| Nome                       | RA     | Curso / Turma |
|----------------------------|--------|---------------|
| Vitor Hugo Ferrari Ribeiro | 112481 | Física / 34   |

## **Experimento VII**

## Circuito RC



Figura 1. Circuito RC-série sob corrente contínua:  $(\varepsilon)$  f.e.m. da fonte contínua;  $(i_0)$  corrente inicial; (S) chave;  $(A \in B)$  posições no circuito para conexão da chave S; (R) resistor ôhmico e (C) capacitor.

## I. Considerações Gerais

## Processo de carga do capacitor

Considerando o circuito RC em série mostrado na Fig. 1, com a chave *S* na posição *A*, aplicando a lei das malhas obtemos a equação diferencial que descreve o circuito:

$$R \cdot \frac{dQ}{dt} + \frac{Q}{C} = \varepsilon \quad (1)$$

Sendo, Q a carga no capacitor, C(Q/V) a capacitância do capacitor, R a resistência do resistor e  $\varepsilon$  a f.e.m. da fonte contínua. Resolvendo a eq.(1) para a carga, temos:

$$Q(t) = Q_{m\acute{a}x} \cdot \left(1 - e^{\frac{-t}{\tau}}\right) \quad (2)$$

Na qual,  $Q_{m\acute{a}x}(C\varepsilon)$  é a carga máxima no capacitor e  $\tau(RC)$  é a constante de tempo para o processo de carga do capacitor.

Com a solução para o processo de carga do capacitor (eq. (2)), podemos obter as demais equações que descrevem o processo:

$$i(t) = \frac{\varepsilon}{R} \cdot e^{\frac{-t}{\tau}}$$
 (corrente elétrica do circuito) (3)

$$V_R(t) = i(t) \cdot R \ (d.d.p \ no \ resistor)$$
 (4)

$$V_C(t) = \frac{Q(t)}{C} (d.d.p \text{ no capacitor})$$
 (5)

## Processo de descarga do capacitor

Considerando o circuito RC em série mostrado na Fig. 1, com a chave *S* na posição *B*, aplicando a lei das malhas obtemos a equação diferencial que descreve o circuito:

$$R \cdot \frac{dQ}{dt} + \frac{Q}{C} = 0 \tag{6}$$

Sendo Q a carga no capacitor, C(Q/V) a capacitância do capacitor e R a resistência do resistor.

Resolvendo a eq.(6) para a carga, temos:

$$Q(t) = Q_{m\acute{a}x} \cdot e^{\frac{-t}{\tau}} \qquad (7)$$

Na qual,  $Q_{m\acute{a}x}(C\varepsilon)$  é a carga máxima no capacitor e  $\tau(RC)$  é a constante de tempo para o processo de carga do capacitor. Com a solução para o processo de carga do capacitor (eq. (2)), podemos obter as demais equações que descrevem o processo:

$$i(t) = \frac{-\varepsilon}{R} \cdot e^{\frac{-t}{\tau}}$$
 (corrente elétrica do circuito) (8)

$$V_R(t) = i(t) \cdot R \ (d.d.p \ no \ resistor)$$
 (9)

$$V_C(t) = \frac{Q(t)}{C} \quad (d. \, d. \, p \, no \, resistor) \quad (10)$$



Figura 2. Esquema para a montagem do circuito RC-série sob corrente contínua.

1. Anote os valores da capacitância (C) e da resistência (R) do capacitor e do resistor, respectivamente;

$$C = 5000 \, \mu F \, e \, R = 9826 \, \Omega$$

- 2. Monte o esquema da Fig. 2, observando com cuidado as polaridades do capacitor, amperímetro e da fonte. Posicione as chaves  $S_1$  e  $S_2$  na posição "0" (posição central);
- 3. Ligue a fonte e ajuste-a para 20 *V*;

Observação: Antes de posicionar as chaves  $S_1$  e  $S_2$ , leiam a Tabela 3 e observem quais os circuitos deverão obter para as combinações das chaves.

