The Complex Organic Molecules of Embedded Protostars at Perseus

Yao-Lun Yang^{1, 2}

¹RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0106, Japan ²Department of Astronomy, University of Virginia, Charlottesvile, VA 22904-4235, USA

1. INTRODUCTION

Planet formation may start during the embedded phase of star formation. In the scenario where planets form from the embedded disks, resulting in substructures, the chemistry of embedded disks may play a significant role for the chemical composition of the forming planets. In the recent years, observations discover the emission of carbon-chain molecules and complex organic molecules (COMs) toward the center of several embedded protostars, indicating that embedded protostars have developed a complex chemistry at the disk-forming region. If the forming planets inherit the chemistry of embedded disks, the abundance of complex organic molecules may implicate future developments of organics on the planets.

Heavier or more complex molecules, such as cyclic- C_3H_2 , SO, and complex organic molecules (COMs), are in the gas phase at the inner protostellar envelope ($T \gtrsim 100 \,\mathrm{K}$), exclusively tracing the properties of the inner envelope where a disk may be forming (Aikawa 2013; Sakai et al. 2014). The kinematics of a rotating infalling envelope has been analyzed with the observations of heavier or more complex molecules, such as CH₃OH and CH₂DOH for HH 212 (Lee et al. 2017), CS for IRAS 04365+2535 (Sakai et al. 2016) and L483 (Oya et al. 2017), cyclic- C_3H_2 for L1527 (Sakai et al. 2014), OCS for IRAS 16293-2422 A (Oya et al. 2016), and methanol and HCOOH for B335 (Imai et al. 2019).

In the review by Herbst & van Dishoeck (2009), complex molecules are defined as carbon-bearing molecules that contain six atoms or more. Saturated complex molecules are rich in hydrogen atoms, often called complex organic molecules (COMs), while the unsaturated complex molecules are lack of hydrogen atoms, mostly in the form of long carbon-chain molecules. While recent observations show several embedded protostars with rich spectra of complex molecules, the occurrence of complex molecules at embedded protostars and its relation-

Corresponding author: Yao-Lun Yang yaolunyang.astro@gmail.com

ship to the star formation process remain poorly understand. Several protostars are rich in COMs but show little emission of long carbon-chain molecules, such as IRAS 16293–2422 (Jørgensen et al. 2016), NGC 1333 IRAS 4A (Bottinelli et al. 2004), B335 (Imai et al. 2016, 2019), and BHR 71 (Yang et al. 2020 accepted); some protostars are rich in long carbon-chain molecules but not in COMs, such as L1527 (Sakai et al. 2010) and IRAS 15398–3359 (Sakai et al. 2009). While the bimodal chemical appearance hints a bimodal evolutionary path, the chemical evolution at the embedded protostars remain ill-constrained as a few protostars show the emission of both COMs and long carbon-chain molecules at different scales, such as L483 (Oya et al. 2017).

The Perseus ALMA Chemistry Survey (PEACHES) aims to provide the statistics on the occurrence of complex molecules at embedded protostars. This program unbiasedly observes 51 embedded protostars with ALMA around 260 GHz, covering the emission of simple molecules such as CS and H¹³CN as well as the emission of complex molecules including CH₃OH and CH₃OCHO.

2. OBSERVATIONS

3. RESULTS

The ALMA image cubes are post-processed to extract 1D spectra for identifying the emission of complex molecules and more in-depth analyses. Because the complex molecules only sublime at the temperature greater than ${\sim}100\,\mathrm{K},$ we focus on the spectra toward the continuum sources. Four steps of post-processing reduces the image cubes to 1D spectra, which are summarized below.

• Continuum fitting: We use the CASA task imfit to iteratively fit for continuum sources down to 5σ of the residual image within the central 70% of the primary beam size (20"). For Set3-ID09, the fitting uses a threshold of 4σ and extends the mask to the entire primary beam as a continuum source is detected toward the edge of the primary beam where the noise is elevated.

Table 1. PEACHES Sample

Source	R.A. (J2000)	Decl. (J2000)	$v_{ m lsr}$	Beam	Cont. Size	$T_{ m cont}$	Ref. $(v_{\rm lsr})$
	(hh:mm:ss)	(dd:mm:ss)	$({\rm km\ s^{-1}})$	(")	(")	(K)	
Per-emb-22-B	03:25:22.35	30:45:13.11	4.3	0."64×0."39	0."95×0."51	0.92	S19
Per-emb-22-A	03:25:22.41	30:45:13.26	4.3	0.64×0.39	$0.''86 \times 0.''65$	1.71	S19
L1448NW	03:25:35.67	30:45:34.16	4.2	0.64×0.39	$0.''83 \times 0.''47$	3.15	H18
Per-emb-33B/C	03:25:36.32	30:45:15.19	5.3	0.64×0.39	0.75×0.48	5.55	S19
Per-emb-33-A	03:25:36.38	30:45:14.72	5.3	0.64×0.39	$0.''73 \times 0.''45$	10.33	S19
$L1448\mathrm{IRS3A}$	03:25:36.50	30:45:21.90	4.6	0.64×0.39	0.85×0.59	3.21	H18
Per-emb-26	03:25:38.88	30:44:05.28	5.4	0.64×0.39	0.69×0.45	8.03	S19
Per-emb-42	03:25:39.14	30:43:57.90	5.8	0.64×0.39	0.64×0.39	0.66	S19
Per-emb-25	03:26:37.51	30:15:27.81	5.5	0.64×0.39	0.69×0.41	5.27	S18
Per-emb-17	03:27:39.11	30:13:02.96	6.0	0.64×0.40	$0.''79 \times 0.''48$	2.00	S19
Per-emb-20	03:27:43.28	30:12:28.88	5.3	0.64×0.40	$1.''29 \times 0.''78$	0.14	S19
$L1455\mathrm{IRS2}$	03:27:47.69	30:12:04.33	5.1	0.64×0.40	0.60×0.38	0.13	H18
Per-emb-35-A	03:28:37.10	31:13:30.77	7.4	0.66×0.42	0.75×0.51	0.93	Y20
Per-emb-35-B	03:28:37.22	31:13:31.74	7.3	0.66×0.42	0.78×0.53	0.75	Y20
Per-emb-27	03:28:55.57	31:14:36.97	6.5	0.66×0.42	$0.''93 \times 0.''66$	5.79	Y20
EDJ2009-172	03:28:56.65	31:18:35.43		0.66×0.42	0.69×0.44	0.62	
Per-emb-36	03:28:57.37	31:14:15.77	6.9	0.66×0.42	$0.''73 \times 0.''46$	5.56	S19
Per-emb-54	03:29:01.55	31:20:20.49	7.9	0.66×0.42	0.69×0.40	0.07	S19
SVS13B	03:29:03.08	31:15:51.73	8.5	0.66×0.42	$0.''87 \times 0.''68$	6.64	S19
SVS13A2	03:29:03.39	31:16:01.58	8.4	0.66×0.42	$0.''86 \times 0.''53$	0.61	S18
Per-emb-44	03:29:03.76	31:16:03.70	8.7	0.66×0.42	$0.''98 \times 0.''79$	6.84	S19
Per-emb-15	03:29:04.06	31:14:46.23	6.8	0.66×0.42	$0.''89 \times 0.''70$	0.17	S19
Per-emb-50	03:29:07.77	31:21:57.11	9.3	0.66×0.42	$0.''73 \times 0.''44$	4.13	Y20
Per-emb-12-B	03:29:10.44	31:13:32.08	6.9	0.66×0.42	$1.''33 \times 0.''81$	10.04	S19
Per-emb-12-A	03:29:10.54	31:13:30.93	6.9	0.66×0.42	$1.''11 \times 0.''98$	21.85	S19
Per-emb-21	03:29:10.67	31:18:20.16	8.6	0.66×0.42	$0.''74 \times 0.''48$	2.05	Y20
Per-emb-18	03:29:11.27	31:18:31.09	8.1	0.66×0.42	0.84×0.73	3.42	S19
Per-emb-13	03:29:12.02	31:13:07.99	7.1	0.66×0.42	$1.''07 \times 0.''83$	14.76	S19
IRAS4B'	03:29:12.85	31:13:06.87	7.1	0.66×0.42	0.283×0.274	7.13	S19
Per-emb-14	03:29:13.55	31:13:58.12	7.9	0.66×0.42	0.79×0.50	3.05	S19
EDJ2009-235	03:29:18.26	31:23:19.73	7.7	0.67×0.42	0.66×0.44	0.26	Y20
EDJ2009-237	03:29:18.74	31:23:25.24		0.67×0.42	0.67×0.42	0.12	
Per-emb-37	03:29:18.97	31:23:14.28	7.5	0.67×0.42	0.82×0.57	0.56	Y20
Per-emb-60	03:29:20.05	31:24:07.35		0.67×0.42	0.73×0.47	0.08	
Per-emb-5	03:31:20.94	30:45:30.24	7.3	0.45×0.30	0.756×0.741	15.29	S19
Per-emb-2	03:32:17.92	30:49:47.81	7.0	0.45×0.30	$1.''35 \times 0.''97$	7.41	S19
Per-emb-10	03:33:16.43	31:06:52.01	6.4	0.46×0.30	0.49×0.32	1.82	S19
Per-emb-40	03:33:16.67	31:07:54.87	7.4	0.46×0.30	0.47×0.32	1.44	S19
Per-emb-29	03:33:17.88	31:09:31.74	6.1	0.46×0.30	0.756×0.739	8.41	Y20
B1-bN	03:33:21.21	31:07:43.63	6.6	0.46×0.30	0.756×0.747	7.67	C16
B1-bS	03:33:21.36	31:07:26.34	6.6	0.46×0.30	0.63×0.53	14.79	C16
Per-emb-16	03:43:50.97	32:03:24.12	8.8	0.750×0.732	0.61×0.52	0.35	S19
Per-emb-28	03:43:51.01	32:03:08.02	8.6	0.750×0.732	0.756×0.732	1.52	S19
Per-emb-1	03:43:56.81	32:00:50.16	9.4	0.49×0.32	0''68×0''48	4.57	S19
Per-emb-11-B	03:43:56.88	32:03:03.08	9.0	0.750×0.733	0.92×0.69	0.40	S19
${\bf Per\text{-}emb\text{-}11\text{-}A}$	03:43:57.07	32:03:04.76	9.0	0.750×0.733	0.61×0.48	10.47	S19
Per-emb-11-C	03:43:57.70	32:03:09.82	9.0	0.750×0.733	1"10×0"86	0.34	S19
Per-emb-55	03:44:43.30	32:01:31.22	12.0	0.750×0.732	0.49×0.33	0.32	S19
Per-emb-8	03:44:43.98	32:01:35.19	11.0	0.750×0.732	0.49×0.36	8.51	S19
Per-emb-53	03:47:41.59	32:51:43.62	10.2	0"51×0"33	0.758×0.742	1.55	Y20

