

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

✓ Exercícios – estrutura cristalina e caracterização

Prof. Dr. Renata Ayres Rocha

Identificação de fases em misturas de pós

Intensidade

Identificação de fases para um mesmo composto

Pattern: 33-1160

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

Radiation = 1.540560

1.75250

1.59110

1.54670 1.51080

1.45340

1.43680 1.43250

1.41970 1.35790 37

12

15

15

2 0

0

Exemplo de ficha padrão de DRX

Si₃ N₄ d (Å) h ĸ 6.58300 3.80000 35 Silicon Nitride HPSN (hot pressed silicon nitride) SN 3.29300 100 2.66000 93 2.48900 2.31000 2.19390 10 31 2.17970 Mol. weight = 140.28 Lattice: Hexagonal 1.90130 1.89160 Volume [CD] = 145.61 **S.G.:** P63/m (176) 1.82750

c = 2.90750

Renata Ayres

Prof.

a = 7.60440

Z =

Dx = 3.200

International Center for Diffraction Data (ICDD) - http://www.icdd.com/

DIFRAÇÃO DE RAIOS X (X-RAY DIFFRACTION)

$$n\lambda = \overline{SQT}$$
 Para interferência construtiva

$$n\lambda = d_{hkl}sen\theta + d_{hkl}sen\theta = 2d_{hkl}sen\theta$$

$$n\lambda = 2d_{nkl} sen\theta$$
 (Lei de Bragg)

Picos de difração de intensidades diferentes:

A intensidade de um RX difratado é proporcional à densidade de átomos do plano da estrutura que o originou

Distância ou espaçamento interplanar - d_{hkl}

Q Distância entre dois planos atômicos paralelos adjacentes, i.e., com os mesmos índices de Miller

Para estruturas cúbicas, d_{hkl} é dado por:

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$

Onde a_o é o parâmetro de rede e h, k, l são os índices de Miller do plano

Exemplo de padrão de difração (difratograma)

Padrão de difração de raios X para o α -Fe policristalino (CCC)

relacionado à quantidade de

planos que contribuem na reflexão

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

Intensidade de pico de difração de raios X (I_{hkl})

fator geométrico que causa variação

da intensidade com ângulo de reflexão

Fator de estrutura (F)

- · Independe da forma e tamanho da célula unitária
- Quando F = 0 ⇒ intensidade do pico é nula

Estrutura	Reflexões possivelmente presentes	Reflexões necessariamente ausentes (F = 0)
Cúbica simples - CS	Todos os planos (100), (110), (111), (200), (210), (211), (220), (300), (221), (310), (311), (222), (320), (321), (400), (410), (312), (411), (330), (331), (420)	Nenhum plano
Cúbica de corpo centrado - CCC	(h + k + l) pares (110), (200), (211), (220), (310), (222), (321), (400), (411), (330), (420)	(h + k + l) ímpares (100), (111), (210), (300), (221), (311), (320), (410), (312), (331)
Cúbica de face centrada - CFC	h, k e l não misturados (111), (200), (220), (311), (222), (400), (331), (420)	h, k e l misturados (100), (110), (210), (211), (300), (221), (310), (320), (321), (410), (312), (411), (330)

Nota: Misturado e não misturado referem -se aos números inteiros h, k e l pares ou ímpares (considerando zero como par)

Indexação de padrões de cristais cúbicos

$$\lambda = 2d_{hkl}sen\theta + d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$\frac{\text{sen}^2\theta}{(h^2 + k^2 + l^2)} = \frac{\text{sen}^2\theta}{S} = \frac{\lambda^2}{4a^2}$$

Estrutura	$S = h^2 + k^2 + l^2$
CS	1, 2, 3, 4, 5, 6, 7, 8, 9
CCC	2, 4, 6, 8, 10, 12, 14
CFC	3, 4, 8, 11, 12, 16

Exemplo

Line	sin ² θ	$s = (h^2 + k^2 + l^2)$	$\frac{\lambda^2}{4a^2}$	$a(\mathring{A})$	hkl
1	0.140	3	0.0467	3.57	111
2	0.185	4	0.0463	3.59	200
3	0.369	8	0.0461	3.59	220
4	0.503	11	0.0457	3.61	311
5	0.548	12	0.0457	3.61	222
6	0.726	16	0.0454	3.62	400
7	0.861	19	0.0453	3.62	331
8	0.905	20	0.0453	3.62	420

Distâncias interplanares

Algumas vezes é necessário conhecer a **distancia interplanar**, d (→d_{hkl}), de uma família de planos, a distânciaé determinada pelas equæões:

