Math 45 - Section — HW 1 Tuesday, March 8, 2016

2, 3, 4, 5

2 By differentiating each function verify that $y_1(t) = e^{-t}$ and $y_2(t) = \sinh t$ both satisfy the differential equation y'' - y = 0. Is $y(t) = Ay_1(t) + By_2(t)$, where A and B are arbitrary constants, also a solution? Why or why not?

Note: If you need a refresher on sinh (hyperbolic sine) look it up on Wikipedia.

1

3 Suppose that an object is moving in a straight line with constant acceleration $a \in \mathbb{R}$. Use properties of integration to show that the position of the object as a function of time t is given by

$$p(t) = \frac{1}{2}at^2 + v_0t + p_0,$$

where v_0 and p_0 denote the velocity and position at time t = 0. Start by observing that acceleration is the second derivative of position, thus,

$$p''(t) = a.$$

Be careful in your solution to rigorously justify each step.

4 Verify that

$$y(t) = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2}$$

is a solution to the differential equation y' - 2ty = 1 with initial condition y(0) = 1.

Note: If you're having trouble differentiating that integral, visit http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html

5 Examine Student W's work on the following problem. What did the student do correctly? What mistake(s) did the student make? What is a more correct response to the problem, and what would you say to help the student understand how to correctly complete the problem?

Determine if $y(x) = x^2 + 1$ is a solution to the initial value problem consisting of $4yy' = (y')^3 - 3y''x$ and the initial condition y(0) = 1.

If
$$y(x)=x^2+1$$
 then $y'(x)=2x$ and $y''(x)=2$.
Plug these into the DE:

$$4yy'=(y')^3-3y''x$$

$$4(x^2+1)\cdot 2x=(2x)^3-3\cdot 2\cdot x$$

$$8x^3+8x=8x^3-6x$$

$$14x=0 \quad \text{means} \quad x=0 \quad \text{and that} \quad \text{matches} \quad x_0=0 \quad \text{in the initial condition.} \checkmark$$
Also $y(x_0)=y(0)=1$ so that checks out too. \checkmark
So $y(x)=x^2+1$ is a solution to the IVP.