

正基科技股份有限公司

SPECIFICATION

SPEC. NO.:		REV: _	1.2
			. 0
			", 4" O.
DATE:	06.20. 2016	<u> </u>	
		. 0.	
PRODUCT N	JAME :	AP6255	
	B		

Customer APPROVED	
Company	
Representative Signature	

PREPARED -	REV	IEW	APPROVED	DCC ISSUE	
PREPARED	PM	QA	AFFROVED	DCC ISSUE	
	34				

AMPAK

AP6255

WiFi 11ac + Bluetooth V4.2 Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2015/04/09	- Preliminary	Gary	1.0
2015/04/26	- Add GPIO pin definition	Gary	1.1
2016/06/20	- Modify BT Specification	Richard	1.2
		4.7/	9
		7 0 0	
		Z 7	
		A. 10.	

Contents

Co	ntents	3
1.	Introduction	5
2.	Features	6
3.	Deliverables	
	3.1 Deliverables	
	3.2 Regulatory certifications	
4.	General Specification	8
	4.1 General Specification	8
	4.2 Voltages	8
	4.2.1 Absolute Maximum Ratings	8
	4.2.2 Recommended Operating Rating	8
5.	Wi-Fi RF Specification	9
	5.1 2.4GHz RF Specification	9
	5.1 5GHz RF Specification	
6.	Bluetooth Specification	. 13
	6.1 Bluetooth Specification	
7.	Pin Assignments	.14
	7.1 Pin Outline	
	7.2 Pin Definition	. 14
8.	Dimensions	
	8.1 Physical Dimensions	
	8.2 Layout Recommendation	. 17
9.	External clock reference	.18
	10.1 SDIO Pin Description	. 19
10	.Host Interface Timing Diagram	20
	10.1 Power-up Sequence Timing Diagram	20
	10.2 SDIO Default Mode Timing Diagram	22
	10.3 SDIO High Speed Mode Timing Diagram	23
	10.4 SDIO Bus Timing Specifications in SDR Modes	24
	10.5 SDIO Bus Timing Specifications in DDR50 Mode	26
11.	Recommended Reflow Profile	. 28
So	lder Paste definition錯誤! 尚未定義書箋	 。
12	. Package Information	31
	12.1 Label	. 31
La	bel C→ Inner box label	. 31
La	bel D→ Carton box label	. 31
	12.2 Dimension	32

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the Wi-Fi, Bluetooth functionalities. The highly integrated module makes the possibilities of web browsing, VoIP, Bluetooth headsets applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11a/b/g/n/ac Access Points in the wireless LAN.

The wireless module complies with IEEE 802.11 a/b/g/n/ac standard and it can achieve up to a speed of 433.3Mbps with single stream in 802.11ac draft to connect to the wireless LAN. The integrated module provides SDIO interface for Wi-Fi, UART / PCM interface for Bluetooth.

This compact module is a total solution for a combination of Wi-Fi + BT technologies. The module is specifically developed for Smart phones and Portable devices.

2. Features

- IEEE 802.11a/b/g/n/ac dual-band radio with virtual-simultaneous dual-band operation
- Single-stream spatial multiplexing up to 433.3 Mbps data rate.
- Supports 20, 40, 80 MHz channels with optional SGI(256 QAM modulation)
- Supports Bluetooth V4.2+EDR with integrated PA for Class 1.5 and Low Energy (BLE).
- Concurrent Bluetooth, and WLAN operation
- Simultaneous BT/WLAN receive with single antenna
- Supports standard SDIO v3.0 and backward compatible with SDIO v2.0 host interfaces.
 - SDIO v3.0(4-bit) up to 208 MHz clock rate in SDR104 mode
- BT host digital interface:
 - UART (up to 4 Mbps)
- IEEE Co-existence technologies are integrated die solution
- ECI enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives

A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- Evaluation Kits
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 General Specification

Model Name	AP6255
Product Description	Support Wi-Fi/Bluetooth functionalities
Dimension	L x W x H: 12 x 12 x 1.5 (typical) mm
WiFi Interface	SDIO v2.0/v3.0
BT Interface	UART / PCM
Operating temperature	-30°C to 65°C
Storage temperature	-40°C to 105°C
Humidity	Operating Humidity 10% to 95% Non-Condensing

Optimal RF performance specified in the data sheet, however, is guaranteed only for -20~55 $^{\circ}$ C

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VBAT	Input supply Voltage	-0.5	6	V
VDDIO	Digital/Bluetooth/SDIO/ I/O Voltage	-0.5	3.9	V

4.2.2 Recommended Operating Rating

The module requires two power supplies: VBAT and VDDIO.

