

Elektrische Netzwerke und Mehrtore Übung

Wintersemester 2020

Protokoll Übung 3: Schaltvorgang Kondensator

Gruppe: 04

Gruppenteilnehmer:

- 1. Matthias Fottner
- 2. David Keller
- 3. Moritz Woltron

Vortragende: Helena Grabner

Graz, am 16. November 2020

Inhaltsverzeichnis

1	Erm	nitteln der DGL von $i_L(t)$ für $0 \le t \le 2 au_1$	3
	1.1	Schaltbild des Netzwerks für $0 \le t \le 2\tau_1$	3
	1.2	Aufstellen der DGL mithilfe der allgemeinen Lösungsformel	3
2	Erm	nitteln der DGL von $i_L(t)$ für $t>2 au_1$	3
	2.1	Schaltbild des Netzwerks für $t > 2\tau_1$	3
	2.2	Aufstellen der Kirchhoff'schen Knoten- und Maschengleichungen	3
	2.3	Herleitung der DGL 2. Ordnung von $i_L(t)$ für $t > 2\tau_1$	3
	2.4	Interpretation der Parameter δ , ω_0 und Ω_d	3
	2.5	Anfangswertproblem	3
		2.5.1 Anfangsbedingungen	3
		2.5.2 Lösen von K_1 und K_2	3
3	Plots und Simulationen		
	3.1	Matlab-Plot $i_L(t)$	3
		PSpice-Plot $i_L(t)$ und $u_L(t)$	3

1 Ermitteln der DGL von $i_L(t)$ für $0 \le t \le 2\tau_1$

1.1 Schaltbild des Netzwerks für $0 \le t \le 2\tau_1$

Abbildung 1: Netzwerk im Zeitintervall $0 \le t \le 2\tau_1$.

1.2 Aufstellen der DGL mithilfe der allgemeinen Lösungsformel

Da es sich um ein LR-Netzwerk handelt, lässt sich τ_1 folgendermaßen bestimmen:

$$\frac{1}{r} = \tau_1 = \frac{L}{R} = \frac{100 \,\mathrm{mH}}{50 \,\Omega} = 2 \,\mathrm{ms}$$

2 Ermitteln der DGL von $i_L(t)$ für $t > 2\tau_1$

- **2.1 Schaltbild des Netzwerks für** $t > 2\tau_1$
- 2.2 Aufstellen der Kirchhoff'schen Knoten- und Maschengleichungen
- **2.3** Herleitung der DGL **2**. Ordnung von $i_L(t)$ für $t > 2\tau_1$
- 2.4 Interpretation der Parameter δ , ω_0 und Ω_d
- 2.5 Anfangswertproblem
- 2.5.1 Anfangsbedingungen
- **2.5.2** Lösen von K_1 und K_2

3 Plots und Simulationen

- 3.1 Matlab-Plot $i_L(t)$
- 3.2 PSpice-Plot $i_L(t)$ und $u_L(t)$