1.
$$f(-1) = 2(-1)^3 + 3(-1)^2 + 1$$

= $-2 + 3 + 1$
= $\boxed{2} \Leftrightarrow \text{Remainder}$

2.
$$y = k(x-1)(x-2)(x+3) \in \text{substitute}(0,24)$$

 $24 = k(0-1)(0-2)(0+3)$
 $24 = 6k$
 $k = 4$

3.
$$f(1) = 0$$
 $(-1)^3 - (-1)^2 - (-1) + 1$
Check $f(-1) = 0$ $= -1 - 1 + 1 + 1$

The other factor is [x+1] because
$$a=\pm 1$$
, $b\pm 1$
so the only 2 possible factors are $(x-1)$ and $(x+1)$

$$\frac{x}{0} | \frac{f(x)}{0} | \frac{f(x)$$

b)
$$y = a(x+2)(x-0)(x-3)$$

7.
$$y = \frac{1}{x+2}$$
 as $x \to +\infty$ $y \to 0$ $y \to 0$

8.
$$y = \frac{2\chi^2 - 1}{\chi^2 + 3}$$
 H.A. $y = 2$

9a)
$$y = \frac{1}{(x+3)(x-2)}$$
; $x = -3$, $x = 2$ (VA) (VA)

$$\frac{9}{11}$$
, $\log 3^2 - \log 7 - \log 11 = \log \frac{9}{7(11)} = \log \frac{9}{77}$

12.
$$2^3 = x + 1$$

 $8 = x + 1$
 $x = 7$

13.
$$a = log_c d^b$$

$$c^a = d^b$$

$$14. \quad \chi = \frac{10010}{1093}$$

$$P = 2T + 2T + 2T = 3$$

$$17.$$
 $y = 81n \times$
 $18.$ $1608 \times T$
 188
 $= \frac{807}{9} \text{ rad}.$

19.
$$\sin 20 = 2 \sin 0 \cos 0$$

= $2(\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}})$
= 1

$$20. \quad k = \frac{27}{p}$$

$$= \frac{27}{2}$$

Œ

2. $f(t) = 5 \cos 200t$; k = 200. $P = \frac{21}{100}$ 50(II) = I seconds P = I < 0

 $50 \left(\frac{1}{100} \right) = \frac{1}{2} \text{ Seconds} \qquad P = \frac{1}{100} \leftarrow \text{ length of }$ $12. \quad \sqrt{2} \cos x - 1 = 0 \qquad (\text{Quadrant 1})$ $100 \quad \sqrt{2} \cos x = \frac{1}{\sqrt{2}}$ $100 \quad \sqrt{2} \cos x = \frac{1}{\sqrt{2}}$ 100

24 f(g(i)) g(i) = 2f(z) = 4 f(g(i)) = 4

Reg 2 21. (g-f)(x)= g(x) - f(x)= $x^3 + 5x^2 - 2 - (x^3 - x^2 + 5x)$ = $x^3 + 5x^2 - 2 - x^3 + x^2 - 5x$ = $6x^2 - 5x - 2$

 $= \begin{cases} \chi^3 + 5\chi^2 - 2 - \chi^3 + \chi^2 - 5\chi \\ = 6\chi^2 + 5\chi - 2 \end{cases}$ 22. $f(g(x)) = 3(2x+1)^2 \\ = 3(4\chi^2 + 4\chi + 1) \\ = |2\chi^2 + |2\chi + 3|$ 23. $\mathcal{L}(d(10)) = ? \quad d(10) = 80(10) \quad \mathcal{L}(800) = 0.09(800) \\ = 800 = 72$

PARTB

1.
$$2\chi^{3}-d\chi^{2}+(1-d^{2})\chi+5$$

 $f(d)=0$ $2d^{3}-d(d^{2})+(1-d^{2})(d)+5=0$
 $2d^{3}-d^{3}+d-d^{3}+5=0$
 $d=-5$

2.
$$f(x) = x^3 - 5x^2 + 2x + 8$$

a)
$$a = \pm 1$$

 $b = \pm 1 \neq 2 \pm 4, \pm 8$ $f(-1) = (-1)^3 - 5(-1)^2 + 2(-1) + 8$
 $= -1 - 5 - 2 + 8$
 $f(-1) = 0$
 $f(-1) = 0$
 $f(-1) = 0$

If the zeros are:
$$\chi+1=0 \Rightarrow \chi=-1$$

 $\chi-2=0 \Rightarrow \chi=2$
 $\chi-4=0 \Rightarrow \chi=4$

TO ODD DEGREE FUNCTION f(x) = (x+1)(x-2)(x-4)26) QUADRANT A 3 TO 1) Positive Coeffice $\frac{\chi^3-8}{\chi^2+\chi-6} \geq 0$ Recau $x^2 y^3 = (x-y)(x^2+xy+y^2)$ $(\chi - \chi)(\chi^2 + 2\chi + 4) > 0$ $\frac{\chi^2 + 2\chi + 4}{\chi + 3} \ge 0$ $\chi^2 + 2\chi + 4 = 0$ $\chi = -2 \pm \sqrt{2^2 - 4(1)(4)}$ $=-2\pm\sqrt{4-16}$ Oblique asymptote No real roots

3) Solve:
$$\frac{\chi^2 + 2\chi - 3}{\chi^2 - 9\chi + 20} \ge 0$$

$$\frac{(x+3)(x-1)}{(x-4)(x-5)} \ge 0 \qquad \forall A = x=4, x=5$$

$$\frac{(x+3)(x-1)}{(x-4)(x-5)} \ge 0 \qquad \forall A = x=4, x=5$$

$$\frac{(x+3)(x-1)}{(x-5)} \ge 0 \qquad \forall A = x=4, x=5$$

				4	3
			X=2		
$(\chi+3)(\chi-1)$	(-)(-)= (+)	(+)(-)=()	(+)(+)= (+)	(+)(+)=(+)	⊕€ (1)
$(\chi-4)(\chi-5)$	(-)(-) = (+)	(-)(-) = (+)	(-)(-) = (+)	(+)(-)=0	M = C
Sign	+		(+)	0	(1)
satisfies >0		× ×		×	
					Street Contract Contr

$$f(x) = \frac{\chi^{2} - 1}{2\chi^{2} + \chi - 3}$$

$$f(x) = \frac{\chi + 1}{2\chi + 3}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(2\chi + 3)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)}{(\chi + 1)}$$

$$= \frac{(\chi + 1)(\chi + 1)$$

f(1) = ==

9

PARTB

5. — Graph from Quadrant 3 to 4 (opens down)

(- Even degree function)

Leading Coefficient must be negative

$$X = -1$$
 (BE)

 $X = -1$ (BE)

 $X = 3$ (To)

Quarkic Degree = 4

$$X = 3$$
 (To)

$$X = -1$$
 (SE)

$$X = 3$$
 (To)

$$X = -1$$
 (SE)

$$X = 3$$
 (To)

$$X = 3$$
 (Y-1)

$$X = 3$$
 ov (0,3)

$$X = 3$$

$$X = 3$$

$$X = 4$$

$$X = 4$$

$$X = 3$$

$$X = 4$$

$$\frac{1}{4} y = -\frac{1}{4} (x+4)(x+1)^{2} (x-3)$$