THE INACTIVATION AND REMOVAL OF IROTEOLYTIC INTYINGS FROM ANYLOLYTIC SUFFLENIETS

Tory

BRINTON MARLO DIRES

B. S., Kansas State College of Agriculture and Applied Science, 1948

A THESE

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Department of Milling Industry

OF AGRICULTURE AND AUTLIED SCIENCE

Document LD 2668 .T4 1948 D5 c.2

TABLE OF CONTENTS

INTRODUCTI	on .	٠										1
MATERIALS .	and meth	DDS										7
Mater	ials .											7
Prepa	ration o	f E	ctra	ota	•							10
Detem	mination	of	Pro	teoly	rtie	Act	ivit	y .				11
Deter	mination	of	Alpi	he-An	ylas	80 A	etiv:	ity	•			12
Adsor	ption Pr	oced	hire					•				14
EXPERIMENT	AL · ·						•			•		15
Engym	e Concen	trat	ion-	-Acti	vitz	r Rei	latio	onshi	ips			15
Room i	nation o	£ Ad	lsor	pents	5 · o							16
Effec	t of Hyd	roge	n-i	on Co	ncer	itra	tion	•				27
Effec	t of Sed	ium	Chlo	oride								34
Combin	ned Effe	et e	f H	rdrog	en-i	on (Conce	ntre	ation	3		
and S	odium Chi	lori	de .									35
Compan	rison of	Eng	yme	Sour	ces	•						41
DISCUSS ION		•	٠									43
SUMMARY.		•	•				0				*	51
ACKNOWLI DO	cets.				•	•			٠			53
LITERATURE	CITED	0										54

INTRODUCTION

The role of enzymes in baking technology has been reviewed recently in monograph form (2). Even before the existence of enzymes was recognized, malt supplements were used in baking solely on the basis of the desirable results obtained. Ensuing investigations resulted in the concept that this beneficial action was due to added amylolytic activity. Unfortunately, many amylase preparations suitable for flour supplementation are accompanied by considerable quantities of proteolytic ensymes. It is generally believed that these enzymes attack the flour proteins and thus impair the quality of the final product. The importance of amylolytic action and proteolytic activity control in brewing and distilling processes, as well as in the breadmaking industry, makes it desirable to separate the proteolytic enzymes from the amylolytic preparations. It was the purpose of this investigation to study the efficacy of various adsorbents and associated treatments in accomplishing this separation.

The influence of added amylase on the quality of bread was recognized as early as 1885 by Jago and Jago (23) who had a clear concept of the value of amylolytic supplements. The first mention of a direct relationship of "diastatic" activity and loaf volume was made by Wood (59). In 1890, Brown and Morris (9) and, later, Baker and Hulton (4) observed that the beneficial effect was due to a "starch-

liquefying" enzyme developed during germination of the cereal grain. It was not until 1930, however, that Ohlsson (42) successfully differentiated two "diastases" and named them alpha-smylase and beta-smylase, the starch-liquefying enzyme and the starch-saccharifying enzyme, respectively. Normally milled flour from sound wheat is deficient in alpha-smylase, but contains smple beta-smylase. Accordingly, Kneen and Sandstedt (33) concluded that the logical evaluation of a malt supplement should be a measure of its alpha-smylase activity.

Mearly all workers emphasize the value of malt supplements in preventing "yeast starvation" and maintaining gas production in doughs. Even in cases where gas production is not a factor, alpha-amylase supplementation is observed to improve bread quality. The reasons underlying the use of such supplements were summarized by Freeman and Ford (12). These included increased gas production, improvement in crust color, increased moistness of crumb and keeping quality, and additional flavor. To these Kneen and Sandstedt (33) have added the apparent increase in gas retaining ability of the dough.

Several sources of alpha-amylase have been studied in relation to flour supplementation. The practicability of using malted wheat or barley for mill control of amylase activity was demonstrated in extensive investigations by Sherwood and Bailey (54). Certain strains of the mold, Aspergillus oryzae, have been found to produce alpha-amylase suitable for flour supplementation. The organism is customarily cultured on wheat bran. Data obtained by Read and Haas (46), Johnson and Miller (24) and others indicated the successful application of fungal amylases in baking. Green (15), in comparative studies, also found pancreatic amylase to be satisfactory but impractical. Certain bacterial amylases may also be applicable although their properties as reported by Kneen and Beckord (32) are quite different from the mold and cereal amylases. It appears, then, that the commercially feasible amylases sources for flour supplementation are cereal and mold amylases. Both are available commercially in concentrated form.

Alpha-amylase supplementation may be beneficial or harmful depending on the amount or type used. Detrimental effects have frequently been observed and bakers are reluctant to add more than a very small percentage in their doughs. Hildebrand and Burkert (21) presented two conflicting theories on the cause of this detrimental action. The older theory proposed by Ford and Guthrie (11) and substantiated by Baker and Hulton (4) and others postulated that the effects were due to high proteclytic activity. A later theory advanced by Kozmin (34) contended that the production of sticky doughs and moist crumb was due to the liquefaction and dextrinization of starch resulting from excessive alpha-amylase activity. This theory was further amplified by Read and Haas (46), Sandstedt, Jolitz, and Blish (51), Geddes, Hildebrand, and Anderson (13) and others. No satisfactory solution to the problem, however, has been proposed. Recent studies by Johnson and Miller (24)

and Miller and Johnson (38) appear to support the proteolysis theory. These authors reported that high levels of alpha-smylase may be used in straight doughs without detrimental effects. However, when malt preparations were added to sponge doughs in sufficient quantities to materially improve diastatic activity, the proteclytic enzymes present effected a degradation of protein resulting in inferior bread. Salt, which is present in the straight dough, but not in sponge, was shown to inactivate a portion of the proteclytic enzymes.

Hard wheat flours normally contain negligible amounts of proteclytic enzymes; therefore, it is desirable to consider the addition to doughs of other products known to be rich in these enzymes. Olson and Bailey (43) found that the proteases of sound normal yeast are negligible in their effect on gluten properties. Proteases do not diffuse through living yeast cell walls to any appreciable degree. Other ingredients in dough do not have proteclytic activity. It would appear that a method for removing proteclytic enzymes from amylolytic supplements would mitigate the detrimental effects of high levels of malt supplementation.

Several general procedures have been used for purification and concentration of enzymes. These include dialysis; precipitation, either single or repeated; and adsorption of the enzyme on selected adsorbents followed by elution. Little information is available concerning separation of proteclytic enzymes from smylases by dialysis, but some work has been done with precipitation methods.

Marston (36) called attention to the fact that certain

water soluble compounds containing an azine nucleus, such as safranine, would completely precipitate proteclytic enzymes from acqueous solutions. We effect on the amylases was noted. Tissue and Bailey (55) and Read and Haas (46) found, however, that safranine did not give a strictly quantitative separation of the proteases from malt preparations and, in addition, experienced difficulty in removing the excess dye. Other precipitation methods also have been tried with little success.

The use of adsorbents has produced the most promising results. The process of adsorption has long been used in the isolation and purification of chemical compounds which are similar in structure and reaction. European chemists used adsorbents extensively for purification and concentration of enzymes.

Willstatter and Waldschmidt-Leitz (57) and Willstatter, Waldschmidt-Leitz and Hesse (58) found that the lipase, emylase, and trypsin of pancreatic extracts could be reparated by adsorption on alumina and kaolin. Previously, Rakuzin and Flier (45) reported that diastase was exhaustively adsorbed by aluminum hydroxide gel but not by kaolin.

