

Jan Kristian Jensen, NVDB - Transport og samfunn / Transportutvikling / transportdata

Hvilket kart kan jeg bruke? Hva pokker er GIS?

@foto Good design award winners 2016 https://www.g-mark.org/award/describe/44527?locale=en


```
"navn": "Jan Kristian Jensen",
"stilling": "sjefsingeniør",
"utdannelse": "Hovedfag i meteorolog, Universitetet i Bergen, 1998",
"Erfaring": "Over 20 års erfaring med tjenesteutvikling, FoU, dataanalyse,
           dataforvaltning og GIS",
"Rolle i SVV": "Spesialist, Nasjonal vegdatabank. Dataanalytiker,
             problemløser og GIS ekspert. Produkteier. Tjenesteutvikler.",
"org-enhet": {
     "divisjon": "Transport og samfunn",
     "avdeling": "Transportutvikling",
     "seksjon": "Transportdata" },
"kontorsted": "Trondheim"
```


1) Hvilket javascript-bibliotek skal jeg bruke? Kodeeksempler?

2) Hvor finner jeg bakgrunnskart?

2a) Kan vi få vector tiles bakgrunnskart?

=> Vår leverandør på saken (går tregt!)

- 3) SVV tjenester for kart og sånn
- 4) GIS-fakta du ikke ante du trengte

1) Hvilket javascript-bibliotek skal jeg bruke? Kodeeksempler?

Leaflet eller OpenLayers
https://leafletjs.com/
https://openlayers.org/

Vegkart-utviklerne (openLayers)
Rapportweb-utviklerne (leaflet)
Utviklerne av vegvesen.no/trafikk (http://175.no)
Masse andre kartapplikasjoner i SVV...

https://labs.vegdata.no/vegrefkart/ https://github.com/LtGlahn/vegrefkart

704

Lundamo

Fannrem

Kartfliser – tiles - kartcache

Ferdig tegnede bilder med kart for lite område

Web cache: Høy ytelse for publisering av filer

REST api / zoom nivå / rad / kolonne

7/46/63

REST api metadata

https://nvdbcache.geodataonline.no/arcgis/rest/services/Trafikkportalen/GeocacheTrafikkJPG/MapServer/

ArcGIS REST Services Directory

<u>Home</u> > <u>services</u> > <u>Trafikkportalen</u> > <u>GeocacheTrafikkJPG (MapServer)</u>

JSON | SOAP | WMS | WMTS

Trafikkportalen/GeocacheTrafikkJPG (MapServer)

View In: ArcGIS JavaScript ArcGIS Online Map Viewer ArcGIS Earth ArcMap ArcGIS Pro

View Footprint In: ArcGIS Online Map Viewer

Service Description: GeocacheTrafikkJPG Build: 37802

Map Name: Layers

<u>Legend</u>

All Layers and Tables

Layers:

GeocacheTrafikk (0)

Description:

Copyright Text: NVDB, Geovekst, kommunene og Open Street Map contributors (utenfor Norge)

Spatial Reference: 25833 (25833)

Single Fused Map Cache: true

Tile Info:

Height: 256Width: 256DPI: 96

Levels of Detail: 17

Level ID: 0 [<u>Start Tile</u>, <u>End Tile</u>]
 Resolution: 21674.7100160867

Scale: 81920000

Level ID: 1 [<u>Start Tile</u>, <u>End Tile</u>]
 Resolution: 10837.35500804335

a Tarrel ID: O F Chart Tile Ford Tile 1

Scale: 40960000

Esri Rest
-proprietært, men
velkjent

- Støttet av alle kartklienter

http://geodata.no

≺ Transport og samfunn

Organisasjonskart

Sara Beate Aspen

@

Profil

Mobil: 95763144

E-post: sara-beate.aspen@vegvesen.no

Chat: Teams

Stilling: Seksjonssjef

Bruker-ID: SARLAR

Org.enhet: Geodata 2

Arbeidssted: Bergen kontorstad

Esri familien Leverandør: Geodata A/S

Geocortex®

Arcgis server

Desktop GIS
Visning, analyse og redigering
Nettverksanalyse m.m.

