# Unit 7 Thermodynamics II Enthalpy

# Enthalpy (H)

H is a state function incorporating PV-work, defined as:

$$H \equiv U + PV$$

- Enthalpy has units of Joules (J) or kilojoules (kJ).
- The change in enthalpy between two states, 1 and 2, is

$$\Delta H = H_2 - H_1 = \Delta U + \Delta (PV)$$

#### **Constant Pressure Process**

• If a process is carried out with <u>constant pressure</u> then  $P = P_1 = P_2 = P_{ext}$ , so that using the First Law gives

$$\Delta U = q_p + w = q_p - P\Delta V$$

where the subscript on q reminds us P is constant, and we have assumed only PV-work is acting, then

$$q_p = \Delta U + P\Delta V = \Delta H$$

ΔH is the heat gained or released during a constant pressure process, including a chemical reaction.

# Heat and matter – Phase changes

- During phase changes:
- heat is required to overcome IMFs, or
- heat is released upon the formation of IMFs
   This heat is called 'latent heat'

$$\Delta H = n \cdot \Delta H_{\text{phase change}}$$

n = number of moles of substance  $\Delta H_{\text{phase change}}$  = molar enthalpy of phase change

REMINDER:  $\Delta H$  is an EXTENSIVE property. Therefore it scales with size/quantity/extent.

#### Hess' Law

 Sum of ΔH for all steps gives overall reaction enthalpy:



REMINDER: ΔH is an state function (it is path independent)

## **Enthalpy Changes in Chemical Reactions**

How can we measure the enthalpy of reactions that are very slow? (or don't happen at all?)

#### Example:

$$\Delta H = ???$$

$$C_{diamond} + O_2(g) \rightarrow CO_2(g)$$
  $\Delta H = -395.4 \text{ kJ}$   
 $C_{graphite} + O_2(g) \rightarrow CO_2(g)$   $\Delta H = -393.5 \text{ kJ}$ 

## Diamond to graphite...

C(diamond) 
$$\rightarrow$$
 C(graphite)  $\Delta H = ???$ 

$$C_{\text{diamond}} + \mathcal{O}_{2}(g) \rightarrow C\mathcal{O}_{2}(g) \qquad \Delta H = -395.4 \text{ kJ}$$

$$C\mathcal{O}_{2}(g) \rightarrow C_{\text{graphite}} + \mathcal{O}_{2}(g) \qquad \Delta H = +393.5 \text{ kJ}$$

$$C_{\text{diamond}} \rightarrow C_{\text{graphite}} \qquad \Delta H = -1.9 \text{ kJ}$$

# Hess' Law (cont'd)

1. Reversing reaction inverts sign of  $\Delta H$ .

$$C_{diamond} + O_2(g) \rightarrow CO_2(g)$$
  
(reverse reaction)  
 $CO_2(g) \rightarrow C_{diamond} + O_2(g)$ 

$$\Delta H = -395.4 \text{ kJ}$$
(reverse sign)
$$\Delta H = +395.4 \text{ kJ}$$

# Hess' Law (cont'd)

2.  $\Delta H$  depends on quantity of the reaction.

$$C_{diamond} + O_{2}(g) \rightarrow CO_{2}(g)$$
  $\Delta H = -395.4 \text{ kJ}$   
 $\times 2$   $\times 2$   $\times 2$   
 $2C_{diamond} + 2O_{2}(g) \rightarrow 2CO_{2}(g)$   $\Delta H = -790.8 \text{ kJ}$ 

REMINDER:  $\Delta H$  is an EXTENSIVE property. Therefore it scales with size/quantity/extent.