	Min.	Тур.	Max.	Unit
Operating Temperature	-30	25	85	deg.C
VBAT	3.13	3.6	4.8	V
VDDIO	1.71	1.8	3.63	V

5. Wi-Fi RF Specification

5.1 2.4GHz RF Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Feature	Description		
WLAN Standard	IEEE 802.11b/g/n/ac, WiFi compliant		
Frequency Range	2.400 GHz ~ 2.497 GHz (2.4 GHz ISM Band)		
Number of Channels	2.4GHz: Ch1 ~ Ch14		
	802.11b : DQPSK, DBPSK, CCK		
Modulation	802.11g/n : 64-QAM,16-QAM, QPSK, BPSK		
	802.11ac : 256-QAM, 64-QAM,16-QAM, QPSK, BPSK		
	802.11b /CCK : 16 dBm ± 1.5 dB @ EVM ≤ -9dB		
Output Power	802.11g /64-QAM(R=3/4) : 15 dBm \pm 1.5 dB @ EVM \leq -25dB		
	802.11n /64-QAM(R=5/6) : 14 dBm ± 1.5 dB @ EVM ≤ -27dB		
	- 1Mbps PER @ -96 dBm, typical		
Receive Sensitivity	- 2Mbps PER @ -90 dBm, typical		
(11b) @8% PER	- 5.5Mbps PER @ -88 dBm, typical		
	- 11Mbps PER @ -87 dBm, typical		
	- 6Mbps PER @ -90 dBm, typical		
	- 9Mbps PER @ -88 dBm, typical		
	- 12Mbps PER @ -87 dBm, typical		
Receive Sensitivity	- 18Mbps PER @ -85 dBm, typical		
(11g) @10% PER	- 24Mbps PER @ -83 dBm, typical		
	- 36Mbps PER @ -80 dBm, typical		
	- 48Mbps PER @ -76 dBm, typical		
	- 54Mbps PER @ -74 dBm, typical		
	- MCS=0 PER @ -89 dBm, typical		
	- MCS=1 PER @ -85 dBm, typical		
Dessite Consitiuite	- MCS=2 PER @ -84 dBm, typical		
Receive Sensitivity (11n,20MHz) @10% PER	- MCS=3 PER @ -80 dBm, typical		
	- MCS=4 PER @ -77 dBm, typical		
	- MCS=5 PER @ -75 dBm, typical		
	- MCS=6 PER @ -72 dBm, typical		
	- MCS=7 PER @ -71 dBm, typical		
Maximum Input Level	802.11b : -10dBm		
	802.11g/n:-20dBm		

