Лекция 16 от 18.01.2016

Вспомним предыдущую лекцию и кое-что дополним

Замечание.

- 1. Элемент $0 e \partial u$ нственный.
- 2. И элемент -a единственный.
- 3. Даже элемент 1 единственный.
- 4. Как это ни удивительно, но a^{-1} тоже единственный.

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3.

Доказательство. Докажем пункт 3. Если существует 1' — еще одна единица, тогда по аксиомам $1' = 1' \cdot 1 = 1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To есть b=c.

Комплексные числа (продолжение)

Предложение. Пусть $z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$ Тогда $z_1 z_2 = |z_1| |z_2| (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2))$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные.

$$z_1 z_2 = |z_1||z_2| \left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i \left(\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1\right)\right) =$$
$$= |z_1||z_2| \left(\cos \left(\varphi_1 + \varphi_2\right) + i \sin \left(\varphi_1 + \varphi_2\right)\right)$$

Следствие. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos{(\varphi_1 - \varphi_2)} + i\sin{(\varphi_1 - \varphi_2)})$

Следствие (Формула Муавра). Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом:

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} .$$

M тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi \quad \forall \varphi \in \mathbb{C}.$$

Всякое $z\in\mathbb{C}$ можно представить в виде $z=|z|e^{i\varphi}$, где $\varphi\in\mathrm{Arg}\ (z)$. Тогда формула Муавра приобретает совсем очевидный вид:

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}.$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, z \to ze^{i\varphi}, \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг 0.

Корни из комплексного числа

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$
$$w = |w| (\cos \psi + i \sin \psi)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\psi \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\psi = \varphi + 2\pi k, \quad k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \mathbb{Z} \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\psi = \frac{\varphi + 2\pi k}{n}$ получаются при $k = 0, 1, \dots, n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n-1 \right\}$$

Замечание. Точки из множества $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|z|}$.

Пример. $z = -1 = \cos \pi + i \sin \pi$

$$\sqrt[3]{z} = \left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}; \cos\pi + i\sin\pi; \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1=\frac{-b+d_1}{2a},\,z_2=\frac{-b+d_2}{2a},\,$ где $\{d_1,d_2\}=\sqrt[2]{b^2-4ac}.$ В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

Теорема (Основная теорема алгебры). Всякий многочлен $P\left(z\right)=a_{n}z^{n}+a_{n-1}z^{n-1}+\ldots+a_{1}z+a_{0}$ степени $n,\ \textit{где}\ n\geqslant 1,\ a_{n}\neq 0,\ u\ a_{0},\ldots,a_{n}\in\mathbb{C}$ имеет корень.

Векторные пространства над произвольным полем

И снова вспомним, что такое векторное пространство:

- некоторое множество V;
- есть операция сложения $V \times V \to V$;
- есть операция умножения на скаляр $F \times V \to V$;
- выполняются 8 аксиом.

Все основные понятия и результаты теории векторных пространств из прошлого полугодия можно перенести на случай пространства над произвольным полем F без изменений.

Пример. Пусть V — векторное пространство над полем из двух элементов, $\dim V = n$. Тогда $|V| = 2^n$. Действительно, каждое конечномерное пространство обладает базисом (в данном случае e_1, \ldots, e_n). Тогда $V = \{k_1e_1 + k_2e_2 + \ldots + k_ne_n \mid k_i \in F\}$. Но очень легко заметить, что всего таких линейных комбинаций 2^n