

ISO/IEC 29341-8-16

Edition 1.0 2008-11

INTERNATIONAL STANDARD

Information technology – UPnP Device Architecture –
Part 8-16: Internet Gateway Device Control Protocol – Wide Area Network Digital
Subscriber Line Configuration Service

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2008 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

- Catalogue of IEC publications: www.iec.ch/searchpub
- The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.
- IEC Just Published: <u>www.iec.ch/online_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

■ Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

■ Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

ISO/IEC 29341-8-16

Edition 1.0 2008-11

INTERNATIONAL STANDARD

Information technology – UPnP Device Architecture –
Part 8-16: Internet Gateway Device Control Protocol – Wide Area Network Digital
Subscriber Line Configuration Service

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

ICS 35.200 ISBN 2-8318-1010-3

CONTENTS

FOREW	ORD	4
ORIGINA	AL UPNP DOCUMENTS (informative)	6
1. 0	verview and Scope	8
2. S	ervice Modeling Definitions	9
2.1.	ServiceType	9
2.2.	State Variables	9
2.2. 2.2. 2.2.	2. LinkStatus	11 11
2.2. 2.2. 2.2. 2.2.	5. DestinationAddress	11 11 11
2.2. 2.3. 2.3.	Eventing and Moderation	12
	Actions	
2.4. 2.4. 2.4. 2.4.	1. SetDSLLinkType	13 14 14
2.4. 2.4. 2.4.	5. SetDestinationAddress	15 16 16
2.4. 2.4. 2.4. 2.4.	9. SetFCSPreserved	17 18
2.4. 2.4. 2.5.	12. Relationships Between Actions	18 18
	ML Service Description	
	est	

LIST OF TABLES

Table 1: State Variables	9
Table 1.1: AllowedValueList for LinkType	10
Table 1.2: AllowedValueList for LinkStatus	10
Table 1.3: AllowedValueList for ModulationType	10
Table 1.4: AllowedValueList for ATMEncapsulation	10
Table 2: Event Moderation	12
Table 3: Actions	13
Table 4: Arguments for SetDSLLinkType	13
Table 5: Arguments for GetDSLLinkInfo	14
Table 6: Arguments for GetAutoConfig	14
Table 7: Arguments for GetModulationType	15
Table 8: Arguments for SetDestinationAddress	15
Table 9: Arguments for GetDestinationAddress	16
Table 10: Arguments for SetATMEncapsulation	16
Table 11: Arguments for GetATMEncapsulation	17
Table 12: Arguments for SetFCSPreserved	17
Table 13: Arguments for GetFCSPreserved	18
Table 14: Common Error Codes	18

INFORMATION TECHNOLOGY – UPNP DEVICE ARCHITECTURE –

Part 8-16: Internet Gateway Device Control Protocol – Wide Area Network Digital Subscriber Line Configuration Service

FOREWORD

- 1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards. Their preparation is entrusted to technical committees; any ISO and IEC member body interested in the subject dealt with may participate in this preparatory work. International governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.
- In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC
 Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
- 3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO member bodies.
- 4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.
- 6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for any equipment declared to be in conformity with an ISO/IEC publication.
- 7) All users should ensure that they have the latest edition of this publication.
- 8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.
- 9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

IEC and ISO draw attention to the fact that it is claimed that compliance with this document may involve the use of patents as indicated below.

ISO and IEC take no position concerning the evidence, validity and scope of the putative patent rights. The holders of the putative patent rights have assured IEC and ISO that they are willing to negotiate free licences or licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statements of the holders of the putative patent rights are registered with IEC and ISO.

Intel Corporation has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Intel Corporation Standards Licensing Department 5200 NE Elam Young Parkway MS: JFS-98 USA – Hillsboro, Oregon 97124

Microsoft Corporation has informed IEC and ISO that it has patent applications or granted patents as listed below:

6101499 / US; 6687755 / US; 6910068 / US; 7130895 / US; 6725281 / US; 7089307 / US; 7069312 / US; 10/783 524 /US

Information may be obtained from:

Microsoft Corporation One Microsoft Way USA – Redmond WA 98052

Philips International B.V. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Philips International B.V. – IP&S High Tech campus, building 44 3A21 NL – 5656 Eindhoven

NXP B.V. (NL) has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

NXP B.V. (NL) High Tech campus 60 NL – 5656 AG Eindhoven

Matsushita Electric Industrial Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Matsushita Electric Industrial Co. Ltd. 1-3-7 Shiromi, Chuoh-ku JP – Osaka 540-6139

Hewlett Packard Company has informed IEC and ISO that it has patent applications or granted patents as listed below:

5 956 487 / US; 6 170 007 / US; 6 139 177 / US; 6 529 936 / US; 6 470 339 / US; 6 571 388 / US; 6 205

Information may be obtained from:

