

Neurocomputing

Linear classification

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/neurocomputing

1 - Hard linear classification

Binary classification

- The training data $\mathcal D$ is composed of N examples $(\mathbf x_i,t_i)_{i=1..N}$, with a d-dimensional input vector $\mathbf x_i\in\Re^d$ and a binary output $t_i\in\{-1,+1\}$
- ullet The data points where t=+1 are called the **positive class**, the other the **negative class**.

Binary classification

• For example, the inputs \mathbf{x}_i can be images (one dimension per pixel) and the positive class corresponds to cats $(t_i=+1)$, the negative class to dogs $(t_i=-1)$.

Sample of cats & dogs images from Kaggle Dataset

Binary linear classification

ullet We want to find the hyperplane (\mathbf{w},b) of \Re^d that correctly separates the two classes.

Binary linear classification

- For a point $\mathbf{x} \in \mathcal{D}$, $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b$ is the projection of \mathbf{x} onto the hyperplane (\mathbf{w},b) .
 - If $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b > 0$, the point is above the hyperplane.
 - If $\langle {\bf w} \cdot {\bf x} \rangle + b < 0$, the point is below the hyperplane.
 - If $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$, the point is on the hyperplane.
- By looking at the **sign** of $\langle {f w}\cdot {f x} \rangle + b$, we can predict the class of the input:

$$ext{sign}(\langle \mathbf{w} \cdot \mathbf{x} \rangle + b) = egin{cases} +1 & ext{if } \langle \mathbf{w} \cdot \mathbf{x} \rangle + b \geq 0 \ -1 & ext{if } \langle \mathbf{w} \cdot \mathbf{x} \rangle + b < 0 \end{cases}$$

Binary linear classification

• Binary linear classification can be made by a single artificial neuron using the sign transfer function.

$$y = f_{\mathbf{w},b}(\mathbf{x}) = ext{sign}(\langle \mathbf{w} \cdot \mathbf{x}
angle + b) = ext{sign}(\sum_{j=1}^a w_j \, x_j + b)$$

ullet w is the weight vector and b is the bias.

Linearly separable datasets

Linearly separable

Non-linearly separable

- Linear classification is the process of finding an hyperplane (\mathbf{w},b) that correctly separates the two classes.
- If such an hyperplane can be found, the training set is said linearly separable.
- Otherwise, the problem is **non-linearly separable** and other methods have to be applied (MLP, SVM...).

Linear classification as an optimization problem

• The Perceptron algorithm tries to find the weights and biases minimizing the **mean square error** (*mse*) or **quadratic loss**:

$$\mathcal{L}(\mathbf{w},b) = \mathbb{E}_{\mathcal{D}}[(t_i-y_i)^2] pprox rac{1}{N} \sum_{i=1}^N (t_i-y_i)^2$$

- When the prediction y_i is the same as the data t_i for all examples in the training set (perfect classification), the mse is minimal and equal to 0.
- We can apply gradient descent to find this minimum.

$$egin{cases} \Delta \mathbf{w} = -\eta \,
abla_{\mathbf{w}} \, \mathcal{L}(\mathbf{w}, b) \ \ \Delta b = -\eta \,
abla_b \, \mathcal{L}(\mathbf{w}, b) \end{cases}$$

Linear classification as an optimization problem

• Let's search for the partial derivative of the quadratic error function with respect to the weight vector:

$$abla_{\mathbf{w}} \, \mathcal{L}(\mathbf{w}, b) =
abla_{\mathbf{w}} \, rac{1}{N} \, \sum_{i=1}^N (t_i - y_i)^2 = rac{1}{N} \, \sum_{i=1}^N
abla_{\mathbf{w}} \, (t_i - y_i)^2 = rac{1}{N} \, \sum_{i=1}^N
abla_{\mathbf{w}} \, l_i(\mathbf{w}, b)$$

• Everything is similar to linear regression until we get:

$$abla_{\mathbf{w}} l_i(\mathbf{w}, b) = -2 \left(t_i - y_i \right)
abla_{\mathbf{w}} \operatorname{sign}(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b)$$

• In order to continue with the chain rule, we would need to differentiate $\operatorname{sign}(x)$.

$$abla_{\mathbf{w}} l_i(\mathbf{w}, b) = -2 (t_i - y_i) \operatorname{sign}'(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \mathbf{x}_i$$

• But the sign function is **not** differentiable...