The problem of selective adsorption is complex and involves the interaction of many factors. Sherman, Caldwell, and Adams (53) and Hemmi and Inami (19,20) reported pancreatic amylase to be readily adsorbed by kaolin and by alumina gel, while Hemmi and Inami noted that the amylase of takadiastase was only weakly adsorbed by kaolin. Neither of these investigations resulted in complete separation of proteolytic from amylolytic enzymes. Work on yeast extracts by Grassman

and Haag (14) indicated the use of aluminum hydroxide and kaolin for separating the yeast proteases, trypsin, and erepsin. Young and Hartman (61) investigated a series of adsorbents in a study involving the adsorption of lipase, amylase, and trypsin from pancreatic extract. These authors reported several adsorbents to be specific for the adsorption of trypsin, of lipase, and of amylase. Techniques were developed by which any two of the enzymes could be removed from the third.

The reaction or pH of the adsorbent suspension also affects the specificity and efficiency of the adsorption process. Lucrs and Malsch (35) and Sabalitschka and Weidlich (50) found that malt amylase was best adsorbed at pH values approximating 4.5 while a pH optimum above 5.0 was observed for the adsorption of malt proteases. Protease was reported by Hopkins (22) to be adsorbed from 40 per cent acetone by alumina and less completely by kaolin at a pH of 4.7. Kitano (25,26,27,28,29. 30,31) reported investigations on the use of a number of adsorbents in the separation of maltase from the amylase in takadiastase. All adsorbents were found to be more efficient as the pH was increased and became more or less selective with changes in pH. Selectivity of any particular adsorbent for amylase or maltase was not absolute but was influenced by temperature, pH, and enzyme concentration. Yamagisi (60) obtained similar results with adsorption of rice amylase on aluminum hydroxide gel. The optimum pH range for adsorption was found to be from 4.0 to 4.5.

In 1938, Waldschmidt-Leitz and Ziegler (56) obtained a patent on the use of bauxite, a natural aluminum ore, for selectively adsorbing proteases from enzyme mixtures obtained from malted grains, molds, and bacteria. This process succeeded only in increasing the ratio of amylolytic to proteolytic enzymes. A pH value between 5.5 and 7.5 was recommended. Miller and Johnson (38) have investigated bentonite and kaolin and found these agents also to be effective in differentially removing proteolytic enzymes although the separation was not complete. The purpose of the present work was to investigate various adsorbents and treatments in an effort to improve the inactivation or removal of proteolytic from amylolytic enzymes.

MATERIALS AND METHODS

Materials

The chief source of amylase investigated was a mold bran obtained through the courtesy of Dr. K. J. Goering, President, The Mold Bran Company, Eagle Grove, Iowa. This preparation was a culture of the mold, <u>Aspergillus oryzae</u>, grown on wheat bran. Additional fungal sources included "E-Z-1" from The Mold Bran Company; a mold bran product of the Wallerstein Laboratories, New York; and Rohzyme-S, Rohm and Haas Company, Philadelphia. A bacterial bran of the Jeffreys Laboratories, Salem, Virginia, was used as well as a Wallerstein bacterial amylase preparation. Also examined were a commercial malted wheat flour, The Kanses

Milling Company, Wichita, Kansas; a commercial malted barley, Hales and Hunter Company, Chicago; and Polidase-S, a vegetable amylase preparation of the Schwartz Laboratories, Inc., New York. The papain used was a product of the Merck Chemical Co., Rahway, New Jersey.

Samples of adsorbents were obtained from the following commercial sources:

Activated Alumina
The Aluminum Ore Co., East St. Louis, Illinois

Amberlite IR4B
An acid adsorbent or anion exchange resin. The Resincus
Froducts and Chemical Co., Washington Square, Philadelphia

Amberlite IR100
A synthetic resinous cation exchanger in the sodium form.
The Resinous Products and Chemical Company

De-Acidite
An amine resin anion exchanger. The Permutit Co., 330 West
42nd St., New York

Decalso fines A synthetic sodium alumino-silicate in the sodium form. The Permutit Company

Duclite A-2 A resincus anion exchanger. The Chemical Process Co., 58 Sutter Street, San Francisco

Duclite C-3 A resinous cation exchanger in the hydrogen from. The Chemical Process Company

Egg Albumin Merck & co., New York

Florida Fuller's Earth consisting largely of SiO₂ and Al₂O₃. The Floridin Co., Warren, Pennsylvania

Florisil
An analytical adscribent. The Floridin Company

Folin Decalso
A synthetic sodium alumino-silicate with exchangeable

hydrogen ions. The Permutit Company, 330 West 42nd Street, New York

Isec Adsorbol A-420 An activated clay. Innis, Spieden & Co., 117 Liberty Street, New York

Isco Adsorbol N-100
Unactivated or natural clay. Innis, Spieden & Company

Lloyd's Reagent A form of hydrated aluminum silicate. The Hartman-Leddon Co., Philadelphia

Norit A decolorizing carbon. The Pfanstiehl Chemical Co., Waukegen, Illinois

Permutite
A material in the laboratory whose exact source is unknown, but which is evidently very similar to the Decalso of the Permutit Company, 330 West 42nd Street, New York

Pumice
A finely powdered product in the laboratory, the source
of which is unknown

Santocel C
A processed sodium silicate. The Monsento Chemical Co.,
Merrimac Division. Boston

Santocel CX
A processed sodium silicate of different density and particle size. The Monsanto Chemical Company

Turkish Emery
Arthur H. Thomas Co., Philadelphia

Zeo-Dur
A processed glauconite or greensand in the sodium form.
The Permutit Company, 330 West 42nd Street, New York

Zeo-Karb H
An organic cation exchanger of the sulfonated coal type.
The Permutit Company, 330 West 42nd Street, New York

Zeolite A resinous adsorbent. Zeolite Chemical Co., 140 Cedar Street, New York

Zeo-Rex H

A resinous cation exchanger treated to operate in the hydrogen cycle. The Permutit Company, 330 West 42nd Street, New York

Other adsorbents were prepared in the laboratory as follows:

Activated Bauxite

Grude bauxite ore was obtained from the Department of chemistry, Kansas State College. It was finely ground and activated at 200° C. for 24 hours.

Hydrous eluminum oxide gel

Frepared by adding 250 ml of 3 M NH₄OH to 250 ml 0.5 M Al(80_4)_x. The precipate was washed, dried at 130^9 C., and activated for 24 hours at 200^9 C.

Hydrous aluminum oxide gel on asbestos support Prepared in the same manner as above but in the presence of 10 g asbestos fiber.

Hydrous aluminum oxide gel in alcohol Prepared in the same manner as above with the alcohol being added at the time of adsorption.

Magnesium silicate

Made by diluting sodium silicate to a specific gravity of 1.06 with distilled water and adding a molar solution of magnesium chloride to the silicate as long as precipitation occurred. The precipitate was washed, dried at 130°C., and activated 24 hours at 200°C.

Preparation of Extracts

A solution of emylolytic and proteolytic enzymes was prepared by extracting the source with 0.2 per cent calcium chloride solution at room temperature. The mixture was stirred every 15 minutes for one hour after which it was filtered and centrifuged. The resulting clear solution was stored under toluene in a refrigerator until used. Under these conditions, Sandstedt, Kneen, and Blish (52) demonstrated that as much as 8 per cent of the alpha-amylase activity is lost in 48 hours. Consequently, fresh enzyme extracts were prepared daily to minimize interactions in the solution. A ratio of 1 g of preparation to 10 ml of 0.2 per cent calcium chloride solution provided an extract of convenient enzyme activity.

Determination of Proteolytic Activity

Anderson procedure as standardized by Miller (37). Driefly, this method involves the hydrolysis of a hemoglobin substrate by the enzyme extract in a mixture buffered at p. 4.7. After the hydrolysis period, undigested protein is precipitated with trichloroacetic acid, filtered, and aliquots of the filtrate analyzed for total nitrogen. Titration values indicate the extent of proteolytic activity in the sample.

