

Natural Language Processing

DATA AND ARTIFICIAL INTELLIGENCE

Introduction to Natural Language Processing

implilearn. All rights reserved

Learning Objectives

By the end of this lesson, you will be able to:

- Describe natural language processing and its components
- Explain the different applications of NLP
- Define and demonstrate text processing

Introduction to NLP

What Is NLP?

Natural Language Processing (NLP) is a branch of AI.

It helps machine to deal with human languages.

It helps machine to understand, interpret, and manipulate human languages.

Most of the Natural Language Processing techniques depend on machine learning to derive meaning from human languages.

Interaction between Humans and Machines Using NLP

History of NLP

Human Language

To understand NLP, let us first understand the human language.

Why NLP

Simplilearn. All rights reserved

Need for NLP

How to analyze this unstructured data?
Use Text Mining

Understanding Text Mining

It is also called text analysis.

Process of deriving insights from natural language text

This is where NLP helps

Structure the input text

Derive pattern

Evaluate output

How NLP Works

Different Aspects of NLP

Categories of NLP

Rule-Based NLP

- Designed by creating a set of rules
- Developed by heuristic rules

Statistical Revolution

Statistical NLP

- Relies heavily on machine learning
- Applies automatic learning procedure

Techniques Used in NLP

Syntactic Analysis

Focuses on arrangement of words

Aligns with grammatical rules

Semantic Analysis

Meaning of a text

Sentence structure understanding

Interpretation of words

Components of Natural Language Processing

Simplilearn. All rights reserved

Components of Natural Language Processing

Natural Language Generation (NLG)

NLG

Components: Natural Language Understanding (NLU)

Components: Natural Language Generation (NLG)

Taking some formal representation of what you want to say and working out a way to express it in a natural language

Mapping the given input in the natural language with a useful representation

Producing output in the natural language from some internal representation

Different level of analysis: morphological analysis, syntactic analysis, semantic analysis, and discourse analysis

Uses of NLP

Use of NLP in conversational bot in each step:

Natural Language Understanding

Natural Language Generation

Applications of Natural Language Processing

Simplilearn. All rights reserved.

NLP in Real-Life

Machine Translation

Chatbot

Information Retrieval

NLP in Real Life

Question Answering

Sentiment Analysis

NLP in Real-Life: Business Usage

Improve user experience

- Spellcheck
- Autocomplete
- Autocorrect

Automate support

- Chatbot
- Product ordering

Monitor and analyze feedback

 Generate actionable insight from huge amount of review or feedback

NLP in Real-Life: Speech Recognition

- Google Assistant
- Siri
- Alexa
- Cortana

NLP in Real-Life: Machine Translation

Google translator

Community

History

NLP in Real-Life: Chatbots

Uber, Facebook Messenger, and Zendesk are some of the companies who have implemented chatbots using NLP.

Simplilearn. All rights reserved.

NLP in Real-Life: Information Retrieval

Find information according to the given query

Collections Audio
Words Video
Packaged Involve
Sentences Text Data Big Data
Facilitate Unstructured
Patterns
none Originates

NLP techniques used in IR are:

- Stemming
- Part-of-Speech Tagging
- Compound Recognition
- Decompounding
- Chunking
- Word-Sense Disambiguation

Google finds relevant and similar results using Information Retrieval.

NLP in Real-Life: Information Extraction

Automatic extraction of structured information from unstructured or semistructured machine-readable documents

NLP in Real-Life: Information Extraction

NLP in Real-Life: Question Answering

System that automatically answers questions

NLP in Real-Life: Spell Check

Salesforce implemented spell check in the contact forms using NLP.

NLP in Real-Life: Sentiment Analysis

To extract subjective information from a piece of text Example: Whether an author is being subjective or objective or even positive or negative

NLP is used here

Challenges and Scope

Why NLP Is Difficult

Nature of the human language

Rules that dictate the passing of information using natural languages are not easy for computers to understand.

Human language is unstructured data

Only 21% of the data is structured data, and a lot of information in the world is unstructured.

