BetterMemory Peripheral

Cody G, Noah L, Rudra G, Femke K, Evan G

Addressing the Issue of Limited Memory

SCOMP Only Stores 2048 Words of Memory

- Some data-intensive processes require significantly more memory than SCOMP provides
- We have external memory available from the FPGA, but not an easy way to access it
- A peripheral would enable programmers to make use of this additional memory with simple "IN" and "OUT" commands in SCOMP assembly

The BetterMemory Peripheral Expands SCOMP Storage

MEMORY AVAILABILITY WITH BETTER MEMORY

- BetterMemory utilizes Intel's altsyncram memory
 - Preconfigured IP that allocates FPGA resources for memory
- This allows us to hold a megabit of memory
- That is enough memory to hold:
 - A space invaders game
 - A dictionary
 - A basic voice processing model
 - The BEE MOVIE SCRIPT

How We Spice Up Memory Use

Auto-Incrementing Memory

- Pick a place in memory, and either read or write at consecutive memory addresses without specifying the address for each use
- Makes assembly code easier to understand and write
- Eliminates confusion and mix-ups with multiple data filled memory addresses
- Allows easy implementation of repeated commands interacting with memory, such as summing multiple variable, saving files, holding instructions or lists, etc.

How BetterMemory Works

BetterMemory API – End User's Perspective

STORING Data

- Load 16-bit address into SCOMP Accumulator
- Write OUT to BetterMemory's ADDRESS_EN
- Load 16-bit value into SCOMP Accumulator
- Write OUT to BetterMemory's VALUE_EN

SCOMP Assembly Example

```
1 ORG 0
                           ;load 160 into AC
       LOADI
              &H00A0
                           ;set BEtterMemory's Address ptr to 160
       OUT
               ADDRESS_EN
                           :load some value into AC
      LOADI
              &H00D3
                          ;store value from AC into memory at address 160
               VALUE EN
9; Addresses of Better Memory peripheral enable pins
10 ADDRESS_EN EQU &H0070
11 VALUE EN
               EOU &H0071
12 INCR EN
               EOU &H0072
```


BetterMemory API – End User's Perspective

RETRIEVING Data

- Load 16-bit address into SCOMP Accumulator
- Write out to BetterMemory's ADDRESS_EN
- Read in from BetterMemory's VALUE_EN

SCOMP Assembly Example

```
1 ORG 0
      LOAD
               AddressOfSomeData
                                   :load address into ac
      OUT
              ADDRESS_EN
                                   ; set peripheral address to be ac
      IN
               VALUE EN
                                   :read & latch data at address
 8 ;Arbitarary variables
 9 AddressOfSomeData: DW &HFC9A
11; Addresses of Better Memory peripheral enable pins
12 ADDRESS_EN EQU &H0070
13 VALUE EN
               EOU &H0071
14 INCR EN
               EOU &H0072>
```


BetterMemory API – Auto-Increment Feature

STORING Data

- Load 16-bit address into SCOMP Accumulator to set initial address
- Write out to BetterMemory's ADDRESS_EN
- Write out to BetterMemory's INCR_EN
- Load 16-bit value into SCOMP AC
- Write out to BetterMemory's VALUE_EN

SCOMP Assembly Example

```
InitialAddress
                                    :load address into ac
       LOAD
               ADDRESS_EN
                                   ; set peripheral address to be ac
               INCR EN
       OUT
                                    ; set to autoincrement mode
               &H0001
       LOADI
               ADDRESS_EN
                                    ; stored at address
       OUT
11
       ADDI
               ADDRESS_EN
                                   ;value stored at 2nd address
       OUT
       ADDI
               ADDRESS_EN
                                   ;value stored at 3rd address
       OUT
       ADDI
       OUT
               ADDRESS_EN
                                    ;value stored at 4th address
  ;Arbitarary variables
  InitialAddress: DW &HFC9A
   ; Addresses of Better Memory peripheral enable pins
  ADDRESS_EN
24 VALUE EN
               EOU &H0071
25 INCR EN
               EOU &H0072
```

Repeat => Values stored in consecutive addresses

BetterMemory uses ALTSYNCRAM megafunction

- 16-bit value and address space
- Same 50MHz clock signal
- Utilize Altsyncram as a 'component' instantiation in peripheral VHDL

State Machine Diagram

Current Testing (Writing)

State: 000 = Idle

001 = WritingValue

100 = ReadingAddress

Address 41 increments to 42

Current Testing (Reading)

Values Read

State: 000 = Idle

010 = ReadingValue011 = WritingAddress

Address 41 increments to 42

Exits Auto-Increment Mode

Current Testing and Results

Programming DE-10 Board with Counter Assembly Program

- Program start => write value 0x0001 at address 0x0001, then value 0x0002 at address 0x0002, then 0x0003 @ address 0x0003...
- Stop writing to memory when any switch is active
- Use 10 switches to write 10bit address and display value on 7seg display

The Demonstration

- GT Football Record for 2024-2025 Season
- Score on 7-Segment Display
- LED's Indicate Win

Timeline and Feasibility

BetterMemory Project Timeline

Contingencies

Potential Problem	Course of Action
Altsyncram Integration Failure	Resort to other available RAM ports (ex: Dual Port RAM)
Timing Inconsistencies	Operate memory off SCOMP clock, allowing reliable function at the cost of efficiency
Misuse in Assembly	Sounder API documentation, and variables to force proper state at all times.

Organization

- Noah VHDL superstar
 - Figured out how to use Altsyncram
- Femke Incrementer (Co-Pres of VHDL superstardom)
 - Made our memory system special with incrementing feature
- Rudra and Cody Demonstrators
 - Wrote the assembly code to show off our product to attract customers
- Evan Documenter
 - API, Testing, and Presentation