Linear classification as an optimization problem

• We will simply pretend that the sign() function is linear, with a derivative of 1:

$$abla_{\mathbf{w}} \, l_i(\mathbf{w}, b) = -2 \left(t_i - y_i
ight) \mathbf{x}_i$$

ullet The update rule for the weight vector ${f w}$ and the bias b is therefore the same as in linear regression:

$$egin{cases} \Delta \mathbf{w} = \eta \, rac{1}{N} \, \sum_{i=1}^N (t_i - y_i) \, \mathbf{x}_i \ \Delta b = \eta \, rac{1}{N} \, \sum_{i=1}^N (t_i - y_i) \end{cases}$$

Batch version of linear classification

• By applying gradient descent on the quadratic error function, one obtains the following algorithm:

Batch linear classification

ullet for M epochs:

•
$$\mathbf{dw} = 0$$
 $db = 0$

• for each sample (\mathbf{x}_i, t_i) :

$$egin{aligned} \circ \ y_i = \mathrm{sign}(\langle \mathbf{w} \cdot \mathbf{x}_i
angle + b) \end{aligned}$$

$$\mathbf{w} \cdot \mathbf{dw} = \mathbf{dw} + (t_i - y_i) \, \mathbf{x}_i \,$$

$$\circ \ db = db + (t_i - y_i)$$

- $\Delta \mathbf{w} = \eta \, rac{1}{N} \, \mathbf{dw}$
- $\Delta b = \eta \, rac{1}{N} \, db$
- This is called the batch version of the Perceptron algorithm.
- ullet If the data is linearly separable and η is well chosen, it converges to the minimum of the mean square error.

Linear classification: batch version

Linear classification: batch version

Online version of linear classification: the Perceptron algorithm

• The **Perceptron algorithm** was invented by the psychologist Frank Rosenblatt in 1958. It was the first algorithmic neural network able to learn linear classification.

Perceptron algorithm

- ullet for M epochs:
 - for each sample (\mathbf{x}_i, t_i) :

$$y_i = \operatorname{sign}(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b)$$

$$\circ \ \Delta \mathbf{w} = \eta \left(t_i - y_i
ight) \mathbf{x}_i$$

$$\circ \ \Delta b = \eta \left(t_i - y_i
ight)$$

- This algorithm iterates over all examples of the training set and applies the **delta learning rule** to each of them immediately, not at the end on the whole training set.
- One could check whether there are still classification errors on the training set at the end of each epoch and stop the algorithm.
- The delta learning rule depends on the learning rate η , the error made by the prediction $(t_i y_i)$ and the input \mathbf{x}_i .

Linear classification: online version

Linear classification: online version

Batch vs. Online learning

The mean square error is defined as the expectation over the data:

$$\mathcal{L}(\mathbf{w},b) = \mathbb{E}_{\mathcal{D}}[(t_i-y_i)^2]$$

- Batch learning uses the whole training set as samples to estimate the mse:
- Online learning uses a single sample to estimate the mse:

$$\mathcal{L}(\mathbf{w},b)pprox rac{1}{N} \sum_{i=1}^{N} (t_i-y_i)^2$$

$$\Delta \mathbf{w} = \eta \, rac{1}{N} \sum_{i=1}^N (t_i - y_i) \, \mathbf{x_i}$$

 $egin{aligned} \mathcal{L}(\mathbf{w},b) &pprox (t_i-y_i)^2 \ \Delta \mathbf{w} &= \eta \left(t_i-y_i
ight) \mathbf{x_i} \end{aligned}$

$$\Delta \mathbf{w} = \eta \left(t_i - y_i
ight) \mathbf{x_i}$$

- Batch learning has less bias (central limit theorem) and is less sensible to noise in the data, but is very slow.
- Online learning converges faster, but can be instable and overfits (high variance).