Tough to extract meaning from text

Process of reading and understanding English is very complex.

Challenges and Scope

Challenges and Scope: Semantic Meaning

There are many good properties available on HDFC Red portal.

Word RED has different meanings in these contexts.

Challenges and Scope: Understanding Entities

A 2M solution of CaCl2 consists of 221.82g of CaCl2 dissolved in enough water to make one liter of solution.

Understanding and extraction of CaCl2 as entity in this context is complex.

Challenges and Scope: Anaphora Resolution

Peter and Greg are NLP developers. He is living in Pune.

The word "He" used in 2nd sentence does not specify which person to refer.

Challenges and Scope: Multiple Intents

My bank account is functional. Please provide me resolution process and I want to buy Laptop from Flipkart.

The word "He" used in 2nd sentence does not specify which person to refer.

NLU Challenges: Ambiguity

Data Formats

Data Formats

To apply NLP on data, we need to have the data which is available on different kinds of sources in different formats.

Below are the types of data formats:

Structured

Semi-Structured

Unstructured

Data Formats: Structured

Data Formats: Unstructured and Semi-Structured

NLP Pipeline

NLP Pipeline

Text Processing

Simplilearn. All rights reserved.

Text Processing

Input Information Source

Text Processing

Sequence or Text Processing

Sequence or Text Processing has the following steps:-

Sequence or Text Processing: Noise Entity Removal

These types of things do not contribute for better result. They only increase the size of texts and decrease the efficiency of algorithms.

Sequence or Text Processing: Tokenization

Tokenization

Break the sentence into separate words.

These words are called tokens.

Split words whenever there is a space between them.

Treat punctuation marks as separate tokens since punctuation also has meaning.

Example:

Sentence	Word
London is the capital and the most populous city of England and the United Kingdom	"London", "is", " the", "capital", "and", " the", "most", "populous", "city", "of", "England", "and", "the", "United", "Kingdom"

Sequence or Text Processing: Stemming

Stemming:

It takes the root of the words.

It removes the last few words or suffix of a word where it misspelt or incorrect words.

Example:

Word	Suffix	Stem
studies	-es	studi
ninez	-ez	nin

Sequence or Text Processing: Lemmatization

Lemmatization:

It converts the text to meaningful base form by considering its context.

Example:

Word	Morphological Information	Lemma
Studying	Gerund of the word study	Study
Ninez	Singular number of nine	Ninez

Sequence or Text Processing: Chunking and Chinking

It is the process of extracting meaningful short phrases from sentences by analyzing the parts of speech

Words or patterns can also be defined. These should not be a part of chunk and such words are known as chinks

Chunk pattern are made by normal regular expression which are designed and modified to match the part of speech tags

Sequence or Text Processing: Regular Expression

Object Standardization:

Some words or symbols which are not present in standard dictionary are also not recognized by any search processes.

Examples: hashtags, acronyms, and colloquial slangs

Note: With the help of regular expression, we can remove these things.

Sequence or Text Processing: Regular Expression

Regular Expression (Regex):

It is a sequence of characters that define pattern-matching, search-and-replace, and elimination functions. All type of noises can be removed with the help of regular expressions.

Regex Examples:

Expression	Description
[abc]	Find any character between the brackets
[^abc]	Find any character that is not between the brackets
[0-9]	Find any character between the brackets (digit)

NLTK: Introduction

This tool is used for manipulation or understanding text or speech by any software or machine.

This is one of the most usable and mother of all NLP libraries.

It is a platform used for building Python programs that work with human language data for application in statistical Natural Language Processing (NLP).