Hewlett Packard Company 1501 Page Mill Road USA – Palo Alto, CA 94304

Samsung Electronics Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Digital Media Business, Samsung Electronics Co. Ltd. 416 Maetan-3 Dong, Yeongtang-Gu, KR – Suwon City 443-742

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC and ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29341-8-16 was prepared by UPnP Implementers Corporation and adopted, under the PAS procedure, by joint technical committee ISO/IEC JTC 1, *Information technology*, in parallel with its approval by national bodies of ISO and IEC.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title *Universal plug and play (UPnP) architecture*, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

ORIGINAL UPNP DOCUMENTS (informative)

Reference may be made in this document to original UPnP documents. These references are retained in order to maintain consistency between the specifications as published by ISO/IEC and by UPnP Implementers Corporation. The following table indicates the original UPnP document titles and the corresponding part of ISO/IEC 29341:

UPnP Document Title	ISO/IEC 29341 Part
UPnP Device Architecture 1.0	ISO/IEC 29341-1
UPnP Basic:1 Device	ISO/IEC 29341-2
UPnP AV Architecture:1	ISO/IEC 29341-3-1
UPnP MediaRenderer:1 Device	ISO/IEC 29341-3-2
UPnP MediaServer:1 Device	ISO/IEC 29341-3-3
UPnP AVTransport:1 Service	ISO/IEC 29341-3-10
UPnP ConnectionManager:1 Service	ISO/IEC 29341-3-11
UPnP ContentDirectory:1 Service	ISO/IEC 29341-3-12
UPnP RenderingControl:1 Service	ISO/IEC 29341-3-13
UPnP MediaRenderer:2 Device	ISO/IEC 29341-4-2
UPnP MediaServer:2 Device	ISO/IEC 29341-4-3
UPnP AV Datastructure Template:1	ISO/IEC 29341-4-4
UPnP AVTransport:2 Service	ISO/IEC 29341-4-10
UPnP ConnectionManager:2 Service	ISO/IEC 29341-4-11
UPnP ContentDirectory:2 Service	ISO/IEC 29341-4-12
UPnP RenderingControl:2 Service	ISO/IEC 29341-4-13
UPnP ScheduledRecording:1	ISO/IEC 29341-4-14
UPnP DigitalSecurityCamera:1 Device	ISO/IEC 29341-5-1
UPnP DigitalSecurityCameraMotionImage:1 Service UPnP DigitalSecurityCameraSettings:1 Service	ISO/IEC 29341-5-10 ISO/IEC 29341-5-11
UPnP DigitalSecurityCameraStillImage:1 Service	ISO/IEC 29341-5-11
UPnP HVAC_System:1 Device	ISO/IEC 29341-5-12
UPnP HVAC_ZoneThermostat:1 Device	ISO/IEC 29341-6-1
UPnP ControlValve:1 Service	ISO/IEC 29341-6-10
UPnP HVAC_FanOperatingMode:1 Service	ISO/IEC 29341-6-11
UPnP FanSpeed:1 Service	ISO/IEC 29341-6-12
UPnP HouseStatus:1 Service	ISO/IEC 29341-6-13
UPnP HVAC_SetpointSchedule:1 Service	ISO/IEC 29341-6-14
UPnP TemperatureSensor:1 Service	ISO/IEC 29341-6-15
UPnP TemperatureSetpoint:1 Service	ISO/IEC 29341-6-16
UPnP HVAC_UserOperatingMode:1 Service	ISO/IEC 29341-6-17
UPnP BinaryLight:1 Device	ISO/IEC 29341-7-1
UPnP DimmableLight:1 Device	ISO/IEC 29341-7-2
UPnP Dimming:1 Service	ISO/IEC 29341-7-10
UPnP SwitchPower:1 Service	ISO/IEC 29341-7-11
UPnP InternetGatewayDevice:1 Device	ISO/IEC 29341-8-1
UPnP LANDevice:1 Device UPnP WANDevice:1 Device	ISO/IEC 29341-8-2 ISO/IEC 29341-8-3
UPnP WANConnectionDevice:1 Device	ISO/IEC 29341-8-3
UPnP WLANAccessPointDevice:1 Device	ISO/IEC 29341-8-5
UPnP LANHostConfigManagement:1 Service	ISO/IEC 29341-8-10
UPnP Layer3Forwarding:1 Service	ISO/IEC 29341-8-11
UPnP LinkAuthentication:1 Service	ISO/IEC 29341-8-12
UPnP RadiusClient:1 Service	ISO/IEC 29341-8-13
UPnP WANCableLinkConfig:1 Service	ISO/IEC 29341-8-14
UPnP WANCommonInterfaceConfig:1 Service	ISO/IEC 29341-8-15
UPnP WANDSLLinkConfig:1 Service	ISO/IEC 29341-8-16
UPnP WANEthernetLinkConfig:1 Service	ISO/IEC 29341-8-17
UPnP WANIPConnection:1 Service	ISO/IEC 29341-8-18
UPnP WANPOTSLinkConfig:1 Service	ISO/IEC 29341-8-19
UPnP WANPPPConnection:1 Service	ISO/IEC 29341-8-20
UPnP WLANConfiguration:1 Service	ISO/IEC 29341-8-21
UPnP Printer:1 Device	ISO/IEC 29341-9-1 ISO/IEC 29341-9-2
UPnP Scanner:1.0 Device UPnP ExternalActivity:1 Service	ISO/IEC 29341-9-2 ISO/IEC 29341-9-10
UPnP Feeder:1.0 Service	ISO/IEC 29341-9-10
UPnP PrintBasic:1 Service	ISO/IEC 29341-9-11
UPnP Scan:1 Service	ISO/IEC 29341-9-12
UPnP QoS Architecture:1.0	ISO/IEC 29341-10-1
UPnP QosDevice:1 Service	ISO/IEC 29341-10-10
UPnP QosManager:1 Service	ISO/IEC 29341-10-11
UPnP QosPolicyHolder:1 Service	ISO/IEC 29341-10-12
UPnP QoS Architecture:2	ISO/IEC 29341-11-1
UPnP QOS v2 Schema Files	ISO/IEC 29341-11-2

