Symulacje komputerowe, WMat 2023

Lista 8: Łańcuchy Markowa

- 1. **Jednorodny łańcuch Markowa w czasie dyskretnym** Proces ten zadajemy stanem początkowym $X_0 = x_0$ oraz macierzą przejścia P, $P_{ij} = P(X_{k+1} = j|X_k = i)$, $\sum_j P_{ij} = 1$. Napisz algorytm, który przyjmuje x_0 oraz P i na ich podstawie symuluje trajektorie zadanego nimi łańcucha Markowa. Oszacuj numerycznie przez jaki czas pojedyncza trajektoria przyjmuje każdy ze stanów.
- 2. Jednorodny łańcuch Markowa w czasie ciągłym Każdy taki proces jest jednoznacznie określony przez warunek początkowy x_0 , macierz przejścia P, $\sum_j P_{ij} = 1, P_{ii} = 0$ oraz funkcję intensywności $\lambda_i, 0 \leq \lambda_i$. Dla każdego t warunkowo gdy $X_t = i$ proces taki pozostaje w stanie i przez czas $T \sim \mathcal{E}xp(\lambda_i)$, kolejne czasy są niezależne. Następnie skacze do innego stanu zgodnie z macierzą przejścia P. Napisz algorytm pobierający x_0, P i λ oraz generujący trajektorie zadanego nimi łańcucha Markowa.