	802.11ac : -30dBm
Antenna Reference	Small antennas with 0~2 dBi peak gain

5.1 5GHz RF Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Feature	Description		
WLAN Standard	IEEE 802.11a/b/g/n/ac, Wi-Fi compliant		
Frequency Range	5.18 GHz ~ 5.845 GHz (5.0 GHz ISM Band)		
Number of Channels	5.0GHz : Please see the table ¹		
Modulation	802.11a/n : 64-QAM,16-QAM, QPSK, BPSK		
Modulation	802.11ac : 256-QAM, 64-QAM,16-QAM, QPSK, BPSK		
. 11/1/2	802.11a /64-QAM(R=3/4) : 14 dBm ± 1.5 dB @ EVM ≤ -25dB		
Output Dower	802.11n /64-QAM(R=5/6) : 13 dBm ± 1.5 dB @ EVM ≤ -27dB		
Output Power	802.11ac/256-QAM(R=3/4) : 12 dBm ± 1.5 dB @ EVM ≤ -30dB		
	802.11ac/256-QAM(R=5/6) : 10 dBm ± 1.5 dB @ EVM ≤ -32dB		
	- 6Mbps PER @ -91 dBm, typical		
	- 9Mbps PER @ -89 dBm, typical		
D . O	- 12Mbps PER @ -88 dBm, typical		
Receive Sensitivity	- 18Mbps PER @ -86 dBm, typical		
(11a, 20MHz) @10% PER	- 24Mbps PER @ -82 dBm, typical		
FLIX	- 36Mbps PER @ -79 dBm, typical		
	- 48Mbps PER @ -74 dBm, typical		
	- 54Mbps PER @ -73 dBm, typical		
	- MCS=0 PER @ -90 dBm, typical		
	- MCS=1 PER @ -88 dBm, typical		
December Constitution	- MCS=2 PER @ -85 dBm, typical		
Receive Sensitivity	- MCS=3 PER @ -82 dBm, typical		
(11n,20MHz) @10% PER	- MCS=4 PER @ -78 dBm, typical		
	- MCS=5 PER @ -74 dBm, typical		
	- MCS=6 PER @ -72 dBm, typical		
	- MCS=7 PER @ -71 dBm, typical		

	- MCS=0 PER @ -88 dBm, typical
Receive Sensitivity	- MCS=1 PER @ -85 dBm, typical
	- MCS=2 PER @ -83 dBm, typical
(11n,40MHz)	- MCS=3 PER @ -79 dBm, typical
@10% PER	- MCS=4 PER @ -76 dBm, typical
@ 10 /0 1 E.K	- MCS=5 PER @ -71 dBm, typical
	- MCS=6 PER @ -70 dBm, typical
	- MCS=7 PER @ -68 dBm, typical
	- MCS=0 PER @ -89 dBm, typical
	- MCS=1 PER @ -87 dBm, typical
	- MCS=2 PER @ -84 dBm, typical
Receive Sensitivity	- MCS=3 PER @ -81 dBm, typical
(11ac,20MHz)	- MCS=4 PER @ -77 dBm, typical
@10% PER	- MCS=5 PER @ -73 dBm, typical
	- MCS=6 PER @ -71 dBm, typical
W.	- MCS=7 PER @ -70 dBm, typical
	- MCS=8 PER @ -66 dBm, typical
11/10	- MCS=0 PER @ -87 dBm, typical
	- MCS=1 PER @ -83 dBm, typical
11.00	- MCS=2 PER @ -81 dBm, typical
Receive Sensitivity	- MCS=3 PER @ -78 dBm, typical
(11ac,40MHz)	- MCS=4 PER @ -75 dBm, typical
@10% PER	- MCS=5 PER @ -70 dBm, typical
@10701 ER	- MCS=6 PER @ -68 dBm, typical
	- MCS=7 PER @ -66 dBm, typical
	- MCS=8 PER @ -64 dBm, typical
	- MCS=9 PER @ -63 dBm, typical
	- MCS=0 PER @ -83 dBm, typical
	- MCS=1 PER @ -80 dBm, typical
	- MCS=2 PER @ -78 dBm, typical
Receive Sensitivity (11ac,80MHz) @10% PER	- MCS=3 PER @ -74 dBm, typical
	- MCS=4 PER @ -71 dBm, typical
	- MCS=5 PER @ -69 dBm, typical
W 10 /0 1 LIX	- MCS=6 PER @ -65 dBm, typical
	- MCS=7 PER @ -63 dBm, typical
	- MCS=8 PER @ -60 dBm, typical
	- MCS=9 PER @ -59 dBm, typical

Maximum Input Level	802.11a/n : -20dBm
waximum input Level	802.11ac : -30dBm
Antenna Reference	Small antennas with 0~2 dBi peak gain

