A Thesis Title

by

Allison Schneider

Submitted to the Dept. of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of

Bachelor of Science in Earth, Atmospheric and Planetary Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017
© Massachusetts Institute of Technology 2017. All rights reserved.
Author
Dept. of Earth, Atmospheric and Planetary Sciences August 5, 2017
Certified by
Glenn R. Flierl Professor of Oceanography
Thesis Supervisor
A 1 1
Accepted by
Chairman, Committee on Undergraduate Program

A Thesis Title

by

Allison Schneider

Submitted to the Dept. of Earth, Atmospheric and Planetary Sciences on August 5, 2017, in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric and Planetary Sciences

Abstract

In this thesis, I designed and implemented a compiler which performs optimizations that reduce the number of low-level floating point operations necessary for a specific task; this involves the optimization of chains of floating point operations as well as the implementation of a "fixed" point data type that allows some floating point operations to simulated with integer arithmetic. The source language of the compiler is a subset of C, and the destination language is assembly language for a micro-floating point CPU. An instruction-level simulator of the CPU was written to allow testing of the code. A series of test pieces of codes was compiled, both with and without optimization, to determine how effective these optimizations were.

Thesis Supervisor: Glenn R. Flierl Title: Professor of Oceanography

Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowledgements.

Contents

	Introduction		13	
	1.1	The Aerocene Project	13	
	Methods			
	2.1	Interpolation	15	
	2.2	Integration Scheme	15	
	2.3	Timestep	16	

List of Figures

List of Tables

Chapter 1

Introduction

1.1 The Aerocene Project

Chapter 2

Methods

2.1 Interpolation

2.2 Integration Scheme

The numerical scheme chosen was a second-order Runge-Kutta method with a long track record in trajectory modeling [Petterssen, 1940]. The velocity at a given timestep is taken to be the average of the velocity at the initial position and the velocity at the first-guess position after one timestep.

The first guess position $\vec{P}'(t + \Delta t)$ is

$$\vec{P}'(t+\Delta t) = \vec{P}(t) + \vec{V}(\vec{P},t)\Delta t \tag{2.1}$$

and the final position $\vec{P}(t + \Delta t)$ is

$$\vec{P}(t+\Delta t) = \vec{P}(t) + \frac{1}{2} \left[\vec{V}(\vec{P},t) + \vec{V}(\vec{P'},t+\Delta t) \right] \Delta t \tag{2.2}$$

where \vec{P} is a position vector with latitude and longitude components, and \vec{V} a velocity vector with u and v wind speeds [Draxler and Hess, 1997]. This integration method is used by HYSPLIT and a number of other trajectory models, including FLEXPART, LAGRANTO, and STILT [Stein et al., 2015] [Bowman et al., 2013].

For trajectories calculated from interpolated gridded wind velocities, higher order integration schemes do not add precision [Draxler and Hess, 1997].

2.3 Timestep

The timestep for integration was three minutes, with the timestep throughout the trajectory. To save computation, HYSPLIT uses a dynamic timestep, varying from one minute to one hour, computed to satisfy

$$U_{max}[grid-units min^{-1}]\Delta t[min] < 0.75[grid-units]$$
 (2.3)

[Draxler and Hess, 1997]. This ensures that the parcel does not blow past any grid squares, which would reduce the accuracy of the calculation.

Bibliography

- [Bowman et al., 2013] Bowman, K., Lin, J. C., Stohl, A., Draxler, R., and Konopka, P. (2013). Input data requirements for Lagrangian trajectory models. *Bulletin of the American Meteorological Society*, 94(7):1051–1058.
- [Draxler and Hess, 1997] Draxler, R. R. and Hess, G. D. (1997). Description of the HYSPLIT_4 modeling system. Technical report, NOAA Air Resources Laboratory, Silver Spring, MD.
- [Petterssen, 1940] Petterssen, S. (1940). Weather Analysis and Forecasting. McGraw-Hill Book Company, New York.
- [Stein et al., 2015] Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F. (2015). NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. *Bulletin of the American Meteorological Society*, 96:2059–2077.