Stochastic Gradient Descent - SGD

- In practice, we use a trade-off between batch and online learning called Stochastic Gradient Descent
 (SGD) or Minibatch Gradient Descent.
- The training set is randomly split at each epoch into small chunks of data (a **minibatch**, usually 32 or 64 examples) and the batch learning rule is applied on each chunk.

$$\Delta \mathbf{w} = \eta \, rac{1}{K} \sum_{i=1}^K (t_i - y_i) \, \mathbf{x_i}$$

- If the **batch size** is well chosen, SGD is as stable as batch learning and as fast as online learning.
- The minibatches are randomly selected at each epoch (i.i.d).

Online learning is a stochastic gradient descent with a batch size of 1.

- Let's consider N samples $\{x_i\}_{i=1}^N$ independently taken from a normal distribution X.
- The probability density function (pdf) of a normal distribution is:

$$f(x;\mu,\sigma) = rac{1}{\sqrt{2\pi\sigma^2}} \, \exp{-rac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean of the distribution and σ its standard deviation.

ullet The problem is to find the values of μ and σ which explain best the observations $\{x_i\}_{i=1}^N$.

• The idea of MLE is to maximize the joint density function for all observations. This function is expressed by the **likelihood function**:

$$L(\mu,\sigma) = P(\mathbf{x};\mu,\sigma) = \prod_{i=1}^N f(x_i;\mu,\sigma)$$

 When the pdf takes high values for all samples, it is quite likely that the samples come from this particular distribution.

- ullet The likelihood function reflects how well the parameters μ and σ explain the observations $\{x_i\}_{i=1}^N$.
- Note: the samples must be i.i.d. so that the likelihood is a product.

ullet We therefore search for the values μ and σ which **maximize** the likelihood function.

$$\max_{\mu,\sigma} \ \ L(\mu,\sigma) = \prod_{i=1}^N f(x_i;\mu,\sigma)$$

For the normal distribution, the likelihood function is:

$$egin{aligned} L(\mu,\sigma) &= \prod_{i=1}^N f(x_i;\mu,\sigma) \ &= \prod_{i=1}^N rac{1}{\sqrt{2\pi\sigma^2}} \, \exp{-rac{(x_i-\mu)^2}{2\sigma^2}} \ &= (rac{1}{\sqrt{2\pi\sigma^2}})^N \, \prod_{i=1}^N \exp{-rac{(x_i-\mu)^2}{2\sigma^2}} \ &= (rac{1}{\sqrt{2\pi\sigma^2}})^N \, \exp{-rac{\sum_{i=1}^N (x_i-\mu)^2}{2\sigma^2}} \end{aligned}$$

ullet To find the maximum of $L(\mu,\sigma)$, we need to search where the gradient is equal to zero:

$$egin{cases} rac{\partial L(\mu,\sigma)}{\partial \mu} = 0 \ rac{\partial L(\mu,\sigma)}{\partial \sigma} = 0 \end{cases}$$

• The likelihood function is complex to differentiate, so we consider its logarithm $l(\mu,\sigma)=\log(L(\mu,\sigma))$ which has a maximum for the same value of (μ,σ) as the log function is monotonic.

$$egin{align} l(\mu,\sigma) &= \log(L(\mu,\sigma)) \ &= \log\left((rac{1}{\sqrt{2\pi\sigma^2}})^N\,\exp{-rac{\sum_{i=1}^N(x_i-\mu)^2}{2\sigma^2}}
ight) \ &= -rac{N}{2}\log(2\pi\sigma^2) - rac{\sum_{i=1}^N(x_i-\mu)^2}{2\sigma^2} \ \end{gathered}$$

• $l(\mu, \sigma)$ is called the **log-likelihood** function.

$$l(\mu,\sigma) = -rac{N}{2}\log(2\pi\sigma^2) - rac{\sum_{i=1}^N(x_i-\mu)^2}{2\sigma^2}$$

