque aparecían varios errores. Fue entonces que se pensó que también existía un problema de velocidad de recepción en los datos, se varió la frecuencia del puerto SPI hasta que se logró leer completamente cada una de las tarjetas. Por último se probó escribir las tarjetas con un programa de testeo existente en la librería librfid, sin problemas. Luego, cuando se implementó el software específico del prototipo RF^2 surgieron problemas pero se debían a que el acceso a la tarjeta para escribir se realiza con la claveB y se estaba usando la claveA.

Parte IV

Compras

Capítulo 8

Compras

8.1. SBC

Componente	Descripción	Cantidad	Precio x1	Total
SBC	Beagleboard RevC4	1	125	125
Memoria SD	4GB SDHC Class 6 SD Card	1	15	15
Cable serial DB9 nulo	DB9F Null Modem (RS-232) (6-ft)	1	4	4
Cable conversor usb-serial	USB to DB9M RS-232 (PL-2302)	1	10	10
Cable USB	USB Mini-A to USB A Female, OTG	1	9	9
Cable USB	USB Mini-B Male to USB A Male	1	5	5
Fuente	5VDC/2,5A	1	10	10
				178

Cuadro 8.1: SBC

8.2. PCBs

Componente	Descripción	Cantidad	Precio x1	Total
VLT	Interfaz entre SBC y SCUI	1	28	28
SCUI	Interfaz de usuario y lector de tarjetas ISO7816	1	53	53
RWD RFID	Lector/Escritor de tarjetas RFID ISO14443	1	64	64
				145

Cuadro 8.2: PCBs

8.3. VLT

Componente	Descripción	Footprint	Valor	Cantidad	Precio x1	Total
C1	Polarized Capaci-	6032[2312]	10uF, 25V	1	1,09	1,09
	tor (Tantal)					
C2	Polarized Capaci-	6032[2312]	100uF, 6V3	1	1,16	1,16
	tor (Tantal)					
U4	Regulador	SOT-223	3.3V, 800mA	1	1,1	1,1
	LM1117-3.3					
U1, U2, U3	Voltage Level	TSSOP20	-	3	2,24	6,72
	Translator					
P1	RECEPTACLE,	SMD Pitch	28 pines	1	4,19	4,19
	28WAY, 2ROW	2,54				
P2	RECEPTACLE,	SMD Pitch	40 pines	1	4,36	4,36
	40WAY, 2ROW	2,54				
P1b	HEADER,	T H Pitch	28 pines	1	2	2
	28WAY, 2ROW	2,54				
P2b	HEADER,	T H Pitch	40 pines	1	1,94	1,94
	40WAY, 2ROW	2,54				
						22,56

Cuadro 8.3: VLT

8.4. SCUI

Componente	Descripción	Footprint	Valor	Cantidad	Precio x1	Total
R9	Resistor 100W	3216[1206]	100W	1	0,07	0,07
	1/4W 1 %		1/4W 1 %			
R10, R13	Resistor	3216[1206]	100KW	2	0,09	0,18
	100KW 1/4W		1/4W 5 %			
	5 %					
R11, R12, R14	Resistor	3216[1206]	10KW	3	0,08	0,24
	10KW 1/4W		1/4W 5 %			
	5 %					
Q2	TRANSISTOR,	SOT23	MMBT3904	1	0,125	0,125
	NPN,					
	300MHZ					
Q3	TRANSISTOR,	SOT23	MMBT3906	1	0,18	0,18
	PNP, 250MHZ					
J2	SIM socket (6	SMD	-	1	1,25	1,25
	contacts)					
JP3, JP4	HEADER,	T H Pitch	3 pines	2	0,11	0,22
	1ROW, 3WAY	2,54				
X1	Oscillator	SMD	3.579545	1	5,25	5,25
	3.579545MHz		Mhz			
ESD1	Anti ESD	SOT323	6V / 150W	1	0,45	0,45
						7,965

Cuadro 8.4: SC

Componente	Descripci	ión	Footprint	Valor	Cantidad	Precio x1	Total
R1	Resistor	4K7	1608[0603]	4,7KW	1	0,05	0,05
	1/10W 1 %			1/10W 1 %			

