```
* IUPAC SYSTEM OF NOMENCLATURE:-
0 => कार्विनक थीं शिकों का नाम उनकी संरचनात्मक विशेषताओं पर
    आधारित हीता है।
🗈 🔿 इनकी संरचनात्मक विशेषताओं की 5 खणड़ों में विभाजित किया
    गथा है। जिनकी पहचान करके रूक निश्चित कुम में जीड़कर
IUPAC नाम प्राप्त किथे जाते हैं।
 ⇒ Secondary Brefix (SP) (हितीयक पूर्वन्त्र ) + Brimary
    Bufux (प्राथमिक पूर्वजन्म) + word Droot (WR) + Prima
  Suffix (PS) (प्राथमिक अनुवानन) + Secondary Suffix (SS)
                                 (द्वितीयक अनुलग्न)
3 (3) Word Root :- कार्बनिक यौगिकों की मुख्य भृंखका (कार्बन
                  परमाणुओं की सबसे बड़ी सतत भृंगला) में
            कार्बन परमाठू भीं की संख्या की व्यक्त करते हैं।
                                   C10 - Dec
               Meth
         C
                                   C11 - Undic
                 Eth
                                  C12 - Dodic
              - Prop
)
                 But
                 Pent
                 Hex
        C_6
                 Hebt
        C_{7}
                 oct
                 Non
        C_{q}
```

```
(4) Bumary Suffix:
🔌 यदि कार्वनिक यौभिक में कैवल एक कार्वन / स्क से अधिक
  कार्बन हीने पर उनके बीच केवंस स्कल बन्ध = omb
⇛ रूक या अधिक double bond = eng
⇒ एक या अिक triple bond = yne
Ex:-
     CH_{y}
              Meth + ane = Methane
     CH3-CH3
              Eth+ane = Ethane
     CH2=CH2 Eth + ene = Ethene
              Eth+ yne = Ethyne =
    CH \equiv GH
5) Secondary Suffix:
⇒ किसी hydrocarbon में उपस्थित वह परमाणा अधवा
  परभाषा समूह जी असके गूर्णी की निर्धारित करता है ।
 क्रियात्मक समूह कहते हैं।
⇒ S.S कियात्मक समूह की प्रकृति की व्यक्त करता हैं।
        -cooH ⇒ oic acid
        -CHO ⇒ al
       -c- ⇒ one
       -NH2 > amino
       –conH2 ⇒ amide
        -cN ≥ Nibite
```

```
oate
     -c'-or
                    al
      -он
                ⇒ meth+ ane + oic acid ⇒ methanoic acio
     H-COOH
                   Eth + one + oic acid > Ethanoic acid
    CH3-CUOH
                                     => metranal
               > meth + ane + al
     H-CHO
                                     ⇒ Ethanal
                  eth + ane + al
     CH2-CHO
               > prop + one + one
                                    => propanone
   CH3-CH2-NH2 → Eth + ane + amine → Ethanamins
   CH3-CONH2 => Eth+ are + amide => Ethanamide
              ⇒ meth + ane + nitrile ⇒ methanitrille
   H-C≡N
  CH3-C'-0-CH3 ⇒ methyl + eth + ane + cate => methyl ethanoc
  CH3-CH2-OH ⇒ Eth+ane + Ol ⇒ Ethanol
(1) Secondary Prefix: (Padato yalata):-
   दितीयक पूर्वलग्न द्वारा प्रतिस्थापियीं की व्यक्त किया जाता है।
                    methyl
       -CH2
                    Ethyle
       -CHOCH3
      -CH2-CH2-CH3 n-propyl (ald)
      -CH3 CH3
                     iso propyl (old), 1- methyl ethyl
```

Ex.
$$C-C-C-C$$
 so bentene

⇒ यदि carbon भृंखला में कोई शाखा न ही ती हरी। normal (n) कहते हैं!

क्रिसी भी फिनौरे से दूसरे काबीन पर स्क -एक कार्बन की दी शास्त्रों ही ती इस (१५०) कहते हैं।

$$c-c-c$$
 Neo pentane

$$\Rightarrow$$
 -0CH3 methoxy
 \Rightarrow -0CH2CH3 Ethoxy
 \Rightarrow -NO3 Nitrato
 \Rightarrow -NO2 Nitro
 \Rightarrow -0NO Nitrito

