Logica — 9-1-2020

Tutte le risposte devono essere adeguatamente giustificate

- 1. Per ognuna delle seguenti domande segnare TUTTE le affermazioni corrette:
 - (a) Si considerino le formule proposizionali:

$$P:A\vee (\neg A\wedge B)$$
$$Q:A\vee B$$

- $\square P \models Q.$
- $\square Q \models P$.
- $\square \ P \equiv Q.$
- $\Box \models P \land Q.$
- (b) Sia $L = \{P, Q, f, a\}$, dove:

P è simbolo relazionale unario

Q è simbolo relazionale binario

f è simbolo funzionale binario

a è simbolo di costante

Quali delle seguenti espressioni sono formule?

- $\square Q(a, f(a, a))$
- \square $P(x) \lor P(f(a))$
- $\Box \neg Q(x,a) \wedge \exists a Q(y,a)$
- $\Box f(a, f(a, a))$
- 2. Stabilire se il ragionamento seguente è corretto:

Se Pino ha guidato l'auto, Gino è innocente. Se Lino ha sparato, allora Gino non è innocente.

Quindi, se Lino non ha sparato, allora Pino non ha quidato l'auto.

- 3. Sia $\mathcal{L} = \{A, C, M\}$ un linguaggio del prim'ordine, dove A, C sono simboli relazionali unari, M è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :
 - -A(x): x abbaia;
 - -C(x): $x \in un cane;$

-M(x,y): x morde y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. Can che abbaia non morde.
- 2. Cane non morde cane.
- 3. Nessuno morde un cane che non morde nessuno.
- 4. Si consideri l'enunciato

$$\varphi: \exists x (P(x) \vee \neg Q(x)) \wedge \forall x (P(x) \vee Q(x))$$

 φ è soddisfacibile?

 φ è valido?

Svolgimento

- 1. Per ognuna delle seguenti domande segnare TUTTE le affermazioni corrette:
 - (a) Si considerino le formule proposizionali:

$$P:A\vee (\neg A\wedge B)$$

 $Q:A\vee B$

- $\blacksquare P \models Q.$
- $\blacksquare Q \models P.$
- $\blacksquare P \equiv Q.$
- $\Box \models P \land Q.$
- (b) Sia $L = \{P, Q, f, a\}$, dove:

P è simbolo relazionale unario

Q è simbolo relazionale binario

f è simbolo funzionale binario

a è simbolo di costante

Quali delle seguenti espressioni sono formule?

- $\blacksquare Q(a, f(a, a))$
- $\square \ P(x) \vee P(f(a))$
- $\Box \ \neg Q(x,a) \wedge \exists a Q(y,a)$
- $\Box f(a, f(a, a))$
- 2. Si definiscano le lettere proposizionali:
 - P: Pino ha guidato l'auto.
 - -G: Gino è innocente.
 - L: Lino ha sparato.

Il ragionamento è allora:

$$P \to G, L \to \neg G \models \neg L \to \neg P$$

Si costruisce la tavola di verità

1	D	G	L	$P \to G$	$\neg G$	$L \to \neg G$	$\neg L$	$\neg P$	$\neg L \to \neg P$
()	0	0	1	1	1	1	1	1
()	0	1	1	1	1	0	1	1
()	1	0	1	0	1	1	1	1
()	1	1	1	0	0	0	1	1
-	1	0	0	0	1	1	1	0	0
-	1	0	1	0	1	1	0	0	1
-	1	1	0	1	0	1	1	0	0

Arrivati a questo punto, anche senza completare la costruzione della tavola di verità, si riconosce che la valutazione v tale che v(P) = v(G) = 1, v(L) = 0 si estende a un'interpretazione i tale che

$$i(P \to G) = i(L \to \neg G) = 1, \qquad i(\neg L \to \neg P) = 0$$

Pertanto

$$P \to G, L \to \neg G \not\models \neg L \to \neg P$$

Il ragionamento proposto non è corretto.

- 3. 1. $\forall x (C(x) \land A(x) \rightarrow \neg \exists y M(x,y))$
 - 2. $\neg \exists x \exists y (C(x) \land C(y) \land M(x,y))$
 - 3. $\neg \exists x \exists y (C(y) \land \neg \exists z M(y, z) \land M(x, y))$
- 4. Una struttura $\mathcal{A} = (A, P^{\mathcal{A}}, Q^{\mathcal{A}})$ soddisfa φ se e solo se

$$\mathcal{A} \models \exists x (P(x) \lor \neg Q(x)) \quad e \quad \mathcal{A} \models \forall x (P(x) \lor Q(x))$$

Inoltre si ha che

- $-\mathcal{A} \models \exists x (P(x) \lor \neg Q(x))$ se e solo se esiste $a \in A$ tale che $a \in P^{\mathcal{A}}$ o $a \notin Q^{\mathcal{A}}$, cioè $P^{\mathcal{A}} \neq \emptyset$ o $Q^{\mathcal{A}} \neq A$.
- $-\mathcal{A} \models \forall x (P(x) \lor Q(x))$ se e solo se, per ogni $a \in A$ si ha che $a \in P^{\mathcal{A}}$ o $a \in Q^{\mathcal{A}}$, cioè se e solo se $P^{\mathcal{A}} \cup Q^{\mathcal{A}} = A$.

Quindi una struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$ si trova prendendo

$$A = \{0\}, \quad P^{\mathcal{A}} = \{0\}, \quad Q^{\mathcal{A}} = \emptyset$$

Quindi φ è un enunciato soddisfacibile.

Per trovare una struttura $\mathcal{B} = (B, P^{\mathcal{B}}, Q^{\mathcal{B}})$ tale che $\mathcal{B} \not\models \varphi$, è sufficiente che $P^{\mathcal{B}} \cup Q^{\mathcal{B}} \neq B$. Per esempio:

$$B = \{0\}, \quad P^{\mathcal{B}} = Q^{\mathcal{B}} = \emptyset$$

Quindi φ non è un enunciato valido.