数论

主讲人:数一

本节课的内容

- 整除与同余
- 约数与倍数
- 素数与合数
- 素数筛
- 最大公约数
- 最小公倍数
- 互质
- 分解质因数
- 费马小定理
- 欧拉函数与欧拉定理

从带余除法到同余

$$a \div b = q \cdot \cdots \cdot c \Leftrightarrow a = bq + c$$

$$a \equiv c \pmod{b}$$

读作a与c在模b下同余

同余的性质

反身性: $a \equiv a \pmod{n}$

对称性: $a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$

传递性:
$$a \equiv b \pmod{n}$$
 $\Leftrightarrow a \equiv c \pmod{n}$

同余的性质

线性合成:
$$a \equiv b \pmod{n} \Rightarrow a \pm c \equiv b \pm d \pmod{n}$$
$$c \equiv d \pmod{n} \Rightarrow ac \equiv bd \pmod{n}$$

消去公因子:
$$ac \equiv bc \pmod{n}$$
 $\Rightarrow a \equiv b \pmod{n}$ $\gcd(c,n)=1$

整除

 $a \div n = q \Leftrightarrow a \equiv 0 \pmod{n} \Leftrightarrow n \mid a$,读作n整除a n 称为a的约数 a称为n的倍数

素数与合数

- 只含有1和本身两个约数的正整数, 称为素数(约数个数=2)
- 除了1和本身还有其它约数的正整数, 称为 素数(约数个数>2)
- 1(约数个数<2)
- 正整数=1+素数+合数

素数

・ 判定一个数n是否是素数 枚举因子: $O(\sqrt{n})$

素数筛预处理: O(n)+O(1)

本节课重点

枚举因子法

```
bool judge(int n)//判断一个数n是否是素数,0(sqrt(n))
   if(n==1)//把特殊的1特判掉
      return false;
   for(int i=2;i*i<=n;i++)//枚举因子
      if(n%i==0)//n能被i整除<==>i是n的约数,n是合数
          return false;
   return true; //在2~n-1中没有n的约数, n是素数
```

复杂度分析

```
bool judge(int n)//判断一个数:
                            这个循环执
                           行了sgrt(n)次
   if(n==1)//把特殊的1特判掉
      return false;
   for(int i=2;i*i<=n;i++)// 枚举因了
      if(n%i==0)//n能被i整除<==>i是n的约数,n是合数
          return false;
   return true; //在2~n-1中没有n的约数, n是素数
```

```
别忘了先把
           易写错的地方
特殊的1判
  断掉
                   这里必须小
           /判断一个数
                              t(n))
                    于等于,不
 if(n==1) // 把特殊的1特判
                    能只有小于
    return false;
 for(int i=2; i*i<=n; i++) // 枚至云
    if(n%i==0)//n能被i整 这里必须是两个等
                  号表示等于,而不
      return false
                  是只有一个等号的
                       赋值
 return true; //在2~n
              最后别忘了
              要返回是素
```

用这个方法我们能干什么? 1秒内单次判断1~10¹⁶以内的 任意一个数是否是素数

素数筛

• 可以提前处理出来1~n的全体素数,之后每次都能"瞬间"知道1~n中的某个数是否是素数。

素数筛

- 1. 把1~n列出来
- 2. 去掉不是特殊的1
- 3. 从小到大,枚举每一个没有删掉的数字i
- 4. 把i的2倍, 3倍, 4倍, ..., 删掉
- 5. 剩下的没被删掉的都是素数

举个栗子,这里取100以内的数

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

去掉特殊的1

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

枚举i=2

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

枚举下一个没有被删除的数i=3

	2 $\boxed{3}$	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59
61	63	65	67	69
71	73	75	77	79
81	83	85	87	89
91	93	95	97	99

枚举下一个没有被删除的数i=5

	2 3	(5)	7	
11	13		17	19
	23	25		29
31		35	37	
41	43		47	49
	53	55		59
61		65	67	
71	73		77	79
	83	85		89
91		95	97	

