Risk and Asset Allocation - Springer - symmys.com

Attilio Meucci

Linear Factor Models

Formulas and figures in this presentation refer to the book Risk and Asset Allocation, Springer.

The notation, say, (5.24) refers to Formula 24 in Chapter 5 of the book

The notation, say, (T4.12) refers to Formula 12 in the Technical Appendices for Chapter 4, which can be downloaded from www.symmys.com

Risk and Asset Allocation, Springer - symmys.com

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

Risk and Asset Allocation, Springer - symmys.com

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

Stocks: comp. returns
$$\mathbf{X} \equiv \left(\begin{array}{c} \ln{(P_{T+\tau,1}/P_{T,1})} \\ \vdots \\ \ln{(P_{T+\tau,N}/P_{T,N})} \end{array}\right) \quad \text{N=500: stocks in S\&P500}$$

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

Stocks: comp. returns
$$\mathbf{X} \equiv \left(\begin{array}{c} \ln{(P_{T+\tau,1}/P_{T,1})} \\ \vdots \\ \ln{(P_{T+\tau,N}/P_{T,N})} \end{array}\right) \quad \text{N=500: stocks} \\ \text{in S\&P500}$$

Bonds: yield changes
$$\mathbf{X} \equiv \left(\begin{array}{c} Y_{T+\tau}^{(v_1)} - Y_T^{(v_1)} \\ \vdots \\ Y_{T+\tau}^{(v_N)} - Y_T^{(v_N)} \end{array} \right) \quad \text{N=360: 1m,2m,...,30y points on the curve}$$

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

Stocks: comp. returns
$$\mathbf{X} \equiv \left(\begin{array}{c} \ln{(P_{T+\tau,1}/P_{T,1})} \\ \vdots \\ \ln{(P_{T+\tau,N}/P_{T,N})} \end{array}\right) \quad \text{N=500: stocks} \\ \text{in S\&P500}$$

$$\begin{array}{ll} \textbf{Derivatives:} \\ \textbf{log impl. vol.} \\ \textbf{changes} \end{array} \hspace{0.5cm} \textbf{X} \equiv \left(\begin{array}{c} \ln \sigma_{T+\tau}^{(m_1,\upsilon_1)} - \ln \sigma_{T}^{(m_1,\upsilon_1)} \\ \vdots \\ \ln \sigma_{T+\tau}^{(m_Q,\upsilon_S)} - \ln \sigma_{T}^{(m_Q,\upsilon_S)} \end{array} \right) \begin{array}{c} \textbf{N=QxS, Q=10} \\ \text{times to expiry and S=10} \\ \text{moneyness levels} \end{array}$$

Risk and Asset Allocation, Springer - symmys.com

 $\mathbf{X} \sim f_{\mathbf{x}}$ N imes 1 horizon-specific (random) market drivers with known distribution

Stocks: comp. returns
$$\mathbf{X} \equiv \left(\begin{array}{c} \ln{(P_{T+\tau,1}/P_{T,1})} \\ \vdots \\ \ln{(P_{T+\tau,N}/P_{T,N})} \end{array}\right) \quad \text{N=500: stocks} \\ \text{in S\&P500}$$

$$\begin{array}{ll} \textbf{Bonds:} \\ \textbf{yield changes} \end{array} & \mathbf{X} \equiv \left(\begin{array}{c} Y_{T+\tau}^{(\upsilon_1)} - Y_{T}^{(\upsilon_1)} \\ \vdots \\ Y_{T+\tau}^{(\upsilon_N)} - Y_{T}^{(\upsilon_N)} \end{array} \right) \end{array} \quad \begin{array}{c} \mathsf{N=360:} \ \mathsf{1m,2m,...,30y} \\ \mathsf{points} \ \mathsf{on} \ \mathsf{the} \ \mathsf{curve} \end{array}$$

Derivatives: log impl. vol. changes

$$\mathbf{X} \equiv \begin{pmatrix} \ln \sigma_{T+\tau}^{(m_1,\upsilon_1)} - \ln \sigma_{T}^{(m_1,\upsilon_1)} \\ \vdots \\ \ln \sigma_{T+\tau}^{(m_Q,\upsilon_S)} - \ln \sigma_{T}^{(m_Q,\upsilon_S)} \end{pmatrix} \begin{array}{l} \text{N=QxS, Q=10} \\ \text{times to expiry} \\ \text{and S=10} \\ \text{moneyness levels} \end{array}$$

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 \mathbf{B} : $N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 \mathbf{B} $N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

 $K \ll N$

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 \mathbf{B} : $N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

 $K \ll N$

 $\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$

U "small" ?

$$X \equiv BF + U$$
.