• The maximum of the log-likelihood function respects:

$$egin{aligned} rac{\partial l(\mu,\sigma)}{\partial \mu} &= rac{\sum_{i=1}^{N}(x_i-\mu)}{\sigma^2} = 0 \ rac{\partial l(\mu,\sigma)}{\partial \sigma} &= -rac{N}{2}rac{4\pi\sigma}{2\pi\sigma^2} + rac{\sum_{i=1}^{N}(x_i-\mu)^2}{\sigma^3} \ &= -rac{N}{\sigma} + rac{\sum_{i=1}^{N}(x_i-\mu)^2}{\sigma^3} = 0 \end{aligned}$$

• We obtain:

$$\mu = rac{1}{N} \sum_{i=1}^N x_i \qquad \qquad \sigma^2 = rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$$

 Unsurprisingly, the mean and variance of the normal distribution which best explains the data are the mean and variance of the data...

$$\mu = rac{1}{N} \sum_{i=1}^N x_i \qquad \qquad \sigma^2 = rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$$

- The same principle can be applied to estimate the parameters of any distribution: normal, exponential, Bernouilli, Poisson, etc...
- When a machine learning method has an probabilistic interpretation (i.e. it outputs probabilities), MLE can be used to find its parameters.
- One can use global optimization like here, or gradient descent to estimate the parameters iteratively.

3 - Soft linear classification : Logistic regression

Reminder: Logistic regression

ullet We want to perform a regression, but where the targets t_i are bounded betwen 0 and 1.

• We can use a logistic function instead of a linear function in order to transform the net activation into an output:

$$y=\sigma(w\,x+b)=rac{1}{1+\exp(-w\,x-b)}$$

Use of logistic regression for soft classification

• Logistic regression can be used in binary classification if we consider $y = \sigma(w \, x + b)$ as the probability that the example belongs to the positive class (t = 1).

$$P(t = 1|x; w, b) = y;$$
 $P(t = 0|x; w, b) = 1 - y$

• The output t therefore comes from a Bernouilli distribution \mathcal{B} of parameter $p=y=f_{w,b}(x)$. The probability mass function (pmf) is:

$$f(t|x;w,b) = y^t \, (1-y)^{1-t}$$

- ullet If we consider our training samples (x_i,t_i) as independently taken from this distribution, our task is:
 - to find the parameterized distribution that best explains the data, which means:
 - to find the parameters w and b maximizing the **likelihood** that the samples t come from a Bernouilli distribution when x, w and b are given.
- We only need to apply **Maximum Likelihood Estimation** (MLE) on this Bernouilli distribution!

MLE for logistic regression

• The likelihood function for logistic regression is:

$$egin{aligned} L(w,b) &= P(t|x;w,b) = \prod_{i=1}^N f(t_i|x_i;w,b) \ &= \prod_{i=1}^N y_i^{t_i} \ (1-y_i)^{1-t_i} \end{aligned}$$

• The likelihood function is quite hard to differentiate, so we take the log-likelihood function:

$$egin{aligned} l(w,b) &= \log L(w,b) \ &= \sum_{i=1}^N [t_i \, \log y_i + (1-t_i) \, \log (1-y_i)] \end{aligned}$$

• or even better: the **negative log-likelihood** which will be minimized using gradient descent:

$$\mathcal{L}(w,b) = -\sum_{i=1}^{N} [t_i \, \log y_i + (1-t_i) \, \log (1-y_i)]$$

MLE for logistic regression

 We then search for the minimum of the negative log-likelihood function by computing its gradient (here for a single sample):

$$egin{aligned} rac{\partial l_i(w,b)}{\partial w} &= -rac{\partial}{\partial w}[t_i\,\log y_i + (1-t_i)\,\log(1-y_i)] \ &= -t_i\,rac{\partial}{\partial w}\log y_i - (1-t_i)\,rac{\partial}{\partial w}\log(1-y_i) \ &= -t_i\,rac{rac{\partial}{\partial w}y_i}{y_i} - (1-t_i)\,rac{rac{\partial}{\partial w}(1-y_i)}{1-y_i} \ &= -t_i\,rac{y_i\,(1-y_i)\,x_i}{y_i} + (1-t_i)\,rac{y_i\,(1-y_i)\,x_i}{1-y_i} \ &= -(t_i-y_i)\,x_i \end{aligned}$$

Same gradient as the linear perceptron, but with a non-linear output function!