Envolvem os parâmetros de rede \rightarrow a, b, c

CÚBICO	$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \qquad \blacktriangleright d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$
TETRAGONAL	$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$
HEXAGONAL	$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$
ROMBOÉDRICO	$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2) \operatorname{sen}^2 \alpha + 2(hk + kl + hl)(\cos^2 \alpha - \cos \alpha)}{a^2 (1 - 3\cos^2 \alpha + 2\cos^3 \alpha)}$
ORTORRÔMBICO	$\frac{1}{d^2} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)$
MONOCLÍNICO	$\frac{1}{d^2} = \frac{1}{\sin^{2\beta}} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2\beta}{b^2} + \frac{l^2}{c^2} \right)$
TRICLÍNICO	$\begin{split} \frac{1}{d^2} &= \frac{1}{V^2} \Big(S_{11} h^2 + S_{22} k^2 + S_{33} l^2 + 2 S_{12} h k + 2 S_{23} k l + 2 S_{13} h l \Big) \\ & V = \text{Volume da célula;} \\ S_{11} &= b^2 c^2 \text{sen } ^2 \alpha S_{22} = a^2 c^2 \text{sen } ^2 \beta S_{33} = b^2 c^2 \text{sen } ^2 \gamma \\ S_{12} &= a b c^2 (\cos \alpha \ \cos \beta \ - \ \text{seng}) \\ S_{23} &= a^2 b c (\cos \beta \ \cos \gamma \ - \ \text{sen} \alpha \) \\ S_{13} &= a b^2 c (\cos \gamma \ \cos \alpha \ - \ \text{sen} \beta \) \end{split}$

Exemplos de Aplicação da Análise de Difração de raios-X

- @ Identificação de fases cristalinas presentes no material, incluindo polimorfos
- ©Cálculo das dimensões da cela unit ária

- @Determinação do tamanho dos cristalitos (cristais nanométricos)

Informações básicas que podem ser obtidas de um difratograma

- Intensidade relativa dos picos de difra ção
- Q Distância interplanar do plano (hkl) que gerou o pico de difração
- Parâmetros de rede da fase cristalina
- Estrutura cristalina da fase

EXERCÍCIO

Análise do padrão de difração de um metal com estrutura cúbica

Raios X incidente de Cu (K α): $\lambda = 0,1541838$ nm

i) Plotar o difratograma em uma planilha Excel (Intensidade versus 2θ);

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

ii) Determinar o ângulo 20 e a intensidade relativa de cada pico de difração (normalizar pelo pico mais intenso);

 $\lambda_{Cu} = 0,154184$ Suas Materiais e Ir 2θ mm 39 45 Renata Ayres Rocha 44,6 **78** 65,3 33 78,9 15 82,6 42 Prof. 98,7 14

= 0,154184

ii) Determinar o ângulo 20 e a intensidade relativa de cada pico de difração (normalizar pelo pico mais intenso);

Ir 2θ mm 39 45 **58** 44,6 **78** 100 65,3 33 42 78,9 15 19 82,6 42 54 Prof. 98,7 18 14

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS **MATERIAIS E SUAS PROPRIEDADES**

(i)

iii) Calcular o espaçamento interplanar, d_{hkl}, de cada pico de difração;

Materiais e Suas Propriedades

(ii)

2θ

39

44,6

65,3

78,9

82,6

98,7

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

iii) Calcular o espaçamento interplanar, d_{hkl}, de cada pico de difração;

(iii)

d_{hkl}

0,231

0,203

0,143

0,121

0,117

0,102

θ

19,5

22,3

32,65

39,45

41,3

49,35

sen

0,334

0,379

0,540

0,635

0,660

0,759

 $\lambda_{CU} = 0,154184$

Ir

%

58

100

42

19

54

18

mm

45

78

33

15

42

14

Interestiv	Intensity	i)			,, 			(01) 	
	0	10	20	30	40	50	60	70	80	90	100	110
	5		_0			2	θ	. 0			- 50	
\dashv												

Propriedades

Materiais e Suas

Renata Avres Rocha

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

CS

 $\text{sen}^2\theta$

MATERIAIS E SUAS PROPRIEDADES

(iv) determinar o tipo de estrutura, calculando os valores de sen $^2\theta$ e S

$$\lambda_{Cu} = 0,154184$$

(1)						
tion and					-1	
•			1	1		
		N			\mathcal{M}	٨

h k l

CFC

sen²θ

(ii)					(iii)	
2θ	L mm	Ir %	θ	senθ	d _{hkl}	sen² θ
		/0	_	00110	hki	
39	45	58	19,5	0,334	0,231	
44,6	78	100	22,3	0,379	0,203	
65,3	33	42	32,65	0,540	0,143	
78,9	15	19	39,45	0,635	0,121	
82,6	42	54	41,3	0,660	0,117	
98,7	14	18	49,35	0,759	0,102	