UPnP Document Title	ISO/IEC 29341 Part
UPnP QosDevice:2 Service UPnP QosManager:2 Service UPnP QosPolicyHolder:2 Service UPnP RemoteUIClientDevice:1 Device UPnP RemoteUIServerDevice:1 Device UPnP RemoteUIClient:1 Service UPnP RemoteUIServer:1 Service UPnP DeviceSecurity:1 Service UPnP SecurityConsole:1 Service	ISO/IEC 29341-11-10 ISO/IEC 29341-11-11 ISO/IEC 29341-11-12 ISO/IEC 29341-12-1 ISO/IEC 29341-12-2 ISO/IEC 29341-12-10 ISO/IEC 29341-12-11 ISO/IEC 29341-13-10 ISO/IEC 29341-13-11

1. Overview and Scope

This service definition is compliant with the UPnP Device Architecture version 1.0.

This service-type models physical and link layer properties specific to a single physical connection of a Digital Subscriber Line (DSL) modem used for Internet access on an *InternetGatewayDevice**. These properties are common across the different instances of *WANPPPConnection* and *WANIPConnection* services of the same *WANConnectionDevice*.

The service is OPTIONAL for supporting DSL WAN interfaces. The use of this service is relevant only for DSL WAN interfaces of an *InternetGatewayDevice*.

It is specified in:

urn:schemas-upnp-org:device:WANConnectionDevice in

urn:schemas-upnp-org:device: WANDevice,

one or more instances of which are specified under the root device

urn:schemas-upnp-org:device:InternetGatewayDevice

NOTE: A *WANDevice* also provides a *WANCommonInterfaceConfig* service that encapsulates Internet access properties common across all *WANConnectionDevice* of the same WAN interface *WANDevice*.

^{*} Refer to companion documents defined by the UPnP Internet Gateway working committee for more details on specific devices and services referenced in this document.

2. Service Modeling Definitions

2.1. ServiceType

The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service: <u>WANDSLLinkConfig:1</u>.

2.2. State Variables

Table 1: State Variables

Variable Name	Req. or Opt. ¹	Data Type	Allowed Value ¹	Default Value ²	Eng. Units
LinkType	R	string	See Table 1.1	Not specified	N/A
LinkStatus	R	string	See Table 1.2	Not specified	N/A
AutoConfig	R	boolean	0,1	Undefined - Manufacturer/ Operator dependent	N/A
ModulationType	0	string	See Table 1.3	Undefined – Manufacturer/ implementatio n dependent	N/A
DestinationAddress	0	string	N/A	Undefined - Manufacturer/ Operator dependent	N/A
ATMEncapsulation	0	string	See Table 1.4	Undefined - Manufacturer/ Operator dependent	N/A
FCSPreserved	0	boolean	0,1	Undefined - Manufacturer/ Operator dependent	N/A
Non-standard state variables implemented by a UPnP vendor go here.	X	TBD	TBD	TBD	TBD

 $^{^{1}}$ R = Required, O = Optional, X = Non-standard.

NOTE: Default values are not specified in the DCP. A vendor may however choose to provide default values for SST variables where appropriate.