References—C16=Carney et al. (2016); H18=Higuchi et al. (2018); S18=Stephens et al. (2018); S19=Stephens et al. (2019); Y20=this study.

Table 2. PEACHES Sample

PEACHES ID	Source	R.A. (J2000)	Decl. (J2000)	$v_{ m lsr}$	Beam	Cont. Size	T_{cont}	Ref. $(v_{\rm lsr})$
		(hh:mm:ss)	(dd:mm:ss)	$({\rm km\ s^{-1}})$	(")	(")	(K)	
Set1_ID00	L1448NW	03:25:35.67	30:45:34.16	4.2	0."64×0."39	0."83×0."47	3.15	H18
$Set1_ID01_3$	Per-emb-33-A	03:25:36.38	30:45:14.72	5.3	0.64×0.39	0.73×0.45	10.33	S19
$Set1_ID01_4$	Per-emb-33B/C	03:25:36.32	30:45:15.19	5.3	0.64×0.39	0.75×0.48	5.55	S19
$Set1_ID01_2$	$L1448\mathrm{IRS3A}$	03:25:36.50	30:45:21.90	4.6	0.64×0.39	$0.''85 \times 0.''59$	3.21	H18
$Set1_ID02$	Per-emb-26	03:25:38.88	30:44:05.28	5.4	0.64×0.39	0.69×0.45	8.03	S19
$Set1_ID02_2$	Per-emb-42	03:25:39.14	30:43:57.90	5.8	0.64×0.39	0.64×0.39	0.66	S19
$Set1_ID03$	Per-emb-22-A	03:25:22.41	30:45:13.26	4.3	0.64×0.39	$0.''86 \times 0.''65$	1.71	S19
$Set1_ID03_2$	Per-emb-22-B	03:25:22.35	30:45:13.11	4.3	0.64×0.39	$0.''95 \times 0.''51$	0.92	S19
$Set1_ID05$	Per-emb-25	03:26:37.51	30:15:27.81	5.5	0.64×0.39	0.69×0.41	5.27	S18
$Set1_ID06$	Per-emb-17	03:27:39.11	30:13:02.96	6.0	0.64×0.40	0.79×0.48	2.00	S19
$Set1_ID07$	Per-emb-20	03:27:43.28	30:12:28.88	5.3	0.64×0.440	1.29×0.78	0.14	S19
$Set1_ID08$	$L1455\mathrm{IRS2}$	03:27:47.69	30:12:04.33	5.1	0.64×0.40	0.60×0.38	0.13	H18
$Set2_ID00$	Per-emb-44	03:29:03.76	31:16:03.70	8.7	0.66×0.42	$0.''98 \times 0.''79$	6.84	S19
$\rm Set2_ID00_2$	SVS13A2	03:29:03.39	31:16:01.58	8.4	0.66×0.42	$0.''86 \times 0.''53$	0.61	S18
$Set2_ID01$	Per-emb-12-A	03:29:10.54	31:13:30.93	6.9	0.66×0.42	$1.''11 \times 0.''98$	21.85	S19
$\rm Set2_ID01_2$	Per-emb-12-B	03:29:10.44	31:13:32.08	6.9	0.66×0.42	$1.''33 \times 0.''81$	10.04	S19
${\rm Set}2_{\rm ID}02$	Per-emb-13	03:29:12.02	31:13:07.99	7.1	0.66×0.42	1."07×0."83	14.76	S19
$\rm Set2_ID02_2$	IRAS4B'	03:29:12.85	31:13:06.87	7.1	0.66×0.42	$0.''83 \times 0.''74$	7.13	S19
$Set2_ID03$	Per-emb-27	03:28:55.57	31:14:36.97	6.5	0.66×0.42	0."93×0."66	5.79	Y20
$Set2_ID04$	Per-emb-54	03:29:01.55	31:20:20.49	7.9	0.66×0.42	0.69×0.40	0.07	S19
${\rm Set2_ID05}$	Per-emb-21	03:29:10.67	31:18:20.16	8.6	0.66×0.42	0.74×0.48	2.05	Y20
$Set2_ID06$	Per-emb-14	03:29:13.55	31:13:58.12	7.9	0.66×0.42	0.79×0.50	3.05	S19
$Set2_ID07$	Per-emb-35-A	03:28:37.10	31:13:30.77	7.4	0.66×0.42	0.75×0.51	0.93	Y20
$\rm Set2_ID07_2$	Per-emb-35-B	03:28:37.22	31:13:31.74	7.3	0.66×0.42	0.78×0.53	0.75	Y20
$Set2_ID08$	SVS13B	03:29:03.08	31:15:51.73	8.5	0.66×0.42	087×068	6.64	S19
$Set2_ID09$	Per-emb-15	03:29:04.06	31:14:46.23	6.8	0.66×0.42	$0.''89 \times 0.''70$	0.17	S19
$Set2_ID11$	Per-emb-50	03:29:07.77	31:21:57.11	9.3	0.66×0.42	0.73×0.44	4.13	Y20
${\rm Set}2_{\rm ID}12$	Per-emb-18	03:29:11.27	31:18:31.09	8.1	0.66×0.42	$0.''84 \times 0.''73$	3.42	S19
$Set2_ID13$	Per-emb-37	03:29:18.97	31:23:14.28	7.5	0.67×0.42	$0.''82 \times 0.''57$	0.56	Y20
${\rm Set2_ID13_2}$	EDJ2009-235	03:29:18.26	31:23:19.73	7.7	0.67×0.42	0.66×0.44	0.26	Y20
$Set2_ID13_3$	EDJ2009-237	03:29:18.74	31:23:25.24		0.67×0.42	0.67×0.42	0.12	
$Set2_ID14$	Per-emb-60	03:29:20.05	31:24:07.35		0.67×0.42	0.73×0.47	0.08	
${\bf Set2_ID15}$	EDJ2009-172	03:28:56.65	31:18:35.43		0.66×0.42	0.69×0.44	0.62	
$Set2_ID16$	Per-emb-36	03:28:57.37	31:14:15.77	6.9	0.66×0.42	0.73×0.46	5.56	S19
$Set3_ID00$	B1-bS	03:33:21.36	31:07:26.34	6.6	0.46×0.30	0.63×0.53	14.79	C16
$\rm Set 3_ID 00_2$	B1-bN	03:33:21.21	31:07:43.63	6.6	0.46×0.30	$0.''56 \times 0.''47$	7.67	C16
$Set3_ID01$	Per-emb-29	03:33:17.88	31:09:31.74	6.1	0.46×0.30	0.756×0.739	8.41	Y20
$Set3_ID02$	Per-emb-10	03:33:16.43	31:06:52.01	6.4	0.46×0.30	$0.''49 \times 0.''32$	1.82	S19
$Set3_ID03$	Per-emb-40	03:33:16.67	31:07:54.87	7.4	0.46×0.30	0.47×0.32	1.44	S19
$Set3_ID04$	Per-emb-2	03:32:17.92	30:49:47.81	7.0	0.45×0.30	$1.''35 \times 0.''97$	7.41	S19
$Set3_ID05$	Per-emb-5	03:31:20.94	30:45:30.24	7.3	0.45×0.30	0.756×0.741	15.29	S19
${\bf Set 3_ID06}$	Per-emb-1	03:43:56.81	32:00:50.16	9.4	0.49×0.32	0.68×0.48	4.57	S19
${\bf Set 3_ID07}$	${\bf Per\text{-}emb\text{-}11\text{-}A}$	03:43:57.07	32:03:04.76	9.0	0.50×0.33	$0.''61 \times 0.''48$	10.47	S19
$\rm Set 3_ID 07_2$	Per-emb-11-B	03:43:56.88	32:03:03.08	9.0	0.50×0.33	$0.''92 \times 0.''69$	0.40	S19
$Set3_ID07_3$	${\bf Per\text{-}emb\text{-}11\text{-}C}$	03:43:57.70	32:03:09.82	9.0	0.50×0.33	$1.''10 \times 0.''86$	0.34	S19
${\bf Set 3_ID08}$	Per-emb-8	03:44:43.98	32:01:35.19	11.0	0.50×0.32	$0.''49 \times 0.''36$	8.51	S19
$\rm Set 3_ID 08_2$	Per-emb-55	03:44:43.30	32:01:31.22	12.0	0.50×0.32	0.49×0.33	0.32	S19
${\bf Set 3_ID 09}$	Per-emb-16	03:43:50.97	32:03:24.12	8.8	0.50×0.32	0.61×0.52	0.35	S19
$\rm Set 3_ID 09_2$	Per-emb-28	03:43:51.01	32:03:08.02	8.6	0.50×0.32	$0.''56 \times 0.''32$	1.52	S19
$Set3_ID10$	Per-emb-53	03:47:41.59	32:51:43.62	10.2	0.751×0.733	$0.''58 \times 0.''42$	1.55	Y20