The detailed procedure consisted of adding 25 ml of 0.1 M sodium acetate-0.1 M acetic acid buffer (pH 4.7) to 125 ml
Erlemmeyer flasks containing 0.625 g (moisture free) of Bactohemoglobin and approximately 2 g of powdered pumice. One ml of the appropriate dilution of the enzyme extract was added, the flasks tightly stoppered and placed in an automatic shaking device fitted in a constant temperature water bath held at 40.0 to.1°C. After a five-hour digestion period, a 4 ml portion of trichloroacetic acid (45 per cent by weight) was added to each flask and shaken for an additional five minutes. The reaction mixture was then filtered and duplicate 5 ml aliquots of the filtrate pipetted directly into Kjeldahl flasks for analysis of soluble nitrogen.

The standard Kjeldahl-Gunning-Arnold procedure (3) was used; however, a digestion time of 20 minutes was emple. Each

still was checked for leaks and duplicability by determining the nitrogen in aliquots of an ammonium oxalate solution. The water used for dilution after digestion was added in such a way as to wash down all of the trichloroacetic acid which condensed on the neck of the flask during digestion. Concentrated alkali was also added so that any acid remaining in the neck of the flask would be neutralized.

Unneutralized acid was back-titrated with 0.0714 N sodium hydrexide. Blank determinations were carried out in exactly the same way except that the enzymatic algestion period was terminated after 15 minutes. The proteclytic activity of the enzyme preparation was expressed in equivelant ml of 0.0714 N sodium hydroxide derived from duplicate titration values and their appropriate blanks.

Determination of Alpha-Amylase Activity

Alpha-emylase activity was determined by the starch dextrinization procedure described by Sandstedt, Eneen, and Elish (52). Values for alpha-emylase activity are expressed as the time in minutes required to produce the standard red-brown end point with lodine.

Several reagent solutions were required. A stock iodine solution consisting of 5.5 g of iodine crystals and 11 g of potassium iodide was diluted to 250 ml with water and stored in the dark in a glass-stoppered bottle. The iodine solution (A) for the standard was prepared by diluting 15 ml of the

stock iodine and 8 g potassium iodide to 200 ml with water. The dilute iodine solution (B) was composed of 2 ml of the stock solution and 20 g potassium iodide in 500 ml of water solution. A standard dextrin solution was prepared by transferring quantitatively a suspension of 0.528 g (moisture-free) of Merck's Reagent Dextrin* into boiling water. This preparation was cooled, made up to 1000 ml. saturated with toluene and stored in a refrigerator. The buffer solution consisted of 73.5 g sodium citate (0.25 M) and 21 ml concentrated hydrochloric acid (0.25 M) made up to 1000 ml volume with water.

The buffered limit-dextrin substrate was prepared by suspending 5 g (moisture-free) of "Merck Soluble Starch, according to Lintner, Special for Diastatic Power Determination" in 25 ml of water and pouring this suspension slowly into approximately 250 ml of boiling water. Boiling with stirring was continued for approximately one minute after which the beaker, covered with a watch glass to prevent a starch film from forming on the surface, was cooled in cold running water. Fifty ml of buffer solution and 125 mg of special beta-amylase powder, prepared by the Wallerstein Laboratories were suspended in a few ml of water and transferred quantitatively to the starch solution. The mixture was then brought to a volume of 500 ml, saturated with toluene, and stored at 30°C. for not less than 24 nor more than 72 hours.

The color standard was prepared by pipetting 5 ml of iodine solution (A) and 1 ml of the dextrin solution into a comparison tube. Test tubes measuring 0.5 by 4 inches were satisfactory.

A fresh standard was made up for each series of determinations.

For each amylase determination, 1 ml of the appropriate dilution of the enzyme extract was introduced into a 50 ml Erlemmever flask and diluted to 10 ml with 0.2 per cent calcium chloride. After sufficient time had clapsed for the flask and contents to reach 30°C. in a constant temperature water bath, a 20 ml portion of the buffered limit-dextrin was blown into the flask from a fast-flowing pipette and the exact time recorded. At appropriate time intervals 1 ml portions of the hydrolyzing mixture were withdrawn and introduced into 5 ml of the dilute indine solution (B) in a comparison tube. The contents were thoroughly mixed and compared for color with the standard. Color comparisons were conveniently made through openings in a black surface before a 100 watt daylight bulb screened by thin paper. The exact time for the hydrolyzing mixture to produce a color in the iodine solution matching that of the standard was recorded. It was found that in most cases this time could be estimated to the nearest 0.25 minutes. The time interval required to reach the standard color is inversely proportional to the alpha-amylase activity.

Adsorption Procedure

Batch methods were employed in all adsorption experiments. A 25 ml portion of the enzyme extract diluted 1:10 was added to 2 g of the adsorbent in a small beaker and stirred periodically during a 30 minute period. The pH of the suspension

was measured immediately after mixing and pH adjustments were made at this time unless otherwise noted. After standing, the suspension was filtered with suction through Whatman No. 5 filter paper. Alpha-amylolytic and proteolytic activity were determined on appropriately diluted aliquots of the filtrate. All dilutions were made with 0.2 per cent calcium chloride solution.

EXPERIMENTAL

Enzyme Concentration-Activity Relationships

Sandstedt, Kneen and Blish (52) have established the linear relationship between alpha-amylase concentration and the rate of dextrinization, but no such simple relationship was evident in the determination of proteolytic activity. It was therefore necessary to determine the relation existing between proteolytic enzyme concentration and the titration values obtained from the activity determination. Accordingly, the proteolytic activity in several dilutions of the mold bran extract was determined. The activity expressed in ml of 0.0714 N sodium hydroxide (blank minus sample titrations) was plotted as shown in Plate I. Curve A demonstrates that the enzyme-substrate reaction is not zero order and titration values must consequently be referred to a previously determined curve to get an accurate estimate of proteolytic activity. However, if extracts are diluted so that titration values do not exceed 3 ml, the values fall on the

essentially linear portion of the curve plotted in Curve B.

Errors in assuming a straight line relationship between activity and concentration in this region would be quite small. In the course of this investigation, these limits were adhered to and a linear relation assumed.

Examination of Adsorbents

The preliminary work on available adsorbents was designed to eliminate those showing little or no faculty for selective adsorption of the proteolytic enzymes. Each adsorbent was run in duplicate and average values for the percentage loss of both proteolytic and amylolytic enzyme activity are tabulated in Table 1. The pH value of the adsorbent suspension is also recorded. Duplicate results are listed individually when they are substantially different.

From these data, it was possible to divide the adsorbents into three general groups with respect to selective adsorption of proteolytic enzymes. Several of the adsorbents, when in contact with the enzyme solution, produced a reaction which inactivated the enzymes present. Those making up this first group and their respective pH values in suspension were as follows:

Santocel Santocel Zeo-Karb	CX	3.3 3.5 1.7	Isco Adsorbol A=420 Duolite A=2 Duolite C=3	3.4
Zeo-Rex	H	1.5		1000

Those adsorbents which adsorbed both proteolytic and amylolytic enzymes and exhibited little selectivity in their adsorption characteristics comprised a second group. This group included Florex XXX and Norit A which adsorbed both enzymes strongly, Zeo-Dur and Egg Albumin with weak adsorptive characteristics,

EXPLANATION OF PLATE I

Curves showing the effect of concentration on measured proteolytic activity of mold bran extracts. Curve B represents the first portion of Curve A plotted on a different scale.

PLATE I

and aluminum hydroxide gel which moderately adsorbed both enzymes. Egg Albumin was difficult to hendle and, due to its gel-like properties, a large proportion of the enzyme suspension was retained. A marked variability in results was noted when using aluminum hydroxide gel prepared in the laboratory. This may be expected since the properties of aluminum hydroxide vary markedly with changes in preparation (Hawk, Oser, and Summerson, 18).

