Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №9 Экспериментальное построение частотных характеристик типовых динамических звеньев Вариант - 3

Выполнил		(подпись)
	(фамилия, и.о.)	
Проверил	(фамилия, и.о.)	(подпись)
"	Санкт-Петербург,	20г.
Работа выполнена с оценкой		
Дата защиты ""	20г.	

1 Задание

Цель работы - изучение частотных характеристик типовых динамических звеньев и способов их построения.

Если на вход устойчивого линейного звена с передаточной функцией W(s) подается гармонический сигнал $g(t) = g_m \sin \omega t$, то на его выходе в установившемся режиме будет гармонический сигнал $y(t) = y_m \sin (\omega t + \psi)$. Задача состоим в том, чтобы определить зависимость амплитуды $y_m(\omega)$ и разности фаз между выходым сигналом и входным $\psi(\omega)$ от частоты входного сигнала. Полученные графики получили название: амплитудно-частотная характеристика (АЧХ) и фазочастотная характеристика (ФЧХ).

В данной реботе необходимо получить АЧХ и ФЧХ линейных динамических звеньев, представленных в таблице 1, подставив в них параметры, указанные в таблице 2. После чего, на основе двух предыдущих характеристик, построить амплитудно-фазовую характеристику (АФЧХ).

Таблица 1 – Исходные элементарные звенья

Тип звена	Передаточная функция
Интегрирующее с замедлением	$\frac{K}{s(Ts+1)}$
Изодромное	$\frac{K(Ts+1)}{s}$
Консервативное	$\frac{K}{T^2s^2+1}$

Таблица 2 – Параметры

K	Т	ξ
10	2	0.25

$\mathbf{2}$ Исследование интегрирующего звена с замедлением

В таблице 3 представлены данные, снятые по графикам переходных процессов.

Таблица 3 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	1,000.28	60	-90.86
$1.78 \cdot 10^{-2}$	-1.75	562.35	55	-91.73
$3.16 \cdot 10^{-2}$	-1.5	315.82	49.99	-93.6
$5.62 \cdot 10^{-2}$	-1.25	176.83	44.95	-96.19
0.1	-1	98.12	39.84	-101.38
0.18	-0.75	53.01	34.49	-109.58
0.32	-0.5	26.74	28.54	-121.68
0.56	-0.25	11.82	21.45	-138.82
1	0	4.47	13.01	-153.79
1.78	0.25	1.52	3.65	-164.45
3.16	0.5	0.49	-6.13	-171.22
5.62	0.75	0.16	-16.06	-174.82
10	1	$4.99 \cdot 10^{-2}$	-26.03	-176.83
17.78	1.25	$1.58 \cdot 10^{-2}$	-36.02	-177.98
31.62	1.5	$5 \cdot 10^{-3}$	-46.02	-178.7
56.23	1.75	$1.58 \cdot 10^{-3}$	-56.02	-178.7
100	2	$5 \cdot 10^{-4}$	-66.02	-179.42

Передаточная функия исследуемого звена представлена в таблице 1. Из нее можно построить частотную функцию и найти выражения для АЧХ и ФЧХ.

$$W(j\omega) = \frac{-K(T\omega + j)}{\omega(T^2\omega^2 + 1)}$$

$$A(\omega) = \frac{K}{\omega\sqrt{T^2\omega^2 + 1}}$$

$$\psi(\omega) = \operatorname{arctg} \frac{1}{T\omega}$$

$$(1)$$

$$(2)$$

$$A(\omega) = \frac{K}{\omega\sqrt{T^2\omega^2 + 1}}\tag{2}$$

$$\psi(\omega) = \operatorname{arctg} \frac{1}{T\omega} \tag{3}$$

Экспериментально построенные характеристики данного звена представлены ниже.

Рисунок 1 – Частотные характеристики интегрирующего звена с запаздыванием

3 Исследование изодромного звена

В таблице 4 представлены данные, снятые по графикам переходных процессов.

