Homework 3 (due Oct. 20)

MATH 110 | Introduction to Number Theory | Fall 2022

Whenever you use a result or claim a statement, provide a **justification** or a **proof**, unless it has been covered in the class. In the later case, provide a **citation** (such as "by the 2-out-of-3 property of division" or "by Coro. 0.31 in the textbook").

You are encouraged to *discuss* the problems with your peers. However, you must write the homework by yourself using your words and acknowledge your collaborators.

Problem 1. For this problem, you may want to review one-variable Calculus

(a) (3 pts) Recall the definition (In this course, $\log = \log_e$ denotes the natural logarithm)

$$\operatorname{Li}(x) := \int_{2}^{x} \frac{\mathrm{d}t}{\log t} \qquad (x > 2).$$

Question: What is the $\frac{d}{dx} \text{Li}(x)$ of Li(x)?

(b) (5 pts) Two real functions f(x) and g(x) are asymptotically equal if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

Prove that: Li(x) and $\frac{x}{\log x}$ are asymptotically equal.

Problem 2 (5 pts). Let p be a prime number and k, l be two natural numbers. Show that

$$\sum_{i=0}^{k} \sigma_i(p^l) = \sum_{i=0}^{l} \sigma_i(p^k).$$

Problem 3 (5 pts). Let n be a positive integer and k a natural number. Show that

$$\sigma_k(n) = \sigma_{-k}(n)n^k$$
.

Conclude that n is perfect if and only if $\sigma_{-1}(n) = 2$.

Problem 4. We say that a positive integer n is **square-free** if n is not divisible by p^2 for any prime number p. (E.g. 15 and 37 are square-free, but 24 and 49 are not.) Consider the arithmetic function μ (named after A.F. Möbius, popularly known for his strip) as follows:

$$\mu(n) := \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n \text{ is NOT sqaure-free,} \\ (-1)^t & \text{if } n \text{ is sqaure-free and has exactly } t \text{ prime divisors.} \end{cases}$$

- (a) (3 pts) Compute $\mu(n)$ for $n = 1, \dots, 15$.
- (b) (4 pts) **Prove that** μ is multiplicative. That is, $\mu(ab) = \mu(a)\mu(b)$ whenever a, b are coprime.

Hint. Proceed by cases, taking cue from the definition of μ .

Problem 5. Let f(n) and g(n) be two arithmetic functions. Define $(f \star g)(n)$ by the formula

$$(f \star g)(n) := \sum_{d|n} f(d)g(\frac{n}{d}),$$

where the summation is taken over the set $\mathcal{D}(n) := \{d \mid d \text{ is a divisor of } n\}$. The new function $f \star g$ is called the **convolution** of f and g. The idea originates from Fourier analysis.

- (a) (4 pts) Let id denote the function mapping each positive integer n to itself. **Compute** the values of $(id \star \mu)(n)$ for $n = 1, \dots, 12$.
- (b) (2 pts) Let δ_1 be the function defined as follows:

$$\delta_1(n) := \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if otherwise.} \end{cases}$$

Prove that $\delta_1 \star f = f \star \delta_1 = f$ for any arithmetic function f. (In other words, δ_1 is the *identity* for the binary operation \star .)

(c) (2 pts) Show that $f \star g = g \star f$ for any arithmetic functions f and g. (In other words, the binary operation \star is *commutative*.)

Hint. Show that $d \mapsto \frac{n}{d}$ is a bijection from $\mathcal{D}(n)$ to itself.

(d) (6 pts) Show that $(f \star g) \star h = f \star (g \star h)$ for any arithmetic functions f, g, and h. (In other words, the binary operation \star is associative.)

Hint. Define $f \star g \star h$ as follows:

$$(f \star g \star h)(n) := \sum_{abc=n} f(a)g(b)h(c),$$

where the summation is taken over the set $\mathcal{D}_3(n) := \{(a,b,c) \in \mathcal{D}(n)^3 \mid abc = n\}$. Show that each of $(f \star g) \star h$ and $f \star (g \star h)$ is equal to $f \star g \star h$ using a bijective map from its summation index set to $\mathcal{D}_3(n)$.

(At this stage, we see that the set of arithmetic functions equipped with the binary operation \star and the element δ_1 forms a *commutative monoid*.)

(e) (6 pts) Suppose f and g are two multiplicative functions. **Prove that** $f \star g$ is a multiplicative function.

Hint. For any copirme pairs (m,n), use the bijection $\Phi \colon \mathscr{D}(m) \times \mathscr{D}(n) \to \mathscr{D}(mn)$.

(Hence, the subset of multiplicative functions forms a submonoid.)