Logistic regression for soft classification

• Logistic regression is a regression method used for classification. It uses a non-linear transfer function $\sigma(x)=rac{1}{1+\exp(-x)}$ applied on the net activation:

$$y_i = \sigma(\langle \mathbf{w} \cdot \mathbf{x}_i
angle + b)$$

ullet The continuous output y is interpreted as the probability of belonging to the positive class.

$$P(t_i = 1|\mathbf{x}_i; \mathbf{w}, b) = y_i; \qquad P(t_i = 0|\mathbf{x}_i; \mathbf{w}, b) = 1 - y_i$$

• We minimize the negative log-likelihood loss function using gradient descent:

$$\mathcal{L}(\mathbf{w}, b) = -\sum_{i=1}^{N} [t_i \, \log y_i + (1 - t_i) \, \log (1 - y_i)]$$

• We obtain the delta learning rule, using the class as a target and the probability as a prediction:

$$egin{cases} \Delta \mathbf{w} = \eta \left(t_i - y_i
ight) \mathbf{x}_i \ \Delta b = \eta \left(t_i - y_i
ight) \end{cases}$$

Logistic regression

Logistic regression

- $\mathbf{w} = 0$ b = 0
- ullet for M epochs:
 - for each sample (\mathbf{x}_i, t_i) :

$$egin{aligned} egin{aligned} & egin{aligned} & y_i = \sigma(\langle \mathbf{w} \cdot \mathbf{x}_i
angle + b) \end{aligned}$$

$$\circ \ \Delta \mathbf{w} = \eta \left(t_i - y_i
ight) \mathbf{x}_i$$

$$\circ \ \Delta b = \eta \left(t_i - y_i
ight)$$

- Logistic regression works just like linear classification, except in the way the prediction is done.
- To know to which class \mathbf{x}_i belongs, simply draw a random number between 0 and 1:
 - if it is smaller than y_i (probability y_i), it belongs to the positive class.
 - if it is bigger than y_i (probability $1-y_i$), it belongs to the negative class.
- Alternatively, you can put a hard limit at 0.5:
 - ullet if $y_i>0.5$ then the class is positive.
 - ullet if $y_i < 0.5$ then the class is negative.

Logistic regression

Logistic regression and confidence score

- Logistic regression also provides a confidence score:
 - the closer y is from 0 or 1, the more confident we can be that the classification is correct.
- This is particularly important in **safety critical** applications:
 - If you detect the positive class but with a confidence of 0.51, you should perhaps not trust the prediction.
 - If the confidence score is 0.99, you can probably trust the prediction.

4 - Multi-class classification

Multi-class classification

ullet Can we perform multi-class classification using the previous methods when $t\in\{A,B,C\}$ instead of t=+1 or -1?

Multi-class classification

Two main solutions:

- One-vs-All (or One-vs-the-rest): one trains simultaneously a binary (linear) classifier for each class. The examples belonging to this class form the positive class, all others are the negative class:
 - A vs. B and C
 - B vs. A and C
 - C vs. A and B

If multiple classes are predicted for a single example, ones needs a confidence level for each classifier saying how sure it is of its prediction.

- One-vs-One: one trains a classifier for each pair of class:
 - A vs. B
 - B vs. C
 - C vs. A

A majority vote is then performed to find the correct class.

Multi-class classification

• Example of One-vs-All classification: one binary classifier per class.

Softmax linear classifier

- ullet Suppose we have C classes (dog vs. cat vs. ship vs...).
- The One-vs-All scheme involves C binary classifiers (\mathbf{w}_i, b_i) , each with a weight vector and a bias, working on the same input \mathbf{x} .

$$y_i = f(\langle \mathbf{w}_i \cdot \mathbf{x}
angle + b_i)$$

• Putting all neurons together, we obtain a **linear perceptron** similar to multiple linear regression:

$$\mathbf{y} = f(W imes \mathbf{x} + \mathbf{b})$$

• The C weight vectors form a $C \times d$ weight matrix W, the biases form a vector ${\bf b}$.