 $\begin{array}{l} \textbf{References} - \text{C16} = \text{Carney et al. (2016); H18} = \text{Higuchi et al. (2018); S18} = \text{Stephens et al. (2018); S19} = \text{Stephens et al. (2019); Y20} = \text{this study.} \end{array}$

• Extracting spectra: We use the CASA task specflux to extract the mean flux density within the ellipse which has the same major and minor axes as well as the position angle as the fitted continuum sources.

- Baseline calibration: The continuum has been removed before the imaging process; however, the extracted spectra sometimes still show imperfect baselines. The spectra show significant differences from one to another such as rich emission lines, lack of emission, and broad emission features. Thus, we manually select the frequency ranges for baseline calibration for each spectral window and each field.
- Velocity correction: Finally, the frequency of the extracted spectra are corrected according to the source velocities. We collect the source velocities from the literature as well as from the strong emission lines in our spectra. Table 1 lists the adopted source velocities and the corresponding references.

Figure 1 shows the images of the continuum along with the fitted shapes, while the properties of the continuum sources are listed in Table 1. Our observations detect 50 continuum sources. The continuum emission appears as compact circular or elliptical shape with no sub-structure. Some sources show extended continuum emission resembling the shape of outflow cavities.

Three sources, EDJ2009-237, Per-emb-60, and EDJ2009-172, have no spectral line detected; therefore, we exclude them from spectral extraction as well as the line identification and modeling. These three sources still need to be included for detection number statistics.

3.1. Line Identifications and Modeling

Line identification starts with manual identification and verification for a few sources with rich spectra, including Per-emb-12B and B1-bS. We use SPLATALOGUE¹ to identity the molecular species and use XCLASS (Möller et al. 2017) to verify the identification. The XCLASS package is a LTE radiative transfer code that uses the molecular data from the Cologne Database of Molecular Spectroscopy (CDMS; Müller et al. 2001, 2005; Endres et al. 2016) and the Jet Propulsion Laboratory (JPL; Pickett et al. 1998). An identification needs to satisfy the following criteria.

• The spectra agree with the predicted strengths of the model.

- The spectral lines are not all blended with other emission, such as other molecules and the SiO emission tracing the outflows. The emission of a few species, such as HDCO & ¹³CH₃OH, CH₃CHO & CH₂DOH, ³⁴SO & C₂H₅OH, and CH₃OCH₃ & CH₂DCN, are partially blended (blending occurs at a few lines but other lines remain isolated). The fittings of those species are performed together to verify their identification.
- Identified molecules need to be already found toward young stellar objects as summarized in McGuire (2018).

Table 3 lists the identified species and transitions. Only identifiable transitions are listed. The XCLASS modeling includes all the transitions in our frequency coverage regardless their Einstein-A values and upper energy levels.

Systematic spectral fitting using XCLASS is then applied to all sources using a list of species, compiled from those identifications. The catalogs used in this study are listed in Appendix A The fitting function in XCLASS includes several optimization algorithms that can be used in series to reduce biases. We configure the algorithm chain that starts with the genetic algorithm followed by the Levenberg-Marquardt χ^2 minimization. The genetic algorithm searches the best-fitting parameters iteratively with generations that evolve like a natural selection, where the better fitting models get less modification over generations. We setup the genetic algorithm to search for the three best-fitting models after five generations. Then, the Levenberg-Marquardt χ^2 minimization applies to the three best-fitting models for 50 iterations to the best-fitting models. We assume the COMs are all concentrated at the center, simplified as a 2D thin circular disk. There are four parameters for the XCLASS modeling, the size of the emitting molecule (r_{COM}) , the excitation temperature (T_{ex}) , the column density (N_{COM}) , and the line width $(\Delta \nu)$. Due to the limited frequency coverage, many species only have a few lines detected, we fix r_{COM} as 0".5, similar to our beam size, and optimize the model with five excitation temperatures, 100, 150, 200, 250, and 300 K. We allow the line width varying between $1.2\,\mathrm{km\,s^{-1}}$ to $3.5\,\mathrm{km\,s^{-1}}$ for better fitting quality, and the range of the column density for each molecule is chosen according to the strength of the emission. The range of fitted column densities at different temperatures indicates the uncertainty of the column densities.

The uncertainty from the fitting.

¹ http://www.splatalogue.net/

Figure 1. The continuum images of all PEACHES protostars. Non-detections toward L1448 IRS 2E and NGC 1333 SVS 3 are not shown. The dashed ellipses illustrate the size of fitted continuum, which is the region for extracting 1D spectra.

