CSC343 Assignment 3

Angela Zhu, Xinyi Ji, Zhuozi Zou

April 5, 2019

1 Database Design

1. a. Since G is not on the RHS of any FD, it must be included in any superkey of R.

$$G^+ = G$$

No one-attribute superkeys found, need to calculate closures of all possible two-attribute combinations.

 $AG^+ = AG$

 $BG^+ = BDG$

 $CG^+ = CG$

 $DG^+ = DG$

 $EG^+ = EFG$

 $FG^+ = FG$

No two-attribute superkeys found, need to calculate closures of all possible three-attribute combinations.

 $ABG^{+} = ABCDEFG$, therefore ABG is a superkey.

 $ACG^{+} = ABCDEFG$, therefore ACG is a superkey.

 $ADG^+ = ADEFG$

 $AEG^+ = AEFG$

 $AFG^+ = AFG$

 $BCG^{+} = ABCDEFG$, therefore BCG is a superkey.

 $BDG^+ = BDG$

 $BEG^+ = BDEFG$

 $BFG^+ = BDFG$

 $CDG^+ = CDG$

 $CEG^+ = CEFG$

 $CFG^+ = CFG$

 $DEG^+ = DEFG$

 $DFG^+ = DFG$

 $EFG^+ = EFG$

Since we have finished calculating the closures of all possible three-attribute combinations, and we have found 3 superkeys, this means that ABG, ACG, and BCG must be the minimal sets of attributes with the property that it functionally determines all the other attributes in a relation.

Therefore ABG, ACG, and BCG are the candidate keys of R.

b. **Step 1**:

Since all FDs have only one attribute on the RHS, there is no need to split the FDs.

Step 2:

For the FDs that have > 2 attributes on the LHS, try to reduce the LHS.

 $B \to D$ and $E \to F$: cannot simplify.

 $BC \to A$: we cannot reduce the LHS of this FD since $B^+ = BD$ and $C^+ = C$, and none of them yield A.

 $AB \to C$: we cannot reduce the LHS of this FD since $A^+ = A$ and $B^+ = BD$, and none of them yield C.

 $AC \to B$: we cannot reduce the LHS of this FD since $A^+ = A$ and $C^+ = C$, and none of them yield B.

 $AD \to E$: we cannot reduce the LHS of this FD since $A^+ = A$ and $D^+ = D$, and none of them yield E.

The current set of FDs, which is still FD, is:

- 1. $B \rightarrow D$
- 2. $BC \rightarrow A$
- 3. $E \rightarrow F$
- 4. $AB \rightarrow C$
- 5. $AC \rightarrow B$
- 6. $AD \rightarrow E$

Step 3:

Try to eliminate each FD.

- 1) $B_{FD-1}^+ = B$, we need this FD.
- 2) $BC_{FD-2}^+ = BCD$, we need this FD.
- 3) $E_{FD-3}^+ = E$, we need this FD.
- 4) $AB_{FD-4}^{+} = ABDEF$, we need this FD.
- 5) $AC_{FD-5}^+ = AC$, we need this FD.
- 6) $AD_{FD-6}^+ = AD$, we need this FD.

Therefore, the current FD is already the minimal cover

- c. R is not in BCNF. BCNF requires that the LHS of all the FDs to be a superkey:
 - 1) $B^+ = BD$, so B is not a superkey and $B \to D$ violates BCNF.
 - 2) $BC^+ = ABCDEF$, so BC is not a superkey and $BC \to A$ violates BCNF.
 - 3) $E^+ = EF$, so E is not a superkey and $E \to F$ violates BCNF.
 - 4) $AB^+ = ABCDEF$, so AB is not a superkey and $AB \to C$ violates BCNF.
 - 5) $AC^+ = ABCDEF$, so AC is not a superkey and $AC \to B$ violates BCNF.
 - 6) $AD^+ = ADEF$, so AD is not a superkey and $AD \to E$ violates BCNF.

BCNF Decomposition:

• Decompose R using FD $B \to D$. $B^+ = BD$ so this yields two relations $R_1(B, D)$ and $R_2(A, B, C, E, F, G)$.

Project the FDs onto R_1 :

B	D	closure	FDs
\checkmark		$B^+ = BD$	$B \to D$; B is a superkey of R1
	√	$D^+ = D$	Nothing

This relation satisfies BCNF.

• Project the FDs onto R_2 :

A	B	C	E	F	G	closure	FDs
√						$A^+ = A$	Nothing
	√					$B^+ = BD$	Nothing
		√				$C^+ = C$	Nothing
			√			$E^+ = EF$	$E \to F$; violates BCNF; abort projection

We need to decompose R_2 further.

• Decompose R_2 using FD $E \to F$. $E^+ = EF$ so this yields two relations $R_3(E,F)$ and $R_4(A,B,C,E,G)$.

• Project the FDs onto R_3 :

E	F closure		FDs		
√		$E^+ = EF$	$E \to F$; E is a superkey of R3		
	√	$F^+ = F$	Nothing		

This relation satisfies BCNF.

