Detecting Pneumonia in Chest X-Rays

ROBERT HARROW Flatiron School

INTRODUCTION

BUSINESS PROBLEMS

Save time for ACME Radiology department from having to manually evaluate chest x-rays for Pneumonia

Develop machine learning model that achieves at least 90% F1 score

Identify model limitations before implementing into the field

SUCCESS METRICS

F1 SCORE

Balance between precision (no false positives) and recall (tolerating some false positives)

Recall

While F1 is the primary metric, we can use Recall as a tiebreaker

DATA & METHODS

of Training Images by Class

5,232 CHEST X-RAYS From Kermany et al. (Mendeley)

WHAT IS THE NEURAL NETWORK LOOKING FOR?

NO PNEUMONIA

PNEUMONIA DETECTED

Image Source: https://www.wikidoc.org/index.php/Pneumoni a_chest_x_ray

Histogram Equalization

Research shows this technique **improved model performance** for pneumonia detection and our best performing model incorporated transformed images

ORIGINAL IMAGE

AFTER HISTOGRAM EQUALIZATION

MODEL ITERATIONS

VALIDATION DATA SCORES

	Accuracy	Precision	Recall	F1
Baseline	0.97	0.94	0.96	0.95
'Complex' Dense Model	0.97	0.96	0.95	0.95
'Simple' CNN	0.97	0.97	0.92	0.94
CNN on High-Contrast X-Rays	0.97	0.99	0.87	0.93
VGG-19	0.98	0.99	0.99	0.99
ResNet-50	0.97	0.99	0.97	0.98

DATA METHODS

VGG-19 NEURAL NETWORK

MODEL STRUCTURE

- 1 Input Layer (224 x 224 x 3)
- 5 MaxPooling2D Layers
- 16 Conv2D Layers

20,024,384 Non-Trainable Parameters

- 1 MaxPooling2D Layer
- 1 Flatten, 1 Dropout Layer
- 1 Output Layer

50, 178 Trainable Parameters

FINAL MODEL EVALUATION

VGG-19 NEURAL NETWORK

- Accuracy: 0.87
- Precision: 0.82
- Recall: 0.99
- F1 score: 0.90

RECOMMENDATIONS

RECOMMENDATIONS

RECOMMENDATIONS

MODEL LIMITATIONS

Limited healthy samples in training set

Confidence threshold is currently arbitrarily set at 50%

Potential for misdiagnosis when diseases present symptoms similar to Pneumonia

CONCLUSIONS & NEXT STEPS

- Productionize and deploy model into ACME workflow
 - **Develop web interface** for medical staff
- Collect more healthy samples to train model
- Educate staff on how to interpret model results
- Future work should explore transfer learning with other promising models, including MobileNet and DenseNet-201

THANK YOU

Does anyone have any questions?

rharrow928@gmail.com https://www.linkedin.com/in/robert-harrow/ https://github.com/robertharrow

APPENDIX

TRANSFER LEARNING

"Transfer learning is a machine learning method where a **model developed for a task is reused as the starting point for a model on a second task**." - Jason Brownlee, Machine Learning Mastery

- Naronglerdrit P, Mporas I, Sheikh-Akbari A. COVID-19 detection from chest X-rays using transfer learning with deep convolutional neural networks - <u>Epub (2021)</u>
- Chakraborty S, Paul S, Hasan KMA. A transfer learning-based approach with deep CNN for COVID-19- and pneumonia-affected chest X-ray image classification. <u>PubMed (2022)</u>
- B. Pardamean, T.W. Cenggoro, R. Rahutomo, A. Budiarto, E.K. Karuppiah. Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data <u>Procedia Comput. Sci., 135 (2018)</u>

FULL MODEL STRUCTURE

VGG-19 NEURAL NETWORK

MODEL STRUCTURE

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv4 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv4 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	0
dropout (Dropout)	(None, 25088)	0
dense_13 (Dense)	(None, 2)	50178

These layers are pre-trained on over **1 MILLION** images

We transfer the model's learnings from those million images to our image classification problem

We then add additional output layers to train model on our X-Ray Images

Total params: 20,074,562 Trainable params: 50,178

Non-trainable params: 20,024,384