数字逻辑与部件设计

组合逻辑习题课

二进制 基本题型

- ① 各数制转化成十进制数
- 2 十进制数转化成二进制数
- ③ 八进制、十六进制转化为二进制
- ④ 二进制转化为八进制、十六进制
- ⑤ 求二进制的原码、反码、补码(及其加法运算)
- ⑥ 8421码、余三码、BCD码、格雷码
- ⑦ 常用逻辑门及电器特征

组合逻辑电路 基本题型

(布尔代数、真值表、逻辑图、卡诺图、波形图、HDL)

- ① 6种逻辑表示方法间的转换
- ② 标准式、最小项、最大项
- ③ 逻辑函数的公式化简
- 4 逻辑函数的卡诺图化简
- ⑤ 具有无关项逻辑函数的**化简**
- ⑥ 多输出函数共享乘积项的化简

- ① 分析组合电路的逻辑功能
- ② 用门电路实现(设计)组合逻辑电路
- ③ 用复用器实现(设计)组合逻辑电路
- 4 用译码器实现(设计)组合逻辑电路
- ⑤ 用**加法器**实现(<mark>设计</mark>)组合逻辑电路

常 74 系 组 合 逻 电

74HC138 3-8译码器 74HC148 8-3编码器 74HC153 双4选1复用器 74LS238

4位加法器

74LS85

4位数值比较器

 A_0 A_1 A_2

74HC138

 Y_0 Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7

74HC148

 $Y_2 \qquad Y_1$

- *S*₁、*S̄*₂、*S̄*₃: 选通输入端,
 当*S*₁ = 1, *S̄*₂ + *S̄*₃ = 0时, 译码器正常工作。 *A*₂、*A*₁、*A*₀: 地址输入端
- $\bar{Y}_0 \sim \bar{Y}_7$: 数据输出端
- \bar{S} : 选通输入端, $\bar{S}=0$ 时编码器正常工作。
- $\bar{I}_0 \sim \bar{I}_7$: 数据输入端
- \bar{Y}_2 、 \bar{Y}_1 、 \bar{Y}_0 :数据输出端
- 选通输出端 \bar{Y}_S 、扩展端 \bar{Y}_{EX} 用于扩展编码功能。
- \bar{E}_1 、 \bar{E}_2 分别为2个MUX控制端, $\bar{E}=0$ 时MUX正常工作。 • $\bar{D}_{23}\sim\bar{D}_{20}$ 、 $\bar{D}_{13}\sim\bar{D}_{10}$ 分别为2个MUX数据输入端
- Y_1 、 Y_2 为相应的数据输出端
- S_0 、 S_1 为2个MUX地址码输入**公共端**。
- $A_3 \sim A_0$ 、 $B_3 \sim B_0$: 2个4位二进制数据输入端
- $S_3 \sim S_0$: 两数之和输出端
- CI: 进位输入端
- CO: 进位输出端

- $A_3 \sim A_0$ 、 $B_3 \sim B_0$: 2个4位二进制数据输入端
- $I_{A>B}$ 、 $I_{A=B}$ 、 $I_{A<B}$:来自低位的比较结果
- $Y_{A>B}$ 、 $Y_{A=B}$ 、 $Y_{A<B}$: 比较结果输出端 4 / 20

【1】将下面函数化为与非-与非式, 画出电路图

$$Y = (\bar{A} + B)(A + \bar{B})C + \bar{B}C$$

【2】将下面函数化为最大项之积的形式

$$Y = (A+B)(\bar{A}+\bar{B}+\bar{C})$$

【3】一个电路有三个输入端A, B, C, 当其中两个输入端为高电平时, 输出X为高电平, 写出逻辑表达式.

【3】一个电路有三个输入端A, B, C, 当其中两个输入端 为高电平时,输出端X为高电平,写出逻辑表达式.

【4】用代数法简化下列逻辑函数

(1)
$$F = A + ABC + A\overline{BC} + CB + \overline{CB}$$

(2)
$$F = A\overline{B}CD + AB\overline{C}\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$$

$$(3) \quad F = ABC\overline{D} + ABD + BC\overline{D} + ABCD + B\overline{C}$$

【5】用卡诺图化简

①
$$F = \overline{AC + \overline{ABC} + \overline{BC}} + AB\overline{C}$$

②
$$F = A\overline{B}CD + AB\overline{C}\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$$

【5】用卡诺图化简

(3)
$$F(A,B,C,D) = \sum m(0,1,2,5,6,7,8,9,13,14)$$

4)
$$F(A,B,C,D) = \sum m(0, 13, 14, 15) + \sum d(1,2,3,9,10,11)$$

【6】利用与非门实现函数,并画出逻辑图

$$F = AB\overline{C} + A\overline{B}\overline{C}$$

【6】利用与非门实现函数,并画出逻辑图

【7】画出 F_1 和 F_2 的波形图

$$F_1 = \overline{\overline{AB} + A\overline{B}} = \overline{A \oplus B}$$

$$F_2 = F_1 \oplus C$$

【8】分析下图的逻辑电路,说明其功能

【8】分析下图的逻辑电路,说明其功能

【9】写出电路逻辑表达式,并说明其逻辑功能

【10】设计8421码→格雷码转换电路

B_3	B_2	B_1	$\boldsymbol{B_0}$	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

【11】用一片4:16线译码器将8421BCD码转换成余三码

十进制	DCBA	余三码		
0	0000	0011		
1	0001	0100		
2	0010	0101		
3	0011	0110		
4	0100	0111		
5	0101	1000		
6	0110	1001		
7	0111	1010		
8	1000	1011		
9	1001	1100		

【12】用74LS283加法器设计一个3位二进制数的3倍乘法电路