²Values listed in this column are required. To specify standard optional values or to delegate assignment of values to the vendor, you must reference a specific instance of an appropriate table below.

Table 1.1: AllowedValueList for LinkType

Value	Req. or Opt.
EoA	<u>O</u>
IPoA	<u>O</u>
PPPoA	<u>O</u>
PPPoE	<u>O</u>
CIP	<u>O</u>
Unconfigured	<u>O</u>

Table 1.2: AllowedValueList for LinkStatus

Value	Req. or Opt.
Up	<u>R</u>
Down	<u>R</u>
Initializing	<u>O</u>
Unavailable	<u>O</u>

Table 1.3: AllowedValueList for ModulationType

Value	Req. or Opt.
ADSL_G.dmt	<u>O</u>
ADSL_G.lite	<u>O</u>
G.shdsl	<u>O</u>
IDSL	<u>O</u>
HDSL	<u>O</u>
SDSL	<u>O</u>
VDSL	<u>O</u>

Table 1.4: AllowedValueList for ATMEncapsulation

Value	Req. or Opt.
LLC	<u>O</u>
VCMUX	<u>O</u>

2.2.1. LinkType

This variable indicates the type of DSL connection and refers to the complete stack of protocol used for this connection.

- EoA corresponds to RFC1483/2684-bridged "Ethernet over ATM".
- IPOA corresponds to RFC1483/2684-routed "IP over ATM".
- PPPoA corresponds to RFC2364 "PPP over ATM".
- PPPoE corresponds to RFC2516 "PPP over Ethernet" on top of RFC1483-bridged "Ethernet over ATM".

- CIP corresponds to RFC1577 "Classical IP over ATM".
- Unconfigured corresponds to a free, unconfigured link.

2.2.2. LinkStatus

This variable indicates the status of the DSL connection. It is a **read-only** variable.

2.2.3. AutoConfig

This variable indicates if the modem is currently using some auto configuration mechanisms for this connection. AutoConfig specified by DSL Forum is one such mechanism. This variable is **read-only**. In this case, variables such as LinkType, DestinationAddress, ATMEncapsulation provided by the mechanism will become read-only. Any attempt to change one of these variables should result in a failure and an error should be returned

If a modem doesn't support such mechanisms, this variable should always be set to false (0).

2.2.4. ModulationType

This variable indicates the type of modulation used on the connection

2.2.5. DestinationAddress

This variable indicates ATM destination address. This address identifies the other end of the WAN connection. It can define either a Permanent Virtual Circuit (PVC) or a Switched Virtual Circuit (SVC) according to a standard syntax.

For a PVC, syntax is "PVC:VPI/VCI", i.e. "PVC:8/23"

For a SVC, syntax can be either

- "SVC:ATM connection name"
- "SVC:ATM address"

ATM address is a BCD number whose format can be either

- A NSAP format, itself in one of following three formats
 - DCC format
 - ICD format
 - E 164 format
- A CCITT E.164 format

2.2.6. ATMEncapsulation

This variable indicates the method used to de/encapsulate IP or Ethernet packets from/to ATM payloads according to RFC 1483.

2.2.7. FCSPreserved

This flag tells if a checksum should be added in the ATM payload. It does not refer to the checksum of one of the ATM cells or AALX packets. In case of LLC or VCMUX encapsulation, this ATM checksum is the FCS field described in RFC 1483. It is only applicable in the upstream direction. The value of this variable is required for EoA and PPPoE link types.

2.2.8. Relationships Between State Variables

The variables in the SST have no dependencies or relationship other than what is mandated by relevant DSL modem standards and protocols.

2.3. Eventing and Moderation

Table 2: Event Moderation

Variable Name	Evented	Moderated Event	Max Event Rate ¹	Logical Combination	Min Delta per Event ²
LinkType	No	No	N/A	N/A	N/A
LinkStatus	Yes	No	N/A	N/A	N/A
AutoConfig	Yes	No	N/A	N/A	N/A
ModulationType	No	No	N/A	N/A	N/A
DestinationAddress	No	No	N/A	N/A	N/A
ATMEncapsulation	No	No	N/A	N/A	N/A
FCSPreserved	No	No	N/A	N/A	N/A
Non-standard state variables implemented by an UPnP vendor go here.	TBD	TBD	TBD	TBD	TBD

¹ Determined by N, where Rate = (Event)/(N secs).

2.3.1. Event Model

LinkStatus is an eventable variable. However, if LinkStatus is unsupported in functionality, i.e. only possible value is Unavailable, the variable will not generate events.

The *AutoConfig* variable is evented to provide updates on its value which in turn may be effected via non-UPnP mechanisms.