R2, R8	Resistor 3R3	1608[0603]	3,3W	2	0,09	0,18
	1/10W 1 %		1/10W 1 %			
R3, R4, R5	Resistor 680R	1609[0603]	680W	3	0,05	0,15
	1/10W 1 %		1/10W 1 %			
R6, R7	Resistor 10K	1608[0603]	10KW	2	0,05	0,1
	1/10W 1 %		1/10W 1 %			
RV1	Preset 15K	SMD	15KW	1	0,71	0,71
	1/10W 25 %		1/10W			
			25 %			
Q1	TRANSISTOR,	SOT23	MMBT3904	1	0,125	0,125
	NPN, 300MHZ					
S1	LCD MODULE	Pitch 2,54	-	1	10,85	10,85
	16X2 CHARAC-					
	TER					
CONN1	HEADER	Through	16 pines	1	1,25	1,25
	FEMALE	Hole				
	16POS.1"TIN					
CONN2	HEADER,	T H Pitch	16 pines	1	0,155	0,155
	1ROW, 16WAY	2,54				
LED1	Led green 5mm	Through	1,9V, 2mA	1	0,11	0,11
		Hole				
LED2	Led red 5mm	Through	1,9V, 2mA	1	0,1	0,1
		Hole				
LED3	Led yellow 5mm	Through	2,4V, 2mA	1	0,13	0,13
		Hole				
BUZZ1	Buzzer	Through	3 20Vdc,	1	5,31	5,31
		Hole	3 16mA			
						19,17

Cuadro 8.5: LCD

8.5. Lector-Escritor RFID

Componente	Descripción	Footprint	Valor	Cantidad	Precio x1	Total
C1, C2	Capacitor	1608[0603]	10pF, Ceramic	2	0,135	0,27
			NPO, 2 %			
C3, C4	Capacitor	1609[0603]	100pF, Ceram-	2	0,194	0,388
			ic NPO, 2 %			
C5, C6, C7, C8	Capacitor	1608[0603]	NC	4	-	0
R1, R2	Resistor	1608[0603]	0W, 1/10W,	2	0,015	0,03
			1 %			
						0,688

Cuadro 8.6: Inductor + Adaptación

Componente	Descripción	Footprint	Valor	Cantidad	Precio x1	Total
C10	Capacitor	1610[0603]	10pF, Ceramic	1	0,135	0,135
			NPO, 2 %			
C1,	Capacitor	1608[0603]	15pF, Ceramic	2	0,03	0,06
C2			NPO, 5 %			
C12,	Capacitor	1608[0603]	56pF, Ceramic	2	0,194	0,388
C13			NPO, 2 %			
C14,	Capacitor	1608[0603]	68pF, Ceramic	2	0,197	0,394
C15			NPO, 1 %			
C9	Capacitor	1609[0603]	100pF, Ceram-	1	0,194	0,194
			ic NPO, 2 %			
C16	Capacitor	1608[0603]	1nF, Ceramic	1	0,08	0,08
			NPO, 10 %			

C4,	Capacitor	1608[0603]	100nF, Ceram-	6	0,074	0,444
C4, C5,	Capacitoi	1008[0003]	ic X7R, 10%	0	0,074	0,444
C7,			IC X/K, 10 %			
C8,						
C11,						
C17		1,000,000,000	10 5 6	2	0.105	0.505
C3,	Capacitor	1608[0603]	10uF, Ceramic	3	0,195	0,585
C6,			X5R, 20 %			
C18						
L1,	Inductor	2012[0805]	22nH, 700mA,	4	0,454	1,816
L2,			5 %			
L3,						
L6						
L4,	Inductor	3225[1210]	1uH, 400mA,	2	0,29	0,58
L5			5 %			
R3	Resistor	1608[0603]	50W, 1/10W	1	0,268	0,268
			1 %			
R2	Resistor	1608[0603]	820W, 1/10W	1	0,027	0,027
			5 %			
R1	Resistor	1608[0603]	2,2KW, 1/5W	1	0,08	0,08
			1 %			
U1	Reader	SO32	CL RC632	1	14,22	14,22
	ISO14443				ĺ	
U2	Crystal Oscil-	49USMXL	13.56MHz,	1	0,98	0,98
	lator, HC49		10pF			-,, 0
	US SMD		- r -			
U3	Operational	SOT23-5	OPA354	1	2,8	2,8
	Amplifier (up	50125 5	O111357	1	2,0	2,0
	to 7.5V)					

CONN1,	U.FL-R Con-	U.FL-R-	-	2	1,76	3,52
CONN2	nector	SMT				
J1	HEADER,	T H Pitch	10 pines	1	0,389	0,389
	10WAY,	2,54				
	2ROW					
J1b	RECEPTACLE,	SMD Pitch	10 pines	1	2,27	2,27
	10WAY,	2,54				
	2ROW					
						29,23

Cuadro 8.7: CL RC632 + filtro EMC

Parte V

Anexos

Parte VI

Bibliografía