DENEY NO: 4 (RC DEVRESİ)

AMAÇ: Bir *RC* devresinde kondansatörün yüklenmesi sırasında devreden geçen akımın zaman ile değişimini gözlemek.

ÖN BİLGİ

Bir kondansatörün Yüklenmesi

S anahtarı açıkken kondansatör yüksüz ve akım yoktur. Şekil 1b'de anahtar kapatıldıktan sonra akım meydana gelir ve Kirchoff yasasına göre,

$$\varepsilon - IR - \frac{q}{C} = 0 \tag{1}$$

yazılabilir. Burada IR direncin uçları arasındaki, $\frac{q}{C}$ kondansatörün plakaları arasındaki potansiyel farkıdır. t=0 anında kondansatör üzerindeki yük sıfır olduğundan, devredeki akımın başlangıç değeri $I_0=\varepsilon/R$ olur. Daha sonra kondansatör maksimum Q değerine ulaştığında yük akışı durur ve akım sıfır olur. Bu durumda, $Q=C\varepsilon$ olur. Yük ve akımın zamana bağlı ifadelerini bulmak için (1) eşitliğinin zamana göre türevini alalım: $\frac{d}{dt}(\varepsilon-IR-\frac{q}{C})=0 \quad \text{ve buradan da} \quad 0-R\frac{dI}{dt}-\frac{1}{C}\frac{dq}{dt}=0 \quad \text{elde edilir.} \quad \frac{dq}{dt}=I \quad \text{olduğundan,} \\ R\frac{dI}{dt}=-\frac{1}{C}I \quad \text{ifadesini buluruz.}$

Gerekli hesaplamalar yapıldığında, akım ve yükün zamana bağlı değişimleri;

$$I = I_0 e^{-\frac{t}{RC}} \quad \text{ve} \quad q = Q \left(1 - e^{-\frac{t}{RC}} \right)$$
 (2)

şeklinde bulunur. Burada t, anahtarın kapatıldığı andan itibaren geçen süredir.

RC niceliğine devrenin τ zaman sabiti denir ve akımın başlangıç değerinin 1/e katına düşmesi için geçen zamanı gösterir. Yani, anahtar kapatıldıktan τ zaman sonra devreden geçen akım $I=\frac{I_0}{e}=0,37I_0$ olur (Şekil 2).

DENEYİN YAPILIŞI

- 1) Size verilen $10 \text{ k}\Omega$ 'luk direnç ile sığası bilinmeyen kondansatörü kullanarak, Şekil 1a'daki devreyi kurunuz. Güç kaynağını 15 V'a ayarlayınız.
- 2) Kondansatörün dolması için devredeki S anahtarını kapatınız ve Tablo 1'de verilen süreler için devreden geçen akımı ölçünüz (Kondansatör tamamen dolduğunda, devreden geçen akım neredeyse değişmeyecektir).
- 3) Ölçümler tamamlandıktan sonra, Şekil 3'de görülen lnI'nın t'ye bağlı değişimini çiziniz. $tan\theta = \frac{1}{RC}$ ifadesinden, kondansatörün deneysel sığasını (C_{deney}) hesaplayınız.

4) Grafikten hesapladığınız deneysel sığa (C_{deney}) değeri ile devrede kullandığınız kondansatörün üzerinde yazan sığa (C_{teorik}) değerini kullanarak, $\frac{\left|C_{teorik}-C_{deney}\right|}{C_{teorik}} \times \%100$ ifadesinden yüzde bağıl hatayı hesaplayınız.

Tablo 1				
<i>t</i> (s)	I(A)	ln I (A)		
0			C_{teorik} (Farad) =	
10				
20			1	
30				
40			C_{deney} (Farad) =	
50				
60				
70			– Bağıl Hata =	
80				
90			7	
100			1	

ÖĞRENCİ	SORUMLU ÖĞR. ELEMANI
AD SOYAD:	AD SOYAD:
NO:	NOT:
BÖLÜM:	TARİH:
GRUP NO:	İMZA: