Problem Set 2

Aaron Wang

February 4 2024

1. Consider the following proof of $p \to (q \to r) \equiv (p \to q) \to r$.

Proof. Observe the following chain of reasoning.

$$p \to (q \to r) \equiv p \lor \neg (q \to r) \qquad \text{by conditional disintegration} \qquad (1)$$

$$\equiv p \lor \neg (q \lor \neg r) \qquad \text{by conditional disintegration} \qquad (2)$$

$$\equiv p \lor \neg q \lor \neg r \qquad \text{by associativity} \qquad (3)$$

$$\equiv (p \lor \neg q) \lor \neg r \qquad \text{by associativity} \qquad (4)$$

$$\equiv (p \to q) \lor \neg r \qquad \text{by conditional disintegration} \qquad (5)$$

$$\equiv (p \to q) \to r \qquad \text{by conditional disintegration} \qquad (6)$$

Therefore,
$$p \to (q \to r) \equiv (p \to q) \to r$$
. Q.E.D.

Find all of the mistakes, if any, in this proof, and explain why.

p,q and r are not declared as propositions.

In lines 1, 2, 5, and 6, conditional disintegration is incorrectly used. The axiom states " $p \to q \equiv \neg p \lor q$ " yet the proof incorrectly uses " $p \to q \equiv p \lor \neg q$ "

From (2) to (3) the proof incorrectly uses associativity. First, it incorrectly distributes \neg and then it gets rid of the parenthesis, two things that should not happen.

- 2. Prove the claims below without truth tables for all propositions p, q, r.
 - (a) $p \to q \equiv \neg q \to \neg p$.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$p \rightarrow q \equiv \neg p \lor q$$
 by conditional disintegration
$$\equiv q \lor \neg p$$
 by commutativity
$$\equiv \neg (\neg q) \lor \neg p$$
 by double negation
$$\equiv \neg q \rightarrow \neg p$$
 by conditional disintegration

Therefore, $p \to q \equiv \neg q \to \neg p$.

Q.E.D.

(b) $(p \land (p \rightarrow q)) \rightarrow q$ is a tautology.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$(p \wedge (p \rightarrow q)) \rightarrow q \equiv (p \wedge (\neg p \vee q)) \rightarrow q \qquad \qquad \text{by conditional disintegration} \\ \equiv ((p \wedge \neg p) \vee (p \wedge q)) \rightarrow q \qquad \qquad \text{by distributivity} \\ \equiv (\bot \vee (p \wedge q)) \rightarrow q \qquad \qquad \text{by complement} \\ \equiv (p \wedge q) \rightarrow q \qquad \qquad \text{by identity} \\ \equiv \neg (p \wedge q) \vee q \qquad \qquad \text{by conditional disintegration} \\ \equiv (\neg p \vee \neg q) \vee q \qquad \qquad \text{by de morgan's laws} \\ \equiv \neg p \vee (\neg q \vee q) \qquad \qquad \text{by associativity} \\ \equiv \neg p \vee \top \qquad \qquad \text{by complement} \\ \equiv \top \vee \neg p \qquad \qquad \text{by commutativity} \\ \equiv \top \qquad \qquad \text{by domination}$$

Therefore, $(p \land (p \rightarrow q)) \rightarrow q$ is a tautology.

(c) $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p \equiv (\neg q \land (\neg p \lor q)) \rightarrow \neg p$$
 by conditional disintegration
$$\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \rightarrow \neg p$$
 by distributivity
$$\equiv ((\neg q \land \neg p) \lor \bot) \rightarrow \neg p$$
 by complement
$$\equiv (\bot \lor (\neg q \land \neg p)) \rightarrow \neg p$$
 by identity
$$\equiv (\neg q \land \neg p) \lor \neg p$$
 by conditional disintegration
$$\equiv (q \lor p) \lor \neg p$$
 by de morgans laws
$$\equiv q \lor (p \lor \neg p)$$
 by associativity
$$\equiv q \lor (\neg p \lor p)$$
 by commutativity
$$\equiv q \lor \top$$
 by complement
$$\equiv \top \lor q$$
 by commutativity
$$\equiv T \lor q$$
 by domination

Therefore, $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.

Q.E.D.