Geocortex®

Arcgis server

Arcgis collector

Arcgis server

Kartvisning
Fem klikk fra arcgis Pro =>
arcgis online

Geocortex®

Arcgis collector

Arcgis server

«Visveg»

Skreddersydd kart på web Visning, analyse, redigering

https://arcgis.vegvesen.no/Kart/index.html?viewer=VisVeg Transportforvaltning VisVeg Transportforvaltning Datakilder Verktøy Navigasjon Kartlagsliste Startutsnitt Eiendomssøk Vis Valg Søk = Kartlag Åneset Filter Filterlag... Self Skoler og barnehager (Map Båsm obakken Service) Prosjektoversikt (Porteføljesys) Vegprosjekt (punkt) økberg Vegprosjekt (linje) ✓ Vegprosjekt (flate) Gullsmedvika ☐ Gjennomføringsavtaler MVDB-vegobjekt Toraneset Langmohela Støysonekart MO I RANA Kulturmiljøer Kulturmiljøer Mo i Rana kultumiljoKategori Rulturmijo av nasjonal interesse Fredet kulturmijo ∀erdensarv Mo industripark Ruturhistoriske landskap av nasjonal interesse Langneset Regionalt verdifulit kulturmilje Kommunalt verdifulit kulturmilje Kulturmiljø (ikoner) Mofjellet Gruber kultumiljoKategori Finnsetvegen Kulturmiljo av næjonal interesse Fredet kulturmijo Verdensary. Kulturhistoriske landskap av nasjonal interesse Regionalt verdifullt kulturmilje

Statens vegvesen

Geocortex®

Arcgis collector

Datainnsamling *Mobil, nettbrett, PC*

Arcgis server

Geocortex®

Arcgis collector

Arcgis server

Infrastruktur

I SVV + esri sky

Nytt vegnet Endret vegnett

Dirty areas

hvor trenger vi nye kartfliser?

«Ole Johs» Ole Johannes Nedrebø Stålkontroll flyt av geografiske data SVV

ArcGIS Cloud Services Specialty

Tegner nye kartfliser med nytt vegnett i «dirty areas»

Vegnett

- + vann
- + bygninger
- + terreng
- +

Kartcache

Arcgis server

geodataonline.no/arcgis/rest/services/Trafikkportalen/GeocacheTrafikkJPG

Oracle spatial and graph

Kartcache teknologier

Esri REST (SVV kartcache)

WMTS (Kartverkets kartcache)

https://kartkatalog.geonorge.no/metadata?text=wmts

Web Map Tile Service – Wikipedia

XYZ Tiles («slippy maps»)

Google, open street map, mapbox +++
Tiled web map – Wikipedia

WMTS

Apne standarder

Kartverkets kartcache

https://kartkatalog.geonorge.no/metadata?text=wmts

Web Map Tile Service – Wikipedia

Web Map Tile Service

From Wikipedia, the free encyclopedia

A **Web Map Tile Service** (**WMTS**) is a standard protocol for serving pre-rendered or run-time computed georeferenced map tiles over the internet. The specification was developed and first published by the Open Geospatial Consortium in 2010.

Open Geospatial Consortium

From Wikipedia, the free encyclopedia

Not to be confused with Open Source Geospatial Foundation.

The **Open Geospatial Consortium** (**OGC**), an international voluntary consensus standards organization, originated in 1994. In the OGC, more than 500 commercial, governmental, nonprofit and research organizations collaborate in a consensus process encouraging development and implementation of open standards for geospatial content and services, sensor web and Internet of Things, GIS data processing and data sharing.

https://en.wikipedia.org/wiki/Open Geospatial Consortium

https://www.ogc.org/

- •Cat: ebRIM App Profile: Earth Observation Products
- •Catalogue Service
- CityGML
- CityJSON
- Coordinate Transformation
- •EO-GeoJSON
- Filter Encoding
- •GeoAPI
- GeoPackage
- GeoSPARQL
- Geography Markup Language
- •GeoRSS
- GeoTiff
- •HDF5
- •IndoorGML
- •KML
- •LandInfra/InfraGML
- •LAS
- •Location Services (OpenLS)
- Moving Features
- •NetCDF
- Observations and Measurements

