NOV 0 9 2006

PTO/SB/08A (08-03)

Approved for use through 03/31/2007. OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

	Con	nplete if Known
Substitute for form 1449A/PTO	Application Number	10/553,249
	Filing Date	October 17, 2005
INFORMATION DISCLOSURE	First Named Inventor	LeDuc, et al.
STATEMENT BY APPLICANT	Art Unit	1645
	Examiner Name	Not Yet Assigned
(use as many sheets as necessary)		
Sheet 1 of 5	Attorney Docket Number	040285PCTUS

	U.S. PATENT DOCUMENTS					
Examiner Initials*	Cite No.1	Document Number Number - Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	
JSD./		US-4,789,601	12/06/1988	Banes		
/S.U./,		US-6,048,723	04/11/2000	Banes		
/S.D./		US-6,037,141	03/14/2000	Banes		
/S.D./		US-6,645,759 B2	11/11/2003	Banes		
	-					
			l	Į.		

	FOREIGN PATENT DOCUMENTS					
Examiner Initials*	Cite No.1	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	Τ°
78.D./		WO 02/35990 A2	May 10, 2002	Prodesco, Inc.		
/S.D./		WO 91/19783	Dec. 26,1991	E.I. DuPont De Nemours and Company		
		İ			1	1

Examiner	101	Date	10/05/2010 l
Signature	/Shanta Doe/	Considered	10,00/2015

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional).

See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04.

Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3).

For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.

Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible.

Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

PI-1476053 v1 0201710-1083

Nov 0 9 2006

PTO/SB/08A (08-03) Approved for use through 03/31/2007. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Papersork Reduction Ago 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449A/PTO

Application Number 10/553,249

Filing Date October 17, 2005

First Named Inventor LeDuc, et al.

Art Unit 1645

Examiner Name Not Yet Assigned

(use as many sheets as necessary)
Sheet 2 of 5

Attorney Docket Number 040285PCTUS

-		NON PATENT LITERATURE DOCUMENTS	
Examiner nitials*	Cite No.1		
/S.D./		BOITANO, S., et al., A Role for Ca2+ -Conducting Ion Channels in Mechanically-induced Signal Transduction of Airway Epithelial Cells, Journal of Cell Science 107, pp. 3037-3044 (1994).	
azidiooooooooooooooooooooooooooooooooooo		CAMARGO, M., et al., Renal Hydrolysis of Absorbed Protein: Influence of Load and Lysosomal pH, Am J Physiol 247, pp. F656-64, (1984).	
200000000000000000000000000000000000000		CHAOHONG L., et al., Cyclic Strain Stress-induced Mitogen-activated Protein Kinase (MAPK) Phosphatase 1 Expression in Vascular Smooth Muscle Cells is Regulated by Ras/Rac-MAPK Pathways, The Journal of Biological Chemistry Vol. 274, No. 36, pp. 25273-25280, (1999).	
900000000000000000000000000000000000000		CHESS, et al., Mechanical Strain-Induced Proliferation and Signaling in Pulmonary Epithelial H441 cells, Am J Physiol Lung Cell Mol Physiol 279, pp. L43-L51, (2000).	
000000000000000000000000000000000000000		DEKKER, R., et al., Prolonged Fluid Shear Stress Induces a Distinct Set of Endothelial Cell Genes, Most Specifically Lung Krüppel-like Factor (KLF2), Blood, 100, No. 5, pp. 1689-1698, (2002).	-
250000000000000000000000000000000000000		ENGSTROM K, et al., Combined Use of Micropipette Aspiration and Perifusion for Studying Red Blood Cell Volume Regulation, Cytometry 27, pp.345-352 (1997).	
V		FERRER I.,et al., Phosphorylation-Dependent Mitogen-Activated Protein Kinase (MAPK/ERK), Stress-Activated Protein Kinase/c-Jun N-Terminal Kinase (SAPK/JNK), and p38 Kinase Expression in Parkinson's Disease and Dementia with Lewy Bodies, J Neural Transm 108, pp. 1383-1396, (2001).	
/S.D./		GARCIA-CARDENA G., et al., Mechanosensitive Endothelial Gene Expression Profiles: Scripts for the Role of Hemodynamics in Atherogenesis?, Ann N Y Acad Sci 947: 1-6, (2001).	

