7. Der komplexe Logarithmus

Definition

Sei $w \in \mathbb{C} \setminus \{0\}$ Jedes $z \in \mathbb{C}$ mit $e^z = w$ heißt **ein Logarithmus von** w. Man schreibt in diesem Fall (ungenau): $z = \log w$.

Satz 7.1

Sei
$$w \in \mathbb{C} \setminus \{0\}, w = |w|e^{i\operatorname{Arg}w}(\operatorname{Arg}w \in (-\pi, \pi])$$

Für $z \in \mathbb{C}$ gilt: $e^z = w \iff \exists k \in \mathbb{Z} : z = \log|w| + i\operatorname{Arg}w + 2k\pi i$ (log $|w|$ ist der reelle Log)

Beweis

"
$$\Leftarrow$$
 " : $e^z = \underbrace{e^{\log|w|}}_{|w|} e^{i\operatorname{Arg}w} \underbrace{e^{2k\pi i}}_{1} = |w|e^{i\operatorname{Arg}w} = w$

" \Longrightarrow " Sei $z = x + iy(x, y \in \mathbb{R})$ und $e^z = w$. Dann: $|w| = |e^z| = e^x \implies x = \log|w|$
 $|w|e^{i\operatorname{Arg}w} = w = e^z = e^x e^{iy} = |w|e^{iy}$
 $\Longrightarrow e^{iy} = e^{i\operatorname{Arg}w} \implies e^{i(y-\operatorname{Arg}w)} = 1 \stackrel{6.3}{\Longrightarrow} \exists k \in \mathbb{Z} : iy - i\operatorname{Arg}w = 2k\pi i$
 $\Longrightarrow z = \log|w| + i\operatorname{Arg}w + 2k\pi i$

Definition

Die Funktion Log : $\mathbb{C}\setminus\{0\}\to\mathbb{C}$ def. durch Log $w:=\log|w|+i\mathrm{Arg}w$ heißt der **Hauptzweig des** Logarithmus.

Beispiele:

- (1) Alle Log von w = 1: $2k\pi i \ (k \in \mathbb{Z})$ Log 1 = 0
- (2) $Log(-1) = i\pi$
- (3) w = 1 + i, $|w| = \sqrt{2}$, $\text{Arg}w = \frac{\pi}{4}$ $\text{Log}(1 + i) = \log \sqrt{2} + i\frac{\pi}{4}$

Satz 7.2

Sei $A = \{z \in \mathbb{C} : -\pi < \operatorname{Im} z \le \pi\}$ $f := \exp_{|A}$

- (1) f ist auf A injektiv.
- (2) $f(A) = \mathbb{C} \setminus \{0\}$
- (3) $f^{-1}(w) = \operatorname{Log} w \ (w \in \mathbb{C} \setminus \{0\})$
- (4) Die Funktion Log ist unstetig in jedem $w \in \mathbb{R}$ und w < 0

Beweis

- (1) 6.3, 7.1
- (2) 6.3, 7.1
- (3) 6.3, 7.1
- (4) §3 Beispiel: $w \mapsto \operatorname{Arg} w$ ist in w < 0 unstetig.

Definition

 $\mathbb{C}_{-} := \mathbb{C} \backslash \{t \in \mathbb{R} : t \leq 0\} \; (\subseteq \mathbb{C} \backslash \{0\})$

Für $w \in \mathbb{C}_{\perp}$ ist $Argw \in (-\pi, \pi)$.

Satz 7.3

 $Log \in C(\mathbb{C})$

Beweis

Sei $w_0 \in \mathbb{C}_-$, $z_0 := \text{Log} w_0$, $x_0 := \text{Re } z_0$, $y_0 := \text{Im } z_0$; also: $x_0 = \log |w_0|$, $y_0 = \text{Arg} w_0 \in (-\pi, \pi)$. $R := \{z = x + iy : x, y \in \mathbb{R}, |x - x_0| \le \log 2, |y| \le \pi\}$.

Sei $\varepsilon > 0$ so klein, dass $K := R \cap (\mathbb{C} \setminus U_{\varepsilon}(z_0)) \neq \emptyset$. Klar: K ist kompakt, $z_0 \notin K$.

Definiere $\varphi: K \to \mathbb{R}$ durch $\varphi(z) := |e^z - w_0| = |e^z - e^{z_0}|$.

Dann: $\varphi \in C(K)$. $3.3 \Rightarrow \exists \varrho := \min \varphi(K)$.

Annahme: $\varrho = 0$. Also existiert ein $z \in K$: $e^z = e^{z_0} \Rightarrow e^{z-z_0} = 1$. $6.3 \Rightarrow \exists j \in \mathbb{Z} : z - z_0 = 2j\pi i \Rightarrow 2j\pi = \operatorname{Im}(z - z_0) = \operatorname{Im} z - \operatorname{Im} z_0 \Rightarrow 2|j|\pi = |\operatorname{Im} z - \operatorname{Im} z_0| \leq \underbrace{|\operatorname{Im} z|}_{\leq \pi} + \underbrace{|\operatorname{Im} z_0|}_{\leq \pi} < 2\pi \Rightarrow$

 $j = 0 \Rightarrow z_0 = z \in K$. Wid!

