Machine learning: Part 6

- Deep reinforcement learning
- AlphaGo

^{*}Slides based on those of Pascal Poupart

Challenges for reinforcement learning

- To use RL successfully in situations approaching real-world complexity, agents are confronted with a difficult task:
- they must derive efficient representations of the environment from high-dimensional sensory inputs
- Humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems

Deep reinforcement learning

- Combine reinforcement learning with deep neural networks
- Use a deep CNN to approximate the optimal action-value function $Q^*(s, a)$
- Tested on Atari 2600 games.

 Achieve a level comparable to that of a professional human games tester across a set of 49 games.

3/34

Y. Liu

Quick recap

- $Q^*(s, a)$: the expected value of doing action a in state s, then following the optimal policy.
- $V^*(s)$: the expected value of following the optimal policy in state s.
- TD formula: $A_k = A_{k-1} + \alpha_k (v_k A_{k-1})$
 - We have a sequence of values: v_1, v_2, v_3, \ldots
 - To get the new estimate, the old estimate is updated by α_k times the TD error
- Q-learning: an experience $\langle s, a, r, s' \rangle$ gives a new estimate for the value of $Q^*(s, a)$: $r + \gamma \max_{a'} Q[s', a']$, so

$$Q[s, a] \leftarrow Q[s, a] + \alpha \left(r + \gamma \max_{\mathbf{a}'} Q[s', \mathbf{a}'] - Q[s, a] \right)$$

Y. Liu Intro to Al 4/34

Recall: Q-learning

```
initialize Q[S,A] arbitrarily observe current state s repeat forever: select and carry out an action a observe reward r and state s' Q[s,a] \leftarrow Q[s,a] + \alpha \left(r + \gamma \max_{a'} Q[s',a'] - Q[s,a] \right) s \leftarrow s'
```

Y. Liu Intro to AI 5/34

Large state spaces

 Complexity of Q-learning depends on number of states and actions

• Go: 3³⁶¹ states

• Atari: 210x160x3 dimensions (pixel values)

Q-networks

- Represent value function by Q-network with weights \mathbf{w} $Q(s, a, \mathbf{w}) \approx Q^*(s, a)$
- Q-learning: $Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] Q[s, a])$
- Treat $r + \gamma \max_{a'} Q[s', a']$ as a target
- Minimize squared error by gradient descent: $Loss(\mathbf{w}) = (r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}))^2$
- $\bullet \ \frac{\partial Loss(\mathbf{w})}{\partial w} = (r + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}', \mathbf{w}) Q(\mathbf{s}, \mathbf{a}, \mathbf{w})) \frac{\partial Q(\mathbf{s}, \mathbf{a}, \mathbf{w})}{\partial w}$

Y. Liu Intro to Al 7/34

Gradient Q-learning

initialize weights \mathbf{w} at random in $[\text{-}1,\!1]$ observe current state s

repeat forever:

select and carry out an action a observe reward r and state s'

$$\frac{\partial Loss(\mathbf{w})}{\partial w} = (r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})) \frac{\partial Q(s, a, \mathbf{w})}{\partial w}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Loss(\mathbf{w})}{\partial \mathbf{w}}$$

 $\mathbf{s} \leftarrow \mathbf{s}'$

Y. Liu Intro to AI 8/34

Convergence of Linear Gradient Q-Learning

 Recall: Q-Learning converges to optimal Q-function under the following conditions:

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

- Linear Gradient Q-Learning converges under the same conditions
 - $Q(s, a, \mathbf{w}) = \sum_i w_i s_i$, where $s = (x_1, \dots, x_n)$

Y. Liu Intro to Al 9 / 34

Divergence of non-linear Q-learning

Even when the following conditions hold

$$\sum_{k=1}^{\infty}\alpha_k=\infty \text{ and } \sum_{k=1}^{\infty}\alpha_k^2<\infty$$

non-linear Q-learning may diverge

- Intuition: Adjusting \mathbf{w} to increase Q at (s, a) might introduce errors at nearby state-action pairs.
- Mitigating divergence: Two tricks are often used
 - Experience replay
 - Use two networks: Q-network and Target network

Y. Liu Intro to Al 10 / 34

Experience Replay

• Idea: store previous experiences (s, a, r, s') into a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning

- Advantages
 - Break correlations between successive updates (more stable learning)
 - Fewer interactions with environment needed to converge (greater data efficiency)

Target Network

 Idea: Use a separate target network that is updated only periodically

For each experience $(\hat{s}, \hat{a}, \hat{r}, \hat{s}')$ in mini-batch

$$\begin{array}{l} \frac{\partial Loss(\mathbf{w})}{\partial w} = (\hat{r} + \gamma \max_{\hat{a}'} Q(\hat{s}', \hat{a}', \bar{\mathbf{w}}) - Q(\hat{s}, \hat{a}, \mathbf{w})) \frac{\partial Q(\hat{s}, \hat{a}, \mathbf{w})}{\partial w} \\ \mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Loss(\mathbf{w})}{\partial w} \end{array}$$

Advantage: mitigate divergence

Y. Liu Intro to Al 12/34

Deep Q-network

- Google Deep Mind
- Deep Q-network: Gradient Q-learning with
 - Deep neural networks
 - Experience replay
 - Target network
- Breakthrough: human-level play in many Atari video games

