CHEMISTRY

The central and most important branch of science

Fall 2020 schedule:

	Date	Topic	NGSS (if applicable)
Week 1	Tuesday, Sept 1	The story of the atom	5-PS1-1
	Thursday, Sept 3	Elemental, dear Watson!	
	Friday, Sept 4	Hands-on Activity: Modeling Cl	lay Orbitals
Week 2	Tuesday, Sept 8	A noble quest	
	Thursday, Sept 10	Element vs mixture vs compound	5-PS1-3
	Friday, Sept 11	Hands-on Activity: Edible Expe	riments
Week 3	Tuesday, Sept 15	Why is it radioactive?	
	Thursday, Sept 17	Conservation of matter	5-PS1-2
	Friday, Sept 18	Gameshow review	
Week 4	Tuesday, Sept 22	Chemical reactions part 1	5-PS1-4
	Thursday, Sept 24	Chemical reactions part 2	5-PS1-4
	Friday, Sept 25	Hands-on Activity: Time to Fizz	
Week 5	Tuesday, Sept 29	Chemical reactions part 3	5-PS1-4
	Thursday, Oct 1	How does a toaster work?	4-PS3-2, 4-PS3-4
	Friday, Oct 2	Hands-on Activity: Lemon or Vi	inegar Battery
Week 6	Tuesday, Oct 6	The building block of life	4-PS4-3
	Thursday, Oct 8	Where does fuel come from?	4-ESS1-1, 4-ESS3-1
	Friday, Oct 9	Gameshow review	
Week 7	Tuesday, Oct 13	What is fire really?	
	Thursday, Oct 15	Can we predict a volcano?	4-ESS3-2
	Friday, Oct 16	Hands-on Activity: Build a Leve	ee
Week 8	Tuesday, Oct 20	All about the solution	
	Thursday, Oct 22	Acids and bases	
	Friday, Oct 23	Gameshow review	
Week 9	Tuesday, Oct 27	Why do we chlorinate pools?	
	Thursday, Oct 29	Photosynthesis	5-PS3-1, 5-LS1-1
	Friday, October 30	Hands-on Activity: Frankensee	ds
Week 10	Tuesday, Nov 3	All about the sugars	
	Thursday, Nov 5	Why can't you eat books?	
	Friday, Nov 6	Gameshow review	

The gameshow reviews are interactive and best when attended live (10:00-10:45 a.m. Pacific / 1:00-1:45 p.m. Eastern time). If you can't attend live, it is recorded and you can watch the replay afterward. The questions used during the gameshow will also be emailed to all participants and can be used as a traditional assessment.

Have questions? Contact jenny@science.mom

	Date	Topic	NGSS (if applicable)
Week 11	Tuesday, Nov 10	Lipids!	
	Thursday, Nov 12	Plankton!	
	Friday, Nov 13	gation	
Week 12	Tuesday, Nov 17	Bioluminescence	
	Thursday, Nov 19	From cells to colonies	4-LS1-1
	Friday, Nov 20	Gameshow review	
Week 13	Tuesday, Nov 24		
	Thursday, Nov 26	Thanksgiving break - No class	
	Friday, Nov 27		
Week 14	Tuesday, Dec 1	The nitrogen cycle	5-LS2-1
	Thursday, Dec 3	Water reclamation	
	Friday, Dec 4	DIY Water Filter	
Week 15	Tuesday, Dec 8	Fireworks and lab safety	
	Thursday, Dec 10	Gameshow review	
	Friday, Dec 11	Gameshow review	

Supply List for Friday Hands-on Activities:

September 4 - Modeling Clay Orbitals

- Toothpicks
- Modeling clay or play dough (7 different colors)

September 18 - Edible Experiments

- Granulated Sugar (at least 7 cups)
- Kool-aid packets
- Cake pop sticks or string
- A ruler
- 2 pint-size mason jars with lids OR cups and rubber bands
- Coffee filters or paper
- 2 Microwavable popcorn packets
- · Water and ice

September 25 - Time to Fizz!

- 6 Alka-Seltzer tablets
- 6 bottles of soda in plastic containers with narrow tops. Any size and type will work, but I recommend 16 oz coke bottles (because Coke is slightly more carbonated than other sodas). Be sure to save the bottles when finished because they will be used twice in this experiment and again in the December 4th water filtration experiment.
- Baking soda
- 3 packages of Pop Rocks candy
- 6 Balloons (standard 9 inch size)
- A funnel (to help get baking soda inside the balloon)
- Food Coloring
- Vinegar
- Vegetable oil (a whole bottle)

October 2 - Lemon or Vinegar Batteries!