Consider the combustion of methanol:

2 CH<sub>3</sub>OH(I) + 3 O<sub>2</sub>(g) 
$$\rightarrow$$
 4 H<sub>2</sub>O(I) + 2 CO<sub>2</sub>(g)  
( $\Delta H^{\circ}$  = -1453.0 kJ)

What is the value of  $\Delta H^{\circ}$  under each of the following conditions:

- a) 3 moles of methanol are oxidized:
- b) The direction of the reaction is reversed:
- c) Water vapor is produced during the reaction instead of liquid water:  $(\Delta H^{\circ}_{vap} = 44.0 \text{ kJ mol}^{-1})$

2 CH<sub>3</sub>OH(I) + 3 O<sub>2</sub>(g) 
$$\rightarrow$$
 4 H<sub>2</sub>O(I) + 2 CO<sub>2</sub>(g)  
( $\Delta H^{\circ}$  = -1453.0 kJ)

a) 3 moles of methanol are oxidized:

$$\Delta H^{\circ} = (-1453.0 \text{ kJ}/2) \times 3 = -2179.5 \text{ kJ}$$

a) The direction of the reaction is reversed:

$$\Delta H^{\circ} = 1453.0 \text{ kJ}$$

a) Water vapor is produced during the reaction instead of liquid water:  $(\Delta H^{\circ}_{vap} = 44.0 \text{ kJ mol}^{-1})$ 

$$\Delta H^{\circ} = -1453.0 \text{ kJ} + (44) \times 4 = -1277 \text{ (kJ)}$$

Use the following reactions:

2 LiOH<sub>(s)</sub> 
$$\rightarrow$$
 Li<sub>2</sub>O<sub>(s)</sub> + H<sub>2</sub>O<sub>(l)</sub>  $\Delta H^{\circ} = 379.1 \text{ kJ}$   
LiOH<sub>(s)</sub> + H<sub>2(g)</sub>  $\rightarrow$  LiH<sub>(s)</sub> + H<sub>2</sub>O<sub>(l)</sub>  $\Delta H^{\circ} = 111.0 \text{ kJ}$   
2 H<sub>2</sub>O<sub>(l)</sub>  $\rightarrow$  2 H<sub>2(g)</sub> + O<sub>2(g)</sub>  $\Delta H^{\circ} = 285.9 \text{ kJ}$ 

To determine  $\Delta H^{\circ}$  for the reaction:

$$2 \text{ LiH}_{(s)} + O_{2(g)} \rightarrow \text{Li}_2O_{(s)} + H_2O_{(l)}$$

#### **Clicker Question - Worksheet Question #10**

Use the following reactions:

2 LiOH<sub>(s)</sub> 
$$\rightarrow$$
 Li<sub>2</sub>O<sub>(s)</sub> + H<sub>2</sub>O<sub>(l)</sub>  $\Delta H_1^{\circ} = 379.1 \text{ kJ}$   
LiOH<sub>(s)</sub> + H<sub>2(g)</sub>  $\rightarrow$  LiH<sub>(s)</sub> + H<sub>2</sub>O<sub>(l)</sub>  $\Delta H_2^{\circ} = 111.0 \text{ kJ}$   
2 H<sub>2</sub>O<sub>(l)</sub>  $\rightarrow$  2 H<sub>2(g)</sub> + O<sub>2(g)</sub>  $\Delta H_3^{\circ} = 285.9 \text{ kJ}$ 

To determine  $\Delta H^{\circ}$  for the reaction:

$$2 \text{ LiH}_{(s)} + O_{2(g)} \rightarrow \text{Li}_2O_{(s)} + \text{H}_2O_{(l)}$$

- A) +125.2 kJ
- B) -17.8 kJ



- D) -303.6 kJ
- E) +128.8 kJ

# Standard Enthalpy of Formation

• Standard enthalpy of formation is the enthalpy change in a reaction where <u>1 mole</u> of substance is formed from its <u>constituent</u> <u>elements</u> in their <u>standard states</u>.



## Standard Enthalpy of Formation

#### What is standard state?

| Gases                 | 1 bar pressure |
|-----------------------|----------------|
| Pure solids + liquids | Pure substance |
| Solutions             | 1 M solution   |

Note: has no specific temperature!

- 1.  $\Delta H_f^{\circ} = 0$  for elements in standard state.
- 2. Need to select one allotrope of element as reference form.

