Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

- Regular expressions are string generators
- Finite Automata (DFA, NFA) are string acceptors of REG
- CFGs are string generators
- What is the string acceptor of CFG?
 - Pushdown automata

Finite automata:

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

Writing a symbol on stack: Push Removing a symbol from stack: pop

- How a stack is used?
- We continue pushing symbols into stack, and then let it pop out at a suitable time.

- How a stack is used?
- We continue pushing symbols into stack, and then let it pop out at a suitable time.
 - $A \rightarrow aB$ can be easily simulated by a DFA

- How a stack is used?
- $A \rightarrow aB$ can be easily simulated by a DFA

- What about $A \rightarrow aBb$
- After we reach the final state from B, we need to "remember" to append an α
 - We push b to the stack, and eventually b will pop up

Definition 3.3.1: Let us define a **pushdown automaton** to be a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

K is a finite set of states,

 Σ is an alphabet (the **input symbols**),

 Γ is an alphabet (the **stack symbols**),

 $s \in K$ is the initial state,

 $F \subseteq K$ is the set of **final states**, and

 Δ , the **transition relation**, is a finite subset of $(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$.

- How PDA (Pushdown automata) works?
- If $(p, a, \beta), (q, \gamma) \in \Delta$, then the PDA M, once it is in state p with β at the top of the stack, may read a from he input tape, replace β by γ on top of the stack, and enter state q.
 - $((p, a, e), (q, \gamma))$ reads a and pushes γ
 - $((p, a, \gamma), (q, e))$ reads a and pops γ

Definition 3.3.1: Let us define a **pushdown automaton** to be a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

K is a finite set of states, Σ is an alphabet (the input symbols), Γ is an alphabet (the stack symbols), $s \in K$ is the initial state, $F \subseteq K$ is the set of final states, and Δ , the transition relation, is a finite subset of $(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$.

You read input symbols one by one, but replace stack symbols a bunch by a bunch

Configuration

- $-(q, w, \lambda) \in K \times \Sigma^* \times \Gamma^*$
- current state q
- the remainder of the string w
- strings consisting of the stack symbol in the stack, top-down

- Yields (in one step)
 - $(p, x, \alpha) \vdash_M (q, y, \zeta)$ if exists transition $((p, \alpha, \beta), (q, \gamma)) \in \Delta$
 - -x = ay
 - $\alpha = \beta \eta$ and $\zeta = \gamma \eta$ for some $\eta \in \Gamma^*$
 - \vdash_{M}^{*} indicates a sequence of \vdash_{M} (reflexive and transitive closure)

Acceptance

- PDA M accepts a string $w \in \Sigma^*$ if and only if $(s, w, e) \vdash_M^* (f, e, e)$ for some final state $f \in F$

Example 3.3.1: Let us design a pushdown automaton M to accept the language $L = \{wcw^R : w \in \{a,b\}^*\}$. For example, $ababcbaba \in L$, but $abcab \notin L$, and $cbc \notin L$. We let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where $K = \{s, f\}$, $\Sigma = \{a, b, c\}$, $\Gamma = \{a, b\}$, $F = \{f\}$, and Δ contains the following five transitions.

- (1) ((s, a, e), (s, a))
- (2) ((s,b,e),(s,b))
- (3) ((s,c,e),(f,e))
- (4) ((f, a, a), (f, e))
- (5) ((f,b,b),(f,e))
- State diagram on blackboard

State	Unread Input	Stack	Transition Used
s	abbcbba	e	_
s	bbcbba	a	1
s	bcbba	ba	2
s	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	a	a	5
f	e	e	4

- State diagram walk on blackboard

Example 3.3.3: This pushdown automaton accepts the language $\{w \in \{a,b\}^* : w \text{ has the same number of } a\text{'s and } b\text{'s}\}$. Either a string of a's or a string of b's is kept by M on its stack. A stack of a's indicates the excess of a's over b's thus far read, if in fact M has read more a's than b's; a stack of b's indicates the excess of b's over a's. In either case, M keeps a special symbol c on the bottom of the stack as a marker. Let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where $K = \{s, q, f\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, c\}$, $F = \{f\}$, and Δ is listed below.

- (1) ((s, e, e), (q, c))
- (2) ((q, a, c), (q, ac))
- (3) ((q, a, a), (q, aa))
- (4) ((q, a, b), (q, e))
- (5) ((q, b, c), (q, bc))
- (6) ((q, b, b), (q, bb))
- (7) ((q, b, a), (q, e))
- (8) ((q, e, c), (f, e))

- State diagram on blackboard

State	Unread Input	Stack	Transition	Comments
s	abbbabaa	e	I	nitial configuration.
q	abbbabaa	c	1 H	Bottom marker.
q	bbbabaa	ac	2 8	Start a stack of a's.
q	bbabaa	c	7 I	Remove one a .
q	babaa	bc	5 S	Start a stack of b 's.
q	abaa	bbc	6	
q	baa	bc	4	
q	aa	bbc	6	
q	a	bc	4	
q	e	c	4	
f	e	e	8 A	Accepts.

- State diagram walk on blackboard

• PDA serves as a checker for context free language

Theorem 3.4.1: The class of languages accepted by pushdown automata is exactly the class of context-free languages.

Lemma 3.4.1: Each context-free language is accepted by some pushdown automaton.

$$M = (\{p,q\}, \Sigma, V, \Delta, p, \{q\})$$

- Two states, $\{p, q\}$
- Stack alphabet = terminals + nonterminals
- Transitions:
 - (1) ((p, e, e), (q, S))
 - (2) ((q, e, A), (q, x)) for each rule $A \to x$ in R.
 - (3) ((q, a, a), (q, e)) for each $a \in \Sigma$.

Example 3.4.1: Consider the grammar $G = (V, \Sigma, R, S)$ with $V = \{S, a, b, c\}$, $\Sigma = \{a, b, c\}$, and $R = \{S \to aSa, S \to bSb, S \to c\}$, which generates the language $\{wcw^R : w \in \{a, b\}^*\}$. The corresponding pushdown automaton, according to the construction above, is $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\})$, with

$$\Delta = \{((p, e, e), (q, S)), (T1) \\ ((q, e, S), (q, aSa)), (T2) \\ ((q, e, S), (q, bSb)), (T3) \\ ((q, e, S), (q, c)), (T4) \\ ((q, a, a), (q, e)), (T5) \\ ((q, b, b), (q, e)), (T6) \\ ((q, c, c), (q, e))\}$$

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

Given a PDA, modify it such that:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

Given a PDA, modify it such that:

It has a single accept state, q_{accept} .

Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

If $((p, a, \beta), (q, \gamma)) \in \Delta$, replace it with $((p, a, \beta), (p', e))$ and $((p', e, e), (q, \gamma))$

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.
- If the first push and last pop is the same symbol, add $A_{pq}
 ightarrow aA_{rs}b$

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.
- If the first push and last pop is the same symbol, add $A_{pq}
 ightarrow aA_{rs}b$
- If the first push and last pop is different, add $A_{pq} \rightarrow A_{pr} A_{rq}$

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a context-free language.

Formal construction:

- If $((p, a, e), (r, \beta))$, $((s, b, \beta), (q, e)) \in \Delta$, add rule $A_{pq} \to aA_{rs}b$
- For all states p, r, q, add $A_{pq} \rightarrow A_{pr} A_{rq}$
- For all state p, add $A_{pp} \rightarrow e$