Cecilia Espadas

ECE 2774: Advanced Power Systems Analysis

Project 1: Simple Circuit Simulator

Project Overview

Purpose

The purpose of this simulator is to help model and solve basic DC circuits. Its purpose is to make it easy for users to understand and analyze the behavior of the circuit. It shows how voltage sources, resistors, and loads interact. It allows you to construct a DC circuit and provides the circuit current and the voltage at each bus.

Key Features and Functionality

The Simple Circuit Simulator is a modular circuit simulator with classes for buses, voltage source, resistor, and load. The circuit class combines these allowing the user to build and analyze different DC circuits. Using the solution class calculates the current flowing through the circuit and the voltages at each bus.

Problem

This simulator solves the problem of solving and analyzing circuit behavior. It automates the process of solving the current and bus voltages for the user. They can input their buses, voltage source, resistors, and the load and the simulator will analyze it for them.

Real-World Applications

The simulator could be used to assist in various power flow analyses of DC circuits. It could be applied to renewable energy DC microgrids and power networks.

Class Diagram

Class Specifications

Bus Class				
Purpose	Method		Explanation	
This initializes the	init(self, name: str, v: float = 0.0):		This method initializes a bus	
Bus class.			object with a user-defined name	
			and an initial voltage.	
	Attributes:	self.name = name	The name of the bus, provided by	
			the user during object creation.	
		self.v = v	The voltage at the bus, initialized	
			to 0.0 by default. For voltage	
			source-connected buses, the	
			voltage is updated when the	
			source is assigned. For other	
			buses, it updates during the	
			power flow calculation.	
This method	set_bus_v		This method sets the voltage at	
updates the			the bus. This method is used	
voltage at a bus.			during the power flow analysis in	
			the solution class when bus	
			voltages are calculated.	
This method	repr		This method returns a string	
provides a textual			representation of the bus,	
representation of			displaying its name and voltage. It	
the bus object.			is useful for debugging and	
			printing bus information in a	
			readable format.	

Resistor Class				
Purpose	Method		Explanation	
This initializes the	init(self,	name: str, v: float = 0.0):	This method initializes a resistor	
Resistor class.			object with a user-defined name,	
			two buses, and a resistance	
			value. The conductance is	
			calculated internally.	
	Attributes: self.name = name		The name of the resistor, provided	
			by the user during object	
			creation.	
		self.bus1 = bus1	The first bus connected to the	
			resistor, provided by the user.	
		self.bus2 = bus2	The second bus connected to the	
			resistor, provided by the user.	
		self.r = r	The resistance value of the	
			resistor in ohms, provided by the	
			user.	

		self.g = self.calc_g()	The conductance value, calculated internally using the calc_g method.
This method calculates the conductance of the resistor.	calc_g(self)		This method computes the conductance, G, of the resistor using the formula G= 1/R, where R is the resistance.
This method provides a textual representation of the resistor object.	str(self)		This method returns a formatted string representation of the resistor, displaying its name, buses, resistance, and conductance.

<u>Load Class</u>				
Purpose	Method		Explanation	
This initializes the Load class.	init(self, name: str, bus1: str, p: float, v: float):		This method initializes a load object with a user-defined name, bus connection, real power, and voltage. The conductance and resistance are calculated internally.	
	Attributes:	self.name = name	The name of the load, provided by the user during object creation.	
		self.bus1 = bus1	The bus to which the load is connected, provided by the user.	
		self.p = p	The real power of the load in watts, provided by the user.	
		self.v = v	The voltage across the load in volts, provided by the user.	
		self.g = self.calc_g()	The conductance value, calculated internally using the calc_g method.	
		self.r = self.calc_r()	The resistance value, calculated internally using the calc_r method.	
This method calculates the conductance of the load.	calc_g(self)		This method computes the conductance g of the load using the formula $G = P / V^2$, where P is the real power and V is the voltage.	
This method calculates the resistance of the load.	calc_r(self)		This method computes the resistance r of the load using the formula $R = V^2 / P$, where V is the voltage and P is the real power.	

