日本建築学会大会学術講演梗概集 (北 陸) 2 0 0 2 年 8 月

ロボット溶接における開先条件の改善

ロボット溶接 開先条件 衝撃

正会員〇山根 正寬* 同 中浜 修*

1. はじめに

ロボット溶接部を形成する開先条件は、約30年前に導入された半自動溶接と同様、開先角度35°、ルート間隔7mm、片面レ形開先が現在まで踏襲されてきた。しかしルート間隔7mmは、初層をストリンガビードで溶接した場合、トーチの狙い位置にもよるが開先側あるいは反開先側のルート部に欠陥を発生させる可能性がある。初層溶接をより確実にするには、ルート間隔を5~6mmと小さくする必要がある。また開先角度は割れを発生させない限り小さくすることは、溶接継手部の角変形、残留応力からも望ましい。

2. 試験目的

ロボット溶接における開先角度 25° に適したルート間隔を追究する。

3. 試験概要

本試験の概要を表-1に示す。

(1) 試験体の形状・寸法および各種試験片の採取位置 試験体の形状・寸法および各種試験片の採取位置を 図-1 に示す。

試験体幅が通常の柱梁溶接接合部より大きくなっているのは、同一溶接条件からの引張特性・曲げ特性・衝撃特性を把握することを目的としたためである。

(2) 供試鋼板

試験に供した鋼板は、ダイアフラムを SN490C、梁フランジを SN490B とした。供試鋼板の諸特性(化学成分、引張強度、衝撃値)を、表-2 に示す。

4. 試験体製作

(1) 溶接に使用した溶接ロボット機器

1)溶接機

溶接は、溶接機-PULSE AUTO 500(ダイヘン製)と溶接ロボット HIROBO WR-L80(日立造船製)の組み合わせで、実施した。

2) トーチノズル

開先角度 25°の溶接に対しては、絞りノズル(口径 13 mm φ)を開発し使用した。

(2) 溶接施工

試験体製作における溶接施工条件は、入熱 30KJ/cm以下・パス間温度 250℃以下を目標として行った。

5. 試験結果

(1) 継手引張試験

図-3 に、溶接継手部の開先条件の違いによる引張強 さおよび降伏点の試験結果を示す。

引張強さは、開先条件が異なっても大きな差は認められない。一方降伏点は、各試験体間の供試鋼板および

表-1. 試験概要

試験体名	A-1 B-1 C-1	A-2 B-2 C-2	A-3 B-3 O-3	8-4 0-4	A-5 B-5 C-5	D-1	D-2	D-3							
開先角度			35*												
ルート間隔	3mm	5nn	6 m/m	7mm	9rete	,7 e sn									
継手形式	突合せ極手(但し柱フランジを想定してダイアフラム側に邪魔板を取り付ける)														
纲禮	SN480C(ダイアフラム)+SN490B(柴フランジ)														
-		Aシリ	-X E	シリーズ	Cシリーズ		Dシリーズ								
板厚	ダイアフラム日	E 25	5mm	36mm	45mm	25an	36mm	45mm							
TIX.I-F	+		+	+	+	+	+	+							
	梁フランジ 庫	18	mn	28mm	40mm	19:00	2899	40mm							
裏当て金	フラット(SN490B)														
エンドタブ	国形タブ														
溶接方法	MAG溶接·下向含姿勢														
溶接材料	ワイヤ:JIS Z 3312 YGW15 1.4mm φ														
	シールドガス:80%(98.5%Ar+3.5%0 _s)+20%CO, 流量30 l/min														
ーチ(ノズル)		改造ノ	一般ノズル(通常)												
溶接条件		入熱量30KJ/cm, バス間温度250°C以下													