	2 3	5	7	
11	13		17	19
	23	25		29
31		35	37	
41	43		47	49
	53	55		59
61		65	67	
71	73		77	79
	83	85)		89
91		95	97	

枚举下一个没有被删除的数i=7

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	49
		53			59
61				67	
71		73		77	79
		83			89
91				97	

得到1~100以内的全体素数

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	
		53			59
61				67	
71		73			79
		83			89
				97	

代码实现

```
const int N=1000001;//需要找出1~N-1的质数
bool notprime[N];//删除标记,被删除说明不是质数
void init()
   notprime[1]=1;//标记特殊的1不是质数
   for(int i=2;i<N;i++)//枚举i
      if (notprime[i] == false) //找到一个没有被删除的数
          for(int j=i+i;j<N;j=j+i)//把j=2i,3i,4i,...找出来
             notprime[j]=true;//把这些数标记为删除
```

复杂度分析

```
这个循环执
const int N=1000001;//霊
                          行了N-1次
bool notprime[N];//删除标
void init()
                                 对于每一个i,
   notprime[1]=1;//标记
   for(int i=2;i<N;i++)//枚举i
                                  这个循环被
                                  执行了N/i次
      if (notprime[i]==false) / /找到;
          for(int j=i+i;j<N;j=j+i)//把j=2i,3i,41,....找出来
             notprime[j]=true;//把这些数标记为删除
```

复杂度分析

• 最核心的循环被执行了的次数

$$\frac{N}{2} + \frac{N}{3} + \frac{N}{5} + \frac{N}{7} + \dots$$

$$= N \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots \right)$$

$$= N \left(\ln \ln N + 0.281 \dots \right)$$

 $O(n \log \log n)$

根据Mertens 定理

```
想要获取1~N的素
                     别忘了标道
const int N=100000
bool notprime[N];//删版
void init()
                             只对没被删除
   notprime[1]=1;//标记特殊的
                              的数进行操作
   for(int i=2;i<N;i++)//枚举i
      if (notprime [i] == false) / /找到一个没有规则除的数
         for(int j=i+i;j<N;j=j+i)//把j=2i,3i,4i,...找出来
            notprime[j]=true;
                                每次累加的间
                                    隔是i
```

用这个方法我们能干什么? 1秒内把10⁷以内的质数和合数 分隔出来

能不能再快一些?

- 有的合数被删除了几次
- 例如6在i=2和i=3时各删除了1次
- 例如60在i=2和i=3和i=5时各被删除了1次
- 没必要删除那么多次!
- 如何让每个合数只被删除1次?

欧拉筛(线性筛)

- 特点每个合数,只会被最小素因子筛去
- 1. 列出1~n
- 2. 删除特殊的1
- 3. 从2开始枚举数i, 若没有被删掉,则加入 素数表中
- 4. 枚举素数表中的每一个素数j,并把i*j的结果从表里删去,直到枚举到j能整除i。

还是这个栗子,这里取100以内的数

素数表={}

```
4
                               8
                                        10
         3
                  5
        13
                 15
                      16
                          17
11
    12
             14
                               18
                                   19
                                        20
                 25
                      26
    22
        23
             24
                          27
                               28
                                        30
             34
                 35
                      36
                                        40
    32
                          37
                               38
                                   39
31
        33
    42
        43
             44
                45
                      46
                          47
                               48
                                   49
                                        50
            54
                 55
                      56
51
    52
        53
                          57
                               58
                                   59
                                        60
61
    62
        63
             64
                 65
                      66
                          67
                               68
                                   69
                                        70
             74
                 75
71
    72
        73
                      76
                          77
                               78
                                   79
                                        80
                      86
             84
                 85
                          87
                               88
                                   89
81
    82
        83
                                        90
91
    92
        93
             94
                 95
                      96
                          97
                               98
                                   99
                                        100
```