This method provides a textual representation of the load object.	str(self)	This method returns a formatted string representation of the load, displaying its name, bus, real power, voltage, resistance, and
		conductance.

Circuit Class				
Purpose	Method		Explanation	
Initializes a new Circuit object.	init(self, name: str)		Sets up an empty circuit with dictionaries for buses, resistors, and loads. Initializes voltage source as None and current as 0.0.	
	Attributes:	self.name = name self.buses: Dict[str,	The name of the circuit, provided by the user when defining the object A dictionary of buses, where	
		Bus] = {}	the key is the bus name (str) and the value is a Bus object.	
		self.resistors: Dict[str, Resistor] = {}	A dictionary of resistors, where the key is the resistor name (str) and the value is a Resistor object.	
		self.loads: Dict[str, Load] = {}	A dictionary of loads, where the key is the load name (str) and the value is a Load object.	
		self.vsource: VSource = None	A VSource object representing the voltage source of the circuit. Initially set to None.	
		self.i: float = 0.0	The total current in the circuit, initialized to 0.0.	
Adds a new bus.	add_bus(self, bus_name: str)		Checks if the bus exists before adding it to self.buses.	
Adds a new resistor.	add_resistor_element(self, name: str, bus1: str, bus2: str, r: float)		Ensures both buses exist before adding the resistor. Stores it in self.resistors.	
Adds a new load.	add_load_element(self, name: str, bus1: str, p: float, v: float)		Ensure the bus exists before adding the load. Stores it in self.loads.	
Adds a voltage source.	add_vsource_element(self, name: str, bus1: str, v: float)		Ensures the bus exists before assigning a single voltage source to self.vsource.	

Sets circuit current.	set_i(self, i: float)	Ensures a voltage source exists before updating the current.
Prints nodal voltages.	print_nodal_voltage(self)	Iterates through self.buses and prints each bus's voltage.
Prints circuit current.	print_circuit_current(self)	Displays the circuit's current value.
Returns a string representation of the circuit.	repr(self)	Displays key attributes for debugging and visualization.

Solution Class					
Purpose	Method		Explanation		
This initializes the Solution class.	init(self, circuit: Circuit):		Initializes a Solution object, ensuring that a valid Circuit object is provided. If not, raises a TypeError.		
	Attributes:	self.circuit = circuit	Holds the Circuit object passed to the Solution instance for later use in power flow calculations.		
This method performs the power flow calculation.	do_power_flow(self)		Solve the circuit by calculating bus voltages and circuit current using the voltage source, resistors, and loads.		
	Within do_power_flow(self)	Calculate G and R	Loops through the circuit's resistors and loads to compute the total conductance (1/R).		
		Calculate I	Uses Ohm's Law (I = V * G) to compute the current, where V is the voltage source and G is the total conductance.		
		Set V	Sets the voltage of the source bus equal to the source voltage and calculates the voltage at each bus using the voltage drops across the resistors		

Equations

Conductance

$$G=\frac{1}{R}$$

- G = Conductance (S)
- R = Resistance (Ω)

$$G = \frac{P}{V^2}$$

- G = Conductance (S)
- P = Power (W)
- V = Voltage (V)

Ohm's Law - for current calculation

$$I = \frac{V}{R} = VG$$

- I = Current (A)
- V = Voltage (V)
- G= Conductance (S)

Total Resistance Calculation – for sum of all resistances

$$R_{total} = \sum R_{resistor} + \sum R_{load}$$

- $R_{resistor}$ = resistance of each resistor (Ω)
- R_{load} = resistance of each load (Ω)

Ohm's Law – for voltage drop

$$V_{drop} = IR_{resistor}$$

- ullet V_{drop} = voltage drop across the resistor (V)
- I = current (A)
- $R_{resistor}$ = resistance of resistor (Ω)

Kirchoff's Voltage Law (KVL)

$$\sum V_{drop} = \sum V_{source}$$

ullet V_{drop} = voltage drop across each circuit element (V)

Example Case

Problem Definition

In this example case, a simple DC circuit is modeled and analyzed using the Simple Circuit Simulator. The circuit consists of a DC voltage source, a resistor, and a load. These elements are connected in series, with a bus between each connection. The example circuit has the following parameters:

