22.10.2007.

PRVA SKUPINA ZADATAKA

1. Za RC mrežu koja ima $R = 1 \text{ M}\Omega$ i $C = 1 \mu\text{F}$ treba odrediti stacionarno stanje napona na izlazu ako je na njenom ulazu pobuda prikazana na slici. (1 bod).

2. Ako u zadatku 1. *R* i *C* zamijene mjesta, kakav će u tom slučaju biti izlazni napon u stacionarnom stanju (1 bod)?

Ponuđeni odgovori ovog zadatka isti su kao i ponuđeni odgovori prethodnog. Potrebno je izabrati jednu opciju. e)

- 3. Silicijska pločica dopirana je s $N_D = 10^{15} \text{ cm}^{-3}$ nalazi se na temperaturi od 300 K. Nakon što se toj pločici dodaju akceptori koncentracije $N_A = 2 \cdot 10^{15} \text{ cm}^{-3}$, specifični otpor pločice (1 bod):
 - a) pada,
 - **b)** raste,
 - c) ostaje isti,
 - d) nijedno od navedenog,
 - e) ne može se odrediti zbog nedostatka podataka.

- 4. Silicijska pločica dopirana je s $N_D = 5 \cdot 10^{15}$ cm⁻³ i $N_A = 5 \cdot 10^{15}$ cm⁻³ nalazi se na temperaturi od 300 K. Ako temperatura naraste na 350 K, specifična vodljivost pločice (1 bod):
 - a) nijedno od navedenog,
 - b) ne može se odrediti zbog nedostatka podataka,
 - c) ostaje ista,
 - d) raste,
 - pada,
- 5. Za silicijski pn-spoj na T=350K s koncentracijama primjesa iznosa $N_D=N_A=10^{16}~{\rm cm}^{-3}\,$ i širokim p i nstranama vrijedi (1 bod):
 - a) $I_{Sn} > I_{Sn}$ i osiromašeno područje dominantno se širi na *n* stranu
 - **b)** $I_{Sn} = I_{Sp}$ i osiromašeno područje se jednako širi na obje strane
 - c) $I_{Sn} > I_{Sn}$ i osiromašeno područje se jednako širi na obje strane
 - **d)** $I_{Sn} < I_{Sn}$ i osiromašeno područje se jednako širi na obje strane
 - e) $I_{Sn} > I_{Sp}$ i osiromašeno područje dominantno se širi na p stranu
- 6. Diode imaju struje zasićenja I_{SI} =10 nA i I_{S2} =5 nA te napon koljena $U_{\gamma I}$ = $U_{\gamma 2}$ =0,7 V. Ako u sklopu prema slici teče struja *I* onda je (1 bod):

- $|U_{DI}| = |U_{D2}|$ i I = 10 mA

- **b)** $|U_{DI}| < |U_{D2}| \text{ i } I = -5 \text{ nA}$ **c)** $|U_{DI}| > |U_{D2}| \text{ i } I = 10 \text{ nA}$ **d)** $|U_{DI}| > |U_{D2}| \text{ i } I = -10 \text{ nA}$
 - e) $|U_{DI}| < |U_{D2}|$ i I = 5 nA
- 7. Kolika je širina zabranjenog pojasa E_G poluvodičkog materijala iz kojeg je napravljena svjetleća dioda i kakva mora biti polarizacija te diode da bi emitirala svjetlo zelene boje valne duljine 0,5 μm (1 bod)?
 - a) $E_G = 1,12 \text{ eV}$, zaporna polarizacija
 - **b)** $E_G = 1,24 \text{ eV}$, ne mora biti polarizirana
 - c) $E_G = 1,24 \text{ eV}$, zaporna polarizacija
 - **d)** $E_G = 2,48 \text{ eV}$, propusna polarizacija
 - e) $E_G = 1,12 \text{ eV}$, propusna polarizacija
- 8. Na sklop s diodom prema slici priključena je kombinacija istosmjernog i malog izmjeničnog napona. Ako su otpori $R_1 = 10 \Omega$, $R_2 = 1 \text{ k}\Omega$ i $R_3 = 10 \Omega$ koliki su otpori statičkog radnog pravca R_{ST} i dinamičkog radnog pravca $R_{din}(1 \text{ bod})$?