More precisely, if a **WANConnectionDevice** device is initially not auto-configured (AutoConfig is set to 0), and an auto-configuration mechanism becomes available for this connection, then the modem should internally:

- 1. Set AutoConfig to 1.
- 2. Override the link parameters with the new values provided by the auto-configuration mechanism.
- 3. Set the overridden parameters as read-only while AutoConfig is active. That means to return an error if any configuration action such as SetLinkType, SetDestinationAddress or SetATMEncapsulation is attempted.
- 4. Generate a UPnP event with the new value of AutoConfig for control points that have subscribed to this service.

On the contrary, if the auto-configuration mechanism was initially active and subsequently becomes unavailable or inactive, the modem should internally:

- 1. Set AutoConfig to 0.
- 2. Set the overridden parameters as read & write variables. That means to accept configuration requests such as SetLinkType, SetDestinationAddress and SetATMEncapsulation.

² (N) * (allowedValueRange Step).

3. Generate an event with the new value of AutoConfig.

2.4. Actions

Immediately following this table is detailed information about these actions, including short descriptions of the actions, the effects of the actions on state variables, and error codes defined by the actions.

Table 3: Actions

Name	Req. or Opt. 1
SetDSLLinkType	<u>R</u>
GetDSLLinkInfo	<u>R</u>
GetAutoConfig	<u>R</u>
GetModulationType	<u>O</u>
SetDestinationAddress	<u>O</u>
GetDestinationAddress	<u>O</u>
SetATMEncapsulation	<u>O</u>
GetATMEncapsulation	<u>O</u>
SetFCSPreserved	<u>O</u>
GetFCSPreserved	<u>O</u>
Non-standard actions implemented by an UPnP vendor go here.	X

 $[\]overline{\ }$ R = Required, O = Optional, X = Non-standard.

2.4.1. SetDSLLinkType

This action configures the type of DSL physical connection of the *WANConnectionDevice* device.

2.4.1.1. Arguments

Table 4: Arguments for SetDSLLinkType

Argument	Direction	relatedStateVariable
NewLinkType	<u>IN</u>	LinkType

2.4.1.2. Dependency on State (if any)

This action will succeed only if no auto configuration mechanism is available for this connection, that is to say, if AutoConfig is set to false (0).

2.4.1.3. Effect on State (if any)

This action changes the LinkType variable corresponding to the DSL physical connection of the *WANConnectionDevice* device. Note that it will also result in a change to the variable PossibleConnectionTypes in *WANPPPConnection* service instances in this *WANConnectionDevice* device as described in the companion DCP draft for *WANConnectionDevice*.

2.4.1.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
719	ActionDisallowed WhenAutoConfigE nabled	The specified action is not permitted when auto configuration is enabled on the modem
501	Action Failed	See Table 2.4.13

2.4.2. GetDSLLinkInfo

This action retrieves the type of DSL physical connection and the status of the link of the *WANConnectionDevice* device.

2.4.2.1. Arguments

Table 5: Arguments for GetDSLLinkInfo

Argument	Direction	relatedStateVariable
NewLinkType	OUT	LinkType
NewLinkStatus	<u>OUT</u>	LinkStatus

2.4.2.2. Dependency on State (if any)

2.4.2.3. Effect on State (if any)

2.4.2.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13

2.4.3. GetAutoConfig

This action retrieves the variable that indicates if the modem is using an auto configuration mechanism.

2.4.3.1. **Arguments**

Table 6: Arguments for GetAutoConfig

Argument	Direction	relatedStateVariable
NewAutoConfig	<u>OUT</u>	AutoConfig

2.4.3.2. Dependency on State (if any)

2.4.3.3. Effect on State (if any)

2.4.3.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13

2.4.4. GetModulationType

This action retrieves the type of modulation used on the connection.

2.4.4.1. Arguments

Table 7: Arguments for GetModulationType

Argument	Direction	relatedStateVariable
NewModulationType	<u>OUT</u>	ModulationType

2.4.4.2. Dependency on State (if any)

2.4.4.3. Effect on State (if any)

2.4.4.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13

2.4.5. SetDestinationAddress

This action updates the ATM destination address.

2.4.5.1. Arguments

Table 8: Arguments for SetDestinationAddress

Argument	Direction	relatedStateVariable
NewDestinationAddress	<u>IN</u>	DestinationAddress

2.4.5.2. Dependency on State (if any)

2.4.5.3. Effect on State (if any)

This action updates the ATM destination address.

2.4.5.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13
719	ActionDisallowed WhenAutoConfigE nabled	The specified action is not permitted when auto configuration is enabled on the modem

2.4.6. GetDestinationAddress

This action retrieves the ATM destination address.