- •OGC API EDR
- •OGC API Features
- •OGC API Processes
- Sensor Model Language
- Sensor Observation Service
- Sensor Planning Service
- •SensorThings
- Semantic Sensor Network (SSN)
- •Simple Features
- Styled Layer Descriptor
- Time Ontology in OWL
- Web Coverage Processing Service
- •Web Coverage Service
- •Web Feature Service
- Web Map Context
- Web Map Service
- •Web Map Tile Service
- •Web Processing Service
- •Web Service Common
- •WKT CRS

Apne standarder

Et lite utdrag OGC standarder 74 stk per 31.5.2022

Andre instanser av geoserver er satt opp internt

Siden 2015: Virituell server + oracle spatial

Atlas: Krever videreutvikling (tilby fast høy ytelse)

Viktigste klienter:

- Vegvesen.no/trafikk (http://175.no) Datex
- Trafikkdata app
- Rapportweb
- Ruteplantjenesten (Datex vegmeldinger)
- Støykart
- Pluss mye annet

Are Kjæraas Ole Johs

Geoserver: Open source Java applikasjon

Open source krever litt annen tilnærming til konseptet «leverandør»

Høyere / annen kompetanse internt Null lisenskostnad

Avtale med firma Geosolutions

https://www.geosolutionsgroup.com/

Hvert fagområde = ett workspace, med unik adresse

https://www.vegvesen.no/kart/ogc/nvdb_1_0/ows

Workspace for diverse NVDB data

Oracle spatial and graph

https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows

Workspace for rapportweb

Rapportweb

Fagsystem for geofag-rapporter (MIME)

https://intranett.vegvesen.no/fag/veg/geofag/om-rapportweb/

< Geofag

Om Rapportweb

Rapportweb er et system for lagring og gjenfinning av fagdokumenter (rapporter og notater).

PDF, lagret i MIME

Oracle spatial and graph

Styled Layer Descriptor

Byggeklosser

Web Feature Service

Web Map Service

Dagens tilbud

Oracle spatial and graph

Web Map Tile Service

Kommer

- Web Feature Service
- Web Map Service

Dagens tilbud

Ikke sikker du kjenner igjen eksemplene, mange systemer bruker WFS.1.0.0.

WMS 1.3.0 eller eldre WFS 2.0.0 eller eldre

Oracle spatial and graph

Web Map Service

getCapabilites: Klienten sjekker serverens tilbud **getMap**: Server tegner kartbilde slik klienten ønsker **getFeatureInfo**: Spør om detaljer innafor kartbilde

GetCapabilites

https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows? request=GetCapabilities&service=WMS&version=1.3.0

```
▼<Layer queryable="1" opaque="0">
   <Name>Skred</Name>
   <Title>Skred</Title>
   <Abstract/>
   <KeywordList/>
   <CRS>EPSG: 25833</CRS>
   <CR5>CR5:84</CR5>
 ▼<EX GeographicBoundingBox>
     <westBoundLongitude>-1.6934873934425176</westBoundLongitude>
     <eastBoundLongitude>32.219098787864425/eastBoundLongitude>
     <southBoundLatitude>57.58333413626746</southBoundLatitude>
     <northBoundLatitude>71.74039649890098/northBoundLatitude>
   </EX GeographicBoundingBox>
   <BoundingBox CRS="CRS:84" minx="-1.6934873934425176" miny="57.58333413626746" maxx="32.219098787864425"</pre>
   maxy="71.74039649890098"/>
   <BoundingBox CRS="EPSG:25833" minx="-100000.0" miny="6430000.0" maxx="1120000.0" maxy="7960000.0"/>
 ▼<Style>
     <Name>rapportweb 1 0:skred</Name>
     <Title>rapportweb 1 0:skred</Title>
   ▼<LegendURL width="115" height="40">
       <Format>image/png</Format>
       <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"</pre>
      xlink:href="https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows?
       service=WMS&request=GetLegendGraphic&format=image%2Fpng&width=20&height=20&layer=Skred"/>
     </LegendURL>
   </Style>
 </Layer>
```


service=wms& version=1.3.0&

request=getMap&

layers=skred&

crs=EPSG:25833&

bbox=<minx,miny,maxx,maxy>& width=<pixelbredde av kartflate>& heigth=<pixelbredde av kartflaten>