¹5GHz Channel table

Band (GHz)	Operating Channel Numbers	Channel center frequencies(MHz)
	36	5180
5.15GHz~5.25GHz	40	5200
5.15GHZ~5.25GHZ	44	5220
A.	48	5240
100	52	5260
5.25GHz~5.35GHz	56	5280
5.25G112~5.55G112	60	5300
	64	5320
V 10.	100	5500
Ref D	104	5520
100	108	5540
AW.	112	5560
	116	5580
5.5GHz~5.7GHz	120	5600
	124	5620
	128	5640
- ((132	5660
	136	5680
	140	5700
W 10	149	5745
	153	5765
5.725GHz~5.825GHz	157	5785
	161	5805
	165	5825

6. Bluetooth Specification

6.1 Bluetooth Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Feature	Description	Description			
General Specification					
Bluetooth Standard	Bluetooth V4.2	of 1, 2 and 3 Mbps	AN		
Host Interface	UART		100		
Antenna Reference	Small antennas	with 0~2 dBi peak	gain		
Frequency Band	2402 MHz ~ 24	80 MHz			
Number of Channels	79 channels	4/1			
Modulation	FHSS, GFSK, D	FHSS, GFSK, DPSK, DQPSK			
RF Specification					
. 11.00.	Min.	Typical.	Max.		
Output Power (Class 1.5)	1 N	8 dBm			
Sensitivity @ BER=0.1% for GFSK (1Mbps)	X	-86 dBm			
Sensitivity @ BER=0.01% for π/4-DQPSK (2Mbps)	1	-86 dBm			
Sensitivity @ BER=0.01% for 8DPSK (3Mbps)		-80 dBm			
	GFSK (1Mbps)	GFSK (1Mbps) :-20dBm			
Maximum Input Level	π/4-DQPSK (2N	π/4-DQPSK (2Mbps) :-20dBm			
	8DPSK (3Mbps	8DPSK (3Mbps) :-20dBm			

7. Pin Assignments

7.1 Pin Outline

7.2 Pin Definition

NO	Name	Туре	Description
1	GND		Ground connections
2	WL_BT_ANT	I/O	RF I/O port
3	GND	9-	Ground connections
4	NC	_	Floating (Don't connected to ground)
5	NC	_	Floating (Don't connected to ground)
6	BT_WAKE	I	HOST wake-up Bluetooth device
7	BT_HOST_WAKE	0	Bluetooth device to wake-up HOST
8	NC	_	Floating (Don't connected to ground)
9	VBAT	Р	Main power voltage source input
10	XTAL_IN	I	Crystal input
11	XTAL_OUT	0	Crystal output
12	WL_REG_ON	I	Power up/down internal regulators used by WiFi section
13	WL_HOST_WAKE	0	WLAN to wake-up HOST

14	SDIO_DATA_2	I/O	SDIO data line 2			
15	SDIO_DATA_3	I/O	SDIO data line 3			
16	SDIO_DATA_CMD	I/O	SDIO command line			
17	SDIO_DATA_CLK	I/O	SDIO clock line			
18	SDIO_DATA_0	I/O	SDIO data line 0			
19	SDIO_DATA_1	I/O	SDIO data line 1			
20	GND	_	Ground connections			
21	VIN_LDO_OUT	Р	Internal Buck voltage generation pin			
22	VDDIO	Р	I/O Voltage supply input			
23	VIN_LDO	Р	Internal Buck voltage generation pin			
24	LPO	1.4	External Low Power Clock input (32.768KHz)			
25	PCM_OUT	0	PCM Data output			
26	PCM_CLK	I/O	PCM clock			
27	PCM_IN	1	PCM data input			
28	PCM_SYNC	I/O	PCM sync signal			
29	SDIO_VSEL	I/O	SDIO mode selection pin			
30	NC	þ	Floating (Don't connected to ground)			
31	GND	-	Ground connections			
32	NC		Floating (Don't connected to ground)			
33	GND	- 4	Ground connections			
34	BT_REG_ON	1 \	Power up/down internal regulators used by BT section			
35	NC	= 1	Floating (Don't connected to ground)			
36	GND	.F9	Ground connections			
37	GPIO_6	I/O	GPIO configuration pin			
38	GPIO_3	I/O	GPIO configuration pin			
39	GPIO_5	I/O	GPIO configuration pin			
40	GPIO_2	I/O	GPIO configuration pin			
41	UART_RTS_N	0	Bluetooth UART interface			
42	UART_TXD	0	Bluetooth UART interface			
43	UART_RXD	I	Bluetooth UART interface			
44	UART_CTS_N	I	Bluetooth UART interface			
45	TP1(NC)	_	Floating (Don't connected to ground)			
46	TP2(NC)	_	Floating (Don't connected to ground)			
47	TP3(NC)	_	Floating (Don't connected to ground)			