$$\Rightarrow$$
 -cl chloro

(2) Primary Brefix (P.P.) (प्राथमिक पूर्वलम्म):-यह principal chain के चकीय प्रकृति की व्यक्त केर्ता हैं। Bicyclo o X संतुष्त Hydrocarbon का नामकरेग :-1) Acyclic Saturated hydrocarbon: -Primary suffix = ane) > Principal chain वह होती है जिसमें carbon परमाठा के की संख्या सबसे अधिक होती है। ⇒ यदि समान कार्बन प्रमाणुओं बाली दी ऋंवालाय सम्भव ही , चे जिससे अधिक शाखायें जूडी हीती हैं, वह मूळ्य म्हंखला हीती ⇒ प्रतिस्थापियों की स्थित की व्यक्त करने की लिये मूळ्य औं भूंखला का अंकन किया जाता हैं। अंकन सर्देव उस किनीरे के करते हैं जिहार से प्रतिस्थापी नजदीक हीता हैं। э⇒ यदि रूक से अधिक प्रतिस्थापी अपस्थित है ती सभी प्रतिस्थापियों की मिलने वाली location number का यी। 🤈 हीरा हीना चाहिए। अ यदि दीनों किनारों से अंकन करने पर प्रतिस्थापियों की मिलने वाली location no एक समान है तो numbering 'यतिस्थापियों के नाम के वर्णमाला के कुम में करते हैं / ⇒ एक से अधिक प्रकार के प्रतिस्थापी उपस्थित हीने पर उनका नाम संदैव वर्जभाला के क्रम में लिखा जाता हैं।) 🗦 प्रतिस्थापियों की स्थिति की व्यक्त करने के लिये इनके नाम के पूर्व location no लिखी जाती हैं।

6

(

 ϵ

⇒ यदि किसी विश्रिस्थापी की सं० स्कंस अधिक है तो उसके location no. की एक से अधिक बार लिखा जाता है। $\mathcal{I}_{oldsymbol{\chi}}$, (a) $\mathcal{C}\mathcal{H}_3=\mathcal{C}\mathcal{H}_2-\mathcal{C}\mathcal{H}_2-\mathcal{C}\mathcal{H}_3=\mathcal{C}\mathcal{H}_3$ SP + PP + WR + PS + SS XX XX Her are XX (b) $cH_3 - cH - cH_2 - cH_2 - cH_2 - cH_3$ 2.5 dimethyl heptane (C) $CH_3 - CH_2 - CH_3 - CH_3 - CH_3$ $CH_2 - CH_3$ 3-ethyl, 4-methyl hexane (d) $_{1}^{CH_{3}} - _{2}^{CH_{2}} - _{3}^{CH_{2}} - _{4}^{CH_{3}} - _{5}^{CH_{2}} - _{6}^{CH_{2}} - _{6}^{CH_{3}} = _{6}^{1} - _{6$ 4-ethyl, 3-3 demethyl hexane) $CH_3 - CH_3 - {}^3CH - {}^4CH_2 - {}^5CH_2 - {}^6CH_3$ сн₃ –²С — сн₃ 3-ethyl, 2-3 dimethyl hexane

(

 $\hat{\mathbf{l}}$

ii) <u>Bicyclo System :-</u>	
	. Bridge head Carbon
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
ç ç C	Bridge chaliv
C	C] Bridge chaîw C] Bicyclo [3,2,1] octane
² C C \ - 1 3 C \ C	C5 Bicyclo[2.1.0] Pentane
4	
या	
Bayclo[2,2	Theplane
iii) Spirosystem:-	
c	
C C	13 - 52 = 7Nonau
spiro [2,3] hexane	spiro [3, 5] Noname.

€ € (

€ (

(

(((()

<u> </u>
=> यीगात्मक श्रीभिक ('Addition comp.):-
जब दी या दी से अधिक उत्पेट की विलयन की सरल आणिक दें अनुपात भें मिलाकर वाष्पन किया जाता है ती किस्ति आणिक दें ती किस्ति अणिक दें ती किस्ति आणिक ती किस्ति आणि
$\Rightarrow K_2SO_{4}(aq_{1}) + Al_{2}(SO_{4})_{3}(aq_{1}) \xrightarrow{q_{1}GU_{4}} K_2SO_{4} \cdot Al_{2}(SO_{4})_{3} \cdot 24 H_{2}O$ $\qquad \qquad $
> Fesoy (ag.) + (NH4)2 Soy (ag) - → Fesoy (NH4)2 Soy · 6H2O C Alex साल्ड C
$\Rightarrow KCL (aq.) + MgCl_2(aq.) \rightarrow KCL MgCl_2 \cdot 6H_2O \cdot C$ $an House $
$\Rightarrow \frac{\text{YKCN(aq.)} + \text{fe(cN)}_{2}(aq.)}{\text{UlcRup believe}} = \frac{\text{CN}_{2}(aq.)}{\text{UlcRup believe}}$
X <u>Addition compound</u> : Two type
1. Double Salt 21 Lattice comp.
2. Complex salt 211 co-ordination comp-

C

£ .

rejejati d

3*0*c

\$

2

o O

हैं। इंद्रा

वा

*

F ...