Skongenes

getFeatureInfo

DOCUMENT_ID	30568-GEOL-1
DATO	20180405
OPPDRAGSNAVN	Fv 575. Hp 1, Km 0 – Vurderin Berleporten
OPPDRAGSTYPE	Skred
URL	https://dokument.vegvesen.n

https://dokument.vegvesen.no/dokument/basis/fil/17491407

Statens vegvesen

Notat

Til: Bernhard Langer, Even Hjelle

Frå: Geo- og skredseksjonen v/Jens Tveit

Sakshandsamar/innvalsnr: Jens Tveit = 57655949

Kopi:

Oppdrag:	Vurdering av skredfare for trafo	Dok. nr. i Mime:		
Oppdragsgivar:	Vegseksjon Fjordane v/Bernhard Langer		Dato:	05.04.2018
Planfase:	Vedlikehald	Arkivkode: 460	Rapportnummer: 30568-GEOL-1	
Kommune:	Bremanger	Vegnr.: Fv575	HP: 1	Km: 0,020
UTM 32V ref.:	6866153 297724	EUREF 89 Geoteknisk kategori:		
Utarbeida av:	Jens Tveit	Kontrollert av: Tore H Medgard		

Fv 575, Hp 1, Km 0,020 – Vurdering av skredfare for trafo ved Berleporten

Innleiing

Det er planar om å montere lys i tunnelen Berleporten på Bremangerlandet. Det er plassert ein trafokiosk på utsida av tunnelen. Dette notatet beskriv skredfare i området ved plasseringa til trafoen. Det var blant anna ei synfaring i terrenget onsdag 14.3 med representantar frå Fjordane elektro, Plan- og forvalting, Drift Ytre Sunnfjord og Geo- og skredseksjonen.

Beskriving

Trafoen er allereie sett opp, og det gjer at skredfare må vurderast på det bestemte området.

Arkitekturen til Rapportweb

Rapport-dokument lagret i MIME

Metadata om dokumentene lagret i OGC karttjenester, med lenke til relevant MIME-dokument.

Web klient

DOCUMENT_ID	30568-GEOL-1
DATO	20180405
OPPDRAGSNAVN	Fv 575. Hp 1, Km 0 – Vurdering av skredfare for trafo ved Berleporten
OPPDRAGSTYPE	Skred
URL	https://dokument.vegvesen.no/dokument/basis/fil/17491407

Web Map Service

🌎 Åpne standarder

getCapabilites: Klienten sjekker serverens tilbud **getMap**: Server tegner kartbilde slik klienten ønsker **getFeatureInfo**: Spør om detaljer innafor kartbilde

Enkel, Robust og velprøvd (1999 ->)
Kan bygge raffinert funksjoner med kreativ bruk av *getFeatureInfo*

Skalerer dårlig (hvert bilde må tegnes på ny, hver gang)

Web Map Service

WMTS - Web Map Tile Service Bakgrunnskart innomhus, uten lisenskost

Kartcache med høy ytelse

Oracle spatial and graph

WMS Skalerer dårlig (hvert bilde må tegnes på ny, hver gang)

Returnerer data (ikke kartbilder)

Open Geospatial Consortium.

getCapabilites: Klienten sjekker serverens tilbud

describeFeatureType: Typedefinisjon for det enkelte kartlag

getFeature: Hent geografiske objekter, med filter på egenskapverdi og/eller geografiske operasjoner

