Extracting and Visualizing Stock Data

Description

Extracting essential data from a dataset and displaying it is a necessary part of data science; therefore individuals can make correct decisions based on the data.

Table of Contents

- Will define a Function that Makes a Graph
- Will use yfinance to Extract Stock Data
- Will use Webscraping to Extract Tesla Revenue & GME Revenue Data
- Will plot Tesla Stock Graph
- Will plot GameStop Stock Graph

```
import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
import plotly.graph_objects as go
from plotly.subplots import make_subplots
```

Define Graphing Function

In this section, we will define the function <code>make_graph</code> .

```
def make_graph(stock_data, revenue_data, stock):
    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, subplot_titles=("Historical Share Price", "Historical Revenue"), vertical_spacing = .3)
    stock_data_specific = stock_data[stock_data_Date <= '2022--07-23']
    revenue_data_specific = revenue_data[revenue_data.Date <= '2022-04-30']
    fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data_specific.Date, infer_datetime_format=True), y=stock_data_specific.Close.astype("float"), name="Share Price"), row=1, col=1)
    fig.add_trace(go.Scatter(x=pd.to_datetime(revenue_data_specific.Date, infer_datetime_format=True), y=revenue_data_specific.Revenue.astype("float"), name="Revenue"), row=2, col=1)
    fig.update_xaxes(title_text="Date", row=2, col=1)
    fig.update_xaxes(title_text="Date", row=2, col=1)
    fig.update_yaxes(title_text="Price ($US)", row=1, col=1)
    fig.update_layout(showlegend=False, height=900,
        title=stock,
        xaxis_rangeslider_visible=True)
    fig.show()</pre>
```

Extracting and Plotting "Tesla" Stock and Revenue Data.

Using yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is Tesla and its ticker symbol is TSLA.

2010-06-30 5.158 6.084 4.660 4.766 85935500 0 0.0

Resetting the index:
tesla_data.reset_index(inplace=True)
tesla_data.head(5)

Out[4]:		Date	Open	High	Low	Close	Volume	Dividends	Stock Splits	
	0	2010-06-29	3.800	5.000	3.508	4.778	93831500	0	0.0	
	1	2010-06-30	5.158	6.084	4.660	4.766	85935500	0	0.0	
	2	2010-07-01	5.000	5.184	4.054	4.392	41094000	0	0.0	
	3	2010-07-02	4.600	4.620	3.742	3.840	25699000	0	0.0	
	4	2010-07-06	4.000	4.000	3.166	3.222	34334500	0	0.0	

Using Webscraping to Extract Tesla Revenue Data.

Using the requests library to download the webpage https://www.macrotrends.net/stocks/charts/TSLA/tesla/revenue.

```
In [5]:
    url = 'https://www.macrotrends.net/stocks/charts/TSLA/tesla/revenue'
    html_data = requests.get(url).text
```

Parsing the html data using beautiful_soup.

```
soup = BeautifulSoup(html_data, 'html5lib')
# This is the code 'soup.find_all("tbody")[1]' to isolate the table.
```

There are two methods extracting the data into dataframe.

Using BeautifulSoup or the read_html function extract the data and store it into a dataframe.

```
In [7]: # First method: BeautifulSoup
# Looping through the table to extract the data:

tables = soup.find_all('table')
for index,table in enumerate(tables):
    if ("Tesla Quarterly Revenue" in str(table)):
        table_index = index
```

```
print(table_index)
           # print(tables[table_index].prettify())
         1
 In [8]:
           tesla_revenue = pd.DataFrame(columns=["Date", "Revenue"])
           for row in tables[table_index].tbody.find_all("tr"):
               col = row.find_all("td")
              if (col != []):
                   date = col[0].text
                   revenue = col[1].text
                   tesla_revenue = tesla_revenue.append({"Date":date, "Revenue":revenue}, ignore_index=True)
           tesla_revenue.head(2)
 Out[8]:
                  Date Revenue
          0 2022-06-30 $16,934
         1 2022-03-31 $18,756
 In [9]:
          # Second method: pd.read_html
           pd.read_html(str(tables[1]), flavor='bs4')
           tesla_reve = pd.read_html(str(tables[1]), flavor='bs4')[0]
           tesla_reve.head(2)
            Tesla Quarterly Revenue(Millions of US $) Tesla Quarterly Revenue(Millions of US $).1
 Out[9]:
          0
                                     2022-06-30
                                                                            $16,934
                                     2022-03-31
                                                                            $18,756
In [10]:
          # Removing the 'comma' and 'dollar' sign from the 'Revenue' column:
           tesla_revenue["Revenue"] = tesla_revenue['Revenue'].str.replace(',',"").str.replace('$',"", regex=True)
           tesla_revenue.head(2)
Out[10]:
                  Date Revenue
          0 2022-06-30
                         16934
          1 2022-03-31
                         18756
In [11]:
          # Removing null or empty values in the 'Revenue' column:
           tesla_revenue.dropna(inplace=True)
           tesla_revenue = tesla_revenue[tesla_revenue['Revenue'] != ""]
           tesla_revenue.shape
Out[11]: (52, 2)
```

Plotting Tesla Stock Graph

In [12]:

Extracting and Plotting "GameStop" Stock and Revenue Data.

Using yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is GameStop and its ticker symbol is GME.

```
In [13]:
          gme = yf.Ticker('GME')
          gme data = gme.history(period='max')
          gme_data.reset_index(inplace=True)
          gme_data.head(5)
Out[13]:
                                  High
                                                          Volume Dividends Stock Splits
                 Date
                         Open
                                           Low
                                                   Close
         0 2002-02-13 1.620129 1.693350 1.603296 1.691667 76216000
                                                                        0.0
                                                                                   0.0
         1 2002-02-14 1.712707 1.716074 1.670626 1.683250 11021600
                                                                        0.0
                                                                                   0.0
         2 2002-02-15 1.683251 1.687459 1.658002 1.674834
                                                          8389600
                                                                        0.0
                                                                                   0.0
         3 2002-02-19 1.666418 1.666418 1.578047 1.607504
                                                          7410400
                                                                        0.0
                                                                                   0.0
         4 2002-02-20 1.615920 1.662210 1.603296 1.662210
                                                          6892800
                                                                        0.0
                                                                                    0.0
In [14]:
          # Using Webscraping to Extract GME Revenue Data
          url1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html"
          html data = requests.get(url1).text
          # Parsing the html data.
          soup1 = BeautifulSoup(html data, 'html5lib')
In [15]:
          # In this section using "pd.read_html" method:
          tables = soup1.find all('table')
          gme revenue = pd.read html(str(tables[1]), flavor='bs4')[0]
          gme_revenue.columns = ['Date', 'Revenue']
          # Replacing the unwanted character to none.
          gme_revenue["Revenue"] = gme_revenue['Revenue'].str.replace(', \\$', "", regex=True)
          gme_revenue.dropna(inplace=True)
          # Extracting the not empty data.
          gme_revenue = gme_revenue[gme_revenue['Revenue'] != ""]
          gme_revenue.head(2)
Out[15]:
                 Date Revenue
```

Plotting GameStop Stock Graph

1021

2194

```
In [16]: make_graph(gme_data, gme_revenue, 'GameStop')
```

0 2020-04-30

1 2020-01-31

Date

End of the Project