Table 1

$$R^{5}$$
 R^{6}
 R^{3}
 R^{3}
 R^{6}
 R^{6}

5

Compd	R ³	R ⁴	R ⁵	R ⁶	Rª	R ^b
No.						
1	Н	N S S S S S S S S S S S S S S S S S S S	H	Н	Н	Н
2	Н	H N	Н	Н	Cl	Cl
3	Н	H Z *	Н	Н	Cl	Cl
4	Н	O S H	Н	Н	Cl	Cl
5	H	O S S N N	Н	Н	Cl	Cl

6	H	HN S=0	H	H	Cl	Cl
7	Н	O N N N N N N N N N N N N N N N N N N N	Н	Н	CI	CI
8	Н	NHC(O)CH ₂ NHCH ₂ COOH	Н	Н	CI	Cl
9	H	O S NH	Н	H	CI	Cl
10	Н	OC(O)N(CH ₃) ₂	Н	Н	CI	Cl
11	H	CH ₃ O S(O) ₂ O OH	Н	Н	Cl	Cl
12	Н	H N OH	Н	Н	Cl	CI
13	Н	H N OH	Н	Н	Cl	Cl
14	Н	NHC(O)CH ₂ N(CH ₃)CH ₂ COOH	Н	Н	Cl	Cl
15	H	O N OH	Н	Н	Cl	CI

where * indicates the point of attachment of the group to the indole ring.

10

5

Compounds of formula (I) are suitably prepared by methods such as those described in International Patent Application Nos. PCT/GB98/02340 and PCT/GB98/02341.

In particular compounds of formula (I) where R4 is NHCOR15 or NHSO₂R15 can be prepared by reacting a compound of formula (VII)

$$R^{5}$$
 R^{6}
 R^{7}
 R^{1}
 (VII)

where X, R¹, R³, R⁵, R⁶ and R⁷ are as defined in relation to formula (I), R² is a group R² as defined in relation to formula (I) or a protected form thereof, with a compound of formula (VIII)

Z-R²²

(VIII)

where Z is a leaving group and R^{22} is a group COR^{15} or SO_2R^{15} where R^{15} is group R^{15} as defined in relation to formula (I) or a precursor thereof;

- 15 and thereafter if desired or necessary:
 - (i) converting a precursor group R¹⁵ to a group R¹⁵ and/or converting a group R¹⁵ to a different such group;
 - (ii) deprotecting a group R2' to a group R2.

Suitable leaving groups Z include halo such as chloro.

20 The reaction is suitably effected in an organic solvent such as dichloromethane or tetrahydrofuran in the presence of a base such as triethylamine or pyridine. Moderate temperatures, for example from 0° to 50°C and conveniently ambient temperature, are employed in the reaction.

Compounds of formula (I) where R⁴ is a group OCONR¹⁶R¹⁷ may be prepared by a 25 broadly similar method by reacting a compound of formula (VIIA)