OPTIMALITY CRITERIA

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N imes 1$ (random) residuals

U "small" ?

"distance" among random variables

$$\mathbb{E}\left\{\left(\mathbf{X}-\widetilde{\mathbf{X}}\right)'\left(\mathbf{X}-\widetilde{\mathbf{X}}\right)\right\}$$

$$X \equiv BF + U$$
.

OPTIMALITY CRITERIA

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

U "small" ?

• "distance" among random variables

$$\frac{\mathbb{E}\left\{ \left(\mathbf{X} - \widetilde{\mathbf{X}}\right)' \left(\mathbf{X} - \widetilde{\mathbf{X}}\right) \right\}}{\operatorname{tr}\left\{\operatorname{Cov}\left\{\mathbf{X}\right\}\right\}}$$

$$X \equiv BF + U$$
.

OPTIMALITY CRITERIA

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B}: N \times K$ (deterministic) loadings

U "small" ?

 $\mathbf{U} = N \times 1$ (random) residuals

multivariate r-square:"distance" among random variables

$$(3.116) \quad R^{2}\left\{ \mathbf{X},\widetilde{\mathbf{X}}\right\} \equiv1-\frac{\mathrm{E}\left\{ \left(\mathbf{X}-\widetilde{\mathbf{X}}\right)^{\prime}\left(\mathbf{X}-\widetilde{\mathbf{X}}\right)\right\} }{\mathrm{tr}\left\{ \mathrm{Cov}\left\{ \mathbf{X}\right\}\right\} }$$

$$X \equiv BF + U$$
.

OPTIMALITY CRITERIA

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

U "small" ?

- "recovered" market $\widetilde{X} \equiv BF$
- multivariate r-square:"distance" among random variables

(3.116)
$$R^{2}\left\{\mathbf{X},\widetilde{\mathbf{X}}\right\} \equiv 1 - \frac{E\left\{\left(\mathbf{X} - \widetilde{\mathbf{X}}\right)'\left(\mathbf{X} - \widetilde{\mathbf{X}}\right)\right\}}{\operatorname{tr}\left\{\operatorname{Cov}\left\{\mathbf{X}\right\}\right\}}$$

$$X \equiv BF + U$$
.

OPTIMALITY CRITERIA

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 \mathbf{B} $N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

multivariate r-square:"distance" among random variables

$$(3.116) \quad R^{2}\left\{ \mathbf{X},\widetilde{\mathbf{X}}\right\} \equiv1-\frac{\mathrm{E}\left\{ \left(\mathbf{X}-\widetilde{\mathbf{X}}\right)^{\prime}\left(\mathbf{X}-\widetilde{\mathbf{X}}\right)\right\} }{\mathrm{tr}\left\{ \mathrm{Cov}\left\{ \mathbf{X}\right\}\right\} }$$

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 \mathbf{B} : $N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N},$$

U "small" $\Leftrightarrow R^2\{X, BF\}$ large

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

 $K \ll N$

 $\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N},$

U "small" $\Leftrightarrow R^2\{X,BF\}$ large

U idiosyncratic

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N},$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

LINEAR FACTOR MODELS - "residual" approach

$$X \equiv BF + U$$
.

- $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution
- ${f F}=K imes 1$ (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known
- $\mathbf{B} = N \times K$ (deterministic) loadings, known
- $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

"RESIDUAL" approach

- e.g. X bond returns
 - **B**: key rate durations
 - **F** changes in key rates

LINEAR FACTOR MODELS – "residual" approach

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings, known

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$\checkmark K \ll N$$

$$\times$$
 Cor $\{F, U\} = \mathbf{0}_{K \times N}$

$$igwedge U$$
 "small" $\Leftrightarrow R^2\left\{X,BF\right\}$ large

X U idiosyncratic

"RESIDUAL" approach

e.g. X bond returns

B: key rate durations

 ${f F}$ changes in key rates

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

- e.g. ${f X}$ stock compounded returns
 - **B** "betas"
 - ${f F}$ S&P index return, ...