Examiner	(Shanta Doo/	Date	10/05/2010
Signature	/Shanta Doe/	Considered	10/03/2010

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08A (08-03)
Approved for use through 03/31/2007. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERC.

				Con	nplete if Known
Substitute for form 1449A/PTO				Application Number	10/553,249
				Filing Date	October 17, 2005
INFO	RMATION DIS	CLO	SURE	First Named Inventor	LeDuc, et al.
STAT	STATEMENT BY APPLICANT			Art Unit	1645
(use a	s many sheets as	s nece:	ssarv)	Examiner Name	Not Yet Assigned
Sheet	3	of	5	Attorney Docket Number	040285PCTUS

/S.D./	HAMMERSCHMIDT, S., et al., Apoptosis and Necrosis Induced by Cyclic Mechanical Stretching in Alveolar Type II Cells, Am J Respir Cell Mol Bio 30, pp. 396-402, (2004).	
000000000000000000000000000000000000000	HUSSE, B., et al., Cyclical Mechanical Sstretch-induced Apoptosis in Myocytes from Young Rats but Necrosis in Myocytes from Old Rats, Am J Physiol Heart Circ Physiol 285, pp. 1521-1527, (2003).	
000000000000000000000000000000000000000	JANSSON, K.,et al., A Biodegradable Bovine Collagen Membrane as a Dermal Template for Human In Vivo Wound Healing, Scand J Plast Reconstr Surg Hand Surg 35, pp. 369-75, (2001).	
0,000,000,000,000	KANO, Y., et al., Lateral Zone of Cell-Cell Adhesion as the Major Fluid Shear Stress-Related Signal Transduction Site, Circulation Research, Journal of the American Heart Association 86; pp. 425-433, (2000).	
0.0000000000000000000000000000000000000	LEDUC P., et al., <i>Dynamics of Individual Flexible Polymers In a Shear Flow</i> , Nature 399, pp. 564-566, (1999).	
	LEDUC P., et al., Use of Micropatterned Adhesive Surfaces for Control of Cell Behavior, Methods in Cell Biology 69, pp. 395-401 (2002).	
X0000000000000000000000000000000000000	LEVENBERG, S., et al., Differentiation of Human Embryonic Stem Cells on Three- Dimensional Polymer Scaffolds, PNAS 100, No. 22, pp. 12741-12746, (2003).	
	LIU, S., et al., A Possible Role of Initial Cell Death Due to Mechanical Stretch in the Regulation of Subsequent Cell Proliferation in Experimental Vein Grafts, Biomech Model Mechanobiol 1, pp.17-27, (2002).	
/S.D./	MALEK, A., et al., Mechanism of Endothelial Cell Shape Change and Cytoskeletal Remodeling in Response to Fluid Shear Stress, Journal of Cell Science, 109, pp. 713-726, (1996).	
i	·	

Examiner	/Shanta Doe/	Date	10/05/2010
Signature	,	Considered	10/03/2010

This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08A (08-03) Approved for use through 03/31/2007. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE no persons are required to respond to a collection of information unless it contains a valid OMB control number

Under the Paperwork Resu Complete if Known Substitute for form 1449A/PTO Application Number 10/553,249 **Filing Date** October 17, 2005 INFORMATION DISCLOSURE First Named Inventor LeDuc, et al. STATEMENT BY APPLICANT Art Unit 1645 Examiner Name Not Yet Assigned (use as many sheets as necessary) Attorney Docket Number 040285PCTUS Sheet