Også funksjoner for å oppdatere data på WFS-server, men det bruker ikke vi

https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows?request=GetCapabilities&service=WFS

```
sylvanian aryper
▼<FeatureType xmlns:rapportweb 1 0="http://rapportweb 1 0">
   <Name>rapportweb 1 0:Skred</Name>
   <Title>Skred</Title>
   <Abstract/>
   <DefaultCRS>urn:ogc:def:crs:EPSG::25833</DefaultCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::25831</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::25832</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::25834</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::25835</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::25836</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32631</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32632</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32633</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32634</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32635</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::32636</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::4326</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::4258</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::4937</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::900913</OtherCRS>
   <OtherCRS>urn:ogc:def:crs:EPSG::3857</OtherCRS>
 ▼<ows:WGS84BoundingBox>
     <ows:LowerCorner>-1.6934873934425176 57.58333413626746/ows:LowerCorner>
     <ows:UpperCorner>32.219098787864425 71.74039649890098/ows:UpperCorner>
   </ows:WGS84BoundingBox>
 </FeatureType>
```



```
▼<ows:Parameter name="outputFormat">
 ▼<ows:AllowedValues>
     <ows:Value>application/gml+xml; version=3.2</ows:Value>
     <ows:Value>GML2</ows:Value>
     <ows:Value>KML</ows:Value>
     <ows:Value>SHAPE-ZIP</ows:Value>
     <ows:Value>application/json</ows:Value>
     <ows:Value>application/vnd.google-earth.kml xml</ows:Value>
     <ows:Value>application/vnd.google-earth.kml+xml</ows:Value>
     <ows:Value>csv</ows:Value>
     <ows:Value>gml3</ows:Value>
     <ows:Value>gml32</ows:Value>

√ows:Value>json</ows:Value>

     <ows:Value>text/xml; subtype=gml/2.1.2</ows:Value>
     <ows:Value>text/xml; subtype=gml/3.1.1</ows:Value>
     <ows:Value>text/xml; subtype=gml/3.2</ows:Value>
   </ows:AllowedValues>
 </ows:Parameter>
```


Dataformater fra vår WFS tjeneste

https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows?request=describeFeatureType&service=WFS

Open Geospatial Consortium.

https://www.vegvesen.no/kart/ogc/rapportweb 1 0/ows?re quest=GetFeature&service=WFS&TYPENAME=rapportweb 1 0:Skred&outputformat=json

getFeature: Hent geografiske objekter, med filter på egenskapverdi og/eller geografiske operasjoner

getFeature: Hent geografiske objekter, med **filter** på egenskapverdi og/eller **geografiske operasjoner**

Vegvesen trafikk – mobil app

Brukeren kan tegne opp et interesseområde og få data / bli oppdatert om alt som skjer innafor området.

getFeature: Hent geografiske objekter, med filter på egenskapverdi og/eller geografiske operasjoner

Vegvesen trafikk – mobil app

Første iterasjon: Døgnhvileplasser innafor den lilla flaten

https://www.vegvesen.no/kart/ogc/nvdb_1_0/ows?OUTPUTFORMAT=application/json&SERVICE=WFS&VERSION=1.3.0& REQUEST=GetFeature&TYPENAME=nvdb_1_0:Dognhvileplass&CQL_FILTER=WITHIN(SHAPE,Polygon

Romlige predikater

Romlige predikater

Avstand er også et romlig predikat!

Avstand kortere enn ... / Distance within...

https://en.wikipedia.org/wiki/Spatial_relation

SELECT superhelt.name **FROM** by, superhelt

WHERE ST_Contains(by.geom, superhelt.geom)

Intersects

Motsatt av disjoint, = alle innafor firkant

Overlaps

Equals Crossing

Superhelter innafor by?

Romlige predikater => SPATIAL JOIN

SELECT superhero.name, city.name AS city_name,

FROM superhero

JOIN CITY

ON ST_Contains(city.geom, superhero.geom)

Kunne også brukt ST_Within(superhero.geom, city.geom)

Superhelter innafor by: Navn på dem og byen deres

Romlige predikater => SPATIAL JOIN

SELECT superhero.name, city.name AS city_name,

FROM superhero

JOIN CITY

ON ST_Contains(city.geom, superhero.geom)

Kunne også brukt ST_Within(superhero.geom, city.geom)

Superhelter innafor by: Navn på dem og byen deres

Skape ny geometri via romlig relasjon

Andre tricks

Avstand For punkt utafor flate, hva er avstanden til nærmeste flate?

GIS byggeklosser: Punkt, linje flate

Ja, flater kan ha hull!