A third group consisting of the remaining adsorbents exhibited definite possibilities for selective adsorption of proteclytic enzymes. These were subjected to further study by varying the hydrogen ion concentration of the adsorbent suspension. This pH adjustment was accomplished by carefully adding dilute acid (HCl) or alkali (NaOH) to the suspension immediately after mixing the enzyme extract and adsorbent. Dilution was kept constant by adding appropriate amounts of 0.2 percent calcium chloride solution. After a 30-minute contact period, the suspension was filtered and the enzyme activities determined in aliquots of the filtrate.

During the contact period, there was a tendency in all cases for the pH value to change slowly toward the natural pH of the adsorbent suspension. The degree of change was as much as 2.8 pH units, but varied with the adsorbent used. Apparently, this change is also an adsorption phenomena, the adsorbent removing either anions or cations from the solution. The first or most extreme pH reading was taken to be the critical value.

The results of this investigation are presented in Plates II, III, and IV. Percentage losses of proteolytic and amylolytic activity are plotted against pH levels for each adsorbent.

Table 1. The effect of various adsorbents on the adsorption of proteolytic and amylolytic enzymes.

	ě				
			1	Percent loss	in nativity
Adsorbent	:	pН	-	amylolytic :	
Amberlite IR 4B		10.8		61.1	85.6
Amberlite IR 100		10.2		30.0	88.2
Florex XXX		6.5		92.7	97.6
Florisil		9.2		66.7	100.0
Santocel C		3.3		83.7	81.1
Santocel CX		3.5		85.0	80.4
Folin decalso		6.3		7.2	33.8
Decalso fines		7.2		7.2	61.8
Zeo-Dur		6.1		10.4	13.5
Zeo-Karb H		1.7		100.0	94.8
Zeo-Rex H		1.3		100.0	93.6
De-Acidite		7.6		29.0	51.8
Activated alumina		7.5		53.4	77.2
legnesium silicate		10.2		22.8	78.9
Turkish Emery		5.5		3.5	17.0
Pumice (Pwd.)		5.8		13.0	44.4
Egg Albumin		6.2		10.0	20.5
Isco adsorbol A-420		3.4		100.0	100.0
Isco adsorbol N-100		6.4		29.0	84.7
A1(OH)3		4.4		15.2	24.8
AI (OH)_		6.2		9.6	0.0
L (UII) Z		6.5		44.0	31.1
L(OH) zon asbestos		6.5		42.8	52.8
Al (OH) on asbestos		4.3		70.1	57.1
1(OH) in alcohol		4.3		19.4	22.8
etivated Bauxite		6.2		22.2	40.5
Ceolite		4.7		17.6	51.8
Worit A		7.2		100.0	97.1
ermutite		6.9		6.6	31.5
Duolite A-2		3.6		100.0	53.5
uolite C=3		2.1		100.0	96.5
loyd's reagent		6.7		12.1	78.0

EXPLANATION OF PLATE II

The relationship of the adsorption of smylolytic and proteolytic enzymes in mold bran extracts to changes in hydrogen-ion concentration for different adsorbents. Amylolytic activity is represented by "o" and proteolytic activity by "x".

Fig. 1. Florisil

Fig. 2. Activated Bauxite

Fig. 3. Activated Alumina

Fig. 4. Pumice

EXPLANATION OF FLATE III

The relationship of the adsorption of emylelytic and proteclytic enzymes in mold bran extracts to changes in hydrogen-ion concentration for different adsorbents. Amylelytic activity is represented by "o" and proteclytic activity by "x".

Fig. 5. Amberlite IR4B

Fig. 6. /mberlite IR100

Fig. 7. Zeolite

Fig. 8. Decalso Fines

ILAR III

pH of adsorbent suspension

EXPLANATION OF PLATE IV

The relationship of the adsorption of amylolytic and proteolytic enzymes in mold bran extracts to changes in hydrogen-ion concentration for different adsorbents. Amylolytic activity is represented by "o" and proteolytic activity by "x".

Fig. 9. Isco Adsorbol M100

Fig. 10. Lloyd's Reagent

Fig. 11. Folin Decalso

Fig. 12. Magnesium Silicate

The points represent average values of several determinations within a pH range of 0.5 unit. The degree of adsorptive selectivity is thus represented by the distance between the two curves at any particular pH value.

Examination of the curves revealed that an optimum selectivity existed near a pH of 10.0 in nearly all cases. Except for this tendency toward a high optimum pH, there was a wide variation in the effect of pH changes. Florisil was unusual in that it removed the proteclytic enzymes almost completely over the entire pH range studied. Both Decalso products exhibited very little adsorption of emylases. Folin Decalso, however, had the highest selective adsorption of proteclytic enzymes.

From these data it was possible to choose several adsorbents with distinctly superior selective properties. These were
Folin Decalso, Decalso Fines, Lloyd's Reagent, Isco Adsorbol
M100, and magnesium silicate. It was interesting to note that
all of these adsorbents were silicates or were high in silicate
content. The Amberlites, IRAB and IR100, exhibited the most
promising characteristics of the resinous adsorbents.

Effect of Hydrogen-ion Concentration

The tendency toward a uniform selective adsorption optimum at pH 10.0 stimulated further investigation of pH effects. It was found that raising the pH value of the extract to 10.0 caused a 50 per cent loss of proteolytic activity with no significant

decrease in emylolytic activity. An adsorbent must therefore show selective adsorption for proteclytic enzymes at least 50 per cent above that for emylolytic enzymes to be of value. Since few of the adsorbents studied exhibited a selectivity significantly greater than this, a study of the nature of the differential inactivation of proteclytic enzymes by pH was undertaken.

Flate V illustrates the effect of pH on protoclytic and emylelytic activity. Values above pH 10.0 resulted in marked inactivation of emylelytic as well as proteclytic activity. A pH of 10.0 appeared to be optimum for selective inactivation of proteclytic enzymes. The data in Table 2 revealed that this inactivation was irreversible. When the pH was reduced to 5.5 with hydrochloric acid after adjusting to 10.1 with sodium hydroxide there was a further inactivation of proteclytic enzymes as well as a slight decrease in emylelytic activity. Lowering the pH value with acetic acid did not alter the proteclytic activity appreciably. Barium hydroxide had the same effect as sodium hydroxide. Data on the effect of prolonged standing at various pH levels and temperatures is given in Table 3. No significant differences were noted and it was concluded that the inactivation was practically instantaneous.

It would be desirable commercially to adjust the pH of the extraction mixture and thus eliminate extra steps in the process. The data of Table 4 indicated that favorable results were obtained by this method.

The problem of eliminating the proteolytic activity re-

EXPLANATION OF PLATE V

The effect of hydrogen-ion concentration on the activity of amylolytic and proteclytic enzymes in mold bran extracts. Amylolytic activity is represented by "o" and proteclytic activity by "x".

PLATE V

Table 2. The effect of hydrogen-ion concentration on anylolytic and proteclytic activity of mold bran extracts.

Treatment	2	pH	:	Percent loss amylolytic:	
None		5.4		0.0	0.0
NaOH		10.1		1.9	51.7
NaOH / HCl		5.5		12.7	61.4
NaOH / HAC		4.6		5.8	53.3
Ba(OH)2		10.0		5.9	45.5

Table 3. The effect of standing at various hydrogen-ion concentrations and temperatures on amylolytic and proteclytic activity of mold bran extracts.