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

 \mathbf{U} "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

- e.g. X stock compounded returns
 - **B** "betas"
 - ${f F}$ S&P index return, ...

LINEAR FACTOR MODELS – exogenous factors: Fama - French

Risk and Asset Allocation, Springer - symmys.com

$$C_{t,\tau}^{(n)} \equiv \ln\left(\frac{P_t^{(n)}}{P_{t-\tau}^{(n)}}\right)$$
 (3.183)

 C^M broad stock market index

SmB "Small minus Big" market capitalization

HmL "High minus Low" book to market value

LINEAR FACTOR MODELS – exogenous factors: Fama - French

Risk and Asset Allocation, Springer - symmys.com

$$C_{t,\tau}^{(n)} \equiv \ln\left(\frac{P_t^{(n)}}{P_{t-\tau}^{(n)}}\right)$$
 (3.183)

 C^M broad stock market index

SmB "Small minus Big" market capitalization

HmL "High minus Low" book to market value

$$C_{t,\tau}^{(n)} \equiv \mathbb{E}\left\{C_{t,\tau}^{(n)}\right\} + \beta \square \left(C_{t,\tau}^{M} - \mathbb{E}\left\{C_{t,\tau}^{M}\right\}\right) + \gamma \square \left(SmB_{t,\tau} - \mathbb{E}\left\{SmB_{t,\tau}\right\}\right) + \zeta \square \left(HmL_{t,\tau} - \mathbb{E}\left\{HmL_{t,\tau}\right\}\right) + U_{t,\tau}^{(n)}$$
(3.184)

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

U "small" \Leftrightarrow $R^2\{X,BF\}$ large

U idiosyncratic

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 B exogenous F from optimality criteria
- 4 F B from optimality criteria

$$\mathbf{B}_r \equiv \underset{\mathbf{B}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B}$$
 $N \times K$ (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

 \mathbf{U} "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

X U idiosyncratic

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$${f F}=K imes 1$$
 (random) risk factors: $f_{f F}$ $f_{{f X},{f F}}$ known

$$\mathbf{B}$$
 $N \times K$ (deterministic) loadings

$$\mathbf{U} = N imes 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\times$$
 Cor $\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$.

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

X U idiosyncratic

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} \mapsto \left(egin{array}{c} 1 \ \mathbf{F} \end{array}
ight)$$
 (random) risk factors: $f_{\mathbf{F}}$ $f_{\mathbf{X},\mathbf{F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

X U idiosyncratic

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

U 'small" \Leftrightarrow $R^2\{X,BF\}$ large

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= E \left\{ \mathbf{X} \mathbf{F}' \right\} E \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

$$Cov \{F\} \equiv E\Lambda E' \qquad (3.133)$$

$$\mathbf{C}_{XF} \equiv \operatorname{Cor}\left\{\mathbf{X}, \mathbf{E}'\mathbf{F}\right\}$$
 (3.139)

$$R^2 = \frac{\operatorname{tr}\left(\mathbf{C}_{XF}\mathbf{C}_{XF}'\right)}{N}.$$

ightharpoonup "small" \Leftrightarrow $R^2\{X,BF\}$ large

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

LINEAR FACTOR MODELS - exogenous factors

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} \mapsto \begin{pmatrix} 1 \\ \mathbf{F} \end{pmatrix}$$
 (random) risk factors: $f_{\mathbf{F}} \ f_{\mathbf{X},\mathbf{F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

- ightharpoonup "small" $\Leftrightarrow R^2\{X, BF\}$ large
- X U idiosyncratic

"TIME SERIES" approach (MISNOMER)