Softmax linear classifier

• The net activations form a vector **z**:

$$\mathbf{z} = f_{W,\mathbf{b}}(\mathbf{x}) = W imes \mathbf{x} + \mathbf{b}$$

- Each element z_j of the vector ${\bf z}$ is called the **logit score** of the class:
 - the higher the score, the more likely the input belongs to this class.
- The logit scores are not probabilities, as they can be negative and do not sum to 1.

One-hot encoding

- ullet How do we represent the ground truth ${f t}$ for each neuron?
- The target vector **t** is represented using **one-hot encoding**.

- The binary vector has one element per class: only one element is 1, the others are 0.
- Example:

$$\mathbf{t} = [\mathrm{cat}, \mathrm{dog}, \mathrm{ship}, \mathrm{house}, \mathrm{car}] = [0, 1, 0, 0, 0]$$

One-hot encoding

- The labels can be seen as a **probability distribution** over the training set, in this case a **multinomial** distribution (a dice with C sides).
- f t:

$$P(\mathbf{t}|\mathbf{x}) = [P(\text{cat}|\mathbf{x}), P(\text{dog}|\mathbf{x}), P(\text{ship}|\mathbf{x}), P(\text{house}|\mathbf{x}), P(\text{car}|\mathbf{x})] = [0, 1, 0, 0, 0]$$

• We need to transform the logit score \mathbf{z} into a **probability distribution** $P(\mathbf{y}|\mathbf{x})$ that should be as close as possible from $P(\mathbf{t}|\mathbf{x})$.

Softmax linear classifier

ullet The **softmax** operator makes sure that the sum of the outputs $\mathbf{y}=\{y_i\}$ over all classes is 1.

$$y_j = P(ext{class} = ext{j}| extbf{x}) = \mathcal{S}(z_j) = rac{\exp(z_j)}{\sum_k \exp(z_k)}$$

matrix multiply + bias offset

- The higher z_i , the higher the probability that the example belongs to class j.
- This is very similar to logistic regression for soft classification, except that we have multiple classes.

• We cannot use the mse as a loss function, as the softmax function would be hard to differentiate:

$$\mathrm{mse}(W,\mathbf{b}) = \sum_j (t_j - rac{\exp(z_j)}{\sum_k \exp(z_k)})^2$$

- We actually want to minimize the statistical distance netween two distributions:
 - The model outputs a multinomial probability distribution ${f y}$ for an input ${f x}$: $P({f y}|{f x};W,{f b})$.
 - ullet The one-hot encoded classes also come from a multinomial probability distribution $P(\mathbf{t}|\mathbf{x})$.
- ullet We search which parameters (W,\mathbf{b}) make the two distributions $P(\mathbf{y}|\mathbf{x};W,\mathbf{b})$ and $P(\mathbf{t}|\mathbf{x})$ close.

- The training data $\{\mathbf{x}_i, \mathbf{t}_i\}$ represents samples from $P(\mathbf{t}|\mathbf{x})$.
- $P(\mathbf{y}|\mathbf{x};W,\mathbf{b})$ is a good model of the data when the two distributions are close, i.e. when the **negative** log-likelihood of each sample under the model is small.

ullet For an input ${f x}$, we minimize the **cross-entropy** between the target distribution and the predicted outputs:

$$l(W, \mathbf{b}) = \mathcal{H}(\mathbf{t}|\mathbf{x}, \mathbf{y}|\mathbf{x}) = \mathbb{E}_{t \sim P(\mathbf{t}|\mathbf{x})}[-\log P(\mathbf{y} = t|\mathbf{x})]$$

