- Overview-

Fraunhofer Institut for Integrated Circuits IIS

Christoph Clauß, Kristin Majetta, Sandra Böhme

Spice3 library for Modelica

The simulator SPICE3

SPICE3 Simulation Program with integrated Circuit Emphasis

SPICE-netlist

SPICE3 - predefined model set

Basics

R, C, L, G linear controlled sources

Lines

U-Line, O-Line, T-Line

Sources

(Current, Voltage)

Constant
Pulse
Damped Sine
Exponential
Piecewise linear

Semiconductors

Resistor Capacity Diode

Junction field effect transistor (JFET)

Metal semiconductor field effect transistor (MESFET)

Metal oxid semiconductor field effect transistor (MOSFET)

				min. Length/ μm		
	Level 1	MOS1	(Shichman-Hodges)	5		
	Level 2	MOS2	(more realistic)	2		
	Level 3	MOS3	(semi-empirical)	1		
	Level 4	BSIM1	(Berkely Short Channel			
			IGFET M.)	0.8		
	Level 5	BSIM2		0.35		
	Level 6	MOS6				
	Level 7/8	BSIM3	(scalable)	0.25		
I	Bipolar Junction Transistor (BJT)					
	Ebers-Moll, Gummel-Poon					

SPICE3 – predefined model set

Basics

R, C, L, G linear controlled sources

Lines

U-Line, O-Line, T-Line

Sources (Current, Voltage)

Constant Pulse Damped Sine Exponential Piecewise linear

Sem	icond	ductors

Resistor Capacity

Diode

Junction field effect transistor (JFET)

Metal semiconductor field effect transistor (MESFET)

Metal oxid semiconductor field effect transistor (MOSFET)

			min. Lengtn/ μm
Level 1	MOS1	(Shichman-Hodges)	5
Level 2	MOS2	(more realistic)	2
Level 3	MOS3	(semi-empirical)	1
Level 4	BSIM1	(Berkely Short Channel	
		IGFET M.)	0.8
Level 5	BSIM2		0.35
Level 6	MOS6		
Level 7/8	BSIM3	(scalable)	0.25

Bipolar Junction Transistor (BJT)

Ebers-Moll, Gummel-Poon

- will be translated to Modelica

Spice3 library for Modelica

Structure of the library

Spice3 library for Modelica - structure -

the library contains:

- basic elements
- interfaces
- semiconductors
- sources
- examples
- a repository (not for users)
- additionals

Spice3 library for Modelica - structure -

the package basic contains:

- ground
- resistor
- capacitor
- inductor
- controlled sources
 - voltage controlled voltage
 - voltage controlled current
 - current controlled voltage
 - current controlled current

Spice3 library for Modelica - structure -

the package interfaces contains:

- pins (positive, negative)
- TwoPin
- OnePort
- TwoPort
- TwoPort_controlled_sources
- voltage source
- current source

The Spice3 library is compatible to MSL. Electrical. Analog.

Spice3 library for Modelica - structure -

the package semiconductors contains:

- mosfet transistor level 1 (PMOS, NMOS)
- mosfet transistor level 2 (PMOS, NMOS)
- modelcards for mosfet transistor level 1 and 2
- bipolar transistor (NPN, PNP)
- modelcard for bipolar transistor
- diode
- modelcard for diode
- semiconductor resistor
- modelcard for semiconductor resistor

Modelcards are typical for SPICE. They contain the so called technology parameters which are adjustable for more than one model at the same time.

Spice3 library for Modelica - structure -

the package sources contains:

- voltage and current souces:
 - constant
 - sinusoidal
 - exponential
 - pulse
 - piece-wise-liniear
 - single-frequency

Spice3 library for Modelica - structure -

- contains some useful example circuits.
- Some very simple to check parameter influence on behavior of the component

- structure -

repository contains

- functions
- modelcards with parameters
- · records with data
- → needed for semiconductor models
- package not for user access.
- e.g. package MOS1 contains
 - two records with parameters, data
 - four functions, e.g. "DrainCur" (calculates drain current of the MOS1 transistor.)

-not for user access

Spice3 library for Modelica - structure -

The package additionals contains useful components that are not originally from SPICE3:

- polynomial sources (from PSPICE)
 - voltage controlled voltage source
 - voltage controlled current source
 - current controlled voltage source
 - current controlled current source

How the library was tested

Spice3 library for Modelica

- tests -

simple circuits to check the principal behavior

"complex" circuits

Dymola results are always compared with SPICE3 results

- tests -

Mosfet level 1 transistor

to check the parameter influence on characteristics the following circuit was used:

- step by step each parameter was tested alone
- combinations of parameters were tested

results:

- about 400 tests (single parameters and combinations)
- in most cases Dymola and SPICE3 are in accordance
- big errors are not expected
- since capacitances can be set to zero now, such tests are necessary

Spice3 library for Modelica - larger circuit tests -

Mosfet transistors

the MOS1 transistor was tested in larger circuits:

results:

- in most cases Dymola and SPICE3 are in accordance
- · big errors are not expected
- since capacitances can be set to zero now, such tests are necessary
- since the MOS2 transistor has still an error in the simple test cases, test in larger circuits were not done yet

Spice3 library for Modelica - tests -

Bipolar transistors

to check the parameter influence on characteristics the following circuit was used:

- step by step each parameter was tested alone
- combinations of parameters were tested

results:

- 40 tests of this kind (single parameters and combinations)
- in most cases Dymola and SPICE3 are in accordance
- big errors are not expected
- since capacitances can be set to zero now, such tests are necessary

Spice3 library for Modelica - larger ciruit tests -

Bipolar transistors

beside the simple parameter tests the bipolartransistor was tested in larger circuits:

example: schmitt trigger

results:

- 14 circuits were simulated
- in many cases some capacitances need a value different from zero
- 6 circuits are in accordance with SPICE3
- > further test are necessary!
- in progress in Eurosyslib

Spice3 library for Modelica - tests -

tests are not completed yet → further test are necessary

Basic elements	intensively tested, correct	
Sources	intensively tested, correct	
Semiconductor resistor	intensively tested, correct	
Diode	intensively tested, correct	
Mosfet level 1 transistor	further tests are necessary, principally correct	
Bipolar transistors	further tests are necessary, principally correct	
Mosfet level 2 transistor	errors still occur	

[→] Spice3 library is delivered without mosfet level 2 transistor so far

Spice3 library for Modelica

Illustration by examples

Conclusion

Spice3 library for Modelica - conclusion -

- aim: to have exactly the SPICE3 models
- → complicated way (extracting original SPICE3 models from source code)
- not all models from SPICE3 were planned to translate to Modelica ("matter of time")
- it cannot be excluded that no errors occur because of the complexity
- open elements maybe will follow
- Adding Spice3 library to MSL would promote it by valuable feedback
- a netlist translator is necessary, started