NLTK: Introduction

Following are text processing libraries:

Tokenization

Lemmatization

Parsing

Classification

Stemming

Tagging

Semantic Reasoning

NLTK: Syntax and library

System Requirement:

Operating System:

macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)

Python Version:

Python 2.7, 3.5+ (only 64 bit)

>> import nltk

NLTK: Lemmatization

For grammatical purpose, documents are going to use different forms of a word, for example:

```
#Loading the NLTK package for
lemmatizer
from nltk.stem import WordNetLemmatizer

#creating the Object for Lemmatizer
lemmatizer = WordNetLemmatizer()

#Printing the lemma of word happier
print("happier:",
lemmatizer.lemmatize("happier",
pos="a"))
```


Output: happier: happy

NLTK: Stemming

```
#Loading the nltk package to have
PorterStemmer
from nltk.stem import PorterStemmer

#create the object for PorterStemmer
PS = PorterStemmer()

#Print the stemmer of word helping
print("helping :", PS.stem("helping"))
```

Output: helping: help

Text processing includes: Converting all letters to lower or upper case

```
#Identify the user input
user_input = "Python is a Programming Language that is Interpreted and High-
Level language"

#Print the sentence by converting the text from uppercase to lowercase
print("Text in lowercase :", user_input.lower())
```

Output: Text in lowercase: python is a programming language that is interpreted and high-level language.

Converting numbers into words or removing numbers

```
#Loading the regex package to find number
import re
#identify user input
input str = "Team A has 6 batsman and 5 bowlers, while team b has
5 batsman and 6 bowlers"
#remove numbers by using regex
output = re.sub(r"\d+", "", input str)
#print the sentence after removal of numbers
print("remove numbers :", output)
```

Output: remove numbers : Team A has batsman and bowlers, while team b has batsman and bowlers

Removing accent, punctuations marks, and other diacritics

```
#Load the regex package and string package
import re, string

#define user input
input_str = "Sentence. having. string with. Punctuation?"

#remove punctuation
result = re.sub('[%s]' % re.escape(string.punctuation), '', input_str)

#print the sentence after removal of punctuation
print("result after removing punctuation :", result)
```

Output: result after removing punctuation : Sentence having string with Punctuation

Removing white spaces:

```
#Load the regex and string package
import re
#define input from user
input str = 'pythonis programming language \t\n\r\tHello \t'
#Print the sentence after removing the spaces
print('Remove spaces using regex :', re.sub(r"\s+", "", input str),"\n",
sep='')
#Print the sentence after removing the landing spaces
print('Remove landing spaces using regex :', re.sub(r"^\s+", "",
input str),"\n", sep='')
#Print the sentence after removing the trailing spaces
print('Remove trailing spaces using regex :', re.sub(r"\s+$", "",
input str), "\n", sep='')
#Print the sentence after removing the leading and trailing spaces
print('Remove landing spaces using regex :', re.sub(r"^\s+|\s+$", "",
input str),"\n", sep='')
```

Output:

Remove spaces using regex :pythonisprogramminglanguageHello

Remove landing spaces using regex :pythonis programming language

Hello

Remove trailing spaces using regex :pythonis programming language

Hello

Remove landing spaces using regex :pythonis programming language

Hello

NLTK: Stopwords

```
#Load the stopwords package
from nltk.corpus import stopwords
#Load the word tokenizer package
from nltk.tokenize import word tokenize
#define the user input
input str = "Stop words are the words that are filtered before
and after processing of text."
#crete object for stopwords
stop word = set(stopwords.words("english"))
#convert word into tokens
token = word tokenize(input str)
#remove stopwords from the list of tokens
output = [i for i in token if not i in stop word]
#remove the stopwords and print the sentence
print("remove stopwords :", output)
```

NLTK: Stopwords

Output: remove stopwords: ['Stop', 'words', 'words', 'filtered', 'processing', 'text', '.']

NLTK: Tokenizers

```
#Load the package for tokenizer
from nltk.tokenize import sent_tokenize

#defining user input
text = "Tokenization is the way of tokenizing or dividing
a string, text into a list of tokens"

#print the tokens of sentence.
print("after removing stopwords :", sent_tokenize(text))
```

NLTK: Tokenizers

Output: after removing stopwords: ['Tokenization is the way of tokenizing or dividing a string, text into a list of tokens']

NLTK: Ngram

```
#Load the package for ngrams
from nltk import ngrams
#define user input
usr input = 'i want to ngramize the foo bar
sentences'
#define number of gram
n = 3
#split the sentence to make grams
sixgrams = ngrams(usr input.split(), n)
for grams in sixgrams:
    #Print the 3 grams of user-input
    print(grams)
```