- Citrus fruit such as lemons
- Potato
- Vinegar and three small cups
- An LED diode
- · Copper penny, wire, or copper sheets
- Galvanized nail or zinc sheets
- Alligator clips

October 16 - Build a Levee

- A rectangular Tupperware container (or a glass pan)
- Duct tape
- A plastic bag
- Find grained building materials (1 cup flour mixed with 1 Tbsp cocoa powder)
- Course grained building materials (beans, nuts, or dried fruit)
- Water
- (Optional) legos or other small items to represent the town

October 30 Frankenseeds

- Cardboard egg carton(s)
- Paper towels
- An empty bread or produce bag
- At least 6 types of seeds from the kitchen (could include rice, beans, lentils, chia seeds, walnuts, sunflower seeds, almonds, peanuts, flax seeds quinoa, or seeds from inside foods like apples, peas, avocados, pears, oranges, kiwis, or cucumbers)

November 13 - Plant Propagation

- One root vegetable (such as a carrot, beet, turnip, radish, or rutabaga)
- One tuber (sweet potato, potato, ginger, or turmeric)
- A pineapple
- 3 cups (drinking cups will work fine)
- Toothpicks

December 4 - DIY Water Filter

- Two plastic bottles (can reuse the ones from Sept 25)
- Scissors (some adult supervision may be needed when cutting the bottles)
- Sand
- Gravel
- Activated charcoal
- Coffee filters
- A small square of cotton fabric or a couple of cotton balls

The story of the Al

WHAT ARE THINGS REALLY MADE OF?

- 1. Choose the number of protons*
- 2. Make it an isotope!
 Adjust the number of neutrons
- 3. Make it an ion!** Adjust the number of electrons
- * NUMBERS ABOVE 90 ARE NOT SERVED.
- ** LIMITED AVAILABILITY.

Daily Special CARBON 14 6 PROTONS 8 NEUTRONS **6 ELECTRONS** Remarkably stable!

The PERIONIC fable

PRETTY MUCH THE COOLEST CHART EVER

1 H Hydrogen 3 Li	4 Be Beryllium	e THE PERIODIC TABLE EVERY SHOOD F														He Helium 10 Ne Neon															
Na Sodium	Mg Magnesium																Ar Argon														
19 K Potassium	Ca Caldium														As Arsenic	Se Selenium	Br Bromine	Kr Krypton													
Rb Rubidium	Sr Strontium														Te Tellurium	53 I	Xe Xe														
CS Caesium	Ba Barium	57 La Lanthanum	Ce Cerium	Pr Prassodymium	Nd Neodymium	Pm Promethium	Sm Samarium	Eu Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	Ho Holmium	Er Erbium	Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium	72 Hf Hafnium	73 Ta	74 W Tungsten	75 Re	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	Hg Mercury	TI Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon
87 Fr Francium	Ra Radium	Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm _{Curlum}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	Fermium	Md Md Mendelevium	No No Nobelium	103 Lr Lawrencium	104 Rf Rutherfordium	Db Dubnium	106 Sg Seaborgium	Bh Bohrium	HS Hassium	Mt Meitnerium		Rg Roentgenium	Cn Copernicium	Nh Nihonium	Flerovium	MC Moscovium	LV Livermorium	Ts Tennessine	Og Oganesson

Hands-on Activity

MODELING CLAY ORBITALS!

Don't have modeling clay? No problem! Make play dough using this recipe:

PLAY DOUGH

1 cup flour
1/3 cup salt
3/4 cup water
3 Tbsp lemon juice
1 Tbsp cooking oil
Food coloring

Mix the flour and salt together in a bowl. Heat the water to boiling and add the oil and lemon juice. Then mix all the ingredients together. For best results, mix in a pot over the stovetop until mixture is thick (about 1 minute).

Let sit and cool for a few minutes before kneading. Add another spoonful of flour if the dough is too tacky. Kool-aid drink packets can be used instead of food coloring.

INSTRUCTIONS:

Shape the colors of clay that represent neutrons and protons into small spheres and put them together to make the nucleus. Then cover the nucleus in layers of clay to represent the orbitals. Use the images below to guide you in making models of a hydrogen, helium, lithium, carbon, fluorine, and neon atom. Partially-filled orbitals can be represented by moulding half of the orbital. Use toothpicks to attach the p-orbitals.

HYDROGEN

1 PROTON
O NEUTRONS
1 ELECTRON

WARNING! VERY REACTIVE ORBITAL INCOMPLETE

2 PROTON
2 NEUTRONS
2 ELECTRON

CONGRATULATIONS! YOU ARE REMARKABLY STABLE

3 PROTON 3 NEUTRONS 3 ELECTRON

WARNING! VERY REACTIVE ORBITAL INCOMPLETE

CARBON

6 PROTON

6 NEUTRONS

6 ELECTRON

CONGRATULATIONS!
YOU ARE MODERATELY STABLE

FLVORING

9 PROTON

9 NEUTRONS

9 ELECTRON

WARNING! VERY REACTIVE ORBITAL INCOMPLETE

MEON

10 PROTON

10 NEUTRONS

10 ELECTRON

CONGRATULATIONS! YOU ARE REMARKABLY STABLE

-SCIENCE MMM-