- a) $R_{ST} = 20 \Omega$, $R_{din} = 20 \Omega$
- **b)** $R_{ST} = 20 \ \Omega$, $R_{din} = 1020 \ \Omega$ **c)** $R_{ST} = 1020 \ \Omega$, $R_{din} = 20 \ \Omega$ **d)** niti jedno od navedenog
- **e)** $R_{ST} = 1020 \ \Omega$, $R_{din} = 1020 \ \Omega$

DRUGA SKUPINA ZADATAKA

ZADATAK 1. Pločica je homogeno dopirana jednim tipom primjesa. Koncentracija elektrona na *T*=450 K iznosi $n = 10^{14} \text{ cm}^{-3}$.

- **1.1.** Kolika je intrinzična koncentracija na zadanoj temperaturi (1 bod)?
- **1.2.** Odrediti tip i koncentraciju primjese kojom je pločica dopirana (1 bod).
- 1.3. Ako u tu pločicu dodamo istu koncentraciju suprotnog tipa primjese, kolika će biti koncentracija šupljina na T=300 K (1 bod)?
- **1.4.** Koliko će se Fermijev nivo pomaknuti nakon drugog dopiranja (1 bod)?
- 1.5. Koliki je otpor silicijske pločice poprečnog presjeka S=5 mm² i duljine l=1 mm ako je specifična vodljivost σ =5 mS/cm (1 bod)?

Odgovori:

1.1. a)
$$n_i = 2.79 \cdot 10^{12} \text{ cm}^{-3}$$

b)
$$n_i = 1,45 \cdot 10^{10} \text{ cm}^{-3}$$

c)
$$n_i = 1,45 \cdot 10$$
 cm
c) $n_i = 5,91 \cdot 10^{13}$ cm⁻³

d)
$$n_i = 10^{14} \text{ cm}^{-3}$$

e)
$$n_i = 1.36 \cdot 10^{13} \text{ cm}^{-3}$$

1.2. a)
$$N_D = 10^{14} \text{ cm}^{-3}$$

b)
$$N_A = 10^{14} \text{ cm}^{-3}$$

b)
$$N_A=10^{14} \text{ cm}^3$$

c) $N_A=6,5\cdot 10^{13} \text{ cm}^{-3}$
d) $N_D=6,5\cdot 10^{13} \text{ cm}^{-3}$

e)
$$N_4 = 3.23 \cdot 10^6 \text{ cm}^{-3}$$

1.3. a)
$$p=1,45\cdot10^{10} \text{ cm}^{-3}$$

b)
$$p=5.91\cdot10^{13} \text{ cm}^{-3}$$

c)
$$p=10^{14} \text{ cm}^{-3}$$

d)
$$p=1,36\cdot10^{13} \text{ cm}^{-3}$$

e)
$$p=3,23\cdot10^6 \text{ cm}^{-3}$$

a) do dna vodljivog pojasa 1.4.

- b) do vrha valentnog pojasa
- c) do sredine zabranjenog pojasa
- d) za $E_G/2$ prema dnu vodljivog pojasa
- e) za $E_G/2$ prema vrhu valentnog pojasa

1.5. a) $R=400 \Omega$

- b) $R=2.5 \text{ m}\Omega$
- c) $R=10 \text{ m}\Omega$
- d) $R=1 \Omega$
- e) $R=40 \Omega$

ZADATAK 2. Skokoviti *pn*-spoj ima homogeno dopirane strane s $N_A=10^{17}$ cm⁻³ i $N_D=10^{15}$ cm⁻³. Vrijedi da je w_p =1 μm< L_n i w_n =100 μm>> L_p . Vremena života manjinskih nosilaca iznose τn =0,5 μs i τ_p =0,8 μs, a pokretljivosti μ_n =850 cm2/Vs i μ_p =350 cm2/Vs. Površina pn-spoja je S=1 mm². Temperatura je T=300 K.

- **2.1.** Izračunati I_{sn} (1 bod)
- **2.2.** Izračunati $I_{sp.}$ (1 bod)
- 2.3. Koliki je napon priključen na pn-spoj ako je rubna koncentracija manjinskih elektrona $n_{n0}=1,377\cdot10^{12} \text{ cm}^{-3} (1 \text{ bod})$?
- **2.4.** Kolika je pri tome rubna koncentracija manjinskih šupljina (1 bod)?
- **2.5.** Uz neki napon priključen na pn-spoj poteče struja I=10 mA. Koliki je pri tome dinamički otpor pn-spoja (1 bod)? (Ovaj dio zadatka nije vezan uz prethodne)

Odgovori:

2.4.

