





# TOPOLOGÍAS DE RNA

#### TEOREMA DE COVER

Un problema de clasificación complejo, proyectado en un espacio hiper dimensional de forma no lineal, puede ser linealmente separado con mayor facilidad que en su espacio original reducido.



Thomas Cover (1938-2012)

### RBFNN

#### RADIAL BASIS FUNCTION NN

- Una sola capa oculta, de estrictamente mayor dimensión que la entrada.
- La capa oculta implementa funciones de transformación no lineal, radialmente simétricas al centro de cada neurona.

$$y_{h,k}(\boldsymbol{x}_k) = \Phi(\|\boldsymbol{x}_k - \boldsymbol{c}_h\|)$$
  $\begin{array}{c} c_h \text{ centros} \\ \| \text{ distancia euclidiana} \end{array}$ 





#### Entrenamiento en dos etapas:

- Elegir centros por k-means u otra técnica no supervisada.
- Ajustar la posición con métodos supervisados.

## SISTEMA DE VISIÓN: UNA INSPIRACIÓN MAMÍFERA





Mecanismos de compensación:

- Segmentación emergente
- Completado de características

Compensación de iluminación:

- Brillo constante
- Contraste

## IMÁGENES DIGITALES

Color - Multicanal

RGB







$$r_{i,j} \sim \mathbb{R}$$
 $g_{i,j} \sim \mathbb{R}$ 
 $b_{i,j} \sim \mathbb{R}$ 







$$h_{i,j} \sim [0,360^{\circ}]$$
  
 $s_{i,j} \sim [0,100\%]$   $X = [...]_{I,J,3}$   
 $v_{i,j} \sim [0,100]$ 





Monocromo - Monocanal

 $X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,J} \\ \vdots & \ddots & \vdots \\ x_{I,1} & \cdots & x_{I,J} \end{bmatrix} \qquad x_{i,j} \sim \mathbb{R}$ 

## CONVOLUCIÓN MATRICIAL

#### Núcleo

- Matriz cuadrada de dimensión mucho menor que la imagen.
- Se desplaza para que el elemento central coincida con cada pixel.
- Cada elemento multiplica al valor del pixel con que coincide.
- El elemento central se reemplaza con la suma de todos los elementos.

| 5 | 5 | 5 | 5 | 5<br>5<br>4 |  |
|---|---|---|---|-------------|--|
| 5 | 5 | 5 | 5 |             |  |
| 5 | 5 | 4 | 4 |             |  |
| 5 | 4 | 3 | 3 | 3           |  |



...

| 5 | 5 | 5 | 5 | 5 |   |  |
|---|---|---|---|---|---|--|
| 5 | 5 | 5 | 5 | 5 |   |  |
| 5 | 5 | 4 | 4 | 4 | * |  |
| 5 | 4 | 3 | 3 | 3 |   |  |

|   | 0                                            | 0 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ |  | 0 | 0  | 0 |  |
|---|----------------------------------------------|---|----------------------------------------|--|---|----|---|--|
| * | $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ | 0 | 0                                      |  | 0 | -1 | 0 |  |
|   |                                              |   |                                        |  |   |    |   |  |

### FILTROS: DIVERSOS NÚCLEOS

Enfoque

$$\begin{bmatrix} -1 & 0 \\ 1 & 5 & -1 \end{bmatrix}$$

Desenfoque

$$egin{bmatrix} 1 & 1 & 1^{-1} \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$$

Resaltar bordes

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Repujado

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Detección bordes

$$egin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

Sobel

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Sharpen

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

Promedio

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

### EJEMPLOS DE FILTROS





Detección de bordes

#### CNN CONVOLUTIONAL NEURAL NETWORK



Convolución Pooling Convolución Pooling



## **LSTM**

#### LONG SHORT TERM MEMORY