Table 3. Line Identification

Frequency (MHz)	Transition ^a	log(Einstein-A)	E_{u} (K)	$g_{ m u}$	Ref.
	Ethynyl (Co	CH)			
262065.00 (0.05)	$[3, 5/2, 3] \rightarrow [2, 3/2, 2]^{b}$	-4.31	25.16	7	CDMS
$262067.47 \ (0.05)$	$[3, 5/2, 2] \rightarrow [2, 3/2, 1]^{b}$	-4.35	25.16	5	CDMS
262078.93 (0.02)	$[3, 5/2, 2] \rightarrow [2, 3/2, 2]^{b}$	-5.22	25.16	5	CDMS
	Cyclopropenyliden	e (c-C ₃ H ₂)			
$244222.15 \ (0.01)$	$[3, 2, 1] \rightarrow [2, 1, 2]$	-4.23	18.17	21	CDMS
246557.77 (0.02)	$[16, 10, 7] \rightarrow [16, 9, 8]$	-3.36	397.83	99	CDMS
260479.75 (0.02)	$[5, 3, 2] \rightarrow [4, 4, 1]$	-3.79	44.72	33	CDMS
	Methanol (CH ₃ O	$H v_{t} = 0)$			
243915.79 (0.01)	$[5, 1, 4] \rightarrow [4, 1, 3] A$	-4.22	49.66	44	CDMS
$246074.61 \ (0.02)$	$[20, 3, 17] \rightarrow [20, 2, 18] A$	-4.08	537.03	164	CDMS
$246873.30 \ (0.02)$	$[19, 3, 16] \rightarrow [19, 2, 17] A$	-4.08	490.65	156	CDMS
261805.68 (0.01)	$[2, 1, 1] \rightarrow [1, 0, 1] E$	-4.25	28.01	20	CDMS
	Methanol (¹³ CH ₃ C	OH $v_{\rm t} = 0$)			
$246426.12 \ (0.22)$	$[23, 4, 19] \rightarrow [22, 5, 18]$	-4.58	721.02	47	CDMS
247086.3 (0.5)	$[23, 3, 20] \rightarrow [23, 2, 21] A \rightarrow A +$		674.86	47	CDMS
259036.49 (0.17)	$[17, 3, 15] \rightarrow [17, 2, 16] A+ \rightarrow A-$	-4.04	396.48	35	CDMS
	Methanol (CH ₂ DC				
243514.31 (0.01)	$[9, 2, 8] \rightarrow [10, 1, 10] o_1$	-5.17	131.85	19	$_{ m JPL}$
246973.11 (0.01)	$[4, 1, 4] \rightarrow [4, 1, 3] e_1$	-4.67	37.69	9	JPL
260543.63 (0.01)	$[3, 2, 1] \rightarrow [3, 1, 2] o_1$	-4.65	48.34	7	JPL
	Methanol (CH ₃ ¹⁸ C				
246256.60 (0.04)	[11. 2. 10]→[10, 3, 7] A	-4.64	184.27	92	CDMS
	Sulfur monoxide	, ,			
258255.83 (0.01)	$[N, J] = [6, 6] \rightarrow [5, 5]$	-3.67	56.50	13	CDMS
261843.72 (0.03)	$[N, J] = [7, 6] \rightarrow [6, 5]$	-3.64	47.55	15	CDMS
	Sulfur monoxide				GD 1 4 G
246663.47 (0.1)	$[N, J] = [5, 6] \rightarrow [4, 5]$	-3.74	49.89	11	CDMS
	Sulfur dioxide	,			GD 1 4 G
244254.22 (0.01)	$[14, 0, 14] \rightarrow [13, 1, 13]$	-3.79	93.90	29	CDMS
	Hydrogen cyanide				GD 1 6
259010.26 (0.01)	$[J, F] = [3, 3] \rightarrow [2, 3]$	-4.07	24.86	7	CDMS
259011.55 (0.01)	$[J, F] = [3, 2] \rightarrow [2, 1]$	-3.19	24.86	5	CDMS
259011.80 (0.01)	$[J, F] = [3, 3] \rightarrow [2, 2]$	-3.16	24.86	7	CDMS
259011.86 (0.01)	$[J, F] = [3, 4] \rightarrow [2, 3]$	-3.11 -5.46	24.86 24.86	9 5	CDMS
259012.34 (0.01) 259013.89 (0.01)	$[J, F] = [3, 2] \rightarrow [2, 3]$				CDMS
259013.89 (0.01)	$[J, F] = [3, 2] \rightarrow [2, 2]$	-3.92	24.86	5	CDMS
244025 56 (0.01)	Carbon Monosuli	` '	25.07	11	CDMC
244935.56 (0.01)	$[J]=[5]\to [4]$	-3.53	35.27	11	CDMS
246024 6 (0.1)	Formaldehyde (27.60	0	CDMG
246924.6 (0.1)	$[4, 1, 4] \rightarrow [3, 1, 3]$	-3.40	37.60	9	CDMS
259034.9 (0.1)	$[4, 2, 2] \rightarrow [3, 2, 1]$	-3.44	62.86	9	CDMS
245002.2 (0.1)	Methyl formate (C		225.00	99	IDI
245883.2 (0.1)	$[20, 13, 7] \rightarrow [19, 13, 6] \text{ E}$ $[20, 13, 7] \rightarrow [19, 13, 6] \text{ A}$	-3.89 -3.80	235.98	82 82	JPL IDI
245885.2 (0.1) 245885.2 (0.1)	$[20, 13, 7] \rightarrow [19, 13, 6] \text{ A}$ $[20, 13, 8] \rightarrow [19, 13, 7] \text{ A}$	-3.89 -3.89	235.98 235.98	82 82	$_{ m JPL}$
245903.7 (0.1)	$[20, 13, 8] \rightarrow [19, 13, 7] \text{ E}$ $[20, 13, 8] \rightarrow [19, 13, 7] \text{ E}$	-3.89 -3.89	235.98	82	$_{ m JPL}$
246027.5 (0.1)	$[20, 13, 8] \rightarrow [19, 13, 7] \to [21, 2, 19] \rightarrow [20, 3, 18] \to [21, 2, 19] \rightarrow [20, 3, 18] \to $	-3.89 -4.63	139.85	86	$_{ m JPL}$
246038.9 (0.1)	$[21, 2, 19] \rightarrow [20, 3, 18] \text{ A}$ $[21, 2, 19] \rightarrow [20, 3, 18] \text{ A}$	-4.63	139.85	86	JPL
246054.8 (0.1)	$[21, 2, 19] \rightarrow [20, 3, 18] \text{ A}$ $[20, 12, 8] \rightarrow [19, 12, 7] \text{ E}$	-3.84	219.43	82	$_{ m JPL}$
246060.8 (0.1)	$[20, 12, 8] \rightarrow [19, 12, 7] \to [20, 12, 8/9] \rightarrow [19, 12, 7/8] A$	-3.84	219.43	82	JPL
240000.0 (0.1)	[20, 12, 0/0] 7[13, 12, 1/8] A	9.04	210.40	02	91.17