2.4.6.1. Arguments

Table 9: Arguments for GetDestinationAddress

Argument	Direction	relatedStateVariable
NewDestinationAddress	<u>OUT</u>	DestinationAddress

2.4.6.2. Dependency on State (if any)

2.4.6.3. Effect on State (if any)

2.4.6.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13

2.4.7. SetATMEncapsulation

This action sets the method to de/encapsulate IP or Ethernet packets from/to ATM payloads according to RFC 1483.

2.4.7.1. Arguments

Table 10: Arguments for SetATMEncapsulation

Argument	Direction	relatedStateVariable
NewATMEncapsulation	<u>IN</u>	ATMEncapsulation

2.4.7.2. Dependency on State (if any)

2.4.7.3. Effect on State (if any)

This action sets the method to de/encapsulate IP or Ethernet packets from/to ATM payloads according to RFC 1483.

2.4.7.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13
719	ActionDisallowed WhenAutoConfigE nabled	The specified action is not permitted when auto configuration is enabled on the modem

2.4.8. GetATMEncapsulation

This action retrieves the method to de/encapsulate IP or Ethernet packets from/to ATM payloads according to RFC 1483.

2.4.8.1. Arguments

Table 11: Arguments for GetATMEncapsulation

Argument	Direction	relatedStateVariable
NewATMEncapsulation	<u>OUT</u>	ATMEncapsulation

2.4.8.2. Dependency on State (if any)

2.4.8.3. Effect on State (if any)

2.4.8.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13

2.4.9. SetFCSPreserved

This action sets/clears a flag to indicate if a checksum in the ATM payload should be added.

2.4.9.1. Arguments

Table 12: Arguments for SetFCSPreserved

Argument	Direction	relatedStateVariable
NewFCSPreserved	<u>IN</u>	FCSPreserved

2.4.9.2. Dependency on State (if any)

2.4.9.3. Effect on State (if any)

This action sets/clears the FCSPreserved flag to indicate if a checksum in the ATM payload should be added.

2.4.9.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13
719	ActionDisallowed WhenAutoConfigE nabled	The specified action is not permitted when auto configuration is enabled on the modem

2.4.10. GetFCSPreserved

This action retrieves the flag value that indicates if a checksum in the ATM payload should be added.

2.4.10.1. Arguments

Table 13: Arguments for GetFCSPreserved

Argument	Direction	relatedStateVariable
NewFCSPreserved	<u>OUT</u>	FCSPreserved

2.4.10.2. Dependency on State (if any)

2.4.10.3. Effect on State (if any)

2.4.10.4.Errors

errorCode	errorDescription	Description
402	Invalid Args	See Table 2.4.13
501	Action Failed	See Table 2.4.13

2.4.11.Non-Standard Actions Implemented by a UPnP Vendor

To facilitate certification, non-standard actions implemented by UPnP vendors should be included in this service template. The UPnP Device Architecture lists naming requirements for non-standard actions (see the section on Description).

2.4.12. Relationships Between Actions

Actions defined have no specific relationship between them.

2.4.13.Common Error Codes

The following table lists error codes common to actions for this service type. If an action results in multiple errors, the most specific error should be returned.

Table 14: Common Error Codes

errorCode	errorDescription	Description
401	Invalid Action	See UPnP Device Architecture section on Control.
402	Invalid Args	One of following: not enough IN arguments, too many IN arguments, no IN argument by that name, one or more IN arguments are of the wrong data type. See UPnP Device Architecture section on Control.
404	Invalid Var	See UPnP Device Architecture section on Control.
501	Action Failed	May be returned in current state if service prevents invoking of that action. See UPnP Device Architecture section on Control.
600-699	TBD	Common action errors. Defined by UPnP Forum Technical Committee.
701-799		Common action errors defined by the UPnP Forum working committees.
800-899	TBD	(Specified by UPnP vendor.)

2.5. Theory of Operation

A *WANConnectionDevice* that is defined in a DSL interface device *WANDevice* MUST contain one and only one *WANDSLLinkConfig* service.

A control point uses the **WANDSLLinkConfig** service for configuration and to obtain link specific information..

In order to use already configured connections, a control point does not need to interact with this service, unless it is interested in some fields specific to DSL.

For non-automatic configuration, a control point can use configuration actions to set at least the following variables in order to get the connection working:

- DestinationAddress: Configuration support for this field is optional. This variable is used to get the physical connectivity with the network access provider.
- LinkType: this field is required to use the right stack of protocols in order to get the logical connectivity with the ISP.
- ATMEncapsulation: Configuration support for this field is optional. This variable value is needed when using RFC 1483, depending on the value set in the field LinkType. See the LinkType variable description to see which values correspond to RFC 1483. This value is ignored when it doesn't make sense for the chosen link type.