Time hours	: Temperature : C.	beginnin	pH g:ending	:Percent loss :	
0.0	30	5.4	5.4	0.0	0.0
0.0	30	10.1	10.1	1.9	51.7
0.5	30	10.2	10.0	3.6	52.4
0.5	6	10.2	10.1	0.0	51.4
1.0	30	10.2	9.8	3.6	56.2
1.0	6	10.2	9.9	0.0	48.1
3.0	30	5.4	4.9	0.0	-6.7
3.0	30	10.2	9.5	3.6	52.4
3.0	6	5.4	5.6	0.0	-1.0
3.0	6	10.2	9.7	0.0	43.8
36.0	30	5.4	600 mm 101	2.1	0.0
36.0	6	5.4	400 Gpt 400	2.1	13.8

Table 4. Effects of hydrogen-ion concentration in the extraction slurry on emylolytic and proteclytic activity of mold bran extracts.

pH adjustment :	рН	: Percent loss : amylolytie :	
In extract	10.1	1.9	51.7
In slurry (10.1)	7.6		52.7
Reversed with HCl	5.6	tor-sin on-	59.1

maining after treatment at high pH was subjected to further study. Accordingly, the pH adjusted extract was treated by several of the more efficient adsorbents. The results are tabulated in Table 5. It was possible to remove all proteclytic activity with Lloyd's Reagent at the expense of a significant loss in smlolytic activity. Folin Decalso and Amberlite TR4B provided better differentiation, but did not completely eliminate proteclytic activity.

Effect of Sodium Chloride

The use of adsorbents for further removal of proteclytic activity would necessitate extra handling and expense in a commercial process. A chemical method would be more simple and less costly. Conclusive evidence was presented by Miller and Johnson (38) showing that proteclytic activity was inhibited or inactivated by sodium chloride in flour doughs. The effect of salt on the proteclytic activity in extracts of mold bran was therefore thought worthy of investigation.

Salt was first added to the digestion mixture in the same proportion as that found in normal flour doughs. The loss of activity as shown in Table 6 represented 66.4 per cent of the proteclytic enzymes and 14.8 per cent of the amylolytic enzymes. Since the nature of this loss of activity could not be studied conveniently in the digestion mixture, a series of activity determinations was made with different concentrations of salt in the diluted extract. These results are also record-

ed in Table 6. Equal selt concentrations in the digestion minture and in the extract are shown to give similar results. A slight loss of smylolytic activity with increasing selt concentration was observed, but this loss was not proportional to the decrease in proteolytic activity. A salt concentration of 250 mg per ml of extract was chosen for further comparison work. This represents about 70 per cent saturation of the enzyme extract.

The loss of proteclytic activity by salt treatment was shown by the data in Table 7 to be virtually instantaneous and irreversible. Neither prolonged standing at 30° and 6° C. nor dialysis against 0.2 per cent calcium chloride solution caused consistent significant changes in activity. Tests for chloride ions (Cercal Laboratory Methods, 1) after 56 hours' dialysis confirmed the absence of all added salt. Again with commercial aspects of the problem in mind, salt added to the extraction slurry achieved similar results.

Combined Effect of Hydrogen-ion Concentration and Sodium Chloride

The combined effects of hydrogen-ion concentration and sodium chloride were investigated next. The results are tabulated in Tables 8 and 9. A definite additive effect was observed, but the only significant effect of additional treatment was the effect of salt on the adsorption of amylases. Loss of amylolytic activity in adsorption was in all cases increased over similar

Table 5. Effects of treating extracts of mold bran at pH 10.0 with different adsorbents.

Adsorbent :	рН		in activity
None	10.1	1.9	51.7
Amberlite IR4B	9.0	16.6	82.9
Folin Decalso	8.4	17.8	82.0
Lloyd's Reagent	8.2	48.9	100.0

Table 6. Effects of selt (NaCl) on the emylolytic and proteolytic activity of mold bran extracts.

Treatment	: Salt		S]	Percent loss	in activity
In digest	860	mg !	5.2	14.8	66.4
In digest	250	mg f	5.2	2.0	26.2
In extract	30	mg !	5.1	0.0	3.3
In extract	100	mg :	5.0	5.8	13.3
In extract		mg 4	8.1	5.8	25.2
In slurry		ml mg t	5.4	3.8	17.6

Table 7. Effect of dialysis and standing on the amylolytic and proteolytic activity of salt-treated mold bran extracts.

Treatmen	t	:	Temp.:		: pH :		in activity proteclytic
None			30	0	5.6	0.0	0.0
Standing	36	hrs.	6	0	5.4	2.1	13.8
Standing	36	hrs.	30	0	5.4	2.1	0.0
Standing	36	hrs.	6	250	4.7	8.0	30.8
Standing	36	hrs.	30	250	4.7	6.0	25.2
Dialysis	36	hrs.	30	000 000 0am	6.5	19.3	29.5

Table 8. Combined effects of salt and hydrogen-ion concentration on amylolytic and proteolytic activity of mold bran extracts.

	: Salt: img/ml:		Percent loss i	
None	0	5.4	0.0	0.0
NaOH	0	10.1	1.9	51.7
NaCl	250	4.8	5.8	25.2
NaCl ≠ NaOH	250	10.1	6.5	86.2
NaCl / NaOH In alurry	250	6.9	10.7	95.1
Standing 36 hrs.(6°C)	250	10.0	8.0	84.6
Standing 36 hrs. (30°C)	250	10.0	10.0	81.9
Dialysis 36 hrs.(30°C)	alla 100 app		15.4	79.2

Table 9. Effect of adsorbents on emylolytic and proteolytic activity of mold bran extracts treated with salt at pH 10.0.

Adsorbent	\$ pH	: Percent loss : smylolytic :	in activity
None	10.0	4.2	76.0
Lloyd's Reagent	8.7	61.7	100.0
Folin Decalso	8.0	28.1	80.0
Amberlite IR4B	9.0	14.8	78.4

losses in adsorption from extracts at pH 10.0 with no salt present. The data obtained from subsequent treatment by dialysis, standing at various temperatures, and the use of adsorbents are also included in Tables 8 and 9.

Comparison of Enzyme Sources

The application of salt and pH treatment to enzyme extracts from various sources is summarized in Table 10. ignificant differences in the response of fungel and bacterial enzymes were noted. A pH value of 10.0 had virtually no effect on bacterial proteclytic activity while salt inactivated significant amounts of bacterial amylolytic as well as bacterial proteclytic enzymes. All fungal sources exhibited the same relative effects as those observed in mold bran, and the enzymes from cereal sources, particularly those of malted barley, reacted similarly.

The comparative effects of similar treatment on papain were significent. There was no marked change in papain activity at pH 10.0. Salt concentrations comparable to those used with other sources actually increased the activity of this enzyme.

Table 10. The effect of hydrogen-ion concentration and salt on the emylolytic and proteolytic activity in extracts from different enzyme sources.

Source		pH 10.0	: Salt	n activity /1 : pH / Salt prot: amyl:prot
Goering Bran	Fungal	0.0 52.0	14.8	66.4 14.8 88.0
Wallerstein Bran	Fungal	4.8 76.5	9.1	54.1 16.7 88.8
WE-Z-IN	Fungal	0.0 75.0	10.5	48.3 10.5 86.7
Rohzyme S	Fungal	0.0 85.7	5.9	45.7 5.9 92.1
Wallerstein	Racterial	0.0 1.1	10.5	40.4 10.5 40.4
Jeffrey's Bran	Bacterial	3.8 3.9	35.1	71.0 35.9 80.6
Polidase S	Vegetable	0.0 30.5	0.0	56.6 5.3 78.6
Malted Barley	Cereal	0.0 70.6	2.4	26.5 4.7 78,4
Malted Wheat	Cereal	0.0 30.4	6.7	15.8 12.5 42.9
Papain	-	6.8		31.031.0

Z1 860 mg salt in the digestion flask represents the same proportion as that usually mixed in bread doughs.