 $Table \ 3 \ continued$

7

 ${\bf Table} \ {\bf 3} \ (continued)$

	*	*			
Frequency (MHz)	Transition ^a	log(Einstein-A)	E _u (K)	$g_{ m u}$	Ref.
246076.9 (0.1)	[20, 12, 9]→[19, 12, 8] E	-3.84	219.41	82	JPL
246285.4 (0.1)	$[20, 11, 9] \rightarrow [19, 11, 8] E$	-3.80	204.21	82	$_{ m JPL}$
246295.1 (0.1)	$[20, 11, 10] \rightarrow [19, 11, 9] A$	-3.80	204.21	82	$_{ m JPL}$
246295.1 (0.1)	$[20, 11, 9] \rightarrow [19, 11, 8] A$	-3.80	204.21	82	$_{ m JPL}$
246308.3 (0.1)	$[20, 11, 10] \rightarrow [19, 11, 9] E$	-3.80	204.20	82	$_{ m JPL}$
246456.1 (0.1)	$[10, 5, 6] \rightarrow [9, 4, 5] E$	-5.52	49.09	42	$_{ m JPL}$
246600.0 (0.1)	$[20, 10, 10] \rightarrow [19, 10, 9] E$	-3.77	190.34	82	$_{ m JPL}$
246613.4 (0.1)	$[20, 10, 11] \rightarrow [19, 10, 10] \text{ A}$	-3.77	190.34	82	$_{ m JPL}$
246613.4 (0.1)	$[20, 10, 10] \rightarrow [19, 10, 9] A$	-3.77	190.34	82	$_{ m JPL}$
246623.2 (0.1)	$[20, 10, 11] \rightarrow [19, 10, 10] E$	-3.77	190.34	82	JPL
246660.5 (0.1)	$[10, 5, 6] \rightarrow [9, 4, 5] A$	-4.74	49.08	42	$_{ m JPL}$
246675.4 (0.1)	$[15, 4, 12] \rightarrow [14, 3, 11] E$	-4.93	81.85	62	$_{ m JPL}$
246683.5 (0.1)	$[15, 4, 12] \rightarrow [14, 3, 11] A$	-4.93	81.84	62	$_{ m JPL}$
246752.9 (0.1)	$[10, 5, 5] \rightarrow [9, 4, 5] E$	-4.90	49.10	42	JPL
246891.6 (0.1)	$[19, 4, 15] \rightarrow [18, 4, 14] E$	-3.66	126.22	78	$_{ m JPL}$
246914.7 (0.1)	$[19, 4, 15] \rightarrow [18, 4, 14] \text{ A}$	-3.66	126.22	78	$_{ m JPL}$
246945.7 (0.1)	$[10, 5, 6] \rightarrow [9, 4, 6] E$	-4.90	49.09	42	$_{ m JPL}$
247040.7 (0.1)	$[20, 9, 11] \rightarrow [19, 9, 10] E$	-3.74	177.83	82	$_{ m JPL}$
247044.1 (0.1)	$[21, 3, 19] \rightarrow [20, 3, 18] E$	-3.66	139.90	86	$_{ m JPL}$
247053.5 (0.1)	$[21, 3, 19] \rightarrow [20, 3, 18] A$	-3.66	139.89	86	$_{ m JPL}$
247057.3 (0.1)	$[20, 9, 12] \rightarrow [19, 9, 11] A$	-3.74	177.83	82	JPL
247057.7 (0.1)	$[20, 9, 11] \rightarrow [19, 9, 10] A$	-3.74	177.83	82	JPL
247063.7 (0.1)	$[20, 9, 12] \rightarrow [19, 9, 11] E$	-3.74	177.83	82	JPL
247124.3 (0.1)	$[10, 5, 5] \rightarrow [9, 4, 6] E$	-4.74	49.08	42	JPL
258275.0 (0.1)	$[21, 13, 8] \rightarrow [20, 13, 7] E$	-3.79	248.37	86	JPL
258277.4 (0.1)	$[21, 13, 8] \rightarrow [20, 13, 7] A$	-3.79	248.37	86	JPL
258277.4 (0.1)	$[21, 13, 9] \rightarrow [20, 13, 8] A$	-3.79	248.37	86	JPL
259341.9 (0.1)	$[24, 0, 24] \rightarrow [23, 1, 23] E$	-4.37	158.23	98	JPL
259342.0 (0.1)	$[24, 1, 24] \rightarrow [23, 1, 23] E$	-3.58	158.23	98	JPL
259342.1 (0.1)	$[24, 0, 24] \rightarrow [23, 0, 23] E$	-3.58	158.23	98	JPL
259342.3 (0.1)	$[24, 1, 24] \rightarrow [23, 0, 23] E$	-4.37	158.23	98	JPL
259342.7 (0.1)	[24, 0, 24]→[23, 1, 23] A	-4.37	158.22	98	JPL
259342.9 (0.1)	$[24, 1, 24] \rightarrow [23, 1, 23] A$	-3.58	158.22	98	JPL
259343.0 (0.1)	$[24, 0, 24] \rightarrow [23, 0, 23] \text{ A}$	-3.58	158.22	98	JPL
259343.2 (0.1)	$[24, 1, 24] \rightarrow [23, 0, 23] \text{ A}$	-4.37	158.22	98	JPL
261822.3 (0.1)	$[17, 10, 7] \rightarrow [17, 9, 8] A$	-4.73	156.63	70	JPL
262088.2 (0.1)	$[16, 10, 6] \rightarrow [16, 9, 7] \text{ A}$	-4.76	146.59	66	JPL
262088.2 (0.1)	$[16, 10, 7] \rightarrow [16, 9, 8] \text{ A}$	-4.76	146.59	66	JPL
(0.1)	Methyl formate (CH ₃				
243511.5 (0.1)	$[20, 12, 8] \rightarrow [19, 12, 7] E$	-3.85	407.25	82	JPL
245846.9 (0.1)	$[21, 3, 19] \rightarrow [20, 3, 18] E$	-3.66	326.30	86	JPL
246106.8 (0.1)	$[20, 7, 14] \rightarrow [19, 7, 13] A$	-3.70	343.77	82	JPL
246184.2 (0.1)	$[20, 8, 13] \rightarrow [19, 8, 12] E$	-3.72	353.27	82	JPL
246187.0 (0.1)	$[21, 2, 19] \rightarrow [20, 2, 18] \text{ A}$	-3.66	326.62	86	JPL
246233.6 (0.1)	$[20, 7, 13] \rightarrow [19, 7, 12] \text{ A}$	-3.70	343.79	82	JPL
246274.9 (0.1)	$[20, 7, 13] \rightarrow [19, 7, 12] \text{ E}$	-3.70	343.86	82	JPL
246410.95 (0.01)	$[10, 5, 5] \rightarrow [9, 4, 6] \text{ A}$	-4.73	236.70	42	JPL
246422.7 (0.1)	$[22, 1, 21] \rightarrow [21, 2, 20] \text{ A}$	-4.51	330.43	90	JPL
246461.2 (0.1)	$[22, 2, 21] \rightarrow [21, 2, 20] \text{ A}$	-3.65	330.43	90	JPL
246488.4 (0.1)	$[22, 2, 21] \rightarrow [21, 2, 20] \text{ A}$ $[22, 1, 21] \rightarrow [21, 1, 20] \text{ A}$	-3.65	330.43	90	JPL
246562.9 (0.1)	$[21, 1, 21] \rightarrow [21, 1, 20] \text{ A}$ $[21, 2, 19] \rightarrow [20, 2, 18] \text{ E}$	-3.66	326.24	86	JPL
246706.5 (0.1)	$[21, 2, 19] \rightarrow [20, 2, 18] \to [22, 2, 21] \rightarrow [21, 2, 20] \to [21, 2, 2, 20] \to [21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$	-3.65	329.89	90	JPL
246731.7 (0.1)	$[22, 2, 21] \rightarrow [21, 2, 20] \text{ E}$ $[22, 1, 21] \rightarrow [21, 1, 20] \text{ E}$	-3.65	329.89	90	JPL
, ,					
246985.2 (0.1)	$[20, 6, 15] \rightarrow [19, 6, 14] \text{ A}$	-3.68	335.37	82	JPL

 $Table \ 3 \ continued$

8

Table 3 (continued)