Cross-entropy and negative log-likelihood

• The cross-entropy samples from $\mathbf{t}|\mathbf{x}$:

$$l(W, \mathbf{b}) = \mathcal{H}(\mathbf{t}|\mathbf{x}, \mathbf{y}|\mathbf{x}) = \mathbb{E}_{t \sim P(\mathbf{t}|\mathbf{x})}[-\log P(\mathbf{y} = t|\mathbf{x})] = -\sum_{j=1}^C P(t_j|\mathbf{x})\,\log P(y_j = t_j|\mathbf{x})$$

• For a given input ${f x}$, ${f t}$ is non-zero only for the correct class t^* , as ${f t}$ is a one-hot encoded vector [0,1,0,0,0]:

$$l(W, \mathbf{b}) = -\log P(\mathbf{y} = t^* | \mathbf{x})$$

ullet If we note j^st the index of the correct class t^st , the cross entropy is simply:

$$l(W,\mathbf{b}) = -\log y_{j^*}$$

Cross-entropy and negative log-likelihood

 As only one element of t is non-zero, the crossentropy is the same as the negative log-likelihood of the prediction for the true label:

$$l(W,\mathbf{b}) = -\log y_{j^*}$$

- The minimum of $-\log y$ is obtained when y=1:
 - We want to classifier to output a probability 1 for the true label.
- Because of the softmax activation function, the probability for the other classes should become closer from 0.

$$y_j = P(ext{class} = ext{j}) = rac{\exp(z_j)}{\sum_k \exp(z_k)}$$

• Minimizing the cross-entropy / negative log-likelihood pushes the output distribution $\mathbf{y}|\mathbf{x}$ to be as close as possible to the target distribution $\mathbf{t}|\mathbf{x}$.

• As \mathbf{t} is a binary vector [0, 1, 0, 0, 0], the cross-entropy / negative log-likelihood can also be noted as the dot product between \mathbf{t} and $\log \mathbf{y}$:

$$l(W, \mathbf{b}) = - \langle \mathbf{t} \cdot \log \mathbf{y}
angle = - \sum_{j=1}^C t_j \, \log y_j = - \log y_{j^*}$$

• The **cross-entropy loss function** is then the expectation over the training set of the individual cross-entropies:

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \sim \mathcal{D}}[-\langle \mathbf{t} \cdot \log \mathbf{y}
angle] pprox rac{1}{N} \sum_{i=1}^{N} -\langle \mathbf{t}_i \cdot \log \mathbf{y}_i
angle$$

• The nice thing with the **cross-entropy** loss function, when used on a softmax activation function, is that the partial derivative w.r.t the logit score **z** is simple:

$$egin{aligned} rac{\partial l(W,\mathbf{b})}{\partial z_i} &= -\sum_j rac{\partial}{\partial z_i} t_j \log(y_j) = -\sum_j t_j rac{\partial \log(y_j)}{\partial z_i} = -\sum_j t_j rac{1}{y_j} rac{\partial y_j}{\partial z_i} \ &= -rac{t_i}{y_i} rac{\partial y_i}{\partial z_i} - \sum_{j
eq i}^C rac{t_j}{y_j} rac{\partial y_j}{\partial z_i} = -rac{t_i}{y_i} y_i (1 - y_i) - \sum_{j
eq i}^C rac{t_j}{y_i} (-y_j y_i) \ &= -t_i + t_i y_i + \sum_{j
eq i}^C t_j y_i = -t_i + \sum_{j
eq i}^C t_j y_i = -t_i + y_i \sum_{j
eq i}^C t_j \ &= -(t_i - y_i) \end{aligned}$$

i.e. the same as with the mse in linear regression!