#### 1ª Parte - Análise da corrente

#### **II.** Processo de carga do capacitor

- 4. Conecte o voltímetro no capacitor e verifique se a *d.d.p* é nula, caso não seja descarregue o capacitor instantaneamente (ver Tabela 3);
- 5. Conecte o voltímetro no resistor. Você pode optar por conectar simultaneamente um voltímetro no capacitor e um no resistor;
- 6. Posicione, sucessivamente,  $S_1$  e  $S_2$  na posição "2", e anote os valores iniciais da corrente elétrica  $(i_0)$ , da d.d.p no capacitor  $(V_{C_0})$  e da d.d.p no resistor  $(V_{R_0})$  na Tabela 1. Caso esteja com o voltímetro conectado apenas no resistor, você deve conectar, posterior a medida de  $V_{R_0}$ , o voltímetro no capacitor e proceder com a medida;
- 7. Registre o tempo para os valores da corrente no circuito, em intervalos de 0,2 mA (entre 2,0 e 0,6 mA) e intervalos de 0,1 mA (entre 0,5 e 0,1 mA), após ligar simultaneamente, o cronômetro e a chave S<sub>2</sub> na posição "0". Mantenha o cronômetro ligado até o capacitor se carregar totalmente;
- 8. Posicione a chave  $S_1$  para a posição "0". Assim, você terá, as duas chaves na posição "0". Mantenha o(s) voltímetro(s) conectado(s);

#### III. Processo de descarga no capacitor

- 9. Posicione, sucessivamente,  $S_1$  e  $S_2$  na posição "1", e anote os valores iniciais da corrente elétrica  $(i_0)$ , da d.d.p no capacitor  $(V_{C_0})$  e da d.d.p no resistor  $(V_{R_0})$  na Tabela 2. Caso esteja com o voltímetro conectado apenas no resistor, você deve conectar, posterior a medida de  $V_{R_0}$ , o voltímetro no capacitor e proceder com a medida;
- 10. Da mesma maneira que foi realizado para o processo de carga, registre o tempo para os valores da corrente no circuito, em **intervalos de 0,2 mA (entre 2,0 e 0,6 mA) e intervalos de 0,1 mA (entre 0,5 e 0,1 mA)**, após ligar simultaneamente, o cronômetro e a chave  $S_2$  na posição "0". Mantenha o cronômetro ligado até o capacitor se descarregar totalmente;

#### $2^a$ parte - Análise da d.d.p nos terminais do resistor $(V_R)$ e do capacitor $(V_C)$

- 11. Certifique-se de que o capacitor está descarregado, caso não esteja descarregue o capacitor instantaneamente (ver Tabela 3);
- 12. Posicione as chaves  $S_1$  e  $S_2$  na posição "0";
- 13. Com o voltímetro conectado ao resistor, posicione a chave  $S_1$  na posição "2" e registre para os mesmos valores das correntes elétricas medidas no processo de carga, a d.d.p no resistor ( $V_R$ ) até que a corrente atinja o valor mínimo medido anteriormente, e anote os valores medidos na Tabela 1;
- 14. Posicione as chaves  $S_1$  e  $S_2$  na posição "0";
- 15. Com o voltímetro conectado ao resistor, posicione a chave  $S_1$  na posição "0" e registre para os mesmos valores das correntes elétricas medidas no processo de descarga, a d. d. p no resistor ( $V_R$ ) até que a corrente atinja o valor mínimo, em módulo, medido anteriormente, e anote os valores medidos na Tabela 2;
- 16. Posicione as chaves  $S_1$  e  $S_2$  na posição "0";
- 17. Certifique-se de que o capacitor está descarregado, caso não esteja descarregue o capacitor instantaneamente (ver Tabela 3);

- 18. Com o voltímetro conectado ao capacitor, posicione a chave  $S_1$  na posição "2" e registre para os mesmos valores das correntes elétricas medidas no processo de carga, a d.d.p no capacitor ( $V_C$ ) até que a corrente atinja o valor mínimo medido anteriormente, e anote os valores medidos na Tabela 1;
- 19. Posicione as chaves  $S_1$  e  $S_2$  na posição "0";
- 20. Com o voltímetro conectado ao capacitor, posicione a chave  $S_1$  na posição "0" e registre para os mesmos valores das correntes elétricas medidas no processo de descarga, a d.d.p no capacitor ( $V_C$ ) até que a corrente atinja o valor mínimo, em módulo, medido anteriormente, e anote os valores medidos na Tabela 2;

Tabela 1. Dados experimentais para o processo de carga do capacitor.