Таблица 4 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	1,001.13	60.01	-88.7
$1.78 \cdot 10^{-2}$	-1.75	563.23	55.01	-88.13
$3.16 \cdot 10^{-2}$	-1.5	317.11	50.02	-86.04
$5.62 \cdot 10^{-2}$	-1.25	179.09	45.06	-83.81
0.1	-1	102.06	40.18	-79.06
0.18	-0.75	59.73	35.52	-69.98
0.32	-0.5	37.45	31.47	-57.6
0.56	-0.25	26.78	28.56	-41.62
1	0	22.37	26.99	-26.35
1.78	0.25	20.78	26.35	-15.41
3.16	0.5	20.25	26.13	-9.22
5.62	0.75	20.08	26.06	-5.62
10	1	20.03	26.03	-2.59
17.78	1.25	20.01	26.02	-1.58
31.62	1.5	20	26.02	-0.86
56.23	1.75	20	26.02	-0.14
100	2	20	26.02	-0.14

Передаточная функия исследуемого звена представлена в таблице 1. Из нее можно построить частотную функцию и найти выражения для АЧХ и ФЧХ.

$$W(j\omega) = \frac{K(T\omega - j)}{\omega} \tag{4}$$

$$W(j\omega) = \frac{K(T\omega - j)}{\omega}$$

$$A(\omega) = \frac{K\sqrt{T^2\omega^2 + 1}}{\omega}$$

$$\psi(\omega) = -\arctan\frac{1}{T\omega}$$
(4)
$$(5)$$

$$\psi(\omega) = -\arctan\frac{1}{T\omega} \tag{6}$$

Рисунок 2 – Частотные характеристики изодромного звена

4 Исследование консервативного звена

В таблице 5 представлены данные о частоте, фазе и амплитуде после графического сравнения графика входного воздействия и выходного. Из-за сильного искажения выходного сигнала (консерванивное звено обладает собственными колебаниями, амплитуда которых увеличивется с увеличением частоты) данные полностью снять не представлялось возможным.

Таблица 5 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	10.11	20.1	-0.14
$1.78 \cdot 10^{-2}$	-1.75	10.13	20.12	0.43
$3.16 \cdot 10^{-2}$	-1.5	10.4	20.34	-0.24
$5.62 \cdot 10^{-2}$	-1.25	10.94	20.78	2.45
0.1	-1	10.6	20.51	2.3
0.18	-0.75	15.03	23.54	-0.29
0.32	-0.5	26.57	28.49	2.74
0.5	-0.31	985.45	59.87	8.64
0.56	-0.25	78.61	37.91	-83.81
1	0	8.53	18.62	-180.14

Ниже представлены выражения частотных характеристик.

$$W(j\omega) = \frac{K}{1 - T^2 \omega^2} \tag{7}$$

$$A(\omega) = \frac{K}{|1 - T^2 \omega^2|} \tag{8}$$

$$A(\omega) = \frac{K}{|1 - T^2 \omega^2|}$$

$$\psi(\omega) = \begin{cases} 0, & \omega < \frac{1}{T} \\ -180, & \omega > \frac{1}{T} \end{cases}$$
(9)

На рисунке 3 представлены графики по данным, которые были сняты графически и полученные аналитически из выражения (8). Как видно из графиков, чем меньше частота колебаний - тем меньше амплитуда собственных колебаний системы.

Рисунок 3 – Частотные характеристики консервативного звена

Выводы

В данной работе мы исследовали частотные характеристике трех звеньев: интегрирующего с запаздыванием, изодромного, консервативного. Получили экспериментально графики частотных характеристик и сравнили их с соответствующими выражениями.

При отрицательных вещественных корнях характеристического уравнения, выходной гармонических сигнал будет колебаться с той же частотай, что и входной, но с измененной амплитудой и фазой. При чисто мнимых корнях проявляются собственные колебания системы, что приводит к генерации двух гармоник разной частоты (частоты входного сигнала и 1/T). Соответственно выходной сигнал будет сильно изменен.

Как видно из рисунка 1, 2 и 3, при частоте $\omega_c = 1/T = 0.5$ ЛАЧХ изменяет наклон, что соответствует теории. Фазовый сдвиг интегрирующего звена с замедление изменяется с -90° до -180° , изодромного соответсвенно от -90° до 0° и у консервативного от 0° до -180° .