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

LINEAR FACTOR MODELS - exogenous factors

Risk and Asset Allocation, Springer - symmys.com

Fig. 3.13. Collinearity: the regression plane is not defined

LINEAR FACTOR MODELS - exogenous factors selection routine

Risk and Asset Allocation, Springer - symmys.com

$$I_N \equiv \{1, \dots, N\}$$
 (3.187)
$$I_K^* = \operatorname*{argmax}_{I_K \subset I_N} \mathcal{O}\left(I_K\right)$$
 (3.191)
$$I_K \equiv \{n_1, \dots, n_K\}$$
 (3.188)

Step 0. Set $K \equiv N$, and consider the initial set $I_K \equiv \{1, \dots, N\}$

Step 1. Consider the K sets obtained from I_K by dropping the generic k-th element:

$$I_K^k \equiv \{n_1, \dots, n_{k-1}, n_{k+1}, \dots n_K\}, \quad k = 1, \dots, K.$$
 (3.198)

Step 2. Evaluate the above sets:

$$k \mapsto v_K^k \equiv \mathcal{O}\left(I_K^k\right), \quad k = 1, \dots, K.$$
 (3.199)

Step 3. Determine the worst element in I_K :

$$k^* \equiv \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \left\{ v_K^k \right\}. \tag{3.200}$$

Step 4. Drop the worst element in I_K :

$$I_{K-1} \equiv I_K^{k^*}. \tag{3.201}$$

Step 5. If K=2 stop. Otherwise set $K\equiv K-1$ and go to Step 1.

LINEAR FACTOR MODELS - exogenous factors

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} \mapsto \left(egin{array}{c} 1 \ \mathbf{F} \end{array}
ight)$$
 (random) risk factors: $f_{\mathbf{F}}$ $f_{\mathbf{X},\mathbf{F}}$ known

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N imes 1$$
 (random) residuals

APPROACHES

1 - F B exogenous

- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$\checkmark K \ll N$$

$$ightharpoonup U$$
 "small" \Leftrightarrow $R^2\{X,BF\}$ large

X U idiosyncratic

"TIME SERIES" approach (MISNOMER)

$$\mathbf{B}_r \equiv \operatorname*{argmax}_{\mathbf{B}} R^2 \left\{ \mathbf{X}, \mathbf{BF} \right\} \quad (3.120)$$

$$= \mathbf{E} \left\{ \mathbf{X} \mathbf{F}' \right\} \mathbf{E} \left\{ \mathbf{F} \mathbf{F}' \right\}^{-1} (3.121)$$

$$X \equiv BF + U$$
.

- $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution
- $\mathbf{F} = K \times 1$ (random) risk factors
- $\mathbf{B} = N \times K$ (deterministic) loadings, known
- $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- $\bf 3$ $\bf B$ exogenous $\bf F$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

U "small" \Leftrightarrow $R^2\{X,BF\}$ large

U idiosyncratic

"CROSS SECTION" approach

e.g. X stock compounded returns

B. GICS 1/0 industry partition

 ${f F}$ industry factors

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings, known

 $\mathbf{U} = N \times 1$ (random) residuals

OPTIMALITY CRITERIA

 $K \ll N$

 $\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$

U "small" $\Leftrightarrow R^2\{X,BF\}$ large

U idiosyncratic

APPROACHES

1 - F B exogenous

2 - F exogenous B from optimality criteria

3 - B exogenous F from optimality criteria

4 - F B from optimality criteria

"CROSS SECTION" approach

$$F \equiv A'X$$

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings, known

$$\mathbf{U} = N \times 1$$
 (random) residuals

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N},$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

"CROSS SECTION" approach

$$F \equiv A'X$$

$$\mathbf{F}_c \equiv \underset{\mathbf{F} \equiv \mathbf{A}'\mathbf{X}}{\operatorname{argmax}} R^2 \{ \mathbf{X}, \mathbf{BF} \}$$

= $(\mathbf{B}'\mathbf{B})^{-1} \mathbf{B}'\mathbf{X}$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings, known

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$\checkmark K \ll N$$

$$\times$$
 Cor $\{F, U\} = \mathbf{0}_{K \times N}$

$$ightharpoonup U$$
 "small" \Leftrightarrow $R^2\{X,BF\}$ large

X U idiosyncratic

"CROSS SECTION" approach

$$F \equiv A'X$$

$$\mathbf{F}_c \equiv \underset{\mathbf{F} \equiv \mathbf{A}'\mathbf{X}}{\operatorname{argmax}} R^2 \{ \mathbf{X}, \mathbf{BF} \}$$

