MA 523: Homework 7

Carlos Salinas

October 31, 2016

CARLOS SALINAS PROBLEM 7.1

Problem 7.1

Solve the Dirichlet problem for the Laplace equation in \mathbb{R}^2

$$\begin{cases} \Delta u = 0 & \text{in } 1 < |x| < 2, \\ u = x_1 & \text{on } |x| = 1, \\ u = 1 + x_1 x_2 & \text{on } |x| = 2. \end{cases}$$

(Hint: Use Laurent series.)

SOLUTION. Suppose

$$u_{\ell}(x_1, x_2) = \sum_{\alpha, \beta \in \mathbb{Z}} a_{\alpha\beta} x_1^{\alpha} x_2^{\beta} \tag{7.1}$$

is a Laurent series solution to the Dirichlet problem above. Then harmonicity implies that

$$0 = \Delta u_{\ell}(x_1, x_2)$$

$$= \sum_{\alpha, \beta \in \mathbb{Z}} \alpha(\alpha - 1) a_{\alpha\beta} x_1^{\alpha - 2} x_2^{\beta} + \sum_{\alpha, \beta \in \mathbb{Z}} \beta(\beta - 1) a_{\alpha\beta} x_1^{\alpha}, x_2^{\beta - 2}$$

where, after shifting indices on both series, we have the single series

$$= \sum_{\alpha,\beta \in \mathbb{Z}} \left((\alpha+2)(\alpha+1)a_{\alpha+2,\beta} + (\beta+2)(\beta+1)a_{\alpha,\beta+2} \right) x_1^{\alpha} x_2^{\beta}.$$

Thus, the coefficients must satisfy

$$(\alpha + 2)(\alpha + 1)a_{\alpha+2,\beta} + (\beta + 2)(\beta + 1)a_{\alpha,\beta+2}.$$
 (7.2)

CARLOS SALINAS PROBLEM 7.2

Problem 7.2

Let Ω be a bounded domain with a C^1 boundary, $g \in C^2(\partial \Omega)$ and $f \in C(\bar{\Omega})$. Consider the so called Neumann problem

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega,
\end{cases}$$
(*)

where ν is the outer normal on $\partial\Omega$. Show that the solution of (*) in $C^2(\Omega) \cap C^1(\bar{\Omega})$ is unique up to a constant; i.e., if u_1 and u_2 are both solutions of (*), then $u_2 = u_1 + \text{const.}$ in Ω . (*Hint:* Look at the proof of the uniqueness for the Dirichlet problem by energy methods [E, 2.2.5a].)

SOLUTION. Suppose u_1 and u_2 are solutions to the Neumann problem (*). Define $v:=u_1-u_2$. Then v is harmonic in Ω and $\frac{\partial v}{\partial \nu}=0$ on $\partial\Omega$. Consider the energy functional

$$E[v] = \frac{1}{2} \int_{\Omega} (Dv \cdot Dv) \, dx.$$

By Green's formula version (ii),

$$E[v] = \frac{1}{2} \int_{\Omega} (Dv \cdot Dv) \, dx$$
$$= -\frac{1}{2} \int_{\Omega} v \Delta v \, dx + \int_{\partial U} \frac{\partial v}{\partial \nu} v \, dS(x)$$
$$= 0.$$

This implies that $Dv \cdot Dv = 0$ which, since the standard inner product on \mathbb{R}^n is positive-definite, implies that $Dw \equiv 0$. It follows that $u_1 = u_2 + \text{const}$, i.e., the solution u to (*) is unique up to a constant.

CARLOS SALINAS PROBLEM 7.3

Problem 7.3

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}, \end{cases}$$

where $c \in \mathbb{R}$.

(*Hint:* Rewrite the problem in terms of $v(x,t) := e^{ct}u(x,t)$.)

SOLUTION.