Ó

```
0
 0
                                                      H
                                        Pe (420)4
                                                           (110); Oct.
         ethylene di amin
                   CO
                   H20
 O
                  NHS
 O
                                                   2(0)2
 ()
                  CL
 € }
\bigcirc
                  NO
                                                            0
O
\overline{\mathbf{o}}
                 NO+
                                                          +1
\overline{\mathbf{O}}
0.
                                                                   Nico)4
              HON-NHO
0
O
              H2N-NHg+
                                                                   (O) 14 1 W
0
                                         Fe on oxidation no. =?
                Ky [Fe CCN)6]
    Que:-
Q
                   K = +1
                                            4+x-6=0
O
                   Fe = x
                                                  \mathcal{H} = +2
                  CN = -1
                                                               [Colection]"
                                                 Ni on oxidation no. = ?
              [Ni(co),][Ni(cN),]
  Que:-
                                                    [Ni (co)4][Ni (cn)4]-
                  cation
O
                                 anion
\mathbf{O}^{-}
                2+0+(-4)=0
U
                     \mathcal{H} = +4 \left[ \begin{array}{c} +2 \\ +2 \end{array} \right]
O
Q
```

Du

યા

= =

= U

=

ĺ

Į

0

O

0

<u>0</u>

 \bigcirc

 Ω

0

O

0

9

0

(])

O

<u>D</u>

<u>)</u> <u>)</u>

<u>)</u>

)

1

<u>)</u>

<u>}</u>

)_

)__

(

2

_C

1

-6

_

2.
0 3 इले का विशिष्ट आवेश या प्रतिग्राम अविश या e/m उ.उ. Thomson द्वारा
निर्धारित किया गया।
$mv^2 = evB$
D 36
$\frac{\mathbf{e}}{\mathbf{m}} = \frac{\mathbf{v}}{\mathcal{B}}$
$\frac{\partial}{\partial} \Rightarrow evB = eE \Rightarrow v = \frac{E}{B} $
$\frac{\partial}{\partial t} = \frac{E}{2} = \frac{1.759 \times 10^8 \text{ coulomb/grans}}{10^8 \text{ solutions}} = \frac{1.759 \times 10^8 \text{ coulomb/grans}}{10^8 \text{ coulomb/grans}}$
<i>3</i>
) * इतेए का अविशा(e) -> इतेए के अविशा का निर्धारण milikan में तेल
तरं के सहगण ये नियासित किया।
∃
moving microscope
i i amg
diameter velocity of globop oldsop
of cilchop oilchop
$\mathcal{O}_{1} = \frac{4}{3} \kappa \gamma^{3}$
)- 10 m,= 19,d
$=v_1\alpha m_1g$
$= v_2 d (m_2 g - eE)$
$= \underline{v_2} = m_2 g - e \mathcal{E} \qquad \text{or}$
v_1 m_1
$m_{1}g^{1/2} = m_{2}g - eE$
$\frac{1}{\sqrt{2}} = m_0 g - m_1 g \left(\frac{\sqrt{2}}{12}\right) \Rightarrow \left[m_2 - m_1 \frac{\sqrt{2}}{2}\right] g$
)
$e = \left(m_2 - m, \frac{\nu_2}{2}\right) g / \mathcal{E} \Rightarrow e = 1.602 \times 10^{-19}$
(4.8×10^{-10})