CCC

sen²θ

2019

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

(i)

(iv) determinar o tipo de estrutura, calculando os valores de sen $^2\theta$ e S

Propriedades

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

(v) determinar os planos de difração (índices de Miller)

 $\lambda_{Cu} = 0,154184$

(ii)					(iii)		CS	CCC	CFC	(v)	
•	L mm	Ir %	θ	senθ	d _{hkl}	sen² θ	sen²θ S	sen²θ S	sen²θ S	hkl	a
2 θ 39	45	58	19,5	0,334	0,231	0,111	0,111	0,056	0,037	1	
44,6	78	100	22,3	0,379	0,203	0,144	0,072	0,036	0,036		
65,3	33	42	32,65	0,540	0,143	0,291	0,097	0,049	0,036		
78,9	15	19	39,45	0,635	0,121	0,403	0,101	0,051	0,037		
82,6	42	54	41,3	0,660	0,117	0,436	0,087	0,044	0,036		
98,7	14	18	49,35	0,759	0,102	0,576	0,096	0,048	0,036		

Propriedades

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

(v) determinar os planos de difração (índices de Miller)

d_{hkl}=λ/2senθ

 $\lambda_{Cu} = 0,154184$

onas	(ii)					(iii)		CS	CCC	CFC	(v)	
Φ	2θ	L mm	Ir %	θ	senθ	d _{hkl}	sen² θ	sen²θ S	sen²θ S	sen²θ S	hkl	a
Materials	39	45	58	19,5	0,334	0,231	0,111	0,111	0,056	0,037	111	
	44,6	78	100	22,3	0,379	0,203	0,144	0,072	0,036	0,036	200	
ġ.	65,3	33	42	32,65	0,540	0,143	0,291	0,097	0,049	0,036	220	
Ayr	78,9	15	19	39,45	0,635	0,121	0,403	0,101	0,051	0,037	311	
Remark	82,6	42	54	41,3	0,660	0,117	0,436	0,087	0,044	0,036	222	
	98,7	14	18	49,35	0,759	0,102	0,576	0,096	0,048	0,036	400	

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

vi) Indexar o difratograma (os planos em cada pico); vii) Determinar o parâmetro de rede da estrutura;

iedad	λ _{Cu}	= 0,15	54184				$\mathbf{a} = \lambda \left(\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2 \right)$	1/2 /2 *se	enθ
ĝ(ii)	L	Ir	(iii)		(iv)			(v)	(vii)
Snas Snas	mm	%	θ	senθ	d _{hkl} = nm	sen²θ		hkl	а
a	45	58	19,5	0,334	0,231	0,111		111	0,40002175
Materiais 44,6	78	100	22,3	0,379	0,203	0,144		200	0,40638903
	33	42	32,65	0,540	0,143	0,291		220	0,40416886
¹ 65,3 ² 78,9	15	19	39,45	0,635	0,121	0,403		311	0,40265391
82,6	42	54	41,3	0,660	0,117	0,436		222	0,40462806
Renata 7	14	18	49,35	0,759	0,102	0,576		400	0,40644259
							Média		0,40405070
Prof.							DS		0,00180858

Universidade Federal do ABC

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES

 $\lambda (nm) = 0,154184$

20	I (mm)	Ir (%)	θ	sen(θ)	d _{hkl} (nm)	sen²(θ)	S _{cs}	sen²(0)/S _{cs}	S _{ccc}	sen²(0)/S _{ccc}	S _{CFC}	sen²(0)/S _{CFC}	(hkl)	(h ² +k ² +l ²) ^{1/2}	a (nm)
39,0	45	58%	19,5	0,334	0,231	0,111	1	0,111	2	0,0557	3	0,0371	(111)	1,73	0,400
44,6	78	100%	22,3	0,379	0,203	0,144	2	0,072	4	0,0360	4	0,0360	(200)	2,00	0,406
65,3	33	42%	32,7	0,540	0,143	0,291	3	0,097	6	0,0485	8	0,0364	(220)	2,83	0,404
78,9	15	19%	39,5	0,635	0,121	0,404	4	0,101	8	0,0505	11	0,0367	(311)	3,32	0,402
82,6	42	54%	41,3	0,660	0,117	0,436	5	0,087	10	0,0436	12	0,0363	(222)	3,46	0,405
98,7	14	18%	49,4	0,759	0,102	0,576	6	0,096	12	0,0480	16	0,0360	(400)	4,00	0,406

Sequência incorreta Sequência incorreta Sequência correta média 0,404

Estrutura CFC desvio-padrão 0,002

Raios X incidente de Cu (K α): λ = 0,1541838 nm

Ouro (Au): CFC a = 0,40786 nm

Fonte: Cullity, Elements of X-ray diffraction, 2 ed.