NLTK: Ngram

Output:

('i', 'want', 'to')
('want', 'to', 'ngramize')
('to', 'ngramize', 'the')
('ngramize', 'the', 'foo')
('the', 'foo', 'bar')
('foo', 'bar', 'sentences')

NLTK: Limitations

Does not support word vectors

Is slow

Not for production purpose

Good only for English and difficult for other languages

Re: Introduction

- Re is an inbuilt library which comes with python.
- It uses a set of symbols to identify the patterns from the text. Example: email address ^([a-zA-Z0-9_\-\.]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})\$
- It is used in information retrieval: **import nltk**

import re

Text Processing Using Stemming and Regular Expression

Problem Statement: Demonstrate text processing using stemming and regular expression.

Access: Click on the **Practice Labs** tab on the left side panel of the LMS. Copy or note the username and password that is generated. Click on the **Launch Lab** button. On the page that appears, enter the username and password in the respective fields, and click **Login**.

Objective: Use regular expressions to work with messy tweets data: clean up the data, extract hashtags, analyze the most popular hashtags that occur along with a target hashtag (#economy).

Problem Statement: Social media is a gold mine of information. Brands, governments, or anyone can leverage their business with the help of the information contained. It can be information on the sentiments for a brand, or the themes being spoken about, or the associated trends for a particular hashtag. In this project, we will work on the tweets on Twitter. We will find other hashtags that occur frequently with our target hashtag. This will give us an understanding of which other topics people are associating this hashtag with.

DATA AND ARTIFICIAL INTELLIGENCE

Knowledge Check

One of the main challenges of NLP is ______.

- a. Handling ambiguity of sentences
- b. Handling tokenization
- C. Both a and b
- d. None of the above

One of the main challenge of NLP is ______.

- a. Handling ambiguity of sentences
- b. Handling tokenization
- C. Both a and b
- d. None of the above

The correct answer is

a.

One of the main challenges of NLP is handling ambiguity of sentences.

Regular expression is used for_____.

2

- a. Information retrieval
- b. Finding the pattern
- c. Database management
- d. Both a and b

Regular expression is used for_____.

2

- a. Information retrieval
- b. Finding the pattern
- c. Database management
- d. Both a and b

The correct answer is

Н

Regular expression is used for information retrieval and finding the pattern.

NLP is the technique of interpretation of all types of languages which includes

3

- a. Human Language
- b. Assembly Language
- c. Machine Language
- d. Binary Data

NLP is technique for interpretation of all type of languages which includes _____

3

- a. Human Language
- b. Assembly Language
- c. Machine Language
- d. Binary Data

The correct answer is

a.

NLP has its focus on understanding the human spoken or written language and converting that interpretation into machine understandable language.

Natural Language Processing (NLP) is a field of ______.

4

- a. Computer Science
- b. Artificial Intelligence
- c. Linguistics
- d. All of the above

Natural Language Processing (NLP) is a field of ______.

4

- a. Computer Science
- b. Artificial Intelligence
- c. Linguistics
- d. All of the above

The correct answer is

Natural Language Processing is a field of computer science, artificial intelligence, and linguistics.

Which of the following techniques can be used for the purpose of keyword normalization?

5

1- Lemmatization 2- Levenshtein 3- Stemming 4- POS

- a. 1 and 2
- b. 2 and 4
- c. 1 and 3
- d. 1,2, and 3

Which of the following techniques can be used for the purpose of keyword normalization?

5

1- Lemmatization 2- Levenshtein 3- Stemming 4- POS

- a. 1 and 2
- b. 2 and 4
- c. 1 and 3
- d. 1,2, and 3

The correct answer is

C.

Lemmatization and stemming are the techniques of keyword normalization.

implilearn. All rights reserved

Key Takeaways

You are now able to:

- Describe natural language processing and its components
- Explain the different applications of NLP
- Define and demonstrate text processing