(d) $(p \to q) \to ((p \to \neg q) \to \neg p)$ is a tautology.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$(p \to q) \to ((p \to \neg q) \to \neg p) \equiv (p \to q) \to ((\neg p \lor \neg q) \to \neg p) \qquad \text{by conditional disintegration} \\ \equiv (p \to q) \to (\neg (\neg p \lor \neg q) \lor \neg p) \qquad \text{by conditional disintegration} \\ \equiv (p \to q) \to (\neg (\neg p) \land \neg (\neg q)) \lor \neg p) \qquad \text{by de morgans laws} \\ \equiv (p \to q) \to ((p \land q) \lor \neg p) \qquad \text{by double negation} \\ \equiv (p \to q) \to (\neg p \lor (p \land q)) \qquad \text{by double negation} \\ \equiv (p \to q) \to ((\neg p \lor p) \land (\neg p \lor q)) \qquad \text{by distributivity} \\ \equiv (p \to q) \to ((\neg p \lor q) \land (\neg p \lor q)) \qquad \text{by complement} \\ \equiv (p \to q) \to (\neg p \lor q) \qquad \text{by identity} \\ \equiv (\neg p \lor q) \to (\neg p \lor q) \qquad \text{by conditional disintegration} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) \qquad \text{by conditional disintegration} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) \qquad \text{by conditional disintegration} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) \qquad \text{by conditional disintegration} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) \qquad \text{by conditional disintegration} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) \qquad \text{by complement} \\ \end{cases}$$

Therefore, $(p \to q) \to ((p \to \neg q) \to \neg p)$ is a tautology.

- 3. In this problem, we will progressively establish that the alternative axioms Hilbert proposed are all tautologies without truth tables. Here, the variables p, q, and r all represent arbitrary propositions.
 - (a) Show $p \to p$ is a tautology.

Proof. Let p be a proposition. Observe the following chain of reasoning.

$$\begin{array}{ll} p \to p \equiv \neg p \vee p & \text{by conditional disintegration} \\ & \equiv \top & \text{by complement} \end{array}$$

Therefore, $p \to p$ is a tautology.

Q.E.D.

(b) Show $(p \to q) \to (\neg q \to \neg p)$ is a tautology.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$\begin{array}{ll} (p \to q) \to (\neg q \to \neg p) \equiv (\neg p \lor q) \to (\neg (\neg q) \lor \neg p) & \text{by conditional disintegration} \times 2 \\ \equiv (\neg p \lor q) \to (q \lor \neg p) & \text{by double negation} \\ \equiv (\neg p \lor q) \to (\neg p \lor q) & \text{by commutativity} \\ \equiv \neg (\neg p \lor q) \lor (\neg p \lor q) & \text{by conditional disintegration} \\ \equiv \top & \text{by complement} \end{array}$$

Therefore, $(p \to q) \to (\neg q \to \neg p)$ is a tautology.

(c) Show $p \to (q \to p)$ is a tautology.

Proof. Let p and q be propositions. Observe the following chain of reasoning.

$$\begin{array}{ll} p \rightarrow (q \rightarrow p) \equiv p \rightarrow (\neg q \vee p) & \text{by conditional disintegration} \\ \equiv \neg p \vee (\neg q \vee p) & \text{by conditional disintegration} \\ \equiv \neg p \vee (p \vee \neg q) & \text{by commutativity} \\ \equiv (\neg p \vee p) \vee \neg q & \text{by associativity} \\ \equiv \top \vee \neg q & \text{by complement} \\ \equiv \top & \text{by domination} \end{array}$$

Therefore, $p \to (q \to p)$ is a tautology.

Q.E.D.

(d) Show $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ is a tautology.

Proof. Let p, q, and r be propositions. Observe the following chain of reasoning.

$$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$
 by conditional disintegration \times 3
$$\equiv (p \rightarrow (\neg q \lor r)) \rightarrow ((\neg p \lor q) \rightarrow (\neg p \lor r))$$
 by conditional disintegration \times 2
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg (\neg p \lor q) \lor (\neg p \lor r))$$
 by de morgans law
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((p \lor (\neg p) \land \neg q) \lor (\neg p \lor r))$$
 by double negation
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((p \lor (\neg p \lor r)) \land (\neg q \lor (\neg p \lor r)))$$
 by distributivity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow (((p \lor \neg p) \lor r) \land (\neg q \lor (\neg p \lor r)))$$
 by commutativity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow (((\neg p \lor p) \lor r) \land (\neg q \lor (\neg p \lor r)))$$
 by complement
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow (((\neg p \lor p) \lor r) \land (\neg q \lor (\neg p \lor r)))$$
 by domination
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg q \lor (\neg p \lor r)))$$
 by domination
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg q \lor (\neg p \lor r)))$$
 by associativity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg q \lor \neg p) \lor r)$$
 by commutativity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg p \lor \neg q) \lor r)$$
 by commutativity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg p \lor \neg q) \lor r)$$
 by associativity
$$\equiv (\neg p \lor (\neg q \lor r)) \rightarrow ((\neg p \lor \neg q) \lor r)$$
 by conditional disintegration
$$\equiv (\neg p \lor (\neg q \lor r)) \lor (\neg p \lor (\neg q \lor r))$$
 by conditional disintegration
$$\equiv (\neg p \lor (\neg q \lor r)) \lor (\neg p \lor (\neg q \lor r))$$
 by conditional disintegration by complement

Therefore, $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ is a tautology.