A <u>e = m => 1,602×10 = mz</u> e/m | 1,759×10⁸ हिं है के का द्वयमाने (m) : $\Rightarrow m = 9.108 \times 10^{-28} g$. $m = 9.108 \times 10^{-31} \text{ kg}$ unte हैं कि का उपरीक्त द्रण्विराम द्रण्य कहलाता है अर्घात् इकेण्य का द्रव्यमान कम है। यदि इक्षण्या विशा बढ़ाया जाये ती उसका सर्पिह द्रव्यमान विशम इ०(mo) इलै॰ का संपिक्ष इ० m = ूर्व अनन्त ही जायेगा। थिद ए-५८ ती इसे॰ का सापेक्ष अतः इति का वैग प्रकाश के वैग के बरावर हीने के पूर्व ही सामस्त इ E=mc2 के अनुसार अर्जी में परिवर्तित ही जाता है। र इति का मीसर द्रव्यमान या 1 मील दुर्ल का म द्रव्यमान 1 मील e का द्रव्यमान = 9.108 XID-31 kg. X 6.022 XID 5.5 × 10 + Kg. हुँभे की त्रिल्या:- इते की उनि ह = e2 -- Ci) यदि इते में दुवकी उपन्ति विद्युत चुम्बकीय ही ती -समी (1) व (2) से, ह = me = 2.0 × 10 - 12 m थरमाणू की मिल्या 10-10 की की है। हीती है। अतः परमानु की त्रिज्या $= \frac{l0^{-10}}{l0^{-15}}$ इक्टें की त्रिज्या र अतः परमाणु की त्रिज्या इले॰ की त्रिज्या से र 1 साख गुणा अधिक हीती है। toot lay.

* Centre of mass:- द्वामान केन्द्र किसी निकाय का काल्पनिन, विन्दु हीता है जिस पर निकाय पर शिकाय पर शिकाय पर शिकाय पर शिकाय पर शिकाय पर अपस्थित समस्त कार्गा के द्वा की निहित मानकर न्यूटन के गित की दितीय नियम (F = ma) का अध्ययन किया जाता है।

किसी निकाध में अधवा निकाय के बाह्य उपस्थित वह काल्पनिक बिन्दू जहाँ से निकाय में उपस्थित समस्त कर्णी पर जगेने वाले बल की किया रेखायें उस बिन्दू से हीका जाती है अधवा जाती हुई प्रतीत हीती है, द्वा केन्द्र कहलाता है।

े दुव्यमान केन्द्र रूक रूसा बिन्दु होता है जिसके सांपेझ उस निकाय में अपस्थित अन्य कर्णों की रिचितवीं में परिवर्तन होता है जबकि स्वयं वह बिन्दु अपरिवर्तित रहता हैं।

* दुव्यमान कैन्द्र की निर्भरता या गूण :-

क्रिसी निकाय का द्व० कैन्द्र निकाय में उपस्थित का की की द्व० वितरण पर, आकार रुवं आकृति पर निभीर करता है।

⇒ दु॰ केन्द्र किसी निकाय में उपस्थित कनीं के मध्य लगेने वालें आन्तरिक बल पर निर्भर नहीं करता हैं।

* विभिन्न आकृति के विथे , द्र० केन्द्र की स्थिति :-

$$A = L_{12} \text{ cm } L_{12} B$$

¥ किसी कण के द्वव्यमान केन्द्र की स्थिति :-

$$\overrightarrow{\mathcal{H}}_{cm} = \frac{1}{m} \int \overrightarrow{\mathcal{H}} dm$$

or
$$|\overrightarrow{H}_{cm}| = \frac{1}{m} \int y dm$$

* दी कांगें की निकाय का द्रण कीन्द्र की स्थित, धेंग तथा त्वरण के माना दी काण जिनके द्रण m_1 , m_2 तथा निर्देशांक विन्द्र से इन कांगें की स्थितियाँ m_1 , m_2 हैं, कांगें की मिलाने वाली सरल रखा के किसी विन्द्र पर, निर्देशांक विन्द्र दें सांपेक्ष द्रण केन्द्र की स्थिति अटल ज्ञात करनी हैं।

$$\frac{\overrightarrow{H_{cm}} = \frac{m_1 \overrightarrow{H_1} + m_2 \overrightarrow{H_2}}{m_1 + m_2}$$

Film Fiz cm Fix B

े दी कहीं के निकाय पर लग्ने वाला समस्त बल (बाह्य बल में आन्तिक बंभ मिल $\overline{F_{12}} + \overline{F_{21}} \Rightarrow \overline{F_{1}} + \overline{F_{2}}$ अगन्तिक बंभ $\overline{F_{12}} + \overline{F_{21}} \Rightarrow \overline{F_{1}} + \overline{F_{2}}$ $\Rightarrow \overline{F_{12}}, \overline{F_{21}} = 3$ गन्तिक बंभ हैं, जिनके परिमाण करावर व दिशा विपरीत होती हैं।

 $\Rightarrow \overrightarrow{F_1} \overrightarrow{AUT} \overrightarrow{F_2} \overrightarrow{opHRI} : m_1, m_2 \overrightarrow{FO} \overrightarrow{UV} \overrightarrow{aTEU} \overrightarrow{aUV} \overrightarrow{E}/$

