

1. ročník tímovej súťaže DuoGeo – kategória SŠ

16. 2. 2025

Úloha 1. Je daný trojuholník *ABC* s výškou *CD*, pričom *D* leží na úsečke *AB*. Súčet dĺžok strán *AC*, *BC* a priemerov kružníc vpísaných trojuholníkom *ADC* a *BDC* (teda súčet čiarkovaných úsečiek) je 26 a dĺžka úsečky *CD* je 6. Určte obsah trojuholníka *ABC*. (Mária Dományová, Patrik Bak)

Úloha 2. Je daný päťuholník *ABCDE* s práve jedným nekonvexným uhlom, a to pri vrchole *C*. Predpokladajme, že polpriamka *AC* pretína stranu *DE*, čím rozdelí päťuholník na 3 zhodné trojuholníky. Dokážte, že pomer dĺžok niektorých dvoch strán päťuholníka *ABCDE* je 3 : 2. (*Josef Tkadlec*)

Úloha 3. Na kružnici s označeným stredom je označených $n \ge 3$ rôznych bodov rozdeľujúcich kružnicu na oblúky o_1, \ldots, o_n rôznych dĺžok kratších ako polkružnica. *Kružnicové* operácie umožňujú:

- (i) označiť priesečníky dvoch kružníc,
- (ii) zostrojiť kružnice so stredom v niektorom z označených bodov, pričom kružidlo môžeme do každého z bodov zapichnúť maximálne raz (kým je v ňom zapichnuté, môže spraviť viacero kružníc),
- (iii) určiť polohu označeného bodu vzhľadom na niektorú z nakreslených kružníc (teda či leží na kružnici, vnútri nej alebo zvonka nej).

Dokážte, že pomocou týchto operácií vieme určiť, ktorý z oblúkov $o_1,...,o_n$ je najdlhší. (Ema Čudaiová)

Úloha 4. Dve kružnice k a l so stredmi postupne v bodoch K a L sa pretínajú v bodoch A a B, pričom platí $KA \perp AL$. Kružnice k a l pretínajú úsečku KL postupne v bodoch P a Q. Priamky BQ a BP druhýkrát pretínajú kružnice k a l postupne v bodoch M a N. Dokážte, že priamky PM a QN sa pretínajú v strede kružnice vpísanej trojuholníka AKL. ($Patrik\ Bak$)

Úloha 5. Daný je tetivový štvoruholník ABCD s priesečníkom uhlopriečok T vpísaný do kružnice ω. Nech M je stredom oblúka AD kružnice ω obsahujúceho B a C. Predpokladajme, že na úsečkách BT a CT ležia postupne body $P \neq B$ a $Q \neq C$ také, že platí |MP| = |MB| a |MQ| = |MC|. Nech O je stredom kružnice opísanej trojuholníka PQT. Dokážte, že platí |∠MOA| = |∠MOD|. (Michal Pecho)

Úloha 6. Je daný konvexný šesťuholník ABCDEF, v ktorom platí |AB| = |EF|, |BC| = |FA|, $|\angle BCD| = |\angle DEF|$ a $|\angle ABC| = |\angle CDE| = |\angle EFA|$. Dokážte, že kolmica na BF vedená bodom D prechádza ortocentrom trojuholníka ACE. ($Zdeněk\ Pezlar$)