Artificial Neural Networks for the Rapid Prediction of Possible Ferroptosis Inducers Using the GPx4 Enzyme

Jesus Antonio Alvarado-Huayhuaz¹, Miquéias Amorim Santos Silva², Elvis Mauricio Jimenez Peña³, Joel Claudio Rengifo Maraví⁴, Angella M. Cordova-Muñoz⁵, <u>Karina dos Santos Machado</u>*²

1. Universidad Nacional de Ingeniería, Perú | <u>2. Universidade Federal do Rio Grande, Brasil</u> | 3. Universidad Nacional Mayor de San Marcos, Perú | 4. Universidad Nacional Agraria La Molina, Perú | 5. Universidad Nacional de Trujillo, Perú.

Outline

- 1. Introduction
- 2. Methodology
- 3. Results & Discussion
- 4. Conclusions

Cancer in the World

- The fight against cancer represents one of the most significant challenges in the field of global health;
- Cancer is a major contributor to global mortality, causing about 1 in every 6 deaths and affecting nearly every household.
- Globally, there were an estimated 20 million new cases of cancer and 9.7 million deaths from cancer in 2022 (WHO 2022)
- With its increasing prevalence and the urgent need to discover effective treatments, the search for new drugs has become a research priority

New treatments for cancer: Chelation Therapy and Ferroptosis

Chelation Therapies: remove metals from cells

Iron (Fe) essential to various cellular reactions (ferric ion)

Excess of Iron ⇒
participation in reactions
that generates oxidative
stress (OE)

PROPOSE: inhibits the GPx4
enzyme has emerged
as a promising approach to
therapy -> ferroptosis

Enterobactin and Iron

One important system against OE is the GPx4 enzyme

Ferroptosis

Type of programed cell death

OE can cause

Jie Li, Feng Cao, He-liang Yin, Zi-jian Huang, Zhi-tao Lin, Ning Mao, Bei Sun, and Gang Wang. Ferroptosis: past, present and future. Cell death & disease, 11(2):88, 2020

GPx4 Enzyme

 The reactivation of cell death induced by the accumulation of iron-dependent lipid peroxides (Ferroptosis) is a potential mechanism for cancer treatment.

One pathway to trigger Ferroptosis involves the inactivation of the glutathion-dependent

peroxidase (GPx4) protein.

Siderophores - catechols

- Siderophores are low molecular weight organic molecules
- Its chelation power to Fe3+ has been studied for chelation in cancer therapy
- Catechols -> common iron-binding functional groups within siderophores

Natural Products in Peru

The first version of PeruNPDB, a compound database of NPs from Peru that includes 280 compounds from plant and animal sources.

Molecular docking and Scoring Functions

Predict the best orientation and conformation of a ligand (small molecule) in a binding site of a receptor (Protein);

Estimate the binding affinity score with a scoring function

Molecular docking and Scoring Functions

PHYSICS BASED (Force Field) Derived from mechanics force fields to calculate

protein-ligand binding

KNOWLEDGE-BASED

 utilize knowledge derived from experimentally determined complexes
 obtains the score from summing pairwise statistical potentials between

protein and ligand

- **EMPIRICAL**
- Based on empirical observations;
 Calculates the affinity prough the sum of terms to propose the factors such a
- through the sum of terms that represent factors such as hydrogen bonding, van der Waals, eletrostactic and hydrophobic interactions;

MACHINE LEARNING

Trains scoring functions using features obtained from known protein-ligand binding experiments

Previous Work -> RFL-Score

Objective

Proposes a GPx4 target-specific scoring function for molecular docking

Training Set

ML algorithm

Validation

R2, RMSE, MSE

Available in: https://github.com/inefable12/ExpInSilico24

Results | Molecules

PERUNPDB

Peruvian Natural Products Database

280 Natural Products

83 molecules (SMILES)

Molecules minimized and protonated

18

Results ⇒ **Dataset Descriptors** -> 1,024

1,024 descriptors

Preprocessing

737 descriptors

Results \Rightarrow Feature selection

Algorithm 1: Recursive feature elimination

- 1.1 Tune/train the model on the training set using all predictors
- 1.2 Calculate model performance
- 1.3 Calculate variable importance or rankings
- 1.4 for Each subset size S_i , $i = 1 \dots S$ do
- Keep the S_i most important variables
- [Optional] Pre-process the data 1.6
- Tune/train the model on the training set using S_i predictors 1.7
- Calculate model performance 1.8
- [Optional] Recalculate the rankings for each predictor
- 1.10 end
- 1.11 Calculate the performance profile over the S_i
- 1.12 Determine the appropriate number of predictors
- 1.13 Use the model corresponding to the optimal S_i

Results ⇒ Metrics of the proposed scoring function

Input dataset: 83 (instances) X 131 descriptors + target (FEB)

Artificial Neural Network (ANN) algorithm

	R2	RMSE	MSE	MAE
Train	0.9894	0.0186	0.0003	0.0042
Test	0.6292	0.1062	0.0112	0.0809
Train + RFE	0.9881	0.0189	0.0003	0.0057
Test + RFE	0.8267	0.0787	0.0061	0.0596

Conclusion

- ★ Chelation therapy, particularly in relation to ferroptosis and the inhibition of Glutathione peroxidase 4 (GPx4), has emerged as a significant area of investigation
- ★ The proposed methodology and results can serve as a starting point for the search for catechols on others natural products databases as well as search for new inhibitors for GPx4

Future Work: Include more molecules in the input dataset (consider other databases); evaluate more ML algorithms; train new target-specific functions for other target proteins.

Available in: https://github.com/inefable12/ExpInSilico24

Acknowledgments

Contact information: Karina dos Santos Machado

E-mail: karina.machado@furg.br

COMBI-Lab, Grupo de Biología Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil.

Natal, Brazil, August 27-29, 2024

@combilabfurg