न्यूटन के जाति के दितीय नियम से,

$$\frac{d\vec{P}_{cm}}{dt} = \frac{\vec{dP}_1}{dt} + \frac{\vec{dP}_2}{dt}$$

 $\frac{M d\vec{v}_{cm} = m_1 d\vec{v}_{1}}{dt} + m_2 \frac{d\vec{v}_{2}}{dt}$

 $Macm = m_1 \overline{a_1} + m_2 \overline{a_2}$

$$\frac{\vec{q}}{q_1} = \frac{m_1\vec{q}_1 + m_2\vec{q}_2}{m_1 + m_2}$$

[M=Ms+m]

ं संवैग संरक्षण का नियम :- यदि किसी निकाय पर लगेंने वाला परिगामी बल शून्य है, तब निकाय में उपस्थित समस्त कागीं के रेखीय संवैग यीग नियत हीगा। इसे संवेग संरक्षण का नियम कहते हैं। संवेग संरक्षित रहेंने पर निकाय के द्वा के विन्द्र का वैग नियत रहता है। अर्थात-

O.

()

 $\frac{m \, d\vec{v}_{cm}}{dt} = m_1 \frac{d\vec{v}_1}{dt} + m_2 \frac{d\vec{v}_2}{dt}$

संतेग की नियत एखन के लिये Fret = 0 $\vec{P_{cm}} = \vec{P_1} + \vec{P_2}$ = constant $m(\overrightarrow{v_{cm}}) = m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2} = Constant$

 $\overline{U_{cm}} = \frac{m_1 \overline{U_1} + m_2 \overline{U_2}}{m_1 + m_2}$

यदि किसी निकाय का संवैग श्रून्य है ती उस निकाय के द्वयमान केन्द्र का वैग शून्य होगा। तथा निकाय द्वव्यमान केन्द्र की स्थित नियत हीगी।

 $v_{cm} = \frac{d\pi_{cm}}{dt} = 0$ Hcm = constant $\overrightarrow{M_{Hcm}} = m_1 \overrightarrow{H_1} + m_2 \overrightarrow{H_2} \int \frac{d\overrightarrow{H_{cm}}}{dt} = m_1 \frac{d\overrightarrow{H_{i}} + m_2 \overrightarrow{H_{i}}}{m_1 + m_2}$

 $\overrightarrow{H}_{cm} = \frac{m_1 \overrightarrow{H_1} + m_2 \overrightarrow{H_2}}{m_1 + m_2} = constant$

```
निकाय के द्रुष् केन्द्र को स्थात का xcm, ycm तथा z'cm व
a पदा में व्यक्त किया
                                    सकता
                            जा
0
028 Nov'16
   Ex.1: HCl में hydrogen atom के सापेक्ष ड्रव्यमान केन्द्र की स्थि
       स्रात कीजिए।
                        4 = 0,50 Å
                        m_I H = 1
Ũ
                        mcl = 35.5
D
                                             m_{H} \times (0) + m_{cl} \times x
             x_{\rm CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} =
                                                   (1+35.5)
                      \frac{35(5 \times 0.5)}{36(5)} \mathring{A} = \frac{355}{730} = 0.486 \mathring{A}
3 Exi2:- co2 में c के सार्थश.
                           mcx0+mo(41)+mo (-41)
                                     amo + mc
                  yom = 0
) Ex3:-
            a = 6m
          m = 2kg
) तीन विभिन्नं एक समान द्वा के पिण्ड
 समबहु त्रिभूज के शीर्ष बिन्दु पर
                                             Am
  रकी गर्व है। किसी रूक शीर्ष बिन्दु के सापक्ष पिछी के
 निकाय के इंग् केन्द्र की स्थित सात की जिए।
        A= (0,0)
                      x cm = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{1}
         \beta = (6,0)^{!}
                                    m_1 + m_2 + m_3
        C = (Q,02/3
                            = 2x0 + 2x6 + 2x6 = 2x/2 = 2x2 = 4
                    ycm = 2x0+ 2x0+ 2x6=
```

Q.

()

()

0

 \cap

0

Ę

$$\cos 60 = \frac{33}{4}, \quad \sin 60^{\circ} = \frac{343}{4}$$

$$\frac{1}{2} = \frac{3}{4} \Rightarrow \frac{3}{2} = \frac{6}{3} = \frac{3}{6} = \frac{6}{3} = \sqrt{3}m$$

$$4 = \frac{ma\sqrt{3}/2}{3} = \frac{a\sqrt{3}}{3} = \frac{6\sqrt{3}}{6} = \frac{6\sqrt{3}}{6} = \sqrt{3}m$$

()

Ex. 4: AD BY STUBE TO BY AT READ = ?

$$l = 4m$$
 $b = 2m$
 $m = 4 \text{ kg}$.

