ECE Algorithm Homework 1

1. Prove the *Symmetry* property of $\Theta(\cdot)$, i.e. $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Solution:

$$\begin{split} f(n) &= \Theta(g(n)) &\implies g(n) = \Theta(f(n)) \\ & \text{Suppose that } f(n) = \Theta(g(n)). \quad \text{We got } f(n) = O(g(n)) \text{ and } f(n) = \ \Omega\left(g(n)\right). \\ & \text{Then, there exist } A, \ B > 0 \text{ such that } Ag(n) \leq f(n) \leq Bg(n) \text{ for sufficiently large } n. \\ & \text{Since } f(n) \leq Bg(n) \Longrightarrow (1/B) \ f(n) \leq g(n) \text{ and } Ag(n) \leq f(n) \Longrightarrow g(n) \leq (1/A) \ f(n), \\ & \text{we have } (1/B) \ g(n) \leq g(n) \leq (1/A) \ g(n) \text{ for sufficiently large } n. \\ & \text{Since } 1/A, \ 1/B > 0, \ \text{We got } g(n) = O(f(n)) \text{ and } g(n) = \ \Omega\left(f(n)\right). \text{ we conclude that } g(n) = \Theta(f(n)). \\ & \text{Gan proof using the same way we proof } f(n) = \Theta(g(n)) \implies g(n) = \Theta(f(n)). \end{split}$$

2. Problem 3-2 in CLRS Text book.

A	B	0	0	Ω	ω	Θ
$\lg^k n$	n^{ϵ}	yes	yes	no	no	no
n^k	c^n	yes	yes	no	no	no
\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
2^n	$2^{n/2}$	no	no	yes	yes	no
$n^{\log c}$	$c^{\log n}$	yes	no	yes	no	yes
$\log(n!)$	$\log(n^n)$	yes	no	yes	no	yes

3. You have three algorithms to a problem and you do not know their efficiency, but fortunately, you find the recurrence formulas for each solution, which are shown as follows:

A:
$$T(n) = 5T\left(\frac{n}{2}\right) + \Theta(n)$$

B:
$$T(n) = 2T\left(\frac{9n}{10}\right) + \Theta(n)$$

C:
$$T(n) = T\left(\frac{n}{3}\right) + \Theta(n^2)$$

Please give the running time of each algorithm (in Θ notation), and which of your algorithms is the fastest (You probably can do this without a calculator)?

Solution:

For algorithm A:
$$T(n) = 5T(\frac{n}{2}) + \Theta(n)$$
, $a = 5$, $b = 2$, $f(n) = \Theta(n)$, $d = 1$, $\log_b a = \log_2 5 > 1 = d$, so $T(n) = \Theta(n^{\log_b a}) = 1$

$$\Theta(n^{\log_2 5})$$
.

For algorithm B: $T(n) = 2T\left(\frac{9n}{10}\right) + \Theta(n)$,

$$a = 2$$
, $b = \frac{10}{9}$, $f(n) = \Theta(n)$, $\therefore d = 1$, $\log_b a = \log_{\frac{10}{9}} 2 > 1 = d$, so $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_{\frac{10}{9}} 2})$.

For algorithm C: $T(n) = T\left(\frac{n}{3}\right) + \Theta(n^2)$,

$$a = 1$$
, $b = 3$, $f(n) = \Theta(n^2)$, $\therefore d = 2$, $\log_b a = \log_3 1 < 2 = d$,

so
$$T(n) = \Theta(f(n)) = \Theta(n^d) = \Theta(n^2)$$
.

$$\log_2 5 > \log_2 4 = 2$$
, $\log_2 5 < \log_2 8 < 3 = \log_{\frac{10}{9}} (\frac{10}{9})^3 = \log_{\frac{10}{9}} \frac{1000}{729} < \log_{\frac{10}{9}} 2$. So, we have

 $2 < \log_2 5 < \log_{\frac{10}{9}} 2$. The 3rd solution C is the fastest.

4. Use the substitution method to prove that $T(n) = 2T\left(\frac{n}{2}\right) + cn\log_2 n$ is $(n(\log_2 n)^2)$.

Solution:

 $T(1) = 1 > 0 = d \times 1 \times \log_2 1$, so, we set the boundary as 2. Our base is $T(2) \le d * 2(\log_2 2)^2$.

Induction Hypothesis: If for all k < n we have $T(k) \le dk (\log_2 k)^2$.

$$T(n) = 2T\left(\frac{n}{2}\right) + cn\log_2 n \le 2d\frac{n}{2}(\log_2 \frac{n}{2})^2 + cn\log_2 n = dn(\log_2 n - 1)^2 + cn\log_2 n$$

$$= dn(\log_2 n)^2 - 2dn\log_2 n + dn + cn\log_2 n.$$

If we set $-2dn \log_2 n + dn + cn \log_2 n \le 0$, formula above is smaller than $dn (\log_2 n)^2$,

$$\leftrightarrow (2\log_2 n - 1)nd \ge cn\log_2 n$$

$$\leftrightarrow (2\log_2 n - 1)d \ge c\log_2 n$$

$$\leftrightarrow d \ge \frac{c \log_2 n}{2 \log_2 n - 1} = c \frac{1}{2 - \frac{1}{\log_2 n}}, c \frac{1}{2 - \frac{1}{\log_2 n}} \text{ monotone decrease from } 2 \text{ to } +\infty,$$

$$c \frac{1}{2 - \frac{1}{\log_2 n}} \le c \frac{1}{2 - \frac{1}{\log_2 2}} = c$$
. That is, if we set $d \ge c$, $T(n) \le dn (\log_2 n)^2$

Therefore, $T(n) = O(n(\log_2 n)^2)$.