2.1. a)
$$I_{sn}=2,23\cdot10^{-14}$$
 A

b)
$$I_{sn}=2,748\cdot10^{-14}$$
 A

c)
$$I_{sn}=7,395\cdot10^{-13}$$
 A

d)
$$I_{sn}=2,23\cdot10^{-12}$$
 A

e)
$$I_{sn} = 9,185 \cdot 10^{-15} \text{ A}$$

a)
$$p_{n0}=1,377\cdot10^{14} \text{ cm}^{-3}$$

b)
$$p_{n0}=2,1\cdot10^5 \text{ cm}^{-3}$$

c)
$$p_{n0}=1,377\cdot10^{10} \text{ cm}^{-3}$$

d)
$$p_{n0}=1,45\cdot10^{10} \text{ cm}^{-3}$$

e) $p_{n0}=10^{15} \text{ cm}^{-3}$

2. a)
$$I_{\rm sp}=1.13\cdot10$$

2.2. a)
$$I_{sp}=1,13\cdot10^{-14} \text{ A}$$

b) $I_{sp}=2,23\cdot10^{-12} \text{ A}$

c)
$$I = 3.05 \cdot 10^{-11} \text{ A}$$

c)
$$I_{sp}=3,05\cdot10^{-11} \text{ A}$$

d) $I_{sp}=1,13\cdot10^{-12} \text{ A}$

d)
$$I_{sp}=1,13\cdot10$$
 A

e)
$$I_{sp}=3.05\cdot10^{-13} \text{ A}$$

e)
$$I_{sp} = 3.05 \cdot 10^{-13} \text{ A}$$

a)
$$U=0.5 \text{ V}$$

b)
$$U=0,7 \text{ V}$$

c)
$$U=0,525 \text{ V}$$

d)
$$U=0.55 \text{ V}$$

e)
$$U=0.6 \text{ V}$$

2.5. a)
$$r_d$$
=2,59 Ω

b)
$$r_d = 25.9 \Omega$$

c)
$$r_d=259 \Omega$$

d)
$$r_d$$
=2,59 k Ω

e)
$$r_d = 0.259 \Omega$$

ZADATAK 3. Na slici je zadana *CR* mreža i napon koji je priključen na njezin ulaz.

- **3.1.** Izračunati vrijednosti izlaznog napona u t=0 ms (1 bod).
- **3.2.** Izračunati vrijednosti izlaznog napona u t=3 ms (1 bod).
- **3.3.** Izračunati vrijednosti izlaznog napona u t=9 ms (1 bod).
- 3.4. Izračunati vrijednosti izlaznog napona u t=12 ms (1 bod).
- **3.5.** Izračunati vrijednosti izlaznog napona u t=21 ms (1 bod).

Odgovori:

3.4.

3.1. a)
$$U_{IZ} = 0 \text{ V}$$

b)
$$U_{12} = 5 \text{ V}$$

b)
$$U_{IZ} = 5 \text{ V}$$

c) $U_{IZ} = -5 \text{ V}$

d)
$$U_{IZ} = 3 \text{ V}$$

d)
$$U_{IZ} = 3 \text{ V}$$

e) $U_{IZ} = -3 \text{ V}$

a) $U_{IZ} = -0.16 \text{ V}$

b) $U_{IZ} = -2,16 \text{ V}$ c) $U_{IZ} = 0.16 \text{ V}$

d) $U_{IZ} = 2,16 \text{ V}$ e) $U_{IZ} = 2 \text{ V}$

.2. a)
$$U_{IZ} = 1,76 \text{ V}$$

b)
$$U_{IZ} = 1.24 \text{ V}$$

c)
$$U_{IZ} = -3 \text{ V}$$

d)
$$U_{IZ} = -1,76 \text{ V}$$

d)
$$U_{IZ} = -1.76 \text{ V}$$

e) $U_{IZ} = -1.24 \text{ V}$

3.3. a)
$$U_{IZ} = -3,31 \text{ V}$$

b) $U_{IZ} = 5 \text{ V}$

b)
$$U_{IZ} = 5 \text{ V}$$

c)
$$U_{IZ} = 3.31 \text{ V}$$

d)
$$U_{IZ} = 1,69 \text{ V}$$

e) $U_{IZ} = -1,69 \text{ V}$

3.5. a)
$$U_{IZ} = 0 \text{ V}$$

b)
$$U_{IZ} = -0.72 \text{ V}$$

c)
$$U_{IZ} = -2 \text{ V}$$

d)
$$U_{IZ} = 2 \text{ V}$$

d)
$$U_{IZ} = 2 \text{ V}$$

e) $U_{IZ} = 0.72 \text{ V}$