 $l = 4m$
 $l = 4m$
 $l = 2m$
 $l = 4m$
 $l = 2m$
 $l = 4m$
 $l = 2m$
 $l = 4m$
 $l = 4m$
 $l = 2m$
 $l = 4m$
 $l = 2m$
 $l = 4m$
 $l = 2m$
 $l = 2m$

$$\frac{E_{V1}.5}{1} = \frac{200}{100} \frac{100}{100} \frac{100}{100$$

(尼)=105

19th = = = [// defe] + [dota]] \bigcirc 0 di = (4-2)î + (5-4)j + (8-6)k O $|d\vec{x}| = \sqrt{(2)^2 + (1)^2 + (2)^2}$ 0 O $= \sqrt{9} = 3$ Ð D $|\sqrt{cm}| = \left| \frac{d\vec{r}}{dt} \right| = \frac{3}{6} = \frac{1}{2} = 0.5 \text{ m/sec}$ े स्थानान्तित गति में, किसी हुट पिण्ड में उपस्थित सभी किशों के रिखीय वैग रूक समान हीते हैं तथा यह इंग् केन्द्र के वैग के बराबर हीता हैं।) * किसी निकाय में उपस्थित अलग - 2 कार्ग के द्वयमान 2, 3, 4, 5 gm है। तथा इनके वैग कुमशः 4, 3, 2, 3 कार्) ज्ञात है। कर्लों के निकाय के द्वा के द्व का वैग मान की जि $U_{cm} = \frac{2\times 4 + 3\times 3 + 4\times 2 + 5\times 3}{111} = \frac{40}{111} = \frac{20}{4}$) O (2) air OSoil 3HO Beneut gas

50 95-5 on Rela 212100 Test (Halos 310+21) क्टोंकि ड॰ का विल्लिं। समान तप से ही रहा है। जीकि के भीलर है हा है। हिंग के भीलर हैं हैं हैं। हिंग के भीलर हैं हैं। चित्र में । तथा प्रित्र के लिये द्वा के की स्पिति अपने स्थान पर या गीं के केन्द्र पर होंगी जबकि हितीय (2)

चित्र' में तथा 3 मैं जीचे की तरफ हीगी।

Ģ

()

 \bigcirc

0

0

()

Q ()

.

(

.

* स्थानान्तित अथवा धूर्णन गति मैं किसी कर्ण की स्यिति मैं परिवर्तन, कर्ण के किसी दिये हुये निर्देश बिन्द्र के सापेक्ष परिभाग , दिशा के कारण सम्भव होता है। परन्ति किसी हुइ पिण्ड के निकाय के घूर्णन बिन्द्र के सापेक्ष हुए केन्द्र की स्थित तथा बिग नियत एडती है।

क्रिसी भी हुड़ पिण्ड़ के निकाय का एक रूसा किन्द्र निसके सापेक्ष अन्य सभी कांगों की जी उस निकाय में अपस्थित ही धूर्णन के प्रभाव से स्थितियों में परिवर्तन होता ही परन्त स्वंघ वह बिन्दु अपरिवर्ति रहता ही ती रेपे किन्द्र की उस निकाय का द्रण केन्द्र मान लिया

भार:- रक disc के व्यास के परित:, disc की किया के आधी कि अधी कि बराबर ४- अस के किसी बिन्द की केन्द्र मानकर उत्ता भाग काटकर प्रथक कर दिशा जाता है । शिष बचे हुये पिण्ड के द्वामान केन्द्र की स्थित प्रारम्भिक क्षण केन्द्र के स्पिस मात की जिए।