Table 3 (continuea)							
Frequency (MHz)	Transition ^a	log(Einstein-A)	<i>E</i> _u (K)	$g_{ m u}$	Ref.		
259003.9 (0.1)	[21, 7, 14]→[20, 7, 13] A	-3.63	356.22	86	JPL		
259025.8(0.1)	$[21, 7, 14] \rightarrow [20, 7, 13] E$	-3.63	356.29	86	$_{ m JPL}$		
260479.6 (0.1)	$[44, 9, 36] \rightarrow [44, 8, 37] A$	-4.59	828.74	178	$_{ m JPL}$		
	Dimethyl ether (C	CH ₃ OCH ₃)					
246499.29 (0.01)	$[37, 6, 31] \rightarrow [37, 5, 12] AA$	-4.01	693.72	750	CDMS		
246505.09 (0.01)	$[37, 6, 31] \rightarrow [37, 5, 12] AE$	-4.01	693.72	450	CDMS		
246505.09 (0.01)	$[37, 6, 31] \rightarrow [37, 5, 12] EA$	-4.01	693.72	300	CDMS		
$246697.43 \ (0.01)$	$[27, 4, 23] \rightarrow [26, 5, 21] AA$	-4.70	367.61	330	CDMS		
246697.87 (0.01)	$[27, 4, 23] \rightarrow [26, 5, 21] \text{ EE}$	-4.70	367.61	880	CDMS		
$246698.31 \ (0.01)$	$[27, 4, 23] \rightarrow [26, 5, 21] AE$	-4.70	367.61	110	CDMS		
$246698.31 \ (0.01)$	$[27, 4, 23] \rightarrow [26, 5, 21] EA$	-4.70	367.61	220	CDMS		
$259305.22 \ (0.01)$	$[33, 3, 31] \rightarrow [34, 6, 28] AA$	-6.61	563.02	670	CDMS		
$259308.39 \ (0.01)$	$[33, 3, 31] \rightarrow [34, 6, 28] AE$	-6.61	563.02	402	CDMS		
259308.39 (0.01)	$[33, 3, 31] \rightarrow [34, 6, 28] EA$	-6.61	563.02	268	CDMS		
259309.47 (0.01)	$[17, 5, 12] \rightarrow [17, 4, 13] AE$	-4.06	174.54	210	CDMS		
259309.76 (0.01)	$[17, 5, 12] \rightarrow [17, 4, 13] EA$	-4.06	174.54	140	CDMS		
259311.95 (0.01)	$[17, 5, 12] \rightarrow [17, 4, 13] \text{ EE}$	-4.06	174.54	560	CDMS		
259314.28 (0.01)	$[17, 5, 12] \rightarrow [17, 4, 13] \text{ AA}$	-4.06	174.54	350	CDMS		
	Acetone (CH ₃ C	COCH ₃)					
244218.91 (0.01)	$[20, 5, 15] \rightarrow [19, 6, 14] \text{ AE}$	-3.32	139.69	82	$_{ m JPL}$		
244218.91 (0.01)	$[20, 6, 15] \rightarrow [19, 5, 14] \text{ AE}$	-3.32	139.69	250	$_{ m JPL}$		
$244218.92 \ (0.01)$	$[20, 5, 15] \rightarrow [19, 6, 14] EA$	-3.32	139.69	160	$_{ m JPL}$		
244218.92 (0.01)	$[20, 6, 15] \rightarrow [19, 5, 14] EA$	-3.32	139.69	160	$_{ m JPL}$		
$245831.34 \ (0.09)$	$[13, 10, 3] \rightarrow [12, 9, 4] \text{ EE}$	-3.80	77.84	432	$_{ m JPL}$		
246400.99 (0.05)	$[34, 7, 28] \rightarrow [34, 5, 29] EE$	-4.17	364.98	1100	$_{ m JPL}$		
246400.99 (0.05)	$[34, 6, 28] \rightarrow [34, 5, 29] EE$	-4.03	364.98	1100	$_{ m JPL}$		
246400.99 (0.05)	$[34, 7, 28] \rightarrow [34, 6, 29] EE$	-4.03	364.98	1100	$_{ m JPL}$		
246400.99 (0.05)	$[34, 6, 28] \rightarrow [34, 6, 29] EE$	-4.17	364.98	1100	$_{ m JPL}$		
246404.27 (0.01)	$[22, 3, 19] \rightarrow [21, 4, 18] \text{ AE}$	-3.23	149.62	90	$_{ m JPL}$		
246404.27 (0.01)	$[22, 4, 19] \rightarrow [21, 3, 18] \text{ AE}$	-3.23	149.62	270	$_{ m JPL}$		
246404.29 (0.01)	$[22, 3, 19] \rightarrow [21, 4, 18] EA$	-3.23	149.62	180	$_{ m JPL}$		
246404.29 (0.01)	$[22, 4, 19] \rightarrow [21, 3, 18] EA$	-3.23	149.62	180	$_{ m JPL}$		
246450.40 (0.01)	$[22, 4, 19] \rightarrow [21, 3, 18] \text{ EE}$	-3.23	149.57	720	$_{ m JPL}$		
246450.40 (0.01)	$[22, 3, 19] \rightarrow [21, 3, 18] \text{ EE}$	-5.09	149.57	720	$_{ m JPL}$		
246450.40 (0.01)	$[22, 3, 19] \rightarrow [21, 4, 18] EE$	-3.24	149.57	720	$_{ m JPL}$		
246450.40 (0.01)	$[22, 4, 19] \rightarrow [21, 4, 18] \text{ EE}$	-4.92	149.57	720	$_{ m JPL}$		
246496.17 (0.46)	$[25, 14, 12] \rightarrow [24, 15, 9] \text{ AE}$	-5.01	257.11	100	$_{ m JPL}$		
246496.47 (0.02)	$[22, 3, 19] \rightarrow [21, 4, 18] \text{ AA}$	-3.23	149.51	270	JPL		
246496.47 (0.02)	$[22, 4, 19] \rightarrow [21, 3, 18] \text{ AA}$	-3.23	149.51	450	$_{ m JPL}$		
246714.12 (0.05)	$[9, 8, 1] \rightarrow [8, 5, 4] \text{ EA}$	-5.84	40.59	76	JPL		
246714.94 (0.05)	$[32, 4, 28] \rightarrow [32, 4, 29] EA$	-3.97	305.61	260	JPL		
246714.94 (0.05)	$[32, 5, 28] \rightarrow [32, 3, 29] EA$	-3.97	305.61	260	JPL		
246715.04 (0.05)	$[32, 5, 28] \rightarrow [32, 4, 29] \text{ AE}$	-3.97	305.61	390	JPL		
246715.04 (0.05)	$[32, 4, 28] \rightarrow [32, 3, 29] EA$	-3.97	305.61	130	JPL		
246719.92 (0.04)	$[33, 6, 28] \rightarrow [33, 4, 29] \text{ EE}$	-5.62	344.85	1100	JPL		
246719.92 (0.04)	$[33, 5, 28] \rightarrow [33, 4, 29] \text{ EE}$	-3.87	344.85	1100	JPL		
246719.92 (0.04)	$[33, 6, 28] \rightarrow [33, 5, 29] \text{ EE}$	-3.87	344.85	1100	JPL		
246719.92 (0.04)	$[33, 5, 28] \rightarrow [33, 5, 29] \text{ EE}$	-5.61	344.85	1100	JPL		
261818.11 (0.01)	$[20, 7, 13] \rightarrow [19, 8, 12] \text{ EA}$	-3.31	151.17	160	JPL		
261818.17 (0.01)	$[20, 7, 13] \rightarrow [19, 8, 12] \text{ AE}$	-3.31	151.17	82	JPL		
261819.09 (0.01)	$[20, 8, 13] \rightarrow [19, 7, 12] \text{ EA}$	-3.31	151.17	160	JPL		
	Methyl cyanide (·					
257507.56 (0.01)	$[N, K] = [14, 2] \rightarrow [13, 2]$	-3.00	121.28	58	JPL		

 $Table \ 3 \ continued$

Table 3 (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frequency (MHz)	Transition ^a	log(Einstein-A)	<i>E</i> _u (K)	$g_{ m u}$	Ref.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	257522.43 (0.01)	$[N, K] = [14, 1] \rightarrow [13, 1]$	-2.99	99.84	58	JPL			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	257527.38 (0.01)	$[N, K] = [14, 0] \rightarrow [13, 0]$	-2.99	92.70	58	$_{ m JPL}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	246330.73 (0.01)	$[15, 3, 13] \rightarrow [15, 2, 14] A$	-4.29	131.49	62	JPL			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$260530.40 \ (0.01)$	$[14, 1, 14] \rightarrow [13, 1, 13] E$	-3.20	96.39	58	$_{ m JPL}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$260544.02 \ (0.01)$	$[14, 1, 14] \rightarrow [13, 1, 13] A$	-3.20	96.32	58	$_{ m JPL}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	260547.46 (2.07)	$[9, 4, 5] \rightarrow [9, 3, 7] E, v_t = 2$	-6.06	456.38	38	$_{ m JPL}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		gauche-Ethanol (g -	$C_2H_5OH)$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$246414.76 \ (0.05)$	$[14, 3, 11] \rightarrow [13, 3, 10] v_t = 0 \rightarrow 0$	-3.89	155.72	29	$_{ m JPL}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	246524.28 (0.01)	$[13, 2, 12] \rightarrow [12, 1, 12] v_t = 0 \rightarrow 1$	-4.50	136.95	27	$_{ m JPL}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$246658.18 \ (0.01)$	$[32,5,28]{\to}[32,4,29]\ v_{\rm t}=0{\to}0$	-6.33	527.94	65	$_{ m JPL}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	246662.98 (0.01)	$[4, 2, 3] \rightarrow [3, 1, 3] v_t = 1 \rightarrow 0$	-4.36	74.77	9	$_{ m JPL}$			
$\frac{\text{trans-Ethanol} \left(\text{C}_2\text{H}_5\text{OH}\right)}{246663.62 \left(0.05\right)} = \begin{bmatrix} 24, 1, 23 \right] \rightarrow \left[24, 0, 24 \right] \\ 261815.99 \left(0.05 \right) = \begin{bmatrix} 28, 3, 26 \right] \rightarrow \left[28, 2, 27 \right] \\ -3.96 \\ \hline \\ & & & & & & & & & & & & & & & & &$	259322.64 (0.01)	$[14, 3, 11] \rightarrow [13, 2, 11] v_t = 0 \rightarrow 1$	-4.39	155.72	29	$_{ m JPL}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	260457.73 (0.01)	[15. 4. 12] \rightarrow [14, 4, 11] $v_{\rm t} = 1 \rightarrow 1$	-3.83	181.10	31	$_{ m JPL}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		trans-Ethanol (C ₂	H ₅ OH)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	246663.62 (0.05)	$[24, 1, 23] \rightarrow [24, 0, 24]$	-3.73	252.35	49	JPL			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	261815.99 (0.05)	$[28, 3, 26] \rightarrow [28, 2, 27]$	-3.96	350.98	57	$_{ m JPL}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Glycolaldehyde (cis -C	H ₂ OHCHO)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	246773.09 (0.02)	$[30, 2, 28] \rightarrow [30, 1, 29]$	-4.04	252.68	61	CDMS			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$246778.28 \ (0.02)$	$[30, 3, 28] \rightarrow [30, 2, 29]$	-4.04	252.68	61	CDMS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	262056.78 (0.01)	$[25, 2, 24] \rightarrow [24, 1, 23]$	-3.34	158.25	51	CDMS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	261795.48 (0.01)	$[25, 11, 14] \rightarrow [25, 10, 15]$	-3.57	254.23	51	CDMS			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	261798.96 (0.01)	$[25, 11, 15] \rightarrow [25, 10, 16]$	-3.57	254.23	51	CDMS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Methyl cyanide (C	$H_2DCN)$						
	259315.51 (0.01)	$[15, 1, 15] \rightarrow [14, 1, 14]$	-2.82	104.97	31	CDMS			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	260523.05 (0.01)	$[15, 2, 13] \rightarrow [14, 2, 12]$	-2.82	121.60	31	CDMS			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	246268.74 (0.01)	$[27, 2, 25] \rightarrow [26, 2, 24]$	-2.90	169.80	55	CDMS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	246421.92 (0.01)	$[28, 2, 27] \rightarrow [27, 2, 26]$	-2.90	177.26	57	CDMS			
Formamide (NH ₂ CHO)	$246548.70 \ (0.01)$	$[27, 3, 24] \rightarrow [26, 3, 23]$	-2.90	174.06	55	CDMS			
243521.04 (0.01) [12, 1, 12] \rightarrow [11, 1, 11] -2.98 79.19 25 CDMS Formic acid (t-HCOOH)	260535.69 (0.05)	$[29, 5, 25] \rightarrow [28, 5, 24]$	-2.84	215.06	59	$\overline{\text{CDMS}}$			
Formic acid (t-HCOOH)	Formamide (NH ₂ CHO)								
	243521.04 (0.01)	$[12, 1, 12] \rightarrow [11, 1, 11]$	-2.98	79.19	25	CDMS			
262103.48 (0.01) $[12, 0, 12] \rightarrow [11, 0, 11]$ -3.69 82.77 25 CDMS		Formic acid (t-He	COOH)						
	262103.48 (0.01)	$[12, 0, 12] \rightarrow [11, 0, 11]$	-3.69	82.77	25	CDMS			

