2005 USAMO P1

Lin Liu

December 25, 2021

Problem

Determine all composite positive integers n for which it is possible to arrange all divisors of n that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

Solution

We will prove that the only time that n doesn't work is when n = pq where p, q are distinct primes.

It is easy to see that if n = pq where p and q are distinct primes, it is impossible to place p, q, pq in a circle such that p and q are not bordering. If $n = p^k$ it is easy to see that it will work since any divisor of n that is greater than 1 will be a multiple of p. Now we will prove that other n work as well.

Let $n=p_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$ where p_1,p_2,\dots,p_k are distinct primes and is in strictly increasing order. That is, $p_1< p_2<\dots< p_k$.

Now we define A_i from $1 \le i \le k$ to be the **strictly increasing** set containing the divisors of n such that the divisor is a multiple of p_i but is not a multiple of p_j with j < i. We will now perform two changes on A_1 .

- Take the last element of A_1 and move it to the front of the set without changing the order of the other elements.
- Take the element $p_1 \cdot p_2$ and move it to the end of the set without changing the order of the other elements.

For the second operation, it is quite obvious that the number $p_1 \cdot p_2$ does appear in A_1 since it is a multiple of p_1 . Now imagine if we strung together all of these sets into a circle so that the last element of some A_j and the first element of A_{j+1} are neighboring. If j=k then the last element of A_k and the first element of A_1 are neighboring. We will claim that this construction works. It is easy to see that the first element of A_1 and the last element of A_k are not coprime because the first element of A_1 is now n. Notice that the last element of A_1 is now p_1p_2 and the first element of A_2 is p_2 so the connection between A_1 and A_2 works. Furthermore, it is easy to see that if 1 < j < k then the last element of A_j , $p_jp_{j+1} \dots p_k$ and the first element of A_{j+1} which is p_{j+1} are obviously not coprime so we are done.