|       | •                       |                            |                           |
|-------|-------------------------|----------------------------|---------------------------|
| t(s)  | $i \pm \Delta i \ (mA)$ | $V_R \pm \Delta V(V)$      | $V_C \pm \Delta V(V)$     |
| 0     | $i_0 = 2,05 \pm 0,01$   | $V_{R_0} = 20,04 \pm 0,01$ | $V_{C_0} = 0.00 \pm 0.01$ |
| 1,32  | 2,00 ± 0,01             | 19,61 ± 0,01               | $0,40 \pm 0,01$           |
| 6,96  | $1.8 \pm 0.01$          | 17,64 ± 0,01               | $2,35 \pm 0,01$           |
| 13,32 | $1,6 \pm 0,01$          | 15,70 ± 0,01               | 4,46 ± 0,01               |
| 20,52 | $1,4 \pm 0,01$          | 13,66 ± 0,01               | $6,25 \pm 0,01$           |
| 28,55 | $1,2 \pm 0,01$          | 11,77 ± 0,01               | 8,32 ± 0,01               |
| 38,48 | $1,0 \pm 0,01$          | 9,79 ± 0,01                | 10,27 ± 0,01              |
| 51,12 | $0.8 \pm 0.01$          | $7,80 \pm 0,01$            | 12,23 ± 0,01              |
| 64,2  | $0.6 \pm 0.01$          | 5,90 ± 0,01                | 14,18 ± 0,01              |
| 70,8  | $0.5 \pm 0.01$          | 4,93 ± 0,01                | 15,14 ± 0,01              |
| 79,2  | $0.4 \pm 0.01$          | $3,92 \pm 0,01$            | 16,13 ± 0,01              |
| 90,0  | $0.3 \pm 0.01$          | 2,95 ± 0,01                | 17,09 ± 0,01              |
| 130,8 | $0.2 \pm 0.01$          | 1,96 ± 0,01                | 18,09 ± 0,01              |
| 189,6 | $0.1 \pm 0.01$          | $0,97 \pm 0,01$            | $19,80 \pm 0,01$          |

**Tabela 2.** Dados experimentais para o processo de descarga do capacitor.

| t(s)  | $i \pm \Delta i (mA)$ | $V_R \pm \Delta V (V)$      | $V_{C}\pm\Delta V\left( V\right)$ |
|-------|-----------------------|-----------------------------|-----------------------------------|
| 0     | $i_0 = 2,05 \pm 0,01$ | $V_{R_0} = -20,04 \pm 0,01$ | $V_{C_0} = -20,06 \pm 0,01$       |
| 5,97  | 1,85 ± 0,01           | $-18,07 \pm 0,01$           | 18,14 ± 0,01                      |
| 11,97 | 1,65 ± 0,01           | $-16,11 \pm 0,01$           | 16,20 ± 0,01                      |
| 19,03 | 1,45 ± 0,01           | $-14,03 \pm 0,01$           | 14,13 ± 0,01                      |
| 26,60 | $1,25 \pm 0,01$       | $-12,22 \pm 0,01$           | $12,73 \pm 0,01$                  |
| 36,40 | $1,05 \pm 0,01$       | $-10,27 \pm 0,01$           | $10,26 \pm 0,01$                  |
| 47,42 | $0,85 \pm 0,01$       | $-8,33 \pm 0,01$            | $8,34 \pm 0,01$                   |
| 60,6  | 0,65 ± 0,01           | $-6,44 \pm 0,01$            | $6,39 \pm 0,01$                   |
| 66,0  | $0,55 \pm 0,01$       | $-5,43 \pm 0,01$            | $5,47 \pm 0,01$                   |
| 73,2  | $0,45 \pm 0,01$       | $-4,42 \pm 0,01$            | $4,41 \pm 0,01$                   |
| 81,6  | $0,35 \pm 0,01$       | $-3,44 \pm 0,01$            | $3,44 \pm 0,01$                   |
| 93,0  | 0,25 ± 0,01           | $-2,44 \pm 0,01$            | $2,45 \pm 0,01$                   |
| 135,0 | 0,15 ± 0,01           | $-1,46 \pm 0,01$            | $1,46 \pm 0,04$                   |
| 198,6 | 0,05 ± 0,01           | $-0,49 \pm 0,01$            | $0,49 \pm 0,01$                   |

### IV. Discussão dos resultados obtidos:

## 1) Demonstre as equações de (1) a (5) para o processo de carga no capacitor.

Partindo da análise do circuito, vemos que o resistor R e o capacitor C estão em série; quando é aplicado uma diferença de potencial, teremos um potencial sobre o resistor  $V_R$  e um potencial sobre o capacitor  $V_C$ , aplicando a segunda lei de Kirchhoff, temos:

$$\varepsilon - V_R - V_C = 0$$

O potencial de um capacitor é dado por:

$$V_C = \frac{Q(t)}{C}$$

Sendo Q a carga no capacitor, e C a capacitância do mesmo.