Vector notation:

$$rac{\partial l(W,\mathbf{b})}{\partial \mathbf{z}} = -(\mathbf{t}-\mathbf{y})$$

• As:

$$z = W \times x + b$$

we can obtain the partial derivatives:

$$egin{aligned} rac{\partial l(W, \mathbf{b})}{\partial W} &= rac{\partial l(W, \mathbf{b})}{\partial \mathbf{z}} imes rac{\partial \mathbf{z}}{\partial W} = -(\mathbf{t} - \mathbf{y}) imes \mathbf{x}^T \ rac{\partial l(W, \mathbf{b})}{\partial \mathbf{b}} &= rac{\partial l(W, \mathbf{b})}{\partial \mathbf{z}} imes rac{\partial \mathbf{z}}{\partial \mathbf{b}} = -(\mathbf{t} - \mathbf{y}) \end{aligned}$$

• So gradient descent leads to the **delta learning rule**:

$$egin{cases} \Delta W = \eta \left(\mathbf{t} - \mathbf{y}
ight) imes \mathbf{x}^T \ \Delta \mathbf{b} = \eta \left(\mathbf{t} - \mathbf{y}
ight) \end{cases}$$

Softmax linear classifier

• We first compute the **logit scores z** using a linear layer:

$$\mathbf{z} = W \times \mathbf{x} + \mathbf{b}$$

• We turn them into probabilities **y** using the **softmax** activation function:

$$y_j = rac{\exp(z_j)}{\sum_k \exp(z_k)}$$

• We minimize the cross-entropy / negative log-likelihood on the training set:

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \sim \mathcal{D}}[-\langle \mathbf{t} \cdot \log \mathbf{y}
angle]$$

which simplifies into the delta learning rule:

$$egin{cases} \Delta W = \eta \left(\mathbf{t} - \mathbf{y}
ight) imes \mathbf{x}^T \ \Delta \mathbf{b} = \eta \left(\mathbf{t} - \mathbf{y}
ight) \end{cases}$$

Comparison of linear classification and regression

- Classification and regression differ in the nature of their outputs: in classification they are discrete, in regression they are continuous values.
- However, when trying to minimize the mismatch between a model ${f y}$ and the real data ${f t}$, we have found the same **delta learning rule**:

$$egin{cases} \Delta W = \eta \left(\mathbf{t} - \mathbf{y}
ight) imes \mathbf{x}^T \ \Delta \mathbf{b} = \eta \left(\mathbf{t} - \mathbf{y}
ight) \end{cases}$$

- Regression and classification are in the end the same problem for us. The only things that needs to be adapted is the activation function of the output and the **loss function**:
 - For regression, we use regular activation functions and the mean square error (mse):

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \in \mathcal{D}}[||\mathbf{t} - \mathbf{y}||^2]$$

For classification, we use the softmax activation function and the cross-entropy (negative log-likelihood) loss function:

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \sim \mathcal{D}}[-\langle \mathbf{t} \cdot \log \mathbf{y}
angle]$$

5 - Multi-label classification

Multi-label classification

GK Hart/Vikki Hart/Getty Images

- What if there is more than one label on the image?
- The target vector **t** does not represent a probability distribution anymore:

$$\mathbf{t} = [\mathrm{cat}, \mathrm{dog}, \mathrm{ship}, \mathrm{house}, \mathrm{car}] = [1, 1, 0, 0, 0]$$

• Normalizing the vector does not help: it is not a dog **or** a cat, it is a dog **and** a cat.

$$\mathbf{t} = [\mathrm{cat}, \mathrm{dog}, \mathrm{ship}, \mathrm{house}, \mathrm{car}] = [0.5, 0.5, 0, 0, 0]$$

Multi-label classification

• For multi-label classification, we can simply use the **logistic** activation function for the output neurons:

$$\mathbf{y} = \sigma(W imes \mathbf{x} + \mathbf{b})$$

• The outputs are between 0 and 1, but they do not sum to one. Each output neuron performs **logistic regression for soft classification** on their class:

$$y_j = P({
m class} = j | {f x})$$

• Each output neuron y_j has a binary target t_j (one-vs-the-rest) and has to minimize the negative log-likelihood:

$$l_j(W,\mathbf{b}) = -t_j\,\log y_j + (1-t_j)\,\log(1-y_j)$$

• The **binary cross-entropy** loss is the sum of the negative log-likelihood for each class:

$$\mathcal{L}(W, \mathbf{b}) = \mathbb{E}_{\mathcal{D}}[-\sum_{j=1}^C t_j \, \log y_j + (1-t_j) \, \log(1-y_j)]$$