3.  $\Delta H_f^0$  varies *slightly* with temperature... approximate as constant (usually at 298 K)

#### **Standard State vs STP**

- **Standard state** specifies a <u>pressure (1 bar)</u> for gases or a <u>concentration (1 mol/L)</u> for solutions but <u>NOT temperature</u>. Thus,  $\Delta H_{\rm f}^{\circ}$  changes (for the same species) if T changes. This is why the temperature must be provided when standard state data is reported.
- Standard temperature and pressure (STP) denotes a common set of conditions under which experiments are performed. Since 1982, STP has been defined as T = 273.15 K and P = 1 bar.

# **Thermodynamics Experiment**

#### Experiment 5 – Thermodynamics

- Each salt must be weighed out accurately ....
- Part I:
  - Dissolve a salt (MgSO<sub>4</sub>) which is used to make a hot pack
  - Take measurements as temperature changes (increases) until the change is minimal for a few minutes

- Part II:
  - Dissolve a salt (NH<sub>4</sub>NO<sub>3</sub>) which is used to make a cold pack
  - Take measurements as temperature changes (decreases) until the change is minimal for a few minutes
- Part III
  - Based on the data collected, design a hot/cold pack with a predetermined change in temperature.



## **Clicker Question**

The <u>standard enthalpy of formation</u> of  $NH_4Cl(s)$  is -315.4 kJ/mol. The equation that best describes the formation reaction for  $NH_4Cl$  is:

A) 
$$N_2(g) + H_2(g) + Cl_2(g) \rightarrow 2 NH_4Cl(s)$$

B) 
$$\frac{1}{2} N_2(g) + \frac{1}{2} Cl_2(g) + \frac{1}{2} H_2(g) \rightarrow NH_4Cl(s)$$

C) 
$$N_2(g) + Cl_2(g) + 4 H_2(g) \rightarrow 2 NH_4Cl(s)$$

D) 
$$\frac{1}{2} N_2(g) + 2 H_2(g) + \frac{1}{2} Cl_2(g) \rightarrow NH_4Cl(s)$$

## **Clicker Question**

The standard enthalpy of formation of  $NH_4Cl(s)$  is -315.4 kJ/mol. The equation that best describes the formation reaction for  $NH_4Cl$  is:

A) 
$$N_2(g) + H_2(g) + Cl_2(g) \rightarrow X NH_4 Cl(s)$$

B) 
$$\frac{1}{2} N_2(g) + \frac{1}{2} Cl_2(g) + \frac{1}{2} H_2(g) \rightarrow NH_4Cl(s)$$

C) 
$$N_2(g) + Cl_2(g) + 4 H_2(g) \rightarrow X NH_4 Cl(s)$$

✓ D) 
$$\frac{1}{2}$$
 N<sub>2</sub>(g) + 2 H<sub>2</sub>(g) +  $\frac{1}{2}$  Cl<sub>2</sub>(g) → NH<sub>4</sub>Cl(s)

#### Worksheet Question #11 - Good Question

Use the following heat of combustion data to determine the enthalpy of formation of methanol (CH<sub>3</sub>OH).

$$CH_3OH(I) + {}^3/{}_2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$
  $\Delta H^\circ = -726.4 \text{ kJ}$   $C(graphite) + O_2(g) \rightarrow CO_2(g)$   $\Delta H^\circ = -393.5 \text{ kJ}$   $H_2(g) + {}^1/{}_2O_2(g) \rightarrow H_2O(I)$   $\Delta H^\circ = -285.8 \text{ kJ}$ 

## Worksheet Question #11 - Good Question

$$CH_3OH(I) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$
  $\Delta H^\circ = -726.4 \text{ kJ}$ 

C(graphite) + O<sub>2</sub>(g) 
$$\rightarrow$$
 CO<sub>2</sub>(g)  $\Delta H^{\circ} = -393.5 \text{ kJ}$ 

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$
  $\Delta H^\circ = -285.8 \text{ kJ}$ 

$$CO_2(g) + 2H_2O(I) \rightarrow CH_3OH(I) + 3/2O_2(g)$$
  $\Delta H^\circ = -(-726.4) \text{ kJ}$ 

C(graphite) + O<sub>2</sub>(g) 
$$\rightarrow$$
 CO<sub>2</sub>(g)  $\Delta H^{\circ} = -393.5 \text{ kJ}$ 

