and let

$$P(X) = \sum_{j=0, i=0}^{j=m, i=n_{j+1}} \lambda_j^i P_j^i(X).$$

We can think of P(X) as a generalized Newton interpolant. We can compute the derivatives $D^k P^i_j$, for $1 \le k \le n_{j+1}$, and if we look for the Hermite basis polynomials $H^i_j(X)$ such that $D^i H^i_j(\alpha_j) = 1$ and $D^k H^i_j(\alpha_l) = 0$, for $k \ne i$ or $l \ne j$, $1 \le j, l \le m+1$, $0 \le i, k \le n_j$, we find that we have to solve triangular systems of linear equations. Thus, as in the simple case $n_1 = \ldots = n_{m+1} = 0$, we can solve successively for the λ^i_j . Obviously, the computations are quite formidable and we leave such considerations for further study.