

- Continuing tasks are tasks that continue forever, without end.
- Episodic tasks are tasks with a well-defined starting and ending point.
 - In this case, we refer to a complete sequence of interaction, from start to finish, as an **episode**.
 - Episodic tasks come to an end whenever the agent reaches a **terminal state**.

The Reward Hypothesis

 Reward Hypothesis: All goals can be framed as the maximization of (expected) cumulative reward.

Goals and Rewards

• (Please see **Part 1** and **Part 2** to review an example of how to specify the reward signal in a real-world problem.)

Cumulative Reward

- The return at time step t is $G_t := R_{t+1} + R_{t+2} + R_{t+3} + \dots$
- The agent selects actions with the goal of maximizing expected (discounted) return. (*Note: discounting is covered in the next concept.*)

Discounted Return

- ullet The discounted return at time step t is $G_t:=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+\ldots$
- The **discount rate** γ is something that you set, to refine the goal that you have the agent.
 - It must satisfy $0 \le \gamma \le 1$.
 - If $\gamma = 0$, the agent only cares about the most immediate reward.
 - If $\gamma=1$, the return is not discounted.
 - For larger values of γ , the agent cares more about the distant future. Smaller values of γ result in more extreme discounting, where in the most extreme case agent only cares about the most immediate reward.

MDPs and One-Step Dynamics

The state enace & is the set of all (nenterminal) states