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$
  $\Delta H^\circ = 2 \times (-285.8) \text{ kJ}$ 

C(graphite) + 
$$\frac{1}{2}O_2(g) + 2H_2(g) \rightarrow CH_3OH(I)$$

$$\Delta H_f^0 = -\Delta H_1^0 + \Delta H_2^0 + 2 \Delta H_3^0 = 726.4 - 393.5 - 571.6$$
$$= -238.7 \ k J \ mol^{-1}$$

# **Standard Enthalpy of Formation**

$$\Delta H^0 = \sum v_p \cdot \Delta H_f^0 \text{(products)} - \sum v_r \cdot \Delta H_f^0 \text{(reactants)}$$

 $\Delta H_f^0$  = Enthalpy of formation for each product / reactant  $\nu$  = Stoichiometric coefficient from reaction equation If we know  $\Delta H_f^0$  for products and reactants, we can use Hess' law to determine enthalpy change.

Use the enthalpy data to determine the standard internal energy change ( $\Delta U^{\circ}$ ) for the <u>combustion of 1 mol of glucose</u> ( $C_6H_{12}O_6$ ) <u>under constant pressure</u> conditions and at 298 K:

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(aq) + 6H_2O(l)$$

| Species              | $\Delta H_{\rm f}^{\circ}$ (kJ/mol) |
|----------------------|-------------------------------------|
| $C_6H_{12}O_6(s)$    | -1273.3                             |
| CO <sub>2</sub> (aq) | -412.9                              |
| H <sub>2</sub> O(I)  | -285.8                              |

$$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(aq) + 6 H_2O(l)$$

| Species              | $\Delta H_{\rm f}^{\circ}$ (kJ/mol) |
|----------------------|-------------------------------------|
| $C_6H_{12}O_6$ (s)   | -1273.3                             |
| CO <sub>2</sub> (aq) | -412.9                              |
| H <sub>2</sub> O(I)  | -285.8                              |

$$\Delta \mathbf{H}^{\circ}$$
=  $\left[6 \text{ mol} \times \left(-412.9 \text{ kJ mol}^{-1}\right) + 6 \text{ mol} \times \left(-285.8 \text{ kJ mol}^{-1}\right)\right]$ 
-  $\left[1 \text{ mol} \times \left(-1273.3 \text{ kJ mol}^{-1}\right) + 6 \text{ mol} \times \left(0 \text{ kJ mol}^{-1}\right)\right] = -2918.9 \text{ kJ}$ 

$$\Delta U^{\circ} = \Delta H^{\circ} - P\Delta V = \Delta H^{\circ} - \Delta nRT$$
=  $-2918.9 \text{ kJ} - \left(-6 \text{ mol}\right) \times \left(8.3145 \text{ J mol}^{-1} \text{ K}^{-1}\right) \left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right) (298 \text{ K})$ 
=  $-2918.9 \text{ kJ} + 14.9 \text{ kJ} = -2904.0 \text{ kJ}$ 

In its standard state, elemental sulphur (rhombic), with the help of a catalyst, combusts to produce gaseous <u>SO</u><sub>3</sub>. This reaction was performed with <u>excess sulphur</u> in a closed container with thin, flexible walls that was submerged in 3.00 L of water at 20.0 °C with a constant external pressure of 1.00 bar. After the reaction, the temperature of the water increased by 2.1 °C, and from the change in water height, the work was calculated as 80.0 J. Calculate:

- i) the mass of oxygen, in g, that reacted,
- ii)  $\Delta U$ , in kJ, for the reaction,
- iii) the standard enthalpy of formation for  $SO_3(g)$ , in kJ/mol. ( $c_{p,water} = 4.184 \text{ J/(g}^{\circ} \text{ C})$ )

# Bond energies/enthalpies

Enthalpy (Energy) required to break and form bonds over course of a reaction:  $\Delta H$ 

$$H_2(g) \rightarrow H(g) + H(g)$$
  $\Delta H^0 = +436.4 \text{ kJ mol}^{-1}$ 

Bond energies and standard enthalpies of formation are included in the Chemistry Data Sheet on the main CHEM 154 Canvas website.