$$\mathcal{M}_{CM} = \frac{m_1 \mathcal{H}_1 + m_2 \mathcal{H}_2}{m_1 + m_2}$$

$$= \mathcal{H}_{C} - AJJ \pm (\sigma A2) \mathcal{H}_2$$

$$= \mathcal{H}_J - AJJ + \sigma A_2$$

$$\mathcal{M}_{CM} = \frac{A_1 \mathcal{H}_1 - A_2 \mathcal{H}_2}{A_1 + A_2}$$

$$\mathcal{M}_{CM} = \frac{R_1 \mathcal{H}_1 - A_2 \mathcal{H}_2}{A_1 + A_2}$$

$$\mathcal{M}_{CM} = \frac{R_1 \mathcal{H}_2}{A_1 + A_2}$$

$$= \frac{R_1 \mathcal{H}_2}{2}$$

$$= \frac{3R_1}{4}$$

$$\omega_{2}xx + \omega x0 + \omega_{1}xx'=0$$

$$\omega_{2}x = -\omega_{1}x'$$

$$(\omega - \omega_{1})x = -\omega_{1}x'$$

$$x = -\left(\frac{\omega_{1}x'}{\omega - \omega_{1}}\right)$$

,

Hade : (Diffraction):-

जब यकाश तरंगें (स्कता प्रकाश)
किसी माध्यम के सूक्ष्म कार्गे से (का का आकार प्रकाश की तरंग देंधी की दि का होना लाहिए) टकराकर तीका का अप से खड़ जाती हैं तो इस धटना की विवर्तन कहते हैं।
प्रकाश तरंगों का भाष्यम के सूक्ष्म कार्गें अथवा किसी एक स्लिट से होकर शुजरीत समय तीका कप से फूड जाने की घटना विवर्तन कहलाती हैं।

, विनर्तन के विदेश उगलस्यक शही :

का आवार अथवा स्लिट की रेखां २/ - वींडाई यकारा की तरंगदेधी कीटि का होना न्याहर ।

विवर्तन तथा त्यतिकर्ण दीनीं हाटनाओं की सामान्य मैत्र द्वारा नही दैखा जा सकता है।

विवर्तन तथा व्यतिकरण की घटना इवैस प्रकाश किरणीं में भी सम्भव हीती हैं जी मूलतः स्क ही प्रकाश स्नीत से प्राप्त किये , गये हो।

है वे विवर्तन की घटना द्वारा व्यतिकरण की घटना प्राप्त की जा सकता हैं। उनर्धात दी विवर्तन प्रतिष्ठप की अध्यारीपण की घटना व्यतिकरण कहलाती हैं।

प्रवर्तन की घटना का अध्ययन दी प्रकार से किया जाता है।

DE Eresnel Diffraction DE Eronpopper Diffraction

तरं † उह्र

त क व्या

--€

क्राह

π; **=**

77 - 6

ree

की

तथा	के फ़िल्मों की स्थितियाँ ह
7 3	
_	केन्द्रीय फिन्म के मध्य बिन्द पर यूसी रहेंगें एक समा
ones)	किन्द्रीय फिन्म के मध्य बिन्दू पर सभी तरंगें रुक समान दूरी तय करती है तथा उनके लिये कलान्तर
	1A=0 31/7 USTIGHT 13 - 20-11 99,
· .	इस बिन्दु पर तरंगी की परिणामी तीव्रता अधिकतम
तथाः	प्राप्त होती है।
的	$T = KQ^2 - T$
aunho	$\frac{I_{\mathcal{K}}}{f} = \frac{K\underline{a}^2}{\underline{y}} = \underline{I_0}$
₹7.	परिलामी आसार के प्रदीग में
	The state of the s
क्राहल-रते	
	अधिकतम तीवता Imaz = <u>Io</u>
710	4
11 °	
To India	OJan'17:-
1.1	ि प्रियाम किला की प्रयोग में दीप्त तथा अदीप्त फिन्मी की
De la	Fraunhofer Restaution
1) प्रथम निम्निष्ठ तथा ग निम्निष्ठीं की स्थितियाँ:-
c (cer	
rriger	Slit की रेंखोय चींडाई में उपस्थित सभी कार्गों द्वाराः
	प्रकाश का विवर्तन एक समान कीए के विशे पर
+	होता है। परना पर्द के किसी बिन्द गर कि राम
1	1 2 2 1 1 100 26 101 100 26 101 100 26 101 100 26 101
. ?	की हीडकर) अन्य किसी बिन्द पर) अनि वाली प्रणाश
	की हीडकर अन्य किसी बिन्दू पर) आने वाली प्रकाश
ncen	की हीडकर) अन्य किसी बिन्दू पर) आँन वाली प्रकाश किरणीं के प्रथान्तर हीता है। यदि पर्दे पर कीई बिन्दू (P) किन्द्र बिन्द्र के पश्चात
reen	की हीडकर) अन्य किसी बिन्दू पर) डेगैंन वाली प्रकाश किरणीं के प्रधान्तर हीता है। यदि पैदे पर कीई -बिन्दू (P) किन्द्र बिन्दू के पश्चात प्रथम निम्निष्ठ के बिये मान लिया जाये तथा
की)	की हीडकर) अन्य किसी बिन्दू पर) अनि वाली प्रकाश किरणीं के पथान्तर हीता है। यदि पर्दे पर कीई किन्दू (P) किन्द्र बिन्दू के पश्चात प्रथम निम्निष्ठ के विषे मान लिया जाये तथा डिएं की किसी रेखीय नीडाई की किसी यम संव
100	की हीडकर) अन्य किसी बिन्दू पर) आने वाली प्रकाश किरणीं के पथान्तर हीता है। यदि पर्दे पर काई बिन्दू (P) किन्द्र बिन्दू के पश्चात प्रथम निम्निष्ठ के विशेष मान लिया जाय तथा प्रधि की किसी रैकीय नीडाई की किसी समसंग हीरा समान विभाजन किया जाये ती किसी भ
की।	की हीडकर) अन्य किसी बिन्दू पर) अनि वाली प्रकाश किरणीं के पथान्तर हीता है। यदि पर्द पर कीई किन्दू (P) किन्द्र बिन्दू के पश्चात प्रथम निम्निष्ठ के लिये मान लिया जाये तथा Slit की किसी रैकीय नीडाई की किसी समसंग