GIS byggeklosser: *Punkt, linje flate* Aggregeringer

https://en.wikipedia.org/wiki/Well-known text representation of geometry

Multipunkt

💃 MultiLinje

MultiFlate

 ${\sf GeometryCollection}$

GIS – *Rågod på å koble tabeller*

1	А	В
1	Per	35,5
2	Pål	4435,7
3	Espen	14,4
4	Askeladd	234
5		

4	Α	В
1	Per	Grønn
2	Pål	Blå
3	Espen	Lilla
1		

	А	В	С
1	Per	35,5	Grønn
2	Pål	4435,7	Blå
3	Espen	14,4	Lilla
4	Askeladd	234	
5			

Kraftfull verktøykasse!

Finne og bruke geometriske relasjoner - også avstand

Vanlig join + spatial join + avstand

Geometriske relasjoner => Nye geometrier

Alt mulig gøy med nettverk => **Vegnett og transport**

4	Α	В
1	Per	35,5
2	Pål	4435,7
3	Espen	14,4
4	Askeladd	234
5		

1	Α	В	
1	Per	Grønn	
2	Pål	Blå	
3	Espen	Lilla	
1			

	Α	В	С
1	Per	35,5	Grønn
2	Pål	4435,7	Blå
3	Espen	14,4	Lilla
4	Askeladd	234	
5			

Spatial is special

4	Α	В
1	Per	35,5
2	Pål	4435,7
3	Espen	14,4
4	Askeladd	234
5		

4	Α	В
1	Per	Grønn
2	Pål	Blå
3	Espen	Lilla
1		

	Α	В	С
1	Per	35,5	Grønn
2	Pål	4435,7	Blå
3	Espen	14,4	Lilla
4	Askeladd	234	
5			

Spatial is special

Spatial is special

GIS verktøy
GIS analyser
Romlige predikater
Avstand
Romlig statistikk
+++

Lær holdning av data science folka!

For a data scientists:
A map ... is just another visualization

A spatial analysis ... is just another analysis

Lær av data science folka!

Ny teknologi Nye analyseteknikker STORDATA teknologi Metodikk, beste praksis

Alle moderne <u>databaser</u> er *«spatial»* databaser

Alle moderne <u>programmeringsspråk</u> har «spatial» bibliotek

BBOX: Firkant definert av minimum og maksimum fra X og Y koordinatene til geometrien

Alle no-sql lagringsteknologier har minimum BoundingBox overlapp

BBox: Lag romlig indeks

Legg max- og min av koordinater i indeks => Romlig indeks (R tree, quad tree m.fl) http://postgis.net/workshops/postgisintro/indexing.html

SELECT superhero.name, city.name AS city_name,

FROM superhero

JOIN CITY

ON ST_Contains(city.geom, superhero.geom)

Geometri = Ikke annet enn enda en kolonne i databaseskjemaet

Geometri = geografiske objekt - ikke bare en liste med koordinater

Geospatial database eller bibliotek: Vet om «spatial» - operasjoner på geometriske objekter

Lær Beste praksis!

Konsepter

Beste praksis

- Metodikk
- Kodeforvaltning
- Visualisering
- Kundeorientering

Teknologi

Lær av data science – folka!

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

The goal of GeoPandas is to make working with geospatial data in python easier. It combines the capabilities of pandas and shapely, providing geospatial operations in pandas and a high-level interface to multiple geometries to shapely. GeoPandas enables you to easily do operations in python that would otherwise require a spatial database such as PostGIS.

https://automating-gis-processes.github.io/site/

Spatial is no longer special

Alle moderne <u>databaser</u> er *«spatial»* databaser

Alle moderne <u>programmeringsspråk</u> har «spatial» bibliotek

Du må ikke lage alt sjøl - vi har masse tjenester du kan høste fra!

NVDB – Nasjonal vegdatabank

Datafangst og data ajourhold

NVDB api LES + Vegkart <u>vegkart.no</u> og <u>vegdata.no</u>

Vegnettsdata spissfindigheter
=> Hvorfor vi har systemet TNE (Transport Network Engine)

NVDB => transportmodeller CUBE, ATP-modellen, TRIPS m.fl.