Also: $\varrho > 0$

 $\delta := \min\{\varrho, \frac{1}{2}e^{x_0}\}$. Sei $w \in \mathbb{C}$ und $|w - w_0| < \delta$; $z := \log w$. Z.z: $|z - z_0| < \varepsilon$.

Sei $z = x + iy \ (x, y \in \mathbb{R}); \ y = \text{Arg} w \in (-\pi, \pi), \text{ also: } |y| \le \pi.$

Annahme: $x > x_0 + \log 2$. Dann:

 $\frac{1}{2}e^{x_0} \ge \delta > |w - w_0| = |e^z - e^{z_0}| \ge ||e^z| - |e^{z_0}|| = |e^x - e^{x_0}| \ge e^x - e^{x_0} > e^{x_0 + \log 2} - e^{x_0} = e^{x_0} \quad \text{Wid!}$

Also: $x \le x_0 + \log 2$. Analog: $x \ge x_0 - \log 2$.

Fazit: $z \in R$.

Annahme: $|z - z_0| \ge \varepsilon \Rightarrow z \in K \Rightarrow \delta \le \varrho \le \varphi(z) = |e^z - e^{z_0}| = |w - w_0| < \delta$. Wid!

Satz 7.4

 $\text{Log} \in H(\mathbb{C}_{\underline{}}) \text{ und } \text{Log}'w = \frac{1}{w} \ \forall w \in \mathbb{C}_{\underline{}}$

Beweis

Sei $w_0 \in \mathbb{C}_-$; (w_n) eine Folge in \mathbb{C}_- mit: $w_n \neq w_0 \ \forall n \in \mathbb{N}$ und $w_n \to w_0$, $z_0 := \text{Log}w_0$, $z_n := \text{Log}w_n$. $7.3 \Rightarrow z_n \to z_0$. Dann:

$$\frac{\text{Log}w_n - \text{Log}w_0}{w_n - w_0} = \frac{z_n - z_0}{e^{z_n} - e^{z_0}} = \left(\frac{e^{z_n} - e^{z_0}}{z_n - z_0}\right)^{-1} \to \frac{1}{e^{z_0}} = \frac{1}{w_0}$$

D.h. Log ist in w_0 komplex differenzierbar und $\text{Log}'w_0 = \frac{1}{w_0}$

Bezeichnung: $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\} = U_1(0)$

Beachte: Für $z \in \mathbb{D}$ ist $1 - z \in \mathbb{C}_{\perp}$

Satz 7.5

Für alle $z \in \mathbb{D}$ gilt:

$$Log(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$$

Beweis

7.4, 5.4
$$\Rightarrow f(z) := \text{Log}(1+z) - \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$$
 ist auf \mathbb{D} holomorph und $f'(z) = \frac{1}{1+z} - \sum_{n=1}^{\infty} (-1)^{n+1} z^{n-1} = \frac{1}{1+z} - \sum_{n=1}^{\infty} (-z)^{n-1} = \frac{1}{1+z} - \frac{1}{1-(-z)} = 0 \ \forall z \in \mathbb{D}$

 \mathbb{D} ist ein Gebiet $\stackrel{4.2}{\Rightarrow} f$ ist auf \mathbb{D} konstant. $f(0) = 0 \Rightarrow \text{Beh.}$

Definition

Sei $w \in \mathbb{C} \setminus \{0\}$ und $a \in \mathbb{C}$.

 $w^a := e^{a \text{Log} w}$ (Hauptzweig der allgemeinen Potenz)

Beispiele:

- (1) Für $a = k \in \mathbb{Z}$ ist obige Definition die frühere Potenz von w. Denn: $\forall k \in \mathbb{N}$: $e^{k \text{Log} w} = e^{\text{Log} w + \text{Log} w + \cdots + \text{Log} w} = \left(e^{\text{Log} w}\right)^k = w^k$ $e^{-k \text{Log} w} = \frac{1}{e^{k \text{log} w}} \stackrel{s.o.}{=} \frac{1}{u^k} = w^{-k}$
- (2) w = a = i, $\log |w| = 0$, $\text{Arg}w = \frac{\pi}{2}$, $\text{Log}w = i\frac{\pi}{2} \Rightarrow i^i = e^{i \cdot i\frac{\pi}{2}} = e^{-\frac{\pi}{2}} \in \mathbb{R}$

Satz 7.6

Sei $a\in\mathbb{C}$ und $f:\mathbb{C}_{_}\to\mathbb{C}$ definiert durch $f(w):=w^a$. Dann: $f\in H(\mathbb{C}_{_})$ und $f'(w)=aw^{a-1}\ \forall w\in\mathbb{C}_{_}$

Beweis

7.4, 4.4
$$\Rightarrow f \in H(\mathbb{C}_{-})$$
 und $f'(w) = e^{a \operatorname{Log} w} (a \operatorname{Log} w)' = a e^{a \operatorname{Log} w} \frac{1}{w} \stackrel{Bsp(1)}{=} a e^{a \operatorname{Log} w} e^{-\operatorname{Log} w} = a e^{(a-1)\operatorname{Log} w} = a w^{a-1}$