- Bus A
- Bus B
- Voltage Source: 200 V source connected to Bus A
- Resistor: 50 Ω resistor connected between Bus A and Bus B
- Load: load with a power of 10,000 W and a nominal voltage of 500 V connected to Bus B

Use the main code below for this:

```
from circuit import Circuit
from solution import Solution
# create the Circuit object
circuit = Circuit("MyCircuit")
# Add components to the circuit
circuit.add_bus("BusA")
circuit.add_bus("BusB")
circuit.add_vsource_element("Va", "BusA", 200)
circuit.add_resistor_element("R1", "BusA", "BusB", 50)
circuit.add_load_element("Lb", "BusB", 10000, 500)
# Create the solution object
solution = Solution(circuit)
# Perform the power flow calculation
solution.do_power_flow()
# Print the results
solution.circuit.print_nodal_voltage()
solution.circuit.print_circuit_current()
```

Purpose	Method	Explanation
These	circuit.add_bus	This method adds a bus to the circuit.
methods		All buses must be added first so that
build the		the resistors, load, and voltage source
circuit using		can be assigned to their buses. This
user inputs.		method only requires that the user
		inputs the name of the bus. The buses
		are placed into a dictionary.
	circuit.add_vsource_element	This method adds the voltage source to
		the circuit. The method requires that
		the user inputs the name of the voltage
		source, the bus that it is connected to,
		and its voltage in volts. The voltage
		source is placed into a dictionary.
	circuit.add_resistor_element	This method adds a resistor to the
		circuit. The method requires that the
		user inputs the name of the resistor,
		the first bus the resistor is connected to
		and then the second bus the resistor is
		connected to, and the resistance in
		ohms. The resistor is placed into a
		dictionary.
	circuit.add_load_element	This method adds the load to the
		circuit. The method requires that the
		user inputs the name of the load, the
		bus the load is connected to, the power
		of the load in watts, and the nominal
		voltage in volts. The load is placed into
		the dictionary.
This method	solution.do_power_flow()	This method solves the circuit by
conducts the		finding the bus voltages and circuit
analysis of		current. It calculates the total
the simple		conductance in the circuit from the
circuit.		resistors and loads. It then uses this
		conductance to calculate the current
		via Ohm's Law, V=IG. It then
		determines the voltage at each bus. For
		the bus connected to the voltage
		source, the voltage is set equal to that
		of the source. For the bus connected to
		the load, the voltage is determined
		using Kirchoff's voltage law. The voltage
		drop across the resistor is found using
		the circuit current and the resistance of
		the resistor. The voltage at the bus
		connected to the load is found from

		subtracting the voltage drop from the
		voltage source.
These	solution.circuit.print_nodal_voltage()	This method prints the nodal voltage for
methods		the circuit, the voltages at each bus. It
print the		presents the voltage at each bus,
essential		according to the names utilized by the
circuit		user, in volts.
information	solution.circuit.print_circuit_current()	This method prints the circuit current in
from the		amps.
analysis.		

Solution Process

Current Through the Circuit:

1. The total resistance of the circuit is calculated by adding the resistance of the resistor and load. The total conductance is the reciprocal of the total resistance:

$$G = \frac{1}{R_{total}}$$

2. The total current through the circuit is calculated using the formula:

$$I = V_{source}G_{total}$$

Where G_{total} is the total conductance and V_{source} is the voltage from the source.

Voltage at Each Bus:

- 1. The voltage at Bus A is set to the value of the voltage source.
- 2. The voltage drop across the resistor is calculated using Ohm's Law:

$$V_{drop,resistor} = IR_{resistor}$$

Where I is the calculated current and R_{resistor} is the resistance of the resistor in the circuit.

3. The voltage at Bus B is set by subtracting the voltage drop from the Bus A voltage,

$$V_{Bus\,B} = V_{Bus\,A} - V_{drop}$$

Expected Output

Voltage at each bus:

Bus A: 200 VBus B: 66.67 V

• Total Current: 2.67 A