Interpretable Machine Learning

Permutation IMPortance (PIMP)

Learning goals

- Understand PIMP and its motivation
- Address multiple testing in feature importance

• PIMP was originally introduced for random forest's built-in PFI scores

- PIMP was originally introduced for random forest's built-in PFI scores
- ullet PIMP idea: Test if an observed $\widehat{\mathsf{PFI}}_{j}^{\mathsf{obs}}$ score is $\mathit{significantly}$ greater than expected under the null hypothesis of X_i being not important → Accounts for spurious importance due to randomness

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed $\widehat{PFI}_i^{\text{obs}}$ score is *significantly* greater than expected under the null hypothesis of X_i being not important → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_i is conditionally independent of y (unimportant)

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed \widehat{PFI}_i^{obs} score is *significantly* greater than expected under the null hypothesis of X_i being not important → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_i is conditionally independent of y (unimportant)
- Approximate null distribution of PFI scores under H_0 by repeated permutations: Permute $y \to \text{retrain model} \to \text{recompute } \widehat{\mathsf{PFI}}_i \text{ scores for all } j \to \text{repeat } B \text{ times}$ ⇒ Permuting y breaks relationship to all features (PFI scores reflect noise only)

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed \widehat{PFI}_i^{obs} score is *significantly* greater than expected under the null hypothesis of X_i being not important → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_i is conditionally independent of y (unimportant)
- Approximate null distribution of PFI scores under H_0 by repeated permutations: Permute $y \to \text{retrain model} \to \text{recompute } \widehat{\mathsf{PFI}}_i \text{ scores for all } j \to \text{repeat } B \text{ times}$ ⇒ Permuting y breaks relationship to all features (PFI scores reflect noise only)
- Assess the significance of PFI scores via tail probability under H_0 ⇒ Use this as a new feature importance score, adjusting for random chance

PIMP ALGORITHM

- **1** For $b \in \{1, ..., B\}$:
 - ullet Permute response vector ${\bf y}$, denote permuted target as ${\bf y}^{(b)}$
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - Compute feature importance $\widehat{\mathsf{PFI}}_j^{(b)}$ for each feature j (under H_0)

PIMP ALGORITHM

- **1** For $b \in \{1, ..., B\}$:
 - Permute response vector \mathbf{y} , denote permuted target as $\mathbf{y}^{(b)}$
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - ullet Compute feature importance $\widehat{\mathsf{PFI}}_j^{(b)}$ for each feature j (under H_0)
- 2 Train model on original data (X, y) with unpermuted target

PIMP ALGORITHM

- **1** For $b \in \{1, ..., B\}$:
 - Permute response vector y, denote permuted target as y^(b)
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - \bullet Compute feature importance $\widehat{\mathsf{PFI}}_j^{(b)}$ for each feature j (under $H_0)$
- f 2 Train model on original data $({\bf X},{\bf y})$ with unpermuted target
- **3** For each feature $j \in \{1, \dots, p\}$:
 - Compute $\widehat{\mathsf{PFI}}_j^{\mathsf{oos}}$ for the model without permutation of y (under H_1)
 - Fit probability distribution to all PFI scores $\{\widehat{\mathsf{PFI}}_j^{(b)}\}_{b=1}^B$ (under H_0) e.g., by assuming Gaussian/lognormal/gamma distribution (parametric)
 - Compute p-value: Probability that null importance exceeds observed:
 - parametric by taking tail probability of assumed distribution

$$\mathbb{P}(\widehat{\mathsf{PFI}}_j^{(m)} \geq \widehat{\mathsf{PFI}}_j^{\mathsf{obs}})$$

• non-parametric by computing empirical tail probability:

$$p_j := \frac{1}{B} \sum_{b=1}^{B} \mathbb{I}[\widehat{\mathsf{PFI}}_j^{(b)} \geq \widehat{\mathsf{PFI}}_j^{\mathsf{obs}}]$$

PIMP FOR EXTRAPOLATION EXAMPLE

Recall: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3$, $x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$ and all noise terms ϵ_j are independent
- ullet Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

- Histograms: H_0 distribution of PFI scores after permuting y (1000 repetitions)
- Red: Observed PFI score (under H_1) \rightsquigarrow compare against H_0 distribution
- Recall: PFI for x_1 , x_2 , x_3 is nonzero suggesting they are important (red lines)
- PIMP considers x_1 , x_2 not significantly relevant (p-value > 0.05)

DIGRESSION: MULTIPLE TESTING Promano et al. (2010)

- When should we reject H_0 for a given feature?
- PIMP conducts one hypothesis test per feature ⇒ multiple testing problem
- With many tests, rejections of true H_0 just by chance (type-I errors) accumulate
- To account for this, control a suitable error rate, e.g., the family-wise error rate FWE: probability of making at least one type-I error across all tests
- A classical method is the Bonferroni correction: reject H_0 if p-value $< \alpha/m$ where m is the number of tests

