Graficos

Diego Vega Víquez

Resultados

```
base <- read_excel("data/base_agua_limpia.xlsx")</pre>
str(base)
tibble [43 x 40] (S3: tbl_df/tbl/data.frame)
 $ sitio
                  : chr [1:43] "Agujitas" "Agujitas" "Agujitas" "Agujitas" ...
                  : chr [1:43] "Fondo" "Superficie" "Fondo" "Superficie" ...
 $ ubi muestra
                  : chr [1:43] "Dulce" "Dulce" "Dulce" "Dulce" ...
 $ cuerpo
 $ fecharecolectaf: POSIXct[1:43], format: "2019-02-15" "2019-02-17" ...
 $ fecharecolectaj: POSIXct[1:43], format: "2019-07-29" "2019-07-29" ...
 $ profundidad
                 : num [1:43] 10 0 16.8 0 23.9 0 21 0 34.5 0 ...
 $ salinidad
                  : num [1:43] 31 30 30 29 33 30 29 32 30 28 ...
                  : num [1:43] 5.61 6.41 5.81 6.15 4.76 ...
 $ oxigeno
 $ sat_oxigen
                 : num [1:43] 95.9 110.3 99.6 106.1 82.9 ...
                  : num [1:43] 30.7 30.7 30.4 30.4 30.4 30.4 30.4 30.4 30.2 30.2 ...
 $ tempaguaj
 $ tempairej
                  : num [1:43] 31.2 31.2 31.1 31.1 30.1 30.1 29.8 29.8 30.7 30.7 ...
 $ colifecalj
                  : num [1:43] 1 1 1 1 1 1 1 1 1 1 ...
 $ ecolij
                  : num [1:43] 1 1 1 1 1 1 1 1 1 1 ...
 $ enterococoj
                  : num [1:43] 1 1 1 1 1 1 1 1 1 1 1 8 1.8 ...
                  : num [1:43] 8.05 8.06 8.13 8.08 8.14 8.12 7.99 8.14 7.97 8.21 ...
 $ ph
                  : num [1:43] 0.35 0.32 0.9 0.41 0.33 2.65 0.76 0.33 1.12 0.34 ...
 $ fosfatos
 $ silicatos
                  : num [1:43] 8.2 12.93 0.00001 0.00001 0.00001 ...
 $ amonio
                  : num [1:43] 3.83 3.61 4.02 3.67 4.48 3.88 3.73 5.25 3.32 5.04 ...
 $ nitritos
                  : num [1:43] 6.72 6.17 7 5.89 8.4 7.7 7.84 8.12 8.68 7.42 ...
                  : num [1:43] 6.07 5.31 6.66 5.4 7.29 7.71 8.95 9.67 8.55 9.42 ...
 $ nitratos
                  : num [1:43] 0.75 0.2 0.17 0.25 0.24 0.13 0.76 0.27 0.9 0.43 ...
 $ chla_agua
                  : num [1:43] 0.1 0.35 -0.06 -0.17 -0.47 -0.31 0.21 -0.09 0.18 -0.25 ...
 $ faopigmentos
 $ matsuspension : num [1:43] 1.26 1.32 0.95 1.01 1.14 0.88 1.55 2.21 1.21 1.07 ...
 $ alcali_total
                  : num [1:43] 254 252 250 254 251 ...
```

```
$ dureza
                  : num [1:43] 8018 8205 8018 7877 8064 ...
                 : num [1:43] 7.2 NA 5.37 NA 3.98 NA 13.9 NA 7.1 NA ...
 $ carbonatos
 $ zinc
                  : num [1:43] NA 0.05 NA 0.05 NA 0.06 NA 0.05 NA 0.04 ...
 $ cobre
                  : num [1:43] NA 0.05 NA NA NA 0.05 NA 0.05 NA 0.05 ...
                 : num [1:43] NA NA NA NA NA NA NA 3.3 NA 4.6 ...
 $ ca2
                  : num [1:43] NA NA NA NA NA NA NA 9 NA 12 ...
 $ mg2
 $ na
                 : num [1:43] NA NA NA NA NA ...
 $ k
                  : num [1:43] NA NA NA NA NA NA NA 334 NA 356 ...
 $ cl
                 : num [1:43] NA NA NA NA NA ...
                 : num [1:43] NA NA NA NA NA ...
 $ S042
 $ dbof
                 : num [1:43] 7.1 7.1 3.2 3.2 12.6 12.6 3.8 1.8 NA NA ...
                 : num [1:43] 6 6 1.4 1.4 11.1 11.1 14 NA NA NA ...
 $ dboj
                  : num [1:43] 1443 1443 1457 1457 1507 ...
 $ dqof
                  : num [1:43] 1110 1110 1400 1400 1070 1070 1000 NA NA NA ...
 $ dqoj
 $ latitud
                  : num [1:43] 8.7 8.7 8.72 8.72 8.72 ...
 $ longitud
                  : num [1:43] -83.7 -83.7 -83.7 -83.7 ...
# Extra: volver a poner las categóricas como factores y la fecha como Date por que
# al pasarse a excel pierde esta característica.
base$sitio <- as.factor(base$sitio)</pre>
base$cuerpo <- as.factor(base$cuerpo)</pre>
base$ubi_muestra <- as.factor(base$ubi_muestra)</pre>
base <- base %>% mutate(across(
  c(sitio, ubi_muestra, cuerpo),
  as.factor
))
table(base$sitio)
```

Agujitas	Claro	Drake	Isla del Caño	Llorona
6	8	6	2	6
Río Aguijitas	Río Claro	Río Drake	Río Llorona	Río Sierpe
3	1	2	3	6

table(base\$ubi_muestra)

Fondo Superficie 17 26

table(base\$cuerpo)

Dulce Salado 28 15

Gráficos

Distribución de la demanda biológica de oxígeno antes del tratamiento

Distribución de la demanda biológica de oxígeno posterior al tratamiento

Distribución del DBOJ (Demanda biológica de Oxígeno)

Boxplot de la demanda biológica de oxígeno antes al tratamiento

DBO antes del tratamiento según el cuerpo de agua

Boxplot de la demanda biológica de oxígeno posterior al tratamiento

DBO posterior del tratamiento según el cuerpo de agua

Distribución de la demanda química de oxígeno antes del tratamiento

Distribución de la demanda biológica de oxígeno posterior al tratamiento

Boxplot de la demanda biológica de oxígeno antes al tratamiento

DBO antes del tratamiento según el cuerpo de agua

Boxplot de la demanda biológica de oxígeno posterior al tratamiento

DQO posterior del tratamiento según el cuerpo de agua

Boxplot de DBO según la calidad del agua

Oxígeno disuelto vs DBO

Evolución del DBO en el tiempo por sitio sitio

Heatmap de Correlación

Matriz de Dispersión: DBO, DQO y Variables Relevantes

Matriz de correlaciones visuales y distribuciones para variables fisicoquímicas

