Quiz 4 (15 min, Total: 15)

Computer communications networks (ELL785)

Sep. 12, 2016 Instructor: Jun B. Seo

Name (Paralla Line)

Entry number: 200

- 1. [15] At all times, an urn contains N balls some white balls and some black balls. At each stage, a coin having probability $p,\ 0 , of landing heads is flipped. If heads appears, then a ball is chosen at random from the urn and is replaced by a white ball; if tails appears, then a ball is chosen from the urn and is replaced by a black ball. Let <math>X_n$ denote the number of white balls in the urn after the nth stage.
 - (a) [2] Show **explicitly** whether X_n is a Markov process or not. If necessary, define the state
 - (b) [9] Compute the transition probabilities $P_{i,j}$: $P_{i,i}$, $P_{i,i+1}$ and $P_{i,i-1}$.
 - (d) [2] Let N=2. Find the proportion of time in each state.
 - (e) [2] Based on your answer for N=2, guess the answer for the limiting probability in the general case

(b) $P(x_n=i/x_{n-1}-i) = P(x_n=i) \times \frac{i}{N} + \frac{1}{N} \times \frac{N-i}{N} = 0$ $P(x_n=i/x_{n-1}-i) = \frac{1}{2} \times \frac{i}{N} + \frac{1}{N} \times \frac{N-i}{N} = 0$ $= P - (1-P) \frac{i}{N} + (1-P)$ $= P_{i,i}$ $= P_{i,i}$

Scanned by CamScanner

$$\begin{array}{lll} P_{i_{1}+i_{1}} &=& P(x_{n}=i+i)/(n-i+1) &=& P(x_{n}=i+i)/(n-i+1)/(n-i+1) &=& P(x_{n}=i+i)/(n-i+1)/(n-i+1) &=& P(x_{n}=i+i)/(n-i+1)/$$