去掉特殊的1

素数表 = { }

枚举i=2

素数表={}

```
3
                   5
              4
                       6
                                 8
                                          10
             14
                                          20
    12
         13
                  15
                       16
                            17
                                 18
11
                                     19
    22
             24
                  25
                       26
                                28
                                     29
                                          30
21
         23
                            27
             34
    32
                  35
                       36
                            37
                                38
                                     39
                                          40
31
         33
                  45
                       46
                                 48
41
    42
         43
             44
                            47
                                     49
                                          50
         53
             54
                  55
                       56
                            57
                                 58
51
                                          60
    52
                                     59
         63
             64
                  65
                       66
                            67
                                 68
                                     69
                                          70
61
    62
                  75
                       76
                                          80
71
         73
             74
                            77
                                 78
                                     79
    72
    82
         83
             84
                  85
                       86
                            87
                                 88
                                     89
                                          90
81
                  95
                       96
                            97
                                 98
                                     99
                                          100
91
    92
         93
             94
```

因为没有被删除,加入素数表素数表={2}

枚举素数表j=2

素数表=(2)

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

删除掉i*j=4

素数表=(2)

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

因为j能整除i,停止向后删除

素数表=(2)

	2	3		5	6	7	8	9	10
11	12				16				20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

枚举i=3

素数表={2}

	2	(3)		5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

3没有被删除,加入素数表 素数表={2,3}

枚举素数表j=2,3

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39	10
	20
31 32 33 34 35 36 37 38 39	30
	40
41 42 43 44 45 46 47 48 49	50
51 52 53 54 55 56 57 58 59	60
61 62 63 64 65 66 67 68 69	70
71 72 73 74 75 76 77 78 79	80
81 82 83 84 85 86 87 88 89	90
91 92 93 94 95 96 97 98 99	100

标记3*2=6, 3*3=9

	2	(3)		5	6	7	8	9	10
11								19	
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

删除6和9

	2	(3)		5		7	8		10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	

枚举i=4

	2	3	()	5		7	8		10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

因为4被删除了,不加入素数表素数表={2,3}

枚举j=2,因为2能整除4,不再枚举 _{数表 -1}(2)31 后面的3

72.

标记4*2=8

	2	3	\bigcap	5		7	(8)		10
11			14						
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

删除掉8

	2	3	$(\)$	5		7	()		10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

枚举i=5,没被删除,加入素数表

素数表 = {2,3,5} 23 24 25 26 34 35 44 45 46 47 53 54 55 56 57

枚举j=2,3,5

素数表	₹ =((2)	3 6	5)						
		2	3		(5))	7			10
	11	12	13	14	15	16	17	18	19	20
	21	22	23	24	25	26	27	28	29	30
	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

标记5*2=10,5*3=15,5*5=25

素数表=	(2)	3	5)						
7 4 () 7 4 4 4	2	3		5		7			10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

删除10,15,25

素数表	=({	2)	3 1,5							
) , ()) ()		2	3		<u>(5)</u>		7			
-	11	12	13	14		16		18	19	20
	21	22	23	24	\bigcirc	26	27	28	29	30
•	31	32	33	34	35	36	37	38	39	40
2	41	42	43	44	45	46	47	48	49	50
	51	52	53	54	55	56	57	58	59	60
(61	62	63	64	65	66	67	68	69	70
,	71	72	73	74	75	76	77	78	79	80
;	81	82	83	84	85	86	87	88	89	90
(91	92	93	94	95	96	97	98	99	100

枚举i=6,因为已经被删除,不加入

表数表 - 12 3 51

枚举j=2,因为2能整除6,不再继续枚

举3和5

标记6*2=12, 并删除

枚举i=7,没被删除,加入素数表

枚举j=2,3,5,7,标记14,21,35,49,并删除

如此类推,最终枚举完i=97后,即可 得到100以内的素数 素数表={2,3,5,7,11,13,17,19,23,29,31,37,

41,43,49,53,59,61,67,71,73,79,83,89,97}

	2	3	5	7	,
11		13		17	19
		23			29
31				37	
41		43		47	
		53			59
61				67	
71		73			79
		83			89

