Resultados dos Problemas de Otimização - Método Gradiente Espelhado

Análise Computacional

16 de setembro de 2025

1 Problemas de Otimização

A tabela 1 apresenta os problemas de otimização não-linear resolvidos usando o método Gradiente Espelhado e o número de variáveis de cada problema.

Tabela 1: Problemas de otimização e número de variáveis

Problema	Número de Variáveis		
ROSENBROCK	100		
PENALTY	100		
TRIGONOMETRIC	100		
EXTENDED ROSENBROCK	100		
EXTENDED POWELL	100		
QOR	50		
GOR	50		
PSP	50		
TRIDIAGONAL	100		
ENGGVAL1	100		
LINEAR MINIMUM SURFACE	36		
SQUARE ROOT 1	36		
SQUARE ROOT 2	36		
FREUDENTHAL ROTH	100		
SPARSE MATRIX SQRT	16		
ULTS0	64		

2 Resultados de Convergência

A tabela 2 apresenta os resultados de convergência para cada problema, incluindo o número de iterações necessárias, o valor mínimo da função objetivo encontrado e a precisão da solução (norma do gradiente).

3 Soluções Encontradas (Primeiras 5 Variáveis)

A tabela 3 apresenta as primeiras 5 variáveis da solução encontrada para cada problema. Para problemas com menos de 5 variáveis, apenas as variáveis disponíveis são mostradas.

Tabela 2: Resultados de convergência dos problemas de otimização

Problema	Iterações	Valor Mínimo	Precisão ($ \nabla f(x^*) $)	Tempo (s)
ROSENBROCK	38	1.166e + 28	1.418e + 22	1.027s
PENALTY	199	7.383e + 00	9.651 e-02	6.643s
TRIGONOMETRIC	1	9.428 e-05	1.904e-02	0.000s
EXTENDED ROSENBROCK	39	1.427e + 95	0.000e+00	1.904s
EXTENDED POWELL	1	0.000e+00	0.000e+00	0.001s
QOR	305	1.175e + 03	9.740e-02	4.591s
GOR	1000	1.381e + 03	1.063e-01	20.323s
PSP	1000	2.030e + 02	1.340e + 01	15.570s
TRIDIAGONAL	266	2.561e-03	9.698e-02	7.384s
ENGGVAL1	60	1.091e + 02	8.954 e-02	2.258s
LINEAR MINIMUM SURFACE	1000	1.250e + 01	8.086e-01	7.321s
SQUARE ROOT 1	458	3.639e-02	9.977e-02	2.745s
SQUARE ROOT 2	430	3.897e-02	9.953 e-02	2.519s
FREUDENTHAL ROTH	4	1.595e + 112	0.000e+00	0.666s
SPARSE MATRIX SQRT	234	8.687 e-03	9.820 e-02	0.627s
ULTS0	10	1.400e + 29	1.759e + 19	1.513s

Tabela 3: Primeiras 5 variáveis das soluções encontradas

Problema	x1	x2	x3	x4	x 5
ROSENBROCK	-3.285877e + 06	1.835208e + 04	-1.680765e-07	-1.964098e-07	-1.680765e-07
PENALTY	8.658028e-01	8.658022 e-01	8.658019 e-01	8.658019 e-01	8.658030e-01
TRIGONOMETRIC	9.805968e-03				
EXTENDED ROSENBROCK	-1.358975e+06	6.414088e+03	-1.023360e+06	5.288637e + 03	-5.716622e+05
EXTENDED POWELL	0.000000e+00	0.0000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
QOR	5.929098e-01	-7.098413e-01	6.259695 e-02	-2.652335e+00	1.587639e+00
GOR	-1.789064e+00	-3.514722e -01	-3.031736e+00	-1.043738e-01	7.394266e+00
PSP	4.999677e+00	4.943239e+00	5.002947e+00	2.903056e+00	4.995754e + 00
TRIDIAGONAL	1.022063e+00	5.149905e-01	2.605432e-01	1.328197e-01	6.871074e-02
ENGGVAL1	8.920491e-01	5.543116e-01	6.468898 e-01	6.262327 e-01	6.306800e-01
LINEAR MINIMUM SURFACE	1.170689e+00	1.551960e+00	2.229014e+00	3.868261e+00	6.582620e+00
SQUARE ROOT 1	4.988031e-01	-4.618385e-01	-3.944641e-01	4.858996e-01	-5.868193e-01
SQUARE ROOT 2	1.613235e-01	-7.953026e-01	-5.527543e -01	3.474098e-01	-7.612946e-01
FREUDENTHAL ROTH	-1.437040e+01	-4.203454e+17	-4.179566e+17	-4.188646e+17	-4.179566e+17
SPARSE MATRIX SQRT	7.940747e-01	-5.821523e -01	3.895815 e-01	-1.539272e-01	-1.215970e-01
ULTS0	1.471276e + 06	-3.030324e+06	2.571035e+06	1.094777e + 06	5.766112e + 05

4 Observações

- O método L-BFGS-B foi configurado com tolerância de convergência de 10^{-6} .
- Para problemas que falharam, verifique a mensagem de erro específica.
- \bullet A precisão é medida pela norma do gradiente (|| $\nabla f(x^*)$ ||) calculada numericamente.
- Valores de precisão menores indicam soluções mais próximas de pontos estacionários.
- Para problemas irrestritos, $||\nabla f(x^*)|| \approx 0$ indica convergência para um mínimo local.
- Problemas que falharam são marcados com --"nas colunas de resultados.
- A terceira tabela mostra as primeiras 5 variáveis da solução encontrada.
- Para problemas com menos de 5 variáveis, as colunas extras são marcadas como ---".
- A terceira tabela é apresentada em formato paisagem para melhor visualização.