 $[^]a\mathrm{The}$ typical quantum numbers are listed as $[J,\,K_\mathrm{a},\,K_\mathrm{c}]$ unless specified.

4. CONTINUUM OPACITY

5. DETECTION STATISTICS

We summarize the fraction of sources with detections of molecules in Figure 2. The detection statistics include COMs, carbon-chain molecules, and the simple organic molecules, such as CS, H¹³CN, SO, ³⁴SO, and SO₂. The PEACHES protostars show a great chemical diversity from no molecule detected (B1-bN) to rich spectra of COMs (e.g. Per-emb-12B). Detections of COMs and the number of COMs detected show no obvious correlation with the bolometric luminosity and bolometric temperature of the protostars, which are conventional evolutionary indicators. Low luminosity sources have fewer

COMs detected; however, if COMs mostly come from thermally desorption, the region with $T>T_{\rm desorption}$ may be smaller for the low luminosity sources, making the emission of COMs fainter and reducing our sensitivity to detect COMs. We also compare the detection statistics with the mass derived from 9 mm observations that resolved the sources as a proxy of the central mass (Tychoniec et al. 2018). The detection statistics show no clear correlation with the central mass; however, the sources with smaller central mass have fewer detections of COMs, which may due to their low luminosity.

6. CORRELATIONS OF COMS

The chemical evolution of protostars may leave certain patterns in the abundance of molecules as the dy-

^b The quantum numbers are [N, J, F]

Figure 2. The detection statistics sorted by their bolometric luminosity.

namical evolution determines the density and temperature structures, regulating chemical reactions. Thus, the abundance of COMs and their correlations provide critical information to constrain the chemical evolution at embedded protostars. The fitted column density of COMs indicates the abundance of COMs around protostars. Typically COMs are locked into the ices on dust grains at outer envelope. The formation of COMs at diffuse clouds relies on non-thermal process, such as cosmic rays, whose contribution is negligible compared to the central warm region. Therefore, we take the column density of COMs as a proxy of the abundance of COMs.

As described in Section 3.1, we fit the column density and line width with different excitation temperatures, which result in a range of column density as its uncertainty. The comparison between CCH and CH₃OH shows no correlation between these two molecules (Figure 3), similar to the conclusion in Higuchi et al. (2018). The single dish survey by Graninger et al. (2016) shows a correlation between C₄H, a more complex carbon-chain molecules, and CH₃OH. Outflow activity can promote the formation of CCH, which is more efficiency at warm temperature. In face, the morphology of CCH often traces the outflow cavities seen from CS. Therefore, the lack of correlation between CCH and CH₃OH may be affected by outflows.

Figure 2 (Cont.). The same figure as Figure 2 but sorted by their bolometric temperature.

Figure 4 shows the correlations of several COMs selected from their detection rates. The column density of $\mathrm{CH_3OH}$ best correlates with that of $\mathrm{CH_3CN}$. Belloche et al. (2020) also found the tight correlation between these two molecules.

Similar column densities of ${\rm CH_3OCHO}$ and ${\rm CH_3OCH_3}$ indicate a tight correlation

7. SPATIAL EXTENT OF COMS

8. DISCUSSION

8.1. Notes on the 1D Spectra

L1448 IRS 3A-

• The emission of SO and CS shows additional redshifted component, separated by $\sim 4.6 \, \mathrm{km \, s^{-1}}$.

Per-emb-33-A—

- Strong absorption at 246509 MHz.
- HDCO seems to have two components for the transition at 246925 MHz, but the one at 259035 MHz only has one component, which is underestimated by the model.

Per-emb-33-B/C-

• CCH shows three components leading to an inaccurate fit.

Figure 2 (Cont.). The same figure as Figure 2 but sorted by their mass derived from their 9 mm observations (Tychoniec et al. 2018).

Per-emb-42—

- Double-peaked CS line
- Triple-peaked CCH line

Per-emb-26—

- Red-shifted excess appears in the CS, SO, CH₃OH, H¹³CN, and HDCO lines.
- Broad SO lines peak at slightly blue-shifted velocity ($\sim 1 \,\mathrm{km \, s^{-1}}$).
- The best-fitting model overestimates the CH₃CH₂CN, CH₃CHO, and c-C₃H₂ lines, possibly due to the contamination of SiO, which should have been excluded for fitting. Tests are running now.
- The secondary CH₃OH line becomes overestimated at $T_{\rm ex} \ge 200$ K.

 \bullet Unidentified lines at 246525 MHz and 244249 MHz.

Per-emb-22-B—

- \bullet The SO lines have small red-shifted excess. The best-fitting line strength decreases significantly at $T_{\rm ex}=200$ K. Not sure why.
- The SO line profiles are slightly skewed toward blue-shifted velocity, while the CS line shows another brighter peak at blue-shifted velocity.

Per-emb-22-A —

• Hints of CH₃OCHOemission, but not significant enough to warrant a detection.

Per-emb-17—

• Many line profiles exhibit a broad double-peaked profile, separated by $\sim 5-6\,\mathrm{km\,s^{-1}}$. Per-emb-17 is

Figure 3. Correlation of the column densities of CCH and $\mathrm{CH_3OH}$ fitted from the PEACHES protostars. The sources where both molecules are detected are shown in black; the sources where only one molecule is detected are shown in magenta; finally, the sources where both molecules are not detected are shown in black for the corresponding upper limits.

a binary system unresolved by our observations. However, the channel maps suggest that the two components are likely to surrounding the southern source, Per-emb-17-B.

• The CH₃OCHO line at \sim 259343 MHz may be optically thick.

Per-emb-20—

- The CCH lines have a narrow double-peaked profile. The CS line shows a similar double-peak profile.
- The SO lines have a broad component underneath the typical narrow lines.

SVS13 A2-

- Weak indication of the unidentified line at 246525 MHz, which has been detected in other sources.
- The model strength of CCH suddenly decreases at $T_{\rm ex}$ =200 K by $\sim\!0.5$ K over a 2 K line.