8. Dimensions

8.1 Physical Dimensions (Unit: mm) < TOP VIEW > < Side View > - 12 +/- 0.1 -12 +/- 0.1 1.5 +/- 0.1

8.2 Layout Recommendation

(Unit: mm)

< TOP VIEW >

9. External clock reference

External LPO signal characteristics

Parameter	Specification	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	400 to 1800	mV, p-p
Signal type	Square-wave	P -
Input impedance	>100k	Ω
Input impedance	<5	pF
Clock jitter (integrated over 300Hz – 15KHz)	<1	Hz
Output high voltage	0.7Vio - Vio	V

10.1 SDIO Pin Description

All three package options of the WLAN section provide support for SDIO version 3.0 including the new UHS-I modes:

- DS: Default speed up to 25MHz (3.3V signaling).
- HS: High speed up to 50MH (3.3V signaling).
- SDR12: SDR up to 25MHz (1.8V signaling).
- SDR25: SDR up to 50MHz (1.8V signaling).
- SDR50: SDR up to 100MHz (1.8V signaling).
- SDR104: SDR up to 208MHz (1.8V signaling).
- DDR50: DDR up to 50MHz (1.8V signaling).

The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an interrupt different from the one provided by SDIO interface. The ability to force control of gated clocks from within the device is also provided.

The following three functions are supported:

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B) *
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

SDIO Pin Description

- 3	SD 4-Bit Mode					
DATA0	Data Line 0					
DATA1	Data Line 1 or Interrupt					
DATA2	Data Line 2 or Read Wait					
DATA3	Data Line 3					
CLK	Clock					
CMD	Command Line					

Host Interface Timing Diagram

10.1 Power-up Sequence Timing Diagram

The module has signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN and internal regulator blocks. These signals are described below.

Additionally, diagrams are provided to indicate proper sequencing of the signals for carious operating states. The timing value indicated are minimum required values: longer delays are also acceptable.

- **※** WL REG ON: Used by the PMU to power up or power down the internal regulators used by the WLAN section. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset.
- BT REG ON: Used by the PMU to power up or power down the internal regulators used by the BT section. Low asserting reset for Bluetooth. This pin has no effect on WLAN and does not control any PMU functions. This pin must be driven high or low (not left floating).

WLAN=ON, Bluetooth=ON

WLAN=OFF, Bluetooth=OFF

WLAN=ON, Bluetooth=OFF

WLAN=OFF, Bluetooth=ON

10.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit		
SDIO CLK (All values are referred to minimum VIH and maximum VIL ^b)							
Frequency – Data Transfer mode	fPP	0	-	25	MHz		
Frequency – Identification mode	fOD	0		400	kHz		
Clock low time	tWL	10	-9		ns		
Clock high time	tWH	10	3	- 23	ns		
Clock rise time	tTLH		-8	10	ns		
Clock low time	tTHL	1-1		10	ns		
Inputs: CMD, DAT (referenced to CLK)							
Input setup time	tISU	5	% <u>_</u>	% <u>-</u>	ns 🔾		
Input hold time	tIH	5	\$.	i.—	ns		
Outputs: CMD, DAT (referenced to CLK)				1			
Output delay time – Data Transfer mode	tODLY	0	ii-	14	ns		
Output delay time – Identification mode	tODLY	0	_	50 🛇	ns		

a. Timing is based on CL \leq 40pF load on CMD and Data.