Deep Q-network

initialize weights \mathbf{w} at random in [-1,1] observe current state s

repeat forever:

select and carry out an action a observe reward r and state s' Add (s, a, r, s') to experience buffer Sample mini-batch of experiences from buffer For each experience $(\hat{s}, \hat{a}, \hat{r}, \hat{s}')$ in mini-batch

$$\frac{\partial Loss(\mathbf{w})}{\partial w} = (\hat{r} + \gamma \max_{\hat{a}'} Q(\hat{s}', \hat{a}', \bar{\mathbf{w}}) - Q(\hat{s}, \hat{a}, \mathbf{w})) \frac{\partial Q(\hat{s}, \hat{a}, \mathbf{w})}{\partial w}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Loss(\mathbf{w})}{\partial w}$$

$$\mathbf{s} \leftarrow \mathbf{s}'$$

Every c steps, $\bar{\mathbf{w}} \leftarrow \mathbf{w}$

Y. Liu Intro to Al

Deep Q-Network for Atari

15/34

Y. Liu Intro to Al

Deep Q-Network for Atari

- The input consists of an 84 x 84 x 4 image produced by the preprocessing map ϕ .
- Followed by three convolution layers and two fully connected layers.
- Each hidden layer is followed by a rectifier nonlinearity.
- There is a single output for each valid action.
- The number of valid actions varied between 4 and 18 on the games considered.

DQN versus Linear approx.

The normalized performance of DQN: (DQN score-random play score)/(human score-random play score).

AlphaGo

- Go is hard for computers due to its enormous search space and difficulty of evaluating board positions and moves.
- A new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves.
- These DNNs are trained by a combination of supervised learning from human expert games, and reinforcement learning from games of self-play.
- A new search algorithm that combines Monte Carlo simulation with value and policy networks.

Intro to Al

Perfect information games

- Have an optimal value function, $v^*(s)$, from every board position or state s, under perfect play by all players.
- These games may be solved by recursively computing the optimal value function in a search tree
 - containing $\approx b^d$ possible sequences of moves,
 - where b is the game's breadth (number of legal moves per position)
 - and d is its depth (game length).

Exhaustive search

Y. Liu Intro to Al

Perfect information games

- In large games, exhaustive search is infeasible,
 - chess ($b \approx 35$, $d \approx 80$) and Go ($b \approx 250$, $d \approx 150$)
- but the effective search space can be reduced by two general principles

Y. Liu Intro to Al

Reducing depth of search

- by position evaluation: truncating the search tree at state s by an approximate value function $v(s) \approx v^*(s)$.
- This approach has led to superhuman performance in chess, checkers and othello,
- but it was believed to be intractable in Go due to the complexity of the game.

Reducing breadth of search

- by sampling actions from a policy p(a|s), a probability distribution over possible moves a in position s.
- e.g., Monte Carlo rollouts search to maximum depth without branching at all, by sampling long sequences of actions for both players from a policy p.
- Averaging over such rollouts can provide an effective position evaluation, achieving superhuman performance in backgammon and Scrabble.

Monte Carlo tree search (MCTS)

- Uses Monte Carlo rollouts to estimate the value of each state in a search tree.
- As more simulations are executed, the search tree grows larger and the relevant values become more accurate.
- The policy used to select actions during search is also improved over time, by selecting children with higher values.
- This policy converges to optimal play, and the evaluations converge to the optimal value function.

Enhancing MCTS

- MCTS can be enhanced by policies that are trained to predict human expert moves.
- These policies are used to narrow the search to a beam of high-probability actions, and to sample actions during rollouts.

AlphaGo

- Pass in the board position as a 19 ×19 image and use convolutional layers to construct a representation of the position.
- Use these neural networks to reduce the effective depth and breadth of the search tree: evaluating positions using a value network, and sampling actions using a policy network.

Intro to Al

Policy and value networks

27 / 34

Y. Liu

Reducing depth with value network

Y. Liu Intro to Al 28 / 34

Reducing breadth with policy network

Y. Liu Intro to Al

Neural network training pipeline

30 / 34

Intro to Al

Y. Liu

Neural network training pipeline

- A fast rollout policy p_{π} and supervised learning (SL) policy network p_{σ} are trained to predict human expert moves in a data set of positions.
- A reinforcement learning (RL) policy network p_{ρ} is initialized to the SL policy network, and is then improved by policy gradient learning.
- A new data set is generated by playing games of self-play with the RL policy network.
- Finally, a value network v_{θ} is trained by regression to predict the expected outcome (*i.e.*, whether the current player wins) in positions from the self-play data set.

Y. Liu Intro to Al 31/34

Supervised learning of policy networks

Policy network: 12 layer convolutional neural network

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

$$\Delta\sigma\propto rac{\partial\log p_{\sigma}(a|s)}{\partial\sigma}$$

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

randomly sampled state-action pairs (s, a)

Reinforcement learning of policy networks

Policy network: 12 layer convolutional neural network

Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

$$\Delta\sigma \propto rac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}z$$

Training time: 1 week on 50 GPUs using Google Cloud

Results: 80% vs supervised learning. Raw network ~3 amateur dan.

The outcome z is the terminal reward at the end of the game: +1 for winning and -1 for losing.

won more than 80% of games against the SL policy network

33 / 34

Y. Liu Intro to Al

Reinforcement learning of value networks

Value network: 12 layer convolutional neural network

Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

$$\Delta heta \propto rac{\partial v_{ heta}(s)}{\partial heta}(z-v_{ heta}(s))$$

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible

Y. Liu Intro to Al 34 / 34