LinkStatus will be set to 'Up' if link connectivity can be established successfully using the above configuration parameters. If any of the parameters change, connectivity will be reestablished. Changes in the LinkStatus will be notified to control points through events.

In the case of an automatic configuration of the connection (AutoConfig set to 1), these variables will be automatically set. If a control point attempts to modify their values by calling configuration actions, the gateway MUST return an error.

3. XML Service Description

```
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
  <specVersion>
    <major>1</major>
    <minor>0</minor>
  </specVersion>
  <actionList>
    <action>
    <name>SetDSLLinkType</name>
      <argumentList>
        < argument >
          <name>NewLinkType</name>
          <direction>in</direction>
          <relatedStateVariable>LinkType</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>GetDSLLinkInfo</name>
      <argumentList>
        <argument>
          <name>NewLinkType</name>
          <direction>out</direction>
          <relatedStateVariable>LinkType/relatedStateVariable>
        </argument>
        <argument>
          <name>NewLinkStatus</name>
          <direction>out</direction>
          <relatedStateVariable>LinkStatus</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>GetAutoConfig</name>
      <argumentList>
        <argument>
          <name>NewAutoConfig</name>
          <direction>out</direction>
          <relatedStateVariable>AutoConfig</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>GetModulationType</name>
      <argumentList>
        <argument>
          <name>NewModulationType</name>
          <direction>out</direction>
          <relatedStateVariable>ModulationType</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    < name > SetDestinationAddress < /name >
      <argumentList>
        <argument>
          <name>NewDestinationAddress</name>
          <direction>in</direction>
         <relatedStateVariable>DestinationAddress/relatedStateVariable>
        </argument>
      </argumentList>
```

</action>

```
<action>
    <name>GetDestinationAddress</name>
      <argumentList>
        <argument>
          <name>NewDestinationAddress</name>
          <direction>out</direction>
         <relatedStateVariable>DestinationAddress</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    < name > SetATMEncapsulation < / name >
      <argumentList>
        <argument>
          <name>NewATMEncapsulation</name>
          <direction>in</direction>
          <relatedStateVariable>ATMEncapsulation</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    < name > GetATMEncapsulation < /name >
      <argumentList>
        <argument>
          <name>NewATMEncapsulation</name>
          <direction>out</direction>
          <relatedStateVariable>ATMEncapsulation</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>SetFCSPreserved</name>
      <argumentList>
        <argument>
          <name>NewFCSPreserved</name>
          <direction>in</direction>
          <relatedStateVariable>FCSPreserved</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    < name > GetFCSPreserved < /name >
      <argumentList>
        <argument>
          <name>NewFCSPreserved
          <direction>out</direction>
          <relatedStateVariable>FCSPreserved</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <!-- Declarations for other actions added by UPnP vendor (if any) go
here -->
  </actionList>
      <serviceStateTable>
            <stateVariable sendEvents="no">
                  <name>LinkType</name>
                  <dataType>string</dataType>
                  <allowedValueList>
                         <allowedValue>EoA</allowedValue>
                         <allowedValue>IPOA</allowedValue>
                         <allowedValue>CIP</allowedValue>
                         <allowedValue>PPPoA</allowedValue>
                         <allowedValue>PPPoE</allowedValue>
```

<allowedValue>Unconfigured</allowedValue>

```
</allowedValueList>
            </stateVariable>
            <stateVariable sendEvents="yes">
                   <name>LinkStatus</name>
                   < data Type > string < / data Type >
                   <allowedValueList>
                         <allowedValue>Up</allowedValue>
                         <allowedValue>Down</allowedValue>
                         <allowedValue>Initializing</allowedValue>
                         <allowedValue>Unavailable</allowedValue>
                   </allowedValueList>
            </stateVariable>
            <stateVariable sendEvents="no">
                   <name>ModulationType</name>
                   <dataType>string</dataType>
                   <allowedValueList>
                         <allowedValue>ADSL G.lite</allowedValue>
                         <allowedValue>G.shdsl</allowedValue>
                         <allowedValue>IDSL</allowedValue>
                         <allowedValue>HDSL</allowedValue>
                         <allowedValue>SDSL</allowedValue>
                         <allowedValue>VDSL</allowedValue>
                   </allowedValueList>
            </stateVariable>
            <stateVariable sendEvents="no">
                   <name>DestinationAddress</name>
                   < data Type > string < / data Type >
            </stateVariable>
            <stateVariable sendEvents="no">
                   <name>ATMEncapsulation</name>
                  <dataType>string</dataType>
                  <allowedValueList>
                         <allowedValue>LLC</allowedValue>
                         <allowedValue>VCMUX</allowedValue>
                   </allowedValueList>
            </stateVariable>
            <stateVariable sendEvents="no">
                   <name>FCSPreserved</name>
                   < dataType>boolean</dataType>
            </stateVariable>
            <stateVariable sendEvents="yes">
                   <name>AutoConfig</name>
                   < data Type > boolean < / data Type >
            </stateVariable>
    <!-- Declarations for other state variables added by UPnP vendor (if
any) go here -->
  </serviceStateTable>
</scpd>
```

4. **Test**

SetDSLLinkType / GetDSLLinkInfoTest Sequence 1: To test success path

Semantic class: 2 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is NOT supported by the DSL modem.