97

时间复杂度

每一个素数都只被记录一次,每一个合数都只会被一个唯一的最小素因子标记一次 (例如6只被2标记了,没有被3标记)。因此是O(n)线性复杂度的。

代码实现

```
const int N=100000001;//需要找出1~N-1的质数
bool notprime[N];//删除标记,被删除说明不是质数
int prime[N],pn;//素数表
void init()
   pn=0;//初始化素数表为空
   notprime[1]=1;//标记特殊的1不是质数
   for(int i=2;i<N;i++)//枚举i
      if(notprime[i]==false)//找到一个没有被删除的数
         prime[pn++]=i;//加入素数表
      for(int j=0;j<pn&&prime[j]*i<N;j++)//枚举素数表
         notprime[prime[j]*i]=true;//把i和素数表相乘的合数标记
         if(i%prime[j]==0)//如果遇到枚举的素数是i的约数,跳出循环
             break;
```

和之前的比较

• 1秒钟能处理的数更多了

$$10^7 \rightarrow 10^8$$

• 代码实现更复杂了

容易出错的地方

```
const int N=100000001;//需要找出1~N-1的质数
bool notprime[N];//删除标记,被删除说明不是质数
int prime[N],pn;//素数表
void init()
   pn=0;//初始化素数表为空
                                和前一个算法不
   notprime[1]=1;//标记特殊的1不是
                                同, 无论有没有
   for(int i=2;i<N;i++)//枚举i
                               标记,都要进入
      if(notprime[i]==false)//找3
         prime[pn++]=i;//加入
      for(int j=0;j<pn&&prime[j]*i</pre>
                               这个整除提前结
         notprime[prime[j]*i]=
                               束的判断是保证
         if(i%prime[j]==0)//
            break;
                                 线性的关键
```

素数筛应用

- 1. 预处理n以内的素数
- 2. 可以顺便预处理很多数论中常见的函数
- 3. 简化其它数论算法的操作

几乎是所有数论题的开始

最大公约数

• 欧几里得算法(辗转相除法) #include <algorithm>里面有__gcd函数

欧几里得算法

$$\gcd(a,b) = \begin{cases} \gcd(b,a\%b) & b \neq 0 \\ a & b = 0 \end{cases}$$

代码实现

```
int gcd(int a,int b)
                          long long gcd(long long a,long long b)
    if(b==0)
                             if(b==0)
                                 return a;
         return a;
                             return gcd(b,a%b);
    return gcd(b,a%b);}
```

多个数最大公约数

• 最大公约数满足结合律

$$\gcd(a_1, a_2, ..., a_n) = \gcd(\gcd(a_1, a_2, ..., a_{n-1}), a_n)$$

多个数最大公约数

```
int gcd(int a,int b)
    if(b==0)
        return a;
    return qcd(b,a%b);
int multi gcd(int a[],int n)
    int res=gcd(a[0],a[1]);
    for (int i=2; i<n; i++)</pre>
        res=gcd(res,a[i]);
    return res
```

最小公倍数

$$lcm(a_1, a_2) = \frac{a_1 \cdot a_2}{\gcd(a_1, a_2)}$$

$$lcm(a_1, a_2, ..., a_n) = lcm(lcm(a_1, a_2, ..., a_{n-1}), a_n)$$

代码实现

```
int gcd(int a,int b)
   if(b==0)
       return a;
   return gcd(b,a%b);
int lcm(int a,int b)
   return a/gcd(a,b)*b;//防止a*b溢出, 先除后乘
```