/S.D./	MATSUDA, et al., Proliferation and Differentiation of Human Osteoblastic Cells Associated with Differential Activation of MAP Kinases in Response to Epidermal Growth Factor, Hypoxia, and Mechanical Stress in Vitro, Biochemical and Biophysical Research Communications 249, pp. 350-354, (1998).	
	MEYER, et al., Mechanical Control of Cyclic AMP Signalling and Gene Transcription Through Integrins, Nature Cell Biology 2, pp. 666-668, (2000).	
000000000000000000000000000000000000000	MORIMOTO, N.,et al., Excess Plasma Membrane and Effects of Ionic Amphipaths on Mechanics of Outer Hair Cell Lateral Wall, Am J Physiol Cell Physiol 282, pp. C1076-1086, (2002).	
8,000,000	RESNICK N., Endothelial Gene Regulation by Laminar Shear Stress, Adv Exp Med Biol 430, pp.155-164, (1997).	
	SCHNITTLER H., et al., Role of Actin Filaments in Endothelial Cell Adhesion and Membrane Stability Under Fluid Shear Stress, Pflugers Arch 442, pp.675-687, (2001).	
000000000000000000000000000000000000000	SHRODE, L., et al., Cytosolic Alkalinization Increases Stress-Activated Protein Kinase/c-Jun NH2 Terminal Kinase (SAPK/JNK) Activity and p38 Mitogen-activated Protein Kinase Activity by a Calcium-independent Mechanism, The Journal of Biological Chemistry Vol. 272, No. 21, pp. 13653-13659, (1997).	
00000	SUMPIO, B., et al., <i>Mechanical Stress Stimulates Aortic Endothelial Cells to</i> Proliferate, <u>J</u> <u>Vasc Surg</u> 6, pp. 252-6 (1987).	
	TOPPER, J., et al., Blood Flow and Vascular Gene Expression: Fluid Shear Stress as a Modulator of Endothelial Phenotype, Mol Med Today 5, pp. 40-46 (1999).	
/S.D./	TRUSKEY, G., et al., The Effect of Fluid Shear Stress Upon Cell Adhesion to Fibronectin-treated Surfaces J Biomed Mater Res 24, pp.1333-1353 (1990).	

Examiner	(Chanta Das/	Date	10/05/2010
Signature	/Shanta Doe/	Considered	10/03/2010

This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08A (08-03) Approved for use through 03/31/2007. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE equired to respond to a collection of information unless it contains a valid OMB control number Under the Paperwork Reduction Act 07,995, no persons Complete if Known Substitute for form 1449A/PTO Application Number 10/553,249 Filing Date October 17, 2005 INFORMATION DISCLOSURE First Named Inventor LeDuc, et al. STATEMENT BY APPLICANT

Attorney Docket Number

(use as many sheets as necessary) Sheet of

Art Unit 1645 **Examiner Name** Not Yet Assigned

040285PCTUS

Influence of Adhesion Time and Shear Stress, Med Eng Phys 16, pp. 506-512 (1994). WANG, J., et al., Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching, J Biomech 34, pp.1563-1572 (2001). WANG, N., et al., Mechanotransduction Across the Cell Surface and Through the Cytoskeleton, Science 260, pp. 1124-1127 (1993). WANG, Y., et al., A Tough Biodegradable Elastomer, Nature Biotechnology, 20, pp. 602-606 (2002). WANG, J., et al., Development of Biodegradable Polyesterurethane Membranes With Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons, Inc. pp. 761-770 (2000). WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation in Relation to Differentiation, Calcif Tissue Int 72, pp.505-12 (2002).		VAN KOOTEN, T., et al. Fluid Shear Induced Endothelial Cell Detachment from Glass-
Mechanical Stretching, J Biomech 34, pp.1563-1572 (2001). WANG, N., et al., Mechanotransduction Across the Cell Surface and Through the Cytoskeleton, Science 260, pp. 1124-1127 (1993). WANG, Y., et al., A Tough Biodegradable Elastomer, Nature Biotechnology, 20, pp. 602-606 (2002). WANG, J., et al., Development of Biodegradable Polyesterurethane Membranes With Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons, Inc. pp. 761-770 (2000). WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation	/S.D./	
Cytoskeleton, Science 260, pp. 1124-1127 (1993). WANG, Y., et al., A Tough Biodegradable Elastomer, Nature Biotechnology, 20, pp. 602-606 (2002). WANG, J., et al., Development of Biodegradable Polyesterurethane Membranes With Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons, Inc. pp. 761-770 (2000). WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation	990000000000000000000000000000000000000	
WANG, J., et al., Development of Biodegradable Polyesterurethane Membranes With Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons, Inc. pp. 761-770 (2000). WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation	800000	
Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons, Inc. pp. 761-770 (2000). WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation	000000000000000000000000000000000000000	
WEYTS, F., et al., Mechanical Control of Human Osteoblast Apoptosis and Proliferation in Relation to Differentiation, Calcif Tissue Int 72, pp.505-12 (2002).		Different Surface Morphologies for the Culture of Osteoblasts, pub. John Wiley & Sons,
	/S.D./	

Examiner	(Chanta Doo/	Date	10/05/2010
Signature	/Shanta Doe/	Considered	10/00/2010

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.