= $(\mathbf{B}'\mathbf{B})^{-1} \mathbf{B}'\mathbf{X}$

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

 $K \ll N$

 $\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N},$

 \mathbf{U} "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

"PCA" approach

e.g. X yield curve changes

B: market / slope / butterfly

 ${f F}$ parallel shift / tilt / twist

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 B exogenous F from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

$$F \equiv A'X$$

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 B exogenous F from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

$$U$$
 "small" \Leftrightarrow $R^2\{X,BF\}$ large

U idiosyncratic

$$F \equiv A'X$$

$$(\mathbf{B}_p, \mathbf{A}_p) \equiv \operatorname*{argmax}_{\mathbf{B}, \mathbf{A}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\}_{(3.147)}$$

$$X \equiv BF + U$$
.

- $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution
- $\mathbf{F} = K \times 1$ (random) risk factors
- \mathbf{B} : $N \times K$ (deterministic) loadings
- $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

U "small" \Leftrightarrow $R^2\{X,BF\}$ large

U idiosyncratic

$$F \equiv A'X$$

$$(\mathbf{B}_p, \mathbf{A}_p) \equiv \underset{\mathbf{B}, \mathbf{A}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\}$$
(3.147)

$$\mathbf{A} \equiv \mathbf{B} = \mathbf{E}_K$$
 \bullet
$$\mathbf{E}_K \equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)}\right) \bullet$$

$$\operatorname{Cov} \left\{\mathbf{X}\right\} \equiv \mathbf{E} \Lambda$$

LINEAR FACTOR MODELS – principal component analysis

Risk and Asset Allocation, Springer - symmys.com

Fig. 3.14. Hidden factor dimension reduction: PCA

$$X \equiv BF + U$$
.

U "small" \Leftrightarrow $R^2\{X,BF\}$ large

$$R^{2} = \frac{\sum_{n=1}^{K} \lambda_{n}}{\sum_{n=1}^{N} \lambda_{n}} (3.162)$$

 $F \equiv A'X$

$$(\mathbf{B}_p, \mathbf{A}_p) \equiv \underset{\mathbf{B}, \mathbf{A}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\}_{(3.147)}$$

$$\mathbf{A} \equiv \mathbf{B} = \mathbf{E}_K$$
 \bullet
$$\mathbf{E}_K \equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)}\right) \bullet \cdots$$

$$\operatorname{Cov}\left\{\mathbf{X}\right\} \equiv \mathbf{E}\Lambda\mathbf{I}$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

$$\operatorname{Cor} \{ \mathbf{F}, \mathbf{U} \} = \mathbf{0}_{K \times N}$$

 \checkmark U 'small" \Leftrightarrow R^2 {X,BF} large

U idiosyncratic

$$F \equiv A'X$$

$$(\mathbf{B}_p, \mathbf{A}_p) \equiv \underset{\mathbf{B}, \mathbf{A}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\}$$
(3.147)

$$\mathbf{A} \equiv \mathbf{B} \equiv \mathbf{E}_K$$

$$\mathbf{E}_K \equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)}\right) + \mathbf{Cov} \left\{\mathbf{X}\right\} \equiv \mathbf{E}\Lambda$$

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N imes 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- ${\bf 3}$ ${\bf B}$ exogenous ${\bf F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$\checkmark K \ll N$$

$$\checkmark$$
 Cor $\{\mathbf{F}, \mathbf{U}\} = \mathbf{0}_{K \times N}$.

$$\checkmark$$
 U "small" \Leftrightarrow R^2 {X, BF} large

X U idiosyncratic

$$F \equiv A'X$$

$$(\mathbf{B}_p, \mathbf{A}_p) \equiv \underset{\mathbf{B}, \mathbf{A}}{\operatorname{argmax}} R^2 \left\{ \mathbf{X}, \mathbf{B} \mathbf{A}' \mathbf{X} \right\}$$
(3.147)

$$\mathbf{A} \equiv \mathbf{B} = \mathbf{E}_K$$
 \bullet
$$\mathbf{E}_K \equiv \left(\mathbf{e}^{(1)}, \dots, \mathbf{e}^{(K)}\right) \bullet$$

$$\operatorname{Cov}\left\{\mathbf{X}\right\} \equiv \mathbf{E}\Lambda$$

$$X \equiv BF + U$$
.

