1.2 计算机的基本组成

- 一、冯诺依曼计算机的特点
 - 1. 计算机由五大部件组成
 - 2. 指令和数据以同等地位存于存储器可按地址寻访
 - 3. 指令和数据用二进制表示
 - 4. 指令由操作码和地址码组成
 - 5. 存储程序 人人
 - 6. 以运算器为中心

冯·诺依曼计算机硬件框图

1.2

冯·诺依曼计算机硬件框图

1.2

32

1. 以存储器为中心的计算机硬件框图

2015/11/4 哈尔滨工业大学 刘宏伟

2.现代计算机硬件框图

1.2

2.现代计算机硬件框图

- · 系统复杂性管理的方法-2(3'Y)
 - 层次化(Hierachy):将被设计的系统 划分为多个模块或子模块
 - 模块化(Modularity):有明确定义 (well-defined)的功能和接口
 - 规则性(regularity):模块更容易被重用

问题:一个现实中的问题,如何用计算机来解决?

问题: 是不是所有的问题都可以用计算的方法来解决

假设我们面对的是一个可以有计算机解决的问题,如何用计算机来解决这个问题呢?

三、计算机的工作步骤

1.2

1.上机前的准备

• 建立数学模型

$$u = U_m Sin\omega t$$

• 确定计算方法

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$y_{n+1} = \frac{1}{2} (y_n + \frac{x}{y_n}) (n = 0, 1, 2, \cdots)$$

• 编制解题程序

程序 —— 运算的 全部步骤

指令 —— 每一个步骤

编程举例

1.2

计算
$$ax^2 + bx + c = (ax + b)x + c$$

取x至运算器中 乘以x在运算器中 乘以a在运算器中 存 ax^2 在存储器中 取b 至运算器中 乘以x在运算器中 加 ax^2 在运算器中 加c 在运算器中

取x 至运算器中乘以a 在运算器中加b 在运算器中乘以x 在运算器中和c 在运算器中

操作码

地址码

取数α

 $[\alpha] \rightarrow ACC$

000001 0000001000

存数 β

 $[ACC] \rightarrow \beta$

加γ

 $[ACC]+[\gamma]\longrightarrow ACC$

乘 δ

 $[ACC] \times [\delta] \longrightarrow ACC$

打印 c

 $[\sigma]$ 一打印机

停机

计算 $ax^2 + bx + c$ 程序清单

1.2

	LLA A			
指令和数据存于	指令		注释	
主存单元的地址	操作码	地址码	注 件	
0	000001	0000001000	取数x至ACC	
1	000100	0000001001	乘a得ax,存于ACC中	
2	000011	0000001010	加b得ax+b,存于ACC中	
3	000100	000001000	乘x得 (ax+b)x,存于ACC中	
4	000011	0000001011		
5	000010	0000001100	将 $ax^2 + bx + c$,存于主存单元	
6	000101	0000001100	打印	
7	000110		停机	
8	x		原始数据x	
9	a		原始数据a	
10	b		原始数据b	
11	c		原始数据c	
2015/ 11/2 4			存放结果 大学 刘宏伟	

• 指令和数据都是保存在存储器中的

存储器的结构?

如何进行访问?

每次访问获得的数据的位数是多少呢?

(1)存储器的基本组成

存储体

MAR MDR

主存储器

存储体 - 存储单元 - 存储元件 (0/1)

大楼 - 房间 - 床位 (无人/有人)

存储单元存放一串二进制代码

存储字 存储单元中二进制代码的组合

存储字长存储单元中二进制代码的位数

每个存储单元赋予一个地址号

按地址寻访

(1)存储器的基本组成

1.2

存储体

MAR MDR

主存储器

MAR 存储器地址寄存器 反映存储单元的个数

MDR 存储器数据寄存器 反映存储字长

设 MAR=4位 MDR=8位

存储单元个数16

存储字长8

- 已经知道了存储器的基本组成
- 运算器的结构是什么?
- 运算器功能是什么?,如何工作的?
 - 加法?
 - 乘法?

(2)运算器的基本组成及操作过程

	ACC	MQ	X
加法	被加数 和		加数
减法	被减数差		减数
乘法	乘积高位	乘数 乘积低位	被乘数
除法	被除数 余数	商	除数

①加法操作过程

1.2

45

指令加M

初态 ACC 被加数

 $[M] \longrightarrow X$

 $[ACC]+[X] \longrightarrow ACC$

② 减法操作过程

1.2

初态 ACC 被减数

 $[M] \longrightarrow X$

 $[ACC]-[X] \longrightarrow ACC$

③ 乘法操作过程

1.2

47

指令 乘 M 初态 ACC 被乘数 $[M] \longrightarrow MQ$ $[ACC] \longrightarrow X$ $0 \longrightarrow ACC$ $[X] \times [MQ] \longrightarrow ACC // MQ$

④ 除法操作过程

1.2

指令除M

初态 ACC 被除数

 $[M] \longrightarrow X$

 $[ACC] \div [X] \longrightarrow MQ$

余数在ACC中

控制器的基本结构如何呢?

控制器的功能?

- ✓ 解释指令
- ✓ 保证指令的按序执行

(3)控制器的基本组成

1.2

 完成
 取指令
 PC

 一条
 分析指令
 IR

 指令
 执行指令
 CU

PC 存放当前欲执行指令的地址, 具有计数功能(PC)+1→PC

IR 存放当前欲执行的指令

• 运算器、控制器、存储器构成了什么

- ✓一条指令在主机上的完成过程
- ✓程序在主机上是如何执行的

(4)主机完成一条指令的过程 1.2 以取数指令为例

(4)主机完成一条指令的过程 1.2 以存数指令为例

(5) $ax^2 + bx + c$ 程序的运行过程 1.2

- 将程序通过输入设备送至计算机
- 程序首地址 → PC
- 启动程序运行
- 取指令 PC → MAR→ M→ MDR→ IR , (PC)+1 → PC
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR→ M→MDR→ACC

•

- 打印结果
- 停机

- 如果打算买一台机器,如何进行合适的选择呢?
 - ✓买这台机器做什么
 - ✓你有多少钱
 - ✓机器的性能能否满足你的要求
 - ▶如何在购买前对计算机的性能进行评价
 - □处理速度快、内存容量大