CSC373S: Algorithm Design, Analysis & Complexity

Lecture 11

Monday January 30, 2017

based on notes by Denis Pankratov

Dynamic Programming (continue)

DP Subparadigms

1. **Input:** $X_1, ..., X_n$

Subproblems: X_1, \ldots, X_i

Example: Weighted interval scheduling, longest increment subsequence

2. Input:

 X_1,\ldots,X_m

 Y_1, \ldots, Y_n

Subproblems:

 $\begin{cases}
X_1, \dots, X_i \\
Y_1, \dots, Y_j
\end{cases}$

Number of subproblems: $\mathcal{O}(mn)$

Example: Largest common subsequence (substring)

3. **Input:** $X_1, ..., X_n$

Subproblems: X_i, \ldots, X_j (contiguous)

Number of subproblems: $\mathcal{O}(n^2)$

 $\label{eq:Example:Example:Example:Example:Example:Example: Chain matrix multiplication$

4. **Input:** X_1, \ldots, X_n, N -positive integer

Subproblems: (X_i, \ldots, X_i, K) , where $1 \le K \le N$

Number of subproblems: $\mathcal{O}(nN)$ (not polynomial in the size of input)

 ${\it Example:}\ {\rm O/I\ Knapsack}$

5. **Input:** rooted tree

Subproblems: subtrees rooted at various vertices

Number of subproblems: number of vertices Example: Maximum independent set in trees

Coin Change Problem

Input:

D - array of n denominations (positive integers) N - positive integer

Output: X - array of n non-negative integers, such that:

$$\sum_{i=1}^{n} X[i]D[i] = N$$

$$\sum_{i=1}^{r} X[i] \text{ is as small as possible}$$

Semantic Array: $C[K] = \min \# \text{ of coins needed to make change for } K, 0 \le K \le N$

Computational Array:

$$C[K] = 1 + \min\{C[K - D[i]] | 1 \le i \le n, D[i] \le K\}$$
$$C[0] = 0$$

(Note: The level of detail below will be expected in the midterm)

Equivalence: Optimal solution for value K, $(K \ge 1)$, has to contain at least one coin of some denomination, say D[i], and optimal solution for the reduced problem, value K - D[i].

This is true because of the standard *cut-&-paste* argument (formally, it is argued by contradiction, and it suffices to refer to this argument unless explicitly told to expand on it).

Pseudocode for the value of $opt(\sum_{i=1}^{n} X[i])$:

```
def CoinChange(D, n):
2
     \# 0-b as ed in dexing
     init array C of size N
3
     C[0] = 0
5
     \# runtime: O(nN)
6
     for K = 1 to N:
       C[k] = float('inf')
8
9
       \# runtime: O(n)
10
       for j = 1 to n:
11
12
          \# runtime: O(1)
          if D[j] \le K and C[K - D[j]] + 1 < C[K]:
13
            C[K] = C[K - D[j]] + 1
14
15
     return C[N]
16
```

Runtime: $\mathcal{O}(nN)$

<u>Definition</u>: The edit distance between two strings is the minimum # of character insertions, deletions, replacements that are needed to transform one string into another.

Example:

- 1. insert u
- 2. replace o w/n
- 3. delete w

Edit Distance: 3

<u>Claim:</u> transforming 1^{st} string into 2^{nd} takes the same # of operations as transforming the 2^{nd} into the 1^{st}

Input: the strings

Y[1..n]

Output: edit distance between X & Y

Without loss of generality (WLOG):

- 1. transform X into Y
- 2. consider transformation operations performed from left to right

Semantic Array: $C[i,j] = \text{edit distance between } X[1..i] \text{ and } Y[1..j], 0 \le i \le m, 0 \le j \le n$

Computational Array:

$$C[i,j] = \min \begin{cases} C[i-1,j-1], \text{if } X[i] = Y[j] \\ C[i-1,j-1] + 1 \leftrightarrow \text{turning character } X[i] \text{ into } Y[j] \\ C[i-1,j] + 1 \leftrightarrow \text{deleting character } X[i] \\ C[i,j-1] + 1 \leftrightarrow \text{inserting character } Y[j] \text{ after } X[i] \end{cases}$$

Exercise: finish proof of correctness, write pseudocode & analyze runtime