5. First use the iteration method to solve the recurrence

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{3}\right) + n$$

Then use the substitution method to verify your solution.

Solution:

: We have
$$C_1 = n + \frac{1}{5}n + \dots + (\frac{5}{5})^{\log_3 n} \cdot n \leq T(n) \leq n + \frac{5}{5}n + \dots + (\frac{5}{5})^{\log_3 n} \cdot n = C_2$$

Note. $a \log_5 n = n \log_5 a$. Since $(a \log_5 n = a \log_5 a \log_5 n) = a \log_5 a \log_5 a = n \log_5 a$
 $C_1 = n(1 + \frac{5}{5} + \dots + (\frac{5}{5})(g_3 n)) = n \frac{1 - (\frac{5}{5})(\log_3 n + 1)}{1 - \frac{5}{5}} = 6n(1 - \frac{5}{5}n \log_3 \frac{5}{5})$, which is $\theta(n)$
 $C_2 = n(1 + \frac{5}{5} + \dots + (\frac{5}{5})(g_3 n)) = n \frac{1 - (\frac{5}{5})(g_2 n + 1)}{1 - \frac{5}{5}} = 6n(1 - \frac{5}{5}n \log_3 \frac{5}{5})$, which is $\theta(n)$

So, we can get $T(n)$ is $\theta(n)$.

The upper bound:

IH:
$$T(k) \leq dk$$
 for all $k < n$
 $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + n \leq d\frac{n}{2} + d\frac{n}{3} + n = d\frac{\pi}{2} + n$

In order to make $T(n) \leq dn$, we can set

 $f(n) = f(n) = dn$
 $f(n) = f(n) = dn$

If we set $d \geq 6$, $T(n) \leq dn$, which means $T(n)$ is $O(n)$.

The lower bound:

IH: $T(k) \geq Ck$ for all $k < n$
 $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + n \geq C\frac{n}{2} + C\frac{n}{3} + n = (\frac{\pi}{6} n + n)$

In order to make $T(n) \geq Cn$, we can set

 $Cf(n) = f(n) \geq Cn$

If we set $C \leq 6$, $T(n) \geq Cn$, which means $T(n)$ is $SO(n)$.

So, $T(n)$ is $O(n)$, the constant coefficient is $f(n)$

6. Solving the recurrence: (Base is 2)

$$T(n) = 2T(\sqrt{n}) + \log n$$

(Hint: Making change of variable)

Solution:

If we set $m = \log n$, we will have

$$T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$$

And we set $S(m) = T(2^m)$, we will get

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

We can easily use master method to get the solution of it: $S(m) = \Theta(m \log m)$. And we substitute n back to this solution, $T(n) = T(2^m) = S(m) = \Theta(m \log m) = \Theta(\log n \log(\log n))$.

7. You have 5 algorithms, A1 took O(n) steps, A2 took $O(n \log n)$ steps, and A3 took O(n) steps, A4 took $O(n^3)$ steps, A5 took $O(n^2)$ steps. You had been given the exact running time of

each algorithm, but unfortunately you lost the record. In your messy desk you found the following formulas:

(a)
$$7n\log_2 n + 12\log_2\log_2 n$$

(b)
$$7(2^{2\log_2 n}) + \frac{n}{2} + 957$$

(c)
$$\frac{2^{\log_4 n}}{3} + 120n + 7$$

(d)
$$(\log_2 n)^2 + 75$$

- (e) 7*n*!
- (f) $2^{3 \log_2 n}$
- (g) $2^{2\log_2 n}$

For each algorithm write down all the possible formulas that could be associated with it.

Solution:

Simplify and rewrite:

(a)
$$7n \log_2 n + 1 > (cg_2 \log_2 n)$$

(b) $7 \cdot (2 > (cg_2 n) + \frac{n}{2} + 7 = 7n^2 + \frac{n}{2} + 7$

(c) $\frac{2 \log_2 n}{3} + 1 \ge 0n + 7 = 1 \ge 0n + \frac{\sqrt{n}}{3} + 7$

(d) $((og_2 n)^2 + 7 \le (e) 7n!$

(f) $2^{3\log_2 n} = n^3$

(g) $2^{3\log_2 n} = n^2$

A1: (c) (d)

A2: (a)

A3: (a) (b) (c) (e) (f) (g)

A4: (a) (b) (c) (d) (f) (g)

A5: (a) (c) (d)

8. Determine the time complexity of following code pieces (Figure 1), using big-O notation (every single statement has O(1) time complexity).

Figure 1

Solution:

Sequence of statements: O(1) or O(k)

If-else: O(1) or O(k)

Loops: O(N) or O(Nk)

Nested loops: O(NM) or O(NMk)

- 9. Analyze the time complexity of following code pieces (Figure 2), using big-O notation (assume
- 'A' in the following code is an integer array).

Figure2: Code

Solution: O(logN)