NVDB => andre dataprodukt

Elveg, ruteplantjenesten +++

Ruteplantjenesten

Dataproduksjon til ruteplantjenesten
Ruteplan API

NVDB – Nasjonal vegdatabank (forrige slide)

SVV sin plass i digital infrastruktur for geografiske data

Desktop verktøy

Geovekst, Norge digitalt, Kartverket, kommunene, fylkene

FME server

Standardisering

TNE – Transport Network Engine

Data og tjeneste fra andre etater

Flyt av geodata i etaten

Projeksjoner

Desktop verktøy

FME server

TNE – Transport Network Engine

Desktop GIS
Visning, analyse og redigering
Nettverksanalyse m.m.

Spiller sammen med resten av ESRI økosysstemet I sky + innomhus

«Visveg»

Arcgis collector

GIS Line: Enda et desktop kartverktøy

NORKART https://www.norkart.no

GISLINE inneholder skreddersydd funksjonalitet for å løse GIS-relaterte oppgaver. Løsningen har en rekke fagmoduler med spesialfunksjoner for mest mulig effektiv forvaltning av ulike datasett:

- Kartforvaltning Basisfunksjonalitet og forvaltning av FKB-data
- Oppmåling Oppmålingsforretning og Landmåling
- Matrikkel Forvaltning av matrikkeldata
- Arealplan Forvaltning av plankartdata
- Vann og Avløp Forvaltning av VA-ledningskart

Grunnerverv
Sender automatisk (digitalt)
brev til grunneiere ved
vegutbygging

Qgis: Enda et desktop kartverktøy

https://www.qgis.org

Open source Krever test- og utviklingsbruker på SVV pc

Python + Pandas / GeoPandas

https://automating-gis-processes.github.io/site/

Interaktiv datautforskning

Ad hoc dataprosessering og analyse

Automatiserbar Dokumenterbar + repeterbar

FME: Desktop analyseverktøy

https://www.safe.com

Vis meg et bedre ETL-verktøy!

Extract, transform, load

Interaktiv datautforskning

Ad hoc dataprosessering og analyse

Automatiserbar Dokumenterbar + repeterbar

Leser ALT - skriver ALT

> 300 formater og lagringsteknologier https://www.safe.com/fme/formats-matrix/
også Oracle + diverse skyplattformer

Dataformat blir irrelevant!

FME Server

https://www.safe.com/fme/fme-server/

Ferdig analyseoppgave lastes opp fra FME desktop

Produksjonssetting via web GUI i FME server

Ulike typer tjenester:

- Bestille i web GUI, vent (evt varsling på epost)
- REST tjenester
- OGC tjenester

Tre servere for geografiske data

FME server

Spesialiserte analyseoppgaver og databearbeiding

OGC karttjenester

Store datavolum & åpne standarder

Arcgis server

Utnytte ESRI økosystem innomhus og i sky

Jobbe med nettverk

Veglenkesekens – lineære referanser

Vegenkesekvens:

- Har persistent ID
- Fra 0 til 1. Alltid!
- Slettes ALDRI! (ahistorisk)

Punkt eller strekning på veglenkesekvens: Angis med lineære referanser I tillegg til koordinater (og vegsystemreferanse)

Id=2345

Segmentering

Lager homogene biter av vegnettet + fagdata Hver variasjon i dataverdi => ny bit av vegnettet (nytt segment)

Segmentering, utfordringer

Tidkrevende å sette opp riktig
Må regne med degenerte objekt (kollaps linje => punkt)
Omregning lineære posisjoner => koordinat
Numerisk presisjon

Segmentering eksempelkode (python) nvdbapi-V3/segmentering.md · GitHub

Suverent best på segmentering + andre NVDB spissfindigheter: TNE - Transport Network engine

Transport Network Engine (triona.no)

NVDB

https://nvdbapiles-v3.atlas.vegvesen.no

Data til ruteplantjenesten

++++

Spatial is no longer special

Alle moderne <u>databaser</u> er *«spatial»* databaser Alle moderne <u>programmeringsspråk</u> har *«spatial»* bibliotek

Kart er enkelt i 2022!

Du kan lage mye kult på egenhånd Men du må ikke lage alt sjøl - vi har masse tjenester du kan høste fra!