4. Show that \neg and \land are sufficient to express any proposition.

Proof. Observe the following chain of reasoning starting with the formal definition of a proposition.

We say that r is a proposition if r satisfies the following recurrence.

- 1. $r = \top$ or $r = \bot$.
- 2. $r = \neg p$, where p is a proposition.
- 3. $r = (p) \land (q)$ where p and q are propositions.
- 4. $r = (p) \lor (q)$ where p and q are propositions.
- 5. $r = (p) \rightarrow (q)$ where p and q are propositions.
- 6. $r = (p) \leftrightarrow (q)$ where p and q are propositions.

From this definition, five logical connectives $(\neg, \land, \lor, \rightarrow, \text{ and } \leftrightarrow)$ are sufficient to express any proposition. Thus if we can express $\lor, \rightarrow, \text{ and } \leftrightarrow \text{ with } \neg \text{ and } \land \text{ then } \neg \text{ and } \land \text{ are sufficient to express any proposition}$

Let p and q represent arbitrary propositions. Observe the following chain of reasoning.

(a) \top or \bot

This is the base case of the recursive definition and will always be a proposition.

(b) ¬

This only uses \neg and thus does not need to be altered to for this question.

(c) \

This only uses \wedge and thus does not need to be altered to for this question.

(d) V

$$\neg(\neg p \land \neg q) \equiv \neg(\neg p) \lor \neg(\neg q)$$
$$\equiv p \lor q$$

by de morgans laws by double negation $\times 2$

 $(e) \rightarrow$

$$\neg(p \land \neg q) \equiv \neg p \lor \neg(\neg q)$$
 by de morgans laws
$$\equiv \neg p \lor q$$
 by double negation
$$\equiv p \to q$$
 by conditional disintegration

 $(f) \leftrightarrow$

Using these 6 premises, we can additionally break down all sub-propositions to only contain \neg and \land as long as they are of finite length. If they are not of finite length, then they are not propositions.

Therefore, as \neg and \land can express the three other logical connectives, \neg and \land are sufficient to express *any* proposition with this new definition.

We say that r is a proposition if r satisfies the following recurrence.

- 1. $r = \top$ or $r = \bot$.
- 2. $r = \neg p$, where p is a proposition.
- 3. $r = (p) \land (q)$ where p and q are propositions.
- 4. $r = (p) \lor (q)$ which can be rewritten as $\neg(\neg p \land \neg q)$ where p and q are propositions.
- 5. $r = (p) \rightarrow (q)$ which can be rewritten as $\neg (p \land \neg q)$ where p and q are propositions.
- 6. $r = (p) \leftrightarrow (q)$ which can be rewritten as $\neg (q \land \neg p) \land \neg (p \land \neg q)$ where p and q are propositions.

5. Is there a *single connective* capable of expressing *any* proposition?

Yes, there is a single connective capable of expressing any proposition. Looking at this question, all we need is an expression that is able to express \neg and \land because of the logic shown in question 4. This new logical connective I will call "negand" with the symbol being $\neg \land$ and it will act like this: $p \neg \land q \equiv \neg p \land q$. Now to prove that this single connective can express any proposition, it has to be able to do the function of \neg and the function of \land .

Proof. Let p and q represent arbitrary propositions. Observe the following chain of reasoning.

(a)
$$\neg$$

$$p \to \top \equiv \neg p \wedge \top$$
 by definition of negand
$$\equiv \neg p$$
 by identity

$$\begin{array}{lll} \text{(b)} & \wedge \\ & (p \not \neg \! \wedge q) \not \neg \! \wedge q \equiv \neg (\neg p \wedge q) \wedge q & \text{by definition of negand} \times 2 \\ & \equiv (\neg (\neg p) \vee \neg q) \wedge q & \text{by de morgans laws} \\ & \equiv (p \vee \neg q) \wedge q & \text{by double negation} \\ & \equiv (p \wedge q) \vee (\neg q \wedge q) & \text{by definition of negation} \\ & \equiv (p \wedge q) \vee \bot & \text{by complement} \\ & \equiv p \wedge q & \text{by identity} \end{array}$$

Therefore, because every proposition can be expressed by \land and \neg , and \neg can form these two logical connectives, every proposition can be expressed by a single connective. Q.E.D.