b. $min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

10.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit		
SDIO CLK (all values are referred to minimum VIH and maximum VIL ^b)							
Frequency – Data Transfer Mode	∫ fPP	0	_	50	MHz		
Frequency – Identification Mode	fOD	0	-	400	kHz		
Clock low time	tWL	7	_	_	ns		
Clock high time	tWH	7	_	_	ns		
Clock rise time	tTLH	_	_	3	ns		
Clock low time	tTHL	_	_	3	ns		
Inputs: CMD, DAT (referenced to CLK)							
Input setup Time	tISU	6	_	_	ns		
Input hold Time	tIH	2	_	_	ns		
Outputs: CMD, DAT (referenced to CLK)							
Output delay time – Data Transfer Mode	tODLY	-	_	14	ns		
Output hold time	tOH	2.5	_	_	ns		
Total system capacitance (each line)	CL	_	_	40	pF		

a Timing is based on CL ≤ 40 pF load on CMD and Data.

www.ampak.com.tw

 $min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

10.4 SDIO Bus Timing Specifications in SDR Modes

Clock timing (SDR Modes)

Parameter	Symbol	Minimum	Maximum	Unit	Comments
_	t _{CLK}	40	_	ns	SDR12 mode
		20	- ,	ns	SDR25 mode
		10	- 4/	ns	SDR50 mode
		4.8	- 🙏	√ns	SDR104 mode
_	t _{CR} , t _{CF}	-	0.2 × tclk	ns	t_{CR} , t_{CF} < 2.00 ns (max) @100 MHz, C_{CARD} = 10 pF
					t_{CR} , t_{CF} < 0.96 ns (max) @208 MHz, C_{CARD} = 10 pF
Clock duty	_	30	70	%	-

Card Input timing (SDR Modes)

Symbol	Minimum	Maximum	Unit	Comments	
SDR104 M	ode				
t _{IS}	1.70 ^a	-	ns	C _{CARD} = 10 pF, VCT = 0.975V	
t_{IH}	0.80	_	ns	CARD = 5 pF, VCT = 0.975V	
SDR50 Mod	de				
t _{IS}	3.00	_	ns 🦟	C _{CARD} = 10 pF, VCT = 0.975V	
t _{IH}	0.80	-	ns	C _{CARD} = 5 pF, VCT = 0.975V	
	_				

a. SDIO 3.0 specification value is 1.40 ns.

Card output timing (SDR Modes up to 100MHz)

Symbol	Minimum	Maximum	Unit	Comments
t _{ODLY}	_	7.85 ^a	ns	t _{CLK} ≥ 10 ns C _L = 30 pF using driver type B for SDR50
t _{ODLY}	_	14.0	ns	t _{CLK} ≥ 20 ns C _L = 40 pF using for SDR12, SDR25
t _{OH}	1.5	_	ns	Hold time at the t _{ODLY} (min) C _L = 15 pF

a. SDIO 3.0 specification value is 7.5 ns.

Card output timing (SDR Modes 100MHz to 208MHz)

Symbol	Minimum	Maximum	Unit	Comments
t _{OP}	0	2	UI	Card output phase
Δt _{OP}	-350	+1550	ps	Delay variation due to temp change after tuning
t _{ODW}	0.60	_	UI	t _{ODW} =2.88 ns @208 MHz

- $\Delta t_{OP} = +1550$ ps for junction temperature of $\Delta t_{OP} = 90$ degrees during operation
- $\Delta t_{OP} = -350$ ps for junction temperature of $\Delta t_{OP} = -20$ degrees during operation
- Δt_{OP} = +2600 ps for junction temperature of Δt_{OP} = -20 to +125 degrees during operation

Δt_{OP} Consideration for Variable Data Window (SDR 104 Mode)

10.5 SDIO Bus Timing Specifications in DDR50 Mode

Parameter	Symbol	Minimum	Maximum	Unit	Comments
_	t _{CLK}	20	-	ns	DDR50 mode
_	t _{CR} ,t _{CF}	_	0.2 × tCLK	ns	t _{CR} , t _{CF} < 4.00 ns (max) @50 MHz, C _{CARD} = 10 pF
Clock duty	_	45	55	% (-