DISCUSSION

The properties of proteolytic enzymes in flour doughs and in brewing media have not been completely investigated. For many years, workers have avoided studies involving proteolytic activity because of the lack of suitable methods. The method used in this investigation employed hemoglobin as a substrate and was standardized recently by Miller (37). The assumption that the action of enzymes in baking or brewing will follow the same pattern as their action on an unrelated substrate, such as hemoglobin is not strictly true. However, until a more suitable substrate is prepared, the proteolytic activity of different preparations can be followed by this procedure.

Determinations of relative proteolytic activity by this method have proved readily reproducible and reliable. Miller and Johnson (38) used it successfully to predict the extent of proteolysis in flour doughs and they were able to follow the effect of adsorption in separating proteolytic and smylolytic enzymes. In this study, 39 different determinations of proteolytic activity in mold bran extracts resulted in a mean titration value of 1.200 ml of 0.0714 N sodium hydroxide. Twentyseven duplicate determinations showed a mean difference of only 0.038 ml with a standard deviation of 0.040 ml. Thus it appears that the method for proteolytic activity determination is satisfactory and should stimulate further work on this enzyme system.

Proteolytic activity in mold bran extracts was shown by this method to follow a curvilinear relationship with enzyme concen-

tration (Flate I). A curve of similar shape was also obtained with different concentrations of malted wheat flour and it is to be expected that the activity of proteclytic enzymes from other sources would follow like curves. A unit of proteclytic activity is therefore suggested, but its development was beyound the scope of this work.

The removal of proteclytic engmes from emylolytic supplements by adsorption was only partially successful. Investigation of memerous adsorbents of various types resulted in the selection of four superior ones: viz. . Illoyd's Reagent, Isco-Adsorbel M100, Felin Decalse, and magnesium silicate. It is significant that these four and also other effective adsorbents were either silicates or were high in silicate content. This selection should not be construed to eliminate conclusively all remaining adsorbents from further study. Several ion-exchange resins, for example, were eliminated because their natural pH value in suspension was low enough to inactivate both amylolytic and proteclytic engymes. Preliminary treatment with basic solutions could adjust the pH to almost any level desired with probable improvement in selective properties. It is quite possible that other adsorbents might have much better selective characteristics under different treatment but the conditions of this study indicate a definite trend toward the silicates as the material best suited for preferential adsorption of proteolytic engymes.

Most of the adsorbents listed in Table 1 increased the ratio of amylolytic to proteclytic activity. Lloyd's Reagent removed as much as 78 per cent of the proteclytic engages and only 12 per cent of the emylolytic engages at the natural pH level of the adsorbent suspension. Changes in hydrogen-ion concentration of the various adsorbent suspensions produced a wide variety of results (Flates II, III, and IV). The striking feature of this phase of the investigation was a definite tendency for all adsorbents to reach a maximum selectivity for proteclytic engages at pH 10.0. Lloyd's Reagent, for example, removed approximately 90 per cent of the proteclytic setivity and about 20 per cent of the emylolytic activity at this level.

The data plotted in Plate V showed that the effect of high pH values was largely due to selective inactivation rather than to adsorption. A pH of 10.0 resulted in the inactivation of over 50 per cent of the proteolytic activity with ne significant less in smylclytic activity. Thus there appears to be no advantage in the use of adsorbents for removal of proteolytic enzymes unless a selective adsorption of at least 50 per cent over the amylolytic enzymes was obtained. Adjustment of pH with barium hydroxide achieved the same degree of inactivation as adjustment with sodium hydroxide. The proteclytic engymes did not recover their activity either with prolonged standing or with subsequent lowering of the pH level. The inactivation, apparently due to hydroxyl ions, was concluded to be instantaneous and irreversible. Indeed, hydrochloric acid caused an additional loss of proteclytic activity. Since acetic acid resulted in no significant changes, it was assumed that the additional loss of proteclytic activity by hydrochloric soid was due to the chloride ion.

Sodium chloride likewise caused significant losses of proteolytic activity. A salt concentration of 250 mg per ml of mold bran extract reduced the activity 20 to 30 per cent. This inactivation was also shown to be irreversible and instantaneous (Table 7). Since concentrations of calcium chloride supplying an equivelant amount of chloride ion achieved similar results, the inactivating influence of the chloride ion was further substantiated.

The additive effect of hydroxyl and chloride ions on proteolytic activity was adequately illustrated by the data of Table 8. Treatment of mold bran extracts at pH 10.0 with 250 mg sodium chlorids per ml resulted in over 80 per cent inactivation of proteclytic enzymes and less than 10 per cent loss of amvlolytic enzymes. Significant losses of amylolytic activity prevented the use of higher concentrations of either hydroxyl or chloride ions. These data appear to indicate the presence of at least two types of proteolytic enzymes, one inactivated by hydroxyl ions and the other by chloride ions. Berger, Johnson and Peterson (8) reported that the proteolytic enzyme system of most common molds consisted of several types. They found at least one protease in addition to at least five peptidases. Oteni (44) found a papain-type protease, a peptide decomposing enzyme and other proteclytic enzymes in cultures of Aspergillus cryzae. It is probable that hydroxyl ions and chloride ions inactivate certain specific groups of these enzymes.

Adsorption after treatment with hydroxyl and chloride ions proved of little value. Lloyd's Reagent provided a solution

entirely free of proteclytic activity, but over half the emylelytic activity was lost in the process. It may have been possible to recover the emylelytic activity by appropriate elution methods, but that phase of the work was not investigated at this time.

Proteclytic and amylolytic engymes from several fungal sources reacted similarly to treatment with sodium chloride and sodium hydroxide. The cereal and vegetable enzymes were also found to be inactivated in the same manner, although the proteclytic activity of melted wheat flour was not decreased to the same extent as in malted barley and fungal extracts. Mounfield (39,40) reported at least two types of proteolytic enzymes in extracts of sprouted wheat. A protease stable at a pH of 4.0 to 6.0 was reported destroyed by standing three days at pH 8.0. This enzyme may be the one specifically inactivated by hydroxyl ions. A dipeptidase which lost its activity at pH 4.0 could be the one affected by the chloride ion. For all funcal and cereal sources tested, there was a definite additive effect of pH and salt inactivation resulting in as much as 90 per cent less of proteclytic activity with as little as 6 per cent loss of amylolytic activity. It would appear that the proteases and amylases of fungal sources are of the same type as those found in cereals.

Bacterial sources, however, provided proteclytic enzymes with different properties. Proteclytic activity was not decreased significantly at pH 10.0. Amylolytic activity decreased sharply with pH values above 10.0 in the same manner as the fun-

gal emylolytic activity. The same inactivation pH for bacterial emyloses was reported by Di Carlo and Redfern (10). Treatment with sodium chloride, however, achieved a degree of proteclytic engage inactivation comparable to that of fungal sources, thus adding support to the assumption that hydroxyl and chloride ions inactivate two different types of proteclytic engages. With higher salt concentrations, it was possible to obtain an inactivation of bacterial proteclytic activation of bacterial proteclytic activation of bacterial proteclytic activation of bacterial proteclytic activity roughly the same as that obtained with fungal extracts treated with both salt and base. However, a relatively large amount of emylolytic activity was also lost.

The chief enzyme of the protectytic system of wheat and flour has long been considered to be of the papain type (5,16). Balls and Male (6,7) based this conclusion on the fact that both papain and wheat proteinese were inhibited by exidizing agents such as potassium bromate and activated by reducing agents such as cysteine hydrochleride and glutathione. Consurrently, Mounfield (41) found the activity of both papain and a proteinese in sprouted wheat to be accelerated by cyanide. It was concluded that the protectytic engages in sprouted wheat were also of the papain type.