Per-emb-44—

- Unidentified lines at 244248 MHz, 246219 MHz, 246254 MHz, 246344 MHz, 246389 MHz, 246434 MHz, 246525 MHz, 246838 MHz, 258268 MHz, 258271 MHz, and 262068-262070 MHz.
- Higher temperatures (Tex >100 K) provide better fittings. Probably should adopt the temperature

fitted from CH_3OCHO (previous MCMC fitting suggests a temperature of 263 K).

Per-emb-12-B—

 \bullet Unidentified lines at 244248 MHz, 246254 MHz, 246314 MHz, 246322 MHz, 246389 MHz, 246434 MHz, 246525 MHz, 246696 MHz, 246838 MHz, 246873 MHz, 247082 MHz, 258268 MHz, 258271 MHz, and 262068-262070 MHz.

Per-emb-12-A —

• Strong absorption features detected across the spectra, CCH, SO, H¹³CN, CS, CH₃OH, HDCO, CH₃CN, and CH₃OCHO.

IRAS4B1—

• Spectra show no emission along with absorption at SO, CS, and CH₃OH lines.

Per-emb-13—

- The CH₃OCHO emission needs $T_{\rm ex} > 100$ K to have a good fit.
- All three CH₃OH lines are detected but two of them show clear sign of self-absorption, therefore, not ideal for fitting the excitation temperature.
- Unidentified lines at 244248 MHz, 246254 MHz, 246331 MHz, 246344 MHz, 246434 MHz, 246525 MHz, 246838 MHz, 246974 MHz, 247086 MHz, 257268 MHz, 257271 MHz, 259323 MHz, 259331 MHz, 262098 MHz, and 262109 MHz.
- The best-fitting models have two different widths for the CH₃CHO lines.
- The best-fitting model for ¹³CH₃OH lines overestimates the line width.

Per-emb-27—

- All three CH₃OH lines are detected, but none of the temperature produce a good fit to all three lines, suggesting that some lines are optically thick. The transitions at 243916 MHz and 261806 MHz are ~ 30 K, while the transition at 246873 MHz is about 24 K. They seems to be optically thick. In comparison, the continuum brightness temperature is only 5.8 K.
- \bullet Unidentified lines at 244232 MHz, 244248 MHz, 246207 MHz, 246254 MHz, 246388 MHz, 246435 MHz, 246525 MHz, 246538 MHz, 246838 MHz, 246973 MHz, 247084 MHz, and 259330 MHz.
- The CH_3OH line at 243916 MHz and the SO lines become optically thick at 100 K.

Figure 4. Corner plot of the correlations of the column densities between CH_3OH , CH_3CN , CH_3OCHO , CH_3OCH_3 , CH_3CHO , CH_3CH_2CN , and t-HCOOH. The color code follows that in Figure ??. The dashed line indicates equality.

Per-emb-54 —

- The SO lines appears red-shifted by $\sim 2 \,\mathrm{km}\,\mathrm{s}^{-1}$.
- The emission of CS and CCH shows a blue-shifted peak along with absorption slightly red-shifted compared to the source velocity.

Per-emb-21—

• Emission of CH_3OH is detected. However, the broad widht and noisy spectra lead to a bad fit. The best-fitting model has the maximum line width allowed, $3.5 \, \mathrm{km \, s^{-1}}$.

Per-emb-14—

 \bullet The best-fitting model underestimates the HDCO lines, possibly due to the simultaneously fitted $^{13}\mathrm{CH_3OH}$ lines.

Per-emb-35-B—

- \bullet The best-fitting model underestimates the SO lines at $T_{\rm ex}$ =100 K.
- The CCH lines show a double-peaked line profile.
- The CH₃OH line at 243915 MHzhas an S/N of 1.2, but hints the existence of CH₃OH.

Per-emb-35-A —

- The goodness of fitting for the CH_3OH lines is a strong function of temperature, suggesting that the CH_3OH lines can indicate the T_{ex} .
- The CH₃OCHO line at 259342 MHz has an S/N of 1.8, but hint the existence of CH₃OCHO.

SVS13B—

• The fitted width of the HDCO lines is overestimated.

Per-emb-15—

• All lines have only the blue-shifted emission, making them blue-asymmetric.

Per-emb-50—

• The SO and SO₂ lines have a very broad component ($\Delta \nu = 6 \,\mathrm{km}\,\mathrm{s}^{-1}$), skewing toward the blueshifted velocity.

Per-emb-18—

- Many transitions of CH_3OCHO are tentatively detected; however, none of them has S/N > 3. Currently categorized as non-detection.
- \bullet The HDCO lines are broader than the maximum allowed line width, $3.5\,\rm km\,s^{-1},$ making the fitting inaccurate.

Per-emb-37—

• The fitting of SO lines has a strong variation as a function of temperatures.

Per-emb-36—

• The SO lines are underestimated by the best-fitting model. Perhaps it can be fixed by changing the Variation parameter. To be tested. Test run on laptop shows no issue of having a good fit at 100 K for SO with Variatopn = 10^{-2} .

• The CCH lines only show at the blue-shifted velocities.

B1-bS—

- Higher temperatures produce worse fittings to the CH₃OCHO lines. Previous MCMC fitting of the CH₃OCHO lines suggests a temperature of 58 K.
- The fitting of CH_3OCH_3 is limited by the minimum line width of $1.2 \,\mathrm{km \, s^{-1}}$.
- Unidentified lines at 246027 MHz, 246099 MHz, 246143 MHz, 246192 MHz, 246525 MHz, 246674 MHz, and 2467320 MHz.
- The CH₃OCHO lines around 258278 MHz and the H¹³CN lines have a few dips within the line profile, suggesting absorption or just noisy spectra.

Per-emb-29—

• Only two CH₃OH lines are covered. Both lines have a strength of ~ 10 K, suggesting optically thick.

Per-emb-5—

• The CCH fitting is not robust across different temperatures (only 150 K and 300 K fit).

8.2. Comparison to the CALYPSO Survey

8.3. Complex Chemistry throughout Star Formation

Y.-L. Yang acknowledges the supports the JSPS Post-doctoral Fellowship from Japan Society for the Promotion of Science. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.0.00391.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Facilities: ALMA

Software: astropy, XCLASS, spectral-cube, CASA

APPENDIX

A. CATALOGS FOR MOLECULAR DATA

REFERENCES

- Aikawa, Y. 2013, Chemical Reviews, 113, 8961
- Belloche, A., Maury, A. J., Maret, S., et al. 2020, A&A, 635, A198
- Bottinelli, S., Ceccarelli, C., Lefloch, B., et al. 2004, ApJ, 615, 354
- Carney, M. T., Yıldız, U. A., Mottram, J. C., et al. 2016, A&A, 586, A44
- Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., & Müller, H. S. P. 2016, Journal of Molecular Spectroscopy, 327, 95
- Graninger, D. M., Wilkins, O. H., & Öberg, K. I. 2016, ApJ, 833, 125
- Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427Higuchi, A. E., Sakai, N., Watanabe, Y., et al. 2018, ApJS, 236, 52
- Imai, M., Oya, Y., Sakai, N., et al. 2019, ApJL, 873, L21
 Imai, M., Sakai, N., Oya, Y., et al. 2016, ApJL, 830, L37
 Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117
- Lee, C.-F., Li, Z.-Y., Ho, P. T. P., et al. 2017, ApJ, 843, 27 McGuire, B. A. 2018, ApJS, 239, 17
- Möller, T., Endres, C., & Schilke, P. 2017, A&A, 598, A7

- Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, Journal of Molecular Structure, 742, 215
- Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
- Oya, Y., Sakai, N., López-Sepulcre, A., et al. 2016, ApJ, 824, 88
- Oya, Y., Sakai, N., Watanabe, Y., et al. 2017, ApJ, 837, 174
 Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998,
 JQSRT, 60, 883
- Sakai, N., Sakai, T., Hirota, T., Burton, M., & Yamamoto, S. 2009, ApJ, 697, 769
- Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2010, ApJ, 722, 1633
- Sakai, N., Sakai, T., Hirota, T., et al. 2014, Nature, 507, 78
 Sakai, N., Oya, Y., López-Sepulcre, A., et al. 2016, ApJL, 820, L34
- Stephens, I. W., Dunham, M. M., Myers, P. C., et al. 2018, ApJS, 237, 22
- Stephens, I. W., Bourke, T. L., Dunham, M. M., et al. 2019, ApJS, 245, 21
- Tychoniec, L., Tobin, J. J., Karska, A., et al. 2018, ApJS, 238, 19