扩展欧几里得算法

已知a,b,c,以及ax+by=c求出一组解x,y

有解条件:gcd(a,b)|c

$$ax_1 + by_1 = \gcd(a,b)$$

 $bx_2 + (a\%b)y_2 = \gcd(b,a\%b)$

$$ax_1 + by_1 = bx_2 + (a\%b)y_2$$

$$a \div b = a/b \cdot \dots \cdot a\%b \Leftrightarrow a = [a/b] \cdot b + a\%b$$

$$ax_1 + by_1 = bx_2 + (a - [a/b] \cdot b)y_2$$

$$ax_1 + by_1 = ay_2 + b(x_2 - [a/b]y_2)$$

$$\begin{cases} x_1 = y_2 \\ y_1 = x_2 - \left[\frac{a}{b} \right] y_2 \end{cases}$$

递归版

```
int exgcd(int a,int b,int&x,int&y)
{
   if(b==0)
       x=1, y=0; // 当b=0时, ax=gcd(a,0), x=1, y=0
       return a:
   int d=exgcd(b,a%b,x,y);//递归处理,获取x2和y2
   int t=x;
   x=y; //x1=y2
   y=t-a/b*y; //y1=x2-a/b*y2
   return d;
```

应用

• 求解线性同余方程 $ax \equiv b \pmod{n}$

• 求逆元 $ax \equiv 1 \pmod{n}$

解线性同余方程组

```
ax \equiv b \pmod{n} \Rightarrow ax - ny = b
    已知a,n,找出一组解x,y满足方程
int solve(int a,int b,int n)
    int d=gcd(a,n);
    if(b%d!=0)
        return -1;//无解
    int k=b/d;
    int x, y;
    exgcd(a,n,x,y);//求解ax-ny=gcd(a,n)
    return x*k;
```

求逆元

 $ax \equiv 1 \pmod{n}$, 就是刚才b = 1的情况。

分解质因数

• 算术基本定理:任何一个大于1的自然数N,如果N不是素数,那么N可以唯一地表示为

$$N = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_r^{e_r}$$

其中 $p_1 < p_2 < \dots < p_r$ 为素数,
 e_1, e_2, \dots, e_r 为正整数。

分解质因数

方法一: 枚举因子,不断试除(O(sqrt(n)))

方法二: 素数筛预处理最小素因子,循环除以最小素因子(O(n)+O(logn)

代码实现

• 预处理素数筛

```
int p[100];
int e[100];
int cnt;
int fenjie (int n)
{
     cnt=0;
     for(int i=0;i<pn&&prime[i]<=n;i++)</pre>
         if(n%prime[i]==0)
             p[cnt]=prime[i];
             while (n%prime[i] == 0)
                  n/=prime[i],e[cnt]++;
              cnt++;
     if(n>1)
         p[cnt]=n,e[cnt++]=1;
```

快速幂

$$a^{b} = \begin{cases} \frac{b}{2} \cdot a^{\frac{b}{2}}, b \\ \frac{b-1}{a^{\frac{b-1}{2}}} \cdot a^{\frac{b+1}{2}}, b \\ a^{\frac{b-1}{2}} \cdot a^{\frac{b+1}{2}}, b \\ \end{pmatrix}$$

递归版

```
long long pow_mod(long long a,long long n,long long m)
{
    if(n==0) return 1;
    long long res=pow_mod(a,n/2,m);
    if(n%2==0)
        return res*res%m;
    else
        return res*res%m*a%m;
}
```

非递归版

```
long long pow mod(long long a, long long n, long long m)
    long long res=1;
    while (n>0)
        if (n%2==1)
             res=res*a%m;
        a=a*a%m;
        n/=2;
    return res;
```

快速幂时间复杂度

• O(logb)次递归/循环

费马小定理

• 1640年费马提出的一个定理: 若p是一个素数,那么对于任意一个整数a, $a^{p}-a$ 都是p的倍数,即 $a^{p}\equiv a \pmod{p}$ 若 $\gcd(a,p)=1$,则 $a^{p-1}\equiv 1 \pmod{p}$

