- 1. a) Definiți noțiunile și dați câte un exemplu din fiecare: grup, relație de ordine, valoare proprie.
 - b) Enunțați teorema schimbului a lui Steinitz.
- c) Demonstrați că o mulțime $\{v_1, v_2, ..., v_n\} \subseteq V$ formează o bază a spațiului vectorial V ddacă $\langle v_1,...,v_n\rangle = V$ și pentru orice $k \in \{1,...,n\}$ $\langle v_1, ..., v_{k-1}, v_{k+1}, v_n \rangle \neq V.$
- 2. a) Fie V un spațiu vectorial. Definiți subspațiul generat de o submultime $X \subseteq V$ și arătați că el este egal cu multimea tuturor combinațiilor liniare de elemente din X.
 - b) Folosind lema substituţiei determinaţi inversa matricii: $\begin{pmatrix} 1 & 3 & 1 \\ -1 & -2 & 0 \\ 1 & 3 & 6 \end{pmatrix}$.
 - 3. Se dă $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ cu matricea în baza canonică $[f]_e = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -3 \\ 1 & 1 & -5 \end{pmatrix}$.
 - a) Să se scrie formula lui $f(x), x \in \mathbb{R}^3$.
 - b) Să se determine câte o bază și dimensiunea pentru Imf și Kerf.
- c) Să se arate că $b = (b_1, b_2, b_3)$ este o bază a lui \mathbb{R}^3 unde $b_1 = (-11, -14, 2)$, $b_2 = (1, 1, 0), b_3 = (-5, -6, 1)$ și să se determine $[f]_{e,b}, [f]_{b,b}$.
- 1. a) Definiți noțiunile și dați câte un exemplu din fiecare: grup, relație de ordine, valoare proprie.
 - b) Enunțați teorema schimbului a lui Steinitz.
- c) Demonstrați că o mulțime $\{v_1, v_2, ..., v_n\} \subseteq V$ formează o bază a spațiului vectorial V ddacă $\langle v_1,...,v_n\rangle = V$ și pentru orice $k \in \{1,...,n\}$ $\langle v_1, ..., v_{k-1}, v_{k+1}, v_n \rangle \neq V.$
- 2. a) Fie V un spațiu vectorial. Definiți subspațiul generat de o submultime $X \subseteq V$ și arătați că el este egal cu multimea tuturor combinațiilor liniare de elemente din X.

 - b) Folosind lema substituției determinați inversa matricii: $\begin{pmatrix} 1 & 3 & 1 \\ -1 & -2 & 0 \\ 1 & 3 & 6 \end{pmatrix}$. 3. Se dă $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ cu matricea în baza canonică $[f]_e = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -3 \\ 1 & 1 & -5 \end{pmatrix}$.
 - a) Să se scrie formula lui $f(x), x \in \mathbb{R}^3$.
 - b) Să se determine câte o bază și dimensiunea pentru Imf și Kerf.
- c) Să se arate că $b = (b_1, b_2, b_3)$ este o bază a lui \mathbb{R}^3 unde $b_1 = (-11, -14, 2)$, $b_2 = (1, 1, 0), b_3 = (-5, -6, 1)$ și să se determine $[f]_{e,b}, [f]_{b,b}$.

- 1. a) Definiți noțiunile și dați câte un exemplu din fiecare: grup, relație de ordine, valoare proprie.
 - b) Enunțați teorema schimbului a lui Steinitz.
- c) Demonstrați că o mulțime $\{v_1, v_2, ..., v_n\} \subseteq V$ formează o bază a spațiului vectorial V ddacă $\langle v_1,...,v_n\rangle = V$ și pentru orice $k \in \{1,...,n\}$ $\langle v_1, ..., v_{k-1}, v_{k+1}, v_n \rangle \neq V.$
- 2. a) Fie V un spațiu vectorial. Definiți subspațiul generat de o submultime $X \subseteq V$ și arătați că el este egal cu multimea tuturor combinațiilor liniare de elemente din X.
 - b) Folosind lema substituţiei determinaţi inversa matricii: $\begin{pmatrix} 1 & 3 & 1 \\ -1 & -2 & 0 \\ 1 & 3 & 6 \end{pmatrix}$.
 - 3. Se dă $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ cu matricea în baza canonică $[f]_e = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -3 \\ 1 & 1 & -5 \end{pmatrix}$.
 - a) Să se scrie formula lui $f(x), x \in \mathbb{R}^3$.
 - b) Să se determine câte o bază și dimensiunea pentru Imf și Kerf.
- c) Să se arate că $b = (b_1, b_2, b_3)$ este o bază a lui \mathbb{R}^3 unde $b_1 = (-11, -14, 2)$, $b_2 = (1, 1, 0), b_3 = (-5, -6, 1)$ și să se determine $[f]_{e,b}, [f]_{b,b}$.
- 1. a) Definiți noțiunile și dați câte un exemplu din fiecare: grup, relație de ordine, valoare proprie.
 - b) Enunțați teorema schimbului a lui Steinitz.
- c) Demonstrați că o mulțime $\{v_1, v_2, ..., v_n\} \subseteq V$ formează o bază a spațiului vectorial V ddacă $\langle v_1,...,v_n\rangle = V$ și pentru orice $k \in \{1,...,n\}$ $\langle v_1, ..., v_{k-1}, v_{k+1}, v_n \rangle \neq V.$
- 2. a) Fie V un spațiu vectorial. Definiți subspațiul generat de o submultime $X \subseteq V$ și arătați că el este egal cu multimea tuturor combinațiilor liniare de elemente din X.

 - b) Folosind lema substituției determinați inversa matricii: $\begin{pmatrix} 1 & 3 & 1 \\ -1 & -2 & 0 \\ 1 & 3 & 6 \end{pmatrix}$. 3. Se dă $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ cu matricea în baza canonică $[f]_e = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -3 \\ 1 & 1 & -5 \end{pmatrix}$.
 - a) Să se scrie formula lui $f(x), x \in \mathbb{R}^3$.
 - b) Să se determine câte o bază și dimensiunea pentru Imf și Kerf.
- c) Să se arate că $b = (b_1, b_2, b_3)$ este o bază a lui \mathbb{R}^3 unde $b_1 = (-11, -14, 2)$, $b_2 = (1, 1, 0), b_3 = (-5, -6, 1)$ și să se determine $[f]_{e,b}, [f]_{b,b}$.