O potencial do resistor é dado pela lei de Ohm, ou seja:

$$V_R = R \cdot i$$

Combinando as três equações anteriores, temos:

$$R \cdot i + \frac{Q(t)}{C} - \varepsilon = 0$$

Lembrando que i = dQ/dt, temos:

$$R \cdot \frac{dQ}{dt} + \frac{Q}{C} = \varepsilon$$

A equação acima é equação diferencial de primeira ordem e linear; manipulando seus termos podemos chegar a seguinte E.D.O. separável:

$$\frac{dQ}{C \cdot \varepsilon - Q(t)} = \frac{dt}{R \cdot C}$$

Podemos resolver a E.D.O. acima, integrando os dois lados da igualdade, aplicando os limites de integração de zero até a carga máxima  $Q_{max}$  e de um tempo inicial zero até um tempo t qualquer. Dessa forma, temos:

$$\int_{0}^{Q_{max}} \frac{dQ}{C \cdot \varepsilon - Q(t)} = \int_{0}^{t} \frac{dt}{R \cdot C}$$

Resolvendo a integral, temos:

$$Q(t) = Q_{max} \cdot \left(1 - e^{\frac{-t}{\tau}}\right)$$

Sendo  $Q_{max} = C \cdot \varepsilon$  a carga máxima no capacitor, e  $\tau = R \cdot C$  a constante de tempo para o processo de carga do capacitor.

Partindo da equação anterior, podemos encontrar uma função que descrever a corrente i em função do tempo t. Lembrando que i=dQ/dt, temos:

$$i(t) = \frac{\varepsilon}{R} \cdot e^{\frac{-t}{\tau}}$$

Observamos que  $\varepsilon/R = i_{max}$ , ocorre quando a corrente é máxima no circuito.

Da equação:

$$V_C = \frac{Q}{C}$$

Podemos rescrever, a diferença de potencial para o capacitor em função do tempo:

$$V_C(t) = \frac{Q(t)}{C} = \varepsilon \cdot \left(1 - e^{\frac{-t}{\tau}}\right)$$

Da equação:

$$V_R = R \cdot i$$

Podemos rescrever, a diferença de potencial para o resistor em função do tempo:

$$V_R(t) = R \cdot i(t) = \varepsilon \cdot e^{\frac{-t}{\tau}}$$

#### 2) Demonstre as equações de (6) a (10) para o processo de descarga no capacitor.

Analisando o circuito novamente, mas agora com o capacitor devidamente carregado, podemos aplicar a lei das malhas para calcular o potencial do circuito:

$$V_C + V_R = 0$$

Desenvolvendo a equação, obtemos mais uma vez uma equação diferencial separável:

$$\frac{dQ}{dt} = \frac{-Q}{R \cdot C}$$

Podemos resolver essa equação integrando os dois lados da igualdade, com os limites de integração indo de  $Q_{max}$  até Q(t) e zero até um t qualquer respectivamente;

$$\int_{Q_{max}}^{Q(t)} \frac{dQ}{Q} = \int_{0}^{t} \frac{dt}{R \cdot C}$$

Resolvendo a integral, temos uma função da carga dependente do tempo para o processo de descarga do capacitor:

$$Q(t) = Q_{max} \cdot e^{\frac{-t}{R \cdot C}}$$

Da equação acima podemos obter:

$$i(t) = -i_{max} \cdot e^{\frac{-t}{R \cdot C}}$$

$$V_R(t) = -R \cdot i_{max} \cdot e^{\frac{-t}{R \cdot C}}$$

$$V_C(t) = \varepsilon \cdot e^{\frac{-t}{R \cdot C}}$$

3) Calcule o valor da constante  $\tau$ , e mostre que a mesma tem unidade de tempo.

Dos dados coletados no experimento podemos calcular  $\tau$ , utilizando os nominais da resistência  $R=9800~\Omega$  e a capacitância  $C=5000~\mu F$ ;

$$\tau = R \cdot C \Rightarrow \tau = 9800 \cdot 5000 = 49,15 \, s$$

4) Construa o gráfico, para os processos carga e descarga, da corrente elétrica em função do tempo.



5) Construa o gráfico, para os processos carga e descarga, da d.d.p no resistor em função do tempo.