$$\mathbf{X} \sim f_{\mathbf{X}}$$
 $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

Cor
$$\{F, U\} = \mathbf{0}_{K \times N}$$

$$\mathbf{U}$$
 "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

"FACTOR ANALYSIS" approach

- e.g. X stock compounded returns
 - **B** statistical loadings
 - \mathbf{F} N/A

$$X \equiv BF + U$$
.

 $\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

 $\mathbf{F} = K \times 1$ (random) risk factors

 $\mathbf{B} = N \times K$ (deterministic) loadings

 $\mathbf{U} = N \times 1$ (random) residuals

APPROACHES

- 1 ${\bf F}$ ${\bf B}$ exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$K \ll N$$

Cor
$$\{F, U\} = \mathbf{0}_{K \times N}$$

 \mathbf{U} "small" $\Leftrightarrow R^2\{\mathbf{X},\mathbf{BF}\}$ large

U idiosyncratic

"FACTOR ANALYSIS" approach

$$\operatorname{Cov}\left\{ \mathbf{X}\right\} \equiv\mathbf{B}\mathbf{B}^{\prime}+\mathbf{D}$$
 diagonal

$$X \equiv BF + U$$
.

$\mathbf{X} \sim f_{\mathbf{X}}$ $N \times 1$ horizon-specific (random) market drivers with known distribution

$$\mathbf{F} = K \times 1$$
 (random) risk factors

$$\mathbf{B} = N \times K$$
 (deterministic) loadings

$$\mathbf{U} = N \times 1$$
 (random) residuals

APPROACHES

- 1 F B exogenous
- 2 F exogenous B from optimality criteria
- 3 ${f B}$ exogenous ${f F}$ from optimality criteria
- 4 F B from optimality criteria

OPTIMALITY CRITERIA

$$\checkmark K \ll N$$

- igwedge U "small" $\Leftrightarrow R^2\left\{ {{
 m X,BF}} \right\}$ large
- √ U idiosyncratic

"FACTOR ANALYSIS" approach

$$\operatorname{Cov} \left\{ \mathbf{X} \right\} \equiv \mathbf{B}\mathbf{B}' + \mathbf{D}$$
 diagonal

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

interpretation return
$$R_n \equiv \frac{P_{n,T+\tau} - P_{n,T}}{B_{n,T}}$$
 "basis"

estimation

invariants
$$X \equiv BF + U$$
.

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

interpretation return
$$R_n \equiv \frac{P_{n,T+ au} - P_{n,T}}{B_{n,T}}$$
 "basis"

systematic idiosyncratic

$$\mathbf{R} = \beta R_M + 1$$

$$\mathbf{R} = eta R_M + \mathbf{I}$$
 $\mathbf{R} = \mathbf{DZ} + \mathbf{I}$

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$ interpretation return $R_n \equiv \frac{P_{n,T+\tau} - P_{n,T}}{B_{n,T}}$ "basis" systematic idiosyncratic $\mathbb{R}_{t,\tau}^f \equiv \left(\frac{1}{Z_{t-\tau}^{(t)}} - 1\right)$ (3.181) $\mathbb{R}_{t,\tau}^f \equiv \left(\frac{1}{Z_{t-\tau}^{(t)}} - 1\right)$ (3.181) $\mathbb{R}_{t,\tau}^f \equiv \left(\frac{1}{Z_{t-\tau}^{(t)}} - 1\right)$ (3.181) APT: if $\mathbf{R} = \mathbf{DZ} + \mathbf{I}$ \Rightarrow $\mathbf{E}\left\{\mathbf{R}\right\} = \beta E\left\{R_M\right\} + (1-\beta)\,R_f$ (3.186) financial theory

