CSCI 5521 – Introduction to Machine Learning

Homework – 2 Mourya Karan Reddy Baddam – 5564234

$$P(x|\theta) = \frac{1}{\sqrt{2\pi} \theta} \cdot \exp\left(-\frac{x^{2}}{2\theta^{2}}\right), \quad \theta > 0.$$

$$\Rightarrow \frac{1}{n} P(x|\theta) = \frac{1}{(2n)^{n/2} \cdot \theta^{n}} \cdot \exp\left(\frac{x^{2}}{2\theta^{2}}\right) = P(x|\theta)$$

$$\log \text{ Whethhood} = \frac{1}{2} \log_{2}x - n\log_{\theta} - \frac{2}{|x|^{2}} x_{1}^{2}$$

$$\text{argmax } l(\theta) = \frac{1}{2} \log_{2}x - n\log_{\theta} - \frac{2}{|x|^{2}} x_{1}^{2}$$

$$\Rightarrow -\frac{n}{\theta} + \frac{2}{|x|} x_{1}^{2} = 0$$

$$\Rightarrow -\frac{n}{\theta} + \frac{2}{|x|} x_{1}^{2} = 0$$

$$\Rightarrow \theta^{2} = \frac{2}{|x|} x_{1}^{2}$$

$$\therefore \text{ MLF extimate } \Rightarrow \theta = \sqrt{\frac{2}{|x|}} \frac{x_{1}^{2}}{n}$$

$$\Rightarrow P(x|\theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right), \quad 0 \leq x < \theta, \quad \theta > 0.$$

$$\text{Then } P(x|\theta) = \frac{1}{\theta^{n}} \cdot \exp\left(\frac{x}{\theta}\right), \quad 0 \leq x < \theta, \quad \theta > 0.$$

$$l(\theta) = -n\log_{\theta} - \frac{2}{|x|} x$$

wymax₈
$$L(8) \Rightarrow \frac{\partial L(8)}{\partial \theta} = 0$$

$$\Rightarrow \frac{-\eta}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} = 0$$

$$\Rightarrow \theta = \sum_{i=1}^{n} x_i \quad \text{is the Mb Estimate.}$$

C)
$$P(x|\theta) = \theta x^{\theta-1}$$

$$\frac{1}{11} P(xi|\theta) = \theta^{0} \cdot (\frac{1}{12} x_{i})^{\theta-1}$$

$$L(\theta) = n \log \theta + (\theta-1) \stackrel{?}{=} \log x_{i}$$

$$wymax_{0} L(\theta) \Rightarrow \frac{\partial L(\theta)}{\partial \theta} = 0$$

$$\Rightarrow \frac{n}{\theta} + \stackrel{?}{=} \log x_{i} = 0$$

$$\Rightarrow \theta = \frac{-n}{\frac{2}{12} \log x_{i}}$$

$$p(x|\theta) = \frac{1}{\theta}$$
, $0 \le x \le \theta$, $\theta > 0$

If $p(x|\theta) = \frac{1}{\theta^n} > 1$ Will This is a monotonically decreasing function with θ . For likelihood to be maximum, θ should be minimum. Hence minimum value of $\theta = \max\{x_i\}$ shee $\theta \ge x$

2)
$$P(x|u,E) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{d/2}} \exp\left[-\frac{1}{2}(x-u)^T \Sigma^{-1}(x-u)\right]$$

2) $\frac{1}{1!}P(x_i|u,E) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{d/2}} \exp\left[-\frac{1}{2}(x-u)^T \Sigma^{-1}(x-u)\right]$
 $L(u,E) = -\frac{dn}{2}\log_2x - \frac{n}{2}\log_2|\Sigma| - \frac{1}{2}\sum_{i=1}^{\infty}(x_i-u)^T \Sigma^{-1}(x_i-u)$
 $\exp(\max_{i,\Sigma} L(u,E)) = 0$
 $\Rightarrow \sum_{i=1}^{\infty} x_i - n\hat{u} = 0$
 $\Rightarrow \sum_{i=1}^{\infty} x_i - n\hat$

Substituting in
$$\mathbb{O}$$
,

$$=\frac{1}{n}\left(n\sum_{x}-n\sum_{x}\right)$$

$$\mathbb{E}\left[\widehat{\Sigma}_{n}\right]=\frac{n-1}{n}\sum$$

$$\vdots\widehat{\Sigma}_{n}\text{ in what a biased estimate of }\sum$$

3) a) $\lambda=10$, $P(4/x_{\text{text}})=0.5$, $P(4/x_{\text{text}})=0.25$, $P(4/x_{\text{text}})=0.25$

$$R(\text{Reject}/x_{\text{text}})=\lambda=10$$

$$R(\text{cd}/x_{\text{text}})=0.25\times10+0.25\times100=24.5$$

$$R(\text{cd}/x_{\text{text}})=0.5\times1+0.25\times10=25.5$$

$$R(\text{cd}/x_{\text{text}})=0.5\times1+0.25\times10=3$$
Since C3 has least xink, my pudicted class in C3.

b) $\lambda=5$, $P(4/x_{\text{text}})=0.4$, $P(4/x_{\text{text}})=0.5$, $P(6/x_{\text{text}})=0.1$

$$R(\text{Reject}/x_{\text{text}})=\lambda=5$$

$$R(\text{cd}/x_{\text{text}})=0.5\times1+100\times0.1=15$$

$$R(\text{cd}/x_{\text{text}})=0.4\times1+100\times0.1=10.4$$

$$R(\text{cd}/x_{\text{text}})=0.4\times1+100\times0.1=10.4$$

$$R(\text{cd}/x_{\text{text}})=0.4\times1+0.5\times10=5.4.$$

J. would Pudict "Reject" because other charges have

highet eisk.

Q4: Summary of Error Rates:

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
18.63%	18.81%	19.8%	22.77%	24.75%	20.95%	2.41%

Summary: MultiGaussClassify with full covariance matrix on Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
21.57%	32.67%	27.72%	22.77%	20.79%	25.11%	4.49%

Summary: MultiGaussClassify with full covariance matrix on Digits

		J	Ü				
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev	
2.78%	3.06%	2.79%	5.29%	3.62%	3.51%	0.94%	

Summary: MultiGaussClassify with diagonal covariance matrix on Boston50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
20.59%	20.79%	18.81%	26.73%	28.71%	23.13%	3.87%

Summary: MultiGaussClassify with diagonal covariance matrix on Boston75

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
29.41%	36.63%	32.67%	26.73%	24.75%	30.04%	4.24%

Summary: MultiGaussClassify with diagonal covariance matrix on Digits

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
8.89%	10.28%	10.31%	11.7%	9.75%	10.18%	0.91%

Summary: LogisticRegression with Boston50

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
8.82%	13.86%	13.86%	11.88%	20.79%	13.84%	3.93%

Summary: LogisticRegression with Boston75

<u> </u>	<u> </u>					
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
6.86%	14.85%	11.88%	6.93%	9.9%	10.09%	3.04%

Summary: LogisticRegression with Digits

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std Dev
2.5%	2.22%	2.23%	4.46%	3.06%	2.89%	0.84%