Success = 200SetDSLLinkType

In-Arg	Values	State Variables	Current State	Expected State
LinkType	A string representing the LinkType as defined in table 1.1 and supported by the modem implementation			
Out-Arg	Expected Value			
		Error Code (if any)	NA	NA

GetDSLLinkInfo Success = 200

In-Arg	Values	State Variables	Current State	Expected State
Out-Arg	Expected Value			
LinkType	Value set in previous set action			
LinkStatus	NA			
		Error Code (if any)	NA	NA

Test Sequence 2: To test error 719 Semantic class: 3

Semantic class: 3 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is supported by the DSL modem.

SetDSLLinkType Success = 200

In-Arg	Values	State Variables	Current State	Expected State
LinkType	A string representing the LinkType as defined in table 1.1 and supported by the modem implementation			
Out-Arg	Expected Value			
		Error Code (if any)	719	NA

$Set Destination Address \ / \ Get Destination Address$

Test Sequence 3: To test success path

Semantic class: 1 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is NOT supported by the DSL modem. Also, this

test may have dependencies on DSLAM provisioning.

SetDestinationAddress Success = 200

In-Arg	Values	State Variables	Current State	Expected State
DestinationAddress	A string representing a valid ATM destination address			
Out-Arg	Expected Value			
		Error Code (if any)	NA	NA

GetDestinationAddress Success = 200

In-Arg	Values	State Variables	Current State	Expected State
Out-Arg	Expected Value			
DestinationAddress	Value set in previous set action			
		Error Code (if any)	NA	NA

Test Sequence 4: To test error 719

Semantic class: 3
Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is supported by the DSL modem.

SetDestinationAddress Success = 200

In-Arg	Values	State Variables	Current State	Expected State
DestinationAddress	A string representing a valid ATM destination address			
Out-Arg	Expected Value			
		Error Code (if any)	719	NA

${\bf Set ATMEn cap sulation} \ / \ {\bf Get ATMEn cap sulation}$

Test Sequence 5: To test success path

Semantic class: 1 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is NOT supported by the DSL modem. Also, this

test may have dependencies on DSLAM provisioning.

 $SetATMEncapsulation \quad Success = 200$

In-Arg	Values	State Variables	Current State	Expected State
ATMEncapsulation	A string representing valid ATM encapsulation/decapsulation method			
Out-Arg	Expected Value			
		Error Code (if any)	NA	NA

GetATMEncapsulation Success = 200

In-Arg	Values	State Variables	Current State	Expected State
Out-Arg	Expected Value			
ATMEncapsulation	Value set in previous set action			
		Error Code (if any)	NA	NA

Test Sequence 6: To test error 719 Semantic class: 3

Semantic class: 3 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is supported by the DSL modem.

SetATMEncapsulation Success = 200

In-Arg	Values	State Variables	Current State	Expected State
ATMEncapsulation	A string representing valid ATM encapsulation/decapsulation n method			
Out-Arg	Expected Value			
		Error Code (if any)	719	NA

${\bf SetFCSPreserved} \ / \ {\bf GetFCSPreserved}$

Test Sequence 7: To test success path

Semantic class: 1 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is NOT supported by the DSL modem. Also, this

test may have dependencies on DSLAM provisioning.

SetFCSPreserved

Success = 200

In-Arg	Values	State Variables	Current State	Expected State
FCSPreserved	A valid flag indicating if checksum should be added to ATM payload			
Out-Arg	Expected Value			
		Error Code (if any)	NA	NA

GetFCSPreserved

Success = 200

In-Arg	Values	State Variables	Current State	Expected State
Out-Arg	Expected Value			
FCSPreserved	Value set in previous set action			
		Error Code (if any)	NA	NA

Test Sequence 8: To test error 719 Semantic class: 3

Semantic class: 3 Pre-conditions: None.

NOTE: Following test is only applicable when AutoConfig is supported by the DSL modem.

SetFCSPreserved

Success = 200

In-Arg	Values	State Variables	Current State	Expected State
FCSPreserved	A valid flag indicating if checksum should be added to ATM payload			
Out-Arg	Expected Value			
		Error Code (if any)	719	NA

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch