

DEPTO. DE PROTECCION y COMUNICACIÓN

Coordinación de Pruebas y Mediciones

Pruebas al Transformador de Aterrizaje TT-2

Subestación: Llano Sánchez

Fecha de Prueba: 15-Mayo-2012

Informe Realizado por: Ing. Julio Ruíz C.

Fecha: 16-Mayo-2012

Capacitancia y Factor de Potencia del Tanque

		15-May-12 LL. SANCHEZ		Clima:	SOLEADO	Temp.aceite:	32
	Equipo:	TT-2 111.148/U		Humedad:	37%	Ejecutado:	RUIZ
1	Marca:	ANSALDO-COEN	1	Temp.aire:	35.7°C	F.C.:	0.76
	Edad:	15años					
NUMERO	PRUEBA	VOLTAJE KV	CORRIENTE mA	PerdidasW ATTS	%PF MEDIDO	%PF CORR. @20°C	CAPACITANCIA (pF)
1	CH+CHL	10				0.00	
2	СН	10	17.65	0.5064	0.29	0.22	4681.4
3	CHL	10				0.00	
4	CL+CHL	10				0.00	
5	CL	10				0.00	
. 10							
	*	MENOR O IGUAL A >0.5% HASTA 0.7% >0.7% HASTA 1.0% MAYOR DE 1.0%	0.5% BU DETERIOI INVESTIG	RADO AR			

Observaciones:

Prueba Buena

Los valores de Capacitancia y Factor de Potencia son buenos y parecidos a los obtenidos en el 2009 de: Capacitancia= 4677.5 pF; F.P= 0.21% corregido @20°C

EQUIPO DE PRUEBA UTILIZADO: BIDDLE, DELTA 2000

Según la norma IEEE Std 62-1995 establece que :

PARA TRANSFORMADORES NUEVOS EL DF DEBE SER MENOR DE 0.5 % PARA TRANSFORMADORES CON 15 AÑOS O MAS MENOR DE 1.5 %

CAPACITANCIA y FACTOR DE POTENCIA DE LOS BUSHINGS ပ

						ón	R	1	1	1	1	1	1	1	1	1	1	
						Evaluación	2	-	1	1	1	1	1	1	1	1	-	ı
						Eva	A	A	4	4	A	1	1	1	1	1	1	ı
	Ejecutado: RUIZ FACTORES DE CORRECCION POR TEMPERATURA	1.07	1.07	1.07	VALORES OBTENIDOS EN CAMPO	CAPACITANCIA	(pF)	444.03	447.31	446.37	430.8							EVALUACION
	ION P				SOBT	ion	œ	-	1	1	1	#	#	#	###	#	###	ı
	RECC				ORES	Evaluacion	2	-	1	1	1	#	#	#	###	#	###	ı
	COR				VAL	Eva	A	4	4	4	4	#	#	#	###	#	###	ı
i	Ejecutado: FACTORES DE COR	H1 y H2	H3	Y, HOXO		%FP	CORREGIDO @20°C	0.25	0.26	0.25	0.24	0.00	0.00	0.00	00.0	0.00	0.00	
						07 KD	/0FF	0.23	0.24	0.23	0.22							
00	%	ပ္စ	ပ့	၁ွ		W	\$	0.0388	0.0401	0.038	0.0351							
Clima: SOLEADO	37	32 °C	35.7	33.85		4	E	1.673	1.695	1.682	1.623							
Clima:	Humedad:	Temp. Aceite:	Temp. Aire:	Tprom.:	DATOS DE PLACA	%PF	PLACA	0.27	0.3	0.31	0.32							
			_		DATOS	CAP	PLACA (pF)	443	446	446	431							
S/E: LL. SANCHEZ	77-2	SERIE: 111.148/U	MARCA: ANSALDO-COEM Facha: 15-May-12	21-Knin2-1		CEDIE	SERIE	3051250195	3051250595	3677203495	36773695							
S/E:	Equipo: TT-2	SERIE:	MARCA:	- cold			PRUEBA	5	C1	5	ភ	G	5	5	S	5	C	
						OUNITORIO	BUSHINGS	Ŧ	Н2	H3	Н	X1	X2	X3	Y1	Y2	У3	

OBSERVACIONES:

Prueba: BUENA

Todos los valores están en el rango de aceptable. Las capacitancias son parecidas a las de placa y los factores de potencia son buenos.

A= ACEPTABLE; M= MONITOREAR; R= REEMPLAZAR

LOS BUSHINGS SON MARCA ABB, TIPO O+C

Equipo de prueba utilizado. MEGGER, DELTA 2000

CAPACITANCIA Y FACTOR DE POTENCIA DE BUSHINGS

77

			Evaluacion	M	1	1		1	1	1	1	1	1	1	
			Evalu	A	4	4	-	A	1	1	1	1	1	1	
	RUIZ	OBTENIDOS EN CAMPO	CAPACITANCIA	(pF)	398.98	403.95	403.06	399.15							EVALUACION
		VALORES	cion	R	1	-	-	- 1	###	#	###	##	#	###	
	Ejecutado:	VAL	Evaluacion	Σ	1	1	1	- 1	#	#	#	#	#	###	
	Ejec		Ev	A	4	4	A	A	#	#	#	#	##	###	
			%FP	MED.	0.29	0.4	2.5	0.19							
	% 55		WATTS		0.0429	0.0602	0.3803	0.0289							
Clima: SOLEADO	37 32 35.7		шA		1.483	1.512	1.509	1.49							
Clima:	Humedad: Temp.aceite: Temp.aire:		%PF	PLACA	1.95	0.4	1.33	1.08							
	Te		CAP	PLACA	398.26	395.76	383.55	389.66							
LL. SANCHEZ	TT-2 111.148/U ANSALDO-COEM 15-May-12		SERIE	*	3051250195	3051250595	3677203495	36773695	0	0	0	0	0	0	
S/E:	Equipo: SERIE: MARCA: Fecha:		PRUEBA		22	C2	C2	C2	22	C5	C2	25	C5	C2	
			BUSHINGS PRUEBA		£	Н2	Н3	ОХОН	×	X	Х3	¥	Y2	ү3	

OBSERVACION:

RUEBA REGULAR

El Factor de Potencia de todos los bushings salieron en el rango de aceptable, aunque el valor de H3 está muy alto, probablemente

A= ACEPTABLE; M= MONITOREAR; R= REEMPLAZAR

Los valores que se utilizan como de placa en esta prueba, fueron tomados de pruebas anteriores ya que la placa de los bushings solo debido a que este tap hubo que arreglarlo, debido a corrosion en el resorte de prueba.

LOS BUSHINGS SON MARCA ABB, TIPO O+C

traen valores del C1.

Equipo de prueba utilizado. MEGGER, DELTA 2000

Prueba de Corriente de Excitación

S/E: LL. SANCHEZ

Clima:

SOLEADO

Temp. Aceite: 32°C

Equipo: TT-2

Marca: ANSALDO-COEMSA

Humedad:

37% Ejecutada:

RUIZ

Serie #: 111.148/U

Fecha: 15-May-12

Temp.aire:

35.7°C

TAP FIJO:

TAP CHANGER:

no no

	The state of the s							
Posicion del Tap	PRUEBA	DESCRIPCION DEL CIRCUITO	VOLTAJE kV	l _{exc} mA	WATTS			
	Н1-Н0	UST-R	10	30.270	3			
	H2-H0	UST-R	10	30.390				
	Н3-Н0	UST-R	10	46.800				
	H1-H2	UST-R	10					
	Н2-Н3	UST-R	10					
	H3-H1	UST-R	10					
1								
1		1						

OBSERVACIÓN:

PRUEBA BUENA

EQUIPO USADO: POWER FACTOR, MEGGER DELTA-2000, 10 KV

No podemos evaluar esta prueba con el recuadro inferior de análisis. Este es un transformador de aterrizaje, configuración de las bobinas en zig-zag. Desde un principio hemos tenido este patrón de dos bobinas con corrientes bajas y una con corriente alta. Estos valores son parecidos a los de pruebas anteriores.