図-1. 試験体の形状・寸法および各種試験片の採取位置

表-2. 供試鋼板の諸特性

板厚 鋼種	化学成分(%)											引張強度			衝撃値			
	Ç.	Si	Mn	Ρ	S	Cu	Ni	Cr	Мο	V	Nb	Ceq	Pcm	降状点 (N/ap*)	引発領さ	降状比 (%)	0,C(1)	
PL-19	SN490B	0.16	0.36	1.48	0,017	0.004	_	0.01	0.04	0	0.004	_	0,43	=	411	\$38	76	246
PL-25	SN490C	0.18	0.34	1.39	0,012	0.001	_	0.01	0.03	٥	0.034	_	0,41		387	545	71	240
PL-28	SN490B	0,17	0.37	1.38	0.012	0.005	_	0.01	0.03	٥	0.035		0.42	_	396	537	74	241
PL-36	5N490C	0.17	0,40	1,40	0.009	0.001	_	0.01	0,03	0.01	0.001	_	0.43	_	372	524	71	265
PL-40		0.17	0.34	1.36	0.016	0.004	_	0.01	0.02	0	0.035	_	0.42	_	369	532	89	192
PL-45	SN490C (TMC)	0.15	0.37	1.27	0.008	0.001	0.01	0.02	0.02	0.01	0,003	_	0.38	0.23	428	551	78	371

図-2. 改造ノズル(絞りノズル)および一般ノズル詳細図

Improvement of groove-Condition about Robotic Welding

YAMANE masahiro NAKAHAMA osamu

溶接金属の化学成分、機械的性質、また溶接施工条件 一平均入熱量、平均パス間温度—に大差がないにもかかわらず、B シリーズおよび D-2 試験体(板厚 36 m+28 m)が、他の A シリーズ、C シリーズおよび D-1, D-3 試験体に比して全体的に $12\sim36N/m$ 2 低い値を示している。

試験片の破断は、D シリーズ(従来の一般的開先条件)の板厚 45 mm + 40 mm以外、全て母材であった。

図-3. 開先条件の違いによる引張強さと降伏点

(2) 衝撃試験

衝撃試験は、Bシリーズ(板厚 36 mm + 28 mm、開先角度 25°、ルート間隔 3, 5, 6, 7, 9 mm) および D-2 試験体(板厚 36 mm + 28 mm、開先角度 35°、ルート間隔 7 mm)で実施した。図 4 に試験温度 0℃における衝撃試験片 3本の平均値の試験結果を示す。いずれの開先条件においても溶着金属(DEPO)のシャルピー吸収エネルギーが一番低い値となっている。梁フランジ開先側とダイアフラム側との比較では、ダイアフラム側の方が高い値を示している。

また B シリーズにおけるルート部と表層部でのシャルピー吸収エネルギーの違いを図-5 に示しているが、ルート間隔 7 mm以外でルート部、表層部に大きな差が生じている。

図-6 に B シリーズにおける平均入熱量、電圧、電流、溶接速度とルート部・表層部の平均シャルピー吸収エネルギーとの関係を示す。これによると入熱量、電圧、電流の変化と開先条件のシャルピー吸収エネルギーとはほぼ相似形の分布となっているが、溶接速度とは逆比例分布を示している。

6. まとめ

本研究は、トーチノズルを絞りノズルとし、開先角度 25° での適正ルート間隔を見いだすべき目的で実施したものであるが、溶接施工そのものが開先角度 35°、ルート間隔 7 mmのロボット溶接プログラムに、①積層・パス数、②溶接速度、③トーチ角度等の変更をオペレーター自身で行ったため、その溶接の基本となるべき操作に大きな困難、すなわち安定したロボット溶接を

得るための労苦が大であった。

しかし試験結果では、目的としたいずれの開先条件一開先角度 25°,ルート間隔 3 mm,5 mm,6 mm,7 mm,9 mm—においても、大きな不具合は発生しておらず、また内部品質も従来の一般的開先条件—開先角度 35°、ルート間隔7 mm—に比して同等または、それ以上の結果を得ることが出来た。その中でも今回実施した試験からは、相対的にみて開先角度 25°、ルート間隔5 mm が最も良い結果となっている。

図-4. BおよびDシリーズ試験体における 溶接金属のシャルピー吸収エネルギー(0℃)

図-5. 開先条件の違いによる溶接金属の シャルピー吸収エネルギー(0℃)

図-6. 開先乳件の違いによる入熱量・電圧・電流・浴袋速度と シャルビー吸収エネルギー(0°C)

^{*} ヤマネ鉄工建設㈱ YAMANE Corporation