## 6) Construa o gráfico, para os processos carga e descarga, da d.d.p no capacitor em função do tempo.



# 7) Obtenha o valor da constante $\tau$ por meio dos gráficos construídos nos itens 4) a 6), e compare com o valor calculado no item 3).

Podemos obter por meio da seguinte equação:

$$i(t)=i_{max}\cdot e^{\frac{-t}{\tau}}$$

*Lembrado que*  $\tau = R \cdot C$ , *temos*:

$$i(t) = 0.37 \cdot i$$

Analisando a corrente na carga:

$$\tau=0.37\cdot i_0$$

$$\tau = 0.76$$

Analisando a corrente na descarga, temos:

$$\tau = 0.37 \cdot i_0$$

$$\tau = -0.76$$

Analisando a diferença de potencial no capacitor, pela equação:

$$V_C(t) = \varepsilon \cdot e^{\frac{-t}{R \cdot C}}$$

$$V_C(t) = \varepsilon \cdot e^{\frac{-t}{R \cdot C}}$$

*Lembrado que*  $\tau = R \cdot C$ , *temos*:

$$V_C(t) = \varepsilon \cdot (1 - 0.37)$$

$$V_C(t) = 0.67 \cdot \varepsilon$$

*Lembrado também que*  $\varepsilon = 20 V$ ;

Na carga, temos:

$$\tau = 12,6$$

Na descarga, temos:

$$\tau = 12,6$$

#### 8) Linearize o gráfico da corrente elétrica, para o processo de carga, e determine o valor da constante au.



# 9) Descreva as características dos circuitos resultantes (Tabela 3), nos processos de carga e descarga, para cada uma das combinações entre as chaves $S_1$ e $S_2$ , exceto os processos instantâneos.

Quando as chaves se encontram nas posições  $S_1 \rightarrow 2$  e  $S_2 \rightarrow 2$ , temos que a fonte fornece uma corrente i ao circuito que possui o amperímetro e o resistor R em série, a corrente por sua vez entra no polo positivo e sai pelo negativo do mesmo, logo em seguida passa pelo resistor e retorna à fonte.

Quando as chaves se encontram nas posições  $S_1 \rightarrow 2$  e  $S_2 \rightarrow 0$ , temos que a fonte fornece uma corrente i ao circuito que possui o amperímetro, o resistor R e o capacitor em série, a corrente por sua vez entra no polo positivo e sai pelo negativo do mesmo, logo em seguida passa pelo resistor - o que consome grande parte do potencial do circuito - , passa pelo capacitor, induzindo carga no mesmo, que por sua vez começa a inibir a passagem da corrente proporcionalmente à quantidade de carga induzida - o que também diminui a passagem de corrente pelo resistor e amperímetro - só então a corrente retorna à fonte.

Quando as chaves se encontram nas posições  $S_1 \to 1$  e  $S_2 \to 1$ , temos que a fonte fornece uma corrente i ao circuito que possui o capacitor em paralelo com o resistor e o amperímetro que se encontrar em série um com o outro. Neste caso a corrente i se divide de modo que uma parte da corrente passa pelo resistor e logo após pelo amperímetro, por outro lado, a outra parte da corrente passa pelo capacitor induzindo carga no mesmo, que por sua vez começa a inibir a passagem da corrente proporcionalmente à quantidade de carga induzida - o que resulta em aumentar a corrente que passa pelo resistor e amperímetro - após isto, se "junta" novamente com a parte que passou pelo resistor e capacitor e finalmente retorna à fonte.

Quando as chaves se encontram nas posições  $S_1 \to 1$  e  $S_2 \to 0$ , o capacitor, que por sua vez está carregado e ligado em série com o resistor e o amperímetro, fornece uma corrente contínua ao circuito que por sua vez passa pelo resistor - que acaba por amortecer a corrente e colabora com a dissipação de potência — o que resulta atraso comparado à descarga espontânea.

**Tabela 3.** Posições das chaves  $S_1$  e  $S_2$  e seus circuitos resultantes.

|     | <i>S</i> <sub>1</sub> | $S_2$ | Circuito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|-----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I   | 2                     | 2     | +A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I   | 2                     | 0     | +A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| п   | 1                     | 1     | +  -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| II  | 1                     | 0     | -   + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A + - A +            |
| III | 0                     | 1     | -   <del>  +     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -    </del> |
| IV  | 0                     | 2     | -    +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

I: Processo de carga; II: processo de descarga; III: carga instantânea; IV: descarga instantânea.