• Project the FDs onto R_4 :

A	B	C	E	G	closure	FDs
√					$A^+ = A$	Nothing
	√				$B^+ = BD$	Nothing
		√			$C^+ = C$	Nothing
			√		$E^+ = EF$	Nothing
				√	$G^+ = G$	Nothing
./	./				$AB^+ = ABCDEF$	$AB \to CE$; violates BCNF; abort pro-
	V				ID = IDODET	jection

We need to decompose R_4 further.

- Decompose R_4 using FD $AB \to CE$. $AB^+ = ABCDEF$ so this yields two relations $R_5(A, B, C, E)$ and $R_6(A, B, G)$.
- Project the FDs onto R_5 :

A	B	C	E	closure	FDs	
\checkmark				$A^+ = A$	Nothing	
	√			$B^+ = BD$	Nothing	
		√		$C^+ = C$	Nothing	
			√	$E^+ = EF$	Nothing	
√	√			$AB^+ = ABCDEF$	$AB \to CE$; AB is a superkey of R_5	
\checkmark		√		$AC^+ = ABCDEF$	$AC \to BE$; AC is a superkey of R_5	
\checkmark			√	$AE^+ = AEF$	Nothing	
	√	√		$BC^+ = ABCDEF$	$BC \to AE$; BC is a superkey of R_5	
	√		√	$BE^+ = BDEF$	Nothing	
		√	√	$CE^+ = CEF$	Nothing	
	√	1	\	$BCE^+ = ABCDEF$	Nothing, since $BCE \to A$ is weaker than	
	>	V	>	DCE = ADCDEF	$BC \to A$ which we already have	
1		1	✓	$ACE^+ = ABCDEF$	Nothing, since $ACE \to B$ is weaker than	
V		V	V	ACE = ABCDET	$AC \to B$ which we already have	
./	./		\	$ABE^+ = ABCDEF$	Nothing, since $ABE \to C$ is weaker than	
	٧		٧	IIDL = IIDCDLI	$AB \to C$ which we already have	
./	$ABC^{+} = ABCDEE$		$ABC^+ = ABCDEF$	Nothing, since $ABC \to E$ is weaker than		
V		V		ADC = ADCDET	$AB \to E$ which we already have	

This relation satisfies BCNF.

• Project the FDs onto R_6 :

A	B	G	closure	FDs
√			$A^+ = A$	Nothing
	√		$B^+ = BD$	Nothing
		√	$G^+ = G$	Nothing
√	√		$AB^+ = ABCDEF$	Nothing
	√	√	$BG^+ = BDG$	Nothing
√		√	$AG^+ = AG$	Nothing

This relation satisfies BCNF.

Final decomposition: $R_1(B,D)$ with FD $B \to D$ $R_3(E,F)$ with FD $E \to F$ $R_5(A,B,C,E)$ with FDs $\{AB \to CE,AC \to BE,BC \to AE\}$ $R_6(A,B,G)$ with no FDs.

d. R is not in 3NF. $E \to F$ is a FD that violates 3NF since E is not a superkey ($E^+ = EF$) and F is not a prime (since we know that F is not a part of the three candidate keys ABG, ACG, BCG as found in a).

3NF decomposition:

The minimal basis for FD is FD itself.

The set of relations that result from the FDs is:

 $B \to D$: define $R_1(B, D)$.

 $BC \to A$: define $R_2(A, B, C)$.

 $AB \to C$: define $R_3(A, B, C)$.

 $AC \to B$: define $R_4(A, B, C)$.

 $E \to F$: define $R_5(E, F)$.

 $AD \to E$: define $R_6(A, D, E)$.

Since R_2 , R_3 , R_4 are the same relations, we only need to keep one. We will keep R_2 . Since none of the relations is a superkey for R, use the superkey ABG (found in part a) and define $R_7(A, B, G)$.

The final result of 3BF decomposition of R:

 $R_1(B,D), R_2(A,B,C), R_5(E,F), R_6(A,D,E), \text{ and } R_7(A,B,G).$

2. Proof. Recall the definition of BCNF and 3NF:

We say a relation R is in BCNF if for every nontricial FD $X \to Y$ that holds in R, X is a superkev.

We say a relation R is in 3NF if for every FD $X \to A$, X is a superkey or A is a prime. The proof contains two parts.

Part 1: BCNF \implies 3NF.

Since 3NF is less strict than BCNF, this implication must be true. For every FD $X \to Y$, X must be a superkey, therefore it does not violate 3NF.

Part 2: $3NF \implies BCNF$.

Since S is 3NF, we know that for every FD $X \to Y$, X is a superkey or Y is a prime.

Suppose X is a superkey, then this FD satisfies BCNF.

Suppose X is not a superkey, then Y must be a prime. This means that Y must be a member of any key. Since S has only one-attribute keys, Y must be a key itself, and Y^+ contains all attributes. However, since $X \to Y$, X^+ must then contain all attributes too. This implies that X is also a superkey, which violates with the assumption of X not being a superkey. Therefore, for every FD $X \to Y$, X must be a superkey, thus S is in BCNF.

Since BCNF \implies 3NF and 3NF \implies BCNF both hold, it is true that if S has only one-attribute keys, S is in BCNF if and only if it is in 3NF.

4

2 Entity-Relationship Model

