314CA Biciusca Tudor-Andrei

Galaxy Classification Project

This project classifies galaxy images into four types: Elliptical, Spiral, Barred Spiral, and Other/Unclassified.

The classifications are based on a simplified **Hubble Sequence**.

Overview

Starting from:

- 1. One folder containing ~16k images of galaxies in 424x424 resolution, each with it's own asset id
- 2. A csv file that links asset id to obj id which is the standard way to catalog galaxies
- 3. A csv file containing obj_id and a lot of features including the classification of that galaxy

The process:

- 1. Link the asset id to the classification
- 2. The dataset uses a lot of classifications (very specific ones) so for the purposes of this project we group them in the 4 big ones mentioned above
- 3. Crop images to keep only the main galaxy (otherwise the photos are very noisy and cluttered with other galaxies/stars/dust)
- 4. Equalize the dataset by applying effects (rotations, shears, mirroring...)
- 5. Extracts numerical features from each cropped image using both math based features and a CNN.
- 6. Select the most important features (between 15 and 20 give the best results as far as I've tested)
- 7. Trains a Random Forest classifier on those features.

Detailed Explanation

Data Preparation

- * Original images: `dataset/raw/images/`
- * CSV mapping: `dataset/processed/augmented.csv` with columns
- 'image path, galaxy class'

Augmentation

I wrote a script to balance classes by flipping, rotating, and adjusting brightness.

Cropping

I use OpenCV to:

- 1. Blur and threshold the image.
- 2. Find contours and pick the one nearest the center.
- 3. Crop around that contour and save to `dataset/processed/cropped/`.

Feature Extraction

I extract:

- * 8 classical features (concentration, ellipticity, gini, M20, asymmetry, smoothness, mean intensity, edge density)
- * 10 HOG features
- * 6 RGB color histogram bins
- * 50 CNN embedding features (ResNet50)

Results are saved to 'dataset/processed/all features cropped.csv'.

Feature Selection and Training

- 1. Load features and split into train/test (80/20).
- 2. Train a Random Forest to get feature importances.
- 3. Pick the top 15 features and retrain a second Random Forest.
- 4. Evaluate on the test set and print metrics.

Results

- * Final accuracy: ~65%
- * Classes still confused: Spirals vs Barred Spirals.

Problems and Fixes

- * Too many types of galaxy some of them having only 1 (one) example : Grouping galaxies based on their prefix
- * Predictions preferred Elliptical Galaxies due to the big number of data on them : Added image effects to equalize the number of photos.
- * Very low original accuracy: Better feature selection using a CNN and more features in general (went from 8 to 15)
- * Slow processing: added tqdm progress bars to make sure we don't find out the program is stuck after 1 hour (learned from experience).
- * Noisy images: cropped central galaxy before feature extraction.

Next Steps

- * Improve image preprocessing (deblurring, images are still not cropped optimally, galaxies that overlap are not separated properly).
- * Try better features to distinguish between Barred Spiral and Spiral (LBP, Fourier features).
- * Test other models (XGBoost, MLP).

Other Details

- * Time to extract the features ~ 1:30 (i have no gpu and bad cpu on the machine i worked on)
- * The modest results are part due to my inexperience but also because of the low quality data we are working with

Classification Report: Top 15 Features

precis	precision			recall f1-score support				
Barred Spira	0.60	0.60	0.60	1165				
Elliptical	0.65	0.72	0.68	1165				
Other/Unclassified		0.81	0.89	0.85	1164			
Spiral	0.53	0.42	0.47	1165				
accuracy			0.66	4659				
macro avg	0.65	0.66	0.65	4659				
weighted avo	0.65	0.66	0.65	4659				

Classification Report: Full features

precis	precision		recall f1-score support				
Barred Spira	0.57	0.60	0.59	1165			
Elliptical	0.64	0.73	0.68	1165			
Other/Unclassified		0.79	0.89	0.84	1164		
Spiral	0.54	0.37	0.44	1165			
accuracy			0.65	4659			
macro avg	0.64	0.65	0.64	4659			
weighted av	0.64	0.65	0.64	4659			

As we can see the results are slightly better when we only use part of the features.

Testing for the optimal number of features to be chosen accuracy macro_f1

K

5 0.578880 0.571518

10 0.633827 0.626221

15 0.656579 0.648714

20 0.658725 0.650257

30 0.653788 0.644841

50 0.648208 0.638550

From these results we conclude that the optimal number of features is ~20.

We don't have any missing data values.

--- EDA for test ---

missing_	_count	missing_p	oct
label	0	0.0	
С	0	0.0	
ellipticity	0	0.0	
gini	0	0.0	
M20	0	0.0	
		·	
CNN45	0	0.0	
CNN46	0	0.0	
CNN47	0	0.0	
CNN48	0	0.0	
CNN49	0	0.0	

We can see that our number of images is almost equal, the difference is at most 5 and that happened in the cropping part of preprocessing. Images that had a very small galaxy were deleted but I made the threshold small enough so our data won't be skewed.

Detailed count:

label,count Barred Spiral,4661 Elliptical,4660 Spiral,4659

46	[75 rows x 2 columns]							
47		label	С	ellipticity		CNN47	CNN48	CNN49
48	count	4659	4659.000000	4659.000000		4659.000000	4659.000000	4659.000000
49	mean	NaN	2.266281	0.494108		0.042871	0.082283	0.195143
50	std	NaN	0.257477	0.244725		0.077235	0.115168	0.208686
51	min	NaN	1.369179	0.005639		0.000000	0.000000	0.000000
52	25%	NaN	2.097566	0.288780		0.000000	0.006252	0.040065
53	50%	NaN	2.223731	0.495514		0.009794	0.038781	0.132763
54	75%	NaN	2.390122	0.711998		0.052153	0.109599	0.277660
55	max	NaN	3.437840	0.959743		0.893555	0.942336	1.771537

Observations:

Similarities: "Barred Spiral," "Elliptical," and "Spiral" have overlapping distributions (mostly 5.0 to 7.5), meaning "Asymmetry" alone might not easily separate these types. **Differences**: "Other/Unclassified" stands out with a higher peak (7.5 to 10.0) and some unique high values (up to 15.0). This suggests "Asymmetry" could be especially helpful for identifying this group.