Extracts of papain were treated with hydroxyl and chloride ions in the same sammer as the fungal, coreal, and bacterial extracts. The results clearly indicated that the properties of proteclytic engages from fungal and cereal sources are not the same as those of papain. A pH level of 10.0 produced no significant decrease in papain activity and the same chloride ion concentration as used previously actually accelerated papain activity. Read and Haas (47, 48, 49) presented data indicating that malt protease was not of the papain type, but the "papain-like" concept has persisted. Potassium bromate was found by these authors to inhibit, but not inactivate, the proteases of malt and taka-diastase. Bromelin and papain were adversely affected. Recently, Harris, Johnson and Jesperson (17) made comparisons between native flour proteinases and papain and found distinct differences in regard to temperature of activation and temperature of optimum activity. It must be concluded from these results that the proteclytic enzymes in malt and fungal extracts are not of the papain type as previously supposed.

The results of this investigation indicate a process for commercial production of a fungal emylolytic supplement relatively free from proteclytic activity. It was shown that extractions of mold bren at pt 10.0 in the presence of sodium chloride achieve the same degree of proteinase inactivation as similar treatment of filtered extracts. Thus a single extraction process would provide a solution of alpha-smylase low in proteclytic activity which could be concentrated and packaged for commercial distribution. The inactivation and removal of proteclytic enzymes from smylolytic supplements was not complete, but a significant increase in the ratio of smylolytic to proteclytic activity was successfully obtained. However, only a few of the many aspects of the problem have been cov-

ered. It is desireable, for instance, to obtain free, active proteclytic enzymes as well as amylases for application to research problems. The use of adsorption and elution techniques should be exploited to determine proper conditions for this separation. Extensive investigation of the smylolytic and proteclytic enzymes of cereals, molds, and bacteris will then be possible. It is hoped that the results of this study will stimulate further inquiry into the many problems associated with these and other enzyme systems.

SUMMARY

Several commercial adsorbents were studied with regard to their ability for selectively removing proteolytic enzymes from smylolytic supplements. In the course of the investigation it was observed that 50 to 60 per cent of the proteolytic activity in a mold bran extract was irreversibly inactivated at pH 10.0. Ensuing investigations of this effect and the effects of added sodium chloride resulted in the following conclusions:

- The modified Ayre-Anderson procedure as standardized by Miller (37) appears to be a satisfactory and reliable method for determining proteolytic activity in various preparations.
- 2. The adsorbents exhibiting the best characteristics for selective adsorption of proteclytic enzymes from amylolytic extracts of mold bran were either silicates or were high in silicate content; viz., Lloyd's Reagent, Isco Adsorbol N100, Folin Decalso, and magnesium silicate.
- 3. Fifty to sixty per cent of the proteolytic activity in mold bran extracts was irreversibly inactivated at pH 10.0 which had little effect on the amylolytic activity. Lower hydrogenion concentrations inactivated significant amounts of the amylases.
- 4. Sodium chloride in concentrations of 250 mg per ml of mold bran extract irreversibly inactivated 20 to 30 per cent of the proteolytic enzymes. A small but significant loss of amylolytic activity was also observed.
 - 5. The effects of hydrogen-ion concentration (pH 10.0) and

sodium chloride were additive thus indicating that mold bran extracts contain several specific proteolytic enzymes, some of which are inactivated by hydroxyl ions and others by chloride ions. Combined treatment resulted in a loss of over 80 percent of the proteolytic activity and a decrease of less than 10 percent in emylolytic activity.

- 6. Fungal, cereal and vegetable proteolytic enzymes responded similarly to treatment with hydroxyl and chloride ions. Bacterial proteolytic enzymes, however, were only slightly affected at pH 10.0.
- 7. Papain was not affected at pH 10.0 and sodium chloride actually accelerated its activity. This appears to refute the popular concept that the proteinases of molds and cereals are of the papain type.
- 8. Commercial production of an amylolytic supplement essentially free from proteolytic activity is suggested.

ACKNOWLEDGMENTS

Acknowledgment is made to Byron S. Miller, Assistant Chemist, United States Department of Agriculture, for invaluable aid in directing the investigation and checking the manuscript; to Mr. Donald C. Abbott for preparing the plates; and to Dr. J. A. Shellenberger, Head, Department of Milling Industry, and other members of the department without whose cooperation the investigation could not have been completed.

LITERATURE CITED

- American Association of Cereal Chemists.
 Cereal Laboratory Methods, 5th Ed. 5t. Paul. American Assoc. of Cereal Chemists. 341 p. 1947.
- 2. Inzymes and Their Role in Wheat Technology. New York. Interscience. 371 p. 1946.
- Association of Official Agricultural Chemists.
 Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists, 6th Ed.
 Washington, D. C. Assoc. Official Agr. Chemists. 932
 p. 1945.
- Baker, J. L. and H. F. E. Fulton. Considerations affecting the "strength" of wheat flours. Soc. Chem. Indus. Jour. 27: 368-376. 1908.
- Bells, A. K. and W. S. Hale. Proteclysis in flours. Assoc. Off. Agr. Chem. Jour. 18: 135-140. 1955.
- 6. Proteolytic enzymes of flour. Cercal Chem. 15: 54-60.
- The preparation and properties of wheat proteinase. Cereal Chem. 15: 622-628. 1938.
- Berger, J., M. J. Johnson and W. H. Peterson. The proteclytic enzymes of some common molds. Biol. Chem. Jour. 117: 429-38. 1937.
- Brown, H. T. and G. H. Morris. Researches on the germination of some of the "Gramineae". Chem. Soc. Jour. 57: 458-528. 1890.
- 10. Di Carlo, F. J. and Sutton Redfern. Alpha-amylase from <u>Bacillus subtilis</u>. I. Purification and physical properties. Arch. Biochem. 15: 333-342. 1947.
- Ford, J. S. and J. M. Guthrie.
 The amylolytic and proteclytic ferments of wheaten flours and their relation to "baking value". Soc. Chem. Indus. Jour. 27: 389-393.
- Freeman, H. C. and W. P. Ford.
 The evaluation of malt products for use in the breadmaking industry. Soc. Chem. Indus. Jour. 60: 6-11. 1941.

- 13. Geddes, W. F., F. C. Hildebrand and J. A. Anderson. The effect of wheat type, protein content, and malting conditions on the properties of malted wheat flour. Cereal Chem. 18: 42-60. 1941.
- 14. Grassman, Wolfgang and Walther Haag. Flant proteases. VIII. Adsorption behavior and separation of the yeast proteases. Physiol. Chem. Z. 107: 188-201. 1927. Original not seen. Abstract in Chem. Abs. 21: 1062. 1927.
- 15. Green, W. R. The value of diastatic and other enzymic activity in flour and doughs. Gereal Chem. 11: 319-329. 1934.
- 16. Hale, W. S. The proteinase in wheat flour. Cereal Chem. 16: 695-702. 1939.
- Harris, R. H., Madelyn Johnson and Ethel Jesperson.
 Some properties of a flour proteinase. Arch. Biochem. 10: 267-276. 1946.
- Hawk, P. B., B. L. Oser and W. H. Summerson. Fractical Physiological Chemistry, 12th Ed. Philadelphia. Blakiston. 1323 p. 1947.
- Hemmi, Fumio and Goro Inemi. Selective separation of protease and amylase from takadiastase and pancreatin. Agr. Chem. Soc. (Japan) Jour. 5: 660-673. 1929. Original not seen. Abstract in Chem. Abs. 24: 1655. 1930.
- The specific properties of protease and amylase from the standpoint of the adsorption phenomene. V. The adsorption of amylase by kaolin. Agr. Chem. Soc. (Japan) Jour. 7: 133-137. 1931. Original not seen. Abstract in Chem. Abs. 25: 4289. 1931.
- Hildebrand, F. C. and G. M. Burkert.
 Amylase and protease systems of malted wheat flour. Cereal Chem. 19: 27-35. 1942.
- Hopkins, R. H. Proteolytic enzymes of green malt. I. Adsorption and elution. Biochem. Jour. 25: 1022-1029. 1929.
- 23. Jago, Willism and Willism C. Jago. The Technology of Bread-Making. Chicago. Baker's Helper Co. 630 p. 1921.

