Assignment 2

Naman Mishra

07 January, 2024

Problem 2.1. Let F and G be ordered fields with the LUB property. In Lecture 04, we defined $h \colon F \to G$ as

$$h(z) = \sup_{G} \{ w \in \mathbb{Q} : w \le z \}.$$

Show that h is a field isomorphism, i.e.,

- (1) h is a bijection between F and G,
- (2) h(x+y) = h(x) + h(y) for all $x, y \in F$,
- (3) $h(x \cdot y) = h(x) \cdot h(y)$ for all $x, y \in F$.

Proof. Lecture 4.

Problem 2.2. In this problem, you may assume the well-definedness, commutativity and associativty of addition of Dedekind cuts (as defined in Lecture 04). Let $O = \{z \in \mathbb{Q} : z < 0\}$. Verify that O is a Dedekind cut, and A + O = A for all Dedekind cuts A. Let A be a Dedekind cut. Define a Dedekind cut B such that A + B = O. You must justify your answer.

Proof. Lecture 4.

Problem 2.3. Let $a = (a_n)_{n \in \mathbb{N}}$ and $b = (b_n)_{n \in \mathbb{N}}$ be sequences of rational numbers such that $b_n \neq 0$ for all $n \in \mathbb{N}$. Suppose

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$

- (i) Are a and b equivalent?
- (ii) Are a and b equivalent if a is a \mathbb{Q} -bounded sequence?

Solution.

- (i) No. $a_n = n + 1$ and $b_n = n$ gives a counterexample.
- (ii) Yes.

Let a be bounded by M. Let n_0 be such that for all $n \ge n_0$, $\frac{1}{2} < \frac{a_n}{b_n}$. Then, for all $n \ge n_0$, $|b_n| < 2|a_n| \le 2M$. Thus b is bounded.

Let $\varepsilon > 0$. Let N be such that for all $n \geq N$,

$$\left| \frac{a_n}{b_n} - 1 \right| < \frac{\varepsilon}{2M}.$$

Then for all $n \geq N$,

$$|a_n - b_n| = |b_n| \left| \frac{a_n}{b_n} - 1 \right|$$

$$< 2M \frac{\varepsilon}{2M}$$

$$= \varepsilon.$$

Problem 2.4. You cannot use the existence (or the LUB property) of the ordered field of real numbers in this problem, so you must work "within" \mathbb{Q} .