# **Bond Enthalpies**

$$\Delta H^0 \neq \sum E_{bond}$$
 (reactants)  $\left(-\sum E_{bond}$  (products)

Bonds Broken (Energy input)

Bonds Formed (Energy output)

Bond enthalpies can be used to get approximate values for enthalpies of reactions

Not ALL bond enthalpies are made equal – they are averaged over MANY compounds.

## **Clicker Question**

Consider the reaction of  $H_2$  and  $Cl_2$  gas to form gaseous HCl:

$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$$

The H-H and Cl-Cl bond enthalpies are determined to be 435 and 240 kJ mol<sup>-1</sup> respectively. If the reaction as written releases 185 kJ of energy, determine the H-Cl bond enthalpy.

- A) 245 kJ
- B) 430 kJ
- C) 490 kJ
- D) 860 kJ

## **Clicker Question**

Consider the reaction of  $H_2$  and  $Cl_2$  gas to form gaseous HCl:

$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$$

The H-H and Cl-Cl bond enthalpies are determined to be 435 and 240 kJ mol<sup>-1</sup> respectively. If the reaction as written releases 185 kJ of energy, determine the H-Cl bond enthalpy.

$$435 + 240 = 2X - 185$$

$$\rightarrow$$
 X = 430



Corn ethanol is burned to release energy and power engines – but how much energy is released by this combustion?

#### **Calorimetry**

 $\Delta H = mC \Delta T$ 

Sample of water with mass = mHeat capacity = C $\Delta T$  can be measured

Measure mass of ethanol burned to produce the heat change of water

$$\Delta H_{\text{water}} = \Delta H_{\text{ethanol}}$$

(calculate molar enthalpy using mass of ethanol)





Corn ethanol is burned to release energy and power engines – but how much energy is released by this combustion?

#### **Calorimetry**

 $\Delta H = mC \Delta T$ 

Sample of water with mass = m Heat capacity = C ΔT can be measured



$$\Delta H_{\text{water}} = \Delta H_{\text{ethanol}}$$

(calculate molar enthalpy using mass of ethanol)



#### Hess' Law – Standard molar enthalpies

$$\Delta H^0 = \sum v_p \cdot \Delta H_f^0 \text{ (products)} - \sum v_r \cdot \Delta H_f^0 \text{ (reactants)}$$

$$C_2 H_5 \text{OH(I)} + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2 O(g)$$

$$\Delta H^{\circ}$$
 = [(2 x -393.5) + (3 x -241.8)] kJ mol<sup>-1</sup> - [-277.6 + (3 x 0)] kJ mol<sup>-1</sup>  $\Delta H^{\circ}$  = -1234.8 kJ mol<sup>-1</sup>

| Compound                            | ΔH° <sub>f</sub> (kJ mol <sup>-1</sup> ) |
|-------------------------------------|------------------------------------------|
| C <sub>2</sub> H <sub>5</sub> OH(I) | - 277.6                                  |
| O <sub>2</sub> (g)                  | 0                                        |
| CO <sub>2</sub> (g)                 | - 393.5                                  |
| H <sub>2</sub> O(g)                 | - 241.8                                  |

How much energy is -1234.8 kJ/mol?

#### What can you do with 1234 kJ?

- Heat approximately 3.5 L of water from 15 °C to 100 °C
- Light a 100W bulb for 3.4 hours
- Power your cell phone for approximately 2 months!!!
- Less than 1/3 the daily recommended calorie allowance
- Lift an elephant to a height of 31 metres

https://www.forbes.com/sites/christopherhelman/2013/09/07/how-much-energy-does-your-iphone-and-other-devices-use-and-what-to-do-about-it/#1acac522f702

https://www.betterhealth.vic.gov.au/health/healthyliving/kilojoules-and-calories

Brown, B. S. What does the kilojoule look like? *Biochemical Education*, **1979**, *7*, 4, 88-89.

#### **TUESDAY FUNNY — IT RETURNS!**