- 24. Johnson, J. A. and B. S. Miller.

 High levels of alpha-mylase in baking. I. Evaluation of the effect of alpha-mylase from various sources. Gereal Chem. In press.
- 25. Kiteno, Tombio.

 Take-maylase. VII. Purification of take-maylase by adsorption. Soc. Chem. Indus. (Japen) Jour. 39: Suppl. binding 22-24. 1936. Original not seen. Abstract in Chem. Abs. 30: 4122. 1936.
- 26. Take-mylase. VIII-I. The selectivity of various adsorbents. Sec. Chem. Indus. (Japan) Jour. 39: Suppl. binding 24-26. 1936. Original not seen. Abstract in Chem. Abs. 30: 4182. 1936.
- Telm-emylase. XI. The selectivity of various adsorbing agents. Soc. Chem. Indus. (Japan) Jour. 39; Suppl. binding 163-164. 1936. Original not seem. Abstract in Chem. Abs. 30; 6017. 1936.
- Take-englase. XII-XIII. The selectivity of verious adsorbing agents. See. Chem. Indus. (Jepan) Jour. 39: Suppl. binding 164-165. 1936. Original not seen. Abstract in Chem. Abs. 30; 6017. 1936.
- Taka-emylase. XIV. The selectivity of various adsorbents. Sec. Chem. Indus. (Japen) Jour. 39: Suppl. binding 359-390. 1957. Original not seen. Abstract in Chem. Abs. 31: 3947. 1957.
- Teks-mylese . KV. The selective adsorption of teks-disstase solution purified by adsorption. See. Chem. Indus. (Japan) Jour. 39: Suppl. binding 390-391. 1937. Original not seen. Abstract in Chem. Abs. 31: 3947. 1937.
- Taka-amylase. XVI. Summery on the purification of takasmylase by adsorption. Soc. Chem. Indus. (Japan) Jour. 39: Suppl. Binding 391-392. 1937. Original not seen. Abstract in Chem. Abs. 31: 3947. 1937.
- 32. Energ, B. and L. D. Beckord. Quantity and quality of smylase produced by various bacterial isolates. Arch. Biochem. 10: 41-54. 1946.
- Kneen, E. and R. M. Sandstedt.
 The evaluation of melt for use as a flour supplement. Gereal Chem. 19; 121-195. 1942.

- 34. Komin, E. Eiochemical characteristics of dough and bread from sprouted grain. Cereel Chem. 10: 420-436. 1933.
- 35. Lucrs, H. and L. Malsch.
 The proteclytic enzymes in malt. Wachschr. Breu. 46: 265-269, 275-280. 1929. Original not seen. Abstract in Chem.
 Abs. 23: 5202. 1929.
- 37. Miller, B. S. A critical study of the modified Agre-Anderson method for the determination of proteolytic activity. Assoc. Off. Agr. Chem. Jour. 30: 659-669. 1947.
- 38. and J. A. Johnson.

 High levels of alpha-mylave in baking II. Proteolysis in straight and sponge doughs. Geneal Chem. In press.
- Mounfield, J. D.
 The proteclytic enzymes of sprouted wheat. Biochem. Jour. 30: 549-557. 1936.
- The proteclytic enzymes of sprouted wheat II. Biochem. Jour. 30: 1778-1786. 1936.
- The proteclytic engmes of sprouted wheat III. Biochem. Jour. 32: 1675-1684. 1938.
- 42. Ohlsson, Erik.

 Ther de beiden Komponenten der Maladiastase, besonders mit Rughsicht auf die Mutaretation der bei der Hydrolyse der Stärke gebildeten Frodukte. Physiol. Chem. 2. 189; 17-63. 1830. Original not seen. Abstract in Chem. Abs. D4: 3521. 1830.
- Olson, A. C. and C. H. Beiley. A study of the proteases of bread yeart. Cereal Chem. 2: 68-66. 1926.
- 44. Oteni, Yosio.

 Enzymes in young mycelia of Aspergillus cryrae. Agr. Soc. (Jepen) Bull. 15; 59-64. 1939. Original not seen. Abstract in Chem. Abs. 34; 132. 1940.

- Rakuzin, M. A. and G. D. Elier.
 Optical properties of diestase and its adsorption by kaolin and by Al(OH). Russ. Phys. Chem. Soc. Jour. 48: 321-324. 1916. Original not seen. Abstract in Chem. Abs. 11: 454. 1917.
- 46. Read, J. V. and L. V. Hang. Further studies on the baking quality of flour as affected by certain enzyme actions. Geneal Chem. 13: 14-37. 1936.
- Baking quality of flour as affected by certain enzyme actions. III. Furified smylage and the relative proteclytic activity of smylolytic agents. Cereal Chem. 14: 58-73.
- Studies on baking quality of flour as affected by certain enzyme actions. IV. Potassium bromate and enzyme activity. Cereal Chem. 14: 752-766. 1937.
- Studies on the beking quality of flour as affected by certain enzyme actions. V. Further studies concerning potassium bromate and enzyme activity. Gereal Chem. 15: 59-68. 1938.
- 50. Sabelitschka, Th. and R. Weidlich.

 Malt amylase. VII. Adsorption of amylase from malt extract
 on kaolin and its elution. Biochem. Z. 211: 209-238. 1929.
 Original not seen. Abstract in Chem. Abs. 23: 5205. 1929.
- Sandstedt, R. M., C. E. Jolitz and M. J. Blish.
 Storch in relation to same baking properties of flour. Cereal Chem. 16: 780-792.
- Sandstedt, R. M., E. Kneen and M. J. Bligh.
 A standardized vollgemuth procedure for alpha-amylase activity. Gereal Chem. 16: 712-723. 1939.
- Sherman, H. C., M. L. Caldwell and Mildred Adams.
 Enzyme purification by adsorption; an investigation of pancreatic amylase. Amer. Chem. Soc. Jour. 48: 2347-2356.
- 54. Sherwood, R. C. and C. H. Bailey. Control of diastatic activity in wheat flour. I. Production of diastatic flour and effect of large dosages. Cereal Chem. 3: 107-136. 1926.
- 55. Tissue, R. A. and C. H. Bailey. A study of the proteclytic enzymes of malt preparations. Cereal Chem. 8: 217-226. 1931.

- Waldschmidt-Leitz, E. and F. Ziegler.
 Separation of amylase and protease. U.S. Patent 2,121,459.
 1938.
- 57. Willstatter, R. and E. Wäldselmidt-Leitz.

 Famoreatic enzymes. II. Famoreatic lipase. Physicl. Chem. Z. 125: 132-298. 1923. Original not seen. Abstract in Chem. Abs. 17: 2718. 1923.
- 58. Willstätter, R., E. Waldschmidt-Leitz and A. R. F. Hesse. Fancreatic enzymes. ITI. Fancreatic enzylase. Physiol. Chem. Z. 126: 143-168. 1923. Original not seen. Abstract in Chem. Abs. 17: 2892. 1923.
- 59. Wood, T. B. The chemistry of strength of wheat flour. Agr. Sci. Jour. 2: 139-160, 267-277. 1907.
- Yamagisi, Gohei.
 Ihnzymic studies on cereals. XI. Adsorption of amylase of rice. Agr. Chem. Soc. (Japan) Jour. 16: 417-429. 1940.
 Original not seen. Abstract in Chem. Abs. 35: 759-760.
- Young, J. H. and R. J. Hartman. Adsorption of pancreatic enzymes. Ind. Acad. Eci. Proc. 48: 79-86. 1939.