Según el libro "Transformer Diagnostics" volúmen 3-31 Facilities Instructions, Standards, and Techniques. Dice: Solamente compare las dos corrientes más altas. Si la Iexc. es menos de 50mA, la diferencia entre las dos corrientes altas debe ser menor de 10%. Si la Iexc. es mayor de 50mA, la diferencia deberá ser menor de 5%.

ETESA

Pruebas y Mediciones

PRUEBA DE RESISTENCIA DC DEL DEVANADO

S/E: LL. SANCHEZ Fecha: 15-May-2012

Equipo: TT-2 Temp. Aceite: 32°C

Temp. Amb.: 35.2°C

 Tdeva (H):
 32
 °C
 HR: 37%

 Tdeva (X):
 °C
 POR: RUIZ

 Tdeva (Y):
 °C
 TAP FIJO: no

Iprueba: 5 A TAP MOVIL: no

		IAI MOVIE. NO								
POSICIÓN	LECTURA	LECTURA DE RESISTENCIA EN OHMS								
(Bobinas)	Lectura Anterior	NORMAL	@ 75° C							
	Ω	Ω	Ω							
H1-HO	0.668	0.572	0.664							
H2-H0	0.669	0.573	0.665							
нз-но	0.670	0.574	0.667							
	Ω	Ω	Ω							
X1-X0			0.000							
X2-X0			0.000							
X3-X0			0.000							
	Ω	Ω	Ω							
Y1-Y2			0.000							
Y2-Y3			0.000							
Y3-Y1			0.000							
		-								

OBSERVACIONES:

Prueba Buena.

Estamos implementando la corrección por temperatura a 75°C, como debe ser ya que en la fábrica hacen las pruebas y las corrigen a esta temperatura.

Se cumple con lo del recuadro inferior del 5% entre el valor corregido actual y la lectura anterior.

Según la norma IEEE Std 62-1995 se recomienda la comparación con otras fases, otros transf. iguales o con mediciones anteriores bajo condiciones de campo.

La variación bajo condiciones de campo no debe exceder el 5%.

Según la Compañía DOBLE, debido a la inestabilidad de obtener lecturas precisas debido a la temperatura, se permite una desviación del 2% entre la prueba de campo y la de fábrica.

EQUIPO UTILIZADO: RESISTENCIA DE DEVANADO MULTIAMP

ETESA PRUEBAS Y MEDICION

PRUEBA DE PERDIDAS EN PARARRAYOS

S/E: LL. SANCHEZ

HUMEDAD: 37%

PRUEBA POR: RUIZ

EQUIPO: TT-2

T. Amb: 35.2 °C

FECHA: 15/05/2012

VOLT DE PRUEBA: 10 KV

FASE	FABRICANTE	SERIE	KV	TIPO	RESULTADO	RESULTADO PRUEBAS	
FASE	PADRICANTE	SERIE	NOMINAL	PRUEBA	mA	Watts	
H1	JOSLYN	96MS133	35	GSTground			
H2	JOSLYN	96MS132	35	GSTground	0.564	0.9092	
	JOSLYN	96MS131	35	GSTground	0.566	0.8924	

OBSERVACION:

PRUEBA REGULAR

Las perdidas han aumentado al doble desde la última prueba en el 2007, tomar en cuenta para la siguiente prueba y ver la tendencia de deterioro.

El pararrayo de la fase A (H1), se quitó para usarlo en el T-2 de Llano Sánchez.

EQUIPO UTILIZADO: Megger, Delta 2000