माने द

ान्तरः,

<u>द्रानेवा</u>	है क्यान्तर की स्थितियां:-
2	निम्निष्ठीं के लिये कलान्तर की स्थितियाँ,
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	उच्चिन्छों के लिशे कलान्तर की स्थितियाँ,
	$\phi = \pm (2n+1)\pi$ $n = c, 1, 2, 3$
	NOTE: Fraunhofer à Single Slit à प्रयोग में विवर्तन
-	की घटना के लिये कलान्तर, प्रधान्तर तथा फिन्मीं की स्थितियाँ व्यतिकरण के लिये यंग के प्रयोग में कुमश; प्राप्त स्थितियों से व्यु किम प्राप्त हीती हैं। (विपरीत)
	दीप्त तथा अदीष्त फ्रिन्जीं के लिये आयाम तथा तीव्रता %-
rai	traunhofer के प्रयोग में (Single Slit) प्राप्त विवर्तित जबिक प्रत्येक तरंग का अध्यारीपण में परिणामी आयाम जिन्हीं दी वरंगों के मध्य कलान्तर 24 हैं। तो, अतः
	परिनामी आयाम,
<u> </u>	R = A Sinna.
 ,2,3	R= nasiona

पिवर्तन की घटना में फ़िन्जी की तीव्रता न्यूनतम स्थितियों में पूर्वतः शून्य प्राप्त नहीं होती हैं जबकि व्यतिकरण की में न्यूनतम तीवता सून्य प्राप्त होती हैं। त्र व्यतिकरण की घटना में फ़िन्जों की चीड़ाई नियत रहती है, परन्तु विवर्तन की घटना में दीप्त फ़िन्ज कुमराः घटती है। > Fraunhofer के प्रयोग में केन्द्रीय दीप्त फ़िन्स की सीड़ाई इ Sino = 1 (Pid) TRAGE AOCP, tano = xD=f जहाँ न = उत्तल वींस की फीक्स 10 岩 दूरी। x = 10= 1f d = डिर्धि की उँग्वीय चैक्षि $\omega = 22e$ $w = \frac{2\lambda f}{d}$ Lineas fringwidth र्र = प्रकाश की तरंगदेध्य

(), IHYSICS. \bigcirc TGT Sullabus 1) De Mechanics (2) Heat (3) Light (3) Wases

1) De Simple circuit (Voltmeter, Galsonometer) (3) Magnet, R

1) De Modern Physics (3) Electronics (3) Nuclear Physics

1) (1) Electrostotics (1) Current Electrucity

1) ch1-ch4 > 70%, ch5-ch6 -> 15%, ch7-7 ch9-7 10% 0 ch10-ch11-7 5% Higher (mathematical Tools):-A) Cordinate Geometry (Adaria Guilla):-तं) एक सरल रेखा का समीकरण की मूल बिन्दू से हीकर जाता है। $tano = -\frac{y}{x} = \frac{y}{x} = m$ 4= mx => १८- अक्ष से वामावर्त दिशा में कीण धनात्मक लिगा जाता है। Dom fi दाल या ५वठाता = m A(-X,y) $\supset (\Pi)$ y= mx) Anticlock wise +ve X 10 clock wise -ve m== U y=-mx =) x-अस से दक्षिणावर्त्त B(x,-4) (clockwine) Gars हीगा प्रवर्गती का भीन प्रह्मात्मक _)

Ē Ð, <u>0</u> <u>)</u> 5 2 <u>D</u> (۵ Ō. 5 D D. O D 0 9 0

0

C

C