一个优雅的证明

考虑二项式系数 C_p^n , 当n=0或n=p时, $C_p^n=1$ 。

当
$$0 < n < p$$
时, $C_p^n = \frac{p!}{n!(p-n)!}$,分子是 p 的倍数,

分母不是p的倍数,故 $C_p^n \equiv 0 \pmod{p}$ 。

$$a^{p} = ((a-1)+1)^{p} = \sum_{n=0}^{p} C_{p}^{n} (a-1)^{p-n} \equiv (a-1)^{p} + 1 \pmod{p}$$

$$\equiv (a-2)^p + 1 + 1 \pmod{p} \equiv (a-3)^p + 1 + 1 + 1 \pmod{p}$$

$$\equiv \ldots \equiv 1+1+\ldots+1+1 \pmod{p} = a \pmod{p}$$

费马小定理的意义

· 说明了模素数的指数是有循环节的,且循环节长度为p-1

欧拉函数

 $\varphi(n)$ 为欧拉函数,

定义为不超过n的整数中与n互素的个数

$$\varphi(3) = 2$$
, $\varphi(6) = 2$, $\varphi(100) = 40$

如何求欧拉函数?

- 1. 枚举所有不超过n的数,判断是否互质。 (O(nlogn))
- 2. 欧拉函数求值公式(O(sqrt(n)))

欧拉函数的性质

当
$$n$$
是1时, $\varphi(n)=1$
当 p 是个素数时, $\varphi(p^k)=p^k-p^{k-1}$
当 a,b 互质时, $\varphi(ab)=\varphi(a)\varphi(b)$

欧拉函数求值公式

$$n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

$$\varphi(n) = \varphi(p_1^{e_1})\varphi(p_2^{e_2})...\varphi(p_r^{e_r})$$

$$\varphi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_r} \right)$$

单次求欧拉函数

```
int getphi(int n)
    int ans=n;
    for (int i=2; i*i <=n; i++)
        if(n%i==0)
             ans-=ans/i;
             while (n\%i==0)
                 n/=i;
    if(n>1)
        ans-=ans/n;
    return ans;
```

欧拉函数的应用

- 求逆元
- 欧拉降幂公式

欧拉定理的应用

• 求逆元

$$a^{\varphi(n)} \equiv 1 \pmod{n} \Leftrightarrow a \cdot a^{\varphi(n)-1} \equiv 1 \pmod{n}$$
 $a^{\varphi(n)-1}$ 就是在模 n 下 a 的逆元
使用条件为 $(a,n)=1$

欧拉定理的应用

• 欧拉降幂公式

$$a^b \equiv a^{b\%\varphi(n)+\varphi(n)} \pmod{n} (b > \varphi(n))$$

可以把大指数转化成不超过 $\varphi(n)$ 的指数

注意,这里不要求a,n互质!

注意,这里不要求a,n互质!!

注意,这里不要求a,n互质!!(重要的话说三次!)

• 降幂, 化简运算

例题: HDU4704 (2013 多校10)

给定N,定义 S_k 为 $x_1 + x_2 + ... + x_k = N$ 的 正整数解的方案数,

求
$$(S_1 + S_2 + ... + S_N)$$
% 1000000007

$$1 < N < 10^{20000}$$

类似的题

- FZU1759 Super A^B mod C
 计算 A^B mod C.
 (1<=A,C<=1e9,1<=B<=1e1000000).
- BZOJ 3884上帝与集合的正确用法

给定
$$p <= 10000000$$
,设 $a_0 = 1$, $a_n = 2^{a_{n-1}}$,求 $\lim_{n \to \infty} a_n \% p$

POJ3090

有一个n*n的二维格点,问在原点(0,0)处能看到多少个格点? (n<=1000,1000组数据)

n=5的情况,答案是21, 如左图的21根线

$$\left| \left\{ (x, y) \mid 1 \le x, y \le n, \gcd(x, y) = 1 \right\} \right|$$

中国剩余定理

孙子算经

• 今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?

