Worksheet 06

Name: Mariano Majano Amaya UID: U56063451

Topics

- Kmeans ++
- Hierarchical Clustering

Kmeans ++

a) What is the difference between K means and K means ++?

In K means, the initial centroids are picked randomly. This affects the performance of K means and can lead to non-optimal convergence.

However, in K means ++, although the initial centroids are picked randomly, it picks the next centroid with probability proportional to D(x)2, which leads to better performance.

b) What are some limitations of K means ++?

- Tends to favour clusters that have similar sizes
- Tends to favour clusters that are densely packed
- Does not work well with non-globular shapes

c) Interpret the silhouette plot below. It's a histogram where each bar corresponds to the silhouette score for that data point. Comment on which number of clusters K (2,3,4 or 5) you would choose and why. (the red dotted line is the average silhouette score over the entire dataset).

```
from IPython.display import Image
Image(filename="silhouette.png", width=500, height=500)
```


I would choose K as 2 or 3, since the silhouette scores for the clusters in those cases are greater than the average silhouette scores in them.

Hierarchical Clustering

Using the following dataset:

Point	X	У
A	0	0
В	1	1
C	3	0
D	0	1
Е	2	2

with

d = Euclidean

D = Single-Link

produce the distance matrix at every step of the hierarchical clustering algorithm.

Step 1

	Α	В	C	D	E
Α	0	$\sqrt{2}$	3	1	$\sqrt{8}$
В	$\sqrt{2}$	0	$\sqrt{5}$	1	$\sqrt{2}$
С	3	$\sqrt{5}$	0	$\sqrt{10}$	$\sqrt{5}$
D	1	1	$\sqrt{10}$	0	$\sqrt{5}$
Е	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{5}$	$\sqrt{5}$	0

Step 2						
	A & D	В		С	E	
A & D	0	1		3	$\sqrt{5}$	
В	1	0		$\sqrt{5}$	$\sqrt{2}$	
С	3	$\sqrt{5}$		0	$\sqrt{5}$	
Е	$\sqrt{5}$	$\sqrt{2}$		$\sqrt{5}$	0	
Step 3						
	A & D	& B	C		Е	
A & D & B	0		$\sqrt{5}$		$\sqrt{2}$	
С	$\sqrt{5}$		0		$\sqrt{5}$	
Е	$\sqrt{2}$		$\sqrt{5}$		0	
Step 4						
		A & D & B &	ζE	С		
A & D & B & E		0		$\sqrt{5}$		
С		$\sqrt{5}$		0		
Repeat the ab	ove with					
d = Euclidean D = Complete	-Link					
Step 1						
	4	В	С	D	E	

	Α	В	C	D	E
Α	0	$\sqrt{2}$	3	1	$\sqrt{8}$
В	$\sqrt{2}$	0	$\sqrt{5}$	1	$\sqrt{2}$
С	3	$\sqrt{5}$	0	$\sqrt{10}$	$\sqrt{5}$
D	1	1	$\sqrt{10}$	0	$\sqrt{5}$
E	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{5}$	$\sqrt{5}$	0

Step 2

	A&D	В	С	Е
A&D	0	$\sqrt{2}$	$\sqrt{10}$	$\sqrt{8}$
В	$\sqrt{2}$	0	$\sqrt{5}$	$\sqrt{2}$
C	$\sqrt{10}$	$\sqrt{5}$	0	$\sqrt{5}$
Е	$\sqrt{8}$	$\sqrt{2}$	$\sqrt{5}$	0

Step 3

	A&B&D	C		E
A&B&D	0	$\sqrt{10}$		$\sqrt{8}$
С	$\sqrt{10}$	0		5
Е	$\sqrt{8}$	$\sqrt{5}$		0
Step 4				
	A & D & B &	Ε	C	
A & D & B & E	0		$\sqrt{10}$	
C	$\sqrt{10}$		0	

Challenge Problem

Input:

• Some DNA sequences, each sequence is on a new line. All sequences are of equal length and consist of characters from the set {A, C, G, T}.

Task:

• Implement a hierarchical clustering algorithm using Hamming distance as the metric clustering DNA sequences.

Definition of Hamming Distance:

The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. Mathematically, if we have two strings, s and t, of equal length, then the Hamming distance H(s,t) is given by:

$$H(s,t) = \sum_{i=1}^{n} [s_i \neq t_i]$$

where n is the length of the strings, s_i and t_i are the characters at position i in s and t respectively, and $s_i \neq t_i$ is an indicator function, equal to 1 if $s_i \neq t_i$ and 0 otherwise.

Guidelines:

- 1. **Read the Dataset**: Choose appropriate data structure.
- 2. **Compute Hamming Distance**: Implement a function to calculate the Hamming distance between any two sequences.
- 3. **Hierarchical Clustering**: Apply the hierarchical clustering algorithm using the single-linkage method.
- 4. **Dendrogram**: Generate a dendrogram to visualize the clustering.
- 5. **NOTE**: You may use any Python library, but be sure to understand the underlying algorithm.

```
import numpy as np
from scipy.spatial.distance import squareform
```

```
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt
sequences = [
 'ACGTGGTCTTAA',
 'ACGTCGTCTTAC'
 'ACGTGGTCTTAC'
 'ACGTAGTCTTAA'
 'ACGTGGTCTTCC'
 'ACGTGGTCTTAG'
 'CTGTTAAATAAG'
 'GGTTAGAACACG'
 'AGTGGTTGAAGT'
 'GGCTTACACCCT'
 'AGATTGTCCACT'
 'CATGCGGTCAAC'
 'ATATATCATAGC'
 'TTTGCGGTTGGA',
 'GAATGGTCAGAA'
 'GTGATGCTGTCT']
def hamming distance(s1, s2):
    return \overline{\text{sum}}(\text{c1 != c2 for c1, c2 in } \text{zip}(\text{s1, s2}))
def hamming distance matrix(sequences):
    n = len(sequences)
    distance matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(i+1, n):
            distance_matrix[i, j] = hamming_distance(sequences[i],
sequences[i])
            distance matrix[j, i] = distance matrix[i, j]
    return distance matrix
dist matrix = hamming distance matrix(sequences)
linked = linkage(squareform(dist matrix), method='complete')
plt.figure(figsize=(10, 7))
dendrogram(linked, labels=sequences, orientation='top')
plt.xticks(rotation=90)
plt.title('Hierarchical Clustering (Complete Linkage)')
plt.xlabel('Sequence')
plt.ylabel('Distance')
plt.tight_layout()
plt.show()
```

