1. Proveu que $f(x) = \sqrt{x}$ és uniformement contínua a $[0, \infty)$.

Indicació: Separeu el cas [0,1] de l'interval $[1,\infty)$. En aquest darrer cas, proveu que f satisfà una condició de Lipschitz.

Per a que la funció \sqrt{x} sigui uniformement contínua, ha de complir la següent condició:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ |x - y| < \delta \implies |\sqrt{x} - \sqrt{y}| < \epsilon.$$

Si partim l'interval en els intervals $I_1 = [0,1]$ i $I_2 = [1,\infty)$, podem raonar-ho pels dos casos. Per l'interval I_1 , tenim que $\sqrt{x} \le x$ per qualsevol valor dins d' I_1 . Si prenem $\delta = \epsilon^2$, veiem el següent: (podem suposar que $y \le x$)

$$x - y < \epsilon^2 \iff \sqrt{x - y} < \epsilon.$$

També es pot demostrar que $\sqrt{x-y} \le \sqrt{x} - \sqrt{y}$:

$$\sqrt{x-y} \leq \sqrt{x} - \sqrt{y} \iff x-y \leq x+y-2\sqrt{x}\sqrt{y} \iff -2y \leq -2\sqrt{xy} \iff y \leq \sqrt{y}\sqrt{x}.$$

Com que $\sqrt{x} \le 1 \ \forall x \in I_1$, la primera condició és compleix. Per tant, tenim $\sqrt{x-y} < \sqrt{x} - \sqrt{y} < \epsilon$ i per tant, $x-y < \epsilon^2$. Hem trobat la δ per l'interval I_1 .

Per demostrar la continuïtat uniforme a l'interval I_2 , recordem l'enunciat de la condició de K-Lipschitz per la funció arrel quadrada:

$$\forall x, y \quad |\sqrt{x} - \sqrt{y}| \le K|x - y|.$$

Veiem, doncs, que aquesta condició es dóna per tota x, y de l'interval I_2 :

$$\sqrt{x} - \sqrt{y} \le K(x - y) \iff x - y \le K(x - y)(\sqrt{x} + \sqrt{y}) \iff 1 \le K(\sqrt{x} + \sqrt{y}).$$

Aquesta última condició es verifica sempre, ja que dins d' I_2 , $\sqrt{x} + \sqrt{y} \ge 2 \ \forall x, y$. Per tant, la mínima K que podem agafar és $K = \frac{1}{2}$. Aleshores, f és $\frac{1}{2}$ -Lipschitziana i per tant, és uniformement contínua. \square

2. Proveu que $f(x) = x^2$ no és uniformement contínua a $[0, \infty)$, veient explícitament que existeix $\epsilon > 0$, i successions $(x_n)_n$ i $(y_n)_n$ no fitades amb $(x_n - y_n)_n$ convergent a zero i tal que $|f(x_n) - f(y_n)| \ge \epsilon$.

Si fos uniformement contínua, f compliria l'enunciat:

$$\forall \epsilon > 0 \exists \delta > 0: |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Per tant, podem fer servir la indicació per demostrar que $f(x) = x^2$ no és uniformement contínua. Com a exemples podem agafar les successions:

$$x_n = \frac{n^2}{n+1} \\ y_n = \frac{n^2 - 1}{n+1} .$$

Com es pot observar cap de les dues està fitada superiorment. Si en fem la resta, en canvi,

$$\{x_n - y_n\}_n = \left\{\frac{n^2}{n+1} - \frac{n^2 - 1}{n+1}\right\}_n = \left\{\frac{1}{n+1}\right\}_n$$

que convergeix a 0, i per tant compleixen que $|x-y| < \delta$. Si fem ara la diferència dels seus quadrats (el que equivaldria a $f(x_n) - f(y_n)$), observem el següent:

$$\left(\frac{n^2}{n+1}\right)^2 - \left(\frac{n^2-1}{n+1}\right)^2 = \frac{n^4 - (n^4+1-2n^2)}{(n+1)^2} = \frac{2n^2-1}{(n+1)^2}.$$

Aquesta expressió convergeix a 2, i per tant existeix una $\epsilon > 0$ tal que $|f(x_n) - f(y_n)| \ge \epsilon$, concretament $\epsilon = 2$. Per tant, $f(x) = x^2$ no és uniformement contínua.

3. Proveu que $f(x) = \sin x$ és uniformement contínua a tot $\mathbb R$ veient que satisfà una condició 1-Lipschitz a tota la recta real.

Indicació: Useu que, per tot $a, b \in \mathbb{R}$,

$$\sin a - \sin b = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right).$$

(Observació: $f(x) = \sin x$ és, doncs, una funció vàlida com l'exemple que es demana a l'exercici 16 del Tema 3).

Tenim que $|\cos x| \le 1 \ \forall x \in \mathbb{R}$ i que $|\sin x| \le 1 \ \forall x \in \mathbb{R}$. També,

$$|x-y| > \left| \frac{x-y}{2} \right| > \left| \sin\left(\frac{x-y}{2}\right) \right| \iff |x-y| > \left| 2\sin\left(\frac{x-y}{2}\right) \right|.$$

Com que sabem que $|\cos x| \le 1$,

$$|x-y| > \left| (x-y)\cos\left(\frac{x+y}{2}\right) \right| > \left| 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \right|.$$

Del que podem concloure que

$$\left| 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \right| = \left|\sin x - \sin y\right| = \left|f(x) - f(y)\right| < 1|x-y|$$

i per tant, que $f(x) = \sin x$ és 1-Lipschitz.