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

interpretation return
$$R_n \equiv \frac{P_{n,T+ au} - P_{n,T}}{B_{n,T}}$$
 "basis"

capM: if
$$\mathbf{R} = \beta R_M + \mathbf{I}$$
 \Rightarrow $\mathbf{E}\{\mathbf{R}\} = \beta E\{R_M\} + (1-\beta)\,R_f$ (3.180) financial theory
$$\mathbf{R} = \mathbf{DZ} + \mathbf{I} \Rightarrow \mathbf{E}\{\mathbf{R}\} = \xi_0 \mathbf{1} + \mathbf{D}\xi$$
 (3.186)

portfolio return
$$R_{\mathbf{w}} \equiv \sum_{n=1}^{N} w_n R_n$$

Risk and Asset Allocation, Springer - symmys.com

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

portfolio return
$$R_{\mathbf{w}} \equiv \sum_{n=1}^N w_n R_n$$
 $R_{\mathbf{w}} = \mathbf{d}_{\mathbf{w}}' \mathbf{Z} + \eta_{\mathbf{w}}$

Risk and Asset Allocation, Springer - symmys.com

invariants
$$X \equiv BF + U$$
.

invariants
$$\mathbf{X} \equiv \mathbf{BF} + \mathbf{U}$$
. horizon prices $P_{n,T+\tau} = g_n\left(\mathbf{X}\right)$

interpretation return
$$R_n \equiv \frac{P_{n,T+ au} - P_{n,T}}{B_{n,T}}$$
 "basis"

$$\text{systematic} \quad \text{idiosyncratic} \\ \mathbf{K}_{t,\tau}^f \equiv \left(\frac{1}{Z_{t-\tau}^{(t)}} - 1\right) \quad \text{(3.181)} \\ \mathbf{CAPM:} \quad \text{if} \quad \mathbf{R} = \boldsymbol{\beta} R_M + \mathbf{I} \quad \Rightarrow \quad \mathbf{E}\left\{\mathbf{R}\right\} = \boldsymbol{\beta} E\left\{R_M\right\} + (1-\boldsymbol{\beta})\,R_f \quad \text{(3.180)} \\ \mathbf{APT:} \quad \text{if} \quad \mathbf{R} = \mathbf{DZ} + \mathbf{I} \quad \Rightarrow \quad \mathbf{E}\left\{\mathbf{R}\right\} = \xi_0 \mathbf{1} + \mathbf{D} \boldsymbol{\xi} \quad \text{(3.186)}$$
 financial theory

$$\text{portfolio return} \ \ R_{\mathbf{w}} \equiv \sum_{n=1}^{N} w_n R_n \qquad R_{\mathbf{w}} = \mathbf{d}_{\mathbf{w}}' \mathbf{Z} + \eta_{\mathbf{w}}$$
 • hedging
$$\mathbf{d}_{\mathbf{w}} \equiv \underset{\mathbf{d} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{R}^2 \left(R_{\mathbf{w}}, \mathbf{d}' \mathbf{Z} \right) \right\}$$
 • style analysis

Risk and Asset Allocation, Springer - symmys.com

linear models on invariants for estimation

financial theory (CAPM, APT) on linear returns for interpretation

Risk and Asset Allocation, Springer - symmys.com

linear models on invariants for estimation

residual not idiosyncratic

residual correlated with factors

financial theory (CAPM, APT) on linear returns for interpretation

Risk and Asset Allocation, Springer - symmys.com

linear models on invariants for estimation

residual not idiosyncratic

residual correlated with factors

financial theory (CAPM, APT) on linear returns for interpretation

OK for non-equity products (e.g. options)

OK for autocorrelated processes

Risk and Asset Allocation, Springer - symmys.com

linear models on invariants for estimation

residual not idiosyncratic

residual correlated with factors

financial theory (CAPM, APT) on linear returns for interpretation

OK for non-equity products (e.g. options)

OK for autocorrelated processes

betas depend on the horizon

Risk and Asset Allocation, Springer - symmys.com

linear models on invariants for estimation

residual not idiosyncratic

residual correlated with factors

financial theory (CAPM, APT) on linear returns for interpretation

OK for non-equity products (e.g. options)

OK for autocorrelated processes

betas depend on the horizon

NOT estimation model