Lehrgebiet Theoretische Informatik

Rossmanith-Dreier-Hark-Kuinke

Blatt 3 15.5.2017

Übung zur Vorlesung Formale Sprachen, Automaten und Prozesse

Aufgabe T7

Wandeln Sie den folgenden NFA mit ϵ -Übergängen in einen NFA (ohne ϵ -Übergänge) um.

Aufgabe T8

Führen Sie die Potenzmengenkonstruktion auf folgendem NFA durch.

Aufgabe T9

Es sei $L = a^*b(c^*(a+b))^*$. Was ist $\emptyset^*L(L\emptyset + \varepsilon)^*$?

Aufgabe T10

Ein DFA M habe n Zustände und es gelte $L(M) \neq \emptyset$. Was kann man Interessantes über die Länge der kürzesten Wörter in L(M) sagen?

Aufgabe H5 (5+5+5 Punkte)

Gegeben sei der reguläre Ausdruck $r = (a^* + b)^*$.

- a) Geben sie mit Hilfe der Thompson-Konstruktion einen ϵ -NFA an, der L(r) erkennt.
- b) Gegeben sei ein ϵ -NFA mit einem gerichteten Kreis C, der nur aus ϵ -Transitionen besteht. Erklären Sie, wie man die Zustände in C zu einem neuen Zustand q_C kontrahieren kann, um einen neuen ϵ -NFA zu erhalten, der dieselbe Sprache erkennt. Benutzen Sie diese Konstruktion, um den in a) konstruierten ϵ -NFA zu verkleinern.
- c) Konstruieren Sie aus dem ϵ -NFA in b) einen äquivalenten NFA (ohne ϵ -Übergänge).

Aufgabe H6 (10 Punkte)

Entwerfen Sie einen effizienten Algorithmus, der für einen gegebenen regulären Ausdruck R entscheidet, ob L(R) unendlich viele Wörter enthält.

Hinweis: Überprüfen Sie rekursiv, ob ein regulärer Audruck (i) leer ist, (ii) nicht-leere Wörter enthält oder (iii) unendlich viele Wörter enthält.