孙子算经解答

• 凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五.一百 六以上,以一百五减之,即得

中国剩余定理

1.计算
$$N = LCM(n_1, n_2, ..., n_k)$$

$$2.计算N_i = \frac{N}{n_i}$$

3.利用ex gcd 计算 $M_iN_i + m_in_i = 1$

$$4.x = \left(\sum_{i=1}^{k} a_i M_i N_i\right) \% N$$

例题

hdu1370

一个人有体力,感情,智商三个周期,周期分别为23天,28天,33天,然后告诉你今天分别位于三个周期的第几天,问下一次三者达到顶峰的日子。

离散对数

• 什么是对数?

已知 $a^x = b$ 的a,b,那么 $x = \log_a b$,称为以a为底b的对数

• 什么是离散对数? 在模n下的对数运算

已知 $a^x \equiv b \pmod{n}$ 的a,b,n,那么 $x \equiv \log_a b \pmod{n}$,称为在模n下以a为底b的对数

怎么求离散对数?

- 这是一个很经典的工业问题,因为没有 O(log c)复杂度的解法,所以可以作为公钥 加密算法——DH密钥交换算法
- 竞赛中只需要掌握O(sqrt(c))的算法即可
- 求解算法
- Baby Step Giant Step(竞赛中常用)
- Pollard-rho (对,又是这个人)

Baby Step Giant Step

- · 一个用空间换时间的算法(hash表判重)
- 一个中间相遇法的算法(节省一半搜索状态)

算法思想

假设我们解的方程 $a^x \equiv b \pmod{n}$ 的结果是x把x写成 $x = im + j(0 \le i, j < m)$,并且取 $m = |\sqrt{n}|$ $(a^m)^i a^j \equiv b \pmod{n} \Leftrightarrow a^j \equiv b (a^{-m})^i \pmod{n}$ baby step giant step hash

复杂度

• 因为i,j都是不超过m=sqrt(n)的数,因此整体 复杂度是O(sqrt(n))的

应用条件?

- n必须是素数。
- 如果n不是素数会出现什么问题?

ex-baby step giant step

- 分析
- n不是素数之所以不成立是因为(a,n)!=1导致 逆元不存在。

设
$$g = \gcd(a, n)$$

$$a^{x}-kn=b$$

当g不能整除b时,必然无解

两边同时除以8

$$\frac{a^{x}}{g} - \frac{kn}{g} = \frac{b}{g} \Leftrightarrow \frac{a}{g} a^{x-1} \equiv \frac{b}{g} \left(\text{mod} \frac{n}{g} \right) \Leftrightarrow a^{x-1} \equiv \frac{b}{g} \cdot \left(\frac{a}{g} \right)^{-1} \left(\text{mod} \frac{n}{g} \right)$$

手算一下?

$$6^x \equiv 8 \pmod{16}$$

$$6^x \equiv 8 \pmod{16}$$

$$\gcd(6,16) = 2$$

$$\frac{6}{2} \cdot 6^{x-1} \equiv \frac{8}{2} \left(\bmod \frac{16}{2} \right)$$

$$6^{x-1} \equiv 4 \cdot 3^{-1} \equiv 4 \pmod{8}$$

$$6^{x-2} \equiv 2 \cdot 3^{-1} \equiv 2 \pmod{4}$$

$$6^{x-3} \equiv 1 \cdot 3^{-1} \equiv 1 \pmod{2}$$

$$x - 3 = 0$$

$$x = 3$$

模板题

- POJ2417
 找到最小的L,满足B^L == N (mod P),其中P 是素数。
- HDU2815 MOD Tree 求最小的D,满足K^D=N(mod P),不存在输出" Orz,I can't find D!" P.S. 注意这里的can右上角的那一撇是全角的引号……为了减少不必要的WA,请直接复制题面…