Data Timing

Parameter	Symbol	Minimum	Maximum	Unit	Comments
Input CMD		<u></u>			
Input setup time	t _{ISU}	65	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH} //	0.8	_	ns	C _{CARD} < 10pF (1 Card)
Output CMD					
Output delay time	toply	_	13.7	ns	C _{CARD} < 30pF (1 Card)
Output hold time	ton	1.5	-	ns	C _{CARD} < 15pF (1 Card)
Input DAT					
Input setup time	⊳t _{ISU2x}	3	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH2x}	0.8	_	ns	C _{CARD} < 10pF (1 Card)
Output DAT					
Output delay time	t _{ODLY2x}	_	7.85 ^a	ns	C _{CARD} < 25pF (1 Card)
Output hold time	t _{ODLY2x}	1.5	-	ns	C _{CARD} < 15pF (1 Card)

a SDIO 3.0 specification value is 7.0 ns.

11. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature: <250°C Number of Times : ≤2 times

The notification of WiFi module before mounting:

The aperture of stencil should be larger than foot print of module, and the stencil thickness should be not less than 0.12mm.

Reflow 時需使用 N2, 含氧量建議 5000 ppm 以下,

It must use N2 for reflow and suggest the concentration of oxygen less than 5000 ppm.

Solder Paste definition

- Module Specifications: W:0.65mm * L:0.95mm pitch 0.9 mm
- The proposed design W:0.65~0.75 mm * L:1.33mm. Consider not place other parts in the peripheral area of 1 mm ~ 1.5 mm to facilitate additional amount of solder for PCB pad.
- We Suggest the thickness of Stencil between 0.12 mm ~0.15mm, the W between 0.6~0.65mm and the L between L1.5~1.6mm.
- If the thickness of the stencil is thinner, we suggest to adding more solder, to increase the wetting ability. Depends on different production situation, if the stencil thickness is 0.08~0.1mm, and the module nearby area is no more space for expending soldering area, we will suggest to increase the stencil thickness to increase the wetting ability.
- The major consideration parts of stencil design is to increase the solder paste wetting ability.

模組規格 L 0.7mm PCB Pad 設計 L 0.8mm 鋼網開孔建議 L0.5mm~0.6mm 適當內縮可以避免撐高造成高度影響

- Module Specifications L 0.7mm
- The design for PCB Pad: L:0.8mm
- We recommend the apertures for stencil L:0.5mm~0.6mm
- In order to avoid highness impact caused solder paste thickness, the stencil open size can be appropriately retracted

12. Package Information

12.1 Label

Label A→ Anti-static and humidity notice

Label B→ MSL caution / Storage Condition

	Caution This bag contains MOISTURE-SENSITIVE DEVICES H blark, see adjace bar code label
1.	Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
2.	Peak package body temperature: **C**********************************
3.	After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
	a) Mounted within: hours of factory conditions I blank, see adjacent bar code label ≤30°C/60% RH, or
	b) Stored per J-STD-033
4.	Devices require bake, before mounting, if:
	a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at $23\pm5^\circ$
	b) 3a or 3b are not met
5.	If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure
Ba	g Seal Date:
	Note: Level and body temperature defined by IPC/JEDEC J-STD-020

Label C→ Inner box label.

Label D→ Carton box label .

12.2 Dimension

W	24.00±0.30
Α0	12.30±0.10
BO	12.30±0.10
K0	1.80±0.10
Ε	1.75±0.10
F	11.50±0.10
P0	4.00±0.10
P1	16.00±0.10
P2	2.00±0.10
DO	1.50 +0.10
D1	Ø1.50MIN

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Packing length per 22" reel: 98.5 Meters.(1:3)
- 7. Component load per 13" reel: 1500 pcs.

12.3 MSL Level / Storage Condition

***NOTE**: Accumulated baking time should not exceed 96hrs

Note:Level and body temperature defined by IPC/JEDEC J-STD-020